

User manual DA14583 IoT sensor reference application

UM-B-064

Abstract

This document describes the hardware design of the DA14583 IoT sensor reference application, which is based on the Dialog Semiconductor DA14583 Bluetooth® Smart SoC with an integrated Flash memory. This module includes a geomagnetic sensor, an accelerometer and a combined environmental sensor that can sense temperature, pressure and humidity levels.

Contents

Αk	stract		1					
Сс	ntents	S	2					
Fic	gures.		2					
•	_							
1 Terms and definitions								
2 References								
3								
4	•	em overview						
	4.1	Features						
	4.2	Electrical characteristics						
5	Desc	ription	7					
	5.1	BMI160 Inertial sensor pinout	9					
	5.2	BME280 Environmental sensor pinout	10					
	5.3	BMM150 Geomagnetic sensor pinout	11					
	5.4	Antenna type	13					
	5.5	IoT Sensor reference board	14					
6	Magr	netic scan simulation measurements	18					
	6.1	Passive tests						
	6.2	Soft iron scan (magnetic field deformation test)	19					
Re	vision	history						
			20					
Fi	gure	es de la companya de						
Fic	gure 1:	Top level block diagram of the IoT sensor reference design	5					
Fiç	jure 2:	BMI160 Inertial sensor: pinning diagram	9					
		BME280 Environmental sensor: pinning diagram						
		BMM150 Geomagnetic sensor: pinning diagram						
		Top level schematic of the IoT sensor reference design (Rev. F)						
		Ceramic antenna: PCB footprint and mechanical specifications						
⊏i.⁄	Jule 7.	IoT Sensor reference board: top view (Rev. F)	14 11					
		IoT Sensor reference board: Gerber top layer and silk screen layer						
		: IoT Sensor reference board: Gerber bottom layer and silk screen layer						
		: IoT Sensor reference board (top view)						
		: IoT Sensor reference board (bottom view)						
		: Schematic of connector J1 (left) and the actual mirrored PCB pinout (right)						
		: IoT Sensor reference board: component placement overview						
Fiç	gure 15	: Magnetic field strength	18					
Fiç	gure 16	: Magnetic field deformation by soft iron effects of the coin cell battery and its holder	19					
T	ables							
•		-						

UM-B-064

DA14583 IoT sensor reference application

Table 2: Current consumption	6
Table 3: Sensor data rate information	
Table 4: Sensor and GPIO pin assignment	7
Table 5: BMI160 Inertial sensor: pin description	
Table 6: BME280 Environmental sensor: pin description	10
Table 7: BMM150 Geomagnetic sensor: pin description	11
Table 8: Antenna features	
Table 9: Antenna purchasing cost	13

DA14583 IoT sensor reference application

1 Terms and definitions

BLE Bluetooth Low Energy (now: Bluetooth Smart)

GPIO General Purpose Input/Output I²C Inter-Integrated Circuit (interface)

IoT Internet of Things

JTAG Joint Test Action Group (test interface)

PCB Printed Circuit Board
SMD Surface Mount Device
SoC System on Chip

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

2 References

- [1] DA14583 Low Power Bluetooth Smart SoC, Datasheet, Dialog Semiconductor.
- [2] Battery holder, Keystone Electronics Corp.
- [3] BMI160 Inertial Measurement unit, Bosch Sensortec.
- [4] BME280 Environmental Sensor, Bosch Sensortec.
- [5] BMM150 Geomagnetic Sensor, Bosch Sensortec.
- [6] SMD ceramic antenna, Johanson Technology Inc.
- [7] UM-B-063 DA14583 IoT sensor development kit, User manual, Dialog Semiconductor.

DA14583 IoT sensor reference application

3 Introduction

The DA14583 IoT sensor reference design is based on the Dialog Semiconductor DA14583 Bluetooth® Smart SoC with an integrated Flash memory. This module includes a geomagnetic sensor, an accelerometer and a combined environmental sensor that can sense temperature, pressure and humidity levels.

