第三章作业布置

本次(3月14号)作业要求:

每个同学自己从第三章的课后习题中选4题做到作业本中,至于做哪4题,每个同学自己选择。不作硬性规定。我在检查作业时,只看是否做了4题。 (从你购买的课本上选题做就可以了。)

3.3.2 CMOS漏极开路(OD) 门和三态输出门电路

- 1. CMOS漏极开路门
- 1.) CMOS漏极开路门的提出

输出短接,在一定情况下会产 生低阻通路,大电流有可能导 致器件的损毁,并且无法确定 输出是高电平还是低电平。

(2)漏极开路门的结构与逻辑符号

- (a)工作时必须外接电源和电阻;
- (b)与非逻辑不变
- (c) 可以实现线与功能;

漏极开路门输出连接

$$L = \overline{AB} \cdot \overline{CD}$$
$$= \overline{AB + CD}$$

(2) 上拉电阻对OD门动态性能的影响

Rp的值愈小,负载电容的充电时间常数亦愈小,因而开关速度愈快。但功耗大,且可能使输出电流超过允许的最大值I_{OL(max)}。

Rp的值大,可保证输出电流不能超过允许的最大值I_{OL(max)}、功耗小。但负载电容的充电时间常数亦愈大,开关速度因而愈慢。

最不利的情况:

只有一个 OD门导通,

为保证低电平输出OD门的输

出电流不能超过允许的最大值

I_{OL(max)}且V_O=V_{OL(max)}, R_P不能太小,最小值为R_{P (min)}。

$$I_{\text{OL}(max)} = \frac{V_{\text{DD}} - V_{\text{OL}(max)}}{R_{\text{p}(min)}} + I_{\text{IL}(\text{total})}$$

$$R_{\text{p}(\text{min})} = \frac{V_{\text{DD}} - V_{\text{OL}(\text{max})}}{I_{\text{OL}(\text{max})} - I_{\text{IL}(\text{total})}}$$

为使得高电平不低于规定的 V_{IH} 的最小值,则 R_{p} 的选择不能过大。 R_{p} 的最大值 $R_{\text{p(max)}}$:

$$R_{p(max)} = \frac{V_{DD} - V_{IH(min)}}{I_{OH(total)} + I_{IH(total)}}$$

2.三态(TSL)输出门电路

逻辑功能: 高电平有效的同相逻辑门

三态门电路的应用

任何时刻只能有一个门的使能端为有效, 其他门输出高阻

3.3.3 CMOS逻辑门电路的重要参数

1. 输入和输出的高、低电平

输入低电平的上限值 $V_{IL(max)}$ 输入高电平的下限值 $V_{IL(min)}$ 输出高电平的下限值 $V_{OH(min)}$ 输出低电平的上限值 $V_{OH(max)}$

1. 输入和输出的高、低电平

类型 参数/单位	$ \begin{pmatrix} V_{\text{DD}} = 5V \\ I_{\text{O}} = 1\text{mA} \end{pmatrix} $	$ 74HC $ $ \begin{pmatrix} V_{\rm DD} = 5V \\ I_{\rm O} = 0.02 \text{mA} \end{pmatrix} $		$74LVC$ $\begin{pmatrix} V_{\rm DD} = 3.3V \\ I_{\rm O} = 0.1 \text{mA} \end{pmatrix}$	$74AUC$ $\begin{pmatrix} V_{\rm DD} = 1.8 V \\ I_{\rm O} = 0.1 \text{mA} \end{pmatrix}$
$V_{\rm IL(max)}/{ m V}$	1.0	1.5	0.8	0.8	0.6
$V_{ m OL(max)}/ m V$	0.05	0.1	0.1	0.2	0.2
$V_{ m IH(min)}/ m V$	4.0	3.5	2.0	2.0	1.2
$V_{ m OH(min)}/{ m V}$	4.95	4.9	4.9	3.1	1.7
高电平噪声容限 $(V_{ m NH}/{ m V})$	0.95	1.4	2.9	1.1	0.5
低电平噪声容限 $(V_{ m NL}/{ m V})$	0.95	1.4	0.7	0.6	0.4

2. 噪声容限

在保证输出电平不变的条件下,输入电平允许波动的范围。它表

示门电路的抗干扰能力

负载门输入高电平时的噪声容限: V_{NH} —当前级门输出高电平的最小 值时允许负向噪声电压的最大值。

 $V_{NH} = V_{OH(min)} - V_{IH(min)}$ 负载门输入低电平时的噪声容限: V_{NL} —当前级门输出低电平的最大值时允许正向噪声电压的最大值

$$V_{\rm NL} = V_{\rm IL(max)} - V_{\rm OL(max)}$$

3.传输延迟时间

传输延迟时间是表征门电路开关速 度的参数,它说明门电路在输入脉冲 波形的作用下, 其输出波形相对于输 入波形延迟了多长的时间。

传输延迟时间与电源电压VDD及负 载电容大小有关。

表中为各个非门的参数。

类型 参数	74HC V _{DD} =5 V	74AHC <i>V</i> _{DD} =5V	$74LVC$ $V_{\rm DD}=3.3V$	
t _{PLH} 或 t _{PHL} (ns)	6	3.8	2.5	0.8

50%

10%

4. 功耗

静态功耗:指的是当电路没有状态转换时的功耗,即门电路空载时电源总电流 I_D 与电源电压 V_{DD} 的乘积。

动态功耗: 指的是电路在输出状态转换时的功耗,

对于TTL门电路来说,静态功耗是主要的。

CMOS电路的静态功耗非常低,CMOS门电路有动态功耗

5. 延时-功耗积 是速度功耗综合性的指标. 延时-功耗积,用符号*DP*表示。 几种CMOS系列非门的DP见下页。

6. 扇入与扇出数扇入数:取决于逻辑门的输入端的个数。

几种CMOS系列非门的DP性能比较

系列 参数/单位	74HC04 (V _{DD} =5V)	74AHC04 (V _{DD} =5V)	74LVC04 (V _{DD} =3.3V)	74AUC04 (V _{DD} =1.8V)
功耗电容C _{PD} /pF	21	12	8	17
传输延迟时间 t _{pd} /ns(C _L =15pF)	6	3.8	2.5	0.8
功耗P _D /mW(10MHz)	9	6.8	2.5	1
延时功耗积 <i>DP</i> /pJ	54	25.84	6.25	0.8

扇出数:是指其在正常工作情况下,所能带同类门电路的最大数目。

(a) 带拉电流负载

当负载门的个数增加时,总的拉电流将增加,会引起输出高电压的降低。但不得低于输出高电平的下限值,这就限制了负载门的个数。

高电平扇出数:

$$N_{
m OH} = rac{I_{
m OH}(驱动门)}{I_{
m IH}(负载门)}$$

I_{OH}:驱动门的输出端为高电平电流

/出:负载门的输入电流为。

(b)带灌电流负载

当负载门的个数增加时,总的灌电流I_{OL}将增加,同时也将引起输出低电压V_{OL}的升高。当输出为低电平,并且保证不超过输出低电平的上限值。

$$N_{
m OL} = rac{I_{
m OL}(驱动门)}{I_{
m IL}(负载门)}$$

In: 驱动门的输出端为低电平电流

/』: 负载门输入端电流之和

3.4 类NMOS和BiCMOS逻辑门电路

- 3.4.1 类NMOS门电路
- 3.4.2 BiCMOS门电路

3.4.1 类NMOS门电路

- ◆MOS集成电路分为PMOS、NMOS和CMOS。
- ◆NMOS比PMOS速度快。
- ◆CMOS有静态功耗低、抗干扰能力强等诸多优点成为主流器件。但CMOS电路增加一个输入端必须增加一个PMOS和一个NMOS管,在某些希望芯片面积小的应用,仍采用NMOS。
- ◆类NMOS电路可与CMOS电路相匹配。

1. 类NMOS反相器

上一个PMOS管 的栅极接地。

当v=0: NMOS管截止, PMOS管导通,输出高电平。

 $\exists v_l = V_{DD}$: NMOS管和PMOS管均导通,NMOS管比PMOS管导通电阻小很多,输出低电平。

2. 类NMOS与非门和或非门

上面PMOS管 的栅极固定接地。

$$L = \overline{A \cdot B}$$

$$L = \overline{A + B}$$

3.4.2 BiCMOS 门电路

特点:功耗低、速度快、驱动力强工作原理:

υ,为高电平时:

 M_N 、 M_1 和 T_2 导通, M_P 、 M_2 和 T_1 截止,输出 υ_0 为低电平。

 M_1 的导通,迅速拉走 T_1 的基区存储 电荷; M_2 截止, M_N 的输出电流全部 作为 T_2 管的驱动电流, M_1 、 M_2 加快 输出状态的转换

υլ为低电平时:

 M_P 、 M_2 和 T_1 导通, M_N 、 M_1 和 T_2 截止,输出 v_0 为高电平。

M₁截止,M_p的输出

电流全部作为T₁的驱动电流。

 T_2 基区的存储电荷通过 M_2 而消散。

M1、M2加快输出状态的转换电路的开 关速度可得到改善

逻辑真值表

V i	V_{O}
0	1
1	0

3.5 TTL逻辑门电路

- 3.5.1 BJT的开关特性
- 3.5.2 TTL反相器的基本电路
- 3.5.3 改进型TTL门电路

晶体管分两类:

<u>BJT</u>是双极结型晶体管(Bipolar Junction Transistor - <u>BJT</u>)的缩写,又常称为双载子晶体管。它是通过一定的工艺将两个<u>PN结</u>结合在一起的器件,有<u>PNP</u>和NPN两种组合结构。

- 一类是双极性晶体管,BJT;BJT是电流控制器件;
- 一类是场效应晶体管, FET; FET是电压控制器件。

3.5 TTL逻辑门

3.5.1 BJT的开关特性

场效应晶体管

(Field Effect Transistor缩写(FET)) 简称场效应管。由多数载流子参与导电, 也称为单极型晶体管。它属于电压控制型 半导体器件。

 v_l =0V时: $i_B \approx 0$, $i_C \approx 0$, $v_O = V_{CF} \approx V_{CC}$, $c \in \mathbb{R}$ 定间近似于开路。

 v_l =5V时: $i_B \approx i_{BS}$, $v_o = V_{CE} \approx 0.2$ V, c、e极之间近似于短路。

BJT相当于受v_i控制的电子开关。

2. BJT的开关时间

BJT饱和与截止两种状态的相

互转换需要一定的时间才能完成。

从截止到导通

开通时间 $t_{on}(=t_d+t_r)$

从导通到截止

关闭时间 t_{off} (= t_s + t_f)

2. BJT的开关时间

若带电容负载时,则

 C_{L} 的充、放电过程均需经历一定的时间,必然会增加输出电压 v_{0} 波形的上升时间和下降时间,导致基本的BJT反相器的开关速度不高。

故需设计有较快开关速度的实用型TTL门电路。

3.5.2 TTL反相器的基本电路

1. 电路组成

输出级

输入级T₁和电阻R_{b1} 组成。用于提高电 路的开关速度

电结和发射极同时 输出两个相位相反 的信号,作为 T_3 和 T_4 输出级的驱动信 号;

2. TTL反相器的工作原理(逻辑关系、性能改善)

(1) 当输入为低电平($\upsilon_{\text{T}} = 0.2 \text{ V}$)

T₁深度饱和, V_{B1}=0.9V

要使 T_2 、 T_3 导通则要求, V_{B1} =2.1V

 T_2 、 T_3 截止, T_4 、D导通

$$v_{\rm O} = v_{\rm B4} - v_{\rm BE4} - v_{\rm D} =$$
 $(5 - 0.7 - 0.7) \, {\rm V} = 3.6 \, {\rm V}$

 输入	T_1	T ₂	T ₃	D_4	T ₄	输出
低电平	饱和	截止	截止	导通	导通	高电平

(2) 当输入为高电平(v_I=3.6 V)

T₂、T₃饱和导通

 T_1 :倒置的放大状态。

 T_4 和D截止。

使输出为低电平.

$$V_{\rm O} = V_{\rm C3} = V_{\rm CES3} = 0.2 \text{V}$$

逻辑真值表

输入A	输出L
0	1
1	0

逻辑表达式 L = A

输入	T ₁	T_2	T_3	D_4	T ₄	输出
低电平	饱和	截止	截止	导通	导通	高电平
高电平	倒置工作	饱和	饱和	截止	截止	低电平

3.5.3 改进型TTL门电路-抗饱和TTL门电路

采用肖特基势垒二极管SBD 限制BJT导通时的饱和深度。 SBD导通电压为0.4V。使BJT的c、e间正偏电压钳位在0.4V, 而不进入深度饱和。

1.肖特基TTL反相器 电路如图所示。

SBD是肖特基势垒二极管(Schottk yBarrier Diode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属一半导体结原理制作的。因此,SBD也称为金属一半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。

