Main figure in climate change extinctions

March 25th, 2024

```
Load libraries and data
knitr::opts_chunk$set(echo = TRUE, cache.lazy = FALSE, cache = TRUE)
rm(list = ls())
 root.dir = "C:/Users/mcu08001/Documents/1New Research/CC MetaRisk2/Analysis"
library(ggplot2); library(dplyr); library(ggpubr);
dataP<-read.table("Metarisk2 aggthres 5.txt",header=T); #newest data</pre>
dataP2<-dataP[is.finite(dataP$Pre.Ind.Rise),]; attach(dataP2) # need to elimi</pre>
nate NA s for pre-industrial rise or stat programs crash
#Bayesian stan model proportional and weighted
#betareg requires no 0s or 1s
koffset = 0.001 #the k that gives the best posterior predictive check
percent2 <- adj.percent</pre>
percent2[adj.percent == 0] = koffset;
percent2[adj.percent == 1] = 1 - koffset;
dataP2$percent2 <- percent2;</pre>
data.use<-dataP2
```

Load scenarios

Table x: Extinction risk by IPCC scenario, with 95% credible intervals

Scenario	Predicted.Temperature	lower.CI	upper.CI
1.2	0.0144	0.0115	0.0179
1.5	0.0183	0.0146	0.0226
2.0	0.0270	0.0217	0.0334
2.9	0.0540	0.0429	0.0669
4.3	0.1490	0.1157	0.1879
5.4	0.2968	0.2302	0.3714

Create figures

```
Fig1<-ggplot(data = pred.reg.df)+
  stat_density2d(data = data.use, aes(x=Pre.Ind.Rise, y=percent2, fill = ..de
nsity...^.5),
                 geom = "tile", contour = FALSE, n = 200, show.legend = FALSE
) +
  scale_fill_continuous(low = "white", high = "#B1C2CB") +
  scale x continuous(breaks = seq(0,5,1)) +
  geom_point(data = data.use, aes(x=Pre.Ind.Rise, y=percent2, size = log(Tota
1.N)), alpha = 0.7, shape = 20, color = "#7F96A2") +
  geom ribbon(data = pred.reg.df, aes(x=P.Ind,ymin=low linetg,ymax=hi linetg)
,alpha=.2,fill="#D00000")+
  geom_segment(x = ssps[2], xend = ssps[2], y = -Inf, yend = tpred[2], color
= "#0199C4", linewidth = 1.5) +
  geom\_segment(x = ssps[3], xend = ssps[3], y = -Inf, yend = tpred[3], color
= "#0D417D", linewidth = 1.5) +
  geom\_segment(x = ssps[4], xend = ssps[4], y = -Inf, yend = tpred[4], color
= "#F68928", linewidth = 1.5) +
  geom_segment(x = ssps[5], xend = ssps[5], y = -Inf, yend = tpred[5], color
= "#EE1C25", linewidth = 1.5) +
  geom_segment(x = ssps[6], xend = ssps[6], y = -Inf, yend = tpred[6], color
= "#AC1A1A", linewidth = 1.5) +
  geom\_segment(y = tpred[2], xend = ssps[2], x = -Inf, yend = tpred[2], color
= "#0199C4", linewidth = 1.5) +
geom segment(y = tpred[3], xend = ssps[3], x = -Inf, yend = tpred[3], color
```

```
= "#0D417D", linewidth = 1.5) +
  geom\_segment(y = tpred[4], xend = ssps[4], x = -Inf, yend = tpred[4], color
= "#F68928", linewidth = 1.5) +
  geom_segment(y = tpred[5], xend = ssps[5], x = -Inf, yend = tpred[5], color
= "#EE1C25", linewidth = 1.5) +
  geom_segment(y = tpred[6], xend = ssps[6], x = -Inf, yend = tpred[6], color
= "#AC1A1A", linewidth = 1.5)+
  geom line(data = pred.reg.df, aes(x=P.Ind,y=mean linetg),size=3,color="#D00
000")+
  xlab("Pre-industrial rise in temperature (C)") + ylab("Predicted extinction
risk")+
  ggtitle("(A)") +
  theme_classic()+ coord_cartesian(xlim = c(0,5.5), ylim = c(0,.30)) + scale_
y_continuous(breaks = seq(0,.3,.05)) +
  theme(axis.title=element text(size=18),title=element text(size=20),axis.tex
t = element text(size=16))+
  guides(size=F)
Fig1
```


