EE263 Autumn 2014–15 Sanjay Lall

Lecture 2 Linear functions and examples

- linear equations and functions
- engineering examples
- interpretations

Linear equations

consider system of linear equations

$$y_1 = a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n$$

 $y_2 = a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n$
 \vdots
 $y_m = a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n$

can be written in matrix form as y = Ax, where

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Linear functions

a function $f: \mathbf{R}^n \longrightarrow \mathbf{R}^m$ is *linear* if

- f(x+y) = f(x) + f(y), $\forall x, y \in \mathbf{R}^n$
- $f(\alpha x) = \alpha f(x)$, $\forall x \in \mathbf{R}^n \ \forall \alpha \in \mathbf{R}$

i.e., superposition holds

Matrix multiplication function

- consider function $f: \mathbf{R}^n \to \mathbf{R}^m$ given by f(x) = Ax, where $A \in \mathbf{R}^{m \times n}$
- matrix multiplication function f is linear
- **converse** is true: **any** linear function $f: \mathbb{R}^n \to \mathbb{R}^m$ can be written as f(x) = Ax for some $A \in \mathbb{R}^{m \times n}$
- representation via matrix multiplication is unique: for any linear function f there is only one matrix A for which f(x) = Ax for all x
- \bullet y=Ax is a concrete representation of a generic linear function

Interpretations of y = Ax

- \bullet y is measurement or observation; x is unknown to be determined
- x is 'input' or 'action'; y is 'output' or 'result'
- y = Ax defines a function or transformation that maps $x \in \mathbf{R}^n$ into $y \in \mathbf{R}^m$

Interpretation of a_{ij}

$$y_i = \sum_{j=1}^n a_{ij} x_j$$

 a_{ij} is gain factor from jth input (x_j) to ith output (y_i) thus, e.g.,

- *i*th *row* of *A* concerns *i*th *output*
- jth column of A concerns jth input
- $a_{27} = 0$ means 2nd output (y_2) doesn't depend on 7th input (x_7)
- $|a_{31}| \gg |a_{3j}|$ for $j \neq 1$ means y_3 depends mainly on x_1

- $|a_{52}| \gg |a_{i2}|$ for $i \neq 5$ means x_2 affects mainly y_5
- A is lower triangular, i.e., $a_{ij} = 0$ for i < j, means y_i only depends on x_1, \ldots, x_i
- ullet A is diagonal, i.e., $a_{ij}=0$ for i
 eq j, means ith output depends only on ith input

more generally, **sparsity pattern** of A, i.e., list of zero/nonzero entries of A, shows which x_j affect which y_i

Linear elastic structure

- x_i is external force applied at some node, in some fixed direction
- y_i is (small) deflection of some node, in some fixed direction

(provided x, y are small) we have $y \approx Ax$

- ullet A is called the *compliance matrix*
- a_{ij} gives deflection i per unit force at j (in m/N)

Total force/torque on rigid body

- x_j is external force/torque applied at some point/direction/axis
- $y \in \mathbb{R}^6$ is resulting total force & torque on body $(y_1, y_2, y_3 \text{ are } \mathbf{x}\text{-}, \mathbf{y}\text{-}, \mathbf{z}\text{-} \text{ components of total force}, y_4, y_5, y_6 \text{ are } \mathbf{x}\text{-}, \mathbf{y}\text{-}, \mathbf{z}\text{-} \text{ components of total torque})$
- we have y = Ax
- A depends on geometry (of applied forces and torques with respect to center of gravity CG)
- jth column gives resulting force & torque for unit force/torque j

Linear static circuit

interconnection of resistors, linear dependent (controlled) sources, and independent sources

- x_i is value of independent source j
- y_i is some circuit variable (voltage, current)
- we have y = Ax
- if x_j are currents and y_i are voltages, A is called the *impedance* or resistance matrix

