Señales y Sistemas

Problemas Tema 2: Sistemas Lineales e Invariantes en el Tiempo

Francisco Javier Mercader Martínez

1) Obtenga la convolución de las señales $x(t) = \prod \left(\frac{t - \frac{T}{2}}{T}\right)$ y $h(t) = t \prod \left(\frac{t - T}{2T}\right)$.

La convolución de las funciones x(t) y h(t) se define como:

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

Dado que x(t) y h(t) son funciones de duración finita, la integral se reduce al intervalo donde ambas funciones se superponen.

Paso a paso:

• Intervalo de integración:

La convolución será no nula solo en el intervalo donde las funciones se superponen. Dado que x(t) está definido en [0,T] y h(t) en [0,2T], la convolución y(t) será no nula en el intervalo [0,3T].

• Evaluación de la integral:

Para cada t en [0,3T], evaluamos la integral:

$$y(t) = \int_0^T \prod \left(\frac{\tau - \frac{T}{2}}{T}\right) (t - \tau) \prod \left(\frac{t - \tau - T}{2T}\right) d\tau.$$

Simplificando las funciones rectangulares, la integral se reduce a:

$$y(t) = \int_{\max(0, t-2T)}^{\min(T, t)} (t - \tau) d\tau.$$

• Cálculo de la integral:

Evaluamos la integral en los intervalos donde las funciones se superponen:

• Para $0 \le t < T$, la integral es:

$$y(t) = \int_0^t (t - \tau) d\tau = \left[t\tau - \frac{\tau^2}{2} \right]_0^t = \frac{t^2}{2}$$

• Para $T \leq t < 2T$, la integral es:

$$y(t) = \int_0^T (t - \tau) d\tau = \left[t\tau - \frac{\tau^2}{2} \right]_0^T = tT - \frac{T^2}{2}$$

• Para $2T \le t < 3T$, la integral es:

$$y(t) = \int_{t-2T}^{T} (t-\tau) d\tau = \left[t\tau - \frac{\tau^2}{2} \right]_{t-2T}^{T} = \frac{(3T-t)^2}{2}$$

La convolución y(t) es:

$$y(t) = \begin{cases} \frac{t^2}{2}, & 0 \le t < T \\ tT - \frac{T^2}{2}, & T \le t < 2T \\ \frac{(2T - t)^2}{2}, & 2T \le t \le 3T \\ 0, & \text{en otro caso} \end{cases}$$

$$\textbf{2)} \ \ \text{Calcule} \ \left(\frac{t}{T_1}+1\right) \prod \left(\frac{t-\frac{T_1}{2}}{T_1}\right) * \prod \left(\frac{t-\frac{T_2}{2}}{T_2}\right), \ \text{con} \ T_2 > T_1.$$

Paso 1: Comprender las señales

• Primera señal:

$$x(t) = \left(\frac{t}{T_1} + 1\right) \prod \left(\frac{t - \frac{T_1}{2}}{T_1}\right)$$

- La función $\prod \left(\frac{t \frac{T_1}{2}}{T_1}\right)$ es una función rectangular centrada en $t = \frac{T_1}{2}$ con un ancho de T_1 . Esto significa que \prod es igual a 1 en el intervalo $[0, T_1]$ y 0 fuera de este intervalo.
- Por lo tanto, x(t) es una función lineal definida únicamente $[0, T_1]$, con:

$$x(t) = \frac{t}{T_1} + 1$$
, para $t \in [0, T_1]$.

• Segunda señal:

$$h(t) = \prod \left(\frac{t - \frac{T_2}{2}}{T_2} \right).$$

• Esta es una función rectangular centrada en $t = \frac{T_2}{2}$ con un ancho de T_2 . Es igual a 1 en el intervalo $[0, T_2]$ y 0 fuera de este intervalo.

$$h(t) = \prod \left(\frac{t - \frac{T_2}{2}}{T_2} \right)$$

• Convolución de las señales

La convolución de x(t) y h(t) se define como:

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau.$$

Dado que x(t) está definido en $[0, T_1]$ y h(t) en $[0, T_2]$, la convolución será no nula únicamente en el intervalo donde ambas funciones se superponen. Esto ocurre en el intervalo $[0, T_1 + T_2]$.

Intervalo de integración:

• Para cada $t \in [0, T_1 + T_2]$, la integral se reduce a:

$$y(t) = \int_{\max(0, t-T_2)}^{\min(T_1, t)} x(\tau) d\tau,$$

ya que $h(t-\tau)$ es no nula cuando $t-\tau \in [0,T_2]$, es decir, $\tau \in [t-T_2,t]$, y $x(\tau)$ es no nula solo cuando $\tau \in (0,T_1)$.

Paso 2: Evaluar la integral

En el interalo de integración, $x(\tau) = \frac{\tau}{T_1} + 1$. Sustituyendo esto en la integral:

$$y(t) = \int_{\max(0, t - T_2)}^{\min(T_1, t)} \left(\frac{\tau}{T_1} + 1\right) d\tau = \int_{\max(0, t - T_2)}^{\min(T_1, t)} \frac{\tau}{T_1} d\tau + \int_{\max(0, t - T_2)}^{\min(T_1, t)} 1 d\tau$$

$$= \frac{1}{T_1} \left(\frac{\min(T_1, t)^2}{2} - \frac{\max(0, t - T_2)^2}{2}\right) + \min(T_1, t) - \max(0, t - T_2)$$

$$\bullet \int_{\max(0,t-T_2)}^{\min(T_1,t)} \frac{\tau}{T_1} d\tau = \frac{1}{T_1} \int_{\max(0,t-T_2)}^{\min(T_1,t)} \tau d\tau = \frac{1}{T_1} \left[\frac{\tau^2}{2} \right]_{\max(0,t-T_2)}^{\min(T_1,t)} = \frac{1}{T_1} \left(\frac{\min(T_1,t)^2}{2} - \frac{\max(0,t-T_2)^2}{2} \right).$$

•
$$\int_{\max(0,t-T_2)}^{\min(T_1,t)} 1 d\tau = [\tau]_{\max(0,t-T_2)}^{\min(T_1,t)} = \min(T_1,t) - \max(0,t-T_2)$$

3) Calcule la convolución de $x(t) = e^{2t}u(-t)$ con h(t) = u(t-3).

