VC Dimension

AW

Lecture Overview

VC-dimension

2 VC-dimension and Learnability

VC Dimension VC-dimension AW 1 / 12

Learnability of Infinite classes

We saw that countable union of agnostically learnable (finite) classes are learnable. But what about classes of size \aleph_1 classes (classes of same size as real numbers)?

Example: Suppose we need to classify $x \in X \subset \mathbb{R}$. Let \mathscr{H} be the set of threshold functions over the real line: $\mathscr{H} = \{h_a : a \in \mathbb{R}\}$, where

 $h_a: \mathbb{R} \to \{0,1\}$ such that $h_a(x) = \left\{ \begin{array}{l} 1 \text{ if } x < a \\ 0 \text{ otherwise} \end{array} \right.$ Obviously this set is of same size as real numbers.

Proposition

Let $\mathscr H$ be the class of threshold functions. Then, $\mathscr H$ is PAC learnable, using the ERM rule, with sample complexity of $m_H(\epsilon,\delta) \leq \lceil \frac{\log(2/\delta)}{\epsilon} \rceil$

Proof in SSBD-6.1.

So why is this class learnable but no-free lunch theorem implies that other 'continuous' classes are not learnable?

VC Dimension VC-dimension AW 2 / 12

Shattering

Let \mathscr{H} be a class of functions from (data)set X to $\mathbb{B}=\{0,1\}$ and let $C=\{c_1,\ldots,c_m\}\subset X$ (i.e. sample). The restriction of \mathscr{H} to C (denoted $\mathscr{H}_{\mathbb{C}}$) is the set of functions from C to \mathbb{B} that can be derived from \mathscr{H} . We can identify each function $f\in \mathscr{H}_{\mathbb{C}}$ with m dimensional vector v^f from \mathbb{B}^m in which $v^f_i=f(c_i)$.

If the restriction of \mathcal{H} to C is the set of all functions from C to \mathbb{B} then we say that \mathcal{H} shatters set C

Definition

A hypothesis class $\mathscr H$ shatters a finite set $C\subset X$ if the restriction $\mathscr H_c$ contains all maps $C\to \mathbb B$, i.e. $|\mathscr H_C|=2^{|C|}$.

Why shattering matters? Proof of No-Free-Lunch theorem shows that without restricting the hypothesis class on a set of size $= 2 \times \text{sample size}$:

- an adversary can construct a distribution for which a learning algorithm against which adversary is working will perform poorly
- there is another learning algorithm (against which adversary is not working) that succeeds on the constructed distribution

VC Dimension VC-dimension AW 3 / 12

Understand No-Free-Lunch

Another way to understand no-free lunch theorem:

Proposition

For a hypothesis class \mathscr{H} of functions in $\{f:X\to\mathbb{B}\}$, let m be a training set size. Suppose there exists a set $C\subset X$ of size 2m that is shattered by \mathscr{H} . Then, for any learning algorithm, A, there exist a distribution D over $X\times\mathbb{B}$ and a predictor $h\in\mathscr{H}$ such that $L_D(h)=0$ but with probability of at least $\frac{1}{7}$ over the choice of $S\sim D^m$ we have that $L_D(A(S))\geq \frac{1}{8}$.

Meaning: If a set C is shattered by \mathcal{H} , and we receive a sample S containing half the instances of C, the labels of these instances in S give us no information about the labels of the rest of the instances in C because every possible labeling of the rest of the instances in C - S can be explained by some hypothesis in \mathcal{H} .

VC Dimension VC-dimension AW 4 / 12

VC-dimension

Shattering Example: \mathscr{H} =class of threshold functions over \mathbb{R} .

- $C = \{c_1 \in \mathbb{R}\}$. Let $a_1 = c_1 + 1$, then $h_{a_1}(c_1) = 1$, and now let $a_2 = c_1 1$, then we have $h_{a_2}(c_1) = 0$. Therefore, \mathscr{H}_C is the set of all functions from C to \mathbb{B} , and \mathscr{H} shatters C.
- $C = \{c_1, c_2\}$ where $c_i \in \mathbb{R}$ and $c_1 < c_2$. No $h_a \in \mathscr{H}$ can account for the labeling $[(c_1, 1), (c_2, 0)]$, because any threshold a that assigns the label 0 to c_2 must assign the label 0 to c_1 as well. Therefore not all functions from C to \mathbb{B} are included in \mathscr{H}_C so C is not shattered by \mathscr{H} .

Definition (VC-dimension)

The VC-dimension of a hypothesis class \mathscr{H} (denoted $VC\dim(\mathscr{H})$), is the maximal size of a set $C\subset X$ that can be shattered by \mathscr{H} . If \mathscr{H} can shatter sets of arbitrarily large size we say that \mathscr{H} has infinite VC-dimension.

VC Dimension VC-dimension AW 5 / 12

VC dim and Non-learnability, Examples

Proposition

Let ${\mathcal H}$ be a class of infinite VC-dimension. Then, ${\mathcal H}$ is not PAC learnable.

Proof is obvious: for any size sample we can shatter a set twice the size, so with probability of at least $\frac{1}{7}$ over the choice of $S \sim D^m$ we have that $L_D(A(S)) \geq \frac{1}{8}$ for any algorithm A - hence non learnable (can't learn for $(\epsilon, \delta) < (1/8, 1/7)$).

VC dim example:

• We already worked it out for threshold predictors $\mathscr{H} = \{h_a : a \in \mathbb{R}\}$ for data $x \in \mathbb{R}$. We have shown that they shatter any set of size one but cannot shatter any set of size 2. So $VC\dim(\mathscr{H}) = 1$

VC Dimension VC-dimension AW 6 / 12

VC dim examples:

● Interval predictors: $\mathcal{H} = \{h_{a,b}: a, b \in R \text{ and } a < b\}$ for data $x \in \mathbb{R}$. Here $h_{a,b}: \mathbb{R} \to \mathbb{B}: x \to \begin{cases} 1 \text{ if } a < x < b \\ 0 \text{ otherwise} \end{cases}$ Let $C = \{c_1, c_2\}$. WLOG $c_1 < c_2$, then shattering maps for C are $h_{a,b}(c_1) = h_{a,b}(c_2) = 0$ if $a, b < c_1$; $h_{a,b}(c_1) = 0, h_{a,b}(c_2) = 1$ if $c_1 < a < c_2 < b$; $h_{a,b}(c_1) = 1, h_{a,b}(c_2) = 0$ if $a < c_1 < b < c_2$; $h_{a,b}(c_1) = h_{a,b}(c_2) = 1$ if $a < c_1 < c_2 < b$. Can $C = \{c_1, c_2, c_3\}$ be shattered by intervals?

VC dim examples:

Interval predictors: $\mathscr{H}=\{h_{a,b}:a,b\in R \text{ and } a< b\}$ for data $x\in \mathbb{R}$. Here $h_{a,b}:\mathbb{R}\to\mathbb{B}:x\to \begin{cases} 1 \text{ if } a< x< b\\ 0 \text{ otherwise} \end{cases}$ Let $C=\{c_1,c_2\}.$ WLOG $c_1< c_2$, then shattering maps for C are $h_{a,b}(c_1)=h_{a,b}(c_2)=0$ if $a,b< c_1;$ $h_{a,b}(c_1)=0,h_{a,b}(c_2)=1$ if $c_1< a< c_2< b;$ $h_{a,b}(c_1)=1,h_{a,b}(c_2)=0$ if $a< c_1< b< c_2;$ $h_{a,b}(c_1)=h_{a,b}(c_2)=1$ if $a< c_1< c_2< b$. Can $C=\{c_1,c_2,c_3\}$ be shattered by intervals? If $C=\{c_1,c_2,c_3\}$ for $c_1< c_2< c_3$ then map 1,0,1 is not obtainable in $\mathscr H$ since any interval that contains c_1 and c_3 also contains c_2 . Thus $VC\dim(\mathscr H)=2$.

VC dim examples:

- Interval predictors
- ② An axis-aligned n-dimensional rectangle classifier $h_{(\overline{l},\overline{u})}$ is given by two vectors $\overline{l},\overline{u}\in\mathbb{R}^n$ such that $\overline{l}<\overline{u}$ (i.e. $l_i< u_i$ for all $1\leq i\leq n$). A vector $\overline{x}\in\mathbb{R}^n$ is labeled 1 by this classifier $h_{(\overline{l},\overline{u})}$ if $\overline{l}<\overline{x}<\overline{u}$, i.e. for every i holds $l_i< x_i< u_i$. Otherwise \overline{x} is labeled 0.

VC dim examples:

- Interval predictors
- 2 Let ${\mathscr H}$ be a class of 2-dimensional axis-aligned rectangle classifiers.
 - Let $C = \{(x_1, y_1), (x_2, y_2), (x_2, y_3), (x_3, y_1)\}$ where $x_1 < x_2 < x_3$ and $y_2 < y_1 < y_3$. Can it be shattered?

