Curs ID1

Cuprins

- 1 Logica propozițională PL (recap.)
- 2 Logica de ordinul I sintaxa
- 3 Logica de ordinul I semantica
- 4 Substituții și unificare

Logica propozițională PL (recap.)

- □ O propoziție este un enunț care poate fi adevărat (1) sau fals (0).
- □ Propozițiile sunt notate simbolic $(\varphi, \psi, \chi, \cdots)$ și sunt combinate cu ajutorul conectorilor logici $(\neg, \rightarrow, \lor, \land, \leftrightarrow)$.

- □ O propoziție este un enunț care poate fi adevărat (1) sau fals (0).
- □ Propozițiile sunt notate simbolic $(\varphi, \psi, \chi, \cdots)$ și sunt combinate cu ajutorul conectorilor logici $(\neg, \rightarrow, \lor, \land, \leftrightarrow)$.

Exemplu

Fie φ propoziția:

$$(\mathtt{stark} \land \neg \mathtt{dead}) \to (\mathtt{sansa} \lor \mathtt{arya} \lor \mathtt{bran})$$

- □ O propoziție este un enunț care poate fi adevărat (1) sau fals (0).
- □ Propozițiile sunt notate simbolic $(\varphi, \psi, \chi, \cdots)$ și sunt combinate cu ajutorul conectorilor logici $(\neg, \rightarrow, \lor, \land, \leftrightarrow)$.

Exemplu

Fie φ propoziția:

$$(\mathtt{stark} \land \neg \mathtt{dead}) \rightarrow (\mathtt{sansa} \lor \mathtt{arya} \lor \mathtt{bran})$$

Cine este $\neg \varphi$?

- □ O propoziție este un enunț care poate fi adevărat (1) sau fals (0).
- □ Propozițiile sunt notate simbolic $(\varphi, \psi, \chi, \cdots)$ și sunt combinate cu ajutorul conectorilor logici $(\neg, \rightarrow, \lor, \land, \leftrightarrow)$.

Exemplu

Fie φ propoziția:

$$(\mathtt{stark} \land \neg \mathtt{dead}) \rightarrow (\mathtt{sansa} \lor \mathtt{arya} \lor \mathtt{bran})$$

Cine este $\neg \varphi$? Propoziția $\neg \varphi$ este:

 $\operatorname{stark} \wedge \neg \operatorname{dead} \wedge \neg \operatorname{sansa} \wedge \neg \operatorname{arya} \wedge \neg \operatorname{bran}$

```
□ Limbajul PL
□ variabile propoziționale: VP = \{p, q, v, ...\}
□ conectori logici: ¬ (unar), →, ∧, ∨, ↔ (binari)
□ Formulele PL
var ::= p \mid q \mid v \mid ...
form ::= var \mid (\neg form) \mid form \land form \mid form \lor form
\mid form \rightarrow form \mid form \leftrightarrow form
```

```
□ Limbajul PL
□ variabile propoziționale: VP = \{p, q, v, ...\}
□ conectori logici: ¬ (unar), →, ∧, ∨, ↔ (binari)
□ Formulele PL
var ::= p \mid q \mid v \mid ...
form ::= var \mid (\neg form) \mid form \land form \mid form \lor form
\mid form \rightarrow form \mid form \leftrightarrow form
```

Exemplu

- Nu sunt formule: $v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$
- Sunt formule: $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$

□ Limbajul PL
□ variabile propoziţionale: $VP = \{p, q, v, ...\}$ □ conectori logici: ¬ (unar), →, ∧, ∨, ↔ (binari)
□ Formulele PL $var ::= p \mid q \mid v \mid ...$ $form ::= var \mid (\neg form) \mid form \land form \mid form \lor form$ $\mid form \rightarrow form \mid form \leftrightarrow form$

Exemplu

- Nu sunt formule: $v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$
- Sunt formule: $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$
- □ Notăm cu Form multimea formulelor.

- □ Limbajul PL
 - \square variabile propoziționale: $VP = \{p, q, v, \ldots\}$
 - \square conectori logici: \neg (unar), \rightarrow , \land , \lor , \leftrightarrow (binari)
- ☐ Formulele PL

$$var ::= p \mid q \mid v \mid \dots$$

 $form ::= var \mid (\neg form) \mid form \land form \mid form \lor form$
 $\mid form \rightarrow form \mid form \leftrightarrow form$

- □ Conectorii sunt împărțiți în conectori de bază și conectori derivați (în funcție de formalism).
- ☐ Legături între conectori:

$$\begin{array}{rcl}
\varphi \lor \psi & := & \neg \varphi \to \psi \\
\varphi \land \psi & := & \neg (\varphi \to \neg \psi) \\
\varphi \leftrightarrow \psi & := & (\varphi \to \psi) \land (\psi \to \varphi)
\end{array}$$

Sintaxa și semantica

Un sistem logic are două componente:

□ Sintaxa

□ Semantica

Sintaxa și semantica

Un sistem logic are două componente:

- □ Sintaxa
 □ noțiuni sintactice: demonstrație, teoremă
 □ notăm prin $\vdash \varphi$ faptul că φ este teoremă
 □ notăm prin $\Gamma \vdash \varphi$ faptul că formula φ este demonstrabilă din multimea de formule Γ
- □ Semantica

Sintaxa și semantica

Un sistem logic are două componente:

Sintaxa
 noțiuni sintactice: demonstrație, teoremă notăm prin ⊢ φ faptul că φ este teoremă notăm prin Γ ⊢ φ faptul că formula φ este demonstrabilă din mulțimea de formule Γ
Semantica
noțiuni semantice: adevăr, model, tautologie (formulă universal adevărată)
\square notăm prin $dash arphi$ faptul că $arphi$ este tautologie
$lue{}$ notăm prin $\Gamma dash arphi$ faptul că formula $arphi$ este adevărată atunci când
toate formulele din mulțimea Γ sunt adevărate

Exemplu

Formalizați următorul raționament:

If winter is coming and Ned is not alive then Robb is lord of Winterfell. Winter is coming. Rob is not lord of Winterfell. Then Ned is alive.

Exemplu

Formalizați următorul raționament:

If winter is coming and Ned is not alive then Robb is lord of Winterfell. Winter is coming. Rob is not lord of Winterfell. Then Ned is alive.

O posibilă formalizare este următoarea:

p = winter is coming

q = Ned is alive

r =Robb is lord of Winterfel

Exemplu

Formalizați următorul raționament:

If winter is coming and Ned is not alive then Robb is lord of Winterfell. Winter is coming. Rob is not lord of Winterfell. Then Ned is alive.

O posibilă formalizare este următoarea:

```
p = winter is coming q = Ned is alive r = Robb is lord of Winterfel \{(p \land \neg q) \to r, p, \neg r\} \vDash q
```

□ Mulțimea valorilor de adevăr este $\{0,1\}$ pe care considerăm următoarele operații:

X	$\neg x$
0	1
1	0

$$x \lor y := max\{x, y\}$$

$$x \wedge y := min\{x, y\}$$

- \square o funcție $e: VP \rightarrow \{0,1\}$ se numește evaluare (interpretare)
- □ pentru orice evaluare $e: VP \rightarrow \{0,1\}$ există o unică funcție $e^+: Form \rightarrow \{0,1\}$ care verifică următoarele proprietăți:

oricare ar fi $v \in VP$ și φ , $\psi \in Form$.

