CALIDAD DEL AIRE EN ASTURIAS

2016

Consejería de Infraestructuras, Ordenación del Territorio y Medio Ambiente Dirección General de Prevención y Control Ambiental Servicio de Control Ambiental

Gobierno del Principado de Asturias

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

Contenido

1	Intro	oducción	1
2	¿Cu	áles son los principales contaminantes atmosféricos?	3
	2.1	Partículas en suspensión (PM ₁₀ y PM _{2,5})	3
	2.2	Dióxido de azufre (SO ₂)	4
	2.3	Dióxido de Nitrógeno (NO ₂)	5
	2.4	Monóxido de carbono (CO)	6
	2.5	Benceno (C ₆ H ₆)	7
	2.6	Ozono troposférico (O ₃)	8
	2.7	Metales pesados	9
	2.8	Hidrocarburos Aromáticos Policíclicos (HAP)	. 11
	2.9	Partículas sedimentables	. 11
3	¿Có	mo se evalúa la calidad del aire en el Principado de Asturias?	. 13
4	Evol	ución del estado de la calidad del aire en el Principado de Asturias	. 17
	4.1	Área de Oviedo	. 17
	4.2	Gijón	. 25
	4.3	Área de Avilés	. 33
	4.4	Área de Cuencas	41
	4.5	Resto de Asturias	48
5	Eval	uación de la calidad del aire en el Principado de Asturias en el año 2016	. 55
	5.1	Zonificación territorial a los efectos de la evaluación de la calidad del aire	. 55
	5.2	Cumplimiento legal en el año 2016	. 56
	5.2.2	Mediciones fijas de la Red de Control de la Calidad del Aire en el año 2016	. 56
	5.2.2	Mediciones indicativas de metales e hidrocarburos aromáticos policíclicos en el año 2016	63
	5.3	Mediciones de partículas sedimentables	65
6	Con	oce más	. 68

1 Introducción

Según la Organización Mundial de la Salud (OMS), el aire limpio es un requisito básico para la salud y el bienestar humano. De hecho, la negativa influencia de los contaminantes atmosféricos sobre la salud y el medio ambiente, como consecuencia de las emisiones al aire de gases y material particulado, principalmente derivadas de la actividad socioeconómica, ha sido ampliamente documentada por numerosos estudios científicos.

Tanto en Europa como en España, las administraciones públicas son conscientes de estos efectos nocivos, y ya desde hace años legislan con la intención de regular los valores límites de inmisión de los diferentes contaminantes atmosféricos para establecer niveles máximos de exposición que limiten la afección a la salud humana.

A este respecto, la Directiva 2008/50/CE del Parlamento Europeo y del Consejo, de 21 de mayo de 2008, relativa a la calidad del aire ambiente y a una atmósfera más limpia en Europa, que sustituyó a la anterior Directiva Marco y a las tres primeras «Directivas Hijas», introdujo regulaciones para nuevos contaminantes, como las partículas de tamaño inferior a 2,5 μ m, así como nuevos requisitos en cuanto a la evaluación y los objetivos de calidad del aire, teniendo en cuenta las normas, directrices y los programas de la OMS.

En España, la Ley 34/2007, de 15 de noviembre, de calidad del aire y protección de la atmósfera, que traspone al ordenamiento jurídico interno la normativa europea, tiene como fin último alcanzar unos niveles óptimos de calidad del aire para evitar, prevenir o reducir riesgos o efectos negativos sobre la salud humana, el medio ambiente y demás bienes de cualquier naturaleza.

Adicionalmente, el Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire, modificado recientemente por el Real Decreto 39/2017, de 27 de enero, es la norma que define las actuaciones a realizar por todas las administraciones públicas implicadas en la gestión de la calidad del aire. En él se establecen los límites para los principales contaminantes presentes en el aire ambiente y se regula la gestión de la calidad del aire en términos de cómo hay que medir, evaluar, qué información hay que suministrar a la población y las actuaciones en caso de sobrepasar determinados valores de concentración.

Las comunidades autónomas son las encargadas de dividir su territorio en zonas de calidad del aire homogéneas para la gestión y la evaluación. Con este objetivo, se determinan unos métodos y criterios comunes de evaluación. En nuestra comunidad autónoma, la gestión y la evaluación de la calidad del aire corresponde a la Dirección General de Prevención y Control Ambiental de la Consejería de

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

Infraestructuras, Ordenación del Territorio y Medio Ambiente del Principado de Asturias.

Con independencia de las obligaciones legales, desde las administraciones públicas es necesario seguir trabajando para la mejora de dos aspectos fundamentales: por un lado, el conocimiento sobre la calidad del aire que respiramos y la influencia que, sobre ella, tienen las actividades humanas; y por otro, la comunicación con la ciudadanía, proporcionando información adecuada, de forma continua y accesible, sobre la calidad del aire.

En este sentido, el objetivo de este informe consiste en proporcionar una visión global del estado de la calidad del aire en la Comunidad Autónoma del Principado de Asturias en el año 2016, describiendo cómo se realiza la evaluación y la gestión de la calidad del aire en el ámbito de nuestra comunidad autónoma, de conformidad con el marco legal vigente.

2 ¿Cuáles son los principales contaminantes atmosféricos?

Entre los contaminantes atmosféricos con una repercusión más relevante en la atmósfera se encuentran las partículas en suspensión (PM10 y PM2,5), el dióxido de azufre (SO2), el dióxido de nitrógeno (NO2), el monóxido de carbono (CO), el benceno (C6H6) y el ozono (O3), así como los metales, los hidrocarburos aromáticos policíclicos (HAP) y las partículas sedimentables.

A continuación se describe cada uno de ellos y, en su caso, se indican los valores límite y objetivo establecidos tanto en el Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire, modificado por el Real Decreto 39/2017, de 27 de enero, así como, en su caso, las recomendaciones que figuran en las *Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre*¹ actualizadas en 2005.

2.1 Partículas en suspensión (PM₁₀ y PM_{2,5})

A diferencia de los gases, que están formados por moléculas separadas de una sola especie, el material particulado es una mezcla compleja de partículas sólidas y líquidas formada por un conjunto de moléculas de la misma sustancia o diferentes.

Según su origen, las partículas pueden ser primarias (emitidas directamente) o secundarias (formadas en la atmósfera a partir de otros contaminantes). Tanto las primarias como las secundarias pueden tener una componente natural y otra antropogénica.

Los factores meteorológicos son también esenciales en la generación, transporte y deposición de las partículas en suspensión, interviniendo considerablemente en las concentraciones detectadas para este contaminante en el control de la calidad del aire.

Según su diámetro aerodinámico se clasifican en PM₁₀ (diámetros inferiores a 10 micras) y PM_{2,5} (diámetros inferiores a 2,5 micras). Las primeras se forman, básicamente, por medio de procesos mecánicos, como las obras de construcción, la resuspensión del polvo de los caminos y el viento, mientras que las segundas proceden, sobre todo, de fuentes de combustión.

Las PM_{10} representan la masa de las partículas que pueden entrar y alojarse en el sistema respiratorio; incluye tanto las partículas gruesas (de un tamaño comprendido entre 2,5 y 10 μ m) como las finas (de menos de 2,5 μ m, $PM_{2,5}$), que son aquellas que contribuyen de forma determinante a los efectos en la salud observados en los entornos

¹ http://www.who.int/mediacentre/factsheets/fs313/es/

urbanos. En este sentido, mientras que, en general, las PM₁₀ pueden penetrar hasta las vías respiratorias bajas, las PM_{2,5} pueden penetrar hasta las zonas de intercambio de gases del pulmón.

La exposición crónica a las partículas en suspensión, PM₁₀ y PM_{2,5}, agrava el riesgo de desarrollar cardiopatías y neumopatías, así como cáncer de pulmón. Su afectación a la salud humana depende de su composición y medida.

Las dos tablas siguientes muestran los valores límite que el RD 102/2011 establece para las partículas PM₁₀ y PM_{2,5}.

Tabla 1. Valores límite para la protección de la salud humana para las PM₁₀

RD 102/2011	Período de promedio	Valor límite
Valor límite diario²	24 horas	50 μg/m³
Valor límite anual	1 año civil	40 μg/m³

Tabla 2. Valores objetivo y límite para la protección de la salud humana para las PM_{2,5}

RD 102/2011	Período de promedio	Valor límite	Fecha de cumplimiento del valor límite
Valor límite anual (fase I)	1 año civil	25 μg/m ³	1 de enero de 2015
Valor límite anual (fase II)	1 año civil	20 μg/m³	1 de enero de 2020

La contaminación por partículas conlleva efectos sanitarios incluso en muy bajas concentraciones; de hecho, no se ha podido identificar ningún umbral por debajo del cual no se hayan observado daños para la salud. En consecuencia, las recomendaciones de la OMS se orientan a lograr las concentraciones de partículas más bajas posibles: 20 $\mu g/m^3$ de media anual y 50 $\mu g/m^3$ de media en 24h, para las PM₁₀; 10 $\mu g/m^3$ de media anual y 25 $\mu g/m^3$ de media en 24h, para las PM_{2,5}.

2.2 Dióxido de azufre (SO₂)

El dióxido de azufre (SO₂) es un gas incoloro, con un olor penetrante cuando se encuentra en concentraciones muy elevadas. La principal fuente antropogénica del SO₂ es la quema de combustibles fósiles (carbón y derivados del petróleo), usados tanto para la calefacción doméstica como para la generación de electricidad y los vehículos a motor, así como en la fundición de menas que contienen azufre; las fuentes naturales más importantes son los volcanes y los océanos.

Este compuesto, que da lugar a la lluvia ácida al generar ácido sulfúrico (H₂SO₄), es una fuente de partículas secundarias y está relacionado con la formación del llamado

² Valor que no se podrá superar en más de 35 ocasiones por año civil.

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

«smog». Se mide con equipos automáticos, de los que obtenemos datos horarios que se expresan en microgramos por metro cúbico de aire (µg/m³).

El SO₂ afecta al sistema respiratorio y a las funciones pulmonares, y causa irritación ocular. La inflamación del sistema respiratorio provoca tos, secreción mucosa y agravamiento del asma y la bronquitis crónica; asimismo, aumenta la propensión de las personas a padecer infecciones del sistema respiratorio.

Además de los daños ejercidos sobre la salud humana, el SO₂ también produce alteraciones morfológicas y fisiológicas en los receptores vegetales. En estos últimos, causa daños que conducen a la aparición de manchas necróticas de diferente color, en función de la especie y la concentración.

La tabla siguiente muestra los valores límite y el umbral de alerta que el RD 102/2011 establece para el SO₂.

I	RD 102/2011	Período de promedio	Valor límite
	Valor límite horario ³	1 hora	$350\mu g/m^3$
	Valor límite diario ⁴	24 horas	125 μg/m³
	Umbral de alerta ⁵	3 horas	500 μg/m³

Tabla 3. Valores límite y umbral de alerta para la protección de la salud humana para el SO₂

Según las recomendaciones de la OMS, la concentración de SO_2 en períodos promedio de 10 minutos no debería superar los $500~\mu g/m^3$, rebajándose a $20~\mu g/m^3$ en períodos promedio de 24 horas.

2.3 Dióxido de Nitrógeno (NO₂)

El dióxido de nitrógeno (NO₂) es un gas de color marrón y tiene un olor fuerte. Se trata de uno de los elementos causantes del «smog fotoquímico» y precursor del ácido nítrico (HNO₃), compuesto que se arrastra con la lluvia o se deposita por acción de la gravedad, formando parte de la lluvia ácida, así como de la formación de partículas.

La mayor parte del NO₂ atmosférico se emite en forma de NO, que se oxida rápidamente a NO₂ por acción del ozono. El NO₂ es, en presencia de hidrocarburos y luz ultravioleta, la principal fuente de ozono troposférico y de aerosoles de nitratos, que constituyen una fracción importante de la masa de las PM_{2,5} del aire ambiente.

³ Valor que no se podrá superar en más de 24 ocasiones por año civil.

⁴ Valor que no se podrá superar en más de 3 ocasiones por año civil.

