

Preparing beautiful presentations in the HZDR and HIF styles

— A LATEX template —

Alexander Grahn¹, John Doe², Jane Roe²

¹Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, mailto:a.grahn@hzdr.de, https://www.hzdr.de

²Massachusetts Institute of Technology, Media Lab

September 20, 2023

Introduction

This template is based on the popular LATEX Beamer class. It mimics the official presentation template outlined in the corporate design manual. For producing a HIF version, enable the global hif option:

HIF setting

```
\documentclass[hif, ...]{beamer}
```

PDF and SVG output is possible (see below). SVG offers some interesting features: embedded videos, GIFs and animations that work reliably in modern Web browsers, such as Chrome, Edge and Firefox, and the mouse pointer can be turned into an emulated laser spot: •

SVG settings

```
\documentclass[
  dvisvgm, hypertex, % required
  laserspot % optional
]{beamer}
```

Send bug reports and feature requests to a.grahn@hzdr.de or open an issue on the bug tracker.

Producing output (I)

This presentation and its sources are packaged as a zip archive which can be downloaded here. It can also be downloaded or cloned from its source repository.

The archive's root directory, LaTeX-Beamer-2020, should be used as the master. Make a copy of it for every new presentation. Alternatively, the subdirectory beamerthemehzdr can be copied to \$TEXMFHOME/tex/latex/. On Unix-like systems, the personal texmf tree is located in the user's home directory as ~/texmf. In doubt, it can be found with kpsewhich --var-value TEXMFHOME on the command line.

Also, the zip file can be imported as a new project in the Overleaf online editor.

Building the presentation requires at least TEX Live 2023 (preferred) or MiKTeX with up-to-date packages. Both distributions can be installed with normal user privileges alongside a system-wide installation. Additionally, building the SVG version needs a recent Ghostscript.

PDF

pdflatex talk % or lualatex talk

Producing output (II)

For SVG output, first enable the hypertex and dvisvgm document class options in the input file.

SVG

As usual, run latex as often as needed to resolve internal references. Runs of bibtex/biber and makeindex may be necessary if the presentation contains citations or an index.

Part I

This is a Part page.

Frame Title

Frame Subtitle

Some math text:

$$E = mc^2 (1)$$

$$\rho = \frac{m}{V} \tag{2}$$

$$\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \tag{3}$$

$$\int_0^1 2x \, \mathrm{d}x = 1 \tag{4}$$

$$\log(a \cdot b) = \log a + \log b \tag{5}$$

Colours (Primary)

Pre-defined, named colours are available and can be used with the usual colour commands, such as \textcolor{<colour>}{...}.

Primary colours

Primary colours at different saturations

Colours (Secondary)

Part II

Videos and animations

(Available only in the SVG version.)

THE END.

Thank you for your attention!

