Categorical Normalization by Evaluation: A Novel Universal Property of Syntax

David G. Berry Marcelo P. Fiore

University of Cambridge

Whit Monday TYPES Conference University of Strathclyde Whit Week 2025

Outline

- Motivation
- Universal Property of Quotiented Syntax
- Sound Normalization
- Universal Property of Unquotiented Syntax relative to Quotiented Syntax
- Strongly Complete Normalization
- Gluing
- Correctness
- Rocq Formalization
- Future Work

• 'Normalization (by Evaluation)' ≜ 'Finding a normal form (in a reduction-free fashion)'

- 'Normalization (by Evaluation)' ≜ 'Finding a normal form (in a reduction-free fashion)'
 - Reduction of (semantic) $\beta\eta\text{-conversion}$ testing to (syntactic) $\alpha\text{-equivalence}$ testing

- 'Normalization (by Evaluation)' ≜ 'Finding a normal form (in a reduction-free fashion)'
 - Reduction of (semantic) $\beta\eta$ -conversion testing to (syntactic) α -equivalence testing
- Correctness:
 - Soundness: $nf(t) \cong_{\beta\eta} t$
 - Strong Completeness: $t_1 \cong_{\beta\eta} t_2 \Rightarrow \mathsf{nf}(t_1) \equiv_{\alpha} \mathsf{nf}(t_2)$
 - Weak Completeness: $t_1 \cong_{\beta\eta} t_2 \Rightarrow \mathsf{nf}(t_1) \cong_{\beta\eta} \mathsf{nf}(t_2)$

- 'Normalization (by Evaluation)' ≜ 'Finding a normal form (in a reduction-free fashion)'
 - Reduction of (semantic) $\beta\eta$ -conversion testing to (syntactic) α -equivalence testing
- Correctness:
 - Soundness: $nf(t) \cong_{\beta\eta} t$
 - Strong Completeness: $t_1 \cong_{\beta \eta} t_2 \Rightarrow \mathsf{nf}(t_1) \equiv_{\alpha} \mathsf{nf}(t_2)$
 - Weak Completeness: $t_1 \cong_{\beta\eta} t_2 \Rightarrow \mathsf{nf}(t_1) \cong_{\beta\eta} \mathsf{nf}(t_2)$
- 'Solved'(?) categorically by, ee.g., Altenkirch & al. ('95), Čubrić & al. ('98), Fiore ('02,'22).

- 'Normalization (by Evaluation)' ≜ 'Finding a normal form (in a reduction-free fashion)'
 - Reduction of (semantic) βη-conversion testing to (syntactic) α-equivalence testing
- Correctness:
 - Soundness: $nf(t) \cong_{\beta\eta} t$
 - Strong Completeness: $t_1 \cong_{\beta \eta} t_2 \Rightarrow \mathsf{nf}(t_1) \equiv_{\alpha} \mathsf{nf}(t_2)$
 - Weak Completeness: $t_1 \cong_{\beta\eta} t_2 \Rightarrow \mathsf{nf}(t_1) \cong_{\beta\eta} \mathsf{nf}(t_2)$
- 'Solved'(?) categorically by, ee.g., Altenkirch & al. ('95), Čubrić & al. ('98), Fiore ('02,'22).
 - Altenkirch & al.: Partially categorical, ad hoc analysis of normal forms, no universal property, full correctness

- 'Normalization (by Evaluation)' ≜ 'Finding a normal form (in a reduction-free fashion)'
 - Reduction of (semantic) βη-conversion testing to (syntactic) α-equivalence testing
- Correctness:
 - Soundness: $nf(t) \cong_{\beta\eta} t$
 - Strong Completeness: $t_1 \cong_{\beta\eta} t_2 \Rightarrow \mathsf{nf}(t_1) \equiv_{\alpha} \mathsf{nf}(t_2)$
 - Weak Completeness: $t_1 \cong_{\beta\eta} t_2 \Rightarrow \mathsf{nf}(t_1) \cong_{\beta\eta} \mathsf{nf}(t_2)$
- 'Solved'(?) categorically by, ee.g., Altenkirch & al. ('95), Čubrić & al. ('98), Fiore ('02,'22).
 - Altenkirch & al.: Partially categorical, ad hoc analysis of normal forms, no universal property, full correctness
 - Čubrić & al.: Fully categorical, no ad hoc analysis of normal forms, universal property, partial correctness

