## II MIDI: Musical Instrument Digital Interface

#### Audio e musica

- La musica è un tipo speciale di audio
- Come si rappresenta la musica?
- Quali sono le operazioni eseguite sui dati musicali?

## Computer Music: processi e dati



## Livelli di rappresentazione



## Dove si posiziona il MIDI



## La rappresentazione della musica

- espressività: quali simboli deve includere la rappresentazione
- fino a punto la rappresentazione specifica la performance: operativa VS simbolica

#### Che cos'è il MIDI

- Un protocollo "standard"
- Rappresenta una performance musicale come dati
- Informazione codificata in messaggi MIDI
  - istruzioni per un sintetizzatore
  - il sintetizzatore genera i suoni effettivi sulla base dei dati MIDI

### Registrare e riprodurre con il MIDI

- Protocollo molto usato per il controllo di sistemi musicali digitali
- Il sequencer
  - registra una performance umana su una tastiera in termini di informazioni di controllo
  - ricrea la performance reinviando i dati lungo il cavo MIDI alla tastiera o alla scheda audio

#### Come nasce il MIDI

- Limitazioni dei primi sintetizzatori (monofonici e con pochi timbri)
- Integrazione di più sintetizzatori per produrre suoni più ricchi



## Come nasce il MIDI (2)

- Problema della comunicazione
  - altezza e ampiezza di una nota
  - sincronizzazione



### Cronologia

- Inizio anni '80: necessità di uno standard per la comunicazione tra i sintetizzatori
  - problemi di cavi, differenze di volt, ...
  - protocollo USI (Universal Synthesizer Interface)
- fine '81: l'Audio Eng. Soc. esamina USI
  - modifiche e integrazioni con la partecipazione dei maggiori produttori di strumenti elettronici
  - nel 1983 nasce lo standard dal nome MIDI

#### Il successo del MIDI

- Basso costo: ok per produttori e utenti
- Esigenza di avere uno standard
- Possibilità di comunicare tra marche
- Comunicazione tra strumenti e altri dispositivi elettronici (computer, sequencer, controllo luci, mixer, ...)

# Collegamenti MIDI



## Sistema MIDI in generale



#### Due concetti del MIDI

- Interfaccia MIDI: hardware necessario per la comunicazione tra strumenti
- Protocollo di comunicazione MIDI: insieme di regole per interpretare univocamente tutti i messaggi

#### Interfaccia MIDI

- Interfaccia seriale asincrona
- Velocità: 31.250 bit/sec
- Connettori di tipo DIN a 5 pin
  - tipici degli impianti audio
  - ma trasportano info numeriche



### Interfaccia MIDI (2)

- Porte fisiche (connettori)
  - MIDI In: riceve segnali dall'esterno
  - MIDI Out: trasmette info MIDI all'esterno
  - MIDI Thru: trasmette all'esterno la copia esatta delle info ricevute al MIDI In



### Interfaccia MIDI (3)

- Lunghezza max dei cavi: 15 m (50 piedi)
- Formato dei pacchetti
  - per trasmettere un byte (8 + 2 bit): 320 μsec



Occorrono convertitori parallelo/ seriale

## Interfaccia MIDI (4)



ACIA – Asynchronous Communication Interface Adapter UART – Universal Asynchronous Receiver/Transmitter

#### Interfaccia MIDI (5)

- Editor (sequencer): programmi per brani musicali come sequenze di eventi complessi
- Expander. generatori di suono (sintetizzatori, campionatori, ...)
- Controller: generatori di messaggi MIDI (tastiere, MIDI-sax, drum-pads, ...)

