The Khovanov homology of slice disks

Isaac Sundberg

Bryn Mawr College

Princeton Topology Seminar

21 April 2022

Table of Contents

- Motivation
- Khovanov homology
- Skhovanov homology of knotted surfaces
- 4 Khovanov homology of surfaces in the 4-ball
- 5 Khovanov homology of dual surfaces in the 4-ball
- 6 Future work

Table of Contents

Motivation

- 2 Khovanov homology
- 3 Khovanov homology of knotted surfaces
- 4 Khovanov homology of surfaces in the 4-ball
- 6 Khovanov homology of dual surfaces in the 4-ball
- 6 Future work

Question:

Motivation

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

Motivation

000000

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk $\boldsymbol{\Sigma}$ by its level sets:

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk $\boldsymbol{\Sigma}$ by its level sets:

$$S^3 = \mathbb{R}^3 \cup \{\infty\}$$

Motivation

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk $\boldsymbol{\Sigma}$ by its level sets:

$$S^3 = \mathbb{R}^3 \cup \{\infty\}$$

$$B^4=S^3\times[0,1]/S^3\times\{0\}$$

Motivation 00000

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk $\boldsymbol{\Sigma}$ by its level sets:

$$S^3 = \mathbb{R}^3 \cup \{\infty\}$$

 $B^4 = S^3 \times [0, 1]/S^3 \times \{0\}$

The level sets of Σ are then $L_i = \Sigma \cap (S^3 \times \{i\})$.

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk Σ by its level sets:

$$S^3 = \mathbb{R}^3 \cup \{\infty\}$$

 $B^4 = S^3 \times [0, 1]/S^3 \times \{0\}$

The level sets of Σ are then $L_i = \Sigma \cap (S^3 \times \{i\})$.

Answer:

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk Σ by its level sets:

$$S^3 = \mathbb{R}^3 \cup \{\infty\}$$

 $B^4 = S^3 \times [0, 1]/S^3 \times \{0\}$

The level sets of Σ are then $L_i = \Sigma \cap (S^3 \times \{i\})$.

Answer: Always!

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk Σ by its level sets:

$$S^3 = \mathbb{R}^3 \cup \{\infty\}$$

 $B^4 = S^3 \times [0, 1]/S^3 \times \{0\}$

The level sets of Σ are then $L_i = \Sigma \cap (S^3 \times \{i\})$.

Answer: Always!

Classic Question:

Motivation

Classic Question: Given a knot K in the 3-sphere S^3 , when does K bound a smooth disk D properly embedded in the 4-ball B^4 ?

Classic Question: Given a knot K in the 3-sphere S^3 , when does K bound a **smooth** disk D properly embedded in the 4-ball B^4 ?

Definition

Motivation 000000

> A knot $K \subset S^3$ that bounds a smooth, properly embedded disk $D \subset B^4$ is a slice knot and D is a slice disk.

Classic Question: Given a knot K in the 3-sphere S^3 , when does K bound a smooth disk D properly embedded in the 4-ball B^4 ?

Definition

Motivation 00000

A knot $K\subset S^3$ that bounds a smooth, properly embedded disk $D\subset B^4$ is a **slice knot** and D is a **slice disk**.

Some knots are slice, and some are not!

Classic Question: Given a knot K in the 3-sphere S^3 , when does K bound a smooth disk D properly embedded in the 4-ball B^4 ?

Definition

Motivation 00000

A knot $K \subset S^3$ that bounds a smooth, properly embedded disk $D \subset B^4$ is a **slice knot** and D is a **slice disk**.

Some knots are slice, and some are not! Let's look at an example.

Example:

Motivation

Example: The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:

Motivation

Example: The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:

Example: The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:

Alternative descriptions:

(a)

Motivation

(b)

Example: The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:

Alternative descriptions:

- (a) As a shorthand, we can write this movie with a single band move.
- (b)

Example: The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:

Alternative descriptions:

- (a) As a shorthand, we can write this movie with a single band move.
- (b)

Motivation 000000

Example: The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:

Alternative descriptions:

- (a) As a shorthand, we can write this movie with a single band move.
- (b) We can view a slice disk by pushing it into S^3 .

Motivation 000000

Example: The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:

Alternative descriptions:

- (a) As a shorthand, we can write this movie with a single band move.
- (b) We can view a slice disk by pushing it into S^3 .

Motivation

The existence of slice disks bounding a given knot $K\subset S^3$ is well-understood.

The existence of slice disks bounding a given knot $K\subset S^3$ is well-understood.

Follow-up Question:

Motivation 0000●0

Motivation

The existence of slice disks bounding a given knot $K\subset S^3$ is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

The existence of slice disks bounding a given knot $K\subset S^3$ is well-understood.

Follow-up Question: What about *uniqueness*? Under what type of equivalence?

Example:

Motivation

The existence of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk D_r for 9_{46} .

Motivation 000000

The existence of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk D_r for 9_{46} .

Are D_{ℓ} and D_r isotopic?

Motivation 000000

The existence of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk D_r for 9_{46} .

Are D_{ℓ} and D_r isotopic? Yes - by a rotation!

Motivation 000000

The existence of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk D_r for 9_{46} .

Are D_{ℓ} and D_r isotopic? Yes - by a rotation!

Are D_{ℓ} and D_r isotopic rel boundary (i.e. leaving 9_{46} fixed)?

Motivation 000000

The existence of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk D_r for 9_{46} .

Are D_{ℓ} and D_r isotopic? Yes - by a rotation!

Are D_{ℓ} and D_r isotopic rel boundary (i.e. leaving 9_{46} fixed)? No?

Motivation 000000

The *existence* of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk D_r for 9_{46} .

Are D_{ℓ} and D_r isotopic? Yes - by a rotation!

