EE-508: Hardware Foundations for Machine Learning Modeling Accelerators

University of Southern California

Ming Hsieh Department of Electrical and Computer Engineering

Instructor:
Arash Saifhashemi

Modeling Accelerators

Modeling

- High Level Languages
 - Python, C/C++
- Domain-Specific Languages (DSLs).
 - Examples:
 - Halide:
 - Allows separation of the algorithm from its schedule, enabling performance portability across different hardware architectures.
 - TVM:
 - Open-source compiler framework that abstracts the details of hardware accelerators.
- Hardware Description Languages (HDLs):
 - SystemC, SystemVerilog, VHDL
 - HLS (High-Level Synthesis) Languages

Modeling

- High Level Languages
 - Python, C/C++
- Domain-Specific Languages (DSLs).
 - Examples:
 - Halide:
 - Allows separation of the algorithm from its schedule, enabling performance portability across different hardware architectures.
 - TVM:
 - Open-source compiler framework that abstracts the details of hardware accelerators.
- Hardware Description Languages (HDLs):
 - SystemC, SystemVerilog, VHDL
 - HLS (High-Level Synthesis) Languages

It's more common to use HDLs for hardware design, but we use Python for high level modeling for simplicity.

Python Multiprocessing: Using Process and Queue

- Process:
 - A class for spawning processes in Python, similar to threading.
- Queue:
 - A safe way to pass messages between processes.
 - The maximum size depends on the OS.

```
def producer(queue):
                                           def consumer(queue):
   for i in range(5):
                                            while True:
       item = f'Item {i}'
                                               item = queue.get()
       queue.put(item)
                                               if item is None:
       print(f'Produced {item}')
                                                  break
       time.sleep(1)
                                              print(f'Consumed {item}')
                                               time.sleep(1.5)
                                   Queue
             Producer
                                                      Consumer
```

The Put Function

- put(item[, block[, timeout]]):
 - Used to enqueue (or add) an item to the queue.
 - Optionally, you can specify whether to block if the queue is full using the block parameter (default is True).
 - If block is set to True and the queue is full, the method will wait until there's space available in the queue.
 - timeout parameter specifies the maximum amount of time (in seconds) to wait if blocking is enabled.
 - If the timeout is reached and the queue is still full, a Queue. Full exception will be raised.

```
def producer(queue):
    for i in range(5):
        item = f'Item {i}'
        queue.put(item)
        print(f'Produced {item}')
        time.sleep(1)
```

```
def consumer(queue):
    while True:
        item = queue.get()
        if item is None:
            break
        print(f'Consumed {item}')
        time.sleep(1.5)
```


The Get Function

- get([block[, timeout]]):
 - Used to dequeue (or retrieve) an item from the queue.
 - Optionally, you can specify whether to **block** if the queue is empty using the block parameter (**default is True**).
 - If block is set to True and the queue is empty, the method will wait until there's an item available in the queue.
 - timeout parameter specifies the maximum amount of time (in seconds) to wait if blocking is enabled.
 - If the timeout is reached and the queue is still empty, a Queue. Empty exception will be raised.

```
def producer(queue):
    for i in range(5):
        item = f'Item {i}'
        queue.put(item)
        print(f'Produced {item}')
        time.sleep(1)
```

```
def consumer(queue):
    while True:
        item = queue.get()
        if item is None:
            break
        print(f'Consumed {item}')
        time.sleep(1.5)
```

```
Queue Consumer
```

No Wait Version of Put and Get

- put_nowait(item):
 - Similar to put(), but it does not block.
 - It attempts to enqueue the item into the queue immediately.
 - If the queue is full, it raises a queue. Full exception immediately rather than waiting for space to become available.
- get nowait():
 - Similar to get(), but it does not block.
 - It attempts to dequeue an item from the queue immediately.
 - If the queue is empty, it raises a queue. Empty exception immediately rather than waiting for an item to become available.