#### Schemi di connessione



### Il protocollo MIDI

- Comunicazione attraverso messaggi
- I messaggi <u>non</u> rappresentano una forma d'onda
- Solo informazioni di controllo: NoteOn

#### I canali

- "strade per la comunicazione"
- indirizzano i messaggi agli expander
- il MIDI ha 16 canali per la comunicazione
- i device possono rispondere a 1 o più canali

# Le chiavi (128)



| С   | C#  | D   | D#  | Е   | F   | F#  | G   | G#  | Α   | A#  | В   | Ottava |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|
| 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | -1     |
| 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 0      |
| 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 1      |
| 36  | 37  | 38  | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 2      |
| 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 3      |
| 60  | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 4      |
| 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 5      |
| 84  | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 6      |
| 96  | 97  | 98  | 99  | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 7      |
| 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 8      |
| 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 |     |     |     |     | 9      |

## La song

- sequenza di messaggi MIDI
- registrata sulla memoria di un device MIDI o in un MIDI file

#### Temporizzazione

- I messaggi MIDI includono l'informazione temporale (timestamp)
- Clock con unità di misura (timebase) speciale: PPQ (parti per quarto) o ticks
- Valori tipici: 24, 96, 480 (tutti multipli di 24)

## Il tempo effettivo

- Conversione da timebase in tempo effettivo
- Occorre sapere quanto dura un quarto/beat
- BPM = beat per minuto

#### Esempio

- 120 BPM, Timebase = 24 ticks
- 120 BPM = 2 beat/sec, cioè 0,5 sec per 1 beat
- 24 ticks in un beat, cioè in 0,5 sec
- 0.5 / 24 = 0.020833 sec = circa 21 msec
- Quindi 1 tick dura circa 21 msec

#### Sincronizzazione MIDI

- Device master con internal sync: produce un clock message ogni 24 PPQ
- Device slave con external sync: usano il clock message che arriva dal master
- Il tempo del master controlla tutto il sistema

#### I messaggi MIDI

- Struttura generale di un messaggio
  - Status byte: identifica il messaggio (80H-FFH)
  - 1 o 2 Data byte: il messaggio (00H-7FH)
- Eccezioni: messaggi Real Time, Exclusive

### La tassonomia dei messaggi



## Channel Message: Status byte

- primi 4 bit: codice di identificazione del messaggio (tra 1000 e 1110)
- secondi 4 bit: identificazione del canale

| MSB | 6 | 5 | 4 | 3          | 2               | 1     | 0          | Message<br>type |
|-----|---|---|---|------------|-----------------|-------|------------|-----------------|
| 1   | 0 | 0 | 0 |            | o dei           |       |            | Note off        |
| 1   | 0 | 0 | 1 | sec<br>car | aici<br>nali: ∠ | l bit | Note on    |                 |
| 1   | 0 | 1 | 0 | (0         | .15)            |       | Aftertouch |                 |
|     |   |   |   |            |                 |       |            |                 |

## Channel Message: Data Bytes

- 1 o più byte
- Iniziano con 0: 0DDD DDDD
- 128 valori a disposizione

### **Channel Voice Messages**



 descrivono che cosa deve suonare uno strumento (eventi musicali)

#### Note On

- si invia quando per attivare una nota
  - tasto di una tastiera
  - pad di una batteria elettronica
- 2 data bytes
  - numero nota (Do centrale = 60)0NNN NNNN
  - velocity: forza con cui si pigia un tasto (ampiezza dell'output, eventualmente timbro) 0VVV VVVV

#### **Note Off**

- si invia per disattivare una nota
- 2 data bytes
  - numero della nota0NNN NNNN
  - velocity: applicata al rilascio OVVV VVVV

#### NoteOn e NoteOff

- Codifica abbreviata: velocity poco significativa per il NoteOff
- NoteOff = "NoteOn con velocity = 0"
  - non si ripete il NoteOn
  - -91475091470 = 91475047
- Si risparmia un 33% di traffico sulla rete

#### Aftertouch (Polyphonic Key Pressure)

- Solo per device che rilevano cambi di pressione
- Simula strumenti con afflusso continuo di energia
- 2 data bytes
  - numero della nota ONNN NNNN
  - valore di pressione OVVV VVVV
- Riguarda una sola nota!

