Lyman- α reconstruction results for GJ1132

William Waalkes May 4, 2018

The spectrum was fit using Allison Youngblood's Lyapy fitting routine, which resulted in a single Gaussian emission line and Voigt absorption profile. The 6 parameters fitted for were:

- A, the emission amplitude
- FWHM, the full width half max of emission
- v_s, the source velocity
- N_{HI}, the line-of-sight neutral H column density
- b, the Doppler parameter
- v_{HI}, the line-of sight neutral H velocity

MCMC fitting of these parameters resulted in the following best-fit values with 1- σ error bars:

Line Velocity [km/s]	$35.32^{+0.95}_{-0.93}$
log(Amplitude) [erg/s/cm ² /Å]	$\left -13.26^{+0.08}_{-0.06} \right $
FWHM [km/s]	$\left 115.44^{+4.57}_{-5.06} \right $
log(HI Column Density) [cm ⁻²]	$17.86^{+0.15}_{-0.18}$
Doppler Parameter (b) [km/s]	$14.2^{+0.78}_{-1.02}$
HI Velocity [km/s]	$-3.41^{+1.20}_{-1.23}$
log(Total Flux [erg/s/cm ²])	$\left -13.56^{+0.06}_{-0.05} \right $

We find a Lyman- α flux of $2.76x10^{-14}$ erg/s/cm² which gives f[Ly α]/f[bol] = $2.8x10^{-5}$. Compared with the Sun which has f[Ly α]/f[bol] = $4.4x10^{-6}$ (Linsky et al 2013).

Priors:

- A: uniform
- Source Velocity: Gaussian (mean = 35 km/s, width = 1 km/s)
- FWHM: uniform
- $Log_{10}(N_{HI})$: Gaussian (mean = 17, width = 1)
- b: log prior
- HI velocity: Gaussian (mean = 0 km/s, width = 2 km/s)