Trattamento Automatico del Linguaggio

Rachele Sprugnoli – <u>rachele.sprugnoli@unicatt.it</u>

Centro Interdisciplinare di Ricerche per la Computerizzazione dei Segni dell'Espressione (CIRCSE)

LINGUISTICA COMPUTAZIONALE versus

TRATTAMENTO AUTOMATICO DEL LINGUAGGIO

Computational linguistics and natural language processing [...] are sometimes used interchangeably to describe the field concerned with the processing of human language by computers

- Computational Linguistics is used to describe research interested in answering linguistic questions using computational methodology
- Natural Language Processing describes research on automatic processing of human language for practical applications

Bender, Emily M. 2016. "Linguistic Typology in Natural Language Processing". Linguistic Typology 20(3), 645-660.

MA...

Il computer, di per sé, NON conosce il linguaggio naturale!

Il **Trattamento Automatico del Linguaggio** (TAL) ha lo scopo di dotare il computer di conoscenze linguistiche, di creare macchine che capiscano (e addirittura riproducano) il linguaggio naturale, di sviluppare programmi che assistano l'essere umano in compiti (*task*) linguistici:

- riconoscimento automatico del parlato
- sintesi automatica della voce
- traduzione automatica
- analisi automatica del sentimento

APPLICAZIONI

- BIBLIOTECHE ed EDITORIA: riconoscere autori/riferimenti bibliografici, individuare articoli pertinenti, suggerire percorsi di lettura, monitorare l'opinione dei lettori
- STORIA: estrarre eventi dalle fonti, individuare fonti su argomenti simili, migliorare la qualità dell'OCR per la digitalizzazione delle fonti
- LETTERATURA: identificare caratteristiche linguistiche e stilistiche
- MUSEI: generare in modo (semi-)automatico le descrizioni di opere, arricchire le descrizioni, identificare opere simili, creare percorsi museali personalizzati
 - https://pro.europeana.eu/project/ai-in-relation-to-glams
 - https://sites.google.com/view/ai4lam

COME ANALIZZARE IL LINGUAGGIO

 Struttura a PIPELINE: catena i cui moduli descrivono ognuno un diverso livello di analisi linguistica e dove l'output di un modulo diventa l'input per il modulo successivo. Esempio:

Le analisi presentate nelle prossime slide sono l'output della pipeline di Stanford CoreNLP

demo online: http://corenlp.run/

C'era una volta un pezzo di legno. C'era | una | volta | un | pezzo | di | legno. C' | era | una | volta | un | pezzo | di | legno | .

MORPHOLOGY

LEMMA

Trump, 2016-08-05

When you see what happened with crooked Hillary today, it was a disaster. A disaster. She had a disaster.

Trump, 2016-08-05

SYNTAX / PARSING

a costituenti

When you see what happened with crooked Hillary today, it was a disaster. A disaster. She had a disaster. Trump, 2016-08-05

SYNTAX / PARSING

a dipendenze

ENTITY

When you see what happened with crooked Hillary today, it was a disaster.

PER

A disaster .

Trump, 2016-08-05

3 She had a disaster .

COREFERENCE

Trump, 2016-08-05

When you see what happened with crooked Hillary today, it was a disaster. 2 A disaster . ---coref--had a disaster .

TIME EXPRESSIONS

Trump, 2016-08-05

2016-08-05 1 When you see what happened with crooked Hillary today , it was a disaster . 2 A disaster . 3 She had a disaster .

When you see what happened with crooked Hillary today, it was a disaster. A disaster. She had a disaster. Trump, 2016-08-05

SENTIMENT

COME SI SVILUPPA UN MODULO TAL

- Sistemi di apprendimento automatico MACHINE LEARNING (ML)
- ML SUPERVISIONATO

Il ciclo MATTER

(Pustejovsky and Stubbs (2012) "Natural Language Annotation for Machine Learning". O'Reilly Media.)

