

Lecture

13

Association Mining

CONTENTS

- A. What is Apriori Algorithm?
- B. How Apriori Works
- C. Association Mining Practice

1

- **❖** Ideas come from the market basket analysis
 - Shopping example

- Questions
 - Given a list of products, can we predict what a customer will buy next?
- Goal
 - Find associations between different items that customers place in their basket

Association rules

- Itemset
 - Groups of one or more items that appears in the data with some regularity
 - {bread, peanut butter, jelly}
- Association rules
 - If/then statements that help uncover associations between unrelated data in a dataset
 - {peanut butter, jelly} -> {bread}
 - Specify patterns found in the relationships/associations among items in the itemsets

Applications

- Searching for interesting and frequently occurring patterns of DNA and protein sequences in cancer data.
- Finding patterns of purchases or medical claims that occur in combination with fraudulent credit card or insurance use.
- Identifying combinations of behavior that precede customers dropping their cellular phone service or upgrading their cable television package.

- ❖ Measuring rule interest support and confidence
 - Association rules are determined by two statistical measures
 - Support
 - Measures how frequently the itemset occurs in the data

$$Support(X) = count(X)/N$$

- Confidence
 - Measurement of its predictive power or accuracy

$$Confidence(X \rightarrow Y) = support(X, Y)/support(X)$$

Support

■ This says how popular item is in the dataset

Support
$$\{ \bigcirc \} = \frac{4}{8}$$

Transaction 1	(4)
Transaction 2	9 9 9
Transaction 3	(4)
Transaction 4	(4)
Transaction 5	Ø 📔 😑 💊
Transaction 6	∅ 🕑 ⊝
Transaction 7	∅
Transaction 8	Ø 🖔

Confidence

This says how likely the item Y is purchased when item X is purchased

Confidence
$$\{ \bigcirc \rightarrow \bigcirc \} = \frac{\text{Support } \{\bigcirc, \bigcirc \}}{\text{Support } \{\bigcirc \}}$$

$$= 3/8 * 8/4 = 75\%$$

B

How Apriori Works

❖ Example

• Given sample transactional data

Transaction ID	Onion	Potato	Burger	Milk	Beer
T1	1	1	1	0	0
T2	0	1	1	1	0
T3	0	0	0	1	1
T4	1	1	0	1	0
T5	1	1	1	0	1
T6	1	1	1	1	0

Transactional data

Assume: minsup = 40% minconf = 70%

❖ Example

Step 1: Create a frequency table of all the items that occur in all transactions

Item	Frequency (No. of transactions)
Onion	4
Potato	5
Burger	4
Milk	4
Beer	2

❖ Example

Step 2: Determine elements for which the support is greater than or equal to the threshold support

1-Frequent Itemset	ltem	Frequency (No. of transactions)
	Onion	4
	Potato	5
	Burger	4
	Milk	4
	Beer	2

❖ Example

• Step 3: The next step is to make all the possible pairs of the significant items keeping in mind that the order doesn't matter

Itemset	Frequency (No. of transactions)
Onion, Potato	4
Onion, Burger	3
Onion, Milk	2
Potato, Burger	4
Potato, Milk	3
Burger, Milk	2

❖ Example

Step 4: Remove the itemsets that has less support than minimum support

Itemset	Frequency (No. of transactions)
Onion, Potato	4
Onion, Burger	3
Onion, Milk	2
Potato, Burger	4
Potato, Milk	3
Burger, Milk	2

Support(Onion, Potato) = 4/6 = 66.6% Support(Onion, Burger) = 3/6 = 50% Support(Onion, Milk) = 2/6 = 33.3% Support(Potato, Burger) = 4/6 = 66.6% Support(Potato, Milk) = 3/6 = 50% Support(Burger, Milk) = 2/6 = 33.3%

❖ Example

• Step 4: Remove the itemsets that has less support than minimum support

2-Frequent Itemset

Itemset	Frequency (No. of transactions)
Onion, Potato	4
Onion, Burger	3
Potato, Burger	4
Potato, Milk	3

Example

Step 5: Now let's say we would like to look for a set of three items that are purchased together. We will use the itemsets found in step 4 and create a set of 3 items

3-Frequent I	temset
--------------	--------

Itemset	Frequency (No. of transactions)
Onion, Potato, Burger	3
Potato, Burger, Milk	2

