

Apostila de Matemática para os cursos de: Ciências Contábeis e Administração Prof.Joable Andrade Alves

O texto e os exercícios resolvidos presentes nesta apostila podem ser livremente copiados, reproduzidos, fotocopiados, difundidos e utilizados para propósitos didáticos e sem fins lucrativos, observando apenas que seja citado o autor.

Este texto foi elaborado para servir como material de apoio ao ensino da disciplina de Matemática (1ª fase) para os cursos superiores de Ciências Contábeis e Administração.

Alguns tópicos são tratados sem o rigor ou o formalismo das definições e demonstrações matemáticas clássicas. Onde possível, foi dada ênfase a uma abordagem mais prática e de aplicação dos conteúdos.

Sugestões e críticas são bem vindas.

Capa (Criação e Arte): Sandra Maria Simioni

Joable Andrade Alves é engenheiro eletricista (1994), mestre em engenharia elétrica, eletrônica de potência, (1996), formado pela Universidade Federal de Santa Catarina e Especialista em Gestão Estratégica de Custos (2004) formado pela UNERJ - Centro Universitário de Jaraguá do Sul

Desde 1996, trabalha com desenvolvimento de produtos eletrônicos.

Em 1997 passou a fazer parte do quadro de professores da UNERJ onde ministra as disciplinas de Matemática para os cursos de Ciências Contábeis e Administração; Eletroeletrônica Geral para o curso de Tecnologia em Mecânica; Cálculo Numérico e Eletrônica de Potência para o curso de Engenharia Elétrica.

CAPÍTULO 0

Revisão de Matemática Elementar

Neste capítulo faz-se uma revisão dos conceitos básicos da matemática elementar estudados no ensino fundamental e médio. Tais conceitos serão de extrema necessidade para os tópicos futuros.

Sinais

	Adição	Subtração	Multiplicação	Divisão
+ com +	+		+	+
+ com -	sinal do maior valor absoluto*	requer análise**	ı	_
- com +		requer analise	_	_
- com -	valor absoluto		+	+

* Na adição, o sinal final será o do número de maior valor absoluto, veja os exemplos:

$$(+10) + (+14) = +24$$

 $(+10) + (-14) = -4$
 $(-10) + (+14) = +4$
 $(-10) + (-14) = -24$

** Na subtração, o sinal final depende da ordem dos números, como mostram os exemplos:

$$(+10) - (+14) = -4$$

 $(+10) - (-14) = +24$
 $(-10) - (+14) = -24$
 $(-10) - (-14) = +4$

A ordem de cálculo:

- Multiplicações e Divisões devem ser efetuadas antes de Adições e Subtrações;
- Parênteses () são prioritários em relação aos colchetes [] e estes em relação às chaves
 { };
- Expoentes e raízes devem ser resolvidos primeiro;
- Deve-se resolver uma Adição ou Subtração antes de uma Multiplicação ou Divisão apenas se estas estiverem entre parênteses, colchetes ou chaves

Frações:

$$\frac{a}{b}$$
, onde a é o numerador e b é o denominador

Representa uma divisão, portanto existe um equivalente decimal.

• <u>Soma e Subtração:</u> para denominadores iguais, manter o denominador e somar os numeradores, para denominadores diferentes, deve-se tirar o M.M.C;

$$\frac{a}{b} \pm \frac{c}{b} = \frac{a \pm c}{b}$$

$$\frac{a}{b} \pm \frac{c}{d} = \frac{\left(MMC(b,d) \div b \times a\right) \pm \left(MMC(b,d) \div d \times c\right)}{MMC(b,d)}$$

• <u>Multiplicação</u>: multiplica-se numeradores e denominadores

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

• <u>Divisão</u>: mantém-se a primeira fração e multiplica-se pelo inverso da 2ª

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{a \times d}{b \times c}$$

Exercícios sobre frações:

		Resposta em fração	Resposta em decimal
a)	$\frac{1}{2} + \frac{7}{4}$	$\frac{9}{4}$	2.250
b)	$\frac{2}{9} - \frac{3}{7}$	$-\frac{13}{63}$	-0.206
c)	$\frac{3}{4} + \frac{2}{9} - \frac{1}{5}$	$\frac{139}{180}$	0.772
d)	$\left(\frac{3}{8} \times \frac{1}{4}\right) \div \frac{3}{5}$	$\frac{5}{32}$	0.156
e)	$\left(\frac{5}{9} \times \frac{1}{10}\right) - \frac{2}{3}$	$-\frac{11}{18}$	-0.611
f)	$\left(\frac{1}{2} \times \frac{4}{1}\right) \div \frac{1}{8}$	16	16
g)	$\left(\frac{7}{9} - \frac{1}{2}\right) \cdot \frac{4}{3}$	$\frac{10}{27}$	0.370
h)	$\left(\frac{1}{3} + \frac{2}{6} - \frac{1}{8}\right) - \left(\frac{2}{6} + \frac{4}{12} - \frac{2}{16}\right)$	0	0

Potenciação:

$$a \times a \times a \dots \times a = a^n$$

 $a \rightarrow \text{base}$

 $n \rightarrow \text{expoente}$

Regras

1)	$a^m \times a^n = a^{m+n}$
2)	$a^m \div a^n = a^{m-n}$
3)	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$
4)	$\left(a^{m}\right)^{n}=a^{m\times n}$
5)	$\left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^{m}$
6)	$a^{0} = 1$
7)	$a^1 = a$
8)	$\sqrt[n]{a^m} = a^{\left(\frac{m}{n}\right)}$

Exercícios sobre potenciação:

		Resposta
1)	$5^3 \div 5^{-1}$	625
2)	$7^4 \times 7^{-3}$	7
3)	$\sqrt[7]{2^5}$	1.640
4)	$\left(\frac{1}{2} \times \frac{1}{4}\right)^2 \div 2$	$\frac{1}{128}$
5)	$\left(2^4+3^2\right)\div\frac{1}{2}$	50
6)	$\sqrt[7]{5^4}$	2.508
7)	$\left(\frac{3}{4} - \frac{1}{2}\right)^{-2}$	16
8)	-4^{2}	- 16
9)	$(-4)^2$	16
10)	$x^2 \times x^3$	x^5
11)	$x^{\frac{1}{2}} \times x^3$	$x^{\frac{7}{2}}$
12)	$\frac{x^2}{x^2 \times x}$	x^{-1}
13)	$\frac{x^2}{x \times \sqrt{x}}$	$x^{\frac{1}{2}}$

Equações do 1° Grau:

$$a \cdot x + b = 0$$
 $x \rightarrow \text{incógnita}$

solução:

$$x = -\frac{b}{a}$$

Exercícios sobre equações do 1° Grau:

		Resposta
a)	x+1=3	2
b)	$2 \cdot x - 4 = -2$	1
c)	$4 \cdot x + 2 - 1 = 1$	0
d)	$\frac{\left(x+1\right)}{\left(x+4\right)} = \frac{3}{6}$	2
e)	$\frac{(3 \cdot x + 2)}{(7 \cdot x - 1)} = \frac{11}{20}$	3
f)	$\frac{(x-4)}{(-2\cdot x+1)} = -4$	0

Equações do 2° Grau:

$$a \cdot x^2 + b \cdot x + c = 0$$

solução:

$$x^{I}, x^{II} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

Baskara

Exercícios sobre equações do 2° Grau:

		Resposta
a)	$x^2 - 3 \cdot x = 0$	{0,3}
b)	$x^2 + 8 \cdot x = 0$	{-8,0}
c)	$2 \cdot x^2 + 12 \cdot x = 0$	{-6,0}
d)	$x^2 - 25 = 0$	{-5,5}
e)	$2 \cdot x^2 + 5 = x^2 + 9$	{-2,2}
f)	$x^2 + 7 = 3 \cdot x^2 + 9$	{}
g)	$x^2 - 3 \cdot x + 2 = 0$	{1,2}
h)	$x^2 - 6 \cdot x + 5 = 0$	{1,5}
i)	$x\cdot(x-1)=3\cdot(x-1)$	{1,3}
j)	$(x-2)^2 = 3 \cdot x - 2$	{1,6}
k)	$\frac{x^2}{5} + \frac{7}{10} = \frac{(x+1)}{2}$	{1/2, 2}

Logaritmos:

$$\log_b a = x \quad \to \quad b^x = a$$

 $b \rightarrow \text{base}$

 $a \rightarrow$ número que se deseja calcular o logaritmo na base b

 $x \rightarrow logaritmo$

Bases mais comuns:

- 10 (logaritmo decimal log, tem nas calculadoras científicas)
- 2.718281828 número "e" (logaritmo natural ln, tem em todas as calculadoras)

Para calcular, usando a calculadora, qualquer logaritmo em qualquer base, deve-se utilizar uma propriedade dos logaritmos chamada de mudança de base:

$$\log_b a = (\log_c a) \div (\log_c b)$$

 $b \rightarrow \text{base}$

 $a \rightarrow$ número que se deseja calcular o logaritmo na base b

 $c \rightarrow base da calculadora (pode ser 10 ou "e")$

Exercícios sobre logaritmos:

		Resposta
a)	$\log_5 3$	0.682
b)	log 2	0.301
c)	$\log_2 4$	2
d)	$\log_{\left(\frac{1}{4}\right)} 2$	- 0.5
e)	log ₅ 7	1.209
f)	$\log_2\left(\frac{1}{2}\right)$	- 1
g)	log4	0.602
h)	ln 5	1.609
i)	$\log_4(-3)$	∄
j)	$\log_{\left(\frac{1}{8}\right)}2$	- 0.333
k)	$\log_3\left(\frac{1}{9}\right)$	- 2
1)	ln8	2.079
m)	log7	0.845
n)	$\log_4 16$	2

<u>Unidades de Tempo - Conversões</u>

Considerar o calendário comercial (mês com 30 dias e ano com 360 dias)

1) Transformar em ANOS

		Resposta
a)	2 anos, 9 meses e 12 dias	2.7833
b)	4 anos, 6 meses e 2 dias	4.5055
c)	6 anos, 5 meses e 25 dias	6.4861
d)	1 ano, 8 meses e 15 dias	1.7083

2) Transformar em ANOS, MESES e DIAS

		Resposta
a)	0.6833	0 anos, 8 meses e 6 dias
b)	0.0778	0 anos, 0 meses e 28 dias
c)	2.9555	2 anos, 11 meses e 14 dias
d)	3.2666	3 anos, 3 meses e 6 dias

3) Somar as horas

		Resposta
a)	0H10M + 0H33M + 0H27M + 0H48M + 0H08M	2H06M
b)	3H10M + 3H15M + 3H20M + 3H30M + 3H40M	16H55M
c)	2H44M + 3H15M + 9H58M + 8H02M + 4H44M	28H43M
d)	2H00M + 5H23M - 3H47M + 6H39M - 4H57M	5H18M

Separadores de casas decimais e separadores de milhar

<u>1ª opção</u> - Pode-se utilizar o ponto "." como separador de milhar e a vírgula "," como separador de casas decimais. Exemplos:

R\$ 1.060,45	Mil e sessenta reais, quarenta e cinco centavos;
R\$ 3.543.754,95	Três milhões, quinhentos e quarenta e três mil, setecentos e cinqüenta e quatro reais, noventa e cinco centavos;
R\$ 65.235.654.707,44	Sessenta e cinco bilhões, duzentos e trinta e cinco milhões, seiscentos e cinqüenta e quatro mil, setecentos e sete reais, quarenta e quatro centavos.

 $\underline{2^a}$ opção - Pode-se utilizar a vírgula "," como separador de milhar e o ponto "." como separador de casas decimais. Exemplos:

R\$ 1,060.45	Mil e sessenta reais, quarenta e cinco centavos;
R\$ 3,543,754.95	Três milhões, quinhentos e quarenta e três mil, setecentos e cinqüenta e quatro reais, noventa e cinco centavos;
R\$ 65,235,654,707.44	Sessenta e cinco bilhões, duzentos e trinta e cinco milhões, seiscentos e cinqüenta e quatro mil, setecentos e sete reais, quarenta e quatro centavos.

CAPÍTULO 1

Funções

Conjuntos Numéricos

Conjunto: conceito primitivo; não necessita, portanto, de definição.

Exemplo: conjunto dos números pares positivos: $P = \{2,4,6,8,10,12, \dots \}$. Esta forma de representar um conjunto, pela enumeração dos seus elementos, chama-se forma de listagem. O mesmo conjunto também poderia ser representado por uma propriedade dos seus elementos ou seja, sendo x um elemento qualquer do conjunto $P = \{x \mid x \in P = \{x \mid x \in P = \{x \mid x \in P = \{x,6,6,\dots\}\}$.

Relação de pertinência:

Sendo x um elemento do conjunto A , escrevemos $x \in A$,

onde o símbolo ∈ significa "pertence a".

Sendo y um elemento que não pertence ao conjunto A , indicamos esse fato com a notação $y \notin A$.

O conjunto que não possui elementos, é denominado conjunto vazio e representado por ϕ .

Subconjunto:

Se todo elemento de um conjunto A também pertence a um conjunto B, então dizemos que A é subconjunto de B e indicamos isto por $A \subset B$.

Conjuntos numéricos fundamentais:

Entendemos por conjunto numérico, qualquer conjunto cujos elementos são números. Existem infinitos conjuntos numéricos, entre os quais, os chamados conjuntos numéricos fundamentais, a saber:

Conjunto dos números naturais $N = \{0,1,2,3,4,5,6,...\}$

Conjunto dos números inteiros Z = $\{..., -4, -3, -2, -1, 0, 1, 2, 3, ...\}$ Obs: é evidente que $N \subset Z$.

Conjunto dos números racionais

Q = $\{x; x = p/q \text{ com } p \in Z, q \in Z \text{ e } q \neq 0 \}$.

Temos então que número racional é aquele que pode ser escrito na forma de uma fração p/q onde p e q são números inteiros, com o denominador diferente de zero.

Lembre-se que não existe divisão por zero!.

São exemplos de números racionais: 2/3, -3/7, 0,001=1/1000, 0,75=3/4, 0,333... = 1/3, 7 = 7/1, etc.

Notas:

a) é evidente que $N \subset Z \subset Q$.

b) toda dízima periódica é um número racional, pois é sempre possível escrever uma dízima periódica na forma de uma fração.

Exemplo: 0,4444... = 4/9

Conjunto dos números irracionais

 $I = \{x; x \in \text{uma dízima não periódica}\}.$

Exemplos de números irracionais:

- π = 3,1415926... (número pi = razão entre o comprimento de qualquer circunferência e o seu diâmetro)
- 2,01001000100001... (dízima não periódica)
- $\sqrt{3}$ = 1,732050807... (raiz não exata).
- número "e" = 2.718281828

Conjunto dos números reais

 $R = \{ x; x \in \text{racional ou } x \in \text{irracional} \}.$

Representação Gráfica dos Números Reais:

Os números reais podem ser representados graficamente.

Sistema Cartesiano Ortogonal (S.C.O.):

São duas retas chamadas de eixos. O ponto de intersecção destas retas é chamado de origem. O eixo horizontal é o eixo das abscissas (valores de "x"). O eixo vertical é o eixo das ordenadas (eixo dos "y"). Para se localizar um ponto no S.C.O., dá-se as suas coordenadas, ou seja, o valor da sua abscissa e o valor da sua ordenada.

Exercício: Marcar os seguintes pontos no S.C.O.:

(x, y)	(-5,0)	(0,4)	(0,-3)	(-2,2)	(-3,-4)
(0,0)	(1,0)	(2, -3)	(3,3)	(-4, 4)	(3.5, 4.5)

Resposta:

Funções:

Sejam 2 conjuntos $A \neq \{ \}$ e $B \neq \{ \}$, diz-se que F é uma função de A em B se para todo elemento "x" pertencente a A, associa-se um único elemento "y" pertencente a B, tal que o par (x,y) pertence a função F

Exemplo:

Exercícios – Verificar se as relações entre os conjuntos A e B são funções

Resp.:____

Resp.:

Resp.:_____

Resp.:

Resp.:

Função Constante

No exemplo acima, para cada valor de "x" o valor de "y" é sempre o mesmo (3). A função está representada por um diagrama. Poderia ser representada por uma regra:

$$F(x) = 3$$
 ou $y = 3$

Uma função constante pode sempre ser expressa por:

$$F(x) = k$$
 ou $y = k$

onde "k" é qualquer número real

Os pares ordenados (x,y) formados pelo exemplo acima seriam:

(1,3) (2,3)	(3,3)	(4,3)	(5,3)	(6,3)
-------------	-------	-------	-------	-------

Se os pontos forem colocados no S.C.O. seria observado o gráfico 1:

Se todos os valores de "x" fossem utilizados (-6, -5.9, -5.8...0...5.7, 5.8, 5.9, 6), o valor de "y" seria constante e igual a 3. Os pontos seriam:

(-6, 3), (-5.9, 3), (-5.8, 3)... (0, 3) ...(5.7, 3), (5.8, 3), (5.9, 3), (6, 3) e se todos os infinitos pontos fossem colocados no S.C.O., obteria-se uma reta, paralela ao eixo "x" e que passa por 3 (conforme mostrado no gráfico 2)

gráfico 1 gráfico 2

Exercícios sobre Função Constante:

Traçar o gráfico para as funções constantes abaixo:

a)
$$F(x) = 4$$

b) $F(x) = -5$
c) $F(x) = \sqrt{2}$
d) $F(x) = \pi$
e) $F(x) = \frac{5}{3}$
f) $F(x) = -\frac{3}{2}$

Função do 1°Grau

É toda função que pode ser escrita como:

$$F(x) = a \cdot x + b$$
, onde

 $a \rightarrow coeficiente$ angular

 $b \rightarrow coeficiente$ linear

Gráfico:

"Zero" ou "Raiz" da função: é o valor de "x" para o qual F(x) é igual a zero

Obs.: F(x) é o mesmo que "y".

$$F(x) = a \cdot x + b$$

$$0 = a \cdot x_z + b$$

$$x_Z = -\frac{b}{a}$$

Exemplo: Fazer o gráfico de $y = 2 \cdot x + 2$

Montar uma tabela com valores atribuídos para "x" e calcular os respectivos valores para "y"

X	Y
-2	-2
-1	0
0	2
1	4
2	6

$$x_z = -\frac{b}{a} = -\frac{2}{2} = -1$$

Marcar os pontos no S.C.O., ligar os pontos para obter a reta desejada

Exercícios sobre Função do 1°Grau: Traçar o gráfico para as funções abaixo:

e) $y = -4 \cdot x$ $x_z = -\frac{b}{a} = \underline{\qquad}$	X Y -2 -1 0 1 2	
f) $y = -x + 2$ $x_z = -\frac{b}{a} = \underline{\qquad}$	X Y -2 -1 0 1 2	-6 -5 -4 -3 -2 -1 1 9 -1 2 3 -4 -5 -6
g) $y = -2 \cdot x + 3$ $x_z = -\frac{b}{a} = \underline{\qquad}$	X Y -2 -1 0 1 2	-6 -5 -4 -3 -2 -1 1 2 3 4 5 6
h) $y = x + 4$ $x_z = -\frac{b}{a} = \underline{\qquad}$	X Y -2 -1 0 1 2	

- i) O Sr. João gasta R\$ 20,00 por dia. Represente a função de gastos acumulados e faça o Gráfico para 10 dias.
- j) O Sr. João tem R\$ 200,00 no banco. Sendo que gasta R\$ 20,00 por dia represente a função Saldo Bancário. Faça o gráfico para 12 dias. A partir de qual dia a conta ficará negativa?

Aplicações da Função do 1° Grau

Funções de Custo, Receita e Lucro

Seja "x" a quantidade produzida de um produto, o custo total de produção depende de "x". Então pode-se dizer que o custo de produção é uma função da quantidade produzida de um produto. Custos que não dependem da quantidade produzida (aluguel, seguros, salários e outros) são somados e definem o que se chama de custo fixo (CF). A parcela do custo que depende de "x" é chamada de custo variável (CV). Então o custo total (CT) será:

$$CT(x) = CF + CV(x)$$

A receita é o produto de "x" pelo preço de venda e será indicada pela letra R. A função lucro é definida como a diferença entre a receita e o custo:

$$L(x) = R(x) - CT(x)$$

Exemplo:

Uma firma de serviços de fotocópias tem um custo fixo mensal de R\$ 1200,00 e custos variáveis mensais de R\$ 0,06 por folha que reproduz. Expresse a função custo total em função do número "x" de páginas copiadas por mês. Expresse, também, a função lucro. Se os consumidores pagam R\$ 0,12 por folha, qual o número mínimo de folhas que a firma tem que reproduzir para não ter prejuízo?

Função Custo Total:	
Função Lucro:	
Nº mínimo de Folhas:	

Função do 2° Grau (Quadrática)

É toda função que pode ser escrita como:

$$F(x) = a \cdot x^2 + b \cdot x + c$$
, onde $a \neq 0$

O gráfico de uma função do 2º Grau é uma figura chamada: Parábola. Esta figura apresenta-se de maneiras distintas dependendo dos valores de "a", "b" e "c"

Para obter o gráfico de uma função do 2º Grau e visualizar a parábola é necessário atribuir valores para "x" de tal forma que, com os valores de "y" calculados e marcando-se os pontos definidos pelos pares ordenados (x,y), seja possível observar o ponto do vértice e as raízes (x' e x") quando estas existirem. Nem sempre é fácil escolher os valores de "x" adequados. A seguir, apresenta-se um procedimento para a obtenção do esboço do gráfico.