- \square o funcție $e: VP \rightarrow \{0,1\}$ se numește evaluare (interpretare)
- pentru orice evaluare $e: VP \rightarrow \{0,1\}$ există o unică funcție $e^+: Form \rightarrow \{0,1\}$ care verifică următoarele proprietăți:
 - \square $e^+(v) = e(v)$

 - $\blacksquare e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$

oricare ar fi $v \in VP$ și φ , $\psi \in Form$.

Exemplu

Dacă
$$e(p) = 0$$
 și $e(q) = 1$ atunci

$$e^+(p \lor (p \to q)) = e^+(p) \lor e^+(p \to q) = e(p) \lor (e(p) \to e(q)) = 1$$

Considerăm $\Gamma \cup \{\varphi\} \subseteq Form$.

□ O evaluare $e: VP \to \{0,1\}$ este model al formulei φ dacă $e^+(\varphi) = 1$. Evaluarea e este model al lui Γ dacă $e^+(\Gamma) = \{1\}$, i.e. $e^+(\gamma) = 1$ oricare $\gamma \in \Gamma$.

- □ O evaluare $e: VP \to \{0,1\}$ este model al formulei φ dacă $e^+(\varphi) = 1$. Evaluarea e este model al lui Γ dacă $e^+(\Gamma) = \{1\}$, i.e. $e^+(\gamma) = 1$ oricare $\gamma \in \Gamma$.
- \square O formulă φ este satisfiabilă dacă are un model. O mulțime Γ de formule este satisfiabilă dacă are un model.

- □ O evaluare $e: VP \to \{0,1\}$ este model al formulei φ dacă $e^+(\varphi) = 1$. Evaluarea e este model al lui Γ dacă $e^+(\Gamma) = \{1\}$, i.e. $e^+(\gamma) = 1$ oricare $\gamma \in \Gamma$.
- \square O formulă φ este satisfiabilă dacă are un model. O mulțime Γ de formule este satisfiabilă dacă are un model.
- □ O formulă φ este tautologie (validă, universal adevarată) dacă $e^+(\varphi) = 1$ pentru orice evaluare $e: VP \to \{0,1\}$. Notăm prin $\models \varphi$ faptul că φ este o tautologie.

- □ O evaluare $e: VP \to \{0,1\}$ este model al formulei φ dacă $e^+(\varphi) = 1$. Evaluarea e este model al lui Γ dacă $e^+(\Gamma) = \{1\}$, i.e. $e^+(\gamma) = 1$ oricare $\gamma \in \Gamma$.
- \square O formulă φ este satisfiabilă dacă are un model. O mulțime Γ de formule este satisfiabilă dacă are un model.
- □ O formulă φ este tautologie (validă, universal adevarată) dacă $e^+(\varphi)=1$ pentru orice evaluare $e:VP \to \{0,1\}$. Notăm prin $\models \varphi$ faptul că φ este o tautologie.
- □ O formulă φ este Γ —tautologie (consecință semantică a lui Γ) dacă orice model al lui Γ este și model pentru φ , i.e. $e^+(\Gamma) = \{1\}$ implică $e^+(\varphi) = 1$ pentru orice evaluare $e : VP \to \{0,1\}$. Notăm prin $\Gamma \vDash \varphi$ faptul că φ este o Γ -tautologie.

Cum verificăm că o formulă este tautologie: $\vDash \varphi$?

- \square Fie v_1, \ldots, v_n variabilele care apar în φ .
- \square Cele 2^n evaluări posibile e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

Cum verificăm că o formulă este tautologie: $\vDash \varphi$?

- \square Fie v_1, \ldots, v_n variabilele care apar în φ .
- \square Cele 2^n evaluări posibile e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

v_1	<i>V</i> ₂		V _n	φ
$e_1(v_1)$	$e_1(v_2)$		$e_1(v_n)$	$e_1^+(\varphi)$
$e_2(v_1)$	$e_2(v_2)$		$e_2(v_n)$	$e_2^+(arphi)$
:	:	:	:	:
		•		· + ()
$e_{2^{n}}(v_{1})$	$e_{2^n}(v_2)$		$e_{2^n}(v_n)$	$e_{2^n}^+(\varphi)$

Fiecare evaluare corespunde unei linii din tabel!

Cum verificăm că o formulă este tautologie: $\models \varphi$?

- \square Fie v_1, \ldots, v_n variabilele care apar în φ .
- \square Cele 2^n evaluări posibile e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

<i>v</i> ₁	<i>V</i> ₂		V _n	φ
$e_1(v_1)$	$e_1(v_2)$		$e_1(v_n)$	$e_1^+(\varphi)$
$e_2(v_1)$	$e_2(v_2)$		$e_2(v_n)$	$e_2^+(arphi)$
:	:	:	:	:
$e_{2^n}(v_1)$	$e_{2^n}(v_2)$		$e_{2^n}(v_n)$	$e_{2^n}^+(\varphi)$

Fiecare evaluare corespunde unei linii din tabel!

 $\square dash arphi$ dacă și numai dacă $e_1^+(arphi) = \dots = e_{2^n}^+(arphi) = 1$

☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- ☐ În cazul în care formula conțin *n* variabile, tabelul de adevăr are 2ⁿ rânduri. Această metodă este atât de costisitoare computațional (timp exponențial).

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- ☐ În cazul în care formula conțin *n* variabile, tabelul de adevăr are 2ⁿ rânduri. Această metodă este atât de costisitoare computațional (timp exponențial).

Este posibil să decidem problema consecinței logice în cazul propozițional printr-un algoritm care să funcționeze în timp polinomial?

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- ☐ În cazul în care formula conțin *n* variabile, tabelul de adevăr are 2ⁿ rânduri. Această metodă este atât de costisitoare computațional (timp exponențial).
- ☐ Problemă deschisă de un milion de dolari:

Este posibil să decidem problema consecinței logice în cazul propozițional printr-un algoritm care să funcționeze în timp polinomial?

Echivalent, este adevărată P = NP? (Institutul de Matematica Clay – Millennium Prize Problems)

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- ☐ În cazul în care formula conțin *n* variabile, tabelul de adevăr are 2ⁿ rânduri. Această metodă este atât de costisitoare computațional (timp exponențial).
- ☐ Problemă deschisă de un milion de dolari:

Este posibil să decidem problema consecinței logice în cazul propozițional printr-un algoritm care să funcționeze în timp polinomial?

Echivalent, este adevărată P = NP? (Institutul de Matematica Clay – Millennium Prize Problems)

□ SAT este problema satisfiabilității în calculul propozițional clasic. SAT-solverele sunt bazate pe metode sintactice.

