Medizinische Bildanalyse Wintersemester 2024/25

Kapitel 5: Bildregistrierung

Prof. Dr.-Ing. Thomas Schultz

URL: http://cg.cs.uni-bonn.de/schultz/

E-Mail: schultz@cs.uni-bonn.de

Büro: Friedrich-Hirzebruch-Allee 6, Raum 2.117

16./23. Dezember 2024

5.1 Problemstellung und Evaluierung

Anwendungen der Bildregistrierung (Teil 1)

• **Registrierung** bringt bewegliche *Objektbilder (Templatebilder)* in Korrespondenz mit einem festen *Referenzbild*.

Einsatzbereiche:

- Korrektur von Bewegungen oder Lagerungsunterschieden bei wiederholten Aufnahmen
- Direkter Vergleich verschiedener
 Patienten oder Zeitpunkte
 - Auf Basis der registrierten Bilder oder der benötigten Deformation

Anwendungen der Bildregistrierung (Teil 2)

- Weitere Einsatzbereiche:
 - Fusionierung von Bildinhalten verschiedener Zeitpunkte oder komplementärer Modalitäten
 - Montage von Einzelbildern in Panoramas

Anwendungen der Bildregistrierung (Teil 3)

- Weiterer Einsatzbereich:
 - Strukturerhaltende **Interpolation** zwischen Bildern

Registrierung vs. Segmentierung

In bestimmten Fällen besteht eine Verwandschaft zwischen Registrierungs- und Segmentierungsproblemen:

Registrierung via Segmentierung

 Segmentierung durch statistische Formmodelle bringt Stützpunkte in Korrespondenz

Segmentierung via Registrierung

 Registrierung auf ein korrekt segmentiertes Beispiel ermöglicht eine Übertragung der Labels

Mono- vs Multimodale Registrierung

Monomodale (intramodale) Registrierung

- Annahme: Die korrekt registrierten Bilder haben im pixelweisen Vergleich ähnliche Intensitäten
- Setzt i.d.R. voraus, dass die beteiligten Bilder vom selben bildgebenden Verfahren stammen und mit ähnlichen Parametern (z.B. T1 oder T2-Wichtung im MRT) aufgenommen wurden

Multimodale (intermodale) Registrierung

 Anatomische Strukturen sollen in Korrespondenz gebracht werden, obwohl sie i.d.R. unterschiedliche Kontraste erzeugen

Zur Registrierung verwendete Information

Registrierungsverfahren unterscheiden sich in der Art der verwendeten Bildinformation:

- Manuell selektierte, durch Marker gegebene oder im Bild erkannte Landmarken (Punkte)
- Kurven oder Oberflächen
- Voxel- bzw. intensitätsbasiert

Evaluierung mit vorgegebenen Landmarken

Sind für bestimmte Landmarken Positionen

- \mathbf{r}_i (i = 1, ..., m) im Referenzbild
- \mathbf{p}_i (i = 1, ..., m) im Objektbild

bekannt, quantifizieren der mittlere bzw. maximale *Target Registration Error*

$$TRE_{mean} = \frac{1}{m} \sum_{i=1}^{m} ||\mathbf{r}_i - T(\mathbf{p}_i)||$$

 $TRE_{max} = max\{\|\mathbf{r}_i - T(\mathbf{p}_i)\| \mid i = 1, ..., m\}$ deren verbleibende Abweichung nach Anwendung der von der Registrierung bestimmten Transformation T

 Mögliche Herkunft der Landmarken: Annotation durch Experten oder Anwendung einer bekannten Transformation zu Testzwecken

Weitere wünschenswerte Eigenschaften

- Vertauschbarkeit von Referenz- und Objektbild
 - Sollte ungefähr die inverse Transformation ergeben

- Zyklische Transformationen
 - Sollten ungefähr die Identität ergeben
- Robustheit
 - Bildstörungen (z.B. künstliches Rauschen / Artefakte) sollten die geschätzte Transformation möglichst wenig verändern

