

دورة: 2019

المدة: 04 سا و 30 د

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات، تقنى رياضي

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع الأول على 05 صفحات (من الصفحة 1 من 9 إلى الصفحة 5 من 9)

التمرين الأول: (04 نقاط)

للنشاط الإشعاعي عدة استعمالات من بينها المجال الطبي حيث يستعمل في تشخيص مختلف الأمراض وعلاجها. من بين التقنيات المعتمدة في العلاج بالإشعاع النووي، قذف الورم السرطاني للمصاب بالإشعاع المنبعث من أنوية الكوبالت A(t) قصد تدميره، تصبح العينة غير صالحة للاستعمال إذا تناقص نشاطها الإشعاعي الابتدائي A(t).

$_{27}^{60}Co$ يهدف هذا التمرين إلى دراسة النشاط الإشعاعي للكوبالت

المعطيات:

- $N_{
 m A}=6{,}023{ imes}10^{23}mol^{-1}$ ثابت أفوغادرو $N_{
 m A}=0$
 - .1an = 365 jours < 4
- . eta^- قي اللحظة m_0 ونمط تفككه الإشعاعي عيّنة من الكوبالت أي كتلتها m_0 كتلتها ونمط تفككه الإشعاعي t=0
 - . β^- عرّف كل من النواة المشعّة، الإشعاع
- $_{26}Fe$ ، $_{28}Ni$ معادلة التفكك النووي لنواة الكوبالت محدّدا النواة الناتجة من بين النواتين $_{26}Fe$ ، $_{28}Ni$
 - 2. يمثل المنحنى المبين في الشكل 1 تطور كتلة
 - m = f(t)عيّنة الكوبالت المتبقية خلال الزمن
 - 1.2. باستعمال قانون التناقص الإشعاعي
 - تأكد أنّ كتلة عيّنة الكوبالت $N(t) = N_0.e^{-\lambda t}$
 - $m(t)=m_0\cdot e^{-\lambda t}$: المتبقية تكتب على الشكل المتبقية m_0 للعينة m_0 من الشكل المحدد الكتلة m_0
 - الابتدائية للكوبالت.
 - 3.2. عرّف زمن نصف العمر $t_{1/2}$ واستنتج قيمته.

- بارة ثابت النشاط الإشعاعي λ تكتب على الشكل $\lambda = \frac{\ln 2}{t_{1/2}}$ ثم احسب قيمته في جملة الوحدات λ . (S.I)
 - t=0 عدد الأنوية المشعّة الابتدائية الموجودة في العيّنة عند اللحظة N_0
 - A_0 جِد قيمة النشاط الإشعاعي الابتدائي .6.2
 - 7.2. حدّد بيانياً المدة الزمنية التي من أجلها تصبح عيّنة الكوبالت $^{60}_{27}Co$ غير صالحة للاستعمال.

التمرين الثاني: (04 نقاط)

يوضح الشكل 2 مضمار القفز الطويل في الألعاب المائية، حيث يصل المتزحلق الى النقطة A بداية المستوي المائل A ويواصل حركته إلى النقطة B ليقفز في النهاية الى النقطة D من سطح ماء لمسبح.

المعطيات:

 $g = 9.8 m \cdot s^{-2}$ شدة شعاع حقل الجاذبية الأرضية:

m = 80 kg كتلة المتزحلق

1. يمُر المتزحلق (الرياضي + لوازمه)

من النقطة A بداية مستوى مائل

 $v_A = 10 \, m \cdot s^{-1}$ زاویة میله $\alpha = 20^{\circ}$ بسرعة AB

. $v_{\scriptscriptstyle B} = 8\,m\cdot s^{-1}$ يُواصل حركته وفق المسار AB فَيَصِلُ إلى النقطة

1.1. بفرض أنّ قوى الاحتكاك وكل تأثيرات الهواء على المتزحلق مهملة.

1.1.1. أحص ومثل القوى الخارجية المطبقة على مركز

AB العطالة G للجملة (المتزحلق) خلال المسار

2.1.1. بتطبيق القانون الثاني لنيوتن، أثبت أنّ المعادلة

التفاضلية للسرعة v(t) تكتب كما يلي:

$$\frac{dv}{dt} + g \cdot \sin \alpha = 0$$

AB المسارع a_G خلال المسار .3.1.1

2.1. الدراسة التجريبية لحركة المتزحلق مكنّت باستعمال

.3 الشكل $v^2 = f(x)$ الشكل من رسم البيان

حيث: x يمثل المسافة المقطوعة وفق المستوى المائل.

بتوظيف بيان الشكل 3:

. AB المائل المستوي المائل طول مسار المستوي المائل

بين؟ متساويين a_G' و a_G و متساويين هل قيمتي التسارع التجريبي a_G' عطالة المتزحلق، هل قيمتي التسارع التجريبي a_G'

- 3.2.1. إذا كان الجواب ب: "لا"، ضع تخمينا لذلك واحسب المقدار الفيزيائي المميّز لهذا التخمين.
- 2. يغادر المتزحلق الموضع B بسرعة v_B عند لحظة نعتبرها مبدأ للأزمنة t=0 ليسقط في نقطة D من سطح ماء المسبح، أنظر الشكل D.
- .1.2 بيّن أن معادلة مسار حركة مركز عطالة المتزحلق في المعلم (O,\vec{i},\vec{k}) الذي يعتبر عطاليا تكتب على الشكل: $z=ax^2+bx+c$
 - 2.2. احسب المسافة الأفقية OD.

التمرين الثالث: (06 نقاط)

يعتمد تشغيل انارة سلالم العمارات على دارات كهربائية تحتوي مصابيح ومؤقتة تنظم وتتحكم في مدة اشتعال المصابيح.

يهدف هذا التمرين إلى دراسة ثنائيات قطب واهتزاز جملة كهربائية.

1. احدى هذه الدارات الكهربائية التي تتحكم في المؤقتة

مُبيّنة في الشكل 4 والتي تتكوّن من:

- مولد كهربائي توتره ثابت E -
- $R = 100 \Omega$ ناقل أومي مقاومته
- ثنائي قطب D مجهول يمكن أن يكون: ناقل أومي، مكثفة أو وشيعة.
 - وشيعة b ذاتيتها L ومقاومتها r مهملة.
 - بادلة K وأسلاك توصيل.
- 1.1. نضع البادلة في الوضع (1) عند اللحظة t=0، نعاين بواسطة برمجية مناسبة التطور الزمني لشدة التيار الكهربائي i=f(t) المار بالدارة الكهربائية كما هو موضح في الشكل 5.
 - مع التعليل. حدّد طبيعة ثنائي القطب D مع التعليل.
 - $U_{D_{max}}$ يكون التوتر الكهربائي الأعظمي .2.1.1 بين طرفى ثنائى القطب D بين طرفى ثنائى القطب
 - . C مكثفة سعتها D . نعتبر الآن أنّ ثنائى القطب
 - بين u_c بين المعادلة التفاضلية للتوتر u_c بين طرفي المكثفة تكتب على الشكل الآتي: du_c

