proofs of matroid exercises and problems in András Frank's book *Connections in Combinato*rial Optimization

1 ch5 - Elements of matroid theory

Proof (Exercise 5.1.1): Assume I1 and I2 hold, prove I3' is equivalent to I3.

- 1. I3 \rightarrow I3'. Suppose I3' is not true. There must be some independent set $U \supset K$ by I2. Take X in I3 to be the union of K and N, then there are no element in X can be added to K while remaining independence. Thus the set U does not exist, a contradiction.
- 2. I3' \rightarrow I3. Take any two subset A, B of X and $A, B \in \mathcal{F}$. Suppose |A| < |B|, apply I3' then A and B will be of the same size.

Proof (Exercise 5.1.2): similar to the previous one. Assume I1 and I2 hold,

- 1. I3 \rightarrow I3". I3" is a weaker version of I3'. so I3 \rightarrow I3' \rightarrow I3".
- 2. I3" \rightarrow I3. Take any two independent subset A, B of X. Suppose |A| < |B|. One can always find a independent subset D of B s.t. $A \cap B \subseteq D$ and |D| = |A| + 1 as I2 holds. Applying I3" adds one element to A. Since this works for any A, B, finally every independent subset of X will be of the same size.

Proof (Problem 5.1.3): I3"" is a weaker version of I3", with additional constraint $|K \setminus N| = 1$.

- 1. $I3 \rightarrow I3" \rightarrow I3""$.
- 2. $I3"" \rightarrow I3$. similar to previous proofs.

Proof (every affine matroid can be represented as a linear matroid, and vice versa): Consider a vector space over any field,

- 1. affine \rightarrow linear. For every element $\mathbf{x}=(x_1,...,x_n)$ in S, add one dimension, $\mathbf{x}'=(x_1,...,x_n,1)$. Verification is simple.
- 2. linear \rightarrow affine. For every element $\mathbf{x} = (x_1, ..., x_n)$ in S, remove one dimension, $\langle \langle \mathbf{can't} \leftarrow \langle \mathbf{r} \rangle \rangle \rangle$

Proof (Exercise 5.1.4 circuit matroid is linear over any field): We prove that a set of edges contains a cycle if and only if the corresponding columns in Q are linearly dependent over any field. If the set of edges contains a cycle, let Q be the set of edges in the cycle. One can easily see that, regardless of the edge orentation of edges, the set of columns in Q either add up to zero or they can be divided into 2 parts and their sums are the same vector. Both case leads to linear dependence over any field. On the other side, if the set edges form a forest, we claim that for any subset of edges there will be at least one row of the corresponding columns contains only one non-zero value. This is because any subgraph of a forest contains at least one degree one vertex. Thus the corresponding row will contain only one Q or Q or Q. Thus the columns are linear independent.

Note that non-isomorphic graphs may have isomorphic circuit matroids. A deep theorem of Whitney states that the circuit matroids of two non-isomorphic 3-connected graphs are not isomorphic.

Proof (Theorem 5.2.1 Weak circuit axiom): Suppose there exists two distinct circuits C_1 and C_2 violating the statement. Then $C_1 \cup C_2 - e$ is independent. We know that $C_1 \cap C_2$ is independent. Consider the maximal independent set I of $C_1 \cup C_2$ containing $C_1 \cap C_2$. Note that I can not have more than $|C_1 \cup C_2| - 2$ elements since independent set can not contain a circuit. Thus $C_1 \cup C_2 - e$ is a larger independent set than the maximal independent set of $C_1 \cup C_2$, a contradiction. \square

Theorem 1.1 (Theorem 5.2.3 Strong circuit axiom) *Let* C_1 *and* C_2 *be two distinct circuits,* $e \in C_1 \cap C_2$, $e_1 \in C_1 - C_2$. Then there is a circuit C for which $e_1 \in C \subseteq C_1 \cup C_2 - e$

Proof: (I can't prove this. Finding the counter example with minimum union size is important here. The following is from the book.)

