L09 K-means Algorithm

Ivan Slapničar

May 8, 2018

1 K-means Algorithm

Data clustering is one of the main mathematical applications variety of algorithms have been developed to tackle the problem. K-means is one of the basic algorithms for data clustering.

1.1 Prerequisites

The reader should be familiar with basic linear algebra.

1.2 Competences

The reader should be able to recognise applications where K-means algorithm can be efficiently used and use it.

Credits: The notebook is based on [Mir05].

References

[Mir05] I. Mirošević, 'Spectral Graph Partitioning and Application to Knowledge Extraction', M.Sc. Thesis, University of Zagreb, 2005 (in Croatian).

1.3 Definitions

Data clustering problem is the following: partition the given set of m objects of the same type into k subsets according to some criterion. Additional request may be to find the optimal k.

K-means clustering problem is the following: partition the set $X = \{x_1, x_2, \cdots, x_m\}$, where $x_i \in \mathbb{R}^n$, into k clusters $\pi = \{C_1, C_2, ..., C_k\}$ such that

$$J(\pi) = \sum_{i=1}^{k} \sum_{x \in C_i} ||x - c_i||_2^2 \to \min$$

over all possible partitions. Here $c_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$ is the mean of points in C_i and $|C_i|$ is the cardinality of C_i .

K-means clustering algorithm is the following: 1. *Initialization*: Choose initial set of k means $\{c_1, \ldots, c_k\}$ (for example, by choosing randomly k points from X). 2. *Assignment step*: Assign each point x to one nearest mean c_i . 3. *Update step*: Compute the new means. 4. *Convergence*: Repeat Steps 2 and 3 until the assignment no longer changes.

A first variation of a partition $\pi = \{C_1, \dots, C_k\}$ is a partition $\pi' = \{C'_1, \dots, C'_k\}$ obtained by moving a single point x from a cluster C_i to a cluster C_i . Notice that π is a first variation of itself.

A **next partition** of the partition π is a partition $next(\pi) = \underset{\pi'}{\operatorname{argmin}} J(\pi')$.

First Variation clustering algorithm is the following: 1. Choose initial partition π . 2. Compute $next(\pi)$ 3. If $J(next(\pi)) < J(\pi)$, set $\pi = next(\pi)$ and go to Step 2 4. Stop.

1.4 Facts

- 1. The k-means clustering problem is NP-hard.
- 2. In the k-means algorithm, $J(\pi)$ decreases in every iteration.
- 3. K-means algorithm can converge to a local minimum.
- 4. Each iteration of the k-means algorithm requires O(mnk) operations.
- 5. K-means algorithm is implemented in the function kmeans() in the package Clustering.jl.
- 6. $J(\pi) = \operatorname{trace}(S_W)$, where

$$S_W = \sum_{i=1}^k \sum_{x \in C_i} (x - c_i)(x - c_i)^T = \sum_{i=1}^k \frac{1}{2|C_i|} \sum_{x \in C_i} \sum_{y \in C_i} (x - y)(x - y)^T.$$

Let *c* denote the mean of *X*. Then $S_W = S_T - S_B$, where

$$S_T = \sum_{x \in X} (x - c)(x - c)^T = \frac{1}{2m} \sum_{i=1}^m \sum_{j=1}^m (x_i - x_j)(x_i - x_j)^T,$$

$$S_B = \sum_{i=1}^k |C_i|(c_i - c)(c_i - c)^T = \frac{1}{2m} \sum_{i=1}^k \sum_{j=1}^k |C_i||C_j|(c_i - c_j)(c_i - c_j)^T.$$

- 7. In order to try to avoid convergence to local minima, the k-means algorithm can be enhanced with first variation by adding the following steps:
 - 1. Compute $next(\pi)$.
 - 2. If $J(next(\pi)) < J(\pi)$, set $\pi = next(\pi)$ and go to Step 2.

