

and and and villadifallissi; pressering seease, (advec)

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

August 25, 2005

THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A FILING DATE.

APPLICATION NUMBER: 60/527,357

FILING DATE: December 04, 2003

RELATED PCT APPLICATION NUMBER: PCT/US04/40827

Certified by

Under Secretary of Commerce for Intellectual Property and Director of the United States

Patent and Trademark Office

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

MAIL STOP PROVISIONAL PATENT APPLICATION COMMISSIONER FOR PATENTS P.O. BOX 1450 ALEXANDRIA, VA 22313-1450

PROVISIONAL APPLICATION COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 C.F.R. § 1.53(c).

TITLE: PRODUCTION OF 3-HYDROXYPROPIONIC ACID USING BETA-ALANINE/PYRUVATE AMINOTRANSFERASE

Inventor(s)/Applicant(s):

Liao	Liao Hans H		Eden Prairie, Minnesota			
Last First		MI	City, State or Foreign Country and City			
" Gokarn	Ravi	R	Minneapolis, Minnesota			
Last	First	MI	City, State or Foreign Country and City			
Gort	Steven	J	Brooklyn Center, Minnesota			
Last	First	MI	City, State or Foreign Country and City			
Jessen	Holly	J	Chanhassen, Minnesota			
Last	First	MI	City, State or Foreign Country and City			
Selifonova	Olga	V	Plymouth, Minnesota			
Last	First	MI	City, State or Foreign Country and City			

- 52 pages of specification, 8 pages of claims, and an abstract are enclosed.
- 29 pages of sequence listing are enclosed.
- ☐ 1 sheet of drawings is enclosed.
- Provisional Filing Fee Amount:

 \$\infty\$ \$160, large entity
- A check in the amount of \$160.00 to cover the filing fee is enclosed.

SLR:dm 12/04/03 237382 Attorney's Matter No. 6682-66576 PATENT EXPRESS MAIL LABEL NO. EV331582128US DATE OF DEPOSIT: December 4, 2003

- The Director is hereby authorized to charge any additional fees which may be required in connection with the filing of this provisional application and recording any assignment filed herewith, or credit over-payment, to Account No. 02-4550. A copy of this sheet is enclosed.
- Please return the enclosed postcard to confirm that the items listed above have been received.
- Address all telephone calls to Scott Pribnow at telephone number (952) 742-2848.

By

Address all correspondence to:

CARGILL, INCORPORATED Law Department P.O. Box 5624 Minneapolis, MN 55440-5624

٠.;

Respectfully submitted,

KLARQUIST SPARKMAN, LLP

Sheree Lynn Rybak, Ph.I.

Registration No. 47,913

One World Trade Center, Suite 1600 121 S.W. Salmon Street Portland, Oregon 97204 Telephone: (503) 226-7391

Facsimile: (503) 228-9446

cc: Docketing

25

PRODUCTION OF 3-HYDROXYPROPIONIC ACID USING BETA-ALANINE/PYRUVATE AMINOTRANSFERASE

FIELD

This disclosure relates to cells having beta-alanine/pyruvate aminotransferase activity that can be used to convert beta-alanine to 3-hydroxypropionic acid (3-HP) and other organic compounds.

BACKGROUND

Organic chemicals such as organic acids, esters, and polyols can be used to synthesize plastic materials and other products. To meet the increasing demand for organic chemicals, more efficient and cost-effective production methods are being developed which utilize raw materials based on carbohydrates rather than hydrocarbons. For example, certain bacteria have been used to produce large quantities of lactic acid used in the production of polylactic acid.

3-hydroxypropionic acid (3-HP) is an organic acid. Several chemical synthesis routes have been described to produce 3-HP, and biocatalytic routes have also been disclosed (WO 01/16346 to Suthers *et al.*). 3-HP has utility for specialty synthesis and can be converted to commercially important intermediates by known art in the chemical industry, such as acrylic acid by dehydration, malonic acid by oxidation, esters by esterification reactions with alcohols, and 1,3-propanediol by reduction.

SUMMARY

The compound 3-hydroxypropionic acid (3-HP) can be produced by biocatalysis from beta-alanine (FIG. 1). Beta-alanine can be synthesized in cells from carnosine, beta-alanyl arginine, beta-alanyl lysine, uracil via 5,6-dihydrouracil and N-carbamoyl-beta-alanine, N-acetyl-beta-alanine, anserine, or aspartate. However, these routes are relatively inefficient because they require rare precursors or starting compounds that are

10

15

20

25

more valuable than 3-HP. As an alternative, beta-alanine can be produced from alpha-alanine by an enzyme having alanine 2,3-aminomutase activity (FIG. 1), such as SEQ ID NOS: 22, 24, and 26, as well as variants, fragments, and fusions thereof that retain alanine 2,3-aminomutase activity. A novel alanine 2,3-aminomutase nucleic acid sequence (SEQ ID NO: 21) and corresponding amino acid sequence (SEQ ID NO: 22), as well as variants, fragments, fusions, and polymorphisms thereof that retain alanine 2,3-aminomutase activity, is disclosed.

Herein disclosed are methods of producing 3-HP from beta-alanine using beta-alanine/pyruvate aminotransferase (BAPAT) sequences. In one example, a BAPAT polypeptide is a sequence that includes SEQ ID NO: 18 or 20, or variants, fragments, or fusions thereof that retain BAPAT activity. Exemplary BAPAT nucleic acid sequences include, but are not limited to, SEQ ID NO: 17 or 19. BAPAT sequences can be used to transform cells, such that the transformed cells have BAPAT activity, which allows the cells to produce 3-HP from beta-alanine through a malonate semialdehyde (3-oxopropanoate) intermediate.

Transformed cells having BAPAT activity, which allows the cell to convert beta-alanine to 3-HP through a malonate semialdehyde intermediate, are disclosed. Such cells can be eukaryotic or prokaryotic cells, such as yeast cells, plant cells, fungal cells, or bacterial cells such as *Lactobacillus*, *Lactococcus*, *Bacillus*, or *Escherichia* cells. In one example, the cell is transformed with a BAPAT nucleic acid sequence that confers to the transformed cells BAPAT activity.

One aspect of the disclosure provides transformed cells, which in addition to BAPAT activity (EC 2.1.6.18), include other enzyme activities, such as 3-hydroxypropionate dehydrogenase activity (EC 1.1.1.59), lipase or esterase activity (EC 3.1.1.-), aldehyde dehydrogenase activity (EC 1.2.1.-), alcohol dehydrogenase activity (EC 1.1.1.1), or combinations thereof. In particular examples, the cell can further include alanine 2,3-aminomutase activity. Accordingly, the disclosure also provides methods of producing one or more of these products. These methods involve culturing

10

15

20

25

the cell that includes 3-hydroxypropionate dehydrogenase activity, lipase or esterase activity, alanine 2,3-aminomutase activity, aldehyde dehydrogenase activity, alcohol dehydrogenase activity, or combinations thereof, under conditions that allow the product to be produced.

The disclosed cells can be used to produce nucleic acid molecules, polypeptides, and organic compounds. In one example the disclosed cells are used in a culture system to produce large quantities of 3-HP and derivatives thereof such as 1,3-propanediol, polymerized 3-HP, co-polymers of 3-HP, and esters of 3-HP. 3-HP is both biologically and commercially important. For example, the nutritional industry can use 3-HP as a food, feed additive or preservative, while the derivatives mentioned above can be produced from 3-HP.

A production cell having at least one exogenous nucleic acid encoding a beta-alanine/pyruvate aminotransferase, is disclosed. Such production cells can be used to produce 3-HP or derivatives thereof. In one example, the nucleic acid sequence includes SEQ ID NO: 17 or 19 (or fragments, variants, or fusions thereof that retain BAPAT activity). Production cells can be used to express polypeptides that have an enzymatic activity, such as beta-alanine/pyruvate aminotransferase, 3-hydroxypropionate dehydrogenase activity, lipase or esterase activity, alanine 2,3-aminomutase activity, aldehyde dehydrogenase activity, alcohol dehydrogenase activity, or combinations thereof. Methods of producing polypeptides encoded by the nucleic acid sequences described above are disclosed.

Several methods of producing 3-HP from beta-alanine using the disclosed cells having BAPAT, activity are disclosed. In one example, the cell is transfected with one or more enzymes necessary to convert 3-HP from beta-alanine. In another example, the method includes purifying beta-alanine from the cell, then contacting the beta-alanine with polypeptides necessary to convert 3-HP from beta-alanine.

In some examples, products are produced in vitro (outside of a cell). In other examples, products are produced using a combination of in vitro and in vivo (within a

10

15

20

25

cell) methods. In yet other examples, products are produced *in vivo*. For methods involving *in vivo* steps, the cells can be isolated cultured cells or whole organisms such as transgenic plants or single-celled organisms such as yeast and bacteria. Such cells are referred to as production cells. Products produced by these production cells can be organic products such as 3-HP and derivatives thereof such as an ester of 3-HP, polymerized 3-HP, or 1,3-propanediol.

Recombinant nucleic acids that can be used to generate the production cells and practice the methods disclosed herein are provided. For example, operons including two or more nucleic acid sequences, such as two, three, four, five, six, or even seven sequences, each encoding a peptide needed for the production of 3-HP from betaalanine are disclosed. In a particular example, the recombinant nucleic acid sequence includes a sequence encoding a beta-alanine/pyruvate aminotransferase and a nucleic acid sequence encoding a dehydrogenase capable of converting malonate semialdehyde to 3-HP, such as 3-hydroxypropionate dehydrogenase. Such recombinant nucleic acid sequences can further include a nucleic acid sequence that encodes an alanine 2,3-aminomutase, lipase or esterase, aldehyde dehydrogenase, alcohol dehydrogenase, or combinations thereof. In addition, recombinant nucleic acid sequences can additionally include one or more promoter sequences to drive expression of the coding sequence. The disclosed nucleic acids can be incorporated into a vector, which can be used to transform a cell, or be incorporated into the genome of the cell, or both.

BRIEF DESCRIPTION OF THE FIGURE

FIG. 1 is a diagram of a pathway for generating 3-HP and derivatives thereof via beta-alanine.

SEQUENCE LISTING

The nucleic and amino acid sequences listed in the accompanying sequence listing are shown using standard letter abbreviations for nucleotide bases, and three

20

letter code for amino acids. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood as included by any reference to the displayed strand.

SEQ ID NOS: 1 and 2 are PCR primers used to PCR amplify a CAT gene.

SEQ ID NOS: 3 and 4 are PCR primers used to confirm insertion of a *CAT* gene into the *ldhA* locus.

SEQ ID NOS: 5 and 6 are PCR primers used to PCR amplify a betaalanine/pyruvate aminotransferase gene from *P. aeruginosa*.

SEQ ID NOS: 7 and 8 are PCR primers used to PCR amplify a P. putida betaalanine/pyruvate aminotransferase gene.

SEQ ID NOS: 9 and 10 are PCR primers used to PCR amplify an *mmsB* gene from *P. aeruginosa*.

SEQ ID NOS: 11 and 12 are PCR primers used to PCR amplify an *mmsB* gene from pET28-mmsB.

SEQ ID NOS: 13 and 14 are PCR primers used to PCR amplify an alanine 2,3-aminomutase gene.

SEQ ID NOS: 15 and 16 are PCR primers used to PCR amplify a P. putida beta-alanine/pyruvate aminotransferase gene from pPRO-PpBAPAT.

SEQ ID NO: 17 is a nucleic acid sequence of a beta-alanine/pyruvate aminotransferase DNA from *P. putida*.

SEQ ID NO: 18 is an amino acid sequence encoded by SEQ ID NO: 17.

SEQ ID NO: 19 is a nucleic acid sequence of a beta-alanine/pyruvate aminotransferase DNA from *Pseudomonas aeruginosa*.

SEQ ID NO: 20 is an amino acid sequence encoded by SEQ ID NO: 19.

SEQ ID NOS: 21, 23, and 25 are alanine 2,3-aminomutase nucleic acid sequences. The corresponding amino acid sequences are shown in SEQ ID NOS: 22, 24 and 26, respectively.

SEQ ID NO: 27 is a nucleic acid sequence of a 3-hydroxypropionate/3-hydroxyisobutyrate dehydrogenase (*mmsB*) DNA.

SEQ ID NO: 28 is an amino acid sequence encoded by SEQ ID NO: 27.

DETAILED DESCRIPTION OF SEVERAL EMBODIMENTS Abbreviations and Terms

The following explanations of terms and methods are provided to better describe the present disclosure and to guide those of ordinary skill in the art in the practice of the present disclosure. As used herein, "comprising" means "including" and the singular forms "a" or "an" or "the" include plural references unless the context clearly dictates otherwise. For example, reference to "comprising a protein" includes one or a plurality of such proteins, and reference to "comprising the cell" includes reference to one or more cells and equivalents thereof known to those skilled in the art, and so forth. The term "or" refers to a single element of stated alternative elements or a combination of two or more elements, unless the context clearly indicates otherwise. For example, the phrase "lipase activity or esterase activity" refers to lipase activity, esterase activity, or a combination of both lipase activity and esterase activity.

Unless explained otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below. The materials, methods, and examples are illustrative only and not intended to be limiting. Other features and advantages of the disclosure are apparent from the following detailed description and the claims.

25

5

10

15

20

Alanine 2,3-aminomutase: An enzyme which can convert alpha-alanine to beta-alanine, for example in a cell. Includes any alanine 2,3-aminomutase gene, cDNA, RNA, or protein from any organism, such as a prokaryote. In particular examples, an

10

15

20

25

alanine 2,3-aminomutase nucleic acid sequence includes the sequence shown in SEQ ID NOS: 21, 23 or 25, as well as fragments, variants, or fusions thereof that retain the ability to encode a protein having alanine 2,3-aminomutase activity. In another example, an alanine 2,3-aminomutase protein includes the amino acid sequence shown in SEQ ID NO: 22, 24 or 26, as well as fragments, fusions, or variants thereof that retain alanine 2,3-aminomutase activity.

An alanine 2,3-aminomutase amino acid sequence includes a full-length sequence, such as SEQ ID NO: 22, 24 or 26, as well as shorter sequences which retain the ability to convert alpha-alanine to beta-alanine, such as amino acids 50-390 of SEQ ID NO: 22 or 24, amino acids 101-339 of SEQ ID NO: 22 or 24, amino acids 15-390 of SEQ ID NO: 26, and amino acids 15-340 of SEQ ID NO 26. This description includes alanine 2,3-aminomutase allelic variants, as well as any variant, fragment, or fusion sequence which retains the ability to convert alpha-alanine to beta-alanine.

Examples of alanine 2,3-aminomutase fragments which can be used include, but are not limited to: amino acids 50-390, 50-350, 60-350, 75-340, or 100-339 of SEQ ID NO: 22 or 24 and amino acids 1-390, 15-390, 15-340 or 19-331 of SEQ ID NO: 26.

Alanine 2,3-aminomutase activity: The ability of an alanine 2,3-aminomutase to convert alpha-alanine to beta-alanine. In one example, such activity occurs in a cell. In another example, such activity occurs in vitro. Such activity can be measured using any assay known in the art. For example, alanine 2,3-aminomutase activity can be identified by incubating the enzyme with either alpha-alanine or beta-alanine and determining the reaction products by high-performance liquid chromatography (for example using the method of Abe et al. J. Chromatography B, 712:43-9, 1998).

Examples of substitutions which can be made, while still retaining alanine 2,3-aminomutase activity, include, but are not limited to: V21I or V21L; Y71P; L17I; K361R; A410V; and/or Y430F or Y430W of SEQ ID NO: 22 or 24, and T40S; V96I or V96L; D102E; A252V; and/or L393V of SEQ ID NO: 26, as well as combinations thereof.

į

10

15

20

25

Beta-alanine/pyruvate aminotransferase (BAPAT): An enzyme that can convert beta-alanine and pyuvate to malonate semialdehyde plus alanine. Includes any beta-alanine/pyruvate aminotransferase gene, cDNA, RNA, or protein from any organism, such as a prokaryote or eukaryote. This description includes beta-alanine/pyruvate aminotransferase allelic variants, as well as any variant, fragment, or fusion protein sequence which retains the ability to convert beta-alanine and pyruvate to malonate semialdehyde plus alanine.

Examples include, but are not limited to, any beta-alanine/pyruvate aminotransferase gene, cDNA, RNA, or protein from *Pseudomonas aeruginosa PAO1* (for example GenBank Accession Nos: AE004451.1 (nucleic acid) and AAG03522 (protein)); *Pseudomonas putida* IFO 14796 (for example GenBank Accession No. P28269 protein); *P. putida* KT2440 (for example GenBank Accession Nos: NC_002947); *Arabidopsis thaliana* (for example GenBank Accession Nos: AY085348.1 (nucleic acid) and AAM62579 (protein)); rat (for example GenBank Accession Nos: NM_031835 (nucleic acid) and NP_114023 (protein)); and *Xenopus laevis* (for example GenBank Accession No. BE507883).

In particular examples, a beta-alanine/pyruvate aminotransferase nucleic acid sequence includes the sequence shown in SEQ ID NOS: 17 or 19, as well as fragments, variants, or fusions thereof that retain the ability to encode a peptide having beta-alanine/pyruvate aminotransferase activity. In another example, a beta-alanine/pyruvate aminotransferase protein includes the amino acid sequence shown in SEQ ID NO: 18 or 20, as well as fragments, fusions, or variants thereof that retain beta-alanine/pyruvate aminotransferase activity.

Beta-alanine/pyruvate aminotransferase activity: The ability of a beta-alanine/pyruvate aminotransferase to convert beta-alanine and pyruvate to malonate semialdehyde plus alanine. Includes members of EC 2.6.1.18. In one example, such activity occurs in a cell. In another example, such activity occurs in vitro. Such activity can be measured using any assay known in the art. For example, beta-alanine/pyruvate

10

15

20

25

aminotransferase activity can be identified by incubating the enzyme with beta-alanine and pyruvate and determining the reaction products by paper chromatography, amino acid analysis (Yonaha *et al.*, FEBS Letts. 71: 21-24, 1976), or reaction with an aldehyde-specific reagent (Waters and Venables, *FEMS Microbiol. Letts.* 34: 279-282, 1986).

cDNA (complementary DNA): A piece of DNA lacking internal, non-coding segments (introns) and regulatory sequences which determine transcription. cDNA can be synthesized by reverse transcription from messenger RNA extracted from cells.

Conservative substitution: One or more amino acid substitutions (for example 1, 2, 5 or 10 residues) for amino acid residues having similar biochemical properties. Typically, conservative substitutions have little to no impact on the activity of a resulting polypeptide. For example, a conservative substitution is an amino acid substitution in a beta-alanine/pyruvate aminotransferase peptide that does not substantially affect the ability of the peptide to convert beta-alanine to malonate semialdehyde. In a particular example, a conservative substitution is an amino acid substitution in a beta-alanine/pyruvate aminotransferase peptide, such as a conservative substitution in SEQ ID NO: 18 or 20, that does not significantly alter the ability of the protein to convert beta-alanine to malonate semialdehyde, or other downstream products such as 3-HP.