COME SI SVILUPPA UN MODULO TAL

- Sistemi di apprendimento automatico MACHINE LEARNING (ML)
- ML SUPERVISIONATO
- Il ciclo MATTER:
 - **Model**: descrizione teorica di un fenomeno linguistico
 - Annotate: annotazione del corpus con uno schema di annotazione basato sul modello
 - **Train**: addestramento di un algoritmo di ML sul corpus annotato
 - **Test**: test del sistema addestrato su un nuovo campione di dati
 - Evaluate: valutazione delle performance del sistema
 - Revise: revisione del modello e dello schema di annotazione

COME SI SVILUPPA UN MODULO TAL

- Sistemi di apprendimento automatico MACHINE LEARNING (ML)
- ML SUPERVISIONATO, esempio
- CLASSIFICAZIONE: dato un insieme di classi predefinite determinare a quale classe appartiene una certa entità

Input (training):

Classificazione di nuovi dati (test):

Tint - The Italian NLP Tool

- Pipeline addestrabile per i task di:
 - sentence splitting
 - 2) tokenizzazione
 - 3) PoS tagging
 - 4) lemmatizzazione
 - 5) analisi morfologica
 - 6) dependency parsing
 - 7) NER
 - 8) analisi dei verbi composti
 - 9) keyphrase extraction
 - 10) analisi dei derivati
 - 11) leggibilità

Sito web: http://tint.fbk.eu/

USIAMO TINT

- Apriamo il terminale
- Usare il comando cd per andare nella cartella Tint (che deve essere decompressa)
- Digitare il seguente comando poi premere Invio:

```
java -Dfile.encoding=UTF-8 -jar tint.jar -c
default-config.properties -i prova-news.txt -o
out-conll.conll -f conll
```

Digitare il seguente comando poi premere Invio:

```
java -Dfile.encoding=UTF-8 -jar tint.jar -c default-config.properties -i prova-news.txt -o out-json.json
```

USIAMO TINT

Leggiamo il comando

```
java -Dfile.encoding=UTF-8 -jar tint.jar -c
default-config.properties -i prova-news.txt -o
out-conll.conll -f conll
```

- 1. java: diciamo al computer che il programma è scritto in Java
- 2. -Dfile.encoding=UTF-8: specifichiamo l'encoding del testo in input: fondamentale per l'italiano!
- 3. -jar: specifichiamo estensione programma
- 4. -c: specifichiamo il file di configurazione
- 5. -i: specifichiamo il nome/percorso del file in input
- 6. −o: specifichiamo il nome/percorso del file in output
- 7. -f: specifichiamo il formato del file in output (default json)

java -jar tint.jar -h

- Apriamo il file out-conll.conll con un editor di testo
 - Che task include il formato conll?

- Apriamo il file out-json.json con un editor di testo
 - Che task include il formato json?

1	In	in	Е	0	2	6350
- 5000						case
2	Italia "	Italia	SP	LOC	5	nmod
3		[PUNCT]	FB	0	2	punct
4	la	la	RD	0	5	det
5	circolazione	circolazione	S	0	9	nsubj
6	dei	del	E+RD	0	7	case
7	virus	virus	S	0	5	nmod
8	influenzali	influenzale	Α	0	7	amod
9	inizia	iniziare	٧	0	0	ROOT
10	ad	ad	E	0	11	mark
11	intensificarsi	intensificare	V+PC	0	9	xcomp
12	"	[PUNCT]	FB	0	11	punct
13	e	e	CC	0	9	cc
14	si	si	PC	0	15	expl:impers
15	avvicina	avvicinare	٧	0	9	conj
16	1'	1'	RD	0	17	det
17	inizio	inizio	S	0	15	dobj
18	del	del	E+RD	0	19	case
19	periodo	periodo	S	0	17	nmod
20	epidemico	epidemico	Α	0	19	amod
21	•	[PUNCT]	FS	0	9	punct

COLONNE:

- ID, identificativo numerico del token, riparte da 1 per ogni nuova frase. Le frasi sono separate da una riga vuota
- 2) token
- 3) lemma
- 4) PoS: https://www.corpusitaliano.it/static/documents/POS_ISST-TANL-t agset-web.pdf
- 5) Named Entity
- 6) ID della testa della parola nel parsing a dipendenze
- 7) etichetta della relazione a dipendenze: https://universaldependencies.org/u/dep/

Lemma, PoS, morfologia,NER...

PoS tagset:

https://www.corpusitaliano.i t/static/documents/POS_IS ST-TANL-tagset-web.pdf

```
"index": 7,
"word": "virus",
"originalText": "virus",
"lemma": "virus",
"characterOffsetBegin": 31,
"characterOffsetEnd": 36,
"pos": "S",
"featuresText": "Gender\u003dMasc|Number\u003dPlur",
"ner": "0",
"full morpho": "virus virus+n+m+plur virus+n+m+sing",
"selected morpho": "virus+n+m+plur",
"guessed lemma": false,
"features": {
  "Gender": [
    "Masc"
  "Number": [
    "Plur"
"contentWord": true,
"literalWord": true,
"hyphenation": "vi-rus",
"difficultyLevel": 4,
"easyWord": true
```

