

Traffic Engineering (TE)

- Network Engineering
 - Build your network to carry your predicted traffic!
 - Traffic patterns are impossible to predict!
 - Routing is based on the destination and does not allow to take the maximum possible advantage of the network resources.
 - IP source routing (using options field of IP header) is not usable in practice due to security reasons.
- Traffic Engineering
 - Manipulate your traffic path to fit your network!
 - Can be done with routing protocol costs (difficult deployment), or MPLS.
 - With RIP or OSPF or ANY OTHER IGP it is not possible to condition multiple traffic flows.
 - Increase efficiency of bandwidth resources.
 - Prevent over-utilized (congested) links whilst other links are under-utilized.
 - Ensure the most desirable/appropriate path for some/all traffic.
 - Override the shortest path selected by the routing protocols.

Label Distribution Protocols

- Unconstrained routing
 - Label Distribution Protocol (LDP).
 - Path is chosen based on IGP shortest path.
- Constrained routing
 - Constrained by explicit path definition and/or performance requirements (e.g., available bandwidth).
 - Resource Reservation Protocol with Traffic Engineering (RSVP-TE).
 - Evolution of RSVP to support traffic engineering and label distribution.
 - Constrained based Routing LDP (CR-LDP).
 - Evolution of LDP to support constrained routing.
 - Deprecated!
- MPLS VPN scope
 - MP-BGP using address family VPN IPv4 and family specific MP_REACH_NLRI attribute.

37

IP/MPLS Network Establishment

- Label distribution operation and LSP Establishment
 - Discovery
 - Basic Discovery LSRs send LDP link Hellos UDP (multicast) for directly connected peers.
 - Extended Discovery LSRs send LDP targeted Hellos UDP for a specific (remote) IP peer.
 - Session Establish and Maintenance
 - TCP session is established and it is maintained through periodically Keep-Alive messages
 - LFIBs are established accordingly with routing and Label tables.

Label Distribution Protocol (LDP)

- Dynamic distribution of label binding information.
- LSR discovery.
- Reliable transport with TCP.
- Incremental maintenance of label swapping tables (only deltas are exchanged).
- Designed to be extensible with Type-Length-Value (TLV) coding of messages.
- Modes of behavior that are negotiated during session initialization
 - Label distribution control (ordered or independent).
 - Label retention (liberal or conservative).
 - Label advertisement (unsolicited or on-demand).

39

LDP Messages

- Discovery messages
 - Announce and maintain the presence of an LSR in a network.
 - Hello Messages (UDP) sent to "all-routers" multicast address.
 - Once neighbor is discovered, a LDP session is established over TCP.
- Session messages
 - Establish (Initialization Message) and maintain (KeepAlive Message) sessions between LDP peers.
- Advertisement messages
 - When a new LDP session is initialized and before sending label information an LSR advertises its interface addresses with one or more Address Messages.
 - An LSR withdraw previously advertised interface addresses with Address Withdraw Messages.
 - Create, change, and delete label mappings for FECs.
 - Label Mapping, Label Request, Label Abort Request, Label Withdraw, and Label Release Messages.
- Notification messages
 - Provide advisory information and to signal error information.

Constrained based Routing

- A cost is associated to each link
- Each link has a further set of attributes that represent performance metrics

The routing objective is to determine the lowest cost path that does not violate the restrictions that were assigned

- Restrictions can be associated to a set of performance characteristics, like for example, bandwidth, delay, priority, etc.
 - → For the bandwidth case, the restriction that is imposed to the routing algorithm is that the path must have, on each connection it traverses, a bandwidth higher than a certain threshold.
 - → In this case, the connection attribute used is the available bandwidth.

MORE ON LATER:

ReSerVation Protocol (RSVP)

- ReSerVation Protocol (RSVP) was developed to communicate resource needs between hosts and network devices
 - Associated to the Intserv QoS model
- RSVP allows:
 - The source to describe the characteristics of the IP packets flow.
 - Destinations to describe the reservation they want.
 - Routers to know how to process the packets flow in order to fulfil the requested reservation.
- Encapsulated on IP (protocol type = 46 (0x2E))
- Signalling is based on PATH and RESV messages.
 - PATH announces the traffic characteristics at the sender.
 - RESV achieves reservations that were initiated by the receivers.
 - If the reservation is not possible, a RESV ERR message is sent.
- The routers reservation states have to be periodically refreshed (soft states).