An alanine scan can be used to identify amino acid residues in a betaalanine/pyruvate aminotransferase peptide that can tolerate substitution. In one example, beta-alanine/pyruvate aminotransferase activity is not altered by more than 25%, for example not more than 20%, for example not more than 10%, when an alanine, or other conservative amino acid (such as those listed below), is substituted for one or more native amino acids.

In a particular example, beta-alanine/pyruvate aminotransferase activity is not substantially altered if the amount of 3-HP produced is not reduced by more than about 25%, such as not more than about 10%, than an amount of 3-HP production in the

10

15

20

25

3

presence of a beta-alanine/pyruvate aminotransferase containing one or more conservative amino acid substitutions, as compared to an amount of 3-HP production in the presence of a native beta-alanine/pyruvate aminotransferase.

A polypeptide can be produced to contain one or more conservative substitutions by manipulating the nucleotide sequence that encodes that polypeptide using, for example, standard procedures such as site-directed mutagenesis or PCR. Alternatively, a polypeptide can be produced to contain one or more conservative substitutions by using standard peptide synthesis methods.

Substitutional variants are those in which at least one residue in the amino acid sequence has been removed and a different residue inserted in its place. Examples of amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative substitutions include: Ser for Ala; Lys for Arg; Gln or His for Asn; Glu for Asp; Ser for Cys; Asn for Gln; Asp for Glu; Pro for Gly; Asn or Gln for His; Leu or Val for Ile; Ile or Val for Leu; Arg or Gln for Lys; Leu or Ile for Met; Met, Leu or Tyr for Phe; Thr for Ser; Ser for Thr; Tyr for Trp; Trp or Phe for Tyr; and Ile or Leu for Val.

Further information about conservative substitutions can be found in, among other locations in, Ben-Bassat et al., (J. Bacteriol. 169:751-7, 1987), O'Regan et al., (Gene 77:237-51, 1989), Sahin-Toth et al., (Protein Sci. 3:240-7, 1994), Hochuli et al., (Bio/Technology 6:1321-5, 1988), WO 00/67796 (Curd et al.) and in standard textbooks of genetics and molecular biology.

Dehydrogenase: An enzyme that oxidizes a substrate by transferring hydrogen to an acceptor, such as NAD/NADP and also catalyzes the reverse reaction.

Deletion: The removal of a sequence of a nucleic acid, for example DNA, the regions on either side being joined together.

Detectable: Capable of having an existence or presence ascertained. For example, production of 3-HP from beta-alanine is detectable if the signal generated from 3-HP is strong enough to be measured.

10

15

20

25

u p

DNA: Deoxyribonucleic acid. DNA is a long chain polymer which includes the genetic material of most living organisms (some viruses have genes including ribonucleic acid, RNA). The repeating units in DNA polymers are four different nucleotides, each of which comprises one of the four bases, adenine, guanine, cytosine and thymine bound to a deoxyribose sugar to which a phosphate group is attached. Triplets of nucleotides, referred to as codons, in DNA molecules code for amino acid in a polypeptide. The term codon is also used for the corresponding (and complementary) sequences of three nucleotides in the mRNA into which the DNA sequence is transcribed.

Exogenous: The term "exogenous" as used herein with reference to nucleic acid and a particular cell refers to any nucleic acid that does not originate from that particular cell as found in nature. Thus, a non-naturally-occurring nucleic acid is considered to be exogenous to a cell once introduced into the cell. A nucleic acid that is naturally-occurring also can be exogenous to a particular cell. For example, an entire chromosome isolated from cell X is an exogenous nucleic acid with respect to cell Y once that chromosome is introduced into cell Y, even if X and Y are the same cell type.

Functionally Equivalent: Having a similar function. In the context of a betaalanine/pyruvate aminotransferase molecule, functionally equivalent molecules include different molecules that retain the function of beta-alanine/pyruvate aminotransferase. For example, functional equivalents can be provided by sequence alterations in a betaalanine/pyruvate aminotransferase, wherein the peptide with one or more sequence alterations retains a function of the unaltered peptide, such that it retains its ability to convert beta-alanine to malonate semialdehyde.

Examples of sequence alterations include, but are not limited to, conservative substitutions, deletions, mutations, frameshifts, and insertions. In one example, a given polypeptide binds an antibody, and a functional equivalent is a polypeptide that binds the same antibody. Thus a functional equivalent includes peptides that have the same binding specificity as a polypeptide, and that can be used as a reagent in place of the

10

15

20

25

polypeptide (such as in the production of 3-HP and derivatives thereof). In one example a functional equivalent includes a polypeptide wherein the binding sequence is discontinuous, wherein the antibody binds a linear epitope. Thus, if the peptide sequence is NMPEHAGASL (amino acids 1-10 of SEQ ID NO: 18) a functional equivalent includes discontinuous epitopes, that can appear as follows (**=any number of intervening amino acids): NH₂ -**-N**M**P**E**H**A**G**A**S**L-COOH. In this example, the polypeptide is functionally equivalent to amino acids 1-10 of SEQ ID NO: 18 if the three dimensional structure of the polypeptide is such that it can bind a monoclonal antibody that binds amino acids 1-10 of SEQ ID NO: 18.

Hybridization: To form base pairs between complementary regions of two strands of DNA, RNA, or between DNA and RNA, thereby forming a duplex molecule. Nucleic acid hybridization techniques can be used to identify an isolated nucleic acid within the scope of the disclosure. Briefly, a nucleic acid having some homology to nucleic acids encoding one of the disclosed enzymes (such as homology to SEQ ID NOS: 17, 19, 21, or variants, fusions, or fragments thereof) can be used as a probe to identify a similar nucleic acid by hybridization under conditions of moderate to high stringency. Once identified, the nucleic acid then can be purified, sequenced, and analyzed to determine if it has the desired enzyme activity, such as BAPAT activity.

Hybridization can be done by Southern or Northern analysis to identify a DNA or RNA sequence, respectively, that hybridizes to a probe. The probe can be labeled, for example with a biotin, a fluorophore, digoxygenin, an enzyme, or a radioisotope such as ³²P. The DNA or RNA to be analyzed can be electrophoretically separated on an agarose or polyacrylamide gel, transferred to nitrocellulose, nylon, or other suitable membrane, and hybridized with the probe using standard techniques well known in the art such as those described in sections 7.39-7.52 of Sambrook *et al.*, (1989) Molecular Cloning, second edition, Cold Spring Harbor Laboratory, Plainview, NY. Typically, a probe is at least about 20 nucleotides in length. For example, a probe including 20 contiguous nucleotides of a beta-alanine/pyruvate aminotransferase (such as 20

10

15

20

25

contiguous nucleotides of SEQ ID NO:17 or 19) can be used to identify an identical or similar nucleic acid. Probes longer or shorter than 20 nucleotides can also be used.

The disclosure also provides isolated nucleic acid sequences that are at least about 12 bases in length (such as at least about 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, 60, 100, 250, 500, 750, 1000, 1400, 2000, 3000, 4000, or 5000 bases in length) and hybridize, under hybridization conditions, to the sense or antisense strand of an enzyme disclosed herein. The hybridization conditions can be moderately or highly stringent hybridization conditions.

Moderately stringent hybridization conditions are when the hybridization is performed at about 42°C in a hybridization solution containing 25 mM KPO₄ (pH 7.4), 5X SSC, 5X Denhart's solution, 50 μg/mL denatured, sonicated salmon sperm DNA, 50% formamide, 10% dextran sulfate, and 1-15 ng/mL probe (about 5x10⁷ cpm/μg), while the washes are performed at about 50°C with a wash solution containing 2X SSC and 0.1% sodium dodecyl sulfate (SDS).

Highly stringent hybridization conditions are when the hybridization is performed at about 42°C in a hybridization solution containing 25 mM KPO₄ (pH 7.4), 5X SSC, 5X Denhart's solution, 50 μg/mL denatured, sonicated salmon sperm DNA, 50% formamide, 10% dextran sulfate, and 1-15 ng/mL probe (about 5x10⁷ cpm/μg), while the washes are performed at about 65°C with a wash solution containing 0.2X SSC and 0.1% SDS.

3-hydroxypropionate dehydrogenase: An enzyme that can convert malonate semialdehyde to 3-HP. Includes any 3-hydroxypropionate dehydrogenase gene, cDNA, RNA, or protein from any organism, such as a prokaryote or eukaryote. This description includes 3-hydroxypropionate dehydrogenase allelic variants, as well as any variant, fragment, or fusion protein sequence that retains the ability to convert malonate semialdehyde to 3-HP.

Examples include, but are not limited to any gene, cDNA, RNA, or protein from *Pseudomonas aeruginosa* encoding 3-hydroxypropionate dehydrogenase (*mmsB* gene,

10

15

20

25

see Example 5). In particular examples, a *mmsB* nucleic acid sequence includes the sequence shown in SEQ ID NO: 27, as well as fragments, variants, or fusions thereof that retain the ability to encode a peptide having 3-hydroxypropionate dehydrogenase activity. In another example, a mmsB protein includes the amino acid sequence shown in SEQ ID NO: 28, as well as fragments, fusions, or variants thereof that retain 3-hydroxypropionate dehydrogenase activity.

3-hydroxypropionate dehydrogenase activity: The ability of a 3-hydroxypropionate dehydrogenase to convert malonate semialdehyde to 3-HP. In one example, such activity occurs in a cell. In another example, such activity occurs in vitro. Such activity can be measured using any assay known in the art. For example, 3-hydroxypropionate dehydrogenase activity can be identified by incubating the enzyme with malonate semialdehyde plus NADH or NADPH and measuring the consumption of NADH or NADPH by monitoring the decrease in absorbance at 340 nm.

Isolated: An "isolated" biological component (such as a nucleic acid molecule or protein) has been substantially separated or purified away from other biological components in the cell of the organism in which the component naturally occurs, such as other chromosomal and extrachromosomal DNA and RNA, and proteins. Nucleic acids and proteins that have been "isolated" include nucleic acids and proteins purified by standard purification methods. The term also embraces nucleic acids and proteins prepared by recombinant expression in a host cell as well as chemically synthesized nucleic acids, proteins and peptides.

In one example, isolated refers to a naturally-occurring nucleic acid that is not immediately contiguous with both of the sequences with which it is immediately contiguous (one on the 5' end and one on the 3' end) in the naturally-occurring genome of the organism from which it is derived. For example, an isolated nucleic acid can be, without limitation, a recombinant DNA molecule of any length, provided one of the nucleic acid sequences normally found immediately flanking that recombinant DNA molecule in a naturally-occurring genome is removed or absent. Thus, an isolated

i

10

15

20

25

é

nucleic acid includes, without limitation, a recombinant DNA that exists as a separate molecule (for example, a cDNA or a genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of other sequences as well as recombinant DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (for example, a retrovirus, adenovirus, or herpes virus), or into the genomic DNA of a prokaryote or eukaryote. In addition, an isolated nucleic acid can include a recombinant DNA molecule that is part of a hybrid or fusion nucleic acid sequence.

In one example, the term "isolated" as used with reference to nucleic acid also includes any non-naturally-occurring nucleic acid since non-naturally-occurring nucleic acid sequences are not found in nature and do not have immediately contiguous sequences in a naturally-occurring genome. For example, non-naturally-occurring nucleic acid such as an engineered nucleic acid is considered to be isolated nucleic acid. Engineered nucleic acid can be made using common molecular cloning or chemical nucleic acid synthesis techniques. Isolated non-naturally-occurring nucleic acid can be independent of other sequences, or incorporated into a vector, an autonomously replicating plasmid, a virus (such as a retrovirus, adenovirus, or herpes virus), or the genomic DNA of a prokaryote or eukaryote. In addition, a non-naturally-occurring nucleic acid can include a nucleic acid molecule that is part of a hybrid or fusion nucleic acid sequence.

Nucleic acid: Encompasses both RNA and DNA including, without limitation, cDNA, genomic DNA, and synthetic (such as chemically synthesized) DNA. The nucleic acid can be double-stranded or single-stranded. Where single-stranded, the nucleic acid can be the sense strand or the antisense strand. In addition, nucleic acid can be circular or linear.

Oligonücleotide: A linear polynucleotide (such as DNA or RNA) sequence of at least 9 nucleotides, for example at least 12, 15, 18, 20, 25, 30, 50, 100 or even 200

10

15

20

25

:

nucleotides long. In one example, an oligonucleotide is no more than 100 nucleotides in length, such as no more than 50 nucleotides, such as no more than 25 nucleotides.

Operably linked: A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein coding regions, in the same reading frame. Configurations of separate genes that are transcribed in tandem as a single messenger RNA are denoted as operons. Thus placing genes in close proximity, for example in a plasmid vector, under the transcriptional regulation of a single promoter, constitutes a synthetic operon.

ORF (open reading frame): A series of nucleotide triplets (codons) coding for amino acids without any termination codons. These sequences are usually translatable into a peptide.

Probes and primers: A "probe" includes an isolated nucleic acid containing a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, fluorophores, and enzymes. Methods for labeling and guidance in the choice of labels appropriate for various purposes are discussed in, for example, Sambrook *et al.* (ed.), Molecular Cloning: A Laboratory Manual 2nd ed., vol. 1-3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989, and Ausubel *et al.* (ed.) Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience, New York (with periodic updates), 1987.

"Primers" are typically nucleic acid molecules having ten or more nucleotides (such as nucleic acid molecules having between about 10 nucleotides and about 100 nucleotides). A primer can be annealed to a complementary target nucleic acid strand by nucleic acid hybridization to form a hybrid between the primer and the target nucleic acid strand, and then extended along the target nucleic acid strand by, for example, a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid

10

15

20

25

sequence, for example, by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods.

Methods for preparing and using probes and primers are described, for example, in references such as Sambrook et al. (ed.), Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; Ausubel et al. (ed.), Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience, New York (with periodic updates), 1987; and Innis et al., PCR Protocols: A Guide to Methods and Applications, Academic Press: San Diego, 1990. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, © 1991, Whitehead Institute for Biomedical Research, Cambridge, Mass.).

One of skill in the art will appreciate that the specificity of a particular probe or primer increases with the length, but that a probe or primer can range in size from a full-length sequence to sequences as short as five consecutive nucleotides. Thus, for example, a primer of 20 consecutive nucleotides can anneal to a target with a higher specificity than a corresponding primer of only 15 nucleotides. Thus, in order to obtain greater specificity, probes and primers can be selected that include, for example, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500; 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, or more consecutive nucleotides.

Promoter: An array of nucleic acid control sequences which direct transcription of a nucleic acid. A promoter includes necessary nucleic acid sequences near the start site of transcription; such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements which can be located as much as several thousand base pairs from the start site of transcription.

Purified: The term purified does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a purified peptide preparation is one in which the peptide or protein is more enriched than the peptide or protein is in its

10

15

20

25

4-

environment within a cell, such that the peptide is substantially separated from cellular components (nucleic acids, lipids, carbohydrates, and other polypeptides) that may accompany it. In another example, a purified peptide preparation is one in which the peptide is substantially-free from contaminants, such as those that might be present following chemical synthesis of the peptide.

In one example, a peptide is purified when at least about 50% by weight of a sample is composed of the peptide, for example when at least about 60%, 70%, 80%, 85%, 90%, 92%, 95%, 98%, or 99% or more of a sample is composed of the peptide. Examples of methods that can be used to purify an antigen, include, but are not limited to the methods disclosed in Sambrook et al. (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989, Ch. 17). Protein purity can be determined by, for example, polyacrylamide gel electrophoresis of a protein sample, followed by visualization of a single polypeptide band upon staining the polyacrylamide gel; high-pressure liquid chromatography; sequencing; or other conventional methods.

Recombinant: A recombinant nucleic acid is one that has a sequence that is not naturally occurring, has a sequence that is made by an artificial combination of two otherwise separated segments of sequence, or both. This artificial combination can be achieved, for example, by chemical synthesis or by the artificial manipulation of isolated segments of nucleic acids, such as genetic engineering techniques. Recombinant is also used to describe nucleic acid molecules that have been artificially manipulated, but contain the same regulatory sequences and coding regions that are found in the organism from which the nucleic acid was isolated.

Sequence identity/similarity: The identity/similarity between two or more nucleic acid sequences, or two or more amino acid sequences, is expressed in terms of the identity or similarity between the sequences. Sequence identity can be measured in terms of percentage identity; the higher the percentage, the more identical the sequences are. Sequence similarity can be measured in terms of percentage similarity (which takes into account conservative amino acid substitutions); the higher the percentage, the more

10

15

20

25

similar the sequences are. Homologs or orthologs of nucleic acid or amino acid sequences possess a relatively high degree of sequence identity/similarity when aligned using standard methods. This homology is more significant when the orthologous proteins or cDNAs are derived from species which are more closely related (such as human and mouse sequences), compared to species more distantly related (such as human and *C. elegans* sequences).

Methods of alignment of sequences for comparison are well known in the art.

Various programs and alignment algorithms are described in: Smith & Waterman, Adv. Appl. Math. 2:482, 1981; Needleman & Wunsch, J. Mol. Biol. 48:443, 1970; Pearson & Lipman, Proc. Natl. Acad. Sci. USA 85:2444, 1988; Higgins & Sharp, Gene, 73:237-44, 1988; Higgins & Sharp, CABIOS 5:151-3, 1989; Corpet et al., Nuc. Acids Res. 16:10881-90, 1988; Huang et al. Computer Appls. in the Biosciences 8, 155-65, 1992; and Pearson et al., Meth. Mol. Bio. 24:307-31, 1994. Altschul et al., J. Mol. Biol. 215:403-10, 1990, presents a detailed consideration of sequence alignment methods and homology calculations.

The NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol. Biol. 215:403-10, 1990) is available from several sources, including the National Center for Biological Information (NCBI, National Library of Medicine, Building 38A, Room 8N805, Bethesda, MD 20894) and on the Internet, for use in connection with the sequence analysis programs blastp, blastn, blastx, tblastn and tblastx. Additional information can be found at the NCBI web site.

BLASTN is used to compare nucleic acid sequences, while BLASTP is used to compare amino acid sequences. To compare two nucleic acid sequences, the options can be set as follows: -i is set to a file containing the first nucleic acid sequence to be compared (such as C:\seq1.txt); -j is set to a file containing the second nucleic acid sequence to be compared (such as C:\seq2.txt); -p is set to blastn; -o is set to any desired file name (such as C:\output.txt); -q is set to -1; -r is set to 2; and all other options are left at their default setting. For example, the following command can be used to

10

15

20

25

•3

generate an output file containing a comparison between two sequences: C:\Bl2seq -i c:\seq1.txt -j c:\seq2.txt -p blastn -o c:\output.txt -q -1 -r 2.

To compare two amino acid sequences, the options of Bl2seq can be set as follows: -i is set to a file containing the first amino acid sequence to be compared (such as C:\seq1.txt); -j is set to a file containing the second amino acid sequence to be compared (such as C:\seq2.txt); -p is set to blastp; -o is set to any desired file name (such as C:\output.txt); and all other options are left at their default setting. For example, the following command can be used to generate an output file containing a comparison between two amino acid sequences: C:\Bl2seq -i c:\seq1.txt -j c:\seq2.txt -p blastp -o c:\output.txt. If the two compared sequences share homology, then the designated output file will present those regions of homology as aligned sequences. If the two compared sequences do not share homology, then the designated output file will not present aligned sequences.

