Tutorial 7 -MOS transistors

Problem 1:

Figure 1 shows the NMOS and PMOS devices with drain, source and gate ports annotated.

Determine the mode of operation (Saturation, Triode, Cut-off) as well as the drain current I_D for each of the biasing configurations given bellow. Use the following transistor data:

NMOS: K_n '=60 μ A/V², V_{TO} =0.7V, λ =0.1 V⁻¹ PMOS: K_p '=20 μ A/V², V_{TO} = - 0.8V, λ =-0.1 V⁻¹

Assume that W/L = 1 for both transistors.

Biasing configurations:

 $\begin{array}{llll} \mbox{(a). NMOS: V_{GS}=}3.3V; & V_{DS}$=}3.3V. & PMOS: V_{GS}=}-0.5V; & V_{DS}$=}-1.5V \\ \mbox{(b). NMOS: V_{GS}=}3.3V; & V_{DS}$=}2.2V. & PMOS: V_{GS}=}-3.3V; & V_{DS}$=}-2.6V \\ \mbox{(c). NMOS: V_{GS}=}0.6V; & V_{DS}$=}0.1V. & PMOS: V_{GS}=}-3.3V; & V_{DS}$=}-0.5V \\ \end{array}$

Fig.1 NMOS (left) and PMOS (right) transistors notations.

Problem 2:

Assume no body effect or channel length modulation

Various NMOS and PMOS transistors are measured in operation, as shown in the table below. For each transistor, find the value of $\mu C_{ox}W/L$ and V_t that apply and complete the table with V in Volts, I in μA , and $\mu C_{ox}W/L$ in $\mu A/V^2$.

Case	Transistor	V_{S}	V_{G}	V_{D}	I_{D}	Type	Mode	$\mu C_{ox}W/L$	V_t
a	1	0	2	5	100				
	1	0	3	5	400				
b	2	5	3	-4.5	50				
	2	5	2	-0.5	450				
c	3	5	3	4	200				
	3	5	2	0	800				
d	4	-2	0	0	72				
	4	-4	0	-3	270				

Problem 3:

- a) What is the operating mode of the two transistors represented in Fig.a and b if we assume that the voltage V_x varies from 0 to V_{DD} ?
- b) For $V_x=(V_{DD}/2)=2.5V$, what will be the value of the current I_{DS} for both transistors?

Use the following transistor data:

NMOS: K_n '=60 μ A/V², V_{TO} =0.7V, λ =0.1 V⁻¹; PMOS: K_p '=20 μ A/V², V_{TO} = -0.8V, λ =-0.1 V⁻¹ Assume that W/L = 1 for both transistors.

Problem 4:

Consider the circuit configuration of Figure 2. K_p '=5.4 $\mu A/V^2$ and V_{thp} =-0.739V

- a) Assuming $V_x > -V_{thp}$; find out the operating mode of the transistor and deduce the expression of the current I_{DS} .
- b) Deduce the expression of the voltage V_x (Assume that the channel length modulation coefficient λ is zero. λ =0).
- c) Determine the required width of the transistor (for L=1.2 μ m) such that V_x =1.5V.