4 System overview

4.1 Features

- Highly integrated DA14583 Bluetooth® Smart SoC with integrated SPI Flash memory.
- Stand-alone module
- Module passes all Bluetooth® Smart requirements
- Access to processor via JTAG and UART
- 15 mm² PCB

Figure 1: Top level block diagram of the IoT sensor reference design

DA14583 IoT sensor reference application

4.2 Electrical characteristics

Table 1: Electrical specifications

Parameter	Min	Тур	Max	Unit
BMI160 Inertial Sensor				
Supply Voltage (VDD)	1.71	3.0	3.6	V
Supply Voltage (VDD I/O)	1.2	2.4	3.6	V
Voltage Input Low Level			0.3*VDD I/O	V
Voltage Input High Level	0.7*VDD I/O			V
Voltage Output Low Level			0.2*VDD I/O	V
Voltage Output High Level			0.23*VDD I/O	V
Operating Temperature	-40		85	°C
BME280 Environmental Sensor (pressure, h	umidity, tempera	ature)		
Supply Voltage (VDD)	1.71	1.8	3.6	V
Supply Voltage (VDD I/O)	1.2	1.8	3.6	V
Operating Temperature	-40	25	85	°C
BMM150 Geomagnetic Sensor				
Supply Voltage (VDD)	1.62	2.4	3.6	V
Supply Voltage (VDD I/O)	1.2	1.8	3.6	V
Operating Temperature	-40	25	85	°C
DA14583 BLE SoC				
Battery Supply Voltage (VBAT)-Buck mode	2.35		3.3	V
Operating Temperature	-40		85	°C

Table 2: Current consumption

Item	BMI160	BME280	BMM150	Total current
Operating current (mA)	0.950 (full mode)	0.340 (Humidity @ 85 °C) 0.714 (Pressure @ 85 °C) 0.350 (Temperature @ 85 °C) 1.4 (Total)	0.500 (normal mode)	2.8 mA
Sleep current (μA)	3 (suspend mode)	0.3	3 (suspend mode)	6.3 μΑ

5 Description

The DA14583 IoT sensor reference design consists of the following components:

- BMI160: Low-power, low-noise 16 bit Inertial Measurement Unit designed for use in mobile and indoor applications which require highly accurate, real-time sensor data. In full operation mode, with the accelerometer and gyroscope enabled, the current consumption is typically 950 μA, enabling always-on applications in battery driven devices. The BMI160 combines an accelerometer and a gyroscope both with a 16-bit resolution.
- BME280: Integrated environmental sensor developed specifically for mobile applications. The built-in humidity sensor features an extremely fast response time which supports performance requirements for emerging applications such as context awareness, and high accuracy over a wide temperature range. The humidity sensor features an extremely fast response time. The pressure sensor is an absolute barometric pressure sensor with features exceptionally high accuracy and resolution at very low noise. The integrated temperature sensor is primarily used for temperature compensation of the pressure and humidity sensors, and can also be used for estimating ambient temperature.
- **BMM150:** Low power and low noise 3-axis digital **geomagnetic** sensor to be used in compass applications.
- DA14583: BLE SoC with an integrated SPI Flash memory

Table 3 gives a summary of the sensor data rates and the digital interfaces that are available for data acquisition. Data rates are given to check for possible speed limitations (especially in case of the I²C interface).

Table 3: Sensor data rate information

Item	BMI160	BME280	BMM150
Digital interface	SPI, I ² C	SPI, I ² C	SPI, I ² C
Data rate	1.6 kHz (Accelerometer) 6.4 kHz (Gyroscope)	87 Hz (Forced mode) 13.5 Hz (Normal mode)	30 Hz

Table 4 shows the sensor pin assignment, including the GPIOs that are assigned for the SPI interface and other interrupt functions.

