

Computer Graphics (Graphische Datenverarbeitung)

- BRDFs -

WS 2021/2022

Corona

- Regular random lookup of the 3G certificates
- Contact tracing: We need to know who is in the class room
 - New ILIAS group for every lecture slot
 - Register via ILIAS or this QR code (only if you are present in this room)

Overview

- Last time
 - Radiance
 - Light sources
 - Rendering Equation & Formal Solutions
- Today
 - Bidirectional Reflectance Distribution Function (BRDF)
 - Reflection models
 - Shading
 - Spatially varying reflection properties
- Next lectures
 - Texturing
 - Filtering
 - Anti aliasing

BRDFs

Some Example of BRDFs

- Surface appearance varies in
 - Color / absorption
 - Specular roughness
 - Specular intensity, color

-

Reflection Equation - Reflectance

Reflection equation

$$L_o(\underline{x},\underline{\omega}_o) = \int_{\Omega_+} f_r(\underline{\omega}_i,\underline{x},\underline{\omega}_o) L_i(\underline{x},\underline{\omega}_i) \cos \theta_i d\underline{\omega}_i$$

- BRDF
 - Ratio of reflected radiance to incident irradiance

$$f_r(\omega_o, x, \omega_i) = \frac{dL_o(x, \omega_o)}{dE_i(x, \omega_i)}$$
 [1/sr]

Bidirectional Reflectance Distribution Function

- BRDF describes surface reflection for light incident from direction (θ_i, ϕ_i) observed from direction (θ_o, ϕ_o)
- Bidirectional
 - Depends on two directions and position (6-D function)
- Distribution function
 - Can be infinite, locally
- Unit [1/sr]

$$f_{r}(\underline{\omega}_{o}, \underline{x}, \underline{\omega}_{i}) = \frac{dL_{o}(\underline{x}, \underline{\omega}_{o})}{dE_{i}(\underline{x}, \underline{\omega}_{i})}$$

$$= \frac{dL_{o}(\underline{x}, \underline{\omega}_{o})}{dL_{i}(\underline{x}, \underline{\omega}_{i})\cos\theta_{i} d\underline{\omega}_{i}}$$

BRDF Properties

- Helmholtz reciprocity principle
 - BRDF remains unchanged if incident and reflected directions are interchanged

$$f_r(\omega_o, \omega_i) = f_r(\omega_i, \omega_o)$$

- Smooth surface: isotropic BRDF
 - reflectivity independent of rotation around surface normal
 - BRDF has only 3 instead of 4 directional degrees of freedom

$$f_r(\underline{x}, \theta_i, \theta_o, \varphi_o - \varphi_i)$$

BRDF Properties

- Characteristics
 - BRDF units [sr -1]
 - Range of values:
 - From 0 (absorption) to ∞ (reflection, δ -function)
 - Energy conservation law
 - No self-emission
 - Possible absorption

$$\int_{\Omega} f_r(\underline{\omega}_o, \underline{x}, \underline{\omega}_i) \cos \theta_o d\omega_o \le 1 \quad \forall \theta, \varphi$$

- Reflection only at the point of entry $(x_i = x_o)$ opaque surfaces
 - No subsurface scattering
 - No refraction or transmission

BRDF Measurement

- Gonio-Reflectometer
- BRDF measurement
 - point light source position (θ, φ)
 - light detector position (θ_o, φ_o)
- 4 directional degrees of freedom
- BRDF representation
 - m incident direction samples (θ, φ)
 - n outgoing direction samples (θ_o, φ_o)
 - m*n reflectance values (large!!!)

Stanford light gantry

BRDF Measurement

Assumption: homogeneous material

Compressive Higher-order Sparse and Low Rank Acquisition with a Hyperspectral Light Stage

paper id: 0226

(this video has audio)

Tabulated BRDF

• 4D Table parameterized by $(\theta_i, \phi_i, \theta_o, \phi_o)$

				$\xrightarrow{\theta_i}$	
	0.0005	0.001	0.002	0.0025	0.0025
	0.0008	0.0012	0.0025	0.0028	0.003
	0.0009	0.0012	0.003	0.004	0.005
	0.00095	0.0011	0.004	0.0032	0.004
,	0.00089	0.001	0.003	0.003	0.003
ϕ_i `	V				

Tabulated BRDF

• 4D Table parameterized by $(\theta_i, \phi_i, \theta_o, \phi_o)$

Tabulated BRDF

• 4D Table parameterized by $(\theta_i, \phi_i, \theta_o, \phi_o)$

Rendering from Measured BRDF

- Linearity, superposition principle
 - Complex illumination: integrating light distribution against BRDF
 - Sampled BRDF: superimposed point light sources
- Interpolation
 - Look-up during rendering
 - Sampled BRDF must be filtered
- BRDF Modeling
 - Fit parameterized BRDF model to measured data
 - Continuous function
 - No interpolation
 - Fast evaluation
- Representation in spherical harmonics basis
 - Mathematically elegant filtering, illumination-BRDF integration

