Chapter DM:II (continued)

II. Cluster Analysis

- □ Cluster Analysis Basics
- □ Hierarchical Cluster Analysis
- □ Iterative Cluster Analysis
- □ Density-Based Cluster Analysis
- Cluster Evaluation
- Constrained Cluster Analysis

DM:II-22 Cluster Analysis ©STEIN 2002-2020

Merging Principles

DM:II-23 Cluster Analysis ©STEIN 2002-2020

Hierarchical Agglomerative Algorithm

- Input: $G = \langle V, E, w \rangle$. Weighted graph.
 - $d_{\mathcal{C}}$. Distance measure for two clusters.
- Output: $T = \langle V_T, E_T \rangle$. Cluster hierarchy or dendrogram.
 - 1. $\mathcal{C} = \{\{v\} \mid v \in V\}$ // initial clustering
 - 2.
 - 3. WHILE $|\mathcal{C}| > 1$ DO
 - 4. update_distance_matrix(C, G, d_C)
 - 5. $\{C,C'\}= \underset{\{C_i,C_j\}\in\mathcal{C}:\,C_i\neq C_j}{\operatorname{argmin}} d_{\mathcal{C}}(C_i,C_j)$ // find closest clusters
 - 6. $C = (C \setminus \{C, C'\}) \cup \{C \cup C'\}$ // merge clusters
 - 7.
 - 8. ENDDO
 - 9. RETURN(T)

Compare the above algorithm to the hierarchical divisive algorithm.

DM:II-24 Cluster Analysis © STEIN 2002-2020

Hierarchical Agglomerative Algorithm

- Input: $G = \langle V, E, w \rangle$. Weighted graph.
 - $d_{\mathcal{C}}$. Distance measure for two clusters.
- Output: $T = \langle V_T, E_T \rangle$. Cluster hierarchy or dendrogram.
 - 1. $\mathcal{C} = \{\{v\} \mid v \in V\}$ // initial clustering
 - 2. $V_T = \{v_C \mid C \in \mathcal{C}\}$, $E_T = \emptyset$ // initial dendrogram
 - 3. WHILE $|\mathcal{C}| > 1$ DO
 - 4. update_distance_matrix(C, G, d_C)
 - 5. $\{C,C'\}= \underset{\{C_i,C_j\}\in\mathcal{C}:\,C_i\neq C_j}{\operatorname{argmin}} \ d_{\mathcal{C}}(C_i,C_j)$ // find closest clusters
 - 6. $C = (C \setminus \{C, C'\}) \cup \{C \cup C'\}$ // merge clusters
 - 7. $V_T = V_T \cup \{v_{C,C'}\}$, $E_T = E_T \cup \{\{v_{C,C'}, v_C\}, \{v_{C,C'}, v_{C'}\}\}$ // dendrogram
 - 8. ENDDO
 - 9. RETURN(T)

Compare the above algorithm to the hierarchical divisive algorithm.

DM:II-25 Cluster Analysis ©STEIN 2002-2020

Single Link: Cluster Distance Measure $d_{\mathcal{C}}$ = Nearest Neighbor

DM:II-26 Cluster Analysis © STEIN 2002-2020

Single Link: Cluster Distance Measure $d_{\mathcal{C}}$ = Nearest Neighbor

DM:II-27 Cluster Analysis © STEIN 2002-2020

Single Link: Cluster Distance Measure $d_{\mathcal{C}}$ = Nearest Neighbor

DM:II-28 Cluster Analysis ©STEIN 2002-2020

Distance

Single Link: Cluster Distance Measure $d_{\mathcal{C}}$ = Nearest Neighbor

DM:II-29 Cluster Analysis © STEIN 2002-2020

Single Link: Cluster Distance Measure $d_{\mathcal{C}}$ = Nearest Neighbor

DM:II-30 Cluster Analysis ©STEIN 2002-2020

Single Link: Cluster Distance Measure $d_{\mathcal{C}}$ = Nearest Neighbor

DM:II-31 Cluster Analysis © STEIN 2002-2020

Single Link: Cluster Distance Measure $d_{\mathcal{C}}$ = Nearest Neighbor

DM:II-32 Cluster Analysis © STEIN 2002-2020

Single Link: Cluster Distance Measure $d_{\mathcal{C}}$ = Nearest Neighbor

DM:II-33 Cluster Analysis © STEIN 2002-2020

Single Link: Cluster Distance Measure $d_{\mathcal{C}}$ = Nearest Neighbor

DM:II-34 Cluster Analysis © STEIN 2002-2020

Distance Re-Computation after each Merging Step [algorithm]

		\mathbf{C}_1	${f C}_2$	 \mathbf{C}_n			\mathbf{x}_1
	$\overline{\mathbf{C}_1}$	0	$d_{\mathcal{C}}(\mathbf{C}_1,\mathbf{C}_2)$	 $d_{\mathcal{C}}(\mathbf{C}_1,\mathbf{C}_n)$		\mathbf{x}_1	0
t = 0	${f C}_2$	-	0	 $d_{\mathcal{C}}(\mathbf{C}_2,\mathbf{C}_n)$	=	\mathbf{x}_2	-
	:					:	
	\mathbf{C}_n	-	-	 0		\mathbf{x}_n	-