Resource Reservation Protocol with Traffic Engineering (RSVP-TE)

- Evolution of RSVP
 - RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels. (12/2001)
 - RFC 5151: Resource Reservation Protocol-Traffic Engineering (RSVP-TE) Extensions. (2/2008)
- To map traffic flows onto the physical network topology through label switched paths, resource and constraint network information are required
 - Provided by Extend Link State Protocols (IS-IS or OSPF with TE extensions).
 - RFC 3630: Traffic Engineering (TE) Extensions to OSPF Version 2. (9/2003)
 - RFC 5305: IS-IS Extensions for Traffic Engineering. (10/2008)

REVIEW: MPLS - Major Drivers

- Provide IP VPN Services "the leased line"
 - Scalable IP VPN service Build once and sell many
 - Managed Central Services Building value added services and offering them across VPNs
- Managing traffic on the network using MPLS Traffic Engineering
 - Providing tighter SLA/QoS (Guaranteed BW Services)
 - Protecting bandwidth Bandwidth Protection Services
- Integrating Layer 2 & Layer 3 Infrastructure
 - Layer 2 services such as ATM (or Frame Relay) over MPLS
 - Mimic layer 2 services over a highly scalable layer 3 infrastructure

E 7

Terminology, 1/2

- RR—Route Reflector
 - A router (usually not involved in packet forwarding) that distributes BGP routes within a provider's network
- PE—Provider Edge router
 - → The interface between the customer and the MPLS-VPN network; only PEs (and maybe RRs) know anything about MPLS-VPN routes
- P—Provider router
 - → A router in the core of the MPLS-VPN network, speaks LDP/RSVP but not necessarily VPNv4
- CE—Customer Edge router
 - The customer router which connects to the PE; does not know anything about labels, only IP (most of the time)
- LDP—Label Distribution Protocol
 - → Distributes labels with a provider's network that mirror the IGP, one way to get from one PE to another
- LSP—Label Switched Path
 - The chain of labels that are swapped at each hop to get from one PE to another

What you should learn...

- Notion of Autonomous System
- The role and diferences of External Routing protocols
- Features of BGP
- Attributes and advanced usage of BGP

80

Networks: service vision

- Distributed communications infrastructure supporting applications, also potentially distributed
 - WWW, email, games, e-commerce, databases, voting
- Communications services supporting:
 - Connection-oriented
 - Connection-less
- Service platforms for millions of devices: hosts, end-systems
 - Pc's, workstations, servers
 - PDA's, phones, fridges...

- Allocated ID by InterNIC and is globally unique
- RFC 4271 defines an AS number as 2-bytes
 - Private AS Numbers = 64512 through 65535
 - ➤ Public AS Numbers = 1 through 64511
 - 92000+ have already been allocated
 - We would have run out of AS numbers
 - Need to expand AS size from 2-bytes to 4-bytes
- RFC4893 defines BGP support for 4-bytes AS numbers
 - 4,294,967,295 potential AS numbers (more than 54K used in 2016)
 - As of January 1, 2009, all new Autonomous System numbers issued were 4-byte by default, unless otherwise requested.
 - The full binary 4-byte AS number is split two words of 16 bits each
 - Notation:
 - <higher2bytes in decimal>.<lower2bytes in decimal>
 - Example1: AS 65546 is represented as "1.10"
 - Example2: AS 50000 is represented as "0.50000"
 - Cannot have a "flag day" solution

88

Evolution of ASs allocated

BGP Neighbor Relationships

- Often called peering
 - Usually manually configured into routers by the administrator
- Each neighbor session runs over TCP (port 179)
 - Ensures reliable data delivery
 - Reflect contracts!!!!
- Peers exchange all their routes when the session is first established
- Updates are also sent when there is a topology change in the network or a change in routing policy
- BGP peers exchange session KEEPALIVE messages
 - To avoid extended periods of inactivity.
 - Low keepalive intervals can be set if a fast fail-over is required

