Answers prepared by Leong Yee Pak

**1 June 02 P1 Q21 A
$$\rho_{\rm m} = \frac{m_{\rm m}}{V_{\rm m}}$$
 where $m = {\rm mixture.}$ $M_{\rm m} = 2{\rm m.}$ $V_1 = \frac{M_1}{\rho_1} = \frac{m}{\rho}$ and $V_2 = \frac{M_2}{\rho_2}$ $= \frac{m}{2\rho}$. $V_{\rm m} = \frac{m}{\rho} + \frac{m}{2\rho}$

- *2 Nov 02 P1 Q20 C
- **3 Nov 02 P1 Q22 A
- *4 Nov 03 P1 O20 A
- *5 June 04 P1 Q19 A
- *6 June 04 P1 Q20 D

***7 June 04 P1 Q21 C
$$\rho_P > \rho_Q$$
. $\left(\frac{M}{V}\right)_P > \left(\frac{M}{V}\right)_O$. $\left(\frac{NM_P}{V}\right) > \left(\frac{NM_Q}{V}\right)$.

- *8 Nov 04 P1 O21 A
- *9 June 05 P1 Q19 C
- **10 Nov 05 P1 Q19 B
- **11 June 06 P1 Q19 C
- *12 June 06 P1 Q20 A
- *13 Nov 06 P1 Q19 C
- *14 June 07 P1 Q16 C
- ***15 Nov 07 P1 Q17 C same as June 04 P1 Q21
- *16 Nov 08 P1 O19 D

Section B

1 June 05 P2 O2

- 2 speck of light **B1** (a) that moves haphazardly/randomly/jerkily/etc. **B1** [2]
 - (b) randomness of collisions would be 'averaged out' **B1** so less (haphazard) movement **B1** [2] (do not allow 'more massive so less movement')

2 June 06 P2 Q3

- (a) sum of (random) kinetic and potential energies M1 of the atoms/molecules of the substance A1 [2]
 - (b) (i) potential energy unchanged as atoms remain in same positions M1 allow 'reduced because atoms slightly closer together' vibrational kinetic energy reduced because temperature lower M1 so internal energy less A1 [3]

^{*17} June 09 P1 O16 C

		(ii)	potential energy increases because separation increases kinetic energy unchanged because temperature unchanged so internal energy increases	M1 M1 A1	[3]
3 I	Nov (06 P2	2 Q5		
5	(a)		metal: crystalline / lattice / atoms in regular pattern	B1	
			(atoms in regular) pattern that repeats itself (within crystal)	B1	[2]
			polymer: long chains of atoms / molecules	B1	1771-0295
			chain consists of 'units' that repeat themselves	B1	[2]
				(
	(b)	(i)	e.g. latex is soft / not strong / flows / ductile	B1	
	177		elastic limit easily exceeded	B1	[2]
			(allow any two sensible comments, 1 each)	SERVI	1-1
		(ii)	more solid / does not flow / stronger / higher ultimate tensile stress more brittle	MINA.	
			elastic limit much higher		
			increased toughness		
			(any two, 1 each)	B2	[2]
4 N	Joy O	08 P2	05		
5			nazard / random / erratic / zig-zag movement	M1	
	(4)		moke) particles (do not allow molecules / atoms)	A1	[2]
		01/3	more) particles (do not allow molecules) atoms;	.01	[4]
	(b)	moti	on is due to unequal / unbalanced collision rates (on different faces)	B1	
	50000	(une	equal collision rate due to) random motion of (gas) molecules / atoms	B1	[2]
	(c)	eith	er collisions with air molecules average out	M1	
	1.00	-3100	this prevents haphazard motion	A1	[2]
					1-1

Pressure in Liquids Change of Phase

*1 June 02 P1 Q20 B

or

**2 Nov 02 P1 Q21 Cp = $(20x10^{-2})$ x 1800 g; $p_2 = (60 \times 10^{-2})$ x 1200 g. Dividing and simplify

particle is more massive / heavier / has large inertia

collisions cause only small movements / accelerations (A1)

***3 June 03 P1 Q20 A $0.1 P_0 = h\rho g$

**4 Nov 03 P1 Q19 BApply p = hpg.
$$\frac{p}{h}$$
 = pg. Hence p = gradient x $\frac{1}{9.81}$

*5 Nov 04 P1 Q19 C

**6 Nov 04 P1 Q20 A $h_1\rho_1$ g + $P_{atm} = h_2\rho_2$ g + P_{atm} . Hence (2x) $\rho_P = x \rho_Q$

**7 June 05 P1 Q18 A pressure
$$p = \frac{F}{A} = \frac{W}{A} = \frac{mg}{A} = \frac{\rho Vg}{A}$$
 where $m = \rho V$

**8 Nov 05 P1 Q17 C

**9 Nov 05 P1 Q18 ? Liquid X: $p_X = h_X \rho_X g$. Liquid Y: $\rho_Y = h_y \rho_Y g$. Equating, $h_X \rho_X g = h_v \rho_Y g$

$$\frac{h_X}{h_Y} = \frac{\rho_Y}{\rho_X} = \frac{1200}{800}$$

*10 Nov 06 P1 Q20 B

**11 Nov 06 P1 Q21 x 830 x 9.81 + (2000 - x) x 1000 x 9.81 = 17.5 x 10⁶

**12 June 07 P1 Q15 A $p = h\rho g$. 100 x 10³ = h x (13.6 x 10³) x 9.81.

**13 Nov 07 P1 Q18
$$100 \times 10^3 + h \times 1030 \times 9.81 = 450 \times 10^3$$

*14 June 08 P1 O15 D

**15 Nov 08 P1 Q20 C

*16 June 09 P1 Q17 B

***17 June 09 P1 Q18 D change in height = 2h.

Section B

Pressure in Liquids Change of Phase

1 June 06 P2 O4

4	(a)	mass per unit volume (ratio idea must be clear, not units)	B1	[1]

(ii)
$$h \rho g$$
 is same for both B1
 $53 \times 10^{-2} \times 1.0 \times 10^{3} \times g = 71 \times 10^{-2} \times \rho \times g$ C1
 $\rho = 7.5 \times 10^{2} \text{ kg m}^{-3}$ A1 [3]

2 June 07 O3

(b) (i) mass =
$$Ah\rho$$
 B1 [1]

(ii) pressure = force/area B1
weight (of liquid)/force (on base) =
$$Ah\rho g$$
 B1
pressure = $h\rho g$ A0 [2]

(c) (i)	ratio = 1600 or 1600:1	A1	[1]
(ii)	ratio = $\sqrt[3]{1600}$ = 11.7 (allow 12)	C1 A1	[2]
(d) (i)	density of solids and liquids are (about) equal	B1	[1]
(ii)	strong forces: fixed volume rigid forces: retains shape / does not flow / little deformation (allow 1 mark for fixed volume, fixed shape)	B1 B1	[2]