

Advanced Topics in Software Verification
WeChat: estutores

Assignment Project Exam Help Email: Atores@163.com

QQ: 749389476

Gerwin Klein, June Andronicku Mikis Tanaka, Johannes Åman Pohjola

T3/2022

Last time...

程序代写代做 CS编程辅导

- $\rightarrow \lambda$ calculus syntax
- → free variables, sub
- $\rightarrow \beta$ reduction
- ersion
- $\rightarrow \alpha$ and η conversion
- $\rightarrow \beta$ reduction is confluent that: cstutorcs
- $\rightarrow \lambda$ calculus is expressive (Turing complete)
- → λ calculus is inconsistent (as a logic) ect Exam Help

Email: tutorcs@163.com

QQ: 749389476

Content

程序代写代做 CS编程辅导

下71147 00% 下4117	
→ Foundations & Principles	
 Intro, Lambe natural deduction 	[1,2]
• Higher Orde 🗱 👼 🔀 r (part 1)	$[2,3^a]$
Term rewritike Term rewritik	[3,4]
→ Proof & Specification Techniques	
 Proof & Specification Techniques Inductively defined sets, rule induction 	[4,5]
Datatype industipm niemitipe of the Param Help	[5,7]
 General recursive functions, termination proofs 	$[7^{b}]$
 Proof automationalls autopart @163.com 	[8]
 Hoare logic, proofs about programs, invariants 	[8,9]
• C verificatio QQ: 749389476	[9,10]
 Practice, questions, exam prep https://tutores.com 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

λ calculus is inconsistent

程序代写代做 CS编程辅导

Can find term R suc $=_{\beta} \operatorname{not}(R R)$ There are more term Inot make sense: true false, etc.

WeChat: cstutores

Solution: rule out inhormed items types.

(Church 1940) Email: tutorcs@163.com

QQ: 749389476

Introducing types

程序代写代做 CS编程辅导

Idea: assign a type the same of the sam

Examples:

- \rightarrow for term t has $t :: \alpha$
- → if x has type α then λx . x is a function from α to α Write: $(\lambda x. x)$: Wethat: cstutorcs
- → for s t to be sensible: s must be a functionsignment Project Exam Help t must be right type for parameter If s :: $\alpha \Rightarrow \beta$ and $\frac{\text{Email: tutorcs@ 163.com}}{t}$ i:: α then $(s \ t)$:: β

QQ: 749389476

程序代写代做 CS编程辅导

That's about it

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Now formally again

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Syntax for λ^{\rightarrow}

程序代写代做 CS编程辅导

Terms: $t \mid c \mid (t \mid t) \mid (\lambda x. t)$

 $oldsymbol{\hat{E}}$ $oldsymbol{\hat{E}}\in C, \quad V,C$ sets of names

b $\in \{ \text{bool, int.} \}$ base types $\nu \in \{ \alpha, \beta, \ldots \}$ type variables

Assignment Project Exam Help $\alpha \Rightarrow \beta \Rightarrow \gamma = \alpha \Rightarrow (\beta \Rightarrow \gamma)$

Email: tutorcs@163.com

Context Γ:

Γ: function fro Qar7able and 7constant names to types.

Term t has type τ in context Γ : $\Gamma \vdash t :: \tau$

Examples

程序代写代做 CS编程辅导

$$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$$

$$[y \leftarrow \text{int}] \vdash y :: \text{int}$$

$$[z \leftarrow bool] \vdash (\lambda y. y)$$
 We Chan estutores

$$[] \vdash \lambda f \times f \times :: (\alpha \Rightarrow \beta)$$
 grament Broject Exam Help

Email: tutorcs@163.com

A term to well styped or type correct if there are Γ and τ such that $\Gamma \vdash t :: \tau$ https://tutorcs.com

Type Checking Rules

程序代写代做 CS编程辅导

Assignment Project Fxam Help Abstraction:

Email: tutorcs (2) 165 com $\Rightarrow \tau$

QQ: 749389476

Example Type Derivation:

程序代写代做 CS编程辅导

Assignment Project Exam Help

Remember: Email: tutorcs@163.com

$$\frac{QQ: 749389476}{\Gamma \vdash x :: \Gamma(x)} \ Var \ \frac{\Gamma \vdash t_1 :: \tau_2 \Rightarrow \tau \quad \Gamma \vdash t_2 :: \tau_2}{\text{https://(u/tog)s:gom}} \ \textit{App} \ \frac{\Gamma[x \leftarrow \tau_x] \vdash t :: \tau}{\Gamma \vdash (\lambda x. \ t) :: \tau_x \Rightarrow \tau} \ \textit{Al}$$

More complex Example

程序代写代做 CS编程辅导

Remember:

More general Types

程序代写代做 CS编程辅导

Some typesignment lengeral Examothers.

