1

Résumé 18 - Calcul différentiel

Applications de classe \mathscr{C}^1

Soit $f: \mathcal{U} \subset E \to F$ où E et F désignent deux e.v.n. sur \mathbb{R} de dimensions respectives p et n et \mathcal{U} un ouvert de E.

→ Différentielle

Définition : Différentielle en un point

L'application f est dite différentiable en $a \in \mathcal{U}$ s'il existe $\varphi \in \mathcal{L}(E,F)$ tel que :

$$f(a+h) = f(a) + \varphi(h) + o(h)$$

L'application est alors unique, on l'appelle différentielle de f au point a. On la note df_a ou df(a).

Notation: $o(h) = ||h|| \varepsilon(h)$ où $\varepsilon : E \to F$ et $\varepsilon(h) \xrightarrow[h \to 0_E]{} 0_F$.

$$f(a+h) = f(a) + df_a(h) + o(h)$$

Proposition -

Si f est différentiable en a, f est continue en a.

• Si f et g sont différentiables en a, $\lambda g + \mu g$ aussi et :

$$d(\lambda f + \mu g)_a = \lambda df_a + \mu dg_a$$

• Si f est différentiable en a et g en f(a), alors $g \circ f$ est différentiable en a et :

$$d(g \circ f)_a = dg_{f(a)} \circ df_a$$

Définition : Différentielle, application de classe \mathscr{C}^1

• f est dite différentiable sur $\mathscr U$ si f est différentiable en tout point de $\mathscr U$. On appelle alors différentielle de f l'application :

$$df: \left| \mathcal{U} \subset E \longrightarrow \mathcal{L}(E,F) \right| a \longmapsto df(a) = df_a$$

L'application f: W ⊂ E → F est dite de classe C¹ sur W si f est différentiable sur W et si sa différentielle df est continue sur W.

Si f est de classe \mathscr{C}^1 sur \mathscr{U} , on dira aussi que f est continûment différentiable sur \mathscr{U} .

→ Dérivée selon un vecteur et dérivées partielles

- Définition : Dérivée selon un vecteur -

Soit $u \in E$. L'application f est dite dérivable en a selon le vecteur u si la fonction $t \mapsto f(a+tu)$ est dérivable en 0. On pose dans ce cas :

$$D_u(f)(a) = \lim_{t \to 0} \frac{f(a+tu) - f(a)}{t}$$

Quand une fonction est différentiable, elle est dérivable dans toutes les directions.

Proposition

Si f est différentiable en a alors f est dérivable en a selon u pour tout vecteur $u \in E$ et $D_u(f)(a) = \mathrm{d} f_a(u)$.

On munit désormais E d'une b.o.n. (e_1, \ldots, e_n) .

- Définition : Dérivées partielles -

Pour $j \in [1, p]$, on appelle dérivée partielle en a d'indice j la dérivée de f en a suivant e_j , c'est-à-dire :

$$\frac{\partial f}{\partial x_j}(a) = \lim_{t \to 0} \frac{f(a + te_j) - f(a)}{t}$$

Si f est différentiable en a, alors les dérivées partielles existent et :

$$\forall j \in [1, p], \quad \frac{\partial f}{\partial x_j}(a) = \mathrm{d}f_a(e_j)$$

$$\mathrm{d}f_a(h) = \mathrm{d}f_a\left(\sum_{i=1}^p h_j e_i\right) = \sum_{i=1}^p h_i \mathrm{d}f_a(e_i) = \sum_{i=1}^p h_i \frac{\partial f}{\partial x_i}(a).$$

En notant dx_i les applications $h \mapsto h_i$,

$$df_a = \frac{\partial f}{\partial x_1}(a)dx_1 + \dots + \frac{\partial f}{\partial x_p}(a)dx_p = \sum_{i=1}^p \frac{\partial f}{\partial x_i}(a)dx_j$$

Théorème: Caractérisation

Soit $f: \mathcal{U} \subset E \to F$. f est de classe \mathscr{C}^1 sur \mathscr{U} si et seulement si les dérivées partielles de f existent et sont continues en tout point de \mathscr{U} .

