Name:_____

Show all your work

- (10) **Problem** Given the data points (1, 2), (2, 0), (3, 1), (4, -1),
 - a) Find the cubic interpolation polynomial in the Lagrange form. DO NOT SIMPLIFY.

Solution

$$p(x) = 2\frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)} + \frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)} - \frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)}.$$

b) Find the cubic interpolation polynomial in the Newton form. DO NOT SIMPLIFY. **Solution** Caculate the divided difference using the divided difference table,

x_i	y_i	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
1	2	$\frac{2-0}{1-2} = -2$	$\frac{-2-1}{1-3} = 1.5$	$\frac{1.5 - (-1.5)}{1 - 4} = -1$
2	0	$\frac{0-1}{2-3} = 1$	$\frac{1-(-2)}{2-4} = -1.5$	_
3	1	$\frac{2-0}{1-2} = -2$	_	-
4	-1	_	_	_

The interpolation polynomial in the Newton's form is

$$p(x) = 2 - 2(x - 1) + 1.5(x - 1)(x - 2) - (x - 1)(x - 2)(x - 3).$$