Exercise 1

The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0						
Test Chi-Square DF Pr > ChiS						
Likelihood Ratio	297.9576	28	<.0001			
Score	250.7647	28	<.0001			
Wald	176.4223	28	<.0001			

Type 3 Analysis of Effects						
Effect	DF	Wald Chi-Square	Pr > ChiSq			
AGE	1	0.2355	0.6275			
SEX	1	18.9480	<.0001			
RACE	3	2.3001	0.5125			
RTRTN	3	33.3488	<.0001			
SITE	19	38.3971	0.0053			
BASE	1	154.6231	<.0001			

	Analysis of Maximum Likelihood Estimates								
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq			
Intercept		1	25.0208	2.3390	114.4328	<.0001			
AGE		1	0.00271	0.00559	0.2355	0.6275			
SEX	2	1	-0.8352	0.1919	18.9480	<.0001			
SEX	1	0	0						
RACE	White	1	0.3972	0.6688	0.3527	0.5526			
RACE	Native A	1	0.3113	0.8698	0.1281	0.7204			
RACE	Black	1	0.6819	0.6863	0.9872	0.3204			
RACE	Asian	0	0						
RTRTN	4	1	1.6760	0.2945	32.3803	<.0001			
RTRTN	3	1	1.1655	0.2840	16.8473	<.0001			
RTRTN	2	1	0.9029	0.2842	10.0960	0.0015			
RTRTN	1	0	0						
SITE	20	1	2.0470	0.6852	8.9256	0.0028			
SITE	19	1	2.1204	0.6782	9.7761	0.0018			
SITE	18	1	0.7455	0.6790	1.2056	0.2722			
SITE	17	1	2.3301	0.6722	12.0156	0.0005			
SITE	16	1	1.9646	0.6637	8.7626	0.0031			

	Analysis of Maximum Likelihood Estimates								
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq			
SITE	15	1	0.7474	0.7093	1.1105	0.2920			
SITE	14	1	2.1244	0.6784	9.8077	0.0017			
SITE	13	1	1.8108	0.6673	7.3634	0.0067			
SITE	12	1	1.7822	0.6930	6.6139	0.0101			
SITE	11	1	1.0318	0.6871	2.2550	0.1332			
SITE	10	1	1.7760	0.6698	7.0312	0.0080			
SITE	9	1	2.4802	0.6712	13.6528	0.0002			
SITE	8	1	0.9804	0.6828	2.0620	0.1510			
SITE	7	1	1.0368	0.6908	2.2528	0.1334			
SITE	6	1	1.3508	0.6970	3.7561	0.0526			
SITE	5	1	0.9784	0.7261	1.8157	0.1778			
SITE	4	1	1.8307	0.6715	7.4334	0.0064			
SITE	3	1	0.7855	0.7503	1.0961	0.2951			
SITE	2	1	1.9156	0.6649	8.2996	0.0040			
SITE	1	0	0						
BASE		1	-0.1770	0.0142	154.6231	<.0001			

a. The global test shows p-values less than 0.05 for Likelihood Ratio, Score and Wald test, so we conclude that there is at least one predictor whose coefficient is significantly different from zero. From the table with parameter estimates, we can see that predictors sex, rtrtn, site, and base are significant in the model with p-values less than 0.05. Even though indicator variables for some sites have p-value greater than 0.05, predictor site should be kept in the model because indicator variables for other sites are significant. Based on Type 3 analysis, we may want to retain sex, rtrtn, site and base in the model and remove age and race from the model.

The LOGISTIC Procedure

	Summary of Stepwise Selection								
	Effect		Effect			Number	Score	Wald	
Step	Entered	Removed	DF	In	Chi-Square		Pr > ChiSq		
1	BASE		1	1	185.5663		<.0001		
2	RTRTN		3	2	28.3783		<.0001		
3	SEX		1	3	20.4470		<.0001		
4	SITE		19	4	41.4935		0.0021		

b. Based on the result of stepwise selection, we choose predictors sex, rtrtn, site and base.

c. In diagnostic plots, there are no influential points. All absolute values of deviance residuals are around or less than 2 and all Cbar measures are less than 1. Thus we will keep all data. To test goodness of fit for a model we refer to the result from the Hosmer and Lemeshow test. The p- value is 0.52 which is greater than 0.05, thus we conclude that there is no lack of fit issue and our fitted model is adequate.