Are D_{ℓ} and D_{r} isotopic rel boundary (i.e. leaving 9_{46} fixed)? No? (No)

Methods for studying slice disks

Motivation

There are multiple ways to study slice disks up to boundary-preserving isotopy:

Motivation

There are multiple ways to study slice disks up to boundary-preserving isotopy:

• fundamental group of the compliment

There are multiple ways to study slice disks up to boundary-preserving isotopy:

- fundamental group of the compliment
- Alexander modules

Motivation

There are multiple ways to study slice disks up to boundary-preserving isotopy:

- fundamental group of the compliment
- Alexander modules
- gauge theory

Motivation

There are multiple ways to study slice disks up to boundary-preserving isotopy:

- fundamental group of the compliment
- Alexander modules
- gauge theory

Motivation

knot Floer homology

There are multiple ways to study slice disks up to boundary-preserving isotopy:

- fundamental group of the compliment
- Alexander modules

Motivation

- gauge theory
- knot Floer homology
- Khovanov homology

Table of Contents

- Motivation
- 2 Khovanov homology
- 3 Khovanov homology of knotted surfaces
- 4 Khovanov homology of surfaces in the 4-ball
- 6 Khovanov homology of dual surfaces in the 4-ball
- 6 Future work

Definition. A link cobordism $\Sigma \colon L_0 \to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma \subset \mathbb{R}^3 \times [0,1]$ with boundary a pair $(i \in \{0,1\})$ of oriented links $L_i = \Sigma \cap (\mathbb{R}^3 \times \{i\})$.

Definition. A **link cobordism** $\Sigma\colon L_0\to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma\subset\mathbb{R}^3\times[0,1]$ with boundary a pair $(i\in\{0,1\})$ of oriented links $L_i=\Sigma\cap(\mathbb{R}^3\times\{i\})$.

Definition. A link cobordism $\Sigma \colon L_0 \to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma \subset \mathbb{R}^3 \times [0,1]$ with boundary a pair $(i \in \{0,1\})$ of oriented links $L_i = \Sigma \cap (\mathbb{R}^3 \times \{i\})$.

Examples: slices $(\emptyset \to K)$, closed surfaces $(\emptyset \to \emptyset)$, Seifert surfaces $(\emptyset \to K)$

Definition. A **link cobordism** $\Sigma \colon L_0 \to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma \subset \mathbb{R}^3 \times [0,1]$ with boundary a pair $(i \in \{0,1\})$ of oriented links $L_i = \Sigma \cap (\mathbb{R}^3 \times \{i\})$.

Examples: slices $(\emptyset \to K)$, closed surfaces $(\emptyset \to \emptyset)$, Seifert surfaces $(\emptyset \to K)$

Definition. A link cobordism $\Sigma \colon L_0 \to L_1$ can be represented as a **movie**: a finite sequence of diagrams $\{D_{t_i}\}_{i=0}^n$, with each successive pair related by an isotopy, Morse move, or Reidemeister move.

Definition. A **link cobordism** $\Sigma \colon L_0 \to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma \subset \mathbb{R}^3 \times [0,1]$ with boundary a pair $(i \in \{0,1\})$ of oriented links $L_i = \Sigma \cap (\mathbb{R}^3 \times \{i\})$.

Examples: slices $(\emptyset \to K)$, closed surfaces $(\emptyset \to \emptyset)$, Seifert surfaces $(\emptyset \to K)$

Definition. A link cobordism $\Sigma \colon L_0 \to L_1$ can be represented as a **movie**: a finite sequence of diagrams $\{D_{t_i}\}_{i=0}^n$, with each successive pair related by an isotopy, Morse move, or Reidemeister move.

Definition. A link cobordism $\Sigma \colon L_0 \to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma \subset \mathbb{R}^3 \times [0,1]$ with boundary a pair $(i \in \{0,1\})$ of oriented links $L_i = \Sigma \cap (\mathbb{R}^3 \times \{i\})$.

Examples: slices $(\emptyset \to K)$, closed surfaces $(\emptyset \to \emptyset)$, Seifert surfaces $(\emptyset \to K)$

Definition. A link cobordism $\Sigma\colon L_0\to L_1$ can be represented as a **movie**: a finite sequence of diagrams $\{D_{t_i}\}_{i=0}^n$, with each successive pair related by an isotopy, Morse move, or Reidemeister move.

Khovanov homology is a functor on the category of link cobordisms.

• links are assigned chain complexes with associated homology groups

- links are assigned chain complexes with associated homology groups
- link cobordisms are assigned chain maps with induced homomorphisms

- links are assigned chain complexes with associated homology groups
- link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism	Movie	Chain complex	Chain map
Σ L_0			

- links are assigned chain complexes with associated homology groups
- link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism	Movie	Chain complex	Chain map
Σ L_0 Σ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

- links are assigned chain complexes with associated homology groups
- link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism	Movie	Chain complex	Chain map
Σ L_0	J&&& G Q	C(S) C(S) C(S) C(S) C(S)	S.a

- links are assigned chain complexes with associated homology groups
- link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism	Movie	Chain complex	Chain map
Σ L_0	Q\$\$\$44		

- links are assigned chain complexes with associated homology groups
- link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism	Movie	Chain complex	Chain map
Σ L_0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		$C(D_1)$ $C(\Sigma)$ $C(D_0)$

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Formal definition:

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Formal definition:

ullet consider the cube of resolutions for D, which can be regarded as a collection of objects and morphisms in the cobordism category (Cob³, \sqcup)

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Formal definition:

- consider the cube of resolutions for D, which can be regarded as a collection of objects and morphisms in the cobordism category (Cob^3, \sqcup)
- apply a topological quantum field theory $\mathcal{F}\colon (\mathsf{Cob}^3,\sqcup) \to (\mathsf{Mod}_R,\otimes)$, with R some commutative ring with unity (we will use $R=\mathbb{Z}$)

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Formal definition:

