

Delhi | Bhopal | Hyderabad | Jaipur | Lucknow | Pune | Bhubaneswar | Kolkata

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

SIGNALS AND SYSTEMS

EC + EE

Date of Test: 17/01/2023

ANSWER KEY 1. (d) 7. (c) 13. (b) 19. (c) 25. (b) 2. (c) 8. (b) 14. (b) 20. (a) 26. (d) 3. (d) 15. (a) 21. (b) 27. (b) (c) 4. (a) 10. (d) 16. (c) 22. (a) 28. (c) 5. (a) 11. (c) 17. (c) 23. (d) 29. (b) 12. (b) 6. (c) 18. (b) 24. (a) 30. (d)

INPUE ERSU India's Best Institute for IES, GATE & PSUs

DETAILED EXPLANATIONS

1. (d)

Energy of signal x(n) = Energy in even part of signal x(n) + Energy in odd part of signal x(n) Energy of signal x(n) = 6 + 8 = 14

2. (c)

The signal x(2t + 3) can be obtained by first shifting x(t) to the left by 3 units and then scaling by 2 units.

3. (d)

$$u(t) \xrightarrow{\text{L.T.}} \frac{1}{s}$$

$$u(t-1) \xrightarrow{\text{L.T.}} \frac{e^{-s}}{s}$$

$$u(2t-1) \xrightarrow{\text{L.T.}} \frac{1}{2} \cdot \frac{e^{-s/2}}{s/2}$$

$$u(-2t-1) \xrightarrow{\text{L.T.}} -\frac{1}{2} \cdot \frac{e^{s/2}}{s/2} = \frac{-e^{s/2}}{s}$$

4. (a)

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) \cdot z^{-n} = 1 + z^{-1} - z^{-2} - z^{-3}$$

$$X\left(\frac{1}{2}\right) = 1 + 2 - 4 - 8 = -9$$

5. (a

System transfer function using laplace transform would be,

$$H(s) = \frac{Y(s)}{X(s)} = \frac{Ls}{R + Ls} = 1 - \frac{R/L}{(R/L) + s}$$

taking inverse laplace transform

$$h(t) = \delta(t) - \frac{R}{L}e^{-(R/L)t}$$

for stability of any system,

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

$$\int_{-\infty}^{\infty} |h(t)| dt = \int_{0}^{\infty} \left| \delta(t) - \frac{R}{L} e^{-(R/L)t} \right| dt = 1 - \left[\frac{R}{L} \frac{e^{-(R/L)t}}{(-R/L)} \right]_{0}^{\infty}$$
$$= 1 - (0+1) = 0$$

$$\int_{-\infty}^{\infty} |h(t)dt| < \infty$$

so system is BIBO stable.

6. (c)

We first apply time-shifting operation to find,

$$y(n) = x(n-1) = \{3, 4, 5, 6\}$$

$$y\left(\frac{n}{2}\right) = x(0.5n - 1) = \left\{3, 0, 4, 0, 5, 0, 6, 0\right\}$$

7. (c)

$$x(t) = \underbrace{4\cos\left(\frac{2\pi}{3}t + 40^{\circ}\right)}_{x_{1}(t)} + \underbrace{3\sin\left(\frac{4\pi}{5}t + 20^{\circ}\right)}_{x_{2}(t)}$$

$$\rho_1 = \frac{2\pi}{3}$$

$$\omega_1 = \frac{2\pi}{3} \qquad \Rightarrow \qquad T_1 = \frac{2\pi}{\omega_1} = \frac{2\pi}{2\pi/3} = 3$$

$$o_1 = \frac{4\pi}{5}$$

$$\omega_1 = \frac{4\pi}{5} \qquad \Rightarrow \qquad T_2 = \frac{2\pi}{4\pi/5} = \frac{5}{2}$$

$$T = LCM \text{ of } (T_1, T_2)$$

$$\frac{T_1}{T_2} = \frac{3}{5/2} = \frac{6}{5}$$

$$T = 3 \times 5 \text{ or } 6 \times \frac{5}{2} = 15 \text{ sec}$$

$$e^{-(2t-2)} u(t-1) = e^{-2(t-1)} u(t-1)$$

Now,

 \Rightarrow

$$e^{-2t} u(t) \leftrightarrow \frac{1}{2+j\omega}$$

$$e^{-2(t-1)} u(t-1) \leftrightarrow \frac{e^{-j\omega}}{2+j\omega}$$

9. (c)

Overall impulse response is,

$$h_3(t) = h_1(t) * h_2(t)$$

= $\delta(t+1) * e^{-t} u(t)$
= $e^{-(t+1)} u(t+1)$

10. (d)

$$u[n] \leftrightarrow \frac{1}{1 - z^{-1}}, |z| > 1$$

$$u[n+2] \leftrightarrow \frac{z^2}{1 - z^{-1}}, |z| > 1$$

$$u[-n+2] \leftrightarrow \frac{z^{-2}}{1 - z}, |z| < 1 = \frac{z^{-1}}{z - z^2}, |z| < 1$$

11. (c)

Given, the Causal LTI system,

and output,
$$y(t) = e^{-3t} u(t) - e^{-4t} u(t)$$

$$x(t) \qquad h(t) \qquad y(t)$$
We know that,
$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$$

$$Y(j\omega) = \frac{1}{3+j\omega} - \frac{1}{4+j\omega} = \frac{1}{(3+j\omega)(4+j\omega)}$$

$$X(j\omega) = \frac{Y(j\omega)}{H(j\omega)} = \frac{1}{4+j\omega}$$

By inverse Fourier transform of $X(j\omega)$, we have,

$$x(t) = e^{-4t} u(t)$$

12. (b)

Given,
$$y(t) = e^{-t} u(t) * \sum_{k=-\infty}^{\infty} \delta(t-2k)$$
$$= e^{-t} u(t) * (..... + \delta(t+4) + \delta(t+2) + \delta(t) + \delta(t-2) + \delta(t-4) +)$$

Using convolution property of impulse response,

i.e.,
$$x(t) * \delta(t - t_0) = x(t - t_0)$$

$$y(t) = \dots + e^{-(t+4)}u(t+4) + e^{-(t+2)}u(t+2) + e^{-t}u(t) + e^{-(t-2)}u(t-2) + e^{-(t-4)}u(t-4)$$

In the range $0 \le t < 2$, we may write y(t) as,

$$y(t) = \left[\dots + e^{-(t+4)} u(t+4) + e^{-(t+2)} u(t+2) + e^{-t} u(t) + e^{-(t-2)} u(t-2) + e^{-(t-4)} u(t-4) + \dots \right] (u(t) - u(t-2))$$

$$= \left(e^{-t} + e^{-(t+2)} + e^{-(t+4)} + \dots \right); \quad 0 \le t < 2$$

$$= e^{-t} \left(1 + e^{-2} + e^{-4} + \dots \right); \quad 0 \le t < 2$$

$$= e^{-t} \left[\frac{1}{1 - e^{-2}} \right]; \quad 0 \le t < 2$$

$$\therefore \qquad y(t) = Ae^{-t} \text{ for } 0 \le t < 2$$

$$\therefore \qquad A = \frac{1}{1 - e^{-2}}$$

13. (b)

Linearity: $x_1(t) \to 3x_1(\sin t) = y_1(t)$

 $x_2(t) \to 3x_2(\sin t) = y_2(t)$

 $x_1(t) + x_2(t) \to 3[x_1(\sin t) + x_2(\sin t)] = y_1(t) + y_2(t) \Rightarrow \text{System is linear.}$

Causality:

At $t = -\pi$, $y(-\pi) = 3x(0) \Rightarrow \text{Non-causal.}$

14. (b)

