Lecture 2

- Background mathematics
 - Topology in \mathbb{R}^n
 - Analysis in \mathbb{R}^n
 - Linear algebra

Topology in Rⁿ

Open set

A subset C of \mathbb{R}^n is called open, if for every $\mathbf{x} \in C$ there exists $\varepsilon > 0$ such that the ball $B_{\varepsilon}(\mathbf{x}) = {\mathbf{y} | ||\mathbf{y} - \mathbf{x}||_2 \le \varepsilon}$ is included in C.

Examples: $\{x | a < x < b\}, \{\mathbf{x} | \|\mathbf{x} - \mathbf{a}\| < 1\}, \{\mathbf{x} | \mathbf{x} > \mathbf{0}\}, \mathbb{S}_{++} = \{\mathbf{X} | \mathbf{X} \succ \mathbf{0}\}$

Closed set

A subset C of \mathbb{R}^n is called closed, if its complement $C^c = \mathbb{R}^n \setminus C$ is open.

Examples: $\{x|a \le x \le b\}$, $\{\mathbf{x}|\|\mathbf{x} - \mathbf{a}\| \le 1\}$, $\{\mathbf{x}|\mathbf{x} \ge \mathbf{0}\}$, $\mathbb{S}_+ = \{\mathbf{X}|\mathbf{X} \succeq \mathbf{0}\}$

Bounded set

A subset C of \mathbb{R}^n is called bounded, if $\exists R > 0$ such that $\|\mathbf{x}\| < R$, $\forall \mathbf{x} \in C$.

Examples: $\{x | a \le x < b\}, \{\mathbf{x} | \|\mathbf{x} - \mathbf{a}\| < 1\}, \{\mathbf{x} | \mathbf{1} > \mathbf{x} \ge \mathbf{0}\}, \{\mathbf{X} | \mathbf{I} \succeq \mathbf{X} \succ \mathbf{0}\}$

Compact set

A subset C of \mathbb{R}^n is called compact, if it is both bounded and closed.

Examples: $\{x | a \le x \le b\}, \{\mathbf{x} | \|\mathbf{x} - \mathbf{a}\| \le 1\}, \{\mathbf{x} | \mathbf{1} \ge \mathbf{x} \ge \mathbf{0}\}, \{\mathbf{X} | \mathbf{I} \succeq \mathbf{X} \succeq \mathbf{0}\}$

Topology in Rⁿ

Interior

The interior of $\mathcal{C} \subseteq \mathbb{R}^n$ is defined as $\mathcal{C}^{\circ} = \{\mathbf{y} | \exists \varepsilon > 0 \text{ such that } B_{\varepsilon}(\mathbf{y}) \subset \mathcal{C}\}.$

Examples: $(\{x|a \le x \le b\})^{\circ} = \{x|a < x < b\}, (\{\mathbf{x}|\|\mathbf{x} - \mathbf{a}\| \le 1\})^{\circ} = \{\mathbf{x}|\|\mathbf{x} - \mathbf{a}\| < 1\}, (\{\mathbf{x}|\mathbf{1} \ge \mathbf{x} \ge \mathbf{0}\})^{\circ} = \{\mathbf{x}|\mathbf{1} > \mathbf{x} > \mathbf{0}\}, (\{\mathbf{X}|\mathbf{I} \succeq \mathbf{X} \succeq \mathbf{0}\})^{\circ} = \{\mathbf{X}|\mathbf{I} \succ \mathbf{X} \succ \mathbf{0}\}$

Closure

The closure of $\mathcal{C} \subset \mathbb{R}^n$ is defined as $\bar{\mathcal{C}} = \mathbb{R}^n \setminus (\mathbb{R}^n \setminus \mathcal{C})^\circ = ((\mathcal{C}^c)^\circ)^c$.