- ullet consider the cube of resolutions for D, which can be regarded as a collection of objects and morphisms in the cobordism category (Cob³, \sqcup)
- apply a topological quantum field theory $\mathcal{F}\colon (\mathsf{Cob}^3,\sqcup) \to (\mathsf{Mod}_R,\otimes)$, with R some commutative ring with unity (we will use $R=\mathbb{Z}$)
- structure the resulting collection of R-modules and R-linear maps as a chain complex and take homology

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

Practical definition:

• smooth each crossing χ in D as a 0-smoothing $\tilde{\chi}$ or a 1-smoothing $\tilde{\chi}$

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

- ullet smooth each crossing χ in D as a 0-smoothing χ or a 1-smoothing χ
- color each resulting component purple or orange

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

- \bullet smooth each crossing \swarrow in D as a $0\text{-smoothing} \precsim$ or a 1-smoothing) (
- color each resulting component purple or orange
- ullet generate $\mathcal{C}(D)$ over $\mathbb Z$ with all possible labeled smoothings

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

- ullet smooth each crossing \swarrow in D as a 0-smoothing $\widecheck{\sim}$ or a 1-smoothing) (
- color each resulting component purple or orange
- generate C(D) over \mathbb{Z} with all possible labeled smoothings
- define a differential and take homology

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Properties:

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Properties:

• Different diagrams have isomorphic Khovanov homology (we write $\mathcal{H}(L)$ to mean: choose a diagram D for L and consider $\mathcal{H}(D)$)

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Properties:

- Different diagrams have isomorphic Khovanov homology (we write $\mathcal{H}(L)$ to mean: choose a diagram D for L and consider $\mathcal{H}(D)$)
- We set $\mathcal{C}(\emptyset) = \mathbb{Z}$ and $\mathcal{H}(\emptyset) = \mathbb{Z}$

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Properties:

- Different diagrams have isomorphic Khovanov homology (we write $\mathcal{H}(L)$ to mean: choose a diagram D for L and consider $\mathcal{H}(D)$)
- ullet We set $\mathcal{C}(\emptyset)=\mathbb{Z}$ and $\mathcal{H}(\emptyset)=\mathbb{Z}$
- There is a bigrading $C^{h,q}(D)$

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Properties:

- Different diagrams have isomorphic Khovanov homology (we write $\mathcal{H}(L)$ to mean: choose a diagram D for L and consider $\mathcal{H}(D)$)
- ullet We set $\mathcal{C}(\emptyset)=\mathbb{Z}$ and $\mathcal{H}(\emptyset)=\mathbb{Z}$
- There is a bigrading $C^{h,q}(D)$
- There is a (co)differential $d \colon \mathcal{C}^{h,q}(D) \to \mathcal{C}^{h+1,q}(D)$

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Properties:

- Different diagrams have isomorphic Khovanov homology (we write $\mathcal{H}(L)$ to mean: choose a diagram D for L and consider $\mathcal{H}(D)$)
- ullet We set $\mathcal{C}(\emptyset)=\mathbb{Z}$ and $\mathcal{H}(\emptyset)=\mathbb{Z}$
- There is a bigrading $C^{h,q}(D)$
- There is a (co)differential $d \colon \mathcal{C}^{h,q}(D) \to \mathcal{C}^{h+1,q}(D)$

Let's take a quick look at $C(3_1)$

The Khovanov chain complex of the trefoil is $\mathcal{C}(3_1) \cong \mathbb{Z}^{30}$

The Khovanov chain complex of the trefoil is $\mathcal{C}(3_1)\cong\mathbb{Z}^{30}$

The Khovanov chain complex of the trefoil is $\mathcal{C}(3_1)\cong\mathbb{Z}^{30}$

The Khovanov homology of the trefoil is $\mathcal{H}(3_1) \cong \mathbb{Z}^4$

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Definition:

ullet Movie diagrams D_{t_i} have associated chain complexes $\mathcal{C}(D_{t_i})$

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

- ullet Movie diagrams D_{t_i} have associated chain complexes $\mathcal{C}(D_{t_i})$
- ullet Adjacent diagrams D_{t_i} and $D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister move

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

- ullet Movie diagrams D_{t_i} have associated chain complexes $\mathcal{C}(D_{t_i})$
- ullet Adjacent diagrams D_{t_i} and $D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister move
- Define chain maps $\mathcal{C}(D_{t_i}) \to \mathcal{C}(D_{t_{i+1}})$ for each of these moves

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

- ullet Movie diagrams D_{t_i} have associated chain complexes $\mathcal{C}(D_{t_i})$
- ullet Adjacent diagrams D_{t_i} and $D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister move
- Define chain maps $\mathcal{C}(D_{t_i}) \to \mathcal{C}(D_{t_{i+1}})$ for each of these moves
- Compose these chain maps to produce $\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Definition:

- ullet Movie diagrams D_{t_i} have associated chain complexes $\mathcal{C}(D_{t_i})$
- ullet Adjacent diagrams D_{t_i} and $D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister move
- Define chain maps $\mathcal{C}(D_{t_i}) \to \mathcal{C}(D_{t_{i+1}})$ for each of these moves
- Compose these chain maps to produce $\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$

What do these chain maps $C(D_{t_i}) \to C(D_{t_{i+1}})$ look like?

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

$$m: \bigcirc \bigcirc \bigcirc \bigcirc$$

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Properties:

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}(\Sigma) \colon \mathcal{C}^{h,q}(D_0) \to \mathcal{C}^{h,q+\chi(\Sigma)}(D_1)$$

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}(\Sigma) : \mathcal{C}^{h,q}(D_0) \to \mathcal{C}^{h,q+\chi(\Sigma)}(D_1)$$

• These maps exist for surfaces in $S^3 \times [0,1]$ and B^4

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}(\Sigma) : \mathcal{C}^{h,q}(D_0) \to \mathcal{C}^{h,q+\chi(\Sigma)}(D_1)$$

- ullet These maps exist for surfaces in $S^3 imes [0,1]$ and B^4
- Generally, they are difficult to compute...

