

INVESTIGATIONS REPRESENTING THE DEPARTMENTS

ASTRONOMY AND ASTROPHYSICS

THE DECENNIAL PUBLICATIONS FIRST SERIES VOLUME VIII

CHICAGO
THE UNIVERSITY OF CHICAGO PRESS
1903

no vivil Amerika

> Copyright 1904 BY THE UNIVERSITY OF CHICAGO

CONTENTS

I.	Measures of Double Stars with the Forty-Inch Refractor of the Yerkes Observatory in 1900 and 1901	1
	By Sherburne Wesley Burnham, Professor of Practical Astronomy	
II.	Micrometrical Observations of Eros Made with the Forty-Inch Refractor of the Yerkes Observatory during the Opposition of 1900–1901	77
	By Edward Emerson Barnard, Professor of Practical Astronomy	
III.	On Certain Rigorous Methods of Treating Problems in Celestial Mechanics -	117
	By Forest Ray Moulton, Instructor in Astronomy	
IV.	RADIAL VELOCITIES OF TWENTY STARS HAVING SPECTRA OF THE ORION TYPE	143
	By Edwin Brant Frost, Professor of Astrophysics, and Walter Sydney Adams, Assistant at the Yerkes Observatory	
v.	THE SPECTRA OF STARS OF SECCHI'S FOURTH TYPE	251
	By George Ellery Hale, Professor of Astrophysics and Director of the Yerkes Observatory, Ferdinand Ellerman, Instructor in Astrophysics, and John Adelbert Parkhurst, Assistant in Astrophysics	
VI.	ASTRONOMICAL PHOTOGRAPHY WITH THE FORTY-INCH REFRACTOR AND THE TWO-FOOT REFLECTOR OF THE YERKES OBSERVATORY	387
	By George Willis Ritcher, Instructor in Practical Astronomy and Superintendent of Instrument Construction at the Observatory	
777	True Oppur on mun Mayon Prayres (221)	399
11.	THE ORBIT OF THE MINOR PLANET (334)	อบช
	Dy Kort Daves, Assistant Trotessor of Astronomy	

PREFATORY NOTE

THE articles which constitute this volume of the DECENNIAL PUBLICATIONS will appear also as the second volume of the *Publications of the Yerkes Observatory*. The requirements of the tabular matter, and the desire to preserve as far as possible the format of the regular publications of the Observatory, are responsible for the modification of the type-page adopted for the other volumes of the series.

THE EDITORIAL COMMITTEE.

MEASURES OF DOUBLE STARS WITH THE 40-INCH REFRACTOR OF THE YERKES OBSERVATORY IN 1900 AND 1901

S. W. BURNHAM

The double-star measures recorded here were made principally in the years 1900 and 1901. The observations preceding this period were almost entirely of the β stars; and the mean results have been incorporated in the "General Catalogue of 1290 Double Stars" discovered by the writer from 1871 to 1899, and issued in 1900 as Vol. I of the *Publications of the Yerkes Observatory*. The detailed measures have not been printed, but, as the results have been given in connection with all the measures of these stars, arranged in chronological order, I have not thought it worth while to give the separate observations.

In making the working-list of objects for measurement, the purpose was to include no star likely to be observed elsewhere, and to confine it wholly to long-neglected and little-known pairs, and those which for the lack of sufficient measures, or the uncertainty of the early results, could not be classified as to motion or otherwise. These stars, so far as the early astronomers are concerned, come largely from the several catalogues of the two Herschels and South, with some of the rejected Struve pairs also catalogued and roughly measured by Herschel II. Many of these, and particularly those from Herschel I. and South, are wide pairs, and too widely separated to be considered by modern observers as double stars in the proper sense of the term; and, whenever change has been found in this class of objects, it is very probable that it is due to the proper motion of one or the other of the components. In the other class, where the distances are less, the changes, if confirmed by later observations, may point to physical systems, though, of course, the orbital movement would of necessity be slow. It seemed very desirable that these stars, among the oldest known so far as the literature of the subject is concerned, and observed by the most eminent astronomers who have ever lived, should receive sufficient attention from modern observers to show whether or not in this long interval there has been any relative motion. In many instances the measures now made do not satisfactorily determine this, since the apparent change may be accounted for by errors in the single observations made when the pair was first catalogued, and another series of measures at some later time may be necessary.

It will be seen that in many of these stars there are great apparent changes, and it is practically certain, after making all due allowance for the early observations, that many of these changes are real. The measures of Herschel II. consist usually of a single reading for the position-angle and an estimate of the distance. The angles are generally very accurate, so far as one can judge from the better-known class of stars catalogued by him; but the distances, and particularly those which are under 10", would seem to be very frequently underrated, so that many of the apparent changes in this respect will probably not prove to be real. The observations were all made seventy or eighty years ago, and, with few exceptions, these pairs have been entirely neglected since that time. A slow movement of any kind would make a decided change in the relation of the components after such an interval of time. Another set of measures twenty or thirty years hence will dispose of the question of motion and eliminate many of these objects with respect to any further attention.

The neglected pairs of Herschel I. and South belong largely to the wider classes, and therefore were not incorporated by Struve in *Mensurae Micrometricae*. Some of the pairs of the first observer have not been observed at all since that time, the interval being about a century and a quarter. The measures of South were made about 1825, and the objects taken from his catalogue have either not been measured since at all, or the later measures indicate some change.

Another class of stars selected for measurement has been taken from various star catalogues where

the star was noted as double by the meridian observer. These catalogues include Weisse, Argelander, Harvard Zones, some of the A. G. catalogues, and others. These pairs have not been previously measured. Some of them are likely to prove to be physical pairs.

Some of the neglected $O\Sigma$ stars were put on the list, but on the appearance of Hussey's complete re-observation of all the Poulkowa stars (Publications of the Lick Observatory, Vol. V) further measures were unnecessary, and this part of the work was discontinued. The wide pairs noted by $O\Sigma$, which correspond to similar pairs given in Appendices I and II to the Mensurae Micrometricae, of which there are no measures since the observations of Dembowski, some twenty-five years ago, have been measured to ascertain whether or not there has been any change since that time.

A further class of pairs has been taken from more modern works, which include some of the pairs recorded by the several observers at the Cincinnati and Harvard College Observatories, and others still more recently catalogued. Many of these were given only approximate places and a single measure for the relative position. In all cases the error of place has been corrected, and the object identified in the D. M. or some other star catalogue. In a few instances the pair could not be found at all after a careful search in the vicinity of the assigned place.

The observing-list of stars selected in this way would obviously be a long one, and the work laid out is far from being finished. The observations which follow, amounting to about fifteen hundred measures, include only the pairs which have been measured on at least two nights. Those which have been measured once only must be given in a later series. A large number of pairs are still to be measured for the first time.

The method of making the measures has been too often described to need repeating here, since it is practically the same with all observers who use the micrometer. Double distances have, of course, been taken, and a sufficient number of readings made, usually three to five, to give as good a mean as the observer can attain. From a large number of transits, and measures of difference of declination of well-determined stars, by Professor Barnard and myself, the value of 9.666 for one revolution of the micrometer has been adopted.

In the course of these observations a few new pairs have been picked up, which are given at the end of the other measures. These are numbered in continuation of my prior lists from 1291 to 1308 inclusive. The reason why this number of new pairs is not larger will be readily understood when it is explained that, in the first place, the finding of new pairs was no part of the work planned, and no time was spent in the examination of adjacent stars; and, in the second place, for all stars smaller than 7.5 magnitude, diagrams were carefully platted to scale from the D. M. catalogues, showing the place of the pair sought and all the other stars in the vicinity, down to the Argelander limit, within a radius of about one degree. This preparation was essential in the interest of saving time in finding the object, and for the purpose of properly identifying it. Hence, except in cases where the given place was erroneous, the proper star could be placed in the field at once without loss of time, and no attention given to the other stars in the neighborhood. With any other plan, doubtless, a large number of new pairs, of more or less apparent interest, would have been found, but necessarily it would have seriously interfered with the carrying out of the arranged program, which would require at least several years thoroughly to complete; and it seemed much more important at this time to correct the descriptions and places of the stars recorded by some of the first observers, and get data for learning something of the movement of these long-neglected pairs. The old and well-known double-star systems are in no danger of being overlooked, and there has always been an unnecessary duplication of the measures of these pairs.

The star-places given are for 1880.

I. MEASURES OF KNOWN DOUBLE STARS

$$\begin{array}{ccc} \mathbf{\Sigma} \, \mathbf{3065} \, rej. & \mathrm{S.D.}(15^{\circ})3. & 8.6 \dots 8.7 \\ & \mathrm{R.A.} = 0^{\,\mathrm{h}} \, 1^{\,\mathrm{m}} \, 51^{\,\mathrm{s}} \, \\ & \mathrm{Decl.} = -14^{\,\mathrm{s}} \, 54' \, \end{array}$$

$$\begin{array}{ccc} \mathbf{1901.796} & 289^{\circ} \, 2 & 9'.44 \\ \underline{.854} & 289.1 & 9.55 \\ \hline \underline{.854} & 289.1 & 9.49 \end{array}$$

No other measures of this pair.

The only other measures are by H, $351^{\circ}1:20^{\circ}\pm(1830)$.

B Cassi	operae. $2\ldots$	15
R.A.	$= 0^{h} 2^{m} 43^{s} = +58^{\circ} 29' $	
Decl.	$= +58^{\circ} 29'$ \	
1900.684	204°5	22!88
.725	204.0	22.44
1900.70	$\frac{-}{204.2}$	$\frac{-}{22.66}$

The only other measures of the Clark companion are my own in 1889. The principal star has a proper motion of 0.550 in 110°2. This movement, with the measures of 1889, gives the position of the small star for the date of the above measures, 204°8: 22°28. It is therefore certain that the companion is fixed in space.

"Duplex" in O.Arg. No other measures. These stars are D.M. $(58^{\circ})4$ and 5. The A.G. positions give $143^{\circ}6:2^{\circ}592$ (1873.7).

The R.A. in H is 1^m too large. He gives $84^{\circ}5$: $13^{\circ}\pm$. No other measures.

The Deel, in H is 5' too small. By a single measure in 1877 I found 159°1; 36°08.

 Σ 3. Andromedae 51

$\begin{array}{ccc} R.A. &= 0^{h} & 3^{m} & 49^{s} \\ Decl. &= & + 45^{\circ} & 43^{\prime} \\ 1901,722 & 83^{\circ} & 4 & 4^{\prime} & 87 \\ \hline .758 & 83.4 & 4.79 \\ \hline .750,74 & 83.4 & 4.83 \end{array}$

H notes another small star, 133°0 : 4°57, and says: "Possibly the small star is a mere illusion." I could not see anything of it here, or attached to any star in the vicinity. No change in the Σ components.

$$\begin{array}{ccc} \mathbf{\Sigma} \ 6 \ rej. & \text{D.M.} (4^{\circ})9. & 8.9 \dots 10.5 \\ & \text{R.A.} & = 0^{\text{h}} \ 4^{\text{m}} \ 6^{\text{s}} \\ & \text{Decl.} & = + \ 4^{\circ} \ 13^{\circ} \end{array} \right\} \\ 1901.605 & 192^{\circ}8 & 21^{\circ}20 \\ & \underline{.742} & 192.7 & 21.02 \\ & \underline{.1901.67} & 192.7 & 21.11 \end{array}$$

The only other measures are by the Harvard observers, $193^{\circ}2:22'56$ (1869.92) 1n.

$$\begin{array}{ccc} \textbf{H 617.} & \text{D.M.}(0^{\circ})9. & 9.2 \dots 12.7 \\ & \text{R.A.} &= 0^{\text{h}} & 5^{\text{m}} & 4^{\text{s}} \\ & \text{Decl.} &= + & 0^{\circ} & 36' \end{array} \right\}$$

$$\begin{array}{cccc} 1900.706 & 61^{\circ}8 & 13'.57 \\ 0.744 & 59.2 & 13..39 \\ \hline 1.742 & 60.9 & 13.13 \\ \hline 1901.06 & 60.6 & 13.36 \end{array}$$

H gives $55^{\circ} \pm : 6^{\circ} \pm : 9 \dots 14$, and says "a third 18m at $4^{\circ}: 320^{\circ}$ suspected." I could not see any other companion.

H 618. D.M.
$$(-0^{\circ})$$
17. 9.6 . . . 9.6

R.A. =
$$0^h$$
 7^m 22^*
Decl. = -0° $47'$

Deci, = 0 if		
1901.742	$249^{\circ}6$	5/33
.854	71.4	5.16
1901.80	$\frac{-}{250.5}$	5.24

No other measures; $250^{\circ} \pm : 2'' \pm (1820)$ H.

H 1947. 7.3 . . . 10.5

R.A. =
$$0^{h} 10^{m} 3^{s}$$

Decl. = $+42^{\circ} 58'$

1901.818	75°6	9:14
.835	75.1	9.06
1901.82	75.3	$\frac{-}{9.10}$

The principal star (Radeliffe 44) has a small proper motion (Mon. Not., L1, 398).

1879.40 74°6 9'36 2n 0Σ

W^2 0.264, 8.5 . . . 8.5

R.A. =
$$0^{h} 11^{m} 10^{s}$$
 }
Decl. = $+35^{\circ} 10^{s}$ }

	1)	
1901.835	107°0	5:34
.854	107.6	5.25
1901.84	107.3	5.29

"Duplex 4" distance" in Weisse. The only measure is :

1879.61 $106^{\circ}4$ 5'35 1n Cin

H 1951. S.D.(12°)44. 8.6 . . . 12.0

R.A. =
$$0^{h} 12^{m} 41^{s}$$

Decl. = $-11^{\circ} 37'$

1901.796 .854	$217^{\circ}9 \ 217.1$	$22.72 \\ 23.03$	
1901.82	217.5	22.87	

The only complete measure preceding this is:

 $1877.95 216^{\circ}6 24^{\circ}9 1n \beta$

H 1953. i Ceti. 4 . . . 12

R.A. =
$$0^{h} 13^{m} 19^{s}$$

Decl. = $-9^{-} 30^{r}$

1900,666	17°0	63:00
.668	17.1	62.75
1900 66	17.0	69.87

The other measures are:

1880.31 15°5 61′96 2n β

The principal star has a very small proper motion, 0.057 in 236.0.

Hd 17

R.A. =
$$0^{h} 18^{m} 32^{s}$$

Decl. = $-0^{\circ} 37'$

Described in the Harvard observations, $sp:10^{\circ}:8...12$. This star is not double, and no such pair found in the vicinity (1901.74).

$$0Σ 10 \ rej.$$
 L 581. 6.3 . . . 8.9

R.A. =
$$0^{h} 21^{m} 16^{s}$$

Decl. = $+ 15^{\circ} 22^{r}$

Decl.	Decl. = $+15^{\circ} 22'$ }		
1901.742	$237^{\circ}6$	100.55	
.854	238.0	100.96	
.873	237.8	100.97	
1901.82	237.8	$\frac{100.83}{100.83}$	

The first measure of this distant star is:

1866.68 237°0 96'34 3n z

The A.G. proper motion of the principal star is 0:092 in 286:2. The above measures give 0:133, so that the first is too small, or the other star has a movement of its own.

H 322. 12 Ceti. 6.5 . . . 11.7

R.A. =
$$0^{h} 23^{m} 55^{s}$$

Deel. = $-4 37'$

- ,	
189°4	9:70
188.4	9.52
188.8	9.40
189.6	9.53
189.0	$\frac{-}{9.54}$
	188.4 188.8 189.6

The only measures are:

1900.71

1866.76	$185^{\circ}2$	8.66	3n	1
1880 23	187.0	8 63	3n	8

The proper motion of A is practically zero.

β 107

R.A. =
$$0^{h} 24^{m} 31^{s}$$

Decl. = $+62^{\circ} 41^{\circ}$

5:71
5.69
5.70
46:94
46.62

336.7

46.78

	A and D	
1900.706	$146^{\circ}5$	50/28
.725	146.6	50.36
1900.71	$\overline{146.6}$	50.32
	A and E	
1900.706	170°9	113:59
.725	170.8	113.51
1900.71	$\overline{170.9}$	$\frac{-}{113.55}$
	A and F	
1900.706	114°1	150.50
.725	113.7	150.48
1900.71	$\frac{-}{113.9}$	$\frac{-}{150.49}$
	${f E}$ and e	
1900.725	139°1 8.0	61 - 16m

(See Popular Astronomy for December, 1900.)

H 1982. 52 Piscium.
$$6 cdots 12$$

R.A. = $0^{h} 26^{m} 18^{s}$
Decl. = $+19^{\circ} 38^{\prime}$

1900.684 304.2 41.08

.687 304.1 41.28

1900.68 304.2 41.18

The only measures are:

$$1830 + 309^{\circ}6$$
 $25' \pm 1n$ H
 1879.99 305.7 38.30 $3n$ β

The distance would seem to be increasing. The proper motion is very small, 0.012 in 109.3.

H 1038.
$$10.7 \dots 10.8$$

R.A. = $0^{h} 29^{m} 19^{s}$
Decl. = $+63^{\circ} 4^{\circ}$
 1901.722
 $111^{\circ}0$
 $3^{\circ}77$
 818
 109.3
 3.81
 1901.77
 110.1
 3.79

The only position is by H, $97^{\circ}0:1\frac{1}{2}$ " (1828); "in contact with 160; just separated with 240." I looked this up in 1876 with the 6-inch, and estimated the distance as fully 2". Not in D.M.

H 1040.
$$10.9 \dots 11.2$$

R.A. = $0^{h} 31^{m} 37^{s}$

Decl. = $+65^{\circ} 7^{\circ}$

1901.722 $355^{\circ} 4$ 4.88

 -796 353.3 5.18
 -1901.76 354.3 5.03

H gives $356^{\circ}4:2''\pm(1830)$.

H 3380.
R.A. =
$$0^{h} 33^{m} 35^{s}$$
 (Decl. = $-17^{s} 23^{s}$ (

H gives $96^{\circ}2:30^{\circ}\pm:7\frac{1}{2}\dots13$ (1836.78). There is no bright star in this place, and I could not find any such pair in the vicinity. It may be identical with H 2067, which is $1^{\rm h}$ more R.A. The descriptions agree.

$$\begin{array}{ccc} \text{D.M.} & (-0^{\circ})75. & 7.6 \dots 11.5 \\ \text{R.A.} & = 0^{\circ} 31^{\circ} 56^{\circ} \\ \text{Decl.} & = -1^{\circ} 10^{\circ} \end{array}$$

$$\begin{array}{cccc} 1901.703 & 307^{\circ}1 & 30^{\circ}46 \\ .873 & 306.5 & 30.50 \\ \hline 1901.79 & 306.8 & 30.48 \end{array}$$

This was measured for $\Sigma 53$ rej. No other observations. The principal star is 6.8m in D.M., and has a proper motion of 0.087 in 253.4.

$$\begin{array}{c|cccc} \mathbf{\Sigma} \ \mathbf{53} \ rej. & 8.0 \dots 8.7 \\ \text{R.A.} & = 0^{\text{h}} \, 37^{\text{m}} \, 18^{\text{s}} \\ \text{Decl.} & = -1 \, 32^{\text{r}} \end{array} \right\}$$

$$1901.735 \qquad 338^{\circ} 9 \qquad 27^{\circ} 79$$

$$.854 \qquad 338.3 \qquad 27.61$$

$$1901.76 \qquad 338.6 \qquad 27.70$$

The earliest measures are:

1891.81 334°6 26′47 3n Engelhardt

This star has a considerable proper motion; 0.415 in 216.6 (Porter); 0.301 in 228.4 (Nico. A.G.). The smaller star is probably not moving with the other.

The distance seems to be greatly overestimated by H, as in nearly every instance of this kind. He gives $275^{\circ}0:1\frac{1}{2}":10\ldots14$ (1828). It is near D.M. (23°)98.

	B and C	
1901.703	10508	10.54
.758	107.1	10.16
1901 73	106 4	10.35

H gives $330^{\circ} \pm :20^{\circ} \pm :9\ldots 14$; "large star, very .ed." The third star was not seen by him. A is only vellowish at most.

H 1054. D.M.
$$(59^{\circ})125$$
. 8.2 . . . 10.5
R.A. = $0^{\circ} 42^{\circ} 31^{\circ}$ / Decl. = $+60^{\circ} -6^{\circ}$ / 1901.796 182°5 8'.75
. 799 181.6 8.58
1901.80 182.0 8.66

H gives $176^{\circ}0:5''\pm:9...13$ (1828).

From the Harvard list. The only measure is: $1867.89 37^{\circ}4 7'04 1n Hd$

Hd 36

R.A. =
$$0^{h} 43^{m} 10^{s}$$

Decl. = $-21^{\circ} 48'$

This is in the Harvard list as O.Arg.S.439, with the correct place as given above. The description is $16^{\circ}6:21^{\circ}:7...(1868.82)$. This star is not a double of any kind, nor is there any pair as described in the vicinity. The nearest pair is $\beta301$, but this does not correspond in any respect to measures or magnitude.

$$\begin{array}{c|cccc}
\mathbf{0\Sigma} \text{ (App) } \mathbf{9}, & 8 \dots 8.2 \\
& \text{R.A. } = 0^{\text{h}} 43^{\text{m}} 21^{\text{s}} \\
& \text{Decl. } = + 29^{\circ} 48^{\circ} \\
1901.703 & 236^{\circ} 8 & 96^{\circ} 72 \\
& .799 & 236.5 & 96.10 \\
\hline
& 1901.75 & 236.6 & 96.41
\end{array}$$

The principal star has a proper motion of $0^{\circ}263$ in $100^{\circ}3$ from meridian positions. The measures of β in 1875 compared with the foregoing give 0.217 in

92°1. There is a 12m star nearly midway, from A 252°7 and from B 42°5.

$$\begin{array}{ccc} \textbf{H 628}, & 7.7 \dots 11.5 \\ \text{R.A.} &= 0^{\text{h}} 45^{\text{m}} 25^{\text{s}} \\ \text{Decl.} &= + 33^{\circ} 14^{\circ} \end{array}$$

$$\begin{array}{cccc} 1901.703 & 68^{\circ}5 & 42^{\circ}73 \\ .796 & 68.8 & 42.51 \\ .799 & 69.0 & 42.53 \\ \hline 1901.76 & 68.8 & 42.51 \end{array}$$

H gives $65^{\circ} \pm : 35^{\circ} \pm : 7 \dots 16$; "large star red." The principal star is not red — yellowish at most.

Weisse R.A. =
$$0^{h} 45^{m} 56^{s}$$
 Pecl. = $+25^{\circ} 8'$

"Duplex" in Weisse. Not double except as a wide pair in the finder. There are three observations in Weisse differing slightly in place.

O.Arg.N.901. 8.5 . . . 8.9

R.A. =
$$0^{h}50^{m}$$
 3 s $\frac{1}{2}$
Decl. = $+59^{\circ}$ 41' $\frac{1}{2}$

1901.796 201°9 202.8 20.64

1901.79 202.8 20.73

"Duplex" in O.Arg. The only measures are 203°2: 21°24 (1892.77) Espin. The components are D.M. (59°)150 and 149.

The large star has a proper motion of 0.173 in 73°2.

1878.67	11009	38/37	3n	β
1878.67	314.4	37.27	3n	β

The only other measures are:

	1863.86	130°2	5'32	2n	Wn
--	---------	-------	------	----	----

H gives $303^{\circ}3:10^{\circ}\pm:10\ldots15$ (1830). The principal star has a considerable proper motion, 0.214 in 215°1 (Porter) and 0.28 in 230°8 (Boss). This would seem to be common to both stars,

Σ 103. S.D.(2°)192. 8.4 . . 9.7
R.A. = 1^h 10^m 33°
$$\right\}$$

Decl. = - 2° 10′ $\Big\}$
1901.703 246°5 5′49
.796 246.7 5.34
1901.75 246.6 5.41

No recent measures, but probably unchanged. Some uncertainty in place heretofore.

H 5453. D.M.(
$$-1^{\circ}$$
)167. 8.3 . . . 9.9
R.A. = $1^{h} 12^{m} 29^{s}$ Decl. = $-1^{\circ} 29^{r}$ $\left. \begin{array}{c} 27.56 \\ -796 \\ -1901.75 \end{array} \right.$ 208.5 27.35
 27.45

The positions are estimated by H, 210° : 30° . Engelhardt gives $209^{\circ}5$: 27'95 (1891.81) 2n. The principal star has a proper motion of 0'499 in $121^{\circ}4$, and the small star seems to be moving with it.

Barnard. D.M.(3°)184. 8.5 . . . 11

R.A. =
$$1^{h} 12^{m} 40^{s} / 1$$

Decl. = $+ 4^{\circ} 1' / 1$

1900.742 12°0 1.45

Discovered by Barnard. No change since his measures of 1894.

$$\begin{array}{c|cccc} \textbf{H 1079.} & 44 \ Ceti. & 6 \dots 10.5 \\ & \text{R.A.} &= 1^{\text{h}} 18^{\text{m}} & 0^{\text{s}} \\ & \text{Decl.} &= - & 8^{\text{s}} & 38^{\text{s}} \end{array} \right\} \\ 1900.725 & 298^{\circ} 9 & 80^{\circ} 37 \\ & .744 & 298.5 & 80.37 \\ \hline & 1900.73 & 298.7 & 80.37 \end{array}$$

The only observations are:

$$300^{\circ}5$$
 $60^{\circ} \pm$ 1828 $1n$ Π 299.6 76.40 1877.86 $1n$ β

The principal star has a proper motion of 0.134 in 115.4, which accounts for the change in distance.

H 638.
$$11.2...11.5$$
R.A. = $1^{h}19^{m}.5^{s}$ {
Decl. = $-4^{h}.47^{r}$ }

1901.760 271.8 9.30
 $\frac{.876}{1901.82}$ 271.3 9.30
 $\frac{.30}{271.5}$ 9.41

In the field nf S.D.(4°)203. The only observation is by H, 273°0 : 2"-3" (1820).

No other measures.

$$\begin{array}{ccc} \pmb{\tau} & Andromedae, & 5 \dots 10.2 \\ & & \text{R.A.} & = 1 \text{ h } 33 \text{ m } 30 \text{ s } \\ & & \text{Decl.} & = + 39 \text{ s } 58 \text{ s} \end{array}) \\ 1900.684 & & 329 \text{ ° 0} & 52 \text{ ' 53} \\ & & & & & & & \\ \hline 1900.69 & & & & & & \\ \hline 1900.69 & & & & & & \\ \hline \end{array}$$

The only other observations are $328^{\circ}4:52'35$ (1880.68) 2n β . The proper motion of this star is small, 0'019 in $37^{\circ}4$.

H 2067. L 3056.
$$7.2...11.1$$
.

R.A. = 1 h 33 m 33 s / Decl. = -18° 24' \(\)

1901.760 \quad 91 \cdot 9 \\ .876 \quad \quad \frac{91.9}{91.6} \quad \frac{33.66}{33.86}

Probably without change. The distance in H of 5° may be a misprint for 25° . In my measure of 1878 the distance is printed 23590 instead of 33590. The measures of Wilson (Cin¹⁰) belong to H 3455, which is 4m f this pair.

H gives $164.5:15^{\circ} \pm (1828)$.

$$\begin{array}{ccc} \textbf{H 3455.} & 9.1 \dots 9.2 \\ \text{R.A.} & = 1^{\text{h}} \, 37^{\text{m}} \, 31^{\text{s}} \, \{ \\ \text{Decl.} & = -18^{\circ} \, 13^{\circ} \, \{ \\ \end{array}$$

$$\begin{array}{ccc} 1901.760 & 74.5 & 23.56 \\ .876 & 73.6 & 23.73 \\ \hline 1901.81 & 74.0 & 23.64 \end{array}$$

The components are S.D.(18)291 and 292. The only measures are:

No measures since \Box in 1867. No evidence of change. H could not see it, and I failed with the 6-inch 1874.

The only other measures are by the Harvard observers on one night in 1867. They give for AC, 213.4:14.26 (1867.96).

$$\Sigma 188 \ rej. 8.8 \dots 9.4$$

$$\begin{array}{ccc} \text{R.A.} &= 1^{\ln 50^{m} 47^{s}} \\ \text{Decl.} &= +62^{-} 20^{-} \end{array}$$

$$\begin{array}{cccc} 1901.722 & 238^{\circ}.4 & 32.54 \\ .796 & 238.4 & 32.62 \\ \hline 1901.76 & 238.4 & 32.58 \end{array}$$

H describes the components "very red: fine green." The colors are less prominent.

H 1100. B.A.C. 588.
$$6.3...10.6$$

R.A. = $1^{h}50^{m}47^{s}$ t

Decl. = $+64^{h}-3^{s}$ t

1901. 722 310.4 38.83

 $0.796 310.1 38.83$
 $0.796 310.2 38.83$

H gives $310\%4:30 \pm$. His declination is 20 in error.

H gives $183.7:60^{\circ}\pm$. His declination is $1^{\circ}s$ of the real place. The principal star is 5.8m in S.D.

Positions estimated by H; "large star deep blood red—a very intense and remarkable color; small star green." The colors are very marked.

$$\begin{array}{cccc} \mathbf{\Sigma} \ \mathbf{207}, & \mathrm{D.M.} (16) 233, & 9 \dots 10 \\ & \mathrm{R.A.} &= 1^{\ln 56^{\ln} 45 + \frac{1}{2}} \\ & \mathrm{Decl.} &= +17^{\circ} - 4^{\circ} \\ 1901.873 & 186^{\circ} 7 & 11788 \\ & .876 & 185.0 & 11.96 \\ \hline & 1901.87 & 185.8 & 11.92 \end{array}$$

No recent measures, but without change.

Both R.A. and Decl. erroneous in H. He gives 166°4: 25" ±. Identified as above.

$$\begin{array}{ccc} & \text{ \ensuremath{\mbox{\mbox{ψ}}}} & \text{ \ensuremath{\mbox{ψ}}} & \text{ \ensuremath{\mbox{v}}} & \text{ \ensuremath{\mbox{0}}} & \text{ \ensuremath{\mbox{ψ}}} & \text{ \ensuremath{\m$$

H in 1873 made two measures of the distance, 34:50 and 37:88. The only other measures are my own, 193°3:42:71 (1877.86). Bossert gives the proper motion 0:144 in 123°7.

$$\Sigma$$
 211 rej.
R.A. = 1 h 58 m \pm 0 Decl. = - 6 0 0 \times

H could not find any pair in or near this place. Σ gave this as Class IV, $8 \dots 11$. There is no star in the assumed place. There is a $7\frac{1}{2}$ m star about $15^{\prime}s$ with a distant $9\frac{1}{2}$ m star in the field, which may be the one in question.

No recent measures; no sensible change. The third star has not been seen before.

No recent measures; apparently fixed.

No measures since \exists ; little if any change. The Berlin A.G. gives the proper motion of A, 0.187 in 126.0, and the small star is therefore moving with it.

H 1115. 10 Trianguli.
$$6...12$$

R.A. = $2^{h}11^{m}59^{s}$ \text{Decl.} = $+28^{\circ}-5^{\circ}$ \text{1900.742} \quad \frac{206\cdot 2}{205.3} \quad \frac{57.04}{57.09}

H gives $206^{\circ}8:50\pm^{\circ}$, and calls the small star 18m. No other measures.

$$\begin{array}{ccc} \Sigma \ 247 \ rej. & \text{D.M.}(3^{\circ})320. & 9.0 \dots 9.0 \\ & \text{R.A.} & = 2^{\text{h}} 12^{\text{m}} & 7^{\text{s}} \\ & \text{Decl.} & = + & 3 & 37' \end{array}) \\ 1901.703 & 211^{\circ}3 & 7'61 \\ & .876 & 212.1 & 7.48 \\ & & & & & & & & \\ \hline 1901.79 & & & & & & & \\ \hline \end{array}$$

The only measure is:

1879.66 32°2 7′39 1*n* Cin

H 2134

R.A. =
$$2^{h}16^{m}0^{s}$$

Decl. = $-11^{\circ}10'$

Described by H, $265^{\circ}2:9''\pm:9\ldots10.11$. There is no pair of this description in or near this place. It is certainly identical with H 2140, which is about 5mf.

H 649.
$$12.5...13$$

R.A. $= 2^{h}17^{m}4^{s}$ (
Decl. $= +9^{s}4^{s}$)

1901.799 $127^{s}5$ 9*10

H has $120 = : I_2^{1} = : 15 \dots 16$.

H 2140. S.D.(11)459. 85...10

R.A. =
$$2^{h}19^{m}59^{s}$$
 \ Decl. = $-11 - 10^{r}$ \\
1901.703 \quad \frac{263}{263.1} \quad \frac{10.70}{10.51} \quad \frac{263}{10.60} \quad \frac{10.51}{10.60} \quad \frac{10.60}{10.60}

In H, "R.A. conjectural." Identified as above. Identical with 11–2134, for which 11 gives $265^{\circ}2:9^{\circ}\pm:9\ldots10$ 11. The R.A. of that star is also in error.

The only other measures are by \mathbb{F} , 31/2; 73/96 (1875.42).

Hd Zones

R.A. =
$$2^{h} 29^{m} 0^{s}$$

Deel. = $+ 0 37'$

In the Harvard Zones an 8m star noted as "double." The place is that of the 9m star D.M.(0) t31, but this is not a double of any kind. Σ 274 is $4^{\rm m}$ p, and possibly the note has reference to that pair.

R.A.
$$\equiv 2^{h} 29^{m} 29^{s}$$

Decl. $\equiv +49^{-}44^{\circ}$

"Duplex" in O.Arg. Not double; there is a 10m star about 53 distant. I failed to find it in 1875.

$$R.A. = 2^{\ln 33 \ln 38^{\circ}}$$

 $Deck = -28 - 41'$

A and B

1900.742	1572	13729
1901.760	15.5	13.87
1901 25	15.3	13.58

	A and C	
1900.742	24278	14/26
1901.760	243.4	14.12
1901.25	213.1	$\overline{14.19}$

H gives $19\%6:10'' \pm \text{ and } 299 \pm :12'' \pm .$

"Duplex" in O.Arg.N. It is Hussey 204. He gives 143.4:3.17 (1900.87) 3n. No other measures. There is a closer pair a little following which 1 noted many years ago, and in this connection measured it; 155.5:1.42 (1901.67) 2n. This is Hussey 205. It is 57.5:f the other pair, and 3.5:f

τ Persei R.A. = $2^{h}45^{m}45^{s}$ Dect. = $+52^{\circ} \cdot 16'$ A and B 1900.684 10623 50.50 106.751.30 .687.725107.251.09106.3 .74250,52 1900.71106.6 50.85B and C 1900.74281:7 4:58

The faint star B 12m was first noted by Edgecomb, and in measuring that with the $18\frac{1}{3}$ -inch the 13m star C was added. My measures of AB are $106^{\circ}4:50^{\circ}67$ (1878.46) 2n. There is a 14m star from A $337^{\circ}3:42^{\circ}46$ (1900.74) 1n.

$$\Sigma$$
 324 ref. D.M.(46)658. 6.7 . . . 12.2
R.A. = 2^{h} 48^{m} 27^{s} (
Decl. = $+$ 46 41 (
1900.687 203°4 24.94
.725 203.2 25.10

 $\begin{array}{cccc}
.782 & 203.5 & 21.81 \\
\hline
1900.73 & 203.4 & 21.95
\end{array}$

H gives $191^{\circ}4:12 \pm \text{for AB}$, and $312^{\circ}4:8^{\circ} \pm \text{for AC}$. I could see only the star measured, which is B of H. This was rejected by Σ as a close pair.

No measures; described in H, "Triple; Cl. I and II."

V 221

	4 334	
R.A.	$=2^{h}53^{m}1^{s}$)	
Dec	$1. = + 6^{\circ} 10^{\circ}$	
1900.666	$316^{\circ}2$	1:45
.668	317.6	1.36
1900.67	316.9	1.40
1000.07	910.8	1.40

H 2170. γ Persei. - 11.2
R.A. =
$$2^{h}56^{m}$$
 6 s s Decl. = $+53^{\circ}$ 2 s s 1900.684 324°7 57.56
. 725 325.0 57.43
. 782 324.9 57.32
1900.73 324.9 57.44

H gave the angle 224°9, probably an error of 100°. The only measures are 323°7 : 57'72 (1879.55) $2n \beta$.

O.Arg.N. 3418. 9.0 . . . 9.0

R.A. =
$$2^{h} 57^{m} 34^{s}$$
Decl. = $+52^{\circ} 35^{\circ}$

1901.835 90.1 4.09

.854 90.0 4.19

1901.84 90.1 4.14

"Duplex" in O.Arg. The only measures are: 1900.06 90°2 4′50 2n Espin

$$\Sigma 353 \ rej. \quad D.M.(17^{\circ})494. \quad 9.6 \dots 11.0$$

$$R.A. = 3^{h} \quad 0^{m} \quad 47^{s} \\ Decl. = +17^{\circ} \quad 25^{\circ} \\ 1901.720 \qquad 59^{\circ} \quad 2 \qquad 10.70$$

$$\frac{.799}{1901.76} \qquad \frac{58.0}{58.6} \qquad \frac{10.63}{10.66}$$

No other observations except angle of 56°4 by H.

The only other measures are by H; $317^{\circ}5:34'80$ (1783.65) 1n. The principal star is D.M.(21)418. There is a nearer companion, 13m, $267^{\circ}0:14'69$ (1900.72) 1n.

H 3557. L 6037. 8 . . . 10.9
R.A. =
$$3^{h} 9^{m} 12^{s}$$
 }
Decl. = $-14^{\circ} 53^{\circ}$ }
1900.706 2°.4 27.113
.742 2.2 26.77
1900.72 2.3 26.95

There is an error of 1 in the Decl. of H. The only observations are:

1835.90	9:9	20" +	1n	\mathbf{H}
1880.27	5.3	27.13	3n	β

 Σ 371

R.A. Decl.	$= 3^{h} 10^{m} 23^{s} = + 46 35' $	
1900.687	81°7	3.56
.782	82.8	3.14
1901.589	81.1	3.51
1900.76	81.9	${3.40}$

From the measures of $\mbox{\em J}$ the angle appeared to be increasing.

1831.20	$74^{\circ}7$	3.135	3n	Σ
1867.45	81.7	3.32	3n	٦

It would now appear that Σ 's angle was too small, and that the stars are really fixed.

Н 3	570. 7 12	
R.A. Decl.	$\begin{array}{l} = 3^{\rm h} 16^{\rm m} 18^{\rm s} (\\ = -20^{\circ} 45^{\circ} \end{array}$	
1900.706	256° 1	33/89
.742	256.0	34.21
$\overline{1900.72}$	$\frac{-}{256.0}$	$\frac{-}{34.05}$

No measures in H; described as "triple or quadruple." No nearer companion than that measured, but other small stars in the field more distant.

In one observation H gives for the angle 239% (1830), and later 325% (1835.9). There is probably an error of 90% in the last. This pair appears to be Σ 387 rej. Hussey 20 is about 1^m 40% p, which was measured once, 235% 1: 0%24 (1901.74).

Nova Persei

R.A. =
$$3^{h} 23^{m} 8^{*}$$
 }
Deet. = $+43 30'$ }

Two of the small stars in the field were measured, and then the work discontinued, as it appeared that Aitkin had earefully measured them all.

1901.167	6304	158744
.529	63.0	158.11
1901.35	63.2	158.42
1901.167	116°7	102738
.529	116.4	101.95
1901.35	116.5	102.16

$$ext{ H IV. 89. } ext{ L 6436. } ext{ 8.1... 9.5}$$
 $ext{ R.A. } = 3^{\text{h}} 23^{\text{m}} 35^{\text{s}}$
 $ext{ Decl. } = +19^{\circ} 41^{\circ}$
 $ext{ 1901.742 } ext{ 147°1 } ext{ 20°35 }$
 $ext{ .796 } ext{ 146.9 } ext{ 20.27 }$
 $ext{ 1901.77 } ext{ 117.0 } ext{ 20.31 }$

Porter gives the proper motion of A, 0/203 in 108/0. The components seem to be moving together.

$$1783.73$$
 15270 20705 $1n$ 11 4879.66 147.3 20.40 $1n$ Cin

$$\Sigma 417 \ rej. \quad \text{S.D.}(3^{\circ})572. \quad 8.5 \dots 9.6$$
 $\text{R.A.} = 3^{\circ} 27^{\circ} 27^{\circ} \}$
 $\text{Decl.} = -2^{\circ} 57^{\circ} \}$
 $1901.703 \qquad 179.5 \qquad 25.78$
 $179.8 \qquad 25.78$
 $179.6 \qquad 179.6 \qquad 25.78$

The only other position is $178^{\circ}3:25^{\circ} \in (1830)$ 11.

$$\Sigma$$
 416 rej. D.M.(19)556. 8.8 . . . 9.7
R.A. = 3 \(^1 28 \)^m 2 \(^3 \) \(\) Dect. = + 19 \(^2 24 \) \(\)
1901.720 \(56 \)^5 6.5 \(26 \).30
1901.73 \(56 \),5 \(26 \).42

The principal star is eatalogued as red. There is a 11.5m star, 292°9 : 22°61, previously noted by Espin.

This was observed for the distant star which has not been measured before. Σ mentions it as 347°; 32′. There is no change in the close pair.

No other measures. If gives $25^{\circ}\pm:25''\pm6...$ 17–18.

$$\begin{array}{c|cccc} \mathbf{H} & \mathbf{667}, & 10.5 \dots 12.7 \\ & \text{R.A.} & = 3^{\text{h}} 41^{\text{m}} 15^{\text{s}} \\ & \text{Decl.} & = -0 & 33^{\text{s}} \end{array} \\ 1901.703 & 89^{\circ} 7 & 12^{\circ} 64 \\ & .758 & 91.1 & 12.38 \\ \hline & 1901.73 & 90.4 & 12.52 \end{array}$$

H gives $90 \pm :4"-5"$ AB, and $300^{\circ} \pm :15"$ AC, with magnitudes 9, 12, and 18. I did not see the third star. Not in S.D.

H 668. D.M.
$$(-0^{\circ})$$
608. $8.5 \dots 10.5$
R.A. = $3^{h} 44^{m} 44^{s}$
Decl. = $-0^{\circ} 32^{\prime}$
1901.703 299°0 21'67
.758 298.1 21.23
1901.73 298.5 21.50

Only H, $315^{\circ} \pm : 18^{"} \pm : 8 \dots 12$.

Decl.	$= -23$ ° 18° \int	
1901.760	300°4	10:62
. 796	299.6	10.54
1901.78	300.0	$\overline{10.58}$

H found $303^{\circ}5:15^{\circ}\pm:8\frac{1}{2}\dots10$. No. 33 of the Lowell Catalogue could not be found by Cogshall. It is evidently identical with H 3601, See having an error of 1° in his Deel. His measures were $299^{\circ}2:10.73:7\dots10.8$ (1897.72).

No recent measures, but unchanged. Not in D.M., but near D.M.(51°)804.

$$\begin{array}{ccc} \textbf{43 Persei.} & \text{S } 440 = \textbf{H V. } 41 \\ & \text{R.A.} & = 3^{\text{h}} 47^{\text{m}} 41^{\text{s}} \\ & \text{Decl.} & = +50^{\circ} \ 21^{\circ} \end{array} \\ \begin{array}{cccc} 1901.720 & 30^{\circ} 4 & 75^{\circ} 47 \\ .742 & 29.9 & 75.27 \\ .758 & 30.1 & 75.36 \\ \hline 1901.74 & 30.1 & 75.37 \end{array}$$

The principal star has a proper motion of 0.155 in 147.6, which also belongs to the 9.5 companion.

1863.07	$29^{\circ}7$	75/15	4n	0Σ
1888.19	30.0	75.34	2n	Engelhardt

There is a 12.5m star nearer than this in 279.

OS (App) 41,
$$7 \dots 8.5$$

R.A. = $3^{h}48^{m} \cdot 6^{s}$
Decl. = $+4^{s} \cdot 49^{o}$
1900.684 357°0 58.72
.687 357.3 59.37

1901.854	357.2	58.96
1901.07	357.2	59.02

The only measures are by $\ensuremath{\mathfrak{I}}$ in 1875. There is no change.

H 3608.
$$\gamma$$
 Eridani. $3\frac{1}{2}$... 13.2

R.A. $= 3^{h} 52^{m} 24^{s}$
Decl. $= -13^{\circ} 51^{r}$

1900.706 $241^{\circ}7$ $52^{\circ}68$
 0.742 241.5 0.742 0.742 0.742 0.742 0.742 0.742 0.743 0.744

The only other complete measures are my own, $238^{\circ}4:51'93$ (1877.88) 2n. The change in angle is due to the proper motion of A, 0'114 in $158^{\circ}3$.

H N. 93

$$R.A. = 3^h 57^m \pm$$

Decl. = $+23^{\circ} - 6' \pm$

No measures in $\mbox{\ensuremath{\mathfrak{h}}}$; given as Class II; "place extremely precarious." The place agrees with D.M. $(22^{\circ})626$, but that is not double, and has no faint star near it. The pair in question is probably identical with Σ 479.

H gives $296^{\circ}4:14''\pm:9...14$ (1830).

In Σ Classes I and VI. No other measures.

Given in the Harvard Annals with rough place, and 261°7: 18552: 9.3...9.5 (1868AS) 3n. There is a 15m star nearer A, 263°4: 5568 (1901.79) 1n.

$$\begin{array}{c|cccc} O\Sigma \ 73. & \mu \ Persei \\ R.A. & = 4^h \ 6^m \ 5^s \\ Decl. & = + 48^o \ 6' \end{array} \\ A \ and \ B \\ 1901.720 & 349^\circ 8 & 14^\prime 52 \\ .722 & 348.5 & 14.24 \\ \hline 1901.72 & 349.1 & 14.38 \\ A \ and \ C \ (= H \ VI \ 20 = Sh \ 364) \\ 1901.720 & 231^\circ 9 & 84^\prime 02 \\ .722 & 231.6 & 84.30 \\ \hline .722 & 231.7 & 84.16 \\ \end{array}$$

No change in B. For AC Sh found $231^{\circ}7:91^{\circ}56$ (1822.85) 2n. There is a 12.8m star nearer than C, $124^{\circ}2:50^{\circ}36$ (1901.72) 1n.

H gives $210^{\circ} \pm : 18' \pm : 7 \dots 10$. I found many years ago that there was an error in H's magnitude of A. This is given as 9.2 in D.M.

Given as Class IV in Σ . The only other measures are by Espin, 316°8 : 18'50 (1892.96) 2n.

Fixed; 4 gives 144°9: 102′94 (1875.33) 3n. No other measures. These stars are Lalande 8090 and 8093.

$$\begin{array}{cccc} \Sigma \ 537. & 8.5 \dots 9.7 \\ \text{R.A.} & = 4^{\text{h}} 16^{\text{m}} \ 21^{\text{s}} \ \\ \text{Decl.} & = -10^{\circ} \ 14^{\circ} \ \end{array} \right\}$$

$$\begin{array}{cccc} 1900.706 & 341.5 & 16.36 \\ .742 & 341.6 & 16.49 \\ \hline 1900.72 & 341.5 & 16.42 \end{array}$$

Distance and angle slowly increasing.

1832.39	334°0	14799	4n	Σ
1867.10	336.9	15.28	3n	_1
1891.86	340.4	15.98	1n	β

	β 402	
R.A. Deel.	$= 4^{h} 17^{m} 3^{s} = -1 33^{s} $	
1901.760	75°3	7:58
.796	73.7	7.52
1901.78	71.5	7.52

This was put on the list in order to observe a third faint star noted by Cogshall at 110°:7′8, referred to in my General Catalogue. I found a 14m star 111°1:29′0. Since then I have learned from him that there was an error in transcribing the distance, which was really 29″, as I found it.

Σ 530	. D.M.(53°)769	
R.A. Decl.	$= 4^{h} 17^{m} 5^{s} $ $= +53 13' $	
	A and B	
1901.720	200°5	14/12
.722	200.7	14.19
.742	199.2	11.06
1901.78	200.1	11.12
	A and C	
1901.742	279°6	36781
.758	280.3	36.83
1901.75	279.9	36.82

No other measures of C, but it was noted by H in his Fifth Catalogue. This star I found to be a rather difficult pair. The only measures of AB since 2 are by Ma and J. There is no change.

H gave $238^{\circ}2:19'53$ (1783.13) 1n. No other measures since, except my own in 1877, which show no change as compared with the above.

This is the faint pair between κ^1 and κ^2 Tauri. The only other measures are by \mathfrak{I} , $327^{\circ}2:4.94$ (1874.11) 4n.

$$\begin{array}{ccc} \Sigma \ 547, & 8.5 \dots 10.4 \\ \text{R.A.} & = 4^{\ln 19^{\text{m}}} 48^{\text{s}} \\ \text{Decl.} & = -1^{\circ} 40^{\circ} \end{array}$$

$$\begin{array}{ccc} 1901.758 & 43^{\circ} 9 & 2.04 \\ \hline .796 & 44.5 & 1.98 \\ \hline 1901.78 & 44.2 & 2.01 \end{array}$$

The change in angle is about 60° since 1831. A comparison of these measures with Σ 's gives 0'.052 in the direction of 316°1 for the proper motion of A.

$$\begin{array}{ccc} \textbf{57 Persei.} & \textbf{Sh } 44 = \textbf{H VI. 99} \\ & \textbf{R.A.} & = 4^{\text{h}} 24^{\text{m}} 58^{\text{s}} \\ & \textbf{Decl.} & = + 42^{\circ} 48^{\circ} \end{array} \right\} \\ \textbf{1900.687} & \textbf{198.8} & \textbf{115.38} \\ \textbf{.744} & \textbf{198.4} & \textbf{114.83} \\ \textbf{.763} & \textbf{198.6} & \textbf{115.46} \\ \hline \textbf{1900.73} & \textbf{198.6} & \textbf{115.22} \end{array}$$

The change is due to proper motion, probably of the smaller star. This is given in the A.G. as 0.076 in 157.7.

This change in distance corresponds to the movement as given of B.

The only other measures are $148^{\circ}5$: $40'' \pm (1835.9)$ H. The O.Arg. places give $155^{\circ}9$: 48'87 ($1850 \pm$).

Marked "elongated" in the Harvard Zones. No other observations.

Probably unchanged.

1875.13	$197^{\circ}4$	59:27	2n	4
1875.3	198.4	59.44		A.G.

H 344. D.M.(33) 883. 8.4 . . . 11

R.A. =
$$4^{h} 28^{m} 26^{s}$$
 Decl. = $+33^{\circ} 41'$ 1900.744 102°0 11.720

- . 780 102.4 11.14

- 1900.76 102.2 11.17

The only observations are by H, $95^{\circ} \pm : 10'' \pm : 10$...14. There is a 14m star 82.2:17.5.

	Σ 565	
R.A. Deel.	$= \frac{4^{\text{h}} 29^{\text{m}} 42^{\text{s}}}{= +41^{\circ} 53^{\circ}} \left\{ -\frac{1}{2} \right\}$	
1900.780	174°3	1.63
.782	173.3	1.48
1900.78	173.8	$\frac{1.55}{1.55}$

Probably fixed. Measured in looking for the Weisse pair given below.

B 1043. 3 Camelopardali R.A. = $4^{h}30^{m}28^{s}$ Dect. = $+52^{\circ} 50'$ 1900.687 299°1 3.66 .780 295.83.73 .782292.63.741901.796 294.33.55 297.23.88 .815 295.23.83 .818 1901.28295.73.73

Weisse IV, 647. 9...9.1 R.A. = $4^{h}31^{m}42^{s}$ Decl. = $+42^{\circ}-6^{\circ}$ 1901.720 110°3 2'46 $\frac{.722}{1901.72}$ $\frac{113.8}{112.0}$ $\frac{2.44}{2.45}$

Weisse IV 643 is noted "duplex 3" in that catalogue. That star is not double, and the note doubtless belongs to the one given here, which is about 5's. No other measures.

No other measures; only estimates by 11.

No recent measures. No material change.

$$\begin{array}{ccc} \textbf{S 455.} & \tau \; Tauri \\ \text{R.A.} & = 4^{\text{h}} \, 35^{\text{m}} \; 2^{\text{s}} \\ \text{Decl.} & = + 22^{\text{s}} \; 44' \end{array}$$

$$\begin{array}{cccc} 1900.684 & 213.2 & 63.02 \\ .687 & 213.1 & 62.94 \\ \hline 1900.68 & 213.1 & 62.98 \end{array}$$

Without change. A gives $212^{\circ}4:62'85$ (1875.35) 2n. Large star supposed to be a close pair from an occultation observed by Hough (A.J. 474). Conditions too unfavorable at the time of my measures to detect a very close pair.

$$\Sigma 585. \quad D.M.(4^{\circ})733. \quad 8.6 \dots 10.5$$

$$R.A. = 4^{\circ} 36^{\circ} 24^{\circ} \left\{ \begin{array}{ccc} & & & & \\ & & \\ & & & \\$$

No recent measures, but unchanged. Place heretofore approximate; identified as above. The magnitude of A in D.M. is 9.2; Σ gives 8.3.

Identified as above. The only other measures are by Hall, 157%1:2%29 (1888.10) 3u.

$$\begin{array}{c} \text{D.M.}(21^{\circ})694, \quad 9.1 \dots 10.5 \\ \text{R.A.} = 4^{\circ} 38^{\circ} 51^{\circ} \\ \text{Decl.} = + 21^{\circ} - 3^{\circ} \end{array}$$

$$\begin{array}{c} 1901.758 & 114^{\circ}7 & 5'.44 \\ .799 & 113.8 & 5.37 \\ \hline 1901.78 & 114.2 & 5.40 \end{array}$$

This was measured in trying to find Σ 593 rej., which should be about $1^{m}f$ and $10^{\circ}n$. Σ gave Class IV and magnitudes 8.9...8.9. There is no such star in this place. The 8m star some distance sf has a very distant 11m star in 103°, but neither that nor the one measured is likely to be the Σ star.

H describes it as "extremely delicate and beautiful," and gives $310^{\circ} \pm : 2^{\circ} \pm$. It is in the field with D.M.(34°)914.

The only other measure is by μ , 1°7:80°97 (1783.79) 1n.

No other measures except S, $353^{\circ}7:41.49(1824.42)$ 3n. These stars are D.M.(-1°)744 and 743.

The only other measures are:

1835.9	139°3	$16" \pm$	1n	Н
1880.4	141.0	22°29	3n	β

H 689. L 9355. 7.5 . . . 11.3
R.A. =
$$4^{h}52^{m}8^{s}$$
 | Decl. = $-2^{\circ}24'$ | 1901.758 | 277°6 | 20′76 | .760 | 279.3 | 21.18 | 1901.76 | 278.4 | 20.97

The only other measures are 275°6; 20'67 (1880.63) $2n \beta$.

"Duplex" in Weisse. The only other measures are in Leipsic A.G., p. 207, 82°2; 4°59 (1893.79) 1n.

No other measures. H gives 55% for AB. The closer star is new.

OΣ 94 rej. O.Arg.N. 5495. 7.5 . . . 11 . . . 11.3
R.A. =
$$4^{h}58^{m}$$
 7^s }
Decl. = $+50^{\circ}$ 8' }
A and B
1900.744 304°3 17.90
.763 301.0 18.17
1900.75 304.1 18.03

	A and C	
1900.744	63°7	25/14
. 763	62.6	24.95
1900.75	$\frac{-}{63.1}$	$\frac{-}{25.04}$

There is a 14m star from A, 340°9: 26'1.

Σ 64	10. $(= H 356)$)
R.A. Decl.	$= 4 ^{h} 59 ^{m} 11 ^{s} $ = $+ 33 ^{\circ} 15 ^{\prime} $	
	A and B	
1900.725	96° 9	9752
. 763	96.3	9.44
1900.74	96.6	9.48
A ar	nd C (C = 11m))
1900.725	315°6	25#26
. 763	317.0	25.30
1900.74	316.3	$\frac{-}{25.28}$

C not in Σ ; first noted by H; not measured before. No recent measures of AB, but without change.

\$ 466 (=H VI, 105). 105 Tauri R.A. = $5^{\text{h}} \cdot 0^{\text{m}} \cdot 45^{\text{s}}$ \\ Decl. = $+21^{\circ} \cdot 33^{\circ}$ \\ 1900.725 \quad \frac{250.8}{250.3} \quad \frac{111.45}{111.29} \\ \frac{1900.74}{250.5} \quad \frac{250.5}{111.37}

Both stars have meridian positions. No measures except S. $\,$

1825.04	251?0	109799	2n S
$1825 \pm$	251.2	116.33	Weisse
$1875 \pm$	250.7	110.44	A.G. Berlin

The proper motion of A is very small, 0.025 in 276.8.

Edgcomb. 103
$$Tauvi$$
. 6 . . . 13
R.A. = 5^h 0 m 48s $\frac{1}{6}$ Decl. = $\frac{1}{24}$ 6' $\frac{1}{6}$ A and B
1900.725 117°0 13.702
. 763 152.3 13.57
1900.74 119.6 13.30
A and C' (= 11 V. 114)
1900.725 19870 35.50
. 763 197.4 35.50
1900.74 197.7 35.51

The faint star B was detected by Edgeomb in 1878. The only measures are $147^{\circ}9:12^{\circ}94$ (1878.98) $1n \beta$; and for the other, $197^{\circ}6:30^{\circ}05$ (1783.80) 1n by \mathbf{H} .

The only other measures are my own, $9^{\circ}4$: 52'50 (1879.95) 2n.

No measures since South, 162°6: 27'18 (1825.00) 2n. The A.G. positions give 164°4: 26'68.

07 51#

	02 517	
R.A. Decl.	$= 5^{h} 7^{m} 18^{s} $ $= + 1^{\circ} 49^{\circ} $	
	A and B	
1900.780	30819	0/19
AB	and $C/(C=12.2)$	
1900.780	137°3	6.488
1901.815	139.2	6.72
1901.30	138.2	$\frac{-}{6.80}$

The faint star discovered by Hall. Unchanged.

ΟΣ 102					
R.A.	=	5 h	$7 \mathrm{m}$	185	1
Deel.		+	0°	251	5

Certainly round, with all powers, with good conditions 1900.78. It has not been seen ofherwise in the last thirty years. It is probably not a double star.

Noted as "duplex" in Weisse. It is not a double star of any kind (1901.79). There is a 4 pair of 12m stars in the field.

The nearest star has not been seen before. C was added by me with the $18\frac{1}{2}$ -in. The measures now show that this star is not moving with A; the only measures are $197^{\circ}6:40'.47$ (1879.28) 2n β . The change is due to the proper motion of A, as is that in the old companion D. The large star has a proper motion of 0'.838 in 141°.9. A comparison of my measures with those of Σ in 1836 gives 0'.856 in 140°.6.

Near λ Aurigae. No measures since \mathbb{H} , 215°9: 35°25 (1783.49) 1n. There are two faint stars between.

$\mathbf{W}^{2}\mathbf{V}$.	269. 8.9	9.0
R.A. Deel.	$=5^{h}11^{m}43^{s}$ = $+36^{\circ}5'$	
	A and B	
1900.782	329°8	2:85
1901.722	329.6	2.81
$\overline{1901.25}$	${329.7}$	$\frac{-}{2.83}$
A a	nd C ($C = 13.5$)	
1900.782	$224^{\circ}0$	9:88
1901.722	225.3	10.36
1901.25	224.8	10.12

Noted in Weisse "duplex 3"." No other measures.

The only measures are mine of 1879, which show no change.

Aitken 53. S.D.(3°)1061. 8.3...11.2

R.A. =
$$5^{h}13^{m}6^{s}$$
Decl. = $-3^{s}12^{s}$

1900.742 48°3 5.13

.763 47.2 5.13

1901.873 46.9 4.96

1901.12 47.5 5.07

This star has a large proper motion, 0.690 in 77.5, and the companion is moving with it.

There is no error in reducing the last distance, but it seems unlikely that the faint star should have any such motion. The proper motion of A is very small, 0:017 in 339:4.

Madler.
 S.D.(7*)1050.

$$9.2...9.2$$

 R.A.
 = $5^{1s} 15^{m} 32^{s}$
 $5^{1s} 15^{m} 32^{s}$

 Decl.
 = $-7 - 0^{r}$
 $3^{s} 09$

 1901.760
 159.3
 $3^{s} 09$

 .796
 159.5
 3.13

 1901.78
 159.4
 3.11

The only other measures since Ma in 1843 are mine of 1877. There appears to be no change.

$$\begin{array}{ccc} \text{ \# V. 68.} & \text{L } 10165. & 7.7 \dots 8.5 \\ & \text{R.A.} & = 5^{\text{h}} 19^{\text{m}} & 0^{\text{s}} \\ & \text{Decl.} & = - & 2^{\text{s}} & 57^{\text{s}} \end{array} \\ 1901.854 & 281^{\circ}8 & 135^{\circ}61 \\ & .873 & 281.8 & 136.31 \\ \hline & 1901.86 & 281.8 & 135.96 \end{array}$$

Except an angle in Cin⁶, the only measures are:

South made the distance 87.6 in 1825. The only other measures since are Engelhardt in 1891. The change seems to correspond to the proper motion of A, 0.471 in 180%0.

No measures since 1, but without change. It was observed more particularly, to identify the star, and get the correct place.

H has no estimates of angle and distance; "large star very red," and magnitudes 9...15. It is 7.1m in D.M. Other distant companions; only reddish. This is in his place.

Webb. S	.D.(4°)1146 an	d 1149
R.A. Decl.	$= 5^{h} \frac{23^{m}}{4^{\circ}} \frac{5^{s}}{47}$ $= -\frac{4^{\circ}}{47} \frac{47^{\circ}}{6}$	
1901.796	228°2	46/94
.815	229.0	46.81
1901.80	$\frac{-}{228.6}$	$\frac{1}{46.87}$

G D (4003140 13145

A is variable, discovered by Webb in 1874. The only other measures are $227^{\circ}4:46^{\circ}70$ (1879.14) 2n β .

ų v.	101. $7 \dots 10$)
	= 5 h 23 m 37 s (
Deel.	= -721'	
1900.763	H6?6	47/90
1901.815	117.6	48.42
.838	117.2	48.47
1901.41	117.1	$\frac{-}{48.26}$

The only measures are by $\mbox{\tt H}$ in 1783, $105^{\circ}\pm:41'25$.

No measures at Harvard. Identified, and corrected place given here. Hd 71, which is given as $2^{m}f$ and 2's, is the same pair measured above.

Sh 61. D.M.(2°)986. 8.1 . . . 8.5
R.A. =
$$5^{h} 25^{m} 25^{s}$$
 | Decl. = $+ 2^{s} 44^{s}$ | 1901.815 | 352°.5 | 66°.90 | . 838 | 353.1 | 67.27 | 1901.82 | 352.8 | 67.08

The only other measures since 1822 are mine in 1879. There is no change. The A.G. positions give 352°4: 68'09 (1881).

Engelmann. S.D.(6°)1212 and 1211. 8.6 . . . 8.9 R.A. = $5^{h} 26^{m} 28^{s}$ { Decl. = $-6^{\circ} 29^{\circ}$ }

1901.838	251°3	44.87
.873	251.2	44.88
1901.85	251.2	44.87

The only measures are by Engelmann, $251^{\circ}4:44^{\circ}58 (1863.10) 5n$.

$$\begin{array}{ccc} \Sigma \ 735. & 8.4 \dots 8.7 \\ \text{R.A.} & = 5^{\text{h}} \ 27^{\text{m}} & 2^{\text{s}} \\ \text{Decl.} & = - & 6^{\circ} & 35^{\circ} \end{array}$$

$$\begin{array}{cccc} 1901.815 & 352^{\circ}2 & 41^{\circ}64 \\ 2.145 & 351.6 & 41.50 \\ \hline & & & & & \\ \hline 1901.98 & 351.9 & 41.57 \end{array}$$

The change is due to proper motion.

1831.15 355°2 30′90
$$2n$$
 Σ

These measures give for the proper motion of A, assuming the companion to be fixed, 0'151 in the direction of 162°4.

H V. 118. D.M. (-1°) 949. 7.1...10.7

has only the angle 256°9 in 1783, and there are no other measures since.

$$\begin{array}{ccc} & \textbf{8 490.} & 8.2 \dots 8.7 \\ & \text{R.A.} & = 5^{\text{h}} 29^{\text{m}} 38^{\text{s}} \\ & \text{Decl.} & = -5^{\circ} 30^{\circ} \end{array} \right\} \\ & \frac{1900.763}{.780} & \frac{214.6}{214.5} & \frac{78.05}{78.12} \\ & \frac{1900.77}{.780} & \frac{214.5}{.780} & \frac{78.12}{.780} \end{array}$$

The only measures are by South:

$$\begin{array}{ccc} \mathbf{W}^{1} \, \mathbf{V} \cdot \mathbf{735} & 8.5 \dots 9.8 \\ & & \text{R.A.} & = 5^{\text{h}} \, 30^{\text{m}} \, 39^{\text{s}} \\ & & \text{Decl.} & = -13^{\circ} \, 54^{\circ} \end{array} \right\} \\ 1901.838 & & 151^{\circ}5 & 44^{\circ}20 \\ 1902.145 & & 151.9 & 44.32 \\ \hline 1901.99 & & 151.7 & 44.26 \end{array}$$

Marked "duplex" in Weisse. It is given by Schjellerup in his list of doubles, and estimated 140°: 15′: 8.5...9.5. These two stars are S.D.(13°)1192 and 1193, the latter being 1°:5f and 0′2n of the other. There would seem to be no question of considerable change. The meridian positions of A do not indicate any certain proper motion. The movement is probably in the small star.

H 3277. D.M.(17) 972. 8.8...13

R.A. =
$$5^{\text{h}} 32^{\text{m}} 23^{\text{s}}$$
 \ Decl. = $+17^{\circ} 41^{\circ}$ \
1900.744 69° 1 23.20

\[\frac{.763}{1900.75} \frac{70.5}{69.8} \frac{22.95}{23.07} \]

I could not see the companion with the 6-in, in 1876. H gave $73^{\circ}5:20\pm(1831)$. It is near Σ 759.

$$\begin{array}{cccc} \mathbf{W}^2 \, \mathbf{V}. \, \mathbf{1005}. & 9 \dots 9 \\ & \text{R.A.} & = 5^{\text{h}} \, \mathbf{34^{\text{m}}} \, \mathbf{3^{\text{s}}} \, \big) \\ & \text{Decl.} & = + 40^{\circ} \, \mathbf{49^{\circ}} \, \big(\\ & & & \\ \hline \mathbf{1901.758} & \mathbf{18^{\circ}4} & \mathbf{20^{\circ}99} \\ & & & & \\ \hline \mathbf{17.5} & & \mathbf{20.97} \\ & & & \\ \hline \mathbf{1901.78} & & \mathbf{17.9} & & \mathbf{20.98} \\ \end{array}$$

"Duplex" in Weisse. No other measures. The components are $D.M.(40^{\circ})1383$ and 1384.

The motion is rectilinear. It was put on the list more particularly for identification. In looking for this, a similar pair 7/n and 4/f was measured:

1901.85 342°5 29°25 8.9 . . .
$$10A = 2n$$

This is D.M. $(19^{\circ})1027$.

29 Camelop.
$$\#$$
 IV. $125 = H$ 2278
R.A. $= 5^{h} 40^{m} 19^{s}$ $?$
Decl. $= +56 - 53^{r}$ $?$
1900.780 $= 130.8$ $= 24.84$
 $= -7.82$ $= 130.8$ $= 24.95$
 $= -7.82$ $= -7.$

found 137.6; 22.43 (1783.50) 1n. The proper motion is small, 0.027 in 244.0.

Measured in looking for H 5465, which should be about 1^mf .

Measured in looking for H 5465.

Noother measures except \$,88°9;59*46(1825.06)3n.

H 5465

$$\frac{\text{R.A.}}{\text{Decl.}} = \frac{5^{\text{h}} 42^{\text{m}} \cdot 5^{\text{s}}}{57'} \left\{ \frac{1}{57'} \right\}$$

The description in H is $45^{\circ} \pm : 12^{-} \pm : 7 \dots (1823)$; "An excessively minute companion suspected." I looked for it with the 6-in., 1873-74, and with the 18½-in., 1878, without success; and there is no companion visible in the 40-in. on two nights, 1900-1. The place in H is that of the 7.5m star, D.M.(11)945.

$$\begin{array}{c|ccccc} \Sigma \ 798. & 7 \dots 9.5 \\ \text{R.A.} & = 5^{\text{h}} 42^{\text{m}} 25^{\text{s}} \\ \text{Decl.} & = -8^{\text{c}} 25^{\text{s}} \end{cases}$$

$$1900.763 & 180^{\circ} 9 & 20.794 \\ .780 & 181.1 & 20.87 \\ \hline 1900.77 & 181.0 & 20.90 \\ \end{array}$$

No measures since \mathbb{J} , who suspected a 10^4 companion. There is nothing nearer than the Σ star. Unchanged.

$$\begin{array}{ccc} \textbf{56} \ Orionis. & 5 \dots 13.5 \\ \text{R.A.} & = 5^{\text{h}} 46^{\text{m}} 13^{\text{s}} \\ \text{Decl.} & = + 1^{\circ} 49^{\circ} \end{array}$$

$$\begin{array}{cccc} 1901.873 & 21275 & 43745 \\ .876 & 211.1 & 43.37 \\ \hline 1901.87 & 211.8 & 43.41 \end{array}$$

Taken by mistake for 59 Orionis. There are no other measures.

Anderson. L 11231. 7.8 . . . 10.4
R.A. =
$$5^{h} 49^{m} 18^{s} / 18^{s} /$$

Given in Hall's observations as discovered by Geo. Anderson with the 26-inch. The place is in error by about 2^m R.A. and 16 Decl. The only measures are:

Given in H as 8m, with the note: "seen double, but not verified by magnifying." The place is that of the 9.2m star given here. The 40-in, shows a 14m companion, 110?7; 1671 (1901.79).

V. 100. 59 Orionis. ... 9.7

R.A. =
$$5^{h}52^{m}10^{s}$$
 Decl. = $+149^{o}$ 1900.780 204°3 36.76

1901.876 204.4 36.73

1901.32 204.3 36.74

The proper motion is very small, 0.015 in 136°3. The only measures are:

1783.02	$205^{\circ} \pm$	37/25	1n	Ĥ
1878.18	205.8	36.57	1n	β

 \Box could not see the smaller star. Σ found 217°7: 4:56 (1832.69) 2n and 238°4: 16:50 for AB, which indicate some change.

Σ 861

R.A. =
$$6^{h}$$
 3^{m} 36^{s} $\left. \right.$
Decl. = $+30^{\circ}$ 42° $\left. \right.$
A and B

1900.780 17°3 64°92
1901.720 17.1 65.79
.722 16.7 65.60
1901.41 17.0 65.47

B and C

1900.780 138°4 1°65
1901.720 138.1 1.58
1901.25 138.2 1.61

No change in BC, but the distance of A is slowly decreasing. Seabroke thought the principal star was a 0.5 pair. It appears now perfectly round.

No measures in the last century.

The small star appears to be D.M.(19°)1252. The proper motion of A is small, 0.020 in 95°8.

H 2302. 71 Orionis

H estimated the positions. The only measures are by Engelhardt, 202°:4:31°:98(1886.21)2n. The change is due to the proper motion of A, 0°:203 in 213°:3.

H 2315. 11.7 . . . 11.7

Given by H, $3^{\circ}0:1^{\circ}\pm:13=13$ (1830), but the distance may be underestimated. It is S.D.(7')1384 given as 10m. In looking for this, a very close pair was found about $1^{m}p$ and $2^{\circ}n$. This is the 8m star, L 12112.

No measures since South in 1825.12; 162°9: 91′99 and 170°7: 187′91. This change is explained by the proper motion of A of 0′289 in 194°7. B is a red star.

OΣ 154, L 12831, 6.4 . . . 8.5
R.A. =
$$6^{\text{h}} 35^{\text{m}} 52^{\text{s}} \left\{ \right.$$

Decl. = $+40^{\circ} 45^{\circ} \left\{ \right.$
1900.782 123°6 26.15
1901.720 123.3 26.15
1901.25 123.4 26.11

Rectilinear motion.

No measures since South, 93.7:111.58 (1825.04) 2n. The proper motion is very small, 0.025 in 258.4, which should give an increasing distance.

The only measures are from the introduction to Mens. Mic., 191°5; 11°5 (1832.2) Σ .

H 740.
$$8.2...87...11.7$$

R.A. $= 6^{h} 45^{m} 38^{s}$ $\}$
Decl. $= + 0^{\circ} 36^{\prime}$ $\}$

A and B

 $1900.763 - 8.0 - 20.93$
 $1900.96 - 8.0 - 20.93$

B and C

 $1900.763 - 281^{\circ}4 - 8.72$
 $1900.763 - 282.1 - 8.42$
 $1900.96 - 281.7 - 8.57$

In Messier 50. H gave the angles 170°4 and 0°5 (1820).

OΣ 164 rej. L 13675. 7.3 . . . 11.2
R.A. =
$$6^{h}58^{m}20^{s}$$
 0
Decl. = $+25^{\circ}3^{\circ}$ 0
1900.782 50°6 13′80
1901.818 49.9 13.51
1901.30 50.2 13.65

At this time there were no published measures in the last fifty years. Madler's distance in 1843 is 9'09. Hussey's measures in 1899 agree with mine.

	Σ 1033	
R.A.	$= 7^{h} \cdot 5^{m} \cdot 19^{s}$ = $+ 52^{\circ} \cdot 45^{\circ}$	ł
Decl.	$= +52^{\circ}45'$	5
	A and B	
1901.799	281°8	1:64
. 835	274.4	1.82
1901.82	278.1	1.73
	A and C	
1901.799	271°9	80702
.835	271.4	79.29
1901.82	271.6	79.65
C is not in Σ . No	change in A	В.
1783.06 266°	3 67:77	1n H
1880.53 271.		
0Σ 16	38 rej L 139	0:37
	$=7^{\text{h}}.5^{\text{m}}.39^{\text{s}}$	
	$= + 21^{\circ} 33^{\circ}$	
	A and B	
1900.782	66°B	21720
1901.167	67.2	23.78
1900.97	66.7	23.99

A and C				
1900.782	114°3	51:97		
1901.167	114.3	51.70		
1900.97	114.3	51.83		

At this time no published measures since 1868. From his measures, compared with those of \(\pm \), Hussey finds for the proper motion of A, 0.017 in 126°6.

In Weisse "duplex 2"." No other measures. The magnitude in D.M. is 7.5.

No other measures.

The only other measures are:

These stars are D.M.(31°)1540, 1541, and 1543. There are faint stars between AB and AC.

Taken at first for H 1775. The principal star has a proper motion of 0.075 in 263°9.

No material change in the bright stars. The only prior measure of B is by Espin in 1892. C is distinctly greenish.

$$\mathbb{R}$$
 V, 63 = Sh 368. 63 Geminorum

R.A. = $7^{\text{h}} 20^{\text{m}} 37^{\text{s}}$
Decl. = $+21^{\circ} 42^{\circ}$

1900.782 323°2 42'77

1901.203 323.0 42.91

1900.99 323.1 42.84

The large star has a proper motion of 0.122 in 214°1 (Berlin A.G.). # made the distance 44.25 (1785), and Sh the angle 326°2 (1826). The only complete measures are:

44.61

Radcliffe

31.32

324°3

1863.2

1901.65

•	Minoris = 7 ^h 21 ^m 38 ^s { = + 9 ^s 10 ^s }	13.0
1901.203 .873	$240^{\circ}2$ 241.5	31 / 28 31 . 47
.878	243.6	31.22

241.8

The only measures are:

1836.19	$247^{\circ}3$	31.62	1n	Lamont
1878.06	243.2	32.60	1n	β

The large star has a proper motion of 0'093 in 286°9, and the change shown by the measures corresponds to this movement.

$$\begin{array}{ccc} \textbf{S 550.} & 6.8 \dots 7.1 \\ \text{R.A.} &= 7^{\text{h}} 22^{\text{m}} 15^{\text{s}} \\ \text{Decl.} &= -18^{\text{s}} 15^{\text{s}} \end{array} \Big\} \\ 1901.167 & 115^{\text{s}} 8 & 39754 \\ \underline{.206} & 116.1 & 39.55 \\ \underline{1901.18} & 115.9 & 39.54 \end{array}$$

The only other measures are by S, $116^{\circ}2:40^{\circ}04$ (1825.03) 2n. These stars are L 15459 and 15460, the positions giving $112^{\circ}9:38^{\circ}65$ (1800).

The only measures since Σ are by Ma and J. No motion.

Σ 1104. L 14619 $R.A. = 7^{h} 23^{m} 55^{s}$ Decl. = $-14^{\circ} 44^{\circ}$ A and B 1900.78033013 2.40 1901.873333.5 2.30 1901.132 2.35 331.9 A and C. C=11.7 1900.780187°6 207.13 1901,203 186.020.631900.99 20.53 186.8A and D. D = 11.6 508 1900.78037.188 1901,2035.7 38,291900.99 5.7 38,08

The distant stars not in Σ . A has a proper motion of 0.312 in 216.1. The change in C and D from the measures of Engelmann in 1882 is due to this motion of Λ .

H gives $36.3:8.4 \pm (1837.10)$, and calls the companion "remarkable brick red." It is decidedly reddish. This pair is catalogued as new by See $(= \lambda 81)$.

Without change. The companion is S.D.(12) 2017. (See next pair.)

In the field with Σ 1115; the wide stars noted by Dembowski. The large telescope shows a nearer component. The only measures of AC are:

Nothing else since South:

 $1825.00 \quad 227°7 \quad 91'37 \quad 2n \quad S$

No other measures. Distances estimated 15" and 18" by H. A has a proper motion of 0.163 in 181.9.

H 2405. 24 Lyncis R.A. = $7^{\text{h}} 32^{\text{m}} 51^{\text{s}}$ | Decl. = $+58^{\circ} 59^{\circ}$ | 1901.799 319°2 54.50 .854 319.8 54.86 1901.82 319.5 54.68

No other measures. H, $319^{\circ}4:60^{\circ}\pm$. The proper motion is small, 0.077 in $217^{\circ}7$.

$$Procyon$$
R.A. = $7^{\text{h}} 33^{\text{m}} - 1^{\text{s}}$ \(\rm \)
Decl. = $+ - 5^{\circ} - 33^{\circ}$ \(\rm \)
A and C
 $1897.884 - 341^{\circ}2 - 57'40$

S 560.
 6.5 . . . 8.6

 R.A. =
$$7^h 41^m$$
 0° \ Decl. = $+29^h$ 4' \

 1901.720
 358°7
 89'50

 .818
 358.9
 89.68

 1901.77
 358.8
 89.59

Without change. The only measures since S are: $1873.24 - 358^{\circ}7 - 89^{\circ}90 - 4u - 0\Sigma$

says, "near 9 Argus; place very doubtful," and gives the place of 9 Argus. His estimate of the distance is 8" (1781). This star has a proper motion of 0.101 in 133.8.

OΣ 183 rej. 7.5 . . . 12

R.A. =
$$7^{h}47^{m}8^{s}$$

Decl. = $+16^{\circ}21^{\circ}$

1901.815 20°4 15′87

.818 20.1 15.71

1901.81 20.2 15.79

Probably unchanged ; $19^{\circ}8:16'19$ (1878.12) $3n\beta$

Measured in looking for H 111.28.

$$\begin{array}{ccc} \text{D.M.}(50^{\circ})1495, & 8.9 \dots 8.9 \\ \text{R.A.} &= 7^{\text{h}}49^{\text{m}}22^{\circ} \langle \\ \text{Decl.} &= +50^{\circ} 35^{\circ} \rangle \end{array}$$

$$\begin{array}{cccc} 1901.742 & 103^{\circ}6 & 3^{\circ}24 \\ \hline .799 & 104.8 & 3.17 \\ \hline 1901.77 & 104.2 & 3.20 \end{array}$$

"Duplex" in Harvard A.G. The only measures are by Espin, $285^{\circ}2:3^{\circ}14$ (1900.12) 2n.

$$\begin{array}{c} \text{D.M.}(-1^\circ)1949, \quad 9.5 \dots 9.5 \\ \text{R.A.} = 7^{\text{h}} 59^{\text{m}} 47^{\text{s}} \\ \text{Decl.} = -1^{\text{h}} 25^{\text{o}} \end{array} \right\}$$

$$\begin{array}{c} 1902.145 & 178^\circ 6 & 6^\circ 62 \\ \underline{.222} & 178.9 & 6.89 \\ \hline 1902.18 & 178.7 & 6.75 \end{array}$$

Described as "duplex or nebulous" in Nico, A.G. No nebulous appearance with the 40-inch.

W 2 VII. 1609

R.A. =
$$8^{h} 0^{m} 7^{s}$$

Decl. = $+31^{\circ} 54^{\circ}$

Noted "duplex?" in Weisse. It is not double. There are two distant companions, but too remote to be of any interest (1901.72).

H 3308. D.M.(35°)1767.
$$7 \dots 10.8$$

R.A. = $8^{h} 2^{m} 21^{s}$
Decl. = $+35^{-}49^{\circ}$
1901.722 263.3 45.81
.742 263.2 45.65
.758 263.4 45.75
 $\frac{1}{1901.74}$ 263.3 $\frac{1}{45.74}$

Only H, $234^{\circ}6:40^{\circ}\pm(1831)$. The principal star has a proper motion of 0.328 in $138^{\circ}1$. In my first measure A was thought to be a close pair, but not verified.

H 2430. D.M.(53°)122. 8.9 . . . 12 . . . 12.5

R.A. =
$$8^h 3^m 49^s$$
 \
Decl. = $+53^* 43^*$ \

A and B

1901.742 311°2 20.44

.799 309.4 20.37

1901.77 310.3 20.40

B and C

1901.742 181°0 8720

.799 180.2 8.55

1901.77 182.1 8.37

H gives $311^{\circ}5$; $15^{\circ}\pm$ and $177^{\circ}\pm$; $3^{\circ}\pm$ and mags. 8, 13, and 14. No other measures. The magnitude in D.M. is 9.2.

$O\Sigma$ 190 rej.

	A and C	
1901.742	280°4	77:60
.854	280.5	77.70
1901.80	280.4	77.65

$$\begin{array}{c} \begin{array}{c} \text{ \ensuremath{\mbox{\mbox{ψ}}}\mbox{ V. 109.}} & 6 \dots 10.5 \\ & \text{R.A.} & = 8^{\text{h}} 19^{\text{m}} 27^{\text{s}} \\ & \text{Decl.} = + 7 & 57^{\text{c}} \end{array} \right\} \\ \begin{array}{c} \text{Decl.} = + 7 & 57^{\text{c}} \end{array} \right\} \\ \begin{array}{c} 1901.203 & 342^{\text{s}}6 & 31^{\text{c}}22 \\ 1902.142 & 342.1 & 31.70 \\ & .145 & 342.9 & 31.32 \\ \hline & .1901.83 & 342.5 & 31.41 \end{array}$$
 The only earlier measures are:
$$\begin{array}{c} 1783.14 & 325^{\text{c}}0 & 35^{\text{c}}40 & 1n & \text{H} \\ 1880.61 & 343.0 & 31.86 & 2n & \beta \end{array}$$

The large star does not appear to have any sensible proper motion. Probably without change.

Discovered by Alvan G. Clark with the McCormick 26-inch. Apparently without change.

1878.07 $144^{\circ}9$ $12^{\circ}40$ 3n β

H gives $99^{\circ}2:35^{\circ}\pm:6...11$ (1836). His R.A. is $1^{\rm m}$ in error.

S gives $323^{\circ}2:69^{\circ}36$ (1825, 22) 3n. These stars are L 17636 and 17638.

Schjellerup 11. 9.1 . . . 9.2

R.A. =
$$9^{\text{h}} 1^{\text{m}} 36^{\text{s}}$$
 \\
Decl. = $+ 0^{\circ} 16'$ \\
1901.203 \quad 259\cdot 2

 1901.203
 259°2
 6'46

 1902.222
 261.3
 6.53

 1901.72
 260.2
 6.50

First noted by Schjellerup, and given with estimated position. The principal star is D.M.(0°)2462. There is no evidence of motion. The only other measures are:

1874.26 260°9 6'21 2n 4

H VI. 47. 3 Leonis, 6...10.5

R.A. =
$$9^{h} 22^{m} 6^{s}$$

Decl. = $+ 8^{\circ} 43^{\circ}$

1901.167	80°2	24'90
.299	79.3	24.84
1901.23	79.7	24.87

No measures by **H**. The later positions do not show any material change. The only other measures are:

 1852.19
 81°6
 25'71
 2n Lassell

 1879.48
 79.2
 25.14
 3n β

τ Hydrae. Η V1. 71 = Sh 106 = H 1167

R.A. =
$$9^{h} 23^{m} 3^{s}$$

Deel. = $-2^{\circ} 15'$

1901.206	$3^{\circ}7$	65!29
. 299	3.3	65.31
1901.25	3.5	65.30

The A.G. proper motion of A is 0.118 in 91°9, and B (L 18661) 0.180 in 90°. As they are moving at nearly the same rate, there is little change.

This pair was subsequently observed and catalogued by Sir John Herschel as \mathbf{H} 1167, but given with an error of 1° in the declination. There is no doubt of its identity with τ Hydrae.

1800	$1^{\circ}4$	66'12		Lalande
1821.23	3.2	66.68	1n	Sh
1887.3	3.0	65.32		A.G.

S 604. L 18884, 7.1 . . . 8.7

R.A. =
$$9^{h} 29^{m} 59^{s}$$

Decl. = $-19^{\circ} 2'$

1901.206	90°5	51:44
1902.222	90.5	51.20
1901 71	90.5	51.35

The only other measures are:

 $1825.17 \quad 90°5 \quad 51'84 \quad 2n \quad S$

R.A. =
$$10^{h} 35^{m} 53^{s}$$

Decl. = $-14^{\circ} 5^{\circ}$

1902.145	193°9	59:60
.219	193.3	59.55
1902 18	193 B	59.57

The only other measure is:

R.A. =
$$10^{h} 44^{m} 17^{s}$$

Decl. = $-8^{\circ} 16'$

		,
1901.299	303°9	27:04
.337	302.2	27.06
1901.32	303.0	27.05

The only other measures are $303^{\circ}8:26^{\circ}95$ (1878.18) 1n β . H called the small star 17–18m.

S 617. 6.6 . . . 8.5

R.A. =
$$10^{h} 47^{m} 19^{s}$$

Decl. = $-1 37'$

1901.167 .203	177°8 178.3	35.25 35.42
1901.18	${178.0}$	35,33

The proper motion in the A.G. is 0.130 in 230.1 for each star. The components are L 20956 and 20957.

1800	$179^{\circ}7$	34!11		Lalande
1824.22	177.8	35.22	2n	\mathbf{S}
1880.66	178.6	35.09	3n	Schiap

H 4410, O.Arg.S.11162. 7.5 . . . 13

R.A. =
$$11^{h} 2^{m} 19^{s}$$

Decl. = $-15^{\circ} 19'$

1901.206 .299	$222^{\circ}6$ 221.8	19/33 19.71	
1901 25	999-9	19.89	

Only H, 205°3:15" (1836.4). He calls it "difficult," so the apparent change in angle may not be real.

H 177. S.D.(2°)3297. 9.6 . . . 10.1

R.A. =
$$11^{h}$$
 3^{m} 21^{s}
Decl. = -2° 46

1901.206	128°1	4.193
.299	131.1	4.87
1901 25	129 6	4 90

H gives $110^{\circ} \pm : 2^{\circ}$, and says, "hardly divided with the sweeping power."

No other measures. Described as Class I in Σ .

W2 XI, 621.

R.A. =
$$11^{h} 33^{m} 17^{s}$$

Decl. = $+21^{\circ} 59^{\circ}$

This star (= D.M.(22)2387) is noted "duplex 3"" in Weisse. Examined on two nights in 1901, but not seen double or with any near companion. It is a curious fact that in the Berlin A.G. this star has the note, "Comp. 9.5 1" -2.7?" It is about 1^m p 93 Leonis. I examined the star in question in May, 1874, with the 6-in, without seeing it double.

H 2955

R.A. =
$$11^{h} 59^{m} 16^{s}$$

Decl. = $+39^{\circ} 20'$

The description in H is $315^{\circ} \pm : 15^{\circ} \pm : 8 \dots 18$ (1830); "extremely faint." Examined on two nights, and no companion visible.

Σ 1601

$$\begin{array}{c} \text{R.A.} &= 12^{\text{h}} \ 0^{\text{m}} \ 2^{\text{s}} \\ \text{Decl.} &= +39^{\circ} \ 30^{\circ} \end{array} \right\}$$

$$1901.203 \qquad 311^{\circ}6 \qquad 2^{\prime}45$$

$$.318 \qquad 311.7 \qquad 2.31$$

$$1901.26 \qquad 311.6 \qquad 2.38$$

Measured in looking for the preceding pair, H 2955.

H 203.
 W¹ X II. 91.

$$6.8...12.7$$

 R.A.
 = 12^{h} 8 m 6^{s} \ Decl.
 6^{s} \ 3^{s} \ 3^{s} \ 3^{s}

 1901.203
 351 79
 26762

 .206
 351.3
 25.77

 .318
 350.7
 26.18

 1901.21
 351.3
 26.19

The only other measures are:

 $1878.24 \quad 351\% \quad 30\% 20 \quad 1n \quad \beta$

The principal star has a proper motion of 0.184 in 319.5, which evidently does not belong to the small star.

Ho 52. 11 Comae.
$$5 ... 12.3$$

$$\begin{array}{c} \text{R.A.} = 12^{\text{h}} 14^{\text{m}} 39^{\text{s}} \\ \text{Decl.} = +18^{\circ} 27^{\circ} \end{array} \}$$

$$1901.203 \qquad 45^{\circ}4 \qquad 9'.15$$

$$.299 \qquad 41.6 \qquad 9.16$$

$$.356 \qquad 43.7 \qquad 9.13$$

$$1901.28 \qquad 43.6 \qquad 9.15$$

The large star has a proper motion of 0.145 in 308°3. Comparing these positions with those of Hough in 1892, it is very probable that the small star has the same movement.

Albany A.G. D.M.(2) 2550. 8.5 ... 8.8

R.A. =
$$12^{h}25^{m}$$
 5 $\frac{5}{4}$
Decl. = $\frac{1}{2}$ 46 $\frac{1}{4}$

1901.356 286 $\frac{2}{4}$ 1.34

 $\frac{1}{1901.36}$ 287.5 1.24
 $\frac{1}{1901.36}$ 1.32

Noted "duplex?" in the Albany Catalogue. This is a new pair; no other measures.

Pritchett.

R.A. =
$$12^{h}31^{m}$$
 0 s
Decl. = -7 0

A double star is given in this place in the Morrison Observations, $76^{\circ}8:5^{\circ}89$ (1880.36) 1n; magnitudes not given. I carefully examined the place and vicinity without finding any pair of this description. It should be a short distance p the 5m star, 26 Virginis.

The only other measures are $10^{\circ}0:43^{\circ}17$ (1878.15) 1n β . H gave the magnitudes 6 and 18. His R.A. is about 2_2^{lm} too small. The proper motion is 0.115 in $287^{\circ}7$.

The principal star has a proper motion of 0.499 in 263.1. The only other measures are:

1879.30 142°3 152°03 2n 6

The computed place of the companion for 1901, from the first measures and the proper motion, is 139°9:158°00.

H 2645. 53 Virginis. B=11.8 R.A. = $13^{\text{h}} \cdot 5^{\text{m}} \cdot 40^{\circ}$ Decl. = $-15^{\circ} \cdot 33^{\circ}$ 1901.299 7°3 77″59 .318 6.9 76.52 .356 7.8 77.16 1901.32 7.3 77.09

No other measures. II estimates $30^{\circ}\pm:50^{\circ}\pm$ (1830). The large star has a proper motion of 0°289 in 164°8.

$O\Sigma$ 261

R.A. =
$$13^{h} \cdot 6^{m} \cdot 24^{s} \cdot \left\{ \text{Decl.} = +32^{h} \cdot 31^{r} \cdot \right\}$$

1889.288 $344^{\circ}9$ 1745

Sh 162.
$$7.2...7.7$$

R.A. = $13^h 8^m 39^s$

Decl. = $-10^\circ 43^\circ$

1902.145 50°8 71′14

219 50.5 71.30

7102.18 50.6 71.22

The principal star has a proper motion of 0.388 in 219.4. The components are respectively L 24582 and 24584.

1823.34 61°7 44'85 1
$$n$$
 Sh
1881.37 52.5 64.60 3 n β

The companion is S.D.(12)3801. This pair has been entirely neglected by observers since \mathbf{H} , and the only measures are:

1783.18 306°9 21′82 1
$$n$$
 \cup{H}
 Σ 1739 rej . D.M.(31°)2478. 9.2 . . . 10

R.A. = $13^h 16^m 57^s$ /
Decl. = $+31^s 9$ /

1902.145 132°7 12′93

.219 131.7 12.63

 1902.18 132.2 12.78

No other measures.

The faint star not previously seen. The only complete measures of AC are:

4000 04	44004	m.0.4.3.0		_
1879.31	110°1	78/29	-2n	В

Σ 1757

R.A. =
$$13^{h} 28^{m} 9^{s}$$
 | Decl. = $+ 0^{\circ} 18^{\circ}$ | 1901.203 | $76^{\circ}7$ | 2.441 | .263 | 78.8 | 2.59 | .280 | 78.9 | 2.35 | 78.1 | 7

Although two orbits have been computed of this pair, the motion seems to be purely rectilinear, the change being due to the difference of the two proper motions. That of the principal star is 0°270 in 277°9. (See *Popular Astronomy*, IV, 172.)

H 2659

R.A. =
$$13^{h} 28^{m} 11^{s}$$

Decl. = $+40^{\circ} 33'$

The description in H is $315 \pm :10'': 8-9...18$; "requires verifying." I could not see this companion

with the 18½-in. in 1878, nor with the 40-in., 1901.20. The nearest star is 13m, 202°3: 38′7. It is probable that H was mistaken. His place is that of D.M.(40°) 2666, given as 7.4m.

β 611

	$= 13^{h} 31^{m} 15^{s} = -14^{s} 7'$	
1901.299	260°5	4:56
.356	260.1	4.79
1901.33	$\frac{-}{260.3}$	4.67

Measured in looking for the Egbert pair.

H 2666. S.D.(14)3763

H gives $176^{\circ}7:8''\pm:9...15$ (1830).

Egbert

R.A. =
$$13^{h} 34^{m}$$
:
Decl. = $-14^{\circ} 26'$:

Measured once at Cincinnati, 349°3: 11′70:9... 10 (1879.30). There is no such pair in or near this place. About $2^m f$ there is a small pair, 0°5: 15′43: 8.5... 13.5 (1901.35) 1n. This star is S.D.(14°)3783. The descriptions do not correspond. β 611 is in the same vicinity.

$\Sigma 1774 \ rej. \ 7 \dots 10.5$

$$\begin{array}{ccc} \text{R.A.} &= 13^{\text{h}} \, 35^{\text{m}} \, 39^{\text{s}} \\ \text{Decl.} &= +51^{\circ} & 7^{\prime} \end{array} \}$$

$$\begin{array}{cccc} 1901.337 & 133^{\circ} 7 & 17.87 \\ & .356 & 134.1 & 17.83 \\ \hline & & & & & & \\ \hline 1901.31 & & & & & \\ \hline \end{array}$$

The principal star is given in Harvard A.G. a proper motion of 0.172 in 305.1. The only prior measures are:

The distance now should be 3.7 more, if the proper motion is correct and the small star is lixed.

Recently measured by Espin. Nothing else since H.

Σ 1782.

No recent measures, but unchanged.

Howe. D.M.
$$(6^{\circ})2824$$
. 9 . . . 9.1 . . . 11

R.A. = $13^{\circ}57^{\circ}22^{\circ}$ \
Decl. = + 6° 22' \
A and B

1901.203 65°6 0.93
263 64.9 0.92

1901.23 65.2 0.92

AB and C

1901.203 189°3 14.33
263 188.7 14.20
1901.23 189.0 14.26

No recent measures. Probably unchanged. Identified as above.

Σ 1801

$$\begin{array}{ccc}
R.A. &= 13^{h} 59^{m} 27^{s} \\
Decl. &= + 6^{\circ} 32^{\prime}
\end{array}$$

$$\begin{array}{cccc}
1901.203 & 67^{\circ}5 & 19'51 \\
.263 & 68.4 & 19.72 \\
\hline
1901.23 & 67.9 & 19.61
\end{array}$$

Howe. S.D.(12°)3958. 8.2 . . . 8.7
R.A. =
$$13^{h} 59^{m} 30^{s}$$

Deel. = $-12^{s} 30^{s}$

1901.203	7:5	13:46
.225	7.6	13.34
.299	7.6	13.31
${1901.24}$	$\frac{-}{7.6}$	13.38

The original place is only approximate. The R.A. is about 2^m in error. The only other measures are in 1879. Apparently fixed.

The companion is preceding the other. The only measures are:

The proper motion of the principal star is very small, 0.06 in 323°.

Σ 1807			
R.A. : Decl. :	$= 14^{h} 5^{m} 6^{s} = -2^{s} 46^{s}$	}	
1901.203	28°8	6.488	
.299	26.0	6.88	
1901.25	$\frac{1}{27.4}$	$\frac{-}{6.88}$	

H gives $340^{\circ} \pm : 2^{\circ} \pm : 16...16.17$ (1828), and says, "The most minute double star I have hitherto seen." It is a little s of the 9.4m star, D.M.(8°)2834. As in nearly all cases of this kind, H greatly underestimated the distance.

Howe (Cin.⁵) measured a pair in this place, $193^{\circ}7$: 5.42:8.5...10.5 (1879.35) 1n. Unless there is a large error in the measure or the place, there would seem to be considerable relative motion. There is no other pair in the vicinity.

Discovered by Espin. No other measures of AB. The A.G. positions give for AC 190°1:41.75 (1875.7).

The angle seems to be increasing ; 266°4(1830)H ; 276°1(1879) β ; 277°0(1891)Ho. The principal star is L 26283.

The R.A. in H is 4^m too small, and the Decl. about 1° too small. He called the components red and blue. No other measures.

No early measures. $\beta 268^{\circ}1:25^{\circ}16 (1879.30) 3n$.

$$\begin{array}{ccc} \text{H 2728.} & \rho \; \textit{Bootis.} & 4 \ldots 12.5 \\ & \text{R.A.} &= 14^{h} \cdot 26^{m} \cdot 42^{s} \\ & \text{Decl.} &= +30 \cdot 54^{s} \end{array} \right\} \\ 1902.145 & 335.9 & 50.714 \\ & .219 & 335.8 & 49.98 \\ \hline & .219 & 335.8 & 50.06 \end{array}$$

Meridian positions give for the proper motion 0°151 in 316°9. The earliest complete measures are:

1879.87 334°0 53°25 $2n - \beta$

In Harvard Zones "appeared elongated." I could see no sign of duplicity (1901.20). If double, it must be very close.

Sh 186. a Librae

R.A. =
$$14^{5}44^{m}12^{s}$$
Deel. = $-15^{-}32^{s}$

1901.280 314.2 231.08

.299 314.2 230.97

No recent measures. The smaller star is $8 \, Librae$. Anwers gives 0.168 in 237.6 for the p.m. of A, and 0.153 in 241.9 for the other.

1755	31479	231.18	Bradley
1823	314.5	230.85	Sh
1880	314 4	230.70	Gr. 10-year

H gives $20 \pm : 15^{\circ} \pm : 6 \dots 20$ (1820). There is no bright star in his place. The one measured has the same R.A., but is about 20 s, and is probably the star in question.

No recent measures, and only Ma and \exists since Σ . Put on the list to identify and get correct place. Error in *Mens. Microm*. Without change.

$$\begin{array}{c|cccc} \mathbf{O}\mathbf{\Sigma} \text{ (App.) } \mathbf{140.} & 8 \dots 8 \\ & \text{R.A.} &= 15^{\text{h}} \, 26^{\text{m}} \, 38^{\text{s}} \\ & \text{Decl.} &= + 8^{\circ} \, 59^{\circ} \end{array} \right\} \\ \mathbf{1901.471} & \mathbf{179^{\circ}7} & \mathbf{111.96} \\ & \underline{.512} & \mathbf{179.8} & \mathbf{112.32} \\ & \underline{---} & --- \\ \mathbf{1901.49} & \mathbf{179.7} & \mathbf{112.14} \end{array}$$

The only other measures are by \pm , 179°9:111'85 (1874.97) 2*n*. The components are L 28309 and 28310.

$$\begin{array}{c|cccc} \gamma \ Librae. & 4.5 \dots 11.7 \\ R.A. & = 15^{h} 28^{m} 48^{s} \\ Decl. & = -14^{\circ} 23^{\circ} \end{array} \}$$

$$\begin{array}{c|ccccc} 1901.471 & 152^{\circ} 5 & 42.04 \\ 1902.219 & 152.9 & 41.81 \\ \hline 1901.84 & 152.7 & 41.92 \end{array}$$

Companion first noted by Goldschmidt (Comp. Rend. LVI, 845). The only previous measure is: $1878.32 151^{\circ}8 41.31 1n \beta$

The change is due to proper motion. I do not find this is given from meridian positions. From all the measures Hussey gets 0'149 in 156°5 for the movement of A.

W² **XV**. **752** = D.M.(23)2838
R.A. =
$$15^{h} 33^{m} 10^{s} \frac{1}{4}$$

Decl. = $+23 - 4^{s} \frac{1}{4}$

Noted in Weisse "duplex?" A 7.4m star, and certainly not double (1901.28).

Noted as double, 160": 2", in the Albany A.G. Not in any double-star catalogue, and no other measures.

Discovered by Pritchett, who found $45^{\circ}1:3'94$ (1881.52) 1n. No other measures,

Noted as double by Professor Skinner at the Naval Observatory. No other measures.

H estimated 215 : 18^n : $6-7 \dots 20$. The only other measures are $229^38 : 35'12 \ (1890.36) \ 1n \ \beta$.

In Weisse "duplex 12"." No other measures.

	Σ 2017	
R.A. : Decl. :	$= 16^{h} 6^{m} 37^{s} $ $= + 14^{\circ} 52' $	
1900.455	252°9	26#64
.458	252.8	-26.55
1900.45	$\frac{-}{252.8}$	$\frac{-}{26.60}$

Perhaps a small change in distance. \$\sigma\$ found 25'03 (1831.42), and \$\preceq\$ 25'95 (1867.65).

No other measures. Identified as above.

$$\begin{array}{cccc} \mathbf{\Sigma} \ \mathbf{2019} \ rej. & \mathrm{S.D.} (10^{\circ}) 4276. & 8 \dots 9.2 \\ & \mathrm{R.A.} &= 16^{\mathrm{h}} \ 7^{\mathrm{m}} 42^{\mathrm{s}} \ \ell \\ & \mathrm{Decl.} &= -10 \quad 7^{\prime} \ \ell \\ \hline 1900.455 & 152^{\circ} 7 & 22^{\prime} 48 \\ & \underline{458} & \underline{153.0} & \underline{22.25} \\ & \underline{1900.45} & 152.8 & 22.36 \end{array}$$

The only other measures are in the Washington Observations of 1862, 109°2:19°11 (1862.7). This may be another star.

$$\Sigma$$
 2031 rej. D.M.(-1°)3761. 7.6 . . . 9.7
R.A. = 16^h 10^m 9^s / Decl. = -1 21° / 1901.359 230°2 20.85
.395 229.5 20.85
.416 230.0 20.66
1901.39 229.9 20.77

No other measures; Class IV in Σ . The principal star is L 29649, and has a proper motion of 0.105 in 270 $^{\circ}$.

~ Corongo

Joronae	
$^{16^{\mathrm{h}} 10^{\mathrm{m}} 12^{\mathrm{s}}}_{+34^{\mathrm{o}} 10^{\prime}} \big\}$	
B (= $\Sigma 2032$)	
213°6	4:34
212.8	4.30
213.2	$\frac{1}{4.32}$
$C (= 0\Sigma 538)$	
202°7	5.58
	$ \begin{array}{c} 16^{\text{h}} 10^{\text{m}} 12^{\text{s}} \\ + 34^{\text{s}} 10^{\text{s}} \end{array} \\ B (= \Sigma 2032) \\ 213^{\text{s}} 6 \\ 212.8 \\ \hline 213.2 \end{array} \\ C (= 0\Sigma 538) $

The distance of the 13.5m star is diminishing from the proper motion of AB.

$$\Sigma 3103 \text{ rej. S.D.}(3^{\circ})3921. \quad 8.8 \dots 9.7$$

$$R.A. = 16^{h} 14^{m} 24^{s} / Decl. = -3^{s} 40^{s} / 1901.395 \qquad 305^{\circ}3 \qquad 24^{s} 18$$

$$1901.395 \qquad 304.9 \qquad 24.56$$

$$1901.40 \qquad 305.1 \qquad 24.37$$

No other measures.

R.A. Decl	$ = \frac{16^{h} 15^{m} 42^{s}}{-22^{l} 50^{s}} $	
1901.359	320°4	1:19
.433	323.5	1.21
1901.40	321.9	$\frac{-}{1.20}$

Observed in trying to find H 4851.

Measured in connection with Σ 3103 rej. The meridian positions in Lamont give $22^{\circ}7:92^{\circ}44$ (1855.5).

H 4851

R.A. =
$$16^{h} 17^{m} 7^{s}$$

Decl. = $-22^{\circ} 45^{\circ}$

The description in H is $96^{\circ}9:15^{\circ}\pm:8...11$ (1837.2). I looked in vain for this object in 1891, and again in 1901. There is no such star in or near this place. I see now that there is an error of $1^{\rm h}$ R.A. in this place, and that the star is identical with H 4948, which is $17^{\rm h}$ $17^{\rm m}$ $10^{\rm s}$; $-22^{\rm m}$ 42°. The descriptions correspond perfectly. Measures of that will be found here in the proper place.

$$\begin{array}{ccc} \mathbf{\Sigma} \ \mathbf{2038} \ rej. & \text{D.M.}(2)3091. & 8.6 \dots 10.4 \\ & \text{R.A.} & = 16^{\text{h}} 17^{\text{m}} 29^{\text{s}} \\ & \text{Dect.} & = + 2^{\text{s}} 30^{\text{s}} \end{array} \Big\} \\ & \frac{1901.455}{1901.46} & \frac{213.7}{214.2} & \frac{16.49}{16.45} \\ \end{array}$$

No other measures.

No other measures.

β 815. D.M	1.(43°)2605. 8.3	3 10.5
R.A. Dec	$1. = 16^{h} 23^{m} 16^{s}$ $1. = +43^{\circ} 11$	}
	A and B	
1901.375	340°8	9:19
.395	340.9	9.09
.397	310.2	9.22
.414	340.2	9.13
.416	340.7	9.28
1901.40	340.56	9.18
Λε	and C (C = 11.5)	
1901.375	16074	67:71
.395	160.4	67.79
.397	160.6	67.95
.414	t61.5	67.55
.416	160.6	67.80
1901.40	$\overline{160.7}$	67.76
	B and C	
1901.375	160°3	76:95
.395	160.3	77.40
.397	160.7	77.15
.414	160.9	77.09
.416	160.5	77.28
1901.40	$\overline{160.5}$	77.16

It will be remembered that B has a large proper motion for so small a star. I have measured the faint star C, which is exactly in line with AB, for the purpose of determining whether any of the change in AB is due to the movement of A. I have also compared the latter star with D.M.(43)2608, and find for the difference of Declination 22:52 (1901.41). This difference in the A.G. is 22:2, so that it is practically certain that A has no appreciable proper motion. My measures of AB in 1881, and those given here, give for the proper motion of B, 0:147 in 323:3.

 $\begin{array}{c|c} \text{Sh 233} \\ \text{R.A.} &= 16^{\text{h}} 25^{\text{m}} 43^{\text{s}} \\ \text{Dect.} &= + 8^{\text{s}} 33^{\text{s}} \end{array}$

Relatively fixed. 71°8: 58′86 (1858.48) 2n OZ. In 1874 I thought that one of these stars was a close double, but both were round in the last measure with fine seeing.

Noted as double in the Harvard Zones, and also in the Göttingen Catalogue. No other measures. In the field about 3's is a 10m star with a double companion.

H 4864. S.D.(6°)4457. 9.5 . . . 12.8

R.A. =
$$16^{h} 26^{m} 49^{s}$$
 }
Decl. = $-6^{\circ} 19'$ }

A and B

1900.455 91°4 10′07
.458 89.8 10.25
1901.433 87.7 10.39
1900.78 89.6 10.24

A and C (C = 14.5)

1900.455 134°8 13′55
.458 140.4 13.22
1900.45 137.6 13.38

Simply described in H as "triple Classes I and H." There is a 10m star, 234°3:73′2.

$$\Sigma 2062. \quad 8.4 \dots 10.5$$

$$R.A. = 16^{h} 28^{m} 42^{s}$$

$$Decl. = + 8^{\circ} 56^{\circ}$$

$$1900.458 \qquad 111^{\circ}5 \qquad 2'55$$

$$.551 \qquad 113.6 \qquad 2.50$$

$$1900.50 \qquad 112.5 \qquad 2.52$$

The only measures since 1857 are my own in 1880. There is no change.

Young. D.M.(58°)1646. 8.2 . . . 9.5

R.A. =
$$16^{h} 29^{m} 26^{s}$$
 Decl. = $+58^{\circ}$ 1'

1901.375 216°5 1'30

.433 214.9 1.48

1901.40 215.7 1.38

Discovered by Professor Young, $219^{\circ}5:1^{\circ}59$ (1883.76) 1n.

$$\Sigma$$
 2069 rej. L 30278. 6.8...10.4
R.A. = 16 h 31 m 55 s \ Decl. = + 34 s 4 s
1901.356 72 6 26.582
.375 71.8 26.56
.395 71.1 26.62
1901.37 71.8 26.67

No other measures.

$$\begin{array}{cccc} \mathbf{\Sigma} \ \mathbf{2081} \ rej. & \mathbf{L} \ 30416, & 7.8 \dots 10.5 \\ & \mathbf{R.A.} & = 16^{\,\mathrm{h}} \ 37^{\,\mathrm{m}} \ 4^{\,\mathrm{s}} \ \\ & \mathbf{Decl.} & = + 3^{\,\mathrm{s}} \ 41' \ \end{array}$$

$$\begin{array}{cccc} \mathbf{1901.375} & 321^{\,\mathrm{s}} \mathbf{9} & 21'31 \\ & .414 & 322.2 & 21.40 \\ \hline & 1901.39 & 322.0 & 21.35 \end{array}$$

A more distant companion of about same magnitude, 178:2:42:3. No other measures.

Principal star round. The only measures of the small star are 261°1 : 113°39 (1879.27) $1n~\beta$.

Skinner, S.D.(17°)4630. 8.4 . . . 8.5
R.A. =
$$16^{\text{h}} 39^{\text{m}} 20^{\text{s}}$$
 {
Decl. = -17° 8' }
 1901.455 86°7 3'46
 $.473$ 85.5 3.69
 1901.46 86.1 3.57

Discovered by Professor Skinner at the Naval Observatory with the meridian instrument, No other measures.

No other measures. H gives $135 \pm :18^{\circ} \pm :7$... 17; "large star red." To me it appeared yellow only.

No other measures.

Howe. S.D.(10°)4619. 8.7 . . . 12.7
R.A. =
$$16^{h}56^{m}41^{s}$$
 / Decl. = $-20^{\circ}13^{\circ}$ / 1900.455 180°9 6*15
1902.430 174.0 6.21
1901.44 177.4 6.18

The only prior measure is a single observation of the position-angle 182.6 (1879.55), with only approximate place. If 4911, which is about $2_2^{1m}p$ of this, was suspected by H to have a small companion. I have looked for it several times. It is certainly single. His place is that of O.Arg.S. 16213.

H 2804. 9.5 . . . 9.6

R.A. =
$$17^{h} \cdot 0^{m} \cdot 31^{s}$$
 \\
Decl. = $+39^{\circ} \cdot 9^{\circ}$ \\

1902.219 \quad 277.7 \quad 15.19 \\
\frac{.133}{1902.32} \quad \frac{277.7}{277.7} \quad \frac{15.14}{15.16}

Not in D.M. Previous measures discordant.

$1830 \pm$	$283^{\circ}8$	$20^{\circ} \pm$	1n	H
1880.48	280.4	17.25	2n	Bigourdan
1900.53	278.3	15.44	2n	Espin

$$\Sigma \ 2144 \ rej. \quad \text{S.D.(7)} \ 1419. \quad 7.6 \dots 10.2$$

$$\text{R.A.} = 17^{\text{h}} \ 10^{\text{m}} \ 53^{\text{s}} \ /$$

$$\text{Decl.} = -7^{\text{s}} \ 44^{\text{s}} \ /$$

$$1901.375 \qquad 182^{\text{s}} \qquad 25.65$$

$$.414 \qquad 182.4 \qquad 25.25$$

$$1901.39 \qquad 182.6 \qquad 25.45$$

The only other measure is a single observation by Mitchell, $4^{\circ}0:25^{\circ}73$ (1848.60). The angle should be reversed.

The previous measures of this pair are very discordant in distance, but there is probably no change since Σ , who found 23°2 : 7°47 (1830.15).

The change in B is due to the proper motion of A, 1:037 in 174°1. No other complete measures of C.

H 4948. S.D.(22)
$$1341$$
. 8.3 . . . 9.8
R.A. = $17^{h}17^{m}$ 9^s / Decl. = -22^{-11} 1901.433 | $106^{\circ}2$ | $12^{\circ}91$ | 455 | 105.2 | 13.37 | $.512$ | 104.8 | 13.13 | 1091.47 | 105.4 | 13.14

H 4851 has an error of 1^h in the R.A. and is identical with the pair measured.

OΣ 329 rej. (= S 688). L 31771
R.A. =
$$17^{\text{h}} 20^{\text{m}} 17^{\text{s}}$$
 Poel. = $+37^{\text{m}} 3^{\text{m}}$ 32.74
1900.458 12.7 32.74
1901.320 12.2 32.62
1900.89 12.1 32.68

Without change.

H 1299. L 31783. 7 . . . 12 . . . 12.5
R.A. =
$$17^{h} 21^{m} 12^{s}$$
 /
Decl. = $+26^{\circ} 59$ /
A and B
1901.375 21.0 50.53
.895 19.9 50.78
1901.38 20.4 50.65

	A and C	9
1901.375	57°5	52169
. 395	57.6	52.55
1901.38	$\frac{-}{57.5}$	$\frac{-}{52.62}$

H gives for the angles 20°7 and 60°5 (1828).

A and C are D.M. $(48^{\circ})2532$ and 2533. The only measures of AB are $98^{\circ}5:20'58$ (1900.53) 2n Espin.

Hd Zones

R.A. =
$$17^{h} 32^{m} 14^{s}$$

Decl. = $+ 0^{\circ} 56'$

Noted as "double" in Harvard Zones. The place is that of the 9.2m star, D.M.(0°)3739. It is not double.

Skinner. S.D.(15°)4651. 8.5 . . . 9.0

R.A. =
$$17^{\text{h}} 35^{\text{m}} 20^{\text{s}}$$
Decl. = $-15^{\circ} 40^{\circ}$

1901.512 275°8 4.33

.586 276.0 4.29

1901.55 275.9 4.31

Discovered by Skinner with the meridian circle of the Naval Observatory. It is also Hussey 184.

$$\begin{array}{c} \mathbf{\Sigma} \ \mathbf{2195} \ rej. \quad 9 \dots 9 \\ \text{R.A.} = 17^{\text{h}} \ 36^{\text{m}} \ 13^{\text{s}} \ \\ \text{Decl.} = +21 \quad 13^{\text{s}} \ \end{array}$$

$$\begin{array}{c} 1901.414 \quad 101^{\circ}3 \quad 21^{\circ}60 \\ \underline{.416} \quad 101.0 \quad 21.61 \\ \underline{1901.41} \quad \overline{101.1} \quad 21.60 \end{array}$$

No other measures. In the field 2' or 3' $p \Sigma 2196$.

No measures. H gives $330^{\circ} \pm : 12^{\circ} \pm (1831.3)$; probably error of 100. There is a 13m star $5^{\circ}4: 22^{\circ}9$, and 12.5m at $61^{\circ}4: 27^{\circ}2$.

	Σ 2230	
R.A	A. = $17^{h} 44^{m} 54^{s}$ el. = $+7 57'$	}
De	el. = $+ 7 57'$	\$
	A and B	
1900.458	108°8	37!52
.515	109.1	37.72
1900.48	108.9	37.62
	A and C	
1900.458	83°2	45.45
.515	84.3	45.50
1900.48	83.7	${45.47}$
	B and C	
1900.458	208°5	19/26
.515	211.0	19.05
1900.48	209.7	${19.15}$

The principal star has a small proper motion of about 0.017, which increases the distances of both companions.

H has $140^{\circ} \pm : 18'' \pm ;$ "a third, closer, suspected." Neither this telescope nor the 18^{1}_{2} -in. in 1878 showed any other companion.

OΣ (App) 160. 8.2 . . . 8.6
R.A. =
$$17^{h}47^{m}46^{s}$$
 {
Decl. = $+10^{s}59$ }
$$1900.458 190^{s}8 102/30$$

$$-\frac{476}{1900.46} \frac{191.0}{190.9} \frac{102.14}{102.17}$$

△ did not find this, and there are no other measures. The components are D.M.(10)3315 and 3314. The A.G. positions give 191°6: 100′87.

Holden. 1.
$$32716$$
. $6.7 \dots 12$

$$\begin{array}{ccc} \text{R.A.} &=& 17^{\text{h}} 48^{\text{m}} 13^{\text{s}} \\ \text{Decl.} &=& -11^{\text{h}} 37^{\text{s}} \end{array} \}$$

$$\begin{array}{cccc} 1900.551 & 154^{\circ}3 & 3'51 \\ .553 & 150.0 & 3.56 \\ \hline 1900.55 & 152.1 & 3.53 \end{array}$$

Discovered by Professor Holden at the Washburn Observatory. Unchanged.

The wide pair AC "duplex" in O.Arg. The faint star between discovered by F. Bird in 1869. The only other measures are mine in 1879.

Σ 2253

Distance slowly decreasing.

$O\Sigma (App)$ 161

The only other measures are by $4,77^{\circ}9:62^{\circ}70$ (1871.98) 3n.

W1 XVII, 1120

R.A. =
$$17^{h} 55^{m} 22^{s}$$
 Decl. = $-14^{\circ} 30^{\circ}$

"Duplex" in Weisse. This is S.D.(14")4860, 8.7m Not double, and no near companion.

No other measures since South, $317^{\circ}4:30^{\circ}92$ (1825.51) 2n. There are many stars in the field, and several nearer than B.

The only observations by H, 339 $\pm :4'' \pm :9 \dots 13$.

A C 15 99 Hereulis

M.U. 1	o, ov merenne	,
	$= 18^{h} 2^{m} 28^{s}$ = $+30^{\circ} 23^{\circ}$	
1898.269	317°5	1:04
.271	322.4	1.21
.463	320.8	1.19
1898.33	320.2	$\frac{1.15}{1.15}$

Perry.	$10.2 \dots 11.0$	
R.A. =	$= 18^{h} 3^{m} \pm $ = $+ 9 20^{\circ} \pm $	
Decl. =	$= + 9 \cdot 20^{\circ} \pm \sqrt{}$	
1900.551	313° 1	3/28
1902.433	313.1	3.37
1901.49	313.1	$\frac{-}{3,32}$

Not in D.M. It is about $1^m f$ D.M. $(9^\circ)3565$. The only other observation is 30500:200(1881.38) Perry.

Alvan G. Clark. 102 Hereulis. $5\frac{1}{2}$...12.9

R.A. Decl.	$= 18^{h} 3^{m} 38^{s} $ $= +20^{+} 48^{+} $	
1900.158	135°9	23166
.473	135.6	23.72
1901.455	136.5	23.28
1900.76	135.7	23.55

The only prior measures are mine, $136^{\circ}7:23'42$ (1878.45) 1n. This angle is erroneously printed $46^{\circ}7$. The proper motion of A is small, 0.015 in $212^{\circ}9$.

Without change. No late measures.

Close pair discovered by Hussey in 1900. No other measures of H 593 except Glasenapp, $300^{\circ}9:17.26$ (1890.54) 2n.

H 5030, L 33330, 6 . . . 10.8
R.A. =
$$18^{h} 4^{m} 24^{s}$$
 Decl. = $-23 44'$ 1
1901.263 287:3 41:65
.586 287.3 42.24
1901.42 287.3 41.94

The only other measure is:

$$1834.3 281^{\circ}0 30'' \pm 1n H$$

The principal star is S.D.(18°)4826. The only other observations by H, $281^{\circ}9:3^{\circ}\pm;~90^{\circ}0:8^{\circ}\pm$ (1830).

Σ 2291

	$= 18^{h} 5^{m} 53^{s} = +34^{\circ} 0$	
1900.473	339°3	27/01
1901.299	339.0	26.85
.320	339.4	26.53
1901.03	339.2	26.80

No recent measures. Distance increasing? $1830.73 \quad 339^{\circ}2 \quad 25/12 \quad 2n \quad \Sigma \\ 1868.02 \quad 339.2 \quad 25.90 \quad 4n \quad \Delta$

H 1821. S.D.(16°)4755. 9.2 . . . 9.6

R.A. =
$$18^{h}$$
 5 m 54° $\frac{1}{2}$
Decl. = -16° 20° $\frac{1}{2}$

1901.529 278°0 8′00

1902.433 278.0 7.62

1901.98 278.0 7.81

H has 273°6 : 4″ ± (1828).

A and S.D.(16°)4756

1901.529 13°6 53′07

1902.433 13.4 53.25

H. V. 93, D.M.(28°)2955 and 2956

13.5

53.16

$$\begin{array}{c} \text{R.A.} &= 18^{\text{h}} 8^{\text{m}} 17^{\text{s}} \\ \text{Decl.} &= +28^{\circ} 13^{\circ} \end{array}$$

$$\begin{array}{c} 1901.203 & 136^{\circ}4 & 54^{\circ}97 \\ .225 & 136.4 & 54.43 \\ \hline 1901.21 & 136.4 & 54.70 \end{array}$$

The only measures are:

1901.98

1783.65	$135^{\circ}7$	47:77	1n	H
1880.40	136.4	54.88	3n	β

The Weisse meridian positions give 132°9:54′10 (1825). Bigourdan has measured another pair, or the distance is erroneous.

No other measures. H estimated 20°: 15° (1820).

H 5494. B.A.C. 6213. 6 . . . 11.8
R.A. =
$$18^{h} 13^{m} 20^{s}$$
 $\frac{1}{12^{s}}$ Decl. = $\frac{1}{12^{s}}$ $\frac{1}{1$

Only the estimates of H, 65° ; 45° ; $5 \dots 15$ (1827.6).

O. Stone

R.A. =
$$18^{h} 16^{m}$$
: {
Decl. = $-18^{h} 55^{h}$ }

Given in Cin⁶ with this place, 84°6:6:72:8.5... 9.0 (1879.30). No such pair in or near this place. A plenty of faint pairs of one kind and another, but nothing answering this description (1901.452). The place is certainly erroneous.

Σ 2311

$$\begin{array}{ccc} \text{R.A.} &= 18^{\text{h}} \, 16^{\text{m}} \, 38^{\text{s}} \\ \text{Decl.} &= +11 & 23 \end{array} \Big\} \\ 1900.512 & 158^{\circ}8 & 5^{\circ}65 \\ \underline{.515} & 159.4 & 5.72 \\ \underline{.1900.51} & 159.0 & 5.68 \end{array}$$

The motion appears to be rectilinear.

These positions give for the proper motion of A 0.047 in $191^{\circ}2$.

H 5496. L 34034

R.A. =
$$18^{h} 20^{m} 40^{s}$$
 \\
Decl. = $-8 - 7$

Given in H as 6m star, "suspected double with 180." I could not see any companion with the 6-in. in 1876, nor with the 40-in., 1901.455.

No measures by #; given as Class 1. The following are all the measures; disfances discordant:

$$\begin{array}{cccc} \Sigma \ 2332 \ rej. & 9.2 \dots 11.2 \\ ^{\circ} & \text{R.A.} & = 18^{h} 24^{m} 42^{s} \\ & \text{Decl.} & = + 64^{-} 50^{-} \\ \end{array}$$

$$\begin{array}{ccccc} 1901.433 & 262^{\circ}5 & 10.71 \\ .436 & 263.7 & 11.89 \\ .452 & 262.3 & 10.93 \\ \hline .4901.44 & 262.8 & 11.18 \\ \end{array}$$

No other measures. Not in D.M., but near D.M. (61-)1267, the place of which is given here.

Schjellerup. D.M.(7)3741. 8.9...9.0

R.A. =
$$18^{h} 27^{m} 49^{s}$$
;

Decl. = $+7^{\circ} 21^{\circ}$ (

1901.509 197.7 46:02

.512 197.6 45.64

1901.51 197.6 45.83

From list of new pairs in A.N. 1485, the distance given 31°. No other measures. Both stars in D.M. There is a 13.5m star from A, 119; 145.

Σ 2340

R.A. Deel.	$= 18^{h} 28^{m} 30^{s} $ $= +31^{\circ} 30^{\circ} $	
1901.433	103°9	23/02
.436	103.3	23.20
.452	103.7	-23.06
1901.44	103.6	23.09

The change appears to be due to a small proper motion of one of the stars.

1830.43 101°6 21′51 3n Σ

Distance slowly decreasing from proper motion. Other recent measures by Hussey.

Σ 2345

R.A. =
$$18^{h}30^{m}23^{s}$$
 / Decl. = $+20^{-}59^{-}$ / 1901.436 | 203°8 | 8.53 | .452 | 204.0 | 8.53 | .452 | .203.9 | 8.55

Rectilinear motion. Σ found $185^{\circ}1:7^{\circ}38(1832.25)4n$.

Σ 2346

$$\begin{array}{cccc} \text{B.A.} &= 18^{\text{h}}31^{\text{m}}27^{\text{s}} \\ \text{Decl.} &= + & 7 & 26^{\text{s}} \end{array} \right\} \\ 1901.471 & 291^{\circ}8 & 21^{\circ}17 \\ \underline{.586} & 291.2 & 21.19 \\ \underline{1901.53} & 291.5 & 21.18 \end{array}$$

The motion is rectilinear, distance and angle increasing.

$$1829.64$$
 $282^{\circ}9$ $15^{\circ}41$ $4n$ Σ

These measures give for the proper motion of A 0:091 in 132°5.

The only measures of this are found in the introduction to *Mens. Microm.*, 258°7: 13′2 (1832.8). D.M.(58°)1824, which is 4′4s, is a similar pair with a little less distance.

O.Arg.S.18506. 8...84...10.3
R.A. =
$$18^{h} 32^{m} 28^{s} I$$

Noted "duplex" in O.Arg.S. and "triple" in Washington Transit Zones. The first measures from Washington Observations, 1862, do not agree with the present positions:

217.9

217.6

80.14

80.46

1902.449

1901.98

Near Vega. The only other measures are: 1783.81 - 303.9 - 22.33 - 1n - 4 $1880.42 - 303.6 - 29.80 - 2n - \beta$

$$\begin{array}{cccc} \mathbf{\Sigma} \ \mathbf{2350} \ rej. & \mathbf{L} \ 34569. & 6.7 \dots 11 \\ & \mathbf{R.A.} &= 18^{\mathrm{h}} \ 33^{\mathrm{m}} \ 30^{\mathrm{s}} \\ & \mathbf{Decl.} &= -7 \ 54^{\mathrm{r}} \end{array} \bigg\} \\ 1901.395 & 196^{\mathrm{s}} \ 4 & 22^{\mathrm{r}} 16 \\ & .452 & 196.1 & 22.18 \\ \hline & 1901.42 & 196.2 & 22.17 \end{array}$$

The only measures are:

$$\begin{array}{ccc} \Sigma \ 2365 \ rej. & 8.3 \dots 10.0 \\ \text{R.A.} & = 18^{\text{h}} \ 34^{\text{m}} \ 21^{\text{s}} \ \\ \text{Decl.} & = +63^{\circ} \ 36^{\circ} \ \end{array}$$

$$\begin{array}{ccc} 1901.433 & 26^{\circ} 1 & 19^{\circ} 58 \\ \underline{.436} & 24.5 & 19.84 \\ \hline 1901.43 & 25.3 & 19.70 \end{array}$$

No other measures. The principal star has a proper motion of 0°282 in 193°2 (Porter). The movement in A.G. is 0°306 in 189°3. This is D.M. (63°)1439 (= Groombridge 2630).

The only other observation is by H, $89^{\circ}0:8^{\circ}\pm;$ $300^{\circ}\pm:15^{\circ}\pm$ (1828). There is another 11m star, $295^{\circ}9:32^{\circ}6.$ Σ 2367 is $47^{\circ}f.$

Ho 437

R.A.	$=18^{\rm h}35^{\rm m}58^{\rm s}$	ı
Deel.	$= +31^{\circ} 32'$	
	AB and C	
1901.436	272°1	39761
.452	273.2	40.02
1901 44	272.6	39.81

	C and D	
1901.486	335 '8	3*08
.452	336.5	3.48
1901.44	336.1	3.28

Seeing too poor for AB.

B is not in H, and was first noted by Espin (A.N. 3717), who found $135^{\circ}9:2^{\circ}73$ (1900.62) 2n.

The small star B was first noted with the 6-in. The only measures are:

H 1353, D.M.(11)3651, 9.0...9.6 R.A. = $18^{h}48^{m}42^{s}$ } Decl. = $+11^{m}9^{m}$ } 1901,359 208°0 8:41 .397 206.6 8.26 1901,38 207.3 8.33

The only measures are:

 $1828+ 212^{\circ}2 5'' \pm 1n H$ 1879.45 208.1 8.41 2n Cin

Howe (Cin⁵) has a close pair in this place, 209°1: 0°94 (1879.31) 1n. There is no close double here, and it is undoubtedly an error in reading or printing the distance.

Lewis

R.A. =
$$18^{h} 50^{m}$$
 }
Decl. = $+34^{\circ} 30^{\circ}$ }

This pair has the above place for 1900 (Mon. Not., LX, 510) with the following measure:

 $1899.44 \quad 84°6 \quad 5″13 \quad 8.0 \dots 10.0 \quad 1n$

The place is substantially identical with that of the 7.9m star, D.M.(34)3346. This star was examined on two nights, and the stars in the vicinity as well, but no pair found to answer the description.

β 647

Change in the distance of C is confirmed by these measures.

B 648 $R.A. = 18^{h} 52^{m} 30^{s}$ Deel. = +32 - 45'F/24 $215^{\circ}3$ 1900,173.553 225.61.40 ,703 229.9 1.37 1901.203218.3 1.07222.31.271900.73

The only prior measures are:

1828+	210°8	16" +	1n	\mathbf{H}
1828+	210.8	10 ±	11t	п

Σ 2427

R.A. =
$$18^{h} 53^{m} 57^{s}$$
 \\
Decl. = $+38^{\circ} 4'$ \\
A and B

1900.473 61°3 48.54

1900.85 61.8 48.55

1900.85 61.5 48.54

B and C

1900.473 79°3 7'04

1901.225 78.9 7.32

1900.85 79.1 7.18

No change in BC, but the distance of AB is increasing. A comparison of these measures with Σ 's gives for the proper motion of A 0.064 in the direction of 41°.

No other measures. H estimated $305^{\circ}:15^{\circ}$. The principal star is W¹ XVIII. 1351.

H called the components red:blue-green; 134°5: $18'' \pm :10 \dots 12$ (1830).

Σ 2442

$$\begin{array}{ccc} \text{R.A.} &= 18^{\,\text{h}} \, 58^{\,\text{m}} \, 20^{\,\text{s}} \, \\ \text{Decl.} &= \, + \, 16^{\,\circ} \, 48^{\,\circ} \, \end{array}$$

$$\begin{array}{cccc} 1901.299 & 207^{\,\circ} \, 5 & 18^{\,\prime} 37 \\ .703 & 205.4 & 18.20 \\ \hline 1901.50 & 206.4 & 18.28 \end{array}$$

The distance is decreasing, with no sensible change in the angle. These measures with those of Σ indicate an annual movement of A of 0.06 in the direction of the smaller star. In the course of some three hundred years these stars will make a close pair.

The proper motion of A is very small, 0.014 in 300°3. The distance of μ in 1781 of 33.88 is certainly too small.

H 55	$07. 6 \dots 12.2$	
R.A.	$= 18^{h} 58^{m} 49^{s} = -15^{-} 50' $	
1900.458	63°0	47:10
1901.397	63.3	46.76
1900.92	63.1	46.93

H only estimated the angle 50 (1823.6). There is a 14m star about the same distance in 94 °8.

H 1364. D.M.
$$(44^{\circ})3051$$
. $9.4 \dots 9.4$

R.A. = $18^{\circ}59^{\circ}36^{\circ}$

Decl. = $+44^{\circ}17^{\circ}$

1901.452 201°7 3'13

1902.433 207.7 2.98

1901.94 206.2 3.05

Described by H, "a most elegant double star; chief of a small cluster." The only observations are:

$$1828 + 201^{\circ}5$$
 $1' \pm 1n$ H
 1881.45 206.9 3.26 $3n$ β

H 1365. D.M.
$$(26^{\circ})3443$$
. $9.5 \dots 11$

R.A. = $19^{\circ} 0^{\circ} 22^{\circ}$
Decl. = $+26^{\circ} 57^{\circ}$

1901.452 326°6 20′67
1902.219 325.1 20.04
1901.83 325.8 20.35

H has $327^{\circ}5:15''\pm$ (1828), and ealls the colors raddy : green.

The only measures are:

C not in Σ ; first noted by H, who gave the angle 279°9 and 286°4 (1828). No other measures of this.

1848.65 $45^{\circ}3$ $30^{\circ}40$ 1n Mitchell

The description in H is $110^{\circ}3:8''\pm :350^{\circ}\pm :15''\pm .$

From list of double stars in A.N. 1485. The estimated distance is given 48". The components are S.D.(3°)4513 and 4511.

Madler 7 = Ho 446

19h 7m 43s 1 + 24° 23' 292° 4 288.6	2:79 2.56
292°4 288.6	
288.6	
	2.56
901.0	
291.0	2.82
290.7	2.72
and C	
50°0	5:01
50.6	5.01
45.2	5.21
48.8	5.17
$\frac{-}{48.6}$	$\frac{-}{5.10}$
	50°0 50°6 45°.2 48°.8

B is new, but previously seen by Aitken. The measures of AC are:

1843,63	58°3	8769	1n	Ma
1893.67	45.4	5.69	-3n	Ho

The principal star is W² XIX, 193.

H 2858.
$$9.2 \dots 12.2$$
R.A. = $19^{\text{h}} \cdot 8^{\text{m}} \cdot 46^{\text{s}} \cdot \frac{1}{2}$
Decl. = $+22 \cdot 38^{\circ} \cdot \frac{1}{2}$

$$\frac{1901.436}{1902.219} \quad \frac{257.9}{257.6} \quad \frac{19.06}{19.02}$$
H gives $257.6 : 6^{\circ} \pm (1830)$.

H gives $19^{\circ}0: 4^{\circ} \pm (1830)$. The relation of H 2858 and 2859 is $10^{\circ}2: 132.70$ (1901.43).

The only other observation is by H, $357^{\circ}0$; $30^{\circ} \pm 7 \dots 16$ (1828).

H 5101.
$$8.5...9$$

R.A. = $19^{h}.9^{m}.2^{s}$ \ Decl. = $-25^{\circ}.33^{\circ}$ \\

1901.586 \quad 306.9 \quad 20.97 \\
\frac{720}{1901.65} \quad 306.6 \quad 21.14

Both components in Cord.D.M. as Nos. 13881 and 13879. H found 311°5 : 20" ± (1837.2).

H 1376. 8.0 . . . 11.2
R.A. =
$$19^{h} 9^{m} 4^{s}$$
 \ Decl. = $+15^{\circ} 10^{\circ}$ \ 1901.416 121°6 10.14
 $-\frac{471}{1901.44}$ $\frac{123.6}{122.6}$ $\frac{10.14}{10.15}$

H gives $120^{\circ}4:6''\pm(1828)$.

Without change. The principal star is L 36242. Two faint stars s and sf.

$$\begin{array}{c|ccccc} \mathbf{O\Sigma} & (App) & \mathbf{178.} & 6 \dots 7.5 \\ & & \text{R.A.} & = 19^{\text{h}} & 9^{\text{m}} & 52^{\text{s}} \\ & & \text{Decl.} & = & + 14^{\text{c}} & 53^{\text{c}} \end{array} \\ \hline 1900.684 & & 267.8 & 89.91 \\ & & .687 & 267.4 & 89.83 \\ \hline & & & & & & \\ \hline 1900.68 & & & & & & \\ \hline \end{array}$$

The following are all the other measures:

$$1856.60 86^{\circ}7 80''84 1n Se$$

 $1875.61 267.8 89.65 4n \Delta$

The change is not confirmed. The distance of Secchi is an error or misprint. The A.G. positions give $268^{\circ}0$: 89'68. The components are L 36207 and 36203.

The only other measure is by H:

$$1830+ 10^{\circ}6 \quad 25'' \pm : 5 - 6 \dots 17$$

There is a 13m star, 158°2: 43'5.

H gives $14^{\circ}6:15^{\circ}\pm6...15$ (1830); "a third np very strongly suspected." I could not see any third star with the 6-in. in 1874, and the 40-in. shows nothing now. The principal star has a proper motion of 0.7293 in 204.7.

H 266.
$$10.2 \dots 10.6$$

R.A. = $19^{h} 13^{m} 8^{s}$

Decl. = $-1 47^{\circ}$

1901.529 266°2 14′57

.586 265.1 14.55

1901.56 265.6 14.56

This is not in the D.M., but is closely f D.M. (-1°) 3706. H has $265^{\circ} \pm :5'' \pm (1820)$; "a suspected stel-

lar nebula in the field." The 40-in, shows this as a double nebula, with the appearance of belonging to the planetary class. It was rediscovered by Marth, and is No. 6778 of Dreyer.

There is an error of 180° in the angle of the only other measure:

1848.65 256°2 26″59 1n Mitchell

No other measures except angle by H, $23^{\circ}0$ (1830). The A.G. proper motion of A, is $0^{\circ}062$ in $280^{\circ}2$.

The 6.8m star, distant about $10^{\circ}sp$, D.M.(19)3975, is said to be an Algol variable, the magnitude descending to 9m, with a period of about 17 days (A.N. 3748).

3n

4

The only measures are: 1874.98 266°3 80*22

No other measures. The principal star is D.M. (9) 4075.

Σ 2501

Without change. There is a 13.5m star from A. 108°3: 9.6.

Rejected by Σ as not subsequently found. Evidently fixed. A is D.M.(14)3888. The only measures are:

1843.60	170°9	16/33	1n	Ma
1875.01	351.3	16.43	2n	Δ

Glasenapp. S.D.(14)5425. 9.0...9.5

$$\begin{array}{ccc} \text{R.A.} &= 19^{\ln 18^{\text{m}}} & 2^{\text{s}} \\ \text{Decl.} &= & -14^{\circ} & 52^{\circ} \end{array} \}$$

$$\begin{array}{cccc} 1901.605 & 68^{\circ} 1 & 24^{\circ} 33 \\ 1902.449 & 66.7 & 24.28 \\ \hline 1902.03 & 67.4 & 24.30 \end{array}$$

The only other measures are:

1890.54 69°2 23′99 2*n* Glasenapp

Schjellerup.
$$8.2 \dots 9.2$$

$$\begin{array}{ccc} \text{R.A.} &=& 19^{h} 19^{m} 33^{s} \\ \text{Dech.} &=& + 4 & 36^{s} \end{array} \}$$

$$\begin{array}{cccc} 1901.589 & & 214^{\circ}0 & & 41724 \\ & & .720 & & 214.2 & & 41.18 \\ \hline & & & & .720 & & .720 \\ \hline & & & .720 & & .720 \\ \hline & & & .720 & & .720 \\ \hline & & & .720 & & .720 \\ \hline & & & .720 & & .720 \\ \hline & & & .720 & & .720 \\ \hline & & & .720 & & .720 \\ \hline & .720 & & .720 \\$$

From list of new pairs in A.N. 1485. No other measures. A is D.M.(4–)4096.

$$\begin{array}{cccc} \mathbf{\Sigma} \ \mathbf{2517} \ rej. & \mathrm{D.M.} (22^{\circ})3687. & 8.7 \dots 9.7 \\ & \mathrm{R.A.} & = 19^{\mathrm{h}} 19^{\mathrm{m}} 40^{\mathrm{s}} \\ & \mathrm{Decl.} & = + 22^{\circ} \ 32^{\circ} \end{array} \Big\} \\ & \mathbf{1901.589} \qquad \mathbf{138.6} \qquad \mathbf{15.88} \\ & \mathbf{.760} \qquad \mathbf{138.5} \qquad \mathbf{15.88} \\ & \mathbf{1901.67} \qquad \mathbf{138.5} \qquad \mathbf{15.86} \end{array}$$

No other measures.

O. Stone

R.A. =
$$19^{h} 20^{m}$$
:
Decl. = $-16^{\circ} 11'$

Given in Cin^5 , $195^\circ 4:4'84:6.8...7.3$ (1880.62) 1n. I could not find any such pair in or near this place. There is no bright star here in the S.D.

H gives $110^{\circ}4:30^{\circ}\pm (1830)$; "two more near; one extraordinarily faint." There is a star of about the same magnitude in 197°9 at about double the distance, and a 13.5m star, more distant, in 231°4.

$\begin{array}{c} \textbf{v} \ Aqutlae \\ \text{R.A.} = 19^{\text{h}} 20^{\text{m}} 23^{\text{s}} \\ \text{Decl.} = + 0^{\text{s}} - 6^{\text{s}} \end{array}$ $\begin{array}{c} 1901.416 & 287^{\circ}9 & 200^{\circ}50 \\ .433 & 288.2 & 200.74 \\ \hline 1901.42 & 288.0 & 200.62 \end{array}$

Measured in looking for # 1V. 34, which is about 3^mf. B is D.M.(0) 4204. The proper motion of A is 0.024 in 359.7 The A.G. positions give 288°6: 201'4. Many small stars nearer A than this.

The principal star has a large proper motion, 0.658 in 198°1 (Berlin A.G.). The only other measures are by 0Σ , the first of which is:

$$1866.72$$
 $122^{\circ}8$ 27.91 $1n$ 0Σ

$$\begin{array}{ccc} & \text{H. N. } 119. & 6 \dots 8.2 \\ & \text{R.A.} &= 19^{\text{h}} \, 22^{\text{m}} \, 27^{\text{s}} \, \Big\} \\ & \text{Decl.} &= -27^{\text{h}} \, 14^{\text{s}} \, \Big\} \\ & 1901.455 & 141^{\circ} \, 9 & 7.65 \\ & .509 & 141.3 & 7.87 \\ \hline & 1901.48 & 141.6 & 7.76 \end{array}$$

No measures in **\mathfrak{H}**. There is an error of about 23' in his Decl. The measures of this show no change. It was measured by me in looking for No. 153 of the Harvard list, which has an error of about 3^m R.A. and 10' in Decl. It is identical with the **\mathfrak{H}** pair.

$$\begin{array}{cccc} \textbf{H 887.} & \textbf{L 36791.} & 7.0 \dots 13.2 \\ & & \textbf{R.A.} & = 19^{\,\text{h}}\,22^{\,\text{m}}\,54^{\,\text{s}}\,\\ & \textbf{Decl.} & = & - & 7^{\,\text{o}}\,17^{\,\text{o}}\,\\ & & & & \\ 1900.473 & & 348.7 & & 35.98 \\ & & & & & \\ \hline 1900.47 & & & & & \\ \hline 1900.47 & & & & & \\ \hline \end{array}$$

No other measures. Healled the small star 20m. The principal star appears to be the variable U Aquilae.

$$\begin{array}{ccc}
& \text{ if IV. 33.} & 9.5 \dots 9.7 \\
& \text{R.A.} & = 19^{\text{h}} 23^{\text{m}} & 9^{\text{s}} \\
& \text{Decl.} & = & 0^{\text{s}} & 0^{\text{s}}
\end{array}$$

$$\begin{array}{cccc}
& 1901.433 & 335.7 & 12.96 \\
& .512 & 335.7 & 13.12 \\
\hline
& 1901.47 & 335.7 & 13.04
\end{array}$$

 μ describes this as "the first of 2 stars $p \nu Aquilae$; distance of the two nearest 21'98, inaccurate." After a very eareful examination, I am certain that the star which he calls $\nu Aquilae$ is really the 6.9m star, D.M.(-0')3760, which follows the other $2^m 47^s$. The description then applies perfectly. This faint pair is not in the D.M. The place given above is that of the bright star.

The only other measures are:

1874.62	307°3	71.79	3n	4
---------	-------	-------	----	---

There is a 11m star from Λ 113°9: 12°17 (1901.53) 1n. There is also a small nebula in the field; from Λ in the direction of 247°3, and from B in 221°0. The principal star is given a proper motion of 0°085 in 54°3.

⅃ 20.	7 10.1	0.7
R.A. Deel	= 19 h 25 m - 1 s = 2 - 22 '	}
	A and B	
1901,589	6512	1.48
. 760	68.9	1.22
1901.67	67.0	1.35
A ar	ad C! $(=\Sigma 2535)$	
1901.589	29827	25798
601	297.9	25.94
.760	298.7	25,90
1901.65	298.4	25.91

No material change.

Н 5128.	8.1 10.1 .	10.3
R.A. Deel.	19 h 26 m 36 : 18 52 ′	}
	A and B	
1901.589	11150	20″88
.601	111 1	21/08
1901,59	111.2	20.98
	B and C	
1901,589	125.5	4729
.601	127.1	4.17
1901.59	126.3	1.23

TT 5 1 0 0 0 1 10 1 10 9

No other measures of BC except an angle by H of 125;9 (1836,5). The single measure of AB of 1879 in Cin' shows no change. A and B are S.D.(18) 5113 and 5114.

Discovered by Howe, but the place in Cin⁵ is in error in both R.A. and Deel. The only measures are those by him in 1879, which show no motion. The principal star in D.M.(3-)4079.

The place is a fittle uncertain in **H**. The principal star is D.M.(15)3877. The magnitude in D.M. is 6.7. The only other measures, except position angle of 106°3 (4783.65), are:

1893.55 121°9 39′27 1*n* Bigourdan

€ Sugittae

R.A. Dect.	$+\frac{19^{11}31^{11}51^{5}}{+16^{\circ}12^{\circ}}$	
1901.133	81.9	89:78
. 171	81.3	89.71
. 173	80.9	89,96
1901.46	81.4	89,82

As a wide pair this is \mathbf{H} VI. $26 = \mathbf{H}$ VI. $63 = \mathbf{H}$ N. 83 = 8.721 = 02 (App) 185. In \mathbf{H} VI. 63 the angle is reversed. \mathbf{H} N. 83 is given $3^{m}p$ and 11 s, but it is identical with this star. The A.G. proper motion of A is very small, 0°013 in 297°5.

1782.30	81.5	-91787 = -1n	Ĥ
1800	79.9	87.86	Lalande
1870.2	81/1	91.57	A.G.
1875.61	81.3	90.68 - 4n	1

H 1423. 9 Cygni. 6.5 . . . 11.2

R.A. Decl.	19 ⁶ 32 ⁶ 22 ⁵ { -+ 29 5 }	
1900, 173 , 687	12778 12911	20185 21.15
1900.58	128.6	21.00

Only 11, 136-3; 12 (1828). The proper motion is insensible, 07021 in 1585 (Auwers).

$O\Sigma$ 379	rej. 8.0 8.5	
R.A.	195 33 m 55 ° /	
Deel,	1 33 381 /	
1900,703	86" 1	21197
1901.260	86.7	21,89
1900,98	86,5	21,93

Without change.

W 11. 32	2 H.N. 84, 6.5	8.6
	A. 19531 m 08	
D	ecl, [16 : 18 :	1
1900-173	300 49	28116
, 1513	301/8	28.57
1900,51	301-3	28.51
The only measi	nes nre;	
A COLUMN TO A	144.41.11	

No observations except 11, 351°5; 30°; 7...19 (1830). His description is: "A large star in a constellation of at least a dozen small ones within 2° distance; that taken forms with the large star a good representation of the *Georgium Sidus* and one of its satellites. It is a fair comparison in point of high!."

O. Stone

The measures in Cin' are 221 1:5'06:9.5...11.0 (1879.61) In. I could not find anything in this vicinity to correspond with the description, though there are many faint pairs. One near this place is 61'7:7'51.

Σ 2560 vej.	1, 37106. 7.2	3.0
	195 35 m 31 g + 23 - 261	
1901-605 , 760	295 0 295 1	15*12 15=48
1901.68	295 0	15.30

No other measures,

No measures by H. He saw only the three brighter stars. A and Care D.M.(0)1283 and 4281

W1 XIX. 944

Noted "duplex" in Weisse. It is not double, although there are several stars in the field. The $7\frac{1}{2}$ m star of has a 25° companion p. In the D.M. the Weisse star is (1) 1205, and a 9.3m star, No. 1208, is 26.5f and 2'2n. The difference in R.A. is now much less.

	A and C	
1901.471	316°2	67/51
.509	316.3	67.56
1901.49	316.2	$\frac{-}{67.53}$

The faint star was added with the $18\frac{1}{2}$ -in. No change.

1878.40	$300^{\circ}2$	11.64	1n	β
1875.66	316.5	67.66	3n	Δ

HN. 113

R.A. =
$$19^{h}40^{m}$$

Decl. = $+37^{\circ}15^{\circ}$

 μ has no measures; it is given as Class II, with the above place. There is no double star here, and there is little doubt of his observation belonging to Σ 2578, which is in the same vicinity nf. In the course of this search I ran on to 0Σ 384, and measured it once; $192^{\circ}7:0.798$ (1901.47).

H 898

R.A. =
$$19^{h}41^{m}55^{s}$$

Decl. = $+31^{\circ}24'$

Described by H as a faint triple, all 11m, $225^{\circ} \pm : 2^{\circ} \pm AB; 225^{\circ} \pm : 6^{\circ} \pm AC$. Very earefully looked for twice, but nothing of this kind found. There are many faint pairs in the vicinity, but not of the description given.

Ho 114

AD is H N. 110 = S $726 = 0\Sigma$ (App) 192. The faint star C has not been seen before. There is no material change in the other stars.

$$\Sigma 2581 \ rej. 8.0 \dots 9.6$$

$$\begin{array}{ccc} \text{R.A.} &= 19^{\text{h}} 43^{\text{m}} 8^{\text{s}} \\ \text{Decl.} &= -11 & 42^{\text{c}} \end{array} \right\}$$

$$1901.455 & 282^{\circ}6 & 38.00 \\ .473 & 282.7 & 38.35 \\ .531 & 282.2 & 38.37 \\ \hline 1901.48 & 282.5 & 38.24 \\ \end{array}$$

The principal star is P XIX. 1058. The observation in Mitchell belongs to some other pair. The only measure is:

The components are S.D.(11°)5146 and 5147. The only other measures are:

Hussey in 1899 found A to be a close and unequal pair (= Hu 77). The seeing was too poor to measure AB. This triple is $12^{\circ}p$ 51 Aquilae.

The increase in the distance since the measures of Hough agrees with the proper motion of Λ , 0.08 in 315°5.

	B and C	
1901.605	12°0	21.60
1902.433	13.7	21.99
1902.02	${12.8}$	$\frac{-}{21.79}$

Positions estimated by H; he ealls C 18m. The large star has a proper motion of 0.112 in 3.6.

H 900. 56 Aquilae. 6 . . . 11.5
R.A. =
$$19^{h}47^{m}37^{s}$$
 $\left.\begin{array}{c} \text{R.A.} = 19^{h}47^{m}37^{s} \\ \text{Decl.} = -8^{\circ}53^{\circ} \end{array}\right\}$

1901.473 76°.9 46.53
 $\begin{array}{c} .531 \\ \hline 1901.50 \end{array}$ 77°.9 46.55

No measures in H. Unchanged since my measures in 1880.

No other measures, except Leipsie A.G., 237°0: 12′12 (1893.54). A is D.M.(11°)4030.

Wilson. Cord.D.M.
$$(24^{\circ})15677$$
, 9... 10.4

R.A. = $19^{h} 47^{m} 46^{s}$

Decl. = $-24^{\circ} 10^{\circ}$

1901.605 116°1 17′17

1902.433 116.5 17.32

1902.02 116.3 17.24

Identified as above. The only measure is: $1885.71 117^{\circ}6 17^{\circ}34 1n H. C.$ Wilson

There is a 10m star $37^{\circ}0:24^{\circ}0$. The other measures are:

$$1783.45$$
 $219^{\circ}6$ 14748 $1n$ \upmu
 1881.39 214.9 16.31 $3n$ \upbeta

Evidently fixed. A is D.M.(19)4192.

OΣ 390.
R.A. =
$$19^{h}50^{m}19^{s}$$
 }
Decl. = $+29^{\circ}53^{\circ}$ }
A and B
1901.531 22°2 9'.40
A and C
1901.531 175°5 16'.15

Without change.

The components are D.M.(10 $^{\circ}$)4132 and 4133. The only complete measure is :

The change, if any, is a small increase in the angle. There is a 11.5m star, $2^{\circ}2:26'6$.

1901.48

$\begin{array}{c|c} \text{R.A.} &= 19^{\,\text{h}}\,55^{\,\text{m}}\,31^{\,\text{s}} \\ \text{Decl.} &= + 6^{\,\text{s}}\,36^{\,\text{t}} \end{array} \right\}$ $1901.452 \qquad 53^{\,\text{s}}3 \qquad 38^{\,\text{t}}97$ $.471 \qquad 53.7 \qquad 38.69$ $.529 \qquad 53.6 \qquad 39.05$

 Σ 2612

The distance is slowly increasing from proper motion, the angle remaining constant. Σ found 36:59(1827.67). These stars point to a 3° or 4" pair of 12.5m stars about 30° from B.

53.5

38.90

No other measures. The description in H.Z. is $sf:4"\pm:8-9\ldots15$.

Σ 2619

No change in AB. C and D are not in Σ . C was first noted by H, and D added by 0Σ in 1851. The only measures of CD are:

1879.49 183°8 5°45
$$In \beta$$

This is H 605, the Decl. of which is uncertain in H. The companion is D.M. $(37^{\circ})2743$. The colors, red and green, are well marked. There is probably a misprint in the distance by Secchi, $335^{\circ}2:23'83$ (1856.63) 1n.

26 Cygni	68.3	. 12.2	
	$= 19^{h} 57^{m} 58^{s}$ $= +49^{\circ} 46^{\circ}$		
	A and B		
1898.463	147:4	41:98	
.518	147.1	41.87	
. 520	146.8	42.03	
1898.50	147.1	41.96	
	B and C		
1898.463	$74^{\circ}7$	8:74	
,520	75.0	9.30	
1898.49	$\frac{1}{74.8}$	$\overline{9.02}$	
B and D (new). $D = 13.7$			
1898.463	$257^{\circ}2$	10/26	
. 520	257.9	9.94	
1898.49	257.5	10.10	

The bright stars make $\mbox{\rlap/H}\mbox{ V. }17 = \mbox{\rlap/H}\mbox{ VI. }60 = 0\mbox{\rlap/L}\mbox{}$ (App) 197. C was added with the 18½-in. in 1878. So far no sensible change in AB.

H 2927.	$7.5 \dots 12 \dots$. 13.2
R.A. Dee	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. }
	A and B	
1901.433	$125^{\circ}3$	24/14
.471	126.2	24.44
.512	123.5	24.43
1901.47	$\frac{1}{125.0}$	24.31
1:	3 and C (new)	
1901.433	185°7	4:82
.471	186.2	4.91
.512	181.0	4.77
1901.47	185.3	1.84

No complete measures. H gives 135°0 (1830).

OΣ 397
$$rej$$
.= Ψ V. 105. 7.3 . . . 8.5
R.A. = 19 \(^h 59 \)^m 16 \(^s \)
Decl. = +15 \(^o 33 \)^* \\
1900.647 \quad 173.1 \quad 37.70
.687 \quad 173.4 \quad 37.86
1900.66 \quad 173.2 \quad 37.78

Slow change from proper motion.

$O\Sigma (App)$ 198 R.A. $= 20^{h} 0^{m} 17^{s}$ Deel. = + 7° 13' A and B 1901.531 174°0 37:17 173.9 .74237.411901.63 173.9 37.29A and C 1901.531 186°2 64:91 .703186.065.27.742186.0 65.111901.66 186.165.10

No other measures of B, which was first noted with the 18½-in. No change in AC since the measures of 4.

H 1477. L 38450. 8.0 . . . 10.6
R.A. =
$$20^{\text{h}} 0^{\text{m}} 55^{\text{s}}$$
 | Decl. = $+12^{\circ} 20^{\circ}$ | 1901.531 271°.4 20°.16
 0.720 270.6 19.93
 0.720 271.0 20.04 | 20.04

The correct place is given above. A is D.M. (-1°) 3896. No other measures. **H** estimated distance 30°.

Herschel's place is that of θ Aquilae: but in the original Catalogue (Phil. Trans. 1782) it is described "a star north of θ ; distance about I"," and it is not probable that the star measured above is the right one. Most likely it is the 8m star, L 38760, which is $2^m 43^s f$ θ and $4^s Is$. I have measured the components of this (7.1...85) as follows:

1901.512	80°5	64:09
.586	80.3	64.05
1901.55	80.4	64.07

This star has a proper motion of 0.262 in 203.6.

The components are S.D.(12)5663 and 5662. The only measures are:

$$1783.18$$
 $267^{\circ}9$
 $62/27$
 $1n$
 $\frac{1}{8}$
 1879.63
 265.8
 51.35
 $1n$
 Cin

An examination of Cin⁵ shows that there is an error of 10 revolutions in reading one head, and that the observed distance was 85.53 instead of 51.35.

\$ 735 =
$$\frac{1}{4}$$
 V. 136. 7.5 . . . 7.7

R.A. = 20 \(^{\text{h}}\) 5 \(^{\text{m}}\) 9 \(^{\text{s}}\) Decl. = - 0 \(^{\text{l}}\) 29 \(^{\text{t}}\)

1901.605 \(^{\text{206}}\) 206.1 \(^{\text{55}}\) 48

\[\frac{.703}{1901.65} \quad \frac{206.1}{206.2} \quad \frac{55.48}{55.36}

Only one measure since 1825, but apparently without change.

A comparison with the measures of S and J shows that these stars are relatively fixed. They have a common proper motion of 0.197 in 236.1 (Bossert). The components are D.M.(6°)4480 and 4479.

Noted as double in the Harvard Zones. The only other measures are:

AB	1879.46	259°2	$172\pm$	1n	Cin
AC	1879.46	276.8	31.17	1n	Cin

$$\begin{array}{ccc} \sigma \ Capricorni. & \mathrm{Sh} \ 380 = \ \ \mathrm{W} \ \mathrm{V}.87 \\ & \mathrm{R.A.} \ = \ 20^{\mathrm{h}} \ 12^{\mathrm{m}} \ 28^{\mathrm{s}} \ \mathrm{J} \\ & \mathrm{Decl.} \ = \ -19^{\mathrm{s}} \ 30^{\mathrm{s}} \ \mathrm{J} \\ & 1901.605 & 178^{\mathrm{s}} \ 0 & 55^{\mathrm{s}} 90 \\ & .742 & 177.5 & 55.90 \\ \hline & 1901.67 & 177.7 & 55.90 \end{array}$$

No change since my measures in 1881.

$$\begin{array}{c|cccc} & \nu \ Capricorni. & ... 11.0 \\ & & \text{R.A.} &= 20^{\text{h}} 14^{\text{m}} & 0^{\text{s}} \\ & & \text{Decl.} &= -13 & 8^{\text{s}} \end{array} \} \\ 1901.605 & & 210^{\circ}8 & & 54^{\circ}14 \\ & & .742 & & 210.5 & & 53.98 \\ \hline & & & & & & \\ \hline 1901.67 & & & & & & \\ \hline \end{array}$$

The only measures are:

H 2953. D.M.(8°)4408. 8.7 . . . 10.7
R.A. =
$$20^{h}15^{m}16^{s}$$
 beel. = $+8^{s}14^{s}$ beel. = $+8^{s}14^{s}$ beel. 25°19
1900.706 260°2 25°19
1901.395 261.7 25.52
1901.05 260.9 25.35

Only observed by H, 260°4: $18^{\circ} \pm : 9 \dots 16$ (1830); 'delicate and difficult."

No measures by **\mathbb{H}**. Unchanged since my measures of 1878. The first mention of this pair after **\mathbb{H}** is by Peters, who found it in observing an asteroid (A.N. 1635).

Discovered by Wilson. The correct place is given above. It is D.M.(5°)4496. The only measures are:

1893.39 359°7 1′80 3n Wilson

S 749

R.A. Deel	$= 20^{h} 21^{m} 14^{s}$ $= - 2 30'$	}
1901.608	18928	60:00
. 720	189.6	59.57
.742	189.6	59.85
1901.69	189.7	${59.81}$

No change since my measures in 1880, and the measures of S agree with the last. Bossert gives the proper motion of A 0.161 in 248.2, and B 0.183 in 244.1. The measures show no relative motion.

β 363 R.A. = $20^{h} 24^{m} 28^{s}$ Decl. = $+20^{\circ} 12^{\circ}$ A and B 1900.438 64° I 18:70 65.218.74 .70364 - 519.14.7061900.61 64.618.86

	A and C	
1900.438	198:4	44/22
.703	199.0	44.58
1900.62	198.7	$\frac{-}{44.40}$

These measures indicate that the change in AB is due to the movement of the 11.5m star B, and not the 7m star A.

Given by # Class I-II; "very close triple; vertex f." This is the only object I could find answering the description. The places are practically the same. There is a 13m star 150°0: 15'3 from A.

Σ 2696 R.A. $= 20^{h} 27^{m} 34^{s}$ Decl. = $+5^{\circ}$ 2' A and B 1901.742 305°7 0.84 .760 307.3 0.701901.75 306.5 0.77AB and C 1901.742 348°5 13/73 .760349.0 13.83 1901.75 348.7 13.78

The 14m star, C, was noted by me with the 18½-in. some twenty years ago. No other measures of it. No material change in AB.

$$\Sigma 2697 \ rej. \ 7.5 \dots 9.5$$

$$R.A. = 20^{h} 28^{m} 13^{s} \left\{ \\ Decl. = -0^{\circ} 53^{\circ} \right\}$$

$$1901.720 \qquad 1^{\circ}8 \qquad 30.25$$

$$\frac{.760}{1901.74} \qquad \frac{1.8}{1.8} \qquad \frac{30.59}{30.42}$$

The only other measure is:

1848.67 1°7 32″10 1n Mitchell

$\Sigma 2708$

The 13.5m star B was added by Hall with the 26-in. The principal star has a proper motion of 0.242 in 138°7, and it is well known that the change in C since Σ corresponds to this movement. The other companion was measured to see whether that showed the same displacement. From a comparison of my position with that of Hall in 1878 it appears that B is fixed in space like the other.

The only observation is:

There is no star in this place. In the notation then in use this angle corresponds to $40^{\circ}6nf$. If it is read sf, the angle would be $130^{\circ}6$. The principal star is D.M. $(61^{\circ})2039$.

W² XX. 1168

R.A. =
$$20^{\text{h}} 35^{\text{m}} 1^{\text{s}}$$

Decl. = $+37^{\circ} 58'$

In Weisse, "duplex; comes ad boream." This star has no companion. The description applies to Σ 2708, which is near by.

H 2988. D.M.(2°)4227. 8.5 . . . 9.6
R.A. =
$$20^{\text{h}} 35^{\text{m}} 52^{\text{s}}$$
 \ Decl. = $+2 32^{\text{s}}$ \\
1901.512 138°.9 24.65
 $\frac{.529}{1901.52}$ $\frac{138.3}{138.6}$ $\frac{24.65}{24.65}$

H says, "large star very red." It did not appear so on this occasion, nor when examined by me in 1876. $139.7:20" \pm : (1830)$.

	R.A. =	3 673 20 h 36 m 29 s + 20° 17'	{
1900,438 1901,799	A	and B 29708 296.6	3/51 3.83
1901.11	$\frac{1}{297.2}$		3.67
1900.438 1901.799	165°3		Single dist.
1901,11	165.1	105.71	
		. 7.8 10 20 ^h 38 ^m 17 ^s + 45 ⁺ 24'	
1901.531		31422	17.03
.608		311.6	16.19
1901.57		312.9	16.61

Rectilinear motion.

Herschel gives $338^{\circ}7:20^{\circ}\pm:6\ldots18$ (1830); "requires verification." I examined this star several times with the $18\frac{1}{2}$ -in, in 1877 under favorable conditions without finding any companion; and on two nights was unsuccessful with the 10-in. It is safe to say the suspected companion has no existence.

From a list of doubles furnished me several years ago by Professor Skinner, of the Naval Observatory, noted by him in his meridian work. It has since been catalogued by Innes.

OΣ 412 rej. 7.3 . . . 10.9 . . . 10.9
R.A. =
$$20^{\text{h} \cdot 41^{\text{m}} - 1^{\text{s}}}$$
 }
Decl. = $+50^{\text{h} \cdot 41^{\text{m}} - 1^{\text{s}}}$ }
A and B
1901.260 280.3 25/21
.318 281.5 25.32
.320 281.1 25.27
1901.30 281.0 25.27

	B and C	
1901.260	6°0	4:98
.318	9.3	4.83
. 320	7.0	4.83
1901.30	$\frac{-}{7.4}$	4.88

At this time there were no measures of these stars published.

The only previous measures are:

$$1879.35 \quad 3338 \quad 100354 \quad 2n \quad \beta$$

The large star has a proper motion of 0.816 in 6.7, and the computed place of the companion from this movement and the measures of 1879 is 39.1: 85.61. The small star is therefore not moving with the other.

Without change.

This is in the field p the 8m star, D.M.(61°)2057. The only observations are 193°5 : 1_3^{11} : 13 = 13 (1830).

"Duplex" in O.Arg. No other measures. The components are reddish: greenish. Other companions more distant.

H 5514

R.A. =
$$20^{h}49^{m}31^{s}$$

Decl. = $-5^{\circ}31^{\circ}$

Described by H, $200^{\circ} \pm : 7^{\circ} \pm AB$; $70^{\circ} \pm : 12^{\circ} \pm AC$, all small stars. There is a faint triple of 11m stars near this place, but the angles do not correspond. Glasenapp was unable to find it.

O
$$\Sigma$$
 421 rej. 8.0 . . . 9.3
R.A. = 20^h 50^m 47^s }
Decl. = +31° 43° }
1901.531 192°6 36.73

Hussey measures a 12.5 star, 77°5; 30′57 (1898.58).

Howe. L 40496. 6.8 . . . 11

R.A. =
$$20^{\text{h}} 51^{\text{m}} 2^{\text{s}}$$
 \\
Decl. = 0 0 \\
1901.529 71°7 26.30
\\
.531 72.0 26.25
\\
1901.53 71.8 26.27

The other measures are:

1879.50 71°8
$$26^{\circ}19$$
 $2n$ Cin⁵

The principal star has a considerable proper motion, but the authorities differ as to the amount; 0:109 in 204°2 (Bossert); 0:075 in 180° A.G. The stars seem to be moving together.

In the Harvard Zones, "double, comp. f." The only measure is:

The prior observations are:

1830	$300^{-5} \pm$	0.5	1n	\mathbf{H}
1878.17	291.0	1.81	2n	β

L 40682. $6 \dots 8.8$ R.A. = $20^{h} 54^{m} 58^{s}$ Decl. = $+18^{\circ} 52^{\circ}$ 1901.531 333°3 45.'92 .720 333.5 45.49 .739 333.4 45.63 1901.66 333.4 45.63

Both stars in D.M. The only measure is: 1880.63 332°7 44'66 2n 6

D.M.
$$(0^{\circ})4644$$

R.A. = $20^{\circ}56^{\circ}24^{\circ}$
Decl. = $+0^{\circ}10^{\circ}$

Described in the Harvard Zones, $sp: 3'' \pm : 9 \dots 12$. There is no companion of any kind, and nothing as described near this place.

H 1606. D.M.
$$(53^{\circ})2533$$
. 8.8 . . . 9.7
R.A. = $20^{\circ}57^{\circ}$ 5 ° $\left. Decl. = +54^{\circ}$ 4' $\left. 4^{\circ} \right.$
1901.531 186°.4 18'33
.608 185.6 18.51
.739 185.9 18.34
1901.62 186.0 18.39

H gives 185°.1 : 12" \pm (1828). There is a fine nebula in the field.

The measures at Cin in 1879 show no change. Many stars in the field.

$$\begin{array}{cccc} \textbf{H 274.} & 10.6 \dots 11.0 \\ & \text{R.A.} &= 21^{\text{h}} & 1^{\text{m}} & 20^{\text{s}} \\ & \text{Decl.} &= & + 11^{\circ} & 24^{\circ} \end{array}$$

$$\begin{array}{cccc} 1901.586 & 91^{\circ}1 & 9.46 \\ & .589 & 91.9 & 9.52 \\ \hline & & & & & \\ \hline 1901.58 & 91.5 & 9.49 \end{array}$$

Not in D.M., but closely f D.M.(11°)4483. H found $93^{\circ} \pm : 5'' \pm : 9 \dots 10$ (1820).

The proper motion is small, 0°053 in 186°0. There is a 15m star $110^{\circ}9:39^{\circ}2$ from A. H gives $68^{\circ}5:70^{\circ}\pm;90\pm:10^{\circ}\pm(1830)$.

 $\Omega\Sigma$ 527

	02 00.	
	R.A. = $21^{h} 2^{m} 1^{s}$ Decl. = $+ 4^{\circ} 40^{\circ}$	
1900.551	272°3	0.46
. 553	266.7	0.41
$\overline{1900.55}$	$\overline{269.5}$	0.43

The principal star has a proper motion of 0:170 in 206°0 (Porter). The only measure is: $255^{\circ}4:20^{\circ}\pm$ (1830). There is a 6°3 pair of 11m stars from A, $269^{\circ}:148^{\circ}$.

Without change.

Harvard Zones.
$$8.9...9.2$$

$$R.A. = 21^{h} 4^{m} 0^{s}$$

$$Decl. = + 0^{o} 49^{s}$$

$$1901.531 \quad 318^{\circ}7 \quad 0^{\circ}91$$

$$.586 \quad 315.1 \quad 0.79$$

$$1901.56 \quad 316.9 \quad 0.86$$

Noted as double in the Harvard Zones. This is $D.M.(0^{\circ})4674$. Only measured as follows:

1877.06 318°3 0′72 3n 1

8 779. L 41086. 7.5 . . . 8.5
R.A. =
$$21^{\text{h}} 4^{\text{m}} 26^{\text{s}}$$
 $0 \text{ ecl.} = +38^{\circ} 14^{\circ}$ $0 \text{ local} = +38^{\circ} 14^{\circ}$ $0 \text{ local} = 112.77$ $0 \text{ local} = 10.5$ $0 \text{ local} = 112.37$ $0 \text{ local} = 10.4$ $0 \text{ local} = 12.57$

There are two or three faint stars between, and many in the field. The only other measures are:

1824.81 10°8 114′78 2n South

 Σ 's distance in 1828 of 21/19 seems to be too large. 1865.33 269°9 20′21 5n \bot 1880.72 271.2 19.91 2n β

H 5516 R.A. = $21^{h} 10^{m} \pm \frac{1}{20}$ Decl. = $\frac{1}{20} \frac{1}{20}$

Described by H, "quadruple; all in a line," the principal star 9m and the others 18m and 20m. This place was carefully swept over, but nothing found which seemed to answer the description.

A.G.C	. 13 . τ Cygn	i
R.A.	$= 21 {}^{\rm h} 10^{\rm m} 0^{\rm s} = +37^{\circ} 32'$	}
1897.689	324°6	0:91
1898.345	322.2	0.78
.482	322.1	0.86
1898.17	323.0	0.86

	β 163	
R.A.	= 21 h 12 m 47 s	1
Decl. =	+ 11" 4"	1
1900.782	9°1	82:41
1901.471	9.5	82.55
.512	9.3	82.35
1901.25	9.3	82.44

I have measured this 10.9m distant star for the purpose of having hereafter an independent value of the proper motion of AB.

The principal star is Cord.D.M.(22)15347. This pair was put on the list to see if the apparent change in distance was real.

1879.65	19°1	22.85	1n	$\mathrm{Cin^5}$
1890.57	191.1	32.19	2n	Glasenapp

Evidently without change.

H 281. D.M.(
$$16^{\circ}$$
)4505. 8.7 . . . 9.2
R.A. = $21^{h}15^{m}32^{s}$ \ Decl. = $+16^{\circ}14'$ \ \\
1901.589 \quad 333\cdot 9 \quad 13'97 \\
\ddot 729 \quad \frac{335.3}{334.6} \quad \frac{14.09}{14.03}

No change since measures of Leavenworth in 1896 and Cin in 1879. H made the distance 17.52 (1829.57).

H 30	23. β Equule	ei		
R.A.	$=21^{\rm h}16^{\rm m}56^{\rm s}$)		
Decl	$. = + 6^{\circ} 18'$	\$		
	A and B			
1901.509	$258^{\circ}3$	33.86		
.589	258.9	33.88		
1901.55	$\frac{-}{258.6}$	33.87		
	C and D			
1901.509	188°1	6/13		
.589	187.6	5.48		
1901.55	187.8	$\frac{-}{5.80}$		
A and C				
1901.589	306°0	68:49		
	A and E			
1901.589	$275^{\circ}3$	93.49		
S 788 . 7.2 7.3				
PΛ	- 91 h 17 m 91 s)		

0.0	0. 1.2	
R.A. Decl.	$= 21 {}^{\rm h} 17 {}^{\rm m} 31 {}^{\rm s} \\ = -7 {}^{\circ} 6'$	}
1900.473	88°1	44:15
.476	88.0	44.43
1900.47	88.0	44.29

No other measures since 1824.

1824.78 83°5 36′78 2n South

The components are L 41562 and L 41563. The change in distance is supported by the meridian positions, which give, Lalande 37'25 (1800) and Lamont 39'35 (1850).

R.A. =
$$21^{h} 17^{m} 37^{s}$$

Decl. = $-13^{\circ} 23'$

H has "a most minute point strongly suspected," and gives 270°: 13" (1823). I have looked for this many times in the last twenty years with various apertures, without finding anything of this kind. The 40-in. shows nothing nearer than the distant star measured in 1877.

Hd 165

R.A. =
$$21^{h}19^{m}48^{s}$$
: \(\rm \text{Decl.} = -28^{\circ}50'\): \(\rm \text{}

The description in the Harvard Observations is $137^{\circ}: 10^{\circ} \pm : 8\frac{1}{3} \dots 11 (1868.82)$. There certainly is no such pair in or anywhere near this place. I looked for it in 1876, and again with the 40-in. It may be identical with a Cin pair, having about the same R.A., but 8° north of the Hd place. The description agrees: $142^{\circ}9:8^{\circ}22:8\dots 10 (1879.54)$.

H_5271.
$$10.6...11.6$$

R.A. = $21 \cdot 20 \cdot 44 \cdot 5$

Decl. = $-25 \cdot 24 \cdot 7$
 1901.760 $43 \cdot 6$ $6 \cdot 27$
 1901.78 48.0 6.68
 1901.78 45.8 6.47

Herschel gives:

 1834.6 $40 \cdot 7$ $1 \cdot 5 \pm 1n$ H

H 1668.
$$8.4...9.5$$

R.A. = $21^{h}31^{m}56^{s}$ Decl. = $+23^{\circ}8^{\circ}$ S

1901.414 34°8 8.31

.416 37.0 8.31

.473 36.2 8.23

1901.43 36.0 8.23

H gives $34^{\circ}2:7''\pm:10...12$ (1828). Noted as double in A.G.

H called the small star 17m. The large star has a proper motion of 0.103 in $84^{\circ}5$ (Boss.). The only measures are:

1878.71 344°9 25'95
$$1n \beta$$

S 798 = H VI. 103. ϵ Pegasi R.A. $= 21^{h} 38^{m} 17^{s}$ Decl. = $+ 9^{\circ} 20'$ A and B 1901.760 325°0 82716 .818 324.882.00 1901.79 324.982.08 A and C 140:88 1901.760 320°9 .818 321.8 141.34 .835321.1141.11 1901.80321.3 141.11

The proper motion of A is very small, 0.016 in 132°9. The following are all the measures:

AB	1782.97	322°7	90793	1n	Ĥ
	1879.54	325.2	81.36	2n	β
AC	1825.18	323.0	138.51	2n	South
	1874.77	321.6	140.41	3n	.1

$\begin{array}{c} \mu \ Cygni \\ \text{R.A.} = 21^{\text{h}} 38^{\text{m}} 46^{\text{s}} \\ \text{Decl.} = +28^{\text{s}} 12^{\text{s}} \end{array} \right\}$ $\begin{array}{c} \text{A and C} \\ 1900.647 & 271^{\circ}5 & 40.99 \\ .684 & 271.2 & 41.06 \\ \hline 1900.66 & 271.3 & 41.02 \end{array}$

This 12.2m star was added by me with the $18\frac{1}{3}$ -in. The only measures are:

1878.91 263°2 35″34 3
$$n$$
 β

With this place and the proper motion of A (0°353 in 135°4) the computed position of C at the above date is 272°4:41°32. It is therefore evident that C does not belong to the binary system.

H 285.
$$11.5...11.6$$

R.A. = $21^{h} 39^{m} 4^{s}$
Decl. = $+10^{\circ} 7^{\circ}$

1901.531 66°2 7.44

 $\frac{.604}{1901.66}$ 68.2 7.85

 $\frac{.604}{1901.66}$ 67.2 7.64

H estimated distance 2" to 3". It is near D.M. (10°)4617.

N.
$$74 = H$$
 947. $7 cdots 10.7 cdots 11.7$

R.A = $21^{h} 45^{m} 57^{s}$ }
Decl. = $+19^{\circ} 16^{\circ}$ }

A and B

1901.799 94°3 19'.78

.818 94.1 20.15

1901.81 94.2 19.96

A and C

1901.799 322°4 24°32
.818 321.7 24.34

1901.81 322.0 24.33

Not measured by either Herschel. The only other measures are my own in 1879, which show no change.

The other measures indicate some change in distance.

1823.77	226°0	105/86	1n	-Sh
1881.56	224.9	102.17	3n	β

The components are D.M.(5) 4915 and 4913.

H. C. Wilson

$$R.A. = 21^{h} 54^{m}:$$

 $Decl. = +1^{h} 20^{h}:$

The description in Cin¹⁰ is $212^{\circ}1:1'20:8...9$ (1882.76) 1n. There is no such pair in or near this place. All the stars are much smaller than Sm. The description is not unlike Σ 2856, which is $5^{m}f$ and $3^{\circ}n$.

No other measures of AC. AB unchanged.

H 289=H 5525. 20 Pegasi. 6 . . . 11.4
R.A. =
$$21^{h}55^{m}14^{s}$$
 $\Big|_{\text{Decl.}}$ = $+12^{\circ}33^{\circ}\Big|_{\text{S}}$
1901.799 324°6 52.98
.818 324.3 52.84
1901.81 324.4 52.91

The prior measures are:

The proper motion of A is 0.068 in 136.9, which corresponds to the change in distance shown by the measures.

The smaller star not in D.M. The other is D.M. (4°)4788. A has a proper motion of 0′145 in 163°2, which explains the change.

There is a 12m star from A, $157^{\circ}9:25'66$ (1901.60) 1n.

	A and C	C = 11	
1900.684	2	62°3	71:67
.687	2	62.3	71.74
1900.68	2	62.3	$\overline{71.70}$
	A and D.	D = 11.5	
1900.684	89°3	187:49	Single dist.
.687	89.3	187.51	46 66
$\overline{1900.68}$	89.3	187.50	

The only prior measures are mine in 1879. There is an error in the printed angle of AB; it should be 314°4.

No recent measures, but unchanged.

No other measures. The Deel, in H is 1° too large. A and B are D.M.(44°)4059 and 4060.

$$\begin{array}{cccc} \textbf{H 3094.} & 10.7 \dots 10.7 \\ & \text{R.A.} &= 22^{\text{h}} & 5^{\text{m}} & 9^{\text{s}} \\ & \text{Decl.} &= + & 2^{\text{h}} & 21^{\text{s}} \end{array} \right\} \\ 1900.780 & 301^{\text{s}} & 4'.80 \\ 1901.531 & 301.7 & 5.15 \\ \hline 1901.15 & 301.6 & 4.97 \end{array}$$

H gives $315^{\circ}5:3''\pm:10\ldots10$ (1830). A little p this, and about 2's is a similar pair, components equal, and same as the other pair; $114^{\circ}6:3''72$ (1901.15) 2n. H 957, $310''\pm:2''\pm:11\ldots11+(1820)$ should be 20 n of H 3094, but I could find only the pairs measured, and the last named probably identical with one of the others.

$$\begin{array}{ccc} \text{H 1741.} & \text{B.A.C. 7746.} & 6.2 \dots 9.7 \\ & \text{R.A.} &= \frac{22^{\text{h}}}{6^{\text{m}}} \frac{29^{\text{s}}}{14^{\text{t}}} \left\{ \\ & \text{Decl.} &= +50^{\text{s}} \frac{14^{\text{t}}}{1} \right\} \\ & 1900.684 & 308^{\circ}.5 & 25.21 \\ & .687 & 309.8 & 25.49 \\ \hline & 1900.68 & 309.1 & 25.35 \end{array}$$

The principal star has a proper motion of 0.151 in 62.5, which accounts for the change.

1828	$328^{\circ}5$	$20" \pm$	1n	H
1876.29	316.8	23.22	1n	1
1900.68	309.6	25.04	2n	Espin

$$\Sigma \ 2875 \ rej. \quad S.D.(8^\circ)5835. \quad 8.8. \dots 11.6$$

$$\begin{array}{cccc} R.A. &= 22^h & 7^m & 23^s \\ Decl. &= & - & 8 & 24^s \end{array} \Big\}$$

$$\begin{array}{ccccc} 1901.605 & & 44^\circ 1 & & 15^\prime 00 \\ .758 & & 45^\circ .6 & & 14^\circ .62 \\ \hline 1901.68 & & 44^\circ .8 & & 14^\circ .81 \end{array}$$

No other measures.

R.A. =
$$22^{h} 8^{m} 3^{s}$$

Decl. = $+60^{\circ} 10^{\circ}$

Given by H as Class I with angle 4°2 (1783.06). The place is that of a 6.7m star. I looked for this carefully in 1876, and now with the 40-in., and there is certainly nothing there. There must be a large error in place.

This is D.M.(12)4794. The only prior measures are by H, 276°4; $10^{\circ} \pm : 9 \dots 13$ (1820).

Only H, $83^{\circ}9 : 8'' \pm (1830)$.

In Mens. Microm., p. xxxiv, Σ gives:

1831.32	50°0	9.0
1831.32	266.0	35.0

Howe

R.A. =
$$22^{h} 14^{m}$$
;
Decl. = $+5^{\circ} 3'$;

The measure by Howe in Cin⁵ is $121^{\circ}6:1'03:8.5...9.0$ (1879.61) 1n. This pair should be 8' south of the triple 30 *Pegasi*. There is no such pair either in or anywhere near the given place. All the neighboring stars were examined. It is undoubtedly identical with β 842, which is about $10^{m}p$ and $3^{\circ}n$ of the place given above. The description corresponds exactly.

H observed this star for Σ 2998, which is $2^{m}f$: $310^{\circ}7:35''\pm (1830)$. He called the components orange: blue. A appears yellowish, but no noticeable color in B.

The only measures of this 12.2m star are:

1838.76 125°9 49'46 1n Lamout 1878.72 129.6 43.87 1n β

The principal star has a proper motion of 0.103 in 80°5.

OΣ (App) 231. L 43659. 8.2 . . . 8.4
R.A. =
$$22^{h}16^{m}37^{s}$$
 $Decl. = + 9^{o}20^{o}$ 1901.608 $110^{o}2$ $90^{o}79$
.739 110.3 90.92
1901.67 110.2 90.85
The only measures are:
1875.74 $109^{o}8$ $91^{o}02$ 3ι

H 1756.
$$6.7 cdots 10.6 cdots 13.2$$

$$R.A. = 22^{h} 16^{m} 42^{s} \}$$

$$Decl. = +40^{\circ} 4^{\circ} \}$$

$$A \text{ and } B$$

$$1901.722 286^{\circ} 6 21.85$$

$$.739 286.4 22.31$$

$$1901.73 286.5 22.08$$

$$A \text{ and } C \text{ (new)}$$

$$1901.722 325^{\circ} 8 22.47$$

$$.739 325.8 22.39$$

$$1901.73 325.8 22.43$$

H gives for AB $283^{\circ}5:15''\pm:9...12$ (1828). The magnitude of A in D.M. is 6.5.

4n

1

In Weisse "duplex 6"." No other measures.

H 3116. D.M.(6°)5023. 9.5 . . . 12.5
R.A. =
$$22^{h} 21^{m} 15^{s}$$
 Decl. = $+6^{\circ} 56^{\circ}$ \\

1901.720 \quad 257.7 \quad 25.52 \\
\frac{1902.471}{1902.09} \quad \frac{257.8}{257.7} \quad \frac{25.95}{25.73}

No measures in H; "estimated from diagram."

Harvard	Zones. 9.5	. 9.6
R.A.	$= 22^{h} 22^{m} 53^{s}$ $= + 0^{\circ} 40^{\circ}$	ţ.
1901.720	181°5	3.04
. 760	182.5	3.22
1901.74	182.0	3,13

Noted in Hd Zones, $nf: 3'' \pm .$ No other measures. It is D.M.(0)4879.

	Krueger 60	
R.A	$=22^{h}23^{m}43$	s)
Dec	$. = 22^{h} 23^{m} 43$ $1. = +57^{\circ} 3$, }
	A and B	
1901.318	133°3	3.125
.320	130.5	3.37
.375	131.4	3.38
.473	130.4	3.42
1901.37	131.4	$\frac{-}{3.35}$
	A and C	
1901.318	58°8	36759
.320	58.5	36,26
.375	58.4	36.69
.473	58.8	36.66
1901.37	58.6	36.55
	A and D	
1901.318	98°7	66:73
.328	98.4	66,95
.375	98.5	67.57
1901.34	$\frac{-}{98.5}$	$\frac{-}{67.08}$
A a	nd D.M.(56°)278	84
1901.318	$144^{\circ}62$	199/31
.320	144.72	199.50
.375	144.63	199.15
.474	144.52	199.65
1901.37	$\frac{1}{144.62}$	$\frac{199.40}{199.40}$

It was apparent soon after the first remeasurement of A by Doolittle that these stars belonged to the type of 61 Cygni, where the change in the relation of the components is due to their different proper motions. These are small stars, and their movement in space had not been noticed by meridian observers and those interested in stellar motions.

To determine whether or not the third star, measured by me in 1890, has any proper motion of its own, I have connected A with the nearest bright star, D.M. $(56^{\circ})2784$. The positions of A and this star are in the A. G. catalogue, and these give for the relation of the two 151°9: 195'35 (1873.2). Comparing this with my direct measures, assuming that the distant star is fixed, we have for the proper motion of A 0.503 in 247.2. The present measures of AC and those of 1890 make this value 0.527 in 244.9. The close agreement of these results makes it practically certain that the change is solely due to the movement of A. Taking the mean, 0.515 in 246.0, as the best value for this motion, and my measures of AB in 1890 and 1901, we have for the proper motion of B 0.702 in the direction of 239.0.

H 5528

R.A. =
$$22^{h}31^{m}22^{s}$$
 }
Decl. = $+8^{\circ}11'$ }

H gives $90^{\circ} \pm :1^{1}_{2}^{\circ}:11\ldots 12$ (1823); "elongated; not fairly divided." The place is exactly that of the 9.1m star, D.M.(8) $4902 = W^{+}XXII$. 631. I looked at this star with the 6-in. in 1876, and with the $18\frac{1}{2}$ -in. in 1877 without seeing any indication of duplicity. I could find no pair in or near this place with the 40-in.

H 5529.
$$\kappa$$
 Aquarii
R.A. = $22^{h} 31^{m} 32^{s}$
Decl. = $-4^{\circ} 51'$

H describes this $290^{\circ} \pm : 4\frac{1}{2}^{\circ} \pm (1827)$; "an exceedingly minute point strongly suspected." I have looked in vain for this many times in past years. The 40-in, under fine conditions failed to show any companion. The principal star has a proper motion of 0.142 in 219.2.

$$\begin{array}{ccc} \textbf{\zeta} \ Pegasi. & \dots 12.0 \\ \text{R.A.} &= 22^{\text{h}} 35^{\text{m}} 38^{\text{s}} \\ \text{Decl.} &= +10^{\circ} 12^{\circ} \end{array}$$

$$\begin{array}{cccc} 1900.515 & 139^{\circ} 1 & 63^{\circ} 15 \\ .551 & 138.9 & 63.72 \\ \hline 1900.53 & 139.0 & 63.58 \end{array}$$

The only measures are:

The proper motion is 0.067 in 105°5, and this appears to account for the change in distance.

No measures in **H**, but called Class II. The place is given by H as above. There is nothing of Class II in or near this place.

$$\Sigma$$
 2933 rej. D.M.(10)4804. 9.2 . . . 10.4
R.A. = $22^{h}36^{m}49^{s}$ } Decl. = $+10^{-22^{s}}$ }
1901.586 218°4 4.10
.589 215.3 4.42
1901.58 216.8 4.26

No other measures.

Described by H, $142^{\circ}: 2 \pm : 11 = 11$ (1830). The pair measured is in the correct place substantially, but description does not agree. In the field is a triangle of 11m stars, the side of which is about 23°. The f star of this triangle is $98^{\circ}3:33^{\circ}1$ from A of the double.

Н 301.	ξ Pegasi 5	5 12.2
	$=22^{h}40^{m}4$	
Dec	$1. = +11^{\circ} 3$	3, (
1897.714	110°5	12:22
1898.492	108.0	12.61
.502	110.3	12.08
1900.515	110.6	12.36
.551	109.1	12.22
.553	109.3	12.43
1899.39	$\overline{109.6}$	12.32

H called the small star 18m, and gave the angle 122°8 (1820). There are no other early measures. The large star has a considerable proper motion, 0°541 in 158°9, and the companion is moving with it.

$$1866.79 117°7 12717 2n 1879.38 112.6 11.93 4n \beta$$

OS 480 = H 1809
R.A. =
$$22^{h}$$
 41 m 19 s ρ
Decl. = ρ + 57 ° 27 ρ
1900.742 117°3 30°76

Without change. In 1873 I thought the principal star was elongated, but it was round with all powers at the time of the above measure.

No measures in the last seventy-five years.

The proper motion is very small, 0.059 in 227.5.

H gave $230^{\circ} \pm : 1'' \pm : 10 \dots 11$ (1828); "very delicate; could not verify it, having mislaid the high power." No other measures. In 1876 I looked up and estimated distance 1'2.

H 3152. L 44810 R.A. = $22^{h} 48^{m} 40^{s}$ Decl. = $-10^{h} 1^{s}$

Given by H 135°4: $3" \pm : 9 \dots 15$ (1830). "Large star very red. A very difficult object. Measured with 320, which still left a suspicion of illusion, though I have hardly a doubt." I have looked for this several times previously with apertures up to $18\frac{1}{2}$ -in, but have never seen any trace of a companion. It was examined on two nights with the 40-in.