Examples:
$$\overline{\{x|a \le x < b\}} = \{x|a \le x \le b\}, \overline{\{\mathbf{x}|\|\mathbf{x} - \mathbf{a}\| < 1\}} = \{\mathbf{x}|\|\mathbf{x} - \mathbf{a}\| \le 1\}, \overline{\{\mathbf{x}|\mathbf{1} \ge \mathbf{x} > \mathbf{0}\}} = \{\mathbf{x}|\mathbf{1} \ge \mathbf{x} \ge \mathbf{0}\}, \overline{\{\mathbf{X}|\mathbf{I} \succ \mathbf{X} \succ \mathbf{0}\}} = \{\mathbf{X}|\mathbf{I} \succeq \mathbf{X} \succeq \mathbf{0}\}$$

Boundary

The boundary of $\mathcal{C} \subseteq \mathbb{R}^n$ is defined as $\partial \mathcal{C} = \bar{\mathcal{C}} \setminus \mathcal{C}^{\circ}$.

Examples: $\partial(\{x|a \leq x < b\}) = \{a,b\}, \ \partial(\{\mathbf{x}|\|\mathbf{x} - \mathbf{a}\| < 1\}) = \{\mathbf{x}|\|\mathbf{x} - \mathbf{a}\| = 1\},\ \partial(\{\mathbf{x}|\mathbf{1} \geq \mathbf{x} > \mathbf{0}\}) = \{\mathbf{x}|\exists i \text{ such that } x_i = 0 \text{ or } 1\},\ \partial(\{\mathbf{X}|\mathbf{I} \succ \mathbf{X} \succ \mathbf{0}\}) = \{\mathbf{X}|0 \leq \lambda_i(\mathbf{X}) \leq 1, \forall i, \text{ and } \exists j \text{ such that } \lambda_j(\mathbf{X}) = 0 \text{ or } 1\}$

Sequences

A sequence in \mathbb{R}^n is a set of vectors in \mathbb{R}^n indexed by positive integers, denoted as $\{\mathbf{x}_k\}_{k=1}^{\infty}$ of simply $\{\mathbf{x}_k\}$. Sometimes the index may start from 0 or even negative integers for convenience.

Examples: $x_k = 10^k$, $x_k = 10^{-k}$, $x_k = (-1)^k k$

A sequence $\{x_k\}$ in \mathbb{R} is increasing if $x_k < x_{k+1}$ for all k. If $x_k \le x_{k+1}$, then we say that the sequence is nondecreasing. Similarly, we can define decreasing and nonincreasing sequences. Nonincreasing or nondecreasing sequences are called monotone sequences.

Examples: $x_k = 10^k$, $x_k = 10^{-k}$, $x_k = \lfloor k/4 \rfloor$, $x_k = (-1)^k k$

A sequence $\{\mathbf{x}_k\}$ is bounded if $\exists R > 0$ such that $\|\mathbf{x}_k\| < R$, $\forall k$.

Examples: $x_k = 10^k$, $x_k = 10^{-k}$, $x_k = \lfloor k/4 \rfloor$, $x_k = (-1)^k k$

Sequences

A sequence $\{x_k\}$ in \mathbb{R} is upper bounded (or bounded above) if $\exists u$ such that $x_k \leq u$, $\forall k$. Lower boundedness (or bounded below) is defined similarly.

Examples:
$$x_k = 10^k$$
, $x_k = 10^{-k}$, $x_k = \lfloor k/4 \rfloor$, $x_k = (-1)^k k$

Supremum and infimum

Suppose $\mathcal{C} \subseteq \mathbb{R}$. A number a is an $upper\ bound$ on \mathcal{C} if for each $x \in \mathcal{C}$, $x \leq a$. The set of upper bounds on a set \mathcal{C} is either empty (in which case we say \mathcal{C} is unbounded above), all of \mathbb{R} (only when $\mathcal{C} = \emptyset$), or a closed infinite interval $[b, \infty)$. The number b is called the $least\ upper\ bound$ or supremum of the set \mathcal{C} , and is denoted $\sup \mathcal{C}$. We take $\sup \emptyset = -\infty$, and $\sup \mathcal{C} = \infty$ if \mathcal{C} is unbounded above.

We define lower bound, and infimum, in a similar way.

Examples:
$$x_k = 2 - 10^{-k}$$
, $x_k = 1 + 10^{-k}$, $x_k = 1 + (-1)^k \times 10^{-k}$

• Limit

A sequence $\{x_k\}$ in \mathbb{R}^n is convergent (or has a limit) if $\exists \mathbf{x}^*$, such that for all $\varepsilon > 0$, $\exists K$ such that $\|\mathbf{x}_k - \mathbf{x}^*\| \leq \varepsilon$, $\forall k > K$.

Examples: $x_k = 2 - 10^{-k}$, $x_k = 1 + 10^{-k}$, $x_k = 1 + (-1)^k \times 10^{-k}$

Accumulation point

Given a sequence $\{\mathbf{x}_k\} \subseteq \mathbb{R}^n$, we call \mathbf{x}^* an accumulation point of $\{\mathbf{x}_k\}$ if for any $\varepsilon > 0$, there exists k_j such that $\|\mathbf{x}_{k_j} - \mathbf{x}^*\| < \varepsilon$.

Examples: $x_k = (-1)^k (1 + 10^{-k}), x_k = (k \mod 4) + (-1)^k / k$

Bolzano-Weierstrass theorem

Theorem 1. Any bounded sequence in \mathbb{R}^n contains a convergent subsequence.

Proof. Suppose that a sequence $\{\mathbf{x}_k\}$ is in a hyper-cube $\mathcal{H} = \{\mathbf{x}|l_i \leq x_i \leq u_i, i = 1, \dots, n\}$. Each time we divide \mathcal{H} in half, then at least one of the halves has infinite number of points in $\{\mathbf{x}_k\}$, denote it as \mathcal{H}_j . Then the diameter of \mathcal{H}_j approaches 0 and $\mathbf{x}^* = \bigcap_{j=1}^{\infty} \mathcal{H}_j$ is an accumulation point. Picking any of the points in $\mathcal{H}_{j-1} \setminus \mathcal{H}_j$ gives a subsequence that converges to \mathbf{x}^* .

Global and local convergence

We say that an iterative algorithm is *globally convergent* if for any arbitrary starting point the algorithm is guaranteed to generate a sequence of points converging to a point that satisfies the (FONC) for a minimizer. When the algorithm is not globally convergent, it may still generate a sequence that converges to a point satisfying the FONC, provided that the initial point is sufficiently close to the point. In this case we say that the algorithm is *locally convergent*.

Analysis in \mathbb{R}^n

Convergence rate

Assume $\mathbf{x}_k \to \mathbf{x}^*$. We define the sequence of errors to be

$$\mathbf{e}_k = \mathbf{x}_k - \mathbf{x}^*$$
.

We say that the sequence $\{\mathbf{x}_k\}$ converges to \mathbf{x}^* with rate r and rate constant C if

$$\lim_{k \to \infty} \frac{\|\mathbf{e}_{k+1}\|}{\|\mathbf{e}_k\|^r} = C, \quad (C < \infty).$$

Linear: r = 1, 0 < C < 1;

Q-linear

Sublinear: r = 1, C = 1;

Superlinear: r = 1, C = 0;

Quadratic: r = 2;

Cubic: r = 3. r may be non-integers

Can r = 1 and C > 1 happen?

Examples: $x_k = 10^{-k}$, $x_k = 0.99^k$, $x_k = 10^{-2^k}$, $x_{k+1} = x_k/2 + 2/x_k$ $(x_1 = 4)$,

Convergence rate

Estimating the order r:

$$r \approx \frac{\log \frac{x_{k+1} - x_k}{x_k - x_{k-1}}}{\log \frac{x_k - x_{k-1}}{x_{k-1} - x_{k-2}}}.$$

Assume $\mathbf{x}_k \to \mathbf{x}^*$. We say that the sequence $\{\mathbf{x}_k\}$ converges to \mathbf{x}^* R-linearly if

$$\|\mathbf{x}_k - \mathbf{x}^*\| \le e_k$$

R-linear

and $\{e_k\}$ converges to 0 Q-linearly.

Remedies the issue when $\lim_{k\to\infty} \frac{\|\mathbf{e}_{k+1}\|}{\|\mathbf{e}_k\|^r}$ does not exist.

