

三角比的定義及其性質

學測趨勢〉三角形是最基本的圖形,應用三角比可以把三角形的邊邊角角算得一清二楚,只要 題目牽涉到圖形的角度、長度與面積,請同學要能動腦聯想定理的使用。

準備方向 本章的命題重點在於銳角、廣義角的三角比定義,與相關定理、公式的計算,請同 學先把公式弄熟,遇到題目才能即時反應。

年 度	101	102	103	104	105	106	107	108	109	110
學測命題數	1	1	3	3	2	2	2	1	3	3

一、三角比的定義及關係

- ① 銳角的三角比:銳角 θ 為直角三角形的內角,兩股為其對邊與鄰邊,則:

(1) $\sin \theta = \frac{\text{對邊}}{\text{糾邊}}$,稱為 θ 的正弦值。

(2) $\cos \theta = \frac{\text{鄰邊}}{\text{ఖ邊}}$,稱為 θ 的餘弦值。

(3) $\tan \theta = \frac{\text{對邊}}{\text{| 数邊}} = \frac{\sin \theta}{\cos \theta}$,稱為 θ 的正切值。

例 A 有一等腰三角形底邊為 10,頂角 72°,下列何者可以表示腰長?

- (A) $5 \cdot \sin 36^{\circ}$ (B) $5 \cdot \tan 36^{\circ}$ (C) $\frac{5}{\tan 36^{\circ}}$ (D) $\frac{5}{\cos 36^{\circ}}$

例 В
$$\theta$$
 為銳角,若 $\sin \theta = \frac{3}{5}$,則 $\cos \theta =$, $\tan \theta =$ 。

例 C 設 $\triangle ABC$ 三頂點 $A \times B \times C$ 對邊的邊長分別為 $a \times b \times c \times \overline{AH}$ 為高 $\overline{AH} =$

- (A) $b \cdot \sin B$ (B) $c \cdot \sin C$ (C) $b \cdot \sin C$ (D) $c \cdot \sin B$ (E) $a \cdot \sin A$

② 有向角與同界角:坐標平面上,有向角 θ 從 x 軸正向轉到終邊,逆時針方向為正, 順時針方向為負,稱為標準位置角。若終邊在第i象限,稱 θ 為第i象限角。若 $\angle A$ 與 $\angle B$ 的終邊重合,則互為<mark>同界角</mark>,相差 360° 的整數倍。

- M A 950°是第 象限角,其最小正同界角為。。

- MB 若有向角 θ 如右圖示,則 θ 最接近:
 - $(A) 40^{\circ}$

- (B) 400° (C) -320° (D) -680°
- → 讀完可以先練習範例 2
- **③** 極坐標與有向角的三角比:有向角 θ 終邊上任一點 P(x,y), $\Rightarrow r = \sqrt{x^2 + y^2}$,則 P 點的極坐標表法為 $[r, \theta]$ 。定義 $\sin \theta = \frac{y}{r}$, P(x,y) $\cos \theta = \frac{x}{r}$, $\tan \theta = \frac{y}{r}$, 當 θ 為銳角時, 此定義與對邊、鄰邊的 定義吻合。

- 例 A 有向角 θ 終邊通過 (2,-3),則 $\sin\theta =$, $\cos\theta =$, $\tan\theta =$
- 例 В 標準位置角 θ 的終邊通過點 (k+1,2k-3),若 $\tan \theta = \frac{5}{2}$,求 $k = ____$ 。
- 例 C 平面上兩點 $P[3,70^{\circ}]$ 與 $Q[4,160^{\circ}]$ 的距離為
 - 4 單位圓的點坐標與特別角:圓的半徑為1,圓心在原點, 有向角 θ 的終邊與此圓交於一點,其點坐標的 x 值為 $\cos \theta$ v 值為 $\sin \theta$ 。常使用的特別角有 30°、45°、60°、120°、 135°、150°、210°、225°、240°、300°、315°、330°。另外 15°、18°、36°、54°、72°、75°若需要都會註明。

答對率 53% 105 學測

例 A 請問 sin 73°、sin 146°、sin 219°、sin 292°、sin 365° 這五個數值的中位數是哪一

(A) sin 73°

(B) sin 146°

 $(C) \sin 219^{\circ}$

 $(D) \sin 292^{\circ}$

- (E) sin 365°
- (3) $\sin 180^{\circ} =$ ______, $\cos 0^{\circ} =$ ______, $\cos 180^{\circ} =$ ______, $\cos 180^{\circ} =$ ______, $\cos 270^{\circ} =$ _______, $\cos 270^{\circ} =$ _______.

