ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО» ВШ программной инженерии

Расчетное задание №2

по дисциплине «Математические методы в управлении»

Общая транспортная задача

Выполнил

Студент гр. 3530202/70201, к. IV

Имхасина И.Х. (i=10)

Преподаватель Суханов А.А.

Санкт-Петербург Осень, 2020 г.

Постановка задачи

Имеется транспортная сеть, состоящая из 7 городов, связи между которыми задаются матрицей инцидентности (см. табл.1). Единица – есть дорога, ноль – нет дороги.

Таблица 1

0	1	Γ ₁₃	0	1	0	0
0	0	1	Γ ₂₄	0	0	1
0	0	0	1	Γ ₃₅	Γ ₃₆	Γ ₃₇
0	Γ ₄₂	0	0	1	0	Γ ₄₇
0	0	Γ ₅₃	0	0	1	0
0	0	0	0	0	0	1
0	0	0	0	0	0	0

Здесь і – порядковый номер студента в списке группы (по алфавиту), k=0, 1, 2, ...

$$\Gamma_{12} = 1$$
. $i = 3k$

$$\Gamma_{24} = 1$$
. $i = 2k$

$$\Gamma_{2r} = 1$$
, $i = 5k$

$$\Gamma_{13} = 1$$
, $i = 3k$ $\Gamma_{24} = 1$, $i = 2k$ $\Gamma_{35} = 1$, $i = 5k$ $\Gamma_{53} = 1$, $i = 5k + 4$

$$\Gamma_{13} = 0$$
, $i \neq 3k$

$$\Gamma_{24} = 0$$
, $i \neq 2k$

$$\Gamma_{35} = 0, i \neq 51$$

$$\Gamma_{13} = 0$$
, $i \neq 3k$ $\Gamma_{24} = 0$, $i \neq 2k$ $\Gamma_{35} = 0$, $i \neq 5k$ $\Gamma_{53} = 0$, $i \neq 5k + 4$

$$\Gamma_{36} = 1 - \Gamma_{13}$$

$$\Gamma_{37} = \Gamma_{13}$$

$$\Gamma_{42} = 1 - \Gamma_{24}$$

$$\Gamma_{36} = 1 - \Gamma_{13}$$
 $\Gamma_{37} = \Gamma_{13}$ $\Gamma_{42} = 1 - \Gamma_{24}$ $\Gamma_{47} = 1 - \Gamma_{35} - \Gamma_{53}$

Источники и стоки (интенсивность производителей и потребителей)

$$d_{i} = 2i + 1$$

$$d_2 = i + 11$$

$$d_5 = -1$$

$$d_1 = 2i + 1$$
 $d_2 = i + 11$ $d_5 = -i$ $d_6 = -(i + 4)$ $d_7 = -(i + 8)$

Ограничения на пропускную способность дорог

$$r_{15} = [(i + 1)/2]$$
 $r_{27} = [(i + 4)/3]$

$$r_{27} = [(i + 4)/3]$$

Стоимость перевозки единицы товара по дороге (p,s)

$$C_{ps} = [6 + 5 \cos (\pi/15 (i + 4p + s))], p=1,...,7, s=1,...,7$$

где [•] – целая часть числа.

Требуется определить оптимальный грузопоток в сети, минимизирующий общие транспортные расходы.

В ответе представить:

- Величину транспортных расходов f^*
- Схему грузоперевозок с указанием грузопотоков по дорогам и стоимости перевозок в скобках. При этом обозначить ограничения на пропускную способность, а незагруженные дороги не указывать

Ход решения (подставим і=10)

Исходные данные с подставленными значениями:

0	1	0	0	1	0	0
0	0	1	1	0	0	1
0	0	0	1	1	1	0
0	0	0	0	1	0	0
0	0	0	0	0	1	0
0	0	0	0	0	0	1
0	0	0	0	0	0	0

$$d_1 = 21$$

$$d_2 = 21$$

$$d_5 = -10$$

$$d_1 = 21$$
 $d_2 = 21$ $d_5 = -10$ $d_6 = -14$ $d_7 = -18$

$$d_7 = -18$$

$$r_{15} = 5$$

$$r_{15} = 5$$
 $r_{27} = 4$

$$C_{34}$$
=9, C_{35} =10, C_{36} =10,

$$C_{45}$$
=10, C_{56} =7, C_{67} =2

Оформим полученные данные в единую таблицу:

i	di	(i,j)	C _{ij}	r _{ij}
1	24	1,2	1	-
1	21	1,5	2	5
		2,3	4	-
2	21	2,4	5	-
		2,7	8	4
		3,4	9	-
3	0	3,5	10	-
		3,6	10	=
4	0	4,5	10	-
5	-10	5,6	7	_
6	-14	6,7	2	-
7	-18	-	-	-

