```
import pandas as pd
import numpy as np
import random
from random import random
import seaborn as sns
import matplotlib.pyplot as plt

matplotlib inline
import warnings
warnings.filterwarnings('ignore')
sns.set(style='darkgrid',font_scale=1.2)
plt.rcParams['font.family']='SimHei'
plt.rcParams['axes.unicode_minus']=False

train = pd.read_csv('train.csv',index_col='Id')
train.head()
```

```
1 .dataframe tbody tr th {
2    vertical-align: top;
3  }
4    .dataframe thead th {
5    text-align: right;
7  }
```

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	 PoolArea	Poo
Id												
1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	Inside	 0	NaN
2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	FR2	 0	NaN
3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	Inside	 0	NaN
4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	Corner	 0	NaN
5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	FR2	 0	NaN

5 rows × 80 columns

```
test = pd.read_csv('test.csv',index_col='Id')
test.head()
```

```
1   .dataframe tbody tr th {
2     vertical-align: top;
3   }
4   .dataframe thead th {
6     text-align: right;
7   }
```

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotConfig	 ScreenPorch	Ро
Id												
1461	20	RH	80.0	11622	Pave	NaN	Reg	Lvl	AllPub	Inside	 120	0
1462	20	RL	81.0	14267	Pave	NaN	IR1	Lvl	AllPub	Corner	 0	0
1463	60	RL	74.0	13830	Pave	NaN	IR1	Lvl	AllPub	Inside	 0	0
1464	60	RL	78.0	9978	Pave	NaN	IR1	Lvl	AllPub	Inside	 0	0
1465	120	RL	43.0	5005	Pave	NaN	IR1	HLS	AllPub	Inside	 144	0

```
1 | train.shape
```

```
1 (1460, 80)
```

1 train.describe()

```
.dataframe tbody tr th {
   vertical-align: top;
}

.dataframe thead th {
   text-align: right;
}
```

	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	Bsmt
count	1460.000000	1201.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1452.000000	1460.000000	1460.0
mean	56.897260	70.049958	10516.828082	6.099315	5.575342	1971.267808	1984.865753	103.685262	443.639726	46.549
std	42.300571	24.284752	9981.264932	1.382997	1.112799	30.202904	20.645407	181.066207	456.098091	161.3
min	20.000000	21.000000	1300.000000	1.000000	1.000000	1872.000000	1950.000000	0.000000	0.000000	0.0000
25%	20.000000	59.000000	7553.500000	5.000000	5.000000	1954.000000	1967.000000	0.000000	0.000000	0.0000
50%	50.000000	69.000000	9478.500000	6.000000	5.000000	1973.000000	1994.000000	0.000000	383.500000	0.0000
75%	70.000000	80.000000	11601.500000	7.000000	6.000000	2000.000000	2004.000000	166.000000	712.250000	0.0000
max	190.000000	313.000000	215245.000000	10.000000	9.000000	2010.000000	2010.000000	1600.000000	5644.000000	1474.0

8 rows × 37 columns

1 train.columns

```
Index(['MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street', 'Alley',
'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope',
3
            'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle',
            'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle',
 4
            'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond',
 5
 6
 7
            'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1', 'BsmtFinType2',
            'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating', 'HeatingQC',
            'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF',
9
10
            'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath',
            'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual', 'TotRmsAbvGrd',
11
12
            'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType', 'GarageYrBlt',
            \hbox{'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual', 'GarageCond',}\\
13
            'PavedDrive', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch',
14
15
             'ScreenPorch', 'PoolArea', 'PoolQC', 'Fence', 'MiscFeature', 'MiscVal',
            'MoSold', 'YrSold', 'SaleType', 'SaleCondition', 'SalePrice'],
16
17
           dtype='object')
```