- 例 C $(1) \sin 120^\circ =$, $\cos 120^\circ =$
 - (2) $\sin 135^{\circ} =$ $\cos 135^{\circ} =$
 - (3) $\sin 150^{\circ} =$ $\cos 150^{\circ} =$
 - $(4) \sin 240^{\circ} =$ $\cos 240^{\circ} =$
- 例 D 最接近 1300° 且使 $\sin \theta = \frac{1}{2}$ 的角度 $\theta =$ ____

→ 讀完可以先練習範例 3

→ 讀完可以先練習範例 4

- **5** 平方關係:由定義直接推得 $\sin^2\theta + \cos^2\theta = 1$,即為畢氏定理。
- 例 A 若 $\sin x \cos x = \frac{1}{2}$,則 $\sin x \cos x =$
- 例 В 設有向角滿足 $2\sin\theta \cos\theta = 1$, 求 $\cos\theta =$
- 例 C 設 $x \in R$, $f(x) = \cos^2 x + \frac{1}{2}\sin x 1$, 則 f(x) 最大值為 , 最小值為

6 三角比的角度變換

- (1)取餘角,要正餘互換。

 - ① $\sin(90^{\circ} \theta) = \cos\theta$ ② $\cos(90^{\circ} \theta) = \sin\theta$ ∘
- (2)**取補角, sin 不變**:當角度在 90°~ 180°內,可取補角。
 - ① $\sin(180^{\circ} \theta) = \sin \theta$
- $(2)\cos(180^{\circ}-\theta)=-\cos\theta$
- ③ $\tan (180^{\circ} \theta) = -\tan \theta$ \circ
- (3)角變號, cos 不變。
 - $(1) \sin(-\theta) = -\sin\theta$
- $(2)\cos(-\theta) = \cos\theta$
- $3 \tan(-\theta) = -\tan\theta$
- (4)加減 180°, tan 不變: 若角度在 180°~ 360°之間,則可先 減 180°。
 - ① $\sin(\theta \pm 180^\circ) = -\sin\theta$
- $(2) \cos(\theta \pm 180^\circ) = -\cos\theta$
- ③ $\tan (\theta \pm 180^{\circ}) = \tan \theta \circ$

- **例A** 取餘角:(1) sin 40°=
- $(2) \cos 20^{\circ} = \qquad \circ$
- 例 B 取補角:(1) sin 100° = _____。
 (3) tan 170° = ____。
- (2) $\cos 130^{\circ} =$
- 例 C 角變號:(1) $\sin(-10^\circ) =$ _____ (2) $\cos(-40^\circ) =$ _____ (3) $\tan(-80^\circ) =$ _____ \circ
- 例 D 減 180° : (1) $\sin 220^{\circ} =$ _____ (2) $\cos 250^{\circ} =$ _____ (3) $\tan 290^{\circ} =$ _____

二、正、餘弦定理與面積公式

- 例 A $\triangle ABC$ 中,已知 $\sin A = \frac{1}{4}$, $\sin B = \frac{1}{3}$, $\overline{BC} = 6$,則:
 - (1) $\overline{AC} =$

- (2)外接圓半徑 $R = \circ$
- 例 B $\triangle ABC$ 中,若 $\angle A = 30^{\circ}$, $\angle B = 45^{\circ}$,則 \overline{AB} : \overline{BC} : $\overline{CA} =$
- 例 C 如右圖所示,ABCD 為圓內接四邊形,若 $\angle DBC = 30^{\circ}$, $\angle ABD = 45^{\circ}$, $\overline{CD} = 6$,則線段 $\overline{AD} = \circ$

→ 讀完可以先練習範例 6、7

8 餘弦定理: $\triangle ABC$ 中, $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$, 即 $a^2 = b^2 + c^2 - 2bc \cos A \circ$ 適用於 SSS 或 SAS 的三角形。

例 A $\triangle ABC$ 中 ,已知 $\overline{AB} = 4$, $\overline{BC} = 6$, $\overline{CA} = 7$,則 $\cos A =$

例 B $\triangle ABC$ 中,若 $\overline{AB} = 5$, $\overline{AC} = 2$, $\angle A = 120^{\circ}$,則 $\overline{BC} =$ ______

- 例 $\triangle ABC$ 的重心為 G,若 $\overline{GA} = 6$, $\overline{GB} = 5$, $\overline{GC} = 7$,則邊長 $\overline{BC} = \underline{\qquad}$ 。
- 例 B 邊長為 5 的菱形,其兩對角線長的平方和為。。

壹 讀完可以先練習範例 8、9、10

- \bigcirc 三角形求面積: $\triangle ABC$ 之三對邊為 $a \times b \times c$,其面積依條件有多種求法。
 - (1)基本公式: $\triangle ABC = \frac{1}{2} \times 底 \times 高 = \frac{1}{2} ab \sin C$ 。
 - (2)海龍公式: $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)} = rs$,其中 $s = \frac{a+b+c}{2}$ 為半周長,r 為內切圓半徑。

- (3)向量公式: \vec{a} 、 \vec{b} 張成的三角形面積為 $\frac{1}{2}\sqrt{|\vec{a}|^2|\vec{b}|^2 (\vec{a} \cdot \vec{b})^2} = \frac{1}{2}|\vec{a} \times \vec{b}|$,後者為外積的應用,僅適用於空間坐標。若 $\vec{a} = (x_1, y_1)$ 、 $\vec{b} = (x_2, y_2)$,則 \vec{a} 、 \vec{b} 張成的三角形面積為 $\frac{1}{2}|\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}|$ 。所以三角形面積的向量公式有內積、外積、行列式三種版本,其題型應用請見《對話式數學A 3 4 冊學測複習講義》。
- 例 $\triangle ABC$, $\overline{AB} = 5$, $\overline{AC} = 4$, $\angle A = 60^{\circ}$, 則 $\triangle ABC$ 面積為
- 例 B $\triangle ABC$, $\overline{AB}=6$, $\overline{AC}=10$, $\angle BAC=120^\circ$, 點 P 在 \overline{BC} 上且 \overline{AP} 平分 $\angle BAC$, 求 $\overline{AP}=$

三角比的定義及其性

質

半徑為

- (1) 若 $-90^{\circ} \le \theta \le 90^{\circ}$ 目 $\sin \theta = k$,規定角 $\theta = \sin^{-1} k$,稱為反正弦 $\arcsin \circ$
- (2)若 $0^{\circ} \le \theta \le 180^{\circ}$ 且 $\cos \theta = k$,規定角 $\theta = \cos^{-1}k$,稱為反餘弦 arc $\cos \circ$
- (3)若 $-90^{\circ} < \theta < 90^{\circ}$ 且 $\tan \theta = k$,規定角 $\theta = \tan^{-1}k$,稱為反正切 $\arctan \circ$

例A 化簡:(1)
$$\sin^{-1}\frac{\sqrt{3}}{2} =$$
 _____ (2) $\cos^{-1}\frac{-1}{2} =$ ____ (3) $\tan^{-1}1 =$ ____ \circ

(2)
$$\cos^{-1} \frac{-1}{2} =$$

(3)
$$tan^{-1} 1 = ____ \circ$$

(2)
$$\sin(\cos^{-1}\frac{3}{5}) =$$

→ 讀完可以先練習範例 12、13

12 仰角、俯角與方位角

- (1)仰角:視線在水平線上方時,兩線 的夾角稱為仰角。
- (2) 俯角:視線在水平線下方時,兩線 的夾角稱為俯角。

- MA 有一艘船向南航行,在東30°南的方位發現一燈塔後,繼續向前進20浬,此時 燈塔的方向在北 30° 東,則此船航線與燈塔的最短距離為 浬。
- **囫B** 氣象局測出在 20 小時期間,颱風中心的位置由恆春東南方 400 公里直線移動到 恆春南 15° 西的 200 公里處, 試求颱風移動的平均速度為 ____公里/時。(整 數以下,四捨五入)

Ξ 角 比 的 定

及

性

質

例C	某人隔河測	一山高,在	A 點觀測山時	,山的方	位為東偏北 6	60°,山頂的作	印角為
	45°,某人自	A 點向東行	600 公尺到達	B點,山	的方位變成在	正西偏北 60°	,則山
	高為	公尺。					

例 D 某甲觀測一飛行中的熱氣球,發現其方向一直在正前方,而仰角則以等速遞減。 已知此氣球的高度維持不變,則汽球正以:

(A)等速飛行

(B)加速向某甲飛來

(C)減速向某甲飛來

(D)加速離某甲飛去 (E)減速離某甲飛去

範例 1 銳角三角比的定義

右圖為汽車迴轉示意圖。汽車迴轉時,將方向盤轉動到極限 ,以低速讓汽車進行轉向圓周運動,汽車轉向時所形成的圓 周的半徑就是迴轉半徑,如圖中的 \overline{BC} 即是。已知在低速前 進時,圖中 A 處的輪胎行進方向與 \overline{AC} 垂直,B 處的輪胎行 進方向與 \overline{BC} 垂直。在圖中,已知軸距 \overline{AB} 為 2.85 公尺,方 向盤轉到極限時,輪子方向偏了28度,試問此車的迴轉半 徑 BC 為 公尺。(小數點後第一位以下四捨五入, $\sin 28^{\circ} \approx 0.4695$, $\cos 28^{\circ} \approx 0.8829$)

104 學測

答對率32%

解

₩ 考情分析 -

這一題只用到 $\sin \theta = \frac{50}{4}$ 但因為敘述較長, 而且排 在當年選填的最後一題, 所以答對率只有三成多

類題 1 如右圖所示 (只是示意圖),將梯子 \overline{AB} 靠在與地面垂直 的牆 AC 上,測得與水平地面的夾角 $\angle ABC$ 為 60° 。將在 地面上的底 B 沿著地面向外拉 51 公分到點 F (即 $\overline{FB} = 51$ 公分),此時梯子 \overline{EF} 與地面的夾角 $\angle EFC$ 之正弦值為 $\sin \angle EFC = 0.6$,則梯子長 $\overline{AB} =$ 公分。

