

Armed Forces College of Medicine AFCM

Cardio-Pulmonary Physiology

Lecture 23: Cardiovascular Responses to Exercise

Exercise Physiology Cardiovascular Responses to Exercise

Presented By

Dr/ Ghida Mohamed

Lecturer of Physiology

INTENDED LEARNING OBJECTIVES (ILO

By the end of this lecture the student will be able to:

- 1. Describe the effects of muscular exercise on the cardiovascular system.
- 2. Describe the CVS response to acute exercise in athletes and non-athletes.
- 3. Describe the CVS response to chronic exercise.
- 4. Apply the knowledge and skills acquired by studying this

Skeletal Muscle Blood Flow

Skeletal muscle constitute 40 - 45 % of body weight

	Rest	Exercise
CO	15 %	70 - 80 %
Blood flow	3 - 4 ml/min/100gm	100 - 200 ml/min/100gm
Capillary	10 - 20 % open	All open

Regulation of Skeletal Muscle Bloof

A) Neural Regulation

1) Sympathetic nor-adrenergi

- Has tonic activity
- Act on α_1 -receptors \square VC

2) Sympathetic cholinergic fil

- At the start of exercise
- Originate at cerebral cortex
- Act on M₃-receptors □ VD

B) Hormonal Regulation

Sympathetic trunk

Epinephrine from adrenal medulla:

- During exercise
- Act on β₂-receptors [] VD

C) Mechanical Regulation

Effect of muscle contraction:

- During contraction □ ↓ Flow
- During relaxation □ ↑ F

D) Chemical Regulation

It is local mechanism:

- Due to release of VD metabolites, ↑ temperature
- It is in the form of <u>Active</u> or <u>Re-active</u> Hyperemia

Circulatory Responses to Exercis

A) Increased Cardiac Output

A) Increased Cardiac Output

Cardiac output is increased up to 35 L/min, due to both HR & SV

- 1- Increased heart rate (HR):
 - a) Psychic stimuli
 - b) [Sympathetic + [vagal tone
 - c) Circulating adrenaline
 - d) | Body temperature
 - e) Uenous return (VR)
 - f) Impulses from active muscles

A) Increased Cardiac Output

2- Increased stroke volume (SV):

- a) [Sympathetic activity
- b) Circulating adrenaline
- c) ☐ Venous return (VR) → ☐ Pre-load
- d) Peripheral VD → [] After-load muscles

B) Increased Venous Return

Valve (open)

Venous return (VR) is increased due to:

a)

☐ Sympathetic activity

→ Venoconstriction

b) Mobilization of blood from viscera

c) [Thoracic pump activity

d) [] Skeletal muscle pump activity

C) Increased Arterial Blood Pressu

<u>Arterial blood pressure</u> (ABP) <u>is Increased due</u> to:

a) ☐ Sympathetic activity → Arteriolar VC

- **b)**

 | Pumping activity of the heart
- c) [Venous return

D) Re-distribution of Blood Flow

Blood Flow	Level
Coronary	Increased
Cerebral	Constant
Pulmonary	Increased
Visceral	Decreased
Skeletal	Increased
Cutaneous	Decreased (Temperature
Renal	Decreased

Local Changes in the Active Musc

1- Increased muscle blood flow:

- a) | VD metabolites (Adenosine, K+, CO₂, H+)
- b) Sympathetic VD fibers (at the beginning of exercise)
- c) Circulating adrenaline
- d) [Temperature within the muscle

2- <u>Capillaries</u>:

- a) Dilatation
- b) Opening of more capillaries

Local Changes in the Active Musc

- 3- Increased lymph flow:
 - a) [Thoracic pump activity
 - b) [] Skeletal muscle pump activity muscle
 - c) Arterial pulsation

- 4- Increased oxygen uptake due to:
 - a) | muscle blood flow
 - b) Shift of O₂-HB dissociation curve to the right

Adaptation to Exercise Training

1- Cardiac output:

- Resting cardiac output of athletic person is the same as normal
 - a) [Resting stroke volume
 - Increase in ventricular volume
 - Increase in ventricular wall thickness
 - **b)** Resting heart rate
 - Increase vagal tone

Adaptation to Exercise Training

2- Cardiac hypertrophy:

- Due to increase synthesis of proteins
 - Force of ventricular contraction

3- Cardiac reserve:

- The role of training is to increase cardiac reserve
 - a) Short-term mechanism
 - Increase heart rate & stroke volume
 - b) Long-term mechanism
 - Dilatation & hypertrophy

Adaptation to Exercise Training

4- Coronary blood vessels:

- Training improves coronary vascular bed
 - a) [Density of coronary capillaries
 - **b)** Production on nitric oxide
 - **b)** [] Compression of the coronary vessels in systole

5- Cardiac vascular diseases:

- Training reduces incidence and severity of MI

Question Time

Question 1

<u>Cardiovascular responses to exercise include an increase</u> <u>of the followings EXCEPT</u>:

- a) Cardiac output.
- b) Heart rate.
- c) Total peripheral resistance.
- d) Oxygen consumption.
 - e) Systolic blood pressure.

Question 2

Ventricular hypertrophy in marathon's runner is associated with:

- a) Decreased force of ventricular contraction.
- b) Thickening of the wall.
- c) Normal level of basal inotropic state.
- e) Increased end-systolic volume (ESV).
- d) All of the above.

SUGGESTED TEXTBOOKS

1. Guyton and Hall

Text book of Medical Physiology, 13th Edition (2016)

2. Ganong's

Review of Medical Physiology, 24rd Edition (2012)

3. Fox

Human Physiology, 14th Edition (2016)

4. Sherwood

Human Physiology .. From Cells to Systems, 9th Edition (2016)