Column Info

• MSSubClass: Identifies the type of dwelling involved in the sale.

```
1  # MSSubClass 用于分类
2  train['MSSubClass'] = train['MSSubClass'].astype(str)
3  test['MSSubClass'] = test['MSSubClass'].astype(str)
4  print(train['MSSubClass'].value_counts(),test['MSSubClass'].value_counts())
```

```
1 20 536
2 60 299
3 50 144
4 120 87
5 30 69
```

```
6 160
          63
7 70
8 80
9 90
10 190
          30
11 85
          20
12 75
          16
13 45
14 180
          10
15 40
16 Name: MSSubClass, dtype: int64 20
17 60 276
18 50
19 120
       95
20 30
          70
21 70
          68
22 160
23 80
24 90
          57
25 190
26 85
          28
27 180
28 75
          7
29 45
          6
30 40
31 150
32 Name: MSSubClass, dtype: int64
```

```
quant = [x for x in train.columns if train[x].dtypes != object]
quanli = [x for x in train.columns if train[x].dtypes == object]
print('quant: {}, counts: {}'.format(quant,len(quant)))
print('-----')
print('quanli: {}, counts: {}'.format(quanli,len(quanli)))

quant: ['LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'GarageYrBlt', 'GarageCars', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3ssnPorch', 'ScreenPorch', 'PoolArea', 'Miscval', 'Mosold', 'YrSold', 'SalePrice'], counts: 36
```

quanli: ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'KitchenQual', 'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC',

```
'Fence', 'MiscFeature', 'SaleType', 'SaleCondition'], counts: 44

1 total = train.isnull().sum().sort_values(ascending=False)
```

2 total

```
1 PoolQC
2 MiscFeature
                  1406
3 Alley
                  1369
                  1179
4 Fence
5 FireplaceQu
                   690
                  . . .
                   0
7 CentralAir
8
   SaleCondition
                     0
9
                     0
10 TotalBsmtSF
                     0
11 MSSubClass
12 Length: 80, dtype: int64
```

```
plt.figure(figsize=(30,10),dpi=100)
sns.boxplot(train.YearBuilt,train.SalePrice)
plt.title('YearBuilt - SalePrice Boxplot')
plt.xticks(rotation=90)
plt.savefig('YearBuilt - SalePrice Boxplot.png',dpi=80)
plt.show()
```


Insights

- Outlier prices should be trimmed.
- Normal price: [around 100k, around 400k]
- TimeSerie Line plot needed to demonstrate the fluctuation in annual price.

```
1 | train['SalePrice'].describe()
```

```
count
              1460.000000
2
            180921.195890
   mean
3
   std
             79442.502883
4
   min
             34900.000000
   25%
            129975.000000
            163000.000000
   50%
   75%
            214000.000000
8
            755000.000000
   Name: SalePrice, dtype: float64
```

```
1 | train = train[train.SalePrice >= 40000]
```

```
1 train = train[train.SalePrice <= 500000]</pre>
```

1 train.shape

```
1 (1447, 80)
```

```
df1 = train.groupby('YearBuilt').agg({'SalePrice':'mean'})
df1
```

```
1 .dataframe tbody tr th {
2    vertical-align: top;
3  }
4    .dataframe thead th {
6    text-align: right;
7  }
```

	SalePrice
YearBuilt	
1872	122000.000000
1875	94000.000000
1880	200619.750000
1882	168000.000000
1885	111250.000000
2006	251775.447761
2007	255362.734694
2008	319188.000000
2009	249076.647059
2010	394432.000000

112 rows × 1 columns

```
plt.figure(figsize=(20,10),dpi=100)

# df1.plot(color='#00338D')

plt.plot(df1,"*",color="#00338D")

plt.plot(df1,color="gray")

plt.title("YearBuild - Price Level")

# plt.savefig('YearBuild - Price Level', dpi =100)

plt.show()
```


Insights

• General annual trend of Salesprice: Up

Conclusion: YearBuilt correlate with SalesPrice.

1 train.LotFrontage.describe() #[21,313]

```
1 count
           1188.000000
            69.891414
  mean
3 std
             24.119385
            21.000000
4 min
5 25%
             59.000000
            69.000000
6 50%
7 75%
            80.000000
           313.000000
8 max
9 Name: LotFrontage, dtype: float64
```

```
1 train.LotFrontage.isnull().sum()
```

```
1 259
```

```
plt.figure(figsize=(15,10),dpi=60)
sns.distplot(train.LotFrontage,color='#00338D')
plt.title('LotFrontage Distplot')
plt.savefig('LotFrontage Distplot.png', dpi =100)
plt.show()
```


