Notas - preferências sobre menus

10 de março de 2015

Sumário

1	Setup	1
2	Obtenção da representação funcional de \succsim	2

1 Setup

Seja B um conjunto finito de alternativas e $\Delta(B)$ o conjunto das medidas de probabilidade sobre B. \mathbb{X} representa os subconjuntos fechados de $\Delta(B)$, os menus. \succeq denotará a preferência sobre \mathbb{X} . Para a análise subsequente é imprortante considerar a seguinte lista de axiomas.

 $Order \succsim$ é completa e transitiva

Continuity Para todo x, $\{y \in \mathbb{X} : y \succsim x\}$ e $\{y \in \mathbb{X} : x \succsim y\}$ são fechados¹.

Monotonicity Para quaisquer $x, x' \in \mathbb{X}$ com $x \supseteq x'$, temos $x \succsim x'$.

Indifference to Randomization $x \sim co(x)$, o fecho convexo de x.

Nondegeneracy Existem menus $x, x' \in \mathbb{X}$ tais que $x \succ x'$.

Preference Convexity $x \succsim x' \Rightarrow \lambda x + (1 - \lambda)x' \succsim x'$.

Finiteness Para todo x, existe um menu finito x^f tal que, para todo $\lambda \in (0,1)$ e qualquer menu x', $\lambda x + (1-\lambda)x' \sim \lambda x^f + (1-\lambda)x'$.

Adicionalmente, suponha que o tomador de decisão tenha certeza ex ante de que há uma alternativa b_* que é o pior resultado ex post - o mesmo vale para a loteria degenerada δ_{b_*} . Assumiremos também que o agente saiba ex ante que o menu $\Delta(B)$ lhe trará o melhor resultado ex post ainda que não conheça qual loteria maximizará sua utilidade após a realização do estado.

Lembre-se que, apenas no caso de \succsim ser ordem, isso é equivalente a dizer que \succsim é um subconjunto fechado de $\mathbb{X} \times \mathbb{X}$

Worst Para a pior alternativa b_* , temos $\lambda (x \cup \{b_*\}) + (1 - \lambda)y \sim \lambda x + (1 - \lambda)y$ para quaisquer menus $x, y \in \mathbb{X}$ e $\lambda \in (0, 1)$.

Worst formaliza a idéia de que o agente não experimenta ganhos de flexibilidade ao incluir em qualquer menu x a loteria degenerada da pior alternativa b_* . Um raciocínio rápido nos garante que

$$\Delta(B) \sim B \succsim x \succsim \{b_*\} \in B \succ \{b_*\}$$

para todo x. Por Indifference to Randomization e Monotonicity, $\Delta(B) \sim B \succeq x$. Além disso, dado que o agente está certo de que b_* é o pior resultado, $x \succeq \{b_*\}$ vale para todo x. Por fim, Monotonicity garante que $B \succeq \{b_*\}$. Caso $B \sim \{b_*\}$, contrariamos Nondegeneracy.

Tendo conhecido o comportamento do agente face aos menus $\Delta(B)$ e $\{b_*\}$, podemos definir o menu certo x_p como $x_p := p\Delta(B) + (1-p)\{b_*\}$, i.e. a composição do melhor e pior menu com peso $p \in [0,1]$. O axioma abaixo enuncia a independência de \succsim com relação a menus certos.

Certainty Independence Para $\lambda \in (0,1)$ e $x_p = p\Delta(B) + (1-p)b_*$, temos

$$x \succsim x' \Leftrightarrow \lambda x + (1 - \lambda)x_p \succsim \lambda x' + (1 - \lambda)x_p$$

Afirmação 1: Para todo menu x, existe $p \in [0,1]$ tal que $x \sim x_p = p\Delta(B) + (1-p)b_*$.

