Grafos - Floyd-Warshall e Vértice Mais Central

Prof.: Leonardo Tórtoro Pereira leonardop@usp.br

*Material baseado em aulas dos professores: Elaine Parros Machado de Souza, Gustavo Batista, Robson Cordeiro, Moacir Ponti Jr., Maria Cristina Oliveira e Cristina Ciferri.

- Algoritmo para encontrar os caminhos mais curtos em um dígrafo ponderado
 - Com arestas positivas ou negativas
 - Mas não pode ter ciclos negativos!
- → Com uma única execução calcula a distância dos caminhos mais curtos para **todos os pares de vértices**
- O algoritmo não retorna os caminhos em si, mas pode ser modificado para isso

- → Em comparação com Dijkstra, tem a vantagem de aceitar pesos negativos
 - Para a abordagem similar à de Dijkstra, é possível usar o algoritmo de **Johnson**
 - Que, por sua vez, usa o algoritmo de Bellman-Ford para remover os pesos negativos do grafo e aplicar Dijkstra no novo grafo

Complexidade

- → O algoritmo de Floyd-Warshall tem complexidade O(|V|³) para a performance
- \rightarrow E complexidade de espaço $O(|V|^2)$
- → Se levarmos em conta que Dijkstra é O(|E|+|V|log|V|)
 - Para cada vértice
 - O(|E||V| + |V|²log|V|) para todos
- Então, Floyd-Warshall é melhor para grafos muito densos
 - ◆ IEI próximo de IVI² (ou maior)

- → Compara todos os caminhos possíveis entre 2 pares de vértices em um grafo
- → Incrementalmente melhora uma estimativa do caminho mais curto
 - Até chegar no ótimo
 - Similar ao Dijkstra

- → O algoritmo vai adicionando um vértice de cada vez a uma lista de vértices "visitados" (conjunto *K*)
- → A cada vértice k adicionado é calculado o menor caminho entre todos os pares de vértices i e j considerando apenas os vértices já colocados em K
- → Então, o menor caminho pode ser o anterior (não usa o novo k) ou usar o k

- → Ou seja, se tivermos o método *caminhoMaisCurto(i, j, k)* podemos usá-lo recursivamente, tendo como caso base:
 - igoplus caminhoMaisCurto(i, j, 0) = peso(i, j)
- → E a recursão
 - caminhoMaisCurto(i, j, k) =
 min(caminhoMaisCurto(i, j, k-1),
 caminhoMaisCurto(i, k, k-1) +
 caminhoMaisCurto(k, j, k-1))

- O algoritmo primeiro calcula caminhoMaisCurto(i, j, k) para todos os pares (i, j) para k = 1, depois k = 2, ...
 - igoplus Até k = N, sendo N o total de vértices
- → A matriz de pesos *peso(i, j)* é atualizada a cada iteração

Fonte:

k = 0		j				
		1	2	3	4	
i	1	0	∞	-2	∞	
	2	4	0	3	∞	
	3	8	∞	0	2	
	4	∞	-1	∞	0	

$$k = 1:$$

$$2 \xrightarrow{4} 1 \xrightarrow{-2} 3$$

<i>k</i> = 1		j			
		1	2	3	4
i	1	0	∞	-2	∞
	2	4	0	2	∞
	3	∞	∞	0	2
	4	∞	-1	∞	0

<i>k</i> = 2:	
4 -1 2	4
4 -1 2	4 1 -2 3

k = 2		j			
		1	2	3	4
i	1	0	∞	-2	8
	2	4	0	2	∞
	3	8	∞	0	2
	4	3	-1	1	0

k = 3		j			
		1	2	3	4
i	1	0	∞	-2	0
	2	4	0	2	4
	3	∞	∞	0	2
	4	3	-1	1	0

<i>k</i> = 4		j			
		1	2	3	4
i	1	0	-1	-2	0
	2	4	0	2	4
	3	5	1	0	2
	4	3	-1	1	0

Vamos Programar!

Aplicações

Aplicações

- → Caminhos mais curtos
- → Fecho transitivo
- → Encontrar expressão regular para denotar uma linguagem regular aceitada por um autômato finito (algoritmo de Kleene)
- → Inversão de matrizes reais (algoritmo de Gauss-Jordan)
- → Cálculo de similaridade entre grafos
- → Vértice mais central

- → Problema: encontrar o vértice mais central (ou centro) de um grafo.
 - Aplicações?
- → Excentricidade de um vértice v em um grafo G = (V, A):
 - max {distância mínima de w até v}
 - igoplus sendo w \subseteq V.

- → O centro de G é o vértice de excentricidade mínima.
 - O centro de um grafo é o seu vértice de menor distância a seu vértice mais distante

Algoritmo Vértice Mais Central

- → Encontrar os caminhos mais curtos entre todos os pares de vértices e gerar uma matriz de custos mínimos
 - Aplicar Dijktra para todos os vértice ou
 - Aplicar o algoritmo de Floyd
- → Encontrar o custo máximo em cada coluna *i* da matriz
 - Excentricidade do vértice *i*.
- → Encontrar o vértice de menor excentricidade.

Referências

- → WIRTH,N. Algorithms and Data Structures, Englewood Cliffs, Prentice-Hall, 1986.
- → CORMEN, H.T.; LEISERSON, C.E.; RIVEST, R.L. Introduction to Algorithms, MIT Press, McGraw-Hill, 1999.
- → ZIVIANI, N. Projeto de Algoritmos, Thomson, 2a. Edição, 2004.
- → SZWARCFITER,J.L. Grafos e Algoritmos Computacionais. Editora Campus, 1983.
- → Van Steen, Maarten. "Graph theory and complex networks." An introduction 144 (2010).
- → Gross, Jonathan L., and Jay Yellen. Graph theory and its applications. CRC press, 2005.
- → Barabási, A.-L., Pósfai, M. (2016). Network science. Cambridge: Cambridge University Press. ISBN: 9781107076266 1107076269