	\mathbf{x}_1	\mathbf{x}_2	 \mathbf{x}_n
\mathbf{x}_1	0	$d(\mathbf{x}_1, \mathbf{x}_2)$	 $d(\mathbf{x}_1,\mathbf{x}_n)$
\mathbf{x}_2	-	0	 $d(\mathbf{x}_2, \mathbf{x}_n)$
÷			
\mathbf{x}_n	-	-	 0

DM:II-35 Cluster Analysis © STEIN 2002-2020

Distance Re-Computation after each Merging Step [algorithm]

		\mathbf{C}_1	${f C}_2$	 \mathbf{C}_n			\mathbf{x}_1
	$\overline{{f C}_1}$	0	$d_{\mathcal{C}}(\mathbf{C}_1,\mathbf{C}_2)$	 $d_{\mathcal{C}}(\mathbf{C}_1,\mathbf{C}_n)$		\mathbf{x}_1	0
t = 0	${f C}_2$	-	0	 $d_{\mathcal{C}}(\mathbf{C}_2,\mathbf{C}_n)$	=	\mathbf{x}_2	-
	:					:	
	\mathbf{C}_n	-	-	 0		\mathbf{x}_n	-

	X 1	\mathbf{x}_2	 \mathbf{x}_n
	-		
\mathbf{x}_1	0	$d(\mathbf{x}_1, \mathbf{x}_2)$	 $d(\mathbf{x}_1,\mathbf{x}_n)$
\mathbf{x}_2	-	0	 $d(\mathbf{x}_2, \mathbf{x}_n)$
:			
\mathbf{x}_n	-	-	 0

DM:II-36 Cluster Analysis © STEIN 2002-2020

Distance Re-Computation after each Merging Step [algorithm]

		\mathbf{C}_1	${f C}_2$	 \mathbf{C}_n
	$\overline{\mathbf{C}_1}$	0	$d_{\mathcal{C}}(\mathbf{C}_1,\mathbf{C}_2)$	 $d_{\mathcal{C}}(\mathbf{C}_1,\mathbf{C}_n)$
t = 0	${f C}_2$	-	0	 $d_{\mathcal{C}}(\mathbf{C}_2,\mathbf{C}_n)$
	:			
	\mathbf{C}_n	-	-	 0

	\mathbf{x}_1	\mathbf{x}_2	 \mathbf{x}_n
\mathbf{x}_1	0	$d(\mathbf{x}_1, \mathbf{x}_2)$	 $d(\mathbf{x}_1, \mathbf{x}_n)$
\mathbf{x}_2	-	0	 $d(\mathbf{x}_2, \mathbf{x}_n)$
:			
\mathbf{x}_n	-	-	 0

1

		\mathbf{C}_{i_1}	\mathbf{C}_{i_2}	 $\mathbf{C}i_{n-i}$
	\mathbf{C}_{i_1}	0	$d_{\mathcal{C}}(\mathbf{C}_1,\mathbf{C}_{i_2})$	 $d_{\mathcal{C}}(\mathbf{C}_{i_1},\mathbf{C}i_{n-i})$
t = i	\mathbf{C}_{i_2}	-	0	 $d_{\mathcal{C}}(\mathbf{C}_{i_2},\mathbf{C}i_{n-i})$
	:			
	$\mathbf{C}_{i_{n-i}}$	-	-	 0

DM:II-37 Cluster Analysis © STEIN 2002-2020

Distance Re-Computation after each Merging Step [algorithm]

		\mathbf{C}_1	${f C}_2$	 \mathbf{C}_n
	$\overline{\mathbf{C}_1}$	0	$d_{\mathcal{C}}(\mathbf{C}_1,\mathbf{C}_2)$	 $d_{\mathcal{C}}(\mathbf{C}_1,\mathbf{C}_n)$
t = 0	${f C}_2$	-	0	 $d_{\mathcal{C}}(\mathbf{C}_2,\mathbf{C}_n)$
	:			
	\mathbf{C}_n	-	-	 0
				<u> </u>

	\mathbf{x}_1	\mathbf{x}_2	 \mathbf{x}_n
\mathbf{x}_1	0	$d(\mathbf{x}_1, \mathbf{x}_2)$	 $d(\mathbf{x}_1,\mathbf{x}_n)$
\mathbf{x}_2	-	0	 $d(\mathbf{x}_2, \mathbf{x}_n)$
÷			
\mathbf{x}_n	-	-	 0

1

$$t = i \quad \begin{array}{c|cccc} \mathbf{C}_{i_1} & \mathbf{C}_{i_2} & \dots & \mathbf{C}i_{n-i} \\ \hline \mathbf{C}_{i_1} & \mathbf{0} & d_{\mathcal{C}}(\mathbf{C}_1, \mathbf{C}_{i_2}) & \dots & d_{\mathcal{C}}(\mathbf{C}_{i_1}, \mathbf{C}i_{n-i}) \\ \hline \mathbf{C}_{i_2} & - & \mathbf{0} & \dots & d_{\mathcal{C}}(\mathbf{C}_{i_2}, \mathbf{C}i_{n-i}) \\ \hline \vdots & & & & & \\ \mathbf{C}_{i_{n-i}} & - & - & \dots & \mathbf{0} \end{array}$$