Hosmer and Lemeshow Goodness-of-Fit Test							
Chi-Square	DF	Pr > ChiSq					
6.3552	8	0.6075					

The p- value is 0.6075 which is greater than 0.05, thus we conclude that there is no lack of fit issue and our fitted model is adequate.

	Ana	lysis	of Maxim	um Likelih	ood Estimates	8
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	25.3938	2.2507	127.2934	<.0001
SEX	2	1	-0.8103	0.1906	18.0667	<.0001
SEX	1	0	0			
RTRTN	4	1	1.6327	0.2910	31.4893	<.0001
RTRTN	3	1	1.1482	0.2834	16.4124	<.0001
RTRTN	2	1	0.8759	0.2832	9.5696	0.0020
RTRTN	1	0	0			
SITE	20	1	2.0777	0.6813	9.2990	0.0023
SITE	19	1	2.1306	0.6774	9.8935	0.0017
SITE	18	1	0.7565	0.6755	1.2543	0.2627
SITE	17	1	2.3704	0.6690	12.5544	0.0004
SITE	16	1	1.9822	0.6620	8.9645	0.0028
SITE	15	1	0.7522	0.7080	1.1289	0.2880
SITE	14	1	2.0978	0.6764	9.6204	0.0019
SITE	13	1	1.8600	0.6654	7.8142	0.0052
SITE	12	1	1.7593	0.6925	6.4544	0.0111
SITE	11	1	1.1063	0.6837	2.6179	0.1057
SITE	10	1	1.7423	0.6674	6.8161	0.0090
SITE	9	1	2.5037	0.6700	13.9644	0.0002
SITE	8	1	0.9828	0.6805	2.0857	0.1487
SITE	7	1	1.0814	0.6898	2.4578	0.1169
SITE	6	1	1.3885	0.6931	4.0137	0.0451
SITE	5	1	0.9826	0.7269	1.8273	0.1764
SITE	4	1	1.8408	0.6697	7.5545	0.0060
SITE	3	1	0.8063	0.7483	1.1608	0.2813
SITE	2	1	1.9384	0.6621	8.5711	0.0034
SITE	1	0	0			
BASE		1	<u>-0.1757</u>	0.0141	155.0772	<.0001

Odds Ratio Estimates							
Effect	Point Estimate	95% Confiden	Wald ce Limits				
SEX 2 vs 1	0.445	0.306					
RTRTN 4 vs 1	5.118	2.893	9.052				
RTRTN 3 vs 1	3.152	1.809	5.494				
RTRTN 2 vs 1	2.401	1.378	4.182				
SITE 20 vs 1	7.986	2.101	30.360				
SITE 19 vs 1	8.420	2.232	31.763				
SITE 18 vs 1	2.131	0.567	8.008				
SITE 17 vs 1	10.701	2.884	39.708				
SITE 16 vs 1	7.259	1.983	26.570				
SITE 15 vs 1	2.122	0.530	8.498				
SITE 14 vs 1	8.148	2.165	30.675				
SITE 13 vs 1	6.424	1.743	23.669				
SITE 12 vs 1	5.809	1.495	22.570				
SITE 11 vs 1	3.023	0.792	11.547				
SITE 10 vs 1	5.711	1.544	21.122				
SITE 9 vs 1	12.227	3.289	45.459				
SITE 8 vs 1	2.672	0.704	10.141				
SITE 7 vs 1	2.949	0.763	11.396				
SITE 6 vs 1	4.009	1.031	15.594				
SITE 5 vs 1	2.671	0.643	11.103				
SITE 4 vs 1	6.302	1.696	23.418				
SITE 3 vs 1	2.240	0.517	9.709				
SITE 2 vs 1	6.947	1.898	25.433				
BASE	0.839	<mark>0.816</mark>	0.862				

