- * Individual chance experiments, independent trials:
 - * Trials: $\mathfrak{A}_1 = \{a_{1k}, k \ge 1\}, ..., \mathfrak{A}_n = \{a_{nk}, k \ge 1\}.$
 - * Atomic mass functions: $\{a_{1k}\} \mapsto p_1(k), ..., \{a_{nk}\} \mapsto p_n(k)$.

- * Individual chance experiments, independent trials:
 - * Trials: $\mathfrak{A}_1 = \{a_{1k}, k \ge 1\}, ..., \mathfrak{A}_n = \{a_{nk}, k \ge 1\}.$
 - * Atomic mass functions: $\{a_{1k}\} \mapsto p_1(k), ..., \{a_{nk}\} \mapsto p_n(k)$.
- * Compound chance experiment, product space and measure:
 - * Sample space: $\Omega = \mathfrak{A}_1 \times \cdots \times \mathfrak{A}_n = \{(\alpha_{1k_1}, ..., \alpha_{nk_n}): k_1 \ge 1, ..., k_n \ge 1\}.$
 - * Atomic measure: $P\{(a_{1k_1}, ..., a_{nk_n})\} := p_1(k_1) \times ... \times p_n(k_n)$.

- * Individual chance experiments, independent trials:
 - * Trials: $\mathfrak{A}_1 = \{a_{1k}, k \ge 1\}, ..., \mathfrak{A}_n = \{a_{nk}, k \ge 1\}.$
 - * Atomic mass functions: $\{a_{1k}\} \rightarrow p_1(k), ..., \{a_{nk}\} \rightarrow p_n(k)$.
- * Compound chance experiment, product space and measure:
 - * Sample space: $\Omega = \mathfrak{A}_1 \times \cdots \times \mathfrak{A}_n = \{(\alpha_{1k_1}, ..., \alpha_{nk_n}): k_1 \ge 1, ..., k_n \ge 1\}.$
 - * Atomic measure: $P\{(a_{1k_1}, ..., a_{nk_n})\} := p_1(k_1) \times ... \times p_n(k_n)$.
- * Suppose that $\mathbb{K}_1, ..., \mathbb{K}_n$ are any subsets of indices and, for each j = 1, ..., n, the event $A_j := \{(\alpha_{1k_1}, ..., \alpha_{nk_n}): k_j \in \mathbb{K}_j, k_i \ge 1 \text{ for } i \ne j\}$ is completely determined by the subset $\mathfrak{S}_j = \{\alpha_{jk}: k \in \mathbb{K}_j\}$ of \mathfrak{A}_j .

- * Individual chance experiments, independent trials:
 - * Trials: $\mathfrak{A}_1 = \{a_{1k}, k \ge 1\}, ..., \mathfrak{A}_n = \{a_{nk}, k \ge 1\}.$
 - * Atomic mass functions: $\{a_{1k}\} \mapsto p_1(k), ..., \{a_{nk}\} \mapsto p_n(k)$.
- * Compound chance experiment, product space and measure:
 - * Sample space: $\Omega = \mathfrak{A}_1 \times \cdots \times \mathfrak{A}_n = \{(\alpha_{1k_1}, ..., \alpha_{nk_n}): k_1 \ge 1, ..., k_n \ge 1\}.$
 - * Atomic measure: $P\{(a_{1k_1}, ..., a_{nk_n})\} := p_1(k_1) \times ... \times p_n(k_n)$.
- * Suppose that \mathbb{K}_1 , ..., \mathbb{K}_n are any subsets of indices and, for each j = 1, ..., n, the event $A_j := \{(\alpha_{1k_1}, ..., \alpha_{nk_n}): k_j \in \mathbb{K}_j, k_i \ge 1 \text{ for } i \ne j\}$ is completely determined by the subset $\mathfrak{S}_j = \{\alpha_{jk}: k \in \mathbb{K}_j\}$ of \mathfrak{A}_j .
- * Then: the events $A_1, ..., A_n$ are independent.

- * Individual chance experiments, independent trials:
 - * Trials: $\mathfrak{A}_1 = \{a_{1k}, k \ge 1\}, ..., \mathfrak{A}_n = \{a_{nk}, k \ge 1\}.$
 - * Atomic mass functions: $\{a_{1k}\} \mapsto p_1(k), ..., \{a_{nk}\} \mapsto p_n(k)$.
- * Compound chance experiment, product space and measure:
 - * Sample space: $\Omega = \mathfrak{A}_1 \times \cdots \times \mathfrak{A}_n = \{(\alpha_{1k_1}, ..., \alpha_{nk_n}): k_1 \ge 1, ..., k_n \ge 1\}.$
 - * Atomic measure: $P\{(a_{1k_1}, ..., a_{nk_n})\} := p_1(k_1) \times ... \times p_n(k_n)$.
- * Suppose that $\mathbb{K}_1, ..., \mathbb{K}_n$ are any subsets of indices and, for each j = 1, ..., n, the event $A_j := \{(\alpha_{1k_1}, ..., \alpha_{nk_n}): k_j \in \mathbb{K}_j, k_i \ge 1 \text{ for } i \ne j\}$ is completely determined by the subset $\mathfrak{S}_j = \{\alpha_{jk}: k \in \mathbb{K}_j\}$ of \mathfrak{A}_j .
- * Then: the events $A_1, ..., A_n$ are independent.

- * Repeated independent trials:
 - * Common alphabet: $\mathfrak{A}_1 = \cdots = \mathfrak{A}_n = \mathfrak{A} := \{a_k, k \ge 1\}.$
 - * Common atomic mass function: $\{a_k\} \mapsto p(k)$.
- * Product space and measure:
 - * $\Omega = \mathfrak{A}^n = \{(\alpha_{k_1}, ..., \alpha_{k_n}): k_1 \ge 1, ..., k_n \ge 1\}.$
 - * $P\{(a_{k_1}, ..., a_{k_n})\} := p(k_1) \times ... \times p(k_n).$

Slogan

In the case of a finite or even countably infinite number of repeated independent trials, events in the compound experiment (product space) that are determined by distinct trials are independent.