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}(\Sigma) \colon \mathcal{C}^{h,q}(D_0) \to \mathcal{C}^{h,q+\chi(\Sigma)}(D_1)$$

- These maps exist for surfaces in $S^3 \times [0,1]$ and B^4
- Generally, they are difficult to compute...
- They are invariant under boundary-preserving isotopy

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

 movies for isotopic surfaces are related by a sequence of movie moves (Carter-Saito, Carter-Saito-Satoh, Carter-Reiger-Saito, Fischer)

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

 movies for isotopic surfaces are related by a sequence of movie moves (Carter-Saito, Carter-Saito-Satoh, Carter-Reiger-Saito, Fischer)

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

 movies for isotopic surfaces are related by a sequence of movie moves (Carter-Saito, Carter-Saito-Satoh, Carter-Reiger-Saito, Fischer)

• show that movie moves induce identical maps, up to sign

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

 movies for isotopic surfaces are related by a sequence of movie moves (Carter-Saito, Carter-Saito-Satoh, Carter-Reiger-Saito, Fischer)

- show that movie moves induce identical maps, up to sign
- true for $R = \mathbb{Z}$, but not $R = \mathbb{Z}[c]$

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

 movies for isotopic surfaces are related by a sequence of movie moves (Carter-Saito, Carter-Saito-Satoh, Carter-Reiger-Saito, Fischer)

- show that movie moves induce identical maps, up to sign
- ullet true for $R=\mathbb{Z}$, but not $R=\mathbb{Z}[c]$

Invariance can be extended:

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

 movies for isotopic surfaces are related by a sequence of movie moves (Carter-Saito, Carter-Saito-Satoh, Carter-Reiger-Saito, Fischer)

- show that movie moves induce identical maps, up to sign
- true for $R = \mathbb{Z}$, but not $R = \mathbb{Z}[c]$

Invariance can be extended: to link cobordisms in $S^3 \times [0,1]$ and B^4

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

• movies for isotopic surfaces are related by a sequence of *movie moves* (Carter-Saito, Carter-Saito, Carter-Reiger-Saito, Fischer)

- show that movie moves induce identical maps, up to sign
- ullet true for $R=\mathbb{Z}$, but not $R=\mathbb{Z}[c]$

Invariance can be extended: to link cobordisms in $S^3 \times [0,1]$ and B^4 and to nonorientable cobordisms.

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

We use this result to study link cobordisms up to boundary-preserving isotopy:

• find pairs of link cobordisms $\Sigma, \Sigma' \colon L_0 \to L_1$

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

- find pairs of link cobordisms $\Sigma, \Sigma' \colon L_0 \to L_1$
- calculate their induced maps $\mathcal{H}(\Sigma)$ and $\mathcal{H}(\Sigma')$

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

- ullet find pairs of link cobordisms $\Sigma, \Sigma' \colon L_0 o L_1$
- ullet calculate their induced maps $\mathcal{H}(\Sigma)$ and $\mathcal{H}(\Sigma')$
- show the induced maps are distinct $\mathcal{H}(\Sigma) \neq \pm \mathcal{H}(\Sigma')$

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

- find pairs of link cobordisms $\Sigma, \Sigma' \colon L_0 \to L_1$
- ullet calculate their induced maps $\mathcal{H}(\Sigma)$ and $\mathcal{H}(\Sigma')$
- ullet show the induced maps are distinct $\mathcal{H}(\Sigma)
 eq \pm \mathcal{H}(\Sigma')$
- conclude Σ, Σ' are not isotopic rel boundary

A brief remark on local knottedness

In general, it is (perhaps too) easy to build such link cobordisms:

A brief remark on local knottedness

In general, it is (perhaps too) easy to build such link cobordisms:

ullet Given $\Sigma\colon L_0 o L_1$, we create a new (unique) link cobordism Σ'

A brief remark on local knottedness

In general, it is (perhaps too) easy to build such link cobordisms:

- Given $\Sigma \colon L_0 \to L_1$, we create a new (unique) link cobordism Σ'
- ullet Choose your favorite knotted 2-sphere S

In general, it is (perhaps too) easy to build such link cobordisms:

- Given $\Sigma \colon L_0 \to L_1$, we create a new (unique) link cobordism Σ'
- ullet Choose your favorite knotted 2-sphere S

In general, it is (perhaps too) easy to build such link cobordisms:

- ullet Given $\Sigma\colon L_0 \to L_1$, we create a new (unique) link cobordism Σ'
- ullet Choose your favorite knotted 2-sphere S and connect-sum with Σ

In general, it is (perhaps too) easy to build such link cobordisms:

- ullet Given $\Sigma\colon L_0 o L_1$, we create a new (unique) link cobordism Σ'
- \bullet Choose your favorite knotted 2-sphere S and connect-sum with Σ
- ullet Then Σ and $\Sigma':=\Sigma\#S$ are (generally) not isotopic rel boundary.

In general, it is (perhaps too) easy to build such link cobordisms:

- Given $\Sigma \colon L_0 \to L_1$, we create a new (unique) link cobordism Σ'
- \bullet Choose your favorite knotted 2-sphere S and connect-sum with Σ
- ullet Then Σ and $\Sigma':=\Sigma\#S$ are (generally) not isotopic rel boundary.

Theorem (Swann, Hayden-Sundberg)

The map on Khovanov homology induced by a link cobordism is invariant under connected sums with knotted 2-spheres.

In general, it is (perhaps too) easy to build such link cobordisms:

- Given $\Sigma \colon L_0 \to L_1$, we create a new (unique) link cobordism Σ'
- ullet Choose your favorite knotted 2-sphere S and connect-sum with Σ
- ullet Then Σ and $\Sigma':=\Sigma\#S$ are (generally) not isotopic rel boundary.

