Università degli studi di Modena e Reggio Emilia Dipartimento di Ingegneria Enzo Ferrari

Real Time Embedded System

Indice

1	Intr	roduzione	1	
2	Non Real-time scheduling algorithms			
3	Rea	d-time scheduling algorithms	11	
	3.1	Earlies Due Date	11	
	3.2	Earliest Deadline First	13	
4	Per	iodic Task Scheduling	14	
	4.1	Timeline Scheduling	15	
	4.2	Priority Scheduling	17	
		4.2.1 Rate Monotonic	17	
	4.3	Earliest Deafline First	18	
	4.4	Task $D_i \leq T_i$	19	
	4.5	Response Time Analysis	19	
	4.6	Processor Demand Criterion	21	

Capitolo 1

Introduzione

Task: è un insieme di sequenze di istruzioni, che in assenza di altre attività, vengono continuamente eseguite dal processore finché non vengono completate.

Può essere un processo o un thread in base al sistema operativo.

Ready Queue: i task "pronti" (ready) sono contenuti all'interno di una coda di attesa, anche nota come ready queue. Le strategie con cui vengono scelti i task dalla coda per essere eseguiti sulla *CPU* sono gli **scheduling algorithms**.

Scheduling può essere definito **preemptive** ovvero se il task in esecuzione in un certo istante di tempo t_i può essere temporaneamente sospeso per eseguire un task con importanza maggiore, mentre si dice **non-preemptive** se il task in esecuzione non può essere sospeso finché non viene completato.

Schedule: uno schedule è un particolare assegnamento di task ad un processore. Dato un **taskset** $\mathcal{T} = \{\tau_1, ..., \tau_n\}$ uno schedule viene mappato to σ :

$$\mathbb{R}^+ \to \mathbb{N} \mid \forall t \in \mathbb{R}^+ \quad \sigma(t) = \begin{cases} k > 0 & \text{if } \tau_k \text{ is running} \\ 0 & \text{if the processor is idle} \end{cases}$$

Consideriamo il $task\ set:\ \{\tau_1,\tau_2,\tau_3\}$

Nei punti t_1 , t_2 , t_3 e t_4 viene eseguito un **content switch**, ogni intervallo di tempo $[t_i, t_{i+1})$ viene chiamato **time slice**.

 $\tau_i \xrightarrow{r_i s_i} t \xrightarrow{f_i} t$

Figura 1.1: Real-time tasks

Figura 1.2: Real-time tasks

- \mathbf{r}_i è il *request time*.
- \bullet \mathbf{s}_i è lo \boldsymbol{start}
 \boldsymbol{time} ovvero il tempo in cui il task inizia l'esecuzione.
- \bullet \mathbf{C}_i è il tempo di esecuzione in caso peggiore ($\boldsymbol{WCET}).$
- \mathbf{d}_i è la deadline assoluta, mentre \mathbf{D}_i è la deadline relativa.
- ullet f_i è il *finishing time* ovvero il tempo effettivo in cui il task completa il suo lavoro
- lateness: $L_i = f_i d_i$, è quindi la differenza tra il tempo di fine del task e la sua deadline assoluta, se ≤ 0 allora il task ha rispettato la sua deadline se no la deadline è stata missata [tardiness: $max(0, L_i)$]

- Residual WCET: $c_i(t)$
- *laxity* (o slack): $d_i t c_i(t)$

 $Tasks\ vs.\ Jobs$: un task è un infinita sequenza di istanze che vengono ripetute [jobs]. È possibile differenziare varie tipologie di task in base a quale deve essere la loro garanzia di rispetto delle loro deadline:

- 1. *Hard Task*: tutti i *jobs* devono rispettare le proprie deadline, mancare una deadline comporta serie conseguenze.
- 2. Firm Task: solo alcuni jobs possono missare la loro deadline.
- 3. **Soft Task**: i *jobs* possono missare la loro deadline, l'obiettivo è quello di massimizzare la **responsiveness**.

Un sistema operativo capace di gestire *hard task* viene chiamato *hard real-time* system. I tasks possono avere due modalità di attivazione:

1. *time driven*: anche noti come tasks periodici, i task vengono automaticamente attivati dal *kernel* ad intervalli regolari. Definiamo il task come: $\tau_i(C_i, T_i, D_i)$ dove $\mathbf{T_i}$ è il periodo a cui quel task viene invocato.

$$\begin{cases} r_{i,k} = \Phi_i + (k+1) \cdot T_i & k = 1 \to r_{i1} = \Phi_i \\ d_{i,k} = r_{i,k} + D_i \end{cases}$$

- 2. *event driven*: anche noti come **tasks aperiodici**, ovvero il task viene attivato all'arrivo di un evento o per un'invocazione esplicita della sua primitiva di invocazione. A loro volta possono dividersi in:
 - aperiodic: $r_{i,k+1} > r_{i,k}$
 - sporadic: $r_{i,k+1} \ge r_{i,k} + T_i$

Sui tasks possono essere imposti dei vincoli, che si differenziano in:

• *timinig constraints*: ovvero dei vincoli sul tempo di esecuzione [*deadline*, activation, completition e jitter], possono essere **impliciti** o **espliciti**:

- explicit constraints: sono definite nelle specifiche del sistema di attivazione: apertura della valvola ogni 10s
- *implicit constraints*: non appaiono nelle specifiche direttamente, ma devono essere rispettate per seguire i vincoli di utilizzo del sistema: schivare ostacoli mentre si corre ad una velocità v.
- precedence constraints: alcuni task devono rispettare delle precedenze di esecuzione, normalmente specificate da un Directed Acyclic Graph:

predecessore

 $\tau_1 \prec \tau_4$

predecessore immediato

 $\tau_1 \to \tau_2$

• resource constraints: per preservare data consistency bisogna accedere alle risorse condivise in mutua esclusione, che però introduce un delay.

Figura 1.3: no mutual exclusion

Figura 1.4: mutual exclusion

Mentre si analizza un tasks set e si cerca che il tempo di esecuzion sia vincolato da vincoli imposti in fase di progettazione, ad esempio $t_r \leq 10$, anche se si aumenta il numero di processori, si diminuisce il tempo di esecuzione dei task o si rilassano i vincoli

di precedenza, se non si uno *scheduler* appropriato si rischia in ogni caso di missare i vincoli imposti. L'apporccio più *safe* è quello di utilizzare meccanismi predicibili del kernel e analizzare il sistema per predirne il comportamento. La concorrenza deve essere progettata utilizzando:

- appropriati algoritmi di *scheduler*.
- appropriati protocolli di sincronizzazione.
- efficienti meccanismi di comunicazione.
- predicibilità negli *interrupt handling*.

Capitolo 2

Non Real-time scheduling algorithms

Lo *scheduling* è l'attività che permette di selezionare quale processo o *thread* bisogna eseguire come successivo. In generale nei sistemi operativi, possiamo distinguere tre tipologie di *scheduling*:

- long term scheduling: prima di creare il processo, viene deciso se attivarlo o meno. Viene implementato tramite un test di ammissione, se il processo passa questo controllo allora viene inserito nella ready queue, se no viene interrotto finché non gli viene permesso di essere schedulato [se il load del processore è troppo alto il nuovo task rischia di essere solo di "intralcio"].
- medium term scheduling: permette di decidere se un processo deve essere preemptato o meno.
- *short term scheduling*: decide quale processo deve essere eseguito come successivo. Possiamo distinguere:
 - selection function: decide quale processo viene selezionato dalla ready queue, seguendo alcune regole.
 - decision mode: quando la decisione è stata presa si può comportare in maniera preemptive oppure non-preemptive.

Scheduling Criteria: come si possono valutare le performance di uno scheduler:

- user-oriented: si va ad analizzare il response-time del processo.
- *system-oriented*: si va ad analizzare il *throughput*, ovvero quanto lavoro il sistema può eseguire in un certo intervallo di tempo.

Per quanto le performance siano importanti in certe circostate ci possono interessare la **predicibitilà** (real-time system) o la **fairness**.

Tra i processi possiamo differenziare anche il tipo di risorsa che viene utilizzanta: CPU-Bound e I/O Bound, nel primo caso il processo è orientato a lavorare sul processore,
mentre nel secondo caso i processi possono essere in attesa di un I/O device. La stragrande maggioranza dei processi è un mix dei due.

Uno schedule σ si dice fattibile (feasible) se tutti i tasks sono capaci di completare entro un insieme di vincoli.

Un tasks set \mathcal{T} si dice schedulable se esiste uno schedule fattibile per esso.

The General Scheduling Problem: dato un tasks set \mathcal{T} di n tasks, un set \mathcal{P} di m processori e un set \mathcal{R} di r risorse, trovare un assegnamento di \mathcal{P} e \mathcal{R} per \mathcal{T} che produce uno schedule fattibile.

È stato dimostrato nel 1975 da Garey e Johnson che il general scheduling problem rientra nella categoria **NP hard**. È però possibile, rilassando i vincoli e specificando certe condizioni, ricordurci ad un algoritmo polynomial time.

Per il ora consideriamo:

- processore singolo
- fully preemptive tasks
- attivazione simultanea
- nessun vincolo di precedenza
- nessun vincolo sulle risorse

Algorithm taxonomy				
preemptive	$non ext{-}preemptive$			
off line:	on line:			
tutte le decisioni sullo scheduling vengo-	le decisioni di scheduling vengono prese			
no prese prima dell'attivazione dei task,	runtime sul set dei tasks attivi			
normalmente lo <i>schedule</i> viene salvato in				
una tabella ($table$ - $driven\ scheduling$)				
static:	dynamic:			
le decisioni di scheduling vengono pre-	le decisioni di scheduling vengono pre-			
se basandosi su parametri fissati, stati-	se su parametri che possono variare nel			
camente assegnati al task prima dell'at-	tempo			
tivazione				
best effort:	optimal:			
trova sempre uno <i>schedule</i> fattibile, se	fa del suo meglio per trovare uno <i>schedule</i>			
esiste	fattibile, se esiste, ma non lo garantisce.			