H has $91^{\circ}5:40^{\circ}\pm:9...12$. A has a proper motion of 0.11 in 243.7 (Boss.).

$$\Sigma \ 2972 \ rej. \quad D.M.(-0^{\circ})4451. \quad 9.3 \dots 11.7$$

$$\begin{array}{c} \text{R.A.} = 22^{\circ} 56^{\circ} 34^{\circ} \\ \text{Decl.} = -0^{\circ} 23^{\circ} \end{array}$$

$$\begin{array}{c} 1901.589 & 147^{\circ}4 & 15^{\circ}42 \\ .605 & 148.5 & 15.56 \\ \hline 1901.60 & 147.9 & 15.49 \end{array}$$

Only H, who has $198^{\circ}0: 12^{\circ}\pm: 9-10...14$ (1830). The angles do not agree. Two other similar pairs were measured in the immediate vicinity. The first is D.M.(-0°)4445, $159^{\circ}1: 24^{\circ}40: 8.5...12.7$ (1901.60) In; and the other D.M.(-0°)4453, $172^{\circ}7: 19^{\circ}14: 10.8...10.9$ (1901.60) In. The latter star is 9.5m in D.M.

$$\begin{array}{ccc} \textbf{H 3164}. & \textbf{L 45137}. & \textbf{6.9} \dots \textbf{12} \\ & \textbf{R.A.} & = 22^{\,\text{h}} \, 58^{\,\text{m}} \, 52^{\,\text{s}} \, \\ & \textbf{Decl.} & = -17^{\,\text{s}} \, 44' \, \, \\ & & & & & & & & & \\ \hline 1901.586 & & 129^{\,\text{c}} \, 5 & & 55^{\,\text{c}} .05 \\ & & & & & & & & \\ \hline 1901.67 & & & & & & & \\ \hline 1901.67 & & & & & & & \\ \hline Only \, \textbf{H}, \, 136^{\,\text{c}} \, 5 : 30'' \, \pm \, (1830). \end{array}$$

Christiania A.G. 3744. 8.8...9.0

$$\begin{array}{ccc} \text{R.A.} &= 23^{\text{h}} & 6^{\text{m}} & 11^{\text{s}} \\ \text{Decl.} &= & + 65^{\circ} & 15^{\circ} \end{array} \}$$

$$1901.318 & 265^{\circ} 4 & 14^{\circ} 83 \\ \underline{.474} & 265^{\circ} .0 & \underline{14.91} \\ \underline{1901.40} & \underline{265.2} & \underline{14.87} \end{array}$$

No change since my measures in 1891.

H 1855.
$$10...10$$

R.A. = $23^{h} 6^{m} 18^{s}$ \text{Decl.} = $+44^{\circ} 56'$ \text{1900.782} \quad \text{111\cdot 2} \quad \frac{4'44}{1901.320} \quad \text{113.0} \quad \frac{4.64}{4.54}

H gives $296^{\circ}7: 1\frac{1}{2}$ ": 11 = 11 (1828). Not in D.M., but the place is correct.

	Σ 2993	
R.A. Decl.	$= 23^{h} 7^{m} 47^{s} = -9 35' $	
	A and B	
1900.515	176°6	25:41
.744	176.9	25.38
1900.63	176.7	${25.39}$

No relative change, but they have a common proper motion of 0.519 in 93.4. There is a distant star not moving with the others.

1900.515	114°5	126:08	
.666	114.5	126.17	
.744	114.5	125.85	
1900.61	114.5	$\overline{126.07}$	
824.82 109°2	158/17	2n Sou	th

	β 182	
R.A. DecI	$= 23^{h} 10^{m} 52^{s}$. = -14° 28'	}
	A and B	
1900.742	41:4	0.460
1901.586	43.3	0.56
1901.16	${42.3}$	$\overline{0.58}$
	AB and C	
1900.666	77°5	69/49
.742	77.7	69.56
.744	77.2	69.61
1900.72	$\overline{77.5}$	$\overline{69.55}$
1901.586	77°0	70103
.608	77.4	70.20
1901.59	77.2	$\frac{-}{70.11}$

I measured the distant star first in 1898 in order to get an independent value for the large proper motion given the close pair from meridian observations (1°302 in 201°2).

1898.66
$$79^{\circ}9$$
 $68''04$ $2n$ β

The measures indicate that this unusually large proper motion for a faint star is substantially correct.

A is S.D.(2)5921. II gives for BC 12°3 ; 2 \pm (1830).

H VI. 61

R.A. =
$$23^{h} 14^{m} 14^{s}$$

Decl. = $+4^{\circ} 44^{\circ}$

Herschel's place is that of 7 *Piscium*. His description is, "they form a triangle, each side of which is about 1'," and speaks of it as near the bright star. I could not find anything here which could be satisfactorily identified.

H 3185. Neb. . . . 13.4

R.A. =
$$23^{h} 15^{m} 36^{s}$$
Decl. = $+8^{s} 14^{s}$

1901.720 164.0 21.12

. 760 163.3 21.37

- 1901.74 163.6 21.24

Described by H, $160^{\circ} \pm : 14 \dots 14$ (1830); "a double with some nebulous appendage." A of the above measures is a faint nebula (Dreyer 7634). No star was seen in the nebula.

H gives AB 238°2 : $20^{\circ} \pm$; AC, $58^{\circ}2$: $25^{\circ} \pm$ (1828). There is a 13.5m star from A 211°8 : 29°6.

Winned	ke. 8.5 9	.2
R.A.	$=23^{\rm h}26^{\rm m}35^{\rm s}$	{
Decl.	$= +30^{\circ} 47'$	\$
1901.796	164°9	1.59
.815	166.0	1.37
1901.80	165.4	1.48

The only measures are:

1863.85 168°5 1554 2n Wn

There is a 13.5m star 133°2: 23°4, and a 3° pair of 10.5m stars in the field sp. The principal star has a proper motion of 0°148 in 61°4 (Kustner). Evidently the components are moving together.

The only prior measures:

1877.83 92°7 33'22 1n p

H 1898. к Andromedae. 4 . . . 11.1 . . . 11.1

The proper motion of A is 0.078 in 1078, which explains the change in the distance of C.

104.95

1901.72

1879.24	188°7	46:64	3n	β
1879.24	294.6	103.17	1n	β

W1 XXIII, 696

R.A. =
$$23^{h} 35^{m} 7^{s}$$

Decl. = $-5^{\circ} 5^{\circ}$

"Duplex" in Weisse, but this is an error, as this star is not a double of any class. The wide pair measured for this in Cin⁵ is 1^m 28^sp and 5:5n. No change in that.

1901.796 9.0...9.567°5 42:02 1n

$$\Sigma$$
 3032 rej. L 46416. 8.3 . . . 10.0
R.A. = 23 h 35 m 16 s)

The only observations by H, $339^{\circ}5:15'\pm(1828)$.

Harvard Zones. 9.7...13.0

$$\begin{array}{c} \text{R.A.} &= 23^{\text{h}} \, 35^{\text{m}} \, 50^{\text{s}} \\ \text{Decl.} &= + \, 0^{\circ} \, 41^{\prime} \end{array} \right\}$$

$$1901.605 \qquad 146^{\circ} 0 \qquad 75.64$$

$$\begin{array}{c} .608 \qquad 146.3 \qquad 75.64 \\ \hline 1901.60 \qquad 146.1 \qquad 75.64 \end{array}$$

In Hd Zones $sf: 30^{\circ} \pm : 9 \dots 14$. A is D.M.(0) 5035.

Egbert, D.M.(16)4980, 8.7...8.8

Given with approximate place in Cin:

1879.66 89°0 1:37 2nCin

Also noted as double in A.G.

4 28. D.M.(62°)2296. 8.6 . . . 10.8 . . . 10.1 R.A. $= 23^{h}41^{m}32^{s}$

Decl. =
$$+62^{\circ} 33^{\circ}$$
 A and B

 $1900.742 \quad 357^{\circ}9 \quad 1'73$
 $1901.722 \quad 359.2 \quad 1.56$
 $1901.23 \quad 358.5 \quad 1.64$

A and C

 $1900.742 \quad 144^{\circ}7 \quad 10'43$
 $1901.722 \quad 144.8 \quad 10.54$
 $1901.23 \quad 144.7 \quad 10.48$

Discovered by Dembowski in 1876. Only his measures:

1877.29	$358^{\circ}6$	1:61	3n	4
1877.29	143.6	10.33	3n	4

\$ 835. 20 Piscium. 6 . . . 8.6

$$\begin{array}{c} \text{R.A.} &= 23^{\text{h}} 41^{\text{m}} 46^{\text{s}} \\ \text{Decl.} &= -3^{\circ} 26^{\circ} \end{array} \right\}$$

$$1900.553 \qquad 285^{\circ} 0 \qquad 172^{\circ} 65$$

$$\begin{array}{c} .666 \qquad 285.3 \qquad 172.81 \\ \hline 1900.61 \qquad 285.1 \qquad 172.73 \end{array}$$

The only prior measures are:

1824.83 $287^{\circ}2$ 170.92 2nSouth

W² XXIII. 896

R.A. =
$$23^{h} 43^{m} 15^{s}$$

Decl. = $+24^{\circ} 41'$

"Duplex" in Weisse, but certainly not double.

W1 XXIII. 865

R.A. =
$$23^{h} 43^{m} 40^{s}$$

Decl. = $+16^{\circ} 12^{\circ}$

"Duplex" in Weisse. Examined twice, and not a double of any kind.

H 319. D.M.
$$(10^{\circ})5003$$
. 9.5 . . . 11.7
R.A. = $23^{\circ}45^{\circ}42^{\circ}$)

$$R.A. = 23^{\circ} 45^{\circ} 42^{\circ}$$
 $Deel. = +10^{\circ} 37^{\circ}$

1901.605	$285^{\circ}1$	15:49
.608	281.3	15.29
1901.60	284.7	15.39

No other measures.

W¹ XXIII. 1008. 9.0 . . . 9.1

R.A. =
$$23^{h} 50^{m} 40^{s}$$

Decl. =	- 1, 11, 1	
1900,780	$253^{\circ}4$	11:86
.782	251.0	-11.76
1900.78	$\frac{1}{253.7}$	11.81

"Duplex" in Weisse. No other measures.

H 321. 7.5 . . . 11.2

R.A. =
$$23^{h}51^{m}38^{s}$$
 }
Decl. = $+10^{\circ}48'$ \$

1901.703	132°9	20:30
.720	132.3	20:64
1901 71	199 6	20.01

No other measures.

D.M.(10)5017. 8 . . . 12.5

R.A. =
$$23^h 53^m 39^s$$
 }
Decl. = $+10^h 35'$

1901.608	122°7	25176
.760	120.7	25.56
1901.68	121.7	25.66

Measured the first time by mistake for the preceding pair, H 321. No other observations.

Camb. A.G. 14394

R.A. =
$$23^{h} 51^{m} 16^{s}$$

Decl. = $+26^{m} 15'$

Noted in Camb. A.G. as a "close double." I have looked at this 6.5m star three times in 1901. On the last occasion 85 *Pegasi*, which is close by, was easily measured. At no time was there any indication of this star being a double of any kind.

Duner. D.M. $(6^{\circ})5233$, 9.0 . . . 9.5

R.A. =
$$23^{h}55^{m}11^{s}$$

Decl. = $+7^{\circ}2^{\circ}$

The only measures are:

1869.31 265°3 15′26 3*n* Duner

β 733. 85 Pegasi

R.A. =
$$23^{h} 55^{m} 54^{s}$$

Decl. = $+26^{\circ} 27$

A and B

1900.854	253°0	0:97
	A and C	
1000 954	319°6	96165

1900.854	342°6	36:65
.873	342.1	36.55
1900.86	342.3	36.60

W1 XXIII. 1147

R.A. =
$$23^{h}56^{m}49^{s}$$
 Decl. = $+2^{\circ}43'$

"Duplex" in Weisse. There is no companion star near enough to be mentioned.

II. NEW DOUBLE STARS

β 1291. D.M.(37)94. 8.4 . . . 12.8

R.A. =
$$0^{h} 28^{m} 56^{s}$$

$= +37^{\circ} 2^{\circ}$	
168° 7	2:94
169.0	2.75
169.6	2.85
169.1	$\frac{-}{2.78}$
	168° 7 169.0

β 1292. D.M.(3°)161. 8.5 . . . 9.0

R.A. =
$$1^h 1^m 35^s$$
 \\
Decl. = $+ 3^- 46^\circ$ \\

1900.780	24°5	0:31
1901.586	21.8	0.36
.796	26.4	0.23
1001 00	24.0	0.00
1901.39	21.2	-0.30

Found in measuring Σ 324 rej., which is 2^m 31° f and 0.9s.

β 1294. D.M.(46°)734. 8.8...8.9

R.A. =
$$3^h 12^m 24^s$$
 Deel. = $+46^\circ 15'$

1901.589 228°.9 6′.33
.742 226.8 6.26
.758 227.7 6.14

1901.69 227.8 6.24

The components are red and green. The D.M. magnitude of A is 9.2.

The principal star of the Σ pair is a close and somewhat unequal double, and is certainly a binary system, and probably in rapid motion. The Σ companion was measured by me in 1888 with the 36-in., and the close pair would have been detected with the present distance. The large star has a proper motion of 0.100 in 153°2 (Porter), which is also the movement of the old companion. That star is in

slow retrograde motion about the close pair, as will be seen from the following measures:

1829.79	311:4	1.58	4n	Σ
1846.44	304.6	1.61	3n	$O\Sigma$
1870.02	299.0	1.63	3n	1
1888.92	291.9	1.58	3n	β
1901.05	288.7	1.54	3n	β

The small star D was added by me with the 36-in. The only other measures are:

1888.92 209°8 23'66
$$3n \beta$$

With this position and the proper motion of AB the place of C at the date of my last measures should be 212°3: 23′16 (1901.05). As this is practically identical with the measures, it is certain that the small star does not belong to the triple system.

$$β$$
 1296. L 12112. 8.0 . . . 8.5
R.A. = 6^h 14^m 6^s } Decl. = -7° 12' }
1900.780 201°0 0:21

A close and difficult pair found in measuring H 2315, which is 58°f and 3.2s.

$$β$$
 1297. S.D.(22⁻)4158. 8.7 . . . 9.5
R.A. = 16^h 15^m 10^s $)$
Decl. = -22^s 21' $)$
1901.359 140°6 1.91
.395 137.0 1.92
.433 137.7 1.90
1901.39 138.4 1.91

Found in looking for H 4851.

$$β$$
 1298. 7.6 . . . 8.9

R.A. = $16^h 53^m 49^s$ }
Deel. = $+9^s 52^s$ }

A and B

1901.531 91°7 0.26
.586 88.0
.589 84.8 0.33

1901.57 88.2 0.29

AB and C (= $0Σ App 150$)

1901.359 165°4 76.44
.375 164.9 76.62
.586 161.8 76.57

1901.44 165.0 76.54

C and D (=	$\Sigma 2111 \ rej.$).	$8.5 \dots 12$
1901.359	16420	23.191
.375	164.5	24.19
1901.37	$\overline{164.2}$	${24.05}$

The principal star of this wide pair is a close and difficult double. The only other measure of C is:

1874.84 165°2 77'02 3n

Probably no sensible proper motion, as the meridian positions by Lamont give 164:5:76:74(1844.5). The close pair has been measured at Mt. Hamilton:

1901,69 92°3 0′26 3*n* Aitken

No other measures of CD.

The close pair was suspected with the 6-in, in 1872, and subsequently overlooked until the present time.

The large star has a small proper motion, 0.075 in 260%0.

β 1301. L 37588. 8.5 . . . 9.5 . . . 9.5
R.A. =
$$19^{\ln}40^{\ln}25^{\circ}$$
 \ Decl. = $+4^{\circ}0^{\circ}$ \ A and BC
1900.551 66.7 56.89
.617 67.0 56.74
1900.58 66.7 56.80

	B and C	
1900.551	336°6	0:66
. 553	337.1	
.742	341.1	0.68
.780	334.1	0.62
1900.66	337.2	$\frac{-}{0.65}$

This is $27^s f$ and 3^n of β 468.

C is D.M.(22°)4169. The A.G. positions give 20800: 51087.

$$β 1303. L 41147. 7 ... 13.2$$
 $R.A. = 21^{h} 6^{m} 56^{s} \begin{cases} Decl. = + 2^{\circ} 19^{\circ} \end{cases}$
 1900.551 235°0 3'91

 $.553$ 237.5 4.00

 $.725$ 236.9 4.14

 1900.61 236.5 4.02

Found in looking for $\Sigma 2778$.

β 1305. D.M.(12)4622. 8.8...9.9...10.5

R.A. =
$$21^{\frac{1}{1}}39^{\frac{1}{11}}9^{\frac{1}{2}}$$

Decl. = $+10^{-1}14^{-1}$

B and C

1901.531 50°8 0'.97

.760 45.7 0..98

1901.64 48.2 0..97

ding star t it is eviof A is eor-90°, since Comparing

20

	A and BC	
1901.531	90°9	88.46
.605	91.5	88.87
1901.57	$\overline{91.2}$	88.66

B 1306, D.M.(22°)4484

R.A. $= 21^{h} 43^{m} 58^{s}$ Decl. = $+23^{\circ} 1'$

A and B. 8 . . . 12.3

995°7 1901 414 21/95

C and I	D (new). 12.9	. 13.9
1900.742	95°7	2:12
.780	101.4	1.75
1901.758	102.4	1.59
.854	106.2	1.85
1901.28	101.4	1.83

In measuring the faint star C as a check hereafter on the proper motion of AB as given from meridian positions, it was found to be a rather difficult pair. C has not been measured before. Porter gives the movement:

CO	RR	ECT!	IONS
----	----	------	------

- ige 5. O.Arg.N.21. For 2"592 read 22"59,
 - 13. Σ 353 rej. In the angle by H for 56°4 read 65°4.
 - 18. D.M.(21)694. In the note for 10 n read 10 n.
 - 28. \$ 550. For L 15459 and 15460 read 14559 and 14560.
 - Howe. The pair measured is new. The Howe pair wa 35. identified as D.M.(24) 2709.
 - 37. Σ 2031 rej. For D.M.(-1)3761 read D.M.(-1°)3161.
 - θ Aquilae. In the proper motion for 203°6 read 336°7. 57.
 - OΣ 412 rej. In the R.A. for 41^m read 42^m. 60.
 - 74. β 1305. For D.M. (12) 4622 read D.M.(10°)4622.

as afterwards found an	e of Dem- n of A, we movement onents will e between that of 61 d urs where the same
	13.3

.780	309.2	6.92
1900.73	309.4	6.93
	B and C	
1900.742	339°5	46.49
.780	338.6	46.62
1901.758	339.1	46.86

		18
		32
1901.81	63.5	$\frac{-}{1.10}$
		1.10
A ar	1 d B (= H 1776)	
1900.744	$274^{\circ}7$	9:06
.782	273.7	9.44
1901.720	273.8	9.52
1901.08	${274.1}$	$\frac{-}{9.34}$
1501.00	211.1	3.04

The close pair is a difficult object. H gives for AB $277^{\circ}5:5" \pm (1828)$.

MICROMETRICAL OBSERVATIONS OF EROS MADE WITH THE FORTY-INCH REFRACTOR OF THE YERKES OBSERVATORY DURING THE OPPOSITION OF 1900-1901

E. E. BARNARD

In accordance with the scheme for a systematic series of observations of Eros, carried on in this country and in Europe, for a redetermination of the solar parallax, the following observations of the planet have been made with the filar micrometer of the forty-inch telescope.

A few explanations only are necessary for a proper understanding of the measures. The times of observation are referred to the 90° meridian and are $6^{\rm h}$ $0^{\rm m}$ $0^{\rm s}$ slow of Greenwich mean time. The last two columns contain the parallax factors in time and arc.

In the first column for Δa the uncorrected value is given; following this is the correction for refraction. The next column contains the value of the Δa corrected for refraction. The $\Delta \delta$ is treated in a similar manner. In the column immediately following the times is given the number of the comparison star. The magnitudes of these stars are sometimes indicated in this column; but an extra list gives the magnitudes of all the comparison stars. In the next column are the number of independent settings which go to make up the observation — they are generally five in number.

The corrected Δa are yet to be multiplied by $\frac{1}{15}$ sec δ . From the uncertainty of the positions of the comparison stars at present, it has not been thought desirable to reduce these Δa to time.

No correction has been applied to the micrometer screw for temperature, because both screw and tube are of steel, and hence have the same temperature coefficients which, acting in different directions, mutually cancel each other. A shortening or lengthening of the screw by cold or heat is compensated by a corresponding shortening or lengthening of the tube. Observations of Allas and Pleione of the Pleiades, carried through some five years, have shown that the change of the focal length of the great glass alone is to be taken into account, and only a small portion of this—the difference between the change in the tube and the change in the focus. From summer to winter the focus shortens from the action of the cold upon the lens. The shortening of the focus is greater than that of the tube, the extreme difference being about 0.3 inch, though the entire shortening of the focus is upward of three-fourths of an inch. This difference is the only temperature change that will affect the measures, and is easily taken into account by the following small table, which shows the effect of this difference between change of focus and tube for a measured distance of 300":

CORRECTIONS FOR FOCUS SCALE READINGS

Change in Scale (inch)		Correction
0.01	=	0:003
0.05	=	0.016
0.10	=	0.033
0.15	=	0.049
0.20	=	0.066
0.25	=	0.082
0.30	=	0.098
0.35	=	0.114

If the scale reading for focus has not been read, this table can be used in conjunction with the following table, which depends on the temperature, and which has been deduced from the measures of *Atlas* and *Pleione* referred to:

Temperature	Scale Reading	Temperature	Scale Reading
+ 80" (F.)	2,305 inches	$+ 25^{\circ} (\mathrm{F.})$	2.132 inches
+75	2.290	+ 20	2.116
+70	2.274	+ 15	2.101
+ 65	2.259	+ 10	2.085
+60	2.244	+ 5	2.069
+ 55	2.227	0	2.054
+ 50	2.212	– 5	2.039
+ 45	2.195	- 10	2.022
+40	2.180	 15	2.006
+35	2.163	-20	1.991
+ 30	2.148	-25	1.975

It is not recommended that this table be used for these observations of Eros, for reasons that will be given in a paper on the focal changes of the great telescope, to be published later.

The extreme change from the setting, 2.20 inches, to which the value of the micrometer screw has been adjusted, and which occurs at a temperature of 50° F., would scarcely exceed 0.10 inch throughout the observations of Eros, and would introduce an error of only something like 0.03 in the largest distance measured.

The value of one revolution of the micrometer screw used in these observations was determined from many measures of the difference of declination of Atlas and Pleione, Electra and Celaeno, θ' and θ^2 Tauri, etc. This value is 9.665 and was, as stated, determined for a temperature of 50° F. and a scale reading of 2.20 inches. Should it be thought desirable to correct any of these measures for focal change, it can easily be done from the material here given. So far no correction of this kind has been applied.

The micrometer, made by Warner and Swasey, is illuminated by a small electric lamp, the light from which (Burnham's method) is under instant control, so that the wires can be quickly made faint or bright at will. The current is turned off from this, except when the actual measures are made, so that no heating of the screw will occur. The measures were mainly made with a magnifying power of 460 diameters, but a power of 700 was frequently used when the distances were not too great and the atmosphere steady enough. In all the measures, to avoid parallax, the objects have been bisected in the center of the field by a quick adjustment of the eyepiece over the object.

The parallel to the equator was carefully determined at the point of observation. With this setting, the $\Delta\delta$ was measured; the wires were then revolved 90° in position angle and a set of $\Delta\delta$ obtained by direct measures. The micrometer was then revolved back through 90° and another set of $\Delta\delta$ secured. In the absence of a chronometer a good Howard watch was used for recording the observations. Its error was determined by comparison with the standard Howard clock of the Observatory. The time of each setting was recorded to the nearest second by the observer himself, who worked without any recorder.

The distances measured were limited to about 5' by the construction of the micrometer. Knowing the desirability of securing measures with as many comparison stars as possible, the planet was connected with every star directly available and not too faint. In making the measures it was thought best to finish, say, the settings for Δa for each of the stars in turn before revolving the wires for the $\Delta \delta$. This was done as quickly as possible with due reference to accuracy. The $\Delta \delta$ was then measured for all the stars, and the micrometer turned back again for the Δa . Though, by this method, the observations were not strictly symmetrical in some cases, it is thought that the additional advantage of so many comparison stars observed at the same time will more than balance this. The parallel was carefully determined several times each night, both at the point of observation and at the equator near the meridian.

The coincidence of the micrometer threads remained constant with scarcely any perceptible

change throughout the observations. The wires of the micrometer were frequently examined, to see that they were parallel to each other, and in the measures they were frequently interchanged, thus to a certain extent producing the effect of double distances.

It was necessary frequently to use very small comparison stars, because no others were within reach of the micrometer. After Eros passed from the Milky Way, the presence of considerable stars in the field became quite rare. Early notification of this fact was sent to Paris, and it is assumed that the photographic plates will contain the comparison stars down to at least the $12\frac{1}{2}$ magnitude. In some cases it was necessary to use 13m stars.

The corrections for refraction have been computed by Mr. H. A. Fischer, Jr. (who has also checked the reductions of the observations) from the formulæ

$$\Delta (a' - a) = s\chi \left[\tan^2 \zeta \cos (p - q) \sin q + \sec u \sin (p - u) \right], \tag{1}$$

$$\Delta \left(\delta' - \delta\right) = s\chi \left[\tan^2 \zeta \cos\left(p - q\right) \cos q + \sec u \cos\left(p - u\right)\right],\tag{2}$$

which are from Chauvenet's Spherical and Practical Astronomy. The original form of the first formula is multiplied by sec δ . This was omitted in the reductions to make the refraction correction in right ascension harmonious with the direct measures of Δa .

The refraction corrections were computed for a mean condition of the barometer without regard to the altitude of the Observatory (about 1,100 feet). The computations were then gone over, and where the error would amount to as much as 0.01 a special refraction was computed.

Besides the computation of the refractions, Mr. Fischer has done much of the work of compilation, and has otherwise given the most efficient aid in all the work. His skill has aided in the detection and elimination of many errors in the reductions.

A list of barometer and thermometer readings is given farther on. The barometer is located on the wall of the hall at the east end of the main building, some three hundred feet from the large telescope. During the winter this part of the building is heated by steam to a temperature of 70° or 75°, which will account for the relatively high readings of the attached thermometer.

The barometer and thermometer are read by one of the night employees of the Observatory at 9 p. m., 1 a. m., and 4 a. m. No record of the barometer reading is kept by the observer, because of the above three readings each night. The observer, however, always keeps a record at frequent intervals during the night of the thermometers inside and outside the dome.

In nearly all the observations the seeing was poor, and at times very bad. It is not believed, however, that this will materially affect the results, as every precaution was taken to eliminate its effects. In general it meant that a longer time must be devoted to an observation. The major portion of the measures fall in the worst possible season here for observation.

The work was much interfered with by clouds. Every available chance was taken advantage of by the observer to secure frequent measures of the planet during the night, on account of the request that as many observations as possible should be obtained each night to eliminate the effects of clouds at other points. When this was known, the observer began at once to devote as much time as possible throughout the night to observations of the planet.

Altogether there are 1,506 sets of measures, each depending on an average of five settings of the wires; making in all about 7,500 individual settings of the micrometer wires. Each night a diagram of the field of view was made to insure identification of the comparison stars. Copies of all these have been sent to Paris. All of the observations have also been sent to Paris in manuscript.

During the winter of 1901–2 the position of the great telescope was carefully determined from numerous stars, with the following results:

North end of polar axis too low, 0' 39" North end of polar axis too far west, 0' 45" In the winter of 1897 the position was found to be:

North end of polar axis too low, 0' 10" North end of polar axis too far west, 1' 0"

showing that the instrument has not materially changed its position in the past four or five years. The horizontal flexure of the tube has not yet been fully determined, though a number of observations have been made for this purpose. The results so far show it must be small. From this it will be seen that the position of the instrument itself can in no way seriously enter into the results as a sensible factor in the differential measures.

The following discordant observations have been noted:

1900, October 14: The observation at 17^h 10^m may be of a fixed star.

1900, October 17: The $\Delta \alpha$ at 11^h 49^m 11^s does not seem to be reconcilable with the comparison star. Possibly another star was used in this measure.

1900, October 26: 17^h 36^m 14^s. Observation uncertain, on account of clouds.

1900, November 1: This measure is not understood. Question if right comparison star; also question if $\Delta \alpha$ or $\Delta \delta$.

1900, November 3: This is not Eros.

1900. November 4: The observation at 18^h 6^m 51^s may be of *2 and an 11m star, instead of with Eros—there was such a star $1' \pm np$. Same date, 17^h 57^m 37^s . This observation may be uncertain. It does not reconcile closely with the others.

1900, November 26: 15^h 21^m 43^s and 16^h 10^m 16^s. One of these measures seems to be wrong. The last one is perhaps correct.

1900, December 2: $5^{\rm h}$ $42^{\rm m}$ $29^{\rm s}$. The $\Delta\delta$ alone was observed for this star.

1900, December 20: These measures made by glimpses through clouds and are an hour apart. It is questioned if they both refer to same star. A break in the clouds each time gave only a few moments' observation.

On January 16 the observation times are subject to some uncertainty. A half-hour after the last observation of Eros, while measuring the satellite of Neptune, the watch ran down from want of winding. No comparison had yet been made with the standard clock on that night. The watch had been keeping excellent time previous to this, and also after this date. It is believed the given times can be relied on to within 5° or less for this date. The night afterward the watch was intentionally allowed to go without winding, and when almost run down its rate did not materially change, so that it is believed the observation times are closely correct; but, of course, there must be some uncertainty attached to them.

The following errors of the watch will, it is thought, give confidence in the close exactness of the observation times:

ERRORS OF THE WATCH, 1901, JANUARY

8d 8h																									
12 - 7	21	-		-		-		-		6.4	0	46	16	10	39	-		-		-		-	**	-1	21
14 - 2	0		-				-		-	6.6	0	44	16	18	23		-		-		-	-	4.6	1	21
14 9	3	-		-		-		-		44	()	141													
11-11	11		-		-		+		-	44	()	431	17	6	4	-		-		-		-	4.6	1	19
14 17	23	-		~		-		-		6.6	()	42	17	7	32		-		-		-	-	6.6	ŧ	19
16 - 7	40		-		-		-	wa	ite!	h rai	n d	lown	17	8	59	-		-		-		-	4.6	1	$18\frac{1}{9}$
16 8	6	-		-		-		-		fast	10	$^{\rm n}20^{1s}_{2}$	17	1 t	6		•		-		-	•	4.6	1	19

MICROMETRICAL OBSERVATIONS OF EROS

	MICROMETRICAL OBSERVATIONS OF EROS										
Date—1900 90° Time	Comp. Star	No. Obs.	Measured	Ref.	Corrected Δa	Measured Δδ	Ref.	Corrected $\Delta \delta$	Parallax	Factors Δδ	
8 21 8 25 8 33 8 38 8 50 8 56 9 3 11 32 11 35 11 45 11 52 16 46 16 56	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 4 4 5 5 5 5 5 5 6 6 6 5 5	-0' 51'05 +0 5.70 -0 9.49 -0 11.12 -0 11.43 +1 13.19 +1 12.55	-0.03 +0.01 -0.03 -0.00 -0.00 +0.03 -0.02	-0' 51'08 +0' 5.71 -0' 9.46 -0' 11.12 -0' 11.43 +1' 13.22 +1' 12.57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.03 +0.03 +0.03 +0.04 -0.05 -0.05 0.00 0.00 +0.02	$\begin{array}{c} -0.16170 \\ +1.15.56 \\ \dots \\ +0.4.39 \\ +1.37.03 \\ -2.37.99 \\ \dots \\ -2.25.36 \\ -0.2.95 \\ 0.00 \\ \dots \\ +0.95 \\ 0.15.27 \\ \dots \\ +0.15.27 \\ \dots \\ \end{array}$	-06:13 -0.612 -0.594 -0.341 -0.311 +0.425 +0.458	+3.79 +3.71 +3.36 +3.26 +3.03 +2.76 +0.37 +0.34 +0.21 +0.93	
$\begin{array}{ccc} 12 & 55 \\ 13 & 1 \end{array}$	$ \begin{array}{c cccc} 19 & 1 \\ 13 & 2 \\ 7 & 1 \\ 43 & 2 \\ 0 & 1 \\ 7 & 2 \end{array} $	4 4 4 4 5	+0 2.62 +0 15.63	0.00	+0 2.62 +0 15.63	$\begin{array}{cccc} +0 & 23.66 \\ -0 & 35.76 \\ \hline & & \\ -0 & 53.91 \\ -0 & 14.46 \\ \end{array}$	$\begin{array}{c} +0.01 \\ -0.01 \\ \cdots \\ +0.01 \\ 0.00 \end{array}$	$\begin{array}{cccc} +0 & 23.67 \\ -0 & 35.77 \\ \hline & & \\ -0 & 53.92 \\ -0 & 14.46 \\ \end{array}$	-0.130 -0.119	$ \begin{array}{r} -0.37 \\ -0.39 \\ \cdots \\ -0.46 \\ -0.49 \end{array} $	
Oct. 4 11 59 12 6 12 13	$\begin{array}{c c} 3 & 10.3 \\ 50 & 10.3 \\ 6 & 10.3 \end{array}$	5 5 5	+0 23.61	+0.01	+0 23.62	$ \begin{array}{c cccc} -0 & 28.05 \\ \hline -0 & 14.38 \end{array} $	-0.01 0.00	$ \begin{array}{c cccc} -0 & 28.06 \\ $	-0.255	-0.07 -0.19	
7 32 7 41 7 47 7 54 7 59 8 5 8 11 8 32 12 36 12 42 13 4 13 10 16 41 16 45 16 50 16 54 17 1 17 5 17 9 17 15 17 20 17 20 17 31	23	556661446444444555555555555555555555555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.06 +0.03 -0.05 +0.02 -0.05 -0.05 -0.05 -0.03 +0.02 -0.04 +0.02 0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.06 -0.04 +0.05 -0.02 -0.04 0.00 -0.01 -0.02 +0.01 -0.05 -0.05	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.639 -0.632 -0.630 -0.125 -0.047 -0.504 +0.504 +0.516 +0.522 +0.529 +0.555 +0.562	$\begin{array}{c} +4.02 \\ +3.91 \\ \cdots \\ +3.45 \\ +3.35 \\ \cdots \\ +2.68 \\ -0.66 \\ -0.75 \\ \cdots \\ +0.91 \\ \cdots \\ +1.43 \\ +1.50 \\ \cdots \\ +1.79 \end{array}$	
7 22 7 30 7 35 7 42 7 47 7 53 8 0 8 32 8 36 8 42 8 47 14 11 14 15 14 20	30	6 5 6 6 6 6 6 7 5 5 5 6 4 5 5	+0 45.03 -0 44.34 +0 41.01 -0 48.70 +0 2.79 +0 31.82 -1 20.76	+0.04 -0.04 -0.04 -0.04 -0.01 +0.03 -0.02	+0 45.07 -0 44.38 +0 41.05 -0 48.74 +0 2.78 +0 31.85 -1 20.78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.04 \\ +0.02 \\ \cdots \\ -0.02 \\ +0.03 \\ \cdots \\ +0.01 \\ -0.02 \\ \cdots \\ 0.00 \\ 0.00 \\ \cdots \\ 0.00 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.646 -0.646 -0.641 -0.639 -0.605 -0.605	$\begin{array}{c} +4.15 \\ +4.00 \\ & \\ -3.58 \\ +3.48 \\ & \\ -2.55 \\ +2.47 \\ & \\ -0.76 \\ -0.74 \\ & \\ -0.68 \end{array}$	

MICROMETRICAL OBSERVATIONS OF EROS—Continued

Date — 1900 90° Time	Comp.	No. Obs.	$_{\Delta\alpha}^{\rm Measured}$	Ref.	Corrected $\Delta \alpha$	Measured Δδ	Ref.	Corrected	Parallax	
Oct.9 14h 32m 39 16 19 41 16 26 20 16 32 0 16 38 54 16 54 25 17 2 39 17 13 56 17 18 46 17 23 49 17 27 55 17 35 58 17 41 0	9 1 1 1 1 2 2 1 2 2 1 2 2 1 2 2 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-1' 23'04 -0 33.90 -0 36.61 +0 25.45 -0 46.82 +0 17.37 -0 48.49	-0.03 -0.02 -0.02 +0.03 -0.04 +0.03 -0.04	-1' 23:07 -0 33.92 -0 36.63 +0 25.48 	+0 31733 +0 41.58 -1 44.16 +1 16.98 -1 30.45 -1 12.04	0.00 0.00 -0.03 +0.01 -0.02	+0° 31°33 +0° 41°58 -1° 44°19 +1° 16°199 -1° 30°47 -1° 12°06	$ \begin{array}{r} $	+0.51 +0.68 +1.20 +1.39 +1.48 +1.87
Oct.10 12 49 59 12 55 42 13 2 29	12.7 12.7 12.7 12.7	4 4 4	+2 19.73	+0.04	+2 19.77	+0 45.58 +0 56.01	+0.01 +0.01	+0 45.59 +0 56.02	-0.062	-0.87 -0.90
Oct.11 6 44 16 6 49 24 7 1 10 7 5 44 7 9 36 7 25 48 7 30 8 7 34 56 7 38 41 7 50 11 7 54 50 8 0 57 8 4 51 13 47 57 13 53 3 13 59 1 14 7 18 16 32 10 16 35 31 16 46 5 16 46 5 16 55 51 17 4 45 17 9 1 17 13 53 17 17 13 2 17 23 2 17 26 36 17 31 37	11 22 21 12 12 12 12 12 12 12 12 12 12 1	554444555555544444444444444444444444444	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.17 -0.11 +0.13 -0.10 +0.12 -0.10 +0.01 -0.03 +0.03 -0.02 +0.03 -0.03 +0.03 -0.04	+2 45.78 -1 58.78 -2 5.02 +2 32.55 -2 10.66 -2 10.66 -1 30.79 +0 28.92 +0 0.64 -0 5.51 +0 18.00 -0 10.07	+0 6.23 0 50.49 -0 46.89 0 24.62 +0 51.55 +1 14.38 +0 2.46 -0 25.31 +1 10.24 1 55.56 +1 53.16 1 39.65 +2 9.73 1 21.69 +2 27.23 1 7.41	-0.17	+0 6.06	-0.649 -0.652 -0.653 -0.652 -0.645 -0.645 -0.150 +0.150 +0.522 +0.558 +0.579 +0.584	+4.58
Oct.14 7 17 43 7 21 40 7 26 27 7 29 27 7 32 6 7 34 51 16 57 54 17 3 12 17 9 38 17 14 33 17 23 27 17 28 32 17 34 47 17 40 1 17 45 44	1 2 2 1 1 2 2 1 1 2 2 2 1 2 2 2 2 2 2 2	4 4 4 4 4 4 5 5 5 5 5 4 4 4 4 7 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.05 -0.02 -0.02 -0.04 	-1 2.17 +0 12.84 +0 12.12 -1 4.86 +1 4.25 -0 49.55 +0 55.54	$\begin{array}{cccc} +0 & 27.61 \\ -2 & 53.37 \\ & & & \\ -1 & 38.08 \\ +1 & 22.26 \\ & & \\ -1 & 18.50 \\ +1 & 41.67 \\ & & \\ +1 & 54.35 \\ \end{array}$	+0.05 -0.08 -0.04 +0.05 -0.04 +0.06	+0 27.66 -2 53.45 -1 38.12 +1 22.31 -1 18.54 +1 41.73 +1 54.41	-0.665 -0.664 -0.663 -0.662 -0.593 +0.599 -0.623 +0.629	+3.49 +3.40 +1.32 +1.41 +1.83 +1.92 +2.26
Oct.15 6 41 51 6 45 35 6 50 28 6 55 46 7 0 52	1 2 2 1 2	5 1 1 5 5	-0 7.39 -1 11.35	0.00 -0.05	0 7.39 - 4 11.40	+0 56,30 +1 31.33 +1 35.23	+0.01 +0.11 +0.11	+0 56.34 +1 31.44 +1 35.31	-0.672 -0.672	$\begin{array}{c} +4.14 \\ +4.05 \\ +3.95 \\ \end{array}$

${\tt MICROMETRICAL~OBSERVATIONS~OF~\it EROS-Continued}$

	1	1			<u> </u>			1		
Date—1900 90° Time	Comp. Star	No. Obs.	Measured \(\Delta a \)	Ref.	Corrected \(\Delta a\)	Measured	Ref.	Corrected $\Delta \delta$	Parallax 2a	Factors
Oct.15 7h 8m 4s 7 12 30 7 18 23 7 22 15	1 2 2 1	4 4 5 5	-1' 17'22 -0 16.33	-0'04 +0.01	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+1' 18'02 +1 54.35	+0:04 +0.10	+1' 18'06 +1 54.45	-0 \$ 669 -0,668	+3'58 +3.47
Oct.16 6 38 8 6 42 42 6 47 51 6 51 58 6 56 34 7 0 34 7 5 6 7 10 45 7 15 55 7 20 25 7 25 0 7 29 37 7 33 45 12 36 28 12 50 24 16 45 38 16 45 38 16 50 4 16 55 48 17 7 23 28 17 13 4 17 17 54 17 23 28 17 27 15 17 35 54 17 40 58 17 50 27	1 2 1 2 1 3 3 1 2 2 3 1 7.5 5 7.5 1 1 2 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1	555555555555555555555555555555555555555	+1 32.42 -0 54.12 -0 55.87 +1 28.14 +1 2.98 -1 6.07 +0 53.66 +1 15.91 -0 27.06 +0 21.16 -1 17.52 +0 33.21 -1 28.58 +0 22.02 -1 39.37 -1 42.96	+0.09 -0.06 -0.06 +0.08 +0.05 -0.06 +0.04 +0.07 -0.01 +0.01 -0.06 -0.00 -0.00 -0.03 -0.09 -0.10	+1 32.51 -0 54.18 -0 55.93 +1 28.22 +1 3.03 -1 6.13 -0 53.70 +1 15.98 +0 27.07 +0 21.17 -1 17.58 +0 33.21 -1 28.65 +0 21.99 -1 39.46 -1 43.06	+0 37.77 -1 23.80 	+0.06 0.00 	+0 37.83 -1 23.80 	-0.675 -0.675 -0.675 -0.675 -0.675 -0.669 -0.667 -0.664 -0.006 -0.578 +0.578 +0.584 -0.620 -0.639 +0.642 +0.651	+4.12 +4.01
Oct.17 7 9 23 7 11 3 7 18 6 7 18 6 7 24 56 7 30 36 11 41 39 11 49 11 11 53 29 11 57 26 16 56 33 17 2 46 17 9 40 17 17 44 17 25 6 17 31 31 17 36 39 17 41 33 17 46 22	10.5 10.5 10.5 10.5 10.5 10.5 10 10 10 10 12 1 2 1 2 1	2 est. 3 5 4 5 4 5 6 6 5 6 8 5 6 3 5	+3 11.53 +3 8.58 -0 37.36 -0 9.19 +2 2.12 -3 3.43 +1 55.04 -3 9.28 +1 46.03	+0.14 +0.14 +0.14 -0.01 +0.07 -0.11 +0.08 -0.13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.14 -0.14 -0.13 -0.10 -0.06 -0.05 -0.05 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06	$ \begin{vmatrix} -0 & 1.62 \\ -0 & 0.14 \\ +0 & 2.12 \end{vmatrix} $ $ +0 & 15.48 \\ -3 & 13.35 \end{vmatrix} $ $ -3 & 3.94 \\ -0 & 58.73 \\ +0 & 41.55 \end{vmatrix} $ $ -0 & 58.73 \\ +0 & 41.55 \end{vmatrix} $ $ -1 & 8.44 \end{vmatrix} $	-0.675 -0.671 -0.167 -0.145 -0.622 -0.633 -0.639 +0.645	+3.28 +3.24 +3.18 -1.05 -1.05 -1.11 -1.49 +1.61 -1.230 +2.41
Oet.18 16 3 5 16 10 29 16 17 14	$9.2 \\ 9.2 \\ 9.2$	5 5 5	+2 14.59	+0.01	+2 14.60	+3 42.21 +3 51.53	+0.10 +0.10	+3 42.31 +3 51.63	+0.544	+0.56 +0.80
Oct.25 6 18 50 6 24 7 6 29 17 6 34 4 6 40 30 6 46 4 6 52 28 6 57 19 7 45 53 7 52 32 11 31 51 11 39 9	1 1 1 2 2 2 2 1 1 1 1	4 4 4 5 5 4 4 5 5 4 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.08 +0.08 -0.19 -0.19 -0.05 -0.02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+1 31.31 +1 40.39 -1 34.56 -1 24.50 +2 23.89 -2 24.79	-0.02 -0.01 +0.07 -0.04 -0.04	+1 31.29 +1 40.38 -1 34.49 -1 24.43 +2 23.93 -2 24.83	-0.710 -0.709 -0.701 -0.699 -0.637 -0.078	+3.30 $+2.94$ $+2.80$ $+2.43$ $+1.41$ -1.52

M1CROMETRICAL OBSERVATIONS OF EROS-Continued

Date-1900 90 Time	Comp. Star	No. Obs.	$_{\Delta\alpha}^{\rm Measured}$	Ref.	Corrected Δa	$_{\Delta\delta}^{\rm Measured}$	Ref.	Corrected $\Delta \delta$	Parallax _{\Delta a}	Factors $\Delta \delta$
Oct.25 11h 45m 21s 16 31 53 16 38 51 16 46 1 16 54 6 17 10 38 17 17 5 17 24 41 17 29 55 17 38 38 17 44 43 17 51 4	1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2	4 5 5 5 5 5 5 5 5 6 6 4	$\begin{array}{c} +2 & 34.81 \\ -2 & 6.34 \\ \vdots \\ +2 & 10.72 \\ -2 & 28.35 \\ \vdots \\ +1 & 54.60 \\ \end{array}$	+0.10 -0.08 -0.11 -0.11 -0.11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2' 17'52 +0 11.91 -0 49.01 +0 31.33 -0 30.35 +0 44.89 -0 16.73	-0.704 0.000 +0.05 -0.08 +0.07 -0.11 +0.08	-2 17756 +0 11.91 -0 48.99 	+06°,74 +0.682 +0.704 +0.706	$\begin{array}{c} -1.55 \\ +1.58 \\ +1.72 \\ \dots \\ +2.45 \\ +2.56 \\ \dots \\ +3.03 \\ +3.16 \\ \dots \end{array}$
Oct.26 5 55 45 6 1 18 6 7 47 6 14 10 6 21 8 6 27 9 7 38 2 7 44 30 7 48 40 7 53 22 9 0 2 9 3 49 11 56 26 12 1 51 12 7 32 12 11 51 12 7 32 12 11 56 6 35 3 16 41 41 16 50 49 17 2 35 17 7 59 17 36 14		555555555554444444444444444444444444444	+1 28.04 +1 15.93 -4 12.30 +0 23.10 +0 20.49 -0 28.81 -2 29.04 -2 32.70 -0 8.76 -0 37.71 -2 10.24	+0.03 	+1 28.07 +1 15.94 -4 12.47 +0 23.09 +0 20.48 -0 28.82 -2 29.08 -2 32.74 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.12 -0.11 +0.18 -0.02 -0.00 -0.02 -0.00 -0.03 -0.06 -0.03 -0.07 +0.01	-2 0.49 -1 53.52 +0 30.53 -1 1.27 -0 52.64 -0 15.18 +1 20.32 -1 27.61 -0 31.73 -1 43.17 -1 30.75 -0 14.73 +1 0.45	$\begin{array}{c} -0.716 \\ -0.713 \\ -0.711 \\ -0.639 \\ \cdots \\ -0.497 \\ +0.006 \\ +0.025 \\ \cdots \\ +0.681 \\ +0.685 \\ \end{array}$	+3.69 +3.42 +3.26 +1.431.591.58 +1.64 +1.75 +2.33 +2.44 +3.08
Oct.27 9 7 29 9 14 13 9 25 38 9 30 0 9 34 11 9 37 57 9 43 8 9 47 29	1 1 1 2 2 2 2 2	5 5 4 4 4 4 4 4	$ \begin{array}{cccc} -0 & 14.56 \\ -0 & 25.16 \\ +0 & 45.26 \\ +0 & 39.32 \end{array} $	-0.03 -0.03 $+0.03$ $+0.02$	-0 14.59 -0 25.19 +0 45.29 +0 39.34	$ \begin{array}{cccc} -1 & 56.21 \\ -1 & 46.80 \\ & & \\ +1 & 9.09 \\ +1 & 13.58 \end{array} $	-0.03 -0.03 -0.01 +0.01 +0.02	$ \begin{array}{c cccc} -1 & 56.24 \\ -1 & 46.83 \\ & & & \\ +1 & 9.10 \\ +1 & 13.60 \end{array} $	-0.451 -0.413 -0.400 -0.379	-0.39 -0.64 -0.79 -0.91
Oct.30 15 52 1 15 59 18 16 12 23	11 11 11	5 5 4	+1 10.47	+0.02	+1 10.49	+1 6.02 +1 13.39	+0.05 +0.05	+1 6.07 +1 13.44	+0.667	+1.25 $+1.71$
Nov.1 5 55 12 6 6 2 21 6 6 6 28 6 10 14 6 13 46 6 17 37 6 21 32 6 30 37 6 36 46 6 42 40 6 51 11 6 56 31 8 10 40 8 15 32 8 20 22 8 26 7 8 31 8 8 35 51	1 1 2 3 3 2 2 3 1 4 4 4 4 1 3 2 2 1 3 2 2 1 3 2 2 2 1 3 2 2 2 2 2	445555555555555555555555555555555555555	-0 42.59 +0 26.48 +0 10.69 +0 7.85 +0 18.34 -0 11.96 -2 32.02 -1 24.59 -1 41.02	-0.04 +0.01 +0.03 +0.03 +0.04 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0 25.82 +1 30.22 -1 54.22 -0 12.89 +3 44.51 +3 51.84 +0 23.45 +2 13.17 -1 10.91	+0.02 +0.02 +0.02 +0.07 -0.08 +0.08 +0.06 +0.001	-0 25.80 +1 30.24 -0 12.87 +3 44.58 +3 51.92 +0 23.49 +2 13.23 +1 10.90	-0.725 -0.724 -0.721 -0.719 -0.717 -0.692 -0.683 -0.683 -0.519 -0.507 -0.495	+2.84

${\tt MICROMETRICAL~OBSERVATIONS~OF~\it EROS-Continued}$

Date—1900 90° Time	Comp. Star	No. Obs.	Measured Δa	Ref.	Corrected Δa	Measured	Ref.	Corrected Δδ	Parallax Δα	Factors
Nov. 1 8h 43m 44s 8 47 49 8 50 55 8 54 29 8 57 17 9 0 21 16 46 42 16 51 45 16 58 49 17 5 10 17 12 38 17 17 48 17 35 34 17 49 53 17 56 9 18 1 29	1 3 2 1 2 1 2 1 2 1 2 3 3 3 3	4 4 4 4 4 4 5 5 5 5 5 6 6 6 6	-2' 45'47 -1 37.28 -1 52.15 	-0:05 0.00 -0.05 -0.10 -0.12 -0.14 -0.15 +0.10 	-2' 45/52 -1 37.28 -1 52.20 	+0 38/53 +2 28.09 -0 57/25 -1 25.00 +2 39/92 -1 18/52 +2 46/34 -0 18/12	-0.17 -0.02 -0.10	+0 38/58 +2 28.15 -0 57/25 -1 25/13 +2 39/93 -1 18.69 +2 46/32 -0 18.02	-0:476 -0.466 -0.453 -0.728 +0.730 +0.733 +0.732 +0.728 +0.728	-0.765 -0.69 -0.73 +2.65 +2.76 -3.24 +3.36
Nov. 2 5 42 43 55 47 35 55 10 55 55 10 55 55 10 55 55 10 55 55 55 10 6 2 51 6 12 55 6 16 12 55 6 16 12 55 6 16 12 55 6 35 52 6 39 22 8 9 22 8 13 44 88 18 42 8 23 16 8 27 50 8 31 37 8 41 3 8 44 33 12 17 3 12 24 8 12 31 15 12 35 53 12 39 46 12 24 8 12 31 15 12 35 53 12 39 46 12 24 8 12 17 4 41 17 10 52 17 4 41 17 10 52 17 4 41 17 10 52 17 15 23 17 19 46 17 23 54 17 23 54 17 23 54 17 50 29 17 42 35 17 47 23 17 55 29 17 55 29 17 55 18 4 24 18 8 0	111212111133331313133144121122112123121332112332122	664554466555555555555555555555555555555	+0 43.86 +0 40.94 -0 39.14 	+0.03 +0.03 -0.03 -0.03 -0.02 +0.02 +0.07 +0.07 +0.07 +0.04 +0.05 +0.05 +0.05 +0.05 +0.05 +0.05 +0.06 -0.06 -0.09 -0.09	+0 43.89 +0 40.93 -0 39.17 	-0 1.56	-0.03	-0 1.59 +0 3.83 -0 0.74 +0 9.62 +0 10.48 +2 14.93 +2 16.41 +0 46.71 +2 49.27 -1 36.35 -0 32.12 -0 31.13 -1 33.25 -0 37.96 +0 26.53 -1 8.22 -0 30.00 +0 33.92 -1 0.62 -1 0.62 -1 0.62 -1 0.62 -1 35.93 -0 26.04 +0 38.95	-0.731 -0.729 -0.727 -0.720 -0.717 -0.696 -0.693 -0.514 -0.502 -0.460 +0.187 +0.006 -0.460 +0.187 +0.736	+2.95
Nov.3 5 39 59 5 44 31 5 49 9 5 52 5 57 37	1 1 1 1 2	6 6 5 5 6	-0 2.97 -0 6.17	+0.01 +0.01	-0 2.96 -0 6.16	+0 38.91 +0 39.91 -2 4.04	+0.02 +0.02 +0.07	+0 38.93 +0 39.93 -2 3.97	-0.733 -0.731	+2.68 +2.61 +2.46

MICROMETRICAL OBSERVATIONS OF EROS—Continued

Date—1900 90° Time	Comp. Star	No. Obs.	$_{\Delta a}^{\rm Measured}$	Ref.	Corrected Δa	Measured 28	Ref.	Corrected	Parallax	Factors
Nov. 3 6 ^h 2 ^m 27 ^h 6 11 37 6 16 46 6 20 24 6 24 48 6 28 7 7 38 10 7 43 5 7 46 56 7 52 10 7 552 10 7 552 10 8 4 41 8 20 15 8 28 36 8 28 36 8 32 35 10 52 46 10 59 17 11 5 32 11 10 56 11 18 34 11 31 43 16 12 31 11 10 56 11 18 34 11 31 43 16 12 31 17 37 17 30 35 17 37 39 28 17 47 37 17 50 39 17 39 28 17 47 37 17 50 39 17 54 1 17 59 49 18 3 51	2 2 2 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1	6 6 6 6 5 5 7 4 16 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	-0' 14'45 -0 17.52 -0 30.38 -0 32.77 -1 43.67 -1 37.35 -1 44.35 -2 12.32 -2 6.30 -1 17.72 -4 18.67 -1 37.25 +2 46.76 -0 5.19 +2 39.22	-0.08 -0.08 -0.09 -0.01 -0.02 -0.06 -0.06 -0.02 -0.08 -0.09	-0 1453 -0 17,60 -0 30.58 -0 32.78 	-2 2577	+0.06	-2' 2'51 	-0.5717 -0.714 -0.709 -0.706 -0.706 -0.564 -0.561 -0.542 -0.476 -0.476 -0.476 -0.476 -0.725 +0.728 +0.730 +0.733 +0.733 +0.734 +0.732 +0.730 +0.732 +0.732 +0.732 +0.727	+2:37 +1:87 +1:81 +1:69 +1:48 +1:40 -1:76 -1:76 -1:77 -1:76 +2:24 +2:35 -3:61 +3:68 +3:77 -3:44 +4:43 +4:49 +4:56
18 6 36 Nov. 4 6 2 45 6 6 40 6 11 7 6 14 55 6 20 4 6 23 22 6 28 34 6 32 6 7 9 47 7 14 53 7 21 2 7 25 30 7 35 56 7 41 0 7 47 58 7 51 40 7 55 30 7 55 30 7 55 30 7 55 30 8 6 16 8 10 39 8 16 26 8 20 25 8 24 47	1 2 1 2 1 2 3 4 3 4 1 1 3 4 1	3 55665666655555454545558655555	-1 8.31 -2 9.21 -2 31.02 -2 16.07 -2 37.06 -3 42.47 +3 1.62 -3 14.58 -3 37.95 -3 -3 52.86	-0.06 -0.09 -0.11 -0.09 -0.11 -0.05 -0.09 -0.10	-1 8.37 -2 9.30 -2 31.13 -2 16.16 -2 37.77 -3 14.67 -3 14.67 -3 38.05 -43 2.27 +2 4.95 -3 52.95	-0 30,09 -1 4.12 -0 23,83 -0 58,03 +1 24,18 -1 55,47 -0 3,91 -0 38,09 -0 36,94 -0 1,25 -1 37,73 -1 42,47	+0.06 +0.06 +0.06 +0.06 -0.05 -0.09 +0.05 +0.05 +0.05 -0.06 -0.06	-0 30.03 -1 4.06 	+0.716	+2.21 +2.12 +1.65 +1.59 +0.80 +0.70 +0.08 +0.01 -0.06 -0.12 -0.30

MICROMETRICAL OBSERVATIONS OF EROS—Continued

Date—1900 90° Time	Comp.	No. Obs.	Measured 2a	Ref.	Corrected Δa	Measured	Ref.	Corrected 28	Paralla x	Factors
Nov. 4 8h 30m 16s 10 26 35 10 30 43 10 35 44 10 40 12 16 27 51 16 32 39 16 37 24 16 49 20 15 55 14 17 0 41 17 8 46 17 15 26 17 22 5 17 27 26 17 42 34 17 47 45 17 53 21 17 57 37 18 2 23 18 6 51 18 11 32	243431221121221122221112211122111	555555555465555665656572	-4' 17'76 +0 19.74 +1 3.06 +0 1.32 +2 4.33 -0 7.94 +1 56.010 43.05 +1 21.60 +1 10.77 -1 1.15 -1 3.54	-0.06 	-4' 17'82 +0 19.74 +1 3.08 +0 1.37 +2 4.39 -0 7.90 +1 56.08 -0 43.06 +1 21.67 +1 10.83 -1 1.20 -1 3.60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0.02 + 0.04 - 0.05 + 0.12 + 0.12 - 0.06 - 0.08 + 0.12 + 0.13 - 0.11 + 0.14 + 0.14	$\begin{array}{c} -1' \ 12'75 \\ +2 \ 9.21 \\ \vdots \\ -2 \ 41.07 \\ +1 \ 13.00 \\ +1 \ 13.62 \\ -2 \ 39.05 \\ \vdots \\ -2 \ 35.32 \\ +1 \ 18.96 \\ +1 \ 19.81 \\ -2 \ 33.04 \\ \vdots \\ +1 \ 39.47 \\ \vdots \\ \end{array}$	-0:470 -0.100 -0.087 -0.735 +0.735 +0.739 +0.739 +0.727 +0.717 +0.713 +0.713 +0.709	-1.71 -1.73 -1.73 $+2.46$ $+2.60$ $+2.71$ $+2.81$ -1.73 -1.7
Nov. 5 5 37 14 5 41 22 5 45 56 5 49 6 5 53 34 5 57 24 6 2 38 6 6 32 6 28 11 6 32 47 7 11 50 7 17 0 7 17 0 7 22 7 7 26 41 7 32 57 7 38 42 7 45 47 7 51 58 10 33 4 10 40 40 10 45 36 10 50 58	1 1 2 3 4 4 4 3 5 5 5 6 6 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6	5665565555555555555555555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.09 +0.10 +0.06 +0.17 +0.04 +0.11 +0.12 +0.16 +0.02 +0.02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 0.07 + 0.02 + 0.06 - 0.10 - 0.00 - 0.04 - 0.04 - 0.00 - 0.00 + 0.03	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.732 -0.730 -0.715 -0.712 -0.690 -0.599 -0.588 -0.548 -0.067 -0.051	$\begin{array}{c} +2.48 \\ +2.41 \\ +2.29 \\ +2.23 \\ & \\ \end{array}$ $\begin{array}{c} +1.44 \\ +0.65 \\ +0.54 \\ & \\ \end{array}$ $\begin{array}{c} +0.14 \\ +0.02 \\ -1.77 \\ & \\ \end{array}$
Nov.6 10 23 8 10 28 2 Nov.7 13 8 1	$\begin{array}{c} 12 \\ 12 \\ \end{array}$	5 5 5	+1 11.76	+0.02	+1 11.78	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0.02 $+0.01$	+1 24.08 $-0 15.61$	_0.087	-1.91 -0.87
13 10 56 13 14 3 13 16 53	1 2	5 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.04 $+0.07$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} -2 & 16.72 \\ \dots & \dots & \dots \end{bmatrix}$	- 0.02	-2 16.74 	+0.442 $+0.449$	-0.83
Nov.8 5 50 47 5 53 47 5 57 2 6 0 29 6 3 39 6 6 28 6 10 39 6 13 53 6 16 43 6 21 28 6 27 46 7 1 24 7 5 8	1 2 3 1 2 3 1 2 3 1 2 3 3 1	5555555555555	+0 46,69 -0 35,46 +0 48.14 	+0.01 -0.01 +0.05 0.00 -0.02 +0.03 	+0 46.70 -0 35.47 +0 48.19 	-0 47.38 +0 28.75 +0 54.14 -0 45.62 +0 30.50 +0 55.80 +0 58.74 -0 41.74	- 0.02 + 0.03 - 0.00 - 0.02 + 0.03 - 0.00 + 0.01 - 0.01	-0 47.40 +0 28.78 +0 54.14 -0 45.64 +0 30.53 +0 55.80 +0 58.75 -0 41.75	-0.712 -0.709 -0.705 -0.691 -0.686 -0.683	$\begin{array}{c} & \cdots & \cdots \\ +1.74 \\ +1.68 \\ +1.62 \\ \cdots & \cdots \\ +1.28 \\ +1.22 \\ +1.16 \\ +0.49 \\ +0.37 \end{array}$

${\tt MICROMETRICAL~OBSERVATIONS~OF~\it EROS-Continued}$

Date-1900 90 Time	Comp. Star	No. Obs.	$_{\Delta a}^{\rm Measured}$	Ref.	Corrected	$_{\Delta\delta}^{\rm Measured}$	Ref.	Corrected $\Delta \delta$	Parallax	$_{\Delta\delta}^{\rm Factors}$
Nov.8 7h 9m 155 7 13 38 7 17 10 7 21 1 7 26 51 7 30 36 7 44 16 7 47 53 7 52 24 8 9 28 8 12 4 8 15 42 8 8 11 11 25 48 11 12 24 11 25 48 11 33 1 11 38 9 16 16 19 16 21 42 16 26 22 16 30 28 16 35 12 16 57 56 17 2 42 17 10 17 17 30 59 17 52 6	21 3 21 23 1 3 1 3 1 3 1 3 1 1 1 1 1 1 1	5556555554444555555555555555555555	-0' 18'45 +0 15.11 -1 44.41 -0 39.59 -2 9.05 -1 2.99 -0 58.82 -3 37.99 -0 3.15 -0 13.48 -0 54.89 -1 10.65	-0.02 +0.02 -0.03 -0.00 -0.04 -0.03 -0.01 -0.06 -0.07 -0.02 -0.03 -0.06 -0.08	-0' 18'47 +0 15.13 -1 44.44 -0 39.59 -2 9.09 -1 3.02 -0 58.83 -3 38.06 -0 3.17 -0 13.51 -0 54.95 -1 10.73	+0 34 23 -0 40.31 +0 35.80 +1 1.13 -0 36.67 +1 4.18 -0 29.57 +1 11.55 -0 29.18 +1 11.99 +1 13.05 +1 12.48 +1 12.19 -1 23.66 +1 10.69	+0.04 0.00 +0.01 +0.03 -0.02 +0.01 +0.03 -0.02 +0.01 -0.02 +0.01 -0.02 -0.02 -0.01 -0.01 -0.02	+0° 34°27 -0° 40°31 +0° 35°84 +1° 1.16 -0° 36°67 +1° 4°21 -0° 29°59 +1° 11°56 -0° 29°20 +1° 12°00 +1° 12°00 +1° 12°50 +1° 12°50 +1	-0:591 -0:583 -0:575 -0:525 -0:515 -0:506 -0:464 -0:457 -0:739 +0:739 +0:742 +0:737 +0:726 +0:687	+0.34
Nov.10 5 44 11 5 51 31 5 56 36 6 3 48 7 16 28 14 56 13 15 2 56 15 15 50 15 37 52 16 41 45 16 49 30 16 54 1 16 57 57 17 3 9	1 1 1 1 1 1 1 2 2 1 1 3 2 1 3	5364365555555666	-1 19.79 -4 29.20 -0 16.40 -0 27.38 -0 13.71 -1 1.83 -1 35.20 -0 40.76	-0.15 -0.15 -0.00 -0.00 -0.00 -0.01 -0.07 -0.05	-4 19.94 -4 29.35 -0 16.40 -0 27.38 -0 13.71 -1 1.87 -1 35.27 -0 40.81	-0 0.06 -0 0.24 -0 0.26 -0 32.77 -0 32.96 0 48.81 -0 49.63 +1 8.12	+0.13 +0.12 +0.08 -0.01 -0.01 -0.08 -0.11 0.00	+0 0.07 -0 0.12 -0 0.18 -0 32.78 -0 32.97 -0 48.89 -0 19.74 +1 8.12	-0.706 -0.693 +0.688 +0.703 +0.723 +0.742 +0.740 +0.739	+1.67 +1.39 -0.01 +1.32 +1.32 +1.32 -4.00 +4.09 +1.21
Nov.11 6 28 13 6 33 3 6 37 10 6 41 33 6 45 59 6 49 17 7 14 5 7 18 59 7 23 34 7 46 23 7 59 37 8 5 13	9.6 9.6 9.6 9.6 9.6 9.8 9.8 9.8 9.8 9.8 9.8	555555555555555555555555555555555555555	$\begin{array}{cccc} -1 & 37.64 \\ \hline -1 & 41.79 \\ -1 & 47.96 \\ \hline \\ -2 & 13.56 \\ -2 & 17.26 \\ \hline \\ -2 & 43.66 \\ -2 & 49.50 \\ \hline \end{array}$	-0.04 -0.04 -0.01 -0.05 -0.05 -0.05 -0.05	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+0 35.15 +0 31.22 +0 34.19 +0 33.30 +0 32.42 +0 31.94 +0 30.04	+0.05 +0.01 +0.04 +0.01 +0.01 +0.04 	+0 35.20 +0 34.26 +0 31.23 +0 33.34 +0 32.46 +0 31.98 +0 30.08	-0.640 -0.624 -0.617 -0.551 -0.540 -0.489 -0.469	+0.68 +0.43 +0.37 +0.01 -0.22 -0.43
Nov.13 5 48 40 5 53 26 6 0 33 6 3 57 6 10 11 6 14 4 6 19 3 6 22 20		66555555	-2 40.96 3 45.45 	-0.11 -0.07 -0.11 -0.07	-2 41.07 -3 15.52 -2 57.80 -3 30.90	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.04 +0.01 +0.01 +0.10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.678 0.671 -0.647 0.643	$\begin{array}{c} +1.12 \\ +1.06 \\ +0.76 \\ +0.68 \end{array}$

MICROMETRICAL OBSERVATIONS OF EROS—Continued

7	la	N.	1							
Date—1900 90° Time	Comp. Star.	No. Obs.	Measured \(\Delta \alpha \)	Ref.	Corrected \(\Delta a\)	Measured Δδ	Ref.	Corrected $\Delta \delta$	Parallax Δα	Factors 28
Nov.13 6h 52m 45s 6 56 26 7 4 5 7 50 51 7 54 455 7 50 51 7 54 455 7 50 51 7 54 45 8 3 21 8 49 19 8 55 8 9 1 21 58 9 17 50 9 23 16 9 28 39 11 24 26 11 29 51 11 35 56 11 40 25 11 45 22 11 55 31 11 55 31 11 55 31 11 55 31 11 55 31 11 55 31 11 55 31 11 55 31 11 55 31 11 55 31 11 55 31 11 55 31 11 55 31 11 55 56 23 16 2 4 16 8 34 16 14 9 16 20 35 16 20 35 16 32 7 16 35 50 16 54 26 16 35 50 16 54 26 16 35 50 16 54 26 16 35 50 16 54 26 16 35 50 16 54 26 16 35 50 16 54 26 16 35 50 17 5 58 17 20 1 17 30 1 17 30 1 17 30 1 17 30 1 17 30 1 17 55 15 18 4 11 18 8 13 5 18 16 36 16 36 16 36 17 58 15 18 4 11 18 8 13 5 18 16 36 16 36 16 36 17 58 15 18 14 11 18 8 13 5 18 16 36 16 36 16 36 16 36 16 36 17 58 15 18 16 36 16 36 16 36 16 36 16 36 17 40 36 17 40 36 17 40 36 17 58 15 18 18 13 5 18 16 36 18 18 18 13 5 18 16 36 18 18 18 18 18 18 18 18 18 18 18 18 18	1211211211211211211211211211212121212121	553555555555555555555555555555555555555	-3' 37'96 -4 13.66 -4 48.51 -4 10.53 -1 44.29 +3 52.80 +0 50.23 +2 16.80 -1 30.65 +1 19.05 -1 30.65 +1 3.68 -1 54.34 -0 39.74 -1 19.05 -1 54.34 -0 39.74 -1 -1 54.34 -1 3.68 -1 54.34 -1 54.34 -1 3.68 -1 54.34 -	-0.711 -0.11 -0.08 -0.02 +0.10 -0.07 +0.01 +0.05 -0.08 +0.07 -0.09 +0.08 -0.08 +0.07 -0.09 -0.08 -0.01 -0.09 -0.09 -0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01	-3 38'07 -4 13.77 -4 48.59 -2 1.84 +4 10.63 -1 44.31 +3 52.87 +0 50.24 +2 16.85 -1 30.74 +1 19.12 -1 30.74 +1 3.76 -1 54.46 +0 39.79 -0 18.58 -0 5.80	$\begin{array}{c} -1' \ 28'49 \\ +1 \ 32.87 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	+0.03 +0.09 	$\begin{array}{c} -1 & 28 & 46 \\ +1 & 32.96 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-0°549 -0.434 -0.424 -0.231 -0.216 -0.160 -0.144 +0.225 +0.241 -0.740 +0.740 +0.737 +0.736 -0.736 -0.740 +0.740	+0.12 +0.05
Nov.15 6 13 25 6 17 6 6 21 36 6 25 19 6 49 14 6 53 1 6 56 56 7 0 18 7 4 42 7 8 16 7 40 54 7 44 27 7 48 32 7 51 53 7 55 45	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	555555666666555555	+0 36.60 +1 19.30 	0.00 +0.06 -0.02 +0.03 +0.01 -0.03	+0 36.60 +1 19.36 	-1 11.74 +1 6.97 -1 18.10 +1 0.95 -1 21.56 +0 57.65 -1 29.86 +0 48.63 	-0.03 0.00 -0.02 0.00 -0.02 +0.01 -0.02 +0.01 -0.01	-1 11.77 +1 6.97 -1 18.12 +1 0.95 -1 21.58 +0 57.66 -1 29.88 +0 48.64 -1 46.08	+0.619 -0.612 -0.534 -0.525 -0.412 -0.398	+0.49 +0.41 -0.02 -0.07 -0.26 -0.33 -0.73 -0.85 -0.99
Nov.21 5 33 26 5 36 52 5 40 31 5 47 5 5 51 5 5 54 44 6 0 16	1 2 3 1 2 3 1	4 5 5 5 5 5 5 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.02 -0.05 -0.02	$\begin{array}{cccc} +0 & 57.26 \\ -1 & 39.46 \\ -1 & 25.64 \end{array}$	$ \begin{array}{ccccc} -0 & 10.62 \\ +0 & 1.04 \\ +0 & 56.71 \\ & & & \\ -0 & 22.70 \end{array} $	$ \begin{array}{r} -0.02 \\ +0.03 \\ +0.04 \\ \dots \\ -0.02 \end{array} $	$ \begin{array}{ccccc} -0 & 10.64 \\ +0 & 1.07 \\ +0 & 56.75 \\ & & & \\ -0 & 22.72 \end{array} $	-0.592 -0.585 -0.578	+0.89 +0.82 +0.74 +0.39

${\tt MICROMETRICAL\ OBSERVATIONS\ OF\ } EROS-Continued$

			CROMETRI	CALL OB!		5 OF BROK	- Conta	(At the		
Date - 1900 90° Time	Comp. Star	No. Obs.	$_{\Delta\alpha}^{\rm Measured}$	Ref.	Corrected Δa	$_{\Delta\delta}^{\rm Measured}$	Ref.	Corrected $\Delta \delta$	Parallax Δa	Factors $_{\Delta\delta}$
Nov.24 6h 4m 25 6 8 4 6 12 56 6 17 56 6 24 0 6 29 44 7 11 56 7 17 8 7 27 7 7 31 54 7 36 29 7 42 50 7 47 56 7 52 25 8 14 13 8 20 8 8 25 27 16 46 13 16 54 40 17 6 15 17 45 42 17 45 42 17 45 42 17 26 21 17 33 30	23 4 4 4 4 1 2 3 1 2 3 1 2 3 1 1 1 1 1 1 1 1 1 1 1	655441555555555555555555555555555555555	-4' 30'89 -4 31.41 -0 3.97 -2 40.92 -2 27.47 +2 8.48 +1 56.03 +1 47.91	-0.10 -0.10 -0.10 -0.01 -0.07 -0.05 	-4 30799 -4 34.51 -0 3.98 -2 40.99 -2 27.52 +2 8.62 +1 56.15 +1 48.01	-0 11/86 +0 44.09 +0 39/93 	+0.03 +0.04 +0.08 	-0° 11′83 +0° 44′.13 +0° 40′.01 	-0:532 -0:519 -0:365 -0:354 -0:340 +0:666 +0:639 +0:616	+0.32 +0.25 +0.16
Nov.22 7 25 16 7 30 39 7 37 13 7 42 39 7 49 39 7 55 24 8 22 39 8 27 40 8 34 11 8 38 46 5 8 51 50 15 52 45 15 54 45 16 9 56 16 46 58 16 23 24 16 29 9 16 37 55 16 41 40 16 49 19 16 49 19 16 49 19 16 49 19 16 49 19 16 49 19 16 49 19 16 49 19 16 49 19 16 49 19 16 49 19 16 49 19 16 49 19 16 49 19 16 49 19 16 49 19 16 57 6 1 17 14 22 17 19 35 17 26 17	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	6555665555566655555555555556	-1 27.74 -0 30.39 	-0.04 -0.03 -0.04 -0.03 -0.04 -0.05 -0.04 +0.10 +0.11 -0.02 -0.02 -0.018	-1 27.78 -0 30.42 -2 1.81 -1 3.64 -1 3.64 -1 3.61 -0 45.79 +1 13.72 +1 11.43 -1 3.41 -1 3.41 -1 3.41	-1 24.15 -2 28.56 	-0.01 -0.01 -0.01 -0.01 -0.02 -0.04 -0.03 -0.05 +0.24 +0.10	-1 24.16 -2 28.60 -2 41.25 -1 54.41 -2 58.35 -2 7.01 -3 11.34 +4 22.60 +3 40.03 -44 7.81 +3 24.73 -54.41 -7.81 -7.	-0.320 -0.303 -0.303 -0.152 -0.140 -0.704 +0.701 -0.687 +0.683 +0.678 +0.654 +0.618	$ \begin{array}{c} -0.92 \\ -0.99 \\ \cdots \\ -1.17 \\ -1.22 \\ -1.41 \\ -1.44 \\ \cdots \\ -1.55 \\ +4.25 \\ +4.27 \\ \cdots \\ +4.79 \\ +4.92 \\ \cdots \\ +5.39 \\ +5.48 \\ \cdots \\ +5.99 \\ +6.11 \\ \cdots \end{array} $
Nov.23 9 45 17 9 52 12 9 57 3 10 2 31	4 4	5 5 5 5	+0 9.29 +0 6.63	+0.01 +0.01	+0 9.30 +0 6.61	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.01 -0.01	-2 6.90 -2 17.29	+0.108 +0.121	-1.51 -1.16
Nov.25 6 33 28 6 37 24 6 42 59 6 47 10 6 53 34 6 57 1 7 4 36 7 5 9 7 45 57 7 50 15 7 56 55 8 1 21	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-4 18.69 +1 21.93 -1 24.18 +1 17.39 -4 45.26 +3 46.15	-0.40 +0.10 -0.09 +0.09 	-1 18.79 +1 22.03 -1 24.27 +1 17.18	-0 18.04 +0 19.62 	+0 01 -0 03 +0.03 -0.03 +0.01 -0.02	-0 18.00 +0 49.59 	-0.413 -0.403 -0.388 -0.378 -0.241 -0.199	-0.35 -0.41 -0.71 -0.76 -1.15 -1.18

MICROMETRICAL OBSERVATIONS OF EROS -- Continued

				1	1	1				
Date—1900 90° Time	Comp. Star	No. Obs.	Measured Δa	Ref.	Corrected	Measured Δδ	Ref.	Corrected $\Delta\delta$	Paralla x	Factors
Nov.25 8h 7m 5 8 11 47 8 42 22 8 47 1 8 54 18 8 59 39 9 6 42 9 12 35 15 18 53 15 25 7 15 39 22 15 49 14 15 54 47 16 10 52 16 16 57 16 26 6 16 31 23 16 43 30 16 50 17 16 55 15 17 3 30 17 8 50 17 22 2 17 26 36 17 39 37 17 51 46 17 58 32	1211211211211213131313131313313343434343	5555555665555555555555555555555555555	$\begin{array}{c} -5, 22.89 \\ +3, 18.80 \\ \\ -0, 21.58 \\ +2, 19.25 \\ \\ +2, 19.25 \\ \\ +1, 34.02 \\ \\ \\ +1, 25.36 \\ \\ \\ +1, 25.36 \\ \\ \\ \\ +1, 25.36 \\ \\ \\ \\ +1, 25.36 \\ \\ \\ \\ \\ \\ +1, 25.36 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-0.709 +0.06 -0.02 +0.10 -0.19 +0.18 -0.24 +0.24 -0.30 +0.32 -0.38	-5' 22'98 +3 18.86 -0 21.60 +2 19.35 +1 34.20 +1 25.60 +1 42.67 +1 14.53 +1 30.16	-1' 16'08 -0 9.07 -1 38.46 -0 31.72	0.000 -0.022 -0.012 -0.011 -0.16 +0.266 -0.277 +0.344 -0.311 +0.399 -0.455 +0.62 -0.627 -0.627 -0.838 -0.627 -0.627 -0.627 -0.627 -0.627 -0.638 -0.627 -0.638 -0.638 -0.648 -0.648 -0.658 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0:040 -0:022 +0:698 +0:695 +0:695 +0:629 +0:624 +0:581 +0:574 +0:512	$\begin{array}{c} -1.29 \\ -1.32 \\ -1.44 \\ -1.45 \\ \dots \\ -1.46 \\ +3.96 \\ +4.09 \\ \dots \\ +4.62 \\ +4.75 \\ +5.07 \\ +5.22 \\ \dots \\ +5.64 \\ +5.77 \\ \dots \\ +6.16 \\ +6.28 \\ \dots \\ +6.72 \\ +6.83 \\ +7.03 \\ \dots \\ \dots \end{array}$
Nov.26 5 35 54 5 42 22 5 5 48 21 5 52 28 5 56 49 6 7 5 56 11 9 6 19 51 6 24 30 6 28 50 6 7 13 46 7 19 3 7 25 19 7 30 16 7 37 25 19 7 30 16 7 37 25 19 17 30 16 12 31 8 15 45 12 14 41 12 22 16 12 31 8 12 24 40 12 51 57 12 59 14 15 15 21 43 15 27 23 15 33 39 15 39 29 15 44 26 16 16 16 16 16 16 16 16 16 29 49 16 33 57 16 38 10 16 49 26	4143134134114414111221111221562156215622	555555555555555555555566655555555555555	-2 58.77 -2 34.21 -2 27.31 -2 46.02 -3 14.37 -2 40.60 -3 41.38 -3 7.49 -3 27.90 -2 59.29 -5 25.74 -4 5.72 +4 36.42 +0 1.09 +3 39.90 -0 15.06 -4 28.56 -4 37.09	-0.15 -0.13 +0.01 -0.13 -0.13 -0.13 -0.13 -0.00 -0.11 -0.03 -0.15 -0.15 -0.22 +0.01 -0.25 +0.01 -0.33 -0.38	-2 58.92 -2 34.34 -2 27.30 -2 46.15 -3 14.50 -2 40.60 -3 41.49 -3 7.52 -3 27.95 -2 59.41 -5 25.89 -4 36.64 +0 1.10 +3 40.15 -0 15.05 -4 28.89 -4 37.47	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.04 +0.11 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.526 \\ -0.518 \\ -0.510 \\ -0.457 \\ -0.448 \\ -0.438 \\ -0.290 \\ -0.276 \\ -0.142 \\ +0.536 \\ -0.699 \\ +0.699 \\ +0.695 \\ +0.666 \\ +0.666 \\ +0.660 \\ -0.625 \\ \end{array}$	+0.50 +0.40

MICROMETRICAL OBSERVATIONS OF EROS - Continued

Date — 1 90 Tin	1900 me	Comp. Star	No. Obs.	Measured \(\Delta a \)	Ref.	Corrected $\Delta \alpha$	$_{\Delta\delta}^{\rm Measured}$	Ref.	Corrected $\Delta \delta$	Parallax Δa	Factors
Nov.26 16 ^h	58m 13°	2	 5				-0' 44:30	-0.60	-0, 44,00		+6/20
5555556666666677777777788	21 40 25 4 30 14 31 31 32 9 4 11 50 15 4 11 4 22 45 40 48 53 57 42 41 40 50 51 4 11 4 12 4 5 56 5 6 55 5 7 42 6 9 51 6 9 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.7 17.7 17.7 17.7 1.7 1.7 1.7 1.7 1.7 1	555555555555555555555555555555555555555	+3 37:30 +0 20.79 +3 28.04 +0 11.06 -2 8.83 -2 12.08 -2 12.00 -2 31.58 	+0.05 0.00 +0.03 -0.01 -0.03 +0.02 -0.02 -0.04 +0.03 -0.03	+3 37 35 +0 20.79 +3 28.07 +0 11.05 -2 8.86 -2 12.11 -3 3.94 -0 12.02 -2 31.62 -2 37.24 -0 39.23 -2 58.64	-2 52.55 -0 18.12 -3 3.92 -0 30.04 -1 41.96 -3 44.71 -1 11.17 +1 17.75 -1 28.19 +1 0.42 -4 28.52 -1 55.71 +0 33.29 -4 48.33	-0.11 -0.01	-2 52.66 -0 18.13 -3 4.03 -0 30.05 +1 45.02 -3 44.80 -1 11.19 +1 17.79 -4 2.01 -1 28.21 +1 0.45 -4 28.61 -1 55.74 +0 33.31 -4 48.42	-0.548 -0.540 -0.494 -0.489 -0.479 -0.461 -0.350 -0.340 -0.177 -0.162 -0.153	-0.72 +0.40 +0.34 -0.36 -0.56 -0.55 -0.60 -0.83 -0.88 -1.13 -1.17 -1.20
5555566666666777777777888815566666666667777777777	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1 2 3 1 1 1 1		-1 16.01 -2 17.44 +2 29.69 -1 25.48 -2 26.43 +2 21.49 -1 50.91 -2 53.15 +1 53.29 +0 11.70 +0 5.03	-0.04 -0.04 +0.05 -0.04 +0.03 -0.05 -0.05 +0.02 -0.00 -0.00 -0.01	-1 16.05 -2 17.48 +2 29.74 -1 25.22 -2 26.47 +2 21.52 -1 50.96 -2 53.20 +1 53.31 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	-0 39.40 +1 21.53 -0 55.50 	+0.01 +0.06 -0.05 0.00 +0.05 -0.05 -0.02 +0.01 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.01 	-0 39.39 +1 21.59 -0 55.55 	-0.496 -0.486 -0.478 -0.435 -0.426 -0.416 -0.224 -0.199 -0.182 +0.650 +0.650	+0.43 +0.37 +0.02 -0.04 -0.10 -0.43 -0.95 -0.95 -0.99 -1.17 -1.20 -1.23 -1.29 -1.30 +4.95 +5.62 +5.62
15 15	30 3 35 5 41 42 48 5 1 36 19 14	1 2 1 2 1	555692	+0 56.85 -1 43.81	+0.05 -0.14	+0 56.90 -1 43.95	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.01 -0.11 -0.21 -0.12	$\begin{array}{ccc} -1 & 38.81 \\ +0 & 16.99 \\ & & \\ -0 & 9.41 \\ -2 & 22.89 \end{array}$	+0.619 +0.641	+4.91 $+5.02$ $+5.64$ $+5.91$

MICROMETRICAL OBSERVATIONS OF EROS—Continued

Date-1900	Comp.	No.	Measured		Corrected	Measured		Corrected	Parallax	Factors
90° Time	Star	Obs.	Δα	Ref.	Δa	79	Ref.	Δδ	Δa	Δδ
Dec.1 16h 26m 24s	2	5	-1' 48:85	-0:19	-1' 49'04				+0:600	
Dec. 2 5 42 29 5 47 4 5 51 21 5 56 24 6 2 27 6 11 43 6 16 11	1 2 3 2 3 2 3	5 5 5 5 5 5	+0 22.91 -0 28.13	+0.03 -0.03	+0 22.94 -0 28.16	$\begin{array}{c} +0 & 13.76 \\ +1 & 48.70 \\ -2 & 6.34 \\ \hline \\ +1 & 28.80 \\ -2 & 26.03 \\ \end{array}$	$ \begin{array}{c} 0.00 \\ +0.03 \\ -0.04 \\ \dots \\ +0.02 \\ -0.03 \end{array} $	$\begin{array}{c} +0' \ 13'76 \\ +1 \ 48.73 \\ -2 \ 6.38 \\ \hline \\ +1 \ 28.82 \\ -2 \ 26.06 \\ \end{array}$	-0.432 -0.418	$ \begin{array}{c} +0.17 \\ +0.12 \\ +0.05 \\ \\ -0.23 \\ -0.29 \end{array} $
Dec. 5 6 49 20 6 53 23 6 57 51 7 2 8 7 6 31 7 10 25 7 28 43 7 32 22 7 36 50 7 45 43 7 49 55 7 55 11 7 59 2 1 3 58 13 49 8 18 28 8 24 33 8 29 41 8 34 54 8 38 51 9 2 12 9 7 23 9 17 7 9 21 59 9 25 39 9 25 39 9 25 39 9 25 39 9 25 39 9 25 39 14 14 24 42 14 32 9 14 18 32 14 24 42 14 32 0 14 36 49 14 41 53 14 53 14 58 32 15 7 53	1 2 1 2 1 2 1 3 2 1 3 2 1 3 1 3 1 3 1 3	655555555555555555555555555555555555555			+0 13.58 -2 20.91 +0 10.61 +0 13.36 -2 24.04 +0 7.83 +0 10.47 +0 7.56 +0 3.87 -1 0.82 -1 0.37 +1 29.67 -0 58.31	'	+0.03 +0.01 +0.02 -0.02 -0.02 -0.01 +0.01 -0.03 -0.02 +0.01 -0.03 -0.04 -0.00 -0.05 -0.01 -0.07 -0.09 -0.09 -0.01 -0.03 -0.01 -0.03 -0.01 -0.03 -0.01 -0.03 -0.01 -0.03 -0.01 -0.01 -0.01 -0.03 -0.01	+1 44.61 -0 18.99 	-0.239 -0.228 -0.118 -0.106 -0.095 -0.095 -0.020 -0.157 -0.182 -0.656 -0.651	-0.60 -0.65 -0.75 -0.78 -0.88 -0.90 -0.92 -0.97 -0.98 -0.99 -1.01 -1.01 -1.00 -0.94 -0.92 -0.85 -0.85 -0.80 +3.27 -3.50 +3.67 +4.10 +4.20 -0.33
6 27 32 6 31 37 6 52 16 6 57 39 7 2 28 7 7 56 7 12 15 7 24 9 7 28 59 7 33 29 7 44 54 7 53 10 8 13 42 8 18 11 8 22 12 12 53 18 12 58 5 13 4 19 13 11 4	9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	5 15 15 15 15 15 15 15 15 15 15 15 15 15	+1 5.79 +1 8.17 +1 8.78 +1 10.15 +1 11.84 +1 13.99 -1 39.55 -1 37.81	+0.03 +0.02 +0.02 +0.02 +0.02 +0.02 -0.06 	+1 5.82 +1 8.19 +1 8.80 +1 10.17 +1 11.86 +1 14.01 -1 39.61 -1 37.87	+1 2.46 +0 43.25 +0 34.02 +0 24.76 +0 13.71 -0 5.11 -0 13.58 -0 33.15 -0 41.24 -0 13.34 -0 24.94	-0.01 -0.01 -0.00 -0.00 -0.00 -0.00 -0.01 -0.01 -0.05 -0.06	+1 2.47 +0 43.26 +0 34.02 +0 24.76 +0 13.71 +0 4.81 -0 5.11 -0 13.59 -0 33.16 -0 41.25 -0 13.39 -0 13.39	-0.283 -0.005 -0.178 -0.120 -0.064 +0.017 +0.614 +0.625	$\begin{array}{c} -0.41 \\ -0.57 \\ -0.64 \\ -0.70 \\ -0.76 \\ -0.82 \\ -0.84 \\ -0.86 \\ +2.35 \\ +2.57 \\ \end{array}$

${\tt MICROMETRICAL~OBSERVATIONS~OF~\it EROS-Continued}$

Date — 1900 90 Time	Comp. Star	No. Obs.	$_{\Delta\alpha}^{\rm Measured}$	Ref.	Corrected Δa	$\mathop{\rm Measured}_{\Delta\delta}$	Ref.	$\begin{array}{c c} \text{Corrected} \\ \Delta \delta \end{array}$	Parallax	Factors
Dec. 8 13 ^h 17 ^m 11 ^h 13 23 35 13 29 55 13 46 18 13 50 32 13 57 6 14 1 55 14 8 23 14 12 52 14 21 40 14 28 4 14 34 8 14 47 36 14 52 51 14 58 33	11 11 11	555555555555555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.06 -0.07 +0.03 -0.08	-1 30.69 +0 51.16 -1 25.57 -1 21.12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0°07 -0.07 -0.09 +0.10 -0.12 +0.11 -0.14 -0.18 -0.18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0:633 +0.645 +0.646 +0.645 +0.636	+2:84 +3:10 +3:43 +3:54
Dec. 9 5 19 26 5 24 26 5 28 35 5 32 25 5 36 5 5 39 41 5 45 2 5 49 14 5 53 27 6 12 48 6 17 20 6 21 18 6 26 26 6 30 4 6 33 37 6 40 20 6 44 37 6 49 13 7 18 26 7 23 33 7 33 29 7 37 35 7 42 0 7 48 4 7 552 27 7 56 50 8 3 40 8 8 12 47 14 58 35 15 31 30 15 36 54 15 31 30 15 36 54 15 51 28	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 1 1 1	556555555555555555555555555555555555555	+0 52.44 +0 56.30 +2 2.24 +0 56.30 +2 2.24 +1 2.77 +1 58.96 +1 2.77 +1 10.95 +2 7.24 +1 14.52 +1 0.21 +1 7.21 +1 7.21	+0.01 +0.05 +0.03 +0.03 +0.03 +0.02 +0.02 +0.12 	+0 52.45 +0 56.35 +2 2.28 +0 59.26 +1 2.80 +1 58.99 +1 10.97 +2 7.27 +1 14.54 +1 0.33 +1 7.40 +1 13.14	-1 8.97 +2 49.60 -0 43.08 -1 33.12 +2 26.49 -1 6.37 -1 58.10 +2 0.90 -1 31.72 -1 57.93 -2 59.62 +0 58.50 -2 33.88 -3 31.89 -3 1.82 +0 20.26 -1 11.40 +3 0.64 -1 32.28 -1 20.97 +2 11.68	-0.03 +0.04 -0.03 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.405 -0.397 -0.388 -0.278 -0.268 -0.268 -0.258 -0.086 -0.075 -0.003 +0.634 +0.599 +0.578	$\begin{array}{c} +0.47 \\ +0.40 \\ +0.33 \\ \dots \\ +0.07 \\ +0.02 \\ -0.17 \\ -0.21 \\ -0.25 \\ \dots \\ -0.47 \\ -0.50 \\ -0.67 \\ -0.69 \\ -0.71 \\ \dots \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.50 \\ -0.78 \\ -0.50 \\ -0.71 \\ \dots \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.78 \\ -0.50 \\ -0.78 \\$
Dec.10 5 21 52 5 48 5 25 48 5 30 18 5 34 20 5 39 22 5 43 44 5 57 5 6 1 23 6 6 6 46 6 11 1 6 15 43 6 19 6 6 49 51 6 54 28 6 58 52 7 1 35	1 21 1 21 1 21 1 21 1 1 1 1 1 1 1	55555555555555555	-0 32.92 -0 36.86 -0 16.56 -0 20.12 -0 8.92	0.00	-0 32,92 -0 36,89 -0 16,56 -0 20,45 -0 8,92	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.03 -0.03 -0.03 -0.02 -0.03 +0.02 -0.01 -0.01 -0.01 -0.00 -0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.398 -0.389 -0.316 -0.304 -0.195	$\begin{array}{c} +0.42 \\ +0.37 \\ \dots \\ +0.20 \\ +0.14 \\ 0.00 \\ -0.05 \\ \dots \\ -0.23 \\ -0.48 \\ \dots \\ -0.54 \\ -0.57 \end{array}$

M1CROMETRICAL OBSERVATIONS OF EROS — Continued

Date-1900 90° Time	Comp. Star	No. Obs.	Measured	Ref.	Corrected Δa	Measured	Ref.	Corrected $\Delta\delta$	Parallax	Factors $_{\Delta\delta}$
Dec.10 7h 8m 11s 7 12 19 7 42 25 7 47 57 7 52 32	1 1 1 1	5 5 5 5 5	-0' 6'46 -0 0.82	0.00	-0' 6'46 -0 0.82	-0' 18'06 -0' 47.34 -0' 57.23	0.00 -0.01 -0.02	-0' 18'06 -0' 47.35 -0' 57.25	-0:156 -0:047	$\begin{array}{c c} -0.61 \\ -0.71 \\ -0.72 \\ \end{array}$
Dec.11 5 2 0 5 6 14 5 11 34 5 15 49 5 29 5 5 33 20 5 36 34 5 41 28 6 0 35 6 6 11 6 10 10 6 14 40 6 38 54 6 44 31 6 48 23 6 54 16 7 15 8 7 21 26 7 26 58 13 51 8 13 55 54 14 12 39 14 16 51 14 31 37 14 35 33 14 41 31 14 45 39 14 55 53 15 25 7 15 31 25 15 37 48	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	555555555555555555555555555555555555555	+0 13.45 +0 14.70 +0 19.68 +0 20.43 +0 26.73 +0 27.73 +0 35.26 +0 36.02 -1 46.70 -1 16.56 -1 34.53 -1 4.16	0.00 0.00	+0 13.45 +0 14.70 +0 19.68 +0 20.43 	-0 11.070 24.02 -0 36.780 48.38 -1 6.601 19.98 -1 43.111 57.93 -2 18.22 -2 29.80 -2 2.61 +3 47.322 25.15 +3 25.12 -2 45.18 +3 5.523 6.21 +2 44.11 +2 13.57 +2 0.29	-0.01 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03 -0.04 -0.04 -0.14 +0.05 -0.24 +0.06 -0.24 +0.07 -0.28 +0.08 +0.11 -0.12	-0 11.08 -0 24.03 -0 36.79 -0 48.40 -1 6.62 -1 20.01 -1 43.14 -1 57.97 -2 18.26 -2 29.84 -2 2.75 +3 47.37 -2 45.42 +3 5.59 -3 6.49 +2 44.79 +2 13.68 -1 3.68 -1 0.41	-0.441 -0.431 -0.384 -0.377 -0.308 -0.298 -0.203 -0.115 +0.632 +0.631 -0.622 +0.621 -0.584	$\begin{array}{c} +0.72\\ \dots\\ +0.54\\ +0.36\\ \dots\\ +0.21\\ +0.02\\ \dots\\ -0.35\\ \dots\\ -0.61\\ +3.83\\ +3.89\\ \dots\\ +4.29\\ +4.37\\ +4.62\\ +4.70\\ \dots\\ +5.06\\ +5.16\\ +5.75\\ \dots\\ +5.98 \end{array}$
Dec.12 4 58 29 5 3 44 5 8 56 5 13 23 5 17 44 5 22 45 5 26 44 5 31 12 5 35 41 5 53 31 5 42 51 5 51 32 5 54 57 5 59 56 6 5 48 6 9 52 6 13 16 6 40 10 6 44 55 6 48 58 6 53 55 6 57 48 7 1 36 7 7 0 7 10 59 7 14 48 7 30 18 7 34 57 7 39 16 7 44 55	1 1 1 2 1 3 1 2 3 1	888888888888888888888888888888888888888	-1 35.77 -1 36.55 -1 29.41 -0 6.07 -1 22.68 -1 27.85 +0 0.81 -1 11.17 +0 17.63 +0 53.71	-0.05 -0.03 -0.05 -0.00 -0.04 -0.03 -0.00	-1 35.82 -1 36.58 -1 29.46 -0 6.07 -1 22.72 -1 27.88 +0 0.81 -1 6.66 -1 11.19 +0 17.63	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.01 -0.01 -0.01 -0.01 -0.01 -0.03 -0.03 -0.01 -0.05 -0.00 -0.01 -0.02 -0.06 -0.02 -0.03 -0.03	-1 21.51 -1 31.68 +1 14.72 -1 39.88 -1 57.02 +0 49.45 +0 24.99 -2 59.55 -0 13.66 -0 38.78 -1 4.52 -3 48.52 -1 3.33 -1 28.59	-0.436 -0.394 -0.385 -0.377 -0.333 -0.323 -0.312 -0.175 -0.164 -0.157	+0.78 +0.63 +0.53 +0.51 -0.29 +0.24 +0.20 -0.03 -0.09 -0.12 -0.33 -0.36 -0.39 -0.51 -0.51 -0.57 -0.58 -0.59

${\tt M1CROMETRICAL~OBSERVATIONS~OF~\it EROS-Continued}$

Me nominations of Enos—commen									
Date-1900 90' Time	Comp. Star	No. Obs.	Measured \(\Delta a \)	Ref.	Corrected ∆a	Measured Δδ	Ref.	Corrected Δδ	Parallax Factors $\Delta \alpha$ $\Delta \delta$
Dec.12 7h 49m 33s 7 53 26 8 0 16 8 5 26 8 9 25	231233	5 5 5 5 5	+0' 58'00 -0 30.53	+0"02 -0.01	+0' 58'02 -0 30.51	-4' 18'54 -1 33',30 -1 58',88	-0*08 -0.03 -0.03	-4 18'62 -1 33.33 -1 58.91	-0°027 -0.017 0°61 0.60 0.60
Dec.17 8 57 8 9 1 4 9 7 3 9 9 48	1 2 1 2	5 5 5 1	$\begin{array}{cccc} +0 & 6.16 \\ -1 & 49.98 \end{array}$	+0.01 -0.02	$\begin{vmatrix} & \\ +0 & 6.17 \\ -1 & 50.00 \end{vmatrix}$	$\begin{bmatrix} -1 & 37.72 \\ -1 & 58.97 \\ \vdots & \vdots \\ \vdots & \vdots \\ \end{bmatrix}$	-0.03 -0.04	$\begin{array}{cccc} -1 & 37.75 \\ -1 & 59.01 \\ & & & & & \\ \end{array}$	$\begin{array}{c c} & -0.07 \\ -0.05 \\ +0.214 \\ +0.224 \end{array}$
Dec.18 4 55 15 4 58 57 5 3 4 58 57 6 5 11 52 5 15 48 55 20 33 55 24 39 55 24 38 55 25 55 36 54 4 38 55 44 38 55 42 59 6 35 52 59 6 35 52 36 6 41 6 37 7 21 13 7 26 49 7 31 22 6 49 7 31 22 6 31 12 25 7 41 26 31 12 25 7 48 13 59 46 14 6 28 14 12 43 14 45 34 14 45 34 14 15 34 14 15 34 15 2 4 4	1212312312212121221129999999912299999	573666666666666666666666666666666666666	-0 29.16 +2 56.91 -0 23.41 +3 13.67 -0 3.79 -0 3.79 -1 27.57 +3 55.09 -1 31.11 +0 51.95 -1 32.48 -1 4 11.85 -0 57.28 -1 42.91	-0.01 +0.06 -0.01 +0.06 -0.01 +0.06 -0.00 +0.06 	-0 29.17 +2 56.97 +0 23.42 +3 13.73 -0 3.80 +0 27.57 +3 55.15 +4 13.18 +0 51.96 +3 23.64 +4 12.11 -0 57.41 +4 43.23	-0 30.88 +0 8.28 -0 47.78 -0 8.78 +0 42.63 -1 0.68 -0 21.69 	0.00 -0.03	-0 30.88 +0 8.25 -0 47.79 -0 8.81 +0 42.61 -1 0.69 -0 21.72 -1 20.85 -1 20.85 -1 36.19 -1 36.19 -1 58.89 -2 37.19 -1 58.89 -2 17.73 -1 32.08 -1 32.08 -1 32.08 -1 35.04 -1 55.04 -1 55.04 -1 55.04 -1 44.73 -2 53.41 -1 55.04 -1 44.73 -2 48.95 -1 55.04 -1 44.73 -1 55.04 -1 44.73 -1 55.04 -1 44.73 -1 55.04 -1 44.73 -1 55.04 -1 55.04 -1 55.04 -1 55.04 -1 55.04 -1 55.04	+0.91 +0.87 -0.384 -0.373 -0.40.66 +0.60 +0.50 -0.311 -0.320 -0.311 -0.284 -0.284 -0.06 -0.142 -0.127 -0.142 -0.127 -0.142 -0.127 -0.20 -0.20 -0.20 -0.20 +0.586 +0.28 -0.40 -0.44 +0.586 +0.43 +0.43 +0.44 -0.15 -0.20 -0.20 +0.586 +0.44 +0.44 +0.44 +0.45 +0.45 +0.45 +0.45 +0.45 +0.45 +0.45 +0.45 +0.45 +0.45 +0.45 +0.44 +0.45
Dec.19 5 6 24 5 11 0 5 14 58 5 21 0 5 27 0 5 32 26 5 36 3 5 40 14 5 43 54 6 0 0 6 4 2 6 7 58 6 31 8 6 36 6 41 17 6 45 14 6 49 55 6 53 56 7 13 15 7 18 12	1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	គ.គ.គ.គ.គ.គ.គ.គ.គ.គ.គ.គ.គ.គ.គ.គ.គ.គ.គ.	+0 16.18 +2 42.30 +0 31.34 +0 48.02 +1 9.92 +0 45.37	+0.01 +0.05 +0.01 +0.01 +0.02 +0.02	+0 16.19 +2 42.35 +0 31.35 +0 48.03 +1 9.94 +0 45.39	+0 18.45 +0 9.88 -0 26.91 -0 2.24 -0 19.49 -0 36.05 -1 8.20 +2 42.73 -1 27.73 +2 24.10 +2 4.01 -1 57.18	0.00 0.00 -0.03 0.000.03 -0.01 -0.010.02 -0.02 +0.040.03 +0.04 +0.03 -0.01	+0 18.45 +0 9.88 -0 26.94 -0 2.24 	$\begin{array}{c} -0.360 \\ -0.360 \\ & +0.70 \\ +0.64 \\ +0.57 \\ -0.313 \\ -0.307 \\ & +0.41 \\ +0.26 \\ -0.242 \\ & +0.18 \\ +0.01 \\ +0.02 \\ -0.149 \\ -0.139 \\ & -0.05 \\ -0.07 \\ -0.28 \\ -0.29 \\ \end{array}$

MICROMETRICAL OBSERVATIONS OF EROS—Continued

MICROMETRICAL OBSERVATIONS OF EROS—Continued										
Date 1900 90° Time	Comp. Star	No. Obs.	Measured Δa	Ref.	Corrected Δa	Measured $\Delta \delta$	Ref.	Corrected Δδ	Parallax Factors Δα Δδ	
Dec.19 7h 23m 39s 7 27 54 7 33 19 7 37 28 12 47 48 12 52 36 12 57 38 13 1 44 13 7 21 13 12 35 13 16 38 13 20 46 13 26 43 13 31 25 13 36 1 13 39 55 13 48 7 13 53 14 13 57 46 14 1 52 14 8 19 14 12 25 14 17 58 14 21 35 14 25 28 14 29 13	010110110111011101110111011011011011011	555555555555555555555555555555555555555	+1' 8'15 +1' 37.29 	+0.02 +0.03 +0.10 +0.04 -0.01 -0.05 +0.15 +0.08 +0.02 -0.03 +0.03 -0.02	+1 8/17 +1 37.32 +2 0.64 +0 44.43 -0 7.69 -0 55.99 +2 28.39 +1 11.99 +0 20.38 -0 27.63 +0 34.59 -0 13.42	+1' 42'73 -2 17.38 +0 36.40 +1 0.58 +0 43.74 +1 16.32 -0 7.61 +0 5.83 +0 11.77 +0 33.44 -0 3.01 -0 54.62 -0 21.34	+0.01 +0.01 +0.01 +0.01 -0.01 -0.01 -0.01 +0.01 +0.01 +0.06 -0.02 -0.03	+1' 42'76 -2 17.42 +0 36.47 +1 0.62 +0 43.75 +1 16.31 -0 7.50 +0 5.84 +0 11.83 +0 33.42 -0 35.43 -0 3.04 -0 54.62 -0 21.37	-0.5042 -0.031 -0.590 +0.592 +0.593 +0.593 +0.594 +0.593 +0.593 +0.593 +0.585	-0.731 -0.31 +3.31 +3.41 +3.53 +3.59
Dec.20 6 4 37 7 35 52		, 4 , 1	$-2 \ 12.69$	-0.04	-2 12.73	+1 39.11	0.00	+1 39.11	-0.003	+0.26
Dec.21 13 47 33 13 53 53 14 0 10 14 4 53 14 11 49 14 16 40	1 2 1 2 1 2	5 5 6 5 5	+3 8.37 +3 26.01	+0.21 +0.25	+3 8.58 +3 26.26	$\begin{array}{ccc} -0 & 14.22 \\ +0 & 21.31 \\ & & \\ -0 & 42.32 \\ -0 & 5.38 \end{array}$	$+0.16$ $+0.21$ \cdots $+0.20$ $+0.30$	$\begin{array}{cccc} -0 & 14.06 \\ +0 & 21.52 \\ \hline & & \\ -0 & 42.12 \\ -0 & 5.08 \end{array}$	+0.583 +0.582	$\begin{array}{c} +4.64 \\ +4.75 \\ \cdots \\ +5.09 \\ +5.19 \end{array}$
Dec.24 13 27 37 13 31 46 13 37 50 13 42 41 13 47 51 16 13 57 45 14 5 31	1 2 1 2 1 2 1 2	5 5 5 5 5 5 7	+2 34.48 +1 27.12 +2 43.21 +1 35.71	+0.20 +0.15 +0.23 +0.18	$\begin{array}{c} +2 & 34.68 \\ +1 & 27.27 \\ +2 & 43.44 \\ +1 & 35.89 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+0.22 \\ +0.21 \\ \cdots \\ +0.32 \\ +0.34$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.573 $+0.572$ $+0.571$ $+0.570$	$\begin{array}{c} +4.47 \\ +4.55 \\ \cdots \\ +5.03 \\ +5.17 \end{array}$
Dec.26 5 57 36 6 3 24 6 10 42 6 31 35 6 39 29 6 46 34	13 13 13 13 13 13	555555	-0 37.46 -0 5.20	-0.02 -0.01	-0 37.48 -0 5.21	$\begin{array}{ccc} -3 & 33.17 \\ \hline & 46.84 \\ -4 & 9.51 \\ \hline & -4 & 25.08 \\ \end{array}$	-0.06 -0.06 -0.07 -0.08	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.197 -0.111	+0.59 $+0.51$ $+0.40$ $+0.35$
Dec.28 5 20 32 5 25 20 5 32 46 5 36 53 5 47 50 6 18 12 6 23 13 6 29 31 6 41 17 6 45 22 7 7 2 19 7 7 58 7 12 56 11 14 51 11 21 7 11 28 30	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 8 8 8 8	555555555555555555	-1 1.09 +1 16.36 	0.00 +0.02 +0.01 +0.04 +0.01	-1 1.09 +1 16.38 -0 4.94 +2 13.74 +0 33.60 +3 36.30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.09 -0.01 +0.08 -0.01 +0.06 -0.02 +0.06 -0.03 +0.05 +0.11 +0.12	+4 40.75 -0 4.14 +4 17.10 -0 27.79 +3 40.29 -1 5.16 +3 15.84 -1 28.58 +2 53.37 +2 41.66 +2 18.92 +2 3.71	-0.255 -0.246 -0.118 -0.114 -0.032 +0.487	+1.00 +0.94 +0.81 +0.78 +0.60 +0.57 +0.49 +0.45 +0.44 +2.43 +2.63

MICROMETRICAL OBSERVATIONS OF EROS - Continued

Date—1900 90 Time	Comp.	No. Obs.	Measured Δα	Ref.		Measured	Ref.	Corrected Δδ	Parallax Δα	Factors
Dec.28 11 ^h 45 ^m 17 ^s 11 50 52 11 55 11 12 7 43 12 18 2 12 18 2 12 23 17 12 28 42 12 33 9	13 13 13 8 13 8 13 8 13	5 5 5 5 5 5 5 5 5 5 5	-0: 10:09 	-0.01 -0.19 +0.02	-0' 10'10 +4 35.97 +0 24.32	-0' 5:98 -0 17.16 +1 18.71 -0 35.95 +0 55.78 -1 0.64	-0.01 -0.01 +0.16 -0.01 -0.18 -0.01	-0' 5:99 -0 17.17 +1 18.87 -0 35.96 -1 0.65	+0:509 +0:541 +0.544	+2.91 +3.07 +3.29 +3.36 +3.66 +3.73
Dec.29 5 26 24 5 31 51 5 38 40 5 56 40 6 1 11 6 6 26 6 17 11 6 21 6 39 51 6 46 23 6 53 44 7 12 43 7 19 11	9.5 9.5 9.5 1 2 1 2 9.5 9.5 9.5 9.5 9.5 9.5	55555655555555	+2 32.12 +0 6.46 -1 25.81 +3 48.94 +4 16.28	+0.06 0.00 -0.02 +0.07 	+2 32.18 +0 6.46 -1 25.83 +3 49.01 +4 16.35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.07 +0.03 0.00 +0.01 -0.01 +0.05 +0.05 +0.05 +0.05	+4 37.20 +4 24.26 +1 26.63 -0 22.88 +1 4.83 -0 44.10 +3 19.60 +3 4.80 +2 50.36 +2 37.15	-0.250 -0.174 -0.162 -0.080 -0.014	$\begin{array}{c} +1.01 \\ +0.90 \\ +0.77 \\ +0.75 \\ \cdots \\ +0.65 \\ +0.65 \\ +0.58 \\ \cdots \\ +0.54 \\ +0.52 \\ \cdots \\ +0.52 \end{array}$
Dec.30 5 29 15 5 34 24 5 39 43 5 41 1 5 50 20 5 51 25 6 43 8	1 2 1 2 1 2 1 1 2 1	5555555	+0 44.26 +4 4.26	0.00 +0.07	+0 44.26 +1 4.33	-3 10.94 -0 54.51 -3 33.28 -1 15.83 -1 29.76	-0.06 -0.04 -0.07 -0.07 -0.04 -0.08	-3 11.00 -0 55.55 -3 33.35 -1 15.87 -1 29.81	-0.229 -0.218	+1.05 +1.00 +0.88 +0.86 +0.63
Dec.31 5 45 18 5 53 21 6 0 9 6 38 20 6 45 1 6 51 25 7 2 59 7 8 57 7 15 4 8 57 7 15 4 8 57 9 3 43 9 10 22 9 30 7 9 38 7 9 38 50 10 36 11 10 43 9 10 49 30 12 43 59 12 51 4 12 57 10	9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	000000000000000000000000000000000000000	+0 52.13 +0 6.34 +0 31 43 +2 41.56 +3 20.53 +4 35.33 +0 12.07	+0.01 +0.05 +0.07 +0.03	-0 52.13 +0 6.35 +0 31.44 +2 41.61 +3 20.60 +4 35.46 +0 12.10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.08 +0.07 +0.06 +0.05 +0.05 +0.03 +0.03 +0.03 +0.01 +0.05 +0.10 +0.12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.196 -0.074 -0.017 -0.248 +0.322 +0.435 +0.549	+0.94 +0.84 +0.68 +0.65 +0.12 +1.01 +1.11 +1.30 +1.45 +2.06 +2.25 +4.10 +4.33
1901 Jan. 1 5 42 41 5 48 8 5 54 11 5 59 53 6 5 30 6 11 50 6 5 15 7 0 14 7 7 20 10 58 49 11 3 40 11 11 29 11 15 37 11 21 36 11 24 55	1 1 1 2 2 2 1 1 1 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2		-2 39.81 +1 5.90 -1 15.56 -1 14.07 +2 33.31	-0.05 -0.08 -0.02 -0.13 +0.10	-2 39.86 +1 5.82 -1 15.58 +4 14.20 +2 33.41	$\begin{array}{cccc} -1 & 38.51 \\ -1 & 50.63 \\ -1 & 22.32 \\ -4 & 34.99 \\ -2 & 55.91 \\ -3 & 8.27 \\ +0 & 55.77 \\ +0 & 58.46 \\ \hline \\ +0 & 30.22 \\ +0 & 34.38 \\ \end{array}$	-0.02 -0.02 -0.08 -0.05 -0.05 +0.09 +0.06 +0.10 +0.07	$\begin{array}{ccccc} -1 & 38.53 \\ -1 & 50.65 \\ -4 & 22.40 \\ -1 & 35.07 \\ -2 & 55.96 \\ -3 & 8.32 \\ +0 & 55.86 \\ +0 & 58.52 \\ & & & \\ +0 & 30.32 \\ +0 & 31.45 \\ \end{array}$	-0.201 -0.163 -0.031 +0.472 +0.477	+1.01 +0.93 +0.91 +0.85 +0.71 +0.70 +2.46 +2.54 +2.81 +2.87

MICROMETRICAL OBSERVATIONS OF EROS—Continued

	omp. No.	$\operatorname{Measured}_{\Delta\alpha}$	Ref.	Corrected Δa	Measured	Ref.	Corrected Δδ	Parallax Δa	Factors
Jan. 1 12 ^h 43 ^m 46 ^s 10 12 49 46 10 12 56 11 10 13 4 55 10 13 10 8 10 13 15 51 10 13 24 53 10 13 30 19 10 13 35 11 10 13 45 12 10 13 50 36 10 13 57 19 10	0 6 5 5 5 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5	-0' 39'48 -0 11 94 +0 12.95 +0 34.15	-0:01 -0:01 +0.01 -0:05 -0:09	-0 39749 -0 11.93 +0 13.00 +0 34.24	+1 56.59 +1 42.16 +1 32.68 +1 19.56 +1 9.96 +0 57.98 +0 47.25 +0 33.39	+0.05 +0.05 +0.05 +0.06 +0.07 -0.09 +0.10 -0.12	+1 56.64 +1 42.21 +1 32.73 +1 19.62 +1 10.03 +0 58.07 +0 47.35 +0 33.51	+0.545 +0.548 +0.457 +0.541	+4.16 +4.37 +4.54 +4.52 +4.89 +5.07 +5.23 +5.44
5 23 23 10 5 27 16 10 5 32 52 10 6 0 39 10 6 6 38 10 6 10 15 10 6 15 46 10 7 5 31 10 7 14 24 10	5 5 5 5 7 7 5 7 5 5 5 5 7 5 5 5 5 5 5 5	-0 13.97 -0 9.25 +0 37.98 +0 42.51 -1 58.81 -0 58.91 -0 52.05 -0 20.92 -0 14.33 +0 7.96	-0.02 -0.02 -0.00 0.00 -0.03 -0.05 -0.05 -0.02 -0.02	-0 13.99 -0 9.27 +0 37.98 +0 42.51 -1 58.84 -0 58.96 -0 52.10 -0 20.94 -0 14.35 +0 7.96	-3 13.20 -3 29.53 -3 58.81 -4 15.01 -5 8.07 -5 24.68 +0 44.55 -0 13.12 -0 8.28 -0 14.99 -0 26.36	-0.050.06 -0.09 -0.09 -0.09 -0.030.02 -0.02 -0.01	-3 13.25 -3 29.59 -3 58.90 -4 15.10 -5 8.16 -5 24.77 +0 44.52 -0 13.10 -0 15.00 -0 26.37	$\begin{array}{c} -0.251 \\ -0.242 \\ \vdots \\ -0.157 \\ -0.148 \\ \vdots \\ +0.002 \\ \vdots \\ +0.541 \\ +0.542 \\ \vdots \\ +0.544 \\ +0.544 \\ \vdots \\ +0.540 \\ \end{array}$	+1.27 $+1.15$ $+0.97$ $+0.90$ $+0.78$ $+1.17$ $+1.44$ $+4.65$ $+5.10$ $+5.27$
Jan. 3 5 29 14 1 5 33 46 2 5 39 37 1 5 43 33 2 5 48 12 1 5 5 15 57 2 6 21 25 1 6 23 5 1 6 24 41 1 6 33 32 1 6 43 54 1 1 10 36 0 1 10 40 19 2 10 44 14 3 10 55 44 1 11 0 31 2 10 44 14 13 11 9 36 2 11 23 42 3 11 27 30 14 11 38 38 1 1 11 42 59 2 11 47 36 3 11 59 39 3 11 59 35 1 1 12 6 0 0 2 12 9 41 3 12 13 52 1 12 14 28 28 3	5 5 5 6 est. 5 5 5 5 5 5	+0 25.08 +0 17.43 	0.01 0.00 -0.03 -0.03 -0.03 -0.03 -0.03	+0 25.09 +0 17.43 -17.43 -1 38.91 -2 7.57 -0 39.35 -1 11.32 -1 57.66 -1 57.66 -1 44.40 +0 44.88 +0 12.87 -0 33.31	+0 57.55 -2 52.00 +0 37.31 -3 11.65 +0 2.43 0 0.00 -0 1.06 -0 33.68 +0 6.37 +1 22.16 +1 30.54 -1 18.25 -0 37.52 +0 37.69 +0 45.70 -1 43.96 -1 3.77 +0 10.62 +0 18.00 -2 30.25 -1 50.36 -0 34.75	+0.01 -0.05 +0.01 -0.06 0.00 0.00 0.000.01 -0.05 -0.02 +0.01 -0.010.06 -0.02 -0.04 -0.02 -0.09 -0.02 -0.00 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01 -0.01 -0.01 -0.01	+0 57.56 -2 52.05 	$\begin{array}{c} -0.211 \\ -0.203 \\ \vdots \\ -0.076 \\ \vdots \\ -0.450 \\ +0.457 \\ +0.462 \\ +0.468 \\ \vdots \\ +0.516 \\ +0.521 \\ +0.522 \\ +0.525 \\ \end{array}$	+1.21 +1.18 +1.08 +1.06 +0.92 +0.91 +0.86 +2.30 +2.35 +2.41 +2.46 +2.85 +2.91 +2.97 +3.03 +3.26 +3.34 +3.42 +3.86 +3.95 +4.02

MICROMETRICAL OBSERVATIONS OF EROS-Continued

Date-1900 90 Time	Comp. Star	No.	Measured Δa	Ref.	Corrected $\Delta \alpha$	Measured	Ref.	Corrected 28	Parallax 2a	Factors
Jan. 3 12h 32m 6 12 58 7 13 8 14 13 13 31 13 18 19 13 26 35	4 3 4 3	5 5 5 5 5 4	+1 37/17 +0 50.85	+0°10 +0.04	+1 37 27 +0 50.89	-0' 26*20 -1 8.51 -1 6.95 1 40.67	-0.02 +0.03 -0.01 +0.05	-0' 26"22 -1 8.48 -1 6.96 	+0:512 +0.541	+4.08 +4.53 +4.59 +5.00
Jan. 8 5 55 39 6 2 7 6 8 39 6 14 5 6 19 10 6 24 28 6 28 38 6 33 48 6 37 55 6 54 5 6 59 36 7 7 29 7 11 0 7 16 22 7 19 40 7 59 41 8 4 10 8 9 44 8 14 9 8 18 46 8 22 42	1 1 1 2 3 2 1	5655555555555555	+1 45 28 -2 12.77 -3 5.65 -1 12.19 -2 6.05 +0 15.75 -0 36.69	+0.03 -0.03 -0.05 -0.02 -0.04 -0.00 -0.01	+1 45.31 -2 12.80 -3 5.70 -1 12.21 -2 6.09 	$\begin{array}{ccccc} -1 & 42.37 \\ -1 & 56.18 \\ +2 & 10.26 \\ +0 & 7.47 \\ & & & \\ +1 & 49.28 \\ -0 & 12.54 \\ +1 & 27.61 \\ -0 & 35.88 \\ & & & \\ +1 & 3.67 \\ -0 & 56.86 \\ +0 & 16.80 \\ -1 & 45.29 \\ & & \\ -1 & 45.29 \\ & & \\ -0 & 3.81 \\ -2 & 5.36 \\ \end{array}$	$\begin{array}{c} -0.04 \\ -0.01 \\ +0.04 \\ +0.01 \\ \cdots \\ +0.03 \\ 0.00 \\ +0.03 \\ -0.02 \\ \cdots \\ +0.02 \\ -0.02 \\ +0.01 \\ -0.03 \\ \cdots \\ +0.01 \\ -0.01 \end{array}$	$\begin{array}{ccccc} -1 & 42.41 \\ -1 & 56.22 \\ +2 & 10.30 \\ +0 & 7.48 \\ & & & \\ & & & \\ +1 & 49.31 \\ -0 & 12.54 \\ +1 & 27.64 \\ -0 & 35.90 \\ & & & \\ & & \\ +1 & 3.69 \\ -0 & 56.88 \\ +0 & 16.81 \\ -1 & 45.32 \\ & &$	-0.147 -0.096 -0.087 -0.002 +0.009 +0.143 +0.152	+1.33 +1.28 +1.27 +1.24 +1.19 +1.18 +1.16 +1.15 +1.26 +1.27 +1.33 +1.35
Jan.12 6 5 29 6 10 47 6 15 51	11 11 11	5 6 5	-0 27.74	-0.01	-0 27.75	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.01 -0.04	$ \begin{array}{cccc} -2 & 3.12 \\ -2 & 14.48 \end{array} $	-0.114	+1.52 +1.48
Jan.14 5 58 52 6 3 49 6 9 56 6 14 39 6 20 12 6 24 44 6 49 54 6 57 49 7 2 31 8 49 10 8 54 21 9 16 59 9 23 52 9 47 23 9 52 57 9 52 57 9 52 57 9 52 57 10 30 53 10 36 20 10 53 34 10 58 52 11 3 51 11 55 4 12 0 57 12 6 18 12 24 24 12 30 10 12 36 29	1 21 21 21 21 21 21 21 21 21 21 21 21 21	555555555555555555555555555555555555555	+4 22.32 -1 24.63 -0 16.09 +0 9.69 +1 52.30 +1 52.50 -1 21.03 -0 35.22 +1 7.82 +1 56.42	+0.08 -0.02 0.00 +0.02 +0.05 +0.05 +0.08	+4 22.40 -1 24.65 -0 16.09 +0 9.69 +1 52.55 +1 52.55 -1 21.06 -0 35.22 +1 7.87 +1 56.50	+0 3.21 -2 55.85 	$\begin{array}{c} -0.01 \\ -0.05 \\ \cdots \\ -0.01 \\ -0.06 \\ -0.07 \\ \cdots \\ -0.02 \\ +0.02 \\ +0.02 \\ +0.02 \\ -0.05 \\ \cdots \\ -0.05 \\ -0.05 \\ -0.06 \\ -0.06 \\ -0.06 \\ -0.05 \\ \cdots \\ -0.05 \\ -0.05 \\ -0.06 \\ -0.06 \\ -0.05 \\ \cdots \\ -0.05 \\ -0.05 \\ -0.06 \\ -0.05 \\ \cdots \\ -0.05 \\$	+0 3.20 -2 55.90 	-0.111 -0.102 -0.005 -0.005 +0.235 +0.301 +0.352 +0.409 +0.444 +0.496	+1.65 +1.63 +1.58 +1.57 +1.41 +1.43 +1.88 +1.95 +2.14 +2.25 +2.43 +2.55 +2.84 +2.97 +3.19 +3.33 +4.01 +4.20 +4.48 +4.65
Jan.16 5 43 5 5 48 48 5 53 38 5 59 4 6 4 6 22 30 6 26 57	12 12 12 12 12 12 12 12	5 5 5 5 1 5 5	-1 17.96 -1 9.71 	-0.02 -0.02 -0.02	-1 17.98 -1 9.73 -0 14.11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.01 0.00 0.00 0.00 -0.01	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.152 -0.142 -0.071	+1.99 +1.92 +1.90 +1.70

MICROMETRICAL OBSERVATIONS OF EROS - Continued

Date—1900 90° Time	Comp. Star	No. Obs.	Measured	Ref.		Measured $\Delta \delta$	Ref.	Corrected Δδ	Parallax Δa	Factors
Jan.16 6h 31m 35s 6 49 40 6 54 43 6 59 33 7 8 24 7 12 39 7 16 57	12 12 12 12 12 12 12 12 12	5 5 5 5 5 5 5 5	+0' 31''49 +1 1.28	+0.02	+1 1.30	-0 31/13 -0 50.50 -1 0.64 -1 10.33 -1 19.05	-0.01 -0.01 -0.02 -0.02 -0.02	$\begin{array}{cccc} -0 & 31/14 \\ -0 & 50.51 \\ \hline -1 & 0.66 \\ -1 & 10.35 \\ \hline -1 & 19.07 \\ \end{array}$	-0.029	+1.68 +1.66 +1.65 +1.66 +1.67
Jan.18 10 57 5 11 2 59 11 8 56 11 13 54 11 18 15 11 23 38 11 29 18 11 33 23 11 41 16 11 45 19	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	5 6 5 5 5 5 5 5 5 5 5 5	$ \begin{array}{cccc} -0 & 15.18 \\ +0 & 4.96 \\ +0 & 21.87 \\ +0 & 41.39 \\ +1 & 2.46 \end{array} $	-0.01 -0.00 +0.01 +0.03 +0.04	$ \begin{array}{rrrr} -0 & 15.19 \\ +0 & 4.96 \\ +0 & 21.88 \\ +0 & 41.42 \\ +1 & 2.50 \end{array} $	-0 3.24 -0 14.66 -0 25.36 -0 36.26 -0 49.22	0.00 0.00 0.00 0.00 +0.01 +0.01	-0 3.24 -0 14.66 -0 25.36 -0 36.25 -0 49.21	+0.436 +0.448 +0.457 +0.466 +0.476	+3.54 +3.68 +3.80 +3.94 +4.10
Jan.19 5 32 41 5 37 51 5 43 5 5 47 26 5 52 6 5 56 12 6 1 27 6 7 33 6 12 2 6 37 0 6 45 49 6 50 23 6 55 44 7 0 11 7 4 44 8 29 29 8 36 33 8 42 6 8 48 20 8 52 54 8 52 54 8 59 3 9 12 37 9 15 58	1 1 1 2 1 2 1 2 2 2 2 2 2 2 3 3 3 3 1 2 1 2	5555555565555555755555555	+2 49.72 -0 42.16 +3 30.86 -1 40.57 -1 6.30 -0 38.21 -0 3.63	+0.04 -0.01 +0.06 -0.02 -0.02 -0.01 -0.00	+2 49.760 42.17 +3 30.92 +0 43.99 +1 40.601 6.320 38.220 3.63	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.04 -0.03 -0.05 -0.05 -0.05 -0.05 -0.00 -0.02 -0.02 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03	$\begin{array}{ccccc} -1 & 42.86 \\ -1 & 53.55 \\ -1 & 44.58 \\ -2 & 3.10 \\ & & & \\ -2 & 5.51 \\ -2 & 23.67 \\ -2 & 36.26 \\ & & \\ -2 & 50.12 \\ -0 & 8.13 \\ & & \\ -0 & 17.46 \\ -0 & 43.69 \\ & & \\ -0 & 56.53 \\ -1 & 3.61 \\ & & \\ -1 & 25.53 \\ & & \\ -1 & 33.57 \\ \end{array}$	-0.171 -0.131 -0.121 -0.026 +0.007 +0.209 +0.240 +0.279	+2.08 $+2.03$ $+2.01$ $+1.99$ $+1.93$ $+1.92$ $+1.86$ $+1.86$ $+2.12$ $+2.20$ $+2.24$ $+2.31$ $+2.39$ $+2.44$
Jan.20 5 46 15 5 52 21 5 58 15 6 15 7 6 20 35 6 25 42 6 49 5 6 55 56 7 2 36 10 37 59 10 46 56 10 51 14 10 55 17 11 0 51 11 6 7 11 28 32 11 23 44 11 28 32 11 33 13 11 11 47 10 11 53 18 11 58 17	10 10 10 10 10 10 10 10 10 10 10 11 2 1 2	555555555555555555555555	+1 37.73 +2 26.69 +3 29.36 -0 6.33 -1 29.69 +0 9.03 -1 11.95 -0 5.78 +1 33.58 +0 11.61	+0.03 	+1 37.76 +2 26.73 +3 29.42 -0 6.33 -1 29.74 +0 9.04 -1 11.99 -1 17.88 -0 5.75 +1 33.65 +0 11.63	-2 40.86 -2 53.38 -3 11.28 -3 22.31 -3 46.81 -4 1.16 +0 59.83 +2 9.02	-0.06 -0.06 -0.06 -0.07 -0.07 +0.02 +0.02 +0.02 +0.03 +0.03 -0.05 +0.04	-2 40.91 -2 53.44 -3 11.34 -3 22.37 -3 46.88 -4 1.23 +0 59.85 +2 9.04	-0.137 -0.078 -0.002 -0.421 +0.430 +0.432 +0.437 -0.474 +0.477	+2.07 +2.02 +1.97 +1.93 +1.93 +3.32 +3.38 +3.66 +3.70 +3.88 +3.95 +4.28 +4.34
Jan.21 10 27 58	9	5	-0 7.37	0.00	-0 - 7.37				+0.396	

${\tt MICROMETRICAL\ OBSERVATIONS\ OF\ \it EROS-Continued}$

Date—1900 90 Time	Comp. Star	No. Obs.	Measured 2a	Ref.	Corrected $\Delta \alpha$	Measured $\Delta \delta$	Ref.	Corrected Δδ	Parallax	Factors
Jan.21 10 ^h 33 ^m 1 ^s 10 38 29 10 47 54 10 53 43 10 59 17	9 9 9 9	5 5 5 5 5 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00 +0.01 +0.02	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3' 6'02 -3 28.46	-0.07 -0.07	-3' 6'09 -3 28.53	+0.410 $+0.420$ $+0.434$	+3/31
Jan.22 11 56 46 12 3 22 12 12 19 12 18 9 12 23 38 12 28 3	1 1 2 2 2 2	6 5 5 5 5 5 5 5	+1 13.60 -1 3.70	+0.03 -0.03	+1 13.63 -1 3.73	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.03 -0.03 $+0.01$ $+0.01$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0.481	+4.42 +4.61 +4.69 +4.81
Jan.24 6 2 50 6 10 0 6 17 15 9 20 54 9 26 50 9 32 37 9 39 56 9 44 39 9 49 24	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	555555555	+4 26.48 +4 53.70 +2 11.20 +2 45.92	+0.08 +0.08 +0.05 +0.06 	+4 26.56 +4 53.78 +2 11.25 +2 45.98	+3 10.27 +1 52.51 +1 40.98 +1 33.73 +1 24.74	+0.05 +0.05 +0.05 +0.05 +0.05 +0.06	+3 10.32 +1 52.56 +1 41.03 +1 33.78 +1 24.80	-0.110 -0.081 $+0.304$ $+0.333$	$\begin{array}{c c} +2.12 \\ +2.77 \\ +2.87 \\ +2.93 \\ +3.01 \end{array}$
Jan.25 5 43 32 5 47 32 5 47 32 5 51 56 55 40 5 55 40 5 59 35 6 7 15 6 12 45 6 15 46 6 24 10 6 28 29 6 32 31 6 36 35 6 40 55 6 47 54 6 51 28 6 57 8 7 0 40 7 4 41 7 9 18 7 12 2 7 15 43 7 41 39 7 48 55 7 53 50 7 58 36	111213213213111111111111111111111111111	545555555555555555555555555555555555	-2 31.63 	-0.05 -0.06 +0.06 +0.06 -0.02 -0.02 -0.02 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00	-2 31.68 +3 18.05 +3 23.78 Eros. An -1 7.23 -0 59.46 +0 49.52 -0 14.34 -0 6.65 +1 16.47 +1 25.35	-0 19.00 -0 27.67 -1 7.13 -2 4.89 -1 24.90 -2 21.72 -1 0.86 11 ^m star -1 17.92 +0 23.79 -1 28.96 -1 -1 54.11 -2 21.20 -2 38.63	0.00 -0.03 -0.05 -0.01 -0.02 +0.01 +0.02 -0.03 -0.05 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.03 -0.04 -0.03	$\begin{array}{ccccc} -0 & 19.00 \\ -0 & 27.67 \\ -1 & 7.16 \\ -2 & 4.94 \\ & & & \\ -1 & 24.93 \\ -2 & 21.77 \\ -1 & 0.87 \\ & & & \\ -1 & 17.90 \\ +0 & 23.80 \\ -1 & 28.94 \\ & & & \\ +0 & 1.40 \\ -1 & 54.14 \\ -2 & 21.24 \\ & & & \\ -2 & 38.68 \\ \end{array}$	-0.143 -0.110 -0.106 -0.049 -0.041 -0.010 +0.019 -0.112 +0.112 +0.123	+2.38 +2.35 +2.34 +2.32
Jan.27 6 45 53 6 52 30 6 57 36	13 13 13	5 5 5	+3 6.27 $+3$ 29.28	+0.05 +0.06	+3 6.32 $+3$ 29.34	+0 40.92	+0.01	+0 40.93	-0.017 +0.008	+2.35
Jan.28 6 57 18 7 2 16 7 6 56	13 13 13	5 5 5	+1 11.52 $+1 30.39$	+0.02 +0.02	+1 11.54 +1 30.41	+1 55.18	+0.01	+1 55.22	+0.006 +0.027	+2.42
Feb. 1 5 52 19 5 58 36 6 5 0 6 21 11 6 29 32 6 34 37 6 50 39 6 55 39 6 59 38 7 5 15 7 11 49 7 16 6	10 10 10 10 10 10 10 10 40 10 10	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-2 43.14 -2 18.24 -1 39.76 -1 18.61 -0 46.60 -0 28.82 -0 17.31 +0 4.31	-0.05 -0.04 -0.03 -0.02 -0.01 -0.01 -0.01 -0.00	$\begin{array}{cccc} -2 & 43.19 \\ -2 & 18.28 \\ -1 & 39.79 \\ \hline \\ -1 & 18.63 \\ -0 & 46.61 \\ \hline \\ -0 & 28.83 \\ -0 & 17.35 \\ \hline \\ +0 & 4.34 \\ \end{array}$	+1 39.76 +1 8.93 +0 42.48 +0 26.03	+0.02 +0.01 +0.01	+1 39.80 +1 8.95 +0 42.49 +0 26.04	$\begin{array}{c} -0.239 \\ -0.215 \\ -0.179 \\ -0.128 \\ -0.128 \\ +0.138 \\ +0.150 \\ +0.171 \end{array}$	+2.72 +2.66 +2.65 +2.65 +2.66

M1CROMETRICAL OBSERVATIONS OF EROS Continued

Pate-1900 90° Time	Comp. No. Obs.	Measured Δa	Ref.	Corrected Δa	$_{\Delta\delta}^{\rm Measured}$	Ref.	Corrected $\Delta \delta$	Parallax Δa	Factors
Feb. 4 9h 33m 5s 9 39 8 9 45 30 10 21 36 10 26 3 10 30 36 10 44 47 10 44 57 10 46 53 10 48 19 10 52 46	10.5 5 10.5 6 10.5 6 10.5 5 10.5 5 10.5 5 10.5 5 10.5 4 10.5 est. 10.5 2 10.5 7	-2' 20'64 -0 43.43 -0 3.62 0 0.00 +0 2.63	-0.06 -0.02 -0.02 -0.00 0.00 0.00	-0 43.45 -0 3.62 0 0.00 +0 2.63	+1' 24'70 +1 11.44 +0 34.43 +0 25.37 +0 15.00 +0 2.63	0.00 0.00 0.00 0.00 0.00 0.00	+1' 24'70 +1 11.44 +0 34.43 +0 25.37 +0 15.00 +0 2.63	+0:316 +0.380 +0.402 +0.404 +0.405	+3:46 +3.55 +3.85 +3.84 +4.03 +4.17
Feb. 5 6 5 27 6 9 47 6 16 25 6 19 52 6 23 28 6 29 7 6 33 28 6 45 18 6 51 57 6 56 47 7 5 34 7 10 45 7 17 16 10 7 29 10 13 38 10 20 6 10 29 51 10 34 41 10 39 56 10 47 43 10 52 46 10 56 0 10 58 39	1 5 5 5 1 2 2 3 3 1 5 5 2 2 6 6 2 2 5 5 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+0.02 -0.04 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0 20.19 +0 1.50 -0 2.46 	-0.01 -0.03 -0.03	-0 30.41 -0 49.19 -0 31.86 -0 53.46	$\begin{array}{c} -0.096 \\ -0.088 \\ \cdots \\ \cdots \\ -0.047 \\ -0.039 \\ -0.015 \\ \cdots \\ +0.027 \\ \cdots \\ +0.047 \\ +0.051 \\ +0.355 \\ \cdots \\ +0.372 \\ +0.383 \\ \cdots \\ -0.403 \\ \cdots \\ +0.412 \\ +0.414 \\ \end{array}$	+2.93 +2.92 +2.91 +2.89 +2.89 +2.80 +4.01 +4.17

COMPARISON STARS

The following table contains the comparison stars used in these measures. The accurate positions of these stars are now being photographically measured in Europe and are not yet available.

Date	Star	Mag.	Time	Remarks
Oct. 2	1	10.5	8h 12m to 8h 38m	
	2	11.0 8.6	8 12 to 8 38	
	8.6	8.6	8 50 to 9 03 and 11 32 to 11 52	Same star both times
	Eros	10.5		
	12	12	16 46 to 17 4	
Oct. 3	1	10	12 50 to 13 18	
_	2	10.8	12 50 to 13 18	
Oct. 4	10.3	10.3	11 59 to 12 13	
	Eros	10		
Oct. 8	1	12 12	7 27 to 8 11	
	2	12	7 27 to 8 11	10"" 0 0h 40m 1" 0r 170 0" 10
		9.5	8 32 and 12 36 to 13 10	1855.0 a 2^{h} 40^{m} 15.0^{s} = $+47^{\circ}$ 25.0°
	1	13	16 42 to 17 5	
	2	12.5	16 42 to 17 5	
0 1 0	9.8	9.8	17 9 to 17 36	
Oct. 9	1	12.2	7 15 to 8 47	
	$\frac{2}{3}$	12	7 15 to 8 47 7 15 to 8 47	
		12.5	7 15 to 8 47	
	Eros	10 9	14 11 to 14 32	
	1	9		
	$\frac{1}{2}$	9.8		
Oct. 10		10		
Oct. 10	1	12.7 12.5	$\begin{bmatrix} 12 & 50 & to & 13 & 2 \\ 6 & 44 & to & 8 & 4 \end{bmatrix}$	

COMPARISON STARS -Continued

Date	Star	Magnitude	Time	Remarks
Oct. 11	2 1 2 1 2	12.5 12 12.5 12.5 12 12 12.5	6 ^h 14 ^m to 8 ^h 4 ^m 13 47 to 14 7 13 47 to 14 7 16 32 to 17 31 16 32 to 17 31 7 17 to 7 34	
)Ct. 11	1 2	10	7 17 to 7 31 16 57 to 17 45	
et. 15	1	10	6 41 to 7 22	
et. 16	2 1 2 3 7.8	10.5 12 12.5 12 7.8 7.8	6 41 to 7 22 6 38 to 7 33 6 38 to 7 33 6 38 to 7 33 12 30 to 12 56 16 40 to 17 50	{ Same star
et. 17	1 2	10 10,5 10 A little fainter than <i>Eros</i>	16 40 to 17 50 7 9 to 7 30 11 41 to 11 57 16 56 to 17 46 16 56 to 17 46	,
et. 18 et. 25	1 2 1 1	9.2 12 10.5 10.5 10.5	16 3 to 16 17 6 18 to 7 52 6 18 to 7 52 11 31 to 11 43 16 31 to 17 51	⟨ Same star
et. 26	1 1 1 1 2 3	10.5 12 12.5 12 11	16 31 to 17 51 5 55 to 9 3 6 14 to 6 27 11 56 to 12 11 16 25 to 17 36 16 25 to 17 36	Same as * 1 at 11 ^h 56 ^m to 12 ^h 11 ^m Same as * 1 at 5 ^h 55 ^m to 9 ^h 3 ^m
t. 27	$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$	$\frac{11}{12}$	16 25 to 17 36 9 7 to 9 30	
et. 20 ov. 1	2 1 2 3 4 1 2 3 t	13 11 10 11 10.5 9.2 	9 31 to 9 47 15 52 to 16 12 5 55 to 6 56 5 55 to 6 56 5 55 to 6 56 5 55 to 6 56 5 55 to 6 56 8 10 to 9 0 8 10 to 9 0 8 10 to 9 0 16 46 to 18 1	
ov. 2	2 3 1 2 3	10 10 10.5 12.5 10	16 46 to 18 1 16 46 to 18 1 5 42 to 6 39 5 42 to 6 39 5 42 to 6 39	Same as * 1 Sh 9m to 8h 41m Same as * 3 8 9 to 8 41
	1 3 1	10.5 10 10.2	8 9 to 8 44 8 9 to 8 41 8 9 to 8 41 12 17 to 12 58	Same as * 1 5 42 to 6 39 Same as * 3 5 42 to 6 39
ov. 3	1 2 3 1 2 10 9.5	9.9 10.2 9.9 11 11 9.5 10 9.5	12 17 to 12 58 16 56 to 18 8 16 56 to 18 8 16 56 to 18 8 16 56 to 18 8 5 39 to 8 32 5 39 to 8 32 10 52 to 11 10	Same as * 1 16 56 to 18 8 Same as * 2 16 56 to 18 8 Same as * 1 12 17 to 12 58 Same as * 2 12 17 to 12 58
ov. 4	7.5 1 2 3 1 2 3 1 4 3	10.5 10.5 10.5 12 11.5 11 10 11	11 18 to 11 31 16 18 to 18 6 16 18 to 18 6 16 18 to 18 6 6 2 to 8 30 6 2 to 8 30 6 2 to 8 30 6 2 to 8 30 10 26 to 10 35 10 30 to 10 40	Same as * 3 10 26 to 10 40 Same as * 4 10 26 to 10 40

COMPARISON STARS - Continued

Date	Star	Magnitude	Time	Remarks
Nov. 4 Nov. 5	2 1 2 3 4 5 6 7 6	10 13 13.5 12 14 12 10	16 ^h 21 ^m to 18 ^h 11 ^m 5 37 to 7 51 10 33 to 10 50	Same as * 6 10 33 to 10 50 Same as * 6 5 37 to 7 51
Nov. 6 Nov. 7 Nov. 8	1 2 1 2 3 1 2	$egin{array}{c} 12 \\ 12 \\ 11.5 \\ 11 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11.5 \\ 11 \\ 11$	10 23 to 10 28 10 23 to 10 28 13 8 to 13 16 13 8 to 13 16 5 50 to 8 18 5 50 to 8 18 5 50 to 8 18 16 16 to 17 52 16 16 to 17 52 5 44 to 7 16	Same as ** 0 0 01 to 1 of
Nov. 11 Nov. 13	$\begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ \cdots \\ 1 \\ 2 \end{array}$	Same as $Eros$ $ \begin{array}{c} \vdots \\ 12 \\ 12 \\ 12 \\ 12 \\ \hline 13 \\ 9.7 \\ \hline 13 \\ 11 \\ 11 \end{array} $ Hess than $Eros$ $ \begin{array}{c} 9.7 \\ 7 \\ 3 \\ 11 \\ 11 \end{array} $	14 51 to 15 37 14 51 to 15 37 14 51 to 15 37 16 41 to 17 3 16 41 to 17 3 16 41 to 17 3 6 28 to 6 49 7 9 to 8 5 5 48 to 8 3 5 48 to 8 3	
Nov. 15	$\begin{array}{c} 1\\2\\1\\2\\2\\3\\1\end{array}$	11 11 11 11 10 11.5	8 49 to 9 28 8 49 to 9 28 11 24 to 11 59 11 24 to 11 59 16 56 to 18 16 16 56 to 18 16 6 13 to 7 55 6 13 to 7 55	A new set of stars Same as * 2 11 24 to 11 59 Same as * 2 8 49 to 9 28
Nov. 21	2 1 2 3 4 1 2 3 1 1	11 11 11 10 11 11 10 9.5	5 33 to 6 29 5 33 to 6 29 5 33 to 6 29 5 33 to 6 29 7 11 to 8 25 7 12 to 8 25 16 46 to 17 33 7 25 to 8 51	Same as * 1 below Same as * 2 below Same as * 3 below Same as * 1 5 33 to 6 29 Same as * 2 5 33 to 6 29 Same as * 3 5 33 to 6 29
Nov. 22 Nov. 23 Nov. 25	1 2 1 2 2 3	9.0 9.5 10 11 .5m fainter than Eros 9.7 9.0 9.0 n. p. of two 10m stars	7 25 to 8 51 7 25 to 8 51 15 52 to 17 26 15 52 to 17 26 9 45 to 10 2 6 33 to 9 12 6 33 to 9 12 15 18 to 17 58 15 18 to 17 58	⟨Same star
Nov. 26	1 3 4 1 2 5 6	10 s. f. of the two 10 10 10 10 10 11	15 18 to 17 58 5 35 to 8 15 5 35 to 8 15 5 35 to 8 15 12 14 to 12 59 12 14 to 12 59 15 15 to 16 58 15 15 to 16 58	Same as * 1 12 14 to 12 59 Same as * 3 Nov. 25 Same as * 4 Nov. 25 Same as * 1 5 35 to 8 15 {Same star
Nov. 27 Nov. 29	7.7 1 2 1 2 3	11 7.7 11 11 9.5 9.8 11	15 15 to 16 58 5 21 to 8 13 5 21 to 8 13 5 21 to 8 13 5 21 to 8 13 5 31 to 8 31 5 31 to 8 31 5 31 to 8 31 15 42 to 16 44	
Dec. 1 Dec. 2	$\frac{1}{2}$	11 10 12	15 30 to 16 26 15 30 to 16 26 5 42 to 6 16	

COMPARISON STARS—Continued

Date	Star	Magnitude	Time	Remarks
Dec. 2	2 3	11	5 ^h 42 ^m to 6 ^h 16 ^m	
Dog 5		$\frac{11}{9.7}$	5 42 to 6 16 6 49 to 9 29	
Dec. 5	$\frac{1}{2}$	9.4	6 49 to 9 29	
	2 3	10m (11m star close n. p.)	6 49 to 9 29	
	$\frac{1}{11}$.5m fainter than Eros 11m (s. of two 11m stars)	13 53 to 15 7 13 53 to 15 7	
Dec. 8		9.8	6 23 to 8 22	
	11	Nearly 1m fainter than Eros	12 53 to 14 58 13 50 to 14 12	
Dec. 9	1	11	5 19 to 8 12	
	9	11	5 19 to 8 12	
	3	11.5 11.5	5 19 to 8 12 14 58 to 15 51	•
Dec. 10	1	10	5 21 to 7 52	
Dec. 11	2	10 10.5	5 21 to 7 52 5 2 to 7 26	
Jee. 11	1	11	13 51 to 15 37	
	$\frac{2}{1}$	9(?)	13 51 to 15 37	
Dec. 12	$\frac{1}{2}$	8.5 10m (1m fainter than Eros)	4 58 to 8 9 4 58 to 8 9	
	3	12	4 58 to 8 9	
Dec. 17	1	9 9,2	8 57 to 9 9 8 57 to 9 9	
Dec. 18	$\frac{2}{1}$	11.2	8 57 to 9 9 4 55 to 7 41	
	2	8.8	4 55 to 7 41	
	3	$\frac{12}{9}$	4 55 to 7 41 12 46 to 15 2	
	$1\overline{2}$	12	14 20 to 14 33	
Dec. 19	1	11	5 6 to 7 37	
	$\frac{2}{3}$	11 11	5 6 to 7 37 5 6 to 7 37	
	1	11	12 47 to 14 29	
	2 3	11 11	12 47 to 14 29 12 47 to 14 29	
	4	11	12 47 to 14 29	
Dec. 20		15.0	6 4 to 7 35	
Dec. 21	$\frac{1}{2}$	$ \begin{array}{c c} 12.5 \\ 12.5 \end{array} $	13 47 to 14 16 13 47 to 14 16	
Dec. 24	1	11	13 27 to 14 5	
Dec. 26	$\frac{2}{13}$	10.5	13 27 to 14 5 5 57 to 6 46	
Dec. 28	1	11.5	5 20 to 7 12	
	21 8	12.5	5 20 to 7 12	
	$\frac{8}{13}$	8 13	11 14 to 12 33 11 14 to 12 33	
Dec. 29	9.5	9.5	5 26 to 7 19	
	1	13	5 56 to 6 21 5 56 to 6 21	
Dec. 30	<u>2</u> 1	$\frac{13}{10.5\pm}$	5 56 to 6 21 5 29 to 6 43	
	2	12.4	5 29 to 6 43	
Dec. 31	$\frac{9.5}{12.5}$	9.5 12.5 12.5 11.5 9.5	5 45 to 10 49 12 43 to 12 57	
an. 1	1	12.5	5 42 to 7 7	
	$\frac{2}{1}$	11.5	5 42 to 7 7 10 58 to 11 24	
	2	11.5	10 58 to 11 24 10 58 to 11 24	
	10	10	12 43 to 13 57	
an. 2	$\frac{10.5}{10}$	10.5 10	5 17 to 7 2 12 42 to 13 45	
an. 3	1	13	5 39 to 6 43	
	2	13	5 39 to 6 43	
	2	10 11	10 36 to 13 26 10 36 to 13 26	
	1 2 3 4	10	10 36 to 13 26	
Jan. 8	4 1	10	10 36 to 13 26 5 55 to 8 22	
(411. 0	$\frac{1}{3}$	11	5 55 to 8 22	
Ion 10		11	5 55 to 8 22	
Jan. 12 Jan. 11	11 1	11	6 5 to 6 15 5 58 to 7 2	
Jan. 11	1	10	5 58 to 7 2	

COMPARISON STARS—Continued

Date	Star	Magnitude	Time	Remarks
Jan. 14	2 11.5	12 11.5	5h 58m to 7h 2m 8 43 to 9 58	
Jan. 16 Jan. 18 Jan. 19	$ \begin{array}{c} 9 \\ 12 \\ 12.5 \\ 1 \end{array} $	$\begin{array}{c} 9 \\ 12 \\ 12.5 \\ 10 \end{array}$	10 25 to 12 36 5 43 to 7 16 10 57 to 11 45 5 32 to 7 4	
	$\begin{array}{c} 2\\ 3\\ 12 \end{array}$	13 13 12	5 32 to 7 4 5 32 to 7 4 8 29 to 9 15	
Jan. 20	10 1 2	10 9.8 10	10 37 to 11 58 10 37 to 11 58	
Jan. 21 Jan. 22	9 1 2	9 11 12	11 56 to 12 28 11 56 to 12 28	
Jan. 24 Jan. 25	$\frac{2}{1}$	1m br. than Eros. A 12m star fol, it 1:5 .5m fainter than Eros 9.8	6 2 to 6 17 9 20 to 9 49 5 43 to 7 58 5 43 to 7 58	
1 07	$\frac{2}{3}$	11 10.5 12	5 43 to 7 58 5 43 to 7 58	
Jan. 27 Jan. 28 Feb. 1		13 13 10 10 5	6 45 to 6 57 6 57 to 7 6 5 52 to 7 16 9 33 to 10 52	
Feb. 4 Feb. 5	1 2	10.5 9.5 8 10	9 33 to 10 52 6 5 to 7 17 6 5 to 7 17 10 7 to 10 58	
	• • •			

BAROMETER AND THERMOMETERS

A copy of the barometer and temperature records follows. These are from the regular records of the observatory.

Date		BAROMETER		ATTACHED THERMOMETER (F.)			EXTERNAL THERMOMETER (F.)			
1900	9 P. M.	1 A. M.	4 A. M.	9 г. м.	1 л. м.	4 A. M.	9 P. M.	1 A. M.	4 A. M	
et. 2	29:01	29°20	29°15	71	73	73	63	65	67	
et. 3	29.02	29.03		77	77		73	68		
et. 4	28.90	29.00	29.02	75	76	77	66	68	67	
et. 8	29.25	29.28	29.27	72	72	73	47	45	43	
et. 9	29.30	29.30	29.28	72	71	71	52	48	46	
et. 10	29.19	29.10	29.08	71	71	71	53	51	49	
et. 11	29.00	28.95	29.08	73	73	$7\overline{2}$	53	52	52	
ct. 14	29.10	29.10	29.05	73	73	$7\overline{3}$	61	57	$\overline{56}$	
et. 15	28.93	29.10		74	74		63	59		
et. 16	29.42	29.35	29.35	71	$7\overline{2}$	71	39	39	38	
ct. 17	29.10	29.15	29.15	70	71	$7\overline{2}$	47	41	42	
et. 18	29.10	29.18	29.17	70	75	75	49	47	47	
et. 25	29.05	29.12	29.20	78	78	76	64	61	58	
et. 26	29.22	29.20	29.20	78	78	79	57	53	52	
et. 27	29.10	29.05		75	78		57	58		
et. 30	28.92	28.90	28.80	76	73	73	59	58	59	
ov. 1	29.15	29.15	29.20	79	78	79	41	39	39	
ov. 2	29.30	29.35	29.22	78	76	78	50	45	43	
ov. 3	29.00	28.97	28.95	79	81	83	49	49	47	
ov. 4	28.98	29.00	29.05	80	78	77	52	39	34	
ov. 5	29.10	29.10	29.15	78	78	76	42	36	35	
ov. 6	28.90	28.90		69	76		30	28		
ov. 7	28.88	28.90		68	71		29	25		
ov. 8	28.80	28.80	28.80	76	76	76	27	24	22	
ov. 10	29.18	29.00	29.10	75	65	75	30	31	28	
ov. 11	29.10	29,00		73	73		27	29		
ov. 13	28.90	28.95	29.00	76	77	77	19	1416	12	
ov. 15	29.40	29.50	29.50	78	78	78	14	12 ~	14	
lov. 21	28.95	28.80		75	78		28	30		
Tov. 22.	29.00	29.15	29.20	78	80	80	29	25	22	

BAROMETER AND THERMOMETERS - Continued

Date		Barometer		Аттлен	ed Thermome	CTER (F.)	Extern.	L THERMOME	TER (F.)
1100	9 P. M.	1 A. M.	4 A. M.	9 г. м.	1 A. M.	4 A. M.	9 р. м.	1 А. м.	4 л. м.
Nov. 23	29125	29°20	29320	80	80	80	29	30	31
Nov. 25	29.08	29.05	29,00	72	75	75	28	25	24
Nov. 26	29,00	28.90	28.88	78	78	78	28	28	28
Nov. 27	28,90	29,00		80	80		31	$\overline{28}$	
Nov. 29	29.05	29.00	20.00	70	72	72	27	28	29
Dec. 1	29.10	29.00	29.00	65	64	68	30	32	29
Dec. 2	29.05	29 00		68	62		32	33	
Dec. 5	29.18	29.15		78	78		28	25	
Эес. 8	28,90	29,00		75	78		32	23	
Dec. 9	29, 10	29.35	29.30	70	73	75	9	6	7
Dec. 10	29.20	29.10		74	74		16	17	
Dec. 11	29.18	29.10	29.00	77	78	78	12	ii	12
Dec. 12	28.78	28.70		80	80		31	27	
Dec. 17	29.00	28.95	28.80	68	69	70	31	35	38
Dec. 18	29.05	29.10	29.18	75	75	78	31	32	30
)ec. 19	29.10	29.10	29.10	80	80	81	32	28	26
)ec. 20	28,90	28.80	28.90	82	80	75	33	32	31
Dec. 21	28.45	28.45	28.45	72	72	72	38	40	40
Dec. 24	28.90	28.90	28.00	66	65	$6\overline{2}$	14	12	16
ec. 26	29.00	29.00		70	73		19	18	
)ec. 28	29.15	29.05	29.00	75	75	75	13	11	13
)ee. 29	28.78	28.70		75	78		$\frac{22}{22}$	21	
Dec. 30,	28.75	28.68	28.65	75	69	60	$\overline{28}$	20	18
Dec. 31	29.20	29.30	29.32	75	75	76	-5	$-\tilde{10}$	-11
an. 1, 1901.	29.10	29.40		68	70		ğ	4	
an. 2	29.50	29.50	29.48	76	75	75	ő	2	8
an. 3	29,20	29.20	20.10	73	75		22	19	
an. 8	29.05	29.10		73	66		22	14	
an. 12	29.00	28.90		72	78		$\frac{52}{22}$	28	
an. 14	28.88	28.65	28.65	72	75	75	30	30	29
an. 16	28.72	20.00	20.00	73			17		
an. 18	29.08			75		• •	12		
an. 19	29.20	29,00		72	70		22	29	
an. 20	28.80	28.78	28.70	70	72	75	$\tilde{42}$	39	39
an. 21	29.20	29.22	20.10	75	78	4.7	$\frac{12}{28}$	25	130
an. 22	29.10	28.95	28.90	78	78	78	$\frac{50}{27}$	27	28
an. 24	28.98	29.00	20.00	75	75	***	10	12	
an. 25	29.05	29.00	29.00	77	79	80	18	20	28
an. 27	28.60	20.00		65			16		
an. 28	28.75			72			8	• •	• •
eb. 1	28,90			71			1		
'eb. 4	29.35			70			7		
'eb. 5	29.35	29.25		72	70		Ó	-5	
C19, 19,	m19.7 , 5.31.3	201.20		12	10		· ·	,	

EARLIER MICROMETRICAL OBSERVATIONS OF ERO8, $4\overline{8}98-99$

Previous to the preceding observations of *Eros*, the planet was measured with the large telescope on twenty-seven nights in 1898 and on thirteen nights in 1900. These observations have not been printed and are here published for the first time.

Date—IS98-99 90 Time	Comp.	Plane	t-Star Δδ	Apparent a	$\operatorname*{Apparent}_{\delta}$	Parallas a	Factors 8	Red. to A	pparent 8
Sept.10 12h 1m 22y 12 7 19 19 19 19 19 19 19		+0" 10:25 +0 15.62 -0 4.30 -0 4.71 -0 39.75 -0 40.22	$ \begin{array}{rrrr} -0^{\circ} & 18.5 \\ -2 & 10.4 \\ -2 & 10.3 \\ +2 & 43.9 \\ -2 & 25.4 \\ -2 & 26.0 \\ -2 & 19.9 \end{array} $	20% 44% 26% 16 20 43 38.55 20 42 45.89 20 42 45.48 20 37 53.52 20 37 53.05	-6° 20′ 26′9 -6 20 38.0 -6 20 37.9 -6 20 50.2 -6 21 23.9 -6 21 24.5 -6 21 18.3	+0.294 -0.094 -0.158 -0.140 +0.105 +0.137	+6.43 $+6.58$ $+6.50$ $+6.56$ $+6.51$ $+6.60$	+4:33 +4:32 +4:31 +4:31 +4:20 +4:20	+18.2 +18.1 +18.1 +18.1 +17.7 +17.7 +17.8

EARLIER MICROMETRICAL OBSERVATIONS OF EROS, 1898-99—Continued

Date—1898-99	$\begin{array}{c} \operatorname{Planet-Star} \\ \Delta \alpha & \Delta \delta \end{array}$	Apparent	$\mathop{\rm Apparent}_{\delta}$	Parallax Factors	$\operatorname*{Red.toApparent}_{a}$
Date 1898-99 Sept.20 8h 28m 43° 4 4 4 8 500 24 4 3 4 4 4 8 500 24 4 3 4 4 4 5 4 5 4 5 4 5 4 5 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Apparent - 6° 21′ 9′2 - 6° 20 38.9 - 6° 20 17.9 - 6° 20 18.0 - 6° 19 52.6 - 6° 19 52.6 - 6° 19 22.7 - 6° 18 49.9 - 6° 3 31.3 - 6° 3 31.8 - 6° 1 51.8 - 1 23 43.2 - 0 56 17.5 - 0 18.8 + 0 53 10.9 + 7 31 32.7 + 8 55 35.8		
Feb. 1 6 43 23 17 4 6 48 40 17 4 6 56 22 17 4 Feb. 7 6 54 44 18 4 7 14 20 18 4 Feb. 12 6 52 42 19 4 6 58 27 19 5 7 4 11 19 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 13 0.77 0 44 37.42 0 44 38.85	+10 50 17.3 +10 50 21.9 +13 29 55.5	+0.343 +5.10 +5.10 +5.04 +0.385 +0.369 +4.95 +0.382	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

DIRECT MEASURES OF $\Delta \alpha$

As many of the differences of right ascension were measured direct with the micrometer and afterwards reduced to time, it is thought best to tabulate the original measures themselves, and they are given below.

MEASURED DIFFERENCES OF RIGHT ASCENSION

Date	90th Meridian	Δα in Arc	Date	90th Meridian	Δa in Arc	Date	90th Meridian	Δα in Arc
1898	Time	Planet-Star	1898	Time	Planet-Star	1898-90	Time	Planet-Star
Sept. 10. Sept. 11. Sept. 12. Sept. 12. Sept. 19. Sept. 19. Sept. 20. Sept. 20. Sept. 21. Sept. 23. Sept. 23. Sept. 24. Sept. 25.	8 22 47 7 43 41 7 53 39 9 31 46 9 49 20 8 28 43 8 50 24 9 1 40 7 29 3 7 39 39 7 43 37	$\begin{array}{c} +152!8 \\ +225.7 \\ -64.1 \\ -70.2 \\ -592.6 \\ -599.4 \\ -990.4 \\ -997.1 \\ +857.2 \\ +276.1 \\ +273.7 \\ +41.3 \\ -141.0 \end{array}$	Sept. 26. Sept. 26. Sept. 27. Oct. 10. Oct. 10. Oct. 11. Nov. 26. Nov. 26. Nov. 27. Dec. 3. Dec. 6. Dec. 10.	7 50 31 7 8 9 9 31 46 9 48 13 7 17 2 7 30 52 6 30 40	$\begin{array}{c} -281 11 \\ -283 .2 \\ -374 .1 \\ -12 .9 \\ -9 .1 \\ +186 .6 \\ +190 .9 \\ -33 .1 \\ -21 .9 \\ +118 .9 \\ -112 .8 \\ -236 .1 \\ -214 .3 \end{array}$	Dec. 10. Dec. 13. Dec. 17. Jan. 18. Jan. 24. Jan. 31. Jan. 31. Feb. 1. Feb. 1. Feb. 12. Feb. 12.	7 13 18 6 10 49 7 29 24 6 52 31 7 5 9 6 43 7 6 57 23	$\begin{array}{c} -198.7 \\ +93.2 \\ +79.7 \\ +82.8 \\ +148.7 \\ +169.1 \\ -222.1 \\ -198.3 \\ +7.5 \\ -536.5 \\ -74.2 \\ -53.4 \end{array}$

MEAN PLACES OF COMPARISON STARS FOR 1898-99

Star	R. A.	Declination	Authority
1	20h 44m 11s88	- 6° 20′ 26.6	R. H. Tucker, Lick Observatory M.C.
2	20 43 18.61	-6 18 45.7	R. H. Tucker, Lick Observatory M.C.
- 3	20 42 45.88	-6 23 52.2	R. H. Tucker, Lick Observatory M.C.
4	20 38 49.07	-6 19 16.2	R. H. Tucker, Lick Observatory M.C.
5	20 35 59.56	-6 21 38.7	R. H. Tucker, Lick Observatory M.C.
6	20 38 34.89	-6 327.7	Schj. 8242
7	21 37 45.57	-22025.5	16 (München I 29286 + München II 11916)
8	21 39 36.7	-2 14.5	Compared with S.D2°5623
9	21 50 58.28	-1 28 26.8	½ (Copeland and Börgen, Göttingen Cat. 6038+6039)
10	21 - 56 - 31.58	-0.53.29.2	10m. Compared with \(^1_3\)(Copeland and B\"orgen, G\"ottingen Cat. 6076+6077+6078
11	22 - 5 - 1.1	-0.22.0	B.D. = 0°4316
12			9.75m star
13	22 - 19 - 25.37	+0.53 21.3	12m. Compared with π Aquarii
14	23 35 24.60	\pm 7 28 10.2	Leipzig A.G.C. 11727
15	23 - 51 - 2.12	+8 58 28.8	9.6m. Compared with Leipzig A.G.C. 11836
16	0 - 10 - 46.0	+10 35.1	B.D. $+10^{\circ}20$
17	0 - 12 - 59.69	+10 48 9.0	Compared with Leipzig A.G.C., No. 69
18	$0-27-48\pm$	$+12 7.1\pm$	Approximate from ephemeris
19	0 44 41.87	$+13 \ 31 \ 8.9$	9.7m. Compared with W.B. 0\(\text{P}754\)

MICROMETRICAL OBSERVATIONS OF EROS IN 1900

Date — 1900 Emg.	Planet-Star $\Delta a = \Delta \delta$	Apparent a	Apparent 8	Parallax Factors _α	Red. to Apparent
July 30 14 ^h 6 ^m 35 ^s xeb. 2 14 13 43 xeb. 3 14 23 51 1 2 14 35 19 1 2 2 4 13 41 27 2 4 13 41 27 2 4 14 16 36 3 3 14 25 9 3 5 14 33 23 3 3 Aug. 5 14 37 14 4 31 44 45 9 4 4 4 51 46 15 13 51 46 4 3 Aug. 6 15 13 51 5 18 9 5 4 15 23 9 5 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1h 38a 38;8 1 43 20.62 1 44 53,85	$\begin{array}{c} +22 & 16.6 \\ +22 & 16.1 \\ +22 & 58.5 \\ +22 & 58.5 \\ +24 & 0.1 \\ +21 & 19 & 32.5 \\ +21 & 19 & 44.3 \\ \end{array}$	-0:312 -0:312 +3.52 +3.45 +3.89 -0.356 -0.264 +3.72 +3.29 -0.264 -0.227 +3.08 -0.227 +3.08 -0.227 +3.08 -0.227 +3.08	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Aug. 20 15 36 1 6 4 4 15 43 40 6 5 5 15 11 19 6 1 4 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 6 47.8	+29 30.6 +29 30.8 +31 30 27.9 +31 30 36.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

MICROMETRICAL OBSERVATIONS OF EROS 1N 1900—Continued

Sept. 3 13 17 2 8.5 4 1 -0m 4 28 1 2h 24m 26 54 1 -0 28 54 1 -0 28 0 +4 56 1 +4 56 1 -1 22.9 1	Date — 1900 So Time	Planet-Star $_{\Delta a}$	Apparent	$\operatorname*{Apparent}_{\delta}$	Parallax Factors	Red. to Apparent
13 37 52 17 5 +0 9.76	Sept. 3 13 17 2 8.5 4 13 22 37 8.5 4 Sept. 4 15 16 12 9 4 15 20 47 9 4 15 24 49 9 3 Sept. 10 13 7 30 10 4 13 15 54 10 5 13 23 32 10 5 Sept. 11 13 26 7 11 4 14 8 46 11 6 14 25 49 11 4 Sept. 13 16 11 5 12 5 16 30 35 12 4 16 35 0 13 5 16 41 48 14 5 16 46 37 13 5 Sept. 19 12 2 18 15 6 12 15 35 15 6 12 26 5 15 6 Sept. 27 13 6 25 16 4 13 16 53 16 43 13 12 4 17 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 25 39.64 2 31 50.80 2 32 49.66 2 34 43.05 2 34 43.17 2 34 43.47 2 39 14.83 2 42 33.6	+34° 30′47′4 +34° 54′39.9 +34° 54′47.8 +37° 6° 57° 1 +37° 7° 13.2 +38° 17° 51.3 +38° 18° 34.5 +40° 30° 42.1 +40° 31° 5.3 +43° 35.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \dots \\ +4.65 \\ \dots \\ +4.65 \\ \dots \\ +11.7 \\ +11.6 \\ +4.86 \\ \dots \\ +11.4 \\ +4.94 \\ \dots \\ +5.02 \\ +5.02 \\ +5.02 \\ +5.02 \\ \dots \\ +11.5 \\ +11.7 \\ +5.30 \\ \dots \\ +11.7 \\ +5.64 \\ \dots \\ +11.9 \\ \end{array}$

MEASURED DIFFERENCES OF RIGHT ASCENSION

Date 1900	90th Meridian Time	Δα in Arc Planet-Star	Date 1900	90th Meridian Time	Δα in Arc Planet-Star	Date -1900	90th Meridian Time	Δα in Arc Planet-Star
	13 31 42	$\begin{array}{r} +109.2 \\ -413.0 \\ -293.2 \\ +235.3 \\ +8.4 \end{array}$	Aug. 27 Sept. 4 Sept. 10 Sept. 11 Sept. 13	16 ^h 2 ^m 34 ^s 15 20 47 13 15 54 14 8 46 16 30 35	$\begin{array}{r} -44\% \\ -20.4 \\ -205.4 \\ +414.4 \\ -219.2 \end{array}$	Sept. 13 Sept. 13 Sept. 19 Sept. 27		$\begin{array}{c} -159.3 \\ +74.9 \\ -218.9 \\ +106.0 \\ \end{array}$

MEAN PLACES OF COMPARISON STARS, 1900.0

Stars	R. A.	Declination	Authority
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 8^{1/2}\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ \end{array}$	1h 36m 49*4 1 39 5.2 1 43 38.4 1 44 50.44	+22° 17.6 +22 53.3 +23 59.3 +24 16 28.7 +29 29.8 +31 56.6 +34 29 15.2 +34 31 24.8 +34 55 51.1 +37 4 32.4 +37 31 9.3 +38 19 13.7 +38 20 5.5 +38 19 55.3 +40 29 21.2 +43 33.0	B.D. $+22^{\circ}261$ B.D. $+22^{\circ}265$ B.D. $+23^{\circ}242$ 12m. Compared with Berlin A.G.C. 542 12.3m star 12m. Compared with B.D. $29^{\circ}373$ B.D. $+31^{\circ}408$ Leiden A.G.C. 933 10.5m. Compared with Leiden A.G.C. 933 11m. Compared with Leiden A.G.C. 935 Lund A.G.C. 1291 Lund A.G.C. 1291 Lund A.G.C. 1295 10.2m. Compared with $14=d$ 10.2m. Compared with $14=c$ 10.0m. Compared with Lund A.G.C. $1273=a$ Bonn A.G.C. 2351 . B.D. $+43.585$.

One of these is 1r (9.67) in error—probably the last one.

MICROMETRICAL MEASURES OF COMPARISON STARS

Compared with S.D. 2°5623

13m star precedes 0′ 25:43 (7) = 1:69
13m star north 5′ 24:47 (4)

Comparison Star for 1898, Dec. 6

Compared with \(\frac{1}{3} \) (Copeland & Börgen, Göttingen

Cat. \(6076 + 6077 + 6078 \))

10m star precedes \(0^m \) 9*49 (5)

10m star south \(41. \) 36*6 (4)

Comparison Star for 1898, Dec. 17
Compared with π Aquarii
12m star precedes 9° 40.71 (4) = 38.72 (using an intermediate star)
12m star north 1′ 46.19 (4)
Direct $\Delta \alpha$ by transit gave $\Delta \alpha$ = 38.37 (18)

Comparison Star for 1899, Feb. 1
Compared with Leipzig A.G.C. 69

12m star preceding 2' 17:07 (4) = 9:30

12m star north 9' 22:8 (4) (using several intermediate stars)

Comparison Star for 1899, Feb. 12 Compared with W.B. 0!754 9.7m star precedes 1^m 13:72 (10) 9.7m star south 1' 0'56 (3)

Comparison Star for 1899, Jan. 24
Compared with Leipzig A.G.C. No. 11836

9.6m star precedes 2^m 36 *90 (8)

9.6m star south 0′ 50 *19 (3)

Comparison Star for 1899, Jan. 31 Compared with B.D.M. + 10°23 9.5m star precedes 1^m 24°25 (8) 9.5m star south 3′ 54′06 (3) Comparison Star for 1900, Aug. 5
Compared with Berlin A.G.C. 542
12m follows 0^m 36;68 (18)
12m north 0 52;08 (3)

Comparison Star for 1900, Aug. 20 Compared with B.D.+ 29:373 12m star precedes 0^m 24:33 (16) 12m star south 2 45:80 (4)

Comparison Star for 1900, Sept. 3
Compared with Leiden A.G.C. 933
10m star precedes 0 97 37 567 (16)
10m star north 2' 9 565 (4)

Comparison Star for 1900, Sept. 4 12m star follows 0^m 29:98 (14) 12m star south 1' 27:56 (4)

Comparison Stars for 1900, Sept. 13 Compared with Lund A.G.C. 1273 Star α

 a follows 1273
 3m 49:83 (6)

 a north
 1' 41:22 (2)

Now compare b, c, d with a:

b follows a 0 11.76
b north of a 1 2.788
c follows a 0 19.61
c north 0 10.17
d follows a 0 21.58
d south 0 30.97

These $\Delta \alpha$ and $\Delta \delta$ with respect to α are from the following position angles and distances:

a and b = 65°56 (4) distance 151°94 (4 single dist.) b and c = 119.53 (4) = 106.94 (4 " ") c and d = 131.53 (4) = 78.13 (4 " ")

The star b of the 10.3m was not used in the observations of Eros.

In the observations of 1900, September 10, the planet was referred to the Lund star through a 10.5m star.

In the first two measures of 1900, July 30, the planet was referred to an unknown nebula.

I wish to express my thanks to Professor R. H. Tucker, of the Lick Observatory, for special observations of some of the comparison stars. I am also very greatly obliged to Professor William H. Hussey, of the Lick Observatory, for supplying me with star places from the various star catalogues in the library of the Lick Observatory not available here, and also for a manuscript copy of his accurate ephemeris of *Eros* for the identification of comparison stars.

I am also indebted to Professor S. J. Brown, of the U. S. Naval Observatory, for eatalogue places of some of the stars.

ESTIMATIONS OF THE BRIGHTNESS OF EROS

The remarkable variations in the light of Eros which are shown to have occurred during the apparition of 1900–1901 have added a much greater interest to the planet. The cause of these light changes is yet a mystery, though several more or less plausible explanations have been brought forward. During the observations made here this peculiarity was not known, having developed later on. No special observations were therefore made of its brightness. I find, however, in going over the measures with the 40-inch, that Eros was carefully compared in brightness with various stars near it, not only in the measures of 1900, but also in 1898 within a short time of the discovery of the planet. These stars can readily be identified in the sky and their magnitudes determined, from which an accurate value can be had of the light of Eros on some eight or nine nights in 1898 and on over thirty nights in 1900. Since, in the great majority of cases, the brightness of Eros differed only a fraction of a magnitude from that of the star, the comparisons will be very accurate and should be very important in connection with the singular variation of the light of the planet.

That these observations may be made available, I have collected them here with all the data required for the identification of the comparison stars when used with an accurate ephemeris of Eros.

The stars referred to are those used at the time of observation for the position of the planet, if not otherwise stated.

The times herein contained are 90th meridian time, which is 6^h 0^m 0^s slow of Greenwich mean time.

1898

September 11: At 8h 11m 45s Eros was 1'14 north of a small star. A few seconds before this it had passed within about 0'6 of the star—the two appearing for a few moments as a beautiful double star. Eros was 0.2m less than the star.

On September 12 the position of this star was measured with reference to the comparison star of September 11. Δα 4′ 1′15 (6) Δδ 2′ 11′55 (3) south following the comparison star of September 11.

September 20, 9^{h} 0^m: Eros estimated at 11.8m. There are two stars, one south following Eros $2\frac{1}{3}$, the other north following 3'. These are of about equal magnitude. Eros is 0.1m less than either star.

September 21: At $9^h 1^m 40^s$ Eros followed an 11m star by 17:05 (4) and was $\frac{1}{2}$ ' \pm north of the star. The planet was 0.5m less than this star. A similar star was about $\frac{1}{2}$ ' north preceding Eros. Eros was also 0.5m less than this star.

September 24: At 7^h 40^m Eros is 0.2m less than a small star that is close south following the 7.7m comparison star. The estimated magnitude of Eros was 11.5m.

September 26, 8h 11m: Eros is 7" or 8" south of a small double star [P.A. 271°5 (4) distance 3′75 (4)]. 1' south of these is a small star exactly the same magnitude as Eros. There are two somewhat brighter stars 2' or more south of this star.

October 11: At $7^{\rm h}$ $25^{\rm m}$ Eros is 12:8 south of a small star and follows it $1\frac{1}{2}$ ' \pm . Eros is 0.1m brighter than this star.

December 10, $6^{\rm h}$ 17^m: $2\frac{1}{2}$ preceding *Eros* is a small star. The planet is exactly the same magnitude as this star.

1899

January 31, 7h 0m: Estimated magnitude = 11. It is bright and easy. There are two stars 3' or 4' preceding. It is brighter than either of these stars.

February 12, $7^h 10^m$: $2\frac{1}{2}$ following the comparison star are two small stars. Eros is exactly the same brightness as these.

1900

August 4, $14^{\rm h}$ $35^{\rm m}$: Eros about 12.2m.

August 6, 15h 18m: Eros 0.1m brighter than the comparison star. The planet is estimated to be 12m.

August 7, 13^h 50^m: Estimated at 12.2m. There is a star of the same brightness as the planet preceding 4' and 1½' north.

August 20, $15^{\rm h}$ $55^{\rm m}$: There are two stars marked 12.1m 1' and 2' south preceding the planet. Eros is 0.1m brighter than these.

August 27, 16h 10m: There is an 11.5m star $1\frac{1}{2}$ following the comparison star which is exactly the same brightness as E_l os.

September 3, 13h 25m; Estimated magnitude, 11.5m. Eros is 0.5m or 0.7m less than the 10.5m comparison star.

September 10, 13h 20m: Estimated magnitude, 11m. Small comparison star estimated at 10.5m

September 13, 16^h 25^m: Estimated at 10.7m. The estimations for the stars near were a = 10m, b = 10.2m, c = 10m, d = 10m.

September 19, 12^h 30^m: There is an 11m star 2' preceding and $\frac{1}{2}$ ' \pm north, exactly the same magnitude as Eros.

September 27, 13^h 50^m: Eros and the 10.5m comparison star are of the same brightness—possibly Eros is very slightly the brighter.

October 2, 8h 40m: Eros 0.5m brighter than star 1.

October 4, 12h 25m: Estimated at 10m. It is 0.3m brighter than the comparison star.

October 9, 8h 5m: Estimated at 10m. Star 1 is 12.2m; star 2 is 12m; star 3 is 12.5m. Same date, 16h 20m: Eros 0.7m less than star 1. Same date, 16h 40m: A little less than star 1, perhaps 0.5m.

October 25, 18h 2m: Eros still easily visible on the bright sky. The comparison stars have all faded out. November 1, 17h 50m: Estimated at 9.8m. It is exactly the same brightness as star 1 and 0.2m brighter than star 2.

November 2, 12h 50m: It is from 0.1m to 0.2m brighter than star 2 and 0.3m brighter than star 1.

November 11, 6^h 50^m: It is 0.2m brighter than the comparison star. Same date, 8^h 20^m: It is 0.3m brighter than the comparison star. The comparison star estimated at 9.7m.

November 13, 18^h 10^m: It is 0.2m brighter than star 2.

November 22, 8h 50m: It is 0.25m brighter than star 2 and about 0.7m brighter than star 1. It is much easier than star 2.

November 23, $10^{\rm h}\,0^{\rm m}$: It is 05.m \pm brighter than the comparison star.

November 25, 18h 0m: It is 0.5m brighter than either star 3 or star 4, which are equal.

December 5, 9h 30m: It is 0.5m or 0.7m brighter than star 1. Same date, 14h 0m: It is 0.5m brighter than the comparison star.

December 8, 7h 10m: It is nearly 1m brighter than the comparison star. Same date, 14h 20m: It is from 0.5m to 0.7m brighter than the comparison star.

December 12, 6^h 0^m: It is 1m brighter than star 2. It is 0.7m or 0.8m less than star 1.

December 18, 12h 52m; It is 0.3m brighter than the comparison star. The star estimated at 8.8m.

December 29, 5h 40m: It is the same magnitude as the comparison star.

December 31, 6h 50m: It is the same brightness as the comparison star—possibly very slightly brighter.

1901

January 14, 10^h 25^m: It is from 0.5m to 0.7m brighter than the comparison star.

January 19, 6h 10m: It is 0.7m brighter than star 1.

January 21, 10^h 30^m: It is less than the comparison star. Same date, 11^h 0^m: It is from 0.1m to 0.2m less than the comparison star, and is slightly yellowish.

January 24, 6h 10m: It is 1m less than the comparison star. Same date, 9h 50m: It is 0.5m brighter than the comparison star.

January 25, 7h 10m: It is 0.1m brighter than star 1.

February 5, 10h 50m: It is 0.2m brighter than the comparison star, which is about 10m.

ON CERTAIN RIGOROUS METHODS OF TREATING PROBLEMS IN CELESTIAL MECHANICS

F. R. MOULTON

§ 1. INTRODUCTION

MATHEMATICAL science was not sufficiently developed to enable the founders of celestial mechanics to prove in many cases the validity of the methods which they found it necessary to employ. Doubtless, too, mathematicians of a century and more ago did not realize so keenly as they do at present the necessity of relying only upon those processes which have been proved to be legitimate. In both pure mathematics and astronomy many conclusions were drawn which have since been shown to be erroneous or which still lack proof. Celestial mechanics has been filled with series, comparatively few of which have been proved to be convergent. It may be said by way of excuse, however, that the problems which astronomers have been called upon to solve have been almost invariably of great difficulty, and their powers have been sufficiently taxed to obtain formal solutions which would agree with observations.

The critical attitude respecting the convergence of series may safely be said to date from the researches of Abel on the hypergeometric series in 1826, and to have received its greatest early impulse from the researches of Cauchy in the theory of functions of complex variables. The latter half of the nineteenth century witnessed a complete re-examination of the foundations of analysis, the correction of numerous errors, and the introduction of an entirely new spirit of rigor.

It is worthy of remark that many mathematical processes, especially those used in integrating total differential equations, have had their origin in attempts to solve astronomical problems. After having been started they have been developed in the realm of pure mathematics far beyond their astronomical applications; and, with the exception of the epoch-making researches of Poincaré (1892–98), the improvements in the methods of celestial mechanics and the standard of rigor maintained have in no way kept pace with these developments. The question is pertinent whether those interested in celestial mechanics should not henceforth adhere more nearly, if not entirely, to methods which are known to be rigorous.

In this paper it is proposed to show how some of the important problems of celestial mechanics may be treated by processes which are proved to be valid at least within prescribed limits. These problems will depend upon the integration of total differential equations in series, and the central question will relate to the convergency of the series. It will be shown how certain of the standard methods are valid for not too great values of the time, and how other problems can be solved. It will be shown that, if the initial conditions are known, it is possible to construct series which will represent the co-ordinates of the moon with any desired degree of accuracy for any desired length of time, provided it does not go outside of an arbitrary anchor ring inclosing its present orbit, and that the number of terms which will be sufficient can be determined in advance; it will be shown that the usual method of computing absolute perturbations has a certain realm of validity, and that the terms of different orders have simple physical interpretations; it will be shown how the secular terms of the first order can be avoided in the mutual perturbations of the planets, giving results in some respects similar to those obtained by the methods of Lagrange, but in others essentially different; and it will be shown that the higher terms in Hill's celebrated lunar theory can be defined in such a manner that the theory as a whole has a positive realm of validity.

§ 2. POWER SERIES IN THE TIME 1

The first and simplest method of integrating differential equations of the type occurring in considering the motions of the planets and satellites is to develop the solutions as power series in the independent variable. The usefulness of this method in astronomical problems is quite limited because of the small value of the time for which the series converge. As this is the best-known method of integrating differential equations, a mere outline of the steps and the proof of their validity will be sufficient.

The differential equations of motion of k mutually attracting spheres may be written in the form

$$\frac{dx_i}{dt} = X_i(x_1, \dots, x_n t) \qquad (i=1, \dots, n), \quad (n=6k), \qquad (1)$$

where the X_i are all analytic functions of x_1, \dots, x_n and t. If the bodies are not spheres, but of some known form, as oblate spheroids, the number of differential equations is doubled for a given number of bodies. If the bodies are spheres, and if the x_i are the rectangular co-ordinates and the components of velocity, the right members of (1) will not involve the time explicitly. There is no loss in generality in supposing that at the origin of time $t=0, x_i=0$ ($i=1,\dots,n$); for, if it were not so, a convenient transformation of variables would secure these conditions. In all astronomical problems the X_i are all regular for $x_i=0$ ($i=1,\dots,n$), t=0.

To find the solutions, suppose the X_i are developed as power series in x_i, \dots, x_n, t as

$$\frac{dx_i}{dt} = \sum_{j_1, \dots, j_n, k=0}^{\infty} a_{(j_1, \dots, j_n, k)}^{(i)} x_1^{j_1} x_2^{j_2} \dots x_n^{j_n} t^k \qquad (i=1, \dots, n) ,$$
 (2)

expansions which, under the conditions stated, converge for sufficiently small x_i, \dots, x_n and t. The solutions are to have the form

$$x_i = \sum_{j=1}^{\infty} c_j^{(i)} t^j \qquad (i=1,\dots,n) .$$
 (3)

If equations (3) are substituted in (2) and the coefficients of corresponding powers of t equated in the two members, it will be found that all of the $c_j^{(i)}$ can be determined uniquely in the order of increasing values of j.

It only remains to prove that the series (3) have positive radii of convergency. This is done by using a comparison system of differential equations

$$\frac{d y_i}{d t} = Y_i(y_1, \dots, y_n, t) \qquad (i=1, \dots, n) , \qquad (1')$$

where the Y_i fulfil all the conditions imposed upon the X_i , and the additional ones that every coefficient of their expansions shall be real and positive and greater than the modulus of the corresponding coefficient in the expansions of the X_i . Suppose further that the solutions of (1') are

$$y_i = \sum_{j=1}^{\infty} b_j^{(i)} t^j$$
 $(i=1,\dots,n)$, (3')

where the coefficients $b_j^{(0)}$ are determined as the $c_j^{(0)}$ were. It is easily shown, then, that every $b_j^{(0)}$ is real and positive and greater than the modulus of the corresponding $c_j^{(0)}$. Consequently, (3) converge for at least as large values of t as (3') do.

All of the conditions imposed upon (1') can be fulfilled by equations of the form²

$$\frac{dy_i}{dt} = \frac{C}{[1 - a(y_1 + \dots + y_n)][1 - \beta t]},$$
 (1")

The first proof of the convergence of the series obtained by this method was given by Cauchy in the Comptes rendus, July, 1842; Collected Works, 1st series, Vol. VII.

where C, α , β are real positive constants. Integrating these equations, determining the constants of integration by the condition that $y_i = 0$ for t = 0 and solving for y_i , it is found that

$$y_i = 1 - \sqrt{1 + \frac{2 n a C}{\beta} \log (1 - \beta t)}$$
 (3")

It follows from this equation that the y_i can be expanded in converging power series in t if

$$|t| < \frac{1}{\beta},$$

$$|t| < \frac{1}{\beta} \left(1 - e^{-\frac{\beta}{2n\alpha C}} \right),$$
(4)

inequalities which can always be fulfilled by finite values of t for finite values of a, β , and C. Consequently the series (3) converge for sufficiently small values of the time.

A defect of the method just outlined is that it does not give the true radius of convergence of the series. Picard has shown, indeed, that the limit imposed on t by the inequalities (4) is always smaller than the true radius of convergence.

§3. APPLICATION OF MITTAG-LEFFLER'S GENERALIZED POWER SERIES

As has been remarked, the series (3) in most practical problems converge for only a short interval of time. Since the singularities of the right members of (1) are isolated, the singularities of (3) are also isolated; hence equations (3) define the values of the x_i for all values of t by the Weierstrassian continuation of power series. But to continue power series by the method of Weierstrass, it is necessary to know the location of the singularities, the very thing that is unknown when the series is defined by non-linear differential equations. In addition to this, the work of actually continuing power series is so great as seriously to impair the value of the method even when the positions of the singular points are known.

Part of these difficulties have been overcome by Mittag-Leffler in his researches on methods of representing analytic functions in extended regions of the complex plane by generalizations of power series.

For simplicity let any of equations (3) be written in the form

$$x = \sum_{i=1}^{\infty} a_i t^i , \qquad (5)$$

where now t is a complex variable. Suppose this series converges so long as $|t| < t_0$. Mittag-Leffler has shown in *loc. cit.* how to construct a series of series out of t and the coefficients a_i associated with the point t = 0 which shall be uniformly convergent in a widely extended region which he called a star.

There is a star A_n associated with the coefficients a_i for every positive integer n, which is defined as follows⁵: With t=0 as the origin draw any vector. The positive quantity r may be chosen so small that if the length of the vector is taken as (n-1)r, then every circle whose radius is r and whose center is on the vector will contain none but regular points in its interior or on its boundary. Let ρ be the upper limit of the values of r for which these conditions are fulfilled. If the length $n\rho$ is taken on the vector, and if the vector makes a complete revolution, the value of ρ for each position being taken, the star A_n will be generated. Evidently the star A_1 is the true circle of convergence of the series (5), and every star A_n includes the star A_{n-1} . From the series of series a series of polynomials depending upon the a_i and n may be constructed in an infinity of ways which will represent the function uniformly in A_n with an error less than an arbitrary ϵ given in advance.

³Bulletin des sciences mathématiques, 1888, p. 148.

⁵ Ibid., Vol. XXIII, p. 47.

⁴ Acta Mathematica, Vol. XXIII, p. 43, and Vol. XXIV, pp. 183, 205.

⁶ Ibid., p. 62.

The difficulty in applying this theorem is that there is no way of determining whether a given point belongs to any star A_n or not. When the series (5) is defined by differential equations, this part of the question becomes considerably simplified. Suppose (5) has been defined by the differential equations which the motion of the moon must fulfil. Then it will be known to converge if $|t| < t_0$, the value of t_0 depending on the initial values of the co-ordinates. Suppose that during the whole interval of time $0 \ge t \le T$ the moon is contained within an anchor ring with the earth as center. For every point in this anchor ring as an initial point there is a corresponding t_0 . Let the least value of these numbers t_0 be ρ . Now, if the initial conditions are known, it is possible to construct a Mittag-Leffler series of polynomials having a number of terms which can be determined in advance, which will give the value of x with an error less than an arbitrary ϵ for the whole interval of time $0 \ge t \le T$.