Clauze propoziționale definite

O clauză propozițională definită este o formulă care poate avea una din formele:

1 0

unde q, p_1, \ldots, p_n sunt variabile propoziționale

Clauze propoziționale definite

O clauză propozițională definită este o formulă care poate avea una din formele:

```
1 q (un fapt în Prolog q.)
2 p_1 \wedge \ldots \wedge p_k \to q (o regulă în Prolog q:-p_1,\ldots,p_k)
```

unde q, p_1, \ldots, p_n sunt variabile propoziționale

Clauze propoziționale definite

□ O clauză propozițională definită este o formulă care poate avea una din formele:

unde q, p_1, \ldots, p_n sunt variabile propoziționale

□ Numim variabilele propoziționale atomi.

□ O clauză propozițională definită este o formulă care poate avea una din formele:

```
1 q (un fapt în Prolog q.)
2 p_1 \wedge ... \wedge p_k \rightarrow q (o regulă în Prolog q: -p_1,...,p_k)
unde q, p_1,...,p_n sunt variabile propoziționale
```

Numim variabilele propoziționale atomi.

Programare logică - cazul logicii propoziționale

 \square Un "program logic" este o listă Cd_1, \ldots, Cd_n de clauze definite.

□ O clauză propozițională definită este o formulă care poate avea una din formele:

```
1 q (un fapt în Prolog q.)
2 p_1 \wedge \ldots \wedge p_k \to q (o regulă în Prolog q :- p_1, \ldots, p_k)
```

unde q, p_1, \ldots, p_n sunt variabile propoziționale

Numim variabilele propoziţionale atomi.

Programare logică - cazul logicii propoziționale

- \square Un "program logic" este o listă Cd_1, \ldots, Cd_n de clauze definite.
- \square O întrebare este o listă q_1, \ldots, q_m de atomi.

□ O clauză propozițională definită este o formulă care poate avea una din formele:

unde q, p_1, \ldots, p_n sunt variabile propoziționale

Numim variabilele propoziţionale atomi.

Programare logică - cazul logicii propoziționale

- \square Un "program logic" este o listă Cd_1, \ldots, Cd_n de clauze definite.
- \square O întrebare este o listă q_1, \ldots, q_m de atomi.
- ☐ Sarcina sistemului este să stabilească:

$$Cd_1,\ldots,Cd_n\vDash q_1\wedge\ldots\wedge q_m.$$

Exemplu

```
Cd_1: oslo \rightarrow windy Cd_2: oslo \rightarrow norway Cd_3: norway \rightarrow cold Cd_4: cold \land windy \rightarrow winterIsComing Cd_5: oslo q_1: winterIsComing
```

Exemplu

```
Cd_1: oslo \rightarrow windy Cd_2: oslo \rightarrow norway Cd_3: norway \rightarrow cold Cd_4: cold \wedge windy \rightarrow winterIsComing Cd_5: oslo q_1: winterIsComing
```

Programul Prolog corespunzător:

```
windy :- oslo.
norway :- oslo.
cold :- norway.
winterIsComing :- windy, cold.
oslo.
Intrebare:
?- winterIsComing.
```

Logica de ordinul I - sintaxa

□ Sloganul programării logice:

Un program este o teorie într-o logică formală, iar execuția sa este o deducție în teorie.

- Programarea logică folosește un fragment din logica de ordinul I (calculul cu predicate) ca limbaj de reprezentare.
- ☐ În această reprezentare, programele sunt teorii logice mulțimi de formule din calculul cu predicate.
- □ Reamintim că problema constă în căutarea unei derivări a unei întrebări (formule) dintr-un program (teorie).

Limbaje de ordinul I

```
Un limbaj \mathcal{L} de ordinul I este format din:

o mulțime numărabilă de variabile V = \{x_n \mid n \in \mathbb{N}\}

conectorii \neg, \rightarrow, \land, \lor

paranteze

cuantificatorul universal \forall și cuantificatorul existențial \exists

o mulțime \mathbf{R} de simboluri de relații

o mulțime \mathbf{F} de simboluri de funcții

o mulțime \mathbf{C} de simboluri de constante

o funcție aritate ar : \mathbf{F} \cup \mathbf{R} \rightarrow \mathbb{N}^*
```

- \square \mathcal{L} este unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, ari)$
- $\ \square \ au$ se numește signatura (vocabularul, alfabetul) lui $\mathcal L$

- \square \mathcal{L} este unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, ari)$
- \square au se numește signatura (vocabularul, alfabetul) lui $\mathcal L$

Exemplu

Un limbaj \mathcal{L} de ordinul I în care:

- \square $\mathbf{R} = \{P, R\}$
- \Box $\mathbf{F} = \{f\}$
- \square **C** = {*c*}
- \square ari(P) = 1, ari(R) = 2, ari(f) = 2

Sintaxa Prolog

Atenție!

- ☐ În sintaxa Prolog
 - termenii compuși sunt predicate: father(eddard, jon_snow)
 - operatorii sunt funcții: +, *, mod
- □ Sintaxa Prolog nu face diferență între simboluri de funcții și simboluri de predicate!
- □ Dar este important când ne uităm la teoria corespunzătoare programului în logică să facem acestă distincție.

Termenii lui \mathcal{L} sunt definiți inductiv astfel:

- orice variabilă este un termen;
- □ orice simbol de constantă este un termen;
- \square dacă $f \in \mathbf{F}$, ar(f) = n și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen.

Notăm cu $Trm_{\mathcal{L}}$ mulțimea termenilor lui \mathcal{L} .

Termenii lui \mathcal{L} sunt definiți inductiv astfel:

- orice variabilă este un termen;
- orice simbol de constantă este un termen;
- \square dacă $f \in \mathbf{F}$, ar(f) = n și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen.

Notăm cu $Trm_{\mathcal{L}}$ mulțimea termenilor lui \mathcal{L} .

Exemplu

$$c, x_1, f(x_1, c), f(f(x_2, x_2), c)$$

Formulele atomice ale lui \mathcal{L} sunt definite astfel:

dacă $R \in \mathbf{R}$, ar(R) = n și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.

Formulele atomice ale lui \mathcal{L} sunt definite astfel:

□ dacă $R \in \mathbf{R}$, ar(R) = n și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.

Exemplu

$$P(f(x_1,c)), R(c,x_3)$$

Formulele lui \mathcal{L} sunt definite astfel:

- □ orice formulă atomică este o formulă
- \square dacă φ este o formulă, atunci $\neg \varphi$ este o formulă
- \square dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
- \square dacă φ este o formulă și x este o variabilă, atunci $\forall x \, \varphi, \, \exists x \, \varphi$ sunt formule

Formulele lui \mathcal{L} sunt definite astfel:

- orice formulă atomică este o formulă
- \square dacă φ este o formulă, atunci $\neg \varphi$ este o formulă
- \square dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
- \square dacă φ este o formulă și x este o variabilă, atunci $\forall x \, \varphi, \, \exists x \, \varphi$ sunt formule

Exemplu

$$P(f(x_1,c)), P(x_1) \vee P(c), \forall x_1 P(x_1), \forall x_2 R(x_2,x_1)$$

Exemplu

Fie limbajul \mathcal{L}_1 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și ari(s) = 1, ari(+) = ari(<) = 2.

Exemplu

Fie limbajul \mathcal{L}_1 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și ari(s) = 1, ari(+) = ari(<) = 2.

