DOCUMENT RESUME

ED 281 768 SE 047 962

Lisowski, Marylin AUTHOR

TITLE The Effect of Field-Based Learning Experiences on

Students' Understanding of Selected Ecological

Concepts.

PUB DATE 87

NOTE 241p.; Ph.D. Dissertation, Ohio State University.

Parts of appendices contain small, blurred type. Dissertations/Theses - Doctoral Dissertations (041)

-- Tests/Evaluation Instruments (160) -- Reports -

Research/Technical (143)

EDRS PRICE MF01/PC10 Plus Postage.

DESCRIPTORS

*Concept Teaching; *Ecology; Experiential Learning; Field Instruction; *Field Trips; Instructional Effectiveness; Instructional Innovation; Learning Strategies; *Marine Biology; Science Education;

*Science Instruction; Secondary Education; *Secondary

School Science; Teaching Methods

IDENTIFIERS *Science Education Research

ABSTRACT

PUB TYPE

Designed to examine the nature of ideas that students hold about specific scientific concepts and to investigate modes of instruction that would effectively help them gain an accurate understanding of their world, this study focused on students! conceptions of ecological concepts and the influence of field instruction strategies on students' understanding and retention of these concepts. An experiential 7-day field program served as the learning strategy for three independent groups of secondary students. Students responded to a specially designed instrument, Student Ecology Assessment (SEA), prior to, during, and 4 weeks after the field program. Background data, instructional emphasis ratings, SEA concept subscores and total scores were entered into multiple regression analyses. All groups exhibited significant posttest gains (at the .001 level) and showed evidence of retention of the targeted concepts. Gains in scores in the major concept strands were positively related to the instructional emphasis given to those areas. The effectiveness of the field program was apparent in that specific concepts that were emphasized were learned and retained. The mastery approach of learning in a field setting proved to be successful. A 100-item bibiligraphy and 118 data tables are included. (ML)

********** Reproductions supplied by EDRS are the best that can be made from the original document. *********************

5

BEST COPY AVAILABLE

THE EFFECT OF FIELD-BASED LEARNING EXPERIENCES ON STUDENTS! UNDERSTANDING OF SELECTED ECOLOGICAL CONCEPTS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University

By

Marylin Lisowski, B.A., M.A.

- U.S-OEPARTMENT OF EDUCATION
Office of Educational Research and Improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

This document has been reproduced as received from the person or organization originating it.

Minor changes have been made to improve reproduction quality.

Points of view or opinions stated in this docu-ment do not necessarily represent official OERI position or policy

The Ohio State University 1987

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

Dissertation Committee:

Dr. John F. Disinger

Dr. Robert W. Howe

Dr. Rosanne W. Fortner

Dr. Russell O. Utgard

Approved by

DEDICATION

To my dear Family
my Mother, Godmother, Sisters, and Brothers

ACKNOWLEDGEMENTS

The basic principles of ecology that speak of elements of interconnectiveness and interdependencies were clearly operative in this study. The efforts and talents of many were responsible for the sustenance and completion of this project.

Primarily, I thank God for this earth, education, science and for this program that assisted in preparing me to meet the challenges and to contribute to the mission of I also thank God for all the people who have each. inspired and contributed to this study and my program. To the greatest treasure in my life, my mother Harriet Lisowski, I express my deepest appreciation for the love, solicitude, and hope that she has constantly lavished on me. Her unparalleled talents, resiliency, faith, and strength are a source of pride and wonder to me. To my dearest godmother, Josephine Janus, I offer my gratitude, respect, and affection for her unlimited graciousness, resourcefulness, prayers, and for her tremendous example. I thank and love my sisters, Marya and Rosemary, for their constant concern, conversation, humor, and vibrant friendship. They are

superb. To my accomplished and unique brothers: Joseph, Paul, Anthony, John, and Michael, I owe my thanks for their interest, acceptance, and encouragement.

extend my greatest respect and admiration for the exemplary mentors who have been luminary models of excellence for me throughout my program. I am indebted to my advisor, Dr. John Disinger, for not only introducing me to the possibilities of learning in, about, and for the environment, but for so patiently and graciously guiding me in my career and through my program. To Dr. Robert Howe, whose phenomenal capabilities, dedication, and accomplishments consistently radiate excellence, paramount levels of appreciation and acclaim are due. The unlimited time, talents, and guidance that he provided in creating, nurturing, and refining my learnings and studies have indeed been the hallmark of my entire program. My respect and admiration are expressed to my committee member and guide, Dr. Rosanne Fortner, for her all her encouragement and personal inspiration. To Dr. Russell Utgard, my gratitude extends beyond the science I have learned from him in the class and field to what I have learned from him as a quality person and educator. acknowledge Dr. Garry McKenzie for his Ξ many accomplishments, his varied expressions of competence, and for all the motivation and gentle guidance that he has provided for me throughout my professional and scholastic

career. To my two successful brothers in academia, Skip and Paul, I am so thankful and proud of the professional triumphs that each has accomplished and for the standards of excellence that each has modeled so sensitively and positively for me. Their proficiences and overall brilliance have been a source of pride as well a motivating factor in my pursuit of higher education.

I am grateful for the fine educators whose interest in field studies have benefited countless students and have contributed to this particular study. Thanks are extended to Dr. Ben Bohl and the staff of International Field Studies, Inc.; to Jim Parker and the students of Stow, Ohio; to Jim Tatman, Craig Kramer, and the teachers and students of Bexley High School, Ohio; to Lisa Lyle and the students of Fairfax, Virginia; and to Betty Campbell and the students of Harding High School, Ohio.

Special appreciation is extended to my colleagues in education, to the fine people I worked with and was able to learn from while at The Ohio State University, especially the staff at the ERIC Clearinghouse for Science, Mathematics, and Environmental Education, to all my super students for the countless ventures that we shared in discovering science and experiencing the wonders of learning.

VITA

1968-1970Science/Math Teacher, St. Hyacinth School
Pittsburgh, Pennsylvania
1970-1974Science/Math Teacher, Newton Falls Catholic
Newton Falls, Chio 1974-1975Principal, Newton Falls Catholic
Newton Rella - Ohio
1975-1978Science Department Chair, St. Augustine
LAKOMOOD LIDEO
1978-1979Science Teacher, Brunswick High School
Bringwick Obje
1979-1981Director of Marine Research Station
Andros Island, Bahamas
1982-1984Biology Teacher, Glades High School
Biology Instructor, Palm Beach Jr. College Belle Glade, Florida
1984-1985Research Associate, Ohio Sea Grant Education
THE UNIO STATE United to Paliambian - Obj.
1985-1987Research Associate, ERIC Clearinghouse for
Science/Mathematics/Environmental Education
The Ohio State University - Galember - Obline
1986-1987Consultant - EESA Federal Program
The Ohio Board of Regents, Columbus, Ohio
FIELDS OF STUDY
- n -
Major Field: Science Education
Science EducationDr. Robert W. Howe
Educational ResearchDr. Robert W. Howe
Natural ResourcesDr. John F. Disinger
Dr. Rosanne W. Fortner
GeologyDr. Russell O. Utgard
Dr. Garry D. McKenzie

TABLE OF CONTENTS

																									PA	GE
DEDI	CAT	ION	•	•	•	ě	ē	ē	ē	•	•	•	•	ē	- •	ē	-	•	•	•	•	•	•	ě		ii
ACKN	IOWL:	EDGI	EMEI	NTS	5	•	ē	ē	ē	•	•	•	•	ē	•	- •	•	<u>.</u>	•	•	•	•		·	i	ii
VITA		•		•	•	i	ē	ē	ē	•		•	•	•	-	- •	- •	-	•	•	•	•	•	ė	ţ	Λī
LIST	ÖF	TĀ	BLES	3	•	•	ě	ē	ē	•	•	•	•	•	÷	- •	-	•	•	•	•	•	•	•	ě	Ä
CHAP	TER																									
	ī.		ROL	_				ē	÷	•	•	•	•	•	ē	ē	•	•		•	•	•	•	•	ě	1
			IME STA HYF DEF ASS DEL LIM OVE	POR TE POT IN IM IN IN	TA ME HE IT IT AT IE	NC NT SE IC IC AT IC	E S NS NS IC	OF ONS	PF	TE	ERN	em em	JDY		-	-	-	-		•	•	•	•	•	•	1 6 7 8 9 0 1
Ī	Ι.	REV													•	•	•	•	•	•	•	•		•	1	3
			FIE CON		_ L PT	EΑ	RN EA	IN RN	ig IIN	en Ig	IN VI	RO T	NM HE	IEN E	NT BIO	LC	GI	-	-	T	HE.	•	•	•	:	.3
			STU	DE	NT	e	HA	RA	CT	ER	IS	ΤI	CS	7	INS CNA EA	S	CI	EN	ĊE	•	•	•	•	•	-	10

III.	RESEARCH DESIGN AND PROCEDURES		
	Overall Design	• •	31 32 33 49 51
īv.	RESULTS		
	DESCRIPTIVE STATISTICS CORRELATIONS REGRESSIONS PERCENTAGE OF POSSIBLE GAIN AND EMPHASIS RATINGS HYPOTHESES		54 61 61 168 170
Ÿ.			
٧.	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS .	• •	175
	SUMMARY MAJOR CONCLUSIONS RECOMMENDATIONS FOR FURTHER RESEARCH RECOMMENDATIONS FOR PRACTICE	• •	175 178 180 181
BIBLIO	BRAPHY		Ī82
APPENDI	CES		
Ā.	STUDENT ECOLOGY ASSESSMENT (SEA) INSTRUMENT .	. •	193
B.	STUDENT BACKGROUND AND ATTITUDE FORM	•	199
Ĉ.	INSTRUCTIONAL EMPHASIS PERCEPTION FORM	•	$\bar{2}\bar{0}\bar{2}$
Ď.	CONCEPT MAP	•	20 7
Ë:	BACKGROUND AND ATTITUDE VARIABLE LABELS		2 09
F.	CONCEPT VARIABLE LABELS	•	$\bar{2}\bar{1}\bar{1}$

G.	REGRESSI	ON TABL	ES	NO	T	F(JUI	ND	ΞÑ	1	THI	Ξ :	ΓE	ХT	•	•	•	•	213
	GROUP	ONE .	•	•	•	ė	ě	ē	ē	ē	ē	ē	ē	ē	-	-	-		213
	GROUP	TWO .	•	•	•	•	Ť	ē	ė	ē	-	-	ē	ē	-	-		-	215
	GROUP	THREE	•	•	•	•	٠	ē	ē	ē		•	Ī	•	•	•	•	•	217
Ħ.	PRETEST A	AND POS	TT	EST	7	[יים	ES	SŦ	ŔĒ	Ši	rit.	PS.	-		ī	Ē	=	_	222

LIST OF TABLES

TABLE						PAGE
ī.	STUDENT ECOLOGY ASSSESSMENT PILOT TESTS SUMMARY STATISTICS			ě	ē	36
2.	STUDENT ECOLOGY ASSSESSMENT SUMMARY STATISTICS - GROUP ONE		•	ě	ē	36
3.	STUDENT ECOLOGY ASSESSMENT SUMMARY STATISTICS - GROUP TWO		•	ě	ē	37
4.	STUDENT ECOLOGY ASSESSMENT SUMMARY STATISTICS - GROUP THREE	•	•	•	ē	37
5 .	ITEM DIFFICULTY GROUP ONE (n=29)			ė	ě	39
6 .	ITEM DIFFICULTY GROUP TWO (n=21)			٠	ē	40
7.	ITEM DIFFICULTY GROUP THREE (n=29) .				i	41
8.	ITEM HIERARCHIES AND DIFFICULTIES - GROU ONE (n=29)	P			ī	43
9.	ITEM HIERARCHIES AND DIFFICULTIES - GROUTWO (n=21)	_ P				45
ĪŌ.	ITEM HIERARCHIES AND DIFFICULTIES - GROUTHREE (n=29)	_ P				47
īī.	GRADE LEVEL OF STUDENTS IN THE PARTICIPAL GROUPS				•	55
īā.	DISTRIBUTION OF THE SEX OF THE PARTICIPAL GROUPS	TI	NG		=	
īā.	SCIENCE ACHIEVEMENT MEANS AND STANDARD DEVIATIONS OF THE PARTICIPATING GROUPS	•	•	•	•	56
īā.	PERCENTAGE OF STUDENTS HOLDING POSITIVE ATTITUDES TOWARD SCIENCE CLASSES FOR THRI	EE.	•	•	ī	57

15:	LEARNING STYLE PREFERENCE OF THE PARTICIPATING GROUPS	58
16:	PERCENTAGES OF PREFERENCE AND INVOLVEMENT IN SCIENCE ACTIVITIES OF THE PARTICIPATING GROUPS	50
17:	TRAVEL AND OUTDOOR EXPERIENCE INDICATED BY THE PARTICIPATING GROUPS	
18:	REGRESSION OF BACKGROUND VARIABLES ON	
19.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 4 FOR GROUP ONE (n=29)	65
20:	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 5 FOR GROUP ONE (n=29)	66
21.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 6 FOR GROUP ONE (n=29)	67
22.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 8 FOR GROUP ONE (n=29)	69
23;	REGRESSION OF BACKGROUND VARIABLES ON PRETEST TOTAL SCORE FOR GROUP ONE (n=29)	70
24.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 1 FOR GROUP ONE (n=29)	71
25.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 3 FOR GROUP ONE (n=29)	72
26.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 4 FOR GROUP ONE (n=29)	73
27:	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 5 FOR GROUP ONE (n=29)	74
28.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 6 FOR GROUP ONE (n=29)	75
29.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 8 FOR GROUP ONE (n=29).	77
30;	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST TOTAL SCORE FOR GROUP ONE (n=29)	78
31.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 1 FOR GROUP ONE	

	(n=29)	• •	· ·	· -	· ·	· ·	· ·	•				ě	79
32.	REGRESS ON ADJU (n=29)	JSTED	GAIN	SUB	SCOR	E 2	FOR	GROU	P ON	E.		ě	80
33.	REGRESS ON ADJU (n=29)	SION O ISTED	F BA	CKGR SUB	OUND SCOR	AND E 3	PRE FOR	TEST GROUI	SCO	RES E			82
34.		SION O STED	F BAG GAIN	CKGR SUB	OUND SCOR	AND E 4	PRE FOR	TEST GROUI	SCOI	RES E	•	•	83
35.	REGRESS ON ADJU (n=29)	ION O	F BAG GAIN	CKGR SUB	OUND SCOR	AND E 5	PRE FOR	TEST GROUI	SCO	RES			84
36.	REGRESS ON ADJU (n=29)	ION O	F BAC GAIN	CKGR	OUND SCORI	AND	PRE FOR	TEST GROUE	SCO	RES			85
37.		ION O	F BAC GAINS	CKGR	OUND BSCO	AND RE 7	PRE FOR	TEST	SCOP	RES NE			86
38.	REGRESS ON ADJU (n=29)	ION O	F BAC GAIN	KGR(DUND SCORE	AND	PRE FOR	TEST GROUF	SCOF	RES			
39.	REGRESS ON ADJU	ION O	BAC	KGRO	DUND	ĀND	PRE	TEST	SCOF	ES			87 88
40.	REGRESS ADJUSTE SUBSCOR	e Gair	n sec	RES	ON A	DJUS	STED	RETE	NTIC	N	•	•	89
41.	REGRESS ADJUSTE SUBSCOR	D GAIR	N SCC	RES	ON A	DJUS	STED	RETE	NTIC	N			91
4 2 .	REGRESS ADJUSTEI SUBSCOR	ION OF	F BAC	KGRO RES	OUND,	PRI ETE	ETES'	I, PO	STTE	ST,			92
43.	REGRESS ADJUSTEI SUBSCORI	ION OF	BAC SCO	KGRO	ON R	PRE	TES:	r, Po	STTE USTE	ST,			94
14.	REGRESS: ADJUSTEI	ION OF	BAC	KGRC	UND,	PRE	TEST	r. PO	STTE	ST.	•	•	74

	SUBSCORE 5 FOR GROUP ONE (n=29) 9
45 .	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED SUBSCORE 6 FOR GROUP ONE (n=29) 9
46.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED SUBSCORE 8 FOR GROUP ONE (n=29)
47 .	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED TOTAL SCORE FOR GROUP ONE (n=29)
48.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 3 FOR GROUP TWO (n=21) 10:
49.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 4 FOR GROUP TWO (n=21) 102
50.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 6 FOR GROUP TWO (n=21) 105
51.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 8 FOR GROUP TWO (n=21) 107
52.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST TOTAL SCORE FOR GROUP TWO (n=21) 108
53.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON SUBSCORE 6 FOR GROUP TWO (n=21)
5 4 .	REGRESSION OF BACKGROUND AND PRETEST SCORES ON SUBSCORE 7 FOR GROUP TWO (n=21)
55.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON SUBSCORE 8 FOR GROUP TWO (n=21)
56.	REGRESSION OF BACKCROUND AND PRETEST SCORES ON TOTAL SCORE FOR GROUP TWO (n=21)
57.	REGRESSION OF BACKGROUND AND PRETEST RESULTS ON ADJUSTED GAIN SUBSCORE 1 FOR GROUP TWO (n=21)
58.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 2 FOR GROUP TWO (n=21)
59 .	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 3 FOR GROUP TWO

= xiii =

	(n=21)
60.	'REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 4 FOR GROUP TWO (n=21)
61.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 5 FOR GROUP TWO (n=21)
6 2 .	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 6 FOR GROUP TWO (n=21)
63.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 7 FOR GROUP TWO (n=21)
64.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 8 FOR GROUP TWO (n=21)
65 .	REGRESSION OF BACKGROUND AND PRETEST SCORES ON TOTAL ADJUSTED SCORE FOR GROUP TWO (n=21) . 123
66.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 2 FOR GROUP TWO (n=21)
67.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED SUBSCORE 5 FOR GROUP TWO (n=21)
68.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED SUBSCORE 6 FOR GROUP TWO (n=21)
69.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED SUBSCORE 7 FOR GROUP TWO (n=21)
70.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 2 FOR GROUP THREE (n=29) 130
71.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 3 FOR GROUP THREE (n=29) 131
72.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 4 FOR GROUP THREE (n=29) 132
73.	REGRESSION OF BACKGROUND VARIABLES ON

	PRETEST SUBSCORE 5 FOR GROUP THREE (n=29) 133
74:	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 8 FOR GROUP THREE (n-29) 135
7 5.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST TOTAL SCORE FOR GROUP THREE (n=29) 136
76:	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 3 FOR GROUP THREE (n=29)
77:	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 4 FOR GROUP THREE (n=29)
78.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 5 FOR GROUP THREE (n=29)
79.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 6 FOR GROUP THREE (n=29)
80.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST TOTAL SCORE FOR GROUP THREE (n=29)
81.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 1 FOR GROUP THREE (n=29)
82.	REGRESSION OF BACKGROUND AND PRETEST RESULTS ON ADJUSTED GAIN SUBSCORE 2 FOR GROUP THREE (n=29)
83.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 3 FOR GROUP THREE (n=29)
84:	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 4 FOR GROUP THREE (n=29)
85.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 5 FOR GROUP THREE (n=29)
86.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 6 FOR GROUP THREE
	(n=29)

- xv -

87.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAINS SCORE 7 FOR GROUP THREE (n=29)	51
88.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SCORE 8 FOR GROUP THREE	
- -	(n=29)	2
89.	REGRESSION OF BACKGROUND AND PRETEST CORES ON ADJUSTED TOTAL SCORE FOR GROUP ONE (n=29) . 15	3
90.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 1 FOR GROUP THREE (n=29)	4
91.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED SUBSCORE 3 FOR GROUP THREE (n=29)	6
92 .	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED SUBSCORE 4 FOR GROUP THREE (n=29)	7
93.	BACKGROUND VARIABLES ON PRETEST SCORES 16	1
94.	BACKGROUND AND PRETEST SCORES ON POSTTEST SCORES	3
95.	BACKGROUND AND PRETEST ON ADJUSTED GAIN SCORES	5
96.	BACKGROUND, PRETEST, POSTTEST, and ADJUSTED GAIN SCORES ON ADJUSTED RETENTION GAIN SCORES	7
97 .	PERCENTAGE OF POSSIBLE GAIN AND EMPHASIS RATINGS FOR GROUP ONE (n=29) 169	
98.	PERCENTAGE OF POSSIBLE GAIN AND EMPHASIS RATINGS FOR GROUP TWO (n=21) 169	9
99.	PERCENTAGE OF POSSIBLE GAIN AND EMPHASIS RATINGS FOR GROUP THREE (n=29) 170	ð
LOC.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 3 FOR GROUP ONE (n=29) 213	: 3
01.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 7 FOR GROUP ONE (n=29) 213	3
.02.	REGRESSION OF BACKGROUND AND PRETEST SCORES	

- xvi -

	ON POSTTEST SUBSCORE 2 FOR GROUP ONE (n=29) 214
103.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 7 FOR GROUP ONE (n=29) 214
104.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 7 FOR GROUP ONE (n=29)
105.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 2 FOR GROUP TWO (n=21) 215
106:	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 1 FOR GROUP TWO (n=21) 216
107.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 5 FOR GROUP TWO (n=21) 216
108.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 8 FOR GROUP TWO (n=21)
109.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 1 FOR GROUP THREE (n=29) 217
110.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 6 FOR GROUP THREE (n=29) 218
111.	REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 7 FOR GROUP THREE (n=29) 218
112.	REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 8 FOR GROUP THREE (n=29)
113.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 2 FOR GROUP THREE (n=29)
114.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 5 FOR GROUP THREE (n=29)
115.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 6 FOR GROUP THREE (n=29)
116.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION
	SUBSCORE 8 FOR GROUP THREE (n=29)

= xvii =

117.	REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION
	TOTAL SCORE FOR GROUP THREE (n=29) 22
118.	PRETEST AND POSTTEST T TEST RESULTS

- xviii -

19

CHAPTER T

INTRODUCTION

IMPORTANCE OF THE STUDY

The dynamic nature of science is well portrayed through consideration of the evolutionary growth of its basic ideas and premises as well as of its revolutionary breakthroughs Change is not only a characteristic of and discoveries. science but also is evident in perceptions and explanations of how learning about the sciences occurs. Currently, attention is being directed to the conceptual understandings of students prior to and during, as well as after, formal instruction. A constructivist view maintains that a learner's prior knowledge is the most important ingredient in the process of meaningful learning (Ausubel, 1968; Wittrock, 1974; Osbourne and Wittrock, 1983; Driver, Clough, 1985).

Just as we can no longer be content to accept inchoate medieval explanations of the universe, so too we can no longer be satisfied with a "tabula rasa" perception of the learner and a simplistic monomodal approach to instruction. Recent developments and insights into the nature of human

cognitive processing have the potential to assist educators in providing quality learning opportunities for today's youth. Models of how youth process information need to be examined and alternative instructional strategies which assist students in this process need to be investigated.

With perspectives gleaned from the fields of cognitive science, constructivist thought, and experiential learning theories, this study was designed to explore the nature of ideas and beliefs which students hold about specific scientific phenomena and to investigate instructional strategies that are designed to help them gain an accurate understanding of their world.

A model which focuses on three dimensions of the learning process was employed in the investigation. Areas of concern included: 1) the learners (exploring their understanding of selected concepts in ecology); 2) the learnings (identifying core biological concepts related to ecology and feeding relationships); and 3) the learning environment (examining the effectiveness of field instruction strategies on concept understanding and retention). An overview and a rationale for considering these areas of emphases follow.

THE LEARNER

Recent research has indicated that students' understandings of natural phenomena differ in fundamental ways from

explanations given about them in science courses the (Smith, 1986). Current research findings suggest that the alternative conceptions that students hold can influence observations, color explanations, and affect their later learnings. Given this tenet, a model of conceptual change that provides for the unlearning of misconceptions has been heralded as being the "most determinative" factor for students' acquisition and retention of subject matter knowledge (Ausubel, 1968). If the teaching of science is to help pupils develop theoretical understandings and workable models to interpret phenomena in accordance with the nature of science, provisions for the ideas and beliefs which students already hold must be made (Driver, 1983; If learning is viewed as a process of conceptual 1985). it cannot occur simply through an addition of new bits of information, but must involve the interaction of new knowledge with existing knowledge in order that the new may be reconciled with the existing (Hewson and The established tenets of the scientific community 1983). and the existing beliefs and conceptions of students should both be considered in designing and implementing instructional programs.

Research has shown that students experience considerable difficulties in understanding scientific principles and processes because of preset misconceptions and beliefs

(Anderson and Smith, 1982; Anderson, and Smith, 1986; Driver, 1983; Helm and Novak, 1983; Stewart, 1983). It has been noted that these misconceptions influence student behaviors and interpretations of instruction and interfere with intended learnings. Much of this research has been done on aspects of physical science, while applications to the biological sciences have been limited. This study has been designed to contribute to the findings which focus on the biological sciences through a specific emphasis on ecological concepts.

THE LEARNINGS

Familiarity with the basic principles of ecology has been offered as having the potential to influence one's world view, to clarify relationships that human beings have to the natural world, and to help in the recognition of the constraints that nature places on human activities (Ehrlich. 1986). These goals concur with current recommendations for the direction of science education in the 1980s (Yager, 1984). However, instruction in ecological concepts has proved to be no facile, simplistic undertaking. Ecology has been recognized to be problematic because of its consideration of interrelationships among concepts of widely disparate degrees of concreteness and abstractness, with a preponderance of the latter. Thus instruction of ecological concepts presents a challenge to teachers (Garb, Fisher, Faletti, 1985).

Concepts related to feeding relationships were targeted for special emphasis in this study. The concept of feeding relationships was ranked highly by biology teachers as an area of critical importance in the study of biology (Finley, Stewart, and Yarrow, 1982). Its centrality in understanding other complex ecological principles also has been noted (Novak, 1976). Investigation of this dimension of ecology was also selected because it has been indicated that feeding relationships are difficult for students to understand (Johnstone and Mahmoud, 1980). Thus, approaches for effective instruction in this area need to be explored.

THE LEARNING ENVIRONMENT

Field instruction was selected as the focal instructional strategy in this study. Theoretical, philosophical, empirical, and popular support for a field approach to learning, although not voluminous, exists. Piagetian theory advocates that provisions for direct experiential, relational opportunities assist in and enhance learning. Novak (1986) contends that direct experiences with real objects and processes can give form and meaning to primary concepts and facilitate differentiation and application to more complex concepts. With science teachers, field instruction has evidenced popular support and has been ranked as being an important and valuable method for teaching science, yet actual implementation rates are quite low (Ateyeo, 1939;

Fowler, 1958; Schwaab, 1975; Mason, 1976; Hurford, 1977; Falk and Balling, 1978; Muse, 1982). For example, in a 1983 International Science Study, 65 percent of the responding students indicated that they had never engaged in fieldwork outside of the classroom (Jacobson and Doran, 1986). Discrepancies are apparent between teachers' belief in and actual use of this technique. If field instruction is to be offered and used more extensively, research must support the premise that particular science concepts and processes, such as those related to ecology, can be learned effectively in a direct experience field setting.

×

STATEMENT OF PROBLEM

It was the intent of this study to obtain information on students' conceptions of selected biological phenomena within the domain of ecology and then to investigate the influence of field instruction strategies on students' understanding and retention of the targeted concepts. The following questions form the framework of the study:

- What are students' conceptions of selected ecological concepts?
- 2. Do field-based activities assist in the clarification of these concepts?
- 3. Do students retain the concepts learned after direct involvement in field programs?

- 4. How are background variables (i.e. academic standing, sex, attitudes, science interests and involvements, learning preference, and travel experience) related to student knowledge and learning gains?
- 5. What is the relationship between instructional emphasis and students' science achievement gains?

HYPOTHESES

Appropriate statistics were used to test for the acceptance or rejection of the following null hypotheses:

- There are no significant changes in students' understandings of ecological concepts after field instruction strategies.
- 2. There is no significant difference in the degree of retention of concepts evidenced after field exposure.
- 3. There are no significant relationships between student background variables and gains in understandings of concepts.
- 4. There is no significant relationship between instructional emphasis and students' science achievement gains.

DEFINITIONS OF TERMS

Conceptions

units of information which are linked together.

Concept mapping

process that involves identification of concepts in a body of materials and the organization of the concepts into a hierachial arrangement.

Conceptual bridging

process of linking abstract concepts with meaningful common experiences.

Constructivism

theory which focuses on the acquisition, understanding, and application of bodies of conceptual structures of accepted public knowledge and emphasizes interaction of existing knowledge with new knowledge.

Ecology specialized branch of the biological sciences which focuses on relationships between living things and their environment.

Extended excursions

school sponsored educational trips lasting longer than a day, usually a week.

Feeding relationships

phenomena which take into account the flow of energy and circulation of materials through the process of eating or being eaten.

Field instruction

on-site activities/experiences in which students are directly involved.

Higher-order cognitive items
questions which demand application, analysis,
synthesis, and/or evaluation.

Integration

process of incorporating new concepts with existing conceptions, or different existing conceptions with each other.

Knowledge items test situations that emphasize remembrance, either by recognition or recall of ideas, materials, or phenomena.

Misconceptions representations of systems of explanation which are conceptually incorrect.

Preexisting conceptions informal knowledge which constitutes the students' belief system about the world and how it works.

Scientific conceptions accurate explanations of scientific phenomena.

Structured field programs clearly defined programs with student oriented goals, program objectives, and specified procedures, including pretrip and posttrip sessions.

ASSUMPTIONS

The following assumptions underlie the study:

1. The concept instrument and the student background form designed for this study were reliable and valid means

for making the measurements for which they were designed and used.

- 2. Students completed the instruments conscientiously.
- 3. The concepts targeted for investigation are fundamental to learnings within the field of ecology and are basic for students' future learnings in science.
- 4. The field programs examined were representative of educational offerings in this realm.
- 5. Teachers' reports of concepts emphasized and strategies employed during the field program provide an accurate description of the actual program.

DELIMITATIONS

The delimitations of this study were as follows:

- 1. The participating schools were limited to secondary schools that had marine science programs that included field instruction components.
- 2. The study was limited to three different marine science programs.
- 3. Field programs were limited to those that had specified program objectives, a series of pretrip and post-trip sessions, and required student projects and/or activities.
- 4. Testing was limited to assessments of changes in concept understandings, and not of skill areas or of attitudes changes.

· .

- 5. Testing focused on understandings of concepts in ecology.
- 6. Data were obtained solely from responses to paper and pencil instruments.

LIMITATIONS

The limitations of this study include:

- 1. The use of specific grade levels, thereby preventing generalizability of the results to other grade levels.
- 2. Restrictions with the sampling populations because of the limited numbers of schools that have field programs.
- 3. A concentration on selected ecological concepts which comprises only one area of instruction in the sciences.
- 4. A focus on one type of field experience, the structured extended excursion, thus limiting generalizability of the results to other types of field programs.

OVERVIEW

The dissertation includes five chapters.

Chapter One provides a rationale for the study; problem statements; hypotheses; definitions; assumptions; delimitations; and limitations.

Chapter Two contains a review of the literature and is reported in three sections. These focus on: field instruction in the sciences; concept learning in the biological sciences; and student characteristics and science achievement.

Chapter Three consists of the research design and procedures. They address the areas of: overall design; population; instrumentation; data collection procedures; and statistical analysis.

Chapter Four reviews the study's results. Five sections are reported and include: descriptive statistics; correlations; regressions; percentages of gain; and hypotheses.

Chapter Five contains a summary, conclusions, and recom-

CHAPTER II

REVIEW OF THE LITERATURE

This chapter considers literature related to the three dimensions of the learning process that this study investigated; the learners; the learnings; and the learning environment. Specific domains within these general areas that are directly pertinent to the nature and intent of this study were targeted for emphasis. These included; 1) empirical studies that focused on the cognitive dimension of learning science through field instruction techniques; 2) studies which investigated conceptual development in the biological sciences; and 3) meta-analyses studies of student characteristics and science achievement.

FIELD INSTRUCTION IN THE SCIENCES - THE LEARNING ENVIRONMENT

The field excursion is not an innovation of this era. Attempts to instruct in the field have been charted through the centuries up until and including the present time. Socrates and Aristotle led their followers directly to the natural environment for observation and discussion about

nature; expressions of similar efforts currently are being evidenced. Even though general sentiment is in accordance with the value of learning science in a direct environmental setting, actual implementation attempts of field programs are limited. In a comparable manner, a considerable amount of descriptive literature and position statements exist on learning in the outdoors, but experimental studies that investigate its merits are sparse.

