Introduction to Statistical Method

Simultaneous Estimation of the Mean and Variance

Chi Random Variable

Consider a problem:

- $z=(z_1,\cdots,z_n)\in\mathbb{R}^n$ randomly chosen.
- ullet the value z_k is determined by random variable Z_k , following a standard normal distribution.
- ullet think about distribution about $\chi_n := \sqrt{\sum_{i=1}^n Z_i^2}$
- χ_n is a chi random variable, follows chi distribution with n degree of freedom.

Cumulative Distribution Function

$$F_{\chi_n}(y) = P[\chi_n \leq y] = P[\chi_n^2 \leq y^2] = P[\sum_{i=1}^n Z_i^2 \leq y^2] = \int_{\sum_{k=1}^n z_k^2 \leq y^2} f_{Z_1...Z_n}(z_1, \cdots, z_n) dz_1 \ldots dz_n$$

Since they are $Z_1, \ldots Z_n$ that n independent standard variables, then we see the joint density:

$$f_{Z_1...Z_n}(z_1,\ldots z_n) = rac{1}{(2\pi)^{n/2}} e^{-\sum_{k=1}^n z_k^2/2}$$

Thus
$$F_{\chi_n}(y)=\int_{\sum_{k=1}^n z_k^2 \le y^2} (2\pi)^{-n/2} e^{-\sum_{k=1}^n z_k^2/2} dz_1 \ldots dz_n$$

Apply polar coordinate with $(r,\theta_1,\ldots,\theta_0)$ with r>0, $0<\theta_{n-1}<2\pi$ and $-\pi/2<\theta_k<\pi/2$ for $k=1,\ldots n-2$:

$$\begin{aligned} x_1 &= r \sin \theta_1 \\ x_2 &= r \cos \theta_1 \sin \theta_2 \\ x_3 &= r \cos \theta_1 \cos \theta_2 \sin \theta_3 \\ &\vdots \\ x_{n-1} &= r \cos \theta_1 \cos \theta_2 \dots \cos \theta_{n-2} \sin \theta_{n-1} \\ x_n &= r \cos \theta_1 \cos \theta_2 \dots \cos \theta_{n-2} \cos \theta_{n-1} \end{aligned}$$

Then the integral become:
$$F_{\chi_n}(y) = \int_0^{2\pi} \int_{-\pi/2}^{\pi/2} \cdots \int_{-\pi/2}^{\pi/2} \int_0^y (2\pi)^{-n/2} \mathrm{e}^{-r^2/2} \, r^{n-1} \\ \times D(\theta_1, \ldots, \theta_{n-1}) \, dr \, d\theta_1 \ldots d\theta_{n-2} \, d\theta_{n-1}$$

Since
$$D(\theta_1,\dots\theta_{n-1})$$
 is independent of r , $C_n=(2\pi)^{-n/2}\int_0^{2\pi}\int_{-\pi/2}^{\pi/2}\dots\int_{-\pi/2}^{\pi/2}D(\theta_1,\dots\theta_{n-1})d\theta_1\cdots d\theta_{n-1}$

we have
$$F_{\chi_n}(y)=C_n\int_0^y e^{-r^2/2}r^{n-1}dr$$
 .

Obviously, the
$$1=\lim_{y o\infty}C_n\int_0^\infty e^{-r^2/2}r^{n-1}dr=C_n\Gamma(rac{n}{2})2^{n/2-1}$$

Thus
$$C_n=ig(\Gamma(rac{n}{2})2^{n/2-1}ig)^{-1}$$
 and $f_{\chi_n}(y)=rac{2}{\Gamma(rac{n}{2})2^{n/2}}y^{n-1}e^{-y^2/2}$

Chi-Squared Distribution

we hence derive from the $\,F_{\chi^2_n}=(\Gamma(rac{n}{2})2^{n/2-1})^{-1}\int_0^{\sqrt{y}}e^{-r^2/2}r^{n-1}dr$

$$f_{\chi^2_n} = F'_{\chi^2_n}(y) = (\Gamma(\frac{n}{2})2^{n/2-1})^{-1}e^{-y/2}\sqrt{y}^{n-1} \cdot \frac{d}{dy}\sqrt{y} = \frac{1}{2^{n/2}\Gamma(\frac{n}{2})}y^{n/2-1}e^{-y/2}$$

Sum of Independent Chi-Squared Variables

Given
$$\chi^2_m=\sum_{i=1}^m X_i^2$$
 and $\chi^2_n=\sum_{j=1}^n Y_j^2$, then $\chi^2_{m+n}=\chi^2_m+\chi^2_n=\sum_{i=1}^m X_i^2+\sum_{j=1}^n Y_j^2$

It follows a chi-squared distribution, but with m + n degree of freedom.

It extends to multi-addition case, trivial.