Theorem (Swann, Hayden-Sundberg)

The map on Khovanov homology induced by a link cobordism is invariant under connected sums with knotted 2-spheres.

Takeaway: maps on Khovanov homology detect more than local knotting

Table of Contents

- Motivation
- 2 Khovanov homology
- Movanov homology of knotted surfaces
- 4 Khovanov homology of surfaces in the 4-ball
- 6 Khovanov homology of dual surfaces in the 4-ball
- 6 Future work

Question:

Question: Can the induced maps on Khovanov homology distinguish knotted surfaces in the 4-ball, up to ambient isotopy?

Question: Can the induced maps on Khovanov homology distinguish knotted surfaces in the 4-ball, up to ambient isotopy?

Method:

• A knotted surface $\Sigma \subset B^4$ can be regarded as a link cobordism $\Sigma \colon \emptyset \to \emptyset$

Question: Can the induced maps on Khovanov homology distinguish knotted surfaces in the 4-ball, up to ambient isotopy?

Method:

- A knotted surface $\Sigma \subset B^4$ can be regarded as a link cobordism $\Sigma \colon \emptyset \to \emptyset$
- It induces a map $\mathcal{H}(\Sigma) \colon \mathbb{Z} \to \mathbb{Z}$, determined by $\mathcal{H}(\Sigma)(1) \in \mathbb{Z}$

Question: Can the induced maps on Khovanov homology distinguish knotted surfaces in the 4-ball, up to ambient isotopy?

Method:

- A knotted surface $\Sigma \subset B^4$ can be regarded as a link cobordism $\Sigma \colon \emptyset \to \emptyset$
- It induces a map $\mathcal{H}(\Sigma) \colon \mathbb{Z} \to \mathbb{Z}$, determined by $\mathcal{H}(\Sigma)(1) \in \mathbb{Z}$
- ullet This integer is invariant, up to sign, under ambient isotopy of Σ

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the φ -number of Σ

$$\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathbb{Z}$$

is an up-to-sign invariant of the ambient isotopy of Σ .

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the φ -number of Σ

$$\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathbb{Z}$$

is an up-to-sign invariant of the ambient isotopy of Σ .

Do the φ -numbers distinguish any knotted surfaces?

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the φ -number of Σ

$$\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathbb{Z}$$

is an up-to-sign invariant of the ambient isotopy of Σ .

Do the φ -numbers distinguish any knotted surfaces?

Can we find $\Sigma_{0,1} \subset B^4$ with $\varphi(\Sigma_0) \neq \pm \varphi(\Sigma_1)$?

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the φ -number of Σ

$$\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathbb{Z}$$

is an up-to-sign invariant of the ambient isotopy of Σ .

Do the φ -numbers distinguish any knotted surfaces?

Can we find $\Sigma_{0,1} \subset B^4$ with $\varphi(\Sigma_0) \neq \pm \varphi(\Sigma_1)$?

Theorem (Rasmussen, Tanaka)

The φ -numbers associated to connected $\Sigma \subset B^4$ are determined by genus:

- if $g(\Sigma) = 1$, then $\varphi(\Sigma) = \pm 2$
- if $g(\Sigma) \neq 1$, then $\varphi(\Sigma) = 0$

Idea:

Idea: Follow the same procedure for surfaces with boundary.

Idea: Follow the same procedure for surfaces with boundary.

A surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ can be regarded as:

Idea: Follow the same procedure for surfaces with boundary.

A surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ can be regarded as:

a. a link cobordism $\Sigma \colon \emptyset \to L$, or

Idea: Follow the same procedure for surfaces with boundary.

A surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ can be regarded as:

- a. a link cobordism $\Sigma \colon \emptyset \to L$, or
- b. a link cobordism $\Sigma \colon L \to \emptyset$

Idea: Follow the same procedure for surfaces with boundary.

A surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ can be regarded as:

a. a link cobordism $\Sigma \colon \emptyset \to L$, or

b. a link cobordism $\Sigma \colon L \to \emptyset$

We consider these cases separately in the next two sections.

Table of Contents

- Motivation
- 2 Khovanov homology
- 3 Khovanov homology of knotted surfaces
- 4 Khovanov homology of surfaces in the 4-ball
- 5 Khovanov homology of dual surfaces in the 4-ball
- 6 Future work

Can the induced maps on Khovanov homology distinguish surfaces with boundary in the 4-ball?

Can the induced maps on Khovanov homology distinguish surfaces with boundary in the 4-ball?

Method:

 \bullet A surface $\Sigma\subset B^4$ with boundary $L\subset S^3$ induces a link cobordism $\Sigma\colon\emptyset\to L$

Can the induced maps on Khovanov homology distinguish surfaces with boundary in the 4-ball?

Method:

- \bullet A surface $\Sigma\subset B^4$ with boundary $L\subset S^3$ induces a link cobordism $\Sigma\colon\emptyset\to L$
- ullet It induces a map $\mathcal{H}(\Sigma)\colon \mathbb{Z} o \mathcal{H}(L)$, determined by $\mathcal{H}(\Sigma)(1) \in \mathcal{H}(L)$

Can the induced maps on Khovanov homology distinguish surfaces with boundary in the 4-ball?

Method:

- A surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ induces a link cobordism $\Sigma \colon \emptyset \to L$
- It induces a map $\mathcal{H}(\Sigma) \colon \mathbb{Z} \to \mathcal{H}(L)$, determined by $\mathcal{H}(\Sigma)(1) \in \mathcal{H}(L)$
- This homology class is invariant, up to sign, under boundary-preserving isotopy of Σ

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the φ -class of Σ

$$\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathcal{H}(L)$$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the φ -class of Σ

$$\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathcal{H}(L)$$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Do φ -classes distinguish any surfaces with boundary?