In order to apply Mittag-Lefflers's process the point t = T must belong to the star A_n , where the number n is to be determined. From the definition of the star it is seen that it suffices to take n so that $n\rho \ge T$. Then the series of polynomials may be set up, the polynomials depending on both n and the required accuracy ϵ . With this series of polynomials an ephemeris may be computed, and if the moon does not pass out of the anchor ring which was used in defining ρ , and through it n, the final results will be in error less than ϵ . If the moon should pass out of the anchor ring as given by the ephemeris, the results will be in error less than ϵ up to the time it crosses the ring. At this point a new ring could be taken. In this manner it is possible to construct a theoretically perfect lunar theory.

§ 4. THE METHOD OF THE VARIATION OF PARAMETERS

The method of variation of parameters, which was partially developed by Euler in his memoirs on the lunar theory, and which was finished by Lagrange in his work on the mutual perturbations of the planets, has been one of very great usefulness in astronomy. Owing to the immense details connected with its applications and to the fact that because of the small masses of the planets only one step of any possible number of steps is required, much confusion has arisen regarding the mathematical features of the process. For example, it is frequently supposed that each step is only a process of approximation.

Consider equations (1) and suppose their right members are series of any sort, except that, if they are infinite, they converge at least in the vicinity of the initial values of the x_i and t. Then (1) may be written

$$\frac{dx_i}{dt} = X_i^{(1)} + X_i^{(2)} + X_i^{(3)} + \cdots \qquad (i=1,\dots,n) . \tag{6}$$

Now consider the differential equations

$$\frac{dx_i}{dt} = X_i^{(i)} \qquad (i=1,\dots,n) , \qquad (7)$$

where the $X_i^{\scriptscriptstyle (1)}$ are any terms of the right members of (6). In practice the $X_i^{\scriptscriptstyle (1)}$ are generally the largest terms, but this is not in the least essential to the method. Suppose the solutions of (7) can be exactly found, at least for sufficiently small values of t, and that they are

$$x_i = f_i^{(1)}(y_1, \dots, y_n, t)$$
 (i=1, ..., n), (S)

where y_1, \dots, y_n are the constants of integration. Suppose these equations are valid if $0 \equiv t < T$, where T may be infinite.

Since equations (8) are the solutions of (7) if they are substituted in (7), these expressions reduce to identities in y_1, \dots, y_n and t for all values of t less than T.

⁷Compare the note by Painlevé in Comptes rendus, June 19, 1899; see also note by Picard, ibid., June 5, 1899.

Now regard equations (8) as equations of transformation expressing the n old variables x_i in terms of n new variables y_i . The transformation is made by substituting (8) directly in (6), whence

$$\frac{\partial f_i^{(1)}}{\partial t} + \sum_{j=1}^n \frac{\partial f_i^{(1)}}{\partial y_j} \frac{dy_j}{dt} = X_i^{(1)}(y_1, \dots, y_n, t) + X_i^{(2)}(y_1, \dots, y_n, t) + \dots$$
 (i=1, \dots, n) . (9)

Since equations (8) are the solutions of (7), it follows from the definition of solutions that

$$rac{\partial f_i^{(1)}}{\partial f} \equiv X_i^{(1)}\left(y_1,\, \cdots,\, y_n,\, t
ight) \quad \mbox{($i=1,\, \cdots,\, n$)} \quad \mbox{in } y_1,\, \cdots,\, y_n \mbox{ and } t$$
 ,

and equations (9) become

$$\sum_{i=1}^{n} \frac{\partial f_i^{(1)}}{\partial y_j} \frac{dy_j}{dt} = X_i^{(2)}(y_1, \dots, y_n, t) + \dots$$
 (i=1, \dots, n). (10)

This vanishing of the first terms in the right members, which in practice are much larger than the succeeding ones, constitutes the essential mathematical difference between the method of the variation of parameters and an ordinary transformation of variables.

Equations (10) are linear in the derivatives $\frac{dy_j}{dt}$ and may be solved for them, giving

$$\frac{dy_i}{dt} = Y_i^{(1)} + Y_i^{(2)} + \cdots \qquad (i=1,\dots,n) , \qquad (11)$$

where the right members are written as series constructed according to any desired plan. Equations (11) are valid for all values of t less than T if the determinant of the left members of (10), which is the Jacobian of (8), does not vanish in this interval. The Jacobian does not vanish identically, for equations (8) are independent, being the solutions of equations (7), which are by hypothesis independent. It may become zero, however, for special values of y_1, \dots, y_n and t. But if equations (6) are in the canonical form, as they can always be written, in considering the motions of the planets as well as in much more general problems, and if the canonical constants are used, the determinant is unity and never vanishes.

In considering the perturbations of the planets the canonical elements are not generally used. When they are not, the determinant will vanish if the x_i take such values that the solutions of equations (8) for the y_i give ambiguous or infinite results. When the ordinary elements $a, e, i, \Omega, \tilde{\omega}$, and ϵ are used, $\tilde{\omega}$ becomes indeterminate for e = 0, Ω for i = 0, and a becomes infinite for e = 1; for these values of e and i the determinant of (10) vanishes. This is one of the reasons why Lagrange transformed from e and $\tilde{\omega}$ to h and l, and from i and Ω to p and q in treating the secular terms.

After equations (11) have been found, the problem of integrating them arises, and is in general no less difficult than was the integration of (6). Equations (11) have the same form as (6) and may be treated in the same way, giving, after completing the reductions,

$$\frac{dz_i}{dt} = Z_i^{(1)} + Z_i^{(2)} + \cdots \qquad (i=1,\dots,n) .$$
 (12)

This process may be continued indefinitely if the first terms in the right members are selected so that when the others are neglected the rigorous integration can be performed. Under these conditions it is perfectly valid for any finite number of repetitions, the question whether it converges when repeated indefinitely remaining unanswered. To treat this question it would be necessary to define in some way the law of procedure.

The method of variation of parameters finds its complete exemplification only in Delaunay's lunar theory where it is consistently followed out. In the theories of the perturbations of the planets it is the first step, after which the method is changed.

§5. POWER SERIES IN PARAMETERS

The power series in the time given in § 2 are not convenient in most problems because of their small realm of convergence. Nevertheless, it is possible to construct from them, as shown in § 3, series of polynomials which have a wider realm of convergence. If, instead of using polynomials, more general functions are employed, the practical usefulness of the series can be greatly increased. The most satisfactory method which has been so far devised is to expand the solutions as power series in the parameters which occur in the differential equations. If no natural parameters occur, it is sometimes possible to introduce them artificially so as to attain much the same results.

Suppose the differential equations to be integrated are

$$\frac{dx_i}{dt} = X_i(x_1, \dots, x_n, \alpha, \beta, t) \qquad (i=1, \dots, n) , \qquad (13)$$

where a and β are parameters. Suppose the initial values of x_1, \dots, x_n are a_1, \dots, a_n respectively. Suppose the X_i are all expansible in converging power series in a in the vicinity of $x_j = a_j$ for all values of t such that $0 \equiv t < t_0$. Suppose the coefficients of the various powers of a are all expansible as converging power series in x_1, \dots, x_n in the vicinity of $x_i = a_i$ for all $0 \equiv t < t_0$.

It is proposed to find solutions having the form

$$x_i = \sum_{j=0}^{\infty} x_i^{(j)} a^j$$
 $(i=1,\dots,n)$, (14)

where the $x_i^{(j)}$ are functions of the time to be determined. In determining the $x_i^{(j)}$ there are two eases, depending on whether the X_i all vanish with a = 0 or not.

1. Case in which the X_i have a factor a.—In order to keep this fact prominent, let (13) be written in the form

$$\frac{dx_i}{dt} = \alpha X_i (x_1, \dots, x_n, \alpha, \beta, t) .$$
 (13')

Substituting (14) in (13'), it is found that

$$\sum_{j=0}^{\infty} \frac{dx_{i}^{(j)}}{dt} a^{j} = X_{i} a + \frac{\partial X_{i}}{\partial a} a^{2} + \sum_{j=1}^{n} \frac{\partial X_{i}}{\partial x_{j}^{(1)}} a^{2} + \frac{1}{2} \frac{\partial^{2} X_{i}}{\partial a^{2}} a^{3} + \sum_{j=1}^{n} \frac{\partial^{2} X_{i}}{\partial a \partial x_{j}} x_{j}^{(1)} a^{3} + \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} X_{i}}{\partial x_{j} \partial x_{k}} x_{j}^{(1)} x_{k}^{(1)} a^{3} + \sum_{j=1}^{n} \frac{\partial X_{i}}{\partial x_{j}} x_{j}^{(2)} a^{3} + \cdots,$$

$$(15)$$

where in all the partial derivatives x_i is replaced by $x_i^{\scriptscriptstyle(0)}$ and a is put equal to zero. Admitting for the moment the convergency of (15), the coefficients of the corresponding powers of a in the right and left members are equal, giving

$$\frac{dx_{i}^{(0)}}{dt} = 0 (i=1,\dots,n) ,
\frac{dx_{i}^{(1)}}{dt} = X_{i} (x_{1}^{(0)},\dots,x_{n}^{(0)},0,\beta,t) ,
\frac{dx_{i}^{(2)}}{dt} = \frac{\partial X_{i}}{\partial a} + \sum_{j=1}^{n} \frac{\partial X_{i}}{\partial x_{j}^{j}} x_{j}^{(1)} ,
\text{etc.}$$
(16)

These equations can be integrated in order, being in each case quadratures, and give the coefficients of (11) uniquely.

"This method was first used in a somewhat loose way by early workers in celestial mechanics in constructing the theories of the mutual perturbations of the planets. The indefinite "order of small

quantities" was used and has been largely retained up to the present time, rather than an explicit development. CAUCHY in 1842 examined the validity of the method (Collected Works, 1st series, Vol. VII). 2. Case in which the X_i do not have the factor a.—Substituting (14) in (13), it is found that

$$\sum_{i=0}^{\infty} \frac{d \, x_i^{(j)}}{d \, t} \, \alpha^j = X_i \, (x_1^{(0)}, \, \dots, \, x_n^{(0)}, \, 0, \, \beta, \, t) + \frac{\partial \, X_i}{\partial \, a} \, \alpha + \sum_{j=1}^n \frac{\partial \, X_i}{\partial \, x_j} x_j^{(1)} \, \alpha + \frac{1}{2} \frac{\partial^2 \, X_i}{\partial \, a^2} a^2 + \sum_{j=1}^n \frac{\partial^2 \, X_i}{\partial \, a \, \partial \, x_j} x_j^{(1)} \, \alpha^2 + \frac{1}{2} \sum_{i=1}^n \sum_{k=1}^n \frac{\partial^2 \, X_i}{\partial \, x_j \, \partial \, x_k} x_j^{(1)} \, x_k^{(1)} \, a^2 + \sum_{i=1}^n \frac{\partial \, X_i}{\partial \, x_j} x_j^{(2)} \, a^2 + \cdots$$

$$(17)$$

Equating coefficients of corresponding powers of a, it is found that

$$\frac{dx_{i}^{(0)}}{dt} = X_{i}(x_{1}^{(0)}, \dots, x_{n}^{(0)}, 0, \beta, t) \qquad (i=1, \dots, n) ,$$

$$\frac{dx_{i}^{(1)}}{dt} = \frac{\partial X_{i}}{\partial \alpha} + \sum_{j=1}^{n} \frac{\partial X_{i}}{\partial x_{j}} x_{j}^{(1)} ,$$

$$\frac{dx_{i}^{(2)}}{dt} = \frac{1}{2} \frac{\partial^{2} X_{i}}{\partial \alpha^{2}} + \sum_{j=1}^{n} \frac{\partial^{2} X_{i}}{\partial \alpha \partial x_{j}} x_{j}^{(1)} + \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} X_{i}}{\partial x_{j} \partial x_{k}} x_{j}^{(1)} x_{k}^{(1)} + \sum_{j=1}^{n} \frac{\partial X_{i}}{\partial x_{j}} x_{j}^{(2)} ;$$
(18)

and in general

$$\frac{dx_i^{(\nu)}}{dt} = X_i^{(\nu)} + \sum_{j=1}^n \frac{\partial X_j}{\partial x_j} x_j^{(j)} , \qquad (19)$$

where $X_i^{(\nu)}$ is a polynomial in $x_j^{(0)}, \dots, x_j^{(\nu-1)}$. After the $x_i^{(0)}$ have been determined, the remaining $x_i^{(\nu)}$ depend upon the solution of systems of linear non-homogeneous differential equations.

This case may always be avoided by eliminating the parts of the X_i which are independent of a by the method of the variation of parameters, but it is not always advisable to do so.

3. Determination of constants of integration.— Every time a set of equations of (16) is integrated n constants are introduced, and they must be determined in terms of the initial values of the variables. Let the constants introduced with $x_i^{(\nu)}$ be $a_i^{(\nu)}$; then, letting $x_i^{(\nu)}$ be written $f_i^{(\nu)}(t) - a_i^{(\nu)}$, equations (14) become

$$x_i = a_i^{(0)} + \sum_{j=1}^{\infty} \left[f_i^{(j)}(t) - a_i^{(j)} \right] a^j$$
 (i=1,...,n).

At the initial time t = 0 these equations become

$$a_i = a_i^{(0)} + \sum_{i=1}^{\infty} \left[f^{(j)}(0) - a_i^{(j)} \right] \alpha^j \qquad (i=1,\dots,n) .$$
 (20)

If these equations have any realm of convergency in a for $0 \equiv t < t_0$, they become identities in a, because the initial values of the variables are independent of the parameters, and it follows that

$$a_i^{(0)} = a_i \qquad (i=1,\dots,n) , a_i^{(j)} = f_i^{(j)}(0) \qquad (i=1,\dots,j=1,\dots,\infty) .$$
 (21)

It follows from these relations that, when the X_i vanish with a, the $x_i^{(\nu)}$ are the definite integrals of the equations by which they are defined taken between the limits t=0 and t=t.

When the X_i do not vanish with a, the constants are not additive. The way they enter in the expressions for $x_i^{(0)}$ depends upon the forms of the right members of the first set of equations (18). In the solutions of the linear equations which occur after the first set they enter in the form

$$x_{i}^{(\nu)} = \sum_{j=1}^{n} c_{ij}^{(\nu)} f_{j}^{(\nu)}(t) + \phi_{i}^{(\nu)}(t) \qquad (i=1,\dots,n \quad \nu=1,\dots,\infty) , \qquad (22)$$

where the $c_{ij}^{(\nu)}$ are related to the $c_{ij}^{(\nu)}$ ($i=2,\ldots,n$) by the coefficients which are involved in the differential equations. At t=0 the solutions (14) become

$$a_{i} = x_{i}^{(0)} + \sum_{\nu=1}^{\infty} \left\{ \sum_{j=1}^{n} c_{ij}^{(\nu)} f_{j}^{(\nu)}(0) + \phi_{i}^{(\nu)}(0) \right\} \alpha^{\nu} \qquad (i=1,\dots,n) . \tag{23}$$

If these equations have any realm of convergency, they are identities in a. Hence $(x_i^{(0)})_{t=0} = a_i$, and the independent constants $c_{1i}^{(0)}$ which enter linearly are determined by the equations

$$\sum_{j=1}^{n} c_{ij}^{(\nu)} f_{j}^{(\nu)}(0) + \phi_{i}^{(\nu)}(0) = 0 \qquad (i=1,\dots,n) , \qquad (24)$$

and a similar system for all values of ν from 1 to ∞ . It follows from this that the $x_i^{(\nu)}$ are the definite integrals

$$x_i^{(\nu)} = \int_0^t \frac{dx_i^{(\nu)}}{dt} dt \qquad (i=1,\dots,n,\ \nu=1,\dots,\infty)$$

The question of the convergency of these series was first examined by Cauchy in a series of papers published in *Comptes rendus* in the summer of 1842.⁹ The method is to use a comparison set of differential equations,

$$\frac{dy_i}{dt} = Y_i(y_1, \dots, y_n, a, \beta, t) \qquad (i=1,\dots,n) , \qquad (25)$$

where the Y_i fulfil all the conditions imposed upon the X_i , and the additional ones, that the coefficients of the expansions of the coefficients of the various powers of a shall be real, positive, and greater than the moduli of the corresponding coefficients in the expansions of the X_i for all $0 \equiv t < t_0$. Then it is shown that, if the solutions of (25) are written in the form

$$y_i = \sum_{i=0}^{\infty} y_i^{(j)} \, \alpha^j \,\,, \tag{26}$$

the $y_i^{(j)}$ are all real, positive, and greater than the moduli of the corresponding coefficients of the series (14) for all $0 \ge t < t_0$. Consequently series (14) converge if (26) converge.

There are always equations fulfilling the conditions imposed upon (25) of the form

$$\frac{dy_i}{dt} = \frac{\alpha C}{(1 - \rho \alpha) \left[1 - r(y_1 + \dots + y_n)\right]}, \text{ or}$$

$$\frac{dy_i}{dt} = \frac{C}{(1 - \rho \alpha) \left[1 - r(y_1 + \dots + y_n)\right]},$$
(27)

according as the right members vanish with a or not, and where C, ρ , and r are constants conveniently chosen. Equations (27) can be integrated and the y_t expressed as series in a which, from the form of the functions which are expanded, are known to converge if t and a are sufficiently small. Hence it follows that the series (14) converges if t and a are sufficiently small. The limits within which the series are certainly convergent determined in this way are undoubtedly in general much too small.

Poinearé has proved that for any finite value t_0 the a may be chosen so small that the series converges for all $0 \equiv t < t_0$, provided that the solutions of (14) with a = 0 have no singularities for this range of time. It follows equally that for any values of a for which the right members of (13) converge the t_0 may be taken so small that (14) converges for all $0 \equiv t < t_0$; and, therefore, any solutions of a problem which are constructed in this manner have at least a positive finite realm of validity in t.

The parameter β enters in the differential equations (13), and so far it has not been defined,

⁹ Collected Works, 1st series, Vol. VII.

except that it has been tacitly assumed that it does not take values which would introduce singularities in their right members. In particular, there is in general no reason why it may not be numerically equal to a, although the expansions are made with respect to a alone. The following is the use which will be made of the β : Suppose that in the differential equations a certain parameter μ occurs in two distinct ways; one, such that the right members may be expanded as power series in it in a simple manner; the other, such that the expansions are more difficult, or even impossible. When μ occurs in the first way it may be replaced by a, and when it appears in the second way by β . The solutions may be expanded as power series in a, and at the end a and β given their numerical values, which are equal. This artifice, which appears not to have been heretofore employed, is essential in the proof of the validity of many of the processes which have been employed in celestial mechanics with success without it having been demonstrated that they were valid; and, in constructing new series for solutions of differential equations, it opens up such a number of possibilities within the realm of validity that the chances of securing proved rigor and at the same time practicability are greatly increased. These remarks are illustrated in the applications which follow.

Instead of there being one parameter a, there may be any number, when the solutions will be multiple series. Corresponding theorems respecting the convergence hold.

§6. APPLICATION TO THE COMPUTATION OF THE ABSOLUTE PERTURBATIONS OF THE ELEMENTS

Suppose there are the sun, whose mass will be taken as unity, and two planets whose masses are m_1 and m_2 . If the origin is taken at the center of the sun, the differential equations of motion in rectangular co-ordinates are:

$$\frac{dx_{1}}{dt} - x_{1}' = 0 , \quad \frac{dx_{1}'}{dt} + k^{2}(1 + m_{1})\frac{x_{1}}{r_{1}^{3}} = m_{2}\frac{\partial R_{1}}{\partial x_{1}} ,
\frac{dy_{1}}{dt} - y_{1}' = 0 , \quad \frac{dy_{1}'}{dt} + k^{2}(1 + m_{1})\frac{y_{1}}{r_{1}^{3}} = m_{2}\frac{\partial R_{1}}{\partial y_{1}} ,
\frac{dz_{1}}{dt} - z_{1}' = 0 , \quad \frac{dz_{1}'}{dt} + k^{2}(1 + m_{1})\frac{z_{1}}{r_{1}^{3}} = m_{2}\frac{\partial R_{1}}{\partial z_{1}} ,
\frac{dx_{2}}{dt} - x_{2}' = 0 , \quad \frac{dx_{2}'}{dt} + k^{2}(1 + m_{2})\frac{x_{2}}{r_{2}^{3}} = m_{1}\frac{\partial R_{2}}{\partial x_{2}} ,
\frac{dy_{2}}{dt} - y_{2}' = 0 , \quad \frac{dy_{2}'}{dt} + k^{2}(1 + m_{2})\frac{y_{2}}{r_{2}^{3}} = m_{1}\frac{\partial R_{2}}{\partial y_{2}} ,
\frac{dz_{2}}{dt} - z_{2}' = 0 , \quad \frac{dz_{2}'}{dt} + k^{2}(1 + m_{2})\frac{z_{2}}{r_{2}^{3}} = m_{1}\frac{\partial R_{2}}{\partial z_{2}} ;
R_{1} = k^{2} \left[\frac{1}{r_{1,2}} - \frac{x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}}{r_{2}^{3}} \right] ,
R_{2} = k^{2} \left[\frac{1}{r_{1,2}} - \frac{x_{2}x_{1} + y_{2}y_{1} + z_{2}z_{1}}{r_{1}^{3}} \right] ,$$
(28)

where r_1 and r_2 are the distances from m_1 and m_2 to the sun and $r_{1,2}$ is the distance between m_1 and m_2 . When the right members are put equal to zero, the equations reduce to those for the problem of two bodies, and can be solved. Consequently the method of the variation of parameters can be employed as explained in § 4. Suppose the elements of the orbit of m_1 are a_1, a_2, \dots, a_6 , and of $m_2, b_1, b_2, \dots, b_n$. Then, after the method of the variation of parameters has been applied once, the differential equations will have the form

$$\frac{da_{i}}{dt} = m_{2} \phi_{i}(a_{1}, \dots, a_{6}, b_{1}, \dots, b_{6}, t), \qquad (i=1, \dots, 6),
\frac{db_{i}}{dt} = m_{1} \psi_{i}(a_{1}, \dots, a_{6}, b_{1}, \dots, b_{6}, t).$$
(29)

The distribution of the parameters into a's and β 's must be made before equations (29) are integrated. The parameters are m_1 and m_2 , which appear in the right members as factors. The functions ϕ_i and ψ_i originally depended upon the co-ordinates $x_1, y_1, z_1, x_2, y_2, z_2$. These were eliminated by means of the solutions of (28) after the right members were put equal to zero; but, since the left members of (28) involve m_1 and m_2 , the functions ϕ_i and ψ_i involve m_1 and m_2 implicitly. In order to simplify matters and to establish the validity of the ordinary expressions which are used in the theory of absolute perturbations, the m_1 and m_2 which occur as factors of ϕ_i and ψ_i respectively will be regarded as being a's and those which enter implicitly in ϕ_i and ψ_i as being β 's. If this were not done, the ϕ_i and ψ_i would have to be expanded as power series in m_1 and m_2 , thus adding enormously to the labor of practically carrying out the work, while the expressions obtained would not be those used by astronomers.

The problem now is to integrate equations (29), which are as general as (28) and valid so long as the Jacobian of the equations of transformation does not vanish. In the mutual perturbations of the planets it never vanishes when the elements are conveniently defined. It is no more possible to obtain integrals of (29) in finite numbers of terms than it was in the case of (28), but it is possible to integrate them as power series in m_1 and m_2 , which will, as was seen in § 5, absolutely converge so long as t is not too far from its initial value.

It will now be shown how the coefficients of the series can be computed, and that the various terms have obvious physical interpretations. The solutions are to have the forms 12

$$a_{i} = \sum_{j,k=0}^{\infty} a_{i}^{(j,k)} m_{1}^{j} m_{2}^{k} \qquad (i=1,\dots,6) ,$$

$$b_{i} = \sum_{j,k=0}^{\infty} b_{i}^{(j,k)} m_{1}^{j} m_{2}^{k} \qquad (30)$$

where the $a_i^{(j,k)}$ and the $b_i^{(j,k)}$ are functions of the time to be determined. It will be supposed that the terms are arranged so that the sum j + k proceeds in the order of the natural numbers.

Substituting (30) in (29), it is found that

$$\frac{da_{i}^{(0,\cdot0)}}{dt} + \frac{da_{i}^{(0,\cdot1)}}{dt} m_{2} + \frac{da_{i}^{(1,\cdot0)}}{dt} m_{1} + \frac{da_{i}^{(1,\cdot1)}}{dt} m_{1} m_{2} + \frac{da_{i}^{(0,\cdot2)}}{dt} m_{2}^{2} + \frac{da_{i}^{(2,\cdot0)}}{dt} m_{1}^{2} + \cdots
= m_{2} \phi_{i} (a_{i}^{(0,\cdot0)}, \dots, a_{o}^{(0,\cdot0)}, b_{1}^{(0,\cdot0)}, \dots, b_{o}^{(0,\cdot0)}, t) + m_{2} \sum_{j=1}^{6} \frac{\partial \phi_{i}}{\partial a_{j}} (a_{j}^{(0,\cdot1)} m_{2} + a_{j}^{(1,\cdot0)} m_{1})
+ m_{2} \sum_{j=1}^{6} \frac{\partial \phi_{i}}{\partial b_{j}} (b_{j}^{(0,\cdot1)} m_{2} + b_{j}^{(1,\cdot0)} m_{1}) + \text{higher powers in } m_{1} \text{ and } m_{2},$$

$$\frac{db_{i}^{(0,\cdot0)}}{dt} + \frac{db_{i}^{(0,\cdot1)}}{dt} m_{2} + \frac{db_{i}^{(1,\cdot0)}}{dt} m_{1} + \frac{db_{i}^{(1,\cdot1)}}{dt} m_{1} m_{2} + \frac{db_{i}^{(0,\cdot2)}}{dt} m_{2}^{2} + \frac{db_{i}^{(2,\cdot0)}}{dt} m_{1}^{2} + \cdots$$

$$= m_{1} \psi_{i} (a_{1}^{(0,\cdot0)}, \dots, a_{i}^{(0,\cdot0)}, b_{1}^{(0,\cdot0)}, \dots, b_{o}^{(0,\cdot0)}, t) + m_{1} \sum_{j=1}^{6} \frac{\partial \psi_{i}}{\partial a_{j}} (a_{j}^{(0,\cdot1)} m_{2} + a_{j}^{(1,\cdot0)} m_{1})$$

$$+ m_{1} \sum_{j=1}^{6} \frac{\partial \psi_{i}}{\partial b_{j}} (b_{j}^{(0,\cdot1)} m_{2} + b_{j}^{(1,\cdot0)} m_{1}) + \text{higher powers in } m_{1} \text{ and } m_{2}.$$

$$(31)$$

Equating coefficients of corresponding powers of m_1 and m_2 in the right and left members of these equations, it is found that

D' Compare Poincaré, Méthodes nouvelles, Vol. I, p. 270, where this expansion is used.

12 Compare the "order of small quantity" method given by Tisexpansion is used.

$$\frac{d a_i^{(0,0)}}{d t} = 0 , \qquad (i=1,\dots,6) ,
\frac{d b_i^{(0,0)}}{d t} = 0 , \qquad (32)$$

$$\frac{da_{i}^{(0,1)}}{dt} = \phi_{i}(a_{1}^{(0,0)}, \dots, a_{6}^{(0,0)}, b_{1}^{(0,0)}, \dots, b_{6}^{(0,0)}, t) \qquad (i=1,\dots,6) ,$$

$$\frac{da_{i}^{(1,0)}}{dt} = 0 ,$$

$$\frac{db_{i}^{(0,1)}}{dt} = 0 ,$$

$$\frac{db_{i}^{(0,1)}}{dt} = \psi_{i}(a_{1}^{(0,0)}, \dots, a_{6}^{(0,0)}, b_{1}^{(0,0)}, \dots, b_{6}^{(0,0)}, t) ,$$
(33)

$$\frac{da_{i}^{(1,1)}}{dt} = \sum_{j=1}^{6} \frac{\partial \phi_{i}}{\partial a_{j}} a_{j}^{(1,0)} + \sum_{j=1}^{6} \frac{\partial \phi_{i}}{\partial b_{j}} b_{j}^{(1,0)} \qquad (i=1,\dots,6) ,$$

$$\frac{da_{i}^{(0,2)}}{dt} = \sum_{j=1}^{6} \frac{\partial \phi_{i}}{\partial a_{j}} a_{j}^{(0,1)} + \sum_{j=1}^{6} \frac{\partial \phi_{i}}{\partial b_{j}} b_{j}^{(0,1)} ,$$

$$\frac{da_{i}^{(2,0)}}{dt} = 0 ,$$

$$\frac{db_{i}^{(1,1)}}{dt} = \sum_{j=1}^{6} \frac{\partial \psi_{i}}{\partial a_{j}} a_{j}^{(0,1)} + \sum_{j=1}^{6} \frac{\partial \psi_{i}}{\partial b_{j}} b_{j}^{(0,1)} ,$$

$$\frac{db_{i}^{(2,0)}}{dt} = \sum_{j=1}^{6} \frac{\partial \psi_{i}}{\partial a_{j}} a_{j}^{(1,0)} + \sum_{j=1}^{6} \frac{\partial \psi_{i}}{\partial b_{j}} b_{j}^{(1,0)} ,$$

$$\frac{db_{i}^{(0,2)}}{dt} = 0 .$$

$$\frac{db_{i}^{(0,2)}}{dt} = 0 .$$
(34)

Integrating (32) and substituting the values of $a_i^{(0,0)}$ and $b_i^{(0,0)}$ thus obtained in (33), the latter are reduced to quadratures and can be integrated; integrating (33) and substituting the expressions for $a_i^{(0,1)}$, $a_i^{(0,0)}$, $b_i^{(0,1)}$, and $b_i^{(0,0)}$ in (34), the latter are reduced to quadratures and can be integrated; and this process may be repeated indefinitely, giving any desired number of coefficients of the series (30). When valid processes in performing the quadratures are employed, the elements are rigorously determined within certain time limits.¹³

An additive constant of integration is introduced with each integration which can be determined, as was shown in § 5, from the initial conditions. Suppose $a_i^{(j,k)} = f_i^{(j,k)}(t) - a_i^{(j,k)}$, $b_i^{(j,k)} = g_i^{(j,k)}(t) - \beta_i^{(j,k)}$, where the $a_i^{(j,k)}$ and $\beta_i^{(j,k)}$ are the constants of integration to be determined. Let the initial values of a_i and b_i be $a_i^{(0)}$ and $b_i^{(0)}$ respectively. Then equations (30) become at t = 0

$$a_i^{(0)} = \sum_{j,k=0}^{\infty} \left[f_i^{(j,k)}(0) - a_i^{(j,k)} \right] m_1^j m_2^k \qquad (i=1,\dots,6) ,$$

$$b_i^{(0)} = \sum_{j,k=0}^{\infty} \left[g_i^{(j,k)}(0) - \beta_i^{(j,k)} \right] m_1^j m_2^k . \qquad (35)$$

etc.

Since the osculating elements are independent of the disturbing masses, these series are identities in m_1 and m_2 , whence

$$a_{i}^{(0,0)} = a_{i}^{(0)} ,$$

$$b_{i}^{(0,0)} = b_{i}^{(0)} ,$$

$$a_{i}^{(j,0)} = 0 \qquad (j=1,\dots,\infty) ,$$

$$b_{i}^{(0,k)} = 0 \qquad (k=1,\dots,\infty) ,$$

$$f_{i}^{(j,k)}(0) - a_{i}^{(j,k)} = 0 \qquad (j=1,\dots,\infty, k=1,\dots,\infty) ,$$

$$g_{i}^{(j,k)}(0) - \beta_{i}^{(j,k)} = 0 \qquad (j=1,\dots,\infty, k=1,\dots,\infty) ,$$

$$(36)$$

The $a_i^{(0,0)}$ and $b_i^{(0,0)}$ are the osculating elements at the time t=0, and the perturbations of the first order with respect to the masses are given by (33), which, because of (36), reduce to

$$\frac{d a_i^{(0,1)}}{dt} = \phi_i (a_1^{(0)}, \dots, a_6^{(0)}, b_1^{(0)}, \dots, b_6^{(0)}, t) ,$$

$$\frac{d b_i^{(1,0)}}{dt} = \psi_i (a_1^{(0)}, \dots, a_6^{(0)}, b_1^{(0)}, \dots, b_6^{(0)}, t) .$$
(37)

The right members of these equations are proportional to the rates at which the various elements of the orbits of the two planets would vary at the time t if the planets were moving at that instant in the original ellipses; the integrals are the summations of the changes which would be produced if the forces and their instantaneous effects were always exactly equal to those in the undisturbed orbits. Of course, the perturbations modify the expressions for the true rates at which the elements vary, but they are taken care of in terms of higher order.

Since the differential equations (29) involve the parameters m_1 and m_2 to the first degree only, they are valid for all finite values. Consequently this method of computing the absolute perturbations does not depend for its validity upon the fact that the masses of the planets are small compared to that of the sun. However, the smaller the masses of the planets are, the longer the time for which the series converge.

If there were a third planet, the elements a_i and b_i would have terms of the first order of the general type of the right members of (37) coming from its attraction, but the effects of each planet in the terms of the first order would be computed separately.

As a consequence of (36) and (37) the terms of the second order, given by (34), reduce to

$$\frac{da_{i}^{(1,1)}}{dt} = \sum_{j=1}^{6} \frac{\partial \phi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial b_{j}^{(0)}} b_{j}^{(1,0)} \qquad (i=1,\dots,6) ,$$

$$\frac{da_{i}^{(0,2)}}{dt} = \sum_{j=1}^{6} \frac{\partial \phi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial a_{j}^{(0)}} a_{j}^{(0,1)} ,$$

$$\frac{db_{i}^{(1,1)}}{dt} = \sum_{j=1}^{6} \frac{\partial \psi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial a_{j}^{(0)}} a_{j}^{(0,1)} ,$$

$$\frac{db_{i}^{(2,0)}}{dt} = \sum_{j=1}^{6} \frac{\partial \psi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial b_{j}^{(0)}} b_{j}^{(1,0)} .$$
(38)

The perturbations of the second order arise from the fact that both m_1 and m_2 depart from their original ellipses by terms of the first order. The perturbations of the second order of the elements of m_1 , due to the fact that m_2 departs from its original orbit by terms of the first order, are given by equations of the type of the first of (38); for, if $b_j^{0,0}$, the first-order perturbations of m_2 , were zero, $a_i^{0,1}$ would be zero also. Similarly, the perturbations of the second order of m_1 , due to the fact that m_1 departs from its original ellipse by terms of the first order, are given by equations of the

type of the second of (38). The terms $b_i^{a,0}$ and $b_i^{a,0}$ in the elements of the orbit of m_2 arise from similar causes. Thus the terms of the second order correct the errors which would be committed by stopping with terms of the first order, and those of the third order correct those of the second, and so on indefinitely.

If there are three planets, the perturbations of the second order are considerably more complicated, the terms arising from the attractions of the various planets not appearing separately, as they do in case of the terms of the first order. Suppose the third planet is m_3 and that the elements of its orbit are c_1, \dots, c_n . Then the differential equations which define the terms of the second order are

$$\frac{da_{i}^{(1,1,0)}}{dt} = \sum_{j=1}^{6} \frac{\partial \phi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial b_{j}^{(0)}} b_{j}^{(1,0,0)} \qquad (i=1,\dots,6) ,$$

$$\frac{da_{i}^{(1,0,1)}}{dt} = \sum_{j=1}^{6} \frac{\partial \phi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial c_{j}^{(0)}} c_{j}^{(1,0,0)} ,$$

$$\frac{da_{i}^{(0,2,0)}}{dt} = \sum_{j=1}^{6} \frac{\partial \phi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial a_{j}^{(0)}} a_{j}^{(0,1,0)} ,$$

$$\frac{da_{i}^{(0,1,0)}}{dt} = \sum_{j=1}^{6} \frac{\partial \phi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial a_{j}^{(0)}} a_{j}^{(0,1,0)} ,$$

$$\frac{da_{i}^{(0,1,0)}}{dt} = \sum_{j=1}^{6} \frac{\partial \phi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial a_{j}^{(0)}} a_{j}^{(0,0,1)} ,$$

$$+ \sum_{j=1}^{6} \frac{\partial \phi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial a_{j}^{(0)}} a_{j}^{(0,1,0)} ,$$

$$+ \sum_{j=1}^{6} \frac{\partial \phi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, b_{1}^{(0)}, \dots, b_{6}^{(0)}, t)}{\partial a_{j}^{(0)}} a_{j}^{(0,1,0)} ,$$

$$+ \sum_{j=1}^{6} \frac{\partial \phi_{i}(a_{1}^{(0)}, \dots, a_{6}^{(0)}, c_{1}^{(0)}, \dots, c_{6}^{(0)}, t)}{\partial a_{j}^{(0)}} a_{j}^{(0,1,0)} ,$$

and the corresponding equations for $\frac{db_i}{dt}$ and $\frac{dc_i}{dt}$.

Equations of the type of the first give the perturbations arising from the attraction of m_2 due to the fact that m_2 has been drawn from its original ellipse by m_1 ; the second, the perturbations arising from the attraction of m_3 due to the fact that m_3 has been drawn from its original ellipse by m_1 ; the third, the perturbations arising from the attraction of m_2 due to the fact that m_1 has been drawn from its original ellipse by m_2 ; the fourth, the perturbations arising from the attraction of m_3 due to the fact that m_1 has been drawn from its original ellipse by m_3 ; the second term of the fifth, the perturbations arising from the attraction of m_2 due to the fact that m_1 has been drawn from its original ellipse by m_3 ; the third term of the fifth, the perturbations arising from the attraction of m_2 due to the fact that m_2 has been drawn from its original ellipse by m_3 ; the third term of the fifth, the perturbations arising from the attraction of m_3 due to the fact that m_1 has been drawn from its original ellipse by m_2 ; and the fourth term of the fifth, the perturbations arising from the attraction of m_3 due to the fact that m_3 has been drawn from its original ellipse by m_2 . Thus precisely those terms appear which would be expected from physical considerations.

Consider the general case in which there are n planets m_1, \dots, m_n . The planet m_1 , for example, suffers first-order perturbations due to the attraction of m_2 . This deviation of m_1 from its elliptical orbit gives terms of the second order arising from the attraction of each of the remaining planets,

thus giving n-1 terms of the second order. Similar results arise from the first-order perturbations of m_1 by m_3 , and so on down to the planet m_n . Since there are n-1 planets besides m_1 , there are in all $(n-1)^2$ terms of the second order in the perturbations of every element of the orbit of m_1 due to the fact that it has deviated from its original orbit by terms of the first order. The elements of the orbit of m, have n-1 terms of the first order arising from the attraction of the remaining n-1planets for it, and each of these gives rise to a term of the second order in the perturbations of the elements of the orbit of m_1 , or n-1 new terms of the second order. This is true for each of the remaining planets, so that there are in all $(n-1)^2$ terms of the second order in the perturbations of every element of the orbit of m_1 due to the fact that m_2, \dots, m_n depart from their original ellipses by terms of the first order. Therefore each element of the orbit of m_1 has $2(n-1)^2$ different perturbations of the second order, and for the whole n planets there are $2n(n-1)^2$ terms of the second order. When there are two planets, there are four terms of the second order, given by equations (38). When there are three planets, there are twenty-four terms, the first eight of which are given in (39). When there are eight planets, as in the solar system, there are 784 terms of the second order for each of the six elements. Fortunately nearly all of them are so small as to be insensible.14

In order that the conclusions may be sound, the quadratures must be made by valid processes. In the case of the mutual perturbations of the great planets it can be shown that the series which are ordinarily employed in preparation for the quadratures are convergent.

§7. A VALID METHOD OF AVOIDING SECULAR TERMS OF THE FIRST ORDER

In the right members of the differential equations which define the perturbations of the first order with respect to the masses there are, in the expansions which are usually employed, terms of two types: (a) those in which the time is involved in the cosine or sine functions, and (b) those which are independent of the time. Upon integration the first type gives sine and cosine terms, which are consequently periodic and always finite; but the second type gives terms which change indefinitely with the time. In the perturbations of the second order with respect to the masses there are, except in the case of the major axes, periodic terms, terms which contain the time and periodic terms as products, which will be called Poisson terms, terms containing the time to the first degree, and terms containing the time to the second degree. In perturbations of the third order with respect to the masses there are terms of the third degree in the time; etc.

Although terms appear which change indefinitely with the time, it does not in the least follow that the elements change indefinitely with the time. It may be that these so-called secular terms are the expansions of periodic terms, and, if so, it is desirable, at least for practical purposes, that the expanded forms be avoided. The question arises if this may not be done by modifying the method of integrating the differential equations. Whether it can be done or not, it proves nothing regarding the stability of the system, unless the series can be proved to be uniformly convergent; but this problem has not even been approached yet, much less solved.¹⁸ Lagrange has succeeded in showing ¹⁷ by formal processes that the secular terms of the first order of the masses and of the first order in the eccentricities and mutual inclinations may be avoided entirely. Leverrier has shown ¹⁸ that when terms of the fourth order in the eccentricities and inclinations in the perturbative function are included, the solutions still retain the periodic form. Finally, Poincaré has shown ¹⁹ that the secular terms of all orders may formally be integrated in series which are periodic. He says, in

¹¹ The coefficients of the various powers of the masses are here spoken of as being "terms;" when carried out in practice, each is in reality a multiply infinite system of simple terms.

¹⁵ There is the well-known exception in the case of the major axes.

¹⁶ See Ball, Story of the Heavens, p. 351, where the generally accepted erroneous view regarding this matter is advanced.

¹⁷ Collected Works, Vols, V and VI.

¹⁸ Annales de l'observatoire de Paris, Vol. II, Addition III.

 $^{^{19}\,} Les$ méthodes nouvelles de la mécanique céleste, Vol. II, chap i.

conclusion,²⁰ that Lagrange and Laplace would have regarded this as completely establishing the stability of the solar system, but that it is not sufficient now because of the lack of proof of convergence of the series.

The question arises how far the method of Lagrange leads to significant results, for the assumptions and approximations may be such that the conclusions may be erroneous, especially when long intervals of time are involved.²¹ In a general way this is the subject of the present inquiry, and it will be shown that results which are, from a practical point of view, sensibly the same, though not quite, may be obtained by processes which have been proved to be valid for not too long a time.

Let the elements of the orbit of the planet m_j be a_j , e_j , $\tilde{\omega}_j$, ϵ_j , Ω_j , and i_j , where the letters have the usual significations. Then let the variables h_j , l_j , p_j , and q_j be defined by the equations

$$h_j = e_j \sin \tilde{\omega}_j$$
 $(j=1,\dots,n)$,
 $l_j = e_j \cos \tilde{\omega}_j$,
 $p_j = \tan i_j \sin \Omega_j$,
 $q_j = \tan i_j \cos \Omega_j$. (40)

Then the differential equations become

$$\frac{d \, a_{j}}{d \, t} = f_{j} \, (a_{k}, \, \epsilon_{k}, \, h_{k}, \, l_{k}, \, p_{k}, \, q_{k}, \, t) \qquad (j=1, \, \dots, \, n) \, , \, (k=1, \, \dots, \, n) \, , \\
\frac{d \, \epsilon_{j}}{d \, t} = g_{j} \, (a_{k}, \, \epsilon_{k}, \, h_{k}, \, l_{k}, \, p_{k}, \, q_{k}, \, t) \, , \\
\frac{d \, h_{j}}{d \, t} = \theta_{j} \, (a_{k}, \, \epsilon_{k}, \, h_{k}, \, l_{k}, \, p_{k}, \, q_{k}, \, t) \, , \\
\frac{d \, l_{j}}{d \, t} = \phi_{j} \, (a_{k}, \, \epsilon_{k}, \, h_{k}, \, l_{k}, \, p_{k}, \, q_{k}, \, t) \, , \\
\frac{d \, p_{j}}{d \, t} = \psi_{j} \, (a_{k}, \, \epsilon_{k}, \, h_{k}, \, l_{k}, \, p_{k}, \, q_{k}, \, t) \, , \\
\frac{d \, q_{j}}{d \, t} = \chi_{j} \, (a_{k}, \, \epsilon_{k}, \, h_{k}, \, l_{k}, \, p_{k}, \, q_{k}, \, t) \, .$$
(41)

The perturbative functions for the various pairs of planets, upon which the right members of equations (41) depend, have the form ²²

$$R_{j,k} = \sum M e_j^H e_k^H \left(\tan \frac{i_j}{2} \right)^G \left(\tan \frac{i_k}{2} \right)^{G'} \cos \left(\alpha \, l_j + \alpha' \, l_k + \beta \, \tilde{\omega}_j + \beta' \, \tilde{\omega}_k + \gamma \, \Omega_j + \gamma' \, \Omega_k \right) , \tag{42}$$

where $l_j = n_j t - \epsilon_j$, n_j being the mean motion of m_j . The summation extends over all integral values of $a, a', \beta, \beta', \gamma, \gamma'$, and H, H', G, and G' are respectively equal to the numerical values of $\beta, \beta', \gamma, \gamma'$ increased by zero or positive integers, and M are functions of a_j and a_k . Now, $\tan \frac{i}{2}$ is related to $\tan i$ by the equation

 $\tan i = \frac{2 \tan \frac{i}{2}}{1 - \tan^2 \frac{i}{2}} ,$

from which it easily follows that $\tan \frac{i}{2}$ is expressible as an infinite series of odd powers of $\tan i$.

Therefore $\left(\tan \frac{i_j}{2}\right)^{\sigma}$ is expressible as an infinite series in $\tan i$, with even or odd exponents according

²⁰ Loc cit., p. 46.

²² See Tisserand, Mécanique céleste, Vol. 1, p. 317.

 $^{^{21}}$ See Dziobek, Plancten-Bewegungen, p. 275; Tisseránd Mécanique céleste, Vol. I, p. 429.

as G is even or odd, and (42) may be written

$$R_{j,k} = \sum_{i} M e_j^H e_k^H (\tan i_j)^K (\tan i_k)^K \cos (\alpha l_j + \alpha' l_k + \beta \tilde{\omega}_j + \beta' \tilde{\omega}_k + \gamma \Omega_j + \gamma' \Omega_k) , \qquad (43)$$

where K and K' equal the numerical values of γ and γ' plus zero or positive integers.

It is known that $\cos \nu x$ and $\sin \nu x$ are expressible as sums of powers of $\cos x$ and $\sin x$ respectively, where the highest power is ν and the various powers are all even or odd according as ν is even or odd. Consequently it follows from the relations of the exponents H, H', K, and K' to the coefficients β , β' , γ , and γ' , and from the equations $e_j^2 = h_j^2 + l_j^2$ and $\tan^2 i_j = p_j^2 + q_j^2$, that $R_{j,k}$ is expressible as a power series in h_j , h_k , l_j , l_k , p_j , p_k , q_j , q_k ; and these series converge for the values of the arguments that occur in the case of the mutual perturbations of the major planets. Therefore the right members of equations (41) are linear in the mass factors m_k ($k=1,\dots,j-1,j+1,\dots,n$), and, since the coefficients of the partial derivatives of the perturbative function are expansible as series in h_j , h_k , \dots , q_j , q_k , they are power series in h_j , h_k , \dots , q_j , q_k with the a_k entering in the M's and the ϵ_k entering only under the trigonometric functions.

The secular terms are those in which every a, a' occurring in the perturbative functions (43) is zero. It should be remarked here that others would occur if the mean motions of any two of the planets were commensurable, but as there are in every case within the limits of accuracy of the observations an infinite number of incommensurable as well as commensurable ratios, it is always assumed that the mean motions are incommensurable. There are no secular terms in the case of the element a_i for a = a' = 0, but this element would have secular terms if the mean motions were commensurable.

Lagrange treated the equations (41) by taking out the secular terms in the case of the last four variables, neglecting all except their first powers, and, assuming the a_j to be constant, he integrated the resulting linear homogeneous system whose coefficients were by assumption constants. He found the solutions and showed that they are all periodic functions of the time. The periodic parts of (41) which remained were integrated by quadratures by considering the elements as constants in the right members. It is perfectly clear that this method, which leads to the only existing theoretical conclusions regarding the stability of the solar system—to the so-called Magna Charta of the permanence of the solar system in its present form—contains a number of assumptions of a very radical type, and that it leads to no such general conclusions as have been drawn from it. Nevertheless, it undoubtedly represents quite approximately the actual changes which the system will undergo for a very long time. The method which is about to be explained gives much the same terms and is proved to be perfectly valid for a positive finite time.

Suppose the secular and periodic parts of the right members of (41) are written separately. Then let the mass factors m_k which occur as coefficients of the secular terms be replaced by $\frac{m'_k}{\mu}$, but remain unchanged in the case of the periodic terms. In the final results m'_k is to be given the numerical value of m_k and μ is to be put equal to unity. Let h_k , l_l , p_k , and q_k everywhere in the secular terms be replaced by μh_k , μl_k , μp_k , μq_k . Then the right members of (41) will be composed of two parts. One part will not involve the time explicitly and will be power series in μ , beginning with a term which is independent of this parameter. The other part will involve the time under the cosine and sine functions, and will be linear and homogeneous in the parameters m_1, \dots, m_n . The first part gives rise to the so-called secular terms and the second part to the periodic and long-period terms. The secular terms do not appear in the case of the elements a_j , but are present in the right members of all the other elements.

The differential equations will now be integrated as power series in μ and m_1, \dots, m_n . In order to simplify the details, suppose there are but two planets, m_1 and m_2 , and to abbreviate the notation let

$$h_1 = x_1, \quad l_1 = x_2, \quad h_2 = x_3, \quad l_2 = x_4, p_1 = y_1, \quad q_1 = y_2, \quad p_2 = y_4,$$

$$(44)$$

Then the differential equations become

$$\frac{d a_{1}}{d t} = m_{2} f_{1}(a_{1}, a_{2}, \epsilon_{1}, \epsilon_{2}, x_{i}, y_{i}, t) \qquad (i=1,2,3,4) ,$$

$$\frac{d \epsilon_{1}}{d t} = \sum_{j=0}^{\infty} g_{1j}(a_{1}, a_{2}, x_{i}, y_{i}) \mu^{j} + m_{2} g_{01}(a_{1}, a_{2}) + m_{2} g_{1}(a_{1}, a_{2}, \epsilon_{1}, \epsilon_{2}, x_{i}, y_{i}, t) ,$$

$$\frac{d x_{k}}{d t} = \sum_{j=0}^{\infty} \phi_{1kj}(a_{1}, a_{2}, x_{i}, y_{i}) \mu^{j} + m_{2} \phi_{1k}(a_{1}, a_{2}, \epsilon_{1}, \epsilon_{2}, x_{i}, y_{i}, t) \qquad (k=1,2,3,4) ,$$

$$\frac{d a_{2}}{d t} = m_{1} f_{2}(a_{1}, a_{2}, \epsilon_{1}, \epsilon_{2}, x_{i}, y_{i}, t) ,$$

$$\frac{d \epsilon_{2}}{d t} = \sum_{j=0}^{\infty} g_{2j}(a_{1}, a_{2}, x_{i}, y_{i}) \mu^{j} + m_{1} g_{02}(a_{1}, a_{2}) + m_{1} g_{2}(a_{1}, a_{2}, \epsilon_{1}, \epsilon_{2}, x_{i}, y_{i}, t) ,$$

$$\frac{d y_{k}}{d t} = \sum_{i=0}^{\infty} \phi_{2kj}(a_{1}, a_{2}, x_{i}, y_{i}) \mu^{j} + m_{1} \phi_{2k}(a_{1}, a_{2}, \epsilon_{1}, \epsilon_{2}, x_{i}, y_{i}, t) .$$

The functions ϕ_{1kj} and ϕ_{2kj} are homogeneous in x_i and y_i of degree j+1.

The solutions are to have the form

$$a_{i} = \sum_{j,j_{1},j_{2}=0}^{\infty} \alpha_{i}^{(j,j_{1},j_{2})} \mu^{j} m_{1}^{j_{1}} m_{2}^{j_{2}} \qquad (i=1,2) ,$$

$$\epsilon_{i} = \sum_{j,j_{1},j_{2}=0}^{\infty} \epsilon_{i}^{(j,j_{1},j_{2})} \mu^{j} m_{1}^{j_{1}} m_{2}^{j_{2}} \qquad (i=1,2) ,$$

$$x_{i} = \sum_{j,j_{1},j_{2}=0}^{\infty} x_{i}^{(j,j_{1},j_{2})} \mu^{j} m_{1}^{j_{1}} m_{2}^{j_{2}} \qquad (i=1,2,3,4) ,$$

$$y_{i} = \sum_{j,j_{1},j_{2}=0}^{\infty} y_{i}^{(j,j_{1},j_{2})} \mu^{j} m_{1}^{j_{1}} m_{2}^{j_{2}} \qquad (i=1,2,3,4) ,$$

$$(46)$$

where the $a_i^{(j,j_1,j_2)}$, $\epsilon_i^{(j,j_1,j_2)}$, $x_i^{(j,j_1,j_2)}$, and $y_i^{(j,j_1,j_2)}$ are functions of the time to be determined. Substituting these expressions in (45), developing the right members, and equating corresponding powers of $\mu m_1 m_2$, it is found that

$$\frac{d \, a_{1}^{(0,0,0)}}{d \, t} = 0 ,
\frac{d \, \epsilon_{1}^{(0,0,0)}}{d \, t} = g_{10} \left(a_{1}^{(0,0,0)}, \, a_{2}^{(0,0,0)}, \, x_{i}^{(0,0,0)}, \, y_{i}^{(0,0,0)} \right) \qquad (i=1,2,3,4) ,
\frac{d \, x_{k}^{(0,0,0)}}{d \, t} = \phi_{1k0} \left(a_{1}^{(0,0,0)}, \, a_{2}^{(0,0,0)}, \, x_{i}^{(0,0,0)}, \, y_{i}^{(0,0,0)} \right) \qquad (k=1,2,3,4) ,
\frac{d \, a_{2}^{(0,0,0)}}{d \, t} = 0 ,
\frac{d \, \epsilon_{2}^{(0,0,0)}}{d \, t} = g_{20} \left(a_{1}^{(0,0,0)}, \, a_{2}^{(0,0,0)}, \, x_{i}^{(0,0,0)}, \, y_{i}^{(0,0,0)} \right) ,
\frac{d \, y_{k}^{(0,0,0)}}{d \, t} = \phi_{2k0} \left(a_{1}^{(0,0,0)}, \, a_{2}^{(0,0,0)}, \, x_{i}^{(0,0,0)}, \, y_{i}^{(0,0,0)} \right) ;^{7}$$

$$\begin{split} &\frac{d\,a_{1}^{n_{1}n_{2}}=0}{d\,t}=0\,,\\ &\frac{d\,e_{1}^{n_{1}n_{2}}=0}{d\,t}=\frac{\partial\,g_{m}}{\partial\,t_{n}}a_{1}^{n_{2}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,t_{n}}a_{1}^{n_{2}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,g_{n}}a_{1}^{n_{1}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,g_{n}}a_{1}^{n_{1}n_{2}m}}\right)+g_{11}\left(a_{1}^{m_{1}n_{2}m},x_{1}^{m_{1}n_{2}m},x_{1}^{m_{1}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,g_{n}}a_{1}^{n_{1}n_{2}m}}\right)+g_{11}\left(a_{1}^{m_{1}n_{2}m},x_{1}^{m_{1}n_{2}m},x_{1}^{m_{1}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,g_{n}}a_{1}^{n_{1}n_{2}m}}\right)\\ &\frac{d\,a_{2}^{n_{1}n_{2}m}}{d\,t}=0\,,\\ &\frac{d\,a_{2}^{n_{1}n_{2}m}}{d\,t}=0\,,\\ &\frac{d\,a_{2}^{n_{1}n_{2}m}}{d\,t}=\frac{\partial\,g_{m}}{\partial\,g_{n}}a_{1}^{n_{1}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,g_{n}}a_{2}^{n_{1}n_{2}m}+\frac{1}{2}\left[\frac{\partial\,g_{m}}{\partial\,g_{n}}x_{1}^{n_{1}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,g_{n}}g_{1}^{n_{1}n_{2}m}}\right]+g_{11}\left(a_{1}^{m_{1}n_{2}m},a_{1}^{m_{1}n_{2}m},x_{1}^{m_{1}n_{2}m},y_{1}^{m_{1}n_{2}m}}\right)\\ &\frac{d\,g_{2}^{n_{1}n_{2}m}}{d\,t}=\frac{\partial\,g_{m}}{\partial\,g_{n}}a_{1}^{n_{1}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,g_{n}}a_{2}^{n_{1}n_{2}m}+\frac{1}{2}\frac{\partial\,g_{m}}{\partial\,g_{n}}x_{1}^{n_{1}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,g_{n}}y_{1}^{n_{1}n_{2}m}}}{d\,t}+g_{11}\left(a_{1}^{m_{1}n_{2}m},a_{1}^{m_{1}n_{2}m},x_{1}^{m_{1}n_{2}m},y_{1}^{m_{1}n_{2}m}}\right)\,,\\ &\frac{d\,g_{2}^{n_{1}n_{2}m}}{d\,t}=\frac{\partial\,g_{m}}{\partial\,g_{n}}a_{1}^{n_{1}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,g_{n}}a_{2}^{n_{1}n_{2}m}+\frac{1}{2}\frac{\partial\,g_{m}}{\partial\,g_{n}}x_{1}^{n_{1}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,g_{n}}y_{1}^{n_{1}n_{2}m}}{+\phi_{11}}\left[\frac{\partial\,g_{m}}{\partial\,g_{n}}x_{1}^{n_{1}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,g_{n}}y_{1}^{n_{1}n_{2}m}}{+\phi_{12}}\left(a_{1}^{m_{1}n_{2}m},a_{1}^{m_{1}n_{2}m},x_{1}^{n_{1}n_{2}m},y_{1}^{n_{1}n_{2}m}}\right)\,,\\ &\frac{d\,a_{n}^{n_{1}n_{2}m}}{d\,t}=\frac{\partial\,g_{m}}{\partial\,g_{n}}a_{1}^{n_{1}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,g_{n}}x_{1}^{n_{1}n_{2}m}+\frac{1}{2}\frac{\partial\,g_{m}}{\partial\,g_{n}}x_{1}^{n_{1}n_{2}m}}{+\frac{1}{2}}\left[\frac{\partial\,g_{m}}{\partial\,x_{1}}x_{1}^{n_{1}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,y_{1}}y_{1}^{n_{1}n_{2}m}}\right]\\ &+g_{11}\left(a_{1}^{m_{1}n_{2}m},a_{1}^{n_{1}n_{2}m}+\frac{\partial\,g_{m}}{\partial\,y_{1}}x_{1}^{n_{1}n_{2}m},g_{1}^{n_{1}n_{2}m}}\right)\\ &+g_{21}\left(a_{1}^{m_{1}n_{2}m},a_{1}^{n_{1}n_{2}m},a_{1}^{n_{1}n_{2}m},a_{1}^{n_{1}n_{2}m},a_{1}^{n_{1}n_{2}m},a_{1}^{n_{1}n_{2}m},a_{1}^{n_{1}n_{2}m},a_{1}^{n_{1}n_{2}m},a_{1}^{n_{1}n_{2}m},a_{$$

The proof that the expansions lead to the precise terms written depends upon the form of the perturbative function when expressed in these variables, and it will be assumed here that it is known.

Consider the integration of equations (47), (48), (49), and (50). From the first and fourth equations of (47) it follows that $a_1^{(0,0,0)}$ and $a_2^{(0,0,0)}$ are constants, and from the principles of § 5 that they are the values of these variables at t=0. It follows from the form of the secular part of the perturbative function that ϵ_1 and ϵ_2 are not involved explicitly in the right members of equations (47). Next consider the integration of the third and sixth systems of (47). They are linear with constant coefficients, and their integration presents no difficulties. The detailed discussion ²³ shows that all of the roots of the characteristic equation are pure imaginaries with very small moduli. Consequently the $x_i^{(0,0,0)}$ and the $y_i^{(0,0,0)}$ are purely periodic with very long periods. These terms are precisely the ones found by Lagrange in his discussion of the secular variations.

Suppose the expressions for the $x_i^{(0,0,0)}$ and the $y_i^{(0,0,0)}$ are substituted in the right members of the second and fifth equations. They are reduced to quadratures and can be at once integrated, giving both secular and periodic terms for $\epsilon_1^{(0,0,0)}$ and $\epsilon_2^{(0,0,0)}$. But ϵ_1 and ϵ_2 occur only in the combinations $n_1t + \epsilon_1$ and $n_2t + \epsilon$, where n_1 and n_2 are the mean motions of the planets m_1 and m_2 ; therefore the secular terms in this element will produce no secular terms in the higher terms of the other elements.

Consider equations (48). It follows first that $a_1^{(1,0,0)}$ and $a_2^{(1,0,0)}$ are constants, and from the principles of § 5 that they are zero. The $x_k^{(1,0,0)}$ and $y_k^{(1,0,0)}$ are defined by linear non-homogeneous differential equations. The periods of the complementary functions, which are defined by the coefficients of the homogeneous parts, are the same as those of $x_i^{(0,0,0)}$ and $y_i^{(0,0,0)}$. The functions ϕ_{1k1} and ϕ_{2k1} are homogeneous of the second degree in $x_i^{(0,0,0)}$ and $y_i^{(0,0,0)}$. Therefore $x_i^{(1,0,0)}$ and $y_i^{(1,0,0)}$ will be purely periodic. The expressions for $\epsilon_1^{(1,0,0)}$ and $\epsilon_2^{(1,0,0)}$ are reduced to quadratures and contain purely periodic and secular terms.

Consider the integration of equations (49). In the first place, $a_1^{(0,1,0)}$ is a constant which must be zero according to the principles developed in § 5.

The right member of the fourth equation, which defines $a_2^{(0,1,0)}$, is periodic, the time being involved in the form

$$\sin\left[i_1\left(n_1t+\epsilon_1\right)+i_2\left(n_2t+\epsilon_2\right)\right]\,,\tag{51}$$

where i_1 and i_2 are integers and n_1 and n_2 the undisturbed mean motions of the two planets. The time is also involved through $\epsilon_1^{(0,0,0)}$ and $\epsilon_2^{(0,0,0)}$, each of which contains a secular term and series of periodic terms, as has just been seen, and through the $x_i^{(0,0,0)}$ and $y_i^{(0,0,0)}$ which enter in the coefficients of the sine functions. As has been shown, these variables are periodic with very long periods. Suppose the $x_i^{(0,0,0)}$ and $y_i^{(0,0,0)}$ are replaced by their trigonometric expressions, and let the powers of the cosines and sines be reduced to cosines and sines of multiples of the angles. These trigonometric functions will be multiplied by those of the type (51). Suppose the products are reduced to cosines and sines of the sums and differences. The final result will be purely periodic, unless the coefficients of t in some term derived from the $x_i^{(0,0,0)}$ and $y_i^{(0,0,0)}$ has the same numerical value as the coefficient of t in some term of the type (51). But the coefficients are very unequal in all the terms which have coefficients of sensible magnitude, and it would require particular values of the masses and the osculating a_i 's that this condition should be fulfilled for any term whatever. If it were fulfilled, a slightly different epoch could be taken, so that it would not be exactly fulfilled. Since the osculating elements cannot be exactly determined, it may always be supposed that the coefficients will in no case be numerically equal. This is somewhat similar to the assumption that there are no secular terms in the case of the element a in the ordinary method of treatment. It follows from this that $a_2^{0,1,0}$ involves the time only under the cosine or sine function.

The equations which define the $x_k^{(0,1,0)}$ and $y_k^{(0,1,0)}$ are linear and non-homogeneous. The first

²³ See Tisseband, Mécanique céleste, Vol. I, chap. xxiv.

terms of the right members are purely periodic, the same as in the case of the right member of the fourth equation. The complementary functions are the same, except for the constants of integration, as in the expressions for $x_i^{\omega,o,o}$ and $y_i^{\omega,o,o}$. The particular integrals will be composed of terms of the same periods as those which appear in the first two terms in the right members. The complete integrals are the sums of the complementary functions and the particular integrals. The constants of integration are determined by the conditions that the $x_i^{\omega,1,0}$ and $y_i^{\omega,1,0}$ shall all vanish at t=0.

Substituting the expressions for $a_i^{(0,1,0)}$, $x_i^{(0,1,0)}$, $a_2^{(0,1,0)}$, and $y_i^{(0,1,0)}$ in the right members of the second and fifth equations, they are reduced to quadratures and can be at once integrated, giving both periodic and secular terms for $\epsilon_i^{(0,1,0)}$ and $\epsilon_2^{(0,1,0)}$.

Equations (50) can be treated in a precisely similar manner, since they differ from (49) only by a permutation of the indices 1 and 2. If there are more than two planets, the right members of equations (49) and (50) contain more functions of the same type, one coming from each planet, and there is a set of equations similar to (49) and (50) for each planet.

The terms of the second order are the coefficients of μ^2 , μm_1 , μm_2 , m_1^2 , $m_1 m_2$, and m_2^2 . It is possible to determine the character of these terms without writing out explicitly the differential equations by which they are defined. It will be convenient to have the results already attained stated together for reference.

```
a_1^{(0,0,0)} and a_2^{(0,0,0)} are constants, the values of the major semi-axes at t=0.
```

 $x_i^{\scriptscriptstyle(0,1,0)}$ and $y_i^{\scriptscriptstyle(0,1,0)}$ contain only periodic terms of two types, short-period terms and very long-period terms.

 $\epsilon_1^{(0,1,0)}$ and $\epsilon_2^{(0,1,0)}$ contain both purely periodic and secular terms.

 $a_1^{\scriptscriptstyle (0,0,1)}$ contains only purely periodic terms.

 $a_2^{(\theta_i,\theta_i,1)}$ is zero.

 $x_i^{(0,0,1)}$ and $y_i^{(0,0,1)}$ contain only periodic terms of two types, short-period terms and very long-period terms.

 $\epsilon_1^{(0,\,0,\,1)}$ and $\epsilon_2^{(0,\,0,\,1)}$ contain both purely periodic and secular terms.

Consider the coefficients of μ^2 . It follows from (45), and the fact that all these coefficients must vanish at t=0, that $a_1^{(2,0,0)}=a_2^{(2,0,0)}=0$. The $x_i^{(2,0,0)}$ and $y_i^{(2,0,0)}$ are defined by linear non-homogeneous differential equations. The non-homogeneous parts contain periodic terms, some of whose periods are the same as in the complementary functions. Consequently the $x_i^{(2,0,0)}$ and $y_i^{(2,0,0)}$ contain purely periodic and Poisson terms, and $\epsilon_1^{(2,0,0)}$ and $\epsilon_2^{(2,0,0)}$ contain periodic, Poisson, and secular terms. The character of the coefficients of the other terms of the second order can be determined in the same manner. It would be of no value to write them out here.

The results which have been obtained are as follows: The major axes have no secular or Poisson terms of the first order, and the periodic terms are all of short period, except the usual long-period terms. The x_i and y_i of order zero and one contain only purely periodic terms. The terms of order zero are precisely the very long-period terms found by Lagrange. The periodic terms of the first order are of two classes, the very long-period terms and the short-period terms. The latter are not precisely those found in Lagrange's theory, for their periods have been modified a very little by the very long-period terms. If the Lagrangian method is valid at all, its realm of validity is almost certainly much more restricted than that of this method. The short-period terms in the Lagrangian

 $x_i^{\scriptscriptstyle(0,\,0,\,0)}$ and $y_i^{\scriptscriptstyle(0,\,0,\,0)}$ are purely periodic, with very long periods.

 $[\]epsilon_1^{(0,\,0,\,0)}$ and $\epsilon_2^{(0,\,0,\,0)}$ contain both periodic and secular terms.

 $a_1^{(1,0,0)}$ and $a_2^{(1,0,0)}$ are zero.

 $x_i^{(1,0,0)}$ and $y_i^{(1,0,0)}$ contain only periodic terms.

 $[\]epsilon_1^{(1,0,0)}$ and $\epsilon_2^{(1,0,0)}$ contain periodic and secular terms.

 $a_1^{\scriptscriptstyle (0,1,0)}$ is zero.

 $a_2^{\scriptscriptstyle{(0,1,0)}}$ contains only purely periodic terms.

method are computed with the osculating elements in the right members. Suppose now the lines of nodes and lines of apsides actually rotate as the terms of order zero indicate. The result will be that when half revolutions have been performed the Lagrangian short-period terms will be precisely opposite to what they should be, and it is very doubtful whether the whole process converges for such a time. On the other hand, the slight corrections to the periods introduced by the methods given here exactly take into account the effects of these rotations, so that the short-period terms are nearly correct for very long intervals of time. For short intervals of time the two methods give sensibly the same results up to the terms of the second order. That it is not necessary to take into account the relations of the nodes and apsides for practical purposes follows only from the fact that the motions are so slow that they do not affect the perturbations sensibly for a long time. However, in the case of the moon, where the corresponding motions are very rapid, they have been included by nearly every lunar theorist.24 The case is not fundamentally different from this, although the artifices employed to accomplish the results are entirely distinct. Thus this method leads to terms of the same form as found by Lagrange, it is proved to be valid for a positive finite interval of time, and the period for which it is valid is probably much longer than that of the method of Lagrange, if, indeed, it is possible to make the latter the first step in a general process which converges for any value of the time.

It is seen that the Poisson and secular terms appear in the terms of higher order, so that even the form of the solutions does not apparently indicate stability. The conclusion is certain that there are at present no mathematical proofs of the permanent stability of the solar system, although the results given here prove that the present general configurations will be changed very slowly, if at all. The problem awaits further perfection of mathematics, and the fact that the initial conditions cannot be exactly determined may perhaps render the problem of stability forever incapable of solution, just as it is impossible to decide whether the major axes have secular terms of the first order, because it cannot be determined whether the mean motions are exactly commensurable or not.

§ 8. THE METHOD OF SMALL VARIATIONS

Suppose the solutions of a system of differential equations can be found for particular initial conditions. Then, if the actual initial conditions differ only a little from the particular ones, the actual co-ordinates will differ only a little from those given by the first solution, at least for a time. The method of finding the deviations from solutions defined by particular initial conditions will be termed, for convenience, the method of small deviations. It remains to be shown that under certain conditions these small deviations can be represented by convergent power series within certain time limits.

Suppose the differential equations to be solved are

$$\frac{dx_i}{dt} = X_i(x_1, \dots, x_n, t) \qquad (i=1, \dots, n) .$$
 (52)

Suppose it is known in some way that for $x_i = x_i^{\scriptscriptstyle (0)}$ as initial conditions the solutions of (52) are

$$x_i = f_i(t) \qquad (i=1,\dots,n) , \qquad (53)$$

which will be supposed to be valid for all t equal to or greater than zero and less than T. Suppose the actual initial values of the co-ordinates are $x_i^{(0)} + \epsilon a_i$, where the a_i are small and ϵ is a parameter which is to be put equal to unity in the final results. Let the values of the co-ordinates under these conditions be

$$x_i = f_i(t) + \epsilon \xi_i \tag{54}$$

where the ξ_i are the corrections to be determined. Substitute (54) in (52) and expand in powers of ξ_i , and it will be found that

$$\epsilon \frac{d\xi_i}{dt} = \sum_{j=1}^n \frac{\partial X_i}{\partial x_j} \epsilon \xi_j + \text{higher powers in } \epsilon \xi_j$$
 (55)

whose coefficients depend on the partial derivatives of X_i with respect to x_j . Suppose that for $\xi_j = a_j$ the right members of (55) converge for $0 \equiv t < T$.

Consider the integration of equations (55) as power series in the parameter ϵ . These equations fulfil all the conditions imposed upon those treated in § 5; consequently the solutions may be represented by series of the form

$$\xi_i = \sum_{j=0}^{\infty} \xi_i^{(j)} \epsilon^j , \qquad (56)$$

where $\xi_i^{(j)}$ are functions of t, and where the series (56) converge for all $0 \le t < t_0$, where t_0 is a positive number. In general, the smaller the differences between the particular initial conditions giving the solutions (53) and the actual initial conditions, the larger is the value of t_0 .

Suppose the solutions (53) are periodic and valid for all finite values of the time. Then the equations determining the deviations of the first order from the periodic solution are

$$\frac{d\xi_i^{(0)}}{dt} = \sum_{i=1}^n \frac{\partial X_i}{\partial x_j} \xi_j^{(0)} \qquad (i=1,\dots,n) , \qquad (57)$$

where the coefficients of this linear homogeneous system are periodic functions. The solutions of this system will be periodic with the period depending on the coefficients and period of $\frac{\partial X_t}{\partial x_j}$. If these partial derivatives contain a constant term, as they do in most practical problems, and if the coefficients of the periodic terms involve powers of a small parameter m, then the period of the solutions of (57) will differ from that which would be obtained by neglecting the periodic terms by powers of m.

The deviations of the second order are determined by the equations

$$\frac{d\xi_{i}^{(1)}}{dt} = \sum_{i=1}^{n} \frac{\partial X_{i}}{\partial x_{i}} \xi_{j}^{(1)} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} X_{i}}{\partial x_{j} \partial x_{k}} \xi_{j}^{(n)} \xi_{k}^{(n)} . \tag{58}$$

which are linear, but not homogeneous. If any second term in the right member contains an expression of the same period as the $\xi_i^{(1)}$ would have without the non-linear part, then the solutions for $\xi_i^{(1)}$ will contain Poisson terms; otherwise the $\xi_i^{(1)}$ will be periodic. If Poisson terms enter in the $\xi_i^{(1)}$, then the $\xi_i^{(2)}$ will, in general, contain secular terms and terms of the type $c_1 t^2 \sin(c_2 t + c_3)$. The higher terms will, in general, contain secular terms of higher degree and Poisson terms containing higher powers of t in their coefficients. Although this method gives rise to such terms, it neither shows that it is not valid nor that the motion under consideration is unstable; all that can be said is that it is valid if the time interval is not taken too great.

Instead of determining the deviations from particular solutions of the general differential equations, which in general can be found only with great difficulty, certain terms in the right members may be omitted until the variations from the approximate motion are computed. Suppose the differential equations of motion are

$$\frac{dx_i}{dt} = X_i^{(0)} + \sum_{j=1}^{\infty} X_i^{(j)} \mu^j \qquad (i=1,\dots,n) , \qquad (59)$$

where μ is a parameter. Suppose that the right members are convergent power series when the x_i have their initial values for $0 \equiv t < T$.

Suppose the differential equations

$$\frac{dx_i}{dt} = X_i^{(0)} \qquad (i=1,\dots,n) \tag{60}$$

are integrated, giving for the particular initial conditions $x_1 = x_i^{\scriptscriptstyle (0)}$ the periodic solutions

$$x_{i} = f_{i}\left(t\right) , \tag{61}$$

valid for all finite values of the time.

Suppose the actual initial values of the variables $x_i = x_i^{(0)} + \epsilon a_i$, where the a_i are small and ϵ is a parameter which is to be put equal to unity in the final result. The actual co-ordinates at any time are

$$x_i = f_i(t) + \epsilon \xi_i , \qquad (62)$$

where the ξ_i are unknown functions of the time to be determined. For this purpose substitute equations (62) in (59) and develop the right members as power series in ϵ and μ . These series will converge for sufficiently small values of ξ_i and μ , if the $X_i^{(j)}$ are analytic functions of the x_i and regular for $x_i = x_i^{(0)}$, while t varies from 0 to T. These conditions will always be fulfilled in the problems in which practical applications of this method would be desirable. After these transformations the differential equations become

$$\frac{d\xi_i}{dt} = \sum_{j,k=0}^{\infty} X_i^{(j,k)} \xi^k \mu^j \epsilon^k \qquad (i=1,\dots,n) . \tag{63}$$

In accordance with the principles of § 5, these equations can be integrated as power series in μ and ϵ which converge for $0 < t < t_0$, the value of t_0 depending on the coefficients of the differential equations, the a_i and μ and ϵ . As in the preceding case, Poisson and secular terms will, in general, appear in the higher terms when the integration is carried out in this manner.

Hill's method of treating the lunar theory is in its essential features in agreement with the processes which have just been explained. He neglected in the right members of the differential equations all terms containing the latitude of the moon, the eccentricity of the sun's orbit, and the ratio of the distance of the moon from the earth to that of the sun—quantities which play the rôle of parameters, and then found periodic solutions of the resulting differential equations by properly determining the initial conditions. These solutions which give the variational orbit correspond to equations (61). They were found with rare ingenuity and great precision by Hill.²⁵ The part of the motion of the perigee depending on the ratio of the mean motions of the sun and moon and on the first power of the eccentricity of the moon's orbit was also found by Hill.²⁶ with great accuracy. This motion introduces changes in the variational co-ordinates. The corresponding terms in this method are obtained by letting in the solutions of (63), which are of the form

$$\xi_i = \sum_{j,k=0}^{\infty} \xi_i^{(j,k)} \, \mu^j \, \epsilon^k \quad , \tag{64}$$

j=0 and k=0. The differential equations which define these terms are

$$\frac{d\xi_i^{(0,0)}}{dt} = X_i^{(0,0)} \xi^{(0,0)} , \qquad (65)$$

where the $X_i^{(0,0)}$ are periodic functions of the time. The solutions of this linear system are periodic with a period whose difference from that of the $X_i^{(0,0)}$ gives this part of the motion of the perigee.

²⁵ American Journal of Mathematics, Vol. I.

The higher approximations have to a considerable extent been carried out by Brown, but the method of solution is somewhat different from that outlined here. The form of the solutions is assumed, or rather inferred from the investigations of earlier lunar theorists, the final results being expressed as purely periodic series. There is little doubt that, from a practical point of view, this is more satisfactory that any scheme admitting Poisson and secular terms with coefficients of low order in the parameters, but the assumption involved is unjustified, and the series attained are very probably divergent in the mathematical sense.

There seems to be some hope in the plan of finding a more exact periodic solution than the variational orbit, depending, of course, upon particular initial conditions, one which includes more of the right members of the differential equations, and then computing the deviations from this orbit. In this manner satisfactory expressions might be obtained which are rigorous for a long interval of time.²⁷

²⁷ See Poincaré, Méthodes nouvelles, Vol. I, p. 82.

RADIAL VELOCITIES OF TWENTY STARS HAVING SPECTRA OF THE ORION TYPE

EDWIN B. FROST AND WALTER S. ADAMS

INTRODUCTION

The determination of the velocity of a star in the line of sight according to Doppler's principle was first attempted by Huggins in 1868. His observations were followed by those of Vogel three years later, and the validity of the method may be considered to have been established by these investigations, together with others dealing with the motions of planets and the rotation of the Sun. Visual observations of the displacements of the lines in stellar spectra from the positions of corresponding lines in the spectrum of a vacuum tube are, however, of extreme difficulty, and measurements which can be regarded as at all accordant are only possible with the most powerful telescopes and the brightest stars. It was not until the photographic method was applied to this class of observations by Vogel in 1887 that results of an accurate character were obtained. The determinations of the radial velocities of fifty-one stars by Vogel and Scheiner, described in detail in the seventh volume of the Publicationen des Astrophysikalischen Observatoriums zu Potsdam, constitute the foundation of the modern methods of observing stellar motions in the line of sight.

The next great advance was made by Campbell in his design of and work with the Mills spectrograph of the Lick Observatory, described in the Astrophysical Journal, Vol. VIII (1898), pp. 123–56. The use of iron as a comparison spectrum (previously tried by Vogel and by Deslandres, but not regularly employed by them), together with the closest attention to the optical and mechanical construction of the instrument and great refinement in the measurement of the plates, enabled Campbell to increase greatly the accuracy of the determinations, so that the natural unit became the kilometer per second, instead of the sevenfold greater German geographical mile employed by Vogel.

The necessity for the greatest attainable rigidity of the spectrograph, to prevent flexure, and for the maintenance of the prisms at a constant temperature, became apparent from the experience of all observers engaging in spectrographic work, and has led to further improvements in the current type of spectrograph, and tended to increase still further the precision of measurements of radial velocities. The observations given in the present paper constitute a part of the first year's work with the Bruce spectrograph of the Yerkes Observatory, which was completed in the autumn of 1901, and has since then been systematically used in determining stellar motions in the line of sight.

The spectra of the *Orion* type are of an especial interest to the astrophysicist, as they seem unquestionably to occupy a position very early in the scale of stellar evolution. Their chemical constitution is simple, the chief elements showing lines being hydrogen, helium, oxygen, silicon, nitrogen, and magnesium. The presence of helium is the principal characteristic of the type, whence they are frequently called helium stars. The broad and diffuse nature of most of the lines in these spectra renders them less adapted to precise measurement for radial velocity; moreover, the dispersion of the Bruce spectrograph is rather high for such lines, so that it is quite out of the question to expect any such accuracy in the determined velocities as may be obtained for stars of the solar type. A judgment as to the accuracy reached with this instrument, and with the methods employed in measuring and reducing the plates, should be based upon the results given in the section on the control plates of the Moon, planets, and certain standard stars of the solar class (pp. 18–32). The optical features of the Bruce spectrograph were especially planned, however, to cover a region of spectrum not naturally included by most of the large spectrographs engaged in line of sight work, and this region (centering near the strong helium line at λ 4471 and the characteristic magnesium line at λ 4481) was chosen as

particularly well suited for work on stars of the *Orion* type. These stars, furthermore, have hitherto been little observed for radial velocity, so that the field is a comparatively open one. The twenty stars included in this paper were not chosen by any definite principle of selection, but merely represent those stars of which three or more spectrograms have been obtained during the past year, from an observing list of something over one hundred stars shown to be of the *Orion* type by the investigations of Vogel and Wilsing. But stars of this type previously known to be spectroscopic binaries, and those which have been found to be such during the progress of this work, have been excluded from the list. These last named are six in number, and will be discussed in due time elsewhere.

INSTRUMENTS

The Bruce spectrograph was designed and largely constructed at the Observatory, with funds provided by the late Miss Catherine W. Bruce, of New York city, amounting to twenty-three hundred dollars, supplemented by a grant of five hundred dollars from the Rumford fund of the American Academy of Arts and Sciences. As a detailed description of the spectrograph has already been published, it will be necessary to recall here only some of the essential features of the instrument and its use in connection with the great Yerkes refractor. A correcting lens of 57mm, aperture is placed in the cone of rays from the forty-inch objective, at a distance of about 100 cm, from the slit, and unites the rays so that the spectrum of a star is of uniform width for about 100 tenth-meters on either side of λ 4500.

The triple collimating lens, of 51 mm. aperture and 958 mm. focus, was replaced during the year by a quadruple "isokumatic" lens, designed by Professor Hastings, which was originally ordered but could not then be supplied. The new collimator is of the same aperture and focus, and slightly increases the field of good definition, which was already quite satisfactory.

The three prisms are of specially annealed Jena glass, figured by Brashear, and have angles of $64^{\circ}34'$, with an index for $\lambda = 4500$ of n = 1.6724. Their size is such as to transmit the full beam from the collimator of 51 mm. diameter, with allowance for the increased size of the beam after dispersion in the first and second prisms.

Two cameras are provided with the instrument; A, a Zeiss anastigmat of 71 mm. aperture and 449 mm. focus; and B, a Hastings triple of 76 mm. aperture and 607 mm. focus. The two series of plates taken with the spectrograph are designated as A and B according to the camera lens employed. The range of fair focus is somewhat greater in (tenth-meters) for the shorter camera, but the superior scale of camera B gives it the advantage in the range covered. The photographic "speed" of the two cameras is practically identical: the same exposure-time is required for the same object under equal atmospheric conditions. We account for this unexpected circumstance by the losses of light on passing through the five component lenses of the anastigmat.

Camera B has given us serious trouble by becoming astigmatic at intervals, without any known cause external to the lens. We have attributed this to strain produced by the cement (balsam), and the notes under the "journal of observations" show that the lens has been several times recemented by the maker. When a trial plate shows any defective performance of camera B (commonly fringes on the sides of the comparison lines), camera A is always used. It should be mentioned here that we find it much more accurate and satisfactory to test a lens by photographing the emission lines from metallic electrodes rather than the absorption lines of the solar spectrum. Of the plates referred to in this paper fifty-four have been taken with A and eighty-two with B.

The principal changes which have been made in the instrument since the descriptive article was written (in December, 1901) for the Astrophysical Journal (loc. cit.) are the following:

¹⁴Untersuchungen über die Spectra von 528 Sternen," Publicationen des Astrophysikalischen Observatoriums zu Potsdam, Bd. XII, Theil I.

²EDWIN B. FROST, "The Bruce Spectrograph of the Yerkes Observatory," Astrophysical Journal, Vol. XV (1902), pp. I-27.

The bar containing the windows, which determine the length of slit used at a given exposure (a single window for the star-light, a double window for spark-light), has been placed slightly in front of the slit instead of behind it, as formerly. This made the tips of the spark lines much sharper than they had been previously.

To insure the full and uniform illumination of the collimator lens by the light from the source of comparison spectrum, two changes and two additions have been made. The use of the concave mirror to project the image of the spark or tube upon the slit has been abandoned, as the electrodes themselves cut out an appreciable amount of the cone from the mirror, and admitted the possibility of non-uniform illumination of the collimator. The simple biconvex lens originally provided as an alternative has been regularly used for all of the later plates described in the journal of observations.

The plane silvered mirror at first used to reflect the comparison light 90° downward into the slit has been replaced by a diagonal prism.

A small ground glass diffusing screen has been mounted 20 mm. in front of the slit, and is turned into position when the comparison spectrum is being photographed. This should insure a uniform source filling a much larger angle than that subtended at the distance of the slit by the collimating lens, and it has proved entirely satisfactory. The idea was taken from the Potsdam spectrograph, where a ground glass screen diffuses the light from the arc lamp which there serves as the source of the comparison spectrum.

For testing the illumination of the collimator Campbell's practice has been followed of placing a photographic plate in a small holder directly over the aperture of the lens. The exposure is then made to the light of the spark. The negative gives a much more satisfactory test of the illumination than is possible by the usual visual method.

The method of guiding during the exposure on the star, by the light reflected from the symmetrically inclined slit-jaws, has proved very satisfactory. When desired, the observer can, by simply turning a pinion, throw into the guiding telescope the light of the star or spark reflected at the first surface of the first prism. The method thus combines the advantages of the methods of Huggins and of Vogel.

The temperature case which envelopes the whole spectrograph has also given entire satisfaction in its operation. Although the electric heating is not automatic, it has not been found too much of an inconvenience for the observer to read the thermometers from time to time during an exposure, and to turn on the current as necessary. A change of 1°C in the temperature within the outer case usually causes a change of about 0°1 within the inner case (prism-box).

THE PLATES OF SPECTRA

The dispersion and scale of the plates for cameras A and B are as follows:

WAVE-	ANGULAR DIS- PERSION FOR	TENTH-METERS PER MM.				
LENGTH	ONE-TENTH METER	Camera A	Camera B			
4300	45.7	10.0	7.4			
4500	33.8	13.5	10.1			
4700	26.0	17.6	13.1			

A test of the practical separation of close lines in the solar spectrum, photographed on fine-grained plates, gave almost identical results with those described for the Mills spectrograph and the largest Potsdam spectrograph. On the fastest plates, which are used for stellar spectra, the least separable distance is of course less, and is about 0.2 tenth-meters at the center of the plate (λ 4480).

The range of spectrum in sufficiently sharp focus for determining displacements for velocities is

on properly exposed plates—for Camera A, from about $\lambda 4300$ to $\lambda 4700$; for Camera B, from about $\lambda 4340$ to $\lambda 4700$. For merely qualitative work, the range usable would be considerably greater.

The plates used were Seed's "Gilt Edge" 27, and Cramer's "Crown." At the close of the period covered here Seed's double-coated, non-halation plates were tried, with very satisfactory results. The size of the negatives is $1\frac{2}{3}$ in. $\times 4$ in. $(42\times 102 \text{ mm.})$. The developer employed was rodinal or hydrochinon, commonly the former.

Comparison spectrum.—The rotating drum of the spark apparatus provides for the use of three metallic electrodes and a vacuum tube. On the plates discussed in this paper we have always employed titanium, and sometimes, in addition, iron or chromium electrodes, or the helium tube (which contains hydrogen as an impurity and gives also the hydrogen lines). We have used titanium in preference to iron for the standard comparison spectrum for the past three years, and obtain with it sharper and more numerous lines in the region of spectrum covered than with iron. In order to suppress the air lines when iron is used, a small self-induction coil was constructed in 1899 by Leeds & Co., of Philadelphia, according to specifications of Frost. It has an outer diameter of about 40 mm. and a length of about 42 cm. and is separated into sections with binding posts, so that 50, 100, 200, or 500 turns, or any combination of them, may be used. There is no core. The coils are insulated in the same manner as for the secondary of an induction coil. The air lines with the iron spark are greatly cut down when fifty turns are used, and can be entirely suppressed with a greater number of turns. The lines of the other metallic spectra are also rendered sharper by the use of the self-induction.

The current for the primary of the induction coil furnishing the current for the spark is taken from the 110-volt mains, and is reduced by properly arranged resistance coils so that from four to fourteen volts can be tapped off. The induction coil is stationary, and the secondary current is carried in an excellent cable, reaching the spectrograph in any position of the telescope with comparatively little loss of potential.

MEASURING MACHINES

All our measurements of spectra were formerly made with the familiar Zeiss comparators, having two microscopes, one for the negative and the other for the graduated scale. While these instruments are excellent, and have the advantage of depending upon an invariable scale instead of a screw, they are nevertheless rather slow in action, and the eye is strained in alternating between the microscopes with their different degrees of illumination of field. In 1901 two screw machines were therefore ordered from William Gaertner & Co., of Chicago, according to specifications by Professors Hale and Frost, and they have been almost exclusively used in the measurements covered by this paper. An idea of the instrument may be gained from the accompanying plate. The box casting is 23 cm. long, 8.5 cm. wide, and 5 cm. deep. To this the microscope is attached at an angle convenient for observing. The stage or plate-carriage moves in accurately figured ways on a second carriage which moves with the nut of the micrometer screw. The stage may be unclamped from the lower carriage and may be rapidly moved in a direction accurately parallel to the axis of the screw, through a distance of 40 mm. This allows the plate to be quickly aligned under the microscope, and to be rapidly examined before it is measured. A fine screw at the observer's left permits a slight adjustment of the position of the stage after it is clamped to the lower carriage. Thus the stage may be set so that any desired reading of the micrometer screw will correspond to a given position on the plate. The screw is of 10 mm, diameter and 10 cm, length, with a pitch of one-half millimeter. Great care was given by Mr. Gaertner to its construction. The nut is 28 mm. long. A weight attached to it by a light wire over a pulley not shown in the figure removes the small amount of lost motion otherwise present. The screw head is 80 mm, in diameter and is graduated with 500 divisions, so that 1 division = 0.001 mm. or 1 micron (μ). Every tenth division is doubly numbered, c. g., as 39 and 89, so that the readings can be taken off the head directly for a whole millimeter instead of a half (one revolution).

Whole millimeters are read from a scale along the ways of the carriage. The microscopes are from Zeiss, and have the valuable feature of a variable magnification (ranging from about six to thirty diameters) as the objective is moved along a graduated scale. The reticle was ruled on glass at the observatory, and consists of a single fine line and a close pair. There is also provided an eye-piece micrometer which is not used. The whole eye end, including the reticle, can be slightly rotated so that the lines can be made perpendicular to the motion of the screw.

METHOD OF MEASUREMENT

After the negative has been aligned so that the edge of the spectrum moves along some mark or dust particle in the field, the upper carriage or stage is moved so that any desired value is given to the initial setting, and is then clamped, after which it is moved only by the screw. We commonly first place the plate on the stage so that the violet end of the spectrum will appear toward the left in the microscope, when the micrometer settings will increase with the wave-lengths. Four settings are then made on each star line, alternating each time in the direction from which the line is brought under the "thread" of the reticle. Four settings are also made on each comparison line, two each on the portions of the comparison line above and below the star spectrum, with the same alternation in the direction of approaching the thread. Care is taken that there shall be no change in the illumination of the plate during the measurement, and the mirror is rarely touched between plates. A change in the angle of the mirror during measurement would be likely to produce a noticeable shift in the apparent position of the lines.

The point in the comparison line (dark on the negative) at which the line is bisected by the thread may be different according to the practice of different observers. Thus it is the habit of Frost to make the setting at a point one-third of the length of the comparison line away from its inner end; while Adams makes his settings on the inner tips of the comparison lines. On star lines, of course, the setting is always made at the center. The correction for curvature will therefore be regularly different for the two observers. In case of very strong comparison lines, the accuracy of the settings may be somewhat increased by the use of the double thread of the reticle, but this has been very seldom done in these measures. The single thread is invariably the more suitable for the star lines (white on the negative).

After the plate has been measured in one position it is reversed on the stage so that the violet end will appear toward the right in the microscope, and the micrometer readings will decrease with increasing wave-lengths. The new position is so adjusted that the readings will add up some convenient number of whole millimeters when combined with the corresponding readings for the previous position of the plate. If this whole number is 80, then the averages of the four settings in the second position of the negative will be successively subtracted from 80,0000, and the remainder will be very closely equal to the previous average, with which it is now combined to form the Mean of the Settings. If the measurements in the two directions are not made consecutively, the observer is careful to see that the second measure is made when the comparator is at the same temperature as at the first measure.

It should be understood that the measurement of a plate in each position is a single, homogeneous process, yielding results which may be considered absolute, within the limits of error involved. That is, the settings are not first made on a star line and then on a comparison line as a pair, giving a differential value of the distance between the two; but the settings are progressively made along the plate until the whole measurement is complete for that position on the stage. The question of the choice of lines to be measured is taken up in the next section.

1. Length of lines (width of spectrum).—Two sets of windows have been used during the year, each set yielding a different length of lines (both star and spark) for the two cameras. With the narrower windows the length of the lines of both star and comparison spectrum is 0.17 mm. for camera B, and 0.13 mm. for camera A; with the larger windows, which have been used almost exclusively since

October 31, 1901, the length is 0.40 mm. for camera B, and 0.29 mm. for camera A. With average conditions of atmospheric steadiness, it is necessary during the exposure to move the star image back and forth through a small amplitude on the slit by the electric slow-motions, in order that the width of the star spectrum may correspond to the full width of the window. On faint stars the star spectrum is usually kept somewhat narrower than the full width, thus diminishing the necessary exposure time.

2. Curvature of the lines.—Correction is made for the curvature of the comparison lines by means of tables computed by Ditscheiner's formula, which has been shown by Adams to be accurate for long slits.³ The amount of the correction (x) is indicated for the two cameras by the following extracts from the tables. The distance from the center of the star lines to the point for which the correction applies is denoted by z:

z	Camera A	Camera B
0.10 mm.	0.00008 mm.	0.00006 mm.
. 20	.00032	.00024
.30	.00072	,00054
. 40 . 50	00128	,00096 .00149

This table is calculated for an index of refraction in the prism of n=1.6724 for λ 4500. The difference is insensible in practice for other wave-lengths in the range of good focus of our plates.

METHOD OF REDUCTION

The fundamental principle of the method adopted here for the measurement and reduction of line of sight plates is that each negative shall be treated solely by itself and wholly independently of any other plate. This assumes that there is on each plate a sufficient number of well-defined comparison lines whose wave-lengths are accurately known, so that the wave-length of any point in that stellar spectrum can be determined with all necessary precision. Hence no corrections have to be applied on account of the temperature of the instrument at the time the plate was made, or to reduce the plate to the scale of some standard solar or metallic spectrum plate. It may be objected that with so stable an instrument as the Bruce spectrograph, the dispersion formula should be the same for all plates taken at the same temperature; hence always for the whole series of plates taken on a given night. This is readily admitted, but in practice the time spent in computing the Hartmann dispersion formula for each plate, with the use of the "Brunsviga" calculating machine, is no greater than that spent in adapting to a given formula the micrometer settings for each plate.

The three lines of the comparison spectrum taken for the standards in determining the constants, s_o , c, and λ_o , of the simple Hartmann formula

$$\lambda = \lambda_o + \frac{c}{s - s_o}$$

are selected on the basis of their sharpness on the negative and their proper spacing near the two extremities and center of the measured portion of the plate. The correction for curvature is first applied to the mean of the eight settings on each of the lines of the comparison spectrum. (In some cases the correction for curvature has been applied in kilometers to the final mean of the radial velocities determined from the different star lines.) Then the wave-lengths of all the lines measured in both star and comparison spectrum are computed by the formula. In making the measurements the best (most sharply defined, and for solar stars simplest) star lines were selected, without reference to their occur-

[&]quot;The Curvature of the Spectral Lines in the Spectroheliograph," Astrophysical Journal, Vol. XI (1900), pp. 309-41.

rence in the comparison spectrum, provided only that their wave-lengths in the laboratory or in the solar spectrum are known. In every case where possible the nearest good comparison line to the selected star line is also measured. The second column of the detailed measurements, pp. 18 ff. and 33 ff., contains the computed wave-lengths. The differences between these computed values and the known wave-lengths of the comparison lines (as given in Rowland's tables for the solar spectrum) are now given in the third column as "Correction to Comp. Lines." Aside from the accidental errors of the settings, these indicate the departure of the formula from an exact representation of the wave-lengths. The corresponding corrections for the intervening star lines are interpolated between the appropriate values for the adjacent comparison lines, and are given in the fourth column.

The fifth column is entitled "Wave-length in Sun" in the case of plates of the Moon and solar stars, and is taken directly from Rowland's table. Where it is evident that two (or more) solar lines, too close to be separated by the spectrograph, have blended together in forming the line seen on the plate, the wave-length given is the result of the combination of Rowland's values of the constituent lines, with weights proportional to the estimates of their intensities in Rowland's table. A list is given below of the blends thus formed which occur in these measures.

In case of the stars of the *Orion* type the fifth column is entitled "Normal Wave-Length," and gives the best values we have been able to find for the laboratory or other determinations of the wavelengths of the lines in question. Details as to these lines and the authorities for the wave-lengths are also given below.

The next column contains the displacement, or difference between the normal wave-length and the measured wave-length, after the latter has been corrected by the amount given in the fourth column. From the displacement the corresponding radial velocity for each star line is readily determined from our tables, computed with a value of the velocity of light of 299,860 km. per second.

In the case of stars of the *Orion* type, where the stellar lines vary greatly in their degree of diffuseness and consequent difficulty of accurate bisection, the observer assigns an arbitrary weight to the lines, which is given in the last column of the tables of measures. This weight is not assigned after an examination of the accordance of the settings, but commonly immediately upon making the first setting, and it represents the relative certainty that the observer felt as to his estimate (*Auffassung*) of the center of the line. When the observer gave a different estimate of weight in the two positions of the plate (violet toward left and violet toward right), the lower weight was taken. Inasmuch as the *Auffassung* is for such ill-defined and diffuse lines wholly a matter of individual psychology and physiology, the weights assigned to the same line on the same plate by the two observers may differ very considerably. To the same line on different plates of the same star quite different weights may be given by the same observer, since the conditions of exposure and development, and consequent intensity of the negative, never repeat themselves precisely.

The weighted mean of the determinations of velocity for all the lines is used as the radial velocity from that plate by that observer, but the unweighted mean is also given, for comparison, at the foot of column 7. These means were taken on the original reduction sheets where the computations were carried to 0.01 km., and hence may differ slightly from the means of the values when rounded to tenths as printed. Where several star lines could be measured, the difference between the weighted and simple mean is slight.

Attention may here be called to the entirely independent character of the measurements of the two observers on the same plate. The star lines measured and the comparison lines chosen as standards depend wholly upon the observer's judgment while the plate is under the microscope. The generally satisfactory accordance of the results for the same plate is evidence that the large discrepancies arising from the excessively diffuse and difficult character of some of the individual star lines are fairly well balanced in the effect on the result.

SOURCES OF ERROR

The sources of error in this work that most naturally suggest themselves may be classified as follows: (1) those due to the spectrograph; (2) those due to the measuring instrument; (3) those due to the observer or the mode of reduction; (4) those depending upon assumed physical conditions in the stellar and terrestrial sources of light. We proceed to enumerate under these heads the points which the experience of ourselves and others, with this and other instruments, has shown to be most open to error.

- 1. (a) Flexure of the spectrograph and inadequate support of the prisms.—This serious source of error, which was in evidence with the spectrograph first used with the forty-inch refractor, was fundamentally in mind in the design and construction of the Bruce spectrograph. It was accordingly made more rigid than any previous instrument of the kind, principally with steel construction, and we have detected no evidences whatever of error in this respect during a year's use of the spectrograph.
- (b) Imperfection of prisms.—The experience with the first set of prisms supplied for the Bruce spectrograph, which has been recounted in the article by Frots already cited, gave us special reason for caution in respect to the homogeneity of the glass of the prisms. The surfaces, by the Brashear Company, easily fulfil all the requirements, as was also true of the first set. The numerous tests in the summer of 1901 did show that there was a slight difference in the performance of the thick and thin halves of the prisms, and that the definition was slightly improved by reducing the aperture to one-half. The gain in sharpness of the lines was not sufficient, however, to justify the loss of light, and the full aperture of 51 mm. of the collimated beam has been regularly used. The effect must be a slight broadening of the lines of the stellar spectrum and of the comparison spectrum, and hence the result upon the determination of the radial velocities should be very small, increasing the accidental errors but not producing systematic ones. It is not possible to use lines as close together in stellar spectra of the solar type as could be done with perfect prisms, but the effect on such "blends" would be accidental and not systematic.
- (c) Variations in the temperature of the prisms during exposure.—This source of error is fully suppressed by the temperature case and electric heating. Although the control is not automatic the observer has little difficulty in maintaining the temperature of the air about the prisms within a range of 0°2 C. during a winter night. In one respect our arrangements are not perfected in regard to temperature. When the dome is opened for solar observations during a considerable part of the day, the temperature in the spectrograph necessarily rises much higher than the normal value for the night, and consequently the temperature inside the glass of the prisms will be falling during the latter part of the afternoon and early evening. It would be desirable to have means for keeping the temperature of the spectrograph as low during the day as it is likely to be at night. However, as the exposures for the comparison spectrum are symmetrical with respect to the star exposure (except in the case of a few of the earlier plates), the effect of a lack of perfect uniformity in the temperature within the prisms will be to broaden the lines of the two spectra alike and to produce no systematic errors in radial velocities.
- (d) Behavior of lens of Camera B.—The irregularly recurring astigmatism of this lens, mentioned on page 4, opens a possibility of systematic error. The effect generally is to produce a slight shading or fringe on the more refrangible side of the lines, which is more evident for the emission lines of the spark spectrum than for the absorption lines of the stellar spectrum. Hence there would be a tendency to make the settings too far toward the violet on the spark lines, which would yield too large a positive radial velocity for a stellar spectrum made when the lens was in the disturbed condition. We have always intended to use Camera A when B was thus affected, and to measure no B plates showing unsymmetrical comparison lines. If it has occurred that this condition was not noticeable though present, there may be a slight systematic effect on some of the B plates, but it does not appear on comparing the values obtained with the two cameras.

- (e) Adjustment of spark apparatus.—The proper adjustment of the source of the comparison spectrum so that the collimator lens shall be fully and uniformly illuminated by it, is one of the most essential conditions in the use of the spectrograph. The angular apertures of the mirror first used for projecting the image of the spark upon the slit, and of the lens later substituted, were both more than twice as great as that of the collimator lens as seen from the slit. Within this latitude for maladjustment the position of the spark image (purposely somewhat out of focus) could be checked by direct observation of the polished jaws of the slit, or by the symmetry of the illumination of the double window as seen from behind the slit—both of which modes of observation are made possible by the arrangement of the guiding apparatus. On unscrewing the guiding telescope the collimator lens can be viewed directly by the light reflected from the first surface of the first prism, and the equality of its illumination tested while the spark is in action. The method of placing a photographic plate immediately over the lens has proved thoroughly satisfactory and more trustworthy than the visual method. It is not impossible that some of the early plates taken when the mirror was used may be open to danger of partial maladjustment of the spark; but if so, this should show in the control plates of Moon and stars (pp. 18 to 32), and there is no evidence of discrepancies which are not wholly within the range of the errors of observation (measurement).
- 2. Errors due to the measuring instrument.—The only source of error here of consequence lies in the screw. Optical distortions are not to be feared in the microscope, as only the center of the field is used and the recticle is fixed. It has a slight adjustment in position angle, so that the threads can be made parallel to the lines of the spectrum, even if the latter are not absolutely perpendicular to the length of the spectrum. A preliminary examination of the periodic errors of the screw showed that they were not large enough to require correction in the case of the Orion type stars, upon whose broad lines the errors of setting are necessarily large. They are, however, of a magnitude sufficient to affect the velocities derived from the sharp lines of solar stars. It has not been permissible, however, to delay this publication long enough to include them in our reductions, although a large part of the necessary observations have recently been made for both measuring machines.

It therefore remains to examine the probable effect of these errors upon the control plates. Measurements with machine G 2 (used by Adams) of a fixed distance on a glass scale, distributed over the part of the screw actually used, indicated a maximum departure from the mean of $\pm 2\mu$. If a star line were actually affected by this amount, the error in the velocity from that line would be about 2.6km, for B plates or 3.2km, for A plates. But the average departure would not exceed one-half of this, and in the best part of the screw it would not be over one-fourth. In the case of plates of the Moon a considerable number of the lines measured are also present in the comparison spectrum, so that the settings are made at practically the same part of the screw, and the periodic errors would be without effect. Since the plate is measured in both directions, starting at different readings of the head, the resulting error will be reduced by one-half on the average, but cannot be increased. Probably the effect on the velocity for the average line will not exceed three- or four-tenths of a kilometer, and as the mean velocity depends upon more than ten lines, it seems safe to believe that the radial velocity of the Moon or solar star from that plate will not be in error by over 0.1 km. on account of periodic errors of the screw. The progressive errors are quite negligible.

For machine G 1 (used by Frost), with which comparatively few of the control plates were measured, the maximum screw errors are somewhat less, not exceeding $\pm 1.5\mu$. The effect on the radial velocities measured will doubtless not exceed 0.1 km.

In these machines some changes have been made, tending to remove the slight amount of lost motion noticed earlier. The weights taking up the lost motion were somewhat increased. As all settings have uniformly been made in alternate directions there does not seem to be reason for fear of uncertainty in the measures on this account.

- 3. (a) Errors due to the observer.—Measurements of negatives under the microscope are doubtless liable to a variety of subjective errors, which should be more constant than in case of visual measurements of a similar class at the telescope. The one most familiar is that of the different habit of setting upon the dark and light lines on the negative. The process is clearly quite different in placing a dark line of the reticle, or "thread," on the center of a white line in the stellar spectrum from that in bisecting the dark comparison line with the dark "thread." The former is the easier and surer process, although the experienced observer doubtless has his habit of setting too far toward the right or toward the left, though perhaps very slightly. In the more difficult process of centering black upon black the error is greater, and probably for most observers is a function of the intensity or size of the dark line. But this personality error is largely eliminated by the regular practice of reversing the plate under the microscope and remeasuring. Measurements by Frost in 1899 upon a positive of a plate of *Polaris* yielded the same difference for violet to left—violet to right as did the measures upon the negative, but with the sign reversed. The numerical value of this difference has been quite constant and large for Frost, for B plates about 4km., in the sense that a plate measured with violet to left would require a correction of -2 km. For Adams the whole amount is about 1.7km, and the sign opposite, so that a plate measured with violet to left would require a correction of about +1km.
- (b) Errors due to the mode of reduction.—It might be thought that an improvement would have been made in the reduction process by using the exponential form of Hartmann's formula. While the wavelengths would thus have been a little more closely obtained, the gain would not have offset the increased expenditure of time. As a matter of fact, with the method used of correcting the formula at every point where a comparison line was measured (which occurred as near as possible to the position of each star line), the accuracy of the formula is of small consequence, and almost any formula could have been employed, provided only that the differences for short stretches of spectrum could be regarded as linear.

Probably it would also be regarded by some as advantageous to smooth out the accidental errors of settings on the comparison lines by a curve. We have feared the arbitrariness of curve drawing, and have ordinarily thrown the accidental errors upon the star line, although where two comparison lines have fallen close together, with no star line intervening, the mean correction has commonly been taken, valid for the mean wave-length. In a few cases of extrapolation beyond the limits of the formula there has been a slight uncertainty as to the proper correction to the "wave-length by formula" of the stellar lines, but the effect would be small.

To conform with Rowland's tables the reductions have been carried out so as to be accurate to the thousandth of the tenth-meter. This gives a specious precision to the displacement for the lines whose wave-lengths have been measured only to the hundredth. In general we should not wish to place any reliance on anything less than the whole kilometer for the best measurable of the *Orion* type stars; and in view of all the sources of error now discussed, many of them not correctable in our present state of knowledge, almost the same can be said for the stars of the solar type.

It has not been possible for us to give the time necessary for the duplicate calculation of the numerical quantities involved in our detailed reductions, so that errors doubtless occur. In general these must be small, however, as those involving an amount as large as 0.02 or 0.03 tenth-meters would be noticeable as breaking the smoothness of the run of the "corrections to comparison lines;" and all such cases have been checked. It does not seem to us likely that these errors in computation can affect the mean value of the radial velocity from any one plate by more than a very small fraction of a kilometer.

In the computation of some of the plates measured by Frost assistance was received from Miss Anne S. Young, research assistant at the observatory during the summer quarter of 1902.

- 4. Errors due to assumptions as to physical conditions.
- (a) In adopting the wave-lengths given in Rowland's table for the solar spectrum for our spark lines, we obviously assume that the conditions in the sun's reversing layer and in the spark are

sufficiently alike as to pressure and otherwise to justify the procedure. Determinations of the wavelengths of the lines in the spark spectrum of titanium, of an order of accuracy equal to that of Rowland's table, are not available, and there would perhaps be quite as much assumption in using arc wavelengths as solar wavelengths. It is a fact that the relative intensities of the *Ti* spark lines on our plates follow much more closely the estimates in Rowland's table than they do Hasselberg's estimates for the arc spectrum of *Ti*. This indicates that the principal dark lines in the solar spectrum due to titanium are enhanced lines, and it suggests that the conditions may have some degree of similarity in sun and spark.

Jewell has found a slight systematic difference between arc and solar wave-lengths, the metallic lines being relatively displaced toward the violet by something like 0.01 to 0.02 tenthmeters. Correction was made for this in the determination of Rowland's standards, as its origin was then supposed to be instrumental. Jewell interprets it as an effect of the density and pressure at the level in the solar atmosphere at which the particular line is produced. The direction of the displacement would indicate a greater pressure in the solar atmosphere than in the arc. If the spark lines are also shifted toward the red relatively to the arc, the effect upon our measured radial velocities might be diminished. The large shifts of this sort described by Haschek were not confirmed in amount by preliminary experiments made at the Yerkes Observatory by Dr. N. A. Kent, who found shifts of only about the order of those measured by Jewell. In the present state of our knowledge we therefore cannot say with any certainty how much our results are affected by the use of solar wave-lengths for our Ti lines; but presumably by an amount corresponding to less than 0.02 tenth-meters, or about 1.4 km., and perhaps very much less. The sign, moreover, cannot be given.

(b) The assumption that stellar wave-lengths are the same as those for the corresponding elements in the laboratory, if incorrect, also renders our measurements of velocity liable to some uncertainty, at present indeterminate. There are some instances where a distinct difference in wave-length is indicated. The most conspicuous case is that of the line always attributed to magnesium, at $\lambda 4481$. Laboratory determinations of this diffuse line in the spark spectrum (obtainable also in the rotating arc) give a value of about $\lambda 4481.32$, while the value obtained by Adams^s from a number of plates of Sirius, and of γ Geminorum and θ Leonis, is 4481.40. The latter value also satisfies the measurements for most of the stars included in this paper, and it has uniformly been used, as we are not prepared to adopt the radical procedure of employing a still different value for the three or four stars for which an intermediate value of this wave-length would perhaps give velocities more accordant with those from other lines. The wave-length found for this line by Scheiner⁹ in the spectra of eighteen stars of the first type is 4481.44 (Rowland's scale).

Finally, in respect to wave-lengths, it should perhaps be mentioned that a relative error of ± 0.01 tenth-meter in Rowland's value for a line would produce an error in our velocity for that line of ± 0.7 km. Probably errors in Rowland's table as large as that are very rare, and Rowland may underestimate the accuracy of his standards in his statement "From the tests I have made on my standards, I am led to believe that down to wave-length 7000, a correction not exceeding ± 0.01 division of Ångström (1 part in 500,000), properly distributed, would reduce every part to perfect relative accuracy."

Of course the precision of the absolute wave-lengths of Rowland's table does not affect our results.

^{*} Astrophysical Journal, Vol. III (1896), pp. 89-113.

⁵ H. A. ROWLAND, "On a Table of Standard Wave-Lengths of the Spectral Lines," Memoirs of the American Academy of Arts and Sciences, Vol. XII (1896), No. 2.

⁶ Astrophysical Journal, Vol. XIV (1901), p. 184.

⁷ HENRY CREW, ibid., Vol. XVI (1902), p. 247.

⁸ Ibid., Vol. XV (1902), p. 216.

³ Publicationen des Astrophysikalischen Observatoriums zu Potsdam, Bd. VII (1895), Theil II, p. 315.

 $^{^{10}\,}Memoirs$ of the American Academy of Arts and Sciences, Vol. XII, No. 2, p. 110.

WAVE-LENGTHS OF THE PRINCIPAL STAR LINES USED

The tables which follow contain all of the more important star lines which we have employed, with the exception of such lines as occur in stars of the solar type of spectrum and are not blends. As the wave-lengths of the latter are taken directly from Rowland's table of solar spectrum wave-lengths, it has not seemed necessary to repeat them here. For the sake of completeness the value of a displacement of one tenth-meter in kilometers per second for the various wave-lengths given is included in the tables.

(a) Blends.—While we have endeavored, as far as possible, in our measures of plates of the Moon, planets, and stars of the solar type of spectrum, to use only single lines, it has been found impossible to avoid blended lines entirely, as some of the best lines in the spectra are of this nature. In such cases we have assigned weights to the component lines according to the intensities given in Rowland's table. This procedure is evidently rigorous for the Moon and planets, and proves satisfactory in the case of most of the stellar lines used in the solar stars we have investigated. Occasionally, however, a line of slight intensity in the Sun rises to considerable intensity in a star and materially changes the wave-length of a blended line. In such a case the change shows itself by the systematic deviation of this line from the other lines of a plate, and the line is rejected after a sufficient number of plates have shown the deviation to be unquestionably systematic.

The decision as to what intensity a line should have in order to exert an influence upon a closely adjacent line is naturally somewhat arbitrary, and depends upon the quality of the plate considered. In general, however, our experience shows that upon a plate of quality suitable for good measurement a line of intensity "0" on Rowland's scale has an appreciable influence, while fainter lines may be neglected. But this does not hold if the adjacent line is overpoweringly strong, as in such a case the strong line may stand out clearly against the fainter without being influenced by it. A case of this sort is the iron line $\lambda 4528.798$ of intensity 8 in the solar spectrum, measures of which do not indicate any disturbing effect from the several faint lines near it.

The following table contains the wave-lengths of the blended lines most frequently used. For the sake of brevity, those which have been used but rarely are not included, but the wave-lengths employed in such cases, are given in column five of the detailed statement of the measurements on pp. 18 ff. and 33 f.:

Elements	Wave-Length	No. of km. per tenth-meter	Elements	Wave-Lengths	No. of km. per tenth-meter
Ti; Fe	4427.420	67.73	Cr. Mn; Ti	4501,422	66,61
Fe: Ti	4434.021	67.63		4515,475	66.40
Ca: Fe	4435.184	67.61	Fe2: -: Ti	4522.853	66.30
Zv Fe: Ti?	4450.597	67.37	-: Fe	4525.285	66.26
Mn: Ca	4456.030	67.29	-: Cr: Fe	4526.644	66.24
Ti, Y, Zr: Mn	4457.656	67.27	Ti: -	4527.518	66.23
V:Mn:-	4460.460	67.23	Ti-Co: -	4534.168	66.13
Ni: Fe	4466.701	67.13	Fe: Ti-Co	4549.767	65.91
Fe: Mn: Ni?	4472.958	67.04	Cr: Co-Fe	4565.750	65.68
Fe:Aa	4476.214	67.00	Ca: Co, Fe	4581.634	65.44
-, Fe : Fe	1482.376	66.90	Cr: Fe	4611.455	65.02
Cv:Zr	4497.046	66.68	Fe: Cr. La	4613.465	64.99

(b) Oxygen and nitrogen lines.—The wave-lengths of the following oxygen and nitrogen lines occurring in the spark spectrum of air have been determined by us on plates taken with the concave grating, with various elements serving as the spark electrodes. The values have been published in the Astrophysical Journal, Vol. XVI (1902), pp. 118-20. The identifications are those of Neovius.¹¹

¹¹ Bihang titl K. Svenska Vet.-Akad, Handlingar, Vol. XVII, 1891.

Element	Wave-Length	No. of km. per tenth-meter	Element	Wave-Length	No. of km. per tenth-mete
0	4317.272	69.46	N	4601.632	65.17
0	4319.762	69.41	$\frac{N}{2}$	4607.305	65.08
0	4345.677	69.00 68.96	$\stackrel{N}{N}$	4614.033 4621.548	64.98 64.88
$\stackrel{NO}{O}$	4348.134 4349.541	68.94	$\stackrel{N}{N}$	4630.703	64.75
ŏ	4351.495	68.91	Ô	4638.937	64.64
ŏ	4367.012	68.66	Ö	4641.886	64.60
Ö	4415.076	67.92	N	4643,244	64.58
O	4417.121	67.88	0	4649.250	64.49
NO	4447.163	67.42	NO	4650.925	64.47
0	4591.066 4596.291	65,31 65,24	O	4661.728	64.32

(c) Silicon lines.—The following wave-lengths of the three silicon lines used by us are those given by Exner and Haschek, who used the spark passing between electrodes of metallic silicon as the source of spectrum. The occurrence of these lines in the spectra of stars resembling β Crucis was observed by McClean and by Gill, and their origin was traced by Lunt in a careful series of experiments at the Cape Observatory. It is unfortunate that the wave-lengths, particularly that of the third line, cannot be more accurately assigned. This is doubtless due to their diffuse character in the spark spectrum, which was remarked by Exner and Haschek.

Wave-Length	No. of km. per tenth-meter
4552.75	65,87
4567.95	65,64
4574.9	65,54

(d) Magnesium lines.—The magnesium line at $\lambda 4352$ occurs in the Sun, and accordingly its wave-length is given by Rowland. The wave-length of the line at $\lambda 4481$ has been determined by Adams from measures of the spectra of stars of Vogel's type Ia,¹³ and is discussed more fully on p. 13.

Wave-Length	No. of km, per tenth-meter		
4352,083	68,90		
4481.400	66.91		

(e) Helium lines.—The wave-lengths of the helium lines which we have used are those given by Runge and Paschen.¹⁴ The double lines at $\lambda 4471$ and $\lambda 4713$ have been blended, the weights assigned to the components being 6 and 1 for $\lambda 4471$, and 3 and 1 for $\lambda 4713$. (The intensities given by Runge and Paschen are respectively 6 and <1 and 3 and <1.)

Wave-Length	No. of km. per tenth-meter
4388.100	68.33
4437.718	67.57
4471.676	67.06
4713.308	63.62

¹² "Note on the Spectrum of Silicon," Astrophysical Journal, Vol. XII (1900), pp. 48, 49.

^{14 &}quot;On the Spectrum of Clèveite Gas," ibid., Vol. III (1896), pp. 1-28.

^{13 &}quot;Some Results with the Bruce Spectrograph," ibid., Vol. XV (1902), pp. 214-17.

JOURNAL OF OBSERVATIONS

The extract given below from the regular observing journal of the Bruce spectrograph furnishes the observational data for all of the plates discussed in the present article. The principal omissions are the numerical values of the focal settings of the collimator and camera, and of the focal scale of the telescope, upon which the position of the slit in the plane of the forty-inch objective depends. The last varies with the temperature, and its value is furnished by a table constructed from Barnard's results for the variation of the focal length of the telescope with the temperature. The collimator setting has been changed but once, and then on the occasion of the substitution of the "isokumatic" lens, to which reference has already been made, for the lens previously in use. The focal setting of Camera A has been kept practically unchanged, repeated tests during the severe weather of the winter showing no appreciable variation in focus. The recementing of the objective of Camera B has, however, necessitated changes of its focal setting on several occasions, as appears in the Remarks.

Most of the columns in the journal are self-explanatory. The length of exposure in seconds for the comparison spectrum is indicated by the number following the symbol of the element employed: thus "Ti 6" denotes an exposure of the titanium spark for six seconds. The time in reference to the star exposure at which the comparison spectrum is photographed is given in the two columns headed "Beginning" and "End," while an intermediate entry refers to the middle of the star exposure unless the time is expressly stated. The number of turns of self-induction in the secondary circuit of the spark coil is also given. The first (i) of the temperature entries always refers to the temperature inside the prism box, the second (a) to the temperature inside the large aluminium case which covers the spectrograph. The middle of the star exposure is given in Central Standard time.

In the case of nearly all of the exposures entered in the list below, the labor of guiding has been shared equally by the observer and Mr. F. R. Sullivan, engineer in charge of the telescope, to whom we are much indebted for this efficient assistance.

Object	Series and Number	Date	Middle of Ex- posnre	Dura- tion	Honr Angle at End	Slit Width	Comparison Beginning End	Self- Induc- tion	$\operatorname*{Beginning}_{i}^{\operatorname{Temper}}$	ature i	$_{o}^{\mathrm{End}}$	Seeing	Ob- server	Remarks
a Tauri β Orionis γ Pegasi γ Pegasi γ Orionis ξ Persei γ Pegasi γ Orionis ξ Persei β Orionis β Orionis κ Orionis κ Orionis κ Orionis κ Orionis β Orionis κ Orionis β Orionis β Orionis β Orionis β Orionis β Orionis κ Orionis β Orionis β Orionis κ Orionis β Orionis	B191 A207 A208 A218 A228 A2218 A224 A226 A233 A237 A218 A251 A251 A250 A250 B194 B195 B196 B200 B202 A27 A27 A27 A27 A27 A27 A27 A27 A27 A2	1901 Sept. 4 "" Sept. 5 Sept. 6 Sept. 11 Sept. 12 Sept. 12 Sept. 26 "" Sept. 26 Oct. 2 Oct. 4 Oct. 16 Oct. 17 "" Oct. 18 Oct. 23 Oct. 25 Oct. 31	11 07 15 32 12 04 8 50 12 26 14 52 15 42 16 13 8 05 8 05 8 14 54 15 26 10 22 15 31 10 22 15 31 10 22 15 31 10 12 10 12 11 12 12 48 13 24 16 13 10 17 10 17 11 26 11 26 11 32 11 16 12 48 13 24 16 10 17 17 30 18 26 19 30 11 15 12 48 13 24 14 42 17 48 18 18 18 18 18 18 18 18 18 18 18 18 18 1	25 8 7 25 44 55 8 7 25 55 12 8 80 9 35 35 40 150 9 7 22 41 85 85 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	h, m, E 3 15 E 2 25 E 2 15 E 2 12 E 3 30 0 E 3 10 E 1 10 E 1 15 E	mm. mm.	$Ti\ 7,\ He5$ $Ti\ 6,\ He6$ $Ti\ 6,\ He6$ $Ti\ 6,\ He8$ $Ti\ 6,\ He8$ $Ti\ 8,\ He8$ $Ti\ 8,\ He8$ $Ti\ 10,\ He\ 11$ $Ti\ 12,\ Fe\ 80$ $Ti\ 13,\ He\ 12$ $Ti\ 14,\ He\ 15$ $Ti\ 14,\ He\ 17$ $Ti\ 14,\ He\ 17$ $Ti\ 14,\ He\ 17$ $Ti\ 14,\ He\ 18$ $Ti\ 12,\ He\ 30$ $Ti\ 13,\ He\ 90$ $Ti\ 14,\ He\ 50$ $Ti\ 15,\ He\ 90$ $Ti\ 15,\ He\ 90$ $Ti\ 17,\ He\ 18$ $Ti\ 17,\ He\ 18$	350; 850; 850; 850; 850; 850; 850; 850; 8	26.2 26.2 26.2 26.3 26.4 26.4 26.4 26.4 26.4 26.4 26.5 5 25 4 27.2 27.1 16.7 16.5 16.4 16.2 12.0 + 12.0 + 12.0 12.1 11.0 + 12.2 11.1 11.4 11.2 11.4 11.2 11.4 11.2 11.4 11.2 11.4 11.2 11.4 11.2 11.4 11.2 11.4 11.2 11.4 11.5 11.5 11.5 11.5 11.5 11.5 11.5	26. 1 25. 1 27. 2 16. 1 12.0 12.0 12.0 11. 2 22. 1 11. 5 9.9 9.9 17. 3 5. 5 5. 5 12. 25 12. 25 12. 25 14. 0 14. 0 14. 0	11.4 22.4 22.4 22.4 22.4 22.2 10.4 9.8	Poor Fair Fair Fair to good Good Good Fair Fair Fair Fair Fair Fair Fair Fair	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	New diagonal prism in spark apparatus 40-inch objective found to be covered with light dew Light clouds and thick haze Spark intermittent Thick haze Camera lens recemented by Brashear New windows in occulting bur; mirror used for spark Spark intermittent Camera lens recemented

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	perature ng
Venus B224 corionis Nov. 13 5 34 17 W 2 35 0.085 T Ti 14 " 8.5 8.5 8.6 ε Orionis B228 for printis B231 strain Nov. 14 13 50 28 E0 15 0.038s Ti 14 " 7.6 6.6 strain β Prionis B231 strain Nov. 14 31 50 28 E0 15 0.038s Ti 14 " 7.6 6.9 strain β Orionis B231 strain Nov. 14 31 50 28 E0 15 0.038s Ti 14 " 7.6 6.9 strain β Orionis B232 strain 14 04 62 W 2 48 0.038s Ti 17 " 9.0 9.0 2 Cassiop B248 strain " 10 48 112 strain W 3 50 0.025 Ti 11 " 0.8 1.2 Moon B252 strain " 15 22 strain <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>after aspar'ncy seeing be given he order</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	after aspar'ncy seeing be given he order
Sorionis A300 Jan. 4 11 41 10 W1 40 0.025 Ti 9 0.026 -6.6 -6.	A	ed on a e of 0 to denoting ect condenoting ect concents. I ens used his point on ery thick g very used in the apparature ground glass en used for spark years of this point of for spark years of this extra this touch ground glass en used rout of for spark years of this extra

DETAILED MEASURES AND REDUCTIONS

CONTROL PLATES OF THE MOON, VENUS, AND SOLAR STARS

The following section contains the results of measures upon plates of the Moon, Venus, and certain stars with known velocities taken for the purpose of guarding against instrumental errors. The series covers practically the entire interval within which the measures given in the present paper occur, and no evidence is shown of the existence of errors of this nature. The measured velocity in the case of the Moon and Venus is compared with the computed velocity, and in the case of stars with the results of other observers for the same stars. Professor Campbell's convenient formulæ were used in the derivation of the theoretical velocity of the Moon and Venus.

The detailed measurements on the different plates follow. The plates of the Moon and Venus are grouped together and arranged in chronological order, while the separate stars are given in order of right ascension. The Greenwich mean time and hour angle given for each plate refer to the middle of the exposure. Following this is the name of the person who measured the plate, the magnifying power employed, and a brief statement as to the quality of the plate. Unless otherwise specified the comparator used by Frost was G 1, by Adams G 2.

The first column of the tables contains the means of the settings upon the individual lines. S denotes a line in the spectrum of the star, Moon, or planet, while a comparison line is indicated by the symbol of the element to which it is due.

In all cases where the curvature correction is given as a fraction of a millimeter at the foot of the tables, the readings upon the comparison lines given in the first column include this correction. In a few cases the correction for curvature is applied in kilometers to the end result.

The symbols V_a and V_d are employed in the reduction of a star's velocity to the Sun, V_a denoting the correction due to the velocity of the Earth in its orbit, and V_d the correction due to the Earth's diurnal rotation. The total reduction to the Sun is, therefore, $V_a + V_d$. The corrections for the orbital velocity of the Earth have been made with the use of Schlesinger's tables of star constants (Astrophysical Journal, Vol. X (1899), pp. 1–13), and the diurnal corrections are taken from a table constructed for the latitude of the Yerkes Observatory.

1901, September 26, G. M. T. $14^{\rm h}\,48^{\rm m}$ Hour angle E $1^{\rm h}\,56^{\rm m}$

MOON—A 246 Poor plate

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t.m.	t. m.	t. m.	t. m.	t. m.	km.
Ti 32.0910	Standard	± 0.000		4427.266		
S 32.1013	4427.392		± 0.000	4427.420	-0.028	-1.9
Ti 32.6522	4434.150	+0.018		4434.168		
S = 32.7836	4435.772		+0.029	4435.851	-0.059	-4.0
Ti 33.1646	4440.495	+0.020		4440.515		
S 33.3212	4442.447		+0.015	4442.510	-0.048	-3.2
S 33.4414	4443.949		-1-0.011	4443.976	-0.016	-1.1
S 33.7551	4447.883	* * * * * * * *	+0.002	4447.892	-0.007	-0.5
Ti.33.8689	4449.315	-0.002		4449.313		
Ti/34.3556	4455,476	+0.009		4455.485		
S = 34.4012	4456.056		+0.010	4456.030	+0.036	+2.3
Ti/34.5215	4457.588	+0.012		4457,600		
S = 34.5254	4457.638		+0.012	4457,656	-0.006	-0.0
S = 35.9614	4476.193		-0.023	4476.214	-0.044	-3.0
Ti.35.9625	4476.208	-0.023		4476.185		
Ti~36.3605	Standard	± 0.000		4481.438		
S = 36.4315	4482.375		-0.001	4182,376	-0.002	-0.1
S 37.3578	4491.715		-0.013	4494.738	-0.036	-2.9
Fe = 37.3606	4494.751	-0.013		4194.738		
Ti 37.4770	4496.318	± 0.000		4496,318		
Ti~38.6951	4512.915	-0.009		4512.906		

MOON A-246-Continued

Mean of Velocity	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti 39.4200 S 39.5836	4522,968 4525,257	+0.006	+0.014	4522.974 4525.285	-0.014	-0.9
Fe 39.8337	4528.771	+0.027		4528.798		
S 39.8362 S 41.6063	4528.806 4554.157		+0.027 +0.000	4528.798 4554.211	+0.035 -0.051	$^{+2.3}_{-3.6}$
$Ti \ 41.7092$	Standard	±0.000		4555,662		

Curvature Cor. +0.0002 mm.

 $\begin{array}{c} {\rm Mean-1.2~km.} \\ {\rm Computed~Velocity-0.5} \end{array}$

MOON—A 253

1901, September 27, G. M. T. $16^{\rm h}$ $22^{\rm m}$ Hour angle E $1^{\rm h}$ $15^{\rm m}$

Moon fair; comparison fair.

Measured by A. Power 28

Ti 26.2727	Standard	± 0.000		4399.935		
S 26.9485	4407.871		-0.002	4407.851	+0.018	+1.5
S 27,0037	4408.524		-0.002	4408.549	-0.027	-1.8
Fe 27.5735	4415,297	-0.004		4415.293		
S 28.4306	4425,615		-0.001	4425.608	+0.003	+0.5
Ti 28.5669	4427.270	-0.004		4427.266		
S 28.5774	4427.398		-0.004	4427.420	-0.026	-1.8
S 29.2661	4435.827		-0.002	4435.851	-0.026	-1.8
S 29.8072	4442.524		± 0.000	4442.510	+0.014	+0.9
Ti 29.9238	4443.976	± 0.000		4443.976	,	į ,
S 30.2354	4447.871		± 0.000	4447.892	-0.021	-1.6
Ti 30.3503	Standard	± 0.000		4449.313		
Ti~30.8405	4455.498	-0.013		4455.485		
S 30.8828	4456.038		-0.013	4456.030	-0.005	-0.3
$Ti \ 31.6612$	4465.980	-0.005		4465.975		
S 32.4522	4476.234		-0.004	4476.214	+0.016	+1.1
Ti 32.8494	4481.441	-0.003		4481.438		
S 32.9185	4482.351		-0.003	4482.376	-0.018	-1.3
S 33.8508	4494.741		± 0.000	4494.738	+0.003	+0.3
Ti 33.9683	Standard	± 0.000		4496.318		
S 34.0221	4497.041		-0.001	4497.046	-0.006	-0.9
S 34.3461	4501.413		-0.006	4501.422	-0.015	-1.0
Ti 34.3489	4501.451	-0.006		4501.445		

Curvature Cor. +0.0001 mm.

 $\begin{array}{c} {\rm Mean} - 0.5 \ {\rm km}. \\ {\rm Computed\ Velocity} - 0.6 \end{array}$

VENUS-B 224

001, November 13, G. M. T. 11 ^h 34 ^m our angle W 2 ^h 36 ^m		Planet strong	g; comparison g	Measured by A. Power 21		
S 22.8566 Ti 22.8725	4443.810 4443.958	+0.018	+0.018	4443.976 4443.976	-0.148	-10.0
S 23 2737	4447 696	1	40.005	4447 892	-0.191	19.9

Ti 22.8725	4443,958	+0.018		4443.976		
S 23.2737	4447.696		+0.005	4447.892	-0.191	12.9
Ti 23.4465	Standard	± 0.000		4449.313		
S 24,3103	4457.450		± 0.000	4457.656	-0.206	13.9
Ti 24.3261	4457.600	± 0.000		4457.600		
S 25.2597	4466,505		-0.005	4466.701	-0.201	13.5
S 25.4657	4468.486		-0.006	4468.663	-0.183	12.3
Ti 25.4848	4468.669	-0.006		4468.663		
S 25.9135	4472.810		-0.006	4472.958	-0.154	10.3
S 26.2453	4476.031		-0.006	4476.214	-0.189	12.7
Ti 26,7995	4481.444	-0.006		4481.438		
S 26.8762	4482.196		-0.005	4482.376	-0.185	12.4
S 28.1202	4494.513		+0.008	4494.738	-0.217	14.5
			'			

VENUS B-224-Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Planet Lines	Wave-Length in Sun	Displacement	Velocit
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
S 28.7897	4501.230		+0.015	4501.422	-0.177	-11.
Ti 28.8095	4501.430	+0.015		4501.445	1	
Ti=29.9391	4512,911	-0.005		4512.906		
S 30.1705	4515.285		-0.007	4515.475	-0.197	13.
Ti/30.4542	4518.207	-0.009		4518.198		
S 30.8831	4522.647		± 0.008	4522.853	-0.198	13.
Ti~30.9138	4522.966	+0.008		4522.974		
Ti.31.3480	Standard	± 0.000		4527.490		
S = 31.4548	4528.607		± 0.000	4528.798	-0.191	12.
S = 32.9699	4544.641		+0.009	4544.845	-0.195	12.
$Ti \cdot 32.9899$	4544.855	+0.009		4544.864		
Ti~33.7111	4552.616	+0.016		4552.632		
S 33,8378	4553.984		+0.009	4554.211	-0.218	14.
Ti/33.9925	4555.662	± 0.000		4555.662		
S = 31.7268	4563,678		+0.010	4563.939	-0.221	14.
Ti/31.7469	4563,899	+0.040		4563.939		
Ti/35.4926	4572,130	+0.026		4572.156		
S = 36.3248	4581.424		+0.017	4581.634	-0.193	12.
S = 37.0751	4589,901		+0.009	4590.126	-0.216	14.
Ti/37.0941	4590.117	± 0.009		4590.126		
S = 38.9256	4611.221		± 0.002	4611.455	-0.232	15.
Ti.39.4569	Standard	± 0.000		4617.452		

Curvature Cor. +0.0009 mm.

 $\begin{array}{c} {\rm Mean} - {\rm I3.0~km.} \\ {\rm Computed~Velocity} - {\rm I2.8} \end{array}$

MOON-B 254

1901, December 18, G. M. T. $13^{\rm h}~36^{\rm m}$ Hour angle W $1^{\rm h}~32^{\rm m}$

Moon good; comparison rather strong.

Measured by A. Power 21

S 23.4084	1142.519		+0.028	4142.510	+0.037	+
$Ti_{-}23.5599$	4413.948	+0.028		4443.976		
S 23.5648	4443.991		+0.028	4443.976	+0.046	+
S 23,9801	4447.929		± 0.007	4147.892	+0.044	1
$Ti_{-}24.1260$	Standard	± 0.000		4449.313	'	
S 25,9346	4466.735		+0.008	4466.701	± 0.042	+
Ti 26.1311	4468.651	+0.009		4468,663		'
S 26.1331	4468.676		+0.009	4468.663	+0.022	+
S 26,8995	4476.209		-0.010	4476.214	-0.015	<u>'</u>
Ti = 27.4289	4481.461	-0.023		4481.438		-
S 27.5242	4482.410		-0.023	4482.376	± 0.011	1 +
S 28.7507	4494.745		-0.029	4194.738	-0.022	
Ti 28,9085	4496.348	-0.030	1	4496.318		
S 29,4085	4501, 450		-0.022	4501.422	+0.006	+
S 30.0898	4508.459		-0.012	4508.455	-0.008	
Ti 30.5192	4512.911	-0.005		4512.906		
S 31.6950	4525.245		-0.001	4525.285	-0.041	
Ti 31.9069	Standard	±0,000		4527.490		
S 32.0338	4528.838		+0.002	4528,798	+0.042	+
Ti 31.2333	4552.595	+0.037		4552.632		,
S 34.3791	4554.197		± 0.032	4554.211	+0.018	¦ +
Ti 35.2587	4563.935	+0.004		4563.939	1 3 3 3 3	'
S 35, 2583	4563, 931		40.004	4563.939	-0.004	_
S 35.9126	4571.256		+0.012	4571.275	-0.007	_
S 36.8271	4581.615		+0.026	4581.634	+0.007	+
S 37.0370	4584.013		+0.027	4584.018	+0.022	+
Ti 37.5662	4590.092	4-0.031	10.02.	4590.126		
S 39.3891	1611.405		+0.008	4611.455	-0.042	_
S 39.5611	4613.447		+0.005	4613.465	-0.013	8-174
Ti 39.8972	Standard	± 0.000		4617.452		

Curvature Cor. ± 0.0007 mm.

 $\begin{array}{c} {\rm Mean} + 0.5 \ {\rm km}. \\ {\rm Computed\ Velocity} + 0.9 \end{array}$

VENUS-A 303

1902, January 8, G. M. T. $11^{\rm h}$ $28^{\rm m}$ Hour angle W $2^{\rm h}$ $35^{\rm m}$

Planet strong; comparison good.

Measured by A. Power 28

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Planet Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
S 19.3514	4282.435		± 0.000	4282.565	-0.130	-9.1
Ti = 19.3948	Standard	± 0.000		4282.860		
S 19.4101	4283.010		± 0.000	4283.169	-0.159	11.1
Ti = 19.7313	4286.165	+0.003		4286.168		
Ti = 19.8736	4287.569	-0.003		4287.566		
S 20.0575	4289.387		-0.003	4289.525	-0.141	9.9
S 20.4322	4293.110		-0.004	4293.241	-0.135	9.4
S 20.5327	4294.113		-0.004	4294.278	-0.169	11.8
S 21.3067	4301.892	* * * * * * *	-0.006	4302.039	-0.153	10.7
Ti = 21.3264	4302.091	-0.006		4302.085		
Ti = 21.7183	4306.071	+0.007		4306.078		
S 21.7862	4306.763		+0.006	4306.912	-0.143	10.0
Ti 22.3978	Standard	± 0.000		4313.034		
S 22.5919	4315.038		-0.001	4315.209	-0.172	12.0
S 22.9415	4318.664		-0.001	4318.817	-0.154	10.7
Ti = 23.1771	4321,121	-0.002		4321.119		
S 24.6832	4337.064		+0.001	4337.216	-0.151	10.4
Ti = 24.7781	4338.083	+0.001		4338.084		
S 24.9997	4340.468		+0.002	4340.634	-0.164	11.3
Ti = 25.3675	4944.448	+0.003		4944.451		
S 26.0460	4351.858		+0.002	4352.007	-0.147	10.1
S 27.1522	4364.132		± 0.000	4364.274	-0.142	9.8
Ti = 27.4820	Standard	± 0.000		4367,839		

Curvature Cor. +0.0005 mm.

 $\begin{array}{c} {\rm Mean} -10.5 \; {\rm km}. \\ {\rm Computed} \; {\rm Velocity} \; -11.3 \end{array}$

MOON—A 320

1902,	February	19,	G.	M.	Т.	$13^{\rm h}20^{\rm m}$
Hour	angle E 2	h 29	m			

Moon strong; comparison good.

Measured by A. Power 21

S 31.3732	4399.921		±0.000	4399,903	+0.018	+1.2
Ti = 31.3744	Standard	± 0.000		4399.935	10.020	1212
S 32.0370	4407.849		+0.003	4407.851	+0.001	+0.1
Ti = 33.6288	4427.257	+0.009		4427.266	(0.001	10.1
S 34.1240	4433,410		+0.012	4433.390	+0.032	+2.2
Ti 34.1836	4434.155	+0.013	10.012	4434.168	0.002	2.4
S 34.3183	4435.840	10.010	+0.011	4435.851	± 0.000	±0.0
S 34.8483	4442.514		+0.005	4442.510	+0.009	+0.6
Ti 34.9634	4443.972	+0.004	10.000	4443.976	0.000	70.0
S 34.9637	4443.975	10.001	+0.004	4443.976	+0.003	+0.2
S 35.2711	4447.884		+0.001	4447.892	-0.007	-0.5
Ti 35.3830	Standard	± 0.000	10.001	4449.313	0.001	-0.0
Ti 36.0271	4457.594	+0.006		4457,600		
S 36.2492	4460.473	, 0.000	+0.007	4460.460	+0.020	+1.3
Ti = 36.8753	4468.654	+0.009	10.00	4468.663	0.020	71.0
S 36.8769	4468.675	10.000	+0.009	4468.663	+0.021	+1.4
S 36.9399	4469.504		+0.009	4469.511	+0.002	+0.1
S 37.4477	4476.219		+0.015	4476.214	+0.020	+1.3
Ti 37.8376	4481.420	+0.018	10.015	4481.438	7-0.00	71.0
S 37.9107	4482.399		+0 016	4482.376	+0.039	+2.6
S 38.8237	4494.747		+0.002	4494.738	+0.011	+0.7
Ti 38.9387	Standard	±0.000	,	4496.318	+0.011	7-0.1
S 38.9949	4497.087		±0,000	4497,046	+0.041	⊥ 9 7
S 39.3121	4501.443		+0.007	4501.422	+0.028	$+2.7 \\ +1.9$
Ti 39.3118	4501.438	+0.007	'	4501,445	0.020	71.0
11 00.0110	1001,100	0.001		TOULTIO		
	<u> </u>	1		1		

Curvature Cor. +0.0005 mm.

 $\begin{array}{c} {\rm Mean} + 1.1 \ {\rm km}. \\ {\rm Computed \ Velocity} + 0.7 \end{array}$

MOON—A 337

1902, March 26, G. M. T. $20^{\rm h}\,49^{\rm m}$ Hour angle W $0^{\rm h}\,28^{\rm m}$

Moon fair; comparison rather strong.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Sun	Displacement	Velocit
mm.	t. m.	t. m.	t. m.	t. m.	t. ni.	km.
S = 29.3921	4425.611		+0.000	4425.608	± 0.003	+0.2
Ti = 29.5265	Standard	+0.000		4427.266		1
S 29.5386	4427.415		± 0.000	4427.420	-0.005	-0.3
S 30.1641	4435.174		-0.002	4135.184	-0.012	-0.8
S 30.7503	4142.519		-0.005	4442.510	-0.004	+0.3
Ti = 30.8661	4143,981	-0.005		4443.976		
S 30.8668	4443.989		-0.005	4443.976	± 0.008	+0.5
S 31.1765	4447.913		-0.014	4447.892	+0.007	+0.5
Ti = 31.2881	4449.331	-0.018		4419.313		,
S = 32.6364	4466.708		-0.017	4466.701	-0.010	-0.7
S = 32.7860	4168,663		-0.017	4468.663	-0.017	-1.1
Ti=32.7873	4468.680	-0.017		4468.663		
S = 33.3607	4176.225		-0.012	4476.214	-0.001	-0.1
S = 33,8257	4482.403		-0.008	4482.376	+0.019	+1.3
S 34.7438	4494.760		-0.001	4491.738	+0.021	+1.
Ti = 31.8581	Standard	±0,000		4496.318		
S = 35,2334	4501.439		-0.001	4501.422	-0.016	-+-1
Ti = 35.2339	4501.446	-0.001		4501.415		
Ti = 36.0651	4512.928	-0.022		4512,906		
S = 36,2473	4515,470		-0.012	4515.475	-0.017	-1.1
S 36,7711	4522.826		+0.018	4522.853	-0.009	-0.6
Ti = 36.7803	4522,956	± 0.018		4522.974		
Ti = 37.0998	4527.481	+0.009		4527.490		
S = 37.1925	4528.799		+0.00.)	4528.798	+0.010	+0.7
Ti=38.8393	4552,617	+0.015		4552.632		
Ti = 39.6038	Standard	±0.000		4563.939		
S = 39,6048	4563.954		± 0.000	4563 939	+0.015	+1.0

Curvature Cor. ± 0.0005 mm.

 $\begin{array}{c} {\rm Mean} + 0.1 \ {\rm km.} \\ {\rm Computed\ Velocity} + 0.1 \end{array}$

3.1	CONT	TD.	900

902, April 19, G. M Iour angle E 1 ^h 15 ⁿ	T. T. 14 ^h 40 ^m	Moon good; comparison good.			Measured by A. Power 17	
S 28,5408	4415,250		±0.000	1415.214	+0.006	+0.4
Ti=28.8334	4417.884	± 0.000		4417.881		
Ti-29.8664	Standard	± 0.000		4427.266		
S = 29.8839	4427.426		± 0±000	4427.420	+0.006	+0.4
S = 30.8023	4435,879		+0.007	4435.851	+0.035	+2.4
S = 31.5116	4442,508		+0.013	4112.510	+0.011	+0.7
Ti=34.6699	4443.962	+0.014		4443.976		
S = 31.6721	4443,983		+0.011	4443,976	+0.021	1.1
S = 32.0910	4417,920		-0.001	4147.892	+0.024	+1.6
Ti=32.2397	4449.323	-0.010		4449.313	· ·	
S 32.9485	4456.049		-0.002	4456.030	+0.017	+1.1
Ti = 33.1109	Standard	±0,000		4457,600	'	
S 33.1168	4457.656		±0,000	4457.656	± 0.000	± 0.0
S 31.2596	4468.667		-0.006	4168,663	-0.002	-0.1
Ti = 31.2598	4468,669	-0.006		4468,663		
S = 35.0342	4476.230		±0,000	4176.314	± 0.016	+1.1
Ti = 35.5624	4481.431	+0.001		4481,438		
S 35,6585	1482.385		± 0.001	4482.376	+0.013	+0.9
S 36,8954	4491.737		+ O.000	4491.738	-0.001	-0.1
Ti = 37.0518	Standard	± (), (X(X)		4496,318	1	
Ti = 37.5576	4501.444	+0.001		4501.445		
S 37,5578	4504,446		+0.001	4501.422	+0.025	+1.7
						1

Curvature Cor. $\pm 0.0008 \,\mathrm{mm}$.

 $\begin{array}{c} {\rm Mean} + 0.9 \; {\rm km.} \\ {\rm Computed} \; {\rm Velocity} + 0.9 \end{array}$

MOON-B 363

1902, June 20, G. M. T. $18^{\rm h}\,55^{\rm m}$ Hour angle W $0^{\rm h}\,50^{\rm m}$

Moon fair; comparison good.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length în Sun	Displacement	Velocity
mın.	t. m.	t. m,	t. m.	t. m.	t. m.	km.
S 19.1323	4425.622		±0.000	4425.608	+0.014	+1.0
Ti = 19.3130	Standard	± 0.000		4427.266	'	' -
S 19.3330	4427.448		±0.000	4427,420	+0.028	+1.9
S 20,2503	4435.860		+0.017	4435.851	+0.026	+1.8
S 20.9677	4442.513		+0.029	4442.510	+0.032	± 2.2
S 21.1205	4443.939		+0.032	4443.976	-0.005	-0.3
Ti = 21.1210	4443.944	+0.032		4443.976		
S 21.5405	4447.873		+0.027	4447.892	+0.008	+0.5
Ti-21.6909	4449.288	+0.025		4449.313	'	
Ti = 22.3462	Standard	± 0.000		4455.485		
S 22.4025	4456.020		+0.001	4456.030	-0.009	-0.6
S 23.7181	4468.645		+0.034	4468.663	+0.016	+1.1
Ti = 23.7164	4468,629	+0.034		4468.663		
S 24.4939	4476.201		+0.020	4476.214	+0.007	+0.5
Ti = 25.0256	4481.427	+0.011		4481.438		,
S 25.1198	4482,358		+0.011	4482.376	-0.007	-0.5
S 26,3633	4494.754		+0.015	4494.738	+0.031	+2.1
Ti = 26.5171	4496.302	+0.016		4496,318	·	,
S 26.5898	4497.036		+0.016	4497.052	+0.006	+0.4
S 27.0243	4501.434		± 0.000	4501.422	+0.012	+0.8
Ti = 27.0254	Standard	± 0.000		4501,445		

Curvature Cor. +0.0008 mm.

 $\begin{array}{c} {\rm Mean} + 0.8 \; {\rm km}. \\ {\rm Computed} \; \; {\rm Velocity} + 0.2 \end{array}$

MOON — B 363

Measured by F. Power 23

Ti 30.6616	Standard	+0.000		4427.266		
S 30.6809	4427.442		±0.000	4427.420	+0.022	+1.5
Ti 31.4173	4434.189	-0.021		4434.168	70.022	71.0
S 31.5268	4435.199	-0.021	-0.021	4435.184	-0.006	-0.4
S 32.3159	4442.536		-0.004	4442.510	+0.022	+1.5
Ti 32.4724	4443.977	-0.001	-0.001	4443.976	7-0.022	71.0
S 32.4726	4443.978	0.001	-0.001	4443.976	+0.001	+0.1
S 32.8904	4447.893		-0.009	4447.892	-0.008	-0.5
Ti 33.0428	1449.327	-0.014		4449.313	0.000	0.0
S 33.3024	4451.776	0.011	-0.016	4451.752	+0.008	+0.5
Ti 33.6958	4455.503	-0.018		4455.485	0.000	0.0
S 33.7513	4456.031	0.010	-0.018	4456.030	-0.017	-1.1
Ti 34.7906	4465.985	-0.010		4465.975	0.011	1
S 35.0678	4468.664		-0.014	4468.663	-0.013	-0.9
Ti 35.3524	4471.426	-0.018		4471.408	0.020	1
S 35.8438	4476.220		-0.009	4476.214	-0.003	-0.2
Ti 36.3748	Standard	± 0.000		4481.438	0.000	0.2
S 36.4713	4482.390		±0.000	4482.375	+0.015	+1.0
S 37.7111	4494.742		-0.003	4494.738	+0.001	+0.1
Ti 37.8680	4496.321	-0.003		4496.318	0.001	, , , ,
S 37.9397	4497.044		-0.003	4497.046	-0.005	-0.3
S 38.3715	4501.412		+0.010	4501.448	-0.026	-1.7
Ti 38.3741	4501.438	+0.010		4501.448		
S 39.0627	4508.459		-0.002	4508.455	+0.002	+0.1
Ti = 39.4964	4512.917	-0.011		4512,906	1 - 1 - 1	
S 40.2157	4520.372		-0.002	4520.397	-0.027	-1.8
Ti = 40.4650	Standard	± 0.000		4522.974		
S 40.4530	4522.849		± 0.000	4522.871	-0.022	-1.5
Ti 40.8955	4527,489	+0.001		4527.490		
S 41.0209	4528.810		+0.001	4528,798	+0.013	+0.9
					,	

Curvature Cor. + 0.0013 mm.

 $\begin{array}{cc} {\rm Mean} & -0.2 \ {\rm km}. \\ {\rm Computed \ Velocity} & +0.2 \end{array}$

MOON-A 350

1902, July 16, G. M. T. $44^{\rm h}~28^{\rm m}$ Hour angle E $0^{\rm h}\,42^{\rm m}$

Moon fair; comparison fair.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Snn	Displacement	Velocit
mm.	t. m.	t. m	t. m.	t. m.	t. m.	km.
Ti-30.3399	Standard	± 0.000		4427.266		
S = 30.3552	4427.454		± 0.000	4427.420	+0.031	+2.
S 30.9807	4435.178		+0.006	4435.184	± 0.000	±0.
S 31.5670	4442.498		+0.012	4442.510	± 0.000	± 0 .
Ti = 31.6836	4443,963	+0.013		4443.976		
S 31.9948	4447.891		-0.004	4447.892	-0.005	-0.
Ti-32.1081	4449.323	-0.010		4449.313		
Ti = 32.5937	4455.506	-0.021		4455.485		
S = 32.6366	4456.055		-0.021	4456.030	±0.004	+0.
Ti-33.6143	4468.682	-0.019		4468.663	· ·	,
S 31.1884	4476.201		-0.008	4476.214	-0.018	-1.
Ti = 34.5843	Standard	± 0.000		4481.438		
S 34.6546	4482.372		-0.001	4482.376	-0.005	-0.
S 35.5784	4494.753		-0.010	4494.738	± 0.005	+0.
Ti=35.6948	4496.329	-0.011		4496.318		'
S 35.7484	4497.055		-0.011	4497.046	-0.002	-0.
S 36.0693	4501.421		-0.013	4501.422	-0.014	-0.
Ti-36.0720	4501.458	-0.013		4501.445		
S = 37.0281	4514.625		-0.006	4514.617	+0.002	+0.
Ti=37.9457	Standard	±0.000		4527.490		
S = 38.0405	4528 832		-0.001	4528.798	+0.033	+2.
S 38.4194	4534,221		-0.010	4534.168	+0.043	+2.
$Ti_{-}38.4714$	4534.964	-0.011		4534.953		

Curvature Cor. +0.0005 mm.

 $\begin{array}{c} {\rm Mean} \ +0.4 \ {\rm km}. \\ {\rm Computed \ Velocity} \ +0.4 \end{array}$

MOON-B 401

1902, August 27, G. M. T. 21
h $47^{\rm m}$ Hour angle E $3^{\rm h}44^{\rm m}$

Moon slightly weak; comparison fair.

Measured by A. Power 28

S 29.0862	4425.591		± 0.000	4425.608	-0.017	-1
Ti=29.2702	Standard	± 0.000		4427.266		
S = 29.2843	4427.395		± 0.000	4427.420	-0.025	-1
S 30.9248	4442.512		± 0.003	4442.510	± 0.005	+(
S 31.0788	4443.948		+0 003	4443.976	-0.025	
Ti 31,0811	4443.973	± 0.003		4443.976	1	
S 31,4988	4447.881		+0.001	4447.892	-0.010	-(
Ti = 31.6510	4449.312	± 0.001		4449.313		
Ti=32.3053	4455.495	-0.010		4155.485		
S = 32.3612	4456.026		-0.010	4456.030	-0.014	-(
S 33.6784	4468.651		-0.018	4468.663	-0.030	-
Ti=33.6815	1468.681	-0.018		4168.663		
S 34.4556	4476.208		-0.008	4476.214	-0.014	-(
Ti = 34.9886	Standard	±0,000		4481.438		
S = 35.0827	4482.365		± 0.000	4482.376	~ (), ()11	-(
S = 36.3243	1494.714		=0.003	4494.738	= 0.027	-1
S 36.9885	4501.408		-0.005	4501.422	-0.019	_1
Ti=36.9927	4501.450	- 0,005		4501.445		
S 39.0727	4522.824		± 0.003	4522,853	-0.026	-1
Ti = 39.0868	4522.971	+0.003		4522,974		
S 39.3065	4525.266		+0.001	4525.285	-0.018	-1
Ti 39.5187	Standard	± 0.000		4527.490		
S 39.6431	4528,797		± 0.000	4528.798	-0.001	-(

Curvature Cor. +0.0008 mm.

 $\begin{array}{c} {\rm Mean} - 1.1 \; {\rm km}. \\ {\rm Computed \ Velocity} - 1.5 \end{array}$

MOON -- B 408

1902, September 13, G. M. T. $16^{\rm h}\,13^{\rm m}$ Hour angle W $1^{\rm h}\,14^{\rm m}$

Moon good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Sun	Displacement	Velocity
mm,	t. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti 31.7436	Standard	± 0.000		4427.266		
S 31.7599	4427.415		± 0.000	4427.420	-0.005	-0.3
S 32.4112	4433.390		± 0.005	4433.390	+0.005	± 0.3
S 33.3929	4442.495		+0.011	4442.510	-0.004	-0.3
S 33.5520	4443.982		+0.012	4443.976	+0.018	+1.2
Ti = 33.5501	4443.964	+0.012		4443.976	10.010	1 1 1 2
S 33.9700	4447.904		± 0.005	4447.892	+0.017	+1.2
Ti 34.1194	4449.311	+0.002		4449.313	"""	1
Ti = 34.7714	4455.486	-0.001		4455.485		
S 34.8303	4456.046		-0.001	4456,030	+0.015	+1.0
Ti = 34.9933	Standard	± 0.000		4457,600		1 = 0
S 34,9984	4457.648		± 0.000	4457.656	-0.008	-0.5
Ti = 36.1445	4468.671	-0.008		4468,663		
S 36.1456	4468.682		-0.008	4468.663	+0.011	+0.7
S 36.9185	4476.214		-0.006	4476.214	-0.006	-0.4
Ti = 37.4503	4481.443	-0.005		4481.438		
S 37.5453	4482.381		-0.005	4482,376	± 0.000	± 0.0
S 38.7829	4494.718		± 0.000	4494.738	-0.020	-1.3
Ti 38.9418	Standard	± 0.000		4496.318		
S 39.0126	4497,032		± 0.000	4497.046	-0.14	-0.9

Curvature Cor. $+ 0.0009 \,\mathrm{m}$.

 $\begin{array}{c} {\rm Mean} \ + 0.1 \, {\rm km}. \\ {\rm Computed \ Velocity} \ + 0.2 \end{array}$

MOON - B 423

1902, October 15, G. M. T. $15^{\rm h}\,44^{\rm m}$ Hour angle E $1^{\rm h}1^{\rm m}$

Moon good; comparison good.

Measured by A. Power 21

Ti 33.6163	Standard	±0.000		4427.266		
S 33.6324	4427.413	10.000	±0.000	4427.420	-0.007	-0.5
S 35.2019	4441.876		+0.006	4441.881	+0.001	+0.1
S 35.2673	4442.485		+0.006	4442.510	-0.019	-1.3
S 35,4234	4443.942		+0.007	4443.976	-0.015 -0.025	-1.7
Ti 35.4262	4443.969	+0 007		4443.976	-0.020	-1.1
S 35,8448	1447.891	'	+0.005	4447.892	+0.004	10.9
Ti 35,9956	4449.309	+0.004	1 '	4449.313	70.004	+0.3
Ti 36.6475	4455.475	-0.010		4455.485		
S 36.7044	4456.016	'	+0.007	4456.030	-0.007	0.5
Ti 36.8708	Standard	±0.000	1	4457.600	-0.007	-0.5
S 36.8771	4457,660		±0.000	4457,656	10.004	100
		* * * * * * *			+0.004	+0.3
	4468.625	1.0.000	+0.006	4468.663	-0.032	-2.1
Ti 38.0218	4468.657	+0.006	10.011	4468.663	10.000	1.0 -
S 38.7970	4476.206	1.0.01	+0.011	4476.214	+0.003	+0.2
Ti = 39.3279	4481.423	+0.015	10.045	4481.438		
S 39.4226	4482.357		+0.015	4482.376	-0.004	-0.3
S 40.6621	4494.707		+0.017	4494.738	-0.014	-0.9
Ti = 40.8205	4496.301	+0.017		4496.318		
S 40.8926	4497.028		+0.015	4497.046	-0.003	-0.2
S 41.3250	4501.401		± 0.000	4501,422	-0.021	-1.4
Ti = 41.3293	Standard	± 0.000		4501.445		

Curvature Cor. + 0.0008 mm.

 $\begin{array}{c} {\rm Mean} \; -0.6 \; {\rm km}. \\ {\rm Computed \; Velocity} \; -0.4 \end{array}$

1902, November 6, G. M. T. $13^{\rm h}\,38^{\rm m}$ Hour angle W $2^{\rm h}\,54^{\rm m}$

MOON -- B 444

Moon good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moon Lines	Wave-Length in Sun	Displacement	Velocity
mm.	't. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti = 31.0166	Standard	± 0.000		4427.266		
S 34.0332	4427.418		±0.000	4427.420	-0.002	-0.1
S 34.6862	4433.410		-0.014	4433.390	+0.006	+0.4
Ti = 34.7701	4434.184	-0.016		4434.168	•	•
S 34.9510	4435.856		-0.010	4435.851	-0.005	-0.3
S = 35.6659	4442.504		+0.012	4442.510	+0.006	+0.4
Ti = 35.8214	4443.959	+0.017		4443.976	'	•
S = 35.8245	4443.988		+0.017	4443.976	+0.029	+2.0
S 36.2407	4447.897		+0.005	4447.892	+0.010	+0.6
Ti = 36.3907	4449,312	+0.001		4149.313	• '	•
Ti = 37.0401	4455.471	± 0.014		4455.485		
S = 37.1005	4456.047		+0.010	4456.030	+0.027	+1.8
Ti = 37.2632	Standard	± 0.000		4457,600		·
S 37,2718	4457.682		± 0.000	4457.656	+0.026	+1.7
S 38.4118	4468.668		-0.009	4468.663	-0.004	-0.5
Ti = 38.4123	4468.672	-0.009		4468.663		
S 39.1858	4476.228		+0.008	4476.214	+0.022	+1.3
Ti 39.7123	4481.419	+0.019		4481.438		, .
S 39.8069	4482.356		+0.018	4482.376	-0.002	-0.1
S 41.0457	4494,743		+0.002	4494.738	+0.007	+0.5
Ti = 41.2016	Standard	±0.000		4496.318	' i	
S = 41.2751	4497.061		± 0.000	4497.046	+0.015	+1.0
S 41.7048	4501.425		± 0.001	4501.422	+0.004	+0.3
Ti = 41.7067	4501.444	+0.001		4501.445	,	

Curvature Cor. $\pm 0.0009 \,\mathrm{mm}$.

 $\begin{array}{c} {\rm Mean} \ +0.7 \ {\rm km}. \\ {\rm Computed \ Velocity} \ +0.6 \end{array}$

a ARIETIS

The plate of a Arietis given below was previously published in Frost's paper on the Bruce spectrograph 15 as an example of the method of reduction.

a ARIETIS—B 233

			Measured by A Power 21		
4442,418		+0.015	4442.510	-0.077	-5.2
4443.880		-0.015	4443.976	-0.081	5.5
4443.961	+0.015	'	4443.976		
			4447.892	-0.080	5.4
			4449.313		
			4451.752	-0.062	4.2
				-0.053	3.6
4476.148			4476.214	-0.063	4.2
4481.431		,	4481.438		
4482.300			4482.376	-0.070	4.7
				-0.049	3.3
				-0.096	6.4
			4501.445		
				-0.047	3.1
				0.021	0.1
]			-0.076	5.1
					0.12
				-0.047	3.1
					7.2
				0,1200	
				-0.067	4.4
	4443.880 4443.961 4447.808 Standard 4451.691 4457.604 4468.614 4468.667 4476.148	4443.880 4443.961 4447.808 Standard 4451.691 4457.604 4468.614 4468.614 4468.667 4476.148 4481.431 4481.431 4481.431 4494.705 4494.705 4494.705 4494.705 4501.329 4501.448 4501.329 4501.448 4512.920 4501.448 4512.920 4501.448 4512.920 4501.448 4512.873 4512.873 4512.920 4501.448 4512.873 4512.920 4501.448 4512.920 4501.448 4512.920 4501.448 450.000 4528.757 4531.877 4531.877 4531.877 4531.877 4531.986 4541.874	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $^{^{15}}$ Astrophysical Journal, Vol. XV (1902), pp. 1–27.

a ARIETIS—B 233—Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti = 39.0060	4552.639	-0.007		4552.632		
S 39.1432	4554.128		-0.013	4554.211	-0.096	6.3
Ti 39.2861	4555.682	-0.020		4555,662		
S 40.0346	4563.876		-0.006	4563.939	-0.069	4.5
Ti 40.0409	4563.945	-0.006		4563.939		
S 40.6947	4571.177		-0.002	4571.275	-0.100	6.6
S = 40.7752	4572.072		-0.002	4572.156	-0.086	5.6
Ti 40.7829	4572.158	-0.002		4572.156		
S 41.2421	4577.286		-0.007	4577.356	-0.077	5.0
S 42.3755	4590.093		-0.020	4590.126	-0.053	3.5
Ti = 42.3801	4590.146	-0.020		4590.126.		
S 44.6303	4616.228		-0.001	4616.305	-0.078	5.1
S 44.7282	4617.383		± 0.000	4617.452	-0.069	4.5
Ti = 44.7340	Standard	± 0.000		4617.452		

Curvature Cor. +0.0008 mm.

$$\begin{array}{c|c} \operatorname{Mean} & -4.8 \\ V_a & -8.91 \\ V_d & +0.13 \\ \hline \operatorname{Reduction to Sum} & -8.78 \\ \hline \operatorname{Radial Velocity} & -13.6 \ \mathrm{km}. \end{array}$$

The results of other observers for this star are as follows:

Vogel	-		-		-		-		-		-		-	-14.5
Scheiner		~		-		-		-		-		-		-14.9
Lord	-		-		-		-				-		-	-14.0
Campbell		~		-		~		-		-		-		-14.1

a TAURI

Two plates of this star have been measured, both by A. Of these B 191 is slightly inferior for measurement on account of the narrowness of its star spectrum, the photograph having been taken previous to the change of windows in the occulting bar.

1901, September 4, G. M. T. 20^h 0^m Hour angle E 3^h 27^m

a TAURI—B 191
Star good; comparison fair.

Measured by A. with Zeiss Comparator Power 20

Mean of Settings	Wave-Length by Formula	Correction to	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocity
mm	t. m.	t. m.	t. m.	t. m.	t. m.	km
Ti = 46.0655	Standard	± 0.000		4457.600		*
S 46.0170	4458.060		± 0.000	4457,656	+0.404	+27.2
Ti = 44.9084	4468.656	± 0.007		4468,663	,	
S 44.0847	4476.633		-0.025	4476,214	+0.394	26.4
Ti = 43.5887	4481.480	-0.042		4481.438	1	
Ti = 41.5760	4501.488	-0.043		4501.445		
S 41.5383	4501.868		-0.043	4501,422	± 0.403	26.8
S 40,4909	4512.508		-0.074	4512.063	+0.371	24.7
Ti = 40.4446	4512,982	-0.076		4512.906		
S 40.4064	4513.373		-0.076	4512,906	+0.391	26.0
Ti = 39.9322	4518,248	-0.050		4518.198	,	
S 39.8965	4518.616		-0.050	4518.198	+0.368	24.4
Ti = 39.4690	4523.041	-0.067		4522.974		
S 39.0793	4527.097		-0.069	4526,644	+0.384	25.4
Ti = 39.0350	4527.559	-0.069		4527.490	1 - 1 - 1 - 1	
S 38.9948	4527.979		-0.069	4527.518	± 0.392	26.0
S 38.8704	4529,280		-0.064	4528.798	± 0.418	27.7
S 38.4366	4533,831		-0.051	4533.419	+0.367	24.3
Ti 38.3261	4535.000	-0.047		4534.953	1 0 7 0 0 1	
Ti 37.3919	4544.921	-0.057		4544.864		
S 37.3562	4545.303		-0.057	4544.864	+0.382	25.2
S 37.2345	4546.606		-0.065	4546.129	+0.412	27.2
Ti = 37.0099	4549.016	-0.078		4548.938	,	
S 36.9726	4549.417		-0.078	4548.938	+0.401	26.4

a TAURI-B 191—Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Veloci
mm.	t. m.	t. m.	t. m.	t. m.	t, m.	km.
S 36.8960	4550,241		-0.069	4549.767	+0.405	26.7
S 36.4873	4554.651		-0.055	4554.211	-0.388	25.6
Ti = 36.3896	4555.713	-0.051		4555.662		
S 36.3502	4556,140		-0.051	4555.662	± 0.427	28.1
Ti = 35.6352	Standard	±0.000		4563,939		
S 35, 1341	4566.147		± 0.002	4565.750	+0.399	26.5
S 34.9308	4571.700	1	+0.006	4571.275	0.431	28.5
Ti 31.8903	4572.150	+0.006		4572.156	(
S 31.8516	4572.579		+0.006	4572.156	± 0.429	28.1
S 32.1946	4602.620		-0.007	4602.183	± 0.430	28.0
S 30.9806	4616.743		-0.014	4616.305	+0.424	27.5
Ti = 30.9191	4617.466	-0.014		4617.452		
S 30.8819	4617.903		-0.014	4617.452	± 0.437	28.
Ti = 30.4227	4623.321	-0.012		4623.279		
S 29.5666	4633.520		-0.035	4633.078	+0.407	26.5
S 28.0527	4651.883		-0.021	4651.461	+0 401	25.8
S 27.9800	4652.777		-0.020	4652.343	+0.414	26.
Ti 27.6645	4656.662	-0.018		4656.644		
S 27.6303	4657.083		-0.018	4656.644	± 0.421	27.1
S 27.0799	4663,910		-0.005	4663.481	-0.424	27.3
Ti 26.7709	Standard	+0.000		4667.768	1 - 1 - 1	

Curvature Cor. +0.0002 mm.

 $\begin{array}{ccc} & \text{Mean} & +26.6 \\ V_a & +29.29 \\ V_d & +0.26 \\ \hline \text{Reduction to Sun} & +29.55 \\ \hline \text{Radial Velocity} & +56.1 \text{ km.} \end{array}$

1902, January 16, G. M. T. $16^{\rm h}\,15^{\rm m}$ Hour angle E $0^{\rm h}\,33^{\rm m}$

a TAURI—B 275

Star good; comparison good.

Measured by A. Power 20

Hour angle E 0. 99		, mar good,	go			1000120	
Ti 29.0002	Standard	+0.000		4417,884			
S 29.3656	4421.203		+0.015	4420,100	+1.118	+75.9	
Ti = 30.0248	4427.231	+0.035		4427.266			
S 31.0761	4436.956		± 0.020	4435,851	+1.125	76.1	
S 31.7232	4443.012		+0.009	4441,881	+1.140	77.0	
S 31.7933	4443,671		± 0.008	4442.510	+1.169	78.9	
Ti = 31.8249	4443.968	± 0.008		4443.976			
Ti 31.9487	4445.134		+0.008	4143.976	+1.166	78.7	
S 32.3640	4449.061		± 0.009	4447.892	+1.178	79.4	
Ti 32.3897	4449.304	+0.009		4449,313			
Ti = 33.2583	4457.591	+0.009		4157.600			
S 33.6781	4461.632		-0.015	4460.460	+1.157	77.8	
S 33.8214	4463.017		-0.021	4461.818	+1.175	79.0	
Ti 33,9900	4464.650	-0.033		4464.617			
S 31.3228	4467.883		-0.009	4466,701	+1.173	78.7	
Ti 34.4032	4468.667	-0.004		4468,663			
S 35.2905	4477.372		-0.001	4476.214	+1.157	77.5	
Ti 35.7012	Standard	± 0.000		4481.438			
S 35.9172	4483.586		-0.007	4482.376	+1.203	80.5	
Ti = 36.4875	4489.288	-0.026		4489.262			
S 36,6679	4491.101		-0.030	4489.911	+1.160	77.5	
Ti = 37.6928	4501.490	-0.045		4501.445			
S 37.8038	4502.624		-0.045	4501,422	+1.157	77.1	
S 38,1535	4506.209		-0.030	4505,003	+1.176	78.3	
Ti 38.8029	4512.914	-0.008		4512.906			
S 38,9166	4514.094		-0.008	4512.906	+1.180	78.4	
Ti-40.1942	Standard	±0.000		4527.490			
S 40.2266	4527.833		±0.000	4526.644	+1.189	78.8	
S 40.4312	4530.002		±0.000	4528.798	+1.204	79.7	

Curvature Cor. +0.0008 mm.

 $\begin{array}{ccc} & \text{Mean} & +78.1 \\ V_d & -22.16 \\ V_d & \pm 0.04 \\ \text{Reduction to Sun} & -22.12 \\ \text{Radial Velocity} & +56.0 \text{ km}. \end{array}$

SUMMARY OF MEASURES OF a TAURI

Plate	Date	Adams	No. of Lines
B 191	1901, Sept. 4	$+56.1 \\ +56.0$	27
B 275	1902, Jan. 16		16

Mean +56.1 km.

The results of other observers for this star are as follows:

Vogel -	-		-		-		-		-		-	+47.6
Scheiner	-	-						-		-		+49.4
Keeler (vis	ual)		-				-		-		-	+55.2
Campbell	-	-		~		-		-		-		+54.8

a BOÖTIS

Eight plates of this star have been measured, six by A. and four by F., giving results in good agreement. The plates are nearly all of excellent quality, with those of Series B somewhat superior for purposes of measurement.

1902, March 12, G. M. T. $18^{\rm h}\,13^{\rm m}$ Hour angle E $2^{\rm h}\,28^{\rm m}$

a BOÖTIS—B 293
Star good; comparison good.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocity
mm,	t. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti 29.4878	Standard	+0.000		4427.266		
S 29.6177	4428.456		+0.001	4428.711	-0.254	-17.2
			10.001	4435.851	-0.289	19.5
	4435.554				-0.269 -0.264	17.8
S 31.0376	4441.602		+0.015	4441.881		17.6
S 31,1051	4442.234		+0.015	4442.510	-0.261	
S 31.2619	4443.702		+0.017	4443.976	-0.257	17.3
Ti = 31.2893	4443.959	+0.017		4443.976	0.041	10.0
S 31.6819	4447.652		-0.001	4447.892	-0.241	16.2
Ti 31.8588	4449.323	-0.010		4449.313		4==
S 32.0882	4451.495		-0.006	4451.752	-0.263	17.7
Ti 32.7282	4457.592	+0.008		4457.600		
S 32.9457	4459.676		+0.006	4459.922	-0.240	16.1
S 33,6462	4466.432		+0.001	4466.701	-0.268	18.0
S 33.8510	4468,420		± 0.000	4468.663	-0.243	16.3
Ti 33,8760	Standard	± 0.000		4468,663		
S 34.6232	4475.966		-0.004	4476.214	-0.252	16.9
Ti = 35.1786	4481.444	-0.006		4481.438		
S 35.2997	4482.644		-0.005	4482.904	-0.265	17.7
S 36.4837	4494.487		± 0.000	4494.738	-0.251	16.8
S 36.7112	4496.786		+0.001	4497.046	-0.259	17.3
S 37.1419	4501.158		+0.003	4501.422	-0.261	17.4
Ti = 37.1698	4501.442	+0.003	[0.000	4501.445	0.202	2
S 38.2623	4512.657	,	-0.020	4512.906	-0.269	17.9
Ti 38.2883	4512.926	-0.020		4512.906	0,200	11.0
S 38.7248	4517.458		-0.011	4517.702	-0.255	16.9
S 38.7700	4517.438		-0.011 -0.009	4518.198	-0.277	18.4
Ti 38.7966	4518.207	-0.009	1	4518.198	-0.211	10.1
Ti 39.2524				4522.974		
	4522,975	-0.001				
Ti 39.6814	Standard	±0.000	0.00%	4527.490	0.045	10 (
S 39.7821	4528.556		-0.005	4528.798	-0.247	16.4
S 40.2876	4533.923		-0.029	4531.168	-0.274	18.1
Ti 40.3106	4534.168	-0.029		4534.139	0.005	10.0
S 40.3596	4534.691		-0.025	4534.953	-0.287	19.0
Ti = 40.3865	4534.978	-0.025		4534,953		

Curvature Cor. +0.0008 mm.

$$\begin{array}{c} \text{Mean} & -17.4 \\ V_a & +13.63 \\ V_d & +0.19 \\ \text{Reduction to Sun} & +13.82 \\ \text{Radial Velocity} & -3.6 \text{ km}. \end{array}$$

a BOÖTIS—B 300

1902, March 13, G. M. T. $17^{\rm h}\,29^{\rm m}$ Hour angle E $3^{\rm h}\,12^{\rm m}$

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti = 30.4335	Standard	± 0.000		4427.266		
S 31.0758	4433.163		-0.001	4433.390	-0.228	-15.4
S 31.9839	1111.589		-0.002	4441.881	-0.294	19.9
S 32.0515	4442.221		-0.002	4442.510	-0.291	19.6
S = 32.2103	4443.706		-0.002	4443.976	-0.272	18.4
Ti=32.2393	4143.978	-0.002		4443.976		
S 32.6271	4447.621		-0.008	4447.892	-0.279	18.8
Ti=32.8077	4449.324	-0.011		4449.313		
Ti = 33.6773	4157.584	+0.016		4457.600		
S 33.8967	4459.684		± 0.013	4459.922	-0.225	15.1
S 31.0914	4461.552		± 0.010	4461.818	-0.256	17.2
S 34,6004	4466.461		+0.003	4466.701	-0.237	15.9
S 34.8012	4468.408		± 0.000	4468.663	-0.255	17.1
Ti=34.8275	Standard	+0.000		4468.663		
S 35.5739	4475.948		-0.009	4476.214	-0.275	18.4
Ti = 36.1330	4481.454	-0.016		4481.438		
S 36,2010	4482.127		-0.016	4482.376	-0.265	17.7
S 37,4367	4494.464		-0.020	4494.738	-0.294	19.6
Ti = 37.6226	4496.339	-0.021		4496.318		
S 37.6675	4496.793		-0.021	4497.046	-0.274	18.3
S 38,0972	4501.148		-0.005	4501.422	-0.279	18.6
Ti = 38.1269	4501.450	-0.005		4501.445		
S 39,2206	4512.661		+0.004	4512.906	-0.241	16.0
Ti = 39.2440	4512,902	+0.004		4512.906		
S = 39.7279	4517.921		-0.009	4518.198	-0.288	19.0
Ti = 39.7554	4518.207	-0.009		4518.198		
S 40.5344	4526.362		-0.001	4526.644	-0.283	18.8
Ti-40.6414	Standard	± 0.000		4527.490		
S 40.7409	4528.540		± 0.000	4528.798	-0.258	17.1

Curvature Cor. +0.0008 mm.

$$\begin{array}{c} \text{Mean} & -17.8 \\ V_a + 13.26 \\ V_d + 0.24 \\ \text{Reduction to Sun} & +13.50 \\ \text{Radial Velocity} & -4.3 \text{ km}. \end{array}$$

α BOÖTIS—B 300

Measured by F. Power 23

Ti = 30.1742	Standard	±0.000		4127.266		
S = 30.1583	4427.120		± 0.000	4427.420	-0.300	-20.
S 30.8809	4433,757		+0.015	4434.021	-0.249	16
Ti = 30.9236	4434.152	+0.016		4434.168		,
S 31.7920	4412.218		-0.002	4442.510	-0.291	19
Ti = 31.9804	4443.981	-0.005		4413.976		
S 32,3657	4147.600		-0.022	4147.892	-0.314	21
Ti-32.5506	4419,343	-0.030		4449.313		
Ti = 33.1993	4155.495	-0.010		4455,485		
S 33,2251	4455.729		-0.015	4456.030	-0.301	20
Ti=33.4195	4457.596	+0.004		4157.600		
Ti = 34.2930	1465.991	-0.016		4465.975		
S = 34.5436	4468.418		-0.011	4468 663	-0.256	17
Ti-34.5699	4468.671	-0.011		4468.663		
Ti = 34.8509	4171,406	± 0.002		4471.408		
S 34,8675	4471.568		-0.001	4171.816	-0.282	18
S 35,3133	4475.927		-0.002	4176.211	-0.289	19
Ti = 35.8731	Standard	± 0.000		4481.438		
S 35,9402	4482,101		+0.000	4482.376	-0.275	18
S 37.1760	4194.433		± 0.004	4494.738	-0.301	20
Ti = 37.3625	4496,313	± 0.005		4496.318		
S 37,7462	4500,196		-4-0.007	4500.451	-0.248	16

α	$BO\ddot{O}T$	IS_B	200-	Cont	inned
u	DUZZ.	$\mu = 0$	*)(///	COLUE	I I I I I I I I I I I I I I I I I I I

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Snn	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
S 39.4258	4517.444		+0.016	4517.702	-0.242	16.1
Ti = 39.4968	4518.182	+0.016		4518.198		
S 40.2750	4526.323		+0.014	4526.644	-0.307	20.3
S 40.3614	4527.232		+0.014	4527.518	-0.272	18.0
Ti 40 3845	4527.476	+0.014		4527.490		
S 40,4819	4527,503		+0.014	4528.798	-0.281	18.6
Ti 42.0156	4544.866	-0.002		4544.864		
S 42.1032	4545.811		-0.003	4546,129	-0.314	20.7
S 42.2773	4547.695		-0.006	1548.024	-0.335	22.1
S 42,3632	4548.625		-0.008	4548,938	-0.321	21.2
Ti = 42.3928	4548.946	-0.008		4548.938		
Ti = 42.7317	Standard	± 0.000		4552.632		
S 42.8497	4553.919		+0.005	4554.211	-0.287	18.9
Ti = 43.0081	4555.649	+0.013		4555,662	31.201	10.0

Curvature Cor. +0.0013 mm.

 $\begin{array}{c} \text{Mean} & -19.2 \\ V_a & +13.26 \\ V_d & +0.24 \\ \text{Reduction to Sun} & +13.50 \\ \text{Radial Velocity} & -5.7 \text{ km.} \end{array}$

1902, March 26, G. M. T. $18^{\rm h}\,58^{\rm m}$ Hour angle E $0^{\rm h}\,32^{\rm m}$ a BOÖTIS—A 336

Star good; comparison strong.

Measured by A. Power 20

			*			
		-				
Ti = 29.3151	Standard	± 0.000		4427.266		
S 29.4149	4428.497		-0.003	4428.711	-0.217	-14.7
Ti 29.8737	4434.185	-0.017		4434.168		
S 30.4712	4441.664		-0.011	4441,881	-0.228	15.4
S 30.5237	4442.325		-0.011	4442.510	-0.196	13.2
S 30.6378	4443.764		-0.009	4443.976	-0.221	14.9
Ti = 30.6553	4443.985	-0.009		4443.976		
S 30.9494	4447.709		-0.018	4447.892	-0.201	13.6
Ti = 31.0772	4449.334	-0.021		4449.313		
S 31.2509	4451.548		-0.017	4451.752	-0.221	14.9
Ti = 31.7235	4457.609	-0.009		4457.600		
S 31.9310	4460.287		-0.016	4460.460	-0.189	12.7
Ti = 32.3716	4466,008	-0.033		4465.975		
S 32.4110	4466.522		-0.033	4466.701	-0.212	14.2
S 32.5631	4468.514		-0.031	4468.663	-0.183	12.3
Ti = 32.5774	4468.697	-0.034		4468.663		
S 33.1346	4476.028		-0.013	4476.214	-0.199	13.3
Ti = 33.5420	Standard	±0.000		4481.438		
S 33,6004	4482.217		-0.001	4482.376	-0.160	10.7
Ti = 34.6475	4496.330	-0.012		4496.318		
·S 34.6870	4496.868		-0.011	4497.046	-0.189	12.6
S 35.0058	4501.224		-0.004	4501.422	-0.202	13.5
Ti = 35.0222	4501.449	-0.004		4501.445		
S 36.2164	4518.013		-0.013	4518.198	-0.198	13.1
Ti = 36,2305	4518,211	-0.013		4518,198		
Ti = 36.8874	Standard	± 0.000		4527.490		
S 36.9675	4528.629		-0.006	4528.798	-0.175	11.6
S 37.3447	4534.021		-0.036	4534.168	-0.183	12.1
Ti = 37.3555	4534.175	-0.036		4534.139		
S 37.3954	4534.748		-0.023	4534.953	-0.228	15.1
Ti = 37.4113	4534.976	-0.023		4534.953		

Curvature Cor. +0.0005 mm.

 $\begin{array}{c} \operatorname{Mean} & -13.4 \\ V_a & +7.97 \\ V_d & +0.04 \\ \end{array}$ Reduction to Sun Radial Velocity $\begin{array}{c} +8.01 \\ -5.4 \text{ km}. \end{array}$

1902, April 2, G. M. T. $15^{\rm h}\,51^{\rm m}$ Hour angle E $3^{\rm h}\,31^{\rm m}$

a BOÖTIS-B 304

Star good; comparison good.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocit
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
Ti-30.8922	Standard	± 0.000		4427.266		
S = 31.0324	4428.551		± 0.000	4428.711	-0.160	-10.8
S 31.8070	4435.695		-0.002	4435.851	-0.158	10.7
S = 32.4550	4441.729		-0.003	4441.881	-0.155	10.5
S = 32.5236	4442.371		-0.003	4442.510	-0.142	9.6
S 32.6807	4443.844		-0.004	4443.976	-0.136	9.2
Ti-32.6952	4443.980	-0.004		4443.976		
S = 33.0958	4447.749		-0.007	4147.892	-0.150	10.1
S = 33.2499	4449,205		-0.009	4449,313	-0.117	7.9
Ti=33.2623	4149.322	-0.009		1449.313		
Ti = 34.1327	4457.603	-0.003		4457.600	•	
S = 31.3622	4459.803		-0.002	4459.922	-0.121	8.1
S = 34.5565	4461.671		-0.002	4461.818	-0.149	10.0
S = 35.2666	4468,541		± 0.000	4468.663	-0.122	8.2
Ti=35.2791	Standard	± 0.000		4468,663		
S = 36.0388	4476.090		+0.004	4476.214	-0.120	8.0
Ti = 36.5803	4481.432	+0.006		4481.438		
S = 36.6622	1482.243		+0.005	4482.376	-0.128	8.6
S = 37.4167	4489.763		-0.003	4489.911	-0.151	10.1
S 37.8973	1494.595		-0.009	4494.738	-0.152	10.1
Ti = 38.0890	4496.329	-0.011		4496.318		
S 38.1273	4496.919		-0.009	4497.046	-0.136	9.1
S = 38.5563	= 4501.274		+0.001	4501.422	-0.147	9.8
Ti 38.5730	4501.444	+0.001		4501.445		
S = 39.6769	4512.776		+0.004	4512.906	-0.126	8.4
Ti-39.6890	4512.902	+0.004		4512.906		
S = 40.1840	4518.043		±0.000	4518.198	-0.155	10.3
Ti 40.1989	Standard	± 0.000		4518,198		

Curvature Cor. $\pm 0.0008 \,\mathrm{mm}$.

$$\begin{array}{c} \text{Mean} & -9.4 \\ V_a + 5.04 \\ V_d + 0.26 \\ \text{Reduction to Sun} & +5.30 \\ \text{Radial Velocity} & -4.1 \text{ km.} \end{array}$$

a *BOÖTIS* --- B 304

Measured by F. Power 17

		a D(N)	7778 B 504	Power 1		
S 29.1931	4399,778		±0.000	4399,903	-0.125	-8.5
Ti=29.2110	Standard	± (), 000		4399.935		
S 29,9727	4406.666		-0.010	4406.810	-0.154	10.5
S 30.4776	4411.165		-0.019	4411.240	-0.094	6.4
Ti=30.4881	4411.259	-0.019		4411.240		
Ti=32.2585	4427.278	-0.012		4427.266		
S 32,2616	4427,307		-0.012	4427.420	-0.125	8.5
S 33.8921	4442.402		-0.016	4442.510	-0.124	8.4 -
Ti = 34.0619	4443,993	-0.017		4443.976		
S 31.4644	4447.780		-0.027	4447.892	-0.139	9.4
Ti 34.6301	4119.345	-0.032		4449.313		
S 31.7533	4450.511		-0.029	4450.597	-0.115	7.8
Ti 35.2782	4455,500	-0.015		4455.485		
S 35.4912	4457.535		-0.015	4457.656	-0.136	9.2
Ti = 35.4995	4457.615	-0.015		4457.600		
Ti 37.9474	Standard	±0,000		4481.438		
S 38,0304	4482,280		± 0.000	4482.376	-0.116	7.8
S 39.2647	4494.599		-0.001	4494.738	-0.140	9.3
Ti 39.4351	4496.319	-0.001		4496,318		
S 39.9256	4501,294		-0.014	4501.422	-0.142	9.5
Ti 39.9418	4501,459	- 0.014		4501,445		
S 41.0466	4512.795		-0.002	4542.906	-0.113	7.5
Ti 41.0575	4512.908	-0.002		4512.906		
Ti = 42.4516	4527.473	+0.017		4527.490		
S 42,5673	4528.695		± 0.015	4528.798	-0.088	5.8

a BOÖTIS—B 304—Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m. 4544, 873	t. m. -0.009	t. m.	t. m. 4544.864	t. m.	km.
Ti 44.0811 S 44.1872 S 44.4471	4544.875 4546.020 4548.838	-0.009	$-0.008 \\ -0.005$	4546.129 4548.938	$ \begin{array}{c c} -0.117 \\ -0.105 \end{array} $	$\frac{7.7}{6.9}$
$\begin{array}{ccc} & 44.9271 \\ Ti & 45.0724 \end{array}$	4554.071 Standard	±0.000	-0.001	$\frac{4554.211}{4555.662}$	-0.141	9.3

 $\begin{array}{ccc} \text{Mean} & -8.3 \\ \text{Curvature Cor.} & -0.87 \\ \hline V_a + 5.04 \\ V_d + 0.26 \\ \text{Reduction to Sun} & +5.30 \\ \text{Radial Velocity} & -3.8 \text{ km.} \end{array}$

1902, April 3, G. M. T. 15^h 56^m Hour angle E 3^h 15^m а *BOÖTIS*—В 311

Star excellent; comparison excellent.

Measured by F. Power 17

			1			
Ti 29.2136	Standard	± 0.000		4399.935		
S 29.1950	4399.772		± 0.000	4399.903	-0.131	-8.9
S 29.9756	4406.664		-0.002	4406.810	-0.148	10.1
S 30.4744	4411.106		-0.004	4411.240	-0.138	9.4
Ti 30.4898	4411.244	-0.004		4411.240		
Ti = 32.2622	4427.279	-0.013		4427.266		
S 32.2639	4427,286		-0.013	4427.420	-0.147	10.0
S 33.8967	4442.393		± 0.000	4442.510	-0.117	7.9
Ti 34.0658	4443.976	± 0.000		4443.976		
S 34.4718	4447.794		-0.017	4447.892	-0.115	7.8
Ti 34.6350	4449.334	-0.021		4449.313		
S 34.7568	4450.486		-0.018	4450.597	-0.129	8.7
Ti = 35.2843	4455.496	-0.011		4455.485		
S 35.4991	4457.547		-0.008	4457.656	-0.117	7.9
Ti 35.5055	4457.608	-0.008		4457,600		
Ti = 37.9557	Standard	± 0.000		4481.438		
S 38.0400	4482,273		-0.001	4482.376	-0.104	7.0
S 39.2742	4494.602		-0.015	4494.738	-0.151	10.1
Ti = 39.4459	4496.335	-0.017		4496.318		
S 39.9335	4501.277		-0.016	4501.422	-0.161	10.7
Ti 39.9516	4501.461	-0.016		4501,445		
S 41.0574	4512.800		+0.007	4512,906	-0.099	6.6
Ti 41.0670	4512.899	+0.007		4512,906		·
Ti 44.0912	4544.848	+0.016		4544.864		
S 44.1983	4546.005		+0.014	4546.129	-0.110	7.3
S 44.4581	4548.820		+0.010	4548.938	-0.108	7.1
S 44.9415	4554.086		+0.002	4554.211	-0.123	8.1
Ti 45.0855	Standard	± 0.000		4555,662		

Curvature Cor. +0.0012 mm.

