## MAT 150A Homework 1

Hardy Jones 999397426 Professor Schilling Fall 2014

1.

$$X = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}, Y = \begin{bmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{bmatrix}$$

(1)

$$XY = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a+d & b+e+af \\ 0 & 1 & c+f \\ 0 & 0 & 1 \end{bmatrix}$$

Since  $\mathbb{F}$  is a field, it is closed under addition and multiplication.

So,  $a+d, b+e+af, c+f \in \mathbb{F}$ .

Thus,  $XY \in H(F)$ .

(2) Given some array

$$A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & a & b & 1 & 0 & 0 \\ 0 & 1 & c & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a & b & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & -c \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & a & 0 & 1 & 0 & -b \\ 0 & 1 & 0 & 0 & 1 & -c \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 & 1 & -a & ac - b \\ 0 & 1 & 0 & 0 & 1 & -c \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

So, we assume our inverse is

$$A^{-1} = \begin{bmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix}$$

.

Since  $\mathbb{F}$  is a field, it has additive inverses, is closed under addition and multiplication.

So, -a, ac - b,  $-c \in \mathbb{F}$ , and  $A^{-1} \in H(F)$ .

We need to check that  $A^{-1}$  is the inverse by showing that  $AA^{-1} = I = A^{-1}A$ 

$$AA^{-1} = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$A^{-1}A = \begin{bmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

So, the closed form of the inverse is given by

$$A^{-1} = \begin{bmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix}$$

.

(3) Given