LISTING OF THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claim 1 (Original)

1. (Original) A compound of general formula (I):

$$R^{1}$$
 R^{2}
 R^{3}
 R^{6}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{6}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{6}
 R^{7}

in which:

- n is 1, 2 or 3;

- X is the same or different and is a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a pentafluoro- λ^6 sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a carbamoyl group, a N-hydroxycarbamoyl group, a carbamate group, a (hydroxyimino)-C₁-C₆-alkyl group, a C₁-C₈-alkyl, a C₂-C₈-alkenyl, a C₂-C₈-alkynyl, a C_1 - C_8 -alkylamino, a C_1 - C_8 -alkylamino, a C_1 - C_8 -alkoxy, a C_1 - C_8 -halogenoalkoxy having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulfanyl, a C_1 - C_8 -halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C₂-C₈-alkenyloxy, a C₂-C₈-halogenoalkenyloxy having 1 to 5 halogen atoms, a C₃-C₈-alkynyloxy, a C₃-C₈-halogenoalkynyloxy having 1 to 5 halogen atoms, a C₃-C₈-cycloalkyl, a C₃-C₈-halogenocycloalkyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonyl, a C₁-C₈-halogenoalkylcarbonyl having 1 to 5 halogen C₁-C₈-alkylcarbamoyl, di-C₁-C₈-alkylcarbamoyl, a $(N-C_1-C_8$ atoms, C_1 - C_8 -alkoxycarbamoyl, a $(N-C_1-C_8-alkyl)-C_1-C_8$ alkyl)oxycarbamoyl, a alkoxycarbamoyl, a C₁-C₈-alkoxycarbonyl, a C₁-C₈-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonyloxy, a C₁-C₈-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonylamino, a C₁-C₈-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, a C₁-C₈-alkylaminocarbonyloxy, a di-C₁-C₈alkylaminocarbonyloxy, a C₁-C₈-alkyloxycarbonyloxy, a C₁-C₈-alkylsulphenyl, a C₁-C₈halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphinyl, a C₁-C₈halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphonyl, a C₁-C₈halogenoalkylsulphonyl having 1 to 5 halogen atoms, a $(C_1-C_6-alkoxyimino)-C_1-C_6-alkyl$, - R¹ is a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a pentafluoro- λ^6 -sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a carbamoyl group, a N-hydroxycarbamoyl group, a carbamate group, a (hydroxyimino)-C₁-C₆-alkyl group, a C_1 - C_8 -alkyl, a C_2 - C_8 -alkenyl, a C_2 - C_8 -alkynyl, a C_1 - C_8 -alkylamino, a di- C_1 - C_8 alkylamino, a C₁-C₈-alkoxy, a C₁-C₈-halogenoalkoxy having 1 to 5 halogen atoms, a C₁-C₈-alkylsulfanyl, a C₁-C₈-halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C₂-C₈alkenyloxy, a C₂-C₈-halogenoalkenyloxy having 1 to 5 halogen atoms, a C₃-C₈alkynyloxy, a C₃-C₈-halogenoalkynyloxy having 1 to 5 halogen atoms, a C₃-C₈cycloalkyl, a C₃-C₈-halogenocycloalkyl having 1 to 5 halogen atoms, a C₁-C₈alkylcarbonyl, a C₁-C₈-halogenoalkylcarbonyl having 1 to 5 halogen atoms, a C₁-C₈alkylcarbamoyl, a di-C₁-C₈-alkylcarbamoyl, a N-C₁-C₈-alkyloxycarbamoyl, a C₁-C₈alkoxycarbamoyl, a N-C₁-C₈-alkyl-C₁-C₈-alkoxycarbamoyl, a C₁-C₈-alkoxycarbonyl, a C₁-C₈-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonyloxy, a C₁-C₈-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, a C₁-C₈alkylcarbonylamino, a C₁-C₈-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, a C_1 - C_8 -alkylaminocarbonyloxy, a di- C_1 - C_8 -alkylaminocarbonyloxy, alkyloxycarbonyloxy, a C₁-C₈-alkylsulphenyl, a C₁-C₈-halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphinyl, a C₁-C₈-halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphonyl, a C₁-C₈-halogenoalkylsulphonyl having 1 to 5 halogen atoms, a (C₁-C₆-alkoxyimino)-C₁-C₆-alkyl, a (C₁-C₆-alkenyloxyimino)-C₁-C₆alkyl, a (C₁-C₆-alkynyloxyimino)-C₁-C₆-alkyl, a (benzyloxyimino)-C₁-C₆-alkyl, a benzyloxy, a benzylsulfanyl optionally substituted with 1 to 5 halogen atoms, a benzylamino, a phenoxy, a phenylsulfanyl optionally substituted with 1 to 5 halogen atoms or a phenylamino;

with the proviso that X and R^1 are not both a hydrogen atom;

- R^2 and R^3 are the same or different and are a hydrogen atom, a halogen atom, a cyano group, a hydroxy group, a C_1 - C_6 -alkyl, a C_1 - C_6 -halogenoalkyl having 1 to 5 halogen atoms, a C_2 - C_6 -alkenyl, a C_1 - C_6 -alkoxy, a C_1 - C_6 -alkylsulfanyl, a C_1 - C_6 -alkylsulfinyl, a C_1 - C_6 -alkylsulfinyl, a C_1 - C_6 -alkylcarbonyloxy or a C_1 - C_6 -alkylcarbonylamino;

or R² and R³ may together form a 3-, 4-, 5- or 6-membered carbocycle;