This review includes the limited sample of reported experimental studies which primarily focused on field instruction in the sciences as it relates to aspects of students' cognitive development. Summaries of the studies are presented in chronological order.

Schellhammer (1935) investigated knowledge gains of two groups of high school biology students. His study covered a period of one year. Experimental and control groups were established, with the experimental group participating in a field excursion. Posttests were given to both groups and knowledge gains were significant with only the experimental group. The groups were reversed (control becoming experimental and vice versa) and a new unit of study was taught following the same procedures. Again, the new group that had the field trip showed more significant gains than the new control group.

The impact of extended excursions was studied by Raths (1936) with students who were taken to the coal fields of West Virginia on a ten-day trip. Students who had participated in the field trip were judged to be superior in their abilities to evaluate tasks related to scientific inquiry when compared to non-trip students.

Fraser (1939) worked with the same group of students as Raths did, but focused on increases in information that trip-students had evidenced. He distinguished knowledge gains from memorized information. Measurements were made of students' abilities to generalize and apply the principles learned. He concluded that the greatest value of learning in the field was skill in knowledge acquisition and application.

Atyeo (1939) conducted a study in which he compared the results obtained from the use of the excursion technique with those of other teaching methods. He showed that with an increase in excursions there was an increase in investigating the phenomena associated with the experience. He demonstrated that the excursion technique is superior to class discussion for teaching material requiring comparisons and knowledge of concrete objects.

When testing the usefulness of field trip guidebooks, outlines, instructional materials, and associated techniques, Evans (1958) found that classes that used the

planned field trip learned more, retained more, and did better on tests than classes that did not participate on field trips.

Testing the effectiveness of field trips in the teaching of college level botany, Kuhnen (1959) found that the groups which were actively involved in field trips showed some, but limited, gain over control groups which were instructed in a laboratory setting.

Benz (1962) conducted an experimental evaluation of field trips for achieving informational gains in a unit on earth science. Four classes of ninth graders (n=109) participated in the study. The experimental groups went on excursions to geologic sites while the control groups remained in the classroom and reviewed the content through slides. Based on pretest and posttest results, Benz concluded that superior pupils tend to profit more from field trips than students with average to less than average ability, but that field trips may contribute to the understanding of scientific principles.

A comparison of two instructional methods, field instruction and the discussion method, was undertaken in a study by Bennett (1963). A unit on ecology was taught by both methods to groups of seventh graders. Bennett found no significant gain from the experimental field creatment over the traditional classroom discussion method but found

the field experience as effective as the discussion technique.

Glenn (1968) probed the effectiveness of learning geology through field experiences. The study involved a comparison of the field technique and the use of color slides in classroom discussion. In none of the comparisons did the field trip group score significantly higher than the group taught with slides.

A similar comparison was made by Goldsbury (1969), who examined the effects on learning from substituting slide-tapes for an actual field experience. Test results indicated that the vicarious experience afforded through the slide-tape presentations proved to be more effective than direct exposure to field trip experiences. However, direct experiences in the field coupled with exposure to slide-tapes in the classroom was found to be a more effective approach.

In research conducted by MacKenzie and White (1982), the effect of fieldwork on retention levels was examined among eighth and ninth graders from Melbourne, Australia. Three groups of students were involved. All treatments had the same general learning program, but differed in the excursion phase of the program. There was an active processing excursion group, a traditional passive excursion group, and a group that did not have field work. Two tests were giv-

en, one on achievement of unit objectives and the other on formation of episodes and the linking of them with other knowledge items. Both tests were given prior to formal instruction, while the posttest was given during the summer holidays just prior to the beginning of the new term. Posttest results indicated that the students who had field-work performed better than students who did not have the field component of instruction. Retention was superior in the group that participated in the active excursion program:

To evaluate the effects of field activities on student a study was conducted by Kern and Carpenter learning, (1986) with two sections of a college laboratory course in One section involved primarily classroom earth science. activities that utilized a laboratory manual. Fieldoriented activities were employed in the second section. Comparison of the two classes at the conclusion of the term revealed almost identical levels of lower-order learning However, higher-order skills were demonstrated (recall): to a greater degree with the field-oriented section, cating an enhanced ability to apply the acquired information.

In the meta-analysis conducted by Wise and Okey (1983) on instructional strategies, one category examined was presentation mode. This category included those means of

instruction where the setting was different from a traditional environment. Field instruction was a targeted mode of learning within this category. The mean effect size obtained for cognitive and other (attitudinal, problem solving) outcomes was .26 based on 103 studies. It proved to be more effective than the traditional strategies of learning.

The educational values and benefits of instructional field programs in the sciences have been investigated and studies have explored the possible impacts on students! attitudes, skill attainment, and cognitive development. Research studies of the 60s and 70s primarily focused on the affective domain with emphasis on students attitudes toward science and natural phenomena. While most field experiences were designed to introduce concepts and/or to extend opportunities for clarifying and exploring these concepts, research investigations were limited in studying these cognitive impacts. Research studies virtually have been non-existent in examining the role of instructional emphasis and/or the effectiveness of a hierarchial approach to concept learning in the field. The key aspect of concept retention after field instruction is another area where research attempts have been lacking. This study was designed to examine these areas that were not focused on previously in the literature and to assess whether complex

concepts could be taught meaningfully in a field setting. For the areas that were investigated related to conceptual development and field instruction strategies, including those reported in this review, the literature does generally suggest that the field instructional approach can be a valid and effective technique for assisting students in their learnings of scientific concepts.

CONCEPT LEARNING IN THE BIOLOGICAL SCIENCES - THE LEARNINGS

Currently, research in science education has been concerned with students' conceptual understandings and mastery of schemes of organized knowledge. Efforts have been directed to investigating the nature of the belief systems that students have prior to instruction and also to exploring the types of strategies that effectively facilitate conceptual development. Much of this research has focused on the physical sciences, while studies related to the biological sciences have been limited. This section reviews those studies that have examined students' understandings of biological concepts.

Students' understandings of concepts related to adaptation and evolution formed the basis of Jungwirth's study with Israeli youth (1975). A representative sample of secondary students (n=1277) responded to one of three forms of the Test on Understanding of the Language of Science. Data

revealed that the students had distorted views of the concepts of adaptation and evolution and that a high percentage could not differentiate factual information from anthropomorphic statements.

In an effort to examine students' prior knowledge of evolution and heredity, Deadman and Kelly (1978) questioned secondary school age males (n=52) before their formal instruction on those units and then re-interviewed the students after a 12 month interval. Virtually all students offered some ideas about why evolution occurred; however, most students demonstrated uncertainty and lack of clarity in their responses. A lack of understanding concerning the source of variation among organisms was evident in the interviews. Explanations of change were given in essentially Lamarckian terms and the boys resorted to expressions of folklore in most of their responses,

Designed to obtain some knowledge of children's beliefs about the topic of inherited characteristics, clinical interviews were conducted with 32 children from grades 1 through 8 in Canada (Kargbo, Hobbs, Erickson, 1980). Students were asked to respond to questions related to five tasks which required them to distinguish between environmental and hereditary characteristics and to use probabilistic thinking in predicting characteristics of offspring. A wide range of beliefs about the nature and mechanism of

inheritance was evident in the students' responses. A considerable number stated that environmentally-produced traits would be inherited. Younger children were found to be rigid in their thinking and had established patterns for their own theories.

Concepts related to taxonomy and to the identification of animals were explored in a study by Bell (1981). Elementary, secondary, and tertiary students (teacher trainess) were asked to identify from a group of organisms those which they considered were animals. Of the 39 elementary and secondary students interviewed, 35 could not classify correctly all instances of the concept. Responses to the multiple-choice test revealed that misunderstandings were not specific to younger children, for 41 percent of the teacher trainees incorrectly classified at least one of the problem situations.

Based on the notion that the "life concept" is central in any life science course, a study was undertaken to examine Israeli students' conceptions of life (Tamir, Gal-Chappan, Nussinovityz, 1981). Intermediate and junior high school students (n=424) were interviewed individually and were asked to complete classification tasks as well as a questionnaire. It was found that children associate different meanings with the concept of life and that a large proportion of the explanations were scientifically incorrect.

A two-year Planning and Teaching Intermediate Science Study (PTIS) was undertaken for the purpose of using students' misconceptions to analyze classroom behavior of teachers and students and to modify the science program of the schools (Smith & Anderson, 1984). Case studies were conducted on 14 teachers. was found that teachers Ιt exhibited a variety of teaching styles that did not take student misconceptions into account. Student testing also occurred. Student pretest results indicated that misconceptions were abundant. Additional testing efforts revealed that fewer than one quarter of the learned the concepts that were covered in the classes. Modified materials then were developed to inform teachers about student misconceptions and strategies were suggested for helping students to change. Findings showed that when student problems and misconceptions were identified, learning improved substantially.

A study was conducted in Nigeria to determine some of the misconceptions held by secondary school students with respect to selected ecological concepts covered in a unit of Nigeria's Secondary School Science Program Biology text (Adeniyi, 1985). Students' explanations were obtained by classroom observations, essay test answers, and clinical interviews. The actual coverage of ecology in the designated classes was determined by analyzing the curriculum

content as it was found in classroom instruction, text materials, lesson plans, and teacher examinations on ecology. Data obtained indicated that students possessed several misconceptions and that students were not willing to give up these positions. There appeared to be two sources of the misconceptions: the already existing conceptions of the students and those that resulted from instruction.

Student knowledge of marine science and natural resource principles was investigated in a study by Brody and Koch (1986). Baseline data on Maine's 4th, 8th, and 11th graders were generated from this study. Student responses were classified as being: correct conceptions, missing conceptions, or misconceptions. Although it was found that fourth grade students did understand the basic concepts of food chains and food webs, there was very little growth in knowledge of food chain dynamics in grades 8 and 11. Findings suggested that students' missing conceptions and misconceptions interfered with and/or inhibited new learnings.

Biology students' understandings and misconceptions about the concepts of food chains and ecosystems were investigated in a study by Marek (1986). Student responses were obtained from an essay- type instrument and were classified by degree of their understanding. Of the 58 students tested, only one student (2 percent) had a sound understanding of the concept of food chain, 34 percent of

the students demonstrated partial understanding, 57 percent showed specific misunderstanding, and 7 percent had no response.

In an effort to identify common student misconceptions in biology, Murr (1986) investigated students' understandings of topics related to the animal concept, food webs, gene behavior, and photosynthesis. Testing revealed that the tested high school students had archaic patterns of thought, with several misconceptions present. A semiguided discovery teaching strategy was employed to focus student attention on the misconceptions. Later testing supported the effectiveness of the instructional approach that took students' misconceptions into account.

Research findings have supported the notion that students' understandings and beliefs about natural phenomena differ in fundamental ways from accepted scientific expla-Documentation for the existence and tenacity of nations. these alternative frameworks has been increasing substantially in the physical sciences. Attempts to investigate conceptual views of biological phenomena. although not as abundant as explorations in the physical sciences, also have been undertaken. These studies have indicated that students do possess conceptual views of science topics prior to instruction and that these prexisting beliefs can affect their learnings. These studies suggest

that if meaningful learning is to occur, it is essential initially to attain some knowledge about children's established belief systems and then to explore the various ways and strategies in which these understandings can be addressed. This challenge necessitates not only the uncovering of students' prior learnings but also includes the implementation of strategies that can effectively exchange and/or extend students' understandings of science. This study focused on biological concepts and specifically ecological concepts for several reasons. Ecology was selected because of its centrality in the scheme of the biological sciences and for reasons related to both teachers' recognition of its importance in the curriculum and to students' expressions of difficulties in learning the concepts.

STUDENT CHARACTERISTICS AND SCIENCE ACHIEVEMENT - THE LEARNERS

Results reported from reviews of research and metaanalyses studies have indicated that antecedents to student achievement have been identified and have consistently accounted for a substantial amount of explained variance. Variables identified in this study which were included in meta-analyses reviews are reported in this section. These include: prior learning and academic ability; attitudes; and sex.

Prior Learning and Academic Ability

A meta-analysis of students' ability and science learning was conducted by Boulanger in 1980. His review included studies from a 16 year period and focused on students from the sixth to twelfth grades. He found that prior achievement accounted for about 16 to 25 percent of variance related to science achievement. In the 34 studies examined, he found the relationship between ability and achievement to be very stable and that the ability measures were better predictors of cognitive achievement than developmental measures.

The meta-analysis conducted by Fleming and Malone (1982) focused on the relationships between student characteristics and student performance in science. They examined the relationships of the variables of general ability, language ability, and mathematical ability with performance measures. Results obtained in the analysis were quite similar in that they correlated almost equally with cognitive level measures ranging from .47 to .53. These findings were comparable to the results obtained by Boulanger's (1980) synthesis of 34 studies where the mean correlation between student outcomes and general ability was .49.

More recently, Walberg (1986) synthesized the research on teaching and reported a mean correlation of the ability and learning in science of .48 based on 10 studies.

Attitudes

When examining the social and psychological influences on science learning, Kremer and Walberg (1980) found that all of the studies of student motivation and science achievement in their meta-analysis showed positive relationships between motivational variables and learning. The mean correlation for student motivation was .37. Although the number of studies was limited (n=5), the results concurred with previous studies of student motivation and general educational achievement conducted by Bloom (1976) and Uguroglu and Walberg (1979). Median correlations of .35 and .30 respectively were reported.

As one of the variables considered in the meta-analysis of Fleming and Malone (1982), attitude was found to have a mean correlation of .23 with science achievement. The results were based on seven studies. A higher correlation of .31 was reported by Kahl (1982) based on four studies of the relationship of science and attitude/motivation.

Sex

Sex differences in science achievement were investigated in several reviews and meta-analyses studies. From an international study involving 19 countries, Comber and Keeves (1973) found that boys achieved better than girls in science (one-fourth of a standard deviation) and that sex accounted for 2 percent of variance in science achievement.

Results from the National Assessment of Educational Progress in varying years consistently indicated that boys achieved slightly better than girls (Haertel et al., 1981; deBenedictis et al., 1982; Hueftle et al., 1983).

Fleming and Malone (1982) included sex as a variable in their meta-analysis on student characteristics and science performance and reported that a mean correlation of .04 was found in the nine studies considered in the analysis.

A meta-analysis review conducted by Maehr and Steinkamp (1983) reported that boys consistently achieved slightly higher than girls in elementary school science. Age difference was also examined in the analysis of Erickson and Erickson (1984). They demonstrated that the sex difference in science achievement was not significant at early ages, but that a difference was apparent as age increased in favor of male achievement.

Findings from major reviews of research and metaanalyses studies have revealed that significant antecedents
to student achievement exist. Prior knowledge was found to
account for 25 to 36 percent of variance in studies examining science achievement. Scholastic ability comparably
explained for 16 to 25 percent of variance in science
achievement. Mean correlations of .30 to .37 were found to
exist between attitude and science achievement. Although
differences in sex and achievement have been noted, vari-

ances and correlations have been quite low. These findings on student characteristics and science achievement suggest that variables such as prior learning and attitude serve as antecedents for students' success in learning.

CHAPTER III

RESEARCH DESIGN AND PROCEDURES

Procedures involved in the study are reviewed in this chapter, which is organized in five sections. They are: overall design; population; instrumentation; data collection procedures; and statistical analysis.

OVERALL DESIGN

This study consisted of two major phases. The first stage focused on instrument development and assessment, while the second examined the influence of field instruction strategies on students' understanding and retention of selected ecological concepts.

The Student Ecology Assessment (SEA) instrument was developed as one means of obtaining information about students' understanding of concepts related to ecology and feeding relationships (Appendix A). A background/attitude form which contained items on students' academic standing, science background, science interests, science extracurricular involvements, learning preference, and travel and outdoor experience was also developed and administered (Appendix B).

Student testing occurred prior to, during, and four weeks after the instructional program. An experiential field program was conducted in a marine setting and served as the learning strategy. Instruction on ecology comprised one part of the total field program and was monitored in terms of the time and emphasis that each of the targeted concepts received. Students and teachers indicated their perception of time and emphasis given to each major concept area on a separate report form (Appendix C). This information was also included in the analysis.

POPULATION

Populations under investigation in this study consisted of secondary schools which had marine science field programs. Assistance in identifying potential participants for the study was provided from two educational nature-oriented travel organizations, International Field Studies Inc. and International Expeditions Inc. These organizations specialize in coordinating the travel arrangements and contributing to the educational programs of field excursions. A listing of schools which had formal educational programs that would be completed within the study's time frame was obtained from these organizations and individual schools were contacted for possible participation in the study. Only schools with programs that had a struc-

tured field component which included a series of pretrip and posttrip sessions were considered. Three programs from two high school were selected for the study. These included: Bexiev High School, Bexley, Ohio (two groups) and South Lake High School, Fairfax, Virginia. All programs occurred from 27 December 1986 to 3 January 1987. They were conducted at different geographic sites. Two programs occurred at sites on Andros Island, Bahamas, and one was directed on the Grand Cayman Islands.

INSTRUMENTATION

Data on students and on the instructional program were obtained from instruments developed for this study. Student inventories included the Student Ecology Assessment (SEA) instrument and a Student Background/Attitude form (Appendices A/B). Information on the instructional program was procured through teacher and student responses to the Instructional Emphasis form (Appendix C).

Student Concept Understanding

Procedures involved in the development of the SEA instrument included: 1) selection of concept areas (determined through a review of curricula programs, textbooks, and practicum materials and through a concept map of these findings - Appendix D); 2) construction of items (reflecting patterns of items that progressed from concrete to

abstract, simple to complex, familiar to unfamiliar, and factual based to higher order questions); and 3) field testing with four distinct groups of high school students from Akron and Columbus, Ohio (resulting in three revisions based on item analysis, correlational analyses, and student and teacher feedback).

The first draft of the Student Ecology Assessment (SEA) was reviewed by faculty members from The Ohio State University's Department of Educational Theory and Practice and the School of Natural Resources as well as science field studies program administrators and educators from Florida, Alabama, and Ohio. The ideas and suggestions expressed by these individuals were incorporated in the second version of the instrument. This instrument was then administered to two groups (n=16 and 14) of secondary biology students from a suburb of Akron, Ohio. Statistical analysis of student responses and feedback from the participating teachers formed the basis of the third revision of the instrument. In this draft, the number of items was collapsed reducing the number of items from 61 to 40. Some of the items were re-written to improve clarity.

After further modification, the revised instrument was then given to two groups of secondary science students (n=29 and 28) from an urban private school in Columbus, Ohio. Test results, informal comments from the participat-

ing groups, and suggestions from additional reviewers were used in another revision of the SEA instrument. The major change occurred in the format of the items with nearly all items being restructured into a multiple choice pattern. This version (the fourth) served as the testing instrument in the study. Summary statistics of pilot test results are provided in Table 1. The statistical program, ItemA Statpack (Ohio State University, 1982) was utilized for the analysis. Information from this analysis was used primarily to determine the instrument's reliability. Summary statistics are also presented in Tables 2 through 4 for each participating group . Although data are provided for pretest, posttests, and retention tests, only pretest data were considered in assessing the instrument's reliability since instruction was designed to lead students to mastery of the concepts and not to discriminate. This is evidenced in the data and is apparent in the reported measures of central tendency.

Table 1
STUDENT ECOLOGY ASSESSMENT PILOT TESTS SUMMARY STATISTICS

	Group One (Form 2)	Group Two (Form 2)	Group Three (Form 3)	Group Four (Form 3)
Student #	16	14	29	28
Item #	61	61	40	40
Mean Score	38.88	34.43	22.14	21.11
Median	40	33	22	22
Mode	34	33	21	23
Maximum	48	45	3 1	23 35
Minimum	25	15	10	12
Range	23	30	21	12 23
Stand. Dev.	5.37	7.55	4.84	4.49
KR20	0.70	0.83	0.71	0.68
Mean Diff.	0.36	0.44	0.45	0.47
Mean Disc.	0.20	0.28	0.29	0.29

Table 2

STUDENT ECOLOGY ASSESSMENT SUMMARY STATISTICS - GROUP ONE

(Form Four)	Pretest	Posttest	Retentio		
Student No.	29	29	29		
Item No.	40	40	40		
Mean Score	25.86	32.45	31.79		
Median	25	33	33		
Mode	27	33	33		
Maximum	35	38	35 36		
Minimum	16	19	36 23		
Range	19	19	13		
Stand. Dev.	4.30	3.99	3.01		
KR20	0.62	*	*		
Mean Diff.	0.35	*	<u></u>		
Mean Disc.	0.25	*			

^{*} data are inappropriate because of mastery emphasis

Table 3

STUDENT ECOLOGY ASSESSMENT SUMMARY STATISTICS - GROUP TWO

Pretest	Posttest	Retention
21	21	21
40 _	40	40 40
28.7 1	35:19	34.57
28		35
28		3 7
36	39	3 <u>7</u> 3 <u>8</u>
_9		30
27 _ :	9	8
5.76	2.70	2.10
0.83	*	*
0.28	, *	∵ *
0.30	*	÷
	21 40 28.71 28 28 36 29 27 5.76 0.83 0.28	21 40 28.71 28 35.19 28 35 28 39 39 39 39 27 9 5.76 0.83 0.28

^{*} data are inappropriate because of mastery emphasis

Table 4

STUDENT ECOL	OGY ASSESSMENT	SUMMARY STATISTICS	GROUP THREE
(Form Four)	Pretest	Posttest	Retention
Student No. Item No. Mean Score Median Mode Maximum Minimum Range Stand. Dev. KR20	29 40 26.69 27 25 35 11 24 5.36 0.80	29 40 35.93 36 35 39 29 10 1.91	29 40 25.17 36 36 38 31 7 1.93
Mean Diff. Mean Disc.	0.33 0.35	* *	* - *

^{*} data are inappropriate because of mastery emphasis

Changes were significantly evidenced in the pre to posttest results. The field experience was used to clarify and/or extend the students' understanding of the ecological concepts. Tables 5 through 7 report the difficulty of the items in the SEA instrument and indicate the students' improvement and gains in responding correctly to the items of the test. Maximum difficulty is expressed as 1.000, while .000 indicates the lowest difficulty level with all students responding correctly.

Table 5

ITEM DIFFICULTY -- GROUP ONE (n=29)

			111 23/
ITEM	PRETEST	POSTTEST	RETENTION
1.	.000	.034	• 000
2.	. 448	.103	.069
3.	. 690	.241	. 000
4.	.724	.586	.345
5.	. 27 6	.069	.000
6.	.172	.069	.034
7.	.103	.069	.034
8.	.069	103	.103
_ 9.	. 690	.414	.552
10.	862	621	.207
11.	.552	. 103	.241
12.	.138	.034	.000
13.	.310	069	.069
14.	.310	.000	.034
15.	. 241	103	.034
16.	. 241	069	. <u>24</u> 1
17.	310	069	.276
18.	. 241	138	.414
19.	.345	. 448	.310
20.	. 586	• 4 4 8	.172
21.	.379	172	.069
22.	.069	000	.000
23.	.034	.000	.000
24.	034	.000	.034
25.	. 483	517	.586
26.	. 207	.034	
27.	.345	• 3 <u>4</u> 5	.241 .310
28.	. 379	.069	. <u>241</u>
29.	.621	.276	
30.	. 483	÷103	.483 .172
31.	.552	. 105 . 345	
32.	. 241	172	.586
33.	.552		.241
34.	.172	103	.138
35.	.172	.034	.069
36.	.069	.034	.034
37.	.517	172	.000
38.	.483	· 1 / 2 · 241	.310
39.	.414	.310	.310
40.	.621	.510 .586	.448
40.	.021	. 300	.793
			<u></u>

Table 6

ITEM DIFFICULTY -- GROUP TWO (n=2))

ITEM	PRETEST	POSTTEST	RETENTION
<u>i</u> .	.000	.000	.000
2.	. 238	.095	.048
3.	.619	.048	048
<u>4</u> .	• <u>9</u> 05	.429	. 429
5.	.048	.000	.000
6.	. 238	.000	•000
7.	.095	.000	.000
8.	. 286	.143	190
9.	.714	.38 1	.143
10.	.619	. 238	.524
11.	.286	.095	.000
12.	. 000	.048	.000
13.	.190	.048	048
14.	.143	.048	048
15.	.143	.048	048
16.	.190	.048	.000
17.	.190	.000	.048
18.	190	.143	095
19.	476	.190	.048
20.	. 429	.190	190
21.	. 286	.048	.095
22.	.048	.000	.000
23.	.048	.000	.000
24.	048	.000	.000
25.	.476	.238	. 429
26.	.095	.048	.000
27.	.524	.381	.190
28.	. 2 38	.143	.190
29.	.286	.333	381
30.	.381	.095	048
31.	.381	. 286	.381
32.	.095	.048	.095
33.	.190	.048	048
3 4 .	190	.048	.095
35.	190	.048	.095 .095
36.	.143	.000	.048
37.	. 286	.048	143
38.	. 286	.048	:095
39 .	.429	.190	. 286
40.	.667	.571	.810

Table 7

ITEM DIFFICULTY -- GROUP THREE (n=29)

ITEM	PRETEST	POSTTEST	RETENTION
į.	• 000	• 000	.000
2.	. 345	.034	.034
3.	· <u>724</u>	.103	.034
4.	· <u>793</u>	.310	.517
5.	· <u>172</u>	- 000	.034
6.	.172	• 000	.034
7:	• 000	.000	.034
8.	.414	• 000	. 103
9:	. <u>759</u>	•5 1 7	.414
10.	.862	.172	.345
11.	.448	.000	.103
12.	· <u>207</u>	.000	.034
13.	.138	.000	.034
14.	.138	.000	.034
15.	· <u>552</u>	.345	- 207
16.	.276	.000	·034
17.	.241	.000	.034
18.	. 276	.000	.069
19.	. <u>31</u> 0	.172	- 241
20.	• <u>793</u>	.069	.276
21.	. <u>207</u>	.103	.069
22.	• <u>000</u>	.000	.034
23.	103	.000	.034
24.	034	.000	034
25.	. <u>517</u>	.310	.517
26.	034	.000	034
27.	. <u>379</u>	.310	· 207
28.	138	.000	.103
29.	414	.069	.103
30.	276	.034	.069
31.	759	.138	·345
32.	310	. 207	.310
33.	379	·138	.069
34.	.207	.000	.034
35.	.207	.000	.034
36.	034	.000	.034
37.	. 241	.069	.138
38.	241	. 069	.138
39.	. 379	.172	.310
40:	. 838 	. 724	. 793
			

Modifications to the SEA instrument included changes in format, wording, and number of items in the instrument. However, the concept strands that were initially targeted for study remained the same. The items were clustered into eight categories. These divisions focused on: 1) plant and animal characteristics (items 1-4); 2) plant and animal identification (items 5-8); 3) plant and animal habitats (items 9-11); 4) food chains (items 12-19); 5) food webs (items 20-30); 6) energy transfer (items 31-32); 7) energy pyramids (items 33-38); and 8) nutrient cycles (items 39-40). Tables 8 through 10 indicate the difficulty levels of items within each cluster area. The items are recorded according to their intended level of difficulty which was based on the nature of the item; that is, items that were familiar or concrete were projected to be less difficult than the items that were unfamiliar and abstract, which would reflect a higher level of difficulty. A hierarchial pattern was incorporated into each of the concept clusters. Difficulty is recorded progressively from left to right in the tables. Most items show a pattern of decreasing difficulty from the pretest to the posttest results as well as in the retention readings, thus indicating that the concepts addressed in these items were learned and retained.

