Medical Informatics

Lecture 3: The Entity-Relationship Model

Dr Areti Manataki

Nanjing Medical University

In the previous lecture

- Entity Relationship model: conceptual database design
- Entities and attributes

In the previous lecture

- Entity Relationship model: conceptual database design
- Entities and attributes
- Relationships and their attributes

In this lecture

- Refining the ER model
- Constraints:
 - key constraints
 - participation constraints
- Weak entity sets
- Entity hierarchies

- A binary relationship set R between entity sets
 A and B can be:
 - Many-to-many
 - Many-to-one
 - One-to-many
 - One-to-one

- A binary relationship set R between entity sets
 A and B can be:
 - Many-to-many: Any number of A may be related to any number of B.

- A binary relationship set R between entity sets
 A and B can be:
 - Many-to-many: Any number of A may be related to any number of B.

- A binary relationship set R between entity sets
 A and B can be:
 - Many-to-one: Several A may relate to a single B; but not the other way round.

- A binary relationship set R between entity sets
 A and B can be:
 - Many-to-one: Several A may relate to a single B; but not the other way round.

- A binary relationship set R between entity sets
 A and B can be:
 - One-to-many: Each A may relate to several B; but not the other way round.

- A binary relationship set R between entity sets
 A and B can be:
 - One-to-many: Each A may relate to several B; but not the other way round.

- A binary relationship set R between entity sets
 A and B can be:
 - One-to-one: Each A may relate to a single B; and the other way round.

- A binary relationship set R between entity sets
 A and B can be:
 - One-to-one: Each A may relate to a single B; and the other way round.

Participation constraints

- Total participation of entity set E in relationship set R: every entity x in the entity set E is required to participate in at least one relationship in R
- Partial participation of entity set E in relationship set R: not every entity x in the entity set E is required to participate in at least one relationship in R

Participation constraints

- Department has total participation in Manages
- Employee has partial participation in Manages

Participation constraints

- Department has total participation in Manages
- Employee has partial participation in Manages

Let's practise!

- Suppose we want to capture mothers and their children, and we're given the following draft ER diagram, which we're asked to extend.
 - Do we have any key constraints in this scenario? Where? And how do we denote them?
 - Do we have any participation constraints in this scenario?
 Where? And how do we denote them?

Weak entities

- The attributes of an entity set may not be sufficient to specify a key. These entity sets are characterised as weak.
 - In the following example, Dependent is a weak entity set and pname is a partial key for Dependent.

Weak entities

- To uniquely identify a weak entity, we need to combine some of its attributes with the primary key of a related entity, which is the identifying owner.
 - The owner entity set and the weak entity set must participate in an one-to-many relationship set.
 - The weak entity set must have total participation in the identifying relationship.

Hierarchies

- In some cases we may want to differentiate between subclasses of an entity set.
 - Employee is specialised into the two subclasses.
 Hourly_Employee and Contract_Employee are generalised by Employee.
 - Each entity in Hourly_Employee is also an Employee, and thus inherits all Employee attributes.

Conceptual design caveat

- As with any type of modelling, in most of the cases, several variations of an ER model could capture the domain of interest.
- No single correct answer. It depends!
- When designing the conceptual design of your database:
 - Are all important aspects of the domain captured?
 - Are the different elements captured correctly?
 - Entity or attribute?
 - Entity or relationship?

Conclusions

- The ER model is used for the conceptual design of a database.
- Main constructs: entities, relationships, attributes, keys
- Additional elements: key constraints, participation constraints, weak entity sets, entity hierarchies
- Next week we'll have a look at the relational model, which is used for the logical database design.

Acknowledgements

The content of these slides was originally created for the Medical Informatics course from The University of Edinburgh, which is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

These lecture slides are also licensed under a CC BY-SA 4.0 license.

