컴퓨터구조와 운영체제에서 (입출력시스템의개요 / 인터럽트와 DMA / 입출력장치와 인터페이스

컴퓨터 시스템의 입출력(I/O) 구조를 이해하기 위해서는 먼저 전체적인 시스템 아키텍처를 살펴보는 것이 좋습니다. 아래 다이어그램은 컴퓨터 시스템의 주요 구성 요소들과 그들의 상호 작용을 보여줍니다:

위 다이어그램에서 볼 수 있듯이, 컴퓨터 시스템은 크게 네 가지 주요 부분으로 구성되어 있습니다:

빨간색 영역(CPU 시스템): 중앙 처리 장치와 인터럽트 레지스터로, 시스템의 핵심 명령어 처리를 담당합니다

초록색 영역(메모리 시스템): 주기억장치와 버퍼 영역으로, 데이터의 임시 저장과 전달을 관리합니다. 파란색 영역(입출력 시스템): 실제 사용자가 접촉하는 하드웨어 장치들입니다.

노란색 영역(제어기 시스템): 각 입출력 장치를 위한 컨트롤러들이며, 속도 차이를 조절하고 데이터 변환을 담당합니다.

화살표는 데이터와 제어 신호가 흐르는 경로를 나타냅니다. 특히 버퍼 영역은 모든 입출력 데이터 가 통과하는 중계 지점으로, 시스템의 효율성을 높이는 중요한 역할을 합니다.

입출력 시스템의 개요

입출력 시스템은 다음과 같은 주요 구성 요소들로 이루어져 있습니다:

1. 입출력 제어장치

- DBR(Data Buffer Register)을 이용하여 속도 차이를 조절합니다.
- 제어 신호의 논리적, 물리적 변환을 담당합니다.
- 오류를 검출하고 제어합니다

2. 입출력 인터페이스

- 컴퓨터 내부와 외부 장치 간의 데이터 전송을 원활하게 합니다.
- 다양한 동작 방식과 데이터 형식을 조정합니다.
- 속도 차이를 보완합니다.

인터럽트와 DMA

데이터 전송을 위한 두 가지 중요한 메커니즘을 비교해 보겠습니다.

특성	인터럽트	DMA
СРU 관여도	높음	낮음
전송 단위	바이트 단위	블록 단위
시스템 버스 사용	자주 사용	효율적으로 사용
프로그램 중단	필요	불필요

DMA의 작동 과정을 시각화하면 다음과 같습니다.

인터럽트와 DMA에서 DMA는 "Direct Memory Access"의 약자입니다.

DMA의 정의

DMA는 <u>CPU의 개입 없이 특정 하드웨어 장치가 메모리에 직접 접근</u>하여 데이터를 전송할 수 있는 기능을 의미합니다. 이 방식은 CPU가 데이터 전송 작업에 관여하지 않기 때문에 <u>CPU의 대기</u>시간을 줄이고, 다른 작업을 수행할 수 있는 여유를 제공합니다.

인터럽트와의 관계

인터럽트는 <u>CPU가 특정 이벤트에 반응하여 실행 중인 작업을 중단하고 다른 작업을 수행하도록 하는 메커니즘</u>입니다. DMA는 데이터 전송이 완료되면 CPU에 인터럽트를 발생시켜 작업이 끝났음을 알립니다. 이로인해 <u>CPU는 데이터 전송이 완료될 때까지 대기할 필요가 없어</u>집니다. 따라서, DMA는 시스템의 효율성을 높이는 중요한 기술로, 특히 멀티태스킹 환경에서 CPU의 자원 을 보다 효과적으로 활용할 수 있게 해줍니다.

Quize

문제 1 : 입출력 시스템(I/O System)의 주요 기능은 무엇인가요?

- ㄱ) 데이터를 저장하는 기능
- L) 외부 장치와의 데이터 통신 기능
- c) 프로그램 실행 기능
- 리) 사용자 인터페이스 제공 기능

정답: ㄴ) 외부 장치와의 데이터 통신 기능

정답 이유: 입출력 시스템은 컴퓨터가 외부 장치와 데이터를 주고받을 수 있도록 하는 중요한 역할을 합니다. 이 시스템은 입력 장치에서 데이터를 받아들이고, 처리된 결과를 출력 장치로 전달하는 과정을 관리합니다. 따라서 외부 장치와의 데이터 통신 기능이 입출력 시스템의 핵심 기능입니다.

문제 2 : 입출력 장치의 제어 방식 중 CPU의 개입 없이 직접 메모리에 접근하여 데이터를 전송하는 방식은 무엇인가요?

- ㄱ) 인터럽트 방식
- L) 프로그램 입출력 방식
- c) 직접 메모리 접근(DMA) 방식
- 리) 폴링 방식

정답: c) 직접 메모리 접근(DMA) 방식

정답 이유: DMA(Direct Memory Access) 방식은 입출력 장치가 CPU의 개입 없이 직접 메모리에 접근하여 데이터를 전송하는 방법입니다. 이 방식은 CPU의 부하를 줄이고, 데이터 전송 속도를 높이는 장점이 있습니다. DMA 제어기는 메모리 사이클을 요청하여 데이터를 전송하고, 전송이 완료되면 CPU에 인터럽트 신호를 보내어 작업을 마무리합니다.

문제 3: 비동기식 전송 방식의 특징은 무엇인가요?

- ㄱ) 모든 장치가 동일한 클록 신호를 사용하여 데이터를 전송한다.
- L) 각 장치가 고유한 클록 신호를 사용하여 데이터를 전송한다.
- 더) 데이터 전송 속도가 매우 느리다.
- 리) 데이터 전송이 항상 동기화되어 있다.

정답: ㄴ) 각 장치가 고유한 클록 신호를 사용하여 데이터를 전송한다.

정답 이유: 비동기식 전송 방식에서는 각 장치가 독립적으로 고유한 클록 신호를 사용하여 데이터를 전송합니다. 이 방식은 장치가 준비가 되었을 때 인터럽트 신호를 통해 CPU에 알림으로써 입출력 작업을 수행할 수 있게 합니다. 이로 인해 CPU는 다른 작업을 수행할 수 있는 효율성을 제공합니다.