M. Caramihai, © 2020

. .

STRUCTURI DE DATE & ALGORITMI

CURS 3

.

Analiza (temporala a) algoritmilor

Obiectivele programarii calculatoarelor

Aspecte antagonice:

- Proiectarea de algoritmi usor de inteles, codificat, depanat (software engineering)
- Proiectarea de algoritmi ce eficientizeaza resursele de calcul (analiza algoritmilor)
 - ☐ **Intrebare**: cum poate fi evaluat "costul unui algoritm"?
- □ Solutii:
- □ Comparare empirica: prin rularea pgm → dezav: consum mare de timp
- Analiza asimptotica a algoritmilor: determ. in fct de numarul operatiilor de baza si a marimii datelor de intrare
- Observatie: pentru a compara 2 algoritmi, acestia trebuie sa ruleze pe o aceeasi platforma hw.

Algoritmi: pozitionare, design

Principalele proprietati ale algoritmilor

- ۵
 - Corectitudine
 - ☐ Intoarce *intotdeauna* rezultatul (dorit) la iesire in cazul in care au fost respectate cerintele de structura.
 - Eficienta
 - ☐ Se masoara in unitati de **timp** sau **spatiu**
 - ☐ Timpul este elementul cel mai important
 - ☐ Analiza modului de "rulare" permite cresterea eficientei algoritmilor.

Exprimarea algoritmilor

Limbajul curent Mai Mai usor de Pseudocod precis exprimat Limbaj de programare de nivel inalt Pseudocod: **nume** algoritm input output

corp algoritm

end.

Principalele proprietati ale pseudocodului

- O facilitate de exprimare a algoritmilor
- □ Nu intra in detaliile de implementare
- Accent pe esenta algoritmului (exemplu):

Algoritm ArrayMax(A,n)

Input: Vector A ce stocheaza n>=1 intregi

Output: Cea mai mare valoare din A.

```
currentMax ← A[0]

for i←1 to n-1 do

if currentMax < A[i] then

currentMax ← A[i]

return currentMax
```

Analiza algoritmilor (1)

- □ **Analiza**: predictia cu privire la resursele pe care un algoritm le necesita
- Resurse: memorie, largime banda comunicatii, timp de lucru
- La ce bun o analiza a algoritmilor?
 - Evalueaza performanta algoritmilor
 - Compara diferiti algoritmi
- □ Ce se analizeaza ?
 - Timpul de rulare, gradul de utilizare a memoriei
 - ☐ Bune practici / rele practici

Observatie: analiza algoritmilor compara algoritmi si nu programe!

Analiza algoritmilor (2)

Daca fiecare linie (a unui algoritm) consuma un anumit buget (constant) de timp, intregul algoritm va consuma un buget (constant) de timp?

Nu!

- Majoritatea algoritmilor au un numar de pasi dependent de marimea instantelor (*instances*)
- Eficienta unui algoritm este intotdeauna functie de dimensiunea problemei.
 - Se utilizeaza in general variabila N pentru reprezentarea dimensiunei problemei

Analiza algoritmilor (3)

Ce afecteaza timpul de rulare al unui algoritm?

- structura hw a sistemului de calcul
- compilatorul
- tipul algoritmului
- facilitatile pentru utilizator
- numarul de intrari ale algoritmului
- efortul de programare
- □ etc...

Analiza algoritmilor poate fi facuta

- A priori (analiza teoretica) ipoteza: efic alg depinde doar de nr intrari
- A posteriori (analiza empirica) se analizeaza exact cum ruleaza un alg pe o masina

Complexitatea algoritmilor (1)

Complexitatea algoritmilor:

- → Timp (numar de operatii de baza efectuate)
- → Spatiu: evaluarea sp de memorie necesar rularii unui algoritm

□ Cazul nefericit:

☐ Functia definita de numarul *maxim* de pasi preluati din orice instanta de marime *n*

□ Cazul fericit:

☐ Functia definita de numarul *minim* de pasi preluati din orice instanta de marime *n*

Varianta medie:

☐ Functia definita de numarul *mediu* de pasi preluati din orice instanta de marime *n*

Observatie: limitele se refera la algoritm si **nu** la program.

Complexitatea algoritmilor (2)

Cum se face analiza?