Once aligned, the number of matches is determined by counting the number of positions where an identical nucleotide or amino acid residue is presented in both sequences. The percent sequence identity is determined by dividing the number of matches either by the length of the sequence set forth in the identified sequence, or by an articulated length (such as 100 consecutive nucleotides or amino acid residues from a sequence set forth in an identified sequence), followed by multiplying the resulting value by 100. For example, a nucleic acid sequence that has 1166 matches when aligned with a test sequence having 1154 nucleotides is 75.0 percent identical to the test sequence (i.e., 1166÷1554*100=75.0). The percent sequence identity value is rounded to the nearest tenth. For example, 75.11, 75.12, 75.13, and 75.14 are rounded down to 75.1, while 75.15, 75.16, 75.17, 75.18, and 75.19 are rounded up to 75.2. The length value will always be an integer. In another example, a target sequence containing a 20-nucleotide region that aligns with 20 consecutive nucleotides from an identified sequence as follows contains a region that shares 75 percent sequence identity to that identified sequence (that is, 15÷20*100=75).

10

15

20

25

- 21 -

	1					20		
Target Sequence:	A	GT(CGTG	FACTG:	rcagt(CA		
	I	11				1		
Identified Sequence: ACGTGGTGAACTGCCAGTGA								

For comparisons of amino acid sequences of greater than about 30 amino acids, the Blast 2 sequences function is employed using the default BLOSUM62 matrix set to default parameters, (gap existence cost of 11, and a per residue gap cost of 1). Homologs are typically characterized by possession of at least 70% sequence identity counted over the full-length alignment with an amino acid sequence using the NCBI Basic Blast 2.0, gapped blastp with databases such as the nr or swissprot database. Queries searched with the blastn program are filtered with DUST (Hancock and Armstrong, 1994, Comput. Appl. Biosci. 10:67-70). Other programs use SEG. In addition, a manual alignment can be performed. Proteins with even greater similarity will show increasing percentage identities when assessed by this method, such as at least about 75%, 80%, 85%, 90%, 95%, 98%, or 99% sequence identity.

When aligning short peptides (fewer than around 30 amino acids), the alignment should be performed using the Blast 2 sequences function, employing the PAM30 matrix set to default parameters (open gap 9, extension gap 1 penalties). Proteins with even greater similarity to the reference sequence will show increasing percentage identities when assessed by this method, such as at least about 60%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, 99% sequence identity. When less than the entire sequence is being compared for sequence identity, homologs will typically possess at least 75% sequence identity over short windows of 10-20 amino acids, and can possess sequence identities of at least 85%, 90%, 95% or 98% depending on their identity to the reference sequence. Methods for determining sequence identity over such short windows are described at the NCBI web site.

One indication that two nucleic acid molecules are closely related is that the two molecules hybridize to each other under stringent conditions, as described above. Nucleic

10

15

20

25

acid sequences that do not show a high degree of identity may nevertheless encode identical or similar (conserved) amino acid sequences, due to the degeneracy of the genetic code. Changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid molecules that all encode substantially the same protein. Such homologous nucleic acid sequences can, for example, possess at least about 60%, 70%, 80%, 90%, 95%, 98%, or 99% sequence identity determined by this method. An alternative (and not necessarily cumulative) indication that two nucleic acid sequences are substantially identical is that the polypeptide which the first nucleic acid encodes is immunologically cross reactive with the polypeptide encoded by the second nucleic acid.

One of skill in the art will appreciate that the particular sequence identity ranges are provided for guidance only; it is possible that strongly significant homologs could be obtained that fall outside the ranges provided.

Transformed: A cell into which a nucleic acid molecule has been introduced, for example by molecular biology techniques. Transformation encompasses all techniques by which a nucleic acid molecule can be introduced into such a cell, including, but not limited to, transfection with viral vectors, conjugation, transformation with plasmid vectors, and introduction of naked DNA by electroporation, lipofection, and particle gun acceleration.

Variants, fragments or fusion proteins: The enzymes disclosed herein that can be used to produce 3-HP and derivatives thereof, include variants, fragments, and fusions thereof, that retain essentially the same activity as the native enzyme. DNA sequences which encode for an enzyme (for example SEQ ID NO: 17, 19, 21, 23, 25 or 27), or a fusion, fragment or variant thereof, can be engineered to allow the protein to be expressed in eukaryotic cells, bacteria, insects, plants, or combinations thereof. To obtain expression, the DNA sequence can be altered and operably linked to other regulatory sequences. The final product, which contains the regulatory sequences and the protein, is a vector. This vector can be introduced into eukaryotic, bacteria, insect, or plant cells. Once inside the cell the vector allows the protein to be produced.

10

15

ŧ i

A fusion protein including an enzyme, such as an enzyme used to produce 3-HP (or variant, polymorphism, mutant, or fragment thereof), linked to other amino acid sequences that do not inhibit the desired activity of the enzyme, for example the ability to convert beta-alanine to 3-HP. In one example, the other amino acid sequences are no more than about 10, 12, 15, 20, 25, 30, or 50 amino acids in length.

One of ordinary skill in the art will appreciate that a DNA sequence can be altered in numerous ways without affecting the biological activity of the encoded protein. For example, PCR can be used to produce variations in the DNA sequence which encodes an enzyme. Such variants can be variants optimized for codon preference in a host cell used to express the protein, or other sequence changes that facilitate expression.

Vector: A nucleic acid molecule as introduced into a cell, thereby producing a transformed cell. A vector can include nucleic acid sequences that permit it to replicate in the cell, such as an origin of replication. In particular examples, a vector also includes one or more selectable markers or other genetic elements. A vector can also be nonreplicating, such that it is a means of introducing nucleic acid sequences that are integrated into the genome of the cell.

Cells to Produce 3-HP and 3-HP Derivatives

Transformed cells having beta-alanine/pyruvate aminotransferase activity (EC 2.6.1.18) are disclosed. Such cells can produce 3-HP from beta-alanine and pyruvate via a malonate semialdehyde intermediate. Transformed cells including beta-alanine/pyruvate aminotransferase activity can be eukaryotic or prokaryotic. Examples of such cells include, but are not limited to Lactobacillus, Lactococcus, Bacillus, Escherichia, Geobacillus, Corynebacterium, Clostridium, fungal, plant, and yeast cells. In one example, a plant cell is part of a plant, such as a transgenic plant. Transformed cells can include at least one exogenous nucleic acid molecule that encodes a beta-alanine/pyruvate aminotransferase (EC 2.6.1.18), for example a sequence including

10

15

20

25

SEQ ID NO: 17 or 19, or variants, fragments, or fusions thereof that retain the ability to convert beta-alanine to malonate semialdehyde. The disclosed transformed cells can further include other exogenous nucleic acid molecules that encode other enzymes, such as 3-hydroxypropionate dehydrogenase (EC 1.1.1.59), alanine 2,3-aminomutase, lipase or esterase (EC 3.1.1.-), aldehyde dehydrogenase (EC 1.2.1.-), alcohol dehydrogenase (EC 1.1.1.1), or combinations thereof.

Cells that include beta-alanine/pyruvate aminotransferase activity as well as additional enzyme activities, are disclosed. In one example, transformed cells having beta-alanine/pyruvate aminotransferase activity also have dehydrogenase activity, such as an enzyme capable of converting malonate semialdehyde to 3-HP, for example 3-hydroxypropionate dehydrogenase activity. One non-limiting example of an enzyme having 3-hydroxypropionate dehydrogenase activity is an mmsB enzyme from *P. aeruginosa* (such as SEQ ID NO: 28 and variants, fusions, and fragments thereof that retain 3-hydroxypropionate dehydrogenase activity).

In another example, transformed cells having beta-alanine/pyruvate aminotransferase activity and 3-hydroxypropionate dehydrogenase activity also have alanine 2,3-aminomutase activity. Non-limiting examples of an enzyme having alanine 2,3-aminomutase activity include SEQ ID NO: 22, 24 and 26, and variants, fusions, and fragments thereof that retain alanine 2,3-aminomutase activity. In a particular example, a transformed cell includes beta-alanine/pyruvate aminotransferase activity, 3-hydroxypropionate dehydrogenase activity, alanine 2,3-aminomutase activity, as well as lipase or esterase activity, or a combination of both lipase activity and esterase activity. Such transformed cells can be used to produce an ester of 3-HP, such as methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, or 2-ethylhexyl 3-hydroxypropionate.

In another example, transformed cells having beta-alanine/pyruvate aminotransferase activity also include aldehyde dehydrogenase activity and alcohol dehydrogenase activity. These cells can be used to produce 1,3-propanediol. In some

examples, such cells further include 3-hydroxypropionate dehydrogenase activity, alanine 2,3-aminomutase activity, or a combination of both 3-hydroxypropionate dehydrogenase activity and alanine 2,3- aminomutase activity.

In a particular example, transformed cells having beta-alanine/pyruvate aminotransferase activity also include esterase activity. These cells can be used to produce polymerized 3-HP. In some examples, such cells further include 3-hydroxypropionate dehydrogenase activity, alanine 2,3-aminomutase activity, or a combination of both 3-hydroxypropionate dehydrogenase activity and alanine 2,3-aminomutase activity.

10

15

20

5

Pathways for Producing 3-HP and Derivatives Thereof

Provided herein are methods for producing 3-HP from beta-alanine by using a beta-alanine/pyruvate aminotransferase. Several beta-alanine/pyruvate aminotransferase sequences and cells having beta-alanine/pyruvate aminotransferase activity, are disclosed. In addition, methods and materials related to producing esters of 3-HP, polymers of 3-HP and 1,3-propanediol are provided.

Specifically, the disclosure provides a novel route for producing 3-HP from beta-alanine using beta-alanine/pyruvate aminotransferase nucleic acids (such as SEQ ID NO: 17, 19 and variants, fragments and fusions thereof), polypeptides (such as SEQ ID NO: 18, 20 and variants, fragments and fusions thereof), which is more efficient and allows for the production of greater amounts of 3-HP as well as derivatives thereof such as 1,3-propanediol, polymerized 3-HP, and esters of 3-HP.

Pathways of 3-HP and its Derivatives

25

As shown in FIG. 1, beta-alanine can be converted into malonate semialdehyde through the use of a polypeptide having beta-alanine/pyruvate aminotransferase activity (E.C. 2.6.1.18). Exemplary beta-alanine/pyruvate aminotransferases include, but are not limited to sequences including SEQ ID NOS: 18 and 20, or fragments, variants, or

10

15

20

25

fusions thereof that retain beta-alanine/pyruvate aminotransferase activity. Beta-alanine can be produced from aspartic acid by aspartate decarboxylase. Beta-alanine can also be produced from alpha-alanine by endogenous polypeptides in a host cell that converts alpha-alanine to beta-alanine. Beta-alanine can also be produced from alanine by alanine-2,3-aminomutase which converts alpha-alanine to beta-alanine. For example, a cell transformed with recombinant alanine 2,3-aminomutase nucleic acid, such as a sequence including SEQ ID NO: 21, 23, or 25, or fragments, variants, or fusions thereof that retain alanine 2,3-aminomutase activity, can be used to produce beta-alanine.

Malonate semialdehyde produced from beta-alanine can then be converted into 3-HP through the use of a 3-HP dehydrogenase, such as a 3-hydroxypropionate dehydrogenase. Exemplary 3-hydroxypropionate dehydrogenases include, but are not limited to sequences including SEQ ID NO: 28, or fragments, variants, or fusions thereof that retain 3-hydroxypropionate dehydrogenase activity.

Derivatives of 3-HP can be made from beta-alanine as shown in FIG. 1. For example, the resulting 3-HP can be converted into an ester of 3-HP by a polypeptide having lipase or esterase activity, or a combination thereof (EC 3.1.1.-). In addition, the resulting 3-HP can be converted into a polymerized 3-HP by a polypeptide having esterase activity.

The resulting 3-HP can also be converted into 1,3-propanediol by a polypeptide having aldehyde dehydrogenase activity (EC 1.2.1.-) and a polypeptide having alcohol dehydrogenase activity (EC 1.1.1.1). In addition, 1,3-propanediol can be generated using polypeptides having oxidoreductase activity (such as enzymes in the 1.1.1.- class of enzymes) in vitro or in vivo. The formation of 1,3-propanediol during fermentation or in an in vitro assay can be analyzed using a High Performance Liquid Chromatography (HPLC). The chromatographic separation can be achieved by using a Bio-Rad 87H ion-exchange column. A mobile phase of 0.01N sulfuric acid is passed at

a flow rate of 0.6 ml/min and the column maintained at a temperature of 45-65°C. The

presence of 1,3-propanediol in the sample can be detected using a refractive index detector (Skraly et al., Appl. Environ. Microbiol. 64:98-105, 1998).

In another example, 3-HP can be dehydrated to form acrylic acid. Any method can be used to perform a dehydration reaction. For example, 3-HP can be heated in the presence of a catalyst (such as a metal or mineral acid catalyst) to form acrylic acid.

Enzymes

5

10

15

20

25

Polypeptides having beta-alanine/pyruvate aminotransferase activity, as well as nucleic acid encoding such polypeptides, can be obtained from various species including, but not limited to: *Pseudomonas putida*, *Pseudomonas aeruginosa*, *Arabidopsis thaliana*, *Rattus norvegicus*, and *Xenopus laevis*. For example, nucleic acid sequences having beta-alanine/pyruvate aminotransferase are shown in SEQ ID NO: 17 for *Pseudomonas putida* (the corresponding amino acid sequence is shown in SEQ ID NO: 18), and in SEQ ID NO: 19 for *Pseudomonas aeruginosa* (the corresponding amino acid sequence is shown in SEQ ID NO: 20). In addition, other polypeptides having beta-alanine/pyruvate aminotransferase as well as nucleic acids encoding such polypeptides, can be obtained using the methods described herein. For example, beta-alanine/pyruvate aminotransferase variants having beta-alanine/pyruvate aminotransferase activity can be used.

Polypeptides having alanine 2,3-aminomutase activity, as well as nucleic acid encoding such polypeptides, can be obtained from various species including, but not limited to: Escherichia coli, Bacillus subtilis, Porphyromonas gingivalis, or Haemophilus influenza. For example, nucleic acid sequences having alanine 2,3-aminomutase activity are shown in SEQ ID NO: 21 and 23 for B. subtilis (the corresponding amino acid sequences are shown in SEQ ID NO: 22 and 24, respectively), and in SEQ ID NO: 25 for P. gingivalis (the corresponding amino acid sequence is shown in SEQ ID NO: 26). Alanine 2,3-aminomutase variants having alanine 2,3-aminomutase activity can also be used.

10

15

20

25

Polypeptides having 3-hydroxypropionate dehydrogenase activity (EC 1.1.1.59), such as that encoded by the *mmsB* gene of *Pseudomonas aeruginosa*, as well as nucleic acid encoding such polypeptides, can be obtained from various species. For example, a nucleic acid that encodes a polypeptide having 3-hydroxypropionate dehydrogenase activity is shown in SEQ ID NO: 27 (see also GenBank Accession No: AE004778 (for protein, see GenBank Accession No: AAG06957) and GenBank Accession No: M84911 (for protein, see GenBank Accession No: AAA25891)).

Polypeptides having lipase or esterase activity as well as nucleic acid encoding such polypeptides can be obtained from various species including, without limitation, Candida rugosa, Candida tropicalis, and Candida albicans. For example, nucleic acid that encodes a polypeptide having lipase activity can be obtained from C. rugosa and can have a sequence as set forth in GenBank accession number A81171 (PCT Publication No. WO/9914338).

Polypeptides having aldehyde dehydrogenase (NAD(P)+) (EC 1.2.1.-) activity as well as nucleic acid encoding such polypeptides can be obtained from various species including, without limitation, *S. cerevisiae*. For example, nucleic acid that encodes a polypeptide having aldehyde dehydrogenase activity can be obtained from *S. cerevisiae* and can have a sequence as set forth in GenBank Accession No. Z75282 (Tessier *et al. FEMS Microbiol. Lett.* 164:29-34, 1998).

Polypeptides having alcohol dehydrogenase activity (EC 1.1.1.1) as well as nucleic acid encoding such polypeptides can be obtained from various species including, without limitation, *Z. mobilis*. For example, nucleic acid that encodes a polypeptide having alcohol dehydrogenase activity can be obtained from *Z. mobilis* and can have a sequence as set forth in GenBank accession No. M32100.

The term "polypeptide having enzymatic activity" refers to any polypeptide that catalyzes a chemical reaction of other substances without itself being destroyed or altered upon completion of the reaction. Typically, a polypeptide having enzymatic activity catalyzes the formation of one or more products from one or more substrates.

10

15

20

25

Such polypeptides can have any type of enzymatic activity including, without limitation, the enzymatic activity or enzymatic activities associated with enzymes such as beta-alanine/pyruvate aminotransferase, dehydrogenases capable of converting malonate semialdehyde to 3-HP such as 3-hydroxypropionate dehydrogenase, alanine 2,3-aminomutase, lipase or esterase, aldehyde dehydrogenase, and alcohol dehydrogenase.

Methods of Making 3-HP and Derivatives Thereof

Each step provided in the pathways depicted in FIG. 1 can be performed within a cell (in vivo) or outside a cell (in vitro, for example in a container or column). Additionally, the organic compound products can be generated through a combination of in vivo synthesis and in vitro synthesis. Moreover, the in vitro synthesis step, or steps, can be via chemical reaction or enzymatic reaction.

For example, a cell or microorganism provided herein can be used to perform the steps provided in FIG. 1, or an extract containing polypeptides having the indicated enzymatic activities can be used to perform the steps provided in FIG. 1. In addition, chemical treatments can be used to perform the conversions provided in FIG. 1.

Expression of Polypeptides

The polypeptides described herein, such as the enzymes listed in FIG. 1, can be produced individually in a host cell or in combination in a host cell. Moreover, the polypeptides having a particular enzymatic activity can be a polypeptide that is either naturally-occurring or non-naturally-occurring. A naturally-occurring polypeptide is any polypeptide having an amino acid sequence as found in nature, including wild-type and polymorphic polypeptides. Naturally-occurring polypeptides can be obtained from any species including, but not limited to, animal (such as mammalian), plant, fungal, and bacterial species. A non-naturally-occurring polypeptide is any polypeptide having an amino acid sequence that is not found in nature. Thus, a non-naturally-occurring

10

15

20

25

polypeptide can be a mutated version of a naturally-occurring polypeptide, or an engineered polypeptide. A polypeptide can be mutated by, for example, sequence additions, deletions, substitutions, or combinations thereof.

Genetically modified cells are disclosed which can be used to perform one or more steps of the steps in the pathways described herein or the genetically modified cells can be used to produce the disclosed polypeptides for subsequent use *in vitro*. For example, an individual microorganism can contain exogenous nucleic acid(s) encoding each of the polypeptides necessary to perform the steps depicted in FIG. 1. Such cells can contain any number of exogenous nucleic acid molecules. For example, a particular cell can contain one, two, three, four, five, six, or seven, or even more different exogenous nucleic acid molecules with each one encoding the polypeptide(s) necessary to convert beta-alanine into 3-HP as shown in FIG. 1, or a particular cell can endogenously produce polypeptides necessary to convert malonate semialdehyde into 3-HP while containing exogenous nucleic acid that encodes polypeptides necessary to convert beta-alanine into malonate semialdehyde and in some examples an exogenous nucleic acid that encodes polypeptides that can convert alpha-alanine into beta-alanine.