 $\begin{array}{c} \text{Mean} & -8.4 \\ V_a & +4.60 \\ V_d & +0.24 \\ \text{Reduction to Sun} & +4.84 \\ \text{Radial Velocity} & -3.6 \text{ km.} \end{array}$

а *BOÖTIS*—В 342 Measured by F. Star good; comparison good. Power 17 Ti 30.001Standard ± 0.000 4427.266S 30.029 S 30.751 4427.530 4431.1470.000 4427.420 4434.021 $^{+0.110}_{+0.101}$ +7.4-0.0256.8Ti 30.756 S 32.238 Ti 32.380 4434.193 4447.981 4449.317 4434.168 4447.892 4449.313 -0.025+0.084-0.0055.7 -0.004.

a BOÖTIS - B 342 - Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Moou Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.
S 32.989	4455.075		-0.016	4454.993	+0.066	4.4
Ti = 33.034	4455.503	-0.018		4455.485		
Ti = 33.254	4457.596	+0.004		4457,600		
S = 33.269	4457,740		+0.004	4457.656	+0.088	5.9
Ti = 31.127	4465.967	+0.008		4465.975	· ·	
S 31.418	4468.780		+0.008	4468.663	+0.125	8.4
S = 35.189	4476,288		+0.010	4476.214	+0.084	5.6
Ti=35.712	4481.427	+0.011		4481.438		
S = 35.818	4482.473		+0.011	4482.376	+0 108	7.3
S = 37.056	4494.809		+0.001	4494.738	+0.072	4.8
Ti = 37.206	Standard	±0.000		4496.318		
S = 37.716	4501.479		+0.002	4501.422	± 0.059	3.9
S = 38.844	4513.012		+0.006	4512.906	+0.112	7.4
Ti-40.233	4527.478	+0.012		4527.490	i	
S = 40.246	4527.615		+0.012	4527.518	+0.109	7.2
S = 40.369	4528.910		+0.012	4528.798	+0.124	8.2
Ti = 41.865	4544.852	+0.012		4544.864		
S = 41.992	4546.222		+0.010	4546.129	+0.103	6.8
S = 42.736	4554.297		+0.001	4554.211	+0.087	5.7
Ti-42.861	Standard	± 0.000		4555.662		

Curvature Cor. +0.001 mm.

$$\begin{array}{c} \text{Mean} & +6.4 \\ V_d & -9.90 \\ V_d & -0.03 \\ \text{Reduction to Sun} & -9.93 \\ \text{Radial Velocity} & -3.6 \text{ km}. \end{array}$$

1902, June 26, G. M. T. $15^{\rm h}$ $30^{\rm m}$ Hour angle W $1^{\rm h}$ $34^{\rm m}$

a *BOÖTIS*—B 371

Star slightly weak; comparison good.

Measured by A. Power 17

Trott augle W 1 of		Diai siigiiny we	companisor			1 Owel 1
Ti 32,6666	Standard	±0,000		4427.266		
S 32.8568	4429,004		±0.000	4428,711	+0.293	+19.8
S 31.3503	4442.805		±0.000	4442.510	+0.295	19.9
Ti = 34.4758	4443.976	±0.000	10.000	4443.976	, 0.200	10.0
S 31.5112	4444.307	10,000	± 0 000	4443.976	+0.331	22.3
S 34.9280	4448.217		-0.006	4447.892	+0.319	21.5
Ti = 35.0452	4449.320	-0.007		4449,313	10.010	21.0
Ti = 35.9202	4457.613	-0.013		4457.600		
S = 36.2514	4460.779		-0 009	4460,460	+0.310	20.8
Ti = 37.0699	Standard	±0.000		4168,663	10.010	
S = 37.1045	4468,998		±0 000	4468.663	+0 335	22.5
S 37.8768	4476,523		-0.013	4476.214	+0.396	19.8
Ti = 38.3790	4481.460	-0.022		4481.438	10.500	10.0
S 38.5036	4482,690		-0.023	4482.376	+0.291	19.5
Ti = 39.8726	4496.348	-0.030		4496.318	10.20	10.0
S 39.9741	4497.371		+0.024	4497.046	+0.301	20.1
Ti=40.3770	4501.447	-0.002	10.021	4501.445	10.002	2012
S 40,4046	4501.727		-0.002	4501.422	+0.303	20.2
Ti = 41.4987	4512.917	-0.011		4512,906	1	
S 41.7730	4515.750		-0.009	4515.475	± 0.266	17.7
Ti-42.8987	4527.492	-0.002		4527,490	1 0.4	
S = 43.0539	4529.126		-0.001	4528.798	+0.324	21.5
Ti = 44.9110	4548.964	-0.026		4548,938		
S 41,9386	4549.263		-0.026	4548.938	+0.299	19.7
S 45,4204	4554.499		-0.004	4554.211	+0.281	18.7
Ti=45.5269	Standard	± 0.000		4555.662	1 3 7 3 3 3	
	1					

Curvature Cor. +0.0008 mm.

$$\begin{array}{c} \text{Mean} & +20.3 \\ V_a & -23.85 \\ V_d & -0.13 \\ \hline \text{Reduction to Sun} & -23.98 \\ \hline \text{Radial Velocity} & -3.7 \, \text{km.} \end{array}$$

a BOÖTIS—A 373

1902, September 6, G. M. T. $13^{\rm h}\,43^{\rm m}$ Hour angle W $4^{\rm h}\,38^{\rm m}$

Star good; comparison good.

Measured by A. Power 28

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Wave-Length in Sun	Displacement	Velocity
mm.	t, m.	t. m.	t. m.	t. m.	t. m.	km.
Ti 29.1810	Standard	+0.000		4427.266	0.1111	Am.
S 20.2066	4427.580		±0.000	4427.420	+0.160	+10.8
S 29.3129	4428.886		+0.001	4428.711	$\frac{1}{4}0.176$	11.9
S 29.8890	4436.008		10.008	4435.851	$\frac{1}{4}0.165$	$\frac{11.5}{11.2}$
S 30.4227	4442.673		+0.014	4442.510	+0.177	11.9
Ti 30.5252	4443.961	10.015		4443.976	+0.177	11.9
	4444.137	+0.015	+0.015	4443.976	1.0.170	11.0
					+0.176	11.9
S 30.8512	4448.072	0.000	-0.003	4447.892	+0.177	11.9
Ti 30.9499	4449.322	-0.009		4449.313		
Ti 31.4348	4455.494	-0.009	0.000	4455.485	10.107	11.0
S 31.4904	4456.205		-0.008	4456.030	+0.167	11.2
Ti 32.2483	Standard	± 0.000	0.000	4465.975	1.0.150	
S 32.3175	4466.874		± 0.000	4466.701	+0.173	11.6
S 32.9524	4475.176		+0.005	4475.026	+0.155	10.4
S 33.0439	4476.381		+0.006	4476.214	+0.173	11.6
Ti 33.4257	4481.430	+0.008		4481,438		
S 33.5085	4482.530		+0.009	4482.376	+0.163	10.9
S 34.4310	4494.900		+0.015	4494.738	+0.177	11.8
Ti 34.5345	4496.302	+0.016		4496,318		
S 34.5999	4497.189		+0.013	4497.046	+0.156	10.4
Ti 34.9126	4501.446	-0.001		4501.445		
S 34.9224	4501.579		-0.001	4501.422	+0.156	10.4
Ti 35.7445	4512.895	± 0.011		4512.906		
S 35,7562	4513.057		+0.011	4512.906	+0.162	10.8
S 35.9421	4515.642		+0.009	4515.475	+0.176	11.7
$Ti \ 36.7859$	Standard	± 0.000		4527.490		
S 36.8902	4528.968		± 0.000	4528.798	+0.170	11.3

Curvature Cor. +0.0005 mm.

$$\begin{array}{c} \text{Mean} & +11.3 \\ V_a & -15.79 \\ V_d & -0.30 \\ \text{Reduction to Sun} & -16.09 \\ \text{Radial Velocity} & -4.8 \text{ km}. \end{array}$$

SUMMARY OF MEASURES OF a BOÖTIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
B 293 B 300 A 336 B 304 B 311 B 342 B 371 A 373	1902, March 12 March 13 March 26 April 2 April 3 May 7 June 26 Sept. 6	-3.6 -4.3 -5.4 -4.1 	21 18 17 18 14 17	-5.7 -3.8 -3.6 -3.6	19 16 15 15

The results of other observers for this star are as follows:

Vogel and Scheiner	-	-	-	-	-	-7.7
Belopolsky		-	-	-	-	-5.7
Keeler (visual) -	-	-	-	-	-	-6.8
Newall		-	-	-	-	-5.9

PLATES OF STARS OF THE ORION TYPE

The detailed measurements on the different plates on the *Orion* stars follow. The stars are arranged in order of right ascension, and the separate plates of the same star in chronological order. The magnitudes of the stars are from the Harvard Photometry, and the spectral classes are according to Miss Maury's classification (*Annals of Harvard College Observatory*, Vol. XXVIII, 1898). The form of tabulation is the same as for the control plates, and all necessary explanations are found in the introductory note to those plates, and in the general discussion of the method of measurement (p. 7).

1. γ PEGASI

(R. A. = $0^h 8^m$; Dec. = $+14^\circ 38'$; Mag. 3.3; Class IVa)

Eight plates of this star have been measured, seven by A., and five by F., with four common to the two observers. As compared with the more recent plates both the stellar and comparison spectra of the earlier plates are distinctly inferior. The spectrum of this star is much better adapted to accurate measurement than that of the average star of the *Orion* type. All of the lines are comparatively narrow, and numerous oxygen and nitrogen lines are present.

7 PEGASI - A 215

1901, September 5, G. M. T. $21^{\rm h}~28^{\rm m}$ Hour angle W $2^{\rm h}~22^{\rm m}$

Star strong; comparison fair.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
$Ti_{25,3921}$	Standard	± 0.000		4338.084			
S 26.4567	4349.438		-0.007	4349.541	-0.110	-7.6	1
Ti 30.5625	4395.237	-0.036		4395.201			
S 34,1140	4437,639		-0.005	4437.718	-0.084	5.7	1
Ti~34.6256	Standard	± 0.000		4443.976			
Ti 35.0540	4449,327	-0.014		4449.313	i .		
Ti.36.5711	4468.630	± 0.033		4468.663			
S 36.7924	4471.493	'	+0.036	4471.676	-0.147	9.9	1
S 37.5336	4481,163		+0.046	4481.400	-0.191	12.8	1
Ti = 37.5510	4481.392	+0.046		4481.438			
Ti~42.7055	4552,627	± 0.005		4552.632			
S 42,7083	4552.668	,	+0.005	4552.750	-0.077	5.1	1
Ti 43,4780	Standard	± 0.000		4563.939			
8 43.7430	4567.860		± 0.000	4567.950	-0.090	5.9	1

Curvature Cor. +0.0001 mm.

Weighted mean V_a +11.66 V_d - 0.19 Reduction to Sun Radial Velocity +11.47 + 3.7 km.

Mean - 7.8

γ PEGASI—A 218

1901, September 6, G. M. T. $17^{\rm h}$ $7^{\rm m}$ Hour angle E $2^{\rm h}$ $20^{\rm m}$

Star strong; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t.m.	t. m.	t. m.	km.	
Ti 23.8216	Standard	± 0.000		4338.084			
S 24.0582	4340.589		-0.002	4340.634	-0.047	-3.2	1
S 28,3715	4388.086		-0.034	4388.100	-0.048	3.3	1
Ti 28.9937	4395.240	-0.039		4395.201			
S 30.6752	4414.978		-0.037	4415.076	-0.135	9.2	1
Ti 31.7013	4427.301	-0.035		4427.266			
S = 32.5469	4437.641		-0.017	4437.718	-0.094	6.4	2
Ti 33.0591	4443.982	-0.006		4443.976			
Ti 33.4860	Standard	± 0.000		4449.313			
S = 35.2302	4471.539		+0.014	4471.676	-0.123	8.2	2
S=35.9751	4481.254		+0.021	4481.400	-0.125	8.4	3
Ti 35,9875	4481.417	+0.021		4481.438			
Ti 41.9166	Standard	± 0.000		4563.939			
S = 42.1850	4567.907		± 0.000	4567.950	-0.049	3.2	2

Curvature Cor. +0.0001 mm.

Weighted mean
$$V_a + 11.29$$
 $V_d + 0.17$ Reduction to Sun $V_a + 11.46$ Radial velocity $V_a + 11.46$ $V_a + 11.46$ Radial velocity

y PEGASI-A 233

1901, September 18, G. M. T. $14^{\rm h}\,50^{\rm m}$ Hour angle E $3^{\rm h}\,22^{\rm m}$

Star good; comparison fair.

Measured by A. Power 21

Mean -3.8

$Ti \ 18.6731$ S 18.9045 S 23.1969 $Ti \ 23.8163$ S 25.5017 S 25.6718 $Ti \ 25.7371$ S 27.3544 $Ti \ 27.8622$ $Ti \ 29.8037$ S 30.0261 S 30.7733 $Ti \ 30.77803$ $Ti \ 35.9145$	Standard 4340.549 4388.083 4395.239 4415.111 4417.151 4417.935 4437.660 4443.974 Standard 4471.548 4481.330 4481.422 4552.542	±0.000 	-0.002 -0.032 -0.050 -0.051 -0.010 -0.004 +0.004	4338.084 4340.634 4388.100 4395.201 4415.076 4417.121 4417.884 4437.718 4443.976 4468.663 4471.676 4481.400 4481.438 4552.632	-0.087 -0.049 -0.015 -0.021 -0.068 -0.124 -0.054	-6.0 3.4 1.0 1.4 4.6 8.3 3.6	1 1 2 2 2 2 3
S 35.9204	4552.627	+0.090	+0.090	4552.632 4552.750 4563.939	-0.033	2.2	2
Ti 36.6889 S 36.9529 Ti 37.2418	4563.899 4567.810 4572.115	+0.041	+0.040	$\begin{array}{c} 4567.950 \\ 4572.156 \end{array}$	-0.100	6.6	1
Ti 40.1867 S 41.0140	Standard 4630.687	±0.000	±0.000	4617,452 4630,703	-0.016	-1.0	2

Curvature Cor. +0.0001 mm.

Weighted mean
$$V_a + 5.71$$
 $V_d + 0.25$ Reduction to Sun $V_d + 0.25$ Radial Velocity $V_d + 0.25$ Rad

γ PEGASI—A 233

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. ni.	t. m.	t. m.	km.	
Ti-29.999	Standard	± 0.000		4338.084			
S 30.236	4340.613		-0.001	4340.634	-0.022	-1.5	1
Ti = 35.551	4399.987	-0.052		4399.935			1
S 36.829	4415,102		-0.054	4415.076	-0.028	-1.9	. 2
S 36.709	4417.175		-0.054	4417.121	0.000	0.0	2
Ti = 37.005	4417.938	-0.054		4417.884			i
Ti-37.839	4427.303	-0.037		4427.266			
S 38.684	4437.684		-0.029	4437.718	-0.063	-4.3	2
Ti = 39.192	4444.001	-0.025		4443,976	1		
Ti 41.133	4468.680	-0.017		4468,663			
S 41.359	4471.609		-0.014	4471.676	-0.081	-5.4	3
Ti 42.110	Standard	±0.000		4481.438			
S 42.102	4481,335		± 0.000	4481.400	-0.065	-4.4	3
Ti = 47.245	4552,592	± 0.040		4552.632			
S 47.252	4552,690		+0.040	4552.750	-0.020	-1.3	2
Ti 48.018	4553,930	+0.009		4563.939			
S 48.284	4567.872		40.00G	4567.950	-0.072	-4.7	2
Ti 48.571	Standard	± 0.000		4572.156			

Weighted mean Curvature Cor. $\begin{array}{c} -3.3 \\ -0.24 \\ V_a + 5.71 \\ V_d + 0.25 \end{array}$

Reduction to Sun +5.96Radial Velocity +2.5 km.

 γ PEGASI—A 245

1902, September 26, G. M. T. $14^{\rm h}$ $5^{\rm m}$ Hour angle E $3^{\rm h}$ $38^{\rm m}$

Star fair: comparison strong

Measured by A Power 21

Mean-2.9

Po	_	rong.	omparison si	Star fair; e		Hour angle E 3" 38"
		4387.007		+0.019	4386_958	Ti 32,3644
± 4.6	+0.067	4388,100			4388.125	S 32.4662
'	'	4399,935	'		Standard	Ti = 33.4861
-2.1	-0.031	4415.076	-0.016		4415.061	S 34.7662
-1.4	-0.020	4417.121	-0.018		4417.119	S 34.9382
		4417.884		-0.019	4417.903	Ti = 35,0036
		4471.676		+0.015	4471.661	He 39.3113
+2.1	+0.031	4471.676	± 0.015		4471.692	S 39,3137
+2.1	+0.036	4481.400	-0.010		4481.476	S 40.0624
		4481.438		-0.040	4481.478	Ti-40.0625
		4527.490		±0.000	Standard	Ti = 43.4488
		4552.632		± 0.000	4552,632	Ti-45,2104
+0.6	+0.009	4552.750	± 0.000		4552.759	S 45,2191
		4563.939		+0.016	4563,923	Ti-45.9822
+4.1	+0.063	4567.950	+0.003		4568,010	Š 46.2587
		4572.156		-0.009	4572.165	Ti = 46.5383
+6.2	+0.091	4574.900	-0.008		4575.002	S 46.7283
		4617.452		± 0.000	Standard	Ti 49.4881
	+4.6 -2.1 -1.1 $+2.1$ $+2.1$ $+0.6$	$\begin{array}{c cccc} +0.067 & +4.6 \\ -0.031 & -2.1 \\ -0.020 & -1.4 \\ \hline +0.031 & +2.1 \\ +0.036 & +2.4 \\ \hline +0.009 & +0.6 \\ +0.063 & +4.1 \\ \hline \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Curvature Cor. +0.0001 mm.

Weighted mean $V_a + 1.80$ $V_d + 0.27$ + 2.0

Mean + 2.1

Reduction to Sun +2.07Radial Velocity +2.07+4.2 km. 1901, October 16, G. M. T. $12^{\rm h}$ $46^{\rm m}$ Hour angle W $2^{\rm h}$ $20^{\rm m}$

γ PEGASI-B 194

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 21.834	Standard	± 0.000		4338.084			
S 22.178	4340.812	10.000	-0.002	4340.634	+0.176	+12.2	1
S 27.956	4388,406		-0.063	4388.100	+0.243	16.6	3
Ti 28.756	4395,274	-0.073		4395,201	101=17		
Ti = 29.305	4400,038	-0.100		4399.935			
S 31.052	4415.399		-0.084	4415.076	+0.239	16.2	2
S 31.285	4417.480		-0.082	4417.121	+0.277	18.8	2
Ti = 31.340	4417.966	-0.082		4417.884	1 31211	2010	
Ti 32.384	4427.361	-0.095		4427.266			
S 33,550	4438.004		-0.075	4437.718	+0.211	14.3	3
Ti 34,203	4444.037	-0.061		4443.976	1 0.222		
Ti = 36.816	4468.721	-0.058		4468.663			
He 37.118	4471.636	+0.040		4471.676			
S 37.158	4472.018		-0.052	4471.676	+0.290	19.4	4
Ti 38.130	4481.472	-0.034		4481.438	10.200		
S 38.142	4481.595		-0.034	4481.400	+0.161	10.8	5
Ti 41.270	Standard	±0.000	0.001	4512.906	10.101	20.0	
Ti 42.680	4527.471	+0.019		4527,490			
Ti 45.045	4552.591	+0.041		4552,632			
S 45.077	4552,936	10.011	+0.041	4552.750	+0.227	15.0	4
Ti 46.085	4563.911	+0.028		4563.939	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
S 46,471	4568,156	10.020	0.034	4567,950	+0.240	15.8	3
Ti 46.829	4572,116	+0.040	10.001	4572.156	10.210	10.0	
S 47.091	4575,026	1 '	-4-0.039	4574.900	+0.200	13.1	2
Ti 48,431	4590.091	+0.035		4590,126	0.200	10,1	_
S 48.532	4591,233	10.000	+0.036	4591.066	+0.203	13.3	
S 49.002	4596.602		-0.040	4596.291	+0.351	22.9	3
Ti 50.793	4617.392	+0.060	10.010	4617.452	0.002		
S 51.926	4630.844	10.000	+0.051	4630,703	+0.192	12.1	1
S 53.466	4649,493		+0.038	4649.250	+0.281	18.1	3
Ti 54,044	4656.610	+0.034		4656.644	10.201	10.1	
S 54.478	4661.990	10.001	+0.032	4661.728	+0.294	18.9	4
Ti 54.938	4667,739	+0.029	10.002	4667.768	0.201	20.0	
Ti 56.071	Standard	±0.000		4682.088			
He 58.478	4713.414	-0.162		4713,308			1
S 58,496	4713.659	-0.102	-0.162	4713.308	+0.245	15.6	5
	1,10,000				1 1 1 1 1 1		

Weighted mean Curvature Cor.

+16.300.27 Mean + 15.8

Mean + 30.9

 $V_a = 8.21 \ V_d = 0.19$

Reduction to Sun Radial Velocity

-8.40+ 7.6 km.

1901, November 27, G. M. T. 12^h 11^m Hour angle E 1^h 27^m

γ PEGASI--B 246

Measured by A. Power 21

Hour angle E 1 ^h 27 ^m		Star good ;	comparison	good.		Po	wer 21
Ti 24.2438	Standard	±0.000		4387.007 4388.100	10.171	+32.2	2
$\begin{array}{ccc} & \text{S} & 24.4247 \\ Ti & 26.9971 \end{array}$	$4388.571 \\ 4411.222$	+0.018	±0.000	4411.240	+0.471	· '	-
S 27.4696 Ti 33.1500	4415.466 4468.669	-0.006	+0.016	$4415.076 \\ 4468.663$	+0.406	27.6	3
S 33.5051 Ti 34.4500	4472.134 Standard	±0,000	-0.004	4471.676 4481.438	+0.454	30.4	2
S 34.4929	4481.863		±0.000	4481.400	+0.463	31,0	2
Ti 41.2867 S 41.3428	4552.593 4553.206	+0.039	+0.039	4552.632 4552.750	+0.495	32.6	2
Ti 42.3138 S 42.7187	4563.903 4568.410	+0.036	+0.019	4563.939 4567.950	+0.479	31,4	3
Ti 43.0535	Standard	±0.000		4572.156			

Curvature Cor. +0.0008 mm.

Weighted mean

 $V_a = 24.93$ $V_d = 4.012$ In -24.81Reduction to Sun + 5.9 km. Radial Velocity

γ PEGASI--B 246

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm,	t. m.	t. m.	t. m.	t. m.	t. m.	kın.	
S 29 961	4367.455		+0.057	4367.012	± 0.500	+34.3	1
Ti 30.000	4367.782	± 0.057		4367.839	,		
Ti = 32.259	Standard	+0.001		4387.007			
S 32.440	4388.571		-0.001	4388.100	+0.470	32.1	2
S 35,489	4415.497		-0.042	4415.076	+0.379	25.7	3
Ti = 35.759	4117.934	-0.050		4417.884	,		
Ti = 37.534	4434.182	-0.014		4434.168			
S 37.972	4438.251		-0.029	4437.718	+0.504	34.1	2
Ti 38.219	4440.551	-0.036		4440.515			
Ti-40.892	4465.998	-0.023		4465.975			
Ti = 41.451	4471.439	-0.031		4471.408			
S 41.532	4472.231	,	-0.019	4471.676	+0.536	35.9	2
Ti = 42.467	Standard	+0.001		4481.438	,		
S 42.514	4481.902		± 0.001	4481,400	+0.503	33.7	3
Ti 49.306	4552.612	+0.020		4552.632			i
S 49.362	4553.241		+0.017	4552.750	± 0.491	32.3	2
Ti 49.584	4555.656	± 0.005		4555.662	,		
Ti = 52.654	Standard	+0.001		4590.126			
S 52,789	4591.682	,	± 0.000	4591.066	± 0.616	40.2	1

Weighted mean +32.6Curvature Cor. -0.90 $V_a = 24.93$ $V_d = 0.12$ Reduction to Sum -24.81

+6.9 km.

Mean + 33.5

γ PEGASI—B 395

Radial Velocity

1902, August 22, G. M. T. $20^{\rm h}\,40^{\rm m}$ Hour angle W $0^{\rm h}\,40^{\rm m}$

Star good; comparison good.

Measured by A. Power 17

							1 angle W U 10
1	-10.7	-0.157	4388.100	±0.000		4387.943	S 25.3176
			4395.201		± 0.000	Standard	Ti=26.1587
2	14.2	-0.207	4415,076	-0.024		4414.893	S 28.3946
1	9.9	-0.146	4417.121	-0.027		4417.002	S = 28.6302
			4417.884		-0.028	4417.912	Ti=28.7316
			4427.266		-0.035	4427.301	Ti=29.7690
1	7.2	-0.107	4437.718	-0.002		4437.613	S 30,8940
1			4443.976		+0.012	4143.964	Ti 31.5778
			4468.663		± 0.000	Standard	Ti = 31.1776
2	13.8	-0.205	4471.676	+0.003		4471,468	S 31.4670
3	12.9	-0.193	4481.400	± 0.015		4481.192	8 35.4614
			4481.438		+0.015	4481.423	Ti 35.4849
3	11.3	-0.171	4552.750	± 0.013		4552.566	S 42.3591
			4552,632		+0.013	4552.619	Ti=42.3640
			4563,939		-0.003	4563.942	Ti 43.3973
2	7.0	-0.106	4567.950	-0.002		4567.846	S 43,7499
			4572.156		± 0.000	Standard	Ti 44.1371
2	14.3	-0.218	4574.900	± 0.000		4574.682	S 44.3630

Curvature Cor. +0.0009 mm.

Weighted mean -11.6

Mean-11.2

 $V_a = 17.60$ $V_d = 0.06$

Reduction to Sun Radial Velocity $+17.54 + 5.9 \,\mathrm{km}.$

γ PEGASI-B 395

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 30.0036 S = 30.2982 Cr = 30.8273	4338.093 4340.438 Standard	-0.009 ± 0.000	-0.006	4338.084 4340.634 4344.670	-0.202	-14.0	2
Cr 34.0985 S 36.0509 Ti 36.8869	$\begin{array}{r} 4371.478 \\ 4388.025 \\ 4395.240 \end{array}$	-0.036 -0.039	-0.038	4371.442 4388.100 4395.201	-0.113	7.7	3
S 39.1255	4414.957		-0.059	4415.076	-0.178	12.1	2
Ti 39.4590 Ti 40.4960 S 41.6236 Ti 42.3077 Ti 44.9038	$\begin{array}{c} 4417.945 \\ 4427.321 \\ 4437.667 \\ 4444.021 \\ 4468.682 \end{array}$	$ \begin{array}{c c} -0.061 \\ -0.055 \\ \dots \\ -0.045 \\ -0.019 \end{array} $	-0.049	4417.884 4427.266 4437.718 4443.976 4468.663	-0.100	6.8	3
S 45,1978	4471.531		-0.015	4471.676	-0.160	10.7	3
S 46.1916 Ti 46.2109	4481,246 Standard	+0.000	± 0.000	4481,400 4481,438	-0.154	10.3	4
Ti 40,2103 S 53,0861 Ti 53,0909 Ti 53,3687 Ti 54,1247	4552.573 4552.625 4552.625 4553.949	+0.007 +0.011 -0.010	+0.007	4552.750 4552.632 4555.662 4563.939	-0.170	11.2	3
S 54.4745	4567.820	-0.010	±0.000	4567.950	-0.130	8.5	3
Ti 54.8641 S 55.0962	Standard 4574.750	±0.000	±0.000	$\begin{array}{c} 4572.156 \\ 4574.900 \end{array}$	-0.150	9.8	2

Weighted mean

-9.9

Mean —10.1

Mean+11.3

Curvature Cor. --0.82

 $V_a + 17.60$ $V_d = 0.06$

Reduction to Sun +17.54Radial Velocity +6.8 km.

1902, October 9, G. M.T. 17h 53m Hour angle W. 1h 5m

 $\gamma PEGASI$ —B 419 Star good; comparison good.

Measured by A. Power 21

Ti 22.0428	Standard	±0.000		4338.084			-
S 22.3850	4340.812		-0.001	4340.634	+0.177	+12.2	1
S 28.1141	4388.306		-0.014	4388.100	+0.192	13.1	1
Ti 28,9134	4395.217	-0.016		4395.201			
Ti 29,4541	4399.935	± 0.000		4399,935			
S 31.1782	4415.206		-0.006	4415.076	+0.124	8.4	2
S 31.4124	4417.308		-0.007	4417.121	± 0.180	12.2	1
Ti 31.4773	4417.891	-0.007		4417.884	10.200		_
Ti 32.5113	4427.258	+0.008		4427.266			
		'	+0.003	4437.718	+0.170	11.5	2
S 33.6671	4437.885	10.000		4443.976	70.110	11.0	-
Ti 34.3214	Standard	± 0.000	*****				Ì
Ti 36.9141	4468.657	+0.006	10.010	4468.663	10.101	0.0	
S 37.2371	4471.795		+0.012	4471.676	+0.131	8.8	3
Ti 38.2175	4481.406	+0.032		4481.438			
S 38,2291	4481.521		+0.032	4481.400	+0.153	10.2	5
Ti 45.0835	4552.625	+0.007		4552.632			
S 45.1120	4552.935		+0.007	4552.750	+0.192	12.6	2
Ti 46.1136	Standard	± 0.000		4563.939	'		1
S 46.4929	4568.149	10.000	-0.008	4567.950	+0.191	12.5	4
Ti 46.8533	4572.172	-0.016		4572.156	1 3.202		
1 (30,000)	40(2,112	0.010		1014,100			
							1

Curvature Cor. +0.0008 mm.

Weighted mean

 $V_a = 4.63$ $V_d = 0.09$ In-4.72Reduction to Sun Radial Velocity

+6.3 km.

γ PEGASI-B 419

Measured by F. Power 17

Mean + 12.4

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km:	
Ti 29.9510	4387.035	-0.028		4387.007			
S 30.0991	4388.309		-0.025	4388.100	+0.184	+12.6	1
Ti = 30.8962	4395.207	-0.006		4395.201	'	•	
Ti = 31.4378	Standard	$[-\pm 0.000]$		4399.935			
S = 33.1676	4415.266		-0.003	4415.076	+0.187	12.7	2
Ti = 33.4584	4417.878	+0.006		4417.884			1
Ti = 34.4958	4427.279	-0.013		4427.266			
S = 35.6534	4437.925		-0.004	4437.718	+0.203	13.7	11/2
Ti = 36.3037	4443.980	-0.004		4443.976			
$Ti_{-}38.8970$	4468.667	-0.004		4468.663			-
Ti = 39.1795	4471.410	-0.002		4471.408			
S 39.2222	4471.825		-0.002	4471.676	+0.147	9.9	21/2
Ti = 40.2030	Standard	± 0.000		4481.438			
S 40.2149	4481.556		± 0.000	4481.400	+0.156	10.4	3
Ti 47.0704	4552.625	+0.007		4552.632			
S 47.0981	4552.926		+0.007	4552.750	+0.183	12.0	2
Ti 48.1009	4563.931	+0.008		4563.939			
S 48.4826	4568.163		+0.001	4567.950	+0.217	14.2	2
Ti 48.8408	Standard	± 0.000		4572.156	,		
S 49.1044	4575.108		+0.001	4574.900	+0.209	13.7	1
Ti = 50.4284	4590.113	+0.013		4590.126			

Curvature Cor. +0.0013 mm.

Weighted mean
$$V_a = -4.63$$
 $V_d = -0.09$ Reduction to Sun Radial Velocity -4.72 $+7.3$ km.

SUMMARY OF MEASURES OF γ PEGASI

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 215	1901, Sept. 5	+3.7	6		
A 218	Sept. 6	+5.1	7		
A 233	Sept. 18	+2.7	10	+2.5	8
A 245	Sept. 26	+4.2	8		- ::
B 194	Oet. 16	7/1/1		+7.6	16
B 246	Nov. 27	+5.9	6	+6.9	8
B 395	1902, Aug. 22	+5.9	9	+6.8	9
B 419	Oet. 9	+6.3	9	+7.3	8

Mean of 8 plates +5.3 km. Mean of all measures +5.4 km.

2. \(\zeta CASSIOPEIAE\)

(R. A. = 0^h 31^m; Dec. = $+53^\circ$ 21'; Mag. 3.7; Class IVa)

Four plates of this star have been measured, with two common to the two observers. The spectrum has much the same lines as in the case of γ *Pegasi*, but the lines are considerably broader, and accurate measurement is consequently more difficult.

1901, October 31, G. M. T. 13^h 50^m Hour angle E 0^h 20^m \$ CASSIOPEIAE -A 281

Star fair; comparison fair.

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t, m,	t. m.	t. m.	km.	
Ti = 29.4825	4338.046	+0.038		4338.084			
S 29.7341	4340.725		+0.038	4340.634	+0.129	+8.9	1
Ti = 30.0789	4344.414	+0.037		4344,451		'	
S 32.1530	4367.070		+0.001	4367.012	+0.059	+4.0	1/2
Ti = 32.2221	Standard	± 0.000		4367.839	'	•	
Ti = 33.9222	4387.046	-0.039		4387,007			
He 34.0167	4388.131	-0.031		4388.100			
S 34.0234	4388.208		-0.036	4388.100	+0.072	+4.9	2
Ti = 35.4240	4404.496	-0.063		4404.433		,	
S 36.3179	4415.105		-0.072	4415.076	-0.043	-2.9	2
Ti 36.5559	4417.958	-0.074		4417.884			
Ti 37,8895	4434.174	-0.006		4434.168			
S 38.1825	4437.790		+0.001	4437.718	+0.073	+4.9	11/2
Ti 38.4019	4440.510	+0.005		4440.515			
Ti = 40.4150	4465.983	-0.008		4465.975			
S 40.8538	4471.663		-0.005	4471.676	-0.018	-1.2	3
Ti = 41.6007	Standard	± 0.000		4481.438			-
S 41,6002	4481.431		± 0.000	4481.400	+0.031	+2.1	4
Ti = 46.7395	4552,599	+0.033		4552.632			
S 46,7538	4552.807		+0.033	4552.750	+0.090	+5.9	2
Ti = 46.9467	4555,620	+0.042		4555.662			
Ti = 47.5099	4563.894	+0.045		4563.939			
S 47,7895	4568.036		+0.038	4567.950	+0.124	+8.1	1
Ti = 49.2547	Standard	± 0.000		4590.126			
Ti 51.7687	Standard	± 0.000		4629.521			
S 51.8431	4630.717		± 0.000	4630.703	+0.014	+0.9	2
Ti 54.0936	Standard	± 0.000		4667.768			
Ti = 56.5594	Standard	± 0.000		4710.368			
$He\ 56.7282$	4713,365	-0.057		4713.308			
S 56.7296	4713.391		-0.028	4713.308	+0.055	+3.5	3
			1		1		

Curvature Cor.+0.0009 mm.

Weighted mean

Hour angle E 0^h 43^m Star good; comparison on but one side of star spectrum.

+2.7

Mean + 3.6

 $V_a = -1.90$ $V_d = +0.02$ Reduction to Sun

Reduction to Sun Radial Velocity $\frac{-1.88}{+0.8 \text{ km}}$

1901, November 7, G. M. T. 14^h 43^m

 ζ CASSIOPEIAE—B 211

Measured by A. Power 21

Ti 19.3141 Ti 25.2765 S 25.4128 S 30.9939	Standard 4387.103 4388.268 4437.819	±0.000 -0.096	-0.094 -0.010	4338.084 4387.007 4388.100 4437.718	+0.074 +0.091	$+5.1 \\ 6.2$	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$
Ti 31.6579 Ti 34.2661 S 34.5904	Standard 4468,670 4471,803	$\pm 0.000 \\ -0.007$	±0.000	$\begin{array}{c} 4443.976 \\ 4468.663 \\ 4471.676 \end{array}$	+0.127	8.5	3
Ti 35.5771 S 35.5847 Ti 42.4790	$\begin{array}{r} 4481.413 \\ 4481.497 \\ 4552.614 \end{array}$	+0.025 +0.018	+0.025	4481.438 4481.400 4552.632	+0.122	8.2	2
S 42.5045 Ti 43.5160 S 43.8931	4552.890 Standard 4568.101	±0.000	+0.018 ±0.000	4552,750 4563,939 4567,750	+0.158 +0.151	10.4 9.9	1
Ti 44.2586 S 44.5133	4572.157 4574.996	-0.001	-0.001	4572.156 4574.900	+0.095	6.2	1

Curvature Cor. +0.0002 mm.

Weighted mean +9.7

Mean + 7.8

 $V_a = -4.48 \ V_d = +0.04$

Reduction to Sun Radial Velocity $\frac{-4.44}{+3.5}$ km.

₹ CASSIOPEIAE-B 248

1901, November 27, G. M. T. $16^{\rm h}~48^{\rm m}$ Hour angle W $2^{\rm h}~49^{\rm m}$

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t- m.	t. in.	t. m.	t. m.	km.	
Ti=25.8586	Standard	± 0.000		4387.007			
S = 25.0051	4388.274		+0.002	4388.100	+0.176	+12.0	3
Ti 28.6093	1411.207	+0.033		4411.240			
S = 29.2890	4417.324		+0.021	4417.121	+0.224	15.2	1
Ti = 31.1310	4434.181	-0.013		4434.168			
S = 31.5420	4438.000		± 0.000	4437.718	+0.282	19.1	3
Ti = 32.1785	4443.956	+0.020		4443.976			
Ti = 34.7653	4468.700	-0.037		4468.663			į
S 35.0971	4471.938		-0.028	4471.676	+0.234	15.7	2
Ti = 36.0618	Standard	± 0.000		4481.438			
S = 36.0736	4481.555		± 0.000	4481.400	+0.155	10.4	3
Ti=42.8983	4552.605	+0.027		4552.632			
S = 42.9342	4552.998		+0.027	4552.750	+0.275	18.1	2
Ti = 43.9288	4563.956	-0.017		4563.939	1.0.202	10.1	
S 44.3155	4568.259		-0.013	4567.950	+0.296	$\frac{19.4}{0}$	1
S 44.9318	4575,170	0.000	-0.010	4574 . 900	+0.260	17.0	1
Ti = 46.2466	Standard	±0.000		4590.126	1.0.050	177.0	0
S 46.8046	4596.563		± 0.000	4596.291	+0.272	17.8	2

Curvature Cor. ± 0.0009 mm.

Weighted mean
$$V_a = -11.41$$

$$V_d = -0.14$$
Reduction to Sun -11.55

Mean +16.1

Reduction to Sun Radial Velocity $\frac{-11.55}{+4.0 \text{ km}}$

 ζ CASSIOPEIAE—B 248

Measured by F. Power 12

Ti 34.9060	4340,689		± 0.108	4340.634	+0.163	+11.3	
S 34.9975	4341.425	+0.105		4341.530		·	
Ti=40.4650	Standard	± 0.000		4387.007			
S 40.6127	4388.284		+0.005	4388.100	+0.189	12.9	
Ti = 42.4605	4404.465	+0.032		4404.433			
S = 43,6605	4415.187		± 0.027	4415.076	+0.138	9.4	
Ti = 45.7405	4434.184	+0.016		4434.168			
S 46.1508	4437,991		+0.010	1437.718	+0.286	19.3	
Ti = 49.0985	4466.007	-0.032		4465.975			
S 49.7048	4471.911		-0.022	4471.676	+0.213	14.3	
Ti = 50.6725	Standard	± 0.000		4481.438			
S 50.6848	4481.560		± 0.000	4481.400	+0.160	10.7	
Ti = 57.5090	4552.602	+0.030		4552,632			
S 57.5180	4553,028		+0.030	4552.750	+0.308	20.3	
S 58.9235	4568.228		+0.017	4567.950	+0.195	12.8	
Ti 60.8570	Standard	±0.000		4590.126			

Curvature Cor. +0.0015 mm.

$$\begin{array}{c} \text{Weighted mean} & +13.9 \\ V_a & -11.41 \\ V_d & -0.14 \\ \text{Reduction to Sun} & -11.55 \\ \text{Radial Velocity} & +2.4 \text{ km.} \end{array}$$

Mean + 13.9

1902, July 22, G. M. T. $19^{\rm h}\,10^{\rm m}$ Hour angle E $3^{\rm h}\,10^{\rm m}$

₹ CASSIOPEIAE — A 355

Star good; eomparison imperfect.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 24.1893	Standard	± 0.000		4338.084			
S 24.4017	4340.360		-0.001	4340.634	-0.275	-19.5	3
S 28.6706	4387.926		-0.023	4388,100	-0.197	13.5	2
Ti = 29.7021	4399.963	-0.028		4399.935			Í
Ti 31.9750	4427.286	-0.020		4427.266			
Ti = 33.3186	Standard	± 0.000		4443.976			
Ti = 35.2474	4468.672	-0.009		4468.663			
S 35.4537	4471.366		-0.003	4471.676	-0.316	21.2	1
$\stackrel{\sim}{S}$ 36.1905	4481.075		+0.019	4481.400	-0.306	20.5	2
Ti = 36.2164	4481.419	+0.019		4481.438	į		
S 41.3134	4552.521		+0.012	4552.750	-0.217	14.3	2
Ti = 41.3201	4552.620	+0.012		4552.632			
Ti = 42.0857	4563.929	± 0.010		4563,939			
S 42.3338	4567.631		+0.005	4567.950	-0.314	20.6	2
Ti = 42.6353	Standard	± 0.000		4572.156			
S 42.7960	4574.579		± 0.000	4574.900	-0.311	20.4	1

Curvature Cor. +0.0005 mm.

Weighted mean

-18.1

Mean - 18.5

Mean - 16.3

 $V_{d} + 20.77 \ V_{d} + 0.15$

Reduction to Sun Radial Velocity

+20.92+2.8 km.

₹CASSIOPEIAE -- A 355

Measured by F. Power 12

Ti 28.9627	Standard	±0.000	0.000	4338.084 4340.634	-0.279	-19.3	2
S 29.1747	4340.355	10.009		4387.007	-0.215	-10.0	
Ti 33.3655	4387.004	+0.003	0.005	4388.100	-0.193	13.2	2
S 33.4441	4387.912	0.000	-0 005		-07.1:53	10.2	4
Ti 31.0764	4395.263	-0.062		4395.201			
Ti = 36.7481	4427.258	+0.008		4427.266	0.011	99.9	0
S 37.5660	4437.367		+0.007	4437.718	-0.311	23.2	2
Ti 38.0936	4443.970	+0.006		4443.976			
Ti = 40.0224	Standard	± 0.000		4468.663		40.3	
S 40.2310	4471.387		+0.018	4471.676	-0.271	18.2	2
S 40.9630	4481.032		+0.083	1481,400	-0.285	19.1	1
Ti = 40.9873	4481.355	+0.083		4481.438			
S 46.0922	4552,570		+0.024	4552.750	-0.156	10.3	112
Ti = 46.0968	4552,638	+0.024		4552,662			
Ti 46.8620	4563.943	-0.004		-4563.939			
S 47.1174	4567.755		-0.002	4567.950	-0.197	12.9	1
Ti = 47.4106	Standard	± 0.000		4572.156			
S 47.5781	4574.682		+0.002	4574.900	-0.216	14.2	1 2
.5 2							

Curvature Cor. + 0.0010 mm.

Weighted mean

 $V_a + 20.77$ $V_d + 0.15$

Reduction to Sun

+20.19

Radial Velocity

 $+4.0 \,\mathrm{km}$.

SUMMARY OF MEASURES OF \$CASSIOPEIAE

Plate	Date	Adams	No. of lines	Frost	No. of lines
A 281 B 211 B 248 A 355	1901, Oct. 31 Nov. 7 Nov. 27 1902, July 22	$\begin{array}{c} +3.5 \\ +4.0 \\ +2.8 \end{array}$	7 9 7	+0.8 $+2.4$ $+4.0$	11 8 7

Mean

+3.3

+2.4

Mean of 4 plates ± 2.7 km. Mean of all measures +2.9 km.

3. ϵ CASSIOPELAE

(R, A.= 1^h 47^m; Dec.= $+63^{\circ}$ 11'; Mag. 3.6; Class IV ab)

Four plates of this star have been measured, all of which are common to the two observers. The spectrum contains but few lines, and these are very broad and difficult of measurement.

 ϵ CASSIOPEIAE — A 261

1901, October 3, G. M. T. 17^h 15^m Hour angle E 1^h 35^m

Star fair; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines		Normal Wave- Length	Displacement	Velocity	Weight
t. m.	t. m.	t. m.	t. m.	t. m.	t. m.	km	
Ti = 19.1034	Standard	± 0.000		4338.084			
S = 19.3091	4340.273		-0.001	4340,631	-0.362	-25.0	1
S = 23.6055	4387.820		-0.014	4388.100	-0.294	20.1	ī
Ti = 24.2459	4395.218	-0.017		4395.201			
Ti = 26.9383	Standard	± 0.000		4427.266			
S = 27.7639	4437.410		+0.009	4437.718	-0.299	20.2	1
Ti = 28.2905	4413.962	+0.014		4143.976			_
Ti = 30.2297	4468.645	-0.018		4468.663			
S = 30.4385	4171.357		± 0.016	4471.676	-0.303	20.3	1
S = 31.1840	4481.125		+0.011	4481.400	-0.264	17.7	i
Ti = 32.7017	Standard	± 0.000		4501.445	31.00	2	-

Curvature Cor. +0.0001mm.

$$\begin{array}{c} \text{Weighted mean} & -20.7 \\ V_a & +13.49 \\ V_d & +0.06 \\ \text{Reduction to Sun} & +13.55 \\ \text{Radial Velocity} & -7.1 \, \text{km}. \end{array}$$

Mean -20.7

€ CASSIOPEIAE—A 261

Measured by F. Power 12

Ti 30.7668	Standard	± 0.000		4338.084			
S 30.9890	4340.452		-0.002	4340,634	-0.184	-12.7	2
S 35.2729	4387.897		-0.070	4388.100	-0.273	18.7	1
Ti 35.9119	4395.281	-0.080		4395.201			
Ti = 36.3172	4400.008	-0.073		4399.935			
Ti = 41.8970	4468.711	-0.048		4468.663			
S 42.1104	4471.481		-0.036	4471.676	-0.231	15.5	2
Ti = 42,8707	Standard	± 0.000		4481.438			
S 42,8461	4481.114		± 0.000	4481.400	-0.286	19.1	2
Ti 48,7767	4563.920	± 0.019		4563.939			
Ti = 49.3307	Standard	± 0.000		4572.156			

Curvature Cor. + 0.0003 mm.

$$\begin{array}{ccc} \text{Weighted mean} & -16.2 & \text{Mean} - 16.5 \\ V_a & +13.49 & \\ V_d & +0.06 & \\ \text{Reduction to Sun} & +13.55 & \\ \text{Radial Velocity} & -2.6\,\text{km}. & \end{array}$$

ε CASSIOPEIAE—A 275

1901, October 23, G. M. T. 20h 35m Hour angle W 3h 5m

Star rather weak; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm,	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 24.5055	Standard	± 0.000		4338.084			
S 29.0245	4387.844		± 0.000	4388.100	-0.256	-17.5	2
Ti = 30.0703	Standard	± 0.000		4399.935			
Ti 32.3639	4427.263	+0.003		$^{\circ}$ 4427.266			
S 33,2000	4437.514		+0.025	4437.718	-0.179	12.1	2
Ti = 34.1426	4449.261	+0.052		4449.313			
Ti 35.6617	4468.633	+0.030		4468.663			
S 35.8816	4471.484		+0.023	4471.676	-0.169	11.3	4
S 36.6239	4481.191		± 0.000	4481.400	-0.206	13.9	3
Ti = 36.6424	Standard	± 0.000		4481.438			

Curvature Cor. +0.0002 mm.

Weighted mean 13.3 $V_a + 7.65$

Mean - 13.7

 $V_d = 0.11$

Reduction to Sun Radical Velocity

+7.54- 5.8 km.

ϵ CASSIOPEIAE—A 275

Measured by F. Power 12

Ti 30.7013 S 30.9194 S 35.2210 Ti 35.8565	Standard 4340.398 4387.871 4395,195	±0.000 +0.009	±0.000 +0.008	4338.084 4340.634 4388.100 4395.201	$ \begin{array}{c c} -0.236 \\ -0.221 \end{array} $	$-16.3 \\ 15.1$	21/2
Ti 36.2644 Ti 41.8583 S 42.0745 S 42.8145 Ti 42.8385	Standard 4468.647 4471.448 4481.122 Standard	±0.000 +0.016 ±0.000	+0.012 ±0.000	$\begin{array}{c} 4399.935 \\ 4468.663 \\ 4471.676 \\ 4481.400 \\ 4481.438 \end{array}$	$ \begin{array}{c} -0.216 \\ -0.278 \end{array} $	14.5 18.6	2 2

Curvature Cor. +0.0003 mm.

Weighted mean $V_a = +7.65$

-16.0

Mean = 16.1

Mean -16.1

Reduction to Sun

Radial Velocity

+7.548.5 km.

€ CASSIOPEIAE—A 278

1901, October 25, G. M. T. $14^{\rm h}\,8^{\rm m}$ Hour angle E $3^{\rm h}\,35^{\rm m}$

Star good; comparison good.

Measured by A. Power 25

S 23.7063	4387.867		-0.017	4388.100	-0.250	-17.1	1
Ti 24.3426	4395.218	-0.017		4395.201			
Ti 24.7471	Standard	± 0.000		4399.935			
Ti 26.2616	4417.899	-0.015		4417.884			
S 27.8617	4437.417		-0.003	4437.718	-0.304	20.5	1
Ti = 28.3891	Standard	± 0.000		4443.976			
Ti = 30.3307	4468.678	-0.015		4468.663			
S 30.5491	4471.513		-0.012	4471.676	-0.175	11.7	3
S 31.2868	4481.174		± 0.000	4481.400	-0.226	15.1	4
Ti 31.3068	Standard	±0.000		4481.438			

Curvature Cor. +0.0002 mm

Weighted mean -14.8

 $\begin{array}{ccc}
V_a & +7.09 \\
V_d & +0.12
\end{array}$

Reduction to Sun +7.21Radial Velocity

-7.6 km.

€ CASSIOPEIAE—A 278

Measured by F. Power 12

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement'	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti=29.3007	Standard	± 0.000		4338.084			
S 29,5350	4340.574		± 0.000	4340.634	-0.060	-4.1	1
Ti = 33.7369	4387.004	+0.003		4387.007			
S = 33,8060	4387,797		+0.003	4388.100	-0.300	20.5	2
Ti = 34.8535	Standard	± 0.000		4399.935			
Ti-40.4379	4468.675	-0.012		4468.663			
S 40,6615	4471.579		-0.009	4471.676	-0.106	7.1	2
S = 41.3959	4481.204	,	± 0.000	4481.400	-0.196	13.1	2
Ti = 41.4136	Standard	±0.000		4481.438			

Curvature Cor. +0.0003 mm.

Weighted Mean
$$V_a +7.09 \\ V_d +0.12$$
 $+0.12$

Mean —11.2

Reduction to Sun Radial Velocity

 $\frac{+7.21}{-5.0 \text{ km}}$.

€ CASSIOPEIAE—B 399

1902, August 27, G. M. T. $18^{\rm h}\,49^{\rm m}$ Hour angle E $2^{\rm h}\,21^{\rm m}$

Star good; comparison good.

Measured by A. Power 15

Ti 20.8602 S 21.1412 S 26.8763 Ti 27.7456 Ti 28.2955	Standard 4340,314 4387,657 4395,150 Standard	±0.000 +0.051 +0.000	+0.002 +0.041	4338, 084 4340, 634 4388, 100 4395, 201 4399, 935	-0.318 -0.399	-22.0 27.3	1 1
Ti 33.7409 Ti 35.7701 S 36.0427 S 37.0402 Ti 37.0779	4449.296 4468.661 4471.304 4481.066 Standard	+0.017 +0.002 ±0.000	+0.002 ±0.000	4449.313 4468.663 4471.676 4481.400 4481.438	-0.370 -0.331	$24.8 \\ 22.4$	2 2

Cuvature Cor. ± 0.0008 mm.

Weighted mean -

Mean -24.1

 $V_a + 19.50 \ V_d + 0.09$

Reduction to Sun Radial Velocity $\frac{+19.59}{-4.3 \,\mathrm{km}}$

 ϵ CASSIOPEIAE—B 399

Measured by F. Power 12

Ti 32.8406 Standard S 33.1104 4471,282 S 34.1070 4481,030 Ti 31.1485 Standard Ti 34.8623 Standard	±0.000 ±0.000 ±0.000	±0.000 ±0.000	4468.663 4471.676 4481.400 4481.438 4488.493	$-0.394 \\ -0.370$	$-26.4 \\ 24.8$	$\frac{2}{2}$
---	----------------------------	------------------	--	--------------------	-----------------	---------------

Curvature Cor. +0.0012 mm.

Weighted mean —25.6

Mean $-\overline{25.6}$

 $\frac{V_a}{V_d} + 19.50$

Reduction to Sun +19.59Radial Velocity -6.0 km.

SUMMARY OF MEASURES OF 6	CASSIOPEIAE
--------------------------	-------------

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 261 A 275 A 278 B 399	1901, Oct. 3 Oct. 23 Oct. 25 1902, Aug. 27	$ \begin{array}{r} -7.1 \\ -5.8 \\ -7.6 \\ -4.3 \end{array} $	5 4 4 4	$ \begin{array}{c c} -2.6 \\ -8.5 \\ -5.0 \\ -6.0 \end{array} $	4 4 4 2

-5.5

 $\begin{array}{cc} \text{Mean} & -6.2 \\ \text{Mean of 4 plates} & -5.9 \text{ km}. \\ \text{Mean of all measures} & -5.9 \text{ km}. \end{array}$

4. ζ PERSEI

(R. A. = $3^h 48^m$; Dec. = $+31^{\circ}35'$; Mag. 3.1; Class IIIa)

Five plates of this star have been measured, five by A., and two by F. The lines in this spectrum, though numerous, are extremely broad and ill defined, making accurate measurement difficult.

1901, September 12, G. M. T $\,18^{\rm h}\,4^{\rm m}$ Hour angle E $4^{\rm h}\,6^{\rm m}$

ζ PERSEI — A 226 Star rather weak; comparison fair.

Measured by A. Power 21

Correction to Star Lines Correction to Normal Wave-Wave-Length by Displacement Velocity Weight Mean of Settings Formula Comp. Lines Length km. f.m. t. m. t. m. f. m. t. m. mm. -6.224.82564387.976 +0.0334388,100 -0.0911 4388.067 +0.033 4388,100 He 24.8336 4395.201 ± 0.000 Ti 25.4507Standard -0.001-0.0654.4 1 32.4118 4481.400 4481.3364481,439 -0.0014481.438 4548.938 4563.939 ± 0.000 Ti 37.3098Standard Ti 38.33524563.915 +0.0245.23 38.6014 4567,852 +0.0184567.950-0.0804572.156 4574.9004572.146+0.010Ti 38.8901 +0.010-0.0684.5 S39.0692 4574.822+0.007 $Ti \ 41.8387$ 4617.445 4617.4522.3 +0.0024650.925-0.0354650.88843.90764661.728-0.16310.5 1 4661.564 44.5498 +0.001Ti 44.9191 Standard ± 0.000 4667.7682 -0.1134713.308 -0.0644.14713.357 47.54754713.308 4713.421-0.113He 47.5511

Curvature Cor. +0.0001 mm.

Weighted mean - 5

Mean - 5.3

 $V_a + 27.45 \ V_d + 0.26$

Reduction to Sun Radial Velocity $\frac{+27.72}{+22.5 \,\mathrm{km}}$.

1901, September 18, G. M. T. 18^h 26^m Hour angle E 3^h 28^m ζ PERSEI — A 235

Star good; comparison good.

Measured by A Power 21

0							
S 31.2357	4388.036		±0,000	4388,100	-0.064	-4.4	1
Ti 31.8557 S 33.5371	Standard 4415.034	±0.000	-0.023	4395.201 4415.076	-0.065	-4.4	3
S 33.7142 Ti 33.7768	$\begin{array}{c} 4417.157 \\ 4417.910 \end{array}$	-0.026	-0.025	4417.121 4417.884	+0.011	+0.8	2
Ti 37.8433 S 38.0673	Standard 4471.571 Standard	±0.000 ±0.000	±0.000	4468.663 4471.676 4572.156	-0.105	-7.0	2
Ti 45.2786 S 45.4611	4574.890	±0.000	± 0.000	4574.900	-0.010	-0.6	1

Curvature Cor. +0.0002 mm.

Weighted mean - 3.4

Mean - 3.1

 $V_a +26.38 \ V_d + 0.23$

Reduction to Sun Radial Velocity $\frac{+26.61}{+23.2 \text{ km}}$.

.

191

1901, November 8, G. M. T. $16^{\rm h}\,33^{\rm m}$ Hour angle E $1^{\rm h}\,55^{\rm m}$

ζ PERSEI — B 218

Star fair; comparison fair.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 20.3486	Standard	± 0.000		4338.084			
S = 20.7005	4340.868		+0.002	4340.634	+0.236	+16.3	1
S = 21.8100	4349.726		± 0.007	4349.541	+0.192	$^{'}13.2$	2
S=23.9597	4367.254		+0.018	4367.012	+0.260	17.8	1
Ti-24.0282	4367.821	+0.018		4367.839	'		
Ti = 26.3119	4387.004	+0.003		4387.007			
S = 26.4615	4388.281		+0.003	4388.100	+0.184	12.6	1
S=29.7918	4417.376		±0.000	4417.121	+0.255	17.3	1
Ti-29.8487	Standard	± 0.000		4417.884			
$Ti_{-}35.3198$	4468.676	-0.013		4468.663			
S = 35.6552	4471.917		-0.013	4471.676	+0.228	15.3	3
Ti = 36.6225	4481.450	-0.012		4481.438			4
Ti-43.5244	4552.612	+0.020		4552.632			
S = 43.5584	4552.981		+0.020	4552.750	+0.251	16.5	2
Ti-44.5597	Standard	±0.000		4563.939			
S = 44.9421	4568.167		± 0.000	4567.950	+0.217	14.2	1

Curvature Cor. +0.0007 mm.

Weighted mean
$$+$$
 15.3

Mean +15.4

$$\begin{array}{ccc} V_a & +7.57 \\ V_d & +0.14 \end{array}$$

Reduction to Sun
Radial Velocity

 $\frac{+7.71}{+23.0 \,\mathrm{km}}$

₹PERSEI — B 218

Measured by F.

						Po	wer 12
Ti 29.5641 S 29.8943 Ti 30.3631 S 33.1907 Ti 33.2455 Ti 35.5309 S 35.6642 Ti 37.0283	4338.015 4340.634 4344.370 4367.383 Standard 4387.068 4388.208 4399.982	+0.069 +0.081 ±0.000 -0.061 -0.047	+0.075 +0.001 -0.060	4338,084 4340,634 4344,451 4367,012 4367,839 4387,007 4388,100 4399,935	+0.075 +0.372 +0.048	+ 5.2 +25.5 + 3.3	1 1 1/2
S 38.7463 Ti 39.0629 Ti 44.2508 Ti 44.8131	4415.114 4417.940 4466.012 4471.429	-0.037 -0.037 -0.021	-0.055	4415.076 4417.884 4465.975 4471.408	-0.017	- 1.2	1 2
S 44.8643 Ti 45.8403 Ti 52.7435 S 52.7644 Ti 53.0235	4471.925 Standard 4552.588 4552.814 4555.626	±0.000 +0.044 +0.036	-0.020 +0.013	4471.676 4481.438 4552.632 4552.750 4555.662	+0.229	+15.4 $+7.0$	2 2
$\begin{array}{ccc} Ti & 53,7800 \\ S & 54,1745 \\ Ti & 54,5259 \\ S & 54,8032 \\ Ti & 56,1242 \end{array}$	4563.897 4568.247 4572.143 4575.231 Standard	+0.042 +0.013 ±0.000	+0.026	4563, 939 4567, 950 4572, 156 4574, 900 4590, 126	+0.323 +0.343	+21.2 +22.5	2

Curvature Cor. +0.0013 mm.

Weighted Mean
$$V_a +7.57 +14.2$$

Mean + 12.4

 $\stackrel{\stackrel{\leftarrow}{V_d}^a}{\operatorname{Reduction}}$ to Sun

+ 7.71+21.9 km.

+0.14

Radial Velocity

₹PERSEI—B 232

1901, November 14, G. M. T. 20^h 9^m Hour angle W 2h 12m

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t.m.	t. m.	km.	
Ti. 20.4179	4387.005	+0.002		4387.007			
S 20.5786	4388.380		+0.002	4388.100	+0.282	+19.3	1
Ti 21.9154	Standard	± 0.000		4399.935			
Ti 23.1992	4411.225	+0.015		4411.240			
S 23.6635	4415.355		+0.014	4415.076	+0.293	19.9	1
S 23.8884	4417.365		+0.014	4417.121	+0.258	17.5	1
Ti 29.4079	Standard	± 0.000		4468.663			
S 29.7458	4471.931		±0.000	4471.676	+0.255	17.1	1
Ti 37.6141	4552.633	-0.001		4552.632			
S 37.6446	4552.964		-0.001	4552.750	+0.213	14.0]]
Ti 38.6481	Standard	± 0.000		4563.939	10.000	00.4	
S 39.0408	4568.278		-0.022	4567.950	+0.306	20.1	1
Ti 39.3937	4572.199	-0.043		4572.156	10.100	12.0	
S 39.6564	4575.131		-0.043	4574.900	+0.188	12.3	1

Curvature Cor. +0.0008 mm.

 $\frac{V_a}{V_d} + \frac{4.50}{-0.16} + 17.2$ Weighted mean

Mean + 17.2

Reduction to Sun Radial Velocity

+4.34+21.5 km.

₹PERSEI—B 232

Measured by F. Power 12

Ti 29.6003 S 29.9374 Ti 30.0357	Standard 4340.753 4341.533 4367.813	±0.000 -0.003 +0.026	-0.002	4338.084 4340.634 4351.530 4367.839	+0.117	+ 8.1	1
Ti 33.2745 Ti 35.5550 S 35.7042 Ti 37.5680 S 38.7827	4386.997 4388.272 4404.420 4415.164	+0.010	+0.010 +0.003	4387.007 4388.100 4404.433 4415.076	+0.182 +0.091	$12.4 \\ 6.2$	2
Ti 39.0870 Ti 44.2955 Ti 44.8288 S 44.8784	Standard 4465,952 4471,393 4471,874	$\begin{array}{c} \pm 0.000 \\ +0.023 \\ +0.015 \end{array}$	+0.014	4417.884 4465.975 4471.408 4471.676	+0.222	14.8	2
Ti 45.8569 Ti 52.7516 S 52.7963 Ti 53.7863	Standard Standard 4553.117 4563.933	±0.000 ±0.000 +0.006	±0.000	4481,438 4552,632 4552,750 4563,939	+0.367	24.2	1
S 54.1777 Ti 54.5307 S 54.7863 Ti 56.1281	$\begin{array}{c} 4568,246 \\ 4572,171 \\ 4575,019 \\ 4590,151 \end{array}$	-0.015 -0.025	-0.006 -0.013	4567.950 4572.156 4574.900 4590.126	+0.307	6.9	11/2
Ti 59.4987 S 59.6276 S 60.5525 Ti 60.8086	Standard 4631.067 4642.246 4645.369	±0.000 -0.001 -0.007	±0.000 ±0.000	4629.521 4630.703 4641.886 4645.368 4656.644	+0.364 +0.360	23.6 23.3	1
Ti 61.7253 S 62.1632 Ti 62.6184 Ti 65.9195 S 66.1666	4656.651 4662.096 4667.796 Standard 4713.646	-0.007 -0.028 ±0.000	-0.018 -0.002	4661.728 4667.768 4710.471 4713.308	+0.350 +0.340	$\frac{22.5}{21.6}$	1
D 00,1000	1,10,010		3.002		' <u></u>		

Curvature Cor. + 0.0013 mm.

Weighted mean $V_a + 4.50$ $V_d - 0.16$

Mean + 16.6

Reduction to Sun Radial Velocity

+4.34+20.3 km.

₹PERSEI—B 424

1902, October 15, G. M. T. 16 $^{\rm h}$ 43 $^{\rm m}$ Hour angle E 3 $^{\rm h}$ 25 $^{\rm m}$

Star good; comparison good.

Measured by A. Power 17

Mean + 3.8

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
nım.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
$Ti_{-}22.2046$	Standard	± 0.000		4338.084			
S = 22.5242	4340,628		-0.002	4340.634	-0.008	-0.6	1
S = 23.1684	4345.787		-0.006	4345,677	+0.104	+7.2	$\frac{2}{1}$
S = 25.7668	4367.033		-0.023	4367.012	-0.002	-0.1	1
Ti = 29.0872	4395.246	-0.045		4395.201			
$Ti_{-}29.6321$	4399.994	-0.059		4399.935			
S = 31.3521	4415,211		-0.057	4415.076	+0.078	$^{+}_{-6.3}$	2
S 31.5819	4417.271		-0.057	4417.121	+0.093	+ 6.3	1
Ti 31.6566	4117.941	-0.057		4417.884			
Ti 37.0948	Standard	± 0.000		4468.663	•		
S 37,4102	4471.723		-0.001	4471.676	+0.046	+ 3.1	1
Ti~38.4027	4481.441	-0.003		4481.438			
S 38,4103	4481.516		-0.003	4481.400	+0.113	+7.6	1
$Ti\ 45.2667$	4552.561	+0.071		4552.632			
S = 45.2827	4552,735		+0.071	4552.750	+0.056	+ 3.7	3
$Ti\ 46.2989$	4563.886	+0.053		4563.939			
S 46.6572	4567.858		+0.056	4567.950	-0.036	-2.4	2
$Ti\ 47.0375$	4572.097	+0.059		4572.156			
S 47.2942	4574.972		+0.055	4574.900	+0.127	+ 8.3	1
Ti~50.9749	Standard	± 0.000		4617.452			

Curvature Cor. + 0.0009 mm.

Weighted mean
$$V_a = +18.40$$
 $V_d = +0.23$ Reduction to Sun Radial Velocity $+18.63$ $+22.4$ km.

SUMMARY OF MEASURES OF & PERSEI.

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 226 A 235 B 218 B 232 B 424	1901, Sept. 12 Sept. 18 Nov. 8 Nov. 14 1902, Oct. 15	+22.5 $+23.2$ $+23.0$ $+21.5$ $+22.4$	7 5 8 7 10	+21.9 +20.3	8 11

 $\begin{array}{ccc} \text{Mean} & +22.5 & +21.1 \\ & \text{Mean of 5 plates} +22.3 \text{ km.} \\ \text{Mean of all measures} & +22.1 \text{ km.} \end{array}$

6. β ORIONIS.

(R. A.= $5^h 10^m$; Dec.= $-8^{\circ} 19'$; Mag. 0.3; Class VIc)

Especial attention has been given to the investigation of this well-known star because of the Potsdam observations of 1890, which seemed to indicate a variation in its radial velocity. A total of nineteen plates extending over an interval of six months have been measured, five by F., and nineteen by A. The results do not indicate any variation of velocity. The spectrum of this star is characterized by the strength of its *Orion* lines and the existence of several faint metallic lines. The breadth of these lines is the chief difficulty in the way of accurate measurement.

1901,	September 4, G.	M.	T.	$21^{\rm h}43^{\rm m}$
Hour	angle E 2 ^h 29 ^m			

β ORIONIS-A 207

Measured by A. with Zeiss Comparator Power 18

Star strong; comparison good.

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 62,4073	Standard	± 0.000		4338.084			
S 62.1758	4340.544		± 0.000	4340,634	-0.090	-6.2	1
S 57.8843	4387.998		-0.005	4388.100	-0.107	7.3	1
Ti 57.2599	4395.207	-0.006		4395.201			
Ti 56.8542	Standard	± 0.000		4399.935			
Ti 52.1340	4457.600	± 0.000		4457.600			
Ti 51,2739	4468.665	-0.002		4468,663			
S 51.0433	4471.662		-0.002	4471.676	-0.016	1.1	1
S 50.3072	4481.319		± 0.000	4481.400	-0.081	5.4	1
Ti~50.2982	Standard	±0.000		4481.438			
Curvature Cor0.0	0002 mm.	∪ Weighted me	ean –	- 5.0	Mea	$\frac{1}{10000000000000000000000000000000000$	<u> </u>

 $V_a + 25.24$ $V_d + 0.20$

Reduction to Sun Radial Velocity

+20.4 km.

+25.44

1901, October 3, G. M. T. 19h 26m Hour angle E 2h 49m

β ORIONIS—A 262

Star good; comparison good.

Measured by A. Power 21

Ti 19.2059 S 23.7369	Standard 4388,179	±0.000	-0.046	4338.084 4388.100	+0.033	+2.2	1
Ti 24.7553 S 27.8874	4399.992 4437.700	-0.057	-0.005	4399.935 4437.718	-0.023	-1.6	1
Ti 28.3915 Ti 28.8172	4443.972 Standard	+0.004 ±0.000		4443.976 4449.313			
Ti 30.3324 S 30.5638 S 31.3043	$\begin{array}{r} 4468.668 \\ 4471.672 \\ 4481.374 \end{array}$	-0.005	$ \begin{array}{c} -0.001 \\ +0.014 \end{array} $	4468,663 4471,676 4481,400	-0.005 -0.012	-0.3 -0.8	1
Ti 31.3081 Ti 37.2144	4481.424 Standard	+0.014 ±0.000		4481.438 4563.939	0.012	0.0	
S 37.4833	4567.928	,	±0.000	4567.950	-0.022	-1.4	1

Curvature Cor. +0.0001 mm.

Weighted mean

-0.4

Mean - 0.4

Mean +3.3

 $V_a + 22.92 \ V_d + 0.23$

Reduction to Sun Radial Velocity

+23.15+22.8 km.

1901, October 18, G. M. T. 20h 7m Hour angle E 1^h 12^m

в ORIONIS—В 207

Star good; comparison good.

Measured by A. Power 24

			1				
Ti 22.9731	Standard	+0.000		4338.084			
S 23.3055	4340.709	10.000	-0.001	4340.634	+0.074	+5.1	2
S 29.0872	4388.203		-0.019	4388.100	+0.084	5.7	1
Ti 29.9062	4395,223	-0.022		4395.201	· ·		
S 34.6936	4437.824		-0.003	4437.718	+0.103	7.0	1
Ti 35.3601	Standard	± 0.000		4443.976			
Ti 37.9741	4468.654	+0.009	10.04	4468.663	1.0.004	0.0	
S 38.2864	4471.663		+0.017	4471.676	+0.004	0.3	3
S 39.2846	4481.367	1000	+0.045	4481.400	+0.012	0.8	4
Ti 39.2873	4481.393	+0.045		4481.438			
Ti 45.8676	Standard	±0.000		4548.938			
Ti 46,2087	4552.618	+0.014	10.014	4552.632	1.0.019	0.0	1
S 46.2208	4552.749		+0.014	4552.750	+0.013	0.9	1

Curvature Cor. +0.0002 mm,

Weighted mean

+ 2.3

 $V_a + 19.38$ $V_d + 0.10$

Reduction to Sun

+19.48

Radial Velocity +21.8 km.

B ORIONIS -B 207

Measured by F. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 19.675	Standard	± 0.000		4338.084			
S 19.994	4340,604		-0.003	4340.634	-0.033	-2.3	1
$Ti_{-}25.656$	4387.079	-0.072		4387.007			
S 25.777	4388.105		-0.070	4388.100	-0.065	-4.4	1
Ti 30.239	4427.276	-0.010		4427.266			
Ti 34.680	Standard	± 0.000		4468,663			
S 34.996	4471.705		± 0.008	4471.676	+0.037	+2.5	2
S 35.984	4481.303		+0.035	4481.400	-0.062	-4.2	3
Ti 35.994	4481.403	+0.035		4481.438			
Ti.43.959	4563.906	+0.033		4563,939			
S 44.327	4567.954		+0.029	4567.950	+0.033	+2.2	2
Ti 46.308	Standard	± 0.000		4590.126	*		

Weighted mean Curvature Cor.

-1.1-0.17 Mean - 1.2

 $V_a = +19.38$ $V_d + 0.10$

Reduction to Sun

+19.48

Radial Velocity

+18.2 km.

β ORIONIS--A 284

1901, October 31, G. M. T. 19h 58m Hour angle E 0^h 29^m

Star good; comparison good.

Measured by A. Power 21

					1		T
S 23.5148	4340.641		± 0.000	4340,634	+0.007	+0.5	2
Ti 23.5983	Standard	± 0.000		4341.530			
Ti 27.7147	4387.009	-0.002		4387.007			
S 27.8156	4388.166		-0.002	4388,100	+0.064	4.7	3
Ti 29.2155	Standard	± 0.000		4404.433			
Ti 34.2076	4465,956	+0.019		4465.975		1	1
S 34.6563	4471.772		± 0.012	4476.676	+0.108	7.2	3
S 35,3907	4481.400		± 0.000	4481.400	± 0.000	0.0	3
Ti 35,3936	Standard	± 0.000		4481.438			

Curvature Cor. +0.0005 mm.

Weighted mean $V_a + 15.23$

+ 3.2

Mean +3.0

 $V_d + 0.04$ Reduction to Sun

+15.27

Radial Velocity

+18.5 km.

1901, November 7, G. M. T., 18^h 6^m

Hour angle E 1^h 50^m

β ORIONIS — B 213

Star good; comparison fair.

Measured by A. Power 21

		1			1		
S 33.3753	4388.314		± 0.000	4388.100	+0.214	+14.6	1
Ti = 34.7200	Standard	± 0.000		4399.935	1		1
Ti = 42.2191	4468.689	-0.026		4468,663			1
S 42.5474	4471.862		-0.020	4471.676	+0.166	11.1	1
Ti-43.5294	Standard	± 0.000		4481.438			
S 43.5355	4481.498		± 0.000	4481,400	+0.098	6.6	2
Ti = 53.8091	Standard	± 0.000		4590,126			}

Curvature Cor. +0.0008 mm.

Weighted mean +9.7 Mean + 10.8

 $V_a + 12.67$ $V_d + 0.16$

Reduction to Sun Radial Velocity

+12.83 $\pm 22.5\,\mathrm{km}$. 1901, November 8, G. M. T. 20h 6m Hour angle W 0h 10m

BORIONIS-B 220

Star good; comparison slightly weak.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m	t.m.	km.	_
Ti = 20.1587	Standard	± 0.000		4338.084			
S 20.4953	4340.749		-0.001	4340.634	+0.114	$^{+7.9}_{7.9}$	2
S 21.9256	4352.202		-0.005	4352.083	+0.114	7.9	2
S 26.2738	4388.332		-0.018	4388.100	+0.214	14.6	1
Ti = 27.0757	4395.221	-0.020		4395.201			
Ti = 32.5195	Standard	± 0.000		4443.976			,
Ti 35.1300	4468.661	+0.002		4468.663			
S 35.4584	4471.830		+0.004	4471.676	+0.158	10.6	2
Ti = 36.4438	4481.427	+0.011		4481.438			
S 36.4585	4481.587		+0.011	4481.400	+0.198	13.2	3
Ti = 45.1340	Standard	± 0.000		4572.156			
S 46.2063	4584.173		± 0.000	4584.018	+0.155	10.1	1

Curvature Cor. +0.0009 mm.

Hour angle E 0h 15m

Weighted mean

+10.7

Mean + 10.7

Mean + 13.5

Mean + 11.6

$$V_a + 12.25 \ V_d - 0.01$$

Reduction to Sun Radial Velocity

+12.24 $+22.9\,\mathrm{km}$.

1901, November 14, G. M. T. 19h 19m

β ORIONIS — B 231 Star good: comparison good.

Measured by A. Power 21

			1				
Ti. 18,6998	Standard	+0.000		4338.084			
S 19.0460	4340.831		-0.003	4340.634	+0.194	+13.4	1
Ti 24.6539	4387.055	-0.048		4387.007			
S 24.7978	4388.286		-0.047	4388.100	+0.139	9.5	1
Ti 33,6420	4468.662	+0.001		4468.663			
S 33.9775	4471.906		+0.001	4471.676	+0.231	15.5	1
Ti 34.9543	Standard	± 0.000		4481.438			
S 34.9709	4481.601		± 0.000	4481.400	+0.201	13.4	3
S 44.7033	4584.259		± 0.000	4584.018	+0.241	15.8	1
Ti 45.2195	Standard	± 0.000		4590.126			
							1

Curvature Cor. +0.0008 mm.

+13.5Weighted mean

 $V_a + 9.85$ $V_d + 0.02$

Reduction to Sun Radial Velocity

+9.87 $+23.4 \, \text{km}$.

1901, November 15, G. M. T. 18^h 52^m Hour angle E 0h 35m

β ORIONIS - B 237

Star good; comparison good.

Measured by A. Power 21

Ti 20.7414	Standard	±0.000		4338.084			
S 21.0810	4340.777		-0.002	4340.634	+0.141	+9.7	1
Ti 26.6980	4387.049	-0.042		4387.007			
S 26.8506	4388.354		-0.041	4388.100	+0.213	14.5	2
Ti 34.3108	Standard	± 0.000		4455.485			
Ti 35.6896	4468.656	+0.007		4468.663	1004		
S 36.0229	4471.878		+0.012	4471.676	+0.214	14.4	3
Ti 37.0002	4481.412	+0.026		4481.438	10.104	44.0	
S 37.0130	4481.538		+0.026	4481.400	+0.164	11.0	1 1
S 46.7429	4584.143		+0.001	4584.018	+0.126	8.2	1
Ti = 47.2694	Standard	± 0.000		4590.126			

Curvature Cor. +0.0008 mm.

Weighted mean

+12.2

 $V_a + 9.44 \ V_d + 0.05$

Reduction to Sun Radial Velocity

+ 9.49 $+21.7 \, \text{km}$.

197

1901, November 27, G. M. T. 21^h 22^m Hour angle W 2h 43m

β ORIONIS - B 252

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t.m.	km.	
Ti = 18.1164	Standard	± 0.000		4338.081			
S 18,4616	4340.849		-0.004	4340,634	+0.211	+14.6	1
Ti = 24.0166	1387.076	-0.069		4387.007	'	,	
S = 24.1593	4388.308		-0.068	4388.100	+0.140	9.6	1
Ti=32.9216	Standard	± 0.000		4468.663			
S 33.2595	4471.959		± 0.003	4471.676	+0.286	19.2	2
Ti = 34.2210	4481.424	+0.014		4481.438	'		
S 31.2413	4481.625		+0.014	4481.400	+0.239	16.0	3
Ti = 41.4023	Standard	± 0.000		4590.126			

Curvature Cor. +0.0009 mm.

+15.8Weighted mean

Mean + 14.8

 $V_a = +4.23$ $V_d = 0.22$

Reduction to Sun Radial Velocity

+4.01 $+19.8 \, \mathrm{km}$.

1901, December 18, G. M. T. 18^h 12^m Hour angle W 0^h 56^m

β ORIONIS—B 257 Star good; comparison good,

Measured by A. Power 21

Ti 17.0931	Standard	±0.000		4338.084			
S 17.4562	4341,007	10.00	-0.002	4340,634	+0.371	+25.6	1
Ti = 22.9621	4387.039	-0.032		4387.007	' ' '	1 ==	_
S = 23.1360	4388.547		-0.032	4388.100	+0.415	28.4	2
Ti 31.4164	Standard	±0.000	10.000	4464.617	1.0.494	20 4	
S 32.1790 Ti 33.1190	$\begin{bmatrix} 4472.068 \\ 4481.363 \end{bmatrix}$	+0.075	+0.032	$\frac{4471.676}{4481.438}$	+0.424	28.4	3
S 33.1516	4481.687	7-0.013	+0.075	4481.400	+0.362	24.2	9
S 42.7593	4584.341		±0.000	4584.018	+0.323	$\frac{51.7}{21.1}$	ī
$Ti\ 43.2620$	Standard	±0.000		4590.126	'		

Curvature Cor. +0.0007 mm.

Weighted mean +26.3 Mean + 25.6

Mean +25.4

 $V_a = -5.14 \ V_d = -0.08$

Reduction to Sun Radial Velocity

-5.22

 $+21.1 \mathrm{km}$.

1901, December 19, G. M. T. 17^h 34^m Hour angle W 0^h 23^m

β ORIONIS -- A 297 Star good; comparison good.

Measured by A. Power 21

Ti = 21.0390	Standard	± 0.000		4338.084			
S = 21.3084	4341.000		-0.002	4340.634	+0.364	+25.2	1
Ti/25.4010	4387.040	-0.033		4387.007	,	,	
3 - 25,5270	4388.511		-0.029	4388.100	± 0.382	26.1	2
Ti. 26,4958	Standard	±0.000		4399.935	' '		
Ti~31.9849	4468.652	+0.011		4468.663			
S 32.2453	4472.091		± 0.008	4471.676	± 0.423	28.4	9
Ti~32.9465	Standard	± 0.000		4481.438			
32,9680	4481.726		± 0.000	4481.400	+0.326	21.8	2

Curvature Cor. +0.0006 mm.

Weighted mean +25.4

 $V_d = 5.58 \ V_d = 0.03$

Reduction to Sun -5,61Radial Velocity +19.8 km.

198

1901, December 31, G. M. T. 15^h 12^m Hour angle E 1h 12m

β ORIONIS -- B 261

Star good; comparison good.

Measured by A. Power 21

Mean of Scttings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
S 23.8840	4341.118	,	± 0.000	4340.634	+0.484	+33.4	2
Ti 23.9354	Standard	± 0.000		4341.530	1	'	
Ti~29.4018	4387.014	-0.007		4387.007			
S 29.5832	4388.581		-0.006	4388.100	+0.475	32.5	1
Ti 31.3940	Standard	± 0.000		4404.433			
Ti 37.8867	4464.638	-0.021		4464.617			
S 38.6513	4472.097		-0.012	4471.676	+0.409	27.4	3
Ti 39.5972	Standard	± 0.000		4481.438			
S 39.6438	4481.901		± 0.000	4481.400	+0.501	33.5	4

Curvature Cor. +0.0008 mm.

Weighted mean +31.6

 $V_d = -10.69 \ V_d + 0.10$

Reduction to Sun Radial Velocity

-10.59 $+21.0\,\mathrm{km}$.

β ORIONIS -- B 261

Measured by F. Power 12

		1					
S 29.9627	4341.268		± 0.001	4340.634	± 0.635	+43.9	1
$Ti \ 30.3581$	Standard	± 0.000		4344.451			
Ti 35.4653	4387.066	-0.059		4387.007			
S 35.6385	4388.562		-0.059	4388.100	+0.403	27.5	1
Ti 39.9853	Standard	± 0.000		4427.266			
Ti~44.0880	4465.969	+0.006		4465.975	ĺ		
S 44.7186	4472.117		+0.003	4471.676	+0.444	29.8	3
$Ti\ 45.6641$	Standard	± 0.000		4481.438			
S 45.7128	4481.921		± 0.000	4481.400	+0.521	34.9	3
				1			

Weighted mean Curvature Cor.

+33.2-0.82 Mean + 34.0

Mean + 31.7

 $V_d = V_d$ -10.69+ 0.10

Reduction to Sun Radial Velocity

-10.59 $+21.8 \, \mathrm{km}$.

1902, January 4, G. M. T. 17h 44m Hour angle W 1h 35m

β ORIONIS—A 300 Star strong; comparison good.

Measured by A. Power 21

Mean +35.8

	1						1
Ti 22.4561	Standard	± 0.000		4338.084			
S 22.7409	4341.162		-0.003	4340.634	+0.525	+36.3	1
Ti 26.8268	4387.053	-0.046		4387.007			
S 26.9671	4388.688		-0.013	4388.100	+0.545	37.2	2
Ti 28.8668	Standard	± 0.000		4411.240			
Ti 33.4260	4468.678	-0.015		4468.663	1.0 700	00.0	
S 33.6985	4472,269		-0.011	4471.676	+0.582	39.0	2
Ti 34.3880	Standard	± 0.000		4481.438	1.0.461	30.8	9
S 34.4196	4481.861		±0.000	4481.400	+0.461	50.8	9

Curvature Cor. +0.0005 mm.

+35.2Weighted mean

 $V_a = -12.35$ $V_d = -0.14$

-12.49Reduction to Sun Radial Velocity +22.7 km. 1902, January 8, G. M. T. $18^{\rm h}~15^{\rm m}$ Hour angle W $2^{\rm h}~24^{\rm m}$

β ORIONIS -- A 306

Star good; comparison good.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
$Ti_{-}26.0198$	Standard	± 0.000		4338.084			
S 26.3109	4311.220		± 0.000	4340.634	+0.586	+40.5	1
S 30.5367	4388.582		± 0.000	4388,100	+0.482	32.9	1
Ti = 31.5042	Standard	± 0.000		4399.935	'		
Ti.37.0198	4468.652	± 0.011		4468.663			
S 37.2933	4472.248		± 0.008	4471.676	± 0.580	38.9	2
Ti 37.9859	Standard	$\pm \bar{0}.000$		4481.438	1 - 1 - 1		
S 38.0223	4481.924		± 0.000	4481.400	± 0.524	35.1	1

Curvature Cor. +0.0005 mm.

Weighted mean

+37.2

.Mean + 36.8

 $V_a = -13.92$ $V_d = -0.20$

Reduction to Sun

-14.12

Radial Velocity

 $+\frac{23.1}{23.1}$ km.

1902, January 9, G. M. T. $14^{\rm h}$ $41^{\rm m}$ Hour angle È $1^{\rm h}$ $14^{\rm m}$

Standard

4388.587

Standard

4468.654

4472.261

Standard

4481.947

Standard

Standard

Standard

4713.937

Ti = 18.3004

S 24.3850 Ti 25.6876 Ti 33.1168

Ti 34.4178

Ti = 44.6069

Ti = 50.1609

Ti = 54.3252

33.4863

34.4691

54.5924

β ORIONIS—B 270 Star good; comparison good.

Measured by A. Power 21

 ± 0.000 4338.084 ± 0.000 4388.100+0.487+33.31 ± 0.000 4399.935+0.0094468.663 +0.0074471.676+0.59239.7 1 ± 0.000 4481.438 000.004481.400 ± 0.547 36.5 2 ± 0.000 4590.1264656.644 ± 0.000

4710.368

4713.308

Curvature Cor.+0.0008 mm.

Weighted mean

 ± 0.000

+37.2

Mean + 37.4

40.0

1

+0.629

 $V_a = 14.24 \ V_d + 0.11$

 ± 0.000

Reduction to Sun Radial Velocity

-14.13

+23.1 km.

β ORIONIS—B 270

Measured by F. Power 13

S 29.9906	4341.124		-0.001	4340.634	+0.489	+33.8	2
Ti = 30.0412 Ti = 35.5109	Standard 4387.073	± 0.000 -0.067		4341,530		·	
S 35,7116	4388,806	-0.007	-0.069	$\frac{4387.007}{4388.100}$	+0.637	43.5	2
Ti = 44.1458 $Ti = 44.7062$	4465.986	-0.011		4465.975			
S 44.7878	$\begin{array}{c} 4471.435 \\ 4472.231 \end{array}$	-0.027	-0.013	$4471.408 \\ 4471.676$	+0.542	36.3	3
Ti = 45.7239	Standard	±0.000		4481.438	10.517	94.0	9
$egin{array}{cccc} \mathbf{S} & 45.7722 \ Ti & 63.4749 \end{array}$	4481.917 Standard	±0.000	±0.000	4481,400 4682,088	+0 517	34.6	3
Ti = 65.6312	4710.406	-0.038		4710.368		OF 0	
S 65.8922	4713.901		-0.038	4713.308	+0.555	35.3	1

Weighted mean Curvature Cor. $+36.5 \\ -0.82$

Mean + 36.7

urvature Cor. $V_{\alpha} = -14$

 $V_a = -14.24 \ V_d + 0.11$

Reduction to Sun Radial Velocity

 $\frac{-14.13}{+21.6}$ km.

1902, January 16, G. M. T. 17^h 3^m Hour angle W 1^h 46^m

β ORIONIS-B 277 Star good; comparison good.

Measured by A. Power 21

	Wave-Length by	Correction to	Correction to	Normal Wave-	}		
Mean of Settings	Formula	Comp. Lines	Star Lines	Length	Displacement	Velocity	Weight
		_			-		
mm.	t.m.	t.m.	t.m.	t. m.	t. m.	km.	
Ti 17.2623	Standard	± 0.000		4338.084			
S 17.6427	4341.132		-0.002	4340.634	± 0.496	+34.3	1
Ti = 23.1558	j 4387.04 2	-0.035	Í	4387.007	,	•	1
Ti 24.6347	Standard	± 0.000		4399.935			
S 28.8554	4438.179		± 0.046	4437.718	+0.507	34.3	1
Ti 29.4687	4443,923	+0.053		4443.976	,		
Ti = 32.0516	4468,657	± 0.006		4468.663			
S 32.4205	4472.263		+0.004	4471.676	+0.591	39.6	3
Ti 33.3503	Standard	± 0.000		4481.438	'		
S 33.3924	4481.856		±0.000	4481.400	± 0.456	30.5	2
S 43,0322	4584.478		±0.000	4584.018	± 0.460	30.1	1
Ti 43.5254	Standard	± 0.000		4590.126	1 '		i
Ti 49.0727	Standard	± 0.000		4656.644			
Ti = 53.2285	Standard	± 0.000		4710.368			
S 53,4933	4713.913		± 0.000	4713.308	+0.605	38.5	2
	ł	1	ł l		,		

Curvature Cor. +0.0008 mm.

Weighted mean

+35.6 $V_a = -16.81$

Mean + 34.5

 $V_d = 0.15$ Reduction to Sun

-16.96

Radial Velocity

+18.6 km.

β ORIONIS-B 277

Measured by F. with Zeiss Comparator

Power 17

	1						
S 24.4155	4341.181		± 0.000	4340.634	+0.547	+37.8	2
Ti 24.4587	Standard	± 0.000		4341.530	,		
Ti = 29.8992	4387,055	-0.048		4387.007			
S 30.0715	4388.550		-0.048	4388.100	+0.402	27.5	3
Ti = 38.4880	Standard	± 0.000		4465.975			
Ti = 39.0440	4471.412	-0.004		4471.408			
S 39.1255	4472.213		-0.004	4471.676	+0.533	35.7	2
Ti = 40.0540	4481.398	+0.040		4481.438			
S 40.0952	4481.808		+0.040	4481.400	+0.448	30.0	4
Ti = 44.1042	4522.918	± 0.058		4522.974	,		
S 44.1345	4523.237		+0.058	4522.802	+0.493	32.7	1
S 49.7010	4584.492		+0.005	4584.018	+0.479	31.3	1 2
Ti = 50.1905	Standard	± 0.000		4590.126			

Curvature Cor. + 0.0011 mm.

Mean + 32.5

Weighted mean $V_a = -16.81$ $V_d = -0.15$

Reduction to Sun Radial Velocity

-16.96+14.9 km.

1902, January 24, G. M. T. 12^h 50^m

β ORIONIS—B 282 Star good, comparison good Measured by F. with Zeiss Comparator Power 13

Hour angle E 2" 00"		Star good;	Comparison	good.		10	wer 19
Ti 32.207	Standard	±0.000		4338.084	1.0.40	1010	
S 32.586 Ti 38.076	$4341.132 \\ 4387.024$	-0.017	±0.001	4340.634 4387.007	+0.497	+34.3	1
S 38.257 Ti 39.551	4388,594 Standard	±0.000	-0.017	$4388.100 \\ 4399.935$	+0.477	32.6	1
Ti 46,937 S 47,309	4468.665 4472.318	-0.002	-0.002	$4468.663 \\ 4471.676$	+0.640	42.9	1
Ti 48.229 S 48.288	Standard 4482.0 2 6	±0.000	±0.000	4481.438 4481.400	+0.626	41.9	2
							1

Curvature Cor. + 0.0011 mm.

Weighted mean +38.7 Mean + 37.9

 $\begin{array}{ccc}
V_a & -19.32 \\
V_d & + 0.17
\end{array}$

Reduction to Sun

-19.15 $+19.6\,\mathrm{km}$.

Radial Velocity

β ORIONIS-B 282

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm,	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti=23.2788	Standard	± 0.000		4338.084			
S = 23.6556	4341.106		± 0.000	4340.634	+0.472	± 32.6	2
S = 29.3646	4388.745		± 0.000	4388.100	± 0.645	44.1	$\frac{1}{2}$
Ti = 30.1065	Standard	± 0.000		4395.201	' '		-
Ti = 31.9213	4411.266	-0.026		4411.240			
S = 32,6320	4417.665		-0.023	4417.121	+0.521	35.4	1
Ti = 38.0620	Standard	± 0.000		4468.663			
S = 38.4323	4472.283		± 0.000	4471.676	+0.607	40.7	3
Ti = 39.3653	4481.488	-0.050	,	4481.438	'		
S 39.4324	4482.028		-0.050	4481,400	+0.578	38.7	1
Ti = 55.0843	Standard	± 0.000		4656.644	'		
Ti = 57.0867	Standard	± 0.000		4682.088	•		
Ti = 58.3815	Standard	± 0.000		4698,946			
S = 59.5088	4713.891		± 0.000	4713,308	+0.583	37.1	3

Curvature Cor. +0.0008 mm.

 $\begin{array}{ccc} & & +38.4 \\ V_a & -19.32 \\ V_d & +0.17 \end{array}$ Weighted mean

Mean + 38.1

Reduction to Sun Radial Velocity

-19.15+19.2 km.

1902, February 10, G. M. T. 14^h 54^m Hour angle, W 1^h 10^m

β ORIONIS—A 312

Measured by A. Power 21

Star good; comparison good.

		3 . 1					
Ti 25.3630	Standard	±0.000		4338.084			
S 25,6543	4341.234		-0.001	4340.634	+0.599	+41.4	2
Ti 29.7287 S 29.8806	$4387.019 \\ 4388.791$	-0.012	-0.011	4387.007 4388.100	+0.680	46.4	1
Ti = 31.7702	Standard	± 0.000		4411.240			1
S 33.9747 Ti 34.4129	4438,429 4443.967	10,009	+0.007	$4437.718 \\ 4443.976$	+0.718	48.5	1
Ti 36.3238	4468.657	+0.006		4468.663			
S 36.6081 Ti 37.2864	4472.407 Standard	±0.000	+0.004	4471.676 4481.438	+0.735	49.3	3
S 37.3279	4481.994	10.000	± 0.000	4481.400	+0.594	39.7	3
			1				

Curvature Cor.+0.0005 mm.

Weighted mean +44.5

 $V_a = -23.47$ $V_d = 0.10$

Reduction to Sun Radial Velocity

-23.57 $+20.9 \, \text{km}$.

1902, March 3, G. M. T. $13^h 44^m$ Hour angle W $1^h 23^m$

βORIONIS — A330

Measured by A. Power 21

Mean+45.1

Star good	Star good; comparison good.				
lard ±0.000		4338.084			
.307	± 0.000	4340.634	+0.673	+46.5	2
+0.029		4387.007	,	1	
.658	± 0.027	4388,100	± 0.585	40.0	2
	'	4399,935	'		_
.672 -0.009	1	4468.663			
977	-0.006	4471.676	± 0.695	46.6	4
		4481.438			-
	± 0.000	4481.400	+0.635	42.5	3
	dard ±0.000 .307	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Curvature Cor.+0.0005 mm.

+41.3Weighted mean

Mean ± 43.9

 $V_a = -25.63$ $V_d = 0.12$

Reduction to Sun Radial Velocity

 $+18.5\,\mathrm{km}$.

-25.75

202

SUMMARY OF MEASURES OF BORIONIS

Plate	Date	Adams	No. of Lines	Frost	No. o Line
A207	1901, Sept. 4	+20.4	4		
A262	Oct. 3	+22.8	5		
B207	Oet. 18	+21.8	6	+18.2	5
A284	Oct. 31	+18.5	3		
B213 B220	Nov. 7 Nov. 8	+22.5	6		
B231	Nov. 14	$^{+22.9}_{+23.4}$	5		
B237	Nov. 14 Nov. 15	± 21.7	5		
B252	Nov. 27	± 19.8	4		
B257	Dec. 18	+21.1	5		
A297	Dec. 19	+19.8	4		::
B261	Dec. 31	+21.0	4	+21.8	4
A300	1902, Jan. 4	+22.7	4		
A306	Jan. 8	+23.1	4		
B270	Jan. 9	+23.1	4	+21.6	5
B277	Jan. 16	+18.6	6	+14.9	5
B282	Jan. 24	+19.2	6	+19.6	4
A312	Feb. 10	+20.9	5		
A330	Mar. 3	+18.5	4		

Mean

+21.1

+19.2

Mean of 19 plates Mean of all measures +20.9 km.+20.7 km.

7. \(\gamma \) ORIONIS

(R. A.= 5^{h} 20^m; Dee.= $+6^{\circ}$ 15'; Mag. 1. 9; Class IVa)

Seven plates of this star have been measured, six by A., and four by F., with three common to the two observers. An interesting systematic difference seems to exist in the two sets of measures, which is probably due to the different personality effects which enter into the settings upon the broad lines of the star spectrum. The general features of this spectrum are very similar to those of ζ Persei.

1901, September 11, G. M. T. 21^h 32^m Hour angle E 2^h 17^m

 γ ORIONIS — A224

Star fair; comparison rather weak.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm,	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
S 26.0285	4340.459		±0.000	4340.634	-0.175	-12.1	4
H 26.0449	Standard	± 0.000		4340.634			
S 30.3242	4387.938		-0.056	4388.100	-0.218	14.9	2
Ti = 30.9596	4395,266	-0.065		4395.201			
Ti = 36.9536	Standard	± 0.000		4468,663			
S 37,1664	4471.419		+0.028	4471.676	-0.229	15.4	2
$He \ 37.1849$	4471.648	+0.028		4471.676			
S 37.9127	4481.174		+0.027	4481.400	-0.199	13.3	4
Ti = 42.8823	4549.788	+0.020		4549 808			
S 43.0712	4552.529		+0.018	4552.750	-0.203	13.4	1
Ti = 43.8492	4563.926	+0.013		4563.939			
S 44.1047	4567.708		+0.007	4567.950	-0.235	15.4	1
Ti = 44.4036	Standard	± 0.000		4572.156			2
S 44.5777	4574.759		± 0.000	4574.900	-0.141	9.2	

Curvature Cor. +0.0001 mm.

Weighted mean - 13.1

Mean - 13.4

 $V_a + 28.31 \ V_d + 0.19$

Reduction to Sun Radial Velocity $+28.50 \\ +15.4 \text{ km}.$

 γ ORIONIS—A 258

1901, October 2, G. M. T. $21^{\rm h}\,34^{\rm m}$ Hour angle E $0^{\rm h}\,47^{\rm m}$

Star good: comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m	t. ni.	km.	
Ti = 18.1261	Standard	± 0.000		4338,084			
S 18.3507	4340.474		-0.001	4340.634	-0.161	-11.1	1
Ti = 22.5613	4387.039	-0.032		4387,007			
S 22.6451	4388.001	,	-0.032	4388.100	-0.131	9.0	2
Ti = 23.6768	4399.961	-0.026		4399.935			-
S 24,9370	4414.871		-0.016	4415.076	-0.221	15.0	1
Ti = 25.9640	4427.274	-0.008		4427.266			
S 26.7986	4437.526		-0.004	4437.718	-0.196	13.2	1
Ti = 27.7427	Standard	± 0.000		4449.313			
Ti=29.2569	4468.653	+0.010		4468.663			
S 29.4801	4471.551		+0.013	4471.676	-0.112	7.5	2
S 30.2139	4481.163		-0.026	4481.400	-0.211	14.1	1
Ti = 30.2328	4481.412	+0.026		4481.438			
Ti = 36.1383	Standard	± 0.000		$4563 \cdot 939$			
S 36,3967	4567.774		±0 000	4567.950	-0.176	11.6	1

Curvature Cor.+0.0001 mm.

Weighted mean
$$V_a + 26.61$$
 $V_d + 0.07$ Reduction to Sun $+26.68$

+15.8km.

Radial Velocity

γ ORIONIS - B 221

1901, November 8, G. M. T. $20^{\rm h}\,38^{\rm m}$ Hour angle W $0^{\rm h}\,32^{\rm m}$

Star fair; comparison good.

Measured by A. Power 14

Mean - 11.6

Hour angle W 0 02		istat fatt, compatison good.					
Ti 20.0778	Standard	± 0,000		4338.084			
8 20.4093	4340.706		-0.001	4340 634	+0.071	+4.9	1
Ti 26.0447	4387.035	-0.028		4387.007	'		
S 26.1716	4388.118		-0.026	4388,100	-0.008	-0.6	2
Ti = 27.5425	Standard	± (), O(x)		4399.935			1
Ti.35.0484	4468.668	-0.005		4468.663			
S 35,3560	4471.642		-0.001	4471.676	-0.038	-2.5	1
Ti 36,3606	Standard	± 0.000		4481,438			
S 36,3629	4481.461		±0.000	4481.400	+0.061	$^{+4.1}_{+2.7}$	1
S 43.2799	-4552.791		± 0.000	4552.750	+0.041	+2.7	1
Ti 43.5444	Standard	± (), (XX)		4555.662			
$Ti\ 44.3037$	4563,962	-0.023		4563.939			
S 44.6755	4568,060		-0.018	4567.950	+0.092	+6.0	3
Ti 46.6437	4590.128	-0.002		4590,126			
Ti 49.0040	Standard	± 0.000		4617.452			
Ti 52.2489	4656.637	+0.007		4656,644			
Ti 54.2731	Standard	±0.000		4682.088			
Ti 56.4512	4710.389	-0.024		4710.368			
S 56.6702	4713.289		-0.024	4713 308	-0.040	-2.5	3

Curvature Cor. $\pm 0.0009 \,\mathrm{mm}$.

Weighted mean
$$+$$
 1.6 V_a $+$ 15.47 V_d $-$ 0.05

Reduction to Sun +15.42 Radial Velocity +17.0 km. Mean +1.7

γ ORIONIS-B 221

Measured by F. Power 15

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 30.0031 S 30.1385	Standard 4388.164	±0.000	-0.001	$\frac{4387.007}{4388.100}$	+0.063	+4.3	3
S 33.2198 Ti 33.2198	$\begin{array}{c} 4415.067 \\ 4417.922 \end{array}$	-0.038	-0.035	4415.076 4417.884	-0.044	- 3.0	1
Ti 38.7276 S 39.3271 Ti 40.3191	4465.997 4471.773 Standard	-0.022 ± 0.000	-0.014	4465.975 4471.676 4481.438	+0.083	+ 5.6	3
S 40.3295 Ti 47.2247	4481.540 4552.601	+0.031	±0.000	4481.400 4552.632	+0.140	+9.4	1/2
S 47.2543 Ti 47.5037	$4552.924 \\ 4555.627$	+0.035	+0.031	$4552.750 \\ 4555.662$	+0.202	+13.3	11/2
S 48.6214 Ti 50.6058	4567,875 Standard	±0.000	+0.016	4567.950 4590.126	-0.059	- 3.9	1

Curvature Cor. $+0.0013 \,\mathrm{mm}$.

 $V_a + 15.47 \\ V_d = 0.05$ Weighted mean

Mean +4.3

Reduction to Sun Radial Velocity

+15.42+20.2 km.

γ ORIONIS---B 253

1901, November 27, G. M. T. 21^h 55^m Hour angle W 3h 8m

Star strong; not quite centrally between comparison spectra.

Measured by F. Power 14

S 29,9085	4340.732		+0.067	4340,634	+0.165	+11.4	2
Ti 29.9995	4341.463	+0.067		4341.530	'		
Ti 35.4665	Standard	± 0.000		4387.007			
S 35,6305	4388.424		± 0.000	4388.100	+0.324	22.1	2
Ti 39,9935	4427.264	+0.002		4427.266			
S 41.1325	4437.783		-0.001	4437.718	+0.064	4.3	1/2
Ti 42.3615	4449.318	-0.005		4449.313			
Ti 44,1005	Standard	± 0.000		4465.975			
S 44.7040	4471.850		+0.004	4471.676	+0.178	11.9	3
Ti 45.6765	4481.423	± 0.013		4481.438		•	
S 45.7025	4481.680		+0.013	4481.400	+0.293	19.6	1/2
Ti 52.5135	4552,592	+0.040		4552.632			
S 52.5510	4553,002		± 0.035	4552.750	+0.287	18.9	1
Ti 52.7915	4555.638	+0.024		4555.662			
S 53,9210	4568.144		± 0.020	4567.950	+0.214	14.0	2
Ti 55,8615	Standard	± 0.000		4590.126			

Curvature Cor. +0.0015 mm.

 $V_a + 6.75$ $V_d - 0.25$ un Weighted mean

Mean + 14.6

Reduction to Sun Radial Velocity

+6.50+21.2 km.

γ ORIONIS--B 262

1902, December 31, G. M. T. 15^h 38^m Hour angle E 0h 58m

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 30.1486	4471.434	-0.026		4471.408			
S 30 2116	4472.051		-0.026	4471.676	+0.349	+23.4	2
Ti/31.1632	Standard	± 0.000		4481.438		'	
Ti 37.9928	4552,617	+0.015		4552,632			
S 38.0449	4553.187		+0.015	4552,750	+0.452	29.8	1
$Ti\ 41.3381$	Standard	± 0.000		4590.126			
S 41.4567	4591,490		±0.000	4591,066	+0.424	27.7	1
S 44.0480	4621.909		+0.023	4621.549	± 0.383	24.8	1
Ti 44.1603	4623.255	+0.023		4623,279	,		
S 46,3328	4649.742		+0.012	4649.250	+0.504	32.5	2
Ti 46.8864	4656.635	+0.009		4656.644			
Ti~50.1830	4698.940	+0.006		4698,946			
S = 50.2450	4699.757		+0.006	4699.340	+0.423	27.0	2
Ti~51.0447	Standard	± 0.000		4710.368			
S = 51.2930	4713.690		± 0.000	4713.308	± 0.382	24.3	2

Curvature Cor. +0.0008 mm.

Weighted mean
$$V_a = 10.03$$
 $V_d = 10.09$ where $V_d = 0.09$ $V_d = 0.09$

Mean +27.1

Reduction to Sun Radial Velocity

-9.91+17.1 km.

γ ORIONIS—B 262

Measured by F.

wer 1	Por							
			4341,530		+0.117	4341,413	Ti 35,003	
1	+21.7	+0.358	4340.634	+0.119		4340.873	S 34,936	
			4387.007		± 0.000	Standard	$Ti\ 40.467$	
2	23.4	+0.343	4388.100	± 0.000		4388.443	S = 40.633	
			4427,266		-0.001	4427.267	Ti 44.988	
1	23.8	+0.353	4437.718	-0.017		4438.088	S 46.158	
			4440.515		-0.020	4440.535	Ti 46.420	
			4465.975		-0.020	4465,995	Ti/49.092	
2	31.5	+0.515	4471.676	-0.013		4472.204	3 - 49.729	
			4481.438		±0.000	Standard	Ti.50.666	
1	18.5	+0.276	4481.400	± 0.000		4481.676	5 50,690	
			4552.632		+0.017	4552.615	7i 57.498	
11	31.7	+0.481	4552.750	+0.019		4553,212	5 57,553	
		1	4455.662		+0.027	4555.6 35	Ti 57.774	
1	37.9	+0.577	4567.950	+0.018		4568.509	S 58.936	
1/2	33.6	+0.513	4574.900	+0.011		4575,402	S 59.550	
			4590,126		±0.000	Standard	Ti 60.843	
1	28.7	+0.440	4591,066	-0.001		4591.507	S 60.963	
	1		4667.768		-0.100	4667.868	$Ti\ 67.276$	
			4698.946		-0.155	4699.101	Ti 69.689	
			4710.368		-0.190	4710.558	Ti 70.551	
1	30.7	+0.483	4713.308	-0.201		4713.992	S 70.807	

Curvature Cor. +0.001 mm.

 $\begin{array}{c} \text{an} & +28.9 \\ V_a & -10.03 \\ V_d & +0.09 \end{array}$ Weighted mean

Mean +28.8

Reduction to Sun Radial Velocity

-9.94+19.0 km. 1902, March 13, G. M. T. 15h 53m Hour angle W 3h 58m

γ ORIONIS -B 299

Star fair; comparison good.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm,	t. m.	t. m.	t.m.	t. m.	t. m.	km.	
Ti 18.2322	Standard	± 0.000		4338.084			
S 21.8613	4367.681		-0.021	4367.012	+0.648	+44.5	2
Ti 21.8827	4367.860	0.021		4367.839		•	
S 27.6440	4417.817		-0.062	4417.121	+0.634	43.0	1
Ti 27.6583	4417.946	-0.062		4417.884	'		
Ti 32.8061	Standard	± 0.000		4465.975			
S 33.4598	4472.321		+0.008	4471.676	+0.653	43.8	2
Ti 34.3868	4481.420	+0.018		4481.438	' '		
S 34.4508	4482.052		+0.018	4481.400	+0.670	44.8	1
Ti 42.2737	4563,904	+0.035		4563.939	'		
S 42,6999	4568.637		+0.022	4567.950	+0.709	46.5	2
Ti 43.0140	4572.145	+0.011		4572.156			
Ti 44.6012	Standard	+0.000		4590.126			

Curvature Cor. +0.0008 mm.

Weighted mean +41.7

 $V_a = 28.63$ $V_d - 0.29$

Reduction to Sun

Radial Velocity

Mean +44.5

Mean +43.2

Mean +45.7

-28.92+15.8 km.

1902, April 9, G. M. T. 15h 4m Hour angle W 4h 56m

γ ORIONIS—B 317

Star too weak; comparison strong.

Measured by A. Power 17

Ti 22.9221	Standard	±0.000		4387.007			
S 23.1170	4388.687		± 0.000	4388.100	+0.587	+40.1	2
$Ti \ 31.5791$	4465.985	-0.010		4465.975	· ·	,	
S 32.2371	4472.376		-0.006	4471,676	+0.694	46.5	3
Ti 33.1599	Standard	± 0.000		4481.438	·		
S 33.2137	4481.970		± 0.000	4481.400	+0.570	38.1	1
Ti 40.0166	4552.609	+0.023		4552.632			
S 40.0909	4553.420		+0.022	4552.750	+0.692	45.6	1
$Ti\ 43.3733$	Standard	± 0.000	*	4590.126			
S 43.5163	4591.766		± 0.000	4591.066	+0.692	45.7	1

Curvature Cor. +0.0008 mm.

+43.6Weighted mean

-24.92- 0.33

Reduction to Sun Radial Velocity

-25.25 $+\overline{18.4}$ km.

γ ORIONIS—B 317

Measured by F. Power 12

Ti 35.001	Standard	±0.000		4387.007			
S 35.188	4388.618		± 0.000	4388.109	+0.518	+35.4	2
Ti 37.764	4411.224	+0.016		4411.240	· ·	,	
S 38.287	4415.903		+0.010	4415.076			1
Ti 40.294	4434.187	-0.019		4434.168	± 0.837	+56.8	1
S 40.739	4438.303		-0.019	4437.718	+0.566	38.2	1
Ti 43.662	4465.993	-0.018		4465.975			
S 44.318	4472.368		-0.007	4671.676	+0.685	45.9	2
Ti 44.590	Standard	± 0.000		4475.026			
Ti 52.100	4552.616	+0.016		4552 , 632			
Ti 52.782	4560.076	+0.026		4560.102			
S 53.363	4568.730	******	+0.018	4567.950	+0.798	52.4	1
Ti 55.457	Standard	± 0.000		4590.126			

Curvature Cor. +0.001 mm.

+44.3Weighted mean

 $V_a = -24.92 \ V_d = 0.33$

207

Reduction to Sun Radial Velocity

-25.25+19.0 km.

SUMMARY OF MEASURES OF Y ORIONIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 224	1901, Sept. 11	+15.4	7		
A 258	Oet. 2	± 15.8	7		
B 221	Nov. 8	+17.0	7	+20.2	6
B 253	Nov. 27			+21.2	7
B 262	Dee, 31	+17.1	7	+19.0	10
B 299	1902, Mar. 13	± 15.8	5		
B 317	Apr. 9	+18.4	5	± 19.0	1

Mean +16.6

+20.1

Mean of 7 plates +17.6 km. Mean of all measures +18.0 km.

7. ∈ ORIONIS

(R. A. = 5^h 31^m ; Dec. = $-1^-16'$; Mag. 1.8; Class 11a)

Four plates of this star have been measured, three by F., and four by Λ . All of the lines in its spectrum are extremely broad and ill-defined, and the accuracy of measurement is probably less than for any other star in the list.

10^m

 ϵ ORIONIS--A 208

1901, September 4, G. M. T. $22^{\rm h}$ $10^{\rm m}$ Hour angle E $2^{\rm h}$ $23^{\rm m}$

Star rather strong; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t, m,	t. m.	t. m.	km.	
Ti 23.5317	Standard	± 0.000		4338.084			
Ti~34.7160	Standard	± 0.000		4468,663			
S 34.9557	4471.762		± 0.000	4471.676	± 0.086	+5.8	2
S 35.6890	4481.331		+0.017	4481.400	-0.052	-3.5	2
Ti 35.6959	4581.421	+0.017		4481,438			
$Ti_{-}40.8525$	4552.648	-0.016		4552,632			
S 40.8598	4552.738		-0.016	4552.750	-0.012	-0.8	1
Ti = 41.6242	Standard	± 0.000		4563.939			

Curvature Cor. ± 0.0002 mm.

Weighted mean + 0.8

Mean ± 0.5

 $V_a +26.52 \ V_d + 0.20$

Reduction to Sun Radial Velocity

 $\frac{+26.72}{+27.5}$ km.

m

€ ORIONIS—B 228

1901, November 13, G. M. T. 19^h 50^m Hour angle E 0^h 29^m

Star good: comparison strong

Measured by A. Power 17

Hour angle 12 of 25		But good, comparison strong.					1000111		
S 14.5020	4340.974		±0.000	4340.634	+0.340	+23.5	2		
Ti.14.9362	Standard	+0.000		4344 451	'	,			
$Ti_{-}20.1023$	4387.071	-0.064		4387.007					
S 20.2495	4388.328		-0.064	4388.100	+0.164	11.2	112		
S 29.4612	4472.034		-0.006	4471.676	+0.352	23.6			
Ti 30.4276	Standard	± 0.000		4481.438	,				
Ti 37.3358	4552.527	± 0.105		4552.632					
S 37.3726	4552,925		+0.105	4552.750	+0.280	18.4	1 2		
Ti 38,3732	4563.827	+0.112		4563,939					
S 38.7533	4568.011		+0.111	4567.950	± 0.172	11.3	1		
Ti~50.5289	Standard	± 0.000		1710.368					
S 50.7662	4713.516		主() ()()()	4713.308	+0.208	13 2	4		
		1							

Curvature Cor. +0.0008mm.

Weighted mean +15.0

Mean +16.9

 $V_a + 13.73$ $V_d + 0.04$

Reduction to Sun Radial Velocity

+13.77+28.8 km.

208

€ ORIONIS—B 228

Measured by F. Power 12

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm,	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
S 30.777	4340,670		± 0.000	4340.634	+0.036	+2.5	1
Ti 30.855	Standard	± 0.000	,	4341.530			
Ti 36.390	4386.945	+0.062		4387.007			
S 36.511	4387.982		+0.062	4388.100	-0.058	-4.0	1
Ti 45.122	4465.995	-0 020		4465.975			
S 45.734	4471.891		-0.016	4471.676	+0.199	+13.3	2
Ti 48.216	Standard	± 0.000		4496.318			
Ti 53.626	4552.612	+0.020		4552.632			
S 53.648	4552.850		+0.020	4552.750	+0.120	+7.9	1 2
Ti 66.817	Standard	± 0 (XX)		4710.368			
S 67.057	4713.548		± 0.000	4713.308	+0.240	+15.3	3

Curvature Cor. +0.001 mm.

Weighted mean

Mean + 7.0

 $V_a + 13.73$ $V_d + 0.04$

Reduction to Sun Radial Velocity

+13.77+23.8 km.

 ϵ ORIONIS — B 298

Measured by A.

1902, March 13, G. M. T. 15h 11m Hour angle W 3h Sm

Star rather weak; comparison good.

Power 14

Ti 17.9470	Standard 4341.438	±0.000	-0.004	4338.084 4340.634	+0.800	+55.3	2
S 18.3666 Ti 23.8632	4387.075	-0.068		4387.007			2
S 24.0978 Ti 25.3515	4389.096 4400.001	-0.066	-0.068	4388.100 4399.935	+0.938	63.4	2
Ti 32.7994 S 33.1848	4468.687 4472.435	-0.024	-0.017	4468.663 4471.676	+0.742	49.8	1
Ti 34.1023 Ti 41.9902	Standard 4563,879	$\pm 0.000 \\ \pm 0.060$		4481.438 4563.939			
S 42.4164 S 48.5112	4568,609 4639,666		$^{+0.057}_{-0.011}$	4567.950 4638.937	+0.716 +0.740	47.0 47.8	1
Ti 49.8867	Standard	±0.000	70.011	4656,644	0.110	11.0	-

Curvature Cor. +0.0008 mm.

Weighted mean

+53.7

Mean +52.6

Mean +56.8

 $\begin{array}{c|c}
V_a & -27.23 \\
V_d & -0.25
\end{array}$

Reduction to Sun Radial Velocity

-27.48+26.2 km.

 $\epsilon\,ORIONIS\text{--B}\,298$

Measured by F. Power 12

Ti 35.000 S 35.236 Ti 44.222 S 44.308 Ti 45.241	Standard 4389.041 4471.442 4472.280 Standard	±0.000 -0.034 ±0.000	±0.000 -0.031	4387.007 4388.100 4471.408 4471.676 4481.438	+0.941 +0.573	+64.3 38.4	:
Ti 52.100 S 52.199 Ti 53.129 S 53.574 Ti 55.455 Ti 61.024	4552.603 4553.683 4563.901 4568.840 4590.082 Standard	+0.029 +0.038 +0.044 ±0.000	+0.029	4552.632 4552.750 4563.939 4567.950 4590.126 4656.644	+0.962 +0.929	63.4 61.0	

Curvature Cor. +0.001 mm.

+53.5Weighted Mean

 $V_a - 27.23$ $V_d - 0.25$

-27.48Reduction to Sun Radial Velocity +26.1 km.

1902, April 9, G. M. T. 14^h 21^m Hour angle W 4^h 8^m

€ ORIONIS=- B 316

Star fair; comparison good.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 24.3317	Standard	± 0.000		4338.084			
S 24.7620	4341.517		± 0.000	4340.634	+0.883	+61.1	1
Ti = 30.2485	4387.016	-0.009		4387.007		,	
S 30.4698	4388.921		-0.009	4388.100	+0.812	55.5	1
Ti = 31.7366	Standard	± 0.000		4399.935			
Ti 39.1836	4468.671	-0.008		4468.663			
S 39.5633	1472.370		-0.006	4471.676	± 0.688	46.1	3
Ti = 40.4855	Standard	± 0.000		4481.438			

Curvature Cor. +0.0008 mm.

Mean +54.2

 $V_{d} = -24.24 \ V_{d} = 0.30$

Reduction to Sun -24.54Radial Velocity +26.5 km.

€ ORIONIS—B 316

Measured by F. Power 12

1							1
Ti = 35.001	Standard	±0.000		4387.007			
S 35.213	4388.835		± 0.000	4388.100	± 0.735	+50.2	1
Ti = 43.659	4466.001	-0.026		4465.975	·		
S 44.327	4472.489		-0.018	4471.676	± 0.795	53.3	2
Ti = 45.239	4481.444	-0.006		4481.438			
Ti 48.354	Standard	± 0.000		4512.906			
Ti = 53.127	4563.915	+0.024		4563.939			
S 53.562	4568.742		+0.015	4567.950	+0.807	53.0	16
Ti = 55.456	4590.129	-0.003		4590.126			
Ti 61.022	Standard	± 0.000		4656.644			

Curvature Cor. +0.001 mm.

Weighted mean $V_a = 24.24$

Mean +52.2

 $V_d^a = 0.30$

Reduction to Sun -24.54Radial Velocity +27.8 km.

SUMMARY OF MEASURES OF & ORIONIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 208 B 228 B 298 B 316	1901, Sept. 4 Nov. 13 1902, March 13 April 9	+27.5 $+28.8$ $+26.2$ $+26.5$	3 6 5 3	+23.8 $+26.1$ $+27.8$.; 4 3
	Mean	+27.2		+25.9	

Mean of 4 plates ± 26.8 km. Mean of all measures ± 26.7 km.

8. \(\zeta \overline{ORIONIS} \)

(R. $A = 5^{h} 36^{m}$; Dec. = -2 0'; Mag. 1.9; Class IIb)

Five plates of this star have been measured, five by A., and two by F. The spectrum is extremely difficult of measurement, the lines being few in number, and extremely broad and ill defined. The degree of accuracy attained is probably about the same as in the case of ϵ Orionis.

₹ ORIONIS --- A 263

1901, October 3, G. M. T. 20^h 42^m Hour angle E 1^h 56^m

Star strong; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
nım.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 21.3208	Standard	± 0.000		4338.084			
S 21.5491	4340.513		± 0.000	4340.634	-0.121	-8.4	2
Ti = 24.0571	4367.836	+0.003		4367,839			
Ti 25.7550	4387.026	-0.019		4387.007			
S 25.8352	4387.947		-0.017	4388.100	-0.170	11.6	3
Ti = 26.8690	Standard	± 0.000		4399.935			
Ti 29.1549	4427.249	+0.017		4427.266			
S 29.9907	4437.524		+0.013	4437.718	-0.181	12.2	2
Ti = 32.4466	4468.655	+0.008		4468.663			
S 32.6629	4471.467		+0.006	4471.676	-0.203	13.6	2
Ti 33.4230	Standard	± 0.000		4481.438			

Curvature Cor. +0.0002 mm.

Weighted mean -11.5

Mean - 11.2

Mean = 5.1

 $V_a + 25.58 \ V_d + 0.17$

Reduction to Sun Radial Velocity $\frac{+25.75}{+14.3}$ km.

₹ ORIONIS — A 263

Measured by F. Power 12

Ti 31.0582	Standard	+0.000		4338.084			
S 31.2891	4340.543		-0.002	4340.634	-0.093	-6.4	1
$Ti 36.6062 \ Ti 42.1840$	4399.977 4468.668	$\begin{bmatrix} -0.042 \\ -0.005 \end{bmatrix}$		4399.935 4468.663			
S 42.4116 Ti 43.1606	4471.623	. 0. 000	-0.004	4471.676	-0.057	3.8	1
Ti 43.1606 Ti 49.0647	Standard Standard	$\begin{array}{c c} \pm 0.000 \\ \pm 0.000 \end{array}$		4481.438 4563.939			

Curvature Cor. +0.0003 mm.

Weighted mean -5.1

0.1

 $V_a + 25.58 \ V_d + 0.17$

Reduction to Sun +25.75

Radial Velocity $\overline{+20.8}$ km.

ζ ORIONIS--B 429

1902, October 23, G. M. T. $23^{\rm h} 45^{\rm m}$ Hour angle W $2^{\rm h} 25^{\rm m}$

Star good; comparison weak.

Measured by A. Power 21

1					1		
Ti 21.1865	Standard	+0.000		4338.084			
S 21.5038	4340.609	10.000	±0.000	4340.634	-0.025	-1.7	1
S 27.2283	4387.981		± 0.000	4388.100	-0.119	8.1	1
Ti 28.0643	Standard	± 0.000		4395.201			
S 30.3115	4415.012		+0.006	4415.076	-0.058	3.9	1
Ti 31.6671	4427.256	+0.010		4427.266			
Ti 36.0733	Standard	± 0.000		4468.663			
S 36.3683	4471.527		± 0.000	4471.676	-0.149	10.0	1
							Į.

Curvature Cor. +0.0008 mm.

Weighted mean -5.9

Mean -5.9

 $V_a + 21.40 \ V_d = 0.20$

Reduction to Sun +21.20Radial Velocity +15.3 km.

CORIONIS B 433

1902, October 29, G. M. T. 19h 4m Star good; comparison good. Hour angle E 1^h 52^m

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigl
miii.	t. m.	t. m.	t.m.	t. m.	t. m.	knı.	
Ti = 21.3584	Standard	± 0.000		4338.084			
S 21.6687	4340,560		± 0.000	4340.634	-0.074	-5.1	1 2
S 24.9074	4366.995		± 0.001	4367.012	-0.013	-0.9	2
S 27,4009	4388.120		± 0.007	4388,100	± 0.027	+1.8	1
Ti=28.2178	4395.193	+0,008		4395.201	1	· ·	1
Ti 28.7605	Standard	± 0.000		4399.935			
S = 32.8392	4437.701		± 0.015	4437.718	-0.002	-0.1	2
Ti 33_6183	4143,959	+0.017	i	4443.976			
Ti 36 2094	4468.670	-0.007		4468.663			
S 36.5154	4471.647		-0.005	4471.676	-0.031	-2.3	2
Ti = 37.5123	Standard	± 0.000		4481.438			1

Curvature Cor. +0.0008 mm.

Weighted mean - 1.6 $Y_{a} = +19.67$

Mean -0.7

 $V_d + 0.16$ Reduction to Sun

+19.83

Radial Velocity

+18.2 km.

₹ ORIONIS -- B 434

1902, October 29, G. M. T. 19h 45m Hour angle E th 12m

Star good: comparison good.

Measured by A. Power 21

			T				
Ti=20.1420	Standard	±0.000		4338,084			
S = 20.4650	4340.662		± 0, 000	4340.634	+0.028	+1.9	1
S 26.1626	4387.943		-0.003	4388.100	-0.160	-10.9	1
Ti = 27.0014	4395.205	-0.004		4395.201			1
Ti 27.5428	Standard	~ O.OO)		4399,935			
Ti = 34.9950	4468.682	-0.019		4468.663			İ
S = 35.3017	4471.665		-0.015	4471.676	-0.026	- 1.7	3
Ti=36.2973	Standard	± 0.000		4481.438			

Curvature Cor. + 0.0008 mm.

-2.9Weighted mean

Mean -3.6

Mean - 1.6

 $rac{V_a}{V_d} + 19.66 \ V_d + 0.11$

Reduction to Sun Radial Velocity

 ± 19.77 $\pm 16.9 \; {\rm km}$.

1902, October 30, G. M. T. 21^h 19^m Hour angle W 0h 27m

₹ ORIONIS — B 441

Star strong; comparison good.

Measured by A. Power 21

					1		
Ti 20.3207	Standard	±0.000		4338,084			
S 20.6180	4340.692		±0 000	4340.634	± 0.058	+4.0	1
S 26.3658	4388,067		± 0.001	4388.100	-0.032	-2.2	1
Ti 27.1909	4395,200	40 001		4395.201			
Ti 27,7336	Standard	+0.000		4399.935			
Ti 35 1942	4468.676	-0.013		4468.663			
S 35,4940	4471.589		-0.010	4471.676	-0.097	-6.5	1
Ti = 36.4984	Standard	±0,000		4481.438			
	1,5111111111111111111111111111111111111						

Curvature Cor. +0.0008 mm.

Weighted mean - 1.6

 $1'_{a}$ +19.31 $V_d = 0.01$

Reduction to Sun ± 19.27 $+17.7 \, \text{km}.$ Radial Velocity

¿ ORIONIS - B 441

Measured by F. Power 12

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm. Ti 30.1739	t. m. Standard	t. m. +0.000	t. m.	t, m, 4338.084	t. m.	km.	
S 30.5197 Ti 33.8288	4340.840 4367.844	-0.005	±0.000	4340.634 4367.839	+0.206	+14.2	1
S 36.2503 Ti 37.5895	4388.347 4399.968	-0.033	-0.022	4388.100 4399.935	+0.225	15.4	1
S 39.5276 Ti 39.6117	4417.155 4417.910	-0.026	-0.026	4417.121 4417.884	+0.008	0.5	2
Ti 45.0495 S 45.3616	Standard 4471.692	±0.000	+0.000	4468.663 4471.676	+0.016	1.1	2
Ti 54.9951	Standard	±0.000		4572.156	0.010	1.1	-

Curvature Cor. +0.0013 mm.

Weighted mean

Mean +7.8

 $V_a + 19.31 \ V_d - 0.04$

Reduction to Sun Radial Velocity +19.27+24.7 km.

+ 5.5

SUMMARY OF MEASURES OF JORIONIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 263 B 429 B 433 B 434 B 441	1901, Oct. 3 1902, Oct. 23 Oct. 29 Oct. 29 Oct. 30	$\begin{array}{c} +14.3 \\ +15.3 \\ +18.2 \\ +16.9 \\ +17.7 \end{array}$	4 4 5 3 3	+20.6 +24.7	2 4

Mean

+16.5

+22.7

Mean of 5 plates +17.8 km. Mean of all measures +18.3 km.

9. κ ORIONIS

(R. A.= 5^h 43^m; Dec. - 9[^] 42⁺; Mag. 2.2; Class IIa)

Seven plates of the spectrum of this star have been measured, seven by A., and three by F. The spectrum is one of the most difficult of measurement of any we have encountered, all the lines being very broad and diffuse. Traces of a few oxygen lines appear.

1901, September 20, G. M. T. 22^h 13^m Hour angle E 1^h 23^m

κ ORIONIS—A 244
Star good; comparison good,

Measured by A. Power 21

Ti 18.0699	Standard	±0.000		4338.084	1		
S 18.3024	4340.560		-0.001	4340.634	-0.075	-5.2	1
S 19,2999	4351.296		-0.009	4351.495	-0.208	14.3	1
S 22.5847	4387.979		-0.031	4388.100	-0.152	10.4	1
Ti 23.2128	4395.237	-0.036		4395.201			
Ti = 27.2579	Standard	± 0.000		4443.976			
Ti = 29.1978	4468.656	± 0.007		4468.663			
S 29.4133	4471.452		± 0.008	4471.676	-0.216	14.5	1
Ti 35.3084	4552.591	+0.041		4552.632			_
S 35.3104	4552.620		+0.041	4552.750	-0.089	5.9	2
Ti 36.0815	Standard	± 0.000		4563,939		0.0	

Curvature Cor. + 0.0001 mm.

Weighted mean - 9.3

Mean-10.0

 $V_a + 24.79 \ V_d + 0.12$

Reduction to Sun +24.91 Radial Velocity +15.6 km,

κ ORIONIS — B 244

Measured by F. Power 12

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 28,9995	Standard	± 0.000		4338.084			
S 29,2247	4340.480		-0.002	4340.634	-0.156	-10.8	1
S 33,5033	4387.817		-0.010	4388.100	-0.323	-22.1	2
Ti = 34.1468	4395,247	-0.046		4395,201			
Ti = 40.1331	Standard	± 0.000		4468.663			
S 40.3438	4471.397		0.006	4471.676	-0.273	-18.3	$2\frac{1}{2}$
Ti 41.1082	4481.409	+0.029		4481.438			
Ti 46.2450	4552.632	±0.000		4552,632			
S 46.2533	4552.753		± 0.003	4552.750	+0.003	+ 0.2	1
Ti = 47.0149	Standard	±0.000		4563.939			
S 47.2816	4567.896		-0.011	4567.950	-0.065	-4.3	1
Ti = 47.5686	4572.179	-0.023		4572.156	•		i

Curvature Cor. +0.0003 mm.

Weighted mean $V_a = +24.79$

Mean = 11.1

 $V_d \pm 0.12$ Reduction to Sun

Radial Velocity

 $\frac{+24.91}{+10.9}$ km.

1901, September 26, G. M. T. $24^{\rm h} \, 26^{\rm m}$ Hour angle E $1^{\rm h} \, 50^{\rm m}$ κ ORIONIS -- A 250 Star fair; comparison rather strong.

Measured by A. Power 21

Ti = 37.3388Standard ± 0.000 4387.007Ti = 38.45834399.935 4399.949 -0.014-0.0174415.076-0.082-5.61 S = 39.73404415.011Ti = 40.75244427.285 4437.596-0.019 $\frac{4427.266}{4437.718}$ 41.5941 -0.022-0.1449.7 1 S Ti 42.5370 -0.0264449.313 4449.339 _0.008 -0.0231.5 44.28584471.6614471.676 45.0288 4481.366 ± 0.000 4481,400 -0.0342.3 ± 0.000 4481.438Ti = 45.0343Standard 4563.939 Ti = 50.95554563.889 ± 0.050 4567.764 1 51.2177+0.0434567.950-0.1439.4

Curvature Cor. $+ 0.0001 \,\mathrm{mm}$.

Standard

Ti = 52.7046

Weighted mean - 5.7

Mean -5.7

 $rac{V_a}{V_d} + 24.55 \\ + 0.16$

Reduction to Sun Radial Velocity

 ± 0.000

 $+24.71 \atop +19.0 \text{ km}.$

4590.126

1901, October 17, G. M. T. 19
h $24^{\rm m}$ Hour angle E $2^{\rm h}$ $32^{\rm m}$

 κ ORIONIS—B196 Star good; comparison strong.

Measured by A. Power 24

Ti-16.83224338.084 Standard ± 0.000 17.14834340.587-0.0014340.634 -0.048-3.34388,100 4395,201 4387.96622.9038-0.013-0.147-10.01 Ti = 23.7179-0.0154395.216Ti = 29.7642Standard ± 0.000 4449.313 Ti = 31.80214468,661 ± 0.002 4468.663 ± 0.002 4471.626 4471.676-0.048-3.23 32, 1094 2 33.1156 4481, 424 ± 0.000 4481.400 ± 0.021 +1.6Ti = 36.25624512.913 -0.0074481.438 4552.615Ti = 40.0244+0.0174552,632 ± 0.017 2 4552,6694552.750-0.064-4.240.0294Ti = 41.0622Standard .÷,0,000 4563.939

Curvature Cor. + 0.0002 mm,

Weighted mean - 3.2

Mean = 4.0

 $V_a + 21.65$

 $V_d + 0.21$

Reduction to Sun +21.86 Radial Velocity +18.7 km.

1901, October 23, G. M. T. $19^{\rm h}\,26^{\rm m}$ Hour angle E $2^{\rm h}\,1^{\rm m}$

κ ORIONIS-- A 274

Star slightly weak; comparison good.

Measured by A. Power 25

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm. S 25.3793 Ti 25.9954 S 27.6771 Ti 27.9227 Ti 31.9962 S 32.2265 Ti 38.8937	t.m. 4388.096 Standard 4414.992 4417.933 Standard 4471.646 Standard	t. m. ±0,000 -0,049 ±0,000 +0,000	t. m. ±0.000 -0.042 ±0.000	t. m. 4388.100 4395.201 4415.076 4417.884 4468.663 4471.676 4563.939	t. m. -0.004 -0.126 -0.030	km. -0.3 8.6	1 1 2

Curvature Cor. +0.0002 mm.

Weighted mean

Mean - 3.6

 $V_a + 20.27$ $V_d + 0.17$

Reduction to Sun

+20.44

-3.2

Radial Velocity

 $\overline{+17.2}$ km.

1901, October 31, G. M. T. 20h 24m Hour angle E 0h 31m

κ ORIONIS—A 285 Star good: comparison good.

Measured by A. Power 21

S 22.9041	4340.626		±0.000	4340.634	-0.008	-0.6	1
Ti = 23.2617	Standard	± 0.000		4344.451			
S 25.3370	4367.114		-0.042	4367.012	+0.060	+4.1	1
Ti 25.4059	4367.881	-0.042		4367.839			
Ti 27.1045	4387.067	-0.060		4387.007			
S 27.1997	4388.159		-0.060	4388,100	-0.001	-0.1	1
Ti 31.0726	4434.195	-0.027		4434.168			
S 31.3647	4437.799		-0.030	4437.718	+0.051	+3.4	2
Ti 32.2905	4449.349	-0.036		4449.313		,	
Ti 33.5961	Standard	± 0.000		4465,975			
S 34.0413	4471.737		-0.009	4471.676	+0.052	+3.5	2
Ti 34.7844	4481.462	-0.024		4481.438	,		
Ti 39.9215	4552.599	+0.033		4552.632			j
S 39.9269	4552.677		+0.033	4552.750	-0.040	-2.6	2
Ti 40.6932	4563.914	+0.025		4563.939			
S 40.9627	4567.906		+0.019	4567,950	-0.025	-1.6	2
Ti 42.4365	Standard	±0,000	10.010	4590.126	4		
S 42.4965	4591.045	10.000	± 0.000	4591.066	-0.021	-1.4	2
D 45.400	1001.010		20.000	23021000			

Curvature Cor. +0.0005 mm.

Weighted mean

+0.5

Mean + 0.6

 $V_a + 18.06$ $V_d + 0.04$

Reduction to Sun Radial Velocity

+18.10+18.6 km.

κ ORIONIS—A 285

Measured by F. Power 12

Ti 29.9333 S 30.1773 Ti 30.5306	4338.076 4340.739 Standard	+0.008	+0.005	4338.084 4340.634 4344.451	+0.110	+7.6	1
Ti 34.3743 S 34.4627	4387.069 4388.083	-0.062	_0.061	4387.007 4388.100	-0.078	-5.3	2
Ti 40.8675 S 41.3154 Ti 42.0540	1465.978 4471.774 Standard	-0.003 +0.000	+0.002	4465.975 4471.676 4481.438	+0.106	+7.1	2
Ti 42,0340 Ti 47,1927 S 47,1932 Ti 51,8296	4552.572 4552.579 4623.251	+0.060	+0.060	4552.632 4552.750 4623.279	-0.111	-7.3	3
Ti 52.2205 S 52.2994	Standard 4630.792	±0.000	±0.000	$\begin{array}{c} 4629.521 \\ 4630.703 \end{array}$	+0.089	+5.8	1

Curvature Cor. +0.0010 mm.

-0.6Weighted mean

Mean ± 1.6

 $V_a + 18.06 \ V_d + 0.04$

Reduction to Sun Radial Velocity

+18.10+17.5 km.

1902, Mareh 13, G. M. T. 14^h 29^m Hour angle W 2^{h} 14^m

κ ORIONIS -- B 297

Star good; comparison good.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
S 21.8680	4367.614		± 0.000	4367,012	± 0.602	+41.3	1
Ti 21.8949	Standard	± 0.000		4367.839		'	
Ti 24.1605	4387.044	-0.037		4387,007			
S 24,3606	4388,767		-0.037	4388.100	+0.630	43.1	1
Ti=33.0949	Standard	± 0.000		4468.663	'		
S 33.4630	4472.243		± 0.000	4471.676	+0.567	38.0	2
Ti = 34.3997	4481.437	± 0.001		4481.438			
S 34.4740	4482.172		+0.001	4481.400	+0.773	51 7	1
Ti = 41.2577	4552.608	+0.024		4552.632			
S 41.3312	4553.410		+0.024	4552,750	+0.684	45.0	2
Ti-43.0268	4572.147	+0.009		4572,156			
S 43.3334	4575.586		+0.009	4574.900	+0.693	45.4	1
Ti 44.6144	Standard	± 0.000		4590.126			
S 45.2168	4597,061		± 0.000	4596,291	+0.770	50.2	1

Curvature Cor. +0.0008 mm.

Weighted mean $V_a = 25.04$ $V_d = 0.19$

Mean + 45.0

Reduction to Sun Radial Velocity

-25.23 $+19.0\,\mathrm{km}$

1902, April 9, G. M. T. 13^h 47^m Hour angle W 3^h 21^m

κ ORIONIS -- B 315

Measured by A.

	Star good ;	comparison	good.		10	wer 17
Standard	+0.000		4338.084			
4341.163		-0.002	4340.634	+0.527	+36.4	1
4350.203		-0.007	4349.541	+0.655	45.2	1
4395.234	-0.033		4395.201	1		
4417.825		-0.051	4417.121	+0.653	44.3	1
4417.935	-0.051		4417.884			
Standard	0,000 ⊢		4468.663			
4172.193		+0.007	4471.676	+0.524	35.1	4
4481,414	+0.024		4481.438			
4481.973		+0.024	1481,400	+0.597	10.0	1
4552.582	+0.050		4552,632			
4553.406		± 0.050	4552,750	+0.706	46.5	2
4563.884	+0.055		4563.939			
4591.592		+0.037	4591,066	+0.563	36.8	1
Standard	± 0.000		4617.452			
	4341,163 4350,203 4395,234 4417,825 4417,935 Standard 4172,193 4481,414 4481,973 4552,582 4553,406 4563,884 4591,592	Standard #0,000 4341,163 4350,203 4350,231 -0.033 4417,825 4417,935 -0.051 Standard #172,193 4481,414 +0.024 4481,973 4552,582 +0.050 4563,881 4591,592 4591,592 4553,406 4591,592 4553,406 4563,881 4591,592 4553,406 4563,881 4591,592 4553,406 4563,881 4591,592 4553,406 4563,881 4591,592 4553,406 4563,881 4591,592 4553,406 4563,881 4591,592 4553,406 4563,881 4591,592 4553,406 4563,881 4591,592 4553,406 4563,881 4591,592 4553,406 4563,881 4591,592 4554,861 4591,592 4554,861 4591,592 4554,861 4591,592 4554,861 4591,592 4554,861 4591,592 4554,861 4591,592 4554,861 456	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Curvature Cor. ± 0.0008 mm.

Weighted mean $\begin{array}{c} +39.6 \\ V_d = -22.86 \\ V_d = 0.26 \end{array}$

Reduction to Sun Radial Velocity

-23.12 $\overline{+16.5}$ km.

κ ORIONIS —B 315

Measured by F. Power 12

Mean +40.6

Ti 30.0110	Standard	± 0,000		4338.084	1 555	1.00.0	
S = 30.4000	4311.189		±0,000	4340.634	+0.555	+38.3	1
$Ti_{-}36.8744$	1395.214	-0.013		4395.201			
Ti = 44.8695	Standard	± 0.000		4468.663			
S 45.2435	1172.300		± 0.006	4471.676	+0.630	42.2	3
Ti = 46.1721	4481 413	+0.025		4481.438			
S 46,2375	4482.083		+0.024	4481,400	+0.683	45.7	1
Ti=53.0331	4552.627	+0.005		4552.632			
S 53.0968	4553, 322	,	+ 0.005	4552.750	+0.577	38.0	1
$Ti_{-}54.0610$	4563,923	+0.016		4563,939			
S 51.4791	4568,568		± 0.007	4567.950	+0 625	41.0	2
Ti 51.8003	Standard	+(),(XX)		4572.156			

Curvature Cor. + 0.0013 mm.

Weighted mean +41.4 Mean +41.0

 $V_d = -22.86$ $V_d = 0.26$

Reduction to Sun Radial Velocity

-23.12 ± 18.2 km.

SHMMARY	OF MEA	SUDES OF	× O	RIO	NLS
CHEMINIA RY	1 PH 1 PL /4	SUKES OF	A 1/	11111	CATAT

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 244	1901, Sept. 20	+15.6	5	+10.9	5
A 250	Sept. 26	+19.0	5		
B 196	Oct. 17	+18.7	5		
A 274	Oct. 23	+17.2	3		
A 285	Oet. 31	± 18.6	8	+17.5	5
B 297	1902, March 13	± 19.0	7		
B 315	April 9	± 16.5	7	+18.2	5

Mean +17.8

+15.5

 $\begin{array}{c} \text{Mean of 7 plates} + 17.5 \; \text{km}. \\ \text{Mean of all measures} + 17.1 \; \text{km}. \end{array}$

10. B CANIS MAJORIS

(R. A.= 6^h 18^m; Dec.= $-17^{\circ}54^{\circ}$; Mag. 2.0; Class IIIa)

Three plates of this star have been measured, two by A., and three by F. Numerous lines of oxygen and nitrogen are present in the spectrum in addition to the regular *Orion* lines, and all are narrow and well defined in character.

β CANIS MAJORIS — A 287

1901, October 31, G. M. T. 21^h 35^m Hour angle W 0^h 9^m

Star fair; comparison good.

Measured by A. Power 25

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 20,5223	Standard	± 0.000		4344.451			
S 20,6539	4345.866		-0.002	4345.677	+0.187	+12.9	1
	4349.850		-0.008	4349.541	+0.301	20.7	1,
S 21.0230 S 21.1914	4351.676		-0.011	4351.495	+0.170	11.7	1/2 1/2 1/2 1/2
S 22,6035	4367.197	,,,,,,,	-0.036	4367.012	+0.149	10.2	1/2
Ti 22.6645	4367.876	-0.037		4367.839			
Ti 26,4383	4411.311	-0.071		4411.240			
S 26.7735	4415.310		-0.083	4415.076	+0.151	10.3	2
S 26,9511	4417.438		-0.090	4417.121	+0.227	15.4	1/2
Ti 26.9959	4417.976	-0.092		4417.884	,		
Ti 30.8583	4466.035	-0.060		4465.975			
S 31.3058	4471.956		-0.037	4471.676	+0.243	16.3	2
Ti 32.0405	Standard	± 0.000		4481.438	1 '		
Ti = 37.1801	4552.558	+0.074		4552.632			
S 37,2029	4552.890		+0.074	4552,750	+0.214	14.1	2
Ti 37.9534	4563.885	+0.054		4563.939			
S 38,2383	4568,101		+0.053	4567.950	+0.204	13.4	1
Ti 38.5072	4572.103	+0.053		4572.156	,		1
S 38,7063	4575 080		+0.056	4574.900	+0.236	15.5	2
Ti 39.6951	4590.041	+0.085		4590.126			•
Ti 41.4542	4617.406	± 0.046		4617.452			
S 42,2972	4630,872		+0.036	4630.703	+0.205	13.3	1
S 42,8130	4639,228		+0.029	4638.937	+0.320	20.7	1
S 42.9915	4642,140		+0.027	4641.886	+0.281	18.2	1
S 43,5376	4651.119		+0.020	4650.925	+0.214	13.8	1
Ti 43,8696	4656.628	+0.016		4656.644			
Ti 44.5340	Standard	± 0.000		4667.768			
S 45,0520	4676,563		± 0.000	4676.290	+0.273	17.5	1

Curvature Cor. +0.0005 mm.

Weighted mean +14.7

Mean+14.9

Reduction to Sun Radial Velocity

 $\frac{+18.83}{+33.5}$ km.

β CANIS MAJORIS - A 287

Measured by F. Power 12

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
nım.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
S = 30.9422	4367.190		± 0.000	4367.072	+0.118	+ 8.1	1
Ti = 31.0005	Standard	± 0.000		4367.839	,		
Ti = 32.7005	4387.060	-0.053		4387,007			
S = 32.8075	4388.289		-0.052	4388.100	+0.137	9.4	2
S = 35.1105	4415.306		-0.060	4415.076	+0.170	11.5	2
S = 35.2828	4417.372		-0.061	4417.121	+0.190	12.9	1
$Ti_{-}35.3308$	4417.945	-0.061		4417.884			
Ti = 39.1925	4466.018	-0.043		4465.975			
S 39.6468	4471.900		-0.028	4471.676	+0.196	13.1	2
Ti 40.3755	Standard	± 0.000		4481.438			
S = 40.3815	4481.517		± 0.000	4481.400	+0.117	7.8	1
Ti = 45.5175	4552.620	+0.012		4552.632			
S = 45.5428	4552.988		+0.012	4552.750	+0.250	16.5	3
Ti-46.2862	4563.883	± 0.056		4563.939			
S 46.5748	4568.156		+0.027	4567.950	+0.233	15.3	2
Ti 46.8430	4572.149	+0.007		4572.156			
S 47.0142	4575.159		+0.006	4574.900	+0.265	17.4	1
Ti 48.0330	Standard	± 0.000		4590,126			
S 48.4478	4596.494		± 0.001	4596.291	+0.204	13.3	1
Ti = 49.7885	4617.445	+0.007		4617.452			

Weighted mean Curvature Cor. $^{+12.9}_{-\ 0.71}$

Mean + 12.5

 $V_a + 18.84 \ V_d - 0.03$

Reduction to Sun Radial Velocity $\frac{+18.81}{+31.0}$ km.

β CANIS MAJORIS—A 293

1901, November 1, G. M, T. 21 $^{\rm h}$ 26 $^{\rm m}$ Hour angle W 0 $^{\rm h}$ 3 $^{\rm m}$

Star fair; comparison good.

Measured by F. Power 17

				g			
			4338.084		±0,000	Standard	Ti 27.1717
1	10.5	+0.152	4340.634	-0.005		4340.791	S 27.4256
2	17.6	+0.257	4388,100	-0.062		4388.419	S 31.7221
			4395.201		-0.069	4395.270	Ti 32,3148
			4399.935		-0.063	4399,998	Ti.32.7200
$\frac{2}{1}$	15.2	± 0.223	4415.076	-0.064		4415,363	S 34.0175
1	21.6	+0.319	4417.121	-0.063		4417.503	S 34.1961
			4417.884		-0.055	4417.939	Ti 34.2324
			4427.266		-0.066	4427.332	Ti 35.0081
			4468,663		-0.032	4468.695	Ti 38.3000
2	16.8	+0.251	4471.676	-0.009		4471.936	S 38.5496
			4481,438		± 0.000	Standard	Ti 39, 2752
			4552,632		± 0.080	4552,552	Ti 44.4088
4	18.8	± 0.286	4552.750	+0.062		4552.974	S 44.4375
			4563.939		+0.058	4563.881	Ti 45.1813
3	18.8	± 0.286	4567,950	± 0.067		4568.169	S 45.4705
		1	4572.156		+0.057	4572.099	Ti 45.7314
2	11.4	± 0.220	4591.066	± 0.064		4591.222	S 46.9983
			4617.452		+0.036	4617, 416	Ti 18.6788
2	16.8	± 0.260	4639,206	± 0.025		4639.181	S 50.0322
2	11.9	+0.181	4649.424	± 0.011		4649.413	S 50,6555
			4656,644		± 0.000	Standard	Ti 51.0913

Weighted mean

+17.1

Mean + 16.2

Curvature Cor. - 0.86

 $\frac{V_a}{V_d} = \frac{+18.63}{0.00}$

Reduction to Sun Radial Velocity $\frac{+18.63}{+34.8}$ km.

β CANIS MAJORIS—B 215

1901, November 7, G. M. T. 21^h 00^m Hour angle, E 0h 8m

Star weak; comparison slightly weak.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t, m.	t. m.	t, m,	t. m.	t, m,	km.	
Ti 15.9494	Standard	± 0.000		4313.034			
S 16.5293	4317.457		-0.005	4317.272	+0.180	± 12.5	2
S 16.8567	4319.969		-0.007	4319.762	+0.200	13.9	1/2
Ti~19.1827	4338.108	-0.024		4338.084			7.3
S 19.5305	4340.866		-0.036	4310.634	+0.196	13.5	1/2
S 20.6401	4349.745		-0.050	4349.541	+0.154	10.6	1 2
S 20.8818	4351,696		-0.052	4351.495	+0.145	10.3	1/2
S 22.7898	4367,308		-0.083	4367.012	+0.213	14.6	1/2 1/2
Ti~22.8641	4367.923	-0.084		4367.839			/4
Ti 27.9241	4411.280	-0.040		4411.240			
S 28.3726	4415.264		-0.034	4415.076	+0.154	10.5	2
S 28,6063	4417.349		-0.031	4417,121	+0.197	13.4	ĩ
S 30.8757	4437.941		+0.001	4437.718	+0.224	15.1	1
Ti 31,5267	4443.966	± 0.010		4443.976	,		
Ti 34.1367	Standard	± 0.000		4468.663			
S 34.4710	4471.890		+0 003	4471.676	+0.217	14.6	1
Ti 35.4497	4481.428	+0.010		4481.438			
S 42.3849	4552,929		+0.105	4552.750	+0.284	18.7	2
Ti~42.6262	4555,548	+0.114		4555.662	1		
Ti 43,3830	4563.823	+0.116		4563.939			
S 43.7684	4568.072		± 0.114	4567.950	+0.236	15.5	3
Ti~44.1265	4572.043	+0.113		4572.156			
$Ti\ 45.7245$	4590.020	+0.106	,	4590.126			
S 45,8308	4591.232		+0.104	4591.066	+0.270	17.6	1
S 46.2829	4596.405		+0.099	4596.291	± 0.213	13.9	1/2
Ti~48.0837	4617,366	± 0.086		4617.452	'		
$Ti\ 48.5765$	4623,203	± 0.076		4623.279			
S 49.2176	4630-863		+0.063	4630,703	+0.223	14.4	1/2
S 50.1463	4642.096		+0.044	4641.886	+0.254	16.4	1,5
S 50.7505	4649.491		-0.029	4649,250	+0.270	17.4	$2^{\frac{1}{2}}$
$Ti\ 51.3287$	4656,634	+0.010		4656.644	1		
S 51.7620	4662.029		+0.006	4661.728	+0.307	19.7	1/2
Ti~52.2197	Standard	± 0.000		4667.768			/ 4

Curvature Cor.+0.0007 mm.

+14.7Weighted mean $\begin{array}{c}
V_a \\
V_d \\
+ 0.01
\end{array}$

Mean +14.6

Reduction to Sun

+17.25 $+32.0\,\mathrm{km}$ Radial Velocity

β CANIS MAJORIS — B 215

Measured by F. Power 12

S 29 9290	4367.244		± 0.000	4367.072	+0.172	+11.8	1
Ti 30,0008	Standard	±0.000		4367.839		,	
Ti~32.2802	4387.024	-0.017		4387.007			
S 32.4325	4388.327		-0.015	4388,100	+0.212	14.5	1
S 35,5175	4415.274		-0.026	4415.076	+0.172	11.7	3
S 35.7475	4417.327		-0.032	4417.121	+0.174	11.8	2
Ti 35.8135	4417.918	-0.034		4417.884	'		
Ti 41.2755	4468.650	+0.013		4468.663			
S 41.6092	4471.874		+0.010	4471.676	+0.208	13 9	5
Ti 42.5900	Standard	±0.000		4481,438			
S 42.5958	4481.498		± 0.000	4481.400	± 0.098	6.6	1
$Ti\ 43.3002$	4488.445	+0.048		4488,493	'		
Ti 49.4875	4552.585	+0.047		4552.632			
S 49.5212	4552.951		± 0.047	4552.750	± 0.248	16.3	5
Ti 50 5230	4563.894	+0.045		4563.939	· '		
S 50 9108	4568,173		± 0.035	4567.950	+0.258	16 9	1
Ti~51.2672	4572.128	+0 028		4572.156			

β CANIS MAJORIS—B 215—Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm. S 51.5355 Ti 52.8655 S 52.9748 S 53.4240 Ti 55.2248	t. m. 4575-120 Standard 4591.372 4596.518 4617-499	t. m. ±0.000	t. m. +0.023 -0.002 -0.011	t. m. 4574,900 4590,156 4591,066 4596 291 4617,452	t. m. +0.243 +0.301 +0.216	km. +15.9 19.8 14.1	1 ¹ ₂ 1 ¹ / ₂ 1

Curvature Cor.+0.0010 mm.

Weighted mean $V_a + 17.24$ $V_d + 0.01$ Reduction to Sun Radial Velocity +17.25 +31.4 km.

SUMMARY OF MEASURES OF BCANIS MAJORIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 287	1901, Oct. 31	+33.5	15	+31.0	10
A 293 - B 215 -	Nov. 1 Nov. 7	+32.0	is	$^{+34.8}_{+31.4}$	$\frac{10}{11}$

Mean of 3 plates $+32.9 \,\mathrm{km}$. Mean of all measures $+32.6 \,\mathrm{km}$.

11. ∈ CANIS MAJORIS

(R. A.= $6^h 55^m$; Dec.= $-28^{\circ} 50$; Mag. 1.5; Class IIIa)

Three plates of this star have been measured, two by each observer. The spectrum is very similar to that of β Canis Majoris, but the oxygen and nitrogen lines are slightly more diffuse in character.

1901, November 7, G, M, T, $21^{\rm h}\,51^{\rm m}$ Hour angle W $0^{\rm h}\,8^{\rm m}$

 ϵ CANIS MAJORIS B 216 Star good; comparison fair.

Measured by A. with Zeiss Comparator Power 20

Mean +13.2

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Leugth	Displacement	Velocity	Weight
mm.	t. m.	t. nı.	t. m.	t. m.	t. m.	km.	
Ti = 64.9697	Standard	±0,000		4338,084			
S 64,0046	4345.798		-0.008	4345.677	+0.113	+7.8	2
S 63.5142	4349.754		-0.012	4349.541	+0.201	13.9	2
S 61.3858	4367.214		-0.030	4367.012	± 0.162	11.1	1
Ti = 61.3070	4367.869	-0.030		4367.839			
S 58.8970	4388.247		-0.048	4388.100	+0.099	6.8	1
Ti 57.5415	4399.994	-0.059		4399.935			
S 55,8182	4415.236		-0.062	4415.076	+0.098	6.7	2
S 55.5866	4417.311		-0.062	4417.121	± 0.128	8.7	2
Ti = 55.5158	4417.946	-0.062		4417.884			
S 53.3280	4437.891		-0.014	4437.718	+0.159	10.7	2
Ti = 52.6732	Standard	± 0.000		4443,976	1		
Ti-50.0722	4468,693	-0.030		4468.663	1		
S 49.7430	4171.886		-0.020	4471.676	± 0.190	12.7	3
Ti-48.7676	4381.431	± 0.007		4481.438	i i		
S 48.7579	4481.527		± 0.007	4481.400	+0.134	9.0	1
Ti = 41.8927	4552,600	± 0.032		4552,632			
S 41.8694	4552.854		± 0.032	4552,750	+0.136	9.0	1

e CANIS MAJORIS- B 216 - Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 40.8595	4563.924	+0.015		4563.939	1	10.0	0
S 40.4787 Ti 40.1182	$4568.142 \\ 4572.157$	-0.001	+0.006	$\frac{4567.950}{4572.156}$	+0.198	13.0	3
S 39.8528	4575.126	-0.001	-0.001	4574.900	+0.225	15.0	2
Ti 38.5281	Standard	± 0.000		4590,126	10.220	20.0	
S 38,4293	4591.277		± 0.000	4591.066	+0.211	13.8	1

Curvature Cor. $-0.0009 \,\mathrm{mm}$.

 $V_a + 16.75$ $V_d = 0.01$ Weighted mean

Mean +10.6

Reduction to Sun

+16.74

Radial Velocity

+27.7 km.

1902, November 6, G. M. T. 21h 47m Hour angle 0h 0m

€ CANIS MAJORIS-B 451

Star good; comparison good.

Measured by A. Power 21

Ti 20.2279	Standard	±0.000		4338.084			
S 20,5550	4340.695		-0.002	4340.634	+0.059	+4.1	2
S 21.1916	4345.819		-0.006	4345.677	+0.136	9.4	1
Ti = 23.8748	4367.863	-0.024		4367.839	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_
S 26.2804	4388.287		-0.016	4388,100	+0.171	11.7	2
Ti = 27.0796	4395.215	-0.014		4395.201	, , , , , ,		_
Ti = 27.6206	4399.947	-0.012		4399.935			
S 29.3356	4415.173		-0.021	4415.076	+0.076	5.2	2
S 29.5728	4417.306		-0.022	4417.121	+0.163	11.1	$\frac{2}{2}$
Ti 29.6393	4417.906	-0.022		4417.884	10.100		~
Ti = 30.6720	4427.282	-0.016		4427.266			
S 31.8242	4437.899		-0.008	4437.718	+0.173	11.7	9.
S 32.8231	4447.239		-0.002	4447.163	+0.074	5.0	$\frac{2}{1}$
Ti 33.0430	Standard	±0,000		4449.313	10.012	0.0	-
Ti = 35.0637	4468.662	+0.001		4468.663			
S 35.3911	4471.849	10.001	-0.001	4471.676	+0.172	11.5	2
Ti = 36.3682	4481.446	-0.008	0.001	4481.438	10.1.2	11.0	_
S 36.3732	4481.495		-0.008	4481.400	+0.087	5.8	2
Ti = 43.2183	4552.610	+0.022	0.000	4552.632	10.00.	0.0	
S 43.2380	4552.825	10.022	+0.022	4552.750	+0.096 →	6.3	2
Ti 44.2484	Standard	± 0.000	10.022	4563.939	10.000		_
S 44.6250	4568.124		+0.003	4567.950	+0.177	11.6	2
Ti = 44.9852	4572.149	+0.007	-0.005	4572.156	(0.11)	11.0	
S 45,2420	4575.032	10.001	+0.007	4574.900	+0.139	9.1	2
D 10.2120	₹515.052	*	0.001	1011.000	-[-0.100	€′. 1	-

Curvature Cor. +0.0008 mm.

Weighted Mean +8.4

Mean +8.2

 $\begin{array}{c}
V_a \\
V_d
\end{array}$ +16.93

Reduction to Sun

+16.93+25.3 km.

Radial Velocity

€ CANIS MAJORIS—B 451

Measured by F. Power 12

10 - 00, 0000 + 1000, 200 +, + -0, 000 + 4000, 100 + -0, 110 + 100	Ti 30.0044 S 30.3391 S 33.5736 Ti 35.9161 S 36.0565	4338.045 4340.722 4367.188 Standard 4387.060 4388.263	+0.039 ±0.000 -0.053	+0.036 ±0.000	4338.084 4340.634 4367.012 4367.839 4387.007 4388.100	$+0.124 \\ +0.176 \\ +0.113$	+8.6 12.1 7.7	1 1 ¹ / ₂
--	---	--	--------------------------------	------------------	--	------------------------------	-------------------	------------------------------------

€ CANIS MAJORIS—B 451 - Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
nım.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	_
Ti = 37.3995	4399.950	-0.015		4399.935			
S 39.1153	4415.186		-0.024	4415.076	+0.086	+5.8	112
S 39,3501	4417.298		-0.025	4417.121	+0.152	10.3	1
Ti = 39.4179	4417,909	-0.025		4417.884	i ' U		
Ti = 44.8424	4468.667	-0.004		4468.663			
S 45.1720	4171.874		-0.003	4471.676	+0.195	13.1	2
Ti 46.1459	Standard	± 0.000		4481.438	'		
Ti = 52.9973	4552.589	+0.043		4552.632			
S 53.0178	4552,812		+0.043	4552.750	+0.105	6.9	2
Ti = 54.0282	4563.919	+0.020		4563.939	· i		
S 54.4053	4568.108		+0.000	4567.950	+0.158	10.4	2
Ti = 51.7696	4572.176	-0.020		4572.156	'		
S 55.0261	4575.054	*****	-0.017	4574.900	+0.137	9.0	1
Ti = 56.3537	Standard	± 0.000		4590.126			
S 56.4464	4591.190		-0.001	4591.066	± 0.123	8.0	16
S 56.8974	4596.386		-0.006	4596, 291	+0.089	5.8	12
Ti = 58.6974	4617.483	-0.031		4617.452			

Curvature Cor. +0.0013 mm.

Weighted mean $V_a + 16.93$ $V_d = 0.00$

Mean +8.9

Reduction to Sun Radial Velocity

+16.93+26.2 km.

€ CANIS MAJORIS-B 461

1902, November 19, G. M. T. 21^h 0^m Hour angle W 0^h 2^m

Star fair; comparison fair.

Measured by F. Power 15

Total algae ii o 2		75441 14414					
Ti 29.8020 S 33.3811	Standard 4367.283	±0.000	-0.048	4338.084 4367.012	+0.223	+15.3	1
Ti = 33.4534 Ti = 36.6624	4367.887 4395.260	$-0.048 \\ -0.059$		4367.839 4395.201		,	
Ti 37.2046 S 38.9310 S 39.1565	4400 000 4415,320 4417 347	-0.065	-0.066 -0.066	$\begin{array}{c} 4399.935 \\ 4415.076 \\ 4417.121 \end{array}$	$+0.178 \\ +0.160$	$\frac{12.1}{10.9}$	1 1
Ti 39,2234 Ti 44,6513 S 44,9806	4417.950 4468.706 4471.909	-0.043	-0.033	$\begin{array}{c} 4417.884 \\ 4468.663 \\ 4471.676 \end{array}$	+0.200	13.4	3
Ti = 45.9516 S = 45.9703	Standard 4481.623	±0.000	± 0.000	$\frac{4481.438}{4481.400}$	+0.223	14.9	2
Ti = 52.8063 S = 52.8102 Ti = 53.8358	4552,586 4552,955 4563,896	+0.016	+0.016	4552.632 4552.750 4563.939	+0.251	16.5	3
S 54.2231 Ti 54.5769 S 54.8412	$\begin{array}{c} 4568.196 \\ 4572.145 \\ 4575.109 \end{array}$	+0.011	+0.027 $+0.015$	$\begin{array}{c} 4567,950 \\ 4572,156 \\ 4574,900 \end{array}$	+0.273 $+0.221$	17.9 14.7	3
Ti 56.1625 S 56.7174	$\begin{array}{c} 4590.105 \\ 4596.492 \end{array}$	+0.021	+0.016	$\frac{4590,126}{4596,291}$	+0.217	14.2	1
Ti=58.5062	Standard	±0.000		4617.452			

Curvature Cor. +0.0013 mm.

Weighted mean ± 11.8 Mean ± 14.4

 $\frac{V_d}{V_d} = \frac{+14.74}{0.00}$

Reduction to Sun Radial Velocity

+14.74 ∓ 29.6 km.

SUMMARY OF MEASURES OF & CANIS MAJORIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
B 216 B 451 B 461	1901, Nov. 7 1902, Nov. 6 Nov. 19	+27.7 +25.3	13 11 	+26.2 +29.6	11 9

Mean +26.5 +27.9

Mean of 3 plates +27.7 km. Mean of all measures +27.2 km.

12. n LEONIS

(R. A. = 10^h 2^m; Dec. = +17° 15′; Mag. 3.6; Class VIIc)

Three plates of this star have been measured, three by F., and two by A. The spectrum is well advanced toward the Ia2 type, the metallic lines being numerous and well defined. The helium line $\lambda 4471$ is present but weak.

1902, April 19, G. M. T. 15^h 43^m Hour angle W 1^h 38^m η LEONIS — B 329

Star good; comparison good.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t, m.	km.	
Ti 35.6462	4468.637	+0.026		4468.663			
S 35.6874	4469.037		+0.026	4468.663	+0.400	+26.8	1
Ti 36.9530	Standard	-0.000		4481.438		,	
S 36.9934	4481.837		± 0.000	4481,400	+0.437	29.2	1
Ti 37.6612	4488.474	+0.019		4488,493	,		
S 37.7913	4489.774		± 0.015	4489.351	+0.438	29.3	1
S 38.0125	4491.990		+0.007	4491.570	+0.427	28.5	1
Ti~38.4433	4496.325	-0.007		4496.318			
S 39.6756	4508,874		+0.004	4508.455	+0.423	28.1	1
Ti 40.0663	4512.899	+0.007		4512.906			
S 40.3610	4515.949		+0.005	4515.508	+0.446	29.6	ĺ
S 40.8270	4520,800		+0.002	4520.397	+0.405	26.9	1
$Ti \ 41.0349$	Standard	±0.000		4522.974	'		
Ti~44.0855	4555.644	+0 018		4555.662			
S 44.4158	4559,269		+0.012	4558.827	+0.454	29.9	1
$Ti \ 45.5779$	4572.166	-0.010		4572.156			
S 46.0019	4576,928		-0.007	4576.512	+0.409	26.8	1
S 46.6666	4584,453		-0.003	4584.018	+0.432	28.3	1
S 47.0507	4588.835		-0.001	4588.381	+0.453	29.6	1
Ti 47.1634	Standard	± 0.000		4590.126			

Curvature Cor.+0.0008 mm.

Weighted mean $V_a = -25.98$ +28.4

Mean + 28.4

 $V_d^a = 0.14$

Reduction to Sun Radial Velocity $\frac{-26.12}{+\ 2.3 \,\mathrm{km}}$.

	η LEONIS—B 329						by F. wer 18
Ti 29.0100 S 29.9874 Ti 31.8642 S 34.0068 Ti 34.1306 Ti 35.0730	4344.347 4352.275 4367.778 4385.940 4387.005 4395.168	+0.104 +0.061 +0.002 +0.033	+0.088 +0.005	4344.451 4351.930 4367.839 4385.548 4387.007 4395.201	+0.433 +0.397	+29.8 27.1	3

η LEONIS-B 329-Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
S 35.1219	4395.594		+0.008	4395,201	+-0.401	+27.4	2
Ti 35.6180	Standard	± 0.000		4399.935	,	,	
S 37.5869	4417.145		-0.038	4416.985	+0.422	28.6	4
Ti 37.6400	4417.923	-0.039		4417.884	1		
Ti 40, 4754	1143.981	-0.005		4443.976			
S = 40.5205	4441.404		-0.005	4443.976	+0.423	28.5	1
Ti = 42.7869	4465.979	-0.001		4465.975			_
Ti 43.0643	4168.666	-0.003		4468.663			
S 43.1058	4469,069		-0.004	4468.663	± 0.402	27.0	1
Ti 43.3467	4471.413	-0.005		4471.408	10131		
Ti 41.3683	Standard	± 0.000		4481,438			
S 44.4087	4481.837		±0.000	4481.400	+0.437	29.2	4
Ti 45.0789	4488.497	-0.004		4488.493			
S 45,2008	4489.804		-0.003	4489.351	+0.450	30.0	112
S 45.4307	4192.016		-0.001	4491.570	+0.445	29.7	2
Ti = 45.8580	4496.316	± 0.002		4496.318	10122		
Ti 46.3649	4501,450	-0.002		4501.448			
S 46,4006	4501.813		-0.002	4501.448	+0.363	21.2	2
S 47.0943	4508,903		+0.004	4508, 455	+0.452	30.1	$\frac{1}{4}$
Ti 47.4823	4512.899	± 0.007	10.001	4512.906	, 0.135	.,,,,,	-
S 47,7765	4515.943	10.004	+0.006	4515.508	+0.441	29.3	3
$Ti \ 47.9931$	4518.193	+0.005	10.000	4518.198	, 0.111	20.0	
S 48.2430	4520.798	0.000	+0.008	4520.397	+0.409	27.1	3
Ti 18.4501	4522,903	+0.011	10.000	4522.974	10.1.	2	
S 48.4762	4523,236	[+0.011	4522.802	+0.445	29.5	3
Ti 48.8799	4527.478	± 0.012		4527.490	10.11.	20.10	
$Ti_{0.5092}$	4544,849	+0.015		4541.864			1
S 50.9913	4550.069		+0.018	4549.642	± 0.445	29.3	3
Ti 51.2246	4552,608	± 0.024		4552.632	10.110	=0.00	
Ti 51.5027	4555,646	+0.016		4555.662			
S 51.5804	4556,497	10	+0 020	4556.063	+0.451	29.9	917
S 51,8332	4559.272		+0.020	4558.827	+0.465	30.6	$\frac{212}{2}$
Ti 52,2543	4563,919	+0.020	0.020	4563.939	0,107	90.0	
S 52.2914	4561.330	0.020	+0.020	4563,939	+0.411	27.0	1/2
Ti 52.9953	4572.166	-0.010	10.020	4572.156	0.111	2	. 2
S 53.0317	4572.573	-0.010	-0.010	4572.156	+0.407	27.7	1
S 54.0862	4581,474		-0.010 -0.004	4584.018	± 0.452	29.6	3
S 51.4682	4588.831		-0.001	4588.381	+0.449	$\frac{29.0}{29.3}$	í
Ti 54.5813	Standard	± 0.000		4590.126	70.11.	41, 19نیم	
17.04.0010	Standard	Ξυ.ωυ		7000.I#U			

Curvature Cor. ± 0.0011 mm.

 $V_a = -25.98$ $V_d = -0.14$ Weighted mean

-26.12Reduction to Sun +2.7 km. Radial Velocity

η LEONIS—B 333

1902, April 23, G. M. T. $15^{\rm h}\,30^{\rm m}$ Hour angle W $1^{\rm h}\,40^{\rm m}$

Star excellent; comparison excellent.

Measured by F. Power 17

Mean + 28.6

Ti = 27.5052	4367,774	± 0.065		4367.839		
S = 20.6488	4385,944		-0.001	4385.518	+0.392	+26.8
Ti = 29.7730	4387.012	-0.005		4387.007		
S 30.7751	4395.695	1	-0.001	4395.201	+0.193	33.6
Ti/31.2597	Standard	±0.000		4399,935		
S 33,2344	4417.195		-0.037	4116.985	± 0.473	32.1
Ti 33 2817	4417.921	-0.037		4417.884		
Ti.38.4301	4465,984	-0 009		4165.975		
S 38,7612	4469.189		-0.018	4168 663	+0.508	31.1
Ti.38.9917	4471.434	-0.023		4471 408	'	
S 39 0668	4472.163		-0.022	4471 - 676	± 0.165	31.2
Ti 40.0117	Standard	± 0.000		4181.438		
S 10.0542	4481.858		± 0.000	1181.400	± 0.458	30.6

η LEONIS-B 333-Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 40.7243	4488.514	-0.021		4488.493			
S 40.8501	4489.770		-0.021	4489.351	+0.398	26.6	1
S 41.0762	4492.031		-0.021	4491.570	+0.443	29.6	2
Ti 41.5042	4496.339	-0.021		4496.318			
S 42.7410	4508.927		-0.019	4508.455	+0.453	30.1	3
Ti 43 1292	4512.924	-0.018		4512.906			
S 43.4252	4515.987		-0.013	4515.508	+0.466	31.0	2
Ti 43.6390	4518.207	-0.009		4518.198			İ
S 43.8952	4520.876		-0.010	4520.397	+0.469	31.1	2
Ti 44,0970	4522.985	-0.011		4522.974			Į.
S 44.1278	4523.308		-0.011	4522.802	+0.495	32.8	2
S 45.9000	4542.106		-0.009	4541.690	+0.407	26.9	1
Ti 46.1565	4544,867	-0.003		4544.864			
S 46.6430	4550.132		+0.002	4549.642	+0.492	32.4	4
Ti 46.8719	4552.623	+0.009		4552.632			
Ti 47.1502	4555 662	± 0.000		4555.662			
S 47.2269	4556.501		+0.004	4556.063	+0.142	29.1	2
S 47.4772	4559.248		-0.003	4558.827	+0.424	27.9	3
S 49.7345	4584.485		± 0.001	4584.018	± 0.468	30.6	4
S 50.1154	4588.828		± 0.000	4588.381	+0.447	29.2	1
Ti 50.2288	Standard	± 0.000		4590.126			

Curvature Cor. +0.0012 mm.

 $V_a = -26.84$ $V_d = -0.13$ Weighted mean

Reduction to Sun

-26.97

Radial Velocity

+3.4 km.

n LEONIS -- B 337

Mean + 30.3

Mean +32.3

902, April 30, G. M Iour angle W 2 ^h 28 ^r		Star weak; comparison good.					Measured by A. Power 18	
S 24.9032	4386.014		±0.000	4385.548	+0.466	+31.9	1	
Ti 25.0188	Standard	± 0.000		4387,007	1	,		
S 28.4827	4417.468		-0.031	4416.985	+0.452	30.7	1	
Ti 28.5325	4417.916	-0.032		4417.884				
Ti 31.3730	4443.980	-0.004		4443.976			1	
S 31.4218	4444.437		-0.004	4443.976	+0.457	30.8	1	
Ti 35,2720	Standard	± 0.000		4481.438				
S 35.3186	4481.898		± 0.000	4481.400	+0.498	33.3	1	
Ti 36.0611	4489 268	-0.006		4489.262				
S 36.1196	4489.852		-0.006	4489.351	+0.495	33.1	1	
S 38.0041	4508.922		-0.008	4508.455	+0.459	30.5	1	
Ti 38.3923	4512.914	-0.008		4512.906				
S 38.6883	4515.973		-0.006	4515.508	+0.459	30.5	1	
S 39.1614	4520.920		-0.002	4520.397	+0.521	34.6	1	
Ti 39.3612	4522.975	-0.001		4522.974				
S 41.1705	4542.141		+0.005	4541.690	+0.456	30.1	1	
Ti 41.4232	4544.858	+0.006		4544.864				
Ti 42.4196	4555.669	-0.007		4555 , 662				
S 42.4204	4555.678		-0.007	4555.162	+0.509	33.5	1	
S 42.5113	4556.672		-0.007	4556.202	+0.463	30.5	1	
S 44.3449	4577.015		-0.003	4576.512	+0.500	32.8	1	
S 44.9205	4583.515		-0.001	4583.011	+0.503	32.9	1	
S 45.0117	4584.550		-0.001	4584.018	+0.531	34.7	1	
S 45.3939	4588.904		± 0.000	4588.381	+0.523	34.2	1	
Ti 45.5008	Standard	± 0.000		4590.126				

Curvature Cor. +0.0008 mm.

Weighted mean

 $V_a = -28.06$ $V_d = -0.20$ Reduction to Sun -28.26

Radial Velocity

+ 4.0 km.

η LEONIS — B 337

Measured by F. Power 18

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t, m,	t, m,	t. m.	t. m.	t. m.	k. m.	`
Ti = 35.1895	Standard	± 0.000		4481.438			
S 35.2347	4481.881	1	±0.000	4481.400	+0.484	+32.4	
Ti 35,9777	4489.256	+0.006	10,000	4489.262	, 0.101	0	
S 36.0391	4489.868		+0.006	4489.351	+0.523	34.9	1
S 36,2548	4492.025		+0.002	4491.570	+0.457	30.5	116
Ti 36,6840	4496.336	-0.018		4496.318	10.10.	.,,,,,	1 3
Ti 37.4337	4503.928	-0.002		4503.926			
S 37.9226	4508.924		± 0.000	4508,455	+0.468	31.1	2
Ti 38,3093	4512.899	+0.007		4512.906	1 2		_
S 38,6083	4515,989		± 0.015	4515,508	+0.500	33.2	113
Ti 38.8188	4518.171	± 0.027		4518, 198			- 2
S 39.0818	4520.908		+0.016	4520.397	+0.527	35.0	2
Ti = 39.2789	4522.966	+0.008		4522.974	1	0,710	_
S 39.3112	4523.303		+0.008	4522.802	+0.509	33.8	3
Ti = 39.7103	Standard	± 0.000		4527.490	1 (30		
S 41 0903	4542.155		+0.019	4541.690	+0.484	32.0	1
Ti-41.3402	4544.841	+0.023		4544.864			
S 41.8295	4550.152		+0.021	4549.642	+0.510	33.6	1
Ti 42.0578	4552.613	+0.019		4552,632	1 7 7 7 7		
Ti = 42.3373	4555,662	± 0.000		4555,662			
S 42.4250	4556,621		+0.001	4556.063	± 0.559	36.8	2
S 42 6712	4559.321		+0.004	4558.827	+0.498	32.8	1
Ti = 42.7418	4560,097	+0.005		4560.102	1		
S 44.9304	4584.562		± 0.001	4584.018	+0.545	35.6	21/2
S 45,3072	4588,855		±0,000	4588.381	+0.474	31.0	21/2
Ti = 45,4183	Standard	± 0.000		4590.126		,	

Curvature Cor.+0.0009 mm.

$$\begin{array}{c} \text{Weighted mean} & +33.5 \\ V_a & -28.06 \\ V_d & -0.20 \\ \text{Reduction to Sun} & -28.26 \\ \text{Radial Velocity} & +5.2 \text{ km.} \end{array}$$

Mean + 33.3

SUMMARY OF MEASURES OF 7 LEONIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
B 329 B 333	1902, April 19 April 23	+2.3	11	$^{+2.7}_{+3.4}$	21 18
B 337	April 30	+4.1	is	$^{+3.4}_{+5.2}$	13

Mean +3.2 +3.7

Mean of 3 plates +3.5 km. Mean of all measures +3.5 km.

13.
$$\gamma$$
 CORVI

 $(R. A.=12^h 11^m; Dec.=-16^{\circ}59^{\circ}; Mag. 2.8; Class VIa)$

Three plates of this star have been measured by each observer. The spectrum shows numerous very faint and broad metallic lines which are not adapted to accurate measurement. The Mg line $\lambda 4181$ is decidedly the best line in the spectrum.

 $\gamma CORVI$ — B 305

1902, April 2, G. M. T. $16^{\rm h} \, 32^{\rm m}$ Hour angle E $0^{\rm h} \, 46^{\rm m}$

Star fair; comparison good.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. in.	t, m.	t. m.	t. m.	km.	
Ti 18.6801	Standard	±0.000		4338.084			
S 18.9779	4340.465		± 0.000	4340.634	-0.169	-11.7	1
S 30.9092	4443.870		± 0.000	4443.976	-0.106	7.2	1
Ti 30.9205	Standard	± 0.000		4443.976			
S 33 4950	4468.551		-0.002	4468.663	-0.114	7.6	1
Ti 33.5067	4468.665	-0.002		4468.663			
S 33.8066	4471.586		-0.002	4471.676	-0.092	6.2	2
S 34.7998	4481.346		-0.002	4481.400	-0.056	3.8	2
Ti 34.8093	4481.440	-0.002		4481.438			
S 36.7853	4501.275		+0.012	4501.445	-0.158	10.5	1
Ti 36,8008	4501.433	+0.012		4501.445			
S 42.6707	4563.813		± 0.000	4563.939	-0.126	8.3	2
Ti = 42.6820	Standard	± 0.000		4563.939			
S 43,4095	4572.054		-0.038	4572.156	-0.140	9.2	2
Ti 43.4220	4572.194	-0.038		457 2 .156			

Curvature Cor. +0.0008 mm.

Weighted mean

-7.7

Mean-8.0

 $V_a - 1.09 \ V_d + 0.06$ Reduction to Sun

Radial Velocity

- 1.03 8.7 km.

γ CORVI — B 305

Measured by F. Power 12

S 29.7935	4367.724		+0.000	4367.775	-0.051	-3.5	1
Ti = 29.8072	Standard	± 0.000		4367.839			
Ti = 40.9955	4468.675	-0.012		4468,663			
S 40,9987	4468.705		-0.012	4468.663	+0.030	+ 2.0	1
S 41.0797	4469.494		-0.014	4469.545	-0.065	-4.4	2
Ti 41.2785	4471.430	-0.022		4471.408			
S 41.3004	4471.644		-0.022	4471.676	-0.054	-3.6	1
S 42.2890	4481.356		± 0.000	4481.400	-0.044	-2.9	3
Ti = 42.2973	Standard	± 0.000		4481.438			
Ti 44 2900	4501.432	+0.013		4501.445			
S 44.2935	4501.468		+0.013	4501.445	+0.036	+ 2.4	1
Ti 45.9164	4518.177	+0 021		4518.198			
S 45,9395	4518.418		+0.021	4518.506	-0.067	- 4.4	1
Ti 48.8054	4548.909	+0.029		4548.938			
S 48.8760	4549.677		+0.029	4549.767	-0.061	-4.0	2
S 50 1583	4563.758		+0.020	4563.939	-0.161	-10.6	3
$Ti_{-}50.1730$	4563.919	+0.020		4563.939			
Ti = 52.4960	Standard	± 0.000		4590.126			

Weighted mean Curvature Cor.

-4.3-0.81 Mean = 3.2

 $V_d = -1.09 \\ V_d = +0.06$

Reduction to Sun

-1.03 $\overline{-6.2 \text{ km}}$.

1902, April 3, G. M. T. $16^{\rm h}\,32^{\rm m}$ Hour angle E $0^{\rm h}\,47^{\rm m}$

 γ CORVI—B 312

Star rather weak; comparison good.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Leugth	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	1
Ti 21.3728	Standard	± 0.000		4338.084			}
S 21.6969	4340.594		± 0.000	4340.634	-0.040	-2.8	1
Ti-33.6225	4443.967	± 0.006		4443.976			
S 36.2051	4468.600		± 0.000	4468.663	-0.063	4.2	1
Ti = 36.2116	Standard	± 0.000		4468.663			
S 37.5026	4481.313		+0.018	4481.400	-0.069	4.6	4
Ti = 37.5134	4481.420	+0.018		4481.438			
S 42.6364	4533.978		+0.027	4534.139	-0.134	8.9	2
Ti 42.6490	4534.112	+0.027		4534.139			
S 45.3798	4563.772		+0.031	4563.939	-0.136	8.9	1
Ti 45.3921	4563.908	+0.031		4563,939			
S 46.1206	4572.027		+0.017	4572.156	-0.112	7.3	2
Ti 46.1306	4572.139	+0.017		4572.156			
Ti = 47.7164	Standard	± 0.000		4590.126			

Curvature Cor. +0.0008 mm.

Weighted mean
$$-6.1$$

Mean - 6.1

Fighted mean
$$V_a = 1.59$$
 $V_d = 0.07$ $V_d = 0.07$

Reduction to Sun Radial Velocity

$$\frac{-1.52}{-7.6 \text{ km}}$$

 $\gamma CORVI$ —B 312

Measured by F. Power 12

	-						wei 12
S 29.4604 Ti 29.4610	4395,183 4395,189	+0.012	+0.012	4395,286 $4395,201$	-0.091	- 6.2	1
Ti 30.0034	Standard	$\pm 0.002 \pm 0.000$		4399, 935			
Ti 33.0540	4427.274	-0.008		4427.266			
S 33.0690	4427.411		-0.008	4427.420	-0.017	-1.2	1
Ti 34.8571	4443.967	+0.009		4443.976	15.040	1.00	
$\begin{array}{ccc} S & 34.8623 \\ Ti & 37.4455 \end{array}$	$4144.016 \\ 4468.661$	+0.002	+0.009	4443.976	+0.049	+ 3.3	1
S 37.4480	4468.685	+0.002	± 0.002	$\frac{4468,663}{4168,663}$	+0.024	+ 1.6	. 1
S 38.7417	4481.364		±0.000	4481.400	-0.036	$-\frac{1.0}{2.4}$	3
Ti - 38.7492	Standard	± 0.000		4481.438			
Ti 40.7438	4501.444	+0.001		4501.445			
8 40.7570	4501.577	1	+0.001	4501.445	+0.133	+ 8.9	2
Ti = 45.2619 S = 45.3278	4548,923	+0.015	1.0.010	4548.938	0.100	- 7.2	0
S 45.3278 S 45.5914	4549,639 4552,509		$\begin{array}{c} +0.019 \\ +0.029 \end{array}$	4549.767 4552.663	-0.109 -0.125	$-\frac{1.2}{8.2}$	2
Ti = 45.6000	4552,603	+0.029	70.020	4552,632	-0.150	0.2	1
S 46.6158	4563.770	10.020	+0.023	4563.939	-0.146	-9.6	1
Ti 46.6290	4563,916	+0.023		4563.939			
S 47.3605	4572,064		+0.016	4572.156	-0.076	-5.0	1
Ti = 47.3673	1572.140	+0.016		4572,156	0.055	0.7	1
$\begin{array}{ccc} \mathbf{S} & 48.4139 \\ Ti & 48.9541 \end{array}$	4583,955 Standard	+0.006 ± 0.000		4584.018 4590.126	-0.057	- 3.7	1
16 40.0041	maddard	±0.000		9000, 120			

Weighted mean

- 3.9 -0.87 Mean = 4.2

$$V_d = -1.59 \\ V_d = +0.07$$

Reduction to Sun

-1.52 $\overline{-6.3}$ km.

Radial Velocity

1902, April 19, G. M. T. $17^{\rm h}$ $3^{\rm m}$ Hour angle W $0^{\rm h}$ $45^{\rm m}$

γ CORVI — B 330

Star good; comparison good.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
S 36.4469	4468.620		± 0.000	4468.663	-0.043	-2.9	1
Ti = 36.4513	Standard	± 0.000		4468.663			
S 37.7570	4481.457		+0.003	4481.400	± 0.060	+4.9	2
Ti 37.7547	4481.435	+0.003		4481.438	,	•	
S 39.7493	4501.436		± 0.000	4501.445	-0.009	-0.6	1
Ti 39.7504	Standard	± 0.000		4501.445			
S 42.8979	4534.185		-0.011	4534.139	+0.035	+ 2.3	1
Ti 42.9711	4534.964	-0.011		4534.953	1		
S 45.6353	4563.896		-0.002	4563.939	-0.045	-3.0	1
Ti 45.6394	4563.941	-0.002		4563.939			
S 46.3747	4572.128		± 0.000	4572.156	-0.028	-1.8	1
Ti 46.3772	Standard	± 0.000		4572.156			

Curvature Cor. +0.0008 mm.

Weighted mean

Mean -0.3

 $V_a = 9.29$

 $\frac{V_d}{\text{Reduction to Sun}} = \frac{0.06}{0.06}$ Radial Velocity

-9.35 $\overline{-9.1}$ km.

 $\gamma CORVI$ —B 330

Measured by F. Power 12

Ti 30.0032 S 30.0313 Ti 34.4000	Standard 4427.523 4468.667	±0.000 -0.004	±0.000	$\begin{array}{c} 4427.266 \\ 4427.420 \\ 4468.663 \end{array}$	+0.103	+7.0	1
S 34.4075 S 34.7232	$\begin{array}{c} 4468.739 \\ 4471.810 \end{array}$		-0.004 -0.003	$\begin{array}{c} 4468.663 \\ 4471.676 \end{array}$	$^{+0.072}_{+0.131}$	4.8 8.8	1/2 1/2
Ti 35.7043 S 35.7095 Ti 37.7005	4481.439 4481.490 Standard	-0.001 ±0.000	-0.001	$\begin{array}{r} 4481,438 \\ 4481,400 \\ 4501,445 \end{array}$	+0.089	6.0	3
S 37.7117 Ti 38.8196 Ti 42.2250	4501.558 4512.911 4548.961	+0.001 -0.023	±0.000	4501.445 4512.912 4548.938	+0.113	7.5	1
$egin{array}{cccc} & & 42.3124 \ Ti & 42.5618 \ Ti & 43.5924 \ \end{array}$	4549,910 4552,625 4563,950	+0.007 -0.011	-0.015 	4549.767 4552.632 4563.939	+0.128	8.4	1
S 43.5995 Ti 44.3295	4564.028 Standard	±0.000	-0.011	4563.939 4572.156	+0.078	5.1	1
S 44.3304	4572.166		± 0.000	4572.156	+0.010	0.7)

Weighted mean

+5.9-0.86 Mean +6.0

Curvature Cor. $V_a = 9.29$

 $V_d = 0.06$

Reduction to Sun

-9.35

 $\overline{-4.3}$ km. Radial Velocity

SUMMARY OF MEASURES OF \(\gamma \) CORVI

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
B 305 B 312 B 330	1902, April 2 April 3 April 19	-8.7 -7.6 -9.1	8 6 6	$ \begin{array}{r} -6.2 \\ -6.3 \\ -4.3 \end{array} $	9 10 8

Mean

-8.4

-5.5

 $\begin{array}{cc} \text{Mean of 3 plates} & -7.0 \text{ km.} \\ \text{Mean of all measures} & -7.0 \text{ km.} \end{array}$

14. THERCULIS

(R. A.= $16^h 17^m$; Dec.= $+46^\circ 33'$; Mag. 3.9; Class Va)

Four plates of this star have been measured, four by A., and two by F. The spectrum is very similar to that of β Orionis, the lines being rather broad but fairly well defined.