Evaluierung durch Visualisierung

- Zur Einschätzung von Registrierungen visualisiert man häufig
 - Differenz- / mittlere Bilder
 - Ausrichtung von Landmarken

- Schachbrett-Muster
- Separate Farbkanäle

Bildquellen: Klaus Tönnies, Jesper Andersson et al., Philippe Cattin

Bausteine eines typischen Registrierungsalgorithmus'

Registrierung erfordert in der Regel die Auswahl

- eines **Suchraums** erlaubter Transformationen
- eines Interpolationsverfahren um die Transformation anzuwenden
 - Siehe Kapitel 2
- einer Kostenfunktion, die Abweichungen der beiden Bilder oder ihrer relevanten Merkmale (z.B. Landmarken) quantifiziert
- eines Optimierungsalgorithmus, der die Kostenfunktion minimiert

5.2 Lineare Bildtransformationen

In der Registrierung übliche Transformationen

- Je nach Art der angewandten Transformation unterscheiden wir
 - Starre Registrierung (engl. rigid registration) erlaubt nur Verschiebung und Rotation
 - Affine Registrierung (engl. affine registration) bildet parallele Linien auf parallele Linien ab
 - Deformierbare Registrierung (engl. deformable registration) erlaubt im Prinzip beliebige Deformationen, die jedoch in der Regel durch Regularisierung wieder eingeschränkt werden
 - z.B. keine gegenseitige Durchdringung von Organen, Begrenzung von Verzerrungen auf ein plausibles Maß

Punkte

- Punkte in einem Bild bilden keinen sinnvollen Vektorraum
 - Was sollte "2 x B-IT" oder "MNL + B-IT" sein?

Punkte als Vektoren

• Ein Referenzpunkt als **Ursprung** ermöglicht es mit Punkten zu arbeiten, als seien es Vektoren

Basen und Koordinaten

 Die Definition einer Basis ermöglicht die Darstellung von Vektoren durch Koeffizienten

Verschiebung des Ursprungs

 Eine Verschiebung des Ursprungs ändert die Koeffizienten von Punkten, nicht aber die von Vektoren zwischen Punkten

Homogene Koordinaten

- Homogene Koordinaten ermöglichen uns die Unterscheidung von Punkten und Vektoren:
 - Repräsentation von n-dimensionalen **Punkten** durch Geraden in einem (n+1)-dimensionalen Raum:
 - Nenne die neue Koordinate w
 - Repräsentiere den Punkt (x,y) durch (wx,wy,w)
 - Kanonische Repräsentation: (x,y,1)
 - Repräsentiere Vektoren zwischen
 Punkten mit w=0

W

(wx, wy, w)

Translation in Homogenen Koordinaten

- Translation (Parallelverschiebung) f(x)=x+t ist eine der grundlegendsten Operationen bei der Registrierung
 - Im ursprünglichen n-D-Raum ist sie jedoch nichtlinear. Für $\mathbf{t} \neq 0$ ist
 - $f(x + y) = x + y + t \neq f(x) + f(y) = x + y + 2t$
 - $f(\alpha \mathbf{x}) = \alpha \mathbf{x} + \mathbf{t} \neq \alpha f(\mathbf{x}) = \alpha \mathbf{x} + \alpha \mathbf{t}$
- Homogene Koordinaten ermöglichen Translationen mittels Matrix-Vektor-Multiplikation:

$$f(\mathbf{x}) = \mathbf{x} + \mathbf{t} = \begin{pmatrix} 1 & 0 & t_{\chi} \\ 0 & 1 & t_{\chi} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{\chi} \\ x_{\chi} \\ 1 \end{pmatrix}$$

- Hinweis: In Übereinstimmung mit der Anschauung bleiben Vektoren (w = 0) von Translationen unberührt

Rotationen: Grundidee

 Rotationen wirken immer in einer Ebene, der Orthogonalraum bleibt unberührt

- in 2D: Rotation des ganzen Bildes
- in 3D: Rotation um eine Rotationsachse
- Rotation um den Ursprung. Vorgeschaltete
 Translation ermöglicht alternatives Rotationszentrum
- Skizze zeigt Auswirkung der Rotation um θ in der von orthonormalen Vektoren $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ aufgespannten Ebene
 - Konvention: Positive heta rotieren $\hat{\mathbf{x}}$ auf $\hat{\mathbf{y}}$ zu

