A Analysis of W in MoSLoRA

A.1 Vanilla MoSLoRA

177

178

181

182

183

184

185

186

187

189

190

192

193

194

195

196

197

199

200

201

For an arbitrary input x, we have:

$$y = x\mathbf{W}_{merge}; \mathbf{W}_{merge} = \mathbf{W}_0 + \mathbf{AWB}, \tag{2}$$

where the W_0 is frozen during training. Then we have:

$$\frac{\partial y}{\partial \mathbf{A}} = \frac{\partial y}{\partial \mathbf{W}_{merge}} \mathbf{B}^T \mathbf{W}^T; \frac{\partial y}{\partial \mathbf{W}} = \mathbf{A}^T \frac{\partial y}{\partial \mathbf{W}_{merge}} \mathbf{B}^T; \frac{\partial y}{\partial \mathbf{B}} = \mathbf{W}^T \mathbf{A}^T \frac{\partial y}{\partial \mathbf{W}_{merge}}$$
(3)

Denote the learning rate as η , the updated process would be:

$$\mathbf{A} \leftarrow \mathbf{A} - \eta \frac{\partial y}{\partial \mathbf{A}} = \mathbf{A} - \eta \frac{\partial y}{\partial \mathbf{W}_{merge}} \mathbf{B}^T \mathbf{W}^T$$
 (4)

The process would be similar for **W** and **B**. Let $\Delta = \frac{\partial y}{\partial \mathbf{W}_{merge}}$. Therefore, the weight of LoRA branch would be:

$$\mathbf{W}_{LoRA} = (\mathbf{A} - \eta \Delta \mathbf{B}^T \mathbf{W}^T)(\mathbf{W} - \eta \mathbf{A}^T \Delta \mathbf{B}^T)(\mathbf{B} - \eta \mathbf{W}^T \mathbf{A}^T \Delta)$$
$$= (\mathbf{A} \mathbf{W} - \eta \mathbf{A} \mathbf{A}^T \Delta \mathbf{B}^T - \eta \Delta \mathbf{B}^T \mathbf{W}^T \mathbf{W} + \eta^2 \Delta \mathbf{B}^T \mathbf{W}^T \mathbf{A}^T \Delta \mathbf{B}^T)(\mathbf{B} - \eta \mathbf{W}^T \mathbf{A}^T \Delta)$$
(5)

A.2 Merge A and W

Denote $\hat{A} = AW$. It means that we initiate \hat{A} as the same as AW. The we have:

$$y = x\mathbf{W}_{merge}; \mathbf{W}_{merge} = \mathbf{W}_0 + \hat{\mathbf{A}}\mathbf{B} = \mathbf{W}_0 + \mathbf{A}\mathbf{W}\mathbf{B}, \tag{6}$$

The gradients would be:

$$\frac{\partial y}{\partial \hat{\mathbf{A}}} = \frac{\partial y}{\partial \mathbf{W}_{merge}} \mathbf{B}^T = \Delta \mathbf{B}^T; \frac{\partial y}{\partial \mathbf{B}} = \hat{\mathbf{A}}^T \frac{\partial y}{\partial \mathbf{W}_{merge}} = \hat{\mathbf{A}}^T \Delta$$
 (7)

Similarly, we have the output after updating the parameters:

$$\hat{\mathbf{W}}_{LoRA} = (\hat{\mathbf{A}} - \eta \Delta \mathbf{B}^{T})(\mathbf{B} - \eta \hat{\mathbf{A}}^{T} \Delta)$$

$$= (\mathbf{A}\mathbf{W} - \eta \Delta \mathbf{B}^{T})(\mathbf{B} - \eta \mathbf{W}^{T} \mathbf{A}^{T} \Delta)$$
(8)

A.3 Comparison

Comparing Equation 5 and 8, we have:

$$\hat{\mathbf{W}}_{LoRA} - \mathbf{W}_{LoRA} = (-\eta \Delta \mathbf{B}^T + \eta \mathbf{A} \mathbf{A}^T \Delta \mathbf{B}^T + \eta \Delta \mathbf{B}^T \mathbf{W}^T \mathbf{W} - \eta^2 \Delta \mathbf{B}^T \mathbf{W}^T \mathbf{A}^T \Delta \mathbf{B}^T) (\mathbf{B} - \eta \mathbf{W}^T \mathbf{A}^T \Delta)$$

$$= (\eta (\mathbf{A} - \eta \Delta \mathbf{B}^T \mathbf{W}^T) \mathbf{A}^T \Delta \mathbf{B}^T + \eta \Delta \mathbf{B}^T (\mathbf{W}^T \mathbf{W} - \mathbf{I})) (\mathbf{B} - \eta \mathbf{W}^T \mathbf{A}^T \Delta) \neq \mathbf{0}$$
(9)

A.4 Fix W as Orthogonal Matrix

When we fix W as orthogonal matrix and do not update, then $WW^T = I$. Thus,

$$\mathbf{W}_{LoRA}^{\mathbf{I}} = (\mathbf{A} - \eta \Delta \mathbf{B}^{T} \mathbf{W}^{T}) \mathbf{W} (\mathbf{B} - \eta \mathbf{W}^{T} \mathbf{A}^{T} \Delta)$$

$$= (\mathbf{A} \mathbf{W} - \eta \Delta \mathbf{B}^{T} \mathbf{W}^{T} \mathbf{W}) (\mathbf{B} - \eta \mathbf{W}^{T} \mathbf{A}^{T} \Delta)$$

$$= (\mathbf{A} \mathbf{W} - \eta \Delta \mathbf{B}^{T}) (\mathbf{B} - \eta \mathbf{W}^{T} \mathbf{A}^{T} \Delta) = \hat{\mathbf{W}}_{LoRA}$$
(10)

A.5 Conclusion

Though mathematically equivalent initialized, the optimization process would be different if \mathbf{W} is learnable. Specifically, the optimization process would be the same i.i.f \mathbf{W} is a fixed orthogonal matrix.