⁵ Registrados durante tres horas consecutivas en lugares representativos de la calidad del aire en un área de, como mínimo, 100 km² o en una zona o aglomeración entera, tomando la superficie que sea menor.

Se denomina NOx al conjunto formado por el NO2 más otros compuestos que contienen nitrógeno y oxígeno, como el NO. Su principal fuente antropogénica es la combustión, tanto de tipo móvil (tráfico terrestre, aéreo y marítimo) como de tipo estacionario (industriales).

La tabla siguiente muestra los valores límite y el umbral de alerta que el RD 102/2011 establece para el NO₂.

RD 102/2011	Período de promedio	Valor límite
Valor límite horario ⁶	1 hora	200 μg/m³
Valor límite anual ⁷	1 año civil	40 μg/m³
Umbral de alerta ⁸	3 horas	400 μg/m³

Tabla 4. Valores límite y umbral de alerta para la protección de la salud humana para el NO2

Según la OMS, el NO₂, en concentraciones de corta duración superiores a 200 µg/m³, provoca una inflamación significativa de las vías respiratorias. Estudios epidemiológicos muestran que una exposición prolongada al NO₂ aumenta los síntomas de bronquitis en niños asmáticos. La reducción de la función pulmonar también está relacionada con los niveles de NO₂ medidos habitualmente en las ciudades europeas y norteamericanas. A este respecto, la OMS propone un límite de exposición media anual de 40 µg/m³.

2.4 Monóxido de carbono (CO)

Es un gas incoloro, sin olor y sin gusto. Es el gas emitido más abundante, después del CO₂ y el vapor de agua. Termina oxidándose a CO₂, por lo que afecta al cambio climático y, además, tiene una cierta participación en la química del ozono (O₃). Se mide con equipos automáticos de los que obtenemos datos horarios y los resultados se expresan en miligramos por metro cúbico de aire (mg/m³).

Se emite a la atmósfera por dos vías: la emisión directa y la formación a partir de otros contaminantes. La emisión directa se genera en combustiones incompletas (gas, carbón, gasóleo o biomasa), principalmente en fuentes como el tráfico y las estufas para uso doméstico.

Este tipo de combustiones incompletas hacen que el CO, junto con otros contaminantes primarios, sea uno de los contaminantes típicos de épocas invernales en las grandes ciudades, ya que durante esta época se incrementa el tráfico rodado, se hace un uso

⁶ Valor que no podrá superarse en más de 18 ocasiones por año civil.

⁷ Valor que no podrá superarse en más de 3 ocasiones por año civil.

⁸ Registrados durante tres horas consecutivas en lugares representativos de la calidad del aire en un área de, como mínimo, 100 km² o en una zona o aglomeración entera, tomando la superficie que sea menor.

extendido de las calefacciones y se producen fenómenos de inversión térmica que dificultan su dispersión.

Cuando se inhala, sus moléculas entran en el torrente sanguíneo, interrumpiendo la distribución de oxígeno al combinarse con la hemoglobina. En bajas concentraciones produce mareos, jaqueca y fatiga, mientras que en elevadas concentraciones puede ser fatal.

La tabla siguiente muestra el valor límite horario que el RD 102/2011 establece para el CO.

Tabla 5. Valor límite horario para la protección de la salud humana para el CO

RD 102/2011	Período de promedio	Valor límite
Valor límite horario	Máxima diaria de las medias móviles 8-horarias ⁹	10 mg/m³

2.5 Benceno (C₆H₆)

El benceno (C_6 H_6) es un compuesto orgánico volátil (COV) que en estado vapor tiene un olor dulce y que se puede medir con equipos automáticos o manuales. Los resultados se expresan en microgramos por metro cúbico de aire ($\mu g/m^3$).

Las principales fuentes de emisión son antropogénicas. En Europa, el tráfico es la fuente de emisión más importante de este compuesto, pero destacan también los procesos de combustión, la calefacción doméstica y la evaporación durante la distribución de hidrocarburos y en algunas actividades industriales (se emplea como disolvente en las fabricación de pinturas y barnices, tintas, colas, adhesivos, etc.).

Las fuentes naturales de C₆ H₆, entre las que se incluyen las emisiones volcánicas y los incendios forestales, también contribuyen a su presencia en el medio ambiente. Es uno de los compuestos precursores que contribuyen a la formación del ozono troposférico (O₃).

La principal vía de entrada al cuerpo humano es la inhalación, y la exposición prolongada provoca daño al material celular. Otros efectos pueden ser la reducción del número de glóbulos rojos y blancos en la sangre. Es una sustancia considerada como carcinógena para los humanos según la *International Agency for Research on Cancer*.

La tabla siguiente muestra el valor límite que el RD 102/2011 establece para el C₆H₆.

⁹ La media 8-horaria máxima correspondiente a un día se determina examinando las medias móviles de 8 horas, calculadas a partir de datos horarios y que se actualizarán cada hora. Cada media 8-horaria se atribuirá al día en que finalice el período, es decir, el primer período de cálculo para cualquier día será el período que comienza a las 17:00 de la tarde y finaliza a la 1:00 del día siguiente; el último periodo de cálculo para cualquier día será el que transcurre entre las 16:00 y las 24:00 de ese día.

GOBIERNO DEL PRINCIPADO DE ASTURIAS

Tabla 6. Valor límite horario para la protección de la salud humana para el C₆H₆

RD 102/2011	Período de promedio	Valor límite
Valor límite horario	1 año civil	5 μg/m³

2.6 Ozono troposférico (O₃)

El ozono (O₃) es un gas incoloro, invisible y de olor agradable, que tiene un gran poder oxidante. El ozono troposférico se encuentra en las capas bajas de la atmósfera y es considerado como contaminante. No debe confundirse con el ozono estratosférico, de origen natural, y que absorbe virtualmente toda la radiación ultravioleta que proviene del sol, actuando como una capa protectora de los seres vivos y ecosistemas.

La medición de la concentración de O_3 en superficie se realiza mediante fotometría ultravioleta, utilizando la propiedad de las moléculas de ozono para absorber parte de la radiación ultravioleta, permitiendo estimar la concentración ambiente en función de la atenuación de la misma. Para ello se utilizan equipos automáticos, de los que obtenemos datos horarios, expresando los resultados en microgramos por metro cúbico de aire ($\mu g/m^3$).

No existen fuentes destacables de O₃ troposférico de origen antropogénico, sino que se trata de un contaminante secundario, que se forma a partir de otros compuestos llamados precursores, entre los que destacan los óxidos de nitrógeno (NOx) y los compuestos orgánicos volátiles (COV), que reaccionan gracias a la radiación solar.

Dado que para la formación de O₃ es necesaria la presencia de luz solar, las concentraciones de ozono presentan variaciones según la hora del día y la estación del año. Las mayores concentraciones se dan durante los meses de primavera-verano. Durante el día, los máximos de O₃ se dan a partir del mediodía, cuando la radiación es más alta. Durante la noche, no hay formación fotoquímica de O₃, y por el contrario, se destruye al reaccionar con otros compuestos emitidos. Sin embargo, en las zonas rurales, donde el aire está más limpio y no existen grandes concentraciones de otras sustancias, las concentraciones de O₃ pueden permanecer relativamente altas en las horas nocturnas.

La principal vía de afección al ser humano de la contaminación por O₃ se produce a través del intercambio de gases en el proceso respiratorio. En este sentido, existe evidencia experimental de efectos adversos sobre la salud ante cortas exposiciones a elevadas concentraciones de ozono, que generalmente afectan a la reducción de capacidad respiratoria y alteración de la función pulmonar.

La respuesta varía mucho entre individuos por razones genéticas (capacidad de respuesta antioxidante de las células), edad (los niños y las personas mayores son los grupos más sensibles), y por la presencia de afecciones respiratorias (como alergias y

asma). Al igual que otros oxidantes fotoquímicos, el O₃ produce irritación de los ojos, fosas nasales, garganta y bronquios, causando inflamación en mucosas y conjuntiva.

Las dos tablas siguientes muestran los valores objetivo y los umbrales de información que el RD 102/2011 establece para el O₃.

Tabla 7. Valores objetivo para la protección de la salud humana y de la vegetación para el O₃

RD 102/2011	Parámetro	Valor objetivo	Fecha de cumplimiento del valor objetivo
Valor objetivo para la protección de la salud humana ¹⁰	Máxima diaria de las medias móviles 8-horarias ¹¹	120 μg/m³	1 de enero de 2010
Valor objetivo para la protección de la vegetación ¹²	AOT40 de mayo a julio ¹³	18.000 μg/m³h	1 de enero de 2010
Objetivo a largo plazo para la protección de la vegetación	AOT40 de mayo a julio	6.000 μg/m³h	1 de enero de 2020

Tabla 8. Umbrales de información y alerta para el O₃

RD 102/2011	Parámetro	Valor objetivo	Fecha de cumplimiento del valor objetivo
Umbral de información	Promedio horario	180 μg/m³	1 de enero de 2010
Umbral de alerta	Promedio horario	240 μg/m³	1 de enero de 2010

2.7 Metales pesados

Los metales pesados presentes en la atmósfera, que cuentan con limitación en la normativa, son el arsénico (As), el cadmio (Cd), el níquel (Ni) y el plomo (Pb). En el aire ambiente, los metales y los compuestos que forman con otros elementos se encuentran, principalmente, en el material particulado. Se miden con métodos manuales a partir de las muestras de PM_{10} ; por ello, los datos que se obtienen son, generalmente, diarios. Los resultados se expresan en nanogramos por metro cúbico de aire (ng/m^3) para el As, Cd y Ni; y, en microgramos por metro cúbico de aire ($\mu g/m^3$) para el plomo.

¹⁰ Valor que no deberá superarse más de 25 días por cada año civil de promedio en un periodo de 3 años.

¹¹ La media 8-horaria máxima correspondiente a un día se determina examinando las medias móviles de 8 horas, calculadas a partir de datos horarios y que se actualizarán cada hora. Cada media 8-horaria se atribuirá al día en que finalice el período, es decir, el primer período de cálculo para cualquier día será el período que comienza a las 17:00 de la tarde y finaliza a la 1:00 del día siguiente; el último periodo de cálculo para cualquier día será el que transcurre entre las 16:00 y las 24:00 de ese día.

¹² Valor promedio en un periodo de 5 años.

¹³ AOT40: expresado en $\mu g/m^3 h$ será la suma de la diferencia entre las concentraciones horarias superiores a los 80 $\mu g/m^3$ (= 40 partes por mil millones) y 80 $\mu g/m^3$ a lo largo de un periodo dado utilizando únicamente los valores horarios medidos entre las 8:00 y las 20:00 horas, hora de Europa central (hec).

Pueden tener un origen natural (volcanes, incendios, etc.) o bien un origen antropogénico, principalmente procesos de combustión, transporte y procesos industriales (plantas de sinterización, industrias del hierro y el acero, e industrias de metales no férricos).

La principal vía de entrada del As al cuerpo humano es por ingestión, especialmente a través del agua. Por inhalación puede provocar dolor de garganta e irritación del esófago, así como efectos en la piel, entre otros.

En cuanto al Cd, la principal vía de entrada al cuerpo humano es por ingestión, inhalación de tabaco e inhalación en algunos ambientes de trabajo. El órgano más afectado por la exposición el Cd son los riñones, donde se acumula y provoca enfermedades. Las exposiciones prolongadas por inhalación a altas concentraciones pueden causar daños a los pulmones. El Cd también puede provocar enfermedades óseas y es clasificado como carcinógeno.

El Ni entra al cuerpo humano principalmente por ingestión o por contacto. Algunos de los compuestos que forma el Ni son carcinógenos. Este metal causa reacciones alérgicas en la piel y en exposiciones muy elevadas provoca bronquitis y reducción de la función pulmonar.

El Pb puede afectar, prácticamente, a cualquier parte del cuerpo. Se acumula y afecta principalmente el sistema nervioso, especialmente de los niños, pero también tiene efectos hematológicos, tales como anemia, y puede tener efectos sobre el aparato reproductor masculino.

La tabla siguiente muestra los valores límite y objetivo que el RD 102/2011 establece para el Pb, As, Cd y Ni.

RD 102/2011	Período de promedio	Valor ¹⁴
Valor límite anual Pb	1 año civil	0,5 μg/m³
Valor objetivo anual As	1 año civil	6 ng/m³
Valor objetivo anual Cd	1 año civil	5 ng/m³
Valor objetivo anual Ni	1 año civil	20 ng/m³

Para el Cd y el Pb, la OMS recomienda los mismos valores adoptados por la normativa vigente en España. Las concentraciones asociadas a un riesgo estadístico de contraer cáncer a lo largo de la vida de 1*10-5 son de 6,6 ng/m³ para el de arsénico y 25 ng/m³ para el níquel, algo por encima de los respectivos objetivos legales para ambos contaminantes.

 $^{^{14}}$ Contenido total en la fracción de PM $_{10}$

2.8 Hidrocarburos aromáticos policíclicos (HAP)

Los hidrocarburos aromáticos policíclicos (HAP) son un grupo de compuestos que se caracterizan por tener dos o más anillos aromáticos condensados. Un indicador de la presencia de los HAP en la atmósfera es el benzo(a)pireno (BaP), un compuesto orgánico formado por cinco anillos que se encuentra en el material particulado fino. El BaP es el único HAP que tiene valor objetivo establecido por la normativa.

Las propiedades semivolátiles de algunos HAP hacen que muestren una gran movilidad a través del medio ambiente, de manera que se distribuyen entre el aire, el suelo y el agua. Se miden con métodos manuales a partir de las muestras de PM10 y, los datos que se obtienen son, en general, diarios. Los resultados se expresan en ng/m³.

Estos compuestos provienen principalmente de cinco fuentes: del ámbito doméstico, del tráfico, de la industria, del sector agrícola y de la naturaleza. La relativa importancia de cada una de ellas depende de las diferentes regulaciones legislativas y del desarrollo económico.

El BaP es carcinógeno para los humanos según la Agencia Internacional para la Investigación sobre Cáncer (International Agency for Research on Cancer, IARC).

La tabla siguiente muestra el valor objetivo que el RD 102/2011 establece para el BaP.

Tabla 10. Valor objetivo anual para el BaP

RD 102/2011	Período de promedio	Valor ¹⁵
Valor objetivo anual ¹⁶	1 año civil	1 ng/m³

2.9 Partículas sedimentables

Se trata de material particulado, sólido o líquido, en general de tamaño mayor a 10 µm, y que es capaz de permanecer en suspensión en el aire ambiente durante periodos cortos de tiempo.

Generalmente, las partículas sedimentables proceden de industrias extractivas y transformadoras de rocas y minerales, así como del manejo y almacenamiento de graneles en diferentes tipos de actividades industriales.

Las emisiones difusas de partículas dependen, básicamente, de la velocidad del viento y de la naturaleza, granulometría y humedad del material manipulado, almacenado y/o depositado. Las partículas sedimentables, generalmente, se depositan en el entorno

¹⁵ Contenido total en la fracción de PM_{10.}

¹⁶ Como indicativo del contenido en Hidrocarburos Aromáticos Policíclicos.

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

de la zona de emisión. En el caso de alcanzar zonas residenciales, su depósito supone una fuente de suciedad y una importante molestia para la población.

A pesar de lo anterior, el Real Decreto 102/2011 de 28 de enero, relativo a la mejora de la calidad del aire, modificado por Real Decreto 39/2017, de 27 de enero, actualmente en vigor, no contempla ninguna limitación en lo que se refiere a estas partículas. A este respecto, el derogado Decreto 833/1975, de 6 de febrero, por el que se desarrollaba la Ley 38/1972, de 22 de diciembre, de protección del ambiente atmosférico, establecía un límite medio de 300 microgramos por metro cuadrado y día.

3 ¿Cómo se evalúa la calidad del aire en el Principado de Asturias?

Con carácter general, evaluar la calidad del aire consiste en medir, calcular, predecir o estimar las concentraciones de un contaminante en el aire ambiente o su depósito en superficies en un momento determinado.

En España, la evaluación de la calidad del aire se realiza anualmente, desde 2001, a partir de los datos generados por las redes de calidad del aire, gestionadas por las comunidades autónomas y, en algunos casos, por las entidades locales. En la actualidad, se cuenta con más de 600 estaciones fijas de medición que incorporan más de 4.000 analizadores a nivel nacional.

A este respecto, el Principado de Asturias dispone de una Red de Control de la Calidad del Aire compuesta por 22 estaciones automáticas de inmisión: 1 estación en Cangas del Narcea; 6 estaciones en el concejo de Gijón; 4 en Oviedo; 4 en Avilés; 3 en Langreo; 1 en Castrillón; 1 en San Martín del Rey Aurelio; 1 en Siero y 1 en Mieres. A ellas hay que añadir 1 estación ubicada en el municipio de Llanes, gestionada por el Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente.

Figura 1. Ubicación de las estaciones de la Red de Control de la Calidad del Aire del Principado de Asturias

Con estas estaciones fijas se cubren las necesidades de información de las concentraciones de partículas en suspensión (PM₁₀ y PM_{2,5}), dióxido de azufre (SO₂), dióxido de nitrógeno (NO₂) y óxidos de nitrógeno (NO₃), monóxido de carbono (CO), benceno (C₆H₆) y ozono troposférico (O₃), en las distintas zonas y aglomeraciones en las que se halla dividido el Principado de Asturias a los efectos de la evaluación de la calidad del aire (ver Tabla 11).

Gobierno del Principado de Asturias

Tabla 11. Estaciones de la Red de Control de la Calidad del Aire del Principado de Asturias

ÁREA GEOGRÁFICA	NOMBRE ESTACIÓN	CONCEJO	TIPO	ÁREA			A	NALIZ	ADORE	ES		
	Plaza de Toros		Tráfico	Urbana	PM10		SO ₂	NOx	СО	O ₃		
Asturias Central	Palacio de los Deportes	Oviedo	Tráfico	Urbana	PM ₁₀		SO ₂	NOx	CO	O ₃	BTX	Meteor
(área de Oviedo)	PurificaciónTomás	Oviedo	Fondo	Urbana	PM ₁₀	PM2,5	SO ₂	NOx	CO	O ₃		
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Trubia Piscinas		Fondo	Rural	PM ₁₀		SO ₂	NOx	CO	O ₃	BTX	Meteor
	Lugones Instituto	Siero	Industrial	Urbana	PM10	PM2,5	SO ₂	NOx	CO	O ₃		
	Constitución		Tráfico	Urbana	PM ₁₀	PM2,5	SO ₂	NOx	CO	O ₃	BTX	Meteor
	Argentina		Tráfico	Urbana	PM ₁₀		SO_2	NOx	CO	O ₃		
C::4m	Hermanos Felgueroso	C:: 4	Tráfico	Urbana	PM10		SO ₂	NOx	СО	O ₃		
Gijón	Castilla	Gijón	Tráfico	Urbana	PM10		SO ₂	NOx	CO	O ₃		
	Montevil		Fondo	Suburbana	PM10	PM2,5	SO ₂	NOx		O ₃		Meteor
	Santa Bárbara		Fondo	Suburbana	PM ₁₀	PM2,5		NOx	CO			
	Matadero		Industrial	Suburbana	PM10		SO ₂	NOx	CO			Meteor
	Llaranes	A -11/-	Industrial	Suburbana	PM10		SO ₂	NOx		O ₃	BTX	
Asturias Central (área de Avilés)	Llano Ponte	Avilés	Tráfico	Urbana	PM10		SO ₂	NOx	СО	O ₃		
(4104 40 111103)	Plaza de la Guitarra		Tráfico	Urbana	PM10		SO ₂	NOx	СО	O ₃		
	Salinas	Castrillón	Fondo	Urbana	PM10	PM2,5		NOx	CO	O ₃		
	Jardines de Juan XXIII	Mieres	Tráfico	Urbana	PM10		SO_2	NOx	CO	O ₃		Meteor
	Meriñán		Industrial	Suburbana	PM10		SO ₂	NOx		O ₃		Meteor
Asturias Central	Sama I	Langreo	Fondo	Urbana	PM10	PM2,5	SO ₂	NOx	CO	O ₃	BTX	
(área de Cuencas)	La Felguera		Industrial	Urbana			SO ₂	NOx	CO	O ₃		
	Blimea	San Martín del Rey Aurelio	Fondo	Suburbana	PM ₁₀		SO ₂	NOx	СО	O ₃		
Rosto do Asturias	Cangas del Narcea	Cangas del Narcea	Fondo	Rural	PM10		SO ₂	NOx	CO	O ₃		
Resto de Asturias	sto de Asturias Niembro	Llanes	Fondo	Rural	PM10	PM2,5	SO ₂	NOx		O ₃		

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

Adicionalmente, la Red de Control de la Calidad del Aire del Principado de Asturias cuenta con el apoyo de una Unidad Móvil de Inmisión (UMI) para la realización de campañas concretas, que se desplaza con el fin de realizar labores específicas de inspección y soporte a la planificación. Finalmente, se lleva a cabo, todos los años, una campaña de mediciones indicativas de metales e hidrocarburos aromáticos policíclicos.

Las estaciones de inmisión de la Red de Control de la Calidad del Aire son de diferente tipología, según el tipo de área en la que se localizan:

- Urbanas: las ubicadas en zonas edificadas de forma continua.
- **Suburbanas**: en zonas con presencia continuada de edificios, separadas por zonas no urbanizadas.
- Rurales: situadas en aquellas zonas que no satisfacen los criterios de las dos categorías anteriores.

Asimismo, según la tipología de la principal fuente de emisión influyente, las estaciones también se clasifican conforme a las siguientes categorías:

- De tráfico: Estaciones situadas de tal manera que su nivel de contaminación está determinado principalmente por las emisiones procedentes de los vehículos de una calle o carretera próximas.
- **Industriales**: Estaciones situadas de tal manera que su nivel de contaminación se debe fundamentalmente a la contribución de fuentes industriales.
- De fondo: Estaciones en las que no se manifiesta ninguna fuente de emisión como predominante.

Las estaciones consisten, básicamente, en una cabina, específicamente diseñada, aislada térmica y acústicamente, y equipada para albergar los analizadores en ella instalados. Las estaciones se encuentran equipadas, además, con los elementos auxiliares necesarios para su correcto funcionamiento: conducciones neumáticas, instalación eléctrica, iluminación, ordenador y equipo de climatización.

En estas estaciones, todos, o la mayoría de los datos, provienen de analizadores automáticos ubicados en la propia estación, ofreciendo una información obtenida *in situ* y transmitida en tiempo real. Para ello, las estaciones remotas disponen de un sistema de adquisición de datos, que captan y almacenan los valores suministrados de forma continua por los analizadores.

El punto neurálgico de la Red de Control de la Calidad del Aire del Principado de Asturias lo constituye el Centro de Proceso de Datos (CPD) ubicado en la sede de la Consejería de Infraestructuras, Ordenación del Territorio y Medio Ambiente del Principado de Asturias, al que se suman cinco Subcentros Concentradores de Datos que

se encuentran ubicados en los concejos de Oviedo, Gijón, Avilés, Langreo y Mieres. Los datos registrados por las distintas estaciones son enviados por telefonía móvil al CPD, el cual, a su vez, los envía a los subcentros correspondientes.

Figura 2. Diferentes estaciones de la Red de Control de la Calidad del Aire del Principado de Asturias (de arriba abajo, y de izquierda a derecha, Cangas del Narcea, Palacio de los Deportes, Constitución, La Felguera y Plaza de Toros)

En el CPD los datos se verifican, se procesan y se toman las decisiones oportunas. Tras su verificación, se remiten al Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, que es el responsable de su supervisión y posterior envío a la Agencia Europea del Medio Ambiente, cuya labor es ofrecer información sólida e independiente sobre el medio ambiente.

4 Evolución del estado de la calidad del aire en el Principado de Asturias

En este apartado se desarrolla el análisis de los datos de la calidad del aire registrados durante el periodo 2004-2016, en las estaciones de medida de la Red de Control de la Calidad del Aire del Principado de Asturias.