#ggsave("Fig1 overall.png",width=6,height=4.8,unit="in",dpi="print")
max(data.use\$Pre.Ind.Rise)
[1] 8

```
FigS1<-ggplot(data = pred.reg.df)+
  stat density2d(data = data.use, aes(x=Pre.Ind.Rise, y=percent2, fill = ..de
nsity...^.5),
                 geom = "tile", contour = FALSE, n = 200, show.legend = FALSE
) +
  scale_fill_continuous(low = "white", high = "#B1C2CB") +
  scale x continuous(breaks = seq(0,8,1)) +
  geom_point(data = data.use, aes(x=Pre.Ind.Rise, y=percent2, size = log(Tota
1.N), alpha = 0.7, shape = 20, color = "#7F96A2") +
  geom ribbon(data = pred.reg.df, aes(x=P.Ind,ymin=low linetg,ymax=hi linetg)
,alpha=.2,fill="#D00000")+
  geom line(data = pred.reg.df, aes(x=P.Ind,y=mean linetg),size=3,color="#D00
000")+
  xlab("Pre-industrial rise in temperature (C)") + ylab("Predicted extinction
risk")+
  theme_classic()+ coord_cartesian(\timeslim = c(0,8), ylim = c(0,1)) +
  theme(axis.title=element_text(size=18),title=element_text(size=20),axis.tex
t = element_text(size=16))+
  guides(size=F)
FigS1
```