- R⁴ and R⁵ are the same or different and are a hydrogen atom, a halogen atom, a cyano group, a C₁-C₆-alkyl or a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms;
 - or R⁴ and R⁵ may together form a 3-, 4-, 5- or 6-membered carbocycle;
- R^6 is a hydrogen atom, a cyano group, a formyl group, a hydroxy group, a C_1 - C_6 -alkyl, a C_1 - C_6 -halogenoalkyl having 1 to 5 halogen atoms, a C_3 - C_6 -cycloalkyl, a C_3 - C_6 -halogenocycloalkyl having 1 to 5 halogen atoms, a C_2 - C_6 -alkenyl, a C_2 - C_6 -alkynyl, a C_1 - C_6 -alkoxy- C_1 - C_6 -alkyl, a C_1 - C_6 -alkylamino- C_1 - C_6 -alkyl, a C_1 - C_6 -alkylamino- C_1 - C_6 -alkyl, a C_1 - C_6 -alkylamino- C_1 - C_6 -alkylcarbonyl having 1 to 5 halogen atoms, a C_1 - C_6 -alkyloxycarbonyl, a C_1 - C_6 -benzyloxycarbonyl, a C_1 - C_6 -alkoxy- C_1 - C_6 -alkylcarbonyl, a C_1 - C_6 -alkylsulfonyl or a C_1 - C_6 -halogenoalkylsulfonyl having 1 to 5 halogen atoms;
 - p is 1, 2, 3 or 4;
- Y is the same or different and is a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a pentafluoro- λ^6 -sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a C_1 - C_8 -alkyl, a C_1 - C_8 -halogenoalkyl having 1 to 5 halogen atoms, a C_2 - C_8 -alkenyl, a C_2 - C_8 -alkynyl, a C_1 - C_8 -alkylamino, a di- C_1 - C_8 -alkylamino, a C_1 - C_8 -alkoxy- C_2 - C_8 -alkenyl, a C_1 - C_8 -halogenoalkoxy having 1 to 5 halogen atoms, a C_1 - C_8 -alkoxy-carbonyl, a C_1 - C_8 -halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphenyl, a C_1 - C_8 -halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphenyl, a C_1 - C_8 -halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphinyl, a C_1 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphinyl, a C_1 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halo
- R⁷ is a halogen atom, a nitro group, a cyano group, an amino group, a sulfanyl group, a pentafluoro- λ^6 -sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a C₁-C₈-alkyl, a C₁-C₈-halogenoalkyl having 1 to 5 halogen atoms, a C₂-C₈-alkenyl, a C₂-C₈-alkynyl, a C₁-C₈-alkylamino, a di-C₁-C₈alkylamino, a C₁-C₈-alkoxy, a C₁-C₈-halogenoalkoxy having 1 to 5 halogen atoms, a C_1 - C_8 -alkoxy- C_2 - C_8 -alkenyl, a C_1 - C_8 -alkylsulfanyl, a C_1 - C_8 -halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C₁-C₈-alkoxycarbonyl, a C₁-C₈-halogenoalkoxycarbonyl having 1 5 halogen atoms, a C_1 - C_8 -alkylcarbonyloxy, halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphenyl, a C₁-C₈halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphinyl, a C₁-C₈-

halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphonyl, a C₁-C₈-halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C₁-C₈-alkylsulfonamide; as well as its salts, N-oxydes, metallic and metalloidic complexes.

- 2. (Original) A compound according to claim 1, characterised in that R^1 is a hydrogen atom or a halogen atom.
- **3.** (Currently amended) A compound according to claim 1 or 2, characterised in that n is 1 or 2.
- **4.** (Currently amended) A compound according to any of the claims 1-to 3 claim 1, characterised in that X is a halogen atom or a C_1 - C_8 -alkyl.
- 5. (Currently amended) A compound according to any of the claims 1 to 4 claim 1, characterised in that the 2-pyridyl is substituted by X in 3- and/or in 5-position.
- **6.** (Currently amended) A compound according to any of the claims 1 to 5 claim 1, characterised in that R^7 is a halogen atom, a C_1 - C_8 -alkyl or a C_1 - C_8 -halogenoalkyl having 1 to 5 halogen atoms.
- 7. (Currently amended) A compound according to any of the claims 1 to 6 claim 1, characterised in that p is 1 or 2.
- 8. (Original) A compound according to claim 7, characterised in that p is 1.
- 9. (Currently amended) A compound according to any of the claims 1 to 8 claim 1, characterised in that Y is a hydrogen atom, a halogen atom or a C_1 - C_8 -alkyl.
- **10.** (Original) A compound according to claim 9, characterised in that Y is a hydrogen atom.
- 11. (Currently amended) A compound according to any of the claims 1 to 10 claim 1, characterised in that the phenyl is substituted by Y preferentially first in para position.

12. (Currently amended) A process (A) for the preparation of compound of general formula (Ia)

$$R^{1}$$
 R^{2}
 R^{3}
 R^{7}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{7}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{7}

wherein: $-R^1$, R^2 , R^7 , X, Y, n and p are as defined in claim 1elaim 1; $-R^3$ is a C_1 - C_6 alkyl;

which comprises

- a first step according to reaction scheme A-1:

Scheme A-1
$$(X)_{n}$$

$$R^{1}$$

$$V$$

$$(II)$$

$$(III)$$

$$(X)_{n}$$

$$R^{1}$$

$$NR^{2}$$

$$O$$

$$R^{8}$$

$$(IV)$$

in which: $-R^{\dagger}$, R^{2} , X and n are as defined in claim 1;

- R^8 is a C_1 - C_6 alkyl, a C_1 - C_6 haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl;

- U is a leaving group chosen as being a halogen, a $C_1\text{-}C_6$ alkylsulfonate or a $C_1\text{-}C_6$ haloalkylsulfonate;

comprising the arylation of a cyanoacetate derivative of general formula (III) by a pyridine derivative of general formula (II), to provide a 2-(pyridyl)cyanoacetate derivative of general formula (IV), in the presence of a base, at a temperature of from 0°C to 200°C;

- a second step according to reaction scheme A-2:

Scheme A-2

$$(X)_n$$
 R^1
 NR^2
 CN
 R^8
 R^2
 (Va)

in which: $-R^{\dagger}$, R^{2} , X, n are as defined in claim 1claim 1;

- R³ is a hydrogen atom;

