Temario

- Introducción y fundamentos
- Introducción a SQL
- ◆ Modelo Entidad / Relación
- Modelo relacional

Elmasri cap. 5 y 7

- Diseño relacional: formas normales
- Consultas
 - Cálculo relacional
 - Álgebra relacional
- Implementación de bases de datos
 - Estructura física: campos y registros
 - Indexación
 - Índices simples
 - Árboles B, B* y B+

Modelo E/R vs Relacional

- ◆ El Modelo E/R es un modelo mas conceptual de mas alto nivel de abstracción que el Modelo Relacional.
- En el Modelo Relacional. Una relación esta pensada como una tabla de valores (tuplas) con atributos relacionados entre si. Cada fila (tupla) representa un hecho que se corresponde con una entidad real.
- En el Modelo E/R es fácil derivar la relación entre las distintas entidades mientras que en el Modelo Relacional no es tan sencillo.
- La diferencia básica entre el Modelo E/R y el Modelo Relacional es que el modelo E/R trata específicamente con las entidades y sus relaciones. Por otro lado, el Modelo Relacional se ocupa de las Tablas y de la relación entre los datos de esas tablas.

Objetivo de este capítulo

Entender que las bases de datos se pueden describir esencialmente en teoría de conjuntos

Aprender formalismos basados sobre este modelo: formas normales, álgebra relacional, cálculo relacional

Modelo relacional vs. SQL

- El modelo relacional formaliza los conceptos implementados en SQL (o más bien SQL es una implementación del modelo relacional)
 - Esquemas de Relación (estructura de tabla): atributos, dominios
 - Estado de esquema (contenido de una tabla): tuplas
 - Base de datos, estado de una base de datos
 - Claves, superclaves, clave primaria, claves externas
- Notación: esquema de relación, atributo, dominio, grado de la relación (número de atributos), tupla...
- Además, sobre el modelo relacional se formalizan
 - Formas normales: propiedades del diseño de los esquemas
 - Consultas: cálculo y álgebra

SQL ("tablas")

Estructura de tabla

```
create table Tweet (
    "id" integer,
    "content" text,
    "author" integer
)
```

Datos de tabla

Tweet

id	content	author
7	'Enhorabuena'	6
48	'Notifications in'	24
35	'Ha sido leer'	6

Modelo relacional

Esquema de relación Tweet (id, content, author) Tweet (id : integer, content : string, author : integer)

Atributos: atómicos, nombre único, admiten NULL

Estado de relación

SQL ("tablas")

Modelo relacional

Base de datos = conjunto de tablas

Tweet

id	content	author
7	'Enhorabuena'	6
48	'Notifications in'	24
35	'Ha sido leer'	6

User

id	name	email
24	Dolores	lola@gmail.com
6	José	jose@gmail.com
81	José María	chema@gmail.com
73	Rosario	rosario@gmail.com

Follows

user1	user2
6	24
73	6
81	73

Base de datos = conjunto de relaciones y restricciones

Esquema de base de datos = conjunto de esquemas de relación

Twitter = { Tweet, User, Follows... }

Estado de base de datos = conjunto de estados de relación

r(Twitter) = { r(Tweet), r(User), r(Follows)... }

SQL ("tablas")

Modelo relacional

Restricciones

Unique

Not NULL

Primary key

References

Restricciones

Clave (candidata)

Not NULL

Clave primaria

Clave externa

- Superclave = conjunto de atributos que contiene una clave
- Clave = superclave mínima
- Clave primaria = clave designada como tal arbitrariamente (sólo una por esquema)
- Clave externa: restricciones de integridad
 - Apunta a clave not NULL
 - El valor existe en la otra relación
 o la clave externa tiene el valor NULL
 - Preservación de integridad

Resumen del modelo relacional ¿Qué tenemos que saber?