Passos

- 1) Observar o sinal de "a" e Δ para verificar qual das 6 opções será o gráfico;
- 2) Calcular as raízes (também chamadas de zeros) da função (x' e x") usando Baskara:

$$x^{I}, x^{II} = \frac{-b \pm \sqrt{\Delta}}{2 \cdot a}$$
 e $\Delta = b^{2} - 4 \cdot a \cdot c$

3) Calcular as coordenadas do ponto do vértice usando as seguintes fórmulas:

$$x_{\mathcal{V}} = -\frac{b}{2 \cdot a}$$
 e $y_{\mathcal{V}} = -\frac{\Delta}{4 \cdot a}$

4) Marcar o ponto onde a parábola "corta" o eixo y. Este ponto é sempre o (0, c).

Exemplo:

Seja a função
$$y = x^2 - 2 \cdot x - 3$$
, traçar o esboço da parábola.

Solução:

Uma alternativa é escolher uma faixa de valores para "x", calcular os valores de "y" e marcar os pontos no S.C.O. (tente!)

A outra maneira de se obter um esboço razoável do gráfico é seguindo os passos descritos anteriormente:

1. Observar o sinal de "a" e Δ para verificar qual das 6 opções será o gráfico:

$$\begin{bmatrix} a = 1, \\ b = -2, \\ c = -3 \end{bmatrix} e^{\Delta = b^2 - 4 \cdot a \cdot c} = (-2)^2 - 4 \cdot 1 \cdot (-3) = 16$$

como "a" > 0 e $\Delta > 0$, a parábola terá a concavidade voltada para cima e a mesma "cortará" o eixo x em 2 pontos distintos

2. Calcular as raízes (também chamadas de zeros) da função (x' e x'') usando Baskara:

$$x' = -1$$
 e $x'' = 3$

3. Calcular as coordenadas do ponto do vértice usando as seguintes fórmulas:

$$x_{v} = -\frac{b}{2 \cdot a} = -\frac{(-2)}{2 \cdot 1} = 1$$
 e $y_{v} = -\frac{\Delta}{4 \cdot a} = -\frac{16}{4 \cdot 1} = -4$

4. Marcar o ponto onde a parábola "corta" o eixo y. Este ponto é sempre o (0, c).

$$(0, -3).$$

Com as informações obtidas, esboçar o gráfico:

Exercícios sobre Função do 2°Grau: Traçar o gráfico para as funções abaixo:

Exercicios sobie runção	uo 2 Grau. Traçar o g	grafico para as funções abaixo:
	<i>a</i> = <i>b</i> =	
	c = Δ =	
a) $y = x^2 - x - 2$	$x^{I} = \underline{\qquad}$	
	$x'' = \underline{\qquad}$ $x_{\mathcal{V}} = \underline{\qquad}$	-654321 -1 -1 - 2 - 3 - 4 - 5 - 6
	<i>y</i> _v =	
	$(0,c) = (0,_)$	
	<i>a</i> = <i>b</i> =	
	c =	
b) $y = x^2 - 4 \cdot x$	$\Delta = \underline{\qquad \qquad }$ $x^{I} = \underline{\qquad \qquad }$	
	$x^{II} = \underline{}$	-654321 _ 1 _ 01 _ 2 _ 3456
	$x_{\mathcal{V}} = \underline{\hspace{1cm}}$	
	$y_{V} = \underline{\hspace{1cm}}$ $(0,c) = (0,\underline{\hspace{1cm}})$	
	a =	
	b = c =	
c) $y = 2 \cdot x^2 + 6 \cdot x$	$\Delta = \underline{\hspace{1cm}}$	
$0) y = 2 \cdot x + 0 \cdot x$	$x^{I} = \underline{\qquad}$ $x^{II} = \underline{\qquad}$	-654321 _ 1 _ 912 _ 3456
	<i>x</i> _v =	
	$y_{v} = \underline{\hspace{1cm}}$ $(0,c) = (0,\underline{\hspace{1cm}})$	
	a =	
	b = c =	
2 2	Δ =	
d) $y = -x^2 - x + 2$	$x^{I} = \underline{\qquad}$ $x^{II} = \underline{\qquad}$	-654321_1 _ 012 _ 3 _ 45 _ 6
	$x_{\mathcal{V}} = \underline{\qquad}$	
	$y_{v} = \underline{\hspace{1cm}}$ $(0,c) = (0,\underline{\hspace{1cm}})$	
1	I	

	1	
e) $y = \frac{-x^2}{5} + 5$	a =	-6 -5 -4 -3 -2 -1 1 0 -1 2 3 4 5 6
f) $y = -2 \cdot x^2 - 4 \cdot x + 2$	a =	-6 -5 -4 -3 -2 -1 1 0 -1 2 3 4 -5 -6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
g) $y = x^2 - 4 \cdot x + 4$	a =	
h) $y = 2 \cdot x^2 - 4 \cdot x + 4$	a =	-6 -5 -4 -3 -2 -1 1 2 -3 -4 -5 -6

Função Exponencial

É toda função que pode ser escrita como: $F(x) = a^{(k \cdot x)}$, onde a > 0 e $a \ne 1$

Gráfico:

a > 1 - crescente

0 < a < 1 - decrescente

Exemplo 1: Fazer o gráfico de $y = 2^x$

Exemplo 2: Fazer o gráfico de $y = \left(\frac{1}{2}\right)^x$

Montar uma tabela com valores atribuídos para "x" e calcular os respectivos valores para "y"

X	Y
-2	0.25
-1	0.50
0	1
1	2
2	4
3	8
4	16

	4 16	
		-
	- -10]	
¦¦¦ -	-¦- 9 -	
!!! -	- -8	
	- -6	
<u> i i i</u>		
	- - 2 - -	
	1 1 1 1 1 1 1 1 1 1	
+ + +	** • † 	
432-	-1-4 1-1-2-3-4-5	į

X	Y
-3	8
-2	4
-1	2
0	1
1	0.5
2	0.25
3	0.125

Exercícios sobre Função Exponencial: Traçar o gráfico para as funções abaixo:

Excicicios sobie Fullç	<u>ao Exponenciai</u> . Tiaçai	o grafico para as funções abaixo:
a) $y = 3^x + 2$	X Y -5 -4 -3 -2 -1 0 1 2	
b) $y = \left(\frac{1}{3}\right)^x - 2$	X Y -2 -1 0 1 2 3 4 5	
c) $y = 4 \cdot 2^x - 1$	X Y54321 0 1 2	
$d) y = 2 \cdot \left(\frac{2}{4}\right)^x + 2$	X Y -2 -1 0 1 2 3 4 5	

Função Logarítmica

É toda função que pode ser escrita como:

$$F(x) = \log_a(x)$$
, onde $a > 0$, $a \ne 1$ e $x > 0$

Gráfico:

a > 1 - crescente

0 < a < 1 - decrescente

Exemplo 1: Fazer o gráfico de $y = \log_2(x)$

Exemplo 2: Fazer o gráfico de $y = \log_{\left(\frac{1}{2}\right)}(x)$

Montar uma tabela com valores atribuídos para "x" e calcular os respectivos valores para "y"

X	Y
0.125	-3
0.25	-2
0.5	-1
1	0
2	1
3	1.585
4	2

X	Y
0.125	3
0.25	2
0.5	1
1	0
2	-1
3	-1.585
4	-2

Exercícios sobre Função Logarítmica: Traçar o gráfico para as funções abaixo:

Aplicação de Função Exponencial e Função Logarítmica

Considere um empréstimo de R\$ 100,00 em duas propostas distintas. A primeira a juros simples com uma taxa de 10 % ao mês e a segunda a juros compostos a uma taxa de 9 % ao mês. Este empréstimo deve ser pago em uma parcela única que pode ser efetuada a até o 5° mês após o recebimento do dinheiro. Vamos ver qual seria a evolução do montante a ser pago (capital inicial + juros) mês a mês nas duas situações.

	Juros Simples	Juros Compostos
	10 %	9 %
1°) Mês	R\$ 110,00	R\$ 109,00
2°) Mês	R\$ 120,00	R\$ 118,81
3°) Mês	R\$ 130,00	R\$ 129,50
4°) Mês	R\$ 140,00	R\$ 141,16
5°) Mês	R\$ 150,00	R\$ 153,86
6°) Mês	R\$ 160,00	R\$ 167,71
7°) Mês	R\$ 170,00	R\$ 182,80
8°) Mês	R\$ 180,00	R\$ 199,26
9°) Mês	R\$ 190,00	R\$ 217,19
10°) Mês	R\$ 200,00	R\$ 236,74

O gráfico acima mostra que o montante comporta-se como uma função do 1º Grau no sistema de juros simples e como uma função exponencial no sistema de juros compostos.

Notação financeira:

P.V.	\rightarrow	Valor presente (capital inicial)
i	\rightarrow	Taxa de juros (%)
n	\rightarrow	Prazo da operação
Int	\rightarrow	Valor do Juros
F.V.	\rightarrow	Valor futuro (montante)

Fórmulas:

	Juros Simples	Juros Compostos
P.V.	$\frac{Int}{i \cdot n}$	$\frac{F.V}{(1+i)^n}$
i	$\frac{Int}{P.V.\cdot n}$	$\left(\frac{F.V.}{P.V.}\right)^{\left(\frac{1}{n}\right)} - 1$
n	$\frac{Int}{P.V. \cdot i}$	$\frac{\ln\left(\frac{F.V.}{P.V.}\right)}{\ln(1+i)}$
Int	$P.V.\cdot i \cdot n$	$P.V.\cdot \left[\left(1+i \right)^n -1 \right]$
F.V.	$P.V.\cdot(1+i\cdot n)$	$P.V.\cdot(1+i)^n$

Nas questões seguintes considerar o sistema de juros compostos

1) O Capital de R\$ 3.200,00 produziu o montante de R\$ 3.500,00 em um ano. Considerando a capitalização mensal, qual é a taxa mensal de juros?

R.: 0,7496 % ao mês

2) O Capital de R\$ 22.000,00 aplicado à taxa de 22 % ao ano, produziu o montante de R\$ 29.645,75. Quanto tempo ficou aplicado?

R.: 1 ano e meio (1,5 anos)

3) Um capital de R\$ 500,00, aplicado à taxa de 4 % ao mês, rendeu de juros R\$ 157,97. Quanto tempo este capital ficou aplicado?

R.: 7 meses

4) Um capital de R\$ 6.200,00 foi aplicado à taxa de 1 % ao mês, sendo o prazo desta aplicação de 2 anos, seis meses e quinze dias, qual o valor do montante resgatado?

R.: R\$ 8.398,34

5) Um capital de R\$ 1.000,00 foi aplicado à taxa de 8.5 % ao ano, sendo o prazo desta aplicação de 15 meses, qual o valor do montante resgatado?

R.: R\$ 1.107,36

6) Uma aplicação produziu o montante de R\$ 2.805,10. Sabendo que à taxa foi de 7 % ao ano, sendo o prazo desta aplicação de 5 anos, qual o valor do capital inicial?

R.: R\$ 2.000,00

Exercícios Adicionais

Nos exercícios seguintes considerar o sistema de <u>juros compostos</u>. Usar 2 casas após a vírgula para a resposta final. Nos cálculos intermediários, recomenda-se utilizar todas as casas da calculadora.

1) O Capital de R\$ 5.700,00 produziu o montante de R\$ 9.500,00 em um ano. Considerando a capitalização mensal, qual é a taxa mensal de juros?

R.: 4,3488 %

2) O Capital de R\$ 12.000,00 aplicado à taxa de 14 % ao ano, produziu o montante de R\$ 30.027,23. Quanto tempo ficou aplicado?

R.: 7,00 anos

3) Um capital de R\$ 1.000,00, aplicado à taxa de 9 % ao mês, rendeu de juros R\$ 411,58. Quanto tempo este capital ficou aplicado?

R.: 4 meses

4) Um capital de R\$ 4.800,00 foi aplicado à taxa de 0,5 % ao mês, sendo o prazo desta aplicação de 3 anos, cinco meses e dez dias, qual o valor do montante resgatado?

R.: R\$ 5898,91

5) Um capital de R\$ 2.000,00 foi aplicado à taxa de 8.5 % ao ano, sendo o prazo desta aplicação de 19 meses, qual o valor do montante resgatado?

R.: R\$ 2275,76

6) Uma aplicação produziu o montante de R\$ 711,66. Sabendo que à taxa foi de 4 % ao ano, sendo o prazo desta aplicação de 9 anos, qual o valor do capital inicial?

R.: R\$ 500,00

7) O Capital de R\$ 6.700,00 produziu o montante de R\$ 19.500,00 em um ano. Considerando a capitalização mensal, qual é a taxa mensal de juros?

R.: 9,3109 %

8) O Capital de R\$ 1.200,00 aplicado à taxa de 17 % ao ano, produziu o montante de R\$ 1.642,68. Quanto tempo ficou aplicado?

R.: 2 anos

9) Um capital de R\$ 2.000,00, aplicado à taxa de 6 % ao mês, rendeu de juros R\$ 382,03. Quanto tempo este capital ficou aplicado?

R.: 3 meses

10) Um capital de R\$ 2.400,00 foi aplicado à taxa de 0,7 % ao mês, sendo o prazo desta aplicação de 4 anos, cinco meses e vinte dias, qual o valor do montante resgatado?

R.: R\$ 3489,74

11) Um capital de R\$ 3.000,00 foi aplicado à taxa de 7.5 % ao ano, sendo o prazo desta aplicação de 17 meses, qual o valor do montante resgatado?

R.: R\$ 3323,66

12) Uma aplicação produziu o montante de R\$ 394,78. Sabendo que à taxa foi de 4 % ao ano, sendo o prazo desta aplicação de 7 anos, qual o valor do capital inicial?

R.: R\$ 300,00

CAPÍTULO 2

Limites – Noções Básicas

<u>Limites - Noção Intuitiva</u>

Sejam as seguintes sucessões numéricas:

		Esta seqüência vai para
a)	1, 2, 3, 4, 5, 6	
b)	$\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$	
c)	2, 1, 0, -1, -2, -3, -4	
d)	$1, \frac{3}{2}, 3, \frac{7}{11}, -14, 8, 0$	
e)	$\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$	

Limites de Funções Contínuas

Exemplo 1: Seja a função $y = 2 \cdot x + 1$

Problema: Fazer o "x" se aproximar de um número (2 por exemplo). O que se quer observar? Para qual valor o "y" está se aproximando?

uerda (-)	Pe	ela dir	reita (+)	
nores que 2)	(valor	es ma	iores que	2)
			1	
<u>Y</u>		X	Y	
		2.5		_
		2.3		
		2.1		
	2	.01		
	2.	.001		
				•
.99 2	2.01	2.0	2	
_				
	Y Y	Y	Y X 2.5 2.3 2.1 2.01 2.001	Y X Y

Note que tanto pela esquerda como pela direita, fez-se o "x" aproximar-se o número 2 (conforme pedia o problema) porém sem nunca atingi-lo. Pois bem, para que valor o "y" se aproximou quando "x" se aproximou de 2 pela esquerda? E pela direita?

	Pela esquerda (-) (valores menores que 2)	Pela direita (+) (valores maiores que 2)	No ponto
Pergunta:	$\lim_{x \to 2^{-}} (2 \cdot x + 1)$	$\lim_{x \to 2^+} (2 \cdot x + 1)$	$\lim_{x \to 2} (2 \cdot x + 1)$
Como se lê:	Qual é o <u>limite lateral</u> <u>pela esquerda</u> da função $y = 2 \cdot x + 1$ quando o "x" aproxima-se de 2?	Qual é o <u>limite lateral</u> <u>pela direita</u> da função $y = 2 \cdot x + 1$ quando o "x" aproxima-se de 2?	Qual é o <u>limite</u> da função $y = 2 \cdot x + 1$ quando o "x" aproximase de 2?
A resposta:	Analisando os resultados obtidos na tabela, conclui-se que a resposta é: 5	Analisando os resultados obtidos na tabela, conclui-se que a resposta é: 5	Como os limites laterais são iguais (tanto pela direita como pela esquerda) o limite no ponto será: 5

Exemplo 2: Seja a função $y = \frac{1}{x}$

Fazer o "x" se aproximar do número 0 (zero) Para qual valor o "y" está se aproximando?

Pela esquerda (-)		Pela direita (+)			
(valores me	nores que 0)	(valc	(valores maiores que 0)		(0)
V	37		37	1 37	
X	Y		X	Y	
-0.1			0.1		
0.05			0.05		
-0.01	_		0.01		
-0.005			0.005		
-0.001			0.001		
<u> </u>					
T					-
-0.002 -0	0.001 0	0.00	1 0.0	02	
	-	•			

Note que tanto pela esquerda como pela direita, fez-se o "x" aproximar-se o número 0 (conforme pedia o problema) porém sem nunca atingi-lo. Para que valor o "y" se aproximou quando "x" se aproximou de 0 pela esquerda? E pela direita?

	Pela esquerda (-) (valores menores que 0)	Pela direita (+) (valores maiores que 0)	No ponto
Pergunta:	$\lim_{x \to 0^{-}} \left(\frac{1}{x}\right)$	$\lim_{x \to 0^+} \left(\frac{1}{x}\right)$	$\lim_{x \to 0} \left(\frac{1}{x} \right)$
Como se lê:	Qual é o <u>limite lateral</u> pela esquerda da função $y = \frac{1}{x}$ quando o "x" aproxima-se de 0?	Qual é o <u>limite lateral</u> pela direita da função $y = \frac{1}{x}$ quando o "x" aproxima-se de 0?	Qual é o <u>limite</u> da função $y = \frac{1}{x}$ quando o "x" aproxima-se de 0?
A resposta:	Analisando os resultados obtidos na tabela, conclui-se que a resposta é: -∞	Analisando os resultados obtidos na tabela, conclui-se que a resposta é: +∞	Como os limites laterais são diferentes o limite no ponto não existe

Propriedades dos Limites:

_	
a)	$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
b)	$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$
c)	$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$
d)	$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$
e)	$\lim_{x \to a} f(x)^{m} = \left(\lim_{x \to a} f(x)\right)^{m}$
f)	$\lim_{x \to a} \sqrt[n]{f(x)} = \int_{x \to a}^{n} \lim_{x \to a} f(x)$
g)	$\lim_{x \to a} \log(f(x)) = \log\left(\lim_{x \to a} f(x)\right)$

Algumas contas com o "número" ∞ e com um número que tende (aproxima-se) de 0 (zero)

a)	+∞+1=	j)	+∞-∞=
b)	+∞-5=	k)	-∞+∞=
c)	-∞-3=	1)	$\frac{+\infty}{+5} =$
d)	-∞+6=	m)	$\frac{-\infty}{+9}$ =
e)	2 · (+ ∞) =	n)	$\frac{+\infty}{-7}$ =
f)	5 · (−∞)=	o)	$\frac{-\infty}{-10} =$
g)	$(-4)\cdot(+\infty)=$	p)	2 ^{+∞} =
h)	(-7)·(-∞)=	q)	$\frac{1}{+\infty}$ =
i)	$(+\infty)\cdot(+\infty)=$	r)	$\frac{-5}{+\infty}$ =

s)	$(+\infty)\cdot(-\infty)=$	aa)	$\frac{-\infty}{+\infty} =$
t)	$(-\infty)\cdot(-\infty)=$	ab)	+ <u>8</u> = <u>8</u>
u)	+∞+∞=	ac)	
v)	-∞-∞=	ad)	$\frac{1}{0}$ =
w)	$\frac{1}{-\infty}$ =	ae)	$\frac{1}{0^{-}} =$
x)	2 ^{-∞} =	af)	$\frac{1}{0^{+}} =$
y)	$\frac{+\infty}{+\infty} =$	ag)	$\frac{-3}{0^{-}} =$
z)	$\frac{0}{0}$ =	ah)	$\frac{-5}{0^{+}} =$

De forma geral, para calcular um limite de uma função basta fazer:

$$\lim_{x \to a} f(x) = f(a)$$

A resposta encontrada pode ser um número (positivo, negativo ou zero) ou infinito e este será o limite da função. Quando a resposta encontrada resulta em uma indeterminação (zero dividido por zero, infinito dividido por infinito, mais infinito menos infinito) faz-se necessário o estudo dos limites à direta e à esquerda para saber qual é o limite no ponto.