1

t = n - 1

Distance Measures of Hierarchical Agglomerative Algorithms [characteristics]

$$d_{\mathcal{C}}(C, C') = \min_{\substack{u \in C \\ v \in C'}} d(u, v)$$

single link (nearest neighbor)

$$d_{\mathcal{C}}(C,C') = \max_{\substack{u \in C \\ v \in C'}} d(u,v)$$

complete link (furthest / farthest neighbor)

$$d_{\mathcal{C}}(C, C') = \frac{1}{|C| \cdot |C'|} \sum_{\substack{u \in C \\ v \in C'}} d(u, v)$$

group average link

$$d_{\mathcal{C}}(C, C') = \sqrt{\frac{2 \cdot |C| \cdot |C'|}{|C| + |C'|}} \cdot ||\bar{u} - \bar{v}||$$

Ward criterion (variance) $||\cdot|| = ||\cdot||_2 = \text{Euclidean norm}$

How the distance measures are employed:

- hierarchical agglomerative algorithm
- hierarchical divisive algorithm

DM:II-39 Cluster Analysis ©STEIN 2002-2020

Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares, ESS, in the new cluster that results from merging the two clusters C and C'. Derivation:

$$\textit{ESS}(C) = \sum_{u \in C} ||\bar{u} - u||^2$$

DM:II-40 Cluster Analysis ©STEIN 2002-2020

Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares, ESS, in the new cluster that results from merging the two clusters C and C'. Derivation:

$$\textit{ESS}(C) = \sum_{u \in C} ||\bar{u} - u||^2 = \sum_{u \in C} \left(||\bar{u}||^2 - 2 \cdot \langle u, \bar{u} \rangle + ||u||^2 \right)$$

DM:II-41 Cluster Analysis © STEIN 2002-2020

Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares, ESS, in the new cluster that results from merging the two clusters C and C'. Derivation:

$$ESS(C) = \sum_{u \in C} ||\bar{u} - u||^2 = \sum_{u \in C} \left(||\bar{u}||^2 - 2 \cdot \langle u, \bar{u} \rangle + ||u||^2 \right)$$
$$= |C| \cdot ||\bar{u}||^2 - 2|C| \cdot ||\bar{u}||^2 + \sum_{u \in C} ||u||^2$$

DM:II-42 Cluster Analysis © STEIN 2002-2020

Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares, ESS, in the new cluster that results from merging the two clusters C and C'. Derivation:

$$ESS(C) = \sum_{u \in C} ||\bar{u} - u||^2 = \sum_{u \in C} \left(||\bar{u}||^2 - 2 \cdot \langle u, \bar{u} \rangle + ||u||^2 \right)$$
$$= |C| \cdot ||\bar{u}||^2 - 2|C| \cdot ||\bar{u}||^2 + \sum_{u \in C} ||u||^2 = \sum_{u \in C} ||u||^2 - |C| \cdot ||\bar{u}||^2$$

DM:II-43 Cluster Analysis © STEIN 2002-2020

Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares, ESS, in the new cluster that results from merging the two clusters C and C'. Derivation:

$$\begin{aligned} \textit{ESS}(C) &= \sum_{u \in C} ||\bar{u} - u||^2 \ = \ \sum_{u \in C} \left(||\bar{u}||^2 - 2 \cdot \langle u, \bar{u} \rangle + ||u||^2 \right) \\ &= |C| \cdot ||\bar{u}||^2 - 2|C| \cdot ||\bar{u}||^2 + \sum_{u \in C} ||u||^2 \ = \ \sum_{u \in C} ||u||^2 \ - |C| \cdot ||\bar{u}||^2 \end{aligned}$$

$$\begin{aligned} \textit{ESS}(C') &= \sum_{v \in C'} ||v||^2 \ - |C'| \cdot ||\bar{v}||^2 \end{aligned}$$

DM:II-44 Cluster Analysis © STEIN 2002-2020

Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares, ESS, in the new cluster that results from merging the two clusters C and C'. Derivation:

$$ESS(C) = \sum_{u \in C} ||\bar{u} - u||^2 = \sum_{u \in C} \left(||\bar{u}||^2 - 2 \cdot \langle u, \bar{u} \rangle + ||u||^2 \right)$$
$$= |C| \cdot ||\bar{u}||^2 - 2|C| \cdot ||\bar{u}||^2 + \sum_{u \in C} ||u||^2 = \sum_{u \in C} ||u||^2 - |C| \cdot ||\bar{u}||^2$$

$$ESS(C') = \sum_{v \in C'} ||v||^2 - |C'| \cdot ||\bar{v}||^2$$

$$\textit{ESS}(C \cup C') = \sum_{w \in (C \cup C')} ||w||^2 - |C \cup C'| \cdot ||\bar{w}||^2, \quad \text{where } \bar{w} = \frac{|C| \cdot \bar{u} + |C'| \cdot \bar{v}}{|C| + |C'|}$$

