Name: _

__ / 25

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [11 points] Use the graph of the function H(x) (drawn below) to answer the questions. Assume H(x) has a vertical asymptote at x = 4. For each problem below, give the most complete answer; if the limit is infinite, indicate that with ∞ or $-\infty$. If a value does not exist, write DNE.

a.
$$f(0) =$$

b.
$$f(3) =$$

c.
$$f(5) =$$

d.
$$\lim_{x \to 0^{-}} f(x) = \underline{\qquad}$$
 e. $\lim_{x \to 0^{+}} f(x) = \underline{\qquad}$ **f.** $\lim_{x \to 0} f(x) = \underline{\qquad}$

e.
$$\lim_{x \to 0^+} f(x) =$$

f.
$$\lim_{x \to 0} f(x) =$$

g.
$$\lim_{x \to A} f(x) =$$

h.
$$\lim_{x \to 5} f(x) =$$

g.
$$\lim_{x \to 4} f(x) =$$
_____ **i**. $\lim_{x \to 6} f(x) =$ _____

j. List all x-values for which the function H(x) fails to be continuous.

2. [10 points] Evaluate the following limits. Give the most complete answer; if the limit is infinite, indicate that with ∞ or $-\infty$. If a value does not exist, write DNE. You must show work to receive full credit.

a.
$$\lim_{x \to 4} \frac{x^2 - 3x - 4}{x^2 - 16}$$

b.
$$\lim_{x \to 1} \frac{2 - \frac{2}{x}}{x - 1}$$

c.
$$\lim_{x \to 2^{-}} \frac{5x}{x-2}$$

d. Given
$$\lim_{x\to 5} f(x) = 10$$
 and $\lim_{x\to 5} g(x) = -1$, evaluate $\lim_{x\to 5} 2\left(\frac{x+1}{f(x)+g(x)}\right)$.

3. [4 points] Use the Intermediate Value Theorem to show that the polynomial $p(x) = x^4 - 5x + 1$ must reach a y-value of -1 for some x-value on the interval [0,1].