

$$\mathsf{Span}\left\{\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}1\\0\end{bmatrix}\right\} = \mathbb{R}^2$$

$$\mathsf{Span}\,\{\mathbf{u},\mathbf{v},\mathbf{w}\}=\mathsf{Span}\,\{\mathbf{u},\mathbf{v}\}=\mathsf{a}\,\,\mathsf{plane}$$

$$\mathsf{Span}\left\{\mathbf{u},\mathbf{v},\mathbf{w}
ight\}=\mathbb{R}^3$$

When do n vectors span \mathbb{R}^n ?

How to find an efficient spanning set?

$$\mathsf{Span}\,\{\mathbf{u},\mathbf{v},\mathbf{w}\}=\mathsf{Span}\,\{\mathbf{u},\mathbf{v}\}=\mathsf{a}\,\,\mathsf{plane}$$

$$\mathsf{Span}\left\{\mathbf{u},\mathbf{v},\mathbf{w}
ight\}=\mathbb{R}^3$$

When do n vectors span \mathbb{R}^n ?

How to find an efficient spanning set?

When they are a linearly independent set.

The casting out algorithm.

§1.7: Linear Independence

Definition: A set of vectors $\{v_1, \dots, v_p\}$ is *linearly independent* if the only solution to the vector equation

$$x_1\mathbf{v_1} + \dots + x_p\mathbf{v_p} = \mathbf{0}$$

is the trivial solution $(x_1 = \cdots = x_p = 0)$.

§1.7: Linear Independence

Definition: A set of vectors $\{v_1, \dots, v_p\}$ is *linearly independent* if the only solution to the vector equation

$$x_1\mathbf{v_1} + \dots + x_p\mathbf{v_p} = \mathbf{0}$$

is the trivial solution $(x_1 = \cdots = x_p = 0)$.

The opposite of linearly independent is linearly dependent:

Definition: A set of vectors $\{\mathbf{v_1}, \dots, \mathbf{v_p}\}$ is *linearly dependent* if there are weights c_1, \dots, c_p , not all zero, such that

$$c_1\mathbf{v_1} + \dots + c_p\mathbf{v_p} = \mathbf{0}.$$

The equation $c_1\mathbf{v_1} + \cdots + c_p\mathbf{v_p} = \mathbf{0}$ is a linear dependence relation.

$$x_1\mathbf{v_1} + \dots + x_p\mathbf{v_p} = \mathbf{0}$$

Only solution is $x_1 = \cdots = x_p = 0$

→ linearly independent

There is a solution with some $x_i \neq 0$ \rightarrow linearly dependent

Example: The set $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix} \right\}$ is linearly dependent because

$$2\begin{bmatrix}1\\2\end{bmatrix} + (-1)\begin{bmatrix}2\\4\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}.$$

Example: The set $\left\{ \begin{vmatrix} 1 \\ 2 \end{vmatrix}, \begin{vmatrix} 1 \\ 0 \end{vmatrix} \right\}$ is linearly independent because

$$x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \begin{cases} x_1 + x_2 &= 0 \\ 2x_1 &= 0 \end{cases} \implies x_1 = 0, x_2 = 0.$$

• Sets containing the zero vector $\{0, v_2, \dots, v_p\}$:

$$x_1\mathbf{0} + x_2\mathbf{v_2} + \dots + x_p\mathbf{v_p} = \mathbf{0}$$

• Sets containing the zero vector $\{0, v_2, \dots, v_p\}$:

$$(1)\mathbf{0} + (0)\mathbf{v_2} + \cdots + (0)\mathbf{v_p} = \mathbf{0}$$
 linearly dependent

• Sets containing the zero vector $\{0, v_2, \dots, v_p\}$:

$$(1)\mathbf{0} + (0)\mathbf{v_2} + \cdots + (0)\mathbf{v_p} = \mathbf{0}$$
 linearly dependent

• Sets containing one vector $\{v\}$:

$$x\mathbf{v} = \mathbf{0}$$

linearly independent if $\mathbf{v} \neq \mathbf{0}$

$$\begin{bmatrix} xv_1 \\ \vdots \\ xv_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$
. If some $v_i \neq 0$, then $x = 0$ is the only solution.

