Notions de chimie organique

I – Composés organiques

COMPOSES	FORME GENERALE	CLASSES	NOMENCLATURE
ACIDES AMINES ou aminoacides	H COOH R-C NH ₂		
	Acides carboxyliques :	R-C O-H	Acide + alcane - e + oïque Ex : méthanoïque ou formique Ex : éthanoïque ou acétique
ACIDES CARBOXILIQUES et produits dérivés	Chlorures d'acyles : (halogénure d'acide)	R-C CI	Chlorure d'alcanoyle Ex : Chlorure d'éthanoyle
	Anhydrides d'acides :	$R-c \stackrel{O}{\sim} \stackrel{O}{c} \stackrel{O}{\sim}_R$	Anydride alcane – e + oïque Ex : anydride éthanoïque
	Esters :	R-COOR'	Alcane – e + oate d'alkyle Ex : éthanoate d'éthyle
	Amides :	R- <i>C</i> , NH ₂	Alcanamide (non substitué) N-méthyl-alcanamide (substitué) Ex : éthanamide
	Nitriles :	R—C≡N	Alcane + nitrile Ex : éthanenitrile

COMPOSES	FORME GENERALE	CLASSES	NOMENCLATURE
ALCANES	C _n H _{2n+2}	Primaire : CH_4 ou $R - CH_3$ Secondaire : $RR'CH_2$ Tertiaire : $RR'R''CH$	Méthane Ethane Propane Butane
	—C—	Quaternaire: RR'R''R'''C	Pentane Méthène
ALCENES ou oléfine ou carbures éthyléniques	C _n H _{2n}	Isomère Z : même ½ plan Isomère E : ½ plans différents	Ethène Propène Butène Pentène
ALCYNES ou carbures acétyléniques	-C≡C-	Alcynes vrais : R - C ≡ C - H	Méthine Ethine Propine Butine Pentine
	R – OH	Primaire: R – CH ₂ – OH	alcane – e + numéro + ol Ex : éthanol
ALCOOLS		Secondaire: RR'-CH - OH	
		Tertiaire: RR'R''-C - OH	
		Primaire: R – NH ₂	
AMINES	>N-	Secondaire : RR'-NH	Méthyl + amine Ex : méthylamine
		Tertiaire : RR'R''-N	
	C ₆ H ₈ N		
ANILINE	NH ₂		

COMPOSES	COMPOSES FORME GENERALE		NOMENCLATURE
DENZENEC	C ₆ H ₆		
BENZENES	©		
DEDIVIES CARRONYLES		Aldéhydes : R – CO – H	Alcane – e + al Ex : méthanal, éthanal
DERIVEES CARBONYLES	R – CO –	Cétone: R – CO – R'	Alcane – e + numéro + one Ex : propanone ou océtone
ETHEROXYDE	R – O – R		Oxyde de dialkyle Ex : oxyde de diéthyle
		Oses: n = [[3,8]]	Ribose : C=5 Glucose / fructose : C=6
GLUCOSES ou hydrates de carbone	C _n (H ₂ O) _m	Osides : association d'oses Saccharose / Polyholosides Amidon Hétérosides	Oligoholosides (simples): Saccharose / maltose: C=12 Polyholosides (complexes): Amidon et cellulose Hétérosides (glycosides): Saliciline, ADN, ARN
HALOGENOALCANES ou dérivés halogénés des alcanes	$C_nH_{2n+1}X$	Primaire: R – CH ₂ – X	
	On' (2n+17)	Secondaire: RR'-CH - X	Halogénure d'alcane ou Halogéno d'alcane
<u> </u>	RX	Tertiaire: RR'R''-C - X	ou halogénure d'alkyle

COMPOSES	FORME GENERALE	CLASSES	NOMENCLATURE
	Métaux monovalents : R – M	Symétriques : R'= R	Organomagnésiens R – Mg – R' Organolithiens R – Li Organocuprate lithiés R ₂ CuLi
ORGANOMETALLIQUES	Métaux divalents : R – M – R'	Mixtes: R'= X	Organocadmiens $R - Cd - R'$ Organozinciques $R - Zn - R'$
PHENOLS	С ₆ H ₇ О — ОН		
THIOLS R – SH ou mercaptans			Alcane + thiol Ex : éthanethiol
UREE (ou diamide carbamique)	O NH2- C NH2		

II - Réactions possibles sur les composés organiques :

COMPOSE ORGANIQUE	REACTIFS	MECANISME	PRODUITS
Acides aminés	Aldéhyde	Synthèse	Acide aminé
H COOH R-C NH ₂	Chlorure d'acyle	Action de chlorure d'acyle	Diamide + HCl
	SOCl ₂ Chlorure de thionyle		R - COCI + HCI + SO ₂
A sides es abovulia ves	PCI Pentachlorure de phosphore	Formation de chlorure d'acyle	R – COCI + HCI + POCI
Acides carboxyliques O	$\frac{1}{3}PCl_3$		$R - COCI + \frac{1}{3}H_3PO_3$
R− <i>с</i> ″ О−н	2 R – COOH	Formation d'anhydride d'acide	Anhydride + eau
	Alcool R'-OH	Formation d'ester	Ester + eau
	R'R''NH	Formation d'amide puis de nitrile	Amide + eau puis nitrile + eau
Alcanes C _n H _{2n+2}	$\frac{1}{3}(3n+1)O_2$	Combustion	nCO ₂ + (n + 1)H ₂ O
c-	X ₂	Halogénation	RX + HX