#### Aftertouch (Channel Pressure)

- Solo per device che rilevano cambi di pressione
- Non si specifica il numero di nota: modifiche timbriche su tutto il canale
- 1 data byte: valore di pressione 0VVV VVVV
- Effetti diversi a seconda del device usato

#### Pitch Bend

- sulla tastiera Pitch Wheel
  - variazione frequenziale intorno a quella del numero di tasto premuto
  - corrisponde agli effetti di vibrato
- 2 data byte: velocity e variazione

#### **Program Change**

- per sintetizzatori multi-timbrici
- 1 data byte: Program Number 0PPP PPPP
- cambia il timbro (su un canale)
  - patch: termine che indica un timbro prodotto da un generatore
  - standard General MIDI

#### Alcune patch General MIDI

O Grand piano; 4 Rhodes piano; 6 Harpsichord; 11 Vibraphone; 12 Marimba; 13 Xylophone; 21 Accordion; 22 Harmonica; 23 Tango accordion; 24 Acoustic guitar (nylon); 25 Acoustic guitar (steel); 26 Electric guitar (jazz); 32 Acoustic bass; 33 Electric bass (finger); 40 Violin; 41 Viola; 42 Cello; 46 Orchestral harp; 47 Timpani; 48 String ensemble 1;

56 Trumpet; 57 Trombone; 71 Clarinet; 73 Flute; 79 Ocarina; 80 Square Lead; 81 Sawtooth Lead; 94 Halo Pad; 104 Sitar; 105 Banjo; 118 Synth drum; 119 Reverse cymbal; 120 Guitar fret noise; 121 Breath noise; 122 Sea shore; 123 Bird tweet; 124 Telephone ring; 125 Helicopter; 126 Applause; 127 Gunshot

#### Richieste per GM per device MIDI

- 24 voci di polifonia
- 16 canali polifonici e politimbrici
  - riproduzione contemporanea di 16 timbri
  - il 10 riservato alla batteria
- accordatura su La<sub>3</sub> (440 Hz), nota 69
- Inizializzazione generatore multitimbrico (bend = 0, volume = 90)

•

#### Altri standard

- Limitazione di GM: max 128 strumenti e controller
- Roland GS (General Standard)
  - messaggio Bank Select (aumenta i preset)
  - controllo di effetti audio e parametri del suono
- Yamaha XG
  - strumenti, effetti, drum kit estesi
  - scalabilità: approssimazione di messaggi non interpretati correttamente

#### Channel Voice Message: I controllori

- Alzano il rango del MIDI oltre le possibilità di una pianola elettronica
  - molti controlli per l'espressività
  - dai pedali (smorzamento e sostegno) del pianoforte al controllo del soffio
- 2 byte di codifica
  - identificatore del controllore: ONNN NNNN
  - valore del controllore: 0VVV VVVV

#### Due categorie di controllori

- Controller continui: funzione di controllo
  - controller 7: volume generale dello strumento
  - controller 10: panning stereofonico di un suono
- Controller a switch (valore ON/OFF)
  - 64 (DAMPER PEDAL): pedale sostegno (ON/OFF)
  - 123 (ALL NOTES OFF): spegne tutti i NoteOn attivi

## Channel Mode Messages



- descrivono il modo in cui un generatore di suoni interpreta i comandi NoteOn/NoteOff che riceve
- monofonia/polifonia, singolo canale/tutti i canali

#### Motivazioni

- Un expander può generare più suoni in contemporanea (voci)
- Eventualmente con più timbri
- numero di voci possibili = grado di polifonia
- voci di strumenti diversi = grado di politimbrica

#### I modi

- criteri con cui un device decide di accettare un messaggio
- modalità con cui trattare il messaggio

#### **OMNI ON/OFF**

- OFF: il device risponde ai messaggi appartenenti a un singolo canale
- ON: il device risponde ai messaggi appartenenti a tutti i canali

## Omni On



## Omni Off



#### POLY/MONO

- il device risponde monofonicamente o polifonicamente ai singoli canali MIDI
- MONO: suona una nota singola
- POLY: suona più note (accordi)

#### Combinazioni di modi

- 4 combinazioni possibili
  - "Omni" = OMNI ON + POLY
  - OMNI ON + MONO
  - "Poly" = OMNI OFF + POLY
  - "Multi" = OMNI OFF + MONO
- Predisposizione del device sulla consolle, ma anche in modo dinamico

#### System Messages



- si riferiscono a tutti i device
- non includono quindi un numero di canale
- sono utili per la sincronizzazione di più device