Exemplo - Calcule o limite:

$$\lim_{x \to 3} (3 \cdot x + 4)$$

Solução:

Deve-se atribuir o valor para o qual o "x" está tendendo (3 para este exemplo) na função e efetuar o cálculo. A resposta para este limite será:

$$\lim_{X \to 3} (3 \cdot x + 4) = 13$$

Exercícios – calcular os limites:

		Resposta
1)	$\lim_{x \to 2} \left(\frac{x^2 + 3 \cdot x}{3 \cdot x + 1} \right)$	$\frac{10}{7}$
2)	$\lim_{x \to \left(\frac{3}{4}\right)} \left(\frac{2 \cdot x^3 + \sqrt{x^3 + 4}}{\sqrt[3]{x+1}}\right)$	4.558
3)	$\lim_{x \to \left(\frac{7}{5}\right)} \left(\frac{7 \cdot x^2 + \sqrt[3]{x+2}}{4 \cdot x^2 + \sqrt{x}}\right)$	1.866
4)	$\lim_{x \to 9} \left(\frac{8 \cdot x^2 + 5 \cdot x - \sqrt{x}}{9 \cdot x - 7 \cdot x^2} \right)$	-1.419
5)	$\lim_{x \to \frac{5}{4}} \left \frac{\sqrt{3 \cdot x^4 + 12 + x^3}}{\sqrt[3]{x+2}} \right $	11.247
6)	$\lim_{x \to -1} \left(\frac{5 \cdot x - x^2}{4 + x + x^3} \right)$	-3

<u>Indeterminações</u>

Quando se substitui o valor para o qual o "x" está tendendo na função e o resultado é uma indeterminação, é possível sair desta indeterminação e achar o valor correto do limite através de técnicas algébricas. Este procedimento pode exigir, em alguns casos, um conhecimento sólido de álgebra. Sugere-se o método das aproximações pela esquerda e pela direita para resolver os problemas de indeterminação.

Indeterminação do Tipo $\frac{0}{0}$

Exemplo:
$$\lim_{x \to 1} \left| \frac{x^2 + 2 \cdot x - 3}{x^2 - 1} \right|$$

Fazendo-se a substituição do "1" no lugar do "x" e efetuando-se a conta, surge a indeterminação $\frac{0}{0}$, e esta não é a resposta do limite. Para achar o valor do limite deve-se analisar os limites laterais, fazendo o "x" aproximar-se do número "1"

Pela esq	Pela direita (+)							
(valores me	(valores maiores que 1)							
X	l y		X	l y				
	<u>I</u>	_	Λ	I				
0.7		_	1.5					
0.8			1.2					
0.9			1.1					
0.99			1.01					
0.999			1.001					
		_						
1								
T			I					
0.998 0.999 1 1.001 1.002								

A resposta: <u>Como os limites laterais são iguais</u> (tanto pela direita como pela esquerda) o limite no ponto será "2", então:

$$\lim_{x \to 1} \left(\frac{x^2 + 2 \cdot x - 3}{x^2 - 1} \right) = 2$$

Exercícios – calcular os limites:

		Limite Lateral-Esquerda	Limite Lateral-Direita	Resposta
a)	$\lim_{x \to 2} \left(\frac{x^2 - 4}{x - 2} \right)$	X Y 1.7 1.8 1.9 1.99 1.999	X Y 2.5 2.2 2.1 2.01 2.001	4
b)	$\lim_{x \to 3} \left(\frac{x-3}{x^2 - 9} \right)$	X Y 2.7 2.8 2.9 2.99 2.999	X Y 3.5 3.2 3.1 3.01 3.001	0.166
c)	$\lim_{x \to 2} \left(\frac{x^2 - 4}{x^2 - 3 \cdot x + 2} \right)$	X Y 1.7 1.8 1.9 1.99 1.999	X Y 2.5 2.2 2.1 2.01 2.001	4
d)	$\lim_{x \to -1} \left(\frac{x^2 - 1}{x^2 + 3 \cdot x + 2} \right)$	X Y -1.5 -1.2 -1.1 -1.01 -1.001	X Y -0.7 -0.8 -0.9 -0.99 -0.999	-2
e)	$\lim_{x \to 5} \left(\frac{x^2 - 6 \cdot x + 5}{x^2 - 7 \cdot x + 10} \right)$	X Y 4.7 4.8 4.9 4.99 4.999	X Y 5.5 5.2 5.1 5.01 5.001	1.333
f)	$\lim_{x \to -2} \left(\frac{x^3 - 3 \cdot x + 2}{x^2 - 4} \right)$	X Y -2.5 -2.2 -2.1 -2.01 -2.001	X Y -1.7 -1.8 -1.9 -1.99 -1.999	-2.25

Indeterminações do Tipo
$$\frac{\pm \infty}{\pm \infty}$$
 ou $(+\infty - \infty)$

Exemplo 1:
$$\lim_{x \to \infty} \left(\frac{10 \cdot x^2 + x}{1 + 2 \cdot x^2} \right)$$

Fazendo-se a substituição do " ∞ " no lugar do "x" e efetuando-se a conta, surge a indeterminação $\frac{\infty}{\infty}$, e esta <u>não é a resposta</u> do limite. Para achar o valor do limite deve-se analisar o limite lateral <u>apenas</u> pela esquerda (pois não se pode ficar a direita do ∞ sendo que não existe número maior do que o próprio!)

Pela esq	Pela direita (+)			
(valores men	ores que ∞)	(valor	res mai	ores que ∞)
	1			ì
X	Y		X	Y
10			?	
100			?	
500			?	
1000			?	
5000			?	
1	1 1			
		5000	\sim	

A resposta: Analisando os valores de "y" quando "x" cresce, chega-se a conclusão que:

$$\lim_{x \to \infty} \left(\frac{10 \cdot x^2 + x}{1 + 2 \cdot x^2} \right) = 5$$

Exemplo 2:
$$\lim_{x \to -\infty} \left| \frac{9 \cdot x^2 + x}{2 \cdot x + 3 \cdot x^2} \right|$$

Fazendo-se a substituição do "- ∞ " no lugar do "x" e efetuando-se a conta, surge a indeterminação $\left(\frac{\infty-\infty}{-\infty+\infty}\right)$, e esta <u>não é a resposta</u> do limite. Para achar o valor do limite devese analisar o limite lateral <u>apenas</u> pela direita (pois não se pode ficar a esquerda do - ∞ sendo que não existe número menor do que o próprio!)

Pela esquerda (-)			Pela direita (+)		
(valores men	ores que -∞)	(val	ores maio	ores que -∞)	
X	Y		Х	Y	
$\frac{\Lambda}{2}$	<u> </u>	-	-10	<u> </u>	
?		-	-100		
?			-500		
?		-	-1000		
?		-	-5000		
			1	<u> </u>	
	7(7	100	20 4006	1007	
_	-499	99 -4998	3 -4997		

A resposta: Analisando os valores de "y" quando "x" decresce, chega-se a conclusão que:

$$\lim_{x \to -\infty} \left(\frac{9 \cdot x^2 + x}{2 \cdot x + 3 \cdot x^2} \right) = 3$$

Exercícios – calcular os limites:

		Limite Lateral	R.			Limite Lateral	R.
a)	$\lim_{x \to \infty} \left(\frac{x^2 + x - 2}{x^2 - 7} \right)$	X Y 10 20 50 90 100	1	d)	$\lim_{x \to -\infty} \left(\frac{x^4 + 2 \cdot x + 1}{3 \cdot x^4 + x} \right)$	X Y -10 -20 -50 -90 -100	0.333
b)	$\lim_{x \to -\infty} \left(\frac{2 \cdot x^2 + x + 8}{x - 1} \right)$	X Y -10 -20 -50 -90 -100	- 8	e)	$\lim_{x \to -\infty} \left(\frac{x^3 + 2 \cdot x^2}{8 - x^2} \right)$	X Y -10 -20 -50 -90 -100	+ &
c)	$\lim_{x \to \infty} \left(\frac{x^3 + 2 \cdot x^2}{x^4 - 7 \cdot x^3 + 5} \right)$	X Y 10 20 50 90 100	0	f)	$\lim_{x \to \infty} \left(\frac{3 \cdot x^3 - 5 \cdot x}{x^4 + 8 \cdot x + 3} \right)$	X Y 10 20 50 90 100	0

Exercícios de reforço

Para calcular os limites deve-se <u>primeiro</u> substituir o valor do "x" na função e calcular o limite. Somente é necessário o uso das tabelas de aproximação quando o calculo resultou em uma indeterminação. Nos exercícios abaixo, as várias situações ocorrem.

		R.			R.
a)	$\lim_{x \to 7} (10)$	10	1)	$\lim_{x \to 0^+} \left(\frac{1}{x} + 8 \right)$	+∞
b)	$\lim_{x \to 3} (-9)$	-9	m)	$\lim_{x \to 0^+} \left(\frac{1}{x} + 5 \right)$	+∞
c)	$\lim_{x \to 5^{-}} \left[4 + \frac{3}{(5-x)} \right]$	+ 8	n)	$\lim_{x \to -3} \left(\frac{x^3 + 3 \cdot x^2 - 4 \cdot x - 12}{x^2 + x - 6} \right)$	-1
d)	$\lim_{x \to 5^+} \left[4 + \frac{3}{(5-x)} \right]$	- 8	0)	$\lim_{x \to 2} \left(\ln(x) + 6^x \right)$	36.693
e)	$\lim_{X \to 5} \left[4 + \frac{3}{(5-x)} \right]$	∄	p)	$\lim_{x \to \infty} \left(\frac{5 \cdot x^2 + 8 \cdot x^3 + x}{1 + x + 2 \cdot x^3} \right)$	4
f)	$\lim_{x \to -\infty} \left(x^3\right)$	- 8	q)	$\lim_{x \to 0^+} \left(\frac{1}{x} + \frac{1}{x^2} \right)$	+∞
g)	$\lim_{x \to 2} \left(\frac{x^3 + 3 \cdot x^2 - 4 \cdot x - 12}{x^2 + x - 6} \right)$	4	r)	$\lim_{x \to 0^{-}} \left(\frac{1}{x} + \frac{1}{x^{2}} \right)$	+∞
h)	$\lim_{x \to 4} \left(\frac{4^x + x^2}{5 \cdot x} \right)$	13.6	s)	$\lim_{x \to 0} \left(\frac{1}{x} + \frac{1}{x^2} \right)$	+∞
i)	$\lim_{x \to -\infty} \left(\frac{5 \cdot x^2 + 10 \cdot x^3 + x}{1 + x + 2 \cdot x^3} \right)$	5	t)	$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{x^2} \right)$	- &
j)	$\lim_{x \to \infty} \left(\frac{x + 3 \cdot x^2 - 2}{-2 \cdot x^3 + x} \right)$	0	u)	$\lim_{x \to 0^{-}} \left(\frac{1}{x} - \frac{1}{x^{2}} \right)$	- ∞
k)	$\lim_{X \to -3^+} \left[4 + \frac{1}{(x+3)} \right]$	+∞	v)	$\lim_{X \to -5^{-}} \left[4 - \frac{3}{(-5 - x)} \right]$	-∞

CAPÍTULO 3

Derivadas

1 Introdução

Observe o gráfico abaixo, ele representa uma função:

Agora, imagine uma reta que desliza sobre esta curva, encostando em apenas um ponto da mesma. Observe as figuras seguintes para entender melhor:

Definição: A inclinação (ou coeficiente angular) da reta tangente à curva em um determinado ponto (**X1,Y1**) desta curva é o valor da derivada da função representada pela curva, para este ponto (**X1,Y1**).

Observa-se, nas figuras anteriores, que a inclinação da curva varia. Examinemos:

Figura	Inclinação
1	Positiva e de máximo valor
2	Positiva, porém de valor menor
3	Zero
4	Negativa

Pode-se tirar algumas conclusões da análise anterior:

- 1. Quando uma função cresce (quando se aumenta x, y aumenta também) a sua derivada é positiva;
- 2. Quando uma função decresce (quando se aumenta x, y diminui) a sua derivada é negativa;
- 3. Quando uma função está crescendo ou decrescendo e atinge o seu máximo (positivo ou negativo) o valor da derivada neste ponto é igual a zero.

Definição da derivada em um ponto (X1, Y1):

$$F'(X1) = \lim_{\Delta x \to 0} \left(\frac{F(X1 + \Delta X) - F(X1)}{\Delta X} \right)$$

2 Regras de Derivação

Como observou-se na seção anterior, a derivada de uma função varia, ou pode variar, dependendo do ponto \mathbf{x} onde deseja-se conhecer a derivada. Ou seja, a derivada de uma função é, também, uma **função**, uma vez que o seu valor depende de \mathbf{x} .

Na figura abaixo, podemos comprovar a afirmação anterior, nela estão representadas a função já vista na seção anterior e, também, o valor da sua derivada para todos os pontos da função.

Obs.: A derivada de uma função qualquer f(x) é comumente representada por f'(x). Observe o uso do apóstrofo.

Existem algumas regras que permitem determinar as derivadas das funções de maneira bem simples.

A. Derivada de uma função constante: Se c é uma constante e f(x) = c para todo x, então:

$$f'(x) = 0$$

Ex.: Seja f(x) = 5, então : f'(x) = 0

B. Derivada de um monômio qualquer (Regra da Potência): Se *n* é um número real e

$$f(x) = x^n$$
, então $f'(x) = n. x^{n-1}$
Ex.1: Seja $f(x) = x^5$, então: $f'(x) = 5. x^4$
Ex.2: Seja $f(x) = x$, então: $f'(x) = 1. x^{1-1} = 1. x^0 = 1$
Ex.3: Seja $f(x) = x^{10}$, então: $f'(x) = 10. x^9$

C. Derivada do Produto de uma Constante por uma Função: Sejam f(x) uma função, c uma

constante e g(x) tal que g(x) = c.f(x). Se f'(x) existe, então:
$$g'(x) = c.f'(x)$$
Ex.: Seja $f(x) = 8.x^2$, então : $f'(x) = 8.(2) x^{2-1} = 16.x$

D. Derivada de uma Soma: Sejam f(x) e g(x) duas funções e h(x) a função definida por

$$h(x) = f(x) + g(x)$$
. Se $f'(x)$ e $g'(x)$ existem, então:
$$h'(x) = f'(x) + g'(x)$$
Ex.1: Seja $f(x) = 3.x^4 + 8.x + 5$, então: $f'(x) = 3.(4.x^3) + 8.1 + 0 = 12.x^3 + 8$
Ex.2: Seja $g(x) = 9.x^5 - 4.x^2 + 2.x + 7$, então:
$$g'(x) = 9.(5.x^4) - 4.(2.x) + 2.(1.x^{1-1}) + 0 = 45.x^4 - 8.x + 2$$

E. Derivada de um Produto: Sejam f(x) e g(x) duas funções e h(x) a função definida por h(x) = f(x). Se f'(x) e g'(x) existem, então:

Ex.: Seja
$$f(x) = (2.x^3 - 1).(x^4 + x^2)$$
, então:

$$f'(x) = (2.x^3 - 1).(4.x^3 + 2.x) + (6.x^2).(x^4 + x^2)$$

F. Derivada de um Quociente: Sejam f(x) e g(x) duas funções e h(x) a função definida por $h(x) = \frac{f(x)}{g(x)}$, onde $g(x) \neq 0$. Se f'(x) e g'(x) existem, então:

$$h'(x) = \frac{g(x).f'(x) - f(x).g'(x)}{[g(x)]^2}$$

Ex.: Seja
$$f(x) = \frac{2 \cdot x^4 - 3}{x^2 - 5 \cdot x + 3}$$
, então:

$$f'(x) = \frac{(x^2 - 5 \cdot x + 3) \cdot (4 \cdot 2 \cdot x^3 - 0) - (2 \cdot x^4 - 3) \cdot (2 \cdot x - 5)}{(x^2 - 5 \cdot x + 3)^2}$$

3 Exercícios. Encontrar a derivada das seguintes funções, aplicando as regras de derivação

1)	$f(x) = 3 \cdot x^2 + 6 \cdot x - 10$	7)	$f(x) = \frac{2 \cdot x + 4}{3 \cdot x - 1}$
2)	$f(x) = 14 - \frac{1}{2} \cdot x^{-3}$	8)	$f(t) = \frac{t-1}{t+1}$
3)	$f(x) = (2 \cdot x + 1) \cdot (3 \cdot x^2 + 6)$	9)	$f(x) = \frac{3}{x^4} + \frac{5}{x^5}$
4)	$f(x) = (7 \cdot x - 1) \cdot (x + 4)$	10)	$f(x) = \frac{1}{2} \cdot x^4 + \frac{2}{x^6}$
5)	$f(x) = \left(3 \cdot x^5 - 1\right) \cdot \left(2 - x^4\right)$	11)	$f(t) = \frac{3 \cdot t^2 + 5 \cdot t - 1}{t - 1}$
6)	$f(x) = (x+1) \cdot (x-1)$	12)	$f(x) = \frac{4-x}{5-x^2}$

4 Derivadas das Funções Exponenciais e Logarítmicas

4.1 Derivada de uma função Exponencial: Se $f(x) = a^{k.x}$, $(a > 0 \ e \ne 1, k \in \Re)$ então

$$f'(x) = a^{(k.x)} .k. ln(a)$$

Ex.: Seja
$$f(x) = 3^{2.x}$$
, então : $f'(x) = 3^{2.x}$. (2). $ln(3)$

4.2 Derivada de uma função Logarítmica: Se $f(x) = log_a k.x$, $(a > 0 \ e \ne 1, k \in \Re)$ então

$$f'(x) = \frac{1}{x \cdot \ln(a)}$$
 $(a > 0 \ e \neq 1)$

Ex.: Seja
$$f(x) = \log_3 2.x$$
, então : $f'(x) = \frac{1}{x \cdot \ln(3)}$

4.3 Derivada de uma função Logarítmica Natural (caso especial): Se f(x) = ln(k.x), $(a > 0 \ e \ne 1, k \in \Re)$ então

$$f'(x) = \frac{1}{x} \qquad (a > 0 \ e \neq 1)$$

Ex.: Seja
$$f(x) = \ln (2.x)$$
, então : $f'(x) = \frac{1}{x}$

5 Exercícios - Calcular as derivadas das seguintes funções:

a)
$$y = 5$$
. $\ln(x)$
b) $y = 10^{x}$
c) $y = 2.\ln(x) + 2^{x} + 1$
d) $y = \frac{x^{3}}{3} - 6.\ln(x)$

6 Derivadas de Funções Compostas

Seja a função composta h, tal que h = v(u(x)) então a sua derivada h' será:

$$h' = v'(u(x)) \cdot u'(x)$$

Exemplo: Seja $h(x) = (2.x + 3)^4$

Pode-se chamar u(x) = 2.x + 3 e reescrever a função $h(x) = (u(x))^4$

então
$$h'(x) = 4.(2.x + 3)^3 \cdot 2 \Rightarrow h'(x) = 8.(2.x + 3)^3$$

7 Exercícios - Calcular as derivadas das seguintes funções compostas:

a)
$$y = (x^2 - 1)^5$$

b) $y = 3.(1 - 3.x)^4$
c) $y = \sqrt{2 + x^2}$
d) $y = \sqrt{\frac{2 + x^2}{x + 1}}$

8 Derivadas Sucessivas

Seja uma função f(x), a sua derivada f'(x) também é uma função, pode-se então pensar na derivada da função f'(x).

Definição: Seja f(x) uma função derivável. Se f'(x) também for derivável, então a sua derivada é chamada de derivada segunda de f(x) e é representada por f''(x).

Ex.: Seja
$$f(x) = 3.x^2 + 8.x + 1$$
, então: $f'(x) = 6.x + 8$ e $f''(x) = 6$

Se f ''(x) é uma função derivável, sua derivada, representada por f '''(x) é chamada derivada terceira de f(x) e assim por diante.

Ex.: Seja
$$f(x) = 3.x^5 + 8.x^2$$
,
então: $f'(x) = 15.x^4 + 16.x$,
 $f''(x) = 60.x^3 + 16$,
 $f'''(x) = 180.x^2$,
 $f^{iv}(x) = 360.x$,
 $f^{v}(x) = 360$,
 $f^{vi}(x) = 0$

9 Máximos e Mínimos

A figura seguinte mostra o gráfico de uma função f(x), onde se apresentam os pontos onde x1, x2, x3 e x4 são as abscissas. Esses pontos são chamados de pontos extremos da função. Os valores f(x1) e f(x3) são chamados máximos relativos e f(x2) e f(x4) são chamados mínimos relativos.

Observe os gráficos abaixo:

Nota-se que nos pontos de coordenadas (C, f(C)) o valor da derivada é indefinido (a reta tangente à curva, nestes pontos, poderia ter qualquer inclinação, por isso, diz-se que a derivada não existe nestes pontos).

Uma condição necessária para a existência de um máximo ou mínimo de uma função é que este ponto tenha derivada igual a zero ou que e derivada não exista.

Atenção: Esta é uma condição necessária, mas não suficiente.

É interessante observar que uma função definida em um dado intervalo pode admitir diversos pontos extremos (máximos ou mínimos) relativos. O maior dos máximos relativos é chamado de máximo absoluto. Da mesma maneira, o menor dos mínimos relativos é chamado de mínimo absoluto.

Observe as funções abaixo:

1)
$$f(x) = x^2 + 6x - 3$$

Ponto de mínimo absoluto em x = -3 [f(-3) = -12]

2)
$$f(x) = -x^2 + 6x - 3$$

Ponto de máximo absoluto em x = 3 [f (3) = 6]

Critério da Derivada 2ª para determinação de máximos e mínimos de uma função

Seja f(x) uma função derivável e um valor de abscissa \underline{c} tal que f'(c) = 0, então, com certeza, este é um ponto extremo. Para saber se este é um ponto de máximo ou mínimo, pode-se utilizar o Critério da Derivada 2^a :

- i) Se f''(c) ≤ 0 , f(x) tem um valor de máximo relativo em <u>c</u>.
- ii) Se f''(c) > 0, f(x) tem um valor de mínimo relativo em c.