2. 其他TTL门电路

SBD是肖特基势垒二极管(Schottk yBarrier Diode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属一半导体结原理制作的。因此,SBD也称为金属一半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。

与非门

或非门

3.7 逻辑描述中的几个问题

3.7.1 正负逻辑问题

3.7.2 基本逻辑门的等效符号及其应用

3.7 逻辑描述中的几个问题

3.7.1 正负逻辑问题

1. 正负逻辑的规定

正逻辑体制:将高电平用逻辑1表示,低电平用逻辑0表示

负逻辑体制:将高电平用逻辑0表示,低电平用逻辑1表示

2. <u>1</u>	E负逻辑	等效变	奂	Α	В	L
	某电路输	i入与输出	电平表	0	0	1
	Α	В	L	0	1	1
		L	Н	1	0	1
		Н	Н	1	1	0
	Н	Ĺ	H	采用负	逻辑	Ţ
	Н	Н	L	Α	В	L
	正逻辑	量	逻辑	1	1	0
	与非	\Leftrightarrow	或非	1	0	0
	与	\Leftrightarrow	或	0	1	0
	丰	\Leftrightarrow	#	Λ	0	1

3.7.2 基本逻辑门电路的等效符号及其应用

系统输入信号中,有的是高电平有效,有的是低电平有效。

低电平有效,输入端加小圆圈;高电平有效,输入端不加小圆圈。

1、 基本逻辑门电路的等效符号

$$L = \overline{AB} = \overline{A} + \overline{B}$$

$$A = A = A + B$$

$$A = A = A + B$$

$$A = A = A + B$$

与非门及其等效符号

$$L = \overline{A + B} = \overline{A \cdot B}$$

或非门及其等效符号

$$A \longrightarrow A \longrightarrow B$$

$$A \longrightarrow B$$

$$A \longrightarrow B$$

$$A \longrightarrow B$$

$$L = AB = \overline{A} + \overline{B}$$

$$A = D$$

$$L = A + B = AB$$

$$B = D$$

$$L = A + B = \overline{A} \cdot \overline{B}$$

$$A \longrightarrow L = A + B$$

$$B \longrightarrow A \longrightarrow B$$

$$A \longrightarrow B$$

$$A \longrightarrow B$$

逻辑门等效符号的应用

利用逻辑门等效符号,可实现对逻辑电路进行变换,以简化电路,能减少实现电路的门的种类。

逻辑门等效符号强调低电平有效

如RE、AL都要求高电平有效,EN低电平有效

如RE、AL都要求低电平有效,EN高电平有效

如RE、AL都要求高电平有效,EN高电平有效

3.8 逻辑门电路使用中的几个实际问题

- 3.8.1 各种门电路之间的接口问题
- 3.8.2 门电路带负载时的接口问题
- 3.8.3 抗干扰措施
- 3.8.4 CMOS小逻辑和宽总线系列

3.8.1 各种门电路之间的接口问题

在数字电路或系统的设计中,往往将不同电源电压的CMOS系列(或CMOS和TTL)两种器件混合使用,以满足综合要求。由于每种器件的电压和电流参数各不相同,因而在这两种器件连接时,要满足驱动器件和负载器件以下条件:

- 1)门电路的输入或输出电压必须处在手册规定的极值之内。
- 2)驱动器件的输出电压必须处在负载器件所要求的输入电压范围,包括高、低电压值(属于电压兼容性的问题)。
 - 3)驱动器件必须对负载器件提供足够大的拉电流和灌电流(属于门电路的扇出数问题);

1. 各种门电路输入或输出电压的极值

(1) 输入电压极值 $V_{\text{I(max)}}$ 和 $V_{\text{I(min)}}$ 有些逻辑门电路允许 V_{IDD} ,有些不允许。

74HC系列最大输入 $V_{\text{I(max)}} = V_{\text{DD}} + 0.5 \text{V}$, V_{I} 被钳位,不能超过 V_{DD} 。