答對率 39% 107 學測

範例2 廣義角三角比的定義

在 ΔABC 中,M 為 \overline{BC} 邊之中點,若 $\overline{AB} = 3$, $\overline{AC} = 5$,且 $\angle BAC = 120^{\circ}$,則 tan $\angle BAM = \circ$ (化成最簡根式)

- ● 小小叮嚀 -

若沒有想到坐標,用餘弦定理、中線定理來解的話,推導過程會加長許多

類題 3 有向角 θ 以 x 軸正向為始邊,終邊與直線 2x + y + 3 = 0 相交於 P,已知 $\tan \theta = \frac{3}{4}$,則 $\sin \theta = \frac{1}{2}$, $\cos \theta = \frac{1}{2}$ $\cos \theta = \frac{1$

類題 4 坐標平面上,點 (x,y) 在有向角 θ 的終邊上,且 $x \setminus y$ 之值滿足 $\begin{cases} x < 3 \\ x - y > 0 \end{cases}$,試 x + 2y > 1

問下列各選項的推論哪些正確?_____

(A) $\sin \theta$ 必大於 0

(B) cos θ 必大於 0

(C) $\tan \theta$ 必大於 0

- $(D) \sin \theta \cdot \cos \theta \cdot \tan \theta$ 之值均小於 1
- $(E) \sin \theta \cdot \cos \theta \cdot \tan \theta$ 之值均大於 1

範例 3	平方關係	
早じ けょし	一一ノノ 蝉	刅

設 θ 為三角形 Γ 的一個內角,且 $\sin \theta \setminus \cos \theta$ 是 $3x^2 - 2x + k = 0$ 的兩根,請問下列 哪些選項的敘述為真?

- (A) k < -0.7
- (B) k > -0.8
- (C) Γ 為鈍角三角形
- (D) $\cos \theta > 0$
- $(E) k \cdot \sin \theta \cdot \cos \theta$ 之值均為有理數

類題 5 已知 $45^{\circ} < \theta < 50^{\circ}$,且設 $a = 1 - \cos^2 \theta$, $b = \frac{1}{\cos \theta} - \cos \theta$, $c = \frac{\tan \theta}{\tan^2 \theta + 1}$ 。關於 a、b、c 三個數值的大小,試選出正確的選項。 $_$

- (A) a < b < c
- (B) a < c < b
- (C) b < a < c

- (D) b < c < a
- (E) c < a < b

答對率 55% 109 指考甲

類題 6 方程式 $4x^2 - 5x + m = 0$ 的兩根是直角三角形的兩銳角的正弦,試求 m =

範例 4 三角比的角度變換

角 $A \times B \times C \times D \times E \times F$ 均為有向角,已知 $A + B = 180^{\circ}$, $B + C = 90^{\circ}$, $C - D = 180^{\circ}$, $D + E = 0^{\circ}$, $E - F = 270^{\circ}$,則:(1) $\sin A =$ $(2) \cos A =$

 $(A) \sin F$

(B) $\cos F$

(C) $\tan F$

 $(D) - \sin F$

 $(E) - \cos F$

 $(F) - \tan F$

小小叮嚀

善用「餘角、補角、角變 號、加減 180°」 這四招

類題 $\mathbf{7}$ 設 θ_1 、 θ_2 、 θ_3 、 θ_4 分別為第一、第二、第三、第四象限角,且都介於 $\mathbf{0}^\circ$ 與 $\mathbf{360}^\circ$ 之間。已知 $|\cos \theta_1| = |\cos \theta_2| = |\cos \theta_3| = |\cos \theta_4| = \frac{1}{3}$,請問下列哪些選項是正確 的?

(A) $\theta_1 < 45^{\circ}$

- (B) $\theta_1 + \theta_2 = 180^{\circ}$ (C) $\cos \theta_3 = -\frac{1}{3}$
- (D) $\sin \theta_4 = \frac{2\sqrt{2}}{3}$
- (E) $\theta_4 = \theta_3 + 90^\circ$

類題 8 如右圖, $\angle BAC = \theta$, $\angle ABD = \angle ACD = 90^{\circ}$, $\overline{AB} = a$, $\overline{BD} = b$, 下列選項何者可以表示 CD?