La convolució se define como:

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

Análisis de las señales

- $x(t) = e^{2t}u(-t)$ es una señal exponencial que existe solo para t < 0.
- h(t) = u(t-3) es un escalón unitario desplazado 3 unidades a la derecha.

3

Determinación de los límites de integración

Para que la integral no sea nula, necesitamos que:

- $\tau < 0$ (debido a $u(-\tau)$ en $x(\tau)$)
- $t-\tau > 3$ (debido a $u(t-\tau-3)$ en $h(t-\tau)$)

De $t - \tau > 3$, obtenemos: $\tau < t - 3$. Por tanto, los límites de itengración son:

- Límite inferior: $-\infty$
- Límite superior: min(0, t 3)

Cálculo de la convolución

$$y(t) = \int_{-\infty}^{\min(0, t-3)} e^{2\tau} (u - \tau) u(t - \tau - 3) d\tau$$

Debemos considerar dos casos:

Caso 1: t < 3

En este caso, t-3 < 0, por lo que min(0, t-3) = t-3

$$y(t) = \int_{-\infty}^{t-3} e^{2\tau} d\tau = \frac{1}{2} e^{2(t-3)} = \frac{1}{2} e^{2t-6}$$

Caso 2: $t \geq 3$

En este caso, $t-3 \ge 0$, por lo que min(0, t-3) = 0

$$y(t) = \int_{-\infty}^{0} e^{2\tau} d\tau = \frac{1}{2}$$

La convolución es:

$$y(t) = \begin{cases} \frac{1}{2}e^{2t-6}, & t < 3\\ \frac{1}{2}, & t \ge 3 \end{cases}$$

4) Sea $x[n] = \delta[n] + 2\delta[n-1] - \delta[n-3]$ y $h[n] = 2\delta[n+1] + 2\delta[n-1]$

a) $y_1 = x[n] * h[n]$

La convolución se calcula como:

$$y_1 = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Sustituyendo x[k] y h[n-k], tenemos:

$$y_1[n] = x[0]h[n] + x[1]h[n-1] + x[3]h[n-3]$$

•
$$x[0] = 1 \longrightarrow h[n] = 2\delta[n+1] + 2\delta[n-1]$$

•
$$x[1] = 2 \longrightarrow h[n-1] = 2\delta[n] + 2\delta[n-2]$$

•
$$x[3] = -1 \longrightarrow h[n-3] = 2\delta[n-2] + 2\delta[n-4]$$

Sumando todas las contribuciones:

$$y_1[n] = 2\delta[n+1] + 2\delta[n-1] + 4\delta[n] + 4\delta[n-2] - 2\delta[n-2] - 2\delta[n-4] = 2\delta[n+1] + 4\delta[n] + 2\delta[n-1] + 2\delta[n-2] - 2\delta[n-4] = 2\delta[n+1] + 2\delta[n-2] + 2\delta[n-2] - 2\delta[n-2] -$$

b) $y_2[n] = x[n+2] * h[n]$

Señal desplazada:

$$x[n+2]=\delta[n+2]+2\delta[n+1]-\delta[n-1]$$

La convolución se calcula como:

$$y_2[n] = \sum_{k=-\infty}^{\infty} x[k+2]h[n-k]$$

Sustituyendo x[k+2] y x[n-k], tenemos:

$$y_2[n] = x[-2]h[n+2] + x[-1]h[n+1] + x[1]h[n-1]$$

- $x[-2] = 1 \longrightarrow h[n+2] = 2\delta[n+3] + 2\delta[n+1]$
- $x[-1] = 2 \longrightarrow h[n+1] = 2\delta[n+2] + 2\delta[n]$
- $x[1] = -1 \longrightarrow h[n-1] = 2\delta[n] + 2\delta[n-2]$

Sumando todas las contribuciones:

$$y_2[n] = 2\delta[n+3] + 2\delta[n+1] + 4\delta[n+2] + 4\delta[n] - 2\delta[n] - 2\delta[n-2] = 2\delta[n+3] + 4\delta[n+2] + 2\delta[n+1] + 2\delta[n] - 2\delta[n-2] = 2\delta[n+3] + 2\delta[n+1] + 2\delta[n+1] + 2\delta[n+2] + 2$$

c) $y_3[n] = x[n] * h[n+2]$

Señal desplazada:

$$h[n+2] = 2\delta[n+3] + 2\delta[n+1]$$

La convolución se calcula como:

$$y_3[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k+2]$$

Sustituyendo x[k] y h[n-k+2], tenemos:

$$y_3[n] = x[0]h[n+2] + x[1]h[n+1] + x[3]h[n-1]$$

- $x[0] = 1 \longrightarrow h[n+2] = 2\delta[n+3] + 2\delta[n+1]$
- $x[1] = 2 \longrightarrow h[n+1] = 2\delta[n+2] + 2\delta[n]$
- $x[3] = -1 \longrightarrow h[n-1] = 2\delta[n] + 2\delta[n-2]$

