Homework 1

Vlad Temian vlad.temian93@e-uvt.ro

February 6, 2016

Contents

1	1 Exercise 1	
	1.1 Point a	
	1.2 Point b	
	1.3 Point c	
2	2 Exercise 2	
	2.1 Point a	
	2.2 Point b	
3	3 Exercise 3	

1 Exercise 1

Using the definition of well formed propositional formulae (wffs), decide which of the following are propositional formulae:

1.1 Point a

$$(((P \to Q) \lor S) \leftrightarrow T)$$

$$(\qquad \qquad \vee \qquad) \qquad T \qquad \qquad (2)$$

$$(\rightarrow)$$
 S (3)

$$P \qquad Q \tag{4}$$

After we split the formula in different layers we can easily identify the atoms and other formula. We can see this spiting as an AST with parenthesis.

On layer 4 we can see that P and Q are atoms, therefore P and Q are formulae. Those are used in layer 3 in order to form the formula $(P \to Q)$. We also observe that S it's an atom, therefore it is a formula.

In layer 2, $(P \to Q) \lor S$ is a formula because $(P \to Q)$ and S are formulae. We also observe that T it's a formula, because it's an atom.

Finally, on layer 1, it can be seen that $(((P \to Q) \lor S) \leftrightarrow T)$ it's a well-formed formula because $((P \to Q) \lor S)$ and T are formulae.

1.2 Point b

$$((P \leftarrow (Q \land (S \leftarrow T))))$$

$$(\longrightarrow) \tag{6}$$

$$P \qquad (\qquad \qquad \land \qquad) \tag{7}$$

$$Q \qquad (\leftrightarrow)$$
 (8)

$$S = T$$
 (9)

First we split the formula in different layers so we can see the formulae and

On the last layer (9) we have S and T which are atoms and based on the definition, they are formulae.

Going up to 8, we can see that Q is an atom and based on definition, will be a formula. Also, still based on definition, $(S \leftrightarrow T)$ is a formula because S and T are formulae.

On layer 7 we observe that P is a formula because it's an atom. Also, based on definition, $(Q \land (S \leftrightarrow T))$ is a formula, because Q and $(S \leftrightarrow T)$ are formulae.

In 6, because P and $(Q \land (S \leftrightarrow T))$ are formulae, then $(P \to (Q \land (S \leftrightarrow T)))$ is a formula.

Finally, on layer 5 we have an extra set of parenthesis and based on the definition, even if $(P \to (Q \land (S \leftrightarrow T)))$ is a formula, $((P \to (Q \land (S \leftrightarrow T))))$ isn't a valid one.

1.3 Point c

$$(\neg(B(\neg Q)) \land R)$$

$$(\qquad \qquad \land \qquad) \tag{10}$$

$$\neg () \qquad R \qquad (11)$$

$$B) (12)$$

$$(\neg \qquad) \tag{13}$$

$$Q$$
 (14)

First we split the formula in different layers so we can see the formulae and atoms.

At the bottom (14), we can see that Q is a formula because it is an atom.

Going up, at layer 13, based on definition, $(\neg Q)$ is a formula, because Q is a formula.

On layer 12 we found B a formula, but using the downstream formula $(\neg Q)$, $B(\neg Q)$ can't be a formula, therefor, even if the upstream layers could form formulae, $(\neg(B(\neg Q)) \land R)$ it's not a well-formed formula.

2 Exercise 2

In practice, parentheses can be dropped, if there are no ambiguities. More- over, a precedence for propositional connectives is defined: \leftrightarrow , \rightarrow , \lor , \land , \neg (\neg binds the strongest). For the following, decide which are wffs (in the relaxed sense). For those that are wffs, place the parentheses in the appropriately, such that the formula is a wff in the strong sense, then give the formula tree (the abstract syntax):

2.1 Point a

$$P \wedge Q \to R \neg B \vee G$$

This formula it's not a wff, because $R \neg B \lor G$ can't form a wff, no matter how will place the parentheses. \neg it's an unary logic operator and will bind to B. \lor is a binary operator and will form a wff with $\neg B$ and G ($\neg B \lor G$). Using the definition of a wff, $R(\neg B \lor G)$ can't be a wff because will need a binary logic operator in order to connect R and $\neg B \lor G$.

2.2 Point b

$$P \to \neg \neg \neg \neg B \leftrightarrow Q \wedge S$$

We can make a small observation. For one binary logical operator, will need two operands. For two binary operators we need three operands. Given P a wff, and l the numbers of binary logical operators from P, the numbers of atoms in P, a will be a = l + 1.

 $\neg\neg\neg\neg\neg B$ can be reduced to $\neg B$ and now the formula will be $P \to \neg B \leftrightarrow Q \land S$. This is a wff, because the number of binary logical operators is equal to the number of atoms, minus one, and we can find a form of parentheses placement which will satisfy the definition of a wff, following the precedence rule.

$$((P \to (\neg(\neg(\neg(\neg(\neg B)))))) \leftrightarrow (Q \land S))$$

Now we can draw the AST:

3 Exercise 3

Translate the following text into propositional formulae: "If Superman were able and willing to prevent evil, he would do so. If Superman were unable to prevent evil, he would be impotent; if he were unwilling to prevent evil, he would be malevolent. Superman does not prevent evil. If Superman exists, he is neither impotent nor malevolent."

$$\begin{split} (A \wedge W) &\to P \\ \neg A &\to I \\ \neg W &\to M \\ \neg P \\ E &\to \neg M \wedge \neg I \end{split}$$