Exemplo:

Seja a função
$$f(x) = x^2 + x - 2$$

Sabe-se que esta função tem um valor de máximo ou de mínimo quando a sua derivada for igual a zero, então o primeiro passo para se achar este ponto é derivar a função dada:

$$f'(x) = 2$$
. $x + 1$, esta função é a derivada de $f(x)$

Agora, deve-se descobrir qual o valor da abscissa para a qual esta derivada torna-se igual a zero,

$$0 = 2. x + 1 \implies x = -\frac{1}{2}$$

Substituindo o valor encontrado ($x = -\frac{1}{2}$) em f (x), acha-se f ($-\frac{1}{2}$) = -9/4.

Então o ponto (-1/2, -9/4) da função, pode ser um ponto de máximo ou mínimo, pode-se usar então, o Critério da Derivada 2ª para descobrir:

$$f''(x) = 2$$
 e $f''(-1/2) = 2 > 0$, então este é um ponto de mínimo da função.

10 Exercícios

- Quais os possíveis pontos de máximos e mínimos para as funções dadas abaixo nos respectivos intervalos dados:

a)
$$y = 10.x + 5, x \in \Re$$

b)
$$y = -4.x + 5, 0 \le x \le 1$$

c)
$$y = 1 - x^2$$
, $x \in \Re$

d)
$$y = 7$$
. $x^2 - 6$. $x + 3$, $x \in \Re$

e)
$$y = (x - 2).(x + 4), x \in \Re$$

f)
$$y = [(x^3 \div 3)] - [(7. x^2) \div 2] + 12.x + 20, x \in \Re$$

g)
$$y = x^3 + 4, x \in \Re$$

- O lucro de um fabricante com a venda de certos objetos pode ser representado pela seguinte função: L(x) = 400. (15-x). (x-2), onde x é o preço unitário de venda. Calcule o preço ótimo de venda.

11 Exercícios de Reforço

Nas questões 1 a 12, calcule o valor das derivadas, para os respectivos valores de $\underline{\mathbf{x}}$ indicados. As questões 13 e 14 têm enunciado próprio.

		T		T	_
1)	$f(x) = \frac{2 \cdot x^5 - 6 \cdot x}{x^2 - 4 \cdot x + 5}$	f'(2) = R.: 154	2)	$f(x) = \frac{3.x^4 - x^2}{x^3}$	f'(-1) = R.: 4
3)	$f(x) = \frac{2}{7}$	f'(4) = R.: 0	4)	$f(x) = \frac{2.x}{3} + 7.x^3$	f'(-5) = R.: 525.667
5)	$f(x) = (x^3 - 3x^2) \cdot (2.x^6 - 2.x)$	$f'\left(\frac{1}{2}\right) =$ R.: 3.195	6)	$f(x) = 2.\log_3(2.x) + 3.x^4$	f'(2) = R.: 96.910
7)	$f(x) = 3^{(2.x)} + 1$	$f'\left(\frac{2}{3}\right) =$ R.: 9.507	8)	$f(x) = 6.\ln(x) + 8^2 + 5.x^0$	f'(2) = R.: 3
9)	$f(x) = (5^{(2.X)} - 3).(3.x - 5.x^2)$	f'(1) = R.: -314.944	10)	$f(x) = \sqrt[3]{x^4} + \log(5.x)$	f'(2)= R.: 1.897
11)	$f(x) = 3.\ln(x) + 8^x + \sqrt{6}$	$f'\left(\frac{1}{3}\right) =$ R.: 13.159	12)	$f(x) = \frac{2.x}{7} + 6.x^{-2}$	f'(1) = R.: -11.714
13)	Um fabricante produz <u>x</u> toneladas de uma liga metálica. O lucro <u>P</u> , em reais, obtido pela produção é expresso pela função: $P(x) = 12000.x - 15.x^{2}$ Quantas toneladas devem ser produzidas para maximizar o lucro? Resp.: 400 toneladas Dica: A derivada em um ponto de máximo ou mínimo para a função acima é igual a zero.		14)	próximos anos será C(tonde to é o tempo em a taxa de variação instantá relação ao tempo após 3 Resp.: 816 unidades mon Dica: A taxa de variação btida derivando a função	odutos. A gerência que o custo C em por motor, nos c)=9.(17.t + 13) ^{4/3} , nos. Qual será a finea do custo em anos? etárias / ano finea é o instantânea é
	Para saber se o ponto é de máximo ou mínimo, usar o critério da segunda derivada.			é uma função composta.	

CAPÍTULO 4

Integrais

1 Introdução

Seja F(x) uma função conhecida. Propõe-se o seguinte desafio: Descobrir uma função G(x) tal que a derivada de G(x), ou seja, G'(x), será igual a F(x).

Exemplos:

	F(x)	G(x) ?
a)	1	
b)	2.x	
c)	3.x ²	
d)	x ²	

Achar esta função G(x) pode ser entendido com "fazer a operação inversa" da derivada.

Na verdade não existe uma única solução G(x), existem várias soluções pois uma constante arbitrária C somada a cada função G(x) formaria uma função diferente mas que também seria resposta para o problema (uma vez que quando calcula-se a derivada da função, esta constante se anularia)

Estas possíveis soluções G(x) são chamadas de *primitivas* de F(x). As primitivas de uma função diferem apenas da constante arbitrária C.

2 Integral Indefinida

Chama-se de integral indefinida de F(x) a qualquer primitiva da mesma somada a uma constante arbitrária C qualquer. Indica-se, matematicamente, esta operação da seguinte maneira:

$$\int F(x) \cdot dx = G(x) + C$$

O símbolo da operação (um "esse" estilizado) vem da interpretação geométrica da integral que pode ser entendida como a **somatória** das inúmeras áreas abaixo da curva da função, com bases muito pequenas (dx). Esta interpretação geométrica não será considerada pois não tem aplicações relevantes nas áreas econômicas. Assume-se que o símbolo " \int " seguido da função e do "dx" é apenas um indicativo de que se deseja realizar a operação de integração de uma função.

Aplicações nas áreas econômicas:

Cálculos estatísticos (valores médios, probabilidades, etc);

Quando são conhecidas as taxas de variação instantâneas e deseja-se descobrir a função primitiva.

3 Regras de Integração

Assim como na *derivação*, na *integração* existe uma regra específica para cada tipo de função. As regras para as funções mais comumente encontradas nas áreas econômicas são dadas a seguir:

A. Integral de uma função constante: Se k é uma constante e f(x) = k para todo x, então:

$$\int k \cdot dx = k \cdot x + C$$

Ex.: Seja
$$f(x) = 5$$
, então : $\int 5 \cdot dx = 5 \cdot x + C$

B. Integral de um monômio qualquer (Regra da Potência): Se n é um número real (diferente de -1) Dada a função $f(x) = x^n$, então:

$$\int x^{n} \cdot dx = \frac{x^{(n+1)}}{(n+1)} + C$$

Ex.1: Seja
$$f(x) = x^2$$
, então: $\int x^2 \cdot dx = \frac{x^{(2+1)}}{(2+1)} + C = \frac{x^3}{3} + C$

Ex.2: Seja
$$f(x) = x^{-3}$$
, então: $\int x^{-3} \cdot dx = \frac{x^{(-3+1)}}{(-3+1)} + C = \frac{x^{-2}}{(-2)} + C$

Ex.3: Seja
$$f(x) = \sqrt{x}$$
, então: $\int \sqrt{x} \cdot dx = \int x^{0,5} \cdot dx = \frac{x^{(0,5+1)}}{(0,5+1)} + C = \frac{x^{1,5}}{1,5} + C$

C. Integral da função monômio para n igual a -1. Dada a função $f(x) = x^{-1}$, a sua integral será:

$$\int x^{-1} \cdot dx = \ln(x) + C$$

Ex.1: Seja
$$f(x) = x^{-1}$$
, então: $\int x^{-1} dx = \ln(x) + C$

Ex.2: Seja
$$f(x) = \frac{1}{x}$$
, então: $\int \frac{1}{x} \cdot dx = \int x^{-1} \cdot dx = \ln(x) + C$

D. Integral de uma função exponencial: Seja f(x) uma função exponencial dada por:

$$F(x) = a^{(k \cdot x)}$$
 (com a > 0 e a \neq 1), então a sua integral será:

$$\int a^{(k \cdot x)} \cdot dx = \frac{a^{(k \cdot x)}}{k \cdot \ln(a)} + C$$

Ex.1: Seja
$$f(x) = 3^{(4.x)}$$
, então: $\int 3^{(4-x)} \cdot dx = \frac{3^{(4-x)}}{4 \cdot \ln(3)} + C$

Ex.2: Seja
$$f(x) = 5^{(-2.x)}$$
, então: $\int 5^{(-2.x)} \cdot dx = \frac{5^{(-2.x)}}{(-2) \cdot \ln(5)} + C$

E. Integral de uma função logarítmica natural: Seja f(x) uma função logarítmica natural dada por: $F(x) = \ln(k \cdot x)$, então a sua integral será:

$$\int \ln(\mathbf{k} \cdot \mathbf{x}) \cdot d\mathbf{x} = \{ [\mathbf{x} \cdot \ln(\mathbf{k} \cdot \mathbf{x})] - \mathbf{x} \} + \mathbf{C}$$

Ex.1: Seja
$$f(x) = ln(x)$$
, então:
$$\int ln(x) \cdot dx = \{ [x \cdot ln(x)] - x \} + C$$

Ex.2: Seja
$$f(x) = ln(3.x)$$
, então:
$$\int ln(3 \cdot x) \cdot dx = \{ [x \cdot ln(3 \cdot x)] - x \} + C$$

4 Propriedades da Integral

1)
$$\int [f(x) \pm g(x)] \cdot dx = \int f(x) \cdot dx \pm \int g(x) \cdot dx$$

onde f(x) e g(x) são duas funções quaisquer.

2)
$$\int k \cdot f(x) \cdot dx = k \cdot \int f(x) \cdot dx$$

onde k é um número real.

5 Integral Definida

A operação descrita a seguir:

$$\int F(x) \cdot dx = G(x) + C$$

é a **Integral Indefinida** da função F(x), cujo resultado será G(x) + C, tal como foi visto. Chama-se de **Integral Definida** de F(x) entre os limites de integração "a" e "b" ao seguinte cálculo:

$$\int_{a}^{b} F(x) \cdot dx = G(b) - G(a)$$

Ex.1: Seja $f(x) = x^2$, então:

$$\int_{2}^{4} x^{2} \cdot dx = \frac{x^{3}}{3} + C = \left[\frac{(4)^{3}}{3} + C \right] - \left[\frac{(2)^{3}}{3} + C \right] = \left[\frac{64}{3} + C \right] - \left[\frac{8}{3} + C \right] = 18,6666...$$

Ex.2: Seja $f(x) = 4^{(2.x)}$, então:

$$\int_{1}^{3} 4^{(2 \cdot x)} \cdot dx = \frac{4^{(2 \cdot x)}}{2 \cdot \ln(4)} + C = \left[\frac{4^{(2 \cdot 3)}}{2 \cdot \ln(4)} + C \right] - \left[\frac{4^{(2 \cdot 1)}}{2 \cdot \ln(4)} + C \right] =$$

$$\left[\frac{4096}{2 \cdot (1.386...)} + C \right] - \left[\frac{16}{2 \cdot (1.386...)} + C \right] = 1471,5489...$$

6 Exercícios - Calcule as integrais definidas

1)	\$\bigs_3^{\cdot 5}\$	$\left(x^2 + 2 \cdot \sqrt{x}\right) dx$	R.: 40,646	2)	1	$\left[3 \cdot \ln(x) + 2^{(3 \cdot x)}\right] dx$	R.: 1973,548
3)	•3 •1	$\left(\frac{x\cdot\sqrt{x}}{3\cdot x}\right)dx$	R.: 0,932	4)	•4 •2	$\left(\frac{1}{x} + \frac{3}{x} + \frac{1}{x^2}\right) dx$	R.: 3,023
5)	\int_3^6	$\frac{1}{3 \cdot x} dx$	R.: 0,231	6)	•8 •7	$\left(2^{x} + \ln(x) - 3\right) dx$	R.: 183,679
7)	\$\int_1^{\cdot 7}\$	4dx	R.: 24	8)	•9 •6	$\int \sqrt{x^7} dx$	R.: 50,562
9)	•7 ₇	$x^2 dx$	R.: 0	10)	\int_1^2	$[2+3\cdot x + \ln(x) - 4^{(2\cdot x)}]dx$	R.: -79,675
	o 4	$\left(\frac{2 \cdot x^4 + 5 \cdot x}{\sqrt{x^3}}\right) dx$			9 I		R.: 18,640
13)	°3	$\left(\frac{2}{x} + \frac{4}{x^2} + \frac{6}{x^3}\right) dx$	R.: 7,531	14)	$\begin{bmatrix} \frac{7}{3} \\ \frac{2}{3} \end{bmatrix}$	$\left(\frac{2}{x} + 4 \cdot \ln(x) + 2^{x}\right) dx$	R.: 9,809
		$\left(4^3 + \ln(e) + 1\right) dx$					R.: 28,603
17)	°7	$\left(\frac{3\cdot x + 4\cdot \sqrt{x} - 5}{x^2}\right) dx$	R.: 3,185	18)	°4	$(5\cdot x+2)dx$	R.: 16

Apostila de Matemática para os cursos de: Ciências Contábeis e Administração Prof.Joable Andrade Alves Exercícios Resolvidos – Juros Compostos (pág. 25 da apostila)

O Capital de R\$ 3.200,00 produziu o montante de R\$ 3.500,00 em um ano. Considerando a capitalização mensal, qual é a taxa mensal de juros?

$$PV = 3200.00$$

$$FV = 3500.00$$

$$n = 1$$
 ano

$$i = ?$$

Fórmula da Taxa:

$$i = \left(\frac{FV}{PV}\right)^{\left(\frac{1}{n}\right)} - 1$$

Como a questão pede a taxa MENSAL, é necessário transformar o prazo em MESES:

1 ano = 12 meses

$$i = \left(\frac{3500.00}{3200.00}\right)^{\left(\frac{1}{12}\right)} - 1$$

$$i = (1.09375)^{(0.083333)} - 1$$

$$i = 1.007496 - 1$$

$$i = 0.007496$$

Como a taxa é dada em percentual, deve-se multiplicar o resultado por 100

$$i = 0.7496 \cdot \%$$

O Capital de R\$ 22.000,00 aplicado à taxa de 22 % ao ano, produziu o montante de R\$ 29.645,75. Quanto tempo ficou aplicado?

R.: 1 ano e meio (1,5 anos)

$$PV = 22000.00$$

$$FV = 29645.75$$

$$i = 22\%$$
 ao ano

$$n = ?$$

Fórmula do Prazo:

$$n = \frac{\ln\left(\frac{FV}{PV}\right)}{\ln(1+i)} \qquad \qquad n = \frac{\ln\left(\frac{29645.75}{22000.00}\right)}{\ln\left(1+\frac{22}{100}\right)}$$

$$n = \frac{\ln(1.347534)}{\ln(1+0.22)} \quad \bullet \quad \rightarrow \quad n = \frac{\ln(1.347534)}{\ln(1.22)}$$

$$n = \frac{0.298276}{0.198851} \qquad \qquad n = 1.499997$$

Arredondando: n = 1.5 anos

Um capital de R\$ 500,00, aplicado à taxa de 4 % ao mês, rendeu de juros R\$ 157,97. Quanto tempo este capital ficou aplicado?

R.: 7 meses

PV = 500.00

$$FV = 500 + 157.97$$

$$i = 4\%$$
 ao mês

$$n = ?$$

Fórmula do Prazo:

$$n = \frac{\ln\left(\frac{FV}{PV}\right)}{\ln(1+i)} \qquad \bullet \qquad n = \frac{\ln\left(\frac{657.97}{500}\right)}{\ln\left(1+\frac{4}{100}\right)}$$

$$n = \frac{\ln(1.31594)}{\ln(1+0.04)} \quad \bullet \quad \rightarrow \quad n = \frac{\ln(1.31594)}{\ln(1.04)}$$

$$n = \frac{0.274551}{0.039221} \qquad \qquad n = 7.000102$$

Arredondando: n = 7 meses

4)

Um capital de R\$ 6.200,00 foi aplicado à taxa de 1 % ao mês, sendo o prazo desta aplicação de 2 anos, seis meses e quinze dias, qual o valor do montante resgatado?

R.: R\$ 8.398,34

PV = 6200.00

i = 1 % ao mês

n = 2 anos, seis meses e quinze dias

FV = ?

Como a taxa é dada ao mês, deve-se transformar o prazo em MESES!!

n = 2 anos, seis meses e quinze dias

2 anos = 24 meses

seis meses = 6 meses

quinze dias = $\frac{15}{30}$ = 0.5 meses

n = 24 + 6 + 0.5 = 30.5 meses

Fórmula do Montante:

$$FV = PV \cdot (1 + i)^n$$

$$FV = 6200.00 \left(1 + \frac{1}{100} \right)^{30.5}$$

$$FV = 6200.00 (1.01)^{30.5}$$

$$FV = 6200.00 \cdot (1.354571)$$

FV = 8398.34

5 \	Um capital de R\$ 1.000,00 foi aplicado à taxa de 8.5 % ao ano, sendo o prazo desta aplicação de 15 meses, qual o valor do montante resgatado?
3)	prazo desta aplicação de 15 meses, qual o valor do montante resgatado?

R.: R\$ 1.107,36

$$PV = 1000.00$$

n = 15 meses

Como a taxa é dada ao ano deve-se transformar o prazo em anos !!

$$n = 15 \text{ meses}$$

15 meses =
$$\frac{15}{12} = 1.25$$
 anos

Fórmula do Montante:

$$FV = PV \cdot (1 + i)^n$$

$$FV = 1000.00 \cdot \left(1 + \frac{8.5}{100}\right)^{1.25}$$

$$FV = 1000.00 \cdot (1 + 0.085)^{1.25}$$

$$FV = 1000.00 \cdot (1.085)^{1.25}$$

$$FV = 1000.00 \cdot (1.107356)$$

$$FV = 1107.36$$

6) Uma aplicação produziu o montante de R\$ 2.805,10. Sabendo que à taxa foi de 7 % ao ano, sendo o prazo desta aplicação de 5 anos, qual o valor do capital inicial?

R.: R\$ 2.000,00

$$FV = 2805.10$$

i = 7 % ao ano

n = 5 anos

PV = ?

Fórmula do Capital Inicial:

$$PV = \frac{FV}{(1+i)^n}$$

$$PV = \frac{2805.10}{\left(1 + \frac{7}{100}\right)^5}$$

$$PV = \frac{2805.10}{(1 + 0.07)^5}$$

$$PV = \frac{2805.10}{(1.07)^5}$$

$$PV = \frac{2805.10}{1.402552}$$

PV = 1999.99715

Arredondando:

PV = 2000.00

Juros Compostos - Exercícios Adicionais (pág. 26 da apostila)

O Capital de R\$ 5.700,00 produziu o montante de R\$ 9.500,00 em um ano. Considerando a capitalização mensal, qual é a taxa mensal de juros?

R.: 4,3488 %

$$PV = 5700.00$$

$$FV = 9500.00$$

$$n = 1$$
 ano

$$i = ?$$

Fórmula da Taxa:

$$i = \left(\frac{FV}{PV}\right)^{\left(\frac{1}{n}\right)} - 1$$

Como a questão pede a taxa MENSAL, é necessário transformar o prazo em MESES:

1 ano = 12 meses

$$i = \left(\frac{9500.00}{5700.00}\right)^{\left(\frac{1}{12}\right)} - 1$$

$$i = (1.666667)^{(0.083333)} - 1$$

$$i = 1.043488 - 1$$

$$i = 0.043488$$

Como a taxa é dada em percentual, deve-se multiplicar o resultado por 100

$$i = 4.3488\%$$

O Capital de R\$ 12.000,00 aplicado à taxa de 14 % ao ano, produziu o montante de R\$ 30.027,23. Quanto tempo ficou aplicado?

R.: 7,00 anos

PV = 12000.00

FV = 30027.23

i = 14.% ao ano

n = ?

Fórmula do Prazo:

$$n = \frac{\ln\left(\frac{FV}{PV}\right)}{\ln(1+i)} \qquad \qquad n = \frac{\ln\left(\frac{30027.23}{12000.00}\right)}{\ln\left(1+\frac{14}{100}\right)}$$

$$n = \frac{\ln(2.502269)}{\ln(1+0.14)} \quad \bullet \quad \rightarrow \quad n = \frac{\ln(2.502269)}{\ln(1.14)}$$

$$n = \frac{0.917198}{0.131028} \qquad \qquad n = 7.000015$$

Arredondando: n = 7 anos

Um capital de R\$ 1.000,00, aplicado à taxa de 9 % ao mês, rendeu de juros R\$ 411,58. Quanto tempo este capital ficou aplicado?

R.: 4 meses

$$PV = 1000.00$$

$$FV = 1000 + 411.58$$

i = 9% ao mês

n = ?

