

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ

ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ

Отчет по лабораторной работе № 5 «Линейные модели, SVM и деревья решений» по курсу "Технологии машинного обучения"

Исполнитель: Студент группы ИУ5-63 Желанкина А.С. 17.04.2019

Задание лабораторной работы

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите:
 - 1) одну из линейных моделей,
 - 2) SVM,
 - 3) дерево решений.
 - Оцените качество моделей с помощью трех подходящих для задачи метрик. Сравните качество полученных моделей.
- 5. Произведите для каждой модели подбор одного гиперпараметра с использованием GridSearchCV и кросс-валидации.
- 6. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

Экранные формы с текстом программы и примерами её выполнения

		age	508	ср	treathpe	ch	ol .	fbs	restecg	thalach	exang	oldpen
	count	303.000000	303,000000	303.000000	303.000000	303.00000	0 303	.0000000	303,000000	303,000000	303.000000	303.00000
	mean	54.366337	0.683168	0.966997	131.623762	246.26402	6 0	148515	0.528053	149.646865	0.326733	1.03960
	atd	9.082101	0.466011	1,032052	17,538143	51.83075	1 0	356198	0.525860	22.905161	0.469794	1,16107
	min	29.000000	0.000000	0.000000	94,000000	126.00000	0 0	000000	0.000000	71.000000	0.000000	0.00000
	25%	47.500000	0:000000	0.000000	120.000000	211.00000	0 0	.0000000	0.000000	133.500000	0.000000	0.00000
	50%	55.000000	1.000000	1.000000	130,000000	240.00000	0 0	000000	1,000000	153.000000	0.000000	0.80000
	75%	61.000000	1.000000	2,000000	140,000000	274.50000	0 0	000000	1.000000	166.000000	1,000000	1.60000
	max	77.000000	1.000000	3.000000	200.000000	564.00000	0 1	.0000000	2.000000	202.000000	1.000000	6.20000
	4.00	1.7.10.00.00.00.00.00	1 10000000	354.000.000	42000000			***********	1100000			
In [66]:	data.co	nee()										
Out[66]:		0.143										
our coul.		age	sex	ср	treatbps	chol	fibs	reste	cg thelec	exang	oldpeak	slope
	age	1.000000	-0.098447	-0.068653	0.279351 0	213678 0	121308	-0.1162	211 -0.39852	2 0.096801	0.210013	-0.168814
	9407	+0.098447	1.000000	-0.049353	0.056769 -0	197912 0	045032	-0.0581	96 -0.04402	0.141664	0.096093	-0.030711
	ep	-0.068653	-0.049353	1.000000	0.047608 -0	.076904 0	094444	0.0444	21 0,29576	-0.394280	-0.149230	0.119717
	trestipe	0.279351	-0.056769	0.047608	1,000000 0	123174 0	177531	-0.1141	03 -0.04669	8 0.067616	0.193216	-0.121475
	cho	0.213678	-0.197912	-0.076904	0.123174 1	.000000 0	013294	-0.1510	40 -0:00994	0.067023	0.053952	-0.004038
	fbe						000000				0.005747	0.059894
	restace		-0.058196				084189				-0.058770	0.093045
	thalact						008567		100011			0.386784
	examp		0.141664				025666				0.288223	-0.257748
	oldpeal						005747				1,000000	-0.577537
	slope						059894					1.000000
							137979				0.222682	-0.080155
	C)											-0.104764
	the		0.210041				032019				0.210244	
		t -0.225439 е датасета	-0.280937 на обучаюц			:085239 -0 ки	028040	0.1372	130 0.42174	1 -0.436757	-0.430898	0.345877
In [67]:	dat	ta, data[ˈ	y_train, target'], t линейной	test_size	e=0.2, ran	dom_state	=1)					
	TO STATE OF THE ST					#180:						
In [68]:	sgd = SGDClassifier().fit(X_train, y_train)											
	C:\Anaconda\lib\site-packages\sklearn\linear_model\stochastic_gradient.py:166: FutureWarning: max_ite r and tol parameters have been added in SGDClassifier in 0.19. If both are left unset, they default to max_iter=5 and tol=None. If tol is not None, max_iter defaults to max_iter=1000. From 0.21, default max_iter will be 1000, and default tol will be 1e-3. FutureWarning)											
In [69]:	<pre>svm_svc = SVC(gamma='auto').fit(X_train, y_train)</pre>											
In [70]:	decision_tree = DecisionTreeClassifier(random_state=1, max_depth=0.75).fit(X_train, y_train)											
	Предсказание											
In [71]:	target	sgd = sgd	.predict(X_test)								
In [72]:	target_svm_svc = svm_svc.predict(X_test)											
In [73]:												
	Оценка качества стохастического градиентного спуска											
In [74]:	precis:	ion_score(_test, ta y_test, t test, targ	arget_sgd								
	CARRES.		earl ear P	1979								