. حيث:
$$A \cdot u_C = B$$
 حيث $A \cdot u_C = B$

A و A و العبارة الحرفية لكل من الثابتين

 u_{c} المعادلة التفاضلية للتوتر الكهربائي .2.2.1 تقبل إحدى الحلول الآتية:

. سياسب مع التعليل ،
$$u_{C}=CE(1-e^{-t/_{RC}})$$
 ، $u_{C}=E\cdot e^{-t/_{RC}}$ ، $u_{C}=E(1-e^{-t/_{RC}})$

. C قيمة كل من: ثابت الزمن au، سعة المكثفة 3.2.1

- 2. عندما يبلغ التوتر الكهربائي u_c بين طرفي المكثفة قيمته العظمى $U_{C_{max}}$ ، نضع البادلة في الوضع (2) في t=0 لحظة نعتبرها مبدأ للأزمنة t=0
 - .1.2 بتطبيق قانون جمع التوترات، جِد المعادلة التفاضلية التي تحققها الشحنة الكهربائية q(t) للمكثفة.
- 2.2. إنّ حَل هذه المعادلة التفاضلية من الشكل: $Q_0\cos\left(\frac{2\pi}{T_0}t+\varphi\right)$ حيث Q_0 تمثل الشحنة الأعظمية الأعظمية و Q_0 المكثفة، Q_0 الدور الذاتي لاهتزازات الدارة الكهربائية و Q_0 الصفحة الابتدائية. جِد العبارة الحرفية لكل من الثابتين Q_0 و Q_0 .
 - $E_c = g(t)$ الدراسة الطاقوية مكنتنا من تمثيل تطور الطاقة الكهربائية المخزنة في المكثفة بدلالة الزمن 3.2

- 2.3.2. احسب الطاقة الكهربائية العظمى $E_{C_{max}}$
- 3.3.2 عين بيانيا قيمة الدّور الذاتي T_0 للدارة المهتزة ثم استنتج قيمة الذاتية L للوشيعة.

التمرين التجريبي: (06 نقاط)

توجد الإسترات العضوية في مختلف الصناعات الغذائية، النسيجية، العطرية... إلخ، من بينها إيثانوات الإيثيل ذو $CH_3COOC_2H_5$.

يهدف هذا التمرين إلى تحضير إيثانوات الإيثيل في المخبر انطلاقا من تفاعل حمض عضوي وكحول.

 $M(CH_3COOC_2H_5) = 88 g \cdot \text{mol}^{-1}$ المعطيات:

- 1. نشكل مزيج متساوي المولات من حمض عضوي (A) وكحول (B) بإضافة قطرات من حمض الكبريت المركز عند درجة حرارة ثابتة C 100° لاصطناع إيثانوات الإيثيل.
 - (B) والكحول (B) والكحول (A) والكحول (B). حدّد الصيغة الجزيئية نصف المفصلة مع التسمية لكل من الحمض العضوي
 - 2.1. اكتب معادلة التفاعل الحادث بين كل من الحمض (A) والكحول (B)، اذكر خصائصه.
 - .3.1 اختر قيمة ثابت التوازن K لهذا التحوّل من بين القيم الآتية: $K=10^{-3}$ ، K=2,25 ، K=4 مع التعليل.

4.1. إنّ متابعة كمية مادة الإستر المتشكل في التحول السابق مكنّت من الحصول على الشكل 7 الذي يمثل على متابعة كمية مادة الإستر المتشكل في المزيج بدلالة الزمن $n_{ester} = f(t)$

بالاعتماد على الشكل 7:

1.4.1 بيّن أنّ الكمية الابتدائية

للمتفاعلين:

$$. n_0(A) = n_0(B) = 2mol$$

.r% استنتج مردود التفاعل .r%.

5.1. أذكر طريقتين يمكن من خلالهما تحسين مردود هذا التفاعل.

2. نأخذ كتلة m من الإستر السابق

ونضعها في حجم
$$V = 100 \, mL$$
 من محلول هيدروكسيد الصوديوم

تركيزه المولي $\left(Na^+(aq) + HO^-(aq)\right)$

وبالتسخين المرتد يحدث التفاعل التام المنمذج بالمعادلة الآتية: $c = 10^{-2} \, mol \cdot L^{-1}$

$$CH_{3}COOC_{2}H_{5}(\ell) + HO^{-}(aq) = CH_{3}COO^{-}(aq) + C_{2}H_{5}OH(\ell)$$

إنّ المتابعة الزمنية لهذا التفاعل سمحت بحساب التركيز المولي لشوارد الهيدروكسيد $[HO^-(aq)]$ في الوسط التفاعلي في لحظات مختلفة والمسجلّة في الجدول الآتي:

t(min)	0	5	10	30	50	70	90	110	120
$[HO^-]mmol \cdot L^{-1}$	10,00	8,00	6,00	2,50	1,00	0,40	0,10	0,04	0,04
x(mmol)									

- 1.2. اقترح طريقة تمكننا من المتابعة الزمنية لهذا التحول الكيميائي.
 - 2.2. أنشئ جدولاً لتقدم التفاعل.
- $x(t) = 10^{-3} 0.1 imes [HO^-]$ عبارة تقدم التفاعل x(t) تعطى بالعلاقة الآتية: $x(t) = 10^{-3} 0.1 imes [HO^-]$ عبارة تقدم التفاعل x(t) تعطى التفاعل x(t) عبارة تقدم التفاعل x(t) عبارة تقدم التفاعل x(t) تعطى التفاعل x(t) التفاعل x(t) تعطى التفاعل x(t) تعطى التفاعل x(t) تعطى التفاعل x(t) التفاعل x(t) تعطى التفاعل x(t) تعطى التفاعل x(t) التفاعل x(t) التفاعل x(t)
 - x = f(t) النما الجدول السابق ثم ارسم منحنى تطور تقدم التفاعل بدلالة الزمن x = f(t) .4.2
 - عرّف زمن نصف التفاعل $t_{1/2}$ ثم حدّد قيمته.
 - 6.2. احسب السرعة الحجمية للتفاعل v_{vol} عند اللحظتين t=0 و $t=70\,min$ عند السرعة?

انتهى الموضوع الأول

⋑

الموضوع الثاني على 04 صفحات (من الصفحة 6 من 9 إلى الصفحة 9 من 9)

التمرين الأول: (04 نقاط)

يُعتبر البلوتونيوم من المعادن الثقيلة غير الطبيعية والذي يتم الحصول عليه في المفاعلات النووية إنطلاقا من اليورانيوم 238. تضم عائلة البلوتونيوم أكثر من 15 نظيرا من بينها البلوتونيوم 241.

. γ نواة البلوتونيوم $eta^{-241}_{94} Pu$ نواة انشطارية وذلك عند قذفها بنيترون كما أنها نواة مشعة تصدر جسيمات

يهدف التمرين إلى دراسة تفكك نواة البلوتونيوم 241 وانشطارها.