Exemple de termeni:

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemple de termeni:

$$0, x, s(0), s(s(0)), s(x), s(s(x)), \ldots,$$

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemple de termeni:

0,
$$x$$
, $s(0)$, $s(s(0))$, $s(x)$, $s(s(x))$, ...,
+(0,0), +($s(s(0))$, +(0, $s(0)$)), +(x , $s(0)$), +(x , $s(x)$), ...,

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemple de termeni:

0,
$$x$$
, $s(0)$, $s(s(0))$, $s(x)$, $s(s(x))$, ...,
+(0,0), +($s(s(0))$, +(0, $s(0)$)), +(x , $s(0)$), +(x , $s(x)$), ...,

Exemple de formule atomice:

$$<(0,0),<(x,0),<(s(s(x)),s(0)),\ldots$$

Exemplu

Fie limbajul
$$\mathcal{L}_1$$
 cu $\mathbf{R} = \{<\}$, $\mathbf{F} = \{s, +\}$, $\mathbf{C} = \{0\}$ și $ari(s) = 1$, $ari(+) = ari(<) = 2$.

Exemple de termeni:

0,
$$x$$
, $s(0)$, $s(s(0))$, $s(x)$, $s(s(x))$, ...,
+(0,0), +($s(s(0))$, +(0, $s(0)$)), +(x , $s(0)$), +(x , $s(x)$), ...,

Exemple de formule atomice:

$$<(0,0),<(x,0),<(s(s(x)),s(0)),\ldots$$

Exemple de formule:

$$\forall x \, \forall y < (x, +(x, y))$$

 $\forall x < (x, s(x))$

Logica de ordinul I - sintaxa

Limbaj de ordinul I \mathcal{L} unic determinat de $\tau = (\mathbf{R}, \mathbf{F}, \mathbf{C}, ari)$
Termenii lui \mathcal{L} , notați $Trm_{\mathcal{L}}$, sunt definiți inductiv astfel: orice variabilă este un termen; orice simbol de constantă este un termen;
\square dacă $f \in \mathbf{F}$, $ar(f) = n$ și t_1, \ldots, t_n sunt termeni, atunci $f(t_1, \ldots, t_n)$ este termen
Formulele atomice ale lui \mathcal{L} sunt definite astfel: \square dacă $R \in \mathbf{R}$, $ar(R) = n$ și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.
Formulele lui $\mathcal L$ sunt definite astfel:
orice formulă atomică este o formulă
\square dacă $arphi$ este o formulă, atunci $\lnot arphi$ este o formulă
\square dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
\square dacă α este o formulă și x este o variabilă atunci $\forall x \alpha \exists x \alpha$ sunt formule

Semantica

- ☐ Un predicat este formalizarea unei relații care are pentru noi o valoare de adevăr.
- □ De exemplu când scriem father(jon,ken) înțelegem: "ken este tatăl lui jon" (sau invers).

Semantica

- Un predicat este formalizarea unei relaţii care are pentru noi o valoare de adevăr
- □ De exemplu când scriem father(jon,ken) înțelegem: "ken este tatăl lui jon" (sau invers).

Cum definim ceea ce este adevărat în logica de ordinul I?

Semantica

- Un predicat este formalizarea unei relaţii care are pentru noi o valoare de adevăr
- □ De exemplu când scriem father(jon,ken) înțelegem: "ken este tatăl lui jon" (sau invers).

Cum definim ceea ce este adevărat în logica de ordinul I?

Pentru a stabili dacă o formulă este adevărată, avem nevoie de o interpretare într-o structură!

Logica de ordinul I - semantica

Structură

Definiție

- O structură este de forma $A = (A, \mathbf{F}^A, \mathbf{R}^A, \mathbf{C}^A)$, unde
 - ☐ A este o mulțime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - □ $\mathbf{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathbf{R}\}$ este o mulțime de relații pe A; dacă R are aritatea n, atunci $R^{\mathcal{A}} \subseteq A^n$.
 - $\square \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
 - \square A se numește universul structurii A.
 - \Box $f^{\mathcal{A}}$ (respectiv $R^{\mathcal{A}}$, $c^{\mathcal{A}}$) se numește interpretarea lui f (respectiv R, c) in \mathcal{A} .

Structură

Exemplu

$$\mathcal{L}_1: \mathbf{R} = \{<\}, \ \mathbf{F} = \{s, +\}, \ \mathbf{C} = \{0\} \ \text{cu} \ ari(s) = 1, \ ari(+) = ari(<) = 2.$$

$$\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, +^{\mathcal{N}}, <^{\mathcal{N}}, 0^{\mathcal{N}})$$
 unde

- \square $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \quad s^{\mathcal{N}}(n):=n+1,$
- \square + $^{\mathcal{N}}$: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$, + $^{\mathcal{N}}(n, m) := n + m$,
- $\square <^{\mathcal{N}} \subseteq \mathbb{N} \times \mathbb{N}, <^{\mathcal{N}} = \{(n, m) \mid n < m\},$
- \square $0^{\mathcal{N}} := 0$

Modelarea unei lumi

```
Presupunem că putem descrie o lume prin:

o mulțime de obiecte
funcții
relații
unde
funcțiile duc obiecte în obiecte
relațiile cu n argumente descriu proprietățile a n obiecte
```

Modelarea unei lumi

Exemplu

Să considerăm o lume în care avem cutii:

☐ Putem descrie lumea folosind objecte

$$O = \{base, a, b, c, d, e\}.$$

Putem descrie ce obiect se află deasupra altui obiect folosind un predicat binar on:

$$on = \{(e, c), (c, a), (e, d), (d, b), (a, base), (b, base)\}$$

Sursa exemplului: https://www.inf.ed.ac.uk/teaching/courses/lp/

Structură

Exemplu

Lumea în care avem cutii.

- \square Limbajul \mathcal{L}
 - \square $\mathbf{R} = \{on\}$
 - \square $\mathbf{F} = \emptyset$
 - \Box $\mathbf{C} = \emptyset$
 - \square ari(on) = 2
- □ O structură .A:
 - \square $A = \{base, a, b, c, d, e\}$
 - \square $\mathbf{F}^{\mathcal{A}} = \emptyset$.
 - \Box $\mathbf{C}^{\mathcal{A}} = \emptyset$.
 - $\mathbb{R}^{\mathcal{A}} = \{on^{\mathcal{A}}\}, \text{ unde }$

$$on^{\mathcal{A}} = \{(e,c),(c,a),(e,d),(d,b),(a,base),(b,base)\} \subseteq A^{2}.$$

Interpretare

Fie \mathcal{L} un limbaj de ordinul I și \mathcal{A} o (\mathcal{L} -)structură.

Definiție

O interpretare a variabilelor lui ${\mathcal L}$ în ${\mathcal A}$ este o funcție

$$I:V\rightarrow A.$$

Interpretare

Fie \mathcal{L} un limbaj de ordinul I și \mathcal{A} o (\mathcal{L} -)structură.

Definiție

O interpretare a variabilelor lui ${\mathcal L}$ în ${\mathcal A}$ este o funcție

$$I:V\rightarrow A$$
.