- □ In general, este greu de estimat timpul exact de rulare a
 - unui algoritm
 - ☐ Cazul fericit depinde de intrare
 - ☐ Varianta medie este greu de calculat
 - ☐ Se recomanda focalizarea pe cazul nefericit:
 - □ Mai usor de calculat
 - ☐ Uzual apropiat de timpul de lucru curent
- Strategie: se cauta sa se gaseasca marginile superioara / inferioara ale cazului nefericit.

Analiza timpului de rulare (1)

Intrebare: un algoritm este dependent de masina?

NU: analiza timpului de rulare trebuie facuta independent de masina

Analiza timpului de rulare (2)

n₀ Numar date de intrare n Dimensiunea problemei

Compararea algoritmilor

. 4

- Stabilirea unei ordini relative intre diferenti algoritmi in raport cu ratele lor de crestere.
- □ Ratele de crestere sunt functii dependente (in general) de numarul de intrari, n.

Analiza asimptotica

- Analiza asimptotica (AA) a unui algoritm ce descrie eficienta relativa a acestuia in conditiile in care n este foarte mare.
 - Atunci cand numarul datelor de intrare este mic, precizia scade
 - d.e.: pentru marimi mari ale lui n, algoritmul 1 creste mult mai repede decat algoritmul 2.

De remarcat ca aici se compara algoritmi. In practica, atunci cand se scriu programe de mici dimensiuni, analiza asimptotica nu mai este importanta.

O comparatie simpla

- □ Fie 3 algoritmi de sortare a unor liste:

 - \Box g(n) = n²
- □ **Ipoteza**: fiecare pas presupune un timp de calcul de 1 microsecunda (10⁻⁶ sec)

n	n log n	n^2	n^3
10	33.2	100	1000
100	664	10000	1s
1000	9966	1s	16min
100000	1.7s	2.8 ore	31.7 ani

O alta comparatie

FIGURE 2.1 The growth rate of all terms of function $f(n) = n^2 + 100n + \log_{10} n + 1,000$.

n	f(n)	n²	100n		00n	log ₁₀ n		1,000	
	Value	Value	%	Value	%	Value	%	Value	%
1	1,101	1	0.1	100	9.1	0	0.0	1,000	90.83
10	2,101	100	4.76	1,000	47.6	1	0.05	1,000	47.60
100	21,002	10,000	47.6	10,000	47.6	2	0.001	1,000	4.76
1,000	1,101,003	1,000,000	90.8	100,000	9.1	3	0.0003	1,000	0.09
10,000	101,001,004	100,000,000	99.0	1,000,000	0.99	4	0.0	1,000	0.001
100,000	10,010,001,005	10,000,000,000	99.9	10,000,000	0.099	5	0.0	1,000	0.00

O abordare teoretica

- ° □ ° "Big-Oh"
 - □ Definitie:

T(n) = O(f(n)) daca exista doua constante pozitive $c ext{ si } N ext{ a.i. } T(n) \leq c f(n) ext{ cand } n \geq N$

□ Cu alte cuvinte: functia T(n) are o viteza de crestere mai mica decat f(n); astfel f(n) este limita superioara a lui T(n).

Big-Oh (limita superioara)

T(n) = O(f(n)) daca exista doua constante pozitive $c ext{ si } N ext{ a.i. } T(n) \leq c f(n) ext{ cand } n \geq N$

N Numar intrari n

Exemple

Alt exemplu

 \square Sa se arate ca $7n^3 + 2n^2 = O(n^3)$

□ Daca
$$7n^3 + 2n^2 < 7n^3 + 2n^3 = 9n^3 (pentru \ n \ge 1)$$

□ Atunci $7n^3 + 2n^2 = O(n^3) \text{ unde } c = 9 \text{ si } N = 1$

☐ Similar, se poate arata ca $7n^3 + 2n^2 = O(n^4)$

Marginire superioara

Numar intrari n

Big Omega

Definitie:

 $T(n) = \Omega(f(n))$ daca exista doua constante pozitive $c ext{ si } N ext{ a.i. } T(n) \geq c f(n) ext{ daca } n \geq N$

□ Cu alte cuvinte: T(n) creste cu viteza mai mare decat f(n); astfel f(n) este limita inferioara a lui T(n).