For
$$x_2[n] = -\delta[n-2]$$
, $y_2(n) = -y(n-2) \Rightarrow \frac{2 + \frac{1}{3} + \frac{1}{3}}{\frac{1}{3} + \frac{1}{3}}$ $y(n) = y_1(n) + y_2(n) \Rightarrow \frac{1}{3} + \frac{1}{3}$

15. (a)

Given,
$$X(z) = \frac{10 - 8z^{-1}}{2 - 5z^{-1} + 2z^{-2}} = \frac{2}{(2 - z^{-1})} + \frac{4}{(1 - 2z^{-1})}$$
$$X(z) = \frac{2z}{2z - 1} + \frac{4z}{z - 2}$$
$$X(z) = \frac{z}{\left(z - \frac{1}{2}\right)} + \frac{4z}{(z - 2)}$$

Since, ROC includes unit circle,

 \therefore ROC of X(z) is $\frac{1}{2} < |z| < 2$

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - 4(2^n) u[-n-1]$$

 $x(1) = \frac{1}{2} = 0.5$::

16. (c)

Integration is linear system

Time-variant (or) time invariant system:

Delay input by t_0 units

$$= \frac{1}{T} \int_{t-T/2}^{t+T/2} x(\tau - t_0) d\tau \qquad ...(i)$$

Delay output by t_o units (or) substitute $(t - t_0)$ in the place of t.

$$y(t - t_0) = \frac{1}{T} \int_{t - t_0 - T/2}^{t - t_0 + T/2} x(\tau) d\tau \qquad ...(ii)$$

From equation (i) and (ii), we can say equation (i) = equation (ii),

:. The given system is time invariant.

Causal (or) Non-causal system:

$$y(t) = \frac{1}{T} \int_{t-T/2}^{t+T/2} x(\tau) d\tau$$

Let,

$$T = 4$$

$$y(0) = \frac{1}{4} \int_{-2}^{2} x(\tau) d\tau$$

here, y(0) depends on future value x(2).

∴ The given system is non-causal system.

17. (c)

$$x_{1}(t) \xrightarrow{\text{L.T.}} \frac{1}{s+2}$$

$$x_{2}(t) \xrightarrow{\text{L.T.}} \frac{1}{s+3}$$

$$x_{1}(t-2) \xrightarrow{\text{L.T.}} \frac{e^{-2s}}{s+2}$$

$$x_{2}(t+3) \xrightarrow{\text{L.T.}} \frac{e^{3s}}{s+3}$$

$$x_{2}(-t+3) \xrightarrow{\text{L.T.}} \frac{e^{-3s}}{3-s}$$

$$\therefore y(t) \xrightarrow{\text{L.T.}} \frac{e^{-2s}}{(s+2)} \cdot \frac{e^{-3s}}{(3-s)}$$

$$y(t) \xrightarrow{\text{L.T.}} \frac{e^{-5s}}{(s+2)(3-s)}$$

18. (b)

By applying Laplace transform on differential equation,

$$s^{2}Y(s) + 2sY(s) - 3Y(s) = X(s)$$

$$Y(s) [s^{2} + 2s - 3] = X(s)$$

$$\frac{Y(s)}{X(s)} = \frac{1}{s^{2} + 2s - 3} = \frac{1}{(s - 1)(s + 3)}$$

$$= \frac{A}{s - 1} + \frac{B}{s + 3}$$

$$= \frac{1/4}{s - 1} - \frac{1/4}{s + 3}$$

Given system is stable:

$$h(t) = -\frac{1}{4}e^{-3t}u(t) - \frac{1}{4}e^{t}u(-t)$$

19. (c)

$$y[n] = h[n] * x[n]$$

$$= h[n] * 3\delta[n - 2]$$

$$h[n] = \frac{1}{3}y[n+2]$$

$$y[n] = \left[\frac{1}{2}\left(\frac{-1}{2}\right)^{n-2} + \frac{1}{2}\left(\frac{1}{4}\right)^{n-2}\right]u[n-2]$$

$$h[n] = \frac{1}{3}\left[\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)^{n-2+2} + \frac{1}{2}\left(\frac{1}{4}\right)^{n-2+2}\right]u[n+2-2]$$

$$= \frac{1}{6}\left(\left(-\frac{1}{2}\right)^{n} + \left(\frac{1}{4}\right)^{n}\right)u[n]$$

20.