#ggsave("FigS1 overall.png",width=8,height=6,unit="in",dpi="print")
scenes <- read.table("ipcc scenario temps.txt",header=T); attach(scenes) # im
port IPCC scenarios by 5 year increment</pre>

```
## The following object is masked from dataP2:
##
##
       Year
fine.time \leftarrow seq(2000,2100,1)
#create finer interpolated predictions
sm.1.1.9 \leftarrow loess(SSP1.1.9 \sim Year, span = 0.75)
sm.1.2.6 \leftarrow loess(SSP1.2.6 \sim Year, span = 0.75)
sm.2.4.5 \leftarrow loess(SSP2.4.5 \sim Year, span = 0.75)
sm.3.7.0 <- loess(SSP3.7.0 ~ Year, span = 0.75)
sm.5.8.5 \leftarrow loess(SSP5.8.5 \sim Year, span = 0.75)
pSSP1.1.9 <- predict(sm.1.1.9, newdata = fine.time)</pre>
pSSP1.2.6 <- predict(sm.1.2.6, newdata = fine.time)</pre>
pSSP2.4.5 <- predict(sm.2.4.5, newdata = fine.time)</pre>
pSSP3.7.0 <- predict(sm.3.7.0, newdata = fine.time)</pre>
pSSP5.8.5 <- predict(sm.5.8.5, newdata = fine.time)
fine.scenes <- data.frame(Year = fine.time, SSP1.1.9 = pSSP1.1.9, SSP1.2.6 = p
SSP1.2.6, SSP2.4.5 = pSSP2.4.5, SSP3.7.0 = pSSP3.7.0, SSP5.8.5 = pSSP5.8.5)
fine.scenes[,2:6] <- round(fine.scenes[,2:6],2)</pre>
pred.reg.hi = data.frame(x = pred.reg.df2[,1],pred.reg.df2[11:13])
scen.preds<-merge(fine.scenes,pred.reg.hi,by.x = "SSP1.1.9",by.y = "x")</pre>
names(scen.preds)[names(scen.preds) %in% c("mean_linetg","low_linetg","hi_lin
etg")]<- c("mean_line.1.9","low_line.1.9","hi_line.1.9")
scen.preds<-merge(scen.preds,pred.reg.hi,by.x = "SSP1.2.6",by.y = "x")</pre>
names(scen.preds)[names(scen.preds) %in% c("mean_linetg","low_linetg","hi_lin
etg")]<- c("mean_line.2.6","low_line.2.6","hi_line.2.6")
scen.preds<-merge(scen.preds,pred.reg.hi,by.x = "SSP2.4.5",by.y = "x")</pre>
names(scen.preds)[names(scen.preds) %in% c("mean_linetg","low_linetg","hi_lin
etg")]<- c("mean_line.4.5","low_line.4.5","hi_line.4.5")
scen.preds<-merge(scen.preds,pred.reg.hi,by.x = "SSP3.7.0",by.y = "x")</pre>
names(scen.preds)[names(scen.preds) %in% c("mean_linetg","low_linetg","hi_lin
etg")]<- c("mean_line.7.0","low_line.7.0","hi_line.7.0")
scen.preds<-merge(scen.preds,pred.reg.hi,by.x = "SSP5.8.5",by.y = "x")</pre>
names(scen.preds)[names(scen.preds) %in% c("mean_linetg","low_linetg","hi_lin
etg")]<- c("mean_line.8.5","low_line.8.5","hi_line.8.5")
Fig1b<-ggplot(data = scen.preds)+
  geom hline(yintercept = c(0,.05,.1,.15,.2,.25,.3), color = "lightgrey") +
  geom_ribbon(aes(x=Year,ymin=low_line.8.5,ymax=hi_line.8.5),alpha=.2,fill="#
AC1A1A")+
  geom smooth(aes(x=Year,y=mean_line.8.5,color="#AC1A1A"),linewidth=2, se=F)+
  geom_ribbon(aes(x=Year,ymin=low_line.7.0,ymax=hi_line.7.0),alpha=.2,fill="#
```

```
EE1C25")+
  geom smooth(aes(x=Year,y=mean line.7.0,color="#EE1C25"),linewidth=2, se=F)+
  geom_ribbon(aes(x=Year,ymin=low_line.4.5,ymax=hi_line.4.5),alpha=.2,fill="#
F68928")+
  geom_smooth(aes(x=Year,y=mean_line.4.5,color="#F68928"),linewidth=2, se=F)+
  geom_ribbon(aes(x=Year,ymin=low_line.2.6,ymax=hi_line.2.6),alpha=.2,fill="#
0D417D")+
  geom smooth(aes(x=Year,y=mean line.2.6,color="#0D417D"),linewidth=2, se=F)+
  geom_ribbon(aes(x=Year,ymin=low_line.1.9,ymax=hi_line.1.9),alpha=.2,fill="#
0199C4")+
  geom_smooth(aes(x=Year,y=mean_line.1.9,color="#0199C4"),linewidth=2, se=F)+
  ggtitle("(B)") +
  xlab("Year") + ylab("Predicted extinction risk")+ scale_y_continuous(breaks
= seq(0,.35,.05)) +
  scale_x_continuous(breaks = seq(2000,2100,20)) + coord_cartesian(xlim = c(2
010,2100), vlim = c(0,.35) +
  theme_classic() + theme(axis.title=element_text(size=18),title=element_text
(size=20),axis.text = element_text(size=16),legend.title = element_text(size=
16),
                          legend.text = element text(size=14),legend.position
= c(.18, .8)) +
  scale_color_identity("IPCC Scenarios",guide = "legend", breaks = c("#AC1A1A
","#EE1C25","#F68928","#0D417D","#0199C4"),
                       labels =c("SSP5 - 8.5", "SSP3 - 7.0", "SSP2 - 4.5", "SSP1
- 2.6", "SSP1 - 1.9")) #+ quides(color=quide_legend(title="New Legend Title"))
## Warning: A numeric `legend.position` argument in `theme()` was deprecated
in ggplot2
## 3.5.0.
## i Please use the `legend.position.inside` argument of `theme()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Fig1b
## geom smooth() using method = 'loess' and formula = 'y \sim x'
## geom_smooth() using method = 'loess' and formula = 'y ~ x'
## geom_smooth() using method = 'loess' and formula = 'y ~ x'
## geom smooth() using method = 'loess' and formula = 'y \sim x'
## geom smooth() using method = 'loess' and formula = 'y \sim x'
```



```
#ggsave("Fig1b scenes.png",width=6,height=4.8,unit="in",dpi="print")

ggarrange(Fig1, Fig1b, nrow = 2)

## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
```


#ggsave("Fig1 combined.png", width=6, height=10, unit="in", dpi="print")