BÀI GIẢNG PHƯƠNG PHÁP TÍNH CHƯƠNG 2-GIẢI GẦN ĐÚNG PHƯƠNG TRÌNH BÀI 3. PHƯƠNG PHÁP NEWTON

TS NGUYỄN ĐÌNH DƯƠNG BÔ MÔN TOÁN ỨNG DUNG - KHOA KHOA HOC ỨNG DUNG

Email: duongnd@hcmut.edu.vn

Ngày 15/02/2021

- 2.1 Bài 2.1: Phương pháp chia đôi
- 2.2 Bài 2.2: Phương pháp lặp đơn
- 2.3 Bài 2.3: Phương pháp Newton
- 2.4 Bài 2.4: Mở rộng phương pháp Newton

Nội dung

Phương pháp Newton

- 1.1 Công thức lặp
- 1.2 Sự hội tụ và sai số

Trao đổi

Nội dung

Phương pháp Newton

- 1.1 Công thức lặp
- 1.2 Sự hội tụ và sai số

Trao đổi

1. 1. Công thức lặp

Phương trình tiếp tuyến của đường cong y = f(x) tại điểm $M_0(x_0, f(x_0))$ có dạng

$$y = f'(x_0)(x - x_0) + f(x_0)$$

1. 1. Công thức lặp

Phương trình tiếp tuyến của đường cong y = f(x) tại điểm $M_0(x_0, f(x_0))$ có dạng

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Hoành độ của giao điểm của tiếp tuyến này với trục hoành là:

$$y = f(x)$$

$$(x_1, f(x_1))$$

$$\bar{x} x_2 \qquad x_1 \qquad x_0$$

$$0 = f'(x_0)(x_1 - x_0) + f(x_0) \text{ hay } x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

1. 1. Công thức lặp

Phương trình tiếp tuyến của đường cong y = f(x) tại điểm $M_0(x_0, f(x_0))$ có dạng

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Hoành độ của giao điểm của tiếp tuyến này với trục hoành là:

$$0 = f'(x_0)(x_1 - x_0) + f(x_0) \text{ hay } x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Nói chung, tại bước lặp x_k , sử dụng $f(x_k)$ và $f'(x_k)$ để dự đoán điểm f(x) cắt truc hoành:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

1. 1. Công thức lặp

Khai triển Taylor f(x) trong lân cận x_k

$$f(x_{k+1}) = f(x_k) + f'(x_k)(x_{k+1} - x_k) + \frac{f''(x_k)}{2} (x_{k+1} - x_k)^2 + \dots$$

Bỏ qua các số hạng từ bậc 2 ta được

$$f(x_{k+1}) \approx f(x_k) + (x_{k+1} - x_k) f'(x_k)$$

Mục tiêu: tìm x^* thỏa mãn $f(x^*) = 0$. nên cho $f(x_{k+1}) = 0$.

$$0 = f(x_k) + (x_{k+1} - x_k) f'(x_k)$$

giải tìm x_{k+1}

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 (1)

1. 1. Công thức lặp

Ví dụ 1.1

Giải phương trình với khoảng phân ly [3;4]:

$$x - x^{1/3} - 2 = 0$$

Đạo hàm

$$f'(x) = 1 - \frac{1}{3}x^{-2/3}$$

Công thức lặp

$$\begin{cases} x_0 = 3 \\ x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}} \end{cases}$$

$$\begin{cases} x_0 = 3, \\ x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}} \end{cases}$$

$$\begin{array}{ccc}
k & x_k & f'(x_k) & f(x) \\
\hline
0 & 3 &
\end{array}$$

$$\begin{cases} x_0 = 3, \\ x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}} \end{cases}$$

$$\begin{array}{cccc} k & x_k & f'(x_k) & f(x) \\ \hline 0 & 3 & 0.83975005 \end{array}$$

$$\begin{cases} x_0 = 3, \\ x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}} \end{cases}$$

$$\begin{array}{cccc} k & x_k & f'(x_k) & f(x) \\ 0 & 3 & 0.83975005 & -0.44224957 \end{array}$$

$$\begin{cases} x_0 = 3, \\ x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}} \end{cases}$$

k	x_k	$f'(x_k)$	f(x)
0	3	0.83975005	-0.44224957
1	3.52664429		

$$\begin{cases} x_0 = 3, \\ x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}} \end{cases}$$

k	x_k	$f'(x_k)$	f(x)
0	3	0.83975005	-0.44224957
1	3.52664429	0.85612976	

$$\begin{cases} x_0 = 3, \\ x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}} \end{cases}$$