- h[n] = 0 for $n < 0 \implies$ causal
- $\sum_{n=-\infty}^{\infty} |h[n]|$ is finite \Rightarrow stable

www.madeeasy.in © Copyright: MADE EASY

21. (b)

We have,

$$\frac{1}{s} \stackrel{L^{-1}}{\longleftrightarrow} u(t)$$

$$\frac{e^{-3s}}{s} \leftarrow \stackrel{L^{-1}}{\longleftrightarrow} u(t-3)$$

(Time shifting)

$$\frac{d}{ds} \left(\frac{e^{-3s}}{s} \right) \longleftrightarrow -tu(t-3)$$

(Differentiation in s-domain)

$$\frac{1}{s}\frac{d}{ds}\left(\frac{e^{-3s}}{s}\right) \longleftrightarrow \int_{-\infty}^{t} -\tau u(\tau - 3)d\tau$$

$$x(t) = -\int_{3}^{t} \tau d\tau = -\left(\frac{t^{2}}{2}\right)_{3}^{t}; t > 3$$

$$x(t) = -\frac{1}{2}(t^2 - 9)u(t - 3)$$

22. (a)

$$X(z) = \frac{z^2 + 5z}{z^2 - 2z - 3} = \frac{z(z+5)}{(z-3)(z+1)}$$

$$\frac{X(z)}{z} = \frac{z+5}{(z-3)(z+1)} = \frac{2}{z-3} - \frac{1}{z+1}$$

Thus,

$$X(z) = \frac{2z}{z-3} - \frac{z}{z+1}$$

ROC : |z| < 1, which is not exterior of circle outside the outermost pole z = 3

So, x[n] is anti-causal given as,

$$x[n] = [-2(3)^n + (-1)^n] u[-n -1]$$

23. (d)

$$\left(\frac{\sin 10^4 \pi t}{\pi t}\right) \Rightarrow f_{1 \text{ max}} = \frac{10^4 \pi}{2\pi} = 5 \text{ kHz}$$

$$\left(\frac{\sin 2 \times 10^4 \pi t}{\pi t}\right) \Rightarrow f_{2\max} = 10 \,\text{kHz}$$

$$f_s = 2[\min \text{ of } (f_{1 \max'} f_{2 \max})]$$

= 2 × 5 = 10 kHz.

$$x\left(\frac{t-2}{3}\right) = x\left(\frac{t}{3} - \frac{2}{3}\right)$$
Now,
$$x\left(t - \frac{2}{3}\right) \leftrightarrow e^{\frac{2}{3}s}X(s)$$

$$x\left(\frac{t}{3} - \frac{2}{3}\right) \leftrightarrow \frac{1}{\left|\frac{1}{3}\right|}e^{-\frac{2}{3}\frac{s}{1/3}}X\left(\frac{s}{1/3}\right)$$

$$\Rightarrow x\left(\frac{t-2}{3}\right) \leftrightarrow 3e^{-2s}X(3s)$$

25.

(b)
$$X(s) - \frac{3H(s)}{s^2} = H(s)$$

$$X(s) = \left(1 + \frac{3}{s^2}\right)H(s)$$

$$2H(s) + \frac{H(s)}{s} = Y(s)$$

$$\left(2 + \frac{1}{s}\right)H(s) = Y(s)$$

$$(2 + \frac{1}{s})\frac{X(s)}{\left(1 + \frac{3}{s^2}\right)} = Y(s)$$

$$\Rightarrow \frac{Y(s)}{X(s)} = \frac{2 + \frac{1}{s}}{\frac{3}{s^2} + 1} = \frac{s + 2s^2}{3 + s^2}$$

