MAXimal Page Authors

15 Puzzle Game: Existence Of The Solution

This game is played on a 4×4 board. On this board there are 15 playing tiles numbered from 1 to 15. One cell is left empty (denoted by 0). You need to get the board to the position presented below by repeatedly moving one of the tiles to the free space:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

The game "15 Puzzle" was created by Noyes Chapman in 1880.

Existence Of The Solution

Let's consider this problem: given position on the board, determine whether a sequence of moves which leads to a solution exists.

Suppose we have some position on the board:

 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10} a_{11} a_{12} a_{13} a_{14} a_{15} a_{16}

where one of the elements equals zero and indicates an empty cell $a_z=0$

Let's consider the permutation:

$$a_1a_2\dots a_{z-1}a_{z+1}\dots a_{15}a_{16}$$

(i.e. the permutation of numbers corresponding to the position on the board without a zero element)

Let N be the number of inversions in this permutation (i.e. the number of such elements a_i and a_j that i < j, but $a_i > a_j$).

Suppose K is an index of a row where the empty element is located (i.e. in our indications $K = (z-1) \ div \ 4+1$).

Then, the solution exists iff N+K is even.

Implementation

The algorithm above can be illustrated with the following program code:

Proof

In 1879 Johnson proved that if N+K is odd, then the solution doesn't exist, and in the same year Story proved that all positions when N+K is even have a solution.

However, all these proofs were quite complex.

In 1999 Archer proposed a much simpler proof (you can download his article here).

Practice Problems

• Hackerrank - N-puzzle

(c) 2014 translation by http://github.com/e-maxx-eng