Le *policies* classiche di *scheduling*, che però non sono adatte per sistemi *real-time*, sono:

- First Come First Served (FCFS): assegna l'utilizzo della CPU al task basandosi sull'ordine di arrivo, non è preemptive, è dinamico, online e best effort.
 → molto impredicibile: il response time è fortemente dipendente dall'ordine di arrivo dei task.
- 2. Shorter Job First (SJF): seleziona il task che ha il minor computational time, può essere sia preemptive che non-preemptive, è statico (il parametro C_i è fissato da configurazione), può essere usato sia online che off-line e permette di minimizzare la response time media.

Dimostrazione dell'ottimalità di SJF: consideriamo uno scheduler $\sigma \neq$ SJF e un'altro scheduler σ' che è uguale a SJF fino all'istante f_s

Presi due task L e S che hanno request time r_i $i \in \{L, S\}$ e finish time f_i $i \in \{L, S\}$. Lo schedule σ schedula il task L prima (non conforme con SJF), mentre σ' schedula il task S come primo (conforme a SJF). Possiamo dire che $f'_L = f_S$ in quanto la somma del tempo dei due task non cambia, ma cambia solo l'ordine di schedulazione. È intuitivo che il finish time del primo task è però sbilanciato verso lo scheduler σ' infatti avremo $f'_S < f_L$.

Avremo perciò $f_S' + f_L' \le f_S + f_L$

$$\rightarrow \qquad \bar{R}(\sigma') = \frac{1}{n} \cdot \sum_{i=1}^{n} (f'_i - r_i) \leq \frac{1}{n} \cdot \sum_{i=1}^{n} (f_i - r_i) = \bar{R}(\sigma)$$

Lo scheduler σ' è equivalente a SJF solo fino all'istante $f'_L = f_S$, bisogna andare quindi ad iterare su ogni scheduler $\sigma \in \{\sigma', \sigma'', ..., \sigma^*\}$, andando a riproporre l'analisi appena condotta avremo che: $\bar{R}(\sigma) \geq \bar{R}(\sigma') \geq \bar{R}\sigma'' \geq \cdots \geq \bar{R}(\sigma^*)$ $\rightarrow \sigma^* = \sigma_{sjf}$ e quindi avremo che $\bar{R}(\sigma_{SJF})$ è la **minima** response time media ottenibile da ogni **algoritmo**.

SJF non è un algoritmo fattibile per il Real-Time.

- 3. **Priority Scheduling**: ad ogni task viene assegnata una **priorità**, il task con la priorità maggiore viene eseguito come primo, mentre per i task con pari priorità siene eseguito uno scheduler o FCFS o RR. Può essere utilizzato per fini real-time se le priorità sono assegnate seguendo specifiche regole. Lo scheduler POSIX è uno scheduler con 99 priorità. Può essere sia statico che dinamico.
 - può avere problemi di *starvation* infatti dei task a bassa priorità possono accumulare ritardo per via della *preemption* dovuto a task con più alta priorità.
 - Una possibile **soluzione** è quella dell'*aging* ovvero che la priorità viene incrementata con il passare del tempo:

$$p_i \propto \frac{1}{C_i} \simeq \text{SJF}$$

 $p_i \propto \frac{1}{r_i} \simeq \text{FCFS}$

4. **Round Robin**: la ready queue viene servita con un **FCFS**, ma il sistema conosce il concetto di **time quantum** (Q), ogni task τ_i non può eseguire più un Q unità

di tempo. Quando \mathbf{Q} scade, τ_i viene riaccodato nella ready queue.

Introduce il concetto di $time\ sharing$: ovvero che ogni task esegue in solitaria su un "processore virtuale" n volte più lento rispetto a quello reale.

$$R_i \simeq (nQ)\frac{C_i}{Q} = nC_i$$

Se $Q > \max(C_i)$ allora RR \equiv FCFS, e se consideriamo che ogni volta che viene preemptato un task bisogna eseguire un context switch definito da un tempo δ allora avremo che:

$$R_i \simeq n \cdot (Q + \delta) \frac{C_i}{Q} = nC_i \cdot (\frac{Q + \delta}{Q})$$

5. Multiple-feedback Queues: questo scheduler consiste in: N code, ognuna delle quali viene ordinata tramite FIFO a unità di tempo quantum fisse. Lo scheduler sceglie il primo processo dalla coda con più alta priorità e imposta un timer a \mathbf{Q} . Consideriamo RQ_k come la coda priorità maggiore che ha un task pronto per essere eseguito. Se il processo viene completato entro o si blocca prima che il scada bisogna selezionare il processo successivo dalla coda con più alta priorità e impostare il timer, se no sposta il processo nella coda RQ_{k+1} . Quindi in maniera periodica, se un processo non viene completato allora viene "spostato" nella priorità più alta (questo viene fatto per evitare starvation).

Capitolo 3

Real-time scheduling algorithms

I task possono essere schedulati i task in base alla deadline, che può essere quella relativa o assoluta.

3.1 Earlies Due Date

Esegue come primo task quello con la deadline relativa più imminente.

