4. 요구사항 개발 및 관리

주요내용

- ❖ 요구사항이란 무엇인가?
- ❖ 요구사항 개발은 어떻게 진행되는 것인가?
- ❖ 유스케이스 기반의 요구사항 분석은 무엇인가?

목차

- ❖ 강의 내용
 - 요구사항 개발
 - 요구사항 개발 프로세스
 - 유스케이스 기반의 요구사항 분석

- ❖ 팀 프로젝트 (5주차)
 - 제안서 발표

요구사항 개발

요구사항이란?

❖ 정의

- 문제의 해결 또는 목적 달성을 위하여 고객에 의해 요구되거나, 표준이나 명세 등을 만족하기 위하여 시스템이 가져야 하는 서비스 또는 제약사항
- 고객이 요구한 사항과 요구하지 않았더라도 당연히 제공되어야 한다고 가정되는 사항 들

요구사항의 중요성

❖ 요구사항의 중요성

- 참여자들로 하여금 개발되는 소프트웨어 제품을 전체적으로 파악하도록 하여 의사 소통 시간을 절약하게 해 주는 것
- 상세한 요구사항이 있어야만 산정이 가능하고, 이를 기반으로 계획을 세울 수 있기 때문

요구사항의 분류

❖ 기능적 요구사항(Functional Requirements)

- 수행될 기능과 관련되어 입력과 출력 및 그들 사이의 처리과정
- 목표로 하는 제품의 구현을 위해 소프트웨어가 가져야 하는 기능적 속성
 - 예) 워드 프로세서에서 파일 저장 기능, 편집 기능, 보기 기능 등

❖ 비기능적 요구사항(Non-Functional Requirements)

- 제품의 품질 기준 등을 만족시키기 위해 소프트웨어가 가져야 하는 성능, 사용의 용이성, 안전성과 같은 행위적 특성
- 시스템의 기능에 관련되지 않는 사항을 나타냄
 - 예) 성능(응답 시간, 처리량), 사용의 용이성, 신뢰도, 보안성, 운용상의 제약, 안전성 등

요구사항 개발 프로세스

요구사항 개발

❖ 의미

발주자나 고객으로부터 구현될 소프트웨어 제품의 사양을 정확히 도출하여 요구사항을 명세하고, 이를 분석한 결과를 개발자들이 이해할 수 있는 형식으로 기술하는 작업

❖ 요구사항 개발 단계

요구사항 추출 [1/2]

❖ 개요

- 고객이 원하는 요구사항을 수집
- 수집된 요구사항을 통해 개발되어야 하는 시스템에 대한 사용자 요구와 시스템 기능
 및 제약사항을 식별하고 이해하는 단계

❖ 중요성

- 고객의 최초 요구사항은 추상적이기 때문에 수주자는 정확한 요구사항을 파악
- 요구사항은 계약 및 최초 산정의 기본이 됨

요구사항 추출 [2/2]

❖ 요구사항 추출 기법의 종류

- 인터뷰
 - 개발될 프로젝트 참여자들과의 직접적인 대화를 통하여 정보를 추출하는 일반적인 요구사항 추출 기법
 - 획득 가능한 정보
 - ▶ 개발된 제품이 사용될 조직 안에서의 작업 수행 과정에 대한 정보
 - ▶ 사용자들에 관한 정보 등
 - 요구사항 분석가는 인터뷰 전략을 세우고 목표를 달성해야 함

- 시나리오

- 시스템과 사용자간에 상호 작용을 시나리오를 작성하여 시스템 요구사항을 추출
- 시나리오가 포함해야 할 필수 정보
 - ▶ 시나리오로 들어가기 이전의 시스템 상태에 대한 기술
 - ▶ 정상적인 사건의 흐름
 - ▶ 정상적인 사건의 흐름에 대한 예외 흐름
 - ▶ 동시에 수행되어야 할 다른 행위의 정보
 - 시나리오의 완료 후에 시스템 상태의 기술

요구사항 분석 [1/2]

❖ 개요

- 추출된 고객의 요구사항을 분석 기법을 이용하여 식별 가능한 문제들을 도출하고 요구 사항을 이해하는 과정
- 참여자들로부터 추상적 요구사항을 명세서 작성 전에 완전하고 일관성 있는 요구사항으로 정리하는 활동

❖ 요구사항 분석의 기준

- 시스템을 계층적이고 구조적으로 표현하여야 한다.
- 외부 사용자와의 인터페이스 및 내부 시스템 구성요소 간의 인터페이스를 정확히 분석 하여야 한다.
- 분석단계 이후의 설계와 구현단계에 필요한 정보를 제공하여야 한다.

