Algorytmy i struktury danych - Algorytmy grafowe

Dariusz Max Adamski

Wstęp

W tym sprawozdaniu porównywana będzie efektywność różnych reprezentacji grafów, przez mierzenie średniego czasu sprawdzania istnienia krawędzi. Oceniona będzie także implementacja sortowania topologicznego, używająca listy incydencji do reprezentacji danych.

Metodologia

Pomiary wykonywane były na grafach o ilości wierzchołków |V| od 100 wierzchołków do 1500 wierzchołków, z krokiem 100 (15 punktów pomiarowych).

Przed mierzewiem czasu sprawdzania krawędzi, wczytywany jest z pliku tekstowego, losowo wygenerowany nieskierowany graf, o ilości wierzchołków |V| i nasyceniu krawędziami 0.6, do macierzy sąsiedztwa "AM".

Następnie dane są kopiowane do macierzy incydencji "IM", listy krawędzi "EL" oraz listy incydencji "AL".

Tworzona jest także tablica S o wielkości |V| z warościami od 0 do |V|-1. Po utworzeniu tablica jest losowo tasowana, tak aby wartość S_i nie była równa i.

Podczas mierzenia czasu, dla każdego indeksu i od 0 do |V|-1 sprawdzana jest obecność krawędzi od wierzchołka i do wierzchołka S_i . Na końcu zmierzony czas jest dzielony przez |V|.

Aby zmierzyć czas sortowania topologicznego, wczytywany jest z pliku tekstowego losowo wygenerowany skierowany graf bez cykli "DAG", o ilości wierzchołków |V| i nasyceniu krawędziami 0.3, bezpośrednio do macierzy listy incydencji "AL". Następnie mierzony jest czas sortowania.

Optymalizacje kompilatora zostały wyłączone flagą "-O0". Czas wykonywania był mierzony w nanosekundach.

1 Istnienie krawędzi

Rysunek 1: Średni czas sprawdzania istnienia krawedzi

Rysunek 2: Średni czas sprawdzania istnienia krawędzi (ns)

Czas sprawdzania istnienia krawędzi dla AM ma złożoność O(1). Dla AL złożoność tej operacji to O(|V|). Natomiast używając IM lub EL ta czynność ma złożoność O(|E|).

W wygenerowanych grafach liczba wierzchołków to $|E|=|\phi(|V|^2+|V|)|,$ gdzie ϕ

jest współczynnikiem nasycenia krawędziami. Dlatego właśnie dla IM i EL w tym przypadku $O(|E|) = O(|V|^2)$.

Ponieważ $|V| \ll |E|$, w szczególnośći przy $\phi = 0.6$, wyniki dla AM i AL zostały przedstawione także na rysunku 2 (w nanosekundach).

2 Sortowanie topologiczne

Rysunek 3: Czas sortowania topologicznego

Czynność sortowania topologicznego ma złożoność O(|V| + |E|).

Do reprezentacji grafu w sortowaniu topologicznym została wybrana lista incydencji AL.

Głównym powodem była prostota implementacji. Podczas sortowania musimy odwiedzać sąsiadujące wierzchołki. W AL mamy natychmiastowy dostęp do listy sąsiadów znanego wierzchołka w czasie O(1), co sprawia, że nie musimy konstruować listy następnych wierzchołków do odwiedzenia.

Pozostałe zalety i wady AL są opisane w następnej sekcji.

3 Wnioski

Ilość wymaganej pamięci przez AL nie jest duża, bo (tutaj) rzędu $O_p(|V|+|E|)=O_p(|V|^2)$. Dla rzadkiego grafu AL może zajmować nawet mniej pamięci niż AM. W rzeczywistości im większe ϕ tym więcej pamięci jest wymagane, ale w przypadku sortowania topologicznego, przy $\phi=0.3$, nie stanowi to dużego problemu.

Dobrą alternatywą jest AM która wymaga pamięci $O_p(|V|^2)$, ale w odróżnieniu od AL nie rośnie wraz z |E| lub ϕ . Znajdywanie sąsiadów za to zajmuje więcej czasu niż w AL, ma ono złożoność O(|V|). Inną wadą jest potrzeba kopiowania macierzy przy dodawaniu wierzchołków do grafu.

EL potrzebuje $O_p(|E|)$ pamięci, co daje w tym aspekcie przewagę nad AL oraz IM, ale nie nad AM. Jednak znajdywanie sąsiadów jest czasochłonne bo ma złożoność O(|E|).

IM wymaga $O_p(|V|\cdot |E|)$ pamięci co jest bardzo nieefektywne. W dodatku operacje na tej reprezentacja są niewygodne oraz czasochłonne. Wydaje się, że IM jest kumulacją najgorszych cech EL i AM.

Podsumowując, dla zadanych problemów, najlepszymi reprezentacjami grafu są lista incydencji AL, oraz macierz sąsiedztwa AM. Natomiast lista krawędzi EL i macierz incydencji IM okazały się nieefektywne.