- tutti i taks arrivano simulataneamente.
- priorità fissati
- i task sono preemptabili.
- permette di minimizzare la massima *lateness* $L_i \to \text{nessun}$ task manca la sua deadline.

$$\begin{cases} L_i = f_i - d_i & f_i \text{ è il finish time e } d_i \text{ è la deadline} \\ L_{max} = \max_i(L_i) \end{cases}$$

Dimostrazione dell'ottimalità di EDD: consideriamo uno scheduler $\sigma \neq$ EDD e un'altro scheduler σ' che è uguale a EDD fino all'istante f_a . Consideriamo due task: $A \in B$ che hanno deadline $d_a \in d_b$ dove nel caso dello scheduler $\sigma \neq$ EDD) viene schedulato prima B e dopo A in quanto $d_a < d_b$ mentre nel caso dello scheduler σ' (\simeq

EDD) viene schedulato prima A e dopo B. Definiamo f_a e f'_a come l'istante di tempo di fine del task A e f_b e f'_b come l'istante di tempo di fine del task B. Siccome i tempi di esecuzione totale dei due task in entrambi gli scheduler sono uguali allora possiamo dire che $f'_b = f_a$ e siccome il $C'_a < C_b + C_a$ e $s'_a < s_a$ avremo che $f'_a < f_a$. Possimao andare a minimizzare la massima lateness utilizzando il seguente schema

$$L_{max} = L_a = f_a - d_a$$

$$L'_{max}(\sigma') < L_{max}(\sigma)$$

$$\begin{cases} L'_a = f'_a - d_a < f_a - d_a \\ L'_b = f'_b - d_b = f_a - d_b < f_a - d_a \end{cases}$$

Siccome σ' è equivalente ad EDD solo fino all'istante di tempo $f_a = f_b'$ per poter iterare fino "all'infinito' è necessario andare a considerare uno scheduler $\sigma \in \{\sigma', \sigma'', ..., \sigma*\}$. Iterando il ragionamento del confronto fatto per uno scheduler σ e σ' con tutto l'insieme degli scheduler, in questo modo avremo che: $L_{max}(\sigma') \geq L_{max}(\sigma'') \geq ... \geq L_{max}(\sigma*)$ andiamo a dimostrare che $\sigma*=\sigma_{EDD}$ dove $L_{max}(\sigma_{EDD})$ è il minimo valore ottenibile da ogni algoritmo di scheduler.

Un $task\ set\ \mathcal{T}$ è **fattibile** se $\forall i\ f_i \leq d_i$ quindi avremo che il $finish\ time\ del\ task$ è pari a $f_i = \sum_{k=1}^i C_k$ ma quindi avremo il vincolo che $\forall i \sum_{k=1}^i C_k \leq D_i$ ovvero che il **WCET** ovvero l' $worst\ case\ execution\ time\ per\ ogni\ task\ sia\ minore\ della\ loro\ deadline\ assoluta.$

Complessità:

- per ordinare il $task \ set \ \mathcal{O}(n \log n)$
- per garantire l'intero task set $\mathcal{O}(n)$

3.2 Earliest Deadline First

Seleziona il task da eseguire considerando la deadline assoluta più imminente.

- i task possono arrivare in qualunque istante di tempo t_i .
- priorità dinamiche.
- fully preemptive tasks.
- \bullet minimizza la lateness L_{max} massima.

EDF garantisce la fattibilità della schedulabilità se $\forall i \sum_{k=1}^{i} c_k(t) \leq d_i - t$.

Complessità:

- per inserire un nuovo task all'interno del task set il task set $\mathcal{O}(n)$
- per garantire un nuovo task $\mathcal{O}(n)$

Capitolo 4

Periodic Task Scheduling

Scheduling di tasks periodici o sporadici (aperiodici). Definiamo un task periodico $\tau_i(C_i, T_i)$ con C_i il worst case execution time e T_i il periodo per il quale il task τ_i deve essere eseguito.

Figura 4.1: periodic task

Figura 4.2: sporadic task

Per ogni task periodico, bisogna garantire che:

- ogni job τ_{ik} venga attivato in $r_{ik} = (k-1) \cdot T_i$.
- ogni job τ_{ik} completi la sua esecuzione entro $d_{ik} = r_{ik} + D_i$.

Anche nel caso di **task aperiodici** possiamo definirli $\tau_i(C_i, T_i)$, in questo caso però T_i non è il periodo nel quale per il quale si ripete il task ma indica il *deelay* minimo di attivazione tra un task τ_{ik} e un task $\tau_{i(k+1)}$, infatti bisogna garantire per ogni task sporadico che:

- ogni job τ_{ik} viene attivato in un istante $r_{ik} \geq r_{i(k+1)} + T_i$.
- ogni job τ_{ik} completi la sua esecuzione entro una deadline relativa $d_{ik} = r_{ik} + D_{ik}$

4.1 Timeline Scheduling

È una tipologia di scheduling offline è stata utilizzata per anni nei contesti in cui era richiesto un hard real time per via della delicatezza delle circostanze di uso (sistemi militari, navigazioni e sistemi di monitoraggio). Può essere chiamato anche cycle executive o cyclic scheduling.

