B G G D H

Euclid's Elements

Book III

A circle is a round straight line with a hole in the middle.

Mark Twain

quoting a schoolchild in "-English as She Is Taught-"

If people stand in a circle long enough, they'll eventually begin to dance.

George Carlin, Napalm and Silly Putty (2001)

Table of Contents, Chapter 3

- 1 To find the centre of a circle
- 2 A chord of a circle always lies inside the circle
- A line through the centre of a circle bisects a chord, and vice versa
- 4 A line not through the centre of a circle does not bisect a chord
- If two circles cut one another, they will not have the same center
- 6 If two circles touch one another, they will not have the same center
- 7 Consider two lines from a point inside a circle to the edge, the longer one will be the one closest to the longest part of the diameter passing through the original point
- 8 Consider two lines from a point outside a circle to the edge, the line closest to the centre will be longer on the concave side and shorter on the convex side

- 9 If three lines, starting at a point 'A' and touching the circle, are all equal, then 'A' is the centre of the circle
- 10 A circle does not cut a circle at more points than two
- 11 Point of contact between two internal circles, and their centres, are collinear
- 12 Point of contact between two external circles, and their centres, are collinear
- 13 A circle does not touch a circle at more points than one, whether it touch it internally or externally.
- In a circle equal straight lines are equally distant from the centre, and those which are equally distant from the centre are equal to one another.
- The longest line in a circle is its diameter, shorter the farther away from the diameter
- 16 A line on the circle, perpendicular to the diameter, lies outside the circle

- 17 From a given point to draw a straight line touching a given circle
- 18 If line touches a circle, then it is perpendicular to the diameter that touches that point
- 19 If line touches a circle, then the centre of the circle lies on a line perpendicular to the original
- The angle at the centre of a circle is twice that from an angle from the circumference
- In a circle the angles in the same segment are equal to one another
- The opposite angles of quadrilaterals in circles are equal to two right angles
- On the same straight line there cannot be constructed two similar and unequal segments of circles on the same side
- 24 Similar segments of circles on equal straight lines are equal to one another

Table of Contents, Chapter 3

- 25 Given a segment of a circle, to describe the complete circle of which it is a segment.
- 26 In equal circles equal angles stand on equal circumferences
- 27 In equal circles angles standing on equal circumferences are equal to one another
- 28 In equal circles equal straight lines cut off equal circumferences
- 29 In equal circles equal circumferences are subtended by equal straight lines
- 30 To bisect a given circumference
- In a circle the angle in the semicircle is right ...
- 32 The angle between a tangent and a straight line cutting a circle is equal to the angle in the alternate segment
- 33 Construct a circle segment on a given line, such that the angle within the segment is equal to a given angle

- 34 Construct a circle segment on a given circle, such that the angle within the segment is equal to a given angle
- 35 If two circle chords intersect, the segments on one multiplied together equals the segments of the other multiplied together
- 36 Secant-tangent law
- 37 Converse of the secant-tangent law

Proposition 10 of Book III A circle does not cut a circle at more points than two.

Proposition 10 of Book III A circle does not cut a circle at more points than two.

Proof by Contradiction

A circle does not cut a circle at more points than two.

Proof by Contradiction Assume we have two circles which intersect at 4 points

A circle does not cut a circle at more points than two.

$$HK = KB$$

Proof by Contradiction

Assume we have two circles which intersect at 4 points

Join BH and bisect at point K

A circle does not cut a circle at more points than two.

$$HK = KB$$

 $AC \perp HB$

Proof by Contradiction

Assume we have two circles which intersect at 4 points

Join BH and bisect at point K

Construct a line perpendicular to HB, at point K

A circle does not cut a circle at more points than two.

HK = KB $AC \perp HB$

Proof by Contradiction

Assume we have two circles which intersect at 4 points

Join BH and bisect at point K

Construct a line perpendicular to HB, at point K

From proposition III-1, we know that the centre of the circle lies on the line AC

A circle does not cut a circle at more points than two.

$$HK = KB$$
 $AC \perp HB$
 $BL = LG$

Proof by Contradiction

Assume we have two circles which intersect at 4 points

Join BH and bisect at point K

Construct a line perpendicular to HB, at point K

From proposition III-1, we know that the centre of the circle lies

Join BG and bisect at point L

on the line AC

A circle does not cut a circle at more points than two.

HK = KB
AC \(\pm \) HB
BL = LG
NO \(\pm \) BG

Proof by Contradiction

Assume we have two circles which intersect at 4 points

Join BH and bisect at point K

Construct a line perpendicular to HB, at point K

From proposition III-1, we know that the centre of the circle lies on the line AC

Join BG and bisect at point L

Construct a line perpendicular to BG, at point L

A circle does not cut a circle at more points than two.

