## Problema A

O exercício mais básico em matrizes é ler elementos da entrada padrão, salvar de forma organizada em uma matriz e executar alguma operação sobre esses elementos na matriz.

Neste exercício, você deverá ler uma matriz 10x10 de inteiros da entrada padrão e indicar a quantidade de números inteiros que são ímpares na matriz. Para isso, você deverá:

- 1) Declarar uma matriz 10x10 de inteiros.
- 2) Ler os elementos da entrada padrão e salvar na matriz.
- 3) Percorrer a matriz para calcular o número de números ímpares.
- 4) Imprimir o resultado na saída padrão.

### **Entrada**

A entrada é composta por 10 linhas, representando as linhas da matriz. Cada linha é composta por 10 números, representando os números daquela linha na matriz.

### Saída

Um inteiro que representa a quantidade de números ímpares na matriz.

| Exemplo de entrada                             | Exemplo de saída |
|------------------------------------------------|------------------|
| 111111111<br>111111111<br>111111111<br>1111111 | 100              |

# Problema B

Neste exercício, você deverá ler uma matriz NxN de inteiros da entrada padrão e imprimir a transposta da matriz. Em matemática, matriz transposta é a matriz que se obtém da troca de linhas por colunas de uma dada matriz. Segue um exemplo.



## **Entrada**

A primeira linha contém um inteiro N (N > 1) que representa o número de linhas e colunas da matriz quadrada. As N linhas seguintes possuem, cada uma, N colunas com os elementos da matriz.

### Saída

A matriz transposta da matriz original

| Exemplo de entrada | Exemplo de saída |  |  |
|--------------------|------------------|--|--|
| 2<br>2 1<br>7 4    | 2 7<br>1 4       |  |  |

| Exemplo de entrada     | Exemplo de saída  |  |  |  |
|------------------------|-------------------|--|--|--|
| 3<br>123<br>456<br>789 | 147<br>258<br>369 |  |  |  |

## Problema C

Você recebeu a tarefa de ler uma matriz de *N*x*M*, porém, essa matriz possui elementos negativos, sua tarefa é ler a matriz, transformá-la em uma matriz com valores absolutos (valores positivos), contar a quantidade de elementos negativos e após isso imprimi-la.

#### **Entrada**

A primeira linha é composta por dois inteiros N e M, que correspondem a quantidade de linhas e quantidade de colunas respectivamente. As próximas N linhas possuem M elementos cada, que são os elementos da matriz.

### Saída

A primeira linha deve ser composta pela quantidade de elementos negativos detectados e as próximas linhas a matriz alterada com os valores absolutos (valores positivos).

| Exemplo de entrada | Exemplo de saída |  |  |
|--------------------|------------------|--|--|
| 3 3                | 4                |  |  |
| 1 2 -2             | 122              |  |  |
| -1 1 1             | 111              |  |  |
| 9 -8 -3            | 983              |  |  |

| Exemplo de entrada | Exemplo de saída |  |  |
|--------------------|------------------|--|--|
| 3 4                | 6                |  |  |
| 1 -7 3 -5          | 1735             |  |  |
| 0 9 -1 2           | 0912             |  |  |
| -5 -8 -3 -13       | 58313            |  |  |

## Problema D

Em um reino distante, os sábios matemáticos do castelo de Númeris descobriram uma antiga matriz mágica guardada no coração do templo geométrico. Essa matriz possui o poder de prever o futuro do reino, mas apenas se seu segredo oculto for revelado: a soma dos elementos da diagonal principal e abaixo dela.

O Rei de Númeris convocou você para resolver este enigma. Segundo os pergaminhos antigos, a soma desses elementos representa os alicerces do reino, onde a força e a estabilidade estão concentradas. Para desvendar o segredo da matriz e salvar o reino de um futuro incerto, você deve:

- 1. Ler a matriz de N x N inteiros, cujos valores são registrados nas pedras do templo.
- 2. Encontrar e somar os elementos da diagonal principal e todos os que estão abaixo dela, pois esses números revelam o código da harmonia.
- 3. Ao final, você deve imprimir o valor final da soma.



### **Entrada**

A primeira linha da entrada é composta por um inteiro n, que corresponde à quantidade de linhas e colunas da matriz. As próximas n linhas contém n inteiros, representando os elementos da matriz.

### Saída

O programa deverá exibir um único número inteiro, que corresponde à soma de todos os elementos da diagonal principal e os que estão abaixo dela.

| Exemplo de entrada                                   | Exemplo de saída |  |  |
|------------------------------------------------------|------------------|--|--|
| 4<br>1 2 3 4<br>5 6 7 8<br>9 10 11 12<br>13 14 15 16 | 100              |  |  |

# Problema E

Considere a matriz de relacionamentos abaixo:

| id    | $n_0$ | $n_1$ | $n_2$ | $n_3$ | $n_4$ |  |
|-------|-------|-------|-------|-------|-------|--|
| $n_0$ | 0     | 1     | 1     | 0     | 1     |  |
| $n_1$ | 1     | 0     | 0     | 1     | 0     |  |
| $n_2$ | 1     | 0     | 0     | 0     | 0     |  |
| $n_3$ | 0     | 1     | 0     | 0     | 1     |  |
| $n_4$ | 1     | 0     | 0     | 1     | 0     |  |

Esta matriz representa uma rede social entre 5 pessoas:  $n_0$ ,  $n_1$ ,  $n_2$ ,  $n_3$  e  $n_4$ . Além disso, quando a posição (i, j) da matriz é 1, então as pessoas  $n_i$  e  $n_j$  são amigas entre si. Caso a posição (i, j) da matriz seja 0, então  $n_i$  e  $n_j$  não são amigas. Observe que a pessoa  $n_0$  é amiga das pessoas  $n_1$ ,  $n_2$  e  $n_4$ , mas não é amiga da pessoa  $n_3$ .

Faça um programa que receba uma matriz de relacionamentos 10x10 e duas pessoas. O programa deverá indicar os amigos em comum entre elas.

#### **Entrada**

A primeira linha contém dois inteiros, X e Y (0 <= X,Y < 10) que representam duas pessoas do conjunto (X != Y). As 10 linhas seguintes possuem, cada uma, 10 colunas com os elementos da matriz.

#### Saída

A saída deverá imprimir a lista de amigos em comum entre elas. No exemplo abaixo, os amigos em comum das pessoas 1 e 2 são 0, 4 e 8.

| Exemplo de entrada                                      | Exemplo de saída |
|---------------------------------------------------------|------------------|
| 12<br>0111110001<br>1001100010<br>1000110011<br>1100100 | 0 4 8            |

# Dica:

| Pessoa 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
|----------|---|---|---|---|---|---|---|---|---|---|
| Pessoa 2 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |