Massachusetts Institute of Technology

Instructors: Jason Ku, Julian Shun, and Virginia Williams Lecture 6: Binary Trees I

Sep. 24, 2019

Lecture 6: Binary Trees I

Previously

	Operations $O(\cdot)$					
Sequence	Container	Static	Dynamic			
Data Structure	build(A)	get_at(i)	insert_first(x)	insert_last(x)	insert_at(i, x)	
		set_at(i,x)	delete_first()	delete_last()	delete_at(i)	
Array	n	1	n	n	n	
Linked List	n	n	1	n	n	
Dynamic Array	n	1	n	$1_{(a)}$	n	
Goal	n	$\log n$	$\log n$	$\log n$	$\log n$	

	Operations $O(\cdot)$					
Set	Container	Static	Dynamic	Order		
Data Structure	build(A)	find(k)	insert(x)	find_min()	find_prev(k)	
			delete(k)	find_max()	find_next(k)	
Array	n	n	n	n	n	
Sorted Array	$n \log n$	$\log n$	n	1	$\log n$	
Direct Access Array	u	1	1	u	u	
Hash Table	$n_{(e)}$	$1_{(e)}$	$1_{(a)(e)}$	n	n	
Goal	$n \log n$	$\log n$	$\log n$	$\log n$	$\log n$	

How? Binary Trees!

- Pointer-based data structures (like Linked List) can achieve worst-case performance
- Binary tree is pointer-based data structure with three pointers per node
- Node Representation: node. {item, parent, left, right}
- Example:

Terminology

- The **root** of a tree has no parent (**Ex:** <A>)
- A **leaf** of a tree has no children (**Ex:** <C>, <E>, and <F>)
- The **depth** D (<X>) of node <X> in a tree rooted at <R> is length of path from <X> to <R>
- The **height** H (<X>) of node <X> is max depth of any node in the subtree rooted at <X>
- Idea: Design operations to run in O(h) time for root height h, and maintain $h = O(\log n)$
- A binary tree has an inherent order: its traversal order
 - every node in node <X>'s left subtree is before <X>
 - every node in node <X>'s right subtree is **after** <X>
- List nodes in traversal order via a recursive algorithm starting at root:
 - Recursively list left subtree, list self, then recursively list right subtree
 - Runs in O(n) time, since O(1) work is done to list each node
 - Example: Traversal order is (<F>, <D>, , <E>, <A>, <C>)
- Right now, traversal order has no meaning relative to the stored items
- Next time, assign semantic meaning to traversal order to implement Sequence/Set interfaces

Tree Navigation

- Find first node in the traversal order of node <X>'s subtree (last is symmetric)
 - If <X> has left child, recursively return the first node in the left subtree
 - Otherwise, <x> is the first node, so return it
 - Running time is O(h) where h is the height of the tree
 - **Example:** first node in <A>'s subtree is <F>
- **Find successor** of node <X> in the traversal order (predecessor is symmetric)
 - If <X> has right child, return first of right subtree
 - Otherwise, return lowest ancestor of <X> for which <X> is in its left subtree
 - Running time is O(h) where h is the height of the tree
 - Example: Successor of: is <E>, <E> is <A>, and <C> is None

Dynamic Operations

- Change the tree by a single item (only add or remove leaves):
 - add a node before another in the traversal order (after is symmetric)
 - remove an item from the tree
- Add node <y> before node <x> in the traversal order
 - If <X> has no left child, make <Y> the left child of <X>
 - Otherwise, make <y> the right child of <x>'s predecessor (which cannot have a right child)
 - Running time is O(h) where h is the height of the tree
 - **Example:** Add node <G> before <E> in traversal order

– Example: Add node <H> after <A> in traversal order

- **Remove** the item in node <X> from <X>'s subtree
 - If <x> is a leaf, detach from parent and return
 - Otherwise, <x> has a child
 - * If <X> has a left child, swap items with the predecessor of <X> and recurse
 - * Otherwise <X> has a right child, swap items with the successor of <X> and recurse
 - Running time is O(h) where h is the height of the tree
 - **Example:** Remove <F> (a leaf)

– Example: Remove <A> (not a leaf, so first swap down to a leaf)

Rotations

- Want trees with small height, i.e., $h = O(\log n)$
- If height grows, need to change tree structure without changing traversal order
- How to change the structure of a tree, while preserving traversal order? **Rotations!**

- A rotation relinks O(1) pointers to modify tree structure and maintains traversal order
- Claim: O(n) rotations can transform a binary tree to any other with same traversal order.
- **Proof:** Repeatedly perform last possible right rotation in traversal order; resulting tree is a canonical chain. Each rotation increases depth of the last node by one. Depth of last node in final chain is n-1, so at most n-1 rotations are performed. Reverse canonical rotations to reach target tree.
- Can maintain height-balance by using O(n) rotations to fully balance the tree, but slow :(
- But we want to keep the tree balanced in $O(\log n)$ time!

Next Time

- Keep a binary tree balanced after insertion or deletion
- Implement efficient Set and Sequence Interfaces using a Binary Tree