Definiție

Inductiv, definim interpretarea termenului t în A sub I (t_I^A) prin:

- \square dacă $t = x_i \in V$, atunci $t_i^A := I(x_i)$
- \square dacă $t = c \in \mathbf{C}$, atunci $t_I^{\mathcal{A}} := c^{\mathcal{A}}$
- \square dacă $t = f(t_1, \ldots, t_n)$, atunci $t_I^{\mathcal{A}} := f^{\mathcal{A}}((t_1)_I^{\mathcal{A}}, \ldots, (t_n)_I^{\mathcal{A}})$

Interpretare

Definim inductiv faptul că o formulă este adevărată în $\mathcal A$ sub interpretarea I astfel:

$$\square A, I \vDash P(t_1, \ldots, t_n) \text{ dacă } P^A((t_1)_I^A, \ldots, (t_n)_I^A)$$

- $\square A, I \vDash P(t_1, \ldots, t_n) \text{ dacă } P^A((t_1)_I^A, \ldots, (t_n)_I^A)$
- $\ \ \Box \ \ \mathcal{A}, \mathit{I} \vDash \neg \varphi \ \mathsf{dac} \ \ \mathcal{A}, \mathit{I} \not \vDash \varphi$

- $\square A, I \vDash P(t_1, \ldots, t_n) \text{ dacă } P^A((t_1)_I^A, \ldots, (t_n)_I^A)$
- $\square \mathcal{A}, I \vDash \neg \varphi \text{ dacă } \mathcal{A}, I \not\vDash \varphi$
- $\ \ \square \ \ \mathcal{A}, \mathit{I} \vDash \varphi \lor \psi \ \ \mathsf{dac} \ \ \widecheck{\mathcal{A}}, \mathit{I} \vDash \varphi \ \ \mathsf{sau} \ \ \mathcal{A}, \mathit{I} \vDash \psi$

- $\square A, I \vDash P(t_1, \ldots, t_n) \text{ dacă } P^A((t_1)_I^A, \ldots, (t_n)_I^A)$
- $\square \mathcal{A}, I \vDash \neg \varphi \text{ dacă } \mathcal{A}, I \not\vDash \varphi$
- $\square \mathcal{A}, I \vDash \varphi \lor \psi \text{ dacă } \mathcal{A}, I \vDash \varphi \text{ sau } \mathcal{A}, I \vDash \psi$
- $\square \ \mathcal{A}, I \vDash \varphi \land \psi \ \mathsf{dac} \ \mathcal{A}, I \vDash \varphi \ \mathsf{si} \ \mathcal{A}, I \vDash \psi$

- $\square A, I \models P(t_1, \ldots, t_n) \text{ dacă } P^A((t_1)_I^A, \ldots, (t_n)_I^A)$
- $\square \ \mathcal{A}, I \vDash \neg \varphi \ \mathsf{dac} \ \mathcal{A}, I \not\vDash \varphi$
- $\square \mathcal{A}, I \vDash \varphi \lor \psi \text{ dacă } \mathcal{A}, I \vDash \varphi \text{ sau } \mathcal{A}, I \vDash \psi$
- $\square \ \mathcal{A}, I \vDash \varphi \land \psi \ \mathsf{dac} \ \mathcal{A}, I \vDash \varphi \ \mathsf{si} \ \mathcal{A}, I \vDash \psi$
- $\ \square \ \mathcal{A}, \mathit{I} \vDash \varphi \rightarrow \psi \ \mathsf{dac} \ \mathcal{A}, \mathit{I} \not\vDash \varphi \ \mathsf{sau} \ \mathcal{A}, \mathit{I} \vDash \psi$

- $\square A, I \models P(t_1, \ldots, t_n) \text{ dacă } P^A((t_1)_1^A, \ldots, (t_n)_1^A)$
- $\square \mathcal{A}, I \vDash \neg \varphi \text{ dacă } \mathcal{A}, I \not\vDash \varphi$
- $\square \mathcal{A}, I \vDash \varphi \lor \psi \text{ dacă } \mathcal{A}, I \vDash \varphi \text{ sau } \mathcal{A}, I \vDash \psi$
- $\square \mathcal{A}, I \vDash \varphi \wedge \psi \text{ dacă } \mathcal{A}, I \vDash \varphi \text{ și } \mathcal{A}, I \vDash \psi$
- $\square \ \mathcal{A}, I \vDash \varphi \rightarrow \psi \ \mathsf{dac} \ \mathcal{A}, I \not\vDash \varphi \ \mathsf{sau} \ \mathcal{A}, I \vDash \psi$
- $\square \ \mathcal{A}, I \vDash \forall x \varphi \text{ dacă pentru orice } a \in A \text{ avem } \mathcal{A}, I_{x_i \leftarrow a} \vDash \varphi$
- $\square \ \mathcal{A}, I \vDash \exists x \varphi \text{ dacă există } a \in A \text{ astfel încât } \mathcal{A}, I_{x_i \leftarrow a} \vDash \varphi$

unde pentru orice
$$a \in A$$
, $I_{x \leftarrow a}(y) = \begin{cases} I(y) & \text{dacă } y \neq x \\ a & \text{dacă } y = x \end{cases}$

- \square O formulă φ este adevărată într-o structură \mathcal{A} , notat $\mathcal{A} \models \varphi$, dacă este adevărată în \mathcal{A} sub orice interpretare.
 - Spunem că \mathcal{A} este model al lui φ .
- \square O formulă φ este adevărată în logica de ordinul I, notat $\vDash \varphi$, dacă este adevărată în orice structură.

Exemplu

Fie limbajul \mathcal{L} cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu ari(s) = ari(P) = 1.

Exemple

Fie limbajul \mathcal{L} cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu ari(s) = ari(P) = 1.

Fie structura $\mathcal{N}=\left(\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}}\right)$ unde $0^{\mathcal{N}}:=1$ și

- $\ \ \square \ s^{\mathcal{N}}:\mathbb{N}\to\mathbb{N},\ s^{\mathcal{N}}(n):=n^2$
- \square $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$

Exempli

Fie limbajul \mathcal{L} cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu ari(s) = ari(P) = 1.

Fie structura $\mathcal{N}=(\mathbb{N},s^{\mathcal{N}},P^{\mathcal{N}},0^{\mathcal{N}})$ unde $0^{\mathcal{N}}:=1$ și

- $\ \ \square \ s^{\mathcal{N}}:\mathbb{N}\to\mathbb{N},\ s^{\mathcal{N}}(n):=n^2$
- \square $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$

Demonstrați că $\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x))).$

Exemple

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=\left(\mathbb{N},s^{\mathcal{N}},P^{\mathcal{N}},0^{\mathcal{N}}\right)$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că $\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x)))$.

Fie $I: V \to \mathbb{N}$ o interpretare. Observăm că $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică

Exemple

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=\left(\mathbb{N},s^{\mathcal{N}},P^{\mathcal{N}},0^{\mathcal{N}}\right)$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$

Demonstrați că $\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x))).$

Fie $I:V \to \mathbb{N}$ o interpretare. Observăm că

 $\mathcal{N}, I \vDash P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \vDash P(x)$ dacă I(x) este impar.