1902, February 19, G. M. T. 21^h 33^m Hour angle E 2h 33m

τ HERCULIS---A 325

Star good; comparison good.

Measured by A. Power 20

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t.m.	km.	
Ti = 21.1914	Standard	± 0.000		4338.084			
S 21.3945	4340.276		± 0.000	4340.634	-0.358	-24.7	2
S 25.6210	4387.718		± 0.000	4388.100	-0.382	26.1	2
Ti = 26.2596	Standard	± 0.000		4395.201			!
Ti = 32.1604	4468.667	-0.004		4468.663			
S 32.3572	4471.260		-0.003	4471.676	-0.419	28.1	4
8 33.0975	4481.103		± 0.000	4481.400	-0.297	19.9	2
Ti = 33.1225	Standard	± 0.000		4481.438			

Curvature Cor. +0.0005 mm.

Weighted mean -25.4

Mean = 24.7

 $\frac{V_a}{V_d} + \frac{11.77}{+ 0.15}$

Reduction to Sun Radial Velocity

 ± 11.92 -13.5 km.

1902, March 12, G. M. T. 22h 9m Hour angle E 0h 45m

τ HERCULIS—B 295

Star good; comparison good.

Measured by A. Power 21

Ti 21.2628	Standard	± 0.000		4338.084			
S 21.5507	4340,383		± 0.000	4340.634	-0.253	-17.5	1
Ti = 27.1712	4387.026	-0.019		4387.007			
S 27,2620	4387.808		-0.018	4388.100	-0.310	21.2	2
Ti=28.6561	Standard	± 0.000		4399.935			
Ti = 36.0928	4468.650	+0.013		4468.663	i		
S 36.3713	4471.363	*	+0.010	4471.676	-0.303	20.3	3
S 37,3580	4481.064		±0.000	4481.400	-0.336	22.5	4
Ti 37.3958	Standard	± 0.000		4481.438			

Curvature Cor. +0.0009 mm.

Weighted mean

-21.1

 $V_a + 9.65$ $V_d + 0.05$

Reduction to Sun Radial Velocity

+9.70-11.4 km.

1902, March 13, G. M. T. 19h 36m Hour angle E 3h 12m

τ HERCULIS—B 301

Star slightly weak; comparison good.

Measured by A. Power 20

$\begin{array}{cccc} Ti & 29 & 1733 \\ S & 33 & 3328 \\ Ti & 34.0320 \\ Ti & 36.6224 \\ S & 36.9031 \\ S & 37.8874 \\ Ti & 37.9266 \end{array}$	Standard 4437,460 Standard 4468,668 4471,397 4481,051 Standard	± 0.000 ± 0.000 -0.005 ± 0.000	 ±O.(X), —O.(X), ±O.(X),	4399.935 4437.718 4443.976 4468.663 4471.676 4481.400 4481.438	-0.258 -0.283 -0.349	-17.4 19.0 23.4	3 3
---	--	---	---------------------------------------	--	----------------------------	---------------------	-----

Curvature Cor. ± 0.0008 mm.

Weighted mean -20.6 Mean = 19.9

Mean -20.4

 $V_a + 9.53$ ± 0.17

Reduction to Sun Radial Velocity

+9.70 $\overline{-10.9}$ km.

τ HERCULIS—B 301

Measured by F. Power 14

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm,	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 36.1373	Standard	±0.000		4465.975			
S 36.6877	4471.332		+0.003	4471.676	-0.341	-22.9	1
Ti 36.6951	4471.405	+0.003		4471.408			
S 37.6728	4481.014		± 0.000	4481.400	-0.386	-25.8	1
Ti = 37.7157	Standard	± 0.000		4481.438			
Ti 38.4255	Standard	± 0.000		4488.493			

Curvature Cor. $+0.0013 \,\mathrm{mm}$.

Weighted mean

-24.4

Mean = 24.4

 $\begin{array}{ccc}
V_a & +9.53 \\
V_d & +0.17
\end{array}$

Reduction to Sun

+9.70

Radial Velocity

 $\overline{-14.7}$ km.

τ HERCULIS--- B 313

1902, April 3, G. M. T. 17h 29h Hour angle E 3h 58m

Star weak; comparison fair.

Measured by A. Power 17

		1			1		
Ti 21.1901	Standard	± 0.000		4338,084			
S 21,4742	4340.354		-0.001	4340.634	-0.281	-19.4	1
S 27.2043	4387.939		-0.026	4388.100	-0.187	12.8	1
Ti 28.0459	4395.231	-0.030		4395.201			
S 32.7402	4437.439		-0.004	4437.718	-0.283	19.1	2
Ti = 33.4414	Standard	± 0.000		4443.976			
Ti = 36.0305	4468.668	-0.005		4468.663			ĺ
S 36.3129	4471.415		-0.002	4471.676	-0.263	17.6	3
S 37.2987	4481.091		+0.012	4481.400	-0.297	20.0	4
Ti = 37.3326	4481.426	+0.012		4481.438			
Ti 45,2153	Standard	± 0.000		4563.939			

Curvature Cor. $+ 0.0008 \,\mathrm{mm}$.

Weighted mean -18.5 Mean-17.8

 $V_a + 6.17$ $V_d + 0.20$

Reduction to Sun

Radial Velocity

+6.37 $\overline{-12.1}$ km.

 τ HERCULIS — B 313

Measured by F. Power 12

$\begin{array}{c} Ti & 39.1607 \\ S & 39.4455 \\ S & 40.4213 \\ Ti & 40.4623 \\ Ti & 48.3471 \\ Ti & 49.0852 \end{array}$	Standard 4471.439 4481.032 Standard 4563.949 Standard	±0.000 ±0.000 -0.010 ±0.000	±0.000 ±0.000	4468.663 4471.676 4481.400 4481.438 4563.939 4572.156	-0.237 -0.368	$-15.9 \\ -24.6$	1 1

Curvature Cor. + 0.0013 mm.

Weighted mean

-20.3

Mean - 20.3

 $V_a +6.17 \ V_d +0.20$

Reduction to Sun Radial Velocity

+6.37-13.9 km

SUMMARY OF MEASURES OF THERCULIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 325 B 295 B 301 B 313	1902, Feb. 19 Mar. 12 Mar. 13 April 3	-13.5 -11.4 -10.9 -12.1	4 4 3 5	-14.7 -13.9	2 2

Mean -12.0

-14.3

Mean of 4 plates -12.7 km. Mean of all measures -12.7 km.

15. ζ DRACONIS

(R. A. = $17^{\text{h}} 7^{\text{m}}$; Dec. = $+65^{\circ} 50^{\circ}$; Mag. 3.3; Class Va)

Four plates of this star have been measured, by each observer. The spectrum contains few lines, but these, though rather broad, are better defined than in most of the stars containing them.

1902, February 3, G. M. T. 22^h 24^m Hour angle E 3^h 42^m

₹ DRACONIS — B 290

Star good; comparison rather weak.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 20.6686	Standard	± 0.000		4338.084			
S 20.9577	4340.406		± 0.000	4340.634	-0.228	-15.8	1
S 22.3687	4351.863		± 0.000	4352.083	-0.220	15.2	1
Ti 28.0210	Standard	± 0.000		4399.935	1		
S 29.9143	4416.863		-0.003	4417.121	-0.261	17.7	1
Ti 30.0273	4417.887	-0.003		4417.884			
Ti 35.4213	4468.674	-0.011		4468.663			
S 35.7115	4471.517		-0.008	4471.676	-0.167	11.2	1
S 36.6858	4481.146		± 0.000	4481.400	-0.254	17.0	3
Ti~36.7152	Standard	± 0.000		4481.438			1

Curvature Cor. +0.0008 mm.

Weighted mean $V_a + 2.03$ -15.8

Mean - 15.4

 $V_d + 0.12$ Reduction to Sun

Radial Velocity

 $\frac{+2.15}{-13.7 \text{ km}}$

₹ DRACONIS — B 290

Measured by F. Power 12

Ti 35,0010 S 35,3010 Ti 42,3535 Ti 49,7540 S 50,0357	Standard 4340,496 Standard 4468,659 4471,417	±0.000 ±0.000 +0.001	-0.001 -0.003	4338.084 4340.634 4399.935 4468.663 4471.676	-0.139 -0.256	- 9.6 17.2	2
S 51.0140 Ti 51.0500	4471.417 4481.080 Standard	±0.000	±0.000	4481.400 4481.438	-0.236 -0.323	21.4	3

Curvature Cor. +0.0010 mm.

Weighted mean -16.5

Mean -16.1

 $V_a + 2.03$ $V_d + 0.12$

Reduction to Sun + 2.15Radial Velocity - 14.4 1902, February 10, G. M. T. 22h 12m Hour angle E 3h 24m

\$ DRACONIS - A 314

Star good; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 21.4626 S 21.6748	Standard 4340.375	±0.000	+0.000	4338.084 4340.634	-0.259	-17.9	3
Ti 25.8323	4387.016	-0.009		4387.007			
S 25.9032 Ti 26.9314	4387.842 Standard	±0,000	-0.009	$4388.100 \\ 4399.935$	-0.267	18.2	2
Ti 32.4327	4468.671	-0.008		4468.663			
S 32.6389 S 33.3751	4471.388 4481.177	,	$\begin{bmatrix} -0.006 \\ +0.000 \end{bmatrix}$	4471.676 4481.400	$\begin{bmatrix} -0.294 \\ -0.223 \end{bmatrix}$	$\begin{array}{c} 19.7 \\ 14.9 \end{array}$	3 3
Ti 33.3946	Standard	±0.000	±0.000	4481.438	3.223	11.0	

Curvature Cor. +0.0005 mm.

Weighted mean -17.7

 $V_a + 1.79 \\ V_d + 0.11$

Reduction to Suu Radial Velocity

+1.90-15.8 km.

₹ DRACONIS — A 314

Measured by F. Power 12

Ti 34.9934	Standard	+0.000		4338.084			
S 35.2065	4340.365		±0.000	4340.644	-0.269	-18.6	2
Ti 39.3611	4387.004	+0.003		4387.007			
S 39.4230	4387.717		+0.003	4388.100	-0.380	26.0	1/2
$Ti \ 40.4611$	Standard	± 0.000		4399.935			
Ti 45.7584	4466.003	+0.028	1.0.010	4465.975	0.150	10.5	9
S 46.1762	4471.499		+0.018	4471.676 4481.400	-0.159 -0.148	$\frac{10.7}{9.9}$	9
S 46.9095	4481.252 Standard	±0,000	±0.000	4481.438	-0.145	9.9	
Ti 46.9234	Standard	±0.000		1101,100			

Curvature Cor. +0.0009 mm.

Weighted mean

-14.0

Mean - 16.3

Mean - 14.0

Mean - 17.7

Reduction to Sun

Radial Velocity

+1.90 $\overline{-12.2}$ km.

1901, February 19, G. M. T. 20^h 33^m Hour angle E 4^h 33^m

₹ DRACONIS — A 324

Star good; comparison good.

Measured by A. Power 21

Curvature Cor. +0.0005 mm.

-14.9Weighted Mean

 $V_a + 1.44$ $V_d + 0.13$

Reduction to Sun Radial Velocity

+1.57 $\overline{-13.3}$ km.

₹ DRACONIS --- A 324

Measured by F. Power 12

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m	t. m.	t. m.	t. m.	km.	
Ti 34.9981 S 35.2102	Standard 4340.370	±0.000	±0.000	$4338.084 \\ 4340.634$	-0.264	-18.2	2
Ti 40.4686 Ti 45.9704	Standard 4168,670	$^{\pm 0.000}_{-0.007}$		4399.935 4468.663			
S 46.1808 S 46.9135	4471.442 4481.185		-0.006 ± 0.000	4471.676 4481.400	$ \begin{array}{c c} -0.240 \\ -0.215 \end{array} $	$\begin{array}{c} 16.1 \\ 14.4 \end{array}$	$\frac{11/2}{2}$
Ti 46.9324	Standard	± 0.000		4481.438			

Curvature Cor. +0.0009 mm.

Weighted mean $V_a + 1.44$ $V_d + 0.13$ V_{d-1}

Mean —16.2

Reduction to Sun Radial Velocity $\frac{+1.60}{-14.6}$ km.

پ DRACONIS — B 357

1902, May 30, G. M. T. $16^{\rm h}\,4^{\rm m}$ Hour angle E $2^{\rm h}\,27^{\rm m}$

Star fair; comparison good.

Measured by A Power 21

Ti 21.2294	Standard	± 0.000		4338.084			
S 21.5206	4340.400		± 0.000	4340.634	-0.234	-16.2	
S 22.9485	4351.878		-0.002	4352.083	-0.207	14.3	
Ti 24.8920	4367.843	-0.004		4367.839			
Ti~28.6561	Standard	± 0.000		4399.935			
S 30.5791	4416.957		-0.025	4417.121	-0.189	12.8	
Ti 30.6853	4417.910	-0.026		4417.884			
Ti 36.1318	4468.674	-0.011		4468.663			
S 36.4205	4471.476		-0.008	4471.676	-0.208	14.0	
S 37.4134	4481.186		± 0.000	4481.400	-0.214	14.3	
Ti 37.4390	Standard	± 0.000		4481.438			

Curvature Cor. +0.0008 mm.

Weighted mean -14.0

Mean -14.3

 $V_a = -2.46$ $V_d = +0.09$

Reduction to Sun Radial Velocity $\frac{-2.37}{-16.4}$ km.

₹ DRACONIS — B 357

Measured by F. Power 12

T. 05 0014	G1 1 1	0.000		1420 004			
Ti = 35.0914	Standard	± 0.000		4438.084	0.000	10.0	2
S 35.3767	4340.352		± 0.004	4340.634	-0.280	-19.3	2
Ti 35.8884	4344.439	+0.012		4314.451			
$Ti\ 41.0274$	4387.020	-0.013		4387.007			l .
S = 41.1552	4388.117		-0.042	4388.100	+0.005	+3.4	1
$Ti\ 42.5201$	Standard	± 0.000		4499.935			
Ti.49.7164	4465.982	+0.007		4465.975			
S = 50.2872	4471.507		+0.004	4471.676	-0.167	-11.2	1 1
S 51.2750	4481.173		± 0.000	4481,400	-0.227	-45.2	
Ti = 51.3019	Standard	$\pm \bar{0} .000$		4481.438			

Curvature Cor. +0.0009 mm.

Weighted mean -12.7

Mean = 10.6

 $V_a +2.46 \ V_d +0.09$

Reduction to Sun -2.37Radial Velocity -15.1 km.

SUMMARY OF MEASURES OF & DRACONIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
B 290 A 314 A 324 B 357	1902, Feb. 3 Feb. 10 Feb. 19 May 30	$\begin{array}{r} -13.7 \\ -15.8 \\ -13.3 \\ -16.4 \end{array}$	5 4 4 5	$\begin{array}{c} -14.4 \\ -12.2 \\ -14.6 \\ -15.1 \end{array}$	3 4 3 4

Mean -14.8

-14.1

Mean of 4 plates -14.4 km. Mean of all measures -14.4 km.

16. \(\ilde{\pm}\) HERCULIS

(R. A. = $17^{h} 37^{m}$; Dec. = $\pm 46^{\circ} 4^{\circ}$; Mag. 3.9; Class IV b)

Four plates of this star have been measured, two by F., and four by A. The spectrum contains few lines, but these are well defined, and suitable for fairly accurate measurement.

1901, September 27, G. M. T. 14^h 35^m Hour angle W 3^h 30^m Star good; comparison strong.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
nm.	t. m.	t, m.	t. m.	t. m.	t. m.	km.	
Ti 26.5330	4386.994	+0.013		4387,007			
S 26,6174	4387.961		+0.012	4388,100	-0.127	-8.7	1
Ti 27.6518	Standard	± 0.000		4399.935			
S 30.7860	4437.582		+0.012	4437.718	-0.124	8.4	1
Ti 31,3001	4443.962	+0.014		4443.976			
Ti 33.0377	4465.975	± 0.000		4465.975			
S 33.4709	4471.573		± 0.000	4471.676	-0.103	6.9	3
S 34.2137	4481.277		± 0.000	4481.400	-0.123	8.2	4
Ti 34.2259	Standard	± 0.000		4481.438			
S 39.3722	455 2 .574		+0.044	4552.750	-0.132	8.7	1
Ti 39.3732	4552.588	+0.044		4552.632			
$Ti\ 40.1497$	4563.950	-0.011		4563.939			
S 40,4149	4567.871		-0.010	4567.950	-0.089	5.8	2
Ti 41.8944	Standard	± 0.000		4590.126			

Curvature Cor. +0.0001 mm.

Weighted mean - 7.6

Mean - 7.8

 $V_a = -10.06$ $V_d = 0.19$

Reduction to Sun Radial Velocity $\frac{-10.25}{-17.8}$ km.

1901, October 3, G. M. T. 15^h 30^m Hour augle W 4^h 45^m ι HERCULIS—A 260

Star good; comparison fair.

Measured by A. Power 21

Ti 17.2714 S 17.3544 Ti 18.3849 Ti 20.6754 S 21.5156	4387.020 4387.974 Standard 4427.319 4437.651	-0.013 ±0.000 -0.053	-0.012 -0.043	4387,007 4388,100 4399,935 4427,266 4437,718	-0.138 -0.110	-9.4 7.4	1 1
S 24.1877 S 24.9277	4471.587 4481.286		$\begin{array}{c} -0.009 \\ \pm 0.000 \end{array}$	4471.676 4481.400	$ \begin{array}{c c} -0.098 \\ -0.114 \end{array} $	$\frac{6.6}{7.6}$	2 2
Ti 24.9392 $Ti 30.0724$ $S 30.0713$ $Ti 30.2792$	Standard 4552.642 4552.616 Standard	$\begin{array}{c} \pm 0.000 \\ -0.010 \\ \pm 0.000 \end{array}$	-0.010	4481,438 4552,632 4552,750 4555,662	-0.134	8.8	1

Curvature Cor. +0.0001 mm.

Weighted mean -7.8

Mean - 8.0

 $V_a = 9.71 \ V_d = 0.22$

Reduction to Sun - 9.93

Radial Velocity $-17.7 \,\mathrm{km}$.

$\iota \; HERCULIS \text{--A } 260$

Measured by F. Power 12

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 30.0003	Standard	± 0.000		4338.084			
S 30.2409	4340.645		-0.001	4340.634	+0.010	+0.7	1
Ti 34.4350	4387.038	-0.031		4387.007		'	
S 34.5245	4388.065		-0.030	4388,100	-0.065	-4.4	3
Ti 35.5491	4399.945	-0.010		4399.935			
Ti 37.8363	Standard	± 0.000		4427.266			
S 38.6818	4437.656		± 0.009	4437.718	-0.053	-3.6	2
Ti 39.1885	4443.961	+0.015		4143.976			
Ti 40.9215	4465.976	-0.001		4465.975			
S 41 3537	4471.579		+0.006	4471.676	-0.091	-6.1	4
S 42.0920	4481.255		+0.019	4181.400	-0.126	-8.4	4
Ti 42.1044	4481.419	± 0.019		4481.438			
Ti 47.4434	Standard	+0.000		4555.662			

Weighted mean Curvature Cor.

-5.6-0.27 Mean = 4.4

 $V_d = -9.71 \ V_d = -0.22$

Reduction to Sun Radial Velocity

- 9,93 $\overline{-15.8}$ km.

1901, October 18, G. M. T. $15^{\rm h}~27^{\rm m}$ Hour angle W $5^{\rm h}~42^{\rm m}$

∟ HERCULIS—B 203

Measured by A. Power 24

Star weak; comparison strong.

Ti 40.3344	Standard	± 0.000		4468 663			
S 40.6336	4471.547		± 0.001	4471.676	-0.128	-8.6	1
S 41.6345	4481.279		± 0.005	4481.400	-0.116	7.8	2
Ti = 41.6502	4481.433	± 0.005		4481.438			
Ti 44.7949	4512.903	± 0.003		4512,906			
Ti 48.5741	4552.617	± 0.015		4552.632			
S 48.5752	4552,629		± 0.015	4552.750	-0.106	7.0	2
Ti 51.9644	Standard	±0.000		4590.126			
Ti~61.7980	Standard	± 0.000		4710.368			
S 62.0145	4713,227		± 0.000	4713.308	-0.081	5.2	3
					1		

Curvature Cor. $+0.0002 \,\mathrm{mm}$.

Weighted mean

-6.7

Mean = 7.1

 $\begin{array}{c|c} V_a & -8.39 \\ V_d & -0.24 \end{array}$

Reduction to Sun Radial Velocity

-- 8.63 $-15.3 \, \text{km}$.

Measured by F. Power 12

							T
Ti 34.9975	4386.971	+0.036		4387,007			
S 35.1125	4387.952		+0.033	4388,100	-0.115	-7.9	2
Ti 36.5035	Standard	± 0.000		4399.935			
Ti 37.7910	4411.248	-0.008		4411.240			
S 38,2090	4414.927		-0.009	4415.076	-0.158	10.7	1/2
Ti 43.7450	4465,999	-0.021		4465.975			
S 44.3230	4471,555		=0.015	4471.676	-0.136	9.1	3
S 45.3240	4481, 282		± 0.000	4481.400	-0.118	7.9	4
Ti/45.3400	Standard	±0.000		4481.438			

· HERCULIS-B 203-Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 52.2650 S 52.2660 Ti 55.6550	4552.612 4552.6 22 Standard	+0.020 ±0.000	+0.020	$\begin{array}{c} 4552.632 \\ 4552.750 \\ 4590.126 \end{array}$	-0.108	-7.1	2
Ti 61.2750 Ti 65.4895 S 65.7060	$\begin{array}{c} 4656.666 \\ 4710.502 \\ 4713.366 \end{array}$	$ \begin{array}{c c} -0.022 \\ -0.134 \\ \dots \end{array} $	-0.146	$\begin{array}{c} 4656.644 \\ 4710.368 \\ 4713.308 \end{array}$	-0.088	5.6	3

 $\begin{array}{ccc} \text{Weighted mean} & -7.6 \\ \text{Curvature Cor.} & -0.18 \\ \hline V_a & -8.39 \\ V_d & -0.24 \\ \hline \text{Reduction to Sun} & -8.63 \\ \hline \text{Radial Veloeity} & -16.4 \text{ km.} \end{array}$

· HERCULIS—B 403

1902, September 3, G. M. T. $17^{\rm h}$ $20^{\rm m}$ Hour angle W $4^{\rm h}$ $38^{\rm m}$

Star good; comparison good.

Measured by A. Power 17

Mean - 8.0

Ti 20.9299	Standard	±0,000		4338.084			
S 21.2447	4340.589		-0.002	4340.634	-0.047	-3.3	1
Ti 26.8642	4387,044	-0.037		4387.007			
S 26.9867	4388,095		-0.035	4388,100	-0.040	2.7	3
Ti 28.3553	4399.953	-0.018		4399.935			
Ti 31.4156	4427.263	+0.003		4427.266			
S 32.5444	4437.625		+0.002	4437.718	-0.091	6.2	2
Ti 33.7972	Standard	± 0.000		4449.313			
Ti 35.8235	4468.651	+0.012		4468.663			
S 36.1231	4471.557		± 0.019	4471.676	-0.100	6.7	3
S 37.1156	4481.271		+0.043	4481,400	-0.086	5.8	4
Ti 37.1282	4481.395	± 0.043		4481.438			
Ti 44.0047	Standard	± 0.000		4552.632			
S 44,0054	4552.640		± 0.000	4552,750	-0.110	7.2	3

Curvature Cor. +0.0008 mm.

Mean - 5.3

SUMMARY OF MEASURES OF & HERCULIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 251 A 260 B 203 B 403	1901, Sept. 27 Oct. 3 Oct. 18 1902, Sept. 3	$ \begin{array}{c c} -17.8 \\ -17.7 \\ -15.3 \\ -16.1 \end{array} $	6 5 4 6	-15.8 -16.4	5 6

Mean -16.7

-16.1

 $\begin{array}{cc} \text{Mean of 4 plates} & -16.6 \text{ km.} \\ \text{Mean of all measures} & -16.4 \text{ km.} \end{array}$

17. 67 OPHIUCHI

(R. A. = $17^{\text{h}} 56^{\text{m}}$; Dec. = $+2^{\circ} 56'$; Mag. 4.0; Class Vc)

Three plates of this star have been measured, three by A., and one by F. The lines present in the spectrum are few in number and rather diffuse in character.

67 OPHIUCHI-B 347

1902, May 14, G. M. T. 19h 14m Hour angle E 1^h 7^m

Star weak; comparison strong.

Measured by A. Power 17

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km,	
$Ti \ 26.5243$	Standard	± 0.000		4387.007			
S 26,6119	4387.761		± 0.000	4388.100	-0.339	-23.2	2
Ti 35.1864	4465.985	-0.010		4465,975			
S 35.7506	4471.458		-0.007	4471.676	-0.225	15.1	2
S 36.7347	4481.107		±0.000	4481,400	-0.293	19.6	1
Ti 36.7682	Standard	± 0.000		4481.438			
S 43,6078	4552.378		+0.017	4552.750	-0.355	23.4	2
Ti 43.6295	4552.615	+0.017		4552.632			
S 46.4328	4583.798		± 0.000	4584.018	-0.220	14.4	1
Ti~46.9877	Standard	± 0.000		4590.126			

Curvature Cor. +0.0008 mm.

Weighted mean
$$V_a$$
 +15.51

$$-19.6$$

$$Mean - 19.1$$

Mean = 0.4

$$\frac{V_d}{\text{Reduction to Sun}} + \frac{10.10}{\text{Radial Velocity}}$$

$$\frac{+15.61}{-4.0 \text{ km}}$$

1902, June 25, G. M. T.
$$19^{\rm h}\,41^{\rm m}$$

Hour angle W $2^{\rm h}\,11^{\rm m}$

67 OPHIUCHI-B 369 Star weak; comparison fair.

Measured by A. Power 15

					1		
Ti 33.5901	Standard	±0.000		4465.975			
S 34.1816	4471,703		± 0.000	4471,676	+0.027	+1.8	1
S 35.1712	4481.391		± 0.002	4481.400	-0.007	-0.5	3
Ti 35.1757	4481.436	+0.002		4481.438			
Ti~39.2693	Standard	± 0.000		4522.974			
Ti 42.0514	4552,621	+0.011		4552.632			
S 42.0588	4552,702		± 0.011	4552,750	-0.037	-2.4	2
Ti 45.4160	Standard	± 0.000		4590.126			

Curvature Cor. ± 0.0008 mm.

Weighted mean
$$-0$$
.

$$-0.7$$

-2.37

 $V_a = -2.19$ $V_d = -0.18$ Reduction to Sun Radial Velocity -3.1 km.

1902, July 7, G. M. T. 17^h 32^m Hour angle W 1^h 45^m

$67~OPHIUCHI-\Lambda\,346$

Star good; comparison good.

Measured by A. Power 15

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. ni.	t. m.	t. m.	t. m.	km.	
S 27.0710	4388.094		±0.000	4388,100	-0.006	-0.4	2
Ti 28.0857	Standard	± 0.000		4399.935			
Ti 33.6391	4468.668	-0.005		4468.663			
S 33.8791	4471.798		-0.005	4471.676	± 0.117	+7.8	3
Ti 34.6120	4481.441	-0.003		4481.438		·	
S 34.6180	4481.521		-0.003	4481.400	+0.113	+7.9	4
Ti 37.9791	Standard	± 0.000		4527.490	,	,	
S 41.2400	4575.018		± 0.000	4574.900	± 0.118	+7.7	1
Ti 47.8867	Standard	± 0.000		4682.088	1		
Ti 49.5012	4710.417	-0.049		4710.368			
S 49.6696	4713.429		-0.049	4713.308	+0.072	± 4.6	4

Curvature Cor. +0.0005 mm.

Weighted mean +5.7

Mean +5.5

 $V_a = 7.38$ $V_d = 0.15$

Reduction to Sun Radial Velocity $\frac{-7.53}{-1.8}$ km.

67 *OPHIUCHI* — A 346

Measured by F. with Zeiss Comparator Power 13

Mean +1.6

Ti 32.491	4337.977	+0.107		4338.084			
S 36.978	4388,069		+0.020	4388.100	-0.011	-0.8	2
$Ti \ 37.992$	Standard	± 0.000		4399.935			
Ti 43.320	4466.002	-0.027		4465.975			
S 43.760	4471.765	1	-0.017	4471.676	+0.072	+4.8	3
Ti 44.493	Standard	±0.000		4481.438			
S 41.494	4481.451		± 0.000	4481.400	+0.051	+3.4	4
Ti 45.600	4496.329	-0.011		4496.318			
Ti 49.587	Standard	± 0.000		4552.632			
S 49.594	4552.735		± 0.000	4552.750	-0.015	-1.0	1/2

Weighted mean Curvature Cor. $+2.5 \\ +1.41$

 $V_{a} = -7.38^{\frac{11}{2}}$

 $\begin{array}{c|c} V_{d}^{*} & -0.15 \\ \hline \text{Reduction to Sun} & -7.53 \\ \hline \text{Radial Velocity} & -3.6 \text{ km}. \end{array}$

SUMMARY OF MEASURES OF 67 OPHIUCHI

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
B 347 B 369 A 346	1902, May 14 June 25 July 7	$-4.0 \\ -3.1 \\ -1.8$	5 3 5	-3.6	4

Mean -3.0

-3.6

Mean of 3 plates -3.3 km. Mean of all measures -3.1 km.

18. 102 HERCULIS

(R. A. = $18^{h}4^{m}$; Dec. = $+20^{\circ}48^{\circ}$; Mag. 4.5; Class IVb)

Four plates of this star have been measured, four by A., and one by F. The lines in the spectrum are diffuse, and not well adapted to accurate measurement.

1902, July 23, G. M.T. $17^{\rm h}$ $53^{\rm m}$ Hour angle W $2^{\rm h}$ $0^{\rm h}$

102 HERCULIS—A 358

Star good; comparison fair.

Measured by A. Power 13

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti/21.0816	Standard	± 0.000		4338 084			
S 25.5751	4388.053		-0.015	4388 100	-0.062	-4.2	2
Ti/26.1914	4395.218	-0.017		4395,201			
Ti~28.8695	4427.282	-0.016		4427.266			
S 29.7168	4437.754		-0.006	4437.718	+0.030	+2.0	1
Ti/30.2141	Standard	\pm O.OOO		4443.976			
Ti/32.1395	4168.613	+0.050		4468.663			
S = 32.3669	4471.582		+0.049	4471 676	-0.045	-3.0	2
Ti 38 2196	4552.601	+0.031		4552.632			
S 38,2291	4552.741		+0.031	4552,750	+0.022	+1.4	1
TI.38.9877	Standard	±0.000		4563.939	,		
S 39.2607	4568.011		±0.000	4567.950	+0.061	+4.0	1

Curvature Cor. +0.0005 mm.

-1.0

Mean 0.0

$$\frac{\Gamma_a}{V_d} = 10.13$$

Reduction to Sun -10.29

Radial Velocity

 $\frac{-11.3 \text{ km}}{.}$

902, August 11, G. M. T. 16 ^h 12 ^m our angle W 1 ^h 35 ^m		102 HERCULIS—B 385 Star good; comparison good.				Measured by F Power 1	
Ti 21 1940	Standard	±0.000		4338.084			
Ti/27.1297	4387.052	-0.045		4387.007			
S 27 2596	4388.167		-0.044	4388.100	+0.023	+1.6	1
Ti~28~6223	4399.971	-0.036		4399.935			
S 30 5760	4417.270		-0.059	4417.121	+0.120	8.2	1
T7.30.6477	4417 913	-0.029		4417 884			

Ti 31 6828 4427.2724427.2660.006\$\frac{32}{12} \text{ 8329} \\ Ti \text{ 34} \text{ 0647} \\ Ti \text{ 36} \text{ 0938} \end{array} 4437.825-0.0034437.718 ± 0.104 7.0 ± 0.000 4449.313Standard 4468.6654468.663 -0.002S 36 1078 S 37,4010 Ti 37,1025 ± 0.030 $\frac{2.0}{1.5}$ -0.0024471.7084471.676+0.0234481.424-0.0014481,400 4481.439 -0.001 1481, 438 $\frac{4552,632}{4552,750}$ T_{i} 14.2795 S 41 2939 $\frac{4552.612}{4552.770}$ +0.0202 +0.020+0.010 2.6 Ti 15.3132 Standard \pm 0.0004563,939

Curvature Cor. +0.0009 mm.

Weighted mean + 3.5

Mean + 3.8

 $V_d = 15.36 \ V_d = 0.13$

Reduction to Sun -15.49Radial Velocity $-\overline{12.0}$ km.

102 HERCULIS-B 385

Measured by F. Power 13

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. nt.	t. m.	t. m.	km.	_
Ti 30.0027	4337.991	+0 093		4338.081			
S 30.3396	4340.675		+0.088	4340.634	+0.129	+8.9	1
Ti 35.9388	Standard	±0.000		4387.007	,	·	-
S 36.0675	4388.112		± 0.000	4388.100	+0.012	± 0.8	2
Ti 37.4313	4399.933	± 0.002		4399.935	'	•	
$Ti\ 40.4935$	4427.266	± 0.000		4327.266			
S 41.6344	4437.739		+0 002	4437.718	+0.023	+1.6	1
Ti 42.8747	4449.309	± 0.001		4449.313			
Ti 45.1844	4471.387	± 0.021		4471,408			
S 45.2204	4471.736		+0.021	4471.676	+0.081	+5.4	2
Ti 46.2120	Standard	± 0.000		4481.438	,		
S 46.2134	4481.452		± 0.000	4481.400	+0.052	+3.5	2
Ti 53.0896	4552.611	± 0.021		4552.632	, i		
S 53.1003	4552.727		+0.021	4552.750	-0.002	-0.1	3
Ti 56.4554	Standard	± 0.000		4590.126			

Curvature Cor. + 0.0013 mm.

Weighted mean $V_a = -15.36$ $V_d = -0.13$ Reduction to Sun Radial Velocity -15.49 -12.8 km.

1902, August 27, G. M. T. 15^h 0^m Hour angle W 1^h 28^m 102~HERCULIS — B 397

Star too weak; comparison strong.

Measured by A. Power 15

Mean +3.3

Ti 23.4654 S 23.6159 Ti 24.9590	4387.005 4388.297 Standard	+0.002 ±0.000	+0.002	4387.007 4388.100 4399.935	+0.199	+13.6	2
Ti 28.0223 Ti 32.4369 S 32.7593	4427 . 263 4468 . 681 4471 . 805	+0.003 -0.018	-0.014	4427.266 4468.663 4471.676	+0.115	7.7	3
Ti 33.7445 S 33.7507 Ti 40.6291	Standard 4481,499 4552,634	± 0.000 -0.002	±0.000	$\begin{array}{r} 4481.438 \\ 4481.400 \\ 4552.632 \end{array}$	+0.099	6.6	2
S 40.6590 Ti 41.6619	4552.937 Standard	±0.000	-0.002	4552.750 4563.939	+0.185	12.2	2
S 42.0462 Ti 42.4064	4568.189 4572.195	-0.039	-0.020	$\begin{array}{c} 4567.950 \\ 4572.156 \end{array}$	+0.219	14.4	1

Curvature Cor. +0.0009 mm.

Weighted mean +10.3

 $V_a = -18.64$

Reduction to Sun Radial Velocity

 $\frac{V_d}{un} = \frac{-0.12}{-8.5} \frac{-18.76}{\text{km}}$

1902, September 3, G. M. T. $15^{\rm h}~10^{\rm m}$ Hour angle W $2^{\rm h}~0^{\rm m}$ 102 HERCULIS—B 402

Star rather weak; comparison strong.

Measured by A. Power 17

Mean + 10.9

						1
Standard	±0.000		4338.084	į į		
4387.056	-0.049		4387.007			
4388.291		-0.049	4388.100	+0.142	+9.7	1
4399.982	-0.047		4399.935			
4411.283	-0.043				40.0	
		-0.043		+0.181	12.3	2
	-0.020			10.116		9
4437.839		-0.007	4437.718	+0.114	1.1	2
	$\begin{array}{c} 4387.056 \\ 4388.291 \\ 4399.982 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

102 HERCULIS-B 402-Continued

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mnı.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	1
Ti 33 4167	4443.975	+0.001		4443.976			
Ti.36.0140	Standard	± 0.000		4468.663			
S 36.3404	4471.829		-0.001	4471.676	+0.152	10.2	3
$Ti\ 37.3224$	4481.441	-0.003		4481.438	1		
S 37.3290	4481.506		-0.003	4481.400	+0.103	6.9	2
Ti.44-1950	4552 - 603	+0.029		4552.632			
S = 44.2215	4552.891		+0.029	4552.750	+0.170	11.2	2
$Ti\ 45.2260$	4563.905	+0 031		4563,939			
S 45 6087	4568.151		+0.014	4567.950	+0.215	14.1	3
Ti.45.9693	4572.161	0.005		$4572\ 156$			
S = 46,2301	4575,079		-0.001	4574.900	+0.175	11.5	2
$Ti\ 47.5587$	Standard	± (), ()(i)		4590.126			

Curvature Cor. $+0.0008 \,\mathrm{mm}$.

$$\begin{array}{c} \text{Weighted mean} & +10.6 \\ V_a & -19.65 \\ V_d & -0.16 \\ \text{Reduction to Sun} & -19.81 \\ \text{Radial Velocity} & -9.2\,\mathrm{km}, \end{array}$$

SUMMARY OF MEASURES OF 102 HERCULIS

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 358	1902, July 23	-11.3	5		
B 385	Aug. 11	-12.0	6	-12.8	6
B 397	Aug. 27	- 8.5	5		
B402	Sept. 3	-9.2	8		

-12.8

19. η LYRAE

 $(R. A.= 19^h 10^m; Dec.= +38^{\circ} 58^{\circ}; Mag. 4.5; Class IVb)$

Four plates of this star have been measured, four by A., and two by F. The spectrum contains but few lines, and these are not very sharply defined, so that accurate measurement is difficult.

л LYRAE -- A 365 Measured by A. 1902, July 31, G. M. T. 20h 51m Hour angle W 4h 21m Power 21 Star fair; comparison good. ${\begin{array}{ccc} {\rm S} & 27.4920 \\ Ti & 28.5143 \end{array}}$ 4388 - 029 ± 0.000 4388.100-0.071-4.91 ± 0.000 4399,935 Standard 4427,266 4437,718 4119,313 $\frac{4427.273}{4437.606}$ Ti~30.7921-0.007S 31.6288 Ti 32.5612 -0.1167.8 -0.004 ± 0.000 Standard Ti.34.06954168.691-0.0284468.663S 34.2915 S 35.0255 $4471.590 \\ 4481.264$ -0.0224471.676 -0.1087.2 4481.400 -0.1369.1 3 ± 0.000 Ti.35.0386Standard ± 0.000 4481.438

Curvature Cor. +0.0005 mm.

 $\begin{array}{c|cccc} \text{Weighted mean} & & -7.8 \\ V_a & -2.45 \\ V_d & -0.24 \\ \hline \text{Reduction to Sun} & & -2.69 \\ \hline \text{Radial Velocity} & & -10.5 \, \text{km}. \end{array}$

Mean = 7.3

Mean +10.4

1902, September 13, G. M. T. $17^{\rm h}$ $57^{\rm m}$ Hour angle W $4^{\rm h}$ $20^{\rm m}$

η LYRAE -- B 409

Star weak; comparison good.

Measured by A. Power 15

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti 22.4473	4387.014	-0.007		4387.007			
S 22,5690	4388.060		-0.006	4388.100	-0.046	-3.1	2
Ti 23.9362	Standard	± 0.000		4399.935			
S 25 87(3	4417.103		+0.001	4417.121	-0.017	-1.2	1
Ti 25 9569	4417.883	+0.001		4417.884			
Ti 26.9923	4427.268	-0.002		4427.266			
S 28.1365	4437.793		-0.004	4437.718	+0.071	+4.8	3
Ti 28.8010	4443.981	-0.005		4443.976			
Ti 31.1153	Standard	± 0.000		4465.975	'		
S 31 7046	4471.688		+0.003	4471.676	+0.015	+1.0	3
Ti 32.6982	4481.429	+0.009		4481.438			
S 32.6941	4481.388	,	+0.009	4481.400	-0.003	-0.2	3
Ti 39.5651	Standard	± 0.000		4552.632			
S 39.5829	4552.826		±0.000	4552.750	+0.076	+5.0	1

Curvature Cor. +0.0008 mm.

Weighted mean +1.1

 $\begin{array}{ccc}
V_a & -11.51 \\
V_d & -0.24
\end{array}$

Reduction to Sun Radial Velocity $\frac{-11.75}{-10.6 \text{ km}}$

1902, October 15, G. M. T. 14^h 12^m Hour angle W 2^h 45^m

 η LYRAE — B 422

Star fair; comparison good.

Measured by A. Power 21

Mean + 1.1

Ti 29.6491 S 29.9775 S 35.7220 Ti 36.5256 Ti 40.1270	Standard 4340.698 4388.258 Standard 4427.253 4437.777	±0.000 ±0.000 +0.013	±0.000 ±0.000	4338.084 4340.634 4388.100 4395.201 4427.266 4437.718	+0.064 $+0.158$ $+0.068$	+4.4 10.8	1 2
S 41.2721 Ti 41.9376 Ti 44.5326 S 44.8526 Ti 45.8379 S 45.8425	4443.969 4468.669 4471.778 Standard 4481.483	+0.007 -0.006 ±0.000	+0.009 	4437.716 4443.976 4468.663 4471.676 4481.438 4481.400	+0.008 +0.083	6.6	1 3

Curvature Cor. +0.0009 mm.

Weighted mean + 6.7

 $V_d = 14.54 \ V_d = 0.17$

-14.71

 $-8.0 \,\mathrm{km}$

Reduction to Sun Radial Velocity Mean +6.4

 $\eta LYRAE - B$ 422

Measured by F.

Mean + 10.7

Power 13

Ti 30.0739	Standard	±0.000		4338.084			
S 30.4100	4340.762		-0.002	4340.634	+0.126	+8.7	16
S 36.1563	4388,376		-0.036	4388.100	+0.240	16.4	2
Ti 36,9505	4395.241	-0.040		4395,201			
Ti 44.9578	4468.686	-0.023		4468,663			
S 45,2926	4471.936		-0.017	4471.676	+0.243	16.3	3
Ti 46 2628	Standard	± 0.000		4481.438			
S 46.2719	4481.528		± 0.000	4481.400	+0.128	8.6	3
Ti 54.1648	Standard	±0.000		4563.939	'		
S 54.5322	4568,011		-0.010	4567.950	+0.051	3.4	1
Ti = 54.9059	4572,176	-0.020		4572.156			

Curvature Cor. $+0.0013 \,\mathrm{mm}$.

Weighted mean +12.1

 $V_a = -14.54$

 $V_d^* - 0.17$

Reduction to Sun -14.71Radial Velocity -2.6 km.

 η LYRAE — B 427

1902, October 16, G. M. T. $15^{\rm h}\,32^{\rm m}$ Hour angle W $4^{\rm h}\,23^{\rm m}$

Star weak; comparison good.

Measured by A. Power 21

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti-25.6843	4386.989	+0.018		4387.007			
S 25.8232	4388,183		+0.016	4388,100	+0.099	+ 6.8	2
Ti 27.1756 Ti 30.2336	Standard 4427-297	±0.000 -0.031		4399.935 4427.266			
S 31.3788	4437.837	-0.031	-0.020	4437.718	+0.099	6.7	2
Ti = 32.0390	4443.989	-0.013	0.020	4443,976	10.000	0.1	_
Ti = 34.6291	4468.668	-0.005		4468,663			
S = 35,9322	4481.424		± 0.000	4481,400	+0.024	1.6	3
Ti = 35.9336	Standard	± 0.000		4481.438	į		
Ti-42.7896	4552.595	+0.037		4552,632			
S = 42.8125	4552,845		+0.037	4552.750	+0.132	8.7	1
Ti=43.8220	Standard	± 0.000		4563.939			
S 44.1927	4568.055		± 0.000	4567.950	+0.105	6.9	2

Curvature Cor. ± 0.0008 mm.

Mean + 6.1

 $V_a = -14.57 \ V_d = 0.24$

Reduction to Sun Radial Velocity $\frac{-14.81}{-9.4 \,\mathrm{km}}$

 $\eta LYRAE$ - B 427

Measured by F. Power 13

					1 1		
Ti 30.0406	Standard	± 0.000		4387.007			
S 30.1635	4388.062		± 0.000	4388,100	-0.038	-2.6	1
Ti 34,5896	Standard	±0.000		4427.266			
S 35.7360	4437.817		-0.003	4437.718	十0.096	+ 6.5	1
Ti 36.9653	4149.320	-0.007		4449.313			
$Ti_{-}39.2676$	4471.412	-0.004		4471.408			
S 39.3137	4471.861		-0.001	4471 - 676	+0.181	+12.1	3
Ti-40/2880	Standard	± 0.000		4481.438			
S 40.2929	4481.487		± 0.000	4481.400	+0.087	+ 5.8	3

Curvature Cor. +0.0013 mm.

Weighted mean
$$V_a = -14.57 + 7.2$$

Mean +5.5

 $V_d = 14.54$

Reduction to Sun Radial Velocity $\frac{-14.81}{-7.6 \text{ km}}$

Summary of Measures of $\eta LYRAE$

Plate	Date	Adams	No. of Lines	Frost	No. of Lines
A 365	1902, July 31	-10.5	4		
B 409	Sept. 13	-10.6	6		
B 422	Oet. 15	-8.0	5	-2.6	5
B 427	Oct. 16	- 9.4	5	-7.6	4

Mean = 9.6

- 5.1

Mean of 4 plates -8.7 km. Mean of all measures -9.1 km.

20. € DELPHINI

(R. A.= $20^{\rm h}$ 28^m; Dec.= $\pm 10^{\circ}$ 58'; Mag. 4.1; Class Va)

Four plates of this star have been measured, all of them by A. The spectrum contains very few lines, among them traces of one or two oxygen lines, and all of these are poorly defined.

€ DELPHINI—A 349

1902, July 11, G. M. T. 17^h 55^m Hour angle E 1^h 11^m

Star weak; comparison good.

Measured by A. Power 14

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weight
mm.	t. m.	t. m.	t. m.	t. m.	t. m.	km.	
Ti = 20.1815	Standard	± 0.000		4338.084			
S 20.3642	4340.037	******	± 0.000	4340.634	-0.597	-41.3	1
$Ti_{-26.0799}$	Standard	± 0.000	0.004	4404.433	0.510	0" 0	
S 26.9275	4414.558	0.009	-0.001	$\frac{4415.076}{4468.663}$	-0.519	35.3	1
Ti 31.2436 S 31.4346	4468.666 4471.164	-0.003	-0.002	4471.676	-0.514	34.5	9
S 32.1652	4480.804		+0.000	4481.400	-0.596	39.9	4
Ti 32.2129	Standard	+ 0.000	10.000	4481.438	0.000	00.0	1

Curvature Cor. +0.0005 mm.

Weighted mean

-38.2

Mean - 37.7

 $V_a + 10.25$ $V_d + 0.10$

Reduction to Sun Radial Velocity $\frac{+10.35}{-27.8}$ km.

 ϵ DELPHINI—A 353

1902, July 16, G. M. T. $18^{\rm h} \, 48^{\rm m}$ Hour angle W $0^{\rm h} \, 5^{\rm m}$

Star good; comparison good.

Measured by A. Power 17

Ti 23.8727 S 24.0696 Ti 28.9894	Standard 4340,189 4395,209	±0.000 -0.008	±0.000	4338.084 4340.634 4395.201	-0.445	-30.8	1
Ti 29.3926 Ti 34.9402 S 35.1308 S 35.8739 Ti 35.9112	Standard 4468.655 4471.146 4480.942 Standard	±0.000 +0.008 ±0.000	+0.006 ±0.000	4399.935 4468.663 4471.676 4481.400 4481.438	$ \begin{array}{c c} -0.524 \\ -0.458 \end{array} $	$\frac{35.1}{30.6}$	$\frac{2}{1}$

Curvature Cor. + 0.0005 mm.

Weighted mean -32.9

Mean = 32.2

 $V_a + 8.22 \ V_d - 0.01$

Reduction to Sun Radial Velocity $\frac{+\ 8.21}{-24.7\ \mathrm{km}}$

 ϵ DELPHINI—A 359

1902, July 23, G. M. T. 19^h 59^m Hour angle W 1^h 39^m

Star fair; comparison fair.

Measured by A. Power 13

Ti 25.0852 S 25.2773 S 29.5420 Ti 30.1979 Ti 32.8751 Ti 34.2187	Standard 4340.139 4387.590 4395.210 Standard 4443.956	±0.000 	-0.001 -0.008	4338.084 4340.634 4388.100 4395.201 4427.266 4443.976	-0.496 -0.518	-34.3 35.4	2
Ti 36.1468 S 36.3447 S 37.0832 Ti 37.1176 Ti 38.6030	4468.649 4471.233 4480.970 4481.428 Standard	+0.014 +0.010 ±0.000	+0.013 +0.010	4468,663 4471,676 4481,400 4481,438 4501,445	$ \begin{array}{c c} -0.430 \\ -0.420 \end{array} $	28.8 28.1	1 2

Curvature Cor. +0.0005 mm.

Weighted mean -31.5

Mean = 31.6

 $V_a + 5.28$ $V_d - 0.14$

Reduction to Sun Radial Velocity

 $\frac{+5.14}{-26.4 \text{ km}}$

1902, July 31, G. M. T. $16^{\rm h}$ $45^{\rm m}$ Hour angle E $1^{\rm h}$ $5^{\rm m}$

€ DELPHINI—A 363

Star slightly weak; comparison good.

Measured by A. Power 13

Mean = 28.3

Mean of Settings	Wave-Length by Formula	Correction to Comp. Lines	Correction to Star Lines	Normal Wave- Length	Displacement	Velocity	Weigh
mm.	t. m.	t. m.	t. m.	t. m.	t. ni.	km.	
Ti~22.5790	4386,956	± 0.051		4387.007			
S = 22.6325	4387.574		+0.049	4388.100	-0.477	-32.6	1
Ti 23.6921	Standard	± 0.000		4399.935			
S 25.1003	4416.725		-0.018	4417.121	-0.414	28.1	1
Ti 25.1978	4417.903	-0.019		4417.884			
Ti 25.9676	4427.277	-0.011		4427,266			
S 26.7834	4437.355		-0.027	4437.718	-0.390	26.4	1
Ti 27.7398	4449.360	-0.047		4449.313			
Ti 29.2448	1468.683	-0.020		4468.663			
S 29.4421	4471.257		-0.016	4471.676	-0.435	29.2	2
S 30.1842	4481.020		± 0.000	4481.400	-0.380	25.4	2
Ti 30.2157	Standard	± 0.000		4481.438			
Ti 37.8308	Standard	± 0.000		4590.126			

Curvature Cor. +0.0005 mm.

Weighted mean
$$\begin{array}{c} -2.80 \\ V_a + 1.91 \\ V_d + 0.09 \end{array}$$

Reduction to Sun +2.00Radial Velocity -26.0 km.

SUMMARY OF MEASURES OF & DELPHINI

Plate	Date	Adams	No. of Lines
A 349 A 353 A 359	1902, July 11 July 16 July 23	$ \begin{array}{r} -27.8 \\ -24.7 \\ -26.4 \end{array} $	4 3 4
A 363	July 31	-26.0	ə

 $\begin{array}{ll} \mbox{Mean} & -26.2 \mbox{ km}. \\ \mbox{Mean of all measures} & -26.2 \mbox{ km}. \end{array}$

SUMMARY OF RADIAL VELOCITIES

The table which follows gives a summary of the results for the stars which we have considered in this paper. As the final velocity of each star the mean of all the measures has been adopted, so that a plate measured by both observers will have twice as much weight as a plate measured by only one. This procedure has seemed preferable to that of assigning unit weight to each plate without regard to the number of measures made of it, but the difference between the values found in the two ways is in general very slight, as a brief inspection of the summaries given at the end of the detailed measurements of each star at once shows. Column six of the table below accordingly gives the total number of measures for the individual stars, while the following column indicates the epoch to which the final velocity belongs. For comparison a list of the proper motions of the stars is appended, the values of which have been very kindly communicated to us by Professor Lewis Boss, in advance of their publication in his "Catalogue of 627 Principal Standard Stars" in the Astronomical Journal (Nos. 531, 532, February, 1903). For the three stars not included in his "Catalogue" (67 Ophiuchi, 102 Herculis, and η Lyrae) Professor Boss was good enough to furnish us with values in systematic conformity therewith. The proper motions correspond to Professor Newcomb's value of the precession.

SUMMARY

					_				
Mag.	Star	R, A.	Dec.	RADIAL	No. of Meas-	Epoch	PRO	PER MOTION	
mag.	Star	n. x.	Dec.	VELOCITY	VELOCITY ures		R. Λ.	Dec.	Great Circle
3.0	γ Pegasi	Oh OSm	+14° 38′	+ 5.4	12	1902.06	0.50000	-0.013	0."013
3.7	ζ Cassiopeiae	0 31	$+53 \ 21$	+ 2.9	6	1902.10	+0.0024	-0.007	0.023
3.6	€ Cassiopeiae	1 47	$+63 \ 11$	- 5.9	8	1902.08	+0.0058	-0.017	0.043
3.1	ζ Persei	3 48	+31 35	+22.1	7	1901.95	+0.0009	-0.017	0.020
0.3	β Orionis	5 10	-8 19	+20.7	24	1901,95	± 0.0001	-0.001	0.002
1.9	γ Orionis	5 20	+ 6 15	+18.0	10	1901.98	-0.0004	-0.019	0.020
1.8	€ Orionis	5 31	- 1 16	+26.7	7	1902.05	0.0000	-0.002	0.002
1.9	ζ Orionis	5 36	-2 00	+18.3	7	1902,52	± 0.0005	-0.007	0.010
2.2	κ Orionis	5 43	-942	+17.1	10	1901.88	± 0.0001	-0.005	0.005
2.0	β Canis Majoris	6 18	-17 54	+32.6	ă.	1901.84	-0.0004	0.000	0.006
1.5	€ Canis Majoris	6 55	-28 - 50	+27.2	4	1902.61	+0.0004	-0.001	0.005
3.6	η Leonis	10 02	+17 15	+ 3.5	5	1902.31	-0.0001	-0.012	0.012
2.8	$\gamma Corvi$	12 11	-16 59	- 7.0	6	1902.27	-0.0113	+0.011	0.162
3.9	τ Herculis	16 17	+46 33	-12.7	6	1902.21	-0.0012	± 0.031	0.033
3.3	ζ Draconis	17 08	$\pm 65 - 50$	-14.4	8	1902.19	-0.0021	± 0.020	0.024
3.9	ι Hereulis	17 37	+46 - 04	16.4	-6	1901.92	-0.0010	-0.006	0.012
4.0	67 Ophinchi	17 56	+256	— 3.1	4	1902.47	+0.0003	-0.016	0.017
4.5	102 Hereulis	18 04	$+20 \ 48$	-10.8	5	1902.62	十0.0003	-0.011	0.012
4.5	η Lyrae	19 10	+38 58	- 9.1	6	1902.74	-0.0002	-0.004	0.005
4.1	ϵ Delphini	20 28	+10 58	-26.2	4	1902.55	+0.0006	-0.026	0.027
									1

The distribution of positive and negative velocities in the table shows clearly the direction of the motion of the Sun in space, although the number of stars is, of course, much too small to warrant the determination of the apex or velocity. Conversely, the position of the apex is not accurately enough known to make it seem desirable to tabulate the radial velocities corrected for the solar motion. It is evident on inspection, however, that the absolute velocities of these stars are very small, and a computation, based upon Newcomb's adopted apex (R. A. = $277^{\circ}.5$; Dec. = $+35^{\circ}$) and Campbell's solar velocity (19.9 km.), gives 7.0 km. as the mean of the twenty radial velocities after correction for the solar motion; if the sign be regarded, the mean becomes +4.6 km. The exceedingly small proper motions, for stars as bright as these, are striking (in the mean 0.023; or, omitting γ Corri, which is exceptional, 0.015), being much smaller than for solar stars of corresponding brightness, and indicate that the stars of the Orion type are as a class very remote. The bright stars of the constellation Orion evidently group themselves both as to the direction and magnitude of their motions.

The radial velocities of but four of the stars in the list have been previously published, by Vogel and Scheiner in Vol. VII of the Potsdam Publications. They are as follows:

$$β Orionis - - - +16.3 \text{ km}.$$
 $ε Orionis - - - +26.7$ $γ Orionis - - - +8.9$ $ξ Orionis - - - +14.8$

Except in the case of γ Orionis the agreement with the values which we have found above is quite satisfactory in view of the character of the spectra, which are most difficult of measurement.

In the course of our observations the following seven stars with spectra of the *Orion* type have been found to have variable radial velocities, and are reserved for discussion elsewhere:¹⁵

δ Ceti; ν Eridani; η Orionis; β Cephei; ο Persei; π⁵Orionis; ζ Tauri.

¹⁵ See Astrophysical Journal, Vol. XV (1902), pp. 214, 340; ibid., Vol. XVII (1903), pp. 150-52.

REMARKS ON THE CLASSIFICATION OF THE SPECTRA

Although all of the stars which we have investigated in this paper belong to type Ib of Vogel's classification, their spectra vary greatly both as regards the number and the character of the lines present, and a few subdivisions are certainly desirable. Miss Maury's classification is excellent in this respect, and has the great advantage of being based upon photographs which show a very wide range of spectrum, including the valuable H and K region. From this point of view any attempt at classification based upon the limited range of spectrum given by a high-dispersion spectrograph must be distinctly inferior. A further disadvantage in discussing the characteristics of the spectra which we have obtained lies in the fact that the quality of plates best adapted to determinations of radial velocity is generally quite different from that which would be most suitable for qualitative examination; and the greater density demanded may effectually conceal some of the fainter lines present in the spectra. On the other hand, the higher dispersion and consequent broadening of the spectral lines undoubtedly enable one to judge much better of the behavior and character of the individual lines than would be possible with low dispersion and a small scale. At most, however, the classification of such a limited number of stars as we deal with here must of necessity be mainly empirical, and any order of arrangement will represent rather the succession of the various spectra as regards complexity and character of the lines than the sequence of development of the stars themselves.

The lines which occur in the spectra of the stars which we have investigated, and upon which any classification must be based, are due to the following elements: hydrogen, helium, magnesium, silicon, oxygen, and nitrogen. In some stars faint metallic lines also appear, and there are a few lines as yet unidentified. The extent of spectrum included in this examination of our plates is from $\lambda 4300$ to $\lambda 4720$.

In what are probably the earliest stars of this type in order of development no lines are present with the exception of the hydrogen and stronger helium lines, and these are faint, and extremely broad and diffuse. Most of them contain the line $H\gamma'$ at λ 4542, which belongs to the series of hydrogen lines first found by Pickering in the spectrum of $\zeta Puppis$, and some of them show the line at \$\lambda 4686\$, which Rydberg calls the first line of the hydrogen spectrum. Both of these lines are represented by bright bands in the spectra of stars of the Wolf-Rayet type. In the stars which appear most naturally to come next in order these lines disappear, and the hydrogen and helium lines increase in strength, at the same time becoming narrower and more sharply defined. The earliest of this group of stars show traces of the magnesium line at λ 4481, and the silicon lines at λ 4553, λ 4568 and $\lambda 4575$. While the magnesium line, however, rapidly increases in strength, becoming in the later stars of the group one of the most prominent lines in the spectrum, the silicon lines remain comparatively unimportant. The spectra of the furthest developed stars of this sort, such as i Herculis and β Orionis, are characterized by strong and fairly well defined lines of hydrogen and helium, a strong and narrow line at \$\lambda 4481\$, and traces of the silicon lines. Faint metallic lines also appear at this point, the most prominent being at $\lambda 4550$ and $\lambda 4584$, and indicate the connection of these stars with those distinguished by metallic lines. These last are represented among the stars investigated by ζ Tauri, γ Corvi, and η Leonis, and show a great decline in intensity for the helium lines accompanying the rise of the metallic lines. The magnesium line \$4481, however, is very weak in the case of \(\xi\) Tauri, though strong in the other two stars, and this fact, together with the remarkable character of its hydrogen lines, which are of a sharpness and brilliancy not approached in any of the other stars, makes the spectrum of this star one of the most interesting that we have encountered.

Up to this point the order of succession of the spectra seems to be fairly clear, but those containing oxygen and nitrogen lines are much harder to classify. This difficulty arises from the fact that in other respects they seem to be almost identical with those which we have just considered. There is the same rise in intensity and increase in sharpness on the part of the hydrogen and helium lines, and the magnesium line appears and develops in almost exactly the same way, reaching nearly,

though never quite, the intensity which it has in such stars as β Orionis. On the other hand, we find in the earliest stars of this group the beginnings of a whole series of oxygen and nitrogen lines which develop simultaneously with the hydrogen, helium, and magnesium lines, and attain in the later stars of the group, such as β Canis Majoris and γ Pegasi, a high degree of prominence. The fact that the three silicon lines, which in the stars considered before never became at all marked features of the spectrum, now follow the behavior of the oxygen and nitrogen lines and gain in intensity with them, is of interest as showing that the stellar conditions seem to be favorable to the simultaneous development of the spectra of the three elements. An examination of these characteristics of the spectrum appears to make the relationship of this group of stars to that which we have considered before one of parallelism rather than succession. For while the order of succession of the individual stars within the two groups is so well defined as to preclude the insertion of either within the other, an attempt to make one follow or precede the other would be equally difficult, without the assumption of the absence of more connecting links than would be justified. Accordingly, it has seemed best to assume a point of division immediately after the earliest stars of the list, and to arrange the stars exhibiting no oxygen or nitrogen lines in their spectra along one branch, while the stars which are characterized by such lines proceed along the other.

In the following table the twenty stars discussed in this paper, together with some others of this type of which we have one or more plates, are collected and arranged. Those whose spectra are very closely allied are connected with brackets, and within the brackets the individual stars are placed in the order of increasing intensities of the lines mentioned.

DESCRIPTION OF THE PLATES

Plate I shows the spectrograph attached to the forty-inch telescope. The cells containing each of the three prisms may be readily seen, rigidly attached to the main easting, in their invariable position. The twenty-fourinch camera tube for camera lens B is seen in place. The chair is set in the proper position for an observer to conveniently look (down) into the guiding telescope. The tube extending from the guiding telescope below to the "goose-neck" above conveys the rays which have been reflected from the polished slit-jaws, and then caught and deflected downward by diagonal prisms within the "goose-neek." To the left of this may be seen the apparatus for producing the comparison spectrum, and the slit, although the seale of the illustration does not permit the details to be clearly apparent. The long rod which would be at the left hand of an observer sitting in the chair is used to assist in guiding, and the whole telescope may be slightly sprung to follow the star. The switches controlling the electric slow-motions in right ascension and declination, which are always within easy reach of the observer, could not be shown when the temperature ease was removed, as here. The light inner aluminium case, or prism-box, is seen on the floor at the left below the prisms. The double-walled outer temperature case, which incloses the whole spectrograph, except the slit, is at the extreme right. Behind it is the carriage upon which the spectrograph rests when not attached to the telescope. The induction coil is seen at the left. The box beneath it contains the condenser (at left), the self-induction coil (at right), and the drum upon which is wound the cable conveying the secondary current to the spectrograph.

Plate II shows the comparator made by Gaertner & Co., which is sufficiently described on p. 6.

Several examples of spectra described in this paper are given in Plate III. The negatives used were α Boötis, B 300; β Orionis, B 282; β Canis Majoris, B 215; ϵ Canis Majoris, B 461; and η Leonis, B 329.

A recent important modification of the pendulum apparatus for vertical enlargement of spectra has permitted the comparison spectrum to receive the same treatment as the stellar spectrum. The positives from which the half-tone blocks were made were prepared by Mr. Ellerman. As shown here the enlargement over the original negatives is vertically almost forty-fold, and horizontally only four-fold (3.8). Any process of vertical enlargement necessarily introduces false lines in the stellar spectra, which may be confusing in spectra having few lines, although inconspicuous in the spectra of the solar type. We have accordingly indicated the chemical origin of all of the more important lines on the three spectra having the fewest lines.

The plates have not been retouched by photographer or engraver, but the intensity of the continuous spectrum was rendered as uniform as possible by shading the brightest parts during the process of enlargement.

MEASURING MACHINE FOR STELLAR SPECTRA

 η LEONIS

Examples of Stellar Spectra With Comparison Spectrum of Titanium

.

THE SPECTRA OF STARS OF SECCHI'S FOURTH TYPE

GEORGE E. HALE, FERDINAND ELLERMAN, AND J. A. PARKHURST

The possibility of basing a systematic scheme of stellar evolution on spectroscopic observations is foreshadowed in the work of Fraunhofer, who in 1823 observed for the first time the spectra of a few of the brightest stars. Though wholly ignorant of the origin of the dark lines in these spectra, Fraunhofer recognized that their number, appearance, and grouping differed greatly from star to star, and that in certain cases the solar spectrum seemed to be exactly duplicated. But it required such a general survey as that of Secchi, who examined the spectra of more than four thousand stars, to afford any basis for a scheme of classification. The purely empirical classification which he adopted includes a very large percentage of the stars among its five principal types, and subsequent systems have done little more than to add subgroups to provide for the comparatively few peculiar spectra which do not fall within Secchi's divisions.

Secchi's classification, as we have said, was a purely empirical one, intended to serve only as a convenient means of grouping similar spectra. But the researches of Huggins and Vogel soon introduced the idea of development, and the changes of spectra from type to type came to be regarded as synonymous with progressive changes in the stars themselves. Spectroscopists have agreed in regarding the white stars, with spectra characterized by the predominance of the series of hydrogen lines (Secchi's first type), as representing an early stage of development, corresponding to a condition of low density. Through the continued action of gravity, accompanied by loss of heat, the absorbing metallic vapors increase in density, producing a marked increase in the number and strength of the metallic lines, while the hydrogen lines become narrower and less conspicuous (Secchi's second type). The reduction of light caused by the greater absorption is most marked at the violet end of the spectrum, causing the color of the star to change from white to yellow. After passing this, the solar, stage, further operation of the same causes results in the production of red stars, whose spectra might be expected to indicate comparatively low temperature and high density of the absorbing vapors.

It is not clear, however, why there should be two distinct classes of red stars, characterized by widely different banded spectra. One of these classes (Secchi's third type), which includes such bright stars as a Orionis, a Scorpii, and a Herculis, is comparatively well known. In the pioneer days of stellar spectroscopy Huggins and Vogel measured some seventy lines in the spectrum of a Orionis, and the more refrangible region of the spectra of some of these stars has more recently been studied photographically by these and other observers. But much remains to be done by photographic means, particularly in the less refrangible region, where Keeler was working with marked success when interrupted by his untimely death. In the present paper our photographs of the spectra of some of these stars are reproduced for comparison with the spectra of stars of Secchi's fourth type, but the measurement of these photographs has not yet been undertaken.

As the other great class of red stars (Secchi's fourth type) includes no objects brighter than magnitude 5.3, it is obvious that the detailed investigation of their spectra is beyond the reach of telescopes of small aperture. It will be seen from the references given below that the general characteristics of these spectra were clearly recognized in the visual observations of Secchi, Dunér, Vogel, and others, but it was impossible with the instruments employed by them to observe more than the carbon bands and two or three prominent lines. Even the objective prism, as applied in conjunction with photography, has failed to show the less conspicuous details, though it has been invaluable in discovering new objects and in showing the relative intensities of the various bands in different stars. As the great light-gathering power of the forty-inch Yerkes refractor seemed to render it especially suitable for an investigation of these faint stars, the work described in this paper was undertaken in

January, 1898. In conjunction with this investigation photographs have been made of the spectra of a number of stars of other types, researches on the condition of carbon in the solar chromosphere and on the widened lines in Sun-spots have been set on foot, and considerable work on the spectrum of carbon and other substances has been done in the laboratory.

REVIEW OF PREVIOUS OBSERVATIONS

In his first classification of stellar spectra Secchi made no distinction between the two types of red stars. Indeed, a star later recognized by him as of the fourth type (Lalande 12,561) was classed in the memoir Sugli spettri prismatici delle stelle fisse (Memoria Prima, 1867) with a Herculis in the following words (Catalogo, p. 14): "In conclusione è tipo di a Ercole, ma con zone nere mancanti, onde le sue sono large tanto, che alcune ne abbracciano due di quelle di a Ercole." After giving measurements to show the agreement in the position of the bands with those of a Herculis, Secchi adds, however: "Le zone sono notabili per avere il verso della luce in senso opposto dell' ordinario."

In the second memoir (Memoria Seconda, 1868) it appears that the distinctive characteristics of fourth-type spectra were recognized in the course of a survey of some twenty red stars from Schjellerup's catalogue. In describing the spectrum of 152 Schjellerup as characteristic of the class, Secchi remarks (p. 9):

Questo tipo è dunque composto di tre sole zone principali; una viva nel verde, una debole nel bleu e una assai viva nel rosso. Quest' ultima è spesso subdivisa in altre zone minori.

Questo tipo differisce essenzialmente dal 3° non solo per la divisione della zone, le quali hanno una larghezza doppia, ma anche perchè le zone hanno la maggiore intensità luminosa in verso opposto. Cioè esse nel 4º tipo vanno crescendo di luce dal rosso verso il violetto, mentre quelle del terzo sono disposte al contrario. Talchè rappresentando il 3° tipo come un sistema di colonne, il quarto sarebbe rappresentato da cavità, supponendo la luce illuminante diretta nello stesso verso.

Few objects having spectra of the fourth type were known to Seeehi, but many were discovered in the subsequent observations of Vogel, D'Arrest, Dunér, Pickering, and Espin. Pickering's first discoveries were made visually, but a very large percentage of the fourth-type stars discovered at the Harvard Observatory have been found on photographs taken with an objective prism. Qualitative observations of various fourth-type spectra, made with a small direct-vision spectroscope, are given by Friedrich Krueger in his "Catalog der farbigen Sterne." McClean photographed the spectrum of 152 Schjellerup with an objective prism in 1896. He describes his results as follows:

Two different photographs are given of the star 152 Schjellerup of the 5½ magnitude. Two hours' exposure was required, which accounts for the exaggerated distortion due to the changing amount of refraction during exposure. The value of the faint details is enhanced by the correspondence of the two photographs. The presence of a line-absorption spectrum is distinctly shown, and it appears to agree to a marked extent with the usual line spectrum of Types II and III. There appears to be no trace of Dunér's Band No. 5 of Type III. The inference seems to be that spectra of Type IV arise from a natural course of change in these stars, passing directly from Type II. They are stars of Type II become less luminous, but not different in kind.

McClean also reproduces objective-prism photographs of the spectra of 19 Piscium and 152 Schjellerup in an article in the Philosophical Transactions, Vol. CXCI, A, p. 131, Plate XIV. His photograph of 19 Piscium shows only the bands, but in the two spectra of 152 Schjellerup some of the more conspicuous dark lines are visible. These photographs were the first to show any of the lines; unfortunately they do not seem to have been measured. A large number of fourth-type spectra have been photographed with the objective prism at the Harvard Observatory, but while the bands are well shown, the lines do not appear in these photographs. A complete list of all fourth-type stars known at that time was published in 1898 by Espin, who has himself discovered many objects of this character. The classic memoir published by Dunér in 1884, "Sur les étoiles à spectres de la troisième classe,"

¹ Publicationen der Sternwarte in Kiel, Band VIII, Kiel, 1893.

² Monthly Notices, Vol. LVII, p. 8.

³ Ibid., Vol. LVIII, p. 443.

⁴ Svenska Vetenskaps-Akademiens Handlingar, Vol. XXI, No. 2.

Vogel's observations with the twenty-seven-inch refractor of the Vienna Observatory,⁵ and McClean's photographs of 152 Schjellerup have afforded the best available data for the study of the spectra.

Dunér's important observations, which are frequently to be referred to in this paper, were made with several direct-vision spectroscopes of different dispersive powers attached to the ten-inch refractor of the Lund Observatory. In spite of the insufficiency of his instrumental equipment, which prevented him from seeing the dark and bright lines in the spectra of fourth-type stars, Dunér's results are of the highest value, and his conclusions are confirmed in almost every particular by our photographs. In a recent paper Dunér has described his observations of bright lines in fourth-type spectra, made at the Upsala Observatory with a telescope of 36 cm. aperture. Further reference to these observations will be made below. Dunér's drawings of fourth-type spectra are reproduced from his first memoir in Plate V. His general description of fourth-type (IIIb) spectra is as follows:

Les spectres des étoiles de la classe IIIb consistent, s'ils sont parfaitement développés, en quatre zones brillantes, séparées par des bandes obscures, dégradées vers le violet, et d'une largeur extraordinaire, au moins le double de celles de la classe IIIa. La zone rouge-jaune est subdivisée par des bandes plus faibles et moins larges, dégradées soit vers le rouge, soit vers les deux côtés. La sous-zone jaune (longueur d'onde 563-589) est ordinairement la partie la plus brillante du spectre entier, et elle, ainsi que la sous-zone rouge voisine (longueur d'onde 589-621), est divisée en deux par une bande bien marquée, mais si étroite qu'elle ressemble, dans des spectroscopes d'une faible dispersion, à une raie ordinaire. En outre il y a, dans la zone verte, deux raies, ou peut-être deux bandes très étroites.

Ces caractères sont, j'en suis sûr, non moins constants, dans les spectres de cette classe, que le sont pour la classe IIIa ceux donnés ci dessus, et on les reconnaîtra indubitablement chez toutes les étoiles qui y appartiennent, à mesure qu'on pourra les examiner avec des luncttes suffisamment fortes, et à mesure que les étoiles se trouveront dans une phase de dévéloppement suffisamment avancée. Dans une lunctte de 245 millimètres d'objectif comme la nôtre, il y a cependant des détails dans les spectres de la plupart de ces étoiles, qu'on ne peut apercevoir. D'abord les bandes secondaires, et les raies dans la zone verte sont plus ou moins invisibles dans les spectres des étoiles faibles, et même dans les étoiles les plus brillantes (5^m. 5 seulement!) leur intensité peut être très différente. Puis l'intensité de la lumière des zones brillantes peut varier considérablement chez des étoiles de la même grandeur. Dans les étoiles d'un rouge foncé, la zone ultra-bleue est extrêmement faible en comparaison avec la même zone dans les étoiles rouge-jaune; et chez les étoiles faibles, cette zone est tout-à-fait invisible, et même la zone bleue est très difficile à voir si elles sont très rouges.

Mais aussi la bande principale à la longueur d'onde 563 est d'une opacité très variée. Chez certaines étoiles, elle est presque aussi foncée que les deux autres bandes principales; mais dans certains spectres elle est assez faible, et semble, probablement à cause de cela, être beaucoup moins large que les bandes aux longueurs d'onde 516 et 473. Celles-ei, et surtout la première d'entre elles, sont toujours très fortes et très larges, et forment le caractère le plus prononcé de ces spectres. Toutes les étoiles de cette classe sont très fortement colorées, au moins d'un rouge-jaune fort mais quelques-unes d'entre elles sont presque rouges.⁷

Dunér's measures of fourth-type (IIIb) spectra, as tabulated on p. 122 of his memoir, are given below, reduced to Rowland's scale:

OBJECT 19 Piscium 132 Schj. 152 Schj. 132 Sch j. 152 Schj. WAVE-LENGTH 621621Band 3.... 6049 6049 Band 4 (maximum) 5885 5896 5896 5911 5899 Band 5.. 5748 5761 5758 5763 5761 5762 Band 6 (beginning) 5641 5625 5634 5635 5634 Band 7. 551 551Band 6 (end).... 545 545 Band 8..... 5286 5281 5284 Band 9 (beginning).... 5168 5160 5161 51655164 Band 9 (end) 496. . . . 4721 Band 10 (beginning).... 4715 4730 4740 4728 Band 10 (end) 463 463437 End of spectrum 437

WAVE-LENGTHS DETERMINED BY DUNÉR

⁵Publicationen der Astrophysikalisches Observatorium zu Potsdam, Vol. IV, Part I. 6 "On the Spectra of Stars of Class IIIb," Astrophysical Journal, Vol. IX (1899), p. 119.
7 Loc. cit., pp. 9, 10. In his observations at Bothkamp, and in his later work with the twenty-seven-inch Vienna refractor. Vogel measured the spectra of the stars Nos. 51, 78, 152, and 273 of Schjellerup's catalogue, and also that of $DM.+34^{\circ}$ 4500. Vogel's drawings of the spectra of 152 Schjellerup and $DM.+34^{\circ}$ 4500 are reproduced in Plate V. His measures (reduced to Rowland's scale) are given in the following table, which is taken from Vol. IV of the Polsdam Publications:

WAVE-LENGTHS DETERMINED BY VOGEL

OBJECT	152 Schj. (Vienna)	(Vienna)	(Bothkamp)	DM. ± 34 4500 (Vienna)	273 Schj. Bothkamp)	78 Schj. (Bothkamp)	51 Schj. Bothkami.)	MEAN
Beginning of spectrum			660					660
Dark band					656			656
Dark band			622		622	623		622
Dark band					6066			6066
line in a band	5892		5893	5890	589	590		5894
End of band	5849			1111	*****			5849
ine	5742		5759	5751	578	5756		5758
Line beginning a band	5622	5626	5629	5621	564	564	5641	5632
zine			552		552			
			544					552
ine				P	5.10	* * * *		544
Aroup of lines			528	527	529			528
Line beginning a band	5160	5164	5157	5162	516	515	5166	5160
Line	5133							5133
Beginning of band	4717		4736	4745	472	473		4730
Band			437					437
End of spectrum			430					430

The combined results of the two observers, compared with Kayser and Runge's wave-lengths of the "hydrocarbon" bands, are contained in the following table:

COMPARISON OF WAVE-LENGTHS

OBJECT	Vugel	Dunér	MEAN	SWAN SPECTRUM
Spectrum begins	660		660	
Oark band	656		656	
Oark band	622	621	6215	
Oark band	6066	6019	6058	6060 Middle of red band
ine in a band	5894	5899	5897	South Annual Control of the Control
and of a band	5849		5849	
ine	5758	5761	5760	
ine beginning a band	5632	5634	5633	5635.43 Beginning of yellow band
ineine	552	551	5515	5050.15 Deginning of yellow balle
	544	545	5145	
ine	528	5284	5282	
ystem of lines	5160	5161	5162	5105 90 Decipping of speed hand
ne beginning a band	9100			5165.30 Beginning of green band
	5133	496	496	
ine		4500	5133	450510 30 : : 0.11
eginning of a band	4730	4728	4729	4737.18 Beginning of blue band
	1111	463	463	
and	437	437	437	4381.93 Beginning of fifth band
nd of spectrum	430	i	430	

In discussing these results Scheiner, basing his conclusion on the supposition that the hydrocarbons are all reduced to acetylene (C_2H_2) at high temperatures and are characterized by a common spectrum which perhaps belongs to this substance, remarks: "We may, therefore, go a step farther and consider that in the stars of Class IIIb carbon and hydrogen are united in the form of acetylene, which is the first combination of these two elements which would ensue as the temperature fell." It will be shown later in this paper that this conclusion must in all probability be modified on account of recent advances in our knowledge of the spectra of carbon compounds.

Of the 242 stars of the fourth type catalogued by Espin there are but three in the northern hemisphere and four in the southern that are brighter than the sixth magnitude. Of the stars which

⁸ Frost-Scheiner, Astronomical Spectroscopy, p. 314.

have been observed photometrically Espin finds twenty-three between magnitude 6.1 and 7; thirtynine between 7.1 and 8; seventy-six between 8.1 and 9; and eighty below 9. The red color of the stars is largely due to the extreme faintness of the blue and violet rays, and this fact greatly increases the difficulty of photographing the more refrangible region of their spectra.

INSTRUMENTS USED IN THIS RESEARCH

Most of the photographs used in the present investigation were taken with a three-prism spectrograph attached to the forty-inch refractor of the Yerkes Observatory. The form of the colorcurve of the forty-inch objective has an important bearing on the relative brightness of different regions of the photographed spectra. In work on the yellow and green regions of the spectrum the slit of the spectrograph has ordinarily been set at the focus corresponding to λ 5000. The spectra of fourth-type stars generally increase in brightness from the head of the yellow carbon band toward a maximum in the green. On account of the loss of light due to the rise in the color curve and the fall in the curve of sensitiveness of ordinary isochromatic plates in the neighborhood of the b group, the intensity of the photographs of spectra is more nearly uniform in the green than it should be. For a similar reason the less refrangible half of the bright zone in the yellow is too faint on our photographs. These facts should be borne in mind when examining the plates which accompany this paper; it must also be remembered that the relative intensities of different regions are affected by the shading of the photographs during enlargement, which is necessary in order to bring out the lines properly. In the blue part of the spectrum, on account of the steepness of the color curve, a correcting lens near the The lens not only increases the extent of spectrum photographed on a single focal plane is required. plate, but also facilitates guiding, and thus materially reduces the exposure time.

As the spectrograph has been fully described elsewhere, a very few details will suffice here. It consists essentially of a Huggins reflecting slit, with guiding eyepiece, a collimator of 31 mm. aperture and focal length of 507 mm., three 60° prisms of heavy flint glass (n=1.6960), and several cameras of different focal lengths. The camera objective ordinarily employed is a photographic doublet of 37 mm. aperture and 271 mm. focal length. This gives the best results when used with a collimator objective corrected for the visual rays. For the faintest stars a camera with photographic doublet of 40 mm. aperture and about 150 mm. focal length was employed. In the earlier work one prism was frequently used with a camera of 508 mm. focal length, but it was soon found that much more satisfactory results could be obtained with three prisms and a short camera. The prisms are of a distinctly yellowish color, and undoubtedly exercise considerable absorption in the blue and violet. A spark between iron or titanium poles was used for the comparison spectrum. Unfortunately the spectrograph was not provided with a constant temperature case (Plate IV).

For the brighter stars, when it is not desired to photograph a considerable range of spectrum, slit-widths ranging from 0.01 mm. to 0.04 mm. may be used to advantage, even with an instrument having the great focal length of the forty-inch telescope. In the investigations of Messrs. Frost and Adams on stellar motions in the line of sight such widths are actually employed. But in our work on the faint red stars it was found necessary to use slit-widths as great as 0.1 mm. As the camera lens commonly preferred has a focal length whose ratio to the focal length of the collimator objective is 1:1.9, it is evident that the breadth of the spectrum and also the width of the lines are reduced in this ratio. With a slit-width of 0.15 mm. and a dispersion of three 60° prisms, the yellow and green regions of the spectrum of 280 Schjellerup (mag. 7.8) required an exposure of nine hours.¹⁰

As recent work with the forty-inch telescope has shown that the original spectrograph is inferior in many respects to the new Bruce spectrograph, it is important that the weak points of the older

⁹ GEORGE E. HALE AND FERDINAND ELLERMAN, "On the Spectra of Stars of Seechi's Fourth Type," Astrophysical Journal, Vol. X (1899), p. 93.

Bulletin No. 7. With the same optical combination, and with a slitwidth of $0.075\,\mathrm{mm}$, the green bands in the spectrum of a Orionis were photographed in twenty seconds.

¹⁰ This photograph has been reproduced in Yerkes Observatory

instrument should be pointed out, on account of their bearing on the results obtained in the present investigation. The old spectrograph was constructed by Brashear in 1893. In all respects it was almost an exact duplicate of the spectrograph designed two years previously by Keeler for the Allegheny Observatory. In most particulars it was a distinct advance upon previous instruments, especially in its embodiment of Keeler's train of three prisms, giving a deviation of about 180°, which has been adopted in almost every spectrograph constructed since that time for the determination of stellar velocities in the line of sight. It inherited from earlier instruments, however, certain defects of construction which might give no trouble in visual observations, but have made themselves felt in the long exposures required in the present investigation. The three prisms of the train, instead of being firmly clamped in a fixed position, in accordance with the practice familiar in recent instruments, were mounted on an automatic minimum deviation device. When set for any particular part of the spectrum the prisms and camera were clamped in place. It might be supposed that such clamping would eliminate all difficulties arising from the instability of the prism supports, but experience has not shown this to be the case. As at first constructed the brass plate upon which the prisms rested was very light. This was replaced by a strong ribbed plate of much heavier brass, made after Professor Wadsworth's design in our instrument shop, which undoubtedly improved the spectrograph. The prism supports were also changed for the better, and various other modifications effected in the spectrograph at this time certainly tended to increase its efficiency. It was subsequently found, however, as has been fully explained elsewhere by Professor Frost," that, even when all customary precautions had been taken in his use of the instrument, the velocities of stars in the line of sight determined with its aid were sometimes subject to marked uncertainty, though some of the results were excellent. There can be no doubt, therefore, that results much more satisfactory than those here presented could have been obtained if an instrument as stable as the Bruce spectrograph had been available for the present work.

It will be seen that the circumstances were not at all favorable for the accurate measurement of radial velocities, and when the work was undertaken it was not proposed to attempt such determinations. Nevertheless, precautions were taken to avoid systematic errors, and the approximate velocities of a few of the fourth-type stars have been measured. The measurement of the plates made with the old instrument has been greatly facilitated by the use of three excellent negatives obtained with the Bruce spectrograph. Had the old spectrograph been built in such a way as to eliminate all possible effects of flexure, and provided with a constant-temperature case, good determinations of velocity could undoubtedly have been obtained for stars as faint as the eighth magnitude. The experience gained in the use of this instrument has been embodied in the Bruce spectrograph, which seems to possess none of the faults of its predecessor. At present the old spectrograph is employed with the two-foot reflector. On account of the absence of chromatic aberration in the reflector, it was found possible to obtain a photograph of the spectrum of 19 Piscium, extending beyond the H and K lines, with an exposure (on three nights) of twenty-four and one-half hours (Plate X).

While the precision attained in the present research is greatly inferior to that of recent investigations of stellar motions in the line of sight, it is nevertheless sufficient for many purposes. As will be shown below, photographs of the spectra of a large number of fourth-type stars with moderate dispersion, and of a few selected stars with the highest feasible dispersion, are still greatly to be desired.

JOURNAL OF OBSERVATIONS

Most of the photographs were taken in the yellow-green (Y.G.) or in the blue region of the spectrum, but a few in the yellow-red (Y.R.) were secured with the aid of Erythro plates. In the earlier work, and for special purposes later, a single dense tlint (D.F.) prism was employed, but the train of three dense tlint prisms was generally preferred. A few photographs—including those made

^{11 &}quot;The Bruce Spectrograph of the Yerkes Observatory," Astro-physical Journal, Vol. XV (1902), p. 12.

12 G. W. RITCHEY, "The Two-Foot Reflecting Telescope of the Yerkes Observatory," Astrophysical Journal, Vol. XIV (1901), p. 217.

with the two-foot reflector—were taken with a single light flint (L. F.) prism, and in one case a 30° prism, silvered on the back surface, was used with the solar spectrograph. The focal lengths of the various cameras are as follows: No. 0 = 151 mm., No. 1 = 271 mm., No. 2 = 508 mm., A (Bruce spectrograph) = 449 mm.

The photographic plates which proved most satisfactory were Erythro for the yellow-red, Cramer Instantaneous Isochromatic (C. I. I.) for the yellow-green, and Cramer Crown for the blue.

											Co	MP	Spectrum	Tr	MP.		
Star	No.	Date	Disp.	Camera	Plate	Region	H. A. Mid.	Slit	Hour Beg.	Exp.	Beg.	End	Kind	Beg.	End	Seeing	Remarks
132 Schj. 152 " 174 " 174 " 174 " 175 " 175 " 178 " 178 " 179 Schj. 155 b " 170 " 170 " 171 " 172 " 172 " 172 " 172 " 172 " 173 " 174 " 175 " 175 " 175 " 176 " 177 " 177 " 178 " 179 Schj. 179 Schj. 179 " 179 Schj. 170 " 170 Schj. 170 " 170 Schj. 170 " 170 Schj. 170 " 170 Schj. 170 Pisc.	147 148 151 155 156 169 169 161 164 165 177 178 181 181 182 184 195 196 197 198 199 201 201 201 201 201 201 201 201 202 203 202 203 204 214 245	1898 Jan. 28 " 28 " 31 Feb. 2 " 6 " 6 " 13 " 15 " 24 " 25 March 3 " 16 " 17 " 24 " 25 March 3 " 16 " 17 " 24 " 30 April 7 (13 " 14 (14) 15 " 30 June 1 " 25 " 30 June 1 " 27 July 1 " 6 " 18 " 24, 25 " 18 " 24, 25 " 27 Sept. 7 Oct. 26 " 26 Oct. 31	1 D. F. 3 D. F. 1 D. F. 3 D. F. 1 D. F. 4 A. 4 A	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I.	Y. G		4.0 4.0 3.0 3.0 3.0 3.0 4.0 3.0 3.0 4.0 4.0 3.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	14 15 16 45 10 05 10 56 46 9 03 15 33 15 32 17 7 05 13 15 15 10 20 7 7 12 23 13 15 15 10 20 17 11 48 15 10 20 17 11 10 20 11 11 10 20 11 11 10 20 11 11 10 10 10 11 10 10 11 10 10 11 10 10	m 120 105 120 114 165 120 120 120 120 120 120 120 120 120 120	\$ 3 3 3	\$ 3 3 3 90 7 8 8 72 12 2 2 2 2 2 2 2 2 3 3 10 10 10 10 10 10 10 15 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Fe Spark Moon Fe Spark """ """ Fe Spark """ Fe Spark "" "" Fe Spark "" "" "" "" "" "" "" "" ""	F. 18.0 12.0 6.5.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	F. 12.55 11.55 3.00 - 7.5 3.00 - 7.5 3.00 - 7.00 -	poor fair poor fair poor fair poor fair poor fair poor fair poor fair poor fair good fair poor fair good fair good fair good fair good fair good fair good fair good fair good fair good fair good fair good fair good fair good	Solar Spectrograph.
132 " 318 Birm. 19 Pisc. 19 " 132 Schj. 19 Pisc. 78 Schj. 152 " 152 Schj. 152 " 318 Birm. 115 Schj. 115 " 19 Pisc. 318 Birm. 115 Schj. 124 " 19 Pisc. 318 Birm. 122 Schj. 124 " 132 " 132 " 132 " 132 " 132 " 132 "	250 253 257 259 262 263 264 267 270 270 271 274 275 276 277 278 283 284 285 289 290 293 294 295	and Nov. 1 Dec. 22 28 29 29 30 30 31 1899 Jan. 4 4 6 10, 11 4 14 15 15 15 18 20 20 20 20 20 21 26 17 27 Feb. 10	3 D. F.		S. G. E. C. I. I. S. G. E. C. I. I. S. G. E. C. I. I.	Blue Y. G.		3.2 4.2 4.0 3.2 5.0 5.0 5.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	13 44 5 17 5 10 5 12 13 55 5 00 7 42 12 05 5 26 7 50 8 10 6 13 5 26 15 15 7 43 10 12 40 5 17 9 48 14 12 11 40 11 30 13 50	190 240 50 252 244 180 245 245 115 165 540 300 280 300 280 301 280 301 280 302 302 302 302 302 302 302 302 302 30	14 10 70 10 33 33 34 77 7 4 7 10 10 10 10 10 10 10 10 10 10 10 10 10	60 5 10 7 4 3 3 3 4 4 4 8 6 6 7 15 8 7 10 10 10 10 10 10 10 10 10 10	Fc Spark	-1.1* -2.5 -4.3 +5.6 -11.2 -18.0 -16.0 -7.0 -11.5 -10.4 -13.0 -5.6 +1.0 -7.3 +2.0 +3.0 -3.0	43.0 -3.0*** -2.0.0** -1.2.7 -1.2.7 -1.2.7 -1.3.0 -1.3.	good fair good fair good fair poor	Temperature in prism box hereafter in degrees Cent.

	-	1		ra			d.	1	ا يـ ن		Cc	MP.	SPECTRUM	TE	MP.	ä	
Star	No.	Date	Disp.	Came	Plate	Region	H.A.	S.	Hour Beg.	Exp.	Beg,	End	Kind	Beg.	End	Seeing	Remarks
78 Schij. 229 " 132 " 78 " 132 " 152 " 152 " 152 " 152 " 152 " 152 " 152 " 152 " 152 "	297 298 299 300 301 302 307 309 316 319 322 323 324	1899 Feb. 15 23 March 5 6 6 22 23 31 April 12 May 4 4	3 D. F.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C. I. I. "" S. G. E. C. I. I. S. G. E.	Y. G. Blue Y. G. Blue Y. G.		5.0 5.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0	13 55 10 32 7 30 11 49 16 03 11 45 10 00 12 15 7 18 9 47 10 31 11 20	m 242 245 165 250 160 335 225 300 300 300 110 30 300 4 4	11 10 7 7 8 8 8 8 10 7 11	s 16 15 8 8 8 8 8 8 10 9 11	Fe Spark	$ \begin{vmatrix} -10.2 \\ -6.7 \\ -13.1 \\ -14.2 \\ -16.4 \\ -5.3 \\ -6.4 \\ -5.5 \\ +18.0 \\ 15.0 \end{vmatrix} $	-8.2 -7.0	good fair good	
152 " 155b " 157b " 158c " 19 Pisc. 19 " 19 " 19 " 19 " 19 " 19 " 18 Schj. 280 " 280 " 19 Pisc. 432 Schj. 19 Pisc. 432 Schj. 115 " 51 " 115 " 51 " 115 " 51 " 115 " 51 " 115 " 51 " 115 " 51 " 51	327 328 339 334 334 347 345 355 356 357 358 359 360 361 361 362 363 363 363 364 365 367 367 367 367 368 368 368 368 368 368 368 368 368 368	" 10 " 10 June 7 July 5 " 20 Aug. 24 Sept. 13 Sept. 13 Sept. 13 Sept. 18 " 18 " 19 " 21 " 21 " 21 " 26 " 26 " 27 " 27 " 28 " 29 " 29	1 L. F.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S. G. E. C'. I. I. S. G. E. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown	Blue " " Y. G.	1 15 E. 2 30 E. 3 30 W. 1 30 W. 1 40 W. 1 10 W. 1 10 W. 1 20 W. 1 20 W. 1 45 W. 1 45 W. 1 45 W. 1 45 W. 1 45 W. 1 46 W	5.0 4.5 5.0 3.0 4.5 5.0 5.0 5.0 5.0 6.0 6.0 5.0	10 23 8 20 9 00 13 40 9 03 7 05 12 17 10 12 10 08 4 55 15 54 5 50 13 29 13 22 15 34 12 25 7 32 14 25 15 34 12 25 13 26 13 26 13 26 13 26 13 26 14 26 15 16 16 16 17 16 18 26 18 (8 \ 16 \ 165 \ 335 \ 432 \ 350 \ 270 \ 285 \ 210 \ 420 \ 305 \ 65 \ 330 \ 305 \ 555 \ 480 \ 315	7 7 200 234 3 4 4 2 2 2 3 4 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 19 2 2 2 10 8 11 15 11 15 11	Fc Spark Ti Spark Ti Spark Ti Spark Ti Spark	14 5 20 8 23.5 20.0 14 2 14 8 12 0 18 0 0 8 0 8 0 18 0 0 19 19 19 19 19 19 19 19 19 19 19 19 19	10.0 15.7 17.8 22.5 12.0 10.0 - 3.8 - 5.4 + 1.2 - 0.8 - 13.6 - 10.0 - 13.4 - 15.5 - 15.5	poor fair good fair good poor fair good		
19 Pisc. 280 Schj. 51	369 370 371 372 373 374 375 377 378 379 380 382 384 385 386 387 391 392 393 394 395 396 397 397 398 478 490 A313 3198 R 27	" 30 Jan. 2 " 7 " 7 " 21 " 24 " 25 " 25 " 25 " 25 " 25 " 25 " 31 Feb. 1 " 15 " 19 " 15 " 19 " 18 " 21 April 4 Ang. 8 " 21 April 8 Oct. 24 1902 Feb. 10 " 21 June 10 " 21 June 10 June 10 Ju	1 L. F.	1	C. I. I. Crown C. I. I. Erythro C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. Crown C. I. I. "" C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" Crown C. I. I. "" "" Crown C. I. I. "" "" "" Crown C. I. I. "" "" "" "" "" "" "" "" ""	Y. G. Blue V. G. " " " " " " " " " " " " " " " " " "		65.000000000000000000000000000000000000	6 45 7 000 6 200 6 400 6 227 40 35 11 55 9 200 11 2 37 12 52 8 20 11 41 7 00 9 15 8 25 9 30 6 50 6 50 6 50 6 55	310 320 280 305 350 370 260 330 355 360 390 380 315 220 300 330 243 135 445	10 10 87 300 77 71 2 2 6 6 1 4 3 2 2 6 6 5 5 5 5 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	240 77 7 11 13 13 16 66 66 66	HTube Ti Spark Fe Spark Ti Spark Ti Spark Ti Spark	- 5 5 4 2.0 4 0.9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-16.8 - 9.2 - 4.1 - 0.1 + 2.9 24.8 24.9 18.7 23.4 3.0 11.9 - 7.3 - 6.9 - 1.2	good fair good fair good fair good fair good fair good fair good fair good good fair good good fair good good fair good good fair good good fair good good fair good good fair	Bruce Spectrograph 11 11 12 1-inch Reflector 13 11 14 14 15 15 16 15 15 17 15 15 18 15 18

Seed's Gilt Edge (S. G. E.) plates were also used in some cases. The slit-width is expressed in divisions of the head; one division = 0.025 mm. A spark between iron poles was usually employed for the comparison spectrum, part of the exposure being given before, part after, the exposure for the star. A titanium spark was used in the later work. The temperature in the prism box was recorded at the beginning and at the end of the exposure. Most of the exposures were made by Mr. Ellerman.

APPEARANCE OF THE SPECTRA ON THE PHOTOGRAPHS

The spectra were photographed in four sections, as follows:

- 1. λ 3930 to λ 4380. These photographs were taken on Seed 27 non-halation plates with a single light flint prism and a camera of 151 mm. focal length, used in conjunction with the two-foot reflector. They were made for the special purpose of showing the very faint region in the extreme violet part of the spectrum, and some of them are therefore overexposed in the blue.
- 2. λ 4380 to λ 4980. Most of these photographs were taken with three dense flint prisms and a camera of 271 mm, focal length. Cramer Crown plates were usually employed. With the aid of the correcting lens, the color curve of the forty-inch objective, which is very steep in this region, was flattened out sufficiently to give fairly uniform illumination through the middle part of the spectrum. At both ends, however, the brightness falls off somewhat on account of the change in focus. In the less refrangible region these spectra are further weakened by the fact that the plates are relatively insensitive for light of these wave-lengths. It will be seen from these and other facts that the region of the spectrum lying between λ 4900 and λ 5160 is not well represented on most of our photographs.
- 3. λ 5160 to λ 5800. The greater part of these photographs were taken with three dense flint prisms and a camera of 271 mm, focal length on Cramer isochromatic plates. As already remarked on p. 7, the form of the color curve of the forty-inch objective and the fall in sensitiveness of the plates in this region cause these photographs to be relatively underexposed at the more refrangible end, though the focus was set for λ 5000. Little is shown beyond λ 5800, as the isochromatic plates decrease rapidly in sensitiveness in this region.
- 4. λ 5630 to λ 6600. Photographs of the spectra of 152 *Schjellerup* and 19 *Piscium* were obtained in this region with a single dense flint prism and a camera of 508 mm. focal length on Erythro plates.

In studying the photographs, it is necessary to bear in mind the fact that the various adjustments required in photographing the spectra in sections necessarily introduce differences of relative intensity, and render it almost impossible to determine accurately the distribution of brightness throughout the spectra. In the following description of the photographs it is to be understood, therefore, that the appearances described relate to the plates themselves, and not to the spectra as seen visually in a telescope.

General characteristics.— The most striking features of spectra of the fourth type are the dark bands attributed to the compounds of carbon. The principal bands have their less refrangible edges at λ 4737.8, λ 5167.9, and λ 5636.9. Bright zones, consisting of bright lines and strong continuous spectrum, appear on our plates on the less refrangible side of the first and last of these heads; ¹³ and bright and dark lines are found in connection with the continuous spectrum throughout the region photographed. The fluted character of the carbon bands is strikingly evident in the region λ 5500– λ 5637, especially in such stars as 132 Schjellerup; it also appears in the other carbon bands when the exposures are suitable, and in the eyanogen band at λ 4502– λ 4606 (see Plate VII).

Details.— The violet region of the spectra of fourth-type stars is so faint that it can be photographed only with the greatest difficulty. On account of the form of the color curve and the absorption in the violet of the forty-inch objective, no attempt was made to include the extreme violet on plates taken with the large refractor. It was nevertheless deemed of great importance to determine whether the H and K lines and the $H\gamma$ and $H\delta$ lines were present, and also to render possible the comparison of fourth-type with third-type spectra in the violet region. For this reason a few photographs of the spectra of 19 Piscium were made, as described above, with the two-foot reflector. The most prominent features of these photographs are the very strong calcium line at λ 4227 and the H

 $^{^{13}}$ The brightness of the region on the less refrangible side of the carbon head at λ 5167.9 is reduced on our photographs for the reasons given above.

and K bands, which are very conspicuous. Less prominent, but nevertheless unmistakable, are the dark hydrogen lines $H\gamma$ and $H\delta$, as well as the G group and two conspicuous lines at λ 4058 and λ 4384 (Figs. 1 and 2, Plate X).

The presence of dark $H\gamma$ and $H\delta$ lines renders the existence of a bright $H\beta$ line in the photographs taken with three prisms a matter of great interest. The comparatively large scale of these spectra and their sharpness of definition leave no doubt as to the presence and identification of lines in this region. In two or three stars $H\beta$ appears as a bright line, and in this character it is the most striking feature of the spectrum of 280 Schjellerup. In several of the stars, however, $H\beta$ is altogether absent, and in no case do we find it present as a dark line. The bearing of these results on the physical condition of hydrogen in the fourth-type stars is discussed elsewhere (p. 126).

The cyanogen flutings, with heads at $\lambda\lambda$ 4608.9, 4578.4, 4553.3, 4515, and 4503.2, are characteristic features of all the fourth-type spectra we have examined, including 280 Schjellerup. In each fluting the continuous spectrum grows stronger toward the blue, but the bright lines in this region are scattered with less regularity than in the yellow flutings. From the more refrangible edge of the bright blue zone at λ 4738.6 the continuous spectrum, here of maximum brightness, gradually decreases in intensity toward λ 5000. Between this zone and the head of the dark carbon band at λ 4737.8 there are two unidentified flutings in the spectrum of 152 Schjellerup, but in most of the other stars only one of these flutings appears. The most prominent dark lines are those at $\lambda\lambda$ 4408, 4435, 4497, 4506, 4523, and 4535. Between λ 5000 and λ 5169 the carbon absorption is nearly complete, and for various other reasons already given few details are shown in our photographs of this region. Nevertheless, the earbon heads at λ 5099 and λ 5129 can be recognized in 229 Schjellerup (Fig. 1, Plate VII).

In the green and yellow the continuous spectrum decreases in intensity from the maximum near the b group and attains its minimum brightness in the absorption of the yellow carbon bands. flutings have heads at $\lambda\lambda$ 5638.8, 5587.7, and 5505.5, and form the most characteristic feature of the spectrum. Each is made up of bright and dark lines, the bright lines being strongest at the more refrangible part of each fluting, while the dark lines are broadest and strongest at the less refrangible edge. For various reasons, discussed elsewhere, this effect, in some cases, at least, appears to be due to the presence of genuine bright lines, and not merely to contrast. Other bright lines, the character of which cannot be doubted, occur in the green region, where they are very conspicuous on the original negatives. The bright yellow zone also contains a large number of bright lines, lying on a less brilliant background of continuous spectrum. In 280 Schjellerup the bright lines are inconspicuous. The broad dark line λ 5620–5638 is double, and the component λ 5620–5626 contains three vanadium In 280 Schjellerup this double line is the only well-marked trace of the yellow carbon band. In 19 Piscium the entire set of flutings is easily recognized, and they increase in intensity as we pass to 318 Birmingham, 74, 78, and 132 Schjellerup, while in 152 Schjellerup they are less noticeable, apparently from increased carbon absorption, which cuts down the contrast. The most conspicuous dark lines in this part of the spectrum have the wave-lengths $\lambda\lambda$ 5226, 5329, 5350, 5371, 5397, 5410, and 5447. The last pair of lines has a curious appearance, resembling that of a symmetrical reversal. The b lines are conspicuous in all of the stars. In the more fully developed stars the group λ 5204– 5211 becomes the most prominent feature in this part of the spectrum. The b group also becomes stronger, but b_2 and b_4 are nearly lost in the carbon absorption band whose head is at λ 5169.1.

The more refrangible part of the spectrum is shown in a few photographs obtained with Erythro plates. The D line appears strong and dark, but it is not divided, as the plates were taken with one prism. The continuous spectrum is fairly strong from the sodium line to a dark line at $\lambda 5732$, which separates this part from the bright yellow zone, $\lambda 5637-5726$. In the region $\lambda 6086-6340$ the bright lines and strong continuous spectrum form a bright zone. There are two unmistakable bright lines at $\lambda 6176$ and $\lambda 6201$, and also two which are less certainly bright at $\lambda 6408$ and $\lambda 6131$. There

is a strong bright line at λ 6270, and two or three probably bright lines in the interval λ 6275-6340. There is also a dark line at λ 6358. At λ 6445 there is possibly a bright line. From this point the continuous spectrum greatly decreases in intensity until its limit is reached at λ 6600 (Fig. 1, Plate VI).

Certain peculiarities in the spectrum of 152 Schjellerup are referred to on p. 131.

THE PRESENCE OF BRIGHT LINES

In his memoir Sugli Spettri Prismatici delle Stelle Fisse, and in his treatise Le Soleil, Secchi refers in several places to the existence of bright lines in the spectra of fourth-type stars:

Non mancano in queste stelle (152 Schjellerup) delle righe brillanti come le metalliche, ed è singolare che esse si mostrano nella estremità più viva delle zone colorate. Gli spettri di queste stelle hanno più che gli altri analogia coi gas, e specialmente con quello del carbonio, ma rovesciato.¹⁴

Avvertimmo già che in alcune vi sono delle righe vive assai simili alle metalliche, le quali spiccano assai; alcune nel giallo paiono fili d'oro.¹⁵

Such references would seem to leave no doubt that Secchi saw some of the bright lines whose existence is shown by our photographs. His intensity curve of the spectrum of 78 Schjellerup (Fig. 1)¹⁶

places two of the bright lines in the yellow not far from their true positions, though the less refrangible of these two lines should be given much greater intensity than the more refrangible one. But the illustration of the spectrum of the same star published later by

Secchi in the second edition of Le Soleil (Plate M) contains no bright lines, while the drawing of the spectrum of 152 Schjellerup in the same plate shows two narrow bright lines in each of the three bright zones, but omits the strong bright lines in the yellow carbon band. Moreover, in describing the spectrum of 132 Schjellerup, Secchi remarks:

Tipo 4° ben deciso con due forti righe lucide nel giallo assai vive e che sono da misurare se fosse il sodio.

Other intensity curves given by Secchi show, as Dunér has pointed out in his memoir,¹⁷ that in some cases the supposed bright lines probably refer to the broad yellow sub-zone, the width of which is not less than ninety tenth-meters. Thus in describing

the spectrum of 136 Schjellerup, whose intensity curve is reproduced in Fig. 2 from the Memoria Seconda, p. 44, Secchi remarks:

Lo spettro è analogo alla 132, ma in parte diverso: ha una forte riga doppia viva nel giallo, poi segue una zona scura.

As Dunér states:

Secchi s'est plus tard persuadé, par des mesures, que les deux raies jaunes n'ont pas la même position que celles du sodium, mais il est néanmoins difficile de comprendre comment il a pu croire que cette zone, quarante fois plus large que la distance entre D_1 et D_2 , fût les raies du sodium.

On the whole, it is hardly probable that Seceni actually distinguished the true bright lines, though he was so much impressed by the appearance of the bright zones that he remarked: 18

Le spectre dans son ensemble se présente comme un spectre direct appartenant à un corps gazeux, plutôt que comme un spectre d'absorption.

In this connection it is an interesting fact that Pickering in his early visual surveys of stellar spectra states that a normal fourth-type spectrum "consists of a well-defined yellow band, a broad green band well defined on the more refrangible side and generally less sharply bounded on the other, and a blue band in some cases well defined toward the violet." ¹⁹

¹⁴ Memoria Seconda, p. 9.

¹⁵ Ibid., p. 12.

 $^{^{17}}Loc.\ cit.,\ \mathbf{p.}\ 10.$

¹⁶Reproduced from his *Memoria Seconda*, p. 40; the red end of the spectrum is at the left.

¹⁸Le Soleil (2d ed.), Vol. II, p. 458, ¹⁹A. N. 2376.

Dunér quotes Secchi's statements regarding bright lines in his memoir, but states that he has never seen the least thing which could explain Secchi's belief in bright lines, and remarks that Vogel was not more fortunate. At that time he also considered that the spectrum was incontestably an absorption spectrum, and Vogel entertained the same view:

Es stellt sich unzweifelhaft heraus, dass die Discontinuität des Spectrums nur eine scheinbare ist, hervorgebracht durch breite Absorptionsbanden. 20

More recently, Dunér has observed the spectra of these stars with a telescope having a Steinheil visual objective of 36 cm. aperture, and remarks: "Of first importance is the fact that I was able to detect without difficulty bright lines in various spectra which at Lund were either invisible or at least could not be discovered." The detailed observations given in this paper show that a bright line (probably the one at λ 5592) was seen by Dunér in the spectra of all of the brighter stars.

Our earliest photographs of the spectra of fourth-type stars, made before the publication of Dunér's second paper, seemed to show without question the presence of bright lines. But as Dunér had expressed so decided an opinion against their existence, and as his conclusions had been supported by the results of Vogel's observations, it seemed desirable to undertake a series of tests for the purpose of meeting any doubts that might arise.

As shown on the photographs, the numerous bright lines in these spectra appear decidedly stronger than the continuous spectrum in their neighborhood, and prove their superior brightness by extending out on either side of the general spectrum, thus showing their power of impressing the plate at points where the continuous spectrum was too faint to do so. The evidence thus afforded as to the genuineness of the bright lines is not preserved in the widened photographs of the plates, but is fairly well shown in a direct enlargement of the spectrum of 132 Schjellerup reproduced in Plate V.

The following tests were employed to determine the genuineness of the bright lines:

- 1. It was found that an exposure of four minutes was sufficient to photograph the bright line at λ 5592 in the spectrum of 152 Schjellerup with a dispersion of three prisms, while equal density of the contiguous spectrum could not be obtained under the same conditions with an exposure of less than from twelve to fifteen minutes. If the line is supposed to be due to the continuous spectrum, it must be assumed that the heavy carbon absorption band is interrupted at this point. It is true that the line falls close against the second head of the fluting, and therefore at a point where the absorption band would be weakest. But the bright line appears to be sharply bounded on both sides, whereas it should fade away gradually toward the red if it were due to decreased absorption.
- 2. By increasing the dispersion an apparent bright line, if really due to continuous spectrum bounded by portions of the carbon absorption band, should be rendered less conspicuous. In our experiments it was found, however, that the contrast between the bright lines and the contiguous spectrum increased rather than diminished with the dispersion, and that the lines were best observed both visually and photographically with our most powerful combination of three heavy flint prisms.
- 3. Similarly, an increase in slit-width should tend to reduce the contrast if the effect were due to continuous spectrum bounded by dark lines or bands. In practice, however, the bright lines were admirably shown with the widest slits, and increase of slit-width did not seem to reduce the contrast.

Although there can be no doubt as to the presence of iron and other metals in these stars, it will be seen from inspection of the detailed comparisons on pp. 117-22 that many of the strong lines of these substances are absent. A large part of these can be accounted for, however, if it is assumed that they are hidden by overlying bright lines.

Photographic observations alone were not allowed to settle the matter, and on many occasions the spectra of 132 Schjellerup and 152 Schjellerup were examined visually with the three-prism spectroscope attached to the forty-inch telescope. With an observing telescope having a focal length of 253 mm, and an eyepiece magnifying thirteen diameters, the bright line at λ 5592 was easily seen,

as well as a number of other bright lines in the red, yellow, green, and blue. Under the same circumstances some of the more conspicuous dark lines were seen without much difficulty, but the less conspicuous ones were not visible.

As a further precaution, we requested Professors Keeler and Campbell to observe the spectrum of 152 Schjellerup with the thirty-six-inch refractor of the Lick Observatory. They did so, using a dispersion of three prisms, and Professor Keeler reported his observations as follows:

I compared the spectrum with Vogel's drawing in $Potsdam\ Publications$, Vol. IV. The drawing seemed to be merely a rough indication of what the spectrum actually is. What we saw was much more like your photograph. It is curious that Vogel did not see the bright line λ 550 \pm , as it is a conspicuous feature of the spectrum with the thirty-six-inch. The bright block λ 553 $-\lambda$ 584 seems to be a complex of bright and dark lines or bands, and the dark band as shown in the drawing (λ 573) is relatively too conspicuous. Vogel's dark band at λ 525 is made up of lines, of which there are many in the neighborhood. There is a strong line at or near D. We tried to identify it with the Na line in a spirit lamp, but the telescope was jumping in a high wind, and the comparison did not amount to much. There were many dark lines in the red.

To my mind, there is little doubt that the spectrum of this star contains bright lines.

These results are in striking contrast with those obtained by Sir Norman Lockyer, and reported by him in his article, "The Piscian Stars": ²²

The Kensington observations were made chiefly during 1894 and 1895, with special reference to the lines involved. The stars selected for observation were 132 Schjellerup, 152 Schjellerup, 115 Schjellerup, and 19 Piseium. The 3-foot reflector was used. In addition to the carbon bands, numerous lines were seen without much difficulty, but only the more prominent ones could be satisfactorily measured. Among the lines recorded in 132 Schjellerup were $H\beta$, the E line of iron at 5269, and a group of lines near λ 5380. In 115 Schjellerup additional lines were measured near 5005, 5762, and 5429, and the presence of $H\beta$ was again determined by comparison with a hydrogen vacuum tube. In 19 Piscium numerous lines were observed, among them being D and F. No suspicion of bright lines was entertained during these observations. Attempts to photograph the spectra were not sufficiently successful to help matters.

A three-foot reflector should be admirably adapted for the investigation of these stars, whether visually or photographically. And yet the bright lines, which should have been easily visible, were not seen, while $H\beta$ was recorded as a dark line in 132 Schjellerup, 115 Schjellerup, and 19 Piscium. As a matter of fact our photographs show no dark $H\beta$ line in any of these stars.

In discussing the probability of the existence of bright lines on our photographs, Lockyer was at a disadvantage, as he had not seen the original negatives, and the few published reproductions did not adequately represent the facts. As Fig. 3, Plate V, shows, the bright lines are distributed all through the spectrum, and are by no means confined to the edges of flutings, where Lockyer thinks contrast effects would sufficiently account for the appearance of the photographs.²³

In the table of mean wave-lengths (p. 92), which contains 213 bright lines, we have included only those lines which were regarded as unquestionably bright by at least two independent observers. In some cases, where the brightness of the line is but very little greater than that of the continuous spectrum, there might easily be some room for doubt, and many lines of this character have accordingly been excluded from the table. In many other cases, on the contrary, the bright lines are so much stronger than the continuous spectrum that the most critical observer of the original negatives would not hesitate for a moment to distinguish them from mere spaces between dark lines. We may add that the judgment of a large number of spectroscopists who have examined the negatives coincides entirely with our own.

MEASUREMENT OF THE PHOTOGRAPHS

As it seemed more important, in the existing state of the subject, to examine thoroughly a small number of photographs than to study a large number of spectra less completely, the following plates were selected for detailed measurement:

22 Proc. Roy Soc., Vol. LXVI, p. 137.

LIST OF PLATES MEASURED

								•	Сомр	SPEC.
Star	Plate	-	Date		G. M. T.	Exp.	Hour-angle	Qual.	Kind	Qual.
19 Piseium	G 259 G 264 G 269 G 293 G 357 R 34 R 37	y 1898 1898 1899 1899 1899 1899 1902 1902	ne 12 12 1 1 10 12 10 10	4 29 31 6 27 4 19 30 5 18 19 22	h 11.6 12.5 12.3 13.0 15.5 12.8 15.6 15.8	m 50 180 115 125 285 195 330 465	W 0.6 W 1.6 W 1.9 W 3.9 E 1.3 W 1.2 E 0.3 W 0.7	C C B A A B B	Fe Fe Fe Fe Ti Ti Moon Sky	B C C B A A
280 Schjellerup	G 346 G 366 G 367 G 370	1899 1899 1899 1900	$ \begin{array}{c c} 10 \\ 12 \\ 12 \\ 1 \end{array} $	18 28 29 2	$\begin{array}{c} 16.1 \\ 11.6 \\ 11.2 \\ 11.1 \end{array}$	200 565 480 660	W 1.5 W 5 ± W 4 ± W 5.5	C B C C	Ti Ti Ti Ti	B B B
318 Birmingham	G 253 G 276 G 284 G 379 G 393	1898 1899 1899 1900 1900	12 1 1 1 3	26 15 20 25 31	21.7 16.4 17.8 20.7 18	240 360 255 280 220	E 0.5 E 4.1 E 2.7 W 0.4 W 2.2	B B B C-B A	Fe Fe Fe Ti Ti	B B-C B-C B B
74 Schjellerup	G 373 G 383 G 386 G 391	1900 1900 1900 1900	1 2 2 3	$\begin{array}{c c} 7 \\ 1 \\ 16 \\ 7 \end{array}$	15.0 17.3 14.8 15.5	300 370 255 380	E 2 1 W 1.8 W 0.3 W 2.3	A-B C C-D B	Ti Ti Ti Ti	B C B B
78 Schjellerup	G 300 G 344 G 384 G 392	1899 1899 1900 1900	3 10 2 3	$\begin{bmatrix} 6\\4\\9\\21 \end{bmatrix}$	14.8 20 18.4 18	250 310 260 315	W 2.0 E 2.8 W 2.9 E 2.9	B B B A	$F_{i'}$ Ti Ti Ti	B A B B
132 Schjellerup	G 299 G 301 G 309 G 368 A 328	1899 1899 1899 1899 1902	3 3 12 2	5 6 23 29 21	17.8 19.0 17.8 22.1 18.3	165 160 225 315 330	W 0.3 W 1.5 W 1.4 W 0.2 E 0.7	B A B-C C-B A	Fe Fe Fe Ti Ti	B-C A B-C C B A-B
115 Schjellerup	G 363 G 365 G 374 G 382	1899 1899 1900 1900	12 12 1 1	26 27 7 31	$\begin{array}{c} 21.0 \\ 21.8 \\ 20.5 \\ 19.3 \end{array}$	330 305 310 380	W 1.0 W 1.8 W 2.3 W 1.7	C-D B B B-C	$\begin{bmatrix} Ti \\ Ti \\ Ti \\ Ti \\ Ti \end{bmatrix}$	C C B B-C
152 Schjellerup	G 275 G 291 G 302 G 316 G 394 A 313 A 319 G 211	1899 1899 1899 1899 1900 1902 1902 1898	1 1 3 3 4 2 2 7	14 26 6 31 4 10 18 1	22.2 20.8 22.8 20.7 17.3 18.3 17.7 17.4	119 135 110 300 300 360 390 350	E 0.8 E 1.3 W 3.3 W 2.7 E 2.7 E 2.8 E 3.0 W 5.5	A B A B A B A	Fe Fe Fe Ti Ti Ti Fe	B A-B B B B A-B

The other photographs, which include many excellent spectra, were used for general study and comparison.

The scale of the spectra is given in the following table:

SCALE OF THE PLATES

I. PLATES TAKEN WITH THREE PRISMS

		(Camera	1)	
BLUE RE	GION	YELLOW-GREE	EN REGION	
Wave-Length	$\frac{\mathrm{d} s}{\mathrm{d} \lambda}$	Wave-Length	$\frac{\mathrm{d}s}{\mathrm{d}\lambda}$	
t. m. 4400 4700	mm. 0.054 0.036	t.m. 5200 5500	0.025 0.019	End of spectrum Middle of spectrum
5000	0.036	5800	$0.015 \\ 0.015$	End of spectrum

SCALE OF THE PLATES—Continued
II. PLATES TAKEN WITH ONE PRISM

Blue Ri (Camer		RED RE (Came		
4000 4200 4406	0.010 0.008 0.006	Wave-Length 5800 6200 6600	d s d λ 0.011 0.009 0.007	End of spectrum Middle of spectrum End of spectrum

The three prisms of the old spectrograph have a visual resolving power of about 33,000 for λ 4860, but with the slit-widths employed in the present investigation only a small fraction of this is realized. In the region near λ 4400 it is possible to separate on the photograph lines 0.8 tenthmeter apart, while at λ 5600 lines 1.3 tenth-meters apart are resolved.

With the Bruce spectrograph (camera A), which was used in a few cases, the scale is:

Wave-Length	$\frac{ds}{d\lambda}$
4400	0.084
4700	0.036
5000	0.026

Method of measurement.—Four different machines were used in the measurements: the Zeiss comparator, described in our earlier paper; two similar machines, Nos. 122 and 873; and the Gaertner measuring machine, described by Messrs. Frost and Adams. Careful investigations have shown that the scale errors of the Zeiss comparators and the errors of the screw of the measuring machine are of the same order, not exceeding 2μ or 3μ . With narrow slits and spectra better defined than those here available such errors would enter appreciably. We have found it sufficient, however, to eliminate the errors as far as possible by measuring the plates at four different parts of the screw or scale and adopting the mean as the true position of the line. No difference in treatment is required for the measurements of the different machines, as the same methods were used in all cases to eliminate errors. All of the measures given in this paper (excepting those of G 211, by Mr. Ellerman) were made by Mr. Parkhurst.

The plates were adjusted on the sliding stage of the machine so that the length of the spectrum was parallel to the scale (or screw), and the cross-hair in the microscope eyepiece was made parallel to the spectral lines. Four settings were made on standard lines of the comparison spectrum, two on the lines above the star spectrum, followed by two on the lines below. For the first few plates four settings were made on the star lines, but this number was afterward reduced to three. The average number of standard lines measured on each plate was thirteen. In order to test the stability of the plate on the machine these standards were generally measured both before and after the settings were made on the star lines. A single cross-hair, running entirely across the field of the microscope, was used throughout the measures. Each plate was measured in two positions on the machine, red end toward the right and left, respectively, and the mean of the results was used.

REDUCTION OF THE MEASURES

We have described in a previous article ²⁶ the various methods of reduction tried b_ofore we finally adopted the plan described in the present paper. These involved graphical methods, in which an interpolating machine devised for the purpose was employed, and a least-squares method based upon the use of the valuable Cornn-Hartmann interpolation formula. The results obtained by the least-squares method were entirely satisfactory, but considerable time was required to compute the

²⁴ GEORGE E. HALE AND FERDINAND ELLERMAN, "On the Spectra of Stars of Secchi's Fourth Type. I," Astrophysical Journal, Vol. X (1899), p. 102.

Twenty Stars having Spectra of the Orion Type," Publications of the Yerkes Observatory, Vol. II, p. 148.

26 GEORGE E. HALE AND FEEDINAND ELLERMAN, loc. cit., p. 103.

²⁵ EDWIN B. FROST AND WALTER S. ADAMS, "Radial Velocities of

constants of the formula in this way. For this reason the least-squares solution was replaced by a residual-curve method, which furnished an equally satisfactory means of correcting the approximate constants and required far less time. This method is described in the present paper.

The combination of red-right and red-left measures was effected by subtracting the mean of the red-left measures from a constant so chosen as to make the difference about equal to the mean of the red-right measures. The final mean of this difference and the mean of the red-right measures was taken as the quantity s in the Cornu-Hartmann formula

$$\lambda = \lambda_0 + \frac{c}{s - s_0} ,$$

in which s is the mean scale reading, λ_0 , c, and s constants derived by substituting the scale readings of three standard lines for s and solving the three resulting equations, and λ is the desired wave-length. The derivation of the constants and the solution of the equation for the wave-length of each star line was greatly facilitated by the use of the Brunsviga calculating machine.

Reduction to the Sun.—The correction for the Earth's orbital velocity was made by the use of formulæ given by Dr. Schlesinger,²⁷ where we may put:

Tan
$$\lambda = [9.96255]$$
 tan $\alpha + [9.59987]$ sec α tan δ
b = [1.47371] sec λ cos α cos δ
c = [8.224] b sin (281° 20′ – λ).

For 1900 we obtain the following constants for reduction to the Sun:

Star	R. A.	Dec.	Long.	Log b	c
74 Sehjellerup. 78 Sehjellerup. 115 Sehjellerup. 132 Schjellerup. 318 Birmingham. 152 Schjellerup. 19 Piseium. 280 Schjellerup.	6 29 40 8 49 45 10 32 36 10 38 08 12 40 26 23 41 17	$\begin{array}{c} +14^{\circ}46/6 \\ +3831.6 \\ +1736.7 \\ -1251.9 \\ +6756.2 \\ +4559.2 \\ +256.0 \\ +5947.9 \end{array}$	94 50' 96 04 130 03 164 53 125 44 165 34 356 42 33 45	1.4689 1.4539 1.4731 1.4456 1.2538 1.3227 1.4733 1.2555	$\begin{array}{c} -0.06 \\ -0.04 \\ +0.24 \\ +0.42 \\ +0.01 \\ +0.32 \\ -0.50 \\ -0.28 \end{array}$

The correction to the wave-length of the star lines was then

$$\Delta \lambda = V_a \left(\frac{\lambda}{299860} \right) .$$

Instead of applying this correction separately to each wave-length derived from the formula, it was combined in the following manner with the correction curve which is required when the formula is used in its approximate form, without the exponent of the denominator $(s-s_o)$:

Correction curve.—An average of thirteen standard lines were measured in the comparison spectrum on each plate. With the exception of the three lines used in deriving the constants of the formula, each line gave a correction required to reduce its wave-length given by the formula to the standard wave-length. These corrections were platted on squared paper, as shown in Fig. 3, in which the abscissae are wave-lengths given by the formula (scale, one square equals 10 t.m.) and the ordinates are the corrections (scale, one square equals 0.01 t.m.). A smooth curve, shown by the dotted line, was drawn through these points, from which corrections could be read off for each star line. The correction required for reduction to the Sun was then laid off on the same scale as the correction curve. This is a straight line located by the values for two arbitrarily chosen wave-lengths, λ 1400 and 5000. The final correction curve, shown by the full line, was then drawn, making its ordinates the algebraic sum of the ordinates of the first curve and the reduction to the Sun. From this curve corrections were taken out and applied to the wave-length given by the formula for each star line. The correction for diurnal motion of the observer amounted to 0.005 t.m. only in the case of one plate, G 293 for 19

²⁷ Astrophysical Journal, Vol. X (1899), p. 2.

Piscium, and as only two decimals were considered in the reductions, the diurnal correction was neglected for the other plates.

Combination of results.—The negatives taken on ordinary plates covered the region λ 4370–4980; those taken on isochromatic plates, λ 5170–5850. For convenience these will be called the blue and yellow-green regions, respectively. At least two plates of a region were measured for each star,

and more than two if the quality of the plates required. In the case of lines measured on both plates, the mean of the results was taken as the wave-length of the line in that star, but for lines measured on only one plate the wave-length was reduced to the system of the two plates by adding to it the mean difference between the wave-lengths of the lines common to both. In the case of stars for which three or more plates were measured, the uncorrected means of the measures were taken. We thus have the following table of corrections to wave-lengths of lines found on only one plate:

CORRECTIONS TO WAVE-LENGTHS OF LINES FOUND ON ONLY ONE PLATE

Star	Region	Corrections	Basis
9 Piscium	blue	Mean = 264 - 0.06 = 343 + 0.06	76 lines
280 Schjellerup	{ blue } yellow-green	Mean = $346 + 0.09 = 367 - 0.08$ Mean = $366 + 0.23 = 370 - 0.23$	24 lines 39 lines
B18 Birmingham	blue	Mean = 276 + 0.03 = 393 - 0.03	57 lines
i4 Schjellerup	() 0110 11 510011	Used only one plate, G 391 Mean = 373 - 0.20 = 386 + 0.20	44 lines
78 Schjellerup	{ blue } yellow-green	Mean = 344 + 0.20 = 392 - 0.20 Mean = 300 + 0.06 = 384 - 0.06	74 lines 63 lines
132 Schjellerup	yellow	Mean = $301 + 0.10 = 299 - 0.10$	62 lines 16 lines
115 Schjelleru p	(blue) yellow-green	Mean = 368 - 0.02 = 382 + 0.02 Mean = 365 + 0.02 = 374 - 0.01	64 lines
152 Schjellerup	yellow-green	Mean = 302 + 0.06 = 275 - 0.06	90 lines

Exceptions to the adopted methods.—The reductions for the six plates of 19 Piscium were carried out separately for the measures "red right" and "red left," and the means taken of the resulting wave-lengths, after which the correction for radial velocity was applied. To apply the correction curve to fit the formula to the wave-lengths of the standard lines, somewhat different methods were used for the first eight plates measured, six of 19 Piscium, and plate G 275 of the yellow-green region of 152 Schjellerup. On account of the poor quality of the standard lines and the effect of a neighboring air-line on the wave-length of the iron standard at $\lambda 5710.75$, the true form of the correction curve for the spectrograph was masked. The frequent appearance of an air-line close to the line mentioned shifted the center from one to two tenth-meters capriciously. After this was recognized this line was no longer used in deducing the constants of the formula. To avoid re-reduction, after the true form of the correction curve was found, a second curve was drawn, and from it were taken the quantities needed to apply to the results from the first curve.

The methods used for the first seven plates can be briefly described as follows:

19 Piscium

- G 269. Red right and left reduced separately; Cornu-Hartmann correction curve assumed as zero; reduction to Sun applied.
- G 293. Red right and left reduced separately; Cornu-Hartmann curve taken as a straight line (first constants). Applied to the observed scale reading of the three standard lines, the correction from the residual curve with sign reversed, and expressed in scale divisions. Second constants, which will include the corrections from the curve, computed with these corrected scale readings. Reduction to Sun then applied.
- G 259. Red left. Same as G 293.
 - Red right. Measured February 26 and March 1, 1901; shift found and two sets of measures reduced separately.
 - Reductions same as before, except that the reduction to Sun was combined with the correction from the Cornu-Hartmann (straight-line) curve.
- G 357. Same as last. Same correction curve for measures right and left.
- G 264. Same as last.
- G 343. Shift found between measures of March 11 and 12, 1901, two parts reduced separately; otherwise same as last.

152 Schjellerup

G 275. Red right and left combined before reduction, otherwise same as last.

CONSTANTS OF THE PLATES

The following tables contain the constants of the plates, including the wave-lengths and mean scale readings of the standard lines, the residuals corresponding to the approximate and corrected formula, the approximate and corrected values of the constants of the formula, and the reduction to the Sun. Kayser and Runge's wave-lengths were used for the standard iron lines, and those of Hasselberg for the standard titanium lines.

On account of the special methods of reduction employed, 19 *Piscium* is given first. The stars follow in the order described on p. 19. The order in the tables of constants and in the tables of detailed measures is therefore as follows:

19 Piscium.

280 Schjellerup.

318 Birmingham.

74 Schjellerup.

78 Schjellerup.

132 Schjellerup.

115 Schjellerup.

152 Schjellerup.

PLATE G 264. 19 PISCIUM Blue Region

WAVE-LENGTH	Red	RIGHT		RED	LEFT	
Fe	Mean Scale Reading	Δ_1	Δ_2	Mean Scale Reading	۵1	Δ_2
t.m. 4404.93 4447.89 4491.74 4508.38 4528.79 4549.64 4584.02 4661.67 4705.54 4788.37 4871.90 4924.12 4957.65	mm. 48.0031 45.9732 43.8423 43.2639 42.3876 41.5323 40.1697 37.3202 35.8217 33.2006 30.7980 29.4009 28.5432	$\begin{array}{c} -01 \\ +66 \\ +19 \\ +43 \\ +07 \\ +06 \\ -01 \\ +23 \\ +19 \\ +19 \\ +22 \\ +10 \\ -01 \end{array}$	$\begin{array}{c} 00 \\ +72 \\ +28 \\ +52 \\ +14 \\ +12 \\ +01 \\ +18 \\ +11 \\ +13 \\ +25 \\ +10 \\ \end{array}$	mm. 37.6904 39.7267 41.8478 42.4344 43.3057 44.1603 45.5275 48.3760 49.8773 52.4998 54.8975 56.2962 57.1527	00 +56 +18 +40 +16 +18 00 +28 +16 +11 +28 +08	+01 +62 +27 +49 +23 +24 +02 +23 +08 +05 +31 +17 +11
$\frac{1\text{st}}{\text{Constants}} \begin{cases} S_0 \\ c \\ \lambda_0 \end{cases}$ $\frac{2\text{d}}{\text{Constants}} \begin{cases} S_0 \\ \lambda_0 \end{cases}$	99	-19,4311 1886,800 3042,33 -19,4291 1875,058 3042,13		-9	105.0359 1580.450 3045.07 105.0339 1568.385 3044.89	

 $\begin{array}{ccc} & & & t.m. \\ \text{Reduction to Sun:} & \lambda\,4400 & -0.43 \\ & \lambda\,5000 & -0.49 \end{array}$

PLATE G 343. 19 PISCIUM Blue Region

			RED H	ЗІСНТ					RED	LEFT		
Wave- Length	For A 43	95 to 4639)	For A 46	40 to 494	0	For A 43	395 to 474	4	For A 4746 to 4979		
Ti	Mean Scale Reading	۵1	Δ 2	Mean Scale Reading	۵ 1	Δ 2	Mean Scale Reading	Δ 1	Δ 2	Mean Scale Reading	۵1	Δ 2
t.m. 4387.01 4427.27 4468.66 4481.44 4512.91 4555.66 4590.12 4639.77 4682.09 4742.98 4805.44 4856.20 4900.09 4981.91	mm. 50.4255 48.3368 46.2929 45.6950 44.2482 42.3886 40.9548 39.0119 37.4430 35.3230 33.3008 31.7540 30.4842 28.2675	+32 +36 +03 +13 -01 +03 -14 +01 +01 +08 +22 +18 +15 +04	$\begin{array}{c} +09 \\ +18 \\ -07 \\ +06 \\ -02 \\ +06 \\ -09 \\ +04 \\ 00 \\ -03 \\ +04 \\ -02 \\ -03 \\ 00 \\ \end{array}$	mm. 50.4198 48.3302 46.2903 45.6905 44.2457 42.3837 40.9510 39.0094 37.4420 35.3191 33.2981 31.7519 30.4804 28.2652	+21 +23 -03 +03 -07 -08 -23 -06 -01 -03 +14 +11 +02 -05	+09 +18 -07 +06 -02 +06 -09 +04 00 -03 +04 -02 -03 00	mm. 37,9330 40,0252 42,0599 42,6623 44,1087 45,9699 47,4009 49,3436 50,9117 53,0382 55,0519 56,6023 57,8747 60,0881	$\begin{array}{c} +14\\ +12\\ 00\\ +01\\ -12\\ -10\\ -20\\ -04\\ -01\\ -12\\ +28\\ +12\\ 00\\ -01\\ \end{array}$	$ \begin{vmatrix} -04 \\ +01 \\ 00 \\ +04 \\ -03 \\ +02 \\ -09 \\ +02 \\ 00 \\ -20 \\ +15 \\ 00 \\ -06 \\ +06 \end{vmatrix} $	mm. 37.9418 40.0317 42.0681 42.6711 44.1165 45.9768 47.4084 49.3540 50.9199 53.0426 55.0590 56.6093 57.8807 60.0944	$ \begin{vmatrix} -02 \\ 00 \\ -18 \\ -18 \\ -28 \\ -27 \\ -41 \\ -32 \\ -24 \\ -25 \\ +05 \\ -12 \\ -22 \\ -25 \end{vmatrix} $	-04 -05 -02 00 -02 -05 -06 00 -14 -01 -12 -04 -08 -01
$\begin{array}{c} \text{1st} & S_0 \\ \text{Con-} & c \\ \text{stants} & \lambda_0 \end{array}$	9961	.5504 1.386 21.70		9961	2.5504 13.86 21.70	,	-9944	0.8605 8.140 23.21		-994	0.8605 48.140 023.21	
$\begin{array}{c} \operatorname{2d} & \left\{ egin{array}{c} S_0 \\ \operatorname{Constants} \end{array} \right\} & \left\{ egin{array}{c} c \\ \lambda_0 \end{array} \right. \end{array}$	9961	1.386 21.70		9968	2.5731 2.675 21.00		-9947	0.8586 3.010 22.63		-994	0.8520 40.955 6022.78	

 $\begin{array}{ccc} & & & t.m. \\ \text{Reduction to Sun:} & \lambda\,4400 & & -0.12 \\ & \lambda\,5000 & & -0.13 \end{array}$

PLATE G 259. 19 *PISCIUM* Yellow-Green Region

			RED :	Rібнт			Ren	LEFT	
WAVE- LENGTH	λ 5329	to 5730		λ 5170	to 5327			131111	
Fe	Mean Scale Reading	Δ,	Δ ₂	Mean Scale Reading	۵,	75	Mean Scale Reading	۵,	ے کے
t.m. 5169.19 5227.30 5233.12 5269.72 5328.24 5371.70 5447.13 5495.88 5586.99 5615.80 5710.75	41.0882 40.9560 40.1457 38.9050 38.0262 36.5805 35.6819 34.1037 33.6317 32.1467	00 -04 -07 -09 00 +36 -06 -39 -27	$\begin{array}{c} 00 \\ -10 \\ 00 \\ -01 \\ 00 \\ -01 \\ 00 \\ -06 \\ -06 \\ +06 \\ +27 \\ \end{array}$	41.0816 40.9496 40.1409 38.8967 38.0198 36.5731 35.6761 34.0973 33.6260 32.1404	$\begin{array}{c} \cdots \\ 00 \\ -03 \\ +01 \\ -17 \\ 00 \\ +32 \\ -03 \\ -39 \\ -23 \\ 00 \\ \end{array}$	00 -10 00 -01 00 -01 00 -06 -06 +06 +27	47.2448 48.6097 48.7458 49.5553 50.7950 51.6730 53.1236 54.0168 55.5918 56.0654 57.5588	$\begin{array}{c} +60 \\ 00 \\ -21 \\ -20 \\ -15 \\ 00 \\ +15 \\ +07 \\ +05 \\ +12 \\ 00 \end{array}$	00 -10 00 -01 00 -06 -06 -06 +06 +27
$\frac{1 ext{st}}{ ext{Constants}} \frac{S_{0}}{c}$	10647	.9827 0.150 57.58		10651	7,9983 7,970 057,00		-10725	7,8653 51,499 049,85	
2d Constants	10646	,9806 2.010 57.04		10654	3,0029 3,200 056 08		-10732	1.8716 26.399 048.48	
Constants	30		etion t	to Sun: $\frac{30}{\lambda 58}$	00 -	-0 51 -0.57	30	048.48	

PLATE G 269. 19 PISCIUM

PLATE G 293. 19 *PISCIUM* Yellow-Green Region PLATE G 357. 19 PISCIUM

WAVE-	RED RIGHT		RED I	EFT		RED I	поп	т	RED I	4EFT		WAVE-	RED F	Пент	RED	LEF	г
LENGTH Fe	$egin{array}{c c} \operatorname{Mean} & \Delta_1 \\ \operatorname{Scale} & \Delta_1 \\ \operatorname{Reading} & \end{array}$	42	Mean Scale eading	71	73	Mean Scale Reading	٦,	٠٤	Mean Scale Reading	7,	\Delta 2	LENGTH Ti	Mean Scale Reading	۵ ₁ ۵	Mean Scale Reading	۵,	73
t.m. 5227, 30 5233, 12 5269, 72 5328, 24 5371, 70 5447, 13 5495, 88 5586, 99 5615, 80 5710, 75	42,9853 00 -28 41,6500 -28 40,7129 00 - 39,1652 +37 38,2040 -33 36,5215 -03	10 4 08 4 10 4 07 4 04 4 00 4 17 4 06 4 07 4	mm, 41 7002 41.8357 42 7044 44.0376 44 9744 46.5290 47 4859 49.1694 49.6773 51.2707	+20 +07 -23 00 -07 -19 -15 -16	$ \begin{array}{r} -10 \\ +08 \\ +10 \\ 07 \\ +04 \\ 00 \\ 17 \\ +06 \\ -07 \\ +35 \end{array} $	mm, 42,9954 42,8547 41,9897 40,6623 89,7778 83,1677 37,2116 35,5195 35,0155 83,4254		+01 -11 +04 +05 -00 -01 -13 +06 +35	mm. 45, 1292 45, 2760 46, 1398 47, 4674 48, 4047 49, 9612 50, 9120 52, 6015 53, 1090 54, 7043	-21	$ \begin{array}{r} -01 \\ -11 \\ -04 \\ -05 \\ 00 \\ -01 \\ +05 \\ -13 \\ -06 \\ +35 \\ \end{array} $	t.m. 5173 92 5210.55 5283 63 5336.97 5381.20 5418.98 5481.65 5565.70 6644.66 5739.69	mm. 36 4756 35.5891 33.9151 32.7521 31.8350 31.0741 29.8637 28.3422 27.0004 25.4805	$ \begin{vmatrix} -01 & +0 & 0 & 0 \\ +23 & 0 & 0 & 0 \\ +24 & 0 & 0 & 0 \\ +21 & 0 & 0 & 0 \\ +21 & 0 & 0 & 0 \\ +21 & 0 & 0 & 0 \\ +21 & 0 & 0 & 0 \\ -20 & 0 & 0 & 0 \\ -20 & 0 & 0 & 0 \end{vmatrix} $	48.9622 50.6387 4 51.7984 52.7175 53.4797 64.6903 56.2132 57.5528	$\begin{array}{c} 00 \\ +01 \\ +21 \\ +20 \\ +16 \\ 00 \\ +12 \\ 00 \\ -01 \\ \end{array}$	+04 00 09 -04 00 $+02$ -03 $+02$ $+09$
Constants $\frac{S_0}{c}$	-8 1361 112070,841 3077 47		-11567	.5758 7.489 39.76		11375	484 1 8,306 59,63	. [-11528	.9301 1 . 115 13 . 98		$\frac{1}{\text{Constants}} \frac{\mathcal{S}_0}{r}$	11146	8800 4 870 44 93	-11079), 2952 19, 850 152, 09)
$\begin{array}{c c} \text{2d} & S_0 \\ \text{Constants} & c \\ \lambda_0 \end{array}$						11376	4820 1-597 59-34		11533	.9375 1.071 13.15		$\frac{2\mathrm{d}}{\mathrm{Constants}} \frac{S_0}{c}$	11151	.8917 0.045 11.24	-11084	0.3093 12.820 151.34	1
Reduc	tion to Sun: $\frac{\lambda}{\lambda}$	200 800	t.m. 0 49 - 0 55		-		λ 55 λ 58		t.m. -0.40 -0.45			Reduc	rtion to St	in: λ5		2	

280 SCHJELLERUP

Blue Region

	PLATE G 346				PLATE G 367		
Mean Scale Reading	Wave-Length	Δ1	Δ 2	Mean Scale Reading	Wave-Length Ti	21	Δ 2
mm. 49.3729 49.8135 51.4204 51.5627 52.5929 53.4724 54.1599 55.0952 55.6826 57.3454 58.2813 58.9789 61.4564	6.m. 4443.7 4457.59 4512.88 4518.18 4555.64 4590.11 4617.41 4656.60 4682.08 4758.30 4805.56 4841.00 4981.91	+60 00 -02 +18 -33 +20 -28 -06 00 +36 +52 -15 00 	$\begin{array}{c} +60 \\ -02 \\ +05 \\ +25 \\ -20 \\ +34 \\ -16 \\ -01 \\ +05 \\ -05 \\ +25 \\ -41 \\ +03 \\ \cdots \\ \end{array}$	mm. 63.2423 62.3717 61.4266 60.7309 59.8395 59.6911 59.5639 58.6853 57.7949 57.1238 56.1976 55.6183 54.2993 53.5457 52.0805 49.9083	t.m. 4399.92 4427.28 4457.59 4481.41 4512.88 4518.18 4522.97 4555.64 4590.11 4617.41 4656.60 4682.08 4742.94 4780.18 4981.91	00 -03 -53 -32 -25 -31 -14 -20 -36 -22 -08 00 -01 +43 +19 00	$ \begin{vmatrix} 00 \\ +06 \\ -35 \\ -16 \\ 00 \\ -06 \\ +111 \\ +06 \\ -06 \\ -01 \\ 00 \\ -12 \\ +27 \\ +01 \\ 00 \end{vmatrix} $
$egin{array}{c} S_0 \\ c \\ \lambda_0 \\ \end{array}$ Reductio	94.0 -64792.5 2991 n to Sun: \(\lambda\) 450	977 .58 			18.0710 62770.074 3010.32 t.m. -0.24 -0.28		

 $280\ SCHJELLERUP$

Yellow-Green Region

	PLATE G 366				PLATE G 370		
Mean Scale Reading	Wave-Length Ti	۵ 1	Δ 2	Mean Scale Reading	$_{Ti}^{\text{Wave-Length}}$	۵ 1	Δ 2
mm. 40.9966 41.8908 43.8858 44.7375 45.6630 45.9835 46.2404 46.4255 47.7924 49.1699 50.5148	t.m. 5173.92 5210.49 5297.21 5336.96 5381.20 5396.71 5409.81 5418.98 5490.36 5565.70 5644.36	$\begin{array}{c} 00 \\ -25 \\ -46 \\ +02 \\ 00 \\ -21 \\ +12 \\ +02 \\ +43 \\ +05 \\ 00 \\ \end{array}$	$\begin{array}{c} +06 \\ -07 \\ -29 \\ +07 \\ -07 \\ -30 \\ 00 \\ -11 \\ +25 \\ -06 \\ +02 \end{array}$	mm. 48.8976 49.371 49.7986 50.1572 52.6575 53.5845 54.3470 57.1059 58.4564	t.m. 5173.92 5193.14 5210.49 5226.70 5336.97 5381.20 5418.98 5565.70 5644.36	00 +02 -34 +82 00 +09 +27 +11 00	$\begin{array}{c} 00 \\ +18 \\ -11 \\ +109 \\ +02 \\ -04 \\ +06 \\ -02 \\ 00 \\ \cdots \\ \end{array}$
$egin{array}{c} S_0 \ c \ \lambda_0 \end{array}$	93.5 -111874. 3045	379			$101.4441 \\ -111170.513 \\ 3058.26$		
Reductio	n to Sun: λ5 λ5	200 -0	.m. .28 .32		t.m. -0.29 -0.33		

318 BIRMINGHAM

Blue Region

	PLATE G 276	i			Рьате G 393		
Mean Scale Reading	Wave-Length Fe	۵ 1	Δ 2	Mean Scale Reading	Wave-Length $T\iota$	۵ 1	Δ2
mm. 64.4229 63.2501 62.6931 59.5733 58.6767 57.0916 56.1596 54.6749 51.5566 49.9257 47.0665 44.4345 43.8522 41.9707	t.m. 4383,72 4404.93 4415,29 4476,19 4494.74 4528.80 4549.64 4584.02 4661.67 4705.13 4788.14 4871.87 4891.37 4957.67	$\begin{array}{c} +08 \\ 00 \\ +01 \\ -13 \\ -15 \\ -12 \\ -06 \\ 00 \\ +19 \\ -07 \\ +28 \\ +26 \\ +13 \\ 00 \\ \cdots \end{array}$	+02 00 +03 00 00 00 -02 -02 -27 +05 +10 00 -03 	mm. 53,2009 54,9209 56,6851 58,1195 59,6501 62,5149 64,1621 65,6139 66,7210 69,1905 71,8860 73,4022 74,5215 75,8467 78,5343	t.m. 4338.05 4367.81 4309.92 4427.27 4457.59 4518.20 4555.66 4590.12 4617.41 4682.09 4758.87 4805.44 4841.00 4885.25 4981.91	$\begin{array}{c} 00 \\ -19 \\ -26 \\ -24 \\ -31 \\ -29 \\ -07 \\ 00 \\ -01 \\ +20 \\ +36 \\ +60 \\ +34 \\ +27 \\ 00 \\ \end{array}$	$\begin{vmatrix} +03 \\ -02 \\ -01 \\ +06 \\ +02 \\ -07 \\ +07 \\ -08 \\ -09 \\ -0$
S_0 C λ_0 Reduction		83 12 400 +	t.m. -0.05 -0.05	_	129,8943 -100110,616 3032,72 t.m. -0.24 -0.27)

 $318\ BIRMINGHAM$

Yellow-Green Region

	PLATE G 253				PLATE G 284				PLATE G 379		
Mean Scale Reading	Wave-Length	41	ي د	Mean Scale Reading	Wave-Length	١ ۵	Δ 2	Mean Scale Reading	$\begin{array}{c} \text{Wave-Length} \\ Ti \end{array}$	۵ ۱	Δ 2
mm. 57,2442 58,6969 59,6921 61,0101 61,9368 63,4698 66,0718 66,5719 68,1374	t.m. 5169.16 5227.30 5269.72 5328.24 5371.70 5447.13 5586.99 5615.80 5710.75	+76 00 00 -17 00 $+01$ -05 00 $+26$	+67 00 -08 -05 -08 -01 -09 -01 -33	mm. 55.0796 56.5509 57.5717 58.9138 59.8623 61.4332 64.0932 64.6062 66.2106	t.m. 5169.16 5227.30 5269.72 5328.24 5371.70 5447.13 5586.99 5615.80 5710.75	+32 00 -22 -27 00 $+18$ $+06$ 00 $+11$	+13 -09 -06 -11 00 -05 -09 -01 -13	mm. 52.1792 53.1100 53.8872 55.2737 56.6576 57 2398 58.0153	t.m. 5336.97 5381.20 5418.98 5490.36 5565.70 5598. ± 5644.36	$00 \\ +14 \\ -20 \\ 00 \\ -05 \\ 00 \\ \cdots$	00 +14 -20 00 -05
S_0 C λ_0 Reduction		779 30 200 +	t,m. -0.16 -0.17		-8,8018 111732,492 3087.52 t.m. +0,03 +0,03				101.8269 -114566.029 3029.39 t.m. 0.00 0.00		

 $74 \ SCHJELLERUP$ Blue Region

	PLATE G 383				PLATE G 391		
Mean Scale Reading	Wave-Length	۵1	75	Mean Scale Reading	Wave-Length Ti	Δ_1	Δ_2
59.7101 58.6411 56.5137 54.9766 53.4843 52.1098 50.4506 49.0041 47.9038 45.4380 42.7401 41.2337 39.6574 36.1047	t.m. 4367.81 4387.01 4427.27 4457.59 4488.98 4518.20 4555.66 4590.12 4617.41 4682.09 4758.87 4856.20 4981.91	$\begin{array}{c} 00 \\ -05 \\ +15 \\ 00 \\ +32 \\ -02 \\ -11 \\ 00 \\ 00 \\ +15 \\ -22 \\ 00 \\ -53 \\ -24 \\ \cdots \\ \cdots \end{array}$	$\begin{array}{c} -12 \\ -11 \\ +15 \\ +04 \\ +38 \\ +03 \\ -10 \\ -04 \\ 60 \\ +02 \\ -22 \\ -10 \\ -37 \\ 60 \\ \cdots \\ \cdots \end{array}$	mm. 63.7228 62.0096 60.9454 58.8166 57.2945 55.8020 54.6765 52.7859 51.3311 50.2342 49.3627 47.7783 45.0831 43.5719 41.9998 38.4550	t.m. 4338.05 4367.81 4387.01 4427.27 4457.59 4488.98 4512.88 4555.66 4590.12 4617.41 4639.81 4682.09 4758.91 4805.44 4856.20 4081.91	00 -10 -13 -13 -08 -36 -03 +05 00 +13 +35 +57 +50 +77 +54 00	$\begin{array}{c} +02\\ -03\\ -04\\ -02\\ +02\\ +43\\ +01\\ +04\\ -08\\ +01\\ +19\\ +35\\ +24\\ +51\\ +32\\ -06\\ \end{array}$
S_0 c λ_0	$ \begin{array}{r} -14.0\\96452.\\3059\end{array} $	828			$\begin{array}{c} -12.5623 \\ 99163.762 \\ 3038.14 \end{array}$		
Reduction		+00 - 0	m.).27).30		t.m. -0.41 -0.47		

74 SCHJELLERUP Yellow-Green Region

	PLATE G 373				PLATE G 386		
Mean Scale Reading	Wave-Length Ti	Δ_1	Δ_2	Mean Scale Reading	Wave-Length Ti	۵1	Δ_2
mm. 49.4201 48.9478 48.5252 46.8421 45.6696 44.7454 43.9827 42.7605 41.2329 40.6544 39.8877 38.3625	t.m. 5173.92 5193.15 5210.55 5283.63 5336.96 5381.20 5418.98 5481.64 5565.70 5598.52 5644.36 5739.69	$\begin{array}{c} 00 \\ -04 \\ -17 \\ +15 \\ -16 \\ -06 \\ 00 \\ -38 \\ -56 \\ \cdots \\ 00 \\ +12 \\ \end{array}$	$ \begin{array}{c} +05 \\ +03 \\ -09 \\ +25 \\ -06 \\ +02 \\ +05 \\ -36 \\ -55 \\ \cdots \\ +03 \\ +21 \end{array} $	mm. 46.2325 45.1015 44.2076 42.5254 41.3588 40.4318 39.6717 38.4555 38.0363 36.9235 35.5795 34.5041	t.m. 5129.32 5173.92 5210.55 5283.63 5336.96 5381.20 5418.98 5481.64 5504.10 5565.70 5644.37 5710.75	$\begin{array}{c} +23 \\ 00 \\ -18 \\ +06 \\ -06 \\ -14 \\ 00 \\ -14 \\ -10 \\ -07 \\ 00 \\ -10 \\ \end{array}$	-23 -07 -06 +20 +05 -06 +05 -12 -08 -05 +04 -03
S_0 c λ_0	-3.29 112342.3	502			$\begin{array}{r} -7641.6\\ 112652.526\\ 3038.56\end{array}$		
Reduction	to Sun: λ5:	200 -0	m. .11 .13		t.m. -0.41 -0.46		

78 SCHJELLERUP Blue Region

	PLATE G 344				PLATE G 392		
Mean Scale Reading	Wave-Length Ti	Δ_1	Δ_2	Mean Scale Reading	Wave-Length	71	22
mm. 63.1672 62.1143 60.8363 58.5141 55.9369 54.0798 52.6517 51.5655 49.1406 47.0254 43.9084 42.1884 39.9713	t.m. 4367.81 4387.00 4411.24 4457.59 4512.88 4555.64 4590.11 4617.41 4682.08 4742.94 4841.00 4900.10 4981.91	00 -16 -18 -22 -22 -04 -03 -00 +19 +36 +35 +34 -00	+05 -05 -01 00 +02 +10 +02 -04 -03 +02 +01 +09 -03	mm. 54.8138 53.7495 52.4548 50.0992 47.4950 45.6095 44.1637 43.0637 40.6050 38.4597 36.4094 35.3002 33.9833 31.3066	t.m. 4367.81 4387.00 4411.24 4457.50 4512.88 4555.64 4590.11 4617.41 4682.09 4742.94 4805.44 4841.00 4885.25 4981.91	+16 00 -09 -29 -23 -19 -18 -15 00 +12 +28 +18 +21	$\begin{array}{c} +06 \\ -02 \\ -04 \\ -12 \\ +01 \\ +04 \\ +01 \\ 00 \\ 00 \\ 00 \\ +09 \\ -04 \\ +02 \\ 00 \end{array}$
$egin{array}{c} \mathcal{S}_0 \\ e \\ \lambda_0 \end{array}$	-10.3 97825. 3036	631 .52	1		$-20.1282 \\100724.798 \\3023.61$		
Reduction	to Sun: λ44 λ50		. 41		$\begin{array}{c} { m t.m.} \\ -0.42 \\ -0.47 \end{array}$		

78 SCHJELLERUP Yellow-Green Region

	PLATE G 300				Plate G 384		
Mean Scale Reading	$rac{ ext{Wave-Length}}{ ext{Fe}}$	71	Δ_2	Mean Scale Reading	Wave-Length $T\iota$	71	75
mm. 48.6220 47.1559 47.0039 46.1419 44.8091 43.8752 42.3283 39.6709 39.1611 37.5737	t.m. 5169.16 5227.30 5233.12 5269.72 5328.24 5371.70 5447.13 5586.99 5615.87 5710.75	+80 00 -48 -38 -46 00 +56 +01 00 +91 	+80 +08 -22 00 -01 +26 +41 -25 -24 +78	mm. 48.7537 47.6129 46.7019 43.8175 42.8835 42.1128 40.4598 39.3302 37.9753 36.4263 34.2046 34.1190	t.m. 5129.32 5173.92 5210.55 5336.96 5381.20 5418.98 5504.10 5565.70 5644.37 5739.69 5896.16	$\begin{array}{c} -01 \\ 00 \\ -37 \\ -15 \\ 00 \\ +10 \\ +12 \\ -05 \\ +31 \\ -11 \\ 00 \\ -16 \end{array}$	$\begin{array}{c} -01 \\ +08 \\ -24 \\ -08 \\ +02 \\ +07 \\ +04 \\ -15 \\ +22 \\ -17 \\ +04 \\ -09 \end{array}$
$egin{array}{c} S_0 \ c \ \lambda_0 \end{array}$	$ \begin{array}{r} -6.18\\ 117379.1\\ 3025. \end{array} $	147			$\begin{array}{r} -5.4517 \\ 112414.141 \\ 3055.48 \end{array}$		
Reduction	to Sun: λ52 λ58		.47		t.m. -0.35 -0.39		

132 SCHJELLERUP Blue Region

					Ditte Hegion		_				
	A 328				G 309				G 368		
Mean Scale Reading	Wave-Length	۵1	Δ_2	Mean Scale Reading	Wave-Length Fe	Δ_1	Δ_2	Mean Scale Reading	$\operatorname*{Wave-Length}_{Ti}$	۵1	Δ_2
mm. 31.5024 31.9008 34.1584 35.4942 35.9139 36.5603 39.8503 40.6756 41.7110 42.9227 43.449 43.6524 44.2083 45.9286 47.6681 48.9299 48.4157 50.0564 50.7129 51.5433 52.5096 54.9363 55.8169 59.9223 62.0044 66.23445 67.5660	t.m. 4395.17 4399.99 4427.28 44427.28 4449.32 4457.59 4481.41 4501.43 4512.88 4527.48 4544.83 4552.62 4555.64 4563.94 4590.11 4617.41 4623.24 4629.47 4656.60 4667.76 4682.08 4698.91 4742.94 4759.44 4841.00 4885.25 4981.91 5014.40	$\begin{array}{c} -02\\00\\-07\\-13\\-12\\-17\\-17\\-15\\-24\\-15\\-13\\-08\\-01\\-03\\00\\00\\+07\\+14\\+23\\+21\\+25\\+23\\+36\\+32\\00\\-16\end{array}$	-03 +01 +01 -01 -01 +01 -03 +01 +03 -08 -00 +01 +05 -05 -01 +05 -06 -07 +08 -00 -02 -06 +07 +08 -00 -00 -00 -00 -00 -00 -00 -00 -00 -	mm. 62.4163 60.2114 59.2437 57.8957 57.2672 56.3247 55.4063 53.9336 50.8472 49.2341 46.3933 43.7829 43.2143 42.2717 41.3449	t.m. 4404.93 4447.89 4466.73 4494.74 4508.38 4528.79 4549.64 4584.02 4661.67 4705.54 4788.37 4871.90 4891.67 4957.65	00 -48 -17 -22 -05 -30 -15 -18 00 +22 +21 +01 +47 00 00 	00 +63 +03 +03 +10 +06 -04 -13 +37 -04 +03	mm. 56.7597 54.6542 53.1443 52.0070 50.5589 48.6922 47.2555 45.3119 43.7368 41.6096 39.5773 38.0231 36.7454 34.5165	t.m. 4387.01 4427.27 4457.59 4481.44 4512.88 4555.66 4590.11 4639.83 4682.09 4742.98 4805.44 4856.20 4900.09 4981.91	00 -14 -29 -27 -32 -27 -37 -03 +15 +28 +24 +12 00	+03 +03 -03 -03 +03 00 +02 -14 +05 00 -01 -01 +03 -03
$egin{array}{c} S_{ heta} \ c \ \lambda_{ heta} \end{array}$	$\begin{array}{r} 147.407 \\ -158930.81 \\ 3023.9 \end{array}$.5			-10.8653 100360.323 3035.41]	$\begin{array}{c} -16.6050 \\ 100308.460 \\ 3019.75 \end{array}$		
Reduction to	o Sun: λ44 λ50	00 +0	m, 0.09 0.11		t.m. -0.12 -0.14				t.m. -0.38 -0.43		

132 SCHJELLERUP Yellow-Green Region

	PLAT	E G 299		PLAT	re G 301	
WAVE-LENGTH Fe	Mean Scale Reading	Δ_1	Δ_2	Mean Scale Reading	Δ_1	Δ_2
t.m. 5169.19 5227.30 5233.12 5269.72 5328.24 5371.70 5447.13 5586.99 5615.80 5710.75	mm. 45.0723 44.9302 44.0654 42.7445 41.8117 40.2555 37.6158 37.1108 35.5259	$\begin{array}{c} 00 \\ -10 \\ -28 \\ -29 \\ 00 \\ -23 \\ -28 \\ 00 \\ +94 \end{array}$	$\begin{array}{c c} +04 \\ -04 \\ -09 \\ 00 \\ +32 \\ +07 \\ -16 \\ +06 \\ +70 \\ \end{array}$	mm. 47.1218 45.6560 45.5089 44.6418 43.3136 42.3719 40.8215 38.1675 37.6577 36.0667	$ \begin{array}{c} +12 \\ 00 \\ -26 \\ -23 \\ -14 \\ 00 \\ +42 \\ +03 \\ 00 \\ +61 \end{array} $	-03 +07 -16 -03 00 +04 +38 +01 +01 +72
S_0 c λ_0	12150	3.9628 94.394 978.68		1159	7.3702 75.198 040.17	
Red. λ 5200 o Sun: λ 5800		t.m. 0.00 0.00			t.m. -0.01 -0.01	

115 SCHJELLERUP

Blue Region

	PLATE G 363				PLATE G 382		
Mean Scale Reading	Wave-Length	Δ_1	Δ_2	Mean Scale Reading	Wave-Length $T\iota$	Δ_1	Δ_2
mm. 51,2059 49,3290 48,4488 47,5625 46,8846 45,3711 41,9979 44,0499 43,2898 42,7865 42,1030 41,8180 41,2918 39,6410	t.m. 4457.59 4522.97 4555.64 4590.11 4617.41 4682.08 4698.94 4742.94 4759.07 4779.98 4805.56 4841.00 4856.18 4885.25 4981.91	00 +01 -05 +01 -05 +01 -05 00 +13 +07 +18 +10 +30 +08 -01 +15	-06 +05 +01 +07 -01 -04 +06 -07 +01 -09 +07 -12 -20 00	mm. 55.9916 54.8351 53.7213 52.1040 51.9529 51.8199 50.9310 50.0328 49.3511 47.830 46.4976 46.1608 45.2229 44.5245	t.m. #387.00 4121.92 4457.59 4512.88 4518.18 4522.97 4555.64 4590.11 #617.41 4682.08 4742.94 4758.87 4805.56 4841.00 4856.18	00 -26 -29 -12 -19 -16 +14 -09 00 +41 +51 +37 +67 +16	+0. -10 -0° +00 +00 +00 +2. -16 -16 +00 +11 -0° +3' -08
S_0 C λ_0	7.517: 63628.78: 3001.18	1 9 3	m. 0.25	42.0543	10.3552 61749.228 3033.93 t.m. -0.01	+20 (00	+0:

 $\begin{array}{ccc} 115 & SCHJELLERUP \\ & \text{Yellow-Green Region} \end{array}$

	PLATE G 365				PLATE G 374		
Mean Scale Reading	Wave-Length	Δ_1	Δ2	Mean Scale Reading	Wave-Length T_ℓ	۵۱	73
mm. 45.5753 45.0954 44.6801 11.8458 40.9233 40.1694 38.5433 37.4348 36.0934 32.711	t.m. 5173.94 5193.15 5210.55 5336.96 5381.20 5419.00 5504.10 5565.70 5644.37 5866.69	$\begin{array}{c} 00 \\ -44 \\ -34 \\ +04 \\ 00 \\ +31 \\ +28 \\ +23 \\ 00 \\ -61 \end{array}$	+08 -32 -20 +08 -12 +12 +03 +04 -06 -45	mm. 46.4304 45.9616 45.5358 42.688 41.7645 41.0031 39.6318 38.2585 36.9095	t.m. 5173.94 5193.15 5210.55 5336.96 5381.20 5419.00 5409.90 5565.70 5644.37	$\begin{array}{c} 00 \\ +06 \\ -24 \\ -09 \\ 00 \\ +10 \\ -05 \\ +21 \\ 00 \\ \cdots \end{array}$	+01 +12 -15 +01 +02 +04 -26 +04
S_0 C λ_0	-6.428 109710.33 $3064-2$	2			$\begin{array}{r} -6.3081 \\ 112617.276 \\ 3038.55 \end{array}$		
eduction to	Sun: λ 5200 λ 5800	+0			$^{+0.20}_{+0.22}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

152 SCHJELLERUP — Blue Region

	PLATE G 316				PLATE G 394		
Mean Scale Reading	Wave-Length Fe	Δ_1	Δ_2	Scale Mean Reading	Wave-Length	Δ_1	Δ_2
mm. 58.4979 53.9627 53.3353 52.3887 51.4690 49.9958 46.9014 45.2818 42.4443 39.8347 38.3177 37.3848	t.m. 4404.93 4494.74 4508.38 4528.79 4549.64 4584.02 4661.67 4705.54 4788.37 4871.90 4924.12 4957.65	00 -28 -05 -34 -18 -15 -00 +12 +33 +30 +18 -00	00 +02 +26 -05 +08 +04 00 00 +01 -02 	mm. 62.2942 60.1744 58 1132 57.1631 56.0399 54.1548 52.7090 50.7415 49.1495 47.0010 44.9514 43.3770 42.0906 39.8372	t.m. #387.01 4427.27 4468.66 4488.86 4512.88 4555.66 4590.12 4639.77 #682.09 4742.98 4805.44 4856.20 4900.09 #981.91	$\begin{array}{c} 00 \\ -04 \\ -17 \\ +04 \\ -25 \\ -21 \\ -20 \\ +02 \\ 00 \\ +14 \\ +35 \\ +17 \\ +23 \\ 00 \\ \end{array}$	$\begin{array}{c} 00 \\ +05 \\ +02 \\ +25 \\ -02 \\ +01 \\ -02 \\ +09 \\ -02 \\ -01 \\ +14 \\ -04 \\ +06 \\ -02 \end{array}$
$egin{array}{c} S_0 \\ c \\ \lambda^0 \end{array} \Big $ Reduction to	-14,7723 100044.671 3039.51 Sun: λ4400 λ5000	-(m.),13),15		-11.8813 101624.571 3016.95 t.m. -0.15 -0.17		

152 SCHJELLERUP — Blue Region

	PLATE A 313				PLATE A 319		
Mean Scale Reading	Wave-Length Ti	Δ_1	Δ_2	Mean Scale Reading	Wave-Length Ti	Δ_1	Δ^2
mm. 37.5957 38.3621 40.7605 41.6063 42.5699 44.0444 44.8692 45.9009 47.1070 47.8423 48.4016 48.9422 50.1159 51.8489 52.2117 53.2231 54.2324 54.8889 55.7234 59.9866 61.0582 62.3381 64.0888	t.m. 4417.88 4427.27 4457.59 4468.65 4481.41 4501.43 4512.88 4527.48 4544.83 4555.66 4563.94 4572.15 4590.11 4617.41 4623.24 4639.85 4656.60 4667.76 4682.08 4759.44 4758.30 du 4759.44 4780. 4805:25 4841.00	+06 +01 -11 -09 -13 -12 -09 -13 -10 -14 -05 -04 00 +13 +10 +15 +14 +20 +33 +18 +18 +21	$\begin{array}{c} +02 \\ 00 \\ -04 \\ 00 \\ -02 \\ -01 \\ 00 \\ +03 \\ -02 \\ 00 \\ -04 \\ +03 \\ +01 \\ -01 \\ -03 \\ +06 \\ 00 \\ +03 \\ -01 \\ +11 \\ -04 \\ \cdots \\ -05 \\ -01 \\ \end{array}$	mm. 34.1864 36.4392 37.7721 38.8382 40.6509 42.1245 43.3250 43.9798 45.1841 45.9218 46.4787 48.2013 49.9321 50.2910 51.3057 52.9721 53.8034 57.1887 58.0670 60.4270 62.1738 64.2508 68.4778	t.m. 4400.74 4427.28 4443.97 4457.59 4482.84 4501.43 4518.20 4527.48 4544.83 4555.64 4563.94 4590.11 4617.41 4623.24 4639.75 4667.76 4682.08 4742.94 4759.44 4805.44 4885.25 4981.91	$\begin{array}{c} -82 \\ -74 \\ -72 \\ -72 \\ -76 \\ -58 \\ -45 \\ -03 \\ -36 \\ -34 \\ -30 \\ -23 \\ -08 \\ 00 \\ +03 \\ +21 \\ +28 \\ +46 \\ +53 \\ +48 \\ 00 \\ \cdots \\ \cdots \\ \end{array}$	00 +02 00 -04 -13 -03 +03 +01 00 -03 -04 00 -05 60 +01 +01 +01 -03 +01 -01 +01 -01 -03 -05 -00 -04 -03 -04 -03 -04 -04 -03 -04 -04 -05 -06 -06 -06 -06 -06 -06 -06 -06 -06 -06
64.8097 66.1663 66.8361 67.4510	4856.18 4885.25 4900.08 4913.76	+27 $+18$ $+27$ $+22$	$+05 \\ 00 \\ +11 \\ +08$				
$egin{array}{c c} 70.3827 \\ \hline S_0 & c \\ \lambda_0 & \end{array}$	-158811	23.00	00		148,702 -155701.59 3041.0	7	
Reduction	to Sun: λ 4400 λ 5000	-0. -0.	13		+0.08 +0.10		

152 SCHJELLERUP Yellow-Green Region

Wave-Length	PLA	TE G 275		PLA	re G 291		PLA	re G 302	
Fe	Mean Scale Reading	Δ1	Δ_2	Mean Scale Reading	Δ_1	Δ_2	Mean Scale Reading	Δ1	Δ2
t.m. 5169.19 5227.30 5223.12 5269.72 5328.24 5371.70 5447.13 5586.99 5615.80 5710.75	mm. 46,8204 45,3563 45,2147 44,3428 43,0113 42,0721 40,5139 37,8635 37,3562 35,7619	+63 -01 -04 -19 -25 -01 00 -36 -28 -01	+52 +01 00 00 -03 +10 +01 -11 +01 +36	mm. 45.4829 44.4743 43.1478 42.2151 40.6580 38.0212 37.5066 35.9205	-22 -37 -00 -23 -21 -63 -00	$ \begin{array}{c} $	mm. 50.7350 49.2714 49.1235 48.2586 46.9297 45.9897 44.4318 41.7862 41.2756 39.6857	+70 00 -30 -20 -19 00 +03 +06 00 +73	$ \begin{array}{c c} +53 \\ 00 \\ -27 \\ 00 \\ 00 \\ +07 \\ -05 \\ 00 \\ -01 \\ +84 \end{array} $
$\frac{1\text{st}}{\text{Constants}} \left\{ \begin{matrix} S_0 \\ e \\ \lambda_0 \end{matrix} \right]$	114	-7.4490 977.007 3049.92			-7.7545 7551.985 3019.23			-3 9509 3954 193 3029 83	1
$\frac{2\mathrm{d}}{\mathrm{Constants}} \left\{ rac{S_0}{c} ight.$	114	-7.4458 945.901 3050.55							_
Red. λ5200 to Sun: λ5800	-	t.ni, -0.29 -0.33		-	t.m. -0.22 -0.26			t.m. 0.00 0.00	

DETAILED MEASURES AND REDUCTIONS

The following tables contain the detailed measures and reductions, made by Mr. Parkhurst, of the spectra of eight fourth-type stars. The intensities of the lines were estimated on a scale of 10, but on account of variations in exposure time, etc., these numbers should be taken as only roughly approximate. The character of the line, whether dark (D) or bright (B), wide (w) or nebulous (n), is indicated in the second column. "Max." indicates the point of maximum intensity of a bright space. In the case of 19 *Piscium*, the first star measured, the red-right and red-left measures are given separately; for other stars the combined measures are given. The other details of the tables will be readily understood after reference to pp. 17–20.

19 PISCIUM = 273 SCHJELLERUP. PLATE G 264
1898, December 31, G.M.T. 12^h5. Hour angle, W 1^h6. Star fair; comparison fair.

		RED	Rіснт	RED	LEFT	M	EAN WAVE	-LENGTH
Intensity	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Wave-Length Reduced to Sun	Uncor- rected	Cor. from Curve	Corrected
$\begin{array}{c} 1 \\ 10 \\ 2 - 3 \\ 5 \\ 1 \\ 3 \\ 10 \\ 2 \\ 4 \\ 5 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 2 \\ -3 \\ 6 \\ 1 \\ 1 \\ -2 \\ 3 \\ 2 \\ -3 \\ 6 \\ 1 \\ 1 \\ -2 \\ 3 \\ 2 \\ -3 \\ 6 \\ 1 \\ 1 \\ 3 \\ -4 \\ 5 \\ 6 \\ 2 \\ -3 \\ 3 \\ 4 \\ 3 \\ 3 \\ 4 \\ 3 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 4$	D WD nD nD wnD nD mm. 49.4583 49.0257 48.7164 48.4777 48.1790 48.1096 47.9844 47.7966 47.4732 47.0949 46.9227 46.8768 46.7556 46.4910 46.3786 45.9572 45.8900 45.8238 45.5807 45.2650 45.1861 45.1212 44.9537 44.4648 44.3735 44.4648 44.3735 44.1962 44.1344 44.0846 44.0336 43.7130 43.5090 43.2936 43.1708 43.0210 42.8573 42.8054 42.7142 42.6637 42.6061 42.2569 42.0727 42.0109	t.m. 4375.83 4384.26 4390.35 4395.09 4401.07 4402.46 4401.99 4408.80 4415.40 4423.21 4426.80 4127.76 4430.29 4435.86 4438.24 4447.24 4448.69 4450.11 4455.38 4462.28 4464.01 4465.44 4469.14 4469.14 4480.06 4482.06 4483.92 4486.13 4487.54 4488.67 4489.83 4497.18 4501.90 4506.91 4506.91 4509.78 4513.31 4517.17 4518.40 4520.57 4521.77 4523.14 4527.58 4531.53 4535.99 4536.99	num. 36.6497 36.9718 37.2100 37.5230 37.5230 37.5839 38.2109 38.6028 38.7784 38.8158 38.9412 39.1935 39.3215 39.7303 39.8206 39.8816 40.1234 40.4334 40.5143 40.5767 40.7469 41.2307 41.3301 41.3986 41.5013 41.6631 41.9863 42.1834 42.3992 42.5209 42.6451 42.8380 42.8875 42.9886 43.0323 43.0869 43.2698 43.4331 43.6198 43.6835	t.m. 4383,92 4390,26 4394,98 4401,24 4402,56 4405,07 4408,53 4415,20 4423,29 4426,94 4427,72 4430,34 4435,65 4438,36 4447,08 4449,03 4450,30 4455,58 4462,35 4464,12 4465,50 4469,26 4480,06 4482,30 4483,85 4486,17 4487,88 4488,78 4488,78 4497,26 4501,81 4506,83 4509,68 4512,60 4517,15 4518,32 4520,72 4521,76 4523,00 4527,44 4531,37 4535,89 4537,44	t.m. 75.83 84.09 90.31 95.04 01.16 02.51 05.03 08.67 15.30 23.25 26.87 27.74 30.32 35.76 38.30 47.32 48.86 50.21 55.48 62.32 64.07 65.47 69.20 80.06 82.18 83.89 86.15 87.69 88.73 89.84 97.22 01.86 06.87 12.96 17.16 18.36 20.65 21.77 23.07 27.51 31.45	from Curve	t.m. 4375.87 4384.11 4390.36 4395.05 4401.16 4402.50 4405.02 4408.66 4415.28 4423.22 4426.84 4427.70 4430.28 4435.71 4438.25 4447.26 4448.30 4450.15 4455.41 4462.24 4463.99 4465.39 4465.39 4465.39 4468.66 4489.75 4497.13 4501.77 4506.78 4512.87 4571.08 4512.87 4517.08 4518.28 4520.57 4521.69 4523.00 4527.44 4531.38 4535.87	
3 3 5 10 Limits () 3 3 2 -3 1 2 1 1 2 -3 2 1	B D D B B D D D D D D D D D D D D D D D	41.9467 41.8845 41.7920 41.7382 41.5867 41.5253 41.3521 41.0837 41.0220 40.9601 40.8795 40.6343 40.1297 40.1063 40.1297 40.1069 39.8898 39.7594 39.7022 39.5104	4539.06 4540.58 4542.84 4544.16 4547.89 4549.41 4553.70 4560.40 4561.95 4563.51 4565.55 4571.76 4583.78 4584.72 4585.41 4586.51 4590.96 4594.37 4595.88 4600.93	43.7505 43.8122 	4539.07 4540.58 	39.07 40.58 42.84 44.19 47.88 49.29 53.63 52.04 54.87 60.36 61.99 63.67 71.73 83.72 84.70 85.46 86.39 91.01 94.41 95.85 00.91	$ \begin{array}{c} -7 \\ -6 \\ -6 \\ -6 \\ -6 \\ -6 \\ -5 \\ -5 \\ -4 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$	4539,00 4540,51 4542,78 4541,13 4547,82 4549,23 4553,57 4551,98 4551,94 4560,31 4561,94 4563,62 4563,62 4571,69 4583,70 4584,68 4585,44 4586,37 4590,99 4594,39 4595,83 4600,90

19 PISCIUM = 273 SCHJELLERUP. PLATE G 264 — Continued

		RED	Right	RED	LEFT	ME	AN WAVE	-LENGTH
INTENSITY	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Wave-Length Reduced to Sun	Uncor- rected	Cor. from Curve	Corrected
		nım.	t.m.	mm,	t.m.	t.m.		t.m.
10	w D	39.2826	4606.98	46.4155	4607.00	06,99	0	4606.99
2-3	n B	39,2156	4608.77	46.4797	4608.71	08.74	ŏ	4608.74
$\overline{1}$ - $\overline{2}$	В	39.0789	4612.43	46.6124	4612.26	12.35	ŏ	4612 35
1	n D	39.0230	4613,93	46.6604	4613.55	13.74	l ŏ l	4613.74
$\hat{3}$	- B	38.9832	4615.00	46.7142	4615.00	15.00	+1	4615.01
2	$\tilde{\mathrm{D}}$	38.9309	4616.41	46.7644	4616.35	16.38	+1	4616.39
$\tilde{6}$	$\widetilde{\mathbf{B}}$	38.8783	4617.83	46.8188	4617.82	17.83	+1	4617.84
4	$\tilde{\mathrm{D}}$	38.8059	4619.79	46.8866	4619.65	19.72	1	4619.73
3	B	38.7468	4621 39	46.9497	4621.31	21.35	$+\frac{1}{2}$	4621.37
ï	n D	38,6947	4622.81	46.9974	4622.66	22.74	$+\frac{1}{2}$	4622.76
4-5	n D	38,4561	4629.32	47.2366	4629.19	29 26	$\pm \frac{5}{2}$	4629.28
3	B	38.3865	4631.23	47.3098	4631.20	31.22	$+\tilde{3}$	4631,25
1	Ď	38,2639	4631.61	47.4331	4634,60	34.61	$\begin{bmatrix} \pm 3 \\ \pm 3 \end{bmatrix}$	4634.64
5	Ď	38.1573	4637.56	47.5330	4637.36	37.46	$\begin{bmatrix} \pm 3 \\ \pm 3 \end{bmatrix}$	4637.49
$\bar{3}$	B	38,1179	4638.65	47.5759	4638.55	38.60	+3	4638.63
5-6	$\tilde{\mathrm{D}}$	38,0556	4640.38	47.6452	4640.47	40.43	14	4640.47
3	$\tilde{\mathrm{B}}$	38,0055	4641.78	47.6880	4641.66	41.72	4	4641.76
	wn D	37.8532	4646.03	47.8299	4645.62	45 82	+4	4645.86
$\frac{1}{2}$ 3	B	37.6106	4652.85	48.0828	4652.73	52.79	+4	4652.83
1,7	Ď	37.5761	4653.82	48 1234	4653.88	53.85	+4	4053 S9
i	Ď	37.4837	4656.44	48,2069	4656.24	56.34	+5	4656.39
_	w B	37.3245	4660 97	48.3673	4660.80	60.89	T 5	4660.94
i 2	" D	37.2123	4664.18	48.4810	4664.05	64.12	+5 +5	4664.17
2	n B	37.1721	4665.33	48,5299	4665.45	65.39	± 5	4665.44
$\bar{3}$	wn D	37.0754	4668.11	48.6189	4668.01	68.06	45	4668.11
4	D D	36.8324	4675 13	48.8631	4675.07	75.10	+6	4675 16
ì	Ď	36.5878	4682.26	30.0001	1019.01	82.26	$\frac{\pm 6}{6}$	4682.32
i	n D	36,3793	4688.39			88.39	+7	4688.46
i	n D	36.2891	4691.05	49.4104	4691.11	91.08	 7	4691.15
1	n Đ	55.2001	1001.00	49.5178	4694.29	94 29	17	4694.36
3-4	n D	36.1039	4696.55	49.5915	4696.48	96.52	7	4696.59
6	w D	35.5052	4714.58	50,1909	4714.53	14.56	-8	4714.64
1-2	n D	35.2360	4722.82	50.4498	4722.45	22.64	+8	4722.72
10	w D	34.8071	4736.11	50.8826	4735.86	35 99	+8	4736.07
Head		34.7613	4737.54	50.9412	4737.69	37.62	+8	4737.70
7.8	ъ	34.7296	4738.53	50.9701	4738.60	38.57	-8	4738.65
4.5	n Đ	34.5568	4743.96	51.1416	4743 99	43.98	+8	4744.06
7	" B	34 4729	4746.61	02.12.120	1110	46.61	1 + 8	4746.69
i	n D	34 3734	4749.77	51.3189	4749.60	49.69	+8	4749.77
1-2	n D	34.0980	4758.55	51.5904	4758.26	58.41	± 8	4758.49
1	" Ď	33.8663	4766 01	51.8205	4765.67	65.84	1-7	4765.91
1	$\tilde{\mathbf{p}}$	33,6630	4772.61	52.0336	4772.58	72,60	± 7	4772.67
i	n D	33 3151	4784.03	52.3886	4784.24	81.14	$\pm \dot{6}$	4784.20
i	n 1)	33 1489	4789.53	52.5391	4789.22	89.38	1 + 6	4789.44
1	n D	32.3595	4816.17	53.3197	4815.55	15.86	+4	4815.90
$\frac{1}{2}$	n D	32.1309	4824 19	53.5543	4823.62	23 91	+3	4823.94
1	n D	32.0206	4827 86	53 6702	4827.64	27.75	± 3	4827.78
1	n D	31.8764	4832 87	53.8143	4832,65	32.76	$+\frac{2}{2}$	4832.78
1	n D	31.236 2	4855,50	54 4570	4855.37	55.44	1 0	4855.44
1	n D	30,8755	4868.50	54 8195	4868 44	68.47	$-\frac{9}{2}$	4868.45
1	n D	30.5171	1881.67	55,1792	4881 60	81.61	- 1	4881.60
End	11 17	27.5010	1999.7		1001 00	99.7	- 10	4999.6
TALL.		21.3010	*******		,,,			40.010

19~PISCIUM=273~SCHJELLERUP,~~PLATE~G~343 $1899,~October~4,~G.M.T.~15^h.5,~~Hour~angle,~E~1^h.3,~~Star~good~;~comparison~excellent.$

8 1 3 4 4 1 2	w D D D D D D Wn D	50,0071 49,8543 49,6999 49,4703 49,2874 49,0913 48,9541	4391.56 4397.46 4307.46 4100.40 4104.79 4408.31 4412.11 4414.84	38,3322 38,1965 38,6522 38,8807 39,0533 39,2009 39,4076	4394 17 4397 29 4400 25 1104 62 4407 95 4411 96 4414 82	94.37 97.38 00.33 04.71 08.13 12.04 14.83	+ 18 + 18 + 18 + 17 + 17 + 16 + 16	4394.55 4397.56 4400.51 4401.88 4408.30 4412.20 4414.99
2 3	wn D	48.6688	1420.38	39.6904	1420.35	20.37	+ 14	4420.51

19 PISCIUM = 273 SCHJELLERUP. PLATE G 343 - Continued

Mean Mean			RED I	Right	RED	Left	MEAN WAVE-LENGTH			
1-2 D 48,5468 4427.01 39,8116 4422.73 22.72 + 13 4427.21 1-2 D 48,1800 4430.03 40.1655 4427.17 27.09 13 4427.21 1-2 D 48,1800 4430.03 40.1655 422.71 27.09 12 4427.21 1 D 435.27 1 D 435.20 40.4406 435.24 35,17 1 U 435.27 1 D 435.27 1 D 435.20 40.4406 435.24 35,17 1 U 435.27 1 D 435.27 1 D 435.20 40.4406 435.24 35,17 1 U 435.27 1 D 435.27 1 D 435.20 40.4406 435.24 35,17 1 U 435.27 1 D 435.27 1 D 435.20 40.4406 435.24 35,17 1 U 435.27 1 D 435.20 1 U 435.27 1 D 435.27 1 U	INTENSITY	CHARACTER	Meau Scale Reading			Wave-Length Reduced to Sun		from	Corrected	
5-6 D 39.7825 4611.83 48.4387 4617.14 17.80 -11 4611.56 4-5 B 39.7178 4621.42 48.6366 4621.31 21.37 -11 4621.26 2 n D 39.6553 4623.02 48.6937 4622.78 22.90 -11 4622.79 5 D 39.4078 4629.42 48.9408 4629.16 29.29 -11 4629.18 5 B 39.3374 4631.25 49.0095 4630.95 31.10 -11 4638.80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Meau Scale Reading mm. 48.5498 48.3316 48.1800 47.9267 47.7822 47.7447 47.4727 47.3391 47.2673 47.2070 47.0381 46.9446 46.6047 46.5158 46.4568 46.2890 46.0997 45.9673 45.7601 45.6485 45.5985 45.4012 45.3018 44.9705 44.7524 44.5174 44.3840 44.2512 44.0040 43.7945	t.m. 4422.70 4427.01 4430.03 4435.09 4437.99 4438.75 4444.25 4446.97 4448.44 4449.67 4448.41 4449.67 4453.13 4455.06 4465.19 4468.71 4471.51 4471.51 4471.91 4482.30 4483.37 4487.62 4489.76 4496.97 4501.75 4506.93 4509.89 4512.85 4518.39 4523.12 4531.35 4535.80 4537.34 4539.11 4554.42 4545.29 4549.47 4553.50 4560.40 4563.30 4565.94 4571.88 4577.90 4580.51 4580.51 4580.51 4580.51 4580.69 4600.99 4606.90 4610.43 4613.08 4617.83 4617.83 4617.83 4617.83 4617.83 4617.83	Mean Scale Reading mm. 39.8116 40.0362 40.1655 40.4406 40.5721 40.6101 40.8899 41.0111 41.0901 41.1482 41.3196 41.4083 41.7445 41.8452 41.8949 42.0685 42.2541 42.3834 42.6037 42.7624 42.9453 43.0516 43.3809 43.6590 43.8266	**Wave-Length Reduced to Sun **Lim.** **Length Reduced to Sun **	Uncorrected t.m. 22.72 27.09 29.89 35.17 37.84 38.70 44.28 46.88 48.42 49.63 53.11 54.99 62.00 63.98 65.10 68.59 72.14 75.42 79.96 82.23 83.39 87.48 89.70 96.88 01.77 06.76 09.89 12.65 18.27 23.01 27.16 31.35 35.50 37.28 39.04 40.36 45.24 49.32 53.56 60.52 63.14 65.89 71.69 75.28 77.60 80.45 81.96 84.51 86.40 91.10 94.35 97.55 90.84 06.78 00.10 13.91 14.98 16.24 17.80 19.67 22.90	Cor. from Curve + 13 + 12 + 10 + 10 + 10 + 10 + 10 + 10 + 10	Corrected t.m. 4422.85 4427.21 4430.01 4435.27 4437.94 4438.80 4444.36 4446.96 4448.49 4449.70 4453.17 4455.05 4462.01 4465.13 4462.01 4464.02 4465.13 4468.62 4472.16 4475.43 4479.96 4482.23 4483.38 4487.47 4489.68 4496.85 4501.72 4506.70 4509.83 4512.58 4518.20 4522.93 4527.07 4531.26 4535.40 4537.18 4538.97 4545.14 4549.21 4553.45 4560.40 4537.18 4538.97 4577.48 4580.33 4581.84 4584.29 4585.77 4577.16 4577.48 4580.33 4581.84 4584.39 4585.28 4590.98 4594.23 4597.43 4600.72 4606.66 4609.98 4613.79 4614.86 4616.13 4617.69 4614.86 4616.13 4617.69 4614.86 4616.13	

19 PISCIUM = 273 SCHJELLERUP. PLATE G 343 - Continued

		RED I	RIGHT	RED I	LEFT	ME	AN WAY	E-LENGTH
INTENSITY	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Wave-Length Reduced to Sun	Uncor- rected	Cor. from Curve	Corrected
1 10 Head 8 1 10 6 2-3 1 2 4 5 1 2 2 3 1 -2 2 1 1 1 3 -4 4 5	D D D W D W D B D B D D D D D D D D D D	mm. 35.5381 35.4988 35.4988 35.4988 35.4245 35.2837 35.2043 35.1009 34.9146 34.8816 34.8534 34.8067 34.5459 34.3475 33.9685 33.7998 32.9754 32.6015 32.4702 32.3447 32.2511	t.m. 4736.38 4737.54 4738.53 4739.74 4743.92 4746.29 4749.38 4754.98 4755.98 4756.83 4756.83 4756.18 4772.26 4784.00 4789.28 4815.52 4827.68 4831.99 4836.13 4839.22	### ### ### ### ### ### ### ### ### ##	t.m. 4656.90	56, 90 36, 38 37, 54 38, 52 39, 75 43, 75 46, 26 49, 38 54, 96 56, 11 56, 82 58, 24 66, 20 72, 22 84, 02 89, 30 15, 56 27, 70 32, 10 36, 15 39, 21 43, 31 43, 31 55, 11 59, 31 81, 69	- 9 0 0 + 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 6 + 6 + 6 + 6 + 6 + 6 + 2	t.m. 4656.81 4736.38 4737.54 4738.53 4739.76 4743.76 4746.28 4749.40 4754.98 4756.14 4756.85 4758.27 4766.24 4772.26 4784.07 4789.36 4815.63 4827.77 4836.21 4839.27 4843.40 4855.17 4859.37 4881.71
2 1	nn D nn D	30.4566	4900.75	57.8980 58.4450	4900.66 4920.25	00.71 20.25	$\left egin{matrix} + & 1 \\ - & 2 \end{array} \right $	4900.72 4920.23

19 PISCIUM = 273 SCHJELLERUP. PLATE G 259
1898, December 29, G.M.T. 11^h6. Hour angle, W 0^h6. Star fair; comparison good.