- R⁸ is a C₁-C₆ alkyl, a C₁-C₆ haloalkyl, a benzyl, 4-methoxybenzyl

or pentafluorophenyl;

comprising a basic hydrolysis, an acidic hydrolysis or a displacement by an halide of a compound of general formula (IV) in the same or a different pot to provide, upon heating at a temperature of from 40°C to reflux, a 2-pyridylacetonitrile derivative of general formula (Va);

- a third step according to reaction scheme A-3:

Scheme A-3

$$(X)_n$$
 $(X)_n$
 $(X)_$

in which: R^{1} , R^{2} , X, n are as defined in claim 1;

- R^3 is a C_1 - C_6 alkyl;

- W is a halogen atom, a $C_1\text{-}C_6$ alkylsulfonate, a $C_1\text{-}C_6$ haloalkylsulfonate or a 4-methyl-phenylsulfonate,

comprising the alkylation of a compound of general formula (Va) by a reagent of general formula (XVII) to provide a compound of general formula (Vb);

- a fourth step according to reaction scheme A-4:

Scheme A-4

$$(X)_n$$
 R^1
 R^2
 R^3
 $(Va) \text{ or } (Vb)$
 (VI)
 $(X)_n$
 R^1
 R^2
 R^3
 PG
 (VII)

in which: $-R^1$, R^2 , X, n are as defined in claim 1claim 1;

- R³ is a hydrogen atom or a C₁-C₆ alkyl;

- L^1 is a leaving group chosen as being a -OR⁸ group or a -OCOR⁸ group, R⁸ being a C₁-C₆ alkyl, a C₁-C₆ haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl;

- PG represents a protecting group which may be a -COOR 8 group or -COR 8 group, R 8 being a C $_1$ -C $_6$ alkyl, a C $_1$ -C $_6$ haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl;

comprising the reduction, by hydrogenation or by an hydride donor, of a compound of general formula (Va) or (Vb), in the presence of a catalyst and in the presence of a compound of general formula (VI) to produce a compound of general formula (VII), at a temperature of from 0°C to 150°C and under a pressure of from 1 bar and 100 bar;

- a fifth step according to reaction scheme A-5:

Scheme A-5

in which: $-R^{1}$, R^{2} , X, n are as defined claim 1claim 1;

- R^3 is a C_1 - C_6 alkyl;

- PG represents a protecting group which may be a -COOR 8 group or -COR 8 group, R 8 being a C₁-C₆ alkyl, a C₁-C₆ haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl;

comprising a deprotection reaction, in an acidic or in a basic medium, of a compound of general formula (VII) to provide an amine derivative of general formula (VIIIa) or one of its salt;

- a sixth step according to reaction scheme A-6:

Scheme A-6

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$H$$

$$R^{2}$$

$$R^{3}$$

$$H$$

$$R^{4}$$

$$R^{7}$$

$$(Y)_{p}$$

$$(IX)$$

$$(IX)$$

$$(IA)$$

in which: $-R^1$, R^2 , R^7 , X, Y, n and p are as defined in claim 1;

- R^3 is a C_1 - C_6 alkyl;

- L² is a leaving group chosen as being a halogen atom, a hydroxyl group, an OR⁸ group, an OCOR⁸, R⁸ being a C₁-C₆ alkyl, a C₁-C₆ haloalkyl,

a benzyl, 4-methoxybenzyl or pentafluorophenyl; or a group of formula

comprising a coupling reaction of an amine derivative of general formula (VIIIa) or one of its salt, with a carboxylic acid derivative of formula (IX) to provide a compound of general formula (Ia).

13. (Currently amended) A process (B) for the preparation of compound of general formula (Ia)

$$R^{1}$$
 R^{2}
 R^{3}
 R^{7}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}
 R^{1}

wherein: $-R^1$, R^2 , R^7 , X, Y, n and p are as defined in claim 1elaim 1; - R^3 is a C_1 - C_6 alkyl;

which comprises

- a first step according to reaction scheme B-1:

Scheme B-1
$$(X)_{n}$$

$$R^{1}$$

$$V$$

$$U$$

$$(II)$$

$$(III)$$

$$(IV)$$

$$(X)_{n}$$

$$R^{1}$$

$$N$$

$$R^{2}$$

$$O$$

$$R^{8}$$

in which: $-R^1$, R^2 , X and n are as defined in claim 1;

- R^8 is a C_1 - C_6 alkyl, a C_1 - C_6 haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl;

- U is a leaving group chosen as being a halogen atom, a C_1 - C_6 alkylsulfonate or a C_1 - C_6 haloalkylsulfonate;

comprising the arylation of a cyanoacetate derivative of general formula (III) by a pyridine derivative of general formula (II) to provide a 2-pyridylcyanoacetate derivative of general formula (IV);

- a second step according to reaction scheme B-2:

Scheme B-2

$$(X)_{n}$$

$$R^{1}$$

$$N$$

$$R^{2}$$

$$O$$

$$R^{8}$$

$$(IV)$$

$$(Va)$$

in which: $-R^{1}$, R^{2} ; X and n are as defined in claim-1;

- R^8 is a C_1 - C_6 alkyl, a C_1 - C_6 haloalkyl, a benzyl, 4-methoxybenzyl

or pentafluorophenyl;

comprising a basic hydrolysis, an acidic hydrolysis or a displacement by an halide of a compound of general formula (IV) in the same or a different pot to provide, upon heating at a temperature of from 40°C to reflux, a 2-pyridylacetonitrile derivative of general formula (Va);

- a third step according to reaction scheme B-3:

Scheme B-3

$$(X)_{n}$$

$$R^{1}$$

$$(X)_{n}$$

$$(X)_{n}$$

$$R^{1}$$

$$(X)_{n}$$

in which: $-R^{1}$, R^{2} , X, n are as defined in claim 1;

- R^3 is a C_1 - C_6 alkyl;

- W is a halogen atom, a C_1 - C_6 alkylsulfonate, a C_1 - C_6 haloalkylsulfonate or a 4-methyl-phenylsulfonate,

comprising the alkylation of a compound of general formula (Va) by a reagent of general formula (XVII) to provide a compound of general formula (Vb);