Table 4: Sensor and GPIO pin assignment

Pin	Description	Direction	DA14583 pin	GPIO pin count				
BMI160 Inertial sensor	BMI160 Inertial sensor							
SDO (MISO)	Serial SPI out	→	P0_0					
SDI (MOSI)	Serial SPI in	←	P0_1					
SCK	Serial clock	←	P0_2	5				
CSB1	Chip select	←	P0_3					
INT1	Interrupt	→	P0_6					
BME280 Environmental sensor (pressure, humidity, temperature)								
SDO (MISO)	Serial SPI out	→	(P0_0)					
SDI (MOSI) Serial SPI in		←	(P0_1)	1				
SCK	Serial clock	←	(P0_2)					

DA14583 IoT sensor reference application

Pin	Pin Description		DA14583 pin	GPIO pin count			
CSB2	Chip select	←	P0_7				
BMM150 Geomagnetic sensor							
SDO (MISO)	Serial SPI out	\rightarrow	(P0_0)				
SDI (MOSI)	Serial SPI in	+	(P0_1)				
SCK	Serial clock	+	(P0_2)	2			
CSB3	Chip select	+	P1_0				
INT2	Interrupt output	→	P1_1				
Additional pins	Additional pins						
UTX	Transmit	←	P0_4	0			
URX	Receive	>	P0_5	2			
Total	10						

5.1 BMI160 Inertial sensor pinout

Figure 2: BMI160 Inertial sensor: pinning diagram

Table 5: BMI160 Inertial sensor: pin description

Pin#	Name	I/O Type	Interface	Description	
1	SDO	Digital I/O	Primary	Serial data output in SPI Address select in I2C mode	
2	ASDx	Digital I/O	Secondary	Magnetometer interface*)	
3	ASCx	Digital out	Secondary	Magnetometer interface	
4	INT1	Digital I/O	Primary	Interrupt pin 1 *)	
5	VDDIO	Supply	2	Digital I/O supply voltage (1.2 3.6V)	
6	GNDIO	Ground		Ground for I/O	
7	GND	Ground		Ground for digital & analog	
8	VDD	Supply		Power supply analog & digital domain (1.71V - 3.6V)	
9	INT2	Digital I/O	Primary	Interrupt pin 2 *)	
10	OCSB	Digital I/O	Secondary	OIS interface	
11	OSDO	Digital I/O	Secondary	OIS interface	
12	CSB	Digital in	Primary	Chip select for SPI mode / Protocol selection pin	
13	SCx	Digital in	Primary	SCK for SPI serial clock SCL for I ² C serial clock	
14	SDx	Digital I/O	Primary	SDA serial data I/O in I2C MOSI serial data input in SPI 4W SISO serial data I/O in SPI 3W	

DA14583 IoT sensor reference application

5.2 BME280 Environmental sensor pinout

Figure 3: BME280 Environmental sensor: pinning diagram

Table 6: BME280 Environmental sensor: pin description

Pin	Name	I/O Tuno	Description		Connect to	
PIII	Name	I/O Type	Description	SPI 4W	SPI 3W	I ² C
1	GND	Supply	Ground		GND	
2	CSB	In	Chip select	CSB	CSB	V _{DDIO}
3	SDI	In/Out	Serial data input	SDI	SDI/SDO	SDA
4	SCK	In	Serial clock input	SCK	SCK	SCL
5	SDO	In/Out	Serial data output	SDO	DNC	GND for default address
6	V_{DDIO}	Supply	Digital / Interface supply	V_{DDIO}		
7	GND	Supply	Ground	GND		
8	V _{DD}	Supply	Analog supply		V_{DD}	

5.3 BMM150 Geomagnetic sensor pinout

Figure 4: BMM150 Geomagnetic sensor: pinning diagram

Table 7: BMM150 Geomagnetic sensor: pin description

Pin	Name	I/O Type	Description		Connec	ct to
PIII	Ivaille	i/O Type	Description	SPI 4W	SPI 3W	I ² C
A1	PS	In	Protocol select	GND	GND	V_{DDIO}
D2	INT	Out	Interrupt output	INT	input or DN	IC if unused
A5	CSB	ln	Chip Select	CSB	CSB	GND for default address
C5	GND	Supply	Ground		GNI)
E1	GND	Supply	Ground		GNI)
D4	DRDY	Out	Data ready	DRD	Y input or D	NC if unused
C1	SDO	Out	SPI: Data out	SDO/ MISO	DNC (float)	GND for default address
В4	SDI	In/Out	SPI: Data, I²C: Data	SDI/ MOSI	SDI/SDO	SDA
E3	GND	Supply	Ground GN)	
E5	VDD	Supply	Supply voltage	V_{DD}		
B2	VDDIO	Supply	I/O voltage	$V_{\scriptscriptstyle DDIO}$		0
А3	SCK	In	Serial clock	SCK	SCK	SCL

Figure 5: Top level schematic of the IoT sensor reference design (Rev. F)

User manual Revision 1.0 10-Mar-2016

5.4 Antenna type

The IoT Sensor reference application uses a ceramic chip antenna. This type of antenna has the following advantages:

- SMD miniature type for easy manufacturability.
- Remains reliable and versatile.
- Easy tuning.