		RED	Rібнт	R	ED LEFT		ME	AN WAVE-	LENGTH
Intensity	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Red. to Sun	Wave-Length Reduced to Sun	Uncor- rected	Cor, from Curve	Corrected
		mm.	t.m.	mm,		t.m.	t.m.		t.m.
1-2	nn B	42.3913	5170.28	47,3039	-41	70.50	70.39	+15	5170.54
10	wn D			47.3712	-41	73.33	73.33	15	5173.48
1	В	41,9086	5190.72	47.7853	-41	90,90	90.81	+13	5190.94
4	D	41.8593	5192.83	47.8180	-41	92.30	92.57	+12	5192.69
2	nn B	41.7703	5196.65	47.9262	- 41	96.94	96.80	+12	5196.92
1	В	41.6084	5203.64	48.0819	-41	03.66	03.66	-10	5203.76
3-4	n B	41.3675	5214.12	48.3318	-41	14.54	14.33	+7	5214.40
1	n D	41.3137	5216,47	48.3753	-11	16.44	16.46	+ 7	5216.53
3.4	n B	41.2667	5218.53	48,4328	-41	18.96	18.75	+ 7	5218.82
10	w D	41.0846	5226.55	48.5935	-42	26.03	26.29	+ 5	5226.34
1	В	41.0258	5229.16	48.6722	-42	29.52	29.34	- 4	5229.38
2	1)	40.9115	5234.22	48.7755	-42	31.11	34.17	+ 2	5231.19
5	wn B	40.8582	5236,61	48,8388	-42	36,93	36.72	+ 1	5236.73
3-4	В	10,6661	5245,22	49.0252	-42	45.28	45.25	- 2	5245.23
5	1)	10.6226	5247.18	49.0744	-42	47.50	47.34	- 2	5247.32
1.2	n B	40.5786	5249.16	49,1177	-42	49,45	49.31	- 3	5249.28
1.2	D	40.5278	5251.46	49,1635	-42	51.52	51.49	- 3	5251.46
1	nn D	40.4412	5255.38	49,2633	-42	56.05	55.72	- 5	5255.67
6	nn D	40.1159	5270,25	49.5781	-42	70.44	70.35	- 8	5270.27
2	nn B	39,9184	5279.38	49.7770	-42	79.63	79.51	- 8	5279.43
1 2	nn Đ	39.8252	5283.71	49.8722	-42	84.05	83.88	- 9	5283.79
4	n D	39.5207	5297.98	50,1716	-42	98.09	98 04	- 10	5297.94
3	n D	39.4195	5302.76	50.2715	-42	02.81	02.79	-10°	5302,69
4	n B	39.3731	5304 95	50.3224	-42	05,23	05.09	- 9	5305,00
2	n B	39.2044	5313 00	50.4890	-42	13.16	13.08	- 9	5312.99
1	D	39,1691	5314.69	50.5244	-42	14.86	14.78	- 9	5314.69

19 PISCIUM = 273 SCHJELLERUP. PLATE G 259—Continued

		1		1					
Tarmera	Cuana	RED	RIGHT	R	ED LEFT		MI	EAN WAVE	LENGTH
Intensity	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Red. to Sun	Wave-Length Red. to Suu	Uncor- rected	Cor. from Curve	Corrected
4 1 10 5-6 1 2 2 8 6 1 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3	nn B WDB WDB WDB WDB NDD NDD NDD NDD NDD NDD NDD N	mm. 39.0968 39.0021 38.8775 38.6757 38.6294 38.4432 38.3991 38.0117 37.9536 37.9101 37.5143 37.3953 37.3455 37.3077 37.2680 37.2237 37.1286 37.72237 37.1286 37.0772 37.0163 36.9261 36.8838 36.8507 36.5954 36.5472 36.4986 36.4389 36.3832 36.3477 36.2779 36.2277 36.1098 35.9516 35.9516 35.9516 35.9516 35.9517 35.6359 35.6359 35.6359 35.6359 35.4377 36.2177 36.2177 36.2177 36.2177 36.2177 36.2177 36.2177 36.2177 36.2177 36.2177 36.2177 36.2177 36.2277 36.1098 35.9516	t.m. 5318.16 5322.72 5329.05 5338.85 5341.14 5350.30 5352.46 5371.82 5374.75 5376.94 5397.13 5403.27 5405.84 5407.80 5409.86 5412.17 5417.13 5419.83 5422.78 5430.01 5431.77 5445.37 5447.95 5458.71 5462.50 5465.23 5471.67 5480.37 5482.23 5495.65 5197.91 5501.64 5506.63 5509.05 5511.00 5528.50 5562.48 5564.40 5566.40 55581.09 5586.99 5597.15 5609.19 5617.31 5625.03 5634.53 5636.42 5655.03 5634.53 5636.42 5655.59 5670.76	mm. 50.5956 50.6999 50.8212 51.0327 51.0697 51.2497 51.3054 51.6930 51.7509 51.7913 52.1880 52.3111 52.3572 52.3975 52.4355 52.4764 52.6253 52.6768 52.7762 52.8179 53.2661 53.3184 53.2079 53.2661 53.3184 53.3590 53.4243 53.4687 53.5926 53.7142 53.7557 54.0230 54.6625 54.1385 54.2208 54.2629 54.2908 54.2629 54.2908 54.2629 55.1584 55.2197 55.2536 55.4956 55.5970 55.7733 55.9694		6.m. 18.26 23.28 29.14 39.44 41.26 50.11 52.86 72.21 75.13 77.17 97.39 03.74 06.13 08.21 10.19 12.32 17.17 20.10 22.80 28.02 30.23 32.14 48.14 48.14 51.03 54.16 56.99 59.19 62.73 65.14 71.91 80.23 82.52 95.70 97.91 02.16 06.79 09.16 06.79 09.16 06.79 09.16 06.79 09.16 06.79 09.16 06.79 09.16 06.79 09.16 06.79 09.16 06.79 09.16 10.74 28.43 39.96 48.09 62.52 64.36 66.36 80.75 83.81 86.82 97.45 09.38 17.12 14.57 34.29 35.93 55.25 71.10	6.m. 18.21 23.00 29.10 39.16 41.20 50.21 52.66 72.02 74.94 77.06 97.26 03.51 05.99 08.01 10.03 12.25 17.15 19.97 22.92 27.90 30.12 31.96 48.05 50.80 53.95 56.89 58.95 62.62 65.19 71.79 80.30 82.38 95.68 97.91 01.90 06.71 09.11 10.87 28.47 39.88 48.00 62.50 64.38 66.38 80.90 83.95 86.91 97.30 09.29 17.22 24.80 34.42 36.18	Curve - 9 - 87 - 55 - 22 + 4 + 47 - 17 - 19 - 20 - 22 - 23 - 24 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25	t.m. 5318.12 5322.92 5329.03 5339.11 5341.15 5350.19 5352.64 5372.06 5374.98 5377.10 5397.43 5403.70 5406.19 5408.23 5410.25 5412.47 5417.38 5420.21 5428.15 5428.15 5430.37 5432.21 5445.51 5448.30 5451.05 5454.19 5462.84 5465.41 5471.99 5482.52 5495.77 5497.98 5501.96 5506.76 5509.15 5510.90 5528.45 5539.86 5547.95 5562.42 5564.30 5566.29 5580.80 5581.91 5624.60 5634.21 5635.96 5635.18 5670.67
2 1 5	B B D	32.7059 32.5241 32.4993	5673.68 5685.43 5687.04	56,9978 57,1765 57,2066	$ \begin{array}{c c} -46 \\ -46 \\ -46 \\ \end{array} $	73.83 85.35 87.30	73.76 85.39 87.17	$ \begin{array}{c c} -27 \\ -29 \\ -29 \\ \end{array} $	5673.49 5685.10 5686.88
5 2 6	n B B	$\begin{array}{c} 32.2264 \\ 32.1462 \\ 32.0245 \end{array}$	5704.89 5710.18 5718.25	57.4762 57.5524	$ \begin{array}{c c} -46 \\ -46 \\ \vdots \\ 17 \end{array} $	04.92 09.94 24.33	04.91 10.06 18.25	$ \begin{array}{c c} -30 \\ -32 \\ -33 \\ \end{array} $	5704.61 5709.74 5717.92
8	n B			57.7693	- 47	24.33	24.33	- 33	5724.00

 $19\ PISCIUM = 273\ SCHJELLERUP,\ \ PLATE\ G\ 269$ $1899,\ January\ 6,\ G.M.T.12^h3.\quad Hour\ angle,\ W\ 1^h9.\quad Star\ excellent\ ;\ comparison\ fair.$

		RED	Right	R	ED LEFT		M	EAN WAVI	E-LENGTH
Intensity	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Red. to Sun	Wave-Length Red. to Sun	Uncor- rected	Cor. by Curve	Corrected
INTENSITY 1 [cad] 3 77 2 4 3 6 1 2 5 7 3 4 1 2 7 3 5 4 1 2 7 3 5 4 1 2 7 3 3 2 1 2 7 3 5 6 1 5 4 3 3 2 1 2 7 3 5 7 6 7 3 5 7 6 7 5 7 6 1 5 4 3 1 2 7 3 5 7 6 7 7 2 7 8 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 7 2 7 8 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 8 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 8 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 8 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 8 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 8 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 8 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 8 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 7 9 9 9 2 1 3 3 3 2 1 2 7 3 5 7 6 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	CHARACTER B D D D D D D D D D D D D D D D D D D			Mean Scale Reading mm. 40.2512 40.3168 40.3754 40.6286 40.7239 40.8267 41.4563 41.5093 41.5093 41.593 42.0263 42.1574 42.2067 42.2991 42.4038 42.7438 44.5755 44.5875 44.5875 44.5875 44.5875 44.5875 45.6693 45.5351 45.6695 45.7264 45.8061 45.8455 45.6695 45.7264 45.8061 45.8455 45.0028 46.0028				by	t.m 5168.48 5171.31 5173.73 5183.46 5187.36 5191.49 5193.34 5214.85 5216.86 5218.94 5226.93 5229.95 5234.69 5237.42 5240.47 5245.80 5247.89 5251.84 5256.28 5270.60 5280.13 5283.87 5298.41 5302.52 5313.33 5315.51 5318.00 5320.62 5329.22 5339.59 5341.50 5352.92 5368.89 5371.64 5375.40 5381.18 5391.77 5393.52 5397.67 5404.33 5406.81 5410.99 5412.82 5417.49 5420.53 5425.76 5428.00 5430.67 5432.61
1 4-5 6 3 2-3 1-2 1 3 1 2	D n B D B B D B W D B W D D D D	39,4041 39,1864 39,1278 39,0625 39,0108 38,9571 38,9104 	5431.34 5445.19 5448.12 5451.40 5456.72 5459.08 5163.40 5468.20 5472.51 5474.43 5477.78	46.2889 46.5008 46.5619 46.6228 46.6817 46.7369 46.7855 46.8177 46.8675 46.9599 47.0445 47.0871 47.1199	- 52 - 52 - 52 - 52 - 52 - 52 - 52 - 52	34.66 45.22 48.28 51.34 57.10 59.55 61.19 63.72 68.42 72.71 74.92 78.15	34.50 45.21 48.20 51.37 54.16 56.91 59.32 64.19 63.56 68.31 72.63 71.68 77.97	+ 19 + 19 + 18 + 18 + 17 + 17 + 17 + 16 + 16 + 15 - 14 + 13	5431.69 5445.40 5448.38 5451.55 5454.34 5457.06 5459.49 5461.36 5463.72 5468.47 5472.78 5474.82 5478.10

19 PISCHUM=273 SCHJELLERUP. PLATE G 269—Continued

The first reading Scale Re	гн		
Mean Scale Reading Mean Scale Reading Mean Scale Reading Red. to Sun Red. to Sun Red. to Sun Corrected C			
4 B 38,4941 5480.35 47,1969 -52 80.57 80,46 +13 5480 2 D 38,4410 5483.09 47,2447 -52 83.03 83.06 +13 5483 1-2 B 47,5016 -52 96,37 96,37 +10 5496 4-5 D 38,1482 5498,31 47,5434 -52 98,56 98,44 +10 5498	rrected		
0-1 D	t.m		
1 n D 52,3455 -55 78,18 78,18 -42 5777	11.10		

19 PISCIUM=273 SCHJELLERUP. PLATE G 269 Continued

		RED RIGHT		1	Red Left			Mean Wave-Length		
INTENSITY	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Red. to Sun	Wave-Length Ked, to Sun	Uncor- rected	Cor. from Curve	Corrected	
$\begin{array}{c}1&2\\3\\1&2\\1\end{array}$	B n D D n D	min. 33.3122 33.2371 33.0335	t.m. 5780,79 5785,70 5799,10	mm, 52,3798 52,4564 53,0274	-55 -55 -55 -55	6.m. 80.40 85.39	t.m. 80.60 85.55 99.10 23.13	$ \begin{array}{r} -42 \\ -42 \\ -14 \\ -44 \end{array} $	t.m. 5780.18 5785.13 5798.66 5822.69	

19 PISCIUM=273 SCHJELLERUP. PLATE G 293

1899, January 27, G. M. T. 1300. Hour angle, W 309. Star good; comparison good.

		mm.	t. m.	mm,		t,m.	t.m.		t.m.
1 = 2	wn D	44.3276	5173.18	43.8093	-40	73.51	73.35	+13	5173,48
2	n D	44.0579	5183.83	44.0609	-40	83.46	83.65	+12	5183.77
ī	n D		5188.78		-40		88.78	11	5188.89
		43.9335	5100.70	14 0450		00.00		$+11 \\ -11$	
1 2	B	43.8898	5190.52	44.2470	-40	90.88	90.70	+11	5190.81
2 2 2 1	n D	13.8346	5192.73	44.2902	-40	92.61	92.67	+10	5192.77
2	n B	43.7226	5197.22	44.3986	40	96,96	97,09	+10	5197.19
•2	n B	43.3026	5214.24	44.8348	-40	11.66	14.45	+ 9	5214.54
1	n D	43.2445	5216.61	44.8875	-40	16.81	16.71	+7	5216.78
1	В	43.2021	5218,35	44.9238	-40	18.30	18.33	<u>+</u> 7	5218.40
1	n D	43,0283	5225.50		-40		25.50	+9 +7 +7 +5	5225,55
1 2	Ď	42.8259	5233,88	45,3063	-40	34.11	34.00	1 ± 4	5234.04
	Ď	12,6896	5239,56	45.4421	-40	39.78	39.67	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5239.70
1		12,0000				45.52	44.99	$\begin{array}{c c} & \top & 1 \\ & + & 1 \end{array}$	5245.00
1 2	B	42.5729	5244.45	45.5789	-40	40.02			
4	D	42.5058	5247.28	45.6200	-40	47.25	47.27	0	5247.27
1	В	42.4700	5248.78	45,6770	-40	49.66	49.22	0	5249.22
3	D	42.4172	5251.01	45.7135	-40	51.20	51.11	0	5251.11
1	D	42.3108	5255.51	45.8297	-40	56.12	55.82	- 1	5255.81
7	n D	41.9689	5270.10	46.1627	-41	70.35	70.23	- 3	5270.20
2.3		41.7429	5279.85	46.3930	-41	80.30	80.08	- 5	5280.03
1 2	Ď	41.6892	5282.19	46,4431	-41	82.48	82.34	-5	5282.29
3	Ď	41.3253	5298.11	46.8156	-41	98,80	98.46	-5	5298.41
1	n D	41.2195	5302.78	46.9097	-11	02.96	02,87	- 5	5302.82
								$-\frac{0}{5}$	5305.80
1-2	В	41.1673	5306.09	46,9693	-11	05.60	05.85		
$\frac{2}{3}$	n B	40.9915	5312.92	47.1470	-41	$\frac{13.52}{15.00}$	13.22	- 5	5313.17
	n D	40,9380	5315.31	47.1917	-41	15.66	15.49	- 5	5315.44
4	n B	40.8838	5317.74	47,2398	-41	17.68	17.71	- 5	5317.66
2	n D	40.8139	5320,88	47,3166	-41	21.13	21.00	- 5	5320.95
1	n D			47.4102	-41	25.35	25.35	- 4	5325.31
2.3	Ð	40,6414	5328.66	47.4889	-41	28.91	28.79	-3	5328.76
1 2	В	40,4101	5339,18	47.7265	-41	39,73	39.46	- 1	5339.45
.1	$\bar{\mathrm{D}}$	40.3725	5340.90	47.7637	-41	41.43	41.17	0	5341.17
3	Ď	40.1804	5349,73	47.9589	-41	50.41	50.07	+1	5350.08
٠)	wn B			48,0083	-41	52.69	52.69	+11	5352.70
2 2 9	» n B	39.7770	5368,49	48,3496	-41	68.59	68,54	+5	5368.59
ā	w D	39.7130	5371,49	48.4172	-41	71.77	71.63	+6	5371.69
								7 6	
5=6	wn B	39.6435	5376,76	48.4854	-41	74.98	75.87	7 0	5375.93
$\frac{2}{4}$	wn D	39.5873	5377.40	48.5423	-42	77.65	77.53	T. 1	5377.60
	wn B	39.5398	5379.65	48,5990	-42	80.35	80.00	+ 8	5380.08
1	D	39.3157	5390.31	48.8188	-42	90,80	90,56	+ 7 + 8 + 9 + 10	5390.65
1	D	39.1702	5397.28	48.9671	-42	97.91	97.60	+10	5397.70
1-2	D	38.9884	5106.06	49.1493	-42	06.71	06.39	+10	5406.49
2 3	D	38,8985	5410.42	49.2266	-42	10.46	10.44	+11	5410.55
1-2	В	38.8655	5412.02	19.2717	-42	12.65	12.39	+11	5412.50
1	1)	38,8309	5413.70	49.3012	-42	14.09	13,90	+11	5114.01
7	B	38,7718	5416.59	49,3638	-42	17.11	16.87	+11	5416.98
2	n D	38.7113	5119,55	49,4215	-42 - 42	19.97	19.76	+11	5119.87
$\frac{3}{4}$	n B	38.6454	5422.78	49,4905	$-42 \\ -42$	23.34	23.06	-112	5423.18
							94.07	± 12	
1	D	90. 5504	F 107 ()	49.5234	-42	24.97	24.97		5425.09
2-3	B	38.5594	5427.01	49.5875	-42	28.13	27.57	+12	5427.69
3	D	38,4954	5430,17	49,6291	-42	30.18	30.18	+12	5430,30
1	B	38,4608	5431.89	49.6715	-42	32.28	32,09	+12	5432,21
	D	38,4253	5433.64	19.7051	-12	33 96	33.80	+12	5133.92
1	n D	38,3272	5438,52	49.8043	-12	38.87	38,70	+12	5138.82
1	n B	38,2020	5444.77	49,9298	-12	45.14	44.96	-11	5145.07
10	Ď	38,1415	5417.79	49.9861	-12	47,96	47.88	+11	5417.99
								,	

19 PISCIUM = 273 SCHJELLERUP. PLATE G 293 - Continued

				1		1 G 290 — Con		117	T
INTENSITY	Character	RED .	RIGHT		ED LEFT	1	31 E	AN WAVE-	LENGTH
	CHARACIER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Red. to Sun	Wave-Length Red. to Sun	Uncorrected	Cor. from Curve	Corrected
2 2-3 3 4 4 2 2 1 2 1 3 1-2 1 3 1-2 1 1 2 1-2 1 1 2 1-2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1	B B D B D B D B D B D B D B D B D B D B	mm. 38.0855 38.0313 37.9668 37.9252 37.8887 37.6671 37.6671 37.6681 37.4621 37.2032 37.1634 37.0861 36.9948 36.9370 36.8839 36.6695 36.5224 36.4876 36.3832 36.3061 36.2272 36.1444 36.1144 36.0141 36.0396 35.9639 35.9218 35.8528 35.7926 35.7671 35.7058 35.6281 35.5743 35.5167 35.4241 35.3945 35.3327 35.327 35.327 35.3327 35.3327 35.3937 35.1307 35.0075 34.9350 34.6529	t.m. 5450.60 5453.34 5456.59 5458.69 5460.54 5462.64 5471.83 5474.34 5482.37 5495.80 5497.88 5501.93 5506.72 5509.77 5512.58 5523.98 5531.86 5533.73 5543.54 5547.83 55570.08 5570.08 5571.72 5573.14 5576.55 5580.89 5583.90 5587.13 5589.30 5587.13 5589.30 5587.13 5589.30 5587.13 5589.30 5597.51 5599.72 5609.00 5616.06 5620.23 56528.09 5634.68 5636.00 5637.91 5641.41 5643.89 5650.13 5652.40 5655.13	mm. 50.0365 50.1014 50.1614 50.2067 50.2453 50.2819 50.3803 50.4713 50.5081 50.6697 50.9215 50.9682 51.0444 51.1359 51.1910 51.2400 51.4623 51.7470 51.8141 51.9171 51.9874 52.0148 52.0148 52.0584 52.0899 52.1680 52.2075 52.2483 52.3015 52.3337 52.3654 52.4934 52.5574 52.6989 52.1680 52.2756 52.2483 52.3015 52.38369 53.3100 53.1101 53.1898 53.2680 53.3233 53.3754 53.4411 53.4736 53.4898 53.5597 53.6574 53.7950	to Sun - 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	## Company		Curve + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1	t.m. 5450. 65 5453. 65 5453. 65 5456. 79 5460. 89 5462. 77 5467. 99 5472. 27 5474. 47 5480. 99 5482. 63 5495. 85 5498. 13 5502. 12 5506. 92 5509. 89 5512. 57 5524. 16 5531. 83 5533. 70 5539. 46 5543. 35 5548. 28 5556. 25 5566. 70 5569. 91 5571. 61 5573. 20 5566. 70 5569. 91 5571. 61 5573. 20 5576. 45 5580. 62 5583. 91 5576. 45 5580. 60 569. 91 5571. 61 5573. 20 5566. 70 569. 91 5571. 61 5573. 20 5566. 70 569. 91 5571. 61 5573. 20 5566. 70 569. 91 5571. 61 5573. 20 5576. 45 5580. 60 569. 91 5571. 61 5573. 20 5566. 70 5684. 74 5697. 71 5630. 70 5634. 46 5636. 36 5637. 48 5641. 26 5647. 11 5649. 76 5636. 36 5637. 48 5641. 26 5647. 11 5649. 76 5636. 36 5637. 48 5641. 26 5647. 11 5649. 76 5658. 73
3 2-3 1 1 1	B B D n B n D B	34.6305 34.5708 34.5285 34.4224 34.3840	5637.91 5641.41 5643.89 5650.13 5652.40	53,4898 53,5593 53,5987 53,6574 53,7002 53,7427	$ \begin{array}{r} -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \end{array} $	37.53 41.60 43.91 47.36 49.88 52.38	37.72 41.51 43.90 47.36 50.01 52.39 55.28	$ \begin{array}{r} -24 \\ -25 \\ -25 \\ -25 \\ -25 \\ -26 \end{array} $	5637. 5641. 5643. 5647. 5649. 5652. 5655.

19 PISCIUM = 273 SCHJELLERUP. PLATE G 293 - Continued

		Red 1	Rіснт	I	RED LEFT			MEAN WAVE-LENGTH		
Intensity	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Red. to Sun	Wave-Length Red. to Sun	Uncor- rected	Cor. from Curve	Corrected	
		mm.	t.m.	mm.	_	t.m.	t.m.		t.m.	
1	D	33.3742	5713.51	54.7594	- 44	13,83	-13.67	-32	5713.35	
5	w B	33.3120	5717.37	54.8116	- 44	17.07	17.22	-32	5716.90	
1	n D	33.2490	5721.27	54.8796	- 44	21.29	21.28	- 33	5720.95	
2	В	33.1980	5724.47	54.9301	-41	24.44	24.46	-33	5724.13	
3	n D	33.0843	5731.58	55.0491	-45	31.87	31.73	-33	5731.40	
1	n D	32.8723	5711.96	55.2605	-45	45.19	45.08	-33	5744.75	
1	n B	32.8321	5747.51	55.2967	-45	47.48	47.50	- 35	5747.15	
1	n D	32.7885	5750.28	55.3135	-45	50.45	50.37	- 35	$5750 \ 02$	
2-3	wn B	32.6799	5757.22	55.4555	-45	57.59	57.41	- 35	5757.06	
1	n D	32.5897	5763.00	55.5380	- 45	62.87	62.94.	- 35	5762.59	
1-2	wn B	32.5096	5768.16	55.6138	- 45	67.75	67.96	- 36	5767.60	
1	n D	32.4652	5771.03	55.6664	-45	71.14	71.09	- 36	5770.73	
1	n B	32.3870	5776.09	55.7438	- 45	76.79	76 44	- 36	5776.08	
1	n D	32.3565	5778.07	55.7760	-45	78.23	78.15	- 36	5777.79	
1	n B	32.3219	5780.33	55.8012	-45	79.87	80.10	-37	5779.73	
1	n D	32.0366	5799.02	56.0927	- 45	98.93	98.98	- 37	5798.61	

19 PISCIUM = 273 SCHJELLERUP. PLATE G 357
1899, December 19, G.M.T. 1298. Hour angle, W. 192. Star excellent; comparison excellent.

		RED	Rюнт	RED	LEFT	MI	AN WAV	E-LENGTH
Intensity	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Wave-Length Reduced to Suu	Uucor- rected	Cor. from Curve	Corrected
-		mm.	t.m.	mm.	t.m.	t.m.		t.m.
1	n D	36.5909	5168.82	47.9644	5168.97	68.90	-33	5168.57
2-3	n D	36.4711	5173.68	48.0796	5173.92	73.80	-32	5173.48
1	B	36 1314	5187.46			87.46	-27	5187.19
1-2	n D	36.0903	5189.28	48.4589	5189 16	89.22	-27	5188,95
4	n D	35.9849	5193,64	48.5632	5193,47	93 56	-25	5193.31
î	n B	35.8963	5197.32	48.6570	5197.36	97.34	-24	5197.10
10	n Đ	35,6360	5208.18	48,9230	5208.40	08.29	-20	5208.09
6	wn D	35.2121	5226.14	49.3305	5225.73	25,94	-14	5225.80
3	n D	35,0231	5234 . 24	49.5258	5231.08	34.16	-12	5234.04
2.3	wn B	31,9654	5236.73	49.5935	5236-99	36,86	-11	5236.75
1-2	nn D	31.8983	5239.62	49.6537	5239.67	39,65	-10	5239.55
5	1)	34.7153	5247.56	49,8388	5247.61	47.59	- 6	5217.53
5-6	1)	34.6308	5251.25	49,9220	5251.24	51.25	- 5	5251.20
4	D	31.1920	5270.58	50,3631	5270.67	70 63	- 1	5270.62
1	n B	33,9922	5279,50	50.5654	5279.69	79.60	()	5279.60
2	wn D	33.9076	5283,29	50.6377	5282.93	83.11	+ 1	5283.12
5	n D	33.5840	5 2 97.91	50.9641	5297,69	97.82	+ 4	5297.86
2	n D	33.4820	5302,59	51.0712	5302.58	02.59	+5	5302.64
1 2	n B	33,4323	5304.87	51.1280	5305.18	05.03	+ 5	5305.08
2	n B	33, 2535	5313.14	51.3014	5313.15	13.15	+ 6	5313.21
3	n D	33.2049	5315.34	51.3428	5315 07	15.21	+ 6	5315.27 5317.72
3	n B	33.1548	5317.66	51.3978	5317.61 5321.03	$\begin{array}{ c c c c }\hline 17.64 \\ 21.09 \end{array}$	+ 8	5321.18
2	n D	33,0797	5321.14	51 4715 51 5611	5321.03	25.08		5321.18 5325.18
1	n D	32,9979	5324 . 95		5328,98	28.82	+10 $+11$	5328.93
$\frac{2}{1}$	n D	32.9185	5328.66	51.6419 51.8041	5336.66	36.78	+12	5336.90
$\frac{1-2}{2-3}$	n B	32.7434 32.6976	5336.89 5339.05	51.8536	5338,93	38.99	$\frac{112}{12}$	5339.11
2	n B	32.6539	5341.12	51.8987	5341.06	41.09	T13	5311.22
<u>-</u>	n D	32.4716	5319.77	52.0750	5349.43	49.60	13	5319.73
1	n B	32,4235	5352.07	52.1396	5352.51	52.29	-11	5352.43
1-2	n D	32,2081	5362.39	52.3518	5362.69	62.54	+15	5362,69
1	D D	32 1267	5366,33	52.4321	5366.57	66.45	+16	5366.61
8	D	32.0281	5371.11	52.5245	5371 05	71.08	+17	5371.25
5	B	31.9519	5371 67	52,6028	5374.85	71.76	+17	5374.93
2	D	31.9047	5377.12	52.6501	5377.17	77.15	+17	5377,32
$\tilde{3}$	n B	31.8543	5379.58	52.7000	5379.60	79.59	+18	5379.77
1	nn D	31.6310	5390.55	52,9236	5390.58	90.57	-19	5390.76
î	nn D	31.4985	5397.11	53 0572	5397,20	97.16	+19	5397.35
í	Ď	31.3236	5105.83	53.2310	5405.86	05.85	-20	5406.05
							· I	

19 PISCIUM=273 SCHJELLERUP. PLATE G 357—Continued

		10 1 150101	I=213 SCHJE1	HEROI. THA	TE G 357 — Cor	шишеа		
		RED I	Right	RED	LEFT	Mı	EAN WAVI	E-LENGTH
INTENSITY	CHARACTER	Meau Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Wave-Length Reduced to Sun	Uncor- rected	Cor. from Curve	Corrected
$ \begin{array}{c} 4 \\ 1 \\ 6 - 7 \\ 2 - 3 \\ 2 - 3 \\ 2 - 3 \\ 2 - 5 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2$	DD BB BB BB BB BB BB BB BB BB BB BB BB B	mm. 31.2489 31.1592 31.1020 31.0479 30.9895 30.9545 30.9545 30.3475 30.7724 30.6796	t.m. 5409.57 5414.07 5416.96 5419.70 5422.65 5424.43 5429.88 5433.72 5438.48 5447.87 5450.68 5453.30 5456.55 5458.51 5460.40 5462.80 5464.59 5466.69 5471.87 5474.04 5477.75 5482.20 5497.38 5501.82 5507.05 5512.22 5523.82 5527.58 5531.24 5533.17 5533.17 5533.17 5533.17 5533.83 5557.00 5563.85 5566.11 5569.93 5571.07 5583.81 5588.20 5591.77 5583.81 5588.20 5591.77 5593.24 5597.03 5598.71 5609.26 5614.91 5619.91 5624.36 5634.05 5636.23 5637.16 5640.84 5644.75	mm. 53.3114 53.3920 53.4507 53.5050 53.5654 53.6026 53.7055 53.7791 53.8684 53.9894 54.0422 54.1060 54.1616 54.2207 54.2603 54.2961 54.3419 54.3765 54.4163 54.5152 54.5564 54.6266 54.7100 54.9963 55.0732 55.1692 55.6192 55.6198 55.7660 55.9165 55.9824 56.0157 56.0508 56.1618 56.1950 56.2297 56.2996 56.3232 56.3553 56.4049 56.5377 56.5891 56.6212 56.6850 56.7174 56.7644 56.8030 56.9777 57.0721 57.1574 57.2314 57.3846 57.4310 57.4475 57.5064 57.5663	t.m. 5409.88 5413.93 5416.90 5419.64 5422.70 5124.59 5428.31 5433.59 5433.59 5433.57 5444.41 5447.14 5452.52 5456.41 5458.48 5460.35 5462.76 5464.57 5466.66 5471.88 5474.06 5477.78 5482.22 5497.58 5501.74 5506.95 5511.99 5523.69 5527.79 5531.67 5533.21 5533.88 55552.00 55533.88 55552.00 55533.88 55552.00 55533.87 5566.02 5570.01 5571.37 5573.21 5576.06 5588.56 5562.16 5564.05 5566.02 5570.01 5571.37 5573.21 5576.06 5583.72 5588.56 5592.27 5594.16 5569.90 5559.10 5609.43 5615.02 5620.08 5633.65 5636.40 5638.67 5633.65 5633.65	t.m. 09.73 14.00 16.93 19.67 22.68 24.51 29.86 24.51 29.86 38.33 44.41 47.51 50.56 52.91 56.48 58.50 60.38 62.78 64.58 64.77 71.88 74.05 77.77 782.21 97.48 01.78 02.78 03.86 03.97 09.97 09.97 09.97 09.97 09.97 09.98 09.35	Curve +21 +21 +21 +22 +22 +22 +22 +22 +22 +23 +23 +23 +23	t.m. 5409.94 5414.21 5417.14 5419.89 5422.90 5424.73 5430.08 5433.88 5438.55 5444.63 5417.73 5450.79 5453.14 5456.71 5458.73 5460.61 5463.01 5464.81 5466.90 5472.11 5474.28 5478.00 5482.44 5497.71 5502.01 5507.23 5512.34 5523.99 5527.92 5531.68 5533.41 5539.67 5548.20 5552.19 5554.06 5555.96 5562.28 5564.15 5566.27 5570.17 5571.41 5573.17 5576.07 5583.95 5586.75 5586.75 5588.56 5592.18 5599.05 5586.75 5588.56 5592.18 5599.05 5699.48 5615.09 5620.10 5624.52 5636.39 5641.01 5644.75
1 1 1 2 3 2 3 2–3 1–2	n B D B B n D D B	26, 9614 26, 9033 26, 8662 26, 8165 26, 7738 26, 5594 26, 5217 26, 4767 26, 4304	5646.20 5649.74 5652.00 5655.03 5657.64 5670.84 5673.18 5675.97 5678.84	57.5003 57.5912 57.6893 57.7485 57.7881 57.9960 58.0379 58.0800 58.1298	5646.17 5652.14 5655.51 5658.18 5670.99 5673.59 5676.20 5679.30	46.19 49.74 52.07 55.27 57.91 70.92 73.39 76.09 79.07	+ 4 + 3 + 3 + 2 + 1 - 4 - 5	5646. 23 5649.77 5652.10 5655. 29 5657. 93 5670. 93 5673. 35 5676. 05 5679. 02

19 PISCIUM=273 SCHJELLERUP. PLATE G 357—Continued

NTENSITY		RED	RIGHT	RED	Left	M	EAN WAVE	-LENGTH
NTENSITY	CHARACTER	Mean Scale Reading	Wave-Length Reduced to Sun	Mean Scale Reading	Wave-Length Reduced to Sun	Uncor- rected	Cor. from Curve	Corrected
		mm.	t.m.	mm.	t.m.	t.m.		t.m.
1	В	26,3504	5683.47	58.2076	5681.15	83.81	- 6	5683.75
4-5	n B	26,1981	5693.39	58.3626	5693.88	93.64	- 7	5693.57
2	n D	26.1487	5696.50	58.4069	5696,68	96.59	10	5696.49
3	В	26.0122	5705.14	58,5441	5705.37	05.26	-13	5705.13
2-3	D	25,9681	5707.94	58.5862	5708.05	08.00	-16	5707.84
1-2	В	25.931 2	5710.29	58.6267	5710.63	10.46	-16 +	5710.30
1-2	D	25,8981	5712.40	58.6644	5713.08	12.74	-17	5712.57
3	В	25.8323	5716.61	58.7269	5717.09	17.45	-18	5717.27
2	D	25.7591	57 2 1.31	58.7931	5721.29	21.30	-18	5721.12
2	В	25.7211	5723.75	58,8383	5724.20	23.98 -	-18	5723.80
1-2	n D			58.9537	5731.05	31,65	-21	5731.44
3	n D	25.4132	5743.73	59.1507	5744.48	41.11	-26	5743.85
2-3	n D	25.1178	5763 17	59,4328	5763.07	63.12	-33	5762.79
4	n D	24.9911	5771.59	59.5667	5771.98	71.79	-35	5771.44
1	В	24.9298	5775.69	59.6340	5776.48	76,09	-35	5775.74
1	D	24.8977	5777.84	59.6633	5778.45	78.15	-37	5777.78
1	В	24.8696	5779.72	59.6891	5780.18	79.95	-40	5779.55
1-2	D	24.5942	5798.32	59,9630	5798.70	98.56	-50	5778.06
1	D	24.2375	5822.81	60.3219	5823.36	23.09	-40	5822.69

19 PISCIUM = 273 SCHJELLERUPMeans of Two Plates

PLATE G 2	64		PLATE G	343	MEAN WAVE-LENGTH					
Character	Wave-Length	Intensity	Character	Wave-Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity			
D WD nD nD wnD nD B WD nnD B nD nnD nnD B nD nnD nnD nnD wnD nnD nnD nnD nnD nnD	t.m. 4375.87 4384.11 4390.36 4395.05 4401.16 4402.50 4405.02 4408.66 4415.28 4423.22 4426.84 4427.70 4430.28 4435.71 4438.25 4447.26 4448.80 4450.15 4455.41 4463.99 4165.39 4169.12	 	w D D D D Wn D Wn D wn D n D n D n D n D n D n D n D n D n B n D n D n B n D n D n B n D n D n B n D n D n D n D n D n D n D n D n D n D	t.m. 4394.55 4397.56 4400.51 4401.88 4408.30 4412.20 4414.99 4420.51 4422.85 4427.21 4430.01 4435.27 4437.94 4438.80 4444.36 4446.96 4448.49 4449.70 4453.17 4455.05 4462.04 4464.02 4165.13 4468.62 4472.16	t.m. 75.81 84.05 90.30 94.80 97.62 00.84 02.41 04.95 08.48 12.26 15.14 20.57 23.01 26.78 27.46 30.15 35.19 38.10 38.86 44.42 47.11 48.65 49.93 53.23 55.23 62.14 64.04 65.26 68.92 72.22	+3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +	t.m. 4375.84 4384.08 4390.33 4394.83 4394.83 4397.65 4400.87 4402.47 4404.98 4408.51 4412.29 4415.17 4420.60 4423.07 4426.81 4427.49 4430.18 4435.52 4438.13 4438.89 4444.45 4147.11 4448.68 4449.96 4453.26 4462.17 4464.04 4465.29 4468.02 4468.25 4472.25 4475.52			
	Character D W D n D N D N D B W D D nn D B N D D N D N D N D N D N D N D N D N D N	Character Wave-Length D	Character Wave-Length Intensity D 4375.87 w D 4384.11 n D 4390.36 wn D 4395.05 8 1 n D 4401.16 3 B 4402.50 w D 4408.66 4 1 nn D 4415.28 2 1 2-3 mn D 4423.22 1-2 B 4426.84 n D 4430.28 1-2 wn D 4435.71 3 n D 4438.25 1 2 2-3 n D 4448.80 2 n D 4445.26 1 n B 4448.80 2 n D 4450.15 5 1 <td< td=""><td>Character Wave-Length Intensity Character D 4375.87 w D 4384.11 n D 4395.05 8 w D wn D 4395.05 8 w D n D 4401.16 3 D m D 4402.50 w D 4405.02 4 D D 4408.66 4 D 1 D nn D 4415.28 2 wn D nn D 4423.22 1-2 D n D 4427.70 1-2 D n D 4430.28 1-2 n D wn D 4438.25 1 n D 2-3 n D 2-3 n D n D 4438.25 1 n D </td><td>Character Wave-Length Intensity Character Wave-Length D 4375.87 w D 4384.11 n D 4395.05 8 w D 4394.55 1 D 4397.56 n D 4401.16 3 D 4400.51 B 4402.50 w D 4405.02 4 D 4408.30 D 4408.66 4 D 4408.30 1 D 4412.20 nn D 4415.28 2 wn D 4412.90 1 D 4422.51 2-3 wn D 4422.51 </td><td>Character Wave-Length Intensity Character Wave-Length Uncorrected for Velocity D 4375.87 75.81 w D 4334.11 </td><td>Character Wave-Length Intensity Character Wave-Length Uncorrected for Velocity Cor. for V D 4375.87 75.81 +3 wD 4384.11 99.30 +3 nD 4390.36 99.30 +3 wD 4395.05 8 wD 4394.55 94.80 +3 n. 1 D 4397.56 97.62 +3 n. B 4402.50 <!--</td--></td></td<>	Character Wave-Length Intensity Character D 4375.87 w D 4384.11 n D 4395.05 8 w D wn D 4395.05 8 w D n D 4401.16 3 D m D 4402.50 w D 4405.02 4 D D 4408.66 4 D 1 D nn D 4415.28 2 wn D nn D 4423.22 1-2 D n D 4427.70 1-2 D n D 4430.28 1-2 n D wn D 4438.25 1 n D 2-3 n D 2-3 n D n D 4438.25 1 n D	Character Wave-Length Intensity Character Wave-Length D 4375.87 w D 4384.11 n D 4395.05 8 w D 4394.55 1 D 4397.56 n D 4401.16 3 D 4400.51 B 4402.50 w D 4405.02 4 D 4408.30 D 4408.66 4 D 4408.30 1 D 4412.20 nn D 4415.28 2 wn D 4412.90 1 D 4422.51 2-3 wn D 4422.51	Character Wave-Length Intensity Character Wave-Length Uncorrected for Velocity D 4375.87 75.81 w D 4334.11	Character Wave-Length Intensity Character Wave-Length Uncorrected for Velocity Cor. for V D 4375.87 75.81 +3 wD 4384.11 99.30 +3 nD 4390.36 99.30 +3 wD 4395.05 8 wD 4394.55 94.80 +3 n. 1 D 4397.56 97.62 +3 n. B 4402.50 </td			

 $19\ PISCIUM = 273\ SCHJELLERUP - Continued$

	PLATE G 2	64		PLATE G	343	MEA	N WAVE-LES	котн
Intensity	Character	Wave-Length	Intensity	Character	Wave-Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
1-2 2 3 2-3 6 2-3 6 1 3-4 5 6 2-3 3-4 3 3 1 2 3-3 1 2-3 2 1 10 2-3 1 2-3 2 3 1 2-3 2 3 1 2-3 2 3 1 2-3 2 3 1 2-3 2 3 1 2-3 2 3 1 2-3 2 3 1 2-3 2 3 1 2-3 2 3 1 2-3 2 3 1 2-3 2 3 3 1 2-3 2 3 3 1 2-3 2 3 3 1 2-3 2 3 3 3 1 2-3 2 3 3 3 1 2-3 2 3 3 3 1 2-3 2 3 3 3 1 2-3 2 3 3 3 1 2-3 2 3 3 3 3 1 2-3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	n D B B B D B B D D D n D Wn D D N D Wn D B B D Wn D Wn D N B D D N D Wn D N B D D N D N D N D N D N D N D N D N D N D	t.m. 4479.97 4482.09 4483.80 4486.06 4487.60 4488.64 4489.75 4497.13 4501.77 4506.78 4509.64 4512.87 4517.08 4518.28 4520.57 4521.69 4523.00 4527.44 4531.38 4535.87 4537.40 4539.00 4544.13 4547.82 4549.23 4554.81 4560.31 4561.94 4563.62 4571.69 4583.70 4584.68 4585.44 4585.44 4586.37 4590.99 4612.35 4617.84 4619.73 4622.76 4629.28 4631.25 4631.61 4615.01 4616.39 4617.84 4619.73 4622.76 4629.28 4631.25 4631.49 4638.63 4640.47 4641.76 4645.86 4652.83	1-2 3 2 1-2 2-3 3 5 6-7 1 3 3 5 6-7 1 3 3 1-2 9 3 3-4 1 1 2 1 2 1 2 8 1 1-2 3 3 6 5-6 5 4 2 5 5 5 3 6 4 3 6 6 4	n D n D n D n D n D n D n D n D wn D wn	t.m. 4479.96 4482.23 4483.38	t.m. 79.97 82.16 83.59 86.00 87.54 88.58 89.72 96.99 01.75 06.74 09.74 12.73 17.02 18.24 20.51 21.63 22.97 27.26 31.32 35.64 37.29 38.97 40.39 42.72 44.07 47.76 49.22 53.51 51.92 54.75 60.36 61.88 63.32 65.70 71.63 75.22 77.54 78.1 80.39 81.90 83.64 84.54 85.38 86.34 90.99 94.31 95.77 97.49 00.81 06.83 10.04 12.29 13.77 14.92 16.26 17.77 19.65 22.78 29.23 31.12 34.58 37.43 38.72 40.26 41.71 45.80 52.77	+3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +	t.m. 4480.00 4482.19 4483.62 4486.03 4487.57 4488.61 4489.75 4497.02 4501.78 4506.77 4509.77 4512.76 4517.05 4517.05 4518.27 4520.54 4521.66 4523.00 4527.29 4531.35 4535.67 4537.32 4539.00 4540.42 4542.75 4544.10 4547.79 4549.24 4553.54 4552.0 4554.8 4560.39 4561.91 4563.35 4565.73 4571.66 4575.25 4577.57 4578.1 4580.42 4581.93 4581.93 4583.67 4584.57 4585.80 4597.52 4600.84 4600.84 4600.84 4610.07 4612.32 4613.80 4614.95 4616.29 4617.80 4617.80 4618.35 4622.81 4629.26 4631.15 4637.46 4638.75 4940.29 4641.74 4645.83 4652.80

 $19\ PISCIUM = 273\ SCHJELLERUP - Continued$

	PLATE G 2	364		PLATE G	343	MEA	n Wave-Le	NGTH
Intensity	Character	Wave-Length	Intensity	Character	Wave-Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D D W B D n B Wn D D n D n D n D n D n D n D Head B	t. m. 4653.89 4656.39 4660.94 4664.17 4665.44 4668.11 4675.16 4682.32 4688.46 4691.15 4696.59 4714.64 4722.72 4736.07 4737.70 4738.65	1 1 1 	D D Head Head Head D	t. m. 4654, 13 4656, 81 4697, 1 4714, 7 4736, 38 4737, 51 4738, 53 4739, 76	tor Velocity t. m. 54.01 56.60 60.88 64.11 65.38 68.65 75.10 82.26 88.40 91.09 96.53 97.2 14.58 14.8 22.66 36.23 37.62 38.59 39.82	for V +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3	t. m. 4654.04 4656.63 4660.91 4664.14 4665.41 4668.08 4675.13 4682.29 4688.43 4691.12 4696.56 4697.2 4714.61 4714.8 4722.69 4736.26 4737.65 4738.62 4738.62 4738.62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n D B n D wn D D n D	4744.06 4746.69 4749.77 4758.49 4765.91 4772.67 4784.20 4789.44 4815.90 4823.94 4827.78 4832.78 4832.78 4832.78 4855.44 4868.45 4868.45 4881.60 4921.76 4924.94	10 6 2-3 3 1 2 4 5 1 2 2 2 3 1-2 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	w D B n D B D B n D nn D nn D nn D n D n D n D n D n D	4743.76 4746.28 4749.40 4754.98 4756.14 4756.85 4758.27 4766.24 4772.26 4784.07 4789.36 4815.63	43.91 46.49 49.59 55.04 56.20 56.91 58.38 66.08 72.37 84.14 89.40 15.77 23.88 27.78 32.48 36.27 39.33 43.46 55.31 59.43 68.39 81.66 00.78 21.00 24.88	######################################	4743.94 4746.32 4749.62 4755.07 4756.94 4758.41 4766.11 4776.11 4778.40 4784.17 4789.43 4815.81 4823.91 4827.81 4832.51 4839.36 4843.49 4855.34 4859.46 4868.42 4900.81 4924.91

$19\ PISCIUM = 273\ SCHJELLERUP$

Means of Four Plates

	G 259	•	G 269				G 293		G 357			MEAN	WAVE-I	LENGTH
Intensity	Char- acter	Wave- Length	Intensity	Char- acter	Wave- Length	Inten- sity	Char- acter	Wave- Length	Inten- sity	Char- acter	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Ve- locity
10	w D	t.m. 5173.48	7 7 2	Head D D wn B	t.m. 68.48 73.73 83.70 87.36	1-2 1-2	wn D n D	83.77	2 3	n D	t.m. 73.48 87.19	68.48 73.54 83.74 87.28	+3 +3 +3 +3	t.m. 5168.51 5173.57 5183.77 5187.31
1 4	wn D	5190.94 5192.69	**************************************	 В D	91,49 93,34	$\begin{array}{ c c }\hline 1\\1-2\\2\\\end{array}$	n D n B D	88.89 90.81 92.77	$\begin{vmatrix} 1-2 \\ \cdots \\ 4 \end{vmatrix}$	n D	88.95 93.31	88.92 91.08 93.03	$\begin{array}{c} +3 \\ +3 \\ +3 \end{array}$	5188.95 5191.11 5193.06

 $19\ PISCIUM = 273\ SCHJELLERUP - Continued$

	G 259			G 269			G 293			G 357		MEAN	WAVE-	LENGTH
Intensity	Char- acter	Wave- Length	Inten- sity	Char- acter	Wave- Length	Intensity	Char- acter	Wave- Length	Intensity	Char- acter	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
$\begin{array}{c} 2\\ 1\\ \cdots\\ 3\\ 1\\ 3-4\\ 10\\ 1\\ 2\\ \cdots\\ 3-4\\ 5\\ 1-2\\ 1\\ 6\\ 2\\ 1\\ 4\\ 3\\ 4\\ 2\\ 1\\ 4\\ \cdots\\ 5-6\\ 1\\ 2\\ 2\\ 1\\ 4\\ \cdots\\ 5-6\\ 1\\ 2-3\\ 2-3\\ 2-3\\ 2-3\\ 2-3\\ \cdots\\ 5-6\\ 4\\ 4-5\\ 1\\ 2-3\\ \cdots\\ 2\\ 2\\ \cdots\\ 2\\ 0\\ 0\\ \cdots\\ 2\\ 0\\ 0\\ \cdots\\ 2\\ 0\\ 0\\ \cdots\\ 2\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	n B B B D n B D n B D D n B D D n B D D n B D D D D	t.m. 5196.92 5203.76 5214.40 5216.53 5218.82 5226.34 5229.38 5234.19 5245.23 5247.32 5249.28 5251.46 5255.67 5270.27 5270.27 5270.27 5297.94 5302.69 5302.69 5314.69 5318.12 5339.11 5341.15 5350.19 5352.64 5372.06 5374.98 5377.10 5397.43 5403.70 5406.19 5352.64 5420.21 5445.51 5430.37 5402.21 5445.51 5448.30 5451.05 5454.19 5457.13 5457.13 5452.21 5462.81	$\begin{array}{c} \dots \\ \frac{2}{1} \\ \frac{6}{1} \\ \frac{1}{2} \\ \frac{2}{3} \\ \frac{4}{5} \\ \frac{1}{6} \\ \frac{2}{3} \\ \frac{2}{3} \\ \frac{2}{3} \\ \frac{1}{3} \\ \frac{2}{5} \\ \frac{3}{6} \\ \frac{3}{5} \\ \frac{3}{6} \\ \frac{3}{$	IN B W D B B D B B D D B B D B D B B D B B D B B D B B D B B D B B D B B D B B D B B D B B D B D B B D B B D B B D B B D B B D B B D B B D B B D B B D B B D B D B B D B B D B B D B B D B B D B B D B B D B B D B B D B B D B D B B D B B D B D B D B D B D B D B D B D B D B D D B D B D D B D B D D B D D B D D B D D B D D B D D B D D B D D D B D D D D B D	t.m. 04.22 08.54 14.85 16.86 18.94 26.93 29.95 34.69 40.47 45.80 47.89 49.83 51.84 56.28 70.60 80.13 83.87 98.41 02.52 05.01 13.33 15.51 18.00 20.62 25.63 29.22 39.59 41.50 50.12 52.92 62.95 67.39 68.87 77.67 04.33 06.81 17.49 10.52 10.52 10.52 10.53 10.54 10.55 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.54 10.55 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.53 10.54 10.53 10.54 10.53 10.53 10.53 10.54 10.53 10.54 10.53 10.54 10.53 10.54 10.53 10.54 10.53 10.54 10.55 10.54 10.55	$\begin{array}{c} 1-2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 1 \\ 3 \\ 4 \\ 2 \\ 3 \\ 4 \\ 2 \\ 3 \\ 4 \\ 2 \\ 3 \\ 4 \\ 2 \\ 3 \\ 4 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \\ 3 \\ 3$	n B n B n D n B n D n B n D n B n D n D	t.m. 97.19	$\begin{array}{c} 1 & \cdots & \cdots & \vdots \\ \vdots & \vdots & \vdots \\ 1 & 2 & 5 \\ \vdots & \vdots & \vdots \\ 1 & 2 & 2 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 2 & 3 \\ 2 & 2 & 4 \\ 1 & 1 \\ \vdots & \vdots & \vdots \\ 1 & 2 & 2 \\ 2 & 3 \\ 2 & 2 & 4 \\ 1 & 1 \\ \vdots & \vdots & \vdots \\ 1 & 2 & 2 \\ 2 & 3 \\ 2 & 2 & 4 \\ 1 & 1 \\ \vdots & \vdots & \vdots \\ 1 & 2 & 2 \\ 2 & 3 \\ 2 & 2 & 4 \\ 1 & 2 & 2 \\ 2 & 3 \\ 2 & 3 & 2 \\ 2 & 3 & 3 \\ 2 & 2 & 3 \\ 2 & 3 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3 \\ 2 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 &$	n B w D n B n B	t.m. 97.60	t.m. 97.07 03.99 08.32 14.60 16.72 18.72 26.16 29.67 34.24 39.91 45.34 47.53 49.44 51.41 55.92 79.55 83.13 98.15 02.72 05.22 13.18 15.23 17.87 20.95 25.28 28.99 36.90 39.32 41.26 50.03 52.67 62.95 66.90 68.74 71.66 75.34 77.54 79.78 91.05 97.54 03.90 06.39 10.24 11.7.25 20.13 23.19 25.20 27.95 30.35 32.34 34.16 38.79 45.15 66.92 56.92 66.90 68.74 77.54 79.78 91.05 97.54 03.90 06.39 10.24 11.41 17.25 20.13 23.19 25.20 27.95 30.35 32.34 34.16 38.79 45.15 60.95 62.87 63.72 65.91 66.95 66.95	333333333333333334444444444444444444444	t.m. 5197.10 5204.02 5208.35 5214.63 5216.75 5218.75 5226.19 5229.70 5234.27 5239.94 5245.37 5247.56 5249.47 5251.44 5255.96 5279.59 5283.17 5298.19 5302.76 5305.26 5313.22 5315.27 5392.30 536.94 536.94 5371.70 5375.38 5377.58 5371.70 5362.99 5366.94 5362.91 5463.83 5415.19 5427.99 5430.39 5448.14 5411.05 5453.85 5456.96 5459.14 5460.99 5462.91 5463.76 5465.15 5467.83
<u>.</u> 3	n B	5471.99	$\frac{2}{1}$	B D	72.78 74.82	3 1-2	n B n D	72.27 74.47	2 2	n B n D	$72.11 \\ 74.28$	72,39 74,52	+1+1	5472.43 5474.56

19 PISCIUM=273 SCHJELLERUP — Continued

		,	G 269 G 293						G 357		MEAN WAVE-LENGTH			
	11 20%	, - =		1 200			Gr 200		-	G 991		ļ		1
Intensity	Char- acter	Wave- Length	Inten- sity	Char- acter	Wave- Length	Inten- sity	Char- acter	Wave- Length	Inten- sity	Char- acter	Waye- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
$\begin{array}{c} \dots \\ 2 \\ 2 \\ 3 \\ 1 \\ 1 \\ \dots \\ 1 \\$	n B n B n B n B n B n B n B n B n B n B	5482, 52 5495, 77 5498, 52 5501, 96 5506, 76 5509, 15 5510, 90 5528, 45 5539, 86 5547, 95 5566, 29 5586, 80 5597, 15 5609, 13 5647, 04 5624, 60 5634, 21 5635, 96 5676, 64 5676, 64 5676, 64 5686, 88	$\begin{array}{c} 1 & 5 \\ 2 & 2 \\ 1 & 2 \\ 4 & 5 \\ 1 & 2 \\ 4 & 1 \\ 0 & 1 \\ 2 & 4 \\ 1 & 0 & 1 \\ 2 & 1 \\ 1 & 0 & 1 \\ 2 & 1 \\ 1 & 0 & 1 \\ 2 & 2 & 3 \\ 2 & 3 \\ 1 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 3 \\ 1 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 2 & 3 \\ 1 & 0 & 1 \\ 2 & 2 & 3 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \\ 2 & 1 & 3 \\ 1 & 2 & 2 \\ 1 & 3 & 3 \\ 1 & 2 & 2 \\ 1 & 3 & 3 \\ 1 & 2 & 2 \\ 1 & 3 & 3 \\ 2 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 &$	D B B D D D D B D D D D D D D D D D D D	t.m. 78.10 80.70 83.19 96.47 98.54 902.02 07.66 09.18 13.06 25.05 28.41 32.10 34.37 39.79 41.75 43.84 48.75 56.64 62.81 64.75 66.99 70.67 74.21 84.05 85.28 92.45 95.29 97.69 99.97 24.81 27.62 28.10 31.00 36.05 37.40 43.69 46.83 50.00 51.74 59.01 76.35 76.09 84.48 87.12 76.35 76.09 84.48 87.12 76.35 76.09 84.48 87.12 76.35 76.09 84.48 87.12 76.35 76.09 84.48 87.12 76.35 76.09 84.48 87.12 76.35 76.09 84.48 87.12 76.35 77.10 88.26	$\begin{array}{c} \dots \\ 1 \\ 2 \\ 4 \\ 5 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 1 \\ 2 \\ 3 \\ 3 \\ 4 \\ 2 \\ 3 \\ 3 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 2 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4$	B D D n D D D D D D D D D D D D D D D D	80,99 82,63 95,85 98,13 92,12 06,92 09,85 10,45 112,57 21,16 31,83 33,70 39,46 43,35 48,28 52,45 54,01 56,25 62,85 64,57 66,70 69,91 73,20 74,75 76,45 83,91 86,90 89,13 92,07 91,26 97,40 90,66 97,40 90,66 97,40 91,26 15,60 19,97 22,25 24,74 27,71 31,46 36,36 37,46 43,65 47,11 49,76 55,02 58,73 73,94 76,31 76,33 76,31 76,33 7	$\begin{array}{c} 1-2\\ 2-3\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	n D D D D D D D D D D D D D D D D D D	t.m. 78.00 82.44 97.71 02.01 07.23 12.34 23.99 27.92 31.68 33.41 39.67 48.20 52.19 54.06 55.96 62.28 64.15 66.27 70.17 73.17 76.07 83.95 86.56 92.18 93.86 92.18 93.86 97.13 99.05 09.48 45.09 20.10 24.52 33.92 36.39 37.69 44.75 46.23 49.77 55.29 57.92 78.35 76.05 79.02 83.75 86.66 93.75 86.66 93.75 86.66 93.75 86.66 93.75 86.66 93.75 86.66 93.75 86.66 93.75 86.66 93.75 86.66 93.75 86.66	tm. 78.05 80.85 82.69 96.03 98.23 02.03 07.14 09.17 10.68 12.66 24.40 28.20 31.92 33.83 39.69 41.75 43.40 48.30 52.38 54.25 56.28 62.51 64.45 66.56 70.25 73.53 74.75 76.46 83.94 85.76 86.93 89.02 92.23 94.47 97.47 99.56 06.36 09.17 15.52 17.38 20.03 22.25 24.67 27.66 30.65 34.17 36.09 37.55 44.03 46.71 49.84 53.40 55.06 58.65 73.72 76.37 79.17 84.25 76.37 79.17 84.25 76.37 79.17 84.25 76.37 79.17		6.m. 5478.09 5480.89 5482.73 5496.07 5498.27 5502.07 5507.18 5509.51 5510.72 5512.70 5524.44 5533.87 5539.73 5541.79 5543.34 5552.42 5554.29 5566.30 5570.29 5574.79 5574.79 5576.49 5583.98 5585.80 5586.97 5574.79 5576.49 5583.98 5585.80 5586.97 5574.79 5576.49 5583.98 5585.80 5586.97 5574.79 5576.49 5583.98 5585.80 5586.97 5574.79 5576.49 5583.98 5585.80 5586.97 5574.79 5576.49 5583.98 5585.80 5586.97 5574.79 5576.49 5583.98 5585.80 5586.97 5574.79 5576.49 5583.98 5585.80 5586.97 5576.49 5583.98 5585.80 5586.97 5576.49 5589.06 5592.27 5594.51 5599.60 5606.40 5609.22 5615.56 5617.38 5620.07 5622.29 5624.71 5627.70 5630.69 5634.21 5636.13 5637.59 5641.12 5681.29 5687.11 5693.78 5696.81 5705.41 5705.41

296

19 PISCIUM = 273 SCHJELLERUP + Continued

	G 259)	G 269				G 293			G 357		MEAN	WAVE-I	ENGTH
Inten- sity	Char- acter	Wave- Length	Inteu- sity	Char- acter	Wave- Length	Inten- sity	Char- acter	Wave- Length	Intensity	Char- acter	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
6 8 1 	B B D	t.m. 5717.92 5724.00 5730.46	2 1 4-5 3 2 1 1 3 2-3 2-3 1-2 1 1-2 3 1-2 1	B nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nD nB nB nB nB nB nB nB nB nB nB nB nB nB	t.m. 17,74 22,01 24,31 31,76 44,34 46,95 49,08 56,89 62,80 66,90 71,27 75,49 77,76 80,18 85,13 98,66 22,69	$\begin{array}{c} \dots \\ 1 \\ 2-3 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2-3 \\ 1 \\ 1-2 \\ 1 \\ 1-2 \\ 1 \\ 1-2 \\ 1 \\ 1 \\ 1 \\ \dots \end{array}$	n D B n D n B	t.m. 20.95 24.13 31.40 44.75 47.15 50.02 57.06 62.59 67.60 70.73 76.08 77.79 79.73 85.92 98.61	$\begin{bmatrix} \dots \\ 2 \\ 2 \\ 1-2 \\ 3 \\ \dots \\ 2-3 \\ \dots \\ 4 \\ 1 \\ 1 \\ 1 \\ \dots \\ 1-2 \\ 1 \end{bmatrix}$	D B n D n D n D B D B D B D D	t.m. 21.12 23.80 31.44 43.85 62.79 71.44 75.74 77.78 79.55 98.16 22.69	t.m. 17.83 21.36 24.08 31.16 44.31 47.05 49.55 56.98 62.70 67.25 71.15 75.77 77.78 79.82 85.53 98.64 22.69		t.m. 5717.87 5721.40 5724.12 5731.20 5744.35 5747.09 5749.59 5762.74 5767.29 5771.19 5775.81 5777.82 5779.86 5785.57 5798.68 5822,73

$280\ SCHJELLERUP$

189	9, Octob	er 18, G.M.T	TE G 346 . 1611. Horomparison g	ur angle. good	W 145	PLATE G 367 1899, December 29, G.M.T. 11h2. Hour angle, W 4h Star fair; comparison good						MEAN	WAVE	-Length
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor.	Corrected for Velocity
3	nn D nn D nn D nn D nn D nn D nn D nn D	mm. 49.1115 49.9832 50.5099 50.7400 50.9450 51.0778 51.2257 51.4054 51.5497 51.6385 51.6825 51.7274 51.8039 52.0274 52.1002 52.1520 52.5197 52.569 52.669 52.7667	t.m. 4434.67 4463.24 4481.06 4488.98 4496.11 4500.76 4505.98 4512.36 4517.53 4520.73 4522.32 4523.94 4526.73 4534.89 4537.58 4539.49 4553.21 4555.08 4558.86		t.m. 4434.76 4463.29 4481.08 4488.99 4496.11 4500.75 4505.96 4512.33 4517.49 4520.68 4522.27 4523.89 4526.68 4534.83 4537.51 4539.42 4553.12 4555.0 4558.8	B { 1 1 1 2 3 2 1 1-2 D { 9	nn D from to wn D n D n D n D n D n D n D n D n D to n D n D n D n D n D n D n D n D n D n D	mm. 62.2999 62.0955 62.0720 61.9785 61.0215 60.7203 60.5093 60.5093 60.2908 	t.m. 4429.56 4436.12 4436.88 4439.92 4466.08 4471.77 4482.09 4489.41 4497.07 4506.51 4513.06 4518.53 4523.28 4526.96 4530.88 4536.01 4553.76	-3435 -35 -3642 -43 -45 -47 -4849 -49 -4949 -494949	t.m. 4429.22 4435.77 4436.5 4439.56 4465.66 4471.34 4481.64 4488.94 4496.59 4506.03 4512.57 4518.04 4522.79 4526.47 4530.39 4535.52 4553.27 4559.81	t.m. 29.14 34.85 35.69 36.4 39.48 63.38 65.58 71.26 81.36 88.97 96.35 00.84 06.00 12.45 17.77 20.77 22.53 24.98 26.58 30.31 34.92 35.44 37.60 39.51 53.20 55.09 58.89 59.73 62.55	+37 +37 +37 +37 +37 +38 +38 +38 +38 +38 +38 +38 +38 +38 +38	t.m. 4429.51 4435.22 4436.06 4437.0 4439.9 4463.76 4465.96 4471.64 4481.74 4489.35 4496.73 4501.22 4506.38 4512.83 4512.83 4518.15 4522.91 4525.36 4526.96 4530.7 4535.30 4535.8 4537.98 4553.58 4553.58 4553.58 4553.58
0-1 B {	from to nn D	52.7667 52.8267 52.844 52.937 52.9930	4562.56 4564.85 4565.52 4569.09 4571.41	$ \begin{array}{c} -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ \end{array} $	4562.46 4564.75 4565.4 4569.0 4571.31		nn D nn D	58.2920 58.1352	4571.53 4577.06	-47 -46	4571.06 4576.60	62.55 64.84 65.48 69.08 71.15 76.52	+38 +38 +38 +38 +38 +38	4562.93 4565.22 4565.9 4569.5 4571.53 4576.90

280 SCHJELLERUP -- Continued

					200 %		E3 £3£3£3 £		THE CHECK			1		
		PL.	TE G 346					PL:	ATE G 367			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
		Scale	Length by	from		ten-		Scale	Length by	from		rected for Velocity t.m. 83.21 86.00 93.81 95.73 99.20 05.88 07.14 08.09 15.68 17.36 18.91 28.75 30.59 37.65 39.48 40.25 41.72 44.04 45.67 54.86 57.10 60.09 61.84 63.53 64.82 67.76 74.40 81.77 14.10 28.22 33.10 37.24 38.71 40.76 40.83 43.01 44.89 46.60 48.44 50.23 55.31 58.59 66.38 68.31 82.7 ±	+38 +38 +38 +38 +38 +38 +38 +38 +38 +38	for
9 Limits of above	B B	59.3136 59.3192 59.3710 59.4042	4831.66 4860.61 4859.29 4862.08 4863.88	+30 $+27$ $+27$ $+27$ $+27$ $+27$ $+27$	4831, 96 4860, 88 4859, 56 4862, 35 4864, 15	B {	n D nn D nn B	52,5227 52,3259 52,0585 51,9090 51,7328 51,7085	4832 30 4839.51 4857.18 4865.34 4875.05 4876.40	- 8 - 8 - 9 -10 -11 -11	4832.22 4839.46 4857.09 4865.24 4871.94 4876.29	32,09 39,38 57,01 60,97 59,65 62,44 61,70 74,86 76,21	+40 +41 +41 +41 +41 +41 +41	4832.49 4839.78 4857.42 4861.38 4860.1 4862.9 4865.11 4875.27 4876.6
						Max B }	to B nn D nn D from to	51.6390 51.6740 51.6105 51.4683 51.3685 51.2960	1880,26 4878,31 4881,85 4889,82 4895,45 4899,56	$ \begin{array}{rrr} -11 \\ -11 \\ -11 \\ -12 \\ -13 \\ -11 \end{array} $	4880,15 4878,20 4881,74 4889,70 4895,32 4899,42		+41 +41 +41 +41 +41	4880.5 4878.53 4882.07 4890.03 4895.7 4899.8

$280\ SCHJELLERUP-Continued$

		PLA	ATE G 346					PL	ATE G 367			MEAN	WAVE	-LENGTH
Intensity	y acter Reading Formula Curve Length						Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
		mm.	t.m.		t.m.	Max	В	mm. 51.3245	t.m. 4897.94	-13	t.m. 4897.81	t.m. 97.73	+41	t.m. 4898.14
						1-2	nn D		4900.51	-13 - 14	4900.37	00.29	+41	4900.70
							nn D	50,9320	4920.49	-17	4920.32	20.24	+41	4920.65

$280\ SCHJELLERUP$

1899		ber 28, G.M.	T. 11b6. Ho		e, W 5h±	15	900, Janu	ary 2, G.M.	ATE G 370 T. 1111. Ho comparison	ur Angle good	e, W 555	MEAN	WAVE	-Length
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Leugth by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
Spectrum 3 D { 5 2-3 2 1 4 B { Con. { Spec. { 3 B { 3 B {		mm. 40.9180 41.2347 41.4822 41.7300 41.9395 42.2515 42.7508 42.8324 43.2787 43.5644 43.8934 44.1069 44.2664 44.3880 44.1069 44.7330 45.4645 45.5302 45.5302 45.6610 45.7350 45.8825 45.8650 45.6617 46.2950 46.4160	t.m. 5170.70 5183.60 5193.76 5204.03 5212.78 5225.95	$\begin{array}{c} -43 \\ \cdots \\ -43 \\ -43 \\ -45 \\ -47 \\ -49 \\ \cdots \\ -51 \\ -49 \\ -48 \\ -45 \\ -43 \\ -41 \\ -40 \\ -36 \\ -35 \\ \cdots \\ -25 \\ -22 \\ -21 \\ -21 \\ -22 \\ -21 \\ -21 \\ \cdots \\ -19 \\ \cdots \\ -18 \\ -17 \\ \end{array}$	t.m. 5170.27 5183.17 5193.33 5203.58 5212.31 5225.46 5216.87 5250.41 5269.99 5282.71 5297.56 5302.05 5307.30 5314.64 5320.28 5329.12 5336.38 5349.51 5371.31 5374.49 5376.47 5377.31 5380.88 5389.76 5390.88 5389.76 5390.88 5396.70 5405.58 5400.98 5412.24 5418.31		nn D w D from to n D n D nn D nn D nn D nn D nn D nn D	num. 48,7620 48,9115 49,3884 49,7854 50,1743 50,2250 50,6380 50,6702 50,7688 51,2009 51,4825 51,8159 52,5064 52,7540 52,9510 53,0073 53,0430 53,3530 53,5632	t.m. 5168.48 5174.48 5193.87 5210.28 5226.60 5228.75 5246.40 5234.70 5247.78 5252.04 5270.91 5283.38 5298.33 5372.15 5369.93 5372.15 5377.81 5380.07 5399.88 5405.61 5408.27 5410.37 5419.07 5419.07 5417.48	-29 -33455155 -56 -56 -57 -57 -56 -54 -50 -4532 -29 -28 -24 -23 -22 -22 -2117 -17 -16 -15 -14 -13 -13	t.m. 5168.19 5174.15 5193.42 5209.77 5226.05 5228.19 5245.83 5234.13 5247.22 5251.48 5270.37 5282.88 5297.88 5270.37 5383.15 5354.84 5369.69 5371.92 5375.05 5377.59 5379.86 5397.34 5399.71 5405.45 5408.12 5410.22 5413.83 5418.94 5417.35	t.m. 69.23 73.92 83.45 93.38 03.81 09.54 12.54 25.76 27.96 45.60 47.05 50.95 70.18 82.80 97.72 02.28 07.53 14.87 20.51 29.36 36.61 41.40 49.99 52.92 54.61 69.46 71.62 74.77 77.03 77.54 80.09 81.11 84.72 89.99 91.11 97.02 99.48 05.81 05.22 07.89 10.10 13.03 18.61 17.58	+423 +433 +433 +433 +433 +433 +433 +433	t.m. 5169.7 5174.35 5183.88 5193.81 5209.97 5213.0 5226.19 5228.4 5236.0 5234.33 5247.48 5251.4 5270.62 5283.24 5298.16 5302.72 5307.97 5315.31 5320.95 5320.80 5337.05 5341.84 5350.43 5353.37 5355.1 5369.9 5377.48 5378.0 5380.54 5381.6 5385.2 5390.4 5397.47 5399.9 5406.26 5405.7 5408.33 5410.55 5413.5 5419.1 5418.03
2-3	D	46.4445	5419.92	-17	5419.75		nn D	54.3795	5420.34	-13	5420.22	19.99	+45	5420.44

$280\ SCHJELLERUP-\ Continued$

		PLA	ге G 366				-	PL	ATE G 370			MEAN	WAVE	· LENGTH
	1 1		1			l	1			ı	(1	1
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	rected for Velocity	Cor. for V	Corrected for Velocity
1-2 1 2 1 2 2 1 2 2 1 2 2		Mean Scale	Wave- Length by	from	**Maye-Length** **Length** *	ten-	nn D n B nn D n B nn D n B nn D n B nn D n B nn D n B nn D n B nn D n D n D n D n D n D n D n D n D n	Mean Scale	Wave- Length by	from		Uncorrected for	Cor.	Corrected

$290\ SCHJELLERUP-Continued$

		PLA	TE G 366					PL	ATE G 370			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- actor	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
		mm.	t.m.		t.m.			mm.	t.m.		t.m.	t.m.		t.m.
2	n B	51.7968	5724,11	-46	5723.65	Max	В	59.7514	5724.68	-41	5724.27	23.96	+48	5724.44
	nn D	51.9112	5731.46	-47	5730.99							31,22	+48	5731.70
						1-2	n Đ	59.8747	5732 60	-42	5732 18	31.95	-18	5732.43
						B {	from	59.9020	5734.40	-42	5733.98	33.75	+48	5734.2
						1 P	to	60.0390	5743.30	-43	5742.87	42.64	+48	5743 1
	nn D	52.1065	5744.10	-49	5743.61							43.84	+48	5744.32
	nn D	52.2212	5751.60	-50	5751.10	1	n D	60.1725	5751.89	-44	5751.45		+48	5751.70
2-3	wn B	52.3143	5757.70	-50	5757.20		w B	-60.2697	5758.25	-45	5757.80	57.57	+48	5758.05
	wn D	52.4020	5763.48	-50	5762.98								+48	5763.69
						2	n B	60.4330	5769.00	-46	5768.54		+48	5768.79
1	n D	52.53\$0	5772.49	-50	5771.99	1	n D	60.4740	5771.71	-46	5771.25		+48	5772.10
		,				2	n B	60.6135	5780.98	-46	5780.52		+48	5780.77
						End		61.9530	5873.40	-50	5872 90	72.67	+48	5873.

318 BIRMINGHAM = DM, 68 617

18		ary 15, G.M.	TE G 276 T. 1654. Ho comparison		e, E 454	1		ch 31, G.M.T	ATE G 393 7.185±. Ho t; comparis		, W 242	MEAN	WAVE	E-LENGTH
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Cnrve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
2-3 2-3 2-3 2-3 2 3 1-2 2 2 4 1 2	nn D nn D wn D nn D nn D nn D nn D nn D	mm. 64.0863 63.7893 63.4673 63.3981 63.2537 63.0670	t.m. 4389.68 4395.06 4400.94 4402.21 4404.86 4408.30	$\begin{array}{c} +9\\ +8\\ +7\\ +6\\ +4\\ \cdots\\ +3\\ +1\\ 0\\ 0\\ \cdots\\ -1\\ -2\\ 2\\ -3\\ \cdots\\ -4\\ -4\\ -5\\ -6\\ -7\\ \cdots\\ -8\\ \cdots\\ -8\\ \cdots\\ \end{array}$	t.m. 4389.77 4395.14 4401.01 4402.27 4404.91 4408.34 4415.04 4425.82 4427.50 4430.16 4433.79 4435.56 4438.13 4439.08 4444.27 4447.27 4448.48 4449.86 4453.29 4455.16 4458.94 4461.85 4461.85	B { B	nn D wn D nn B wn D nn B wn D n B wn D n D n D n D nn D nn D nn D nn D nn	mm. 56. 1606 56. 4269 56. 7340 56. 8282 56. 9736 57. 2130 57. 4510 57. 4915 58. 0494 58. 1354 58. 2797 58. 3200 58. 4530 58. 4530 58. 3650 58. 4726 58. 5374 58. 6850 59. 1260 59. 1260 59. 1260 59. 1260 59. 1260 59. 1260 59. 1557 59. 2095 59. 2829 59. 4432 59. 5472	t.m. 4390.45 4395.37 4401.10 4402.86 4405.59 4410.10 4415.41 4426.15 4428.66 4430.63 4431.40 4434.00 4435.67 4438.58 4439.54 4445.43 4447.30 4447.30 4447.30 4447.94 4449.01 4450.49 4453.71 4455.81 4462.56	-47 -48 -50 -50 -5152 -53 -53 -55 -56 -56 -56 -56 -56 -56 -57 -57 -57 -57 -57 -57 -58 -58 -58 -58 -58 -58	t.m. 4389,98 4394,89 4400,60 4402,36 4405,08 4409,58 4411,07 4414,88 4425,60 4428,11 4430,08 4433,44 4431,73 4433,84 4435,11 4438,02 4438,98 4446,73 4447,37 4448,44 4449,92 4453,13 4455,23 4461,98 4463,76 4465,31 4472,32 4471,33	t.m. 89.88 95.02 00.87 02.32 05.00 08.37 09.55 14.04 14.96 25.71 27.81 30.12 30.81 33.41 31.70 33.81 35.34 38.08 38.95 44.30 44.83 46.70 47.32 48.46 49.89 53.21 55.20 59.97 61.92 63.76 65.28 71.57 72.29 74.30	+15 +15 +15 +15 +15 +15 +15 +15 +15 +15	t.m. 4390.03 4395.17 4401.02 4402.47 4405.15 4408.52 4409.70 4415.11 4425.86 4427.96 4431.0 4433.6 4431.85 4433.96 4431.85 4438.23 4439.10 4446.9 4446.9 4447.47 4448.61 4450.04 4453.36 4455.35 4460.12 4463.91 4465.43 4471.72 4472.4 4474.5
1	n D	59.5902	4475.98	- 8	4475.90							75.93	+15	4476.08

$318\ BIRMINGHAM-Continued$

		PLA	TE G 276					PL	ATE G 393			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
2-3	nn D nn D nn D nn D from to nn D from to mn D from to from to nn D from to 59,2813 59,0411 58,9247 58,5813 58,3210 58,1400 58,2340 58,1063 57,3650 57,3650 57,3650 57,3650 57,1690 56,9826 56,7148 56,6471 56,5708 56,3191 56,2963 56,1758 56,0190 55,9160 55,9160 55,9160 55,9160 55,4300 55,5614 55,4598	4482.32 4487.28 4489.70 4496.89 4501.73 4506.20 4506.20 4506.20 4506.96 4509.10 4518.15 4522.94 4533.78 4535.78 4536.36 4545.43 4545.43 4545.43 4545.43 4545.43 4565.68 4566.10 4570.70 4576.70	$\begin{array}{c} \dots \\ -9 \\ \dots \\ -10 $	t.m. 4482.23 4487.19 4489.60 4496.79 4501.63 4502.30 4506.10 4506.86 4509.01 4518.07 4522.86 4535.72 4537.20 4538.71 4540.41 4545.40 4546.58 4549.31 4552.19 4555.20 4558.21 4560.31 4560.31 4570.74	1 2 2 2 3 4 B	nn D nn B nn B nn B nn D nn D nn D from to nn D nn D nn D nn D nn D nn D nn D nn	mm. 60.7596 60.8585 60.9177 61.0422 61.0989 61.2096 61.5444 61.7749 61.8060 61.9770 62.0142 62.0537 62.1424 62.2669 62.5267 62.6753 62.7391 63.1029 63.3047 63.3420 64.35097 63.7440 64.6160 64.2506 64.2506 64.2506 64.2506 64.2506 64.2506 64.2506 64.2506 64.2506 64.2506 65.6686 65.8661 65.9276 66.0637	t.m. 4480,77 4482,85 4484,09 4486,71 4490,26 4497,40 4502,35 4503,00 4506,70 4507,53 4509,05 4510,32 4513,05 4518,75 4522,04 4523,45 4531,57 4536,11 4536,90 4540,76 4546,10 4548,02 4549,56 4552,54 4555,50 4559,66 4565,79 4566,30 4572,02 4575,33 4577,55 4580,50 4577,76 4600,36 4597,76 4600,36 4597,76 4600,36 4597,76 4600,36 4597,76 4600,36 4597,76 4600,36 4597,76 4600,36 4597,76 4600,36 4597,76 4600,36 4597,76 4600,36 4597,76 4600,36 4597,76 4600,36	$\begin{array}{c} -57 \\ -57 \\ -57 \\ -56 \\ -56 \\ -56 \\ -55 \\ -54 \\ -53 \\ -53 \\ -52 \\ -51 \\ -50 \\ -49 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -44 \\ -43 \\ -44 \\ -44 \\ -44 \\ -43 \\ -38 \\ -37 \\ -36 \\ -33 \\ -32 \\ -31 \\ -29 \\ -24 \\ -23 \\ -21 \\ -22 \\ -24 \\ -22 \\$	t.m. 4480, 20 4482, 28 4483, 52 4486, 15 4487, 35 4489, 70 4496, 85 4501, 81 4502, 46 4506, 17 4508, 52 4512, 52 4518, 25 4521, 55 4521, 55 4522, 96 4531, 10 4535, 65 4540, 31 4547, 59 4547, 59 4549, 13 4555, 09 4559, 21 4565, 93 4571, 67 4574, 98 4577, 21 4580, 17 4582, 45 4581, 70 4585, 99 4591, 16 4595, 99 4591, 16 4606, 70 4609, 07	t.m. 80.27 82.26 83.49 86.12 87.27 89.65 96.82 01.72 02.38 06.14 01.13 06.93 08.49 18.16 21.52 22.91 28.50 31.18 35.69 36.41 37.23 35.74 39.52 40.36 47.56 49.22 40.36 47.56 49.22 52.16 55.15 53.43 55.15 57.27 63.39 65.56 66.03 70.39 70.77 71.64 74.95 77.32 80.37 82.42 81.67 85.96 91.10 91.15 95.95 97.46 00.46 05.55 08.16 09.04 10.42 12.96	+15 +15 +16 +15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -	t.m. 4180, 42 4182, 41 4183, 64 4186, 27 4187, 42 4189, 80 4196, 97 4501, 87 4502, 5 4506, 3 4507, 08 4508, 64 4512, 64 4518, 31 4521, 67 4523, 06 4528, 65 4531, 43 4535, 84 4536, 6 4537, 38 4538, 89 4539, 7 4540, 51 4546, 76 4547, 71 4549, 37 4555, 3 4555, 3 4555, 3 4555, 3 4556, 61 4570, 5 4570, 9 4577, 47 4580, 52 4586, 1 4591, 25 4586, 1 4591, 25 4586, 1 4591, 25 4586, 1 4606, 86 4608, 3 4609, 19 4610, 57 4611, 59 4613, 1	
2	n D	53.4613	4613,27	+1:1	4613.11	2 3	n D	66.5834	4613.97	-22	4613.75	13.58	-15	4613.73

$318\ BIRMINGHAM-Continued$

		PLA	TE G 276					PL	ATE G 363			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
$\begin{array}{c} 5 \\ 3-4 \\ 8 \\ 6 \\ 5 \\ 2-3 \\ \cdots \\ \vdots \\ 3 \\ 6 \\ \cdots \\ 4 \end{array}$	n B n D n B n D n B nn D n B D wn B	mm. 53,3983 53,3478 53,2801 53,2061 53,1385 53,0779	t.m. 4614.81 4616.06 4617.73 4619.56 4621.23 4622.74	$\begin{array}{c} +14 \\ +14 \\ +14 \\ +15 \\ +15 \\ +15 \\ \cdots \\ +18 \\ \cdots \\ +18 \\ \cdots \\ +18 \end{array}$	t.m. 4614.95 4616.20 4617.87 4619.71 4621.38 4622.89	6 4 7 6 2 8 2 3-4 6 B	n B n D n B n D nn D n B n B n D from	mm. 66.6355 66.6895 66.7479 66.8206 	t.m. 4615.28 4616.63 4618.09 4619.92 4623.11 4629.60 4631.40 4639.28 4640.49 4641.36	$ \begin{array}{r} +22 \\ +22 \\ +21 \\ +21 \\ +21 \\ +18 \\ +18 \\ +16 \\ +16 \\ +15 \\ $	t.m. 4615.06 4616.41 4617.88 4619.71 4622.91 4629.42 4631.22 4639.12 4640.33 4641.21 4643.96	t.m. 15.00 16.31 17.88 19.71 21.41 22.90 29.39 31.19 39.04 40.31 41.18 42.01 43.93	+15 +15 +15 +15 +15 +15 +15 +15 +15 +15	t.m, 4615,15 4616,46 4618,03 4619,86 4621,56 4623,05 4629,54 4631,31 4639,19 4640,46 4641,3 4642,16
Comp 10 5 6 1 Head 4	lete a w D n B n D D n B nn D	bsorption 48.8333 48.7468 48.6991 48.5694 48.5081 48.4736 48.3766	4735.84 	+27 +27 +27 +27 	4736.11 4738.58 4739.95 4743.68 4745.45 4746.44 4749.25	D } B { 10 1'ts } Head	from to from 4 n B to w D from to w D from	71.0540 71.1830 71.1830 71.2102 71.3100 71.3881 71.3100 71.4440 71.4469 71.5777	4734.12 4737.80 4737.80 4738.64 4741.50 4743.83 4741.50 4745.40 4745.55 4746.72 4749.39	+ 4 + 4 + 4 + 4 + 5 + 5 + 6 + 6	4734.16 4737.84 4737.84 4738.68 4741.54 4743.88 4741.54 4745.45 4745.60 4746.78 4749.45	34.13 36.14 37.81 37.81 38.63 39.98 41.51 43.78 41.51 45.42 45.53 46.61 49.34	$ \begin{array}{c} +16 \\ +16 $	4731.3 4736.30 4738.0 4738.0 4738.79 4740.14 4741.7 4743.94 4741.7 4745.6 4745.69 4746.77 4749.50
 3 3 3 3 3 3 1	nn D nn D nn D nn D nn D nn D n D n D n	48.0661 47.7955 47.5756 	4758.04 4766.01 4772.54 4811.58 4815.32 4823.29 4827.89 4830.02 4832.08 4843.19 4855.05	$\begin{array}{c} +27 \\ +27 \\ +27 \\ +26 \\ +26 \\ +25 \\ +25 \\ +25 \\ +24 \\ +23 \\ \end{array}$	4758.31 4766.28 4772.81 	2-3 2-3 3 3 6 	n D	71.8869 72.3619 73.5757 73.6842 73.7416 73.9984 74.1264 74.2666	4758.54 4772.79 4810.30 4813.73 4815.23 4823.74 4827.85 4832.37 4857.49	$\begin{array}{c} +7 \\ +9 \\ +12 \\ \cdots \\ +12 \\ +11 \\ +11 \\ +10 \\ \cdots \\ +6 \\ \end{array}$	4758.61 4772.88 4810.42 4813.85 4815.34 4823.85 4827.95 4832.47	58.46 66.31 72.85 10.39 11.87 13.82 15.46 23.70 28.05 30.30 32.40 43.46 55.31 57.52	$\begin{vmatrix} +16 \\ +1$	4758,62 4766,47 4773,01 4810,54 4812,03 4813,98 4815,62 4823,86 4823,86 4830,46 4832,56 4843,62 4855,47
4 2-3 1 1-2	nn D nn D wn D nn D nn D nn D nn D nn D	44.4424 44.3110 44.1501 	4871 .35 4875 .74 4881 .15 4900 .54 4920 .85 4924 .91 4934 .16 4958 .13 5000 .66	+21 +21 +20 +17 +14 +14 +12 + 8 + 1	4871 56 4875 95 4881 35 4900 71 4920 99 4925 05 4934 28 4958 21 5000 67	2 2	n D nn D nn D nn D	75.4577 75.7421 75.8584 76.3069 76.8594	4871.75 4881.41 4885.39 4900.89 4920.35	+ 3 + 3 + 1 0 - 3 - 8 	4871.78 4881.42 4885.39 4900.86 4920.27	71.67 75.98 81.39 85.36 00.79 20.62	+16 +16 +16 +16 +16 +16 -10	4871.83 4876.14 4881.55 4885.52 4900.95 4920.78

318 BIRMINGHAM

	}	lour ant	= - : G 253 26, G.M. gle, E 095 aparison)	.		1899, Ja He	PLATE nuary 20 our angl od; con), G.M.; le E 21/	1			He	PLATE nuary 25 pur angle ir; comp	, G.M.7 e, W 0b	4		WA	Mea	.N ENGTH
In- ten- sity	Char- acter	Mean Scale Rend- ing	Waye- Length by For- mula	Cor, from	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor.from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor. from	Wave- Length	Uncor. for Velocity	Cor. for V	Cor. for Velocity
	begin n B w B w B w D from to n B n B n D from to n B n B n D wn B n B n D n B n B n B n B n B n B n B n B n B n B	mm. 45, 779 45, 8612 45, 8612 45, 8612 46, 9390 46, 9390 46, 9390 46, 4710 46, 7250 46, 8830 47, 4750 47, 1980 47, 4750 47, 4868 47, 477 47, 4868 48, 8945 47, 477 47, 8344 48, 2738 48, 1968 48, 8945 49, 478 49, 4868 49, 4868 49, 487 49, 4868 49, 487 49, 4888 48, 8945 49, 4888 49, 4888 48, 8945 49, 4888 49, 4888 48, 8945 49, 5468 49, 5468 49, 5468 50, 6815 50, 6815 50, 6815 50, 6815 50, 6815 50, 6815 50, 6815 51, 12023 51, 6913 52, 6910 52,	t.m. 5165 9 5169,92 5172,64 5176,60 5182,91 5184,90 5191,30 5204,60 5211,10 5224,60 5211,20 5224,10 5226,07 5237 5317,43 5320,25 5317,43 5320,25 5317,43 5320,25 5317,43 5320,25 5317,43 5320,25 5317,43 5320,25 5317,43 5320,25 5317,43 5320,25 5317,43 5320,25 5317,43 5320,25 5317,43 5317,43 5320,25 5317,43 5317,43 5320,25 5317,43 5317,43 5317,43 5320,25 5317,43 5317,	$\begin{array}{c} +24\\ +24\\ +24\\ +23\\ +22\\ +21\\ +22\\ +21\\ +22\\ +21\\ +21\\ +22\\ +21\\ +22\\ +21\\ +22\\ +21\\ +23\\ +21\\ +24\\ +24\\ +24\\ +24\\ +24\\ +24\\ +24\\ +24$	1.m. 5166 1 5170 16 5170 16 5172 88 5176 23 5170 16 5183 14 5185 12 5194, 53 5194, 53 5204 20 5204 80 5211, 29 5216 38 5217 18 5224 26 5226 23 5226 33 5226 33 5227 61 5227 61 5227 61 5227 63 5276 63	Sity Begin	us	mm. 41 895 44 7710 44 5124 44 3792 41 2657 43 9520 43 9520 43 9520 43 9520 43 8970 43 9520 43 8970 43 9520 43 9520 43 9520 43 9520 43 9520 43 9520 43 9520 43 9520 43 9520 43 9520 43 9520 44 90 1225 45 952 47 953	t.m. 68.30	+22 +24 +18 +18 +16 +15 +11 +10 +15 -19 -20 -19 -20 -19 -20 -19 -11 -10 -11 -10 -7 -11 -10 -7 -11 +11 +12 +13 +13 +13 +13 +13 +13 +13 +14 +14 +14 +14 +14 +14 +14 +14 +14 +14	t.m. 68.52 (73.35) (88.44) (88.67) (88	sity 6	b nn b nn b		M T 6 t.m. 17.51 50 43 61 29 71.92	- 12 - 12 - 12 - 12	t.m.		+17 +17 +17 +17 +17 +17 +17 +17 +17 +17	t.m. 5168.8 5173.63 5183.72 5488.95 5193.43 5203.15 5204.9 5205.90 5211.7 5216.53 5226.83 5234.22 5239.69 5270.02 5279.69 5277.87 5302.24 5307.07 5308.71 5308.83 5331.92 5331.92 5331.83 5331.93 5311.93
2-3	H 15	52 6843	9413-69	+25	5479-90					14										

$BIRMINGHAM = DM + 68^{\circ}617 - Continued$

	PLATI	E G 253				I	PLATE G	284					PLATE (G 379			WA	MEA VE-LE	N ENGTH
In- ten- sity		Wave- Length by For- mula		Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor. from	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor. from	Wave- Leugth	Uncor. for Velocity	Cor. for V	Cor. for Velocity
tensity tensity active 1	F. Scale Fracting mm. D. 52, 7281 B. 52, 7391 D. 53, 0162 D. 53, 0316 D. 53, 2798 53, 2798 53, 3060 53, 3643 D. 53, 2798 53, 3660 53, 3643 D. 53, 9050 D. 54, 0193 D. 55, 0217 D. 56, 0003 B. 56, 1058 D. 56, 0003 B. 56, 0003	Length by For- mula t.m 5181.94 5485.68 5497.10 5507.96 5511.13 55131.10 5519.97 5522.30 5538.36 5542.51 5531.50 5551.23 5554.51 5551.23 5555.49 5560.18 5570.60 5570.60 5570.60 5570.60 5570.60 5683.89 5683.89 5685.61 5680.80 5683.89 5685.66 5689.80 5683.89 5683.89 5685.73 5669.80 5672.75 5683.79	+25 +26 +26 +26 +26 +26 +26 +26 +26 +26 +26	t.m. 5481 19 5485.64 5497.36 5501.43 5508.55 5511.39 5513.36 5522.56 5513.36 5522.56 55142.76 5534.01 5538.62 5514.75 5514.83 5551.48 5551.48 5551.48 5551.48 5553.30 5568.62 5568.62 5570.83 5586.30 5688.63 5686.30 5688.63 5686.30 5688.63 5686.30 5688.63 5688.30 5688.63 5688.30 5698.40 5699.40 5699.40 5699.40 5699.40 5699.40 5699.40	ten-		Scale Read-	t.m. 82.58 97.26 01.76 06.58 3.41 38.29 41.20 47.83 38.41 33	+188 +199 +199 +199 +199 +199 +191 +18 +18 +18 +18 +18 +18 +18 +18 +18 +1	L.m. 82.76 97.45 01.95 06.77 21.06 6.89 48.02 33.848 41.39 48.02 46.89 48.02 46.89 48.02 46.89 48.02 46.89 48.02 47.15 48.02	ten-	Character D In D In D In B Wh D Head In D In D Head In D 56.1868 56.1868 56.9691 57.0788 57.1241 57.2174 57.4265 57.8438 57.8971	39,60 39,60 31,51 83,37 89,63 92,23 97,50 09,68	Curve 888 9.	5.26 A S S S S S S S S S S S S S S S S S S	t.m. \$2.87	for V +18	t.m. 5483 05 5497 74 5502.24 5507.06 5524.85 5507.06 5524.85 5529.09 5533 89 5539.22 5541.7 5547.2 5548.31 5552.53 5556.28 5556.21 5556.88 5570.16 5589.94 5592.51 5594.06 5599.81 5599.81 5599.81 5599.81 5599.61 5599.61 5599.61 5697.75 5611.1 5637.13 562.38 5643.1 5630.54 5630.54 5631.38 5643.13 5655.42 5656.4.68 5657.75 5641.38 5643.13 5655.42 5705.45 5673.59 5673.59 5673.59 5673.59 5673.59 5673.59 5673.59 5673.59 5673.59 5673.59 5673.59 5673.59 5673.59 5673.59 5673.59 5673.59 5673.59	
3 n	 D 56 8735 B 56.9211 D 57.0325 D 57.2991 D 57.5171 	5720, 22 5723, 23 5730, 31 5747, 40	+10 +10 +10 +10 + 8 + 8	5720 32 5723 33 5730 41 5747 48	B } 1 4 Con. Spec. Max 1		33.6430 33.6153 33.5777 33.4608 33.4250 33.2990 33.2642 33.1718 33.0560 32.9707	19,90 21,66 23,99 31,29 33,51 41,44 43,64 49,49 56,86 62,31 71,15	- 1 - 2 - 3 - 3 - 5 - 5 - 5 - 6 - 8 - 8 - 10	19.89 21.65 23.97 31.26 33.48 41.39 43.59								+19 +19 +19 +19 +19 +19 +19 +19	5714.5 5720.2 5721.95 5721.27 5731.51 5733.8 5741.7 5749.73 5762.53 5771.35 5771.35

318 BIRMINGHAM — Continued

		PLATI	E G 253					PLATE (G 284					PLATE	G 379			WA.	MEA VE-LI	N ENGTH
In- ten- sity	Char- acter	Scale	Wave- Length by For- mula	ě č	Wave- Leugth	ln- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor.from	Wave. Length	ln- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor.from	Wave- Length	Uncor. for Velocity	Cor. for V	Cor. for Velocity
2	nn D nn D nn D nn D nn D nn D nn D	58, 0530 58, 3350 58, 4216 58, 5381 58, 5988 58, 6518	5829,83 5834 07 5837 66	+ 6 + 5 + 5 + 5 + 4 + 4	5797.02 5816.02 5821.92 5829.88 5834.11 5837.70	I 1	nn D	mm, 32,6312 32,4060 32,1120 31,6693	98.90	-13 -14	t.m. 84-11 98.77 18.26 48-16			mm.	t.m,		t.m.	t.m. 84.22 98.88 18.37	+19 +19	5799.1

74 SCHJELLERUP

19	00, Febr	nary 1, G.M.	TE G 383 T. 1753. He comparison	our angle fair	e, W 158	1	900, Mar	rch 7, G.M.T	ATE G 391 7. 15\05. Hou comparison		W 253		ve-Le n G 391	
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor, from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by; Formula	Cor. from Curve	Wave- Leugth	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
2-3	wn D n B nn D from to	mm. 58, 2020 57, 7867 57, 4610 57, 1240 56, 4610 56, 0640 55, 3284 54, 6426 54, 2796 53, 9170 53, 6900 53, 0780 52, 8140 52, 6540	4.m. 4395.10 4402.86 4402.86 4402.86 4415.40 4428.10 4435.90 4450.50 4464.39 4471.86 4471.86 4471.86 4471.86 4472.40 4484.20 4497.20 4502.80 4506.30	-212224 -25 -28283031323233333333	t.m. 4394.89 4402.64 4408.76 4415.15 4427.82 4435.62 4450.20 4461.08 4471.54 4479.08 4483.87 4196.87 4502.47 4505.97	11 15 2 1	nn D nn D nn B	mm. 60.4865 60.1810 60.0825 60.1200 60.0290 59.9480 59.7610 58.7620 58.6370 57.6272 57.3560 57.1490 57.0296 56.9140 56.4620 56.4000 56.575 56.755 56.755 56.755 56.755 56.755 56.755 56.755 57.755 56.755 56.755 56.755 56.755 56.755 56.755 56.755 56.755 56.755	t.m. 4395.64 4401.30 4403.19 4402.40 4405.70 4405.70 4409.20 4415.90 4428.40 4431.01 4436.31 4449.46 4450.60 4463.07 4463.07 4465.40 4474.80 4476.00 4480.80 4482.91 4488.18 4490.62 4497.77 4502.53 4503.10 4506.80 4518.25 4518.92	$\begin{array}{c} -51\\ -51\\ -51\\ -51\\ -51\\ -51\\ -52\\ -52\\ -52\\ -52\\ -52\\ -51\\ -51\\ -51\\ -51\\ -51\\ -51\\ -51\\ -51$	t.m. 4395.13 4400.79 4402.68 4401.89 4403.69 4405.19 4405.19 4405.79 4415.38 4427.88 4430.49 4435.79 4448.95 4450.43 4455.89 4460.09 4462.56 4463.19	t.m. 95.13 00.79 02.68 01.89 03.69 05.19 08.68 15.38 27.88 30.49 35.79 48.95 50.43 55.89 60.09 62.56 63.19 64.89 80.30 82.42 87.69 90.13 97.29 02.05 02.63 06.33 07.12 09.99 12.43 17.79 18.46		t.m. 4395.06 4400.72 4402.61 4403.6 4405.12 4408.61 4415.31 4427.81 4430.42 4435.72 4448.88 4450.35 4455.81 4460.01 4462.48 4463.1 4464.8 4475.42 4480.22 4482.34 4487.61 4490.05 4497.21 4501.97 4506.3 4507.01 4509.91 4517.71 4518.38
						8	n B	51.2459	4522.45	-46	4521,99	21.99	- 8	4521 91

 $74\ SCHJELLERUP-Continued$

					14 50	11013	1,1,111	UP-Com	in were					
		PLAT	re G 383					PLA	те G 391				ve-Le m G 39	
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
1	nn D	mm. 51.8680 51.6014	t.m. 4523.57	-32 -32	t.m. 4523.25 4529.20	2 0	nn D nn D	mm. 54.1879 54.0010	t.m. 4523.73 4527.90	$-45 \\ -45 \\ -45$	t.m. 4523.28 4527.45	t.m. 23.28 27.45	- 8 - 8	t.m. 4523.20 4527.4
1			4529.52			i i	nn D nn D	53.8414 53.6220	4531.48 4536.40	-44 -44	4531.04 4535.96	31.04 35.96	- 8 - 8 - 8	$4530.96 \\ 4535.9$
В {	from to	51.2760 51.1430	4536.90 4539.90	$ \begin{array}{c c} -31 \\ -31 \\ \cdots \end{array} $	4536.59 4539.59	B }	from to nn D	53.5910 53.4450 53.4177	4537.10 4540.40 4541.08		4536.66 4539.96 4540.65	36.66 39.96 40.65	- 8 - 8	4536.6 4539.9 4540.57
Max	В	50.7896	4547.94	-30	4547.64	В	from to	53.1430	4549.00 4549.00	-43 -42	4548.58	46.87	- 8 - 8	4546.8 4548.5
Max	nn D B	50.5253	4554.04 4558.74	$ \begin{array}{c c} -29 \\ -29 \\ -29 \end{array} $	4553.75 4558.45	В}	$\begin{array}{c} \text{w D} \\ \text{from} \\ \dots \end{array}$	52.8309 52.7730	4554.56 4555.90	$-41 \\ -41 \\ \cdots$	4554.15 4555.49	54.15	- 8 - 8	4554.07 4555.4
						(nn D nn D	52.5770 52.5555 52.4284	4560.40 4560.97 4563.95	$\begin{vmatrix} -41 \\ -41 \\ -40 \end{vmatrix}$	4559.99 4560.56 4563.55	59.99 60.56 63.55	- 8 - 8 - 8	4559.9 4560.48 4563.47
$\frac{\cdots}{2}$	wn D n D	49.7528 49.5500	4572.14 4576.97	$-27 \\ -26$	4571.87 4576.71	1	n D nn D nn D	52,3319 52,0960 51,8300	4566.22 4571.80 4578.10	$\begin{bmatrix} -40 \\ -39 \\ -37 \\ -25 \end{bmatrix}$	4565.82 4571.41 4577.73	65.82 71.41 77.73 91.35	- 8 - 8 - 8	4565.74 4571.3 4577.7
						4	nn D nn D n B	51.2670 51.1280 51.0594	4591.70 4595.12 4596.78 4600.17	$ \begin{array}{r} -35 \\ -35 \\ -35 \\ -34 \end{array} $	4591.35 4594.77 4596.43 4599.83	94.77 96.23 99.83	- 8 - 8 - 8	4591.3 4594.69 4596.15 4599.75
	D	10 2016	1000 01		4606.60	1 1	n B n D n B wn D	50.9218 50.8759 50.8237 50.6337	4601.29 4602.58 4607.29	-34 -34 -34 -33	4600.95 4602.24 4606.96	00.95 02.24 06.96	- 8 - 8 - 8	4600.86 4602.16 4606.88
2	wn D	48.3246	4606.81	-21 	4612.10	8 5 1	wn B n D	50.5428 50.4861	4609.30 4610.96	$-32 \\ -32$	4608.98 4610.64	08.98	- 8 - 8	4608.90 4610.56
2	nn B	48.1030	4612.30	$\begin{bmatrix} -20 \\ -20 \\ -20 \end{bmatrix}$	4614.90	2	n D	50.3577	4614.17	-32 -32	4613.85	13.85	- 8 - 8	4613.77
8	В	47.8800	4617.92	-20	4617.72	$\begin{array}{ c c c } & 6 & \\ & 3 & \\ & 10 & \\ & 2 & \\ \end{array}$	n B n D w B	50.3072 50.2564 50.1900 50.1222	4616.71 4618.38 4620.09	$\begin{bmatrix} -32 \\ -32 \\ -31 \\ -31 \end{bmatrix}$	4616.39 4618.07 4619.78	16.39 18.07 19.78	- 8 - 8 - 8	4616.31 4617.99 4619.70
Max	wn D B n D	47.8031 47.7306 47.6758	$\begin{bmatrix} 4619.86 \\ 4621.70 \\ 4622.08 \end{bmatrix}$	$\begin{vmatrix} -19 \\ -19 \\ -19 \end{vmatrix}$	$\begin{array}{c} 4619.67 \\ 4621.51 \\ 4621.89 \end{array}$	3 5 	n D n B	50.0477	4621.97	-31 -30 -30	4621.66	21.66	- 8 - 8	4621.58
Max Max	В В	47.6200 47.5120	4624.50 4627.30	-18 -18	4624.32 4627.12	$egin{array}{c} 1\text{-}2 \ \mathrm{B} \end{array}$	from	49,9680	4624.00	-30 	4623.70	23.70	- 8 	4623.6
	B		4631.32	-18 -18	4631.14	6-8			4628.30 4629.49 4631.55	$ \begin{array}{r} -30 \\ -29 \\ -29 \end{array} $	4628.00 4629.20 4631.26	28.00 29.20 31.26	- 8 - 8 - 8	4627.9 4629.12
Max 5	nn B	47.3525	4638.69	-13 -17	4638.52	$\frac{1}{7}$	nn D nn D B	49.5357 49.4289 49.3664	4635.00 4637.78 4639.39	$\begin{vmatrix} -29 \\ -29 \\ -29 \\ -28 \end{vmatrix}$	4634.71 4637.49 4639.11	34.71 37.49 39.11	- 8 - 8 - 8	4634.63 4637.41 4639.03
• • • • • • • • • • • • • • • • • • • •	nn D wn B	47.0072 46.9237	$\begin{array}{c} 4640.22 \\ 4642.38 \end{array}$	$\begin{vmatrix} -17 \\ -17 \end{vmatrix}$	4640.05 4642.21	5 10 Limits	D B	49.3100 49.2399 49.2850	$\begin{array}{r} 4641.12 \\ 4642.67 \\ 4641.50 \end{array}$		4640.84 4642.39 4641.22	40.84 42.39 41.22	- 8 - 8 - 8	4640.76 4642.31 4641.1
	wn D	46.7670	4646.50	-16	4646.34	Limits	1	49.2030	4643.60	$-\frac{28}{27}$	4643.32	43.32	- š - s	4643.2
	wn B wn B from	46.3860 46.0320 44.3100	4656.50 4665.90 4713.30	$ \begin{array}{c c} -16 \\ -15 \\ -20 \end{array} $	4656.34 4665.75 4713.10	1-2	n B	48.3704	4665.57	-25	4665.32	65.32	- 8	4665.24
D }	to	44.1910 44.1910	4716.70 4716.70	-20 -20 -20	4716.50 4716.50		wn D		4715.22	-21 	4715.01	15.01	- 8 	4714.93
В {	to nn D	44.0200 43.9790	4721.60 4722.80	$ \begin{array}{c c} -21 \\ -21 \\ -21 \end{array} $	4721.39 4722.59	$egin{array}{c} 1-2 \ \cdots \ i \end{array}$	n B	46.3751	4720.67	-21 -21	4720.46	20.46	- 8 - 8	4720.38 4722.85
• • •	nn D	43.7280	4730.00	-23	4729.77	1	nn D	46.0890	4728.80	-20	4728.60	28.60	- S	4728.52

$74\ SCHJELLERUP-Continued$

Plate G 383								PL.	WAVE-LENGTH from G 391 only					
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
D { 10 10	from to wn D nn B nn D nn D	mm. 43 5460 43.4640 43 5025 43.4117 43.2249	t.m. 4735.30 4737.70 4736.56 4739.21 4744.69	-24 -24 -24 -25 -25 -26 -29	t.m. 4735.06 4737.46 4736.32 4738.96 4744.43	D { 10 Con. { Spec. } Us. { B { B {	from to B from to D from to nn D f, om to nn D from to from to from to from to from to from to from to from to	mm. 45.8880 45.7790 45.7409 45.7670 45.6230 45.5649 45.5043 45.5043 45.4030 45.3820 45.2340 45.0980 45.0980 41.8240 44.8089 44.8089 44.7800 44.6150	t.m. 4734.60 4737.87 4738.97 4738.97 4739.90 4712.40 4741.12 4742.56 4745.90 4748.90 4749.50 4757.90 4757.90 4766.10 4766.60 4767.40 4767.40	-20 -20 -20 -20 -20 -20 -20 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19	t.m. 4734,40 4737,67 4738,77 4739,70 4742,20 4742,26 4745,71 4745,71 4748,71 4753,41 4757,71 4760,21 4760,21 4766,41 4767,21 4767,21	t.m. 34.39 37.67 38.77 39.70 42.20 43.92 42.36 45.71 48.71 49.31 57.71 58.91 60.21 65.91 67.21 72.21	88 888888888888888888888888888888888888	t.m. 4734.3 4737.6
 1 2 B {	nn D nn D nn D from to	41.8912 41.7176 41.6890	4773.60 4784.90 4790.28 4791.20	-3234 -36 -36	4773.28 	B \ 1-2 \ 2 \ B \ \	nn D from to nn D from to n D from to n D from to n B n D n D	44,5834 44,5570 44,4160 44,2150 44,0579 44,0290 43,8300 43,6348 43,4940 43,3270	4773.42 4774.20 4778.50 4784.70 4789.53 4790.40 4796.61 4802.71 4807.10 4812.40	-19 -19 -19 -19 -19 -19 -19 -20 -20	4773.23 4774.01 4778.31 4784.51 4789.34 4790.21 4796.42 4802.52 4806.90 4812.20	73, 23 74, 01 78, 31 84, 51 89, 34 90, 21 96, 42 02, 52 06, 90 12, 20	- 8 - 8 - 8 - 8 - 8 - 8 - 8	4773.15 4773.9 4778.2 4784.43 4789.26 4790.1 4796.3 4802.44 4806.82 4812.12

74 SCHJELLERUP

PLATE G 373 1900, January 7, G.M.T. 15\(\text{0}\). Hour angle, E 2\(\text{1}\) Star good; comparison good							PLATE G 386 1900, February 16, G.M.T. 1488. Hour augle, W 093 Star poor; comparison fair							MEAN WAVE-LENGTH		
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity		
		mm.	t.m.		t.m.			mm.	t.m.		t.m.	t.m.		t.m.		
3	n D	49.1320	5173.44	16	5173.28	3-4	D	45,1046	5173.79	-48	5173.31	73.30	- 9	5173.21		
	from	49.2160	5182.20	-17	5182.03							81.83	- 9	5181.7		
D3		10.101.	2255			1	D?	44.8110	5184.50	-50	5184 00	84.20	- 9	5184.11		
(to	49.1240	5186.00	-17	5185.83							85,63	- 9	5185.5		
Con.	from	49.1240	5186.00	-17	5185.83			:::::::::::::::::::::::::::::::::::::::	#400 Fo	* * *	7400 (11)	85.63	- 9	5185.5		
7		10 0750	5101 00		5101 ED		D?	44.7210	5189,50	-50		89.20	- 9	5189.11		
Spec.	to D	48,9780	5191.90 5193.32	$-17 \\ -18$	5191.73		T) 93	4.4 (%)()()	5109 40	51	5102.00	91.53 $ 93.12 $	- 9	5191.4		
Max	B	48.8394	5197.65	-18	5193.14 5197.47		D??	44.6200	5193,60	-51	5193,09	97.27	$= \frac{9}{9}$	5193.03 5197.18		
max (from	48.6610	5205.10	-19	5201.91							01.71	_ 9	5201.6		
\mathbf{D}		10.0010	102007.10	117	0201.01		D??	44.2120	5210.60	-52	5210.08	10.28	$=\frac{9}{9}$	5210.19		
1	to	48,5040	5211.60	-19	5211.41			11.2127	0210.00		17210.00	11.21	- 9	5211.1		
i	from	48,4780	5212.70	-19	5212.51							12.31	- 9	5212.2		
$B^{\frac{1}{2}}$							D??	44.0580	52,1700	-53	5216 47	16.67	- 9	5216.58		
1	10	48,1930	5224.70	-20	5224.50							21.30	- 9	5224.2		
6.8	w D	48.1469	5226,66	-20	5226,46		wn D	43.8320	5226,60	-54	5226.06	26.26	- 9	5226.17		
В₹	from	48.0860	5229.30	-20	5229.10							28,90	- 9	5228.8		
0,5	to	47.9820	5233,78	-20	5233.58							33,38	- 9	5233.3		

$74\ SCHJELLERUP-Continued$

 $74\ SCHJELLERUP-Continued$

						11								
PLATE G 373								Pı		MEAN WAVE-LENGTH				
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor, from Curve	Wave- Length	Uncorrected for Velocity	Cor.	Corrected for Velocity
Max 1 1 1 1-2 1	nn D n B n D B wn D	mm. 41.6172 41.4658 41.4334 41.4009 41.2419 41.2081	t,m. 5544.11 5552.62 5554.39 5556.22 5565.19 5567.10	$ \begin{array}{c c} -12 \\ -12 \\ -12 \\ -12 \\ -13 \\ -13 \end{array} $	mm. 55 [3-99 5552 . 50 5554 . 27 5556 . 10 5565 . 06 5566 . 97	1-2	nn B B B n Đ	mm. 37,3140 37,1281 36,9359 36,9050	t.m. 5543,80 5551,21 5565,07 5566,82	-46 -46 -46 -46	t.m. 5543.34 5553.75 5564.61 5566.36	t.m. 43.67 52.30 54.01 55.90 64.83 66.67		t.m. 5543.57 5552.20 5553.91 5555.80 5564.73 5566.57
0 -1 9 4 1	nn D B n D n D n D n D	41.1502 40.9025 40.8559 40.8231 40.7252	5570.39 5584.55 5587.24 5589.13 5594.79	-13 -13 -13 -13 -13	5570.26 5584.42 5587.11 5589.00 5594.66	1 9 3 1 1	w D w D n B n D nn D	36.7830 36.6009 36.5467 36.5076 36.4099	5573.77 5584.20 5587.32 5589.58 5595.24	$ \begin{array}{r} -46 \\ -46 \\ -46 \\ -46 \\ -46 \\ -46 \\ \end{array} $	5573,31 5583,74 5586,86 5589,14 5594,78	70.06 73.51 84.08 86.99 89.07 94.72	$ \begin{array}{r} -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ \end{array} $	5569.96 5573.41 5583.98 5586.89 5588.97 5594.62 5597.37
3 1 2 3 4	nn D nn D n D wn D	40.6685 40.6351 40.4658 40.2844 40.2078	5598 08 5600.02 5609.91 5620.60 5625.13		5597,94 5599,88 5609,77 5620,45 5624,98	1 D \ 3-4 5	wn B n D from to nn D nn D	36,3717 36,1591 36,0070 35,8770 35,9767 35,8986	5609, 88 5618, 90 5626, 50 5620, 63 5625, 26	$ \begin{array}{r} -46 \\ -47 \\ -47 \\ -48 \\ -48 \\ -48 \end{array} $	5609.41 5618.43 5626.02 5620.15 5624.78	$ \begin{vmatrix} 97.47 \\ 99.68 \\ 09.59 \\ 18.63 \\ 26.22 \\ 20.30 \\ 24.88 \end{vmatrix} $		5599.58 5609.49 5618.5 5626.1 5620.20 5624.78
B / 10 Head	from to w D	40.1750 40.0810 40.0467 40.0051	5627.09 5632.70 5634.73 5637.22	$ \begin{array}{r} -15 \\ -15 \\ -15 \\ -16 \\ & \dots \end{array} $	5626.94 5632.55 5634.58 5637.06	Con. 5 Spec. (10 Head 2 1 2	wn D n B n D	35,8710 35,7790 35,7436 35,7024 35,6791 35,6555 35,6234	5626,90 5632,40 5634,50 5636,97 5638,37 5639,79 5641,71	$ \begin{bmatrix} -48 \\ -48 \\ -48 \\ -48 \\ -48 \\ -48 \\ -48 $	5626.42 5631.92 5631.02 5636.49 5637.89 5639.31 5611.23	26.68 32.24 34.30 36.78 38.09 39.51 41.43	$ \begin{array}{r} -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ \end{array} $	5626.6 5632.1 5634.20 5636.68 5637.99 5639.41 5641.33
B \ \ 1	n D from to n D	39,8922 39,8720 39,6670 39,6549	5644.00 5645.30 5657.64 5658.37	-16 -16 -17 -17	5643.84 5645.14 5657.47 5658.20	1 3 4	n B n D nn D nn D wn D	35.4822 35.3383 35.1314	5650.24 5658.98 5671.66	-49 -49 -50	5643.77 5649.75 5658.49 5671.16	43.81 44.94 49.95 57.27 58.35 71.36	$ \begin{array}{c} -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \end{array} $	5643.71 5644.84 5649.85 5657.2 5658.25 5671.26
$\begin{array}{c} 2\\2\\1\\1\\6\\0-1\\2\end{array}$	wn D B nn D n B B	39,3863 39,3469 39,3071 39,1803 39,0737 38,9700 38,8886	5674,83 5677,29 5679,72 5687,59 5694,25 5700,75 5705,88	$ \begin{array}{r r} -18 \\ -18 \\ -19 \\ -19 \\ -19 \\ -20 \\ \end{array} $	5674.65 5677.11 5679.54 5687.40 5694.06 5700.56 5705.68	1 5 3	n D nn D n B	35,0436 34,8822 34,7734 34,5880	5677.07 5687.09 5693.88 5705.54	-50 -51 -51 -52	5676,57 5686,58 5693,37 5705,02	74.45 76.84 79.34 86.99 93.72 00.36 05.35		5674.35 5676.74 5679.24 5686.89 5693.62 5700.26 5705.25
1 2 4 1 3	wn D B n D wn B n D n D n B	38,8399 38,7990 38,7682 38,6995 38,6360 38,5946	5708.96 5711.55 5713.50 5717.87 5721.92 5724.57	$ \begin{array}{r} -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \end{array} $	5708.76 5711.35 5713.30 5717.67 5721.72 5724.37	1 1 2	n D wn B n D		5708.84 5713.18 5717.43 5721.47	-52 -52 -53 -53	5708.32 5708.32 5712.66 5716.90 5720.91	08.54 11.15 12.98 17.29 21.33 24.17	$ \begin{array}{c} -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \end{array} $	5708.44 5711.05 5712.88 5717.19 5721.23 5724.07
Max	n D B nn D	38.4744 38.3920 38.2860	5732.28 5737 61 5744.48	-22 -22 -22 -22	5732.06 5737.39 5714.26	D }	to	34.2510	5727.00	-53 -54	5726.47	26.67 31.86 33.46 37.19 44.06	$ \begin{array}{r} -10 \\ -10 \\ -10 \\ -10 \\ -10 \end{array} $	5726.6 5731.76 5733.4 5737.09 5743.96
1 1 B \}	n D wn D nn D from to from	38.0039 37.8645 37.7701 37.8770 37.7090 37.7090	5762.92 5772.13 5778.40 5774.00 5782.50 5782.50	$ \begin{array}{r} -24 \\ -24 \\ -24 \\ -24 \\ -25 \\ -25 \end{array} $	5762.68 5771.89 5778.16 5773.76 5782.25 5782.25		nn D nn D	33.6910	5763.40 5771.96	-56 -56 	5762.84	62.76 71.69 77.96 73.56 82.05 82.05	$ \begin{array}{r} -10 \\ -10 \\ -10 \\ -10 \\ -10 \\ -10 \end{array} $	5762.66 5771.59 5777.86 5773.5 5782.0 5782.0
D } 1 2	nn D n D	37.5710 37.4625 37.1044	5791.80 5799.05 5823.47	$ \begin{array}{r} -25 \\ -25 \\ -25 \end{array} $	5791.55 5798.80 5823.22							91.35 98.60 23.02	$\begin{vmatrix} -10 \\ -10 \\ -10 \end{vmatrix}$	5791.3 5798.50 5822.92

78 SCHJELLERUP

	13 50113 E			_				
PLATE G 344 1899, October 4, G.M.T. 20h±. Hour angle, E 3h± Star good; comparison excellent	1900, Mar	PL. ch 21, G.M.T Star excellen	ATE G 392 . 18h±. Ho t; comparis	ur angle on good	, E 3h ±	MEAN	WAVE	-Length
Intensity Char-Scale Reading Formula Curve Cor. War-		Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
intended and Scale Length by from Length	h ten-sity acter 1 nn D 2 29 8 w D 38 1 nn D 47 nn D 33 wn D 3 34 nn D 33 nn D 3 47 1 nn D 48 3 nn E 33 nn E 3 30 nn E 30 3 nn E 30 2 n D 30 3 nn E 30 2 n D 30 3 nn E 30 3 n E 30 3 n E 30 3 n E 30 3 n E 31 n E 1 32 n E 1 33 n E 1 34 n I n I 35	mm. 53.6860 53.5635 53.3033 52.9584	Length by Formula t.m. 4388.20 4390.41 4395.30 4401.77 4405.82 4409.40 4415.87 4428.28 4430.98 4436.58 4440.32 4449.65 4451.15 4453.99 4456.28 4460.64 4463.70 4464.32 4465.40 4465.40 4465.40 4465.40 4465.40 4465.40 4465.40 4465.40 4465.40 4465.40 4465.50 4502.59 4504.61 4509.56 4510.69 4510.69 4514.03 4518.04 4519.50 4522.70 4524.90 4528.48 4532.18	-40 -40 -40 -42 -44 -45 -46 -49 -55 -52 -54 -55 -58 -58 -58 -58 -58 -58 -60 -60 -61 -61 -61 -62 -63 -64 -65 -66 -66 -67 -67 -67 -67 -67 -67 -67 -67	t.m. 4387.80 4390.01 4394.88 4401.33 4405.37 4408.94 4415.38 4427.76 4430.46 4136.04 4430.77 4449.08 4450.57 4453.41 4455.70 4460.05 4462.41 4463.10 4463.72 4464.79 4465.29 4464.79 4465.29 4464.79 4465.29 4464.79 4465.37 4508.89 4490.18 4507.36 4508.89 4501.02 4513.36 4517.37 4518.36 4517.37 4518.36 4522.03 4524.23 4527.81 4531.51	rected	for	for Velocity 1.m. 4387.6 4389.82 4395.10 4401.14 4402.68 4405.21 4406.25 4420.55 4422.94 4426.25 4427.63 4430.37 4435.92 4438.14 4442.22 4444.58 4447.66 4448.88 4450.32 4453.23 4455.52 4457.37 4460.07 4462.24 4464.61 4465.37 4468.68 4471.58 4477.63 4484.61 4465.37 4468.68 4471.58 4477.63 4480.21 4482.23 4487.62 4489.86 4471.58 4489.86 4471.58 4480.21 4480.81 4480
D \ Max \ 54.9528 \ 4535.36 \ +25 \ 453 \ 453 \ to \ 54.9150 \ 4536.20 \ +25 \ 453 \ 453 \ 1 \ B \ 54.8867 \ 4536.88 \ +25 \ 453 \ 453 \ \ \ nn D \ 54.7461 \ 4540.13 \ +26 \ 454 \ 454 \ 5867 \ 4543.76 \ +27 \ 4544 \ 4545 \	61 2 nn I 45 13 3 n I 97 4 n I	3 46.3675 3 46.2957	4536.42 4538.14 4540.00 4541.55	-67 -67 -66 -66	4535.75 4537.47 4539.34 4540.89	35.68 36.65 37.30 39.16 40.64	+ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4535.70 4536.7 4537.32 4539.18

78 SCHJELLERUP — Continued

		PLA	те G 344					P1.	ATE G 392			MEAN	WAVE	LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor.	Corrected for Velocity
		Scale	Length by	from		ten-	n B wn D wn D from to n B n D n B n D n B n D n B n D n B n D n B n D n D	Scale	Length by	from Curve	t.m. 4547.94 4549.50 4559.55 44 4559.85 4560.70 4562.28 4563.69 4564.89 4565.81 4570.46 4570.46 4570.46 4570.58 4580.83 4580.83 4580.03 4580.20 4581.86 4580.38 4607.38 4607.38 4616.63 4618.38 4616.63 4618.38 4620.12 4621.72 4623.22	rected Velocity t.m. 47.73 49.23 53.77 55.24 58.63 59.65 60.45 62.08 63.49 65.59 66.25 70.26 72.53 74.54 77.24 78.35 80.45 82.49 83.91 85.60 82.49 83.91 85.60 82.49 83.91 85.60 82.49 83.81 96.02 92.92 93.15 10.20 93.12 95.15 10.20 93.12 95.15 10.20 93.15 10	for m. 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	for Velocity t.m. 4547.75 4549.25 4553.79 4555.3 4558.65 4559.7 4560.47 4562.10 4563.51 4564.71 4566.3 4570.3 4572.55 4574.6 4577.26 4578.0 4579.37 4580.47 4581.68 4582.51 4583.93 4585.62 4589.33 4585.62 4589.33 4607.20 4603.14 4607.20 4602.9 4608.3 4608.2 4609.17 4610.22 4609.17 4610.22 4612.31 4613.98 4615.21 4616.56 4618.09 4621.51 4622.99 4624.59 4621.51 4622.99 4624.59 4621.51 4618.85 4621.51 4622.99 4624.59 4624.59 4627.9 4629.84 4639.45
1 1 6on. \ Spec. \ Max D \ \ Max	from to	50.1000 49.7716 49.6567 48.0038 47.9570 47.7840 47.7092 47.3510 47.2110 47.2645	4655,76 4664,60 4667,73 4713,96 4715,30 4716,00 4716,00 4722,48 4732,90 1737,20 4735,49	+59 +62 +62 +72 +73 +74 +73 +74 +76 +77 +77	4656,35 4665,22 4668,35 4714,68 4721,04 4721,04 4716,73 4723,22 4733,66 4737,97 4736,26	10	n D n D n D n D timits { timits } w D	41,9076 41,5463 41,0770 39,4022 39,1457 38,7120 38,6130 38,6618	4647, 26 4656, 78 4669, 30 4715, 60 4722, 92 4735, 40 4738, 30 4736, 91	-53 -51 -49 -38 	4646 73 4656 27 4668.81 4715 22 4722 55 4735 05 4737.96 4736.56	46,53 56,31 65,42 68,58 14,95 16,23 21,24 16,93 22,67 34,+ 37,97 36,41	++++++++++++++	4646.55 4656.33 4665.44 4668.60 4714.97 4716.3 4721.3 4717.0 4722.69 4731.± 4738.0 4736.43

									in acce					
		PLA	те G 344					PL.	ATE G 392			MEAN	WAVE	E-LENGTH
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
Con. { Spec. } 2-3 10 1 2-3	from to n B wn D Head from B to n D nn D nn D nn D nn D from to shown B nn D nn D nn D nn D nn D nn D nn D	mm. 47.2070 47.0650 47.1801 47.0048 46.9490 46.9490 46.9200 46.5340 46.5063 46.2660 46.0522 45.9850 46.0190 45.8670 45.6792 45.5138 45.3270 44.8111 44.6939 44.6730 44.4730 44.6003 44.4730 44.4811 44.2406 44.1856 44.1856 44.1856 43.1985 43.0744 43.0238 42.7254 42.7254 42.7254 42.7254 42.7254 42.7254 42.725963 42.4570 42.1798 41.6290 41.4997	t.m. 4737, 20 4741, 30 4737, 99 4743, 20 4744, 80 4744, 80 4745, 72 4757, 30 4758, 16 4765, 40 4772, 04 4774, 10 4773, 00 4777, 70 4788, 78 4794, 65 4811, 11 4814, 89 4815, 50 4822, 98 4814, 88 4814, 89 482, 13 4829, 67 4831, 48 4874, 68	+77 +77 +77 +77 +77 +77 +78 +78 +78 +80 +80 +81 +81 +81 +82 +82 +82 +82 +82 +82 +82 +82 +81 +81 +81 +81 +81 +81 +81 +81 +81 +81	t.m. 4737.97 4742.07 4738.76 4743.97 4745.58 4745.58 4746.50 4758.10 4758.96 4766.21 4773.81 4773.81 4773.81 4778.52 4789.60 4795.47 4811.93 4815.71 4816.32 4822.81 4818.74 4823.79 4823.79 4827.94 4830.48 4832.29 4855.35 4869.60 4871.33 4817.34 4879.59 4881.62 4883.54 4883.54 48883.54 48883.54 48883.54 48883.54 48883.54 48883.54 48883.54 48883.54 48883.54 48883.54		from	mm. 38.6130 38.4630 38.5750 38.4630 38.5750 38.4630 38.3535 38.3535 38.3535 38.3535 37.6622 37.4554 37.3635 36.3657 36.2005 36.1672 36.0481 36.0130 35.9170 35.8040 35.8040 35.5345 35.5355 35.5345 35.5355 3	t.m. 4738.30 4742.70 4739.44 4744.34 4742.70 4745.94 4745.94 4745.94 4767.15 4775.60 4775.60 4775.60 4775.60 4784.89 4790.19 4790.19 4795.92 4802.71 4807.48 4811.77 4812.83 4816.62 4817.70 4820.80 4820.80 4824.45 4826.72 4826.72 4826.73 4826.72 4826.73 4826.72 4826.73 4826.73 4826.73 4826.73 4826.73 4826.73 4826.73 4827.03 4827.03 4827.03	-34 -33 -33 -33 -33 -33 -33 -33 -33 -33	t.m. 4737,96 4742,37 4739,10 4744,01 4742,37 4745,61 4745,61 4745,61 4750,08 4766,85 4772,51 4775,31 4775,31 4784,61 4789,92 4795,65 4802,45 4807,23 4811,52 4812,58 4816,37 4817,45 4820,55 4819,83 4824,20 4826,47 4850,82 4852,07 4856,64 4857,94 4860,17 4856,67 4857,94 4860,17 4861,63 4865,57 4871,77 4875,66 4887,94 4860,17 4861,63 4865,57	Velocity t.m. 37.97 42.22 38.93 43.99 42.17 45.41 45.41 45.78 46.70 49.88 58.30 58.98 66.53 72.68 75.11 74.01 78.72 84.52 89.76 95.56 02.25 06.87 11.32 12.26 16.04 16.89 21.68 19.29 24.00 26.27 28.29 30.64 32.59 45.57 50.62 51.95 55.71 57.74 59.97 61.43 65.46 69.80 71.55 75.54 79.79 81.69 83.74 86.32 91.12 98.78	++++++++++++++++++++++++++++++++++++++	Velocity t.m. 4738.0 4742.2 4738.95 4744.01 4742.2 4745.43 4745.43 4745.8 4746.72 4749.90 4758.3 4759.00 4766.55 4772.70 4775.13 4774.0 4775.7 4784.54 4812.28 4816.06 4816.9 4811.31 4824.02 4826.29 4821.7 4806.89 4816.96 4816.96 4816.96 4817.57 4855.73 4857.76 4859.89 4851.97 4855.73 4857.76 4859.89 4869.82 4879.81 4881.71 4883.76 4889.82 4879.81 4881.71 4888.76 4889.80 4901.34 4921.00 4905.39
	nn D nn D	41.2530 40.6280	4933,50 4956,80	$\begin{array}{c c} +63 \\ +58 \end{array}$	4934.13 4957.38	1	n D	32.5875	4934.33	-34 	4933.99	33.79 57.58	$\begin{array}{c c} + \overline{2} \\ + 2 \end{array}$	4933.81 4957.60

78 SCHJELLERUP

18	899, Marc	h 6, G.M.T.	TE G 300 1458. Hour comparison	angle, I			0, Febru	PL:	ATE G 384 F. 1854. Ho comparison	ur angle	, W 2b9	MEAN	WAVE	LENGTH
Inten-	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Leugth	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curvo	Wave- Length	Uncor. rected for Velocity	Cor. for V	Corrected for Velocity
1 1 3 2 2 1 2 9 6 6 4 1 3 2 1 4 2 3 3 6 5 5 2 2 5	wn D n D n D n D n D n D n D n D n D n D	mm. 48.4927 48.2176 48.0836 47.9884 47.6671 47.4602 47.1690 46.9888 46.6577 46.5657 46.4702 46.1146 45.8969 45.8949 45.4899 45.3846 45.3227 45.1380 45.0951 44.6933 44.6603 44.6603 44.6603 44.6633	Length by Formula t.m. 5173, 43 5184, 30 5489, 63 5193, 44 5206, 38 5247, 26 5234, 23 5248, 07 5251, 95 5255, 99 5271, 17 5280, 56 5284, 56 5284, 56 5284, 56 5283, 44 5305, 72 5308, 29 5313, 93 5315, 85 5318, 26 5321, 04 5329, 42 5335, 45 5337, 57 5339, 86	from Curve -47 -52 -51 -56 -62 -67 -74 -79 -80 -89 -89 -92 -93 -93 -93 -93 -93 -93 -92 -91 -90	Leugth t.m. 5172.96 5183.78 5189.09 5192.88 5205.76 5214.14 5216.59 5226.06 5233.49 5247.28 5251.15 5255.17 5270.31 5279.67 5283.67 5297.42 5302.06 5304.79 5307.36 5313.00 5314.92 5317.33 5320.11 5328.50 5334.54 5336.66 5338.96	1	nn D n D n D n D nn D nn D nn D nn D nn	mm. 47.8443 47.6098 47.3500 47.1157 46.7480 46.5500 46.3139 46.1290 45.8192 45.7209 48.2825 45.0008 44.6710 44.5083 44.3315 44.2817 44.285 43.9740 43.8491 43.8101 43.7622	Length by Formula t.m., 5164, 72, 5174, 04, 5184, 50, 5193, 96, 5209, 00, 5217, 20, 5227, 08, 5234, 90, 5248, 03, 5252, 24, 5271, 23, 5283, 60, 5298, 26, 5313, 55, 5315, 68, 5318, 24, 5329, 89, 5335, 65, 5337, 45, 5339, 67	-42 -44 -45	Length 1.m. 5164.30 5173.60 5184.05 5193.49 5208.52 5216.72 5226.59 5231.41 5247.54 5251.75 5270.75 5283.13 5297.79 5305.10 5313.09 5345.22 5317.79 5329.45 5335.21 5337.01 5339.24	rected for Velocity t.m. 64.24 73.28 83.92 89.15 93.19 05.82 08.46 14.20 16.66 26.33 33.95 47.41 51.45 55.23 70.53 79.73 83.41 97.61 02.12 04.95 07.42 13.05 15.07 17.56 20.17 28.98 31.88 36.84 39.10	for V	for Velocity t.m. 5164.26 5173.30 5183.94 5189.17 5193.21 5105.84 5206.48 5214.22 5216.68 5226.35 5223.97 5247.43 5251.47 5255.25 5270.55 5270.75 5283.43 5297.63 5302.14 5304.97 5307.44 5313.07 5315.09 5334.90 5334.90 5334.90 5334.90 5334.90
2 3 3 6 9 1 8 9 Max 2 1 2 1 2 1 3 4 2 1 2 3 4 4 2 1 2 4	D n D n B n B n D wn B wn D wn D n B n D n B n D n B n D n B n D n B n D n B n D n B n D n B n D n B n D n D from to n D n D n D n D from n D n D n D n D n D n D n D n D n D n D	44.5122 44.3313 43.9718 43.9103 43.8618 43.7877 43.7409 43.6727 43.5840 43.3332 43.0561 42.9725 42.9725 42.13340 42.23340 42.2328 42.1175 42.0339 44.8930 41.5984 41.5984 41.3067	5312, 20 5350, 50 5367, 18 5369, 63 5375, 82 5375, 82 5375, 82 5381, 24 5385, 44 5397, 40 5410, 76 5414, 67 5421, 20 5423, 50 5430, 67 5446, 30 5446, 30 5446, 30 5446, 36 5457, 14 5461, 36 5468, 50 5172, 84 5183, 57	-908679 -78 -76 -74 -73 -70 -6559 -52 -50 -48 -46 -45 -42 -40 -383436 -31 -30 -292725	5341.30 5349.64 5366.39 5368.85 5371.57 5375.08 5377.30 5380.54 5384.79 5396.81 5410.24 5414.32 5417.19 5420.74 5423.05 5430.25 5436.25 5437.90 5456.82 5457.90 5456.82 5461.05 5468.20 5472.55 	1-2 1 5 6 2 2 2 1 6-8 2-3 3 Max B L 1 1 1 1 1 1 1 1		43,7065 43,6452 43,5437 43,1809 43,0726 43,0051 42,9539 42,8931 42,6847 42,5508 42,2907 42,1373 42,0780 41,8787 41,6340 41,5415 41,5070 41,3880 41,3565 41,2772 41,1319 41,0135 40,9408 40,8503 40,4560	5342.26 5345.11 5349.88 5352.69 5366.98 5375.36 5377.82 5380.73 5390.81 5397.32 5410.08 5417.66 5420.61 5430.57 5442.90 5447.62 5449.36 5455.44 5457.47 5468.65 5474.80 5478.59 5483.33 5497.10 5504.20	-43 -43 -442 -40 -39 -39 -38 -37 -36 -35 -34 -34 -34 -32 -32 -32 -32 -31 -31 -31 -30 -30 -30 -29 -29	5311, 83 5344, 68 5319, 46 5352, 27 5366, 58 5371, 75 5374, 97 5377, 43 5380, 35 5390, 44 5396, 96 5409, 73 5417, 32 5420, 27 5442, 58 5447, 30 5449, 04 5455, 13 5456, 76 5460, 83 5468, 35 5474, 50 5478, 29 5483, 03 5496, 81 5503, 91	41.57 41.62 49.55 52.21 66.49 68.91 77.36 80.45 80.45 80.45 80.38 96.89 96.89 96.89 17.26 20.51 23.11 30.25 30.25 42.52 46.00 47.60 48.98 51.06 55.79 68.28 72.44 78.20 83.25 68.28 72.44 78.20 83.25 68.28 72.44 78.20 83.25 72.44 78.20 83.25 72.44 78.20 83.20 83.20 83.20 83.20 84.20 85.20 85.20 86.20	+2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +	5341.59 5344.64 5349.57 5352.23 5366.51 5368.93 5371.68 5377.38 5380.47 5384.87 5380.47 5396.91 5410.01 5414.40 5417.28 5420.53 5423.13 5430.27 5442.54 5446.0 5451.08 5455.1 5456.81 5460.96 5468.30 5472.63 5474.46 5478.25 5483.19 5496.8 5198.22 5503.9

											1		
	Рьа	TE G 300					$\mathbf{P}\mathbf{L}_{i}$	ATE G 384			MEAN	WAVE	LENGTH
Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
n B n D	mm. 41.0955 41.0422 40.7966	t.m. 5509.74 5512.55	23 23 99	t.m. 5509.51 5512.32		nn D	mm. 40.2948	t.m.	-29 -99	t.m. 5512.52	t.m. 09.57 12.42 25.43	$+\frac{2}{2}$	t.m. 5509.59 5512.44 5525.45
nn D	40.6240	5534.76	-22 	5534.54	1	В	39.8639	5536.17	-28	5535.89	31.60 35.83	$+\frac{2}{1}$	5534,62 5535,85 5539,55
from to n D	40.4820 40.3890 40.3678	5542.40 5547.50 5548.61	$ \begin{array}{r} -22 \\ -22 \\ -22 \end{array} $	5542.18 5547.28 5548.39	B { 1	from to n D	39,7530 39,6560 39,6299	5542.30 5547.60 5549.05	$ \begin{array}{r} -28 \\ -28 \\ -28 \end{array} $	5542.02 5547.32 5548.77	$\begin{array}{c} 42.10 \\ 47.30 \\ 48.58 \end{array}$	$+\frac{2}{+2} + \frac{2}{2}$	5542.1 5547.3 5548.60
n D n D	40.2238 40.1000	5552.62 5556.44 5563.20	$-22 \\ -22$	5556,22 5562,98	0-1 0-1	nn D nn D nn D	39.4905 39.3853	5556.78 5562.65	$-28 \\ -28$	5556.50 5562.37	$56.36 \\ 62.68$	$+\frac{2}{2}$	5552.45 5556.38 5562.70 5567.23
n D	39.9680	5570,50	$-22 \\ -22 \\ -22$	5570.28		from	39.1860	5573.90	-28	5573.62	70.34 73.56 74.43	++++	5570.36 5573.6 5574.45
D	39.7204 39.6840	5584.21 5586.22	$ \begin{array}{c c} -22 \\ -22 \\ -22 \end{array} $	5583.99 5586.00	6) Head	to D	39.0016 38.9680 38.9670	5584.29 5586.20 5586.30	$ \begin{array}{r} -28 \\ -28 \\ -28 \end{array} $	5584.01 5585.92 5586.02	84.00 85.84 86.01	+ 2 2 2 2 2	5584.02 5585.9 5586.03
nn D n B	39.6240 39.5700	5589,61 5592.63	$-22 \\ -23$	5589.39 5592.40	1 3	n D n B	$38.9122 \\ 38.8661$	5589.38 5592.03	$-28 \\ -28$	5589.10 5591.75	89.25 92.08	$+\frac{2}{+2}$	5587.23 5589.27 5592.10 5594.98
nn D from	39.4770 39.4206 39.3020	5597.87 5601.05 5607.80	$ \begin{array}{r} -23 \\ -24 \\ -24 \end{array} $	5597.64 5600.81 5607.56	$\begin{array}{c} \overline{3} \\ 1-2 \\ \cdots \end{array}$	nn D	38.7651 38.7239	5597.82 5600.19	$ \begin{array}{r} -28 \\ -28 \\ \end{array} $	5597.54 5599.91	97.59 00.36 07.62	+ 2 + 2 + 2	5597.61 5600.38 5607.6
to from	39.2230 39.1080	5612.30 5618.80 5620.22	$ \begin{array}{c} -24 \\ -25 \\ -25 \end{array} $	5612.06 5618.55							$12.12 \\ 18.61$	$\frac{1}{2}$	5609,52 5612,1 5618,6 5620,18
to D	38,9900 38,9600 38,8405	5625.60 5627.30 5634.26	$ \begin{array}{r} -25 \\ -26 \\ -26 \end{array} $	5625,35 5627.04 5634.00	10	nn D	38.2854 38.1328	5625.70	-28 -28 -28	5625.42 5634.42	$\begin{array}{c c} 25.36 \\ 27.10 \\ 31.21 \end{array}$	$\begin{array}{c} + 2 \\ + 2 \\ + 2 \end{array}$	5625.38 5627.1 5634.23
from n B	38.7964 38.7964 38.7658	5636.81 5636.81 5638.60		5636.55 5636.55 5638.33	Head	В	38.0896	5637.26	$ \begin{array}{r} -28 \\ -28 \\ -28 \\ \end{array} $	5636.98 5638.91	$36.77 \\ 38.62$	$\begin{array}{c} + 2 \\ + 2 \end{array}$	5636.79 5636.8 5638.64
to nn D	38.6950 38.6625	$5642.70 \\ 5644.62$	$-27 \\ -28$	5642.43 5644.34	1	n D	37.9680	5644.49	-29	5614.20	$\frac{42.49}{44.27}$	$\frac{1}{1} + \frac{2}{2}$	5641.65 5642.5 5644.29 5650.24
nn B	38.5130 38.4306	5653.40 5658.25	-28 -29	5653.12 5657.96	$\frac{2}{1}$	n B n D	37.7830 37.7503	5655.57 5657.54	$-29 \\ -29$	5655.28 5657.25	53.18 55.22 57.61	$+\frac{2}{2} + \frac{2}{2}$	5653.2 5655.24 5657.63
nn D nn B nn D	38.1633 38.1202	5674.13 5676.70	-31 -32 -32 -32	5673,81 5676.38	$\frac{1-2}{2}$	n D n B n D	37.4736 37.4327	5674.31 5676.81	$ \begin{array}{r r} -30 \\ -30 \end{array} $	5674.01 5676.51	73.91 76.45	+ 2 + 2	5671.34 5673.93 5676.47 5679.45
n B wn B nn D	37.9977 37.8353 37.7910	5684.06 5693.88 5696.60	-33 -34 -35	5683.73 5693.54 5696.25	6	n B	37.1484	5694.30	-3i	5693.99	83.79 93.77 96.31	$\begin{array}{c} + \ 2 \\ + \ 2 \\ + \ 2 \end{array}$	5683 81 5693.79 5696.33
n B n D nn D	37.6508 37.6018 37.5210	5705.12 5708.12 5713.10	$ \begin{array}{r} -36 \\ -37 \\ -37 \end{array} $	5704.76 5707.75 5712.73	5 2 1	n B n D n D	36.9668 36.9191 36.8338	5705.60 5708.58 5713.93	$ \begin{array}{r r} -31 \\ -31 \\ -32 \end{array} $	5705,29 5708 27 5713,61	05.03 08.01 13.17	$+\frac{2}{2} + \frac{2}{2}$	5705.05 5708.03 5713.19
wn B n D wn B n D	37.4514 37.3829 37.3330 37.2257	5717.37 5721.61 5724.70 5731.38	-38 -39 -39 -40	5716.99 5721.22 5724.31 5730.98	8 2 6 8	wn B wn B wn D	36.7731 36.7063 36.6566 36.5441	5721.97 5725.12 5732.27	$ \begin{array}{r} -32 \\ -32 \\ -32 \\ -33 \end{array} $	5717.42 5721.65 5724.80 5731.94	21.44 24.56 31.46	$+\frac{2}{+\frac{2}{2}}$	5717.23 5721.46 5724.58 5731.48
n D nn D	37.0343 36.9297	5743.37 5750.00	-43 -44	5742.94 5749.56	$D \left\{ 1 \right\}$	from n D	36.3830	5742.60 5750.44	-33 -34	5742.27 5750.10	$\begin{array}{r} 42.21 \\ 43.00 \\ 49.83 \end{array}$	$+\frac{2}{2} + \frac{2}{2}$	5742.2 5743.02 5749.85
nn D nn D	36.7301 36.6045	5762.66 5770.70	$ \begin{array}{r} -46 \\ -48 \end{array} $	5762.20 5770.22	1 3	n D n D	36.2490 36.0743 36.9375	5762.56 5771.51	-34 -35 -35	5762,21 5771,16	62.21	+2	5750.8 5762.23 5770.71
	n B n D nn D nn D nn D nn D nn D nn D n	Character Reading mm. n B 41,0955 n D 41,0422 nn D 40,7966 nn D 40,5270 from 40,4820 to 40,3878 n D 40,2939 n D 40,2939 n D 40,2939 n D 40,0241 n D 39,9680 n D 39,5227 B 39,4770 nn D 39,5227 B 39,4770 nn D 39,5227 B 39,4770 nn D 39,5227 b 39,4206 from 39,0838 D 38,900 to 38,8405 D 38,900 to 38,9600 D 38,8405 To 38,7964 n B 38,7658 n B	Charle	Character acter Mean Scale Reading Wave Formula Cor. from Curve n B 41.0955 5509.74 −23 n D 41.0422 5512.55 −23 nn D 40.7966 5525.56 −22 nn D 40.6240 5534.76 −22 w D 40.5270 5540.00 −22 from 40.4820 5542.40 −22 n D 40.3678 5548.61 −22 n D 40.2939 5552.62 −22 n D 40.1000 5563.20 −22 n D 40.0241 5567.39 −22 n D 39.9680 5574.59 −22 n D 39.6240 5586.22 −22	Char- Scale Reading Length by Formula Curve Length n B 41.0955 5509.74 −23 5509.51 n D 41.0422 5512.55 −22 5532.34 nn D 40.6240 5534.76 −22 5534.51 w D 40.5270 5540.00 −22 5534.51 to 40.3890 5547.50 −22 5542.18 n D 40.2939 5552.62 −22 5552.40 n D 40.2938 5552.62 −22 5552.40 n D 40.2238 5556.44 −22 5542.18 n D 40.0241 5567.39 −22 5556.29 n D 40.0241 5567.39 −22 5556.29 n D 40.0241 5567.39 −22 5560.22 n D 40.0241 5567.39 −22 5560.22 n D 39.8936 5574.59 −22 5567.17 n D 39.8936 5570.50 −22 5570.28 n D 39.6840 5586.22 −22 5586.00 n D 39.6840 5586.22 −22 5586.00 n D 39.5277 5595.29 −23 5595.40 n D 39.5276 5595.29 −23 5595.00 n D 39.5277 5597.87 −23 5597.64 nn D 39.4206 5601.05 −24 5607.56 mn D 39.0838 5620.23 −25 5618.55 nn D 39.0838 5620.23 −25 5618.55 nn D 39.0838 5620.23 −25 5619.98 D 39.9000 5625.60 −25 5625.35 to 38.9000 5627.30 −26 5627.00 D 38.8405 5634.26 −26 5634.00 38.7964 5636.81 −26 5636.55 nn D 38.6625 5644.62 −28 5644.34 nn D 38.6625 5644.62 −28 5667.36 nn B 38.7704 5636.81 −26 5636.55 nn B 38.7964 5636.81 −26 5636.55	Charker Reading Length by Formula Curve Length length of Formula Curve Length length of Formula Curve Length length of Formula Curve Length length of Formula Curve Length length of Formula Curve Length length of Len	Charker Reading Formula Curve Length by Formula Curve Length by Formula Curve Length by Reading Formula Curve Length by Reading Formula Curve Length by Reading Formula Curve Length by Reading Reading Formula Curve Length by Reading Reading Formula Curve Length by Reading Reading Reading Formula Curve Length by Reading Readi	Char- Scale Length by Formula Curve Length Curve Length Curve Length Curve Length Curve Scale Reading Reading Curve Length Curve Length Length Curve Scale Reading Reading Length Curve Length Length Length Curve Scale Reading Length Curve Length L	Char- Seales Formula Char- Seales Formula Char- Seales Formula Char- Curve Cu	Char- Sealin Legath by Corn Corn Length Length Corn Char- actor Seale Lought by Corn Wave- lens Lought by Formula Curve Lought by Lought by Corn Lough by Cor	Char Scale Scale Corn Curve Char actor Reading Wave Corn Wave Curve Longth Sale Sale Curve Care		
78 SCHJELLERUP -- Continued

		PLA	TE G 300				-	PLA	TE G 381			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor, from Curve	Wave- Leugth	Uncorrected for Velocity	Cor, for V	Corrected for Velocity
B \ \ D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	from to to to nn D nn D nn D nn D nn D		t.m. 5772.30 5780.30 5786.30 5790.36 5798.05 5803.79 5822.80 5850.34	-50 -50 -50 -51 -52 -53 -60 -60	t.m. 5771.80 5780.40 5785.80 5789.85 5797.53 5803.26 5822.20 5849.74	3 1-2 1	wn D	35,7232 35,4446 35,1549	5785.63 5801.24 5823.87	-36 -38 -39	5785,27 5803,86 5823,48	t.m. 71,86 80,46 85,21 85,86 89,91 97,59 03,56 22,84 49,80	$\begin{array}{c} +2\\ +2\\ +2\\ +2\\ +2\\ +2\\ +2\\ +2\\ +2\end{array}$	t.m. 5771.9 5780.5 5785.23 5785.9 5789.93 5797.61 5803.58 5822.86 5849.82

132 SCHJELLERUP = UHYDRAE

wp D 30,9627 (698,16) +11 (889,20) 12 n D 63 2135 89,00 - 8 85,52 1 n D 6 6539 88,14 +33 88,21 89,35 +41 (838,17) 1839,75 2 n D 31,1816 231,44 +10 (391,53) 10 20,455								102 80	пэць	LER	(1 -										
Spec begins 22.500 (295.9 +3± 1295.2 1.0 mm, t.m. t.m.		02, Fe1	oruary our ans	21, G.M. gle, E 05	7			1899, M Ho	arch 23, ur angle	G.M.T.	4		1	H	ember 2 our angle	9, G.M e, W 0)	2		WA		
Spec begins	ten-	aar-	Scale Read-	Length by For-	Cor.from Curve		ten-		Mean Scale Read- ing	Wave- Length by Form.	Cor.from	Wave- Length	ten-		Scale Read-	Wave- Length by Form.	Cor.from	Wave- Length	Uneor. for Velocity	for	Cor. for Velocity
= 1 + [1 + 10 + 100 +	Gon. 5 from 5 fr	gins 2 2 3 3 3 3 3 3 3 3	mm. 2, 4500 0, 9127 0, 9927 1, 1845 1, 2462 1, 2462 1, 2462 1, 2462 1, 2462 1, 2462 1, 2462 2, 2810 3, 9005 3, 2569 3, 2569 3, 3415 3, 5716 3, 5716 3, 5716 3, 5716 3, 5716 4, 4711 4, 4711 4, 4715 4, 4715 4, 4715 4, 4715 4, 4715 4, 4715 4, 4715 4, 4715 4, 5814 5, 5817 5, 5817 5, 5817 5, 5817 5, 5817 5, 5817 5, 5817 5, 5817 5, 5822 5, 8222 2, 4000 1, 4115 1,	t.m. 1295.9	+3±±+10 +110 +110 +110 +110 +110 +110 +110	#206.2 #385.36 #389.30 #391.51 #392.43 #392.43 #397.43 #397.43 #400.17 #404.52 #410.03 #404.52 #411.88 #412.34 #411.83 #411.84 #411.85 #411.85 #411.85 #420.19 #420.19 #420.19 #420.77 #420.77 #420.80 #430.80 #430	1 2 2 1	ns	mm. 63.9510 63.5061 63.2453 62.9775 62.6435 62.5620 62.4060 62.2470 61.8679 61.8679 60.8135 60.6908 60.4585 60.3642 60.2085	t.m. 76.84 84.90 89.60 94.50 02.21 05.12 08.10 15.25 27.57 30.25 37.95 42.52 44.38	-111 -12 +13 -14 +13 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14	t.m. 76.81 81.83 89.52 94.41 00.59 02.09 04.99 07.96 15.08 27.37 30.04 35.32 37.71 42.27 44.12	1 1	Inn D Inn	mm. 57 6150 57 4080 57 1090 56 6559 56 3620 55 8180 55 4675 54 7675 54 3559 54 3559 54 3559 54 3559 54 3559 54 3559	t.m. 71.3 75.1 80.6 88.94 94.50 00.08 04.70 97.80 11.52 25.17 27.32 29.49 33.32 35.02	+39 +38 +38 +33 	t.m. 711.71 775.5 81.0 94.81 9	t.m. 96. 2 74. 75. 5 81. 0 84. 83 88. 36 89. 36 89. 36 99. 51 97. 49 97. 83 90. 48 02. 06 04. 83 08. 10 10. 79 11. 82 14. 27 14. 27 14. 27 14. 83 20. 19 20. 77 21. 29 23. 58 25. 45 25. 45 26. 28 27. 31 29. 87 30. 48 30. 48	+11 +41 +41 +41 +41 +41 +41 +41 +41 +41	t.m. 4296.6 4374. 4375.9 4381.7 4381.9 4381.7 4382.7 4389.77 4389.77 4389.77 4391.95 4392.84 4395.76 4397.90 4398.24 4100.89 4401.20 4410.85 4111.20 4411.20 4
5 B 36,2580 4453.86 - 5 4753.81	.)	15 6	n., 2580	+455,86	3	1(55.81								*****	• • • • • •				53.81	+ 43	4404.23

											1	1								
		PLATE	E A 328				:	PLATE (J 309]	PLATE (368			WA	MEA: VE-LE	
In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by For- mula	Cor.from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor.from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor.from	Wave- Length	Uncor. for Velocity	Cor. for V	Cor. for Velocity
3 0-1 4 D { 8 8 8 1 22 2 3 3 3 4 5 5 5 6 6 5 5 6 6 D } 6 B { 3 3 2 2 2 2 3 3 3 4 4 2 2 3 3 3 4 3 4 3	n D D D D D D D D D From to WD from to w D from to m B n B? n B? n B? n B? n B? n B? n B?	mm. 36, 3140 36, 6134 36, 6134 36, 6134 36, 6134 36, 6134 36, 6134 36, 6134 36, 6134 36, 6134 36, 6134 36, 6134 36, 6134 37, 1887 37, 1887 37, 1887 37, 1887 37, 1887 37, 1887 37, 1882 37, 6925 37, 6927 37, 8925 37, 6927 37, 8925 38, 6939 38, 4142 38, 4152 38, 4152 38, 4152 38, 4152 38, 4162 38, 4162 39, 4170 39, 4170 39, 4170 39, 4170 40, 2382 40, 418, 418, 418, 418, 418, 418, 418, 418	t.m. 4454,58 4456,40 4458,45 4458,45 4460,17 4461,61 4463,71 4461,61 4463,71 4463,71 4463,71 4472,62 4473,21 4471,05 4473,21 4471,05 4473,21 4474,05 4473,21 4474,05 4473,21 4474,05 4476,40 4476,40 4490,04 4490,04 4490,04 4490,04 4490,04 4490,04 4490,07 4480,56 4490,07 4480,57 4480,56 4490,07 4500,57	- 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4489, 94 4495, 80 4496, 44 4497, 54 4500, 85 4501, 52 4501, 52 4503, 97 4506, 87 4506, 87 4507, 87 4508, 97 4508, 97 4510, 24 4512, 35 4514, 05 4518, 98 4521, 96 4522, 96 4528, 97 4533, 02 4528, 97 4533, 02 4548, 38 4548, 38 4548, 38 4548, 38 4548, 68 4549, 64 4550, 07 4551, 85	2	D	mm. 59.8036 59.4780 59.4390 59.3906 59.3520 58.9530 58.8770 58.8530 58.8281 58.4417 58.2556 58.1424 57.7964 57.3770 57.3290 56.8076 56.7000 56.6586 56.5892 55.8530 55.8530 55.4221	t.m. 55.56 62.10 62.90 63.96 64.70 72.90 74.43 74.90 75.44 80.32 82.50 01.70 02.60 07.10 02.60 07.10 02.60 07.10 02.60 07.10 03.23 07.33 09.80 07.10 07.10 09.80 07.10 09.80 07.10 09.80 09.80	-29 -33 -31 -31 -31 -33 -33 -33 -33 -33 -34 -35 -35 -36 -37 -37 -38 -39 -39 -40 -40 -40 -40 -40 -40 -40 -40 -40 -40	t.m. 55.27 61.80 62.59 63.59 64.39 72.57 74.10 79.97 82.15 83.11 87.40 01.32 02.21 05.61 06.71 09.41	1	n D	mm. 53.2945	t.m. 54.79 63.62 68.60 74.80 78.50 81.96 82.89 85.56 86.76 88.18 89.13 96.54 01.60 02.72 12.41 12.41 12.41 12.41 12.41 12.41 12.41 12.41 13.01 12.41 13.01 12.41 13.01 12.41 13.01 12.41 13.01 13.00 12.50 12.50 13.50 1	+13	t.m., 54.92 63.73 68.69 74.89 78.53 82.04 82.97 85.64 88.25 89.20 00.52 00.27 00.52 00.23 00.87	t.m. 54.91 56.34 58.39 58.90 60.11 61.68 62.59 63.66 64.39 65.34 66.43 71.90 72.55 72.57 73.13 74.07 74.89 75.42 78.66 79.71 4.57 74.57 75.53 89.94 96.57 97.54 88.27 89.35 60.15 60.20 60.70 60	+12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	t.m. 4455.33 4456.76 4456.8 14466.76 4458.8 14466.76 4465.8 14466.76 1465.0 146

132 SCHJELLERUP — Continued

		PLATE	a A 328					PLATE	G 309					PLATE	G 368			WAY	Mea ve-Le	N NGT
- y	Char- acter	Mean Scale Read- ing	Wave- Length by For- mula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor.from	Warr- Leugth	In- to- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form,	Cor, from	Wave- Leugth	Uncor. for Velocity	Cor.	Cor.
2	n J)?	mm. 43,6085	t.m. 4555.12	- 5	t.m. 4555.07			mm.	t.m.		t.m.			mm.	t.m.		t.m.	t.m. 55.07		t.i 4555
1	n D?	43.6902 43.8375	4558,50 4558,50	- 5 - 5	4556.27 4558.45	В												56.27 56.91 58.45	$^{+43}_{+43}$ $^{+43}$	4557
	nn Ď	11.0200	4561.36	- i	4561.32		to	54.9780	59.60	-37 	59.23		nn D	48.5:30	59 69	+11		59.23 59.80	$+43 \\ +43 \\ +43$	$\frac{4559}{4560}$
	n B	44 0570	4561.76	- 4	4561.72	$\frac{1}{2}$	n D from	51.8642 54.8214 54.7910	62.28 63.27 61.00	-37 -36 -36	62.91		n D	18.3926	63.01		63.13	61.82	$+43 \\ +43$	4565 4565 4565
-	wn B	14.2195 44.2850	1561.18 4565-20	- 4 - 4	4564 14 4565.16				91.00		00.01	1	n D	48.2775	65.75	+12	65.87	64.14	$+43 \\ +43$	456. 456.
		44 3557 44.3860 44.5449	4566.22 4566.67 4569.06	- 3 - 3 - 3	4566.19 4566.64 4569.03	B												66.19 66.64 69.03	$\begin{array}{r} +43 \\ +43 \\ +43 \end{array}$	
.	n D	44.8269 44.9627	4573.30 4575.36	- 2 - 1	4573.28 4575.35		to	54.5230	70 20	-35 	69.85							69.85 73.28 75.35	$\begin{vmatrix} +43 \\ +43 \\ +43 \end{vmatrix}$	4570 4573 4573
	<u>I</u>) B	45.0835 45.1434	4577.19 4578.10	- i - 1	4577 18 4578.09	1	n D from	54.2323 54.1810	77 10 78.30		76.78		w D	47.8480	76.10	+14		76.50 77.18 78.09	+43 +43 +43	457 457
	D B	45.2195 45.2700	4579.26 4579.98	- 0 - 0	4579 26 4579.98	Space			10.00			1	 n D	47.6864	79.77		79.92	79.26 79.95	+43 - 43	$\frac{457}{458}$
	B	45.4965	4580.76 4583.48	+ 1 + i	4580.77 4583.49	32						1	n Đ	47.5916	82.27	+15	82.42	83.49	$+43 \\ +43 \\ +13$	$\frac{458}{458}$
	D B D	45.5517 45.5989 45.6497	4584,28 4585,05 4585,83	$ + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} $	4584.29 4585.07 4585.85	m												84.29 85.07 85.85	+43 +43 +43	$\frac{458}{458}$
	B D B	45.6892 45.7242 45.9165	4586,44 4586,98 4589,94	+++++	4586,46 4587,00 4589,96													86.46 87.00 89.96	+43 +43	458
	n I) I)	45.8625 46.1562	4590.65 4593.64	$ + 2 \\ + 3 $	4590 67 4593.67	nresolved												90.67 93.67	$+43 \\ +43 \\ +43$	459 459
	nn B n D n B	46.2895 46.3422 46.5225	4595.71 4596.53 4599.34	+ 4 + 4 + 5	4595.75 4596.57 4599.39	Unr						6 3	n B nn D B	46.9901 46.9269	4597.04	+19	4595.55 4597.23 4598.82	96.90	$\begin{array}{r} +43 \\ +43 \\ +43 \end{array}$	459
	B 1)	46.5972 46.6617	4600.52 4601.52	$^{+5}_{+6}$	4600.57 4601.58		from	53.1590	46.0290		4602.61							00.57 01.58 02.52	$\begin{vmatrix} +13 \\ +43 \\ +43 \end{vmatrix}$	460
	n D	46.7216 46.9297	4602,46 4605,73	$^{+6}_{+7}$	4602.52 4605.80	I)							w Đ	16.6236	4606.19		4606,40	02.61	$+43 \\ +43 \\ +43$	460 460
	n Đ	47.0101	4607.00	+ 7	4607.07		to	52.9400	46.0830	-25	4608.02							$07.07 \\ 08.02$	$+43 \\ +43$	460 460
	to	47.0530	4607.70 4609.40	+7+7	4609.47													07.77 09.52 09.47	$\begin{vmatrix} +43 \\ +43 \end{vmatrix}$	460 460 460
	$ \begin{array}{c} D\\ D\\ n B \end{array} $	47.1800 47.2515 47.2987	4609 67 4610.81 4611.56	$ + 7 \\ + 8 \\ + 8$	4609.74 4610-89 4611.64													10.89 11.64	$\begin{array}{r} +43 \\ +43 \\ +43 \end{array}$	461 461 461
	n B D	47.3585 47.1129	4612.51 4613.37	+ 8 + 9	4612.59 4613.46							Max	nn Đ	46.3442	1611.83		4612.06 4613.46	12.06 12.59	$+43 \\ +43 \\ +43$	461 461 461
	n B D B	47.1927 47.5679 47.6172	4614.64 4615.84 4616.63	+ 9 + 9 + 10	4614.73 4615.93							4 2	D B	46.2889 46.2478	4614.65 4615.68	$^{+23}_{+24}$	1614.88 4615.92	14.80	$\begin{vmatrix} +43 \\ +43 \end{vmatrix}$	461 461 461
	n D	47.6832 47.7640	4617.68 4618.97	$^{+10}_{+10}$	4616.73 4617.78 4619.07							8 2	B		1618.94	+24	4617.82 4619.18	17.80 19.13	$^{+43}_{-43}$	461 461
	B	47.8879 48.0539 48.1587	4623.63 4625.32	+12	4621.09 4623.75 4625.44								В	16.0458	1620.82		4621.07	23.75 25.44	+43	462 462
	n D n D		4626.54 4628.10 4629.52	$+13 \\ +13 \\ +13$														26.67 28.23 29.65	$\begin{vmatrix} +43 \\ +43 \\ +43 \end{vmatrix}$	462
	n B B? D	48.5152 48.6325	4631.09 4633.00 4633.56	$^{+14}_{-15}$	4631.23 4633.15 4633.71							1	B	15 6568	4630,83	-28	1631.11	31.17 33.15 33.71	+43 +43	463 463
	n D B	48,8989 48,9635	4637.35 4638.41	$^{+15}_{+16}$	4637.50 4638.57							1 5	n D B	45,4289	4635,71 4638,41	+29 +30	1637 03	37.27	+43 +43	$ \frac{463}{463} $
	to	49. £120	4638.90 4640.90	+17	4639.06 4641.07							4	j	15.3095			1610.16	40.16	+43 +43	461 461
		49.1394 49.2263 49.2884	4641.30 4642.73 4643.75	+17	4641.47 4642.90 4643.92									12 * 12 13				42.90 43.92	+ 43 + 43	461 461
	 В D	19.8122 19.8697	4652.44 1653.41	+20 +21	4652.64 4653.62								nn D	45.0712			1646.13	52.61 53.62	+ 14 + 11	$\frac{465}{465}$
	n D?	50.0139 50.1154 50.2485		+21 +23 +23	4656.03 1657.75 4659.98													56.03	+ 14	$\frac{465}{465}$
	D? D?	50.2967 50.3763	1660.57 1661.91	$+23 \\ +23$	4660,80 4662,14			**************************************	4229 (0)		4000 50							62.14	+11	466 466
		50, 1763 50, 5310	1663,60 1661,58		4663.84 4664-82	1	n D		4663.82									64 82	+11	466

PLATE A 3	28		PLAT	E († 309					PLAT	E G 368		_	WA	Mea ve-Li	N ENGTH
In- ten- sity Char- acter Read- ing Wa Lem Read- by F	ve- gth of An for- la S	In- ten- sity Cha:		Wave- Length by Form.	Cor.from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Read- ing	Wave- Length by Form.	Cor.from	Wave- Length	Uncor. for Velocity	Cor.	Cor. for Velocity
3 D? 50.5832 4665 2 n D 50.6832 4665 3 n D 50.6833 4665 3 n D 51.5407 4681 3 nn B 51.5407 4681 1 nn D 51.8997 4689 1 nn D 52.5544 4689 4700 4700 4700 1-2 nn D 52.5544 4689 1 n D 52.6500 4701 1-2 nn B? 52.6903 4701 1 n D 52.8505 4704 1 n B? 52.8925 4705 2-3 n B 53.0730 4708 2-3 n D 53.4100 4714 3 n B 53.6160 4718 3 n B 53.4762 4715 2 n B 53.6160 4718 3 n B 53.6160 4718 3 n B 53.6160 4718 3 n B 53.6160 4718 3 n B 53.6160 4718 47 n B 53.6160 4718 45 n B 51.942 4730 47 n B 51.6845 4738 47 n B 51.6845 4738 47 n B 55.0210 4744 4 n B 55.0210 4744 5 n B 55.0210 4744 6 n B 55.1952 4747 6 n B 55.1488 4746 6 n B 55.1952 4747 6 n B 55.5558 4751 1 n D 75.8650 4701 1 n D 65.5558 4751 1 n D 75.8731 4766 6 n B 55.1952 4747 6 n B 55.6065 4755 1 n B 56.6857 4736 6 n B 55.1952 4747 6 n B 55.6065 4755 1 n B 56.850 4773 1 n D 56.1545 4762 1 n D 56.1545 4765 1 n D 56.1545 4765 1 n D 56.1545 4765 1 n D 59.8160 4838 1 n D 59.8269 4822 4 B 59.3755 4829 2 n D 57.3350 4785 2-3 n D 57.3350 4785 2-3 n D 57.3350 4785 2-3 n D 59.2528 4836 4 n D 59.2528 4836 4 n D 59.2528 4836 5 n D 59.2528 4836 5 n D 59.2528 4836 5 n D 59.2528 4836 5 n D 59.2528 4836 5 n D 59.2528 4836 5 n D 59.2528 4836 5 n D 60.3972 4848 5 n D 59.2528 4836 5 n D 60.3972 4848	41 +24 4665, 65 119 +24 4667, 43 180 +24 4667, 43 180 +24 4667, 43 180 +30 4688, 34 00 +30 4688, 34 00 +30 4688, 34 17 +32 4700, 79 122 +32 4701, 79 122 +32 4701, 79 122 +32 4701, 79 123 4702, 25 124 4702, 25 125 4703, 34 1701, 51 170 +32 4703, 69 171 +33 4709, 10 178 +33 4715, 11 177 +33 4709, 10 178 +33 4715, 11 177 +33 4709, 10 178 +33 4715, 11 177 +33 4709, 10 178 +33 4715, 11 179 +34 4716, 31 170 03 15 +34 4717, 00 16 +34 4718, 40 17	2 n I wn I from w I to w I 1 n I 1 n I 1 n I 2 n I 2 n I 2 n I 2 n I 2 n I 2 n I 2 n I 3 u I 3 u I 4 n I 5 n I 6 n I 7 n I 8 n I 9 n I 1 n	3 49.0344 3 49.0344 3 48.1631 48.1631 48.1010 3 48.069 47.9380 0 47.8395 0 46.3532 0 45.5132 0 45.5132 0 45.2591 0 44.9958	4827 86 4832.01 4871.20 4875.14 4881.15 4890.83	+ 19 + 8 + 8 + 8 + 8 + 8 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	4737, 49 4738, 42 4742, 20 4743, 63 4744, 42 4784, 42 4789, 52 4815, 63 4827, 94 4827, 94 4832, 09 4871, 21 4871, 21 4871, 21 4881, 14 4880, 80	Max 1-2 1-2 2-3 Max	from Max to W D Head n D D B D D B D B D D B B D B D B B B B D B	41, 6560 41, 6095 41, 6095 41, 5589 41, 5589 40, 6146 40, 1024 39, 5773 39, 2570 38, 879 38, 882 38, 7728 38, 7728 38, 5475 38, 2271 38, 2271 37, 5917 37, 4751 37, 2970 36, 8043	4736, 70 4737, 70 4741, 50 4742, 83 4744, 33 4744, 33 4744, 33 4771, 83 4771, 83 4805, 16 4815, 08 4822, 89 4824, 91 4827, 36 4829, 29 4831, 10 4838, 50 4849, 12 4856, 66 4870, 57 4874, 56 4880, 69 4897, 86	+55 +56 +57 +57 +57 +63 +69 +69 +68 +68 +68 +68 +68 +68	4823.58 4825.60 4828.05 4829.97 4831.78 4839.18 4849.78 4857.31 4871.20 4875.18 4881.29 4898.44	t.m. 65.431	+455+4455+4455+4456+4466+4666+4666+4666	4827.1 4828.19 4830.31 4833.1 4838.6 4839.45 4843.50 4850.00 4851.40 4855.19 4856.0 4857.77 4858.9

PLATE A 328	PLATE G 309	PLATE G 368	MEAN WAVE-LENGTH
Intensity Charker Mean Wave-Scale Length E Wave-Scale Length State Length Intensity Charker Reading Correction Against Marker Reading Correction Reading Correction Reading Read	In-ten-sity Char-Scale Read-ing Mana Cop Rand Ing Mana Cop Rand Rand Rand Rand Rand Rand Rand Rand	Uncor. Velocity Agia	
$\begin{array}{c} \text{from} & \text{min.} & \text{t.m.} \\ \text{from} & 63.5110 & 918.35 & +27 & 918.62 \\ 1 & \text{nn D} & 63.7550 & 4923.87 & +27 & 921.07 \\ 3 & \text{n D} & 63.7550 & 4923.87 & +26 & 924.13 \\ 3 & \text{n D} & 64.1451 & 4932.78 & +24 & 4933.02 \\ \text{Strong} & \text{conflavous} & \text{spec} & \text{trum} \\ \dots & \text{wn D}? & 66.2155 & 4981.45 & +16 & 4981.55 \\ \dots & \text{nn D}? & 66.5220 & 4989.90 & +7 & 4989.38 \\ 1 & \text{n D}? & 66.5296.55 & 4989.33 & +5 & 4998.38 \\ 1 & \text{n D}? & 66.5295 & 5998.33 & +5 & 4998.38 \\ 1 & \text{n D}? & 67.2257 & 5006.11 & +3 & 5006.14 \\ \dots & \text{nn D}? & 67.384 & 5013.87 & +2 & 5009.49 \\ \text{End} & 68.4330 & 5036.40 & -6 & 5036.3 \\ \end{array}$	mm, t.m, t.m, t.m, t.m,	2 n D 35.8181 4933.19 +50 1933.69	t.m.

