CS182 Introduction to Machine Learning, Fall 2023 Discussion3

Zhan-Wang Mao maozhw@shanghaitech.edu.cn November 2, 2023

- In statistical modeling and machine learning, we often work in a logarithmic scale
 - Multiplying small numbers

$$\log xy = \log x + \log y$$

• Differentiation

$$\frac{\partial}{\partial x} \log[f(x)g(x)] = \frac{\partial}{\partial x} \log f(x) + \frac{\partial}{\partial x} \log g(x)$$

• Example: Multivariate Normal

$$\log(\det(\Sigma)) = \sum_{d=1}^{D} \log(\lambda_d)$$

• Normalize an N-vector x of log probabilities $x_i = \log p_i$

$$p_i = rac{\exp(x_i)}{\sum_{n=1}^N \exp(x_n)}, \qquad \sum_{n=1}^N p_n = 1.$$

- Exponentiating might result in underflow or overflow
- Log-Sum-Exp operator

$$ext{LSE}(x_1,\dots,x_N) = \log\Biggl(\sum_{n=1}^N \exp(x_n)\Biggr)\,.$$

• Perform the normalization using the Log-Sum-Exp operator

$$egin{aligned} \exp(x_i) &= p_i \sum_{n=1}^N \exp(x_n) \ &x_i &= \log(p_i) + \log\left(\sum_{n=1}^N \exp(x_n)
ight) \ &\log(p_i) &= x_i - \log\left(\sum_{n=1}^N \exp(x_n)
ight) \ &p_i &= \exp\left(x_i - \log\sum_{n=1}^N \exp(x_n)
ight) \ &\sum_{n=1}^N \exp(x_n) \ &\sum_$$

Does it really helps?

• Shift the values in the exponent by an arbitrary constant C

$$egin{align} y &= \log \left(\sum_{n=1}^N \exp(x_n)
ight) \ e^y &= \sum_{n=1}^N \exp(x_n) \ e^y &= e^c \sum_{n=1}^N \exp(x_n-c) \ y &= c + \log \sum_{n=1}^N \exp(x_n-c). \end{gathered}$$

• Largest term as the reference $c = \max\{x_1, \dots, x_N\}$

Subgradients

• Recall that for convex and differentiable f,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all x, y

Linear approximation always underestimates f.

• $g \in \mathbb{R}^n$ is a subgradient of convex function f at x, if

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y

- Always exists
- If f differentiable at x, then unique $g = \nabla f(x)$
- Same definition works for nonconvex f (however, subgradients need not exist)
- Subdifferential: $\partial f(x) = \{g \in \mathbb{R}^n : g \text{ is a subgradient of } f \text{ at } x\}$

Examples of Subgradients

Consider $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|

- For $x \neq 0$, unique subgradient g = sign(x)
- For x=0, subgradient g is any element of $\left[-1,1\right]$

Examples of Subgradients

Consider $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = ||x||_1$

- For $x_i \neq 0$, unique *i*th component $g_i = \operatorname{sign}(x_i)$
- For $x_i = 0$, ith component g_i is any element of [-1,1]

Optimality Condition

• Subgradient Optimality Condition: for any f (convex or not)

$$f(x^*) = \min_{x} f(x) \iff 0 \in \partial f(x^*)$$

• 0 is a subgradient of f at x^* , then for all y

$$f(y) \ge f(x^*) + 0^T (y - x^*) = f(x^*)$$

• Recall first-order optimality condition: for convex problem

$$\min_{x} f(x)$$
 subject to $x \in C$

f differentiable, a feasible point x is optimal if and only if

$$\nabla f(x)^T (y - x) \ge 0 \quad \text{for all } y \in C$$

• If $C = \mathbb{R}^n$ reduces to familiar $\nabla f(x) = 0$

Lasso Optimality

Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, lasso problem can be parametrized as

$$\min_{\beta} \ \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

where $\lambda \geq 0$. Subgradient optimality:

$$0 \in \partial \left(\frac{1}{2} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}\right)$$

$$\iff 0 \in -X^{T}(y - X\beta) + \lambda \partial \|\beta\|_{1}$$

$$\iff X^{T}(y - X\beta) = \lambda v$$

for some $v \in \partial \|\beta\|_1$, i.e.,

$$v_i \in \begin{cases} \{1\} & \text{if } \beta_i > 0 \\ \{-1\} & \text{if } \beta_i < 0 , \quad i = 1, \dots, p \\ [-1, 1] & \text{if } \beta_i = 0 \end{cases}$$

Lasso Solution*

Write X_1, \ldots, X_p for columns of X. Then our condition reads:

$$\begin{cases} X_i^T(y - X\beta) = \lambda \cdot \operatorname{sign}(\beta_i) & \text{if } \beta_i \neq 0 \\ |X_i^T(y - X\beta)| \leq \lambda & \text{if } \beta_i = 0 \end{cases}$$

Simplified lasso problem with X = I:

$$\min_{\beta} \ \frac{1}{2} \|y - \beta\|_2^2 + \lambda \|\beta\|_1$$

This we can solve directly using subgradient optimality. Solution is $\beta = S_{\lambda}(y)$, where S_{λ} is the soft-thresholding operator:

Lasso Solution*

• Solution: $\beta = S_{\lambda}(y)$, where S_{λ} is the soft-thresholding operator:

$$\boldsymbol{\beta_i} = [S_{\lambda}(y)]_i = \begin{cases} y_i - \lambda & \text{if } y_i > \lambda \\ 0 & \text{if } -\lambda \le y_i \le \lambda \text{ , } i = 1, \dots, n \\ y_i + \lambda & \text{if } y_i < -\lambda \end{cases}$$

Check: from last slide, subgradient optimality conditions are

$$\begin{cases} y_i - \beta_i = \lambda \cdot \operatorname{sign}(\beta_i) & \text{if } \beta_i \neq 0 \\ |y_i - \beta_i| \leq \lambda & \text{if } \beta_i = 0 \end{cases}$$

• $X \neq I$? Proximal Gradient Method!