Proprietatile lui *Big-O*

- □ **P** 1. (tranzitivitate) Daca f(n) este O(g(n)) si g(n) este O(h(n)), atunci f(n) este O(h(n)), (i.e. O(O(g(n)))) este O(g(n)).)
- □ **P 2.** Daca f(n) este O(h(n)) si g(n) este O(h(n)), atunci f(n) + g(n) este O(h(n)).
- \square **P 3.** Functia an^k este $O(n^k)$.
- \square **P 4.** Functia n^k este $O(n^{k+j})$ pentru orice j pozitiv.
- □ **P 5.** Daca f(n) = cg(n), atunci f(n) este O(g(n)).
- □ **P 6.** Functia $\log_a n$ este $O(\log_b n)$ pentru orice numere pozitive a si $b \neq 1$
- □ **P 7.** $\log_a n$ este $O(\lg n)$ pentru orice numar pozitiv $a \neq 1$, unde $\lg n = \log_2 n$.

Big Omega - inferior

Timp rulare T(n) cf(n)

N Numar itemi intrare n

Exemple Big-Omega

☐ Sa se arate ca

□ daca

□ atunci

$$2n + 5n^2 = \Omega(n^2)$$

$$2n + 5n^2 > 5n^2 > 1n^2 (pentru \ n \ge 1)$$

$$2n + 5n^2 = \Omega(n^2) cu c = 1 si N = 1$$

□ Similar, se poate arata ca

$$2n + 5n^2 = \Omega(n)$$

Marginire inferioara

Running Time T(n) $T(n)=2n+5n^2$ $f1(n)=n^2$ f2(n)=n

 n_0

Numar intrari N

Big Theta

□ Definitie:

$$T(n) = \Theta(f(n))$$
 daca si numai daca $T(n) = O(f(n))$ si $T(n) = \Omega(f(n))$

- □ Cu alte cuvinte: *T*(*n*) creste cu **aceeasi rata (de crestere)** ca si *f*(*n*).
- □ Varianta:

$$T(n) = \Theta(f(n))$$
 daca exista constantele pozitive $c, d, \operatorname{si} N \operatorname{a.i.} cf(n) \le T(n) \le df(n)$ cand $n > N$

Exemple Big Theta

☐ Daca doua functii f si g sunt proportionale, atunci

$$f(N) = \Theta(g(n))$$

 \square Daca $log_A n = log_B n / log_B A$

 $\Box \text{ Atunci: } \log_A(n) = \Theta(\log_B n)$

□ Nota: baza logaritmului este irelevanta.

Little oh

☐ **Definitie**:

$$T(n) = o(f(n)) \text{ d.d.}$$

 $T(n) = O(f(n)) \text{ si } T(n) \neq \Theta(f(n))$

□ Cu alte cuvinte functia T(n) creste cu o rata (de crestere) strict mai mica decat f(n).

O ierarhie a ratelor de crestere

$$c < \log n < \log^2 n < \log^k n < n < n \log n <$$
 $n^2 < n^3 < 2^n < 3^n < n! < n^n$

- □Constanta: Foarte rapida. □Logaritmic: De asemenea f. rapida. Tipica pentru multi algoritmi ce utilizeaza arbori (binari).
- ☐Timp linear: Tipica pentru algoritmii rapizi ce ruleaza pe calculatoare cu un singur procesor.
- □Poli-logaritmic (n log n): Tipica pentru "the best sorting algorithms". Poate fi o buna solutie de implemenatre.
- □Polinomial: Cand o problema de dimensiune n poate fi rezolvata intr'un timp n^k unde k este o constanta. Pentru valori mici ale lui n (n <= 3) is OK.
- □Exponential: utilizeaza timpul kⁿ unde k este o constanta. Algoritmii ce cresc dupa o asemenea regula sunt recomandati doar pentru probleme de dimensiuni mici.