132 SCHJELLERUP

18		h 5, G.M.T.	TE G 299 17bs. Hour comparison		W 0b3	1	899, Mar Star	ch 6, G.M.T.	ATE G 301 . 1900, Hou comparison	г angle, i excelle	W 105	MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor.	Corrected for Velocity
Head 2 D	n D? from to n D n D n D n D n D n D n D n D n D n	mm. 46.5140 46.4342 46.2150 46.1120 46.0144 45.9239 45.6500 45.4680 45.9239 44.50836 44.9239 44.5093 44.5010 44.0566 43.7500 43.1253 43.3301 43.0104 42.9105 42.7342 42.5628 42.4548	t.m. 5167.70 5172.02 5180.70 5184.70 5188.77 5192.41 5203.50 5211.00 5216.05 5226.83 5233.49 5236.30 5247.16 5251.20 5270.38 5283.71 5297.99 5302.20 5315.16 5321.01 5329.00 5336.81 5341.77 5362.90	$\begin{array}{c} +13 \\ +11 \\ +8 \\ \cdots \\ +7 \\ \cdots \\ +6 \\ \cdots \\ +3 \\ +11 \\ -4 \\ -6 \\ -7 \\ \cdots \\ -10 \\ -12 \\ \cdots \\ -10 \\ -12 \\ \cdots \\ -21 \\ -24 \\ -25 \\ \cdots \\ -27 \\ \cdots \\ -28 \\ -29 \\ -30 \\ \cdots \\ -31 \\ \end{array}$	t.m. 5167,83 5172,13 5180,78 5184,77 5188,84 5192,47 5203,53 5211,01 5216,04 5226,79 5233,43 5236,23 5247,06 5251,08 5270,19 5283,50 5297,75 5301,95 5314,89 5320,73 5328,71 5336,52 5341,47 5365,259	Head 5 B 1 4 B 2 1 5 4 Max 1 3 3 1 5 1 -2 1 1 2 1	n D wn D from nn D to n D n D n D n D n D B n D D n D B D nn D B n D B n D B n D B n D B n D B B B B B B B B B B B B B B B B B B B	mm. 47.1560 47.0198 46.7500 46.6120 46.5116 46.4840 46.2350 46.5470 45.3657 45.1816 45.9298 45.6663 45.5059 45.4470 45.3867 45.1816 45.0872 44.9889 41.6147 41.4300 44.0032 43.6564 43.6564 43.6564 43.6564 43.6564 43.3099 43.1490 43.0378 42.7960	t.m. 5167.10 5172.46 5183.10 5184.90 5188.58 5191.20 5192.57 5193.68 5203.68 5211.54 5246.06 5226.88 5233.51 5235.95 5239.33 5246.92 5251.01 5255.17 5269.82 5279.07 5313.01 5314.85 5317.34 5328.55 5335.84 5340.90 5352.00	$\begin{array}{c} +17 \\ +13 \\ \cdots \\ +7 \\ +6 \\ +6 \\ +5 \\ +5 \\ -9 \\ -11 \\ -12 \\ -13 \\ -17 \\ -20 \\ \cdots \\ -21 \\ \cdots \\ -20 \\ \cdots \\ -18 \\ -18 \\ \cdots \\ -13 \\ -11 \\ -8 \\ \end{array}$	t.m. 5167,27 5172,59 5183,17 5181,97 5188,64 5191,26 5192,62 5193,73 5203,68 5211,51 5216,01 5226,79 5233,40 5235,83 5239,20 5246,77 5250,84 5255,00 5269,62 5278,86 5217,51 5312,83 5314,67 5317,46	t.m. 67,55 72,36 80,68 83,27 84,67 84,87 88,74 91,36 92,55 93,83 03,61 11,31 16,03 26,79 33,42 36,03 46,92 50,96 55,10 69,91 78,96 83,40 97,61 01,85 12,93 14,78 17,26 20,63 28,56 36,32 41,13 52,02	+49 +49 +49 +49 +49 +49 +49 +49 +49 +49	t.m. 5168.04 5172.85 5181.2 5183.8 5185.2 5185.4 5189.23 5191.9 5193.04 5194.3 5204.1 5211.8 5216.52 5227.28 5233.91 5246.52 5239.79 5247.41 5251.46 5253.90 5270.41 5279.46 5283.90 5279.11 5302.35 5313.43 5315.28 5317.76 5321.13 5329.06 5336.82 5311.63 5352.52
5 5	n D B D	41.8591 41.9202 41.8669 41.8114	5366,60 5369,10 5371,71	-31 -31 -31	5366,29 5368,79 5371,40	1 2 10	nn D B D	42,4895 42,4432 42,3777	5366, 20 5368, 36 5371, 42	- 6 - 5 - 5	5366.14 5368.31 5371.37	66.22 68.55 71.39	+50 +50 +50 +50	

												1	-	
		PLA	re G 299					$\mathbf{P}_{\mathbf{L}A}$	ATE G 301			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
3 1 n 1 2 1 4 6 1 3 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	n B n D n B n D n D n D n D n D n D n D	Reading 11.7405 11.6927 11.6927 11.6281 11.5478 11.0046 10.9277 140.8673 10.7959 140.7109 140.5200 140.2479 140.1815 140.0686 139.9823 139.8744 139.7607 139.5595 139.3182 139.2723 138.9720 138.9720 138.7687 138.7687 138.7687 138.7687 138.7697	5375.06 5377.32 5380.38 5484.20	Curve -31 -31 -32 -32 -32 -32 -32 -32 -32 -32 -31 -30 -30 -29 -29 -28 -26 -26 -26 -26 -20 -21 -20 -21 -20 -19 -18 -16 -16 -15 -1 -11 -10 -9 -7 -7 -7 -7	5374.75 5374.75 5374.75 5380.06 5383.88 5410.03 5413.78 5416.73 5420.23 5424.42 5429.92 5433.86 5447.44 5450.78 5456.47 5466.34 5472.15 5513.26 5522.97 5524.03 5527.68 5533.55 5523.45 5543.20 5547.49 5555.88 5543.20 5547.49 5555.88 5543.20 5547.49 5555.88 5543.20 5547.49 5555.88 5543.20 5547.49 5555.88	6 1 1 2 1 2 1 2 3 2 4 3 2 9 Max 2 3 1 2 2 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	B n D n D nn D nn D B n D nn D nn D	mm. 42.3104 42.2612 42.1056 41.8301 41.6445 41.5651 41.5651 41.5651 41.3703 41.3123 41.2679 41.1642 41.16808 40.8159 40.7560 40.6298 40.5554 40.2899 40.1169 39.8698 39.7458 39.6583 39.6583 39.6583 39.6583 39.6583 39.6583 39.6583 39.6583 39.6583 39.6583 39.85898 38.85849	t.m. 5374.59 5376.90 5376.90 5384.25 5397.38 5406.30 5410.14 5411.79 5413.39 5416.38 5419.61 5422.44 5429.72 5431.63 5433.82 5446.99 5449.98 5456.32 5450.07 5471.59 5477.39 5482.42 5495.19 5497.35 5501.65 5506.23 5508.22 5511.90 5522.36 5523.63 5533.10 5539.11 5544.00 5566.15 5563.87 5566.15 5571.07 5572.71 5575.86 5588.17 5596.41 5599.31 5608.30 5594.48 5599.31 5608.30 5514.82 5616.51	$\begin{array}{c} -4 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\$	5374.55 5376.86 	Velocity t.m. 74.65 76.94 79.96 84.05 97.47 06.40 10.09 11.89 13.59 16.56 19.93 22.55 24.53 29.83 31.75 33.85 47.23 50.40 56.41 60.48 66.24 71.89 73.69 77.53 82.48 95.14 97.41 01.80 06.38 08.37 11.95 13.31 22.69 23.85 27.58 33.35 39.30 44.14 447.52 55.78 64.02 66.32 71.14 72.83 75.98 83.34 86.45 88.38 93.89 96.37 99.65 08.53 09.73 14.90 16.59 17.69	$\begin{array}{c} V \\ +50 \\ +$	5.m. 5375.15 5377.44 5380.46 5384.55 5397.97 5406.90 5410.59 5412.39 5414.09 5412.39 5425.03 5425.03 5425.03 5425.03 5426.91 5466.75 5477.40 5474.20 5576.65 5528.09 5533.86 5533.86 5533.86 5533.86 5533.86 5538.80 5566.30
Spec. Son. Spec. 10	from to D	37.0760 37.0440 36.9600 36.9290 36.8510 36.8072	5617.84 5619.68 5624.51 5626.30 5633.35	$ \begin{bmatrix} -5 \\ -5 \\ -3 \\ -3 \\ -2 \\ -1 \end{bmatrix} $	5617.79 5619.63 5624.48 5626.27 5630.78 5633.34	3 4 60n. (Spec.)	n D D from to	37.5958 37.5195 37.4820 37.3930 36.3548	5619.35 5623.73 5625.90 5631.10 5633.24	- 2 - 3 - 3 - 3 - 4	5619.33 5623.70 5625.87 5631.07 5633.20	19.48 24.09 26.07 30.93 33.27	+52 +52 +52 +52 +52 +52	5620.00 5624.61 5626.6 5631.5

												1	_	
		PLA	TE G 299					Pr.	ATE G 301			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Head n B n D n B wn D n D n D n D n D n D n D n D from to n D from to nn D nn D from to nn D nn D from to nn D from to nn D from to nn D from to nn D from to nn D from to nn D from to	mm. 36.7553 36.7553 36.7553 36.7553 36.7553 36.6836 36.6307	5636.36 5637.54 5638.97 5640.54 5643.63 	- 1 0 0 + 1 + 2 · · · · · · · · · · · · · · · · · ·	5636,35 5637,54 5638,97 5640,55 5643,65 5671,00 5676,36 5685,64 5692,62 5704,08 5707,76 5711,79 5713,70 5719,20 5721,12 5723,32 5731,10 5741,00 5741,00 5741,17 5749,70 5759,43 5774,10	$\begin{array}{c} \vdots \\ 3 & 4 \\ \vdots \\ 3 & 4 \\ \vdots \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 4 & 2 \\ 1 & 2 \\ \vdots \\ 1 & 2 \\ \vdots \\ 1 & 2 \\ \vdots \\ 1 & 2 \\ \vdots \\ 1 & 2 \\ \vdots \\ 1 & 2 \\ \vdots \\ 1 & 2 \\ \vdots \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ \vdots \\$	Head n B n B nn D nn B nn D nn D nn D nn D nn B nn D B nn D from to nn B B B m D from to showing the s	37, 2398 37, 2398 37, 1849 37, 1849 37, 1431 36, 9852 36, 9128 36, 7302 36, 6357 36, 4636 36, 3503 36, 2948 36, 1661 36, 1056 36, 0375 35, 9747 35, 8461 35, 7394 35, 7150 35, 5750 35, 4554 35, 1708 35, 1245 36, 19712 31, 8620 31, 8620 31, 7620 31, 6951	5635.84 5637.19 5639.93 5643.13 5645.58 5654.85 5657.36 5669.97 5675.61 5685.96 5692.82 5696.19 5704.04 5707.75 5710.19 5711.91	$\begin{array}{c} -4\\ -4\\ -4\\ -5\\ -5\\ -6\\ -6\\ -6\\ -6\\ -7\\ -8\\ -9\\ -10\\ -11\\ -11\\ -11\\ -11\\ -12\\ \cdots\\ -12\\ \cdots\\ -13\\ -14\\ -14\\ -14\\ -15\\ \cdots\\ -21\\ -22\\ -22\\ -22\\ -22\\ -22\\ -22\\ -22$	5635.80 5637.15 5639.89 5643.08 5643.08 5645.53 5654.79 5667.30 5667.30 5667.30 5675.54 5692.73 5696.09 5703.93 5707.64 5711.82 5715.68 5711.82 5715.68 5711.82 5715.68 5710.08	Velocity t.m. 36.08 37.35 38.87 40.22 43.37 45.63 54.89 57.40 70.46 75.95 85.76 92.68 96.19 04.00 07.70 10.18 11.80 15.78 19.10 21.02 23.47 30.19 32.5 40.83 43.07 48.90 61.18 66.28 69.25 71.00 73.69 79.11 80.40 80.39 83.00 86.18 88.58	+52 +52 +52 +52 +53 +53 +53 +53 +53 +53 +53 +53 +53 +53	t.m. 5636.60 5637.87 5639.39 5640.74 5643.89 5646.15 5655.42 5657.93 5670.99 5676.48 5686.29 5693.21 5696.72 5704.53 5710.71 5712.33 5714.1 5716.31 5719.6 5724.00 5730.72 5733.0 5741.4 5743.60 5749.43 5761.72 5766.82 5769.79 5777.5 5774.23 5779.65 5780.9 5780.9 5780.9 5780.9 5780.9 5780.9 5780.9 5780.9 5780.9 5780.9 5780.9 5780.9 5780.9 5780.9 5780.9
1 	End	34.0431 32.9740	5803.96	+1.±	5805. 5876.	1 2 1 Max	n D n D n D n D n D B End	34.3239 34.2052 34.0230 33.3700	5803.00 5821.74 5829.68 5842.00 5886.90	-25 -27 -29 -30 -30	5802.75 5821.47 5829.39 5841.70 5886.60	02.85 05. 21.57 29.49 11.80	+54 +54 +54 +51 +54	5803.39 5806, 5822.11 5830.03 5842.31

$115 \ SCHJELLERUP$

1895		ber 26, G.M	TE G 363 .T. 21\0. He comparison		e, W 140	15	00, Janu	ary 31, G.M	ATE G 382 .T. 1943. He comparison		e, W 157	MEAN	WAVE	-LENGTH
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
1		um.	f.m.		t.m.	1 1 1 5	nn D n D n D wn D	55,3980 55,3980 55,3001 55,0060 54,4137	t.m. 1404.82 4107.81 4116.87 4435.46	$-11 \\ -12 \\ -15 \\ -20$	t.m. 4404.71 4407.69 4416.72 4435.26	04.73 07.71 16.74 35.28	+19 +19 +19 +19	

 $115\ SCHJELLERUP-Continued$

					11								
	P_{LA}	TE G 363					PL.	ATE G 382			MEAN	WAVE	-Length
Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
nn D nn D nn D nn D nn D nn D nn D nn D	50.5985 50.0670 49.9557 49.7954 49.3424 48.9980 48.9534 48.1690 48.1020 47.9985 47.9890 47.9400 47.1697 47.0049 46.8450 45.7074 45.0400 44.1147 44.1187 44.0418 44.0118	t.m. 4478.12 4496.57 4500.49 4506.18 4535.11 4536.76 4552.31 4559.97 4566.39 4568.97 4566.39 4573.35 4576.81 4590.75 4593.12 4596.55 4605.84 4612.53 4619.08 4667.27 4696.91 4734.51 4734.51 4734.56 4739.60 4743.26	+28	4478.40 4496.82 4500.73 4506.42 4535.32 4536.97 4535.32 4536.97 4566.59 4569.17 4566.59 4569.17 4573.18 4573.55 4577.01 4590.96 4593.33 4596.76 4606.06 4612.75 4619.30 4667.55 4697.25 4734.91 4738.77 4740.01 4743.68 4745.14	3 2 2 1-2 1-2 1-2 0-1 1 1 4	n B wn D n D n B n D n B n D n B n D n B n B	48.8429 48.8047 47.9970 46.9420 46.7818 46.5858 46.4882	t.m. 4438.70 4450.04 4462.18 4462.18 4473.67 4484.15 4487.09 4485.07 4485.89 4497.09 4503.92 4506.89 4508.22 4513.05 4518.20 4523.25 4524.57 4527.45 4535.58 61 4547.74 4554.00 4589.87 4608.20 4618.98 4622.87 4638.32 4639.91 4721.68 4729.10 4738.27 4742.87	$\begin{array}{c} -20 \\ -23 \\ -24 \\ -24 \\ -24 \\ -24 \\ -23 \\ -23 \\ -23 \\ -23 \\ -22 \\ -21 \\ -20 \\ -19 \\ -18 \\ -17 \\ -15 \\ -13 \\ \cdots \\ +4 \\ +9 \\ +12 \\ \cdots \\ +16 \\ +17 \\ +24 \\ +39 \\ +39 \\ -39 \\$	6.m. 4438.50 4449.81 4461.94 4470.63 4473.43 4483.91 4484.83 4485.65 4496.86 4503.69 4506.66 4507.99 4512.83 4517.99 4524.37 4527.26 4535.40 4536.99 4538.44 4547.59 4538.66 4605.16 4608.32 4617.52 4619.14 4623.04 4638.56 4640.15 4674.70 4722.07 4729.49 4738.66	t.m. 38.52 49.83 61.96 70.65 73.45 78.38 83.93 84.85 85.67 96.84 00.71 06.54 08.01 12.85 18.01 22.88 24.39 27.28 35.36 36.98 38.46 47.61 52.49 53.89 60.15 73.16 73.53 76.99 89.93 90.94 93.31 97.14 00.48 05.18 06.04 08.34 12.71 17.54 19.22 23.06 38.58 40.17 67.53 74.72 97.21 29.51 34.89 93.31 22.09 93.31 23.06 38.34 12.71 17.54 19.22 23.06 38.58 40.17 67.53 74.72 97.21 29.51 34.89 38.72 39.99 43.47	+20 $+20$ $+20$ $+20$ $+20$ $+20$	t.m. 4438.71 4450.02 4462.2 4470.85 4473.65 4478.58 4484.13 4485.05 4497.04 4500.91 4500.91 4503.91 4508.21 4513.05 4518.21 4523.08 4524.59 4527.48 4535.56 4537.08 4537.08 4547.81 4552.69 4537.08 4537.08 4537.08 4537.14 4508.31 4597.34 4600.68 4573.37 4597.34 4600.68 4605.4 4608.5 4612.91 4617.74 4619.42 4623.26 4638.78 4640.37 4667.73 4674.92 4697.41 4722.29 4740.19 4735.09 4738.92 4740.19 4743.67
to nn D nn D nn B nn D nn D	43.9450 43.9240 43.8658 43.8075 43.7227 43.5640	4747.88 4748.89 4751.69 4754.50 4758.61 4766.35	+42 +42 +42 +42 +43 +44	4748,30 4749,31 4752,01 4754,92 4759,04 4766,79	4-5	nn B wn D	46.4204 46.2173 46.1725	4746.09 4755.78 4757.94	+39 +39 +39	4746.48 4756.17 4758.33	48.28 49.29 51.99 54.90 56.19	+20 $+20$ $+21$ $+21$ $+21$	4746.70 4748.5 4749.49 4752.20 4755.11 4756.40 4758.90 4766.98
	n B n D nn D nn D	n B 50.5985 n D 50.0670 nn D 49.7954 nn D 49.7954 nn D 48.9980 n B 48.9534 wn D 48.5380 nn D 48.3365 from 48.1690 to 48.1020 B 47.9985 from 47.9890 to 47.9000 n D 47.5459 nn D 47.4664 n D 47.4005 nn D 47.697 n D 46.8450 nn D 45.7074 n D 45.0400 nn D 45.7074 n D 45.0400 nn D 43.8658 nn D 43.9240 nn D 43.8658 nn B 43.8075 nn D 43.7227	Char- acter Reading Formula mm. t.m. n B 50.5985 4478.12 n D 50.0670 4496.57 nn D 49.9557 4500.49 n D 49.7954 4506.18 nn D 48.9980 4535.11 n B 48.9534 4536.76 wn D 48.5380 4552.31 nn D 48.1020 4566.39 to 47.9985 4572.98 from 47.9985 4572.98 from 47.9980 4573.35 to 47.9000 4576.81 n D 47.4864 4593.12 n D 47.4864 4593.12 n D 47.4005 4596.55 n D 47.0049 4612.53 n D 46.8450 4619.08 nn D 47.0049 4612.53 n D 46.8450 4619.08 nn D 47.0049 4696.91 nn D 44.1187 4738.36 n D 44.0112 4744.72 to 43.9450 4748.89 nn D 43.9240 4748.89 nn D 43.9250 4754.50 nn D 43.7227 4758.61	Character Reading Length Formula Curve	Character Reading Length by Formula Curve Curve Wave-Length mm. t.m. t.m. n B 50.5985 4478.12 +28 4478.40 n D 50.0670 4496.57 +25 4496.82 nn D 49.9557 4500.49 +24 4500.73 nn D 49.3424 4522.48 +22 4522.70 nn D 48.9980 4535.11 +21 4535.32 nn B 48.9534 4536.76 +21 4536.97 wn D 48.5380 4552.31 +20 4566.59 mn D 48.3666 4566.39 +20 4566.59 mn D 48.1690 4566.39 +20 4569.17 from 47.9895 4573.35 +20 4573.35 to 47.9895 4578.98 +20 4573.73 n D 47.5459 4590.75 +21 4590.96 nn D 47.4864 4593.12 +21 4590.96 n D 47.0049 4612.53 +22 4612.75 n D 45.0400 4696.91 +34 4697.25 <td< td=""><td> Char Seale Reading Formula Curve Length Sity </td><td> Care Reading Formula Care Length Scale Sole Stromula Care Length Stromula Care Car</td><td>Charter Reading Reading Length Formula Crom Curve Wave Length with Sity charter Sity Scale Reading Reading Scale Reading Reading Scale Reading Scale Reading Reading Mmm. Lm. James Age of the Sity Scale Reading Reading Mmm. Mmm.</td><td> Charte Scalle Curve Cu</td><td> Chart Sealin Curve Curve Curve Curve Sealin Curve Cu</td><td> Charter Reading Formula Curve Curve</td><td> Care /td><td>Charter Reading Formula Curve Curve length Formula Curve Reading Formula Curve Curve Seale Reading Formula Curve C</td></td<>	Char Seale Reading Formula Curve Length Sity	Care Reading Formula Care Length Scale Sole Stromula Care Length Stromula Care Car	Charter Reading Reading Length Formula Crom Curve Wave Length with Sity charter Sity Scale Reading Reading Scale Reading Reading Scale Reading Scale Reading Reading Mmm. Lm. James Age of the Sity Scale Reading Reading Mmm. Mmm.	Charte Scalle Curve Cu	Chart Sealin Curve Curve Curve Curve Sealin Curve Cu	Charter Reading Formula Curve Care	Charter Reading Formula Curve Curve length Formula Curve Reading Formula Curve Curve Seale Reading Formula Curve C	

115 SCHJELLERUP — Continued

			V			11						1		
		$\mathbf{P}_{\mathbf{L}}$	ATE G 363					PLA	TE G 382			MEAN	WAVE	-LENGTH
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Cnrve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Cnrve	Wave- Length	Uncor- rected for Velocity	Cor.	Corrected for Velocity
$\begin{array}{c} & & & \\ & &$	nn D from to nn D from to wn D n B n B n D from to nn D from to to	mm. 43, 4590 43, 4380 43, 2117 43, 1119 43, 0870 42, 9740 42, 7862 42, 7027 42, 6404 42, 5982 42, 5740 42, 4740 42, 3615 42, 2722 41, 9100 41, 8320 41, 6410 41, 6222	t.m. 4771,50 4772,54 4777,73 4783,77 4788,77 4790,01 4795,71 4805,27 4809,56 4813,28 4814,94 4816,19 4821,38 4827,26 4831,96 4851,24 4854,90 4865,81 4866,85	+44 +44 +44 +44 +44 +44 +45 +45 +45 +45	t.m. 4771.94 4772.98 4778.17 4784.21 4789.21 4790.45 4796.15 4805.71 4810.01 4813.73 4815.39 4816.64 4821.82 4827.70 4832.40 4855.34 4866.24 4867.28	2 1 B { 1 1 2 2 2 3 1 B } 1-2	n D nn B nn D from Max to wn D r D from to n B n D n B n D n B n D n B n D n B n D	mm. 45.8917 45.8163 45.6463 45.5444 45.5250 45.4090 45.2170 45.0995 45.0000 44.8744 44.8280 44.7425 44.7425 44.6994 44.1507 44.0830 44.0830 44.0830 44.0830 44.0830 44.0830 44.0830	t.m. 4771.56 4775.25 4783.64 4788.71 4789.66 4794.03 4795.48 4805.19 4811.18 4815.11 4816.27 4821.64 4822.76 4825.18 4827.35 4829.63 4831.88 4854.96 4861.07 4864.73 4864.73	+37 +36 +35 +35 +34 +34 +32 +31 +30 +28 +28 +27 +26 +25 +19 +16 +15 +15	t.m. 4771.93 4775.62 4784.00 4789.06 4790.01 4794.37 4795.82 4805.51 4811.49 4815.41 4816.56 4821.92 4823.04 4825.46 4827.62 4829.89 4832.13 4855.15 4861.23 4864.88	t.m. 71.94 72.96 75.64 78.15 84.11 89.14 90.23 94.39 95.99 05.61 09.99 11.51 13.71 15.40 16.60 21.87 23.06 25.48 27.67 29.91 32.27 51.66 55.25 61.25 67.22	+21 +21 +21 +21 +21 +21 +21 +21 +21 +21	t.m. 4772,15 4773,2 4775,85 4778,4 4784,32 4789,35 4790,4 4794,60 4796,2 4805,82 4810,20 4811,72 4813,92 4815,61 4816,8 4822,1 4825,69 4827,88 4830,12 4832,48 4851,87 4855,5 4861,46 4865,8
O-1 B { 2 1-2 1 1 1	nn D from to D n B nn D nn D nn D nn D	41, 3720 41, 1520 41, 0190 41, 0042 40, 9810 40, 8482 40, 6661 40, 6026	4880.63 	+42 +41 +41 +40 +40 +40 +38 +38	4881.15 4893.33 4900.85 4901.68 4902.99 4910.57 4921.04 4924.72	B }	n D n D from to n D wn D	43.7907 43.6319 43.5760 43.4160 43.2725 42.0619	4880.75 4889.56 4892.67 4901.66 4909.82	+11 + 9 + 8 + 7 + 6 	4880.86 4889.65 4892.75 4901.73 4909.88	80.88 89.67 93.03 01.27 01.66 02.97 10.28 21.02 24.70 81.43	+21 +21 +21 +21 +21 +21 +21 +21 +22	4881.09 4889.88 4893.2 4901.5 4901.87 4903.18 4910.49 4921.23 4924.91 4981.65

115 SCHJELLERUP

1899,		er 27, G.M.	re G 365 F. 2148. Ho comparison		, W 1.b8	19	00, Janu	ary 7, G.M.	ATE G 374 F. 2045. Hor comparison	ur angle good	, W 2b3	MEAN	WAVE	-Length
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
2 B \ \ 4 B \ \ 2 3 B \ \ 1	n D from to n D from to n D from to n D from to n D	45.7520 45.7520 45.7270 45.6140 45.5914 45.5610 45.3600 45.3395 45.3130 45.2240 45.2068	5166,77 5167,78 5172,35 5173,29 5171,50 5182,69 5183,55 5184,61 5188,27 5189,00	$\begin{array}{c} +22 \\ +22 \\ +22 \\ \cdots \\ +21 \\ +21 \\ +21 \\ +19 \\ +19 \\ +18 \\ +18 \end{array}$	5166,99 5168,00 5172,56 5173,50 5174,71 5482,88 5183,74 5184,80 5188,45 5189,18		nn B nn D nn D nn D	mm. 46.5141 46.4433 46.2114	t.m. 5170.54 5173.42 5182.84	+20 +19 +17	t.m. 5170, 74 5173,61 5183,01	t.m. 67 01 68.02 70.73 72.58 73.56 74.73 82.90 83.38 84.82 88.17 89.20	+23 +23 +23 +23 +23 +23 +23 +23 +23 +23	5183.61 5185.1 5188.8

		PLA	TE G 365					PL	ATE G 374			MEAN	WAVE	E-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor.	Corrected for Velocity
В {	n B wn D from to n B nn D from to mn D from to mn D nn B nn D nn B nn D nn B nn B nn D nn B nn B nn D nn B nn B nn D nn B nn B nn D nn B nn B nn D nn B nn B nn D nn B nn B nn D nn B nn B nn D nn B nn B nn D nn B nn B nn D from to nn B nn D from to nn B nn D from to nn B nn D mn B nn D mn B nn D mn B nn D mn B nn D from to nn B nn D mn B nn B n	## ## ## ## ## ## ## ## ## ## ## ## ##	t.m. 5190.37 5193.30 5195.36 5204.51 5212.60 5213.99 5216.26 5217.62 5224.61 5226.44 5228.23 5232.25 5233.33 5236.29 5244.32 5246.81 5251.22 5246.81 5251.22 5246.81 5251.22 5246.81 5251.22 5246.81 5251.22 5246.81 5251.22 5270.22 5279.87 5297.67 5304.71 5312.55 5314.75 5314.25 5338.82 5341.23 5344.21 53371.01 5374.24 5376.70 5377.86 5381.48 5386.93 5393.49 5396.05 5399.64 5407.12 5408.95 5411.61 5413.08 5416.20 5426.35 5429.19	+18 +18 +17 +16 15 +14 +14 +14 +14 +14 +14 +14 +14 +14 +14	5.m. 5190.55 5193.48 5195.53 5204.67 5212.75 5214.14 5216.40 5217.76 5224.75 5226.58 5228.37 5232.39 5233.47 5236.43 5244.45 5246.94 5251.35 5270.35 5280.01 5297.83 5304.88 5312.73 5314.94 5317.45 5320.30 5336.88 5339.07 5341.50 5371.39 5367.13 5368.50 5371.39 5374.62 5377.08 5377.08 5377.08 5378.25 5381.88 5387.34 5393.92 5396.49 5400.09 5407.58 5413.55 5416.68 5423.17 5426.85 5429.70	3	nn D from	mm. 45.9565 45.5330 45.4592 45.4030 45.1650 45.0709 44.9883 44.9305 44.8554 44.5752 44.1457 43.9420 43.5260 43.1852 44.1457 43.1052 44.0415 42.5935 42.3060 42.1100 42.6474 42.5935 42.3060 42.1100 41.8535 42.3060 42.1100 41.8535 42.1308 42.0308 42.0308 42.0308 42.0308 42.0308 42.1100 41.8535 42.33660 42.1100 41.8535 42.0308 43.8524 44.8525 44.75280 45.7527 46.7557 46.7557	t.m. 5193.30 5210.91 5214.00 5216.37 5226.44 5230.44 5233.97 5236.45 5239.68 5270.64 5279.69 5298.39 5304.85 5313.00 5315.13 5317.64 5320.58 5336.49 5338.95 5341.49 5336.49 5336.49 5336.49 5336.49 5336.49 5336.85 5341.49 5365.21 5368.29 5368.89 5364.85 5374.76 5376.87 5374.76 5376.87 5374.76 5376.87 5392.78 5392.78 5392.78 5392.78 5392.78 5411.80 5416.59 5420.00 5422.98 5424.86 5426.87 5429.89 5431.63	$\begin{array}{c} \dots \\ +14 \\ \dots \\ +10 \\ \dots \\ +10 \\ \dots \\ +10 \\ \dots \\ +10 \\ \dots \\ +10 \\ \dots \\ +10 \\ \dots \\ +10 \\ \dots \\ +10 \\ \dots \\ +10 \\ \dots \\ +10 \\ \dots \\ +10 \\ \dots \\ +10 \\ \dots \\ +10 \\ \dots \\ +11 \\ \dots \\ +111 \\ \dots \\ +112 \\ \dots \\ +13 \\ \dots \\ +15 \\ \dots \\ +17 \\ \dots \\ +17 \\ \dots \\ +17 \\ \dots \\ +17 \\ \dots \\ +17 \\ \dots \\ +17 \\ \dots \\ +17 \\ \dots \\ +17 \\ \dots \\ +17 \\ \dots \\ +17 \\ \dots \\ +17 \\ \dots \\ +17 \\ \dots \\ +17 \\ \dots \\ +12 \\ \dots \\ +22 \\ \dots \\ +25 \\ \dots \\ +26 \\ \dots \\ +25 \\ \dots \\ +26 \\ \dots \\ +27 \\ \dots \\ +28 \\ \dots \\ +28 \\ \dots \\ +28 \\ \dots \\ +28 \\ \dots \\ +28 \\ \dots \\ +29 \\ \dots \\ +30$	t.m. 5193.44 5211.01 5214.10 5216.47 5226.52 5230.51 5236.51 5239.74 5251.85 5270.68 5279.73 5298.44 5304.91 5313.06 5315.19 5317.71 5320.65 5336.59 5339.05 5341.60 5315.19 5317.71 5326.464 5352.25 5355.24 5364.64 5369.94 5371.93 5377.04 5380.46 5392.99 5396.54 5397.90 5407.89 5407.89 5407.89 5407.89 5407.89 5407.89 5407.89 5407.89 5407.89 5407.89 5407.89 5407.89 5407.89 5407.89 5407.89 5407.89 5407.89 5407.89	t.m. 90.57 93.46 95.55 04.69 11.00 12.77 14.12 16.44 17.78 24.77 26.55 28.39 30.50 32.41 33.76 36.47 39.73 44.47 46.96 51.60 70.52 79.87 98.14 04.90 12.90 15.07 17.58 20.49 20.77 20.26 20.57 20.26 20.77 20.26 20.26 20.77 20.26 20.26 20.26 20.77 20.26 20.26 20.26 20.77 20.26 20.26 20.26 20.77 20.26 20.26 20.26 20.77 20.26 20.26 20.77 20.26 20.26 20.26 20.77 20.26 20.26 20.26 20.77 20.26 20.26 20.77 20.26 20.26 20.77 20.26 20.26 20.26 20.77 20.26 20.		5.m. 5190.80 5193.69 5193.69 52193.8 5204.9 5211.23 5213.0 5214.35 5216.67 5218.0 5225.0 5226.78 5228.6 5230.73 5232.6 5233.99 5236.70 5233.99 5236.70 5237.81 5270.75 5280.10 5298.37 5305.13 5313.13 5315.30 5317.81 5320.71 5336.97 5339.29 5311.78 5344.70 5355.5 5364.9 5365.7 5375.01 5377.29 5375.01 5377.29 5388.71 5375.01 5377.29 5388.71 5375.01 5377.29 5389.29 5311.78 5368.71 5375.01 5377.29 5389.29 5311.78 5368.71 5375.01 5377.29 5389.29 5314.71 5375.01 5377.29 5389.29 5315.55 5364.9 5365.7 5368.71
D 3	from to n D	39.7600 39.6680 39.6192	5439.53 5444.27 5446.82	+52 +53 +53	5440.05 5444.80 5447.35	15 /	from to n D	40.5920 40.5040 40.4520	5439.77 5444.28 5446.96	+30 +31 +31	5440.07 5444.59 5447.27	40.06 44.70 47.31	+23 +23 +23	5440.3 5444.9 5447.54

		PLA	TE G 365					PL	ATE G 374			MEAN	WAVE	-LENGTH
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
4-5 1 1 	wn B nB nn D nn D nn I) nn D nn B nn D from	mm. 39.5588 39.4024 39.3679 39.2209 39.1130 39.0324 38.9810 38.9315	t.m. 5449.95 5458.08 5459.89 5467.82 5473.27 5477.56 5480.30 5482.78	+53 +54 +54 +55 +55 +55 +56 +56 +55	t.m. 5450.48 5458.62 5460.43 5468.36 5473.82 5478.11 5480.85 5483.34 5505.29 5509.96	4 2	B nn D nn B nn D nn D from to	mm, 40.3835 40.2790 40.1933 39.9759 39.8169 39.4944 39.4079 39.3740 39.2600	t.m. 5450.49 5455.90 5460.35 5471.73 5474.03 5480.12 5497.31 5501.96 5503.79 5509.96	+32 +33 -33 +35 +35 -36 -38 +38 +38 +38	t.m. 5450.81 5456.23 5460.68 5472.08 5474.38 5480.48 5497.69 5502.34 5504.17 5510.34	t.m. 50.65 56.22 58.64 60.56 68.38 72.07 74.10 78.13 80.67 83.36 97.68 02.33 04.73 10.15	+24 +24 +24 +24 +24 +24 +24 +24 +24 +24	t.m. 5450.89 5456.46 5458.88 5460.80 5468.62 5472.31 5474.31 5478.37 5480.91 5483.60 5497.92 5502.57 5505.0
B (B (B (B (B (B (B (B (B (B (nn D from to n D n D from to	38,3990 38,3620 38,2000 38,0114 37,9073 37,8695 37,7840	5511.64 5513.66 5522.56 5533.01 5538.81 5540.92 5545.68	+55 +54 +54 +54 +53 +53 +53	5512,19 5514,20 5523,10 5533,55 5539,34 5541,45 5546,21	2 · · · · · · · · · · · · · · · · · · ·	nn D nn D nn D from to	39.2344 	5514.35 5524.63 5533.50 5538.86 5541.32 5546.45	+38 +39 +39 +39 +39 +39 +39	5511.73 5525.02 5533.89 5539.25 5541.71 5546.84	11.96 14.22 23.12 25.01 33.72 39.30 41.58 46.53	+24 +24 +24 +24 +24 +24 +24 +24	5512.20 5514.5 5523.4 5525.25 5533.96 5539.54 5541.8 5546.8
$\begin{array}{c} 2 \\ \vdots \\ 2 \\ \vdots \\ 1 \cdot 2 \\ \vdots \\ B \end{array}$	n D n B n D n B from	37.7664, 37.6408 37.6097 37.4633	5547.26 5553.77 5555.53 5563.84 5566.97	+52 +52 +51 +50 +50	5554.29 5556.04 5564.34 5567.47	2 3 1-2 1 1 1 Max	n D n B n D n D nn B n D	38.5649 38.4944 38.4655 38.4297 38.3238 38.2752 38.2353 	5548, 23 5552, 19 5553, 81 5555, 82 5561, 79 5564, 54 5566, 81	+39 +38 +38 +38 +38 +38 +38	5548.62 5552.57 5554.19 5556.20 5562.17 5564.92 5567.19	48,21 52,56 54,24 56,12 62,16 64,63 67,18 67,49 71,00	+24 +24 +24 +24 +24 +24 +24 +24	5548.45 5552.80 5554.48 5556.36 5562.40 5564.87 5567.42 5567.7
9 Head	to D B B	37.3140 37.1290 37.0860 37.0640	5572.35 5583.03 5585.49 5586.79	+50 +49 +48 +48 +48	5572.85 5583.52 5585.97 5587.27	1 9 Umits Umits	n D D B	38.06 2 0 37.9469 37.9810 37.9120	5570.63 5576.68 5583.28 5581.33 5585.30	+38 +38 +37 +37 +37 +37	5571.01 5577.06 5583.65 5581.70 5585.67 5587.57	72.87 77.05 83.59 81.69 85.66 85.97 87.42	+24 +24 +24 +24 +24 +24 +24 +24	5571, 24 5573, 1 5577, 29 5583, 83 5581, 9 5585, 9 5586, 21 5587, 66
5 B 6	to nn D B nn D nn D nn D	36.9802 36.9590 36.9348 36.8912 36.8469 36.5070 36.4155	5591.66 5592.86 5594.31 5596.85 5599.45 5619.49 5624.97	$ \begin{array}{r} +47 \\ +47 \\ +46 \\ +46 \\ +46 \\ +41 \\ \end{array} $	5592.13 5593.33 5594.77 5597.31 5599.91 5619.91 5625.38	8 4 1	n D n B n D wn D	37, 8008 37, 7512 37, 7065 37, 6714 37, 4997	5591.74 5594.59 5597.18 5599.23 5609.26 5624.46	+37 +36 +36 +36 +34 +33	5592.08 5594.95 5597.54 5599.59 5609.60 5624.79	$ \begin{vmatrix} 92.11 \\ 93.35 \\ 94.86 \\ 97.43 \\ +99.79 \\ +09.59 \\ 19.93 \\ 25.40 \end{vmatrix} $	$ \begin{array}{r} +24 \\ +24 \\ +24 \\ +24 \\ +24 \\ +24 \\ +24 \\ +24 \\ +24 \end{array} $	5592.35 5593.6 5595.10 5597.67 5600.03 5609.83 5620.17 5625.64
Con. Spec. 7 10 Head B	from to D to n B	36,3890 36,3040 36,2670 36,2194 36,1200 	5626.53 5631.62 5633.88 5636.74 5642.73	+41 +40 +40 +40 +39 +38	5626.94 5632.02 5631.28 5637.14 5643.12	Con. { Spec. } 10 Head B	from to D to nn D from	37,1990 37,1480 37,0807 37,0310 36,9250 36,9044 36,8850	5627.03 5631.86 563±.09 5637.06 5643.44 5644.68 5645.85	+32 +32 +31 +30 +29 +29 +29	5627,35 5632,18 5631,40 5637,36 5643,73 5644,97 5646,14	27.15 32.10 34.34 37.25 43.43 41.96 46.13 45.97	$ \begin{array}{r} +24 \\ +24 \\ +24 \\ +24 \\ +24 \\ +24 \\ +24 \\ +24 \\ +24 \\ +24 \\ \end{array} $	5627.4 5632.3 5634.58 5637.49 5643.7 5645.20 5646.4 5646.21
1 2 2	n B nn D n D n B	35,9300 35,8754 35,6579 35,6220	5654.29 5657.66 5671.07 5673.29	+37 +37 31 +34	5654,66 5658,03 5671,11 5673,63	2 \ Con. \ Spec. \	n B to nn D from to u B	36, 7283 36, 7140 36, 6963 36, 6730 36, 4910	5655.34 5656.22 5657.29 5658.71 5669.86	+27 +27 +27 +27 +27 +25 +23	5655, 61 5656, 49 5657, 56 5658, 98 5670, 11	55.1 56.48 57.80 58.97 70.10 71.43 74.06	+25 +25 +25 +25 +25 +25 +25 +25	5655,3 5656,7 5658,05 5659,2 5670,4 5671,68 5674,31
1-2 	n B n B	35.5207 35.4630	5679.59 5683.20	+33 +31	5679.92 5683.51	1 2 2 1	n D n B n B n D	36,3878 36,3384 36,2590 36,2249	5676.20 5679.27 5684.19 5686.31	$ \begin{array}{r} +23 \\ +22 \\ +21 \\ +21 \end{array} $	5676,43 5679,49 5681,10 5686,52	79.71 83.96	+25 +25 +25 +25 +25	5676.67 5679.96 5684.21 5686.76

						1						1		
		PLA	тЕ G 365					P	LATE G 374			MEAN	WAVE	LENGTH
Intensity	Char- aeter	Mean Seale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- aeter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
8 1 2 4 2 7 5 1-2 B 3 2 1-2 2 1-2	n B n D n B n B n B n B n B n B n B n B n C from to from Max to n B n B n B n D from to n D n D n D n D n D n D n D n D n D n D	35.2982 35.2982 35.2494 35.2134 35.1234 35.0267 34.9352 34.8120 34.7040 34.5390 34.3820 34.3820 34.3133 34.2550 34.1602 34.1017 34.0310 33.9660 33.8890 33.4122 33.3192 33.2180	5693,54 5696,61 5698,89 5704,59 5710,76 5716,61 5724,54 5731,52 5733,24 5742,23 5757,10 5760,92 5767,26 5771,16 5775,89 5780,25 5785,40 5818,00 5824,45 5831,46	+30 +30 +29 +28 +27 +26 +25 +24 +24 +23 +21 +20 +19 +18 +18 +18 +16 +16 +16	t.m. 5693.84 5696.91 5699.18 5704.87 5711.03 5716.87 5724.79 5731.76 5733.48 5742.46 5757.31 5761.12 5767.45 5771.35 5776.07 5780.43 5785.58 5818.16 5824.61 5824.61 5831.62	7 1 6 1 8 8 2 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n B n B n B n B n B n B n D from to n D nn D nn B wn D n B n B on D on B on D on B on B on B on B on B on B on B on B	36.1055 36.0236 35.9313 35.8845 35.7407 35.6236 35.5107 35.4920 35.3500 35.3277 35.2492 35.1160 35.0335 34.9640 34.9688 34.8289 34.7605 34.7040 34.1332	5693.77 5698.90 5704.72 5707.67 5716.80 5724.28 5731.53 5743.37 5748.48 5757.19 5762.62 5767.21 5770.85 5776.17 5780.72 5784.50 5823.26 	+20 -19 -18 -18 -16 -14 -14 -13 -12 -11 -10 +9 -8 -8 -8 -7	5693,97 5699,09 5704,90 5707,85 5716,96 5724,42 5731,67 5742,05 5743,49 5748,59 5762,71 5767,30 5770,93 5776,25 5780,80 5784,57 5823,32 	t.m., 93.91 93.91 96.93 99.14 04.89 07.84 11.05 16.92 24.61 31.72 33.18 42.26 43.48 48.58 52.76 57.30 61.14 62.70 67.38 71.14 76.16 80.62 84.58 18.18 23.31 24.63 31.64 49.88 551.47 54.62	+25 +25 +25 +25 +25 +25 +25 +25 +25 +25	5694.16 5694.16 5697.18 5699.39 5705.14 5708.09 5711.30 5717.17 5724.86 5731.97 5742.6 5743.73 5748.83 5753.0 5757.55 5761.4 5762.95 5767.63 5771.39 5776.41 5780.87 5784.83 5818.43 5823.56 5824.88 5831.89 5850.13 5851.72
	nn D nn D	32.3880 32.3010	5890.63 5897.01	$\begin{vmatrix} +16 \\ +16 \end{vmatrix}$	5890.79 5897.17							90.81	+25 +25	5891.06 5897.44

152 SCHJELLERUP

	1899, Mar	ch 31, G.M.T.	E G 316 2057. Hour a outparison goo	ngle, W 2b	7		1900, A ₁	oril 4, G.M.T.	E G 394 17b3. Hour as comparison g	ngle, W 25 rood	7
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length
Spec. b	В	mm. 58.9690 58.6310	t.m. 4396,20 4402,40	$-10 \\ -12 \\ 12$	t.m. 4396,10 4402,28	Begins 2	n B	61.7570 61.4442	4397,10 4402.89	-17 -18	t.m. 4396.93 4402.71
D	n D from to	58.4912 58.5770 58.2540	4405.05 4103.40 4409.50	$ \begin{array}{c c} -13 \\ -12 \\ -15 \end{array} $	$\begin{array}{c} 4404.92 \\ 4403.28 \\ 4409.35 \end{array}$	D }	from to	61.4100 61.0700	4403.60 4410.10	$-18 \\ -20$	4403.42 4409.90
1 4	n D n D n D	58.1867 58.0933 57.9313	4410.75 4412.51 4415.57	$ \begin{array}{c c} -16 \\ -17 \\ -18 \\ \end{array} $	$\begin{array}{r} 4410.59 \\ 4412.34 \\ 4415.39 \\ \end{array}$	1 3	n D nn D	60.9170 60.7711	4412.93 4415.73	-20 -21	$4412.73 \\ 4415.52$
1 2 2	В В n Đ	57 6350 57 4832 57 3827	$\begin{array}{r} 4421.02 \\ 4424.10 \\ 4426.03 \end{array}$	$ \begin{array}{r} -20 \\ -21 \\ -22 \end{array} $	$\begin{array}{c} 4420.82 \\ 4423.89 \\ 4425.81 \end{array}$						
$\begin{smallmatrix}2\\1-2\\6\end{smallmatrix}$	n D nn D w D	57,2937 57,1416 56,8532	$\begin{array}{r} 4427.75 \\ 4430.69 \\ 4436.28 \end{array}$	$ \begin{array}{r} -23 \\ -24 \\ -26 \end{array} $	$\begin{array}{r} 4427.52 \\ 4430.45 \\ 4436.02 \end{array}$	3-4	n D n D wn D	60.1277 60.0007 59.7280	4428.24 4430.72 4436.20	$ \begin{array}{r} -25 \\ -25 \\ -27 \end{array} $	4427.99 4430.47 4435.93
1	n D nn D	56.7420 56.4200	4438.16 4444.80	$ \begin{array}{c c} -28 \\ -30 \\ & \dots \end{array} $	4438.18 4444.50	1	n D	59.2771	4445.09	-29 29	4444.80
2-3	 n D	56.2754	4447.64	-31	4447.33	1	 n D	59.1274	4448.11		4447.82
	wn D	56.1260	4450.60	-32	4450.28	1 1	n D n D	58.7524 58.6200	4455.71 4458.41	-31 -31	4455.40 4458.10
1-5	wn D n D	55.7027 55.6427 55.5430	4459.09 4460.30 4462.30	-35 -36 -36	4458.74 4459.94 4461.94		wn D	58.4201	4462.51	-32	4462.19
	B from	55,4503 55,4130	4464.19 4464.95	-37 -37	4463.82 4464.58	s · · ·	В	58.3192	4464.58	-32	4464.26
}						1	n D n D	58.1140 57.9535	4468.83 4472.16	-33 -33	4468.50 4471.83
Spec. (to	55,0190	4473.00	-38 	4472.62						
2	wn B wn B n D	54.9770 54.7200 54.6613	$\begin{array}{r} 4473.90 \\ 4479.20 \\ 4480.38 \end{array}$	$ \begin{array}{r} -38 \\ -40 \\ -40 \end{array} $	4473.52 4478.80 4479.98						
Unre-	n D from	54.5512 54.5220	4482.67 4483.28	-41 -41	4482.26 4482.87	1	n D n D	57.4410	4182.95	-35 -35	4184.68
solv'd	to B	54,2850 54,2598	4188,20 4488,76	-42 -42	4487.78 4188-34	1	nn I)	57.2196	4187.62	-35 ····	4487.27
3-1	 D	54, 1951	4490 12	-42	4189.70	2	 D	57.1107	4189.94	-36	4489.58
Unre- (solv'd)	from	54,1600 53,5890	4490.86 4502.98	-42 -44	4490.44 4502.54	1 2 3	n D nn B	56,5255 56,4500	4502.54 4504.18	-37 -37	4502.17 4503.81
1	n D	53, 1888	4505.13	-44	4504.69	$\frac{1}{23}$	n D	56.3958 56.3454 56.8454	4505.36 1506.46	-37 -37	4504.99 4506.09 4507.36
₩ 3 	nn Đ	53.3745	4507.58	-44	4507.14	1	nn D nn D	56.2874	4507.73	-37 -38	4507.36
$1 \\ 1 \\ 1 \\ 2$	nn D B wn D	52,9640 52,9100 52,8577 59,7749	4516 48 4517.66 4518.80 4590 69	-44 -44 -41	4516.04 4517.22 4518.36						
$\begin{matrix} 1\\6\\4\\1\\2\end{matrix}$	nn D n D B nn D	52.7749 52.6402 52.5804 5205.12	4520,62 4523,58 4524,89 4536,66	$ \begin{array}{r} -44 \\ -44 \\ -41 \\ -43 \end{array} $	4520.18 4523.14 4524.45 4536.23	65	n D B	55 5652 55 1965	4523,69 4525,16	-38 -38	4523.31 4521.78

$152\ SCHJELLERUP$

1903	2, Febru	ary 10, G.M.	TE A 313 T. 1853. Ho comparison	our angle	e, E 258	19	02, Febr	nary 18, G.M	ATE A 319 H.T. 1757. H t; comparis	our ang	le, E 3\0	MEAN WAY	E-LENGTH
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Leugth	Uncorrected for Velocity V	
		mm.	t.m.		t.m.			mm.	t m.		t.m.	t.m.	t.m.
												$\begin{bmatrix} 96.52 \\ 02.71 \\ - \end{bmatrix}$	
												04.92 -	
												$\begin{vmatrix} 03.35 & - \\ 09.63 & - \end{vmatrix}$	
												10.59 -	
						2	D	35.2114	4413.02	-70	4412.32	$\begin{bmatrix} 12.46 \\ 15.46 \end{bmatrix}$	
												$\begin{bmatrix} 15.46 \\ 20.82 \end{bmatrix} - \begin{bmatrix} -1 \\ -1 \end{bmatrix}$	
												23.89 - 3	1 4123.88
							nn D	36.4720	4428.40	_67	4427.73	$\begin{bmatrix} 25.81 & -1 \\ 27.75 & -1 \end{bmatrix}$	
							nn D	36.7110	4431.39	-66	4430.73	30.55 =	
								97 9104	1190.00		4490.00	35.98 -	
	nn D	39.7434	4444.63	+ 9	4444.72	2	wn D	37.3194 37.8153	4438.98 4445.23	$-65 \\ -64$	4438.33	$\begin{vmatrix} 38.26 & -1 \\ 44.65 & -1 \end{vmatrix}$	
						$\parallel 2$	В	37.8728	4445.96	-63	4445,33	45.33 -	1 4445.32
						$\frac{2}{1}$	n B	37.9097 37.9552	$\begin{array}{c c} 4446.43 \\ 4447.01 \end{array}$	-63 - 63	4445.80 4446.38	$\begin{bmatrix} 45.80 \\ 46.38 \end{bmatrix} - \begin{bmatrix} -1 \\ -1 \end{bmatrix}$	
							п Б	31.3004	4441.01	0.3	1110.00	47.58 -	
												50.28 - 5	
												$\begin{vmatrix} 55.40 \\ 58.10 \end{vmatrix} - 3$	
												58.74 - 1	4458.72
												59.94 - 3	
						i	n D	39.2880	4464.14	-58	4463.56	$\begin{vmatrix} 62.07 & -3 \\ 63.56 & -3 \end{vmatrix}$	
2	n B	41.2680	4464.30	+5	4464,35	$\frac{1}{2}$	n B	39.3297	4464.68	-58	4464.10	64.11 - :	2 4464.09
	n D	41.3094	4464.85	+5	4464.90							$\begin{vmatrix} 64.58 & -3 \\ 64.90 & -3 \end{vmatrix}$	
												68.50 -	
												$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 4471.81
						i	n B	39.9765	4473.14	-55	4472.59	$\begin{vmatrix} 72.62 & -3 \\ 72.59 & -3 \end{vmatrix}$	
						2	n D	40.0205	4473.72	-55	4473.17	73.17 - 1	4473.15
						3	n B	40.0547	4474.18	-55	4473,63	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
												79.98	
						2	n D	40.7209	4483.02	-52	4482.50	82.45 - :	
						···i	n D	40.9565	4486.17	-51	4485.66	$\begin{vmatrix} 82.87 & -3 \\ 85.17 & -3 \end{vmatrix}$	
							nn D	41.0800	4487.83	-50	4487.33	87.30 - 1	2 4487.28
								11 1950	1100 57	50	4488.07	$\begin{vmatrix} 87.78 & -3 \\ 88.21 & -3 \end{vmatrix}$	
						$\frac{1}{1-2}$	n B D	$\begin{array}{c c} 41.1350 \\ 41.1630 \end{array}$	$ \begin{array}{c} 4488.57 \\ 4488.95 \\ \end{array}$	-50 -50	4488.45	88.45 - 5	
						1	n B	41.1932	4489.35	-49	4488.86	88.86 - 3	
							nn D	41.2490	4490.10	—49 	4489,61	$\begin{vmatrix} 89.63 & -5 \\ 90.44 & -5 \end{vmatrix}$	2 4489.61 2 4490.4
												02.17 - 5	4502.15
												$\begin{vmatrix} 03.81 & -3.81 \\ 04.84 & -3.81 \end{vmatrix}$	
						3	n D	42,3950	4505.73	-44	4505.29	$\begin{vmatrix} 04.84 & -1 \\ 05.29 & -1 \end{vmatrix}$	
						2	n B	42.4478	4506 45	-44	4506.01	06.05 - :	2 4506.03
						3	nn D n D	42.5395 42.7340	4507.72 4510.41	$-44 \\ -43$	4507.28 4509.98	$\begin{vmatrix} 07.26 & -3 \\ 09.98 & -3 \end{vmatrix}$	
	,							12.1010	1010.11	-10	1000.00	12.83 - 1	4512.81
												16 04 - 1	
							'nĎ	43.3162	4518.53	-40	4518.13	$\begin{vmatrix} 17.22 & -2 \\ 18.25 & -2 \end{vmatrix}$	
												20.18 - :	2 4520.16
i	n B	45.7022	4524.74	+ i	4524.75	3	·····	43.7754	4524.99	-37	4524.62	$\begin{vmatrix} 23.23 & -3 \\ 24.65 & -3 \end{vmatrix}$	2 4523.21 2 4524.63
												36,23 -	
						1							è

		PLAT	E G 316					PLAT	re G 394		
Inten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length
4	n B	mm.	t.m.	-42	t.m.		from	mm. 54.9510	t.m. 4537.60	-38	t.m. 4537.22
						13					
4	n B	51.9255	4539.48	-42	4539.06	11	to	54.8170	4540.60	-38	4540.22
1	n D	51.8711	4540.70	-42	4540.28	1	n D	54.7986	4541.02	-38	4540.64
	wn D	51.6280	4543.94	-41	4543.53						
5 5	n B n D	51.5481 51.4797	4548 02 4549.57	-41 -41	4547.61 4549.16	3 6	w D n B w D wn D	51.5651 54.4856 54.4166 54.2770	4546.37 4548.20 4549.80	$ \begin{array}{r} -38 \\ -38 \\ -38 \end{array} $	$\begin{array}{c} 4545.99 \\ 4547.82 \\ 4549.42 \end{array}$
							wii D	94.2110	4553,04	−37 · · · · ·	4552.67
$\frac{\cdot}{2}$	n D	50.9920	4560.77	-38	4560.39		$\ddot{\mathbf{D}}$	53,9320	4561.08	-37	4560.71
i	n D	50.8720	4563 55	-38	4563.17	3	$\stackrel{\dots}{\text{n D}}$	53.8097	4563.96	-37	4563.59
$\frac{2}{1}$	n B n D n B	50.8120 50.7657 50.6820	4564.91 4566.02 4567.98	$ \begin{array}{r} -38 \\ -37 \\ -37 \end{array} $	4564.56 4565.65 4567.61	2	n D	53.7012	4566.52	-36 	4566.16
							from	53 4990	4571.32	-36	4570.96
						D }	to	53 1870	4578.77	-35	4578.42
	n B	50.1998	4579.32	-34	4578.98						
i	nn D	50.1380	4580, 79	-34	4580.45	2	n D	53.1010	4580,84	-35	4580.49
1-2	nn B	50.0925	4581.87	-34	4581.53	i	n D	52.9990	4583.30	-34	4582.96
		40.01=	4500 49		4500 10						
1	nn D	49.8175	4588.43	-33	4588.10			227223			::::::
							from	52,7520	4589.28	-33 ····	4588.95
						\mathbf{B}_{j}					
							to	52.5790	4593.50	-33	4593,17
2	n D	49.5760	4594.25	-31	4593.91	1	n D	52.5471	4594.28	-33	4593.95
						Max	В	52,4862	4595.77	-33	4595,44
2		10. (4)0	4507.50	01	1507.10						
Max	nn D B	49.4120 49.3580	$\begin{array}{r} 4597.50 \\ 4599.54 \end{array}$	$ \begin{array}{r} -31 \\ -30 \end{array} $	$4597.19 \\ 4599.24$			2112112			
						1	n D	52.2643	4601.23	-32 ····	4600.91
Max 1-2	В D	48.8170 48.7710	4612,81 4613,94	$-28 \\ -27$	$\frac{4612.53}{4613.67}$	1	n D	51.7387	4614.32	-29	4614,03
2 2 8 4	n B n D B	18.7111 18.6600 48.5962 18.5380	$\begin{bmatrix} 4615.43 \\ 4616.70 \\ 4618.29 \\ 4619.74 \end{bmatrix}$	$ \begin{array}{r} -21 \\ -27 \\ -26 \\ -26 \\ -26 \end{array} $	4615.16 4616.44 4618.03 4619.48	1 4 7 2	n D B D	51.6393 51.5719 51,5169	4616.82 4618.52 4619.90	-29 -28 -28	4616.53 4618.24 4619.62
1 2	n D	48.4222	4622.63	-25	4622.38	1	n D n D	51 4000 51.2770	$\frac{4622.88}{4626.00}$	$-28 \\ -27$	$\frac{4622.60}{4625.73}$
1	n D	17.8027	4638.30	-21	4638 09						
1	11 17	11.0021	4000 . DU	-21	3000 On						

					1	1								
		PLA	ге А 313					PLA	те А 319			MEAN	WAVE	-Length
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
		mm.	t.m.		t.m.			mm.	t.m.		t.m.	t.m.		t.m.
1 2 1	n B n D n B	46.6190 46.6693 46.7195	4537.87 4538.60 4539.32	$\begin{array}{c} +1 \\ +2 \\ +2 \end{array}$	4537.88 4538.62 4539.34	2-3 5 8	n B D B	44.6949 44.7372 44.7878	4538.11 4538.72 4539.45	-32 -32 -31	4537.79 4538.40 4539.14	37.70 38.51 39.18 40.22	$ \begin{bmatrix} -2 \\ -2 \\ -2 \\ -2 \\ -2 \end{bmatrix} $	4537.2 4537.68 4538.49 4539.16
• • •						2-3	nn D n D	$\frac{44.8790}{45.0277}$	$\begin{array}{c} 4540.77 \\ 4542.92 \end{array}$	-31 -30	$\begin{array}{c} 4540.46 \\ 4542.62 \end{array}$	$\frac{40,46}{43.08}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4540.2 4540.44 4543.06
• • •						1 1	n B D	45.1307 45.1970	4544.41 4545.38	-29 -29	$\frac{4544.12}{4545.09}$	$\begin{vmatrix} 43.53 \\ 44.12 \\ 45.54 \end{vmatrix}$	$\begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$	4543.51 4544.10 4545.5
2	n B	47.3029	4547.82	+2	4547.84	6	В	45.3773	4548.00	$-\overline{28}$	4547.72	47.75 49.29	$-\frac{5}{2}$	4547.73 4549.27
···i	n B	47.8705	4556.17	+ 3	4556.20	i	'n B	45.9431	4556.30	-25	4556.05	52.67 56.05	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4552.65 4556.03
						1	n B nn D	46.1360 46.1780	4559.10 4559.80	-23 -22	4558.87 4559.58	58.87	$\begin{bmatrix} -2 \\ -2 \\ -2 \end{bmatrix}$	4558.85 4560.21
2	n B	48.4499	4564.80	 + 5	4564.85	$\begin{vmatrix} 1\\1\\3-4 \end{vmatrix}$	n B D n B	$\begin{array}{c} 46.3627 \\ 46.4690 \\ 46.5230 \end{array}$	4562.51 4564.20 4564.90	$ \begin{array}{c c} -22 \\ -21 \\ -21 \end{array} $	4562.29 4563.99 4564.69	$\begin{vmatrix} 62.29 \\ 63.58 \\ 64.70 \end{vmatrix}$	$-\frac{2}{2}$ $-\frac{2}{2}$	4562.27 4563.56 4564.68
···i	n D	48.6107	4567.21	+ 5	4567.26	5 2	D D	46.5964 46.6857	4565.99 4567.33	$-20 \\ -20 \\ -20$	4565.79 4567.13	65.87 67.20	$-\frac{1}{2}$	4565.85 4567.18
$\frac{2}{1}$	n B	48.6497 48.8192	4567.80 4570.34	+5 + 5	4567.85 4570.39	3 3	B B	$\begin{array}{r} 46.7274 \\ 46.8945 \end{array}$	4567.95 4570.45	$\begin{vmatrix} -20 \\ -19 \end{vmatrix}$	$\begin{vmatrix} 4567.75 \\ 4570.26 \end{vmatrix}$	67.74	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4567.72 4570.31
						2	Ď	47.3845	4577.85	-16	4577.69	$\begin{vmatrix} 70.96 \\ 77.69 \\ 78.42 \end{vmatrix}$	- 2 - 2 - 2	4570.9 4577.67 4578.4
···· i	n D	49.4009	4579.16	+7	4579.23	$\frac{1-2}{2}$	 В В	47.4429 47.4832	4578.74 4579.35	-16 -16	4578.58 4579.19	78.78 79.21	$-\frac{5}{2}$	4578.76 4579.19
2	n Ď	49.4940	4580.59	+ 7	4580.66	1-2	B D	47.5162 47.5667	$\begin{array}{c} 4579.85 \\ 4580.62 \end{array}$	$-16 \\ -15$	$\begin{array}{c} 4579.69 \\ 4580.47 \end{array}$	79.69 80.52	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4579.67 4580.50
						$\begin{array}{ c c c c }\hline 2\\ 1 \end{array}$	B	47.6152 47.7889	4581.36 4584.01	$\begin{vmatrix} -15 \\ -13 \end{vmatrix}$	4581.21 4583.88	81.37	$\begin{vmatrix} - & 2 \\ - & 2 \end{vmatrix}$	4582.94
						···· 2	n D D	47.8447 47.9517	4584.86 4586.50	$-12 \\ -11$	4584.74 4586.39	83,88 84,74 86,39	$\begin{vmatrix} -2 \\ -2 \\ -2 \end{vmatrix}$	4584.72
						2	_B	48.1270	4589.19	-10	4589.09	88.95 89.09	$-\frac{2}{2}$	4588.9
	nn D	50.0940	4589.81	+ 8	4589.89	3	n B	$\begin{bmatrix} 48.1742 \\ 48.2210 \end{bmatrix}$	$\begin{array}{r} 4589.92 \\ 4590.65 \end{array}$	$-10 \\ -9$	4589.82 4590.56	89.86 90.56	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4590.54
$\frac{2}{1-2}$	nn D n B	50.1904 50.2325	4591.30 4591.95	+ 9	4591.39 4592.04	$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	B B	48.2588 48.3040	4591.23 4591.93	- 8 - 8	4591.15 4591.85	$ \begin{array}{ c c c c c } 91.27 \\ 91.95 \\ 93.17 \end{array} $	$\begin{bmatrix} - & 2 \\ - & 2 \\ - & 2 \end{bmatrix}$	4591.93
• • •						4-5	from	48.4403 48.4810	4594.03 4594.70	$-8 \\ -7$	4593.95 4594.63	93.95 94.63	$\begin{bmatrix} - & 2 \\ - & 2 \\ - & 2 \end{bmatrix}$	4593.93
						B }	to	48.5650	4596.00	- 7	4595.93	95.44 95.93	$-\frac{2}{2}$	4595.9
						1	n D D	48.6163 48.6999	4596.77 4597.64	- 6 - 6	$\begin{array}{r} 4596.71 \\ 4597.58 \end{array}$	96.71	$\begin{vmatrix} - & 2 \\ - & 2 \end{vmatrix}$	4596.69 4597.37
								40.0700	4000 20		1000 00	99.24	- 2 - 2	4600.89
• • •						1	nn D	48.9722 49.0083 49.2316	4602.32 4602.88 4606.39	- 3 - 3 0	4602.29 4602.85 4606.39	$ \begin{array}{c c} 02.29 \\ 02.85 \\ 06.39 \end{array} $	- 2 - 2 - 2	4602.83
						2	wn Đ n Đ Đ	49.3930 49.5517	4608.93	+1	4608.94 4611.46	08.94 11.46	$-\frac{2}{2}$	4608.92
• • •						3	B D	49.5840 49.7190	4611.95 4614.10	$\begin{vmatrix} +2\\ +2\\ +4 \end{vmatrix}$	4611.97 4614.14	$12.25 \\ 13.95$	- 2 - 2	4612.23 4613.93
4 3-4	B	51.8908	4618.08	+16	4618.24	8	w D	49.8564	4616.28	+ 4 + 5	4616.32	$\begin{vmatrix} 15.16 \\ 16.44 \\ 18.17 \end{vmatrix}$	- 2 - 2 - 2	4616.42
3-4		51.9645	4619.23	+16	4619.39	5 4-5		49,9700 50.0348	4618.10 4619.13	+ 5	4618.15 4619.18	19.42 22.49	- 2 - 2 - 2	4619.40
 i	n B	52.5785	4629.18	+18	4629.36							25.73 29.36	- 2 - 2 - 2	4625.71 4629.34
• • •												38.09	- 2	2 4638.07

		PLAT	Е († 316					PLAT	E G 394		
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Inten-	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length
B {	B D No detai w D from to from	t.m. 47,7669 47,7045 ls in blue 44,1820 44,0790 44,0160 43,8840 43,8340 43,7430	t.m. 4639.22 4640.82 band 4736.50 4738.35 4739.47 4741.30 4745.12 4746.58 4749.24	$\begin{array}{c} -21 \\ -20 \\ \vdots \\ +8 \\ +8 \\ +8 \\ +8 \\ +10 \\ +10 \\ +11 \end{array}$	t.m. 4639.01 4640.62 4736.58 4738.43 4739.55 4741.38 4745.22 4746.68 4719.35	3 4-5 01 D{	B D B from to B	mm. 50.7557 50.6933 47.1154 47.0840 46.9020 46.8439 46.7800	t.m. 4639.39 4641.01 4739.50 4740.42 4745.76 4717.46 4749.34	$\begin{array}{c} \dots \\ -24 \\ -24 \\ \dots \\ \dots \\ -2 \\ -1 \\ -1 \\ 0 \end{array}$	4639.15 4640.77 4739.48 4740.40 4745.75 4747.45 4749.34
	w D Head	43,6758 43,6242	4751.19 4752.70	+11 +11	4751.30 4752.81		w D Head	46.7093 46.6466	4751.43 4753.29	0 0	4751,43 4753,29
Max	В	43.3482	4760.84	+13	4760.97	6) M	wn D B	46.4490 46.3903	4759.18 4760.93	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4759.19 4760.94
• • •											
Max	В	42.8738	4775.01	+16	4775.17	3	n B	45.9100	4775.43		4775.46
						1 1 2	n D n D n B	45.7700 45.6740	4776.89 4779.70 4782.64	+ 3 + 3 + 3 + 3	4776.92 4779.73 4782.67
Max	 B	42.3345	4791.39	+18	4791.57		n B	45.3800	4791.71	- 4	4791.75
Max	В	42,2206	4795.89	+18	4796.07	3	n B	45.2600	4795.44	+ 4	4795.48
1-2 1 1-2	n D B nn D	41.5465 11.3355 41.3007	4815.91 4822.59 4823.69	+20 +20 +20 +20	4816.11 4822.79 4823.89	2	nn D	44.5980	4816,28	+5	4816.33
4-5	В	11.2325	4825.87	+20	4826.07	4	n B	44.2948	4825,99	+5	4826.04
$\begin{array}{c} 2-3 \\ 5 \\ 4 \end{array}$	n D B n D	41.1665 41.0973 41.0302	4827.97 4830.19 4832.34	+20 $+20$ $+20$ $+20$	4828.17 4830.39 4832.54	2 4 5	n D n B D	44.2250 44.1494 44.0887	4828,24 4830,68 4832,65	+ 5 + 5 + 5	4828.29 4830.73 4832.70
1-2 1	nn D B	40.6867 40.6368	4843.45 4845.07	$^{+19}_{+18}$	4843.64 4845.25	1-2	n D 	43.7565	4813,49	+ 5	4843.54
1 1	n D n D	40.4305 40.3055	4851.82 4855.93	+17 +17	4851.99 4856.10						
1	n D	40.2020	4859.36	+16	4859.52	2-3	nn D	43.3169	4858.03 4859.74	+4	4858.07 4859.78

		PLA	те А 313					PL	ATE A 319			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncor- rected for Velocity	Cor. for V	Corrected for Velocity
1	nB nn D	mm. 53.1800 53.2447	t.m. 4639.01 4640.07	$^{+20}_{+20}$	t.m. 4639.21 4640.27		n B w D	mm. 51.2564 51.3495	t.m. 4638.58 4640.44	+16 +17	t.m. 4638.74 4640.61	t.m. 38.98 40.57	- 2 - 2	t.m. 4638.96 4610.55
												36.58	- 2	4736.6
												38.43 39.52	$-\frac{2}{2}$	4738.4 4739.50
												41.38	- 2	4741.3
												40.40 45.49	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4740.4 4745.4
												47.07	- 2	4747.05
	···.	50 5707	1751 14	+35	4751 70			57.6313	4750.76	+55	4751.31	$49.35 \\ 51.61$	$-\frac{2}{2}$	4749.3 4751.59
10	Head	59.5727 59.6444	4751.44 4752.79	+35 +35	4751.79 4753.14		W D Head	57.7213	4752.45	+56	4753.01	53.08	- 2	4753.06
1	n D	59.8052	4755.82	+36	4756.18	2	n B	57.8319 57.8842	4754.53 4755.52	+56 +56	4755.09 4756.08	55.09 56.13	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4755.07 4756.11
4	В	59.8510	4756.69	+36	4757.05	4	n D n B	57.9359	4756.50	± 56	4757.06	57.06	_ 2	4757.04
3	n D wn B	59.9817	4759.17	+36 +36	4759.53 4760.76	$\frac{1}{4}$	wn B	58.0577 58.1228	4758.80 4760.04	$+56 \\ +57$	4759.36 4760.61	59.36 60.82	$-\frac{2}{2}$	4759.34 4760.80
2	m D	60.0465 60.1305	4760.40 4762.00	+36	4762.36		wn D		1100.01	T-51		62.36	- 2	4762.34
3	n B	60.1845	4763.03	+36	4763.39	3	B	58.2691 58.3085	4762.82 4763.57	+57	4763.39 4764.14	63.39 64.27	$-\frac{2}{2}$	4763.37 4764.45
··· <u>.</u>	nn D n B	60.2373 60.2969	4764.03 4765.17	+36 +36	4764.39 4765.53	$\begin{vmatrix} 1 \\ \dots \end{vmatrix}$	n D		4100.01	+ 57	1101.11	65.47	- 2	4765.45
2-3	n D	60.3575	4766.33	+36	4766.69	1	n D	58.4280	4765.85	+57	4766.42 4767.96	66.56	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4766.54 4767.94
··i	n D	60.4615	4768.32	+36	4768.68	$\frac{2}{2}$	n B	58.5080	4767.38	+58	4101,80	68.68	- 2	4768.66
		00.7042	4774 79		4775 00	1 =	n B	58.5907	4768.96	+58	4769.54	$\begin{vmatrix} 69.60 \\ 75.20 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4769.58 4775.18
$\frac{3}{2}$	n B n D	60.7943 60.8794	4774.73 4776.38	$\begin{vmatrix} +36 \\ +37 \end{vmatrix}$	4775.09 4776.75	5	n B	58.8769	4774.47	+59	4775.06	76.84	- 2	4776.82
	D		4770 10		1770 10	1	n B	59.0 2 64	4777.36	+59	4777.95	77.95 79.61	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4777.93 4779.59
Max	nn D B	61.0210 61.1822	$ \begin{array}{c} 4779.12 \\ 4782.26 \end{array} $	$\begin{array}{c c} +37 \\ +37 \end{array}$	4779.49 4782.63	4	n B	59.2639	4781.97	+60	4782.57	82.62	- 2	4782.60
1	n D	61.2984	4784.52	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4784.89							84.86 86.85	$-\frac{2}{2}$	4784.84 4786.83
1	n D nn D	61.3982 61.5374	$ \begin{array}{c} 4786.48 \\ 4789.21 \\ \end{array}$	+37	4786.85 4789.58	1-2	n D	59.6324	4789.18	+60	4789.78	89.68	- 2	4789,66
							 nn D	50 7059	4792.37		4792.97	$91.66 \\ 92.97$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	4791.64 4792.95
							nn D	59.7952	4102.01	+60	4102.01	95.78	- 2	4795.76
···i	nn D n D	62.0592 62.2115	4799.52 4802.55	+37 +37	4799.89 4802.92							$\begin{vmatrix} 99.89 \\ 02.92 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	$\begin{vmatrix} 4799.87 \\ 4802.90 \end{vmatrix}$
	nn D	62.3107	4804.53	<u> </u> +37	4804.90	i	n D	60.3925	4804.23	+62	4804.85	04.88	- 2	4804.86
	nn D nn D	62.4029 62.8620	4806.37 4815.62	+37 +37	4806.74 4815.99	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	n D n D	60.4774 60.9689	4805.91 4815.80	$\begin{array}{c c} +62 \\ +62 \end{array}$	$\begin{array}{c c} 4806.53 \\ 4816.42 \end{array}$	$\begin{array}{c c} & 06.64 \\ & 16.17 \end{array}$	$-\frac{2}{2}$	$\begin{array}{c c} 4806.62 \\ 4816.15 \end{array}$
		02.0020	4010.02									22.79	- 2	4822.77
	nn D from	63.2535 63.2930	4823.57 4824.38	$\begin{vmatrix} +37 \\ +37 \end{vmatrix}$	$4823.94 \\ 4824.75$	2	n D B	61.3327 61.4160	4823.19 4824.89	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4823.81 4825.51	$\begin{vmatrix} 23.88 \\ 24.75 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	$\begin{vmatrix} 4823.86 \\ 4824.7 \end{vmatrix}$
в}				'								25.87	- 2	4825.85
2	to n D	63.3985 63.4327	4826.54 4827.24	+37 +37	4826.91 4827.61	i	n D	61.5210	4827.04	+62	4827.66	$\begin{vmatrix} 26.91 \\ 27.92 \end{vmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	$\begin{vmatrix} 4826.9 \\ 4827.90 \end{vmatrix}$
$^{2-3}$	n B	63.5830	4830.32	+37	4830.69	6	n B	61.6592	4829.87	+62	4830.49	30.58	- 2	4830.56
5 Con. (n D from	63.6652 63.7715	$\begin{vmatrix} 4832.02 \\ 4834.21 \end{vmatrix}$	$\begin{vmatrix} +37 \\ +37 \end{vmatrix}$	4832.39 4834.58	6	D	61.7464	4831.67	+62	4832.29	$\begin{vmatrix} 32.48 \\ 31.58 \end{vmatrix}$	$\begin{vmatrix} - & 2 \\ - & 2 \end{vmatrix}$	4832.46 4834.6
}						i o	n D	62.0692	4838.34	+61	4838.95	38.95	- 2	4838.93
Spec. (nn D	64.1420 64.2053	$\begin{vmatrix} 4841.90 \\ 4843.22 \end{vmatrix}$	+37 +37	4842.27 4843.59	$\frac{1}{2}$	n D	62.2755	4842.63	+61	4843.24	$\begin{array}{ c c c c c }\hline 42.27 \\ 43.50 \end{array}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	$4842.3 \\ 4843.48$
2	n B	64.2782	4844.74	+37	4845.11							45.18	- 2	4845.16
Con. Spec.	from	64.3135 64.5650	4845.48 4850.75	+36 +36	$4845.84 \\ 4851.11$							45.84 51.11	$-\frac{2}{2}$	4845.8 4851.1
	nn D	64.5997	4851.48	+36	4851.84							51.93	- 2	4851.91
Con. (from	64,8325	4856.39	+36	4856.75							$\begin{bmatrix} 56.10 \\ 56.75 \end{bmatrix}$	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	$4856.08 \ 4856.7$
}												58.07	-2	4858.05
Spec. (to n D	64.9455	4858.79 4859.20	+36 +36	4859.15 4859.56							59.15 59.67	$\begin{bmatrix} - & 2 \\ - & 2 \end{bmatrix}$	$4859.1 \\ 4859.65$
1-2	n B	65.0206	4860.38	+36	4860.74							60.74	$-\overline{2}$	4860.72
	1	1								1		11		

		PLAT	E G 316					PLAT	E G 394		
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length
1 1	n D n D	mm. 40.1160 40.0289	t.m. 4862.22 4865.10	+16 +15	t.m. 4862.38 4865.25	1 1 1	n D n D nn D	mm. 43.1853 43.1040 43.0128	t.m. 4862,43 4865,16 4868,23	+ 4 + 3 + 3	t.m. 4862.47 4865.19 4868.26
4 2 1 2 5	D D D B B	39.8491 39.7203 39.6320 39.6013 39.5428	4871.11 4875.44 4878.42 4879.46 4881.44	$\begin{vmatrix} \\ +14 \\ +13 \\ +12 \\ +12 \\ +12 \end{vmatrix}$	4871.25 4875.57 4878.54 4879.58 4881.56	1	 D w D	42.9122 42.7174 42.6121	4871.63 4878.25 4881.84	$+3 \\ +2 \\ +2$	4871.66 4878.27 4881.86
5 3-4	 D	39.4144	4883.57	+12 +11	4883.69 4885.91	3 6 	В w D	42.5533	4883,86	$\begin{array}{c c} +2 \\ +1 \end{array}$	4883.88 4886.17
3-4	 B	39.1854	4893.64	+ 9	4893.73	$egin{array}{c} 2 \\ \ldots \\ B \end{array}$	from	42.4250	4888.27	+1+1	4888.28 4892.19
6-8	w B 	39.0383	4898.71	+ 9 + 8	4898.80	3	to D	42.0790 42.0420 41.9713	4900.28 4901.56	0	4900.28 4901.56
7 4	В n D	38.8935	4903.73	+ 7 + 6	4903.80	3	w B w D	41.8992	4904.04	- 1 - 1	4904.03
2 4-5 	n D nn D	38.4139	4910.25 4920.54	$\begin{vmatrix} +5\\ +2 \end{vmatrix}$	4910.30 4920.56	1-2 1-2	w D n D n B	41.7683 41.3203 41.2587	4911.18 4927.13 4929.34	$ \begin{array}{c c} -2 \\ \\ -4 \\ -5 \end{array} $	4911.16 4927.09 4929.29
$\begin{array}{c} 2 \\ 1-2 \\ 1-2 \end{array}$	n B nn D B	37.7610 37.7064 37.6511	4943.91 4945.90 4947.90	- 5 - 7 - 7	4943.86 4945.83 4947.83	1	n D	40.8027	4945.89	_ 7 	4945.82
2 1 2 End	B n D n D	37.5382 37.4760 37.3805 36.8590	4952.03 4954.30 4957.81 4977.2	- 9 -10 -11 -19	4951.94 4954.20 4957.70 4977.0	2 End	n D	40.5741	4954.30	- 9 - 13	4954.21

		PLA	TE A 313					PL	ATE A 319			MEAN	WAVE	-LENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	In- ten- sity	Char- acter	Mean Scale Reading	Wave- Length by Formula	Cor. from Curve	Wave- Length	Uncorrected for Velocity	Cor. for V	Corrected for Velocity
B	nn D nn D nn D nn D nn D nn D nn B nD nn B from to n B nn D from to n B nn D from to n B nn D from to nn B nn D nn B nn D nn B nn D nn B nn D nn D nn D nn D nn D	mm. 65.0867 65.2159 65.3530 65.5204 65.7120 65.8364 65.9035 65.9855 66.0672 66.1160 66.2525 66.2853 66.3480 66.4660 66.7787 66.8780 66.9325 67.0510 67.1070 67.2142 67.3092 68.1255 68.1936 68.8315 69.0174	t.m. 4861.79 4864.55 4867.48 4871.07 4875.20 4877.89 4879.35 4881.13 4882.91 4884.20 4886.95 4887.67 4899.00 4895.10 4898.53 4900.73 4901.95 4904.58 4905.83 4908.23 4910.36 4949.47 4949.47	+36 +35 +35 +35 +33 +33 +33 +33 +33 +33 +32 +32 +32 +32	t.m. 4862.15 4864.90 4867.83	3	nn D n B nn D nn B nn B	63.4397 63.4955 63.5905 63.7809 63.9845 64.0649 64.1542 64.2942 64.3655 64.5034 64.8534 64.9767 65.0814 65.2967 65.3838 66.1150 66.2062 66.3024 66.9292 67.0518 67.1088 67.2065 67.2804	t.m. 4867, 23 4868, 42 4870, 46 4874, 57 4878, 97 4880, 72 4882, 66 4885, 28 4887, 27 4890, 30 4898, 02 4900, 75 4903, 08 4926, 39 4928, 47 4930, 67 4948, 02 4949, 32 4951, 63 4953, 37	+57 +57 +57 +56 +55 +55 +55 +55 +55 +55 +55 +51 +51 +49 +47 +47 +47 +47 +47 +47 +49 +39 +38 +31 +30 +29 +28	t.m. 4867.80 4868.99 4871.03 4875.13 4879.53 4881.27 4883.21 4885.82 4887.81 4890.83 4901.25 4903.57 4908.36 4910.31 4926.79 4928.86 4931.05 4945.48 4948.33 4949.62 4953.65	t.m. 62.31 65.11 67.96 68.99 71.34 75.35 78.34 79.63 81.54 83.51 84.52 85.97 87.27 88.06 90.1 92.06 93.73 95.41 98.72 00.28 01.20 02.25 03.80 04.88 06.43 08.44 10.61 20.56 26.94 29.09 30.87 43.86 45.62 47.83 48.39 49.66 51.88 53.94 57.70	$\begin{array}{c} -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	t.m. 4862,29 4865,09 4867,94 4868,97 4871,32 4875,33 4878,32 4879,61 4881,52 4883,49 4884,5 4887,3 4888,04 4890,1 4893,71 4895,4 4890,1 4893,71 4896,4 4900,3 4901,18 4902,2 4903,78 4904,9 4906,41 4908,42 4910,59 4920,54 4920,54 4947,81 4948,37 4948,37 4948,37 4949,64 4947,81 4948,37 4949,64
End		70.1385	4976.03	+16	4976.19	End	* * * *	68,2360	4976.10	+16	4976.3		• • •	

152 SCHJELLERUP

s		lanuary Hour an	E G 275 14, G.M. gle, E 0 compari	8			899, J a		G 291 26, G.M npariso			s		. March Hour an	E G 302 6, G.M.T gle, W 30 compari	13	ood	WAV	M ea e-Le	N ENGTH
Intensity	Char- acter	Mean Scale Reading	Wave- Length by Form.	Cor.from	Wave. Length	Intensity	Char- acter	Mean Scale Reading	Wave- Length by Form.	Cor.from	Wave. Length	Intensity	Char- acter	Mean Scale Reading	Wave. Length by Form.	Cor.from	Wave. Length	Uneor. for Velocity	Cor. for	Cor. for Velocity
Head 1 1 2 5	B? D B? n D	mm. 46.8420 46.8254 46.8024 46.7745 46.7061	t.m. 5167.90 5168.55 5169.44 5170.53 5173.21	+20 +23 +22 +22 +22	t.m, 5168.10 5168.78 5169.66 5170.75 5173.43			mm.	t.m.		t.m.	Head 1 3 8 2	n D B D	mm, 50.7600 50.7104 50.6802 50.6197	t.m. 5167.50 5169.45 5170.63 5173.00	+16 +15 +15 +15	t.m. 5167.66 5169.60 5170.78 5173.15	t.m. 67.88 68.72 69.63 70.77 73.29	- 2 - 2 - 2 - 2 - 2	t.m. 5167.86 5168.70 5169.61 5170.75 5173.27
5-6 6 1-2 7 6 1 22 3 2-3 5-3 5-4 4 4 9 1-5 5-4 8 1	n D B B D D B B N D D Wn B Wn D D B B N D D D D D D D D D D D D D D D	46, 4331 46, 3520 46, 2978 46, 2978 45, 9375 45, 9375 45, 6144 45, 5598 45, 3686 45, 2109 45, 2109 44, 8316 44, 8316 44, 4336 44, 4336	5183.96 5187.18 5188.93 5190.87 5193.20 5202.21 5203.77 5214.44 5226.96 5216.88 5219.11 5226.96 5230.12 5233.48 5236.13 5244.29 5249.32 5249.32 5247.29 5255.37 5255.37 5256.19	+10 +19 +19 +19 +16 +16 +16 +14 +12 +10 +17 -11 -10 -11 -11 -11 -11 -11 -11 -11 -11	5184 16 5187 37 5189 12 5191 06 5193 38 5202 38 5202 38 5203 93 5217 02 5217 02 5219 23 5227 06 5230 21 5233 56 5236 20 5247 52 5247 52 5230 21 5233 56 5230 21 5247 52 5247 53 5255 36 5255 36 5255 36 5255 36 5255 36 5255 36							21.37.217.6 1.2 :54.45.65.0 23.65.7 211.5212	B? B? B? B? B B B B B B B B B B B B B B	49.1245 49.0537 48.9896 48.8455 48.7921 48.7448 48.6936 48.5985 48.3382 48.2514	5175, 25 5178, 61 5183, 91 5187, 98 5180, 80 5193, 15 5202, 44 5203, 74 5214, 24 5226, 95 5230, 31 5233, 38 5245, 50 5247, 50 5255, 43 5255, 43 5266, 51 5255, 43 5266, 51 5257, 23	+14 +13 +11 +11 +11 +10 +7 +7 +7 +3 +3 +3 -4 -10 -11 -11 -11 -11 -11 -12 -20	5175.39 5178.74 5184.03 5187.39 5189.09 5190.91 5202.51 5202.51 5203.81 5219.04 5226.94 5236.94 5238.94 5244.16 5244.16 5244.16 5244.16 5244.16 5244.16 5244.16 5244.16 5244.16 5246.33	75, 45 78, 76 84, 10 87, 38 89, 41 90, 99 93, 39 92, 245 03, 87 05, 88 14, 43 16, 86 19, 14 27, 00 30, 25 33, 46 36, 24 47, 23 49, 24 51, 33 66, 24 70, 07 70, 0	212121212121	5175, 43 5178, 74 5184, 08 5187, 36 5187, 36 5189, 09 5190, 97 5193, 30 5202, 43 5203, 85 5214, 41 5219, 12 5226, 98 5234, 44 5219, 12 5238, 98 5244, 21 5238, 98 5244, 21 5249, 22 5253, 31 5233, 53 5233, 54 5244, 21 5249, 22 5255, 31 5255, 31 5266, 22 5270, 65 5270, 65
1 1 1 4 4 3	nn D? n D B? B? D	44.0833 44.0056 43.5692 43.3509 43.3021	5281.25 5281.62 5303.73 5313.41 5315.59	- 7 - 8 -10 -10 -10	5281 18 5284 54 5303 63 5313 31 5315 49							1-3 1 2 2 4 3	n B n B n D n D? n D? n D? n D	48.1945 48.0329 47.9213 47.6986 47.6214 47.4755 47.2656 47.2163	5272.67 5279.65 5284.49 5294.21 5297.60 5304.04 5313.35 5315.56	-21 -22 -23 -24 -24 -23 -23 -29	5272.46 5279.43 5284.26 5293.97 5297.36 5303.81 5313.13 5315.34	72.52 79.49 81.12 84.35 94.03 97.42 03.72 13.22 15.42		5272.50 5279.47 5281.10 5284.33 5294.01 5297.40 5303.70 5313.20 5315.40
2 4 1 6 4-5 5-6 3 1 1-2 3 8 7 6 3 3 3 3 3 3 3	n D B B B B B B B B B B B B B B B B B B	43.0076 42.8614 42.8149 42.7732 42.7259 42.6648 42.2715 42.295 42.295 42.1300 42.0967 42.0040 41.9612 41.9218 41.8579 41.8379	5328.81 5335.45 5337.54 5339.44 5341.60 5352.50 5362.54 5362.54 5369.14 5372.10 5377.06 5375.92 5384.46 5374.46		5328, 73 5335, 38 5337, 48 5339, 38 5341, 55 5344, 35 5352, 48 5262, 55 5364, 51 5366, 65 5364, 51 5366, 65 5367, 14 5375, 98 5381, 53 5381, 53							1-2 1 3 3 1-2 7 6 3-4 1 1-2 3-4 10 9 8 4 2-3 2-3	B D D B B D B B B D B B B D B B B B D B B B B D B B B B D B B B B D B	47.1719 46.975 46.9263 46.7763 46.7763 46.7338 46.6864 46.6864 46.6864 46.4991 46.1844 46.1480 46.0929 46.0439 45.9796 45.9296 45.9296 45.8744 45.8356 45.7828	5317. 54 5325. 37 5328. 58 5335. 38 5337. 32 5339. 47 5341. 87 5341. 87 5352. 19 5362. 60 5364. 29 5366. 87 5366. 87 5372. 17 5372. 17 5377. 11 5378. 94 5381. 44	-22 -20 -19 -18 -17 -16 -16 -15 -13 -12 -11 - 9 - 6 - 6 - 5 - 5	5317, 32 5328, 39 5335, 20 5335, 20 5335, 20 5337, 15 5339, 31 5341, 71 5344, 31 5344, 31 5344, 31 5344, 31 5346, 18 5362, 48 5362, 48 5369, 08 5372, 10 5377, 05 5377, 05	17.38 25.23 25.23 25.23 35.27 37.32 39.35 41.63 41.63 44.33 52.52 64.35 66.13 72.12 75.00 77.09 78.94 84.46 88.99	212291919191919191919191919191919191919	5317, 36 5325, 21 5328, 54 5335, 25 5337, 30 5339, 33 5341, 61 5344, 31 5344, 31 5344, 31 5362, 50 5362, 50 5369, 14 5372, 10 5377, 07 5378, 92 5388, 92 5388, 92
177 2 3 3 1 1-2 1 4 2 1 -2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to	41,5560 41,528 41,528 41,310 41,1879 41,0638 40,9760 40,8617 40,7759 40,5144 40,4148 40,3180 40,2370 39,839 39,839 39,838 39,3232	5396.30 5397.85 5407.98 5419.98 5422.54 5422.54 5424.39 5430.04 5434.25 5417.22 5457.09 5467.09 547.55 5474.26 5474.26 5457.09 5468.69 5508.29	+11 +13 +14 +15 +15 +15 +16 -17 +17 +17 +17 +16 -16 +16 +14 +14 +10	5396 40 5397.96 5408.07 5414.49 5420.13 5422.69 5424.54 5430.17							2-3 1-2 3 1 2 1 2 1 1 1 1 1 1 1 1 5-6	nn D n D n D n B n D B n D B n D B n D B n D B n D B n D B n D B n D B n D B n D B n D B n D B n D B n D B B B B B B B B B B B B B B B B B B B	45, 4383 45, 2160 45, 1047 41, 9777 41, 9336 41, 5934 41, 7707 41, 7333 41, 6900 41, 5230 41, 5230 41, 4310 41, 2350 41,	5413.94 5420.13 5424.26 5424.26 5430.29 5432.13 5434.27 5438.82 5442.55 5446.69 5450.72 5466.98 5474.28 5181.46 5487.17 5508.14	+ 2 + 3 + 4 + 5 + 6 + 6 + 7 + 7 + 8 + 8 + 9 + 10 + 10	5397.84 5408.56 5413.97 5420.17 5422.34 5421.31 5430.35 5432.19 5430.35 5432.19 5434.33 5446.77 5450.80 5457.05 5461.07 5474.38 5481.56 5481.56 5481.56 5481.56	82, 92 96, 34 97, 90 08, 32 14, 08 22, 53 23, 33 36, 26 42, 72 47, 08 50, 92 71, 37 71, 37	219191919191919191919191919191919191919	5382.9 5396.3 5597.88 5498.30 5408.30 5422.50 5424.41 5420.24 5420.24 5420.24 5420.24 5420.24 5420.24 5420.24 5420.24 5420.24 5420.25 5438.93 5442.70 5450.90 5450.
1-2 1 1-2 1 	n B un D wn D n D D	39,1574 38,8556 38,7397 38,6052 38,4922	5517,05 5533,11 5539,34 5516,61 5552,80	+ 8 + 4 + 3 + 1 0	5517.13 5533.15 5539.37 5546.62 5552.80							1 2 2 3		42.7908 42.6563 42.5199 42.4118 42.3428		+10 -10 - 9 - 9 - 8	5532.07 5539.29 5546.54 5552.51 5556.26 5562.52	32.61 - 39.33 - 46.58 - 52.66 - 56.26 -	10101010101	5532.59 5539.31 5546.56 5552.64 5556.24 5562.50

						1								
	₹ G 275		PLATE	G 291				PLAT	E G 302			WAY	Mea: 'e-Le	N NGTH
Intensity Character Alean Scale Reading	Wave- Length by Form. Cor, from	Wave- Length Intensity	Character Mean Scale Reading	Wave- Length by Form. Cor.from	Wave- Length	Intensity	Char- acter	Mean Scale Reading	Wave- Length by Form.	Cor, from Curve	Wave- Length	Uncor. for Velocity	Cor. for	Cor. for Velocity
mm. mm.	t.m., 5568.13 - 3 5: 5578.13 - 3 5: 5588.13 - 3 5: 5588.13 - 6 5: 5588.03 - 7 5: 5589.03 - 7 5: 5589.03 - 7 5: 5607.97 - 9 5: 5618.94 - 10 5: 5629.36 - 10 5: 5629.36 - 12 5: 5633.93 - 12 5: 5633.93 - 12 5: 5634.04 - 12 5: 5662.47 - 14 5: 5675.64 - 15 5: 5708.23 - 16 5: 5710.63 - 16 5: 5711.63 - 16 5: 5714.65 - 16 5: 5742.11 - 16 5: 5743.92 - 16 5: 5758.08 - 17 5: 5759.50 - 16 5: 5780.88 - 17 5: 5780.88 - 17 5: 5780.88 - 17 5: 5780.89 - 17 5: 5780.80 - 17 5:	t.m. 568.10 575.92 583.75 587.63 581.63 581.63 581.83 2 607.88 616.07 618.84 625.98 629.24 633.81 10 636.28 51 1 42 2	mm. n D 37,9875 B 37,023 w D 37,1946 B 37,1215 D 37,0958 B 37,0675 B 37,0100 D 36,84029 D 36,4929 B 36,4297 D 36,3536 n D 36,1508 n D 35,9556 n D 35,9556 n D 35,5556 B 35,7057 w D 35,5739	5589.12 -13 5589.12 -13 5592.73 -13 5592.73 -13 5592.73 -13 5641.87 -21 5642.87 -21 5645.20 -20 5651.09 -22 5651.36 -22 5667.597 -23 5669.52 -22 5675.97 -23 5679.73 -23 5679.73 -23 5679.73 -23 5679.73 -23 5675.97 -23 5675.97 -23 5675.97 -23 5675.97 -23 5675.97 -23 5675.97 -23 5675.97 -23 5675.97 -23 5675.97 -23 5675.97 -23 5787.28 -25	t.m. 5588.99 5592.60 5634.24 5638.51 5641.66 5645.00 5650.87 5657.34 5662.50 5675.74 5698.30 5687.05 5698.30 5780.87 5708.32	D { 10 10 10 10 10 10 10 10 10 10 10 10 10	nn D wn D n B nn D from to wB B nD from to B nD from to B n D from to B n D from to n D n B B n D B B D B B B D B B B B D B B B B	mm. 41.9758 41.8455 41.7761 41.7509 41.7067 41.4500 41.4180 41.0492 40.9713	t.m., 5576.37 5583.61 5587.49 5588.90 5591.38 5605.85 5624.83 5628.81 5636.60 5637.66 5644.21 5646.43 5671.31 5676.24 5671.31 5675.28 5686.15 5692.87 5695.35 5705.09 5707.45 5712.08 5712.08 5714.92 5745.79		t.m. 5576, 43 5583, 67 5583, 67 5591, 43 5605, 88 5621, 82 5628, 80 5632, 99 5635, 98 5637, 64 5641, 29 5644, 29 5644, 29 5646, 39 5670, 17 5671, 24 5675, 21 5686, 07 5692, 78 5692, 78 5692, 78 5716, 18 5710, 99 5716, 18 5712, 79 5716, 18 5712, 79 5715, 96 5718, 53 5719, 58	68.10 76.18 83.71 87.59 88.97.146 92.69 96.69 96.69 16.07 18.84 96.33 38.08 38.08 38.00 141.48 946.39 551.14 572.41 69.30 771.24 775.51 86.619 95.82 96.99 97.91 10.47 71.24 75.51 16.51 16.51 16.51 16.51 17.33 18.68 18.88 18.88 18.88 18.88	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t.m. 5568.08 5576.16 5588.95 5588.95 5589.95 5591.44 5592.58 5608.9 5616.0 5638.66 5639.99 5641.57 5638.66 5639.99 5641.36 5638.06 5639.99 5641.36 5639.89 5641.57 5650.85 5650.85 5650.85 5650.85 5650.85 5650.85 5650.85 5760.2 57671.22 5671.22 57671.23 5776.69 5776.7 579.7 579.7 579.7 579.7 579.7 579.7 579.7 579.7 579.7 579.7 5710.49 5716.49 5718.38 5752.53 57549.38
3 B7 34.3474 B7 34.1176	5800.90 -17 58 5816.11 -16 58	800.73 815.95				2-3 2-3 2-3	<u>D</u> ?	38,2670 38,2246 38,0135 37,9316	5797,50 5800,08 5802,86 5816,82 5822,27	-16 -16 -16 -16 -16	5797.34 5799.92 5802.70 5816.66 5822.11	97.34 00.32 02.70 15.95 16.66 22.11		5797.32 5800.30 5802.68 5815.93 5816.64 5822.09
B? 33.9529 B? 33.8031 D? 33.1089	5837.17 -16 58	826,95 837.01				1 1	D?	37,3934 37,1202	5858.62 5877.43	-16 -16	5858.46 5877.27	22.11 26.95 37.01 58.46 77.27 81.73	$-\frac{2}{2}$	5826.93 5836.99 5858.44 5877.25 5884.71
End 33,1250	5883.8 -16 58	883.6					End	36.9760	5887.4	-i6	5887.2	83.6 87.2		5883.6 587.2

DETERMINATION OF THE RADIAL VELOCITIES

The determination of the radial velocities was complicated by the presence of bright lines in the spectra, since the apparent center of a neighboring dark line would be shifted by an amount which would vary with the exposure and consequent density of the negative. To avoid this difficulty as far as possible, dark lines away from bright lines were selected for velocity determinations whenever they were available. The following tables give in detail for each star the lines selected, the elements with which they were identified, the differences in wave-length, and the resulting velocity corrections. The great range for the different lines is partly due to the cause just mentioned, but errors also necessarily arise from the use of lines which blend together in the spectra of these stars, though they are well separated in the solar spectrum. Such blends result from the large slit-widths used with comparatively small dispersion, the increased strength of lines in fourth-type spectra, and the changes of relative intensity as compared with the solar spectrum.

RADIAL VELOCITIES FROM THE DARK LINES

The tables are arranged as follows: The third column, headed $\Delta\lambda$, gives the displacement of the lines in hundredths of a tenth-meter; the fourth column gives the velocity corresponding to a displacement of one tenth-meter; the fifth column gives the deduced velocity, being the product of columns three and four.

19 PISCIUM

318 BIRMINGHAM

Star	Element	77	1*,	1.	Star	Element	77	Γ_1	I.
t.m.	t.m.		km.	km.	t.m.	t.m.		km.	km.
4404.95	Fe 04.94	+1	68	+1	4405.00	Fe 04.94	+ 6	68	+ 4
4408.48	Fe 08.60	$-1\hat{2}$	68	$-\frac{1}{8}$	4414.96	Fe 15.33	-37	68	-25
4415.14	Fe 15.33	-19	68	-13	4496.82	Cr.97.02	-20	67	-13
4489.72	Fe 89.90	-18	67	-12	4512.49	Ti 12.88	-39	66	-26
4496.99	Cr97.02	- 3	67	$-\frac{1}{2}$	4518.16	Ti 18.18	- 2	66	- 1
4512.73	Ti12.91	-18	66	$-1\bar{2}$	4522.91	Ti 22.97	$-\bar{6}$	66	- 4
4518.24	Ti 18.18	$+\overset{\circ}{6}$	66	+ 4	4531.18	Fe 31.31	-13	66	- 9
4522.97	Ti 22.97	0	66	1 0	4920.62	Fe 20.69	- 7	61	- 4
4594.31	V 94.27	$+$ $\frac{1}{4}$	66	$+\ddot{3}$	4934.31	Bu 34 . 24	+7	61	$+$ $\frac{1}{4}$
4789.40	Fe 89, 40 du	1 0	63	1 0	5173.46	Ti73.94	-48	58	-28
5247.53	Fe 47.27	+26	57	+15	5193.26	Ti 93.15	+11	58	+ 6
5397.54	Fe 97.70 tr	-26	56	113 114	5251.10	Ti 50.83	$\frac{1}{127}$	57	+16
5406.39	Fe 05 . 98	+41	55	+22	5255.42	Ti55.15	+27	57	+16
5430.35	Fe 29.81	+54	55 55	 	5269.84	Ti 69.72	+12	57	7
5731.16	Fe 31.98	-82	52	1 -13 -13			-56	57	-32
., 101.10	1001.00	-82	شو	- 4.5	5297.59	Cr 98.15	+14	56	+8
			1		5328.52	Fe 28.38		56	-22
		16 line	es, Mean	$1-2\mathrm{km}$.	5396.93	Fe 97.32	-39		-19
					5410.19	$Fe\ 10.53$	-34	55	-13

280 SCHJELLERUP

19 lines, Mean −8 km.

Star	Element	77	Γ_1	1.		74 SCHJELL	ERUP		
t.m. 4431.85 4512.45 4517.77 4522.53 4605.88 4645.67 4667.76 4681.77 4714.10 4728.22 5297.72 5319.99 5371.62 5397.02 5405.81 5410.10	t.m. Fe 35, 33 Ti 12, 88 Ti 18, 18 Ti 22, 97 Fe 06, 40 Fe 46, 40 Fe 67, 96 Fe 82, 24 Ni 14, 59 Fe 28, 73 Cr 98, 15 Fe 49, 89 Fe 71, 68 Fe 97, 32 Fe 05, 97 Fe 10, 52		km. 68 66 66 66 65 64 64 64 63 57 56 56 55	km32 -28 -27 -29 -31 -47 -13 -30 -31 -32 -25 +6 -3 -17 -9 -23	t.m. 4395, 13 4115, 38 4497, 29 4512, 43 4518, 46 4523, 23 4527, 45 4565, 82 4789, 34 4832, 65 5173, 31 5251, 76 5270, 17	t.m. Ti 95.19 Fe 15.33 Cr 97.02 Ti 12.88 Ti 18.18 Ti 22.97 Ti 27.48 Fe 65.48 Fe 689.37 Fe 89.37 Fe 89.37 Fe 51.49 Fe 70.11	$ \begin{array}{c c} -6 \\ +5 \\ -27 \\ -45 \\ +28 \\ +31 \\ -3 \\ -5 \\ -25 \\ +45 \\ +27 \\ +8 \end{array} $	Km. 68 68 67 66 66 66 66 63 62 58 57	km 4 + 3 + 18 - 30 + 18 + 20 - 2 - 2 - 15 + 26 + 15 + 5

16 lines, Mean -25 km.

13 lines, Mean +1 km.

78 SCHJELLERUP

115	80	II 7	FI	7	F	PII	P

Star	Element	77	V_1	1.
t.m.	t.m.		km.	km.
4415.17	Fe 15.33	-16	68	-11
4455.50	Ti 55.48	+2	67	+1
4496.95	Cr 97.02	-7	67	- 5
4512.92	Ti 12.88	+4	66	+3
4518.19	Ti 18.18	+1	66	+1
4523.02	Ti 22.97	+5	66	+ 3
4527.27	$\begin{cases} Ca & 27.10 \\ Ti & 27.49 \end{cases}$	- 3	66	- 2
4784.52	V 84.65	$ _{-13} $	63	
5183.92	Mg 83.79	$\begin{array}{c c} -15 \\ +15 \end{array}$	58	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
5189.15	Ca 89.05	10	58	I 6
5233.95	V 33.91	$+\frac{10}{4}$	57	$+\frac{7}{2}$
5349.55	Ca 49.65	-10	56	$-\frac{7}{6}$
5731.46	V 31.48	- 2	$5\widetilde{2}$	- i

Star	Element	Δλ	V_1	Ţ*
t.m.	t.m.		km.	km.
4435.28	Fe 35.33	- 5	68	- 5
4496.84	Cr 97.02	-18	67	-12
4512.85	Ti 12.88	- 3	66	- 2
4518.01	Ti 18.18	-17	66	-11
4522.88	Ti 22.97	- 9	66	- 6
4553.89	$Ba\ 54.21$	-32	66	-21
5183.38	Mg 83.79	-41	58	-24
5731.72	Fe 31.98	-26	52	-14

8 lines, Mean -12 km.

13 lines, Mean −1 km.

132 SCHJELLERUP

152 SCHJELLERUP

Star	Element	24	Γ_1	- 1-	Star	Element	77	I,	1"
t.m. 4397.83 4404.52 4408.25 4414.66 4454.53 4489.46 4496.44 4512.35 4517.67 4522.57 4528.27	t.m. V 98.35 Fe 04.94 Fe 08.60 Fe 15.33 Ca 54.95 Fe 89.90 Cr 97.02 Ti 12.88 Ti 18.18 Ti 22.97 Fe 28.84	$\begin{array}{c} -35 \\ -42 \\ -35 \\ -67 \\ -42 \\ -44 \\ -58 \\ -53 \\ -51 \\ -40 \\ -57 \end{array}$	km. 68 68 68 68 67 67 67 66 66 66	km. -24 -29 -24 -46 -28 -29 -39 -36 -34 -26 -38	t.m. 4489.63 4512.83 4518.25 4552.67 4593.95 4789.68	t.m. Fe 89.90 Ti 12.88 Ti 18.18 Fe 52.72 V 94.27 Fe 89.80	$ \begin{array}{c c} -27 \\ -5 \\ +7 \\ +5 \\ -32 \\ -12 \end{array} $ lines, Mea	km. 67 66 66 66 65 63 an, wt. 2	km. -18 -3 +5 +3 -22 -8
4552.42 4593.67	Fe 52.72 V 94.27	-30 -60	66 65	-33 -20 -39					•
4656.03 4924.13 4933.02 5172.36 5246.92 5297.61 5328.56 5397.47	Ti 56.64 Fe 24.39 Fe 33.50 My 72.86 Fe 47.27 Cr 98.15 Fe 28.71 Fe 97.70	-61 -26 -48 -50 -35 -54 -15 -23	64 61 61 58 57 57 56 56	-39 -16 -29 -29 -19 -31 -9 -13	5173,29 5202,45 5247,23 5270,07 5328,56 5430,26 5686,61	Mg 72.86 Fe 02.49 Fe 47.27 Fe 69.99 Fe 28.71 Fe 29.81 Fe 86.66	$\begin{array}{ c c c }\hline +43 \\ -4 \\ -4 \\ +8 \\ -15 \\ +45 \\ -5 \\ \hline\end{array}$	58 58 57 57 56 55 53	+25 -2 $+5$ -8 $+25$ -3

21 lines, Mean −28 km.

7 lines, Mean, wt. 1, +6 Weighted mean, -4 km.

RADIAL VELOCITIES FROM THE BRIGHT LINES

Comparison with 132 Schjellerup

As a check on these very unsatisfactory results, the bright lines of the other stars were compared with the bright lines of 132 Schjellerup. The following table gives this comparison, with the velocities resulting from the use of the value -28 km., adopted for 132 Schjellerup.

RADIAL VELOCITIES FROM THE BRIGHT LINES

132 Schj.	19 Pi	sc.	318 Bi	rm.	74 Sc.	hj.	78 Sc	hj.	115 Sc	hj.	152 86	hj.
102 St NJ.	λ	77	λ	77	λ	Δλ	λ	77	λ	Δλ	λ	77
t.m.	t.m.		t.m.		t.m.		t.m.		t.m.		t.m.	
4402.03			02.32	+29	02.68	+65						
4437.05			37.21	+16								
4438.45	38.86	+41	38.95	+50								
4448.24			48.46	+24	48.95	+71						
4163.65	64.01	+36									64.23	+58
4488.29	88.58	+29									88.92	+63
4521.23			21.52	+29								
4524.26											24.69	+43
4536.55												1 200
4537,06			37.23	+42		1 1			36.98	+17		
4538.57	38.97	+40	38.74	+17							39.24	+67
4547.19	47.76	+57		l '			47.73	+52	47.61	+12	47.78	+59
4578.09											78.64	T55
4579,26											79.75	+49
4580.77											81.27	+50
	83.64	115						* * * * *			83.94	
4583.49		+15										+45
4585.07	85.38	+31	15 00	1.077								
4614.73			15.00	+27			10.07	1.50			10.01	1.49
4617.78	01.00	1.00	01 11		18.07	+29	18.07	+29			18.21	+43
4621.09	21.32	+23	21.41	+32	21.66	+57	21.49	+40			00.00	1.01
4638.57	38.72	+15	39.04	+47	-39.11	+54	39.13	+56			38.88	+31
4641.47	41.71	+24				4 4 4 **	42.08	十61				
4664.82	65.38	+56						1.11				
4738.39			38.63	+24			38.93	+54	38.72	+33		
4829.86			30.30	+44							30.59	十73
5312.93							13.05	$^{+12}_{+30}$		1		
5317.26	17.87	+61	17.39	+13	17.59	+33	17.56	+30	17.58	+32		
5368.55			68.50	- 5			68.91	+36			69.13	+58
5374.65	75.34	+69	74.74	+ 9			75.03	+38	74.78	+13	75.00	+35
5379.96							80.45	+49				
5411.89									12.07	+18		
5416.56					17.11	+55						
5422.55	23.19	+64	22.60	+5								
5431.75			31.96	+20							32.25	+50
5450.40									50.65	+15	50.92	+52
5564.02	64.45	+43			64.83	+81						
5586.45	86.93	+48	86.77	+32	86.99	+54	87.21	+76				
5692.68										'	93.19	+51
5710.18			10.62	+14								
7.1		1				2		-		1		9
Mean Δ , t.m	+.4		+.2		+.5	00	+.4		+.2		+.5 +3	9
Mean Δ, km	+2		+1		+3	14	+2		+1		$\begin{array}{c} +3 \\ -2 \end{array}$	0
V of 132 $Schj$	-9		-2		-2		-2		$-\frac{2}{1}$		-2	0
Velocity in km	_	2	-1	2	+	6		Ţ	-1	4	+	O .

RADIAL VELOCITY OF 280 SCHJELLERUP

From bright lines compared with 19 Piscium

The character of the spectrum of 280 Schjellerup differs so much from that of 132 Schjellerup that direct comparison of the bright lines was unsatisfactory; therefore they were compared with the lines in 19 Piscium, a star more nearly like 280 Schjellerup in development.

19 Piscium	280 Schjellerup	Δλ	19 Piscium	280 Schjellerup	7)
t.m.	t.m.	t.m.	t.m.	t.m.	t.n
4617.77	17.36	41	5531.92	31.20	1
4631.12	30.59	53	5571.81	71.57	:
4638.72	37.65	-1.07	5580.71	81.09	:
4660.88	60.09	79	5724.08	23.96	
5453.81	52.18	-1.63	5756.98	57.57	:
5459.10	58.61	49			

Mean -.46 t.m. = -25 km.

MEAN RADIAL VELOCITIES

The final adopted velocities are the means of the direct determinations by dark lines and the comparison of the bright lines with those of 132 Schjellerup. The close agreement in certain stars of the results obtained with the dark and bright lines is of course purely fortuitous, as the values in either case may be many kilometers in error.

STAR	Dark	LINES		Lines Com- ith 132 Schj.	MEAN	
	V	No. Lines	V	No. Lines	V	
132 Schjellerup	$ \begin{array}{r} -58 \\ -25 \\ -2 \\ -8 \\ +3 \\ -1 \\ -11 \\ -4 \end{array} $	17 24 15 13 14 9	$\begin{array}{c} -25 \\ -25 \\ -12 \\ +6 \\ -1 \\ -14 \\ +6 \end{array}$	16 13 14 9 13 11 16	$\begin{array}{c} -28 \\ -25 \\ -2 \\ -10 \\ +5 \\ -1 \\ -13 \\ +1 \end{array}$	

For a check on these results see the table on p. 118.

TABLE OF CORRECTIONS FOR RADIAL VELOCITY

The corrections to be applied to the measured wave-lengths of the star lines (after reduction to the Sun) to eliminate the displacements due to radial velocity are given in the following table. The displacements are given in hundredths of an Ångström unit.

V in km.	1	2	5	10	13	25	28	V in km.	1	2	5	10	13	25	28
4200 4300 4400 4500 4600 4700 4800 4900 5000	1 1 2 2 2 2 2 2 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3	7 7 7 8 8 8 8 8	14 14 15 15 15 16 16 16 17	18 19 19 20 20 20 21 21 21 22	35 36 37 38 38 38 39 40 41 42	39 40 41 42 43 44 45 46 47	5100 5200 5300 5400 5500 5600 5700 5800	ของของของ	3 3 4 4 4 4 4 4 4	9 9 10 10 10 10 10	17 17 18 18 18 19 19	22 23 23 23 23 24 24 24 25 25	43 43 44 45 46 47 48 48	48 49 50 50 51 52 53 54

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY

The following table contains the mean wave-lengths of the lines measured in each star, with the correction for radial velocity, and the final mean of all the wave-lengths of the same line measured in each star. The stars are arranged in the assumed order of development.

		280 Schje	ellerup		19 Pisciun	ı		318 Birmingh	ham		74 Schjeller	up
No.	Inten- sity	Character	Wave-Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length
			t.m.			t.m.			t.m.			t.m.
1												
$rac{1}{2}$				10	w D	84.08		• • • • •				
3				2-3	n D	90.33		nn D	90.03			
4										*		
5				6-7	w D	94.83		wn D	95.17		wn D	95.06
-6												
7				i	<u></u>	97.65						
8				2	D	00.87		wn D	01.02		wn D	00.7
9				3	В	02.47	3-4	n B	02.47	2-3	n B	02.61
$\frac{10}{11}$				7	w D	04.98	2-3	wn D	05.15		nn D	05.1
$\frac{11}{12}$				3	" D?	08.51					wn D	08.61
13 {												
(
$\frac{14}{15}$				i	D?	12.29						
- (14.40			09.8			
16 }								B? }	14.2			
17				3	n D	15.17	2-3	n D	15.11		nn D	15.3
18												
19 }												
20				2-3	wn D	20.60						
21					В?							
$\frac{22}{23}$			* * * * * * *									• • • • •
$\frac{23}{24}$							1-2	n D	25.86			
25				1	В	26.81						
26				2	D	27.49	2-3	n D	27.96	3	nn D	27.8
27		nn D	4429.51	2-3	n D	30.18	1-2	n D	30.27		nn D	30.42
$28 \ $		• • • •			****			****			• • • • •	
29							i	n D	33.96			
30 {								B {	31.0			
31		· · · · ·	4405 00			05.50		_ (33.60			35.72
	3	nn D	4435.22	5	w D	35.52	5	wn D	35.49		wn D	
32												
33 `				1	D	38.13	1-2	n D	38,23			
34			97.0	$\frac{1}{1}$	B??	38.89	5-6	n B	39.10			• • • • •
35 }		B? }	$\frac{37.0}{39.9}$		• • • •							
36			00.0	2-3	n D	44.45	1-2	<u>.</u>	44.45			
37					B??				*****			
38 }								B {	$\frac{45.0}{10.0}$			
39 (46.8			
40												
41				1-2	n D??	47.14	2	n D	47.47		4 4 4 7	
$\frac{42}{43}$			• • • • • •	2-3	n B?	48.68	4	n B	$\frac{48.61}{50.04}$	5	n B	$\frac{48.88}{50.35}$
44				5	n D	49.96		wn D	50.04		nn D	
45				2-3	n D	55.23	1	n D	55.35		nn D	55.8
46											* * * *	
$\frac{47}{48}$												
)	co. 01
$-49 - \frac{1}{2}$				1							nn D	60.01
				3	n D	62.17	3	n D	62.07		nn D	62.48
50 51		nn B??	4463.76	3-4	w B	64.04	6	n B	63,91		w B	64.0

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY

	78 Schjelleri	up		132 Schjeller	up		115 Schjelle	rup		152 Schjeller	up	Mrian
Intensity	Character	Wave- Length	Intensity	Character	Wave- Length	Intensity	Character	Wave- Length	Intensity	Character	Wave- Length	WAVE-LENGTH
Intensity 2 8 3	Character	Wave-Length t.m. 89.82 95.10 01.14 02.68 05.21 08.75 15.18 20.5 27.63 30.37 35.92 38.14 39.44 44.58	Intensity 1-2 2 1-2 1-2 2 4 1-2 1 1-5 2 2-3 3 1-6 6 1-6 1-2 1-7 4 1-6 5	head head n D n D n D n D n D n D spec. In D n D? con. (spec. In D D? con. (spec. In D D? con. (spec. In D D D? con. (spec. In D D D D D D D D D D D D D D D D D D	Wave-Length t.m. 71.80 80.63 85.20 89.77 91.95 95.1 95.8 97.9 98.24 00.89 02.47 03.30 05.24 08.52 11.20 12.23 12.7 14.7 15.28 16.71 18.0 20.3 20.60 21.18 21.70 23.99 25.86 16.69 27.72 30.28 29.6 30.9 35.0 35.60 35.0 35.60 35.0 36.3 38.14 38.86 44.51 45.16	sity	nn D? n D? wn D	Wave-Length t.m. 04.92 07.90 35.47	Intensity 2-3 3 3-4 2 2-3 1-2 2 2-3 1-2 2 2-3 1 2	Character B?? D { n D } n D B?? n D n D n D n D	Wave-Length t.m. 02.70 04.91 03.3 09.6 10.58 12.45 20.81 23.88 25.80 27.74 30.54 35.97 38.25	t.m. 4371.8 4380.6 4380.6 4381.6 4390.0 4391.9 4395.0 439 4397.9 4401.0 4402.6 4403.3 4405.1 4408.5 440 4410.9 4412.3 4418.5 4416.7 441 4420.6 4421.0 4421.7 4423.9 4423.9 4426.8 4427.7 4430.2 443 4431.0 4431.3 4438.2 4438.2 4439.0 4431.5 4438.2
1 2-3 3 1-2	nn D n B n D	47.66 48.88 50.32	2 3 2 8 2-3 5 1-3 0-1	D?? n B? n D?? n B? n D?? B D?	45.68 46.14 47.44 48.65 50.04 54.23 55.33 56.76	2–3	wn D	50.02	2 1 2 	D n B?? n D? wn D??	45.79 46.37 47.57 50.3 55.38	} 444 4445.7 4446.3 4447.5 4448.7 4450.1 4454.2 4455.4 4456.7 4458.1
 2 3	n D n B	62.24 63.84	4 8 2-8	n B?? D? { w D B	58.81 59.3 60.1 62.10 64.08		n D?	62.2	$\begin{array}{c c} 1 \\ 1 \\ \cdots \\ 4-5 \\ 2-7 \end{array}$	n D B? n D n B	58.72 62.05 64.09	4458.8 } 445 4462.2 4464.0

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

No.	1		280 Schjellerup						_	ham		rup	
		Inten- sity	Character	Wave-Length	Inten- sity	Character	Wave- Length	Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length
				t.m.			t.m.			t.m.			t.m.
52	5											В	64.80
53		4	wn D	4465.96	1	D?	65.29	1	n D	65.43			
$\frac{54}{2}$					1		00.05						
55 56		i	n D	4471.64	$\frac{1-2}{1}$	D D??	$68.95 \\ 72.25$	1	nn D	71.72			
						17							
57	7												
58						В?			 D	70.4			
59	(* * * *				В	$72.4 \\ (72.4)$			
60	- 5								B	74.5			
61													
62 63					1-2	n D	75.52	1	n D B??	76.18	1	nn D B	75.4
64					1-2	B? n D??	80.00	i	nn D	80,42	max 1	nn D?	$\begin{bmatrix} 79.0 \\ 80.22 \end{bmatrix}$
65		1	nn D	4481.74	2.3	D	82.19	2-3	n Đ	82.41	1	nn D	82.34
66					2-3	n B	83.62	2	n B	83.64			
67	3												
68					2	B?	86.03	1-2	n B?	86.27			
69					1-2	D	87.57	2	nn D	87.42	1-2	nn Đ	87.61
70 71		i	,	1100.95	$\frac{3}{2-3}$	B?	88.61	3	n D	60.60	i	 D	90.05
			n Đ	4189.35	±=+)		89.75		11 17	89.80			90.05
72	7												
73			wn D	4496.73	4 5	D	97.02		wn D	96.97	2	n D	97.21
74	5					B??	(98.0) 01.1						
75	1		nn D	4501.22	4	D	01.78	2-3	nn D	01.87	1-2	nn D	01.97
76						,) ;				6.3.0			00.5
76	. 1		head		• • •	head	02.3	• • •	head	$02.6 \\ (02.5)$		head	02.5 02.5
77	7								В	7 06.3		В	06.3
78		$\overline{2}$	n D	4506.38	6	Ð	06.77	2-3	n D	07.08	2-3	n D	07.04
79 80		٠		*****	1	B??	00.77	$\begin{array}{c c} 6 \\ 1 \end{array}$	n B? n D	$08.64 \\ 09.56$	i	nn Đ	09.91
81						D? B??	09.77	4	B??	10.8			00.01
82													
83	- /	···3?	D	4519 00			10.70		 D	10.01		 D	10.9
83			nn D	4512.83		wn D head	$\begin{array}{c} 12.76 \\ 14.3 \end{array}$	2	nn Đ	12.64		nn Đ	12.3
84					1	D?	16.17						
85				4510 15	2	n B	17.05	max	B	17.71		- 15	10.00
86 87		1-2	n Đ	4518.15	3–4	D D??	$\frac{18.27}{20.54}$	3	n D	18,31	1-2	n D	18.38
88		1-2	nn B	4521.15	3-4	B	$\frac{20.61}{21.66}$	3	wn B	$\frac{1}{21.67}$	8	wn B	21.91
89	3						• • • • •						
90	- '	i	$\stackrel{\cdots}{\text{n D}}$	4522.91	4	<u>.</u>	23.00	4-5	<u>.</u>	23,06	1-2	nn D	23.20
91						B??							
92	*,												
93	`				5	n D	27.16				0	nn D	27.40
94	1							1	nn Đ	28,65			
95					2-3	Ď	31.35	1	nn D	31,43	1	nn Đ	30,96
95 96						head	31.9						
97			wĎ	4535.30	6	w D	35.84		nn D	35.81		$\stackrel{\cdots}{\operatorname{nn}}\stackrel{\cdots}{\operatorname{D}}$	35.90
98			D	§ 4530.7					D	\$			
99		• • •	w D	$\begin{array}{c} 4535.8 \\ 4537.98 \end{array}$	3	В	37.32	3		$\frac{36.6}{37.38}$			
100			W D	4001.05	2.3	В	39.00	2	wn B n B?	38.89			
101									В В	$\int 36.5$		В	(36.6
	1			452020			10. 19			39.7	1 1 1		39,9
$\frac{102}{103}$			n Đ	4539.89	1 2	D D??	$\frac{40.42}{42.75}$	1	n D	40.51	1 2	nn D	40.57
104					$\frac{1}{2}$	13	44.10						
105	- 1												

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

	78 Schjeller	up		132 Schjelle	rup		115 Schjelle	rup		152 Schjelle	rup	MEAN
Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Intensity	Character	Wave- Length	Intensity	Character	Wave- Length	WAVE-LENGTH
Inten-		_Wave-		1	Wave-Length t.m. {63.0} {64.8} 65.76 66.90 69.022 71.72 72.322 73.55 {73.0} {75.31 75.82 79.08 80.13 82.50 83.46 {83.0} 86.15 87.33 88.70 {96.2} 96.99 {98.0} {01.3 01.92 03.14 02.71 {06.0 07.12 08.65 09.89 10.66 {08.3 {09.5 12.83 15.15 16.34 17.31 18.35 20.71 21.75 {20.9 423.4 23.9 {27.3 27.2 28.69 31.29 32.73 33.44 36.04 37.45 39.00 {36.6			Wave-	Inten-		Wave-	**************************************
3 	n D 	40.66	3 2 	wn D? n D?? max B?? n D	$ \begin{array}{c} (40.0 \\ 40.46 \\ 42.51 \\ 44.40 \\ 44.92 \end{array} $				1 2-3 1	n D wn D?? n B?	40.44 43.06 44.10	4540.4 4542.8 4544.2 4544.9

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

		280 Schj	ellerup		19 Piscius	nı	3	318 Birmingh	ıam		74 Schjeller	rup
No.	Inten- sity	Character	Wave-Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length
106	e » e		t.m.	3	В	t.m. 47.79	4	n B?	t.m. 47.71	max	ВВ	t.m. 47.56 (46.8
108				5	wn D	49.25		wn D	49.37			₹ 48.5 ····
109												
110 }												
111 112	9	w D	4553.58	10	w D	53.54		wn D	53.58		wn D	54.07
113 }					D	\ \ 51.8 \ \ 54.7 \ \ 54.7		D	52.3 55.3			* * * * * *
113a 114			(4555.5		head	(55.3		head	55.3	max	В	58.40 (55.40
$\frac{115}{116}$		nn D?	4559.3 4560.11	3	n D	{ 59.3 60.39	5	nn D	$\begin{array}{c} 35.3 \\ 59.4 \\ 60.42 \end{array}$		nn D	59.90 60.48
117 118	1	ти Б. D	4562.93	$\begin{bmatrix} 3\\ 2-3 \end{bmatrix}$	n B D??	61.91 63.35	3	 D	63.54		nn D	63.47
119 120	0-1	<u>.</u>	4565.22	1-2	B?? D??	65.73	1-2	<u>.</u>	65.71	···i	n D	65.74
$\frac{121}{122}$	• • •		*****									
123 }		В	$\left\{ egin{array}{l} 4565.90 \\ 4569.50 \end{array} ight.$		В	$\{ 66.3 \\ 70.0 $		В	$\begin{cases} 66.2 \\ 70.5 \end{cases}$, , , , ,
124 125		nn D	4571.57	9	w D??	71.66		wn D	71.79		nn D	71.30
126 127 128				3 3 4	n D n D	75.27 77.57	· · · · · · · · · · · · · · · · · · ·	nn D? nn D	75.10 77.47		n D	77.60
129								D	$\begin{cases} 70.9 \\ 76.9 \end{cases}$			
129a 130					head	78.1		head	77.0			
131 132												
133 134				1	D	80.42	1	nn D	80.52			
135 136	56	wn B	4583.59	1 2	D??	81.93 83.67	1	nn D	82.57			
137 138		* * * *		1-2 1	D B?	$84.57 \\ 85.41$	1	n D	84.82			
139 140	2	n D	4586.38	$\frac{2}{2}$	n D	86.37	1	nn D?	86.10			
$\frac{141}{142}$												
143 144				1	 D?	91.01	1-2	nn D	91.26			
145 }												
146 147	1 2	n D nn B?	$\frac{4594.19}{4596.11}$	2 <u>-</u> 3 2	n D n B	94.34 95.80	5	nn D n B	94.30 96.10	4	nn D n B	94.69 96.15
149 {												
150 151	···· 1	n B?	4500.59	··i	n D??	97.52	2	n D	97.61			
152			4599.58	1-2	n D	00.84	3	n D	00.61	i i	n D	00.87
153 154												
$155 \\ 156 \\ 157$	7-8		4606.26		w Đ	06.87	10	w D	06.86	8	w D	06.88
158		head	4607.5		head	07.9	head		08.3			
159 }			4009 17	· · · · · · · · · · · · · · · · · · ·		00 71		D P.9	05.7 08.3		n R99	08.90
160 161 {	3	n B B	4608.47 (4607.5	2-3	n В 	08,71	2	n B? B	09.19 08.3	5	n B??	08.90
162			\ \ 4615.0 	i	n D??	10.07	i	nn D?	$\begin{array}{c c} 13.1 \\ 10.57 \end{array}$	1	$\stackrel{\dots}{\text{n}}\stackrel{\dots}{\text{D}}$	10.56

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

	78 Schjeller	ир		132 Schjelle	rup		115 Schjelle	rup		152 Schjelle	rup	MEAN
Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Intensity	Character	Wave- Length	WAVE-LENGTH
2-3	n B	t.m. 47.75	4-6	В	t.m. 47.63	1	В	t.m. 47.81	4	n B	t.m. 47.73	4547.7
• • •					48.8							454
3	wn D	49.25	i	nn D?	49.47				5–6	n D	49.27	4549.3
• • •				D	$\{ 48.8 \\ 50.1 $							454
• • •				В	(50.0							455
				nn D?	$\begin{array}{c} \{52.3 \\ 52.85 \end{array}$					wn D	52.65	4552.8
7	wn D	53.79	4	w D	54.21	4	n D	54.09				4553.8
	D	55.3		D	$\begin{array}{c} \{52.1 \\ \}55.4 \end{array}$							4552.0 4555.1
		(00.0		head	54.68							4554.9
		(55.3	3–4	nn B??	58.88 (55,3				1	n B??	58.85	4558.7 4555.3
	В	{ 59.7		В	59.6							4559.5
4 3–4	n D n B	$\begin{array}{c c} 60.47 \\ 62.10 \end{array}$	1-3	nn D?? B??	$60.23 \\ 62.25$		nn D?	60.35	$\frac{2}{1}$	n D n B??	$60.21 \\ 62.27$	4560.3 4562.1
3	n D	63.51	2	n D	63.45	2	n D	63.56				4563.5
$\frac{2}{1}$	n B??	$64.71 \\ 65.61$	$\frac{2}{1}$	n B?? wn D??	$64.57 \\ 65.95$	5	n D	65.85	3	n B D?	64.68	4564.7 4565.8
									2-3	wn B	67.72	4567.7
	• • • •	(66.3	2-3	B;?	69.46			(66.8		• • • •		4569.5 4566.3
• • •	В	70.3		В	70.0		В	69.4				4569.8
		79.55							2	В	70.31	4570.3
	n D	72.55	2	B?	73.71							4571.8 4573.7
			1	n D?	75.78					<u>.</u>	77.67	4575.4
1	n D?	77.26	1	n D?	77.61		D	(73.8		D	(70.9	4577.5 4574.2
	D	78.1		2 - 3				77.2			78.4	4577.7
	head	78.1	4	head B	$78.05 \\ 78.52$		head	77.2	1-2	B?	78.56	4577.6 4578.5
2	nn B?	79.37		.					1-2	n B	78.96 79.67	4579.2
1-2	nn D	80.47	$\frac{4}{1-4}$	n D	$79.69 \\ 80.38$				1-3	n B	80.50	4579.7 4580.5
1	n B	81.68	4	B	81.20				1-2	nn B?	$81.19 \\ 82.94$	4581.4
$\frac{1-2}{2-3}$	nn D n B	82.51 83.93	1 5	n D??	$82.85 \\ 83.92$				i	n D B?	83.86	4582.6 4583.8
			3	D	84.72					n D?	84.72	4584.7
1 1	n B	85.62 86.76	5 3	B D	$85.50 \\ 86.28$				$\frac{\cdot \cdot \cdot}{2}$	<u>.</u>	86.37	4585.5 4586.4
			$\frac{2}{2}$	B	86.89							4586.9
			2	D? B??	87.43				2	В	89.07	4587.4 4589.1
max	В	89.85	3-4	B?	90.39	··i	n D?	91,14	$\frac{2}{2}$	B?	$90.54 \\ 91.25$	$4590.3 \\ 4591.2$
1	n D	91.39	4	n D	91.10			01.14		В	(89.9	459
			3		94.10				1-5	n D	{ 93.2 93.93	4594.3
$\frac{\cdots}{4}$	n B	96.04	4-6	nn B?	96.08				max	B	(95.42)	4596.0
										В	{ 94.6 } 95.9	459
··i	nn D?	97.32	i	wn D?	97.33	0–1	n D	97.34	1-2	nn D??	97.37	4597.4
1	n B?	99.33	3-4	n B? D	99.53	···i	nn D	00.68	max 1	B??	99.22 00.89	4599.5 4600.8
2	n B	01.00	4	В	$01.00 \\ 02.01$		nn D		1	n B??	02.27	4602.1
			$\frac{2}{1}$	D D	02.95					nn D?	02.83	$\frac{4602.9}{4606.2}$
3-4	n D	07.20		m D w D	$06.23 \\ 06.83$	2-3	n D	06.24		wn D	06.37	4606.7
			4	n D	07.50		head	08.5				$4607.5 \\ 4608.1$
	head D	$\frac{08.2}{\sqrt{02.9}}$		head D	08.01 (03.0		head n D	(05.4				4605.6
$\overset{\cdots}{\overset{\cdot}{2}}$	n B?	08.3		B??	₹08.5			{ 08.5		n D?	08.92	4608.4 4608.9
	B	$\frac{09.17}{508.4}$		B	508.2							4608.1
···i	n D	$\begin{array}{c} 13.3 \\ 10.22 \end{array}$	$\frac{1}{2}$	D	10.17							4610.3
	1 11 11	10.22		1	10.11			• • • • • •				1010.0

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

		280 Schj	ellerup		19 Pisciu	m		318 Birming.	ham		74 Schjeller	rup
No.	Inten-	Character	Wave-Length	Inten- sity	Character	Wave- Length	Intensity	Character	Wave- Length	Intensity	Character	Wave- Length
163 164 165 166 167	· · · · · · · · · · · · · · · · · · ·	 n D	t.m. 	1-2 1-2 3 2-3	D?? B?? n D B D	t.m. 12.32 13.80 14.95 16.29	$\begin{array}{c} 1 \\ 2-3 \\ 5-6 \\ 3 & 4 \end{array}$	n B?? n D n B n D	t.m. 12.39 13.73 15.15 16.46	 2 6 3	n D n B n D	t.m. 13.77 15.03 16.31
$\begin{array}{c} 168 \\ 169 \\ 170 \\ 171 \\ 172 \\ 173 \\ 174 \end{array}$	1 	B n D	4617.74 4619.29	6 5 4 1-2	B D? B n D??	17.80 19.68 21.35 22.81	7-8 6 5 2-3	n B D n B nn D	18.03 19.86 21.56 23.05	9 3 5 1-2	w B n D n B nn D	17.99 19.70 21.58 23.09
175 176 }	• • •				 D??		• • •				В	(23.6 { 27.9
178 179 180 181 182	4	n B	4630.97	5 4	wn D B 	29.26 31.15 34.61	8	n D n B?	29.54	6-8	nn D n B nn D	29.12 31.18 34.6
183 184 185 186 {	3	n B? n D	4638.03 4639.86	3 5 6	D B D	37,46 38,75 40,29	3-4 6	nn D n B D	37.41 39.19 40.46	6 5	n B D	39.03 40.76
187 188 189 {	1-2	n B B	4642.10	3-4	B B??	41.72	4	wn B 	42.16 41.3	8-9	w B B	42.31
190 191 192 193	4	D nn D	\(\frac{4644.4}{4646.05} \\ \frac{1}{1655.25} \end{align*}	2-3 1 1	wn D n B?? D? D	45.70 52.80 54.04 56.6			\(\frac{44.1}{}\)	i	wn D nn B?? wn D	\begin{cases} \ 43.2 \\ 46.30 \\ 53.05 \\ \tag{56.30} \end{cases}
194 195 { 196	2-3	n B B D?	$\substack{ 4660.48 \\ 4657.5 \\ 4662.2 \\ 4663.92 }$	1-2	w B n D	64.14	* * *				• • • •	
197 198 199 200 201	1 4 2	n B? n D n D wn D	$\begin{array}{c} 4665.21 \\ 4668.15 \\ 4674.79 \\ 4682.16 \\ \dots \end{array}$	2 3 4 1	n B wn D D D? n D??	65.41 68.08 75.13 82.29 88.43		••••		1-2	n B	65,24
202 203 203a 204 205	• • •			34	n D? n D head D??	91.12 96.56 97.2	• • •				• • • •	
206 207 208 209 }	5	n D	4714.49	6	w D	14.61	4 4 4	• • • •			wn D D	15.00 { 13.0 } 16.4
209a 210 211 212	• • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • •	head B?? B??	14.8		• • • •	• • • • •	1-2	head n B??	16.4 20.38 16.4
$\begin{array}{c} 213 \\ 214 \\ 215 \end{array} \Big\}$	• • •			1-2	n D	22.69				1	B? n D 	21.3 22.85
$\begin{array}{c} 216 \\ 217 \\ 218 \\ 219 \end{array}$	• • •	nn D	4728.61 (4733.5	···· ii	 w Đ	36.26	io	 w D	36.3 (31.3	1 10	nn Đ w Đ	28.5 36.24 (34.3
220 }		D head	\\ \frac{4737.6}{4737.6} \\ \text{4737.6} \]		head	37.61		D head	$\begin{cases} 37.9 \\ 37.9 \end{cases}$		D head	37.6 37.6

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY— Continued

	78 Schjelleri	ıp		132 Schjeller	rup		115 Schjeller	тир		152 Schjeller	- ир	Mouve
Inten-	Character	Wave- Length	Intensity	Character	Wave- Length	Intensity	Character	Wave- Length	Intensity	Character	Wave- Length	WAVE-LENGTH
sity 1 2 6 3 6-7 6 5 2-3 4-5 5 3	n B? n D B D B n D n B? n D n B? n D n B? n B? n B? n B? n B? n B? n D n B? n D n B	Length t.m. 12.31 13.98 15.21 16.56 18.09 19.85 21.51 22.99 27.9 29.84 39.15 40.60 42.10 46.55	2 3-4 4-4 4-99 2-5 1-2 6-8 2 4-5 1-2 2 1 2 1 1 5-8 4 5-6 3 4 4 5 5	D??? n B?? nn D n B n D n B?? n D?? B B B?? n D?? n D?? n B?? n D?? n B?? n D? n B?? n D? n B?? n D? n B?? n B? n D?	Length t.m. 11.32 12.49 13.89 15.23 16.36 17.16 18.23 19.56 21.51 23.26 24.18 25.87 27.10 28.66 30.08 30.98 31.60 31.68 34.14 37.60 39.07 40.59 { 39.5 { 41.5 41.90 43.33 46.86 53.08 54.06 56.47 60.42	3-8 3-1-2	n D n B n D n B n D n B n D	Length t.m. 13.91 16.42 17.74 19.42 38.78 40.37	2 2 1-3 2 4-8 3-4 1-2	D?? B?? n D B?? B D B?? n D?? B??	Length t.m. 11.42 12.23 13.93 15.14 18.15 19.40 22.47 38.07 38.96 40.55	**MEAN WAVE-LENGTH** **L.m.** 4611.4** 4612.3** 4613.9** 4615.1** 4616.4** 4617.5** 4622.9** 4622.9** 4624.2** 4625.9** 4627.1** } 462 4628.7** 4629.6** 4631.0** 4631.0** 4631.2** 4634.4** 4637.6** 4638.9** 4640.4** } 464 \$ 464 \$ 464 \$ 464 \$ 4643.3** 4641.0** 4643.9** 4646.3** 4656.4** 4660.6** } 465 \$ 4664.1**
1	n B? n D nn D nn D head B? con. spec. n D w D head	65.44 68.60 14.97 15.8 17.0 (16.3 (21.3 22.69 36.43 (34. (38. 37.7	1-3 3-4 2-3 2 1 1-3 1-3 2 2 2-3 2-3 2 1 10	n D? B n D D?? n D? nn D?? nn D?? D?? nn D?? nn D?? nn D?? nn D?? nn D?? nn D?? nn D?? nn D?? wn D?? wn D?? wn D?? wn D?? wn D?? wn D	64.21 65.26 67.87 82.55 88.78 01.98 03.82 09.75 15.55 16.11 16.75 18.13 20.59 22.67 {23.40 {27.70 31.63 32.51 36.43 { 37.8 37.61	1-2	nn D? n D? n D? n D? D nn D?	67.73 74.92 97.41 22.29 35.09		n D	36.6	4664.1 4665.3 4668.1 4674.9 4682.3 4688.6 4691.1 4697.0 4697.2 4702.0 4703.8 4709.8 4714.7 4715.6 } 471.1 4716.8 4718.1 4720.5 4718.1 4720.5 4718.1 4720.5 4718.1 4720.5 4718.1 4720.5 4718.1 4721.3 4722.6 } 472.3 4727.7 4731.6 4731.6 4731.7

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

		280 Schj	ellerup		19 Pisciui	н	:	318 Birming	ham		74 Schjeller	up
No.	Inten- sity	Character	Wave-Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Intensity	Character	Wave Lengt
222 223	4	n B	t.m. 4739.10	8	B D??	t.m. 38.62 39.85	5 1	n B n D	t.m. 38.79 40.14	10	n B	t.m. 38.6
224			(4737,6						(37.9			(39.6
225		В	4741.2					В	41.7		B??	$\{42.1$
226	10	n D	4743.40	7-8	w D	43.94	10	w D	43.94		wn D	43.8
227 -		D	$\left\{ egin{array}{l} 4741.2 \ 4745.2 \end{array} ight.$					D	$\{41.7 \\ 45.6$		D	$\left\{ \begin{array}{l} 42.3 \\ 45.6 \end{array} \right.$
228		head	4745.37					head	45.69		head	45.6
229 220		n B	4746.99	6-7	В	46.52	4	w B	46.77			
230		D D	(4745.2					D	(45.8		 D	(45.0
231 }		В	{ 4748.8					В	₹48.7		В	1148.6
232 233				2	n D	49.62		nn D	49.50		nn D	49.5
234					D??							
235			4000 01		· · · · ·						···:	
236 237		wn B	4755.71	3	B D?	$55.07 \\ 56.23$				• • •	В	55.
238				$\frac{1}{2}$	B.	56.94				* * * *		
239 {											В	\ \ 53.
240	4-5	n D	4758.99	3	n D	58.41	4	n D	58.62	3-4	nn D	\ \ 57. \ 58.
241	1				B??							
242					B??							1
$243 \ $											В	$\begin{array}{c} \{ 60. \\ 65. \end{array}$
244	i	n D?	4766.78	1	D	66.11		nn D	66.47		nn D?	66.
245					B??							
246	*				B??							(67.
247 -											В	§ 72.
248				1-2	n D	72.40	2-3	nn D	73.01		nn D	73.
$\frac{249}{250}$					B?							
251 {											В	§ 73.
- ((700 1		- D	04.17				1		\ 78. 84.
$252 \\ 253$		wn D	4783.1	2	n D	84.17				1-2	nn D n D	89.
251												
255 -											В	{ 90. { 96.
256^{-0}										8	n B?	$\begin{bmatrix} 00. \\ 02. \end{bmatrix}$
257												
258 250							2	n B?	10.54			12.
259 - 260					B?		2	nn D n B?	$\frac{12.03}{13.98}$	4	n D? n B??	13.
261	2	n D	4815.44	2	n D	15.80	3-4	n D	15.62	1	wn D	16.
262 -		nn B?	4818.26								В	$\frac{18}{22}$.
263 (nn D?	4822.75	1-2	n D?	23.91	3	n D	23.86		wn D	23.
264	2	n B?	4824.94		B??					4-5	wn B??	25.
$265 - \}$				• • •								
266 `	i	n D	4826.52	1-2	n D	27.81	3	n D	28.21		wn D	28.
267 969	1	- D	4000 40	1-2		99.51	3_	n B	30.46	6	n B	$\frac{30.}{32.}$
$\frac{268}{269}$	2	n D	4832.49	1-2	n D n D	$\begin{vmatrix} 32.51 \\ 36.30 \end{vmatrix}$	4-5	n D	32.56	5	n D n D	36.
270		nn D?	4839.78	1	n D	39.19				1	wn D	39.
$\frac{271}{272}$				1	D	43.49	1	D	43.62	1	nn D?	42.
(
273 }												
274 $\stackrel{\circ}{275}$				i	n D	55.34		nn D	55.47	1	n D	55.
$\frac{276}{276}$		nn B?	4857.42	1	n D B??	55.54	i	nn D n B?	55.47	3	n B	57.
277				1	n D	59.46						
278 -	9	В	4861.38									

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

P	78 Schjeller	up		132 Schjelle	rup		115 Schjelle	rup		152 Schjelle	rup	
Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	MEAN WAVE-LENGTE
5	В	t.m 38.95	5–7	B n D??	t.m. 38,79 39,84	3-4	B n D	t.m. 38.92 40.19		B??	t.m. 39.50	t.m. 4738.9 4740.0
• • •			4-5	n B	41.08						(38.4	4741.1 4737.7
• • •	spec.	$\begin{array}{r} 37.8 \\ 42.2 \end{array}$		В	$\begin{cases} 37.8 \\ 42.6 \end{cases}$					В	41.1	4741.8
10	w D	$\frac{44.01}{42.2}$	10	w D	44.00	10	w D	43.67			(41.1	4743.8 4741.7
	D	145.4								D	45.5	4745.7
mov	head B	$45.43 \\ 46.72$	7	head n B	$\frac{45.21}{46.38}$	4-5	head B	$45.43 \\ 46.70$	max	head B	$\frac{45.5}{47.05}$	4745.5 4746.7
max			6	n B	48.32							4748.3
	В	(45.8 (57.9)								В	$\begin{array}{c c} 45.5 \\ 49.3 \end{array}$	4745.5 4748.9
i	n D	49.90	2-3	n D??	49.40		nn D?	49.49				4749.5
			4	n B D??	50.43				10	w D	51.59	$4750.4 \\ 4751.6$
										head	53,06	4753.0 4755.3
			5	n B? n D??	$55.16 \\ 56.06$		nn B?	55.11	2	n B n D??	55.07 56.11	4756.1
		(45.3	3	n B?	56.93		nn B?	56.40	4	В	57.04	4756.8 4753.
	В	58.3										4758.0
2-3	n D	59.00	3	D? n B??	60.07		wn D	58,90	$\begin{vmatrix} 3\\2-4 \end{vmatrix}$	n D n B	59.34 60.80	4758.9 4760.4
				n B??	62.93				3	B	63.37	4763.2
												{ 476
i	n D	66.55		nn D??	66.47		nn D	66.98	2	n D	66.54	4766.5
• • •									$\frac{2}{1}$	n B? n B?	$67.94 \\ 69.58$	4767.9 4769.6
												} 476
1-2	nn D	72,70	1-2	nn D??	72.77	2	n D	72.15		D??		4772.7
				nn B?	74.78				3-4 1-2	n B n D??	75.18 76.82	4775.0 4776.8
	D	(74.0					В	5 73.2	1-2	n D;;	10.02	4773.7
$\frac{\cdots}{2}$	B	{ 78.7 84.54	i		84.78		nn D?	78.4 84.32	i	n D?	84.84	4778.3 4784.5
1	n D n D	89.78	1-3	n D n D	89.67	1	n D	89.35		n D?	89.66	4789.5
						max	В	94.37		B?		4794.4 4790.3
							В	(96.2				4796.3
\max_{1-2}	n B	$02.27 \\ 06.89$		wn D??	06.30		wn D	05,82	i	n D??	05.74	4802.4 4806.2
1	n B?	11.34				2	n B?	10.20				4810.7
1	nn D	12.28		B??		$\frac{1}{2}$	n D n B?	$\begin{vmatrix} 11.72 \\ 13.92 \end{vmatrix}$				4812.0 4814.0
· · · · · · · · · · · · · · · · · · ·	wn D	16.06	1-3	n D??	15.93			§ 16.8	1-2	n D??	16.15	4815.9 4817.2
	В	$\left\{ \begin{array}{l} (16.9) \\ 21.7 \end{array} \right.$					В	(22.1)				4822.3
	nn D	$24.02 \\ 26.29$	$1 \\ 1-2$	n D? B??	$23.96 \\ 26.05$	$\frac{1}{2}$	n D n B?	23.27 25.69	1-2	n D?? B?	$23.86 \\ 25.85$	4823.8 4826.0
4	n B	26.29	1-2	B	§ 24.7		път			В	$\{24.7$	482
3	n D	28.31	$\frac{\cdot\cdot\cdot}{2}$	n D?	$\begin{bmatrix} \frac{1}{27.1} \\ 28.19 \end{bmatrix}$	1-2	n D	27.88	1-2	n D	$\frac{(26.9}{27.90}$	4827.9
3-4	В	30.66	2-4	В	30.31	2-3	nB?	30.12	4-5	n B	30.56	4830.4
4-5	D	32.61	2–3	D	32.30	1-2	n D	32.48	4-6	D	32.46	4832.5 4836.3
1	nn D	40.27	0-1	n D??	39.45					n D??	38.93	4839.5 4843.4
			1	n D	43.50				$1-2 \\ 1-2$	n D n B	$\begin{array}{r} 43.48 \\ 45.16 \end{array}$	4845.2
			٠	В	§ 56.1					con.	$56.7 \\ 59.1$	$\frac{4856.4}{4859.1}$
···i	nn D	51.97	i	n D?	$59.0 \\ 51.40$		nn D?	51.87	··i	spec. nn D	51.91	4851.8
$\frac{1-2}{2}$	n D n B	55.73 57.76		nn D?? B??	55.19 57.77				2-3	····	58.05	4855.5 4857.7
1	nn D?	57.76 59.99	max 1	nn D??	59.29			*****	1	n D	59.65	4859.6
2	nn B	61.45		• • • •		max	В	61,46	1-2	n B??	60.72	4861.3

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

		1.11				19 Piscius		1	318 Birming			74 Schjeller	
Sity Sity	No.					10110011			1	1		l	
270			Character	Wave-Length		Character			Character			Character	
280 3							t.m.			t.m.			t.m.
281 3	279 =		В		1	J		1					
281	280		n D			1							
283		3	nn D	(4865.11)							1	nn D	,
2854]							
285					1								
287 {	285										[
288 nn D?	286		В			i l		1					
288 nn D? 4882.07 2-3 n D 81.69 3 n D 81.55 2-3 n D 81.75 280 <	287 }		В					1	1				
290	288		nn D?										
291			1									1	
292	()										1		
2926	$291 - \}$												
294 max B 488.14 max B 488.15.7 max B 98.88					1			1					
295													
286 1 2 nn D 1900.70 2 nn D 00.81 2.3 nn D 00.95 wn D 01.37 297 298	(
298 { </td <td>()</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>01.05</td>	()										1		01.05
298 { 299			. 1										
228 299 300 301 302 301 302 302 303 302 303 303 304 305	/]	1				
300 301 302 303 304 305 307 308 307 308 307 308 309	- {				1								
301								1			1		
302 nn D? 4920,65 1 n D 21.03 wn D 20.78 wn D 20.97						1		1					
303 304 305 305 306 307 308 307 308 309													20.97
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	303 🚶				1			1					
305 306 307 307 308 307 309 309 309 309 309 309 309 309 309 309	()	-	1										
307 308 309 310 310 310 311 311 311 312 313 313 314 315 315 315 316 317 318 317 318 317 318 317 318 317 318 317 318 318 319 320 321 2 3 n D 5193.81 3 D 93.06 322 323 324 325 325 325 326 327 328 32						· I						w D?	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								1.0					
319								1	}				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	310												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	311 }				1							1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	312					wD							73.21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	313					1		1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	314 }				1						1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	315					D							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	316 {											D	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	317										1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(∫ 85.5	1		(85.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1 1							,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.3			3		93,06				4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								1	1		1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	325 {					1			В				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(w Đ		1					(01.0	I.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	329		D		1 1			i	D		1	Ð	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	3.4	В	14.63						
333 $\left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$												f	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4				1			1	1		1		((12.2)
334 8 wn D 5226.19 6 wn D 26.19 6 wn D 26.33 6-8 wn D 26.17	(24.6			[24.2]
	334	8	wn D	5226 , 19	6	wnD	26.19	6	wn D	26,33	6-8	wn D	26.17

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

						1				ELOCIT		
	78 Schjelleri	up		132 Schjelle	rup		115 Schjeller	·up		152 Schjeller	rup	MEAN WAVE-
Intensity	Character	Wave- Length	Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	LENGTH
		t.m.			t.m.		В	t.m. (55.5			t.m.	t.m. 486
							ь	65.8	i	nn D??	65.09	4865.1
1-2	В	69.82	1 3	n D?? n B??	$67.74 \\ 69.26$	1-2	n D	67.43	3	nn D?? n B	$67.49 \\ 68.97$	$4867.7 \\ 4869.4$
3	n D	71.57 75.56	$\begin{bmatrix} 2\\2\\2-3 \end{bmatrix}$	n D??	71.43				$\frac{2-4}{2}$	n D n D	71.32 75.33	4871.6 4875.6
1-2	n D?			n D??	75.52				1	nn D??	78.32	4878.3
1-2	n B	79.81	5	wn B??	79,45				2-3	n B	79.61	4879.6 { 487
3		81.71	2-5		81.53	···i	n D	81.09	4-7	<u>.</u>	81.52	4881.6
				<u>D</u> ??					3-5	n B n D	83.49 85.90	4883.5 4886.0
										D	(84.5)87.3	{ 488
	 Do	01 1	1.9		01 11	1-2	- D	20.00	2-3	n B	88.04 90.8	4888.0 4890.3
3	nn D? nn B?	91.1 98.80	1-2 max	n D?? B??	$91.11 \\ 98.90$	1-2	n D	89.88	3-8	n D n B?	98.70	4898.7
							В	$\begin{cases} 93.2 \\ 01.4 \end{cases}$		В	${92.2 \atop 00.3}$	4893 4900.5
1	n D	01.34	1-2	n D?	00.67	2	D	01.87	3 5-6	n D n B?	$01.18 \\ 03.78$	4901.1 4903.8
										В	$ \{ egin{array}{c} 02.3 \\ 04.9 \end{array} $	490
				 B??					3-4 3-4	wn D? n B?	$06.41 \\ 08.42$	4906.4 4908.4
		01.00	1	nn D?	09.83		To 0	01 00	3	n D wn D??	10.59 20.54	4910.2 4920.8
2-3	wn D	21.00	4	wn D?? D	$\begin{cases} 20.52 \\ 19.1 \end{cases}$	1	nn D?	21.23	4-5			4920.3
``i	n D?	25.39	i	n D??	$\begin{array}{c} \langle 21.5 \\ 25.03 \end{array}$	i	n D	24.91				4925.1
1	n D	33.81	2-3	n D	34.01				1-2	n D	45.60	4934.1 4945.6
	nn D?	57.60	2	n D?? wn D	$58.05 \\ 82.02$		wn D	81.65	2	n D??	57.68	4957.9 4981.8
• • •						2	n D head	$\frac{67.24}{68.2}$		head	67.6	5167.2 5167.9
				B??	68.04		B?	$\begin{cases} 68.2 \\ 72.8 \end{cases}$				5167.9 5172.8
	wn D	73.30	3-4	n D	72.85	4	n D	73.79	8		73.27	5873.3
							В	ς 75 .0	2	B??	75.43	5175.4
···i	n D	83.94		wĎ	83.50	2-5	n D	83.2 83.61	5-6	n D	84.08	5183.8
				D	${81.2 \atop 85.2}$							5181.5 5185.4
				В?	(85.2		В	86.7	7	В	87.36	5187.3 5185.4
		20.17		B nn Dee	{ 91.9		B n D?	$\begin{cases} 92.3 \\ 92.2 \\ 89.43 \end{cases}$	2	D??	89.09	5191.8 5189.2
1	n D	89.17	1	nn D?? B?	89,23	$\frac{1}{2}$	n B	90.80	7	В	90.97	5190.9
3	wn D	93.21	3	n D	93.04		n D	93.69	6	D	93.30	5193.3 5197.1
				D??					$\frac{1}{2}$	D B??	$02.43 \\ 03.85$	5202.4 5203.9
				В	{ 94.3 04.1		В	{ 95.8 } 04.9				5194.9 5204.5
2	n D	05.84							2-3	n D	05.86	$5205.8 \\ 5208.4$
					(01.1			5 05.0				5210.1 5204.6
***		14.00		D	{ 04.1 { 11.8		D - P] { 13.0		B??	11 41	5214.4
$\frac{2}{1-2}$	nn B? n D?	$14.22 \\ 16.68$	i	nn D??	16.52	4	n B nn D?	14.35 16.67	5 5	n D	14.41 16.84	5 21 6.7
• • •				B??			В	§ 18.0	4	B??	19.12	5218.9
9	wn D	26.35	5	<u>.</u>	27.28	8	nn D	$\begin{bmatrix} 25.0 \\ 26.78 \end{bmatrix}$	5	 D	26.98	5224.6 5226. 5
	1)		1	1	1	1]	1

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

		280 Schj	ellerup		19 Piscius	m		318 Birming	ham		74 Schjeller	ир
No.	Inten- sity	Character	Wave-Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length
No. 335 336 337 338 339 340 341 342 343 344 345 346 347 348 319 350 351 352 353 354 355 356 357 358 360 361 362 363 364 365 370 371 372 374 375 376 377 378 379 380 381 382 383	3-4 2	Character n D n D n D n D n D n D n D n D n D w D w D w D w D w D B B? B?	t.m. 5234.33 5247.48 5247.48 5251.3 5265.26 5270.62 5283.24 5298.16 5302.72 5307.97 5315.31 5320.95 5329.80 5337.05 5341.84 5350.43 5353.37 5372.07 5375.22 5377.48 5380.54 (5378.0 (5381.5 5391.56 5397.47 (5399.9	Sity 2 3 5 5 5 5 2 4 4 5 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 3 3 3 3	B??? D B??? D n D? n D? n D? n D? n D n D n D n D n D n D n D n D n D n D	t.m. 29 70 34.27 39.94 47.56 51.44 55.96 70.46 79.59 83.17 98.19 02.76 05.26 13.22 15.27 17.91 20.99 25.32 29.03 36.94 39.36 41.30 62.99 66.94 68.78 71.70 75.38 77.58 79.82 91.09 97.58 04.06		Character n B? D n D	Length t.m. (29.81)		Character B n D n B? nn D? nn D? nn D? nn D nn D nn D nn D	t.m. (28.8 (33.3 (33.95 (37.06 (40.12 (44.80 (47.32 (51.66 (55.75 (70.17 (53.91 (97.70 (29.00 (36.65 (38.70 (41.35 (49.83 (49.83 (71.52 (74.76 (77.38 (79.91 (98.8 (98.8
384 385 386 387 388 389 390 391 392 393	1 3 max 2-3 1-2	B? n D B??	5405.7 5406.26 	1 3 1-2 1 7 2-3	 n D D B D B	06, 43 10, 28 12, 64 14, 45 17, 29 20, 17 23, 23	1 1 1 1 2-3 6	n D B n D w B 	10.37 12.46 13.91 16.64	1 3 4 1 6 2 3	n D n D n B B n D n B	10.31 12.32 17.01 19.66 22.97
394 395 396	$\begin{bmatrix} 1 \\ 1-2 \\ \cdots \end{bmatrix}$	B? n D	5425,90 5427,39 5430,33	$\begin{bmatrix} 1\\ 3-4\\ 3 \end{bmatrix}$	D B D	25,24 27,99 30,39	1 5 4	nn D n B? n D	$ \begin{array}{c c} 24.82 \\ (26.67) \\ 30.13 \end{array} $	3-4	n B n D	27.09 29.87

354

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

	78 Schjeller	ир		132 Schjelle	rup		115 Schjelle	rup		152 Schjeller	rup	MEAN
Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	WAVE-LENGTH
	Character n D n D n D n D n D n D n D n D n D n D n D n B n D n B n D m B n D m B m D m B m D			Character n D B n D?? B?? n D D n D D n D?? B?? n D B?? n D B?? n D n D B?? n D .			B B B N D WN B NN D WN B NN D NN B N		Intensity 6	## Character ## B?? ## D ## B? ## D #		t.m. 5229.2 5228.7 5233.0 5234.0 5236.6 5239.8 5244.8 5247.4 5249.2 5251.5 5255.5 5265.7 5270.4 5279.7 5283.7 5298.0 5302.4 5305.1 5307.5 5313.2 5315.3 5317.6 5320.8 5325.3 5329.0 5336.9 5339.1 5341.6 5350.0 5352.6 \$ 536 \$ 536 \$ 536 \$ 536 \$ 537 \$ 5380.2 \$ 5381.4 \$ 5378.3 \$ 5382.2 \$ 5384.7 \$ 5391.0 \$ 5393.1 \$ \$ 538 \$ 5403.8 \$ 5406.5 \$ 5406.5 \$ 5406.5 \$ 5406.5 \$ 5406.5 \$ 5406.5 \$ 5406.5 \$ 5406.5 \$ 5406.5 \$ 5406.5 \$ 5406.5 \$ 5406.5 \$ 5408.3 \$ 5410.4 \$ 5411.4 \$ 5417.2 \$ \$ 541 \$ 5420.3
2 3	n B n D	30.27	$\begin{array}{c} 3 \\ 1-2 \\ 3-4 \end{array}$	n B n D D	23.05 25.03 30.33	3 3 3	n B nn D? n B D	$\begin{array}{c} 23.45 \\ 25.36 \\ 27.18 \\ 30.17 \end{array}$	$\begin{bmatrix} 3\\1\\ \vdots\\2 \end{bmatrix}$	n B n D 	22.50 24.41 30.24	5423.1 5425.1 5427.4 5430.2

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

	TAB.	280 Schje	EAN WAVE-L		19 Pisciu		1	318 Birming			74 Schjeller	rup
No.	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length
397 398 399	1 2 2	n B n D D??	t.m. 5432,68 5434,66 5439,06	$\begin{array}{c} 2 \\ 1-2 \\ 1 \end{array}$	B D D	t.m. 32.38 34.20 38.86	$\begin{array}{c} 2\\ 1-2\\ 1\end{array}$	B D nn D?	t.m. 32.13 33.99 38.06	1 2	n B n D	t.m. 32.14 34.25
400 401				4	···:	45.19						
402 {		В	$\begin{array}{c} 5440.7 \\ 5446.5 \end{array}$					В	$\begin{cases} 39.2 \\ 45.7 \end{cases}$		В	${38.6}\atop{46.1}$
403 404	$\frac{4}{6}$	n D w B	$5448.31 \\ 5452.64$	6 3	D B	48.09 51.05	7-8 5	n D B	47.72 50.60	5	n D	47.94
405 406 {		В	(5450.3) 5455.0	3	B	53.85	3	n B??	(53.02)			
407 408 409	$1 \frac{2}{2}$	n D B D	5456.54 5459.07 5461.13	3 2 2	 В В	56.96 59.14 60.99	$\begin{array}{c} 2\\1\\2\end{array}$	n D B n D	56.43 58.92 60.84	2-3 1-2 2	n D B D	56.54 58.63 60.49
$410 \\ 411 \\ 412$	2-3	B??	5464.01	3-4	B B B	62.96 63.76 65.15	2	В В	62.60			
413								В	$\{61.3 \\ 65.7$		В	$\left\{ \begin{array}{l} 61.4 \\ 66.2 \end{array} \right.$
$\frac{414}{415}$	1	n D	5466.93	2	n D D??	67.83	2	n D D?	67.06 (65.7		w D	67.60
$\frac{416}{417}$	i	n D	5475.08	2-3 1-2 1-2	B n D n D??	72.43 74.56 78.09	6 2 2	B n D n D??	$egin{pmatrix} 70.3 \\ 72.10 \\ 74.38 \\ 77.56 \end{bmatrix}$	3 2 1	n B nn D n D	71.77 74.33 77.89
418 419 420 421	1	nn D??	5483.08	$\begin{bmatrix} 1-2\\4\\2\\\ldots \end{bmatrix}$	B D	80.89 82.73	2-3 1	n B n D	(\$0.03) 83.05	1-2	n B? nn D	80.25 82.64
422 423 424				3-4	B?? D	98.13				3	n D n D	97.75 01.81
425 {												
426 427 428	i	n D	5507.19	1 2-3	head D??	$03.1 \\ 07.18 \\ 09.51$	0.1	nn D	07.06	1 2	n D n B?	06.66 08.64
$4\widetilde{29}$ 430 $\left\{\right.$	4	n B?? con. spec.	5510.00 (5508.6)5512.9	2	В	10.72						
431 (432 {		 D	(5512.4	1-2	n D??	12.70				2	nn D	12.28
433 }		con.	\ \ 5517.9 \ (5518.2 \) \ 5527.8				• • •	В	(13.8) 23.0			* * * * * * * * * * * * * * * * * * * *
434 435		spec.	(0021.0	i	n D	24.44	2	n Đ	24.35	1	wn D	24.19
$\frac{436}{437}$	$\frac{2}{2}$	n D n B?	5528.85 5531.66	$\frac{1}{2}$	D??	28.28 31.96	1	nn D??	29.09			
438 439	1	n D?	5533.79	$\frac{1}{7}$	wn D	33,87 39.73	8-9	n D n D	33.89 39.22	8	n D wn D	33.66 39.25
$egin{array}{c} 440 \ 441 \end{array}$		D	5542.4	• • •	head	41.8		head	41.4			
442				4	B? B	43.44 (41.8		В	(41.4	1-2	В	43.57
443 = 444				• • •		{			147.0			
445 446 447	max	n B nn D?	5554,54 5557,27	1 1 3 1	D D?? B D	48.34 52.42 54.29 56.32	1-2 1 2 1-2	n D n D n B n D	48.31 52.53 54.35 56.28	1 1 1	nn D n B? n D	52,20 53,91 55,80
$\frac{448}{449}$		nn D;		$\begin{array}{ c c }\hline & 1 \\ 1-2 \\ 2-3 \\ \end{array}$	D B	62.55 61.49	$\frac{1-2}{2}$	n D n B	62.68 64.70	1-2	 B	64.73
$\frac{451}{452}$		nn D	5567.60	2	D D	$66.60 \\ 70.29$	1-2 1	n D n D	66.86 70.16	$0 \frac{2}{1}$	n D nn D	66.57 69.96
453 454		n B?	5572.04	1	В	71.85	• • •					
(• • • •			• • • •	• • • • •	• • • • • •	1		

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

	78 Schjeller	up		132 Schjeller	rup		115 Schjelle	rup		152 Schjelle	rup	
Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	MEAN WAVE-LENGTH
2 max	n D B	t.m. 34.57 42.54	3 1-2 	B D?? D?? B?? B??	t.m. 32.25 34.35	1	n B?	t.m. 32.15	2 1-2 2 3	B?? n D D n B	t.m. 32.23 34.35 38.93 42.70	t.m. 5432.3 5434.3 5438.6 5442.6 5445.2
 9 max	n D B	$ \begin{cases} 39.7 \\ 46.0 \\ 47.62 \\ 51.08 \end{cases} $	8 max	υD Β	47.73 50.91	7 4-5	n D B	$ \begin{cases} 40.3 \\ 44.9 \\ 47.54 \\ 50.89 \end{cases} $	4	w D B	47.06 50.90	5439.8 5446.0 5447.8 5450.9
1-2	B n D	(49.0 (55.1 56.81	 3	n D	56.92	2	nn D	56.46	1	nn D	57.13	5453.9 5449.7 5455.0 5456.7
1-2 	n D	60.96	1-2	n D B?	60.99	1 1	n B? n D	58.88 60.80	1	nn D	61.18	5458.9 5460.9 5462.8 5463.9
	wn D	68.30	1	n D	66.75							5465.2 5461.4 5466.0 5467.4
 2 1	n B nn D?	72.63 74.46	3 1	B? n D?	72.40 74.20	$\begin{array}{c} \cdots \\ 5 \\ 1-2 \end{array}$	B n D	72.31 74.34	· · · · · · · · · · · · · · · · · · ·	 D	74.35	546 5472.3 5474.5
1 	nn D?	78.25 83.19	1-2	n D?? B?? n D	78.04 82.99		nn B? nn D nn B	80.91 83.60 86.18	1 1	B?	81.58	5478.0 5480.9 5483.0 5486.6
3–4	 D	98.22	$\begin{bmatrix} 1-2 \\ 5 \\ 4 \\ \cdots \end{bmatrix}$	n B? D n D	95.65 97.92 02.31				• • •			5495.7 5498.0 5502.1 } 550
··· ··· 3	head n B	03.9 03.8 09.59	1 2	n D?? wn B?	06.89 08.88		head	05.0	5-6	 B	08.30	5504. 5507.0 5509.0
::: :::	n D	12.44	2	nn D	i2.46	2	B? nn D	$\begin{cases} 05.0 \\ 10.4 \\ 12.20 \end{cases}$				5510.4 550 551 5512.4
1-2	wn D	25.45	1 1	con. spec. n D nn D??	$ \begin{cases} 13.9 \\ 23.2 \\ 24.36 \end{cases} $ 28.09	2	B?	(14.5) 23.4 23.95 25.25				\$ 551 5514. 552 5524.3 5525.4 5528.6
1 7	nn D? D	(34.62) 39.55	1 8	n D D	33.86 39.81	1 8	n D D	33.96 39.54	1-2 2-3	wn D wn D	32.6 39.31	5531.7 5533.9 5539.5 553
• • •	head B	42.1 42.1 42.1 47.3	2-3	n B? B	$\begin{array}{c} 43.61 \\ 44.6 \\ 46.7 \end{array}$	• • • • • • • • • • • • • • • • • • • •	head B	$ \begin{array}{c} 41.8 \\ 41.8 \\ 41.8 \\ 46.7 \end{array} $				5541.8 5543.5 5541.8 5546.9
2 1	n D n D	48.60 52.45	1-2	 D	48.03	$\begin{bmatrix} 2-3 \\ 1-2 \\ 2 \end{bmatrix}$	n D D n B	48.45 52.80 54.48	1-2	w D	52.64	5546.6 5548.3 5552.5 5554.3
$\begin{array}{c} 1 \\ 1 \\ 1-2 \\ 1\end{array}$	n D n D n D n D	56.38 62.76 67.23 70.36	$\begin{array}{ c c }\hline 1\\1\\1-2\\1\\\end{array}$	n D nn D n B? n D	56.30 62.20 64.54 66.84	$egin{bmatrix} 2\\1\\1-2\\\cdots \end{smallmatrix}$	n D n D? n B n D?	$\begin{bmatrix} 56.36 \\ 62.40 \\ 64.87 \\ 67.42 \end{bmatrix}$	1 1 4	n D n D	56.24 62.50 68.08	5556.4 5562.5 5564.7 5567.2 5570.2
	В	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2	В	71.66	max	В В	71.24 67.7 73.1				5570.2 5571.7 \$556.00

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY-Continued

	IADI		EAN WAVE-L	I I			1			11-6		
No.		280 Schje	ellerup		19 Piscius	n		318 Birming	ham		74 Schjeller	up
	Inten- sity	Character	Wave-Length	Inten- sity	Character	Wave- Length	Intensity	Character	Wave- Length	Intensity	Character	Wave- Length
$455 \\ 456 \\ 457$	1-2	n D	t.m, 5584.65	1 8-9	 D	t.m. 73.57 83.98	1	D? w D	t.m. 73.9	19	D D??	t.m. 73.41
458 {			0004.00		D	§					* * * *	
459 460 461	2 1-2	n B n D	558 7.54 5589.99	4 1-2	head B n D	7 85.8 85.8 86.95 89.32	5 1	head B D	85.6 86.96 89.14	4	 B n D	86.89 88.97
$\frac{462}{463}$	i	n B	5593,21	1-2	n B	92.27	···i	n B	92.53			
464												
465 466 467 468	2	n B?	5597.94	1 4 1 2	n D B n D? n D??	94.51 97.51 99.60 09.33	6-7 1	n D B n D wn D	94.40 97.55 99.81 09.74	1 4 1 2	n D wn B nn D n D	94.62 97.37 99.58 09.49
469												
$470 \\ 471 \\ 472$	3	 D	5620,92	$\begin{array}{c c} 1\\ 2\\ 2\end{array}$	n D B?? D	$\begin{array}{c} 15.56 \\ 17.38 \\ 20.07 \end{array}$	2	B nn D	$17.42 \\ 20.31$	3-4	 D	20,20
$\frac{473}{474}$ {		D	5625.96	3	n D	24.71	5	n D	24.68	5	wn D D	24.78 $\{18.5$ $\{26.1$
475	• • •			1-2	B3	27.70	i	n B	27.76			
476 477	6	B??	5630, 26	2	<u></u>	30.69	i	n B?	30.54			
478 {	··· ·	D B	(5627.9) 5632.0 5634.05	10	 D	34.21	10	w D	$ \begin{cases} 26.1 \\ 31.2 \\ 34.11 \end{cases} $	10	B? w D	$\begin{cases} 26.6 \\ 32.2 \\ 34.20 \end{cases}$
480 }			*****			*****						20.00
$ \begin{array}{r} 481 \\ 482 \\ 483 \end{array} $		head	5636.78	3	head B B	36.23 37.59	2	n B	$37.13 \\ 37.99$	2	head n B	36.68 41.33
484 }	• • •					41.12		В	(37.1			11.55
485 486		nn D	5645.22	$\frac{1}{2}$	n D	44.07	···i	n D	$\begin{array}{c} 42.3 \\ 43.74 \end{array}$	2	n D	43.71
487 488	i	n D?	5650 18	1 2_3	n B?? D?? B	46.75 49.88 53.00				1	nn D	49.85
489			(5051.9	3	B??	55.10	max	В	55.42 (45.1			(44.8
490 { 491	1-2	$\begin{bmatrix} B \\ n D \end{bmatrix}$	{ 5651.3 { 5657.2 5658.23			58.60	• • •	В	\$ 56.4	3	n D	$ \begin{array}{c} 37.2 \\ 57.2 \\ 58.25 \end{array} $
492 }												
493 491	1 1	n D B?	$5671.71 \\ 5674.74$	$\frac{1}{3}$	D B??	70.83 73.75	1 4	n D n B	$\frac{71.44}{73.59}$	4 2	wn D B?	$71.26 \\ 74.35$
495 496 497	1.2	 D	5677.33	1-2	n B	$\frac{76.41}{79.21}$	i	n D	76.76	$\frac{2}{1}$	wn D B	$76.74 \\ 79.24$
498 499 500	1-2	nn D wn B	(5687.93) 5694.41	$\begin{array}{c c} 1\\ 1\\ 3 \end{array}$	n B n D B	$84.29 \\ 87.11 \\ 93.78$	i ::;	wn B	(88.0) 93.89	1 6	nn D n B	86.89 93.62
501 502	* * * *	 T	******	1	<u>.</u>	96.82	1	n D	97.24	0-1	B?	00.26
503 501	$\frac{2}{1}$	nn B n D	$5706.71 \\ 5708.92$	$\begin{bmatrix} 3.4 \\ 2 \end{bmatrix}$	$\frac{\mathbf{p}}{\mathbf{B}}$	$05.41 \\ 08.26$	5 4	n B n D	$05,42 \\ 08,49$	3 2	n D	$05.25 \\ 08.44$
505 506				2 I	B D	$10.45 \\ 12.94$	$\frac{2}{2}$	n B?? n D	$\frac{10.81}{12.91}$	$\frac{1}{2}$	n D	$\frac{11.05}{12.88}$
507 508		nn B	5717.37	1 4	B	$\frac{15,00}{17.05}$				4	wn B	i7.19
509				4	В	17.87		В	(14.5			
510 } 511				· · · i	n D	21.40	i	n D	$\{ \begin{array}{c} 20.2 \\ 21.95 \end{array} $	2	n D	21.23
512 513	2	n B nn D	5724.44 5731.70	1 2	n B n D	24.12 31.20	$\begin{bmatrix} \frac{1}{4} \\ 3 \end{bmatrix}$	n B n D	24 . 27 31 . 56	3 2	n B n D	$\frac{21.07}{31.76}$

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

	78 Schjeller	ир		132 Schjeller	rup		115 Schjelle	rup		152 Schjeller	rup	MEAN
Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	WAVE-LENGTH
	1	Wave-	1 1 9	Character	Wave-Length t.m. 73.4 76.50 83.86 86.97 88.90 91.82 94.41 96.89 00.17 09.05 15.42 17.11 20.00 24.61 { 26.6 26.5 (26.50 (31.40 33.79 36.60 37.87 40.74 43.89 46.15	sity	Character D D head B B B n D n B n D n D nn D nn D nn D nn D	Wave-Length t.m. 83.83 {81.9 85.9 86.21 87.66 92.35 {86.2 {93.5 95.10 97.67 00.03 09.83 {08.1 {12.2 20.17 25.64 {27.4 {32.3 34.58 {32.3 37.6 37.49 {37.6 {45.20 46.21	sity	Character w D w D B? D B? B O O O O O O O O O O O O O O O O O	Wave-Length t.m. 76.16 83.69 87.57 88.95 91.44 92.58 (06.9 16.0 16.09 (18.8 (25.4 29.00 33.76 36.11 38.06 41.46 44.57	**Mean Wave-Length** **t.m.** 5573.7 5576.3 5584.0 5581.9 5585.9 5586.0 5587.2 5589.2 5589.2 5589.4 \$ 5594.7 5597.5 5599.9 5609.5 5607.5 5612.2 5615.7 5617.3 5620.3 5625.1 5618.6 5626.2 5627.7 5629.0 5630.5 5626.9 5631.8 5634.1 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
2 1 3 2 1–2 2 8 1 5 3–4 1 8 6 8	nn D nn D nn B? nn D nn B? nn D nn B? nn D wn B? nn D wn B nn D nn D wn B nn D	55.24 57.63 71.34 73.93 76.47 79.45 83.81 86.53 93.79 96.33 05.05 08.03 13.19 17.23 21.46 24.28 31.48	1	n B? n D n D n D n D n D n D n D n D n D n D	55,42 57,93 70,99 76,48 86,29 93,21 96,72 04,53 10,71 12,33 14,1 19,6 21,5 24,00 30,72	max	B B R B R D R B R D R B R D R B R D R R R R	55.30 \$46.3 \$56.7 \$8.05 \$59.2 \$70.4 \$71.68 \$74.3 94.16 \$97.18 \$99 05.14 08.09 13.12 24.86 31.97	0 1	D D D B D B B D B B D B B C D B C C D B C C C C	57.32 	5655.2 5645.4 5656.9 5658.0 (565 5671.3 5671.3 5675.7 5675.7 5679.5 5684.1 5686.6 5693.8 5696.7 5699.8 5705.3 5708.3 5708.3 5712.8 5712.8 5717.0 5717.0 5717.9 5714.3 5719.9 5721.4 5724.2 5731.6

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

		280 Schje	ellerup		19 Pisciui	n		318 Birming	ham		74 Schjeller	up
No.	Inten- sity	Character	Wave-Length	Intensity	Character	Wave- Length	Intensity	Character	Wave- Length	Intensity	Character	Wave- Length
			t.m.			t.m.			t.m.			t.m.
514											D	(26.6
011			(MED 4 - 0						4 99 0		D	{ 33.4
$515 \stackrel{>}{\rightarrow}$		В	(5734.2)					В	33.8 41.7			
516 ⁽		nn D	5741.32	2	n D	44 35		nn D	43.89	i	nn D?	43.96
517		1	0711.02	1 1	n B??	47.09						
518				1	n D	49.59		nn D	49.73			
519 -{												
/	1	n D	5751.70									
520 521	$\frac{1}{2-3}$	wn B	5758.05	3	n B	57.02	max	В	57.08			
	2	**11.15	1111111	1			1114.3			1		
522												
523		wn D	5763. 7	2	n D	62,53		nn D	62.53	1	n D	63.66
524	2	n B n D	$5768.79 \\ 5772.1$	$\frac{2}{2}$	n B? n D	67.29 71.19		nn D	71.35		wn D	71.59
525 526	1					11.19		I III D	66.11		WHD	11.55
527	1	n B?	5775.81									
528				1	n D??	77.82	1	n D	78.48	1	nn D?	77.86
529	2	n B	5780.77	1-2	В	79.86						
530 🚶											В	{ 73.5
531	2	n D	5785.57			* * * * *	2	wn D	84.41			82.0
		n D	0100.01					WILD	01.11			
$532 \rightarrow$												
533												4.000.0
534 {											D	{82.0
535				1	<u></u>	98.68	i	nn D?	99.1	i	nn D	$\{91.3\\98.50$
องอ 536				$\begin{vmatrix} 1\\1 \end{vmatrix}$	n D	$\frac{95.65}{22.69}$			99.1	$\frac{1}{2}$	nn D	$\frac{95.90}{22.92}$
537							i i	n D	48.46			

WAVE-LENGTHS OF LINES IN THE VIOLET REGION OF 19 PISCIUM

As already stated, the violet region of 19 Piscium was photographed with a one-prism spectrograph attached to the two-foot reflector (Figs. 1 and 2, Plate XI). With the light flint prism and the very short camera of this spectrograph, the scale of the resulting spectrum was too small to permit of precise determinations of wave-length. The results of the measures of plates R 34, 37, and 38 by Mr. Parkhurst are nevertheless valuable, as they permit some of the important lines to be identified, and in fact furnish the only knowledge we have of the positions of lines in this part of the spectrum of fourth-type stars.

Three plates were measured, the numbers, exposure times, and range of spectrum in which the lines were good enough to measure being:

Plate	Exposure	Lines Measured
R 34	5h 30m	4255 to 4327
37	7 - 45	4079 to 4380
38	24 40	3969 to 4373

The wave-lengths of the star lines on the long-exposure plate R 38 could not be deduced directly from the plate, since there was a shift of the comparison lines due to the exposure being extended over four nights. Therefore a correction was made to the wave-lengths of R 38, deduced by comparison with seven of the best star lines common to R 37 and R 38. This correction, for the seven lines, varied from 2.8 to 6.4 t.m., so that the mean is uncertain by as much as 2 t.m. The uncertainty

TABLE OF MEAN WAVE-LENGTHS CORRECTED FOR RADIAL VELOCITY—Continued

	78 Schjeller	ιp		132 Schjeller	up		115 Schjelle	rup		152 Schjelle	rup	MEAN
Intensity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	Inten- sity	Character	Wave- Length	WAVE-LENGTH
sity	n D nn D D n D n D n D n D n D nn D? n D	t.m. 43.02 49.85 {42.2 50.8 70.71 71.9 80.5 89.93	1 -2 2 1-2	B nn D nn D n B? n D? B? B? D?? B? B? D?? B?	t.m. (33.0) (41.4) (43.60) (49.43) (56.23) (61.72) (66.82) (71.5) (80.9) (80.9) (80.9) (80.9) (97.60)	Sity	B n D? B n D? B B n D n B n D n B? n B? wn D	t.m. (33.5) 42.6 43.73 48.83 57.55 (53.0) 61.4 62.95 67.63 71.39 76.41 80.87	2 2 3	D B B B B C C C C C C C C C C C C C C C	t.m. { 33.9 { 33.9 { 41.3 43.26 46.06 48.98 56.41 67.09 70.10 73.33 80.11 89.40 97.32	t.m. 572
1 1	nn D n D	$23.44 \\ 49.82$	2	n D	22.11				1	D	22.09	5822.7 5848.6

of the adopted wave-lengths is increased by the poor quality of the comparison lines on R 37, which has the best star lines.

The star line $H\delta$ is nebulous on plate R 38, and apparently 5 t.m. wide; the uncorrected wavelength is 4103.5; corrected wave-length, 4100.4. On plate R 37 the line seems quite narrow and sharp, the wave-length being 4100.5. The correction to reduce to the wave-length in the Sun, +1.5 t.m., is within the errors of measurement.

The mean wave-lengths from the three plates are given in the following table:

LINES IN THE VIOLET REGION OF 19 PISCIUM
Plates R 34, 37, and 38

Intensity	Character	No. Plates	Wave-Length	Solar Lines	Intensity	Character	No. Plates	Wave-Length	Solar Lines
Spec.	begins		393	К		Limits		(4224.4) 4233.3	
	wn D	1	3967.0	H 3968.6 Ca		n D	1	` 4254.4	
	nn D?	1	4004.4			nn D	2	4274.0	
	nn D	1	4018.3		1	n D	1	4282.8	
1	n D	1	4034.8			n D	3	4289.0	
3	n D	1	4058.2			w D	2	(4303.5)4312.6	G group
* *	nn D n D	2 2	$\frac{4078.7}{4100.5}$	Нδ 4102.0		nn D	2	4325.9	
4	nn D?	2	4132.3	110 4102.0	3	D D	ī	4340.4	H_{Y} 4340.6
	wn D	ī	4145.4		$\frac{3}{2}$	Ď	1	4354.2	
• •	nn D?	1	4197.5		$-\frac{1}{2}$	Ď	1	4363.4	
10	D.	$\frac{1}{2}$	4227.6	Ca 4226.9	6	D	1	4383.7	

WAVE-LENGTHS OF LINES IN THE RED REGION OF 152 SCHJELLERUP

Plate G 211, taken on an Erythro plate with camera No. 2 and a single dense flint prism, gives the approximate positions of the lines in the red and orange region of the spectrum of 152 Sehjellerup. The following measures were made by Mr. Ellerman. On account of the small scale of the spectrum in this region, they may be considerably in error, but they suffice for the identification of some of the strongest lines. This photograph is reproduced in Plate VI.

LINES IN THE RED REGION OF 152 SCHJELLERUPPlate G 211

Intensity	Character	Wave-Length	Remarks
		t.m.	
2	В	5592.4	
	D	5731.1	End of zone
2	D	5748.9	
1 1 1	B?	5757.4	
1	B?	5778.2	
1	n D	5808.4	
	B?	5845.3	Very n
10	D	5894.3	Sodium, D ₁ and D ₂
1	n D	5921.9	2
1	D	5945.9	
1	В	6020.8	
1	В	6050.0	
1	n D	6059,1	
	В	6086.1	Brightest part of bright band
3 7 2 8 2 10	D	6098.5	* 2
7	В	6108.4	
2	D	6119.0	
8	В	6130.5	Double?
2	В	6154.9	
10	В	6176.0	
2	D	6190.3	
10	В	6200.9	
	D	(6222.1	Dandinancain (from
	В	7 6253.4	Band increasing { from to
10	D	6269.6	Very broad
1	В	6310.8	•
1	В	6330.2	
$\frac{1}{3}$	D	6357.6	
	D	6425.3	Center of broad, hazy band
3	В	6444.8	
		6488.2	Spectrum drops off here, dark space
		6587.5	to
		6631.	end of faint continuous spectrum

PRECISION OF THE MEAN WAVE-LENGTHS

The sources of error in this investigation are numerous, and render it impossible to secure a high degree of precision in the results. In the spectrograph the wide slit necessarily employed, the instability of the prism supports, and the variations in temperature of the prisms during the long exposures, tended to produce wide and diffuse lines on the photographs, and to introduce irregular displacements of unknown magnitude. In comparison with these sources of error, which affect both stellar and comparison spectra, all errors due to the measuring machines or to the method of reduction are comparatively unimportant and may be neglected. During the progress of this research the old spectrograph was used by Messrs. Frost and Adams for the measurement of stellar motions in the line of sight. Most of this work was confined to bright stars having well-defined lines in their spectra. But, in spite of the short exposures required for such objects, errors arising from unknown causes were frequently apparent in the results. For example, the star ϵ Leonis, as photographed on seventeen occasions between February 11 and April 25, 1900, gave velocities ranging from -10 to +13 km. This led to the belief that ϵ Leonis varied in its radial velocity, but it was afterward shown that the star has an apparently constant radial velocity of about 5 km. On many other occasions, however,

the spectrograph gave excellent results, agreeing well among themselves and with recent determinations for the same stars made with the Bruce spectrograph. On account of the uncertain behavior of the instrument, it is impossible to base conclusions regarding the precision of our own results upon the contemporaneous observations of known stars by Messrs. Frost and Adams.

A source of error which undoubtedly affected seriously our determinations of radial velocity, giving rise to the widely different values obtained for different lines, is the physical condition of fourth-type stars. As will be shown later, the spectra of these stars differ widely from the solar spectrum, partly through marked changes in the relative intensities of the dark lines, and partly through the presence of bright lines. Both of these causes greatly complicate the determination of radial velocity, and thus introduce errors which appear later in the corrected wave-lengths.

An idea of the precision of the measures may be obtained from the following table, which gives the average deviation of the wave-length of a line in one star from the mean for six, seven, and eight stars. The number of lines used is given in parenthesis after each deviation.

PRECISION OF THE MEASURES

No. of Stars	Blue Region	¡Yellow-Green Region	Both Regions
	t.m.	t.m.	t.m.
3	0.15(29)	0.28(28)	0.22(57)
7	0.17(22)	0.22(24)	0.20(46)
3	0.22(19)	0.23 (30)	0.23(49)
Means	0.18 (70)	0.25 (82)	0.22 (152)

The probable error of the mean averages 0.07 t.m.

In such a comparison it is of course assumed that the wave-length of a line does not vary from star to star. That this assumption is in some degree warranted is shown by the residuals at the foot of the following table, which contains the wave-lengths of the forty-nine dark lines measured in all of the stars, with their average deviations from the mean. These results also give a final check on the adopted values of the velocities of motion in the line of sight, as the mean wave-lengths should agree if the velocities were correct. The actual residuals, ranging from -4 to +4 km. (mean ± 2.3 km.), show that the adopted values are not greatly in error. The stars in the table are arranged in the assumed order of development (Plate IX).

LINES MEASURED IN ALL OF THE STARS

280 Schj.	19 Pisc.	318 Birm.	74 Schj.	78 Schj.	132 Schj.	115 Schj.	152 Schj.	Means	a.d.
4435.22	35.52	35.49	35.72	35.92	35.60	35.47	35.97	35.61	$\begin{array}{c} 0.19 \\ 0.29 \\ 0.22 \\ 0.16 \\ 0.09 \\ 0.10 \\ 0.24 \\ 0.11 \\ 0.27 \end{array}$
4501.22	01.78	01.87	01.97	01.87	01.92	00.91	02.15	01.71	
4506.38	06.77	07.08	07.04	07.09	07.12	06.74	07.24	06.93	
4512.83	12.76	12.64	12.30	13.08	12.83	13.05	12.81	12.79	
4518.15	18.27	18.31	18.38	18.53	18.35	18.21	18.23	18.31	
4522.91	23.00	23.06	23.20	23.23	23.17	23.08	23.21	23.11	
4535.30	35.84	35.84	35.90	35.70	36.04	35.56	36.21	35.67	
4560.11	60.39	60.42	60.48	60.47	60.23	60.35	60.21	60.34	
4606.26	06.87	06.86	06.88	07.20	06.83	06.24	06.38	06.69	

²⁸ Out of 537 catalogued lines and spaces, only 49 were common to all the 8 stars. The reasons for this are as follows:

^{1.} The appearance of any given line varied greatly with exposure time and temperature changes, so that it might be unmistakable in character on one plate and so indefinite as to be left unmeasured on another, as the choice of lines to be measured was made independently on each plate.

^{2.} Lines marked doubtful on both plates of a star were not catalogued unless unmistakable in character in other stars.

^{3.} Plates of the faint stars 280 Schj., 74 Schj., and 115 Schj. contained comparatively few lines, and at the same time the proportion of doubtful lines on these plates was greater than the average.

By this process of exclusion the number of lines common to all the stars was greatly reduced, though the number measured in 5 or 6 stars was much greater.

LINES MEASURED IN ALL OF THE STARS -- Continued

					_					
	280 Schj.	19 Pisc,	318 Birm.	74 Schj.	78 Schj.	132 Schj.	115 Schj.	152 Schj.	Means	a. d.
	4617.74	17.80	18.03	17.99	18.09	18.23	17.74	18.15	17.97	0.15
	4619.29	19.68	19.86	19.70	19.85	19.56	19.42	19.40	19.60	0.19
	4619.29 4638.03	38.75	39.19	39.03	39.15	39.07	38.78	38 96	38.87	0.26
	$\begin{array}{c} 4766.78 \\ 4822.75 \end{array}$	66.11	66.47	66.33	66.55	66.47	66.98	66.54	66.50	0.18
	4822.75	23 91	23.86	23.51	24.02	23.96	23.27	23.86	23.64	0.45
	4826.52	27.81	28.21	28.23	28.31	28.19	27.88	27.90	27.88	0.46
	4832.49	32.51	32.56	32.57	32.61	32.30	32.48	32.46	32.48	0.07
	$\frac{4832.19}{4882.07}$	81.69	81.55	81.75	81.71	81.53	81.09	81.52	81.61	0.19
	4900.70 4920.65 5226.19	00.81	00.95	01.37	01.34	00.67	01.87	01.18	01.11	0.33
	4920.65	21.03	20.78	20.97	21.00	20.52	21.23	20.54	20.84	0.22
	5226.19	26.19	26.33	26.17	26.35	27.28	26.78	26.98	26.49	0.31
	5234.33	31.27	34.22	33.95	33.97	33.91	33.99	33.44	34.01	0.20
	5247.48	47.56	47.31	47.32	47.43	47.41	$\frac{47.19}{51.09}$	47.21	47.37	0.10
	5251.30 5270.62 5298.16	51.44	51.28	51.66	51.47	51.46	51.83	51.31	51.47	0.15
	5270.62	70.16	70.02	70.17 97.70	70.55	$70.41 \\ 98.11$	70.75 98.37	70.05	70.38 98.00	0.22
	5298.16	98.19	97.77 15.12	97.70	97.63 15.09	$\frac{98.11}{15.28}$	15.30	97.40 15.40	$\frac{95.00}{15.26}$	$0.20 \\ 0.09$
	5315.31	$15.27 \\ 36.94$	36.83	$\frac{15.30}{36.65}$	36.86	36.82	36.97	37.30	36.93	0.14
	5337.05	41.30	$\frac{50.55}{41.26}$	41.35	41.59	41.63	41.78	41.61	41.54	0.19
	5341.84 5372.07	71.70	71.50	71.52	71.68	71.89	71.64	72.10	71.76	0.19
	5377.48	77.58	77.36	77.38	77.38	77.44	77.29	77.07	77.37	0.10
	5380.54	79.82	79.72	79.91	80.47	80.46	80.68	79.91	80.19	0.35
	5380.54 5397.47 5420.44 5430.33 5448.31	97.58	96.81	97.28	96.91	97.97	96.75	97.88	97.33	0.39
	5190 44	20.17	20.22	19.66	20.53	20.43	20.49	20.13	20.26	0.21
	5430.33	30.39	30.13	29.87	30.27	30.33	30.17	30.24	30.22	0.11
	5448.31	48.09	47.72	47.91	47.62	47.73	47.54	47.06	47.75	$0.28 \\ 0.23$
	5456 54	56.96	56.43	56.54	56.81	56.92	56.46	57.13	56.72	0.23
	5461.13 5475.08 5557.27 5567.60	60.99	60.84	60.49	60,96	60.99	60.80	61.18	60.92	0.16
	5475.08	74.56	74.38	74.33	74.46	74.20	74.34	74.35	74.46	0.19
	5557.27	56.32	56.28	55.80	56 38	56.30	56.36	56.24	56.37	0.23
1	5567.60	66-60	66.86	66.57	67.23	66.84	67.42	68.08	67.15	0.43
	558 1 ,65	83.98	83.70	83.98	84.02	83.86	83.83	83.69	83.96	0.19
	5587.54	86.95	86.96	86.89	87.23	86 97	87.66	87.57	87.22	0.28
	5634.05	34.21	34.11	34.20	31.23	33.79	34.58	33.76	34.12	0.24
	5645.22 5671.71	44.07	43.74	43.71	41.29	43.89	45.20	44.57	41.34	0.48
	5671.71	70.83	71.44	71.26	71.34	70.99	71.68	71.22	71.31	0.23
	5694.41	93.78	93.89	93.62	93.79	93.21	94.16	93.17	93.76	0.31
	5706.71	05.41	05.42	05.25	05.05	04.53	05.14	04.97	05.31	0.29
	5731.70	31.20	31.56	31.76 43.96	31.48	$\frac{30.72}{43.60}$	31.97 43.73	$31.60 \\ 43.26$	31.60 43.77	$0.14 \\ 0.37$
	5744.32	44.35	43.89	45,96	43.02	43.00	40.10	45,20	40.11	0.31
Means	5150.86	50.78	50.74	50.72	50.85	50.77	50.84	50.79	50.79	0.23
Residuals t.m.,	+0.07	-0.01	-0.05	-0.07	+0.06	-0.02	-0.05	.00		
							-3	0	100.9	
" km	+4	-1	-3	— 1	+3	-1	-3	U	± 02.3	

THE CARBON BANDS

Since the time of Secchi the characteristic dark bands of fourth-type stars have been attributed to some form of carbon. For the reasons mentioned by Dunér, ²⁹ the measures of Secchi, though they appear to be sufficient to identify the bands, can be given but little weight. The measures of Vogel and Dunér have therefore formed the only reliable basis of comparison. The means of these measures, compared with the wave-lengths of the heads of the carbon bands, are as follows:

Star	Carbon Bands	Δλ, Star-Laboratory	
t.m.	t.m.	t.m.	
437	4381.93	-10.±	Edge of violet band
4729	4737.18	- 8.	Edge of blue band
5162	5165.30	- 3.	Edge of green band
5633	5635,43	- 2.	Edge of yellow band

While the differences are in some cases considerable, these measures leave no doubt that the dark bands of the fourth-type stars correspond with the bands of the Swan spectrum. The systematic shift toward the violet of the bands in the star is presumably due to a physiological effect arising from the presence of the bright zones on their less refrangible edges. The largest errors naturally correspond to the faintest bands.

As our photographs show not only the principal heads, but also the secondary heads of the flutings, a careful comparison with the carbon flutings in the electric arc seemed desirable. Photographs of the various bands, compared with photographs of the bands of the carbon arc, are reproduced in Plate VII. From these it will be seen that the fluted structure of the bands is repeated in the stars with perfect fidelity.

The following table contains the mean wave-lengths of the heads of the various flutings, as derived from all of our measures; the number of stars in which each fluting was measured; the maximum and average deviation from the mean wave-length in all of the stars measured; the assumed origin of the flutings; the wave-lengths of the flutings as measured by various investigators in the laboratory; and the differences between the star and laboratory determinations. In these last comparisons the wave-length determinations of Crew and Basquin are used for the cyanogen flutings, and those of Kayser and Runge for the flutings of the Swan spectrum.

F	EADS O	F THE CAR	BON FLUTI	ves		WAVE-LE	NGTH IN L	BORATORY			ABORATORY
Mean Wave- Length in Stars Corrected for	No. of Stars	Deviation Me		Origin	Eder and Valenta	Fievez	Hassel- berg	Kayser and Runge	Crew and Basquin	Kayser and Runge	Crew and Basquiu
Slit-Width		Maximum	Average					nungo		littinge	
		t.m.	t.m.		t.m.	t.m.	t.m.	t.m.	t.m.	t.m.	t.m.
4380.6				Swan Spec.	4380						
4503.2	5	0.5	0.2	CN					4502.35		+0.9
4515.0	2	0.4	0.4	CN					4514.95		0.0
4532.6	4	0.4	0.4	CN					4532.06		+0.5
4555.3	5	0.4	0.3	CN					4553.31		+2.0
4578.4	6	0.6	0.5	CN					4578.19		+0.2
4608.8	6	0.6	0.3	CN					4606.33		+2.5
4697.2	1			Swan Spec.	4697.66		4696.2	4697.57		-0.4	
4716.5	4	$(1.3)^{30}$	0.2	** *	4715.73?		4713.7	4715.31		+1.2	
4738.6	7	0.6	0.2	44	4737.25	4736.3	4735.7	4737.18		+1.4	
$\{5169.1\}^{30}$	3	$(1.8)^{30}$	0.4	44		5165.6	5165.4	5165.30			
5505.4	3	0.9	0.7	6.		5504.6	5501.6				
5543.5	4	0.4	0.2	b.b.		5543.3	5538.5	5540,86		+2.6	
5587.7	3	0.2	0.1	6.6		5581.5	5586.2	5585.50		+2.2	
5638.8	8	0.8	0.4			5635.0	5637.5	5635.43		+3.4	

Mean, 0.3

Mean Shift, +1.4 t.m.

As the average deviation from the mean for a single star is only 0.3 t.m., while the mean shift of the heads of the flutings is 1.4 t.m. toward the red, there would appear to be some actual shift of the flutings in the star. The mean of Vogel's and Dunér's wave-lengths, as given above, indicates a somewhat larger shift toward the violet. It should be remembered, however, that these observations were made visually with very limited instrumental means, which did not permit a high degree of precision to be attained. Dunér's measures of the heads of the carbon flutings, for example, show the following range, which is surprisingly small, in view of the circumstances under which they were made:

132 Schjellerup	5640 5168 5634 5161 5625 5169 5635 5165	4715 4730 4721 4740
-----------------	---	------------------------------

³⁰ Eud of plate; too faint for precise measurement.

Our measures of these heads for the same stars are:

		-
5638.7	5169.5	4738.7
	5169.0	4738.5
	5169.1	4739.2
	5168.6	
	5638.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

It is therefore evident, as might be expected from the use of photographic methods with a much more powerful telescope, that the precision of our determinations of the positions of the flutings is considerably higher than that of Dunér's measures. But it is nevertheless unsafe to conclude that the apparent shift of the flutings in the stars is actually due to some peculiarity of their carbon radiation; for, even with all the advantages of such determinations, the differences between the wave-lengths measured in the laboratory by excellent observers are quite as great as the differences between our wave-lengths for the stars and the laboratory determinations of Kayser and Runge. The measurement of the edge of a more or less diffuse band is always liable to error. But in the fourth-type stars the difficulty of measurement is greatly increased by the presence of closely adjoining, or even overlapping, bright and dark lines. Thus the lines of the b group have prevented us from obtaining a satisfactory measure of the head at λ 5165. Under these circumstances we are not inclined to adopt the conclusion that the carbon flutings in the fourth-type stars are actually displaced from their normal positions.

The long discussion on the origin of the Swan spectrum, which has played so conspicuous a part in the literature of spectroscopy, cannot be said to have terminated. This is hardly an appropriate place to present the numerous arguments advanced by the supporters of the various views which are still entertained. The assignment of these bands to carbon monoxide by Smithells, a with its subsequent confirmation by Baly and Syers,³² seemed for a time to set the matter at rest. But the recent work of Konen 33 has revived the discussion. Konen investigated the spectrum of the electric discharge in various liquids containing carbon, and obtained the Swan spectrum in many cases when every precaution had been taken to exclude oxygen. He is therefore inclined to the belief that the Swan spectrum is due to carbon alone, though he admits that if the discharge is very easily affected by minute quantities of oxygen, the Swan spectrum may be due to CO. Although Smithells apparently made out a fairly good case in assigning the bands of the Swan spectrum to carbon monoxide, we believe that the importance of the difficulties raised by Konen should not be underestimated. As he points out, the presence of considerable quantities of salts in the solution in which the discharge takes place may not suffice to bring out metallic lines, and the cyanogen bands do not appear in weak solutions of ammonia. It may be, however, that a very small amount of oxygen would act energetically, and suffice to give rise to the Swan spectrum. But the last word on this subject has not been said, and it is to be hoped that further investigations will be made on the spectra of the electric discharge in liquids.34

There seems to be little difference of view regarding the origin of the eyanogen bands, which we have identified in the blue part of the spectrum. These bands also appear in the spectra of stars of Secchi's third type, as may be seen from an examination of the spectra reproduced in Plate VII.

Some discussion on the probable condition of earbon in stars of the third and fourth types, as well as in the Sun, may be found on p. 128.

IDENTIFICATION OF THE DARK LINES

The following table, supplemented by remarks on the several elements identified, summarizes the results of our study of the origin of the dark lines. The numbers in the column headed "Widened in Sun-Spots" are those given by Maunder in the Greenwich Spectroscopic and Photographic Results

 $^{^{31}{}^{\}alpha}$ On the Spectra of Carbon Compounds," $Phil.\ Mag.,$ 6th Ser., Vol. I (1901), p. 176.

^{32 °C}On the Spectrum of Cyanogen, Phil. Mag., 6th Ser., Vol. II (1901), p. 386.

^{33&}quot; Ein Beitrag zur Kenntnis spectroskopischer Methoden," Annalen der Physik, Vol. IX (1902), p. 742.

 $^{^{34}\,\}mathrm{The}$ investigations by one of us on spark spectra in liquids were undertaken with a different object in view.

for 1880. The amount of widening is in tenths of the normal width; the next column gives the number of spots in which the line was widened, out of eighteen observed. In the red region the amount of widening is taken from Cortie's papers in *Monthly Notices*, Vol. XLIX, p. 410. and Vol. LXII, p. 516.

We are fortunately able to include in the table the wave-lengths of lines in the spectrum of a Orionis, as measured by the late Professor Keeler on photographs taken with a three-prism spectrograph at the Allegheny Observatory. These were sent to us by Professor Keeler in manuscript for the purposes of this comparison. At the Conference of Astronomers held at the Yerkes Observatory in 1897 he described his photographs of third-type spectra as follows:

The series of slides included the spectra of a Bootis, a Aurigae, a Tauri, a Orionis, a Scorpii, β Pegasi, and a Herculis, in which may be observed a transition from the second to the third type. In stars like a Orionis the lines are essentially those of the solar spectrum, but the relative intensities are not the same, and the general aspect of the spectrum is different from that of the spectrum of the Sun. The dark bands characteristic of third-type stars are well shown, though they are not resolved into lines. The separate lines are doubtless far beyond the resolving power of the instrument. These bands are not always terminated by strong metallic lines, and the appearance noted by early observers was probably due to insufficient optical power. The strong lines are mostly those of iron—apparently the low-temperature lines. Their relatively greater strength in the star spectrum gives to some well-known solar groups (notably the b group) quite an unfamiliar aspect.

In a Herculis only a comparatively few of the strong metallic lines remain, while the bands are deep, and beautifully distinct. It is impossible to avoid the conclusion that the edges of the zones bordering on the dark bands are bright—much brighter, that is, than the average continuous spectrum—and that they are due to a real predominance of emission at the regions of the spectrum in which they occur. They are not merely the effect of absorption in adjoining regions. In the case of stars like α Orionis, of a less pure type, such a conclusion could not be safely drawn; yet the superior brightness of the spectrum at these places is obvious, and it can be traced even in second-type stars. May there not after all be bright regions in the solar spectrum, such as Draper supposed he had found in the places of the bright oxygen lines? And what is the relation between the dark bands in third-type stars and the bright zones which border on them?

It is an interesting fact that some of the bright lines, and also some of the dark lines in fourthtype spectra, similarly lie in close proximity to dark and bright zones.

