PH108

Lecture 19:

Magnetic Vector Potential \vec{A}

Pradeep Sarin
Department of Physics

Recall main steps of electrostatics

Recall that we introduced the electric potential Φ

because
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

is one equation in three unknowns (E_x, E_y, E_z)

Using
$$\vec{\nabla} \times \vec{E} = 0 = \oint \vec{E} \cdot \vec{dl}$$

(Lecture 5)

We defined the electric potential Φ ; found $\vec{E} = -\vec{\nabla}\Phi$ (Lecture 6)

$$\nabla^2 \Phi = -\frac{\rho}{\epsilon_0}$$
 \rightarrow Solves to: $\rightarrow \Phi(r) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(r')}{r'} d\tau'$

With boundary conditions

Why do we need a magnetic potential?

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} \longrightarrow \vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = 0 \longrightarrow \vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{\vec{J} \times \hat{r}}{r^2} d\tau'$$

Integrand is a vector cross product

This is difficult to calculate unless there is some symmetry

Magnetic vector potential \vec{A} is magnetic counterpart of Electric potential Φ

$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{X}) \equiv 0$$
 for any \vec{X} and $\vec{\nabla} \cdot \vec{B} = 0$

So we DEFINE:
$$\vec{B} = \vec{\nabla} \times \vec{A}$$

Like
$$\vec{E} = -\vec{\nabla}\Phi$$

What is \vec{A} ? How do I determine \vec{A} ?

Any vector field is completely defined by its Curl & Div

So we need to evaluate $(\vec{\nabla} \times \vec{A})$ and $(\vec{\nabla} \cdot \vec{A})$

$$(\vec{\nabla} \times \vec{A}) = \vec{B}$$
 is a physical quantity

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \mu_0 \vec{J}$$

$$B_z = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}$$
 $B_y = \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}$

$$\frac{\partial}{\partial y} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) - \frac{\partial}{\partial z} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) = \mu_0 J_x$$

$$-\left(\frac{\partial^{2} A_{x}}{\partial x^{2}}+\frac{\partial^{2} A_{y}}{\partial y^{2}}+\frac{\partial^{2} A_{z}}{\partial z^{2}}\right)+\frac{\partial}{\partial x}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right)=\mu_{0} J_{x}$$

similar with y, z components...

We have to choose $\vec{\nabla} \cdot \vec{A}$

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \mu_0 \vec{J}$$
 simplifies to:
$$-\vec{\nabla}^2 \vec{A} + \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) = \mu_0 \vec{J}$$

$$= \vec{B} \text{ is a physical quantity}$$
 is a math function
$$\text{We choose } \vec{\nabla} \cdot \vec{A} = 0$$
"Coulomb gauge"

Why is it OK to choose $\vec{\nabla} \cdot \vec{A} = 0$?

Suppose for some configuration we get $\vec{\nabla} \cdot \vec{A} \neq 0$

We can transform
$$\vec{A} \rightarrow \vec{A}' = \vec{A} + \vec{\nabla} \psi$$

... for any scalar field ψ , $\because \vec{\nabla} \times \vec{\nabla} \psi \equiv 0$ So ψ will not affect the value of \vec{B}

So
$$\vec{\nabla} \cdot \vec{A}' = \vec{\nabla} \cdot \vec{A} + \nabla^2 \psi = 0$$

If we can find ψ such that $\nabla^2 \psi = -\vec{\nabla} \cdot \vec{A}$. This is OK, because solution to Poisson eqn must exist

See appendix to Lecture 19 on Moodle for a more 'physics-y' justification

Solution for \vec{A} looks like Poisson eqn

In the Coulomb gauge, $\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \mu_0 \vec{J}$ Simplifies to: $\vec{\nabla}^2 \vec{A} = -\mu_0 \vec{J}$

 $\frac{\partial^2 A_x}{\partial x^2} = -\mu_0 J_x$ etc... Three equations in three unknowns

From the similar Poisson equation for electric potential $\nabla^2 \Phi = -\frac{\rho}{\epsilon_0}$

$$\vec{A}(r) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r}')}{|\vec{r} - \vec{r}'|} d\tau'$$

Where does \vec{A} fit in magnetostatics?

What is the use of \vec{A} ?

Question: Example

Wire carrying current I is perpendicular to screen Magnetic field \vec{B} is shown. Can you calculate \vec{A} with the formula? $\vec{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{Idz \, \hat{z}}{r} d\tau'$

A) YES

B) NO

I extends to infinity!

Summary

$$\rho(r') \stackrel{sources}{\longleftarrow} \vec{J}(r')$$

$$\vec{E}(r)$$

$$\overrightarrow{I}$$
i.e. can measure their effect:
$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

$$\Phi(r) \leftarrow \frac{Mathematical\ tools}{to\ calculate\ \vec{E}\ and\ \vec{B}} \vec{A}(r)$$

Exception: \vec{A} has a physical significance in, for example, the 'Aharanov Bohm' effect