المعطيات:

$$m_n = 1,00866 \, u$$
 ; $m_p = 1,00728 \, u$; $m\binom{241}{Pu} = 241,00514 \, u$; $m\binom{141}{Cs} = 140,79352 \, u$
 $E_l\binom{98}{Y} = 832,91 \, MeV$; $Iu = 931,5 \, MeV / c^2$; $N_A = 6,023 \times 10^{23} \, mol^{-1}$

العنصر	اليورانيوم	النيبتونيوم	البلوتونيوم	الأميريكيوم
رمز النواة	$_{92}U$	₉₃ Np	₉₄ Pu	₉₅ Am

1. دراسة تفكك نواة البلوتونيوم 241:

- 1.1. عرّف كل من: نواة انشطارية، نواة مشعة.
 - 2.1. أعط تركيب نواة البلوتونيوم 241.
- 3.1. اكتب معادلة التفكك الإشعاعي لنواة البلوتونيوم 241 باعتبار النواة البنت المتشكلة تكون في حالة إثارة.
 - .4.1 فسّر إصدار نواة البلوتونيوم 241 لإشعاعات γ

2. انشطار نواة البلوتونيوم 241:

يمكن نمذجة تفاعل انشطار النووي بالمعادلة الآتية:

$$^{241}_{94}Pu + ^{1}_{0}n \rightarrow ^{141}_{55}Cs + ^{98}_{39}Y + 3^{1}_{0}n$$

- . 1.2 احسب طاقة الربط لكل من النواتين $^{241}_{94}$ و $^{241}_{55}$ cs ثم حدّد أيهما أكثر استقرار.
 - .2.2 من انشطار نواة البلوتونيوم E_{lib} من انشطار نواة البلوتونيوم .241
 - 3.2. مثل مخطط الحصيلة الطاقوية لتفاعل انشطار نواة البلوتونيوم 241.
 - .241 من البلوتونيوم E'_{lib} عن انشطار 1g من البلوتونيوم .4.2

التمرين الثاني: (04 نقاط)

لقياس شدة الزلزال يستعمل راسم اهتزاز ميكانيكي والذي يحتوي على نواس مرن شاقولي. يهدف هذا التمرين إلى دراسة حركة مركز عطالة جسم صلب معلق بنابض مرن.

المعطيات:

- ◄ تهمل جميع قوى الاحتكاك؛
- $g = 9.8 N \cdot kg^{-1}$ شدة شعاع حقل الجاذبية الأرضية

m=25g ونابض مرن شاقولی من جسم صلب (S) کتلته m=25gطوله وهو فارغ l_0 حلقاته غير متلاصقة مهمل الكتلة وثابت مرونته k الشكل lلدراسة حركة مركز العطالة Gللجسم (S)، نختار معلما (O,\overline{j}) مرتبط بمرجع سطحى أرضى نعتبره غاليليا.

عند التوازن ينطبق G مع النقطة O مبدأ المعلم.

- m و g,k,l_0 عنر عن طول النابض l عند التوازن بدلالة g,k,l_0 و m $\Delta l = l_e - l_0$:علما أن
 - 2. انطلاقا من وضع التوازن O، نزيح الجسم (S) شاقوليا نحو الأسفل بمسافة Y_m في الاتجاه الموجب ونحرره فى اللحظة t=0 دون سرعة ابتدائية. يمثل الشكل 2 تطور التسارع a لحركة مركز العطالة a = f(t) للجسم بدلالة الزمن G
 - 1.2. بتطبيق القانون الثاني لنيوتن، جد المعادلة . y(t) التفاضلية التي تحققها فاصلة المتحرك
 - 2.2. يكتب حل المعادلة التفاضلية السابقة على الشكل: $y(t) = Y_m \cos\left(\frac{2\pi}{T_0}t + \varphi\right)$
 - $\cdot k$ و m بدلالة و الدور الذاتي T_0 بدلالة و الدور الذاتي
 - Y_m و φ ، T_0 من عيمة كل من 2.2.2 حدّد قيمة
 - .k استنتج قيمة ثابت مرونة النابض 3.2.2

$a(m \cdot s^{-2})$ t(s)الشكل 2. تطور التسارع بدلالة الزمن

الجزءان الأول والثاني مستقلان.

التمرين الثالث: (06 نقاط)

الجزء الأول: دراسة تفاعل حمض الإيثانويك مع الماء

1. في درجة الحرارة c مختلفة، فنجد النتائج محاليل مائية لحمض الإيثانويك ذات تراكيز مولية c مختلفة، فنجد النتائج المبينة في الجدول الآتي:

رمز المحلول	S_1	S_2	S_3	S_4
$c(mol \cdot L^{-1})$	$1,0\times10^{-2}$	$1,0\times10^{-3}$	$1,0\times10^{-4}$	$1,0\times10^{-5}$
рН	3,4	3,9	4,4	4,9

- 1.1. اكتب معادلة التفاعل المنمذج لانحلال حمض الإيثانويك في الماء.
- pH و r بدلالة r بدلالة r و النسبة النهائية لتقدم التفاعل r بدلالة r
 - المحلول S_1 ماذا تستنتج؛ من أجل المحلول عند تستنتج؛
- 4.1. من أجل المحاليل الحمضية الممددة $(c \le 5,0 \times 10^{-2} \, mol \cdot L^{-1})$ يمكن اعتماد الفرضية التالية: تركيز الأساس المرافق للحمض المنحل في الماء مهمل مقارنة بتركيز المحلول c.
- $pH = \frac{1}{2}(pKa logc)$: بيّن في هذه الحالة أنه يعبر عن pH المحلول بالعلاقة التالية: $pH = \frac{1}{2}(pKa logc)$
 - pH = f(-logc) مثل المنحنى البياني. 2.4.1
- $CH_3COOH(aq)/CH_3COO^-(aq)$: استنتج القيمة العددية لثابت الحموضة العددية pKa الثنائية العددية العددية لثابت الحموضة

الجزء الثاني: دراسة العمود فضة-حديد

المعطيات:

- $Fe^{2+}(aq)/Fe(s)$ ، $Ag^+(aq)/Ag(s)$: الثنائيتان المشاركتان في التفاعل هما
 - $1F = 96500 \, \bar{C} \cdot mol^{-1}$ ثابت فارادای

ننجز العمود فضه -حديد باستعمال الأدوات والمواد لتالية:

- بيشر يحتوي على حجم $V_1 = 100 mL$ من محلول مائي ليترات الفضة $\left(Ag^+(aq) + NO_3^-(aq)\right)$ تركيبيزه المولى . c_1
 - بيشر يُحتوي على نفس الحجم $V_2 = V_1$ من محلول مائي لكلور الحديد الثنائي $\left(Fe^{2+}(aq) + 2Cl^-(aq)\right)$ تركيزه المولى $c_2 = c_1$
 - صفيحة من الفضة وصفيحة من الحديد.
 - جسر ملحي.