- 'Normalization (by Evaluation)' ≜ 'Finding a normal form (in a reduction-free fashion)'
 - Reduction of (semantic) βη-conversion testing to (syntactic) α-equivalence testing
- Correctness:
 - Soundness: $nf(t) \cong_{\beta\eta} t$
 - Strong Completeness: $t_1 \cong_{\beta\eta} t_2 \Rightarrow \mathsf{nf}(t_1) \equiv_{\alpha} \mathsf{nf}(t_2)$
 - Weak Completeness: $t_1 \cong_{\beta\eta} t_2 \Rightarrow \mathsf{nf}(t_1) \cong_{\beta\eta} \mathsf{nf}(t_2)$
- 'Solved'(?) categorically by, ee.g., Altenkirch & al. ('95), Čubrić & al. ('98), Fiore ('02,'22).
 - Altenkirch & al.: Partially categorical, ad hoc analysis of normal forms, no universal property, full correctness
 - Čubrić & al.: Fully categorical, no ad hoc analysis of normal forms, universal property, partial correctness
 - Fiore: Fully categorical, *ad hoc* analysis of normal forms, no universal property, full correctness

- 'Normalization (by Evaluation)' ≜ 'Finding a normal form (in a reduction-free fashion)'
 - Reduction of (semantic) βη-conversion testing to (syntactic) α-equivalence testing
- Correctness:
 - Soundness: $nf(t) \cong_{\beta\eta} t$
 - Strong Completeness: $t_1 \cong_{\beta\eta} t_2 \Rightarrow \mathsf{nf}(t_1) \equiv_{\alpha} \mathsf{nf}(t_2)$
 - Weak Completeness: $t_1 \cong_{\beta\eta} t_2 \Rightarrow \mathsf{nf}(t_1) \cong_{\beta\eta} \mathsf{nf}(t_2)$
- 'Solved'(?) categorically by, ee.g., Altenkirch & al. ('95), Čubrić & al. ('98), Fiore ('02,'22).
 - Altenkirch & al.: Partially categorical, ad hoc analysis of normal forms, no universal property, full correctness
 - Čubrić & al.: Fully categorical, no ad hoc analysis of normal forms, universal property, partial correctness
 - Fiore: Fully categorical, *ad hoc* analysis of normal forms, no universal property, full correctness
- Our approach: Fully categorical, no *ad hoc* analysis of normal forms, universal property(/ies), full correctness

We present a slick, new, (P-)categorical construction of NbE with full correctness.

Free CCC over Single Basetype

Free CCC over Single Basetype

Free CCC over Single Basetype

Abstract Normalization

Normalization Function

$$\mathsf{nf}_I(\Gamma \vdash \sigma : \Delta) \triangleq q_\Delta \circ \llbracket \sigma \rrbracket \circ u_\Gamma : I(\Gamma) \to I(\Delta)$$

Abstract Normalization

Normalization Function

$$\mathsf{nf}_I(\Gamma \vdash \sigma : \Delta) \triangleq q_\Delta \circ \llbracket \sigma \rrbracket \circ u_\Gamma : I(\Gamma) \to I(\Delta)$$

Soundness

$$egin{aligned} \mathsf{nf}_I(\Gamma dash \sigma : \Delta) &\equiv q_\Delta \circ \llbracket \sigma
rbracket \circ u_\Gamma \ &\sim_{\mathbb{M}} q_\Delta \circ u_\Delta \circ I(\sigma) \ &\sim_{\mathbb{M}} \mathsf{id}_\Delta \circ I(\sigma) \ &\sim_{\mathbb{M}} I(\sigma) \end{aligned}$$

Abstract Normalization

Normalization Function

$$\mathsf{nf}_I(\Gamma \vdash \sigma : \Delta) \triangleq q_\Delta \circ \llbracket \sigma \rrbracket \circ u_\Gamma : I(\Gamma) \to I(\Delta)$$

Soundness

$$\operatorname{\sf nf}_I(\Gamma \vdash \sigma : \Delta) \equiv q_\Delta \circ \llbracket \sigma \rrbracket \circ u_\Gamma$$

$$\sim_{\mathbb{M}} q_\Delta \circ u_\Delta \circ I(\sigma)$$

$$\sim_{\mathbb{M}} \operatorname{\sf id}_\Delta \circ I(\sigma)$$

$$\sim_{\mathbb{M}} I(\sigma)$$

Weak Completeness

$$\Gamma \vdash \sigma \cong_{\beta\eta} \sigma' : \Delta \Rightarrow \mathsf{nf}_I(\sigma) \sim_{\mathbb{M}} \mathsf{nf}_I(\sigma')$$