Si f est de classe \mathscr{C}^1 sur \mathscr{U} et $a \in \mathscr{U}$, alors :

$$f(a+h) \underset{h\to 0}{=} f(a) + \sum_{j=1}^{p} h_j \frac{\partial f}{\partial x_j}(a) + o(h)$$

Pour calculer la différentielle en un point, on peut revenir à la définition ou bien calculer les dérivées partielles.

→ Jacobienne

On munit désormais F d'une b.o.n. (e'_1,\ldots,e'_n) . On appelle jacobienne de f au point $x=(x_1,\ldots,x_p)$ la matrice représentative de $\mathrm{d} f_x$ dans les bases $(e_j)_{1\leqslant j\leqslant p}$ et $(e'_i)_{1\leqslant i\leqslant n}$:

$$J_{f}(x) = \left(\frac{\partial f_{i}}{\partial x_{j}}(x)\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}}(x) & \dots & \frac{\partial f_{1}}{\partial x_{p}}(x) \\ \vdots & & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}}(x) & \dots & \frac{\partial f_{n}}{\partial x_{p}}(x) \end{bmatrix}$$

Si f est de classe \mathscr{C}^1 sur \mathscr{U} , pour tout $x \in \mathscr{U}$,

$$J_{g \circ f}(x) = J_g(f(x)) \times J_f(x)$$
 car $d(g \circ f)_x = dg_{f(x)} \circ df_x$

▶ Soient \mathscr{U} un ouvert de \mathbb{R}^2 et I un intervalle de \mathbb{R} . On considère les deux applications de classe \mathscr{C}^1 :

$$\varphi: \left| \begin{matrix} I \longrightarrow \mathscr{U} \\ t \longmapsto (x(t), y(t)) \end{matrix} \right| \text{ et } f: \left| \begin{matrix} \mathscr{U} \longrightarrow \mathbb{R} \\ (x, y) \longmapsto f(x, y) \end{matrix} \right|$$

L'application $t \mapsto f(x(t), y(t))$ est de classe \mathscr{C}^1 sur I et pour tout $t \in I$,

$$(f \circ \varphi)'(t) = x'(t) \frac{\partial f}{\partial x}(x(t), y(t)) + y'(t) \frac{\partial f}{\partial y}(x(t), y(t))$$

 $\qquad \qquad \text{On considère les applications } f: \mathbb{R}^2 \to \mathbb{R}, \, \varphi: \mathbb{R}^2 \to \mathbb{R} \text{ et } \\ \psi: \mathbb{R}^2 \to \mathbb{R} \text{ de classe } \mathscr{C}^1 \text{ sur } \mathbb{R}^2 \text{ et : } \\ \end{aligned}$

$$F: \left| \mathbb{R}^2 \longrightarrow \mathbb{R} \right| (x, y) \longmapsto f(\varphi(x, y), \psi(x, y))$$

Alors F est de classe \mathscr{C}^1 sur \mathbb{R}^2 et pour tout $(x, y) \in \mathbb{R}^2$,

$$\begin{split} \frac{\partial F}{\partial x}(x,y) &= \frac{\partial \varphi}{\partial x}(x,y) \cdot \frac{\partial f}{\partial x}(\varphi(x,y),\psi(x,y)) \\ &\quad + \frac{\partial \psi}{\partial x}(x,y) \cdot \frac{\partial f}{\partial y}(\varphi(x,y),\psi(x,y)) \\ \frac{\partial F}{\partial y}(x,y) &= \frac{\partial \varphi}{\partial y}(x,y) \cdot \frac{\partial f}{\partial x}(\varphi(x,y),\psi(x,y)) \\ &\quad + \frac{\partial \psi}{\partial y}(x,y) \cdot \frac{\partial f}{\partial y}(\varphi(x,y),\psi(x,y)) \end{split}$$

