Implementing Gradient Descent

Owen Wetherbee, Ethan Ma, Sylvan Martin

Working out Backpropogation

Neural Network Structure

In this meeting, we went over the math behind neural networks: feed-forwarding, derivatives, and backpropagation. This document contains what we thought you need to know for implementing back-propagation.

Say that we have a feed-forward neural network consisting of L layers, where layer L is the output layer, and layer 0 is the input layer. Let $\vec{\mathbf{a}}^{(\ell)}$ represent the activations in the ℓ -th layer of the network. So if the input to our network is the vector $\vec{\mathbf{x}}$, then $\vec{\mathbf{a}}^{(0)} = \vec{\mathbf{x}}$. For the purposes of this writeup, vectors are 1-indexed, as opposed to in code where they are 0-indexed.

Say that layer ℓ has n_{ℓ} neurons.

Let $w_{ij}^{(\ell)}$ represent the weight on the edge from the j-th node in layer $\ell-1$ to the i-th node in layer ℓ . Let $W^{(\ell)}$ be the matrix defined by

$$W^{(\ell)} = \begin{bmatrix} w_{11}^{(\ell)} & w_{12}^{(\ell)} & \cdots & w_{1n_{\ell-1}}^{(\ell)} \\ w_{21}^{(\ell)} & w_{22}^{(\ell)} & \cdots & w_{2n_{\ell-1}}^{(\ell)} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n_{\ell}1}^{(\ell)} & w_{n_{\ell}2}^{(\ell)} & \cdots & w_{n_{\ell}n_{\ell-1}}^{(\ell)} \end{bmatrix}$$

Viewed as a linear transformation, this is $W^{(\ell)}: \mathbb{R}^{n_{\ell-1}} \to \mathbb{R}^{n_{\ell}}$, and so its dimension is $n_{\ell} \times n_{\ell-1}$.

Let $b_i^{(\ell)}$ be the bias associated with the *i*-th node of layer ℓ . Each layer of the network has a "squishification function" written as $\sigma^{(\ell)}$, so computing the activation $a_i^{(\ell)}$ can be written as

$$a_i^{(\ell)} = \sigma^{(\ell)} \left(z_i^{(\ell)} \right)$$

where we let

$$z_i^{(\ell)} = b_i^{(\ell)} + \sum_{j=1}^{n_{\ell-1}} w_{ij} \, a_j^{(\ell-1)}$$

We can also write this more succinctly as

$$\vec{\mathbf{a}}^{(\ell)} = \sigma\left(\vec{\mathbf{z}}^{(\ell)}\right)$$

where

$$\vec{\mathbf{z}}^{(\ell)} = W^{(\ell)}\vec{\mathbf{a}}^{(\ell-1)} + \vec{\mathbf{b}}^{(\ell)}$$

and where $\sigma(\vec{\mathbf{x}})$ is applied to each element of x.

Cost Gradients

For now, we'll be using squared loss. If for training sample 1 we desire the output layer to have value \vec{y} ,

$$C_1 = \|\mathbf{a}^{(\ell)} - \vec{\mathbf{y}}\|_2^2 = \sum_{i=1}^{n_\ell} (a_i^{(\ell)} - y_i)^2$$

The overall cost for the network over all N training samples will be the average of all costs, so

$$C = \frac{1}{N} \sum_{k=1}^{N} C_k$$

We wish to compute the gradient, ∇C , of the loss function, so that we can take a step in the "downwards" direction along the surface formed by the graph of C in order to find a minimum of C. Since we only care about the direction the gradient is pointing and not the magnitude, the factor of $\frac{1}{N}$ in front can be ignored. So, we care about computing

$$\nabla C \approx \nabla C_0 + \nabla C_1 + \dots + \nabla C_N$$

For explanation purposes, we'll go through computing ∇C_0 for a label $\vec{\mathbf{y}}$, with input $\vec{\mathbf{x}} = \vec{\mathbf{a}}^{(0)}$. The gradient is

$$\nabla C_0 = \begin{bmatrix} \frac{\partial C_0/\partial w_{00}^{(1)}}{\vdots} \\ \frac{\partial C_0/\partial w_{ij}^{(1)}}{\vdots} \\ \frac{\partial C_0/\partial w_{n_1 n_0}^{(1)}}{\vdots} \\ \frac{\partial C_0/\partial b_i^{(1)}}{\vdots} \\ \frac{\partial C_0/\partial b_i^{(1)}}{\vdots} \end{bmatrix}$$