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the φ -class of Σ

$$\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathcal{H}(L)$$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Do φ -classes distinguish any surfaces with boundary?

Can we find $\Sigma_{0,1} \subset B^4$ bounding a common $L \subset S^3$ with $\varphi(\Sigma_0) \neq \pm \varphi(\Sigma_1)$?

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the φ -class of Σ

$$\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathcal{H}(L)$$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Do φ -classes distinguish any surfaces with boundary?

Can we find $\Sigma_{0,1} \subset B^4$ bounding a common $L \subset S^3$ with $\varphi(\Sigma_0) \neq \pm \varphi(\Sigma_1)$? If so, we say $\Sigma_{0,1}$ are φ -distinguished.

Theorem (Swann, Sundberg)

The slice disks D_ℓ and D_r for 9_{46} are φ -distinguished, and therefore, are not isotopic rel boundary.

Theorem (Swann, Sundberg)

The slice disks D_{ℓ} and D_r for 9_{46} are φ -distinguished, and therefore, are not isotopic rel boundary.

Theorem (Swann, Sundberg)

The slice disks D_{ℓ} and D_r for 9_{46} are φ -distinguished, and therefore, are not isotopic rel boundary.

What do $\varphi(D_{\ell})$ and $\varphi(D_r)$ look like?

Theorem (Swann, Sundberg)

The slice disks D_ℓ and D_r for 9_{46} are φ -distinguished, and therefore, are not isotopic rel boundary.

Theorem (Swann, Sundberg)

The slice disks D_ℓ and D_r for 9_{46} are φ -distinguished, and therefore, are not isotopic rel boundary.

Theorem (Sundberg)

The slice disks D_ℓ and D_r for 6_1 (below) are φ -distinguished, and therefore, are not isotopic rel boundary.

Theorem (Swann, Sundberg)

The slice disks D_ℓ and D_r for 9_{46} are φ -distinguished, and therefore, are not isotopic rel boundary.

Theorem (Sundberg)

The slice disks D_{ℓ} and D_r for 6_1 (below) are φ -distinguished, and therefore, are not isotopic rel boundary.

Theorem (Swann, Sundberg)

The slice disks D_{ℓ} and D_r for 9_{46} are φ -distinguished, and therefore, are not isotopic rel boundary.

Theorem (Sundberg)

The slice disks D_{ℓ} and D_r for 6_1 (below) are φ -distinguished, and therefore, are not isotopic rel boundary.

Are there knots with more than 2 unique slice disks?

Theorem (Sundberg-Swann)

The 2^n slice disks bounding $\#_n(9_{46})$ are φ -distinguished, and therefore, are not isotopic rel boundary.

Theorem (Sundberg-Swann)

The 2^n slice disks bounding $\#_n(9_{46})$ are φ -distinguished, and therefore, are not isotopic rel boundary.

Slice disks are obtained by boundary-summing copies of D_{ℓ} and D_r .

Theorem (Sundberg-Swann)

Theorem (Sundberg-Swann)

The 2^n slice disks bounding the prime knot K_n (below) are φ -distinguished, and therefore, they are not isotopic rel boundary.

Theorem (Sundberg-Swann)

The 2^n slice disks bounding the prime knot K_n (below) are φ -distinguished, and therefore, they are not isotopic rel boundary.

Proof Idea:

• Every knot is ribbon concordant to a prime knot [KL79]

Theorem (Sundberg-Swann)

The 2^n slice disks bounding the prime knot K_n (below) are φ -distinguished, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot [KL79]
- Ribbon concordances induce injections on Khovanov homology [LZ19]

Theorem (Sundberg-Swann)

The 2^n slice disks bounding the prime knot K_n (below) are φ -distinguished, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot [KL79]
- Ribbon concordances induce injections on Khovanov homology [LZ19]
- So, extend the 2^n slice disks for $K = \#_n(9_{46})$ by a ribbon-concordance $C \colon K \to K_n$ to a prime knot K_n

Theorem (Sundberg-Swann)

The 2^n slice disks bounding the prime knot K_n (below) are φ -distinguished, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot [KL79]
- Ribbon concordances induce injections on Khovanov homology [LZ19]
- So, extend the 2^n slice disks for $K = \#_n(9_{46})$ by a ribbon-concordance $C: K \to K_n$ to a prime knot K_n
- These slice disks are pairwise φ -distinguished using injectivity and functoriality of the induced maps on Khovanov homology:

$$\varphi(C \circ D) = \mathcal{H}(C)(\varphi(D)) \neq \pm \mathcal{H}(C)(\varphi(D')) = \varphi(C \circ D')$$

Theorem (Sundberg-Swann)

Theorem (Sundberg-Swann)

Theorem (Sundberg-Swann)

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

Some obstructions from φ -classes:

ullet odd, three-stranded pretzel knots P(p,q,r)

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

- \bullet odd, three-stranded pretzel knots P(p,q,r)
 - ullet if $p,q,r\geq 3$, then P(p,q,r) is not slice [Swann]

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

- ullet odd, three-stranded pretzel knots P(p,q,r)
 - \bullet if $p,q,r \geq 3$, then P(p,q,r) is not slice [Swann]
 - if $p, q, \geq 3$, then P(p, q, -1) is not slice [Swann]

Theorem (Swann)

If $\Sigma : \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

- \bullet odd, three-stranded pretzel knots P(p,q,r)
 - if $p, q, r \ge 3$, then P(p, q, r) is not slice [Swann]
 - if p, q, > 3, then P(p, q, -1) is not slice [Swann]
 - K = P(-3, 5, 7) is not slice (gives gauge theory free proof of exotic \mathbb{R}^4 because K is topologically slice, $\Delta_K(t) = 1$)

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

- ullet odd, three-stranded pretzel knots P(p,q,r)
 - if $p, q, r \ge 3$, then P(p, q, r) is not slice [Swann]
 - ullet if $p,q,\geq 3$, then P(p,q,-1) is not slice [Swann]
 - K=P(-3,5,7) is not slice (gives gauge theory free proof of exotic \mathbb{R}^4 because K is topologically slice, $\Delta_K(t)=1$)
- knots with 4-ball genus at most 1

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

- ullet odd, three-stranded pretzel knots P(p,q,r)
 - ullet if $p,q,r\geq 3$, then P(p,q,r) is not slice [Swann]
 - \bullet if $p,q,\geq 3$,then P(p,q,-1) is not slice [Swann]
 - K=P(-3,5,7) is not slice (gives gauge theory free proof of exotic \mathbb{R}^4 because K is topologically slice, $\Delta_K(t)=1$)
- knots with 4-ball genus at most 1
 - Whitehead doubles?