Si bien existe una zonificación territorial definida, según la legislación vigente, a los efectos de la evaluación de la calidad del aire, se ha considerado oportuno presentar este análisis mediante los siguientes criterios de agrupación geográfica:

- Área de Oviedo, con estaciones en los concejos de Oviedo y Siero.
- Gijón, que se restringe al entorno urbano del concejo de Gijón.
- Área de Avilés, con estaciones en los concejos de Avilés y Castrillón.
- Área de Cuencas, con estaciones en los concejos de Mieres, Langreo y San Martín del Rey Aurelio.
- Resto de Asturias, que incluye los datos de estaciones de Cangas del Narcea y Llanes.

4.1 Área de Oviedo

En el área de Oviedo, la Red de Control de la Calidad del Aire del Principado de Asturias cuenta con un total de 5 estaciones. Las denominadas Palacio de los Deportes, Plaza de Toros, Purificación Tomás y Trubia Piscinas, se encuentran en el concejo de Oviedo, mientras que, en el término municipal de Siero, se localiza la estación Lugones Instituto (Figura 3).

Durante el año 2016, todas las estaciones de la Red de Control de la Calidad del Aire del Principado de Asturias, pertenecientes al área Oviedo, han presentado concentraciones, para todos los contaminantes medidos, inferiores a los valores límite establecidos en el Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire, modificado por el Real Decreto 39/2017, de 27 de enero.

Además, ninguna estación perteneciente a esta área presentó superaciones de los umbrales de información ni alerta a la población por, SO₂, NO₂ ni O₃.

Cabe indicar que, en el año 2016, causó baja la antigua estación Trubia, siendo sustituida por la nueva estación Trubia Piscinas, de modo que, en dicho año, ninguna de las dos ha proporcionado el mínimo número de datos necesario para que puedan ser tenidos en consideración de conformidad con la normativa vigente.

Respecto al periodo 2004-2016, la última ocasión en la que se midieron más de 35 superaciones anuales del valor límite de la concentración media diaria de PM_{10} (50 $\mu g/m^3$) fue en 2010, en la estación denominada Lugones. Asimismo, las superaciones del valor límite establecido para la concentración media anual de PM_{10} , registradas en diferentes estaciones del área, se ciñen al intervalo 2004-2009.

Figura 3. Estaciones de la Red de Control de la Calidad del Aire del Principado de Asturias en el área de Oviedo

A lo largo del periodo 2004-2016, el valor límite anual de NO₂ sólo fue superado en una ocasión y en una sola estación, Plaza de Toros, en 2007; mientras que la única superación registrada del valor límite horario de NO₂ (210 μg/m³, no más de 18 superaciones) se constató, en 2009, en Lugones.

En cuanto al SO₂, la única superación registrada del valor límite horario (350 μg/m³ no más de 24 superaciones) se produjo en 2006 en la estación Purificación Tomás.

Figura 4. Evolución anual del Nº de días con superación del valor medio de PM₁₀ en el área de Oviedo (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valores límite (35 superaciones)	55 μg/m³						50 μ	ıg/m³					
				ÁR	EA DE C	VIEDO							
PALACIO DE LOS DEPORTES	270	137	65	74	58	51	35	27	35	33	25	22	1
PLAZA DE TOROS	68	46	13	14	12	73	5	12	10	2	5	0	0
PURIFICACIÓN TOMÁS	93	28	25	6	6	10	0	9	8	4	4	7	0
TRUBIA	17	44	20	9	14	6	0	1	9	4	6	3	
TRUBIA PISCINAS													
LUGONES	57	84	169	236	153	99	105	35	27	20			
LUGONES INSTITUTO										14	6	11	
NO SE DISPONE DE ME	NO SE DISPONE DE MEDIDAS				DEL NUM	ERO DE D	ÍAS (>35)		NO SUI	PERA EL N	ÚMERO D	E DÍAS (≤35	5)

Figura 5. Evolución del valor medio anual de PM10 en el área de Oviedo (Serie 2004 - 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valores límite anual de PM10	41,6µg/m³						40 μ	g/m³					
				ÁR	EA DE O	VIEDO							
PALACIO DE LOS DEPORTES	63	46	35	39	33	35	33	32	29	31	28	32	23
PLAZA DE TOROS	43	36	30	30	27	38	26	30	27	26	22	20	21
PURIFICACIÓN TOMÁS	44	30	31	23	22	21	20	23	22	22	20	25	19
TRUBIA	37	36	32	28	24	19	18	20	21	19	19	21	
TRUBIA PISCINAS													
LUGONES	43	40	58	69	56	44	43	30	29	26			
LUGONES INSTITUTO											26	24	28
NO SE DISPONE DE ME	NO SE DISPONE DE MEDIDAS					MEDIA AN	IIIAI.		NO SUP	ERACIÓN	DE LA ME	DIA ANIIA	J.

Gobierno del Principado de Asturias

Figura 6. Evolución del valor medio anual de PM_{2,5} en el área de Oviedo (Serie 2007 – 2016)

ESTACIÓN	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016		
Valores límite anual de PM2,5	30 μ	g/m³	29 μ	.g/m³	28 μg/m ³			25 μg/m³				
ÁREA DE OVIEDO												
PURIFICACIÓN TOMÁS			12	12	12	12	12	12	13	11		
LUGONES INSTITUTO								14,3	14	14,5		
NO SE DISPONE DE MEDIDA	S	S	SUPERACIÓN	DE LA MEDI	IA ANUAL		NO SUPER	RACIÓN DE L	A MEDIA AN	JUAL		

Figura 7. Evolución del valor medio anual de NO₂ en el área de Oviedo (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valor límite anual de NO ₂ (µg/m³)	52	50	48	46	44	42				40			
				ÁRE	A DE OV	/IEDO							
PALACIO DE LOS DEPORTES	46	50	46	40	33	36	36	36	39	32	30	34	30
PLAZA DE TOROS	46	49	47	47	41	38	38	38	33	28	24	27	20
PURIFICACIÓN TOMÁS	18	24	26	22	22	17	18	19	17	16	16	18	15
TRUBIA	14	22	29	15	15	15	14	12	13	11	10	12	
TRUBIA PISCINAS													
LUGONES	36	36	37	36	31	41	31	27	28	26			
LUGONES INSTITUTO											24	20	23
					•		•		•				
NO SE DISPONE DE ME	EDIDAS		SU	PERACIÓN	N DE LA M	EDIA ANU	JAL		NO SUPI	ERACIÓN I	DE LA MEI	DIA ANUA	\L

Figura 8. Evolución del valor medio anual de SO₂ en el área de Oviedo (Serie 2004 - 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
				Á	REA OV	TEDO							
PALACIO DE LOS DEPORTES	27	24	22	21	15	12	13	12	12	12	9	9	7
PLAZA DE TOROS	29	29	28	30	21	14	11	12	13	14	10	12	6
PURIFICACIÓN TOMÁS	29	25	26	24	17	9	7	7	9	11	8	11	5
TRUBIA	17	23	23	22	13	10	10	9	10	9	9	11	
TRUBIA PISCINAS													
LUGONES	27	28	23	24	14	10	14	13	11	11			
LUGONES INSTITUTO											9	11	11
NO SE DISPONE DE ME	NO SE DISPONE DE MEDIDAS					MEDIA AN	IUAL		NO SUP	ERACIÓN	DE LA ME	DIA ANUA	\L

Figura 9. Evolución de los valores máximos de medias octohorarias de CO en el área de Oviedo (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valor límite anual de CO	•						20 μ	g/m³					
				ÁR	EA DE C	VIEDO							
PALACIO DE LOS DEPORTES	3,45	2,63	2,31	3,43	1,98	2,24	1,89	2,02	1,71	1,80	1,27	1,82	2,01
PLAZA DE TOROS	2,10	1,78	2,39	1,61	2,21	3,76	2,52	1,94	2,01	2,11	1,40	1,63	1,93
PURIFICACIÓN TOMÁS	1,55	1,85	1,72	1,53	4,48	1,35	1,22	1,29	1,39	1,26	2,49	1,64	3,40
TRUBIA	1,35	1,89	2,61	1,09	1,67	0,97	0,93	1,00	0,96	0,83	1,38	1,17	
TRUBIA PISCINAS													
LUGONES	2,82	1,99	2,65	2,57	2,36	1,95	3,03	2,51	2,04	2,43			
LUGONES INSTITUTO										1,69	2,26	5,4	
	•	•		•	•		•		•	•			
NO SE DISPONE DE ME	NO SE DISPONE DE MEDIDAS				ÓN DE LA	MEDIA AN	IUAL		NO SUP	ERACIÓN	DE LA ME	DIA ANUA	L

4.2 Gijón

En Gijón, la Red de Control de la Calidad del Aire del Principado de Asturias cuenta con un total de 6 estaciones, todas ellas ubicadas en el término municipal de Gijón. Se denominan: Constitución, Argentina, Hermanos Felgueroso, Castilla, Montevil y Santa Bárbara (Figura 10).

Figura 10. Estaciones de la Red de Control de la Calidad del Aire del Principado de Asturias en Gijón

Durante el año 2016, todas las estaciones la Red de Control de la Calidad del Aire del Principado de Asturias, pertenecientes a Gijón, han presentado concentraciones, para todos los contaminantes medidos, inferiores a los valores límite establecidos en el Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire, modificado por el Real Decreto 39/2017, de 27 de enero.

Además, ninguna estación perteneciente a esta área presentó superaciones de los umbrales de información o alerta a la población por SO₂, NO₂ ni O₃.

A lo largo del periodo 2004-2016, sólo se han registrado superaciones de valores límite en el caso de PM₁₀, presentando, el resto de contaminantes atmosféricos evaluados, concentraciones por debajo de los límites legales.

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

Entre los años 2009 y 2013, la estación denominada Argentina es la única que ha presentado más de 35 superaciones al año del valor límite de la concentración media diaria de PM_{10} (50 $\mu g/m^3$). Este hecho motivó la adopción, en el año 2014, del Plan de mejora de calidad del aire en la aglomeración de Gijón. Desde la puesta en marcha de las medidas del mismo se observa una continua disminución del número de superaciones diarias en esta estación; cumpliéndose los valores límites en los tres últimos años (2014 a 2016).

A lo largo del periodo 2004-2016 las estaciones en las que se ha superado el valor límite para la concentración media anual establecida de PM₁₀ han sido las denominadas Constitución, en 2004 y 2007, y Argentina, en el periodo 2004-2006. Sin embargo, cabe reseñar que, desde 2007, ninguna de las estaciones ha superado el valor límite establecido para la concentración media anual de este contaminante.

En 2016, los niveles de la concentración media anual de las partículas PM₁₀ muestran una tendencia decreciente en la estación denominada Argentina, así como un cambio de tendencia en el caso de la estación denominada Hermanos Felgueroso, con un ligero repunte. Por su parte, a lo largo del último año, las medias anuales de partículas PM_{2,5} no reflejan variaciones significativas.

Respecto a otros contaminantes atmosféricos, los valores de NO₂ de las estaciones de tipo tráfico Constitución y Hermanos Felgueroso presentan, en 2016, una evolución positiva y se alejan del valor límite. No se registra en 2016 ninguna superación del valor límite horario ni del diario.

Por último, indicar que el CO muestra un comportamiento estable en todo el periodo, con valores inferiores a la mitad del valor límite octohorario establecido.

Figura 11. Evolución anual del Nº de días con superación del valor medio de PM₁₀ en Gijón (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valores límite (35 superaciones)	55 μg/m ³						50 μ	ıg/m³					
					GIJÓ	N							
CONSTITUCIÓN	63	67	61	114	48	18	17	18	16	8	11	8	0
ARGENTINA	76	93	84	70	25	45	41	63	44	41	36	21	6
HERMANOS FELGUEROSO	37	59	51	29	19	10	11	20	4	6	13	1	3
CASTILLA	55	59	53	27	10	11	22	14	2	6	9		0
MONTEVIL							7	16	12	5	10	8	0
SANTA BARBARA													3
NO SE DISPONE DE MI	EDIDAS		SUI	PERACIÓN	DEL NÚM	IERO DE D	ÍAS (>35)		NO SU	PERA EL N	IÚMERO D	E DÍAS (≤3	5)

Figura 12. Evolución del valor medio anual de PM10 en Gijón (Serie 2004 - 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	
Valores límite anual de PM10	41,6 µg/m³						40 μ	g/m³						
					GIJO	ÓN								
CONSTITUCIÓN	43	38												
ARGENTINA	48	43	42	39	31	36	33	37	34	35	33	28	25	
HERMANOS	35	38	37	30	28	26	30	32	22	25	30	24	20	
FELGUEROSO	33	36	37	30	20	20	30	32	22	23	30	24	20	
CASTILLA	39	39	38	33	25	27	32	24	22	24	25		22	
MONTEVIL							25	27	25	23	24	25	23	
SANTA BARBARA													20	
NO SE DISPONE	DE MEDID	AS		SUPI	ERACIÓN I	DE LA MED	IA ANUAI		NO S	UPERACIĆ	N DE LA N	IEDIA ANU	JAL	

Gobierno del Principado de Asturias

Figura 13. Evolución del valor medio anual de PM_{2,5} en Gijón (Serie 2007 – 2016)

ESTACIÓN	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016			
Valores límite anual de PM2,5	30 μ	g/m³	29 μ	.g/m³	28 μg/m³			25 μg/m ³					
GIJÓN													
CONSTITUCIÓN			12	12	13	11	13	15	13	10			
MONTEVIL					12	9	9	10	11	10			
SANTA BÁRBARA										10			
NO SE DISPONE DE ME	DIDAS		SUPERA	CIÓN DE LA	MEDIA ANU	AL	NO S	UPERACIÓN	DE LA MEDIA	A ANUAL			

Figura 14. Evolución del valor medio anual de NO₂ en Gijón (Serie 2004 - 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valor límite anual de NO ₂ (μg/m³)	52	50	48	46	44	42				40			
CONSTITUCIÓN	51	45	39	31	33	36	34	37	35	34	27	24	24
ARGENTINA	37	38	34	22	35	31	33	26	22	28	26	27	22
HERMANOS FELGUEROSO	47	46	43	27	36	36	37	35	37	35	29	19	14
CASTILLA	43	36	39	34	29	35	36	27	20	23	25		21
MONTEVIL							23	22	26	23	20	17	10
SANTA BÁRBARA													19
NO SE DISPONE DE ME	NO SE DISPONE DE MEDIDAS					EDIA ANU	JAL		NO SUPE	RACIÓN I	DE LA MEI	DIA ANUA	L

Gobierno del Principado de Asturias

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

Figura 15. Evolución del valor medio anual de SO₂ en Gijón (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valor medio anual de SO2	μg/m³												
GIJÓN													
CONSTITUCIÓN	12	15	15	18	11	8	5	5	6	6	5	6	5
ARGENTINA	19	18	15	16	14	11	10	10	8	8	7	7	6
HERMANOS FELGUEROSO	17	14	11	12	8	5	4	5	7	7	4	6	5
CASTILLA	13	11	10	12	9	7	8	4	4	4	3		4
MONTEVIL							6	7	7	8	9	9	5

NO SE DISPONE DE MEDIDAS

Figura 16. Evolución de los valores máximos de medias octohorarias de CO en Gijón (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	
Valor límite anual de CO		20 μg/m³												
GIJÓN														
CONSTITUCIÓN	2,94	2,44	2,03	2,42	2,69	2,48	7,15	1,70	1,94	2,57	1,77	1,66	2,55	
ARGENTINA	4,20	4,95	2,10	2,50	2,20	2,88	3,33	3,25	2,24	3,63	5,17	4,69	5,07	
HERMANOS FELGUEROSO	3,94	2,94	2,28	1,99	1,59	1,77	2,81	1,77	1,73	2,32	1,95	2,08	1,72	
CASTILLA	2,80	1,53	1,22	1,20	1,51	1,15	1,41	1,01	1,42	1,56	1,58		1,14	
SANTA BÁRBARA													1,92	
NO SE DISPONE DE MEDIDAS				SUPERACIÓN DE LA MEDIA ANUAL					NO SUPERACIÓN DE LA MEDIA ANUAL					

4.3 Área de Avilés

En el área de Avilés, la Red de Control de la Calidad del Aire del Principado de Asturias cuenta con un total de 5 estaciones. Las denominadas Matadero, Llaranes, Llano Ponte y Plaza de la Guitarra, se encuentran en el concejo de Avilés, mientras que en el término municipal de Castrillón, se localiza la estación Salinas (Figura 17).

Figura 17. Estaciones de la Red de Control de la Calidad del Aire del Principado de Asturias en el área de Avilés

A lo largo de 2016, todas las estaciones de la Red de Control de la Calidad del Aire del Principado de Asturias, situadas en el área de Avilés, han presentado concentraciones, para todos los contaminantes medidos, inferiores a los valores límites establecidos en el Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire, modificado por el Real Decreto 39/2017, de 27 de enero, con la excepción de la estación denominada Matadero, donde se superó el valor límite anual de PM10, así como el número máximo de superaciones del valor límite diario permitidas, para este contaminante, en el mencionado Real Decreto 102/2011, de 28 de enero.

Por otro lado, ninguna estación perteneciente a esta zona presentó superaciones de los umbrales de información ni alerta a la población por SO₂, NO₂ u O₃.

GOBIERNO DEL PRINCIPADO DE ASTURIAS

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

Aunque en 2016 se aprecia la reducción de las concentraciones de PM10 en las estaciones denominadas Plaza de la Guitarra, Llaranes y Salinas, con un leve aumento en la estación denominada Llano Ponte, en la estación denominada Matadero persisten los altos valores de años anteriores.

Si se analiza el periodo 2004-2016, se observa que, año tras año, en la estación denominada Matadero siempre se han registrado más de 35 superaciones anuales del valor límite de la concentración media diaria de PM_{10} (50 $\mu g/m^3$). Dicha situación fue generalizada en el área hasta 2010, año a partir del que, en el resto de estaciones, se dejaron de obtener valores medios por encima del límite legal (Figura 18). Análogamente ocurre con el valor medio anual de PM_{10} , que desde 2010 en adelante sólo se sitúa por encima del límite legal (40 $\mu g/m^3$) en la estación denominada Matadero (Figura 19).

Esta situación motivó la adopción, en el año 2014, del Plan de mejora de la calidad del aire de la zona ES0302 de Asturias Central que, no obstante, no ha dado los resultados esperados en cuanto a la reducción de PM10. A la fecha de elaboración del presente informe, este plan está en proceso de revisión, con la previsión de la aprobación de nuevas medidas para reducir la contaminación atmosférica de la zona de afectada.

Respecto al resto de contaminantes atmosféricos, a lo largo del periodo 2004-2016, el valor límite anual de NO₂ sólo fue superado en una ocasión y en una sola estación, Llano Ponte, en 2007 (Figura 21).

Figura 18. Evolución anual del Nº de días con superación del valor medio de PM₁₀ en el área de Avilés (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valores límite (35 superaciones)	55 μg/m ³						50 μ	g/m³					
				ÁRI	EA DE A	VILÉS							
MATADERO	247	238	226	214			84	105	167	121	119	108	126
LLARANES	60	108	160	65	39	66	21	11	24	7	13	6	3
LLANO PONTE	75	92	95	87	97	231	69	40	36	20	17		14
PLAZA DE LA GUITARRA	137	149	150	146	71	45	13	18	16	7	16	8	7
SALINAS												8	4
NO SE DISPONE DE M	EDIDAS		SUP	ERACIÓN I	DEL NÚMI	ERO DE DÍ	AS (>35)		NO SUI	PERA EL N	ÚMERO D	E DÍAS (≤3	5)

Figura 19. Evolución del valor medio anual de PM10 en el área de Avilés (Serie 2004 - 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valores límite anual de PM10	41,6 µg/m³						40 μg	/m³					
				Ál	REA DE A	AVILÉS							
MATADERO	70	67	67	61			42	46	58	46	49	46	46
LLARANES	45	46	52	38	35	41	31	30	32	30	30	30	24
LLANO PONTE	42	42	42	39	43	57	40	36	34	31	30		33
PLAZA DE LA GUITARRA	54	51	49	49	42	39	32	27	25	23	27	28	22
SALINAS												23	20
NO SE DISPONE DE	MEDIDAS			SUPERAC	IÓN DE LA	MEDIA A	NUAL		NO SU	PERACIÓN	I DE LA ME	EDIA ANU	AL

Figura 20. Evolución del valor medio anual de PM_{2,5} en el área de Avilés (Serie 2007 – 2016)

ESTAC	IÓN	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016		
Valores límite a	nual de PM2,5	30 μ	g/m³	29 μ	g/m³	28 μg/m ³			25 μg/m ³				
ÁREA DE AVILÉS													
SALI	IAS									10	9		
	SALINAS												
NO SE D	SPONE DE MEDIDA	AS	9	SUPERACIÓN	DE LA MEDI	A ANUAL		NO SUPER	RACIÓN DE L	A MEDIA AN	IUAL		

Figura 21. Evolución del valor medio anual de NO₂ en el área de Avilés (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valor límite anual de NO2 (μg/m³)	52	50	48	46	44	42				40			
				ÁR	EA DE A	VILÉS							
MATADERO	28	22	17	19			25	27	31	24	21	23	20
LLARANES	36	31	32	27	29	24	24	24	25	19	15	19	17
LLANO PONTE	50	42	44	47	37	14	39	37	38	33	33		33
PLAZA DE LA GUITARRA	33	27	34	30	34	31	29	28	28	27	20	22	19
SALINAS											16	14	13
NO SE DISPONE DE MEI	DIDAS		S	UPERACIO	ÓN DE LA	MEDIA AN	IUAL		NO SUP	ERACIÓN	DE LA ME	DIA ANU	AL

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

Figura 22. Evolución del valor medio anual de SO₂ en el área de Avilés (Serie 2004 - 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valor medio anual de SO2							μg/m³						
				ÁF	REA DE A	AVILÉS							
MATADERO	31	16	10	17			14	15	13	11	10	13	12
LLARANES	14	9	9	9	10	10	12	9	11	8	7	6	7
LLANO PONTE	13	12	9	11	12	9	8	6	7	5	5		9
PLAZA DE LA GUITARRA	13	12	10	9	8	8	8	5	6	7	4	4	5

NO SE DISPONE DE MEDIDAS

GOBIERNO DEL PRINCIPADO DE ASTURIAS

Figura 23. Evolución de los valores máximos de medias octohorarias de CO en el área de Avilés (Serie 2004 – 2016)

2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
•						2 0 μg	/m³					
			ÁRE	EA DE A	VILÉS							
3,32	2,06	1,87	0,89			1,36	0,97	1,34	1,16	1,04	1,17	2,67
3,45	5,81	2,59	2,51	1,29	2,14	3,47	1,12	1,12	1,58	1,94		1,31
3,51	2,37	2,96	2,25	1,79	2,53	1,44	1,04	1,41	2,23	1,13	1,41	1,9
										0,87	1,96	1,56
0,87 1,96 1,56												
EDIDAS		SUP	ERACIÓN	DE LA ME	DIA ANU	AL		NO SUPER	RACIÓN D	E LA MEDI	A ANUAL	
	3,32 3,45 3,51	3,32 2,06 3,45 5,81 3,51 2,37	3,32 2,06 1,87 3,45 5,81 2,59 3,51 2,37 2,96	ARE 3,32 2,06 1,87 0,89 3,45 5,81 2,59 2,51 3,51 2,37 2,96 2,25	AREA DE A 3,32 2,06 1,87 0,89 3 3,45 5,81 2,59 2,51 1,29 3,51 2,37 2,96 2,25 1,79	AREA DE AVILÉS 3,32	- ÁREA DE AVILÉS 3,32 2,06 1,87 0,89 1,36 3,45 5,81 2,59 2,51 1,29 2,14 3,47 3,51 2,37 2,96 2,25 1,79 2,53 1,44	- ÁREA DE AVILÉS 3,32 2,06 1,87 0,89 1,36 0,97 3,45 5,81 2,59 2,51 1,29 2,14 3,47 1,12 3,51 2,37 2,96 2,25 1,79 2,53 1,44 1,04	- ÁREA DE AVILÉS 3,32 2,06 1,87 0,89 1,36 0,97 1,34 3,45 5,81 2,59 2,51 1,29 2,14 3,47 1,12 1,12 3,51 2,37 2,96 2,25 1,79 2,53 1,44 1,04 1,41	- AREA DE AVILÉS 3,32 2,06 1,87 0,89 1,36 0,97 1,34 1,16 3,45 5,81 2,59 2,51 1,29 2,14 3,47 1,12 1,12 1,58 3,51 2,37 2,96 2,25 1,79 2,53 1,44 1,04 1,41 2,23	- ÁREA DE AVILÉS 3,32 2,06 1,87 0,89 1,36 0,97 1,34 1,16 1,04 3,45 5,81 2,59 2,51 1,29 2,14 3,47 1,12 1,12 1,58 1,94 3,51 2,37 2,96 2,25 1,79 2,53 1,44 1,04 1,41 2,23 1,13 0,87	- ÁREA DE AVILÉS 3,32 2,06 1,87 0,89 1,36 0,97 1,34 1,16 1,04 1,17 3,45 5,81 2,59 2,51 1,29 2,14 3,47 1,12 1,12 1,58 1,94 3,51 2,37 2,96 2,25 1,79 2,53 1,44 1,04 1,41 2,23 1,13 1,41

4.4 Área de Cuencas

En el área de Cuencas, la Red de Control de la Calidad del Aire del Principado de Asturias cuenta con un total de 5 estaciones. En Mieres se ubica la estación Jardines de Juan XXIII; las estaciones denominadas Meriñán, Sama I y La Felguera se encuentran en el concejo de Langreo; y, en el término municipal de San Martín del Rey Aurelio, se localiza la estación Blimea (Figura 24).

Figura 24. Estaciones de la Red de Control de la Calidad del Aire del Principado de Asturias en el área de Cuencas

Durante el año 2016, todas las estaciones de la Red de Control de la Calidad del Aire del Principado de Asturias, pertenecientes al área de Cuencas, han presentado concentraciones, para todos los contaminantes medidos, inferiores a los valores límites establecidos en el Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire, modificado por el Real Decreto 39/2017, de 27 de enero.

Además, ninguna estación perteneciente a esta zona presentó superaciones de los umbrales de información ni alerta a la población por SO₂, NO₂, ni O₃.

A 2008 corresponden los últimos registros en el área con más de 35 superaciones anuales del valor límite de la concentración media diaria de PM₁₀ (50 μg/m³), registradas en las estaciones denominadas Meriñán y Sama I (Figura 25), mientras que se limitan al periodo 2004-2007 las superaciones del valor límite para la concentración media anual establecido de PM₁₀ en las diferentes estaciones del área (Figura 26).

Por último, indicar que data de 2004, en la estación denominada Sama I, la última superación registrada del nivel crítico anual de SO₂ (Figura 29).

GOBIERNO DEL PRINCIPADO DE ASTURIAS

Figura 25. Evolución anual del Nº de días con superación del valor medio de PM₁₀ en el área de Cuencas (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valores límite (35 superaciones)	55 μg/m ³						50 μ	ıg/m³					
				ÁR	EA DE C	UENCAS	3						
JARDINES DE JUAN XXIII	22	40	36	9	8	21	4	11	21	7	1	0	0
MERIÑÁN	66	148	162	80	46	23	5	6	11	3	5	2	0
SAMA I	88	132	131	112	47	17	10	12	18	5	3	7	0
LA FELGUERA	37	9	143	62									
BLIMEA	102	92	88	25	26	5	3	3	8	1	0	0	0
NO SE DISPONE DE M	EDIDAS		SUI	PERACIÓN	I DEL NÚM	IERO DE D	ÍAS (>35)		NO SU	PERA EL N	NÚMERO I	DE DÍAS (≤3	5)

Figura 26. Evolución del valor medio anual de PM10 en el área de Cuencas (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valores límite anual de PM10	41,6 μg/m³						40 μ	.g/m³					
				ÁRE	EA DE CU	JENCAS							
JARDINES DE JUAN XXIII	37	37	35	27	25	29	23	30	34	27	23	23	27
MERIÑÁN	46	51	51	41	32	24	22	24	27	27	20	19	16
SAMA I	46	48	49	45	35	27	26	28	28	24	23	26	25
LA FELGUERA	31	26	48	38									
BLIMEA	49	45	43	36	33	26	27	28	27	24	23	18	17
NO SE DISPONE DE M	IEDIDAS			SUPERAC	IÓN DE LA	MEDIA A	NUAL		NO SU	PERACIÓN	J DE LA M	EDIA ANU	AL

Figura 27. Evolución del valor medio anual de PM_{2,5} en el área de Cuencas (Serie 2007 – 2016)

ESTACIÓN	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016			
Valores límite anual de PM2,5	30 μ	g/m³	29 μ	g/m³	28 μg/m ³			25 μg/m ³					
ÁREA DE CUENCAS													
LA FELGUERA		18,6	16	17	17	16	14	16	20	15			
	LA PELGUERA 10,0 10 17 17 10 14 10 20 13												
NO SE DISPONE DE MEDIDAS	S	5	SUPERACIÓN	DE LA MEDI	A ANUAL		NO SUPER	RACIÓN DE L	A MEDIA AN	IUAL			

Figura 28. Evolución del valor medio anual de NO₂ en el área de Cuencas (Serie 2004 - 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valor límite anual de NO2(μg/m³)	52	50	48	46	44	42				40			
				Á	AREA DE	CUENCA	.S						
JARDINES DE JUAN XXIII			31	21	20	21	23	21	22	21	19	19	15
MERIÑÁN	23	21	20	26	20	22	20	20	18	15	14	15	13
SAMA I	22	19	21	23	18		22	22	24	24	20	24	16
LA FELGUERA	25		24	27	25	21	22	20	17	13	15	17	16
BLIMEA	22	23	18	17	15	15	17	15	15	14	11	13	9
					•	•			•		•		
NO SE DISPONE DE MED	IDAS			SUPER	ACIÓN DE 1	LA MEDIA	ANUAL		NO SUI	PERACIÓN	DE LA ME	DIA ANU	AL

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

Figura 29. Evolución del valor medio anual de SO₂ en el área de Cuencas (Serie 2004 - 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valor medio anual de SO2							μg/m³						
				ÁRI	EA DE C	UENCAS	,						_
JARDINES DE JUAN XXIII			8	19	11	8	6	7	10	8	7	7	7
MERIÑÁN	19	19	17	9	9	7	4	4	6	7	6	8	5
SAMA I	32	11	9	9	9	8	7	7	7	5	8	8	6
LA FELGUERA	18	19	13	13	9	6	5	6	6	5	5	7	7
BLIMEA	8	9	9	11	7	3	3	3	4	3	4	5	4

NO SE DISPONE DE MEDIDAS

GOBIERNO DEL PRINCIPADO DE ASTURIAS

Figura 30. Evolución de los valores máximos de medias octohorarias de CO en el área de Cuencas (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valor límite anual de CO	-						20 μջ	/ m ³					
				ÁREA	DE CU	ENCAS							
JARDINES DE JUAN XXIII	1,77	2,77	1,78	1,35	1,55	1,23	1,38	1,16	1,34	1,48	1,07	0,95	0,99
SAMA I	2,50	2,03	3,56	2,37	1,75	1,17	1,60	1,12	1,31	1,23	0,99	2,94	1,17
LA FELGUERA	1,96	2,60	3,13	2,65	5,80	0,98	1,26	1,23	1,05	1,24	1,14	1,08	1,38
BLIMEA	1,87	3,84	1,85	2,46	1,65	2,42	1,37	1,53	1,58	1,10	1,30	1,54	1,56
NO SE DISPONE DE MI	EDIDAS		SU	JPERACIÓ	N DE LA N	MEDIA AN	UAL		NO SUP	ERACIÓN	DE LA ME	DIA ANU	AL

4.5 Resto de Asturias

En el resto de Asturias, la Red de Control de la Calidad del Aire del Principado de Asturias cuenta con una estación propia, situada en Cangas del Narcea (zona Asturias Occidental). Asimismo, en la zona Asturias Oriental se ubica una estación cuya gestión corresponde al Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, localizada en Niembro (Llanes).

Figura 31. Estaciones de la Red de Control de la Calidad del Aire del Principado de Asturias en el resto de Asturias

Durante el año 2016, ambas estaciones han presentado concentraciones, para todos los contaminantes medidos, inferiores a los valores límite establecidos en el Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire, modificado por el Real Decreto 39/2017, de 27 de enero.

Además, ninguna de ellas presentó superaciones de los umbrales de información ni alerta a la población por SO₂, NO₂, ni O₃, apreciándose que las medias anuales de SO₂, NO₂ y de CO están alejadas de los valores límite.

Figura 32. Evolución anual del Nº de días con superación del valor medio de PM₁₀ en el resto de Asturias (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valores límite (35 superaciones)	55 μg/m³						50 μ	g/m³					
				REST	O DE AS	STURIAS	6						
CANGAS DEL NARCEA	26	32	27	6	4	0	0	7	5	3	2	1	0
NIEMBRO				1	3	7	1	1	2	0	1	2	0
	•	•	•		•				•	•		•	
NO SE DISPONE DE MEDI	DAS	!	SUPERACIO	ÓN DEL N	ÚMERO DI	E DÍAS (>35	5)	N	NO SUPERA	A EL NÚM	ERO DE DÍ	AS (≤35)	

Figura 33. Evolución del valor medio anual de PM₁₀ en el resto de Asturias (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valores límite anual de PM10	41,6 µg/m³						40 µ	ıg/m³					
				REST	O DE AS	STURIA	5						
CANGAS DEL NARCEA	31	30	29	27	24	20	20	24	28	28	20	24	15
NIEMBRO				20	17	18	15	21	16	15	17	18	15
NO SE DISPONE DE ME	EDIDAS		Ç	SUPERACI	ÓN DE LA	MEDIA A	NUAL		NO SUI	PERACIÓN	I DE LA MI	EDIA ANU	AL

Figura 34. Evolución del valor medio anual de PM_{2,5} en resto de Asturias (Serie 2007 – 2016)

ESTACIÓN	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016		
Valores límite anual de PM2,5	30 μ	30 μg/m³		29 μg/m³ 28 μg/m³			³ 25 μg/m³					
 RESTO DE ASTURIAS												
NIEMBRO	11,7	9	10	9,2	9,3	6,8	6,6	6,9	7,4	5,6		
NO SE DISPONE DE MEDIDAS	3	SUPE	RACIÓN DE I	LA MEDIA AN	NUAL	N	IO SUPERAC	IÓN DE LA M	EDIA ANUA	L		

Figura 35. Evolución del valor medio anual de NO₂ en el resto de Asturias (Serie 2004 - 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valor límite anual de NO2(µg/m³)	52	50	48	46	44	42				40			
				REST	ΓΟ DE A	STURIA	S						_
CANGAS DEL NARCEA	18	14	22	23	18	13	10	15	13	11	10	12	10
NIEMBRO				6	5	4,3	5,3	4,3	4,3	3,8	3,8	5	3
NO SE DISPONE DE ME	EDIDAS			SUPERACI	IÓN DE LA	MEDIA AI	NUAL		NO SUI	PERACIÓN	DE LA ME	DIA ANU	AL

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

Figura 36. Evolución del valor medio anual de SO₂ en el resto de Asturias (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valor medio anual de SO2							μg/m³						
				REST	O DE A	STURIA	S						
CANGAS DEL NARCEA	22	21	15	10	7	7	4,5	4,9	6	6	6	6	6
NIEMBRO			5	4	2	1,2	0,87	0,83	0,92	1,2	1,3	1	0,48

NO SE DISPONE DE MEDIDAS

GOBIERNO DEL PRINCIPADO DE ASTURIAS

Figura 37. Evolución de los valores máximos de medias octohorarias de CO en el resto de Asturias (Serie 2004 – 2016)

ESTACIÓN	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Valor límite anual de CO	1						20 μg	/m³					
				REST	DE AS	TURIAS							
CANGAS DEL NARCEA	2,49	1,55	3,47	1,32	3,21	1,30	1,41	1,36	1,80	3,50	1,54	1,85	1,39
NO SE DISPONE DE MI	EDIDAS		SUPERACIÓN DE LA MEDIA ANUAL NO SUPERACIÓN DE LA MEDIA ANUAL										

5 Evaluación de la calidad del aire en el Principado de Asturias en el año 2016

5.1 Zonificación territorial a los efectos de la evaluación de la calidad del aire

Según el Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aire, modificado por Real Decreto 39/2017, de 27 de enero, para realizar la evaluación de la calidad del aire, las comunidades autónomas dividen su territorio en zonas en las que la calidad del aire se considera homogénea para cada contaminante.

Dentro de cada zona se pueden medir las concentraciones de los contaminantes mediante una o varias estaciones. También se puede evaluar la calidad del aire mediante modelos, siempre que la concentración de los contaminantes sea muy inferior a los valores legislados, de acuerdo a los umbrales de evaluación establecidos en el Anexo II del mencionado Real Decreto.

Es importante tener en consideración que, legalmente, si una sola estación supera los valores legislados de calidad del aire para un contaminante dado durante un determinado año, se debe considerar que la zona donde se ubica dicha estación incumple en su totalidad el valor legislado, aunque existan otras estaciones en las que no se superen estos valores. Esto hace que sea fundamental garantizar que la zonificación sea coherente con la dinámica de la calidad del aire en la región y que las estaciones de vigilancia sean representativas de dichos niveles de concentración.

La zonificación del territorio del Principado de Asturias, vigente para la evaluación y gestión de la calidad del aire en el año 2016, se remonta al año 1995. Divide el territorio en tres zonas (occidental, central y oriental) y una aglomeración (Gijón), que debido al tamaño que por aquel entonces tenía esta ciudad, como único núcleo superior a 250.000 habitantes, se le dio un tratamiento específico.

Figura 38. Zonificación del territorio del Principado de Asturias a los efectos de la evaluación de la calidad del aire en el año 2016, en relación con las partículas (PM_{10} y $PM_{2,5}$), el dióxido de azufre (SO_2), los óxidos de nitrógeno (NOx), el monóxido de carbono (CO), el benceno (C_6H_6) y el ozono (O_3).

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

Así, a los a los efectos de la evaluación de la calidad del aire en el año 2016, en relación con las partículas (PM10 y PM2,5), el dióxido de azufre (SO2), los óxidos de nitrógeno (NOx), el monóxido de carbono (CO), el benceno (C6H6) y el ozono (O3) se distinguen las zonas siguientes (Figura 38):

- La zona ES0301, Zona Occidental, incluye los términos municipales (26) de Allande, Belmonte de Miranda, Boal, Cangas del Narcea, Castropol, Coaña, Cudillero, Degaña, El Franco, Grandas de Salime, Ibias, Illano, Navia, Pesoz, Salas, San Martín de Oscos, San Tirso de Abres, Santa Eulalia de Oscos, Somiedo, Tapia de Casariego, Taramundi, Tineo, Valdés, Vegadeo, Villanueva de Oscos y Villayón.
- La zona ES0302, Zona Central, está formada por 31 concejos ubicados en la franja central de Asturias, desde el norte hasta el sur. Los municipios incluidos son Aller, Avilés, Candamo, Carreño, Castrillón, Corvera, Gozón, Gijón, Grado, Illas, Las Regueras, Langreo, Laviana, Lena, Llanera, Mieres, Morcín, Muros del Nalón, Noreña, oviedo, Pravia, Proaza, Quirós, Ribera de Arriba, Riosa, San Martín del Rey Aurelio, Santo Adriano, Siero, Soto del barco, Teverga y Yernes y Tameza.
- La zona ES0303, Zona Oriental, comprende los concejos (21) de Amieva, Bimenes, Cabrales, Cabranes, Cangas de Onís, Caravia, Caso, Colunga, Llanes, Nava, Onís, Parres, Peñamellera Alta, Peñamellera Baja, Piloña, Ponga, Ribadedeva, Ribadesella, Sariego, Sobreescobio y Villaviciosa.
- Y, por último, la **aglomeración ES0304**, que comprende el área urbana del concejo de Gijón.

5.2 Cumplimiento legal en el año 2016

5.2.1 Mediciones fijas de la Red de Control de la Calidad del Aire en el año 2016

Respecto a las mediciones fijas, durante el año 2016, todas las estaciones de la Red de Control de la Calidad del Aire del Principado de Asturias han presentado concentraciones inferiores a los valores límites establecidos legalmente para todos los contaminantes medidos, a excepción de la estación denominada Matadero, correspondiente al área de Avilés, dentro de la Zona Asturias Central, donde se superó el valor límite anual de PM10, así como el número máximo de superaciones del valor límite diario permitidos en el Real Decreto 102/2011, de 28 de enero, modificado por Real Decreto 39/2017, de 27 de enero, para este contaminante.

GOBIERNO DEL PRINCIPADO DE ASTURIAS

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

En las tablas siguientes se detallan las superaciones (en rojo) y los valores medios anuales registrados para cada uno de los contaminantes objeto de evaluación según la normativa vigente.

Es necesario precisar que, en la Red de Control de la Calidad del aire del Principado de Asturias, los analizadores de partículas en suspensión PM₁₀ y PM_{2,5} se basan en la medida de la atenuación de radiación beta que incide sobre la superficie de un filtro donde se depositan las partículas en suspensión, seleccionadas previamente mediante un cabezal adecuado. Sin embargo, el método de referencia es el descrito en la norma UNE-EN 12341:2015, e implica una determinación gravimétrica de la masa de PM₁₀ o PM_{2,5} captada en un filtro.

A fin de demostrar que los datos que se registran en estos tipos de analizadores guardan una relación coherente con el método de referencia, se lleva a cabo, periódicamente, el cálculo de los factores de corrección correspondientes, de conformidad con la metodología contenida en la Guía para los Estados Miembros sobre Medidas de PM₁₀ e Intercomparación con el Método de Referencia ¹⁷, elaborada por el Grupo de Trabajo de la Comisión Europea sobre partículas en suspensión (marzo de 2001).

Con este objeto, en 2016 se han estudiado las estaciones de Llaranes (Avilés) y Constitución (Gijón), concluyéndose la aplicación de un factor de seguridad 1,00 a todos los datos registrados por los analizadores automáticos de absorción beta de la red de inmisión para el control de la calidad del aire del Principado de Asturias durante el año 2016.

_

¹⁷ http://ec.europa.eu/environment/air/pdf/finalwgreportes.pdf

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

Tabla 12. Superaciones y medias anuales en el área de Oviedo (Zona Asturias Central) - Año 2016 - RD 102/2011

			Partículas		S	O ₂	N	O ₂	СО	O ₃	C ₆ H ₆
		PN	/ 110	PM2,5						Nº Días Sup.	
Est	ación	№ Días Sup.	Media Anual	Media Anual	Nº Sup. Horaria	Nº Sup. Diaria	Nº Sup. Horaria	Media Anual	Nº Sup. VO Octohorario	Promed. 3 años ≤25 días	Media Anual
Zona	Nombre	VLD ≤50 μg/m³ ≤35 días	VLA ≤40 μg/m³	VLA ≤25 μg/m³	VLH ≤350 μg/m³ ≤24 Hor.	VLD ≤125 μg/m³ ≤3 Días	VLH ≤200 μg/m³ ≤18 Hor.	VLA ≤40 μg/m³	VL Octohorario ≤10 mg/m³	VO Octohorario ≤120 μg/m³	VLA ≤5 μg/m³
	Palacio de los Deportes	1	23		0	0	0	30	0	2	1
	Plaza de Toros	0	21		0	0	0	20	0	1	
Oviedo	Purificación Tomás	0	19	11	0	0	0	15	0	0	
(Asturias Central)	Trubia Piscinas ¹										
	Trubia ²										
	Lugones Instituto	11	28	14	0	0	0	23	0	0	

$N_{\bar{0}}$	Superación de valor límite/objetivo establecido
	Dato no registrado en la estación.
	Insuficiente número de datos

VLH Valor límite horario
VLA Valor límite anual
VLD Valor límite diario
VO Valor objetivo

Trubia Piscinas ¹ Datos a partir del 19 de junio de 2016 por traslado Trubia² Datos hasta el 13 de junio de 2016 por traslado

Tabla 13. Superaciones y medias anuales en el área de Avilés (Zona Asturias Central) - Año 2016 - RD 102/2011

			Partículas		S	O ₂	N	O ₂	CO	O ₃	C ₆ H ₆
		PN	PM ₁₀							Nº Días Sup.	
Est	ación	№ Días Sup.	Media Anual	Media Anual	№ Sup. Horaria	№ Sup. Diaria	Nº Sup. Horaria	Media Anual	Nº Sup. VO Octohorario	Promed. 3 años ≤25 días	Media Anual
Zona	Nombre	VLD ≤50 μg/m³ ≤35 días	VLA ≤40 μg/m³	VLA ≤25 μg/m³	VLH ≤350 μg/m³ ≤24 Hor.	VLD ≤125 μg/m³ ≤3 Días	VLH ≤200 μg/m³ ≤18 Hor.	VLA ≤40 μg/m³	VL Octohorario ≤10 mg/m³	VO Octohorario ≤120 μg/m³	VLA ≤5 μg/m³
	Matadero	126*	46**		1	0	2	20	0		
A :1 / -	Llaranes	3	24		0	0	0	17		0	3
Avilés	Llano Ponte	14	33		0	0	0	33	0	0	
(Asturias Central)	Plaza Guitarra	7	22		0	0	0	19	0	0	
	Salinas	4	20	9				13	0	0	

^{* 122} y **45 aplicando la metodología de descuento de las contribuciones de fuentes naturales.

N^{ϱ}	Superación de valor límite/objetivo establecido Dato no registrado en la estación
VLH	Valor límite horario
VLA	Valor límite anual
VLD	Valor límite diario
VO	Valor objetivo

Tabla 14. Superaciones y medias anuales en el área de Cuencas (Zona Asturias Central) - Año 2016 - RD 102/2011

			Partículas		SO ₂		NO ₂		CO	O ₃	C ₆ H ₆
		PN	PM ₁₀							Nº Días Sup.	
Est	ación	№ Días Sup.	Media Anual	Media Anual	Nº Sup. Horaria	Nº Sup. Diaria	№ Sup. Horaria	Media Anual	Nº Sup. VO Octohorario	Promed. 3 años ≤25 días	Media Anual
Zona	Nombre	VLD ≤50 μg/m³ ≤35 días	VLA ≤40 μg/m³	VLA ≤25 μg/m³	VLH ≤350 μg/m³ ≤24 Hor.	VLD ≤125 μg/m³ ≤3 Días	VLH ≤200 μg/m³ ≤18 Hor.	VLA ≤40 μg/m³	VL Octohorario ≤10 mg/m³	VO Octohorario ≤120 μg/m³	VLA ≤5 μg/m³
	Jardines de Juan XIII	0	27		0	0	0	15	0	0	
Cuanas	Meriñán	0	16		0	0	0	13		2	
Cuencas	Sama I	0	25		0	0	0	16	0	1	1
(Asturias Central)	La Felguera			15	0	0	0	16	0	0	
	Blimea	0	17		0	0	0	9	0	1	

Nº	Superación de valor límite/objetivo establecido Dato no registrado en la estación
VLH	Valor límite horario
VLA	Valor límite anual
VLD	Valor límite diario
VO	Valor objetivo

Tabla 15. Superaciones y medias anuales en la Aglomeración Gijón - Año 2016 - RD 102/2011