In addition, a single exogenous nucleic acid molecule can encode one, or more than one, polypeptide. For example, a single exogenous nucleic acid molecule can include sequences that encode two, three, four, five, six, seven, or even more different polypeptides. Further, the cells described herein can contain a single copy, or multiple copies (such as about 5, 10, 20, 35, 50, 75, 100 or 150 copies), of a particular exogenous nucleic acid molecule, such as a particular enzyme. The cells described herein can contain more than one particular exogenous nucleic acid. For example, a particular cell can contain about 50 copies of exogenous nucleic acid molecule X as well as about 75 copies of exogenous nucleic acid molecule Y.

In one example, a cell includes an exogenous nucleic acid molecule that encodes a polypeptide having BAPAT activity, for example SEQ ID NO: 17 or 19 (or variants, fragments, or fusions thereof that retain BAPAT activity). Such cells can have any

10

15

20

25

:1

detectable level of BAPAT activity, including activity detected by the production of metabolites of beta-alanine. For example, a cell containing an exogenous nucleic acid molecule that encodes a polypeptide having BAPAT activity can have BAPAT activity with a specific activity greater than about 1 µg malonate semialdehyde formed per gram dry cell weight per hour (for example greater than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 200, 250, 300, 350, 400, 500, or more µg malonate semialdehyde formed per gram dry cell weight per hour). Alternatively, a cell can have BAPAT activity such that a cell extract from 1x10⁶ cells has a specific activity greater than about 1 ng malonate semialdehyde formed per mg total protein per minute (such as greater than about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 200, 250, 300, 350, 400, 500, or more ng 3-HP formed per mg total protein per minute).

Host Cells for Production of 3-HP and Related Products

The nucleic acid and amino acid sequences provided herein can be used with cells to produce 3-HP as well as derivatives thereof such as esters of 3-HP, polymerized 3-HP and 1,3-propanediol, for example using the pathways shown in Example 1. Such cells can be from any species, such as those listed within the taxonomy web pages at the National Institutes of Health. The cells can be eukaryotic or prokaryotic. For example, genetically modified cells can be mammalian cells (such as human, murine, and bovine cells), plant cells (such as corn, wheat, rice, and soybean cells), fungal cells (such as Aspergillus and Rhizopus cells), yeast cells, or bacterial cells (such as Lactobacillus, Lactococcus, Bacillus, Escherichia, and Clostridium cells).

In one example, a cell is a microorganism. The term "microorganism" refers to any microscopic organism including, but not limited to, bacteria, algae, fungi, and protozoa. Thus, E. coli, B. subtilis, B. licheniformis, S. cerevisiae, Kluveromyces lactis, Candida blankii, Candida rugosa, and Pichia pastoris are microorganisms and can be used as described herein. In another example, the cell is part of a larger organism, such as a plant, such as a transgenic plant. Examples of plants that can be used to make 3-HP

10

15

20

25

or other organic compounds from beta-alanine include, but are not limited to, genetically engineered plant crops such as corn, rice, wheat, and soybean.

In one example, cells that are genetically modified to synthesize a particular organic compound contain one or more exogenous nucleic acid molecules that encode polypeptides having specific enzymatic activities. For example, a microorganism can contain exogenous nucleic acid that encodes a polypeptide having BAPAT activity. In this case, beta-alanine can be converted into malonate semialdehyde, which can lead to the production of 3-HP. An exogenous nucleic acid molecule that encodes a polypeptide having an enzymatic activity that catalyzes the production of a compound not normally produced by a cell, can be introduced into the cell. Alternatively, a cell can be transformed with an exogenous nucleic acid molecule that encodes a polypeptide having an enzymatic activity that catalyzes the production of a compound that is normally produced by that cell. In this case, the genetically modified cell can produce more of the compound (such as 3-HP, derivatives thereof, or a combination of 3-HP and its derivatives), or can produce the compound more efficiently, than a similar cell not having the genetic modification.

The produced product(s) can be secreted from the cell, eliminating the need to disrupt cell membranes to retrieve the organic compound. In one example, the cell produces 3-HP, derivatives thereof, or both, with the concentration of the product(s) being at least about 1 mg per L (such as at least about 1 mg/L, 5 mg/L, 10 mg/L, 25 mg/L, - 100 mg/L, 500 mg/L, 1 g/L, 5 g/L, 10 g/L, 25 g/L, 50 g/L, 100 g/L or 150 g/L). When determining the yield of a compound such as 3-HP or derivatives thereof for a particular cell, any method can be used (such as *Applied Environmental Microbiology* 59(12):4261-5, 1993). A cell within the scope of the disclosure can utilize a variety of carbon sources.

A cell can contain one or more exogenous nucleic acid molecules that encodes a polypeptide(s) having enzymatic activity that leads to the formation of 3-HP or derivatives thereof, such as 1,3-propanediol, 3-HP-esters, and polymers and copolymers

10

15

20

25

Ţ

containing 3-HP. Methods of identifying cells that contain exogenous nucleic acid(s) are well known. Such methods include, without limitation, PCR and nucleic acid hybridization techniques such as Northern and Southern analysis (see hybridization described herein). In addition, immunohisto-chemical and biochemical techniques can be used to determine if a cell contains particular nucleic acid(s) by detecting the expression of the polypeptide(s) encoded by that particular nucleic acid molecule(s). For example, an antibody having specificity for a polypeptide can be used to determine whether or not a particular cell contains nucleic acid encoding that polypeptide.

Biochemical techniques can also be used to determine if a cell contains a particular nucleic acid molecule encoding a polypeptide having enzymatic activity by detecting an organic product produced as a result of the expression of the polypeptide having enzymatic activity. For example, detection of 3-HP after introduction of one or more exogenous nucleic acids that encode a peptide having BAPAT activity (and in some examples also introducing an exogenous nucleic acid encoding a peptide having 3-hydroxypropionate dehydrogenase activity) into a cell that does not normally express such a peptide can indicate that the cell not only contains the introduced exogenous nucleic acid molecule but also expresses the encoded peptide from that introduced exogenous nucleic acid molecule.

Methods for detecting specific enzymatic activities or the presence of particular organic products are well known, for example, the presence of an organic compound such as 3-HP can be determined as described in Sullivan and Clarke (*J. Assoc. Offic. Agr. Chemists*, 38:514-8, 1955).

Operons for Producing 3-HP and Derivatives Thereof

Operons including more than one coding sequence are disclosed. In one example, the operon includes a nucleic acid encoding a beta-alanine/pyruvate aminotransferse, and a nucleic acid encoding a dehydrogenase capable of converting malonate semialdehyde to 3-HP, such as 3-hydroxypropionate dehydrogenase. In a

10

15

20

25

particular example, the operon further includes a nucleic acid encoding an alanine 2,3-aminomutase. In yet other examples, the operon further includes a nucleic acid encoding a lipase or esterase, or combinations thereof, which can be used to produce 3-HP esters. In another example, the operon further includes a nucleic acid encoding an esterase which can be used to produce polymers of 3-HP. In still other examples, the operon further includes a nucleic acid encoding an alcohol dehydrogenase and an aldehyde dehydrogenase which can be used to produce 1,3-propanediol. These recombinant operons can also include a promoter, to drive expression of the coding sequences. Furthermore, the operons can be part of a vector, which is used to transform a cell that can be used to produce 3-HP or derivatives thereof.

Nucleic Acids and Proteins for Producing 3-HP and Derivatives Thereof

Enzymes that can be used to produce 3-HP and derivatives thereof are disclosed herein. Several exemplary enzyme sequences are disclosed herein; however, the disclosure also encompasses variants, fusions, and fragments of the enzymes that retain the particular enzyme activity.

The nucleic acid sequences encoding the enzymes disclosed herein can contain an entire nucleic acid sequence encoding the enzyme, as well as a portions thereof that retain the desired enzyme activity. For example, an enzyme nucleic acid can contain at least about 12 contiguous nucleotides of an enzyme nucleic acid sequence. It will be appreciated that the disclosure also provides isolated nucleic acid that contains a nucleotide sequence that is greater than about 12 nucleotides (such as at least 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, 60, 100, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, or 5000 bases) in length and identical to any portion of an enzyme sequence. The disclosure also provides isolated nucleic acid sequences that encode for an enzyme having at least about 12 bases and hybridizes, under moderately or highly stringent hybridization conditions, to the sense or antisense strand of a nucleic acid encoding the enzyme.

;

10

15

20

25

In addition, the disclosure provides isolated enzyme nucleic acid sequences which contains a variation of an enzyme sequence. Variants can contain a single insertion, a single deletion, a single substitution, multiple insertions, multiple deletions, multiple substitutions, or any combination thereof (such as a single deletion together with multiple insertions) as long as the peptide encoded thereby retains the appropriate activity. Such isolated nucleic acid molecules can share at least about 60%, 70%, 75%, 80%, 85%, 90%, 92%, 95%, 97%, 98%, or 99% sequence identity with an enzyme sequence, as long as the peptide encoded by the nucleic acid retains the desired enzyme activity. For example, the following variations can be made to an alanine 2,3-aminomutase nucleic acid sequence: for SEQ ID NO: 21 or 23, the "a" at position 12 can be substituted with an "g"; the "g" at position 1050 can be substituted with an "a"; the "a" at position 255; can be substituted with an "g" "t" or "c;" for SEQ ID NO: 25, the "a" at position 6 can be substituted with a "g" "t" or "c"; the "t" at position 66 can be substituted with a "g" at position 315; can be substituted with an "a" "t" or "c."

Codon preferences and codon usage tables for a particular species can be used to engineer isolated nucleic acid molecules that take advantage of the codon usage preferences of that particular species. For example, the enzymes disclosed herein can be designed to have codons that are preferentially used by a particular organism of interest.

Nucleic acids encoding a polypeptide can be produced by standard DNA mutagenesis techniques, for example, M13 primer mutagenesis. Details of these techniques are provided in Sambrook *et al.* (ed.), Molecular Cloning: A Laboratory Manual 2nd ed., vol. 1-3, Cold Spring Harbor Laboratory Press, Cold Spring, Harbor, N.Y., 1989, Ch. 15. Nucleic acid molecules can contain changes of a coding region to fit the codon usage bias of the particular organism into which the molecule is to be introduced.

Alternatively, the coding region can be altered by taking advantage of the degeneracy of the genetic code to alter the coding sequence in such a way that, while the nucleic acid sequence is substantially altered, it nevertheless encodes a polypeptide having an amino acid sequence identical or substantially similar to the native amino acid sequence. For example, because of the degeneracy of the genetic code, alanine is encoded by the four nucleotide codon triplets: GCT, GCA, GCC, and GCG. Thus, the nucleic acid sequence of the open reading frame can be changed at an alanine position to any of these codons without affecting the amino acid sequence of the encoded polypeptide or the characteristics of the polypeptide. Based upon the degeneracy of the genetic code, nucleic acid variants can be derived from a nucleic acid sequence using a standard DNA mutagenesis techniques as described herein, or by synthesis of nucleic acid sequences. Thus, this disclosure also encompasses nucleic acid molecules that encode the same polypeptide but vary in nucleic acid sequence by virtue of the degeneracy of the genetic code.

15

20

25

10

5

Identification of Alternative Sequences

A nucleic acid molecule encoding a polypeptide having enzymatic activity can be identified and obtained using any method such as those described herein. For example, nucleic acid molecules that encode a polypeptide having enzymatic activity can be identified and obtained using common molecular cloning or chemical nucleic acid synthesis procedures and techniques, including PCR. In addition, standard nucleic acid sequencing techniques and software programs that translate nucleic acid sequences into amino acid sequences based on the genetic code can be used to determine whether or not a particular nucleic acid has any sequence homology with known enzymatic polypeptides. Sequence alignment software such as MEGALIGN (DNASTAR, Madison, WI, 1997) can be used to compare various sequences.

In addition, nucleic acid molecules encoding known enzymatic polypeptides can be altered using common molecular cloning techniques (such as site-directed

10

15

20

25

mutagenesis). Possible alterations include, without limitation, deletions, insertions, and substitutions, as well as combinations thereof. Further, nucleic acid and amino acid databases (such as GenBank and EMBL-EBI) can be used to identify a nucleic acid sequence that encodes a polypeptide having the desired enzymatic activity. Briefly, any amino acid sequence having some homology to a polypeptide having enzymatic activity, or any nucleic acid sequence having some homology to a sequence encoding a polypeptide having enzymatic activity can be used as a query to search GenBank. The identified polypeptides then can be analyzed to determine whether or not they exhibit enzymatic activity.

In addition, nucleic acid hybridization techniques can be used to identify and obtain a nucleic acid molecule that encodes a polypeptide having enzymatic activity. Briefly, any nucleic acid molecule that encodes a known enzymatic polypeptide, or fragment thereof, can be used as a probe to identify a similar nucleic acid molecules by hybridization under conditions of moderate to high stringency. Such similar nucleic acid molecules then can be isolated, sequenced, and analyzed to determine whether the encoded polypeptide has enzymatic activity.

Expression cloning techniques also can be used to identify and obtain a nucleic acid molecule that encodes a polypeptide having the desired enzymatic activity. For example, a substrate known to interact with a particular enzymatic polypeptide can be used to screen a phage display library containing that enzymatic polypeptide. Phage display libraries can be generated as described (Burritt et al., Anal. Biochem. 238:1-13, 1990), or can be obtained from commercial suppliers such as Novagen (Madison, WI).

Further, polypeptide sequencing techniques can be used to identify and obtain a nucleic acid molecule that encodes a polypeptide having the desired enzymatic activity. For example, a purified polypeptide can be separated by gel electrophoresis, and its amino acid sequence determined by, for example, amino acid microsequencing techniques. Once determined, the amino acid sequence can be used to design degenerate oligonucleotide primers. Degenerate oligonucleotide primers can be used to

obtain the nucleic acid encoding the polypeptide by PCR. Once obtained, the nucleic acid can be sequenced, cloned into an appropriate expression vector, and introduced into a microorganism.

5

10

15

20

Transforming Cells

Any method can be used to introduce an exogenous nucleic acid molecule into a cell. For example, heat shock, lipofection, electroporation, conjugation, fusion of protoplasts, and biolistic delivery are common methods for introducing nucleic acid into bacteria and yeast cells. (for example see Ito et al., J. Bacterol. 153:163-8, 1983; Durrens et al., Curr. Genet. 18:7-12, 1990; Sambrook et al., Molecular cloning: A laboratory manual, Cold Spring Harbour Laboratory Press, New York, USA, second edition, 1989; and Becker and Guarente, Methods in Enzymology 194:182-7, 1991). Other methods for expressing an amino acid sequence from an exogenous nucleic acid molecule include, but are not limited to, constructing a nucleic acid such that a regulatory element promotes the expression of a nucleic acid sequence that encodes a polypeptide. Typically, regulatory elements are DNA sequences that regulate the expression of other DNA sequences at the level of transcription. Thus, regulatory elements include, without limitation, promoters, enhancers, and the like.

Any type of promoter can be used to express an amino acid sequence from an exogenous nucleic acid molecule. Examples of promoters include, without limitation, constitutive promoters, tissue-specific promoters, and promoters responsive or unresponsive to a particular stimulus (such as light, oxygen, chemical concentration). Methods for transferring nucleic acids into mammalian cells are also known, such as using viral vectors.

25

ç.

An exogenous nucleic acid molecule contained within a particular cell of the disclosure can be maintained within that cell in any form. For example, exogenous nucleic acid molecules can be integrated into the genome of the cell or maintained in an episomal state. That is, a cell can be a stable or transient transformant. A

10

15

20

25

4

microorganism can contain single or multiple copies (such as about 5, 10, 20, 35, 50, 75, 100 or 150 copies), of a particular exogenous nucleic acid molecule, such as a nucleic acid encoding an enzyme.

In Vitro Production of Organic Acids and Related Products

Purified polypeptides having enzymatic activity can be used alone, or in combination with cells, to produce 3-HP, derivatives thereof, or both, such as esters of 3-HP, polymerized 3-HP, and 1,3-propanediol. Further, cell-free extracts containing a peptide having enzymatic activity can be used alone or in combination with purified peptides, cells, or both, to produce 3-HP, derivatives thereof, or both.

For example, a cell-free extract that includes a peptide having BAPAT activity can be used to form malonate semialdehyde from beta-alanine, while a cell or microorganism containing peptides having the enzymatic activities necessary to catalyze the reactions needed to form 3-HP from malonate semialdehye can be used to produce 3-HP. In another example, a cell-free extract which includes an alanine 2,3-aminomutase can be used to form beta-alanine from alpha-alanine. Any method can be used to produce a cell-free extract. For example, osmotic shock, sonication, and/or a repeated freeze-thaw cycle followed by filtration and/or centrifugation can be used to produce a cell-free extract from intact cells.

A cell, purified peptide, cell-free extract, or combinations thereof can be used to produce 3-HP that is, in turn, treated chemically to produce another compound. For example, a cell or microorganism can be used to produce 3-HP, while a chemical process is used to modify 3-HP into a derivative such as polymerized 3-HP or an ester of 3-HP. Likewise, a chemical process can be used to produce a particular compound that is, in turn, converted into 3-HP or other organic compound (such as esters of 3-HP, and polymerized 3-HP) using a cell, substantially pure peptide, or cell-free extract described herein.

10

15

20

25

Fermentation of Cells to Produce Organic Acids

A method is provided for producing 3-HP, derivatives thereof, or both, by culturing production cells, such as a microorganism, in culture medium such that 3-HP, derivatives of 3-HP, or both, are produced. In general, the culture media and culture conditions can be such that the cells grow to an adequate density and produce the product efficiently. For large-scale production processes, any method can be used such as those described elsewhere (Manual of Industrial Microbiology and Biotechnology, 2nd Edition, Editors: Demain and Davies, ASM Press; and Principles of Fermentation Technology, Stanbury and Whitaker, Pergamon).

Briefly, a large tank (such as a 100 gallon, 200 gallon, 500 gallon, or more tank) containing appropriate culture medium with, for example, a glucose carbon source is inoculated with a particular cell or microorganism. After inoculation, the cells or microorganisms are incubated to allow biomass to be produced. Once a desired biomass is reached, the broth containing the cells or microorganisms can be transferred to a second tank. This second tank can be any size. For example, the second tank can be larger, smaller, or the same size as the first tank. Typically, the second tank is larger than the first such that additional culture medium can be added to the broth from the first tank. In addition, the culture medium within this second tank can be the same as, or different from, that used in the first tank. For example, the first tank can contain medium with xylose, while the second tank contains medium with glucose.

Once transferred, the cells or microorganisms can be incubated to allow for the production of 3-HP, derivatives thereof, or both. Once produced, any method can be used to isolate the formed product. For example, common separation techniques can be used to remove the biomass from the broth, and common isolation procedures (such as extraction, distillation, and ion-exchange procedures) can be used to obtain the 3-HP or derivatives thereof from the cell-free broth. Alternatively, the product can be isolated while it is being produced, or it can be isolated from the broth after the product production phase has been terminated.