- (A) $a \sin \theta + b \cos \theta$
- (B) $a \sin \theta b \cos \theta$
- (C) $a \cos \theta b \sin \theta$
- (D) $a \cos \theta + b \sin \theta$
- (E) $a \sin \theta + b \tan \theta$

三角比的定義及其

如圖,正三角形 ABC 的邊長為 1,並且 $\angle 1 = \angle 2 = \angle 3 = 15^{\circ}$ 。 已知 $\sin 15^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4}$,則正三角形 DEF 的邊長為

。(化為最簡根式)

解

♥ 關鍵想法・

分析 $\triangle ABE$, 才是正確的 方向,思緒不要被 ΔDEF 給牽著走

類題 9 在與水平面成 10°的東西向山坡上,鉛直(即與水平 面垂直) 立起一根旗竿。當陽光從正西方以俯角 60° 平行投射在山坡上時,旗竿的影子長為11公尺,如 右圖所示(其中箭頭表示陽光投射的方向,而粗黑線 段表示旗竿的影子)。請問旗竿的長度最接近以下哪 一個選項? $(\sin 10^{\circ} \approx 0.174, \sin 20^{\circ} \approx 0.342,$ $\cos 10^{\circ} \approx 0.985$, $\cos 20^{\circ} \approx 0.940$, $\sqrt{3} \approx 1.732$)

- (A) 19.1 公尺
- (B) 19.8 公尺
- (C) 20.7 公尺
- (D) 21.1 公尺
- (E) 21.7 公尺
- 類題 10 在 $\triangle ABC$ 中,已知 $\overline{BC}=1$, $\sin A < \sin B$, $\sin A$ 與 $\sin B$ 為 $8x^2-4\sqrt{3}x+1=0$ 的 兩根,則 $\triangle ABC$ 的外接圓半徑等於:

 - (A) $\sqrt{3} 1$ (B) $2\sqrt{3} 1$ (C) $\sqrt{3} + 1$ (D) $\sqrt{3} + 2$ (E) $2\sqrt{3} + 1$

在邊長為 13 的正三角形 ABC 上各邊分別取一點 $P \times Q \times R$,使得 APQR 形成一平行四邊形,如右圖所示。若平行四 邊形 APQR 的面積為 $20\sqrt{3}$,則線段 PR 的長度為 。

解

如果同學能先記住

這一題可以直接猜答

類題 11 如右圖(此為示意圖),在 $\triangle ABC$ 中, \overline{AD} 交 \overline{BC} 於 D 點, \overline{BE} 交 \overline{AD} 於E點,且 $\angle ACB = 30^{\circ}$, $\angle EDB = 60^{\circ}$, $\angle AEB = 120^{\circ}$ 。

三角

比

的

定義及

其 性 質 類題 12 右圖(一)是由 11 個正三角形形成,形成過程 中內一層的正三角形頂點落在外一層三角形 的邊上,且頂點的分點比例一定是1:9, 如右圖二所示,即 $\overline{AA_1}$: $\overline{A_1B} = \overline{BB_1}$: $\overline{B_1C}$ $=\overline{CC_1}:\overline{C_1A}=1:9\circ \text{MI}\frac{A_1B_1}{\overline{AB}}=$

四邊形 ABCD 中, $\overline{AB}=1$, $\overline{BC}=5$, $\overline{CD}=5$, $\overline{DA}=7$,且 $\angle DAB=\angle BCD=90^\circ$, 則對角線 \overline{AC} 長為 $\underline{\hspace{1cm}}$ 。 解

● 小小叮嚀

內對角互補的四邊形其 實就是圓內接四邊形, 是高二常見的餘弦定理 應用問題

類題 13 圓內接四邊形 ABCD,已知 $\overline{AB} = 5$, $\overline{BC} = 3$, $\overline{CD} = 2$, $\overline{DA} = 3$, 試求:

 $\overline{AC} = _____$ (2)此四邊形面積為 (3)此圓面積為

類題 14 右圖為直徑 $\overline{AB} = 5$ 的半圓, $P \setminus Q$ 在圓周上, 若 $\overline{AP} = 1$, $\overline{BQ} = 2$, $\boxed{PQ} =$

範例8 三角形的面積公式

如右圖,圓O內切於 ΔABC 中,切點分別為D、E、F,且 $\overline{AD} = 3$, $\overline{BD} = 2$,內切圓半徑為 $\frac{2\sqrt{6}}{3}$,求 $\overline{AC} =$ _____。

解

類題 15	四邊形 $ABCD$ 中, \overline{A}	$\overline{B} = 6$, $\overline{BC} = 13$	$\overline{CD} = 15$	$\overline{DA} = 10$,	$Z \angle A = 120^{\circ}$,求四
	邊形 ABCD 之面積為	·	0			

類題 17 $\triangle ABC$ 中, $\angle ABC=60^\circ$, $\angle ABC$ 的角平分線交 \overline{AC} 於 D。已知 $\overline{AB}=6$, $\overline{BD}=2\sqrt{3}$,則線段 \overline{AC} 的長度為 _____。

類題 18 如右圖所示,求出 x 的值為 。

三角

比

的定義及其

在 $\triangle ABC$ 中,已知 $\angle A = 20^{\circ}$ 、 $\overline{AB} = 5$ 、 $\overline{BC} = 4$ 。請選出正確的選項。 (A)可以確定 $\angle B$ 的餘弦值 (B)可以確定 $\angle C$ 的正弦值

(C)可以確定 $\triangle ABC$ 的面積

(D)可以確定 $\triangle ABC$ 的內切圓半徑

(E)可以確定 ΔABC 的外接圓半徑

🏞 概念強化

由 SSA 的條件可能得到 0 個、1個或2個三角形,由 作圖即可判定,也可用正 餘弦定理來求解

類題 19 在 $\triangle ABC$ 中,下列哪些選項的條件有可能成立?

(A)
$$\sin A = \sin B = \sin C = \frac{\sqrt{3}}{2}$$

(B)
$$\sin A \cdot \sin B \cdot \sin C$$
 均小於 $\frac{1}{2}$

$$(C) \sin A \cdot \sin B \cdot \sin C$$
 均大於 $\frac{\sqrt{3}}{2}$

(D)
$$\sin A = \sin B = \sin C = \frac{1}{2}$$

(E)
$$\sin A = \sin B = \frac{1}{2}$$
, $\sin C = \frac{\sqrt{3}}{2}$

類題 20 在 $\triangle ABC$ 中,已經知道 $\overline{AB} = 4$ 和 $\overline{AC} = 6$,此時尚不足以確定 $\triangle ABC$ 的形狀與 大小。但是,只要再知道某些條件(例如:再知道 \overline{BC} 的長度),就可確定 全對率 3% 110 學測 ΔABC 唯一的形狀與大小。試選出正確的選項。

- (A)如果再知道 $\cos A$ 的值,就可確定 ΔABC 唯一的形狀與大小
- (B)如果再知道 $\cos B$ 的值,就可確定 ΔABC 唯一的形狀與大小
- (C)如果再知道 $\cos C$ 的值,就可確定 $\triangle ABC$ 唯一的形狀與大小
- (D)如果再知道 $\triangle ABC$ 的面積,就可確定 $\triangle ABC$ 唯一的形狀與大小
- (E)如果再知道 $\triangle ABC$ 的外接圓半徑,就可確定 $\triangle ABC$ 唯一的形狀與大小

範例 11 用反三角表示角度

設 0 < k < 1,有 5 個角度用反三角表示: $\cos^{-1}k \cdot \tan^{-1}k \cdot \sin^{-1}(-k) \cdot \cos^{-1}(-k)$ 、 $tan^{-1}(-k)$,請回答下列問題:

- (1) 這 5 個角度的終邊可能分布在哪些位置?
- (A)第一象限 (B)第二象限 (C)第三象限
- (D)第四象限 (E)坐標軸上
- (2) 這 5 個角度有兩個可能相同,請問是哪兩個?

- (A) $\cos^{-1} k$ (B) $\tan^{-1} k$ (C) $\sin^{-1} (-k)$ (D) $\cos^{-1} (-k)$ (E) $\tan^{-1} (-k)$
- ⑶ 這 5 個角度何者最大? ____, 何者最小? ___

- (A) $\cos^{-1} k$ (B) $\tan^{-1} k$ (C) $\sin^{-1} (-k)$ (D) $\cos^{-1} (-k)$ (E) $\tan^{-1} (-k)$

Æ																																				

類題 21 請問下列各選項的敘述,哪些可找到 $\triangle ABC$ 使得選項中的條件存在?

- (A) $\angle A = \sin^{-1} 1$, $\angle B = \cos^{-1} 1$ (B) $\angle A = \sin^{-1} 1$, $\angle B = \tan^{-1} 2$ (C) $\angle A = \cos^{-1} \frac{-1}{2}$, $\angle B = \tan^{-1} 2$ (D) $\angle A = \cos^{-1} \frac{1}{3}$, $\angle B = \cos^{-1} \frac{-1}{4}$
- (E) $\angle A = \cos^{-1} \frac{-1}{3}$, $\angle B = \cos^{-1} \frac{1}{4}$

類題 22 已知 $\triangle ABC$ 的三邊長為 $\overline{AB} = 3$, $\overline{BC} = 7$, $\overline{CA} = 5$,其最大內角 $\angle A$ 恰為 120° , 令 $\angle B = \cos^{-1} \frac{q}{p}$, $\angle C = \cos^{-1} \frac{s}{r}$, 其中 $p \cdot q \cdot r \cdot s$ 為正整數且 $\frac{q}{p} \cdot \frac{s}{r}$ 均為最簡 分數,試問下列哪些選項的推論為真?