Estación			Partículas		SO_2		NO ₂		CO	O ₃	C ₆ H ₆
		PM ₁₀		PM2,5						Nº Días Sup.	
		Nº Días Sup.	Media Anual	Media Anual	Nº Sup. Horaria	Nº Sup. Diaria	Nº Sup. Horaria	Media Anual	Nº Sup. VO Octohorario	Promed. 3 años ≤25 días	Media Anual
Zona	na Nombre		VLA ≤40 μg/m³	VLA ≤25 μg/m³	VLH ≤350 μg/m³ ≤24 Hor.	VLD ≤125 μg/m³ ≤3 Días	VLH ≤200 μg/m³ ≤18 Hor.	VLA ≤40 μg/m³	VL Octohorario ≤10 mg/m³	VO Octohorario ≤120 μg/m³	VLA ≤5 μg/m³
	Constitución	0	21	10	0	0	0	24	0	0	1
	Argentina	6	25		0	0	0	22	0	0	
A alamara aián Ciián	H. Felgueroso	3	20		0	0	0	14	0	0	
Aglomeración Gijón	Castilla	0	22		0	0	0	21	0	0	
	Montevil	0	23	10	0	0	0	10		2	
	Santa Bárbara	3	20	10			0	19	0		

Nº	Superación de valor límite/objetivo establecido Dato no registrado en la estación
V/I I I	
VLH VLA	Valor límite horario Valor límite anual
VLD	Valor límite diario
VO	Valor objetivo

Tabla 16. Superaciones y medias anuales en la Zona Asturias Occidental - Año 2016 - RD 102/2011

Estación		Partículas			SO ₂		NO ₂		CO	O 3	C ₆ H ₆
		PM10		PM2,5						Nº Días Sup.	
		№ Días Sup.	Media Anual	Media Anual	Nº Sup. Horaria	№ Sup. Diaria	Nº Sup. Horaria	Media Anual	Nº Sup. VO Octohorario	Promed. 3 años ≤25 días	Media Anual
Zona	Zona Nombre		VLA ≤40 μg/m³	VLA ≤25 μg/m³	VLH ≤350 μg/m³ ≤24 Hor.	VLD ≤125 μg/m³ ≤3 Días	VLH ≤200 μg/m³ ≤18 Hor.	VLA ≤40 μg/m³	VL Octohorario ≤10 mg/m³	VO Octohorario ≤120 μg/m³	VLA ≤5 μg/m³
Asturias Occidental	L Cangas del Narcea		15		0	0	0	10	0	5	

	Nº	Superación de valor límite/objetivo establecido Dato no registrado en la estación
VLH		Valor límite horario
VLA		Valor límite anual
VLD		Valor límite diario
VO		Valor objetivo

5.2.2 Mediciones indicativas de metales e hidrocarburos aromáticos policíclicos en el año 2016

Para la evaluación de los metales pesados e hidrocarburos aromáticos policíclicos (HAP) se considera una única zona en Asturias (ES0305). Los metales pesados que se determinan son plomo (Pb), arsénico (As), cadmio (Cd) y níquel (Ni). Respecto a los hidrocarburos aromáticos policíclicos, además del benzo(a)pireno, se determinan otros seis compuestos, aunque solo está fijado en la normativa el valor objetivo para dicho compuesto, que se considera representativo de la contaminación por HAP.

Cuando los niveles que se detecten estén por debajo de los valores umbrales superiores de evaluación fijados en el Real Decreto 102/2011, su determinación puede llevarse a cabo por técnicas de modelización, campañas de medición o investigaciones. Para los metales arsénico y cadmio, el valor umbral superior es el 60% del correspondiente valor límite y para el plomo y níquel, el 70% del valor límite. Para el benzo(a)pireno, el umbral superior está fijado en el 60% de su valor objetivo.

La evaluación de estos contaminantes se ha venido realizando mediante campañas de medición, habitualmente en la zona de Gijón (estación de la Avenida de la Constitución), y en el 2016 también en la zona de Avilés (estación de Llaranes). Se presentan a continuación los resultados desde el año 2013. Se incluyen también datos de la estación de Niembro, gestionada por el Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente.

Tabla 17. Evaluación de la concentración de metales y de benzo(a)pireno

| Valor | 2013 | 2014 | 2015 | 20

	Valor límite (ng/m³)	2013	2014	2015	5	2016			
		Constitución	Constitución	Constitución	Niembro	Constitución	Llaranes	Niembro	
Arsénico	6	0,6	0,8	0,6	0,2	0,6	0,9	0,1	
Cadmio	5	0,5	0,4	0,5	0,1	0,5	0,6	0,1	
Níquel	20	4,1	5,2	4,4	0,9	2,5	3,1	0,6	
Plomo	500	38	22	10	2,5	6,6	14	3,5	
	Valor objetivo (ng/m³)								
B(a)P	1	0,6	0,4	0,6	0,1	0,4	4,7	0,1	

Todos los valores de los metales se encuentran muy por debajo del valor límite y del valor umbral superior de evaluación, por lo que está justificada su determinación mediante campañas de medición. Respecto del benzo(a)pireno, las concentraciones se encuentran por debajo del valor objetivo, excepto en la estación Llaranes. A lo largo del año 2017 se va a realizar una campaña más exhaustiva en Llaranes, que incluya un número elevado de días al año en los que se analicen los HAP con objeto de aumentar la representatividad del muestreo y se continuará midiendo en años

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

sucesivos. De acuerdo con la normativa de calidad del aire, en el caso de que se constatara la persistencia de una concentración media que superara el 60% del valor objetivo durante tres años (>0.6 ng/m³) , se procederá a la realización de mediciones fijas en dicha estación.

Figura 39. Zonificación del territorio del Principado de Asturias a los efectos de la evaluación de la calidad del aire en relación a la contaminación por metales pesados e hidrocarburos aromáticos policíclicos.

5.3 Mediciones de partículas sedimentables

Con independencia de que el material particulado de un tamaño superior a los $10~\mu m$ no suponga riesgo significativo para la salud y de que, actualmente, no exista normativa en vigor que establezca limitación alguna a su presencia en el aire, la población muestra especial sensibilidad al hecho de que el aire contenga partículas que sedimentan, fundamentalmente por las molestias que ocasiona en materia de limpieza.

Teniendo en cuenta esta circunstancia, la Administración del Principado de Asturias ha decidido continuar con las medidas de este tipo de partículas.

De este modo, y para un mejor conocimiento del fenómeno, dispone de 6 canalizadores de partículas sedimentables, 3 de ellos ubicados en el término municipal de Gijón:, El Lauredal, jardines del Laboratorio de Sanidad Animal (Jove), azotea del Centro Integrado de Formación Profesional (CIPF) del Mar; 2 en el término municipal de Carreño: Falmuria y Monte Morís; y 1 en Castrillón, en el jardín del Colegio Público Manuel Álvarez Iglesias de Salinas.

En la Figura 40 y en la tabla 18 se detalla la localización de cada uno de los analizadores, indicando sus coordenadas. Asimismo, en la Tabla 19 se ofrece el resumen de los datos obtenidos en 2016.

Figura 40. Ubicación de los analizadores de partículas sedimentables en Avilés (arriba) y Gijón (abajo)

Tabla 18. Localización y fecha de puesta en marcha de los analizadores de partículas sedimentables

Localización	Fecha inicio	Latitud	Longitud
Colegio P. Manuel Álvarez Iglesias	Agosto 2016	43°34'33"N	5°57'20"O
Monte Morís	Junio 2014	43°34'05"N	5°44'10"O
Falmuria	Mayo 2015	43°33'37''N	5°45'01"O
EMULSA (El Lauredal)	Agosto 2016	43°32'36''N	5°42'08"O
Laboratorio de Sanidad Animal	Agosto 2016	43°33'01"N	5°42'13"O
CIPF del Mar	Sep. 2016	43°32'36"N	5°41'40"O

Tabla 19. Resumen de los datos obtenidos en las campañas de medición de partículas sedimentables en 2016

FECTIA	MONTE MORÍS		FALMURIA		EL LAU	EL LAUREDAL		LABORATORIO DE SANIDAD ANIMAL		CIFP DEL MAR		SALINAS	
FECHA	mg/m²/día												
	Insoluble	Total	Insoluble	Total	Insoluble	Total	Insoluble	Total	Insoluble	Total	Insoluble	Total	
27/01/2016	47		16										
25/02/2016	557		586										
30/03/2016	285		310										
27/04/2016	180		366										
27/05/2016	503	511	530	562									
29/06/2016	272	306	231	258									
27/07/2016	140	180	127	168									
30/08/2016	151	255	72	202									
06/09/2016					392	406	150	178					
20/09/2016											48	90	
29/09/2016	86	225	57	144									
06/10/2016					253	275	166	189	1	44			
19/10/2016											16	89	
21/10/2016	95	181	45	102									
04/11/2016					183	198	100	124	53	59			
22/11/2016					321	373	102	130	112	116	26	364	
29/11/2016	73	106	106	127		-							
15/12/2016					555	581	204	224	84	89			
22/12/2016											11	16	
29/12/2016	85	122	28	50		-							

6 Conoce más...

De conformidad con el artículo 6.4 de Ley 27/2006, de 18 de julio, por la que se regulan los derechos de acceso a la información, de participación pública y de acceso a la justicia en materia de medio ambiente, así como con las obligaciones de información establecidas por la normativa sectorial vigente en materia de calidad del aire, el Principado de Asturias pone a disposición de la ciudadanía diferentes contenidos, alojados en una página web denominada **Red Ambiental de Asturias** a la que se accede a través del enlace siguiente:

A continuación se destacan los epígrafes más relevantes relacionados con la calidad del aire, incluyendo, para cada uno, el correspondiente enlace que permite el acceso a la ubicación de la información referenciada.

Marco de referencia de la calidad del aire en Asturias

Desde aquí se accede al marco normativo general, así como a documentación relativa a líneas de actuación desarrolladas, en materia de calidad del aire, por el Principado de Asturias; entre ellas, los Planes de Mejora de Calidad del Aire de Avilés y Gijón.

CONSEJERÍA DE INFRAESTRUCTURAS, ORDENACIÓN DEL TERRITORIO Y MEDIO AMBIENTE

Por otro lado, a través del epígrafe «Red automática gestionada por el Principado de Asturias» se accede a los dos tipos de informes que se indican a continuación.

<u>Informes anuales sobre cumplimiento de valores límite legales</u>

Permite la descarga de informes anuales, generados en formato PDF, sobre el cumplimiento de valores límite legales, para cada una de las estaciones que se seleccione, desde el año 2000 en adelante. Se trata, por tanto, de información oficial, elaborada con datos validados por el gestor.

<u>Informes dinámicos sobre datos históricos de calidad del aire</u>

Permite la descarga de informes dinámicos, generados en formato PDF o en formato editable de hoja de cálculo, sobre datos históricos de calidad del aire, de carácter horario, diario o mensual, dentro del intervalo temporal que fije el usuario para cada estación que se consulte.

Al igual que en el caso anterior, se trata de información oficial, elaborada con datos validados por el gestor.

Estado actual de la calidad del aire (últimas 24 horas)

En este sitio se presentan datos en tiempo real, así como datos temporales de la evolución horaria y de los valores medios de todos y cada uno de los parámetros medidos en las estaciones de la Red de Control de la Calidad del Aire del Principado de Asturias, en periodos de tiempo que abarcan las últimas 24 y 72 horas.

El acceso a esta información se realiza a través de un mapa en el que figuran las diferentes estaciones que componen la Red de Control de la Calidad del Aire del Principado de Asturias, representadas en diferentes colores indicativos del estado de la calidad del aire del peor de sus parámetros en las últimas 24 horas, agrupadas en 5 zonas diferentes: Cangas del Narcea, Avilés, Oviedo – Siero, Cuencas Nalón – Caudal y Gijón.

Esta representación del estado de la calidad del aire en cada una de las estaciones, mediante un sencillo código formado por 4 colores: azul (muy buena), verde (buena), amarillo (regular) y rojo (mala), se basa en un índice de calidad del aire relativo, de carácter meramente indicativo y, por lo tanto, ajeno a criterios de cumplimiento legal.

En este mismo sentido, es necesario reseñar que la información proporcionada en este sitio se elabora en base a datos registrados que aún no han sido verificados por el gestor, careciendo, por lo tanto, de carácter oficial.