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

- ullet odd, three-stranded pretzel knots P(p,q,r)
 - if $p, q, r \ge 3$, then P(p, q, r) is not slice [Swann]
 - ullet if $p,q,\geq 3$, then P(p,q,-1) is not slice [Swann]
 - K=P(-3,5,7) is not slice (gives gauge theory free proof of exotic \mathbb{R}^4 because K is topologically slice, $\Delta_K(t)=1$)
- knots with 4-ball genus at most 1
 - Whitehead doubles?
 - unknotting number 1 knots? (e.g., the Conway knot)

Table of Contents

- Motivation
- 2 Khovanov homology
- 3 Khovanov homology of knotted surfaces
- 4 Khovanov homology of surfaces in the 4-ball
- **Solution** 6 Shows the Shows of Shows o
- 6 Future work

Let's look at the second case: the dual link cobordism $\Sigma \colon L \to \emptyset$.

Let's look at the second case: the dual link cobordism $\Sigma \colon L \to \emptyset$.

Method:

 \bullet a surface $\Sigma\subset B^4$ with boundary $L\subset S^3$ induces a link cobordism $\Sigma\colon L\to\emptyset$

Let's look at the second case: the dual link cobordism $\Sigma \colon L \to \emptyset$.

Method:

- \bullet a surface $\Sigma\subset B^4$ with boundary $L\subset S^3$ induces a link cobordism $\Sigma\colon L\to\emptyset$
- ullet it induces a map $\mathcal{H}(\Sigma)\colon \mathcal{H}(L)\to \mathbb{Z}$

Let's look at the second case: the dual link cobordism $\Sigma \colon L \to \emptyset$.

Method:

- a surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ induces a link cobordism $\Sigma \colon L \to \emptyset$
- ullet it induces a map $\mathcal{H}(\Sigma)\colon \mathcal{H}(L) o \mathbb{Z}$
- choose a class $\varphi \in \mathcal{H}(L)$, and note that $\mathcal{H}(\Sigma)(\varphi) \in \mathbb{Z}$ is an up-to-sign invariant of the isotopy class of Σ .

Lemma

For a link cobordism $\Sigma \colon L \to \emptyset$ and a class $\varphi \in \mathcal{H}(L)$, the φ^* -number

$$\varphi^*(\Sigma) := \mathcal{H}(\Sigma)(\varphi) \in \mathbb{Z}$$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Lemma

For a link cobordism $\Sigma \colon L \to \emptyset$ and a class $\varphi \in \mathcal{H}(L)$, the φ^* -number

$$\varphi^*(\Sigma) := \mathcal{H}(\Sigma)(\varphi) \in \mathbb{Z}$$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Do φ^* -numbers distinguish any surfaces with boundary?

Lemma

For a link cobordism $\Sigma \colon L \to \emptyset$ and a class $\varphi \in \mathcal{H}(L)$, the φ^* -number

$$\varphi^*(\Sigma) := \mathcal{H}(\Sigma)(\varphi) \in \mathbb{Z}$$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Do φ^* -numbers distinguish any surfaces with boundary?

Can we find $\Sigma_{0,1} \subset B^4$ bounding a common $L \subset S^3$ and a class $\varphi \in \mathcal{H}(L)$ such that $\varphi^*(\Sigma_0) \neq \pm \varphi^*(\Sigma_1)$?

Lemma

For a link cobordism $\Sigma \colon L \to \emptyset$ and a class $\varphi \in \mathcal{H}(L)$, the φ^* -number

$$\varphi^*(\Sigma) := \mathcal{H}(\Sigma)(\varphi) \in \mathbb{Z}$$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Do φ^* -numbers distinguish any surfaces with boundary?

Can we find $\Sigma_{0,1} \subset B^4$ bounding a common $L \subset S^3$ and a class $\varphi \in \mathcal{H}(L)$ such that $\varphi^*(\Sigma_0) \neq \pm \varphi^*(\Sigma_1)$?

If so, we say $\Sigma_{0,1}$ are φ^* -distinguished.

Theorem (Hayden-Sundberg)

The pair of slice disks D_{ℓ} and D_r for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.

Theorem (Hayden-Sundberg)

The pair of slice disks D_{ℓ} and D_{τ} for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.

 $K = 9_{46}$

Theorem (Hayden-Sundberg)

The pair of slice disks D_{ℓ} and D_{r} for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.

 $K = 9_{46}$

Proof idea: show $\varphi^*(D_\ell) = 1$ and $\varphi^*(D_r) = 0$

Theorem (Hayden-Sundberg)

The pair of slice disks D_{ℓ} and D_r for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.

Theorem (Hayden-Sundberg)

The pair of slice disks D_{ℓ} and D_r for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.

So $\varphi^*(D_\ell) = 1$ and $\varphi^*(D_r) = 0$, as desired.

Theorem (Hayden-Sundberg)

 $K = 15n_{103488}$

Theorem (Hayden-Sundberg)

Slice disks for $K=15n_{103488}$ (image by Kyle Hayden).