Sumando todas las contribuciones:

$$y_3[n] = 2\delta[n+3] + 2\delta[n+1] + 4\delta[n+2] + 4\delta[n] - 2\delta[n] - 2\delta[n-2] = 2\delta[n+3] + 4\delta[n+2] + 2\delta[n+1] + 2\delta[n] - 2\delta[n-2] = 2\delta[n+3] + 2\delta[n+1] + 2\delta[n+1] + 2\delta[n+2] + 2$$

5) Un sistema lineal S relaciona su entrada x[n] y su salida y[n] como

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-2k]$$

donde g[n] = u[n] - u[n-4].

a) Determine y[n] cuando $x[n] = \delta[n-1]$

La relación entre la entrada y la salida está dada por:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-2k]$$

Sustituyendo $x[n] = \delta[n-1]$, sabemos que $\delta[n-1]$ es no nula cuando n=1. Por lo tanto, la suma se reduce a:

$$y[n] = g[n - 2(1)] = g[n - 2]$$

Dado que g[n] = u[n] - u[n-4], tenemos:

$$g[n-2] = u[n-2] - u[n-6]$$

Por lo tanto:

$$y[n] = u[n-2] - u[n-6]$$

Esto significa que y[n] es un pulso rectangular que comienza en n=2 y termina en n=5 (ya que u[n-6]) se activa en n=6.

b) Determine y[n] cuando $x[n] = \delta[n-2]$

De nuevo, la relación es:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-2k]$$

Sustituyendo $x[n] = \delta[n-2]$, sabemos que $\delta[n-2]$ es no nula solo cuando n=2. Por lo tanto, la suma se reduce a:

$$y[n] = g[n - 2(2)] = g[n - 4]$$

Dado que g[n] = u[n] - u[n-4], tenemos:

$$g[n-4] = u[n-4] - u[n-8]$$

Esto significa que y[n] es un pulso rectangular que comienza en n=4 y termina en n=7 (ya que u[n-8] se activa en n=8)

c) ξ Es S un sistema LTI?

Para determinar si el sitema es lineal e invariante en el tiempo, evaluamos cada propiedad:

• Linealidad:

Un sistema es lineal si satisface el principio de superposición, es decir, si para dos entradas $x_1[n]$ y $x_2[n]$ con salidas $y_1[n]$ y $y_2[n]$, respectivamente, se cumple que:

$$S\{ax_1[n] + bx_2[n]\} = ay_1[n] + by_2[n]$$

En este caso, la salida está dada por una suma ponderada de x[k] y g[n-2k], lo cual es una operación lineal. Por lo tanto, el sistema es **lineal**.

• Invanrianza en el tiempo:

Un sistema es invariante en el tiempo si un desplazamiento en la entrada produce el mismo desplazamiento en la salida. Es decir, si para una entrada x[n] con salida y[n], al desplazar la entrada $x[n-n_0]$, la salida se desplaza de manera idéntica $y[n-n_0]$.

En este caso, la salida depende de g[n-2k], que introduce un factor de escalamiento en el índice k. Esto significa que el sistema **no es invariante en el tiempo**, ya que el desplazamiento de la entrada no se traduce

directamente en un desplazamiento de la salida.

d) Determine y[n] cuando x[n] = u[n]

De nuevo, la relación es:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-2k]$$

Sustituyendo x[n] = u[n], sabemos que u[n] es no nula para $k \ge 0$. Por lo tanto, la suma se reduce a:

$$y[n] = \sum_{k=0}^{\infty} g[n - 2k]$$

Dado que g[n] = u[n] - u[n-4], tenemos:

$$g[n-2k] = u[n-2k] - u[n-2k-4]$$

Sustituyendo esto en la suma:

$$y[n] = \sum_{k=0}^{\infty} (u[n-2k] - u[n-2k-4])$$

La suma se puede interpretar como una superposición de pulsos rectangulares desplazados. Cada término u[n-2k]-u[n-2k-4] es un pulso rectangular de longitud 4, comenzando en n=2k y terminando en n=2k+3.

Por lo tanto, y[n] es una secuencia de pulsos rectangulares de longitud 4, comenzando en n = 0 y repitiéndose cada 2 unidades de tiempo.

6) Determine y esboce la convolución de las siguientes señales:

$$x(t) = \begin{cases} t+1, & 0 \le t \le 1 \\ 2-t, & 1 < t \le 2 \\ 0, & \text{otro valor} \end{cases}$$
 $h(t) = \delta(t+2) + 2\delta(t+1)$

La convolución de dos señales x(t) y h(t) está definida como:

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} h(\tau)h(t - \tau)d\tau$$

En este caso:

• x(t) es una función triangular definida por tramos:

$$x(t) = \begin{cases} t+1, & 0 \le t \le 1\\ 2-t, & 1 < t \le 2\\ 0, & \text{en otro case} \end{cases}$$

• h(t) es una combinación de deltas desplazadas:

$$h(t) = \delta(t+2) + 2\delta(t+1)$$

Dado que h(t) está compuesto por deltas, la convolución se simplifica porque las deltas actúan como "muestradoras"

de x(t). Específicamente, la convolución se convierte en:

$$y(t) = x(t) * h(t) = x(t+2) + 2x(t+1)$$

Paso 1: Determinar x(t+2)