COMPARISON WITH SUN-SPOTS AND WITH THIRD-TYPE STARS

							D	
FOURTH-TYPE	E STARS			NED IN SPOTS				Type III a Orionis-Keeler
Wave- Length	Inten-	PROBABLE ORIGIN	Amount of Widening	Number of Spots	Remarks		Wave-Length	Intensity and Character
t.m. 3933 3967 4004.4 4018.3 4034.8 4058.2 4078.7 4100.5 4132.3 4145.4 4197.5 4227.6 4254.4 4274.0 4282.8 4289.0 4304 to 4313 4325.9 4340.4 4354.2 4363.4	10 w 1 3 4 1 10 1 3 2 2	$ \begin{array}{c} Ca\ ({\rm K}) \\ Ca\ ({\rm H}) \\ Fe\ ({\rm H}) \\ Fe\ , Ti \\ Fe\ , Mn \\ Fe\ , Mn \\ Fe\ , Co\ , Cr \\ Fe\ , Ti \\ H\ (H\delta) \\ Fe \\ Fe \\ Ca \\ Cr, Ti \\ Ca, Fe \\ Ca\ , Cr, Ti \\ \end{array} $		No widened lines in this region	See note 5 See note 5 See note 1 Characteristic lines G group See note 5	One-prism plate, wave-lengths uncertain by 1 t.m.	t.m.	

COMPARISON WITH SUN-SPOTS AND WITH THIRD-TYPE STARS-Continued

FOURTH-TYP	E STARS		Wide Sun-	NED IN SPOTS			TYPE III a Orionis-Keeler
Wave- Length	Intensity	PROBABLE ORIGIN	Amount of Widening	Number of Spots	Remarks	Wave-Length	Intensity and Character
t.m. 4383.7 4389.9 4392.0 4395.0 4398.0	$\begin{bmatrix} 6 \\ 2 \\ 2 \\ 6 \cdot 7 \\ 1 - 2 \end{bmatrix}$	Fe, V V Fe, Cr, V V, Cr, Ti			Carbon head	t.m.	
4401.0 4403.3 4405.1 4408.5	3-4 3-3	Fe, V, Ni Fe, Y Fe, V			See note 4		
$\begin{array}{c} 4410.9 \\ 4412.4 \\ 4415.3 \\ 4416.7 \\ 4420.6 \end{array}$	1 2 3 2 2	Ni V , Cr Fe V V , Zr V , Ti			See note 4		
4421.7 4423.0 4425.9 4427.7 4430.3 4433.9 4435.6	2-3 2 2-3 2-3 2 1 5	Fe, Ti, Y Ca, Ti, V Fe, Ti Fe, V Fe, Ti Ca, V			See note 4		
4438.2 4444.6 4445.7 4447.4 4450.1 4455.3 4456.7 4458.1 4462.2 4465.4 4466.9 4471.7 4475.3 4475.6 4480.2 4480.2	2-3 2-3 2 2 2 3 2 0-1 1 1 2 2 1-2 1 1-2 2 2-3 2 2 3 2 2 3 2 2 3 2 2 2 2 3 2 2 2 2	Fe, V Fe, Ti, V Fe Fe, Mn Ti, V Ti, Ca, Mn Fe, Ca V, Ti, Mn Fe, V, Mn Cr, Ti Fe V, Ti Ti, Co Ti Cr V, Fe Fe		No widened lines in this region	See note 4		
4487.5 4489.7 4497.0 4501.8 4507.0 4509.8	2-3 4 2-3 3 1-2	Fe, V, Cr Ti, V, Cr $T\ell, V$			Carbon head		
4512.8 4516.2 4518.3 4520.5 4523.1 4527.4 4528.7 4531.3 4533.4 4535.7 4540.5 4542.9 4544.9 4549.3	2 1 2 1 3 4 2 2 1 2 3 4 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2	Ca, Ti Ti Fe Ti Ca, Cr, Ti V, Fe Fe, Cr Ti Cr, Ti Cr, Ti Fe, Cr Tr, Ti Fe, Ti Tr			Important Ti group See note 7		
4552.8 4553.8 4560.3 4563.5 4565.8	$\begin{array}{c} 7 \\ 3 & 4 \\ 2-3 & 2 \end{array}$	Ti Fe, Ti Fe, Cs Cr, Ti Fe, Cr			Carbon head Strongest Cs line in Bunsen flame See note 7	Э	

COMPARISON WITH SUN-SPOTS AND WITH THIRD-TYPE STARS-Continued

Fourth-Typ	E STARS		WIDE SUN-	NED IN Spots				Type III a Orionis—Keeler
Wave- Length	Inten- sity	PROBABLE ORIGIN	Amount of Widening	Number of Spots	Remarks		Wave-Length	Intensity and Character
t.m. 4571.8 4575.4 4577.5 4580.5 4582.6 4584.7 4586.4 4587.4 4591.2 4594.2 4597.4 4600.8 4602.9 4606.8 4607.5 4610.3 4611.4 4613.9 4616.4 4619.5 4622.9 4628.7 4629.7 4634.4 4637.6	$\begin{array}{c} 2\\1-2\\1\\2\\2\\2-3\\1-2\\2\\2-3\\3-4\\3-4\\2\\1\\4\\4-5\\4\\4\\1\\1\\4-5\\4\\2\\1\\4\\4\\1\\4\\4\\4\\4\\2\\1\\4\\4\\4\\4\\4\\4\\4\\4$	Ti, Cr Fe V Cr, Fe, V Fe, Ca Fe Cr, V V Cs Cs Cr, Ni Fe Ni Fe, Sr Fe Cr, Fe Cr Ti, Co Fe Fe, V, Ti Cr Fe, V, Ti Cr Cr			Carbon head 4609		t.m.	
4654.1 4656.4 4664.1 4668.1 4674.9 4682.3 4688.6 4691.1 4697.0 4702.0 4703.8 4714.7 4715.6 4722.6 4729.1 4732.5 4749.6 4751.6 4758.9 4766.5 4776.8 4789.6 4806.2 4812.1 4815.9 4828.0 4832.5 4839.7 4843.4 4851.8	2-3 2 3 2-3 1-2 1 1 1 1 1 1 1 1 1 1 1 1 1	Fe Ti Cr Fe, Ti, Ni Fe, Ti Fe Ti, Fe Cr Ni Ni Ni Ni Ti, Zn Fe Ni Fe V Fe, Cr Ti Mn V, Fe V Fe, Cr Ni, Ti Fe, Mn Fe Fe Fe Fe Fe Fe Ca, V	No widoned lines in this mergen	AND WINCELLOW IN THE STREET	Carbon head 4716 Carbon head \{ \frac{4738}{4744}} Carbon head 4754 in 152° Schj.	Bright zone: dark lines may be obscured Dark band, continuous spectrum or displaced by bright lines		

COMPARISON WITH SUN-SPOTS AND WITH THIRD-TYPE STARS—Continued

FOURTH-TYP	E STARS		WIDEN SUN-S					TYPE III a Orionis-Keeler
Wave- Length	Intensity	Origin	Amount of Widening	Number of Spots	Remarks		Wave- Length	Intensity and Character
t.m. 4855.5 4859.6 4861.3	1-2 1 10	Ni Fe H, (Hβ)			\ Bright in 280 Schj.	bscured	t.m. 4861.5	About the same as Sun
4865.1 4867.7 4871.5 4875.5 4878.3 4881.6 4886.0 4890.3 4901.1 4906.4 4910.3 4925.2 4934.1 4945.6 4958.4	2 12 2-3 2 1 3-4 4 1-2 2 3-4 2 2-3 1 2	V Ca, Fe V, Fe Fe, V V Ti, V Fe Fe Fe Fe, Ba	1 7 2-3 5-6	7 14 3 13 9 2 4 13 6 13	note 5	Bright zone: dark lines may be obscured or displaced by bright line	4861.4 4871.8 4875.6 4878.3 4882.0 4890.9 4891.6 4900.3 4919.2 4920.7 4933.4 4934.3 4937.5 4938.8 4939.9 4956.0 4957.6 4982 to	Stronger than Sun Same as Sun (Strong in star) Sun? Same as Sun Triple, as in Sun, but stronge Same as Sun Stronger than Sun Same as Sun Same as Sun Same as Sun Stronger than Sun Stronger than Sun Stronger than Sun Stronger than Sun Strong, not in Sun Same as Sun CGroup, same as
4981.8	W	Fe, Ti	<u> </u>	10			4984	Sun dark band in Type IV, in dark band
5167.2	2	$Fe, Mg, (b_4)$	5	15	Carbon head 5164, see	e note 6	5167.6	Very strong, same as Sun
5173.4 5183.8 5189.2	5 3 1-2	$\begin{array}{c} Ti, Mg, (b_2) \\ Mg, (b_1) \\ Ca, Ti \end{array}$	8 9 5 5-6	15 15 7	Bright space See note 6	{	5169.2 5171.8 5172.9 5183.8 5191.6	Stronger than Sun Same as Sun Same as Sun (Same as Sun or a little
5193.3 5202.4	3 1	Fe, Ti, V Fe	4 5 6	7 6			5192.5 5195	stronger
5205.8 to 5210.1 5216.7	\\ \{ \begin{pmatrix} \ 10 \\ \ \ \ 2 \end{pmatrix}	Cr, Fe, Ti	6	12	{ Very strong line { See notes 3, 4, and 7		5204.8 5206.2 5208.6 5210.6	Equal lines stronger than Su Weak in Sun
5226.5	7	Cr, Fe, Ti	5-6	8	See notes 3 and 4		5219.6 5221 to 5227.2	Not in Sun Group, stronger than Sun
5234.0 5239.8 5247.4 5251.5	$\begin{bmatrix} 3 \\ 2 \\ 3 & 4 \\ 3 & 4 \end{bmatrix}$	$\{ egin{array}{ll} \Gamma \ Cr, Fe, Ti \ Fe, Ti \ Cr, Fe \ \end{array} \}$	4-5 2 4 3 5	3 2 2 2 5	See note 4		$\begin{array}{c} 5247.7 \\ 5250.6 \\ 5252.3 \\ 5255.1 \\ 5264.1 \end{array}$	Strong, weak in Sun
5265.9 5270.4	1 4-5	Ca, Cr	2-3 5 6	7 12	E. See notes 2 and 4		5269.7 5270.4	Stronger than Sun

COMPARISON WITH SUN-SPOTS AND WITH THIRD-TYPE STARS -- Continued

FOURTH-TYP	e Stars		WIDEN SUN-S					Type III a Orionis – Keeler
Wave- Length	Intensity	PROBABLE OBIGIN	Amount of Widening	Number of Spots	Remarks		Wave-Length	Intensity and Character
t.m. 5283.6 5298.2 5302.5 5307.5 5315.2 5320.8	1-2 3 4 1 2 1 2-3 2 3	Fe Cr, Ti Fe Fe Fe Fe Fe	5 5 8	5 5 4	Strong Cr group; see not	e 3	t.m. 5297.0 5298.0	Stronger than Sun Same as Sun
5325.3 5329.0 5336.9 5341.5 5350.0	3-4 2 3	Co Cr, Fe Ti Fe, Mn	6 5 3-4	3 6 6	Strong Cr group, note 3		5328.5 5341.2 5346.0 5348.5 5349	Somewhat stronger than Sun Stronger than Sun Stronger than Sun A little stronger than Sun
5362.7 5366.6 5371.7 5377.4 5384.7	$egin{array}{c c} 1 & 2 & \\ 7 & 8 & \\ 2-3 & 1 & \\ \end{array}$	Fe, Co Fe, Cr Fe, Mn	2-3 6 8	3 8 1	See note 4		5370 5371.6 5376.0	Same as Sun Stronger than Sun Not in Sun
5391.1 5397.3 5406.4 5408.3 5410.4	1 4 1 2-3 2-3	Fe, Ti Fe Cr	4 6 8 5-6	3 6 6 5			5397.2 5404 5406 5410.0 5411.1	Stronger than Sun Weaker than Sun Stronger than Sun Stronger than Sun Same as Sun
5414.2 5420.2 5425.1 5430.2	1-2 3 1 3	Ni Fe	1 6	2			5424.2 5426.5 5429.9	Same as Sun Not in Sun Stronger than Sun
5434.3 5438.6 5447.8	1-2 1-2 7	Fe, V Fe, Ti Fe, Ti	6	5 5	See note 4		5433.0 5434.7 5436 5445.2 5447.0 5455.7	Stronger than Sun Stronger than Sun Same as Sun Stronger than Sun, edge of band Stronger than Sun
5456.8 5460.9 5467.3 5474.5 5478.0 5483.0	2-3 1 2 1-2 1-2 1-2 1-2	$Fe \ Fe' \ Ti \ Fe$	$\frac{1}{2}$ 3-4 3	1 1 1 1			5461.0 5463.0 5477	Not in Sun Weaker than Sun Same as Sun
5498.0 5501.8 5507.1 5512.4 5524.3 5525.4	$\begin{array}{c c} 4 \\ 2 \\ 1 \\ 2-3 \\ 1-2 \\ 1-2 \end{array}$	Fe Fe Fe Fe, Ti Fe Fe Fe Fe Fe Fe Fe F	5-6 5 5	5 5 1	Carbon head 5505	À.	5497.6 5501.6 5507.0	Stronger than Sun Stronger than Sun Stronger than Sun
5528.6 5533.9 5539.5 5546.6 5548.3 5552.5 5556.4 5562.6 5567.0 5570.2	1 7 1-2 2 1 1-2 1 2 1 2 1	Mg Fe V Fe Fe	1 2	1 1	Carbon head 5543	Carbon flutings	6025.01	Region here same as Sun

COMPARISON WITH SUN-SPOTS AND WITH THIRD-TYPE STARS -- Continued

OURTH-TYP	E STARS		WIDE: SUN-S	NED IN SPOTS				TYPE III a Orionis — Keeler
Wave- Length	Intensity	Probable Origin	Amount of Widening	Number of Spots	Remarks	REMARKS		Intensity and Character
t.m.	1						t,m,	
5573.7 5576.2 5583.9 5589.2 5594.7	$\begin{vmatrix} 1 \\ 8 \\ 1 \\ 1-2 \end{vmatrix}$	Fe Ca Ca	1.4	1 5	Carbon head 5587	Carbon flutings	5598.5	Region here same as Sun
5609.4 5615.7	2	Lin		1		hon	5615.7	Stronger than Sun Same as Sun
5620,3 5625.1	2.3	Fe T.	4 2 2 1	4 1 3	51 N 4 0	Car	5624.7	
5634.0 5644.2	$\begin{array}{ c c c } & 4 & \\ & 10 & \\ & 1-2 & \end{array}$	V, Fe	1	1	See Note 8		5024. i	Stronger than Sun
5650.1	1	Ti Fe	0		Carbon head 5638		£0=0 =	City and the second
5058.2	1-2	1	3	3		iffica	5658,5 5663,0	Stronger than Sun Stronger than Sun
5671.3	1-2	1,	1			dent	5669	(1) 1:0° 1 1 1
5675.5 5676.7	1-2	Ti	2	1		ne, i	5000	Strong, diffuse band not Sun
5696.7	1	71 (71)				Bright zone, identifica- tions uncertain	5682	
5708.3 5712.8	$\begin{array}{c c} 2-3 \\ 1-2 \end{array}$	Fe, Ti	$\frac{1-2}{1}$	3 2		righ	5709.6 571 2	Stronger than Sun Stronger than Sun
5721.3	2	T **				<u> </u>	5727.2	Stronger than Sun
5731.6 5743.7	$\frac{3-1}{2}$	Fe, V	3	2			5732.0	Stronger than Sun
5749.4 5751.7	1 1		1	2				
5762.5 5771.0	2 2	Fe, Ti Fe						
$5778.0 \\ 5781.8$	3	Fe						
5789/6 5798.1	1	Fe	1	1				
5822.9 5848.5	$\frac{2}{1}$	Fe						
							5856 5860	
							5865 5869	Region quite different fr
							5875 5882	Sun
5891,3	10	Na (D)	3		Widened lines obs. by	Cortie	5890.2 5896.4	Stronger than Sun
5921.9	1		5				5914	Sun?
5945 , 9 6035	1	Sr	5 10					
6059.1 6098.5	1 3	Sr	10 5 6					
6119.0 6190.3	2 2		6 7 4 5		Broad B line			
6269.6	10	CaO, V	10		Broad B line Very strong. See note	1		
6357.6 6425.3	3 w		$\frac{2}{6}\frac{3}{7}$					
6488 to								

I. Calcium is well represented in these stars, the only contradictory evidence being the possible absence of the lines $\lambda\,5260$ to $\lambda\,5265$ (lines but slightly broadened in Sun-spots), which are probably obscured or displaced by emission spectrum. The line $\lambda\,4226.9$ is nearly as strong as H and K, suggesting a low temperature. The

strong flame lines at λ 6183 and λ 6202 fall on bright lines, but the very strong star line at λ 6270 may include the flame line at λ 6265, attributed by Eder to CaO.

- 2. The group at $\lambda 5270$ consists of two strong Fe lines and one strong Ca line. In the arc, with iron or carbon poles, the two iron lines are of equal intensity, but they are so different in the spark that the arc intensity (relative to the spark line as unity) is 0.9 for the line $\lambda 5269.7$ and 5 for $\lambda 5270.5$. When titanium carbide (85 per cent. Ti) was placed on the lower carbon of the arc lamp, with four times the original exposure the line $\lambda 5269.7$ kept its intensity, while $\lambda 5270.5$ dropped to one-third. The wave-length of the center of the strong star line corresponds with the Fe line, which is strengthened in the arc, but weakened in the presence of Ti. This is also the wave-length of the Ca line.
- 3. Chromium.—The chromium lines in the region $\lambda4400$ to $\lambda4900$ are relatively weak in the arc and not represented by strong star lines. On the other hand, in the region $\lambda5100$ to $\lambda5700$ the most prominent chromium lines are relatively very strong in the arc, are usually widened in Sun-spots, and are represented by strong star lines. For example, the group $\lambda5204$ to $\lambda5208$ coincides very nearly with one of the most intense star lines outside the carbon flutings. The chromium line at $\lambda5225.1$ seems to form with the iron lines at $\lambda5227$, the strong star line $\lambda5224.4$ to 5228.6. The groups $\lambda5296$ to $\lambda5298$ and $\lambda5328$ to $\lambda5329$ coincide closely with strong star lines. The principal item of contradictory evidence is the lack of a star line to match the chromium group $\lambda5275$ to $\lambda5276$, but it will be noticed that this group is but slightly widened in Sun-spots.
- 4. Iron is doubtless present in the star, but represented by comparatively weak lines. The principal cases in the blue region where the star lines are strong are $\lambda\lambda 4405$, 4415, 4427, 4462. In the yellow-green region numerous Fe lines, strong in the are and broadened in Sun-spots, correspond with strong star lines; for example: associated with Ti at $\lambda\lambda 5251$, 5370, 5147; with Cr and Ti at $\lambda\lambda 5208$, 5227; and with Ca at $\lambda 5270$.
- 5. Hydrogen.—Of the hydrogen lines $H\beta$ is present as a strong bright line in some plates of 280 Schjellerup and absent in others, but never appears as a dark line. $H\gamma$ is present and $H\delta$ prominent in the violet plates of 19 Piscium as dark lines.
 - 6. Magnesium.—The b group is a prominent feature of the spectrum, and numerous other lines are present.
- 7. Tilanium.—The group $\lambda 4512$ to $\lambda 4536$ gives striking evidence of the presence of titanium in the star. Of the eleven lines, ten are strong in the arc and represented in the star, while the line $\lambda 4534.2$ alone is weak in the arc and absent in the star. For remarks on the behavior of the lines of this group in other stellar types, see p. 134. In the yellow region the titanium lines which are strong in the arc and much widened in Sun-spots are represented by strong star lines; for example, the line $\lambda 5210.6$, which according to Cortie 35 was the most widened line between D and b in the spot of May, 1901, is the strongest star line, and no line which is missing in the star has an intensity greater than 1 in the arc, or a widening greater than 4 in Sun-spots.
- 8. Vanadium.—The presence of vanadium seems well attested. The triplet at $\lambda 5624$ –5628 is especially remarkable, as it is very strong in the arc and coincides closely with the strong star line whose limits in the best plates are $\lambda 5623$ –5628. In the vanadium arc used the vanadium lines are weak in the region $\lambda 5100$ to $\lambda 5500$, and strong in the region $\lambda 5500$ to $\lambda 5900$. These strong lines are well represented in the star or obscured by the bright lines and zones. In general the vanadium lines which are missing in the star are weak in the arc.

No vanadium lines are identified as among those widened in Sun-spots by Maunder in the *Greenwich Results* for 1880. Photographs taken at the Yerkes Observatory show numerous vanadium lines widened, and it is now well known that vanadium lines are very characteristic of Sun-spots.

LINES WIDENED IN SUN-SPOTS

The agreement of the fourth-type with Sun-spot spectra is especially noticeable in the region $\lambda 5160-5500$. The numerous lines in the region $\lambda 5500-5700$ which are widened in Sun-spots are masked in the stars by the carbon flutings, so that but few coincidences are found. Taking the data from the *Greenwich Results* for 1880, the forty-six lines which are most strongly and frequently widened in the spots are found to be the most prominent dark lines in the star. They are identified as follows:

Fe -				22 lines	Mg	-		-		-		-	3	lines	
Ti	-			9 lines	Ca -		-		-		-		2	lines	
T.		-		5 lines	Mn	-		-				-	1	line	
Cr	_			4 lines											

²⁵ Monthly Notices, Vol. LXII, p. 516.

TITANIUM A comparison of Hasselberg's list in the region λ 5186–5823 gives the following results:

Lines Found in	the Stars	Lines Not Found in the Stars
Widened in spots. 23 Mean number of spots. 4 Mean widening. 5 Mean intensity in star. 3	Not widened4	Widened 9 Not widened 41

It is unfortunate that a similar comparison cannot be given for vanadium. Maunder does not give wave-length determinations, and his tables of vanadium lines were apparently inadequate for the identification of the fainter lines, which are frequently greatly widened in spots.

The following table contains Young's observations of lines widened in Sun-spots, compared with the fourth-type lines:

YOUNG'S LINES WIDENED IN SUN-SPOTS

Wave-Length Reduced to Rowland's Scale	Amt. Wid.	Wave-Length and Character in Star (Dark line unless otherwise stated)	Wave-Length Reduced to Rowland's Scale	Amt. Wid.	Wave-Length and Character in Star (Dark line unless otherwise stated)
5191 5 5192.7	21213	B? lines B? lines	5424.7	0 0	25.1 30.2
5198.9	2	B? lines	5429.9 5434.1	1	39.2 34.3
5202.5	5	02.4	5447.0	4	46 to 49
5204.7	1		5455.8	3	56.77, shifted by B at 53.8
5208.6	1	(04.6 to 11.5	5487.9	3	B 86.5
5227.2	9		5497.7	•2	98 0
5230.0	2 2	{ 24 1 to 28.6	5501.6	2	01.8
5233.I			5532.7	• • • • • • • • • • • • • • • • • • • •	
5266.8	2 2 3		5572.8	2 2	Carbon fluting
5269.5	3	100	5584.8	4	1 20 0 1 21 01 01 07 0
5270.5	3	69 to 71	5586.6	3	{ 83.9; strong, limits 81.9 to 85.9
5328.17			5592.3		
5328 3 (2		5598-3	2	B zone
5340.2	2		5602.9	212121	
5341.2	22	41.5	5615.7	3	15.7
5353.5	6)		5624.2	2	18.6 to 26.2
5370.1	1	£70.1 to 73.7	5662.7	4	B zone
5371.6	4	j 10.1 to 13.1	5706.3	4	i D zone
5397 2	7	97.3 w	6065.7	3	59 w
5404.2	1	606.4	6136.8	3	
5405.9	4		6191.7	•)	90. narrow, between two B line
5415.6	3	14.2	6358.9		

Young's list contains forty-six widened lines between λ 5167 and λ 6357. Of these twenty-five appear in the star (53 per cent.), while twelve are obscured by bright lines. In the region best photographed and most favorable for identification, λ 5167 to λ 5531, Young has thirty-three widened lines, of which twenty appear in the star (60 per cent.) and three are obscured by bright lines.

IDENTIFICATION OF THE BRIGHT LINES

We have met with little success in attempting to identify the bright lines in fourth-type spectra. If numerous Sun-spots exist on these stars, it might be expected that violent cruptive phenomena would accompany them, and perhaps be recognizable spectroscopically. But a careful comparison with the chromospheric lines has given no evidence of genuine coincidences, except in the case of $H\beta$, which is bright in a few of the fourth-type stars. Comparisons with the spectra of nebulæ, the aurora, various terrestrial gases, etc., have resulted similarly. Only in the case of the Wolf-Rayet stars is there any evidence of a common origin, and here it is too insecure to have much weight. The following table contains the results of a comparison of some of the Wolf-Rayet lines, as measured by Campbell, with bright lines in fourth-type spectra.

In examining this evidence it should be borne in mind that the "very bright" (++) Wolf-Rayet lines $\lambda\lambda$ 4442, 4688, and the "bright" (+) lines $\lambda\lambda$ 4480, 4504, 4626, 4636, are certainly absent from fourth-type spectra. It will be noticed that these include Rydberg's principal series hydrogen line at λ 4688, which is one of the most conspicuous and characteristic lines of the Wolf-Rayet stars. In some of them, however, it is inconspicuous, and in $SDM.-11^{\circ}4593$ it is not observable visually, though shown on Campbell's photographs. λ 4442 is very bright in many of the Wolf-Rayet stars, but in some of them it was neither seen nor photographed. From the range of Campbell's measures it seems quite improbable that the Wolf-Rayet line λ 4466 can coincide with the fourth-type line λ 4464.0. The Wolf-Rayet line λ 4473 is presumably the helium line λ 4471.7; hence it probably

	FOURTH-TYPE ST	FARS		Wolf-Rayet Stars—Campbell						
Way	e-Length	Intensity	No. Stars	Wave-	Length	Inten- sity	No. Stars	Remarks		
Mean 4464.0 4473.6 4508.6 4517.3 4539.0 4596.1 4615.1 4653.0 4861.3 5412.4 5472.3 5592.4 5693.8	Range 63.8-64.1 73.6-73.6 08.2-08.7 17.1-17.7 38.7-39.2 95.8-96.2 15.0-15.2 52.8-53.1 60.7-61.5 12.3-12.6 71.8-72.4 91.8-93.2 93.2-94.4	4 5 4 2 3 4 5 3 2 9 2 3 4 2 3 6	7 24 5 6 7 6 3 4 5 6 7 8	Mean 4466 4473 4509 4517 4541 4596 4615 4652 4862 5412 5593 5693	Range 65-67 73-74 04-10 15-18 34-44 92-98 14-16 50-54 10-16 69-74 90-96 90-95	+++++++++++++++++++++++++++++++++++++++	4 2 (Dark in 3) 4 (Dark in 1) 4 21 5 4 14 21 24 13 15 18	 Helium line λ 4471.7 Blend of λ 4504 with λ 4517 Second series H line λ 4542.0 Hβ Second series H line Sharp in DM. + 30° 3639, where wavelength is 5694.0 		

does not correspond with the fourth-type line λ 4473.6. The Wolf-Rayet line λ 4541 is undoubtedly a line of the second series of hydrogen; the mean wave-length of this line, as determined by Messrs. Frost and Adams on ten plates of four *Orion* stars, is 4542.0; hence it does not correspond with the fourth-type line λ 4539.0. This fact, together with the absence of the λ 4688 line of the principal series, makes it improbable that the agreement of the fourth-type line λ 5412.46 with the second series hydrogen line λ 5412 can have any meaning. On account of the well-known relationship between Wolf-Rayet and *Orion* type stars, it may be that the Wolf-Rayet lines $\lambda\lambda$ 4596, 4615, 4652 correspond with the oxygen and nitrogen lines $\lambda\lambda$ 4596.29 (O), 4614.0 (N), 4650.9 (O). This would admit of the presence of the first of these lines in fourth-type stars, but would exclude the second and third. In this connection it should be added that oxygen and nitrogen lines (not present in Wolf-Rayet stars) may possibly coincide with fourth-type lines as follows:

Oxygen and Nitrogen	FOURTH-TYPE STARS							
Wave-Length (Frost and Adams)	Wave-Length	Intensity	No. Stars					
4591.07 (O)	4590,3	3	3					
4621.55(N)	4621.5	5-6	5					
4630,7 (N)	4631.2	4	5					
4638,94 (O)	4638.9	4	8					
4641.89 (O)	4642.1	1	G					
4661.73 (O)	4660.6	2.3	3					

In the first case the agreement is not satisfactory; in the last the line is so broad in the stars that it might include the oxygen line. The other four lines are conspicuous in most of the stars, and the close agreement of wave-lengths may perhaps be significant. It should be remarked, however, that many of the most prominent lines of oxygen and nitrogen do not appear among the fourth-type lines.

³⁷ Wave-lengths of Frost and Adams; identifications of Neovins.

With further reference to the Wolf-Rayet stars, it may be said that the generally broad and diffuse character of the lines, while it undoubtedly complicates the comparison by rendering the measures less accurate, may not preclude coincidence, in some cases at least, with the narrower fourth-type lines; for Campbell states³⁸ that in the Wolf-Rayet star $DM.+30^{\circ}3639$ the lines are better defined than in any of the other spectra, and that $\lambda 5694$ is so sharp that it appears to be monochromatic. The close agreement of the wave-length of this line, determined from a long series of measures of this star made by Campbell, with that of the very strong and characteristic fourth-type line $\lambda 5693.8$ suggests a common origin.

Since $H\gamma$ and $H\delta$ have been found with the two-foot reflector to be present as very prominent dark lines in the spectrum of 19 Piscium, while $H\beta$ is present as a strong bright line in 280 Schjellerup, it becomes a matter of great interest to determine the character of the $H\beta$ line in the spectra of other stars of the fourth type. From an examination of the catalogue of lines (see line No. 278, p. 100) it will be seen that $H\beta$ appears to be absent from the spectra of 19 Piscium, 318 Birmingham, 78 Schjellerup, and 132 Schjellerup, while it is recorded as follows in the spectra of four stars:

Star	Intensity	Character	Wave-Length	
280 Schjellerup 78 Schjellerup	9 2	nn B	4861.4 4861.5	
115 Schjellerup 152 Schjellerup	"Max" 1-2	B n B??	$4861.5 \\ 4860.7$	

Hitherto the presence of dark $H\delta$ and $H\gamma$ lines in the spectra of fourth-type stars has been proved only in the case of 19 Piscium.³⁹ In the spectrum of this star $H\beta$ is very faint or absent. Thus the condition of hydrogen in this star (and presumably in others of the fourth type) resembles its condition in the Wolf-Rayet stars, where the ultra-violet lines of this gas are dark, while some of the less refrangible lines are absent or bright.⁴⁰

We would base no final conclusion on the data now available, but we believe that the slender evidence of similarity of spectra here presented, together with the collateral evidence afforded by the peculiarity of the hydrogen radiation in both types of stars, and their tendency to cluster in the Milky Way, should lead to a thorough investigation of the bright lines in the future. Some discussion of the bearing of these matters on stellar evolution and the classification of stellar spectra may be found elsewhere.⁴¹

The bright $H\beta$ line in 280 Schjellerup seems to vary in intensity. The following photographs are available to test the question, and seem to leave no doubt regarding the fact, though the dispersion of the one-prism plates is insufficient to show minor changes:

INTENSITY OF THE BRIGHT HB LINE IN 280 SCHJELLERUP

Plate No.	Date	Intensity	Plate No.	Date	Intensity
	y. in. d.			y, m, d,	
G 202	1898 6 3	Not shown	346	1899 10 18	10
234	9 7	10	360	12 21	Not shown
245	10 26	Not shown	366	12 28	66 68
210	(10 31)	46 44	367	12 29	86 46
246	7 11 1 (370	1900 1 2	64 +4
274	1899 1 14	66 65	385	2 15	46 66
345	10 12	14 10	388	2 25	44 34

Pickering states that the $H\beta$ line is of variable intensity in the spectrum of the star A, G, C, 9181.

³⁸ Loc. cit., p. 461.

³⁹ With existing instruments the experiment of photographing the violet region of the spectrum of 280 Schjellerup (in which HB is sometimes bright) would be rendered extremely difficult by the faintness of this star.

⁴⁰ Sec p. 130.

⁴¹ See p. 134.

⁴² Astrophysical Journal, Vol. VII (1898), p. 139,

VARIABILITY OF FOURTH-TYPE STARS

There are 237 stars of this type included in Espin's Revised Catalogue of the Stars of the IV Type, ⁴³ published in 1898. Of this number twenty-eight are recognized as variable in Chandler's Third Catalogue, and twenty more are included in the supplement issued in 1901 by the committee of the Astronomische Gesellschaft. The total, forty-eight, is 20 per cent. of the whole number. The amount of variation, as given by the above catalogues, averages 2.4 magnitudes for forty-one stars. The range of variation is distributed as follows:

Range	NUMBER OF	PERCENTAGE		
KANGE	STARS	Type IV	All Stars	
Less than 1 mag I mag. and less than 2 2 mag. and less than 3 3 mag. and less than 4 I mag. and less than 5	1 13 12 7 5	2 32 29 17 12	18 6 9 50	
mag. and greater		7	18	

Column two gives the number and column three the percentage of stars having each range, and the last column gives corresponding percentages from Chandler's table ⁴⁵ for all the variables well determined in his *First Catalogue*. In comparing the two columns of percentages, it should be remembered that Chandler's stars include the short-period variables, of small range, giving a maximum to the curve at a range between 1 and 2 magnitudes; but none of these short-period stars are of Type IV. Leaving these out of consideration, the maximum range for variables in general is about 4 or 5 magnitudes, but for Type IV the maximum range is about 2 magnitudes.

It now becomes interesting to consider the proportion of variables among stars of Types III and IV, as shown in the following table:

List	Number of Stars			Types	
Espin ⁴⁶ Dunér ⁴⁷ Frost-Scheiner ⁴⁸	237 297 1,217	$ \begin{array}{r} 48 \\ 45 \\ 125 \end{array} $	20 15 10	IV III and IV	

The above tables are necessarily incomplete, and it is probable that the number of variables in each class will be increased as observations are multiplied. But, as they stand, the tables are fairly comparable, and show that the tendency to variability is somewhat greater in stars of Type IV than in those of Type III.

DISTRIBUTION OF FOURTH-TYPE STARS

The distribution of 242 stars of the fourth type with respect to the Milky Way was investigated by Mr. Parkhurst in 1898 and the results were presented at the Second Conference of Astronomers in August of that year. In 1899 Rev. T. E. Espin published in the Astrophysical Journal (Vol. X, p. 169) the results of a similar count of 224 stars, showing close agreement with Mr. Parkhurst's count. Both show that the distribution in north and south galactic latitude is quite similar, and that the stars are scattered quite evenly in the zone of latitudes greater than 30°. The following table gives the results found by Espin and Parkhurst, also the distribution of 9676 Durchmusterung stars of magni-

⁴³ Monthly Notices, Vol. LVIII (1898), p. 443.

⁴⁴ Astronomical Journal, Vol. XXII, p. 77.

⁴⁵ Ibid., Vol. IX, p. 2.

⁴⁶ Loc. cit., p. 444.

^{47 &}quot;Sur les étoiles à spectres de la troisième classe," p. 15.

 $^{^{48}\,}Astronomical\,Spectroscopy,$ p. 402.

tudes 6.5 to 9.5, from Seeliger's count in the second Mnnich catalogue. The "Density" column gives the number per unit area (the sphere being taken as unity); the column "Condensation" gives for each zone the ratio of its density to the density in the zone >30°.

Zone	Zone Number of Stars		DENSITY		Condensation		
Galactic Lat.	Espin	Parkhurst	Espin	Parkhurst	Espin	Parkhurst	DM. Stars
0 - 5 5 - 10 10 - 20 20 ² - 30° >30	123 43 27 31	92 46 58 17 29	708 256 171 62	1,060 532 345 108 58	} 11.4 4.0 3.0 1.0	18.3 9.2 6.0 1.9 1.0	2.7 2.6 2.1 1.5 1.0
Total	224	242					

PHYSICAL CONDITION OF FOURTH-TYPE STARS

The results described in the foregoing pages enable us to draw certain conclusions regarding the physical and chemical condition of fourth-type stars. It has long been assumed, perhaps on insufficient grounds, that the red color of these stars, indicating great general absorption in their atmospheres, might be considered as an index to a temperature lower than that of the Sun. Although we have been able, by giving a very prolonged exposure, to photograph the H and K lines in the spectrum of 19 Piscium, the faintness of this region in fourth-type spectra is so great that with ordinary exposures no trace of it is shown. With this marked increase of general absorption we also find evidence of increased selective absorption. This is most conspicuous in the case of the carbon bands and the violet cyanogen band, which are wholly absent from the solar spectrum. The metallic lines are also in many cases much stronger than in the solar spectrum. These changes of intensity, for the most part, are such as would probably result from the cooling of a star like the Sun, especially if such cooling were accompanied by the development of extensive Sun-spots.

Let us now inquire more closely into the physical constitution of the fourth-type stars, at first with special reference to the level in their atmospheres at which the carbon absorption occurs. It is fortunately possible to answer this question with some definiteness, in view of certain observations of the carbon bands in the solar chromosphere made by one of us. According to Lockyer's early view, the carbon flutings in the solar spectrum were due to the absorption of carbon vapor in the corona, at some distance above the chromosphere. The large solar image given by the forty-inch Yerkes refractor permitted a test of this question to be made in 1897. With excellent atmospheric conditions and a very narrow tangential slit the numerous fine lines which constitute the green carbon fluting were seen to be bright at the very base of the chromosphere. As the least displacement of the instrument caused the lines to disappear, it was evident that the layer of carbon vapor is very thin, probably not exceeding a single second of arc in thickness. Subsequently, under exceptionally favorable conditions, seven lines in the yellow carbon fluting were seen as bright lines in the chromosphere. At the eclipse of January 22, 1898, the arcs corresponding to the heads of the cyanogen fluting at \$\lambda 3883 were among the shortest photographed in the flash spectrum.

The probability thus derived from solar observations that the carbon vapor in fourth-type stars lies in close contact with the photosphere is strengthened by the fact that several of the bright lines in fourth-type spectra are superposed upon the carbon flutings. It would thus appear that the unknown gases which produce these bright lines rise above the low-lying carbon vapor, just as hydrogen, helium,

⁴⁹Throughout this discussion the bands or flutings of the Swan spectrum are referred to for convenience as the "carbon" bands, These may be due to some compound of carbon: presumably, if this is the case, to carbon monoxide (see p. 116).

⁵⁰ George E. Hale, "On the Presence of Carbon in the Chromo-

sphere," Astrophysical Journal, Vol. VI (1897), p. 412; Vol. X (1899), p. 287.

⁵¹ Proc. Roy. Soc., Vol. XXVII, p. 308,

⁵² LOCKYER, "Total Eclipse of the Sun, January 22, 1898 Observations at Viziadrug," Phil. Trans., Vol. CXCVII (1901), p. 203.

and calcium do in the solar chromosphere and prominences. We also find that many of the dark lines of iron and other elements are absent from fourth-type spectra, their places being covered by overlapping bright lines. Thus again, as in the case of the Sun, we have evidence that carbon in some form is associated with low-lying metallic vapors, above which rise the gases whose radiations reach us without reversal.

It is a curious fact, perhaps not without significance, that the cyanogen flutings beginning at \$\lambda 4609\$ in fourth-type spectra do not appear to increase in strength from star to star, in harmony with the increase of intensity observed in the case of the carbon bands (see Plate VIII). This is the more remarkable when it is remembered that the cyanogen absorption in these stars is much stronger than in the case of the Sun, where these violet flutings appear to be entirely absent. For some reason the maximum intensity of these flutings seems to have been attained in so slightly developed a fourth-type star as 280 Schjellerup. In this connection the presence of these flutings in third-type stars, as indicated in Fig. 3, Plate VII, is of interest, particularly in view of the fact that the carbon (Swan spectrum) flutings seem to be absent from stars of the third type.

Further evidence of increased absorption, and possibly of decreased temperature, is afforded by the behavior of the metallic lines in fourth-type stars. Calcium offers an interesting case. It is well known that in the laboratory the line at $\lambda 4227$ increases in relative strength as the temperature of the calcium vapor falls, and also, according to Huggins, as the density of the calcium vapor increases. In the Bunsen burner this is a conspicuous line, while H and K are absent. The great strength of this line in the spectrum of 19 Piscium (Fig. 2, Plate XI) should afford a valuable criterion as to the physical condition of these stars. It should be noted in this connection, as the figure indicates, that this line is equally strong in the spectra of third-type stars. The very strong and broad line at $\lambda 6270$ in the spectrum of 152 Schjellerup may possibly coincide with the strong line in the flame spectrum ascribed by Eder and Valenta to calcium oxide.

The tables of identifications contain more evidence of the same character. Perhaps the most interesting case of this kind is the variation of the relative intensities of the titanium lines in the group λ 4534–4536, referred to more particularly below in connection with the question of the classification of fourth-type stars. The lines of this group are strongly developed in fourth-type spectra, with the exception of λ 4534.14, which is the only line of the group present in the spectra of the early *Orion* stars. This is an "enhanced" line, which in the spark spectrum is greatly reduced in intensity when the self-induction of the secondary circuit is increased. The changes in this group may be due to electrical rather than to thermal causes, but they at least harmonize with what might be expected to result from a reduction of temperature.

The possibility that spots like those on the Sun may form a characteristic feature of fourth-type stars is strongly suggested by the evidence which we have accumulated (p. 123). It is hardly necessary to say, however, that much more evidence in this direction is needed. In view of the ease with which Sun-spot spectra may be observed with instruments of moderate size, our knowledge of the widened lines is surprisingly meager. Much systematic work on spot spectra must therefore be done before the data desired for a thorough study of the question will become available. If the lines widened in Sun-spots are to be regarded as characteristic of fourth-type stars, they seem to be equally characteristic of stars of the third type. This fact will permit a rigorous test of the identification of the lines to be made, since several stars bright enough to be photographed with very high dispersion occur among the stars of the third type. It is hoped that the investigations now in progress at the Yerkes Observatory on the spectra of Sun-spots, and those which may soon be undertaken here with a coelostat reflecting telescope and concave grating spectrograph on the spectra of a few of the brightest third-type stars, may permit a final decision to be reached regarding the presence of the

⁵³ It is hoped that experiments in progress at the Yerkes Observatory may permit the effects of temperature to be distinguished from those of density.

widened lines in the spectra of red stars. Sun-spots are presumably to be associated with a late rather than an early stage of solar development, and there is reason to suppose that they may grow more numerous as the Sun continues to cool. On a priori grounds, therefore, they might well be expected to be prominent features of red stars. The strong tendency of these stars to variability, which is even more pronounced in the case of fourth-type than in that of third-type stars, certainly does not lessen the probability that numerous Sun-spots are present.

The bright lines, of whose existence in fourth-type spectra we have given ample evidence, have offered difficulties of identification which we have hitherto been unable to overcome. It is a curious fact that the bright lines of the Wolf-Rayet stars, most of which have also proved impossible to identify, seem to agree in some cases with the bright lines of fourth-type spectra. From the detailed comparisons which are given elsewhere (p. 125) it will be seen that the evidence is by no means conclusive. The positions of the lines are not yet known with sufficient accuracy, and in any event the number of apparent coincidences is too small to have much meaning. In the course of this comparison, however, we could not fail to take into consideration the fact that the Wolf-Rayet and fourth-type stars possess in common a peculiarity which is shared by few other objects in the heavens, namely, the presence in their spectra of both bright and dark hydrogen lines. ⁵⁵

In a study of the spark discharge in liquids and in compressed gases⁵⁶ it has been found that as the conditions become more and more favorable to absorption—for example, as the pressure of the gas is increased—the reversals, which appear first in the ultra-violet, advance gradually into the visible spectrum. This dependence of selective absorption upon wave-length harmonizes completely with the earlier experiments of Liveing and Dewar, who obtained similar results with the electric furnace.⁵⁷

In the Sun, although the entire series of hydrogen lines has been observed in the chromosphere, only the less refrangible members appear among the Fraunhofer lines. In this case we have a partial inversion of the phenomenon observed in Wolf-Rayet and fourth-type stars: the more refrangible members of the series are absent, while dark lines are present at the less refrangible end.

Kayser has proposed an explanation of such phenomena as a direct consequence of Kirchhoff's law. If the coefficient of absorption were identical for all spectral lines, the reversals should begin in the ultra-violet and advance toward the red. In the series lines of hydrogen, as represented in the Sun, the coefficient of absorption decreases so rapidly with the wave-length that the strong lines in the visible spectrum reverse first. The reversals should be strongest near the wave-length of maximum energy for the absorbing body. As compared with the Sun, the Wolf-Rayet stars should therefore show a shift of the maximum of intensity in the hydrogen spectrum toward the violet.

It is fortunately possible to test this assumption, as Campbell has shown that the Wolf-Rayet star DM. $+30^{\circ}3639$ has an extensive hydrogen atmosphere, the bright lines of which can be observed directly. Campbell, indeed, found that in this case Ha is very faint, while $H\gamma$ is brighter and $II\beta$ is very bright indeed.

Langenbach has recently shown that the maximum of intensity in a line spectrum shifts toward the violet with increasing temperature, just as it does in the case of a continuous spectrum from a solid body. Thus with hydrogen an increase of current strength through the primary of the induction coil increased the intensity of the Ha, $H\beta$, and $H\gamma$ lines, but the increase was most rapid for the more refrangible of these lines. Similar results were found for lithium and helium.⁵⁹

Langenbach concludes that his experiments indicate a very high temperature for the nebule, where a similar shift of the maximum has been observed. Such a conclusion might perhaps apply to the Wolf-Rayet stars, but it would be out of harmony with what we know regarding stars of

 $^{^{45}\}mathrm{The}$ bearing of this fact on the classification of stellar spectra is discussed on p. 134.

⁵⁶George E. Hale," Note on the Spark Spectrum of Iron in Liquids and in Air at High Pressures," Astrophysical Journal, Vol. XV (1902), p. 432; George E. Hale, "Selective Absorption as a Function of Wave-Length," ibid., p. 227; George E. Hale and N. A.

KENT, "Second Note on the Spark Spectrum of Iron in Liquids and Compressed Gases," ibid., Vol. XVII (1903), p. 154.

³⁷ Proc. Cambridge Phil. Soc., Vol. 1V (1882), p. 256.

⁴⁸ Astrophysical Journal, Vol. XIV (1901), p. 313.

 $^{^{59}\,}Annalen\,der\,Physik$ (4), Vol. X, p. 789.

the fourth type. Pickering states that in a photograph of the spectrum of a meteor $H\delta$ is the most intense of the hydrogen lines. But would it be safe to conclude that the hydrogen in the meteor was hotter than the hydrogen in the Sun? In such a star as γ Cassiopeiac, where the temperature may be considerably higher than in the Sun, $H\beta$ is more intense than any of the other lines. But in certain variable stars of long period, which are generally supposed to be cooler than the Sun. $H\gamma$ is the strongest hydrogen line. H

In the case of the nebulæ, meteor, and third-type variables, Thomson's observation of the spectrum of hydrogen in a vacuum tube, separated into two parts by an aluminium partition, may perhaps be significant. He found that Ha was brighter than $H\beta$ at the positive pole, while at the negative pole the relative intensities of the two lines were reversed. Although Kirchhoff's law could not be supposed to hold for a gas radiating in this way, a shift of the maximum thus produced might perhaps cause the effects observed in the case of the fourth-type stars. We believe that since much evidence favors the view that the fourth-type stars are cooler instead of hotter than the Sun, a further study of the whole subject must be made.

CLASSIFICATION AND EVOLUTION OF FOURTH-TYPE STARS

Although we have investigated in detail the spectra of but eight stars, our collection of photographs comprises the spectra of the following stars of the fourth type: 7 Schjellerup, DM.+57° 702, 27a Schj., 41 Schj., 51 Schj., 72 Schj., 74 Schj., 78 Schj., 115 Schj., 318 Birmingham, 132 Schj., 152 Schj., 155b Schj., 458 Birm., 219 Schj., 229 Schj., 509 Birm., 521 Birm., 541 Birm., 238 Schj., 249a Schj., 251 Schj., 280 Schj., 19 Piscium. All of these spectra have been used in a study of the classification and evolution of fourth-type stars. This inquiry divides naturally into two parts: (1) the development of these stars, as shown by changes in their spectra; (2) their relationship to other stars and their place in a general scheme of classification.

The criteria which we employed in arranging the stars in a series were the changes of the intensity of the carbon bands and of various groups of lines. The several series obtained independently by means of the different criteria in general agreed very well, though the peculiarities of certain lines sometimes changed the order somewhat in a few cases. The average series, based upon all the criteria, is illustrated in Plates VIII and IX. From these plates it will be seen that the spectra naturally fall into three divisions: (1), represented in the plates by the spectrum of 280 Schj., includes also 541 Birm.; (2), represented in the plates by 19 Pisc., 318 Birm., 74 Schj., 78 Schj., 132 Schj., and 115 Schj., includes also 7 Schj., 229 Schj., 249a Schj., 51 Schj., 219 Schj., 251 Schj., 238 Schj., 72 Schj., and 458 Birm.; (3), represented in the plates by 152 Schj. and 155b Schj., includes also 41 Schi, 521 Birm., 509 Birm., 27a Schi, and DM.+57° 702. It will be seen that the second division contains a large proportion of the stars. Within this division the order of arrangement is somewhat uncertain, as the differences among the spectra are so inconspicuous that they are frequently offset by such effects as may arise from differences of slit-width, exposure time, development, etc. The approximate order in this division is indicated by the foregoing enumeration of the stars which comprise it. Many of these are so nearly alike that their relative places in the series cannot be certainly determined from available data.63

toward the violet and appears like a fluting, is found only in 152 *Schj.* No high dispersion photographs were made for other stars of the third division.

⁶⁰ Harvard College Observatory Circular, No. 20.

⁶¹ Proc. Roy. Soc., Vol. LVIII (1895), p. 255.

⁶² We are informed by Professor Schuster that he has worked out a new explanation of the simultaneous presence of bright and dark lines in stellar spectra, which will soon be published. It is hoped that the solar work now in progress at the Yerkes Observatory may also throw some light on this question. We reserve a detailed discussion until certain experiments are completed.

⁶³ To indicate the character of some of the changes which occur in passing through the series of stars, the following lines are noted as peculiar to 152 Schj. and other stars in the third division:

^{1.} Blue region. - The strong dark line λ 4751.6, which shades off

^{2.} Yellow-green region:

Bright line at λ5236.2, intensity 10; this line has intensity 6 in 115 Schj., and is present, though less conspicuous, in the other stars.

Bright line at λ 5508.3, intensity 5-6; this line has intensity 2-3 in 74, 78, and 132 Schj.

Bright line at λ 5591.4, intensity 10. The most conspicuous hright line in the spectrum. It is near the brightest part of a carbon fluting; the other stars show a group of bright lines here whose combined intensity is very much less than that of the line in 152 Schj.

According to Dunér, the relative intensities of the carbon bands are not the same in all of these stars: in 19 Piscium the yellow band is much fainter than the other principal bands, while in 152 Schjellerup it is as strong as the blue band and nearly as strong as the green band. As our spectra were photographed in sections, we are not in a position to discuss this question, and we shall not undertake to do so. We can only say that our plates show nothing capricious about the behavior of the bands, as the stars occupy practically the same order in the series whether they be arranged with reference to the intensity of the blue or that of the yellow band. It therefore might appear that the absorption of carbon, as represented by either the blue or the yellow bands, increases gradually with the star's development. As Dunér's method of observation was better adapted than our own to show differences in the relative intensities of the bands, we would nevertheless attach greater weight to his opinion on this subject.

It will be noticed that the order of development in our series corresponds exactly with that given by Dunér in his memoir. In fact, so far as our results are comparable with those of Dunér, they generally tend to confirm them in all respects.

With few exceptions, spectroscopists have agreed that on account of the close resemblance between the two great classes of red stars, their spectra should be classed together. This was the view of Vogel when he prepared his system of classification and provided in the two subdivisions of his third class for the stars of Seechi's third and fourth types. Dunér, to whose valuable memoir we have had so many occasions to refer, considered that his observations went to confirm Vogel's classification, which he adopted without modification. Pechüle, on the contrary, held that the stars of Secchi's third and fourth types could not be considered as co-ordinate branches starting from the Sun, since no star was known to occupy a position intermediate between that of a fully developed fourth-type star and the Sun. As Pechüle's memoir is not accessible to us, we quote the following extract as given by Lockyer in *The Meteoritic Hypothesis* (p. 346):

M. Vogel a proposé une classification suivant les diverses phases de refroidissement indiquées par les spectres, dans laquelle il fait des types III et IV de Secchi deux subdivisions d'une même classe, III et III b. Mais je trouve certaines difficultés négatives contre cette classification relativement au rôle qu'y joue le IIIb. En effet, il est admis que le IV type de Secchi se distingue nettement du III type, non seulement par la position et la quantité des zones obscures, mais aussi par le fait très-remarquable, que les principales de ces zones sont bien définies et brusquement interrompues du côté du violet dans le III type, du côté du rouge dans le IV. Or, si le IV type doit représenter une des phases de refroidissement, par lesquelles passent les étoiles, on peut faire deux hypothèses. La première est que le spectre du IV type soit co-ordonné au spectre du III type, de manière qu'il y ait des étoiles, qui passent de la phase représentée par le II type, à la phase représentée par le III type, et d'autres, qui passent directement du II type au IV. Mais cette hypothèse est inadmissible. Car on connaît des spectres intermédiaires entre le I et le II type, et entre le II et III; mais on ne connaît pas, à ce que je sache, des spectres du II type tendant au IV. Reste donc l'hypothèse, que la phase de refroidissement, représentée par le spectre du IV type, soit postérieure à la phase représentée par le III type, de manière que les spectres des étoiles passent du III au IV type. Si ce passage se fait peu à peu, il devrait y avoir des spectres intermédiaires entre le III et le IV type; mais quoique Secchi par example le 17 janvier 1868, ait déterminé le spectre de l'étoile 273 Schjell,, comme semblant intermédiaire entre le III et le IV type, il l'a plus tard reconnu du IV type, et l'existence des spectres de III-IV type n'est nullement prouvée. On pourrait objecter que les étoiles du IV type sont peu nombreuses et en général si petites que leurs spectres sont difficiles à voir, et que par conséquent il pourrait y avoir parmi ces spectres quelquesuns, qui se rapprochassent du III type. Mais je réponds à cette remarque, que les spectres du III-IV type, indiquant une phase moins refroidie, devraient au contraire en général appartenir à des étoiles plus grandes que celles ayant des spectres du IV type. Si on veut supposer que le passage du III au IV type se fasse subitement, ou par une catastrophe, pendant laquelle apparaissent des lignes brillantes, cette supposition même constituerait une différence physique bien plus distincte entre le III et le IV type qu'entre le II et le III; et le IV type représenterait une phase bien distincte, la dernière peut-être ayant l'extinction totale Le rôle physique du IV type est donc encore si mystérieux, que j'ai cru pouvoir encore me conformer à l'exemple de d'Arrest, en suivant la classification formelle de Secchi.

Pechüle's objections were well answered by Dunér, who showed that in view of the comparatively small number of stars known to have spectra of Secchi's fourth type, it is not at all surprising that objects representing the transition from the solar stage have not been observed. As Dunér very justly remarks, it would be difficult to recognize stars in this transition stage without a much more thorough spectroscopic survey than has yet been made. Although 280 Schjellerup, which represents the earliest state of a fourth-type star that we have observed, contains many features characteristic of the fourth type, these might easily be overlooked in photographs taken with very low dispersion. As the spectra reproduced in Plates VIII and IX show, the carbon absorption bands in this star are relatively very feeble. In the yellow, the band is reduced to a single pair of heavy lines. Stars earlier in point of development would of course show even less marked evidence of carbon absorption, and would probably be classed as solar stars. 541 Birmingham (DM. +38°3957), the star considered by Dunér to represent better than any other the transition stage, is shown by our photographs to have a spectrum practically identical with that of 280 Schjellerup (though we have no evidence as to the presence of the bright $H\beta$ line). It may confidently be expected that when spectra of the solar type are better known, objects intermediate in development between 280 Schjellerup and the Sun will be discovered. This argument of Dunér's, which we can only confirm, disposes of Pechüle's principal objection to Vogel's classification. We shall have occasion farther on to refer more particularly to the close resemblance between the line spectra of the third and fourth types, as well as to other details which lead us to adopt the views of Vogel and Dunér.

According to the classification of stellar spectra developed by Lockyer in conjunction with his meteoritic hypothesis, stars of Secchi's third and fourth types are far removed from each other in point of development. The third type represents a swarm of meteorites in the first stage of transition from the nebulous to the stellar condition, while the fourth type represents the last stage in stellar life, immediately following the condition of the Sun.

So far as the fourth-type stars are concerned, it therefore appears that Lockyer adopts the view held by other investigators, and confirmed by the present research, namely, that they represent the last stage of stellar development. But we do not think that he has given sufficient reasons for separating fourth-type stars from those of the third type. In the first place, we are unable to understand how the spectra of third-type stars can be considered to resemble in any way the spectra of nebulæ, or to be evolved from nebular spectra. So far as we are aware, no star showing a spectrum intermediate in character between that of a nebula and the spectrum of a third-type star has hitherto been detected. This seems to us a most serious objection to Lockyer's classification.

Furthermore, the results of the present investigation offer reasons for believing that the two great classes of red stars are closely related to each other, and that they are to be regarded as co-ordinate branches, each of which can be traced back to the Sun. The dark lines of the two types agree remarkably well (Plates X and XI). There is every reason to believe that if the bands were absent from the two types of spectra the line spectra would resemble each other very closely indeed—much more closely than either would resemble the spectrum of the Sun (Fig. 2, Plate XI). The chief distinction between the two types is thus confined to the bands and flutings, and even here we have a close resemblance in the case of cyanogen. The great strength of the λ 4227 calcium line, and the probable presence as conspicuous features in both types of the lines greatly widened in Sun-spots, certainly tend to emphasize the relationship of the two classes of red stars. It would seem very important to secure further evidence regarding the question of widened lines, especially with reference to their exact identification in third-type spectra. If Sun-spots exist on these stars, they can hardly be regarded as slightly condensed meteor swarms, as required by the meteoritic hypothesis.

We may sum up the points of resemblance of third- and fourth-type stars as follows:

The stars resemble each other: (1) in their red color; (2) their remarkable tendency to variability; (3) the very close resemblance of the dark lines in their spectra; (4) the possibility that

the spectra of both may contain the lines which are widened in Sun-spots; (5) the similar physical conditions indicated by the character of their spectra; (6) the presence of bright lines in their spectra; (7) the presence in their spectra of dark flutings, of which the cyanogen flutings are common to both types; (8) the connection between both types of spectra and the spectra of solar stars.

Some of these points of resemblance are suggested rather than demonstrated by the results of the present research, and much work must be done in the future on the spectra of both these classes of stars. But we believe that the existing evidence is decidedly favorable to the views of Vogel and Dunér, and that stars of Secchi's third and fourth types should therefore be classed as co-ordinate branches, having their origin in solar stars.

Apart from the evidence afforded by the similarity of stars of the third and fourth types, certain other considerations bearing on the general question of classification should be presented here. It has already been shown that the Wolf-Rayet and fourth-type stars have three points in common: (1) their tendency to cluster in the Milky Way; (2) the presence in their spectra of bright lines, a few of which may be common to both types; (3) the presence in their spectra of both bright and dark hydrogen lines. If any organic relationship between these two classes of stars could be established, it would conflict seriously with current ideas regarding stellar evolution. The Wolf-Rayet stars, for many excellent reasons, are generally believed to be related to the Orion stars, and to precede stars like Sirius in point of development. We consider that the results of the present investigation do not oppose this view, but rather tend to strengthen it. In the first place, we are not prepared to say that the tendency of certain classes of stars to cluster in or near the Milky Way necessarily indicates any organic relationship between such objects. If it were assumed, for example, that the fourth-type stars are at immense distances from the Earth, 64 and that an absorbing medium, most dense near the poles of the Milky Way, exists in space, an apparent clustering of these stars toward the Milky Way would result. It would be impossible, of course, to account in this way for the fact that all of the Wolf-Rayet stars occur in the Milky Way (or in the Magellanic Clouds), but it does seem to follow that such a distribution of the fourth-type stars as we actually observe need not indicate any relationship with Wolf-Rayet stars. 65 Bright lines have been found in so many different types of spectra that they cannot be regarded as a safe basis for classification, and they are not employed for this purpose. Finally, as we have already remarked (p. 131), the variations in the relative intensities of the hydrogen lines in nebulæ, Wolf-Rayet stars, third-type variables, and meteors are such as to permit no final conclusion to be drawn at present as to the physical condition implied by these phenomena. We therefore see no reason to believe that any important relationship connects the Wolf-Rayet and the fourth-type stars, though the bright lines and the physical condition of hydrogen in both should be made the subjects of further investigation.

The variations of the relative intensities of certain lines of titanium have an interesting bearing on the general classification of stellar spectra. The line λ 4534.14, ascribed by Rowland to Ti-Co, is first seen in β and γ Orionis as an extremely faint and diffuse darkening on the continuous spectrum. The line grows steadily stronger in the following stars: ξ Tauri, γ Corvi (Vogel's Ib), ϵ Ursae Majoris, a Cygni, a Canis Majoris (Vogel's Ia2)—and reaches maximum intensity in a Persei, where it is narrow and sharp, and in ϵ Aurigae, where it is broad. The line then decreases in intensity through the solar stars γ Piscium and a Boötis, and in the third-type stars a Orionis and a Tauri, where it is the faintest line of the titanium group. In the fourth-type stars this line is the only one of the titanium group which is absent. In the spark spectrum of titanium, the line varies greatly

⁶⁴ Professor Boss, who has very kindly looked up for us in his records the proper motions of a large number of fourth-type stars, finds that for seventeen stars the average proper motion is only about 0.01, while in other cases, which are not so well determined, the proper motion is apparently in no instance greater than 0.10, and for more than half the stars it is less than 0.05.

⁶⁵ The assumption that stars may differ in chemical composition, and that this may be related in some way to their distribution in space, must not be left out of account in an exhaustive discussion of stellar classification; but it need not be considered here.

with change of self-induction in the secondary circuit, becoming fainter with increasing self-induction. It is stronger in the spark than in the arc.

The three lines of the group λ 4538.8 – 4536.3, on the other hand, are absent or very faint in all of the stars preceding γ *Piscium* in the above list. They then appear as strong lines, and they are strongly represented in solar, third-type, and fourth-type stars. The changes of these lines are illustrated in Fig. 3, Plate XI. All of the photographs, except that of the fourth-type star 132 *Schjellerup*, were made with the Bruce spectrograph by Messrs. Frost and Adams, to whom we are indebted for some of the information given here.

SUMMARY OF RESULTS AND CONCLUSIONS

- 1. The spectra of stars of Secchi's fourth type contain a large number of bright and dark lines, in addition to the violet flutings of cyanogen and the flutings of the Swan spectrum.
 - 2. The approximate radial velocities of eight stars range from +5 km. to -28 km.
 - 3. Measures of the wave-lengths of 307 dark lines (average probable error of the mean, 0.07 t.m.) indicate that the following substances are represented: carbon (as cyanogen and in the elementary or combined state corresponding to the Swan spectrum), hydrogen, vanadium, calcium, magnesium, sodium, iron, chromium, titanium, nickel, manganese, and possibly two or three other substances.
 - 4. The carbon and metallic vapors are very dense, and lie immediately above the photosphere.
- 5. Above these dense vapors of the reversing layer rise other vapors or gases, represented in the spectra by bright lines. The conditions are thus similar to those that exist on the Sun.
- 6. The bright lines, of which about 200 are present, seem to represent unknown gases, since none of them could be identified with certainty. A few of these lines may perhaps correspond with bright lines in the spectra of Wolf-Rayet stars.
- 7. The great strength of such lines as $\lambda 4227$ of calcium, and the fact that are and flame lines are strong, while spark lines are less prominent or missing, suggests, though it does not prove, that the temperature of the reversing layer may be lower than in the case of the Sun.
- 8. The fact that many lines widened in Sun-spots are represented by strong dark lines suggests that spots similar to those on the Sun may be numerous on fourth-type stars.
- 9. In the spectrum of 19 Piscium $H\gamma$ and $H\delta$ are present as dark lines, while $H\beta$ is absent. In the spectrum of 280 Schjellerup and in some of the other stars $H\beta$ appears as a bright line. Fourth-type spectra thus resemble spectra of the Wolf-Rayet type in showing the more refrangible hydrogen lines dark and the less refrangible ones bright or absent.
- 10. The bright $II\beta$ line in the spectrum of 280 Schjellerup undergoes variations of intensity.
- 11. About 20 per cent, of the fourth-type stars are variable. The tendency to variability, therefore, seems to be even greater than in the case of stars of Secchi's third type.
 - 12. The condensation of fourth-type stars in and near the Milky Way is very marked.
- 13. Stars of the third and fourth types resemble each other in color, tendency to variability, spectra, possible presence of Sun-spots, physical condition, and probable relationship to solar stars. They should therefore be classed together, as co-ordinate branches leading back to stars like the Sun.
- 14. Variations in the relative intensities of certain titanium lines indicate that fourth-type stars are probably very widely separated from Wolf-Rayet stars in point of development.
 - 15. Fourth-type stars probably develop from stars like the Sun through loss of heat by radiation.

THREE-PRISM SPECTROGRAPH ATTACHED TO FORTY-INCH REFRACTOR

Fig. 1. Spectra of Fourth-Type Stars (Vogel)

Fig. 2. Spectra of Fourth-Type Stars (Dunér)

Fig. 3. Bright Lines in the Spectrum of 132 Schjellerup

Fig. 1. Red End of the Spectrum of 152 Schiellerip

Fig. 2. Bright Lines in the Spectrum of 152 Schjellerup

Fig. 3. Bright Lines in the Spectrum of 152 Schiellerup

Fig. 1. Blue Cyanogen and "Carbon" Flutings

Fig. 2. Green "Carbon" Fluting

Fig. 3. Yellow "Carbon" Fluting

SPECTRUM OF CARBON ARC COMPARED WITH SPECTRA OF THIRD AND FOURTH TYPES

SPECTRA OF FOURTH-TYPE STARS (BLUE REGION)

SPECTRA OF FOURTH-TYPE STARS (YELLOW AND GREEN REGION)

Fig. 1. Blue Region

Fig. 2. Green and Yellow Region COMPARISON OF SPECTRA OF SECOND, THIRD, AND FOURTH TYPES

Fig. 1. Spectra of Second and Fourth Types (Blue Region)

Fig. 2. Spectra of Second, Third, and Fourth Types (Violet Region)

Fig. 3. Titanium Lines in Stellar Spectra

ASTRONOMICAL PHOTOGRAPHY WITH THE FORTY-INCH REFRACTOR AND THE TWO-FOOT REFLECTOR OF THE YERKES OBSERVATORY

G. W. RITCHEY

I. PHOTOGRAPHY WITH THE FORTY-INCH REFRACTOR

In the original design of the forty-inch refractor of the Yerkes Observatory no provision of any kind was made for direct photography. The objective is a visual one; there is no photographic corrector such as was provided for the great Lick refractor; and there is no powerful auxiliary telescope for guiding, such as are used in the cases of the "standard" photographic telescopes and of the very large photographic refractors at Potsdam and Meudon.

By the use of a method perfected by the writer in 1900, and described in the Astrophysical Journal for December of that year, the forty-inch visual refractor was made available for direct photography. The photographic attachment is simple and inexpensive; the entire apparatus cost less than \$100. A large number of photographs of star-clusters and of the Moon have been obtained, which are valuable on account of their great scale and fine definition.

The results described in the above-mentioned article were obtained with a small photographic attachment which allowed a field only three inches (about fourteen minutes of arc) square to be photographed at one time. A similar, but larger and more perfect, attachment, taking 8×10 -inch plates, has since been constructed from my designs, for use with the great refractor. This allows a field of approximately 36×45 minutes of arc to be photographed at one time, and of course includes the entire disk of the Moon. Many of the photographs described in the present article have been made with the larger apparatus.

The photographic attachment consists of a double-slide plate-carrier for guiding, on which is supported the plate-holder containing a yellow color-screen or ray-filter very nearly in contact with a yellow-sensitive (Cramer instantaneous isochromatic) plate.

The yellow screen freely transmits to the sensitive plate the sharp and intense yellow or visual image produced by the visual objective, and effectually excludes from the plate the blue and other wave-lengths of light which are not included in the visual image, and which would entirely destroy the sharpness of the photographs. Two very fine 8×10-inch yellow screens, one of slightly stronger tint than the other, were obtained after some experimenting. Each screen consists of two thin plates of glass, ground and polished approximately flat; one of these is coated with a film of collodion of a delicate yellow tint. After the collodion film is dry it is flowed with Canada balsam, and the second thin plate, which serves as a cover-glass, is put on. The two plates are bound together with adhesive tape. The screens are brilliantly transparent. When in use one of the screens is placed in the plateholder directly in front of the yellow-sensitive plate. Screen and plate are separated only by the thickness of the binding tape around the edges of the former.

The double-slide plate-carrier, a device originally suggested by Dr. Common and described by him in Monthly Notices, Vol. XLIX, p. 297, permits very perfect guiding or following to be done, without the necessity of an auxiliary or guiding telescope. The large photographic attachment of the forty-inch refractor is illustrated in Plate XII. When in use, the apparatus is connected by four bolts to the large and massive ring, well shown in the illustration, to which all of the various attachments, spectroscopes, etc., with the exception of the micrometer, are in turn connected. This large ring can be racked in and out, and firmly clamped in any position, thus serving for focusing the various attachments. When the four connecting bolts are loosened, the entire attachment can be rotated in positionangle. Such rotation of the double-slide plate-carrier alone can be accomplished by means of the two

smaller rings (one of which can be rotated on the other) which directly support the double-slide. This rotation is convenient, and often necessary, in finding a suitable guiding star. The double-slide arrangement one slide being at right angles to the other, is shown fairly well in the illustration. The two screws with large milled heads, by which the slides are moved in guiding, are well shown, one to the right of, the other below, the rectangular frame or box which carries the 8×10-inch plate-holder. The plate-holder is not shown.

To the upper side of the rectangular box is connected the small eyepiece by means of which the guiding star at the edge of the field being photographed is watched. A small diagonal prism, which can be seen inside of the rectangular box, overlangs the edge of the photographic plate, receives the light of the guiding star, and reflects it at right angles into the eyepiece. By this arrangement it is almost always possible to use a guiding star whose image is less than four inches distant from the center of the field being photographed. In the eyepiece are two fine cross-lines of spider-web, which are illuminated by faint red light from a very small incandescent lamp, the tubular socket for which is attached to the side of the eyepiece tube. To assist in finding a suitable guiding star, the eyepiece and its accessories are mounted on a slide which can be moved to any desired position on the upper side of the rectangular box, and firmly clamped there. The star which is to be used in guiding is brought to the intersection of the cross-lines in the eyepiece, and is kept there throughout the exposure of the sensitive plate, sometimes lasting four or five hours. The observer sits with his eye at the guiding eyepiece and his fingers on the two screws which move the slides, and thus he introduces any minute corrections of position which he sees are necessary.

The guiding eyepiece gives a magnifying power of about one thousand diameters. It is very seldom, indeed, that a star-image appears quiet in a very large telescope with such a magnifying power as this. Minute irregularities in the movement of the telescope in right ascension are almost always present, and render necessary continual watching and guiding. But larger and more troublesome are the irregular movements of the image which are due to the disturbed condition of the atmosphere. The effects of this lack of tranquillity and homogeneity of the atmosphere are of many kinds. Sometimes the image of the guiding star appears nearly quiet, but is very large and nebulous. At other times the star-image is a small brilliant point, but is dancing about so rapidly that many hundreds of corrections per minute would be necessary in order to follow it. After months of practice with the guiding apparatus the observer is able to introduce between one hundred and two hundred corrections per minute, when necessary. The work becomes almost automatic, but is extremely trying to the eyes when the tremors of the guiding star are rapid. The corrections can be made with great accuracy and almost instantaneously with the double-slide plate-carrier — with an effectiveness incomparably superior to that which can be attained by any other means now known.

The question arises whether the irregular movements of the images of the objects being photographed correspond exactly with those of the image of the guiding star. It would not be difficult to devise an apparatus by means of which the images of two or more stars in different parts of the field could be brought into apparent superposition, and thus this question could be answered. This has not been done, but the sharpness of the photographs obtained when guiding is done with great care is so superior to that resulting from less careful guiding that the conclusion is warranted that when the image of the guiding star is kept at the intersection of the cross-wires, the images of the objects being photographed are kept immovable on the photographic plate.

I have described the double-slide plate-carrier and its use somewhat in detail, because of the very great importance of this apparatus in long-exposure photography, especially with large telescopes. It has been asserted by prominent astronomers that such difficult objects as the dense star-clusters and the planets could never be satisfactority photographed, because the very powerful telescopes which are necessary to show these objects satisfactorily are so large and heavy that they cannot be moved with the delicacy and quickness necessary to compensate for the constant irregular tremors always visible

with such great telescopes. Experience with the forty-inch refractor, with its enormous weight, the largest instrument thus far successfully used in direct photography, shows that the difficulty is completely solved by the use of the double-slide plate-earrier, in which the mass to be moved in making the necessary corrections is two or three pounds instead of ten or twenty tons. It is safe to assert that for the largest telescopes which could now be constructed, refractors or reflectors, the problem of efficient guiding during long exposures in direct photography is satisfactorily solved.

The photographs of star-clusters and the Moon obtained with the forty-inch refractor and its photographic attachment are certainly not inferior in separation or resolution to those obtained with the largest and best telescopes constructed especially for photography. In the best photographs of star-clusters obtained with the former instrument double stars of 1" distance are distinctly separated and measurable; and in the best lunar photographs craters one second of arc in diameter (corresponding to a little more than one mile) are shown as distinct rings. These results are due in part to the great size and focal length of the telescope, and in part to the effectiveness of the yellow screen in transmitting to the sensitive plate only those wave-lengths of light for which the color-curve of the objective is very nearly flat.

Even more surprising is the speed of the color-screen method. Although the ratio of focal length to aperture of the telescope is nearly as 19 to 1, fully timed photographs of the Moon are obtained with exposures varying from one-fourth of a second to one second. Stars which are at the visual limit of the instrument (approximately seventeenth magnitude) are photographed with two hours' exposure when atmospheric conditions are good, and with the most rapid yellow-sensitive plates. With five hours' exposure stars fully a magnitude fainter are photographed. This speed is possible, however, only after the observer has become expert in the use of the guiding apparatus, so that he introduces the necessary corrections instantly and almost automatically.

While this speed is greatly inferior to that of a well-made modern reflecting telescope with silvered glass mirrors, it is probable that the forty-inch visual refractor with the color-screen and the best yellow-sensitive plates now obtainable is nearly, if not quite, as rapid in photographing stars and the Moon as a forty-inch photographic refractor (one with its objective corrected for the blue, or so-called photographic, rays) would be. This opinion is based, in part, upon a comparison of photographs obtained with the largest photographic refractors and those obtained with the forty-inch visual instrument. The yellow-screen method utilizes the rays of light which are most freely transmitted by a large objective; it is a well-known fact that while only a small percentage of the yellow rays are lost by transmission through a large and necessarily thick objective, a very large percentage of the blue rays are thus lost; this is undoubtedly the reason why a yellow screen of delicate tint is sufficient to exclude the blue light from the photographic plate when this process is used with the forty-inch refractor.

The color-screen method and the double-slide plate-carrier are of course applicable for photography with all visual refractors, large or small, which are provided with clock-work for driving. By their use fainter stars can readily be photographed with any visual refractor than can be seen directly with the same instrument. In the work with the forty-inch refractor this is particularly noticeable in such cases as those of the fainter stars in the globular star-clusters. Stars which can be detected visually only with difficulty, and with fine atmospheric conditions, appear strong and distinct on the negatives obtained with moderately good atmospheric conditions.

In photographing the Moon at the focus of the forty-inch refractor (without amplification or enlargement of the image) the exposures required are so short that the double-slide plate-carrier is dispensed with, and a simpler apparatus is used to support the plate-holder. This apparatus is so arranged that an exposing shutter mounted in suitable guides can be moved across by hand, in front of the sensitive plate, in making the exposures. Diaphragms with apertures of various shapes, depending upon the phase of the Moon, are attached to the exposing shutter, and serve to equalize

the exposure time, the lunar terminator requiring a much longer exposure than that required for the bright limb. In making the photographs of the Moon, the instant of exposure is not chosen at random. An eye-piece with fine cross-wires is arranged in a tube with a diagonal prism at one end. This tube rests in a V-bearing, so that it can be instantly withdrawn without danger of jarring the telescope. The observer watches the lunar image by means of this eyepiece until an instant occurs when the definition is good and the image appears quiet with reference to the cross-wires; he then instantly withdraws the eyepiece tube (since this would overhang the photographic plate) and at the same time gives the signal to the assistant to move the exposing shutter across. I am indebted to Mr. F. L. Sullivan for able assistance in this and all other direct photographic work with the great refractor.

Plates XIII to XXI, which accompany this article, are from negatives obtained with the forty-inch refractor and its photographic attachment. The photograph of the lunar crater *Theophilus* and its surroundings (Plate XIII) is one of the best of the series, for it was made when atmospheric conditions were exceptionally fine, on the night of October 12, 1900. Much smaller details of the Moon's surface are shown here than have been photographed before. The exposure required in this case was less than one-half of a second. *Theophilus*, with its diameter of sixty-four miles, with its terraced wall or rampart rising three miles in vertical height above the crater-floor, with its great group of central mountains, and the enormous ridges and ravines of its outer slopes, is in many respects the most magnificent example of a lunar crater. The intricate system of radiating ridges of its outer slopes can be traced in the photograph for nearly one hundred miles from the crest of the rampart. Innumerable details are here reproduced with a minuteness and fidelity which are possible only by means of photography.

The illustration of Mare Serenitatis and Mare Tranquilitatis (Plate XIV) was obtained on the night of August 3, 1901, with an exposure of one second. The enlargement in this case is not nearly great enough to show the finer details visible in the negative, but was decided upon in order to include both plains on one plate. The surfaces of these plains are crossed by numerous ridges or wrinkles, large and small, which are beautifully shown in the original negatives, and on glass positives made from them, but which are difficult to reproduce, on account of the lack of sufficient contrast. The great serpentine ridge in Mare Serenitatis and the remarkable system of radiating ridges on Mare Tranquilitatis are among the most interesting features of the Moon's surface.

It was a fortunate coincidence, in the case of *Theophilus*, that exceptionally fine atmospheric conditions occurred when the crater was in the best position with reference to the terminator. No opportunity has occurred for photographing *Copernicus* under extremely fine conditions, although on account of the prominence of this superb object such an opportunity has been earefully watched for. The photograph of *Copernicus* shown in Plate XV is from a negative obtained on the night of November 20, 1901, with fairly good atmospheric conditions, and with an exposure of one-half of a second. While *Copernicus* is neither so large nor so deep as *Theophilus*, the system of radiating ridges and deep gullies constituting the outer slopes of the former is probably the most rugged and magnificent to be found on the Moon. The well-known rows of small craters at the west of *Copernicus*, as well as the much smaller rows to the south and northeast of the crater, are well shown in the photograph.

The illustration of Marc Nubium and Bullialdus (Plate XVI) is from the same large negative as that of Copernicus. The photograph shows well the remarkable details of the surface of this great plain—details strikingly different in character from those of Marc Screnitalis and Marc Tranquilitatis. The region of Bullialdus is in such a condition of illumination that it is particularly well seen. In the original negative the details of the outer slopes of Bullialdus are shown with remarkable sharpness; some idea of this can be gained from the half-tone illustration.

The photograph of *Clavius* and the surrounding region (Plate XVII) is also from the same negative as that of *Copernicus*. At the time when this photograph was taken the conditions of libration

and of illumination were unusually favorable for this region of the Moon's surface. Clarius, with its numerous included craters and other details; Longomontanus and Wilhelm, in which the details of the ramparts and of the crater-floors are unusually well shown; the extremely rough country north of Wilhelm; and the "metropolitan" crater Tycho conspicuous for its enormous depth, are among the most remarkable objects of this region.

The photograph of the great system of bright rays about *Tycho* (Plate XVIII) is from a negative obtained March 31, 1901. While the negative is not so extremely sharp as some others, a much greater enlargement than was possible here would be necessary to show well the astonishing richness of detail in this system of bright rays which is present in the original negative. The exposure time in this case was one-fourth of a second.

The half-tone process of reproduction is especially disappointing in the case of the star-clusters. Not only are hundreds of the fainter stars entirely lost, but the groups of bright stars which are sharply separated in the original negatives appear only as white patches in the half-tone illustrations. The writer expects to include, with the copies of this paper which are sent to observatories and individuals especially interested in astronomical photography, large prints, on photographic paper, of the subjects which have suffered most in reproduction by the half-tone process. The expense of these photographic prints has been met by a generous friend who is interested in the work.

The illustration of the Great Cluster in *Hercules*, *Messier* 13 (Plate XIX), is from a negative obtained on the night of April 25, 1901, with the large photographic attachment and with an exposure of three hours. In the original negative the center of the cluster is well resolved. Lines and groups of stars of between the sixteenth and seventeenth magnitudes, and with distances down to 1", are well shown and distinctly separated. More than three thousand stars are shown on the negative, many of which are so faint that they are beyond the visual limit of the great telescope.

Smaller, but richer and more condensed, than Messier 13 is that superb cluster Messier 15 Pegasi (Plate XX), although the effect of richness and condensation is to a large extent lost in the illustration, on account of the great scale and the loss of the fainter stars. The sharpest negative of this object was obtained on the night of October 3, 1900, with an exposure of three hours. On account of exceptionally fine atmospheric conditions during nearly one hour of this exposure, this is one of the best of the star-cluster photographs. A comparison of this photograph with others of the same object which have been published will demonstrate the advantages of telescopes of great focal length, and of an efficient guiding mechanism, in the photography of these difficult objects.

Two or more very sharp negatives of each of the dense globular clusters Messier 2 Aquarii, Messier 3 Canum Venaticorum, and Messier 5 Librae, as well as of some of the larger and more open clusters, have also been obtained. It is believed that on account of the great scale and excellent definition of these photographs they will prove extremely valuable for comparison with photographs obtained several years later, in the search for change and rotation in these clusters.

The photograph of the central parts of the great nebula in *Orion* (Plate XXI) was obtained with the forty-inch refractor with an exposure of three hours, January 20, 1901. The night was extremely transparent, but atmospheric conditions were not fine in other respects, so that the star-images appear large. The yellow-screen process is not well adapted for the photography of nebulæ, since the light of these objects consists almost exclusively of green and blue rays. The blue rays are entirely excluded by the yellow screen, and the green rays, which are imperfectly transmitted (and by which the nebula is photographed) are not brought to a focus in the same plane in which the star-images are in best focus. But similar difficulties in regard to focus are encountered even with the best photographic refractors.

It is only with the reflecting telescope that the intolerable difficulties due to imperfect achromatism are entirely absent. In the present case the focal setting used was that which is best for the stars; consequently the details of the nebula are slightly out of focus. The photograph is introduced

in order to call attention to the difficulties just described, and also because, on account of the great scale, the details of the central parts of this celebrated nebula are shown better than in any other photographs of this object with which the writer is acquainted.

H. PHOTOGRAPHY WITH THE TWO-FOOT REFLECTOR

The two-foot reflector of this observatory (Plate XXII) was described somewhat at length in my article in the Astrophysical Journal for November, 1901; a detailed description of the instrument is therefore not necessary here; the following statements may, however, be made in regard to it:

The large mirror has a clear aperture of $23\frac{1}{2}$ inches and a focal length of 93 inches. The instrument is used as a Newtonian for direct photography, and also as a Cassegrain for direct photography and spectroscopic work; the convex Cassegrain mirror is 5 inches in diameter and gives an equivalent focal length of 38 feet; as there is no central hole through the large mirror, three reflections are necessary when the convex mirror is used. The mounting is massive and rigid. The tube consists of a skeleton framework of steel tubes and cast-aluminum rings. The driving-clock and clock-connections are unusually large and strong. A small double-slide plate-carrier which allows a field three inches square to be photographed, is used for guiding in direct photography at either the primary or secondary focus. All of the mechanical parts of the instrument were made in the instrument shop of the observatory: the optical parts were made by the writer.

Special attention was given to the perfection of the optical parts; to the stability of the mirror supports and the rigidity of the skeleton tube, in order that the adjustment or collimation of the optical parts might remain perfect during long exposures; and to the refinement of the driving mechanism and the guiding apparatus. In nearly all respects the same degree of care and refinement was used in the making of this instrument as is given in the case of the best modern refractors.

The performance of the instrument in direct photography at the primary focus is highly satisfactory. As stated in my previous article, "the combination of (1) stability of position of the mirrors, (2) rigidity of skeleton tube, (3) smoothness of clock-driving, and (4) accuracy of guiding made possible by the use of the double-slide plate-carrier, is so effective that when atmospheric conditions are good the image of a guiding star in the eyepiece does not wander so much as one one-hundreth of a millimeter during an exposure of three or four hours. The accuracy with which the star-images are kept immovable on the photographic plate is nearly as great, as is shown by the photographs. In the best negative with four hours' exposure the images of the smaller stars near the center of the field are about 2" in diameter. Double stars of 2.5 distance are sharply separated, and those of 2" distance, corresponding to about 0.02 mm. on the photographic plate, are measurable."

"No greater mistake could be made than to suppose that the finest atmospheric conditions are unnecessary to secure the best results in photographing the nebulæ. With such conditions the photographs show that these objects are not diffused hazy masses, but that their structure is generally most complicated, often consisting of exquisitely fine filaments and delicate narrow rifts. In these photographs the intersections of such filaments and rifts can be set upon, in the measuring machine, with almost the same degree of accuracy that is possible in the case of star-images. Changes of form in the nebulæ, if such occur, could be detected with certainty by means of such photographs."

A large refracting telescope, whether visual or photographic, is not an efficient and economical instrument for photography, either direct or with the spectroscope, when compared with a modern reflector. The two-foot reflector, with its focal length of ninety-three inches and with its aperture reduced to fifteen inches, photographs seventeenth-magnitude stars with two hours' exposure. This speed is equal to that of the forty-inch refractor with the color-screen, with the finest atmospheric conditions, i. e., when the guiding star appears in the eyepiece as an extremely small point, and when irregular movements of the guiding star are so slow and so small that they can be readily followed. It is probable that this speed is nearly, if not quite, equal to that of the largest photographic refrac-

tors in use. When the full aperture is used, the two-foot reflector photographs seventeenth-magnitude stars with forty minutes' exposure.

That the great difference in speed between refractors and reflectors in photographing stars is not due largely to difference of angular aperture is amply proved by the few results which have been obtained with the two-foot reflector when used as a Cassegrain, i. e., with the addition of the convex mirror, which gives an equivalent focal length of thirty-eight feet. Photographs made for comparison when atmospheric conditions are good (so that star-images appear as very small points even at the secondary focus), show that with this great equivalent focal length stars are photographed very nearly as rapidly as at the primary focus; the difference in speed is so slight that it is readily accounted for by the assumption that about 10 per cent. of the light is lost by the additional reflection at the convex mirror. I am aware that this result is apparently at variance with theories in regard to the effect of focal length (when the aperture remains constant) upon the size and intensity of the diffraction disks of star-images, and consequently upon the speed with which such images are photographed.

The great superiority of the reflecting telescope in photography is unquestionably due, primarily, to its perfect achromatism. The importance of this has of course been recognized for many years, but I think that the degree of the importance, in photography, of perfect achromatism has not been appreciated—that the effect of this achromatism in giving great speed as well as great sharpness has not been fully recognized. Hardly less important is the fact that in the case of large instruments much less light is lost, of the wave-lengths which are most effective in photography, by absorption at the silver surfaces of a reflector than by absorption and reflection in an objective.

In the case of the refractor the difficulties due to imperfect achromatism, as well as the percentage of light lost in transmission, increase rapidly with increase of size of the objective. In the case of the reflector, however, a large instrument is as perfectly achromatic as a small one, and the percentage of light lost does not increase with increase of aperture. But the reflecting telescope has not been developed to the state of refinement which has been attained in the case of the refractor. This is probably due, to a large extent, to the fact that the difficulties and peculiarities of the reflector have not been thoroughly understood; at any rate, it is certain that these difficulties have not, in the past, been successfully met. It is almost superfluous to state that the great reflectors of the past, without exception, have been in many respects extremely crude instruments; in all cases without the great rigidity and stability of construction which are absolutely essential to the successful performance of a reflector; and in all cases without the refinement of workmanship, in both optical and mechanical parts, which are attained in the great modern refractors. In saying this I certainly intend no criticism of the able and skilful men who have been the pioneers in the development of the reflecting telescope, and who have contributed so much to both the methods and the results of astronomical observation.

It is safe to assert that the peculiar difficulties of the reflecting telescope are now thoroughly understood, and that all difficulties which relate to its mechanical and optical construction have been successfully solved.

As a result of the improvements and developments in glass-making, in optical work, and in the methods and materials of modern mechanical construction; and as a result, no less, of the experience of those who have both made reflecting telescopes of moderate size and used them successfully in astronomical photography, there can be no doubt whatever that a great reflecting telescope of five or eight feet aperture could now be constructed with all of the refinement of the two-foot reflector or the forty-inch refractor.

The speed of the reflector in the photography of nebulæ is of course due largely to its great angular aperture. All of the reflector photographs which accompany this article, with the exception of that of Messier 51, were made with the aperture of the $23\frac{1}{2}$ -inch mirror reduced to 18 inches, in order that good definition might be secured over a larger field than is well covered when the full aperture is used. The ratio of focal length to aperture was therefore as $5\frac{1}{6}$ to 1. These photographs

show what can be done with a reflecting telescope of very moderate size (aperture 18 inches, focal length 93 inches) when sufficient care is given to the perfection of the mirrors and mounting, and when an effective method of guiding is employed.

The photograph of the great nebula in *Orion* (Plate XXIII) was obtained with an exposure of one hour. Even with this short exposure faint extensions of the nebula and a great amount of delicate structure in the moderately bright parts are shown, which cannot be detected visually with either the two-foot reflector or the 40-inch refractor. A comparison of this photograph with that of the central part of the same nebula obtained with the forty-inch refractor (Plate XXI), and also with other published photographs of this object obtained with photographic refractors, gives some idea of the great efficiency of a well-made modern reflector of large angular aperture in such work.

The photograph of the great nebula in Andromeda (Plate XXIV) was obtained with an exposure of four hours, although one hour's exposure, or less, is sufficient to show the general characteristics of the object well. This is one of the most magnificent examples of a spiral nebula to be found in the heavens, yet its spiral character was never suspected from visual observations. In the original negative the spiral structure is visible almost to the center of the nebula, and the stellar nucleus is distinctly seen. Sharply defined narrow rifts and dark holes near the center are shown on all of the negatives of this object; no trace of these can be detected visually with any telescope.

The photograph of the spiral nebula Messier 33 Trianguli (Plate XXV) was obtained with an exposure of four hours. This nebula is very large and very faint; the spiral character of its central parts was discovered by Lord Rosse; by far the greater part of the complicated structure shown in the photograph is too faint to be detected visually. While differing greatly in general appearance from the great Andromeda nebula, Messier 33 resembles the latter in several striking characteristics; in the presence of dark rifts and holes in and near the bright central parts, and in the tendency of its outer branches to break up into stars. The central parts of this object appear decidedly nebulous; the outer parts consist of very faint nebulosity and of numerous curved streams or wisps of nebulous stars; hundreds of these star-like condensations are so distinctly shown on the original negative that they may be well seen even in the half-tone reproduction. There can be no doubt of the physical connection between the nebulosity and the streams of minute stars; this object therefore affords what is apparently a most striking example of a spiral nebula condensing into stars.

The illustration of the nebulosities in the *Pleiades* (Plate XXVI) is from a negative obtained with an exposure of three and one-half hours. This photograph is extremely difficult to reproduce properly, on account of the great difference in brightness between the bright stars and the faint masses of nebulosity. Some idea of the intricate filamentous structure of these masses may be gained from the half-tone plate. In the original negative, from which I hope a more satisfactory reproduction may yet be secured, the entire field, nearly two degrees square, is covered with a network of filaments, of which those in the southwest part of the photograph, and apparently connected with the great curved mass of streamers about *Merope*, are the most conspicuous. Only the brighter filaments of this vast network are shown in the reproduction.

The photograph of the nebula N. G. C. 6960 (Plate XXVIII) was obtained with an exposure of four hours, and that of N. G. C. 6992 (Plate XXVIII) with an exposure of three hours. These nebulæ are the most remarkable examples of filamentous nebulæ which I have photographed. They lie near together in the Milky Way in the constellation of Cygnus; they are apparently only the brightest parts of one great nebula, as extremely faint nebulous masses can be seen in the negatives, extending from one to the other. The nebula N. G. C. 6960 apparently lies exactly on the boundary between the dense region of stars to the east (the right-hand side in the illustration) and the region to the west which is comparatively void of stars. Instances of this kind occur again and again, and strongly suggest some intimate physical connection between such nebulæ and the dense masses of stars in their neighborhood. These photographs afford striking illustrations of the wonderful richness and complexity of structure

of the nebule, and of the importance of photography in the study of these very faint objects. When it is remembered that these photographs, showing such delicacy of detail, are obtained with a reflecting telescope of only eighteen inches aperture and ninety-three inches focal length, we can gain some idea of the results which might be obtained in the photographic study of the nebulæ with a thoroughly well-made reflecting telescope which would be comparable in size, cost, and refinement of workmanship with the great modern refractors.

The photograph of Messier 51 (Plate XXIX) was obtained with an exposure of six hours and with an aperture of 22 inches. With this long exposure and large angular aperture a very intense negative was obtained, which shows much exterior nebulosity; the latter is so faint, however, that it is almost entirely lost in the half-tone reproduction. Perhaps the most remarkable part of the very faint outer nebulosity is a great curved mass which forms a continuation of the conspicuous branch of the nebula to the extreme south; this continues toward the east, curves toward the north, and then toward the northwest, and joins the parts of the nebula to the north. The reproduction shows well the details of the two bright main branches of the spiral, and also the faint wisps and filaments between them; the latter are far beyond the reach of all telescopes visually. The faintest stars shown on the original negative are about two magnitudes fainter than those which are at the visual limit of the forty-inch refractor.

I am indebted to Mr. F. G. Pease for able assistance in securing the reflector photographs, and in preparing all of the photographic enlargements for the engraver's use. Great credit is due to the Binner-Wells Co., engravers, for the unusual care and skill with which the photographs have been reproduced.

Large Double-Slide Plate-Carrier Attached to Forty-Inch Refractor

LUNAR CRATER THEOPHILUS AND SURROUNDINGS

SCALE; 1.29 Meters to Moon's Diameter

Mare Serenitatis, Mare Tranquilitatis, and Surroundings

SCALE: 0.62 Meter to Moon's Diameter

LUNAR CRATER COPERNICUS AND SURROUNDINGS

SCALE: 1.02 Meters to Moon's Diameter

MAKE NUMUM, BULLIALDUS, ETC.

Scale: 0.79 Meter to Moon's Diameter

Lunar Craters Clevius, Longomontanus, Tycho, etc.

SCALE: 0.79 Meter to Moon's Diameter

DECENNIAL PUBLICATIONS, VIII

SYSTEM OF BRIGHT RAYS ABOUT TYOHO

STAR-CLUSTER MESSIER 13 HERCULIS

Star-Cluster Messier 15 Pegasi

CENTRAL PART OF GREAT NEBULA IN ORION

Two-Foot Reflecting Telescope of the Yerkes Observatory

DECENNIAL PUBLICATIONS, VIII

GREAT NEBULA IN ORION

GREAT NEBULA IN ANDROMEDA

.

Spiral Nebula Messier 33 Trianguli

Nebulosity in the $P_{\it LEIADES}$

Nebula in Crants. N.G.C. 6960

Nebula in Cygnus, N.G.C. 6992

Spiral Nebula Messier 51 Canum Venaticorum

THE ORBIT OF THE MINOR PLANET (334)

THE ORBIT OF THE MINOR PLANET (334)

KURT LAVES

INTRODUCTION. THE MINOR PLANETS OF THE HILDA TYPE

OF the four principal types of characteristic planets those of the Hestia $\left(\mu = \frac{1}{3}\right)$ and Hecuba $\left(\mu = \frac{1}{2}\right)$ types have led to frequent and elaborate investigations. The planets of the Hilda $\left(\mu = \frac{2}{3}\right)$ and Thule $\left(\mu = \frac{3}{4}\right)$ types have so far attracted very little attention. This is due, first, to the paucity of the number of planets of these two groups, and, secondly, to the close proximity of the perturbing planet Jupiter, which renders the development of the perturbative function laborious and difficult. The methods best adapted for the planets of the Hilda and Thule types will most likely be that of Gyldén and the periodic solution method of Poincaré. The planets of the Hilda type are four in number: (153), (190), (334), and (361). The characteristic elements of these planets are:

	(153)	(190)	(334)	(361)
n	452/197	452″998	459.742	450.'396
	9° 44/5	9° 19′8	0° 50.4	11° 32.'9
	7° 52/7	6° 6′7	4° 38.1	12° 37.'0

The planets of the Hilda and Thule types are in peculiar contrast to the gaps (lacunes) which occur in the regions of commensurability of the planets of the Hestia and Hecuba types. Tisserand, Gyldén, Poincaré, and Callandreau have shown that the absence of planets in these regions cannot be explained by an action of Jupiter on these planets. Indeed, the orbits of planets which pass through values of the mean daily motion which are commensurable to that of Jupiter continue to be stable. In the twenty-fifth chapter of the fourth volume of his Mécanique céleste Tisserand has investigated whether or not there are any planets in these two realms, where Jupiter will bring about a librational effect. Of the Hestia type the planet (132) is the only one where libration is likely to occur. Tisserand points to the three planets (332), (381), and (325) of the Hecuba type which in the future, when their elements will be known with greater accuracy, may prove to be "librational" planets. In the table which Tisserand has given on p. 419 the planet (132) is stated to have a mean daily motion of 888.8, which is incorrect and should read 904." Planet (332) is erroneously put in the Hecuba group, since it really is a planet of the type $\frac{2}{5}$. Allowing for these changes and employing the elements as they appear in Professor Bauschinger's up-to-date table, there are left, then, three ambiguous planets, namely, (132), (381), and (325). Planet (132) has unfortunately not been observed since its first discovery by Watson in 1873; therefore very little weight can be placed upon the accuracy of its elements. As will be shown, it is the only planet of the two types where Tisserand's criterion will bring out a librational effect. The planets (381) and (325), discovered in 1894 and 1892 respectively, have been observed in five and four oppositions respectively. Their elements may therefore now be considered to be trustworthy, at least as far as is necessary for the accuracy required by Tisserand's criterion. Neither one of them shows any libration whatever. We have, therefore, as yet to find a "librational" planet belonging to either group. Extending Tisserand's investigations to the planets of the Hilda and Thule types, we encounter at once planets of a very marked librational character. Tisserand, in

¹See J. Bauschinger, Tabellen zur Geschichte und Statistik der kleinen Planeten, Tabelle II, "Veröffentlichungen des kgl. astronomischen Recheninstituts zu Berlin," No. 16.

deriving his criterion, has taken into account but one term of the perturbative function; he has integrated the differential equation for θ [equation (1) on p. 421 of Vol. IV] as if h were a constant, which it is not; and lastly he has considered the Keplerian ellipse as a sufficient first approximation for the elements. The failure to find librational planets might therefore be considered from the standpoint of the mathematician as an indication that the method is at fault and that instability of the orbits will really take place. Such an argument is contradicted by the existence of librational planets of very marked degree, and that in the closest proximity to the perturbing planet. The attempt has been made to improve Tisserand's method in this respect that not only one of the characteristic perturbative terms is taken into account, but two. Considering the average magnitude of the eccentricity of the orbits involved, it seemed necessary not to neglect the term which carries the square of the eccentricity. It was found that the numerical results thus obtained are very little different from those obtained by Tisserand's original proceeding, but that it is considerably more laborious to obtain them. In what follows the results are given for the planets of the four groups, using Tisserand's criterion without change.

I. THE HESTIA TYPE

Libration takes place if the following inequality is fulfilled:

$$(n_1 - 3n')^2 < \frac{3}{2}m' \frac{n'^2}{a^2}e^2 \sin^2 \frac{\theta_1}{2} \left(21b^{(3)} + 10a \frac{db^{(3)}}{da} + a^2 \frac{d^2b^{(3)}}{da^2} \right) ;$$

or, reducing it to numbers for $\alpha = \frac{1}{I^{3/9}}$, we obtain:

$$|n_1 - 3n'| < 52'' e \sin \frac{\theta_1}{2}$$
.

For the planet (132)

$$|n_1 - 3n'| = 6.3$$
 52. $e \sin \frac{\theta_1}{2} = 9.8$.

The inequality is therefore fulfilled, since 6.3 < 9.8.

The general formulas for planets where $\frac{n'}{n} = \frac{i-1}{i}$ is approximately fulfilled are, i being an integer:

$$\theta = + (i-1)(L-\pi) - i(L'-\pi) . \tag{1}$$

$$R = -\frac{k^2 m'}{2a'} \left(2i A^{(i)} - A_1^{(i)} \right) \cos \left(i L' - (i-1)L - \pi \right) . \tag{2}$$

$$h^2 = 3 (i-1) (2 i A^{(i)} + A_1^{(i)}) \frac{n'^2 e}{e^2}$$
 (3)

$$\frac{d^2\theta}{dt^2} = -\frac{1}{2}m'h^2\sin\theta . {4}$$

Libration takes place if

$$\left| n_1 - \frac{i}{i-1} n' \right| < \frac{h}{i-1} \cos \frac{\theta_1}{2} + \overline{2m'} . \tag{5}$$

Putting i=2, 3, 4 into these formulas, we obtain the formulas that hold for the *Hecuba*, *Hilda*, and *Thule* types respectively.

II. THE HECUBA TYPE

Equation (5) becomes $|n_1 - 2n'| < 56" 1 - \frac{\theta_1}{2}.$

For planet (325) the inequality becomes 16.6 < 4.0. For planet (381) the inequality becomes 21.4 < 19.4. Both of these, therefore, fail to be "librational" planets. III. THE HILDA TYPE

Equation (2) becomes

$$R = -\frac{k^2 m'}{2 a'} e \left(6b^{(3)} + a \frac{db^{(3)}}{da}\right) \cos(2L - 3L' + \pi) .$$

Equation (5) becomes

$$\left| n_{1} - \frac{3}{2} n' \right| < 58.67 \sqrt{e} \cos \frac{\theta_{1}}{2} \ .$$

Applying this to the four planets, we obtain

	(153)	(190)	(334)	(361)
$n_1 = \frac{3}{2}n' \dots$	3.51	4.731	11.05	1:70
$58.67 \mathrm{t}^{-} e \cos \frac{\theta_1}{2} \dots$	23.789	22:91	5:70	22.139

With the exception of (334), all of these planets have a marked libration.

IV. THE THULE TYPE

The inequality (5) reduced to numbers is

$$\left| n_1 - \frac{4}{3} n' \right| < 62.0 \, 1^{-\overline{e}} \cos \frac{\theta_1}{2} \; .$$

For Thule $n_1 - \frac{4}{3}n'$ is = 4.35, while 62" $1/\bar{e}\cos\frac{\theta_1}{2} = 18.39$, which shows that libration will take place.

THE DEVELOPMENT OF THE PERTURBATIVE FUNCTION

The minor planet (334) has been named Chicago by Professor M. Wolf of Heidelberg, in commemoration of the conference of astronomers and mathematicians held during the World's Exposition in the city of Chicago. The planet is marked for the small eccentricity and inclination of the orbit. It therefore suggested at once the application of Le Verrier's method of general perturbations. In a course of lectures on general perturbations given by the writer in the spring of 1896 the planet was used as an example for illustrating certain modes of computation. At that time but a limited number of observations was known, from which an orbit had been derived by Professor Berberich. The mean motion given in this system of elements was used in the computations. It was soon realized that in order to accomplish something by means of the calculations carried on to some extent by the writer and Professor Moulton in 1896, the perturbative function would have to be extended far beyond the original scope. For a few years the computations were allowed to rest and when taken up again by the writer they were continued with the same value of the mean daily motion, since a recomputation of the previous work seemed unnecessary. For a determination of the mean value of the major axis the set of available observations seemed insufficient. It was therefore argued that if osculating elements were to be used, an epoch of the elements could be determined in such a manner as to bring the value of the major axis used in the computations as near as possible to the major axis of the epoch to be selected. By means of special perturbations the change of the major axis between 1897 and 1894 due to the action of Jupiter was determined, and it was found that the major axis passed, during this interval of time, through the value assumed in the computations. The tables constructed will be of usefulness, too, if at some future epoch new tables of the planet shall be constructed, even if the mean value of the major axis shall appreciably differ from the value employed here. Indeed, by a differential method the change can be taken

into account without very much labor. Pains have been taken to avoid errors in the computations. The coefficients $b^{(i)}$, $b_i^{(i)}$, $b_i^{(i)}$, $c^{(i)}$, $c^{(i)}$, from i=0 to i=15 and the quantities which depend only upon these were computed independently by Mr. Moulton and myself. The other coefficients were almost all of them checked by a repeated calculation in which the calculating machine was used. To enable a checking of any part of the work all the necessary quantities are given from the beginning. It may prove necessary in the second part of this investigation, which will be published at an early date, to add a number of terms which at the present state of the work seemed to be negligible. The planet has been observed in eight oppositions, nine oppositions having occurred since its discovery. It is to be hoped that it will prove in the future to be an object from which much valuable information may be obtained, a new determination of the mass of Jupiter appearing to be of the most immediate importance.

In developing the perturbative function the value of $a = \frac{a}{a'}$ was assumed to be 0.7543102 $\log a = 9.8775500$.

The development of this function necessitates the calculation of the coefficients of the Fourier series into which $(1 + a^2 - 2a \cos \psi)^{-s}$ is to be developed, when s takes the values $\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$, $\frac{7}{2}$.

The designations used in what follows are those of Le Verrier (see Amales de l'Observaloire de Paris, Vol. X). We therefore put

$$(1 + a^{2} - 2a \cos \psi)^{-\frac{1}{2}} = \sum_{i=0}^{\infty} i b^{(i)} \cos i \psi ,$$

$$(1 + a^{2} - 2a \cos \psi)^{-\frac{3}{2}} = \sum_{i=0}^{\infty} c^{(i)} \cos i \psi ,$$

$$(1 + a^{2} - 2a \cos \psi)^{-\frac{5}{2}} = \sum_{i=0}^{\infty} e^{(i)} \cos i \psi ,$$

$$(1 + a^{2} - 2a \cos \psi)^{-\frac{7}{2}} = \sum_{i=0}^{\infty} f^{(i)} \cos i \psi .$$

$$(1)$$

Only one-half of the absolute terms are to be taken in these developments.

Each of the coefficients $b^{(i)}$, $c^{(i)}$, $c^{(i)}$, $c^{(i)}$, $f^{(i)}$ is given by means of power series in a, the coefficients of which depend upon the respective values of s. In the second volume of the Annales Le Verrier has given these coefficients of the various powers of a with sufficient accuracy. Recursion formulas are easily obtainable by means of which the higher $b_{\ell}^{(i)}$, $c^{(i)}$. may be calculated when the lower ones are known. On account of the slow convergence of the series it was deemed necessary to compute the coefficients $b^{(i)}$, and $c^{(i)}$ up to and including the term for which i is equal to 30.

In Le Verrier's method the perturbative function is developed, by Taylor's principle, by starting from the circular form of the orbit. Owing to the small value of the eccentricity of (334), a close approach to the true orbit should be obtained by stopping at the fourth degree terms in the periodic terms, and carrying the development up to the sixth degree in the secular terms.

$$R_{01} = (r^2 + r'^2 - 2rr'\cos\psi)^{-\frac{1}{2}} - \frac{r\cos\psi}{r'^2}$$

is the expression for the perturbative function. From the development given above the A^i, B^i, C^i, D^i coefficients are derived by means of the formulas:

$$(a^{2} + a'^{2} - 2aa'\cos\psi)^{-\frac{1}{2}} = \frac{1}{2} \Sigma A^{(i)}\cos i\psi ,$$

$$aa' (a^{2} + a'^{2} - 2aa'\cos\psi)^{-\frac{3}{2}} = \frac{1}{2} \Sigma B^{(i)}\cos i\psi ,$$

$$a^{2}a'^{2}(a^{2} + a'^{2} - 2aa'\cos\psi)^{-\frac{3}{2}} = \frac{1}{2} \Sigma C^{(i)}\cos i\psi .$$
(2)

Comparing set (1) with (2) it follows that we have:

$$a'A^{(i)} = b^{(i)} \qquad a'B^{(i)} = ac^{(i)}$$

$$a'A^{(i)}_1 = b^{(i)}_1 \qquad a'B^{(i)}_1 = a(c^{(i)}_1 + c^{(i)})$$

$$a'A^{(i)}_2 = \frac{1}{2}b^{(i)}_2 \qquad a'B^{(i)}_2 = \frac{a}{2}(c^{(i)}_2 + 2c^{(i)}_1)$$

$$a'A^{(i)}_3 = \frac{1}{2 \cdot 3}b^{(i)}_3 \qquad a'B^{(i)}_3 = \frac{a}{2 \cdot 3}(c^{(i)}_3 + 3c^{(i)}_2)$$

$$a'A^{(i)}_4 = \frac{1}{2 \cdot 3 \cdot 4}b^{(i)}_4 \qquad a'C^{(i)} = a^2c^{(i)}$$

$$a'A^{(i)}_5 = \frac{1}{2 \cdot 3 \cdot 4 \cdot 5}b^{(i)}_5$$

$$a'E^{(i)} = \frac{1}{2 \cdot 3 \cdot 4 \cdot 5}b^{(i)}_5$$

$$a'E^{(i)} = \frac{1}{2}(a'B^{(i-1)} + a'B^{(i+1)})$$

$$a'G^{(i)} = \frac{3}{8}(a'C^{(i-2)} + 4a'C^{(i)} + a'C^{(i+2)})$$

$$a'L^{(i)} = \frac{3}{4}(a'C^{(i-2)} + a'C^{(i)})$$

The development for $R_1 = (r^2 + r'^2 - 2rr'\cos\psi)^{-\frac{1}{2}}$ will be obtained by means of the foregoing formulas; this being done, R_{01} is deduced from it. Those coefficients of R_{01} which are affected by the development of $\frac{r\cos\psi}{r'^2}$ are given at the bottom of each table with the proper designation. In the six differential equations for the elements will enter the partial differential quotients of R_{01} with respect to the various elements involved. For all of them except $\frac{\partial R_{01}}{\partial a}$ the coefficients that hold for R_{01} will be the same. It is therefore necessary to give for $\frac{\partial R_{01}}{\partial a}$ a special development. The calculation for the coefficients of this quantity rests upon the following formulas, which closely resemble the foregoing formulas:

$$\begin{split} a'a\frac{dA^{(i)}}{da} &= a'A^{(i)}_1 \\ a'a\frac{dA^{(i)}_1}{da} &= 2a'A^{(i)}_2 + a'A^{(i)}_1 \\ a'a\frac{dA^{(i)}_1}{da} &= 2a'A^{(i)}_2 + a'A^{(i)}_1 \\ a'a\frac{dA^{(i)}_2}{da} &= 3a'A^{(i)}_3 + 2a'A^{(i)}_2 \\ a'a\frac{dA^{(i)}_3}{da} &= 3a'A^{(i)}_4 + 3a'A^{(i)}_3 \\ a'a\frac{dA^{(i)}_3}{da} &= 4a'A^{(i)}_4 + 3a'A^{(i)}_3 \\ a'a\frac{dB^{(i)}_2}{da} &= 3a'B^{(i)}_3 + 2a'B^{(i)}_2 \\ a'a\frac{dC^{(i)}}{da} &= a'C^{(i)}_1 \\ a'a\frac{dC^{(i)}}{da} &= 2a'C^{(i)}_2 + a'C^{(i)}_1 \\ a'a\frac{dB^{(i)}_4}{da} &= \frac{1}{2}\left(a'a\frac{dB^{(i-1)}}{da} + a'a\frac{dB^{(i+1)}}{da}\right) \\ a'a\frac{dG^{(i)}}{da} &= \frac{3}{8}\left(a'a\frac{dC^{(i-2)}}{da} + 4a'a\frac{dC^{(i)}}{da} + a'a\frac{dC^{(i)}}{da}\right) \\ a'a\frac{dL^{(i)}}{da} &= \frac{3}{4}\left(a'a\frac{dC^{(i-2)}}{da} + a'a\frac{dC^{(i)}}{da}\right) \end{split}$$

TABLE

i	$b_0^{(l)}$	$b_1^{(i)}$	$b_2^{(i)}$	$b_{\beta}^{(i)}$	$b_4^{(l)}$	$b_5^{(i)}$	$b_{6}^{(i)}$
0	2.441305	1.443403	5.590232	34.898984	327,1807	4050,409	62512.41
1	1.016735	1,913511	5.497506	35.271067	327.9349	4057.947	62583.87
-2	0.596121	1.785029	6.099221	35.749825	331.2201	4079.383	63106.04
3	0.381915	1.549698	6,483219	37.527031	336.3891	4117.862	63128.86
4	0.255109	1.300851	6.552158	39,806480	346, 1931	4174.097	
.)	0.174627	1.070263	6.351655	41.821026	360,6489	4258.352	
6	0.121483	0.868749	5.958702	43.089983	377.7701	4378.645	
7	0.085489	0.698334	5.447238	43.404727	394.8075	4534.445	
8	0.060680	0.557208	4.877527	42.753952	409.1497	4716.083	
9	0.043359	0.442019	4.294311	41.247667	418.8124	4899,008	
10	0.031148	0.348991	3.728425	39.057161	422.5994	5089.724	
11	0.022475	0.274477	3.199295	36.374347	420.0530	5236.467	
12	0.016276	0.215164	2.718241	33.37593	411.4613	5355,954	
13	0.011823	0.168201	2.289570	30.23708	397.1126	5410.922	
14	0.008612	0.131167	1.914574	27.06107	378,7607	5406.813	
15	0.006287	0.102078	1.590132	23.99735	355.6490	5355.452	
16	0.004599	0.079289	1.3137	21.0520			
17	0.003370	0.061493	1.0789	18.3651			
18	0.002473	0.047622	0.8831	15.8222			
19	0.001817	0.036835	0.7186	13.656			
20	0.001337	0.028450	0.5840	11.554			
21	0.000985	0.021967	0.4711	9.942			
22	0.000726	0.016941	0.3810	8.214			
$\frac{1}{23}$	0.000536	0.013050	0.3050	7.136			
24	0.000396	0.010066	0.2450	5.712			
25	0.000293	0.007735	0.1956	5.048			
26	0.000217	0.005971	0.1551	3.922			
27	0.000161	0.004575	0.1246	3.476			
28	0.000120	0.003527	0.0964	2.754			
29	0.000090	0.002687	0.0791	2.281			
30	0.000068	0.002065	0.0587	2.066			

i	$e_0^{(l)}$	$e_1^{(l)}$	$e_2^{(\ell)}$	$c_3^{(i)}$	$e_0^{(i)}$	$e_1^{(i)}$	
()	12.36175	68.6237	621.7857	7553.544	134.8231	1582.967	
1	11.23813	68.4992	618,8126	7538,537	132.0236	1570,668	
2	9.66595	66.2459	611,9514	7489.341	124.8907	1532.359	
$\ddot{3}$	8.0770	62.1949	599.078	7408,474	114.9379		
4	6.6281	56.9571	578.959	7289,902	103.4751		
ŝ	5.3714	51.1037	551.770	7128.134	91.5053		
6	4.3130	45.0838	518.578	6916.374			
7	3.4387	39.2155	480.757				
8	2.7263	33.7093	440.218				
9	2.1517	28.6831	398.372				
10	1.6917	$\frac{26.0551}{24.1970}$	356.748				
	1.3258						
11		20.2550	316-409				
12	1.0362	16.8471	278.092				
13	0.8079	13 9271	242.629				
14	0.6286	11.4574	209.897				
15	0.4882	9.107	180,256				
16	0.3786					*****	
17	0.2932						
18	0.2268						
19	0.1751						
20	0.1350					.,	
21	0.1041						
22	0.0802						
23	0.0616						
24	0.0473						
25	0.0363						
26	0.0279						
27	0.0212						
$\overline{28}$	0.0161						
29	0.0122						
30	0.0092						

TABLE II

i	$a^*A^{(b)}$	$a'A_1^{(i)}$	$a' \mathcal{A}_2^{(i)}$	$a'A_3^{(i)}$	$a'A_4^{(i)}$	$a'A_5^{(i)}$	$a'A_{b}^{(i)}$	a' B(i)	$a'B_1^{(i)}$	$a'B_2^{(i)}$	$a'B_3^{(i)}$	a'C (i)
0	2,441305	1.443403	2.795116	5.816497	13.63253	33.7534	86.823	9.3245	61,0871	286,2732	1184.125	76.7122
1	1.016735	1.913541	2.748753	5.878511	13,66395	33.8162	86.923	8.4770	60.1466	285.0504	1181.117	75,1193
$\frac{1}{2}$	0.596121	1.785029	3.049610	5.958304	13.80084	33.9949	87.647	7.2911	57.2610	282.2646	1172.344	71,0608
$\frac{1}{3}$	0.381915	1.549698	3.241609	6.254505	14.01621	34.3155	87.679	6.0926	53.0066	272.860	1157.323	65.398
4	0.255109	1,300851	3.276079	6.634413	14.42472	34.7841		4.9996	47,9630	261.321	1134.829	58.876
$\hat{5}$	0.174627	1.070263	3.175827	6.970171	15.02704	35.4863		4.0508	42.5997	246.651	1104.237	52.065
Ğ	0.121483	0.868749	2.979351	7.181664	15.74044	36.4887		3.2533	37.2605	221.592	1065.096	
7	0.085489	0.698334	2.723619	7.234121	16.41261	37.7870		2.5938	32.1745	210,900		
8	0.060680	0.557208	2.438763	7.125658	17.04793	39.3007		2.0565	27.4837	191.457		
9	0.043359	0.442019	2.147155	6.874611	17.41283	40.8251		1.6231	23.2590	171.507		
10	0.031148	0.348991	1.864212	6.509527	17.69258	42.4144		1.2761	19.5281	152.805		
11	0.022475	0.274477	1.599647	6.062391	17.46452	43.6372		1.0001	16.2786	134,614		
12	0.016276	0.215164	1.359120	5.562655	17.22759	44.6329		0.7816	13.4896	117.592		
13	0.011823	0.168201	1.144785	5.039513	16.50868	45,0910		0.6094	11.1148	102.014		
14	0.008612	0.131167	0.957287	4.510178	15.86506	45.0568		0.4742	9.1166	87.806		
15	0.006287	0.102078	0.795066	3.999559		44.6288		0.3682		75.080		
16	0.004599	0.079289	0.65685	3.5087				0.2856				
17	0.003370	0.061493	0.53947	3.0608				0.2212				
18	0.002473	0.047622	0.44155	2.6367				0.1711				
19	0.001817	0.036835	0.3593	2.2760				0.1321				
$\frac{20}{21}$	0.001337	0.028450	0.2920	1.9257				0.1018				
$\frac{21}{22}$	$\begin{bmatrix} 0.000985 \\ 0.000726 \end{bmatrix}$	$\begin{bmatrix} 0.021967 \\ 0.016944 \end{bmatrix}$	$0.2355 \\ 0.1905$	1.6570 1.369				$0.0785 \\ 0.0605$				
23	0.000726	0.013050	$0.1505 \\ 0.1525$	1.189				0.0605 0.0465				
24	0.000396	0.010066	0.1225	0.952				0.0357				
25	0.000293	0.007735	0.0978	0.841				0.0274				
26	0.000217	0.005971	0.0775	0.654				0.0210				
27	0.000161	0.004575	0.0623	0.579				0.0160				
28	0,000120	0.003527	0.0482	0.459				0.0121				
29	0.000090	0.002687	0.0395	0.380				0.0092				
30	0.000068	0.002065	0.0298	0.344				0.0069				
			<u> </u>		<u> </u>	(
		ŀ					1	1	1			1
==		15		- (6)	- (5)	1.0/8	(0	1		a n	i)	
	$a'a \frac{dA^{(i)}}{dA^{(i)}}$	$a'a dA_1^{(i)}$	$a'a^{dA_2^{(i)}}$	$a'a^{dA_3^{(i)}}$	$a'a dA_4^{(i)}$	$a'a \frac{dB^{(i)}}{}$	$a'a dB_1^{(i)}$	$a'adB_2^{(i)}$	$\left _{a'a} \frac{dE'}{dE'}\right $	$\frac{\partial}{\partial a'a} \frac{dE_1^a}{dE_1^a}$	$\frac{ a }{ a a}dE_2^6$	i)
i	$a'a \frac{dA^{(i)}}{da}$	$a'a\frac{dA_1^{(i)}}{da}$	$a'a\frac{dA_2^{(i)}}{da}$	$a'arac{dA_3^{(i)}}{da}$	$a'a\frac{dA_4^{(i)}}{da}$	$a'a \frac{dB^{(i)}}{da}$	$a'a \frac{dB_1^{(i)}}{da}$	$- \left a'a \frac{dB_2^{(i)}}{da} \right $	$\left a'a \frac{dE'}{da} \right $	$\frac{\partial}{\partial a'a} \frac{dE_1'}{da}$	$\left a'a\frac{dE_2^6}{da}\right $	i)
i	$a'a \frac{dA^{(i)}}{da}$	$a'a\frac{dA_1^{(i)}}{da}$	$\left a'a \frac{dA_2^{(i)}}{da} \right $	$a'a\frac{dA_3^{(l)}}{da}$	$a'u \frac{dA_4^{(i)}}{da}$	$a'a \frac{dB^{(i)}}{da}$	$a'a \frac{dB_1^{(i)}}{da}$	$-\frac{dB_2^{(i)}}{da}$	$\left a'a \frac{dE'}{da} \right $	$\frac{\partial}{\partial a'a} \frac{dE_1^{\ell}}{da}$	$\left a'a\frac{dE_2^{(i)}}{da}\right $	i)
_								_	_		_	
0	1.443403	7.033635	23.039723	71.979611	223.2871	61.0871	633,6278	4124,921	60.1466	630.247	4113.45	1
0	1.443403 1.913541	7.033635 7.411047	23.039723 23.133039	71.979611 72.291333	223.2871 223.7368	61.0871 60.1466	633,6278 630,2333	4124,921 3 4113,455	60.1466 2 59.1740	630.247	4113.45	1
$\begin{array}{c} - \\ 0 \\ 1 \\ 2 \end{array}$	1.443403 1.913541 1.785029	7.033635 7.411047 7.884250	23.039723 23.133039 23.974133	71.979611 72.291333 73.078272	223.2871 223.7368 225.1779	61.0871 60.1466 57.2610	633,6278 630,2333 621,7829	4124,921 4113,452 4081,56	60.1466 59.1740 56.5766	630.247 627.711 616.614	4113.451 4103.241 4115.570	1
$\begin{array}{c} 0\\1\\2\\3\end{array}$	1.443403 1.913541 1.785029 1.549698	7.033635 7.411047 7.884250 8.032917	23.039723 23.133039 23.974133 25.246734	71,979611 72,291333 73,078272 74,828355	223.2871 223.7368 225.1779 226.6423	61.0871 60.1466 57.2610 53.0066	633,6278 630,2333 621,7829 602,981	3 4124,921 3 4113,452 4081,56 4117,69	60.1466 2 59.1740 56.5766 52.6120	630.247 627.711 616.614 598.719	4113.453 4103.243 4115.570 4004.343	1
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	1.443403 1.913541 1.785029 1.549698 1.300851	7.033635 7.411047 7.884250 8.032917 7.853009	23.039723 23.133039 23.974133 25.246734 26.455397	71,979611 72,291333 73,078272 74,828355 77,602119	223.2871 223.7368 225.1779 226.6423 231.6194	61.0871 60.1466 57.2610 53.0066 47.9630	633,6278 630,2333 621,7829 602,981 575,649	3 4124,921 3 4113,452 4081,56 4117,69 3927,13	60.1466 2 59.1740 56.5766 52.6120 47.8032	630.247 627.711 616.614 598.719 572.123	4113.45 4103.24 4115.57 4004.34 3961.80	1
0 1 2 3 4 5	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168	71.979611 72.291333 73.078272 74.828355 77.602119 81.018673	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397	61,0871 60,1466 57,2610 53,0066 47,9630 42,5997	633,6278 630,2333 621,7829 602,981 575,649 541,265	3 4124,921 3 4113,452 4081,56 4117,69 3927,13 3806,01	60.1466 59.1740 56.5766 52.6120 47.8032 42.6115	630.247 627.711 616.614 598.719 572.123 530.716	4113.45 4103.24 4115.570 4004.34 3961.80 3782.80	1
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168 27,503694	71,979611 72,291333 73,078272 74,828355 77,602119 81,018673 84,506752	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053	61,0871 60,1466 57,2610 53,0066 47,9630 42,5997 37,2605	633,6278 630,2333 621,7829 602,981 575,649	3 4124,921 3 4113,452 4081,56 4117,69 3927,13	60.1466 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871	630.247 627.711 616.614 598.719 572.123 530.716 500.162	4113.45 4103.24 4115.570 4004.34 3961.80 3782.800	1
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168 27,503694 27,149601	71,979611 72,291333 73,078272 74,828355 77,602119 81,018673 84,506752 87,352803	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854	61,0871 60,1466 57,2610 53,0066 47,9630 42,5997 37,2605 32,1745	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060	3 4124,921 3 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	60.1466 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721	630.247 627.711 616.614 598.719 572.123 530.716 500.162	4113.45; 4103.24; 4115.57; 4004.34; 3961.80; 3782.800	1
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735	23.039723 23.133039 23.974133 25.246734 26.455397 27.262168 27.503694 27.149601 26.254501	71,979611 72,291333 73,078272 74,828355 77,602119 81,018673 84,506752	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053	61,0871 60,1466 57,2610 53,0066 47,9630 42,5997 37,2605	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498	4124,921 3 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	60,1466 2 59,1740 56,5766 52,6120 47,8032 42,6115 37,3871 32,3721 27,7167	630.247 627.711 616.614 598.712 572.123 530.716 500.162 450.430 409.772 371.978	4113.45; 4103.24; 4115.57; 4004.34; 3961.80; 3782.80;	1
0 1 2 3 4 5 6 7 8	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.736330 4.077416	23,039723 23,133039 23,974133 25,240734 26,455397 27,262168 27,503694 27,149601 26,254501 24,918144 23,257006	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 288901	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869	3 4124,921 3 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019	630.247 627.711 616.614 598.719 572.123 530.716 500.162 450.430 409.779 371.978	4113.45; 4103.24; 4115.570 4004.34; 3361.800 3782.800	1
0 1 2 3 4 5 6 7 8 9	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168 27,503694 27,149601 26,254501 24,918144 23,257006 21,386468	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756	3 4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088	630.247 627.711 616.614 598.718 572.123 530.716 500.162 450.430 409.779 371.978 324.647 290.166	4113.45; 4103.24; 4115.570 4004.34; 3361.80; 3782.800	000000000000000000000000000000000000000
0 1 2 3 4 5 6 7 8 9 10 11 12	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405	23.039723 23.133039 23.974133 25.246734 26.455397 27.262168 27.503694 27.149601 26.254501 24.918144 23.257006 21.386468 19.406206	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325	223, 2871 223, 7368 225, 1779 226, 6423 231, 6194 237, 5397 245, 4053 254, 5854 264, 7029 273, 7668 282, 8423 282, 0441 292, 0749	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869 288,756 251,463	4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1746 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967	630.247 627.711 616.614 598.712 530.716 500.162 450.430 409.772 371.978 324.647 290.166 253.137	4113.45; 4103.24; 4115.570; 4004.34; 3361.80; 3782.800	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771	23.039723 23.133039 23.974133 25.246734 26.455397 27.562168 27.503694 27.13660 26.254501 24.918144 23.257006 11.386468 19.406206 17.408109	71. 979611 72. 291333 73.078272 74. 828355 77. 602119 81. 018673 84. 506752 87. 352803 89. 568894 90. 275153 90. 298901 88. 045253 85. 598325 81. 153259	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869 288,756 251,463 217,518	4124,921 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1746 56.5766 52.6120 47.8032 42.6115 37.3871 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.719 572.123 530.716 500.162 450.436 409.779 371.978 324.647 290.166 253.137 219.095	4113.45; 4103.24; 4115.57; 4004.34; 3361.80; 3782.80;	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.698334 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 2.045741	23, 039723 23, 133039 23, 974133 25, 246734 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 17, 408109 15, 445108	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325	223, 2871 223, 7368 225, 1779 226, 6423 231, 6194 237, 5397 245, 4053 254, 5854 264, 7029 273, 7668 282, 8423 288, 0441 292, 0749 291, 4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727	3 4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1746 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.712 530.716 500.162 450.430 409.772 371.978 324.647 290.166 253.137	4113.45; 4103.24; 4115.57; 4004.34; 3361.80; 3782.80;	000000000000000000000000000000000000000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 1.692210	23, 039723 23, 133039 23, 974133 25, 240734 26, 455397 27, 262168 27, 503694 27, 149601 24, 918144 23, 257006 21, 386468 19, 408109 17, 408109 15, 445108 13, 588809	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.719 572.123 530.716 500.162 450.436 409.773 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.570 4004.34; 3961.80; 3782.800	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 1.692210 1.3930	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168 27,503694 27,149601 26,254501 24,918144 23,257006 21,386468 19,406206 17,408109 15,445108 13,588809 11,8398	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 275153 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.719 572.123 530.716 500.162 450.430 409.779 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.570 4004.34; 3361.800	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.079289 0.061493	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 2.045741 1.692710 1.3930 1.1404	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168 27,503694 27,149601 26,254501 24,918144 23,257006 11,408109 15,445108 13,588809 11,8398 10,2613	71, 979611 72, 291333 73,078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223, 2871 223, 7368 225, 1779 226, 6423 231, 6194 237, 5397 245, 4053 254, 5854 264, 7029 273, 7668 282, 8423 288, 0441 292, 0749 291, 4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.718 530.716 500.162 450.430 409.779 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.570 4004.34; 3361.80; 3782.800	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.736330 4.077416 2.933405 2.457771 2.045741 1.692210 1.3930 1.1404 0.9307	23.039723 23.133039 23.974133 25.246734 26.455397 27.562168 27.503694 27.149601 26.254501 24.918144 23.257006 11.386468 19.406206 17.408109 15.445108 13.588809 11.8398 10.2613 8.7932	71, 979611 72, 291333 73,078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 282.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633,6278 630,2333 621,7829 602,981 575,649 541,265 485,784 459,060 415,088 360,498 328,869 288,756 251,463 217,518 186,727 159,277	4124,921 3 4113,452 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1746 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.713 530.716 500.162 450.430 409.775 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.570; 4004.34; 3361.80; 3782.800	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 5.434735 2.933405 2.457771 2.045741 1.692210 1.3930 1.1404 0.9307 0.7554	23, 039723 23, 133039 23, 974133 25, 246734 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 11, 408109 15, 4445108 13, 588809 11, 8398 10, 2613 8, 7932 7, 5466	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223, 2871 223, 7368 225, 1779 226, 6423 231, 6194 237, 5397 245, 4053 254, 5854 264, 7029 273, 7668 282, 8423 288, 0441 292, 0749 291, 4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,452 9 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.719 530.716 500.162 450.436 409.778 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.57; 4004.34; 3961.80; 3782.800	1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.028450	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 1.692210 1.3930 1.1404 0.7554 0.6124	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168 27,503694 27,149601 26,254501 24,918144 23,257006 21,386468 19,406206 17,408109 11,588809 11,8398 10,2613 8,7932 7,5466 6,3611	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,455 9 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.719 572.123 530.716 500.162 450.436 409.778 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.570 4004.34; 3961.800; 3782.800	
0 1 2 3 3 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.021967	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.736330 2.457771 2.0457772 2.045771 1.692210 1.3930 1.1404 0.9307 0.6124 0.4931	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168 27,503694 27,149601 26,254501 24,918144 23,257006 21,386468 19,406206 17,408109 15,445108 13,588809 11,8398 10,2613 8,7932 7,5466 6,3611 5,4421	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.719 572.123 530.716 500.162 450.430 409.779 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.570 4004.34; 3361.800	1
0 1 2 3 3 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 21 21 21 21 21 21 21 21 21 21 21	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.028450 0.021967 0.016944	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 2.045741 1.692210 1.3930 1.1404 0.9307 0.7554 0.6124 0.4931 0.3979	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168 27,503694 27,149601 26,254501 24,918144 23,257006 21,386468 19,406206 17,408109 11,588809 11,8398 10,2613 8,7932 7,5466 6,3611	71, 979611 72, 291333 73,078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 80, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223, 2871 223, 7368 225, 1779 226, 6423 231, 6194 237, 5397 245, 4053 254, 5854 264, 7029 273, 7668 282, 8423 288, 0441 292, 0749 291, 4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.719 530.716 500.162 450.430 409.779 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.570 4004.34; 3361.80; 3782.800	1
0 1 2 3 3 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.021967	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.736330 2.457771 2.0457772 2.045771 1.692210 1.3930 1.1404 0.9307 0.6124 0.4931	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168 27,503694 27,149601 24,918144 23,257006 11,408109 15,445108 13,588809 10,2613 8,7932 7,5466 6,3611 5,4421 4,4883	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124.921 3 4113.452 9 4081.56 4117.69 3927.13 3806.01 3638.47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.719 530.716 500.162 450.430 409.779 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.57; 4004.34; 3961.80; 3782.800	1
0 1 2 3 3 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 22 23 23 24 24 25 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.274477 0.215164 0.168201 0.131167 0.102078 0.061493 0.047622 0.036835 0.028450 0.01967 0.016944 0.013050	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 2.045741 1.692210 1.1404 0.9307 0.7554 0.6124 0.4931 0.3979 0.3180	23, 039723 23, 133039 23, 974133 25, 246734 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 11, 8398 10, 2613 8, 7932 7, 5466 6, 3611 5, 4421 4, 4883 3, 8720	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223, 2871 223, 7368 225, 1779 226, 6423 231, 6194 237, 5397 245, 4053 254, 5854 264, 7029 273, 7668 282, 8423 288, 0441 292, 0749 291, 4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.719 572.123 530.716 500.162 450.436 409.778 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.570 4004.34; 3961.80; 3782.800	
0 1 2 3 3 4 5 6 6 7 8 8 9 9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 23 23 24 25 26 26 27 27 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.02450 0.016944 0.013050 0.010066	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.145572 5.434735 4.776330 4.077416 3.473772 2.933405 2.457771 2.045741 1.692210 1.3930 1.1404 0.9307 0.7554 0.6124 0.4931 0.3979 0.3180 0.2551 0.2033 0.1611	23,039723 23,133039 23,974133 25,246734 26,455397 27,262168 27,503694 27,149601 26,254501 24,918144 23,257006 21,386468 19,406206 17,408109 15,445108 10,2613 8,7932 7,5466 6,3611 5,4421 4,4883 3,8720 3,1010 2,7186 2,1171	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 558.719 572.123 530.716 500.162 450.430 409.779 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.570 4004.34; 3361.800	
0 1 2 3 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.061493 0.047622 0.036835 0.028450 0.01966 0.010066 0.007735 0.005971 0.005971	7. 033635 7.411047 7. 884250 8. 032917 7. 85251 6. 145572 4. 736330 4. 077416 3. 473772 2. 933405 2. 457771 2. 045741 1. 692210 1. 1404 0. 9307 0. 7554 0. 4931 0. 3979 0. 3180 0. 2551 0. 2033 0. 1611 0. 1292	23, 039723 23, 133039 23, 974133 25, 246734 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 11, 48309 11, 8398 10, 2613 8, 7932 7, 5466 6, 3611 5, 4421 4, 4883 3, 8720 3, 1010 2, 7186 2, 1171 1, 8616	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 275153 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 22.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 558.718 572.123 530.716 500.162 450.430 409.779 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.570 4004.34; 3361.800	
0 1 2 3 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 22 23 24 25 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.02450 0.016944 0.013050 0.007735 0.005971 0.004575 0.004575	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 2.933405 2.457771 1.692210 1.3930 1.1404 0.9307 0.7554 0.6124 0.4931 0.3979 0.3180 0.2551 0.2033 0.16111 0.1292 0.0999	23, 039723 23, 133039 23, 974133 25, 246734 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 17, 408109 11, 8398 10, 2613 8, 7932 7, 5466 6, 3611 5, 4421 4, 4883 3, 8790 3, 1010 2, 7186 2, 1171 1, 8616 1, 4734	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 13.4896 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.719 572.123 530.716 500.162 450.436 409.773 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.570 4004.34; 3961.80; 3782.800	
0 1 2 3 3 4 5 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 26 26 27 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.028450 0.013050 0.013050 0.010966 0.007735 0.005971 0.004575 0.003527 0.002687	7.033635 7.411047 7.884250 8.032917 7.853009 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 1.692210 1.3930 1.1404 0.4931 0.3979 0.3180 0.2551 0.2033 0.1611 0.1292 0.0999 0.0818	23, 039723 23, 133039 23, 974133 25, 246734 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 17, 408109 11, 8398 10, 2613 8, 7932 7, 5466 6, 3611 5, 4421 4, 4883 3, 8720 3, 1010 2, 7186 2, 1171 1, 8616 1, 4734 1, 2191	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223. 2871 223. 7368 225. 1779 226. 6423 231. 6194 237. 5397 245. 4053 254. 5854 264. 7029 273. 7668 282. 8423 288. 0441 292. 0749 291. 4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.719 572.123 530.716 500.162 450.436 409.775 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.570 4004.34; 3961.800	
0 1 2 3 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 22 23 24 25 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	1.443403 1.913541 1.785029 1.549698 1.300851 1.070263 0.868749 0.698334 0.557208 0.442019 0.348991 0.274477 0.215164 0.168201 0.131167 0.102078 0.079289 0.061493 0.047622 0.036835 0.02450 0.016944 0.013050 0.007735 0.005971 0.004575 0.004575	7.033635 7.411047 7.884250 8.032917 7.853009 7.421918 6.827451 6.145572 5.434735 4.736330 4.077416 3.473772 2.933405 2.457771 1.692210 1.3930 1.1404 0.4931 0.3979 0.3180 0.2551 0.2033 0.1611 0.1292 0.0999 0.0818	23, 039723 23, 133039 23, 974133 25, 246734 26, 455397 27, 262168 27, 503694 27, 149601 26, 254501 24, 918144 23, 257006 21, 386468 19, 406206 17, 408109 11, 8398 10, 2613 8, 7932 7, 5466 6, 3611 5, 4421 4, 4883 3, 8790 3, 1010 2, 7186 2, 1171 1, 8616 1, 4734	71, 979611 72, 291333 73, 078272 74, 828355 77, 602119 81, 018673 84, 506752 87, 352803 89, 568894 90, 275153 90, 298901 88, 045253 85, 598325 81, 153259 76, 990786	223.2871 223.7368 225.1779 226.6423 231.6194 237.5397 245.4053 254.5854 264.7029 273.7668 282.8423 288.0441 292.0749 291.4897	61.0871 60.1466 57.2610 53.0066 47.9630 42.5997 37.2605 32.1745 27.4837 23.2590 19.5281 16.2786 11.1148 9.1166	633.6278 630.2333 621.7829 602.981 575.649 541.265 485.784 459.060 415.088 360.498 328.869 288.756 251.463 217.518 186.727 159.277	4124,921 3 4113,455 4081,56 4117,69 3927,13 3806,01 3638,47	1 60.1466 2 59.1740 56.5766 52.6120 47.8032 42.6115 37.3871 32.3721 27.7167 23.5019 19.7688 16.5088 13.6967 11.3031	630.247 627.711 616.614 598.719 572.123 530.716 500.162 450.436 409.775 371.978 324.647 290.166 253.137 219.095 188.397	4113.45; 4103.24; 4115.570 4004.34; 3961.800	

TABLE III $\label{eq:the_secular_part} \text{The Secular Part of } a'R_1 \text{ and } a'a \frac{d\,R_1}{d\,a}$

	$a'R_1$	$a'a\frac{dR_1}{da}$		$a'R_1$	$a^{\dagger}a^{\dagger}\frac{dR_{1}}{da}$
$\begin{array}{c} c^2 \dots \\ e^{\cdot 2} \dots \\ e^{\cdot 2} \dots \\ \eta^2 \dots \\ ee^{\cdot} \cos (\pi^{\cdot} - \omega) \dots \\ \\ \\ e^4 \dots \\ e^2 e^{\cdot 2} \dots \\ e^{\cdot 2} e^{\cdot 2} \dots \\ e^{\cdot 2} \eta^2 \dots \\ e^{\cdot 2} \eta^2 \dots \\ \\ \\ \\ e^{\cdot 2} \eta^2 \dots \\ \\ \\ e^{\cdot 2} \eta^2 \dots \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} +0.0865918 \\ +0.0251538 \\ +0.0251538 \\ +0.0251538 \\ -0.6272122 \\ -0.2607341 \\ +0.56190 \\ +1.33401 \\ +0.88184 \\ -1.93599 \\ -1.93599 \\ +1.76281 \\ -1.24424 \\ -1.40074 \\ +2.22418 \end{array}$	+9.8583567 +0.8761220 +0.8761220 -1.4781822 -1.1557895 +1.74322 +2.47198 +1.98512 -3.07405 +3.06850 -2.40640 -2.52614 +3.36840	$\begin{array}{ c c c c c c }\hline e^2e'^2\cos{(2\pi'-2\omega)}$	+0.99969 +1.78790 -1.92947 +1.46501 +1.27508 +2.43034 +2.62632 +1.87452 -1.15232 -2.82749 -2.54231 +2.24628 +2.43887 -1.85260	$ \begin{array}{r} +2.15413 \\ +2.86277 \\ -3.06977 \\ +2.64637 \end{array} $

TABLE IV $\label{eq:table_problem}$ The Periodic Part of $|R_{01}|$ and $|a'| a \frac{dR_{01}}{d|a|}$

	a^*R_i	$a'a\frac{dR_1}{da}$		$a'R_1$	$a'a\frac{dR_1}{da}$
$\cos(l - \lambda)^*$	0.00721	+0.28184	$e^2 \cos 5 (l' - \lambda)$	-0.35075	-0.97380
$(2l'-2\lambda)$	9,77533	0.25164	6 (")	-0.38904	-1.14951
$(3l'-3\lambda)$	9.58197	0.19025	7 (")	-0.39410	-1.24479
$(4l'-4\lambda)$	9.40673	0.11423	8 (")	-0.37758	-1.29703
$(5l'-5\lambda)$	9.24211	0.02949	9 (")	-0.34586	-1.32173
$(6l'-6\lambda)$	9.08452	9,93889	10 (")	-0.30281	-1.32699
$(7l'-7\lambda)$	8.93191	9.84406	11 (")	-0.25101	-1.31768
$(8l'-8\lambda)$	8.78305	9.74602	12 (")	-0.19218	-1.29697
$(9l'-9\lambda)$	8,63708	9.64544	13 (")	-0.12762	-1.26701
$(10l'-10\lambda)$	8.49313	9.54281	14 (")	-0.05835	-1.22951
$(11l'-11\lambda)$	8.35170	9.43851	15 (")	-9.98498	-1.18546
$(12l'-12\lambda)$	8.21155	9.33277	, , ,		
$(13l'-13\lambda)$	8.07273	9.22583	$ e^{-2}\cos 1 (l'\lambda)^{\frac{1}{4}}$	+0.11873	+1.12581
$(14l'-14\lambda)$	7,93510	9.11782	2(")	+8.51634	+0.94391
$(15l'-15\lambda)$	7.79844	9.00893		-0.01770	+0.43016
$(16l'-16\lambda)$	7.66266	8.89921	4 (**)	-0.25362	-0.56341
$(17l'-17\lambda)$	7.52763	8.78883	5 (")	-0.35075	-0.97380
$(18l'-18\lambda)$	7.39322	8.67781	6 (")	-0.38904	-1.14951
$(19U-19\lambda)$	7.25935	8.56626	7 ('')	-0.39410	-1.24479
$(20U - 20\lambda)$	7.12613	8,45408	8 (")	-0.37758	-1.29703
$(21l'-21\lambda)$	6,99344	8.34177	9 (")	-0.34586	-1.32173
$(22l'-22\lambda)$	6.86091	8.20260	10 (")	-0.30281	-1.32699
$(23l'-23\lambda)$	6,72916	8.11561	11 (")	-0.25101	-1.31768
$(24l'-24\lambda)$	6.59770	8.00286	12 (")	-0.19218	-1.29697
$(25l'-25\lambda)$	6.46687	7.88846	13 (")	-0.12762	-1.26701
$(26U-26\lambda)$	6.33646	7,77605	11 (")	-0.05835	-1.22951
$(27l'-27\lambda)$	6.20683	7.66039	15 (")	-9.98498	-1.18546
$(28l' - 28\lambda)$	6.07918	7.54741	16 (")	-9.90806	-1.10319
			17 (")	-9.82827	-1.08171
$l^2 \cos l^2 (l' - \lambda)^{\dagger}$	+0.11873	+1.12581	18 (')	-9.74554	-1.02395
2 (")	+8.51634	+0.94394	19 (")	-9.66068	-0.96123
3 (")	-0.01770	+0.43016	20 (")	-9.57357	-0.89724
4 (")	-0.25362	-0.56311	21 (")	-9.48515	-0.82730

	a R ₀₁	$a a \frac{dR_{01}}{da}$		a <i>E</i> ₀₁	$a a \frac{dR_{01}}{da}$
$ \cos (l - \lambda) \dagger e^2 \cos (l - \lambda) $	9.41901 0.22828	0.06418 1 13790	‡ c 2 cos (T - \lambda)	0.22828	1 13790

 ${\tt TABLE\ IV-Continued}$

	$a'R_1$	$a'a\frac{dR_1}{da}$		$a'R_1$	$a^{\dagger}a\frac{dR_1}{da}$
$e'^{2}\cos 22(l'-\lambda)$ $23(")$ $24(")$ $25(")$ $26(")$ $27(")$ $3(")$ $4(")$ $5(")$ $6(")$ $7(")$ $8(")$ $9(")$ $10(")$ $11(")$ $12(")$ $13(")$ $14(")$ $ee'\cos (-14l'+14\lambda-\pi'+\omega)$ $(-13l'+13\lambda-\pi'+\omega)$ $(-12l'+13\lambda-\pi'+\omega)$ $(-11l'+11\lambda-\pi'+\omega)$ $(-11l'+11\lambda-\pi'+\omega)$ $(-11l'+11\lambda-\pi'+\omega)$ $(-8l'+8\lambda-\pi'+\omega)$ $(-9l'+9\lambda-\pi'+\omega)$ $(-8l'+6\lambda-\pi'+\omega)$ $(-6l'+6\lambda-\pi'+\omega)$ $(-7l'+7\lambda-\pi'+\omega)$ $(-6l'+6\lambda-\pi'+\omega)$ $(-4l'+4\lambda-\pi'+\omega)$ $(-4l'+4\lambda-\pi'+\omega)$ $(-4l'+1\lambda-\pi'+\omega)$ $(-1l'+1\lambda-\pi'+\omega)$ $(-1l'+1\lambda-\pi'+\omega)$ $(+1l'-1\lambda-\pi'+\omega)$ $(+2l'-2\lambda-\pi'+\omega)$ $(+3l'-3\lambda-\pi'+\omega)$ $(+4l'-4\lambda-\pi'+\omega)$ $(+6l'-6\lambda-\pi'+\omega)$ $(+6l'-6\lambda-\pi'+\omega)$ $(+7l'-7\lambda-\pi'+\omega)$ $(+9l'-9\lambda-\pi'+\omega)$ $(+10l'-10\lambda-\pi'+\omega)$ $(+10l'-10\lambda-\pi'+\omega)$ $(+11l'-11\lambda-\pi'+\omega)$ $(+11l'-11\lambda-\pi'+$	-9.39375 -9.30276 -9.20808 -9.11528 -9.01870 -8.92376 -0.91949 -0.86242 -0.78855 -0.70515 -0.61557 -0.52144 -0.42405 -0.32396 -0.22089 -0.11780 -0.01235 -9.90566 -9.7941 -9.6874 +9.96354 +0.03481 +0.10201 +0.16646 +0.21979 +0.26775 +0.30586 +0.33099 +0.35423 +0.31908 +0.25649 +0.10825 +9.67090 -9.79862 -0.32618 -9.90635 +9.75072 +0.20803 +0.36239 +0.42800 +0.44861 +0.41967 +0.38249 +0.4361 +0.41967 +0	-0.76103 -0.68869 -0.61236 -0.53135 -0.42275 -0.36884 -1.77208 -1.75256 -1.72103 -1.67940 -1.61780 -1.57267 -1.49467 -1.49467 -1.49467 -1.19052 -1.13657	$\begin{array}{c} e \cos{(-15l'+16\lambda-\omega)} \\ & (-14l'+15\lambda-\omega) \\ & (-13l'+14\lambda-\omega) \\ & (-12l'+13\lambda-\omega) \\ & (-11l'+12\lambda-\omega) \\ & (-10l'+11\lambda-\omega) \\ & (-9l'+10\lambda-\omega) \\ & (-8l'+9\lambda-\omega) \\ & (-6l'+7\lambda-\omega) \\ & (-6l'+7\lambda-\omega) \\ & (-6l'+7\lambda-\omega) \\ & (-6l'+7\lambda-\omega) \\ & (-1l'+2\lambda-\omega)^{\ddagger} \\ & (0+11\lambda-\omega) \\ & (-1l'+2\lambda-\omega)^{\ddagger} \\ & (0+11\lambda-\omega) \\ & (+1l'+0-\omega)^{\parallel} \\ & (+2l'-1\lambda-\omega) \\ & (+3l'-2\lambda-\omega) \\ & (+3l'-3\lambda-\omega) \\ & (+4l'-3\lambda-\omega) \\ & (+6l'-5\lambda-\omega) \\ & (+7l'-6\lambda-\omega) \\ & (+8l'-7\lambda-\omega) \\ & (+9l^{\circ}-8\lambda-\omega) \\ & (+10l'-9\lambda-\omega) \\ & (+11l'-10\lambda-\omega) \\ & (+12l'-11\lambda-\omega) \\ & (+13l'-12\lambda-\omega) \\ & (+16l'-15\lambda-\omega) \\ & (+16l'-15\lambda-\omega) \\ & (+16l'-15\lambda-\omega) \\ & (+16l'-15\lambda-\omega) \\ & (+18l'-17\lambda-\omega) \\ & (+19l'-18\lambda-\omega) \\ & (+20l'-19\lambda-\omega) \\ & (+22l'-21\lambda-\omega) \\ & (+22l'-21\lambda-\omega) \\ & (+23l'-22\lambda-\omega) \\ & (+24l'-23\lambda-\omega) \\ & (+25l'-24\lambda-\omega) \\ & (+26l'-25\lambda-\omega) \\ & (+27l'-26\lambda-\omega) \\ \end{array}$ $\begin{array}{c} e' \eta^2 \cos{(-5l'+6\lambda-\pi')} \\ & (-4l'+5\lambda-\pi') \\ & (-3l'+4\lambda-\pi') \\ & (-4l'+23\lambda-\pi') \\ & (-4l'+2\lambda-\pi') \\ &$	+8.63615 +8.70024 +8.84260 +8.94315 +8.99994 +9.13667 +9.22846 +9.31558 +9.39664 +9.46912 +9.56825 +9.56825 +9.47673 +8.77790 -9.85836 -0.29524 -0.31905 -0.285341 -0.22294 -0.11868 -0.06568 -9.97662 -9.88312 -9.68661 -9.58485 -9.48128 -9.78621 -9.68661 -9.58485 -9.48128 -9.37621 -9.68661 -9.58485 -9.78621 -9.26987 -9.16240 -9.05346 -8.94448 -8.8325 -8.7193 -8.6128 -8.4914 -8.3802 -8.2787 -8.1461 -8.0414 -7.9294 -7.7781 -9.5670 -0.3363 -0.78866 -1.03902 -1.23930 -1.40534 -1.62371 -1.66751 -1.63782 -1.6951 -1.63782 -1.60951 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060 -1.55060	+9.83573 +9.91034 +9.98124 +0.04738 +0.10800 +0.16173 +0.20683 +0.24062 +0.25901 +0.25495 +0.10616 +9.80115 -9.57062 -0.25333 -0.54615 -0.74966 -0.87577 -0.93780 -0.96047 -0.95724 -0.93582 -0.9097 -0.85582 -0.74262 -0.67725 -0.60731 -0.53315 -0.45625 -0.37608 -0.29336 -0.29336 -0.29336 -0.29336 -0.29336 -0.29336 -0.29832 -0.12140 -0.03041 -9.98909 -9.84991 -9.71742 -9.66238 -9.59450 -9.46982 -9.36254 -9.27439 -1.64789 -1.86721 -2.07463 -2.22685 -2.34916 -2.253806 -2.63953 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293 -2.69293
	a R ₀₁	$a a \frac{dR_{01}}{da}$		a R ₀₁	$a'a \frac{dR_{01}}{da}$
* 9 (1 .))	·		1 (14)		
* $\eta^2 \cos(l - \lambda)$ † $ee' \cos(2l - 2\lambda - \pi + \omega)$ † $e \cos(-1l' + 2\lambda - \omega)$	-0.87815 -0.19321 -9.50312	$ \begin{array}{c c} -1.76651 \\ -1.11913 \\ -0.33627 \end{array} $	$\begin{cases} e \cos\left(+ll'-\omega\right) \\ s e'\eta^2 \cos\left(2l'-\lambda-\pi'\right) \end{cases}$	$ \begin{array}{c} -9.92532 \\ -1.60785 \end{array} $	-0.82933 -2.60325

 ${\tt TABLE\ IV}-Continued$

	$a'R_1$	$a'a\frac{dR_1}{da}$		$a' R_1$	$a'a\frac{dR_1}{da}$
$e^{2}e' \cos \left(-5l' + 4\lambda - \pi' + 2\omega\right) \\ \left(-4l' + 3\lambda - \pi' + 2\omega\right) \\ \left(-3l' + 2\lambda - \pi' + 2\omega\right) \\ \left(-2l' + 1\lambda - \pi' + 2\omega\right) \\ \left(-1l - \pi' + 2\omega\right) \\ \left(-1k - \pi' + 2\omega\right) \\ \left(+1l' - 2\lambda - \pi' + 2\omega\right) \\ \left(+2l' - 3\lambda - \pi' + 2\omega\right)^{*} \\ \left(+3l' - 1\lambda - \pi' + 2\omega\right) \\ \left(+4l' - 5\lambda - \pi' + 2\omega\right) \\ \left(+5l' - 6\lambda - \pi' + 2\omega\right) \\ \left(+5l' - 6\lambda - \pi' + 2\omega\right) \\ \left(+6l' - 7\lambda - \pi' + 2\omega\right)$	-0.8880 -0.69906 -0.30291 +9.92231 +0.44722 +0.50232 +0.33640 +0.25082 +0.46735 +0.50298 +0.67669	-1.56745 -0.96806 +1.14196 +1.63487 +1.57314 +1.54949 +1.44892 +1.31174 +1.20852 +1.30750 +1.43470	$e'\eta^{2}\cos(-5l'+6\lambda+\pi'-2\tau')\\ (-4l'+5\lambda+\pi'-2\tau')\\ (-3l'+4\lambda+\pi'-2\tau')\\ (-2l'+3\lambda+\pi'-2\tau')\\ (-l'+2\lambda+\pi'-2\tau')\\ (+\lambda+\pi'-2\tau')\\ (+l'+4\lambda+\pi'-2\tau')\\ (+2l'-\lambda+\pi'-2\tau')\\ (+3l'-2\lambda+\pi'-2\tau')\\ (+4l'-3\lambda+\pi'-2\tau')\\ (+5l'-4\lambda+\pi'-2\tau')\\ (+5l'+4l'+3\lambda+\pi'-2\tau')\\ (+5l'+4l'+3\lambda+\pi'-2\tau'-2\tau')\\ (+5l'+4l'+3\lambda+\pi'-2\tau'-2\tau'-2\tau')\\ (+5l'+4l'+3\lambda+\pi'-2\tau'-2\tau'-2\tau'-2\tau'-2\tau'-2\tau'-2\tau'-2\tau'-2\tau'-2\tau$	+1.29596 +1.31680 +1.31943 +1.29627 +1.23431 +1.11194 +0.93827 +0.71600 +0.41280 +9.869 +9.695	$\begin{array}{c} +2.40281 \\ +2.35763 \\ +2.35646 \\ +2.29751 \\ +2.23702 \\ +2.15580 \\ +2.05097 \\ +1.92361 \\ +1.76335 \\ +1.49128 \\ +0.50284 \\ \end{array}$
$(+6l' - 7\lambda - \pi' + 2\omega) \\ (+7l' - 8\lambda - \pi' + 2\omega) \\ (+8l' - 9\lambda - \pi' + 2\omega) \\ (+8l' - 9\lambda - \pi' + 2\omega) \\ (+9l' - 10\lambda - \pi' + 2\omega)$ $(ee'^2 \cos(-3l' + 4\lambda - 2\pi' + \omega) \\ (-2l' + 3\lambda - 2\pi' + \omega) \\ (-1l' + 2\lambda - 2\pi' + \omega) \\ (+1l' - 2\pi' + \omega)^{\dagger} \\ (+2l' - \lambda - 2\pi' + \omega)^{\dagger} \\ (+3l' - 2\lambda - 2\pi' + \omega)^{\dagger} \\ (+3l' - 3\lambda - 2\pi' + \omega) \\ (+3l' - 5\lambda - 2\pi' + \omega) \\ (+6l' - 5\lambda - 2\pi' + \omega) \\ (+6l' - 5\lambda - 2\pi' + \omega) \\ (+7l' - 6\lambda - 2\pi' + \omega) \\ (+8l' - 7\lambda - 2\pi' + \omega) \\ (+10l' - 9\lambda - 2\pi' + \omega) \\ (+10l' - 9\lambda - 2\pi' + \omega) \\ (+12l' - 11\lambda - 2\pi' + \omega) \\ (+13l' - 12\lambda - 2\pi' + \omega) \\ (+14l' - 13\lambda - 2\pi' + \omega) \\ (+16l' - 15\lambda - 2\pi' + \omega) \\ (+16l' - 15\lambda - 2\pi' + \omega) \\ (+17l' - 16\lambda - 2\pi' + \omega) \\ (+18l' - 17\lambda - 2\pi' + \omega) \\ (+19l' - 18\lambda - 2\pi' + \omega) \\ (+18l' - 18$	+0.67669 +0.73775 +0.7320 +0.7320 +0.7320 +0.79085 -0.27967 -0.27183 -0.34415 -0.49862 -0.63517 -9.84466 +0.58035 +0.92130 +1.08595 +1.18222 +1.23636 +1.26588 +1.27442 +1.30750 +1.2923 +1.1861 +1.1400 +1.0864 +1.0294	+1.43470 +1.55163 +1.64573 -1.85450 -1.33136 -1.43722 -1.60499 -1.66780 -1.73583 -1.74196 -1.64784 -1.33764 +1.00639 +1.67554 +1.93308 +2.08651 +2.18250 +2.25244 +2.25244 +2.3302 +2.3124 +2.3124 +2.3124 +2.3124 +2.3193 +2.2944 +2.2945	$\begin{array}{c} e^2\cos\left(-15l'+17\lambda-2\omega\right) \\ \left(-14l'+16\lambda-2\omega\right) \\ \left(-13l'+15\lambda-2\omega\right) \\ \left(-13l'+15\lambda-2\omega\right) \\ \left(-12l'+14\lambda-2\omega\right) \\ \left(-11l'+13\lambda-2\omega\right) \\ \left(-10l'+12\lambda-2\omega\right) \\ \left(-9l'+11\lambda-2\omega\right) \\ \left(-8l'+10\lambda-2\omega\right) \\ \left(-6l'+8\lambda-2\omega\right) \\ \left(-6l'+8\lambda-2\omega\right) \\ \left(-6l'+8\lambda-2\omega\right) \\ \left(-4l'+6\lambda-2\omega\right) \\ \left(-4l'+6\lambda-2\omega\right) \\ \left(-4l'+6\lambda-2\omega\right) \\ \left(-1l'+3\lambda-2\omega\right) \\ \left(-1l'+3\lambda-2\omega\right) \\ \left(+1l'+\lambda-2\omega\right) \\ \left(+1l'+\lambda-2\omega\right) \\ \left(+1l'+\lambda-2\omega\right) \\ \left(+3l'-\lambda-2\omega\right) \\ \left(+3l'-\lambda-2\omega\right) \\ \left(+3l'-\lambda-2\omega\right) \\ \left(+3l'-\lambda-2\omega\right) \\ \left(+3l'-\lambda-2\omega\right) \\ \left(+3l'-\lambda-2\omega\right) \\ \left(+6l-4\lambda-2\omega\right) \\ \left(+6l-4\lambda-2\omega\right) \\ \left(+9l'-7\lambda-2\omega\right) \\ \left(+9l'-7\lambda-2\omega\right) \\ \left(+10l'-8\lambda-2\omega\right) \\ \left(+11l'-9\lambda-2\omega\right) \\ \left(+11l'-9\lambda-2\omega\right) \\ \left(+11l'-9\lambda-2\omega\right) \\ \left(+11l'-9\lambda-2\omega\right) \\ \left(+11l'-9\lambda-2\omega\right) \\ \left(+11l'-9\lambda-2\omega\right) \\ \end{array}$	+9.24027 +9.31742 +9.33085 +9.46082 +9.52625 +9.58652 +9.64061 +9.68729 +9.72481 +9.75101 +9.75645 +9.72682 +9.67070 +9.59754 +9.52883 +0.01641 +0.40522 +0.65307 +0.65307 +0.68475 +0.68475 +0.63725 +0.6940 +0.63725 +0.54238 +0.54238 +0.48375	+0.43503 +0.48170 +0.52397 +0.55912 +0.58718 +0.60623 +0.61491 +0.61095 +0.59171 +0.55413 +0.49529 +0.41556 +0.32907 +0.28771 +0.37614 +0.60222 +0.86905 +1.12207 +1.31007 +1.43951 +1.52567 +1.52567 +1.58014 +1.61081 +1.62313 +1.62091 +1.60692 +1.58323
$(+20l' - 19\lambda - 2\pi' + \omega)$ $e\eta^{2} \cos(-7l' + 8\lambda + \omega - 2\tau')$ $(-6l' + 7\lambda + \omega - 2\tau')$ $(-5l' + 6\lambda + \omega - 2\tau')$ $(-3l' + 1\lambda + \omega - 2\tau')$ $(-2l' + 3\lambda + \omega - 2\tau')$ $(-1l' + 2\lambda + \omega - 2\tau')$ $(+1l' + \omega - 2\tau')$ $(+1l' + \omega - 2\tau')$ $(+2l' - 1\lambda + \omega - 2\tau')$ $(+3l' - 2\lambda + \omega - 2\tau')$ $(+3l' - 2\lambda + \omega - 2\tau')$ $(+3l' - 3\lambda + \omega - 2\tau')$ $(+5l' - 4\lambda + \omega - 2\tau')$ $(+5l' - 4\lambda + \omega - 2\tau')$	+0.9689 -1.2074 -1.2652 -1.3038 -1.3579 -1.3890 -1.4053 -1.40226 -1.37107 -1.29957 -1.17705 -1.02811 -0.85473 -0.6522 +0.8957	-2.38643 -2.40115 -2.42015 -2.42015 -2.42130 -2.38263 -2.33788 -2.27635 -2.19749 -2.10319 -1.99008 -1.68111 -1.45964 +2.14747	$(+12l' - 10\lambda - 2\omega) (+13l' - 11\lambda - 2\omega) (+14l' - 12\lambda - 2\omega) (+15l' - 13\lambda - 2\omega) e^4 \cos (6l' - 4\lambda - 2\omega) e^2e'^2 \cos (6l' - 4\lambda - 2\omega) e^2\eta^2 \cos (6l' - 4\lambda - 2\omega) ee' \cos (-14l' + 16\lambda - \pi' + \omega) (-13l' + 15\lambda - \pi' + \omega) (-12l' + 14\lambda - \pi' + \omega) (-11l' + 13\lambda - \pi' + \omega) (-10l' + 12\lambda - \pi' + \omega) (-9l' + 11\lambda - \pi' + \omega) (-9l' + 11\lambda - \pi' + \omega) (-9l' + 10) (-9l' + $	$\begin{array}{c} +0.41942 \\ +0.35033 \\ +0.27722 \\ +0.20117 \\ -1.12189 \\ -1.96412 \\ -2.37355 \\ -9.45461 \\ -9.52409 \\ -9.59232 \\ -9.65343 \\ -9.71070 \\ -9.76026 \\ -9.9169 \end{array}$	+1.57516 +1.51267 +1.46801 +1.41817 -0.66219 -0.68980 -0.72546 -0.75293 -0.77237 -0.78155
$(-11l' + 12\lambda + \pi' - 2\tau')$ $(-10l' + 11\lambda + \pi' - 2\tau')$ $(-9l' + 10\lambda + \pi' - 2\tau')$ $(-8l' + 9\lambda + \pi' - 2\tau')$ $(-7l' + 8\lambda + \pi' - 2\tau')$ $(-6l' + 7\lambda + \pi' - 2\tau')$	+0.9694 +1.03910 +1.10898 +1.16382 +1.21675 +1.24785	$\begin{array}{c} +2.19770 \\ +2.24296 \\ +2.27639 \\ +2.31562 \\ +2.34110 \\ +2.35007 \\ \end{array}$	$(-8l'+10\lambda-\pi'+\omega)$ $(-7l'+9\lambda-\pi'+\omega)$ $(-6l'+8\lambda-\pi'+\omega)$ $(-5l'+7\lambda-\pi'+\omega)$ $(-4l'+6\lambda-\pi'+\omega)$ $(-3l'+5\lambda-\pi'+\omega)$	-9.80168 -9.83322 -9.85272 -9.85763 -9.84562 -9.81730	$\begin{array}{c} -0.77921 \\ -0.76337 \\ -0.73261 \\ -0.68749 \\ -0.63181 \\ -0.60033 \\ \end{array}$
$ \begin{array}{l} * c^2 c' \cos \left(2 l - 3 \lambda - \pi' + 2 \omega \right) \\ \dagger c e^{ 2} \cos \left(l - 2 \pi' + \omega \right) \\ \dagger c e^{ 2} \cos \left(3 l - 2 \lambda - 2 \pi' + \omega \right) \end{array} $	$^{+0.08489}_{-0.66115}_{-0.74740}$	$\begin{array}{c} +1.29959 \\ +1.66348 \\ -1.75186 \end{array}$		$\begin{array}{ c c c }\hline -1.27419 \\ +9.05308 \\ +9.97509 \\ \hline\end{array}$	$ \begin{array}{r} -2.19436 \\ +0.32112 \\ +0.68348 \end{array} $

TABLE IV - Continued

	$a'R_1$	$a'a \frac{dR_1}{da}$		$a'R_1$	$a'a\frac{dR_1}{da}$
$ee' \cos \left(-\frac{2l'+4\lambda-\pi'+\omega}{(-1l'+3\lambda-\pi'+\omega)}\right) \\ \left(-\frac{1l'+3\lambda-\pi'+\omega}{(-1l'+1\lambda-\pi'+\omega)^*}\right) \\ \left(+\frac{2\lambda-\pi'+\omega}{(-1\lambda-\pi'+\omega)^*}\right) \\ \left(+\frac{3l'-1\lambda-\pi'+\omega}{(-1\lambda-\pi'+\omega)}\right) \\ \left(+\frac{4l'-2\lambda-\pi'+\omega}{(-1\lambda-\pi'+\omega)}\right) \\ \left(+\frac{6l'-4\lambda-\pi'+\omega}{(-1\lambda-\pi'+\omega)}\right) \\ \left(+\frac{6l'-4\lambda-\pi'+\omega}{(-1\lambda-\pi'+\omega)}\right) \\ \left(+\frac{8l'-6\lambda-\pi'+\omega}{(-1\lambda-\pi'+\omega)}\right) \\ \left(+\frac{9l'-7\lambda-\pi'+\omega}{(-1\lambda-\pi'+\omega)}\right) \\ \left(+\frac{11l'-9\lambda-\pi'+\omega}{(-11l'-9\lambda-\pi'+\omega)}\right) \\ \left(+\frac{13l'-11\lambda-\pi'+\omega}{(-13l'-11\lambda-\pi'+\omega)}\right) \\ \left(+\frac{14l'-12\lambda-\pi'+\omega}{(-13\lambda-\pi'+\omega)}\right) \\ \left(+\frac{16l'-14\lambda-\pi'+\omega}{(-17l'-15\lambda-\pi'+\omega)}\right) \\ \left(+\frac{18l'-16\lambda-\pi'+\omega}{(-19l'-17\lambda-\pi'+\omega)}\right) \\ \left(+\frac{18l'-16\lambda-\pi'+\omega}{(-17l'-15\lambda-\pi'+\omega)}\right) \\ \left(+\frac{19l'-17\lambda-\pi'+\omega}{(-17l'-15\lambda-\pi'+\omega)}\right) \\ \left(+\frac{19l'-17\lambda-\pi'+\omega}{(-18\lambda-\pi'+\omega)}\right) \\ \left(+\frac{19l'-17\lambda-\pi'+\omega}{(-18\lambda-\pi'+\omega)}\right) \\ \left(+\frac{19l'-17\lambda-\pi'+\omega}{(-18\lambda-\pi'+\omega)}\right) \\ \left(+\frac{19l'-17\lambda-\pi'+\omega}{(-18\lambda-\pi'+\omega)}\right) \\ \left(+\frac{19l'-17\lambda-\pi'+\omega}{(-18\lambda-\pi'+\omega)}\right) \\ \left(+\frac{19l'-17\lambda-\pi'+\omega}{(-18\lambda-\pi'+\omega)}\right) \\ \left(+\frac{18l'-18\lambda-\pi'+\omega}{(-18\lambda-\pi'+\omega)}\right) \\ \left(+\frac{18l'-18\lambda-\pi'+\omega}{(-18\lambda-\pi'+\omega)$	-9.78599 -9.80319 -9.96440 -0.32618 -0.76116 -0.95270 -1.04356 -1.08200 -1.08907 -1.07461 -1.04473 -1.00354 -0.95327 -0.89581 -0.83247 -0.76422 -0.69179 -0.61583 -0.53674 -0.45500 -0.37162 -0.28443 -0.19590	-0.61951 -0.74161 -0.94535 -1.17716 -1.40475 -1.60877 -1.75595 -1.85722 -1.92368 -1.96385 -1.98376 -1.98771 -1.97885 -1.95945 -1.93127 -1.89567 -1.84138 -1.80627 -1.75403	$e'^{2}\cos(+13l'-11\lambda-2\pi')$ $(+14l'-12\lambda-2\pi')$ $(+15l'-13\lambda-2\pi')$ $(+16l'-14\lambda-2\pi')$ $(+16l'-14\lambda-2\pi')$ $(+17l'-15\lambda-2\pi')$ $(+18l'-16\lambda-2\pi')$ $(+20l'-18\lambda-2\pi')$ $(+20l'-18\lambda-2\pi')$ $(+22l'-20\lambda-2\pi')$ $(+22l'-20\lambda-2\pi')$ $(+23l'-21\lambda-2\pi')$ $(+23l'-22\lambda-2\pi')$ $(+25l'-23\lambda-2\pi')$ $e^{2}e'^{2}\cos(6l'-4\lambda-2\pi')$ $e'^{4}\cos(6l'-4\lambda-2\pi')$ $e'^{2}\eta^{2}\cos(6l'-4\lambda-2\pi')$ $ee'^{3}\cos(6l'-4\lambda-2\pi')$ $ee'^{3}\cos(6l'-4\lambda-2\pi')$	$\begin{array}{c} +0.56873 \\ +0.50405 \\ +0.42870 \\ +0.32885 \\ +0.26891 \\ +0.18518 \\ +0.09914 \\ +0.01641 \\ +9.92174 \\ +9.828 \\ +9.736 \\ +9.642 \\ +9.549 \\ -1.43088 \\ -1.38917 \\ -2.41885 \\ +0.61278 \\ +9.80482 \\ \end{array}$	+1.67392 +1.63504 +1.59026 +1.54035 +1.48593
$(7-2ll'-19\lambda-\pi'+\omega) \\ (+2ll'-19\lambda-\pi'+\omega) \\ (+22l'-20\lambda-\pi'+\omega) \\ (+23l'-21\lambda-\pi'+\omega) \\ (+24l'-22\lambda-\pi'+\omega) \\ (+25l'-23\lambda-\pi'+\omega) \\ (+25l'-23\lambda-\pi'+\omega) $ $e^3e'\cos\left(6l'-4\lambda-\pi'-\omega\right)$ $ee'^3\cos\left(6l'-4\lambda-\pi'+\omega\right)$ $ee'^2\cos\left(6l'-4\lambda-\pi'-\omega\right)$ $e'^2\cos\left(-13l'+15\lambda-2\pi'\right) \\ (-12l'+14\lambda-2\pi') \\ (-11l'+13\lambda-2\pi') \\ (-10l'+12\lambda-2\pi') $	$\begin{array}{c} -0.1350 \\ -0.10619 \\ -0.01410 \\ -9.92169 \\ -9.82802 \\ -9.73320 \\ +1.55169 \\ +1.90298 \\ +2.67076 \\ +9.05721 \\ +9.12087 \\ +9.17921 \\ +9.23160 \end{array}$	+0.25209 +0.28538 +0.31322 +0.33160	$ \begin{array}{c} (-8l' + 10\lambda - 2\tau') \\ (-7l' + 9\lambda - 2\tau') \\ (-6l' + 8\lambda - 2\tau') \\ (-6l' + 8\lambda - 2\tau') \\ (-5l' + 7\lambda - 2\tau') \\ (-4l' + 6\lambda - 2\tau') \\ (-3l' + 5\lambda - 2\tau') \\ (-2l' + 4\lambda - 2\tau') \\ (-1l' + 3\lambda - 2\tau') \\ (+1l' + 1\lambda - 2\tau') \\ (+2l' - 2\tau') \\ (+3l' - 1\lambda - 2\tau') \\ (+3l' - 1\lambda - 2\tau') \\ (+4l' - 2\lambda - 2\tau') \\ (+6l' - 4\lambda - 2\tau') \\ (+6l' - 4\lambda - 2\tau') \\ (+7l' - 5\lambda - 2\tau') \end{array} $	$\begin{array}{c} +9.90875 \\ +0.01207 \\ +0.11295 \\ +0.21128 \\ +0.30652 \\ +0.39791 \\ +0.48377 \\ +0.62721 \\ +0.66859 \\ +0.62721 \\ +0.56176 \\ +0.48377 \\ +0.39791 \\ +0.30652 \\ +0.21128 \end{array}$	+1.06556 +1.13965 +1.26049 +1.26022 +1.37988 +1.42334 +1.45683 +1.47818 +1.45683 +1.47818 +1.45683 +1.42331 +1.37988 +1.32337 +1.26022
$(-10t + 12\lambda - 2\pi')$ $(-9t' + 11\lambda - 2\pi')$ $(-8t' + 10\lambda - 2\pi')$ $(-7t' + 9\lambda - 2\pi')$ $(-6t + 8\lambda - 2\pi')$ $(-5t + 7\lambda - 2\pi')$ $(-4t' + 6\lambda - 2\pi')$ $(-3t' + 5\lambda - 2\pi')$ $(-2t' + 4\lambda - 2\pi')$ $(-1t' + 3\lambda - 2\pi')$ $(+1t' + 1\lambda - 2\pi')$ $(+1t' + 1\lambda - 2\pi')$ $(+2t' - 2\pi')$	+9.27674 +9.31260 +9.33832 +9.35170 +9.35120 +9.33760 +9.31988 +9.32919 +0.42933 +0.66761 +0.01535 +0.47741	+0.34096 +0.33905 +0.32542 +0.29997 +0.26624 +0.23602 +0.23562 +0.30124 +0.44797 +0.65018 +0.86905 +1.07029	$(+8l' - 6\lambda - 2\tau') (+9l' - 7\lambda - 2\tau') (+10l' - 8\lambda - 2\tau') (+11l' - 9\lambda - 2\tau') e^2\eta^2 \cos(6l' - 4\lambda - 2\tau') e^{'2}\eta^2 \cos(6l' - 4\lambda - 2\tau') \eta^4 \cos(6l' - 4\lambda - 2\tau') e^3 \cos(-4l' + 7\lambda - 3\omega) (-3l' + 6\lambda - 3\omega) $	+0.11295 +0.01207 +9.90875 +9.80482 +1.60097 -9.77815 -1.8902 +9.8553 +9.7528	+1.20649 +1.13965 +1.06556 +0.98963 +0.40115 +9.98511
$(+ 3l' - 1\lambda - 2\pi') \ddagger (+ 4l' - 2\lambda - 2\pi') (+ 5l' - 3\lambda - 2\pi') (+ 6l' - 4\lambda - 2\pi') (+ 7l' - 5\lambda - 2\pi') (+ 8l' - 6\lambda - 2\pi') (+ 9l' - 7\lambda - 2\pi') (+ 10l' - 8\lambda - 2\pi') (+ 11l' - 9\lambda - 2\pi') (+ 12l' - 10\lambda - 2\pi') $	$ \begin{array}{c} +0.71910 \\ +0.82723 \\ +0.87482 \\ +0.87649 \\ +0.84943 \\ +0.81018 \\ +0.70536 \\ +0.64307 \end{array} $	+1.28134 +1.45132 +1.57246 +1.65437 +1.70646 +1.73492 +1.74713 +1.74431 +1.72992 +1.70594	$(-2l'+5\lambda-3\omega) (-1l'+4\lambda-3\omega)S (+3\lambda-3\omega) (+1l'+2\lambda-3\omega)*† (+2l'+1\lambda-3\omega) (+3l'-3\omega) (+4l'-1\lambda-3\omega) (+5l'-2\lambda-3\omega) (+6l'-3\lambda-3\omega) (+7l'-4\lambda-3\omega)$	+9.5688 +8.91434 -9.47553 -9.76373 -0.19564 -0.57471 -0.81489 -0.96891 -1.06843 -1.13096	-9.72835 -0.36710 -0.65861 -0.91747 -1.19371 -1.45904 -1.68553 -1.86215 -1.99642 -2.09720
* $ee^{\cdot}\cos\left(l^{+}\lambda-\pi^{\cdot}+\omega\right)$ † $e^{\cdot2}\cos\left(l^{+}\lambda-2\pi^{\cdot}\right)$	-0.54492	$ \begin{array}{c c} & a \cdot a \cdot \frac{dR_{01}}{da} \\ & -1.36718 \end{array} $	$\frac{1}{\eta^2 \cos((l'+\lambda-2\tau'))}$	+0.59194	$ \begin{array}{c c} & a \cdot a \frac{dR_{01}}{da} \\ & +1.47407 \end{array} $
$ \begin{array}{l} $	$^{+0.22818}_{+0.43000}$	+0.86347 +1.21926	$\begin{array}{c} \$ e^3 \cos \left(-l + 4\lambda - 3\omega\right) \\ * \dagger e^3 \cos \left(l + 2\lambda - 3\omega\right) \end{array}$	$ \begin{array}{r} -9.22874 \\ -9.78663 \end{array} $	$ \begin{array}{r} -0.41163 \\ -0.91912 \end{array} $

 ${\tt TABLE\ IV-Continued}$

	$a'R_1$	$a'a \frac{dR_1}{da}$		$a'R_1$	$a^{\dagger}a\frac{dR_{1}}{da}$
$e^{3}\cos\left(+\frac{8l'-5\lambda-3\omega}{(+9l'-6\lambda-3\omega)}\right) \\ (+9l'-6\lambda-3\omega) \\ (+10l'-7\lambda-3\omega) \\ (+11l'-8\lambda-3\omega) \\ (+12l'-9\lambda-3\omega)$ $e^{3}\cos\left(-\frac{9l'+10\lambda-\omega}{(+8l'+9\lambda-\omega)}\right) \\ (-8l'+9\lambda-\omega) \\ (-6l'+7\lambda-\omega) \\ (-6l'+7\lambda-\omega) \\ (-5l'+6\lambda-\omega) \\ (-4l'+5\lambda-\omega) \\ (-2l'+3\lambda-\omega) \\ (-1l'+2\lambda-\omega)^{*} \\ (0+1\lambda-\omega) \\ (+1l'-0-\omega) \\ (+2l'-1\lambda-\omega) \\ (+3l'-2\lambda-\omega) \\ (+4l'-3\lambda-\omega) \\ (+3l'-2\lambda-\omega) \\ (+4l'-3\lambda-\omega) \\ (+6l'-5\lambda-\omega) \\ (+6l'-5\lambda-\omega) \\ (+7l'-6\lambda-\omega) \\ (+8l'-7\lambda-\omega) \\ (+9l'-8\lambda-\omega) \\ (+10l'-9\lambda-\omega) \\ (+11l'-10\lambda-\omega) \\ (+12l'-11\lambda-\omega) \\ (-8l'+9\lambda-\omega) \\ (-7l'+8\lambda-\omega) \\ (-6l'+7\lambda-\omega) \\ (-6l'+7$	-1.16689 -1.22853 -1.18324 -1.16615 -1.14907 -0.74554 -0.73687 -0.71240 -0.66521 -0.59757 -0.49870 -0.37293 -0.25876 -0.25876 -0.25551 -0.41652 -0.55374 -0.46545 -9.84061 +0.36700 +0.73745 +0.91761 +1.01983 +1.08200 +1.11387 +1.15698 -0.97630 -0.96265 -0.92609 -0.88947 -0.81325 -0.72779 -0.65040 -0.63759 -0.72955 -0.72779 -0.65040 -0.63759 +1.17387 +1.15698 -0.97630 -0.98265 -0.92609 -0.88947 -0.81325 -0.72779 -0.65040 -0.63759 -0.72955 -0.72055 -0.87612 -0.90274 -0.64935 +0.25003 +0.95436 +1.20194 +1.33746 +1.1716 +1.46228 +1.48712 +1.47712 +1.447 +1.416 +1.3828 +1.48712 +1.47712 +1.447 +1.116 +1.3858 +1.48712 +1.13714	-2.15963 -2.22382 -2.25182 -2.27985	$ e^{\eta^{2}}\cos(-1l'+2\lambda-\omega) \\ + 1\lambda-\omega) \\ + 1l' - \omega, \\ + 2l' - 1\lambda-\omega) \\ + 3l' - 2\lambda-\omega) \\ + 4l' - 3\lambda-\omega) \\ + 4l' - 3\lambda-\omega) \\ + 5l' - 4\lambda-\omega) \\ + 6l' - 5\lambda-\omega) \\ + 8l' - 7\lambda-\omega) \\ + 9l' - 8\lambda-\omega) \\ + 10l' - 9\lambda-\omega) \\ + 11l' - 10\lambda-\omega) \\ + 12l' - 11\lambda-\omega)$ $ e' \cos(-20l'+21\lambda-\pi') \\ + 18l' + 19\lambda-\pi') \\ + 18l' + 19\lambda-\pi') \\ + 18l' + 19\lambda-\pi') \\ + 18l' + 15\lambda-\pi') \\ + 16l' + 17\lambda-\pi') \\ + 16l' + 17\lambda-\pi') \\ + 11l' + 12\lambda-\pi') \\ + 11l' + 12\lambda-\pi') \\ + 10l' + 11\lambda-\pi') \\ + 2l' + 3\lambda-\pi') \\ + 3l' + 4\lambda-\pi') \\ + 2l' + 3\lambda-\pi') \\ + 4l' + 5\lambda-\pi') \\ + 4l' + 3\lambda-\pi') \\ + 11l' + 10\lambda-\pi') \\ + 12l' + 11\lambda-\pi') \\ + 12l' + 12\lambda-\pi') \\ + 11l' + 10\lambda-\pi') \\ + 12l' + 11\lambda-\pi') \\ + 12l' + 12\lambda-\pi') \\ + 11l' + 10\lambda-\pi') \\ + 12l' + 11\lambda-\pi') \\ + 12l' + 11\lambda-\pi') \\ + 12l' + 11\lambda-\pi') \\ + 12l' + 12\lambda-\pi')	+1.32789 +1.47807 +1.57859 +1.66789 +1.64668 +1.64527 +1.61669 +1.58686 +1.53107 +1.48746 +1.42730 +1.36171 +1.29159 -7.954 -8.0792 -8.1760 -8.2900 -8.3979 -8.4983 -8.60338 -8.70483 -8.70483 -8.9087 -9.36881 -9.36881 -9.36881 -9.35513 -7.22194 +9.65167 +0.28833 +0.39478 +0	+2.40601 +2.49862 +2.57175 +2.62475 +2.66011 +2.67877 +2.67981 +2.67615 +2.65498 +2.63004 +2.55630 +2.51412 +2.46377 -9.3090 -9.3955 -9.4824 -9.5658 -9.6478 -9.7262 -9.8021 -9.7387 -9.9413 -0.0034 -0.0588 -0.1061 -0.1427 -0.16185 -0.16624 -0.13494 +0.62721 +0.81795 +0.43014 +0.62721 +0.97499 +0.99035 +0.98215 +0.97499 +0.99035 +0.98215 +0.97499 +0.99035 +0.98215 +0.6896 +0.6187 +0.6896 +0.6896 +0.6896 +0.6896 +0.6896 +0.6896 +0.6896 +0.6896 +0.6896 +0.6896 +0.6896 +0.6896 +0.6022 +9.4756
	a'Ro1	$a'a \frac{dR_{01}}{da}$		a R ₀₁	$a a \frac{dR_{01}}{da}$
* $e^3 \cos(-l + 2\lambda \omega)$	-0.18139	-4.35665	$ \begin{vmatrix} c\eta^2 \cos(-l + 2\lambda - \omega) \\ \xi\eta^2 \cos(-l - \omega) \end{vmatrix} $	1.35514	+2 40665 +2,57043
$\begin{array}{c} +cc^{2}\cos\left(-l+2\lambda-\omega\right) \\ +ce^{2}\cos\left(-l-\omega\right) \end{array}$	$ \begin{array}{r} -0.71402 \\ -0.93244 \end{array} $	-1.79389 -1.95144	$\begin{cases} \hat{S} c \eta^2 \cos \left(\frac{l}{2l} - \omega \right) \\ * \dagger e \cos \left(2l - \lambda - \omega \right) \end{cases}$	$\begin{array}{c} +1.56543 \\ +9.98823 \end{array}$	+2.57013 +0.70117

 ${\bf TABLE~IV}-Continued$

	$a'R_1$	$a'a \frac{dR_1}{da}$		$a'R_1$	$a \cdot a \frac{dR_1}{da}$
$e^{2}e' \cos \left(-7l' + 8\lambda - \pi'\right) \\ \left(-6l' + 7\lambda - \pi'\right) \\ \left(-5l' + 6\lambda - \pi'\right) \\ \left(-4l' + 5\lambda - \pi'\right) \\ \left(-3l' + 4\lambda - \pi'\right) \\ \left(-3l' + 4\lambda - \pi'\right) \\ \left(-1l' + 2\lambda - \pi'\right) \\ \left(+1\lambda - \pi'\right) \\ \left(+1l' - \pi'\right) \\ \left(+2l' - 1\lambda - \pi'\right)^{*} \\ \left(+3l' + 2\lambda - \pi'\right) \\ \left(+3l' + 2\lambda - \pi'\right) \\ \left(+4l' - 3\lambda - \pi'\right) \\ \left(+6l' - 5\lambda - \pi'\right) \\ \left(+6l' - 5\lambda - \pi'\right) \\ \left(+8l' - 7\lambda - \pi'\right) \\ \left(+9l' - 8\lambda - \pi'\right) \\ \left(+10l' - 9\lambda - \pi'\right) \\ \left(-6l' + 7\lambda - \pi'\right) \\ \left(-6l' + 7\lambda - \pi'\right) \\ \left(-6l' + 6\lambda - \pi'\right) \\ \left(-6l' + 5\lambda - \pi'\right) \\ \left(-3l' + 6\lambda - \pi'\right) \\ \left(-3l' + 4\lambda - \pi'\right) \\ \left(-3l' + 4\lambda - \pi'\right) \\ \end{array}$	+0.90217 +0.86457 +0.86457 +0.89557 +0.73111 +0.64802 +0.63801 +0.77974 +0.92443 +0.93706 +0.65094 -0.36158 -0.99561 -1.23150 -1.36124 -1.43727 -1.47979 -1.51569 +0.51348 +0.47012 +0.41162 +0.34713 +0.31190	+1.76226 +1.67484 +1.60148 +1.57523 +1.60714 +1.84224 +1.83856 +1.93602 +1.97961 +1.93932 +1.75312 +0.86503 -1.73756 -1.08641 -1.38807 -1.38807 -1.38838 +1.33270 +1.29632 +1.31836	$(-2l' + 3\lambda - \pi')$ $(-1l' + 2\lambda - \pi')$ $(+1l' - \pi')$ $(+2l' - \lambda - \pi')\dagger$ $(+3l' - 2\lambda - \pi')$ $(+3l' - 3\lambda - \pi')$ $(+5l' - 4\lambda - \pi')$ $(+6l' - 5\lambda - \pi')$ $(+7l' - 6\lambda - \pi')$ $(+8l' - 7\lambda - \pi')$ $(+9l' - 8\lambda - \pi')$ $(+10l' - 9\lambda - \pi')$ $(+11l' - 10\lambda - \pi')$ $(+12l' - 11\lambda - \pi')$ $(+13l' - 12\lambda - \pi')$ $(+13l' - 13\lambda - \pi')$ $(+14l' - 13\lambda - \pi')$ $(+14l' - 13\lambda - \pi')$ $(+15l' - 14\lambda - \pi')$ $(+16l' - 15\lambda - \pi')$ $(+17l' - 16\lambda - \pi')$ $(+18l' - 17\lambda - \pi')$ $(+19l' - 18\lambda - \pi')$ $(+20l' - 19\lambda + \pi')$	+0.33417 +0.44469 +0.60576 +0.70807 +0.60160 +9.88412 -0.53788 -0.89185 -1.06225 -1.16523 -1.22011 -1.25003 -1.29035 -1.2778 -1.278 -1.278 -1.1313 -1.0785 -1.0213 -0.9624 -0.9017	+1.40159 +1.51683 +1.62587 +1.70018 +1.71297 +1.62638 +1.32931 -0.94718 -1.64883 -1.91255 -2.06915 -2.17036 -2.23523 -2.28193 -2.3006 -2.3194 -2.3142 -2.3099 -2.2790 -2.2624
	a'R ₀₁	$a a \frac{dR_{01}}{da}$		a R ₀₁	$a'a \frac{dR_{01}}{da}$

	a'R ₀₁	$a \cdot a \frac{dR_{01}}{da}$		a R ₀₁	$a'a \frac{dR_{01}}{da}$
* $e^2e'\cos(2l-\lambda-\pi)$	+0.97336	+1.98303	$\dagger e^3 \cos(2l - \lambda - \pi')$	+0.70988	+1.72237

UNIVERSITY OF CALIFORNIA LIBRARY, BERKELEY

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

Books not returned on time are subject to a fine of 50c per volume after the third day overdue, increasing to \$1.00 per volume after the sixth day. Books not in demand may be renewed if application is made before expiration of loan period.

西岛 17 1925

RECD LD W 14 66-3PM

OCT 8 1925

DEC 26 1924

14 Mar 49 M W

JUN 2 8 1960

"..... The \$8 4086

9

20m-1,'22

N. 14. C. W.

