HW-4 Math 117

Siddharth Deshpande 10/29/2020

1.4.27

- Let $x \in \mathbb{Q}$. Therefore, for any r > 0, we have the interval (x - r, x + r) where $x + r, x - r \in \mathbb{R}$. Because we know that the Irrationals are dense in the Reals, we know that, $\exists y \in \mathbb{R} - \mathbb{Q} \ni y \in (x - r, x + r)$. Therefore, we have that $(x - r, x + r) \not\subset \mathbb{Q}$. Therefore, the Rationals are not an open set.

- Now, let $z \in \mathbb{R} - \mathbb{Q}$. Therefore, for any $\delta > 0$, we have the interval $(z - \delta, z + \delta) \ni z - \delta, z + \delta \in \mathbb{R}$. Therefore, because the \mathbb{Q} are dense in the \mathbb{R} , we know that for any value of δ , there exsits some $x \in (z - \delta, z + \delta) \ni x \in \mathbb{Q}$. Therefore, $z \in \mathbb{R}$ is a point of closure of \mathbb{Q} . But, because $z \in \mathbb{R} - \mathbb{Q}$, we have by definition that $z \notin \mathbb{Q}$. Therefore, the Rationals do not contain all of its points of closure and therefore, the Rationals are not closed.

- Thus, the Rationals are neither closed nor open.

1.4.30

(i)

- Let x be a point of closure of E'. Therefore, in every neighborhood of x, $\exists x' \in E'$. Furthermore, because $x' \in E'$, we know that in every neighborhood of x', $\exists y \in E \ni x' \neq y$ because E' is the collection of accumulation points of E. Let $\delta > 0 \ni x' \in (x - \delta, x + \delta)$ and $d(x, x') = r \ni 0 < r < \delta$. Therefore, we know that $(x' - \frac{\min(\delta - r, r)}{2}, x' + \frac{\min(\delta - r, r)}{2}) \subset (x - \delta, x + \delta)$ and, we also know by construction that, $x \notin (x' - \frac{\min(\delta - r, r)}{2}, x' + \frac{\min(\delta - r, r)}{2})$. But,

 $(x'-\frac{\min(\delta-r,r)}{2},x'+\frac{\min(\delta-r,r)}{2})$ is a neighborhood of x'. Therefore, we know by definition that, $\exists y \in E \ni y \in (x'-\frac{\min(\delta-r,r)}{2},x'+\frac{\min(\delta-r,r)}{2})$ and we also know that $y \neq x'$, which also means that, $y \in (x-\delta,x+\delta)$. Therefore, for every neighborhood of x, $\exists y \in E \ni x \neq y$ as $y \in (x'-\frac{\min(\delta-r,r)}{2},x'+\frac{\min(\delta-r,r)}{2})$ and $x \notin (x'-\frac{\min(\delta-r,r)}{2},x'+\frac{\min(\delta-r,r)}{2})$. Therefore, x is an accumulation point of E and thus, $x \in E'$. Therefore, E' contains its closure points and therefore, is closed.

(ii)

$- \bar{A} \subseteq A \cup A'$

Let $x \in \bar{A}$. Therefore, $x \in A$ or $x \notin A$. If $x \in A$, then, $x \in A \cup A' \Rightarrow \bar{A} \subseteq A \cup A'$ and we are done.

If $x \notin A$. Then we know by definition that, $x \in \bar{A} \setminus A$. Therefore, for every neighborhood of x, $\exists y \in A$. Furthermore, we also know that $x \neq y$ as, $x \notin A$ but $y \in A$. Therefore, by definition, x is an accumulation point of A. Thus, $x \in A'$. Then, $x \in A \cup A' \Rightarrow \bar{A} \subseteq A \cup A'$

$-A \cup A' \subseteq \bar{A}$

Let $x \in A \cup A'$. Therefore, either $x \in A$ or $x \in A'$ (or both). If $x \in A$, then $x \in \bar{A}$ as, $A \subset \bar{A}$ and by definition, $A \cup A' \subseteq \bar{A}$.

If $x \in A'$, we have that, for every neighborhood of x, $\exists y \in A \ni x \neq y$. Therefore, by definition, x is a closure point of A as in every neighborhood we can find a point in A. Thus, $x \in \bar{A}$. Therefore, $A \cup A' \subseteq \bar{A}$.

- Therefore, we have proven that $\bar{A} = A \cup A'$

1.4.31

Let E be a set that consists of only isolated points. Let $x \in E$, therefore, we can find some neighborhood of x such that, $N_x(r) \cap E = \{x\}$. Furthermore, by construction we can describe $N_x(r)$ such that, for any other $N_{x'}(r')$ for $x' \in E \ni x' \neq x$, we have that $N_x(r) \cap N_{x'}(r') = \emptyset$. Therefore, we know that $(x-r,x+r) \subset \mathbb{R}$ and therefore, $\exists y \in (x-r,x+R) \ni y \in \mathbb{Q}$ as \mathbb{Q} are dense in \mathbb{R} . Therefore, we can define an injective map $f: E \to \mathbb{Q}$ where f(x) = y. We know this is injective by the construction that $N_x(r) \cap N_{x'}(r') = \emptyset$. Furthermore, there may be more than 1 such rational number in the interval, we can choose any. Therefore, $\forall x \in E, \exists ! y \in \mathbb{Q} \ni y \in N_x(r)$ and, we also know for any other $x' \in E, y \notin N_{x'}(r')$. Therefore, we have defined an injective map from $f: E \to \mathbb{Q}$. Thus, $E \subseteq \mathbb{Q}$ and therefore, E is countable as \mathbb{Q} is countable

1.4.32

(i)