Para obtener x(t+2), desplazamos x(t) dos unidades hacia la izquierda. Esto significa que el soporte de x(t+2) (el intervalo donde es cero) será:

$$-2 \le t \le -1$$

En este intervalo, la forma de x(t+2) es:

• Para $-2 \le t \le -1, x(t+2) = t+2+1 = t+3.$

Por lo tanto:

$$x(t+2) = \begin{cases} t+3, & -2 \le t \le -1\\ 0, & \text{en otro caso} \end{cases}$$

Paso 2: Determinar 2x(t+1)

Para obtener 2x(t+1), desplazamos x(t) una unidad hacia la izquierda y multiplicamos por 2. Esto significa que el soporte de 2x(t+1) será:

$$-1 \le t \le 1$$

En este intervalo, la forma de x(t+1) es:

- Para -1 < t < 0, x(t+1) = t+1+1 = t+2
- Para $0 < t \le 1, x(t+1) = 2 (t-1) = 1 t$

Multiplicando por 2, obtenemos:

$$2x(t+1) = \begin{cases} 2(t+2) = 2t+4, & -1 \le t \le 0\\ 2(1-t) = 2-2t, & 0 < t \le 1\\ 0, & \text{en otro caso} \end{cases}$$

Paso 3: Sumar x(t+2) y 2x(t+1)

Ahora sumamos las dos contribuciones x(t+2) y 2x(t+1). El soporte total de y(t) será la unión de los soportes de x(t+2) y 2x(t+1), es decir:

$$-2 \le t \le 1$$

Dividimos el cálculo en intervalos:

- Para $-2 \le t < -1$:
 - x(t+2) = t+3
 - 2x(t+1) = 0 (porque t+1 < -1)
 - y(t) = t + 3
- Para $-1 \le t < 0$:
 - x(t+2) = t+3
 - 2x(t+1) = 2t+4
 - y(t) = (t+3) + (2t+4) = 3t+7
- Para $0 \le t \le 1$:

- x(t+2) = 0 (porque t+2 > 2)
- 2x(t+1) = 2 2t
- y(t) = 0 + (2 2t) = 2 2t

La salida y(t) es:

$$y(t) = \begin{cases} t+3, & -2 \le t < -1\\ 3t+7, & -1 \le t < 0\\ 2-2t, & 0 \le t < 1\\ 0, & \text{en otro caso} \end{cases}$$

7) Sean

$$x(t) = \begin{cases} 1, & 0 \le t \le 1 \\ 0, & \text{otro valor} \end{cases} \quad h(t) = x\left(\frac{t}{\alpha}\right), \text{ donde } 0 < \alpha \le 1$$

a) Determine y esboce y(t) = x(t) * h(t).

La convolución de x(t) y h(t) está definida como:

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

Dado que $\boldsymbol{x}(t)$ es una función rectangular definida como:

$$x(t) = \begin{cases} 1, & 0 \le t \le 1\\ 0, & \text{en otro caso} \end{cases}$$

y que $h(t) = x\left(\frac{t}{\alpha}\right)$, podemos escribir h(t) como:

$$h(t) = \begin{cases} 1, & 0 \le \frac{t}{\alpha} \le 1 & \longrightarrow 0 \le t \le \alpha \\ 0, & \text{en otro caso} \end{cases}$$

Por lo tanto:

$$h(t) = \begin{cases} 1, & 0 \le t \le \alpha \\ 0, & \text{en otro caso} \end{cases}$$

Ambas señales son rectángulos, y la convolución de dos rectángulos es un triángulo. El soporte de y(t) será la suma de los soporte de x(t) y h(t), es decir:

Soporte de
$$y(t)$$
: $[0, 1 + \alpha]$

Cálculo de y(t):

La convolución se calcula como:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Dado que $x(\tau)$ y $h(t-\tau)$, son no nula en los intervalos [0,1] y $[t-\alpha,t]$, respectivamente, la integral se reduce al intervalo donde ambos se solapan. Esto depende del valor de t:

• Para $0 \le t \le \alpha$:

En este caso, el solapamiento ocurre en [0, t]. Por lo tanto:

$$y(t) = \int_0^t 1 \cdot 1 d\tau = [\tau]_0^t = t$$

• Para $\alpha \leq t \leq 1$:

En este caso, el sola pamiento ocurre en $[t-\alpha,t]$. Por lo tanto:

$$y(t) = \int_{t-\alpha}^{t} 1 \cdot 1 d\tau = [\tau]_{t-\alpha}^{t} = t - (t - \alpha) = \alpha$$

• Para $1 < t \le 1 + \alpha$:

En este caso, el solapamiento ocurre en $[t-\alpha,1]$. Por lo tanto:

$$y(t) = \int_{t-\alpha}^{1} 1 \cdot 1 d\tau = [\tau]_{t-\alpha}^{1} = 1 - (t - \alpha) = 1 + \alpha - t$$

• Para $t > 1 + \alpha$:

No hay solapamiento, por lo que:

$$y(t) = 0$$

La salida y(t) es:

$$y(t) = \begin{cases} t, & 0 \le t \le \alpha \\ \alpha, & \alpha < t \le 1 \\ 1 + \alpha - t, & 1 < t \le 1 + \alpha \\ 0, & \text{en otro caso} \end{cases}$$

Esto corresponde a un triángulo con base en $[0, 1 + \alpha]$, que crece linealmente en $[0, \alpha]$, se mantiene constante en $[\alpha, 1]$, y decrece linealmente en $[1, 1 + \alpha]$.

b) Si $\frac{dy(t)}{dt}$ contiene sólo tres discontinuidades, ¿cuál es el valor de α ?