요구사항 분석 [2/2]

❖ 요구사항 분석 기법의 종류

- 구조적 분석(Structured Analysis)
 - 시스템의 기능을 중심으로 구조적 분석을 실행
 - 시스템의 기능을 정의하기 위해서 프로세스들을 도출하고, 도출된 프로세스 간의 데이터 흐름을 정의

- 객체지향 분석

- 요구사항을 사용자 중심의 시나리오 분석을 통해 유스케이스 모델(Usecase Model)로 구축하는 것
- 요구사항을 추출하고, 유스케이스의 실체화(Realization)과정을 통해 추출된 요구사항을 분석

요구사항 명세 [1/4]

❖ 의미

- 분석된 요구사항을 명확하고 완전하게 기록하는 것
- 소프트웨어 시스템이 수행하여야 할 모든 기능과 시스템에 관련된 구현상의 제약 조건
 및 개발자와 사용자가 합의한 성능에 관한 사항 등을 명세

❖ 최종 결과물

- 요구사항 명세서(SRS: Software Requirement Specification)

요구사항 명세 (2/4)

- ❖ 요구사항 명세서(SRS: Software Requirement Specification)
 - 프로젝트 산출물 중 가장 중요한 문서
 - 사용자, 분석가, 개발자 및 테스터 모두에게 공동의 목표를 제시
 - 시스템이 어떻게 수행될 것인가가 아닌 무엇을 수행할 것인가에 대한 기술
 - 시스템이 이루어야 할 목표를 기술하지만 목표를 달성하기 위한 해결 방법은 기술하지 않는다.

요구사항 명세 (3/4)

❖ IEEE-Std-830 명세 표준

- 1. 소개(Introduction)
- 1.1 SRS**의 목적**(Purpose of SRS)
- 1.2 산출물의 범위(Scope of product)
- 1.3 정의,두문자어,약어(Definitions, acronyms and Abbreviations)
- 1.4 참조문서(References)
- 1.5 SRS **개①**(Overview of rest of SRS)
- 2. **일반적인 기술사항**(General Description)
- 2.1 제품의 관점(Product Perspective)
- 2.2 제품의 기능(Product Functions)
- 2.3 사용자 특성(User Characteristics)
- 2.4 제약사항(Constraints)
- 2.5 **가정 및 의존성**(Assumptions and Dependencies)

- 3. 상세한 요구사항 (Specific requirements)
- 3.1 기능적 요구사항(Functional requirements)
 - 3.1.1 기능적 요구사항1 (Functional requirements 1)
 - 3.1.1.1 **개요**
 - 3.1.1.2 입력물
 - 3.1.1.3 프로세싱(Processing)
 - 3.1.1.4 **산출물(Outputs)**
 - 3.1.1.5 수행 요구사항(Performance requirements)
 - 3.1.1.6 디자인 제약사항(Design constraints)
 - 3.1.1.7 **속성**(Attributes)
 - 3.1.1.8 기타 요구사항(Other requirements)

. . .

- 3.2 **외부적인 인터페이스 요구사항**(External interface requirements)
 - 3.2.1 사용자 인터페이스(User Interface)
 - 3.2.2 **하드웨어 인터페이스**(Hardware interface)
 - 3.2.3 소프트웨어 인터페이스(Software interface)
 - 3.2.4 커뮤니케이션 인터페이스(Communications interface)

부록(Appendices)

인덱스(Index)

요구사항 명세 (4/4)

❖ 요구사항 명세서를 작성하기 위한 명세 원리

- 시스템이 수행할 모든 기능과 시스템에 영향을 미치는 제약 조건을 명확하게 기술
- 명세 내용은 고객과 개발자 사이에서 모두가 이해하기 쉽고 간결하게 작성
- 기술된 모든 요구사항은 검증이 가능하기 때문에 원하는 시스템의 품질, 상대적 중요 도, 품질의 측정 및 검증 방법 및 기준 등을 명시
- 요구사항 명세서는 시스템의 외부 행위를 기술하는 것으로, 특정한 구조나 알고리즘을 사용하여 설계하지 않도록 함
- 참여자들이 시스템의 기능을 이해하거나, 변경에 대한 영향 분석 등을 위하여 계층적으로 구성
- 요구사항을 쉽게 참조할 수 있도록 고유의 식별자를 가지고 번호화하고, 모든
 요구사항이 동등한 것이 아니기 때문에 요구사항을 우선 순위화

요구사항 검증 [1/5]

❖ 개요

- 사용자 요구가 요구사항 명세서에 올바르게 기술되었는가에 대해 검토하는 활동

❖ 검증 내용

- 요구사항이 사용자나 고객의 목적을 완전하게 기술하는가?
- 요구사항 명세가 문서 표준을 따르고, 설계 단계의 기초로 적합한가?
- 요구사항 명세의 내부적 일치성과 완정성이 있는가?
- 기술된 요구사항이 참여자의 기대에 일치하는가?

요구사항 검증 [2/5]

❖ 요구사항 타당성 검증

- 검증 활동

- 명세 된 요구사항의 구현 가능성 검증
- 명세 표현의 정확성 및 완전성 검증
- 표준과의 일치성 검증
- 요구사항 간의 충돌 검증
- 기술적 결함에 대한 검증

- 검증 목적

- 시스템 요구사항이 설계기준에 따라 하드웨어 형상 항목, 소프트웨어 형상 항목 등에 적절하게 할당되었는지 검증
- 안전, 보안, 및 위험성과 관련된 소프트웨어 요구사항이 정확한지 검증

요구사항 검증 (2/5)

❖ 요구사항 타당성 검증 사항

검증 사항	설명
무결성(correctness)과 완전성(completeness)	사용자의 요구를 에러 없이 완전하게 반영하고 있는가?
일관성(consistency)	요구사항이 서로간에 모순되지 않는가?
명확성(unambiguous)	요구분석의 내용이 모호함 없이 모든 참여자들에 의해 명확하게 이해될 수 있는가?
기능성(functional)	요구사항 명세서가 "어떻게" 보다 "무엇을"에 관점을 두고 기술되 었는가?
검증 가능성(verifiable)	요구사항 명세서에 기술된 내용이 사용자의 요구를 만족하는가? 개발된 시스템이 요구사항 분석 내용과 일치하는지를 검증할 수 있는가?
추적 가능성(traceable) 및 변경 용이성	시스템 요구사항과 시스템 설계문서를 추적할 수 있는가?

요구사항 검증 (3/5)

❖ 요구사항 명세 구조 검증

- 개요
 - 정의된 요구사항들로부터 구현되는 시스템이 사용자의 요구와 목표를 만족하는가에 대해 확인하는 활동
- 검증 항목
 - 각 단계별 명세 요건들이 완전하고 정확하게 명세 되었는가
 - 요구 명세서가 내부적으로 일관성을 가지고 있는가
- 목적
 - 요구사항들 간의 정확성과 완전성 및 일치성을 확립

요구사항 검증 (4/5)

❖ 요구사항 공통 어휘 검증

- 개요
 - 요구사항 추출 단계에서 나온 공통 용어에 대하여 외부 사용자 또는 고객과 검증

유스케이스 기반의 요구사항 분석

요구사항 분석

- ❖ 의미
 - 요구사항 명세서 작성의 기반을 다지는 작업
- ❖ 요구사항 분석 방법
 - 객체지향 방법인 유스케이스 기반 분석

UML의 역사

통합된 표준 모델링 언어, UML

UML의 표기법(notation)만 알고 있다면 프로젝트 이해 관계자간의 의사소통의 불일치를 지적할 수 있다!

시스템 구축 시 UML의 역할

유스케이스 다이어그램[1/2]

❖ 개요

- 사용자의 관점에서 시스템의 서비스 혹은 기능 및 그와 관련한 외부 요소를 보여주는 다이어그램
- 고객과 개발자가 함께 보며 요구사항에 대한 의견을 조율할 수 있음

유스케이스 다이어그램의 구성요소

시스템(System)

❖ 의미

- 만들고자 하는 시스템의 범위

❖ 표기법

- 유스케이스나 액터를 둘러싼 사각형의 틀을 그리고, 시스템이나 모델의 명칭을 사각형 안쪽 상단에 기술
- 서브시스템일 경우〈〈subsystem〉〉이라 기술하고 모델(액터, 유스케이스)의 단위일 경우에 〈〈useCaseModel〉〉이라고 기술한다

<<subsystem>>
서브시스템 명칭

<시스템의 표현 방법>

〈〈subsystem〉〉 음료수 자동판매기 시스템

<예시>

액터(Actor)

❖ 의미

- 시스템의 외부에 있으면서 시스템과 상호 작용을 하는 사람 또는 다른 시스템

❖ 표기법

- 원과 선을 조합하여 사람 모양으로 표현
- 그 위 또는 아래에 액터명 표시
- 액터명은 액터의 역할로 정함

유스케이스(Usecase)

❖ 의미

- 시스템이 액터에게 제공해야 하는 기능의 집합
- 시스템의 요구사항을 보여줌

❖ 표기법

- 타원으로 표시하고 그 안쪽이나 아래쪽에 유스케이스명을 기술
- 유스케이스의 이름은 "~한다" 와 같이 동사로 표현
- 각 유스케이스가 개발될 기능 하나와 연결될 수 있도록 한다.

관계(Relationship) (1/3)

❖ 의미

- 액터와 유스케이스 사이의 의미 있는 관계

❖ 종류

- 연관 관계(Association)
- 의존 관계
 - 포함 관계(include)
 - 확장 관계(extend)
- 일반화 관계(generalization)

관계(2/3)

관계 종류	설명	표기법
연관 관계	 유스케이스와 액터간의 상호작용이 있음을 표현 유스케이스와 액터를 실선으로 연결함 	어는 어른 어른 소리 사이스명 어른 소리 사이스명 어른 소리 사이스명 어른 소리 가지 아들는 소리 가지 아니는 지수를 가지 아니는 지수를 가지 않는데 가지 아니는 지수를 가지 되었다.
포함 관계 (include)	 유스케이스가 다른 유스케이스를 포함하는 경우 포함되는 유스케이스는 포함하는 유스케이스를 실행하기 위해 반드시 실행되어야하는 유스케이스 포함하는 쪽에서 포함되는 쪽으로 점선으로 된 화살표를 그리고, <<include>>라는 표시 한다.</include> 	기능을 포함하는 < <include>> 기능에 포함되는 유스케이스 유스케이스 자판기를 연다</include>

관계(3/3)

관계 종류	설명	표기법
확장 관계 (extend)	 어떠한 유스케이스로부터 다른 유스케이스가 특정 조건에서 생성되는 경우 확장 기능 유스케이스는 특정 조건이나 액터의 선택에 따라 발생 확장된 기능을 가지는 유스케이스에서 확장 대상이 되는 원래의 기능을 가진 유스케이스 쪽으로 점선 화살표를 그리고, <<extend>>라고 함께 표시한다.</extend> 	확장대상 유스케이스 < <extend>> 유스케이스 유스케이스 자판기에 돈을 투입한다</extend>
일반화 관계 (generalization)	 액터나 유스케이스가 구체화 된 다른 여러 액터나 유스케이스로 구성될 경우 구체적인 유스케이스로부터 추상적인 유스케이스 쪽으로 속이 비어있는 삼각형 모양으로 된 실선 화살표를 그려 표현한다. 	추상적인 유스케이스 유스케이스 동전을 투입한다 지폐를 투입한다

단순화된 유스케이스 다이어그램의 예

유스케이스 다이어그램 작성 순서

- 사용자 식별
- 외부 시스템 식별

- 액터가 요구하는 서비스 식별
- 액터가 요구하는 정보 식별
- 액터가 시스템과 상호작용하는 행위 식별
- 액터와 유스케이스간의 연관관계 정의
- 유스케이스간 포함, 확장관계 정의
- 액터간, 유스케이스간의 일반화 정의

액터 식별

❖ 액터를 찾기 위한 질문들

- 누가 정보를 제공하고, 사용하고, 삭제하는가?
- 누가 또는 어떤 조직에서 개발될 시스템을 사용할 것인가?
- 누가 요구사항에 대해 관심을 가지고, 시스템이 만들어낸 결과에 관심이 있는가?
- 누가 시스템이 잘 운영될 수 있도록 유지보수 및 관리를 하는가?
- 개발될 시스템과 상호작용하는 하드웨어나 소프트웨어 시스템은 무엇인가?

유스케이스 식별

❖ 유스케이스를 찾기 위한 질문들

- 액터가 원하는 시스템 제공 기능은 무엇인가?
- 액터는 시스템에 어떤 정보를 생성, 수정, 조회, 삭제하고 싶어 하는가?
- 액터는 시스템의 갑작스러운 외부 변화에 대해 어떤 정보를 필요로 하는가?
- 시스템이 어떤 기능을 제공하면 액터의 일상 작업이 효율적이고 편리해지는가?
- 모든 기능 요구사항들을 만족할 수 있도록 유스케이스가 모두 식별되었는가?

관계를 식별하기 위한 질문

❖ 연관 관계(Association)

- 액터와 유스케이스 간에 상호 작용이 존재하는가?