Figure 6: Ceramic antenna: PCB footprint and mechanical specifications

Table 8: Antenna features

Part Number	Frequency (MHz)	Peak Gain	Ave. Gain	Return Loss	S-Param	Product Life Cycle Status	Case
2450AT18A100	2400 - 2500	0.5 dBi typ (XZ-V)	-0.5 dBi typ (XZ-V)	9.5 dB min.	S-Param	PROD	18-4

Table 9: Antenna purchasing cost

Manufacturer	Part number	Price (€)
Johanson Technology Inc.	2450AT07A0100	0.33/1000 pcs

5.5 IoT Sensor reference board

Figure 7: IoT Sensor reference board: top view (Rev. F)

Figure 8: IoT Sensor reference board: 3D bottom view with battery holder (Rev. F)

The THM Holder for 12 mm Cell-Tin Nickel Plate P/N 3001 (see Ref. [2]) has been selected as the battery holder. See Figure 8.

Figure 9 shows the PCB including the actual antenna at a top right orthogonal placement scenario with antenna clearance.

Figure 9: IoT Sensor reference board: Gerber top layer and silk screen layer

Figure 10: IoT Sensor reference board: Gerber bottom layer and silk screen layer

Figure 11: IoT Sensor reference board (top view)

Figure 12: IoT Sensor reference board (bottom view)

Figure 13: Schematic of connector J1 (left) and the actual mirrored PCB pinout (right)

Figure 14: IoT Sensor reference board: component placement overview

6 Magnetic scan simulation measurements

6.1 Passive tests

Figure 15: Magnetic field strength

Figure 15 shows the magnetic field strength (vector length) on the PCB. The earth's magnetic field is subtracted, so what is visible is the field caused by the components populating the PCB. The PCB has a grey outline. The position of the magnetometer is in the bottom-left corner.

The two (red) hot spots are caused by the pressure sensor package (magnetic lens effect) and by the T160 component (coil/converter).

The placement of the BMM150 Geomagnetic sensor is optimal: when it is placed in a blue region, which means that it is not in the proximity of a permanent magnet or any object producing magnetic fields.

User manual Revision 1.0 10-Mar-2016

6.2 Soft iron scan (magnetic field deformation test)

Figure 16: Magnetic field deformation by soft iron effects of the coin cell battery and its holder

In Figure 16, there is some deformation of the natural magnetic field, caused by the battery on top of the PCB. The deformation is visible as points lying off the sphere (not on its surface). Since the effect is deterministic, it can be compensated for by an appropriate compensation matrix (see Ref. [7])

Revision history

Revision	Date	Description
1.0	10-Mar-2016	Initial version.

Status definitions

Status	Definition	
DRAFT	The content of this document is under review and subject to formal approval, which may result in modifications or additions.	
APPROVED or unmarked	The content of this document has been approved for publication.	

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, unless otherwise stated.

© Dialog Semiconductor. All rights reserved.

RoHS Compliance

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU concerning Restriction of Hazardous Substances (RoHS/RoHS2). Dialog Semiconductor's statement on RoHS can be found on the customer portal https://support.diasemi.com/. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 8822

enquiry@diasemi.com

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K. Phone: +81 3 5425 4567

Dialog Semiconductor Taiwan Phone: +886 281 786 222

Web site

www.dialog-semiconductor.com

China (Shenzhen)

Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China Phone: +86 21 5424 9058

User manual Revision 1.0 10-Mar-2016

Dialog Semiconductor Singapore

Dialog Semiconductor Hong Kong

Phone: +65 64 8499 29

Phone: +852 3769 5200

Phone: +82 2 3469 8200

Dialog Semiconductor Korea

Hona Kona