DM:II-45 Cluster Analysis ©STEIN 2002-2020

Ward Criterion

Ward is a variance criterion. It is the (double) increase of the error sum of squares, ESS, in the new cluster that results from merging the two clusters C and C'. Derivation:

$$ESS(C) = \sum_{u \in C} ||\bar{u} - u||^2 = \sum_{u \in C} \left(||\bar{u}||^2 - 2 \cdot \langle u, \bar{u} \rangle + ||u||^2 \right)$$
$$= |C| \cdot ||\bar{u}||^2 - 2|C| \cdot ||\bar{u}||^2 + \sum_{u \in C} ||u||^2 = \sum_{u \in C} ||u||^2 - |C| \cdot ||\bar{u}||^2$$

$$ESS(C') = \sum_{v \in C'} ||v||^2 - |C'| \cdot ||\bar{v}||^2$$

$$\textit{ESS}(C \cup C') = \sum_{w \in (C \cup C')} ||w||^2 - |C \cup C'| \cdot ||\bar{w}||^2, \quad \text{where } \bar{w} = \frac{|C| \cdot \bar{u} + |C'| \cdot \bar{v}}{|C| + |C'|}$$

$$ESS(C \cup C') - ESS(C) - ESS(C') = \dots = \frac{|C| \cdot |C'|}{|C| + |C'|} \cdot ||\bar{u} - \bar{v}||^2$$

 \bar{u} and \bar{v} denote the mean of the points $u \in C$ and $v \in C'$ respectively.

DM:II-46 Cluster Analysis ©STEIN 2002-2020

Update Formula for Cluster Distances

After merging two clusters C and C' into a single new cluster, the <u>resulting</u> distances to other the clusters C_i , $d_{\mathcal{C}}(C \cup C', C_i)$, have to be computed.

By exploiting the already computed distances, the Lance-Williams update formula provides an efficient means (linear time in the current number of clusters) to obtain the desired new distances:

$$d_{\mathcal{C}}(C \cup C', C_i) = \alpha \cdot d_{\mathcal{C}}(C, C_i) + \beta \cdot d_{\mathcal{C}}(C', C_i) + \gamma \cdot d_{\mathcal{C}}(C, C') + \delta \cdot |d_{\mathcal{C}}(C, C_i) - d_{\mathcal{C}}(C', C_i)|$$

The constants $\alpha, \beta, \gamma, \delta$ are specific for single link, complete link, average link, and the ward criterion. The constants are derived on the basis of the respective computation rules for $d_{\mathcal{C}}$.

DM:II-47 Cluster Analysis ©STEIN 2002-2020

Update Formula for Cluster Distances (continued)

After merging two clusters C and C' into a single new cluster, the <u>resulting</u> distances to other the clusters C_i , $d_C(C \cup C', C_i)$, have to be computed.

Derivation of the update formula for single link, where $d_{\mathcal{C}}$ = nearest neighbor:

$$d_{\mathcal{C}}(C \cup C', C_i) = \min_{\substack{u \in (C \cup C') \\ v \in C_i}} d(u, v) \quad \text{[distance measure]}$$

DM:II-48 Cluster Analysis © STEIN 2002-2020

Update Formula for Cluster Distances (continued)

After merging two clusters C and C' into a single new cluster, the <u>resulting</u> distances to other the clusters C_i , $d_{\mathcal{C}}(C \cup C', C_i)$, have to be computed.

Derivation of the update formula for single link, where $d_{\mathcal{C}}$ = nearest neighbor:

$$\begin{array}{ll} d_{\mathcal{C}}(C \cup C', C_i) &= \displaystyle \min_{\substack{u \in (C \cup C') \\ v \in C_i}} d(u, v) & \text{[distance measure]} \\ \\ &= \displaystyle \min \{ d_{\mathcal{C}}(C, C_i), \ d_{\mathcal{C}}(C', C_i) \} \end{array}$$

DM:II-49 Cluster Analysis © STEIN 2002-2020

Update Formula for Cluster Distances (continued)

After merging two clusters C and C' into a single new cluster, the <u>resulting</u> distances to other the clusters C_i , $d_C(C \cup C', C_i)$, have to be computed.

Derivation of the update formula for single link, where $d_{\mathcal{C}}$ = nearest neighbor:

$$\begin{split} d_{\mathcal{C}}(C \cup C', C_i) &= \min_{\substack{u \in (C \cup C') \\ v \in C_i}} d(u, v) \quad \text{[distance measure]} \\ &= \min\{d_{\mathcal{C}}(C, C_i), \ d_{\mathcal{C}}(C', C_i)\} \\ &= 0.5 \cdot \left(d_{\mathcal{C}}(C, C_i) + d_{\mathcal{C}}(C', C_i)\right) - 0.5 \cdot |d_{\mathcal{C}}(C, C_i) - d_{\mathcal{C}}(C', C_i)| \end{split}$$

DM:II-50 Cluster Analysis © STEIN 2002-2020

Update Formula for Cluster Distances (continued)

After merging two clusters C and C' into a single new cluster, the <u>resulting</u> distances to other the clusters C_i , $d_{\mathcal{C}}(C \cup C', C_i)$, have to be computed.