74AHC系列 $V_{I(max)}$ =7V, 采用 V_{DD} =3.3V时, 允许 V_I >3.3V。

两系列 $V_{\text{I(min)}}$ 均为0V,考虑保护二极管作用, $V_{\text{I(min)}}$ =-0.5V。

1. 各种门电路输入或输出电压的极值

(2) 输出电压极值 $V_{O(max)}$ 和 $V_{O(min)}$ 有些逻辑门电路允许 V_{O} 超过 V_{DD} ,有些不允许。 74HC和AHC系列最大输入 $V_{O(max)} = V_{DD} + 0.5$ V,不能超过 V_{DD} 。 74LVC系列 $V_{O(max)} = 6.5$ V。采用 $V_{DD} = 3.3$ V时,允许 $V_{O} > 3.3$ V,只要小于6.5V即可。

2. 各种门电路电压兼容性和电流匹配性问题

负载器件所要求的输入电压

对负载器件提供足够大的拉电流和灌电流

驱动电路必须能为负载电路提供合乎相应标准的高、低电平

驱动电路必须能为负载电路提供足够的驱动电流

图中给出了各个系列在给定电源电压下四个逻辑电平参数

3、5V CMOS门驱动3.3V CMOS门

已知:
$$5V$$
 CMOS门系列 $V_{OH \text{ (min)}} = 4.4V$ $V_{OL(max)} = 0.5V$ $I_{OL \text{ (max)}} = 20 \mu A$ $I_{OH \text{ (max)}} = -20 \mu A$ $3.3V$ CMOS门系列 $V_{IH(min)} = 2V$ $V_{IL(max)} = 0.8V$ $I_{IH \text{ (max)}} = 5 \mu A$ $I_{IL \text{ (max)}} = -5 \mu A$, 输出、输入电压 $V_{OH(min)} \ge V_{IH(min)}$ $V_{OL(max)} \le V_{IL(max)}$ 当负载门个数n小于 ≤ 4 带拉电流负载 $I_{OH(max)} \triangleright I_{IH(total)}$ 带灌电流负载 $I_{OL(max)} \triangleright I_{IL(total)}$

4. 3.3V CMOS门驱动5V CMOS门

已知: 3.3V CMOS门系列 $V_{OH (min)}$ =2.4V $V_{OL(max)}$ =0.4V

$$I_{OH (max)} = 0.1 \text{mA}$$
 $I_{OL (max)} = -0.1 \text{mA}$

5V CMOS门系列

$$V_{IH(min)}$$
=3.5V $V_{OL(max)}$ =1.5V

$$I_{IH (max)} = 5\mu A$$
 $I_{OL (max)} = -5 \mu A$,

式2、3、4、都能满足,但式1 V_{OH(min)} ≥V_{IH(min)}不满足

采用外接上拉电阻。

$$V_{\text{OH}} = V_{DD} - R_P (I_{\text{O}} + nI_{\text{IH}})$$

 $(I_0: 驱动门输出级截止管的漏电流)$

5. 低电压CMOS电路之间的接口

不同系列逻辑电路之间接口,通常采用专门的逻辑电平转换器,如图所示。 $V_{\rm DDA}$ 和 $V_{\rm DDB}$ 分别为两种系列逻辑电路的电源电压。

3.8.2 门电路带负载时的接口电路

1. 用门电路直接驱动显示器件 门电路的输入为低电平,输出为高电平时,LED发光

$$R = \frac{V_{\rm OH} - V_{\rm F}}{I_{\rm D}}$$

当输入信号为高电平,输出为低电平时,LED发光

$$R = \frac{V_{\text{CC}} - V_{\text{F}} - V_{\text{OL}}}{I_{\text{D}}}$$

例3.8.2 试用74HC04六个CMOS反相器中的一个作为接口电路,使门电路的输入为高电平时,LED导通发光。

解: LED正常发光需要几mA的电流,并且导通时的压降 $V_{\rm F}$ 为1.6V。根据表3.3.4查得,当 $V_{\rm CC}$ =5V时, $V_{\rm OL}$ =0.1V, $I_{\rm OL(max)}$ =4mA。因此 $I_{\rm D}$ 取值不能超过4mA。限流电阻的最小值为

$$R = \frac{(5-1.6-0.1)V}{4mA} = 825\Omega$$

2. 机电性负载接口

用各种数字电路来控制机电性系统的功能,而机电系统所需的工作电压和工作电流比较大。要使这些机电系统正常工作,必须扩大驱动电路的输出电流以提高带负载能力,而且必要时要实现电平转移。