k	x_k	$f'(x_k)$	f(x)
0	3	0.83975005	-0.44224957
1	3.52664429	0.85612976	0.00450679

$$\begin{cases} x_0 = 3, \\ x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}} \end{cases}$$

k	x_k	$f'(x_k)$	f(x)
0	3	0.83975005	-0.44224957
1	3.52664429	0.85612976	0.00450679
2	3.52138015		

$$\begin{cases} x_0 = 3, \\ x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}} \end{cases}$$

k	x_k	$f'(x_k)$	f(x)
0	3	0.83975005	-0.44224957
1	3.52664429	0.85612976	0.00450679
2	3.52138015	0.85598641	

$$\begin{cases} x_0 = 3, \\ x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}} \end{cases}$$

k	x_k	$f'(x_k)$	f(x)
0	3	0.83975005	-0.44224957
1	3.52664429	0.85612976	0.00450679
2	3.52138015	0.85598641	3.771×10^{-7}

$$\begin{cases} x_0 = 3, \\ x_{k+1} = x_k - \frac{x_k - x_k^{1/3} - 2}{1 - \frac{1}{3}x_k^{-2/3}} \end{cases}$$

k	x_k	$f'(x_k)$	f(x)
0	3	0.83975005	-0.44224957
1	3.52664429	0.85612976	0.00450679
2	3.52138015	0.85598641	3.771×10^{-7}
3	3.52137971	0.85598640	2.664×10^{-15}
4	3.52137971	0.85598640	0.0

1. 2. Sự hội tụ và sai số

Định lý 1.1

Cho phương trình f(x) = 0 có khoảng phân ly [a;b]. Giả sử $f \in C^2[a;b]$ và f', f'' không đổi dấu trong (a,b). Nếu xấp xỉ ban đầu $x_0 \in [a;b]$ được chọn sao cho $f(x_0)f''(x_0) > 0$ thì dãy $\{x_k\}$ xác định bởi (1) hội tụ về x^* . Ngoài ra, nếu tồn tại M_1 , M_2 thỏa mãn $\begin{cases} |f'(x)| \geq M_1 \\ |f''(x)| \leq M_2 \end{cases}$, $\forall x \in [a;b]$ thì

$$|x_k - x^*| \le \frac{M_2}{2M_1} |x_{k-1} - x^*|^2.$$
 (2)

Điểm x_0 thỏa mãn $f(x_0)f''(x_0) > 0$ được gọi là điểm Fouier.

1. 2. Sự hội tụ và sai số

Phương pháp Newton có tốc độ hội tụ bậc 2 (quadratic) khi $f'(x_k) \neq 0$.

Thật vậy, với ξ nằm giữa x_k và x^*

$$f(x^*) = f(x_k) + (x^* - x_k)f'(x_k) + \frac{1}{2}(x^* - x_k)^2 f''(\xi) = 0$$

Khi đó

$$\frac{f(x_k)}{f'(x_k)} + x^* - x_k + (x^* - x_k)^2 \frac{f''(\xi)}{2f'(x_k)} = 0$$

Thay x_{k+1} bởi (1)

$$x^* - x_{k+1} + (x^* - x_k)^2 \frac{f''(\xi)}{2f'(x_k)} = 0$$

Do đó

$$x^* - x_{k+1} = -\frac{f''(\xi)}{2f'(x_k)} (x^* - x_k)^2$$

Nếu $\{x_k\}$ hội tụ thì ξ và x_k đều xấp xỉ x^* , do đó

$$x^* - x_{k+1} = -\frac{f''(x^*)}{2f'(x^*)} (x^* - x_k)^2.$$

Ví dụ 1.2

Cho phương trình $f(x) = x^3 - 3x + 1 = 0$ trong khoảng cách ly nghiệm [0; 0.5]. Bằng phương pháp Newton, tính nghiệm xấp xỉ x_3 và đánh giá sai số x_3 .

Ví dụ 1.2

Cho phương trình $f(x) = x^3 - 3x + 1 = 0$ trong khoảng cách ly nghiệm [0; 0.5]. Bằng phương pháp Newton, tính nghiệm xấp xỉ x_3 và đánh giá sai số x_3 .

Giải

Ta có
$$f(0) > 0$$
, $f(0.5) < 0$, $f'(x) = 3x^2 - 3 < 0$, $\forall x \in [0; 0.5]$ và $f''(x) = 6x \ge 0$, $\forall x \in [0; 0.5]$ nên chọn $x_0 = 0$.

Ví dụ 1.2

Cho phương trình $f(x) = x^3 - 3x + 1 = 0$ trong khoảng cách ly nghiệm [0; 0.5]. Bằng phương pháp Newton, tính nghiệm xấp xỉ x_3 và đánh giá sai số x_3 .

Giải

Ta có
$$f(0) > 0$$
, $f(0.5) < 0$, $f'(x) = 3x^2 - 3 < 0$, $\forall x \in [0; 0.5]$ và $f''(x) = 6x \ge 0$, $\forall x \in [0; 0.5]$ nên chọn $x_0 = 0$.

Ta xây dựng dãy x_n theo công thức

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} = x_{n-1} - \frac{x_{n-1}^3 - 3x_{n-1} + 1}{3x_{n-1}^2 - 3} = \frac{2x_{n-1}^3 - 1}{3x_{n-1}^2 - 3}$$

Ví dụ 1.2

Cho phương trình $f(x) = x^3 - 3x + 1 = 0$ trong khoảng cách ly nghiệm [0; 0.5]. Bằng phương pháp Newton, tính nghiệm xấp xỉ x_3 và đánh giá sai số x_3 .

Giải

Ta có
$$f(0) > 0$$
, $f(0.5) < 0$, $f'(x) = 3x^2 - 3 < 0$, $\forall x \in [0; 0.5]$ và $f''(x) = 6x \ge 0$, $\forall x \in [0; 0.5]$ nên chọn $x_0 = 0$.

Ta xây dựng dãy x_n theo công thức

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} = x_{n-1} - \frac{x_{n-1}^3 - 3x_{n-1} + 1}{3x_{n-1}^2 - 3} = \frac{2x_{n-1}^3 - 1}{3x_{n-1}^2 - 3}$$

Từ đó tính được $x_1 = 0.3333$,

1. 2. Sự hội tụ và sai số

Ví dụ 1.2

Cho phương trình $f(x) = x^3 - 3x + 1 = 0$ trong khoảng cách ly nghiệm [0; 0.5]. Bằng phương pháp Newton, tính nghiệm xấp xỉ x_3 và đánh giá sai số x_3 .

Giải

Ta có
$$f(0) > 0$$
, $f(0.5) < 0$, $f'(x) = 3x^2 - 3 < 0$, $\forall x \in [0; 0.5]$ và $f''(x) = 6x \ge 0$, $\forall x \in [0; 0.5]$ nên chọn $x_0 = 0$.

Ta xây dựng dãy x_n theo công thức

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} = x_{n-1} - \frac{x_{n-1}^3 - 3x_{n-1} + 1}{3x_{n-1}^2 - 3} = \frac{2x_{n-1}^3 - 1}{3x_{n-1}^2 - 3}$$

Từ đó tính được $x_1 = 0.3333$, $x_2 = 0.3472$,

Ví dụ 1.2

Cho phương trình $f(x) = x^3 - 3x + 1 = 0$ trong khoảng cách ly nghiệm [0; 0.5]. Bằng phương pháp Newton, tính nghiệm xấp xỉ x_3 và đánh giá sai số x_3 .

Giải

Ta có
$$f(0) > 0$$
, $f(0.5) < 0$, $f'(x) = 3x^2 - 3 < 0$, $\forall x \in [0; 0.5]$ và $f''(x) = 6x \ge 0$, $\forall x \in [0; 0.5]$ nên chọn $x_0 = 0$.

Ta xây dựng dãy x_n theo công thức

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} = x_{n-1} - \frac{x_{n-1}^3 - 3x_{n-1} + 1}{3x_{n-1}^2 - 3} = \frac{2x_{n-1}^3 - 1}{3x_{n-1}^2 - 3}$$

Từ đó tính được $x_1 = 0.3333$, $x_2 = 0.3472$, $x_3 = 0.3473$.

Đánh giá sai số

Ta có
$$|f'(x)| \ge \min\{|f'(0)|, |f'(0.5)|\} = \frac{9}{4} = m.$$

Đánh giá sai số

Ta có
$$|f'(x)| \ge \min\{|f'(0)|, |f'(0.5)|\} = \frac{9}{4} = m.$$

Do đó nghiệm gần đúng x_3 được đánh giả sai số so với nghiệm chính xác x^* như sau

$$|x_3 - x^*| \le \frac{|f(x_3)|}{m} = \frac{|x_3^3 - 3x_3 + 1|}{9/4} \approx 2.55 \times 10^{-9} = \Delta_{x_3}$$

Ví dụ 1.3

Sử dụng phương pháp Newton tìm nghiệm gần đúng của phương trình $f(x) = e^x + 2^{-x} + 2\cos x - 6 = 0$ trong khoảng cách ly nghiệm [1;2] với đô chính xác 10^{-5} .