Where the dimension of this vector is the number of total parameters (weights and biases) of our network. It's components each reflect how sensitive the overall cost is to a small change in one of the parameters, so we want to take a step in the most efficient direction to decrease the cost.

$$ec{\mathbf{v}} pprox ec{\mathbf{u}} \iff rac{ec{\mathbf{v}}}{\|ec{\mathbf{v}}\|} = rac{ec{\mathbf{u}}}{\|ec{\mathbf{u}}\|}$$

^{1.} From here on out, for two vectors $\vec{\mathbf{v}}$ and $\vec{\mathbf{u}}$, $\vec{\mathbf{v}} \approx \vec{\mathbf{u}}$ will mean that the two vectors are pointing in the same direction, but may not have the same magnitude. More formally,

Computing Partial Derivatives

Using the chain rule, we can compute the derivative with respect to one of the weights in layer ℓ .

$$\frac{\partial C_0}{\partial w_{ij}^{(\ell)}} = \frac{\partial z_i^{(\ell)}}{\partial w_{ij}^{(\ell)}} \cdot \frac{\partial a_i^{(\ell)}}{\partial z_i^{(\ell)}} \cdot \frac{\partial C_0}{\partial a_i^{(\ell)}}$$

In the same manor we can compute the derivative with respect to one of the biases.

$$\frac{\partial C_0}{\partial b_i^{(\ell)}} = \frac{\partial z_i^{(\ell)}}{\partial b_i^{(\ell)}} \cdot \frac{\partial a_i^{(\ell)}}{\partial z_i^{(\ell)}} \cdot \frac{\partial C_0}{\partial a_i^{(\ell)}}$$

We can actually simplify these computations quite a lot. Using the formula for $z_i^{(\ell)}$, we know

$$z_i^{(\ell)} = b_i^{(\ell)} + \left(\sum_{j=1}^{n_{\ell-1}} w_{ij}^{(\ell)} a_j^{(\ell-1)}\right) \implies \frac{\partial z_i^{(\ell)}}{\partial w_{ij}^{(\ell)}} = a_j^{(\ell-1)}$$

When taking the derivative with respect to bias, this becomes much simpler.

$$z_i^{(\ell)} = b_i^{(\ell)} + \left(\sum_{j=1}^{n_{\ell-1}} w_{ij}^{(\ell)} a_j^{(\ell-1)}\right) \implies \frac{\partial z_i^{(\ell)}}{\partial b_i^{(\ell)}} = 1$$

Also, because $a_i^{(\ell)} = \sigma^{(\ell)}(z_i^{(\ell)})$, $\frac{\partial a_i^{(\ell)}}{\partial z_i^{(\ell)}} = \dot{\sigma}^{(\ell)}(z_i^{(\ell)})$ where $\dot{\sigma}$ is the derivative of σ . Together, this means

$$\begin{split} \frac{\partial C_0}{\partial w_{ij}^{(\ell)}} &= a_j^{(\ell-1)} \dot{\sigma}^{(\ell)}(z_i^{(\ell)}) \cdot \frac{\partial C_0}{\partial a_i^{(\ell)}} \\ \frac{\partial C_0}{\partial b_i^{(\ell)}} &= \dot{\sigma}^{(\ell)}(z_i^{(\ell)}) \cdot \frac{\partial C_0}{\partial a_i^{(\ell)}} \end{split}$$

Let's use matrix notation to clean this up a bit. Let $\frac{\partial C_0}{\partial W^{(\ell)}}$ represent the matrix whose (i,j)-th entry is $\frac{\partial C_0}{\partial w^{(\ell)}_{ij}}$. Likewise, $\frac{\partial C_0}{\partial \vec{\mathbf{b}}^{(\ell)}_i}$ is the vector whose i-th entry is $\frac{\partial C_0}{\partial b^{(\ell)}_i}$. Now, we can write

$$\frac{\partial C_0}{\partial \vec{\mathbf{b}}^{(\ell)}} = \dot{\sigma}^{(\ell)}(\vec{\mathbf{z}}^{(\ell)}) \odot \frac{\partial C_0}{\partial \vec{\mathbf{a}}^{(\ell)}} \quad \text{and} \quad \frac{\partial C_0}{\partial W^{(\ell)}} = \frac{\partial C_0}{\partial \vec{\mathbf{b}}^{(\ell)}} \left(\vec{\mathbf{a}}^{(\ell-1)}\right)^{\top}$$

Where \odot represents the point-wise *Hadamard product*.

This leaves the question of how to compute the derivative of C_0 with respect to a_i for each layer. Notice that if $\ell = L$ (we are in the last layer) this is actually quite straightforward. Using the definition of cost,

$$C_0 = \sum_{i=1}^{n_L} (a_i^{(L)} - y_i)^2$$

we can easily compute the derivative

$$\frac{\partial C_0}{\partial a_i^{(L)}} = 2(a_i^{(L)} - y_i) \quad \text{or} \quad \frac{\partial C_0}{\partial \vec{\mathbf{a}}^{(L)}} = 2(\vec{\mathbf{a}}^{(L)} - \vec{\mathbf{y}})$$

However, if we try to find an expression for the same derivative but in a previous layer, we find

$$\frac{\partial C_0}{\partial a_k^{(\ell-1)}} = \sum_{j=1}^{n_\ell} \frac{\partial z_j^{(\ell)}}{\partial a_i^{(\ell-1)}} \cdot \frac{\partial a_j^{(\ell)}}{\partial z_j^{(\ell)}} \cdot \frac{\partial C_0}{\partial a_j^{(\ell)}} = \sum_{j=1}^{n_\ell} w_{jk}^{(\ell)} \dot{\sigma}^{(\ell)}(z_j^{(\ell)}) \cdot \frac{\partial C_0}{\partial a_j^{(\ell)}}$$

In matrix notation, this is

$$\frac{\partial C_0}{\partial \vec{\mathbf{a}}^{(\ell-1)}} = W^{(\ell)^{\top}} \left(\dot{\sigma}^{(\ell)} \left(\vec{\mathbf{z}}^{(\ell)} \right) \odot \frac{\partial C_0}{\partial \vec{\mathbf{a}}^{(\ell)}} \right)$$

Notice this formula is recursive! To compute it efficiently, we can use a dynamic programming style of approach. This gives us the following natural algorithm for computing ∇C_0 .

The Backpropogation Algorithm

(Base case of the DP table.) Start by computing all $\partial C_0/\partial a_i^{(L)} = 2(a_i^{(L)} - y_i)$ for $1 \le i \le n_L$. With this done, we can also calculate all

$$\frac{\partial C_0}{\partial w_{ij}^{(L)}} = a_i^{(L-1)} \dot{\sigma}^{(\ell)}(z_i^{(L)}) \frac{\partial C_0}{\partial a_i^{(L)}} \quad \text{and} \quad \frac{\partial C_0}{\partial b_i^{(L)}} = \dot{\sigma}^{(\ell)}(z_i^{(\ell)}) \frac{\partial C_0}{\partial a_i^{(L)}}$$

for the last layer L. In matrix form, this means computing

$$\frac{\partial C_0}{\partial \vec{\mathbf{a}}^{(L)}} = 2 \left(\vec{\mathbf{a}}^{(L)} - \vec{\mathbf{y}} \right)$$
$$\frac{\partial C_0}{\partial \vec{\mathbf{b}}^{(L)}} = \dot{\sigma}^{(L)} (\vec{\mathbf{z}}^{(L)}) \odot \frac{\partial C_0}{\partial \vec{\mathbf{a}}^{(L)}}$$
$$\frac{\partial C_0}{\partial W^{(L)}} = \frac{\partial C_0}{\partial \vec{\mathbf{b}}^{(L)}} \left(\vec{\mathbf{a}}^{(L-1)} \right)^{\top}$$

