Lesson 18: Practice Problems - Bernoulli Equations

ODE 1 - Prof. Adi Ditkowski

Part A: Recognition and Classification (5 problems)

- 1. Identify which equations are Bernoulli and determine p(x), q(x), and n:
 - (a) $y' + xy = xy^3$
 - (b) $xy' 2y = x^3 \sqrt{y}$
 - (c) $y' + y^2 = x$
 - (d) $\frac{dy}{dx} = y(1-y)$
 - (e) $ty' + 2ty = t^3y^{-1}$
- 2. Show that the equation $y' = ay + by^2 + c$ can be transformed into Bernoulli form only if c = 0.
- 3. Prove that if y_1 is a solution to the Bernoulli equation with n = 2, then $y_2 = y_1/(1 + Cy_1)$ is also a solution for any constant C.
- 4. Transform each equation to standard Bernoulli form:
 - (a) $x^2y' = xy + y^3$
 - (b) $\frac{dy}{dx} = \frac{y}{x} + x^2 y^{-2}$
- 5. Determine the appropriate substitution v for each value of n:
 - (a) n = 3
 - (b) n = 1/2
 - (c) n = -1
 - (d) n = 5/3

Part B: Basic Substitution Problems (6 problems)

- 6. Solve: $y' y = -y^2$
- 7. Find the general solution: $\frac{dy}{dx} + \frac{y}{x} = x^2y^2$
- 8. Solve the IVP: $y' + 2y = y^3 e^{-2x}$, y(0) = 1

- 9. Solve: $xy' + y = x^2y^4$
- 10. Find all solutions: $\frac{dy}{dt} = 2ty y^3$
- 11. Solve: $y' \frac{3y}{x} = \frac{x^2}{y^2}$ (Hint: n = -2)

Part C: Complete Solution Process (5 problems)

- 12. Solve and verify: $(1+x^2)y' + 2xy = (1+x^2)^2y^3$
- 13. Find the solution satisfying y(1) = 2:

$$xy' - y = x^3y^{1/2}$$

14. Solve the logistic equation with harvesting:

$$\frac{dP}{dt} = P(2 - P) - h$$

where h is a constant harvesting rate.

- 15. Solve: $2xy' + y = xy^{-1}$
- 16. Find the general solution:

$$\cos x \cdot y' + y \sin x = y^2 \cos^3 x$$

Part D: Tricky Cases and Variations (5 problems)

17. Solve the generalized logistic equation:

$$\frac{dy}{dt} = ry^{\alpha} \left(1 - \left(\frac{y}{K} \right)^{\beta} \right)$$

where $\alpha = 1$ and $\beta = 1$.

18. Transform and solve:

$$y' = \frac{1}{x}(y - x^2y^3)$$

19. Find all solutions including singular ones:

$$y' + p(x)y = q(x)y^2$$

where p(x) = 2/x and $q(x) = 1/x^2$.

20. Solve the Bernoulli equation with periodic coefficient:

$$y' + \sin x \cdot y = \cos x \cdot y^2$$

- 21. Consider the equation $y' = y^2 2xy^{3/2} + x^2y$.
 - (a) Show this can be written in Bernoulli form
 - (b) Find the appropriate substitution
 - (c) Solve the equation

Part E: Mixed Recognition Challenge (4 problems)

- 22. Classify each equation and solve only the Bernoulli ones:
 - (a) $y' + y/x = y^2 \ln x$
 - (b) $y' + y = e^x$
 - (c) $xy' = y + x^2y^{-1}$
 - (d) $y' + y \tan x = \sin x$
- 23. Show that the Riccati equation $y' = q_0(x) + q_1(x)y + q_2(x)y^2$ becomes Bernoulli if one particular solution y_p is known.
- 24. Prove that every autonomous Bernoulli equation $y' = ay + by^n$ can be solved by separation of variables.
- 25. Find conditions on f(x) such that $y' + f(x)y = f(x)y^n$ has polynomial solutions.

Part F: Exam-Style Complete Problems (6 problems)

- 26. [**Prof. Ditkowski Style**] Consider the equation: $xy' 2y = x^4y^{1/2}$
 - (a) Identify the type of equation and write in standard form
 - (b) State the appropriate substitution
 - (c) Transform to a linear equation
 - (d) Solve the linear equation
 - (e) Find the general solution in terms of y
 - (f) Find the particular solution with y(1) = 4
- 27. [Application Problem] A population model with Allee effect is given by:

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)\left(\frac{P}{A} - 1\right)$$

where 0 < A < K.

- (a) Show this is not in Bernoulli form
- (b) Find equilibrium points
- (c) Analyze stability of equilibria
- (d) Sketch solution curves
- 28. [Comprehensive Problem] For the equation $y' + \frac{n}{x}y = x^ny^{1-n}$ where n is a positive integer:
 - (a) Verify this is Bernoulli

- (b) Show that $y = x^n$ is a solution
- (c) Find the general solution
- (d) Discuss the behavior as $x \to 0^+$ and $x \to \infty$

29. [Theory and Computation] Consider $y' - \frac{y}{x} = x^{\alpha}y^{\beta}$

- (a) For what values of α and β is this Bernoulli?
- (b) Solve for $\alpha = 2$, $\beta = 2$
- (c) Find conditions on α and β for bounded solutions
- 30. [Chemical Reaction Model] The reaction rate equation:

$$\frac{dc}{dt} = -kc^2 + \frac{k'}{V}$$

where c is concentration, V is volume, and k, k' are rate constants.

- (a) Show this is Bernoulli with n=2
- (b) Solve with $c(0) = c_0$
- (c) Find the steady-state concentration
- (d) Determine conditions for finite-time blow-up
- 31. [Challenge Problem] The generalized Bernoulli equation:

$$y' + p(x)y = q(x)y^n + r(x)y^m$$

- (a) Show that if m = 2n 1, a single substitution reduces this to linear form
- (b) Solve the special case: $y' y = y^2 y^3$
- (c) Discuss the connection to Riccati equations

Solutions and Hints

Selected Solutions:

Problem 1(a): Bernoulli with p(x) = x, q(x) = x, n = 3.

Problem 6: n = 2, so $v = y^{-1}$. After substitution: v' + v = -1. Solution: $v = -1 + Ce^{-x}$,

thus $y = \frac{1}{-1 + Ce^{-x}}$.

Problem 7: With n = 2, use $v = y^{-1}$. The transformed equation is $v' - v/x = -x^2$.

Integrating factor: $\mu = e^{\int -1/x \, dx} = 1/x$. Solution: $v = x(x^2/4 + C)$, so $y = \frac{1}{x(x^2/4 + C)}$.

Problem 11: Use $v = y^{1/2}$. The transformed equation becomes: $v' + \frac{v}{2x} = \frac{x^2}{2}$. Solution involves $v = x^2 + Cx^{-1/2}$.

Problem 25: Standard form: $y' - \frac{2y}{x} = x^3 y^{1/2}$. Here n = 1/2, so $v = y^{1/2}$. Transformed: $v' - \frac{v}{x} = \frac{x^3}{2}.$

Key Formulas:

• Bernoulli: $y' + p(x)y = q(x)y^n$

• Substitution: $v = y^{1-n}$

• Linear form: v' + (1 - n)p(x)v = (1 - n)q(x)

• Special case n=2: Logistic-type equations

Common Integration Results:

• $\int x^n e^{ax} dx$ requires integration by parts

•
$$\int \frac{1}{x^2+a^2} dx = \frac{1}{a} \arctan(x/a) + C$$