Klasična diferencijalna evolucija

Osnovna varijanta algoritma diferencijalne evolucije se sastoji iz sljedećih koraka:

a) Generisanje početne populacije

Početna populacija treba da što ravnomjernije pokrije prostor pretraživanja. Ako je optimalno rješenje okvirno poznato, za generisanje početne populacije u njegovoj okolini se može koristiti normalna raspodjela. Ipak, u opštem slučaju normalna raspodjela nije najbolje rješenje zbog velikog broja rješenja skoncentrisanih u jednoj regiji optimizacionog prostora što može dovesti do prijevremene konvergencije algoritma. Iz tog razloga, najbolji pristup za generisanje početne populacije je uniformna raspodjela.

b) Operacija mutacije

Mutacija omogućava generisanje novih na osnovu postojećih rješenja u populaciji. Mutacija se sprovodi na sljedeći način:

- 1. Izabere se bazni vektor x_{r_1} .
- 2. Izaberu se diferencijalni vektori x_{r2} i x_{r3} .
- 3. Mutirani vektor se generiše primjenom relacije:

$$v_i = x_{r1} + F(x_{r2} - x_{r3})$$

gdje $F \in (0, 1)$ predstavlja faktor skaliranja.

c) Operacija ukrštanja

Ukrštanjem se od ciljnog vektora x_i i mutiranog vektora v_i formira probni vektor u_i . Ukrštanje se sprovodi na sljedeći način:

- 1. Prvo se izabere jedna promjenljiva j koja se iz mutiranog vektora prebaci u probni vektor.
- 2. Na ostale promjenljive se primjenjuje uniformno ukrštanje.

Drugim riječima, k – ti gen probnog vektora se određuje primjenom relacije:

$$u_{ik} = \begin{cases} v_{ik}, & rand(0,1) \le C_r \ ili \ k = j \\ x_{ik}, & rand(0,1) > C_r \end{cases}$$

gdje je C_r vjerovatnoća ukrštanja.

Svako od rješenja iz tekuće populacije po jednom ima ulogu ciljnog vektora. S tim u vezi, važno je napomenuti da se bazni i diferencijalni vektori koji se koriste za formiranje mutiranog rješenja v_i moraju razlikovati od ciljnog rješenja x_i .

d) Operacija selekcije

Selekcija podrazumijeva izbor između ciljnog i probnog rješenja. U optimizacionim problemima bez ograničenja, bolje rješenje je rješenje sa nižom vrijednošću kriterijumske funkcije (uz pretpostavku problema minimizacije kriterijumske funkcije). U slučaju optimizacionih problema sa ograničenjima, jedan od mogućih načina za implementaciju operatora selekcije je:

- 1. Ako i probno i ciljno rješenje zadovoljavaju ograničenja, u sljedeću generaciju prelazi rješenje sa boljom vrijednošću kriterijumske funkcije.
- 2. Ako jedno od rješenja zadovoljava ograničenja, a drugo ne zadovoljava, boljim rješenjem se smatra rješenje koje se nalazi unutar dopustivog prostora.
- 3. Ako nijedno od rješenja ne zadovoljava ograničenja, probno rješenje se smatra boljim rješenjem.