Suppose the statement is no true. Find two distinct circuits C_1 and C_2 violating the statement with minimum $|C_1 \cup C_2|$. Weak circuit axiom shows that $C_1 \cup C_2 - e$ is not independent. Then there does not exists a circuit $C \subseteq C_1 \cup C_2 - e$ containing e_1 . Then there exists $C_3 \subseteq C_1 \cup C_2 - e$ which does not contain e_1 . Now we consider C_3 and C_2 . C_3 and C_2 follow the statement since $C_1 \cup C_2$ is the counter example with minimum size and $|C_3 \cup C_2| < |C_1 \cup C_2|$. Thus there exists $C_4 \subseteq C_3 \cup C_2 - f$ containing $e \in C_2$ for some $f \in C_3 \cap C_2$. Now we consider C_4 and C_1 . $C_4 \cup C_1 \subseteq C_1 \cup C_2$ since C_4 is a proper subset of $C_1 \cup C_2$. Hence for C_1 and C_4 we can apply strong circuit axiom and there should be a circuit $C \subseteq C_1 \cup C_4 - e \subseteq C_1 \cup C_2 - 2$ containing e_1 , a contradiction.

Proof (Theorem 5.2.4 circuit axioms define a matroid): Let \mathcal{C} be the set of circuits. $\mathcal{I} = \{I \subseteq E | \nexists C \in \mathcal{C}, C \subseteq I\}$. We need to prove \mathcal{I} follows I1, I2 and I3'(independent set exchange property). I1 and I2 holds trivially. Suppose I3' does not hold on \mathcal{I} . We can find $I_1, I_2 \in \mathcal{I}$ such that $|I_1| > |I_2|$ and $\forall e \in I_1 \setminus I_2$, $I_2 + e$ contains a circuit. There are two cases,

- 1. $I_2 \subseteq I_1$. This is trivial.
- 2. $I_2 \not\subseteq I_1$, Then $|I_1 \setminus I_2| \ge 2$. Take two elements $e, f \in I_1 \setminus I_2$, $I_2 + e$ and $I_2 + f$ contains two unique circuits C_e and C_f . Note that $C_e \cap C_f = \emptyset$ by Theorem 1.1. Hence all distinct

circuits formed by adding one element in $I_1 \setminus I_2$ to I_2 are disjoint. Also note that each circuit contains at least one element in $I_2 \setminus I_1$ since otherwise I_1 will contain a circuit. Thus $|I_2 \setminus I_1| \ge |I_1 \setminus I_2|$, contradicting to $|I_1| > |I_2|$.

Similar methods can be used to prove edges in (k, ℓ) -sparse subgraphs form the independent set of matroid.

Proof ((k, ℓ)**-sparsity matroid):** We prove the set of edges of (k, ℓ)-sparse subgraphs in G = (V, E) for all $k \ge 1$, $\ell \le 2k-1$ satisfy I1,I2 and I3'. Again I1 and I2 holds trivially. Suppose I3' does not hold. We can find two (k, ℓ)-sparsesubgraphs $N = (V_N, E_N)$ and $K = (V_K, E_K)$ violating I3' with $|E_N| > |E_K|$. For any edge $e \in E_N \setminus E_K$, K + e is not (k, ℓ)-sparseand there is a maximal(in terms of edges) (k, ℓ)-tight subgraph G_e of K containing two endpoints of e. We claim that G_e s are edge disjoint for different e. By Theorem 5(1) in [1], intersection and union(with respect to the vertex sets) of two (k, ℓ)-tight subgraphs with at least two common vertices induce (k, ℓ)-tight subgraphs. Hence if for different e and f, G_e and G_f have any common edge, G_e and G_f won't be maximal. Thus for all $e \in E_N \setminus E_K$, corresponding G_e s are edge disjoint. We have $|E_K| \ge |E_N|$, a contradiction.

Proof (Exercise 5.2.1): □

References

[1] Audrey Lee and Ileana Streinu. Pebble game algorithms and sparse graphs. *Discrete Mathematics*, 308(8):1425–1437, April 2008.