Fórmula do Prazo:

$$n = \frac{\ln\left(\frac{FV}{PV}\right)}{\ln(1+i)} \qquad \qquad n = \frac{\ln\left(\frac{1411.58}{1000.00}\right)}{\ln\left(1+\frac{9}{100}\right)}$$

$$n = \frac{\ln(1.41158)}{\ln(1+0.09)} \quad \bullet \quad n = \frac{\ln(1.41158)}{\ln(1.09)}$$

$$n = \frac{0.34471}{0.086178} \qquad \qquad n = 3.999977$$

Arredondando: n = 4 meses

4)

Um capital de R\$ 4.800,00 foi aplicado à taxa de 0,5 % ao mês, sendo o prazo desta aplicação de 3 anos, cinco meses e dez dias, qual o valor do montante resgatado?

R.: R\$ 5898,91

PV = 4800.00

i = 0.5 % ao mês

n = 3 anos 5 meses e 10 dias

FV = ?

Como a taxa é dada ao mês deve-se transformar o prazo em meses !!

n = 3 anos, 5 meses e dez dias

3 anos = 36 meses

5 meses = 5 meses

dez dias =
$$\frac{10}{30}$$
 = 0.333... meses

n = 36+ 5+ 0.333... = 41.333... meses

Fórmula do Montante:

$$FV = PV \cdot (1 + i)^n$$

$$FV = 4800.00 \cdot \left(1 + \frac{0.5}{100}\right)^{41.33333333}$$

$$FV = 4800.00 \cdot (1 + 0.005)^{41.33333333}$$

$$FV = 4800.00 \cdot (1.005)^{41.33333333}$$

$$FV = 4800.00 \cdot (1.22894)$$

FV = 5898.91

Um capital de R\$ 2.000,00 foi aplicado à taxa de 8.5 % ao ano, sendo o prazo desta aplicação de 19 meses, qual o valor do montante resgatado?

R.: R\$ 2275,76

PV = 2000.00

i = 8.5 % ao ano

n = 19 meses

FV = ?

Como a taxa é dada ao ano deve-se transformar o prazo em anos !!

$$n = \frac{19}{12}$$
 $n = 1.583333...$ anos

Fórmula do Montante:

$$FV = PV \cdot (1 + i)^n$$

$$FV = 2000.00 \cdot \left(1 + \frac{8.5}{100}\right)^{1.583333...}$$

$$FV = 2000.00 \cdot (1 + 0.085)^{1.583333...}$$

$$FV = 2000.00 \cdot (1.085)^{1.583333...}$$

$$FV = 2000.00 \cdot (1.137882)$$

$$FV = 2275.76$$

	Uma aplicação produziu o montante de R\$ 711,66. Sabendo que a taxa
6)	foi de 4 % ao ano, sendo o prazo desta aplicação de 9 anos, qual o valor do capital inicial?
	do capital illiolar:

R.: R\$ 500,00

$$FV = 711.66$$

i = 4 % ao ano

n = 9 anos

PV = ?

Fórmula do Capital Inicial:

$$PV = \frac{FV}{(1+i)^n}$$

$$PV = \frac{711.66}{\left(1 + \frac{4}{100}\right)^9}$$

$$PV = \frac{711.66}{\left(1 + 0.04\right)^9}$$

$$PV = \frac{711.66}{(1.04)^9}$$

$$PV = \frac{711.66}{1.423312}$$

PV = 500.00281

Arredondando:

PV = 500.00

7)

O Capital de R\$ 6.700,00 produziu o montante de R\$ 19.500,00 em um ano. Considerando a capitalização mensal, qual é a taxa mensal de juros?

R.: 9,3108 %

PV = 6700.00

FV = 19500.00

n = 1 ano

i = ?

Fórmula da Taxa:

$$i = \left(\frac{FV}{PV}\right)^{\left(\frac{1}{n}\right)} - 1$$

Como a questão pede a taxa MENSAL, é necessário transformar o prazo em MESES:

1 ano = 12 meses

$$i = \left(\frac{19500.00}{6700.00}\right)^{\left(\frac{1}{12}\right)} - 1$$

$$i = (2.910448)^{(0.083333)} - 1$$

$$i = 1.093108 - 1$$

$$i = 0.093108$$

Como a taxa é dada em percentual, deve-se multiplicar o resultado por 100

$$i = 9.3108 \cdot \%$$

O Capital de R\$ 1.200,00 aplicado à taxa de 17 % ao ano, produziu o montante de R\$ 1.642,68. Quanto tempo ficou aplicado?

R.: 2 anos

PV = 1200.00

FV = 1642.68

i = 17% ao ano

n = ?

Fórmula do Prazo:

$$n = \frac{\ln\left(\frac{FV}{PV}\right)}{\ln(1+i)} \qquad \qquad n = \frac{\ln\left(\frac{1642.68}{1200.00}\right)}{\ln\left(1+\frac{17}{100}\right)}$$

$$n = \frac{\ln(1.3689)}{\ln(1+0.17)} \quad \bullet \quad \rightarrow \quad n = \frac{\ln(1.3689)}{\ln(1.17)}$$

$$n = \frac{0.314007}{0.157004} \qquad \qquad n = 1.999994$$

Arredondando: n = 2 anos

9) Um capital de R\$ 2.000,00, aplicado à taxa de 6 % ao mês, rendeu de juros R\$ 382,03. Quanto tempo este capital ficou aplicado?

R.: 3 meses

$$PV = 2000.00$$

$$FV = 2000 + 382.03$$

$$i = 6\%$$
 ao mês

$$n = ?$$

Fórmula do Prazo:

$$n = \frac{\ln\left(\frac{FV}{PV}\right)}{\ln(1+i)} \qquad \qquad n = \frac{\ln\left(\frac{2382.03}{2000.00}\right)}{\ln\left(1+\frac{6}{100}\right)}$$

$$n = \frac{\ln(1.191015)}{\ln(1+0.06)} \quad \bullet \quad \to \quad n = \frac{\ln(1.191015)}{\ln(1.06)}$$

$$n = \frac{0.174806}{0.058269} \qquad \qquad n = 2.999983$$

Arredondando: n = 3 meses

10)

Um capital de R\$ 2.400,00 foi aplicado à taxa de 0,7 % ao mês, sendo o prazo desta aplicação de 4 anos, cinco meses e vinte dias, qual o valor do montante resgatado?

R.: R\$ 3489,74

PV = 2400.00

i = 0.7 % ao mês

n = 4 anos 5 meses e 20 dias

FV = ?

Como a taxa é dada ao mês deve-se transformar o prazo em meses !!

n = 4 anos 5 meses e 20 dias

4 anos = 48 meses

5 meses = 5 meses

20 dias =
$$\frac{20}{30}$$
 = 0.6666... meses

n = 48 + 5 + 0.6666... = 53.6666... meses

Fórmula do Montante:

$$FV = PV \cdot (1 + i)^n$$

$$FV = 2400.00 \left(1 + \frac{0.7}{100} \right)^{53.6666666}$$

$$FV = 2400.00(1 + 0.007)^{53.6666666}$$

$$FV = 2400.00(1.007)^{53.6666666}$$

$$FV = 2400.00(1.454058)$$

FV = 3489.74

11)

Um capital de R\$ 3.000,00 foi aplicado à taxa de 7.5 % ao ano, sendo o prazo desta aplicação de 17 meses, qual o valor do montante resgatado?

R.: R\$ 3323,66

PV = 3000.00

i = 7.5 % ao ano

n = 17 meses

FV = ?

Como a taxa é dada ao ano deve-se transformar o prazo em anos !!

$$n = \frac{17}{12}$$
 $n = 1.416666...$ anos

Fórmula do Montante:

$$FV = PV \cdot (1 + i)^n$$

$$FV = 3000.00 \cdot \left(1 + \frac{7.5}{100}\right)^{1.41666666}$$

$$FV = 3000.00 \cdot (1 + 0.075)^{1.41666666}$$

$$FV = 3000.00 \cdot (1.075)^{1.41666666}$$

$$FV = 3000.00 \cdot (1.107887)$$

$$FV = 3323.66$$

	Uma aplicação produziu o montante de R\$ 394,78. Sabendo que à taxa
12)	foi de 4 % ao ano, sendo o prazo desta aplicação de 7 anos, qual o valor
,	do capital inicial?

R.: R\$ 300,00

$$FV = 394.78$$

i = 4 % ao ano

n = 7 anos

PV = ?

Fórmula do Capital Inicial:

$$PV = \frac{FV}{(1+i)^n}$$

$$PV = \frac{394.78}{\left(1 + \frac{4}{100}\right)^7}$$

$$PV = \frac{394.78}{\left(1 + 0.04\right)^7}$$

$$PV = \frac{394.78}{(1.04)^7}$$

$$PV = \frac{394.78}{1.315932}$$

PV = 300.000304

Arredondando:

PV = 300.00

Exercícios Resolvidos – Limites (pág. 32 da apostila)

1)	$\lim_{x \to 2} \left(\frac{x^2 + 3 \cdot x}{3 \cdot x + 1} \right)$	10 7
	$\lim_{x \to 2} \left(\frac{x^2 + 3 \cdot x}{3 \cdot x + 1} \right)$	
	$\lim_{x \to 2} \left(\frac{2^2 + 3 \cdot 2}{3 \cdot 2 + 1} \right)$	
	$\lim_{x \to 2} \left(\frac{4+6}{6+1} \right)$	
	$\lim_{x \to 2} \left(\frac{10}{7} \right)$	
	<u>10</u>	

2)
$$\lim_{x \to \infty} \left(\frac{3}{4}\right) \left(\frac{2 \cdot x^{3} + \sqrt{x^{3}} + 4}{\sqrt[3]{x+1}}\right)$$

$$\lim_{x \to \infty} \left(\frac{3}{4}\right) \left(\frac{2 \cdot x^{3} + \sqrt{x^{3}} + 4}{\sqrt[3]{x+1}}\right)$$

$$\lim_{x \to \infty} \left(0.75\right) \left(\frac{2 \cdot x^{3} + \sqrt{x^{3}} + 4}{\sqrt[3]{x+1}}\right)$$

$$\lim_{x \to \infty} \left(0.75\right) \left[\frac{2 \cdot (0.75)^{3} + \sqrt{(0.75)^{3}} + 4}{\sqrt[3]{(0.75) + 1}}\right]$$

$$\lim_{x \to \infty} \left(0.75\right) \left[\frac{2 \cdot (0.421875 + \sqrt{0.421875} + 4)}{\sqrt[3]{1.75}}\right]$$

$$\lim_{x \to \infty} \left(0.75\right) \left[\frac{0.84375 + 0.6495191 + 4}{1.75(0.333...)}\right]$$

$$\lim_{x \to \infty} \left(0.75\right) \left(\frac{0.84375 + 0.6495191 + 4}{1.75(0.333...)}\right]$$

$$\lim_{x \to \infty} \left(0.75\right) \left(\frac{5.4932691}{1.2050711}\right)$$

$$\lim_{x \to \infty} \left(0.75\right) \left(\frac{4.5584606}{1.2050711}\right)$$

$$\lim_{x \to \infty} \left(0.75\right) \left(\frac{4.5584606}{1.2050711}\right)$$

3)
$$\lim_{x \to \infty} \left(\frac{7}{5} \right) \left(\frac{7 \cdot x^2 + \sqrt[3]{x} + 2}{4 \cdot x^2 + \sqrt{x}} \right)$$

$$\lim_{x \to \infty} \left(\frac{7}{5} \right) \left(\frac{7 \cdot x^2 + \sqrt[3]{x} + 2}{4 \cdot x^2 + \sqrt{x}} \right)$$

$$\lim_{x \to \infty} \left(\frac{7}{5} \right) \left(\frac{7 \cdot (1.4)^2 + \sqrt[3]{(1.4)} + 2}{4 \cdot (1.4)^2 + \sqrt{(1.4)}} \right)$$

$$\lim_{x \to \infty} \left(\frac{7 \cdot (1.96) + 1.4 \cdot (1.3)}{4 \cdot (1.4)^2 + \sqrt{(1.4)}} \right)$$

$$\lim_{x \to \infty} \left(\frac{7 \cdot (1.96) + 1.4 \cdot (0.333...)}{4 \cdot (1.96) + 1.183216} \right)$$

$$\lim_{x \to \infty} \left(\frac{13.72 + 1.1186889 + 2}{7.84 + 1.183216} \right)$$

$$\lim_{x \to \infty} \left(\frac{16.8386889}{9.023216} \right)$$

$$\lim_{x \to \infty} \left(\frac{16.8386889}{9.023216} \right)$$

$$\lim_{x \to \infty} \left(\frac{1.8661516}{1.8661516} \right)$$

$$\lim_{x \to \infty} \left(\frac{1.8661516}{1.8661516} \right)$$

4)	$\lim_{x \to 9} \left(\frac{8 \cdot x^2 + 5 \cdot x - \sqrt{x}}{9 \cdot x - 7 \cdot x^2} \right)$	-1.419
	$\lim_{x \to 9} \left(\frac{8 \cdot x^2 + 5 \cdot x - \sqrt{x}}{9 \cdot x - 7 \cdot x^2} \right)$	
	$\lim_{x \to 9} \left(\frac{8.9^2 + 5.9 - \sqrt{9}}{9.9 - 7.9^2} \right)$	
	$\lim_{x \to 9} \left(\frac{8.81 + 45 - 3}{81 - 7.81} \right)$	
	$\lim_{x \to 9} \left(\frac{648 + 45 - 3}{81 - 567} \right)$	
	$\lim_{x \to 9} \left(\frac{648 + 45 - 3}{81 - 567} \right)$	
	$\lim_{x \to 9} \left(\frac{690}{-486} \right)$	
	$\lim_{x \to 9} (-1.4197531)$	
	-1.4197531	

5)
$$\lim_{x \to \frac{5}{4}} \sqrt{\frac{\sqrt{3 \cdot x^4 + 12 + x^3}}{\sqrt[3]{x + 2}}}$$

$$\lim_{x \to (1.25)} \left[\frac{\sqrt{\frac{3 \cdot x^4 + 12 + x^3}{\sqrt[3]{x + 2}}}}{\sqrt[3]{(1.25)^4 + 12 + (1.25)^3}} \right]$$

$$\lim_{x \to (1.25)} \left[\frac{\sqrt{\frac{3 \cdot (1.25)^4 + 12 + (1.25)^3}{\sqrt[3]{3.25}}}}{\sqrt[3]{3.25}} \right]$$

$$\lim_{x \to (1.25)} \left[\frac{\sqrt{7.32421875 + 12 + (1.953129)}}{\sqrt[3]{3.25}} \right]$$

$$\lim_{x \to (1.25)} \left[\frac{\sqrt{7.32421875 + 12 + (1.953125)}}{\sqrt[3]{3.25}} \right]$$

$$\lim_{x \to (1.25)} \left[\frac{\sqrt{7.32421875 + 12 + 1.953125}}{\sqrt[3]{3.25}} \right]$$

$$\lim_{x \to (1.25)} \left[\frac{2.70632939 + 12 + 1.953125}{\sqrt[3]{3.25}} \right]$$

$$\lim_{x \to (1.25)} \left[\frac{(16.65945433)}{1.48124803} \right]$$

$$\lim_{x \to (1.25)} \left(\frac{(11.246904)}{1.48124803} \right)$$

Limites - Exercícios de reforço (pág. 37 da apostila)

a)	lim (10)	R.:
	x→ 7	10

O limite de uma função constante é o próprio valor da função constante

b)	lim (-9)	R.:
	$x \rightarrow 3$	-9

O limite de uma função constante é o próprio valor da função constante

c)
$$\lim_{x \to 5^{-}} \left[4 + \frac{3}{(5-x)} \right]$$
 R.: $+\infty$

Deve-se fazer o "x" aproximar-se do número 5, pela esquerda, ou seja, por valores menores que 5

$$x = 4.5$$

$$\left[4 + \frac{3}{(5-4.5)}\right] \quad \bullet \rightarrow \quad \left(4 + \frac{3}{0.5}\right) \quad \bullet \rightarrow \quad (4+6) = 10$$

$$x = 4.9$$

$$\left[4 + \frac{3}{(5 - 4.9)}\right] \quad \bullet \rightarrow \quad \left(4 + \frac{3}{0.1}\right) \quad \bullet \rightarrow \quad (4 + 30) = 34$$

$$x = 4.99$$

$$\left[4 + \frac{3}{(5 - 4.99)}\right] \quad \bullet \rightarrow \quad \left(4 + \frac{3}{0.01}\right) \quad \bullet \rightarrow \quad (4 + 300) = 304$$

$$x = 4.999$$

$$\[4 + \frac{3}{(5 - 4.999)}\] \longrightarrow \left(4 + \frac{3}{0.001}\right) \longrightarrow (4 + 3000) = 3004$$

Conclusão: Quanto mais se aproxima o valor de "x" do número 5, maior fica o valor da função, conclui-se então que este valor vai para o infinito positivo.

d)
$$\lim_{x \to 5^+} \left[4 + \frac{3}{(5-x)} \right]$$
 R.: $-\infty$

Deve-se fazer o "x" aproximar-se do número 5, pela direita ou seja, por valores maiores que 5

$$x = 5.5$$

$$\left[4 + \frac{3}{(5-5.5)}\right] \quad \bullet \rightarrow \quad \left(4 + \frac{3}{-0.5}\right) \quad \bullet \rightarrow \quad (4-6) = -2$$

$$x = 5.1$$

$$\[4 + \frac{3}{(5-5.1)} \] \quad \bullet \rightarrow \quad \left(4 + \frac{3}{-0.1} \right) \quad \bullet \rightarrow \quad (4-30) = -26 \]$$

$$x = 5.01$$

$$\left[4 + \frac{3}{(5 - 5.01)}\right] \quad \bullet \rightarrow \quad \left(4 + \frac{3}{-0.01}\right) \quad \bullet \rightarrow \quad (4 - 300) = -296$$

$$x = 5.001$$

$$\left[4 + \frac{3}{(5 - 5.001)}\right] \longrightarrow \left(4 + \frac{3}{-0.001}\right) \longrightarrow (4 - 3000) = -2996$$

Conclusão: Quanto mais se aproxima o valor de "x" do número 5, menor fica o valor da função, conclui-se então que este valor vai para o infinito negativo

e)
$$\lim_{x \to 5} \left[4 + \frac{3}{(5-x)} \right]$$
 \mathbb{R} :

Ao substituir o número 5 na função, aparecerá uma divisão por zero (que é proibida em matemática!). Para resolver esta questão, deve-se calcular os limites laterais à esquerda e à direita de 5. Isto já foi feito nas questões "c" e "d". Como os limites laterais são diferentes, o limite no ponto não existe.

Deve-se fazer o "x" aproximar-se do número infinito negativo, ou seja, deve-se fazer o número "x" diminuir cada vez mais,

$$x = -10$$

$$\begin{pmatrix} 3 \\ \mathbf{x} \end{pmatrix} \qquad \mathbf{I} \rightarrow \qquad (-10)^3 \qquad \qquad \mathbf{I} \rightarrow \qquad -1000$$

$$x = -50$$

$$\begin{pmatrix} 3 \\ x \end{pmatrix} \qquad \blacksquare \rightarrow \qquad (-50)^3 \qquad \qquad \blacksquare \rightarrow \qquad -125000$$

$$x = -100$$

$$\begin{pmatrix} 3 \\ \mathbf{x} \end{pmatrix} \qquad \mathbf{I} \rightarrow \qquad (-100)^3 \qquad \qquad \mathbf{I} \rightarrow \qquad -1000000$$

Conclusão: fazendo-se o valor de "x" diminuir, o valor da função também diminu tendendo ao infinito negativo

Substituir o "x" por 2 na função e efetuar os cálculos.

$$x = 2$$

$$\left(\frac{x^3 + 3 \cdot x^2 - 4 \cdot x - 12}{\frac{2}{x^2 + x - 6}}\right) \quad \bullet \quad \left(\frac{2^3 + 3 \cdot 2^2 - 4 \cdot 2 - 12}{2^2 + 2 - 6}\right) \quad \bullet \quad \left(\frac{8 + 3 \cdot 4 - 8 - 12}{4 + 2 - 6}\right)$$

$$\left(\frac{8+12-8-12}{4+2-6}\right) \qquad \bullet \qquad \left(\frac{0}{0}\right)$$

O resultado é uma indeterminação do tipo zero dividido por zero. Neste caso, para descobrir o valor do limite, deve-se fazer o "x" tender ao número 2 pela esquerda e pela direita..

g) Continuação....

