Perth Modern School

Yr 12 Maths Specialist

Page 1

Year 12 Specialist
TEST 3
Monday 1 July 2019
TIME: 45 minutes working
Classpada allowed
One page of notes
42 marks 6 Questions

ing to obtain full marks	s require work	e than 2 mark	us worth mor	All part questio	Note:

s) Solve for the following system of linear equations without using a classpad. Ot (3 & 3 = 6 marks)

$$\mathcal{E} = \mathbf{z} - \mathbf{y} \mathbf{\zeta} + \mathbf{x}$$

$$\mathbf{1} -= \mathbf{x} \mathbf{\zeta} + \mathbf{y} \mathcal{E} + \mathbf{x} \mathbf{\zeta}$$

 $9 = ZZ - \lambda \angle + XE$ $I -= ZZ + \lambda E + XZ$

(Z + 2	χE
(£ + 3	
4 ₇ λ	
9 = 8 9 = 8	01 (3 & 3 9) Sa
	, , , , ,
bsu	IIA :910N
	Теасћег:
	.әше
ox∃	STATE OF THE PERSON

Page 2

Yr 12 Maths Specialist

Perth Modern School

Q1 - continued

$$x + 2y - z = 3$$
$$2x + 3y + 2z = m$$

- b) Determine the values of m & p such that 3x + py 2z = 6 such that the system has (i) Infinite solutions (ii) No solutions

Page 7

Yr 12 Maths Specialist

Perth Modern School

Q6 (4 marks)

$$\frac{d^2y}{dx^2} = \frac{\frac{dx}{dt}\frac{d^2y}{dt^2} - \frac{dy}{dt}\frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}$$

Given that ${}^{\chi \,\&\, y}$ are functions of t , show that

Perth Modern School

Yr 12 Maths Specialist

Page 3

Q2 (2 & 3 = 5 marks)

$$\begin{pmatrix} 1 - 2 \\ 1 - 3 \end{pmatrix} = \lambda$$

$$\frac{|r|b}{|r|}$$
 (no need to simplify)

 $Q_3(2, 3 \& 3 = 8 \text{ marks})$

An object is initially at the origin with initial speed of and an acceleration given by

$$a = \int_{-\infty}^{\infty} \frac{3e^{-s}}{\sin t} ds$$
 at time t seconds.

Obtain an expression for the:

a) Velocity at time ¹.

b) Position vector Γ at time Γ .

values (if any). c) Is the velocity ever perpendicular to the acceleration? Explain and if necessary solve for $^{
m L}$

> Perth Modern School Yr 12 Maths Specialist

Page 6

twins decide to each try one of the two rides, Jane sits on the merry go round with a constant angular Consider two rides at a circus, one is a merry go round and the other is a train on a straight line. Two $Q_5 (2 \& 5 = 7 \text{ marks})$

a train moving at 3 metres/minute away from the merry go round. See the diagram below. $\mathbf{E} = \frac{\partial \mathbf{b}}{\partial \mathbf{b}}$ To beads radians/minute moving in a clockwise direction and radius 6 metres and Mia sits on

the centre of the merry go round. mort eartem 08 ai nisrt and bns $\,^{\,\mathcal{E}}$ a) Determine the distance between Jane and Mia when

(metres/minute) b) Determine the time rate of change of this distance at the point defined in (a) above. Page 4

Yr 12 Maths Specialist

Perth Modern School

show using vector calculus that the

Q4 (3, 3, 3 & 3 = 12 marks)

Consider a cannon ball that is projected from the top of a building with speed V at an angle θ to the surface of the roof. There is a constant cross wind of 3 metres per second acting against the ball and the acceleration due to gravity is $\frac{9.8m}{s^2}$ down as shown in the diagram below. (Note- let the origin be at the top of the building on the edge)

a) Given that the acceleration is given by

$$\dot{r} = \begin{pmatrix} V\cos\theta - 3\\ V\sin\theta - 9.8t \end{pmatrix} m/s$$

b) Determine the cartesian equation of the path of the cannon ball in terms of $V \& \theta$. Show your working.

Page 5 Yr 12 Maths Specialist Perth Modern School

Q4 continued

c) Given that a point on the cartesian path has been measured as $^{\big(7.4,1.1\big)}$ metres and the initial speed V of the ball from the cannon is 12 $^{m/s}$, determine the initial angle $^\theta$ of the ball when projected into the air.

d) If V=25m/s and $\theta=45$ and a cross wind of 3 m/s as in the diagram on last page, determine how far from the foot of the building that the cannon ball lands on the road.