La derivada de y(t) seá:

• Para $0 \le t \le \alpha$, y(t) = t, por lo que:

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = 1$$

• Para $\alpha < t \le 1, y(t) = \alpha$, por lo que:

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = 0$$

8) Sean

$$x(t) = u(t-3) - u(t-5)$$
 $h(t) = e^{-3t}u(t)$

- a) Calcule y(t) = x(t) * h(t)
- **b)** Calcule $g(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t} * h(t)$
- c) Establece una relación entre g(t) e y(t)
- 9) Calcule la convolución de los siguientes pares de señales:
 - a) $x[n] = \alpha^n u[n], \quad h[n] = \beta^n u[n], \quad \alpha \neq \beta$
 - **b)** $x[n] = h[n] = \alpha^n u[n]$
 - c) $x[n] = \left(-\frac{1}{2}\right)^n u[n-4], \quad h[n] = 4^n u[2-n]$
 - **d)** $x[n] = 2^n u[-n], \quad h[n] = u[n]$
- 10) ¿Cuál/es de las siguientes respuestas al impulso corresponden a sistemas LTI estables?
 - **a)** $h(t) = e^{-(1-2j)t}u(t)$
 - **b)** $h(t) = e^{-t} \cos(2t) u(t)$
- 11) ¿Cuál/es de las siguientes respuestas al impulso corresponden a sistemas LTI estables?
 - a) $h[n] = n \cos\left(\frac{\pi}{4}\right)$
 - **b)** $h[n] = 3^n u[-n+10]$
- 12) Para las siguientes respuestas al impulso de sistemas LTI, determine si cada sistema es causal y/o estable, justificando la respuesta.
 - $\mathbf{a)} \ h[n] = \left(\frac{1}{5}\right)^n u[n]$
 - Causalidad: El término u[n] asegura que h[n] = 0 para n < 0. Por lo tanto, el sistema es causal.
 - Escalabilidad: Para $n \ge 0, |h[n]| = \left(\frac{1}{5}\right)^n$. La suma de esta serie geométrica es:

$$\sum_{n=0}^{\infty} \left(\frac{1}{5}\right)^n = \frac{1}{1 - \frac{1}{5}} = \frac{5}{4} < \infty$$

Por lo tanto, el sistema es estable

- **b)** $h[n] = 0.8^n u[n+2]$
 - Causalidad: El término u[n+2] implica que $h[n] \neq 0$ para $n \geq -2$. Como $h[n] \neq 0$ para n < 0, el sistema no es causal.
 - Estabilidad: Para $n \ge -2$, $|h[n]| = 0.8^n$. Cambiando el índice de la suma (m = n + 2), tenemos:

$$\sum_{n=-2}^{\infty} 0.8^n = 0.8^{-2} \sum_{m=0}^{\infty} 0.8^m = \frac{1}{0.8^2} \cdot \frac{1}{1 - 0.8} = \frac{1}{0.64} \cdot 5 = 7.8125 < \infty$$

Por lo tanto, el sistema es estable.

c)
$$h[n] = \left(\frac{1}{2}\right)^n u[-n]$$

- Causalidad: El término u[-n] implica que $h[n] \neq 0$ solo para $n \leq 0$. Esto significa que el sistema depende de valores futuros de la entrada, por lo que no es causal.
- Estabilidad: Para $n \le 0, |h[n]| = \left(\frac{1}{2}\right)^n = 2^{-n}$. Cambiando el índice (m = -n), tenemos:

$$\sum_{n=-\infty}^{0} 2^{-n} = \sum_{m=0}^{\infty} 2^{m}$$

Esta serie geométrica diverge, por lo que el sistema no es estable.

d)
$$h[n] = 5^n u[3-n]$$

- Causalidad: El término u[3-n] implica que $h[n] \neq 0$ solo para $n \leq 3$. Esto significa que el sistema depende de valores futuros de la entrada, por lo que no es causal.
- Estabilidad: Para $n \leq 3$, $|h[n]| = 5^n$. Esta serie incluye términos crecientes (por ejemplo, 5^3), por lo que no es absolutamente sumable. El sistema no es estable.

e)
$$h[n] = \left(-\frac{1}{2}\right)^n u[n] + 1.01^n u[n-1]$$

- Causalidad: Ambos términos incluyen u[n] o u[n-1], lo que asegura que h[n] = 0 para n < 0. Por lo tanto, el sistema es causal.
- Estabilidad: EL primer término $\left(-\frac{1}{2}\right)^n u[n]$ es absolutamente sumable, ya que:

$$\sum_{n=0}^{\infty} \left| \left(-\frac{1}{2} \right)^n \right| = \sum_{n=0}^{\infty} \left(\frac{1}{2} \right)^n = 2$$

Sin embargo, el segundo término $1.01^n u[n-1]$ crece exponencialmente y no es absolutamente sumable. Por lo tanto, el sistema no es estable.

f)
$$h[n] = \left(-\frac{1}{2}\right)^n u[n] + 1.01^n u[1-n]$$

- Causalidad: El primer término $\left(-\frac{1}{2}\right)^n u[n]$ es causal, pero el segundo término $1.01^n u[1-n]$ implica que $h[n] \neq 0$ para n > 1. Por lo tanto, el sistema no es causal.
- Estabilidad: El primer término es aboslutamente sumable, pero el segundo término $1.01^n u[1-n]$ no lo es, ya que incluye términos crecientes. Por lo tanto, el sistema no es estable.

g)
$$h[n] = n \left(\frac{1}{3}\right)^n u[n-1]$$

- Causalidad: El término u[n-1] asegura que h[n]=0 para n<1. Por lo tanto el sistema es causal.
- Para $n \ge 1, |h[n]| = n \left(\frac{1}{3}\right)^n$ decrece exponencialmente, el factor n hace que la serie no sea absolutamente sumable. Por ejemplo, usando el criterio de comparación, la serie diverge. Por lo tanto, el sistema no es estable.
- 13) Considere un sistema LTI que se encuentra incialmente en reposo y cuya entrada x(t) y salida y(t) se relacionan por la ecuación diferencial

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 4y(t) = x(t)$$

a) Obtenga la respuesta al impulso del sistema.