- Assume E is open. Therefore, $\forall x \in E$, we know by definition that, $\exists r > 0 \ni (x - r, x + r) \subset E$. Therefore, by definition we know that, $x \in int(E)$. Thus, $E \subseteq int(E)$. Furthermore, by construction we know that $int(E) \subset E$

- as, int(E) consists of the interior points of E which implies that all points in int(E) are in E. Thus, if E is open, we have shown that E = int(E).
- Now, assume that E = in(E). Therefore, we know that $\forall x \in E, x \in int(E)$ and therefore, $\forall x \in E, \exists r > 0 \ni (x r, x + r) \subset E$. And, by definition, this makes E an open set. Therefore, if E = int(E), then E is open.
- Therefore, because we have shown the implication in both direction, we have shown that E is open if and only if E = int(E)

(ii)

- Assume that E is dense in \mathbb{R} . We will use proof the forward direction (E is dense $\Rightarrow int(\mathbb{R} \setminus E) = \emptyset$) by contradiction. Assume that $int(\mathbb{R} \setminus E) \neq \emptyset$. Therefore, by definition, $\exists x \in R \setminus E$, which is an interior point of the set, which means, $\exists r > 0 \ni (x r, x + r) \subset R \setminus E$. But, this means that, E is not dense in the reals as, $\nexists y \in E \ni y \in (x r, x + r)$. This is a contradiction to our very first assumption as $x r, x + r \in \mathbb{R}$ and we have shown that E is not dense in reals (contradiction). Therefore, if E is dense in the \mathbb{R} , we must have that $int(\mathbb{R} \setminus E) = \emptyset$.
- Now, assume that $\operatorname{int}(\mathbb{R}\setminus E)=\emptyset$. Now, let $a,b\in\mathbb{R}$. Without loss of generality, assume that b>a. Therefore, if $\nexists y\in\mathbb{R}\setminus E\ni y\in(a,b)$, then we have already proved our point and E is dense in the Reals. Now, assume that, $\exists y\in\mathbb{R}\setminus E\ni y\in(a,b)$. Then, we can define $r>0\ni r=\min\{y-a,b-y\}$. Therefore, $(y-r,y+r)\subset(a,b)\subset\mathbb{R}$. But, because $\operatorname{int}(\mathbb{R}\setminus E)=\emptyset$, we know that, $\nexists h>0\ni(y-h,y+h)\subset\mathbb{R}\setminus E$. Therefore, by definition,

 $\exists x \in E \ni x \in (y-r,y+r) \Rightarrow x \in (a,b)$. Therefore, E is dense in the \mathbb{R} .

- Therefore, we have proven that, E is dense if and only if $\operatorname{int}(\mathbb{R} \setminus E) = \emptyset$

1.4.35

- We know by definition that, the collection of Borel sets the Borel σ -algebra is the smallest sigma algebra containing all the open sets (by definition.
- But, we also know by definition of a σ -algebra that, it is closed under complement. And, the complement of an open set is a closed set. Therefore, because the Borel σ -algebra contains all the open sets, it must contain all the closed sets as well (as it is closed under complement). Therefore, the Borel σ -algebra is the smallest σ -algebra containing the closed sets.
- In addition to that, to prove that it is the smalles, let Σ be another σ algebra that contains all the closed sets. Therefore, by definition, Σ also
 contains all the open sets. But, we know that \mathcal{B} is the smallest σ -algebra
 containing open sets and therefore, $\mathcal{B} \subset \Sigma$. Therefore, \mathcal{B} (Borel σ -algebra)
 is the smallest sigma algebra containing the closed sets.

1.4.36

- Let \mathcal{A} be a σ -algebra consisting of all sets [a,b) where b > a. Therefore, we know that, sets of the form $[a + \frac{1}{n}, b)$ are also in \mathcal{A} for $n \in \mathbb{N}$. Furthermore, because we know by definition that all σ -algebras are closed under countable

union, we know that, $\bigcup_{a} [a + \frac{1}{n}, b] = (a, b)$ is contained in \mathcal{A} . Furthermore, Because (a,b) is contained in \mathcal{A} , we know that an interval of the form (a,n)is contained in \mathcal{A} where $n \in \mathbb{N}$. Therefore, by the properties of σ -algebras we know that $\bigcup_{n\in\mathbb{N}}(a,n)=(a,\infty)$ is contained in \mathcal{A} and similarly, $(-\infty,b)$ is also contained in A. Thus, $(-\infty, \infty)$ is also contained. We can extend this argument and conclude that, A contains all the open sets as, an open set of \mathbb{R} is the union of countably many open intervals. Therefore, we have proven that A is a σ -algebra containing all the open sets consisting of all intervals of the form [a,b). As we have previously proved, the smallest σ algebra containing open sets is the collection of Borel sets (\mathcal{B}) . Therefore, we now have that, $\mathcal{B} \subset \mathcal{A}$. Therefore, let the smallest σ -algebra containing all intervals of the form [a,b) be Σ . We know from what we proved earlier that, $\mathcal{B} \subset \Sigma$. Finally, because b > a, we know that $\exists x \ni a < x < b$ and therefore, we know that, $[a, x] \in \mathcal{B}$ and, $(x, b) \in \mathcal{B}$. Therefore, because \mathcal{B} is a σ -algebra , we know that $[a,x] \cup (x,b) = [a,b) \in \mathcal{B}$ and therefore, we have shown that all intervals of the form [a, b) are contained in \mathcal{B} .

- Therefore, going back, we have shown that $\mathcal{B} \subset \Sigma$ where Σ is the smallest σ -algebra containing the intervals of the form [a,b). But, we have also shown that \mathcal{B} contain intervals of the form [a,b). Therefore, \mathcal{B} which is the collection of all Borel Sets is the smalles σ -algebra containing intervals of the form [a,b)