Support(Onion, Potato, Burger) = 3/6 = 50% Support(Potato, Burger, Milk) = 2/6 = 33%

❖ Example

Step 6: We can't make any more frequent itemsets, so we stop here

1-Frequent Items

ltem	Frequency (No. of transactions)
Onion	4
Potato	5
Burger	4
Milk	4

2-Frequent Items

Itemset	Frequency (No. of transactions)
Onion, Potato	4
Onion, Burger	3
Potato, Burger	4
Potato, Milk	3

3-Frequent Items

Itemset	Frequency (No. of transactions)
Onion, Potato, Burger	3

❖ Example

- Step 7: Now we have our frequent itemset. From here we should create the association rules and calculate the *confidence* of each rules.
- In this example let's use the {Onion, Potato, Burger} as an example

Itemset	Frequency (No. of transactions)
Onion, Potato, Burger	3

Association rules	
Onion, Potato => Burger	Onion => Potato, Burger
Onion, Burger => Potato	Burger => Onion, Potato
Burger, Potato => Onion	Potato => Onion, Burger

Example

Step 8: Calculate confidence score for all rules

Association rules

Onion, Potato => Burger

Onion, Burger => Potato

Burger, Potato => Onion

Onion => Potato, Burger

Burger => Onion, Potato

Potato => Onion, Burger

Confidence(Onion, Potato => Burger) = 3/4 = 75% Confidence(Onion, Burger => Potato) = 3/3 = 100% Confidence(Burger, Potato => Onion) = 3/4 = 75% Confidence(Onion => Potato, Burger) = 3/4 = 75% Confidence(Burger => Onion, Potato) = 3/4 = 75% Confidence(Potato => Onion, Burger) = 3/5 = 60%

❖ Example

• The final association rules from the {Onion, Potato, Burger} will be shown in following table.

Association rules
Onion, Potato => Burger
Onion, Burger => Potato
Burger, Potato => Onion
Onion => Potato, Burger
Burger => Onion, Potato
Potato => Onion, Burger

❖ Apriori algorithm in Python

- pip install mlxtend
- pip install pandas

❖ Apriori algorithm in Python

Transaction encoding

```
encode = TransactionEncoder()
encoded_array = encode.fit(dataset).transform(dataset)
encoded_array
```

- **❖** Apriori algorithm in Python
 - Transforming into data frame

dataframe = pd.DataFrame(encoded_array, columns=encode.columns_) dataframe

	Beer	Burger	Milk	Onion	Potato
0	False	True	False	True	True
1	False	True	True	False	True
2	True	False	True	False	False
3	False	False	True	False	True
4	True	True	False	True	True
5	False	True	True	True	True

- ❖ Apriori algorithm in Python
 - Train with Apriori algorithm (min_support = 0.4)

frequent_itemsets = apriori(dataframe, min_support=0.4, use_colnames=True) frequent_itemsets

itemsets	support	
(Burger)	0.666667	0
(Milk)	0.666667	1
(Onion)	0.500000	2
(Potato)	0.833333	3
(Burger, Onion)	0.500000	4
(Potato, Burger)	0.666667	5
(Milk, Potato)	0.500000	6
(Potato, Onion)	0.500000	7
(Potato, Burger, Onion)	0.500000	8

- ❖ Apriori algorithm in Python
 - Creating association rules

pattern_rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7) pattern_rules

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(Burger)	(Onion)	0.666667	0.500000	0.500000	0.75	1.5	0.166667	2.000000
1	(Onion)	(Burger)	0.500000	0.666667	0.500000	1.00	1.5	0.166667	inf
2	(Potato)	(Burger)	0.833333	0.666667	0.666667	0.80	1.2	0.111111	1.666667
3	(Burger)	(Potato)	0.666667	0.833333	0.666667	1.00	1.2	0.111111	inf
4	(Milk)	(Potato)	0.666667	0.833333	0.500000	0.75	0.9	-0.055556	0.666667
5	(Onion)	(Potato)	0.500000	0.833333	0.500000	1.00	1.2	0.083333	inf
6	(Potato, Burger)	(Onion)	0.666667	0.500000	0.500000	0.75	1.5	0.166667	2.000000
7	(Potato, Onion)	(Burger)	0.500000	0.666667	0.500000	1.00	1.5	0.166667	inf
8	(Burger, Onion)	(Potato)	0.500000	0.833333	0.500000	1.00	1.2	0.083333	inf
9	(Burger)	(Potato, Onion)	0.666667	0.500000	0.500000	0.75	1.5	0.166667	2.000000
10	(Onion)	(Potato, Burger)	0.500000	0.666667	0.500000	1.00	1.5	0.166667	inf