Il funzionamento era tale che l'asse del tempo venisse divisa in intervalli con lunghezza uguale, anche chiamati *time slots*, ogni task viene allocato staticamente in un certo slot e in un certo ordine per venire incontro ai request rate desiderati. L'esecuzione per ogni slot viene attivato tramite un *timer*. Consideriamo un task set $\mathcal{T} = \{\tau_1, \tau_2, ..., \tau_k\}$ e che $\forall \tau_i \in \mathcal{T} \exists (C_i, T_i)$, in questo caso $T_i \equiv D_i$ ovvero che il periodo del task corrisponde con la sua deadline assoluta. Definiremo:

- il *minor cycle* come $\Delta = gcd(T_i, T_j) \ \forall T_i, T_j \in \mathcal{T}, \ i \neq j$
- il **major cycle** come $\mathbf{T} = lcm(T_i, T_j) \ \forall T_i, T_j \in \mathcal{T}, \ i \neq j$
 - -nel caso in cui ci siano task sporadici come andiamo a valorizzare il $\it major$ $\it cycle$

Vantaggi

- implementazione semplice (non viene richiesto alcun sistema operativo real-time)
- ogni procedura condivide un *address*space comune
- basso overhead a tempo di esecuzione
- permette di controllare i *jitter*

Svantaggi

- non è robusto contro *overload* del sistema
- nel caso di aggiunta di un nuovo task è molto difficile l'espansione dello scheduler
- non è facile gestire task aperiodici
- ${\sf -}$ tutti i processi devono avere periodo multiplo del $minor\ cycle$
- è difficile includere processi con un periodo lungo
- difficile da costruire e da mantenere
- tutti i processi con un *WCET* variabile devono essere *splittati* in procedure con lunghezza fissa. (il determinismo non è richiesto, ma la predicibilità si)

Durante un **overload** si possono "considerare" due vie: la prima è quella di lasciar finire il task, che però comporta un **effetto domino** che va a portare delle ripercussioni anche su tutti gli altri task e che potrebbe portare ad un **timeline break**; il secondo caso è gestire l'overload con l'interruzione del task, in questo caso il sistema potrebbe rimanere in uno stato **inconsistente**. In un altro caso si ha necessità di incrementare il WCET di un task, ma se al somma dei WCET dei task in esecuzione nel Δ è maggiore del Δ , allora sarà necessario dividere uno degli n task in quel Δ di tempo in modo da evitare un timeline break.

task	T	T'
A	25 ms	25 ms
В	50 ms	40 ms
C	100 ms	100 ms
minor cycle	$\Delta = 25 \text{ms}$	$\Delta = 5 \text{ms}$
major cycle	T = 100 ms	T = 200 ms

4.2 Priority Scheduling

Ad ogni task viene assegnata una priorità basata sui sui vincoli temporali, è possibile verificare la fattibilità di uno *schedule* usando tecniche analitiche. I task sono eseguiti su un *priority-based kernel*.

4.2.1 Rate Monotonic

Ad ogni task viene assegnata una **priorità fissa** in maniera proporzionale alla sua frequenza. In caso di *overhead* sull'esecuzioni di singoli job l'**RM** è più solido del *timeline schedule*.

Definiamo l'utilizzazione della CPU da parte di un task come $U_i = \frac{C_i}{T_i}$, in questo modo possiamo andare a calcolare l'utilizzazione della CPU su tutti i task definiti:

$$U_p = \sum_{i=1}^n \frac{C_i}{T_i} \leftarrow U_p \text{ processor load}$$

In questo modo riusciamo a valutare il carico del processore che però non è una condizione sufficiente per garantire la schedulabilità di un task set, ma solo necessaria, infatti ci può dire se il task set non è schedulabile in quanto $U_p > 1$ indica che il processore è overloaded, ma nel caso in cui $U_p < 1$ ci possono essere dei casi in cui il task set non può essere schedulato tramite RM.

È possibile però identificare un punto, noto come U_{lub} [least upper bound] tale per cui sia possibile avere un **test di schedulabilità** sia **necessario** che **sufficiente**. Infatti nel caso in cui $U_p \leq U_{lub}$ il task set è sicuramente schedulabile tramite RM. Mentre nel caso in cui $U_{lub} < U_p \leq 1$ non possiamo dire niente di certo sulla fattibilità del task set.

Per Rate Monotonic $U_p^{RM} = n \cdot (2^{\frac{1}{n}} - 1)$ quindi avremo che:

$$\lim_{n \to \infty} U_{lub} = \log_2 2$$

Definiamo il $Critical\ Instant$ come l'istante di tempo in cui è presente il response time maggiore, è stato dimostrato che equivale, considernado un $task\ set\ \mathcal{T}$ all'istante in cui arrivano in corrispondenza tutti i task a più alta priorità.

Dal punto di vista della schedulabilità un task sporadico può essere considerato come un task periodico e quindi è possibile calcolarsi il suo U_p e confrontarlo con l' U_{lub} del $task\ set$.