EXAMPLE 1

Construction of E. coli deletion strains

This example describes methods used to generate *E. coli* hosts for the cloning and expression of beta-alanine/pyruvate aminotransferase and other genes. *E. coli* bacteria were obtained from commercial sources where noted, or constructed by the gene insertional inactivation method of Datsenko and Wanner (*Proc. Natl. Acad. Sci. USA* 97: 6640-5, 2000) using *E. coli* strains BW25113/pKD46 and BW 25141/pKD3 (*E. Coli* Genetic Stock Center, New Haven, CT).

Lactate dehydrogenase catalyzes the formation of lactic acid. Deletion of this gene, and hence elimination of lactic acid formation, is advantageous for the detection of the formation of 3-HP because of the similarity in structure and chromatographic behavior of these two compounds. The ΔldhA::cam strain, which has an insertion of a chloramphenicol resistance marker gene into the ldhA locus, was constructed as follows.

The CAT gene conferring chloramphenicol resistance of pKD3 from BW 25141/pKD3 was PCR amplified using: 5'ATATTTTAGTAGCTTAAATGTGATTCAACATCACTGGAGGTGTAGGCTGGA
GCTGCTTC (SEQ ID NO. 1), and 5'-

TATCTGAATCAGCTCCCCTGGAATGCAGGGGAGCGCAAGCATATGAATAT CCTCCTTAG (SEQ ID NO. 2), where the underlined portion corresponds to the regions in the *E. coli* chromosome immediately upstream and downstream of the *ldhA* locus, respectively, and the non-underlined regions are homologous to regions in pKD3 that permit amplification of a fragment containing the *CAT* gene.

The PCR reaction contained 30 μl 10X concentrated PCR buffer (Roche Diagnostics, Indianapolis IN), approximately 100 ng plasmid pKD3, 0.2 mM each dNTP, 0.2 μM each SEQ ID NO: 1 and 2, and 15 units Taq polymerase (Roche Diagnostics) in a final volume of 300 μl. The PCR reaction was incubated at 95°C for

10

15

20

25

30 seconds followed by 30 cycles of 95°C for 30 seconds, 45°C for 30 seconds, and 72°C for 1 minute, then held at 72°C for 10 minutes. The PCR product was precipitated with ethanol, digested with *DpnI* (New England Biolabs, Beverly MA) purified with the QIAquick PCR Purification Kit (Qiagen, Valencia CA), and transformed into

BW25113/pKD46 expressing the recombination functions. Transformants were plated on LB plates containing 25 μg/ml chloramphenicol. Chloramphenicol-resistant transformations were single-colony purified on non-selective LB medium at 42°C, and single colonies tested for retention of chloramphenicol resistance and loss of ampicillin resistance (indicating curing of pKD46). Confirmation of correct insertion of the CAT gene into the *ldhA* locus was performed using colony PCR of the resultant Δ*ldhA*::cam strain using primers that flank the insertion locus: 5'-

TTCAATATCGCCATAGCTTTCA (SEQ ID NO. 3); and 5'-GAGGATGAAAGGTCATTGG (SEQ ID NO. 4).

Whereas the wild-type *ldhA* locus is expected to yield a PCR product of 1112 basepairs (bp) which does not possess a *PvuII* restriction endonuclease site, the *AldhA::cam* construct yielded a 1161-basepair product which is digested by *PvuII* to yield fragments of 709 and 452 basepairs, thus confirming the insertion of the *CAT* gene into the *ldhA* locus and disruption of the *ldhA* gene. Electrocompetent cells of *E. coli AldhA::cam* or of other *E. coli* strains were generated and transformed using standard methods, for example as described in Sambrook *et al.* Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989.

Deletions in the panD, yeiA, panC, and gabT genes were generated using similar methods. Where necessary, the inserted chloramphenical resistance marker gene was removed by the activity of the FLP recombinase encoded by plasmid pCP20, as described in Datsenko and Wanner (Proc. Natl. Acad. Sci. USA 97: 6640-5, 2000). For example, a derivative of the ApanD::cam strain in which the inserted chloramphenical resistance marker gene is removed was constructed; the genetic alteration in this strain is referred to as ApanD. Deletions were made separately in E. coli BW 25113 and

10

15

20

25

combined by P1 transduction. The strain carrying the combination of $\Delta panD$, $\Delta yeiA$, $\Delta panC$, $\Delta yfdE$, and $\Delta (ygaF-gabD-gabT)$ is referred to as Car24, and the strain referred to as Car27 contains the deletions carried in Car24 plus $\Delta ldhA^{\frac{1}{2}}$: cam.

EXAMPLE 2

Cloning a Pseudomonas aeruginosa beta-alanine/pyruvate aminotransferase

The complete amino acid sequence of a protein with beta-alanine/pyruvate aminotransferase activity from *Pseudomonas putida* IFO 14796 is publicly available (GenBank Accession No. P28269; Yonaha *et al.*, *J. Biol. Chem.* 267:12506-10, 1992). Waters and Venables (*FEMS Microbiol. Letts.* 34:279-82, 1986) describe the presence of this activity in *P. aeruginosa* PAO1, but do not disclose the sequence. Using the BLAST program to identify genes in the *P. aeruginosa* PAO1 genome that are homologous to the *P. putida* beta-alanine/pyruvate aminotransferase sequence, GenBank Accession No. NP_248822 was identified as a potential beta-alanine/pyruvate aminotransferase homolog. Primers were designed to amplify this gene based on the complete *P. aeruginosa* genome (GenBank Accession No. AE004091). The PCR primers used were: 5'-AAGCCCGAGGATCGACATATGAACCAGCCGCTC (SEQ ID NO. 5) and 5'-CCACCTGCACGGTGGGTACGGC (SEQ ID NO. 6).

The PCR reaction (100 μl total volume) contained 1 μg template DNA (*P. aeruginosa* PA01-LAC genomic DNA; American Type Culture Collection, Manassas, VA; catalog No. 47085D), 0.2 μM each primer (SEQ ID NOS: 5 and 6), 10 μl 10X Taq polymerase buffer (Roche Diagnostics), 0.2 mM each nucleotide triphosphate, and 5 units Taq DNA polymerase (Roche Diagnostics). The mixture was heated at 95°C for 3 minutes, then subjected to 30 cycles of 95°C for 30 seconds, 55°C for 30 seconds, and 72°C for 90 seconds, and then held at 72° for an additional 7 minutes. The reaction was purified with the QIAquick PCR Purification Kit (Qiagen), ethanol-precipitated in the presence of 3 μl Pellet Paint Co-Precipitant (Novagen, Madison, WI), treated with *NdeI* and *NotI* (New England Biolabs, Beverly, MA), purified, and ligated with the Quick

10

15

Ligation Kit (New England Biolabs) into pPRONde similarly treated with these restriction endonucleases.

The *NdeI* recognition site (underlined in SEQ ID NO: 5) was generated at the 5' end of the *P. aeruginosa* beta-alanine/pyruvate aminotransferase gene by the primer of SEQ ID NO. 5, while the *NotI* site occurs naturally starting 3 nucleotides past (3' of) the termination codon of this gene. Plasmid pPRONde is a derivative of pPROLar.A122 (Clontech Laboratories, Palo Alto, CA) in which an *NdeI* site was constructed at the initiator ATG codon by oligonucleotide-directed mutagenesis using the QuikChange Site-Directed Mutagenesis kit (Stratagene, La Jolla CA). Expression of beta-alanine/pyruvate aminotransferase in pPRONde is driven by a hybrid lac/ara promoter. Ligations were transformed into electrocompetent *E. coli* and clones verified by sequencing. The plasmid carrying the *P. aeruginosa* beta-alanine/pyruvate aminotransferase gene is referred to herein as pPRO-PaBAPAT.

The cloned *P. aeruginosa* beta-alanine/pyruvate aminotransferase DNA is shown in SEQ ID NO: 19, and the corresponding protein in SEQ ID NO: 20.

EXAMPLE 3

Cloning a P. putida beta-alanine/pyruvate aminotransferase

While the genome sequence of *P. putida* IFO 14796 has not been determined,
the genome sequence of *P. putida* KT2440, and that of its beta-alanine/pyruvate
aminotransferase homolog, is available (Genbank Accession No. NC_002947.3). PCR
primers were designed to amplify this gene from *P. putida* genomic DNA (American
Type Culture Collection 47054D) in a manner similar to that used in Example 2: 5'TCTTCCGAGGAACCGCATATGAACATGCCCGAAAC (SEQ ID NO. 7) and 5'GCATACGCCTGGCATTAATTAAGGAAAGATCAGTCGATCAG (SEQ ID NO. 8).

NdeI and PacI (underlined sequences in SEQ ID NOS: 7 and 8) were used to clone the PCR product into pPRONde as described in Example 2. The plasmid carrying the P. putida beta-alanine/pyruvate aminotransferase gene is referred to as pPRO-

10

15

20

25

;

PpBAPAT. The cloned *P. putida* beta-alanine/pyruvate aminotransferase cDNA is shown in SEQ ID NO: 17, and the corresponding protein in SEQ ID NO: 18.

One skilled in the art will understand that similar methods can be used to clone a beta-alanine/pyruvate aminotransferase from other organisms, such as *Streptomyces coelicolor* A3, *Corynebacterium glutamicum* ATCC 13032, and rat.

EXAMPLE 4

Formation of 3-HP From Beta-Alanine using BAPAT

E.coli BW25113 ΔldhA::cam cells carrying pPRONde or pPRO-PaBAPAT (Example 2) were grown in defined minimal medium (Neidhardt et al., J. Bacteriol. 119:736-47, 1974) plus 0.4 % (w/v) glucose, 20 μg/ml pantothenate, and 25 μg/ml kanamycin at 37°C to mid-log phase, and expression of beta-alanine/pyruvate aminotransferase induced with 1 mM IPTG. Beta-alanine (50 mM final concentration) was added 50 minutes following induction, and the culture centrifuged after 4 hours to separate the cells from the medium. Samples of the culture supernatant (1 ml) were adjusted to ~pH 2 with 50 μL formic acid, filtered, and 3-HP quantitated by HPLC followed by detection by mass spectrometry.

Chromatography was performed on a Waters 2690 liquid chromatography system using a 2.1 mm x 250 mm Phenomenex Aqua C₁₈ reversed-phase chromatography column with isocratic elution at 45°C using 1% methanol:aqueous containing 0.1% (v/v) formic acid as the mobile phase at a flow rate of 0.18 ml/min. Parameters for the Micromass ZQ quadrupole mass spectrometer operating in negative electrospray ionization mode (-ESI) were set as the following; capillary: 2.0 kV; cone: 25 V; extractor: 4 V; RF lens: 1 V; source temperature: 120°C; desolvation temperature: 380°C; desolvation gas: 600 L/h; cone gas: Off; low mass resolution: 15.0; high mass resolution: 15.0; ion energy: 0.2; multiplier: 650. A selected ion monitoring MS parameter was set up to allow selection of m/z 89, corresponding to the deprotonated molecular ion, [M-H], of 3-HP.

.; 5

- 46 -

Cells carrying pPRONde did not produce 3-HP, whereas cells carrying pPRO-PaBAPAT produced 0.04 g/L 3-HP. Increasing the incubation time to 20 hours resulted in the formation of 0.06 g/L 3-HP. No 3-HP was produced in the absence of added beta-alanine.

Cells carrying pPRO-PpBAPAT, under the same conditions as those carrying pPRO-PaBAPAT, formed 0.10 g/L 3-HP in 20 hours. Increasing the concentration of supplied beta-alanine to 250 mM in the medium resulted in the formation of 0.24 g/L 3-HP in 20 hours.

10

15

20

5

EXAMPLE 5

Synthetic Operon BAPAT-mmsB for 3-HP Production

This example describes methods used to produce an operon that includes a beta-alanine/pyruvate aminotransferase gene and a 3-hydroxyisobutyrate dehydrogenase (mmsB) gene encoding an enzyme with 3-hydroxypropionate dehydrogenase activity. Operons are configurations of genes that are transcribed in tandem as a single messenger RNA. Thus placing genes in close proximity, for example in a plasmid vector, under the transcriptional regulation of a single promoter, constitutes a synthetic operon.

Biosynthetic pathways that allow production of 3-HP via beta-alanine and pyruvate were generated (FIG. 1). One pathway to 3-HP from beta-alanine involves the use of a polypeptide having beta-alanine/pyruvate aminotransferase activity (EC 2.6.1.18), that is, an enzyme from a class of enzymes that convert beta-alanine to malonate semialdehyde, in addition to an enzyme having 3-HP dehydrogenase activity (E.C. 1.1.1.59), such as that encoded by a *mmsB* gene (such as SEQ ID NO: 27).

A synthetic operon that includes a beta-alanine/pyruvate aminotransferase gene and a *mmsB* gene was generated as follows. A *mmsB* gene was isolated from *P*.

aeruginosa 633 genomic DNA (American Type Culture Collection, 17933D) by PCR

10

with primers: 5'-ATACATATGACCGACATCGCATTCCTC (SEQ ID NO. 9) and 5'-ATAGTCGACTTAGGGATGAAGCAGTGAG (SEQ ID NO. 10).

The DNA polymerase used was a mixture of rTth (1 U; Applied Biosystems) and Pfu (0.125 U, Stratagene, , La Jolla CA), with the following PCR amplification program: 94°C for 5 minutes, 25 cycles of 94°C for 30 seconds, 45°C (increasing 0.3°C per cycle) for 30 seconds, and 72°C for 1 minute (increasing 2 seconds per cycle), followed by 72°C for 7 minutes. The PCR product was purified using the QIAquick PCR purification kit (Qiagen) then digested with *NdeI* and *SalI* (New England Biolabs). The resulting ~1 kb fragment was gel purified using the QIAquick gel purification kit (Qiagen), and ligated into pET28a (Novagen, Madison WI) that had been similarly digested and purified. The ligation reaction was done with the Rapid Ligation kit (Roche Applied Science), and transformed into TOP10 competent cells (Invitrogen, Carlsbad CA). The resultant plasmid is denoted pET28-mmsB.

The *mmsB* gene was amplified from pET28-mmsB using primers: 5'
15 CAACGCCATCGCCTAATGAACGCCCGCTTAATTAAGAAGGAGGTASTAAAT

ATGACCGACATCG (SEQ ID NO. 11) and 5'
TTCGTTTTATTTGATGCCTCTAGATTAGTCCTTGCCGCGGTAGAGC (SEQ ID NO. 12).

The DNA polymerase used was cloned Pfu Turbo DNA pol (Stratagene) with
the following PCR amplification program: 95°C for 30 seconds, 30 cycles of 95°C for
30 seconds, 60°C for 30 seconds, and 72°C for 3 minutes, followed by 72°C for 10
minutes. The PCR reaction was digested with *DpnI* and the product gel-purified as
above. The fragment was then used as a "mega-primer" in a QuikChange (Stratagene)
extension reaction as described by Kirsch and Joly (*Nucl. Acids Res.* 26:1848-50, 1998),
using pPRO-PaBAPAT as template. The resultant plasmid carrying a *P. aeruginosa*beta-alanine/pyruvate aminotransferase and an *mmsB* gene in tandem under the
expression control of the P_{lac/ara} promoter is referred to as pBm1. The cloned *mmsB*

cDNA sequence is shown in SEQ ID NO: 27, and the corresponding amino acid sequence in SEQ ID NO: 24.

Cells carrying pBm1 formed 0.09 g/L 3-HP when grown, expressed, and the culture medium analyzed as described in Example 4.

5

10

15

20

25

EXAMPLE 6

Synthetic Operon aam-BAPAT-mmsB for 3-HP Production

This example describes methods used to produce an operon that includes a betaalanine/pyruvate aminotransferase gene, an *mmsB* gene, as well as an alanine 2,3aminomutase (*aam*) gene.

As shown in FIG. 1, beta-alanine can be produced from alpha-alanine by using an alanine 2,3-aminomutase. The alanine 2,3-aminomutase gene used was derived from a *Bacillus subtilis* lysine 2,3-aminomutase by mutagenesis and selection (see WO 03/062173), and included in addition a change of tyrosine at amino acid position 140 to histidine (Y140H) (Bsaam2co, SEQ ID NO. 21). However, one skilled in the art will recognize that other alanine 2,3-aminomutase genes can be used. For example, alternative alanine 2,3-aminomutase gene sequences include, but are not limited to, SEQ ID NOS: 23 and 25 as well as variants, fragments and fusions thereof that retain alanine 2,3-aminomutase activity.

The Bsaam2co alanine 2,3-aminomutase gene carried on a pPROLar-based plasmid was amplified using: 5'-GAGCAATCACCTATGAACTG (SEQ ID NO. 13) and 5'-

GAGCGGCTGGTTCATTTGTACCTTCCTCCTCTTTAATGGCGGCCGCACCATT CGCATGTTTTATGAAGAATCCC (SEQ ID NO: 14).

The DNA polymerase used was cloned Pfu Turbo DNA pol, with the following PCR amplification program: 95°C for 30 seconds, 30 cycles of 95°C for 30 seconds, 54°C for 30 seconds, and 72°C for 4 minutes, followed by 72°C for 20 minutes. The PCR reaction was digested with *DpnI* and the product gel-purified as above. The

15

20

fragment was then used as "mega-primer" in a QuikChange extension reaction as described above, using pBm1 as template. The resultant plasmid carrying the alanine 2,3-aminomutase, the *P. aeruginosa* beta-alanine/pyruvate aminotransferase, and the *mmsB* genes (see Example 5) in tandem under the expression control of the P_{lac/ara} promoter is referred to as pABm1.

A second operon including an alanine 2,3-aminomutase, a *P. putida* betaalanine/pyruvate aminotransferase (see Example 3), and an *mmsB* gene in tandem under the expression control of the P_{lac/ara} promoter was constructed. The *P. putida* BAPAT gene was amplified from pPRO-PpBAPAT using primers: 5'-

10 CACACAGAATGCGGCCGCGAGGAGAAAGGTAAATATGAACATGCCCG (SEQ ID NO. 15) and 5'-CGTTCACCGACAAACAACAG (SEQ ID NO. 16).

The DNA polymerase used was cloned Pfu Turbo DNA pol with the following PCR amplification program: 95°C for 2 minutes, 30 cycles of 95°C for 30 seconds, 55°C for 30 seconds, and 72°C for 2 minutes, followed by 72°C for 10 minutes. The PCR product was purified using the QIAquick PCR purification kit (Qiagen), digested with *Not*I and *Pac*I (New England Biolabs), the ~1.4 kb fragment was gel purified and recovered using the QIAquick gel purification kit (Qiagen), and ligated into pABm1 similarly digested and purified. The resultant plasmid carrying alanine 2,3-aminomutase, *P. putida* beta-alanine/pyruvate aminotransferase, and *mmsB* in tandem under the expression control of the P_{lac/ara} promoter is referred to as pABm2.

