AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Mechatronics Engineering Department/CHEP

Time : 1:00 Hr

4^{th.} April, 2019

CSE345/347/MCT-Elective

Embedded System Design; Mid Term

Course Code:

The Exam Consists of 2 Questions in 4 Pages Total Marks: 25% Marks 1/4

Student Name: Course Code:			
 Question (1): The ADXL345 is a MEMS 3-axes accelerometer from Analog Devices Co. It voltages which are linear functions of accelerations along X, Y and Z axes. The putting out 1.5V for 0g (0 m/s²) and have a slope of 174mV/g. The sensor sa =9.8 m/s²). I- Select a suitable sequencer for the Accelerometer values reading steps/channels to use for each sensor in the sequencer. (only write the subject of the Accelerometer) 	e device powers on 3V aturates at ±10g (for g		
2- Write the suitable initialization function ADC_init(void) – using Tivaw the ADC as follows:	rare APIs, to configure		
<pre>void ADC_init(void){ a. //Enable the clock for the Port to which the sensors are connected.</pre>	Important Labels:		
b. //Enable the clock for the ADC module.	SYSCTL_PERIPH_GPIOx x: indicates the Port (A,B,C) SYSCTL_PERIPH_ADC0 SYSCTL_PERIPH_ADC1		
c. //Disable the sequencer used.	ADC_REF_EXT_3V ADC0_BASE ADC1_BASE TRIGGER_PROCESSOR		
d. //Configure the sequencer for Processor trigger.	ADC_CTL_CHx x: indicates the Channel no. (0,1,2)		
e. //Configure the steps of the sequencer.	Functions names: ADCProcessorTrigger() ADCReferenceSet() ADCSequenceConfigure() ADCSequenceDataGet() ADCSequenceDisable() ADCSequenceEnable()		
f. //Enable the sequencer.	ADCSequenceStepConfigure()		

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Mechatronics Engineering Department/CHEP

4^{th.} April, 2019 Course Code:

CSE345/347/MCT-Elective

Time : 1:00 Hr

2/4

Embedded System Design; Mid Term

The Exam Consists of 2 Questions in 4 Pages
Total Marks: 25% Marks

cription	
•	

Pin Name	Pin Number	Pin Mux/Pin Assignment	Pin Type	Buffer Type"	Des cription
AINO	6	PE3	I	Analog	Analog-to-digital converter input 0.
AINI	7	PE2	I	Analog	Analog-to-digital converter input 1.
AIN2	8	PE1	İ	Analog	Analog-to-digital converter input 2.

3- Write a function to trigger the conversion sequence, check the ADC status, calculate the gravitational acceleration array in g given the converted value which has range of $0 \rightarrow (2^{12}-1)$, and update the array static uint32_t g_pui32ADCData[3] of global variables.

void get_acceleromterData(void){

AN0 AN1 AN2 ADXL325 x_{OUT} AN3 TOP VIEW (Not to Scale) AN4 11 🗖 сом YOUT NC NC TM4C123GH6PM NC = NO CONNECT

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Mechatronics Engineering Department/CHEP

4th. April, 2019

Course Code: CSE345/347/MCT-Elective

Time: 1:00 Hr

Embedded System Design; Mid Term

The Exam Consists of 2 Questions in 4 Pages
Total Marks: 25% Marks

3/4

Question (2):

For the following Cortex M4 FreeRTOS code snippet, assume slice time is 1ms. For the same hardware connected in Question (1). The sender task will Trigger the conversion and send the data to the receiver task. Don't use Global variables array update in order to avoid loss of data.

```
74 int main(void)
75 □ {
76
        ConfigureUART();
77
        ADC init();
78
        xQueue = xQueueCreate( 6, sizeof( int32 t ) );
79
      if( xQueue != NULL )
80 🖹
        xTaskCreate( vSenderTask, "Sender2", 256, NULL, 1, NULL );
81
82
        xTaskCreate( vReceiverTask, "Receiver", 256, NULL, 2, NULL );
83
        vTaskStartScheduler();
84
      }
85
      else
86 🗀
      -{
        /* The gueue could not be created. */
87
88
89
      for( ;; );
90
```

For the sender and receiver tasks handle accelerometer data between sender and receiver tasks with periodicity of 10ms between each 2 updates. *The receiver task prints the readings by UARTprintf, indicating which axis is being printed.*

Your Answer:

}

}

```
static void vSenderTask( void *pvParameters )
{
    for( ;; )
    {
```

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Mechatronics Engineering Department/CHEP

4^{th.} April, 2019 Course Code:

CSE345/347/MCT-Elective

Time: 1:00 Hr

Embedded System Design; Mid Term

The Exam Consists of 2 Questions in 4 Pages
Total Marks: 25% Marks

```
static void vReceiverTask( void *pvParameters )
{
    for( ;; )
    {
        }
}
```

Exam. Date: April 4th. 2019