(A) p = r

(B) $q \geq s$

(C) $|q-s| \ge 3$

- (D) q 與 s 均為質數 (E) $\angle B$ 與 $\angle C$ 都小於 45°

範例12 平面的三角測量

海面上有漁船發出求救訊號,此漁船在燈塔的南 θ 東方向,距離燈塔 15 海浬處,救 難艦則位在燈塔的東 2θ 北的方向,距離燈塔 11 海浬處,若救難艦收到求救信號後 立刻以每小時 10 海浬的速度趕赴漁船所在位置,已知 $\sin \theta = \frac{1}{3}$,則該漁船必須等 待幾分鐘才能得到救援?請選出最接近的選項。

(A)	10	በ ፉ	鐘
(1 L)	10	\cup	1 化甲

(B)	110	分鐘
(1)	110	/J 1979

(C)	10	20	分	韽
1.	\sim	1 4	-0	/	业平

(D)	130	分鐘
(1)	100	/J # T

(E)	14() <i>左</i>	論
_/	171	, ,	1 12 12

F	

類題 23 莎韻觀測遠方等速率垂直上升的熱氣球。在上午 10:00 熱氣球的仰角為 30°, 到上午 10:10 仰角變成 34°。請利用下表判斷到上午 10:30 時,熱氣球的仰 角最接近下列哪一個度數?

θ	30°	34°	39°	40°	41°	42°	43°
$\sin \theta$	0.500	0.559	0.629	0.643	0.656	0.669	0.682
$\cos \theta$	0.866	0.829	0.777	0.766	0.755	0.743	0.731
$\tan \theta$	0.577	0.675	0.810	0.839	0.869	0.900	0.933

 $(A) 39^{\circ}$

 $(B) 40^{\circ}$

(C) 41°

 $(D) 42^{\circ}$

 $(E) 43^{\circ}$

答對率 39% 102 學測

類題 24 地平面上有 A、B、C 三點, B 在 A的東 20° 北方向,C在 B的西 20° 北的方向,A 在 C 的西 80° 南 的方向,若A到B的距離是1000

θ	10°	20°	30°	40°
$\sin \theta$	0.1736	0.3420	0.5000	0.6428
$\cos \theta$	0.9848	0.9397	0.8660	0.7660

公尺,試求A到C的距離是 公尺。(整數以下四捨五入)

範例 13 立體的三角測量

由地面上觀測點O測量立於 $A \times B \times C$ 三處的旗桿仰角,測量結果如下:

- ①點 A 位在 O 的正北方 15 呎處,由 O 測得 A 的旗桿頂端仰角為 $\sin^{-1}\frac{4}{5}$
- ②點 B 位在 A 的正東方 20 呎處,由 O 測得 B 的旗桿頂端仰角為 $\cos^{-1}\frac{5}{13}$
- ③點 C 位在 B 的正北方 33 呎處,由 O 測得 C 的旗桿頂端仰角為 $\tan^{-1}\frac{15}{26}$
- (1)在 *O* 點地面放置手機朝三個旗桿拍照, *A* 的旗桿在照片左邊, *B* 的旗桿在照片右邊, 考慮照片中 *C* 旗桿與 *A*、*B* 的遠近, 與三根旗桿呈現的高度(有可能因距離較近使短旗桿看起來比較長),請問所拍的照片最接近下列 12 張中的哪一張?

_____ (請使用計算機,或利用 $\tan 22.6^{\circ} = \frac{5}{12}$, $\tan 53.1^{\circ} = \frac{4}{3}$)

(2)若把三根旗桿擺在一起比較長度,則 旗桿最長, 旗桿最短。

الق	

類題 25 自地面一點觀測甲、乙兩棟大樓,甲大樓在西北方向距離 60 公尺處,乙大樓在東北方向距離 80 公尺處,且先測得甲大樓樓頂的仰角為 45°,再登上甲大樓的樓頂並從樓頂測得乙大樓的樓頂仰角為 60°,則乙大樓的高度為____公尺($\sqrt{3}\approx 1.732$,整數以下四捨五入)

類題 26 老張從旗桿底 O 點的正西方 A 點測得桿頂 T 點的仰角為 30° 。他向旗桿前進

(4) 若由 B 點向正南方走到 D 點,測得桿頂仰角 45° ,則 \overline{BD} = 公尺

(5) $\tan \angle AOD = \circ$

合 力 驗 雸 測

單選題

1. 如右圖, $\triangle ABC$ 為直角三角形, $\angle A = 90^{\circ}$, $\overline{AH} \perp \overline{BC}$ 且 $\overline{BC} = 1$, $\boxed{M} \overline{AH} = ?$

(A)
$$a > b > c$$
 (B) $c > b > a$ (C) $a > c > b$ (D) $b > a > c$

(C)
$$a > c > b$$

(D)
$$b > a > c$$

(E)
$$c > a > b$$

(B)
$$\frac{3}{5}$$

(B)
$$\frac{3}{5}$$
 (C) $\frac{4}{5}$

(E)
$$\frac{6}{5}$$

 $4.0^{\circ} < \theta < 180^{\circ}$,若 $\sin \theta + \cos \theta = \frac{2}{3}$,則 $\cos \theta - \sin \theta = ?$

