EX 1.

- 1. If a x b, det (A) 20 so matric is singular. Therefore, matrix is mal-condition, solution of this system can have rounding errors.
- 2. By solving the linear system, we get $\alpha = \frac{-a}{b^2 a^2} \text{ and } y = \frac{b}{b^2 a^2}$

As $a \approx b$, we will have very bad concellation error. from calculating $b^2 - a^2$.

On the other hand, as $2+y=\frac{1}{a+b}$, Z=X+y we can calculate it numerically with precision.

1. For n=3.

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix} = \begin{pmatrix}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{pmatrix} \begin{pmatrix}
l_{11} & l_{21} & l_{32} \\
0 & 0 & l_{33}
\end{pmatrix}$$

$$= \begin{pmatrix}
l_{11} & l_{11} & l_{21} \\
l_{21} & l_{11} & l_{21} \\
l_{21} & l_{11} & l_{21} \\
l_{31} & l_{11} & l_{31} l_{21} + l_{32}
\end{pmatrix}$$

$$= \begin{pmatrix}
l_{11} & l_{11} & l_{21} \\
l_{21} & l_{11} & l_{21} + l_{22} \\
l_{31} & l_{11} & l_{31} l_{21} + l_{32} l_{22}
\end{pmatrix}$$

$$= \begin{pmatrix}
l_{11} & l_{21} & l_{21} \\
l_{21} & l_{21} & l_{21} \\
l_{31} & l_{31} & l_{32} \\
l_{31} & l_{32} & l_{32}
\end{pmatrix}$$

2. The MATLAB function will be the following algorithm

For
$$i=1:n$$

line = $1:n$

line = $1:n$

line = $1:n$

line = $1:n$

for $j=i+1:n$

line = $1:n$

l

3. By applying algorithm we get A=LLT with

$$L = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

$$f_i$$
 is from class C^{∞} on \mathbb{R}^2 and $\nabla f_i(x,y) = \begin{pmatrix} y+1\\ x-1 \end{pmatrix}$

Therefore, the only critical point which is a solution
$$\nabla f_i(x',y') = 0$$
 and $(x',y') = (1,-1)$

The Hessian matrix
$$H_{f_i}(x,y) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 does not depend on point (x,y)

2,
$$f_2(x, y) = \frac{x^4}{4} - 2x^2 + y^2 - 4y$$

The solution of the equation
$$\nabla f_2(x,y) = \begin{pmatrix} x^3 - 4x \\ 2y - 4 \end{pmatrix}$$

(0.2) (2.2) I wation
$$\nabla f_2(x,y) = 0$$
 are

The Hessian matrix is given by
$$Hf_2(x,y) = \begin{pmatrix} 3\chi^2 - 4 & 0 \end{pmatrix}$$

Eigenvalue of $Hf_2(x,y)$ are $\lambda_1 = 3\chi^2 - 4$ and $\lambda_2 = 2$

Therefore, Hfz (0,2) has a value of -4 and 2, So it is saddle point The matrix Hfz(2,2) = Hfz(-2,2) have value of 8 and 2 So, (2,2) and (-2,2) are local minimums,

1. $V(h,r) = \pi r^2 h$, $S(h,r) = 2\pi r h + 2\pi r^2$ $= 2\pi r(h+r)$

2. We want to solve the problem

$$\begin{cases} \min S(h,r) & \text{one the constraints} \\ h>0, r>0 & V(h,r)=V_0 \end{cases}$$

3. Using the fact that $V_0 = \pi r^2 h$, we can rewrite the problem as

$$\left\{ \min \left(2\pi r^2 + \frac{2V_0}{V} \right) \right\}$$
 under the constraint $r > 0$.

Ex4

4. Let
$$f(r) = 2\pi r^2 + \frac{2V_0}{r}$$
 on R^+ , $f'(r) = 4\pi r - \frac{V_0}{r^3}$.

The only critical point ro verifying $f'(r_0) = 0$ and $r_0 = \sqrt[3]{V_0/(2\pi)}$

Moreover, as second derivative f" is always strickly positive, the function is strickly convex and the local minimum is global.

So, $r_0 = \sqrt[3]{V_0/(2\pi)}$ and $h_0 = V_0/(\pi r_0^2)$