

หน้า 1 / 9

ภาควิชาวิศ	วกรรมไฟฟ้าแล	าะคอมพิวเตอ	ภาคการศึกษาที่	ปีการ	_{เศ็กษา} 2564	
รหัสวิชา	010113026	ชื่อวิชา	Digital Laboratory	ตอนเรียน	หมายเ	ลุขโต๊ะ
รหัสนักศึกข	_{ษา} 6 <u>2</u> 010	111631188		นายโสภณ	สูงสมบู	เน
อาจารย์ผัส	อน	SP	เวลาที่ทำการทดลอง	, TH°. 13,00 -16.0	วินที่	26/08/64

การทดลองที่ 5

Code Converter

<u>วัตถุประสงค์</u>

- 1. เพื่อให้สามารถใช้โปรแกรมคอมพิวเตอร์เพื่อจำลองการทำงานของวงจรลอจิกเกทได้
- 2. เพื่อให้เข้าใจการทำงานของอุปกรณ์แปลงรหัส BCD to 7-Segment Converter
- 3. เพื่อให้เข้าใจการทำงานของอุปกรณ์แปลงรหัส Binary to Gray Code Converter

เครื่องมือและอุปกรณ์

1. ระบบคอมพิวเตอร์ 1 เครื่อง พร้อมติดตั้งโปรแกรม Quartus II เวอร์ชั่น 8.0 (Student Edition) ขึ้นไป

การทดลองตอนที่ 1 วงจรแปลงรหัสแบบ BCD to 7-Segment Converter

คำสั่งการทดลอง

- 1. ให้ออกแบบวงจรแปลงรหัส BCD ให้เป็นรหัสแบบ 7-Segment Decoder ในรูปที่ 1 โดยใช้ข้อมูลแสดงการ ทำงานจากตารางความจริงของแต่ละเซ็กเมนต์ a, b, c, d, e, f และ g ให้ น.ศ. ออกแบบตามขั้นตอนดังนี้
 - ก) ให้แสดงวิธีการทำ K-Map จากตารางความจริง
 - ข) สร้างสมการลอจิกฟังก์ชั่น จาก K-Map
 - ค) เขียนวงจรที่ออกแบบตามสมการลอจิกฟังก์ชั่น โดยใช้เกทพื้นฐาน (AND , OR , NOT etc.)

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 2 / 9

<u>เซ็กเมนต์ b</u> $b(w_3, w_2, w_1, w_0) = \overline{w_1 w_0} + \overline{w_2} + w_1 w_0$ ∴ $b(w_3, w_2, w_1, w_0) = \overline{w_1 \oplus w_0} + \overline{w_2}$

เซ็กเมนต์ c $c(w_3, w_2, w_1, w_0) = \frac{W_2 + W_0 + \overline{W_1}}{2}$

รูปที่ 2.3

เซ็กเมนต์ d $d(w_3, w_2, w_1, w_0) = \frac{W_2 \overline{W_1} W_0 + W_2 \overline{W_2} W_1 + \overline{W_3} \overline{W_2} W_1 + \overline{W_1} \overline{W_0} + \overline{W_2} \overline{W_0}$ ∴ $d(w_3, w_2, w_1, w_0) = \overline{W_2} (w_3 \oplus w_1) + \overline{w_0} (w_1 + \overline{w_2}) + \overline{w_2} \overline{W_1} w_0$

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 3 / 9

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 4/9

4. นำวงจรที่ได้จากการออกแบบในข้อ 2 (รูปที่ 2.1 – 2.7) มาเขียนวงจรบน Graphic Editor Tool และทำการคอมไพล์ให้เรียบร้อย จากนั้นให้ทำการสร้าง symbol ของวงจรขึ้นมา โดยไปที่เมนู

File >> create/update

และเลือก

Create symbol file for current file ก็จะได้อุปกรณ์ชื่อ BCD2 7Seg ดังรูปที่ 4

- 5. สร้างไฟล์แสดงแผนภาพทางเวลา (Timing diagram) ด้วย Vector Waveform Editor Tool โดย
 - กำหนดค่าของสำหรับแสดงผลจำลองการทำงานให้มีค่าดังนี้ Fnd Time $= 1.0 \, \text{us}$ Grid Size
 - จัดกลุ่มอินพุท w_0 , w_1 , w_2 และ w_3 ให้เป็นกลุ่มชื่อ "W" และกำหนด ค่าเป็นแบบนับ 0 ถึง 9 (ดูรูปที่ 5) ปรับค่าช่วงละ 100 ns. ดังในรูปที่ 6
- 6. จำลองการทำงานโหมด Functional Mode บันทึกผลที่ได้ลงในรูปที่ 6