Rate Monotonic è ottimo, infatti se esiste un assegnamento a priorità fisse che permette la fattibilità di uno schedule per un task set \mathcal{T} allora l'assegnamento RM è fattibile per il task set \mathcal{T} , al contrario se un task set non è schedulabile con RM allora non esiste nessun altro assegnamento a priorità fissa che riesca a rendere fattibile la schedulazione del task set.

Hyperbolic Bound:

$$\prod_{i=1}^{n} (U_i + 1) \le 2 \quad \text{vs.} \quad \sum_{i=1}^{n} U_i \le n \cdot (2^{\frac{1}{n}} - 1)$$

4.3 Earliest Deafline First

Ogni job riceve una deadline assoluta $d_{i,k} = r_{i,k} + D_i$, in ogni istante di tempo il processore viene assegnato al job con la earliest absolute deadline, con EDF, qualsiasi set di attività può utilizzare il processore fino al 100%.

EDF è **ottimale** ovvero se esiste uno *schedule* per \mathcal{T} allora **EDF** genererà uno *schedule* fattibile, viceverse se \mathcal{T} non è schedulabile con **EDF** allora non sarà schedulabile per nessun altro algoritmo di scheduling. Nel caso di **EDF** il test **necessario** e **sufficiente** affinché un *task set* sia schedulabile è che $U_p \leq 1$.

EDF

- è molto più efficente

- riduce i context switches

RM

- è più semplice implementarla su un sistema operativo commerciale

- è più predicibile durante overload

4.4 Task $D_i \leq T_i$

Andiamo ora a considerare il caso in cui un task $\tau_i(C_i, D_i, T_i)$ ovvero in cui la deadline assoluta non coincide con il request time ovvero in cui $D_i < T_i$. In questi casi possiamo utilizzare due tipologie diverse di scheduler:

- ullet fixed priority: Deadline Monotonic $p_i \propto rac{1}{D_i}$
- ullet dynamic priority: Earliest Deadline First $p_i \propto rac{1}{d_i}$

Figura 4.3: $task con D_i \leq T_i$

Figura 4.4: deadline monotonic

4.5 Response Time Analysis

Siccome nel caso di uno scheduler deadline monotonic ricavare l'utilization bound non è utile in quanto sono fattibili anche task set con $U_p > 1$.

Il response time analysis è un test sufficiente e necessario per la schedulabilità di un task set τ_i , per ogni task τ_i calcolare l'iterference I_i che può essere causata da task a più alta priorità, possiamo quindi ora calcolare il response time come $R_i = C_i + I_i$ e possiamo verificare che questo sia minore della deadline relativa $R_i \leq D_i$.

Per calcolare l'interferenza di un task τ_k (a priorità alta) su τ_i (a priorità minore) nell'intervallo $[0, R_i]$:

$$I_{ik} \lceil \frac{R_i}{T_k} \rceil \cdot C_k \to I_k = \sum_{k=1}^{i-1} \lceil \frac{R_i}{T_k} \rceil \cdot C_K$$

Il calcolo del *response time* è invece iterativo:

$$\begin{cases} R_i^0 = C_i \\ R_i^{(s+1)} = C_i + \sum_{k=1}^{i-1} \cdot \lceil \frac{R_i^{(s)}}{T_k} \rceil \cdot C_k \end{cases} \to R_i^{(s+1)} = R_i^{(s)}$$

Esercizio

Consideriamo un task set del tipo:
$$\begin{cases} \tau_1 = (3,6) \\ \tau_2 = (7,28) \\ \tau_3 = (5,28,30) \end{cases}$$

andiamo prima a valutare la schedulabilità andando a calcolare l'utiliation bound modificata, visto che c'è almeno un task che ha $T_i \neq D_i$.

$$U_p^* = \frac{C_1}{T_2} + \frac{C_2}{T_2} + \frac{C_3}{T_3}$$

$$= \frac{3}{6} + \frac{7}{28} + \frac{5}{28} = 0.93 \qquad \stackrel{?}{\leq} \qquad U_p^* = n \cdot (\sqrt[n]{2} - 1) = 0.78$$

- $\tau_1 \to R_i = C_i I_i = 3 0 = 3 \stackrel{?}{\leq} 6$ **OK**. Il task τ_1 è **schedulabile**, siccome siamo in priorità fisse.
- il task τ_2 è schedulabile

$$R_2 = C_2 + \lceil \frac{R_2}{T_1} \rceil \cdot C_1 = 7 + \lceil \frac{7}{6} \rceil \cdot 3 = 13 \stackrel{?}{=} 7 \text{ NO}$$

 $R'_2 = 7 + \lceil \frac{13}{6} \rceil \cdot 3 = 16 \stackrel{?}{=} 13 \text{ NO}$
 $R''_2 = 7 + \lceil \frac{16}{6} \rceil \cdot 3 = 16 \stackrel{?}{=} 16 \text{ SI} \stackrel{?}{\leq} 28 \text{ OK}$