• Sets containing two vectors $\{\mathbf{u}, \mathbf{v}\}$:

$$x_1\mathbf{u} + x_2\mathbf{v} = \mathbf{0}$$

if
$$x_1 \neq 0$$
, then ${\bf u} = (-x_2/x_1){\bf v}$. if $x_2 \neq 0$, then ${\bf v} = (-x_1/x_2){\bf u}$.

So $\{\mathbf{u}, \mathbf{v}\}$ is linearly dependent if and only if one of the vectors is a multiple of the other.

• Sets containing two vectors $\{u, v\}$:

$$x_1\mathbf{u} + x_2\mathbf{v} = \mathbf{0}$$

if
$$x_1 \neq 0$$
, then ${\bf u} = (-x_2/x_1){\bf v}$. if $x_2 \neq 0$, then ${\bf v} = (-x_1/x_2){\bf u}$.

So $\{\mathbf{u}, \mathbf{v}\}$ is linearly dependent if and only if one of the vectors is a multiple of the other.

• Sets containing more vectors:

A set of vectors is linearly dependent if and only if one of the vectors is a linear combination of the others. (Any vector with nonzero weight in the linear dependency relation will work.)

A non-trivial solution to $A\mathbf{x} = \mathbf{0}$ is a linear dependence relation between the columns of A.

Theorem: Uniqueness of solutions for linear systems: For a matrix A, the following are equivalent:

- a. $A\mathbf{x} = \mathbf{0}$ has no non-trivial solution.
- b. If $A\mathbf{x} = \mathbf{b}$ is consistent, then it has a unique solution.
- c. The columns of A are linearly independent.
- d. rref(A) has a pivot in every column (i.e. all variables are basic).

A non-trivial solution to $A\mathbf{x} = \mathbf{0}$ is a linear dependence relation between the columns of A.

Theorem: Uniqueness of solutions for linear systems: For a matrix A, the following are equivalent:

- a. $A\mathbf{x} = \mathbf{0}$ has no non-trivial solution.
- b. If $A\mathbf{x} = \mathbf{b}$ is consistent, then it has a unique solution.
- c. The columns of A are linearly independent.
- d. rref(A) has a pivot in every column (i.e. all variables are basic).

In particular: the row reduction algorithm produces at most one pivot in each row of rref(A). So, if A has more columns than rows (a "fat" matrix), then rref(A) cannot have a pivot in every column.

So a set of more than n vectors in \mathbb{R}^n is always linearly dependent.

Exercise: Combine this with Theorem 4 to show that a set of n linearly independent vectors span \mathbb{R}^n .

Problem: if $\{v_1, \dots, v_p\}$ is linearly dependent, then Span $\{v_1, \dots, v_p\}$ is the span of fewer vectors.

E.g. if $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, then $Span\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} = Span\{\mathbf{u}, \mathbf{v}\}$:

Problem: if $\{v_1, \dots, v_p\}$ is linearly dependent, then Span $\{v_1, \dots, v_p\}$ is the span of fewer vectors.

E.g. if $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$, then Span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} = \operatorname{Span} \{\mathbf{u}, \mathbf{v}\}$:

$$c_1 \mathbf{u} + c_2 \mathbf{v} + c_3 \mathbf{w} = c_1 \mathbf{u} + c_2 \mathbf{v} + c_3 (a \mathbf{u} + b \mathbf{v})$$

= $(c_1 + c_3 a) \mathbf{u} + (c_2 + c_3 b) \mathbf{v}$.

We want to remove from $\{v_1, \dots, v_p\}$ some vectors that are linear combinations of other v_i s.

One answer (casting-out algorithm):

Row reduce
$$egin{bmatrix} |&&&|&&|\\ \mathbf{v}_1&\mathbf{v}_2&\dots&\mathbf{v}_p\\ |&&&|&&| \end{bmatrix}$$
 and keep the vectors in the pivot columns.

The casting-out algorithm:

Example: Let

$$S = \left\{ \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -7 \\ 3 \end{bmatrix}, \begin{bmatrix} -6 \\ 8 \\ 4 \end{bmatrix}, \begin{bmatrix} 6 \\ -5 \\ -3 \end{bmatrix}, \begin{bmatrix} 4 \\ 8 \\ 2 \end{bmatrix} \right\}.$$

Find a linearly independent subset R of S such that $\mathsf{Span} R = \mathsf{Span} S$.