 $au\lesssim\sigma$ if there **Lignarish By Horizon By South In** $au=S(\sigma)$

QQ: 749389476

Examples:

https://tutorcs.com

 $\mathtt{int} \Rightarrow \mathtt{bool} \quad \lesssim \quad \alpha \Rightarrow \beta \quad \lesssim \quad \beta \Rightarrow \alpha \quad \not\lesssim \quad \alpha \Rightarrow \alpha$

Most general Types

程序代写代做 CS编程辅导

Fact: each type cor has a most general type

Formally:

It can be found the executing uther typing rules backwards.

- ightharpoonup type checking: checking if $t = t = \tau$ for given t and t
- ightharpoonup type inference: computing Γ and Γ by that $\Gamma \vdash t :: \tau$

Type checking and type inference on λ^{\rightarrow} are decidable.

What about β reduction?

程序代写代做 CS编程辅导

Fact: Well typed terms $\mathcal{G}_{\mathcal{A}}$ well typed terms β reduction

Formally:

Assignment Project Exam Help $\Gamma \vdash s :: \tau \land s \longrightarrow_{\beta} t \Longrightarrow \Gamma \vdash t :: \tau$

Email: tutorcs@163.com

This property is called **subject reduction**

What about termination?

程序代写代做 CS编程辅导

always terminates.

WeChat: cstutores

(Alan Turing, 1942) Assignment Project Exam Help

- \rightarrow =_{\beta} is decidable Email: tutorcs@163.com To decide if $s =_{\beta} t$, reduce s and t to normal form (always exists, because \longrightarrow_{β} terminates, and compare result.
- $\Rightarrow =_{\alpha\beta\eta}$ is decidable ittps://tutorcs.com
 This is why Isabelle can automatically reduce each term to $\beta\eta$ normal form.

What does this mean for Expressiveness?

程序代写代做 CS编程辅导

Checkpoint:

- → untyped lambda curing complete (all computable file to the expressed)
- $\rightarrow \lambda^{\rightarrow}$ "fixes" the inconsistency problem by adding types
- → Problem: it is not turing complete anymore!

Not all computable functions can be expressed in λ^{\rightarrow} ! (non terminating [functions @4690: den expressed)

But wait... typed functional languages are turing complete! https://tutorcs.com

What does this mean for Expressiveness?

程序代写代做 CS编程辅导

So...

- → typed functional l re turing complete
- \rightarrow but λ^{\rightarrow} is not...
- → How does this wo
- \rightarrow By adding one single constant, the Y operator (fix point operator), to λ^{\rightarrow} WeChat: estutores
- This introduces the non-termination that the types removed, but in a safe way that grevent intoject have Help

Email: tutores
$$\emptyset$$
 $\uparrow 63.com$
 $Y t \longrightarrow_{\beta} t (Y t)$

Fact: If we add Y to Q: 749389476 constant, then each computable function rap by reneoded as closed, type correct λ^{\rightarrow} term.

- → Y is used for recursion
- \rightarrow lose decidability (what does $Y(\lambda x. x)$ reduce to?)

