Principles of Parameter Estimation

Stephan Lewandowsky

Overview for Today (Wednesday)

Time	Instructor	Topic
9:00 – 10:30	Stephan Lewandowsky	Parameter estimation
10:30 – 1:00	Gordon Brown, Cas Ludwig, Laura F.	From basics to maximum likelihood estimation
1:00 - 2:00		lunch
2:00 – 4:00	GB, CL, LF	From basics to maximum likelihood estimation, exercises
4:00 – dinner	All	meet mentors and discuss projects
6:30/7:00		Dinner
8:00	All	Bowling

Yes, there will be breaks

Objectives of Modeling

Objectives of Modeling

Classes of Parameters

- Free parameters
 - estimated from the data to maximize fit of model
 - parsimony of model determined (in part) by their number
 - the more free parameters, the greater the flexibility (all other things being equal)
- Fixed parameters
 - not estimated but fixed
 - less relevant to determine parsimony

Free or Fixed?

```
1  #random walk model
2  nreps <- 1000
3  nsamples <- 2000
4
5  drift <- 0.0  #noninformative stimulus
6  sdrw <- 0.3
7  criterion <- 3</pre>
```

Discrepancy Function

Discrepancy Function

- Requirements
 - must yield single numeric value
 - must be continuous
- By convention
 - express model fit as discrepancy ...
 - ... that is to be minimized
- Other labels
 - cost function, error function, objective function

Discrepancy Function

RMSD

 Residual | Root Mean Squared Deviation ("least squares")

$$RMSD = \sqrt{\frac{\sum_{j=1}^{J} (d_j - p_j)^2}{J}}$$

Parameter Estimation

Parameter Estimation

 The choice of discrepancy function is independent of the choice of parameterestimation technique

RMSD

- usually has no obvious statistical properties
- parameter estimates have no obvious statistical properties
- ... unlike maximum likelihood (ML: later today)
- But: everything that follows also applies to ML

Introductory Example

Introductory Example

Simple Linear Regression

- Why this particular regression line?
 - computed by analysis program
 - "least squares" solution

Let's explore some others

Parameter Estimation

- Move through parameter space ...
- ... from some set of starting values ...
- ... down the error surface ...
- ... until a minimum is reached.
- Those are the best-fitting parameter estimates.

How?

Parameter Estimation Techniques

- Many methods exist
- We focus on SIMPLEX
 - others are in the text book
- Assume that parameter values are continuous

SIMPLEX

- Simplex = set of D+1 interconnected points for arbitrary dimensionality D
 - -2D = triangle
 - -3D = pyramid
 - -4D = pentachoron
- In SIMPLEX, dimensionality = number of parameters
 - 2 parameter regression = triangular simplex

SIMPLEX

SIMPLEX

- Once initial simplex has been created
 - by evaluating discrepancy function at each vertex
- It tumbles down error surface
 - somersault towards lowest vertex ("reflection")
 - if particularly rewarding, may be accompanied by expansion
 - or move points with worst fit closer to center ("contraction")

Limitations of SIMPLEX

- Inadvisable to use SIMPLEX with more than 5 parameters (Box, 1966)
 - even 2 can be tough …
- Discrepancy function must be deterministically related to parameter values
 - random variation turns error surface into "bubbling goo"
 - inevitable with random components (e.g., random-walk simulation)
 - run many replications

Potential Problems

- SIMPLEX (and other related techniques) can only move downhill
- SIMPLEX is blind to anything but local surroundings
- Hence SIMPLEX may run into trouble when the error surface has a challenging shape
 - trenches
 - ridges
 - plateaus

Some Possible Solutions

- Multiple starting values
 - convergence to same best-fitting estimates is suggestive of global minimum
 - especially if starting values differ widely
- Simulated annealing
 - SIMPLEX on steroids with a shake
 - can jump out of local minima
 - in Chapter 3 in Farrell & Lewandowsky

SIMPLEX in R