 $U_0 = -1,24\,\mathrm{V}$ نربط قطبي العمود بجهاز الفولطمتر كما هو موضح في الشكل 3، فيشير إلى توتر كهربائي قيمته

- 1. ماذا تمثل القيمة التي يشير إليها جهاز الفولطمتر؟
 - 2. اكتب الرمز الاصطلاحي للعمود المدروس.
- 3. اكتب المعادلتين النصفيتين الالكترونيتين للأكسدة والإرجاع الحادثتين عند المسريين ثم استنتج معادلة التفاعل المنمذج للتحول الحادث أثناء اشتغال العمود.
 - t . t بيان تطور التركيز المولي $\left[Ag^{+}
 ight]$ بدلالة الزمن A
 - $\left[Ag^{+}\right] = C_{1} \frac{I}{V_{1} \cdot F}t$: يَنْ أَنْ: 1.4

 c_1 . بالاستعانة بالبيان، حدّد قيمة شدة التيار الكهربائي I وكذا التركيز المولى الابتدائي لمحلول نترات الفضة c_1

التمرين التجريبي: (06 نقاط)

ننجز التركيب التجريبي الممثل في الشكل 5 والمتكون من العناصر الكهربائية التالية:

- $E = 6 \, \text{V}$ مولد توتر كهربائي ثابت قوته المحركة الكهربائية
 - R ناقل أومي مقاومته
 - مكثفة سعتها C
 - r وشیعة b داتیتها b ومقاومتها -
- 1. نضع البادلة في الوضع (1) فتشحن المكثفة كليا وتخزن كمية من الكهرباء قدرها: $Q_0 = 1.32 \times 10^{-4} C$. احسب الطاقة الأعظمية التي تخزنها المكثفة في نهاية عملية الشحن واستنتج سعة المكثفة.
 - 2. نُنجز ثلاث تجارب باستعمال في كل مرة إحدى الوشائع الثلاث التالية: b_3 و b_3 دات المميزات التالية:
 - $b_1(L_1 = 115 \, mH, r_2 = 0)$ $b_1(L_1 = 260 \, mH, r_1 = 0)$ $b_3(L_3, r_3 = 10\Omega)$
 - في كل تجربة نشحن المكثفة كليا ونضع البادلة في الوضع (2)، يسمح تجهيز ExAO بالحصول على البيانات
 - التالية للتوتر الكهربائي بين طرفي المكثفة بدلالة
 - $u_{c}(t)$ الزمن
 - 1.2. حدّد نمط الاهتزازات الذي يبينه البيان(1) والبيان(3).
 - 2.2. أرفق كل بيان بالوشيعة التي توافقه في التجرية مع
 - 3.2. نعتبر حالة تفريغ المكثفة في الوشيعة
 - $b_2(L_2 = 115 \, mH, r_2 = 0)$
 - 1.3.2. جد المعادلة التفاضلية التي يحققها التوتر $u_{C}(t)$ الكهربائى بين طرفي المكثفة
 - 2.3.2. يعطى حل المعادلة التفاضلية بالشكل:

$$u_{C}(t) = U_{C_{max}} cos\left(\frac{2\pi}{T_{0}}t + \varphi\right)$$

.arphi و $\omega_{_{\! 0}}$ ، $T_{_{\! 0}}$ ، $U_{_{\! C_{\scriptscriptstyle {\rm max}}}}$: جد قیمة کل من

- ين أن الطاقة الكلية للدارة L,C ثابتة، احسب L,Cقيمتها.
 - 4.2. فسر لماذا تتناقص سعة الاهتزازات في البيان (3).

انتهى الموضوع الثاني

رمة	العا	/ t
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		التمرين الأول: (04 نقاط)
	0.25	1.1. تعريف النواة المشعة: هي نواة غير مستقرة تسعى للإستقرار من خلال التفكك التلقائي إلى
		نواة أكثر إستقرارا مع إنبعاث جسيمة $lpha$ وأ eta وأ eta تكون مرفوقة بالإشعاع γ .
I	0.25	- تعريف الإشعاع eta^- : هو جُسِيم e^0 ناتج عن تحول نترون الى بروتون.
	0.50	$^{60}_{27}Co ightarrow ^{A}_{Z}X+^{0}_{-1}e$: معادلة التفكك النووي $^{60}_{27}Co ightarrow ^{A}_{Z}X+^{0}_{-1}e$: معادلة التفكك النووي $^{60}_{28}Ni\Leftrightarrow ^{A}_{Z}X\Leftarrow egin{cases} 60=A+0&\Rightarrow A=60\ 27=Z-1&\Rightarrow Z=28 \end{cases}$
		$m(t)=m_0.e^{-\lambda t}$ التأكد من العلاقة: 1.2
		$N(t)\!=\!N_0.e^{-\lambda t}$ من قانون التناقص الإشعاعي
	0.5	$\frac{0.25}{N_{A}} = \frac{M.N(t)}{N_{A}} = \frac{M.N_{0}(t)}{N_{A}}.e^{-\lambda t} \implies m(t) = m_{0}.e^{-\lambda t} 0.25$
	0.25	$m_0 = 2g$ بيانيا m_0 بيانيا .2. ${f 2}$
	0.25	3.2. تعريف زمن نصف العمر $t_{1/2}$: هو الزمن اللازم لتفكك أو بقاء نصف عدد الأنوية المشعة
	0.25	الابتدائية.
	0.23	$t_{1/2} = 5,2ans$ بالإسقاط نجد $m\left(t_{1/2}\right) = m_0 \ / \ 2 = 1g$: تعيين قيمته بيانيا
		t _{1/2} کیر او بساوي 5.2 سنة او 1/2 اصغر او بساوي 5.6 سنة
	0.25	$m\left(t_{1/2}\right) = \frac{m_0}{2} = m_0.e^{-\lambda t_{1/2}} \Rightarrow \lambda = \frac{\ln 2}{t_{1/2}} \ \lambda = \frac{\ln 2}{t_{1/2}} \ \lambda = \frac{\ln 2}{t_{1/2}} \ .4.2$
3	0.25	$\lambda = \frac{\ln 2}{5,2} = 0,133 ans^{-1} = 4,2 \times 10^{-9} s^{-1}$ حساب قیمته:
		5.2. حساب عدد الأنوية المشعة الابتدائية:
	0.25	0.25 $N_0 = \frac{m_0}{M} \cdot N_A = 2 \times 10^{22} \text{ noy}$
	0.25	A_0 حساب النشاط الإشعاعي A_0
	0.25	$A_0 = \lambda . N_0 = 8,4 \times 10^{13} \mathrm{Bq}$ 0.25 0.25
	0.50	$m(t)=0,25m_0=m_0.e^{-\lambda t}$ t=10.4 ans بالإسقاط نجد