Python Multithreading: Using Thread and Queue

```
def producer(queue):
    for i in range(5):
        item = f'Item {i}'
        queue.put(item)
        print(f'Produced {item}')
        time.sleep(1)
```

```
def consumer(queue):
    while True:
        item = queue.get()
        if item is None:
            break
        print(f'Consumed {item}')
        time.sleep(1.5)
```

```
if __name__ == '__main__':
    q = queue.Queue()
    p = threading.Thread(target=producer, args=(q,))
    c = threading.Thread(target=consumer, args=(q,))

p.start()
c.start()

p.join()
q.put(None) # Signal the consumer to terminate
c.join()
```

Python Multiprocessing: Using Process and Queue

```
def producer(queue):
    for i in range(5):
        item = f'Item {i}'
        queue.put(item)
        print(f'Produced {item}')
        time.sleep(1)
```

```
def consumer(queue):
    while True:
        item = queue.get()
        if item is None:
            break
        print(f'Consumed {item}')
        time.sleep(1.5)
```

```
if __name__ == '__main__':
    q = Queue()
    p = Process(target=producer, args=(q,))
    c = Process(target=consumer, args=(q,))
    p.start()
    c.start()
    p.join()
    q.put(None) # Signal the consumer to terminate
    c.join()
```



```
def mac worker(weight, input queue,
              left partial sum queue, right partial sum queue):
   while True:
       activation = input queue.get()
       if activation is None:
             break
       left partial sum = left partial sum queue.get()
       right partial sum = left partial sum + activation * weight
       right partial sum queue.put(right partial sum)
```



```
num workers = 8
weights = [1.0 * i for i in range(num workers)] # Example weights
input queues = [Queue() for    in range(num workers)]
partial sum queues = [Queue() for in range(num workers + 1)] # Extra one for the initial input
# Initialize the leftmost partial sum queue
partial sum queues[0].put(0) # Initial partial sum
# Instantiate and start workers
workers = []
for i in range(num workers):
         w = Process(target=mac worker, args=(
         weights[i], input queues[i], partial sum queues[i], partial sum queues[i+1]))
         workers.append(w)
         w.start()
```

Synchronous SystemVerilog Model

- Our Abstract Python models are asynchronous for simplicity.
- In practice PEs are commonly implemented synchronously using a clock signal

```
module MacWorker (
  input wire clk,
  input wire reset,
  input wire [31:0] activation, // Activation input
  input wire [31:0] weight, // Weight (stationary)
  input wire [31:0] left partial sum signal, // Incoming partial sum
  output reg [31:0] right partial sum signal // Output partial sum
  reg [31:0] left partial sum; // Stored partial sum (weight-stationary)
  always @ (posedge clk or posedge reset) begin
    if (reset) begin
      left partial sum <= 0;</pre>
      right partial sum signal <= 0;</pre>
    end else begin
      left partial sum <= left partial sum signal;</pre>
      right partial sum signal <= left partial sum
                 + (activation * weight);
    end
  end
endmodule
```

Synchronous SystemC Model

- For high level modeling, SystemC can be used.
- Use SystemC if:
 - You need high-level system modeling (e.g., processor simulation, transaction-level modeling).
 - You want to write HLS-based designs (C++ → Verilog).
 - You are working on algorithm validation before RTL implementation.

```
#include <systemc.h>
SC MODULE (MacWorker) {
  // Ports
  sc in<bool> clk;
  sc in<bool> reset;
  sc in<sc int<32>> activation; // Activation input
  sc in<sc int<32>> weight; // Stationary weight input
  sc in<sc int<32>> left partial sum signal; // Incoming partial sum
  sc out<sc int<32>> right partial sum signal; // Output partial sum
  // Internal register for pipeline efficiency
  sc signal<sc int<32>> left partial sum;
  // MAC process
  void mac process() {
    if (reset.read() == 1) {
      left partial sum.write(0);
      right partial sum signal.write(0);
    } else {
      // Store the left partial sum (stabilizing input)
      left partial sum.write(left partial sum signal.read());
      // Perform MAC operation
      right partial sum signal.write(left partial sum.read() +
              (activation.read() * weight.read()));
  // Constructor
  SC CTOR (MacWorker)
  SC METHOD (mac process);
  sensitive << clk.pos(); // Triggered on the positive clock edge
  sensitive << reset; // Also sensitive to reset</pre>
```

