2/13/2020 Week 5 Module 2 Interactive Exercise for Molecular Dynamics

- In this module, you will learn how to
 - navigate the UNIX terminal
 - execute programs with a command line interface (CLI)
 - run a short MD simulation on your desktop machine
 - visualize the simulation with VMD
- In this class session you will also work on preparing your team's target for MD simulation

The UNIX Terminal and Command Line Interface (CLI)

The UNIX Terminal

- Predecessor and very similar to the terminal used in
 - LINUX many scientific computing clusters
 - Mac OS X this lab and many of your own laptops/computers
- Useful for
 - accessing programs that run with a command line interface (CLI)
 - automation
- To start the terminal on a Mac:

• I actually usually use another program:

UNIX Terminal Essentials

- Try the following commands
 - echo \$SHELL echo reports the value of a variable. \$SHELL is the terminal interface you are using, and will affect the details of all other commands. bash is a popular shell.
 - File operations
 - Is list files and directories
 - cp copy files
 - rm remove files and directories
 - mv rename or move files and directories to another location
 - Directory management
 - pwd confirm current directory
 - cd change directory
 - mkdir make new directory
 - rmdir remove directory
- Also see
 - https://www.unixtutorial.org/basic-unix-commands
 - An Introduction to Linux (https://www.youtube.com/watch?v=IVquJh3DXUA). Work with the terminal starts at 3:35

Command Line Interface (CLI)

- Computer software is usually either accessible by a
 - graphical user interface (GUI) or a
 - command line interface (CLI)
- A lot of scientific software is based on a CLI
 - it takes effort to create a GUI
 - a CLI is easier to automate
- Starting a program on the CLI looks like
 - path_to_program/program_name required_argument1 --argument1_name argument1_value
 - path_to_program can be ./ for the local directory or omitted if the program is in the \$PATH variable
 - the number of required and optional arguments depends on the program

Running OpenMM

- To actually run OpenMM, you need to invoke a Python script.
- To invoke the script, enter the following commands
 - `cd ~/Desktop/OpenMM', which changes your current directory to the directory where the files are
 - 'Is' lists the contents of the current directory. It isn't 100% necessary but useful to check.
 - python MD_ubq.py' actually runs the script

```
(openmm) Minh-IIT-MBP2018:[~]: cd ~/Desktop/OpenMM
(openmm) Minh-IIT-MBP2018:[~/Desktop/OpenMM]: ls
1ubq.pdb MD_ubq.py
(openmm) Minh-IIT-MBP2018:[~/Desktop/OpenMM]: python MD_ubq.py
```

Input files can also be downloaded from github: https://github.com/daveminh/Chem456/tree/master/static_files/tutorials/ubq-md

- When you run the script, you will see some output to the console. This is mostly from the StateData reporter
 - Notice that the potential energy goes slightly up. This is because we started with a minimized structure.
- If you type `ls' again, you will see that the simulation created two files
 - ubq_mod.pdb the model that includes hydrogen but not water
 - trajectory.dcd the actual simulation data

```
(openmm) Minh-IIT-MBP2018:[~/Desktop/OpenMM]: python MD_ubq.py
Minimizing...
Running Production...
                                         "Potential Energy (kJ/mole)"
                                                                          "Temperature (K)"
                                                                                                   "Speed (ns/day)"
#"Progress (%)" "Step" "Time (ps)"
Time Remaining"
                0.2000000000000015
10.0%
        100
                                         -12936.42476230517
                                                                  183.51751922475094
20.0%
        200
                0.4000000000000003
                                         -12646.180945641867
                                                                                          66.3
                                                                                                   0:02
30.0%
        300
                0.6000000000000004
                                                                                           63.9
                                                                                                   0:01
                                         -12391.382319417527
                                                                  222.92731255729387
40.0%
        400
                                                                                           63.2
                                                                                                   0:01
                0.8000000000000006
                                         -12397.931712869551
                                                                  252.91336736415292
50.0%
                1.00000000000000007
                                         -12164.42101471391
                                                                                           63.7
                                                                                                   0:01
                                                                  261.4505010540196
60.0%
                                         -11959.584803213324
        600
                                                                                          63.9
                                                                                                   0:01
                1.20000000000000008
70.0%
        700
                                                                  278.89717139432463
                                                                                           64.1
                                                                                                   0:00
                1.400000000000001
                                         -11810.354813818332
80.0%
        800
                                                                                          64.5
                                                                                                   0:00
                1.6000000000000012
                                         -11819.44354535209
                                                                  280.87644275577924
90.0%
                                         -11761.649241585736
                1.8000000000000014
                                                                  281.12817290253514
                                                                                          64.6
                                                                                                   0:00
       1000
                                         -11685.676062540104
                                                                  281.4727076092732
                                                                                                  0:00
Done!
(openmm) Minh-IIT-MBP2018: [~/Desktop/OpenMM]: ls
               MD_ubq.py trajectory.dcd ubq_mod.pdb
1ubq.pdb
(openmm) Minh-IIT-MBP2018:[~/Desktop/OpenMM]:
```

Visualizing Results

- To visualize the molecular dynamics trajectory
 - open vmd
 - create a new molecule based on "ubq_mod.pdb"
 - load files "trajectory.dcd" as a file for the new molecule

- Now look at the "VMD Main" window
 - "Frames" reads 11 instead of 1
 - You can use the bottom of the window to start a movie and control where we are
- There probably won't be much going on in your movie, but all of molecular dynamics is just like this, just rinse and repeat

Some complications

- Most simulations are not going to be this easy to set up
 - Crystal structures may have missing atoms, which often can be added by homology modeling
 - The added hydrogens should depend on the pH you're trying to model
 - You need to do extra work for non-standard residues, cofactors, and ligands
 - Most of the time it is better to simulate with water
 - For certain systems, you will need to build a membrane
- You usually need much longer simulations to get publishable results
 - GPU computing provides significant acceleration
 - Calculations will usually be done remotely
 - XSEDE supercomputer
 - Google/Amazon cloud
- We will help each group with all of these