如果负载所需的电流不特别大,可以将两个反相器并联作为驱动电路,并联后总的最大负载电流略小于单个门最

大负载电流的两倍。

如果负载所需的电流比较大,则需要在数字电路的输出端与负载之间接入一个功率驱动器件。

3.8.3 抗干扰措施

1. 多余输入端的处理措施

以不改变电路工作状态及稳定可靠为原则。

一是与其他输入端并接,二是直接接电源或地。与门、与非门输入端接电源。或门、或非门输入端接地。

2. 去耦合滤波电容

在直流电源和地之间接去耦合滤波电容,滤除干扰信号。

3. 接地和安装工艺

将电源地和信号地、模拟和数字地分开。印刷版的连线尽量短,以去除寄生干扰。

3.8.4 小尺寸逻辑和宽总线系列

1.小尺寸逻辑电路

相比传统逻辑器件,小尺寸逻辑芯片体积更小。它是作为大规模可编程逻辑器件的补充或接口。用来修改或完善大规模集成芯片之间连线或外围电路连线。

NanoStar 封装 面积为 0.9mm²

Micro QFN 封装 面积为 1.4mm²

传统封装的2输入与非门

小尺寸逻辑封装的2输入与非门

2. 宽总线电路

宽总线是指将多个相同的单元电路封装在一起,以减少体积、改善电路性能,满足计算机、信息传输等设备的总线传输需求。

74AUC16240内部有16个三态输出缓冲器,分成4组,如图(下一页)。使用时,可连成16位、两组8位或其他形式。

74AUC16240功能表

使能 ŌE	输入A	输出Y
L	Н	L
L	L	H
Н	×	高阻

2.宽总线电路

74AUC16240

3.9 用VerilogHDL描述CMOS门电路

3.9.1 CMOS门电路的Verilog建模

用VerilogHDL对MOS管构成的电路建模,称为开关级建模, 是最底层的描述。

用关键词nmos、pmos定义NMOS、PMOS管模型。rnmos、rpmos定义输入与输出端存在电阻的NMOS、PMOS管模型。 关键词supply1、supply0分别定义了电源线和地线。

1、设计举例

试用Verilog语言的开关级 建模描述CMOS与非门。

电路 描述

module NAND2 (L,A,B); //IEEE 1364—1995 Syntax input A,B; //输入端口声明 output L; //输出端口声明 supply1 Vdd; supply0 GND; wire W1; //将两个NMOS. 管之间的连接点定义为W1 pmos (L,Vdd,A); //PMOS 管的源极与Vdd相连 //两个 pmos (L,Vdd,B); PMOS管并行连接 nmos (L,W1, A); //两 NMOS管串行连接 nmos (W1,GND, B); //NMOS管的源极与地相连 endmodule

说明 部分

3.9.2 CMOS传输门电路的Verilog建模

用关键词cmos定义传输门模型。

emos C1(输出信号,输入信号,TN管控制信号,TP管控制信号);

例:用Verilog语言的开关级 建模描述下列异或门。


```
module mymux2to1 (A, B, L); //IEEE
1364—1995 Syntax
   input A, B; //输入端口声明
   output L; //输出端口声明
   wire Anot, Bnot; //声明模块内部
的连接线
   inverter V1(Anot, A); //调用底层模
块inverter,见下一页
   inverter V2(Bnot, B);
   cmos (L, Anot, B, Bnot); //调用内部
开关元件
   cmos (L, A, Bnot, B);
//(output,input,ncontrol,pcontrol)
  endmodule
```


//CMOS反相器 module inverter (Vo,Vi); //IEEE 1364—1995 Syntax input Vi; //输入端口声明 output Vo; //输出端口声明 supply1 Vdd; supply0 GND; pmos (Vo,Vdd,Vi); //实例化, 调用内部开关元件 nmos (Vo,GND,Vi); //(漏极, 源极,控制栅极) endmodule