Dem.: Para um menu qualquer x, defina $S := \{p \in [0,1] : x_p \succsim x\}$, $I := \{p \in [0,1] : x \succsim x_p\}$ e note que $1 \in S$ e $0 \in I$. Como \succsim é contínua e completa, podemos afirmar que S e I são fechados e $S \cup I = [0,1]$. Dada a conexidade de [0,1], sabemos que $S \cap I \neq \emptyset$. Portanto, para $p \in S \cap I$, temos que $x \sim x_p$.

Na próxima seção, construiremos a representação funcional de ≿ sobre o espaço de menus X a partir da maior restrição dessa relação que mantém o ordenamento para misturas entre menus, isto é, a maior restrição que satisfaz o axioma de Independência, tradicional na literatura de preferências sob incerteza.

2 Obtenção da representação funcional de 🛬

Suponha que \succeq satisfaz Order, Nondegeneracy, Indifference to randomization, Preference Convexity, Certainty Independence, Continuity, Monotonicity, Worst e Finiteness. Considere agora seu maior subconjunto que contempla Independência. Para isso, defina a relação \succeq^* sobre \mathbb{X} por

$$x \succsim^* x' \Leftrightarrow \lambda x + (1 - \lambda)y \succsim \lambda x' + (1 - \lambda)y$$

para todo $y \in \mathbb{X}$ e $\lambda \in (0,1)$.

Naturalmente, algumas das propriedades de \succeq serão herdadas por sua restrição \succeq^* . Finitiness e Worst, em especial, assumirão formatos mais intuitivos, como veremos em seguida. Contudo, observe que, como a relação primitiva satisfaz independência apenas com relação aos menus certos x_p , a relação induzida \succeq^* não é completa sobre o espaço de menus. Exploramos essas constatações na sequência de afirmações abaixo.

Afirmação 2: ≿* é uma pré-ordem.

Dem.: Pela reflexividade de \succsim , é claro que $x \succsim^* x$ para todo $x \in \mathbb{X}$. Suponha x,y e z tais que $x \succsim^* y$ e $y \succsim^* z$. Então, para um menu x' qualquer e $\lambda \in (0,1)$, temos $\lambda x + (1-\lambda)x' \succsim \lambda y + (1-\lambda)x' \succsim \lambda z + (1-\lambda)x'$. Para concluir, basta usar a transitividade de \succsim .

Afirmação 3: ≿* satisfaz Monotonicity.

Dem.: Suponha $x \in x'$ tais que $x \supseteq x'$, mas não vale que $x \succsim^* x'$. Temos dois casos, (i) existe um menu y tal que $\lambda x + (1 - \lambda)y \succsim \lambda x' + (1 - \lambda)y$ não é verdade para todo $\lambda \in (0,1)$ ou (ii) para algum $\lambda \in (0,1)$, o mesmo ocorre para qualquer menu y. Em ambos os casos, Monotonicity em \succsim implica que $\lambda x + (1 - \lambda)y \not\supseteq \lambda x' + (1 - \lambda)y$, uma contradição.

Afirmação 4: Sejam $\{x^m\}_{m\in\mathbb{N}}$ e $\{y^m\}_{m\in\mathbb{N}}$ sequências em \mathbb{X} convergentes para x e y, respectivamente, tais que $x^m \succeq^* y^m \ \forall m \in \mathbb{N}$. Então $x \succeq^* y$.

Dem.: Pela definição de \succsim^* , temos que para todo $\lambda \in (0,1)$ e qualquer menu z, temos

$$\lambda x^m + (1-\lambda)z \geq \lambda y^m + (1-\lambda)z$$

 $Como \succsim satisfaz \ Order \ e \ Continuity, \ concluímos \ que \ \lambda x + (1-\lambda)z \succsim \lambda y + (1-\lambda)z \ e, \ portanto, \ x \succsim^* y.$

Afirmação 5: ≿* satisfaz Nondegeneracy

Dem.: Suponha que $\Delta(B) \sim^* b_*$. Isto implica, pela definição de \succsim^* , que $\lambda Delta(B) + (1 - \lambda)y \sim \lambda b_* + (1 - \lambda)y$ para todo $y \in \mathbb{X}$ e $\lambda \in (0, 1)$. Seja, então, $y = x_p$ e, por Certainty Independence, temos que $Delta(B) \sim b_*$, o que viola Nondegeneracy em \succsim .

Afirmação 6: \succsim^* satisfaz Indifference to randomization.

Dem.: Suponha que, para um menu x, não seja verdade que $x \sim^* co(x)$. Como \succeq^* satisfaz Monotonicity, isto implica que $co(x) \succ^* x$ e, por consequinte, que $\lambda co(x) + (1 - \lambda)y \succ \lambda x + (1 - \lambda)y$ para todo $y \in \mathbb{X}$ e $\lambda \in (0, 1)$. Fazendo $y = x_p$, Certainty Independence nos permite afirmar que $co(x) \succ x$, o que viola Indifference to Randomization em \succeq .

Afirmação 7: (Finitiness*)Para todo menu x, existe um subconjunto finito x^f tal que $x \sim^* x'$.

Dem.: Basta utilizar Finitiness de \succeq e a definição de \succsim^* .

Afirmação 8: (Worst*) Para a pior alternativa b_* , temos $x \cup \{b_*\} \sim^* x$.

Dem.: Implicação de Worst em \succeq e da definição de \succeq^* .

Repare que a Afirmação 3 nos ensina que, se dois menus são \subseteq -comparáveis, então também serão \succeq *-comparáveis. Além disso, a Afirmação 4 nos mostra que a continuidade de \succsim é preservada em \succsim *. Novamente, um raciocínio análogo ao feito para a relação \succsim nos mostra que

$$B \sim^* \Delta(B) \succsim^* x \succsim^* b_* \in B \succ^* b_*$$

Vamos, por fim, demonstrar que ≿* satisfaz o axioma da Independência.

Afirmação 9: (Independence) $x \succeq^* x'$ se, e somente se, $\lambda x + (1 - \lambda)y \succeq^* \lambda x' + (1 - \lambda)y$ para quaisquer menus $x, x', y \in \mathbb{X}$ e para todo $\lambda \in [0, 1]$.

Dem.: Considere menus x e x' tais que $x \succeq^* x'$. Então, para quaisquer $\lambda, \theta \in (0,1)$ e $y,z \in \mathbb{X}$, temos

$$\theta(\lambda x + (1 - \lambda)y) + (1 - \theta)z = \theta\lambda x + (1 - \theta\lambda) \left(\frac{\theta(1 - \lambda)}{1 - \theta\lambda}y + \frac{1 - \theta}{1 - \theta\lambda}z\right)$$

$$\gtrsim \theta\lambda x' + (1 - \theta\lambda) \left(\frac{\theta(1 - \lambda)}{1 - \theta\lambda}y + \frac{1 - \theta}{1 - \theta\lambda}z\right)$$

$$= \theta(\lambda x' + (1 - \lambda)y) + (1 - \theta)z$$

Pela definição de \succsim^* , concluímos que $\lambda x + (1-\lambda)y \succsim^* \lambda x' + (1-\lambda)y$. Agora, suponha que $\lambda x + (1-\lambda)y \succsim^* \lambda x' + (1-\lambda)y$ para $\lambda \in (0,1)$ e um menu y qualquer. Pela Afirmação 5, o conjunto $\{\lambda \in [0,1] : \lambda x + (1-\lambda)y \succsim^* \lambda x' + (1-\lambda)y\}$ é um conjunto fechado e, portanto,

$$\hat{\lambda} := \max \left\{ \lambda \in [0, 1] : \lambda x + (1 - \lambda)y \succsim^* \lambda x' + (1 - \lambda)y \right\}$$

está bem definido. Defina ainda $\theta := \frac{1}{1+\hat{\lambda}}$. Então,

$$\theta(\hat{\lambda}x + (1 - \hat{\lambda})y) + (1 - \theta)x \gtrsim^* \theta(\hat{\lambda}x' + (1 - \hat{\lambda})y) + (1 - \theta)x$$
$$= \theta(\hat{\lambda}x + (1 - \hat{\lambda})y) + (1 - \theta)x'$$
$$\gtrsim^* \theta(\hat{\lambda}x' + (1 - \hat{\lambda})y) + (1 - \theta)x'$$

pela primeira parte desta demonstração. Usando a transitividade de \succsim^* e reescrevendo os coeficientes da expressão acima, temos

$$\frac{2\hat{\lambda}}{1+\hat{\lambda}}x + \frac{1-\hat{\lambda}}{1+\hat{\lambda}}y \gtrsim^* \frac{2\hat{\lambda}}{1+\hat{\lambda}}x' + \frac{1-\hat{\lambda}}{1+\hat{\lambda}}y \qquad (\star)$$

Como $\hat{\lambda}$ é máximo, $\hat{\lambda} \geq \frac{2\hat{\lambda}}{1+\hat{\lambda}}$ e, consequentemente, $\hat{\lambda}(\hat{\lambda}) \geq 0$. Isto implica que $\hat{\lambda} = 1$ e, por (\star) , $x \gtrsim^* x'$.

Inserir uma discussão sobre o resultado do Kochov e enunciá-lo como está no paper. No lema, adaptaríamos para os menus fechados e finitude do espaço subjetivo.

Colocar o comentário de que não é necessário indexar as utilidades no estado da natureza etc.

Lema 1: A preordem \succeq^* satisfaz Continuity, Nondegeneracy, Independence, Monotonicity e Finitiness* se, e somente se, existe um conjunto finito de funções $N = \{u \in \mathbb{R}_+^B : u(b_*) = 0 \text{ e } \max_B u(b) = 1\}$ e um conjunto fechado e convexo Π de medidas de probabilidade sobre N tal que:

(i) $x \succeq^* y$ se, e somente se,

$$\sum_{u \in N} \pi(u) \max_{\beta \in x} u(\beta) \geq \sum_{u \in N} \pi(u) \max_{\beta \in y} u(\beta) \quad \forall \pi \in \Pi$$

(ii) cada $u \in N$ é uma função utilidade esperada, i.e.

$$u(\beta) = \sum_{b \in B} \beta(b) u(b)$$

Dem.: Prova a finitude de N, invoca o resultado do Kochov e normaliza as utilidades. Normalização:

$$u(b) = \frac{U(b,s) - U(b_*,s)}{\max_b U(b,s) - U(b_*,s)}$$

e

$$\hat{\pi}(u) = \mu(s) \left[max_b U(b, s) - U(b_*, s) \right]$$

e

$$\pi(u) = \frac{\hat{\pi}(u)}{\sum_{u \in N} \hat{\pi}(u)}$$

Seja $w:\mathbb{X}\times\Pi\to\mathbb{R}$ a função caracterizada por

$$w(x,\pi) = \sum_{u \in N} \pi(u) \max_{\beta \in x} u(\beta)$$

i.e. a função que representa a preferência \succsim^* sobre menus e, vamos examinar

o valor que ela assume nos menus certos x_p . Vejamos:

$$\begin{split} w(x_p, \pi) &= \sum_{u \in N} \pi(u) \max_{\beta \in x_p} u(\beta) \\ &= \sum_{u \in N} \pi(u) \max_{\beta \in x_p} u(p\beta' + (1-p)\delta_{b_*}), \quad \beta' \in \Delta(B) \\ &= \sum_{u \in N} \pi(u) \max_{\beta \in x_p} \left\{ p \sum_{b \in B} \beta'(b) u(b) + (1-p) \sum_{b \in B} \delta_{b_*}(b) u(b) \right\} \\ &= \sum_{u \in N} \pi(u) p \max_{\beta' \in \Delta(B)} \sum_{b \in B} \beta'(b) u(b), \quad pois \ u(b_*) = 0 \ e \ \delta_{b_*}(b) = 0 \ \forall b \neq b_* \\ &= \sum_{u \in N} \pi(u) p \max_{\beta' \in \Delta(B)} u(\beta') \\ &= p \sum_{u \in N} \pi(u) \cdot 1 \\ &= p \end{split}$$

donde a penúltima igualdade é consequência do fato de que o elemento que maximiza $u(\beta')$ é a loteria degenerada $\delta_{\bar{b}}$ na qual $\bar{b} := \operatorname{argmax} u(b)$, ou seja, $u(\bar{b}) = 1$. Note ainda que $w(x_p, \pi) = p$ para qualquer prior $\pi \in \Pi$. Portanto, podemos afirmar que para dois menus certos x_p e $x_{p'}$, temos que $x_p \succsim^* x_{p'}$ se, e somente se, $p \geq p'$.

Introduzir a NCI e discorrer sobre ela.

Lema 2: A relação \succeq satisfaz Negative Certainty independence (NCI), i.e. se $x \succeq x_p$, então $\lambda x + (1 - \lambda)y \succeq \lambda x_p + (1 - \lambda)y$ para todo $\lambda \in (0, 1)$ e $y \in \mathbb{X}$.

Dem.: Tome $x \ e \ x_p \ em \ \mathbb{X}$, com um p qualquer no intervalo [0,1], tais que $x \succsim x_p$. Pela Afirmação 1, sabemos que existe $\bar{p} \in [0,1]$ tal que $x \sim x_{\bar{p}}$. Logo, $x \sim x_{\bar{p}} \succsim x_p$. Afirmamos que

$$\lambda x_{\bar{p}} + (1 - \lambda)y \succsim \lambda x_p + (1 - \lambda)y$$

para qualquer menu y e todo $\lambda \in (0,1)$, pois, caso contrário, não seria verdade que $x_{\bar{p}} \succsim^* x_p$. Pelo Lema 1 e a discussão sobre o valor da utilidade nos menus certos, isto implica que $p > \bar{p}$ e, consequentemente, $x_p \succ^* x_{\bar{p}}$. Aplicando a definição de \succsim^* , isto significa que $\theta x_p + (1-\theta)z \succ \theta x_{\bar{p}} + (1-\theta)z$ para todo menu z e $\theta \in (0,1)$. Agora veja que para $z := x_p$, temos $x_p \succ \theta x_{\bar{p}} + (1-\theta)x_p$, o que viola Preference Convexity.

Se $y \sim x \sim x_{\bar{p}}$, então $x_{\bar{p}} = \lambda x_{\bar{p}} + (1-\lambda)x_{\bar{p}} \sim \lambda x_{\bar{p}} + (1-\lambda)y$, por Certainty Independence. Preference Convexity nos permite afirmar que $\lambda x + (1-\lambda)y \gtrsim x \sim x_{\bar{p}} \sim \lambda x_{\bar{p}} + (1-\lambda)y$. Usando transitividade e a discussão no parágrafo anterior, chegamos em $\lambda x + (1-\lambda)y \gtrsim \lambda x_p + (1-\lambda)y$.

Contudo, se não vale que $y \sim x$, então considere o ato simples $x_{p'} := \left(\frac{\theta}{1-\theta}\right) x_{\hat{p}} + \left(\frac{1-2\theta}{1-\theta}\right) x_{\bar{p}}$, com $\theta \in \left(0, \frac{1}{2}\right)$ e $x_{\hat{p}}$ o menu simples tal que $y \sim x_{\hat{p}}$.