La ecuación diferencial que describe el sistema es:

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 4y(t) = x(t).$$

Para encontrar la **respuesta al impulso** h(t), consideramos la entrada $x(t) = \delta(t)$. En este caso, la ecuación diferencial se convierte en:

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 4h(t) = \delta(t).$$

Resolviendo la ecuación diferencial

• Ecuación homogénea: Primero resolvemos la ecuación homogénea asociada (x(t) = 0):

$$\frac{\mathrm{d}}{\mathrm{d}t}h_h(t) + 4h_h(t) = 0.$$

La solución general de esta ecuación es:

$$h_h(t) = Ce^{-4t},$$

donde C es una constante que se determinará con las condiciones iniciales.

• Solución particular: Dado que la entrada es un impulso $\delta(t)$, la solución particular se encuentra considerando la propiedad de causalidad del sistema LTI. La respuesta al impulso h(t) debe ser cero para t < 0. Además, integramos ambos lados de la ecuación diferencial en un intervalo infinitesimal alrededor de t = 0 para determinar la discontinuidad en h(t):

$$\int_{-\epsilon}^{\epsilon} \left(\frac{\mathrm{d}}{\mathrm{d}t} h(t) + 4h(t) \right) \, \mathrm{d}t = \int_{-\epsilon}^{\epsilon} \delta(t) \, \mathrm{d}t.$$

El primer término se evalúa como:

$$\int_{-\epsilon}^{\epsilon} \frac{\mathrm{d}}{\mathrm{d}t} h(t) \, \mathrm{d}t = h(\epsilon) - h(-\epsilon).$$

Para un sistema causal, h(t) = 0 para t < 0, por lo que $h(-\epsilon) = 0$. Esto implica:

$$h(\epsilon) - 0 + \int_{-\epsilon}^{\epsilon} 4h(t) dt = 1.$$

En el límite $\epsilon \to 0$, el término $\int_{-\epsilon}^{\epsilon} 4h(t) dt$ desaparece, y obtenemos:

$$h(0^+) = 1.$$

• Solución completa: La solución completa es:

$$h(t) = \begin{cases} e^{-4t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$

Por lo tanto, la **respuesta al impulso** del sistema es:

$$h(t) = e^{-4t}u(t),$$

donde u(t) es la función escalón unitario.

b) Si $x(t) = e^{(-1+3j)t}u(t)$, calcule y(t)

La salida de un sistema LTI se obitnee mediante la convolución de la entrada x(t) con la respuesta al impulso

h(t):

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau.$$

Sustituyendo $x(t) = e^{(-1+3j)t}u(t)$ y $h(t) = e^{-4t}u(t)$, tenemos:

$$y(t) = \int_{-\infty}^{\infty} e^{(-1+3j)\tau} u(\tau) e^{-4(t-\tau)} u(t-\tau) d\tau.$$

Debido a las funciones escalón $u(\tau)$ y $u(t-\tau)$, los límites de integración se restringen a $0 \le \tau \le t$. Por lo tanto:

$$y(t) = \int_0^t e^{(-1+4j)\tau} e^{-4(t-\tau)} d\tau.$$

Simplificamos el exponente:

$$e^{(-1+3j)\tau}e^{-4(t-\tau)} = e^{-4t}e^{(3j-1+4)\tau} = e^{-4t}e^{(3j+3)\tau}.$$

Entonces:

$$y(t) = e^{-4t} \int_0^t e^{(3j+3)\tau} d\tau.$$

Resolvemos la integral:

$$\int_0^t e^{(3j+3)\tau} d\tau = \frac{1}{3j+3} \left[e^{(3j+3)\tau} \right]_0^t = \frac{1}{3j+3} \left(e^{(3j+3)t} - 1 \right).$$

Por lo tanto:

$$y(t) = e^{-4t} \cdot \frac{1}{3j+3} \left(e^{(3j+3)t} - 1 \right) = \frac{1}{3j+3} \left(e^{(-1+3j)t} - e^{-4t} \right).$$

14) Considere un sistema LTI que se encuentra inicialmente en reposo y cuya entrada x(t) y salida y(t) se relacionan por la ecuación diferencial

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 3y(t) = 2x(t)$$

a) Si $x(t) = \cos(2t)u(t)$, calcule y(t).

La ecuación diferencia que describe el sistema es:

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 3y(t) = 2x(t).$$

Dado que $x(t) = \cos(2t)u(t)$, la entrada es causal, y el sistema está inicialmente en resposo. Resolveremos esta ecuación diferencial para y(t).

