Свойство компонент связности, забытое в прошлый раз

Свойство

Любое связное множество содержится в некоторой компоненте связности.

Доказательство.

Пусть A открыто, C — компонента связности, $A \cap C \neq \emptyset$.

 $\implies A \cup C$ связно (по лемме об объединении связных множеств).

 \implies $A \subset C$ (иначе C — не максимальное связное множество).

- 1 Линейная связность (окончание)
 - Доказательства негомеоморфности
- 2 Компактность
 - Определение и примеры
 - Хаусдорфовы компакты
 - ullet Компактность в \mathbb{R}^n
 - Центрированные и вложенные семейства
 - Непрерывные отображения компактов

Негомеоморфность интервалов и окружности

Теорема

Интервалы [0,1], $[0,+\infty)$, \mathbb{R} , и окружность S^1 — попарно негомеоморфны.

Доказательство.

- S¹ сохраняет связность при удалении любой точки.
 Для других это неверно: можно удалить точку так, что остаток будет несвязным.
- \mathbb{R} теряет связность при удалении любой точки.
- У $[0, +\infty)$ есть ровно одна точка, при удалении которой сохраняется связность.
- У [0,1] таких точек две.

Плоскость не гомеоморфна интервалу, окружности

Теорема

 \mathbb{R}^2 не гомеоморфно никакому интервалу и S^1 .

Доказательство.

- В интервалах и окружности существуют конечные множества с несвязными дополнениями.
- Дополнение любого конечного множества в \mathbb{R}^2 связно (точки дополнения соединяются ломаными)

- 1 Линейная связность (окончание)
 - Доказательства негомеоморфности
- 2 Компактность
 - Определение и примеры
 - Хаусдорфовы компакты
 - ullet Компактность в \mathbb{R}^n
 - Центрированные и вложенные семейства
 - Непрерывные отображения компактов

Определение: компактное пространство

X — топологическое пространство.

Определение

X компактно, если у любого открытого покрытия есть конечное подпокрытие.

Другой термин: X -компакт.

Тривиальные примеры

- Конечные пространства компактны
- Любое антидискретное пространство компактно
- Бесконечное дискретное пространство некомпактно (рассмотрим покрытие точками)

Компактные множества

Определение

Компактное множество — множество, компактное как подпространство.

Замечание

В определении компактности для множества $A\subset X$ под открытым покрытием можно понимать одно из двух:

- Набор множеств $V_i \subset A$, открытых в A, $\bigcup V_i = A$
- Набор множеств $U_i \subset X$, открытых в X, $\bigcup U_i \supset A$.

Два варианта определения компактности эквивалентны.

Упражнение

Объединение двух компактных множеств компактно.

Отрезок компактен

Теорема (лемма Гейне-Бореля)

Отрезок [0,1] компактен.

Доказательство

Пусть $I_0 = [0,1], \; \{U_i\}$ — открытые множества в $\mathbb{R}, \; \bigcup U_i \supset I_0$. Докажем, что I_0 покрывается конечным числом из них. От противного.

Пусть l_1' и l_1'' — две половины отрезка, $l_1' = [0, \frac{1}{2}]$, $l'' = [\frac{1}{2}, 1]$. Одну из половин нельзя покрыть конечным набором множеств U_i (иначе покрыли бы I_0). Обозначим эту половину I_1 .

Аналогично для I_1 : пусть $I_2 \subset I_1$ — его половина, не покрываемая конечным набором U_i . И так далее.

Получаем последовательность вложенных отрезков $I_0\supset I_1\supset I_2\supset\dots$, каждый вдвое короче предыдущего.

У них есть общая точка x_0 . Она лежит в каком-то U_{i_0} . Этот U_{i_0} содержит I_n при достаточно большом n. Противоречие с тем, что I_n не покрыть конечным набором U_i .

Замкнутое подмножество компакта — компакт

Теорема

Если X компактно и $A \subset X$ замкнуто, то A компактно.

Доказательство.

Пусть $\{U_i\}$ — покрытие A открытыми множествами в X. Добавим в него $X \setminus A$, получим открытое покрытие X.

Выберем конечное подпокрытие и уберем из него $X \setminus A$.

Получим конечное покрытие А исходными множествами.

Произведение компактов — компакт

Теорема

Eсли X и Y компактны, то $X \times Y$ тоже.