รูปที่ 5

บันทึกผลการทดลอง

ก) ในแต่ละช่วงค่าของ w ให้ น.ศ. ระบายสีดำ ลงบนเซ็กเม้นต์ (a,b,c,d,e,f,g)

โดย เซ็กเม้นต์ที่มีค่าลอจิกเป็น '1' ให้ระบายระบายสีดำ (**ใช้ดินสอสีเข้ม**)

เซ็กเม้นต์ที่มีค่าลอจิกเป็น '0' ให้**ปล่อยว่างไว้**เช่นเดิม

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 5/9

ในช่วง 0-9 ค่า Output แสดงผลดำแ	นปุ่วกับ t-segment ที่เราลวสี เขินค่า 0-9002 จริง tput ที่แลดง๐๐ภอง เงินค่าที่ ใม่ ลาอง สาอนโล
ค) หากค่าของ W มีค่ามากเกินกว่า 9 (ค่าระหว่าง	10 ถึง 15) ปรากฏผลบนรูปของ 7-segment เช่นไร
นทางปฏิบัติจริงศาของ W มีค่ามากเกินกว่า 9 ไม่ใต้ ให้อากา วาจรดัวกุสาว เงิน	บริการ์ พ.ศ. เพื่อการ์การ์การ์การ์การ์การ์การ์การ์การ์การ์
7. ให้ทำการปิดโปรเจคที่สร้างมาในขั้นตอนที่ 1 – 58. ให้เขียนภาษา VHDL เพื่อสร้างวงจรสำหรับแปล	ร ก่อนที่จะทำการทดลองต่อไป งรหัส BCD (ระบบเลขฐานสิบที่เขียนแทนด้วยเลขไบนารี
 ให้สร้างโปรเจคขึ้นใหม่ชื่อ "VHD_7SEGM" เก็บงานนี้ไว้ในไฟล์ชื่อ "VHD_7SEGM.vhd" เมื่อคอมไพล์เสร็จแล้วให้สร้าง Symbol ไว้เพื่อเตรียมใช้ในการทดลองต่อไป รูปที่ 7 	USE ieee.std_logic_1164.all; ENTITY VHD_7SEGM IS PORT (bcd : IN

```
9. สร้างไฟล์แสดงแผนภาพทางเวลา (Timing diagram) และกำหนดค่าของพารามิเตอร์สำหรับแสดงผลจำลอง
   โดยให้มีค่าดังนี้ End Time = 1.0 us
                                               Grid Size
```

- สัญญาณอินพุท "bcd" กำหนดค่าเป็นแบบตัวเลขนับจาก 0 ถึง 9 ช่วงละ 100 ns.
- จำลองการทำงานโหมด Functional mode บันทึกผลที่ได้ลงในรูปที่ 8

<= "1111011"; <= "0000000";

WHEN OTHERS => leds

END CASE; **END PROCESS: END Behavior**;

หน้า 6 / 9

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 7 / 9

การทดลองตอนที่ 2 หลักการทำงานของ Gray Code Converter

- 10. **ปิดโปรเจค**ที่สร้างมาในขั้นตอนก่อนหน้าและให้ทำดังนี้
 - a) ให้สร้างโปรเจคชื่อ "Binary2Gray" ขึ้นมาใหม่
 - b) สร้างไฟล์ขึ้นใหม่ให้มีชื่อตรงกันกับชื่อโปรเจค สำหรับเก็บงานวงจรแปลงรหัสเลขไบนารีไปเป็น รหัสเลขแบบเกรย์ ในรูปที่ 9
 - c) กำหนดให้ใช้ชิพ FPGA เบอร์ **EP3C10E144C8**
 - d) เขียนวงจรดังรูปที่ 9 ทำการคอมไพล์และสร้าง symbol ของวงจรไว้สำหรับการทดลองขั้นต่อไป

วงจรแปลงเลขไบนารีขนาด 4 บิทให้เป็น รหัสแบบ Gray code ขนาด 4 บิท

รูปที่ 9

- 11. สร้างไฟล์แสดงแผนภาพทางเวลา (Timing diagram) ดังรูปที่ 10 โดยกำหนดค่าสำหรับแสดงผลจำลองการทำ งานโดยให้มีค่า End Time = 800 ns , Grid Size = 1 ns
 - สัญญาณ "bin3 bin0" กำหนดค่าเป็นแบบนาฬิกา ช่วงละ 50 ns. (bin0 มี period = 100ns)
 - จำลองการทำงานโหมด Functional mode บันทึกผลลงในรูปที่ 10 และเขียนค่าลอจิกบนตารางความจริง

บันทึกผลการทดลอง

รูปที่ 10

ก) อธิบายความสัมพันธ์กันของค่าไบนารี bin3-bin0 กับสถานะของลอจิกของ gra3-gra0 (อธิบายโดยใช้แผน ภาพหรือสมการ)

grad = bind gra2 = bind () bin2 gra1 = bine () bin1 gra0 = bin1 () bin0

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 8 / 9

ข) จากตารางความจริง <u>สังเกตการเปลี่ยนค่าของเลขไบนารี</u>
(เช่นจาก 0000 ไป 0001 เป็นต้น)
จุดที่มี <u>การเปลี่ยนแปลง</u> พร้อมกัน 2 บิท มี <mark>4</mark> จุดคือ
0001 → 0010 , 0101 → 0110 ,
$0001 \rightarrow 0010$, $0101 \rightarrow 0110$, $1001 \rightarrow 1010$
จุดที่มี <u>การเปลี่ยนแปลง</u> พร <i>้</i> อมกัน 3 บิท มี <mark>2</mark> จุดคือ
0011 → 0100 ₂ 1011 → 1100
จุดที่มี <u>การเปลี่ยนแปลง</u> พร้อมกัน 4 บิท มี <mark>1</mark> จุดคือ
0111 -> 1000
ค) จากตารางความจริง <u>สังเกตการณ์เปลี่ยนค่าของรหัสเกรย์</u>
(gray code) มี <u>การเปลี่ยนแปลง</u> พุร้อมกัน มากกว่า 1 บิท
มี 0 จุดคือ ไม่มีการเปลี่ยน แปลงพร้อมกัน > 1 ปิด
คุณสมบัติของ Gray Code ที่ดีกว่า Binary คือ
ส Delay time ห่อยก่า Binary มีโอกาลนิด
พลาด ได้ ยากท่า bimany ที่มีการ เปลี่ยนแปลงแลาบ 3 ito.

8 4 2 1										
	Binary				Gray					
Decimal	bin3	bin2	bin1	bin0	gra3	gra2	gra1	gra0		
00	0	0	0	0	0	0	0	0		
01	0	0	0	1	O	0	0	1		
02	0	0	1	0	0	0	1	1		
03	0	0	1	1	0	0	1	0		
04	0	7	0	0	0	1	1	0		
05	0	1	0	1	0	1	1	1		
06	0	1	7	0	0	1	0	1		
07	0	1	1	1	0	1	0	0		
08	1	0	0	0	1	~	0	0		
09	1	0	0	1	~	1	0	1		
10	1	0	J	0	~	1	1	1		
11	1	0	1	1	1	1	1	0		
12	1	1	0	0	~	Q	1	0		
13	1	1	0	1	1	0	1	1		
14	1	1	٦)	0	~	0	0	1		
15	1	1	1	1	~	0	0	0		

ลายเซ็นอาจารย์ผู้ควบคุม...../...../...../

- 12. **ปิดโปรเจค**ที่สร้างมาในขั้นตอนที่ 10 12 ก่อนจะทำการทดลองต่อไป
- 13. a) ให้สร้างโปรเจคชื่อ "Gray2Bin" และสร้างไฟล์ขึ้นมาเก็บงาน ออกแบบวงจรในรูปที่ 11
 - b) ให้บันทึกไฟล์ไว้ในโฟลเดอร์เดียวกันกับงานทดลองก่อนหน้านี้
 - c) ให้ใช้ชิพเบอร์ EP3C10E144C8
 - d) ทำการคอมไพล์และสร้าง symbol ของวงจรขึ้นมาไว้สำหรับ การทดลองต่อไป

วงจรแปลงรหัสแบบ Gray code ขนาด 4 บิท ให้เป็นเลขไบนารีขนาด 4 บิท

รูปที่ 11

14. สร้างไฟล์แสดงแผนภาพทางเวลา กำหนดค่าของพารามิเตอร์สำหรับแสดงผลจำลองการทำงานโดยให้มีค่า End Time = 800 ns Grid Size = 1 ns สร้างรูปคลื่นของสัญญาณ gra0 gra1 gra2 gra3 ให้เป็นแบบนาฬิกาดังในรูปที่ 12 และทำการกลับเฟส ของสัญญาณด้วยเครื่องมือบนเมนูดังในรูปที่ 13

