User Manual for the SPRIGHT Code Package

BASiCS

April 24, 2017

1 Installation

1.1 Required software and packages

• C++ compiler supporting ISO C++ 2011 standard

1.2 Building SPRIGHT

Makefile is provided with the distribution and SPRIGHT should compile without a problem by calling make from the command line in the same directory of the Makefile.

2 Using the code

The SPRIGHT engine takes an input object and an output object that describes the input/output operations. The implementation of these two can be tailored to application without changing the SPRIGHT engine.

The Makefile compiles an example program **spright**. It implements an *experiment* and a *customized* mode.

The experiment mode generates random input signals according to the specifications given from the command line and tests the performance of the SPRIGHT algorithm.

Customized mode takes a text file from the command line that stores the signal and outputs the frequency contents to a desired file. The text file should have the values of the signal at each time index in tuple form (a,b), where a denotes the real part and b denotes the complex part. For example, the text file with content

(1,0)

(0,1)

(-1,0)

(0,-1)

defines a length 4 input x where x[0] = 1, x[1] = i, x[2] = -1, and x[3] = -i.

2.1 Arguments

-a

Run experiment

-c

Do not count the number of samples used by SPRIGHT to speed up the algorithm

-n NUM

Signal length

-i NUM

Number of iterations

-f FNAME

Input file name

-z FNAME

Output file name

-k NUM

Number of non-zero frequencies, sparsity

-s NUM

SNR in dB

-d NUM

Number of delays per chain

-е NUM

Number of chains

-1

Use ML decoding, slow search

2.2 Examples

Below we list some example calls for the executable file.

./spright -help

Display help.

./spright -a -n 262144 -k 20 -i 30

Run 30 SPRIGHT experiments on randomly generated signals of length $262144~(2^{18})$ having 20 sparse Walsh Hadamard spectrum.

./spright -a -n 16384 -s 30 -k 10 -i 30 -e 5

Run 30 SPRIGHT experiments on randomly generated signals of length 16384 (2¹⁴) having an SNR of 30 dB and 10 sparse Fourier spectrum, using 5 chains of delays.

./spright -f inFile.txt -k 40 -z outFile.txt

Run SPRIGHT on input data given in inFile.txt to recover 40 sparse spectrum and write the recovered signal in outFile.txt.

./spright -a -i 100 -b "7 56 960" -n 1024 -e 5 -k 6 -s 30

Run 100 SPRIGHT experiments on randomly generated signals of length 1024 (2¹0) having an SNR of 30 dB and 6 sparse Fourier spectrum. For the algorithm, use 3 stages with bins for the first 3 indices, indices 4-6, and indices 7-10, using 5 chains of delays (cf. [1]).

3 Code structure

config.cpp

This class gets input arguments from the command line and stores the parameters of the algorithm.

input.cpp

This is a template class. Instances of this class should implement a function that will return the value of the signal at a chosen time index. Two such instances of this class are the experimentinput.cpp and customizedinput.cpp.

frontend.cpp

This class is where sub-sampling and short Walsh Hadamard transforms are done.

backend.cpp

The peeling engine is implemented here.

output.cpp

This is a template class. Instances of this class should implement a function that will get the results from the backend and output. Two instances are experimentoutput.cpp and customizedoutput.cpp.

spright.cpp

The class that runs the SPRIGHT engine.

main.cpp

The implementation for the executable file with the experiment and customized modes.

References

[1] X. Li, J. K. Bradley, S. Pawar, and K. Ramchandran, "SPRIGHT: A fast and robust framework for sparse walsh-hadamard transform," CoRR, vol. abs/1508.06336, 2015. [Online]. Available: http://arxiv.org/abs/1508.06336