Paso 1: Representación de la entrada

La entrada $x(t) = \cos(2t)u(t)$ puede escribirse en términos de exponenciales complejas usando la identidad de Euler:

$$\cos(2t) = \frac{e^{j2t} + e^{-j2t}}{2}.$$

Por lo tanto:

$$x(t) = \frac{1}{2} \left(e^{j2t} + e^{-j2t} \right) u(t).$$

Paso 2: Solución de la ecuación diferencial

La solución general de la ecuación difernecial tiene dos componentes:

$$y(t) = y_h(t) + y_p(t),$$

donde $y_h(t)$ es la solución de la ecuación homogénea asociada (x(t) = 0) y $y_p(t)$ es una solución particular.

a) Solución homogénea

La ecuación homogénea es:

$$\frac{\mathrm{d}}{\mathrm{d}t}y_h(t) + 3y_h(t).$$

Resolviendo, obtenemos:

$$y(t) = Ce^{-3t},$$

donde C es una constante que se determinará con las condiciones iniciales.

b) Solución particular

Para encontrar $y_p(t)$, asumimos una solución de la forma:

$$y_p(t) = Ae^{j2t} + Be^{-j2t}.$$

Sustituyendo $y_p(t)$ en la ecuación diferencial:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(Ae^{j2t} + Be^{-j2t} \right) + 3 \left(Ae^{j2t} + Be^{-j2t} \right) = 2x(t).$$

Calculamos la derivada:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(Ae^{j2t} + Be^{-j2t} \right) = j2Ae^{j2t} - j2Be^{-j2t}.$$

Sustituyendo:

$$(j2A + 3A)e^{j2t} + (-j2B + 3B)e^{-j2t} = 2 \cdot \frac{1}{2} (e^{j2t} + e^{-j2t}).$$

Agrupando términos:

$$((j2+3)A)e^{j2t} + ((-j2+3)B)e^{-j2t} = e^{j2t} + e^{-j2t}.$$

Igualando coeficientes de e^{j2t} y e^{-j2t} :

- Para $e^{j2t}: (j2+3)A = 1.$
- Para $e^{-j2t}: (-j2+3)B = 1.$

Resolviendo para A y B:

$$A = \frac{1}{2j+3}, \quad B = \frac{1}{-2j+3}.$$

Simplificamos A y B multiplicando numerador y denominador por el conjugado del denominador:

$$A = \frac{1}{2j+3} \cdot \frac{-2j+3}{-2j+3} = \frac{-2j+3}{(2j+3)(-2j+3)} = \frac{-2j+3}{13}$$
$$B = \frac{1}{-2j+3} \cdot \frac{2j+3}{2j+3} = \frac{2j+3}{(2j+3)(-2j+3)} = \frac{2j+3}{13}$$

Por lo tanto, la solución particular es:

$$y_p(t) = \frac{-2j+3}{13}e^{j2t} + \frac{2j+3}{13}e^{-j2t}.$$

Usando la identidad de Euler para regresar a términos reales:

$$y_p(t) = \frac{3}{13}\cos(2t) + \frac{2}{13}\sin(2t).$$

c) Solución completa

La solución completa es:

$$y(t) = y_h(t) + y_p(t) = Ce^{-3t} + \frac{3}{13}\cos(2t) + \frac{2}{13}\sin(2t).$$

Dado que el sistema está inicialmente en reposo (y(0) = 0), sustituimos t = 0 para determinar C:

$$y(0) = C + \frac{3}{13}\cos(0) + \frac{2}{13}\sin(0) = 0.$$
$$C + \frac{3}{13} = 0 \longrightarrow C = -\frac{3}{13}.$$

Por lo tanto, la solución final es:

$$y(t) = -\frac{3}{13}e^{-3t} + \frac{3}{13}\cos(2t) + \frac{2}{13}\sin(2t).$$

b) Obtenga la respuesta al impulso del sistema.

La respuesta al impulso h(t) se obtiene resolviendo la ecuación diferencial con $x(t) = \delta(t)$. La ecuación se convierte en:

$$\frac{\mathrm{d}}{\mathrm{d}t}h(t) + 3h(t) = 2\delta(t).$$

Integrando ambos lados en un intervalo infinitesimal alrededor de t = 0, obtenemos:

$$\int_{-\epsilon}^{\epsilon} \frac{\mathrm{d}}{\mathrm{d}t} h(t) \, \mathrm{d}t + \int_{-\epsilon}^{\epsilon} 3h(t) \, \mathrm{d}t = \int_{-\epsilon}^{\epsilon} 2\delta(t) \, \mathrm{d}t.$$

El primer término es $h(\epsilon) - h(-\epsilon)$, y dado que h(t) = 0 para t < 0, esto se reduce a $h(0^+) = 2$. Por lo tanto, la solución es:

$$h(t) = Ce^{-3t}u(t).$$

Usando $h(0^+) = 2$, tenemos C = 2. Por lo tanto:

$$h(t) = 2e^{-3t}u(t).$$

15) Obtenga la respuesta al impulso, así como las propiedades de memoria, causalidad, estabilidad, invarianza en el tiempo y linealidad de los siguientes sistemas:

a)
$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

Respuesta al impulso

Para encontrar la respuesta al impulso h(t), sustituimos $x(t) = \delta(t)$:

$$y(t) = \int_{-\infty}^{t} \delta(\tau) d\tau.$$

La integral de la delta de Dirac es la función escalón unitario u(t). Por lo tanto:

$$h(t) = u(t).$$

Propiedades

- Memoria: El sistema tiene memoria, ya que la salida en t depende de los valores pasado de la entrada $(x(\tau)$ para $\tau \leq t)$.
- Causalidad: El sistema es causal, ya que la salida en t depende únicamente de valores de la entrada para $\tau \leq t$.
- Estabilidad: El sistema no es estable. Por ejemplo, si x(t) = 1 (una entrada acotada), la salida es y(t) = t, que no está acotada.
- Invarianza en el tiempo: El sistema es invariante en el tiempo. Si desplazamos la entrada x(t) por t_0 , la salida también se desplaza por t_0 .
- Linealidad: El sistema es lineal, ya que satisface la superposición.

