Cluster Analysis

Introduction

- Popular unsupervised learning method
- Goal
 - > Segment the data into set of homogeneous cluster of records
- Based on several measurements made on the records
- Helps improve other supervised learning methods performance
- How?
 - Model each cluster separately than the entire heterogeneous dataset
- Popular clustering methods
 - Hierarchical clustering
 - > k-means clustering (widely used)

Applications

- Astronomy, Archaeology, medicine, chemistry, education, psychology, linguistics, sociology etc.
- Biologists : Group and organize species
- Chemistry: Mendeleev's periodic table
- Business : Market segmentation (segment customers based on demographics
- Politics: cluster neighborhoods by lifestyles
- Finance: creating balanced portfolios, industry analysis
- Internet : cluster queries that users submit (helps improve search algorithms)

Interesting application

- Design of new set of sizes for army uniforms for women in US army
- Study came up with a new clothing size system with only 20 sizes, where
 different sizes fit different body types
- 20 sizes are combinations of five measurements :
 - > Chest
 - > Neck
 - > Shoulder circumference
 - > Sleeve outseam
 - ➤ Neck-to-buttock length

Data on Public Utilities

- 22 Public utilities
- Interested in forming groups of similar utilities
- Attributes
 - > company: name of the utility
 - Fixed_Charge: fixed-charge covering ratio (income/debt)
 - > ROR: rate of return on capital
 - Cost: cost per kilowatt capacity in place
 - ➤ Load_Factor: annual load factor
 - ➤ Demand_Growth: peak kilowatt demand growth from 1974 to 1975
 - Sales: sales (kilowatthour use per year)
 - Nuclear: percentage nuclear
 - Fuel_Cost: total fuel costs (cents per kilowatthour)

Today's class mandatory steps

- Create a folder name "p. cluster" within the folder
 "oba_455_555_ddpm_r/rproject"
- Download "cluster_code.R", and all csv files from canvas
- Place all downloaded files in
 - "oba_455_555_ddpm_r /rproject/ p. cluster"
- Open RStudio project
- Open "cluster_code.R" file within RStudio

Scatter plot of only two variables

Difficult to visualize 8 variables at a time

Reveals ~ 3 clusters by looking at only 2 var

Based on distance between observations

Distances

- Types
 - **Euclidean**
 - > Mahalonobis
 - > Manhattan
 - Maximum coordinate
 - >
- Distance between observations is highly influenced by scale
- Distance have to be unit free
- Solution ?
 - > Standardization/Normalization

Transformation of data

- Standardization/Normalization
- Subtract mean from each observation
- Divide the result by standard deviation

X	
64	m = mean(c(64, 18, 24, 46, 72))
18	1/ /// 40 04 4/ 50)
24	s = sd(c(64, 18, 24, 46, 72))
46	$X_norm = (X-m)/s$
72	(LL 111)) 0

X_norm
0.8076
-1.1273
-0.8749
0.0505
1.1441

- Mean of normalized data is 0
- Standard deviation of normalized data is 1

Euclidean Distance between points

 X_1, X_2, Z_1, Z_2 are all standardized values

Types of distances between clusters

Types of distances between clusters

- Minimum cluster distance
 - Minimum of all possible pairs D(A_i, B_i)
- Maximum cluster distance
 - Maximum of all possible pairs D(A_i, B_i)
- Average cluster distance
 - Average of all possible pairs D(A_i, B_i)
- Centroid cluster distance
 - Distance between center of cluster A and B

Hierarchical clustering

- Two types
 - > Agglomerative
 - > Divisive
- Agglomerative
 - > Step 1 : Start with "n" clusters (each record = cluster)
 - > Step 2: The two closest records are merged into one cluster
 - Step 3: The two clusters with the smallest distance are merged i.e. either single records are added to existing clusters or two existing clusters are combined

Dendogram

(Dis) Advantages of Hierarchal Clustering

- Does not require to specify the number of clusters
- Pictorial representation by Dendogram
- Easier to interpret and purely data-driven
- For large datasets, the algorithm is expensive and slow
- One pass: once records are allocated to a group cannot be re-allocated
- Re-ordering or dropping the data can lead to different solution
- Sensitive to outliers

k-means Clustering

- Specify the number of clusters, k
- Process
 - > Step 1 : Start with "k" initial clusters
 - > Step 2: Each record is reassigned to the cluster with the "closest" centroid
 - ➤ Step 3 : Recompute the centroid of clusters that lost or gained a record, and repeat Step 2
 - > Stop when moving any more records between clusters increases cluster dispersion

Choosing the number of clusters (k)

Final Project presentation

- Presentation (10%)
 - ➤ 15-minute presentation followed by a 10-minute Q&A
 - ➤ May 31st (Tue) & Jun 02nd (Thu)
 - Groups are randomly assigned to the 2 days
 - Groups should send the ppt file by 8 am on their presentation date
 - Each member of the group should **mention the contribution** of their work in the last slide of the presentation file
- Everyone must be present in the class on the presentation days
 - > Zero scores for presentation assessment if absent

May 31st presentations

- ACB
- ATJ
- HJJ
- P

Jun 02nd presentations

- AJA
- DJK
- MRV
- TAP

Final Report

- Formal report
 - > Introduction, Problem description, Approach (Regression / Classification)
 - Data Analysis, Results, Inference
 - Conclusions, recommendations
- Regression: k-NN as Regression, Linear Regression & Regression Tree
- Classification: k-NN as classification, Logistic Regression & Classification Tree
- Assess the performance & recommend best predictive model
- 8-10 pages including any tables and graphs (excluding code)
- Two or Three key insights from the entire analysis
- Submit the code with comments at end of the report
 - ➤ 10 of 30 points penalty on not submitting the code

Final Project

- Final Report (30%)
 - Due by Jun 08th, 8AM (Exam day) for all groups
 - Each member of the group should **mention the contribution** of their work in the report

Thank You