HK = KB $AC \perp HB$ BL = LG $NO \perp BG$

Proof by Contradiction

Assume we have two circles which intersect at 4 points

Join BH and bisect at point K

Construct a line perpendicular to HB, at point K

From proposition III-1, we know that the centre of the circle lies on the line AC

Join BG and bisect at point L

Construct a line perpendicular to BG, at point L

From proposition III·1, we know that the centre of the circle ABC lies on the line NO

A circle does not cut a circle at more points than two.

HK = KB

AC 1 HB

BL = LG

NO ⊥ BG

P is the centre of ABC

Proof by Contradiction

Assume we have two circles which intersect at 4 points

Join BH and bisect at point K

Construct a line perpendicular to HB, at point K

From proposition III-1, we know that the centre of the circle lies on the line AC

Join BG and bisect at point L

Construct a line perpendicular to BG, at point L

From proposition III·1, we know that the centre of the circle ABC lies on the line NO

If the centre of the circle is on AC and NO, then the centre of the circle ABC must be point P

A circle does not cut a circle at more points than two.

HK = KB

AC 1 HB

BL = LG

NO ⊥ BG

P is the centre of ABC

Proof by Contradiction

Assume we have two circles which intersect at 4 points

Join BH and bisect at point K

Construct a line perpendicular to HB, at point K

From proposition III-1, we know that the centre of the circle lies on the line AC

Join BG and bisect at point L

Construct a line perpendicular to BG, at point L

From proposition III·1, we know that the centre of the circle ABC lies on the line NO

If the centre of the circle is on AC and NO, then the centre of the circle ABC must be point P

A circle does not cut a circle at more points than two.

HK = KB

AC 1 HB

BL = LG

NO ⊥ BG

P is the centre of ABC

Proof by Contradiction

Assume we have two circles which intersect at 4 points

Join BH and bisect at point K

Construct a line perpendicular to HB, at point K

From proposition III-1, we know that the centre of the circle lies on the line AC

Join BG and bisect at point L

Construct a line perpendicular to BG, at point L

From proposition III·1, we know that the centre of the circle ABC lies on the line NO

If the centre of the circle is on AC and NO, then the centre of the circle ABC must be point P

A circle does not cut a circle at more points than two.

Proof by Contradiction

Assume we have two circles which intersect at 4 points

Join BH and bisect at point K

Construct a line perpendicular to HB, at point K

From proposition III-1, we know that the centre of the circle lies on the line AC

Join BG and bisect at point L

Construct a line perpendicular to BG, at point L

From proposition III·1, we know that the centre of the circle ABC lies on the line NO

If the centre of the circle is on AC and NO, then the centre of the circle ABC must be point P

A circle does not cut a circle at more points than two.

Proof by Contradiction

Assume we have two circles which intersect at 4 points

Join BH and bisect at point K

Construct a line perpendicular to HB, at point K

From proposition III-1, we know that the centre of the circle lies on the line AC

Join BG and bisect at point L

Construct a line perpendicular to BG, at point L

From proposition III·1, we know that the centre of the circle ABC lies on the line NO

If the centre of the circle is on AC and NO, then the centre of the circle ABC must be point P

A circle does not cut a circle at more points than two.

Proof by Contradiction

Assume we have two circles which intersect at 4 points

Join BH and bisect at point K

Construct a line perpendicular to HB, at point K

From proposition III-1, we know that the centre of the circle lies on the line AC

Join BG and bisect at point L

Construct a line perpendicular to BG, at point L

From proposition III·1, we know that the centre of the circle ABC lies on the line NO

If the centre of the circle is on AC and NO, then the centre of the circle ABC must be point P

Using the same logic, it can be demonstrated that P is also the centre of DEF

But two intersecting circles cannot have the same centre (III·5), hence a contradiction

A circle does not cut a circle at more points than two.

Proof by Contradiction

Assume we have two circles which intersect at 4 points

Join BH and bisect at point K

Construct a line perpendicular to HB, at point K

From proposition III-1, we know that the centre of the circle lies on the line AC

Join BG and bisect at point L

Construct a line perpendicular to BG, at point L

From proposition III·1, we know that the centre of the circle ABC lies on the line NO

If the centre of the circle is on AC and NO, then the centre of the circle ABC must be point P

Using the same logic, it can be demonstrated that P is also the centre of DEF

But two intersecting circles cannot have the same centre (III·5), hence a contradiction

Thus two circles cannot intersect at more than two points

Youtube Videos

https://www.youtube.com/c/SandyBultena

Except where otherwise noted, this work is licensed under http://creativecommons.org/licenses/by-nc/3.0