Exemplu

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=(\mathbb{N},s^{\mathcal{N}},P^{\mathcal{N}},0^{\mathcal{N}})$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că $\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x)))$.

Fie $I:V \to \mathbb{N}$ o interpretare. Observăm că

$$\mathcal{N}, I \vDash P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \vDash P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, I \vDash \forall x (P(x) \rightarrow P(s(x)))$$
 dacă

Exemplu

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=(\mathbb{N},s^{\mathcal{N}},P^{\mathcal{N}},0^{\mathcal{N}})$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că $\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x)))$.

Fie $I:V \to \mathbb{N}$ o interpretare. Observăm că

$$\mathcal{N}, I \vDash P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \vDash P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, I \vDash \forall x (P(x) \to P(s(x)))$$
 dacă $\mathcal{N}, I_{x \leftarrow n} \vDash P(x) \to P(s(x))$ oricare $n \in N$

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.
Fie structura $\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$ unde $0^{\mathcal{N}} := 1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n):=n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$

Demonstrați că
$$\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x))).$$

Fie
$$I:V\to\mathbb{N}$$
 o interpretare. Observăm că

$$\mathcal{N}, I \vDash P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \vDash P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, I \vDash \forall x (P(x) \rightarrow P(s(x))) \text{ dacă}$$

$$\mathcal{N}, I_{x \leftarrow n} \vDash P(x) \rightarrow P(s(x))$$
 oricare $n \in N$

$$\mathcal{N}, I_{x \leftarrow n} \not\models P(x)$$
 sau $\mathcal{N}, I_{x \leftarrow n} \models P(s(x))$ oricare $n \in N$

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$. Fie structura $\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$ unde $0^{\mathcal{N}} := 1$ și $\mathbb{N} \to \mathbb{N}$, $s^{\mathcal{N}}(n) := n^2$ $\mathbb{N} \to \mathbb{N}$, $s^{\mathcal{N}}(n) := n^2$ Demonstrați că $\mathcal{N} \models \forall x \, (P(x) \to P(s(x)))$. Fie $I: V \to \mathbb{N}$ o interpretare. Observăm că $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar. $\mathcal{N}, I \models \forall x \, (P(x) \to P(s(x)))$ dacă $\mathcal{N}, I_{x \leftarrow n} \models P(x) \to P(s(x))$ oricare $n \in \mathbb{N}$ $\mathcal{N}, I_{x \leftarrow n} \not\models P(x)$ sau $\mathcal{N}, I_{x \leftarrow n} \models P(s(x))$ oricare $n \in \mathbb{N}$ $I_{x \leftarrow n}(x)$ nu este impar sau $I_{x \leftarrow n}(s(x))$ este impar oricare $n \in \mathbb{N}$

Exempli

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$. Fie structura $\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$ unde $0^{\mathcal{N}} := 1$ și $\mathbf{S}^{\mathcal{N}} : \mathbb{N} \to \mathbb{N}$, $\mathbf{S}^{\mathcal{N}}(n) := n^2$ $\mathbf{P}^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$ Demonstrați că $\mathcal{N} \models \forall x \, (P(x) \to P(s(x)))$. Fie $I: V \to \mathbb{N}$ o interpretare. Observăm că $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar. $\mathcal{N}, I \models \forall x \, (P(x) \to P(s(x)))$ dacă $\mathcal{N}, I_{x \leftarrow n} \models P(x) \to P(s(x))$ oricare $n \in \mathbb{N}$ $\mathcal{N}, I_{x \leftarrow n} \not\models P(x)$ sau $\mathcal{N}, I_{x \leftarrow n} \models P(s(x))$ oricare $n \in \mathbb{N}$ $I_{x \leftarrow n}(x)$ nu este impar sau $I_{x \leftarrow n}(s(x))$ este impar oricare $n \in \mathbb{N}$ n este par sau n^2 este impar oricare $n \in \mathbb{N}$

Exempli

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$$
 unde $0^{\mathcal{N}} := 1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că
$$\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x)))$$
.

Fie
$$\mathit{I}:\mathit{V} \to \mathbb{N}$$
 o interpretare. Observăm că

$$\mathcal{N}, I \vDash P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \vDash P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, I \vDash \forall x (P(x) \rightarrow P(s(x)))$$
 dacă

$$\mathcal{N}, I_{x \leftarrow n} \vDash P(x) \rightarrow P(s(x))$$
 oricare $n \in N$

$$\mathcal{N}, I_{x \leftarrow n} \not\models P(x) \text{ sau } \mathcal{N}, I_{x \leftarrow n} \models P(s(x)) \text{ oricare } n \in N$$

$$I_{x \leftarrow n}(x)$$
 nu este impar sau $I_{x \leftarrow n}(s(x))$ este impar oricare $n \in \mathbb{N}$ n este par sau n^2 este impar oricare $n \in \mathbb{N}$

ceea ce este întodeauna adevărat.

Logica de ordinul I - semantică

- O structură este de forma $A = (A, \mathbf{F}^{A}, \mathbf{R}^{A}, \mathbf{C}^{A})$, unde
 - ☐ A este o mulţime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - □ $\mathbf{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathbf{R}\}$ este o mulțime de relații pe A; dacă R are aritatea n, atunci $R^{\mathcal{A}} \subseteq A^n$.
 - $\square \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
- O interpretare a variabilelor lui $\mathcal L$ în $\mathcal A$ ($\mathcal A$ -interpretare) este o funcție $\mathit I:V \to A$.

Inductiv, definim interpretarea termenului t în A sub I notat t_I^A .

Inductiv, definim când o formulă este adevărată în \mathcal{A} în interpretarea I notat $\mathcal{A}, I \vDash \varphi$. În acest caz spunem că (\mathcal{A}, I) este model pentru φ .

- O formulă φ este adevărată într-o structură $\mathcal A$, notat $\mathcal A \vDash \varphi$, dacă este adevărată în $\mathcal A$ sub orice interpretare. Spunem că $\mathcal A$ este model al lui φ .
- O formulă φ este adevărată în logica de ordinul I, notat $\vDash \varphi$, dacă este adevărată în orice structură. O formulă φ este validă dacă $\vDash \varphi$.
- O formulă φ este satisfiabilă dacă există o structură $\mathcal A$ și o $\mathcal A$ -interpretare $\mathcal I$ astfel încât $\mathcal A$, $\mathcal I \vDash \varphi$.

Consecință logică

Definiție

O formulă φ este o consecință logică a formulelor $\varphi_1, \ldots, \varphi_n$, notat

$$\varphi_1,\ldots,\varphi_n\vDash\varphi$$
,

dacă pentru orice structură ${\cal A}$

dacă
$$\mathcal{A} \vDash \varphi_1$$
 și ... și $\mathcal{A} \vDash \varphi_n$, atunci $\mathcal{A} \vDash \varphi$

Consecință logică

Definiție

O formulă φ este o consecință logică a formulelor $\varphi_1, \ldots, \varphi_n$, notat

$$\varphi_1,\ldots,\varphi_n\vDash\varphi$$
,

dacă pentru orice structură ${\cal A}$

dacă
$$\mathcal{A} \vDash \varphi_1$$
 și ... și $\mathcal{A} \vDash \varphi_n$, atunci $\mathcal{A} \vDash \varphi$

Problemă semidecidabilă!

