Consider the hydrogel that has the smallest molecular weight (review the Module 11 Lecture). Use its material parameters from Lecture 11 and draw the graphs of $G'(\omega)$ and $G''(\omega)$ for $0<\omega<1 kHz$.

From lecture 11, slide 5, the parameters obtained by fitting the Maxwell-Weichert Model to the results of the stress relaxation experiment for the four Alginate Hydrogels are the following:

Alginate Type:	280 kDa	70 kDa	35 kDa	35 kDa – 5k PEG
τ1 (s)	510	125	81	39
E1 (norm.)	0.25	0.46	0.5	0.58
τ2	11111	1734	900	637
E2	0.75	0.54	0.5	0.42

The 35 kDa hydrogel is the smaller molecular weight hydrogel and the model parameters are:

- Tau1 = 81
- E1 = 0.5
- Tau2: 900
- E2 = 0.5

Slide 4, lecture 11, gives the equations of the components of the harmonic modulus G:

$$G = G' + i G''$$

Where

- G' = E1 * (Tau1² w²/(1+ Tau1² w²)) + E2 * (Tau2² w²/(1+ Tau2² w²))
- G" = E1 * $(Tau1 w/(1+Tau1^2 w^2))^2 + E2 * (Tau2 w/(1+Tau2^2 w^2))$

Using these equations for 0 < w < 1kHz, we obtain the following plot:

Yves Greatti 1/2

- G', storage modulus, increases slowly to reach a plateau at 1, indicating that the hydrogel preserves energy well and the elastic component is constant across the low-frequency range.
- G", loss modulus, decreases rapidly, from 0.07 to almost 0, indicating the viscous component dissipates quickly as frequency increases.

As low-frequency G' and G" are close, the hydrogel shows more viscous behavior and as frequency increases, G' dominates thus the hydrogel behaves more elastically (stress relaxation is slower).

Yves Greatti 2/2