	$\frac{3n}{2}O_2$	Combustion	nCO ₂ + nH ₂ O
Alcènes	X ₂	Halogénation	x-c-c-x
C_nH_{2n}	НХ	Hydroalogénation	х-с-с-н
_c=c(H ₂ O	Hydratation	ОН—С—С—Н
	H ₂	Hydrogénation	H—C—C—H
	X ₂	Halogénation	X_C=C_X
Alcynes	нх	Hydroalogénation	C=C(X
- C ≡ C -	H ₂ O	Hydratation	C=C(
	H ₂	Hydrogénation	C=C(H H

	RX	Synthèse d'éther de Williamson	Etheroxyde R – O – R
	Acide carboxylique		Ester + eau
	Chlorure d'acyle	Estérification des alcools	Ester + HCl
	Anhydride d'acide		Ester + acide carboxylique
	HX	Hydroalogénation	RX + H ₂ O
	Catalyse homogène Réaction intermoléculaire	Déshydratation	Ether + eau
Alcools	Catalyse hétérogène Réaction intramoléculaire	Desityuratation	Alcène + eau
R – OH	Oxydation ménagée Pour alcool I		Aldéhyde puis acide carboxylique
	Coupure oxydante pour Alcool II	Oxydation	Cétone
	Oxydation coupante pour alcool III		Rien
	Alcool I	Dáchudragánation	Aldéhyde + H ₂
	Alcool II	Déshydrogénation	Cétone + H ₂
Amides O	OH⁻	Saponification (ou hydrolyse basique)	Carboxylate R – COO ⁻ + RR'NH
R− <i>c</i> (NH ₂	NaOBr	Dégradation d'Hoffmann	Amine R – NH ₂ + HCO ₃ ⁻ + NaBr
Anhydride d'acide	H ₂ O	Hydrolyse	R – COOH + R'–COOH
R- c 0	2R''-COOH	Echange d'anhydrides	Anhydride + R – COOH + R'–COOH
	Alcool R''-OH	Passage à l'ester	Ester + acide
0−c~R	Amine R''-NH ₂	Passage à l'amide	Amide + acide

Anilines C ₆ H ₈ N	φ – NO ₂	Synthèse	φ – NH ₂
$\langle \bigcirc \rangle$ —NH ₂	3X ₂	Halogénation	C ₆ H ₅ NX ₃ + 3HX
Benzène C ₆ H ₆	X ₂	Halogénation	⟨◯⟩–× + HX
©>	3H ₂	Hydrogénation	C ₆ H ₁₂ (cyclohexane)
	H ₂ O	Hydrolyse	R – COOH + HCI
Chlorure d'acyle	R'–COONa Carboxylate de sodium	Passage à l'anhydride	Anhydride + NaCl
ο R− <i>c</i> ∕′	Alcool R'-OH	Passage à l'ester	Ester + HCl
k - C Cl	Amine R'–NH ₂	Passage à l'amide	Amide + HCl
	H ₂	Réduction en aldéhyde	Aldéhyde + HCl
Dérivées carbonylées	H ₂	Hydrogénation	он-С-н
R – CO –	H ₂ O	Hydratation	он—с—он
Esters	H ₂ O	Hydrolyse acide	R – COOH + R'–COOH
Latera	OH⁻	Saponification (ou hydrolyse basique)	Carboxylate R – COO ⁻ + alcool
$R-c^{\prime\prime}$	Alcool R''-OH	Trans-estérification	Ester + Alcool R'-OH
OR'	Amine R''-NH ₂	Passage à l'amide	Amide + alcool R'-OH

Halogénoalcanes C _n H _{2n+1} X	Soude NaOH	Elimination Unimoléculaire (tertiaire) Bimoléculaire (primaire et secondaire)	Alcène C _n H _{2n} + Halogénure de sodium NaX + Eau H ₂ O
RX	Halogène X'	Substitution Unimoléculaire (tertiaire) Bimoléculaire (primaire et secondaire)	Halogénoalcane C _n H _{2n+1} X' + Halogène X
Nitriles	H ₂ O	Hydrolyse	Amide R – CONH ₂
R—C≣N	2H ₂	Hydrogénation	Amine I R – CH ₂ – NH ₂
	RX + Mg	Synthèse Réaction de Grignard	R – Mg – X
Organomagnésiens mixtes R – Mg – X	Méthanal Aldéhyde Cétone	Addition nucléophile Obtention d'alcool	Alcool primaire Alcool secondaire Alcool tertiaire
	CO ₂	Carbonation	Acide carboxylique R – COOH
Phénols C ₆ H ₇ O	3X ₂	Halogénation	C ₆ H ₃ OX ₃ + 3HX
<i>(</i>)—он	R – X	Formation d'éther	$\phi - O - R + X$
	Chlorure d'acyle	Estérification	R – COOφ
_	R'-X	Formation de thioéther	R - S - R' + X
Thiols	Chlorure d'acyle	Estérification	R'-COSR + HCI
R – SH	H ₂	Hydrogénolyse	RH + H ₂ S
	2 thiols + I_2	Oxydation	R-S-S-R + 2HI

	$CO_2 + 2NH_3$		Urée + H ₂ O
Urée	Phosgène CO – Cl ₂ + 2NH ₃	Obtention d'urée	Urée + 2HCl
o	Carbure de calcium CaC ₂		Urée
NH2 — C NH2	3NaOBr + 2OH⁻	Dégradation d'Hoffmann	$N_2 + 3H_2O + CO_3^{2-} + 3NaBr$