Theorem (Hayden-Sundberg)

 $K = 17nh_{74}$

Theorem (Hayden-Sundberg)

Slice disks for $K=17nh_{74}$ (image by Kyle Hayden).

Definition

A pair of surfaces in B^4 are **exotic** if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Definition

A pair of surfaces in B^4 are **exotic** if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden)

The slice disks bounding $17nh_{74}$ are topologically isotopic rel boundary.

Definition

A pair of surfaces in B^4 are **exotic** if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden)

The slice disks bounding $17nh_{74}$ are topologically isotopic rel boundary.

Corollary (Hayden-Sundberg)

The induced maps on Khovanov homology detect exotic pairs of surfaces in ${\cal B}^4$.

Definition

A pair of surfaces in B^4 are **exotic** if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden)

The slice disks bounding $17nh_{74}$ are topologically isotopic rel boundary.

Corollary (Hayden-Sundberg)

The induced maps on Khovanov homology detect exotic pairs of surfaces in B^4 .

First proof that Khovanov homology detects exotic surfaces.

Definition

A pair of surfaces in B^4 are **exotic** if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden)

The slice disks bounding $17nh_{74}$ are topologically isotopic rel boundary.

Corollary (Hayden-Sundberg)

The induced maps on Khovanov homology detect exotic pairs of surfaces in B^4 .

First proof that Khovanov homology detects exotic surfaces.

First gauge-theory free proof of exotic surfaces.

 φ -classes:

 φ -classes:

 \bullet hard to compute φ -classes

φ -classes:

- ullet hard to compute arphi-classes
- ullet hard to compare arphi-classes

φ -classes:

- ullet hard to compute arphi-classes
- ullet hard to compare arphi-classes
- easy to extend calculations (e.g., by ribbon concordances)

φ -classes:

- hard to compute φ -classes
- ullet hard to compare arphi-classes
- easy to extend calculations (e.g., by ribbon concordances)

 φ^* -numbers:

φ -classes:

- hard to compute φ -classes
- ullet hard to compare arphi-classes
- easy to extend calculations (e.g., by ribbon concordances)

φ^* -numbers:

ullet easy to compute $arphi^*$ -numbers when arphi is chosen wisely

φ -classes:

- hard to compute φ -classes
- ullet hard to compare arphi-classes
- easy to extend calculations (e.g., by ribbon concordances)

φ^* -numbers:

- \bullet easy to compute $\varphi^*\text{-numbers}$ when φ is chosen wisely
- ullet easy to compare φ^* -numbers (they are integers)

φ -classes:

- hard to compute φ -classes
- hard to compare φ -classes
- easy to extend calculations (e.g., by ribbon concordances)

φ^* -numbers:

- \bullet easy to compute $\varphi^*\text{-numbers}$ when φ is chosen wisely
- ullet easy to compare $arphi^*$ -numbers (they are integers)
- · hard to extend calculations

Table of Contents

- Motivation
- 2 Khovanov homology
- 3 Khovanov homology of knotted surfaces
- 4 Khovanov homology of surfaces in the 4-ball
- 6 Khovanov homology of dual surfaces in the 4-ball
- 6 Future work

ullet explore relationship between arphi-classes and $arphi^*$ -numbers

- ullet explore relationship between arphi-classes and $arphi^*$ -numbers
- tweak the algebra (e.g., through different versions of Khovanov homology)

- ullet explore relationship between arphi-classes and $arphi^*$ -numbers
- tweak the algebra (e.g., through different versions of Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)

- ullet explore relationship between arphi-classes and $arphi^*$ -numbers
- tweak the algebra (e.g., through different versions of Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)
- study different families of disks (rolling, spinning, equivariant stuff)

- ullet explore relationship between arphi-classes and $arphi^*$ -numbers
- tweak the algebra (e.g., through different versions of Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)
- study different families of disks (rolling, spinning, equivariant stuff)
- study relationship with other invariants (e.g. s-invariant or knot Floer homology)

- ullet explore relationship between arphi-classes and $arphi^*$ -numbers
- tweak the algebra (e.g., through different versions of Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)
- study different families of disks (rolling, spinning, equivariant stuff)
- study relationship with other invariants (e.g. s-invariant or knot Floer homology)
- \bullet study slice obstruction from $\varphi\text{-classes}$

Thank You!

Thank you!

Bibliography I

D Bar-Natan, *Khovanov's homology for tangles and cobordisms*, **Geom. Topol.**, 9:1443-1499, 2005.

- Magnus Jacobsson, *An invariant of link cobordisms from Khovanov homology*, **Algebr. Geom. Topol.**, 4:1211-1251, 2004.
- András Juhász and Ian Zemke, Distinguishing slice disks using knot floer homology, Seceta Math. (N.S.),20(1), 2020.
- Mikhail Khovanov, A categorification of the Jones polynomial, **Duke Math.** J., 101(3):359-426, 2000.

Bibliography II

- Adam S. Levine and Ian Zemke, *Khovanov homology and ribbon concordances*, **Bull. Lond. Math. Soc.**, 51(6):1099-1103, 2019.
- Allison N. Miller and Mark Powell, Stabilization distance between surfaces, *Enseign. Math.*, **65**:397-440, 2020.
- Lisa Piccirillo, *The Conway knot is not slice*, **Ann. of Math.** (2), 191(2):581-591, 2020.
- Jacob Rasmussen, *Khovanov's invariant for closed surfaces*, arXiv:math/0502527, 2005.
- Isaac Sundberg and Jonah Swann, *Relative Khovanov-Jacobsson classes*, arXiv:2103.01438, 2021.
- Jonah Swann, Relative Khovanov-Jacobsson classes of spanning surfaces, Ph.D. Thesis, Bryn Mawr College, 2010.

Bibliography III

Kokoro Tanaka, *Khovanov-Jacobsson numbers and invariants of surface-knots derived from Bar-Natan's theory*, **Proc. Amer. Math. Soc.**, 134(12):3685–3689, 2005.