VC Dimension VC-dimension AW 7 / 12

VC dim examples:

- Interval predictors
- - Let $C = \{(x_1, y_1), (x_2, y_2), (x_2, y_3), (x_3, y_1)\}$ where $x_1 < x_2 < x_3$ and $y_2 < y_1 < y_3$. It is shattered:

VC dim examples:

- Interval predictors
- 2 Let ${\mathcal H}$ be a class of 2-dimensional axis-aligned rectangle classifiers.
 - Let $C = \{(x_1, y_1), (x_2, y_2), (x_2, y_3), (x_3, y_1)\}$ where $x_1 < x_2 < x_3$ and $y_2 < y_1 < y_3$. This set is shattered.
 - Let $C = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4), (x_5, y_5)\}$ be set of 5 points.Can this set be shattered?

VC dim examples:

- Interval predictors
- 2 Let ${\mathcal H}$ be a class of 2-dimensional axis-aligned rectangle classifiers.
 - Let $C = \{(x_1, y_1), (x_2, y_2), (x_2, y_3), (x_3, y_1)\}$ where $x_1 < x_2 < x_3$ and $y_2 < y_1 < y_3$. This set is shattered.
 - Let $C = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4), (x_5, y_5)\}$ be set of 5 points. No! Let $x_{\max} = \max_i x_i, x_{\min} = \min_i x_i, y_{\max} = \max_i y_i$ and $y_{\min} = \min_i y_i$.
 - Select 4 points c_1, \ldots, c_4 out of 5 so that for each number in the list x_{\max} , x_{\min} , y_{\max} , y_{\min} there is at least one point among selected points that it as a coordinate
 - 2 Label selected points $c_1, \ldots c_4$ by 1 and the point $c_5 = (x_{ns}, y_{ns})$ that was not selected by 0.

It is impossible to obtain this labeling by an axis-aligned rectangle since $x_{\max} \geq x_{ns} \geq x_{\min}$ and $y_{\max} \geq y_{ns} \geq y_{\min}$, so if all other point are inside the rectangle this one should be there too.

Lecture Overview

VC-dimension

VC-dimension and Learnability

The Fundamental Theorem of Statistical Learning

Theorem

Let \mathscr{H} be a hypothesis class of functions from a domain X to \mathbb{B} . Then, the following are equivalent:

- *# has the uniform convergence property
- 2 Any ERM rule is a successful agnostic PAC learner for #
- 3 # is agnostic PAC learnable
- ℋ is PAC learnable
- Any ERM rule is a successful PAC learner for ℋ

Proof in SSBD chapter 6.5

Relation of VC-dimension to Sample Complexity

Theorem

Let \mathscr{H} be a hypothesis class of functions from a domain X to \mathbb{B} such that $VC\dim(H)=d<\infty$. Then, there are absolute constants C_1 and C_2 such that:

 $oldsymbol{0}$ ${\mathscr H}$ has the uniform convergence property with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathscr{H}}^{UC}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

② # is agnostic PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le m_{\mathscr{H}}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$

is PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

Proof in SSBD chapter 6.5

VC-dimension and uniform convergence

For hypothesis class \mathscr{H} growth function of \mathscr{H} (denoted $\tau_{\mathscr{H}}:\mathbb{N}\to\mathbb{N}$) is defined as $\tau_{\mathscr{H}}(m)=\max_{\substack{C\subset X\\|C|=m}}|\mathscr{H}_C|$

Lemma

Let \mathscr{H} has $VC\dim(\mathscr{H})=d<\infty$. Then, for all $m,\,\tau_{\mathscr{H}}(m)=\sum_{i=0}^d\binom{m}{i}$. In particular, if m>d+1 then $\tau_{\mathscr{H}}(m)\leq (em/d)^d$

Theorem

Let $h \in \mathcal{H}$. Then, for every D and every $\delta \in (0,1)$, with probability of at least $1-\delta$ over the choice of training set $S \sim D^m$ we have

$$|L_D(h) - L_S(h)| \le \frac{4 + \sqrt{\log(\tau_{\mathscr{H}}(2m))}}{\delta\sqrt{2m}}$$

Combining, we get that for \mathscr{H} that has $VC\dim(\mathscr{H})=d<\infty$ and m>d+1 holds

$$|L_D(h) - L_S(h)| \le \frac{4 + \sqrt{d \log(2em/d)}}{\delta \sqrt{2m}}$$

For proofs see SSBD chapter 6.5

Reading

SSBD sections 6.2, 6.3, 6.4

Proofs can be omitted without any loss of understanding