- Verbi composti:
- "è stata superata"

```
"verbs": [
    "tokens": [
     25,
     26,
      27
    "isPassive": true,
    "tense": "PrPast",
    "mood": "Ind",
    "person": 3,
    "gender": "Fem",
    "number": "Sing"
```

Parole chiave

KD (Keyphrase Digger):

http://dhlab.fbk.eu:8080/KD_KeyDigger/

```
"keyphrase": "incidenza",
"frequency": 2,
"score": 11.834,
"idf": 1.0000000000751452,
"score boost": 1.0,
"pattern_boost": 0.0,
"chain_length": 1,
"lemmas": [
  "incidenza"
"stems": [
  "incident"
"synonyms": [],
"tokens": [
  "incidenza"
"posList": [
  "S"
```

Forme derivate

Informazione estratta dal derivaTario:

http://derivatario.sns.it/

Esempio: influenzale

```
derivation": {
 "baseLemma": "fluire",
 "baseType": "presp",
 "phases": [
     "affix": "2in",
     "allomorph": "in",
     "mt": "mt1",
     "ms": "ms2b",
     "type": "affixation"
     "convertionType": "v a",
     "type": "conversion"
     "affix": "nza",
     "allomorph": "nza",
     "mt": "mt6",
     "ms": "ms2b",
     "type": "affixation"
     "affix": "ale",
     "allomorph": "ale",
     "mt": "mt1",
     "ms": "ms1",
     "type": "affixation"
```

- Leggibilità
- **Level1**: 500 parole più facili
- **Level2:** 2500 parole più facili
- **Level3:** le 5000 parole più facili
- TTR: type/token ratio
- **Density:** #content words / #words
- **Deep*:** profondità albero sintattico

N.B. Parole tratte dal "Vocabolario di Base dell'Italiano" di De Mauro

```
readability": {
 "level1WordSize": 19,
"level2WordSize": 41,
"level3WordSize": 47,
"language": "it",
 "contentWordSize": 86,
 "contentEasyWordSize": 75,
"wordCount": 145,
"docLenWithSpaces": 909,
 "docLenWithoutSpaces": 769,
 "docLenLettersOnly": 746,
 "goodSentenceCount": 6,
 "sentenceCount": 6,
 "tokenCount": 168.
 "hyphenCount": 317,
 "hyphenWordCount": 141,
 "ttrValue": 0.78,
 "density": 0.593103448275862,
 "deepMax": 6.0,
 "subordinateRatio": 0.0,
 "deeps": {
  "0": 4,
```

- Leggibilità:
- Main = GULPEASE, basato su numero frasi, lettere e parole. 100 massima leggibilità, 0 minima leggibilità
 - < 80 difficile per chi ha la licenza elementare
 - < 60 difficile per chi ha la licenza media
 - < 40 difficile per chi ha un diploma superiore
- N.B. Vale per l'italiano contemporaneo in prosa. Formula di Flesch per l'inglese.

- Leggibilità
- **Level1:** quanto è difficile per un lettore che conosce solo le 500 parole più facili dell'italiano
- Level2: quanto è difficile per un lettore che conosce solo le 2500 parole più facili dell'italiano
- Level3: quanto è difficile per un lettore che conosce solo le 5000 parole più facili dell'italiano

N.B Più il valore è basso, più è difficile.

- Statistiche sui POS tags
- Categorie granulari
- Macro-categorie

https://www.corpusitaliano.it/ static/documents/POS_ISST -TANL-tagset-web.pdf

```
posStats": {
 "support": {
   "CC": 4,
   "FF": 13,
   "A": 9,
   "B": 2,
   "E": 17,
   "DI": 1,
   "VA": 6,
   "FS": 6,
   "N": 10,
   "V+PC": 1,
   "RD": 13,
   "S": 34,
   "PC": 1,
   "V": 13,
   "E+RD": 13,
   "FB": 4.
   "SP": 21
```

```
"genericPosStats": {
    "support": {
        "P": 1,
        "A": 9,
        "R": 13,
        "B": 2,
        "S": 55,
        "C": 4,
        "D": 1,
        "E": 30,
        "F": 23,
        "V": 20,
        "N": 10
    }
}
```

ALTRE PIPELINE

- UDPipe: https://lindat.mff.cuni.cz/services/udpipe/
- CoreNLP: https://corenlp.run/

 (info: https://stanfordnlp.github.io/CoreNLP/)
- LinguA: http://linguistic-annotation-tool.italianlp.it/

GRAZIE!

Email: rachele.sprugnoli@unicatt.it

Twitter: @RSprugnoli

