Calculating the Risk to Data Subjects

This paper describes a method used to calculate the risk (impact and probability) of a 'personal data breach' associated with a range of systems in an organisation. The purpose is not to end up with a pure mathematical measure of risk but to allow an organisation to understand the relative risk between systems and inform prioritisation. It is loosely based on the methodology described in ISO/IEC 27005:2011.

It has lots of limitations, it is a work-in-progress, please feel free to re-use and provide feedback.

Step 1 - Identify relevant data subjects

The organisation identifies the main classes of data subjects whose data is processed by the organisation. For a commercial organisation, this is typically workers (and ex-workers), customers and prospective customers.

Step 2 - Develop a catalogue for all systems

Each system is reviewed and the following matrix completed. Company specific clusters should also be defined where data elements are typically processed together.

(Matrix is show completed with an example system).

System Name	Salesforce CRN	<u>I</u>
Data Subjects	Customers	Workers
Number of data subjects whose data is stored	2 million	50
Number of data subjects whose data is	400,000	50
processed / transmitted annually		
Data Types Processed (Y/N?		
General Personal Data	Y	Y
Names, Addresses, Demographic		
Financial Data	Y	N
Bank account or payment card numbers		
Transactional Data	Y	N
Orders / Order history		
Special Category Data	N	N
As defined by Article 9(1), excluding health		
Health Data	N	N
Data relating to a person's physical or mental		
condition		
Criminal Data	N	N
Criminal records, allegations		
Location data	Y	Y
Physical location, IP addresses GPS data		
Employment and performance data	N	N
Appraisals, salary, disciplinary, performance		
metrics, timekeeping		
Image data	N	N
Photographs, Video, CCTV		

Step 3 - Estimate the Impact of a Personal Data Breach on each class of Data Subject

Using an organisation-wide scale (example below) estimate, for each class of data subject assess:

- A. The worst-case impact of as breach of a record/file as typically there will be a few records in a system that if breached would have a much higher impact on an individual's fundamental rights and freedoms than most of the records. A good example is an HR system where a few records may contain particularly sensitive (in the ordinary sense of the word) information, whereas most do not.
- B. The impact of a breach of a typical record / file

Score	1	2	3	4	5
Short	Minor	Low	Medium	High	Critical
Description					
Breach of Cor	fidentiality, inte	egrity or availabii	lity of personal d	data resulting i	n
Privacy	Disclosure of	Limited	Theft of	Irretrievable	Life changing
	travel	disclosure of	identity /	control over	damage to
	itinerary	financial or	criminal use	data that the	career,
		special	of identity.	data subject	personal life
	Disclosure of	category data		would	or reputation
	address /		Risk of	consider	
	contact		criminal use	sensitive.	
	information		of payment		
	· · · · · ·	c	instrument	c	
Financial	financial loss	financial loss	financial loss	financial loss	Loss of assets,
	up to £100	up to £1000	between 1K	up to £10K	financial loss
	CI	144	and 10K		over £10K
Mental	Short-term	Worry, anxiety	Medium term	Long term	Permanent
integrity	(day/ few	Temporary effects on	effects on mental state	effects on	effects on
	days) stress	mental state		mental state	mental state
		mentai state	(< 1 year)	(> 1 year)	
Physical	Physical	Hospital	Hospital in	Chronic	Death or life
integrity	discomfort	outpatient	patient	condition	changing
		required	required		injury
Employment	Worry about	Discrimination	Significant	Loss of	Loss of
	discrimination	in role	discrimination	employment	employment/
	in role		in role		inability to
					secure next
					role
l					

It can be useful to create a baseline impact score for each data subject / cluster combination.

It is important that impact (and probability) are determined consistently because this exercise is used for prioritisation, so relative results are more important than absolutes.

