Data protection & privacy

ANONYMIZING SOCIAL NETWORKS

Authors: Davide Senatori Chengao Xia

Introduzione

Un social network rappresenta entità e connessioni fra di loro. Essi vengono rappresentati come grafi non diretti.

Introduzione

Per preservare l'identità del nodo nel grafo, identificatori sintetici sono introdotti per sostituire i nomi.

Questa procedura viene detta: Naive anonymization.

Naive anonymization

Figure 1: A social network, G; the naive anonymization of G; the anonymization mapping.

- Rende sicuro un grafo?

Un attaccante puo scoprire molte informazioni attraverso domande VertexRefinement

Obiettivo del progetto

L'obiettivo del progetto è riuscire a rendere impossibile la re-identificazione.

Naive An vmization

Random Perturbation

Mostreremo che tale tecnica può ridurre le possibilità di re-identificazione con accettabili distorsioni del grafo.

Random Perturbation

La procedura di Random perturbation viene effettuata in seguito ad una naive anonymization. Il nuovo grafo Gp = (Vp,Ep) è costruito da Gna attraverso una sequenza di eliminazioni di m archi e un inserimento di m archi scelti in modo random(con m<=|E|). I nodi invece non cambiano. A seguito di ciò, l'avversario che tenterà di re-identificare i nodi dovrà considerare il set di possibili grafi(worlds) a cui è stata effettuata una perturbation attraverso m.

Come dimostrazione di questo studio abbiamo analizzato un dataset rappresentato come un grafo. I dati vengono presi da un file di testo contenente tutti i nodi connessi fra di loro.

```
karate.txt - Blocco note
Modifica Formato Visualizza ?
```


Tools:

- Pyhton
- NetworkX
- Plot.ly

In seguito è stata effettuata una perturbazione del 5% al nostro grafo. Come possiamo notare dall'immagine sono stati rimossi ed inseriti circa il 5% degli archi.

100% Perturbato:

Conclusione

Measure	Enron				
	Original	Perturbed 5%	Perturbed 10%	Random (100%)	
Degree	5.0	4.5	4.6	5.0	
Diameter	9.0	8.7	7.6	6.1	
Path length	4.0	3.2	3.0	3.0	
Closeness	0.276	0.293	0.304	0.337	
Betweenness	0.005	0.009	0.010	0.014	
Clust. Coeff.	0.286	0.242	0.191	0.000	

Measure	OUR DATASET				
	Original	Perturbed 5%	Perturbed 10%	Random (100%)	
Degree	4.5	4.5	4.6	4.5	
Diameter	5	4	5	5	
Path length	2.4	2.3	2.3	2.4	
Closeness	0.426	0.437	0.429	0.414	
Betweenness	0.044	0.041	0.043	0.045	
Clust. Coeff.	0.570	0.467	0.427	0.136	

Anonimizzazione:

GRAZIE PER L'ATTENZIONE

