

REVEALING SMRT™ BIOLOGY

PacBio RS II

技术简介及原理介绍

FU Wei Senior Application Specialist

History of Pacific Biosciences

Cornell University Steve Turner& Jonas Korlach

2003 First Report system sold 2009

2011 Max Delbruck 德国分子医学中心 (MDC) Korlach & 默克尔总理

Company founded 2000

Menlo Park, CA, USA

Proof of concept 2007

Company

IPO

Venture funded 2004

Company "launch" 2008

LPR 2010

FCR 2011

14Years, \$370 Million, 400 people, customers>70

PACIFIC BIOSCIENCES™ CONFIDENTIAL

PacBio 公司被美国麻省理工学院(MIT)的《Technology Review》杂

志评为2010年度全球50家最具创新力的企业之一

Single Molecule, Real-Time (SMRT®) DNA Sequencing

SMRT® Cells

Zero-Mode Waveguides

Phospholinked Nucleotides

PacBio® RS II

Trace

PACIFIC BIOSCIENCES™ CONFIDENTIAL

(Science 299,682)

PacBio RS——革命性的第三代测序平台

SMRT[™] Cell

Single Molecule, Real-Time (SMRT®) DNA Sequencing

SMRT® Cells

Phospholinked Nucleotides

Science, Vol 299, Jan 31 2003, pp682-686 J. Appl. Phys. 103, 034301 (2008)

DNA Polymerase

Primer

DNA聚合酶是序列合成的引擎

• Fast: 750 bp/s

Processive

Frugal

• Faithful: 1 in 10⁵

• Small:15 nm

Nucleotides

Template

DNA polymerase

新型核苷酸标记方法,可维持DNA聚合酶的高活性

Base-linked

- Fluorophore stays in DNA
- Inhibits enzyme
- Creates background light

Phospho-linked

- Fluorophore clipped off by polymerase
- DNA synthesized is natural
- No clogging, background decay

SMRT Cell

- 150,000 ZMWs (zero-mode waveguide, 零模波导孔)in each SMRT Cell
- approx. 33% of ZMWs have one and only one polymerase (>50,000 ZMWs give valid data)
- Each ZMW provides a window that enables the real-time observation of a single molecule of DNA polymerase
 - 在基质表面锚定单个DNA 聚合酶分子以使DNA合成

SMRT cell

ZMW with DNA polymerase

ZMW with DNA polymerase and phospholinked nucleotides (Science 299,682)

BIOSCIENCES™

在单个ZMW中,DNA合成期间可检测到单个核苷酸的掺入

Time

Single-Molecule, Real-Time DNA Sequencing Is:

Single
Molecule
Real
Time

NEW! P6-C4 Chemistry

Typical PacBio® RS II Performance

P6-C4: Read Length Performance

P6-C4, 4-hr movie, 20-kb BluePippin™ size-selected *E. coli* library (1 SMRT Cell)

Consensus Accuracy Performance Comparison

~QV 50 consensus accuracy coverage:

- P6-C4 30x ±10
- P4-C2 30x ±10
- P5-C3 45x ±10

- 20 kb *E. coli* library
- Resequencing analysis with SMRT® Analysis v2.2

Products and Workflow

Library Preparation

Template Prep Kit
Polymerase Binding Kit
MagBead Kit
AMPure® PB Kit

No amplification required

Instrument Run

PacBio® RS II
RS Remote
RS Touch
RS Dashboard
SMRT® Cells
DNA Sequencing Kit

Sequencing time 30 to 180 min per SMRT Cell

Data Analysis

SMRT Analysis SMRT Portal SMRT View

Open source, open standards

PACIFIC BIOSCIENCES**

16

Integrated End-to-End Solutions

Easy, user-friendly, web-based solutions

Streamlined data analysis and viewing

Support for novice and expert users

Applications

De Novo Assembly

Very long reads

Targeted Sequencing

Single Molecule Accuracy

Base Modification Detection

Kinetic Information

De Novo Assembly: Reduce Ambiguities

Complete microbial genomes and improve assemblies of larger organisms

Read lengths up to 30 kb, unbiased genome coverage, and high accuracy

- Resolve mobile elements and structuralvariation events
- Generate complete, accurate and contiguous genome assemblies
- Annotate more genes