#### Messaggi di sistema

- Si hanno più device con sequencer interno (memorizzano sequenze di dati MIDI)
- MIDI song memorizzata a pezzi su più device
- Si definiscono master & slave device

#### Esempio

- Più device: pad + tastiera
- MIDI song memorizzata a parti
  - batteria memorizza la parte di batteria della song
  - tastiera memorizza la parte armonica e melodica
- Si definiscono master & slave device
  - es. master batteria; slave tastiera
  - START sulla batteria, anche tastiera parte

## System Common Messages



• comuni messaggi di sistema

#### Song Position Pointer

- status byte: 1111 0001
- 2 data byte: 0LLL LLLL 0MMM MMMM
- 14 bit per indicare i beats dall'inizio della song
- Si trasmette quando la song parte e quando si ferma (gli slave si posizionano al punto specificato)

#### Song Select

• status: 1111 0011

data: 0SSS SSSS

- seleziona una di 128 song possibili che un device può avere memorizzate
- il messaggio cambia la song corrente

## System Real Time Messages



• messaggi di sincronizzazione tra i device

# Sincronismo tra i moduli - metronomo -

- Timing Clock: sincronizza l'intero sistema
  - viene generato dal master 24 volte per beat
  - controlla l'avanzamento degli slave
- Start/Continue/Stop dal master
- Active Sensing
  - serve a comunicare la presenza del device
- System Reset

## MIDI clock message



#### MIDI Timecode Quarter Frame

- Sincronizzazione di info MIDI e altre risorse
- Fondamentale in ambiente multimediale
- II timecode (SMPTE) hh:mm:ss:fff
  - si usa in televisione e video produzione
  - in TV i frame sono 25 o 30 in un secondo
  - è un codice speciale inviato (o registrato) insieme con i segnali video e audio

#### MTC Message

- Sequenza di messaggi real time per codificare una locazione completa in timecode
- 8 messaggi di 2 byte
  - status byte: 1111 0001
  - data bytes (in realtà solo 4 bit di dati per msg):
    - 0000 nnnn LS frames
      0001 nnnn MS frames
      0100 nnnn LS minutes
      0101 nnnn MS minutes
      0110 nnnn LS hours
      0111 nnnn MS hours

#### hh:mm:ss:ff

- Hh 8 bit 00000001 4 + 4 0000 0001
- Mm 8 bit 00000011 0000 0011
- Ss 8 bit 00010000 0001 0000
- Ff 8 bit 00010100 0001 0100
- 1111 0001 0111 0000
- 1111 0001 0110 0001

• ...

#### Non sono necessari 8 bit per le ore

- Due bit codificano il timecode in uso
- 4 valori per rappresentare i media da sincronizzare
  - 24 frame/sec per il cinema
  - 25 frame/sec per la TV PAL
  - 30 frame drop-frame/sec per TV NTSC

## La sincronizzazione con il video



## System Exclusive Messages



• messaggi esclusivi per device speciali

#### Messaggi esclusivi dei costruttori

- Espedienti per comunicare qualsiasi cosa
- Di solito rivolti ai device di qualche particolare costruttore
- Struttura
  - Status byte: 1111 0000
  - ID byte: 0DDD DDDD
  - data bytes: quanti ne occorrono
  - EOX byte: 1111 0111

# Standard MIDI File

(SMF)

## Standard MIDI File (SMF)

- Nasce nel 1988
- Formato per memorizzare sequenze MIDI
- Riconosciuto da tutti i programmi musicali
  - sequencer
  - programmi per la stampa di partiture
- Contiene informazioni necessarie per l'esecuzione