Схема:

Уберем пути с ограничением пропускной способности и преобразуем схему:

Источники: 1, 2, 9, 11

Стоки: 5, 6, 7, 8, 10

Рассмотрим источник 1:

1,2 1,8 1' 2' 2,3 2,4 2,10 5' 6' 9' 3,4 3,5 3,6 14' 15' 15' 4,5 5,6 6,7 16' 22' 17	$1 \rightarrow 5$: $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$, стоимость 15 $1 \rightarrow 6$: $1 \rightarrow 2 \rightarrow 3 \rightarrow 6$, стоимость 15 $1 \rightarrow 7$: $1 \rightarrow 2 \rightarrow 3 \rightarrow 6 \rightarrow 7$, стоимость 17 $1 \rightarrow 8$: $1 \rightarrow 8$, стоимость 2 $1 \rightarrow 10$: $1 \rightarrow 2 \rightarrow 10$, стоимость 9
---	--

Рассмотрим источник 2:

	$2 \to 5: 2 \to 3 \to 5$, стоимость 14
4′ 5′ 8′	$2 \rightarrow 6: 2 \rightarrow 3 \rightarrow 6$, стоимость 14

13' 14' 14' 4,5	$2 \rightarrow 7: \ 2 \rightarrow 3 \rightarrow 6 \rightarrow 7$, стоимость 16 $2 \rightarrow 8:$ недостижимо $2 \rightarrow 10: \ 2 \rightarrow 10$, стоимость 8

Рассмотрим источник 9:

<u>9,5</u> <u>9,8</u>	$9 \to 5: 9 \to 5$, стоимость 0
9,5 9,8 0, 5,6 6,7	$9 \rightarrow 6: 9 \rightarrow 5 \rightarrow 6$, стоимость 7
7, 9	$9 \rightarrow 7: 9 \rightarrow 5 \rightarrow 6 \rightarrow 7$, стоимость 9
	$9 \to 8: 9 \to 8$, стоимость 0
	9 → 10: недостижимо

Рассмотрим источник 11:

<u>11,10</u> <u>11,7</u>	11 → 5: недостижимо
0 ' 0	11 → 6: недостижимо
	$11 \rightarrow 7$: $11 \rightarrow 7$, стоимость 0
	11 → 8: недостижимо
	$11 \to 10: \ 11 \to 10$, стоимость 0

Решим КТЗ методом потенциалов:

*C/x*0:

	5	6	7	8	9	а
1	15	15	17	2	9	21 16 14 0
_	-	2	14	5	-	21,16,14,0
2	14	14	16	∞	8	21 17 12 0
	5	12	-	-	4	21,17,12,0
9	0	7	9	0	∞	5,0
9	5	ı	-	-	-	3,0
11	8	8	0	∞	0	4.0
11	-	-	4	-	-	4,0
b	10,5,0	14,2,0	18,14,0	5,0	4,0	

	5	6	7	8	9
1	-	2	14	5	-
2	5	12	-	-	4
9	5	-	-	-	-
11	-	-	4	-	-

 $f_0 \!\!=\! 15\!\!*\! 2\!\!+\! 17\!\!*\! 14\!\!+\! 2\!\!*\! 5\!\!+\! 14\!\!*\! 5\!\!+\! 14\!\!*\! 12\!\!+\! 8\!\!*\! 4\!\!+\! 0\!\!*\! 5\!\!+\! 0\!\!*\! 4\!\!=\!\! 548$

 $u_i \text{+} v_j \text{=} C_{ij}\text{, } \Delta_{ij} \text{=} u_i \text{+} v_j \text{-} C_{ij}$

C/Δ:

	5	6	7	8	9	U
1	15	15	17	2	9	0
1	0	0	0	0	0	U
2	14	14	16	∞	8	1
	0	0	0	-∞	0	-1
9	0	7	9	0	8	15
9	0	-7	-7	-13	-∞	-15
11	∞	∞	0	∞	0	17
11	-∞	-∞	0	-∞	-8	-17
V	15	15	17	2	9	

Все $\Delta_{ij} \le 0$ следовательно достигли оптимума.

Ответ (i = 10):