(Recursive case of DP table) Now, iterating ℓ from L-1 down to 1, compute for all $1 \le i \le n_{\ell}$ the derivatives

$$\frac{\partial C_0}{\partial a_i^{(\ell)}} = \sum_{j=1}^{n_{(\ell+1)}} w_{ij}^{(\ell)} \dot{\sigma}^{(\ell+1)}(z_j^{(\ell+1)}) \frac{\partial C_0}{\partial a_j^{(\ell+1)}}$$

Again, in matrix form, this is computing

$$\frac{\partial C_0}{\partial \vec{\mathbf{a}}^{(\ell)}} = W^{(\ell)} \left(\dot{\sigma}^{(\ell+1)} \left(\mathbf{z}^{(\ell)} \right) \odot \frac{\partial C_0}{\partial \vec{\mathbf{a}}^{(\ell+1)}} \right)$$

Once these have been computed, one can directly compute

$$\frac{\partial C_0}{\partial w_{ij}^{(\ell)}} = a_j^{(\ell-1)} \dot{\sigma}^{(\ell)}(z_i^{(\ell)}) \frac{\partial C_0}{\partial a_i^{(\ell)}} \quad \text{and} \quad \frac{\partial C_0}{\partial b_i^{(\ell)}} = \dot{\sigma}^{(\ell)}(z_i^{(\ell)}) \frac{\partial C_0}{\partial a_i^{(\ell)}}$$

which is

$$\begin{split} \frac{\partial C_0}{\partial \vec{\mathbf{b}}^{(\ell)}} &= \dot{\sigma}^{(\ell)}(\vec{\mathbf{z}}^{(\ell)}) \odot \frac{\partial C_0}{\partial \vec{\mathbf{a}}^{(\ell)}} \\ \frac{\partial C_0}{\partial W^{(\ell)}} &= \frac{\partial C_0}{\partial \vec{\mathbf{b}}^{(\ell)}} \left(\vec{\mathbf{a}}^{(\ell-1)}\right)^\top \end{split}$$

And that's it! This gives everything you need to fully compute ∇C_0 .

Stochastic Gradient Descent

Fully computing $\nabla C \approx \nabla C_0, \ldots, \nabla C_N$ is very costly, as that's a lot of gradients to compute. So instead of recomputing ∇C and taking a step in the $-\nabla C$ direction every time, we first start by randomly partitioning our training set into B "batches." We'll say that $C_{k,b}$ is the cost of the network on the b-th sample of the k-th batch of our training set, and $\nabla C_b \approx \nabla C_{1,b} + \cdots + \nabla C_{N/B,b}$ for $1 \leq b \leq B$. At each step of gradient descent, we iterate over $1 \leq b \leq B$, taking a step in the $-\nabla C_b$ direction. We repeat this iteration until some other stopping condition.

Learning Rates

It seems that when learning rates are updated, they are updated at a per-batch schedule.

The standard thing is to have some learning rate α , and at each step we scale the gradient $\vec{\mathbf{g}}$

$$\vec{\mathbf{g}} \leftarrow \frac{\vec{\mathbf{g}}}{\|\vec{\mathbf{g}}\|} \cdot \alpha$$

However sometimes we want α to change at every iteration. We also sometimes want to be more adaptive. So, our implementation has something called a "Gradient Update Schedule," which is a trait that allows a user to determine what rule is used to rescale or transform the gradient at every step before the neural network is updated. For example, if we are just doing a static learning rate of α , then the gradient update rule is just what is written above. Several default implementations are already included in this library, including AdaGrad (covered in CS 4780).