Derivation of the update formula for single link, where $d_{\mathcal{C}}$ = nearest neighbor:

$$\begin{split} d_{\mathcal{C}}(C \cup C', C_i) &= \min_{u \in (C \cup C')} d(u, v) \quad \text{[distance measure]} \\ &= \min\{d_{\mathcal{C}}(C, C_i), \ d_{\mathcal{C}}(C', C_i)\} \\ &= 0.5 \cdot \left(d_{\mathcal{C}}(C, C_i) + d_{\mathcal{C}}(C', C_i)\right) - 0.5 \cdot |d_{\mathcal{C}}(C, C_i) - d_{\mathcal{C}}(C', C_i)| \\ &= 0.5 \cdot d_{\mathcal{C}}(C, C_i) + 0.5 \cdot d_{\mathcal{C}}(C', C_i) + (-0.5) \cdot |d_{\mathcal{C}}(C, C_i) - d_{\mathcal{C}}(C', C_i)| \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \alpha \qquad \qquad \beta \qquad \qquad \delta \end{split}$$

DM:II-51 Cluster Analysis ©STEIN 2002-2020

Remarks:

- □ Link-based algorithms can be used with arbitrary measures for distances and similarities.
- □ Single link can be operationalized straightforwardly with a minimum spanning tree algorithm such as Prim's algorithm. [Wikipedia]
- □ Variance-based approaches presume interval-based measurement scales for all features.
- The uniform pseudo code structure of the <u>hierarchical agglomerative algorithm</u> reveals the close relation of the different cluster analysis variants. However, this structural similarity must be regarded with caution: the features' measurement scales along with the point distance computation rule, d(u,v), determine the basic merging characteristics of a cluster analysis algorithm.
- Basic idea of the Lance-Williams update formula: instead of analyzing after a merging step all members (points) of two clusters again, the formula exploits the cluster distances that were already computed in the preceding iteration before the merger.
 - How large is the runtime improvement compared to a naive approach that exploits only the distance information in $G = \langle V, E, w \rangle$?

DM:II-52 Cluster Analysis © STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}}$ = Nearest Neighbor)

DM:II-53 Cluster Analysis ©STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}}$ = Nearest Neighbor)

DM:II-54 Cluster Analysis © STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}}$ = Nearest Neighbor)

DM:II-55 Cluster Analysis ©STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}}$ = Nearest Neighbor)

DM:II-56 Cluster Analysis © STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}}$ = Nearest Neighbor)

DM:II-57 Cluster Analysis ©STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}}$ = Nearest Neighbor) [characteristics]

DM:II-58 Cluster Analysis © STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}}$ = Nearest Neighbor)

DM:II-59 Cluster Analysis ©STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}}$ = Nearest Neighbor)

DM:II-60 Cluster Analysis © STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}}$ = Nearest Neighbor)

DM:II-61 Cluster Analysis © STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}}$ = Nearest Neighbor)

DM:II-62 Cluster Analysis © STEIN 2002-2020

Remarks:

- \Box A *k*-nearest-neighbor variant may help to mitigate the chaining problem.
- □ A *k*-nearest-neighbor variant will prefer larger clusters as agglomeration candidates: larger clusters contain more points and hence are more likely to become a nearest neighbor than smaller clusters.

DM:II-63 Cluster Analysis ©STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}} = k$ -Nearest-Neighbor)

DM:II-64 Cluster Analysis © STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}} = k$ -Nearest-Neighbor)

DM:II-65 Cluster Analysis ©STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}} = k$ -Nearest-Neighbor)

DM:II-66 Cluster Analysis © STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}} = k$ -Nearest-Neighbor)

DM:II-67 Cluster Analysis © STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}} = k$ -Nearest-Neighbor)

DM:II-68 Cluster Analysis © STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}} = k$ -Nearest-Neighbor)

DM:II-69 Cluster Analysis © STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}} = k$ -Nearest-Neighbor)

DM:II-70 Cluster Analysis © STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}} = k$ -Nearest-Neighbor)

In certain situations k-nearest-neighbor can fail as well.

DM:II-71 Cluster Analysis ©STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}} = k$ -Nearest-Neighbor)

In certain situations k-nearest-neighbor can fail as well.

DM:II-72 Cluster Analysis ©STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}} = k$ -Nearest-Neighbor)

In certain situations k-nearest-neighbor can fail as well.

DM:II-73 Cluster Analysis ©STEIN 2002-2020

Chaining Problem of Single Link ($d_{\mathcal{C}} = k$ -Nearest-Neighbor)

In certain situations k-nearest-neighbor can fail as well.

DM:II-74 Cluster Analysis ©STEIN 2002-2020

Nesting Problem of Complete Link ($d_{\mathcal{C}}$ = Furthest Neighbor)

Particular pattern recognition tasks or the detection of hyperspheres requires to deal with nested clusters.