Concrete Normalization

Choice of \mathbb{M} and I

$$\begin{array}{c|c} \mathbb{M} & I: \mathcal{F} \to \mathbb{M} \\ \hline \mathcal{F} & \mathrm{Id}: \mathcal{F} \to \mathcal{F} \\ \widehat{\mathcal{F}} & \ \mathcal{L}: \mathcal{F} \to \widehat{\mathcal{F}} \end{array}$$

Cartesian Pre-Closure

Cartesian Pre-Closed Category

A category, C, is Cartesian-pre-closed when:

- it is Cartesian;
- it has a pre-exponential operator on objects:

$$(-) \Rightarrow (=) : \mathbb{C}_0 \times \mathbb{C}_0 \to \mathbb{C}_0;$$

• such that there are maps natural in *c*:

$$\mathbb{C}(c \times a, b) \Rightarrow \mathbb{C}(c, a \Rightarrow b)$$

$$\mathbb{C}(c, a \Rightarrow b) \Rightarrow \mathbb{C}(c \times a, b).$$

Cartesian Pre-Closure

Cartesian Pre-Closed Category

A category, C, is Cartesian-pre-closed when:

- it is Cartesian;
- it has a pre-exponential operator on objects:

$$(-) \Rightarrow (=) : \mathbb{C}_0 \times \mathbb{C}_0 \to \mathbb{C}_0;$$

• such that there are maps natural in *c*:

$$\mathbb{C}(c \times a, b) \Rightarrow \mathbb{C}(c, a \Rightarrow b)$$

$$\mathbb{C}(c, a \Rightarrow b) \Rightarrow \mathbb{C}(c \times a, b).$$

Cartesian Pre-Closed Functor

A functor, $F:\mathbb{C}\to\mathbb{D}$, with \mathbb{C} Cartesian-preclosed and \mathbb{D} Cartesian-closed, is Cartesian-preclosed when:

- it is Cartesian; and
- there is a family of maps that weakly preserves pre-exponential structure:

$$\tilde{e}: (F(a) \Rightarrow F(b)) \to F(a \Rightarrow b).$$

Free Cartesian Pre-Closed Category

$$\mathcal{A}_0 \triangleq \mathsf{Contexts} \\ \mathcal{A}_1(\Gamma, \Delta) \triangleq \mathsf{Substitutions} : \Gamma \vdash \Delta \text{ "/"} \equiv_{\alpha}$$

Free Cartesian Pre-Closed Category $A_0 \triangleq \mathsf{Contexts}$ $\mathcal{A}_1(\Gamma, \Delta) \triangleq \mathsf{Substitutions} : \Gamma \vdash \Delta "/" \equiv_{\alpha}$

Free Cartesian Pre-Closed Category

Free Cartesian Pre-Closed Category

$$\mathcal{A}_0 \triangleq \mathsf{Contexts}$$
 $\mathcal{A}_1(\Gamma, \Delta) \triangleq \mathsf{Substitutions} : \Gamma \vdash \Delta \text{"/"} \equiv_{\alpha}$

$$\exists \overline{\llbracket - \rrbracket}$$

$$\mathcal{A} \qquad \exists ! \overline{q} \downarrow \qquad \exists ! \overline{u} \qquad \overline{\mathbb{M}}$$

$$\forall \overline{I}$$

Renamings (Free Cartesian Category over T)

$$\mathcal{R}_0 \triangleq \mathsf{Contexts}$$
 $\mathcal{R}_1(\Gamma, \Delta) \triangleq \mathsf{Renamings} : \Gamma \vdash \Delta$

Free Cartesian Pre-Closed Category

Renamings (Free Cartesian Category over $\mathbb T$)

$$\mathcal{R}_0 \triangleq \mathsf{Contexts}$$
 $\mathcal{R}_1(\Gamma, \Delta) \triangleq \mathsf{Renamings} : \Gamma \vdash \Delta$

Inclusion and Quotient Functors

$$i:\mathcal{R}
ightarrow\mathcal{A}\ j:\mathcal{A}
ightarrow\mathcal{F}$$

Concrete Normalization

Choice of \mathbb{M} and I $\begin{array}{c|c} \mathbb{M} & I: \mathcal{F} \to \mathbb{M} \\ \hline \mathcal{F} & \operatorname{Id}: \mathcal{F} \to \mathcal{F} \\ \widehat{\mathcal{F}} & \mathcal{L}: \mathcal{F} \to \widehat{\mathcal{F}} \\ \widehat{\mathcal{A}} & \langle j \rangle : \mathcal{F} \to \widehat{\mathcal{A}} \end{array}$

$$\langle j \rangle(\Delta)(\Gamma) \triangleq \mathcal{F}_1(j^{\mathrm{op}}(\Gamma), \Delta)$$