Example:
$$x_k = \begin{cases} 1 + 2^{-k}, & k \text{ even,} \\ 1, & k \text{ odd.} \end{cases}$$

Continuity

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is *continuous* at $\mathbf{x} \in \text{dom } f$ if for all $\varepsilon > 0$ there exists a δ such that

$$\mathbf{y} \in \text{dom } f, \|\mathbf{y} - \mathbf{x}\|_{2} \le \delta \Rightarrow \|f(\mathbf{y}) - f(\mathbf{x})\|_{2} \le \varepsilon.$$

Continuity can be described in terms of limits: whenever the sequence $\mathbf{x}_1, \mathbf{x}_2, ...$ in dom f converges to a point $\mathbf{x} \in \text{dom } f$, the sequence $f(\mathbf{x}_1), f(\mathbf{x}_2), ...$ converges to $f(\mathbf{x}), i.e.$,

$$\lim_{i \to \infty} f(\mathbf{x}_i) = f(\lim_{i \to \infty} \mathbf{x}_i).$$

A function f is continuous if it is continuous at every point in its domain.

Minimum and minimal

A point \mathbf{x}^* is called a minimum point of a function $f(\mathbf{x})$ if

$$f(\mathbf{x}^*) \le f(\mathbf{x}), \quad \forall \mathbf{x} \in \text{dom } f.$$

Accordingly, $f(\mathbf{x}^*)$ is called the *minimum value* of f.

 \mathbf{x}^* is called a minimal point of f if for sufficiently small $\varepsilon > 0$

$$f(\mathbf{x}^*) \leq f(\mathbf{x}), \quad \forall \mathbf{x} \in \mathcal{B}_{\varepsilon}(\mathbf{x}^*) \cap \text{dom } f.$$

Accordingly, $f(\mathbf{x}^*)$ is called the *minimal value* of f.

Closedness

A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be *closed* if, for each $\alpha \in \mathbb{R}$, the sublevel set

$$\{\mathbf{x} \in \mathrm{dom}\, f | f(\mathbf{x}) \le \alpha\}$$

is closed. This is equivalent to the condition that the epigraph of f,

$$epi f = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} | \mathbf{x} \in dom f, f(\mathbf{x}) \le t\},\$$

is closed.

If $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, and dom f is closed, then f is closed. If $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, with dom f open, then f is closed iff f converges to ∞ along every sequence converging to a boundary point of dom f. In other words, if $\lim_{i \to \infty} \mathbf{x}_i = \mathbf{x} \in \partial(\text{dom } f)$, with $\mathbf{x}_i \in \text{dom } f$, we have $\lim_{i \to \infty} f(\mathbf{x}_i) = \infty$.

Examples: $f(x) = x \log x$ with $\operatorname{dom} f = \mathbb{R}_{++}$; $f(x) = -\log x$ with $\operatorname{dom} f = \mathbb{R}_{++}$; $f(x) = \begin{cases} x \log x, & x > 0 \\ 0, & x = 0, \end{cases}$ with $\operatorname{dom} f = \mathbb{R}_{+}$

Derivative

Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$, and $\mathbf{x} \in (\text{dom } f)^{\circ}$. If there exists a matrix **J** such that

$$\lim_{\mathbf{z} \in \text{dom } f, \mathbf{z} \neq \mathbf{x}, \mathbf{z} \to \mathbf{x}} \frac{\|f(\mathbf{z}) - f(\mathbf{x}) - \mathbf{J}(\mathbf{z} - \mathbf{x})\|_{2}}{\|\mathbf{z} - \mathbf{x}\|_{2}} = 0,$$

for all choice of sequence $\{\mathbf{z}\}\subset \mathrm{dom}\, f$, then f is said to be differentiable at \mathbf{x} and denote $Df(\mathbf{x})=\mathbf{J}$. Let $\mathbf{z}=\mathbf{x}+t\mathbf{e}_i$ and let $t\to 0$. Then