- a fourth step according to reaction scheme B-4:

Scheme B-4

$$(X)_{n}$$

$$R^{1}$$

$$N$$

$$R^{2}$$

$$R^{3}$$

$$R^{7}$$

$$(Y)_{p}$$

$$(Va) \text{ or } (Vb)$$

$$(IX)$$

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{7}$$

$$(Y)_{p}$$

in which: $-R^1$, R^2 , R^7 , X, Y, n and p are as defined in claim 1;

- R^3 is a C_1 - C_6 alkyl;

- L^3 is a leaving group chosen as being -OCOR 8 , R^8 being a C_1 - C_6 alkyl, a C_1 - C_6 haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl; -OCHO, -SCSN(Me) $_2$ or a group of formula

$$O_{\mathbb{R}^7}$$

comprising the reduction by hydrogenation or by an hydride of a compound of general formula (Va) or a compound of general formula (Vb) in the presence of a catalyst and in the presence of a compound of general formula (IX) to produce a compound of general formula (Ia), at a temperature of from 0°C to 150°C and under a pressure of from 1 bar and 100 bar.

14. (Currently amended) A process (C) for the preparation of compound of general formula (Ia)

$$(X)_n$$
 R^4
 R^5
 $(Y)_p$
 (Ia)

wherein R^1 , R^2 , R^3 , R^7 , X, Y, n and p are as defined in claim 1; which comprises

- a first step according to reaction scheme C-1:

$$(X)_n$$
 R^1
 U
 $+ R^2$
 R^3
 R^1
 R^2
 R^3
 (Vb)

in which: $-R^{1}$, R^{2} , R^{3} , X and n are as defined in claim 1;

- U is a leaving group chosen as being a halogen atom, a C_1 - C_6 alkylsulfonate or a C_1 - C_6 haloalkylsulfonate;

comprising the arylation of a compound of general formula (IIIb) by a pyridine derivative of general formula (II) to provide a 2-pyridylacetonitrile derivative of general formula (Vb), in the presence of a base and at a at temperature of from -100°C to 200°C;

- a second step according to reaction scheme C-2:

Scheme C-2
$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$(Vb)$$

$$(VI)$$

$$(VII)$$

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$PG$$

$$(VII)$$

in which: $-R^{4}$, R^{2} , R^{3} , X and n are as defined in claim-1;

- L^1 is a leaving group chosen as being a -OR⁸ group or a -OCOR⁸ group, R⁸ being a C₁-C₆ alkyl, a C₁-C₆ haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl;

- PG represents a protecting group which may be a -COOR 8 group or -COR 8 group, R 8 being a C₁-C₆ alkyl, a C₁-C₆ haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl;

comprising the reduction, by hydrogenation or by an hydride donor, of a compound of general formula (Va) or (Vb), in the presence of a compound of general formula (VI) to produce a compound of general formula (VII);

- a third step according to reaction scheme C-3:

Scheme C-3

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$PG$$

$$(VII)$$

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$H$$

$$(VIIIa)$$

in which: $-R^4$, R^2 , R^3 , X and n are as defined in claim 1;

- PG represents a protecting group which may be a -COOR 8 group or -COR 8 group, R 8 being a C₁-C₆ alkyl, a C₁-C₆ haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl;

comprising a deprotection reaction, in an acidic or in a basic medium, of a compound of general formula (VII) to provide an amine derivative of general formula (VIIIa) or one of its salt;

- a fourth step according to reaction scheme C-4:

Scheme C-4

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$H$$

$$R^{2}$$

$$R^{3}$$

$$H$$

$$R^{4}$$

$$R^{7}$$

$$(Y)_{p}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{7}$$

$$(Y)_{p}$$

$$(Ia)$$

in which: $-R^{1}$, R^{2} , R^{3} , R^{7} , X, Y, n and p are as defined in claim 1;

- L^4 is a leaving group chosen as being a halogen atom, a hydroxyl group, -OCHO, -SCSN(Me)₂, an OR⁸ group, an OCOR⁸, R⁸ being a C₁-C₆ alkyl, a C₁-C₆ haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl; or a group of formula

comprising a coupling reaction of an amine derivative of general formula (VIIIa) or one of its salt, with a carboxylic acid derivative of formula (IX) to provide a compound of general formula (Ia).

15. (Currently amended) A process (D) for the preparation of compound of general formula (Ia)

$$R^{1}$$
 R^{2}
 R^{3}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}

- R¹, R², R⁷, X, Y, n and p are as defined in claim 1; wherein: - R^3 is a C_1 - C_6 alkyl;

which comprises

- a first step according to reaction scheme D-1:

Scheme D-1

$$(X)_{n}$$

$$R^{1}$$

$$N$$

$$U^{+}$$

$$R^{2}$$

$$R^{3}$$

$$(II)$$

$$(IIIb)$$

$$(Vb)$$

in which:

-R¹, R², R³, X and n are as defined in claim 1;

- R³ is a hdyrogen atom, a halogen atom, a cyano group, a hydroxy group, a C₁-C₆-alkyl, a C₁-C₆-halogenalkyl having 1 to 5 halogen atoms, a C2-C6- alkenyl, a C1-C6-alkoxy, a C1-C6-alkylsulfanyl, a C1-C6alkylsulfenyl, a C₁-C₆-alkylsulfinyl, a C₁-C₆-alkoxycarbonyl, a C₁-C₆alkylcarbonyloxy or a C₁-C₆-alkylcarbonylamino;

- or R² and R³ may together form a 3-, 4-, 5- or 6-membered carbocycle;

- U is a leaving group chosen as being a halogen atom, a C₁-C₆ alkylsulfonate or a C₁-C₆ haloalkylsulfonate; comprising the arylation of a compound of general formula (IIIb) by a pyridine derivative of general formula (II) to provide a 2-pyridylacetonitrile derivative of general formula (Vb), in the presence of a base and at a at temperature of from -100°C to 200°C;

- a second step according to reaction scheme D-2:

Scheme D-2

$$(X)_{n}$$

$$R^{1}$$

$$N$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$(Y)_{p}$$

$$(Vb)$$

$$(IX)$$

$$(Ia)$$

in which: $-R^4$, R^2 , R^7 , X, Y, n and p are as defined in claim 1;

- R³ is a C₁-C₆ alkyl;

- L^3 is a leaving group chosen as being -OCOR 8 , R^8 being a C_1 - C_6 alkyl, a C_1 - C_6 haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl; -OCHO, -SCSN(Me) $_2$ or a group of formula

comprising the reduction by hydrogenation or by an hydride donor a compound of general formula (Va) or a compound of general formula (Vb) in the presence of a compound of general formula (IX) to provide a compound of general formula (Ia).