EXAMPLE 7

Recombinant Expression

With publicly available enzyme cDNA and amino acid sequences, and the
25 enzymes and sequences disclosed herein, such as beta-alanine/pyruvate
aminotransferase, dehydrogenases such as 3-hydroxypropionate dehydrogenase, alanine
2,3-aminomutase, lipase or esterase, alcohol dehydrogenase, and aldehyde
dehydrogenase, as well as variants, polymorphisms, mutants, fragments and fusions

10

15

20

25

thereof, the expression and purification of any protein by standard laboratory techniques is enabled. One skilled in the art will understand that enzymes and fragments thereof can be produced recombinantly in any cell or organism of interest, and purified prior to use, for example prior to production of 3-HP and derivatives thereof.

Methods for producing recombinant proteins are well known in the art. Therefore, the scope of this disclosure includes recombinant expression of any protein or fragment thereof, such as an enzyme. For example, see U.S. Patent No: 5,342,764 to Johnson et al.; U.S. Patent No: 5,846,819 to Pausch et al.; U.S. Patent No: 5,876,969 to Fleer et al. and Sambrook et al. (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989, Ch. 17).

Briefly, partial, full-length, or variant cDNA sequences that encode for a peptide can be ligated into an expression vector, such as a bacterial expression vector. Proteins peptides can be produced by placing a promoter upstream of the cDNA sequence. Examples of promoters include, but are not limited to *lac*, *trp*, *tac*, *trc*, major operator and promoter regions of phage lambda, the control region of fd coat protein, the early and late promoters of SV40, promoters derived from polyoma, adenovirus, retrovirus, baculovirus and simian virus, the promoter for 3-phosphoglycerate kinase, the promoters of yeast acid phosphatase, the promoter of the yeast alpha-mating factors and combinations thereof.

Vectors suitable for the production of intact native proteins include pKC30 (Shimatake and Rosenberg, 1981, *Nature* 292:128), pKK177-3 (Amann and Brosius, 1985, *Gene* 40:183) and pET-3 (Studier and Moffatt, 1986, *J. Mol. Biol.* 189:113). A DNA sequence can be transferred to other cloning vehicles, such as other plasmids, bacteriophages, cosmids, animal viruses and yeast artificial chromosomes (YACs) (Burke *et al.*, 1987, *Science* 236:806-12). These vectors can be introduced into a variety of hosts including somatic cells, and simple or complex organisms, such as bacteria, fungi (Timberlake and Marshall, 1989, *Science* 244:1313-7), invertebrates, plants (Gasser and Fraley, 1989, *Science* 244:1293), and mammals (Pursel *et al.*, 1989,

10

15

20

25

Science 244:1281-8), which are rendered transgenic by the introduction of the heterologous cDNA.

For expression in mammalian cells, a cDNA sequence can be ligated to heterologous promoters, such as the simian virus SV40, promoter in the pSV2 vector (Mulligan and Berg, 1981, *Proc. Natl. Acad. Sci. USA* 78:2072-6), and introduced into cells, such as monkey COS-1 cells (Gluzman, 1981, *Cell* 23:175-82), to achieve transient or long-term expression. The stable integration of the chimeric gene construct may be maintained in mammalian cells by biochemical selection, such as neomycin (Southern and Berg, 1982, *J. Mol. Appl. Genet.* 1:327-41) and mycophoenolic acid (Mulligan and Berg, 1981, *Proc. Natl. Acad. Sci. USA* 78:2072-6).

The transfer of DNA into eukaryotic, such as yeast and mammalian cells, is a conventional technique. The vectors are introduced into the recipient cells as pure DNA (transfection) by, for example, precipitation with calcium phosphate (Graham and vander Eb, 1973, Virology 52:466) strontium phosphate (Brash et al., 1987, Mol. Cell Biol. 7:2013), electroporation (Neumann et al., 1982, EMBO J. 1:841), lipofection (Felgner et al., 1987, Proc. Natl. Acad. Sci USA 84:7413), DEAE dextran (McCuthan et al., 1968, J. Natl. Cancer Inst. 41:351), microinjection (Mueller et al., 1978, Cell 15:579), protoplast fusion (Schafner, 1980, Proc. Natl. Acad. Sci. USA 77:2163-7), or pellet guns (Klein et al., 1987, Nature 327:70). Alternatively, the cDNA can be introduced by infection with virus vectors, for example retroviruses (Bernstein et al., 1985, Gen. Engrg. 7:235) such as adenoviruses (Ahmad et al., 1986, J. Virol. 57:267) or Herpes (Spaete et al., 1982, Cell 30:295).

In view of the many possible embodiments to which the principles of our disclosure may be applied, it should be recognized that the illustrated embodiments are only particular examples of the disclosure and should not be taken as a limitation on the scope of the disclosure. Rather, the scope of the disclosure is in accord with the

following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.

We claim:

5

- 1. A transformed cell comprising beta-alanine/pyruvate aminotransferase activity, wherein the cell comprises an exogenous nucleic acid molecule encoding a beta-alanine/pyruvate aminotransferase, and wherein the cell produces 3-hydroxypropionic acid (3-HP) from beta-alanine.
- 2. The transformed cell of claim 1, wherein the exogenous nucleic acid molecule encoding the beta-alanine/pyruvate aminotransferase comprises a sequence having at
 10 least 90% sequence identity to SEQ ID NO: 17 or 19.
 - 3. The transformed cell of claim 1, wherein the exogenous nucleic acid molecule encoding the beta-alanine/pyruvate aminotransferase comprises SEQ ID NO: 17 or 19.
- 4. The transformed cell of claim 1, wherein the beta-alanine/pyruvate aminotransferase comprises SEQ ID NO: 18 or 20.
 - 5. The transformed cell of claim 1, wherein the cell further comprises dehydrogenase activity capable of converting malonate semialdehyde to 3-HP.
 - 6. The transformed cell of claim 5, wherein the cell further comprises an exogenous nucleic acid molecule encoding a dehydrogenase capable of converting malonate semialdehyde to 3-HP.
- 7. The transformed cell of claim 6, wherein the dehydrogenase is a 3-hydroxypropionate dehydrogenase.

- 8. The transformed cell of claim 7, wherein the exogenous nucleic acid molecule encoding the 3-hydroxypropionate dehydrogenase comprises a sequence having at least 90% sequence identity to SEQ ID NO: 27.
- 5 9. The transformed cell of claim 8, wherein the exogenous nucleic acid molecule encoding the 3-hydroxypropionate dehydrogenase comprises SEQ ID NO: 27.
 - 10. The transformed cell of claim 7, wherein the 3-hydroxypropionate dehydrogenase comprises SEQ ID NO: 28.
 - 11. The transformed cell of claim 1 or 5, wherein the cell further comprises alanine 2,3-aminomutase activity.
- 12. The transformed cell of claim 11, wherein the cell further comprises an exogenous
 nucleic acid molecule encoding an alanine 2,3-aminomutase.
 - 13. The transformed cell of claim 12, wherein the exogenous nucleic acid molecule that encodes an alanine 2,3-aminomutase comprises a sequence having at least 90% sequence identity to SEQ ID NO: 21, 23 or 25.
 - 14. The transformed cell of claim 13, wherein the exogenous nucleic acid molecule that encodes an alanine 2,3-aminomutase comprises SEQ ID NO: 21, 23 or 25.
- 15. The transformed cell of claim 12, wherein the alanine 2,3-aminomutase comprises
 SEQ ID NO: 22, 24 or 26.
 - 16. The transformed cell of claim 1, wherein the cell is a prokaryotic cell.

- 17. The transformed cell of claim 16, wherein the prokaryotic cell is a *Lactobacillus*, *Lactococcus*, *Bacillus*, or *Escherichia* cell.
- 18. The transformed cell of claim 1, wherein the cell is a yeast cell, plant cell, or fungal cell.
 - 19. A plant comprising the transformed plant cell of claim 18.
- 20. The transformed cell of claim 1 or claim 5, wherein the cell further comprises
 lipase or esterase activity, or a combination thereof.
 - 21. The transformed cell of claim 20, wherein the cell further comprises an exogenous nucleic acid molecule encoding a lipase or an esterase.
- 15 22. The transformed cell of claim 1, wherein the cell further comprises: 3-hydroxypropionate dehydrogenase activity; alanine 2, 3-aminomutase activity; and lipase or esterase activity.
- 20 23. The transformed cell of claim 20, 21, or 22, wherein the transformed cell produces an ester of 3-HP.
 - 24. The cell of claim 23, wherein the ester of 3-HP is methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, or 2-ethylhexyl 3-hydroxypropionate.
 - 25. The transformed cell of claim 1 or claim 5, wherein the cell further comprises aldehyde dehydrogenase activity and alcohol dehydrogenase activity.

26. The transformed cell of claim 25 wherein the cell further comprises an exogenous nucleic acid molecule encoding an aldehyde dehydrogenase and an exogenous nucleic acid molecule encoding an alcohol dehydrogenase.

5

27. The transformed cell of claim 1, wherein the cell further comprises:

3-hydroxypropionate dehydrogenase activity;

alanine 2, 3-aminomutase activity;

aldehyde dehydrogenase activity; and

- 10 alcohol dehydrogenase activity.
 - 28. The transformed cell of claim 25, 26, or 27, wherein the transformed cell produces 1,3-propanediol.
- 15 29. The transformed cell of claim 1 or claim 5, wherein the cell further comprises esterase activity.
 - 30. The transformed cell of claim 29, wherein the cell further comprises an exogenous nucleic acid molecule encoding an esterase.

20

- 31. The transformed cell of claim 1, wherein the cell further comprises:
 - 3-hydroxypropionate dehydrogenase activity;

alanine 2, 3-aminomutase activity; and

esterase activity.

25

32. The transformed cell of claim 29, 30, or 31, wherein the transformed cell produces polymerized 3-HP.

- 33. A method for making 3-HP from beta-alanine, comprising culturing the transformed cell of claim 1 or claim 5 under conditions that allow the transformed cell to make 3-HP from beta-alanine.
- 5 34. The method of claim 33, wherein the transformed cell further comprises an exogenous nucleic acid molecule encoding an alanine 2,3-aminomutase, wherein the alanine 2,3-aminomutase is capable of producing beta-alanine from alpha-alanine.
 - 35. The method of claim 33, wherein the cell is a prokaryotic cell.
 - 36. A method of producing an ester of 3-HP, comprising culturing the transformed cell of claim 20, 21, or 22 under conditions wherein the transformed cell produces an ester of 3-HP.
- 37. The method of claim 36, wherein the ester of 3-HP is methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, or 2-ethylhexyl 3-hydroxypropionate.
- 38. A method of producing 1,3 propanediol, comprising culturing the transformed cell of claim 25, 26, or 27 under conditions wherein the transformed cell produces 1,3 propanediol.
 - 39. A method of producing polymerized 3-HP, comprising culturing the transformed cell of claim 29, 30, or 31 under conditions wherein the transformed cell produces polymerized 3-HP.

40. A method for making 3-HP, comprising:

transfecting the transformed cell of claim 1 with a nucleic acid molecule encoding a polypeptide comprising alanine 2,3-aminomutase activity; and culturing the transfected cell to allow the transfected cell to make 3-HP.

5

41. A transformed cell comprising:

endogenous beta-alanine/pyruvate aminotransferase activity; and an exogenous nucleic acid molecule encoding an alanine 2,3, aminomutase, wherein the cell produces 3-HP.

10

- 42. A recombinant nucleic acid comprising:
- a nucleic acid molecule encoding a beta-alanine/pyruvate aminotransferase; and a nucleic acid molecule encoding a dehydrogenase capable of converting malonate semialdehyde to 3-HP.

15

- 43. The recombinant nucleic acid of claim 42, wherein the dehydrogenase is a 3-hydroxypropionate dehydrogenase.
- 44. The recombinant nucleic acid of claim 42, further comprising a nucleic acid molecule that encodes an alanine 2,3-aminomutase.
 - 45. The recombinant nucleic acid of claim 42 operably linked to a promoter sequence.
 - 46. A vector comprising the recombinant nucleic acid of claim 42.

- 47. A cell transformed with the recombinant nucleic acid of claim 42.
- 48. A transgenic plant comprising the recombinant nucleic acid of claim 42.

20

49. A transformed cell comprising at least one exogenous nucleic acid molecule, wherein the at least one exogenous nucleic acid molecule comprises the recombinant nucleic acid of claim 42.

50. The transformed cell of claim 49 wherein the cell produces 3-HP from beta-alanine.

- 51. A polypeptide comprising alanine 2,3 aminomutase activity, wherein the polypeptide comprises a sequence having at least 90% sequence identity to SEQ ID
 10 NO: 22.
 - 52. The polypeptide of claim 51, wherein the polypeptide comprises one or more conservative amino acid substitutions.
- 15 53. The polypeptide of claim 52, wherein the polypeptide comprises 1-10 conservative amino acid substitutions.
 - 54. An isolated nucleic acid molecule comprising a nucleic acid molecule that encodes the polypeptide of claim 51.
 - 55. The isolated nucleic acid molecule of claim 54, operably linked to a promoter sequence.
- 56. The isolated nucleic acid molecule of claim 54, wherein the nucleic acid molecule comprises a sequence having at least 90% sequence identity to SEQ ID NO: 21.

15

- 57. The isolated nucleic acid molecule of claim 56, wherein the nucleic acid molecule includes one or more substitutions which results in one or more conservative amino acid substitutions.
- 58. The isolated nucleic acid molecule of claim 56, wherein the nucleic acid molecule includes one or more substitutions which results in no more than 10 conservative amino acid substitutions.
 - 59. A vector comprising the isolated nucleic acid of claim 54.
 - 60. A recombinant nucleic acid molecule comprising the isolated nucleic acid molecule of claim 54.
 - 61. A cell transformed with the recombinant nucleic acid molecule of claim 60.
 - 62. A transformed cell comprising at least one exogenous nucleic acid molecule, wherein the at least one exogenous nucleic acid molecule comprises a nucleic acid sequence encoding the polypeptide of claim 51.
- 20 63. The transformed cell of claim 62, wherein the cell produces beta-alanine from alpha-alanine.
 - 64. The cell of claim 62, wherein the cell produces 3-HP.
- 25 65. The cell of claim 62, wherein the cell produces 1,3-propanediol, an ester of 3-HP or polymerized 3-HP.

- 61 -

ABSTRACT

PRODUCTION OF 3-HYDROXYPROPIONIC ACID USING BETA-ALANINE/PYRUVATE AMINOTRANSFERASE

Methods of using beta-alanine/pyruvate aminotransferase to produce 3-

bydroxypropionic acid and derivatives thereof, from beta-alanine, are disclosed. Cells and recombinant nucleic acids that can be used to practice the methods are also disclosed.

DRAWING: Sheet 1 of 1 Sheet

 $1 - \beta$ -alanine/pyruvate aminotransferase (BAPAT) (EC 2.6.1.18)

2 – Alanine 2,3-aminomutase

3 – 3-HP dehydrogenase

4 - Lipase or esterase (EC 3.1.1.-)

5 - Aldehyde dehydrogenase (EC 1.2.1.-) and alcohol dehydrogenase

(EC 1.1.1.1) activities

6 - Esterase

SEQUENCE LISTING

₹'

```
<110> Liao et al.
<120> PRODUCTION OF 3-HYDROXYPROPIONIC ACID USING BETA
       -ALANINE/PYRUVATE AMINOTRANSFERASE
<130> 66576
<160> 28
<170> PatentIn version 3.2
<210> 1
<211> 60
<212> DNA
<213> Artificial
<220>
<223> PCR primer
<400> 1
atatttttag tagcttaaat gtgattcaac atcactggag gtgtaggctg gagctgcttc 60
<210> 2
<211> 60
<212> DNA
<213> Artificial
<220>
<223> PCR primer
<400> 2
tatctgaatc agctcccctg gaatgcaggg gagcggcaag catatgaata tcctccttag 60
<210> 3.
<211> 22
<212> DNA
<213> Artificial
<220>
<223> PCR primer
<400> 3
ttcaatatcg ccatagcttt ca
                                                                       22
<210> 4
<211> 19
<212> DNA
<213> Artificial
<220>
<223> PCR primer
```

<400>	4 gaaa ggtcattgg	19
5-55-0	5444 5555	
<210>	5	
<211>		
<212>		
	Artificial	
12137	TE CLEVENE	
<220>		
	PCR primer	
12237	Ten primer	
<400>	5	
	gagg atcgacatat gaaccagccg ctc	33
aageee	gagg accaded gauccageeg etc	33
<210>	6	
<211>		
<212>	•	
	Artificial	
(213)	Altilitial	
<220>		
	PCR primer	
(223)	PCR primer	
<400>	6	
		22
CCacce	gcac ggtgggtacg gc	22
<210>	7	
<211>		
<211>		
	Artificial	
(213)	ACCITICAL	
<220>		
	PCP primar	
<223>	PCR primer	
<400>	7	
		35
LCLLCC	gagg aaccgcatat gaacatgccc gaaac	33
<210>	8	
<211>	41	
<211>		
<213>	Artificial	
<220>		
	DCD primary	
<223>	PCR primer	
<400>	8	
		47
gcatac	gcct ggcattaatt aaggaaagat cagtcgatca g	41
<210>	0	
<211>		
<212>		
<213>	Artificial	

```
<220>
<223> PCR primer
<400> 9
atacatatga ccgacatcgc attcctc
                                                                     27
<210> 10
<211> 28
<212> DNA
<213> Artificial
<220>
<223> PCR primer
<400> 10
atagtcgact tagggatgaa gcagtgag
                                                                     28
<210> 11
<211> 64
<212> DNA
<213> Artificial
<220>
<223> PCR primer
<220>
<221> misc_feature
<222> (46)..(46)
<223> S at position 46 is a g or c
<400> 11
caacggcatc gcctaatgaa cggccgctta attaagaagg aggtastaaa tatgaccgac
                                                                     60
atcg
                                                                     64
<210> 12
<211> 46
<212> DNA
<213> Artificial
<220>
<223> PCR primer
<400> 12
ttcgttttat ttgatgcctc tagattagtc cttgccgcgg tagagc
                                                                     46
<210> 13
<211> 20
<212> DNA
<213> Artificial
```

<220>

<223>	PCR primer	
<400>	13	
	tcac ctatgaactg	20
• -		
<210>	14	
<211>	75	
<212>	Artificial	
(213)	Arcificial	
<220>		
	PCR primer	
<400>	14	
gagcgg	ctgg ttcatttgta ccttcctcct ctttaatggc ggccgcacca ttcgcatgtt	60
tttatga	aaga atccc	75
<210>	15	
<211>	47	
<212>	DNA	
<213>	Artificial	
<220> <223>	DCD primar	
<223>	PCR primer	
<400>	15	
	gaat gcggccgcga ggagaaaggt aaatatgaac atgcccg	47
	•	
<210>	16	
<211> <212>	20 DNA	
	Artificial	
(213)	Altilitial	
<220>		
<223>	PCR primer	
<400>	16	
cgttcac	ccga caaacaacag	20
<210>	17	
<211>		
<212>		
<213>	Pseudomonas putida	
<220>	and .	
<221>	CDS (1)(1344)	
44467	_/ · · \/	
<400>	.17	
atg aad	atg ccc gaa act ggt cct gcc ggt atc gcc agc cag ctc aag	48
	n Met Pro Glu Thr Gly Pro Ala Gly Ile Ala Ser Gln Leu Lys	