Analogie cu numerele reale

. .

$$\Box f(n) = O(g(n)) \cong f \leq g$$

$$\Box f(n) = \Omega(g(n)) \cong f \geq g$$

$$\Box f(n) = \Theta(g(n)) \cong f = g$$

$$\Box f(n) = o(g(n)) \cong f < g$$

$$\Box f(n) = \omega(g(n)) \cong f > g$$

Reguli generale (1)

Daca
$$T_1(n) = O(f(n))$$
 si $T_2(n) = O(g(n))$, atunci

(a)
$$T_1(n) + T_2(n) = \max(O(f(n)), O(g(n)))$$

(b)
$$T_1(n) * T_2(n) = O(f(n)) * O(g(n))$$

Exemple: Algorithm A:

Pas 1: Run algorithm A1 that takes O(n³) time

Pas 2: Run algorithm A2 that takes O(n²) time

$$T_A(n) = T_{A1}(n) + T_{A2}(n) = O(n^3) + O(n^2)$$

$$=$$
max $(O(n^3), O(n^2)) = O(n^3)$

Reguli generale (2)

Daca T(n) este un polinom de grad k, atunci

$$T(n) = \Theta(n^k)$$

Exemple:

$$T(n) = n^8 + 3n^5 + 4n^2 + 6 = \Theta(n^8)$$

 $\log^k(n) = O(n)$ pentru orice constanta k.

Exemplu

File $f(n) = n \log n \operatorname{si} g(n) = n^{1.5}$.

Care dintre functii va avea o crestere ma rapida?

g(n) creste mai rapid decat f(n).

O alta tehnica...

Totdeauna va putea fi determinata rata relativa de crestere pentru doua functii f(n) si g(n) calculand

 $L = \lim_{n\to\infty} \frac{f(n)}{g(n)}$, (regula lui l'Hospital poate fi utilizata).

- 1) If L = 0, then f(n) = o(g(n))
- 2) If L = c, then $f(n) = \Theta(g(n))$
- 3) If $L = \infty$, then g(n) = o(f(n))

Exemplu

Fie
$$f(n) = 7n^2 + n \operatorname{si} g(n) = n^2$$
.
Atunci $\lim_{N \to \infty} f(n)/g(n)$
 $= \lim_{n \to \infty} 7 + 1/n$
 $= 7 + \lim_{n \to \infty} 1/n = 7$.
 $\Rightarrow f(n) = \Theta(n^2)$.

Modelul (1)

- Pentru analiza algoritmilor (dpdv formal) este necesar un model computational.
- Modelul propus cuprinde setul standard de instructiuni: adunare, inmultire, comparare si asignare.

□ Ipoteze:

- Dureaza o unitate de timp pentru realizarea unei operatii simple. Acest lucru nu este complet realist, deoarece exista operatii diferite ce dureaza intervale diferite de timp.
- ☐ Exista o memorie infinita. Astfel, nu vor exista erori datorita limitarilor de memorie.

Modelul (2)

- Cel mai important lucru de analizat il reprezinta timpul de rulare:
 - Asta nu inseamna ca va fi facut un model al compilatorului sau al calculatorului!
 - Accentul va fi pus pe algoritm (si nu neaparat pe program !) si pe intrarile acestuia. Tipic: marimea intrarii (n) va fi luata in consideratie.

Modelul (3)

- □ Se definesc doua functii, $T_{avg}(n)$ si $T_{worst}(n)$ ca fiind timpul mediu si timpul maxim de rulare pentru un algoritm
- In general, timpul maxim de rulare este un indicator absolut necesar: indica o "margine" pentru toate intrarile.
- ☐ Este mult mai dificil de calculat timpul mediu de rulare.
 - ☐ Este si greu de definit: d.e. ce insemna "intrare medie" pentru un algoritm ?

Reguli generale (1)

- Bucle
 - □ Timpul de rulare a unei bucle "for" este cel mult egal cu timpul de rulare al instructiunilor din interiorul buclei "for" (inclusiv teste) inmultit cu numarul de iteratii.

```
for (i = 1; i <= n; i++) {
    sum = sum + i;
}
```

 \square Exemplul de mai sus este O(n).

Reguli generale (2)

- [∗] □ [∗] Bucle imbricate
 - In cazul buclerlor imbricate: timpul de rulare al instructiunilor x produsul marimii tuturor buclelor.

```
for (i = 1; i <= n; i++) {
    for (j = 1; j <= m; j++) {
        sum = sum + i + j;
    }
}
```

$$3mn = O(mn)$$

 \square Exemplul de mai sus este O(mn).

Reguli generale (3)

□ O intrebare:

```
for (i = 1; i <= n; i++) {
    for (j = 1; j <= m; j++) {
        for (k = 1; k <= p; k++) {
            sum = sum + i + j + k;
        }
    }
}
```

 $\square \quad 4pmn = O(pmn).$

Reguli generale (4)

- □ Instructiuni consecutive
 - ☐ Se aduna; conteaza valoarea maxima.

```
for (i = 1; i \le n; i++) {
    sum = sum + i;
}

for (i = 1; i \le n; i++) {
    for (i = 1; i \le n; i++) {
        for (j = 1; j \le n; j++) {
        sum = sum + i + j;
        }
}
```

□ In acest caz: $O(n^2+n) = O(n^2)$.

Reguli generale (5)

O intrebare

```
for (i = 1; i <= n; i++) {
    for (j = 1; j <= n; j++) {
        sum = sum + i + j;
    }
}
sum = sum / n;
for (i = 1; i <= n; i++) {
    sum = sum + i;
}
for (j = 1; j <= n; j++) {
    sum = sum + j*j;
}</pre>
```

 $\square n^2 + 1 + n + n = O(n^2 + 2n + 1) = O(n^2).$

Reguli generale (6)

- ☐ If (test) s1 else s2
 - ☐ Timpul de rulare va fi <= timpul de rulare al testului + timpul de rulare cel mai lung in raport cu s1 sau s2.

```
if (test == 1) {
  for (i = 1; i <= n; i++) {
    sum = sum + i;
  }
} else for (i = 1; i <= n; i++) {
    for (j = 1; j <= n; j++) {
        sum = sum + i + j;
    }
}</pre>
```

□ Timp de rulare = $1 + max(n,n^2) = O(n^2)$.

Reguli generale (7)

```
for (i = 1; i \le n; i++)
   for (j = 1; j \le n; j++) {
        for (k = 1; k \le n; k++)
           sum = sum + i + j + k;
if (test == 1) {
  for (i = 1; i \le n; i++)
     for (j = 1; j \le n; j++)
        sum = sum + i;
else for (i = 1; i \le n; i++) {
        sum = sum + i + j;
```

```
☐ Timpul de rulare
= O(n^3) + O(n^2)
=O(n^3).
```

Reguli generale (6)

☐ Recursivitate:

☐ In cazul apelului de functii, acestea trebuiesc analizate mai intai:

```
long factorial (int n) {
  if (n <= 1)
    return 1;
  else
    return n * factorial(n-1);
}</pre>
```

```
Time Units to Compute

-----

1 pentru test.

1 pentru inmultire.

ce se poate spune despre apelul functiei?
```

□ Timpul de rulare pentru factorial(n) = T(n) = 2+T(n-1)= 4+T(n-2) = 6+T(n-3) = ... = 2n = O(n).

Exemplu de recursivitate

```
long fib (int n) {
   if (n <= 1)
      return 1;
   else
      return fib(n-1) + fib(n-2);
}</pre>
```

```
Unitati de timp

1 pentru test.
```

1 pentru adunare. ce se poate spune despre apelul functiei

□ Timpul de rulare fib(n) = T(n) = T(n-1) + T(n-2) + 2. Poate fi estimat T(n)?

Analiza sirului *Fibonacci*

Fie F(n) numarul n al sirului Fibonacci.

Se poate demonstra:

$$(1) T(n) \ge F(n) \operatorname{si}$$

$$(2) F(n) \ge (3/2)^n$$
.

Astfel
$$T(n) \geq (3/2)^n$$
,

ceea ce inseamna ca timpul de rulare creste exponential.

Ceea ce NU e bine!

Demonstratia prin inductie

- ☐ **Inductia**:
 - Se demonstreaza adevarul teoremei pentru cazul trivial.
 - Se presupune teorema adevarata pentru cazul k.
 - ☐ Se demonstreaza pentru cazul k+1.
 - ☐ Rezulta: **ADEVARAT** pentru orice k.

Demostratie T(n) >= F(n)

Prin inductie:

Cazul trivial:
$$T(1) = 1 \ge F(1) = 1$$
,

$$T(2) = 3 \ge F(2) = 1.$$

Ipoteza inductiva : $T(n-1) \ge F(n-1)$ si

$$T(n-2) \geq F(n-2)$$
.

Rezulta:

$$T(n-1) + T(n-2) \ge F(n-1) + F(n-2) \operatorname{si}$$

$$T(n) \ge F(n-1) + F(n-2) = F(n)$$