16. (Currently amended) A process (E) for the preparation of compound of general formula (Ia)

$$R^{1}$$
 R^{2}
 R^{3}
 R^{7}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{7}

wherein: -R¹, R², R³, R⁷, X, Y, n and p are as defined in claim 1;

- R⁴ is a hydrogen atom, a C₁-C₆ alkyl or a C₁-C₆ haloalkyl;

- R⁵ is a C₁-C₆ alkyl or a C₁-C₆ haloalkyl; - L⁴ is a leaving group chosen as being a halogen atom, a hydroxyl group, -OCHO, -SCSN(Me)₂, an OR⁸ group,

an $OCOR^8$, R^8 being a C_1 - C_6 alkyl, a C_1 - C_6 haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl; or a group of formula

which comprises

- a first step according to reaction scheme E-1:

Scheme E-1

$$(X)_{n}$$

$$R^{1}$$

$$N$$

$$U$$

$$+ R^{2}$$

$$R^{3}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$(II)$$

$$(X)$$

$$(XI)$$

in which: $-R^4$, R^2 , R^3 , X and n are as defined in claim 1;

- R⁴ is a hydrogen atom, a C₁-C₆ alkyl or a C₁-C₆ haloalkyl;
- U is a leaving group chosen as being a halogen atom, a C_1 - C_6 alkylsulfonate or a C_1 - C_6 haloalkylsulfonate;

comprising the arylation of a compound of general formula (X) by a pyridine derivative of general formula (II) to provide a compound of general formula (XI);

- a second step according to reaction scheme E-2:

Scheme E-2

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$(XI)$$

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$(XIII)$$

in which: $-R^{1}$, R^{2} , R^{3} , X and n are as defined in claim 1;

- R⁴ is a hydrogen atom, a C₁-C₆ alkyl or a C₁-C₆ haloalkyl;

comprising the conversion of a compound of general formula (XI) into a compound of general formula (XIII) by addition of a compound of general formula R^5 -M, in which R^5 is a C_1 - C_6 alkyl or a C_1 - C_6 haloalkyl and M is a metal specie;

- a third step according to reaction scheme E-3:

Scheme E-3

in which: $-R^{+}$

-R¹, R², R³, X and n are as defined in claim-1;

- R⁴ is a hydrogen atom, a C₁-C₆ alkyl or a C₁-C₆ haloalkyl;
- R⁵ is a C₁-C₆ alkyl or a C₁-C₆ haloalkyl;
- W is a leaving group chosen as being a halogen atom, a C₁-C₆ alkylsulfonate, a C₁-C₆ haloalkylsulfonate or a 4-methyl-phenylsulfonate; comprising the activation of a compound of general formula (XIII) by converting it into a compound of general formula (XIV);

- a fourth step according to reaction scheme E-4:

Scheme E-4

$$(X)_{n} \qquad W \qquad R^{5} \qquad (X)_{n} \qquad R^{4} \qquad R^{5} \qquad (X)_{n} \qquad R^{4} \qquad R^{5} \qquad (X)_{n} \qquad$$

in which:

-R⁴, R², R³, X and n are as defined in claim 1;

- R⁴ is a hydrogen atom, a C₁-C₆ alkyl or a C₁-C₆ haloalkyl;
- R^5 is a C_1 - C_6 alkyl or a C_1 - C_6 haloalkyl;
- W is a leaving group chosen as being a halogen atom, a C_1 - C_6 alkylsulfonate, a C_1 - C_6 haloalkylsulfonate or a 4-methyl-phenylsulfonate; comprising the substitution of a compound of general formula (XIV) by a phtalimide derivative or one of its salt to provide a compound of general formula (XVa);
- a fifth step according to reaction scheme E-5:

Scheme E-5

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^$$

in which: $-R^{4}$, R^{2} , R^{3} , X and n are as defined in claim 1;

- R⁴ is a hydrogen atom, a C₁-C₆ alkyl or a C₁-C₆ haloalkyl;

- R^5 is a C_1 - C_6 alkyl or a C_1 - C_6 haloalkyl;

comprising the de-protection of a compound of general formula (XVa) by reacting it with hydrazine hydrate or a hydrazine salt to provide an amine derivative of general formula (VIIIc) or one of its salt;

- a sixth step according to reaction scheme E-6:

Scheme E-6

$$(X)_{n}$$

$$R^{4}$$

$$R^{5}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{6}$$

$$(VIIIc)$$

$$(IX)$$

$$(X)_{n}$$

$$R^{4}$$

$$R^{5}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{7}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{7}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

in which: $-R^4$, R^2 , R^3 , R^7 , X, Y, n and p are as defined in claim 1;

- R⁴ is a hydrogen atom, a C₁-C₆ alkyl or a C₁-C₆ haloalkyl;

- R^5 is a C_1 - C_6 alkyl or a C_1 - C_6 haloalkyl; - L^4 is a leaving group chosen as being a halogen atom, a hydroxyl group, -OCHO, -SCSN(Me)₂, an OR⁸ group, an OCOR⁸, R^8 being a C_1 - C_6 alkyl, a C_1 - C_6 haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl; or a group of formula

comprising a coupling reaction of an amine derivative of general formula (VIIIb) or one of its salt, with a carboxylic acid derivative of formula (IX) to provide a compound of general formula (Ia).