R.:

Pela ESQUERDA

$$x = 1.9$$

$$\left(\frac{1.9^3 + 3 \cdot 1.9^2 - 4 \cdot 1.9 - 12}{1.9^2 + 1.9 - 6}\right) \quad \bullet \rightarrow \quad \left(\frac{6.859 + 3 \cdot 3.61 - 7.6 - 12}{3.61 + 1.9 - 6}\right)$$

$$\left(\frac{6.859 + 10.83 - 7.6 - 12}{3.61 + 1.9 - 6}\right) \quad \bullet \quad \left(\frac{-1.911}{-0.49}\right) = 3.9$$

$$x = 1.99$$

$$\left(\frac{1.99^3 + 3 \cdot 1.99^2 - 4 \cdot 1.99 - 12}{1.99^2 + 1.99 - 6}\right) \qquad \bullet \rightarrow \qquad \left(\frac{7.880599 + 3 \cdot 3.9601 - 7.96 - 12}{3.9601 + 1.99 - 6}\right)$$

$$\left(\frac{7.880599 + 11.8803 - 7.96 - 12}{3.9601 + 1.99 - 6}\right) \quad \bullet \quad \left(\frac{-0.199101}{-0.0499}\right) = 3.99$$

Pela DIREITA

$$x = 2.1$$

$$\left(\frac{2.1^3 + 3 \cdot 2.1^2 - 4 \cdot 2.1 - 12}{2.1^2 + 2.1 - 6}\right) \quad \bullet \quad \left(\frac{9.261 + 3 \cdot 4.41 - 8.4 - 12}{4.41 + 2.1 - 6}\right)$$

$$\left(\frac{9.261 + 13.23 - 8.4 - 12}{4.41 + 2.1 - 6}\right) \quad \bullet \rightarrow \quad \left(\frac{2.091}{0.51}\right) = 4.1$$

$$x = 2.01$$

$$\left(\frac{2.01^{3} + 3 \cdot 2.01^{2} - 4 \cdot 2.01 - 12}{2.01^{2} + 2.01 - 6}\right) \quad \bullet \quad \left(\frac{8.120601 + 3 \cdot 4.0401 - 8.04 - 12}{4.0401 + 2.01 - 6}\right)$$

$$\left(\frac{8.120601+12.1203-8.04-12}{4.0401+2.01-6}\right) \quad \bullet \quad \left(\frac{0.200901}{0.0501}\right) = 4.01$$

Tanto pela esquerda como pela direita, a função está tendendo a 4

h)
$$\lim_{x \to 4} \left(\frac{4^x + x^2}{5 \cdot x} \right)$$
 R.: 13.6

Substituir o "x" por 4 na função e efetuar os cálculos.

$$x = 4$$

$$\left(\frac{4^{x}+x^{2}}{5\cdot x}\right) \quad \bullet \rightarrow \quad \left(\frac{4^{4}+4^{2}}{5\cdot 4}\right) \quad \bullet \rightarrow \quad \left(\frac{256+16}{20}\right) \quad \bullet \rightarrow \quad \left(\frac{272}{20}\right) = 13.6$$

i)
$$\lim_{x \to -\infty} \left(\frac{5 \cdot x^2 + 10 \cdot x^3 + x}{1 + x + 2 \cdot x^3} \right)$$
 R.: 5

Deve-se fazer o "x" aproximar-se do número infinito negativo, ou seja, deve-se fazer o número "x" diminuir cada vez mais,

$$x = -10$$

$$\left(\frac{5 \cdot x^{2} + 10 \cdot x^{3} + x}{1 + x + 2 \cdot x^{3}}\right) \quad \bullet \rightarrow \quad \left[\frac{5 \cdot (-10)^{2} + 10 \cdot (-10)^{3} + (-10)}{1 + (-10) + 2 \cdot (-10)^{3}}\right]$$

$$\left[\frac{5 \cdot 100 + 10 \cdot (-1000) + (-10)}{1 + (-10) + 2 \cdot (-1000)}\right] \quad \bullet \quad \left(\frac{500 - 10000 - 10}{1 - 10 - 2000}\right)$$

$$\left(\frac{500 - 10000 - 10}{1 - 10 - 2000}\right) \quad \bullet \quad \left(\frac{-9510}{-2009}\right) = 4.73369835739$$

i) Continuação....

R.:

$$x = -100$$

$$\left(\frac{5 \cdot x^{2} + 10 \cdot x^{3} + x}{1 + x + 2 \cdot x^{3}}\right) \quad \bullet \rightarrow \quad \left[\frac{5 \cdot (-100)^{2} + 10 \cdot (-100)^{3} + (-100)}{1 + (-100) + 2 \cdot (-100)^{3}}\right]$$

$$\left[\frac{5.10000 + 10.(-1000000) + (-100)}{1 + (-100) + 2.(-1000000)} \right] \qquad \bullet \qquad \left(\frac{50000 - 10000000 - 100}{1 - 100 - 2000000} \right)$$

$$\left(\frac{-9950100}{-2000099}\right) = 4.97480374721$$

$$x = -500$$

$$\left(\frac{5 \cdot x^{2} + 10 \cdot x^{3} + x}{1 + x + 2 \cdot x^{3}}\right) \quad \bullet \rightarrow \quad \left[\frac{5 \cdot (-500)^{2} + 10 \cdot (-500)^{3} + (-500)}{1 + (-500) + 2 \cdot (-500)^{3}}\right]$$

$$\left[\frac{5 \cdot 250000 + 10 \cdot (-125000000) + (-500)}{1 + (-500) + 2 \cdot (-125000000)}\right] \quad \bullet \quad \left[\frac{1250000 + (-1250000000) + (-500)}{1 + (-500) + (-250000000)}\right]$$

$$\left(\frac{1250000 - 1250000000 - 500}{1 - 500 - 250000000}\right) \quad \bullet \longrightarrow \quad \left(\frac{-1248750500}{-250000499}\right) = 4.99499203$$

Conclusão: fazendo-se o valor de "x" diminuir, o valor da função tende para o número 5

$$\lim_{x \to \infty} \left(\frac{x + 3 \cdot x^2 - 2}{-2 \cdot x^3 + x} \right)$$
R.:

Deve-se fazer o "x" aproximar-se do número infinito positivo ou seja, deve-se fazer o número "x" aumentar cada vez mais

$$x = 10$$

$$\left(\frac{x+3\cdot x^2-2}{-2\cdot x^3+x}\right) \quad \bullet \to \quad \left(\frac{10+3\cdot 10^2-2}{-2\cdot 10^3+10}\right) \quad \bullet \to \quad \left(\frac{10+3\cdot 100-2}{-2\cdot 1000+10}\right)$$

$$\left(\frac{10+300-2}{-2000+10}\right) \quad \bullet \quad \left(\frac{308}{-1990}\right) = -0.15477386935$$

$$x = 100$$

$$\left(\frac{x+3\cdot x^2-2}{-2\cdot x^3+x}\right) \quad \bullet \to \quad \left(\frac{100+3\cdot 100^2-2}{-2\cdot 100^3+100}\right) \quad \bullet \to \quad \left(\frac{100+3\cdot 10000-2}{-2\cdot 1000000+100}\right)$$

$$\left(\frac{100+30000-2}{-2000000+100}\right) \quad \bullet \quad \left(\frac{30098}{-1999900}\right) = -0.01504975249$$

$$x = 500$$

$$\left(\frac{x+3\cdot x^2-2}{-2\cdot x^3+x}\right) \quad \bullet \rightarrow \quad \left(\frac{500+3\cdot 500^2-2}{-2\cdot 500^3+500}\right) \quad \bullet \rightarrow \quad \left(\frac{500+3\cdot 250000-2}{-2\cdot 125000000+500}\right)$$

$$\left(\frac{500 + 750000 - 2}{-250000000 + 500}\right) \quad \bullet \quad \left(\frac{750498}{-249999500}\right) = -0.003001998$$

Conclusão: fazendo-se o valor de "x" aumentar o valor da função tende para o número 0 (zero)

k)
$$\lim_{x \to -3^+} \left[4 + \frac{1}{(x+3)} \right]$$
 R.: $+\infty$

Deve-se fazer o "x" aproximar-se do número -3, pela direita ou seja, por valores maiores que -3

$$x = -2.9$$

$$\left[4 + \frac{1}{(x+3)}\right] \longrightarrow \left[4 + \frac{1}{(-2.9+3)}\right] \longrightarrow \left(4 + \frac{1}{0.1}\right) \longrightarrow (4+10) = 14$$

$$x = -2.99$$

$$\left[4 + \frac{1}{(x+3)}\right] \quad \bullet \rightarrow \quad \left[4 + \frac{1}{(-2.99+3)}\right] \quad \bullet \rightarrow \quad \left(4 + \frac{1}{0.01}\right) \quad \bullet \rightarrow \quad (4+100) = 104$$

$$x = -2.999$$

$$\left[4 + \frac{1}{(x+3)}\right] \longrightarrow \left[4 + \frac{1}{(-2.999+3)}\right] \longrightarrow \left(4 + \frac{1}{0.001}\right) \longrightarrow (4+1000) = 1004$$

$$x = -2.9999$$

$$\left[4 + \frac{1}{(x+3)}\right] \quad \bullet \rightarrow \quad \left[4 + \frac{1}{(-2.9999+3)}\right] \quad \bullet \rightarrow \quad \left(4 + \frac{1}{0.0001}\right) \quad \bullet \rightarrow \quad (4+10000) = 10004$$

Conclusão: Quanto mais se aproxima o valor de "x" do número -3, maior fica o valor da função, conclui-se então que este valor vai para o infinito positivo

1)
$$\lim_{x \to 0^+} \left(\frac{1}{x} + 8 \right)$$
 R.: $+\infty$

Deve-se fazer o "x" aproximar-se do número 0, pela direita ou seja, por valores maiores que 0

$$x = 0.1$$

$$\left(\frac{1}{x} + 8\right) \longrightarrow \left(\frac{1}{0.1} + 8\right) \longrightarrow (10 + 8) = 18$$

$$x = 0.01$$

$$\left(\frac{1}{x} + 8\right) \longrightarrow \left(\frac{1}{0.01} + 8\right) \longrightarrow (100 + 8) = 108$$

$$x = 0.001$$

$$\left(\frac{1}{x} + 8\right) \longrightarrow \left(\frac{1}{0.001} + 8\right) \longrightarrow (1000 + 8) = 1008$$

Conclusão: Quanto mais se aproxima o valor de "x" do número 0, maior fica o valor da função, conclui-se então que este valor vai para o infinito positivo

$$\lim_{x \to 0^+} \left(\frac{1}{x} + 5 \right)$$
 R.: $+\infty$

Deve-se fazer o "x" aproximar-se do número 0, pela direita ou seja, por valores maiores que 0

$$x = 0.1$$

$$\left(\frac{1}{x} + 5\right) \longrightarrow \left(\frac{1}{0.1} + 5\right) \longrightarrow (10 + 5) = 15$$

$$x = 0.01$$

$$\left(\frac{1}{x} + 5\right) \bullet \rightarrow \left(\frac{1}{0.01} + 5\right) \bullet \rightarrow (100 + 5) = 105$$

$$x = 0.001$$

$$\left(\frac{1}{x} + 5\right) \longrightarrow \left(\frac{1}{0.001} + 5\right) \longrightarrow (1000 + 5) = 1005$$

Conclusão: Quanto mais se aproxima o valor de "x" do número 0, maior fica o valor da função, conclui-se então que este valor vai para o infinito positivo

n)
$$\lim_{x \to -3} \left(\frac{x^3 + 3 \cdot x^2 - 4 \cdot x - 12}{x^2 + x - 6} \right)$$
 R.:

Substituir o "x" por -3 na função e efetuar os cálculos.

$$x = -3$$

$$\left(\frac{x^3 + 3 \cdot x^2 - 4 \cdot x - 12}{x^2 + x - 6}\right) \longrightarrow \left[\frac{(-3)^3 + 3 \cdot (-3)^2 - 4 \cdot (-3) - 12}{(-3)^2 + (-3) - 6}\right] \longrightarrow \left[\frac{-27 + 3 \cdot 9 + 12 - 12}{9 + (-3) - 6}\right].$$

$$\left(\frac{-27+27+12-12}{9-3-6}\right) \quad \bullet \to \quad \left(\frac{0}{0}\right)$$

O resultado é uma indeterminação do tipo zero dividido por zero. Neste caso, para descobrir o valor do limite, deve-se fazer o "x" tender ao número -3 pela esquerda e pela direita..

Pela ESQUERDA

$$x = -3.1$$

$$\left[\frac{(-3.1)^3 + 3 \cdot (-3.1)^2 - 4 \cdot (-3.1) - 12}{(-3.1)^2 + (-3.1) - 6}\right] \longrightarrow \left[\frac{-29.791 + 3 \cdot 9.61 + 12.4 - 12}{9.61 + (-3.1) - 6}\right]$$

$$\left(\frac{-29.791 + 3.9.61 + 12.4 - 12}{9.61 - 3.1 - 6}\right) \qquad \bullet \rightarrow \left(\frac{-0.561}{0.51}\right) = -1.1$$

$$x = -3.01$$

$$\left[\frac{\left(-3.01\right)^{3} + 3\cdot\left(-3.01\right)^{2} - 4\cdot\left(-3.01\right) - 12}{\left(-3.01\right)^{2} + \left(-3.01\right) - 6}\right] \quad \bullet \rightarrow \left[\frac{-27.270901 + 3\cdot9.0601 + 12.04 - 12}{9.0601 + \left(-3.01\right) - 6}\right]$$

$$\left(\frac{-27.270901+27.1803+12.04-12}{9.0601-3.01-6}\right) \quad \bullet \quad \left(\frac{-0.050601}{0.0501}\right) = -1.01$$

n) Continuação....

R.:

Pela DIREITA

$$x = -2.9$$

$$\left[\frac{(-2.9)^3 + 3 \cdot (-2.9)^2 - 4 \cdot (-2.9) - 12}{(-2.9)^2 + (-2.9) - 6}\right] \quad \bullet \rightarrow \quad \left[\frac{-24.389 + 3 \cdot 8.41 + 11.6 - 12}{8.41 + (-2.9) - 6}\right]$$

$$\left(\frac{-24.389 + 25.23 + 11.6 - 12}{8.41 - 2.9 - 6}\right) \quad \bullet \rightarrow \quad \left(\frac{0.441}{-0.49}\right) = -0.9$$

$$x = -2.99$$

$$\left[\frac{(-2.99)^3 + 3 \cdot (-2.99)^2 - 4 \cdot (-2.99) - 12}{(-2.99)^2 + (-2.99) - 6}\right] \longrightarrow \left[\frac{-26.730899 + 3 \cdot 8.9401 + 11.96 - 12}{8.9401 + (-2.99) - 6}\right]$$

$$\left(\frac{-26.730899 + 26.8203 + 11.96 - 12}{8.9401 - 2.99 - 6}\right) \quad \bullet \quad \left(\frac{0.049401}{-0.0499}\right) = -0.99$$

Tanto pela esquerda como pela direita, a função está tendendo a: -1

o)
$$\lim_{x \to 2} (\ln(x) + 6^x)$$
 R.: 36.693

Substituir o "x" por 2 na função e efetuar os cálculos.

$$x = 2$$

$$\left(\ln(x) + 6^{x}\right) \longrightarrow \left(\ln(2) + 6^{2}\right) \longrightarrow 0.69314718 + 36 = 36.6931472$$

p)
$$\lim_{x \to \infty} \left(\frac{5 \cdot x^2 + 8 \cdot x^3 + x}{1 + x + 2 \cdot x^3} \right)$$
 R.:

Deve-se fazer o "x" aproximar-se do número infinito positivo ou seja, deve-se fazer o número "x" aumentar cada vez mais

$$x = 10$$

$$\left(\frac{5 \cdot x^2 + 8 \cdot x^3 + x}{1 + x + 2 \cdot x^3}\right) \quad \bullet \rightarrow \quad \left(\frac{5 \cdot 10^2 + 8 \cdot 10^3 + 10}{1 + 10 + 2 \cdot 10^3}\right) \quad \bullet \rightarrow \quad \left(\frac{5 \cdot 100 + 8 \cdot 1000 + 10}{1 + 10 + 2 \cdot 1000}\right)$$

$$\left(\frac{500 + 8000 + 10}{1 + 10 + 2000}\right) \bullet \rightarrow \left(\frac{8510}{2011}\right) = 4.2317255097$$

$$x = 100$$

$$\left(\frac{5 \cdot x^2 + 8 \cdot x^3 + x}{1 + x + 2 \cdot x^3}\right) \quad \bullet \rightarrow \quad \left(\frac{5 \cdot 100^2 + 8 \cdot 100^3 + 100}{1 + 100 + 2 \cdot 100^3}\right) \quad \bullet \rightarrow \quad \left(\frac{5 \cdot 10000 + 8 \cdot 1000000 + 100}{1 + 100 + 2 \cdot 1000000}\right)$$

$$\left(\frac{5.10000 + 8000000 + 100}{1 + 100 + 2000000}\right) \quad \bullet \quad \left(\frac{8050100}{2000101}\right) = 4.0248467452$$

$$x = 500$$

$$\left(\frac{5 \cdot x^2 + 8 \cdot x^3 + x}{1 + x + 2 \cdot x^3}\right) \longrightarrow \left(\frac{5 \cdot 500^2 + 8 \cdot 500^3 + 500}{1 + 500 + 2 \cdot 500^3}\right) \longrightarrow \left(\frac{5 \cdot 250000 + 8 \cdot 125000000 + 500}{1 + 500 + 2 \cdot 125000000}\right)$$

$$\left(\frac{1250000 + 1000000000 + 500}{1 + 500 + 250000000}\right) \quad \bullet \rightarrow \quad \left(\frac{1001250500}{250000501}\right) = 4.004993974$$

Conclusão: fazendo-se o valor de "x" aumentar o valor da função tende para o número 4

q)
$$\lim_{x \to 0^+} \left(\frac{1}{x} + \frac{1}{x^2} \right)$$
 R.: $+\infty$

Deve-se fazer o "x" aproximar-se do número 0, pela direita ou seja, por valores maiores que 0

x = 0.1

$$\left(\frac{1}{x} + \frac{1}{x^2}\right) \longrightarrow \left(\frac{1}{0.1} + \frac{1}{0.1^2}\right) \longrightarrow \left(10 + \frac{1}{0.01}\right) \longrightarrow (10 + 100) = 110$$

x = 0.01

$$\left(\frac{1}{x} + \frac{1}{\frac{2}{x^2}}\right) \longrightarrow \left(\frac{1}{0.01} + \frac{1}{0.01^2}\right) \longrightarrow \left(100 + \frac{1}{0.0001}\right) \longrightarrow (100 + 10000) = 10100$$

x = 0.001

$$\left(\frac{1}{x} + \frac{1}{\frac{2}{x^2}}\right) \longrightarrow \left(\frac{1}{0.001} + \frac{1}{0.001^2}\right) \longrightarrow \left(1000 + \frac{1}{0.000001}\right) \longrightarrow (1000 + 10000000) = 1001000$$

Conclusão: Quanto mais se aproxima o valor de "x" do número 0, maior fica o valor da função, conclui-se então que este valor vai para o infinito positivo

r)
$$\lim_{x \to 0^{-}} \left(\frac{1}{x} + \frac{1}{x^{2}} \right)$$
 R.: $+\infty$

Deve-se fazer o "x" aproximar-se do número 0, pela esquerda ou seja, por valores menores que 0

$$x = -0.1$$

$$\left(\frac{1}{x} + \frac{1}{2}\right) \longrightarrow \left[\frac{1}{(-0.1)} + \frac{1}{(-0.1)^2}\right] \longrightarrow \left(-10 + \frac{1}{0.01}\right)$$

$$\left(-10 + \frac{1}{0.01}\right) \quad \bullet \to \quad (-10 + 100) = 90$$

$$x = -0.01$$

$$\left(\frac{1}{x} + \frac{1}{x^2}\right) \longrightarrow \left[\frac{1}{(-0.01)} + \frac{1}{(-0.01)^2}\right] \longrightarrow \left(-100 + \frac{1}{0.0001}\right)$$

$$\left(-100 + \frac{1}{0.0001}\right) \quad \bullet \quad (-100 + 10000) = 9900$$

$$x = -0.001$$

$$\left(\frac{1}{x} + \frac{1}{\frac{2}{x}}\right) \longrightarrow \left[\frac{1}{(-0.001)} + \frac{1}{(-0.001)^2}\right] \longrightarrow \left(-1000 + \frac{1}{0.000001}\right)$$

$$\left(-1000 + \frac{1}{0.000001}\right) \bullet \rightarrow (-1000 + 1000000) = 999000$$

Conclusão: Quanto mais se aproxima o valor de "x" do número 0, maior fica o valor da função, conclui-se então que este valor vai para o infinito positivo

Ao substituir o número 0 na função, aparecerá uma divisão por zero (que é proibida em matemática!). Para resolver esta questão, deve-se calcular os limites laterais à esquerda e à direita de 0. Isto já foi feito nas questões "q" e "r". Como os limites laterais são iguais, o limite no ponto existe e tem o mesmo valor encontrado nos limites lateriais.

t)
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{x^2} \right)$$
 R.: $-\infty$

Deve-se fazer o "x" aproximar-se do número 0, pela direita ou seja, por valores maiores que 0

x = 0.1

$$\left(\frac{1}{x} - \frac{1}{x^2}\right) \longrightarrow \left(\frac{1}{0.1} - \frac{1}{0.1^2}\right) \longrightarrow \left(10 - \frac{1}{0.01}\right) \longrightarrow (10 - 100) = -90$$

x = 0.01

$$\left(\frac{1}{x} - \frac{1}{x^2}\right) \longrightarrow \left(\frac{1}{0.01} - \frac{1}{0.01^2}\right) \longrightarrow \left(100 - \frac{1}{0.0001}\right) \longrightarrow (100 - 10000) = -9900$$

x = 0.001

$$\left(\frac{1}{x} - \frac{1}{x^2}\right) \bullet \rightarrow \left(\frac{1}{0.001} - \frac{1}{0.001^2}\right) \bullet \rightarrow \left(1000 - \frac{1}{0.000001}\right) \bullet \rightarrow (1000 - 1000000) = -999000$$