Reflectance

- Reflectance may vary with
 - Illumination angle
 - Viewing angle
 - Wavelength
 - (Polarization, ...)
- Variations due to
 - Absorption
 - Surface micro-geometry
 - Index of refraction / dielectric constant
 - Scattering

BRDF Modeling

- Phenomenological approach
 - Description of visual surface appearance
- Ideal specular reflection
 - Reflection law
 - Mirror
- Glossy reflection
 - Directional diffuse
 - Shiny surfaces
- Ideal diffuse reflection
 - Lambert's law
 - Matte surfaces

Reflection Geometry

- Direction vectors (normalize):
 - N: surface normal
 - I: vector to the light source
 - V: viewpoint direction vector
 - H: halfway vector

- R(I): reflection vector

- Tangential surface: local plane

Ideal Specular Reflection

- Angle of reflectance equal to angle of incidence
- Reflected vector in a plane with incident ray and surface normal vector

$$\underline{\mathbf{R}} + (-\underline{\mathbf{I}}) = 2 \cos \theta \ \underline{\mathbf{N}} = -2(\underline{\mathbf{I}} \cdot \underline{\mathbf{N}}) \ \underline{\mathbf{N}}$$
$$\underline{\mathbf{R}}(\underline{\mathbf{I}}) = \underline{\mathbf{I}} - 2(\underline{\mathbf{I}} \cdot \underline{\mathbf{N}}) \ \underline{\mathbf{N}}$$

Ideal Specular Reflection

- Angle of reflectance equal to angle of incidence
- Reflected vector in a plane with incident ray and surface normal vector

$$\underline{\mathbf{R}} + (-\underline{\mathbf{I}}) = 2 \cos \theta \ \underline{\mathbf{N}} = -2(\underline{\mathbf{I}} \cdot \underline{\mathbf{N}}) \ \underline{\mathbf{N}}$$

$$\underline{\mathbf{R}}(\underline{\mathbf{I}}) = \underline{\mathbf{I}} - 2(\underline{\mathbf{I}} \cdot \underline{\mathbf{N}}) \ \underline{\mathbf{N}}$$

Mirror BRDF

- Dirac Delta function $\delta(x)$
 - $\delta(x)$: zero everywhere except at x=0
 - Unit integral iff integration domain contains zero (zero otherwise)

$$f_{r,m}(\omega_o, x, \omega_i) = \rho_s(\theta_i) \cdot \frac{\delta(\cos\theta_i - \cos\theta_o)}{\cos\theta_i} \cdot \delta(\varphi_i - \varphi_o \pm \pi)$$

$$L_o(x,\omega_o) = \int_{\Omega_+} f_{r,m}(\omega_o, x, \omega_i) L_i(\theta_i, \varphi_i) \cos \theta_i \ d\underline{\omega}_i = \rho_s(\theta_i) L_i(\theta_o, \varphi_o \pm \pi)$$

- Specular reflectance ρ_s
 - Ratio of reflected radiance in specular direction and incoming radiance
 - Dimensionless quantity between 0 and 1

$$\rho_s(\theta_i) = \frac{\Phi_o(\theta_o)}{\Phi_i(\theta_i)}$$

Diffuse Reflection

- Light equally likely to be reflected in any output direction (independent of input direction)
- Constant BRDF

$$f_{r,d}(\underline{\omega}_o, \underline{x}, \underline{\omega}_i) = k_d = \text{const}$$

$$L_o(\underline{x}, \underline{\omega}_o) = \int_{\Omega} k_d L_i(\underline{x}, \underline{\omega}_i) \cos \theta_i \ d\underline{\omega}_i = k_d \int_{\Omega} L_i(\underline{x}, \underline{\omega}_i) \cos \theta_i \ d\underline{\omega}_i = k_d E$$

- kd: diffuse coefficient, material property [1/sr]

Lambertian Diffuse Reflection

Radiosity

$$B = \int_{\Omega} L_o(\underline{x}, \underline{\omega}_o) \cos \theta_o \ d\underline{\omega}_o = L_o \int_{\Omega} \cos \theta_o \ d\underline{\omega}_o = \pi \ L_o$$

Diffuse Reflectance

$$\rho_d = \frac{B}{E} = \pi k_d$$

Lambert's Cosine Law

$$B = \rho_d E = \int_{\Omega} \rho_d L_i \cos \theta_i$$

For each light source

$$- L_{r,d} = k_d L_i cos\theta_i = k_d L_i (\underline{I} \cdot \underline{N})$$