- Conceptos
 - Esquema de relación, atributo, dominio, estado, tupla, base de datos
 - Énfasis: el estado de un esquema es un conjunto de tuplas
- Entender y manejar la notación
- Condiciones que deben cumplir los atributos
 - Nombre único, valores en dominio, atómicos, univaluados, admiten NULL
- Diferencia entre claves, superclaves, clave primaria
 - Además, las claves primarias no pueden ser NULL
- Qué significa la integridad referencial con las claves externas
 - El valor referenciado tiene que existir, o ser NULL
- Conversión de diagrama E/R a esquema relacional

Modelo E/R vs. relacional

- Propuesto por E. Codd en 1970
- \bullet ER \cap MR
 - Entidad / relación → relación
 Tipo de entidad / relación → esquema relacional
 Extensión de entidad / relación → estado de una relación
 - Atributos, dominios
 - Superclaves, claves, clave primaria

Edgard F. Codd

◆ ER – MR

- Atributos multivaluados, compuestos
- Relación como elemento diferente de entidad
- Entidad débil (puesto que no existe diferencia entre relación y entidad)
- MR − ER
 - Claves externas
 - Concepto de base de datos
 - Más adelante, normalización, cálculo, álgebra
 - Expresable directamente en SQL

Esquema de relación

- Un nombre de relación, y una lista de atributos
 - Describe una relación (tabla)
 - Semejante a entidad en el Modelo E/R
 - Grado de la relación: nº de atributos
- Notación
 - R $(A_1, A_2, ..., A_n)$ donde R es el nombre de la relación y A_k son los atributos
 - R (A₁: dom (A₁), A₂: dom (A₂), ..., A_n: dom (A_n))
 donde dom (A_k) es el dominio del atributo A_k
- Ejemplo: Usuario (nick, email, nombre)
 Usuario (nick:string, email:string, nombre:string)

Atributos de relación

- Tienen un nombre y un dominio asociado
 - Dominios: string, numérico, código postal, etc.
 - Los atributos deben tomar valores en su dominio
 - No se puede repetir un nombre de atributo en un mismo esquema
 - Se entiende que ocupan un lugar fijo en la relación
- Admiten el valor NULL
 - Valor no existe, no disponible, o desconocido
 - En general interesa minimizar NULLs
- Equivalente a atributos E/R pero...
 - Atómicos
 - Univaluados

Claves

Superclave

- Conjunto de atributos cuya combinación es única para un tipo de entidad
- Por ejemplo, el conjunto total de atributos de un tipo de entidad es una superclave (trivial)
- Ejemplos: nick + nombre es superclave de Usuario dni es superclave de Persona?

Clave

- Una superclave mínima, también llamada clave candidata
- Equivaldría –con matices– a UNIQUE en SQL
- Ejemplos: nick + nombre no es clave para Usuario nick es clave
 email es clave

Clave primaria

- Una clave que se designa como primaria para un tipo de entidad
- Se utiliza para indexar (lo veremos más adelante...)
- Equivale a PRIMARY KEY en SQL
- La elección entre claves candidatas es arbitraria
- Notación gráfica: subrayado

Estado de una relación

- Una relación r del esquema $R(A_1,...A_n)$ especificado como r(R) es un conjunto de m-tuplas $r(R)=\{t_1, t_2, ..., t_m\}$
- $r(R) \subset dom(A_1) \times dom(A_2) \times \cdots \times dom(A_m)$
- Conjunto de tuplas $r(R) = \{t_1, t_2, ..., t_m\}$

$$t_j = (x_{j,1}, x_{j,2}, ..., x_{j,n})$$

 $x_{j,k} \in dom(A_k)$

Notación

$$t(x_1, ..., x_n)$$
 es lo mismo que $(x_1, ..., x_n) \in r$ (R).
 $t[A_k] = t[k] = t . A_k = x_k$
Subtuplas: $t[A_{k_1}, ..., A_{k_p}] = t[k_1, ..., k_p] = (x_{k_1}, ..., x_{k_p})$
donde $k_i \in [1, n]$

Estado de una relación

Base de datos

- Esquema de BD relacional
 - Conjunto de esquemas relacionales $S = \{R_1, ..., R_p\}$
 - Conjunto C de restricciones de integridad sobre ellos
- Estado de una BD relacional
 - Conjunto de estados de cada relación de la BD { r_1 , ..., r_p },
 donde cada r_i es un estado de R_i
 - Y además los r_i cumplen todas las restricciones de C
 - Un estado que no cumple todas las restricciones es inválido
- A menudo nos referiremos a una DB como el esquema más su estado

Restricciones de esquemas

- De dominio
 - Los atributos son univaluados
 - Sus valores deben pertenecer al dominio del atributo
- Sobre atributos
 - De claves
 - Dos tuplas no pueden tener el mismo valor en los atributos que forman una clave
 - Las claves deben ser mínimas: si se elimina algún atributo no se cumple la unicidad
 - Valores NULL: puede establecerse que un atributo no puede ser NULL
- De integridad
 - De entidades: ninguna clave primaria puede ser NULL
 - Referencial...