Step 4 - Estimate the Probability of a Breach of many records

Using the organisation-wide scale estimate the probability of a breach affecting many/all of the data subjects whose data is processed in the system

Score	1	2	3	4	5
Short	Unlikely	Possible	Likely	Probable	Certain
Description					
Probability	< 10%	11% - 40%	41-70%	71%-90%	>90%
of an event					
occurring					
within 24					
months					

Step 5 - Calculate the Population Breach Risk Score

For each system / data subject combination calculate a population risk score using the following variables.

- A) Worst impact of a breach in confidentiality of a single record (1-5)
- B) Typical impact of a breach of confidentiality (1-5)
- C) Number of records
- D) Total 'population' impact of a typical breach in confidentiality of the system (B²*C)
- E) Probability of a breach in confidentiality of the system (1-5)
- F) Total population risk (total population impact x probability D*E)

And if applicable consider availability and integrity

Would a lack of availability or integrity also affect someone's fundamental rights and freedoms? This tends to be context specific

Worked example

A system used to send emails to ask for customer feedback that contains 1 million records containing personal contact data, summary of last order and date

Measure	Scores	Reason
Worst impact of a breach in confidentiality	2	Privacy
of a single record (A)		
Typical impact of a breach of confidentiality	1	Privacy
(B)		
Number of records (C)	1,000,000	
Population impact (D=B ² * C)	1,000,000	
Probability of population breach (E)	3	Data sent by unencrypted
		email to unreliable third
		party
Population risk (F=D * E)	3,000,000	

Step 6 - Rank systems in order of priority

Systems should be ranked by Population Risk Score in groups of data subjects. For example: Data Subjects: Customers

System	Worst Case Impact	Population Risk Score
System A	4	958,000,000
System B	4	623,000,000
System C	3	432,000,000
System D	3	281,000,000
System E	3	178,100,000
System F	3	178,000,000
System G	2	178,000,000
System H	1	80,000,000
System I	1	70,000,000

Data Subjects: Workers

System	Worst Case	Population Risk
	Impact	Score
System Z	3	3,920,000
System Y	5	2,250,000
System X	4	700,000
System W	5	400,000
System V	4	400,000
System U	3	400,000
System T	3	400,000
System S	3	360,000
System R	5	230,000
System Q	3	200,000
System P	4	180,000

Remember that the absolute score isn't the important figure in this methodology – it is just designed to record / analyse priorities.

Limitations / Issues

- Balancing the risk of a single record containing 'worst case' data with over-assessing the whole system currently manually adjusted by visual scan of spreadsheet looking at the worst-case column.
- Assuming a public health approach to consider total population risk 'accepts' risk of significant harm to a small number of individuals in the total population. Is this fair?
- Dealing with environments where some systems have 20 million records vs. a few thousand – how to balance 20 million low risks with a thousand high risks – especially across different groups of data subjects (other the case for systems holding customer data vs. colleague data).
- Tends to focus on breach of confidentiality but availability and integrity are also important no consideration for other privacy risks (eg risk assessment based on impact/probability of identified LINDDUN threats materialising).
- How granular to make this it could be a rabbit-hole of work that doesn't tell you much more than a superficial exercise but which generates lots of impressive-looking paperwork.
- Inconsistent assessment by assessors even with training and a single organisational scale.
- Hard for ex-information security people to focus on fundamental rights and freedoms and the effect on individuals rather than the organisation.
- How do you assess impact with a range of data subjects. A £1,000 financial loss to
 one data subject is inconvenient, to someone else it is the end of the world because
 it is many times their net worth. How do we account for this?
- What does risk acceptance look like how can a DPO set a threshold value?
 - What would a regulator consider reasonable/appropriate/pragmatic?
- How do you translate this back to an enterprise risk register that is based on risk to the organisation, not risk to the data subject (because believe me, you will be asked to do this).

Note

This brief practical paper was initially presented at a January 2018 practitioners' workshop on privacy impact metrics at De Montfort University that was kindly organised by Professor Eerke Boiten. It's not meant to be an academic study but a description of how I've been doing simple privacy impact assessments.

As an industry, we're at a very early stage of privacy impact assessment maturity. So please, join the discussion, contribute and help build the capability.