720

ctc aag ctg atc gag ctg cac gat gcc tcc aac atc gca gca gtc atc

Leu Lys Leu Ile Glu Leu His Asp Ala Ser Asn Ile Ala Ala Val Ile

Val Glu Pro Leu Ala Gly Ser Ala Gly Val Leu Pro Pro Lys Gly

						atc Ile									768
						ggc Gly									816
						acc Thr 280									864
_				_		ccg Pro	_		_			_	_	_	912
_		_			_	aac Asn	_	_		_	_		_		960
						tat Tyr									1008
						ctg Leu									1056
	 _	_	_		_	cat His 360			_	_	_				1104
						gat Asp									1152
						gac Asp									1200
						aaa Lys									1248
						cca Pro									1296
						gtt Val 440									1344
tga															1347

<211> 448

<212> PRT

<213> Pseudomonas putida

<400> 18

Met Asn Met Pro Glu Thr Gly Pro Ala Gly Ile Ala Ser Gln Leu Lys

1 10 15

Leu Asp Ala His Trp Met Pro Tyr Thr Ala Asn Arg Asn Phe Gln Arg 20 25 30

Asp Pro Arg Leu Ile Val Ala Ala Glu Gly Asn Tyr Leu Val Asp Asp 35 40 45

His Gly Arg Lys Ile Phe Asp Ala Leu Ser Gly Leu Trp Thr Cys Gly 50 55 60

Ala Gly His Thr Arg Lys Glu Ile Ala Asp Ala Val Thr Arg Gln Leu 70 75 80

Ser Thr Leu Asp Tyr Ser Pro Ala Phe Gln Phe Gly His Pro Leu Ser 85 90 95

Phe Gln Leu Ala Glu Lys Ile Ala Glu Leu Val Pro Gly Asn Leu Asn 100 105 110

His Val Phe Tyr Thr Asn Ser Gly Ser Glu Cys Ala Asp Thr Ala Leu 115 120 125

Lys Met Val Arg Ala Tyr Trp Arg Leu Lys Gly Gln Ala Thr Lys Thr 130 135 140

Lys Ile Ile Gly Arg Ala Arg Gly Tyr His Gly Val Asn Ile Ala Gly 145 150 155 160

Thr Ser Leu Gly Gly Val Asn Gly Asn Arg Lys Met Phe Gly Gln Leu 165 170 175

Leu Asp Val Asp His Leu Pro His Thr Val Leu Pro Val Asn Ala Phe
180 185 190

Ser Lys Gly Leu Pro Glu Glu Gly Gly Ile Ala Leu Ala Asp Glu Met 195 200 205 Val Glu Pro Leu Ala Gly Ser Ala Gly Val Leu Pro Pro Pro Lys Gly Tyr Leu Lys Arg Leu Arg Glu Ile Cys Thr Gln His Asn Ile Leu Leu Ile Phe Asp Glu Val Ile Thr Gly Phe Gly Arg Met Gly Ala Met Thr Gly Ser Glu Ala Phe Gly Val Thr Pro Asp Leu Met Cys Ile Ala Lys Gln Val Thr Asn Gly Ala Ile Pro Met Gly Ala Val Ile Ala Ser Ser Glu Ile Tyr Gln Thr Phe Met Asn Gln Pro Thr Pro Glu Tyr Ala Val Glu Phe Pro His Gly Tyr Thr Tyr Ser Ala His Pro Val Ala Cys Ala Ala Gly Leu Ala Ala Leu Asp Leu Leu Gln Lys Glu Asn Leu Val Gln Ser Ala Ala Glu Leu Ala Pro His Phe Glu Lys Leu Leu His Gly Val Lys Gly Thr Lys Asn Ile Val Asp Ile Arg Asn Tyr Gly Leu Ala Gly Ala Ile Gln Ile Ala Ala Arg Asp Gly Asp Ala Ile Val Arg Pro Tyr Glu Ala Ala Met Lys Leu Trp Lys Ala Gly Phe Tyr Val Arg Phe Gly Gly Asp Thr Leu Gln Phe Gly Pro Thr Phe Asn Thr Lys Pro Gln Glu

Leu Lys Leu Ile Glu Leu His Asp Ala Ser Asn Ile Ala Ala Val Ile

Leu Asp Arg Leu Phe Asp Ala Val Gly Glu Thr Leu Asn Leu Ile Asp 435 440 445

<210: <211: <212: <213:	> 1 > I	19 1347 DNA Pseud	iomoi	nas a	aerug	ginos	sa									
<220: <221: <222:	> 0	DS	. (134	14)												
<400>	> 1	.9														
atg a Met A 1																48
ctg c																96
gac o	ecg Pro	cgg Arg 35	atc Ile	atc Ile	gtc Val	gcc Ala	gcc Ala 40	gaa Glu	ggc Gly	agc Ser	tgg Trp	ctg Leu 45	acc Thr	gac Asp	gac Asp	144
aag g Lys G																192
gcc g Ala 6 65																240
ggc a Gly T																288
ttc c																336
cac g His V																384
aag a Lys M 1																432
aag c Lys L 145																480
acc a Thr S																528

165	170	175

atg Met	gac Asp	gtc Val	gac Asp 180	cat His	ctg Leu	ccg Pro	cac His	acc Thr 185	ctt Leu	caa Gln	ccg Pro	ggc Gly	atg Met 190	gcg Ala	ttc Phe	576
					cag Gln											624
					ctg Leu											672
gtc Val 225	gag Glu	ccg Pro	atg Met	tcc Ser	ggc Gly 230	tcc Ser	gcc Ala	ggc Gly	gta Val	ctg Leu 235	gta Val	ccg Pro	ccg Pro	gtc Val	ggc Gly 240	720
					cgc Arg	-		_	_	_				_	_	768
					atc Ile											816
ggc	gcc Ala	gag Glu 275	tac Tyr	ttc Phe	ggc Gly	gtc Val	acc Thr 280	ccg Pro	gac Asp	ctg Leu	atg Met	aac Asn 285	gtc Val	gcc Ala	aag Lys	864
cag Gln	gtc Val 290	acc Thr	aac Asn	ggc Gly	gcc Ala	gtg Val 295	ccg Pro	atg Met	ggc Gly	gcg Ala	gtg Val 300	atc Ile	gcc Ala	agc Ser	agc Ser	912
					ttc Phe 310											960
					tac Tyr											1008
					ctg Leu										cag Gln	1056
cag Gln	tcc Ser	gcc Ala 355	gag Glu	ctg Leu	gcg Ala	ccg Pro	cac His 360	ttc Phe	gag Glu	aag Lys	ggc Gly	ctg Leu 365	cac His	ggc Gly	ctg Leu	1104
caa Gln	ggc Gly 370	gcg Ala	aag Lys	aac Asn	gtc Val	atc Ile 375	gac Asp	atc Ile	cgc Arg	aac Asn	tgc Cys 380	ggc Gly	ctg Leu	gcc Ala	ggc Gly	1152
gcg Ala 385	atc Ile	cag Gln	atc Ile	gcc Ala	ccg Pro 390	cgc Arg	gac Asp	ggc Gly	gat Asp	ccg Pro 395	acc Thr	gtg Val	cgt Arg	ccg Pro	ttc Phe 400	1200

gag gcc ggc atg aag ctc tgg caa cag ggt ttc tac gtg cgc ttc ggc Glu Ala Gly Met Lys Leu Trp Gln Gln Gly Phe Tyr Val Arg Phe Gly 405 410 415	1248
ggc gat acc ctg caa ttc ggc ccg acc ttc aac gcc agg ccg gaa gag Gly Asp Thr Leu Gln Phe Gly Pro Thr Phe Asn Ala Arg Pro Glu Glu 420 425 430	1296
ctg gac cgc ctg ttc gac gcg gtc ggc gaa gcg ctc aac ggc atc gcc Leu Asp Arg Leu Phe Asp Ala Val Gly Glu Ala Leu Asn Gly Ile Ala 435 440 445	1344
tga	1347
<210> 20 <211> 448 <212> PRT <213> Pseudomonas aeruginosa	
<400> 20	
Met Asn Gln Pro Leu Asn Val Ala Pro Pro Val Ser Ser Glu Leu Asn 1 5 10 15	
Leu Arg Ala His Trp Met Pro Phe Ser Ala Asn Arg Asn Phe Gln Lys 20 25 30	
Asp Pro Arg Ile Ile Val Ala Ala Glu Gly Ser Trp Leu Thr Asp Asp 35 40 45	
Lys Gly Arg Lys Val Tyr Asp Ser Leu Ser Gly Leu Trp Thr Cys Gly 50 55 60	
Ala Gly His Ser Arg Lys Glu Ile Gln Glu Ala Val Ala Arg Gln Leu 65 70 75 80	
Gly Thr Leu Asp Tyr Ser Pro Gly Phe Gln Tyr Gly His Pro Leu Ser 85 90 95	
Phe Gln Leu Ala Glu Lys Ile Ala Gly Leu Leu Pro Gly Glu Leu Asn 100 105 110	
His Val Phe Phe Thr Gly Ser Gly Ser Glu Cys Ala Asp Thr Ser Ile 115 120 125	
Lys Met Ala Arg Ala Tyr Trp Arg Leu Lys Gly Gln Pro Gln Lys Thr 130 135 140	

Lys Leu Ile Gly Arg Ala Arg Gly Tyr His Gly Val Asn Val Ala Gly Thr Ser Leu Gly Gly Ile Gly Gly Asn Arg Lys Met Phe Gly Gln Leu

Met Asp Val Asp His Leu Pro His Thr Leu Gln Pro Gly Met Ala Phe

Thr Arg Gly Met Ala Gln Thr Gly Gly Val Glu Leu Ala Asn Glu Leu

Leu Lys Leu Ile Glu Leu His Asp Ala Ser Asn Ile Ala Ala Val Ile

Val Glu Pro Met Ser Gly Ser Ala Gly Val Leu Val Pro Pro Val Gly

Tyr Leu Gln Arg Leu Arg Glu Ile Cys Asp Gln His Asn Ile Leu Leu

Ile Phe Asp Glu Val Ile Thr Ala Phe Gly Arg Leu Gly Thr Tyr Ser

Gly Ala Glu Tyr Phe Gly Val Thr Pro Asp Leu Met Asn Val Ala Lys

Gln Val Thr Asn Gly Ala Val Pro Met Gly Ala Val Ile Ala Ser Ser

Glu Ile Tyr Asp Thr Phe Met Asn Gln Ala Leu Pro Glu His Ala Val

Glu Phe Ser His Gly Tyr Thr Tyr Ser Ala His Pro Val Ala Cys Ala

Ala Gly Leu Ala Ala Leu Asp Ile Leu Ala Arg Asp Asn Leu Val Gln

Gln Ser Ala Glu Leu Ala Pro His Phe Glu Lys Gly Leu His Gly Leu

Gln	Gly 370		Lys	Asn	Val	Ile 375	Asp	Ile	Arg	Asn	Суs 380	Gly	Leu	Ala	Gly	
Ala 385	Ile	Gln	Ile	Ala	Pro 390		Asp	Gly	Asp	Pro 395		Val	Arg	Pro	Phe 400	
Glu	Ala	Gly	Met	Lys 405	Leu	Trp	Gln	Gln	Gly 410	Phe	Tyr	Val	Arg	Phe 415	Gly	
Gly	Asp	Thr	Leu 420	Gln	Phe	Gly	Pro	Thr 425	Phe	Asn	Ala	Arg	Pro 430	Glu	Glu	
Leu	Asp	Arg 435	Leu	Phe	Asp	Ala	Val 440	Gly	Glu	Ala	Leu	Asn 445	Gly	Ile	Ala	
<210 <211 <212 <213	l> : !> :	21 1416 ONA Baci:	llus	sub	tilia	5										
<220 <221 <222	.> (CDS (1).	. (14:	13)												
<400		21														
atg	aaa	aac	aaa Lys	tgg Trp 5	tat Tyr	aaa Lys	ccg Pro	aaa Lys	cgg Arg 10	cat His	tgg Trp	aag Lys	gag Glu	atc Ile 15	gag Glu	48
tta Leu	tgg Trp	aag Lys	gac Asp 20	gtt Val	ccg Pro	gaa Glu	gag Glu	aaa Lys 25	tgg Trp	aac Asn	gat Asp	tgg Trp	ctt Leu 30	tgg Trp	cag Gln	96
ctg Leu	aca Thr	cac His 35	act Thr	gta Val	aga Arg	acg Thr	tta Leu 40	gat Asp	gat Asp	tta Leu	aag Lys	aaa Lys 45	gtc Val	att Ile	aat Asn	144
ctg Leu	acc Thr 50	gag Glu	gat Asp	gaa Glu	gag Glu	gaa Glu 55	ggc Gly	gtc Val	cgt Arg	att Ile	tct Ser 60	acc Thr	aaa Lys	acg Thr	atc Ile	192
ccc Pro 65	tta Leu	aat Asn	att Ile	aca Thr	cct Pro 70	tac Tyr	tat Tyr	gct Ala	tct Ser	tta Leu 75	atg Met	gac Asp	ccc Pro	gac Asp	aat Asn 80	240
ccg Pro	aga Arg	tgc Cys	ccg Pro	gta Val 85	cgc Arg	atg Met	cag Gln	tct Ser	gtg Val 90	ccg Pro	ctt Leu	tct Ser	gaa Glu	gaa Glu 95	atg Met	288
cac	aaa	aca	aaa	tac	gat	atg	gaa	gac	ccg	ctt	cat	gag	gat	gaa	gat	336

His	Lys	Thr	Lys 100	Tyr	Asp	Met	Glu	Asp 105	Pro	Leu	His	Glu	Asp 110	Glu	Asp	
	ccg Pro															384
	gtc Val 130															432
_	ttt Phe						_		_				_		_	480
	gca Ala															528
	tca Ser															576
	tta Leu															624
	aca Thr 210															672
	gag Glu															720
	aca Thr															768
	gtg Val		Ala	Gly	Val	Pro		Gly	Asn	Gln						816
	att Ile															864
	aaa Lys 290															912
	gga Gly															960
att Ile	gaa Glu	Gly 333	ctg Leu	aga Arg	ggt Gly	cat His	acc Thr	tca Ser	ggc Gly	tat Tyr	gcg Ala	gtt Val	cct Pro	acc Thr	ttt Phe	1008

	325	330	335
	cca ggc gga gga ggt Pro Gly Gly Gly Gly 345		
	caa agt cct gac aaa Gln Ser Pro Asp Lys 360		_
	tca tat ccg gaa cca Ser Tyr Pro Glu Pro 375		
	ttt gag tcc gtt ttc Phe Glu Ser Val Phe 390		_
	ctg agt gcc att ttt Leu Ser Ala Ile Phe 405		
	gta gac aga atc aaa Val Asp Arg Ile Lys 425		
	gaa aca tta aaa gat Glu Thr Leu Lys Asp 440		_
	aaa ttt ttg gcg cag Lys Phe Leu Ala Gln 455		
gaa tgc gga ggg Glu Cys Gly Gly 465	gat tct tca tga Asp Ser Ser 470		1416
<210> 22 <211> 471 <212> PRT <213> Bacillus	subtilis		

<400> 22

Met Lys Asn Lys Trp Tyr Lys Pro Lys Arg His Trp Lys Glu Ile Glu 1 5 10 15

Leu Trp Lys Asp Val Pro Glu Glu Lys Trp Asn Asp Trp Leu Trp Gln 20 25 30

Leu Thr His Thr Val Arg Thr Leu Asp Asp Leu Lys Lys Val Ile Asn 35 40 45

Leu Thr Glu Asp Glu Glu Glu Gly Val Arg Ile Ser Thr Lys Thr Ile 50 55 60

Pro Leu Asn Ile Thr Pro Tyr Tyr Ala Ser Leu Met Asp Pro Asp Asn 65 70 75 80

Pro Arg Cys Pro Val Arg Met Gln Ser Val Pro Leu Ser Glu Glu Met
85 90 95

His Lys Thr Lys Tyr Asp Met Glu Asp Pro Leu His Glu Asp Glu Asp 100 105 110

Ser Pro Val Pro Gly Leu Thr His Arg Tyr Pro Asp Arg Val Leu Phe 115 120 125

Leu Val Thr Asn Gln Cys Ser Val Tyr Cys Arg His Cys Thr Arg Arg 130 135 140

Arg Phe Ser Gly Gln Ile Gly Met Gly Val Pro Lys Lys Gln Leu Asp 145 150 155 160

Ala Ala Ile Ala Tyr Ile Arg Glu Thr Pro Glu Ile Arg Asp Cys Leu 165 170 175

Ile Ser Gly Gly Asp Gly Leu Leu Ile Asn Asp Gln Ile Leu Glu Tyr 180 185 190

Ile Leu Lys Glu Leu Arg Ser Ile Pro His Leu Glu Val Ile Arg Ile 195 200 205

Gly Thr Arg Ala Pro Val Val Phe Pro Gln Arg Ile Thr Asp His Leu 210 215 220

Cys Glu Ile Leu Lys Lys Tyr His Pro Val Trp Leu Asn Thr His Phe 225 230 235 240

Asn Thr Ser Ile Glu Met Thr Glu Glu Ser Val Glu Ala Cys Glu Lys 245 250 255

Leu Val Asn Ala Gly Val Pro Val Gly Asn Gln Ala Val Val Leu Ala 260 265 270 Gly Ile Asn Asp Ser Val Pro Ile Met Lys Lys Leu Met His Asp Leu