Restricciones de integridad referencial

- Se basan en la noción de clave externa
- Aparecen típicamente de las relaciones entre entidades en el modelo relacional
- Un conjunto de atributos FK de un esquema R₁ puede ser una clave externa que referencia a R₂ si los atributos de FK tienen los mismos dominios que los de la clave primaria de R₂
 - Se dice que FK en R₁ hace referencia a la relación R₂
- Una clave externa establece además una restricción de integridad referencial: FK, clave externa, de R_1 a $R_2 \Rightarrow$ los valores de FK en las tuplas de R_1 o bien aparecen en alguna tupla de R_2 , o bien son NULL
- Preservacion de la integridad referencial en la actualización de las BD
 - Inserción, modificación, eliminación
 - Rechazar, reaccionar (NULL, o valor por defecto, o propagar)

Ejemplo: 2-musica.sql

Ejemplo: Integridad referencial

			Albulli			
	<u>id</u>	autor		nombre	fecha	
	0		0	Rubber Soul	1965	
	1		0	Revolver	1966	
-	24		2	Beggars Banquet	1968	

Alhum

usuario	cancion		on	instante
charo		1)	2011-09-09 16:57:54
рере	2			2011-09-12 21:15:30

Escucha

J-1	2 21.13.30			\	
	Canción	\		\	
<u>id</u>	titulo	a	utor	а	bum
0	Norwegian Wood		0		0
1	Here, there and everywhere		0		1)
2	Jumping jack flash		1		2

PK

FK

Mod	elo	E/I	R
-----	-----	-----	---

Tipo de entidad E

Atributos de E

Atómico

Compuesto

Multivaluado

Entidad débil E dependiente de entidades E_k

Modelo relacional

Esquema relacional E

Atributo o atributos en E, o esquema aparte

Atributo en el esquema relacional E

Un atributo en E por cada elemento atómico

Nuevo esquema relacional con dos atributos: clave primaria de la entidad + valor del atributo

Esquema donde se añaden las claves primarias de E_k (claves primarias de la entidad fuerte de la que depende)

R1(<u>matricula</u>, idVehiculo, marca, año, nombreModelo, versionModelo) R2(<u>matricula</u>, <u>color</u>)

R1(<u>pid</u>, Nombre Provincia)
R2(<u>mid</u>, <u>pid</u>, Nombre Municipio)

Modelo E/R

Relación R entre E₁ y E₂

Atributos de la relación R

R es *n*:m

R es *n:1*

R es 1:1

Modelo relacional

Esquema relacional R

Atributos en el esquema relacional R

Claves primarias de E1 y E2 + atributos de R

Dos opciones:

- a) Igual que para n:m (especialmente si la participación de E_1 es parcial, para evitar NULLs)
- b) Añadir en el esquema relacional de E₁

 la clave primaria de E₂ y los atributos de R

Dos opciones:

- a) Igual que para n:1
- b) Un solo esquema relacional uniendo E₁ y E₂

Modelo E/R

Modelo relacional

Claves primarias

Entidad

Entidad débil

Relación n:m entre E₁ y E₂

Relación n:1 entre E_1 y E_2

Relación 1:1 entre E₁ y E₂

Misma clave primaria

Clave parcial (si la hay) más las claves primarias de las entidades identificadoras

Atributos de las claves primarias de E₁ y E₂ (y algún atributo de R si lo hay y fuese preciso)

La clave primaria de E₁ (opción b)

La clave primaria de E_1 ó E_2 (opción b)

Modelo E/R (R es n:m)

Modelo Relacional

Escucha

<u>usuario</u>	<u>cancion</u>	instante
charo	1	2011-09-09 16:57:54
pepe	2	2011-09-12 21:15:30

Atributo relación

2

Jumping jack flash

Modelo Relacional

Autor			
Id Cancion	(Id Artista)		
	0		
1	0		
2	1		
	Artista		

<u>id</u>	nombre	nacionalidad
0	The Beatles	UK
1	The Rolling Stones	UK
2	David Bowie	UK

Modelo E/R (R es 1:1)

Modelo Relacional

Artista

id	nombre	Papel
0	Juan Antonio	El Mayordomo
1	Pedro Rodriguez	El Malo
2	Laura Martinez	El Bueno

Ejemplo: reservas de vuelos

Ejemplo: reserva de vuelos

Ejemplo: Join (diseño correcto)