Table 8

ITEM HIERARCHIES AND DIFFICULTIES - GROUP ONE (n=29)

(Arranged from Familiar/Concrete to Unfamiliar/Abstract)

CLUSTER ON	E - 1	PLANT	AND	ANIMAL	CHARACTERISTICS
	#1	#2	#3	#4	
Pretest	• 00	. 45	. 69	.72	
Posttest	.03	.10	. 24	.57	
Retention	.00	.06	.00	. 34	

CLUSTER TW	0 =	PLANT	AND	ANIMAL	IDENTIFICATION
	#8	#6	#7	#5	
Pretest	.07	.ī7	.10	.28	
Posttest					
Retention	.10		.03	•	

CLUSTER T	HREE =	PLANT	AND	ANIMAL	HABITATS	
	#11	# 10	#9			
Pretest	. 55	.86	. 69			
Posttest		.62	.41			
Retention	. 24	.20	.55			

CLUSTER FO	UR =	FOOD	CHAIN	S					
	#12	#13	#14	#16	#15	#17	#18	# 19	
Pretest	.14	.31	•31	. 24	. 24	ā 3±	. 2 4	. 36	
Posttest Retention	.03	• <u>07</u> •07			.10			. 45 . 31	
		.07	.03	. 44	.03	. 20	• 41	· 31	

										•		
CLUSTER F	EAE -	FOOI	WE	35								
	#22	#23	#21	#26	#21	#20	#20	#20	#07	#00	# 0 0	
_												
Pretest	.07	.03	.03	. 21	.38	.38	.48	.62	.35	.48	.57	
Posttest	. 00	• 00	• 00	• 03	.17	.07	.10	. 28	. 35	. 52	- A5	
Retention	.00	.00	.03	.24	.07	.24	.17	.48	.31	.57	.31	
							<u> </u>					
							<u>.</u>					
CLUSTER SI	X - E	ENERG	Y TF	RANSI	FER	(FOOI)					
	#32	#31	-			_						
Pretest	. 24	. 55	;									
Posttest	:±7	.35										
Retention	. 24	. 57	,									
CLUSTER SE	VEN -	ENE	RGY	PYRA	MIDS							
	#36	#34	#3	5 #	137	#38	#33		<u> </u>			
Pretest	.07	.17	,1	. 7 i	52	. 48	• 55	;				
Pretest Posttest	.03	.10	.0	3 .	1 7	24	. 24					
Retention	.00	.07	• 0	3 .	31	.31	.14					
							-					
CLUSTER EI	GHT -	NUT	RIEN	T CY	'CLES	(CA	RBON	}				
	#39	#40										
	78 -4	3 -								•		
Pretest												
Posttest Retention	. 3±	57										
werent 10U	- 40	. 19										
				-								

Table 9

ITEM HIERARCHIES AND DIFFICULTIES - GROUP TWO (n=21)

(Arranged from Familiar/Concrete to Unfamiliar/Abstract)

CLUSTER OF	VE = :	PLANT	AND .	ANIMAL	CHA	RACTE	RISTI	CS	
	#1	#2	#3	#4	_				
Pretest	.00	. 24	. 62	.91					
Posttest	.00	.09	.05	.43					
Retention	.00	.05	.05	.43					
									
CLUSTER TV	<u> </u>	PLANT	AND A	ANIMAL	IDE	NTIFIC	CATIO	1	
	#8	#6	#7	#5					
Pretest	.27	. 24	• 0 9	. 05					
Posttest	.14	. 00	.00	.00					
Retention	.19	. ŌŪ	.00	.00					
CLUSTER TH	REE -	PLAN	T ANI) ANIM	AL Hi	BITAT	.s		
	#11	#10	#9						
Pretest	. 28	.62	.71						
Posttest	.10		.38						
Retention	.00	.52	14						
		<u></u>							
CLUSTER FO	UR -	FOOD	CHAIN	is		A ' +			
	#12	# 13	#14	#16	£15	\$17	<i>\$</i> 18	<i>‡</i> 19	
Pretest	.00	. 19	.14	.36		<u>(</u> .9	.19	: 48	
Posttest	.05		.05	. ប្តូន	. 35°				
	• • •	• (15)	. (17)	1) 6	- (-)	110	- 14	19	

CLUSTER FI	AE -										
	#22	#23	#24	#26	#21	#28	#30	#29	#27	#25	#20
Pretest	. 05	.05	.05	:10	. 27	. 2 <u>1</u>	38	27	52	. : A D	. 45
Posttest	• 00	• 00	• 00	• U5	ī 05	.14	.10	. 33	. 38	21	10
Retention	.00	.00	•00	.00	.10	.19	.05	.38	.19	.43	.19
CLUSTER SI	X - E	NERG	Y TR	ANSI	FER	(FOOL	<u> </u>				
	#32	#31									
Pretest	. 1 0	. 38									
Posttest	. 05										
Retention	10										
		. 38 						_			
CLUSTER SE	VEN -	ENE	RGY		-						
	VEN -	ENE	RGY		-		#33				
CLUSTER SE	VEN -	#34	RGY #3	5 #	37 27	#38 .27					
CLUSTER SE	VEN -	#34	RGY #3	5 #	37 27 05	#38 .27 .05	.19		-		
CLUSTER SE	VEN -	#34	RGY #3	5 #	37 27	#38 .27	.19				
CLUSTER SE Pretest: Posttest Retention	#36 .14 .00 .05	#34 .19 .05	#3 :1 :0 :1	5 #	27 05 14	#38 .27 .05 .14	.19 .05 .05	<u>-</u>			
CLUSTER SE	#36 .14 .00 .05	#34 .19 .05	#3 :1 :0 :1	5 #	27 05 14	#38 .27 .05 .14	.19 .05 .05	<u>-</u>			
CLUSTER SE Pretest: Posttest Retention	#36 .14 .00 .05	#34 .19 .05 .10	RGY #3 .1 .0 .1	5 #	27 05 14	#38 .27 .05 .14	.19 .05 .05	<u>-</u>			
CLUSTER SE	#36 .14 .00 .05	#34 .19 .05 .10	RGY #3 .1 .0 .1	5 #	27 05 14	#38 .27 .05 .14	.19 .05 .05	<u>-</u>			
CLUSTER SE	#36 .14 .00 .05	#34 .19 .05 .10 NUT	RGY #3 .1 .0 .1	5 #	27 05 14	#38 .27 .05 .14	.19 .05 .05	<u>-</u>			

Table 10

ITEM HIERARCHIES AND DIFFICULTIES - GROUP THREE (n=29)

(Arranged from Familiar/Concrete to Unfamiliar/Abstract)

CLUSTER OF	NE - E	PLANT	AND A	ANTMAI	CIIA	RACTE	RISTI	CS		
	#1	#2	#3	#4						
Pretest	.00	. 35	.72	. 79						
Posttest	.00		.10	.31						
Retention	.00	.03	.03	•52						
CLUSTER TW	/O - F	LANT	AND A	IAMINA	IDE	VTIFIC	CATIO	<u> </u>		
	#8	#6	#7	<i>‡</i> 5						
Pretest	.41	.17	.00	. <u>1</u> 7						
Posttest	.00	.00		. ōo						
na East I as	.10	.03	.03	.03						
Retention	.10			.03					_ <u>-</u> :	
CLUSTER TH					AL H	BITAT	!s			
	REE -				AL HA	BITAT				
CLUSTER TH	#11	PLAN #10	#9		AL HA	BITAT	es			
CLUSTER TH Pretest Posttest	#11 .45	#10 .86	#9 .76		AL HA	ABITAT	?S			
CLUSTER TH	#11 .45	PLAN #10	#9		AL HA	ABITAT	:s	-		
CLUSTER TH Pretest Posttest	#11 .45	#10 .86	#9 .76		AL HA	ABITAT	?S			
CLUSTER TH Pretest Posttest	#11 .45 .00	#10 .86 .17 .35	#9 .76 .52 .41	ANIM	AL HA	ABITAT	is			
Pretest Posttest Retention	#11 .45 .00 .10	#10 .86 .17 .35	#9 .76 .52 .41	S			#18	#19		
Pretest Posttest Retention	#11 .45 .00 .10	#10 .86 .17 .35	#9 .76 .52 .41 CHAIN	ANIM	# 15	<i>‡</i> 17	#18			
Pretest Posttest Retention	#11 .45 .00 .10	#10 .86 .17 .35 FOOD	#9 .76 .52 .41 CHAIN #14	S #16 . 28	#15	<i>‡</i> 17				

CLUSTER F	IVE -	FOOL) WEI	35		_			· ·		
								<u> </u>			
	#22	#23	#24	*26	#21	#28	#30	#29	#27	#25	#20
Pretest	.00	.10	.03	. 03	. 21	īİ₫	. 28	· / 1	38	 5 2	- : 70
Posttest	.00	.00	.00	.00	.10	.00	-03	. 07	. 37	37	07
Retention	•03	.03	•03	•03	07	.10	07	ĬÓ	. ŽĪ	.52	.28
			_			<u> </u>					
CLUSTER S	CX - E	ENERG	Y TF	RANSI	FER	(F00I	0)				
	#32	#31				-					
Pretest	.31	. 76									
Posttest	.21	14									
Retention											
CLUSTER SE	TTERT	PMP	DAV	DVDA	WTDC						
							-				
	#36	#34	#3	5 #	137	#38	#33		_		
Pretest	.03	.21	. 2	1 .	24	. 24	. 38				
Posttest	.00	.00	. 0	0 .	07	07	.14				
Retention	.03	.03	• 0	3 .	14		.07				
							_			·	
OF WOMEN TO		0.00 0.00									
CLUSTER EI	GHT -	NUT	RIEN	T CY	CLES	(CA	RBON)			
:	#39	#40		···							
Pretest	.38	. 84									
Posttest											
Retention		. 79									

Student Background and Attitudes

The student background and attitude form was designed to obtain information on students': 1) science academic standing; 2) sex; 3) grade level; 4) science course background; 5) science interests; 6) science extracurricular involvements; 7) perception of learnings; 8) learning style preference; and 9) travel and outdoor experience. A total of 50 possible responses were coded for the variables examined. Students were to provide only one response for 27 of the items, whereas more than one choice was possible for 21 Subtotals were also tallied for four categories of items. items (number of science courses taken, total countries visited, expressed interest in science-related events, and actual participation in science-related events).

Instructional Emphasis Perception

Perceptions of the emphasis given to each major concept area was reported by both teachers and students. Participants indicated the emphasis given to each topic at pretrip sessions, during the trip, and at the posttrip sessions.

DATA COLLECTION PROCEDURES

Data collection procedures are discussed in three general categories: student concept understandings; student background and attitude information; and instructional emphasis perceptions.

Student Concept Understandings

The pretest for the Student Ecology Assessment (SEA) Form 4 was administered to the students during one of each group's pretrip sessions. The SEA was re-administered directly in the field setting on the last evening of the seven-day excursion. The third testing occurred four weeks after the trip at each group's final posttrip meeting.

Student Background and Attitude Form

The students responded to the background and attitude inventory during one of the pretrip sessions. It was administered independently of the SEA instrument. All forms were coded to insure anonymity.

Instructional Emphasis Perception

Teachers indicated the coverage delivered for each targeted concept area and also recorded the nature of the coverage for each topic (i.e. activity, film, report, etc.). This occurred for the pretrip, trip, and posttrip sessions. Information was also requested on the time and emphasis devoted to administrative, procedural, and instructional tasks. The teachers were asked to specify the targeted concept areas that received most attention and also to indicate other science- related topics that were a part of the instructional program during the sessions. Students reported their perceptions of the emphasis given to each targeted concept area on a similar form.

STATISTICAL ANALYSIS

Statistical analysis procedures were conducted at the computing facilities of The Ohio State University and entailed use of programs from two statistical packages. An item analysis program, ItemA Statpack (1982), Which orginated at The Ohio State University, was employed in the development of the Student Ecology Assessment (SEA) instrument and was also used in the analysis of pretest, posttest, and retention responses. Data obtained from the SEA, the student background/attitude forms, and the instructional emphasis forms were subjected to selected programs contained within the Statistical Package for the Social Sciences (SPSSx). included: frequency distributions; These correlational analyses; and multiple regression analyses. Additional computations were also performed and included: adjusted gain scores; t test calculations; and percentages of possible gain.

Student responses on the SEA instrument and the background/attitude form were coded separately for statistical analysis. Initially, frequencies were obtained for the background/attitude instrument and then were entered for correlational analysis and regression analysis with the students' responses from the SEA instrument. Frequencies were also analyzed for student's responses to the SEA instrument and correlations were examined both within each

group and also between each of the tested groups. Comparisons of pretest to posttest results through t test analysis showed significant gains for each group (p < .001).

Overall, students evidenced significant gains in scores on the SEA instrument from pre to posttest responses. Results on the retention test also indicated that the concepts addressed in the instrument were retained by the students.

Student subscores for each of the eight major concept strands from the post and retention tests were then standardized into adjusted gain scores for further analysis. The adjusted gain scores were also entered into regression analyses. Teacher and student ratings of the instructional emphasis given to each of the eight major concept areas were also included in correlational and regression analyses.

Regressions conducted on each group included: 1) each pretest subscore and total score against background variables; 2) each posttest subscore total score against pretest subscores and background variables; 3) each posttest subscore and total score against background variables; 4) each post adjusted subscore and total score against pretest subscores and background variables; 5) each post adjusted subscore and total score against pretest subscores, background variables, and emphasis ratings; and 6) retention

adjusted gain scores against pretest subscores, background variables, post adjusted gain scores, and emphasis ratings. Results of the statistical analysis are presented in Chapter 4.

CHAPTER IV

RESULTS

There are five sections in this chapter. The first section presents frequencies of the variables addressed in this study for the purpose of showing the samples' characteristics. The second section reviews correlation findings. The third presents results of the multiple regression analyses. The fourth section reports percentages of gain and emphasis ratings. The fifth section includes a review related to the tests of the stated hypotheses. References are also made to the tables in the appendices.

DESCRIPTIVE STATISTICS

The student background and attitude form was designed to characteristics of the participating students. Means and/or percentages related to items in the background/attitude form are provided in Tables 11 through 17.

Student Characteristics

Comparisons of the distribution of students' grade levels, sex, and mean prior science grade scores indicate the homogeneity of the sex ratio and science achievement means of the three groups. However, differences existed in the grade levels of the participating groups, with group three having all students from the 12th grade. Characteristics of the participating groups are found in the summaries of Tables 11 through 13.

Table 11

GRADE LEVEL OF STUDENTS IN THE PARTICIPATING GROUPS

GROUP	10th		1	11th		12th		OTAL
	n ——	*	n	*	n	8	n	8
1.	7	248	10	35%	12	41%	29	100%
2.	<u>8</u>	38%	7	33%	6	29%	21	100%
3.	0	800	0	800	29	100%	29	100%

Table 12

DISTRIBUTION OF THE SEX OF THE PARTICIPATING GROUPS

GROUP	FEM	ALES	MALES		
	NUMBER	PERCENTAGE	NUMBER	PERCENTAGE	
1.	18	62%	11	38%	
2.	<u>10</u>	48%	11	528	
3.	13	45%	16	55%	

Table 13

SCIENCE ACHIEVEMENT MEANS AND STANDARD DEVIATIONS OF THE PARTICIPATING GROUPS

GROU	IP n	CURRENT COURSE MEAN GRADE	STAND DEV.	CUMULATIVE MEAN GRADE	STAND DEV.
1.	29	3.03	. 958	3.04	706
2.	21	3.42	. 692	3.00	973
3.	29	2.96	. 566	2.96	576

Student Attitudes

Students' attitudes toward science and science learning as expressed in selected items on the student background/attitude form are reported by percentages in Tables 14 through 16.

Table 14 indicates that nearly all students of the participating groups were highly positive in their perceptions of the amount of learning that was achieved in their science classes and were affirmative in responding that they generally enjoyed their science classes. Their desire to take additional science classes reflected a lower degree of agreement but was still positive.

Table 14

PERCENTAGE OF STUDENTS HOLDING POSITIVE ATTITUDES TOWARD

SCIENCE CLASSES FOR THREE ITEMS

GROUP	žī.	ITEM 1	ITEM 2	ITEM 3	
1:	29	90%	83%	978	
2:	21	100%	76%	1008	
3:	29	100%	65%	1008	

1. = Positive perception of the amount learned in science

2. = Desire to take more science classes

3. = Enjoyment of science classess

When the participating students were asked to indicate the modes of learning that they preferred in their science classes, the learning strategies that necessitate direct involvement and active participation were rated more highly than those that implied a passive means of learning. Therefore lectures and reading received the lowest ratings, whereas outdoor activities, group work, and laboratory exercises were selected by the highest percentage of students. Similarities again are common in these self selected groups. Table 15 reports these percentages.

Table 16 reports student responses to items which focused on science-related activities. Students were asked to specify both the science-related acitivities that they like to do as well as those that they had already done. Generally, it is seen that the participating groups actually participated in more activities than they stated that

Table 15

<u>LEARNING ST-LE PREFERENCE OF THE PARTICIPATING GROUPS</u>

STYLE		UP ONE n=29	GROUP_TWO n=21		GROUP THREE		
	$\overline{\mathbf{n}}$	*	ñ	* - - *	ñ	-29 署	
1.	7	24%	3	148	6	21%	
2.	23	79%	19	90%	23	798	
3.	22	76%	18	86%	26	90%	
4.	27	93%	18	86%	28	978	
5.	4	148	5	24%	5	178	

1. = Lectures

2. = Laboratory Exercises

3. = Group Work

4. = Outdoor Activities

5. = Reading

they had a preference for doing. This is readily apparent with the high percentage of students who had completed science fair projects in comparison with the low ratings that they gave for wanting to do them. Overall, the participating groups indicated that they both hiked and like to hike and have watched and prefer to watch science— lated television programs.

PERCENTAGES OF PREFERENCE AND INVOLVEMENT IN SCIENCE
ACTIVITIES OF THE PARTICIPATING GROUPS

ACTIVITY	GROUP_ONE n=29		GROU			P THREE
	ñ		_	=21		=29
	11	*	n	&	n	*
1.	<u> </u>	_3%	4	19%	2	78
2.	16	5 5 %	19	908	20	698
	2 5	_ 7୫	2	10%	_ <u>_</u>	10%
4.	<u>5</u>	178	8	38%	10	34%
5.	_ 7	248	11	52%	24	83%
6.	13	45%	6	29%	7	248
7.	23	79%	19	90%	26	908
8.	26	90ቄ	19	90%	27	93%
9.	_1	_3%	3	148	_ <u>;</u>	178
10.	20	69%	14	66%	24	838
11.	21	72ቄ	18	86%	29	100%
12.	10	348	8	38%	13	45%

- 1. = Like to do science fair projects
- 2. = Like to hike in the outdoors
- 3. = Like to belong to science clubs
- 4. = Like to read science magazines
- 5. = Like to watch science television programs
- 6. = Like to participate in environmental projects
- Participated in science fairs
- 8. = Hiked in the outdoors
- 9. = Have been a member of a science club
- 10. = Read science magazines
- 11. = Watched science television programs
- 12. = Been involved in environmental projects

Travel and Outdoor Experience

In order to assess the participating groups' exposure to outdoo: experiences and to travel, several items on the student background/attitude form were directed to obtaining information on these aspects. Generally, the participating students' attitude toward travel was highly favorable (90%

liked to travel) and the students were very well traveled. Table 17 summarizes and reports the findings in percentages concerning selected information on the participating students background for travel.

Table 17

TRAVEL AND OUTDOOR EXPERIENCE INDICATED BY THE PARTICIPATING GROUPS

EXPERIE		E GROUP ONE n=29		GROUP TWO n=21		GROUP THREE n=29		
	ñ	*	'n	8	ñ	*		
1.	28	97%	20		29	100%		
2.	28	978	20	95%	29	100%		
3.	13	45%	15	718	22	76%		
4.	27	86%	20	95%	28	978		
5.	18	5 2 %	12	57%	19	668		
<u>6.</u>	9	3 1 %	5	24%	7	248		
7.	10	34%	5 2	10%	<u>.</u>	178		
₿.	0	0 %	ō	0%	2	78		
9 <u>.</u>	7	248	4	20%	16	- 7-5 55%		
10.	Ō	08	ñ.	0%	10	354 38		
11.	2	78	ĭ	5 %	5	36 178		
12.	Ö	08	តិ	08	0 5			
13.	4	148	Ö	0%	6	08 218		

- 1. = Took trips that were more than 3 days long (in a year)
- 2. = Traveled a distance greater than 50 miles (in a year)
 3. = Camped overnight (at least once a year)
- 4. = Would like to travel to new and different places
- 5. = Traveled to Canada
- 6. = Traveled to Mexico
- 7. = Traveled to the Caribbean
- 8. = Traveled to Asia
- 9. = Traveled to Europe
- 10 = Traveled to Africa
- 11. = Traveled to South America
- 12. = Traveled to Australia
- 13. = Traveled to Hawaii or Alaska

CORRELATIONS

Since the significant correlations between variables appear in the regression results and are reported there, separate tables do not appear in the text or appendix.

REGRESSIONS

The variables were entered and considered in the analysis which consisted initially of generation of Pearson product- moment correlation coefficient matrices for each group's scores. All measured variables were included in each matrix. Those that had a pattern of significance (p <.05) were identified. These variables were entered into stepwise regression analyses on the subscores and total scores (... Student Ecology Assessment (SEA). Regression analyses conducted on each of the three groups separately 1) each pretest subscore and total score against background variables; 2) each posttest subscore and total score against background variables; 3) each posttest subscore and total score against pretest scores and background variables; 4) each post adjusted subscore and total score against pretest subscores and background variables; 5) each post adjusted subscore and total score against pretest subscores, background variables, and emphasis ratings; retention adjusted gain scores against pretest subscores, background variables, post adjusted gain scores, and emphasis ratings.

Because of the differences among the three participating groups, the regression analyses were performed separately for each group and are reported in this fashion. Since distinct concept strands were examined in the Student Ecology Assessment (SEA), they also were analyzed separately. Results are specified for each subscore which measured the The total score is also reported. concept strands. The sequence of reporting the regression results is as follows: 1) group one; 2) group two; and 3) group three. Results within these groups are presented in the following manner: 1) pretest by background variables; 2) posttest by background and pretest scores; 3) adjusted gain by background, pretest, and posttest scores; and 4) adjusted retention gain by background, pretest, posttest, and adjusted posttest gain scores.

The major predictors that emerged in each regression at (p <.05) are specified in the tables. In some cases, the variance accounted for by these variables may block the emergence of the other potential predictors. Therefore the tables represent only the most significant of the possible predictors. Predictors that emerged from free regressions (p >.05) are provided in Appendix G. In cases where no predictor emerged, tables are not included for that subscore. Complete lists of variable names are provided in Appendices E and F.

Group One

Pretest Scores against Background Variables

Subscore 1 - Plant and Animal Characteristics:

Since no predictor emerged, a table is not included.

Subscore 2 - Plant and Animal Identification:

In this analysis two predictors were identified. The students' indication of watching science television programs accounted for 15 percent of the variance and travel experience to Canada, accounted for an additional 14 percent, explaining a total of 29 percent of the variance. See Table 18.

Table 18

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 2

FOR GROUP ONE (n=29)

F A	SQUARE DJUSTED	R SQUA	RE	.53501 .28623 .23133 .71893		
	ANAL	YSIS OF	VARIANCE	i		·
<u>.</u> 2	E 2 6		_5.3890 13.4385	5 4	2.59	
		BLES TN				
			_ ==			T
				.38833 .37013		344 232
	:	SUMMARY	7 TABLE			
BLE	MULTR	RSO	ADJRSQ	F(EQN)	SIGF	RSQCH
WV C	.3863 .5350	.1492 .2862	.1177	4.736 5.213	038	.1492
	. 70 . 61	R SQUARE ADJUSTED STANDARD ANAL DF 2 26 VARIA B .70008 .61464 BLE MULTR WV .3863	ANALYSIS OF DF SUM (2 26 SIGN: VARIABLES TN B .70008 .298 .61464 .2715 BLE MULTR RSO WV .3863 .1492	R SQUARE ADJUSTED R SQUARE STANDARD ERROR ANALYSIS OF VARIANCE DF SUM OF SQUARE 2 5.3896 26 13.4385 SIGNIF F = .0 VARIABLES IN THE EQUA B B .70008 .29870 .61464 .27154 BLE MULTR RSO ADJRSQ WV .3863 .1492 .1177	ADJUSTED R SQUARE .23133 STANDARD ERROR .71893 ANALYSIS OF VARIANCE DF SUM OF SQUARES MI 2 5.38905 26 13.43854 SIGNIF F = .0125 VARIABLES IN THE EQUATION B BETA .70008 .29870 .38833 .61464 .27154 .37013 SUMMARY TABLE BLE MULTR RSO ADJRSQ F(EQN) WV .3863 .1492 .1177 4.736	R SQUARE .28623 ADJUSTED R SQUARE .23133 STANDARD ERROR .71893 ANALYSIS OF VARIANCE DF SUM OF SQUARES MEAN SQUARES .2.59 26 13.43854 .51 SIGNIF F = .0125 VARIABLES IN THE EQUATION B B BETA .70008 .29870 .38833 261464 .27154 .37013 2. BLE MULTR RSQ ADJRSQ F(EQN) SIGF WV .3863 .1492 .1177 4.736 .038

WV Watched science television programs (actually done) C Travel out of the United States (Canada)

Subscore 3 - Plant and Animal Habitats:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 100 in Appendix G.

Subscore 4 - Food Chains:

The predictor variable identified in t 3 analysis was the indication of the students' positive perception that they did learn in their science classes. The variance accounted by this variable was 19 percent. Refer to Table 19.

Table 19

EGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 4

FOR GROUP ONE (n=29)

	I	MULTIPLE R SQUARE ADJUSTED			.43418 .18851 .14580		
		STANDARD		.0.3	1.62882		
		ANAL	YTS OF	VARIANCE			
RESID	SSION	1 19		OF SQUARE 11.7100 50.4081 IF = .0	6 6	EAN SQU 11.71 2.65	.006
		VARIA	BLES IN	THE EQUA	TION_		
VARIA	Bee	В	SE	В	BETA		Ť
Q	1.14	285	.5439	8	.43418	2.	101
			SUMMARY	TABLE-			
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1	Q	.4342	1885	.1458	4.414	.049	·1885

Q Perception of Learning in Science

Subscore 5 - Food Webs:

Two variables were identified in this analysis: the students' indication of experience in hiking outdoors, which accounted for 21 percent of the variance, and the students' expression of liking to view science-related television programs, which accounted for an additional 19 percent, explained a total of 40 percent of the variance. Table 20 reports the results.

Table 20

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 5
FOR GROUP ONE (n=29)

		MULTIPLE	R		.63431		
		R_SQUARE			.40223		
		ADJUSTED R SQUARE			.35624		
		STANDARD	ERROR		1.52567		
		ANAL	YSIS OF	VARIANCE			- <u> </u>
	j	D F	SUM	OF SQUARE	.s M	EAN SQU	ADE
REGRESSION 2				40.7219		20.36	
RESIDUAL 26						2.32	
F = 8	3.74737		SIGN	$\mathbf{F} \mathbf{F} = .0$	012		
	<u> </u>	VARIA	BLES IN	THE EOUA	TION		
VARIA	BLE	В		В	BETA		T
НО	3.0	0485	.932	76	48977	ā -	221
űΑ		2233	.663		44026		896
			SUMMARY	TABLE	-		
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1 2	НО	.4576	.2094	1801	7.153	.013	. 2094
2	TV	.6342	.4022	3562	8.747		1928

HO Hiked outdoors

TV Like to watch science television programs

Subscore 6 - Energy Transfer (Food):

Two variables were identified in this analysis: the students' desire to take more science classes, which accounted for 18 percent of the variance, and the desire of students to read science books and magazines, which accounted for an additional 14 percent, explained a total of 32 percent of the variance. Refer to Table 21.

Table 21

REGRESSION OF BACKGROUND VARIABLES ON PRETFST SUBSCORE 6

FOR GROUP ONE (n=29)

				<u> </u>			
	MULTIPL		<u> </u>	.56815			
	r squar			.32280			
	ADJUSTE			.27071			
	STANDAR	D ERROR		.67147			
	ANA	LYSIS OF V	ARIANCE				
	DF	SUM OF	SQUARE	S ME	ean_squ	JARE	
REGRESSION	_2		5.5877	5	2.79		
RESIDUAL	26		11.72660			5087	
F = 6.19664		SIGNIF	F = 0	063			
	VARI	ABLES IN T	HE EQUA	TION			
VARIABLE	В	SE B		BETA		T	
MM	.38768	13528		.46558	_	066	
RM	. 78484	33230		33372		2.866 2.362	
				.00072	2.	302	
			TABLE				
STEP VARIA	BLE MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	
1 2	MM .4213	· 1 775	1470	5.827	.023	.1775	
2	RM .5682	·3228	2707	6.197	.006	.1453	
				·			

MM Would like to take additional cience classes RM Read science magazines or books

Subscore 7 - Energy Pyramids:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 101 in Appendix G.

Subscore 8 - Nutrient Cycles:

Two variables were identified in this analysis: the indication that the students traveled a distance of 50 miles or more each year, which accounted for a variance of 15 percent, and the cumulative score of science-related activities performed, which accounted for an additional 13 percent, explained a total of 28 percent of the variance. The results are presented in Table 22.

Table 22

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 8
FOR GROUP ONE (n=29)

	F	MULTIPLE SQUARE ADJUSTED	R R SQUAR) F	.53310 .28419 .22913			
	STAMDARD ERRO				.52470			
		ANAL	YSIS OF	VARIANCE	<u> </u>			
REGRESSION 2 RESIDUAL 26		2	SUM C	F SQUARE 2.8419	4	MEAN_SQUARE 1.42097		
$ RESIDUAL \\ F = 5.16134 $		10	SIGNI	7.1580 F F = .0		.27	7531	
		VARIA			TION			
VARIABLE		Đ	SE	В	BETA	· · · · · · · · · · · · · · · · · · ·	Ŧ	
TM GTG		891 789	1287 0940		.41200 .36745		477 209	
	_		SUMMARY	TABLE	<u>.</u> .			
STEP VARIA	BLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	
1 2	TM GTC	.3870 .5მმა	1498 2842	.1183 .2291	4.757 5.161	.038	.1498 .1344	

TM Traveled a distance of more than 50 miles (in a year) GTG Total of science-related activities performed

Total Score of the Pretest:

The predictor variable identified in this analysis was the students' preference for reading as a mode of learning science. The variance accounted by this variable was 23 percent. Table 23 reports the findings.

Table 23

REGRESSION OF BACKGROUND VARIABLES ON PRETEST TOTAL SCORE
FOR GROUP ONE (n=29)

	Ē	MULTIPLE SQUARE ADJUSTED STANDARD	R SQUAR	Œ	.47829 .22876 .18591 3.94562		
		ANAL	YSIS OF	VARIANCE			
REGRESS RFSIDU F - 5.3	SION AT 1 33899)F 1 8		F_SQUARE _83.1170 _280.2228 F F = .0	4 6 <u>-</u>	EAN SQU 83.11 15.5	704
VARIABI		VARIA		THE EQUA			
VARTADL	יבי	Þ	SE	В	BETA		T
Ÿ	5.96	000	2.5793	8	.47828	Ž.	311
STEP V	/ARIABLE	MULTR	_SUMMARY RSQ	TABLE_ ADJRSQ	F(c	SIGF	RSQCF
i	Ÿ	.4753	.2288	.1859	- 5.339	.033	. 2288

Y Reading as a preferred way to learn science

Posttest Scores against Background and Pretest Scores
Subscore 1 - Plant and Animal Characteristics:

The predictor variable identified in this analysis was the indication that students frequently watch science television programs. The variance accounted by this variable was 30 percent. Refer to Table 24.

Table:

REGRESSION OF	BACKGR	OUND AND	PRTEST	SCORRS	ON DOS	iin san
<u> </u>	UBSCORE	1 FOR	HOW ONE	(n=29)	Ote FOD	LIEST
				·		
	ULTIPLE			.54410		
	SQUARE DJUSTED	R SQUAR	ie:	. 29605 . 25025		
S	TANDARD	ERROR		.78234		
	ANAL	YSIS OF	VARIANC	·		
D		SUM C	F SQUARE	s M	iean squ	JARE
REGRESSION RESIDUAL 1			4.1278		4.12	
F = 6.72876	0	SIGNI	9.1854 $F F = .0$		•6]	.347
<u></u>	VARIA	BLES IN	THE EQUA	TTON	_	
VARIABLE		SE		BETA		Ť
WV 1.08	333	.4176	3	.54410	$ar{ extsf{2}}$.	594
		SUMMARY	TABLE			
STEP VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
i wv	.5441	.2960	2520	6.729	.020	. 2960
WV Watched so:	lange te					

WV Watched science television programs

Subscore 2 - Plant and Animal Identification:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 102 in Appendix G.

Subscore 3 - Plant and Animal Habitats:

In this analysis two predictors were identified. The students' current science grade accounted for 33 percent of the variance and travel experience to Europe accounted for an additional 17 percent, explaining a total of 50 percent of the variance. Table 25 reports the results of the analysis.

Table 25

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST
SUBSCORE 3 FOR GROUP ONE (n=29)

		DODDCORE	J FOR G	NOUP ONE	$\frac{1}{2}$ $(n=29)$		
		MULTIPLE	R		.70829		
		R SQUARE			.50168		
		ADJUSTED	R SQUAR	Ē	.43524		
		STANDARD	ERROR		.41865		
		ANAL	YSIS OF	VARIANCE			
		DF	SU:1 0	F SQUARE	s m	EAN SQU	IARE
	ession	2		2.5468		1.32	
RESID		1 5		2.0290			7527
F = 7	.55060		SIGNI			· ·	, 52,
:		VARIA	BLES (N	THE FOUR	"TON		
VARIA	BLE	В	SE	В	BETA		Ŧ
CG	. 3	33944	.0597	વં	. 58395	-	003
Ē							203
			¥2002,	•	(41200	4) •	204
			SHMMADV	ጥል ውና ው			
STEP	VARTABLE	CTAILM S			TS / TROBE)	6760	D.Clorett
_	7111(1111111111111111111111111111111111	. MODII	rog	QCA0UI.	L (* SN)	SIGE	RSQCH
1	C	5757	·3314	.2897	7.932	.012	. 331A
2	E	.7083	.5017				
							11102
STEP	VARIABLE CO	52790 E MULTR 5 .5757	.2332 SUMMARY RSQ .3314	Ō	F(FQN) 7.932 7.551	3.	RSQCH .3314 .1702

CG Current science grade

E Travel out of the United States (Europe)

Subscore 4 - Food Chains:

The predictor variable identified in this analysis was the students' desire to travel to new and different place. The variance accounted for by this variable was as percent. The results are presented in Table 26.

#ਬਹ≟ **ਵ**ੇ 26

REGRESSION	OF BACKGR	OUND AND	PRETEST	SCORES	ON POS	TEST
	SUBSCORE	4 FOR (ROUP ONE	(n=29)		
		<u>. </u>				
	MULTIPLE	R		.50000		
	R SQUARE	D COUNT		. 25000		
	ADJUSTED STANDARD	ERROR		.20313 1.26088		
	Olimbrid	Diatort		1.20000		
	ANAL	SIS OF	VARIANCE			
	DF	SIM C	TE COUNTRY			
REGRESSION	ĺ	SOM C	F SQUARE: 8.4790	5 <u>M</u> 1 5	EAN SQU 8.47	
RESIDUAL	16		25.4371		1.58	
F = 5.33333		SIGNI	$\mathbf{F} \mathbf{F} = .0$	346		
	VARIA	RIES IN	THE EQUA	nton		
VARIABLE	B	SE SE		BETA		
8 44			_			1
DP 2	.64626	1.1458	6	.50000	2.	309
AMBS		SUMMARY				
STEP VARIABI	LE MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
i ni	P 5000	.2500	.2031	5.333	035	- 2500
		• 2500	• 2001	3.333	.035	2500
DP Desire	to travel t	o nei, a	nd differ	ent plac	.es	

Subscore 5 - Food Webs:

The predictor variable identified in this and you's was the students' travel experience to Mexico (students who did not have the experience). The variance accounted for by this variable was 27 percent. Refer to Table 27.

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST
SUBSCORE 5 FOR GROUP ONE (2020)

	SUBSC	ORE 5 FOR (GROUP ONE	(n=29)		
	r squ Adjus Stand	PLE R TARE TED R SQUAR TARD ERROR NALYSIS OF		.52154 .27200 .22650 1.31887		
REGRESSION RESIDUAL F = 5.9780	DF 1 16 3	SUM C	F SQUARE 10.3983 27.8307 F F = .0	S MI 1 5 264	EAN_SQU 10.39 1.73	831
VARIABLE	VA B	RIABLES IN SE		TIONBETA		T
M	-1.66111	÷6793	<u> </u>	.52153	- 2 .	445
STEP VARI	ABLE MUL	SUMMARY	TABLE	F(EQN)	STOR	DCOOU
1	M •52	~ ~~	2265	5.978	SIGF .026	RSQCH

M Travel out of the United States (Mexico)

Subscore 6 - Energy Transfer (Food):

In this analysis two variables were identified. The students' overall grade average accounted for 30 percent of the variance and the students' desire to take more science courses accounted for an additional 18 percent, explaining a total of 48 percent of the variance. The results of this analysis are presented in Table 28.