d. For sex variable, the expected decrease in log (remission) by changing sex=1 to sex=2 is -0.8103. Consequently, the expected count would decrease by a multiplicative factor of e^-0. 8103, which is the odds ratio 0.445. The decrease is significant. For rtrtn variable, the expected increase in log (remission) by changing rtrtn=1 to rtrtn=2 is 0.8759, to rtrtn=3 is 1.1482, and to rtrtn=4 is 1.6327. Consequently, the expected count would increase by a multiplicative factor of e^-0.8759(=odds ratio 2.401), e^1.1482(=odds ratio 3.152), and e^1.6327(=odds ratio 5.118). The increases are all significant. For variable base, the expected decrease in log(remission) for a one-unit increase in baseline is -0.1757, consequently the expected remission would decrease by a multiplicative factor of e^-0.1757, which is the odds ratio 0.839. The decrease is significant. The MLE for treatment 1 is equal to zero because treatment 1 is the reference. One unit increase in baseline will make odds of having value less than 120 decrease by a factor of 0.839. The odds ratio comparison between treatment 4 and treatment 1 is 5.118, which means that the odds of having value equal or less than 120

is 5.118 for treatment 4 compared to treatment 1. The 95% CI of sex 2 vs 1 is (0.306, 0.646), of treatment 4 vs 1 is (2.893, 9.052), of treatment 3 vs 1 is (1.809, 5.494), of treatment 2 vs 1 is (1.378, 4.182), and of base is (0.816, 0.862). These 95% CIs do not contain 1, which means the differences of remission between sex, between treatment group, and between baseline are significant. Treatment 4 is most effective, treatment 3 is second most effective, treatment 1 is the least effective.

The FREQ Procedure

Table of remission by _INTO_					
remission	_INTO_(Formatted Value of the Predicted Response)				
Frequency	0	1	Total		
0	583	<mark>63</mark>	646		
1	113 121 23				
Total	696	184	880		

e. The percent of the total number of observations that are misclassified: (63+113)/880=20%

Exercise 2 The LOGISTIC Procedure

Testing Global Null Hypothesis: BETA=0						
Test Chi-Square DF Pr > Chi						
Likelihood Ratio	122.4327	28	<.0001			
Score	114.4530	28	<.0001			
Wald	101.5228	28	<.0001			

Type 3 Analysis of Effects						
Effect	DF	Wald Chi-Square	Pr > ChiSq			
AGE	1	0.7340	0.3916			
SEX	1	11.6230	0.0007			
RACE	3	1.3847	0.7091			
RTRTN	3	40.1682	<.0001			
SITE	19	41.2339	0.0022			
BASE	1	17.2208	<.0001			

	Analysis of Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept		1	-7.6843	1.6406	21.9395	<.0001		
AGE		1	-0.00385	0.00449	0.7340	0.3916		
SEX	2	1	-0.5154	0.1512	11.6230	0.0007		
SEX	1	0	0	•				
RACE	White	1	-0.3803	0.5071	0.5625	0.4532		
RACE	Native A	1	-0.3781	0.6608	0.3273	0.5672		
RACE	Black	1	-0.2144	0.5206	0.1695	0.6805		
RACE	Asian	0	0	•				
RTRTN	4	1	1.3612	0.2188	38.7084	<.0001		
RTRTN	3	1	0.8890	0.2176	16.6947	<.0001		
RTRTN	2	1	0.6432	0.2203	8.5268	0.0035		
RTRTN	1	0	0					
SITE	20	1	0.9288	0.5217	3.1695	0.0750		
SITE	19	1	1.4668	0.5159	8.0846	0.0045		
SITE	18	1	0.1174	0.5718	0.0421	0.8373		
SITE	17	1	1.5918	0.5129	9.6322	0.0019		