رمة	العا	(t.Št. c a. t.) ži la Nt alic
مجموع	مجزاة	عناصر الإجابة (الموضوع الأول)
		التمرين الثاني: (04 نقاط)
		R (1
	0.25	R الموثرة R المؤثرة R المؤثرة R المؤثرة R
		على مركز عطالة الجملة:
	0.25	\overrightarrow{p} قوة الثقل \overrightarrow{p} قوة الثقل عند الثقال عند الثقال عند الثقل عند الثقال عند الثقا
		\overrightarrow{R} رد فعل المستوي R
	0.25	$\sum \overrightarrow{F_{ext}} = m.\overrightarrow{a_G} \Rightarrow \overrightarrow{p} + \overrightarrow{R} = m.\overrightarrow{a_G}$: المعادلة التفاضلية للسرعة: 2.1.1
	0.25	$rac{dv}{dt}+\ g.sinlpha=0$ -ومنه نجد: $-m.\ g.sinlpha=m.a_G$ بالأسقاط:
	0.25	$a_G = \frac{dv}{dt} = -9.8 \sin(20^\circ) = -3.35 m \cdot s^{-2}$: $a_G = -3.1.1$
	0.25	$v_B = 8m \cdot s^{-1}$ بسرعة B بسرعة وصل الى النقطة وصل الى النقطة المسار . المتزحلق وصل
	0.23	x = AB = 3,6m : من القيم المعطاة لدينا $x = AB = 3,6m$ ومنه
	0.25	$\begin{cases} v^2 = 2a'_G x + v_A^2 \\ v^2 = Ax + B \end{cases} \Rightarrow a'_G = \frac{A}{2} = -5 m \cdot s^{-2} : \text{لينا} : a'_G \text{لتسارع التجريبي} : 2.2.1$
2.75		- يمثل ميل المنحنى $A = \frac{64-100}{3.6-0} = -10 m \cdot s^{-2}$
	0.25	a_{G} اِن: a_{G}' تساوي a_{G}' ا
	0.25	AB غير صحيحة. التخمين: فرضية إهمال قوى الاحتكاك على المسار AB غير صحيحة.
		المقدار الفيزيائي المميز: قوى الاحتكاك f
	0.07	حساب شدة قوة الاحتكاك f .
	0.25	$\sum \overrightarrow{F_{ext}} = m \cdot \overrightarrow{a_G'} \implies \overrightarrow{p} + \overrightarrow{R} + \overrightarrow{f} = m \cdot \overrightarrow{a_G'}$ بتطبیق القانون الثاني لنیوتن
	0.25	$f=-m(g imes sinlpha+a_G')=131,8 ext{N}$ بالإسقاط نجد
		(2
	0.25	1.2. معادلة المسار:
	0.25	$\sum \overrightarrow{F_{ext}} = m.\overrightarrow{a_G} \Rightarrow \overrightarrow{p} = m.\overrightarrow{a_G}$ يتطبيق القانون الثاني لنيوتن

زمة	العلا	/ 1
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
1.25	0.25	$\begin{cases} Ox: a_x = 0 \\ Oz: a_z = -g \end{cases} \Rightarrow \begin{cases} x(t) = (v_B \cos \alpha)t(1) \\ z(t) = -\frac{1}{2}gt^2 + (v_B \sin \alpha)t + z_0(2) \end{cases}$ بالإسقاط:
	0.25	$z(t) = -\frac{g}{2v_B^2\cos^2\alpha}x^2 + (\tan\alpha)x + z_0$: من (1) و (2) نجد معادلة المسار $a = -\frac{g}{2v_B^2\cos^2\alpha}$ ، $b = \tan\alpha$ ، $c = z_0 = OB$ فتكون الثوابت:
	0.25	$z_{0}=AB\sinlpha=1,23m$: قيمة $z_{0}=AB\sinlpha=1,23m$
		2. 2 . حساب المسافة OD:
	0.25	$z = 0 \Rightarrow -\frac{g}{2v_B^2 \cos^2 \alpha} x^2 + (\tan \alpha)x + z_0 = 0$
		x = OD = 6,4m هنمو $x = OD = 6,4m$ أو: حساب الزمن من (2) تساوي الصفر ومنه نعوض في (1).
		التمرين الثالث: (06 نقاط)
	0.25	1.1.1 1.1.1. طبيعة ثنائي القطب D : مكثفة.
	0.25	التعليل: لأن شدة التيار منعدمة في النظام الدائم.
3.25	0.25	$U_{Dmax} = E = R.I_0 = 100 \times 0,12 = 12$ V التوتر الأعظمي. $2.1.1$
	0.25	U_{c} .1.2.1 التأكد من المعادلة التفاضلية للتوتر U_{c} :
	0.25 0.25	$u_{R}(t) + u_{C}(t) = E \Rightarrow RC\frac{du_{C}}{dt} + u_{C}(t) = E \Rightarrow \frac{du_{C}}{dt} + \frac{1}{RC}u_{C}(t) = \frac{E}{RC}$
	0.25 0.25	$\begin{cases} A = \frac{1}{RC} \\ B = \frac{E}{RC} \end{cases}$ عن الشكل $\frac{du_C}{dt} + A.u_C = B$ من الشكل
		: المعادلة التفاضلية للتوتر u_c تقبل $u_c = E(1-e^{-1/RC})$ حلاً لها:
	0.25 0.25	التعليل: لأن العبارة $u_{\scriptscriptstyle C}=E(1-e^{-t/_{RC}})$ تحقق المعادلة التفاضلية.
	0.25 0.25 0.25	$c = \frac{\tau}{R} = \frac{0.02}{100} = 2 \times 10^{-4} \mathrm{F}$ ، $\tau = 0.02 \mathrm{s}$ من البیان: ثابت الزمن 3.2.1
		(2
	0.25	q(t) : المعادلة التفاضلية لـ: $q(t)$
	0.25	$u_b(t) + u_C(t) = 0 \Rightarrow L\frac{di(t)}{dt} + u_C(t) = 0$
	0.25	$\frac{d^2q(t)}{dt^2} + \frac{1}{LC}q(t) = 0$ ومنه:

امة	العلا	/ 1.\$1 c. : 10 ä.l. N1 al:o
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
	0.25	: بتعويض الحل في المعادلة التفاضلية نجد Q_0 و Q_0 : بتعويض الحل في المعادلة التفاضلية نجد Q_0
	0.25	$Q_0 = CE$ ومن الشروط الابتدائية $T_0 = 2\pi \sqrt{LC}$
	0.25	.3.2 1.3. 2 الوشيعة صرفة (r = 0): لأنه لا يوجد ضياع في الطاقة.
2.75	0.25 0.25	$E_{C max} = \frac{1}{2}C.E^2 = \frac{1}{2} \times 2 \times 10^{-4} \times (12)^2 = 14,4 \text{mJ}$: $E_{C max}$.2.3.2
	0.25 0.25 0.25	$T_0 = 2 \cdot T_{Energie} = 2 \times 10 ms = 20 ms \qquad .3.3.2$ $T_0 = 2 \pi \sqrt{LC} \Rightarrow L = \frac{T_0^2}{4 \pi^2 C} = \frac{\left(0.02\right)^2}{40 \times 2 \times 10^{-4}} = 0,05 \text{H} \qquad .3.3.2$ استنتاج الذاتية L للوشيعة:
		التمرين التجريبي: (06 نقاط)
	0.50	1.1. الصيغ الجزيئية نصف المفصلة مع التسمية: $CH_3COOH:(A)$ الحمض $CH_3COOH:(B)$ الكحول (B) الإيثانول 0.25
	0.25	$CH_{3}COOH(aq) + CH_{3}CH_{2}OH(aq) = CH_{3}COOC_{2}H_{5}(aq) + H_{2}O(l)$ عادلة التفاعل الحادث: 2.1
	0.25	خصائصه: . محدود، لا حراري، بطيء.
	0.25	k = 4 . الكحول أولي فإن ثابت التوازن: $k = 4$.3.1
3.0	0.25	.4.1 $n_0(A)=n_0(B)=2mol$: تبیان أن $n_0(A)=n_0(B)=2mol$.1.4.1
	0.25	$k=rac{x_f^2}{\left(n_0-x_f ight)^2}$ $\Rightarrow n_0=x_f\left(rac{1+\sqrt{k}}{\sqrt{k}} ight)$ عبارة ثابت التوازن
	0.25	$n_0=2mol$ فنجد: $K=4$ و $x_f=1,34mol$ من البيان فإن
0	0.50	0.25. مردود تفاعل الأسترة: 0.25 مردود تفاعل الأسترة: $r\% = \frac{x_f}{x_{max}} \times 100 = \frac{n_{fester}}{n_0\left(A\right)} \times 100 = \frac{1,34}{2} \times 100 = 67\%$ يمكن الاستنتاج دون حساب
	0.25 0.25	5.1. يمكن تحسين المردود: - استعمال مزيج ابتدائي غير متساوي المولات ـ باستبدال حمض الإيثانويك بكلور الإيثانويل

مة	العلا	/ + E+1 - + +1\ ** 1
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
	0.25	2) 1.2. يمكن انجاز متابعة زمنية عن طريق قياس الناقلية أو قياس الـ pH .
		2.2. جدول التقدم للتفاعل
		$CH_{3}COOC_{2}H_{5(aq)}+HO^{-}{}_{(aq)}=CH_{3}COO^{-}{}_{5(aq)}+C_{2}H_{5}OH_{(\ell)}$ المعادلة
	0.25	كمية المادة (mol) التقدم ح. الجملة
		$n_0 = \frac{m}{M}$ $n_0(HO^-) = cV$ 0 0
		ح. انتقالیة x $n_0 - x$ $cV - x$ x
		ح. نهائية x_f $cV - x_f$ $cV - x_f$ x_f x_f
	0.5	$x(t) = 10^{-3} - 0.1 \times [HO^{-}]$: 3.2 يثبات العلاقة: $x(t) = 10^{-3} - 0.1 \times [HO^{-}]$: من جدول التقدم: $x(t) = 10^{-3} - 0.1 \times [HO^{-}]$ من جدول التقدم: 0.25

مة	العلا		/ 1	511 -	· t()	71.8		1 * 0			
مجموع	مجزأة		()	وع الأو	رانموص	جابه	صر الإ				
		0.25						x(t) =	f(t)ول	ملة الجد	4. 2 . تک
		$ \begin{array}{ c c c }\hline & t(min) \\\hline & [HO^-] mmol \cdot L^{-1} \\\hline \end{array} $	0 10,00	5 8,00	10 6,00	30 2,50	50 1,00	70 0,40	90 0,10	110 0,04	120 0,04
	-	x(mmol)	0,00	0,20	0,40	0,75	0,90	0,96	0,99	1,00	1,00
			1	1	l .	1		x = f(ر ياني: (t)	نحنى الب	رسم الم
		X(m moL)									
3.0	0.75	0.2						0.25 0.25 t(min)			
	0.25	م التفاعل نصف قيمته	لبلوغ تقد	اللازمة	الزمنية	و المدة	a : $t_{1/2}$	التفاعل	ن نصف	ریف زمر	5.2. تع
										عظمية.	
	0.25									ديد قيمتا	
	0.25		v_{VO}	$L = \frac{1}{V} \cdot \frac{\partial}{\partial t}$,	`		ساب الس	
	0.25						, (,		$ol/L \cdot m$	
			v_{vc}	$_{oL}$ (70 mi	$(in) = \frac{1}{0}$	$\frac{1}{1} \cdot \frac{(0,9)}{(7)}$	(7-0.8)	$\frac{3}{2} = 0,0$)2mmol	$/L \cdot \min$	1
	0.25	<u>ب</u> ع لتناق <i>ص</i>	وهذا را۔							تطور الس	i
				ت.	متفاعلاد	ة بين الـ	ت الفعال	تصادمان	刊		

رمة	العا	الأمام الأمام الثان الأمام الثان الأمام الثان
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0.25	التمرين الأول: (04 نقاط) 1. دراسة نواة البلوتونيوم 214: 1. النواة الانشطارية: هي نواة ثقيلة قابلة للانقسام عند قذفها بنيترون إلى نواتين خفيفتين أكثر استقرارا مع تحرير طاقة.
1.50	0.25	النواة المشعة: هي نواة غير مستقرة تسعى إلى الاستقرار عن طريق التفكك التلقائي لتتحول إلى نواة أكثر استقرارا مع إصدار إشعاعات.
	0.25	2.1. تركيب نواة البلوتونيوم 241 94 بروتون 147 نيترون
		Pu : Pu كتابة معادلة التفكك الإشعاعي لنواة Pu الواة Pu عنابة معادلة التفكك الإشعاعي الواة Pu .3.1
	0.50	${}_{94}Pu \to {}_{Z}X + {}_{-1}e$ ${}_{94}^{241}Pu \to {}_{95}^{241}Am^* + {}_{-1}^{0}e$
		94 93 -1
	0.25	4.1. إصدار γ ناتج عن انتقال النواة البنت المتشكلة من حالة مثارة إلى حالة أقل طاقة.
		2. انشطار نواة البلوتونيوم 214:
	0.25	$E_{I}(241Pu) = \Delta m.c^{2} = 1818,47 MeV$ البلوتونيوم 241: $E_{I}(241Pu) = \Delta m.c^{2} = 1818,47 MeV$
		حساب طاقة الربط لنواة السيزيوم 141:
	0.25	$E_l({}_{55}^{141}Cs) = \Delta m.c^2 = 1259,05MeV$
	0.25	$\frac{E_{l}(^{241}Pu)}{4} = 7,54 MeV / nuc$
	0.25	$\frac{E_{l}(^{141}Cs)}{A} = 8,93 MeV / nuc$
2.50	0.25	وبالتالي نواة السيزيوم 141 أكثر استقرارا من نواة البلوتونيوم 241. $\frac{E_l(^{141}Cs)}{A} > \frac{E_l(^{241}Pu)}{A}$
		2.2. حساب الطاقة المحررة E_{lib} من انشطار نواة البلوتونيوم 241 :
	0.25	$\left E_{lib} \right = (m_i - m_f).c^2 = 273,49 MeV$ قبل الإجابة باستعمال الإجابة باستعمال الإجابة باستعمال الإجابة الإجابة باستعمال الإجابة الإجا
		3.2. مخطط الحصيلة الطاقوية لتفاعل الانشطار:
		E
		E_2 94 p + 148 n
	0.50	$E_1 \left[\begin{array}{c} {}^{241}_{940}Pu + {}^{1}_{0}n \end{array} \right]$
		$oxed{E_{lib}}$
		$E_3 = \frac{{}^{141}_{55}Cs + {}^{98}_{39}Y + 3{}^{1}_{0}n}{4}$

