- CC1-S1 -

- 2019-2020

CORRECTION - ANALYSE -

Les deux parties sont indépendantes.

PARTIE I

L'objectif de cette partie est de calculer la somme de la série $\sum_{n\geq 1} \frac{1}{n^2}$.

1. Soit f une fonction de classe C^1 sur $[0,\pi]$. A l'aide d'une intégration par parties, montrer que :

$$\lim_{n \to +\infty} \int_0^{\pi} f(t) \sin\left(\frac{2n+1}{2}t\right) dt = 0$$

Pour $n \in \mathbb{N}^*$, on note $I_n = \int_0^{\pi} f(t) \sin\left(\frac{2n+1}{2}t\right) dt$. La fonction intégrée est continue sur $[0,\pi]$.

Pour $t \in [0, \pi]$, on note $g(t) = -\frac{2}{2n+1} \cos\left(\frac{2n+1}{2}t\right)$. f et g sont de classe C^1 sur $[0, \pi]$ donc le théorème d'intégration par parties donne :

$$I_n = \left[-\frac{2}{2n+1} \cos\left(\frac{2n+1}{2}t\right) f(t) \right]_0^{\pi} + \frac{2}{2n+1} \int_0^{\pi} f'(t) \cos\left(\frac{2n+1}{2}t\right) dt = \frac{2f(0)}{2n+1} + \frac{2}{2n+1} \int_0^{\pi} f(t) \cos\left(\frac{2n+1}{2}t\right) dt.$$

Pour $t \in [0, \pi]$, la fonction f' étant continue, on a : $\left| f(t) \cos \left(\frac{2n+1}{2} t \right) \right| \le |f'(t)| \le \sup_{t \in [0, \pi]} |f'(t)|$, donc

$$|I_n| \le \frac{2}{2n+1} \left(|f(0)| + \pi \sup_{t \in [0,\pi]} |f'(t)| \right)$$
. Le théorème d'encadrement donne : $\lim_{n \to +\infty} I_n = 0$.

2. Montrer que pour $n \in \mathbb{N}^*$, et $t \in]0,\pi]$, on a :

$$C_n(t) = \frac{1}{2} + \sum_{k=1}^{n} \cos(kt) = \frac{\sin(\frac{2n+1}{2}t)}{2\sin(\frac{t}{2})}$$

Rappels: $\forall x \in \mathbb{R}$, $\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$, $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$; $\forall (a,b) \in \mathbb{R}^2, 2\sin a\cos b = \sin(a+b) + \sin(a-b)$.

Soient $n \in \mathbb{N}^*$, et $t \in]0,\pi]$. On a:

$$\begin{split} C_n &= \frac{1}{2} + \frac{1}{2} \left(\sum_{k=1}^n (\mathrm{e}^{it})^k + (\mathrm{e}^{-it})^k \right) = \frac{1}{2} + \frac{1}{2} \left(\mathrm{e}^{it} \frac{1 - \mathrm{e}^{int}}{1 - \mathrm{e}^{it}} + \mathrm{e}^{-it} \frac{1 - \mathrm{e}^{-int}}{1 - \mathrm{e}^{-it}} \right) \\ &= \frac{1}{2} + \frac{1}{2} \left(\mathrm{e}^{it(1 + \frac{n}{2} - \frac{1}{2})} \frac{\mathrm{e}^{-\frac{int}{2}} - \mathrm{e}^{\frac{int}{2}}}{\mathrm{e}^{-\frac{it}{2}} - \mathrm{e}^{\frac{it}{2}}} + \mathrm{e}^{-it(1 + \frac{n}{2} - \frac{1}{2})} \frac{\mathrm{e}^{\frac{int}{2}} - \mathrm{e}^{-\frac{int}{2}}}{\mathrm{e}^{\frac{it}{2}} - \mathrm{e}^{-\frac{it}{2}}} \right) = \frac{1}{2} + \frac{1}{2} \left(2\cos\left(\frac{n+1}{2}t\right) \frac{\sin\left(\frac{n}{2}t\right)}{\sin\left(\frac{t}{2}\right)} \right) \\ &= \frac{1}{2} + \frac{1}{2} \left(\frac{\sin\left(\frac{2n+1}{2}t\right) - \sin\left(\frac{t}{2}\right)}{\sin\left(\frac{t}{2}\right)} \right) = \frac{\sin\left(\frac{2n+1}{2}t\right)}{2\sin\left(\frac{t}{2}\right)}. \end{split}$$