Exercise 2
The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
SITE	16	1	1.5714	0.5167	9.2481	0.0024
SITE	15	1	0.6604	0.5375	1.5100	0.2191
SITE	14	1	1.4217	0.5116	7.7229	0.0055
SITE	13	1	1.3207	0.5159	6.5547	0.0105
SITE	12	1	1.5934	0.5125	9.6664	0.0019
SITE	11	1	0.6382	0.5330	1.4334	0.2312
SITE	10	1	1.6329	0.5143	10.0797	0.0015
SITE	9	1	1.2136	0.5143	5.5681	0.0183
SITE	8	1	0.8350	0.5223	2.5556	0.1099
SITE	7	1	0.3722	0.5398	0.4752	0.4906
SITE	6	1	1.0088	0.5196	3.7687	0.0522
SITE	5	1	0.9086	0.5225	3.0234	0.0821
SITE	4	1	1.4957	0.5121	8.5292	0.0035
SITE	3	1	0.7840	0.5221	2.2545	0.1332
SITE	2	1	1.7822	0.5139	12.0241	0.0005
SITE	1	0	0			
BASE		1	0.0372	0.00896	17.2208	<.0001

a. The global test shows p-values less than 0.05 for Likelihood Ratio, Score and Wald test, so we conclude that there is at least one predictor whose coefficient is significantly different from zero. From the table with parameter estimates, we can see that predictors sex, rtrtn, site, and base are significant in the model with p-values less than 0.05. Even though indicator variables for some sites have p-value greater than 0.05, predictor site should be kept in the model because indicator variables for other sites are significant. Based on Type 3 analysis, we may want to retain sex, rtrtn, site and base in the model and remove age and race from the model.

The LOGISTIC Procedure

	Summary of Stepwise Selection							
	Effect			Number	Score	Wald		
Step	Entered	Removed	DF	In	Chi-Square	Chi-Square	Pr > ChiSq	
1	RTRTN		3	1	40.7963		<.0001	
2	BASE		1	2	19.3036		<.0001	
3	SEX		1	3	13.8281		0.0002	
4	SITE		19	4	43.6922		0.0010	

b. Based on the result of stepwise selection, we choose predictors sex, rtrtn, site and base.

c. In diagnostic plots, there are no influential points. All absolute values of deviance residuals are around or less than 2 and all Cbar measures are less than 1. Thus we will keep all data. To test goodness of fit for a model we refer to the result from the Hosmer and Lemeshow test. The p- value is 0.52 which is greater than 0.05, thus we conclude that there is no lack of fit issue and our fitted model is adequate.

Hosmer and Lemeshow Goodness-of-Fit Test							
Chi-Square	DF	Pr > ChiSq					
8.7844	8	0.3608					

The p- value is 0.3608 which is greater than 0.05, thus we conclude that there is no lack of fit issue and our fitted model is adequate.

Analysis of Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept		1	-8.1463	1.5516	27.5653	<.0001	
SEX	2	1	-0.5234	0.1505	12.0906	0.0005	
SEX	1	0	0				
RTRTN	4	1	1.3551	0.2177	38.7391	<.0001	
RTRTN	3	1	0.8824	0.2173	16.4886	<.0001	
RTRTN	2	1	0.6364	0.2198	8.3848	0.0038	
RTRTN	1	0	0				
SITE	20	1	0.9530	0.5195	3.3651	0.0666	
SITE	19	1	1.4478	0.5153	7.8936	0.0050	
SITE	18	1	0.1129	0.5704	0.0392	0.8430	
SITE	17	1	1.5951	0.5121	9.7013	0.0018	
SITE	16	1	1.5669	0.5148	9.2644	0.0023	
SITE	15	1	0.6634	0.5347	1.5394	0.2147	
SITE	14	1	1.4270	0.5108	7.8055	0.0052	
SITE	13	1	1.3118	0.5148	6.4923	0.0108	
SITE	12	1	1.6177	0.5113	10.0121	0.0016	
SITE	11	1	0.6400	0.5324	1.4451	0.2293	
SITE	10	1	1.6425	0.5126	10.2677	0.0014	
SITE	9	1	1.2568	0.5125	6.0131	0.0142	
SITE	8	1	0.8449	0.5216	2.6245	0.1052	
SITE	7	1	0.4009	0.5381	0.5550	0.4563	
SITE	6	1	1.0476	0.5171	4.1041	0.0428	
SITE	5	1	0.9099	0.5213	3.0467	0.0809	
SITE	4	1	1.5098	0.5109	8.7334	0.0031	
SITE	3	1	0.7916	0.5211	2.3074	0.1288	
SITE	2	1	1.7895	0.5129	12.1719	0.0005	
SITE	1	0	0				
BASE		1	0.0369	0.00894	17.0461	<.0001	