 $\mathbf{R}_{\theta}\mathbf{a}=\mathbf{a}.$

Rotationen: Matrix-Schreibweise

• Aufgrund der Überlegungen der vorherigen Folie $\mathbf{R}_{\theta}\hat{\mathbf{x}} = \cos\theta\,\hat{\mathbf{x}} + \sin\theta\,\hat{\mathbf{y}}; \mathbf{R}_{\theta}\hat{\mathbf{y}} = -\sin\theta\,\hat{\mathbf{x}} + \cos\theta\,\hat{\mathbf{y}}; \mathbf{R}_{\theta}\mathbf{a} = \mathbf{a}$ erhalten wir:

$$\mathbf{R}_{\theta} = \mathbf{I} + (\cos \theta - 1)(\hat{\mathbf{x}}\hat{\mathbf{x}}^{\mathrm{T}} + \hat{\mathbf{y}}\hat{\mathbf{y}}^{\mathrm{T}}) + \sin \theta (\hat{\mathbf{y}}\hat{\mathbf{x}}^{\mathrm{T}} - \hat{\mathbf{x}}\hat{\mathbf{y}}^{\mathrm{T}})$$

• Beispiel mit
$$\hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\hat{\mathbf{y}} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$: $\mathbf{R}_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Ähnlichkeitsabbildungen

- Die skalierte Einheitsmatrix $\alpha \mathbf{I}$ entspricht einer **uniformen Skalierung** um den Faktor α
 - Ähnlichkeitsabbildungen $f(\mathbf{x}) = \alpha \mathbf{R} \mathbf{x} + \mathbf{t}$ erhalten Formen, d.h. Winkel und relative Abstände
 - In der Registrierung ermöglichen sie z.B. den Ausgleich von Auflösungsunterschieden

Affine Abbildungen

- Affine Abbildungen haben die Form f(x)=Mx+t
 - Die Matrix M darf beliebig sein
 - Zusätzlich: Projektion, nicht-uniforme Skalierung, Spiegelung, Scherung
 - Bildet Geraden auf Geraden oder Punkte ab, Parallelität bleibt erhalten,
 Teilverhältnisse auf Geraden bleiben erhalten
- Homogene Koordinaten ermöglichen die Schreibweise

– "Affine" und "lineare" Registrierung werden häufig synonym verwendet

Orthogonalprojektionen

- Projektionen spielen in der Registrierung in der Regel nur eine mittelbare Rolle als Bausteine anderer Transformationen
- Orthogonalprojektion auf den von x aufgespannten Unterraum:

$$\mathbf{P}_{\mathbf{x}} = \frac{\mathbf{x}\mathbf{x}^{\mathrm{T}}}{\mathbf{x}^{\mathrm{T}}\mathbf{x}}$$

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \mathbf{P_x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• Orthogonalprojektion auf den Komplementärraum: $P_x^{\perp} = I - P_x$

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \mathbf{P}_{\mathbf{x}}^{\perp} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Nicht-uniforme Skalierung

- Nicht-uniforme Skalierung um den Faktor α entlang der Richtung \mathbf{x}
 - basiert auf der Zerlegung

$$\mathbf{v} = \mathbf{I}\mathbf{v} = \mathbf{P}_{\mathbf{x}}\mathbf{v} + \mathbf{P}_{\mathbf{x}}^{\perp}\mathbf{v}$$

– Resultierende Matrix:

$$\mathbf{S}_{\alpha,\mathbf{X}} = \alpha \mathbf{P}_{\mathbf{X}} + \mathbf{P}_{\mathbf{X}}^{\perp}$$

 In der Registrierung ermöglicht sie z.B. den Ausgleich von richtungsabhängiger (anisotroper) Auflösung

