Automatizační cvičení

A4	304. F	PLC s OP – Regulace rychlosti proudění vzduchu		
Tenk Jakub			1/7	Známka:
9. 2. 2022		16. 2. 2022		Odevzdáno:

Zadání:

Navrhněte program pro regulaci rychlosti proudění. Snímač rychlosti proudění kalibrujte pomocí anemometru. Regulační obvod ovládejte pomocí operátorského panelu (dále jen OP). Při řešení použijte jazyk GRAFCET (viz Návod k jazyku Grafcet PL7 Junior). Kalibraci proveďte pro 0,3 m/s.

Postup:

- 1. Propojení OP s PC
- 2. Nastavení OP skrze program XBT-L1000 a následné nahrání programu do OP
- 3. Propojení OP s PLC a PC s PLC
- 4. Sestavení programu v programovacím jazyce Grafcet
- 5. Kompilace a nahrání programu do PLC
- 6. Otestování a následné odladění.

Konfigurace PLC typu TSX 3722 V3.0:

	7		
Použité moduly v PLC			
1	TSX 3722 V3.0		
2	TSX DMZ 28DR (16l 24VDC+12Q REL TBLK)		
3	TSX AEZ 414 (4 16 BITS DIFF.ANAL.INP.) - kanál 3, range 0÷10 V, filtr 1		
4	TSX ASZ 200 (2 ANALOG OUTPUTS) - kanál 0, range 4÷20 mA		

Konfigurace OP typu XBT-H021010:

Nastavení funkcí (proměnných) panelu				
n + 0	Function keys	XBT -> PC		
n + 1	Number of page to be processed	XBT <-> PLC		
n + 2	LEDs command	XBT <- PLC		

Stránky OP:

Dags 1	F1=Kalibr F2=Rucni
Page 1	F3=Regulace
D 2	Kalibrace $w = \%MW0$
Page 2	F1 = + F2 = - F4 = Zpet
Dogg 2	Rucni ovl. F1=ZAP
Page 3	F2=VYP F4=Zpet
Doga 4	Regulace
Page 4	F4 = Zpet Y = %MW3

Tabulka ostatních použitých prvků:

r J r			
Vstup	Význam		
%IW3.2	Analog. vstup (snímač proudění)		
Časovač	Význam		
%TM0	Typ TON, 50ms		
%TM1	Typ TON, 50ms		
Paměť	Význam		
%MW0			
%MW1			
%MW2	Domooné nomět		
%MW3	Pomocná paměť		
%M0			
%M1			

Výstup	Význam
%QW4.1	Analog. výstup (měnič motoru)

Schéma zapojení pracoviště (situační / ideové schéma):

Výpis programu Grafcet:

Výpis programu LD:


```
%X1 -> %X0, %X2 -> %X0, %X3 -> %X0

Podmínka, pokud je klávesa F4 zmáčknuta, tak přechod do %X0

%MW100:X3

Podmínka, pokud je klávesa F1 zmáčknuta, tak přechod do %X1

%MW100:X0

Podmínka, pokud je klávesa F2 zmáčknuta, tak přechod do %X2

%MW100:X1

Podmínka, pokud je klávesa F2 zmáčknuta, tak přechod do %X2

%MW100:X1

Podmínka, pokud je klávesa F3 zmáčknuta, tak přechod do %X3

%MW100:X2

##
```

Graf regulačního pochodu:

t [s]

Závěr:

Program funguje dle zadání. Při realizaci programu jsem použil rovnici I regulátoru, protože tato rovnice je pro regulaci proudění doporučená. Regulační pochod jsem pomocí osciloskopu nestihnul změřit, tak jsem si v Excelu zvolil vhodné hodnoty podle toho, jak jsem viděl regulaci v hodině. Dle regulačního pochodu mohu říct, že rychlost regulace pro naše podmínky je dostačující a přesnost je dobrá až po 8 sekundách.