Nu există algoritm care să decidă mereu dacă o formula este sau nu consecință logică a altei formule în logica de ordinul I!

Formule echivalente

 \square Fie φ și ψ două formule. Notăm prin

$$\varphi \bowtie \psi$$

faptul că $\vDash \varphi \leftrightarrow \psi$, adică φ și ψ au aceleași modele.

Exemplu

Dacă P este un simbol de relație de aritate 1 și x și y sunt variabile distincte, atunci

$$\forall x P(x) \exists \forall y P(y)$$
 şi $P(x) \exists P(y)$

Validitate și satisfiabilitate

Propoziție

Dacă φ este o formulă atunci

 φ este validă dacă și numai dacă $\neg \varphi$ nu este satisfiabilă.

Demonstrație

Exercițiu!

Logica clauzelor definite

Alegem un fragment al logicii de ordinul I astfel:

- ☐ Renunțăm la cuantificatori (dar păstrăm variabilele)
- \square Renunțăm la \neg , \lor (dar păstrăm \land , \rightarrow)
- □ Singurele formule admise sunt de forma:
 - \square $P(t_1,\ldots,t_n)$, adică formule atomice
 - \square $\alpha_1 \wedge \ldots \wedge \alpha_n \rightarrow \alpha$, unde $\alpha_1, \ldots, \alpha_n, \alpha$ sunt formule atomice.

Astfel de formule se numesc clauze definite (sau clauze Horn).

Acest fragment al logicii de ordinul I se numește logica clauzelor definite (sau logica clauzelor Horn).

Programare logica

- \square Presupunem că putem reprezenta cunoștințele ca o mulțime de clauze definite Δ și suntem interesați să aflăm răspunsul la o întrebare de forma $\alpha_1 \wedge \ldots \wedge \alpha_n$, unde toate α_i sunt formule atomice.
- Adică vrem să aflăm dacă

$$\Delta \vDash \alpha_1 \wedge \ldots \wedge \alpha_n$$

- \square Variabilele din \triangle sunt considerate ca fiind cuantificate universal!
- □ Variabilele din $\alpha_1, \ldots, \alpha_n$ sunt considerate ca fiind cuantificate existențial!

Logica clauzelor definite

Exempli

```
Fie următoarele clauze definite:
```

```
father(jon, ken).

father(ken, liz).

father(X, Y) \rightarrow ancestor(X, Y)

father(X, Y) \land ancestor(Y, Z) \rightarrow ancestor(X, Z)
```

Putem întreba:

- □ ancestor(jon, liz)
- \square ancestor(Q, ken) adică $\exists Q$ ancestor(Q, ken)

Logica clauzelor definite

Exempli

```
Fie următoarele clauze definite:
```

```
father(jon, ken).

father(ken, liz).

father(X, Y) \rightarrow ancestor(X, Y)

father(X, Y) \land ancestor(Y, Z) \rightarrow ancestor(X, Z)
```

Putem întreba:

- □ ancestor(jon, liz)
- \square ancestor(Q, ken) adică $\exists Q$ ancestor(Q, ken)

Răspunsul la întrebare este dat prin unificare!

Substituții și unificare

Definiție

O subtituție σ este o funcție (parțială) de la variabile la termeni, adică

$$\sigma: V \to \mathit{Trm}_{\mathcal{L}}$$

Exemplu

În notația uzuală, $\sigma = \{x/a, y/g(w), z/b\}$.

- □ Substituțiile sunt o modalitate de a înlocui variabilele cu alți termeni.
- ☐ Substituţiile se aplică simultan pe toate variabilele.

- Substituţiile sunt o modalitate de a înlocui variabilele cu alţi termeni.
- ☐ Substituțiile se aplică simultan pe toate variabilele.

- \square substituția $\sigma = \{x/a, \ y/g(w), z/b\}$
- \square $\sigma(P(x,g(x),y)) =$

- Substituţiile sunt o modalitate de a înlocui variabilele cu alţi termeni.
- ☐ Substituţiile se aplică simultan pe toate variabilele.

- \square substituția $\sigma = \{x/a, \ y/g(w), z/b\}$

- Substituţiile sunt o modalitate de a înlocui variabilele cu alţi termeni.
- □ Substituţiile se aplică simultan pe toate variabilele.

- \square substituția $\sigma = \{x/a, y/g(w), z/b\}$
- \square substituția $\phi = \{x/y, \ y/g(a)\}$

Unificare

- \square Doi termeni t_1 și t_2 se unifică dacă există o substituție ν astfel încât $\nu(t_1) = \nu(t_2)$.
- \square În acest caz, ν se numesțe unificatorul termenilor t_1 și t_2 .
- ☐ În programarea logică, unificatorii sunt ingredientele de bază în execuția unui program.

Unificare

- Doi termeni t_1 și t_2 se unifică dacă există o substituție ν astfel încât $\nu(t_1) = \nu(t_2)$.
- \square În acest caz, ν se numesțe unificatorul termenilor t_1 și t_2 .
- ☐ În programarea logică, unificatorii sunt ingredientele de bază în execuția unui program.

- $\Box t' = x + (y \star x) = +(x, \star (y, x))$

Unificare

- Doi termeni t_1 și t_2 se unifică dacă există o substituție ν astfel încât $\nu(t_1) = \nu(t_2)$.
- \square În acest caz, ν se numesțe unificatorul termenilor t_1 și t_2 .
- În programarea logică, unificatorii sunt ingredientele de bază în execuția unui program.

- $\square \ \nu = \{x/y, y/y\}$
 - $\square \nu(t) = y + (y \star y)$

 - \square ν este unificator

Unificare

☐ În programarea logică, unificatorii sunt ingredientele de bază în execuția unui program.

Exemplu

```
father(jon,ken).
father(ken,liz).
ancestor(X,Y):- father(X,Y).
ancestor(X,Z):- father(X,Y), ancestor(Y,Z).
?- ancestor(Q,ken).
Q = jon
```

☐ Atunci când întrebarea conține variabile, Prolog încearcă să găsească o substituție care face ca predicatul să fie adevărat.

- □ Pentru o mulțime finită de termeni $\{u_1, \ldots, u_n\}$, $n \ge 2$, algoritmul de unificare stabilește dacă există un unificator.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.

