Lista 3 de Econometria

Shai Vaz, Heron Goulart, Alexandre Almeida, João Pedro Pedrosa, Roberto Orenstein

November 2023

Importando dados

Inicialmente, vamos importar os dados gerados no Excel.

```
dados_var_bruto <- read_xls(
  path = "./dados_lista3.xls",
  sheet = "Dados VAR"
) %>%
  mutate(
   date = as_date(date)
)

dados_gmm <- read_xls(
  path = "./dados_lista3.xls",
  sheet = "Dados GMM"
) %>%
  mutate(
   date = as_date(date)
)
```

Modelo VAR

Tirar log diferenças

```
dados_var <- dados_var_bruto %>%
  mutate(
    log_dif_c = log(c/lag(c)),
    log_dif_R = log_R-lag(log_R)
    ) %>%
  filter(
    date > "1970-10-01"
)
```

Teste de Raíz Unitária

Teste de Philips-Perron

Primeiro, para a série Log Diferença dos Retornos do T-Bill.

```
pp.test(dados_var$log_dif_R) %>%
  tidy() %>%
  kable(
    col.names = c(
```

```
"Statistic: Dickey-Fuller Z (alpha)",
    "P Value",
    "Parameter: Truncation lag",
    "Method",
    "Alternative Hypothesis"
    ),
    caption = "Teste Philips Perron: Série Log Dif Retornos"
)
```

Table 1: Teste Philips Perron: Série Log Dif Retornos

Statistic: Dickey-Fuller Z (alpha)	P Value	Parameter: Truncation lag	Method	Alternative Hypothesis
-187.2845	0.01	4	Phillips-Perron Unit Root Test	stationary

Agora, para a Log-Diferença do Consumo.

```
pp.test(dados_var$log_dif_c) %>%
  tidy() %>%
  kable(
    col.names = c(
        "Statistic: Dickey-Fuller Z (alpha)",
        "P Value",
        "Parameter: Truncation lag",
        "Method",
        "Alternative Hypothesis"
        ),
        caption = "Teste Philips Perron: Série Log Dif do Consumo"
        )
```

Table 2: Teste Philips Perron: Série Log Dif do Consumo

Statistic: Dickey-Fuller Z (alpha)	P Value	Parameter: Truncation lag	Method	Alternative Hypothesis
-237.6015	0.01	4	Phillips-Perron Unit Root Test	stationary

Augmented Dickey-Fuller

```
adf.test(dados_var$log_dif_R) %>%
  tidy() %>%
  kable(
  col.names = c(
    "Statistic: Dickey-Fuller Z (alpha)",
    "P Value",
    "Parameter: Truncation lag",
    "Method",
    "Alternative Hypothesis"
    ),
  caption = "Teste Augmented Dickey-Fuller: Série Log Dif do Retorno"
  )
```

Table 3: Teste Augmented Dickey-Fuller: Série Log Dif do Retorno

Statistic: Dickey-Fuller Z (alpha)	P Value	Parameter: Truncation lag	Method	Alternative Hypothesis
-5.119319	0.01	5	Augmented Dickey-Fuller Test	stationary

```
adf.test(dados_var$log_dif_c) %>%
tidy() %>%
kable(
    col.names = c(
        "Statistic: Dickey-Fuller Z (alpha)",
        "P Value",
        "Parameter: Truncation lag",
        "Method",
        "Alternative Hypothesis"
        ),
        caption = "Teste Augmented Dickey-Fuller: Série Log Dif do Consumo"
    )
```

Table 4: Teste Augmented Dickey-Fuller: Série Log Dif do Consumo

Statistic: Dickey-Fuller Z (alpha)	P Value	Parameter: Truncation lag	Method	Alternative Hypothesis
-4.915244	0.01	5	Augmented Dickey-Fuller Test	stationary

Funções de Autocorrelação

FAC

```
acf(dados_var$log_dif_c)
```

Series dados_var\$log_dif_c

acf(dados_var\$log_dif_R)

Series dados_var\$log_dif_R

FACP

pacf(dados_var\$log_dif_c)

Series dados_var\$log_dif_c

pacf(dados_var\$log_dif_R)

Series dados_var\$log_dif_R

Critérios de Informação

Utilizamos a função VARselect que retorna a ordem que minimiza os critérios de informação.

```
VARselect(
    y = dados_var[,4:5],
    lag.max = 5,
    type = "const"
)$selection %>%
    tidy() %>%
    kable(
      col.names = c(
        "Criteria",
        "Order"
    )
)
```

Criteria	Order
AIC(n)	3
HQ(n)	3
SC(n)	1
FPE(n)	3

Os critérios AIC e HQ sugerem ordem 3, mas o critério BIC (SC) sugere ordem 1. Pelas FAC e FACP acreditamos que a ordem 3 faça mais sentido nesse caso. Faremos os dois casos.