• il task τ_3 è schedulabile

$$R_{3} = C_{3} + \lceil \frac{R_{3}}{T_{1}} \rceil \cdot C_{1} + \lceil \frac{R_{3}}{T_{2}} \rceil \cdot C_{2}$$

$$= 5 + \lceil \frac{5}{6} \rceil \cdot 3 + \lceil \frac{5}{28} \rceil \cdot 7 = 15 \stackrel{?}{=} 5 \text{ NO}$$

$$R'_{3} = 5 + \lceil \frac{15}{6} \rceil \cdot 3 + \lceil \frac{15}{28} \rceil \cdot 7 = 21 \stackrel{?}{=} 15 \text{ NO}$$

$$R''_{3} = 5 + \lceil \frac{21}{6} \rceil \cdot 3 + \lceil \frac{21}{28} \rceil \cdot 7 = 24 \stackrel{?}{=} 21 \text{ NO}$$

$$R''_{3} = 5 + \lceil \frac{24}{6} \rceil \cdot 3 + \lceil \frac{24}{28} \rceil \cdot 7 = 24 \stackrel{?}{=} 24 \text{ SI} \stackrel{?}{\leq} 28 \text{ OK}$$

Possiamo quindi affermare che l'intero task set \mathcal{T} è **schedulabile**, ed ha una complessità pari a: $\mathcal{O}(n \cdot D_{max})$.

4.6 Processor Demand Criterion

In ogni intervallo di tempo la computation demanded dal task set non deve essere maggiare del tempo disponbile. Nel caso di **EDF** abbiamo priorità dinamiche ed è quindi impossibile utilizzare il response time analysis per dire se un task set è schedulabile. La **demand** in $[t_1, t_2]$ è il WCET di quei task che anno $r_i \geq t_1 \cap d_i \leq t_2$:

$$g(t_1, t_2) = \sum_{r_i > t_1}^{d_i \le t_2} C_i$$

Consideriamo ora $t_1 = 0$ (ovvero il *critical istance*) e $t_2 = \mathcal{L}$ e andiamo a calcolarci la **demand** nell'intervallo di tempo $[0, \mathcal{L}]$ allora avremo che:

$$g(0,\mathcal{L}) = \sum_{r_i \geq 0}^{d_i \leq \mathcal{L}} C_i = \sum_{i=1}^n \underbrace{\left\lfloor \frac{\mathcal{L} - D_i + T_i}{T_i} \right\rfloor}_{\text{Quando i task hanno } r_i \text{ e } T_i \text{all'interno di } \mathcal{L}} \cdot C_i$$

L'execution time demanded dai singoli job che hanno deadline $d_i \leq \mathcal{L}$ su un intervallo di lunghezza \mathcal{L} non può essere maggiore di \mathcal{L} ovvero

$$\forall \mathcal{L} > 0 \ g(0, \mathcal{L}) \leq \mathcal{L} \qquad \leftarrow \text{è inapplicabile } \mathcal{L} \to \infty$$

Controllare la schedulabilità utilizzando la funzione $g(0, \mathcal{L})$ che è continua nell'intervallo $[0, \mathcal{L}]$ non è fattibile. Possiamo però rendere la funzione un staircase function con dei salti (discontinuità) nei punti di deadline assoluta $d_{i,k} = (k-1) \cdot T_i + D_i$, perché possiamo notare dalla figura che i punti in cui la demand rischia di superare \mathcal{L} sono nei punti di discontinuità. Possiamo identificare un hyberperiod \mathbf{H} dopo il quale il comportamento della nostra funzione discontinua si ripeterà, $\mathbf{H} = lcm(T_i, T_j) \ \forall T_i, T_j \in \mathcal{T} \ con \ i \neq j$ ovvero il minimo comune multiplo tra i periodi del task set.

$$g(0, \mathcal{L}) = \sum_{i=1}^{n} \left\lfloor \frac{\mathcal{L} + T_i - D_i}{T_i} \right\rfloor \cdot C_i$$
$$G(0, \mathcal{L}) = \sum_{i=1}^{n} \left(\frac{\mathcal{L} + T_i - D_i}{T_i} \right) \cdot C_i$$

Per definizione del floor avremo che $g(0, \mathcal{L}) \leq G(0, \mathcal{L})$.

$$G(0, \mathcal{L}) = \sum_{i=1}^{n} \left(\frac{\mathcal{L} + T_i - D_i}{T_i}\right) \cdot C_i$$

$$= \sum_{i=1}^{n} \frac{\mathcal{L}}{T_i} \cdot C_i + \left(\frac{T_i - D_i}{T_i}\right) \cdot C_i$$

$$= \sum_{i=1}^{n} \mathcal{L} \cdot \underbrace{\frac{C_i}{T_i}}_{U} + \left(T_i - D_i\right) \cdot \underbrace{\frac{C_i}{T_i}}_{U_i}$$

$$= \mathcal{L}U \cdot \sum_{i=1}^{n} (T_i - D_i) \cdot U_i$$

$$(4.1)$$

Ora vogliamo trovare il punto di intersezione \mathcal{L}^* tra \mathcal{L} e $G(0,\mathcal{L})$, poniamo quindi:

$$\mathcal{L} = G(0, \mathcal{L})$$

$$\mathcal{L} = \mathcal{L}U \cdot \sum_{i=1}^{n} (T_i - D_i) \cdot U_i$$

$$\mathcal{L} - \mathcal{L}U = \sum_{i=1}^{n} (T_i - D_i) \cdot U_i$$

$$\mathcal{L} \cdot (1 - U) = \sum_{i=1}^{n} (T_i - D_i) \cdot U_i$$

$$\mathcal{L}^* = \frac{\sum_{i=1}^{n} (T_i - D_i) \cdot U_i}{1 - U}$$

$$(4.2)$$

Per verificare quindi se il task set è schedulabile dovremo valutare se $\forall \mathcal{L} \in D, \ g(0, \mathcal{L}) \leq \mathcal{L}$ dove avremo che:

$$D = \{d_k | d_k \le \min(\mathbf{H}, \mathcal{L}^*)\} \begin{cases} \mathbf{H} = lcm(T_i, T_j) \ \forall T_i, T_j \in \mathcal{T}, \ i \ne j \\ \mathcal{L}^* = \frac{\sum_{i=1}^n (T_i - D_i) \cdot U_i}{1 - U} \end{cases}$$

Esercizio

Consideriamo il seguente
$$task \ set: \begin{cases} \tau_1(1,2,3) \\ \tau_2(2,5.5,7) \\ \tau_3(2,6,10) \end{cases}$$

Identifichiamo come prima cosa la nostra D:

$$D = \{d_k | d_k \le \min(\mathbf{H}, \mathcal{L}^*)\} \begin{cases} \mathbf{H} = lcm(T_1, T_2, T_3) = lcm(3, 7, 10) = 210 \\ \mathcal{L}^* = \frac{\sum_{i=1}^n (T_i - D_i) \cdot U_i}{1 - U} \\ = \frac{[(3 - 2) \cdot \frac{1}{3}] + [(7 - 5.5) \cdot \frac{2}{7}] + [(10 - 6) \cdot \frac{2}{10}]}{1 - \underbrace{(\frac{1}{3} + \frac{2}{7} + \frac{2}{10})}_{U_{lub} = 0.8190}}_{U_{lub} = 0.8190}$$

$$= 8.63$$

• consideriamo $\mathcal{L}=2$

$$\lfloor \frac{\mathcal{L}+T_1-D_1}{T_1} \rfloor \cdot C_1 = \lfloor \frac{2+3-2}{3} \rfloor \cdot 1 = 1 \stackrel{?}{\leq} 2 \qquad \leftarrow \mathbf{OK}$$

- consideriamo $\mathcal{L} = 5$
- consideriamo $\mathcal{L} = 5.5$

$$g(0, \mathcal{L}) = \left\lfloor \frac{\mathcal{L} + T_1 - D_1}{T_1} \right\rfloor \cdot C_1 + \left\lfloor \frac{\mathcal{L} + T_2 - D_2}{T_2} \right\rfloor \cdot C_2$$
$$= \left\lfloor \frac{5.5 + 3 - 2}{3} \right\rfloor \cdot 1 + \left\lfloor \frac{5.5 + 7 - 5.5}{7} \right\rfloor \cdot 2$$
$$= 2 + 2 = 4 \stackrel{?}{\leq} 5.5 \quad \leftarrow \mathbf{OK}$$

• consideriamo $\mathcal{L} = 6$

$$g(0,\mathcal{L}) = \left\lfloor \frac{\mathcal{L} + T_1 - D_1}{T_1} \right\rfloor \cdot C_1 + \left\lfloor \frac{\mathcal{L} + T_2 - D_2}{T_2} \right\rfloor \cdot C_2 + \left\lfloor \frac{\mathcal{L} + T_3 - D_3}{T_3} \right\rfloor \cdot C_3$$
$$= \left\lfloor \frac{6 + 3 - 2}{3} \right\rfloor \cdot 1 + \left\lfloor \frac{6 + 7 - 5.5}{7} \right\rfloor \cdot 2 + \left\lfloor \frac{6 + 10 - 6}{10} \right\rfloor \cdot 2$$
$$= 2 + 2 + 2 = 6 \stackrel{?}{\leq} 6 \qquad \leftarrow \mathbf{OK}$$

• consideriamo $\mathcal{L} = 8$

$$g(0, \mathcal{L}) = \left\lfloor \frac{\mathcal{L} + T_1 - D_1}{T_1} \right\rfloor \cdot C_1 + \left\lfloor \frac{\mathcal{L} + T_2 - D_2}{T_2} \right\rfloor \cdot C_2 + \left\lfloor \frac{\mathcal{L} + T_3 - D_3}{T_3} \right\rfloor \cdot C_3$$

$$= \left\lfloor \frac{8 + 3 - 2}{3} \right\rfloor \cdot 1 + \left\lfloor \frac{8 + 7 - 5.5}{7} \right\rfloor \cdot 2 + \left\lfloor \frac{8 + 10 - 6}{10} \right\rfloor \cdot 2$$

$$= 3 + 2 + 2 = 7 \stackrel{?}{\leq} 8 \quad \leftarrow \mathbf{OK}$$

Capitolo 5

Scheduling con Shared Memory