Spiegelungen und Scherungen

• Spiegelung entspricht einer nicht-uniformen Skalierung mit Faktor $\alpha = -1$: $\mathbf{M}_{\hat{\mathbf{x}}} = \mathbf{P}_{\hat{\mathbf{x}}}^{\perp} - \mathbf{P}_{\hat{\mathbf{x}}}$

• **Scherung** (Transvektion): Verschiebung parallel zu einer festen Achse, proportional (mit Scherfaktor β) zur Position entlang einer orthogonalen Achse

$$\mathbf{T} = \mathbf{I} + \beta \hat{\mathbf{x}} \hat{\mathbf{y}}^{\mathrm{T}}$$

Berechnung der Transformationen aus Korrespondenzen

- Seien wieder \mathbf{p}_i (i=1,...,m) Punkte im Objektbild, \mathbf{r}_i (i=1,...,m) korrespondierende Punkte im Referenzbild
- Gesucht sei Transformation T die zu kleinsten Quadraten führt:

$$T = \arg\min_{T'} \sum_{i=1}^{m} ||T'(\mathbf{p}_i) - \mathbf{r}_i||^2$$

- **Starre** oder **Ähnlichkeits-Transformationen** T erhalten wir mittels Prokrustes-Analyse (Kapitel 4.5)
- Affine Transformationen T ergeben sich durch lineares Ausgleichsproblem mit den Koeffizienten der Transformationsmatrix als Unbekannten (Übung)

Nachteil der Vorwärts-Transformation

- Anwendung der Vorwärts-Transformation T erzeugt das transformierte Bild durch Iteration über das Ursprungsbild
 - Manche Pixel des erzeugten Bildes erhalten mehrere Farbwerte, andere keins
 - Hinterlässt ohne weiteres Auffüllen "Löcher" im Resultat

Lösung: Nutzen der Rückwärts-Transformation

- Berechnung der inversen (Rückwärts)-Transformation T^{-1} ermöglicht Berechnung des transformierten Bildes durch Iteration über die Ausgabepixel
 - Jedes Pixel erhält genau einen Farbwert
 - Interpolation im Ursprungsbild mit üblichen Verfahren
 - Bei affinen Abbildungen: Berechnung von T^{-1} als inverse Matrix

Bild- vs. Weltkoordinaten

Bei der Arbeit mit medizinischen Bildern unterscheiden wir zwischen

- Bildkoordinaten: Indizieren Pixel/Voxel
 - Bild als Matrix: rc-Koordinaten (row/column)
 - Vertikale Position zuerst, Ursprung links oben, größere Zeilen weiter unten
 - Bild als Funktion: xy-Koordinaten
 - Horizontale Position zuerst, Ursprung links unten, größeres y weiter oben
- Weltkoordinaten: Physisches Koordinatensystem (XYZ), in dem der Patient verortet ist. Bei uniformen Voxelgittern:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} X_0 \\ Y_0 \\ Z_0 \end{pmatrix} + \chi \begin{pmatrix} X_{\chi} \\ Y_{\chi} \\ Z_{\chi} \end{pmatrix} + y \begin{pmatrix} X_{y} \\ Y_{y} \\ Z_{y} \end{pmatrix} + z \begin{pmatrix} X_{z} \\ Y_{z} \\ Z_{z} \end{pmatrix}$$

Bild- zu Weltkoordinaten als Affine Abbildung

 In homogenen Koordinaten lässt sich der Zusammenhang zwischen Bild- und Weltkoordinaten durch eine Matrix beschreiben:

$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{pmatrix} X_{x} & X_{y} & X_{z} & X_{0} \\ Y_{x} & Y_{y} & Y_{z} & Y_{0} \\ Z_{x} & Z_{y} & Z_{z} & Z_{0} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

• Bilder aus Hybridgeräten (z.B. PET/CT) sind häufig intrinsisch registriert. Korrespondenzen sind durch die Bild-zu-Welt-Transformationen gegeben bzw. können durch Matrix-Invertierung und –Multiplikation leicht berechnet werden