Insights

- Lmt: [0,200]
- Skewed distribution: fillna with median value

```
1 | train = train[train['LotFrontage']<=200]</pre>
```

```
train.fillna({'LotFrontage':train.LotFrontage.median()},inplace=True)
train.LotFrontage.isnull().sum()
```

```
1 train.LotArea.describe() # [1.3k,215k+]
```

```
1 \mid \mathsf{count}
             1186.000000
             9806.498314
2
  mean
3 std
             7640.920262
4 min
            1300.000000
5 25%
            7409.000000
           9245.500000
6 50%
7 75%
          11205.250000
8 max 215245.000000
9 Name: LotArea, dtype: float64
```

```
plt.figure(figsize=(15,10),dpi=60)
sns.distplot(train.LotArea,color='#00338D')
plt.title('LotArea Distplot')
plt.show()
```



```
1 | train = train[train['LotArea'] <= 50000]

1 | train['LotArea'].isnull().sum()

1 | 0

1 | train.overallQual.isnull().sum()</pre>
```

```
1  df2 = train.groupby('OverallQual').agg({'SalePrice':'mean'})
2  df2.plot()
```

```
1 | <AxesSubplot:xlabel='OverallQual'>
```


Insights

• SalePrice positively relates to overall rates of material & finish of house (AKA OverallQual)

```
1 | null_var = [i for i in quant if train[i].isnull().sum() >0]
2 | null_var
```

```
1 ['MasVnrArea', 'GarageYrBlt']
```

```
plt.figure(figsize=(15,10),dpi=60)
sns.distplot(train.GarageYrBlt,color='#00338D')
plt.title('GarageYrBlt Distplot')
```

4 plt.show()


```
1 train.fillna({'MasVnrArea':train.MasVnrArea.median(),'GarageYrBlt':train.GarageYrBlt.median()},inplace=True)
```

```
1 | null_var = [i for i in quant if train[i].isnull().sum() >0]
2 | null_var
```

1 []

Fillna finished.

```
1 | train.Utilities.unique()
```

```
1 array(['AllPub'], dtype=object)
```

```
1 | df3= train.groupby('Utilities').agg({'SalePrice':'mean'})
2 | df3
```

```
.dataframe tbody tr th {
   vertical-align: top;
}

.dataframe thead th {
   text-align: right;
}
```

	SalePrice
Utilities	
AllPub	177552.770921

```
1 | test.Utilities.unique()
```

```
1 array(['AllPub', nan], dtype=object)
```

• train 和 test Allpub 的 unique值不同,train中都是AllPub,所以对预测没有帮助,需要drop。

```
test.drop('Utilities',axis=1,inplace=True)
train.drop('Utilities',axis=1,inplace=True)
```

```
import sklearn
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
def leo(x):
    train[x]=LabelEncoder().fit_transform(train[x])
```

```
1 for i in quanli:
2 leo(i)
```

```
      1
      # 将分类数据转化成整数编码

      2
      # 获取分类变量的标签值

      3
      def Labs(x):

      4
      print(x,"--",train[x].unique())

      6
      df_obj = train[quanli]

      6
      print(list(map(Labs,df_obj)))
```

```
1 MSSubClass -- [ 9 4 10 8 3 7 14 0 5 12 1 11 2 6 13]
2 MSZoning -- [3 4 0 1 2]
 3 Street -- [1 0]
4 Alley -- [2 0 1]
5 LotShape -- [3 0 1 2]
6 LandContour -- [3 0 1 2]
   LotConfig -- [4 2 0 1 3]
8 LandSlope -- [0 1 2]
9 Neighborhood -- [ 5 24 6 15 11 21 17 3 19 16 20 12 9 10 7 23 22 4 8 14 13 0 2 18
10 1]
11 | Condition1 -- [2 1 0 5 8 6 4 3 7]
12 | Condition2 -- [2 0 5 1 4 3]
13 BldgType -- [0 1 2 4 3]
14 HouseStyle -- [5 2 0 1 7 4 3 6]
15 RoofStyle -- [1 3 2 4 0]
16 RoofMatl -- [0 5 1 4 3 2]
17 | Exterior1st -- [12  8 13  3  6 14  5  0 11  9  2  1 10  7  4]
18 Exterior2nd -- [13  8 15  6 14 10  5  3 12  0  2  7  1  9 11  4]
19 MasVnrType -- [1 2 3 0 4]
20 ExterQual -- [2 3 0 1]
21 ExterCond -- [4 1 2 3 0]
22 Foundation -- [2 1 0 5 3 4]
23 | BsmtQual -- [2 3 0 4 1]
24 BsmtCond -- [3 1 4 0 2]
25 | BsmtExposure -- [3 1 2 0 4]
```

```
26 | BsmtFinType1 -- [2 0 5 4 6 3 1]
27 BsmtFinType2 -- [5 6 4 1 2 3 0]
28 Heating -- [0 1 2 4 3]
29 HeatingQC -- [0 2 4 1 3]
30 | CentralAir -- [1 0]
 31 Electrical -- [4 1 0 2 3 5]
32 KitchenQual -- [2 3 0 1]
33 Functional -- [5 2 0 3 4 1]
34 FireplaceQu -- [5 4 2 0 1 3]
35 | GarageType -- [1 5 3 4 6 2 0]
36 GarageFinish -- [1 2 0 3]
37 | GarageQual -- [4 1 2 5 0 3]
38 | GarageCond -- [4 1 5 2 3 0]
39 PavedDrive -- [2 0 1]
40 PoolQC -- [3 0 1 2]
41 Fence -- [4 2 0 1 3]
42 MiscFeature -- [3 1 0 2]
43 SaleType -- [8 6 0 3 4 1 5 2 7]
44 | SaleCondition -- [4 0 5 1 2 3]
45 [None, None, No
                      None, None,
```

```
1 | corr = train.corr()
2 | corr
```

```
1 .dataframe tbody tr th {
2   vertical-align: top;
3  }
4
5 .dataframe thead th {
6   text-align: right;
7 }
```

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	LotConfig	LandSlope	•••
MSSubClass	1.000000	0.020940	0.279429	0.247561	-0.037199	-0.028659	-0.030395	-0.061403	-0.059057	0.002714	
MSZoning	0.020940	1.000000	-0.129692	-0.085526	0.103255	-0.035657	0.068120	-0.013183	-0.012228	-0.029553	
LotFrontage	0.279429	-0.129692	1.000000	0.570965	-0.047611	0.146923	-0.170013	-0.035607	-0.212730	0.049202	
LotArea	0.247561	-0.085526	0.570965	1.000000	-0.105095	0.087676	-0.235314	-0.091517	-0.131644	0.139614	
Street	-0.037199	0.103255	-0.047611	-0.105095	1.000000	-0.017300	-0.021099	0.105400	-0.001474	-0.164011	
MoSold	0.067412	-0.030336	0.022697	0.005955	0.013222	0.021470	-0.049747	0.020259	0.016360	-0.008459	
YrSold	-0.013556	-0.032690	0.005311	-0.036171	-0.029317	0.028094	0.050581	0.023113	-0.035390	0.000823	
SaleType	0.070457	0.120846	-0.032287	0.003958	0.020851	0.010825	-0.000707	-0.036675	0.014615	0.041055	
SaleCondition	-0.069217	-0.009377	0.061385	0.081866	0.011092	0.048470	-0.070626	0.041733	0.023852	-0.058860	
SalePrice	0.030731	-0.208654	0.361636	0.383817	0.059211	0.151276	-0.301186	0.032256	-0.050879	0.002702	

79 rows × 79 columns

1. VS SalePrice

中相关

 LotFrontage; LotArea; LotShape; MAsVnrArea; Foundation; BsmtExposure; BsmtFinSF1; HeatingQC; FullBath; TotRmsAbvGrd; Fireplaces; FireplacesQu; GarageType; GarageFinish; WoodDeckSF; OpenPorchSF;

强相关

- OverallQual; YearBuilt; YearRemodAdd; ExterQual; BsmtQual; TotalBsmtSF; 1stFlrSF; GrLivArea; KitchQual; GarageCars; GarageArea
- 弱相关: MSZoning; Neighborhood; HouseStyle; RoofStyle; BsmtUnfSF; CentralAir; Electical; 2ndFlrSF; BsmtFullBath; HalfBath; PavedDrive; EnclosedPorch;SaleCondition