${\bf Modelagem~VAR}$

```
var1 <- VAR(
    y = dados_var[,4:5],
    p = 1,
    type = "const"
)

var3 <- VAR(
    y = dados_var[,4:5],
    p = 3,
    type = "const"
)

m1 <- var1$varresult
m3 <- var3$varresult</pre>
```

Var (1)

```
stargazer(
  m1,
  header = FALSE
)
```

Table 6:

	Dependent variable: y	
	(1)	(2)
log_dif_c.l1	0.109	0.078***
	(0.069)	(0.020)
log_dif_R.l1	0.089	0.077
	(0.229)	(0.067)
const	0.014***	-0.001***
	(0.001)	(0.0004)
Observations	210	210
\mathbb{R}^2	0.012	0.073
Adjusted R^2	0.003	0.064
Residual Std. Error $(df = 207)$	0.013	0.004
F Statistic (df = 2 ; 207)	1.306	8.126***
Note:	*p<0.1; **p	<0.05; ***p<0.01

Var (3)

```
stargazer(
  m3,
  header = FALSE
)
```

Table 7:

	Depend	lent variable:
	у	
	(1)	(2)
$\log_{dif_c.l1}$	0.040	0.074***
	(0.069)	(0.020)
log_dif_R.l1	-0.130	0.135*
	(0.237)	(0.069)
log_dif_c.l2	0.201***	-0.006
-	(0.071)	(0.020)
log_dif_R.l2	-0.106	-0.235***
	(0.233)	(0.068)
log_dif_c.l3	0.209***	0.022
<u> </u>	(0.071)	(0.021)
log_dif_R.l3	-0.065	0.211***
<u> </u>	(0.229)	(0.066)
const	0.009***	-0.001***
	(0.002)	(0.001)
Observations	208	208
\mathbb{R}^2	0.095	0.157
Adjusted R^2	0.068	0.132
Residual Std. Error ($df = 201$)	0.012	0.004
F Statistic ($df = 6; 201$)	3.516***	6.240***

Note:

*p<0.1; **p<0.05; ***p<0.01

Análise de Resíduos

VAR (1)

```
r1 <- residuals(var1) %>% as_tibble()
acf(r1[,1])
```

log_dif_c

acf(r1[,2])

log_dif_R

VAR (3)

```
r3 <- residuals(var3) %>% as_tibble()
acf(r3[,1])
```

log_dif_c

acf(r3[,2])

log_dif_R

Matriz de resposta aos choques

```
s3 <- summary(var3)

stargazer(
   s3$covres,
   header = FALSE,
   digits = 10
   )</pre>
```

 $\begin{tabular}{|c|c|c|c|c|} \hline Table 8: \\ \hline & log_dif_c & log_dif_R \\ \hline log_dif_c & 0.0001555674 & -0.0000028258 \\ log_dif_R & -0.0000028258 & 0.0000130495 \\ \hline \end{tabular}$

Função de Resposta a Impulso

Geração das funções

```
irf3_cc <- irf(
  var3,
  impulse = "log_dif_c",
  response = "log_dif_c",</pre>
```

```
n.ahead = 15
  )
irf3_cR <- irf(</pre>
  var3,
  impulse = "log_dif_c",
  response = "log_dif_R",
  n.ahead = 15
  )
irf3_RR <- irf(</pre>
  var3,
  impulse = "log_dif_R",
response = "log_dif_R",
  n.ahead = 15
  )
irf3_Rc <- irf(</pre>
  var3,
  impulse = "log_dif_R",
  response = "log_dif_c",
  n.ahead = 15
  )
```

Impulso do Consumo no Consumo

```
plot(irf3_cc)
```

Orthogonal Impulse Response from log_dif_c

95 % Bootstrap CI, 100 runs

Impulso do Consumo no Retorno

plot(irf3_cR)

Orthogonal Impulse Response from log_dif_c

95 % Bootstrap CI, 100 runs

Impulso do Retorno no Retorno

plot(irf3_RR)

Orthogonal Impulse Response from log_dif_R

95 % Bootstrap CI, 100 runs

Impulso do Retorno no Consumo

plot(irf3_Rc)

Orthogonal Impulse Response from log_dif_R

95 % Bootstrap CI, 100 runs

Coeficiente de Aversão Absoluta ao Risco

cov(dados_var[,4:5])[1,2]/cov(dados_var[,4:5])[2,2]

Covariância(C,R)/Covariancia(R,R)

Qual matriz de cov usar? A das variáveis ou dos resíduos da regressão?

```
cov(dados_var[,4:5])

## log_dif_c log_dif_R
## log_dif_c 1.654027e-04 -1.128195e-06
## log_dif_R -1.128195e-06 1.496503e-05

print("")

## [1] ""

s3$covres

## log_dif_c log_dif_R
## log_dif_c 1.555674e-04 -2.825764e-06
## log_dif_R -2.825764e-06 1.304946e-05

CARA se for pela matriz das variáveis:
```

[1] -0.07538876

CARA se for pela matriz sigma:

s3\$covres[1,2]/s3\$covres[2,2]

[1] -0.2165426