Zusammenfassung

- Anwendung "linearer Bildtransformationen" geht von der Nutzung homogener Koordinaten aus
 - Hierdurch werden auch Translationen abgedeckt
 - Starre Abbildungen: Translation und Rotation
 - Ähnlichkeits-Abbildungen: Starr+uniforme Skalierung
 - Affine Abbildungen: Ähnlichkeit+nicht uniforme Skalierung,
 Scherung, Spiegelung
- Erzeugung registrierter Bilder durch Rückwärts-Transformation
- Unterscheidung von Bild- und Weltkoordinaten

5.3 Registrierung als Optimierungsproblem

Registrierung als Optimierungsproblem

- Gegeben seien
 - Referenzbild y
 - Objektbild x
 - Kostenfunktion C
 - Suchraum S_T von Transformationen, parametrisiert durch **w**
- Folgendes Optimierungsproblem bestimmt die Parameter der optimalen Transformation T:

$$\mathbf{w} = \arg\min_{\mathbf{w}'} C(\mathbf{y}, T(\mathbf{x}|\mathbf{w}'))$$

Kleinste Quadrate (L2-Norm) als Kostenfunktion

 Eine einfache Kostenfunktion zur voxelbasierten Registrierung ist durch die mittlere quadratische Abweichung über die N überlappenden Pixel gegeben:

$$C = \frac{1}{N} \sum_{i=1}^{N} (x_i - y_i)^2$$

• Quiz: Was ist eine Einschränkung dieser Kostenfunktion?

Ziel von Optimierungsverfahren

- Angestrebt: algorithmische Minimierung einer Funktion f(x)
 - Annahme: f(x) ist stetig

1D-Fall: "Einfangen" von Minima durch Intervalle

• Eine kontinuierliche Funktion f(x) hat im Intervall (a,c) mindestens ein lokales Minimum, falls es darin einen inneren Punkt b gibt, für den gilt:

$$f(a)>f(b)$$
 und $f(c)>f(b)$

Finden eines initialen Intervalls

- Ausgehend von einem ersten Intervall (a,b) mit f(a)>f(b)
 vergrößern wir es schrittweise über den kleineren Wert hinaus,
 bis die Bedingung der letzten Folie erfüllt ist
 - Minimierung scheitert, wenn das Intervall zu groß wird oder die Grenze der zulässigen Werte erreicht

Iterative Verkleinerung des Intervalls

- Grundidee: Werte f(x) im längeren der beiden Intervalle (a,b) und (b,c) aus. O.B.d.A. sei dies (b,c)
 - Falls f(x) < f(b) befindet sich mindestens ein lokales Minimum in (b, c)
 - Falls f(x)>f(b) befindet sich mindestens ein lokales Minimum in (a,x)
 - In jedem Fall haben wir das Intervall verkleinert. Benenne die neuen drei Punkte in (a,b,c) um und iteriere so lange, bis $|c-a| < \theta$

An welchem Punkt verfeinern?

 Frage: Welcher neue Punkt x führt für vorgegebene (a,b,c) im nächsten Schritt zum kürzesten Intervall?

$$w = \frac{b-a}{c-a} \qquad z = \frac{x-b}{c-a}$$

Abhängig von f(x) ist das neue Intervall 1-w oder w+z breit. Um in beiden Fällen denselben Fortschritt zu erzielen setzen wir:

$$1 - w = w + z$$

$$\Rightarrow z = 1 - 2w \qquad (Gl. 1)$$

Antwort: x sollte von c denselben Abstand haben wie b von a.

Wo liegt der optimale innere Punkt?

• **Frage:** Mit welchem inneren Punkt *b* macht die Regel auf der letzten Folie für gegebenes (*a*,*c*) konstanten Forschritt?