1.4.1 Example - Random clusters

We generate *k* random clusters around points with integer coordinates.

```
In [1]: function myKmeans(X::Array, k::Int64)
            # X is Array of Arrays
            m,n=length(X),length(X[1])
            T=typeof((X[1])[1])
            C=Array{Int64}(m)
            \# Choose random k means among X
            c=X[randperm(m)[1:k]]
            # This is just to start the while loop
            cnew=copy(c)
            cnew[1] = cnew[1] + [one(T); one(T)]
            # Loop
            iterations=0
            while cnew!=c
                iterations+=1
                cnew=copy(c)
                # Assignment
                for i=1:m
                    C[i]=findmin([norm(X[i]-c[j]) for j=1:k])[2]
                end
                # Update
                for j=1:k
                    c[j]=mean(X[C.==j])
            end
            C,c,iterations
        end
Out[1]: myKmeans (generic function with 1 method)
In [2]: # Pkg.checkout("Winston")
        using Winston
        using Colors
In [3]: # Generate points
        k=5
        s=srand(421)
        centers=rand(-5:5,k,2)
        # Number of points in cluster
        sizes=rand(10:50,k)
        # X is array of arrays
        X=Array{Array{Float64,1}}(sum(sizes))
        first=0
        last=0
        for j=1:k
            first=last+1
            last=last+sizes[j]
            for i=first:last
```

Out[4]:


```
# Custers
            for j=1:k
                # Random color
                col=RGB(rand(),rand(),rand())
                p1=Points(x[find(C.==j)],y[find(C.==j)],
                "color",col,symbolkind="dot")
                add(p,p1)
            end
            # Means
            cx,cy=extractxy(c)
            p2=Points(cx,cy,color="red",symbolkind="plus")
            add(p,p2)
        end
Out[5]: plotKmeansresult (generic function with 1 method)
In [6]: # Cluster the data, repeat several times
        C,c,iterations=myKmeans(X,k)
        plotKmeansresult(C,c,X)
```

Out[6]:

What happens?

We see that the algorithm, although simple, may converge to a local minimum.

Let us try the function kmeans() from the package Clustering.jl. In this function, the inpout is a matrix where columns are points, number of cluster we are looking for, and, optionally, the method to compute initial means.

If we choose init=:rand, the results are similar. If we choose init=:kmpp, wjich is the default, the results are better, but convergence to a local minimum is still possible.

Run the clustering several times!

```
seeding_algorithm(s::Symbol) =
    s == :rand ? RandSeedAlg() :
    s == :kmpp ? KmppAlg() :
   s == :kmcen ? KmCentralityAlg() :
    error("Unknown seeding algorithm $s")
In [7]: # Pkg.add("Clustering")
        using Clustering
In [8]: methods(kmeans)
Out[8]: # 1 method for generic function "kmeans":
        kmeans(X::Array{T,2}, k::Int64; weights, init, maxiter, tol, display, distance) where T<
In [9]: X1=[x y]'
        out=kmeans(X1,k,init=:kmpp)
Out[9]: Clustering.KmeansResult{Float64}([-3.99062 4.00132 ... -3.02492 -5.02088; 2.01964 0.0030
In [10]: fieldnames(KmeansResult)
Out[10]: 8-element Array{Symbol,1}:
          :centers
          :assignments
          :costs
          :counts
          :cweights
          :totalcost
          :iterations
          :converged
In [11]: out.centers
Out [11]: 2\times5 Array{Float64,2}:
          -3.99062 4.00132
                                -2.9848
                                          -3.02492
                                                      -5.02088
           2.01964 0.00302082 -3.01761 -0.0305806 3.01373
```

```
In [12]: println(out.assignments)
In [13]: # We need to modify the plotting function
       function plotKmeansresult(out::KmeansResult,X::Array)
           p=FramedPlot()
           # Custers
           k=size(out.centers,2)
           for j=1:k
              # Random color
              col=RGB(rand(),rand(),rand())
              p1=Points(X[1,find(out.assignments.==j)],
              X[2,find(out.assignments.==j)],"color",col,symbolkind="dot")
              add(p,p1)
           end
           # Means
           p2=Points(out.centers[1,:],out.centers[2,:],
           color="red",symbolkind="plus")
           add(p,p2)
       end
Out[13]: plotKmeansresult (generic function with 2 methods)
In [14]: plotKmeansresult(out,X1)
Out[14]:
```


1.4.2 Example - Concentric rings

The k-means algorithm works well if clusters can be separated by hyperplanes. In this example it is not the case.

```
\label{eq:first} \begin{array}{l} \text{first=last+1} \\ \text{last=last+sizes[j]} \\ \text{\# Random angles} \\ \phi = 2*\pi*\text{rand(sizes[j])} \\ \text{for i=first:last} \\ \text{l=i-first+1} \\ \text{X[:,i]=center+radii[j]*[cos($\phi[1]$);sin($\phi[1]$)]+(rand(2)-0.5)/50} \\ \text{end} \\ \text{end} \\ \text{plot(X[1,:],X[2,:],".")} \end{array}
```

Out[16]:

Out[17]:

In []: