Image Captioning

Faculty:-Prof.C Krishna Mohan Mentor:-Prudviraj Jeripothula Presented By:-Subhasree Balija

Contents

- Summary of Prev Presentation
- Image Captioning Results
- Novelty
- Conclusion
- References

Captioning with Adaptive Attention on Visual and Non-Visual words

Grid-Augmented Module

Adaptive Attention Module

Relationship Sensitive Transformer(RSTNet)

Image Captioning Results

Training Details:

Datasets - MSCOCO 2014

Standard RESNet-50 as Visual backbone, Imagenet dataset

Input :224 × 224 image ,Output: 7 × 7 grid of 2048-dimensional features

Use Linear Projection 7 x 7 x 2048 -> 7 x 7 x H

Transformer as Linguistic decoder

GELU as Activation function

Tokenize captions with Sentence piece using BPE algorithm

SGD with momentum 0.9, weight decay 10^-4

Learning Rate of RESNet 0.2, Transformer 0.001

Training Results

epoch	Train loss	Train cap acc
0	15.176218	0.058669
25	3.111872	0.114059
50	2.467931	0.123626
100	1.024006	0.234425
150	0.804063	0.241819

epoch	Val loss	Val cap acc
0	6.619026	0.072032
25	3.249872	0.114138
50	0.119163	0.119163
100	0.935401	0.238409
150	0.759156	0.244353

Qualitative Results

Man standing next to truck on dirt road with trees

An empty boarding walk is lit up in yellow at night.

A sheep standing in the middle of a snowyic flower garden.

A skate boarder leaning over a very high ramp.

A woman skier on a snowy plain with another skier in the background.

Novelty

Visual Encoder + Language Decoder

- Non-Attentive CNN'S
- Additive Attention based CNN's
- Graph-based Attention
- Self-Attention

Graph-based Encoding

Global CNN Features

Attention Over Visual Regions

Self-Attention Encoding

Scene Graph Captioning(SGC)

Structured representation of a scene

Express Objects ,Attributes and Relationships

Higher level of understanding and reasoning about visual scenes

Scene graph generation

Object, Relationship and Caption regions

Region Captioning

language description of Scene graph

Figure 1. Image with annotations of different semantic levels: objects, phrases and region captions. Scene graph is generated using all objects and their relationships in the image.

Scene Graph Generation(SGG)

- Object region proposals- Region Proposal Network (RPN)
- Relationship/phrase region proposals: N object proposals to N(N −1) object pairs
- Caption region proposals: RPN trained with ground truth captions

SGG

Dynamical Graph Construction

Feature Refining

Figure 3. Dynamical graph construction. (a) the input image. (b) object(bottom), phrase(middle) and caption region(top) proposals. (c) The graph modeling connections between proposals. Some of the phrase boxes are omitted.

Model

Background Features

Scene graph completely neglects Background features

GT:A bicycle leaning against a fence in a flooded street

Bicycle

Leans

near

Fence

Water

SGC-A bicycle leans against a fence near water

Output Language Decoder **Probabilities** Softmax Linear Inputs - Background features +One hot encodings of Caption Add & Norm Region features Feed Forward Add & Norm **Output-Caption** Add & Norm Multi-Head Feed Attention $N \times$ Forward Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Resnet Positional Positional Encoding Encoding Input Output Embedding Embedding Inputs Outputs (shifted right) **Extracting Background Features** Caption Region features

Conclusion

- Scene graphs + Background features + Transformer
- Provide Powerful representations for the semantic features of a scene
- Extend to 2D/3D scene understanding, VQA, human-object interaction (HOI), Image Generation
- Generation of SG is more Complex and Time Consuming

Future Works:

- SGG With Prior Knowledge:
- Difficult to get all relationships from the SGG training data
- Introduction of prior knowledge can enhance the detection and recognition of visual relationships

References

- T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," ICLR, 2017
- X. Yang, K. Tang, H. Zhang, and J. Cai, "Auto-Encoding Scene Graphs for Image Captioning," in CVPR, 2019.
- Y. Li, W. Ouyang, B. Zhou, K. Wang, and X. Wang, "Scene Graph Generation from Objects, Phrases and Region Captions,"
- T. Yao, Y. Pan, Y. Li, and T. Mei, "Exploring Visual Relationship for Image Captioning," in ECCV, 2018
- S. Herdade, A. Kappeler, K. Boakye, and J. Soares, "Image captioning: Transforming objects into words," in Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc., 2019.
- S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In NIPS, 2015.