Observe que

$$\theta x_{\bar{p}} + (1 - \theta) x_{p'} = \theta x_{\bar{p}} + (1 - \theta) \left[\left(\frac{\theta}{1 - \theta} \right) x_{\hat{p}} + \left(\frac{1 - 2\theta}{1 - \theta} \right) x_{\bar{p}} \right]$$

$$= \theta x_{\bar{p}} + \theta x_{\hat{p}} + (1 - 2\theta) x_{\bar{p}}$$

$$= \theta x_{\hat{p}} + (1 - \theta) x_{\bar{p}}$$

$$\sim \theta y + (1 - \theta) x_{\bar{p}}, \text{ por Certainty Independence}$$

Aplicando Certainty Independence mais uma vez, temos

$$\theta x + (1-\theta)x_{p'} \sim \theta x_{\bar{p}} + (1-\theta)x_{p'} \sim \theta y + (1-\theta)x_{\bar{p}}$$

Ao aplicarmos Preference Convexity na expressão acima, obtemos

$$\lambda(\theta x + (1 - \theta)x_{p'}) + (1 - \lambda)(\theta y + (1 - \theta)x_{\bar{p}}) \gtrsim \theta x_{\bar{p}} + (1 - \theta)x_{p'}$$

$$= \lambda(\theta x_{\bar{p}} + (1 - \theta)x_{p'}) + (1 - \lambda)(\theta x_{\bar{p}} + (1 - \theta)x_{p'})$$

$$\sim \lambda(\theta x_{\bar{p}} + (1 - \theta)x_{p'}) + (1 - \lambda)(\theta y + (1 - \theta)x_{\bar{p}})$$

cuja última linha é consequência de Certainty Independence. Podemos reescrever a expressão acima da sequinte forma

$$\theta(\lambda x + (1-\lambda)y) + (1-\theta)(\lambda x_{p'} + (1-\lambda)x_{\bar{p}}) \succeq \theta(\lambda x_{\bar{p}} + (1-\lambda)y) + (1-\theta)(\lambda x_{p'} + (1-\lambda)x_{\bar{p}})$$

donde Certainty Independence nos permite afirmar que $\lambda x + (1 - \lambda)y \gtrsim \lambda x_{\bar{p}} + (1 - \lambda)y$. Rocorde-se que $\lambda x_{\bar{p}} + (1 - \lambda)y \gtrsim \lambda x_p + (1 - \lambda)y$, do início da demonstração. Como \gtrsim é transitiva, concluímos que $\lambda x + (1 - \lambda)y \gtrsim \lambda x_p + (1 - \lambda)y$ para todo $\lambda \in (0, 1)$ e $y \in \mathbb{X}$.

Vamos agora estabelecer a representação da relação \succsim original a partir dos resultados do Lema 1. Recorde que, do Lema 2, aprendemos que as relações \succsim e \succsim * coincidem para os menus certos, ou seja

$$x_{p} \sim x \succsim y \sim x_{\bar{p}} \Leftrightarrow x_{p} \succsim^{*} x_{\bar{p}}$$
$$\Leftrightarrow w(x_{p}, \pi) \ge w(x_{\bar{p}}, \pi) \ \forall \pi \in \Pi$$
$$\Leftrightarrow p \ge \bar{p}$$

Ainda em consequência do Lema 2, sabemos que $x \succsim^* x_p$. Logo,

$$w(x,\pi) \ge w(x_n,\pi) = p \quad \forall \pi \in \Pi$$

e, consequentemente, $\min_{\pi \in \Pi} w(x, \pi) \geq p$. Mas, agora, suponha que $\min_{\pi \in \Pi} w(x, \pi) > p$. Então, para qualquer $p' \in (p, \min_{\pi \in \Pi} w(x, \pi))$, temos que $x_{p'} \succ^* x_p \sim^* x$, uma contradição. Portanto,

$$\min_{\pi \in \Pi} \sum_{u \in N} \pi(u) \max_{\beta \in x} u(\beta) = p$$