Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

1 Input Parameters

26.1	1		1	D: DI
Module			Fin Plate	
MainModule			Shear Connection	
Connect			C	olumn flange-Beam web
Shear(k	(N)*			150.0
	Su	pporting Sect	ion	
	Supportin	ng Section		PBP 300X222.9
	Mate	erial *		E 300 (Fe 440)
<u> </u>	Ultimate strer	ngth, fu (MPa)		440
	Yield Streng	th , fy (MPa)		280
$(B-t)$ α	Mass	222.92	Iz(cm4)	526988000.0
ZZ D	Area(cm2) - A	28400.0	Iy(cm4)	175746300.0
	D(mm)	337.9	rz(cm)	136.2
-R ₁	B(mm)	325.7	ry(cm)	78.7
R ₂	t(mm)	30.3	Zz(cm3)	3119190.0
В	T(mm)	30.4	Zy(cm3)	1079190.0
	FlangeSlope	90	Zpz(cm3)	3653090.0
	R1(mm)	1.52	Zpy(cm3)	1079190.0
	R2(mm)	0.0		
	Su	pported Secti	ion	
	Supporte	ed Section		UB 406 x 178 x 74
	Material *		E 410 (Fe 540)	
т т	Ultimate strength, fu (MPa)		540	
	Yield Streng	th , fy (MPa)	380	
$(B-t)$ α	Mass	74.2	Iz(cm4)	273100000.0
4 t	Area(cm2) -	9450.0	Iy(cm4)	15450000.0
ZZ D	A			
	D(mm)	413.0	rz(cm)	170.0
R ₁	B(mm)	179.5	ry(cm)	40.0
В -	t(mm)	9.5	Zz(cm3)	1323000.0
¥	T(mm)	16.0	Zy(cm3)	172000.0
	FlangeSlope	90	Zpz(cm3)	1501000.0
	R1(mm)	10.2	Zpy(cm3)	172000.0
	R2(mm)	0.0		
		Bolt Details		
Diameter(mm)*			16.0, 20.0, 24.0, 30.0, 36.0]	
Grade			$[3.6, 4.6, \overline{4.8}]$	8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]
Туре	*		Bearing Bolt	
Bolt hole type			Standard	
Slip factor	r (µ_f)			0.3
Type of	edges		a - 5	Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Weld Details	
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{410 * 1 * 561}{\sqrt{3} \ * 1.25}$ $= 129.56$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.51 * 30.0 * 9.5 * 540}{1.25}$ $= 129.56$	
Capacity (KN)		$V_{db} = min (V_{dsb}, V_{dpb})$ $= min (129.56, 129.56)$ $= 129.56$	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{150.0^{2} + 300.0^{2}}}{129.56}$ $= 3$	4	
No of Columns		1	
No of Rows		4	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 30.0 = 75.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 9.5, \ 300 \ mm)$ $= 304.0$	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 30.0 = 75.0$	85	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 9.5, \ 300 \ mm)$ = 304.0	85	Pass
Min. End Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 33.0 = 56.1	60	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *14.0 * \sqrt{\frac{250}{230}}$ $= 174.72$	60	Pass
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 33.0 = 56.1	60	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 14.0 * \sqrt{\frac{250}{230}}$ $= 174.72$	60	Pass
Capacity (KN)	52774.72	124863.64	Pass

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 413.0 = 247.799999$	9 345 9998	Pass
Max. Plate Height (mm)	$d_b - 2(t_{bf} + r_{b1} + gap)$ = 413.0 - 2 * (16.0 + 10.2 + 10) = 360.6	345	Pass
Min. Plate Length (mm)	$2 * e_{min} + (n c - 1) * p_{min})$ $= 2 * 56.1 + (1 - 1) * 75.0$ $= 122.2$	130.0	Pass
Min.Plate Thickness (mm)	$t_w = 9.5$	14.0	Pass
Shear yielding Capacity (V_dy) (kN)		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$ $= \frac{345 * 14.0 * 230}{\sqrt{3} * 1.1}$ $= 349.84$	
Shear Rupture Capacity (V_dn) (kN)		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$ $= 1 * (345 - (4 * 33.0)) * 14.0 * 41$ $= 916.96$.0
Block Shear Capacity in Shear (V_db) (kN)		948.56	
Shear Capacity (V_d) (kN)	150.0	$V_d = Min(V_{dy}, V_{dn}, V_{db})$ $= Min(349.84, 916.96, 948.56)$ $= 349.84$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{130.0 * 14.0 * 230}{\sqrt{3} * 1.1}$ $= 380.55$	
Tension Rupture Capacity(kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (130.0 - 4 * 33.0) * 14.0 * 410}{1.25}$ $= 400.88$	
Block Shear Capacity in Tension (T_db) (kN)		948.56	
Tension Capacity (kN)	300.0	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(380.55, 400.88, 948.56)$ $= 380.55$	Pass
Moment Capacity (kNm)	10.5	69.68	Pass
Interaction Ratio	≤ 1	$\frac{10.5}{69.68} + \frac{300.0}{380.55} = 0.94$	Pass

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness of Thicker part$ $= Max(30.4, 30.4) = 30.4$ $IS800: 2007 cl.10.5.2.3 Table 21,$ $t_{w_{min}} = 6$	6	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(30.4, 30.4) = 14.0$ $t_{w_{max}} = 14.0$	6	Pass
Weld Strength (kN/mm)	$R_{w} = \sqrt{(T_{wh} + A_{wh})^{2} + (T_{wv} + V_{wv})^{2}}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{10500000.0 * 166.5}{6154339.5}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{10500000.0 * 0.0}{6154339.5}$ $V_{wv} = \frac{V}{l_{w}} = \frac{150000.0}{666}$ $A_{wh} = \frac{A}{l_{w}} = \frac{300000.0}{666}$ $R_{w} = \sqrt{(284.07 + 450.45)^{2} + (0.0 + 225.23)^{2}}$ $= 768.27$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{4.2 * 410}{\sqrt{3}} * 1.25$ $= 795.36$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View