Table 28

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST
SUBSCORE 6 FOR GROUP ONE (n=29)

VARIABLES IN THE EQUATION				0 1 0.0	TCOOT DYAT	1 /11-69/		
R SQUARE ADJUSTED R SQUARE 41343 STANDARD ERROR .52668 ANALYSIS OF VARIANCE DF SUM OF SQUARES MEAN SQUARE 3.87850 1.93925 2531DU6L 15 4.16091 .27739 F = 6.99095 SIGNIF F = .0072 VARIABLES IN THE EQUATION VARIABLE B SE B BETA T V .06795 .02121 .59859 3.203 MM .30914 .13611 .42448 2.271 SUMMARY TABLE SUMMARY TABLE STEP VARIABLE MULTR RSQ ADJRSQ F(EQN) SIGF RSQCH			***					
R SQUARE ADJUSTED R SQUARE 41343 STANDARD ERROR .52668 ANALYSIS OF VARIANCE DF SUM OF SQUARES MEAN SQUARE 3.87850 1.93925 2.531DUAL 15 4.16091 .27739 F = 6.99095 SIGNIF F = .0072 VARIABLES IN THE EQUATION VARIABLE B SE B BETA T V .06795 .02121 .59859 3.203 MM .30914 .13611 .42448 2.271 SUMMARY TABLE SUMMARY TABLE STEP VARIABLE MULTR RSQ ADJRSQ F(EQN) SIGF RSQCH		N	MULTIPLE	R		.69458		
ADJUSTED R SQUARE .41343 STANDARD ERROR .52668 ANALYSIS OF VARIANCE DF SUM OF SQUARES MEAN SQUARE 3.87850 1.93925 25SIDUAL 15 4.16091 .27739 3 = 6.99095 SIGNIF F = .0072 VARIABLES IN THE EQUATION VARIABLE B SE B BETA T V .06795 .02121 .59859 3.203 MM .30914 .13611 .42448 2.271 SUMMARY TABLE STEP VARIABLE MULTR RSQ ADJRSQ F(EQN) SIGF RSQCH		F	SQUARE					
STANDARD ERROR		A	DJUSTED	R SOUAR	E			
ANALYSIS OF VARIANCE DF SUM OF SQUARES MEAN SQUARE 3.87850 1.93925 4.16091 .27739 F = 6.99095 SIGNIF F = .0072 VARIABLES IN THE EQUATION VARIABLE B BETA T VARIABLE B BETA T VARIABLE B BETA T SE B BETA T VARIABLE B SE B BETA T SE B BETA T VARIABLE B SE B BETA T VARIABLE B SE B BETA T SE B BETA T VARIABLE B SE B B BETA T VARIABLE B SE B B BETA T VARIABL								
DF SUM OF SQUARES MEAN SQUARE 3.87850 1.93925 4.16091 .27739 F = 6.99095 SIGNIF F = .0072 VARIABLES IN THE EQUATION VARIABLE B SE B BETA T 1 .06795 .02121 .59859 3.203 1.30914 .13611 .42448 2.271 SUMMARY TABLE STEP VARIABLE MULTR RSQ ADJRSQ F(EQN) SIGF RSQCH 1 V .5518 .3044 .2610 7.003 .018 .3044						.02000		
1.93925 1.93			ANAL	YSIS OF	VARIANCE			<u></u>
1.93925 1.93		_ D	ir	SHM O	E SOHADE		DAM COL	
VARIABLES IN THE EQUATION VARIABLES IN THE EQUATION VARIABLE VARIABLE VARIABLE SEB SEB SETA T 1.06795 .02121 .59859 3.203 .30914 .13611 .42448 2.271 SUMMARY TABLE STEP VARIABLE MULTR RSQ ADJRSQ F(EQN) SIGF RSQCH 1.27739 2.27739 2.277	CROEFFERTON			DOM O				
VARIABLES IN THE EQUATION		1	Š					
VARIABLES IN THE EQUATION VARIABLE B SE B BETA T V06795 .02121 .59859 3.203 MM .30914 .13611 .42448 2.271 SUMMARY TABLE STEP VARIABLE MULTR RSQ ADJRSQ F(EQN) SIGF RSQCH 1 V .5518 .3044 .2610 7.003 .018 .3044			.5	CTONE			• 27	//39
VARIABLE B SE B BETA T V .06795 .02121 .59859 3.203 MM .30914 .13611 .42448 2.271 SUMMARY TABLE STEP VARIABLE MULTR RSQ ADJRSQ F(EQN) SIGF RSQCH 1 V .5518 .3044 .2610 7.003 .018 .3044	1 0.99093			PIGNI	$\mathbf{F} = 0$	072		
VARIABLE B SE B BETA T V .06795 .02121 .59859 3.203 MM .30914 .13611 .42448 2.271 SUMMARY TABLE STEP VARIABLE MULTR RSQ ADJRSQ F(EQN) SIGF RSQCH 1 V .5518 .3044 .2610 7.003 .018 .3044			VARTA	BLES IN	THE FOUR	TON		
October 1	VARIABLE							<u>т</u>
STEP VARIABLE MULTR RSQ ADJRSQ F(EQN) SIGF RSQCH			. —		_	DUIN		
SUMMARY TABLE SUMMARY TABLE STEP VARIABLE MULTR RSQ ADJRSQ F(EQN) SIGF RSQCH	V	.06	795	.0212	1	59859	3	303
SUMMARY TABLE	MM							
TEP VARIABLE MULTR RSQ ADJRSQ F(EQN) SIGF RSQCH				11001	 -	• 22440	۷.	2/1
TEP VARIABLE MULTR RSQ ADJRSQ F(EQN) SIGF RSQCH	<u></u>			CHMMID	ሞላ ው ተ- ይነ		-	
1 V .5518 .3044 .2610 7.003 .018 .3044	STEP VARIA	BI.E	MITT TO			TICHEN	OTOP.	2000
1 V .5518 .3044 .2610 7.003 .018 .3044 2 MM .6946 .4824 .4134 6.991 .007 .1780	OTOL VARCEN	ديد	MOLIT	RSQ	MDORGQ	r (rón)	SIGF	RSQCH
2 MM .6946 .4824 .4134 6:991 .007 .1780	i	V	.5518	. 3044	. 2610	7:003	NIΩ	3044
	2							
	_		.0540	. 4024	. 4124	0.991	• 00 /	•1780

V Cumulative science grade mean
MM Desire to take additional science classes

Subscore 7 - Energy Pyramids:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in a ble 103 in Appendix G.

Subscore 8 - Nutrie volest

The predictor variable identified in this analysis was the preference for lodge facilities while in the outdoors (students who did not prefer lodges). The variance accounted for by this variable was 24 percent. Refer to Table 29 for the results.

5.000 .040 .2381

Table 29

REGRESSION	OF BACKGROU SUBSCORE 8	IND AND I	PRETEST OUP ONE	SCORES (n=29)		POSTT	EST
	MULTIPLE R R SQUARE ADJUSTED R STANDARD E	SQUARE		48795 23810 19048 60570			
	Analys	IS OF V	ARIANCE	<u>_</u>			
REGRESSION RESIDUAL F = 5.00009	DF 1 16	SUM OF	SQUARE: 1.8344 5.8700 F = .03	l	MEAN	SQUA 1.834 .366	41
VARIABLE	VARIABL		E EQUA			·-·	
ANTADLE	B	SE B		BETA			T
<u> </u>	34908	29025	-	- 48795	3	=2.2	36
STEP VARIABLE			ABLE DJRSQ	F(EQN) SI	GF I	RSQCH

LX Prefer lodge facilities while exploring the outdoors

LX .4880 .2381 .1905

Total Posttest Score:

1

The predictor variable identified in this analysis was the students positive perception of their learning in their science classes. The variance accounted by this variable was 36 percent. Refer to Table 30 for results.

Table 30

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST

TOTAL SCORE FOR GROUP ONE (n=29)

-	MULTIPLE R SQUARE ADJUSTED STANDARD	R SQUAR		.59826 .35792 .31779 3.35206		
	ANAL	YSIS OF	VARIANCE	_		
REGRESSION RESIDUAL F = 8.91899	DF 1 16	<u> </u>	F_SQUARE 100.2165 179.7810 F F = .0	<u>3</u> 0	EAN SQU 100.21 11.23	653
VARIABLE	VARIA		THE EQUA	TION_ BETA		<u> </u>
Q 3	626374	1.2142	6 9	.59826	2.	986
		SUMMARY	TABLE			
STEP VARIAB	LE MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
i	Q .5983	.3579	.3178	8.919	.009	.3579

Q Positive perception of learning in science

Adjusted Gain Scores against Background and Pretest Scores
Subscore 1 - Plant and Animal Characteristics:

In this analysis two variables were identified. The pretest subscore 1 (students who scored low on the pretest made the most gain) accounted for 49 percent of the variance and the students' indication of watching science tele-

vision programs accounted for an additional 14 percent, explaining a total of 63 percent of the variance. Table 31 contains the results of this analysis.

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAIN SUBSCORE 1 FOR GROUP ONE (n=29)

		NULTIPLE			.79477		
		R_SQUARE		-	63166		
		adjusted Standard		E;	. 58254 . 79779		
		ANAL	YSIS OF	VARIANCI	Ē	_ <u></u>	
) PF	SUM O	F SQUARI	ES ME	an squ	JARE
		2		16.371	7 1	8.18	586
RESID		.5		9.5470		.63	647
F = 1	2.8614		SIGNI	$\mathbf{F} = \mathbf{F}$	0006		
		VARIA	Bles in '	THE EQUA	ATION		
VARIA	BLE	В		B	BETA	<u></u> -	T
Tl	=. 94	804	.2149	7	69116	-·Ā.ā	410
WV	1.03	3726	. 4254		38210		438
			CIMMARO	ms of the			
STEP	VARIABLE	MULTR	_SUMMARY RSQ	TABLE_ADJRSQ	E/FON!	CTCE	DCCCII
DIE	AULTINU	мошти	Rag	MDOKSQ	F(EQN)	SIGF	RSQCH
1 2	Tl	.6969	.4835	4535	15.109	.001	. 4857
2	WV	.6317	.6317	5825	12.861	.001	1460

T1 Pretest Subscore 1 WV Watched science television programs

Subscore 2 - Plant and Animal Identification:

The predictor variable identified in this analysis was the pretest subscore 2 (students who scored low on the pretest made the most gains). The variance accounted for 65 percent of the variance. Refer to Table 32 for the results.

Table 32

REGRESSION OF BACKGROUND AND PRETEST RESULTS ON ADJUSTED
GAIN SUBSCORE 2 FOR GROUP ONE (n=29)

		ULTIPLE	R		.80846		
		SQUARE			.65361		
		DJŨSTED	R SQUARI	2	.63196		
	S	TANDARD	ERROR		.54027		
		ANAL	SIS OF V	/ARIANC	E		
	D	F	SUM OF			ean squ	ARE
REGRESSION	_	<u>1</u> 6		8.812		8.81	
RESIDUAL F = 30.1903		6	A TANTI	4.670		. 29	190
F - 30.1903	4		SIGNII	F = .0	JUUU		
		VARIA		THE EQUA			
VARIABLE		В	SE E	3	BETA		T
T2	92	307	.16799	į.	8 0 846	- 5.	495
			SUMMARY	TABLE			
STEP VARIA	BLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
i	T2	8085	6536	.6320	30.190	.000	.6536

T2 Pretest subscore 2

Subscore 3 - Plant and Animal Habitats:

Three variables were identified in this analysis. The pretest subscore 3 (students who scored low on the pretest made the most gains) accounted for 57 percent of the variance. Other variables included: the students' current science grade and the students' ninth grade science achievement mean (students who had a low achievement mean made the most gains). These variables contributed 12 percent and 9 percent, respectively, to the variance explaining a total of 78 percent of the variance. Refer to Table 33.

Table 33

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAIN SUBSCORE 3 FOR GROUP ONE (n=29)

		<u></u>					
		MULTIPLE	R		.88348		
		R_SQUARE			78053		
		ADJUSTED		Ē	.73350		
		STANDARD	ERROR		.54289		
		ANAL	YSIS OF	varianc	E		
		DF	SUM O	F SQUAR	es mi	ean squ	JARE
REGRE		_ 3		14.674	3 3	4.89	
RESID		14		4.126		. 29	473
$\mathbf{F} = 1$	6.59658		SĮGNI	FF = .	0001		
		VARIA	BLES IN	THE EOU	ATION		
VARIA	BLE	В		B	BETA		T
Т3	=. -	4697	.1651	7	65801	-5:	128
CG	_	1829	.1385		.38120	-	019
NG	=.3	7059	·1551		30584		389
	<u> </u>		SUMMARY	TABLE			
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
ĺ	T3	. 7525	.5663	.5392	20.891	•000	5663
1 2 3	CG		.6911	.6499	16.778	.000	1248
3	NG		.7805	.7335	16.597	.000	0895
						_ :	

T3 Pretest subscore 3

Subscore 4 - Food Chains:

In this analysis two variables were identified. The pretest subscore 4 (students who scored low on the pretest made the most gains) accounted for 40 percent of the variance and the pretest subscore 7 accounted for an additional 16 percent, explaining a total of 56 percent of the variance. See Table 34 for the results.

CG Current grade in science

NG Ninth grade science achievement mean

Table 34

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED

GAIN SUBSCORE 4 FOR GROUP ONE (n=29)

	MULTIPLE			.74590	<u> </u>	
	R SQUARE			•5 <u>5637</u>		
	ADJUSTED		RE	.49722		
	STANDARD	ERROR		1.40630		
	ĀNĀL	YSIS OF	VARIANC	E		
	DF	SUM	OF SQUARI		iean squ	JARE
REGRESSION	2		37.2042		18.60	
RESIDUAL	15	-2-2-1-55	29.664		1.97	7768
F = 9.40604		SIGN	IF F = .0	0023		
	VARIA	BLES IN	THE EQUA	ATION-		
VARIABLE	B	SE	В	BETA		T
T4 '	76618	.199	86	66110	= =	833
	47121	. 204		39830		310
	<u> </u>	SUMMARY	Y TABLE			
STEP VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1 7	4 .6314	.3986	.3610	10.605	.005	. 3986
1 T		5564	.4972	9.406		.1578
					· -	
	<u> </u>					

T4 Pretest subscore 4
T7 Pretest subscore 7

Subscore 5 - Food Webs:

In this analysis two variables were identified. The pretest subscore 5 (students who scored low on the pretest made the most gains) accounted for 48 percent of the variance and travel experience to Mexico (students without the experience) accounted for an additional 15 percent,

explaining a total of 63 percent of the variance. Table 35 contains these results.

Table 35

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 5 FOR GROUP ONE (n=29)

	N	WLTIPLE	R .79229				
	F	SQUARE		. 62773			
	P	DJUSTED	R_SQUARE		.57809		
	S	STANDARD	ERROR		1.39177		
		ANAL	YSIS OF	VARIANCI	3		
) <u>F</u> 2 .5	SUM (OF SQUAR	ES ME	AN SQU	JARE
REGRES	SSION	2		48.993	76	24.49	
RESIDU		.5		29.0559		1.93	703
F = 12	2.6466		SIGN	(F F = .0)	0006		
		- VARIA	BLES IN	THE EOU	ATION		
VARIAE	BLE	B	SE	В	BETA		T
Т5	-:80	976	.1795	51	71123	 Ā :	511
M	-1.72940		.7175		38991	-2.410	
			SUMMARY	 Z MXDCD			
STEP	VARIABLE	MULTR	_SUMMARI RSQ	TABLE_ ADJRSQ	P/PON)	CTOD	DOOGE
512 2	AIMATINDED	монис	KDQ	ADORSQ	F(EQN)	SIGF	RSQCF
1 2	T 5	.6954	.4836	.4513	14.982	.001	4836
2	M	.7923	.6277	.5781	12.647	001	1442

Subscore 6 - Energy Transfer (Food):

Travel out of the United States (Mexico)

The predictor variable identified in this analysis was the pretest subscore 6 (students who scored low on the pre-

M

test made the most gains). This variable accounted for 42 percent of the variance. Table 36 contains the results.

Table 36

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAIN SUBSCORE 6 FOR GROUP ONE (n=29)

		<u> </u>		<u> </u>		
	MULTIPLE	R.		.65052		
	R SQUARE	K 22	<u>.</u>	.42317		
	ADJUSTED STANDARD		S	.38712		
	STANDARD	ERROR		.72791		
	ANAL	YSIS OF V	ARIANC	Ē	<u></u>	
	DF	SUM OF	SQUARI		ean squ	
REGRESSION	1 16		6.219		6.21	
RESIDUAL F = 11.73787	16	GIGNIE	8.477		.52	985
F - 11./3/0/		SIGNIE	F = i	JU35		
	VARIAI	BLES IN T	HE EQUA	ATION		
VARIABLE	B	SE E	3	BETA		T
r6	73897	21569	j	65051	= 3.	426
		SUMMARY	TABLE			
STEP VARIABL	E MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCF
i T	6 .6505	.4232	.3871	11.738	•003	. 4232

T6 Pretest subscore 6

Subscore 7 - Energy Pyramids:

In this analysis two predictors were identified. The pretest subscore 7 (students who scored low on the pretest

made the most gains) accounted for 33 percent of the variance and the pretest subscore 4 accounted for an additional 18 percent, explaining a total of 51 percent of the variance. Table 37 contains the results.

Table 37

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAINS SUBSCORE 7 FOR GROUP ONE (n=29)

			*					
MULTIPLE								
		e square	.51152					
	Į.	DJUSTED		RE .	.44639			
	9	STANDARD	ERROR		1.20168			
		ANAL	YSIS OF	VARIANC	E	<u> </u>		
	Ē)F 2 .5	SUM (F SQUAR	ES M	EAN SQU	JARE	
REGRESSION		2		22.681		11.34096		
RESIDUAL	1	.5		21.660		1.44403		
F = 7.85376	j		SIGNIF $F = .0046$					
VARIABLE		VARIA B	BLES IN SE	THE EQUA	ATIONBETA		Ŧ	
T7	58	065	.1743	3 4	60271	= 3	331	
T4		834	.1707		.43267		391	
			_SUMMARY				<u> </u>	
STEP VARIA	BLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	LUQCH	
1 2	T 7	.5704	.3254	.2832	7.716	.013	.3254	
Ž	T4	7152	.5115	.4464	7.854		1862	
					<u> </u>			

T7 Pretest subscore 7 T4 Pretest subscore 4

Subscore 8 - Nutrient Cycles:

In this analysis two variables were identified. The pretest subscore 8 (students who scored low on the pretest made the most gains) accounted for 33 percent of the variance and preference for cabin facilities while in the outdoors (students who did not prefer cabin facilities) accounted for an additional 18 percent, explaining a total of 51 percent of the variance. Refer to Table 38.

Table 38

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAIN SUBSCORE 8 FOR GROUP ONE (n=29)

	R A	ULTIPLE SQUARE DJUSTED TANDARD	R R SQUARI ERROR	<u> </u>	.71508 .51134 .44618 .62022		
		ANAL	YSIS OF V	/ARIANCE	<u> </u>		
RESI	ESSION		SUM OF	6.0378 5.7700	30 78	EAN SQU 3.01 .38	
VARI	NOTE	VARIAI B			ATION	=	
AWIT	ADLE		SE E	5	BETA		T
T8 LX	=. <u>87</u> =.70		. 25348 . 29936		62441 42992	_	435 365
:.			SUMMARY	TABLE		-	=
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1 2	<u>T</u> <u>8</u>	.5737	.3291	.2871	7.848	.013	3291
2	LX	.7151	.51 1 3	4462	7.848	.005	.1823
T8 LX	Pretest su Preference			a cabin			

Total Adjusted Gain Score:

In this analysis two variables were identified. The total pretest score (students who scored low on the pretest made the most gains) accounted for 41 percent of the variance and the students' positive perception of their learning in their science classes accounted for an additional 18 percent, explaining a total of 59 percent of the variance. Table 39 contains the results of this regression analysis.

Table 39

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
TOTAL SCORE FOR GROUP ONE (n=29)

N	III.TPI.E	P		75051			
_							
_		P SOUND	다 다				
			<u> </u>				
	TAMPARD	EKKOK		3.43101			
	ANALY	SIS OF	VARIANC	E			
_		OTH O					
ט	r 2						
- 1	<u>4</u>						
	5						
		SIGNI	$\mathbf{F} = \mathbf{F} = \mathbf{F}$	10.F.S			
	VARTA	BLES IN	THE EOU	VETON			
						Ŧ	
	_		-	DDIA		1	
93	802	. 2061	<u> </u>	- 80946	A -	551	
		1.3461	5			582	
•••		110101		.40,00	٤.	J02	
		SUMMARY	TABLE				
BLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	
TTT	.6392	4087	.3717	11.057	: 004	.4087	
						1820	
						0 _ 0	
	93 3 . 47	ANALY DF 2 15 VARIAB B93802 3.47638 BLE MULTR TTT .6392	ADJUSTED R SQUARE STANDARD ERROR ANALYSIS OF SUM OF SUM OF SUM OF SIGNIFICATION OF SUM OF SU	R SQUARE ADJUSTED R SQUARE STANDARD ERROR ANALYSIS OF VARIANCE DF SUM OF SQUARE 2 257.852 15 178.7039 SIGNIF F = .0 VARIABLES IN THE EQUARE B SE B 93802 .20610 3.47638 1.34616 SUMMARY TABLE BLE MULTR RSQ ADJRSQ TTT .6392 .4087 .3717	ADJUSTED R SQUARE .53607 STANDARD ERROR 3.45161 ANALYSIS OF VARIANCE	ADJUSTED R SQUARE .53607 STANDARD ERROR 3.45161 ANALYSIS OF VARIANCE DF	

TTT Total Pretest Score

Q Positive Perception of Learning in Science

Adjusted Retention Gain Scores against Background, Pretest, Posttest, and Adjusted Gain Scores

Subscore 1 - Plant and Animal Characteristics:

The predictor variable identified in this analysis was the students' travel experience to Hawaii and/or Alaska. The variance accounted for by this variable was 27 percent. Refer to Table 40 for the results.

Table 40

REGRESSION OF BA	CKGROUND, PRETUSTED RETENTION	TEST, POSTTES		GAIN ONE
	(n=2			<u>0112</u>
	: -	_	·	
	LTIPLE R		667	
	SQUARE		694	
	JUSTED R SQUAF		113	
ST	ANDARD ERROR	.92	913	
	ANALYSIS OF	VARIANCE		
DF REGRESSION 1	SUM C	F SQUARES	MEAN_SQU	
RESIDUAL 16		5.02986	5.02	
F = 5.82645		13.81250	.86	328
1 - 5.02045	STGMI	F F = .0281		
	_VARIABLES IN	THE EQUATION		
VARIABLE	B SE		ETA	Ŧ
H -1.550	6421	4 .51	666 -2.	414
	SUMMARY	TABLE		
STEP VARIABLE	MULTR RSQ	ADJRSQ F()	EQN) SIGF	RSQCH
1 H	5167 .2669	.2211 5	.826 .028	.2669

H Travel (Hawaii or Alaska)

Subscore 2 - Plant and Animal Identification:

In this analysis two variables were identified. The adjusted gain subscore 2 (students who scored low on the pretest made the most gains) accounted for 41 percent of the variance and the pretest subscore 2 (students who scored low on the pretest made the most gains) accounted for an additional 18 percent, explaining a total of 59 percent of the variance. Refer to Table 41.

Table 41

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 2 FOR GROUP ONE (n=29)

		# * - 					
		ULTIPLE	R		.76848		
		SQUARE	D 00111	-	.59057		
	_	DJUSTED	R SQUARE	i .	.53598		
	2	TANDARD	ERROR		.39570		
		ANAL	YSIS OF V	ARIANCE_			
	Ē)F 2 .5	SUM OF			EAN SQU	JARE
REGRESSION	-	2		3.3877	7	1.69	
RESIDUAL		.5		2.34868	3	. 15	658
F = 10.8180	9		SIGNIE	F = .00	012		
		VARIA	BLES IN T	HE EQUAT	TION		
VARIABLE		В	SE E		BETA	-	Ŧ
AD2	80	000	.18310		.22642	- 1 .	369
		2105	.20906		.72790	_	593
<u></u>		-	SUMMARY	TABLE			
STEP VARIA	BLE	MULTR		ADJRSQ	F(EQN)	SIGF	RSQCH
<u>i</u> 2	AD2	6380	4070	.3700	10.983	.004	4070
2	T2	.7685	.5906	.5360	10.818	.001	1835

AD2 Adjusted gain subscore 2 T2 Pretest subscore 2

Subscore 3 - Plant and Animal Habitats:

In this analysis four variables were identified. These included: students' preference for listening to lectures in science classes (students who did not prefer lectures); the adjusted gain subscore 3 (students who scored low on the pretest made the most gains); the pretest subscore 3

(students who scored low on the pretest made the most gains); and the adjusted gain subscore 7. These variables contributed 26 percent, 20 percent, 33 percent, and 6 percent, respectively, to the variance, explaining a total of 85 percent of the variance. Refer to Table 42.

Table 42

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN
SCORES ON RETENTION ADJUSTED SUBSCORE 3 FOR GROUP ONE
(n=29)

	-	WLTIPLE	R		.92274		
		SQUARE			.85145		
	_	DJUSTED		E	.80574		
	S	STANDARD	ERROR		42018		
		ANAL	YSIS OF	VARIANCE			<u> </u>
	Ē	F	SUM O	F SQUARE	S MI	EAN SQU	IARE
REGRE	SSION	4		13.1555		3.28	
RESID		:3		2.2952	ĺ		655
F = 1	8.62815		SIGNI	FF = .0	000		
		WADTAI	DIEC IN	MUE FOUR	mton -		
VARIA	BLE	VARIAI B		THE EQUA' B	BETA		T
A 111771			56		DEIW		. 1
Ē	70	623	.2572	6	32261	= 2 .	745
AD3	-:98	539	.1484		1.08698	_	629
T 3	- : 95	579	.1919		81909		980
AD7	:15	900	.0698		.26936		277
			SUMMARY	TABLE			
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
	, , , , , , , , , , , , , , , , , , , ,		110%	nbortbg	r (DSH)	SIGE	ROGCII
1	Ē	.5132	2633	.2173	5.720	.029	. 2633
2 3 4	AD3	.6899	4625	.3908	6.452	.010	.1991
3	Ŧ 3	.8901	.7922	.7477	17.791	.000	.3297
4	AD7	9227	.8514	.8057	18.628	.000	0592
				· · · · · · · · · · · · · · · · · · ·		•	

Preference for listening to lectures in science classes

AD3 Adjusted Gain subscore 3
T3 Pretest subscore 3

AD7 Adjusted Gain subscore 7

Subscore 4 - Food Chains:

In this analysis seven variables were identified. These included: the adjusted gain subscore 8; travel experience to Hawaii or Alaska (students without the experience); preference for learning in the outdoors; the eighth grade science achievement grade; the adjusted gain subscore 1 (students who scored low on the pretest made the most gains); the pretest subscore 6 (students who scored low on the pretest made the most subscore 5. These variables contributed 29 percent, 24 percent, 12 percent, 11 percent, 8 percent, 9 percent, and 4 percent, respectively, to the variance, explaining a total of 97 percent of the variance. Refer to Table 43.

Table 43

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES CN RETENTION ADJUSTED SUBSCORE 4 FOR GROUP ONE (n=29)

		<i>I</i> ULTIPLE			.98610		
	<u> </u>	SQUARE			97239		
			R SQUAR	Œ	.95306		
	٤	STANDARD	ERROR		29309		
		ANAI	YSIS OF	VARIANCE	E		
<u> </u>)F	SUM C	F SQUARE	S MI	EAN SQU	JARE
		7		30.2518		4.32	
RESID		.O		.8590	14	.08	3590
F = 5	0.30849		SIGNI	FF = .0	000		
		VARIA	BLES IN	THE EQUA	TION		
VARIA	BLE	В	SĒ		BETA		T
AD8	1.01	.267	.0884	4	62388	11:	450
H	-1.16	376	.2302	8	30189	_	054
<u>O</u> _	2.21		. 2979		.42274	7.	443
EG	1.02		. 10 11		-67513	10.	179
AD1	47		.0727		- 43487	-6.	552
T6_	59		.0938		36292	-6.	392
AD5	.13	139	.0366	_	20811	3.	589
			_SUMMARY				<u> </u>
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1	ĀD8	.5363	.2877	. 2431	6.461	.022	.2877
<u>-</u> 2	H	.7242	.5245	4611	8.272	004	2368
3	_0	.8081	.6530	.5787	8.782	002	1285
1 2 3 4 5 6 7	EG	·8731	.7622	6891	10.419	.001	1092
5	AD1	.9168	.8404	7740	12.642	.000	.0784
6	T6	.9678	9368	9023	27.181	000	0964
7	AD5	.9861	.9724	.9531	50.308	.000	0356
							.0000

AD8 Adjusted Gain subscore 8

Travel experience (Hawaii or Alaska) H

Preference for learning science in the outdoors Eighth grade science achievement grade Adjusted Gain subscore 1 0

EG_

AD1

T6_ Pretest subscore 6

Adjusted Gain subscore 5 AD5

Subscore 5 - Food Webs:

In this analysis five variables were identified. These included: the adjusted gain total score (students who scored low on the pretest made the most gains); the cumulative science grade mean (students who had low means); travel experience to Europe (students without the experience); the pretest subscore 5 (students who scored low on the pretest made the most gains); and the adjusted gain subscore 5 (students who scored low on the pretest made the most gains). These variables contributed 30 percent, 22 percent, 14 percent, 10 percent, and 10 percent, respectively, to the variance, explaining a total of 86 percent of the variance. Table 44 contains the results.

Table 44

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED SUBSCORE 5 FOR GROUP ONE (n=29)

	MULTIPLE !	₹	. 92574	4
	R SQUARE		85699	9
	ADJUSTED B	RSQUARE	81299	9
	STANDARD I	ERROR	.84469	9
	ANALYS	SIS OF VA	RIANCE	<u></u>
	DF	SUM OF	SQUARES	MEAN SQUARE
REGRESSION	.: 4		5.58 419	13.89605
RESIDUAL	13		9.27542	71349
F = 19.47606		SIGNIF	F = .0000	
	VARIABI	ES IN TH	E EQUATION_	<u></u>
VARIABLE	В	SE B	BETA	Y T
<u>V</u> = . E_ =1.	10195	.03538	31617	7 -2.882
<u>E</u> _ =1.	62085	49732	36137	7 -3.259
	77679	.15833	74844	
AD5	83572	.13994	91677	

	- -		SUMMARY	TABLE		·	
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
ī	ADT	. 5432	.2951	. 2510	6.698	.020	.2951
3	A	.7203	·5 1 89	. 4547	8.088	.004	.2238
3	_E	.8142	.6630	.5908	9.181	001	1441
4	_ T 5	.8728	.7618	.6885	10.395	.001	0988
5	AD5	.9305	.8657	8098	15.477	.000	1039

ADT Adjusted Gain Total Score

V

Cumulative science grade mean Travel out of the United States (Europe) Pretest subscore 5

AD5 Adjusted Gain subscore 5

Subscore 6 - Energy Transfer (Food):

In this analysis two variables were identified. The students' travel experience to Hawaii or Alaska (students without the experience) accounted for 41 percent of the variance and the students' positive perception of learning that occurred in science classes (students with negative perceptions of learning) accounted for an additional 15 percent, explaining a total of 56 percent of the variance. Refer to Table 45 for the results of this regression analysis.

