Multivariable (9,T)-modules and local-global Compatibility Florian Herzig

(Joint with Breuil, Hu, Morra, Shrean).

81 Motivation

K/Op finite, #/#p fin clarge).

Hope {p: GK \rightarrow GL_2(#)} (\rightarrow \rightarrow \rightarrow \left \text{Colmeg function} \((K = Op) \) [\text{\text{effale}} (\text{(P,T)-mods} / \text{F(T))} \)

Global cardidate F/Q tot real. p inert.

F: GF - Ghz(F) abs irred. automorphic $\pi(\overline{r}) := \lim_{V_F} H_{omG_F}(\overline{r}, H_{off}(X_{V_F}V_{off} \times_F \overline{F}, \overline{F})) + 0$ Ghz(Op) adm sm.

Q: Does TC(F) essentially only depend on Flor,?

82 Multivariable (9,1)-modules

K/Op wran, res field k=Fpf.

Fix k cs F. Let Yi = Z Z Z [] = F[OK] (osi = f-1).

Teich lift

So FEORI = FETo, ..., Y_{f-1} .

Take $A := (FEORD_{f-...,Y_{f-1}})$ $= F(Y_0) \langle (Y_0)^{\perp}, i \neq 0 \rangle$ $= \left\{ \sum_{n=0}^{\infty} \lambda_n Y_0(n)^{\perp} : \underline{i}(a) \in \mathbb{Z}^{d}, \sum_{n=0}^{\infty} \underline{i}(n) \xrightarrow{n \to \infty} 0.5 \quad n \to \infty \right\}.$

Rock Spa A < Spa FIORI (open) { |Yo| = ... = |YF-1| + o}. By continuity, 9.6× G.A.

Pres result Constructed exact functor

DA: { certain ab cost C of adm reps of Glo(H) /# }

if oftele (9, OK) - modules /A} (k=Op. c=a-b=p-c,)

5.t. if FlGE is tame & "Strongly generic". (FlGOp ~ (W) wb).)

Then (1) TC(F) E C

(2) For tr: A -> F((T)) (induced FEOx) tr FIZpI).

DA(\pi(\tau)) &A , tr F((T)) = (\q. \D)-mod assoc to Ind GF (Florp).

1 = IIp

33 Main result

Construct a functor

DA : {p:Gk -> GL(F)} -> {étale (q. (DE)-mod over A}.

The (BHHMS) If Flog, tame + str gen, then $D_A(\pi(F)) \cong D_A^{\otimes}(Flog_F)$.

Rock (i) tame + 8tr gen Should not be necessary

* Yitang Waya

(ii) DA(p) = (8) DA. o(p), where DA. o(-) exact & fully faithful.

(iii) If p tome, then DA(p) is explicit.

84 DA

GLT := Spf OKETKI Lubin-Tate formal OK-mod

Universal cover. GLT.F:= \(\frac{1}{4}\), \(\frac{1}\), \(\frac{1}{4}\), \(\frac{1}{4}\), \(\frac{1}{4}\), \

Farques-Fontaine RePerf# ~ Fréchet ring B*(R).

(completion of W(R)[p]).

as prottele sheaves of k-v.s. on Perf#.

 $\begin{cases} \widetilde{G}_{LT, fF}(-) \cong \mathcal{B}^{\dagger}(-)^{q_{j}^{2} = p_{j}^{4}} \\ \widetilde{G}_{Q}(-) \cong \mathcal{B}^{\dagger}(-)^{q_{j}^{2} = p_{j}^{4}} \end{cases}$

where Cok. F:= Gm. F @ Ip OK

Spa FIGETIPE

Let 2LT:= (GLT, F/{0}), 20x:= Gax, F/{0} unique non-an pt.

Multiplication on B+(-) induces

Forgues $\Delta | Z_{LT} \longrightarrow Z_{OK} o S$ pro-etale sheaves on Perf F. Let $Z_{OK} = \frac{1}{5} | Y_{O}| = \cdots = | Y_{5-1}| \pm 0$ $\subseteq Z_{OK}$ (open) $= S_{PQ} A_{OS}$, $A_{OS} = A^{V_{POS}}$.

Prop m is a pro-étale torsor m (Zax) -> Zax

Construction $\bar{\rho}$ \longleftrightarrow etale $(\bar{q}, \bar{Q}_{K}^{*})$ -mod $\#((\bar{T}_{K}^{*})) \otimes_{\#(\bar{T}_{K})} D_{LT, \sigma_{0}}$. K^{*} -equiv v.b. $V_{\bar{\rho}}$ on $G_{LT, \#}/\delta_{0}^{*}$. $(K^{*})^{*} \times S_{f}$ -equiv v.b. $V_{\bar{\rho}}^{*}$ on $(G_{LT, \#}/\delta_{0}^{*})^{*} = Z_{LT}$.

Descent after K^{*} -equiv v.b. $(m_{*}V_{\bar{\rho}}^{*})$ on $Z_{G_{K}}^{*} = S_{pq} A_{\infty}$. Z_{LT}^{*} \longleftrightarrow et $(\bar{q}, \bar{Q}_{K}^{*})$ -mod over A_{∞} (and then A) V_{α}^{*} (\bar{p}) .

I'm Flog tome + str gen => DA(TE(F)) = DA(Flog).

Conquire RHS: Zer -torson Zon