17. (Currently amended) A process (F) for the preparation of compound of general formula (Ia)

$$R^{1}$$
 R^{2}
 R^{3}
 R^{7}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{7}

wherein: -R¹, R⁷, X, Y, n and p are as defined in claim 1;

- R^2 , R^4 and R^5 are independently from each other chosen as being a hydrogen atom, a C_1 - C_6 alkyl or a C_1 - C_6 haloalkyl; which comprises

- a first step according to reaction scheme F-1:

Scheme F-1

$$(X)_{n}$$

$$R^{1}$$

$$N$$

$$U$$

$$+ M$$

$$R^{2}$$

$$R^{4}$$

$$R^{1}$$

$$(X)_{n}$$

$$R^{5}$$

$$R^{1}$$

$$R^{2}$$

$$R^{4}$$

$$(XVII)$$

in which: -R¹, X and n are as defined in claim 1;

- U is a leaving group chosen as being a halogen atom a C_1 - C_6 alkylsulfonate or a C_1 - C_6 haloalkylsulfonate;

- R^2 , R^4 and R^5 are independently from each other chosen as being a hydrogen atom, a C_1 - C_6 alkyl or a C_1 - C_6 haloalkyl;

- M is a metal or a metalloid specie;

comprising a coupling reaction of a pyridine derivative of general formula (II) with a vinylic specie of general formula (XVI), at a temperature of from 0°C to 200°C, to provide a compound of general formula (XVII);

- a second step according to reaction scheme F-2:

Scheme F-2

in which: $-R^{+}$, X and n are as defined in claim 1;

- R^2 , R^4 and R^5 are independently from each other chosen as being a hydrogen atom, a C_1 - C_6 alkyl or a C_1 - C_6 haloalkyl;

comprising the addition of a phtalimide or one of its salt on a compound of general formula (XVII) to provide a compound of general formula (XVb);

- a third step according to reaction scheme F-3:

Scheme F-3

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$(XVb)$$

$$(XVb)$$

$$(X)_{n}$$

$$R^{4}$$

$$R^{5}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{2}$$

$$R^{3}$$

in which: -R⁺, X and n are as defined in claim 1;

- R^2 , R^4 and R^5 are independently from each other chosen as being a hydrogen atom, a C_1 - C_6 alkyl or a C_1 - C_6 haloalkyl; comprising the de-protection of a compound of general formula (XVb) with hydrazine hydrate or an hydrazine salt, to provide an amine derivative of general formula (VIIId) or

one of its salts;
- a fourth step according to reaction scheme F-4:

Scheme F-4

$$(X)_{n}$$

$$R^{4}$$

$$R^{5}$$

$$R^{1}$$

$$R^{2}$$

$$H$$

$$(VIIId)$$

$$(IX)$$

$$(X)_{n}$$

$$R^{4}$$

$$R^{5}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{4}$$

$$R^{5}$$

$$R^{$$

in which: $-R^{4}$, R^{7} , X, Y, n and p are as defined in claim 1;

- R^2 , R^4 and R^5 are independently from each other chosen as being a hydrogen atom, a C_1 - C_6 alkyl or a C_1 - C_6 haloalkyl;

- L^4 is a leaving group chosen as being a halogen atom, a hydroxyl group, -OCHO, -SCSN(Me)₂, an OR⁸ group, an OCOR⁸, R⁸ being a C₁-C₆ alkyl, a C₁-C₆ haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl; or a group of formula

$$(Y)_{p}$$

comprising a coupling reaction of an amine derivative of general formula (VIIIb) or one of its salt, with a carboxylic acid derivative of formula (IX) to provide a compound of general formula (Ia).

18. (Currently amended) A process according to any of the claims 12 to 17 claim 12 which further comprises a step according to reaction scheme G:

Scheme G

$$R^{1} \stackrel{(X)_{n}}{\stackrel{R^{4}}{\stackrel{R^{5}}{\stackrel{O}{\stackrel{O}}{\stackrel{O}{\stackrel{O}}{\stackrel{O}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}{\stackrel{O}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}{\stackrel{O}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}}{\stackrel{O}{\stackrel{O}{$$

in which: $-R^4$, R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , X, Y, n and p are as defined in claim 1; - n is 1, 2 or 3;

- X is the same or different and is a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a pentafluoro-λ⁶sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a carbamoyl group, a N-hydroxycarbamoyl group, a carbamate group, a (hydroxyimino)-C₁-C₆-alkyl group, a C₁-C₈-alkyl, a C₂-C₈-alkenyl, a C₂-C₈-alkynyl, a C₁-C₈-alkylamino, a di-C₁-C₈-alkylamino, a C₁-C₈-alkoxy, a C₁-C₈-halogenoalkoxy having 1 to 5 halogen atoms, a C₁-C₈-alkylsulfanyl, a C₁-C₈-halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C₂-C₈-alkenyloxy, a C₂-C₈-halogenoalkenyloxy having 1 to 5 halogen atoms, a C₃-C₈-alkynyloxy, a C₃-C₈-halogenoalkynyloxy having 1 to 5 halogen atoms, a C₃-C₈-cycloalkyl, a C₃-C₈-halogenocycloalkyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonyl, a C₁-C₈-halogenoalkylcarbonyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbamoyl, a di-C₁-C₈-alkylcarbamoyl, a (N-C₁-C₈alkyl)oxycarbamoyl, a C_1 - C_8 -alkoxycarbamoyl, a $(N-C_1-C_8$ -alkyl)- C_1 - C_8 alkoxycarbamoyl, a C₁-C₈-alkoxycarbonyl, a C₁-C₈-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonyloxy, a C₁-C₈-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonylamino, a C₁-C₈-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, a C₁-C₈-alkylaminocarbonyloxy, a di-C₁-C₈alkylaminocarbonyloxy, a C₁-C₈-alkyloxycarbonyloxy, a C₁-C₈-alkylsulphenyl, a C₁-C₈halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphinyl, a C₁-C₈halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphonyl, a C₁-C₈halogenoalkylsulphonyl having 1 to 5 halogen atoms, a (C₁-C₆-alkoxyimino)-C₁-C₆-alkyl, a (C₁-C₆-alkenyloxyimino)-C₁-C₆-alkyl, a (C₁-C₆-alkynyloxyimino)-C₁-C₆-alkyl, a (benzyloxyimino)-C₁-C₆-alkyl, a benzyloxy, a benzylsulfanyl, a benzylamino, a phenoxy, a phenylsulfanyl or a phenylamino;

