Logistic Regression

```
In [1]: | #Exp no.:10
In [2]: #Aim: To perform Logistic Regression
In [3]: #Name: Riya Anand Kedar
        #Roll No.:07
        #Sec: 3B
        #Subject:ET - 1
        #Date: 05/10/2024
        Importing Libraries
In [4]: import pandas as pd
        import matplotlib.pyplot as plt
        import numpy as np
        import seaborn as sns
        from sklearn.model_selection import train_test_split
        import warnings
        warnings.filterwarnings('ignore')
In [5]: import os
In [6]:
         os.getcwd()
Out[6]: 'C:\\Users\\riyak'
In [7]: | os.chdir("C:\\Users\\riyak\\OneDrive\\Desktop")
In [8]: | df=pd.read_csv("framingham.csv")
In [9]: #The "Framingham" heart disease dataset includes over 4,240 records, 15 attrib
        # The gosl of the dataset is to predict whether the patient has 10-year risk o
```

In [10]: df.head()

Out[10]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	di
0	1	39	4.0	0	0.0	0.0	0	0	
1	0	46	2.0	0	0.0	0.0	0	0	
2	1	48	1.0	1	20.0	0.0	0	0	
3	0	61	3.0	1	30.0	0.0	0	1	
4	0	46	3.0	1	23.0	0.0	0	0	
4									•

In [11]: df.describe()

Out[11]:

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevale
count	4238.000000	4238.000000	4133.000000	4238.000000	4209.000000	4185.000000	423
mean	0.429212	49.584946	1.978950	0.494101	9.003089	0.029630	
std	0.495022	8.572160	1.019791	0.500024	11.920094	0.169584	
min	0.000000	32.000000	1.000000	0.000000	0.000000	0.000000	
25%	0.000000	42.000000	1.000000	0.000000	0.000000	0.000000	
50%	0.000000	49.000000	2.000000	0.000000	0.000000	0.000000	
75%	1.000000	56.000000	3.000000	1.000000	20.000000	0.000000	
max	1.000000	70.000000	4.000000	1.000000	70.000000	1.000000	
4							•

In [12]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4238 entries, 0 to 4237
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	male	4238 non-null	int64
1	age	4238 non-null	int64
2	education	4133 non-null	float64
3	currentSmoker	4238 non-null	int64
4	cigsPerDay	4209 non-null	float64
5	BPMeds	4185 non-null	float64
6	prevalentStroke	4238 non-null	int64
7	prevalentHyp	4238 non-null	int64
8	diabetes	4238 non-null	int64
9	totChol	4188 non-null	float64
10	sysBP	4238 non-null	float64
11	diaBP	4238 non-null	float64
12	BMI	4219 non-null	float64
13	heartRate	4237 non-null	float64
14	glucose	3850 non-null	float64
15	TenYearCHD	4238 non-null	int64
44	C1+C4/O) :	-+ (1/7)	

dtypes: float64(9), int64(7)

memory usage: 529.9 KB

In [13]: df.isna().sum()

Out[13]: male 0 0 age education 105 currentSmoker 0 29 cigsPerDay **BPMeds** 53 prevalentStroke 0 prevalentHyp 0 diabetes 0 totChol 50 sysBP 0 diaBP 0 BMI 19 heartRate 1 388 glucose TenYearCHD 0

dtype: int64

In [14]:

#Since, only a few rows have null values in them, we are only removing those #df = df.dropna(subset=['heartRate','BMI','cigsPerDay','totChol','BPMeds'])

1 39 0 46 1 48 0 61 0 46 1 50	2.0 1.0 3.0 3.0	0 0 1 1 1	0.0 0.0 20.0 30.0 23.0	0.0 0.0 0.0 0.0 0.0	0 0 0 0	0
1 48 0 61 0 46 	1.0 3.0 3.0 	1 1 1	20.0 30.0 23.0	0.0 0.0 0.0	0 0 0	1
0 61 0 46 	3.0 3.0 	1	30.0 23.0	0.0	0	0
0 46 	3.0	1	23.0	0.0	0	0
				•••	•••	
1 50	1.0					
	1.0	1	1.0	0.0	0	1
1 51	3.0	1	43.0	0.0	0	0
0 48	2.0	1	20.0	NaN	0	0
0 44	1.0	1	15.0	0.0	0	0
0 52	2.0	0	0.0	0.0	0	0
	0 44 0 52	0 44 1.0 0 52 2.0	0 44 1.0 1 0 52 2.0 0	0 44 1.0 1 15.0 0 52 2.0 0 0.0	0 44 1.0 1 15.0 0.0 0 52 2.0 0 0.0 0.0	0 44 1.0 1 15.0 0.0 0

Missing Value Treatement

Since, 'glucose' and 'education' columns had a significant amount of null values, so we replaced them with the mean of values for their respective columns

```
In [16]: df['glucose'].fillna(value = df['glucose'].mean(),inplace=True)
In [17]: df['education'].fillna(value = df['education'].mean(),inplace=True)
In [18]: df['heartRate'].fillna(value = df['heartRate'].mean(),inplace=True)
In [19]: df['BMI'].fillna(value = df['BMI'].mean(),inplace=True)
In [20]: df['cigsPerDay'].fillna(value = df['cigsPerDay'].mean(),inplace=True)
In [21]: df['totChol'].fillna(value = df['totChol'].mean(),inplace=True)
In [22]: df['BPMeds'].fillna(value = df['BPMeds'].mean(),inplace=True)
```

```
In [23]: df.isna().sum()
Out[23]: male
                                 0
                                 0
           age
          education
                                 0
           currentSmoker
                                 0
           cigsPerDay
                                 0
          BPMeds
                                 0
           prevalentStroke
                                 0
                                 0
          prevalentHyp
          diabetes
                                 0
          totChol
                                 0
                                 0
          sysBP
                                 0
          diaBP
          BMI
                                 0
          heartRate
                                 0
                                 0
          glucose
          TenYearCHD
                                 0
          dtype: int64
In [24]: | #Splitting the dependent and independent variables.
          x = df.drop("TenYearCHD",axis=1)
          y = df['TenYearCHD']
In [25]: |x #checking the features
Out[25]:
                 male age education currentSmoker cigsPerDay BPMeds prevalentStroke prevalentHyp
              0
                                                   0
                                                                                       0
                    1
                         39
                                  4.0
                                                                  0.00000
                                                                                                     0
              1
                    0
                        46
                                  2.0
                                                   0
                                                             0.0
                                                                  0.00000
                                                                                       0
                                                                                                     0
               2
                    1
                        48
                                  1.0
                                                   1
                                                            20.0
                                                                  0.00000
                                                                                       0
                                                                                                     0
               3
                        61
                                  3.0
                                                   1
                                                            30.0
                                                                  0.00000
                                                                                       0
                                                                                                     1
                    0
               4
                        46
                    0
                                  3.0
                                                   1
                                                            23.0
                                                                  0.00000
                                                                                       0
                                                                                                     0
                                   ...
                                                  ...
            4233
                    1
                        50
                                  1.0
                                                   1
                                                             1.0
                                                                  0.00000
                                                                                       0
                                                                                                     1
            4234
                        51
                                  3.0
                                                   1
                                                            43.0
                                                                  0.00000
                                                                                       0
                                                                                                     0
            4235
                        48
                                  2.0
                                                   1
                                                            20.0
                                                                  0.02963
                                                                                       0
                                                                                                     0
            4236
                                                   1
                                                            15.0
                                                                                       0
                                                                                                     0
                    0
                        44
                                  1.0
                                                                  0.00000
            4237
                                  2.0
                                                   0
                                                                  0.00000
                                                                                                     0
                        52
                                                             0.0
                                                                                       0
           4238 rows × 15 columns
```

Train Test Spilt

```
In [26]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_stat
In [27]:
          y_train
Out[27]: 3252
                  0
         3946
                  0
         1261
                  0
         2536
                  0
         4089
         3444
         466
         3092
                  0
         3772
                  0
         860
         Name: TenYearCHD, Length: 3390, dtype: int64
```

Logistic Regression Algorithm

```
In [28]: from sklearn.linear_model import LogisticRegression
    model = LogisticRegression().fit(x_train,y_train)
    model.score(x_train, y_train)

Out[28]: 0.8486725663716814

In []:
```