Univalent Enriched Categories and the Enriched Rezk Completion

Niels van der Weide

Univalent Foundations

- ► We work in univalent foundations (UF)
- Concretely, we assume the univalence axiom:

$$(A = B) \simeq (A \simeq B)$$

▶ Identity is proof relevant, and we interpret types as spaces

Univalence Principles

Using the univalence axiom we can prove that

Monoids are identified up to monoid isomorphism:

$$(M = N) \simeq (M \cong N)$$

Groups are identified up to group isomorphism:

$$(G = H) \simeq (G \cong H)$$

Rings are identified up to ring isomorphism:

$$(R = S) \simeq (R \cong S)$$

So: sameness of algebraic structures is given by isomorphism

Univalence Principles

Using the univalence axiom we can prove that

Monoids are identified up to monoid isomorphism:

$$(M = N) \simeq (M \cong N)$$

Groups are identified up to group isomorphism:

$$(G = H) \simeq (G \cong H)$$

Rings are identified up to ring isomorphism:

$$(R = S) \simeq (R \cong S)$$

So: sameness of algebraic structures is given by isomorphism But **what about categories**?

Category Theory in UF

In UF, we have two notions of categories

Strict categories: identified up to **isomorphism**, i.e.

$$\mathcal{C} \xrightarrow{F \atop \longleftarrow G} \mathcal{D}$$

such that F(G(x)) = x and G(F(x)) = x.

Univalent categories: identified up to adjoint equivalence, i.e.

$$\mathcal{C} \xrightarrow{F \atop G} \mathcal{D}$$

together with natural isomorphisms $F \cdot G \cong id C$ and $G \cdot F \cong id D$ for which the triangle equations hold

Category Theory in UF

In UF, we have two notions of categories

Strict categories: identified up to isomorphism, i.e.

$$\mathcal{C} \xrightarrow{F \atop \longleftarrow G} \mathcal{D}$$

such that F(G(x)) = x and G(F(x)) = x.

Univalent categories: identified up to adjoint equivalence, i.e.

$$\mathcal{C} \xrightarrow{F} \mathcal{D}$$

together with natural isomorphisms $F\cdot G\cong \operatorname{id} C$ and $G\cdot F\cong \operatorname{id} D$ for which the triangle equations hold

Our focus is on univalent categories

Why Univalent Categories

In this talk, we are only concerned with univalent categories

- ► In category theory, categories usually are identified up to adjoint equivalence
- ► The univalent perspective offers an interesting new perspective on category theory

Univalent Categories

Definition

Let C be a category.

- We have a map idtoiso sending identities p: x = y of objects $x, y: \mathcal{C}$ to isomorphisms $x \cong y$
- C is univalent if idtoiso is an equivalence of types

Univalent Categories

Definition

Let C be a category.

- We have a map idtoiso sending identities p: x = y of objects $x, y: \mathcal{C}$ to isomorphisms $x \cong y$
- C is univalent if idtoiso is an equivalence of types

So:

- ▶ In univalent categories, we have $(x = y) \simeq (x \cong y)$
- Objects of univalent categories are identified up to isomorphism
- ➤ This follows common mathematical practice because properties of objects are invariant up to isomorphism
- Univalent categories are identified up to adjoint equivalence

There are many interesting aspects to univalent category theory

► Univalence principle: univalent categories are identified up to adjoint equivalence

¹Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. "Univalent categories and the Rezk completion.", MSCS.

²Ahrens, Benedikt, Paige Randall North, Michael Shulman, and Dimitris Tsementzis. "*The univalence principle*", LICS 2020.

³Van der Weide, Niels. "The Formal Theory of Monads, Univalently.", FSCD 2023.

There are many interesting aspects to univalent category theory

- ▶ Univalence principle: univalent categories are identified up to adjoint equivalence
- Constructively proving that fully faithful and essentially surjective functors are adjoint equivalences

¹Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. "Univalent categories and the Rezk completion.", MSCS.

²Ahrens, Benedikt, Paige Randall North, Michael Shulman, and Dimitris Tsementzis. "*The univalence principle*", LICS 2020.

³Van der Weide, Niels. "The Formal Theory of Monads, Univalently.", FSCD 2023.