Lambertian Objects

Self-Luminous spherical Lambertian Light Source

$$\Phi_0 \propto L_0 \cdot d\Omega$$

$d\Omega$

Eye-light illuminated Spherical Lambertian Reflector

$$\Phi_1 \propto L_0 \cdot \mathbf{c} \quad \text{op } \mathbf{s} d\Omega$$

Lambertian Objects II

The Sun

The Moon

Lambertian Objects II

The Sun

- Absorption in photosphere
- Path length through photosphere longer from the Sun's rim

The Moon

- Surface covered with fine dust
- Dust on TV visible best from slanted viewing angle

⇒ Neither the Sun nor the Moon are Lambertian

"Diffuse" Reflection

- Theoretical explanation
 - Multiple scattering
- Experimental realization
 - Pressed magnesium oxide powder
 - Almost never valid at high angles of incidence

Paint manufacturers attempt to create ideal diffuse paints

Glossy Reflection

Glossy Reflection

- Due to surface roughness
- Empirical models
 - Phong
 - Blinn-Phong
- Physical models
 - Blinn
 - Cook & Torrance

Phong Reflection Model

Cosine power lobe

$$f_r(\omega_o, x, \omega_i) = k_s (\underline{R}(\underline{I}) \cdot \underline{V})^{k_e}$$

$$L_s = L_i k_s \cos^{k_e} \theta_{RV}$$

- Dot product & power
- Not energy conserving/reciprocal
- Plastic-like appearance

birds eye view at the surface

Phong Exponent ke

$$f_r(\omega_o, x, \omega_i) = k_s (\underline{R}(\underline{I}) \cdot \underline{V})^{k_e}$$

Determines size of highlight

Phong Lobes

$$f_r(\omega_o, x, \omega_i) = k_s (\underline{R}(\underline{I}) \cdot \underline{V})^{k_e}$$

Blinn-Phong Reflection Model

Blinn-Phong reflection model

$$f_r(\omega_o, x, \omega_i) = k_s (H \cdot N)^{k_e}$$

$$L_s = L_i k_s \cos^{k_e} \theta_{HN}$$

$$\theta_{RV} \Longrightarrow \theta_{HN}$$

- Light source, viewer far away
- I, R constant: H constant
 - ullet $\theta_{\!H\!N}$ less expensive to compute

Phong Illumination Model

Extended light sources: I point light sources

$$L_{r} = k_{a}L_{i,a} + k_{d}\sum_{l}L_{l}(I_{l} \cdot N) + k_{s}\sum_{l}L_{l}(R(I_{l}) \cdot V)^{k_{e}}$$
 (Phong)
$$L_{r} = k_{a}L_{i,a} + k_{d}\sum_{l}L_{l}(I_{l} \cdot N) + k_{s}\sum_{l}L_{l}(H_{l} \cdot N)^{k_{e}}$$
 (Blinn)

- Color of specular reflection equal to light source
- Heuristic model
 - Contradicts physics
 - Purely local illumination
 - Only direct light from the light sources
 - No further reflection on other surfaces
 - Constant ambient term
- Often: light sources & viewer assumed to be far away

- Isotropic microfacet collection
- Microfacets assumed as perfectly smooth reflectors
- BRDF
 - Distribution of microfacets
 - Often probabilistic distribution of orientation or V-groove assumption
 - Planar reflection properties, Self-masking, shadowing
 - Glossy reflection by microfacets oriented such that we see perfect reflection. Intensity ~ number of correctly oriented patches

- Isotropic microfacet collection
- Microfacets assumed as perfectly smooth reflectors
- BRDF
 - Distribution of microfacets

- Planar reflection properties, Self-masking, shadowing

- Glossy reflection by microfacets oriented such that we see perfect reflection. Intensity ~

- Isotropic microfacet collection
- Microfacets assumed as perfectly smooth reflectors
- BRDF
 - Distribution of microfacets
 - Often probabilistic distribution of orientation or V-groove assumption
 - Planar reflection properties, Self-masking, shadowing

- Glossy reflection by microfacets oriented such that we see perfect reflection. Intensity ~

- Isotropic microfacet collection
- Microfacets assumed as perfectly smooth reflectors
- BRDF
 - Distribution of microfacets
 - Often probabilistic distribution of orientation or V-groove assumption
 - Planar reflection properties, Self-masking, shadowing

- Glossy reflection by microfacets oriented such that we see perfect reflection. Intensity \sim

42

Ward Reflection Model

• BRDF

$$f_r = \frac{\rho_d}{\pi} + \rho_s \frac{1}{\sqrt{(I \cdot N)(V \cdot N)}} \cdot \frac{\exp(-\tan^2 \angle (H, N) / \sigma^2)}{4\pi\sigma^2}$$

- σ standard deviation (RMS) of surface slope
- Simple expansion to anisotropic model (σ_x, σ_y)
- Empirical, not physics-based
- Inspired by notion of reflecting microfacets
- Convincing results
- Good match to measured data