Доказательство теоремы

1. Достаточно проверить определение компакта только для покрытий элементами базы.

Рассмотрим покрытие $X \times Y$ открытыми «прямоугольниками» $U_i \times V_i$, где $U_i \subset X$ и $V_i \subset Y$.

- 2. Для $x \in X$ рассмотрим «вертикальный слой» $F_x := \{x\} \times Y$ $F_x \simeq Y \implies F_x$ компактно $\implies F_x$ покрывается конечным набором «прямоугольников» $U_{i_1}^x \times V_{i_1}^x, \ldots, \ U_{i_n}^x \times V_{i_n}^x.$
- 3. Пусть $U^x=U^x_{i_1}\cap\cdots\cap U^x_{i_n}$ пересечение проекций этих «прямоугольников» на X.

Тогда $U^{x} \times Y$ покрывается теми же «прямоугольниками».

4. Построим такую окрестность U^x для каждой точки $x \in X$ и выберем из $\{U^x\}_{x \in X}$ конечное подпокрытие. Объединив соответствующие наборы «прямоугольников», получим конечное покрытие $X \times Y$.

- 1 Линейная связность (окончание)
 - Доказательства негомеоморфности
- 2 Компактность
 - Определение и примеры
 - Хаусдорфовы компакты
 - ullet Компактность в \mathbb{R}^n
 - Центрированные и вложенные семейства
 - Непрерывные отображения компактов

Компакт в хаусдорфовом пространстве замкнут

Теорема

Если X хаусдорфово и $A \subset X$ компактно, то A замкнуто в X.

Доказательство.

Пусть $x \in X \setminus A$. Докажем, что x — внутренняя точка $X \setminus A$.

Из хаусдорфовости, для каждой $a\in A$ есть окрестности $U_a\ni a$ и $V_a\ni x$, $U_a\cap V_a=\emptyset$

Выберем из $\{U_a\}$ конечное подпокрытие A:

$$U_{a_1},\ldots,U_{a_n}$$

 $\bigcap_{i=1}^n V_{a_i}$ — окрестность x, не пересекающая A. $\implies x$ — внутренняя точка $X \setminus A$.

Хаусдорфов компакт нормален

Теорема

Если X компактно и хаусдорфово, то оно нормально.

Доказательство.

1. Регулярность

Пусть A замкнуто, $x \notin A$. Построим $\{U_{a_i}\}$ и $\{V_{a_i}\}$ как в предыдущем доказательстве.

Тогда $U:=\bigcup U_{a_i}$ и $V:=\bigcap V_{a_i}$ — открытые множества, $U\supset A,\ V\ni x,\ U\cap V=\emptyset.$

2. Нормальность

Пусть A и B замкнуты, $A \cap B = \emptyset$.

Повторим рассуждение для B вместо x

(используя регулярность вместо хаусдорфовости)

Получим открытые $U \supset A$ и $V \supset B$, $U \cap V = \emptyset$.

- 1 Линейная связность (окончание)
 - Доказательства негомеоморфности
- 2 Компактность
 - Определение и примеры
 - Хаусдорфовы компакты
 - ullet Компактность в \mathbb{R}^n
 - Центрированные и вложенные семейства
 - Непрерывные отображения компактов

Наша цель

Главная теорема

Множество в \mathbb{R}^n компактно \iff оно замкнуто и ограничено.

Определение: ограниченное множество

3десь X — метрическое пространство.

Определение

Множество $A \subset X$ ограничено, если оно содержится в некотором шаре.

Определение

Диаметр множества A: diam $(A) = \sup\{d(x,y) : x,y \in A\}$

Свойство

A ограничено \iff diam $(A) < \infty$.

(Следствие: свойство ограниченности не зависит от объемлющего пространства)

Компакт в метрическом пространстве ограничен

Теорема

Компактное метрическое пространство ограничено.

Доказательство.

Зафиксируем $x_0 \in X$. Рассмотрим покрытие всеми шарами вида $B_r(x_0)$, r > 0.

У него есть конечное подпокрытие $B_{r_1}(x_0), \ldots, B_{r_n}(x_0)$.

Пусть $R = \max\{r_1, \ldots, r_n\}$. Тогда $X \subset B_R(x_0)$.

Следствие

Компактное множество в метрическом пространстве замкнуто и ограничено.

