Internet Explained

SoftUni Team Technical Trainers

https://softuni.bg

Have a Question?

#csharp-web

Table of Content

- 1. Introduction to Internet
- 2. How does the Internet work?
- 3. Packets Sending and Receiving Data
- 4. Internet Protocol
- 5. Reliability and TCP
- 6. The OSI Model
- 7. Network Hardware
- 8. The Future of the Internet

Introduction to Internet

An Introduction to the Internet

What is the Internet?

- Vast network that connects billions of devices together all over the globe
 - Through fiber optics, copper, satellites or cell phone network
- We get indirectly connected though ISPs (Internet Service Providers)

History – Overview

- Begins with the development of electronic computers in the 1950s
- Packet switching networks were developed in the late 1960
- The internet protocol was developed in the 1970s
- In the 1980s at CERN Tim Berners-Lee created the World Wide Web the first website, linking hypertext documents into an information system, accessible from any node on the network

What is a Network?

- Network == a group of two or more devices that can communicate
- It is comprised of a number of different computer systems connected by physical and/or wireless connections
- The scale can range from a single PC sharing out basic peripherals to massive data centers located around the world, to the Internet itself

Networks and Internet

- The Internet is made of hundreds of thousands of networks and billions of computers and devices connected physically
- These different systems connect to each other, communicate with each other and work together because of standards for how data is sent

How Does the Internet Work?

Web Server Work Model

Important Definitions

 To understand how the Internet works, first we need to get acquainted with a few definitions

What is?

- Server and Client
- Network Protocol
- Packets
- TCP vs UDP

Servers and Clients

- All of the machines on the Internet are either servers or clients
 - Servers are the machines that provide services to other machines
 - Clients are the machines that are used to connect to those services

Network Protocol

- Network Protocol == a set of rules and standards, that allow communication between network devices
- Network protocols include mechanisms for devices to identify and make connections with each other
- Examples for standard network protocols
 - TCP, QUIC, UDP, IP, ARP
 - HTTP, FTP, TFTP, SMTP, SSH

Packets

- Everything that is created on a computer is translated into digital data using bits
- Bits need to have a way to be transmitted over the Internet
- Every message, file or stream of data is broken down into small chunks, called packets
- When packets are sent on the Internet, they usually travel the network together
- But they might have to take a different route to get to the destination

Packets

- Each packet contains some important information inside of it, called a header
 - Where it came from
 - Where it is going
 - How long it is
 - This is how the packet is known to be complete
 - All the packets in the message are the same size
 - How many packets there are in the overall message

Traveling of the Packets in the Network

216.58.214.46 www.google.com

Internet Protocol

IPv4, IPv6 and DNS

Internet Protocol

- One of the most important protocols used in Internet communication is the Internet Protocol (IP)
- All the devices on the Internet have addresses
- They are called IP Addresses
- The IP address is unique to each computer or a device at the edge of the network

IP Address

An IP Address has many parts, organized in a hierarchy

Subnetworks

192.168.14.120

Device address

- This version of IP Addressing is called IPv4
 - Provides more than 4 billion 32-bits unique addresses

IPv4

- Pv4 == sequence of 4 three-digit numbers, separated by a period
 - Each number can be a number from 0 to 255
 - IPv4 is not enough for all network devices connected to the internet
- In 1995, a new version of the Internet Protocol was created, it's called IPv6

IP Address Classes

Class	Address range	Supports
Class A	1.0.0.1 to 126.255.255.254	Supports 16 million hosts on each of 127 networks.
Class B	128.1.0.1 to 191.255.255.254	Supports 65,000 hosts on each of 16,000 networks.
Class C	192.0.1.1 to 223.255.254.254	Supports 254 hosts on each of 2 million networks.
Class D	224.0.0.0 to 239.255.255.255	Reserved for multicast groups.
Class E	240.0.0.0 to 254.255.255.254	Reserved for future use, or research and development purposes.

What Is CIDR (Classless Inter-Domain Routing)

- Classless Inter-Domain Routing == IP addressing
 scheme that improves the allocation of IP addresses
- It replaces the old system based on classes A, B and C
- This scheme also helped greatly extend the life of IPv4
 as well as slow the growth of routing tables

IPv4 Private Address Space and Filtering

CIDR	IP address range	Class
10.0.0.0/8	10.0.0.0 – 10.255.255.255	А
172.16.0.0/12	172.16.0.0 - 172.31.255.255	В
192.168.0.0/16	192.168.0.0 - 192.168.255.255	С

IPv6

- IPv6 uses 128 bits 340 undecillion unique addresses
 - That's more than the atoms on the surface of the Earth
- These 128 bits are organized into eight 16-bit sections
- Each 16-bit block is converted to hexadecimal and it's separated with a colon
- Full IPV6 address
 - 3FFE:F200:0234:AB00:0123:4567:8901:ABCD
- The leading zeros in IPv6 can usually be left out (not recommended)

What is a DNS?

www.softuni.bg

Domain name

- The domain name is a human way to access IP addresses for devices and websites around the world
- It is a sequence of phrases that map to a giant Internet-wide database of IP addresses
- When a domain name is entered in the browser, a request is made to something called a DNS (Domain Name Server)
- This server holds a cache of tons of domain names, and their matching IP addresses

DNS Example

Reliability

- When packets are transmitted from one location to another, they can take different paths
- When they get to the destination, they are unorganized and sometimes not complete
- So the message needs to be audited and reviewed in order to put it together in the right way
- The Transmission Control Protocol or TCP does exactly that

Transmission Control Protocol - TCP

- TCP uses a process, where it looks at all the packets in a message and checks them
- Using the header information in each packet, it knows
 - How many there are
 - How large they should be
 - In which order the packets should be in
- Using this checklist, it is able to rearrange the packets

Transmission Control Protocol - TCP

- If it finds that a packet doesn't match the expected characteristic, it is discarded
- TCP verifies that all the packets are
 - In the right order
 - Free of any issues

 After that it certifies the data and the packets are merged together to recreate the original file that was on the sender's device

User Datagram Protocol

- UDP does not establish a session and it does not guarantee data delivery
- It is known as the "fire-and-forget" protocol
 - It sends data and it doesn't really care if the data is received at the other end

TCP vs UDP

TCP

- TCP places reliability in a higher priority than speed or latency
- For instances where reliability isn't as important, but speed is,
 UDP is used
- UDP doesn't do excessive reliability checks, but it can send information at a faster rate
- TCP is the foundation of how a majority of data is transmitted over networks

QUIC Protocol

- QUIC == new transport protocol designed for mobile-heavy Internet usage
- Uses UDP as its basis, not TCP
- Packets are encrypted individually
- Exchange of supported protocols is a part of the initial
 - handshake process

What is the OSI Model?

- OSI model stands for Open System Interconnect
- It consists of 7 layers
 - Each layer serves the layer above it and in return, is served by the layer below it
- Understanding each layer of the model helps us with
 - Troubleshooting
 - Communicating better with technical and nontechnical individuals about any system

OSI Layers

Application

End User layer

. HTTP, FTP, IRC, SSH, DNS, SMTP

Presentation

Syntax layer

· SSL, TLS, SSH, MPEG, JPEG

Session

· Synch & send to port

· API's, Sockets, WinSock

Transport

· End-to-end connections

· TCP, UDP, QUIC

Network

Packets

. IP, ICMP, IPSec, IGMP

Data Link

Frames

· Ethernet, PPP, Switch, Bridge

Physical

Physical structure

· Coax, Fiber, Wireless, Hubs, Repeaters

Application Layer – 7

- Only layer that directly interacts with the user
- Software applications, e.g., web browsers and e-mail clients, rely directly on its protocols
- Protocol examples
 - DNS, FTP, HTTP, SMTP, POP3, IMAP
- Most important layer for software engineers

Presentation Layer – 6

- This layer is a part of the operating system (OS)
- Converts incoming and outgoing data from one presentation format to another
- Responsible for translation, encryption, and compression of data
- Protocol examples
 - SSL, TSL

Session Layer – 5

- Controls the dialogues (connections) between computers
- Establishes, manages and terminates connections between the local and remote application
- Its services include authentication and reconnection after an interruption
- Protocol examples
 - RPC, PPTP

Transport Layer – 4

- Responsible for end-to-end communication over a network
- Transfers data, splitting it into pieces (segments)
- Provides logical communication between application processes
- Responsible for the management of error correction, providing quality and reliability to the end user
- Important concept for web devs port number
- Protocol examples TCP, QUIC, UDP

Network Layer – 3

- Transfers packets from one node to another
- Responds to service requests from the transport layer and issues service requests to the data link layer
- Protocol examples
 - IP, IPv6, IPSec, ICMP, IGMP
- Important concept for web devs – IP address

Data Link Layer – 2

Frame

footer

- Provides node-to-node data transfer
- The data transferred is split into packets frames
- Divides into two sublayers
 - Medium Access Control (MAC) layer controlling how devices in a network gain access to a medium and permission to transmit data
 - Logical Link Control (LLC) layer identifying and encapsulating network layer protocols, controls error checking and frame synchronization
- Example protocols ATM, Ethernet, MAC

Physical Layer – 1

- It is responsible for the physical connection between two or more parties
- Converts the binary from the upper layers into signals, transmits them over local media (electrical, light, or radio signals)
- Examples
 - Ethernet
 - USB
 - Bluetooth
 - 802.11a/b/g/n

TCP/IP Protocol Suite

- The 7-layer OSI model is too complicated, it's designed for network engineers and communication experts
- In software development a simplified networking models exists, called the "The TCP/IP protocol suite" with 4 layers
 - Link combines physical media and data link protocols
 - Internet transmits packets between
 2 hosts
 - Transport provides communication between 2 endpoints
 - Application defines the way apps talk to each other

Network Hardware

Basic Hardware Components

Network Hardware

- Cables
- Routers
- Repeaters, Hubs and Switches
- Bridges
- Gateways
- Network Interface Cards

Cables and Routers

 Network cables – the transmission media to transfer data from

one device to another

 Router – connecting device that transfers data packets between different computer networks (operates on level 3 of OSI)

Repeaters, Hubs and Switches

- Repeaters, hubs and switches connect network devices together so that they can function as a single segment
 - Repeater receives a signal and regenerates it before re-transmitting, so that it can travel longer distances
 - Hub multiport repeater (operates on level 1 of the OSI model)
 - Switch receives data from a port, uses packet switching to resolve the destination device and forwards the data to the particular destination (operates on level 2 of the OSI model)

Bridges and Gateways

Bridge

- Connects two separate but similar Ethernet network segments
- Forwards packets from the source network to the destined network (operates on level 2 of OSI)

Gateway

- Connects networks that work upon different protocols
- The entry and the exit point of a network (controls the access to other networks)
- Level 4, 5, 6 or 7 of the OSI model (same as Firewalls)

Network Interface Cards – NIC

- NIC a computer component that connects it to the network
- There are two types of network cards
 - Internal
 - External

The Future of the Internet

The Future of the Internet

- A typical modern home consists of: PC, Laptop, Tablet, Phones, TV, Security Camera, Air Conditioner, Smart Watch, Printer, Music Player, Light, etc.
- The "Internet of Things" will expand
 - Healthcare, agriculture, wearables, manufacturing
 - Smart homes, cars and cities (pollution, parking, energy)
 - In 2030 there will be 50 billion devices connected to the Internet of Things

Summary

- Internet and Definitions of Internet
- Sending and Receiving Data
- OSI model
 - Layers
- Network Hardware
- The Future of the Internet

Questions?

SoftUni Diamond Partners

Решения за твоето утре

THE CROWN IS YOURS

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg/
- © Software University https://softuni.bg

