Jacob Howard

ELEC 5200/6200 (Fall 2021) Homework 2 Assigned 09/01/21, due 09/08/21

Note: This homework will be easier if you have completed the assigned reading for Chapter 2. You also might find the RISC-V reference data sheet useful (located on the green insert inside your textbook).

Question 1: Show how the value 0x EFBEADDA would be arranged in the memory of a big-endian machine. Assume that the data is stored starting at address 0. Show your answer in hexadecimal. (2 pts)

Address	0x03	0x02	0x01	0x00
Byte	OxDA	Ox AD	OXBE	OxFF

Question 2: Show how the binary value 1111 1010 1100 1110 1011 1110 1010 1101 would be arranged in the memory of a little-endian machine. Assume that the data is stored starting at address 0. Show your answer in hexadecimal. (2 pts)

Address	0x03	0x02	0x01	0x00
Byte	Ox FA	Ox CE	OXBE	Ox AD

Question 3: For the following C statement, assume that variable f is already stored in register x7, g in register x6, and h in x5.

$$f = g + (h - 11)$$

a) Write the corresponding RISC-V assembly code. (4 pts)

b) Write the machine language for the assembly code you came up with in part a. (4 pts) Note: write the binary in groups of 4 for legibility. Ex: 0000 1111 0000 1111

Question 4: Consider the following assembly code written using the RISC-V instruction set:

```
addi
               x29, x0, 100
       add
               x18, x0, x0
       addi
               x28, x18, 1
       add
               x19, x18, x28
       SW
               x18, 0(x11)
        SW
               x19, 4(x11)
        addi
               x11, x11, 8
        addi
               x10, x0, 1
LOOP: add
               x10, x10, x28 // ++n
        lw
               x5, -4(x11)
                            // x5 = result [n-1]
                x6, -8(x11) //x6 = result [n-2]
        add
                x7, x5, x6
        SW
                x7, 0(x11)
                             // x7 = result[n]
        addi
                x11, x11, 4 // result++
        blt
                x10, x29, LOOP
```

Translate the code above into C. Assume that the integer n is the loop variable and is located in register x10. Register x11 is initialized to the base address of the integer array named Result. Further assume that 32-bit integers are used. (5 pts)

```
int result[100], n; // define away and loop var

result[0]=6; // -sdxlg o(xll)

result[1] = 1 // -sdxlq, &(xll)

for (n=2; n<100; n++) {

result (n] = result [n-1]+ result[n-2];

}
```

- Sets first elelement in array to 0 and second element to 1 loop starts from 3rd element in array and goes to 100th for each element from 3rd on, the program would set the element to the sum of the last 2 elements
- · Stops once couliter reaches 100

Question 5: If the current value of the PC is 0x01027B08 can you use a single RISC-V **jal** instruction to get to PC address 0x12345678? Explain your answer. (5 pts)

Jul x 1, 10x 0x 12345678 - 0 x 1627 BO8 = 0x11310 B70

Jal permits target to be within + IMByte only

So Jal cannot be performed here

Only 20 bits are allowed to specify displacement

Question 6: If the current value of the PC is 0x0FFFFFF0 can you use a single RISC-V **branch** instruction to get to PC address 0x10000080? Explain your answer. (5 pts)

Ja1x1, #0x24

OXI 00000 80 - OX OFFFFFF = OX 000000 90

Should branch to 0x90 bytes ahead

So target address is GXZ4 (0x90/4=0x24)

only mails and to