External and Internal BGP

- External BGP (EBGP) is used between AS
- Internal BGP (IBGP) is used within AS
- A BGP router never forwards a path learned from one IBGP peer to another IBGP peer even if that path is the best path
 - An exception is when a router is configured as route-reflector
- A BGP forward the routes learned from one EBGP peer to both EBGP and IBGP peers
 - Filters can be used to modify this behavior
- IBGP routers in an AS must maintain an IBGP session with all other IBGP routers in the AS (IBGP Mesh)
 - To obtain complete routing information about external networks
 - Most networks also use internally an IGP, such as OSPF
 - For all the routers in the AS, not only border routers.
 - Additional methods can be used to reduce IBGP Mesh complexity
 - Route reflectors, private AS, ...

- BGP is a path-vector protocol
- Although it is essentially a distance-vector protocol that carries a list of the AS traversed by the route
 - Provides loop detection
- An EBGP speaker adds its own AS to this list before forwarding a route to another EBGP peer
- An IBGP speaker does not modify the list because it is sending the route to a peer within the same AS
 - AS list cannot be used to detect the IBGP routing loops

BGP Attributes

- A BGP attribute, or path attribute, is a metric used to describe the characteristics of a BGP path.
- Attributes are contained in update messages passed between BGP peers to advertise routes. There are 4+1 categories of BGP attributes.
 - →Well-known Mandatory (included in BGP updates)
 - »AS-path, Next-hop, Origin.
 - Well-known Discretionary (may or may not be included in BGP updates)
 - »Local Preference, Atomic Aggregate.
 - Optional Transitive (may not be supported by all BGP implementations)
 - -Aggregator, Community, AS4_Aggregator, AS4_path.
 - Optional Non-transitive (may not be supported by all BGP implementations)
 - »If the neighbor doesn't support that attribute it is deleted
 - »Multi-exit-discriminator (MED).
 - Cisco-defined (local to router, not advertised)

98

AS-path and Origin Attributes

AS-path

When a route advertisement passes through an autonomous system, the AS number is added to an ordered list of AS numbers that the route advertisement has traversed.

Origin

- Indicates how BGP learned about a particular route.
 - -IGP (0) value is set if the route is interior to the originating AS, resulting from an explicit inclusion of a network within the BGP routing process by means of manual configuration.
 - –INCOMPLETE (2) value is set if the route is learned by other means, namely, route redistribution from other routing processes into the BGP routing process.
 - -EGP (1) is no longer used in modern networks.

BGP Path Selection

- BGP may receive multiple advertisements for the same route from multiple sources.
- BGP selects only one path as the best path.
- BGP puts the selected path in the IP routing table and propagates the path to its neighbors. BGP uses the following criteria, in the order:
 - Largest weight (Cisco only)
 - Largest local preference
 - Path that was originated locally
 - Shortest path
 - Lowest origin type (IGP lower than EGP, EGP lower than incomplete)

Lowest MFD attribute

109

What you should learn...

- Notion of Autonomous System
- The role and diferences of External Routing protocols
- Features of BGP
- Attributes and advanced usage of BGP

Problem: BGP Synchronization

- Synchronization states that, if your AS passes traffic from another AS to a third AS, BGP should not advertise a route before all the routers in your AS have learned about the route via IGP.
 - This is a problem for large ISPs, with many ASBG
- BGP waits until IGP has propagated the route within the AS.
 - Then, BGP advertises the route to external peers.

- BGP neighbor relations between physical interfaces are dependent on interface stability/status
- (Virtual) neighbor relations using Loopback interfaces/addresses
 - Loopback interfaces are virtual and software based
 - If the router is active Loopback interfaces are always active
 - Neighbor relation is active while a path exists between the virtual networks
 - (Alternative) Routing provided by IGPs

BGP Filtering and Route Maps

- Sending and receiving BGP updates can be controlled by using a number of different filtering methods.
- BGP updates can be filtered based on
 - Route information
 - Path information
 - Communities
- Route maps are used with BGP to
 - Control and modify routing information
 - Define the conditions by which routes are redistributed between routing domains