Val Lys Ile Arg Val Arg Pro Tyr Tyr Ile Tyr Gln Cys Asp Leu Ser

Glu Gly Ile Gly His Phe Arg Ala Pro Val Ser Lys Gly Leu Glu Ile

Ile Glu Gly Leu Arg Gly His Thr Ser Gly Tyr Ala Val Pro Thr Phe

Val Val His Ala Pro Gly Gly Gly Lys Ile Ala Leu Gln Pro Asn

Tyr Val Leu Ser Gln Ser Pro Asp Lys Val Ile Leu Arg Asn Phe Glu

Gly Val Ile Thr Ser Tyr Pro Glu Pro Glu Asn Tyr Ile Pro Asn Gln

Ala Asp Ala Tyr Phe Glu Ser Val Phe Pro Glu Thr Ala Asp Lys Lys

Glu Pro Ile Gly Leu Ser Ala Ile Phe Ala Asp Lys Glu Val Ser Phe

Thr Pro Glu Asn Val Asp Arg Ile Lys Arg Arg Glu Ala Tyr Ile Ala

Asn Pro Glu His Glu Thr Leu Lys Asp Arg Arg Glu Lys Arg Asp Gln

Leu Lys Glu Lys Lys Phe Leu Ala Gln Gln Lys Lys Gln Lys Glu Thr

Glu Cys Gly Gly Asp Ser Ser

<210> 23

<211> 1416 <212> DNA

<213> Bacillus subtilis

<22 <22 <22	1> (CDS (1).	. (14	13)												
	aaa			tgg Trp 5												48
				gtt Val												96
				gta Val												144
_			_	gaa Glu		_		_	_					_		192
ccc Pro 65	tta Leu	aat Asn	att Ile	aca Thr	cct Pro 70	tac Tyr	tat Tyr	gct Ala	tct Ser	tta Leu 75	atg Met	gac Asp	ccc Pro	gac Asp	aat Asn 80	240
_	_	_	_	gta Val 85	_	_	_			_			_	_	_	288
				tac Tyr												336
				ggt Gly												384
				caa Gln												432
cgc Arg 145	ttt Phe	tcc Ser	gga Gly	caa Gln	atc Ile 150	gga Gly	atg Met	ggc	gtc Val	ccc Pro 155	aaa Lys	aaa Lys	cag Gln	ctt Leu	gat Asp 160	480
				tat Tyr 165												528
att Ile	tca Ser	ggc Gly	ggt Gly 180	gat Asp	gly ggg	ctg Leu	ctc Leu	atc Ile 185	aac Asn	gac Asp	caa Gln	att Ile	tta Leu 190	gaa Glu	tat Tyr	576
				ctg Leu												624

					gtc Val 215										672
					tat Tyr										720
					aca Thr										768
_			 		ccg Pro	_			_	_	_	_		_	816
			 _	_	cca Pro		_		_		_		_	_	864
					cct Pro 295										912
					aga Arg										960
					cat His										1008
					gga Gly										1056
	_	_		_	cct Pro	_					_			_	1104
					ccg Pro 375										1152
					tcc Ser										1200
					gcc Ala										1248
aca Thr		~==	 ~	~~~		250	222	200		~~~	~~~	+	250		1296

aat ccg gag cat gaa aca tta aaa gat cgg cgt gag aaa aga gat cag 1344 Asn Pro Glu His Glu Thr Leu Lys Asp Arg Arg Glu Lys Arg Asp Gln. ctc aaa gaa aag aaa ttt ttg gcg cag cag aaa aaa cag aaa gag act 1392 Leu Lys Glu Lys Lys Phe Leu Ala Gln Gln Lys Lys Gln Lys Glu Thr gaa tgc gga ggg gat tct tca tga 1416 Glu Cys Gly Gly Asp Ser Ser <210> 24 <211> 471 <212> PRT <213> Bacillus subtilis <400> 24 Met Lys Asn Lys Trp Tyr Lys Pro Lys Arg His Trp Lys Glu Ile Glu 5 Leu Trp Lys Asp Val Pro Glu Glu Lys Trp Asn Asp Trp Leu Trp Gln 20 30 Leu Thr His Thr Val Arg Thr Leu Asp Asp Leu Lys Lys Val Ile Asn 35 45 40 Leu Thr Glu Asp Glu Glu Glu Gly Val Arg Ile Ser Thr Lys Thr Ile 50 60 Pro Leu Asn Ile Thr Pro Tyr Tyr Ala Ser Leu Met Asp Pro Asp Asn 65 70 75 80 Pro Arg Cys Pro Val Arg Met Gln Ser Val Pro Leu Ser Glu Glu Met 85 90 95 His Lys Thr Lys Tyr Asp Met Glu Asp Pro Leu His Glu Asp Glu Asp 100 105 110 Ser Pro Val Pro Gly Leu Thr His Arg Tyr Pro Asp Arg Val Leu Phe 115 120 125 Leu Val Thr Asn Gln Cys Ser Val Tyr Cys Arg Tyr Cys Thr Arg Arg 130 135 140

Arg Phe Ser Gly Gln Ile Gly Met Gly Val Pro Lys Lys Gln Leu Asp

Ala Ala Ile Ala Tyr Ile Arg Glu Thr Pro Glu Ile Arg Asp Cys Leu 165 170 175

Ile Ser Gly Gly Asp Gly Leu Leu Ile Asn Asp Gln Ile Leu Glu Tyr 180 185 190

Ile Leu Lys Glu Leu Arg Ser Ile Pro His Leu Glu Val Ile Arg Ile 195 200 205

Gly Thr Arg Ala Pro Val Val Phe Pro Gln Arg Ile Thr Asp His Leu 210 215 220

Cys Glu Ile Leu Lys Lys Tyr His Pro Val Trp Leu Asn Thr His Phe 225 230 235 240

Asn Thr Ser Ile Glu Met Thr Glu Glu Ser Val Glu Ala Cys Glu Lys 245 250 255

Leu Val Asn Ala Gly Val Pro Val Gly Asn Gln Ala Val Val Leu Ala 260 265 270

Gly Ile Asn Asp Ser Val Pro Ile Met Lys Lys Leu Met His Asp Leu 275 280 285

Val Lys Ile Arg Val Arg Pro Tyr Tyr Ile Tyr Gln Cys Asp Leu Ser 290 295 300

Glu Gly Ile Gly His Phe Arg Ala Pro Val Ser Lys Gly Leu Glu Ile 305 310 315 320

Ile Glu Gly Leu Arg Gly His Thr Ser Gly Tyr Ala Val Pro Thr Phe 325 . 330 335

Val Val His Ala Pro Gly Gly Gly Gly Lys Ile Ala Leu Gln Pro Asn 340 345 350

Tyr Val Leu Ser Gln Ser Pro Asp Lys Val Ile Leu Arg Asn Phe Glu 355 360 365

Gly Val Ile Thr Ser Tyr Pro Glu Pro Glu Asn Tyr Ile Pro Asn Gln 370 375 380

385	Phe Glu 390	Ser Val	Phe Pro	Glu Thr 395	Ala Asp	Lys	Lys 400
Glu Pro Ile Gly	Leu Ser 405	Ala Ile	Phe Ala 410	Asp Lys	Glu Val	Ser 415	Phe
Thr Pro Glu Ass 420		Arg Ile	Lys Arg 425	Arg Glu	Ala Tyr 430	Ile	Ala
Asn Pro Glu His 435	Glu Thr	Leu Lys 440	Asp Arg	Arg Glu	Lys Arg 445	Asp	Gln
Leu Lys Glu Lys 450	Lys Phe	Leu Ala 455	Gln Gln	Lys Lys 460	Gln Lys	Glu	Thr
Glu Cys Gly Gly 465	Asp Ser 470	Ser					
<210> 25 <211> 1251 <212> DNA							
<212> DNA <213> Porphyro	monas gir	ngivalis	•				
		ngivalis	•				
<213> Porphyro <220> <221> CDS	48) cgt aga	aag tat					
<220> <221> CDS <222> (1)(12 <400> 25 atg gca gaa agt Met Ala Glu Ser	cgt aga Arg Arg 5 tgg cat	aag tat Lys Tyr tgg cag	Tyr Phe 10 gtc ctc	Pro Asp	Val Thr	Asp 15 acg	Glu ctc 96
<220> <221> CDS <222> (1)(12 <400> 25 atg gca gaa agt Met Ala Glu Ser 1 caa tgg tac gac Gln Trp Tyr Asp	cgt aga Arg Arg 5 tgg cat Trp His	aag tat Lys Tyr tgg cag Trp Gln gtt aca	Tyr Phe 10 gtc ctc Val Leu 25 ctc acc	Pro Asp aat cga Asn Arg gct gaa	Val Thr att gag Ile Glu 30 gaa gaa	Asp 15 acg Thr	Glu ctc 96 Leu gga 144
<220> <221> CDS <222> (1)(12 <400> 25 atg gca gaa agt Met Ala Glu Ser 1 caa tgg tac gac Gln Trp Tyr Asp 20 gac cag ctg aaa Asp Gln Leu Lys	cgt aga Arg Arg tgg cat Trp His aag tac Lys Tyr	aag tat Lys Tyr tgg cag Trp Gln gtt aca Val Thr 40 gta ctc	Tyr Phe 10 gtc ctc Val Leu 25 ctc acc Leu Thr	Pro Asp aat cga Asn Arg gct gaa Ala Glu gct atc	Val Thr att gag Ile Glu 30 gaa gaa Glu Glu 45 aca cct	Asp 15 acg Thr gag Glu	Glu ctc 96 Leu gga 144 Gly tat 192

								gta Val								288
								tcg Ser 105								336
								ctt Leu								384
								cgc Arg								432
				_	_		_	cga Arg	_		_			_		480
								cta Leu								528
_	_	_	_	_	_	_		ata Ile 185	_	_	_	_	_	_		576
					_	_		gga Gly	_	_	_	_	_	_		624
								gtg Val								672
_			_					aac Asn		_		_	_		_	720
								atg Met								768
								gga Gly 265								816
								gta Val								864
								ctt Leu								912
ccg	gta	tct	aaa	gga	atc	gaa	att	atc	gaa	aat	ttg	cgc	gga	cac	acc	960

Pro Val Ser Lys Gly Ile Glu Ile Ile Glu Asn Leu Arg Gly His Thr 305 310 315 320	
tcg ggc tat gca gtt cct acc ttt gtg gta ggt gct ccg ggg ggt ggt Ser Gly Tyr Ala Val Pro Thr Phe Val Val Gly Ala Pro Gly Gly 325 330 335	1008
ggt aag ata cct gta acg ccg aac tat gtt gta tct cag tcc cca cga Gly Lys Ile Pro Val Thr Pro Asn Tyr Val Val Ser Gln Ser Pro Arg 340 345 350	1056
cat gtg gtt ctt cgc aat tat gaa ggt gtt atc aca acc tat acg gag His Val Val Leu Arg Asn Tyr Glu Gly Val Ile Thr Thr Tyr Thr Glu 355 360 365	1104
ccg gag aat tat cat gag gag tgc gat tgt gag gac tgt cga gcc ggt Pro Glu Asn Tyr His Glu Glu Cys Asp Cys Glu Asp Cys Arg Ala Gly 370 375 380	1152
aag cat aaa gag ggt gta gct gca ctt tcc gga ggt cag cag ttg gct Lys His Lys Glu Gly Val Ala Ala Leu Ser Gly Gly Gln Gln Leu Ala 385 390 395 400	1200
atc gag cct tcc gac tta gct cgc aaa aaa cgc aag ttt gat aag aac Ile Glu Pro Ser Asp Leu Ala Arg Lys Lys Arg Lys Phe Asp Lys Asn 405 410 415	1248
tga	1251
<210> 26 <211> 416 <212> PRT <213> Porphyromonas gingivalis	
<400> 26	
<pre><400> 26 Met Ala Glu Ser Arg Arg Lys Tyr Tyr Phe Pro Asp Val Thr Asp Glu 1</pre>	
Met Ala Glu Ser Arg Arg Lys Tyr Tyr Phe Pro Asp Val Thr Asp Glu	
Met Ala Glu Ser Arg Arg Lys Tyr Tyr Phe Pro Asp Val Thr Asp Glu 1 5 10 15 Gln Trp Tyr Asp Trp His Trp Gln Val Leu Asn Arg Ile Glu Thr Leu	
Met Ala Glu Ser Arg Arg Lys Tyr Tyr Phe Pro Asp Val Thr Asp Glu 15 Gln Trp Tyr Asp Trp His Trp Gln Val Leu Asn Arg Ile Glu Thr Leu 25 Asp Gln Leu Lys Lys Tyr Val Thr Leu Thr Ala Glu Glu Glu Glu Gly	

- Ala Ile Pro Thr Gln Gln Glu Leu Val Arg Ala Pro Glu Asp Gln Val 85 90 95
- Asp Pro Leu Ser Glu Asp Glu Asp Ser Pro Val Pro Gly Leu Thr His
 100 105 110
- Arg Tyr Pro Asp Arg Val Leu Phe Leu Ile Thr Asp Lys Cys Ser Met 115 120 125
- Tyr Cys Arg His Cys Thr Arg Arg Phe Ala Gly Gln Lys Asp Ala 130 135 140
- Ser Ser Pro Ser Glu Arg Ile Asp Arg Cys Ile Asp Tyr Ile Ala Asn 145 150 155 160
- Thr Pro Thr Val Arg Asp Val Leu Leu Ser Gly Gly Asp Ala Leu Leu 165 170 175
- Val Ser Asp Glu Arg Leu Glu Tyr Ile Leu Lys Arg Leu Arg Glu Ile 180 185 190
- Pro His Val Glu Ile Val Arg Ile Gly Ser Arg Thr Pro Val Val Leu 195 200 205
- Pro Gln Arg Ile Thr Pro Gln Leu Val Asp Met Leu Lys Lys Tyr His 210 215 220
- Pro Val Trp Leu Asn Thr His Phe Asn His Pro Asn Glu Val Thr Glu 225 230 235 240
- Glu Ala Val Glu Ala Cys Glu Arg Met Ala Asn Ala Gly Ile Pro Leu 245 250 255
- Gly Asn Gln Thr Val Leu Leu Arg Gly Ile Asn Asp Cys Thr His Val 260 265 270
- Met Lys Arg Leu Val His Leu Leu Val Lys Met Arg Val Arg Pro Tyr 275 280 285
- Tyr Ile Tyr Val Cys Asp Leu Ser Leu Gly Ile Gly His Phe Arg Thr 290 295 300
- Pro Val Ser Lys Gly Ile Glu Ile Ile Glu Asn Leu Arg Gly His Thr

305	310	315	320

Ser Gly Tyr Ala Val Pro Thr Phe Val Val Gly Ala Pro Gly Gly Gly 325 330 335

Gly Lys Ile Pro Val Thr Pro Asn Tyr Val Val Ser Gln Ser Pro Arg 340 345 350

His Val Val Leu Arg Asn Tyr Glu Gly Val Ile Thr Thr Tyr Thr Glu 355 360 365

Pro Glu Asn Tyr His Glu Glu Cys Asp Cys Glu Asp Cys Arg Ala Gly 370 375 380

Lys His Lys Glu Gly Val Ala Ala Leu Ser Gly Gly Gln Gln Leu Ala 385 390 395 400

Ile Glu Pro Ser Asp Leu Ala Arg Lys Lys Arg Lys Phe Asp Lys Asn 405 410 415

<210> 27

<211> 897

<212> DNA

<213> Pseudomonas aeruginosa

<220>

<221> CDS

<222> (1)..(894)

<400> 27

atg acc gac atc gca ttc ctc ggc ctg ggc aac atg ggt ggg ccg atg

Met Thr Asp Ile Ala Phe Leu Gly Leu Gly Asn Met Gly Gly Pro Met

1 10 15

gcc gcc aac ctg ctc aag gcc ggc cac cgg gtg aat gtc ttc gac ttg 96
Ala Ala Asn Leu Leu Lys Ala Gly His Arg Val Asn Val Phe Asp Leu
20 25 30

cag ccc aag gcc gtg ctg ggc ctg gtc gag cag ggc gcg cag ggc gcc 144
Gln Pro Lys Ala Val Leu Gly Leu Val Glu Gln Gly Ala Gln Gly Ala

gat agc gcc ttg cag tgc tgc gaa ggc gcc gaa gtg gtg atc agc atg 192
Asp Ser Ala Leu Gln Cys Cys Glu Gly Ala Glu Val Val Ile Ser Met
50 60

ctg ccg gcc ggg cag cac gtg gaa agc ctg tat ctc ggc gac gac ggc 240 Leu Pro Ala Gly Gln His Val Glu Ser Leu Tyr Leu Gly Asp Asp Gly 65 70 75 80

						ggc Gly										288
						cgc Arg										336
						gcg Ala										384
						ttc Phe 135										432
gcg Ala 145	cgg Arg	gcc Ala	cgg Arg	ccg Pro	gtc Val 150	ctc Leu	gag Glu	aac Asn	atg Met	ggc Gly 155	cgg Arg	aac Asn	atc Ile	ttc Phe	cac His 160	480
						ggc										528
						gcc Ala										576
						ccg Pro										624
Ser	Ser 210	Gly	Gly	Asn	Trp	gcg Ala 215	Leu	Asn	Leu	Tyr	Asn 220	Pro	Trp	Pro	Gly	672
						gcg Ala										720
Val	Arg	Leu	Met	Asn 245	Lys	gac Asp	Leu	Gly	Leu 250	Ala	Leu	Ala	Asn	Ala 255	Gln	768
Ala	Val	Gln	Ala 260	Ser	Thr	ccg Pro	Leu	Gly 265	Ala	Leu	Ala	Arg	Asn 270	Leu	Phe	816
Ser	Leu	His 275	Ala	Gln	Ala	gat Asp	Ala 280	Glu	His	Glu						864
agc Ser	atc Ile 290	cag Gln	aag Lys	ctc Leu	tac Tyr	cgc Arg 295	ggc Gly	aag Lys	gac Asp	taa						897

<210> 28

<211> 298

<212> PRT

<213> Pseudomonas aeruginosa

<400> 28

Met Thr Asp Ile Ala Phe Leu Gly Leu Gly Asn Met Gly Gly Pro Met 1 5 10 15

Ala Ala Asn Leu Leu Lys Ala Gly His Arg Val Asn Val Phe Asp Leu 20 25 30

Gln Pro Lys Ala Val Leu Gly Leu Val Glu Gln Gly Ala Gln Gly Ala
35 40 45

Asp Ser Ala Leu Gln Cys Cys Glu Gly Ala Glu Val Val Ile Ser Met 50 55 60

Leu Pro Ala Gly Gln His Val Glu Ser Leu Tyr Leu Gly Asp Asp Gly 65 70 75 80

Leu Leu Ala Arg Val Ala Gly Lys Pro Leu Leu Ile Asp Cys Ser Thr 85 90 95

Ile Ala Pro Glu Thr Ala Arg Lys Val Ala Glu Ala Ala Ala Lys
100 105 110

Gly Leu Thr Leu Leu Asp Ala Pro Val Ser Gly Gly Val Gly Gly Ala 115 120 125

Arg Ala Gly Thr Leu Ser Phe Ile Val Gly Gly Pro Ala Glu Gly Phe 130 135 140

Ala Arg Ala Arg Pro Val Leu Glu Asn Met Gly Arg Asn Ile Phe His 145 150 155 160

Ala Gly Asp His Gly Ala Gly Gln Val Ala Lys Ile Cys Asn Asn Met 165 170 175

Leu Leu Gly Ile Leu Met Ala Gly Thr Ala Glu Ala Leu Ala Leu Gly 180 185 190

Val Lys Asn Gly Leu Asp Pro Ala Val Leu Ser Glu Val Met Lys Gln

195 200 205

Ser Ser Gly Gly Asn Trp Ala Leu Asn Leu Tyr Asn Pro Trp Pro Gly 210 215 220

Val Met Pro Gln Ala Pro Ala Ser Asn Gly Tyr Ala Gly Gly Phe Gln 225 230 235 240

Val Arg Leu Met Asn Lys Asp Leu Gly Leu Ala Leu Ala Asn Ala Gln 245 250 255

Ala Val Gln Ala Ser Thr Pro Leu Gly Ala Leu Ala Arg Asn Leu Phe 260 265 270

Ser Leu His Ala Gln Ala Asp Ala Glu His Glu Gly Leu Asp Phe Ser 275 280 285

Ser Ile Gln Lys Leu Tyr Arg Gly Lys Asp 290 295

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US04/040827

International filing date: 06 December 2004 (06.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US

Number: 60/527,357

Filing date: 04 December 2003 (04.12.2003)

Date of receipt at the International Bureau: 02 September 2005 (02.09.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
\square image cut off at top, bottom or sides
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.