

Description

The VSM30N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} = 100V,I_D =30A
 - $R_{DS(ON)} < 32m\Omega @ V_{GS} = 10V (Typ:25m\Omega)$
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM30N10-TC	VSM30N10	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃ unless otherwise noted)

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _D s	100	V
Gate-Source Voltage		V _G s	±20	V
Drain Current-Continuous		I _D	30	Α
Drain Current-Continuous(TC=100℃)		I _D (100℃)	21	А
Pulsed Drain Current (Note 1)		I _{DM}	120	А
Maximum Power Dissipa	mum Power Dissipation P _D 85		W	
Derating factor		0.57	W/°C	
Single pulse avalanche e	energy (Note 5)	Eas	E _{AS} 200	
V _{DS} Spike (Note 6)	10µs	120	V	
Operating Junction and Storage Temperature Range		T _J ,T _{STG}	-55 To 175	$^{\circ}\!\mathbb{C}$

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	R ₀ JC	1.8	°C/W
---	-------------------	-----	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Symbol		Parameter	Condition	Min	Тур	Max	Unit
Off Characteristics					•		
BV _{DSS}	Drain-Source Breakdown Voltage		V _{GS} =0V I _D =250μA	100	115	-	V
I _{DSS}	Zero Gate Voltage Drain Current		V _{DS} =100V,V _{GS} =0V	-	-	1	μA
I _{GSS}	Gate-Body Leakage Current		V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (N	ote 3)						
V _{GS(th)}	Gate Threshold	l Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.3	1.9	2.5	V
R _{DS(ON)}	Drain-Source On-Sta	ite Resistance	V _{GS} =10V, I _D =10A	-	25	32	mΩ
g FS	Forward Transco	nductance	V _{DS} =5V,I _D =10A	-	15	-	S
Dynamic Characteris	itics (Note4)				•		
C _{lss}	Input Capaci	itance	\/ -50\/\/ -0\/	-	2479	-	PF
C _{oss}	Output Capac	citance	V _{DS} =50V,V _{GS} =0V,	-	96	-	PF
C _{rss}	Reverse Transfer Capacitance		F=1.0MHz	-	79	-	PF
Switching Character	istics (Note 4)				•		
t _{d(on)}	Turn-on Dela	y Time		-	9	-	nS
t _r	Turn-on Rise	Time	V_{DD} =50V, R_L =5 Ω	-	9	-	nS
t _{d(off)}	Turn-Off Dela	y Time	V_{GS} =10 V , R_{GEN} =3 Ω	-	32	-	nS
t _f	Turn-Off Fall	Time		-	8	-	nS
Qg	Total Gate C	harge	V -E0VI -10A	-	67.2	-	nC
Q _{gs}	Gate-Source	Charge	$V_{DS}=50V,I_{D}=10A,$ $V_{GS}=10V$	-	9.4	-	nC
Q _{gd}	Gate-Drain C	harge	V _{GS} -10V	-	15.5	-	nC
Drain-Source Diode	Characteristics				•		
V _{SD}	Diode Forward Vo	oltage (Note 3)	V _{GS} =0V,I _S =10A	-	-	1.2	V
Is	Diode Forward Cu	urrent (Note 2)	-	-	-	30	Α
t _{rr}	Reverse Recove	ery Time	TJ = 25°C, IF = 10A	-	32	-	nS
Qrr	Reverse Recover	ry Charge	di/dt = 100A/µs ^(Note3)	-	53	-	nC
t _{on}	Forward Turn-C	On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS Condition : Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω
- 6. The spike duty cycle 5% max, limited by junction temperature $T_{J}(\mbox{MAX})\mbox{=}125\,^{\circ}\,$ C

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

120 100 Power Dissipation (W) 80 60 40 20 0 0 25 50 75 125 100 150 175 T_J-Junction Temperature (°C)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10ID Current- Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance