Real Analysis HW #7

Jack Krebsbach

Nov 8th

Question 1

Let (x_n) be a sequence and suppose that the sequence $(x_{n+1} - x_n)$ converges to 0. Give an example to show that the sequence (x_n) may not converge. (See ChatGPT Challenge)

Solution: Let

$$x_n = \sum_{k=1}^n 1/k.$$

This is the harmonic series which converges to infinity. Let $\epsilon > 0$. By Archimedes Principle there exists $N \in \mathbb{N}$ such that $1/N < \epsilon$. Let n > N. Then

$$|(x_{n+1} - x_n) - 0| = \left| \frac{1}{n+1} - \frac{1}{n} \right| < \left| \frac{1}{N} \right| < \epsilon.$$

Thus, $(x_{n+1} - x_n)$ converges to 0 but (x_n) converges to infinity.

Question 2

Let (x_k) and (y_k) be two sequences and let (r_k) be a sequence of positive numbers that converges to 0. Suppose that $0 < |y_k - x_k| < r_k \forall k \in \mathbb{N}$.

- (a) Give an example to show that the sequences (x_k) and (y_k) may not converge.
- (b) Suppose that (x_k) converges to L. Prove that the sequence (y_k) converges to L.

Question 3

Assume that (x_n) is a bounded sequence with the property that every convergent subsequence of (x_n) converges to the same limit $x \in \mathbb{R}$. Show that (x_n) must converge to x.

Question 4

Let (x_n) be a Cauchy sequence. Show directly that (x_n) is bounded.

Question 5

Let (x_n) be a sequence and let r be a real number satisfying 0 < r < 1. Suppose that $|x_{n+1} - x_n| < r |x_n - x_{n-1}|$ for all n > 2. Prove that (x_n) is a Cauchy sequence and hence convergent.

Question 6

CHAT GPT CHALLENGE: Let (x_n) be a sequence such that $(x_{n+1} - x_n)$ converges to 0. We want to show that (x_n) also converges.

By the definition of a convergent sequence, we need to show that for any $\epsilon > 0$, there exists a positive integer N such that for all $n \ge N$, $|x_n - L| < \epsilon$ for some real number L. Since $(x_{n+1} - x_n)$ converges to 0, we can choose $\epsilon > 0$ and find a positive integer M such that for all $m \ge M$, $|(x_{m+1} - x_m) - 0| < \epsilon$. This implies that for all $m \ge M$, $|x_{m+1} - x_m| < \epsilon$. Now, let N = M. For any $n \ge N$, we have:

$$|x_{n} - x_{N}| = |(x_{n} - x_{n-1}) + (x_{n-1} - x_{n-2}) + \dots + (x_{N+1} - x_{N})|$$

$$\leq |x_{n} - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_{N+1} - x_{N}|$$

$$< \epsilon + \epsilon + \dots + \epsilon \quad (\text{Since } |x_{m+1} - x_{m}| < \epsilon \text{ for all } m \geq M)$$

$$= (n - N)\epsilon.$$

Dividing both sides by (n - N), we get:

$$|x_n - x_N| < \epsilon$$

This shows that for any $\epsilon > 0$ and $n \ge N$, we have $|x_n - x_N| < \epsilon$, where N = M. Therefore, (x_n) converges to x_N .

Hence, we have shown that if $(x_{n+1} - x_n)$ converges to 0, then (x_n) also converges.