Table 45

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED SUBSCORE 6 FOR GROUP ONE (n=29)

	MULTIPI	E R	-	.74747		
	R SQUAR	RE		55871		
	ADJUSTE	ED R SQUARI	E	49988		
	STANDAR	ERROR		.63467		
	ANA	LYSIS OF	VARIANCE		<u> </u>	
<u> </u>	DF	SUM O	F SQUARE	S ME	an squ	JARE
REGRESSION	2		7.6499	7	3.82	
RESIDUAL	<u>1</u> 5		6.0421		. 40	281
F = 9.49577	7	SIGNII	F = .0	022		
<u></u>		ABLES IN	THE EQUA	TION		
VARIABLE	VARI B	ABLES IN T		TION	<u></u>	T
<u>:</u> H –1			3			
H -1	В	SE E	3	BETA		485
H -1 Q -	B 53537 52572	SE E .44060 .23093 SUMMARY	3) 3	BETA 60037		
<u>:</u> H –1	B 53537 52572	SE E .44060 .23093 SUMMARY	3) 3	BETA 60037		485 276
H -1 Q - STEP VARIAB	B 53537 52572 BLE MULTR H .6374	SE 1 .44060 .23093 SUMMARY RSQ	3 3 TABLE	BETA 60037 39221 F(EQN)	=2.	485 276 RSQCH
H -1 Q -	B 53537 52572 BLE MULTR	SE E .44060 .23093 SUMMARY RSQ .4063	TABLEADJRSQ	BETA 60037 39221	-2. 	485

Subscore 7 - Energy Pyramids:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .C5 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 104 in Appendix G.

Subscore 8 - Nutrient Cycles:

Positive Perception of Learning in Science Q

The predictor variable identified in this analysis was the adjusted gain subscore 8 (students who scored low on the pretest made the most gains). The variance accounted for by this variable was 29 percent. Table 46 reports the results of this regression analysis.

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN

Table 46

SCORES ON RE	TENTION	ADJUSTED	SUBSC	ORE 8 FOR	GROUP	ONE
		(n=29				
	ULTIPLE	R		.53600		
	SQUARE			28730		
		R SQUARE		.24276		
S'	TANDARD	ERROR		78927		
	ANALY	rsis of v	ARIANC	E		
D]	_ F	SUM OF	SOUARI	ES MF	AN SQU	ARE
REGRESSION			4.017		4.01	
RESIDUAL 1	5		9.967			295
F = 6.44985		SIGNIF	$\mathbf{F} = .$	0219		
	VARIAE	BLES IN T	HE EQU	ATION		
VARIABLE	В	SE B		BETA		T
ĀD8 =.58	333	.22969 SUMMARY		53600	-2.	540
STEP VARIABLE	MULTR		ADJRSQ	F(EQN)	SIGF	RSQCH
1 ĀD8	.5360	.2873	. 2428	6.450	.022	. 2873
AD8 Adjusted Ga	ain subs	score 8				

Total Adjusted Retention Score:

In this analysis three variables were identified. These included: the adjusted gain total score (students who

scored low on the pretest made the most gains); the pretest total score (students who scored low on the pretest made the most gains); and preference for listening to lectures in science classes (students who do not prefer lectures). These variables contributed 44 percent, 21 percent, and 11 percent, respectively, to the variance, explaining a total of 76 percent of the variance. Table 47 contains the results of this regression.

Table 47

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED TOTAL SCORE FOR GROUP ONE (n=29)

		<u> </u>				
	MULTIFLE R SQUARE ADJUSTED STANDARD	R R SQUAR ERROR		.87550 .76650 .71646 2.51735		•
	ANAL	YSIS OF	VARIANCE			
REGRESSION RESIDUAL F = 15.31870	DF' 3 14	SUM O	F SQUARES 291.22688 88.71893 F F = .00	3	97.07 6.33	563
VARIABLE	VARIA B		THE EQUA! B	TION BETA		T
TTT	08446 72683 78163	.1620 .1841 1.4499	4 -	1.16244 67232 34835	= <u>3</u> .	692 947 608
		SUMMARY	TABLE			
STEP VARIABL	E MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1 AD 2 TT 3		.4415 .6530 .7665	.4065 .6068 .7165	12.646 14.117 15.319	.003 .000 .000	.4415 .2116 .1134
	Gain Tota Total sco ce for lis	re	to lectur	es in so	:ience	classes

Group Two

Pretest Scores against Background Variables

Subscore 1 - Plant and Animal Characteristics:

Since no predictor emerged, a table is not included.

Subscore 2 - Plant and Animal Identification:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 105 in Appendix G.

Subscore 3 - Plant and Animal Habitats:

The predictor variable identified in this analysis was the students' cumulative grade mean (students who had a low mean made the most gains). The variance accounted for by this variable was 30 percent. Table 48 contains the analysis.

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 3

Table 48

		FOR	R GROUP T	NO (n=2)	<u>1)</u>		
					:		
	<u>N</u>	MLTIPLE	ER		.55126		
		SQUARE			.30388		
		DJUSTEI		Œ	.26038		
	Ē	TANDARI	ERROR		.79178		
		ANAI	YSIS OF	VARIANC	E		
	Ē	F	SUM C	F SQUAR	ES MI	ean squ	JARE
REGRESS		1		4.378		4.37	
RESIDUAL		.6		10.030	59		2692
F = 6.98	8471		SIGNI	FF = 0	0177		
		VARIA	BLES IN	THE EQU	ATTON		
VARIABLE	3	В	SE		BETA	<u>-</u>	Ŧ
V	06	365	0240	8	55 <u>1</u> 25	= z .	643
		<u>-</u>	_SUMMARY	TABLE			
STEP V	ARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1	Ā	·5513	3039	.2604	6.985	.018	.3039
		r					
		•					
							

Cumulative Science grade mean

Subscore 4 - Food Webs:

In this analysis four variables were identified. These included: the students' previous science grade mean; the cumulative science grade mean (students who had a low mean made the most gains); viewing of science television programs; and preference for staying in a motel while explor-

ing the outdoors. These variables contributed 34 percent, 28 percent, 17 percent, and 18 percent, respectively, the variance, explaining a total of 97 percent of the vari-Table 49 contains the results of this regression analysis.

Table 49 REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 4 FOR GROUP TWO (n=21)

		- · <u>-</u>						<u></u>
			MULTIPLE	R		98869		
			RSQUARE	=	-	97750		
			ADJUSTED	R_SQUA	RE	· 97058		
			STANDARD	ERROR	•	. 2636 <u>1</u>		
			ANAL	YSIS OF	VARIAN	CE		
		Ī	OF.	SUM	OF SQUA	RES	MEAN SQU	JARE
REGRE	ESSION		4		39.24		9.81	
RESIL	DUAL]	13		. 90			949
F = 1	41.201	24		SIGN		. 0000		
			VARIA	BLES IN	THE EQ	JATION		
VARIA	BLE		В	SE	В	BETA		T
PG		4.52	2060	.248	22 22	2.86302	18.	212
Ā		49	250	.030		-2.55526	-16.	
ΜΔ			1162	.197		-58599		706
LW			347	. 299		80992		336
		- :		SUMMAR				
STEP	VARIA	BLE	MULTR	RSQ	ADJRS	F(EQN) SIGF	RSQCH
ĺ		PG	. 5845	.3416	. 3005	5 8.30	2 .011	.3416
2		V	. 7869	.6193	.5689			2777
1 2 3 4		WV	.8903	.7926	.7482			1734
4		LW	.9887	.9775	970			1849

PG Previous science grade average

Cumulative science grade mean Watched science television programs WV

Preference for staying in motels while traveling LW

Subscore 5 - Food Webs:

Since no predictor emerged, a table is not included.

Subscore 6 - Energy Transfer (Food):

In this analysis two variables were identified. The desire to take additional science classes accounted for 38 percent of the variance and the students' experience in hiking in the outdoors accounted for an additional 14 percent, explaining a total of 52 percent of the variance. Table 50 contains the results.

Table 50

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 6

FOR GROUP TWO (n=21)

	MULTIPLE			.72118		 -
	R SQUARE			52010		
	ADJUSTED		Š	.46364		
	STANDARD			43813		
	ANAL	YSIS OF V	ARIANCE			
	DF	SUM OF	SQUARE	S MI	EAN SQU	ARE
REGRESSION	Ž		3.5366		1.76	
RESIDUAL	17		3.2633	3	.19	196
F = 9.21197		SIGNIF	F = .0	019		
	VARIA	BLES IN T	HE EQUA	TION		<u> </u>
VARIABLE	B	SE E	3	BETA		T
MM	43938	11637	i	63505	3.	776
HO	73999	33451		.37206		212
		SUMMARY	TABLE		-	<u> </u>
STEP VARIA	BLE MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1 2	MM .6180	.3820	.3476	11.124	.004	.3820
Ž	HO .7212	5201	.4636	9.212	.002	.1381
MM Desire	to take ad	ditional	science	classes		

Hiked outdoors

HO

Subscore 7 - Energy Pyramids:

Since no predictor emerged, a table is not included.

Subscore 8 - Nutrient Cycles:

In this analysis two variables were identified. The students' experience in making trips that were more that 50 miles away yearly accounted for 21 percent of the variance and the students' positive perception that they had learned in their science classes accounted for an additional 17 percent, explaining a total of 38 percent of the variance. Refer to Table 51 for the results.

Table 51

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 8

FOR GROUP TWO (n=21)

			SQUARE DJUSTED		E	.37865 .30555		
		SI	randard			.71533		
			ANAL	YSIS OF	VARIANCE			
		DF		SUM O	F SQUARE		AN SQU	
	SSION	_ 2	2		5.3010	-	2.65	
RESID	.17983	17	/	CTONT	8.6989 FF = .0		• 5±	170
						1 7 3 3		
r – J				010111	0	2,0		
			VARIA		THE EQUA			
VARIA			_VARIA B		THE EQUA			T
	BLE	. 540		BLES IN	THE EQUA B	TION		T 588
VARIA	BLE	. 540 . 709	B 082	BLES IN SE	THE EQUA B	TION_ BETA		_
VARIA TM	BLE		B 082	BLES IN SE .2102 .3311	THE EQUA B 6 8	TION_BETA		- 588
VARIA TM	BLE	. 709	B 082	BLES IN SE .2102	THE EQUA B 6 8	TION_BETA		- 588
VARIA TM Q	BLE VARIAB	. 709	B 082 976	BLES IN SE .2102 .3311 _SUMMARY RSQ	THE EQUA 6 8 TABLE	TION	SIGF	588 143

TM Made trips that were a distance of 50 miles or more Positive Perception of Learning in Science

Total Pretest Score:

The predictor variable that was identified in this analysis was the students' expression of wanting to watch science-related television programs. This variable accounted for 28 percent of the variance. Table 52 contains the results.

Table 52

REGRESSION OF BACKGROUND VARIABLES ON PRETEST TOTAL SCORE
FOR GROUP TWO (n=21)

	MULTIPLE R SQUARE			.53224 .28327		
	ADJUSTED STANDARD			.23848 5.14896		
	ANAL	YSIS OF	VARIANCE			
REGRESSION RESIDUAL	DF 1 16		F SQUARE 167.6542 424.1886	2 4	AN SQU 167.65 26.51	422
$F = \overline{6.32376}$	VÄRTA		F F = .0 THE EQUA			
VARIABLE	B		B B	BETA	-	T
TV 6.1	3636	2.4401	8	53223	2.	515
		SUMMARY	TABLE			-
STEP VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1 TV	5322	2833	2385	6.324	.023	. 2833

TV Watch science television programs (prefer)

Posttest Scores against Background and Pretest Scores <u>Subscore 1 - Plant and Animal Characteristics</u>:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 106 in Appendix G.

Subscores 2 through 4:

Since no predictors emerged, no tables are included.

Subscore 5 - Food Webs:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 107 in Appendix G.

Subscore 6 - Energy Transfer (Food):

The predictor variable identified in this analysis was the indication of the students' sex (male students scored low on the pretest and made the most gains). This variable accounted for 44 percent of the variance. Table 53 presents the results.

Table 53

REGRESSION OF BACKGROUND AND PRETEST SCORES ON SUBSCORE 6

FOR GROUP TWO (n=21)

R SQ ADJU	TPLE R UARE STED R SQUARE DARD ERROR	.66332 .44000 .37000 .36742	
	ANALYSIS OF VARI	ANCE	·
REGRESSION 1 RESIDUAL 8 F = 6.28571	1.	UARES ME 84857 08000 = .0365	AN SQUARE .84857 .13500
VARIABLE B		EQUATION	T
SX 60000	23931	66332	-2.507
dman wartara w	SUMMARY TAB		
	LTR RSQ ADJ		SIGF RSQC
1 ŠX .6	633 .4400 .3	700 6.286	.037 .440

Subscore 7 - Energy Pyramids:

The predictor variable identified in this analysis was the total score of the pretest. This variable accounted for 58 percent of the variance. Table 54 presents the results of this regression.

Table 54

REGRESSION OF BACKGROUND AND PRETEST SCORES ON SUBSCORE 7

FOR GROUP TWO (n=21)

	R A	ULTIPLE SQUARE DJUSTED TANDARD	R SQUAR	E	.75841 .57519 .52208 .61464		
		ANAL	YSIS OF	VARIANCE			
REGRESSIONAL F = 10.8	ON	F 1 8		F SQUARE 4.0920 3.0222 F F = .0	3 5	EAN SQU 4.09	ARE 203 778
VARIABLE		VARIA B	BLES IN	THE EQUA	TION_ BETA		<u> </u>
TTT	.11	428	.0347	Ź	75841	3;	291
			_SUMMARY				
STEP VA	RIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1	TTT	.7584	5722	5221	10.832	.011	5752

TTT Total Pretest score

Subscore 8 - Nutrient Cycles:

The predictor variable identified by this analysis was the students' positive expression of enjoyment with their science classes. This variable accounted for 65 percent of the variance. Table 55 presents the results.

Table 55

REGRESSION OF BACKGROUND AND PRETEST SCORES ON SUBSCORE 8

FOR GROUP TWO (n=21)

	MULTIPLE R SQUARE ADJUSTED STANDARD	R SQUARE	3	.80645 .65036 .60666 .48193			
	ANAL	YSIS OF V	VARIANCE				
REGRESSION RESIDUAL	DF 1 8	SUM OF	3.4562 1.6580	2 6	EAN SQU 3.45		
F = 14.88095	******		7 F = .0				
VARIABLE	VARIA B	BLES IN 9 SE E	THE EQUA B	BETA		Ť	
EJ .	80645	.20905	5	.80645	3.	858	
		SUMMARY	TABLE			1	
STEP VARIABL	E MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	
Ī Ē	J .8065	.6504	.6067	14.881	.005	.6504	

EJ Enjoyment of Science Classes

Total Score:

The predictor variable identified in this analysis was the students' expression that they enjoyed their science classes. This variable accounted for 66 percent of the variance. Table 56 presents the results of this regression.

REGRESSION OF BACKGROUND AND PRETEST SCORES ON TOTAL SCORE FOR GROUP TWO (n=21)

Table 56

ĺ	ĒĴ	·8138	6623	.6200	15.687	.004	.6623	
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCF	
	<u>·</u>		_SUMMARY	TABLE				
ĒJ	2.93	1452	.7401	.3	.813.9	3 .	961	
VARIAE	SLE	В	SE	В	BETA		Ţ	
		VARIA		THE EQUA	TION			
F = 15	5.68714		SIGNI	F = .0	042			
RESIDU	RESIDUAL 8			23.28931 2.91116				
REGRES)F	SUM C	F SQUARE 45.6678		EAN SQU		
				VARIANCE				
	S	TANDARD	ERROR		1.70621			
	Ā	DJÜSTED	R SQUAF		.62005			
	_	TULTIPLE SQUARE			.81301 .66226			

EJ Enjoyment of Science Classes

Adjusted Gain Scores against Background and Pretest Scores.

Subscore 1 - Plant and Animal Characteristics:

The predictor variable identified in this analysis was the pretest subscore 1 (students who scored low on the pretest made the most gains). This variable accounted for 43 percent of the variance. Table 57 contains the results.

REGRESSION OF BACKGROUND AND PRETEST RESULTS ON ADJUSTED GAIN SUBSCORE 1 FOR GROUP TWO (n=21)

Table 57

	MULTIPLE R SQUARE			.65920 .43454		
	ADJUSTED STANDARD	R SQUARE ERROR		.36386 .57987		
·	ANAL	YSIS OF V	ARIANCI	Ē		
REGRESSION RESIDUAL F = 6.14787	DF 1 &		SQUARI 2.067 2.6899	19 96	EAN SQU 2.06	
· · · · · · · · · · · · · · · · · · ·	VARIA		HE EQUA			·
VARIABLE	В	SE B	}	BETA		T
Ti =.	65625	.26467		65919	-2:	479
		SUMMARY	TABLE			
STEP VARIABI	E MULTR		ADJRSQ	F(EQN)	SIGF	RSQCH
ī ī	.6592	.4345	. 3639	6.148	• 038	. 4345

T1 Pretest subscore 1

Subscore 2 - Plant and Animal Identification:

In this analysis three predictor variables were identified. These included: the pretest subscore 2 (students who scored low on the pretest made the most gains); travel experience to South America (students without the experience); and preference for laboratory activities. These

variables contributed to 81 percent, 9 percent, and 6 percent, respectively, to the variance, explaining a total of 96 percent of the variance. Table 58 presents the results of this regression analysis.

Table 58 REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 2 FOR GROUP TWO (n=21)

		MULTIPLE			.98109		<u> </u>
		SQUARE		_	.96253		
	_	ADJUSTED		Œ	.94379		
	S	STANDARD	ERROR		.16113		
		ANAL	YSIS OF	VARIANCE	E		
		F	SUM O	~		ean squ	JARE
	SSION	<u>3</u> 6		4.0013		1.33	
RESID		6		1 557		.02	596
F = 5	31.375 6 6		SIGNI	FF = .0	001		
		VARIA	BLES IN	THE EQUA	TION		
VARIA	BLE	B B		іпь воон В	BETA		
• • • • • • • • • • • • • • • • • • • •			55	D	DETA		T.
T2	-1.15	384	.0942	ī	1.13586	-12.	9 <u>4</u> 7
S	-1.23		.2843		39517		328
T2 S D		692	.1851		25533		116
				_		٠.	110
			_SUMMARY	TABLE			
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
i	$\overline{\mathtt{T}} \overline{\mathtt{2}}$. 9006	.8111	. 7875	34.360	- 600	- 6111
2		.9497	.9019	.8738		.000	8111
1 2 3	<u>s</u> D	.9625	.9438	.9438	32.169	.000	.0907
		• 9023	. 7430	19430	51.376	.000	.0607
T2	Pretest su	bscore	2				

Traveled out of the United States (South America) Preference for doing laboratory activities in science

Subscore 3 - Plant and Animal Habitats:

The predictor variable identified in this analysis was the pretest subscore 3 (students who scored low on the pretest made the most gains). The variance accounted for by this variable was 58 percent. Refer to Table 59 for the results.

Table 59

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAIN SUBSCORE 3 FOR GROUP TWO (n=21)

			- 				
		ULTIPLE			.76188		
		SQUARE		_	.58045		
			R SQUAR	Œ	.5280 <u>1</u>		
	5	TANDARD	ERROR		.64830		
		ANAL	YSIS OF	VARIANC	E		
		F	SUM C	F SQUAR	ES ME	EAN SQU	JARE
REGRE		18		4.651	93	4.65	
RESID		8		3.362		. 42	029
F = 1	1.06824		SIGNI	F F = .0	0104		
		VARIA	BLES IN	THE EOU	ATION		
VARIA	BLE	В	SE		BETA		Ŧ
T 3	 78	089	. 2347	2	76187	-3:	327
<u></u>			SUMMARY	TABLE			
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
ĺ	ТЗ	.7619	.5805	.5280	11.068	.010	. 5805
						_	

T3 Pretest subscore 3

Subscore 4 - Food Chains:

In this analysis three predictor variables were identified. These included: the pretest subscore 4 (students who scored low on the pretest made the most gains); the ninth grade average science grade; and the previous science grade mean (students who scored low on the pretest made the most gains). These variables contributed to 67 percent, 18 percent, and 8 percent, respectively, to the variance, explaining a total of 93 percent of the variance. Refer to Table 60 for the results.

Table 60

'REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAIN SUBSCORE 4 FOR GROUP TWO (n=21)

	ULTIPLE	R	<u></u>	.96495	_	
	SQUARE			.93113		
	DJUSTED	R SQUAR	Ē	89670		
	TANDARD	ERROR	_	48743		
	ANAL	YSIS OF	VARIANCI	Ē		
D i	F	SUM O	F SQUARI	ES ME	AN SQU	JARE
REGRESSION	3 6		19.2744		6.42	
RESIDUAL	5		1.4259	51		758
F = 27.04227		SIGNI	F F = .(0007		
	VARIA	BLES IN	THE EQUA	ATION		
VARIABLE	B		3	BETA		T
T481	651	.1313	8	82659	-6.	215
NG 1.04	696	.22363	3	81272		682
PG83	452	.30584	4	53559		729
		SUMMARY	TABLE			
STEP VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1 T4	8160	6659	6241	15.943	.004	.6659
1 T4 2 NG 3 PG	.9196	8457	.8016	19.180	.001	.1798
3 PG	9650	.9311	.8967	27.042	.001	.0855

T4 Pretest subscore 4

Subscore 5 - Food Webs:

The predictor variable identified in this analysis was the pretest subscore 5 (students who scored low on the pretest made the most gains). The variance accounted for by this variable was 79 percent. Table 61 contains the results of this regression.

NG Ninth grade science achievement grade

PG Previous science achievement grade

Table 61

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAIN SUBSCORE 5 FOR GROUP TWO (n=21)

R A S	ULTIPLE SQUARE DJUSTED STANDARD ANALY OF 1	R SQUAR ERROR YSIS OF	VARIANCI DF_SQUARI 60.3789	ES MI	EAN SQU	
Ē.	DJUSTED STANDARD ANAL	ERROR YSIS OF	VARIANCI DF_SQUARI 60.3789	.76843 1.39864 E		
D	STANDARD ANAL	ERROR YSIS OF	VARIANCI DF_SQUARI 60.3789	1.39864 E ES MI		
Ď	ANAL	YSIS OF	OF SQUARI	E		
_)F		OF SQUARI	ES MI		
_)F 1 8	SUM (60.3789			
_	18		60.3789			
_	8		10 2467		60.37	897
4			<u>15.649</u>	50	1.95	
		SIGN	F = .0	0005		
	VARIA	BLES IN	THE EQUA	ATTON		
	В	SE		BETA		Ť
1.58	170	. 2847	70	89 <u>1</u> 15	-5.	55 6
	<u> </u>	SUMMARY	TABLE			
3LE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
TБ	8912	.7942	.7684	30.865	.001	.7942
	BLE T5		BLE MULTR RSQ		BLE MULTR RSQ ADJRSQ F(EQN)	BLE MULTR RSQ ADJRSQ F(EQN) SIGF

T5 Pretest subscore 5

Subscore 6:

The predictor variable identified in this analysis was the pretest total score (students who scored low on the pretest made the most gains). The variance accounted for by this variable was 63 percent. Refer to Table 62 for the results.

Table 62

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAIN SUBSCORE 6 FOR GROUP TWO (n=21)

	ULTIPLE _SQUARE			.79429 .63090		
	DJUSTED		?	.58476		
	TANDARD		-	40267		
	ANAL	YSIS OF V	/arianc	3		
	F	SUM OF			an squ	ARE
	1		2.217		2.21	
	8	20 mm 'an 870 mb 6	1.297		.16	214
F = 13.67426		SIGNIE	F = .0	006±		
	VARIA	BLES IN 1	HE ECH	ATION		-
VARIABLE	B	SE E		BETA		T
<u>TTT</u> =.08	412	.02274	L	79429	-3·	698
		SUMMARY	TABLE			
STEP VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
	.7943	.6309	.5848	13.674	.006	.6309
1 TTT						

TTT Pretest Total score

Subscore 7 - Energy Pyramids:

In this analysis two predictor variables were identified. The pretest subscore 7 (students who scored icw on the pretest made the most gains) accounted for 98 percent of the variance and the pretest subscore 1 (students who scored low on the pretest made the most gains) accounted

for an additional 1 percent of the variance, explaining a total of 99 percent of the variance. Refer to Table 63 for the results.

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAIN SUBSCORE 7 FOR GROUP TWO (n=21)

	F	ULTIPLE L SQUARE			.99718 .99436		
		DJUSTED TANDARD	R SQUARI ERROR	3	.99275 .14620		
		ANAL	YSIS OF V	VARIANCI	š		
		F	SUM O	SQUARI		an squ	
REGRE		2 7		26.3789 .1496		13.18	948 137
F = 6	17.10971		Signi	$\mathbf{F} = \mathbf{i}$.02	, ,
		VARIA	BLES IN 9	HE EOU	ATION		
VARIA	3LE	В	SE E	. ~	BETA		T
<u>T</u> 7 T1	-1.00 24		.02870 .06805		-1.01257 10596	-34. -3.	978 661
			SUMMARY	TABLE			
STEP	VARIABLE	MULTR	SUMMARY RSQ	Table_ Adjrsq	F(EQN)	SIGF	RSQCH
STEP	VARIABLE T7 T1	MULTR .9917	_		F(EQN) 478.759 617.110	SIGF .000	RSQCH .9836 .0108

T7 Pretest subscore 7 T1 Pretest subscore 1

Subscore 8 - Nutrient Cycles:

The predictor variable identified in this analysis was the students' seventh grade science achievement grade. The variance accounted for by this variable was 41 percent. The results are presented in Table 64.

Table 64

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAIN SUBSCORE 8 FOR GROUP TWO (n=21)

	MULTIPLE R R SQUARE ADJUSTED R SQUARE						
	STANDARD	ERROR		.69498			
	ANAL	YSIS OF V	ARIANCE				
DF		SUM OF SQUARES			MEAN_SQUARE		
REGRESSION RESIDUAL	<u>1</u> 8		2.7359 3.8640		2.73		
F = 5.66449	O	SIGNIF			. 40	300	
	VARIA	OF ECC.	======				
		BLES IN I	'HE EQUA'	rion			
VARIABLE	B	SE B		PION_ BETA		T	
					Ž.	T 380	
	В	SE B		BETA	Ž.		
	B 49517	SE B		BETA			

SG Seventh grade science achievement grade

Total Adjusted Gain Score:

In this analysis two predictor variables were identified. The pretest total score (students who scored low on

the pretest made the most gains) accounted for 78 percent of the variance and the students' expression of enjoyment of their science classes accounted for an additional 13 percent of the variance, explaining a total of 91 percent of the variance. Refer to Table 65 for the results.

Table 65

REGRESSION OF BACKGROUND AND PRETEST SCORES ON TOTAL ADJUSTED SCORE FOR GROUP TWO (n=21)

	MULTIPLE I			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		SQUARE	R SQUAR	ië	.91293 .88805		
		PANDARD			1.62753		
		ANAL	YSIS OF	VARIANCE_			
	Di		SUM C	F SQUARES	5 M	EAN SQU	ARE
REGRESSION 2		194.41523		3	97.20762		
RESIDUAL	_	7	=	18.54191		2.64	884
F = 36.6981	12		SIGNI	$\mathbf{F} \mathbf{F} = .00$	002		
		VARIA	BLES IN	THE EQUAT	'ION		
VARIABLE		В	SĒ		BETA		T
TTT	86	1 75	.1010	i 4 – 1	.04892	-ã.	560
EJ	2.50	L17	.7757		.39511		224
		A 200 A	_SUMMARY				
STEP VARIA	REE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1 2	TTT	.8852	. 7836	. 7566	28.972	.001	. 7836
T	EJ	.9555	9129	8881	36.698		1293

TTT Pretest Total score EJ Enjoyment of Science classes

Adjusted Retention Gain Scores against Background, Pretest, Posttest, and Adjusted Gain Scores

Subscore 1 - Plant and Animal Characterist cs:
Since no predictor emerged, a table is not included.

Subscore 2 - Plant and Animal Identification:

The predictor variable identified in this analysis was the students' positive attitudes toward taking nature hikes. The variance accounted for by this variable was 48 percent. Refer to Table 66 for the results.

Table 66

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 2 FOR GROUP TWO (n=21)

	MULTIPLE R R SQUARE			• 68920 • 47500		
	adjusted Standard	3	.40938 .16771			
	ANAL	YSIS OF V	/ARIANCE			
REGRESSION RESIDUAL F = 7.23810	DF 1 8		F SQUARE :2035 :2250 F F = :0	7 0		JARE 1357 1812
VARIABLE	VARIA	BLES IN T		TION		
NH	. 50000	.18584		.68920	2.	1 690
		SUMMARY	TABLE			
STEP VARIA	BLE MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1	NH . 6892	.4750	. 4094	7.238	.027	4750

NH Desire to take nature hikes

Subscore 3 - Plant and Animal Habitats:

Since no predictor variable was identified, no table is included.

Subscore 4 - Food Chains:

Since no predictor variable was identified, no table is included.

Subscore 5 - Food Webs:

The predictor variable identified was the adjusted gain score 5 (students who scored low on the pretest made the most gains). The variance accounted for by this variable was 42 percent. Refer to Table 67 for the results of this regression analysis.

Table 67

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED SUBSCORE 5 FOR GROUP TWO (n=21)

	MULTIPLE	R		.64539		
	R SQUARE			.41782		
	ADJUSTED		Œ	.34505		
	STANDARD	ERROR		.93948		
	ANAL	YSIS OF	VARIANCE			
	DF	SUM C	F SQUARE	S ME	AN SQU	ARE
REGRESSION	1 8		5.0675		5.06	
RESIDUAL	8		7.0609	9	.88	262
F = 5.74149		SIGNI	F F = .0	434		
	VARIA	BLES IN	THE EQUA	TION		
VARIABLE	В	SE	В	BETA		T
AD5	25817	.1077	4	64639	= 2 .	396
		SUMMARY	TABLE			
STEP VARIABI	E MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1 A	5 .6464	4178	3450	5.741	.043	.4178

Subscore 6 - Energy Transfer (Food):

In this analysis two variables were identified. The students' travel experience to South America (students without the experience) accounted for 65 percent of the variance and the adjusted gain subscore 6 (students who scored low on the pretest. The most gains) accounted for an additional 18 percent of the variance, explaining a total of 83 percent of the variance. Table 68 reports these results.

Table 68

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED SUBSCORE 6 FOR GROUP TWO (n=21)

	ı	<i>I</i> ULTIPLE	R		.91411		
	Ę	R_SQUARE		_	.83561		
	1	ADJUSTED	R_SQUAR	E	.78864		
	S	STANDARD	ERROR		. 23528		
		ANAL	YSIS OF T	VARIANCI	E		
	Ī)F	SUM O	F SQUARI	Es m	EAN SOU	JARE
REGRE	SSION	<u>2</u> 7		1.969		- ~ -	3482
RESIL	UAL	7		. 387			536
F = 1	7.79032		SIGNI				
		VARIA	BLES IN	THE EQUA	ATION		
VARIA	BLE	B	SE I	~	BETA		T
		_		•	Duin		1
S	-1.6]	111	.37430	ס	68698	-4:	304
AD6	=.36	5111	13071		44092		763
			_SUMMARY	TABLE	_		i
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EON)	SIGF	RSQCH
1 2	s	.8102	.6564	.6134	15.280	.004	6564
2	AD6	.9141	8356	.7886	17.790	.002	1792

S Travel experience (South America)
AD6 Adjusted Gain score 6

Subscore 7 - Energy Pyramids:

The predictor variable identified in this analysis was the adjusted gain subscore 5. The variance accounted for by this variable was 48 percent. Table 69 reports the results of this regression analysis.

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN

Table 69

SCORES ON RETENT	ION ADJUSTED	SUBSCORE	7 FOR G	ROUP TWO
	(n=21	<u>+</u>		
MULTI	PLE R	• 6	8960	
R SQU	ARE	. 4	7555	
ADJUS	TED R SQUARE	_ • 4	0999	
STAND	ARD ERROR	1.1	.9350	
Ā	NALYSIS OF V	ARIANCE		
DF	SUM OF	SQUARES	MEAN	N SQUARE
REGRESSION 1 RESIDUAL 8		4.01796		4.01796
		9.96726_		.62295
F = 7.25400	SIGNIF	F = .0274	•	
	RIABLES IN T	HE EQUATIO	N	
VARIABLE B	SE B	1	BETA	T
AD5 .36865	.13687	.6	8960	2,693
	SUMMARY			
STEP VARIABLE MUL			(EQN)	SIGF RSQCH
1 AD5 .68	96 .4755	.4100	7.254	027 .4755
AD5 Adjusted Gain	subscore 5	· · · · · · · · · · · · · · · · · · ·		

Subscore 8 and Total Adjusted Retention score:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level

because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 108 in the Appendix G.