$$\Rightarrow \frac{d^2y(t)}{dt^2} + 3y(t) = \frac{dx(t)}{dt} + 2\frac{d^2x(t)}{dt^2}$$

$$5 \sin \left(2t + \frac{\pi}{4}\right) \qquad h(t) = te^{-|t|}$$

$$5 \left|H(j\omega_0)\right| \sin\left(2t + \frac{\pi}{4} + \angle H(j\omega_0)\right)$$

$$\omega_0 = 2 \text{ rad/sec}$$

$$h(t) = te^{-|t|}$$

$$H(j\omega) = j\frac{d}{d\omega} \left(\frac{2}{1 + \omega^2}\right) = \frac{-4j\omega}{(1 + \omega^2)^2}$$

$$\left|H(j\omega_0)\right| = \left|\frac{-4j(2)}{(1 + 4)^2}\right| = \frac{8}{25} \qquad (\omega_0 = 2 \text{ rad/sec})$$

$$\angle H(j\omega_0) = -90^\circ$$

output =
$$5 \times \frac{8}{25} \sin\left(2t + \frac{\pi}{4} - \frac{\pi}{2}\right) = \frac{8}{5} \sin\left(2t - \frac{\pi}{4}\right)$$

= $\frac{8}{5} \left(\frac{\sin 2t}{\sqrt{2}} - \frac{\cos 2t}{\sqrt{2}}\right)$
= $\frac{8}{5\sqrt{2}} (\sin 2t - \cos 2t)$
= 1.13 (sin 2t - cos 2t)

27. (b)

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} [f(t)\cos\omega t - jf(t)\sin\omega t] dt$$

$$= \int_{-\infty}^{\infty} f(t)\cos\omega t dt - j\int_{-\infty}^{\infty} f(t)\sin\omega t dt$$

 $f(t) \Rightarrow \text{even signal}$

 $f(t) \cos \omega t \Rightarrow \text{even signal}$

 $f(t) \sin \omega t \Rightarrow \text{odd signal}$

$$\int_{-\infty}^{\infty} f(t) \sin \omega t \ dt = 0$$

$$\int_{-\infty}^{\infty} f(t) \cos \omega t \, dt = 2 \int_{0}^{\infty} f(t) \cos \omega t \, dt$$

$$F(\omega) = 2\int_{0}^{\infty} f(t)\cos\omega t \, dt$$

28. (c

We know that, unit impulse let x(t),

for
$$x(t) = \delta(t)$$

$$\delta(t) \stackrel{LT}{\longleftrightarrow} 1$$
for
$$\frac{d}{dt}x(t) \stackrel{LT}{\longleftrightarrow} sX(s)$$

$$\frac{d}{dt}\delta(t) \stackrel{LT}{\longleftrightarrow} s$$

$$\frac{d^2}{dt^2}\delta(t) \stackrel{LT}{\longleftrightarrow} s^2$$

29. (b)

Given,

$$X(s) = \log(s + 2) - \log(s + 3)$$

Differentiating both the sides with respect to s

$$\frac{d}{ds}X(s) = \frac{1}{s+2} - \frac{1}{s+3}$$
 ...(i)

From the properties of Laplace transform, we know that,

$$tx(t)\longleftrightarrow -\frac{d}{ds}X(s)$$

Thus equation (i) can be written as,

$$-tx(t) = [e^{-2t} - e^{-3t}]u(t)$$

or,

$$x(t) = \left\lceil \frac{e^{-3t} - e^{-2t}}{t} \right\rceil u(t)$$

30. (d)

$$C_k = i\delta(k+2) - i\delta(k-2) + 2\delta(k+3) + 2\delta(k-3)$$

$$x(t) = \sum_{k=-\infty}^{\infty} C_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} C_k e^{jk\pi t}$$
$$= je^{-j2\pi t} - je^{j2\pi t} + 2e^{-j3\pi t} + 2e^{j3\pi t}$$
$$= 4\cos(3\pi t) + 2\sin(2\pi t)$$