b)
$$y(t) = \int_{-\infty}^{t} 2x(\tau - 5) d\tau$$

Respuesta al impulso

Sustituyendo $x(t) = \delta(t)$:

$$y(t) = \int_{-\infty}^{t} 2\delta(\tau - 5) d\tau.$$

La delta de Dirac se activa en $\tau=5$, y la integral es cero para t<5 y 2 para $t\geq5$. Por lo tanto:

$$h(t) = 2u(t-5).$$

Propiedades

- Memoria: El sistema tiene memoria, ya que la salida depende de valores pasados de la entrada.
- Causalidad: El sistema no es causal, ya que la salida en t depende de valores de la entrada en $\tau = t 5$, que puede ser un valor futuro si t < 5.
- Estabilidad: El sistema no es estable. Por ejemplo, si x(t) = 1, la salida crece sin límite.
- Invarianza en el tiempo: El sistema es invariante en el tiempo. UN desplazamiento en la entrada produce un desplazamiento equivalente en la salida.
- Linealidad: El sistema es lineal, ya que satisface la superposición.

c)
$$y(t) = \int_{-\infty}^{t} e^{-(t-\tau)} 3x(\tau-2) d\tau$$

Respuesta al impulso

Sustituyendo $x(t) = \delta(t)$:

$$y(t) = \int_{-\infty}^{t} e^{-(t-\tau)} 3\delta(\tau - 2) d\tau.$$

La delta de DIrac se activa en $\tau=2$, y la integral evalúa:

$$y(t) = 3e^{-(t-2)} \text{ para } t \ge 2.$$

Por lo tanto:

$$h(t) = 3e^{-(t-2)}u(t-2).$$

Propiedades

- Memoria: El sistema tiene memoria, ya que la salida depende de valores pasados de la entrada.
- Causalidad: El sistema no es causal, ya que la salida en t depende de valores de la entrada $\tau = t 2$, que puede ser un valor futuro si t < 2.
- Estabilidad: El sistema es estable. La respuesta al impulso h(t) es absolutamente integrable, ya que:

$$\int_{-\infty}^{\infty} |h(t)| \, \mathrm{d}t = \int_{2}^{\infty} 3e^{-(t-2)} \, \mathrm{d}t = 3.$$

- Invarianza en el tiempo: El sistema no es invariante en el tiempo debido al término $e^{-(t-\tau)}$, que depende explícitamente de t.
- Linealidad: El sistema es lineal, ya que satisface la superposición.

d)
$$y(t) = \int_{t-3}^{t+2} e^{-(t+\tau)} x(\tau-2) d\tau$$

Respuesta al impulso

Sustituyendo $x(t) = \delta(t)$:

$$y(t) = \int_{t-3}^{t+2} e^{-(t+\tau)} \delta(\tau - 2) d\tau.$$

La delta de Dirac se activa en $\tau=2$, pero esto ocurre solo si $t-3\leq 2\leq t+2$, es decir, si $t\in[1,5]$, En este intervalo, la integral evalúa:

$$y(t) = e^{-(t+2)} \text{ para } t \in [1, 5].$$

Fuera de este intervalo (t < 1 o t > 5), la integral es cero. Por lo tanto:

$$h(t) = \begin{cases} e^{-(t+2)}, & 1 \le t \le 5\\ 0, & \text{en otro caso} \end{cases}$$

Propiedades

- Memoria: El sistema tiene memoria, ya que la salida depende de valores pasados de la entrada.
- Causalidad: El sistema no es causal, ya que la salida en t depende de valores de la entrada en $\tau 2$, que puede ser un valor futuro.
- Estabilidad: El sistema es estable. La respuesta al impulso h(t) es absolutamente integrable, ya que está acotada en el intervalo [1, 5].
- Invarianza en el tiempo: El sistema no es invariante en el tiempo debido al término $e^{-(t+\tau)}$, que depende explícitamente de t.
- Linealidad: El sistema es lineal, ya que satisface la superposición.
- 16) Un sistema discreto viene determinado por la relación entrada-salida

$$y[n] = e^{j\frac{2\pi}{10}(n+2)}x[n-2].$$

Analice las propiedades de memoria, causalidad, estabilidad, invarianza en el tiempo y linealidad del sistema.

- 17) Considere la señal $x[n] = \bigwedge \left(\frac{n}{4}\right) + \prod \left(\frac{n-2}{5}\right)$. Obtenga y represente la parte par e impar de esta señal. Calcule la energía y potencia de x[n], indicando si se trata de una señal defindia en energía o en potencia.
- 18) Calcule la convolución de las señales

$$x_1[n] = (n-6) \prod \left(\frac{n-6}{13}\right)$$
 $x_2[n] = \prod \left(\frac{-n-3}{5}\right)$

Nota: la suma de una progresión aritmética $a_{n_i}, a_{n_i+1}, \dots, a_{n_f},$ con $a_{n_i+1} = a_{n_i} + d, a_{n_i+2} = a_{n_i} + 2d, \dots$ es

$$\sum_{k=n_i}^{n_f} a_k = \frac{(n_f - n_i + 1)(a_{n_i} + a_{n_f})}{2}.$$