Group Three

Pretest Scores against Background Variables

Subscore 1 - Plant and Animal Characteristics:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 109 in Appendix G.

Subscore 2 - Plant and Animal Identification:

The predictor variable identified in this analysis was the students' travel experience to South America (students without the experience). The variance accounted for by this variable was 27 percent. Refer to Table 70 for the results.

Table 70

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 2

-	MULTIPLE R	.51675
	R SQUARE	.26653
	ADJUSTED R SQUARE	.23832

.63362

FOR GROUP THREE (n=29)

ANALYSIS OF VARIANCE_____

STANDARD ERROR

	DF	SUM OF SQUARES	MEAN SQUARE
REGRESSION	i	3.79313	3.79313
RESIDUAL	26	10.43839	.40148
F = 9.44796		SIGNIF F = 10049	

	VARIABLE	S IN THE	EQUATION	
VARIABLE	В	SE B	BETA	T
Ŝ	97500	31720	51626	-3.074

			_SUMMARY	TABLE		-	_
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
i	Š	5163	.2665	.2383	9.448	.005	. 2665

Subscore 3 - Plant and Animal Habitats:

The predictor variable that emerged in this analysis was the students' eleventh grade science achievement mean (students who scored low on the pretest made the most gains). The variance accounted for by this variable was 29 percent. Table 71 presents the results.

S Travel out of the United States (South America)

Table 71

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 3
FOR GROUP THREE (n=29)

				.54265 .29447 .25528 .40631		
	ANAL	YSIS OF V	ARIANC	E		
REGRESSION RESIDUAL F = 7.51287	DF 1 18		SQUARI 1.240 2.971 F = .0	27 55	EAN SQU 1.24 .16	
TAN TANK T		BLES IN T				
VARIABLE	В	SE B		BETA		Ŧ
EZ -	.28803	.10508		54265	-2.	741
		SUMMARY	TABLE			
STEP VARIAB	LE MULTR	_	ADJRSQ	F(EQN)	SIGF	RSQCH
ī	EZ .5427	.2945	. 2553	7.513	.013	2945
<u></u>				-		

EZ Eleventh grade science achievement mean

Subscore 4 - Food Chains:

The predictor variable identified in this analysis was the students' positive perception that they did learn in their science classes. The variance accounted for by this variable was 15 percent. Refer to Table 72 for the results.

Table 72

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 4

FOR GROUP THREE (n=29)

	MULTIPI R SQUAR			.38369 .14722		
		ed r squari RD error	E	.11442 .47857		
		ALYSIS OF T	/ARIANCE			
REGRESSION RESIDUAL	DF 1 26		SQUARE 1.0279 5.9547	<u>8</u> 8	EAN SQU 1.02	
F = 4.48842		ABLES IN 7				
VARIABLE	В	SE E	3	BETA		T
Q	44805	.21148	36	.38368	2 .	119
		SUMMARY	TABLE			
STEP VARIA	BLE MULTE	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCE
i	Q .3837	1472	.1144	4.488	. 044	.1472

Q Perception of Learning in Science

Subscore 5 - Food Webs:

The predictor variable identified in this analysis was the students' desire to take additional science classes. The variance accounted for by this variable was 14 percent. Refer to Table 73 for the results.

Table 73

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 5

FOR GROUP THREE (n=29)

	F	iultiple L square Djusted		E	.37513 .14072		
		TANDARD	~		.10767 1.53424		
		ANAL	YSIS OF	VARIANCE			
DECRECTON		F	SUM O	F SQUARE		ean squ	
REGRESSION RESIDUAL		1 6		10.0226 61.2015		10.02	
F = 4.25786			SIGNI	F F = .0		4.30	1391
<u> </u>		VARIA	: Bles in '	THE EQUA	TION		_
VARIABLE		В	SE		BETA		T
MM	.67	496	.3271	0	.375±2	2.	063
			SUMMARY	TABLE			. <u></u>
STEP VARIA	BLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
Ī	MM	.3751	.1407	.1077	4.258	.049	1407

MM Desire to take additional science classes

Subscore 6 - Energy Transfer (Food):

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 110 in Appendix G.

Subscore 7 - Energy Pyramids:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 111 in Appendix G.

Subscore 8 - Nutrient Cycles:

The predictor variable identified in this analysis was the students' travel experience to Canada. The variance accounted for by this variable was 29 percent. Refer to Table 74 for the results of this analysis.

Table 74

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 8

FOR GROUP THREE (n=29)

_		ULTIPLE SQUARE			•53933 •29088		
	P		R SQUAR	Œ	.24917 .58492		
				VARIANCE			
REGRES RESIDU	SION)F 1 .7	SUM C	F SQUARE 2.3858 5.8161	i.	EAN SQU 2.38	581
F = 6.9		• •	SIGNI			• 34	213
		VARIA			TION		
VARIAB	.	В	SĒ	В	BETA		T
C	• 75	263	. 2850	Ō	53933	2.	641
			SUMMARY	TABLE	<u></u>		
STEP '	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
ī	E	.5393	2909	2492	6.973	·017	. 29 09

C Travel out of the United States (Canada)

Total Score:

The predictor variable identified in this analysis was the students' minth grade science achievement grade. The variance accounted for by this variable was 44 percent. Table 75 contains the results of this analysis.

Table 75

REGRESSION OF BACKGROUND VARIABLES ON PRETEST TOTAL SCORE
FOR GROUP THREE (n=29)

	<u> </u>	ROUP IN	REE (N=2	·		
	MULTIPLE R SQUARE ADJUSTED STANDARD	R SQUAR ERROR		.66427 .44125 .39469 4.24665		
REGRESSION RESIDUAL F = 9.47659	DF 1 12	SUM O	VARIANCE F SQUARE 170.9015 216.4088 F F = .0	S M 2 2	EAN SQU 170.90 18.03	152
VARIABLE	VĀRIĀI B		THE EQUA B	TION BETA		T
TTT 4	62197	1.5014	1	.66426	3 .	078
_	<u> </u>	SUMMARY	TABLE			
STEP VARIABI	LE MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1 17	TT .6643	·4413	3947	9.477	.010	.4413

TTT Pretest total score

Posttest Scores Against Background and Pretest Scores
Subscores 1 and 2:

Since no predictor variables emerged in these analyses, tables are not included.

Subscore 3 - Plant and Animal Habitats:

In this analysis two variables were identified. The students' eleventh grade science achievement mean (students

who had low means made the most gains) accounted for 29 percent of the variance and the students' preference for staying in a tent while in the outdoors (students who did not prefer tents) accounted for an additional 21 percent, explaining a total of 50 percent of the variance. Refer to Table 76 for the results.

Table 76

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST
SUBSCORE 3 FOR GROUP THREE (n=29)

		ULTIPLE	R		.70699				
		SQUARE		.49983					
		DJÜSTED		3	.43731				
	S	TANDARD	ERROR		.35318				
		ANAL	YSIS OF	/ARIANC	E				
		F	SUM O	- -		EAN SQU	ARE		
DF REGRESSION 2 RESIDUAL 16				1.994			720		
			<u>1</u> .995 <u>74</u> 12				2473		
F = 7	.9946/		SIGNII	F = .0	0039				
		VARIA	BLES IN	THE EQUA	ATION				
VARIA	BLE	В	SE I	3	BETA		Ŧ		
EZ	25	416	.0947	7	47884	<u> </u>	682		
LZ	43		.1702		45763		563		
STEP	VARIABLE	MULTR	SUMMARY	TABLE_	E/EON)	CTOD	50000		
DIEL	VARTABLE	MOLIK	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH		
1	EZ	.5427	.2945	.2530	7.095	.016	. 2945		
	LZ	.7070	.4373	.4373	7.995	.004	2054		

EZ Eleventh grade science achievement mean

LZ Preference to stay in tent while traveling

Subscore 4 - Food Chains:

The predictor variable identified in this analysis was the students' cumulative science achievement mean (students who had low means made the most gains). The variance accounted for by this variable was 24 percent. Table 77 contains the results of this analysis.

Table 77

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST
SUBSCORE 4 FOR GROUP THREE (n=29)

MIT MEN	- H B		40005		
_					
		Œ			
STANDARD ER			.45674		
AN	ALYSIS OF	VARIANCE	<u> </u>		
DF	SUM C	F SQUARE	S ME	AN SQU	JARE
		1.1088	34	1.10	884
RESIDUAL 17 F = 5.31543		3.5463	33	. 20	861
	SIGNI	FF = .6	340		
VAR.	ABLES IN	THE EOUA	TION		
В			BETA	_	T
.04147	.0179	8	48805	-2.	3 06
	SUMMARY	TABLE			
LE MULTE	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
V .4881	: 93B9	- 1031	E-aik	- 034	.2382
	R SQUAR ADJUSTE STANDAR AND	STANDARD ERROR ANALYSIS OF DF SUM OF 1 17 SIGNI VARIABLES IN B SE .04147 .0179 SUMMARY BLE MULTR RSQ	R SQUARE ADJUSTED R SQUARE STANDARD ERROR ANALYSIS OF VARIANCE DF SUM OF SQUARE 1 1.1088 17 3.5463 SIGNIF F = .0 VARIABLES IN THE EQUARE B SE B .04147 .01798 SUMMARY TABLE BLE MULTR RSQ ADJRSQ	R SQUARE ADJUSTED R SQUARE STANDARD ERROR ANALYSIS OF VARIANCE DF SUM OF SQUARES ME 1 1.10884 17 3.54633 SIGNIF F = .0340 VARIABLES IN THE EQUATION B SE B BETA .04147 .0179848805 SUMMARY TABLE BLE MULTR RSQ ADJRSQ F(EQN)	R SQUARE .23820 ADJUSTED R SQUARE .19338 STANDARD ERROR .45674

V Cumulative science achievement mean

Subscore 5 - Food Webs:

The predictor variable identified in this analysis was the total pretest score. The variance accounted for by this variable was 37 percent. Refer to Table 78 for the results:

Table 78

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 5 FOR GROUP THREE (n=29)

	R A	ULTIPLE SQUARE DJUSTED TANDARD	R SQUARE	Ē			
		ANAL	YSIS OF V	ARIANCE	·		
REGRES RESIDU F = 10	SSION JAL 1 0:05415)F 1 7		SQUARE 3.9872 6.7418 F F = .0	5 2	EAN SQU 3.98 .39	
VARIA	Dr.E	VARIA	BLES IN 1				<u> </u>
VARTAE	ore.	В	SE E	5	BETA		T
TTT	.08	622	.02719)	.60961	3.	171
- ·			_SUMMARY	TABLE			
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
ĺ	TTT	6096	.3716	.3347	10.054	.006	.3716

TTT Pretest Total score

Subscore 6 - Energy Transfer (Food):

The predictor variable identified in this analysis was the students' preference for doing atdoor investigation in their science classes. The variance accounted for by this variable was 23 percent. Table 79 contains the results.

Table 79

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST
SUBSCORE 6 FOR GROUP THREE (n=29)

	<u>St</u>	BSCORE_	6 FOR GRO	OUP THRE	E (n=29)		
<u> </u>	F 2	MULTIPLE R SQUARE ADJUSTED STANDARD	R SQUARE	3	.47546 .22606 .18053 .60609		
	_	ANAL	YSIS OF T	/ARIANCE	·		
RESID	SSION	0F 1 .7		F SQUARE 1.8240 6.2449 F F = .0	7 0	AN SQU 1.32 .36	
VARIA	BLE	VARIA	BLES IN T	THE EQUA	TIONBETA		
Ō	1.71		.76930	-	· 47545	Ži	223
			SUMMARY	TABLE			
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
Ī	0	. 4755	.2261	1805	4.966	.040	2261
							

O Prefer outdoor investigations in science classes

Subscore 7 - Energy Pyramids:

Since no variable emerged in this analysis, a table is not included:

Subscore 8 - Nutrient Cycles:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 112 in the Appendix G.

Total Score:

The predictor variable identified in this analysis was the pretest total score. The variance accounted for by this variable was 35 percent. The results of this regression are presented in Table 80:

Table 80

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST

TOTAL SCORE FOR GROUP THREE (n=29)

					. : <u></u>			
	N	ULTIPLE	R		.59018			
		SQUARE			34831			
			R SQUAR	Ē				
		TANDARD			1.67612			
			Diaton		1.0/012			
		ANAL	YSIS OF	VARIANCE				
	E	F	SUM O	F SQUARE	S MF	AN SQU	IARE	
REGRESSIO	N	1		25.5260		25.52		
RESIDUAL		7		47.7596		2.80		
F = 9.085			STONT	FF = .0		2.00	,,,,,	
		VARIA	BLES IN	THE EOUA	TTON			
VARIABLE		B	SE		BETA		T	
	-				5-111		•	
TTT	. 21	817	.0723	7	.590 1 7	3.	014	
						•	011	
			SUMMARY	TABLE				
STEP VAR	IABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCI	
7			100%	1150105	1 (12214)	orgr	MOGCI	
ī	ምም	.5902	.3483	.3100	9.086	300.	.3483	
-		.0500	.0100	. 5100	3.000	• 000	. 3403	
								
amm makes	LIZZE PROTE							

ITT Pretest Total score

Adjusted Gain Scores against Background and Pretest Scores

Subscore 1 - Plant and Animal Characteristics:

In this analysis two variables were identified. The pretest subscore 1 (students who scored low on the pretest made the most gains) accounted for 61 percent of the variance and the students' travel experience to Canada (students without the experience) accounted for an additional

11 percent, explaining a total of 72 percent of the variance. Refer to Table 81 for the results.

Table 81

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED

GAIN SUBSCORE 1 FOR GROUP THREE (n=29)

					-			
	•	MULTIPLE	R		.85034			
		R SQUARE			.72308			
		ADJUSTED		Ē	.68847			
		STANDARD	ERROR		.50625			
			S OF T	ARIANC	E			
		DF	SON OZ			AN SQU	ARE	
	SSION	ୁଟ		10.707		5.35		
RESIDUAL 1;				4.100		. 25	. 25628	
F = 2	8895		SIGNU	रिकृष्य ()	6000			
		VARIA	bles IN 1	HE EQU	ATION			
VARIA	BLE	В	SE E		BETA		T	
T1	-1.0	5825	.16460	j	88577	-6.	429	
C	-1:7	71359	67294		35083		546	
			SUMMARY	TABLE				
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	
1	T1	.7816	6109	.5880	26.686	.000	.6109	
1 2	C	8503	7231	6885	20.890	.000	.1122	

T1 Pretest Subscore 1

Subscore 2 - Plant and Animal Identification:

In this analysis four variables were identified. These included: the pretest subscore 2 (students who scored low

C Travel out of the United States (Canada)

on the pretest made the most gains); preference for working in groups in science classes; the total years of science classes taken at the secondary level; and preference for listening to lectures in science classes. These variables contributed 93 percent, 2 percent, 1 percent, and 1 percent, respectively, to the variance, explaining a total of 97 percent of the variance. Table 82 contains the results.

Table 82

REGRESSION OF BACKGROUND AND PRETEST RESULTS ON ADJUSTED

GAIN SUBSCORE 2 FOR GROUP THREE (n=29)

	_	ULTIPLE			.98764			
		SQUARE			.97544			
		TANDARD	R SQUAF	Œ	96842			
		TANDARD	ERROR		.13140			
		ANAL	YSIS OF	VARIANCE				
: : : : :	_	F	SUM C		squares mean squar			
REGRESSION 4				9.6006		2.40		
RESIDU		4	7	.2417		·01	.727	
F = 13	9.01457		SIGNI	$\mathbf{F}\mathbf{F} = .0$	1000			
		VARIA	BLES IN	THE EQUA	TON			
VARIAB	LE	В	SE		BETA		T	
F2	97	579	.0435	50 -	958048	-22.	431	
N _		240	·1085		181237		982	
ľŢ		325	.0322		.109260		584	
	• 1.7	768	0821		099060	2:	164	
STEP	VARIABLE	MULTR	_SUMMARY RSQ		E/EON)	GTAR	Dagar	
JILL	AUKTUDUR	MOLIK	RSQ	Allones	F(EQN)	SIGF	RSQCF	
							2.4.	
_	T2	.968 1	.9371	9334	253.384	.000	- 1937	
_	T2 .W	.968 1 .9780	.937± .9565		253.384 175.724			
_	. W T T	.9780 .9835	. 9565 . 9672	.95 <u>10</u> .9607	175.724 147.570	.000	0193	
1 2 3 4	:₩	.9780	. 9565	.9510	175.724	.000	0193	
1 2 3 4	W TT E	.9780 .9835 .9876	.9565 .9672 .9754	.95 <u>10</u> .9607	175.724 147.570	.000	.0193 .0108	
1 2 3 4	W TT L retest su	.9780 .9835 .9876 bscore	.9565 .9672 .9754	.9510 .9607 .9684	175.724 147.570 139.015	.000 .000 .000	.0193 .0108 .0082	
1 2 3 4 12 P	W TT L retest su reference	.9780 .9835 .9876 bscore for wo	.9565 .9672 .9754 2 rking in	.9510 .9607 .9684	175.724 147.570	.000 .000 .000	.0193 .0108 .0082	

Subscore 3 - Plant and Animal Habitats:

Three variables were identified in this analysis. These included: the pretest subscore 3 (students who scored low on the pretest made the most gains); the eleventh grade science achievement mean (students with low means made the

most gains); and preference for staying in tents while exploring the outdoors (students who did not prefer tents). These variables contributed 77 percent, 6 percent, and 5 percent, respectively, to the variance, explaining a total of 88 percent of the variance. Refer to Table 83 for the results.

Table 83 REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED GAIN SUBSCORE 3 FOR GROUP THREE (n=29)

	MULTIPLE					
	R SQUARE ADJUSTED	R SQUAR		.88219 .85863		
	STANDARD	ERROR	D	.36803		
	ANAL	YSIS OF	VARIANC!	Š		
	DF	SUM O	F SQUARI	S ME	AN SQU	ARE
REGRESSION		15.214		5.07		
RESIDUAL		2.031			545	
F = 37.44249		SIGNI	FF = i	0000	_	
	VARIA	BLES IN	THE EQUA	ATION		
VARIABLE	В		B	BETA		Ŧ
T3 -1:	01290	.1031	3	87154	-9 .	821
EZ -:	24811	.0988	6	22484		510
£2 -:	43831	11774	6	22111	-2.	470
		SUMMARY	TABLE			
STED VARIABL	E MULTR	RSQ	ADJ∴SQ	F(EQN)	SIGF	RSQCH
1 T	3 .8769	.7689	.7553	56.564	•000	. 7689
1 T 2 E 3 L	Z •9134	8343	.8136	40.276	.000	0654
3 £	Ž •9393	8822	.8586	37.442	.000	.0479

Ŧ3 Pretest subscore 3

ΕŻ

Eleventh grade science achievement mean Preference for staying in tents while traveling ĹŻ

Subscore 4 - Food Chains:

In this analysis two variables were identified. The pretest subscore 4 (students who scored low on the pretest made the most gains) accounted for 92 percent of the variance and the students' cumulative science grade mean (students with low means made the most gains) accounted for an additional 2 percent, explaining a total of 94 percent of the variance. Refer to Table 84 for the results.

Table 84

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED

GAIN SUBSCORE 4 FOR GROUP THREE (n=29)

	and the second s	ULTIPLE	R		.97105		
		SQUARE		. =	.94295		
			R SQUARI	Ξ	.93581		
	S	TANDARD	ERROR		.46129		
		ANAL	YSIS OF T	VARIANCE			
	Ē)F 2 .6	SUM O	SQUARE	ES ME	AN SQU	ARE
REGRE	SSION	2		56.270		28.13	
RESID	UAL 1	.6		3.4040	6		279
F = 1	.32.21838		SIGNI	F = .0	0000		
	<u> </u>	VĀRĪĀI	BLES IN	THE EQUA	TION		
VARIA	SLE	В	SE I		BETA		T
T4	92	723	.06091	j	93033	=ī5.	208
Ā	- • 04		.01861		14185		319
			CITAMADA	Manr H			
STEP	VARIABLE	MULTR	_SUMMARY RSQ	TABLE	E (EON)	OTOD	DOOGII
OIEL	ANKTADUE	MOLIK	усл	ADJRSQ	F(EQN)	SIGF	RSQCH
1 2	T4	.9611	9238	.9193	206.017	.000	.9238
	Ą	.9711	9358	.9358	132.218	.000	. 7192

T4 Pretest subscore 4
V Cumulative Science grade mean

Subscore 5 - Food Webs:

In this analysis two variables were identified. The pretest subscore 5 (students who scored low on the pretest made the most gains) accounted for 76 percent of the variance and the pretest subscore 3 accounted for an additional 7 percent, explaining a total of 83 percent of the variance. Table 85 contains the results.

Table 85

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAIN SUBSCORE 5 FOR GROUP THREE (p=29)

	MULTIPLE	R		.90864		
<u>I</u>	R SQUARE		_	.82563		
1	ADJUSTED	R SQUAR	E	.80383		
	STANDARD			.62637		
<u></u>	ANAL	YSIS OF	VARIANCE			
Ī)F	JM O	F SQUARE	: S ME	AN SQU	ARE
REGRESSION		29.7225		14.86		
RESIDUAL	L6		6,2777			234
F = 37.87828		SIGNI	F F = .0	000	_	
<u> </u>	VARIA	BLES IN	THE EQUA	TTON		
VARIABLE	В	SE		BETA		Ŧ
<u>T5</u> = .83	3263	.0966		92990	-8-	685
T3 .44	1762	.1797	.17978 .26658			490
		SUMMARY	TABLE			
STEP VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1 <u>T5</u> 2 T3	.8707	.7581	.7438	53.268	.000	.7581
2 T3	.9086	.8023	.8038	37.878	.000	0676

T5 Pretest subscore 5 T3 Pretest subscore 3

Subscore 6 - Energy Transfer (Food):

The predictor variable identified in this analysis was the pretest subscore 6 (students who scored low on the pretest made the most gains). This variable accounted for 33 percent of the variance. Table 86 contains the results.

Table 86

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAIN SUBSCORE 6 FOR GROUP THREE (n=29)

	MULTIPLE	R		.57797			
	R_SQUARE			.33405			
	ADJUSTED	R_SQUARE		. 29488			
	STANDARD	ERROR	. 63065				
	ANAL	YSIS OF V	ARIANC	E		_	
	DF	SUM OF	SOUARI	ES MI	EAN SQU	ARE	
REGRESSION	_ 1					152	
RESIDUAL	17	-	6.761			772	
F = 8.52745		SIGNIF	F = .				
		BLES IN T	HE EQU				
VARIABLE	В	SE B		BETA		Ţ	
T 6 = . (61691	.21125		57797	-Ž;	920	
		CIMMADA	nxor o				
STEP VARIABL	E MULTR	_	Table_ Adjrsq	E/FON!	SIGF	Deoci	
DIDE AUGUNDO	D MOLIK	COQ .	שטטעטע	F(EQN)	SIGE	RSQCI	
1 T	5 .5780	.3341	. 2949	8.527	.010	i 3341	
						 -	

T6 Pretest subscore 6

Subscore 7 - Energy Pyramids:

In this analysis two predictors were identified. The pretest subscore 7 (students the scored low on the pretest made the most gains) accounted for 91 percent of the variance and preference for staying in travel trailers while exploring the outdoors (students who did not prefer travel

trailers) accounted for an additional 3 percent, explaining a total of 94 percent of the variance. Table 87 contains the results.

Table 87

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAINS SCORE 7 FOR GROUP THREE (n=29)

Ä	SQUARE DJUSTED							
			.93782					
2	- CO & A 1D & CO C							
	TANDARD	ERROR		48708				
	ANAL	YSIS OF V	/ARIANCE	š		- ·		
		SUM OF			AN SQU	ARE		
	.6				. 23	725		
10.65967		SIGNIF	F = 0)000				
	VARIA	BLES IN 1	THE EQUI	TION				
BLE	B			BETA		T		
92	023	.05923	š	98229	~15.	534		
-1.21	289			16983		686		
		SUMMARY	TARLE_			:		
VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	ESQCH		
mo	0500	0000	2221	323 112	rrr			
						9098		
五艺	9684	.9378	•9300	120,660	.000	.0280		
	SSION JAL 1 20.65967 BLE92 -1.21	VARIABLE MULTR T7 .9538	SSION 2 JAL 16 20.65967 SIGNIE VARIABLES IN T BLE B SE E 92023 .05923 -1.21289 .45158 VARIABLE MULTR RSQ T7 .9538 .9098	SSION 2 57.2532 JAL 16 3.7960 20.65967 SIGNIF F = .0 VARIABLES IN THE EQUA BLE B SE B 92023 .05923 -1.21289 .45158 VARIABLE MULTR RSQ ADJRSQ T7 .9538 .9098 .9094	SSION 2 57.25325 JAL 16 3.79602 20.65967 SIGNIF F = .0000 VARIABLES IN THE EQUATION BLE B SE B BETA 92023 .0592398229 -1.21289 .4515816983 SUMMARY TABLE VARIABLE MULTR RSQ ADJRSQ F(EQN) T7 .9538 .9098 .9094 171.440	SSION 2 57.25325 28.62 JAL 16 3.79602 .23 20.65967 SIGNIF F = .0000 VARIABLES IN THE EQUATION BLE B SE B BETA 92023 .0592398229 -151.21289 .4515816983 -2. SUMMARY TABLE VARIABLE MULTR RSQ ADJRSQ F(EQN) SIGF T7 .9538 .9098 .9094 171.440 .000		

T7 Pretest subscore 7

Subscore 8 - Nutrient Cycles:

LZ Preference for staying in travel trailers

The predictor variable identified in this regression was the pretest subscore 8 (students who scored low on the pretest made the most gains). The variance accounted for by this variable was 75 percent. The results to this analysis are found in Table 88.

Table 88

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED
GAIN SCORE 8 FOR GROUP THREE (n=29)

T	Т8	.8654	.7490	.7342	50.717	.000	. 7490	
STEP 1	VARIABLE		RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	
CORD	VADTABLE	M'r MD	SUMMARY		99 7 96 2 8 4 F			
T8	= 1. 2	1891	.1771	15	86542	-7.	122	
VARIAB	LE	В	SE	В	BETA		Ŧ	
		VARIAI	BLES IN	THE EQUA	TION_			
	.71675		SIGNIF F = .0000					
RESIDU	AL	_ <u>1</u> 17	12.18619 12.18619 4.08475					
REGRES	STON	DF	SUM O	F SQUARE	S ME	AN SQU		
· ·		ANAL	SIS OF	VARIANCE	Ē			
STANDARD			ERROR		49018			
				R SQUARE .7341				
		R_SQUARE						
		MULTIPLE	R		.86542			

Total Adjusted Gain Score:

The predictor variable identified in this analysis was the pretest total score (students who scored low on the pretest made the most gains). The variance accounted for by this variable was 86 percent. The results are presented in Table 89.

Table 89

REGRESSION OF BACKGROUND AND PRETEST SCORES ON ADJUSTED

TOTAL SCORE FOR GROUP ONE (n=29)

	_						
		MULTIPLE	Ŕ		.92693		
		R SQUARE			.85921		
		ADJUSTED	R SOUAR	Ē	.85092		
		STANDARD			1.82080		
		ANAL	YSIS OF	VARIANCE	Ē		
		DF	SUM O	F SQUARE	ES M	EAN SQU	ARE
REGRE	SSION	1 17		343.9404	18	343.94	
RESID	UAL	17		56.3600		3.31	
F = 1	03.74357		SIGNI	FF = .0			
			BLES IN		TION		<u> </u>
VARIA	BLE	B	SE	В	BETA		T
TTT	8	0084	.0786	Ž	92693	-10.	185
			SUMMARY	TABLE	2		
STEP	VARIABLE	MULTR	RSQ	ADJRSQ		SIGF	RSQCH
1	TTT	.9259	8592	. 8509	103.744	.000	.8592

TTT Total Pretest Score

Adjusted Retention Gain Scores against Background, Pretest, Posttest, and Adjusted Gain Scores

Subscore 1 - Plant and Animal Characteristics:

The predictor variable identified in this analysis was the adjusted gain subscore 5. The variance accounted for by this variable was 23 percent. Table 90 contains the results of this analysis.

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN
SCORES ON ADJUSTED RETENTION SUBSCORE 1 FOR GROUP THREE

Table 90

SCC	RES ON	ADJUSTED	RETENTION	SUBSCOR	E 1 FOR	GROUP 1	HREE	
			(n=2)	29)				
		MULTIP	re p	·	10260			
		R SQUA		R .48360 .23387				
			ED R SQUAF					
			RD ERROR	-	.65846			
					100040			
		AN	ALYSIS OF	VARIANCE				
		DF	SUM C	F SQUARE	S M	EAN SQU	IARE	
	SSION	1 17		2.2500	Ō	2.25		
RESID		17		<u>7.37069</u> 43357				
F = 5	18947		SIGNI	F F = .0	359			
		VAR	IABLES IN	THE FOIL	T ON			
VARIA	BLE	B	SE SE	B EQUA	BETA		Ŧ	
		_			22111			
AD5		.25000	.1097	4	.4836C	2.	278	
			SUMMARY	TABLE				
STEP	VARIA	BLE MULTI		ADJRSQ	F(EQN)	SIGF	RSQCH	
			&		- (-=1)		- (~ % ~11	
ĺ	Ž	D5 .483	5 .2339	1888	5.189	.036	.2339	

AD5 Adjusted Gain subscore 5

Subscore 2 - Plant and Animal Identification:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 113 in Appendix G.

Subscore 3 - Plant and Animal Habitats:

The predictor variable identified was the pretest subscore 1 (students who scored low on the pretest made the most gains). This variable accounted for 25 percent of the variance. Refer to Table 91 for the results.

Table 91

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED SUBSCORE 3 FOR GROUP THREE (n=29)

MULTIPLE I R SQUARE ADJUSTED I					. 49623 . 24624		
				3	20190		
		TANDARD			.61913		
		ANAL	YSIS OF	VARIANC	E	· ·	
		F	SUM O	SQUARI	ES M	EAN SQU	JARE
REGRESSION	Ī	1		2.128		2.12	
RESIDUAL F = 5.553		7	GTONT	6.51648 .38332 SIGNIF F = .0307			
F = 3.333	.04		SIGNI	· · - ·	0307		
		VARIA		THE EQU	ATION	<u></u>	
VARIABLE		В	SE I	3	BETA		T
T1	4 5	299	.1922	2	49622	= 2.	357
			SUMMARY	TABLE			
STEP VARI	ABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH
1	T1	.4962	.2462	.2019	5.554	.031	.2462
T1 Prete		bscore					

Subscore 4 - Food Chains:

In this analysis four variables were identified. These included: the adjusted gain subscore 7 (students who scored low on the pretest made the most gains); the pretest subscore 8 (students who scored low on the pretest made the most gains); the cumulative science grade mean; and preference for listening to lectures in science classes. These variables contributed to 26 percent, 17 percent, 21 per-

cent, and 9 percent, respectively, to the variance, explaining a total of 73 percent of the variance. Table 92 reports these results.