Компактные множества в \mathbb{R}^n

Теорема

Множество в \mathbb{R}^n компактно \iff оно замкнуто и ограничено.

Доказательство.

⇒: из предыдущего следствия (верно в любом метрическом пространстве)

 \longleftarrow : Множество $A \subset \mathbb{R}^n$ ограничено $\iff A$ содержится некотором кубе $[-a,a]^n$.

Куб компактен как произведение компактов.

A замкнуто и ограничено \implies оно замкнутое подмножество компакта \implies оно компактно.

- 1 Линейная связность (окончание)
 - Доказательства негомеоморфности
- 2 Компактность
 - Определение и примеры
 - Хаусдорфовы компакты
 - ullet Компактность в \mathbb{R}^n
 - Центрированные и вложенные семейства
 - Непрерывные отображения компактов

Центрированные семейства

Определение

Набор множеств — центрированный, если любой его конечный поднабор имеет непустое пересечение.

Теорема

X компактно \iff любой центрированный набор замкнутых множеств в X имеет непустое пересечение.

Доказательство.

 \Longrightarrow : От противного, пусть $\{A_i\}$ — такой набор и $\bigcap A_i = \emptyset$.

Тогда дополнения $X \setminus A_i$ образуют открытое покрытие (объединение дополнений = дополнению пересечения).

Выберем из него конечное подпокрытие.

Соответствующие A_i имеют пустое пересечение, противоречие с центрированностью.

=: аналогично.

Следствие

Пусть X — произвольное топологическое пространство, $\{A_i\}$ — центрированный набор замкнутых множеств в X, хотя бы одно из которых компактно. Тогда $\bigcap A_i \neq \emptyset$.

Доказательство.

Пусть A_0 компактно.

Применим теорему к A_0 в качестве всего пространства и набору множеств $\{A_i \cap A_0\}$ в нем.

Теорема о вложенных компактах

Теорема

Пусть $\{A_i\}$ — набор непустых замкнутых множеств, линейно упорядоченный по включению, и хотя бы одно из них компактно. Тогда $\bigcap A_i \neq \emptyset$.

Замечание

Обычно эта теорема применяется к последовательностям вложенных компактов: $A_1 \supset A_2 \supset A_3 \supset$

Доказательство.

Это центрированный набор $\implies \bigcap A_i \neq \emptyset$ по предыдущей теореме.

- 1 Линейная связность (окончание)
 - Доказательства негомеоморфности
- 2 Компактность
 - Определение и примеры
 - Хаусдорфовы компакты
 - ullet Компактность в \mathbb{R}^n
 - Центрированные и вложенные семейства
 - Непрерывные отображения компактов

Непрерывный образ компакта — компакт

Теорема

Пусть X компактно, $f: X \to Y$ непрерывно.

Тогда множество f(X) компактно.

Доказательство.

Пусть $\{U_i\}$ — открытое покрытие f(X).

Тогда $V_i = f^{-1}(U_i)$ образуют открытое покрытие X.

Выберем конечное подпокрытие V_{i_1}, \ldots, V_{i_n} .

 U_{i_1},\ldots,U_{i_n} — искомое подпокрытие f(X).

Теорема Вейерштрасса

Теорема

Пусть X компактно, $f:X \to \mathbb{R}$ непрерывно. Тогда f(X) имеет максимум и минимум.

Доказательство.

f(X) компактно \Longrightarrow замкнуто и ограничено \Longrightarrow содержит свои sup и inf.

Непрерывные биекции компактов

Теорема

Пусть X компактно, Y хаусдорфово, $f: X \to Y$ — непрерывная биекция. Тогда f — гомеоморфизм.

Доказательство.

f непрерывно \iff прообразы замкнутых множеств замкнуты f^{-1} непрерывно \iff f-образы замкнутых множеств замкнуты (так как $(f^{-1})^{-1}(A) = f(A)$).

Если $A \subset X$ замкнуто

 \implies A компактно (замкнутое подмножество компакта)

 $\implies f(A)$ компактно (непрерывный образ компакта)

 $\implies f(A)$ замкнуто (компакт в хаусдорфовом пр-ве)

Вложения компактов

Определение

f:X o Y — вложение, если f — гомеорморфизм между X и f(X).

Следствие

Пусть Х компактно, Ү хаусдорфово,

 $f: X \to Y$ непрерывно и инъективно.

Тогда f — вложение.