- R¹ is a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a pentafluoro-λ⁶-sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a carbamoyl group, a N-hydroxycarbamoyl group, a carbamate group, a (hydroxyimino)-C₁-C₆-alkyl group, a C_1-C_8 -alkyl, a C_2-C_8 -alkenyl, a C_2-C_8 -alkynyl, a C_1-C_8 -alkylamino, a di- C_1-C_8 alkylamino, a C₁-C₈-alkoxy, a C₁-C₈-halogenoalkoxy having 1 to 5 halogen atoms, a C₁-C₈-alkylsulfanyl, a C₁-C₈-halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C₂-C₈alkenyloxy, a C2-C8-halogenoalkenyloxy having 1 to 5 halogen atoms, a C3-C8alkynyloxy, a C₃-C₈-halogenoalkynyloxy having 1 to 5 halogen atoms, a C₃-C₈cycloalkyl, a C₃-C₈-halogenocycloalkyl having 1 to 5 halogen atoms, a C₁-C₈alkylcarbonyl, a C₁-C₈-halogenoalkylcarbonyl having 1 to 5 halogen atoms, a C₁-C₈alkylcarbamoyl, a di-C₁-C₈-alkylcarbamoyl, a N-C₁-C₈-alkyloxycarbamoyl, a C₁-C₈alkoxycarbamoyl, a N-C₁-C₈-alkyl-C₁-C₈-alkoxycarbamoyl, a C₁-C₈-alkoxycarbonyl, a C₁-C₈-halogenoalkoxycarbonyl having 1 to 5 halogen atoms, a C₁-C₈-alkylcarbonyloxy, a C₁-C₈-halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, a C₁-C₈alkylcarbonylamino, a C₁-C₈-halogenoalkylcarbonylamino having 1 to 5 halogen atoms, a C₁-C₈-alkylaminocarbonyloxy, a di-C₁-C₈-alkylaminocarbonyloxy, a C₁-C₈alkyloxycarbonyloxy, a C₁-C₈-alkylsulphenyl, a C₁-C₈-halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphinyl, a C₁-C₈-halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C₁-C₈-alkylsulphonyl, a C₁-C₈-halogenoalkylsulphonyl having 1 to 5 halogen atoms, a (C₁-C₆-alkoxyimino)-C₁-C₆-alkyl, a (C₁-C₆-alkenyloxyimino)-C₁-C₆alkyl, a (C₁-C₆-alkynyloxyimino)-C₁-C₆-alkyl, a (benzyloxyimino)-C₁-C₆-alkyl, a benzyloxy, a benzylsulfanyl optionally substituted with 1 to 5 halogen atoms, a benzylamino, a phenoxy, a phenylsulfanyl optionally substituted with 1 to 5 halogen atoms or a phenylamino;

with the proviso that X and R¹ are not both a hydrogen atom;

- R² and R³ are the same or different and are a hydrogen atom, a halogen atom, a cyano group, a hydroxy group, a C₁-C₆-alkyl, a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms, a C₂-C₆-alkenyl, a C₁-C₆-alkoxy, a C₁-C₆-alkylsulfanyl, a C₁-C₆-alkylsulfinyl, a C₁-

or R² and R³ may together form a 3-, 4-, 5- or 6-membered carbocycle;

- R⁴ and R⁵ are the same or different and are a hydrogen atom, a halogen atom, a cyano group, a C₁-C₆-alkyl or a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms;

or R⁴ and R⁵ may together form a 3-, 4-, 5- or 6-membered carbocycle;

- R⁶ is a hydrogen atom, a cyano group, a formyl group, a hydroxy group, a C₁-C₆-alkyl, a C₁-C₆-halogenoalkyl having 1 to 5 halogen atoms, a C₁-C₆-alkoxy, a C₁-C₆-halogenoalkoxy having 1 to 5 halogen atoms, a C₂-C₆-cycloalkyl, a C₃-C₆-halogenocycloalkyl having 1 to 5 halogen atoms, a C₂-C₆-alkenyl, a C₂-C₆-alkynyl, a C₁-C₆-alkoxy-C₁-C₆-alkyl, a C₁-C₆-cyanoalkyl, a C₁-C₆-alkyl, a C₁-C₆-alkylamino-C₁-C₆-alkyl, a di-C₁-C₆-alkylamino-C₁-C₆-alkyl, a C₁-C₆-alkylcarbonyl, a C₁-C₆-balogenalkylcarbonyl having 1 to 5 halogen atoms, a C₁-C₆-alkylsulfonyl or a C₁-C₆-halogenoalkylsulfonyl having 1 to 5 halogen atoms;

- p is 1, 2, 3 or 4;

- Y is the same or different and is a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxy group, an amino group, a sulfanyl group, a pentafluoro- λ^6 -sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a C_1 - C_8 -alkyl, a C_1 - C_8 -halogenoalkyl having 1 to 5 halogen atoms, a C_2 - C_8 -alkenyl, a C_1 - C_8 -alkylamino, a C_1 - C_8 -alkylamino, a C_1 - C_8 -alkylamino, a C_1 - C_8 -alkoxy- C_2 - C_8 -alkenyl, a C_1 - C_8 -halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkoxycarbonyl, a C_1 - C_8 -halogenoalkoxycarbonyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphenyl, a C_1 - C_8 -halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphenyl, a C_1 - C_8 -halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphinyl, a C_1 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alky