Table 92

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON RETENTION ADJUSTED SUBSCORE 4 FOR GROUP THREE (n=29)

MULTIPLE R			R		.85649			
	F	SQUARE	_ :.:: :73357					
		DJUSTED	R SQUARE	2	65745			
		TANDARD	ERROR	•	42393			
	· ·	TUNDUM	BRROR		42393			
	<u></u>	ANAL	YSIS OF V	/ARIANC	E			
	Ē	F	SUM OF	SQUAR	RS ME	an squ	ADE	
REGR 35		4		6.927		1.73		
RESIDU		.4		2.516			971	
	.63663	. 4	SIGNIE			• 1 /	9/1	
r – 3	.03003		PIGNE	F = .	9900			
		VARIA	OFFC TN o	THE POIL	XMITON			
VARIABI	- E				ATION		•	
AUTUDI	نا ز.	В	SE E	•	BETA		.1.	
AD7	- ·	007	05.700		70075	ā		
	=:17		.05703		42243		982	
T8	 59		.15653		55266	_	788	
V L		906	.01785		.48806	3.	308	
L	• 55	465	. 24727	1	.31569	2.	243	
	<u> </u>		SUMMARY	TABLE				
STEP	VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	
i	ĀD7	•5115	.2616	.2182	6.023	.025	.2616	
1 2 3 4	<u>T</u> ä	.6560	.4303	.3591	6.643			
<u> </u>						.011	.1687	
<u>ي</u> خ	Ŭ L	.7986	.6378	. 5654	8.805	.001	. 2075	
4	L	.8565	.7336	.6574	9.637	.001	.0958	
		<u> </u>						

AD7 Adjusted Gain subscore 7

T8 Pretest subscore 8

V Cumulative science achievement mean

L Preference for listening to lectures in science classes

Subscore 5 - Food Webs:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 114 in Appendix G.

Subscore 6 - Energy Transfer (Food):

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 115 in Appendix G.

Subscore 7 - Energy Pyramids:

Since no predictor emerged, a table is not included.

Subscore 8 - Nutric v Cycles:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 116 in Appendix G.

Total Score:

The variables in this analysis that had high simple correlations did not emerge in the regression at the .05 level because of the adjustment for distribution and missing data. Free regressions were conducted with these variables and the results are reported in Table 117 in Appendix G.

Regression Summaries of Major Predictors

Comparative summaries of the major predictor of each subscore for the three groups are presented in Tables 93 through 96. Only the major predictor that emerged is specified in these tables. The other variables that accounted significantly for the variance in each of the subscores and/or total score are reported in Tables 18 through 92.

Table 93 indicates that no common background variable for all the groups emerged on any of the subscores or total score for pretest scores. Common patterns for two of the three groups were found in subscore 4 which was the positive perception of learning in science (Q), in subscore 6 was the desire to take additional science classes (MM), and in subscore 8 which was travel distance (TM). The variance explained by the individual variables ranged from 12 percent to 44 percent with a mean of 24 percent.

Table 94 indicates that no common background variable or pretest score for all the groups emerged on any of the subscores or total score for posttest scores. The most consistent predictors were those related to the pretest. If the posttest had not had a low ceiling, the pretest might have been a stronger predictor. Several of the students in each group with high scores on the pretest had little room to increase their scores.

Table 95 reveals a consistent pattern of pretest scores that emerged as major predictors for the individual concept strands on adjusted gain scores. Not only did the pretest scores relate to adjusted gains but consistently did with a high amount of explained variance. The variance accounted for by pretest scores ranged from 33 percent to 98 percent with a mean of 63 percent of the variance. Those students with a had lower scores made the greatest gains. This is evidence that the instruction was generally effective.

Table 96 indicates that no common variables emerged on any subscores or total score. However, pretest and adjusted gain scores appeared more frequently than background variables (accounting for a mean variance of 30 percent) and indicated that the students who had scored low on the pretest achieved the greatest gains in the posttest and showed evidence of retention in the delayed testing.

Table 93 BACKGROUND VARIABLES ON PRETEST SCORES

SCORE	GROUP	VARIABLE	MULTR	RSQ	ADJRSQ
1	one (n=29)	no predictor			
1	two $(n=21)$	no predictor			
1	three (n=29)	EZ	.3703	.137 <u>1</u>	₹0863 * -
2	one (n=29)	WV	.3863	.1492	.1177
2	two $\{n=21\}$	<u>U</u> T	.5936	.3523	.2714 *
2	three (n=29)	S	.5163	∙ এই65	· 2383 -
3 3 3	one (n=29)	C	.3419	:169	.0617 *
3	two (n=21)	$oldsymbol{\Lambda}^-$.5513	. 3039	2604 -
3	three (n=29)	EZ	.5427	2945	.2553 -
4	one (n=29)	<u>Q_</u>	.4342	.1885	.1158
4	two (n=21)_	PG	.5845	.3416	.3005
4	three (n=29)	Q	.3837	.1472	.1144
5	one (n=29)	НО	.4576	.2094	.1801
5	two {n=21}_	no predictor			•
5	three (n=29)	Mivi	.3751	1407	.1077
6	one (n=29)	MM	.4213	.1775	.1470
6	two (n=21)_	MM	.6180	.3820	. 3476
6	three (n=29)	LL	.4099	.1681	·1191 * -
7	one (n=29)	CG	.4289	.1840	.1330 *
7	two (n=21)_	no predictor			
7	three (n=29)	MM	.6650	.4422	.4094 *
8	one (n=29)	TM	.3870	.1498	.1183
8	two (n=21)	TM	.4591	.2108	1669
8	three (n=29)	C	.5393	.2909	2492
<u>T</u>	one (n=29)	<u> </u>	.4782	.2288	.1859
${f T}$	two $(n=21)$	TV	.5322	.2833	2385
T	three (n=29)	NG	.6643	.4413	3947

indicates variables not at p <.05 in the regressions indicates a negative relationship

WV Watched science television programs Cumulative science achievement mean

۸

Q Positive perception of learning in science PG Previous science grade mean HO Hike outdoors

MM Desire to take additional science classes

Table 93 (continued)

- Take trips that exceed a distance of 50 miles Reading as a preferred way of learning science Ÿ
- Watch science television programs (preference)
 Travel experience (South America)
- Travel experience (Canada)
- NG Ninth grade science achievement grade
- UT Tenth grade student CG Current science achievement grade
- LL Profes todge facilities when outdoors

Table 94 BACKGROUND AND PRETEST SCORES ON POSTTEST SCORES

SCORE	GROUP	VARIABLE	MULTR	RSQ	ADJRSQ
		2,52.7			
1	one (n=29)	WV	.5441	.2960	.2520
1	two (n=21)	Т8	6006	.3608	.2808 *
1	three (n=29)	no predictor			
2	one (n=29)	MM	.4266	1820	√1309 *
2	two (n=21)	no predictor			
2	three (n=29)	no predictor			
3	one (n=29)	CG	.5757	.3314	.2897
3	two (r=21)	no predictor			
3	three (n=29)	EZ	.5427	2945	.2530 -
4	one (n=29)	DP	.5000	.2500	.2031
4	two (n=21)	no pre			.2002
4	three (n=29)	Ā	. \$J81	.2382	.1934 -
<u> </u>	one (n=29)	<u>M</u>	.5215	.2720	.2265 -
5 5	two (n=21)	T8	.5530	3058	.2190 *
5	chree (n=29)	TTT	6096	.3716	.3347
	one (n=29)	y	.5518	.3044	.2610
õ	two (n=21)	SX	.6633	4400	.3700 =
6	three (n=29)	Ö	4755	2261	.1805
7	one (n=29)	L	.4331	.1876	.1368 *
7	two (n=21)	TTT	7584	5722	.522]
7	three (n=29)	no predictor	17504	• 5722	• 7223
8	one (n=29)	LX	.4880	.2381	.1905 -
8	two (n=21)	ĒJ	8065	6504	.6067
8	three (n=29)	Т6	.4718	.2226	.1255 *
Ŧ	one (n=29)	Q	.5983	.3579	.3178
Ŧ	two (n=21)	ĒJ	8138	6623	.6200
Ŧ	three (n=29)	TTT	.5902	.3483	.3100

indicates variables not at p < .05 in the regressions indicates a negative relationship

WV Watched science television programs
CG Current cumulative science achievement grade
EZ Eleventh grade science achievement mean
DP Desire to travel to new and different places

TTT Pretest total score

V Cumulative science achievement mean

Table 94 (continued)

- Student's sex
- EJ Enjoyment of science classes
- Travel experience (Mexico)
- O Prefer outdoor investigations in science classes

 LX Prefer lodge facilities when exploring the outdoors
- Pretest subscore 8
- Pretest subscore 6
- Desire to take additional science classes
- Positive perception of learning in science
- reference for lectures in science classes

Table 95 BACKGROUND AND PRETEST ON ADJUSTED GAIN SCORES

SCORE	GROUP	VARIABLE	MULTR	RSQ	ADJRSQ	
		AWKTWDUR	MOLIK	RSQ	ADORSQ	
1	one (n=29)	Tl	.6969	. 4835	. 4535	_
ļ	two (n=21)_	T1	.6592	.4345	. 3639	_
1	three (n=29)	T1	.7816	.6109	.5880	-
2 2	one (n=29)	T2	.8085	.6536	6320	
2	two $(n=21)$	T2	.9006	.8111	.7875	_
2	three (n=29)	T2	.9681	.9371	.9334	-
3 3 3	one (n=29)	<u>T3</u>	, 7525	.5663	.5392	_
3	two (n=21)	<u>T3</u>	.7619	.5805	.5280	-
3	three (n=29)	T3	.8769	.7689	. 7553	-
4	one (n=29)	T4	.6314	.3986	.3610	_
4	two (n=21)	T4	.8160	.6659	.6241	_
4	three (n=29)	T4	.9611	.9238	.9193	-
5	one (n=29)	T 5	.6954	.4836	.4513	_
5	two (n=21)	<u>T5</u>	.8912	.7942	.7684	-
5	three (n=29)	Т5	.8707	.7581	.7438	
6	one (n=29)	<u>T6</u>	.6505	.4232	.3871	_
6	two (n=21)	${f T}{f T}$.7943	.6309	.5848	
6	three (n=29)	Т6	.5780	.3341	. 2949	
7	one (n=29)	Т7	.5704	.3254	. 2832	
7	two (n=21)	T 7	.9917	.9836	.9815	_
7	three (n=29)	Т7	.9538	.9098	.9094	-
8	one (n=29)	T8	.5737	.3291	.2871	_
8	two (n=21)	SG	.6438	.4145	.3414	
8	three (n=29)	T8	.8654	.7490	.7342	-
	one (n=29)	TTT	.6392	.4087	.3717	
T	two (n=21)	$\overline{ extbf{T}}\overline{ extbf{T}}$.8852	. 7836	.7566	_
T	three (n=29)	TTT	.9269	.8592	. 8509	-

indicates variables not at p < .05 in the regressions indicates a negative relationship

T1 Pretest subscore 1

T2 Pretest subscore 2

T3 Pretest subscore 3
T4 Pretest subscore 4
T5 Pretest subscore 5
T6 Pretest subscore 6

Table 95 (continued)

T1 Pretest subscore 7
T8 Pretest subscore 8
TTT Pretest total score
SG Seventh grade science achievement grade

Table 96 BACKGROUND, PRETEST, FOSTTEST, and ADJUSTED GAIN SCORES ON ADJUSTED RETENTION GAIN SCORES

SCORE	GROUP	VARIABLE	MULTR	RSQ	ADJRSQ
<u>,</u>	one (n=29)	н	.5167	.2669	.2211
ĺ	two (n=21)	no predictor	•		
ĺ	three (n=29)	AD5	.4836	.2339	.1888
2	one (n=29)	AD2	.6380	.4070	.3700 -
2 2 2	two (n=21)	NH	.6892	.4750	.4093
2	three (n=29)	Т3	.4388	.1925	.1450 * -
======================================	one (n=29)	L	.5132	. 2633	.2173 -
3	two (n=21)	no predictor	•		
3	three (n=29)	Tl	.4962	.2462	2019 -
4	one (n=29)	AD8	•5363	.2877	.2431
4	two (n=21)	no predictor	<u> </u>		
4	three (n=29)	AD7	.5115	.2616	.2182 -
5	one (n=29)	ADT	•5432	.2951	,2510 -
5	two (n=21)	AD5	.6464	.4178	.3450 -
5	three (n=29)	AD6	.4292	.1842	.1362 * -
6	one (n=29)	Н	.6374	. 4063	.3691 -
6	two $(n=21)$	S	.8102	.6564	.6134 -
6	three (n=29)	MM	.3588	.1287	.0774 *
7	one (n=29)	T4	.4438	.1969	.1467 * -
7	two (n=21)	AD5	.6896	.4755	.4100 -
7	three (n=29)	no predictor			
8	one (n=29)	AD8	.536)	.2873	.2428 -
8	two $(n=21)$	PG	.5629	.3169	.2315 * -
8	three (n=29)	T5	.4470	.1998	.1527 * =
T	one (n=29)	ADT	.6644	.4415	.4065 -
T	two $(n=21)$	no predictor			
T	three (n=29)	MM	.4388	.1925	.1450 *

indicates variables not at p < .05 in the regressions indicates a negative relationship

AD5 Adjusted Gain score 5 AD2 Adjusted Gain score 2 DP Desire to travel to new and different places AD3 Adjusted Gain score 3

Tl Pretest sub e l

Table 95 (continued)

AD8 Adjusted Gain score 8
AD7 Adjusted Gain score 7
H Travel experience (Hawaii or Alaska)
S Travel experience (South America)
ADT Adjusted Gain total score
AD6 Adjusted Gain subscore 6
T3 Pretest subscore 3
Pretest subscore 4
Pretest subscore 5
PG Previous science achievement grade
MM Desire to take additional science classes
NH Like to hike in nature
L Preference for lectures in science classes

PERCENTAGE OF POSSIBLE GAIN AND EMPHASIS RATINGS

Teachers in the study indicated the coverage delivered for each targeted concept area and also recorded the nature of the coverage for each topic on an instructional emphasis form (Appendix C). Tables 97 through 99 summarize the ranking of the three groups. Extensive coverage was represented by a rating of 3; average coverage with a 2; and no coverage by 1. The percentages of possible gain for each subscore area; which was based on pre to posttest changes and the potential for change, are also reported in Tables 97 through 99. The emphasis ratings were compared with the rankings derived from the percentage of possible A discrepancy check was employed with the emphasis ratings and the ranking of gain. The discrepancy scale ranges from 0-17 for groups one and two, and 0-19 for group three (scale is based on the numeric total of the amphasis ratings for each group). The very low discrepancy ratings

indicate that the areas of instructional emphasis did register the highest percentage of student gains. What was emphasized was remembered by the students.

Table 97

PERCENTAGE OF POSSIBLE GAIN AND EMPHASIS RATINGS FOR GROUP

ONE (n=29)

PERCENTAGE OF POSSIBLE GAIN	RANKING OF GAIN	EMPHASIS RATING	DISCREPANCY SCORE
478			Ō
50%	3	- 3	Ō
47 8	2	3	=1
55₹	3	3	ō
448	2	$\tilde{2}$	Ō
378	1	ī	ō
58\$	3	$\overline{\hat{\mathbf{z}}}$	= 1
108	ĺ	ī	Ō
	POSSIBLE GAIN 47% 50% 47% 55% 44% 37% 58%	POSSIBLE GAIN OF GAIN 47% 2 50% 3 47% 2 55% 3 44% 2 37% 1 58% 3	POSSIBLE GAIN OF GAIN RATING 47% 2 2 50% 3 3 47% 2 3 55% 3 3 44% 2 2 37% 1 1 58% 3 2

PERCENTAGE OF POSSIBLE GAIN AND EMPHASIS RATINGS FOR GROUP
TWO (n=21)

SUBSCORE	PERCENTAGE OF POSSIBLE GAIN	RANKING OF GAIN	EMPHASIS RATING	DISCREPANCY SCORE	
-					
1	648	3	3	Ţ.	
2	83%	3	3	Ō	
3	56₹	2	3	≖ 1̄	
4	648	2	2	ā	
5	40%	2	$\overline{\overline{2}}$		
6	25%	$ar{1}$	ī	ă	
7	808	$\bar{3}$	2	=1	
8	20%	ĭ	ĭ	0	

Table 99

PERCENTAGE OF POSSIBLE GAIN AND EMPHASIS RATINGS FOR GROUP

THREE (n=29)

DESCORE	PERCENTAGE OF POSSIBLE GAIN	RANKING OF GAIN	RATING	DISCREPANCY SCORE
ī	77\$	3	3	0
2	100%	3	3	Ö
3	<u>66</u> %	2	3	-1
4	<u>76</u> %	3	3	Ö
5	<u>69</u> %	2	2	Ö
6	<u>73</u> %	3	2	-1
7	<u>77</u> %	3	2	- 1
3	25%	1	1	Ö

HYPOTHESES

Data resulting from the analyses of the study were employed in the acceptance or rejection of the null hypotheses. Statements follow or each coche hypotheses.

Hypothesis One

Hypothesis One: There is no significant change in students' understanding of ecological concepts after field instruction strategies.

The Student Ecology Assessment (SEA) instrument was developed as the means of obtaining information on students' understanding of concepts related to ecology and feeding relationships for this study. Items were clustered into eight concept strands related to ecology and were written to address levels of concrete and abstract thinking

as well as higher order reasoning levels. The test was administered prior to the field experience at a pre-trip social and then was re-administered at the conclusion of the field experience while the students were still on-site. The posttest gains made by students of all three groups were statistically significant (p <.001) (Appendix H). The means of the subscores of the posttest in each of the eight concept strands were all higher than the means of the pre-test subscores. Based on a comparison of pretest to posttest results of the SEA, Hypothesis One was rejected.

Hypothesis Two

Hypothesis Two: There is no significant decrease in retention of concepts evidenced after the field exposure.

The Student Ecology Assessment (SSA) instrume a was administered to the three groups of students four weeks after the field instruction program at the groups' final posttrip session. The average mean of the posttest for all groups was 34.46 and the average mean of the retention test was 33.95, thus indicating that the students did retain the concepts. The subscore means of the retention test indicate gains in areas or instructional emphasis and decreases in the areas of no or low emphasis. Based on the retention test results of the SEA instrument, the null hypothesis was accepted.

Hypothesis Three

Hypothesis Three: There are no significant relationships between background variables and gains in understanding of concepts.

The student background and attitude form was designed to obtain information on students': science academic standing; sex; grade level; science course background; science interests; science extracurricular involvements; perceptions of learnings; learning style preference; and travel and outdoor experience. Frequencies were examined for each of the variables and only the items that a majority of the students did not respond to, or did not provide data for, were eliminated from analysis. These included: ninth grade item; the names of the science courses from seventh grade to the current class; and travel to Australia and Africa. These items received no responses. The background data were then entered into multiple regression analyses with the results from the pretest, posttest, retention test, adjusted gain, and the retention gain subscores and total In all of the regressions, no consistent pattern scores. of background variables emerged for the three groups. some cases common patterns for two of the three groups were found in a limited number of subscores but no background were consistently present. The variance explained by these individual variables ranged from 12 per-

cent to 44 percent with a mean of 24 percent. The pretest scores emerged as predictors consistently with the adjusted gain scores. The variance accounted for by pretest scores ranged from 32 percent to 38 percent of the variance (with a mean of 63 percent) with the adjusted gain scores. Based on the regression results, the null hypothesis was accepted.

Hypothesis Four

Hypothesis Four states that there is no significant relationship between instructional emphasis and students' science achievement gains.

Teachers indicated the coverage given for each specified concept area and also recorded the nature of the coverage for each topic on an instructional emphasis form. This form was completed during the pretrip, trip, and posttrip Information was also requested on the time and sessic s. emphasis devoted to administrative, procedural. instructional tasks. Students reported their perceptions of the emphasis given to each targeted concept area on a The responses were congruent. The emphasis similar form. ratings were then compared with the percentages of possible gain for each of the subscore areas. The percentage of possible gain was calculated based on the pre to posttest changes and the potential for gain. A discrepancy check was employed with the emphasis ratings and the ranking of

gain. Based on a 0 to 19 discrepancy scale, the groups only registered a 2 or 3 total point discrepancy betweem the ranking of gain and emphasis rating. These results indicate that the areas of instructional emphasis evidenced the highest percentage of student gain. Based on this analysis, the null hypothesis was rejected.

CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

In this chapter a summary of the study is provided, conclusions are drawn, and recommendations for further study and practice are made.

SUMMARY

This study was designed to examine the nature of ideas and beliefs which students hold about specific scientific concepts and to investigate modes of instruction that would effectively help them gain an accurate understanding of the world.

The Student Ecology Assessment (SEA) instrument was developed as the mean of obtaining information on students' understanding of concepts related to ecology and feeding relationships. Items were based on the theoretical framework outlined in the meaningful learning approach to instruction. Related concepts were carefully selected and validated through concept mapping and a literature survey of curricular materials and programs on ecology and marine studies. The instrument was revised three times as a

result of the responses, comments, and correlational analyses of four groups of secondary science students. The instrument was developed as a mastery device to complement the program's instructional emphasis. A student background and attitude form was also developed and administered. Variables such as science interest, science involvements, sex, academic achievement, learning style preference, and travel and outdoor experience were considered and examined in the regression analyses.

An experiential marine science field program served as the learning strategy. Three self-selected groups of secondary level students participated in the study. the groups were from a high school in Columbus, Ohio and one group was from Fairfax, Virginia. The field component of the program for all three groups occurred from 27 December 1986 to 3 January 1987. Two programs were conducted at sites on Andros Island, Bahamas and one program took place on Grand Cayman Island. Exploratory activities were provided during the excursion. Instruction on ecology comprised one part of the total field program and was monitored in terms of instructional emphasis and time allocated to activities addressing the specified concepts.

Students responded to The Student Ecology Assessment (SEA) prior to, during, and four weeks after the field program. Data obtained from the SEA were subjected to item

analysis evaluation. Further analyses of data from the SEA instrument, student background and attitude form, and instructional emphasis form included: frequency distributions; correlational analyses; and multiple regression analyses. Additional computations were also performed and included: adjusted gain scores; t test calculations; and percentages of possible gain.

Overall, the three groups of students evidenced significant gains in posttest total scores on the SEA instrument (p.<.001). Results on the retention test also indicated that the concepts addressed in the instrument were retained by the students.

Student subscores for each of the eight major concept strands were then analyzed separately. Subscore results for the post and retention tests were standardized into adjusted gain scores for further analyses to account for the ceiling effect that was evident in the pretest results. A series of regressions were conducted using subscore and total score data from each group's pretest, posttest, retention test, adjusted gain, and retention adjusted gain results. Background data and instructional emphasis ratings were included in the analyses.

Generally, from all the regressions performed (n=162), no significant pattern of predictor background variables was apparent other than student interest in science, inter-

est in taking more science classes, and positive perception of learning with the pretest results. The strongest predictor of student scores that emerged consistently in all groups was previous knowledge, as indicated by pretest and adjusted gain scores. Generally, students who had the lowest pretest scores showed the greatest gains.

Gains in students' scores in the eight concept strands were related to the instructional emphasis given to those areas. In each of the three groups, the topics that were targeted for emphasis revealed the highest percentages of possible gain.

The effectiveness of the field instructional program was apparent in that specific concepts that were targeted for emphasis were learned and retained by the students. Student responses to the SEA instrument in posttest and retention test phases support this premise. The mastery approach to learning in a field setting proved to assist in the improvement of students' understanding of the selected concepts.

MAJOR CONCLUSIONS

The findings of this study allow the following conclusions to be drawn:

1. Abstract concepts related to ecology and feeding relationships can be taught and learned effectively through an experiential field instruction program.

- improvement in students understanding of specific ecological concepts occurred after involvement in a field-based learning program.
- 3. Biological concepts related to ecology that were taught in a field setting were retained by the students.
- 4. Students who scored low on the pretest achieved the greatest gains on the posttest.
- 5. Prior knowledge as indicated by pretest and adjusted gain scores served as a predictor of science achievement on The Student Ecology Assessment (SEA) instrument.
- Background variables such as grade level, sex, learning style, and travel and outdoor experience generally were not significantly related to students' science achievement scores as measured by The Student Ecology Assessment (SEA) instrument.
- 7. Students' positive perception of science learning, enjoyment of science classes, and desire to take additional courses in science were related to selected subscore results on the pretest of The Student Ecology Assessment (SEA) instrument.
- 8. Teachers and students expressed similar perceptions of the instructional emphasis given to the targeted concepts.

9. The students' greatest gains in achievement and in retention occurred with the concepts that received the greatest instructional emphasis.

RECOMMENDATIONS FOR FURTHER RESEARCH

Based on the findings and on the insights derived from this study, it is hoped that examination of the effectiveness of the field instruction strategy in the sciences would include and/or extend to:

- 1. Investigations of the effectiveness of field instruction strategies with other complex ecological concepts such as: adaptation; community relationships; population dynamics; behavioral relationships; and cyclic patterns.
- Replication studies involving other age groups of students, especially middle school age youth.
- 3. Comparisons with other variants of field experiences, specifically focusing on excursions of shorter duration and/or to more localized sites.
- 4. Comparisons with other instructional approaches and teaching methods, specifically vicarious field experiences such as computer simulations and/or media presentations.
- 5. Comparisons with non-structured approaches to field experiences.

- 6. Investigations of the effect of teacher characteristics on program effectiveness.
- 7. Investigations of the impact of field experiences on concept learning with special populations of students, specifically children who are educational disadvantaged and/or emotionally troubled.
- 8. Investigations of the effectiveness of the mastery approach in a field setting with emphasis on skill development, specifically hypothesis formation and testing.
- 9. Investigations of the relationship of instructional emphasis and mastery learning in settings other than the field environment.

RECOMMENDATIONS FOR PRACTICE

- 1. It is suggested that school districts provide opportunities for all students to participate in field-based activities for the purpose of mastery learning.
- 2: It is suggested that a hierarchial approach be incorportated in the testing of students' understandings of concepts, with attention being directed to the inclusion and arrangement of familiar/unfamiliar and concrete/formal items in testing instruments.
- 3: It is suggested that attention be given to the congruence of program emphasis, instruction, and testing in science teaching.

BIBLIOGRAPHY

- Adeniyi, E. (1985). Misconceptions of selected ecological concepts held by some Nigerian students. Journal of Biological Education, 19(4), 311-316.
- Anderson, C. W. & Smith, E. L. (1986). Teaching Science, (ERIC Document Reproduction Service No. ED 264 090).
- Anderson, R. D. & others (1982).

 project. Volume 1. Final Report.
 duction Service No. ED 223 475).

 Science meta-analysis
 (ERIC Document Repro-
- Askham, L. R. (1976). The effects of plants on classification behavior in an outdoor environment. <u>Journal of Research in Science Teaching</u>, 13(1), 49-54.
- Atyeo, H. (1939). The excursion as a teaching technique.
 New York, Columbia University Press.
- Ausubel, D. (1968). Educational psychology: a cognitive view. New York, Holt, Rhinehart, and Winston.
- Backman, S. J. & Crompton, J. L. (1985). Educational experiences contribute to cognitive development. <u>Journal of Environmental Education</u>, 16(2), 4-13.
- Bell, B. F. (1981). When is an animal not an animal? Journal of Biological Education, 15(3), 213-218.
- Bennett, L. (1953). A study of the comparison of two instructional methods, the field method and the class-room method involving content in ecology for the seventh grade. Unpublished doctoral dissertation, The Florida State University.

- Bennett, L. (1965). Study of the comparison of two instructional methods: the experimental-field method and the traditional classroom method. Science Education, 49(5), 453-468.
- Benz, G. (1962). An experimental evaluation of field trips for achieving informational gains in a unit on earth science. Science Education, 46(1), 43-49.
- Bierce, R. (ed.) (1985). The ocean. Washington D.C.: Center for Environmental Education.
- Bloom, B. S. (1976). <u>Human characteristics and school</u> <u>learning</u>. New York: McGraw-Hill Co.
- Boulanger, F. D. (1980). Ability and science learning. in H. Walberg (Ed.), A meta-analysis of productive factors in science learning in grade 6 through 12. (ERIC Document Reproduction No. ED 197 939).
- Brady, E. (1972). The effectiveness of field trips compared to media in teaching selected environmental concepts. Unpublished doctoral dissertation, Iowa State University.
- Bredderman, T. (1983). Effects of activity based elementary science on student outcomes. Review of Educational Research, 53(4), 499-518.
- Brehm, S., Anderson, C. & DuBay, J. (1986). Ecology: A teaching module. (ERIC Document Reproduction Service No. ED 273 445).
- Brody, M.J. & Koch, H. (1986). An assessment of 4th, 8th, and 11th grade students' knowledge to marine science and natural resource issues. (ERIC Document Reproduction Service No. ED 273 502).
- Brumby, M. (1979). Problems in learning the concept of natural selection. <u>Journal of Biological Education</u>, 13(2), 109-122.

- Clough, E. C. and Driver, E. (1986). A study of consistency in the use of students' conceptual frameworks across different task contexts. Science Education, 70(4), 473-496.
- Clough, E. C. (1985). How secondary students interpret instances of biological adaptation. <u>Journal of Biological Education</u>, 19(2), 125-130.
- Comber, L. C. & Keeves, J. P. (1973). Science education in nineteen countries. New York: John Wiley Co.
- Cosgrove M. & Osborne, R. (1985). Lesson frameworks for changing children's ideas. in R. Osborne (Ed.), Learning in science: The implications of children's science. London: Heinemann.
- Curtis, D. (1944). Contribution of the excursion to understanding. <u>Journal of Educational Research</u>, 38(3), 201-211.
- Deadman, J. A. & Kelly, P. J. (1978). What do secondary school boys understand about evolution and heredity before they are taught the topics? <u>Journal of Biological Education</u>, 12(1), 7-15.
- deBenedictis, T. & others (1982). Sex difference in science: I don't know. (ERIC Document Reproduction Service No. ED 216 868).
- Disinger, J. F. (1984). Field instruction in school settings. (Eric Document Reproduction Service No. ED 259 935).
- Driver, R. (1983). The pupil as scientist? Milton Keyes: Open University Press.
- Erhlich, P. (1986). <u>Machinery of nature</u>. New York: Simon and Schuster.

- Erickson, G. L. & Erickson, L. J. (1984). Females and science achievement: Evidence, explanations, and implications. Science Education, 68(2), 63-89.
- Evans, H. G. (1958). An experiment in the development and use of educational field trips. Unpublished doctoral dissertation, The University of Tennessee.
- Falk, J. & Balling, J. (1978) <u>Setting a neglected variable</u>
 in science education: investigation into outdoor field
 trips. (ERIC Document Reproduction Service No. ED 195
 441).
- Falk, J., Martin, /., & Balling, J. (1978). Novel field trip phenomenor. <u>Journal of Research in Science Teaching</u>, 15(2), 127-134.
- Fleming, M. L. & Malone, M. R. (1982). The relationship of student characteristics and student performance in science. in R. Anderson (Ed.) Science meta-analysis project: Final report. (ERIC Document Reproduction Service No. ED 223 475).
- Fowler, S. (1958). In support of more field experiences in teaching. Science Education, 42(3), 208-214.
- Fraser, J. (1939). Outcomes of a study excursion. New York: Columbia University Press.
- French, B. A. (1985). Academic tasks in high school biology: a genetics unit. (ERIC Document Reproduction Service No. ED 269 277).
- Garb, Y., Fisher, K., & Faletti, J. (1985). Systematic representation of ecology. (ERIC Document Reproduction Service No. ED 268 012).
- Gilbert, J., Osborne, R., & Fensham, P. (1982). Children's science and its consequences for teaching. Science Education, 66(4), 623-633.

- Glenn, W. H. (1968). The effectiveness of learning in earth science geology units through field trip experiences: a study of the effects of two different methods of presenting field trip experiences on pupil ability to make observations of and to form hypotheses regarding selected geologic features. Unpublished doctoral dissertation, The New York University.
- Goldsbury, J. W. (1969). A feasibility study of local field trips taken vicariously through slide-tapes. Unpublished doctoral dissertation, The Ohio State University.
- Haertel, G. D. & others (1981). Early adolescent sex differences in science learning evidence from the National Assessment of Educational Progress. American Educational Research Journal, 329-341.
- Hafer, P. E. (1962). Short field units in contrast to the long field trip as a vehicle for teaching biology to prospective elementary teachers. Unpublished doctoral dissertation, Cornell University.
- Hall, W. D. (1985). Oceans: A multi-age, integrated subjects curriculum unit. (ERIC Document Reproduction Service No. ED 269 184).
- Harvey, H. (1951). An experimental study of the effect of field trips upon the development of science attitudes in a ninth grade general science class. Science Education, 35(4), 242-248.
- Head, J. (1986). Research into alternative frameworks: promise and problems. Research in Science and Technology Education, 4(2), 203-211.
- Helm, H. & Novak, J. (eds.) (1983). <u>Proceedings of the international seminar on misconceptions in science and mathematics</u>. Ithaca: Cornell University.
- Hewson, M. & Hewson, P. (1983). Effect of instruction using students' prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731-743.