Odds Ratio Estimates					
Effect	Point Estimate	95% Wald Confidence Limits			
SEX 2 vs 1	0.593	0.441	0.796		
RTRTN 4 vs 1	3.877	2.530	5.941		
RTRTN 3 vs 1	<mark>2.417</mark>	1.579	3.700		
RTRTN 2 vs 1	1.890	1.228	2.907		
SITE 20 vs 1	2.593	0.937	7.179		
SITE 19 vs 1	4.254	1.549	11.678		
SITE 18 vs 1	1.120	0.366	3.424		
SITE 17 vs 1	4.929	1.806	13.448		
SITE 16 vs 1	4.792	1.747	13.142		
SITE 15 vs 1	1.941	0.681	5.537		
SITE 14 vs 1	4.166	1.531	11.337		
SITE 13 vs 1	3.713	1.354	10.184		
SITE 12 vs 1	5.041	1.851	13.732		
SITE 11 vs 1	1.896	0.668	5.384		
SITE 10 vs 1	5.168	1.892	14.115		
SITE 9 vs 1	3.514	1.287	9.596		
SITE 8 vs 1	2.328	0.838	6.470		
SITE 7 vs 1	1.493	0.520	4.287		
SITE 6 vs 1	2.851	1.035	7.854		
SITE 5 vs 1	2.484	0.894	6.901		
SITE 4 vs 1	4.526	1.663	12.319		
SITE 3 vs 1	2.207	0.795	6.129		
SITE 2 vs 1	5.987	2.191	16.360		
BASE	1.038	1.020	1.056		

d. For sex variable, the expected decrease in log (responder) by changing sex=1 to sex=2 is -0.5234. Consequently, the expected count would decrease by a multiplicative factor of e^-0. 5234, which is the odds ratio 0.593. The decrease is significant. For rtrtn variable, the expected increase in log (responder) by changing rtrtn=1 to rtrtn=2 is 0.6364, to rtrtn=3 is 0.8824, and to rtrtn=4 is 1.3551. Consequently, the expected count would increase by a multiplicative factor of e^0.6364 (=odds ratio 1.890), e^0.8824(=odds ratio 2.417), and e^1.3551(=odds ratio 3.877). The increases are all significant. For variable base, the expected increase in log(responder) for a one-unit increase in baseline is 0.0369, consequently the expected remission would increase by a multiplicative factor of e^0.0369, which is the odds ratio 1.038. The increase is significant. The MLE for treatment 1 is equal to zero because treatment 1 is the reference. One unit increase in baseline will make odds of having

chg less than -40 increase by a factor of 1.038. The odds ratio comparison between treatment 4 and treatment 1 is 3.877, which means that the odds of having chg equal or less than -40 is 3.877 for treatment 4 compared to treatment 1. The 95% CI of sex 2 vs 1 is (0.441, 0.796), of treatment 4 vs 1 is (2.530, 5.941), of treatment 3 vs 1 is (1.579, 3.700), of treatment 2 vs 1 is (1.228, 2.907), and of base is (1.020, 1.056). These 95% CIs do not contain 1, which means the differences of responder between sex, between treatment group, and between baseline are significant. Treatment 4 is most effective, treatment 3 is second most effective, treatment 1 is the least effective.

The FREQ Procedure

Table of responder by _INTO_						
responder	_INTO_(Formatted Value of the Predicted Response)					
Frequency	0	1	Total			
0	436	<mark>101</mark>	537			
1	190	153	343			
Total	626	254	880			

e. The percent of the total number of observations that are misclassified: (101+190)/880=33.07%.