Idee: Um konstanten Fortschritt zu machen, muss die relative Position von *x* im neuen Intervall der von *b* im ursprünglichen entsprechen

$$\frac{z}{1-w} = w \quad (Gl. 2)$$

- Kombination mit Gl. 1 (z = 1 2w) ergibt: $w^2 3w + 1 = 0$
- Die einzige Lösung in (0,1) ist $w = \frac{3-\sqrt{5}}{2} \approx 0.38197$
- Antwort: b sollte dem "goldenen Schnitt" von (a,c) entsprechen

Randbemerkung: Der goldene Schnitt in der Kunst

In der Renaissance war der "goldene Schnitt" $\phi:=\frac{1}{1-w}=\frac{1-w}{w}=\frac{1-w}{2}$ auch als "göttliche Proportion" bekannt

Algorithmus: Suche mit dem goldenen Schnitt

- Gegeben: Intervall (a,c) mit innerem Punkt b
- Iteration:
 - Berechne f(x) für einen Punkt x der das größere der Intervalle (a,b) oder (b,c) im Verhältnis 0.38:0.62 teilt $(zu\ b\ hin)$
 - Wähle in Abhängigkeit von f(x) das linke oder rechte Intervall
 - Das, wo der innere Punkt unter den Rändern liegt
- **Beobachtung:** Selbst wenn *b* ursprünglich (*a,c*) nicht im goldenen Schnitt teilt, erzeugt diese Vorgehensweise i.d.R. innerhalb weniger Iterationen Tripel im goldenen Schnitt
 - Ab diesem Punkt verkürzt jede Iteration das Intervall um den Faktor 0.62
 - "Lineare Konvergenz": Zahl der korrekten Nachkommastellen wächst linear mit der Zahl der Iterationen

Optimierung in höheren Dimensionen

- Lineare Registrierung in 3D hat einen 6- (starr) bis 12dimensionalen (affin) Suchraum
 - Die Suche mit dem goldenen Schnitt lässt sich nicht in höhere Dimensionen verallgemeinern
 - Statt dessen: Alternierende 1D-Optimierungen entlang einer Menge von Suchrichtungen
 - Beispiel: N Basis-Vektoren des N-D-Suchraums
 - In der Registrierung: Translation, Rotation, Skalierung, Scherung
 - Iteriere wiederholt über die N Richtungen, bis zur Konvergenz
 - Funktioniert dann gut, wenn Richtungen "entkoppelt" sind

Ein Problem für alternierende 1D-Ansätze

• **Problem:** Alternierende 1D-Optimierung wird sehr langsam, wenn die Zielfunktion ein schmales Tal aufweist, das mit den Suchrichtungen nicht übereinstimmt

 Zwingt die Methode zu einer großen Zahl kleiner Schritte

Verfahren von Powell

• Grundidee:

- Iteriere vom Startpunkt P₀ aus N 1D-Optimierungen
- Jede davon ende in einem neuen Punkt P_i
- Nutze nach N 1D-Optimierungen P_N - P_0 als neue
 Suchrichtung
 - Richtung des Gesamtfortschritts
 - Hoffnung: "weist entlang des Tals"

Varianten:

- Ersetze die bislang erste Suchrichtung durch die neue Richtung
 - Aber: Richtungen können degenerieren (lineare Abhängkeit)
- Ersetze die Suchrichtung mit dem größten Beitrag
 - Idee: Ersetzen einer möglicht kollinearen Richtung
- Periodische Orthogonalisierung der Suchrichtungen

Lokale und Globale Optimierung

Lokale Optimierung:

- Findet ein lokales Minimum in der Nachbarschaft des Punkts x
- Aber: Suboptima sind aufgrund von Bildinhalten oft unvermeidlich

Globale Optimierung:

- Ohne weitere Einschränkungen von f(x) können wir idR nicht darauf hoffen garantiert das globale Optimum zu finden
- Heuristiken sind oft ausreichend um sinnvolle Optima zu finden
- Manuelle Initialisierung / Eingreifen bleibt manchmal notwendig

Rastersuche

- Idee: Systematisches Ausprobieren verschiedener Initialisierungen
 - Beispiel: Je 10 Werte innerhalb eines sinnvollen Bereichs
- Vorsicht: Kombinatorische Explosion in höheren Dimensionen
 - Beispiel: Affine Transformation in 3D: 10¹² Kombinationen
 - Selbst wenn wir die Kostenfunktion in einer Zehntelsekunde auswerten können verbringen wir damit 3000 Jahre!
- Dennoch: Nützliche Idee für leicht zu berechnende Kostenfunktionen und niedrigdimensionale Suchräume

