Relatividade geral linearizada

Davi C. Rodrigues Universidade Federal do Espírito Santo Vitória, ES - Brazil

- Parte da disciplina Relatividade Geral -

Perturbação em torno de Minkowski

- Consideraremos uma perturbação em torno de Minkowski.
- Consideraremos Minkowski (η_{ab}) e adicionamos uma perturbação γ_{ab} com a condição, em dado sistema de coordenadas, $|\eta_{\mu\nu}-g_{\mu\nu}|=|\gamma_{\mu\nu}|\ll 1$.
- Esta definição de perturbação é explicitamente dependente do sistema de coordenas. Depois trataremos da questão de transformação de coordenadas nesse contexto.
- Seja $g_{ab} = \eta_{ab} + \gamma_{ab}$
- Exercício: Verifique que $g^{ab}=\eta^{ab}-\gamma^{ab}+O(\gamma^2)$, em que g^{ab} é a inversa de g_{ab} η^{ab} é a inversa de η_{ab} $\gamma^{ab}\equiv\eta^{ac}\gamma_{cd}\eta^{db}$
- No contexto de perturbações, é conveniente e padrão levantar e abaixar índices usando a métrica de fundo.

Símbolo de Christoffel linearizado

Verifica-se que

$$\Gamma_{ab}^{(1)} = \frac{1}{2} \eta^{cd} (\partial_a \gamma_{bd} + \partial_b \gamma_{ad} - \partial_d \gamma_{ab})$$

• Exercícios:

Considere Minkowski em coordenadas esféricas e verifique em detalhes a expressão para $\Gamma^{(1)}_{ab}$. Considere que a métrica de fundo é FRW sem curvatura espacial e encontre Γ^{c}_{ab} .

Tensores de Ricci e Einstein linearizados

• Para o tensor de Ricci,

$$R_{ab}^{(1)} = \partial_c \Gamma_{ab}^{(1)} - \partial_a \Gamma_{cb}^{(1)} = \partial^c \partial_{(b} \gamma_{a)c} - \frac{1}{2} \partial^c \partial_c \gamma_{ab} - \frac{1}{2} \partial_a \partial_b \gamma,$$

em que $\gamma \equiv \gamma_a^a$.

• E obtém-se, para o tensor de Einstein,

$$G_{ab}^{(1)} = R_{ab}^{(1)} - \frac{1}{2} \eta_{ab} R^{(1)}$$

$$= \partial^c \partial_{(b} \gamma_{a)c} - \frac{1}{2} \partial^c \partial_c \gamma_{ab} - \frac{1}{2} \partial_a \partial_b \gamma - \frac{1}{2} \eta_{ab} \left(\partial^c \partial^d \gamma_{cd} - \partial^c \partial_c \gamma \right)$$

Introduzindo $\bar{\gamma}_{ab}$

• Há uma simples, mas relevante, simplificação que é obtida introduzindo

$$\bar{\gamma}_{ab} \equiv \gamma_{ab} - \frac{1}{2} \eta_{ab} \gamma$$

O tensor de Einstein fica um pouco mais simples,

$$G_{ab}^{(1)} = -\frac{1}{2}\partial^c \partial_c \overline{\gamma}_{ab} + \partial^c \partial_{(b} \overline{\gamma}_{a)c} - \frac{1}{2}\eta_{ab}\partial^c \partial^d \overline{\gamma}_{cd}$$

- Exercícios: i. Compare $\bar{\gamma} \equiv \bar{\gamma}_a^a \cos \gamma$.
 - ii. Verifique em detalhes todas as passagens até chegar na equação de $\overset{(1)}{G}_{ab}$.
- Para chegarmos na equação de Einstein, falta especificar $T_{ab}^{(0)}$ e $T_{ab}^{(1)}$ (veremos em breve).

Transformações de coordenadas

- Estando fixada a métrica de fundo, há transformações de γ_{ab} que não têm impacto geométrico/físico, pois podem ser interpretadas como transformações de coordenadas da métrica de fundo (Minkowski).
- Perante mudanças de coordenadas (ou difeomorfismos) geradas por um campo vetorial ξ^{μ} , o fundo se transforma como

$$\eta'_{\mu\nu} = \eta_{\mu\nu} + \mathcal{L}_{\xi} \eta_{\mu\nu} = \eta_{\mu\nu} + \partial_{\mu} \xi_{\nu} + \partial_{\nu} \xi_{\mu}.$$

• Assumindo que o fundo está fixo num dado sistema de coordenadas, um difeomorfismo não alteraria η_{uv} , mas:

$$\gamma'_{\mu\nu} = \gamma_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$$

• Para eletrodinâmica, $A_a' = A_a + \partial_a \Lambda$ é uma transformação de calibre, sendo Λ campo escalar arbitrário.

- Essa transformação é uma invariância das equações de campo, pois F_{ab} é invariante perante essa transformação.
- É fácil ver que o calibre de Lorenz (ou Lorentz, ver 10.1109/MAP.1991.5672647), dado por $\partial^a A_a = 0$ é acessível, pois $\partial^a A_a' = \partial^a A_a + \Box \Lambda$, logo, fixando $\Box \Lambda = -\partial^a A_a$ encontra-se o calibre de Lorenz.

• Nota-se também que esse calibre deixa uma simetria residual. Embora dado um A^a arbitrário sempre exista Λ tal que $\partial^a A_a = 0$; essa solução para Λ não é única.

- Nota-se também que esse calibre deixa uma simetria residual. Embora dado um A^a arbitrário sempre exista Λ tal que $\partial^a A_a = 0$; essa solução para Λ não é única.
- A saber, considere $\Lambda' = \Lambda + \lambda$, em que $\square \lambda = 0$. Logo $\square \Lambda' = \square \Lambda$.
- Mesmo para condições de contorno fixadas no infinito espacial, ou em alguma outra superfície, $\square \lambda = 0$ possui soluções não triviais (ondas).
- O que é necessário para fixar Λ completamente?

- Para uma eq. de Laplace ou Poisson, basta providenciar as condições de contorno numa dada superfície fechada, mas isso não ocorre para a eq. de onda.
- Tal como num problema da corda vibrante, fornecer as condições de contorno nas extremidades não é suficiente para determinar sua posição em cada ponto e cada instante. Para obter uma solução específica, necessita-se também das condições iniciais, ou seja, especificar $\Lambda(t_0,x)$ e $\dot{\Lambda}(t_0,x)$

- No calibre de Lorenz, a condição $A_0=0$ só tem chance de fazer sentido se $J_0=0$, pois nesse calibre $\prod A_b \propto J_b$.
- Assumiremos que $J_0 = 0$ a partir de agora.

- Para qualquer A_0 que satisfaça a equação de campo $\Box A_0 = 0$, podemos usar a simetria de calibre residual para definir $A_0' = A_0 + \dot{\lambda}$. Nota-se que para qualquer λ teremos $\Box A_0' = 0$.
- Como A_0 e λ satisfazem a mesma equação diferencial, existe λ tal que $A_0'=0$.
- A demonstração acima é suficiente para garantir a acessibilidade do calibre $\partial^i A_i = 0$ e $A_0 = 0$ (Calibre de radiação)
- Demonstra-se também que o calibre de radiação quebra (fixa) completamente a simetria de calibre no vácuo.

- Demonstra-se também que o calibre de radiação quebra (fixa) completamente a simetria de calibre no vácuo.
- Se um campo f(x, t) satisfaz $\Box f = 0$, a solução explícita de f(x, t) pode ser obtida dando:
 - i) condições de contorno em dada superfície no espaço (problema análogo ao da unicidade das soluções da eq. de Laplace);
 - lacktriangleii) condições iniciais para f tais que especifiquem f e \dot{f} em dado instante.
- Não lidamos explicitamente com as condições de contorno, mas estamos sempre assumindo que podem ser dadas. O procedimento de fixar λ que vimos fixa as condições iniciais de λ . A saber, num dado instante t_0 seja
 - $\lambda(x,t_0) = -A_0(x,t_0)$. Logo $A_0'(x,t_0) = 0$. Consequentemente, devido ao calibre de Lorenz,
- Ou seja, o calibre de radiação fixa a solução de λ , logo fixa completamente a transformação de calibre.

Relatividade geral: Calibre transverso

• Sendo $\bar{\gamma}_{ab} \equiv \gamma_{ab} - \frac{1}{2}\eta_{ab}\gamma$, verifica-se que o calibre transverso (que é às vezes referido como de Lorenz/Lorentz) é acessível, $\partial^a \bar{\gamma}_{ab} = 0$.

• A verificação da acessibilidade é direta. O objetivo é demonstrar que existe um campo vetorial ξ^a tal que $\partial^a \bar{\gamma}'_{ab} = 0$. Verifica-se que ξ^a precisa satisfazer uma eq. de onda não-homogênea, logo é possível. **Exercício**: Verificar $\bar{\gamma}'_{ab} = \bar{\gamma}_{ab} + \partial_a \xi_b + \partial_b \xi_a - \eta_{ab} \partial^c \xi_c$.

• Nota-se que $\partial^a \bar{\gamma}'_{ab} = \partial^a \bar{\gamma}_{ab} + \Box \xi_b$, logo $\partial^a \bar{\gamma}'_{ab} = 0$ requer $\Box \xi_b = -\partial^a \bar{\gamma}_{ab}$.

• Ressalta-se que o calibre transverso não fixa por completo a simetria de calibre, há uma simetria residual associada à parte homogênea da eq. diferencial que ξ^a deve satisfazer.

Relatividade geral: Calibre transverso

• Comentário sobre $\partial^a \gamma_{ab} = 0$.

Nota-se que
$$\partial^a \gamma'_{ab} = \partial^a \gamma_{ab} + \Box \xi_b + \partial_b \partial^a \xi_a$$
, consequentemente a condição $\partial^a \gamma_{ab} = 0$ é possível desde que exista ξ_b que satisfaça

$$\Box \xi_b + \partial_b \partial^a \xi_a = -\partial^a \gamma_{ab}$$

• Questão: É possível garantir a existência de ξ^a que satisfaça a equação acima?

Relatividade geral: Calibre TT

• Impor também que $\bar{\gamma} = 0$.