The casting-out algorithm:

Example: Let

$$S = \left\{ \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -7 \\ 3 \end{bmatrix}, \begin{bmatrix} -6 \\ 8 \\ 4 \end{bmatrix}, \begin{bmatrix} 6 \\ -5 \\ -3 \end{bmatrix}, \begin{bmatrix} 4 \\ 8 \\ 2 \end{bmatrix} \right\}.$$

Find a linearly independent subset R of S such that $\operatorname{Span} R = \operatorname{Span} S$.

Answer:
$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 \\ 3 & -7 & 8 & -5 & 8 \\ 1 & -3 & 4 & -3 & 2 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 1 & -3 & 4 & 3 & 2 \\ 0 & 1 & -2 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The pivot columns are 1,2 and 5, so $R = \left\{ \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -7 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 8 \\ 2 \end{bmatrix} \right\}$ is one answer.

(The answer from the casting out algorithm is not the only answer.)

$$\begin{bmatrix} | & | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 \\ | & | & | & | & | \end{bmatrix} = \begin{bmatrix} 0 & 3 & -6 & 6 & 4 \\ 3 & -7 & 8 & -5 & 8 \\ 1 & -3 & 4 & -3 & 2 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 1 & 0 & -2 & 3 & 0 \\ 0 & 1 & -2 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} | & | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 \\ | & | & | & | & | \end{bmatrix} = \begin{bmatrix} 0 & 3 & -6 & 6 & 4 \\ 3 & -7 & 8 & -5 & 8 \\ 1 & -3 & 4 & -3 & 2 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 1 & 0 & -2 & 3 & 0 \\ 0 & 1 & -2 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\operatorname{rref}\left(\begin{bmatrix} 1 \\ \mathbf{v}_1 \\ \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \text{ has a pivot in every column, so } \{\mathbf{v_1}\} \text{ is linearly independent.}$$

$$\begin{bmatrix} | & | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 \\ | & | & | & | & | \end{bmatrix} = \begin{bmatrix} 0 & 3 & -6 & 6 & 4 \\ 3 & -7 & 8 & -5 & 8 \\ 1 & -3 & 4 & -3 & 2 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 1 & 0 & -2 & 3 & 0 \\ 0 & 1 & -2 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\operatorname{rref}\left(\left| \begin{array}{c} | \\ | \\ | \end{array} \right| \right) = \left| \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right|$$
 has a pivot in every column, so $\{\mathbf{v_1}\}$ is linearly independent.

$$\operatorname{rref}\left(\begin{bmatrix} | & | \\ \mathbf{v}_1 & \mathbf{v}_2 \\ | & | \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ has a pivot in every column, so } \{\mathbf{v_1}, \mathbf{v_2}\} \text{ is }$$

$$\begin{bmatrix} | & | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 \\ | & | & | & | & | \end{bmatrix} = \begin{bmatrix} 0 & 3 & -6 & 6 & 4 \\ 3 & -7 & 8 & -5 & 8 \\ 1 & -3 & 4 & -3 & 2 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 1 & 0 & -2 & 3 & 0 \\ 0 & 1 & -2 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\operatorname{rref}\left(\begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ | & | & | \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \text{ does not have a pivot in every column.}$$

The solution set to
$$\begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} \mathbf{x} = \mathbf{0}$$
 is

$$x_1 -2x_3 = 0$$
 $x_1 = 2x_3$
 $x_2 -2x_3 = 0$ $x_2 = 2x_3$
 $x_3 = x_3$

$$\begin{bmatrix} | & | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 \\ | & | & | & | & | \end{bmatrix} = \begin{bmatrix} 0 & 3 & -6 & 6 & 4 \\ 3 & -7 & 8 & -5 & 8 \\ 1 & -3 & 4 & -3 & 2 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 1 & 0 & -2 & 3 & 0 \\ 0 & 1 & -2 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\operatorname{rref}\left(\begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ | & | & | \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \text{ does not have a pivot in every column.}$$

The solution set to
$$\begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ | & | & | \end{bmatrix} \mathbf{x} = \mathbf{0}$$
 is $\mathbf{x} = s \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ where s can take any value.