Physics-inspired BRDFs

- Notion of reflecting microfacet
- Specular reflectivity of the form

$$f_r = \frac{D \cdot G \cdot F_{\lambda}(\lambda, \theta_i)}{\pi \ N \cdot V}$$

- D: statistical microfacet distribution
- G : geometric attenuation, self-shadowing
- F: Fresnel term, wavelength, angle dependency of reflection along mirror direction
- N•V : flaring effect at low angle of incidence
- Cook-Torrance model
 - F: wavelength- and angle-dependent reflection
 - Metal surfaces

Cook-Torrance Reflection Model

• Cook-Torrance reflectance model is based on the *microfacet* model. The BRDF is defined as the sum of a diffuse and specular components:

$$f_r = k_d \rho_d + k_s \rho_s; \qquad k_d + k_s \le 1$$

where k_s and k_d are the specular and diffuse coefficients.

• Derivation of the specular component ρ_s is based on a physically derived theoretical reflectance model

Cook-Torrance Specular Term

$$\rho_s = \frac{F_{\lambda} DG}{\pi (\underline{N} \cdot \underline{V}) (\underline{N} \cdot \underline{I})}$$

- D : Distribution function of microfacet orientations
- G : Geometrical attenuation factor
 - represents self-masking and shadowing effects of microfacets
- F_{λ} : Fresnel term

$$F_{\lambda} \approx (1 + (V \cdot N))^{\lambda}$$

- computed by Fresnel equation
- relates incident light to reflected light for each planar microfacet
- N·V: Proportional to visible surface area
- N·I: Proportional to illuminated surface area

Comparison Phong vs. Torrance

Phong

Torrance

off-specular peak!

Microfacet Distribution Functions

Isotropic Distributions

- $D(\underline{\omega}) \Rightarrow D(\alpha) \quad \alpha = \mathbf{N} \cdot \mathbf{H}$
- $-\alpha$: angle to average normal of surface
- Characterized by half-angle β

- Blinn
- Torrance-Sparrow
- Beckmann
 - m : average slope of the microfacets
 - Used by Cook-Torrance

$$D(\beta) = \frac{1}{2} \frac{1}{D(\alpha) = \cos^{\frac{\ln 2}{\ln \cos \beta}} \alpha}$$

$$D(\alpha) = e^{-\left(\frac{\sqrt{2}}{\beta}\alpha\right)^2}$$

$$D(\alpha) = \frac{1}{4m^2 \cos^4 \alpha} e^{-[\tan \alpha/m]^2}$$

Beckman Microfacet Distribution Function

Spatially Varying BRDFs

3D Geometry model

- Pure geometry
 - no color

BRDF

- by geometry plus a single BRDF
 - no variation

Geometry plus Texture

- representing diffuse color only shading is missing
 - no relighting
 - totally flat

Geometry plus spatially varying BRDFs

realistic object appearance

Questions

- What is a BRDF? How is it defined?
- What are the properties described by it?
- Which phenomena are not covered?
- How can a BRDF be represented?
- How do you measure a BRDF?

Wrap-up

- Today
 - BRDFs
 - Properties
 - Microfacet model

- Next lecture
 - Textures
 - Textures to modify surface properties
 - Texture Parameterization
 - Procedural Shading
 - Texturing Filtering

References

- An Overview of BRDF Models, Rosana Montes and Carlos Ureña, Technical Report LSI-2012-001,
 Dept. Lenguajes y Sistemas Informáticos, University of Granada, Granada, Spain
- Experimental Analysis of BRDF Models. Addy Ngan, Frédo Durand, and Wojciech Matusik. Eurographics Symposium on Rendering 2005.
- Acquisition and A of Bispectral Bidirectional Reflectance and Reradiation Distribution Functions.
 Matthias B. Hullin, Johannes Hannika, Boris Ajdin, Jan Kautz, Hans-Peter Seidel, Hendrik P.A.
 Lensch. ACM Trans. on Graphics. Proceedings of SIGGRAPH 2010.

AppendiX Geometric Attenuation Factor

- V-shaped grooves
- Fully illuminated and visible

$$G = 1$$

Partial masking of reflected light

$$G = \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{V})}{(\underline{V} \cdot \underline{H})}$$

Partial shadowing of incident light

$$G = \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{I})}{(\underline{V} \cdot \underline{H})}$$

$$G = \min \left\{ 1, \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{V})}{(\underline{V} \cdot \underline{H})}, \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{I})}{(\underline{V} \cdot \underline{H})} \right\}$$

- Area projected into view direction
- Assume entire v-shape is illuminated

$$G = \frac{l-m}{l}$$

Area projected into view direction

$$G = \frac{n}{l'} = \frac{n}{\langle H \cdot V \rangle}$$

Area projected into view direction

Area projected into view direction

