```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

dataset=pd.read_csv('Boston-house-price-data.csv')
X=dataset.iloc[:,:-1].values
Y=dataset.iloc[:,-1].values
```

dataset.head()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2

dataset.shape

(506, 14)

dataset.info()

C→ <class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 14 columns): Column Non-Null Count Dtype -----0 CRIM 506 non-null float64 ΖN 506 non-null float64 1 2 **INDUS** 506 non-null float64 506 non-null 3 CHAS int64 506 non-null float64 4 NOX 5 RM 506 non-null float64 6 AGE 506 non-null float64 506 non-null float64 DIS RAD 506 non-null int64

```
9 TAX
                   506 non-null
                                  float64
      10 PTRATIO 506 non-null
                                  float64
                   506 non-null
                                  float64
      11 B
      12 LSTAT
                  506 non-null
                                  float64
      13 MEDV
                   506 non-null
                                  float64
     dtypes: float64(12), int64(2)
     memory usage: 55.5 KB
x=dataset.iloc[:,:-1].values
y=dataset.iloc[:,-1].values
from sklearn.model selection import train test split
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size =0.2,random_state = 0)
print("xtrain shape : ", xtrain.shape)
print("xtest shape : ", xtest.shape)
print("ytrain shape : ", ytrain.shape)
print("ytest shape : ", ytest.shape)
     xtrain shape : (404, 13)
     xtest shape : (102, 13)
     ytrain shape : (404,)
    ytest shape : (102,)
from sklearn.linear model import LinearRegression
regressor = LinearRegression()
regressor.fit(xtrain, ytrain)
y_pred = regressor.predict(xtest)
plt.scatter(ytest, y_pred, c = 'red')
plt.xlabel("Price: in $1000's")
plt.ylabel("Predicted value")
plt.title("True value vs predicted value : Linear Regression")
plt.show()
```



```
from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(ytest, y_pred)
mae = mean_absolute_error(ytest,y_pred)
print("Mean Square Error : ", mse)
print("Mean Absolute Error : ", mae)
```

Mean Square Error : 33.44897999767653 Mean Absolute Error : 3.8429092204444966

```
import seaborn as sns
plt.figure(figsize=(12,12))
sns.heatmap(data=dataset.corr().round(2),annot=True,cmap='coolwarm',linewidths=0.2,square=True)
```

<Axes: >


```
df1 = dataset[['RM','TAX','PTRATIO','LSTAT']]
df1.head()
```

	RM	TAX	PTRATIO	LSTAT
0	6.575	296.0	15.3	4.98
1	6.421	242.0	17.8	9.14
2	7.185	242.0	17.8	4.03
3	6.998	222.0	18.7	2.94
4	7.147	222.0	18.7	5.33

```
from sklearn.linear_model import LinearRegression

regressor = LinearRegression()

regressor.fit(xtrain, ytrain)

y_pred = regressor.predict(xtest)

plt.scatter(ytest, y_pred, c = 'red')
plt.xlabel("Price: in $1000's")
plt.ylabel("Predicted value")
plt.title("True value vs predicted value : Linear Regression")
plt.show()
```


from sklearn.metrics import mean_squared_error, mean_absolute_error
mse = mean_squared_error(ytest, y_pred)
mae = mean_absolute_error(ytest,y_pred)

```
print("Mean Square Error : ", mse)
print("Mean Absolute Error : ", mae)
# ,'MEDV' removed end maI
```

Mean Square Error : 21.714680825959494
Mean Absolute Error : 3.616572667697949

• ×