رمة	العا	عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	**
	0.50	4.2. حساب الطاقة المحررة من انشطار $_{1g}$ من البلوتونيوم $_{241}$:
	0.50	$\left E'_{lib}\right = N \cdot \left E_{lib}\right = \frac{m}{M} \cdot N_{A} \cdot \left E_{lib}\right = 6,83 \times 10^{23} MeV$
		التمرين الثاني: (04 نقاط)
		الطول l_e عند التوازن: l_e عند التوازن:
	0.25	الجملة المدروسة: {جسم (s)}
		مرجع الدراسة: الأرضي الذي نعتبره غاليلي $\sum \overrightarrow{F_{ex}} = \overrightarrow{0} \Rightarrow \overrightarrow{p} + \overrightarrow{T_0} = \overrightarrow{0}$ عند التوازن: \overrightarrow{D}
1	0.25	
	0.25	بإسقاط العلاقة الشعاعية وفق المحور الشاقولي: $mg-ky_0=0$ حيث
	0.25	$\mathbf{y}_0 = l_e - l_0 :$
		$l_e = l_0 + \frac{mg}{k}$ وعليه:
		.2
		y = f(t) يجاد المعادلة التفاضلية التي تحققها فاصلة المتحرك $y = f(t)$
	0.25	بتطبيق القانون الثاني لنيوتن على الجملة في المرجع الأرضي الذي نعتبره غاليليا:
	0.25	$\sum \overrightarrow{F_{ext}} = m\overrightarrow{a_G} \Longrightarrow \overrightarrow{P} + \overrightarrow{T} = m\overrightarrow{a_G}$
	0.25	بإسقاط هذه العلاقة الشعاعية وفق المحور الشاقولي:
	0.25	$P-T = ma \Rightarrow mg - k(y + \Delta l) = ma \Rightarrow (mg - k\Delta l) - ky = ma$
	0.25	$rac{d^2y}{dt^2} + rac{k}{m}y = 0$ وعليه $mg - k\Delta l = 0$ من وضعية التوازن:
		.2.2
		T_0 ايجاد عبارة الدور الذاتي T_0
	0.25	: وياشتقاق الفاصلة y مرتين ، نجد y وعليه وعليه وعليه $\frac{d^2y}{dt^2} = -\left(\frac{2\pi}{T_0}\right)^2y$: دينا
	0.25 0.25	
		$T_0 = 2\pi \sqrt{\frac{m}{k}}$
	0.25	Y_m و φ ، T_0 و عيمة كل من φ ، T_0 و و
3	0.25	$T_{0}=0,2s$ من البيان $T_{0}=0,2s$ من البيان .
	0.23	$arphi=0$ وعليه $arphi=0$ فإن $y=+Y_m$ ومنه $t=0$ وعليه $arphi=0$.
	0.25	$a_{max} = rac{4\pi^2}{T_0^2} Y_{max}$ حيث $a = -a_{max} = -20 m \cdot s^{-2}$ فإن $t = 0$ فإن Y_m قيمة Y_m عيث .
		$Y_m = 0.02m = 2cm$ وعليه

رمة	العا	/ *1**ti
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0.25	3.2.2. استنتاج قيمة ثابت مرونته النابض:
	0.25	$k = rac{4\pi^2.m}{T_0^2} = 25N.m^{-1}$ ومنه $T_0 = 2\pi\sqrt{rac{m}{k}}$
		التمرين الثالث: (06 نقاط)
	0.25	1. دراسة تفاعل حمض الايتانويك مع الماء
	0.23	1.1. كتابة معادلة التفاعل المنمذج لانحلال حمض الإيثانويك في الماء
		$CH_3 - COOH(aq) + H_2O(l) = CH_3 - COO^-(aq) + H_3O^+(aq)$
		: يجاد النسبة $ au_f$ لتقدم التفاعل بدلالة c و pH بالاستعانة بجدول التقدم $ au_f$
		$CH_3 - COOH(aq) + H_2O(l) = CH_3 - COO^{-}(aq) + H_3O^{+}(aq)$
	0.25	$orall t \geq 0$: $n-x_f$ بوفرة x_f بوفرة x_f
	0.25	$ au_f = rac{x_f}{x_m}$: الدينا
		CH_3-COOH من جدول التقدم: الماء موجود بوفرة ومنه المتفاعل المحد هو الحمض
	0.25	$x_m = n = cV$ وعليه
		$ au_f = \frac{10^{-pH}}{c}$: إذن $x_f = \left[H_3 O^+ \right]_f .V = 10^{-pH}.V$
	0.25	د. حساب قيمة النسبة $ au_f$ لتقدم التفاعل للمحلول S_1 مع الاستنتاج:
	0.25	$ au_f < 1$ نستنتج أن التفاعل غير تام لأن $ au_f = 3.98\%$
		.4.1
3.25		$pH=rac{1}{2}ig(pka-\log cig)$ هي: $c\leq 1,0 imes 10^{-2} mol\cdot L^{-1}$ عبارة في حالة $c\leq 1,0 imes 10^{-2}$
		$pH = pka + log \frac{\left[CH_3COO^-\right]_f}{\left[CH_3COOH\right]_f}$: دينا
	0.25	$[CH_3COOH]_f$
		$\left[CH_{3}COO^{-} ight]_{f}=\left[H_{3}O^{+} ight]_{f}$ من جدول التقدم:
	0.25	وباعتماد الفرضية، فإن $\left[CH_{3}COOH ight]_{f}=C-\left[CH_{3}COO^{-} ight]_{f}$
		$[CH_3COOH]_f = c$
	0.25	$pH-logig[H_3O+ig]_f=pka-logc$ ومنه $pH=pka+lograc{ig[H_3O+ig]_f}{c}$: إذن
		$pH = \frac{1}{2}(pka - logc)$ وعليه

