COMP9334 Capacity Planning for Computer Systems and Networks

Week 3A: Queues with Poisson arrivals (2)

Pre-lecture exercise

- You have a loaded die with 6 faces with values 1, 2, 3, 4, 5 and 6
- The probability that you can get each face is given in the table below
- What is the mean value that you can get?

Value	Probability
1	0.1
2	0.1
3	0.2
4	0.1
5	0.3
6	0.2

T1, 2024 COMP9334

Single-server queue

- Open, single server queues
- How to find:
 - Waiting time
 - Response time
 - Mean queue length etc.
- The technique to find waiting time etc. is called Queueing Theory

COMP9334 3 T1, 2024

Multiple server queue

Departures

- Open, multi-server queue
- How to find:
 - Waiting time
 - Response time
 - Mean queue length etc.

What will you be able to do with the results?

Which configuration has the best response time?

COMP9334

T1, 2024

Single Server Queue: Terminology

Response Time T

= Waiting time W + Service time S

Note: We use T for response time because this is the notation in many queueing theory books. For a similar reason, we will use ρ for utilisation rather than U.

T1, 2024

Call centre analogy from Week 2B

- Consider a call centre
 - Calls are arriving according to Poisson distribution with rate λ
 - The length of each call is exponentially distributed with parameter μ
 - Mean length of a call is 1/ μ

Call centre:

Arrivals

m operators

If all operators are busy, the centre can put at most *n* additional calls on hold. If a call arrives when all operators and holding slots are used, the call is rejected.

- We solved the problems for
 - (m = 1 and n = 0), and (m = 1 and n = 1)
- How about other values of m and n? What about response time?

T1, 2024 COMP9334

Kendall's notation

- To represent different types of queues, queueing theorists use the Kendall's notation
- The call centre example on the previous page can be represented as:

The call centre example on the last page is a M/M/m/(m+n) queue If $n = \infty$, we simply write M/M/m

M/M/1 queue

Exponential Inter-arrivals (λ) **Exponential** Service time (μ)

Infinite buffer

One server

- Consider a call centre analogy
 - Calls are arriving according to Poisson distribution with rate λ
 - The length of each call is exponentially distributed with parameter μ
 - Mean length of a call is $1/\mu$

Arrivals

Call centre with 1 operator If the operator is busy, the centre will put the call on hold.

A customer will wait until his call is answered.

- Queueing theory will be able to answer these questions:
 - What are the mean waiting time, mean response time for a call?

COMP9334 T1, 2024

Little's Law

- Applicable to any "box" that contains some queues or servers
- Mean number of requests in the "box" =
 Mean response time x Throughput
- We will use Little's Law in this lecture to derive the mean response time
 - We first compute the mean number of requests in the "box" and throughput
- For the computation of throughput, we have from week 1A:
 - Throughput = min(offered load, maximum processing rate)
 - Note: the offered load will need to be adjusted if jobs can be rejected

M/M/1: State and transition diagram

- We will solve for the steady state response
- Define the states of the queue
 - State 0 = There are zeros job in the system (= The server is idle)
 - State 1 = There is 1 job in the system (= 1 job at the server, no job queueing)
 - State 2 = There are 2 jobs in the system (= 1 job at the server, 1 job queueing)
 - State k = There are k jobs in the system (= 1 job at the server, k-1 job queueing)
- The state transition diagram

M/M/1 state balance:

 $P_k = \text{Prob. } k \text{ jobs in system}$

$$\lambda P_0 = \mu P_1$$

$$\Rightarrow P_1 = \frac{\lambda}{\mu} P_0$$

M/M/1 state balance: Exercise 1

Exercise: Write the state balance equation for State 1

$$\lambda P_0 + \mu P_2 = (\lambda + \mu) P_1$$

M/M/1 state balance: Exercise 2

• Exercise: Write the state balance equation for magenta box, i.e.

Rate of transiting out of the magenta box

= Rate of transiting into the magenta box

$$\lambda P_1 = \mu P_2$$

Which state balance is easier to work with?

State balance for State 1

$$\lambda P_0 + \mu P_2 = (\lambda + \mu) P_1$$

State balance for State 1 and State 2 combined

$$\lambda P_1 = \mu P_2$$

M/M/1 state balance: Relating P₂ and P₀

$$\lambda P_0 = \mu P_1$$
 $\lambda P_1 = \mu P_2$
 $\Rightarrow P_2 = \frac{\lambda}{\mu} P_1 \Rightarrow P_2 = \left(\frac{\lambda}{\mu}\right)^2 P_0$

M/M/1 state balance: Relating P_3 and P_0

$$\lambda P_2 = \mu P_3$$

$$\Rightarrow P_3 = \frac{\lambda}{\mu} P_2 \quad \Rightarrow P_3 = \left(\frac{\lambda}{\mu}\right)^3 P_0$$

M/M/1 state balance: Relating P_k and P_0

In general
$$P_k = \left(\frac{\lambda}{\mu}\right)^k P_0$$

Let
$$\rho = \frac{\lambda}{\mu}$$

We have
$$P_k = \rho^k P_0$$

Solving for P_k

With
$$P_k=
ho^kP_0$$
 and

$$P_0 + P_1 + P_2 + P_3 + \dots = 1$$

$$\Rightarrow (1 + \rho + \rho^2 + ...)P_0 = 1$$

$$\Rightarrow P_0 = 1 - \rho \text{ if } \rho < 1$$

$$\Rightarrow P_k = (1 - \rho)\rho^k$$

Since
$$\rho = \frac{\lambda}{\mu}$$
 , $\rho < 1 \Rightarrow \lambda < \mu$

Arrival rate < service rate

Claim: ρ is the utilisation

$$\rho = 1 - P_0$$

= 1 - Prob server is idle

= Prob server is busy

T1. 2024 COMP9334

Exercise: Mean number of jobs

Recall that $P_k = \text{Prob. } k \text{ jobs in system}$

and we have calculated that

$$P_k = (1 - \rho)\rho^k$$

Determine the mean number of jobs in the system.

Hint 1: Look at pre-lecture exercise 1.

You can use the following formula to help you.

For $0 \le x < 1$,

$$p + x(p+q) + x^{2}(p+2q) + x^{3}(p+3q) + \dots = \frac{p}{1-x} + \frac{xq}{(1-x)^{2}}$$

Mean number of jobs

$$P_k = \text{Prob. } k \text{ jobs in system}$$

$$P_k = (1 - \rho)\rho^k$$

The mean number of jobs in the system =

$$\sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k (1 - \rho) \rho^k$$
$$= \frac{\rho}{1 - \rho}$$

M/M/1: mean response time

Little's law: mean number of customers = throughput x response time

Throughput is λ (why?)

Response time
$$T = \frac{\rho}{\lambda(1-\rho)} = \frac{1}{\mu-\lambda}$$

Exercise: M/M/1 mean waiting time

What is the mean waiting time at the queue?

Mean waiting time = mean response time - mean service time

We know mean response time (from last slide)

Mean service time is = 1 / μ

Using the service time parameter $(1/\mu = 15ms)$ in the

example, let us see how response time T varies with $\boldsymbol{\lambda}$

$$T = \frac{1}{\mu(1-\rho)}$$

Observation:
Response time
increases
sharply when
ρ gets close
to 1

Infinite queue assumption means $\rho \to 1$, $T \to \infty$

Non-linear effect on response time

• The response time of an M/M/1 queue $= rac{1}{\mu - \lambda}$

- Assuming the mean arrival rate is 10 requests/s
- We will calculate the effect of service rate on response time
- What can you conclude?

Service rate	Utilisation λ/μ	Response time
11	10/11 = 0.909	1/(11 - 10) = 1
22	10/22 = 0.454	1/(22 - 10) = 0.08

 Doubling the service rate can sometimes reduce by response time by a factor more than 2.

Multi-server queues M/M/m

All arrivals go into one queue.

Customers can be served by any one of the *m* servers.

When a customer arrives

- If all servers are busy, it will join the queue
- Otherwise, it will be served by one of the available servers

A call centre analogy of M/M/m queue

- Consider a call centre analogy
 - Calls are arriving according to Poisson distribution with rate λ
 - The length of each call is exponentially distributed with parameter μ
 - Mean length of a call is 1/ μ

Arrivals

Call centre with *m* operators If all *m* operators are busy, the centre will put the call on hold.

A customer will wait until his call is answered.

State transition for M/M/m

M/M/m

Following the same method, we have mean response time T is

$$T = \frac{C(\rho, m)}{m\mu(1 - \rho)} + \frac{1}{\mu}$$

where

$$\rho = \frac{\lambda}{m\mu}$$

$$C(\rho, m) = \frac{\frac{(m\rho)^m}{m!}}{(1 - \rho) \sum_{k=0}^{m-1} \frac{(m\rho)^k}{k!} + \frac{(m\rho)^m}{m!}}$$

Multi-server queues M/M/m/m with no waiting room

An arrival can be served by any one of the *m* servers.

When a customer arrives
• If all servers are busy, it
will depart from the
system

• Otherwise, it will be served by one of the available servers

A call centre analogy of M/M/m/m queue

- Consider a call centre analogy
 - Calls are arriving according to Poisson distribution with rate λ
 - The length of each call is exponentially distributed with parameter μ
 - Mean length of a call is 1/ μ

Arrivals

Call centre with *m* operators If all *m* operators are busy, the call is dropped.

State transition for M/M/m/m

Probability that an arrival is blocked

= Probability that there are m customers in the system

$$P_m = rac{rac{
ho^m}{m!}}{\sum_{k=0}^m rac{
ho^k}{k!}}$$
 where $ho = rac{\lambda}{\mu}$ "Erlang B formula"

What configuration has the best response time?

Try out the tutorial question!

COMP9334

speed p

T1, 2024

33

Summary

- Queues with Poisson arrivals and exponential service time
- Different configurations
 - Single server, multiple servers
 - Finite or infinite waiting places
- Analysis technique
 - Draw a diagram with the states
 - Add arcs between states with transition rates
 - Derive flow balance equation for each state, i.e.
 - Rate of entering a state = Rate of leaving a state
 - Solve the equation for steady state probability
- Little's Law to find mean response time

References

Recommended reading

- Queues with Poisson arrival are discussed in
- Bertsekas and Gallager, Data Networks, Sections 3.3 to 3.4.3
- Note: I derived the formulas here using continuous Markov chain but Bertsekas and Gallager used discrete Markov chain
- Mor Harchal-Balter. Chapters 13 and 14