智嵌 16 输入 16 输出继电器控制板使用说明书 V1.0

版本号: A

拟制人: 赵工

时间: 2014年9月1日

目 录

1	本文档		. 3
2	控制板	反尺寸和接口说明	. 3
	2.1	控制板尺寸图	. 3
	2.2	接口说明	. 3
	2.3	输入接线方式	. 4
	2.4	输出接线方式	. 5
3		〔 地址选择	
4	控制板	反技术参数	. 5
	4.1	硬件资源	. 5
	4.2	技术参数	. 6
5	通讯协	,议	
	5.1	RS232/485 通讯协议	
	5.2	CAN 通讯协议(扩展帧格式)	. 7
	5.3	CAN 通讯协议(标准帧格式)	. 8

1 本文档编写目的

本使用手册是针对智嵌 16 输入 16 输出继电器控制板的正确使用而编写的。

2 控制板尺寸和接口说明

2.1 控制板尺寸图

本控制板尺寸图如下所示:

图 1 控制板尺寸

2.2 接口说明

本控制板接口如下图:

图 2 接口

2.3 输入接线方式

(1) 控制板供电

本控制板的供电方式有两种: 12VDC 和 24VDC, 主要取决于板载继电器的规格,用户拿到板子后一定仔细看下继电器的控制电压是多少伏: 如果板载继电器是 12V 的,那么板子输入电源就必须是 12VDC; 如果板载继电器是 24V 的,那么输入电源必须是 24VDC。接线方式见图 2 的左侧,标 "VCC_IN"字样的接电源正极,标 "GND"字样的接电源负极。接好电源后,板子的"电源灯"常亮,"CPU 运行指示灯"闪烁(频率约 1HZ)。

(2) 开关量输入接线方式

如图 3 所示(注意:使用板上的 16 路开关量输入时,外部设备必须与本板子"共地"。):

图 3 开关量输入接线方式

由上图可知,板子共可以接 16 路开关量输入,如图 3 中的 X1~X16。 开关量输入逻辑电平如下表:

X1~X16 输入电压	逻辑电平	逻辑值	备注
大于等于 4V 且小	高电平	1	输入电压不能超过电源输入
于 VCC_IN			电压 VCC_IN
小于等于 2V 且大	低电平	0	入电压不能小于 OV
于 0V			
大于 2V 且小于 4V	不确定状态	不确定值	

需要特别指出的是图 3 中的"VCC_OUT"是电源输入口"VCC_IN"经过一个保护二极管和保险丝后引出的接线端子,可以给外部设备供电。

2.4 输出接线方式

本控制板一共有 1 路继电器,每路继电器都有三个触点:常开、常闭和公共端,如图 2 所示。每路都有指示灯,指示灯亮时表示该路常闭触点断开,常开触点闭合;指示灯熄灭时,表示该路常闭触点闭合,常开触点断开。

3 控制板地址选择

本控制板上有一个6位的拨码开关,如下图所示。

拨码开关的位与板子的地址关系如下:

拨码开关位	6	5	4	3	2	1
控制板地址位	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1

当拨码开关相应位拨到"ON"时, 值为 0, 反之值为 1。例如上图中的拨码开关取值为:

拨码开关位	6	5	4	3	2	1
控制板地址位	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1
取值	0	0	0	0	0	1

即板子地址为 0x01。

4 控制板技术参数

4.1 硬件资源

CPU	STM32F103RBT6
通讯	1 路 232, 1 路 485, 1 路 CAN
输入	16 光电输入(光耦隔离)
输出	16继电器输出(常闭常开 光耦隔离)
扩展	6 位地址,最多可级联 64 个

4.2 技术参数

名称	参数	备注
RS232	波特率 115200,8 位数据位,1 位停止位,无校验位	波特率可以修改
RS485	波特率 115200,8 位数据位,1 位停止位,无校验位	波特率可以修改
CAN	波特率 250kbps,扩展帧,8 字节数据	波特率可以修改
继电器切换电压	AC250V 以下 DC30V 以下	
继电器切换电流	10A	
继电器切换功率	210W 或 2200VA	最大瞬时功率
控制器工作电压	12V 或 24V	根据继电器选择
级联方式	CAN 或 RS485,64 级	

5 通讯协议

本控制板具有 3 种通讯方式: RS232, RS485 和 CAN。其中 CAN 协议兼容两种帧格式(扩展数据帧和标准数据帧)。

5.1 RS232/485 通讯协议

本协议可以实现通过 RS232 或者 RS485 对本控制板的操作。

如果通过 RS232 控制本继电器板,则必须设定一个地址为 0x00 的主控制板,其余为从控制板,从控制板可以通过 RS485 级联。外部设备(比如 PC 机)通过 RS232 与主控制板通讯,从而达到控制从控制板的目的。

如果外部设备(比如 PC 机)通过 RS485 控制本继电器板,则所有级联的控制板都是从机,外部设备为主机,主机采用实时查询的方式达到控制各个继电器板的目的。

控制协议如下表所示:

	帧头		地址码	命令码	8字节数据	校验和	帧	尾
指令名称	Byte1 Byte2		Byte3	Byte4	Byte5~ Byte12	Byte13	Byte14	Byte15
读 输 入 状态	0X48	0X3A	Addr	0X52	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44
返 回 输 入状态	0X48	0X3A	Addr	0X41	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44
写继电器状态	0X48	0X3A	Addr	0X57	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44
读 继 电 器状态	0X48	0X3A	Addr	0X53	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44
返 回 继 电器状态	0X48	0X3A	Addr	0X54	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44

表 1 RS232/485 协议格式

表 1 中的"8 字节数据"即对应继电器板的 16 路输入或 16 路输出状态:

DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7	DATA8
1/2	3/4	5/6	7/8路状	9/10	11/12	13/14	15/16
路状态	路状态	路状态	态	路状态	路状态	路状态	路状态

表 2 8 字节数据含义

由表 2 可知,每个字节表示两路:低 4 位表示奇数路,高 4 位表示偶数路,例如 byte5 为 0x10,其含义是第 1 路断开,第二路闭合;例如 byte6 为 0x01,其含义是第 3 路闭合,第 4 路断开。

命令码举例:

● 读编号为1的16路输入状态:

- 读编号为1的继电器状态(第3路常开触点闭合,常闭触点断开;第9路常开触点闭合,常闭触点断开;其他路均是常闭触点闭合,常开触点断开);

0X48, 0X3A, 0X01, 0X53, 0X00, 0X01, 0X00, 0X00, 0X01, 0X00, 0X00, 0X00, 0XE0, 0X45, 0X44, 0X14, 0X14

- 向编号为1的继电器板写继电器状态(第1~8路常开触点闭合,常闭触点断开,其他路均是常闭触点闭合,常开触点断开):

● 向编号为 1 的继电器板写继电器状态 (第 9~16 路常开触点闭合,常闭触点断开, 其他路均是常闭触点闭合,常开触点断开):

0X48, 0X3A, 0X01, 0X57, 0X10, 0X10, 0X10, 0X10, 0X10, 0X10, 0X10, 0X10, 0X5A, 0X45, 0X44, 0X10, 0X10

5.2 CAN 通讯协议(扩展帧格式)

(1) CAN 参数

波特率为 250kbps, 扩展数据帧, 8 字节长度数据。

(2) CAN 报文 ID 含义

采用一问一答形式,即主控单元查询,继电器板应答。CAN 报文 ID 一共有 29 位, 其含义如下:

Bit	29~24	23~16	15~8	7~0
意义	任意	0XAA	功能码	地址码

功能码含义如下:

功能码值	含义
0X52	读取输入状态
0X41	继电器板返回输入状态
0X57	写继电器状态
0X53	读继电器状态
0X54	继电器板返回继电器状态

地址码的范围是 0X00 至 0X3F,总共可以级联 64 个继电器板。

(3) CAN 报文含义

CAN 报文有 8 个字节的数据,每个字节代表两路输入/继电器状态: 低 4 位表示奇数路,高 4 位表示偶数路,例如报文的第一个字节为 0X01 表示第一路输入有信号(或第 1 路继电器常开触点闭合),第一个字节为 0X10 表示第 2 路输入有信号(或第 2 路继电器常开触点闭合)。实例:

将地址为1的控制板第一路继电器状态设为吸合状态:

5.3 CAN 通讯协议(标准帧格式)

(1) CAN 参数

波特率为 250kbps, 标准数据帧, 8 字节长度数据。

(2) CAN 报文 ID 含义

采用一问一答形式,即主控单元查询,继电器板应答。标准帧 CAN 报文 ID 一共有 11 位,其含义如下:

Bit	10~6	5~0
意义	功能码	地址码

功能码含义如下:

功能码值(只取低5位)	含义
0X01	读取输入状态
0X11	返回输入状态
0X02	写继电器状态
0X03	读继电器状态
0X13	返回继电器状态

地址码的范围是 0X00 至 0X3F,总共可以级联 64 个继电器板。

(3) CAN 报文含义

CAN 报文有 8 个字节的数据,每个字节代表两路输入/继电器状态:低 4 位表示奇数路,高 4 位表示偶数路,例如报文的第一个字节为 0X01 表示第一路输入有信号(或第 1 路继电器常开触点闭合),第一个字节为 0X10 表示第 2 路输入有信号(或第 2 路继电器常开触点闭合)。将地址为 1 的控制板第一路和第 4 路继电器状态设为吸合状态:

(4) 举例

例 1 读输入地址为 1 的继电器板输入状态

CAN id 二进制:

Bit	10	9	8	7	6	5	4	3	2	1	0		
取值	0	0	0	0	1	0	0	0	0	0	1		
含义		功能	₺码: 0	x01		地址码: 0x01							
ID	0x00 0x41												

即为: 帧 ID: 00 41 报文可以任意。

继电器板收到该指令后,回复帧 ID 为0441的报文。

例 2 地址为 1 的继电器板返回 16 路输入状态

CAN id 二进制:

Bit	10	9	8	7	6	5	4	3	2	1	0		
取值	1	0	0	0	1	0	0	0	0	0	1		
含义		功能		x11		地址码: 0x01							
ID		0x04 0x41											

报文即为16路输入的状态。

例 3 写地址为 1 的 16 路继电器状态 (第 1 路继电器常开触点闭合,第 4 路常开触点闭合)

CAN id 二进制:

Bit	10	9	8	7	6	5	4	3	2	1	0		
取值	0	0	0	1	0	0	0	0	0	0	1		
含义		功能	 60	x02		地址码: 0x01							
ID		0x00 0x81											

CAN 报文:

Byte	7	6	5	4	3	2	1	0
取值	0x00	x00	x00	x00	x00	x00	X10	x01

例 4 读地址为 1 的 16 路继电器状态

CAN id 二进制:

Bit	10	9	8	7	6	5	4	3	2	1	0		
取值	0	0	0	1	1	0	0	0	0	0	1		
含义		功能	怡码: 0	x03		地址码: 0x01							
ID		0x00 0xC1											

CAN 报文任意。

例 5 地址为 1 的继电器板返回 16 路继电器状态

CAN id 二进制:

Bit	10	9	8	7	6	5	4	3	2	1	0		
取值	1	0	0	1	1	0	0	0	0	0	1		
含义		功能		x13		地址码: 0x01							
ID	0x04 0xC1												

报文即为继电器的状态。

-----以下无正文。