#### Motivazioni

- Assente nel protocollo MIDI il concetto di tempo
- La gestione del tempo è affidata all'esecutore o al sequencer
- Essi generano i messaggi in ben precisi istanti

| Esempio                                                                                                                           | Messaggio               | Bytes                | Tempo               |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|---------------------|
| •                                                                                                                                 | NoteOn0<br>NoteOn1<br>  | 90 4A 30<br>91 40 30 | 0<br>0<br>          |
| P° P P                                                                                                                            | <br>NoteOff1            | 91 40 00             | <br>50              |
|                                                                                                                                   | NoteOff0                | 90 4A 00             | 7 <i>5</i>          |
| <del>d</del> | NoteOn1                 | 91 41 30             | 100<br>             |
|                                                                                                                                   | <br>NoteOff1<br>NoteOn0 | 91 41 00<br>90 48 30 | <br>150<br>150      |
| Assunzione:                                                                                                                       | NoteOff0                | 90 48 00             | <br>175             |
| una semiminima vale 1 sec<br>(cioè 100 centesimi)                                                                                 | NoteOn0<br>NoteOn1      | 90 47 30<br>91 43 30 | 1<br>200<br>200<br> |
| ,                                                                                                                                 | NoteOff1                | 91 43 00             | 225                 |
| L'informazione "tempo" non<br>è del protocollo MIDI                                                                               | NoteOff0<br>NoteOn1     | 90 47 00<br>91 41 30 | <br>250<br>250<br>  |
| Informazione aggiuntiva dell'                                                                                                     | NoteOff1                | 91 41 00             | 275                 |
| intervallo tra un messaggio e il successivo: il MIDI file                                                                         | NoteOn0<br>NoteOn1      | 90 47 30<br>91 43 30 | 300<br>             |
|                                                                                                                                   |                         | MIDI - Vi            | ncenzo Lombardo     |

### Lo Standard MIDI File (SMF)

- Formato di memorizzazione e di scambio di brani musicali
- Secondo accordo per l'informazione musicale digitalizzata
- Sequenza di messaggi MIDI intercalati da informazioni sul ritardo di emissione

#### Struttura di un MIDI file

- Organizzazione in chunk
  - due campi iniziali di 4 byte
    - ID = tipo di chunk
    - dimensioni del chunk
  - data byte
- Due tipi di chunk
  - header chunk (2 + 6 formato, # tracce, PPQ, specifiche MTC)
  - *track chunk* (tutte le info di un canale: δ-time e relativo messaggio)

## Tre tipi di SMF: Tipo 0 (una sola traccia)

- General Header: identificazione del file, divisione, tempo metronomico, tempo musicale, chiave, ...
- Intestazione di Traccia: dati relativi alla traccia
- Traccia: messaggi MIDI separati da informazioni di temporizzazione

# Tre tipi di SMF: Tipo 1 (più tracce; tempo solo sulla prima)

- Intestazione generale (General Header) ...
- Intestazione di Traccia1
- Traccia 1
- Intestazione di traccia 2
- Traccia 2
- **—** ...
- Intestazione di traccia 13
- Traccia 13
- ... fino a 256 tracce

# Tre tipi di SMF: Tipo 2 (più tracce; tempo su tutte)

- Intestazione generale (General Header) ...
- Intestazione di Traccia1
- Traccia 1
- Intestazione di traccia 2
- Traccia 2
- **—** ...
- Intestazione di traccia 13
- Traccia 13
- ... fino a 256 tracce



MIDI - Vincenzo Lombardo

80

## II sequencer



MIDI - Vincenzo Lombardo

## Interfaccia: Mixer

|   |   | Name    |   |   | Source | Key∻ | Vel÷ | Time+ | Port          | Chn | Bank | Patch   | Vol | Pan | 1 2     |
|---|---|---------|---|---|--------|------|------|-------|---------------|-----|------|---------|-----|-----|---------|
| 1 | М | Flauto  | S | R | ∿ WIDI | 0    | 0    | 0     | ♪ 1-SBA       | 1   |      | Flute   | 100 |     | Flauto  |
| 2 | М | Oboe    | S | R |        | 0    | 0    | 0     | ♪ 1-SB A      | 2   |      | Oboe    | 90  |     | Oboe    |
| 3 | М | Fagotto | S | R |        | 0    | 0    | 0     | ♪ 1-SB A      | 3   |      | Bassoon | 127 |     | Fagotto |
| 4 | м |         | S | R |        | n/a  | 0    | n/a   | <b>∿</b> AWE6 |     |      |         |     | 127 | -       |