Stronger Universal Property for $j:\mathcal{A} \to \mathcal{F}$

 $\mathcal{R} \triangleq \mathsf{Renamings}$ $\mathcal{A} \triangleq \mathsf{Substitutions}\, "/" \equiv_{\alpha}$ $\mathcal{F} \triangleq \mathsf{Substitutions}\, "/" \cong_{\beta\eta}$

Stronger Universal Property for $j:\mathcal{A} \to \mathcal{F}$

$$\mathcal{R} \triangleq \mathsf{Renamings}$$

 $\mathcal{A} \triangleq \mathsf{Substitutions}\, "/" \equiv_{\alpha}$
 $\mathcal{F} \triangleq \mathsf{Substitutions}\, "/" \cong_{\beta\eta}$

Stronger Universal Property for $j: \mathcal{A} \to \mathcal{F}$

$$\mathcal{R} \triangleq \mathsf{Renamings}$$

 $\mathcal{A} \triangleq \mathsf{Substitutions}\, "/" \equiv_{\alpha}$
 $\mathcal{F} \triangleq \mathsf{Substitutions}\, "/" \cong_{\beta\eta}$

Stronger Universal Property for $j:\mathcal{A} \to \mathcal{F}$

 $\mathcal{R} \triangleq \mathsf{Renamings}$ $\mathcal{A} \triangleq \mathsf{Substitutions}$ "/" \equiv_{α} $\mathcal{F} \triangleq \mathsf{Substitutions}$ "/" $\cong_{\beta\eta}$

Stronger Universal Property for $j: A \to \overline{\mathcal{F}}$

 $\mathcal{R} \triangleq \mathsf{Renamings}$ $\mathcal{A} \triangleq \mathsf{Substitutions}$ "/" \equiv_{α} $\mathcal{F} \triangleq \mathsf{Substitutions}$ "/" $\cong_{\beta\eta}$ \mathbb{M} $\exists \llbracket - \rrbracket$

Abstract Normalization 2.0

Normalization Function

$$\widetilde{\mathsf{nf}}_{\tilde{I}}\left(\Gamma \vdash \sigma : \Delta\right) \triangleq \tilde{q}_{\Delta} \circ \llbracket \sigma \rrbracket \circ \tilde{\boldsymbol{u}}_{\Gamma} : \tilde{I}\left(\Gamma\right) \to \tilde{I}\left(\Delta\right)$$

Abstract Normalization 2.0

Normalization Function

$$\widetilde{\mathsf{nff}}_{\tilde{I}}\left(\Gamma \vdash \sigma : \Delta\right) \triangleq \tilde{q}_{\Delta} \circ \llbracket \sigma \rrbracket \circ \tilde{u}_{\Gamma} : \tilde{I}\left(\Gamma\right) \to \tilde{I}\left(\Delta\right)$$

Soundness

Abstract Normalization 2.0

Normalization Function

$$\widetilde{\mathsf{nff}}_{\tilde{I}}\left(\Gamma \vdash \sigma : \Delta\right) \triangleq \tilde{q}_{\Delta} \circ \llbracket \sigma \rrbracket \circ \tilde{u}_{\Gamma} : \tilde{I}\left(\Gamma\right) \to \tilde{I}\left(\Delta\right)$$

Soundness

Weak Completeness

$$\Gamma \vdash \sigma \cong_{\beta\eta} \sigma' : \Delta \Rightarrow \widetilde{\mathsf{nff}}_{\tilde{I}}(\sigma) \sim_{\mathbb{M}} \widetilde{\mathsf{nff}}_{\tilde{I}}(\sigma')$$

Concrete Normalization 2.0

Choice of \mathbb{M} and \widetilde{I}

$$\begin{array}{c|c} \mathbb{M} & \tilde{I} : \mathcal{A} \to \mathbb{M} \\ \hline \mathcal{F} & j : \mathcal{A} \to \mathcal{F} \\ \widehat{\mathcal{A}} & \sharp : \mathcal{A} \to \widehat{\mathcal{A}} \end{array}$$

Concrete Normalization 2.0

Choice of \mathbb{M} and \tilde{I}

$$\begin{array}{c|c} \mathbb{M} & \tilde{I} : \mathcal{A} \to \mathbb{M} \\ \hline \mathcal{F} & j : \mathcal{A} \to \mathcal{F} \\ \widehat{\mathcal{A}} & \sharp : \mathcal{A} \to \widehat{\mathcal{A}} \end{array}$$

Strong Completeness

$$\begin{array}{c} \text{With } \mathbb{M} \triangleq \widehat{\mathcal{A}} \text{ and } \widetilde{I} \triangleq \ \sharp \colon \\ \Gamma \vdash \sigma \cong_{\beta\eta} \sigma' : \Delta \Rightarrow \widetilde{\mathsf{nf}}_{\, \sharp}(\sigma) \equiv_{\alpha} \widetilde{\mathsf{nf}}_{\, \sharp}(\sigma') \end{array}$$

The Normalizer's Dilemma?