Insights

- 强相关显然保留
- 中相关性和弱相关性,Deep Dive变量之间相关性,选择性保留。

```
1 other_var = list(train.columns)
1 for i in strong_var:
       other_var.remove(i)
1 | print(len(strong_var))
1 | 11
1 | k = 15
var_ = corr.nlargest(k, 'SalePrice')['SalePrice'].index
strong_var
• corr.nlarest(k,'SalePrice')
1 cm = np.corrcoef(train[var ].values.T)
 1 array([[1.
                      , 0.81836496, 0.69405958, 0.66058917, 0.6462927 ,
           0.64310743, 0.61768451, 0.56574773, 0.56303443, 0.55088068,
 3
            0.51319332, 0.51063903, 0.47549164, 0.46349279, 0.4213752 ],
           [0.81836496, 1. , 0.58450966, 0.59923389, 0.56356986,
 4
            0.55246083, 0.489251 , 0.58554145, 0.55424945, 0.55683769,
            0.41286386,\ 0.5271104\ ,\ 0.40821558,\ 0.40520085,\ 0.41226335],
 6
           [0.69405958, 0.58450966, 1.
                                         , 0.4670706 , 0.4428922 ,
 8
            0.40127177, 0.51535057, 0.188675 , 0.61736605, 0.28689558,
 9
            0.83232925, 0.21961226, 0.44688989, 0.36195117, 0.22613848],
                                                      , 0.89365001,
           [0.66058917, 0.59923389, 0.4670706 , 1.
           0.4630363 , 0.45940744, 0.53472301, 0.46250507, 0.41582948,
11
12
            0.35733104, 0.47382228, 0.29591308, 0.3612021, 0.39468072],
13
           [0.6462927 , 0.56356986, 0.4428922 , 0.89365001, 1.
14
            0.48688889, 0.48195849, 0.48984406, 0.40908054, 0.37740308,
            0.31963221, 0.48175325, 0.2545989, 0.35714997, 0.35877619],
16
           [0.64310743, 0.55246083, 0.40127177, 0.4630363 , 0.48688889,
17
                     , 0.81032781, 0.42749083, 0.33351637, 0.31553456,
            0.25034587, 0.34009332, 0.31201215, 0.35269621, 0.20686582
18
19
            \hbox{\tt [0.61768451, 0.489251 \ , 0.51535057, 0.45940744, 0.48195849,} \\
           0.81032781, 1. , 0.32287916, 0.37844895, 0.27261388,
            0.37774798, 0.26200353, 0.38144482, 0.33066204, 0.23862028],
21
            \hbox{\tt [0.56574773, 0.58554145, 0.188675 , 0.53472301, 0.48984406,} \\
23
            0.42749083, 0.32287916, 1. , 0.48007967, 0.59203061,
24
            0.08783456, 0.7741855, 0.15036689, 0.33522184, 0.64560153],
25
           [0.56303443, 0.55424945, 0.61736605, 0.46250507, 0.40908054,
26
            0.33351637, 0.37844895, 0.48007967, 1.
                                                        , 0.45160637,
            0.52924064, 0.48039193, 0.23192388, 0.25997238, 0.39983469],
27
28
           [0.55088068, 0.55683769, 0.28689558, 0.41582948, 0.37740308,
29
            0.31553456, 0.27261388, 0.59203061, 0.45160637, 1.
30
            0.17465557, 0.61959647, 0.12399901, 0.1828303 , 0.46318838],
31
           [0.51319332, 0.41286386, 0.83232925, 0.35733104, 0.31963221,
32
            0.25034587, 0.37774798, 0.08783456, 0.52924064, 0.17465557,
33
                   , 0.13779946, 0.32415371, 0.26946452, 0.1599862 ],
           [0.51063903, 0.5271104 , 0.21961226, 0.47382228, 0.48175325,
34
35
            0.34009332, 0.26200353, 0.7741855 , 0.48039193, 0.61959647,
                             , 0.04441026, 0.26031938, 0.57677663],
36
            0.13779946. 1.
37
           [0.47549164, 0.40821558, 0.44688989, 0.29591308, 0.2545989 ,
38
            0.31201215, 0.38144482, 0.15036689, 0.23192388, 0.12399901,
39
            0.32415371, 0.04441026, 1.
                                          . 0.24782868. 0.066502631.
40
           [0.46349279, 0.40520085, 0.36195117, 0.3612021, 0.35714997,
            0.35269621, 0.33066204, 0.33522184, 0.25997238, 0.1828303,
41
            0.26946452, 0.26031938, 0.24782868, 1. , 0.19462898],
42
43
           [0.4213752 , 0.41226335, 0.22613848, 0.39468072, 0.35877619,
44
            0.20686582, 0.23862028, 0.64560153, 0.39983469, 0.46318838,
45
            0.1599862 , 0.57677663, 0.06650263, 0.19462898, 1.
```

1 strong_var = ['OverallQual','YearBuilt','YearRemodAdd','ExterQual','BsmtQual','TotalBsmtSF','1stFlrSF','GrLivArea','KitchenQual',

'GarageCars','GarageArea']