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

หน้า 9/9

สัญญาณ gra0

สัญญาณ gra1

สัญญาณ gra2

สัญญาณ gra3

รูปที่ 12

15. จำลองการทำงานด้วยโหมด "Functional mode" บันทึกผลที่ได้ลงในรูปที่ 14 และตารางความจริง

บันทึกผลการทดลอง

อธิบายความสัมพันธ์กันของค่าไบนารี bin3-bin0 กับสถานะ ของลอจิกของ gra3-gra0 (อธิบายโดยใช้แผนภาพหรือสมการ)

bin 3 = gra3 bin2 = gras⊕ gra2 bin1 = gras ⊕ gra2 ⊕ gra1 bin0 = gras ⊕ gra2 ⊕ gra1 ⊕ grao

ลายเซ็นอาจารย์ผู้ควบคุม /..../..... /..../.....

งานมอบหมายท้ายการทดลอง

ให้เขียนลงบนกระดาษ A4 ที่มีเส้นบรรทัดและรวมใส่ท้ายเอก สารการทดลอง ส่งอาจารย์ผู้สอนในคราวถัดไป)

1. ให้เขียนภาษา VHDL สำหรับแปลงรหัสระหว่าง

Gray Code ⇒ Binary และ Binary ⇒ Gray Code

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

		Gr	ay		Binary				
Decimal	gra3	gra2	gra1	gra0	bin3	bin2	bin1	bin0	
00	0	0	0	0	0	0	0	0	
01	0	0	0	1	0	0	0	1	
02	0	0	1	1	0	0	1	0	
03	0	0	1	0	0	0	1	1	
04	0	1	1	0	0	1	0	0	
05	0	1	1	1	0	1	0	1	
06	0	1	0	1	0	1	1	0	
07	0	1	0	0	0	1	1	1	
08	1	1	0	0	1	0	0	0	
09	1	1	0	1	1	0	0	1	
10	1	1	1	1	1	0	1	0	
11	1	1	1	0	1	0	1	1	
12	1	0	1	0	1	1	0	đ	
13	1	0	1	1	1	1	0	1	
14	1	0	0	1	1	1	1	0	
15	1	0	0	0	1	1	1	1	

| melanu avanyn 62010 n 6311 88

งานมอบนมายท้ายการทดลอง

) VHDL สำนุรับการแปลงรน์สาก Binary → Gray Code

```
LIBRARY ieee ;
     USE ieee.std logic 1164.all ;
    ENTITY VHDL bin2gray IS
    PORT (bin3 , bin2 , bin1 , bin0
                                      : IN STD LOGIC ;
            gray3 , gray2 , gray1 , gray0 : OUT STD_LOGIC ) ;
    END VHDL bin2gray ;
8
   ■ARCHITECTURE Behavior OF VHDL bin2gray IS
9
10
            gray3 <= bin3 ;
12
            gray2 <= bin3 xor bin2 ;
            grayl <= bin2 xor bin1 ;
            gray0 <= binl xor bin0 ;
14
16 END behavior ;
```

(Name: VHDZ_bin2gmy)

(RTL Viewer for Bin 2 Gray)

	Value at	0 ps	80.0 ns	160,0 ns	240,0 ns	320.0 ns	400,0 ns	480,0 ns	560,0 ns	640,0 ns	720,0 ns	800.0 ns
Name	0 ps	0 ps										
bin3	Н0											
bin2	Н0											+-
bin1	H 0											\Box
bin0	H 0							JIII	ШППП			
gray3	H 0											
gray2	H 0											
gray1	H 0											
gray0	H 0											

(Timing Diagram Functional mode)

2 VHDL สิณรับการแปลงรน์ส Gray Code -> Binary

```
LIBRARY ieee ;
    USE ieee.std_logic_1164.all ;
   ■ENTITY VHDL GRAY2BIN IS
   PORT (gray3, gray2, gray1, gray0 : IN STD_LOGIC;
bin3, bin2, bin1, bin0 : OUT STD_LOGIC)
                                          : OUT STD LOGIC);
                                                                         (Name: VHDL_GRAY2BIN)
    END VHDL_GRAY2BIN ;
10
   ■ARCHITECTURE behavior OF VHDL GRAY2BIN IS
    SIGNAL C,X : STD LOGIC ;
12
14
                <= gray3 xor gray2 ;
15
                <= C xor gray1;
16
           bin3 <= gray3 ;
17
           bin2 <= gray3 xor gray2 ;
bin1 <= C xor gray1 ;</pre>
18
           bin0 <= X xor gray0
    END behavior ;
```


(RTL viewer for grayzbin)

(Timing Diagram Functional mode)