Have soundness but no strong completeness; OR,

have strong completeness but no soundness.

Gluing

Choice of \mathbb{M} and \tilde{I}

$$\tilde{I} \triangleq \left\langle \, \, \sharp \downarrow \langle j \rangle j \, \right\rangle : \mathcal{A} \to \widehat{\mathcal{A}} \downarrow \widehat{\mathcal{A}}$$

Gluing

Choice of \mathbb{M} and \tilde{I}

Normalization Functions

$$\widetilde{\mathsf{nff}}_{\mathsf{D}}(\Gamma \vdash \sigma : \Delta) \triangleq \mathsf{Dom}(\tilde{q}_{\Delta} \circ \llbracket \sigma \rrbracket \circ \tilde{u}_{\Gamma})_{\Gamma}(\mathsf{id}_{\Gamma}) \quad : \mathcal{A}(\Gamma, \Delta)$$

$$\widetilde{\mathsf{nff}}_{\mathsf{C}}(\Gamma \vdash \sigma : \Delta) \triangleq \ \mathsf{Cod}(\widetilde{q}_{\Delta} \circ \llbracket \sigma \rrbracket \circ \widetilde{\textit{u}}_{\Gamma})_{\Gamma}(\mathsf{id}_{\Gamma}) \quad : \mathcal{F}(\Gamma, \Delta)$$

The Normalizer's Dilemma? Triumph!

Normalization Functions

$$\widetilde{\mathsf{nff}}_{\mathsf{D}}(\Gamma \vdash \sigma : \Delta) \triangleq \mathsf{Dom}(\tilde{q}_{\Delta} \circ \llbracket \sigma \rrbracket \circ \tilde{\textit{u}}_{\Gamma})_{\Gamma}(\mathsf{id}_{\Gamma}) \quad : \mathcal{A}(\Gamma, \Delta)$$

$$\widetilde{\mathsf{nff}}_{\mathsf{C}}(\Gamma \vdash \sigma : \Delta) \triangleq \ \mathsf{Cod}(\tilde{q}_{\Delta} \circ \llbracket \sigma \rrbracket \circ \tilde{\textit{u}}_{\Gamma})_{\Gamma}(\mathsf{id}_{\Gamma}) \quad : \mathcal{F}(\Gamma, \Delta)$$

Correctness

- $\widetilde{\mathsf{nf}}_{\mathsf{D}}$ is strongly complete.
- $\widetilde{\mathsf{nf}}_{\mathsf{C}}$ is sound.
- $\widetilde{\mathsf{nf}}_{\mathsf{D}}$ and $\widetilde{\mathsf{nf}}_{\mathsf{C}}$ agree extensionally.
- \bullet $\widetilde{\mathsf{nf}}_D$ is sound.

$$\left[\sigma \cong_{\beta n} \sigma' \Rightarrow \widetilde{\mathsf{nf}}_{\mathsf{D}}(\sigma) \equiv_{\alpha} \widetilde{\mathsf{nf}}_{\mathsf{D}}(\sigma') \right]$$

$$\left[\;\widetilde{\mathsf{nf}}_{\mathsf{C}}(\sigma)\cong_{\beta\eta}\sigma\;\right]$$

$$\left[j(\widetilde{\mathsf{nf}}_{\mathsf{D}}(\sigma)) \cong_{\beta\eta} \widetilde{\mathsf{nf}}_{\mathsf{C}}(\sigma)\right]$$

$$\left[j(\widetilde{\mathsf{nf}}_{\mathsf{D}}(\sigma)) \cong_{\beta\eta} \sigma\right]$$

Rocq Formalization

- P-Category Theory used.
- SProp used for PER valuation.
- Provides effective normalization procedure for terms & substitutions.
- De Bruijn indices used for representation of variables.

Future Work

- Analyze naturality of \tilde{q} and \tilde{u} more carefully.
- Connect more closely with traditional gluing techniques (*e.g.*, of Fiore).
- Lift to coproducts.
- Lift to non-simple type theories.

For more information see: arXiv:2505.07780