1.0


```
    ・ 变量之间相关性强的需要drop
    1 vars_ =list(var_)
    1 vars_.remove('TotRmsAbvGrd')
    1 vars_.remove('GarageArea')
    1 vars_.remove('IstFlrsF')
    1 vars_.remove('GarageYrBlt')
```

```
Finally var counts: 11
var: ['SalePrice', 'OverallQual', 'GrLivArea', 'GarageCars', 'TotalBsmtSF', 'YearBuilt', 'FullBath', 'YearRemodAdd', 'Fireplaces', 'MasVnrArea', 'Foundation']
```

1 | print('Finally var counts: {} {}var: {}'.format(len(vars_),'\n',vars_))

```
vars_.remove('SalePrice')
x_train_fnl = train[vars_]
y_train_fnl = train['SalePrice']
```

```
1 | x_test_fn1 = test[vars_]
```

```
def leo2(x):
    x_test_fnl[x]=LabelEncoder().fit_transform(x_test_fnl[x])
```

```
1 | for i in vars_:
2 | leo2(i)
```

1 | x_test_fnl.head()

```
1 .dataframe tbody tr th {
2    vertical-align: top;
3  }
4
5 .dataframe thead th {
6    text-align: right;
7  }
```

	OverallQual	GrLivArea	GarageCars	TotalBsmtSF	YearBuilt	FullBath	YearRemodAdd	Fireplaces	MasVnrArea	Foundation
Id										
1461	4	64	1	202	56	1	11	0	0	1
1462	5	313	1	477	53	1	8	0	58	1
1463	4	518	2	234	92	2	48	1	0	2
1464	5	500	2	233	93	2	48	1	6	2
1465	7	282	2	455	87	2	42	0	0	2

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler(copy=False)
scaler.fit_transform(x_train_fnl)
train2 = scaler.transform(x_train_fnl)
train2
```

```
1 array([[ 0.65288347, 0.43354519, 0.31409347, ..., -0.90822251,
           0.55530153, 0.82762684],
2
         [-0.07438691, -0.47798807, 0.31409347, ..., 0.70745753,
4
          -0.56020872, -0.52097172],
 5
        [ 0.65288347, 0.58818029, 0.31409347, ..., 0.70745753,
          0.36179465, 0.82762684],
6
7
       [ 0.65288347, 1.71538883, -0.98511134, ..., 2.32313758,
8
          -0.56020872, 3.52482395],
9
        [-0.80165729, -0.8523678 , -0.98511134, ..., -0.90822251,
10
          -0.56020872, -0.52097172],
11
12
         [-0.80165729, -0.49019611, -0.98511134, ..., -0.90822251,
          -0.56020872, -0.52097172]])
13
```

```
1 | from sklearn.linear_model import LinearRegression
```

```
scaler2 = StandardScaler(copy=False)
scaler2.fit_transform(x_test_fnl)

x_test = scaler2.transform(x_test_fnl)
lr =LinearRegression()
```

```
from sklearn.model_selection import train_test_split #数据集训练集划分

# from sklearn import metrics

from sklearn.metrics import adjusted_rand_score

from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report,precision_score,recall_score,f1_score,r2_score #分类报告

x_train,x_test,y_train,y_test=train_test_split(x_train_fn1,y_train_fn1,test_size=.2,random_state=22)

lr.fit(x_train,y_train)

pred = lr.predict(x_test)
```

```
1  y_test = pd.DataFrame(y_test)
2  pred = pd.DataFrame(pred)
3  print('r2_score:',r2_score(pred,y_test))
```

1 r2_score: 0.8504507414086491

```
# print('f1_score:',precision_score(pred,y_test))

xx = np.arange(len(y_test))

plt.figure(figsize = (10,10), dpi=80)
plt.scatter(xx, y_test, color="#00338D",s= 20, marker='*')
plt.scatter(xx,pred,color="red", s= 20,marker = 'o')
```

1 | <matplotlib.collections.PathCollection at 0x1129b838850>


```
1 | lr.fit(train2,y_train_fn1.values)
2 | y_train_pred = lr.predict(x_test)
3 | y_train_pred
```

```
1 array([ 96036.72599752, 154142.89713714, 181295.75480668, ...,
2 165202.97140824, 112613.91975802, 244607.5935728 ])
```

1 ypred = pd.DataFrame(y_train_pred)

2 # ypred.to_csv('Bostion ypred v1.csv')