There are many interesting aspects to univalent category theory

- ▶ Univalence principle: univalent categories are identified up to adjoint equivalence
- Constructively proving that fully faithful and essentially surjective functors are adjoint equivalences
- Rezk completions: every not necessarily univalent category is weakly equivalent to a univalent one (weak equivalence: eso and fully faithful)

¹Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. "Univalent categories and the Rezk completion.", MSCS.

²Ahrens, Benedikt, Paige Randall North, Michael Shulman, and Dimitris Tsementzis. "*The univalence principle*", LICS 2020.

³Van der Weide, Niels. "The Formal Theory of Monads, Univalently.", FSCD 2023.

There are many interesting aspects to univalent category theory

- ▶ Univalence principle: univalent categories are identified up to adjoint equivalence
- Constructively proving that fully faithful and essentially surjective functors are adjoint equivalences
- Rezk completions: every not necessarily univalent category is weakly equivalent to a univalent one (weak equivalence: eso and fully faithful)
- ► The usual definition of the Kleisli category does **not** give rise to a univalent category: instead we use the **Rezk completion**

Each of these points have been established in the literature 1 2 3

¹Ahrens, Benedikt, Krzysztof Kapulkin, and Michael Shulman. "Univalent categories and the Rezk completion.", MSCS.

²Ahrens, Benedikt, Paige Randall North, Michael Shulman, and Dimitris Tsementzis. "*The univalence principle*", LICS 2020.

³Van der Weide, Niels. "The Formal Theory of Monads, Univalently.", FSCD 2023.

Enriched Categories

We like enriched categories ^{4 5}

- ► An enriched category is a category whose hom-sets are endowed with extra structure
- For instance: every hom-set could be an abelian group or a DCPO
- Have found applications in programming languages ⁶, algebraic topology ⁷, higher category theory

⁴Bénabou Jean. "Catégories relatives", C. R. Acad. Sci. Paris, 1965.

⁵Kelly, Max. "Basic concepts of enriched category theory", London Math. Soc. Lecture Note Ser., 64, 1982

⁶Power, John. "Models for the computational λ -calculus", MFCSIT 2000.

⁷Goerss, Paul G., and John F. Jardine. Simplicial homotopy theory.

Enriched Categories Illustrated

Enriched Categories Illustrated

This Paper

This paper studies univalent enriched categories, and it contains

- A univalence principle for univalent enriched categories
- ► A proof that fully faithful and essentially surjective enriched functors are adjoint equivalences
- ► A construction of the Rezk completion of enriched categories and a proof of the universal mapping property
- Univalent enriched Kleisli categories
- ► The results are formalized in Coq proof assistant using the UniMath library

Monoidal Categories

Definition

A monoidal category V is given by

- ▶ an object I : V called the **unit**
- ▶ an operation $\otimes : V \to V \to V$ called the **tensor**

Unitality and associativity hold up to coherent isomorphism. This means that we have natural isomorphisms $I:I\otimes x\cong x$,

 $r: x \otimes I \cong x$, and $a: x \otimes (y \otimes z) \cong (x \otimes y) \otimes z$ satisfying suitable coherences. In addition, \otimes is required to be functorial.

Enrichments

Suppose that we have

▶ A monoidal category V with unit I and tensor ⊗

Definition

A V-enrichment ${\mathcal E}$ of a category C consists of

- ▶ a function $\mathcal{E}(-,-): \mathsf{C} \to \mathsf{C} \to \mathsf{V}$
- ▶ for all x : C a morphism $id^e : I \to \mathcal{E}(x,x)$
- for all x, y, z : C a morphism

$$\mathsf{comp}: \mathcal{E}(y,z) \otimes \mathcal{E}(x,y) \to \mathcal{E}(x,z)$$

- ▶ for all $f: x \to y$ a morphism $\overrightarrow{f}: I \to \mathcal{E}(x,y)$
- ▶ for all $f: I \to \mathcal{E}(x, y)$ a morphism $\overleftarrow{f}: x \to y$

We require that $\overrightarrow{f} = f$ and that $\overleftarrow{f} = f$, and that these operations preserve identity and composition. Associativity and unitality are given in the next slides