DM:II-75 Cluster Analysis ©STEIN 2002-2020

Nesting Problem of Complete Link ($d_{\mathcal{C}}$ = Furthest Neighbor)

DM:II-76 Cluster Analysis © STEIN 2002-2020

Nesting Problem of Complete Link ($d_{\mathcal{C}}$ = Furthest Neighbor) [characteristics]

DM:II-77 Cluster Analysis © STEIN 2002-2020

Nesting Problem of Complete Link ($d_{\mathcal{C}}$ = Furthest Neighbor)

DM:II-78 Cluster Analysis ©STEIN 2002-2020

Nesting Problem of Complete Link ($d_{\mathcal{C}}$ = Furthest Neighbor)

DM:II-79 Cluster Analysis © STEIN 2002-2020

Nesting Problem of Complete Link ($d_{\mathcal{C}}$ = Furthest Neighbor) [characteristics]

DM:II-80 Cluster Analysis © STEIN 2002-2020

Nesting Problem of Complete Link ($d_{\mathcal{C}}$ = Furthest Neighbor)

DM:II-81 Cluster Analysis © STEIN 2002-2020

Nesting Problem of Complete Link ($d_{\mathcal{C}}$ = Furthest Neighbor)

Reality Wish

DM:II-82 Cluster Analysis ©STEIN 2002-2020

Characteristics of Hierarchical Agglomerative Algorithms [distance measures]

Geometrical characteristics:

	single link	complete link	average link	Ward criterion
characteristic	contractive:	dilating:	conservative:	conservative:
cluster number	low	high	medium	medium
cluster form	extended	small	compact	spherical
chaining tendency	strong	low	low	low
outlier-detecting	very good	poor	medium	medium

DM:II-83 Cluster Analysis ©STEIN 2002-2020

Characteristics of Hierarchical Agglomerative Algorithms [distance measures]

Geometrical characteristics:

	single link	complete link	average link	Ward criterion
characteristic	contractive:	dilating:	conservative:	conservative:
cluster number	low	high	medium	medium
cluster form	extended	small	compact	spherical
chaining tendency	strong	low	low	low
outlier-detecting	very good	poor	medium	medium

Data-related characteristics:

noisy data	susceptible	susceptible	unaffected	unaffected
feature transformation	invariant	invariant	_	_

DM:II-84 Cluster Analysis © STEIN 2002-2020

Characteristics of Hierarchical Agglomerative Algorithms [distance measures]

Geometrical characteristics:

	single link	complete link	average link	Ward criterion
characteristic	contractive:	dilating:	conservative:	conservative:
cluster number	low	high	medium	medium
cluster form	extended	small	compact	spherical
chaining tendency	strong	low	low	low
outlier-detecting	very good	poor	medium	medium

Data-related characteristics:

noisy data	susceptible	susceptible	unaffected	unaffected
feature transformation	invariant	invariant	_	_

Characteristics of the cluster distance measure $d_{\mathcal{C}}$:

monotonicity	✓	✓	✓	✓
order dependence	✓	✓	✓	✓
consistency	$\longrightarrow 0$	$\longrightarrow \infty$	✓	$\longrightarrow \infty$

DM:II-85 Cluster Analysis ©STEIN 2002-2020

Remarks:

- The previous table also shows the usage frequency of the algorithms: single link and complete link are the most popular hierarchical agglomerative algorithms.
 [Jain/Murty/Flynn 1999]

 The Ward criterion has been well-proven for cluster of equal sizes.
- Average link prefers spherical cluster forms, but it will also be able to detect "potato-shaped" clusters. [Kaufman/Rousseeuw 1990, p.47]
- Chaining will also happen when the median distance is employed.
- ☐ The median distance and is not a monotonic cluster distance measure. [Kaufman/Rousseeuw 1990, pp. 205+240]

DM:II-86 Cluster Analysis © STEIN 2002-2020

Merging Principles

DM:II-87 Cluster Analysis ©STEIN 2002-2020

Hierarchical Divisive Algorithm

Input: $G = \langle V, E, w \rangle$. Weighted graph.

 $d_{\mathcal{C}}$. Distance measure for two clusters.

Output: $T = \langle V_T, E_T \rangle$. Cluster hierarchy or dendrogram.

- 1. $\mathcal{C} = \{V\}$ // initial clustering
- 2.
- 3. WHILE $\exists C_x: (C_x \in \mathcal{C} \land |C_x| > 1)$ DO
- 4. $\{C,C'\}=\underset{\{C_i,C_j\}: \\ C_i\cup C_i=C_x\;\wedge\;C_i\cap C_i=\emptyset}{\operatorname{argmax}}\;\;d_{\mathcal{C}}(C_i,C_j)\;\;\text{// find farthest cluster candidates}$
- 5. $\mathcal{C} = (\mathcal{C} \setminus \{C_x\}) \cup \{C, C'\}$ // update clustering
- 6.
- 7. **ENDDO**
- 8. RETURN(T)

Compare the above algorithm to the hierarchical agglomerative algorithm.

