

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Correctness of Kruskal's Algorithm

Correctness of Kruskal (Part I)

Theorem: Kruskal's algorithm is correct.

Proof: Let $T^* = \text{output of Kruskal's algorithm on input graph } G$.

- (1) Clearly T* has no cycles.
- (2) T^* is connected. Why?
- (2a) By Empty Cut Lemma, only need to show that T^* crosses every cut.
- (2b) Fix a cut (A, B). Since G connected at least one of its edges crosses (A, B).

Key point: Kruskal will include first edge crossing (A, B) that it sees [by Lonely Cut Corollary, cannot create a cycle]

Correctness of Kruskal (Part II)

(3) Every edge of T^* satisfied by the Cut Property. (Implies T^* is the MST)

Reason for (3): Consider iteration where edge (u, v) added to current set T. Since $T \cup \{(u, v)\}$ has no cycle, T has no u - v path.

- $\Rightarrow \exists$ empty cut (A, B) separating u and v. (As in proof of Empty Cut Lemma)
- \Rightarrow By (2b), no edges crossing (A, B) were previously considered by Kruskal's algorithm.
- \Rightarrow (u, v) is the first (+ hence the cheapest!) edge crossing (A, B).
- \Rightarrow (u, v) justified by the Cut Property. QED