Enrichments: Unitality Axioms

$$\begin{array}{c}
\mathsf{I} \otimes \mathcal{E}(x,y) \xrightarrow{\mathsf{id}^{\mathsf{e}}(y) \otimes \mathsf{id}} \mathcal{E}(y,y) \otimes \mathcal{E}(x,y) \\
\downarrow \mathsf{comp}(x,y,y) \\
\mathcal{E}(x,y)
\end{array}$$

$$\begin{array}{c}
\mathsf{E}(x,y) \otimes \mathsf{I} \xrightarrow{\mathsf{id} \otimes \mathsf{id}^{\mathsf{e}}(x)} \mathcal{E}(x,y) \otimes \mathcal{E}(x,x) \\
\downarrow \mathsf{comp}(x,x,y)
\end{array}$$

$$\begin{array}{c}
\mathsf{E}(x,y) \otimes \mathsf{E}(x,y) \otimes \mathcal{E}(x,x) \\
\downarrow \mathsf{comp}(x,x,y)
\end{array}$$

Enrichments: Associativity Axiom

Examples of Enrichments

Examples of enrichments:

- Every category has a unique set-enrichment
- ► The category of DCPOs is enriched over DCPOs
- More general, every cartesian closed category is enriched over itself
- Even more general, every symmetric monoidal closed category is enriched over itself

Enrichments and the Underlying Category

Some standard facts from enriched category theory

- We have 2-categories EnrichCat_V and Cat
- ▶ We have a pseudofunctor F from EnrichCat $_V$ to Cat that sends an enriched category E to its underlying category E_0 (objects: same as in E, morphisms $I \to E(x,y)$)

Idea:

- ▶ a V-enrichment of C is an object in the fiber of C along F.
- the definition on the previous slide formalizes this idea.

For this reason, our definition is equivalent to the usual one.

Univalent Enriched Category Theory

Now we discuss

- 1. a notion of univalent enriched category and a univalence principle for them
- 2. essentially surjective fully faithful functors are adjoint equivalences
- 3. the Rezk completion of enriched categories

In addition, our proof techniques arise from bicategory theory

Univalent Enriched Categories

Definition

A **univalent** V-**enriched category** is a univalent category together with a V-enrichment.

If we would use Kelly's definition: a V-enriched category is univalent if its underlying category is univalent. This agrees with completeness of enriched ∞ -categories 8 .

 $^{^8} David$ Gepner and Rune Haugseng. " Enriched $\infty\text{-categories via non-symmetric }\infty\text{-operads}$ ", Adv. Math. 2015.

The Univalence Principle

- ► **Theorem**: identity of enriched categories corresponds to enriched adjoint equivalence
- We formulate that using univalent bicategories
- More specifically, we show that the bicategory of univalent enriched categories is univalent

⁹Benedikt Ahrens, Dan Frumin, Marco Maggesi, Niccolò Veltri, and Niels van der Weide. "*Bicategories in univalent foundations.*", MSCS.

The Univalence Principle

- ► **Theorem**: identity of enriched categories corresponds to enriched adjoint equivalence
- We formulate that using univalent bicategories
- More specifically, we show that the bicategory of univalent enriched categories is univalent
- ► Global univalence: identity of enriched categories corresponds to enriched adjoint equivalence
- ► Local univalence: identity of enriched functors corresponds to enriched natural isomorphism

⁹Benedikt Ahrens, Dan Frumin, Marco Maggesi, Niccolò Veltri, and Niels van der Weide. "*Bicategories in univalent foundations.*", MSCS.

The Univalence Principle

- ► **Theorem**: identity of enriched categories corresponds to enriched adjoint equivalence
- We formulate that using univalent bicategories
- More specifically, we show that the bicategory of univalent enriched categories is univalent
- Global univalence: identity of enriched categories corresponds to enriched adjoint equivalence
- ► Local univalence: identity of enriched functors corresponds to enriched natural isomorphism
- ▶ **Method**: displayed bicategories ⁹

⁹Benedikt Ahrens, Dan Frumin, Marco Maggesi, Niccolò Veltri, and Niels van der Weide. "*Bicategories in univalent foundations.*", MSCS.

