Using MaBoSS with pyMaBoSS via CoLoMoTo jupyter notebook

Vincent Noël¹

¹Computational Systems Biology of Cancer, Institut Curie, INSERM U900, Mines ParisTech, PSL Research University, Paris

Computational Systems Biology for Complex Human Disease from static to dynamic representations of disease mechanisms

December 5, 2022

- Initially developped by Nicolas Levy
- Maintained by Aurelien Naldi, Loic Pauleve, me https://github.com/colomoto/pyMaBoSS
- Available on Pypi:
 - \$ pip install maboss
- Available on Conda:
 - \$ conda install -c colomoto pymaboss

Aurelien Naldi

Nicolas Levy

Loïc Paulevé

Vincent Noël

Loading a model

```
In [1]: import maboss
model = maboss.load("metastasis.bnd", "metastasis.cfg")

In []: sbml_model = maboss.loadSBML("Cohen.sbml", "metastasis.cfg")

In []: bnet_model = maboss.loadBNet("Cohen.bnet", "metastasis.cfg")
```

 MaBoSS is directly compatible with SBML, BNet, and MaBoSS proprietary format for network representation

> Running a simulation

```
import maboss
model = maboss.load("metastasis.bnd", "metastasis.cfg")
res = model.run()
res.plot_piechart()
```


nes of code to simulate the model and plot the final states distribution

> Changing output nodes

```
model.network.set_output(["Apoptosis", "Invasion"])
res = model.run()
res.plot_piechart()
```


Controlling which node is included in the results (Ex: remove CellCycleArrest)

> Changing initial states

```
model.network.set_istate("ECMicroenv", [0, 1])
model.network.set_istate("DNAdamage", [0, 1])
res = model.run()
res.plot_piechart()
```


Simulating with specific initial values

Simulating mutations

```
model_mutant = model.copy()
model_mutant.mutate('NICD','ON')
model_mutant.mutate('p53','OFF')
res_mutant = model_mutant.run()
res_mutant.plot_piechart()
```


> Results : State probability distribution trajectories

Visualizing state probability trajectories

> Results : Nodes probability trajectories

Visualizing state probability trajectories

> Results : State probability distribution trajectories values

res.get_states_probtraj()

	<nil></nil>	Apoptosis	Apoptosis CellCycleArrest	CellCycleArrest	Invasion	Invasion Apoptosis	Invasion Apoptosis CellCycleArrest
0.0	0.927211	0.036734	0.002495	0.008816	0.023224	0.001194	0.000086
0.5	0.682001	0.124939	0.035559	0.056035	0.081564	0.012353	0.002428
1.0	0.485872	0.146506	0.109373	0.103834	0.104372	0.022607	0.010071
38.0	0.202716	0.000000	0.434370	0.061990	0.000004	0.000000	0.000000
38.5	0.202714	0.000000	0.434370	0.061996	0.000000	0.000000	0.000000
39.0	0.202719	0.000000	0.434370	0.061991	0.000000	0.000000	0.000000

> Results : Nodes probability trajectories values

res.get nodes probtraj()

	Apoptosis	CellCycleArrest	Invasion
0.0	0.040509	0.011637	0.024744
0.5	0.175279	0.099143	0.101466
1.0	0.288557	0.240643	0.154415
38.0	0.434370	0.797280	0.300924
38.5	0.434370	0.797286	0.300920
39.0	0.434370	0.797281	0.300920

the node probability trajectories as Panda dataframes

Results : Last state probability distributions

	Apoptosis	CellCycleArrest	Invasion
39.0000	0.43437	0.797281	0.30092

Getting the last state probability distribution as Panda dataframes

- > Hands on
 - Load Montagud's model
 - Simulate and plot default model
 - Simulate and plot model with all initial values at zero
 - Simulate proliferative conditions
 - > Simulate proliferative conditions with MYC_MAX inhibition

- > Hands on
 - Simulate a batch in inhibitions
 - > Filter inhibition with zero proliferation and report which ones
 - Simulate default conditions for all personalized models, and build a dataframe which all the final states. Report min/max apoptosis
 - Simulate proliferative conditions with MYC_MAX inhibition for all personalized models, build dataframe with all the final states
 - Filter patients with less than 10% of Proliferation and report them