DM:II-88 Cluster Analysis ©STEIN 2002-2020

Hierarchical Divisive Algorithm

Input: $G = \langle V, E, w \rangle$. Weighted graph.

 $d_{\mathcal{C}}$. Distance measure for two clusters.

Output: $T = \langle V_T, E_T \rangle$. Cluster hierarchy or dendrogram.

- 1. $\mathcal{C} = \{V\}$ // initial clustering
- 2. $V_T = \{v_C \mid C \in \mathcal{C}\}, E_T = \emptyset$ // initial dendrogram
- 3. WHILE $\exists C_x: (C_x \in \mathcal{C} \land |C_x| > 1)$ DO
- 4. $\{C,C'\}=\underset{\{C_i,C_j\}: \\ C_i\cup C_j=C_x\;\wedge\;C_i\cap C_j=\emptyset}{\operatorname{argmax}}\;\;d_{\mathcal{C}}(C_i,C_j)\;\;\text{// find farthest cluster candidates}$
- 5. $\mathcal{C} = (\mathcal{C} \setminus \{C_x\}) \cup \{C, C'\}$ // update clustering
- 6. $V_T = V_T \cup \{v_C, v_{C'}\}$, $E_T = E_T \cup \{\{v_{C_x}, v_C\}, \{v_{C_x}, v_{C'}\}\}$ // dendrogram
- 7. **ENDDO**
- 8. RETURN(T)

Compare the above algorithm to the hierarchical agglomerative algorithm.

DM:II-89 Cluster Analysis ©STEIN 2002-2020

Remarks:

- \Box The cluster distance measure $d_{\mathcal{C}}$ can be chosen as with the hierarchical agglomerative algorithms. However, the worst-case complexity is exponential instead of quadratic.
- Hierarchical divisive algorithm are often designed according to the *monothetic* paradigm: within each decision step only a single feature is considered.
 The monothetic paradigm is particularly useful for features with ordinal and interval-based measurement scales: instead of considering all possible partitionings, a set of feature vectors is split with regard to a location parameter such as a feature's median or a feature's mean.
- □ In contrast to hierarchical agglomerative algorithms, a hierarchical divisive algorithm cannot repair a "wrong" partitioning from a previous iteration.
- □ A powerful hierarchical divisive algorithm is based on the *cut weight* of a graph:

$$sim_{\mathcal{C}}(C,C') = \sum_{e \in cut(\{C,C'\})} w(e)$$
 or $d_{\mathcal{C}}(C,C') = \frac{1}{sim_{\mathcal{C}}(C,C')}$

DM:II-90 Cluster Analysis ©STEIN 2002-2020

MinCut

Definition 4 (Cut, Minimum Cut)

Let $G = \langle V, E, w \rangle$ be a graph with a non-negative weight function w. Let $U \subset V$ be a non-empty subset of the node set V and let \bar{U} be defined as $\bar{U} = V \setminus U$. Then the cut between U and \bar{U} is defined as follows:

$$cut(\{U, \bar{U}\}) = \{\{u, v\} \mid \{u, v\} \in E, u \in U, v \in \bar{U}\}$$

DM:II-91 Cluster Analysis © STEIN 2002-2020

MinCut

Definition 4 (Cut, Minimum Cut)

Let $G = \langle V, E, w \rangle$ be a graph with a non-negative weight function w. Let $U \subset V$ be a non-empty subset of the node set V and let \bar{U} be defined as $\bar{U} = V \setminus U$. Then the cut between U and \bar{U} is defined as follows:

$$cut(\{U, \bar{U}\}) = \{\{u, v\} \mid \{u, v\} \in E, u \in U, v \in \bar{U}\}$$

The weight (or the capacity) of $cut(\{U, \overline{U}\})$ is defined as follows:

$$w(\{U,\bar{U}\}) = \sum_{e \in cut(\{U,\bar{U}\})} w(e)$$

MinCut

Definition 4 (Cut, Minimum Cut)

Let $G=\langle V,E,w\rangle$ be a graph with a non-negative weight function w. Let $U\subset V$ be a non-empty subset of the node set V and let \bar{U} be defined as $\bar{U}=V\setminus U$. Then the cut between U and \bar{U} is defined as follows:

$$cut(\{U, \bar{U}\}) = \{\{u, v\} \mid \{u, v\} \in E, u \in U, v \in \bar{U}\}$$

The weight (or the capacity) of $cut(\{U, \overline{U}\})$ is defined as follows:

$$w(\lbrace U, \bar{U} \rbrace) = \sum_{e \in cut(\lbrace U, \bar{U} \rbrace)} w(e)$$