Optimierung auf mehreren Skalen

- Idee: Registriere zunächst auf einer groben Skala, verfeinere dann iterativ auf detaillierteren Skalen. Vorteile:
 - Kostenfunktion schnell zu berechnen
 - Konvergenz in wenigen Schritten
 - Eliminierung feiner Strukturen reduziert Probleme mit Suboptima

Perturbation und Neustart

- Zufällige Perturbation einer Lösung und Neustart der Optimierung kann aus lokalen Optima heraushelfen
 - Aber: Könnte natürlich auch in einem noch schlechteren Suboptimum enden
 - Daher: Vergleich zu vorherigem Optimum, Auswahl des besseren

Zusammenfassung: Registrierung per Optimierung

- Die Norm des Differenzbildes ist eine einfache Kostenfunktion zur intensitätsbasierten Bildregistrierung
- Optimierung stetiger 1D-Funktionen per Suche mit dem goldenen Schnitt
 - Grundidee: Iterative Verkürzung eines Suchintervalls
- Alternierende 1D-Optimierung als Grundidee für höhere Dimensionen
 - Verfahren von Powell findet geeignete Suchrichtungen
- Bessere Ergebnisse in der Praxis durch Heuristiken wie Rastersuche, Mehrskalen-Optimierung, Perturbation und Neustart

5.4 Nichtlineare Registrierung

Bildquelle: Oxford FMRIB

Deformierbare Registrierung

- Affine Transformationen sind nicht flexibel genug, um
 - Bewegungen der meisten Organe auszugleichen (z.B. Atmung, Herzschlag, Brain Shift)
 - Anatomie verschiedener Patienten aufeinander abzubilden
- Nichtlineare Registrierung ermöglicht die hierzu benötigten lokalen Deformationen
 - Grundidee: Darstellung der Deformation durch ein Verschiebungsvektorfeld
 - Dieses muss regularisiert werden, da sonst
 - nicht genug Bildinformation zur Verfügung steht, um es zu schätzen
 - unplausible Deformationen erzeugt werden

Verwandtes Problem: Optischer Fluss

Optischer Fluss

- **Ziel:** Finde in einer Bildsequenz die Verschiebungsvektoren **v**(**x**) jeden Pixels **x** von einem Bild ins nächste
- Zugrundeliegende Annahme: Pixel bewegen sich, ändern jedoch nicht ihre Intensität
- Approximation erster Ordnung:

$$M(\mathbf{x}) = F(\mathbf{x}) - \langle \mathbf{v}(\mathbf{x}), \nabla F(\mathbf{x}) \rangle$$

Hinweis: Nur die Bewegung entlang des Gradienten wirkt sich auf die Intensität aus. Dies bezeichnet man als *Aperturproblem*.

Lösung des Aperturproblems

- Um das **Aperturproblem** zu lösen, wählen wir den Verschiebungsvektor $\mathbf{v}(\mathbf{x})$ mit der kleinsten möglichen Norm: $\mathbf{v}(\mathbf{x}) = \lambda \nabla F(\mathbf{x})$
- Aus $M(\mathbf{x}) = F(\mathbf{x}) \langle \mathbf{v}(\mathbf{x}), \nabla F(\mathbf{x}) \rangle$ folgt dann $M(\mathbf{x}) = F(\mathbf{x}) \lambda ||\nabla F(\mathbf{x})||_2^2$ $\Rightarrow \lambda = \frac{F(\mathbf{x}) M(\mathbf{x})}{||\nabla F(\mathbf{x})||_2^2}$ $\Rightarrow \mathbf{v}(\mathbf{x}) = \frac{F(\mathbf{x}) M(\mathbf{x})}{||\nabla F(\mathbf{x})||_2^2} \nabla F(\mathbf{x})$

— Quiz: Gibt es mit dieser Formel noch ein Problem?