De novo, finished assembly of Salmonella enterica subsp. enterica serovar Heidelberg, with predicted accuracy of >99.999% (QV50)

Targeted Sequencing: High-Resolution Insights

Exquisite sensitivity and specificity to fully characterize genetic complexity

- Multi-kilobase reads
- Achieves 99.999% consensus accuracy
- Linear variant detection to <0.1% frequency
- Access to the entire genome

Base Modification: Discover the Epigenome

Detect base modifications using the kinetics of the polymerization reaction during normal sequencing

Customer Evidence: More Than 100 Customer Publications

Key Sequencing Characteristics

1. Contiguity

- Sequence reads >10,000 bases
- Some reads >30 kb

2. Accuracy

- Achieves >99.999% (QV50)
- Lack of systematic sequencing errors

3. Uniformity

 Lack of GC content or sequence complexity bias

4. Originality

- No DNA amplification
- Epigenome characterization

ARTICLES

Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data

Chen-Shan Chin¹, David H Alexander¹, Patrick Marks¹, Aaron A Klammer¹, James Drake¹, Cheryl Heiner¹,

Ross et al. Genome Biology 2013, 14:R51 http://genomebiology.com/2013/14/5/R51

Open Access

er¹ & Jonas Korlach¹

nome sequence of microbes in an manner has been challenging^{5,9,10}. hs in second-generation sequencing t in multiple copies often cannot be hed, fragmented draft assemblies¹¹. blies can also be caused by extreme

RESEARCH

Characterizing and measuring bias in sequence data

Michael G Ross^{*}, Carsten Russ, Maura Costello, Andrew Hollinger, Niall J Lennon, Rvan Hegarty, Chad Nusbaur and David B Jaffe

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Microbiology

Abstract

Background: DNA sequencing te impair scientific and medical appli describing and measuring bias.

Results: We applied these metho sequencing platforms, using data

ELSEVIER

Entering the era of bacterial epigenomics with single molecule real time DNA sequencing

Brigid M Davis, Michael C Chao and Matthew K Waldor

e Roberts et al. Genome Biology 2013, 14:405 http://genomebiology.com/2013/14/6/405

CORRESPONDENCE

The advantages of SMRT sequencing

Richard J Roberts^{1*}, Mauricio O Carneiro² and Michael C Schatz³

Abstract

Of the current next-generation sequencing technologies, SMRT sequencing is sometimes overlooked. However, attributes such as long reads, modified base detection and high accuracy make SMRT a useful technology and an ideal approach to the complete sequencing of small genomes.

Pacific Biosciences' single molecule, real-time sequencing technology, SMRT, is one of several next-generation sequencing technologies that are currently in use. In the Now a new technology, SMRT sequencing from Pacific Biosciences [1], has been developed that not only produces considerably longer and highly accurate DNA sequences from individual unamplified molecules, but can also show where methylated bases occur [2] (and thereby provide functional information about the DNA methyltransferases encoded by the genome).

SMRT sequencing is a sequencing-by-synthesis technology based on real-time imaging of fluorescently tagged nucleotides as they are synthesized along individual DNA template molecules. Because the technology uses a DNA polymerase to drive the reaction, and because it images single molecules, there is no degrada-

[1]. Derivatives of methylated roxymethyleytosine and the leytosine and 5-carboxyl cyto-e regulate gene expression, a different mechanism(s) [4]. methylation is also well-estaboteobacteria, including Escherrescentas, in which methylation am and CerM, respectively) is shromosome replication, DNA (reviewed in [5,6]). However, 2 DNA methylation in prokarthan in cukaryotes [7], and the quences of DNA modification y investigated for most of the

uencing platforms in the last to of whole genome sequencing Meanwhile, large scale analyses lagged far behind, resulting in

Summary-----PacBio 3rd Generation Solution

Novel System ugh • Time to result – sample prep to sequence in <1 **Architecture** Speed with Years of Headroom polymeras Data **Single Molecule Real** eparationt Granularity **Time Technology** Multiple sequencing protocols enabled • Les the same sample preparation **Built-in** · < \$9 Reagenscoffective **Flexibility** Simplified assembly and mapping Simplified sample prep Enables access to novel, medically lieu 24 thours of unattended operation portions of genome Long Readlength Capture last 5% of human genome

PACIFIC BIOSCIENCES™ CONFIDENTIAL

