- 1 Indicate whether the following statements are true(**T**) or false(**F**). You do **not**3+3+4 need to justify your answer.
 - (a) A nonhomogeneous linear system with more unknowns than equations always has infinitely many solutions.
 - (b) Every square matrix can be expressed as sum of symmetric matrix and skew-symmetric matrix.
 - (c) For a matrix A, AA^T is invertible if and only if A^TA is invertible.

Solution.

(a) False.

$$\begin{cases} x + y + z &= 1\\ 2x + 2y + 2z &= 1 \end{cases}$$

is nonhomogeneous linear system with more unknowns than equations but there is no solution.

- (b) True. For any square matrix A, $(A+A^T)/2$ is symmetric and $(A-A^T)/2$ is skew-symmetric. $A=(A+A^T)/2+(A-A^T)/2$
- (c) False. For example let $A = \begin{bmatrix} 1 & 0 \end{bmatrix}$. Then $AA^T = \begin{bmatrix} 1 \end{bmatrix}$ which is invertible, but $A^TA = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ which is not invertible.

Name:

2 For given real numbers
$$a,b,$$
 and $c,$ let $A=\begin{bmatrix}0&a&b\\0&0&c\\0&0&0\end{bmatrix}$. Find $(I+A)^{-1}$.

Solution.

By simple calculation,

$$A^2 = \begin{bmatrix} 0 & 0 & ac \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 , and $A^3 = 0$.

Thus, we get $(I + A)^{-1} = (I - (-A))^{-1} = I + (-A) + (-A)^2 = I - A + A^2$ by Theorem 3.6.6. Therefore,

$$(I+A)^{-1} = \begin{bmatrix} 1 & -a & ac-b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix}$$