Dämonen-Regularisierung

• Dämonen-Regularisierung für $\|\nabla F(\mathbf{x})\|^2 \approx 0$:

$$\mathbf{v}_D(\mathbf{x}) = \frac{F(\mathbf{x}) - M(\mathbf{x})}{\|\nabla F(\mathbf{x})\|_2^2 + (F(\mathbf{x}) - M(\mathbf{x}))^2} \nabla F(\mathbf{x})$$

- wenn $\|\nabla F(\mathbf{x})\|_2^2 + (F(\mathbf{x}) M(\mathbf{x}))^2 < \epsilon : \mathbf{v}_D(\mathbf{x}) \coloneqq \mathbf{0}$
- Hält Korrespondenzen in der Nachbarschaft ($\|\mathbf{v}_D\| \le 0.5$)

$$\|\mathbf{v}_{D}(\mathbf{x})\| = \frac{|F(\mathbf{x}) - M(\mathbf{x})| \|\nabla F(\mathbf{x})\|}{\|\nabla F(\mathbf{x})\|^{2} + (F(\mathbf{x}) - M(\mathbf{x}))^{2}}$$

$$= \frac{GM^{2}(|F(\mathbf{x}) - M(\mathbf{x})|, \|\nabla F(\mathbf{x})\|)}{2 \text{ QM}^{2}(|F(\mathbf{x}) - M(\mathbf{x})|, \|\nabla F(\mathbf{x})\|)}$$

- mit GM=geometrisches Mittel, QM=quadratisches Mittel
- $-\|\mathbf{v}_D\| \le 0.5$ folgt aus der Ungleichung GM \le QM

Dämonen-Algorithmus zur Bildregistrierung

- Der **Dämonen-Algorithmus** zur Bildregistrierung (Thirion 1998) iteriert folgende Schritte:
 - 1. Berechne den regularisierten optischen Fluss $\overline{\psi}(x)$ zwischen dem festen Bild F(x) und dem deformierten Objektbild $M(\psi(x))$.
 - 2. Addiere die Flussvektoren auf das aktuelle Verschiebungsfeld: $\hat{\psi}(x) = \psi(x) + \bar{\psi}(x)$
 - 3. Regularisiere durch Gauss-Glättung: $\varphi(x) = G_{\sigma} * \hat{\psi}(x)$. Das ergibt das Verschiebungsfeld $\psi(x)$ der nächsten Iteration

Vorstellung: "Maxwellsche Dämonen" besetzen die Pixel und verschieben das Bild aufgrund der Intensitätsunterschiede.

Beispiel-Ergebnis des Dämonen-Algorithmus

• Ergebnis von (Thirion 1998)

(a) Ursprüngliches MRT-Bild

(b) Deformierte Variante von (a)

(c) Registrierung von (b) auf (a)

Zusammenfassung: Nichtlineare Registrierung

- Grundidee der nichtlinearen Registrierung:
 - Transformation durch ein Verschiebungsvektorfeld bietet genügend Flexibilität für lokale Deformationen
 - Regularisierung beschränkt Flexibilität auf ein sinnvolles Maß
- Klassischer Ansatz: Dämonen-Algorithmus
 - Basiert auf iterativer Berechnung des optischen Flusses zwischen Referenz und deformiertem Objektbild
 - Regularisiert optischen Fluss um sehr lange Vektoren zu vermeiden
 - Regularisiert das Verschiebungsvektorfeld zusätzlich durch Gauss-Glättung in jeder Iteration

Zum Nach- und Weiterlesen

- Heinz Handels: Medizinische Bildverarbeitung.
 Vieweg+Teubner, 2. Auflage, 2009
- Isaac N. Bankman: Handbook of Medical Imaging. Processing and Analysis. Academic Press, 2000
- W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery: *Numerical Recipes: The Art of Scientific Computing.* Cambridge University Press, 3rd edition, 2007
- J.-P. Thirion: *Image Matching as a Diffusion Process: An Analogy with Maxwell's Demons.* Medical Image Analysis 2(3):243-260, 1998