Modeling in PyTorch or TensorFlow

```
import torch
activation = torch.tensor(3, dtype=torch.int32)
weight = torch.tensor(2, dtype=torch.int32) # Stationary weight
left_partial_sum = torch.tensor(5, dtype=torch.int32)
# Compute MAC operation
right_partial_sum = left_partial_sum + (activation * weight)
print("Right Partial Sum (PyTorch):", right_partial_sum.item())
```

Best for research, flexible ML models, and GPU execution

```
import tensorflow as tf

# Define input tensors
activation = tf.constant(3, dtype=tf.int32)
weight = tf.constant(2, dtype=tf.int32) # Stationary weight
left_partial_sum = tf.constant(5, dtype=tf.int32)

# Compute Right Partial Sum
right_partial_sum = left_partial_sum + (activation * weight)

# Run in TensorFlow
print("Right Partial Sum:", right_partial_sum.numpy())
```

Best for training and deploying models on GPUs/TPUs.

Note that these are used for mapping to existing hardware

Modeling in TVM

- High-Level ML Model
 - TVM takes models from TensorFlow, PyTorch,
 ONNX, etc.
 - Converts them into Relay IR (Intermediate Representation).
- Optimizations and Lowering
 - TVM applies auto-scheduling, memory layout transformations, loop optimizations.
 - Lowers computations to hardware-specific backends.
- Generates Target-Specific Code
 - For CPUs → LLVM IR (Compiles to assembly/machine code).
 - For NVIDIA GPUs → CUDA (Optimized for tensor cores).
 - For FPGAs → OpenCL / HLS C++ (Can be synthesized into Verilog/VHDL).
 - For Custom ASICs → Maps to low-level tensor instructions (But does not generate Verilog directly).

TVM is mostly used for mapping to existing hardware, it does not replace SystemVerilog

```
import tvm
from tvm import te
import numpy as np
A = te.var("A") # Activation
W = te.var("W") # Stationary weight
L = te.var("L") # Left partial sum
# Compute Right Partial Sum
Right Partial Sum = te.compute(
(1,), lambda i: L + (A * W), name="Right Partial Sum"
 Create a schedule
s = te.create schedule(Right Partial Sum.op)
# Compile for CPU (Can change to CUDA for GPU or FPGA backend)
target = "llvm"
f = tvm.build(s, [A, W, L, Right Partial Sum], target=target)
# Run with sample values
ctx = tvm.cpu()
A val = tvm.nd.array(np.array([3], dtype="int32"), ctx)
W_val = tvm.nd.array(np.array([2], dtype="int32"), ctx) # Stationary
L val = tvm.nd.array(np.array([5], dtype="int32"), ctx)
R out = tvm.nd.empty((1,), dtype="int32", ctx)
f(A val, W val, L val, R out)
print("Right Partial Sum (TVM):", R out.asnumpy()[0])
```

Best for optimizing ML models for custom hardware (FPGAs, TPUs, ASICs, Edge devices).

TensorFlow vs. PyTorch vs. TVM

Feature	TensorFlow	PyTorch	TVM
Purpose	ML model definition & execution	ML model definition & execution	ML model compilation & optimization for hardware
Hardware Optimization	Uses XLA (Accelerates on CPU, GPU, TPU)	Uses TorchScript & ONNX for model optimization	Uses Relay IR to map models onto CPU, GPU, FPGA, ASICs
Custom Hardware Support	➤ No, limited to TensorFlow- supported hardware	X No direct hardware mapping, but can export to TVM	Yes, supports custom ASICs, FPGAs, TPUs
Programming Model	High-level ML framework (Keras, TF functions)	High-level ML framework (Eager execution, TorchScript)	Low-level tensor scheduling and compilation
Fine-Grained Scheduling	X No	X No	Yes, allows custom scheduling for different hardware
Deployment	Cloud (TPU), GPU, Edge (TF Lite)	Cloud (GPU, CPU), Edge (TorchScript)	Can optimize for embedded devices, TPUs, GPUs, and FPGAs
Example Use Case	Training & deploying ML models on NVIDIA GPUs & TPUs	Training & deploying ML models on NVIDIA GPUs	Optimizing models for hardware accelerators (e.g., FPGAs, ASICs, Edge TPUs)