Conclusão: Quanto mais se aproxima o valor de "x" do número 0, menor fica o valor da função, conclui-se então que este valor vai para o infinito negativo

$$\lim_{x \to 0^-} \left(\frac{1}{x} - \frac{1}{x^2} \right)$$
 R.: $-\infty$

Deve-se fazer o "x" aproximar-se do número 0, pela esquerda ou seja, por valores menores que 0

$$x = -0.1$$

$$\left(\frac{1}{x} - \frac{1}{x^2}\right) \longrightarrow \left[\frac{1}{(-0.1)} - \frac{1}{(-0.1)^2}\right] \longrightarrow \left(-10 - \frac{1}{0.01}\right)$$

$$\left(-10 - \frac{1}{0.01}\right) \quad \bullet \rightarrow \quad (-10 - 100) = -110$$

$$x = -0.01$$

$$\left(\frac{1}{x} - \frac{1}{x^2}\right) \longrightarrow \left[\frac{1}{(-0.01)} - \frac{1}{(-0.01)^2}\right] \longrightarrow \left(-100 - \frac{1}{0.0001}\right)$$

$$\left(-100 - \frac{1}{0.0001}\right) \quad \bullet \quad (-100 - 10000) = -10100$$

$$x = -0.001$$

$$\left(\frac{1}{x} - \frac{1}{\frac{2}{x^2}}\right) \bullet \to \left[\frac{1}{(-0.001)} - \frac{1}{(-0.001)^2}\right] \bullet \to \left(-1000 - \frac{1}{0.000001}\right)$$

$$\left(-1000 - \frac{1}{0.000001}\right) \quad \blacksquare \to \quad (-1000 - 1000000) = -1001000$$

Conclusão: Quanto mais se aproxima o valor de "x" do número 0, menor fica o valor da função, conclui-se então que este valor vai para o infinito negativo

v)
$$\lim_{x \to -5^{-}} \left[4 - \frac{3}{(-5 - x)} \right]$$
 R.: $-\infty$

Deve-se fazer o "x" aproximar-se do número -5, pela esquerda, ou seja, por valores menores que -5

$$x = -5.5$$

$$\left[4 - \frac{3}{[-5 - (-5.5)]}\right] \longrightarrow \left[4 - \frac{3}{(-5 + 5.5)}\right] \longrightarrow \left(4 - \frac{3}{0.5}\right) \longrightarrow (4 - 6) = -2$$

$$x = -5.1$$

$$\[4 - \frac{3}{[-5 - (-5.1)]}\] \quad \bullet \rightarrow \quad \left[4 - \frac{3}{(-5 + 5.1)}\right] \quad \bullet \rightarrow \quad \left(4 - \frac{3}{0.1}\right) \quad \bullet \rightarrow \quad (4 - 30) = -26$$

$$x = -5.01$$

$$\[4 - \frac{3}{[-5 - (-5.01)]}\] \quad \bullet \rightarrow \[4 - \frac{3}{(-5 + 5.01)}\] \quad \bullet \rightarrow \[4 - \frac{3}{0.01}\] \quad \bullet \rightarrow \[4 - 300) = -296$$

$$x = -5.001$$

$$\left[4 - \frac{3}{[-5 - (-5.001)]}\right] \longrightarrow \left[4 - \frac{3}{(-5 + 5.001)}\right] \longrightarrow \left(4 - \frac{3}{0.001}\right) \longrightarrow (4 - 3000) = -2996$$

Conclusão: Quanto mais se aproxima o valor de "x" do número -5, menor fica o valor da função, conclui-se então que este valor vai para o infinito negativo

Derivadas - Exercícios de Reforço - (pág. 45 da apostila)

1)
$$f(x) = \frac{2 \cdot x^5 - 6 \cdot x}{x^2 - 4 \cdot x + 5}$$

$$f'(2) = R : 154$$

Função QUOCIENTE $\frac{D \cdot N^{\prime} - N \cdot D^{\prime}}{D^{2}}$

$$N = 2 \cdot x^5 - 6 \cdot x$$
 $D = x^2 - 4 \cdot x + 5$

$$N' = 10 \cdot x^4 - 6$$
 $D' = 2 \cdot x - 4$

$$F'(x) = \frac{\left(x^2 - 4 \cdot x + 5\right) \cdot \left(10 \cdot x^4 - 6\right) - \left(2 \cdot x^5 - 6 \cdot x\right) \cdot (2 \cdot x - 4)}{\left(x^2 - 4 \cdot x + 5\right)^2}$$

$$F'(2) = \frac{\left(2^2 - 4 \cdot 2 + 5\right) \cdot \left(10 \cdot 2^4 - 6\right) - \left(2 \cdot 2^5 - 6 \cdot 2\right) \cdot (2 \cdot 2 - 4)}{\left(2^2 - 4 \cdot 2 + 5\right)^2}$$

$$F'(2) = \frac{(4-8+5)\cdot(10\cdot16-6) - (2\cdot32-12)\cdot(4-4)}{(4-8+5)^2}$$

$$F'(2) = \frac{(1)\cdot(160-6)-(64-12)\cdot(0)}{(1)^2}$$

$$F'(2) = \frac{(1)\cdot(154) - (52)\cdot(0)}{1}$$

$$F'(2) = \frac{154 - 0}{1}$$

$$F'(2) = 154$$

2)
$$f(x) = \frac{3 \cdot x^4 - x^2}{x^3}$$

$$f'(-1) =$$
 R.: 4

Função QUOCIENTE
$$\frac{D \cdot N' - N \cdot D}{D^2}$$

$$N = 3 \cdot x^4 - x^2 \qquad \qquad D = x^3$$

$$N' = 12 \cdot x^3 - 2 \cdot x \qquad D' = 3 \cdot x^2$$

$$F'(x) = \frac{\left(x^3\right) \cdot \left(12 \cdot x^3 - 2 \cdot x\right) - \left(3 \cdot x^4 - x^2\right) \cdot \left(3 \cdot x^2\right)}{\left(x^3\right)^2}$$

$$F'(-1) = \frac{\left[(-1)^3 \right] \cdot \left[12 \cdot (-1)^3 - 2 \cdot (-1) \right] - \left[3 \cdot (-1)^4 - (-1)^2 \right] \cdot \left[3 \cdot (-1)^2 \right]}{\left[(-1)^3 \right]^2}$$

$$F'(-1) = \frac{(-1)\cdot(-12+2) - (3-1)\cdot(3)}{1}$$

$$F'(-1) = \frac{(-1)\cdot(-10) - (2)\cdot(3)}{1}$$

$$F'(-1) = \frac{10 - 6}{1}$$

$$F'(-1) = 4$$

3) $f(x) = \frac{2}{7}$ f'(4) = R.: 0

Função Constante (não tem "x"!)

A derivada de uma função constante é sempre ZERO.

$$F'(4) = 0$$

4) $f(x) = \frac{2 \cdot x}{3} + 7 \cdot x^3$ f'(-5) = R : 525.667

$$F(x) = (0.6666...) \cdot x + 7 \cdot x^3$$

$$F(x) = (0.6666...) \cdot x^{1} + 7 \cdot x^{3}$$

Tanto a primeira como a segunda, são funções MONÔMIO A derivada, será:

$$F'(x) = (1) \cdot (0.6666...) \cdot x^{(1-1)} + (3) \cdot 7 \cdot x^{(3-1)}$$

$$F'(x) = (0.6666...) \cdot x^0 + 21 \cdot x^2$$

Lembrando que: $x^0 = 1$

$$F'(x) = (0.6666...) + 21 \cdot x^2$$

$$F'(-5) = (0.6666...) + 21 \cdot (-5)^2$$

$$F'(-5) = (0.6666...) + 21.25$$

$$F'(-5) = (0.6666...) + 525$$

$$F'(-5) = 525.666666...$$

5)
$$f(x) = (x^3 - 3x^2) \cdot (2 \cdot x^6 - 2 \cdot x)$$

$$f'(\frac{1}{2}) =$$
 R.: 3.195

Função PRODUTO $[(1a)\cdot(d2a) + (d1a)\cdot(2a)]$

$$1a = \left(x^3 - 3 \cdot x^2\right) \qquad 2a = \left(2 \cdot x^6 - 2 \cdot x\right)$$

$$d1a = (3 \cdot x^2 - 6 \cdot x) \qquad d2a = (12 \cdot x^5 - 2)$$

$$F'(x) = [(1a) \cdot (d2a) + (d1a) \cdot (2a)]$$

$$F'(x) = \left[(x^3 - 3 \cdot x^2) \cdot (12 \cdot x^5 - 2) + (3 \cdot x^2 - 6 \cdot x) \cdot (2 \cdot x^6 - 2 \cdot x) \right]$$

$$F'\left(\frac{1}{2}\right) = \left[\left(x^3 - 3 \cdot x^2\right) \cdot \left(12 \cdot x^5 - 2\right) + \left(3 \cdot x^2 - 6 \cdot x\right) \cdot \left(2 \cdot x^6 - 2 \cdot x\right)\right]$$

$$F'(0.5) = \left[\left(0.5^3 - 3 \cdot 0.5^2 \right) \cdot \left(12 \cdot 0.5^5 - 2 \right) + \left(3 \cdot 0.5^2 - 6 \cdot 0.5 \right) \cdot \left(2 \cdot 0.5^6 - 2 \cdot 0.5 \right) \right]$$

$$F'(0.5) = [(0.125 - 3.0.25) \cdot (12.0.03125 - 2) + (3.0.25 - 6.0.5) \cdot (2.0.015625 - 2.0.5)]$$

$$F'(0.5) = [(0.125 - 0.75) \cdot (0.375 - 2) + (0.75 - 3) \cdot (0.03125 - 1)]$$

$$F'(0.5) = [(-0.625) \cdot (-1.625) + (-2.25) \cdot (-0.969)]$$

$$F'(0.5) = (1.015625 + 2.18025)$$

$$F'(0.5) = 3.195875$$

6)
$$f(x) = 2.\log_3(2.x) + 3.x^4$$
 $f'(2) =$ R.: 96.910

função LOGARÍTMICA somada a uma função MONÔMIO

$$F'(x) = 2 \cdot \left(\frac{1}{x \cdot \ln(3)}\right) + 12 \cdot x^3$$

$$F'(2) = 2 \cdot \left(\frac{1}{2 \cdot \ln(3)}\right) + 12 \cdot 2^3$$

$$F'(2) = 2 \cdot \left(\frac{1}{2 \cdot 1.098612}\right) + 12 \cdot 8$$

$$F'(2) = 2 \cdot \left(\frac{1}{2.197224}\right) + 96$$

$$F'(2) = 2 \cdot (0.4551197) + 96$$

$$F'(2) = 0.9102394 + 96$$

$$F'(2) = 96.9102394$$

7) $f(x) = 3^{(2.x)} + 1$ $f'(\frac{2}{3}) =$ R.: 9.507

função EXPONENCIAL somada a uma função CONSTANTE

$$F'(x) = 3^{(2 \cdot x)} \cdot (2) \cdot \ln(3) + 0$$

$$F'\left(\frac{2}{3}\right) = 3^{(2 \cdot x)} \cdot (2) \cdot \ln(3)$$

$$F'(0.6666...) = 3^{(2\cdot0.6666...)} \cdot (2) \cdot \ln(3)$$

$$F'(0.6666...) = 3^{(1.333...)} \cdot (2) \cdot 1.0986123$$

$$F'(0.6666...) = (4.3267487) \cdot (2.1972246)$$

$$F'(0.6666...) = 9.5068387$$

função LOGARÍTMICA NATURAL (CASO ESPECIAL) somada a duas funções CONSTANTES

Lembrando que: $x^0 = 1$

$$F(x) = 6 \cdot \ln(x) + 64 + 5$$

$$F'(x) = 6 \cdot \left(\frac{1}{x}\right) + 0 + 0$$

$$F'(2) = 6 \cdot \left(\frac{1}{2}\right)$$

$$F'(2) = 6 \cdot (0.5)$$

$$F'(2) = 3$$

9)
$$f(x) = (5^{(2.X)} - 3) \cdot (3.x - 5.x^2)$$
 $f'(1) = R.: -314.944$

Função PRODUTO

$$[(1a)\cdot(d2a) + (d1a)\cdot(2a)]$$

$$1a = \left\lceil 5^{(2 \cdot x)} - 3 \right\rceil$$

$$2a = \left(3 \cdot x - 5 \cdot x^2\right)$$

$$d1a = \left[5^{(2 \cdot x)} \cdot 2 \cdot \ln(5) - 0\right]$$

$$d2a = (3 - 10 \cdot x)$$

$$F'(x) = [(1a)\cdot(d2a) + (d1a)\cdot(2a)]$$

$$F'(x) = \left[5^{(2 \cdot x)} - 3\right] \cdot (3 - 10 \cdot x) + \left[5^{(2 \cdot x)} \cdot 2 \cdot \ln(5)\right] \cdot \left(3 \cdot x - 5 \cdot x^2\right)$$

$$F'(1) = \left[5^{(2\cdot1)} - 3\right] \cdot (3 - 10\cdot1) + \left[5^{(2\cdot1)} \cdot 2 \cdot \ln(5)\right] \cdot \left(3 \cdot 1 - 5 \cdot 1^2\right)$$

$$F'(1) = \left[5^{(2)} - 3\right] \cdot (3 - 10) + \left[5^{(2)} \cdot 2 \cdot \ln(5)\right] \cdot (3 - 5 \cdot 1)$$

$$F'(1) = (25-3)\cdot(3-10) + (25\cdot2\cdot\ln(5))\cdot(3-5)$$

$$F'(1) = (22) \cdot (-7) + (50 \cdot \ln(5)) \cdot (-2)$$

$$F'(1) = -154 + [50 \cdot (1.6094379)] \cdot (-2)$$

$$F'(1) = -154 + (80.471895) \cdot (-2)$$

$$F'(1) = -154 + (-160.94379)$$

$$F'(1) = -154 - 160.94379$$

$$F'(1) = -314.94379$$

10) $f(x) = \sqrt[3]{x^4} + \log(5.x)$ f'(2) = R.: 1.897

função MONÔMIO somada a função LOGARÍTMICA

$$F(x) = x^{\left(\frac{4}{3}\right)} + \log(5 \cdot x)$$

$$F(x) = x^{1.333...} + \log(5 \cdot x)$$

$$F'(x) = 1.333... \cdot x^{(1.333...-1)} + \frac{1}{x \cdot \ln(10)}$$

$$F'(x) = 1.333... \cdot x^{(0.333...)} + \frac{1}{x \cdot \ln(10)}$$

$$F'(2) = 1.333...\cdot 2^{(0.333...)} + \frac{1}{2 \cdot \ln(10)}$$

$$F'(2) = 1.333...\cdot(1.259921) + \frac{1}{2\cdot(2.3025851)}$$

$$F'(2) = 1.6798947 + \frac{1}{4.6051702}$$

$$F'(2) = 1.6798947 + 0.2171472$$

$$F'(2) = 1.8970419$$

$$f(x) = 3.\ln(x) + 8^{x} + \sqrt{6}$$

 $f'\left(\frac{1}{3}\right) =$

R.: 13.159

função LOGARÍTMICA NATURAL (CASO ESPECIAL) somada a uma função EXPONENCIAL e somada a uma função CONSTANTE

$$F(x) = 3 \cdot \ln(x) + 8^{x} + \sqrt{6}$$

$$F'(x) = 3 \cdot \left(\frac{1}{x}\right) + 8^{x} \cdot 1 \cdot \ln(8) + 0$$

$$F'\left(\frac{1}{3}\right) = 3 \cdot \left(\frac{1}{x}\right) + 8^{x} \cdot 1 \cdot \ln(8)$$

$$F'(0.333...) = 3 \cdot \left(\frac{1}{0.333...}\right) + 8^{0.333...} \cdot 1 \cdot \ln(8)$$

$$F'(0.333...) = 3 \cdot (3) + 2 \cdot 1 \cdot \ln(8)$$

$$F'(0.333...) = 9 + 2 \cdot 1(2.0794415)$$

$$F'(0.333...) = 9 + 2 \cdot (2.0794415)$$

$$F'(0.333...) = 9 + 4.158883$$

$$F'(0.333...) = 13.158883$$

$$f(x) = \frac{2.x}{7} + 6.x^{-2}$$

$$F(x) = (0.2857143...) \cdot x^{1} + 6 \cdot x^{-2}$$

Tanto a primeira como a segunda, são funções MONÔMIO A derivada, será:

$$F'(x) = (1) \cdot (0.2857143...) \cdot x^{(1-1)} + (-2) \cdot 6 \cdot x^{(-2-1)}$$

$$F'(x) = (1) \cdot (0.2857143...) \cdot x^{(0)} + (-12) \cdot x^{(-3)}$$

Lembrando que: $x^0 = 1$

$$F'(x) = 0.2857143 + (-12) \cdot x^{(-3)}$$

$$F'(1) = 0.2857143 + (-12) \cdot x^{(-3)}$$

$$F'(1) = 0.2857143 + (-12) \cdot 1^{(-3)}$$

$$F'(1) = 0.2857143 + (-12) \cdot 1$$

$$F'(1) = 0.2857143 - 12$$

$$F'(1) = -11.7142857$$

	Um fabricante produz <u>x</u> toneladas de uma liga metálica. O lucro <u>P</u> , em reais, obtido pela produção é expresso pela função:	
13)	$P(x) = 12000.x - 15.x^{2}$ Quantas toneladas devem ser produzidas para	R.: 400 toneladas
	maximizar o lucro? Dica: A derivada em um ponto de máximo ou mínimo	toriciadas
	para a função acima é igual a zero. Para saber se o ponto é de máximo ou mínimo, usar o critério da segunda derivada	

A função lucro é dada por:

$$P(x) = 12000 \cdot x - 15 \cdot x^2$$

Como a derivada em um ponto de máximo ou mínimo é sempre igual a zero, basta derivar a função lucro, igualar a ZERO e isolar o valor de "x":

$$P'(x) = 12000 - 30 \cdot x$$

 $0 = 12000 - 30 \cdot x$

$$x = \frac{-12000}{-30}$$

x = 400 toneladas

Sabe-se que é um ponto de máximo pois, de acordo com a teoria de máximos e mínimos, aplicando-se a segunda derivada na função, se o resultado for positivo, trata-se de um ponto de mínimo, se o resultado for negativo, trata-se de um ponto de máximo:

$$P'(x) = 12000 - 30 \cdot x$$

P''(x) = -30 valor da derivada segunda negativo, ponto de Máximo

	30 de 7.
Uma montadora adquire motores elétricos para instalar em seus produtos. A gerência dessa montadora estima que o custo C em unidades monetárias por motor, nos próximos anos será C(t)=9.(17.t + 13) ^{4/3} , onde t é o tempo em anos. Qual será a taxa de variação instantânea do custo em relação ao tempo após 3 anos?	R.: 816 unidades monetárias / ano
Dica: A taxa de variação instantânea é obtida derivando a função. A função acima é uma função composta.	
$C(t) = 9 \cdot (17 \cdot t + 13)^{\frac{4}{3}}$	
$C(t) = 9 \cdot (17 \cdot t + 13)^{1.333}$	
Trata-se de uma função COMPOSTA:	
$u = 17 \cdot t + 13$ função INTERNA:	
u' = 17	
$v = 9 \cdot u^{1.333}$ função EXTERNA:	
$\mathbf{v}' = (1.333) \cdot 9 \cdot \mathbf{u}^{(1.3331)}$	
$v' = 12 \cdot u^{0.333}$	
A derivada de uma função COMPOSTA é:	
$C' = u' \cdot v'$	
$C' = 17 \cdot (12 \cdot u^{0.333})$	
Mas, como $u = 17 \cdot t + 13$ então:	
	produtos. A gerência dessa montadora estima que o custo ${\bf C}$ em unidades montadora por motor, nos próximos anos será ${\bf C}(t)=9.(17.t+13)^{4/3},$ onde ${\bf t}$ é o tempo em anos. Qual será a taxa de variação instantânea do custo em relação ao tempo após 3 anos? Dica: A taxa de variação instantânea é obtida derivando a função. A função acima é uma função composta. ${\bf C}(t)=9\cdot(17\cdot t+13)^{\frac{4}{3}}$ ${\bf C}(t)=9\cdot(17\cdot t+13)^{\frac{4}{3}}$ ${\bf U}'=17$ ${\bf V}=9\cdot {\bf U}^{\frac{1.333}{1.333}}$ ${\bf V}'=(1.333)\cdot 9\cdot {\bf U}^{\frac{1.3331}{1.3331}}$ ${\bf V}'=12\cdot {\bf U}^{\frac{0.333}{1.3331}}$ ${\bf A} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

 $C'(t) = 17 \cdot \left[12 \cdot (17 \cdot t + 13)^{0.333...} \right]$

 Table 2.14)

 Continuação...

 substituindo t = 3 (anos)

 C'(3) = $17 \cdot \left[12 \cdot (17 \cdot 3 + 13)^{0.333} \cdot ... \right]$

 C'(3) = $17 \cdot \left[12 \cdot (64)^{0.333} \cdot ... \right]$

 C'(3) = $17 \cdot (12 \cdot 4)$

 C'(3) = $17 \cdot (48)$

 C'(3) = 816

Integrais - Exercícios Resolvidos - (pág. 50 da apostila)

