ME3020: Kinematics and Dynamics of Machines (Practical Sessions) Session: 3

1. Using MATLAB plot polar plot for the CAM profile for a knife edge follower as per following specifications. Plot the SVAJ diagram (for plotting multiple plots in single display use subplot command in MATLAB). For the same. Base radius =10mm, Max rise=8mm.

Segment	Function Used	Start Angle	End Angle(deg)	Delta Angle(deg)
Number		(deg)		
1	Dwell	0	60	60
2	Polynomial rise	60	120	60
3	Dwell	120	240	120
4	Polynomial Fall	240	300	60
5	Dwell	300	360	60

Rise Equation

$$s = h \left[64 \left(\frac{\theta}{\beta} \right)^3 - 192 \left(\frac{\theta}{\beta} \right)^4 + 192 \left(\frac{\theta}{\beta} \right)^5 - 64 \left(\frac{\theta}{\beta} \right)^6 \right]$$

Fall Equation

$$s = h \left[35 \left(\frac{\theta}{\beta} \right)^4 - 84 \left(\frac{\theta}{\beta} \right)^5 + 70 \left(\frac{\theta}{\beta} \right)^6 - 20 \left(\frac{\theta}{\beta} \right)^7 \right]$$

2. Using MATLAB plot polar plot for the CAM profile for a knife edge follower as per following specifications. Plot the SVAJ diagram for the same. Base radius =5mm, Max rise=9mm

Segment	Function Used	Start Angle	End Angle(deg)	Delta Angle(deg)
Number		(deg)		
1	Dwell	0	60	60
2	Polynomial Rise	60	150	90
3	Dwell	150	240	90
4	Polynomial Fall	240	300	60
5	Dwell	300	360	60

Polynomial Equation

$$s = h \left[10 \left(\frac{\theta}{\beta} \right)^3 - 15 \left(\frac{\theta}{\beta} \right)^4 + 6 \left(\frac{\theta}{\beta} \right)^5 \right]$$

Derive v, a and j to plot the graph