

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 15 de febrero de 2022

Nombre y apellido:		Padrón:
Cuatrimestre de cursada:	Turno:	

- El siguiente cuestionario corresponde a la primera parte de la evaluación integradora de la materia Dispositivos Semiconductores. El mismo consta de 5 preguntas y debe ser respondido en una hora, comenzando a las 15:00 y finalizando a las 16:00 sin excepción.
- · Se recomienda organizar el tiempo para demorar 10 minutos por pregunta.
- Algunas preguntas pueda ser del tipo multiple choice (MC) y otras pueden ser con respuesta numérica.
- En las preguntas MC existe siempre una única respuesta correcta.
- En las preguntas numéricas debe responderse con unidades siempre y cuando corresponda.
- El cuestionario se aprueba con 3 preguntas correctas.
- La aprobación del cuestionario es necesaria para acceder a la segunda parte de la evaluación, pero no es suficiente para aprobar la evaluación integradora.
- En caso de no aprobar el cuestionario, la evaluación integradora estará desaprobada.

This exam contains 5 questions.

1) Un bloque semiconductor de largo L = 3 µm tiene masas efectivas similares al silicio pero distinta energia de gap dando como resultado una concentración intrinseca de portadores a temperatura ambiente n_t = 2 × 10⁸ cm⁻³. El bloque es dopado con impurezas donoras con densidad N = 3 × 10¹¹ cm⁻³ y las movilidades de los electrones y los huecos son µ_n = 1800 cm² V⁻¹ s⁻¹; µ_p = 600 cm² V⁻¹ s⁻¹. Iluminando una cara del material se logra generar un exceso de portadores minoritarios tal que

$$\Delta m(x) = 3 \times 10^{10} \, \text{cm}^{-3} \, \exp\left(-\frac{x}{0.4 \, \mu \text{m}}\right)$$

¿Cuál es la densidad de corriente neta de minoritarios (expresada en $A \, \mathrm{cm}^{-2}$ con signo indicando su sentido) en $x = 0.2 \, \mu\mathrm{m}$? Considerar válida la hipótesis de quasi-neutralidad en todo el semicooductor.

Solution: $p_0 = 1.33 \times 10^5 \,\mathrm{cm}^{-3}$; $\exp(-1/2) = 0.6065$; $J_{def,p} = 1.131 \,\mathrm{mA \, cm}^{-3}$.

2) Para el circuito de la figura fabricado en un proceso de fabriación CMOS con parámetros V_{DD} = 3.3 V; V_{Tn} = 0.7 V; V_{Tp} = −0.8 V; µ_nC'_{ost} = 240 µA V⁻²; µ_pC'_{ost} = 70 µA V⁻² y λ = 0, ae diseñaron los transistores con las siguientes dimensiones (W/L)₁ = 20; (W/L)₂ = 20; (W/L)₃ = 50; (W/L)₄ = 200. Calcular el valor de R_{REF} [Ω] para que la corriente de salida sea I_{OUT} = 600 µA.

Solution: $I_3 = I_2 = I_1 = 150 \,\mu\text{A}$; $V_{GS} = 0.95 \,\text{V}$; $R_{REF} = 15.67 \,\text{k}\Omega$.

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 15 de febrero de 2022

3) Se tiene un transistor TBJ NPN a temperatura ambiente polarizado en MAD del cual se conocen las pendientes de los perfiles de concentración de minoritarios en el emisor (1,23 × 10¹⁷ cm⁻⁴) y en la base (-9,85 × 10¹⁸ cm⁻⁴). Determinar el valor de la ganancia de corriente (β) conocidos los valores de las movilidades en el emisor (μ_m = 900 cm²/Vs; μ_p = 300 cm²/Vs) y en la base (μ_m = 1400 cm²/Vs; μ_p = 500 cm²/Vs).

Solution: $\beta = 374$.

4) Un amplificador emisor común se implementa con un transistor NPN con parámetros β = 250 y V_A → ∞, polarizado con una única R_B y con resistencia de colector R_C = 500 Ω y alimentación V_{CC} = 12 V, obteniendo I_{CQ} = 13 mA. A la entrada se conecta una señal de tensión pico v_s = 15 mV y resistencia serie R_s = 1 kΩ. Calcular el valor pico de la señal de tensión a la salida para el amplificador sin carga. Considerar una temperatura de trabajo tal que V_{th} = 26 mV.

Solution: $R_{IN} \simeq r_{\pi} = 500 \,\Omega$; $q_m = 0.5 \,\mathrm{S}$; $A_{nn} = 250$; $v_{nn} = 5 \,\mathrm{mV}$; $v_{nn,t} = 1.25 \,\mathrm{V}$.

5) Un transistor MOS opera con una corriente de drain y una tensión V_{DS} que varían de forma periódica disipando una potencia media de 25 W. Sabiendo que el transistor se encuentra en un gabinete que alcanza los 60°C y que sus características térmicas son θ_{CA} = 4°C/W; T_{fmáx} = 135°C y que P_{máx}(@T_{mmb} = 25°C) = 22 W, indicar el valor máximo de la resistencia térmica del disipador que debe adosarse al encapsulado del transistor.

Solution: $\theta_{JC} = 1^{\circ}\text{C/W}$; $T_C = 110^{\circ}\text{C}$; $\theta_{pruleoo} = 2.00^{\circ}\text{C W}^{-1}$; $\theta_{dis} = 4.00^{\circ}\text{C W}^{-1}$.

RUN PONT AND

Página 1 de 2