 $-R^7 \text{ is a halogen atom, a nitro group, a cyano group, an amino group, a sulfanyl group, a pentafluoro-λ^6-sulfanyl group, a formyl group, a formyloxy group, a formylamino group, a carboxy group, a <math>C_1$ - C_8 -alkyl, a C_1 - C_8 -halogenoalkyl having 1 to 5 halogen atoms, a C_2 - C_8 -alkenyl, a C_2 - C_8 -alkynyl, a C_1 - C_8 -alkylamino, a C_1 - C_8 -alkoxy, a C_1 - C_8 -halogenoalkoxy having 1 to 5 halogen atoms, a C_1 - C_8 -alkoxy- C_2 - C_8 -alkenyl, a C_1 - C_8 -alkylsulfanyl, a C_1 - C_8 -halogenoalkylsulfanyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkoxycarbonyl, a C_1 - C_8 -halogenoalkylcarbonyloxy having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphenyl, a C_1 - C_8 -halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphenyl, a C_1 - C_8 -halogenoalkylsulphenyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphenyl, a C_1 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphinyl, a C_1 - C_8 -halogenoalkylsulphinyl having 1 to 5 halogen atoms, a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl, a C_1 - C_8 -halogenoalkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having 1 to 5 halogen atoms or a C_1 - C_8 -alkylsulphonyl having

as well as its salts, N-oxydes, metallic and metalloidic complexes;

- L⁵ is a leaving group chosen as being a halogen atom, a 4-methyl phenylsulfonyloxy, a methylsulfonyloxy; comprising the reaction of a compound of general formula (Ia) with a compound of general formula (XVI) to provide a compound of general formula (Ib).

- 19. (Currently amended) A process for the preparation of <u>a fungicidal</u> compound of general formula (I) as defined in claim 1, which comprises
- a first step according to reaction scheme H-1:

Scheme H-1

$$(X)_{n} \downarrow 0 \qquad (X)_{n} \downarrow 0 \qquad R^{4} \qquad (X)_{n} \downarrow 0 \qquad R^{4} \qquad (X)_{n} \downarrow 0 \qquad R^{4} \qquad (X)_{n} \downarrow 0 \qquad (X)_{n} \qquad (X)_{n$$

in which: R^1 , R^2 , R^3 , X and n are as defined in claim 1 in the foregoing scheme and all of the schemes below, R^1 , R^2 , R^3 , R^7 , X, Y, n and p are as defined in claim 1;

- R⁴ is a hydrogen atom, a C₁-C₆ alkyl or a C₁-C₆ haloalkyl;
- U is a leaving group chosen as being a halogen atom, a $C_1\text{-}C_6$ alkylsulfonate or a $C_1\text{-}C_6$ haloalkylsulfonate;

comprising the arylation of a compound of general formula (X) by a pyridine derivative of general formula (II) to provide a compound of general formula (XI), in the presence of a base, at a temperature of from 0°C to 200°C;

- a second step according to reaction scheme H-2:

Scheme H-2

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$(XI)$$

$$(XI)$$

$$(XI)_{n}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{6}$$

$$(XII)$$

in which: $-R^4$, R^2 , R^3 , X and n are as defined in claim 1;

- R⁴ is a hydrogen atom, a C₁-C₆ alkyl or a C₁-C₆ haloalkyl;
- R^6 is a hydrogen atom, a C_1 - C_6 alkyl, a C_1 - C_6 haloalkyl, a C_1 - C_6 alkoxy or a C_3 - C_7 cycloalkyl;

comprising the reaction of a compound of general formula (XI) with an amine of formula R⁶-NH2 to provide an imine derivative of general formula (XII);

- a third step according to scheme H-3:

Scheme H-3

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{6}$$

$$(XII)$$

$$(X)_{n}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{6}$$

$$(VIIIb)$$

in which: $-R^4$, R^2 , R^3 , X and n are as defined in claim 1;

- R⁴ is a hydrogen atom, a C₁-C₆ alkyl or a C₁-C₆ haloalkyl;

- R^6 is a hydrogen atom, a C_1 - C_6 alkyl, a C_1 - C_6 haloalkyl, a C_1 - C_6

alkoxy or a C₃-C₇ cycloalkyl;

comprising the reduction of an imine derivative of general formula (XII) by hydrogenation or by an hydride donor, in the same or a different pot to provide an amine derivative of general formula (VIIIb) or one of its salt;

- a fourth step according to reaction scheme H-4:

Scheme H-4

$$(X)_{n} \qquad (X)_{n} \qquad (X)_{n} \qquad (X)_{n} \qquad (X)_{n} \qquad (Y)_{p} \qquad (X)_{n} \qquad (Y)_{p} \qquad (Y)_$$

in which: $-R^{1}$, R^{2} , R^{3} , R^{7} , X, Y, n and p are as defined in claim 1;

- R⁴ is a hydrogen atom, a C₁-C₆ alkyl or a C₁-C₆ haloalkyl;

- R^6 is a hydrogen atom, a C_1 - C_6 alkyl, a C_1 - C_6 haloalkyl, a C_1 - C_6 alkoxy or a C_3 - C_7 cycloalkyl;

- L⁴ is a leaving group chosen as being a halogen atom, a hydroxyl group, -OCHO, -SCSN(Me)₂, an OR⁸ group, an OCOR⁸, R⁸ being a C₁-C₆ alkyl, a C₁-C₆ haloalkyl, a benzyl, 4-methoxybenzyl or pentafluorophenyl; or a group of formula

comprising a coupling reaction of an amine derivative of general formula (VIIIb) or one of its salt, with a carboxylic acid derivative of formula (IX) to provide a compound of general formula (I).

- **20.** (Original) Fungicidal composition comprising an effective amount of a compound according to claim 1 and an agriculturally acceptable support.
- 21. (Original) Method for preventively or curatively combating the phytopathogenic fungi of crops, characterised in that an effective and non-phytotoxic amount of a composition according to claim 20 is applied to the plant seeds or to the plant leaves and/or to the fruits of the plants or to the soil in which the plants are growing or in which it is desired to grow them.