$u_{tt} = c^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right)$

u(r=a,t)=0 B.C.

1) = (01) H milly lely

(1) 8 = (0,1) H mai lety

u(r,t)=?

u(r,t)= w(r)G(t)

 $\frac{G'}{c^2G} = \frac{1}{w} \left(\frac{w'' + 1}{r} w' \right) = -k^2 \frac{1}{w''}$

مقط ما به تعلق المام المام

G"+CK2G=01

w"+ 1 w'+ x2 w = .

	-
J.(x)=•	
م د موری ۱۱ مرادی مرادی از مرادی مرادی از مرادی ا	
jet .	·
J. (Ka)= · Ka=dom who the clarity it of Ka	
$k_m = \frac{d_{om}}{a}$: of of side $m = 1/2, 3, \dots$	
$\lambda_{m} = C k_{m} = \frac{C d_{m}}{\alpha}$	ा
$G'' + \lambda_{om}^2 G_{>0}$	
0.11. 0.5.24	
Ca (t) = A Cos2 t + B sin 2 t	
$u_m(r,t) = w_m(r) O_m(t)$	
Um = (Am Cos) om t+Bm Sin) t/J. (dom a)	-0-
$t=0 \longrightarrow A_m J. \left(\frac{d.mr}{2}\right) \stackrel{?}{=} f(r)$	
12	
$\int_{a}^{a} r \int_{a}^{b} \left(\frac{d_{om}}{a}r\right) \int_{a}^{b} \left(\frac{d_{om}}{a}r\right) dr = 0$	
(), ub	
U,9 6	
Jy(x) le vil) -> dim	0

$$\int_{a}^{a} r \int_{a}^{c} \frac{(\alpha i m r) dr}{a} dr = \frac{a^{2} \int_{a}^{c} (\alpha i m r) dr}{a} = \frac{a^{2} \int_{a}^{c} (\alpha i m r) dr} = \frac{a^{2} \int_{a}^{c} (\alpha i m r) dr}{a} = \frac{a^{2} \int_{a}^{c} (\alpha i m r) dr} = \frac{a^{2} \int_{a}^{c} (\alpha i m r) dr}{a} = \frac{a^{2} \int_{a}^{c} (\alpha i m r) dr} = \frac{a^{2} \int_{a}^{c} (\alpha i m r) dr}{a} = \frac{a^{2} \int_{a}^{c} (\alpha i m r) dr} = \frac{a^{2} \int_{a}^{c} (\alpha i m r) dr}{a} = \frac{a^{2} \int_{a}^{c} (\alpha i m) dr}{a} = \frac{a^{2} \int_{a}^{c} (\alpha i$$

استفاده از تبديل لا بلايس در على ابعا دلات دينوا لنسيل 4 مستفاف بارهاى :

		, d) 3	
$\frac{\partial u}{\partial x} + x \frac{\partial u}{\partial t} =$			
w (1)0)= ·			
w(o,t)=t	. L(w)=w		
D ω(x,S) +x	5ω-ω(×, 0)}=0		j

$$\partial x$$

$$\partial \tilde{w} + x S \tilde{w} = 0$$

$$\frac{-Sx_{2}^{2}}{\tilde{\omega}(x,S)=C(S)e}$$

$$\omega(\bullet,t)=t \longrightarrow \widetilde{\omega}(\bullet,s)=\frac{1}{s^2}$$

$$\widetilde{\omega}(\circ,S) = C(S) = \frac{1}{S^2} \qquad \widetilde{\omega}(x,S) = \frac{1}{S^2} e^{-\frac{x^2}{2}} \mathcal{L}^{-1}$$

$$\omega(x,t) = (t-\frac{x^2}{2}) \, \omega(t-\frac{x^2}{2}) = \int_0^{\infty} \frac{t \langle \frac{x^2}{2} \rangle}{(t-\frac{x^2}{2})^2} dt$$