## Interfaccia: Event List

|    | Trk | HMSF        | МВТ      | Ch | Kind | Data |     |       |
|----|-----|-------------|----------|----|------|------|-----|-------|
| II | 1   | 00:00:00:18 | 2:01:000 | 1  | Note | E 6  | 100 | 2:000 |
| Ш  | 1   | 00:00:01:24 | 2:03:000 | 1  | Note | C6   | 100 | 1:000 |
| Ш  | 1   | 00:00:02:12 | 2:04:000 | 1  | Note | C6   | 100 | 2:000 |
| Ш  | 1   | 00:00:03:18 | 2:06:000 | 1  | Note | B 5  | 100 | 1:000 |

### Interfaccia: Piano Roll



#### Vantaggi del MIDI

- Non è necessario memorizzare i segnali sonori, soltanto i dati MIDI (molto più ridotti)
- Il musicista può cambiare alcuni aspetti dell'esecuzione dopo la registrazione
- La registrazione non ha distorsione, fruscio, ..., nonostante tutte le possibili manipolazioni

### Audio digitale VS MIDI

- I dati MIDI NON SONO campioni!
- Sia i registratori digitali che i sequencer MIDI
  - sono sistemi digitali
  - operano su tracce multiple
- Differiscono nel tipo e nella quantità di informazione gestita

### Confronto

un musicista suona 4 semiminime a un tempo di 60 beat/min (4 sec)

### Confronto (1)

- 4 semiminime, 60 beat/min (4 sec)
- Sintetizzatore MIDI
  - 16 porzioni di informazione
  - 4 inizi, 4 fini, 4 altezze, 4 ampiezze
  - -3 byte per info, 48 byte

#### Confronto (2)

- 4 semiminime, 60 beat/min (4 sec)
- Registratore digitale con microfono (stereo)
  - -sr = 44,1 KHz
  - 44100 x 2 canali x 4 secondi = 352.800 camp.
  - campioni a 16 bit: 705.600 byte

#### Risultati del confronto

4 semiminime, 60 beat/min (4 sec) 48 byte per il MIDI 705 K per l'audio digitale qualità CD

#### Vantaggio del MIDI: il basso costo

- Sequencer multitraccia MIDI a 48 tracce
  - costa poche decine di dollari
  - gestisce 4000 byte/sec
- Registratore multitraccia digitale a 48 tracce
  - costa (decine di) migliaia di dollari
  - gestisce 4,6 Mb/sec
- Rapporto 1 / 1000 sia per costo che per capacità

#### Vantaggio della registrazione digitale

- Può registrare qualsiasi suono che un microfono può catturare (inclusa la voce)
- Descrive il segnale in tutte le sue sfumature (modulazioni, forma d'onda, ...), mentre il MIDI è limitato a poche info di controllo
- Portabilità della registrazione: cambiando il sintetizzatore, il suono di una registrazione MIDI può cambiare totalmente

#### Limiti del MIDI

- Baud rate 31250 bit/sec, in 1 sec 500 note: pezzi complessi con molti strumenti richiedono velocità più elevate
- Numero limitato di canali, no indirizzamento dei device, difficoltà a configurare grandi reti MIDI
- Dipendenza dai dati MIDI: arbitrarietà delle patch (ora General MIDI)
- Uso molto vario, non inteso inizialmente

#### Conclusioni

- Rivoluzione nel modo di fare musica.
- Yamaha DX-7: prima tastiera con standard MIDI (legami con la sintesi)
- turnisti delle sale di registrazione in via di estinzione: il MIDI-fonico
- settori di musica di consumo (spot, disco music, musica d'ambiente, sfilate, ...)
- partiture eseguite in breve tempo e recupero culturale

#### Il futuro del MIDI: XMidi

- Compatibilità con il MIDI (cavi, messaggi, ...)
- Innovazioni
  - 324 canali VS 16
  - 528 valori lineari (per volume, velocity, ...) VS 128
  - 4374 valori non lineari (program change, ...) VS 128
  - 2611 istruzioni VS 23
  - bidirezionalità e modalità ad alta velocità
- Attuale perplessità delle case costruttrici