Decision Tree

Accuracy: **0.9357142857142857 (93.57%)**

Confusion Matrix:

[[91 1]

[8 40]]

Classification Report:

precision recall f1-score support

0 0.92 0.99 0.95 92

1 0.98 0.83 0.90 48

accuracy 0.94 140

macro avg 0.95 0.91 0.93 140

weighted avg 0.94 0.94 0.93 140

Random Forest

Accuracy: 0.9714285714285714 (97.14%)

Confusion Matrix:

[[92 0]

[4 44]]

Classification Report:

precision recall f1-score support

0 0.96 1.00 0.98 92

1 1.00 0.92 0.96 48

accuracy 0.97 140

macro avg 0.98 0.96 0.97 140

weighted avg 0.97 0.97 0.97 140

Gradient Boosting

Accuracy: **0.9785714285714285 (97.85%)**

Confusion Matrix:

[[92 0]

[3 45]]

Classification Report:

precision recall f1-score support

0 0.97 1.00 0.98 92

1 1.00 0.94 0.97 48

accuracy 0.98 140

 $macro\ avg \qquad 0.98 \qquad 0.97 \qquad 0.98 \qquad 140$

weighted avg 0.98 0.98 0.98 140

CONCLUSION:

A **Decision Tree** is simple and interpretable but showed slightly lower accuracy and recall, which means it may miss some malignant cases.

Random Forest, an ensemble of decision trees, significantly improved the performance by reducing overfitting and increasing stability. It achieved high accuracy and precision, correctly classifying most malignant and benign tumors.

Gradient Boosting performed the best overall, with the **highest accuracy, recall, and F1-score**, and the best balance between correctly identifying malignant cases and minimizing false positives.

The **ROC curve comparison** showed that ensemble methods (Random Forest and Gradient Boosting) have higher AUC values compared to a single Decision Tree.