$$\lim_{\mathbf{z} \in \text{dom } f, \mathbf{z} \neq \mathbf{x}, \mathbf{z} \to \mathbf{x}} \frac{\left\| f(\mathbf{z}) - f(\mathbf{x}) - \mathbf{J}(\mathbf{z} - \mathbf{x}) \right\|_{2}}{\left\| \mathbf{z} - \mathbf{x} \right\|_{2}} = \lim_{t \to 0} \frac{\left\| f(\mathbf{x} + t\mathbf{e}_{i}) - f(\mathbf{x}) - t\mathbf{J}\mathbf{e}_{i} \right\|_{2}}{\left| t \right|}$$

$$= \lim_{t \to 0} \left\| \frac{f(\mathbf{x} + t\mathbf{e}_{i}) - f(\mathbf{x})}{t} - \mathbf{J}\mathbf{e}_{i} \right\|_{2}$$

$$= \left\| \frac{\partial f(\mathbf{x})}{\partial x_{i}} - \mathbf{J}\mathbf{e}_{i} \right\|_{2}.$$

Therefore, the *i*-th column of **J** is $\frac{\partial f(\mathbf{x})}{\partial x_i}$. Thus $\mathbf{J} = \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}^T} = \left(\frac{\partial f_i(\mathbf{x})}{\partial x_j}\right)$.

Homework (2)

1. Judge the properties of the following sets (openess, closeness, boundedness, compactness) and give their interiors, closures, boundaries, and accumulation points:

a.
$$C_1 = \emptyset$$
.

b.
$$C_2 = \mathbb{R}^n$$
.

c.
$$C_3 = \{x | 0 \le x < 1\} \cup \{x | 2 \le x \le 3\} \cup \{x | 4 < x \le 5\}.$$

d.
$$C_4 = \{(x,y)^T | x \ge 0, y > 0\}.$$

e.
$$C_5 = \{k | k \in \mathbb{Z}\}.$$

f.
$$C_6 = \{k^{-1} | k \in \mathbb{Z}\}.$$

g.
$$C_7 = \{(1/k, \sin k)^T | k \in \mathbb{Z} \}.$$

2. Prove that a set $\mathcal{C} \subseteq \mathbb{R}^n$ is closed iff (aka. if and only if) it contains the limit point of every convergent sequence in it.

Homework (2)

3. Prove that a point \mathbf{x} is a boundary point of $\mathcal{C} \subseteq \mathbb{R}^n$ iff for $\forall \epsilon > 0$, there exists $\mathbf{y} \in \mathcal{C}$ and $\mathbf{z} \notin \mathcal{C}$ such that

$$\|\mathbf{y} - \mathbf{x}\|_2 \le \epsilon, \quad \|\mathbf{z} - \mathbf{x}\|_2 \le \epsilon.$$

- 4. Prove that $C \subseteq \mathbb{R}^n$ is closed iff it contains its boundary, and is open iff it contains no boundary points.
- 5. Prove the following:
 - a. $\overline{A \cup B} = \overline{A} \cup \overline{B}$; $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. Give an example showing that $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.
 - b. $(\overline{A \cap B})^{\circ} = A^{\circ} \cap B^{\circ}$; $(\overline{A \cup B})^{\circ} \supseteq A^{\circ} \cup B^{\circ}$. Give an example showing that $(\overline{A \cup B})^{\circ} \neq A^{\circ} \cup B^{\circ}$.

Homework (2)

6. For each of the following sequences, determine the rate of convergence and the rate constant.

a.
$$x_k = 2^{-k}$$
, for $k = 1, 2, \cdots$.

b.
$$x_k = 1 + 5 \times 10^{-2k}$$
, for $k = 1, 2, \dots$

c.
$$x_k = 2^{-2^k}$$
.

d.
$$x_k = 3^{-k^2}$$
.

e.
$$x_k = 1 - 2^{-2^k}$$
 for k odd, and $x = 1 + 2^{-k}$ for k even.

7. Let $\{x_k\}$ and $\{c_k\}$ be convergent sequences, and assume that

$$\lim_{k \to \infty} c_k = c \neq 0.$$

Consider the sequence $\{y_k\}$ with $y_k = c_k x_k$. Can its convergence rate and rate constant be determined from those of $\{x_k\}$ and $\{c_k\}$?