EPFL

Optimal Task
Assignment and
Collision
Avoidance for
Mobile Robots

sycam@re lab

Dimitri Hollosi 1st of July 2022

Overview of talk

What:

Tool to analyse and compare assignment methods and their properties

How:

Using state of the art simulation techniques based on ROS2 & Gazebo (open source softwares)

Why:

- Route planning is the first decision to be made
- Many different ways to do so
 - Requires a comparative assessment

Optimal TA & Collision Avoidance

- Linear Sum Assignment Problem (LSAP), Bottleneck Assignment Problem (BAP), Lexicographic BAP...
 - Solve for different cost functions
 - Minimise overall sum (LSAP)
 - Minimal longest distance (bottleneck),...
- Analysis of derived properties
 - Collision Avoidance
 - Dynamic Consistency (initial optimal assignment remains optimal for all time)
- Desire and need for a simulation environment
 - Benchmark testing for N agents
 - Validation of approaches
 - Monitoring of derived properties

Example:

Valid mapping:

 $a_1 \rightarrow p_3$ Minimal *longest* distance

Derivable properties from Lexico-BAP

Robustness margins :

- Measure of how sensitive/robust the current bottleneck is
- Bottleneck can be increased by "up to" μ_k before the assignment may change

Local safe sets

- Time-varying
- Basically a set where many Lexico-BAP assumptions hold
 - No collisions
 - Dynamically consistent (assignment remains the same)

5

ROS2:

- Robotic Operating System #2
- State of the art robotic program development
- Middleware enabling interprogram communication
 - Nodes, topics, services, actions

Gazebo

- Open-source 3D robotics simulator
- Sensor simulation and actuation control
- Wide-array of available robots

ChoiRbot:

- Open source
- Modular robotics ROS2 toolbox
- Used for low level actuation & control of robots

Methodology- developed software

Task Assignment & Collsion Avoidance

Robustness margins analysis

- Randomised heading (general case)
 - Robustness margins initially decrease
 - Not always in safe sets
 - Assignments don't change (dynamically consistent)

Aligned heading ("straight line" case)

- Robustness margins constant or increase
- Always in safe sets
 - Dynamic Consistency guaranteed

Sensitivity Analysis & Comparison

- Dynamic Consistency analysis
 - Randomised heading
 - Agents not in the safe subject to re-assignment
 - Agents in safe set don't get reassigned

Assignment type analysis and comparison

- Aligned heading
- Agents not in the safe subject to re-assignment
- Agents in safe set don't get reassigned

Task Assignment & Collsion Avoidance

Final remarks & Next Steps

Current platform:

- Fully deployable simulation environment
- Test bench prior to hardware testing
- Currently includes LSAP and LexBAP

- Include Jetbots as robotic models (instead of Turtlebot3 Burger)
- Add agent relocalisation feature
- Add more Assignment Problems

Questions?

sycam@re lab