❖ 포함 관계(Include)

- 이 유스케이스를 실행하기 위하여 반드시 실행되어야 하는 유스케이스가 존재하는가?

❖ 확장관계(Extend)

- 이 유스케이스를 실행하기 위하여 기존 유스케이스를 참조하는가?

❖ 일반화 관계(generalization)

- 액터 또는 유스케이스가 구체화 된 다른 여러 액터나 유스케이스를 가지고 있는가?

유스케이스 다이어그램의 예 [1/6]

- ❖ 예제 요구사항
 - SE사는 K고객으로부터 다음의 요구사항을 전달받았다.
 - 음료수 자동판매기 시스템을 만드시오.
- ❖ SE사는 K고객의 요구사항을 Usecase Diagram으로 모델링하기로 한다.

유스케이스 다이어그램의 예 [2/6]

❖ 시스템 식별

- 요구사항을 통해 만들고자 하는 시스템은 "음료수 자동판매기 시스템"

〈〈subsystem〉〉 음료수 자동판매기 시스템

유스케이스 다이어그램의 예 (3/6)

❖ 액터 식별

- 음료수 자동판매기(시스템) 외부에서 상호작용하는 액터는 소비자, 관리자, 수금원으로 식별할 수 있다.

유스케이스 다이어그램의 예 (4/6)

❖ 유스케이스 식별

유스케이스 다이어그램의 예 (5/6)

❖ 관계 정의

유스케이스 다이어그램의 예 (6/6)

완성된 유스케이스 다이어그램의 예제

유스케이스 기술서 작성 [1/3]

❖ 개요

- 유스케이스 다이어그램을 보완하기 위한 산출물
- 유스케이스 다이어그램과의 차이
 - 유스케이스 다이어그램: 유스케이스는 시스템의 기능을 표현하는 것
 - 유스케이스 기술서: 각각의 유스케이스에 대해서 해당 유스케이스가 어떻게 수행되는지 를 표현하는 수단

유스케이스 기술서 작성 [2/3]

- ❖ 유스케이스 기술서 항목
- ❖ 유스케이스 명
- ❖ 액터 명
- ❖ 유스케이스 개요 및 설명
- ❖ 사전 및 사후 조건
- ❖ 작업 흐름
 - 정상흐름(Normal Flow): 해당 유스케이스가 정상적으로 수행되는 흐름을 표현하는 절차
 - 대치 흐름(Alternative Flow): 유스케이스 내의 작업 흐름이 수행되는 중에 특정 시점에서 여러 가지 선택적인 흐름으로 나뉘어질 경우에 발행하는 흐름
 - 예외 흐름(Exceptional Flow): 유스케이스 내의 작업 흐름이 수행되는 중에 발생할 수 있는 예외 상황이나 오류를 표현하는 흐름
- ❖ 시나리오: 각 시나리오는 유스케이스의 특정한 예를 나타냄

유스케이스 기술서 작성 (3/3) 유스케이스 기술서 예제

- ❖ 유스케이스 기술서 예제
- ❖ 유스케이스명: 음료수 보충
- ❖ 액터명: 관리자
- ❖ 유스케이스 개요 및 설명
 - 음료수 관리자는 2주마다 음료수 자동판매기의 부족한 음료수를 보충한다.
- ❖ 사전 조건: 마지막으로 음료수를 보충한지 2주가 지났다.
- ❖ 작업 흐름
 - 정상흐름
 - 1. 유스케이스는 2주마다 시작한다.
 - 2. 관리자는 음료수 자동판매기를 연다.
 - 3. 부족한 음료수를 보충한다.
 - 5. 관리자는 음료수 자동판매기를 닫고 유스케이스는 종료된다.
- ❖ 사후 조건: 음료수 자동판매기에 부족한 음료수가 보충되었다.

연습문제

- 1. 요구사항을 정확하게 명세하는 이유는 무엇인가?
- 2. 기능적 요구사항과 비기능적 요구사항의 차이점을 나열하라.
- 3. 요구사항 개발 단계를 나타내어라.
- 4. 요구사항 명세서(SRS: Software Requirement Specification)란 무엇인가?
- 5. 유스케이스 다이어그램을 작성하는 이유는 무엇인가?
- 6. 유스케이스 다이어그램을 표현하는 절차를 설명하라.

팀 프로젝트

5주차

이번 주 할일

❖ 각 팀별로 작성된 제안서를 발표한다. (각 10분씩)

다음 주 제출 문서

❖ 요구사항 명세서를 작성하여 제출한다.