1)
$$\int_{3}^{65} \left(x^{2} + 2\sqrt{x}\right) dx$$

$$\int x^{2} dx + \int 2\sqrt{x} dx$$

$$\int x^{2} dx + \int 2\sqrt{x} dx$$

$$\int x^{2} dx + 2 \cdot \int x^{0.5} dx$$

$$\frac{x^{3}}{3} + 2 \cdot \left(\frac{x^{1.5}}{1.5}\right)$$

$$\left[\frac{x^{3}}{3} + 2 \cdot \left(\frac{x^{1.5}}{1.5}\right)\right] - \left[\frac{x^{3}}{3} + 2 \cdot \left(\frac{x^{1.5}}{1.5}\right)\right]$$

$$\left[\frac{5^{3}}{3} + 2 \cdot \left(\frac{5^{1.5}}{1.5}\right)\right] - \left[\frac{3^{3}}{3} + 2 \cdot \left(\frac{3^{1.5}}{1.5}\right)\right]$$

$$\left[\frac{125}{3} + 2 \cdot \left(\frac{11.1803399}{1.5}\right)\right] - \left[\frac{27}{3} + 2 \cdot \left(\frac{5.1961524}{1.5}\right)\right]$$

$$\left[41.6666667 + 2 \cdot (7.4535599)\right] - \left[9 + 2 \cdot (3.4641016)\right]$$

$$(41.6666667 + 14.9071198) - (9 + 6.9282032)$$

$$(56.5737865) - (15.9282032) = 40.6455833$$

2)
$$\int_{1}^{4} \left[3 \cdot \ln(x) + 2^{(3 \cdot x)} \right] dx$$
 R.: 1973,548

$$\int 3 \cdot \ln(x) dx + \int 2^{(3 \cdot x)} dx$$

$$3 \cdot \int \ln(x) \, dx + \int 2^{(3 \cdot x)} \, dx$$

$$3 \cdot (x \cdot \ln(x) - x) + \frac{2^{(3 \cdot x)}}{3 \cdot \ln(2)}$$

$$\left[3\cdot(4\cdot\ln(4)-4)+\frac{2^{(3\cdot4)}}{3\cdot\ln(2)}\right]-\left[3\cdot(1\cdot\ln(1)-1)+\frac{2^{(3\cdot1)}}{3\cdot\ln(2)}\right]$$

$$\left[3\cdot[4\cdot(1.3862944)-4]+\frac{2^{(12)}}{3\cdot(0.6931472)}\right]-\left[3\cdot(1\cdot0-1)+\frac{2^{(3)}}{3\cdot(0.6931472)}\right]$$

$$\left[3 \cdot \left[4 \cdot (1.3862944) - 4\right] + \frac{4096}{2.0794416}\right] - \left[3 \cdot (1 \cdot 0 - 1) + \frac{8}{2.0794416}\right]$$

$$[3 \cdot (5.5451776 - 4) + 1969.7595739] - [3 \cdot (0 - 1) + 3.8471867]$$

$$[3 \cdot (1.5451776) + 1969.7595739] - [3 \cdot (-1) + 3.8471867]$$

$$(4.6355328 + 1969.7595739) - (-3 + 3.8471867)$$

$$(1974.3951067) - (0.8471867) = 1973.54792$$

3)
$$\int_{1}^{3} \left(\frac{x\sqrt{x}}{3 \cdot x}\right) dx$$

$$\int \left(\frac{x \cdot \sqrt{x}}{3 \cdot x}\right) dx$$

$$\int \left(\frac{x^{1.5}}{3 \cdot x}\right) dx$$

$$\int \left(\frac{x^{1.5}}{3 \cdot x}\right) dx$$

$$\int \left(\frac{x^{0.5}}{3 \cdot x}\right) dx$$

$$\int \left(\frac{x^{0.5}}{3 \cdot x}\right) dx$$

$$\int \left(\frac{x^{0.5}}{3 \cdot x}\right) dx$$

$$\int \left(\frac{x^{1.5}}{3 \cdot x}\right) dx$$

$$\int \left($$

4)
$$\int_{2}^{4} \left(\frac{1}{x} + \frac{3}{x} + \frac{1}{x^{2}} \right) dx$$
 R.: 3,023

$$\int \frac{1}{x} dx + \int \frac{3}{x} dx + \int \frac{1}{2} dx$$

$$\int_{0}^{1} x^{-1} dx + \int_{0}^{1} 3 \cdot x^{-1} dx + \int_{0}^{1} x^{-2} dx$$

$$\int_{0}^{1} x^{-1} dx + 3 \cdot \int_{0}^{1} x^{-1} dx + \int_{0}^{1} x^{-2} dx$$

$$\ln(x) + 3 \cdot \ln(x) + \frac{x^{-1}}{-1}$$

$$\left(\ln(4) + 3 \cdot \ln(4) + \frac{4^{-1}}{-1}\right) - \left(\ln(2) + 3 \cdot \ln(2) + \frac{2^{-1}}{-1}\right)$$

$$\left[1.3862944 + 3 \cdot (1.3862944) + \frac{0.25}{-1}\right] - \left[0.6931472 + (3 \cdot 0.6931472) + \frac{0.5}{-1}\right]$$

$$(1.3862944 + 4.1588832 - 0.25) - (0.6931472 + 2.0794416 - 0.5)$$

$$(5.2951776) - (2.2725888) = 3.0225888$$

6)
$$\int_{7}^{8} (2^{x} + \ln(x) - 3) dx$$
 R.: 183,679

$$\int_{0}^{\infty} 2^{x} dx + \int_{0}^{\infty} \ln(x) dx - \int_{0}^{\infty} 3 dx$$

$$\frac{2^{x}}{1 \cdot \ln(2)} + (x \cdot \ln(x) - x) - 3 \cdot x$$

$$\left[\frac{2^8}{1 \cdot \ln(2)} + (8 \cdot \ln(8) - 8) - 3 \cdot 8\right] - \left[\frac{2^7}{1 \cdot \ln(2)} + (7 \cdot \ln(7) - 7) - 3 \cdot 7\right]$$

$$\left[\frac{256}{0.6931472} + \left[8 \cdot (2.0794415) - 8\right] - 24\right] - \left[\frac{128}{0.6931472} + \left[7 \cdot (1.9459101) - 7\right] - 21\right]$$

$$[369.3299201 + (16.635532 - 8) - 24] - [184.6649601 + (13.6213707 - 7) - 21]$$

$$(369.3299201 + 8.635532 - 24) - (184.6649601 + 6.6213707 - 21)$$

(353.9654521) - (170.2863308) = 183.6791213

7)
$$\int_{1}^{67} 4 dx$$

$$\int_{1}^{6} 4 dx$$

$$4 \cdot x$$

$$4 \cdot (7) - 4 \cdot (1)$$

$$28 - 4 = 24$$

8)
$$\int_{6}^{9} \sqrt[5]{x^7} dx$$

$$\int \sqrt[5]{x^7} dx$$

$$\int x^{1.4} dx$$

$$\frac{x^{2.4}}{2.4}$$

$$\left(\frac{x^{2.4}}{2.4}\right) - \left(\frac{x^{2.4}}{2.4}\right)$$

$$\left(\frac{9^{2.4}}{2.4}\right) - \left(\frac{6^{2.4}}{2.4}\right)$$

$$\left(\frac{195.0661995}{2.4}\right) - \left(\frac{73.7162104}{2.4}\right)$$

$$(81.2775831) - (30.7150877) = 50.5624954$$

9)	$\int_{7}^{67} x^2 dx$	R.: 0
	$\int x^2 dx$	
	$\frac{x^3}{3}$	
	$\frac{7^3}{3} - \frac{7^3}{3}$	
	114.3333333 - 114.33333333 = 0	

10)
$$\int_{1}^{2} \left[2 + 3 \cdot x + \ln(x) - 4^{(2 \cdot x)} \right] dx$$
 R.: -79,675

$$\int 2 dx + \int 3 \cdot x dx + \int \ln(x) dx - \int 4^{(2 \cdot x)} dx$$

$$\int 2 dx + 3 \cdot \int x dx + \int \ln(x) dx - \int 4^{(2 \cdot x)} dx$$

$$2 \cdot x + 3 \cdot \left(\frac{x^2}{2}\right) + (x \cdot \ln(x) - x) - \frac{4^{(2 \cdot x)}}{2 \cdot \ln(4)}$$

$$\left[2\cdot2+3\cdot\left(\frac{2^2}{2}\right)+(2\cdot\ln(2)-2)-\frac{4^{(2\cdot2)}}{2\cdot\ln(4)}\right]-\left[2\cdot1+3\cdot\left(\frac{1^2}{2}\right)+(1\cdot\ln(1)-1)-\frac{4^{(2\cdot1)}}{2\cdot\ln(4)}\right]$$

$$\left[4+3\cdot\left(\frac{4}{2}\right)+\left[2\cdot(0.6931472)-2\right]-\frac{4^{(4)}}{2\cdot(1.3862944)}\right]-\left[2+3\cdot\left(\frac{1}{2}\right)+(1\cdot0-1)-\frac{4^{(2)}}{2\cdot(1.3862944)}\right]$$

$$\left[4+3\cdot(2)+(1.3862944-2)-\frac{256}{2.7725888}\right]-\left[2+3\cdot(0.5)+(0-1)-\frac{16}{2.7725888}\right]$$

$$(4+6-0.6137056-92.33248) - (2+1.5-1-5.77078)$$

$$(-82.9461856) - (-3.27078) = -79.6754056$$

(545.02477) - (93.1428572) = 451.8819128

12)
$$\int_{1}^{2} \left[\frac{5^{(2 \cdot x)}}{10} \right] dx$$

$$\int \left[\frac{5^{(2 \cdot x)}}{10} \right] dx$$

$$\frac{1}{10} \cdot \int_{2 \cdot \ln(5)} 5^{(2 \cdot x)} dx$$

$$\frac{1}{10} \cdot \left[\frac{5^{(2 \cdot x)}}{2 \cdot \ln(5)} \right]$$

$$\frac{1}{10} \cdot \left[\frac{5^{(2 \cdot x)}}{2 \cdot \ln(5)} \right] - \frac{1}{10} \cdot \left[\frac{5^{(2 \cdot 1)}}{2 \cdot \ln(5)} \right]$$

$$\frac{1}{10} \cdot \left[\frac{5^{(4)}}{2 \cdot (1.6094379)} \right] - \frac{1}{10} \cdot \left[\frac{5^{(2)}}{2 \cdot (1.6094379)} \right]$$

$$\frac{1}{10} \cdot \left[\frac{625}{3.2188758} \right] - \frac{1}{10} \cdot \left(\frac{25}{3.2188758} \right)$$

$$\frac{1}{10} \cdot (194.1671685) - \frac{1}{10} \cdot (7.7666867)$$

$$(0.1) \cdot (194.1671685) - (0.1) \cdot (7.7666867)$$

$$19.4167169 - 0.7766687 = 18.6400482$$

$$\int \frac{2}{x} dx + \int \frac{4}{x^2} dx + \int \frac{6}{x^3} dx$$

$$\int 2 \cdot x^{-1} dx + \int 4 \cdot x^{-2} dx + \int 6 \cdot x^{-3} dx$$

$$2 \cdot \int x^{-1} dx + 4 \cdot \int x^{-2} dx + 6 \cdot \int x^{-3} dx$$

$$2 \cdot (\ln(x)) + 4 \cdot \left(\frac{x^{-1}}{-1}\right) + 6 \cdot \left(\frac{x^{-2}}{-2}\right)$$

$$\left[2 \cdot (\ln(3)) + 4 \cdot \left(\frac{3^{-1}}{-1}\right) + 6 \cdot \left(\frac{3^{-2}}{-2}\right)\right] - \left[2 \cdot (\ln(1)) + 4 \cdot \left(\frac{1^{-1}}{-1}\right) + 6 \cdot \left(\frac{1^{-2}}{-2}\right)\right]$$

$$\left\lceil 2 \cdot (1.0986123) + 4 \cdot \left(\frac{0.3333333}{-1} \right) + 6 \cdot \left(\frac{0.1111111}{-2} \right) \right\rceil - \left\lceil 2 \cdot (0) + 4 \cdot \left(\frac{1}{-1} \right) + 6 \cdot \left(\frac{1}{-2} \right) \right\rceil .$$

$$[2.1972246 + 4 \cdot (-0.3333333) + 6 \cdot (-0.0555556)] - [0 + 4 \cdot (-1) + 6 \cdot (-0.5)]$$

$$(2.1972246 - 1.3333332 - 0.3333336) - (0 - 4 - 3)$$

$$(0.5305578) - (-7) = 7.5305578$$

$$2 \cdot \int x^{-1} dx + 4 \cdot \int \ln(x) dx + \int 2^{x} dx$$

$$2 \cdot \ln(x) + 4 \cdot (x \cdot \ln(x) - x) + \frac{2^x}{1 \cdot \ln(2)}$$

$$\left[2 \cdot \ln \left(\frac{7}{3}\right) + 4 \cdot \left(\frac{7}{3} \cdot \ln \left(\frac{7}{3}\right) - \frac{7}{3}\right) + \frac{2^{\left(\frac{7}{3}\right)}}{1 \cdot \ln(2)}\right] - \left[2 \cdot \ln \left(\frac{2}{3}\right) + 4 \cdot \left(\frac{2}{3} \cdot \ln \left(\frac{2}{3}\right) - \frac{2}{3}\right) + \frac{2^{\left(\frac{2}{3}\right)}}{1 \cdot \ln(2)}\right]$$

$$\left[2 \cdot \ln\left(\frac{7}{3}\right) + 4 \cdot \left(\frac{7}{3} \cdot \ln\left(\frac{7}{3}\right) - \frac{7}{3}\right) + \frac{2^{\left(\frac{7}{3}\right)}}{1 \cdot \ln(2)}\right]$$

$$\left[2 \cdot \ln(2.3333333) + 4 \cdot (2.33333333 \cdot \ln(2.3333333) - 2.3333333) + \frac{2^{(2.33333333)}}{1 \cdot \ln(2)}\right]$$

$$\left[2 \cdot (0.8472978) + 4 \cdot [2.3333333 \cdot (0.8472978) - 2.3333333] + \frac{5.0396841}{0.6931472}\right]$$

 $[1.6945956 + 4 \cdot (1.9770282 - 2.3333333) + 7.2707271]$

 $[1.6945956 + 4 \cdot (-0.3563051) + 7.2707271]$

(1.6945956 - 1.4252204 + 7.2707271)

(1.6945956 - 1.4252204 + 7.2707271) = 7.5401023

Continua na próxima página

$$2 \cdot \ln\left(\frac{2}{3}\right) + 4 \cdot \left(\frac{2}{3} \cdot \ln\left(\frac{2}{3}\right) - \frac{2}{3}\right) + \frac{2\left(\frac{2}{3}\right)}{1 \cdot \ln(2)}$$

Continuação da questão 14

$$\left[2 \cdot (-0.4054651) + 4 \cdot [0.6666667 \cdot (-0.4054651) - 0.6666667] + \frac{1.5874011}{0.6931472}\right]$$

$$[-0.8109302 + 4 \cdot (-0.2703101 - 0.6666667) + 2.2901356]$$

$$[-0.8109302 + 4 \cdot (-0.9369768) + 2.2901356]$$

$$(-0.8109302 - 3.7479072 + 2.2901356)$$

$$(-0.8109302 - 3.7479072 + 2.2901356) = -2.2687018$$

$$\left[2 \cdot \ln\left(\frac{7}{3}\right) + 4 \cdot \left(\frac{7}{3} \cdot \ln\left(\frac{7}{3}\right) - \frac{7}{3}\right) + \frac{2^{\left(\frac{7}{3}\right)}}{1 \cdot \ln(2)}\right] = 7.5401032$$

$$2 \cdot \ln\left(\frac{2}{3}\right) + 4 \cdot \left(\frac{2}{3} \cdot \ln\left(\frac{2}{3}\right) - \frac{2}{3}\right) + \frac{2^{\left(\frac{2}{3}\right)}}{1 \cdot \ln(2)} = -2.2687015$$

7.5401032 - (-2.2687015) = 9.8088047

15)	$\int_{3}^{6} \left(4^{3} + \ln(e) + 1\right) dx$	R.: 66
	$\int 4^3 dx + \int \ln(e) dx + \int 1 dx$	
	$\int 64 dx + \int \ln(2.7182818) dx + \int 1 dx$	
	$\int 64 \mathrm{d}x + \int 1 \mathrm{d}x + \int 1 \mathrm{d}x$	
	$64 \cdot x + 1 \cdot x + 1 \cdot x$	
	66 x	
	66(4) - 66(3) = 66	

16)
$$\int_{1}^{95} \left[\frac{x x^{\left(\frac{3}{4}\right)} \sqrt{x^{3}}}{2 \cdot x} \right] dx$$

$$\int \left[\frac{x x^{\left(0.75\right)} \sqrt{x^{3}}}{2 \cdot x} \right] dx$$

$$\int \left[\frac{x x^{\left(0.75\right)} \sqrt{x^{3}}}{2 \cdot x} \right] dx$$

$$\int \left[\frac{x x^{\left(0.75\right)} \sqrt{x^{\left(1.5\right)}}}{2 \cdot x} \right] dx$$

$$\int \left[\frac{x x^{\left(0.75\right)} \sqrt{x^{\left(1.5\right)}}}{2 \cdot x} \right] dx$$

$$\int \frac{x^{\left(3.25\right)}}{2 \cdot x} dx$$

$$\int \frac{x^{\left(3.25\right)}}{2 \cdot x} dx$$

$$\frac{1}{2} \cdot \int x^{2.25} dx$$

$$\frac{1}{2} \cdot \left(\frac{x^{3.25}}{3.25} \right) - \frac{1}{2} \cdot \left(\frac{1^{3.25}}{3.25} \right)$$

$$\frac{1}{2} \cdot \left(\frac{186.9185977}{3.25} \right) - \frac{1}{2} \cdot \left(\frac{1}{3.25} \right)$$

 $\frac{1}{2}$ ·(57.5134147) $-\frac{1}{2}$ ·(0.3076923)

 $(0.5)(57.5134147) - (0.5) \cdot (0.3076923)$

28.7567073 - 0.1538461 = 28.6028612

$$\begin{array}{c|c}
\hline
 & \sqrt{3 \cdot x + 4 \cdot \sqrt{x} - 5} \\
\hline
 & 3
\end{array}$$

R.: 3,185

$$\left(\frac{3 \cdot x + 4 \cdot \sqrt{x} - 5}{x^2} \right) dx$$

$$\int \frac{3 \cdot x}{x^2} dx + \int \frac{4 \cdot \sqrt{x}}{x^2} dx - \int \frac{5}{x^2} dx$$

$$3 \cdot \left[-\frac{x}{x^2} dx + 4 \cdot \left[-\frac{\sqrt{x}}{x^2} dx - \int 5 \cdot x^{-2} dx \right] \right]$$

$$3. \int x^{-1} dx + 4. \int \frac{x^{0.5}}{x^2} dx - 5. \int x^{-2} dx$$

$$3 \cdot \int x^{-1} dx + 4 \cdot \int x^{-1.5} dx - 5 \cdot \int x^{-2} dx$$

$$3 \cdot \ln(x) + 4 \cdot \left(\frac{x^{-0.5}}{-0.5}\right) - 5 \cdot \left(\frac{x^{-1}}{-1}\right)$$

$$\left[3 \cdot \ln(7) + 4 \cdot \left(\frac{7^{-0.5}}{-0.5}\right) - 5 \cdot \left(\frac{7^{-1}}{-1}\right)\right] - \left[3 \cdot \ln(3) + 4 \cdot \left(\frac{3^{-0.5}}{-0.5}\right) - 5 \cdot \left(\frac{3^{-1}}{-1}\right)\right]$$

$$\left[3\cdot (1.9459101) + 4\cdot \left(\frac{0.3779645}{-0.5}\right) - 5\cdot \left(\frac{0.1428571}{-1}\right)\right] - \left[3\cdot (1.0986123) + 4\cdot \left(\frac{0.5773503}{-0.5}\right) - 5\cdot \left(\frac{0.3333333}{-1}\right)\right] .$$

 $\left[5.8377303 + 4 \cdot (-0.755929) - 5 \cdot (-0.1428571) \right] - \left[3.2958369 + 4 \cdot (-1.1547006) - 5 \cdot (-0.3333333) \right]$

(5.8377303 - 3.023716 + 0.7142855) - (3.2958369 - 4.6188024 + 1.6666665)

(3.5282998) - (0.343701) = 3.1845988

18)	$\int_{-4}^{\circ 4} (5 \cdot x + 2) dx$	R.: 16
	$\int 5 \cdot x dx + \int 2 dx$	
	$5 \cdot \int x dx + \int 2 dx$	
	$5 \cdot \left(\frac{x^2}{2}\right) + 2 \cdot x$	
	$\left[5\cdot\left(\frac{4^2}{2}\right) + 2\cdot(4)\right] - \left[5\cdot\left[\frac{\left(-4\right)^2}{2}\right] + 2\cdot(-4)\right]$	
	$\left[5\cdot\left(\frac{16}{2}\right)+8\right]-\left[5\cdot\left(\frac{16}{2}\right)-8\right]$	
	$[5 \cdot (8) + 8] - [5 \cdot (8) - 8]$	
	(40 + 8) - (40 - 8)	
	(48) - (32) = 16	

Apostila de Matemática para os cursos de: Ciências Contábeis e Administração Prof.Joable Andrade Alves