3. Montrer que l'on a pour tout $k \in \mathbb{N}^*$

$$\int_0^{\pi} (t^2 - 2\pi t) \cos(kt) dt = \frac{2\pi}{k^2}$$

Pour $t \in [0, \pi]$, on pose $u_1(t) = t^2 - 2\pi t$ et $v_1(t) = \frac{1}{k}\sin(kt)$; u_1 et v_1 sont de classe C^1 sur $[0, \pi]$, et le théorème d'intégration par parties donne :

$$\int_0^{\pi} (t^2 - 2\pi t) \cos(kt) dt = \left[\frac{1}{k} (t^2 - 2\pi t) \sin(kt) \right]_0^{\pi} - \frac{1}{k} \int_0^{\pi} (2t - 2\pi) \sin(kt) dt = -\frac{1}{k} \int_0^{\pi} (2t - 2\pi) \sin(kt) dt.$$

Pour $t \in [0, \pi]$, on pose $u_2(t) = 2t - 2\pi$ et $v_2(t) = -\frac{1}{k}\cos(kt)$; u_2 et v_2 sont de classe C^1 sur $[0, \pi]$, et le théorème d'intégration par parties donne :

$$\int_0^{\pi} (2t - 2\pi) \sin(kt) dt = \left[-\frac{1}{k} (2t - 2\pi) \cos(kt) \right]_0^{\pi} + \frac{2}{k} \int_0^{\pi} \cos(kt) dt = \frac{2\pi}{k}.$$

Finalement, $\int_0^{\pi} (t^2 - 2\pi t) \cos(kt) dt = \frac{2\pi}{k^2}$

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 1 sur 3

4. En déduire que pour tout $n \in \mathbb{N}^*$:

$$\frac{1}{2\pi} \int_0^\pi (t^2 - 2\pi t) C_n(t) \mathrm{d}t = \sum_{k=1}^n \frac{1}{k^2} - \frac{\pi^2}{6}$$

$$\frac{1}{2\pi} \int_0^\pi (t^2 - 2\pi t) C_n(t) \mathrm{d}t = \frac{1}{4\pi} \int_0^\pi (t^2 - 2\pi t) \mathrm{d}t + \frac{1}{2\pi} \sum_{k=1}^n \int_0^\pi (t^2 - 2\pi t) \cos(kt) \mathrm{d}t = \frac{1}{4\pi} \left[\frac{t^3}{3} - \pi t^2 \right]_0^\pi + \frac{1}{2\pi} \sum_{k=1}^n \frac{2\pi}{k^2}$$

$$= -\frac{\pi^2}{6} + \sum_{k=1}^n \frac{1}{k^2}.$$

5. Déduire de ce qui précède la somme de la série $\sum_{i=1}^{n} \frac{1}{n^2}$.

Pour $t \in]0,\pi]$, on note $f(t) = \frac{t^2 - 2\pi t}{\sin(\frac{t}{2})}$

On a:
$$f(t) = -4\pi + 2t + o_{t\to 0}(t)$$
 donc f se prolonge en 0 en une fonction de classe C^1 .
Les résultats des questions $\mathbf{1}$ et $\mathbf{2}$, donnent:
$$\int_0^{\pi} (t^2 - 2\pi t) C_n(t) dt = \int_0^{\pi} f(t) \sin\left(\frac{2n+1}{2}t\right) dt \xrightarrow[n \to +\infty]{} 0.$$

On déduit de la question précédente que $\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$.

PARTIE II

L'objectif de cette partie est de montrer que

$$\int_0^1 \frac{\ln(t)}{t^2 - 1} dt = \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$

1. Prouver la convergence de l'intégrale.

 $t\mapsto \frac{\ln(t)}{t^2-1}$ est continue sur]0,1[donc localement intégrale. Elle est également positive.

En $0: \frac{\ln(t)}{t^2-1} \sim -\ln(t)$. $\int_0^1 \ln(t) dt$ est une intégrale de référence convergente, donc par comparaison de fonctions

positives, $\int_0^{\frac{1}{2}} \frac{\ln(t)}{t^2 - 1} dt$ converge. En $1 : \frac{\ln(t)}{t^2 - 1} = \frac{\ln(t)}{(t - 1)(t + 1)} \xrightarrow{t \to 1} \frac{1}{2}$. La fonction se prolonge par continuité en 1, l'intégrale est donc faussement

En conclusion, $\int_{1}^{1} \frac{\ln(t)}{t^2 - 1} dt$ est convergente.