→ Gradient associé à une fonction numérique

Soit $f: \mathcal{U} \subset E \to \mathbb{R}$ une fonction **numérique**, supposée différentiable en a. On peut alors définir le gradient de f au point a par ses coordonnées dans une b.o.n. (e_1, \ldots, e_p) :

$$\nabla f(a) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(a) \\ \vdots \\ \frac{\partial f}{\partial x_p}(a) \end{bmatrix}$$

Le théorème de Riesz fournit une définition intrinsèque :

- Définition : Gradient -

On appelle gradient de f en a et on note $\nabla f(a)$ le vecteur associé à la forme linéaire d f_a . Pour tout $h \in E$,

$$d f_a(h) = \nabla f(a)^{\mathsf{T}} h = \nabla f(a) \cdot h$$

Si $f: \mathcal{U} \subset E \to \mathbb{R}$ est de classe \mathcal{C}^1 ,

$$\forall x \in \mathcal{U}, \quad f(x+h) = f(x) + \nabla f(x)^{\mathsf{T}} h + \mathrm{o}(\|h\|)$$

→ Dérivées le long d'un arc et vecteurs tangents

- Proposition : Dérivation le long d'un arc -

Si $f: \mathcal{U} \subset E \to F$ et $\gamma: I \subset \mathbb{R} \to E$ sont de classe \mathcal{C}^1 , alors $f \circ \gamma$ est de classe \mathcal{C}^1 sur I et :

$$\forall t \in I, \quad (f \circ \gamma)'(t) = \mathrm{d} f_{\gamma(t)}(\gamma'(t))$$

Proposition: Intégration le long d'un arc

Si $f: \mathcal{U} \subset E \to F$ et $\gamma: [0,1] \subset \mathbb{R} \to E$ sont de classe \mathcal{C}^1 et si $\gamma(0) = a$ et $\gamma(1) = b$, alors :

$$f(b) - f(a) = \int_0^1 \mathrm{d}f_{\gamma(t)}(\gamma'(t)) \,\mathrm{d}t$$

Si \mathscr{U} est un ouvert connexe par arcs et $f: \mathscr{U} \subset E \to F$, f est constante sur \mathscr{U} ssi pour tout $a \in \mathscr{U}$, $df_a = 0_{\mathscr{L}(E,F)}$.

– Définition : Vecteur tangent -

Si X est une partie de E et $x \in X$, un vecteur v de E est tangent à X en x s'il existe $\varepsilon > 0$ et un arc γ défini sur $]-\varepsilon,\varepsilon[$ dérivable en 0 à valeurs dans X, tels que $\gamma(0)=x$ et $\gamma'(0)=v$.

On note $T_x X$ l'ensemble des vecteurs tangents à X en x.

– Définition : Hyperplan tangent

Soient g est une fonction numérique de classe \mathscr{C}^1 sur l'ouvert \mathscr{U} , X l'ensemble des zéros de g, $x \in X$. Si dg_x est non nulle, $T_xX = \operatorname{Ker}(dg_x) = \nabla f(x)^{\perp}$.

Applications de classe \mathscr{C}^k

→ Dérivées partielles d'ordres supérieurs

On définit par récurrence les dérivées partielles d'ordres supérieurs :

$$\frac{\partial^k f}{\partial x_{i_k} \cdots \partial x_{i_1}} = \frac{\partial}{\partial x_{i_k}} \left(\frac{\partial^{k-1} f}{\partial x_{i_{k-1}} \cdots \partial x_{i_1}} \right)$$

— Définition : Application de classe \mathscr{C}^k

Une application est dite de classe \mathscr{C}^k sur un ouvert \mathscr{U} si toutes ses dérivées partielles d'ordre k existent et sont continues.

Théorème: Théorème de Schwarz

Soit $f: \mathcal{U} \subset E \to F$ une application de classe \mathcal{C}^2 sur un ouvert \mathcal{U} de \mathbb{R}^2 . Alors,

$$\forall a \in \mathcal{U}, \quad \frac{\partial^2 f}{\partial x \partial y}(a) = \frac{\partial^2 f}{\partial y \partial x}(a)$$

→ Hessienne

La hessienne au point $a \in \mathcal{U}$ de la fonction numérique $f: \mathcal{U} \subset \mathbb{R}^n \to \mathbb{R}$ de classe \mathcal{C}^2 est la matrice symétrique :

$$H_{f}(a) = \left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a)\right) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(a) & \dots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(a) & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(a) \end{bmatrix}$$

On dispose de la formule de Taylor-Young à l'ordre 2 :

$$\forall x \in \mathcal{U}, f(x+h) \underset{h \to 0}{=} f(x) + \nabla f(x)^{\mathsf{T}} h + \frac{1}{2} h^{\mathsf{T}} H_f(x) h + o(\|h\|^2)$$

© Mickaël PROST Année 2022/2023

Optimisation

Toutes les fonctions considérées sont des fonctions numériques.

→ Condition d'ordre 1

- Définition : Point critique -

Soit $f: \mathcal{U} \subset \mathbb{R}^n \to \mathbb{R}$ de classe \mathcal{C}^1 sur l'ouvert \mathcal{U} . On dit que $a \in \mathcal{U}$ est un point critique de f si:

$$\mathrm{d}f_a = 0_{\mathscr{L}(\mathbb{R}^p,\mathbb{R})} \text{ c'est-\`a-dire } \nabla f(a) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(a) \\ \vdots \\ \frac{\partial f}{\partial x_n}(a) \end{bmatrix} = \vec{0}$$

f admet un maximum en $a \in \mathbb{R}^p$ si et seulement s'il existe un voisinage \mathscr{U} de a tel que :

$$\forall x \in \mathcal{U}, \quad f(x) \leq f(a)$$

La définition est analogue pour un minimum.

Théorème: CN d'existence d'un extremum

Si $f: \mathcal{U} \subset \mathbb{R}^p \to \mathbb{R}$ de classe \mathscr{C}^1 sur l'ouvert \mathcal{U} admet un extremum au point $a \in \mathcal{U}$ alors a est un point critique. Cela revient à dire que $\nabla f(a) = \vec{0}$.

La propriété est fausse ailleurs que sur un ouvert. De plus, tout point critique ne correspond pas nécessairement à un extremum (cas des points selles).

→ Condition d'ordre 2

Théorème : CS d'existence d'un extremum

Soit $f: \mathcal{U} \subset \mathbb{R}^n \to \mathbb{R}$ de classe \mathscr{C}^2 sur l'ouvert \mathscr{U} . Si a est un point critique de f et $H_f(a) \in \mathscr{S}_n^{++}(\mathbb{R})$, alors f atteint un minimum local strict en a.

Pour n=2, le déterminant et la trace nous permettent de trouver facilement le signe des valeurs propres.

\rightarrow Optimisation sous contrainte

Théorème : Multiplicateur de Lagrange

Soient f et g deux fonctions numériques de classe \mathscr{C}^1 sur l'**ouvert** \mathscr{U} de E et $X = \{x \in \mathscr{U} \mid g(x) = 0\}$. Si la restriction de f à X admet un extremum local en $a \in X$ et $\mathrm{d}g_a \neq 0$, alors $\mathrm{d}f_a$ est colinéaire à $\mathrm{d}g_a$.

L'existence de $\lambda \in \mathbb{R}^*$ tel que $\nabla f(a) = \lambda \nabla g(a)$ en un point critique a est une simple condition nécessaire. On mène ensuite une étude locale ou on donne un argument de compacité pour justifier la présence d'un extremum.