МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Параллельные алгоритмы»

Тема: Оптимизация доступа к памяти в модели OpenCL

Студент гр. 0304	Люлин Д.В.
Преподаватель	Сергеева Е.И.

Санкт-Петербург

Цель работы.

Изучить виды памяти в OpenCL, реализовать умножение матриц с оптимизацией доступа к памяти, сравнить с другими реализациями.

Здание.

Реализовать умножение матриц на OpenCL.

В отчете: Произвести сравнение производительности с CPU реализацией из лаб. 4.

Выполнение работы.

Умножение матриц выполнено в ядре OpenCL. Была использована рабочая группа размером 16х16 (256). В рамках одного рабочего элемента вычисляется один элемент результирующей матрицы, а в рамках рабочей группы – блок элементов размером 16х16. Схема вычислений представлена на рис. 1.

Рисунок 1. Схема умножения матриц с использованием блоков.

Чтобы память блока была разделяемой в рамках своей рабочей группы, для хранения блоков в ядре OpenCL была использована локальная память. Рабочие элементы заполняют блок параллельно, а для синхронизации используется барьер *CLK_LOCAL_MEM_FENCE*.

Каждый элемент представляет собой скалярное произведение строки первой матрицы и столбца второй матрицы. При вычислении блоков создаётся цикл, в каждой итерации которого заполняется два блока, по одному блоку из каждой матрицы. Заполнение происходит параллельно всеми рабочими элементами рабочей группы. Затем вычисляется частичное скалярное произведение элементов блока, в котором учитываются только пройденные блоки. В цикле затем берётся следующая пара блоков, и скалярные

произведения дополняются новыми значениями, пока не будут вычислены полностью с использованием всех необходимых строк и столбцов.

Было измерено время вычисления произведения матриц большого размера, аналогичные измерениям в лаб. 4. В таблице 1 приведены результаты измерений.

Таблица 1. Измерения времени умножения матриц.

Размер матриц	Время вычисления, мс
32x32	58.958
64x64	59.7166
128x128	56.624
256x256	60.9101
512x512	84.8798
1024x1024	291.232
2048x2048	2052.25
4096x4096	16500.1

По таблице видно, что для небольших матриц время практически одинаково. Это связано с загрузкой данных и созданием контекста OpenCL. По сравнению с этим временем, время самого вычисления пренебрежимо мало.

Для больших матриц (1024х1024 и больше) время вычисления возрастает, но остаётся намного меньшим, чем время вычисления с помощью алгоритма Штрассена из лаб 4. Ускорение составило около 15 раз.

Выводы.

В ходе работы был реализован алгоритм умножения матриц с использованием OpenCL. При реализации были использованы оптимизации доступа к памяти.

Полученный алгоритм оказался быстрее параллельного алгоритма Штрассена в 15 раз.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Исходный код программы доступен в репозитории https://github.com/Astana-Mirza/parallel_algo/tree/master.