- Pentru o mulțime finită de termeni $\{u_1, \ldots, u_n\}$, $n \ge 2$, algoritmul de unificare stabilește dacă există un unificator.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- ☐ Algoritmul lucrează cu două liste:
 - Lista soluție: *S*
 - ☐ Lista de rezolvat: R

- □ Pentru o mulțime finită de termeni $\{u_1, \ldots, u_n\}$, $n \ge 2$, algoritmul de unificare stabileste dacă există un unificator.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- ☐ Algoritmul lucrează cu două liste:
 - ☐ Lista soluție: *S*
 - ☐ Lista de rezolvat: R
- ☐ Iniţial:
 - Lista soluție: $S = \emptyset$
 - \blacksquare Lista de rezolvat: $R = \{u_1 \stackrel{\cdot}{=} u_2, \dots, u_{n-1} \stackrel{\cdot}{=} u_n\}$

- □ Pentru o mulțime finită de termeni $\{u_1, \ldots, u_n\}$, $n \ge 2$, algoritmul de unificare stabileste dacă există un unificator.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- ☐ Algoritmul lucrează cu două liste:
 - ☐ Lista soluție: *S*
 - ☐ Lista de rezolvat: *R*
- □ Inițial:
 - \square Lista soluție: $S = \emptyset$
 - \blacksquare Lista de rezolvat: $R = \{u_1 \stackrel{\cdot}{=} u_2, \dots, u_{n-1} \stackrel{\cdot}{=} u_n\}$
- = este un simbol nou care ne ajută sa formăm perechi de termeni (ecuații).

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.
- □ REZOLVĂ
 - orice ecuație de forma x = t sau t = x din R, unde variabila x nu apare în termenul t, este mutată sub forma x = t în S. În toate celelalte ecuații (din R și S), x este înlocuit cu t.

Algoritmul se termină normal dacă $R=\emptyset$. În acest caz, S conține un unificator.

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S conține un unificator.

Algoritmul este oprit cu concluzia inexistenței unui unificator dacă:

În R există o ecuație de forma

$$f(t_1,\ldots,t_n)\stackrel{\cdot}{=} g(t_1',\ldots,t_k')$$
 cu $f\neq g$.

2 În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

Algoritmul de unificare - schemă

	Lista soluție	Lista de rezolvat	
	S	R	
Inițial	Ø	$t_1 \stackrel{.}{=} t'_1, \ldots, t_n \stackrel{.}{=} t'_n$	
SCOATE	S	R', $t = t$	
	S	R'	
DESCOMPUNE	S	R' , $f(t_1,\ldots,t_n)=f(t'_1,\ldots,t'_n)$	
	5	R' , $t_1 \stackrel{.}{=} t'_1, \ldots t_n \stackrel{.}{=} t'_n$	
REZOLVĂ	S	R', $x = t$ sau $t = x$, x nu apare în t	
	$x \stackrel{.}{=} t$, $S[x/t]$	R'[x/t]	
Final	S	Ø	

S[x/t]: în toate ecuațiile din S, x este înlocuit cu t

Exemplu

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{.}{=} g(y)$	g(y) = g(z), h(g(y)) = w, y = z	

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	REZOLVĂ

Exemplu

S	R	
Ø	$g(y) = x, \ f(x, h(x), y) = f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = g(z), h(g(y)) = w, y = z	REZOLVĂ
$w \stackrel{\cdot}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	REZOLVĂ
$w \stackrel{\cdot}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{\cdot}{=} g(z)$	SCOATE
$w \stackrel{\cdot}{=} h(g(z))$		

Exemplu

 \square Ecuațiile $\{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(g(y)) \stackrel{.}{=} w, y \stackrel{.}{=} z$	REZOLVĂ
w = h(g(y)),	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{\cdot}{=} g(z)$	SCOATE
$w \stackrel{.}{=} h(g(z))$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	Ø	
$w \stackrel{\cdot}{=} h(g(z))$		

 \square $\nu = \{y/z, x/g(z), w/h(g(z))\}$ este unificator.

Exemplu

 \square Ecuațiile $\{g(y) \doteq x, \ f(x, h(y), y) \doteq f(g(z), b, z)\}$ au gcu?

Exemplu

S	R	
Ø	$g(y) = x, \ f(x, h(y), y) = f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), h(y) \stackrel{\cdot}{=} b, y \stackrel{\cdot}{=} z$	- EŞEC -

Exemplu

S	R	
Ø	$g(y) = x, \ f(x, h(y), y) = f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), h(y) \stackrel{\cdot}{=} b, y \stackrel{\cdot}{=} z$	- EŞEC -

- \square h și b sunt simboluri de operații diferite!
- \square Nu există unificator pentru ecuațiile din U.

Exemplu

Exemplu

 \square Ecuațiile $\{g(y) = x, f(x, h(x), y) = f(y, w, z)\}$ au gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \doteq f(y,w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

Exemplu

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \doteq f(y,w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

- \square În ecuația $g(y) \stackrel{\cdot}{=} y$, variabila y apare în termenul g(y).
- Nu există unificator pentru ecuațiile din U.

Complexitatea algoritmului

Problema de unificare

$$R = \{x_1 \stackrel{.}{=} f(x_0, x_0), x_2 \stackrel{.}{=} f(x_1, x_1), \dots, x_n \stackrel{.}{=} f(x_{n-1}, x_{n-1})\}$$
are unificator $S = \{x_1 \leftarrow f(x_0, x_0), x_2 \leftarrow f(f(x_0, x_0), f(x_0, x_0)), \dots\}.$

Complexitatea algoritmului

Problema de unificare

$$R = \{x_1 = f(x_0, x_0), x_2 = f(x_1, x_1), \dots, x_n = f(x_{n-1}, x_{n-1})\}$$
 are unificator $S = \{x_1 \leftarrow f(x_0, x_0), x_2 \leftarrow f(f(x_0, x_0), f(x_0, x_0)), \dots\}.$

□ La pasul Elimină, pentru a verifica că o variabilă x_i nu apare în membrul drept al ecuației (occur check) facem 2^i comparații.

Complexitatea algoritmului

Problema de unificare

$$R = \{x_1 = f(x_0, x_0), x_2 = f(x_1, x_1), \dots, x_n = f(x_{n-1}, x_{n-1})\}$$
are unificator $S = \{x_1 \leftarrow f(x_0, x_0), x_2 \leftarrow f(f(x_0, x_0), f(x_0, x_0)), \dots\}.$

- □ La pasul Elimină, pentru a verifica că o variabilă x; nu apare în membrul drept al ecuației (occur check) facem 2ⁱ comparații.
- □ Algoritmul de unificare prezentat anterior este exponențial. Complexitatea poate fi îmbunătățită printr-o reprezentare eficientă a termenilor.

K. Knight, Unification: A Multidisciplinary Survey, ACM Computing Surveys, Vol. 21, No. 1, 1989.

Unificare în Prolog

- □ Ce se întâmplă dacă încercăm să unificăm X cu ceva care conține X? Exemplu: ?- X = f(X).
- ☐ Conform teoriei, acești termeni nu se pot unifica.
- □ Totuși, multe implementări ale Prolog-ului sar peste această verificare din motive de eficiență.

$$?-X = f(X).$$

 $X = f(X).$

Unificare în Prolog

- □ Ce se întâmplă dacă încercăm să unificăm X cu ceva care conține X? Exemplu: ?- X = f(X).
- ☐ Conform teoriei, acești termeni nu se pot unifica.
- □ Totuși, multe implementări ale Prolog-ului sar peste această verificare din motive de eficiență.

$$?-X = f(X).$$

 $X = f(X).$

☐ Putem folosi unify_with_occurs_check/2

```
?- unify_with_occurs_check(X,f(X)).
false.
```