2. Montrer que pour tout $k \in \mathbb{N}$ l'intégrale $I_k = \int_0^1 t^k \ln(t) dt$ converge, et la calculer

Soient $k \in \mathbb{N}$ et x > 0. Pour $t \in [x, 1]$, on pose $u(t) = \ln(t)$ et $v(t) = \frac{t^{k+1}}{k+1}$

 $u \text{ et } v \text{ sont de classe } C^1 \text{ sir } [x,1], \text{ et le théorème d'intégration par parties donne}:$ $I_k = \left[\frac{t^{k+1}}{k+1}\ln(t)\right]_x^1 - \int_x^1 \frac{t^k}{k+1} = -\frac{x^{k+1}}{k+1}\ln(x) - \frac{1}{(k+1)^2} + \frac{x^{k+1}}{(k+1)^2} \xrightarrow[x \to 0]{} - \frac{1}{(k+1)^2}, \text{ par croissances comparées.}$

3. Montrer que pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=0}^{n} \frac{1}{(2k+1)^2} = \int_0^1 \frac{\ln(t)}{t^2 - 1} dt - \int_0^1 \frac{t^{2n+2} \ln(t)}{t^2 - 1} dt$$

$$\sum_{k=0}^{n} \frac{1}{(2k+1)^2} = -\sum_{k=0}^{n} I_{2k} = -\sum_{k=0}^{n} \int_{0}^{1} t^{2k} \ln(t) dt = -\int_{0}^{1} \sum_{k=0}^{n} \left(t^2\right)^k \ln(t) dt = -\int_{0}^{1} \frac{1 - (t^2)^{n+1}}{1 - t^2} \ln(t) dt.$$

Comme on a montré la convergence de $\int_0^1 \frac{\ln(t)}{t^2-1} dt$, on en déduit le résultat attendu.

Spé PT Page 2 sur 3 **4.** Montrer que la fonction $t \mapsto \frac{t^2 \ln(t)}{t^2 - 1}$ est bornée sur]0, 1[.

La fonction $t \mapsto \frac{t^2 \ln(t)}{t^2 - 1}$ est continue sur]0,1[, et se prolonge par continuité en 0 (par croissances comparées) et en 1 (avec $\lim_{t \to 1} \frac{\ln(t)}{t - 1} = 1$).

On en déduit qu'elle est bornée sur le compact [0,1].

5. En déduire $\lim_{n\to+\infty}\int_0^1 \frac{t^{2n+2}\ln(t)}{t^2-1}dt=0$, puis la relation attendue.

Soit $M \in \mathbb{R}^+$ un majorant de $t \mapsto \frac{t^2 \ln(t)}{t^2 - 1}$ sur]0, 1[(qui est positive sur cet intervalle). Par positivité de l'intégrale, on $a: 0 \le \int_0^1 \frac{t^{2n+2} \ln(t)}{t^2 - 1} dt \le M \int_0^1 t^{2n} dt$, donc $0 \le \int_0^1 \frac{t^{2n+2} \ln(t)}{t^2 - 1} dt \le \frac{M}{2n+1}$.

Le théorème d'encadrement donne $\lim_{n\to+\infty}\int_0^1\frac{t^{2n+2}\ln(t)}{t^2-1}\mathrm{d}t=0$ et par suite, $\int_0^1\frac{\ln(t)}{t^2-1}\mathrm{d}t=\sum_{k=0}^{+\infty}\frac{1}{(2k+1)^2}$.

6. En utilisant le résultat démontré en partie I, calculer $\int_0^1 \frac{\ln(t)}{1-t^2} dt$.

On a montré dans la première partie que : $\sum_{k=0}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$.

En admettant que le regroupement de termes est possible, on en déduit que : $\sum_{k=1}^{+\infty} \frac{1}{(2k)^2} + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{6},$

donc
$$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{6} - \frac{1}{4} \times \frac{\pi^2}{6} = \frac{\pi^2}{8}$$
.

Finalement, $\int_0^1 \frac{\ln(t)}{1-t^2} dt = \frac{\pi^2}{8}.$

Spé PT Page 3 sur 3