C

Text Mining Practice

❖ Dataset

Market_Basket_Optimisation.csv

❖ Loading dataset

import pandas as pd import seaborn as sns import numpy as np from pandas import DataFrame import matplotlib.pyplot as plt from mlxtend.preprocessing import TransactionEncoder from mlxtend.frequent_patterns import apriori from mlxtend.frequent_patterns import association_rules

basket = pd.read_csv("D:₩Market_Basket_Optimisation.csv", header = None) basket.head()

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
0	shrimp	almonds	avocado	vegetables mix	green grapes	whole weat flour	yams	cottage cheese	energy drink	tomato juice	low fat yogurt	green tea	honey	salad	mineral water	salmon	antioxydant juice	froz smootl
1	burgers	meatballs	eggs	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
2	chutney	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
3	turkey	avocado	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
4	mineral water	milk	energy bar	whole wheat rice	green tea	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N:
4																		•

❖ Converting the data frame into a list of lists

```
records = []
for i in range (0, 7501):
    records.append([str(basket.values[i,j]) for j in range(0, 20)])
```

Encoding and transforming back to data frame

```
encode = TransactionEncoder()
encoded_array = encode.fit(records).transform(records)

data_frame = pd.DataFrame(encoded_array, columns = encode.columns_)
data_frame
```

	asparagus	almonds	antioxydant juice	asparagus	avocado	babies food	bacon	barbecue sauce	black tea	blueberries	 turkey	vegetables mix	water spray	white wine	whole weat flour
0	False	True	True	False	True	False	False	False	False	False	 False	True	False	False	True
1	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False
3	False	False	False	False	True	False	False	False	False	False	 True	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False
5	False	False	False	False	False	False	False	False	False	False	 False	False	False	False	False

❖ Drop missing values

```
basket_clean = data_frame.drop(['nan'], axis = 1)
basket_clean
```

❖ Train with Apriori

frequent_itemsets = apriori(basket_clean, min_support = 0.04, use_colnames = True) frequent_itemsets.head()

itemsets	support	
(burgers)	0.087188	0
(cake)	0.081056	1
(champagne)	0.046794	2
(chicken)	0.059992	3
(chocolate)	0.163845	4

Creating rules

pattern_rules = association_rules(frequent_itemsets, metric = 'lift', min_threshold = 1) pattern_rules

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(chocolate)	(mineral water)	0.163845	0.238368	0.052660	0.321400	1.348332	0.013604	1.122357
1	(mineral water)	(chocolate)	0.238368	0.163845	0.052660	0.220917	1.348332	0.013604	1.073256
2	(eggs)	(mineral water)	0.179709	0.238368	0.050927	0.283383	1.188845	0.008090	1.062815
3	(mineral water)	(eggs)	0.238368	0.179709	0.050927	0.213647	1.188845	0.008090	1.043158
4	(ground beef)	(mineral water)	0.098254	0.238368	0.040928	0.416554	1.747522	0.017507	1.305401
5	(mineral water)	(ground beef)	0.238368	0.098254	0.040928	0.171700	1.747522	0.017507	1.088672
6	(milk)	(mineral water)	0.129583	0.238368	0.047994	0.370370	1.553774	0.017105	1.209650
7	(mineral water)	(milk)	0.238368	0.129583	0.047994	0.201342	1.553774	0.017105	1.089850
8	(spaghetti)	(mineral water)	0.174110	0.238368	0.059725	0.343032	1.439085	0.018223	1.159314
9	(mineral water)	(spaghetti)	0.238368	0.174110	0.059725	0.250559	1.439085	0.018223	1.102008

Quiz for Lecture 13

- **❖** Submit your source code for the following task:
 - 1. Try all source code in the lecture
- Submission: source code, result screenshots and result explanation

ZF사람니다!