- Hueftle, S. J. & others (1983). <u>Images of science: A summary of results from the 1981-1982 national assessment in science</u>. University of Minnesota.
- Hurford, D. (1977). Status of the field trip: a nationwide study of practices and attitudes. Unpublished doctoral dissertation, Temple University.
- Jacobson, W. & Doran, R. (1986). What do our ninth graders think of science and school? Science Teacher, 53(5), 59-61.
- Johnstone, A. & Mahmoud, N. (1980). Isolating topics of high perceived difficulty in school biology. <u>Journal of Biological Education</u>, 14(2), 163-166.
- Jungwirth, E. (1975). Preconceived adaptation and invented evaluation. <u>Australian Science Teachers Journal</u>, <u>21(2)</u>, 95-100.
- Kahl, S. R. & others (1982). <u>Sex-related differences in pre-college science: Findings of the scienc meta-analysis project.</u> (ERIC Document Reproduction Service No. ED 216 909).
- Kargbo, D., Hobbs, E., & Erickson, G. (1980). Children's beliefs about science. <u>Journal of Biological Education</u>, <u>14(2)</u>, 137-146.
- Keown, D. (1984). Let's justify the field trip. American Biology Teacher, 46(1), 43-48.
- Kern, E. & Carpenter, J. (1986). Effect of field activities on student learning. <u>Journal of Geological Education</u>, 34, 180-182.
- Koran, J. & Baker, S. (1979). <u>Evaluating the effectiveness</u> of field experiences. (ERIC Document Reproduction Service No. ED 166 057).

- Krathwohl, K. & Bloom, B. (1964). <u>Taxonomy of educational</u> objectives. New York: McKay Co. Inc.
- Kremer, B. K. & Boulanger, F. D. (1980). Science education research. in H. Walberg (Ed.) A meta-analysis of productive factors in science learning in grades 6 through 12. (ERIC Document Reproduction Service No. ED 197 939).
- Kuhnen, S. M. (1959). The effectiveness of field trips in the teaching of general botany. Unpublished doctoral dissertation, The New York University.
- Lawson, A. E. (1987). <u>Integrating research on misconceptions</u>, reasoning patterns and three types of learning cycles. (ERIC Document Reproduction Service No. SE 047 740).
- Maehr, M. L. & Steinkamp, M. (1983). A synthesis of findings on sex differences in science education research. (ERIC Document Reproduction Service No. ED 229 226).
- Marek, E. A. (1986). They misunderstand, but they'll pass. Science Teacher, 53(3), 32-35.
- Martin, W., Falk, J., & Balling, J. (1981). Environmental effects on learning: the outdoor field trip. Science Education, 65(3), 301-309.
- Mason, J. (1976). Field work in Virginia's secondary earth science classes. Unpublished doctoral dissertation, University of Virginia.
- Mason, J. (1980). Field work in earth science classes. Science Education, 80(4), 317-322.
- McCombs, L. W. (1973). What's ecology. Menlo Park: Addison-Wesley Publishing Co.
- McNamara, S. E. (1971). A comparison of the learning behaviors of eighth and ninth grade ESCP Earth Science students: one half experiencing laboratory investiga-

- tions in the indoor environment, the other half experiencing laboratory investigations in the outdoor environment. Unpublished doctoral dissertation, The Pennsylvania State University.
- Miller, G. T. (1985). <u>Living in the environment.</u> Belmont: Wadsworth Publishing Company.
- Mintzes, J. J. (1984). <u>Children's biology: a review of research on conceptual development in the life sciences</u> (ERIC Document Reproduction Service No. ED 249 044).
- Morrisey, J. (1981). <u>Factors that influence elementary teachers in one school district of Canada to use outdoor education as a teaching method.</u> Unpublished doctoral dissertation, Maine University.
- Murr, M. (1986). An identification of misconceptions in biology, their nature, and their accommodation during instruction. Unpublished doctoral dissertation, University of Washington.
- Muse, C., Chiarelott, L., & Davidman, L. (1982). Teachers utilization of field trips. Clearing House, 56(3), 122-125.
- Novak, J. (1976). Understanding the learning process and effectiveness of teaching method in the classroom, lab, and field. Science Education, 60(4), 493-512.
- Nybakken, J. W. (1982). Marine biology: An ecological approach. New York: Harper and Row Publishers.
- O'Connor, J. V. (ed.) (1984). Field techniques: Atlantic barrier system. (ERIC Document Reproduction Service No. ED 265 032).
- Peters, R. O. (1971). The utilization of field trips and sound film simulation to affect student cognition and concept development. Unpublished doctoral dissertation, University of Rochester.

- Plaget, J. & Inhelder, B. (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books.
- Pines, A. L. & West, L. H. (1986). Conceptual understanding and science learning: an interpretation of research within a sources of knowledge framework. Science Education, 70(5), 583-604.
- Plummer, C. M. (1985). Ocean prospects: A high school teacher's quide to ocean-related topics. (ERIC Document Reproduction Service No. ED 262 967).
- Postlethwait, S. N. (1976). Environmental biology. Philadelphia: W.B. Saunders Co.
- Raths, L. (1939). Some evaluations of the trip. Educational Research Bulletin, 17, 189-208.
- Riban, D. (1976). Examination of a model for field studies in science. Science Education, 60(1), 1-11.
- Schellhammer, F. (1935). The field trip in biology. School Science and Math, 35(2), 170-173.
- Schneider, L. S. & Renner, J. W. (1980). Concrete and formal teaching. <u>Journal of Research in Science Teaching</u> 17(6), 503-517.
- Schwaab, K. (1975). Survey of the effectiveness of environmental education teaching methods as rated by public school teachers and professors of education in Illinois. Unpublished doctoral dissertation, Southern Illinois University.
- Smith, E. L. & Anderson, C. W. (1984). <u>Teaching for conceptual change: Some ways of going wrong: Final report.</u> (ERIC Document Reproduction Service No. ED 237 493).
- Smith, R. L. (1977). Elements of ecology and field biology. New York: Harper and Row Publishers.

- Sorrentino, A. & Bell, P. (1970). Comparison of attributed value with empirically determined values of secondary field trips. Science Education, 54(3), 233-236.
- SPSS Inc. (1986). SPSSx users guide, 2nd edition. Chicago: SPSS Inc.
- Stothart, J. (1972). <u>Teacher characteristics</u>, <u>student</u> <u>curiosity</u>, <u>and problem selection in high school biology</u>. <u>Unpublished doctoral dissertation</u>, <u>University of Houston</u>.
- Tamir, P., Gal-Choppin, R., & Nussinovitz. (1981). How do intermediate and junior high school students conceptualize living and nonliving? <u>Journal of Research in Science Teaching</u>, 18(3), 241-248.
- Uguroglu, M. E. & Walberg, H. J. (1979). Motivation and achievement: A quantitative synthesis. American Education Research Journal, 16(4), 375-389.
- Walberg, H. J. & others (1980). A meta-analysis of productive factors in science learning grades 6 through 12. Final technical report. (ERIC Document Reproduction Service No. ED 197 393).
- Walberg, H. J. (1986). Synthesis of research on teaching. in M. Wittrock (Ed.), <u>Handbook of research on teaching</u> (Third edition). New York: MacMillan Publishing Co.
- Wiley, D. (1983). A comparison of the effectiveness of geological conceptual development within two field types as compared with classroom instruction. Unpublished doctoral dissertation, Temple University.
- Wise, K. & Okey, J. (1983). A meta-analysis of the effects of various science teaching strategies on achievement. Journal of Research in Science Teaching, 20(5), 419-435.
- Wise, R. (1970). Outdoor versus indoor learning in elementary school science. Unpublished doctoral dissertation, The Pennsylvania State University.

- Yager, R. (1984). New context for school science. <u>Journal</u> of Chemical Education, 61(8), 693-696.
- ZaRour, G. I. (1975). Science misconceptions among certain groups of students in Lebanon. <u>Journal of Research in Science Teaching</u>, 12(4), 385-391.

Appendix A STUDENT ECOLOGY ASSESSMENT (SEA) INSTRUMENT

= <u>1</u>93 =

CIRCLE THE ANSWER THAT YOU THINK IS THE BEST RESPONSE FOR EACH ITEM. Use these illustrations for questions 1-2. which set is comprised of only animals?
a. II, IV, VI
c. II, IV c, iz, iv, vii d. ii, iii, vi which set would be found in or near an squatic environment? a. 17, 7, VII b. v. VI, VII d. none of the above Use these illustrations for questions 3-4, Which set is comprised of only animals?

a. I, III, V
b. III, IV, VI
d. none which set would be found in a tidal pool? c. i, ii, iii d. iv, v, vi ā. 1, V, VI b. 11, 1V, V Use these illustrations for questions 5-7. Why would I and II be considered different from the others?

a. They are unicellular c. They are naturally green a. They are unicellular b. They are multicellular 6. If II, IV and VI are classified together, it would be because they a. can photosynthesize c. do not nove d. are multicellular 7. If III is classified in its own group, it's because it has c. definite nuclei a. the ability to move d. a backbone b. fore

- 8. All consumer organises a. really act as decomposers c. eat very selectively b. need other sources of food d. are large in size
- 9. A producer/consumer pair that you would find in the upper region of an intertidal pool would be c. sponges and sea grasses d. algae and tarnacles a. algae and starfish b. snails and barnacles
- 10. A producer/consumer pair of the deep open ocean would be c. algae and Corals d. algae and ghost crabs a. sea grasses and corals 5. corals and daesel fish
- 11. The greatest diversity of life occurs c. surface to 100 ft. in the sea a. along the beach 5. in the deepest ocean depths d. in tital pools
- 12-15. This is an example of a food chain. Identify the organises below.

This is an example of a four-step food chain.

- 15. Decoaposers_____
- 16-19. The following four guestions are based on this situation... In a certain region of the reef, the scales of dasselfish are being parasitized by wores (ugh). Assume that the 'scale-worms' cae only live on dasselfish. The principle fod in the diet of dasselfish is algae.
- 16. What is the food chain in this case? a. Algae---daeselfish---scale-worm

 - b. Scale-wors---danselfish---algae
 - c. Sun---daeselfish---scale-worm d. Danselfish --- algae --- scale - worm
- 17. If the population of scale-worms becomes so large that the scales of ear fish are damaged. What effect on the food chilin could occur? c. Pish will increase
 d. All populations will increase
- a. ligae vill decrease b. ligae vill increase
- 18. A seeil which feeds on scale-worms enters, if the sneils thrive, uhat:would:be the effect on the food chain?

 a. Fish will increase c. Scale-worms will increase c. Scale-worms will increase d. All except smalls will increase b. Algae will increase
- 19. If scale-votes were destroyed, them you could expect "hat a. fish will die out c. snails will die out b. sore algae would be eaten d. snails will increase

20-21. Orserve the food web below PRODUCERS (plants) SCAVENCERS 20, if hunchs were placed in this diagram, they
a. would not fit in any of the food chains
b. could be a second order consumer
c. would be at the head of every food chain
d. some of the above 21. The diagram shows that a. the for can feed on acre than one organism b. scavengers just do not belong c. second order consumers only feed on herbivores d. all of the above 22-24. In this model of a pond food web, list the consumers of MULBERRIES Muberi web. The meaber is the circles represent 25 a Below is AB organisms. Order consumers are both first b. 9 and 10 can be on the fourth trophic level c. 5 and 7 are on the first trophic level d. 2 and 7 are on different trophic levels

26-29. Refer to this chart and the key for the following questions. 7e/reda olphir entern fich mfish rh:i@ 568 KET 1. this statement is accurate according to the chart 2. This statement is incorrect according to the chart 3. This goes beyond information in the chart 26. Plants are the foundation in this system. 27. Copepods are baraful and should be killed. 28. Parasites contribute to food losses.
29. Algae would not be affected by squid and flyfish. 30. If humans were to spear the very best-lobsters from the reef, it is possible that the lobster population as a whole may be a. veakened c. paaffected d. I don't know b. strengthened 31-32. Energy Pyramid for secondary Evogy CAN TRITORES for princing CATHIYOTES for harbitones Energy stored by green plents 31. The energy represented at each_level_in the_diagram_indicates a. energy needs of organisms c. amount of transfered energy b. energy spent by organisms d. energy benefits are equal 32. As energy flows through a food chain a, the total amount goes directly to the next level b. a proportion is lost as heat c. only producers and consumers benefit

d. energy is accumulated and increased

- 33. The pyrauid of biosass diagram
 - should always have plants at the base of it
 - has made decreasing from bottom to top is similiar to the energy pyramid

 - d. all of the above

34-38. In this example of a food pyramid, place the following at the correct 12vel: ALGAE; TUNA; 200PLAURION; KILLER WHALRS; SHRIMP

Use these diagrams of the carbon dioxide

- . taimals obtain their supply of carpon from c. plants; other animals they eat d. the compound; carbon dioxide a: the atmosphere b. decomposets
- 40. Diagrass & and B indicate that a. only plants and aniesis contribute to carbonate systems
 - b. through respiration anisals obtain carbon dioxide
 - c. bacteria assist la releasing carboa fioxide
 - d. animals both take in and release carbon dioxide and oxygen

BEST COPY AVAILABLE

Appendix B STUDENT BACKGROUND AND ATTITUDE FORM

= 199 =

This form will be coded so that you will remain anonymous to the person who is scoring this form. Answer as honestly and completely as you can to each of the following questions. Thank-you. 1. Indicate the grade that you are presently in a. 9th. b. 10th C. 11th d. 12th 2. Indicate your sex b. male a. fesale 3. In general, do you enjoy science classes? t. usually d. rarely 4. If you are taking science this year, circle your current grade. C. C 5. What grade did you generally get in previous years science classes? ē. ř c. C 8. 1 6. List the science course that you had at each grade and the final grade a. 7th _____ d. 10th ____ b. 8th ____ e. 11th ____ c. 9th ____ f. 12th ____ 7. In general; how much have you learned in science classes? a. a great amount c. very little d. nothing b. an average amount 8. Are you planning to taking more courses in science? e. definitely no a. defimitely yes c. uncertain d. sostly so b. mostly yes 9. How many trips in a year do you take that are more than 3 days long? c. 1-2 d. 1 don't a. more than 6 b. 3-6 10. How many trips do you take in a year that are more than 50 miles away?

c. 1-2 d. I don't

a. more than 6 b. 3-6

```
11. Circle the places that you have visited.
                        d. Asia
e. Europe
                                                  g. South America
h. Australia
    a. Canada
    b. Mexico
   c. Caribbean
                      f. Africa
                                                  i. Havaii or Alaska
12. How often do you generally camp overnight in one year?
a. more than 6 times c. 1-2 times
                                   c. 1-2 times
                                   d. I don't
   b. 3-6 times
13. Where do you prefer to stay when you're exploring the outdoors?
   a. in a tent
                                   c. at a lodge or cabin
d. in a motel
   b. in a travel trailer
14. where do you generally stay when you're exploring the outdoors?
   a. in a tent
                                   c. at a lodge or cabin d. in a motel
   b. in a travel trailer
15.Do you like to travel to new and different places?
   a. definitely yes
                                   c. it doesn't matter
                                   d. not at all
   h. later maybe
16, List your preferred modes of learning (statm. 1st, 2nd, 3rd choice)
   a. listening to lectures ___ d. working in outdoor activities ___ b. doing lab activities ___ e. reading by myself _____
   c. working in a group_____
17.Circle the activities that you like to do.
a. science fairs d. read science
                                  d. read science magazines or books
   b. nature hikes
                                   e. watch science TV programs
                                  . f. environmental action projects
   c. science clubs
18 Circle the activities that you have already done.
   a. science fair projects d. read science magaziams or books
                                  e. watched science TV programs.
   b. hiked_outdoors
   c. attended science clubs
                                 f. environmental action projects
```

COCHAVE A GREAT TRIPOGO

220

Appendix C INSTRUCTIONAL EMPHASIS PERCEPTION FORM

SCHOOL	 TEACHER	

PLEASE CIRCLE THE CATEGORY THAT HOST CLEARLY DESCRIBES THE COVERAGE RECEIVED BY EACH TOPIC IN YOUR PRE-TRIP SESSIONS. INDICATE THE NATURE OF THE COVERAGE WHEN APPLICABLE (e.g. slides, lecture, activity etc.)

	Й (1)	ĀVĒRĀGĒ (2)	EXTENSIVE (3)	EXAMPLE
PLANT BOG ANIMAL CHARACTERISTICS	(1)	(2)	(3)	
PLANT and AMINAL IDENTIFICATION	(1)	(2)	(3)	
PLANT and AWINAL HABITATS	(1)	(2)	(3)	
FEEDING RELATIONSHIPS	(1)	(2)	(3)	
FOOD CHAINS	(i)	(Ž)	(3)	
POOD	(1)	(2)	(3)	
ENERGY TRANSFER (POOD)	(1)	(2)	(3)	
ENERGY PYRANIDS	(ī)	(2)	(3)	
NUTRIENT CYCLES (CARBON)	<u>(1)</u>	(2)	(3)	

LIST THE THREE TOPI	CS THAT	RECEIVED THE	E HOST TIME	AND EMPHASIS	1
1					
2.					•
3					•
WHAT OTHER SCIENCE	CONCEPTS	ARE COVERED	. INDICATE	THE COVERAGE	; =
	ЯОЯ E (1)	AVERAGE (2)	ĒĪŢĒNSIVĒ (3)		
ī	(ī)	(2)	(3)		
2	<u> </u>	(2)	(3)		
3	(ī)	(2)	(3)		
RATE THE TIME DEVOTE	D TO THE	FOLLOWING	TASKS IN TO	UR PRE-TRIP	S e S S I
TO ADMINISTRATIVE (forms, reports)	(1)	(2)	(3)		
2. PROCEDURAL (schedules, rules	i) (1)	(2)	(3)		
3. INSTRUCTIONAL					
(sciesca-related)		121	735		

PLEASE CIRCLE THE CATEGORY THAT HOST CLEARLY DESCRIBES THE COVERAGE RECEIVED BY EACH TOPIC DURING THE FIELD EXPERIENCE. INDICATE THE NATURE OF THE COVERAGE WHEN APPLICABLE. (e.g. activity, experiment etc.)

ATURE OF THE COVE	RAGE WHEN	APPLICAGE	e. (e.g. act)	lvity, exper
	NONE	AVERAGE	EXTENSIVE	EXAMPLE
	(1)	(2)	(3)	
LANT AND ANIMAL HARACTERISTICS	(1)	(2)	(3)	
NARCIENZOILO	()	(-,	(-)	
TANT and AMINAL	111	:=:	JII	
DENTIFICATION	(1)	(2)	(3)	
TANT and ANIHAL				
ABITATS	(1)	(2)	(3)	
EEDIUG .				
ELATIONSHIPS	(1)	(2)	(3)	
 005				
OOD IAINS	(1)	(2)	(3)	
-				
OD BS	(1)	(2)	(3)	
ERGT ANSFER (POOD)	(1)	(2)	(3)	
AND I LINE	,	(-)	(-,	
ERGY	24.5	 2 3 5	7.25	
RAHIDS	(1)	(2)	(3)	
TRIENT CLES (CAREON)	_ 7.2	: = :	3.23	
CLES (CAREON)	(1)	(2)	(3)	
ICH OF THE ABOVE	TOPICS WE	RE ADDRESS	ED THE HOST	ON THE TRIP
	_			
T OTHER TOPICS	ERE COVER	ED AND TO	VHĀT EXTENT?	
	(ī)	(2)	(3)	
	(1)	(2)	(3)	
		(2)	(3)	
	\ ' '	\-,	\-,	

206

PLEASE_CIRCLE THE CATEGORY THAT FOST CLEARLY DESCRIBES THE COVERAGE RECEIVED BY EACH TOPIC IN YOUR POST-TRIP SESSIONS. INDICATE THE NATURE OF THE COTERAGE WHEN APPLICABLE (e.g. slides; lecture, activity etc.)

(1) (1) (1)	(2)	EXTENSIVE (3) (3)	EXAMPLE
		• •	
(1)	(2)	(3)	
(1)	(2)	(3)	
(ī)	(2)	(3)	
(1)	(2)	(3)	
ίij	(2)	(3)	
(1)	(2)	(3)	
(1)	(2)	(3)	
		(3)	
			AND EMPHASIS
	(1) (1) (1) (1) (1) (1) (5) THAT	(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)	(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

Appendix D
CONCEPT MAP

FEEDING RELATIONSHIPS

Appendix E

BACKGROUND AND ATTITUDE VARIABLE LABELS

```
UT
      10th grade student
UE
      11th grade student
GW
      12th grade student
SX
      Sex of student
ĒĴ
      Enjoyment of science classes
CG
      Current science achievement grade
PG
      Previous science achievement grade mean
SG
      Seventh grade science achievement grade mean
EG
      Eighth grade science achievement grade mean
NG
      Ninth grade science achievement grade mean
TG
      Tenth grade science achievement grade mean
ĒŹ
      Eleventh grade science achievement grade mean
TT
      Total years of science instruction (from 7-12 grades)
Ÿ
      Cumulative science achievement mean
Q
      Positive perception of degree of learning in science
MM
      Desire to take additional science classes
TR
      Trips taken yearly that exceed a 3 day duration
TM
      Trips taken yearly that exceed a distance of 50 miles
C
      Travel to Canada
M
      Travel to Mexico
R
      Travel to the Caribbean
A
      Travel to Asia
E
      Travel to Europe
Ē
      Travel to Africa
Ē
      Travel to South America
U
      Travel to Australia
H
      Travel to Hawaii or Alaska
T
      Total countries visited
CA
      Camping trips taken in a year
ŁŻ
      Prefer tents while exploring the outdoors
ĿΫ
      Prefer travel trailers while exploring the outdoors
LX
      Prefer lodge facilities while exploring the outdoors
LW
      Prefer a motel when exploring the outdoors
ΕŸ
      Reside in a tent when exploring the outdoors
LU
      Reside in travel trailers when exploring the outdoors
LL
      Reside in lodges when exploring the outdoors
ĿS
      Reside in motels when exploring the outdoors
DP
      Desire to travel to new and different places
Ł
      Prefer lectures in science classes
      Prefer laboratory activities in science classes
Đ
```


Prefer to work in groups in science classes Prefer outdoor investigations in science classes Prefer reading in science classes W 0 Y SF Like science fairs NH Like nature hikes CC Like science clubs RM Like to read science magazines or books TV Like to watch science television programs Like to do environmental actions projects EE GTG Total of science-related activities like to do Completed science fair projects FP HO Hiked outdoors Participated in science clubs ĀΤ MB Read science magazines or books Watched science television programs WV Participated in environmental action projects EP Total of science-related activities completed OTO

Appendix F

CONCEPT VARIABLE LABELS

```
Pretest subscore 1
      Pretest subscore 2
T3
      Pretest subscore
T4
      Pretest subscore 4
T5
      Pretest subscore 5
T6
      Pretest subscore 6
T7
      Pretest subscore 7
T8
      Pretest subscore 8
TTT
      Pretest total score
PST1
      Posttest subscore 1
PST2
      Posttest subscore 2
PST3
      Posttest subscore 3
PST4
      Posttest subscore 4
PST5
      Posttest subscore 5
PST6
      Posttest subscore 6
PST7
      Posttest subscore 7
PST8
      Posttest subscore 8
PSTT
      Posttest total score
AD1
      Adjusted gain subscore 1
AD2
      Adjusted gain subscore 2
AD3
      Adjusted gain subscore 3
AD4
      Adjusted gain subscore 4
AD5
      Adjusted gain subscore 5
AD6
      Adjusted gain subscore 6
AD7
      Adjusted gain subscore 7
AD8
      Adjusted gain subscore 8
ADT
      Adjusted gain total score
RT1
      Retention subscore 1
RT2
      Retention subscore 2
RT3
      Retention subscore 3
RT4
      Retention subscore 4
RT5
      Retention subscore 5
RT6
      Retention subscore 6
RT7
      Retention subscore 7
RT8
      Retention subscore 8
RTTT
      Retention total score
RAL
      Retention adjusted gain subscore 1
RA2
      Retention adjusted gain subscore 2
RA3
      Reteniion adjusted gain subscore 3
RA4
      Retention adjusted gain subscore 4
```

- 211 -

RA5	Retention	adjusted	gain	subscore 5
RA6	Retention	adjusted	gain	subscore 6
RA7	Retention	adjusted	gain	subscore 7
RA8	Retention	adjusted	gain	subscore 8
RAT	Retention	adjusted	gain	total score

Appendix G REGRESSION TABLES NOT FOUND IN THE TEXT

GROUP ONE

Table 100

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 3

FOR GROUP ONE (n=29)

VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	CORREL
С Н	.3419 .4480	.1169 .2007	.0617	2:118 1:884	.165 .186	.1169	.3419
C Tra	vel expe vel expe	rience rience	to Canad to Hawai	a i and/or	Alaska	1	

Table 101

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 7

FOR GROUP ONE (n=29)

VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	CORREL
CG DP	.4289 .5613	.1840 .3150	.1330 .2237	3.608 3.449	• 076 • 059	.1840 .1310	.4289 .4250
CG Curi	rent sci	ence ac	hievemen	t grade			

DP Desire to travel to new and different places

Table 102

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST

SUBSCORE 2 FOR GROUP ONE (n=29)

VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSOCH	CORREL
	.4266		<u> </u>	3.559			. 4266
						V.1020	1 1200
MM Des:	ire to t	ake add	itional	science			

Table 103

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST
SUBSCORE 7 FOR GROUP ONE (n=29)

VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	CORREL
Ē	.4331	.1876	1368	3.695	:073	.1876	4331
		_					

Table 104

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN
SCORES ON ADJUSTED RETENTION SUBSCORE 7 FOR GROUP ONE
(n=29)

VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	CORREL
T4 ADT H TTT	.4438 .5985 .7439 .8015	.1969 .3581 .5534 .6423	.1467 .2726 .4577 .5323	3.923 4.185 5.782 5.837	.065 .036 .009	.1612 .1952	4438 2861 .2025 2743

T4 Pretest subscore 4

ADT Adjusted Gain Total score

H Travel experience to Hawaii and/or Alaska

TTT Pretest Total score

GROUP TWO

Table 105

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 2

FOR GROUP TWO (n=21)

VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	CORREL
UT	5936	.3523	. 2714	4.352	.070	.3523	.5936

UT Tenth grade students

Table 106

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST
SUBSCORE 1 FOR GROUP TWO (n=21)

VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	CORREL
T8 SG	.6006 .7454	.3608 .5556	. 2808 . 4286	4.515 4.376	.066	.3608	.6066 5627
	test sub enth gra		ence achi	evement	mean	<u> </u>	

Table 107

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST

SUBSCORE 5 FOR GROUP TWO (n=21)

VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	CORREL
T8 TTT	·5530 ·7323	.3058 .5363	2190	3.524	.097	.3058	.5530
ĒĴ	. 7323 . 8361	.5363 .6991	.4038 .5487	4.047 4.647	.068 .052	.2305	1995 .4873

T8 Pretest subscore 8
TTT Pretest Total score

EJ Enjoyment of science classes

Table 108

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 8 FOR GROUP TWO (n=21)

ORRI		RSQCH	SIGF	F(EQN)	ADJRSQ	RSQ	MULTR	VARIABLE
5629		.3169	.090	3.711	. 2315	.3169	.5629	PG
453] 227		.1708	.096	3.332 4.237	.3413 .5190	.4877 .6793	.6984 .8242	Tl_ AD5
4	_	.1708	.096	3.332	.3413	.4877	.6984	T1_

Tl Pretest subscore 1
AD5 Adjusted Gain subscore 5

GROUP THREE

Table 109 REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 1 FOR GROUP THREE (n=29)

VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	CORREL
EZ CG	.3703 .5208	.1371	.0863	2.701 2.978	.119	.1371	3703 .2032
			ence ach		grade		

Table 110

REGRESSION OF BACKGE ON VARIABLES ON PRETEST SUBSCORE 6

FOR GROUP THREE (n=29)

VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	CORREL
Ī.Ī.	.4099	.1681	.1191	3.434	.081	:1681	4099

LL Reside in lodges when exploring the outdoors

Table 111

REGRESSION OF BACKGROUND VARIABLES ON PRETEST SUBSCORE 7

FOR GROUP THREE (n=29)

VARIAE	BLE MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	CORREL
MM M SF	.6650 .7389 .7958	.4422 .5460 .6333	.4094 .4893 .5599	13.479 9.622 8.634	.002 .002 .001	.4422 .1038 .0872	.6650 .3826 2381
<u>M</u> _ <u>T</u>	esire to t ravel expe ike to be	rience	to Mexic	20		s	<u></u> _

Table 112

REGRESSION OF BACKGROUND AND PRETEST SCORES ON POSTTEST SUBSCORE 8 FOR GROUP THREE (n=29)

VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	REQCH	CORREL
Т6	.4718	.2226	.1255	2.291	.133	:1040	. 2226

T6 Pretest subscore 6

Table 113

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 2 FOR GROUP THREE (n=29)

VARIABI	E MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	CORREL
T3 EZ AD6	-4388 -6151 -7822	.1925 .3783 .6118	.1450 .3006 .5341	4.053 4.868 7.880	.060 .022 .002	.1925 .1858 .2335	4388 .4113 .1799
	etest sub eventh gr			levement	: grade		

AD6 Adjusted Gain subscore 6

Table 114

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 5 FOR GROUP THREE (n=29)

		· -			·		
VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	CORREL
AD6 AD7 TT	. 4292 . 5955 . 7254	.1842 .3546 .5262	.1362 .2739 .4315	3.838 4.395 5.554	.067 .030 .009	.1842 .1704 .1716	4292 .3378 .2943
	_						

AD6 Adjusted Gain subscore 6 AD7 Adjusted Gain subscore 7 TT Total years of science instruction (7-12 grades)

Table 115

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 6 FOR GROUP THREE (n=29)

VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RSQCH	CORREL
MM CG	.3588 .5088	.1287 .2589	.0774	2.511 2.795		.1287 .1302	

MM Desire to take additional science classes CC Current science achievement grade

Table 116

REGRESSION OF BACKGROUND, PRETEST, POSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION SUBSCORE 8 FOR GROUP THREE (n=29)

VARIABLE	MULTR	RSQ	ADJRSQ	F(EQN)	SIGF	RS()CH	CORREL
T 5	.4470	.1998	.1527	4.245	.055	.1998	4470

T5 Pretest subscore 5

Table 117

REGRESSION OF BACKGROUND, PRETEST, PUSTTEST, ADJUSTED GAIN SCORES ON ADJUSTED RETENTION TOTAL SCORE FOR GROUP THREE (n=29)

MULTR	RSQ	ADJRSQ	F(E⊖N)	SIGF	RSQCH	CORREL
.4388	.1925	.1450	4.054	.060	.1925	4388
.6185	.3826	.3054	4.957	.021	.1900	- 3965
.7355	.5410	.4492	5.894	.007		1966
ire to t	ake add	litional	science	classe		
						loors
	.4388 .6185 .7355	.4388 .1925 .6185 .3826 .7355 .5410	.4388 .1925 .1450 .6185 .3826 .3054 .7355 .5410 .4492	.4388 .1925 .1450 4.054 .6185 .3826 .3054 4.957 .7355 .5410 .4492 5.894	.4388 .1925 .1450 4.054 .060 .6185 .3826 .3054 4.957 .021 .7355 .5410 .4492 5.894 .007	.4388 .1925 .1450 4.054 .060 .1925 .6185 .3826 .3054 4.957 .021 .1900

T5 Pretest subscore 5

Appendix H
PRETEST AND POSTTEST T TEST RESULTS

Table 118

PRETEST AND POSTTEST T TEST RESULTS

'n	PRETEST MEAN	PRETEST S.D.	POSTTEST	POSTTEST S.D.	T
29	25.86	4.30	32.45	3.99	5.99*
21	28.7 <u>1</u>	4.35	35.19	2.70	4.35*
29	26.75	5.36	35.90	1.91	6.72*
	29 21	MEAN 29 25.86 21 28.71	MEAN S.D. 29 25.86 4.30 21 28.71 4.35	MEAN S.D. MEAN 29 25.86 4.30 32.45 21 28.71 4.35 35.19	MEAN S.D. MEAN S.D. 29 25.86 4.30 32.45 3.99 21 28.71 4.35 35.19 2.70

^{*} p < .001