Оценка качества SVM

```
In [75]: accuracy_score(y_test, target_svm_svc), \
              precision_score(y_test, target_sve_svc),
             recall_score(y_test, target_svm_svc)
Out[75]: (0.5881967213114754, 0.5881967213114754, 1.0)
             Оценка качества дерева принятия решений
In [76]: accuracy_score(y_test, target_decision_tree), \
             precision_score(y_test, target_decision_tree),
recall_score(y_test, target_decision_tree)
Out[76]: (0.5081967213114754, 0.5081967213114754, 1.0)
             Подбор одного гиперпараметра с использованием GridSearchCV и кросс-валидации для каждой модели
In [77]: scores_sgd = cross_val_score(SGDClassifier(),
                                                 X_train, y_train, cv=2)
              scores sgd
Out[77]: array([0.60330579, 0.55371901])
In [78]: scores_svm_svc = cross_val_score(SVC(gamma='auto'),
                                                 X_train, y_train, cv=2)
             scores sym syc
Out[78]: array([0.55371901, 0.55371901])
In [79]: scores_decision_tree = cross_val_score(DecisionTreeClassifier(),
                                                 X_train, y_train, cv=2)
              scores decision tree
Out[79]: array([1., 1.])
In [95]: parameters = {'alpha':{0.5,0.4,0.3,0.2,0.1}}
clf_gs_sgd = GridSearchCV(SGOClassifier(), parameters, cv=2, scoring*'accuracy')
             clf_gs_sgd.fit(X_train, y_train)
Out[95]: GridSearchCV(cv=2, error_score='raise-deprecating',
                       estimator=SGDClassifier(alpha=0.0001, average=False, class_weight=None,
                       estimator=SGKLassitzer(alpha=0.000), average=False, class_weight=Wo
early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True,
l1_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=Wone,
n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='12',
power_t=0.5, random_state=None, shuffle=True, tol=None,
validation_fraction=0.1, verbose=0, warm_start=False),
                       fit_parans=None, iid='warn', n_jobs=None,
param_grid=('alpha': [0.5, 0.4, 0.3, 0.2, 0.1]),
pre_dispatch='2°n_jobs', refit=True, return_train_score='warn',
                       scoring='accuracy', verbose=0)
In [96]: clf_gs_sgd.best_parans_
Out[96]: ('alpha': 0.5)
In [82]: parameters = ('gamma':{0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1})
clf_gs_svm_svc = GridSearchCV(SVC(), parameters, cv=2, scoring='accuracy')
              clf_gs_svm_svc.fit(X_train, y_train)
Out[82]: GridSearchCV(cv=2, error_score='raise-deprecating',
estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto_deprecated',
                kernel='rbf', max_iter=-1, probability=False, random_state=None,
                shrinking=True, tol+0.001, verbose=False),
fit_params=Nome, iid='warm', n_jobs=Nome,
                       paran_grid+('gamma': [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]),
pre_dispatch+'2*n_jobs', refit=True, return_train_score='warn',
scoring='accuracy', verbose=0)
In [83]: clf_gs_svm_svc.best_params_
Out[83]: ('gamma': 0.9)
In [84]: parameters = ('min_impurity_decrease':[0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1])
             clf_gs_decision_tree = GridSearchCV(DecisionTreeClassifier(), parameters, cv=2, scoring='accuracy')
clf_gs_decision_tree.fit(X_train, y_train)
```

```
Out[84]: GridSearchCV(cv*2, error_score*'raise-deprecating',
estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
                            max_features=None, max_leaf_nodes=None,
                            min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                     splitter='best'),
fit_parans=None, iid='warn', n_jobs=None,
param_grid=('min_inpurity_decrease': [8.9, 8.8, 8.7, 8.6, 8.5, 8.4, 8.3, 8.2, 8.1]),
pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                     scoring='accuracy', verbose=0)
In [85]: clf_gs_decision_tree.best_parans_
Out[85]: {'min_impurity_decrease': 0.4}
            Обучение моделей: линейной, SVM и дерево решений с использованием оптимальных значений гиперпараметров
In [97]: sgd_new = SGOClassifier(alpha=0.5).fit(X_train, y_train)
In [87]: svm_svc_new = SVC(gamma=0.9).fit(X_train, y_train)
In [88]: decision_tree_new = DecisionTreeClassifier(random_state=1, min_impurity_decrease=0.4, max_depth=0.75).
            Предсказание
In [98]: target_sgd_new = sgd_new.predict(X_test)
In [98]: target_svm_svc_new = svm_svc_new.predict(X_test)
In [91]: target_decision_tree_new = decision_tree_new.predict(X_test)
            Оценка качества
In [99]: accuracy_score(y_test, target_sgd_new), \
    precision_score(y_test, target_sgd_new),
    recall_score(y_test, target_sgd_new)
Out[99]: (0.5409836865573771, 0.5294117647058824, 0.8709677419354839)
In [93]: accuracy_score(y_test, target_svm_svc_new), \
            precision_score(y_test, target_svm_svc_new), \
recall_score(y_test, target_svm_svc_new)
Out[93]: (0.5081967213114754, 0.5081967213114754, 1.0)
In [94]: accuracy_score(y_test, target_decision_tree_new), \
            precision_score(y_test, target_decision_tree_new),
recall_score(y_test, target_decision_tree_new)
Out[94]: (0.5081967213114754, 0.5081967213114754, 1.0)
```