 $cut(\{U,\bar{U}\})$ is called minimum capacity cut of G, iff for all splittings $\{W,\bar{W}\}$, $W,\bar{W}\neq\emptyset$ holds:

$$w(\{U, \bar{U}\}) \leq w(\{W, \bar{W}\})$$

MinCut

DM:II-94 Cluster Analysis ©STEIN 2002-2020

MinCut

DM:II-95 Cluster Analysis © STEIN 2002-2020

MinCut

DM:II-96 Cluster Analysis © STEIN 2002-2020

MinCut

DM:II-97 Cluster Analysis © STEIN 2002-2020

- Each partitioning requires the computation of a minimum capacity cut. Note that no node is labeled as source or sink.
- The runtime complexity of the best known algorithm for the computation of a minimum capacity cut is in $O(|V| \cdot |E| + |V|^2 \cdot \log |V|)$. [Nagamochi/Ono/Ibaraki 1994]
- |V|-1 computations of a minimum capacity cut are necessary to obtain a complete partitioning (= one node per cluster).
- □ The effort for the computation of a minimum s-t-cut, i.e., a cut that considers a source s and a sink t, is in $O(|V|^2 \log(|E|))$.
- \Box The effort for the computation of a balanced minimum cut (k-way, $k \ge 2$) is NP complete.
- ☐ In the literature on the subject, MinCut is not classified as a hierarchical algorithm but treated as a special approach.

DM:II-98 Cluster Analysis ©STEIN 2002-2020

Splitting Problem of MinCut

DM:II-99 Cluster Analysis ©STEIN 2002-2020

Splitting Problem of MinCut

Wish

DM:II-100 Cluster Analysis © STEIN 2002-2020

Splitting Problem of MinCut

Reality

Solution: Normalization of the cut capacity with regard to the node number.

DM:II-101 Cluster Analysis © STEIN 2002-2020

Splitting Problem of MinCut

$$\text{Normalized cut capacity:} \quad \overline{w}(\{U,\bar{U}\}) = \frac{w(\{U,\bar{U}\})}{w(\{U,V\})} + \frac{w(\{U,\bar{U}\})}{w(\{\bar{U},V\})}$$

$$cut(\{U, \bar{U}\}) = \{\{u, v\} \mid \{u, v\} \in E, u \in U, v \in \bar{U}\}, \qquad w(\{U, \bar{U}\}) = \sum_{e \in cut(\{U, \bar{U}\})} w(e)$$

Splitting Problem of MinCut

$$cut(\{U, \bar{U}\}) = \{\{u, v\} \mid \{u, v\} \in E, u \in U, v \in \bar{U}\}, \qquad w(\{U, \bar{U}\}) = \sum_{e \in cut(\{U, \bar{U}\})} w(e)$$

Splitting Problem of MinCut

$$\text{Normalized cut capacity:} \quad \overline{w}(\{U,\bar{U}\}) = \frac{w(\{U,\bar{U}\})}{w(\{U,V\})} + \frac{w(\{U,\bar{U}\})}{w(\{\bar{U},V\})}$$

$$cut(\{U, \bar{U}\}) = \{\{u, v\} \mid \{u, v\} \in E, u \in U, v \in \bar{U}\}, \qquad w(\{U, \bar{U}\}) = \sum_{e \in cut(\{U, \bar{U}\})} w(e)$$

Splitting Problem of MinCut

$$\text{Normalized cut capacity:} \quad \overline{w}(\{U,\bar{U}\}) = \frac{w(\{U,\bar{U}\})}{w(\{U,V\})} + \frac{w(\{U,\bar{U}\})}{w(\{\bar{U},V\})}$$

$$cut(\{U, \bar{U}\}) = \{\{u, v\} \mid \{u, v\} \in E, u \in U, v \in \bar{U}\}, \qquad w(\{U, \bar{U}\}) = \sum_{e \in cut(\{U, \bar{U}\})} w(e)$$

Splitting Problem of MinCut

$$cut(\{U, \bar{U}\}) = \{\{u, v\} \mid \{u, v\} \in E, u \in U, v \in \bar{U}\}, \qquad w(\{U, \bar{U}\}) = \sum_{e \in cut(\{U, \bar{U}\})} w(e)$$

Remarks:

	The computation	of a mini	mum cut of no	ormalized cut	apacity	is NP comp	olete.
--	-----------------	-----------	---------------	---------------	---------	------------	--------

riangle Efficient approximations for the computation of $\overline{w}(\{U, \overline{U}\})$ have been developed and used for image segmentation and gene expression cluster analysis. [Shi/Malik 2000]

DM:II-107 Cluster Analysis © STEIN 2002-2020

Combination of Hierarchical Algorithms

The system Chameleon combines graph thinning, graph partitioning, and a hierarchical cluster analysis [Karypis/Han/Kumar 2000]:

DM:II-108 Cluster Analysis ©STEIN 2002-2020

Combination of Hierarchical Algorithms

The system Chameleon combines graph thinning, graph partitioning, and a hierarchical cluster analysis [Karypis/Han/Kumar 2000]:

The cluster distance $d_{\mathcal{C}}(C,C')$ is defined as $d_{\mathcal{C}} = \frac{1}{R_I(C,C') \cdot (R_C(C,C'))^{\alpha}}$

DM:II-109 Cluster Analysis ©STEIN 2002-2020

Combination of Hierarchical Algorithms

Chameleon (continued) [Karypis/Han/Kumar 2000]:

The hyperparameter α in $d_{\mathcal{C}}$ is task-depending and has to be determined by the user (via trial and error).

DM:II-110 Cluster Analysis © STEIN 2002-2020