(A)
$$-\frac{\sqrt{19}}{3}$$
 (B) $-\frac{4}{3}$ (C) $-\frac{\sqrt{14}}{3}$ (D) $\frac{\sqrt{14}}{3}$ (E) $\frac{\sqrt{19}}{3}$

(B)
$$-\frac{4}{3}$$

(C)
$$-\frac{\sqrt{14}}{3}$$

(D)
$$\frac{\sqrt{14}}{3}$$

(E)
$$\frac{\sqrt{19}}{3}$$

多選題

5. 設有向角 θ 以x軸正向為始邊,若終邊上有一點 $P(-5\sqrt{3},y)$,已知 $\tan\theta = \frac{2}{\sqrt{3}}$,則下列哪些選項正確?

(A)
$$y = 10$$

(B)
$$\sin \theta = \frac{-2\sqrt{7}}{7}$$

(B)
$$\sin \theta = \frac{-2\sqrt{7}}{7}$$
 (C) $\cos \theta = \frac{-\sqrt{21}}{7}$

(D)
$$\sin(\theta - 270^{\circ}) = \frac{\sqrt{21}}{7}$$
 (E) $\tan(90^{\circ} - \theta) = \frac{\sqrt{3}}{2}$

$$(E) \tan(90^\circ - \theta) = \frac{\sqrt{3}}{2}$$

角比的定義及其性

- 6. 下列哪些選項正確?
 - (A)若 $\sin \alpha = \sin \beta$,則 α 與 β 為同界角
 - (B) θ 是第三象限角,則 $\cos \frac{\theta}{2} < 0$
 - (C) $\triangle ABC \Rightarrow \sin A + \sin B > \sin (A + B)$
 - (D) $\triangle ABC$ 中, $\angle A < \angle B$,則 $\sin A < \sin B$
 - (E) $\triangle ABC$ 中,若 b=1, $c=\sqrt{2}$, $\angle B=30^{\circ}$,則 $\angle C=45^{\circ}$
- _____7. 已知 $\triangle ABC$ 中 \overline{AB} : \overline{BC} : \overline{AC} = 8 : 7 : 5,且 $\triangle ABC$ 外接圓半徑為 7,則下 列哪些選項正確?
 - (A) $\sin A : \sin B : \sin C = 8 : 7 : 5$
- $(B)\cos C = \frac{1}{7}$

(C) AB 小於 16

- (D) ΔABC 面積為 180
- (E) ΔABC 的內切圓半徑大於 4
- _____ 8. 已知兩點 A(1,-2)、 $B(\sqrt{3},0)$ 在直線 L: ax-y-1=0 的異側,設直線 L 的斜角為 θ ,則下列哪些選項正確?
 - (A) a < -1 或 $a > \sqrt{3}$

(B) $-1 < a < \frac{1}{\sqrt{3}}$

(C) $30^{\circ} < \theta < 135^{\circ}$

(D) $-90^{\circ} < \theta < -45^{\circ}$ 或 $30^{\circ} < \theta \leq 90^{\circ}$

(E) $-45^{\circ} < \theta < 30^{\circ}$

三填充題

- 9. 等腰三角形 $\overline{AB} = \overline{AC}$ 且 \overline{CD} 垂直 \overline{AB} 於 D 點,若 $\overline{BD} = 5$, $\overline{BC} = 13$,則 $\sin \angle ACD = 1$
- 10. 如右圖 $\triangle ABC$ 中,D 為 \overline{BC} 上一點且 $\angle BAD = 30^\circ$, $\angle CAD = 90^\circ$,已知 $\overline{AB} = 8$, $\overline{AD} = 3\sqrt{3}$,則 $\triangle ABD$ 與 $\triangle ABC$ 面積的比值為

- 11. 圓內接四邊形 ABCD,已知 $\angle BAC = 60^\circ$, $\overline{BC} = 3$, $\overline{CD} = 2$,則 $\sin \angle CAD = 1$
- 12. 如右圖,長方體 ABCD EFGH, $\overline{AB} = 3$, $\overline{AD} = 4$, $\overline{AE} = 4$,點 $P \in \overline{BD}$ 上,取 \overline{BP} : $\overline{PD} = 1$: 4,若 $\angle APE = \tan^{-1} k$,則 k 值為

四素養導向試題

- 13. 漁船甲位於某島嶼 A 的南偏西 60° 方向的 B 處,且與島嶼 A 相距 6 海浬,漁船乙以 每小時 5 海浬的速度從島嶼 A 沿正北方向航行,若漁船甲也同時從 B 處沿北偏東 θ 度的方向追趕漁船乙,剛好 2 小時追上,則:
 - (1)漁船甲的速度為 $2/\sqrt{1}$ (2) $\sin\theta$ 的值為 (3)