Condicionais e Loops

Técnicas de Programação - 2025/02

Última atualização: 04/08/2025 11:40

Para cada algoritmo abaixo:

- 1. leia o pseudo código
- 2. simule seu funcionamento usando as entradas de exemplo
- 3. confira o resultado usando os testes no exercício do PrairieLearn
- 4. use o CheatSheet para converter o pseudo código para Java

Área do triângulo

Algorithm 1: AreaTriangulo

Result: Calcula área do Triângulo

Input: float b, float h

Output: float return $\frac{b \times h}{2}$

Entrada 1: b = 3, h = 5

Entrada 2: b = 9.5, h = 4

Entrada 3: b = 3, h = 5.8

Lançamento de projétil

Algorithm 2: DistanciaLancamento

Result: Determina distância do lançamento de um projétil

Input: float V, float θ , float Y_0

 $\textbf{Output:} \ \mathrm{float} \\$

$$G \leftarrow 9.8$$

$$p_1 \leftarrow \frac{V^2}{2G}$$

$$seno\theta \leftarrow \sin(\theta)$$

$$p2_1 \leftarrow \frac{2GY_0}{V^2 * seno\theta}$$

$$p2_1 \leftarrow \frac{2GY_0}{V^2 * seno\theta^2}$$

$$p2_2 \leftarrow 1 + \sqrt{1 + p2_1}$$

$$p3 \leftarrow \sin(2\theta)$$

$$\mathbf{return}\ p1*p2*p3$$

Entrada 1:
$$V = \sqrt{9.8}, \theta = \pi/6, Y_0 = 1$$

Entrada 2:
$$V = 20, \theta = \pi/4, Y_0 = 1$$

Entrada 3:
$$V = 30, \theta = \pi/3, Y_0 = 1$$

FizzBuzz

Algorithm 3: Divisibilidade Result: FizzBuzz Input : int NOutput: string if N%2 = 0 and $N\%3 \neq 0$ then | return "Ins" end if $N\%2 \neq 0$ and N%3 = 0 then | return "per" end if N%2 = 0 and N%3 = 0 then | return "per" end return "Insper" end return "Insper"

Entrada 1: N = 7

Entrada 2: N = 22

Entrada 3: N = 150

Jaca Wars

Algorithm 4: JacaWars Result: Verifica se a jaca lançada acertou. Input : float V, float θ Output: string $G \leftarrow 9.8$ $\theta \leftarrow \theta * \pi/180$ $dist \leftarrow \frac{V^2 * \sin(2\theta)}{G}$ if dist < 98 then | return "Muito perto" end if dist > 102 then | return "Muito longe" end return "Acertou"

Entrada 1: $V = 40, \theta = 15^o$

Entrada 2: $V = 40, \theta = 40^o$

Entrada 3: $V = 31.5, \theta = 45^o$

Quantos Uns

Algorithm 5: Quantos Uns Result: Conta quantos algarismos "1" existem em um número. Input : int NOutput: int $count \leftarrow 0$ while N > 0 do $d \leftarrow N\%10$ if d = 1 then $count \leftarrow count \leftarrow 1$ end $N \leftarrow N/10$ end return count

Entrada 1: N=5

Entrada 2: N = 11

Entrada 3: N = 6531

Estimando valor de π

Algorithm 6: CalculaPi

Result: Calcula o valor de π usando uma série. $\mathbf{Input} \quad \textbf{:} \ \mathrm{int} \ N$ Output: float $pi^2 = 0$ for $i \leftarrow 1$ to N+1 do $pi^2 \leftarrow pi^2 + \frac{6}{i^2}$ $\quad \text{end} \quad$ return $\sqrt{pi^2}$

Entrada 1: N=3

Entrada 2: N=4

Entrada 3: N = 10

Fatorial

Algorithm 7: Fatorial Result: Calcula o fatorial de um número Input : int NOutput: int $res \leftarrow 1$ for $i \leftarrow 1$ to N+1 do $|res \leftarrow res * i$ end return res

Entrada 1: N=4

Entrada 2: N=5

Entrada 3: N=8