Displayed Bicategories

- ► Main idea: a displayed bicategory over a bicategory B represents structure/properties to be added to the objects, 1-cells, and 2-cells of B
- Displayed bicategories allow for modular proofs of univalence
- Every displayed bicategory gives rise to a bicategory by taking the total bicategory
- ▶ In essence, this generalizes taking Σ -types to bicategories

Displayed Bicategories

- ► Main idea: a displayed bicategory over a bicategory B represents structure/properties to be added to the objects, 1-cells, and 2-cells of B
- Displayed bicategories allow for modular proofs of univalence
- Every displayed bicategory gives rise to a bicategory by taking the total bicategory
- ightharpoonup In essence, this generalizes taking ightharpoonup-types to bicategories

Enriched categories as a displayed bicategory over Cat:

- Objects over C: V-enrichments for C
- ▶ 1-cells over $F : C \to C'$ from \mathcal{E} to \mathcal{E}' : V-enrichments for F
- ▶ 2-cells over $\tau : F \Rightarrow G$ from \mathcal{F} to \mathcal{G} : proofs that τ is V-enriched

Univalent Enriched Category Theory

- 1. a notion of univalent enriched category and a univalence principle for them
- essentially surjective fully faithful functors are adjoint equivalences
- 3. the Rezk completion of enriched categories

Adjoint Equivalences

- ► **Key theorem about equivalences**: essentially surjective fully faithful functors are adjoint equivalences
- Usually, proving this requires the axiom of choice.

Proof sketch:

- ▶ Suppose $F : C \rightarrow D$ is fully faithful and essentially surjective
- ➤ To define an inverse, we need to find a preimage for every y : D
- Such preimages are only unique up to isomorphism (by fully faithfulness)
- ▶ However, if C is univalent, then the preimages are unique

Orthogonal Factorization Systems

- We construct the orthogonal factorization system of eso functors and fully faithful functors ¹⁰
- Orthogonality means that we can solve the following lifting problems:

$$\begin{array}{ccc}
C_1 & \xrightarrow{G_1} & C_2 \\
F_1 \downarrow & & \downarrow F_2 \\
D_1 & \xrightarrow{G_2} & D_2
\end{array}$$

where F_1 is eso and F_2 is fully faithful

▶ By taking $F_1 = F_2$ and $G_1 = G_2 = id$, we get the desired theorem

 $^{^{10}}$ Fosco Loregian and Emily Riehl. " *Categorical notions of fibration*", Expo. Math. 2019.

Univalent Enriched Category Theory

- 1. a notion of univalent enriched category and a univalence principle for them
- essentially surjective fully faithful functors are adjoint equivalences
- 3. the Rezk completion of enriched categories

The Rezk Completion

- Every category C is weakly equivalent to a univalent one
- ► This is known as the **Rezk completion**
- ► Universal property: left biadjoint of UnivCat → Cat

The Rezk Completion

- Every category C is weakly equivalent to a univalent one
- ► This is known as the **Rezk completion**
- ► Universal property: left biadjoint of UnivCat → Cat

The Rezk completion of C is constructed as follows:

- ▶ Take the image of $C \rightarrow [C^{op}, Set]$
- Essentially surjective: by definition
- Fully faithful: by the Yoneda lemma
- Univalence: since Set is univalent

The **Enriched** Rezk Completion

Every **enriched** category \mathcal{E} is weakly equivalent to a univalent one

The **Enriched** Rezk Completion

Every **enriched** category $\mathcal E$ is weakly equivalent to a univalent one The Rezk completion of $\mathcal E$ is constructed as follows:

- ightharpoonup Take the image of $\mathcal{E}
 ightarrow [\mathcal{E}^{\mathsf{op}}, \mathsf{V}]$
- ► Essentially surjective: by definition
- ► Fully faithful: by the Yoneda lemma
- Univalence: since V is univalent

We can also prove the universal property Here we need:

- V is symmetric (opposite enriched categories)
- V is closed (self enriched categories)
- V is complete (enriched functor categories)

Conclusion

- We developed enriched categories in univalent foundations
- We proved a univalence principle and we showed that weak equivalences between univalent categories are adjoint equivalences
- We also constructed a Rezk completion and proved its universal property (useful for Kleisli categories)
- Key techniques: enrichments, displayed bicategories