06

Reacciones de transferencia de protones. Ácidos y bases **TEST**

Nombre:	Fecha:
Apellidos:	Curso:

- 1. Según la teoría de Arrhenius, ácido es toda sustancia que en disolución acuosa se disocia produciendo:
 - a) Iones OH
 - b) Iones H₃O⁺
 - c) Electrones.
- 2. Clasifica según la teoría de Arrhenius, las siguientes especies en ácidos o bases.

 $H\ NO_3$; $Ba\ (OH)_2$; H_2SO_4 ; $H\ CI$; $Na\ OH\ y\ H\ CIO_4$.

- 3. Escribe la disociación acuosa de los ácidos y bases de la cuestión anterior.
- 4. Indicar cuales de los siguientes compuestos son ácidos o bases según la teoría de Brönsted-Lowry:
- a) NH₃
- b) H₂ SO₄
- c) SO₄²⁻
- d) Ba (OH)2
- e) NH₄⁺
- f) OH
- 5. De los siguientes indique cuál no es par ácido-base conjugado:
 - a) HCO_3 / CO_3 ²
 - b) HNO₂/ NO₃
 - c) H CI /CI -
 - d) H₃ O⁺/ OH⁻
- 6. ¿Cuál de las siguientes especies puede actuar como ácido y como base (anfótera)?
 - a) CH₃COO
 - *b*) N H₄⁺
 - c) S²⁻
 - d) H₂O
 - e) HSO₄

06

Reacciones de transferencia de protones. Ácidos y bases **TEST**

- 7. Complete los siguientes equilibrios ácido-base identificando, los pares ácido-base conjugados.
 - a) + $H_2O \Leftrightarrow S_2^- + H_3O^+$
 - b) $NH_4^+ + OH^- \Leftrightarrow H_2O +$
 - c) $Cl^- + H_2O \Leftrightarrow HCl +$
- 8. El pH de una disolución acuosa es 10,82. El valor de la concentración de iones OH es:
 - a) 1,5·10⁻¹¹
 - b) $6,6\cdot10^{-10}$
 - c) $1,0.10^{-7}$
 - d) 1,5·10⁻⁵
 - e) 6,6·10⁻⁴

Seleccionar la opción correcta.

- 9. Dos ácidos monopróticos X e Y tiene de constante de ionización $1\cdot 10^{-4}$ y $1,6\cdot 10^{-5}$, respectivamente. Indicar qué proposiciones son correctas:
 - a) El ácido Y es más fuerte que el X.
 - b) Una disolución de X tiene mayor pH que una disolución, de igual concentración, de Y.
 - c) El pH será el mismo si las disoluciones de los dos ácidos son las mismas.
 - d) El grado de disociación del ácido X será mayor que el del Y.
- 10. Clasifica las afirmaciones siguientes como verdaderas o falsas:
 - a) La constante de acidez K_a es menor mientras más débil sea el ácido.
- b) Una disolución acuosa de un ácido o una base fuerte tiene que ser necesariamente concentrada.
 - c) En una disolución básica no existen iones H₃O⁺.
 - d) Una disolución de pH=7 es neutra.
 - 11. Si añadimos agua a una disolución de ácido fuerte:
 - a) El pH no varía.
 - b) El pH aumenta.
 - c) El pH disminuye.

Seleccionar la opción correcta.

- 12. Si añadimos agua a una disolución de base fuerte:
 - a) El pH no varía.
 - b) El pH aumenta.
 - c) El pH disminuye.

Seleccionar la opción correcta.

Reacciones de transferencia de protones. Ácidos y bases **TEST**

13.	Considere	los	siguientes	iones
	•••••			

- a) CH₃COO
- b) NH₄⁺
- c) Na⁺
- d) Cl
- e) C₆H₅COO

Indique los iones que sufren hidrólisis.

- 14. Escriba las reacciones de hidrólisis de los iones del ejercicio anterior, indicando el carácter ácido, básico o neutro de su disolución acuosa.
- 15. Clasifica las soluciones acuosas de las sales que se enuncian a continuación, como ácidas, básicas o neutras.
- a) Na₂ CO₃
- b) NH₄ NO₃
- c) Mg SO₄
- d) CH₃COONa.
- 16. Selecciona la respuesta correcta:

En una valoración ácido fuerte base fuerte, en el punto de equivalencia a 25ºC, el pH es:

- a) Mayor que 7.
- b) Menor que 7.
- c) Igual a 7.
- 17. Selecciona la respuesta correcta:

En una valoración ácido fuerte base fuerte, en, la cantidad de iones OH añadidos hasta alcanzar el punto de equivalencia es:

- a) Es igual a la cantidad de iones H₃O⁺ presentes en la disolución inicial.
- b) Es siempre igual a la cantidad de ácido introducido en la disolución inicial.