1. 2. Sư hôi tu và sai số

Ví du 1.3

Sử dụng phương pháp Newton tìm nghiệm gần đúng của phương trình $f(x) = e^x + 2^{-x} + 2\cos x - 6 = 0$ trong khoảng cách ly nghiêm [1;2] với đô chính xác 10^{-5} .

Giải

Ta có

$$\begin{cases} f'(x) = e^x - 2^{-x} \ln 2 - 2 \sin x \\ f''(x) = e^x + 2^{-x} (\ln 2)^2 - \cos x > 0 \end{cases}$$

Ví dụ 1.3

Sử dụng phương pháp Newton tìm nghiệm gần đúng của phương trình $f(x) = e^x + 2^{-x} + 2\cos x - 6 = 0$ trong khoảng cách ly nghiệm [1;2] với độ chính xác 10^{-5} .

Giải

$$\begin{cases} f'(x) = e^x - 2^{-x} \ln 2 - 2 \sin x \\ f''(x) = e^x + 2^{-x} (\ln 2)^2 - \cos x > 0 \end{cases}$$

Do f(2)f''(2) > 0 nên ta chọn $x_0 = 2$. Xây dựng dãy (x_n) theo công thức

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} = x_{n-1} - \frac{e^{x_{n-1}} + 2^{-x_{n-1}} + 2\cos x_{n-1} - 6}{e^{x_{n-1}} - 2^{-x_{n-1}}\ln 2 - 2\sin x_{n-1}}.$$

Lại có
$$|f'(x)| \ge \min\{|f'(1)|, |f'(2)|\} = 0.688 = m$$
. Khi đó
$$|x_n - x^*| \le \frac{|f(x_n)|}{m} = \frac{|e^{x_n} + 2^{-x_n} + 2\cos x_n - 6|}{0.688} = \Delta_{x_n}$$

n	x_n	Δ_{x_n}
0	2	
1	1.850521336	0.1283
2	1.829751202	2.19×10^{-3}
3	1.829383715	6.7×10^{-7}

Tổng kết

Phương pháp Newton có thể xem là phương pháp lặp với hàm lặp:

$$g(x) = x - \frac{f(x)}{f'(x)}$$

- Phương pháp Newton hội tụ nhanh hơn so với phương pháp lặp đơn và phương pháp chia đôi
- Phương pháp Newton đòi hỏi công thức giải tích của f'(x)
- Dãy lặp có thể chạy ra ngoài khoảng phân ly.

Câu 1

Sử dụng phương pháp Newton tìm nghiệm gần đúng của phương trình $f(x) = \ln(x-1) + \cos(x-1) = 0$ trong khoảng cách ly nghiệm [1.3;2] với đô chính xác 10^{-5} .

Câu 1

Sử dụng phương pháp Newton tìm nghiệm gần đúng của phương trình $f(x) = \ln(x-1) + \cos(x-1) = 0$ trong khoảng cách ly nghiệm [1.3;2] với đô chính xác 10^{-5} .

Lời giải

Câu 1

Sử dụng phương pháp Newton tìm nghiệm gần đúng của phương trình $f(x) = \ln(x-1) + \cos(x-1) = 0$ trong khoảng cách ly nghiệm [1.3;2] với độ chính xác 10^{-5} .

Lời giải

Ta có
$$f(1.3) < 0, f(2) > 0, f'(x) = \frac{1}{x-1} - \sin(x-1) > 0, \forall x \in [1.3, 2]$$

và $f''(x) = -\frac{1}{(x-1)^2} - \cos(x-1) < 0, \forall x \in [1.3, 2]$ nên chọn $x_0 = 1.3$.

Ta xây dựng dãy (x_n) theo công thức

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} = x_{n-1} - \frac{\ln(x_{n-1} - 1) + \cos(x_{n-1} - 1)}{\frac{1}{x_{n-1} - 1} - \sin(x_{n-1} - 1)}.$$

Ta có $|f'(x)| \ge \min\{|f'(1.3)|, |f'(2)|\} = 0.158 = m$. Khi đó

$$|x^* - x_n| \le \frac{|f(x_n)|}{m} = \frac{|\ln(x_{n-1} - 1) + \cos(x_{n-1} - 1)|}{0.158} = \Delta_{x_n}$$

n	x_n	Δ_{x_n}
0	1.3	
1	1.38184714	0.21998
2	1.397320733	$5.76.10^{-3}$
3	1.397748164	$4.199.10^{-6}$

Nội dung

Phương pháp Newton 1.1 Công thức lặp 1.2 Sự hội tụ và sai số

Trao đổi

TRAO ĐỔI