$$x_1 -2x_3 = 0$$
 $x_1 = 2x_3$
 $x_2 -2x_3 = 0$ $x_2 = 2x_3$
 $x_3 = x_3$

Example:

$$\begin{bmatrix} | & | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 \\ | & | & | & | & | \end{bmatrix} = \begin{bmatrix} 0 & 3 & -6 & 6 & 4 \\ 3 & -7 & 8 & -5 & 8 \\ 1 & -3 & 4 & -3 & 2 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 1 & 0 & -2 & 3 & 0 \\ 0 & 1 & -2 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\operatorname{rref}\left(\begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ | & | & | \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \text{ does not have a pivot in every column.}$$

The solution set to
$$\begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ | & | & | \end{bmatrix} \mathbf{x} = \mathbf{0}$$
 is $\mathbf{x} = s \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ where s can take any value.

Take
$$s=1$$
:
$$\begin{bmatrix} |&|&|\\ \mathbf{v_1}&\mathbf{v_2}&\mathbf{v_3}\\ |&|&| \end{bmatrix} \begin{bmatrix} 2\\2\\1 \end{bmatrix} = \mathbf{0}.$$
 So $2\mathbf{v_1} + 2\mathbf{v_2} + \mathbf{v_3} = \mathbf{0}$, so
$$\mathbf{v_3} = -2\mathbf{v_1} - 2\mathbf{v_2}$$
, a linear combination of $\mathbf{v_1}$ and $\mathbf{v_2}$. So we don't need $\mathbf{v_3}$ to get the same span

HKBU Math 2207 Linear Algebra

the same span.

Semester 1 2016, Week 3, Page 12 of 15

Example:

$$\begin{bmatrix} | & | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 \\ | & | & | & | & | \end{bmatrix} = \begin{bmatrix} 0 & 3 & -6 & 6 & 4 \\ 3 & -7 & 8 & -5 & 8 \\ 1 & -3 & 4 & -3 & 2 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 1 & 0 & -2 & 3 & 0 \\ 0 & 1 & -2 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The solution set to
$$\begin{bmatrix} | & | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \\ | & | & | & | \end{bmatrix} \mathbf{x} = \mathbf{0} \text{ is } \mathbf{x} = s \begin{bmatrix} 2 \\ 2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ -2 \\ 0 \\ 1 \end{bmatrix} \text{ where } s, t$$

can take any value.

Take
$$s=0, t=1$$
:
$$\begin{bmatrix} \begin{vmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} -3 \\ -2 \\ 0 \\ 1 \end{bmatrix} = \mathbf{0}. \begin{array}{l} \text{So } -3\mathbf{v_1} - 2\mathbf{v_2} + 0\mathbf{v_3} + \mathbf{v_4} = \mathbf{0}, \\ \text{so } \mathbf{v_4} = 3\mathbf{v_1} + 2\mathbf{v_2}, \text{ a linear combination of the pivot columns.} \\ \text{combination of the pivot columns.} \end{array}$$

The row reduction algorithm writes the solution set of

in the form $s_i \mathbf{w_i} + s_j \mathbf{w_j} + \ldots$, where x_i, x_j, \ldots are the free variables.

For each column v_i corresponding to a free variable, the solution $Aw_i = 0$ allows you to write v_i as a linear combination of the earlier pivot columns.

So Span $\{v_1, v_2, \dots, v_p\}$ is the same as the span of the pivot columns.

The row reduction algorithm writes the solution set of

in the form $s_i \mathbf{w_i} + s_j \mathbf{w_j} + \dots$, where x_i, x_j, \dots are the free variables.

For each column v_i corresponding to a free variable, the solution $Aw_i = 0$ allows you to write v_i as a linear combination of the earlier pivot columns.

So Span $\{v_1, v_2, \dots, v_p\}$ is the same as the span of the pivot columns.

The casting-out algorithm is a "greedy algorithm": it prefers vectors that are earlier in the set.

E.g. if you want a linearly independent subset of $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ with the same span, and you want \mathbf{w} to be in this set, you should row-reduce $[\mathbf{w} \ \mathbf{u} \ \mathbf{v}]$.