Lagrangian

standard form problem (not necessarily convex)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^*

▶ Lagrangian: $L: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is **Lagrange multiplier** associated with $f_i(x) \leq 0$
- v_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange Dual Function

▶ Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

- ▶ g is concave, can be $-\infty$ for some λ , ν
- ▶ lower bound property: if $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^*$
- ▶ proof: if \tilde{x} is feasible and $\lambda \geq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda, \nu)$

The Lagrange Dual Problem

(Lagrange) dual problem

```
maximize g(\lambda, \nu) subject to \lambda \geq 0
```

- finds best lower bound on p^* , obtained from Lagrange dual function
- a convex optimization problem, even if original **primal** problem is not
- dual optimal value denoted d*
- \blacktriangleright λ , ν are dual feasible if $\lambda \geq 0$, $(\lambda, \nu) \in \operatorname{dom} g$
- often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit

Weak and Strong Duality

- Weak Duality: $d^* \leq p^*$
 - Always holds
- Strong Duality: $d^* = p^*$
 - Does not hold in general
 - (Usually) hold for convex problems
 - Conditions that guarantee strong duality in convex problems are called constraint qualifications
- Slater's Condition: strong duality hold for a convex problem if it is strictly feasible, i.e.,

there is an $x \in \mathbf{int} \mathcal{D}$ with $f_i(x) < 0, i = 1, \dots, m, Ax = b$

Complementary Slackness

▶ assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)$$

$$\leq f_0(x^*)$$

- hence, the two inequalities hold with equality
- \blacktriangleright x^* minimizes $L(x, \lambda^*, \nu^*)$
- $\lambda_i^{\star} f_i(x^{\star}) = 0$ for i = 1, ..., m (known as **complementary slackness**):

$$\lambda_i^{\star} > 0 \implies f_i(x^{\star}) = 0, \qquad f_i(x^{\star}) < 0 \implies \lambda_i^{\star} = 0$$

Karush-Kuhn-Tucker (KKT) Conditions

- Make no assumptions about convexity
- If strong duality holds,

 x^* and (λ^*, ν^*) be any primal and dual optimal points

- Thus, they must satisfy
 - Primal feasible:

$$f_i(x^*) \le 0, \quad i = 1, \dots, m$$

 $h_i(x^*) = 0, \quad i = 1, \dots, p$

$$h_i(x^*) = 0, \quad i = 1, \dots, p$$

- $\lambda_i^{\star} \geq 0, \quad i = 1, \dots, m$ • Dual feasible:
- Complementary Slackness: $\lambda_i^{\star} f_i(x^{\star}) = 0, \quad i = 1, \dots, m$
- Gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \nu_i^* \nabla h_i(x^*) = 0.$$

KKT Conditions for Convex Problems

- When the primal problem is convex, KKT conditions are also sufficient
- Assume \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ are any points that satisfy the KKT conditions

```
f_{i}(\tilde{x}) \leq 0, \quad i = 1, \dots, m
h_{i}(\tilde{x}) = 0, \quad i = 1, \dots, p
\tilde{\lambda}_{i} \geq 0, \quad i = 1, \dots, m
\tilde{\lambda}_{i} f_{i}(\tilde{x}) = 0, \quad i = 1, \dots, m
\nabla f_{0}(\tilde{x}) + \sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla f_{i}(\tilde{x}) + \sum_{i=1}^{p} \tilde{\nu}_{i} \nabla h_{i}(\tilde{x}) = 0,
```

Then \tilde{x} and $(\tilde{\lambda}, \tilde{\nu})$ are primal and dual optimal, with zero duality gap. \iff KKT conditions

- From Complementary Slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{v})$
- From last condition and convexity: $g(\tilde{\lambda}, \tilde{v}) = L(\tilde{x}, \tilde{\lambda}, \tilde{v})$
- If Slater's condition is satisfied, then

x is optimal if and only if there exist λ , v that satisfy KKT conditions

Constrained and Lagrange Forms

Often in statistics and machine learning we'll switch back and forth between constrained form, where $t \in \mathbb{R}$ is a tuning parameter,

$$\min_{x} f(x)$$
 subject to $h(x) \le t$ (C)

and Lagrange form, where $\lambda \geq 0$ is a tuning parameter,

$$\min_{x} f(x) + \lambda \cdot h(x) \tag{L}$$

and claim these are equivalent. Is this true (assuming convex f, h)?

(C) to (L): if (C) is strictly feasible, then strong duality holds, and there exists $\lambda \geq 0$ (dual solution) such that any solution x^* in (C) minimizes

$$f(x) + \lambda \cdot (h(x) - t)$$

so x^* is also a solution in (L)

- (L) to (C): if x^* is a solution in (L), then the KKT conditions for
- (C) are satisfied by taking $t = h(x^*)$, so x^* is a solution in (C)