Types and Terms in Isabelle

程序代写代做 CS编程辅导

Types: $\tau ::= b \cdot v \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $b \in \{boo \cdot v \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{\alpha, \beta \cdot v \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{\alpha, \beta \cdot v \cdot v \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{\alpha, \beta \cdot v \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \Rightarrow \tau \mid (\tau, \dots, \tau) K$ $v \in \{a, \beta \cdot v :: C \mid \tau \mid (\tau, \dots, \tau) \}$ $v \in \{a, \beta \cdot v :: C \mid \tau \mid (\tau, \dots, \tau) \}$ $v \in \{a, \beta \cdot v :: C \mid \tau \mid (\tau, \dots, \tau) \}$ $v \in \{a, \beta \cdot v :: C \mid \tau \mid (\tau, \dots, \tau) \}$ $v \in \{a, \beta \cdot v :: C \mid \tau \mid (\tau, \dots, \tau) \}$ $v \in \{a, \beta \cdot v :: C \mid \tau \mid (\tau, \dots, \tau) \}$ $v \in \{a, \beta \cdot v :: C \mid \tau \mid (\tau, \dots, \tau) \}$ $v \in \{a, \beta \cdot v :: C \mid \tau \mid (\tau, \dots, \tau) \}$ $v \in \{a, \beta \cdot v :: C \mid \tau \mid (\tau, \dots, \tau) \}$ $v \in \{a, \beta \cdot v :: C \mid \tau \mid (\tau, \dots, \tau) \}$ $v \in \{a, \beta \cdot v :: C \mid \tau \mid (\tau, \dots, \tau) \}$ $v \in \{a, \beta \cdot v :: C \mid \tau \mid (\tau, \dots, \tau) \}$ $v \in \{a, \gamma \mid (\tau, \dots, \tau) \}$

- → type constructors: mainstructors with the count of a parameter type.

 Example: int list
- → type classes: restrict type variables to a class defined by axioms. Example: α :: order type variables to a class defined by axioms.
- → schematic variables: variables that can be instantiated.

Type Classes

程序代写代做 CS编程辅导

- ⇒ similar to Haskell' sess, but with semantic properties class order = assumes order x" x" x" x" x ≤ y; y ≤ z ⇒ x ≤ z"
- + theorems can be photed with a liberact
 - **lemma** order_less_trans: Project Exam Help $^{"} \land x ::'a :: order. [x < y; y < z] \Rightarrow x < z$
- → can be instantiated https://tutorcs.com instance nat :: "{order, linorder}" by ...

Schematic Variables

程序代写代做 CS编程辅导

 \rightarrow X and Y must be trule to apply the rule

But: lemma "
$$x + 0 = 0 + x$$
" WeChat: cstutorcs

- \rightarrow x is free
- → convention: lemmAssignbeentuPfojettxExam Help
- → during the proof, x must not be instantiated Email: tutorcs@163.com

Solution: QQ: 749389476

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Higher Order Unification

程序代写代做 CS编程辅导

Unification:

Find substitution σ of $\sigma(s) = \sigma(t)$

s for terms s, t such that

In Isabelle:

Find substitution σ on schematic variables such that

$$\sigma(s) =_{\alpha\beta\eta} \sigma(t)$$
 Assignment Project Exam Help

Examples: Email: tutorcs@163.com

$$\begin{array}{ll} ?X \wedge ?Y &=_{\alpha\beta Q} \underbrace{?X + 38947}_{?P \ X} [?X \leftarrow x, ?Y \leftarrow x] \\ ?P \ X &=_{\alpha\beta \eta} \underbrace{x \wedge x}_{X \wedge X} [?P \leftarrow \lambda x. \ x \wedge x] \\ P \ (?f \ x) &=_{\alpha\beta \eta} \underbrace{px + 38947}_{x \wedge x} [?P \leftarrow \lambda x. \ x \wedge x] \\ \end{aligned}$$

Higher Order: schematic variables can be functions.

Higher Order Unification

程序代写代做 CS编程辅导

- → Unification modul principle order Unification) is semi-decidable
- → Unification modul ndecidable
- → Higher Order Unit possibly infinitely many solutions

But:

- → Most cases are well behaved cstutores
- → Important fragments (like Higher Order Patterns) are decidable
 Assignment Project Exam Help

Higher Order Pattern:

- \rightarrow is a term in β normal form where
- \rightarrow each occurrence of Qschamato 47 hable is of the form ? $f_1 \dots f_n$
- \rightarrow and the t_1 ... t_n have g-convertible into n distinct bound variables

We have learned so far...

程序代写代做 CS编程辅导

- → Simply typed lam
- ightharpoonup Typing rules for λ riables, type contexts
- $\rightarrow \beta$ -reduction in λ^{-1} ubject reduction
- \rightarrow β -reduction in λ^{\rightarrow} always terminates
- → Types and terms Wisaltette: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476