Final position/velocity of mass due to applied forces

- ullet unit mass, zero position/velocity at t=0, subject to force f(t) for $0 \le t \le n$
- $f(t) = x_j$ for $j 1 \le t < j$, j = 1, ..., n (x is the sequence of applied forces, constant in each interval)
- y_1 , y_2 are final position and velocity (i.e., at t = n)
- we have y = Ax
- a_{1j} gives influence of applied force during $j-1 \le t < j$ on final position
- ullet a_{2j} gives influence of applied force during $j-1 \leq t < j$ on final velocity

Gravimeter prospecting

- $x_j = \rho_j \rho_{\text{avg}}$ is (excess) mass density of earth in voxel j;
- y_i is measured gravity anomaly at location i, i.e., some component (typically vertical) of $g_i g_{\rm avg}$
- $\bullet \ y = Ax$

- ullet A comes from physics and geometry
- ullet jth column of A shows sensor readings caused by unit density anomaly at voxel j
- *i*th row of *A* shows sensitivity pattern of sensor *i*

Thermal system

- x_j is power of jth heating element or heat source
- ullet y_i is change in steady-state temperature at location i
- thermal transport via conduction
- $\bullet \ y = Ax$

- a_{ij} gives influence of heater j at location i (in ${}^{\circ}C/W$)
- \bullet $j{\rm th}$ column of A gives pattern of steady-state temperature rise due to $1{\rm W}$ at heater j
- *i*th row shows how heaters affect location *i*

Illumination with multiple lamps

- ullet n lamps illuminating m (small, flat) patches, no shadows
- x_j is power of jth lamp; y_i is illumination level of patch i
- y = Ax, where $a_{ij} = r_{ij}^{-2} \max\{\cos \theta_{ij}, 0\}$ ($\cos \theta_{ij} < 0$ means patch i is shaded from lamp j)
- jth column of A shows illumination pattern from lamp j

Signal and interference power in wireless system

- *n* transmitter/receiver pairs
- transmitter j transmits to receiver j (and, inadvertantly, to the other receivers)
- p_j is power of jth transmitter
- s_i is received signal power of ith receiver
- \bullet z_i is received interference power of ith receiver
- G_{ij} is path gain from transmitter j to receiver i
- we have s = Ap, z = Bp, where

$$a_{ij} = \begin{cases} G_{ii} & i = j \\ 0 & i \neq j \end{cases} \qquad b_{ij} = \begin{cases} 0 & i = j \\ G_{ij} & i \neq j \end{cases}$$

 \bullet A is diagonal; B has zero diagonal (ideally, A is 'large', B is 'small')

Cost of production

production *inputs* (materials, parts, labor, . . .) are combined to make a number of *products*

- x_j is price per unit of production input j
- ullet a_{ij} is units of production input j required to manufacture one unit of product i
- y_i is production cost per unit of product i
- we have y = Ax
- *i*th row of *A* is *bill of materials* for unit of product *i*

production inputs needed

- ullet q_i is quantity of product i to be produced
- ullet r_j is total quantity of production input j needed
- ullet we have $r=A^Tq$

total production cost is

$$r^T x = (A^T q)^T x = q^T A x$$

Network traffic and flows

- n flows with rates f_1, \ldots, f_n pass from their source nodes to their destination nodes over fixed routes in a network
- \bullet t_i , traffic on link i, is sum of rates of flows passing through it
- flow routes given by *flow-link incidence matrix*

$$A_{ij} = \begin{cases} 1 & \text{flow } j \text{ goes over link } i \\ 0 & \text{otherwise} \end{cases}$$

ullet traffic and flow rates related by t=Af

link delays and flow latency

- let d_1, \ldots, d_m be link delays, and l_1, \ldots, l_n be latency (total travel time) of flows
- \bullet $l = A^T d$
- $f^T l = f^T A^T d = (Af)^T d = t^T d$, total # of packets in network

Linearization

• if $f: \mathbf{R}^n \to \mathbf{R}^m$ is differentiable at $x_0 \in \mathbf{R}^n$, then

$$x$$
 near $x_0 \Longrightarrow f(x)$ very near $f(x_0) + Df(x_0)(x - x_0)$

where

$$Df(x_0)_{ij} = \frac{\partial f_i}{\partial x_j} \bigg|_{x_0}$$

is derivative (Jacobian) matrix

- with y = f(x), $y_0 = f(x_0)$, define input deviation $\delta x := x x_0$, output deviation $\delta y := y y_0$
- then we have $\delta y \approx Df(x_0)\delta x$
- when deviations are small, they are (approximately) related by a linear function

Navigation by range measurement

- \bullet (x,y) unknown coordinates in plane
- ullet (p_i,q_i) known coordinates of beacons for i=1,2,3,4
- ρ_i measured (known) distance or range from beacon i

• $\rho \in \mathbf{R}^4$ is a nonlinear function of $(x,y) \in \mathbf{R}^2$:

$$\rho_i(x,y) = \sqrt{(x - p_i)^2 + (y - q_i)^2}$$

ullet linearize around (x_0,y_0) : $\delta
ho pprox A \left[egin{array}{c} \delta x \\ \delta y \end{array} \right]$, where

$$a_{i1} = \frac{(x_0 - p_i)}{\sqrt{(x_0 - p_i)^2 + (y_0 - q_i)^2}}, \quad a_{i2} = \frac{(y_0 - q_i)}{\sqrt{(x_0 - p_i)^2 + (y_0 - q_i)^2}}$$

- ith row of A shows (approximate) change in ith range measurement for (small) shift in (x,y) from (x_0,y_0)
- first column of A shows sensitivity of range measurements to (small) change in x from x_0
- obvious application: (x_0, y_0) is last navigation fix; (x, y) is current position, a short time later

Broad categories of applications

linear model or function y = Ax

some broad categories of applications:

- estimation or inversion
- control or design
- mapping or transformation

(this list is not exclusive; can have combinations . . .)

Estimation or inversion

$$y = Ax$$

- y_i is ith measurement or sensor reading (which we know)
- \bullet x_i is jth parameter to be estimated or determined
- a_{ij} is sensitivity of ith sensor to jth parameter

sample problems:

- \bullet find x, given y
- find all x's that result in y (i.e., all x's consistent with measurements)
- if there is no x such that y = Ax, find x s.t. $y \approx Ax$ (i.e., if the sensor readings are inconsistent, find x which is almost consistent)

Control or design

$$y = Ax$$

- x is vector of design parameters or inputs (which we can choose)
- y is vector of results, or outcomes
- A describes how input choices affect results

sample problems:

- find x so that $y = y_{\text{des}}$
- find all x's that result in $y = y_{\text{des}}$ (i.e., find all designs that meet specifications)
- among x's that satisfy $y = y_{\text{des}}$, find a small one (i.e., find a small or efficient x that meets specifications)

Mapping or transformation

• x is mapped or transformed to y by linear function y = Ax

sample problems:

- ullet determine if there is an x that maps to a given y
- ullet (if possible) find an x that maps to y
- find all x's that map to a given y
- if there is only one x that maps to y, find it (i.e., decode or undo the mapping)

Matrix multiplication as mixture of columns

write $A \in \mathbf{R}^{m \times n}$ in terms of its columns:

$$A = \left[\begin{array}{cccc} a_1 & a_2 & \cdots & a_n \end{array} \right]$$

where $a_j \in \mathbf{R}^m$

then y = Ax can be written as

$$y = x_1 a_1 + x_2 a_2 + \dots + x_n a_n$$

 (x_j) 's are scalars, a_j 's are m-vectors)

- ullet y is a (linear) combination or mixture of the columns of A
- coefficients of x give coefficients of mixture

an important example: $x = e_j$, the jth unit vector

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots \quad e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

then $Ae_j = a_j$, the jth column of A(e_j corresponds to a pure mixture, giving only column j)

Matrix multiplication as inner product with rows

write A in terms of its rows:

$$A = \left[egin{array}{c} ilde{a}_1^T \ ilde{a}_2^T \ dots \ ilde{a}_m^T \end{array}
ight]$$

where $\tilde{a}_i \in \mathbf{R}^n$

then y = Ax can be written as

$$y = \begin{bmatrix} \tilde{a}_1^T x \\ \tilde{a}_2^T x \\ \vdots \\ \tilde{a}_m^T x \end{bmatrix}$$

thus $y_i = \langle \tilde{a}_i, x \rangle$, *i.e.*, y_i is inner product of ith row of A with x

geometric interpretation:

 $y_i = \tilde{a}_i^T x = \alpha$ is a hyperplane in \mathbf{R}^n (normal to \tilde{a}_i)

Block diagram representation

y=Ax can be represented by a signal flow graph or block diagram e.g. for m=n=2, we represent

$$\left[\begin{array}{c} y_1 \\ y_2 \end{array}\right] = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]$$

as

- a_{ij} is the gain along the path from jth input to ith output
- (by not drawing paths with zero gain) shows sparsity structure of A (e.g., diagonal, block upper triangular, arrow . . .)

example: block upper triangular, i.e.,

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right]$$

where $A_{11} \in \mathbf{R}^{m_1 \times n_1}$, $A_{12} \in \mathbf{R}^{m_1 \times n_2}$, $A_{21} \in \mathbf{R}^{m_2 \times n_1}$, $A_{22} \in \mathbf{R}^{m_2 \times n_2}$

partition x and y conformably as

$$x = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right], \qquad y = \left[\begin{array}{c} y_1 \\ y_2 \end{array} \right]$$

$$(x_1 \in \mathbf{R}^{n_1}, x_2 \in \mathbf{R}^{n_2}, y_1 \in \mathbf{R}^{m_1}, y_2 \in \mathbf{R}^{m_2})$$
 so

$$y_1 = A_{11}x_1 + A_{12}x_2, \qquad y_2 = A_{22}x_2,$$

i.e., y_2 doesn't depend on x_1

block diagram:

. . . no path from x_1 to y_2 , so y_2 doesn't depend on x_1

Matrix multiplication as composition

for $A \in \mathbf{R}^{m \times n}$ and $B \in \mathbf{R}^{n \times p}$, $C = AB \in \mathbf{R}^{m \times p}$ where

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

composition interpretation: y=Cz represents composition of y=Ax and x=Bz

$$z \xrightarrow{p} B \xrightarrow{x} A \xrightarrow{m} y \equiv z \xrightarrow{p} AB \xrightarrow{m} y$$

(note that B is on left in block diagram)

Column and row interpretations

can write product C = AB as

$$C = \left[c_1 \cdots c_p \right] = AB = \left[Ab_1 \cdots Ab_p \right]$$

i.e., ith column of C is A acting on ith column of B

similarly we can write

$$C = \begin{bmatrix} \tilde{c}_1^T \\ \vdots \\ \tilde{c}_m^T \end{bmatrix} = AB = \begin{bmatrix} \tilde{a}_1^T B \\ \vdots \\ \tilde{a}_m^T B \end{bmatrix}$$

i.e., ith row of C is ith row of A acting (on left) on B

Inner product interpretation

inner product interpretation:

$$c_{ij} = \tilde{a}_i^T b_j = \langle \tilde{a}_i, b_j \rangle$$

i.e., entries of C are inner products of rows of A and columns of B

- $c_{ij} = 0$ means ith row of A is orthogonal to jth column of B
- Gram matrix of vectors f_1, \ldots, f_n defined as $G_{ij} = f_i^T f_j$ (gives inner product of each vector with the others)
- $\bullet \ G = [f_1 \ \cdots \ f_n]^T [f_1 \ \cdots \ f_n]$

Matrix multiplication interpretation via paths

- $a_{ik}b_{kj}$ is gain of path from input j to output i via k
- c_{ij} is sum of gains over all paths from input j to output i