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0.50	pH $pH = f(-logc)$ يمثيل المنحنى البياني $pH = f(-logc)$ عمثيل المنحنى البياني $-Logc$
		CH_3COOH / CH_3COO^- استنتاج القيمة العددية لثابت الحموضة pka للثنائية 3.4.1
	0.25	$pH = \frac{1}{2}(pka - logc)$ لدينا : نظريا
	0.25	pH = a + blogc معدلة البيان
	0.25	pka = 2a = 4.8 :بالمطابقة، نجد
		ثانيا : دراسة عمود الفضة – حديد:
0.25	0.25	1. القيمة المسجلة على جهاز الفولطمتر: القيمة بالقيمة المطلقة هي القوة المحركة الكهربائية
		E=1,24V للعمود
0.25	0.25	2. كتابة الرمز الاصطلاحي للعمود المدروس: القطب السالب لجهاز الفولطمتر (Com) مربوط بالصفيحة Ag و $U_0 < 0$ ومنه: الصفية Fe تمثل القطب السالب و Ag تمثل القطب الموجب وعليه الرمز الاصطلاحي للعمود هو: $ -Fe \left Fe^{2+} \right Ag^+ \left Ag \right $
		3. كتابة المعادلتين النصفيتين للأكسدة والإرجاع الحادثتين عند القطبين مع استنتاج معادلة
0.75	0.25	التفاعل المنمذج للتحول الذي يحدث أثناء اشتغال العمود:
	0.25	$Ag^+(aq) + e = Ag(s)$:المعادلتان النصفيتان عند القطب الموجب
		$Fe(s) = Fe^{2+}(aq) + 2\acute{e}$ عند القطب السالب:
	0.25	معادلة التفاعل المنمذج للتحول الحادث أثناء اشتغال العمود:
		$2Ag^{+}(aq) + Fe(s) = 2Ag(s) + Fe^{2+}(aq)$
		.4
		$\left[Ag^{+}\right] = c_{1} - \frac{I}{V_{1}.F}t$ تبیان أن: .1.4
1.50	0.25	بالاستعانة بجدول التقدم
	0.25	$\left[Ag^{+}\right] = c_{1} - \frac{I}{V_{1}.F}$ وعليه: $Z = 2$ حيث $Q = I \cdot t = Z \cdot x \cdot F$ مع $\left[Ag^{+}\right] = \frac{n_{1} - 2x}{V_{1}}$

العلامة		الأمامة الأمامة الثاني
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		I تحدید قیمة شدة التیار I
	0.25	$\left[Ag^{+} ight] = c_{1} - \frac{I}{V_{1} \cdot F} t$ ولدينا $\left[Ag^{+} ight] = at + b$ عادلة البيان:
	0.25	$I = -V_1 \cdot \mathbf{F} \cdot a$ ومنه $a = -\frac{I}{V_1 \cdot \mathbf{F}}$:بمطابقة المعادلتين، نجد
	0.25	$I = 16mA$ وعليه $a = -10^{-4} mol \cdot L^{-1} \cdot min^{-1}$ حيث
	0.25	$c_1 = b = 0,2mol \cdot L^{-1}$
		التمرين التجريبي: (06 نقاط)
1		1. الطَّاقة الأعظميَّة:
	0.25 0.25	$E_{Cmax} = \frac{1}{2} \times Q_0 \times U_{Cmax} = \frac{1}{2} \times Q_0 \times E$
1	0.25	$E_{C \max} = 3.96 \times 10^{-4} \mathrm{J}$
	0.25	$C = \frac{Q_0}{F} = 22 \times 10^{-6} \mathrm{F}$
	0.25	.2
5	0.25 0.25	1.2. نمط الاهتزازات الذي يبينه البيان (1): اهتزازات حرة غير متخامدة نمط الاهتزازات الذي يبينه البيان (3): اهتزازات حرة متخامدة
		$b_3(L_3, r_3 = 10\Omega)$: نظام شبه دوري لوجود مقاومة بالدارة فهو يوافق الوشيعة (3): نظام شبه دوري لوجود مقاومة فهما يوافقان الوشيعتين (1) و (2) نظام دوري تنعدم فيهما المقاومة فهما يوافقان الوشيعتين $L_2 < L_1$: $b_2(L_2 = 115m \mathrm{H}, r_2 = 0)$ ، $b_1(L_1 = 260m \mathrm{H}, r_1 = 0)$ فإن: $T_2 < T_1$ حسب عبارة الدور $T_2 < T_2 < T_1$ فإن: البيان (1) يوافق الوشيعة $D_3(L_2 = 115m \mathrm{H}, r_2 = 0)$
	4x0.25	$b_2(L_2 = 115m11, r_2 = 0)$ والبيان (2) يوافق الوشيعة $b_1(L_1 = 260m \mathrm{H} , r_1 = 0)$
	4x0.25	$b_2(L_2=115m{ m H}\;,\;r_2=0)$ لوشيعة الوشيعة الوشيعة $u_C(t)$: $u_C(t)$ المعادلة التفاضلية التي يحققها التوتر بين طرفي المكثفة
		و $i=\frac{dq}{dt}=C\frac{du_C}{dt}$ جيث $u_C+u_L=0 \Rightarrow u_C+L\frac{di}{dt}=0$ بتطبيق قانون جمع التوترات لدينا 0.25 مينا
		$rac{d^2 u_C}{dt^2} + rac{1}{LC} u_C = 0$: نجد LC نجد نجد $LC rac{d^2 u_C}{dt^2} + u_C = 0$ ومنه $dt = C rac{d^2 u_C}{dt^2}$ ومنه $dt = C rac{d^2 u_C}{dt^2}$

العلامة		/ *1**ti
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		$u_{C}(t) = u_{Cmax} \cos\left(\frac{2\pi}{T_{0}}t + \varphi\right)$:حل المعادلة التفاضلية بالشكل .2.3.2
		$arphi$ و $arphi_0$ و $arphi_0$ و $arphi_{Cmax}$: $arphi$
	0.25	(القيمة العظمى التوتر) $u_{C\max} = E = 6V$
	0.25	((1) الدور الذاتي للاهتزازات للبيان $T_0=2\pi\sqrt{L imes C}=rac{2\pi}{\omega_0}=10$
	0.25	(النبض الذاتي للاهتزازات) $\omega_0=rac{2\pi}{T_0}=rac{2\pi}{0.01}=200\pi \ rad/s$
	0.25	من البيان (1) لدينا لما $t=0$ يكون:
		(الصفحة الابتدائية) $u_{C}\left(0 ight)=U_{C\max}=U_{C\max}\cosarphi\Rightarrow\cosarphi=1\Rightarrowarphi=0$
		3.3.2. إثبات أن الطاقة الكلية للدارة L,C ثابتة:
		0.25 $u_C = E \cos(\omega_0 t + \varphi)$ $E_T = E_C + E_L = \frac{1}{2}Cu_C^2 + \frac{1}{2}Li^2$
	ì	$0.25 i = \frac{dq}{dt} = C\frac{du_C}{dt} = -C\omega_0 E \sin(\omega_0 t + \varphi) 9$
	4x0.25	$T_0^2 = 4\pi^2 L \times C \qquad = \frac{1}{2}CE^2 \cos^2(\omega_0 t + \varphi) + \frac{1}{2}L(-C\omega_0 E)^2 \sin^2(\omega_0 t + \varphi)^2$ 0.25
		و منه : $E_T = \frac{1}{2}CE^2 = C^{te}$ نستنتج أن : طاقة الدارة LC ثابتة والدارة مثالية. $\omega_0^2 = \frac{1}{LC}$
		$0.25 E_T = 3.96 \times 10^{-4} \text{J}$
	0.50	4.2. تفسير تناقص سعة الاهتزازات في البيان (3):
	0.50	تتناقص سعة الاهتزازات في البيان (3) نتيجة وجود مقاومة (وهي مقاومة الوشيعة b_3 أي هناك b_3
		ضياع للطاقة على شكل حرارة بفعل جول.