Análise de algoritmos

Nome:

1) Use a Indução Matemática para demonstrar que os resultados são válidos para qualquer inteiro positivo n.

a)
$$2 + 6 + 10 + ... + (4n - 2) = 2n^2$$
.

b)
$$2 + 4 + 6 + ... + 2n = n(n + 1)$$
.

c)
$$1 + 5 + 9 + ... + (4n - 3) = n(2n - 1)$$
.

d)
$$4 + 10 + 16 + ... + (6n - 2) = n(3n + 1)$$
.

e)
$$1 + 2 + 3 + ... + n = n(n + 1)/2$$
.

f)
$$2^0 + 2^1 + 2^2 + 2^3 + \ldots + 2^{n-1} = 2^n - 1$$
.

- 2) Prove que para qualquer inteiro n,
 - a) o número 2³ⁿ –1 é divisível pôr 7.
 - b) o número 3²ⁿ + 7 é divisível pôr 8.
 - c) O número $7^n 2^n$ é divisível pôr 5.
 - d) O número $7^{2n} + 16n 1$ é divisível pôr 64.
 - e) O número $2^{5n+1} + 5^{n+2}$ é divisível pôr 27.
 - f) O número $3^{4n+2} + 5^{2n+1}$ é divisível pôr 14.
 - g) O número $2^{2n} + 15n 1$ é divisível pôr 9.
- 3) Demonstrar que, para qualquer inteiro n,
 - a) $2^n > n$ para $n \ge 1$.
 - b) $n^2 > 5n + 10 para n > 6$.
 - c) $n^2 > n + 1$ para $n \ge 2$.
 - d) $n! > n^2$ para $n \ge 4$.
 - e) $1 + 2 + 3 + ... + n < n^2$ para n > 1.