Analysis of EEG-based Depression Biomarkers

USING MACHINE LEARNING & NONLINEAR ANALYSIS

MIROSLAV KOVÁŘ SEBASTIÁN BASTERRECH

FNSPE, CTU

APRIL 29, 2019

PROBLEM STATEMENT AND APPROACH

■ MDD

■ EEG

- MDD
 - ▶ 300 million suffering worldwide

■ EEG

■ MDD

- 300 million suffering worldwide
- diagnosis requires time of trained professionals

■ EEG

MDD

- 300 million suffering worldwide
- diagnosis requires time of trained professionals

■ EEG

 accessible diagnosis-aid tool

MDD

- 300 million suffering worldwide
- diagnosis requires time of trained professionals

■ EEG

- accessible diagnosis-aid tool
- ► still not reliable enough!

Research into effective analysis techniques is ongoing...

OUR GOALS

OUR GOALS

 Czech National Institute of Mental Health

. 14

- Czech National Institute of Mental Health
- 133 patients

- Czech National Institute of Mental Health
- 133 patients
- EEG recordings
 - ▶ 250 Hz or 1000 Hz
 - ▶ Various duration
 - ▶ 19 channels

- Czech National Institute of Mental Health
- 133 patients
- EEG recordings
 - ▶ 250 Hz or 1000 Hz
 - ► Various duration
 - ▶ 19 channels
- Metadata
 - ► Depression scores
 - Week o
 - Week 4
 - ► Age, gender, drugs

LABELS

$$Response = \frac{Depression \ score_{Week \ 4}}{Depression \ score_{Week \ 0}}$$

OUR APPROACH

OUR APPROACH

NONLINEAR ANALYSIS APPROACH

NONLINEAR MEASURES

```
LLE Largest Lyapunov exponent
SE Sample entropy
CD Correlation dimension
HD Higuchi fractal dimension

DFA Detrended fluctuation analysis
HE Hurst exponent

"stability"

"complexity"

LRTC
```

ESTIMATION OF EMBEDDING PARAMETERS

Parameters

- Embedding dimension
- Time delay
- Scaling regions
- **..**

Methods

- Literature review
- Estimation algorithms (FNN, AFN, ADFD, ILD, ...)
- Result analysis

-> automated procedure

CORRELATION OF DFA WITH DS

CORRELATION OF LLE WITH DS

CORRELATIONS WITH DS

CORRELATIONS WITH RESPONSE

RESULTS

Measure	Classifier	Accuracy	
		Mean	Std
LLE, CD	SVM (lin.)	0.74	0.04
LLE, SE	SVM (lin.)	0.75	0.10
LLE, HE	SVM (lin.)	0.73	0.06
LLE, SE, DFA	SVM (lin.)	0.73	0.09
CD, HD	LR	0.73	0.10
LLE	SVM (lin.)	0.72	0.04
CD	SVM (lin.)	0.71	0.05
SE	LR	0.68	0.12
HD	HD SVM (rbf)		0.11
DFA	DFA LR		0.16
HE	LR	0.67	0.17

(a) Current DS

Measure	Classifier	Accuracy	
		Mean	Std
LLE, CD	SVM (lin.)	0.75	0.11
LLE, SE	SVM (lin.)	0.75	0.10
LLE	LR	0.71	0.08
CD	LR	0.67	0.09
HD	LR	0.66	0.05
SE	LR	0.66	0.09
DFA	SVM (lin.)	0.64	0.15
HE	SVM (rbf)	0.63	0.09

(b) Response prediction

- 60 s samples
- 5f-CV on 100 recordings

DEEP LEARNING APPROACH

INPUT REPRESENTATION

(c) Raw data

ARCHITECTURE DESIGN - SHALLOW

ARCHITECTURE DESIGN - DEEP

RESULTS

Lab.	Freq.	Arch.	Accuracy	
			Mean	Std
DEP	$o-f_{fin}$	SHAL	0.85	0.13
	4 – f _{fin}	SHAL	0.84	0.11
	$o-f_{fin}$	DEEP	0.86	0.01
	$4-f_{fin}$	DEEP	0.85	0.02
RES	$o-f_{fin}$	SHAL	0.94	0.02
	4 – f _{fin}	SHAL	0.94	0.03
	$o-f_{fin}$	DEEP	0.88	0.01
	$4-f_{fin}$	DEEP	0.86	0.02

Lab.	Freq.	Arch.	Accuracy	
			Mean	Std
DEP	$o-f_{fin}$	RP	0.63	0.02
	4 – f _{fin}	RP	0.61	0.01
	$o-f_{fin}$	CS	0.59	0.02
	4 – f _{fin}	CS	0.58	0.01
RES	$o-f_{fin}$	RP	0.61	0.03
	4 – f _{fin}	RP	0.65	0.02
	$o-f_{fin}$	CS	0.55	0.02
	$4-f_{\rm fin}$	CS	0.63	0.01

(a) Raw data

(b) Image-encoded data

Dataset	DEP		RES	
	Neg.	Pos.	Neg.	Pos.
Training	3278	3230	2684	2705
Validation	826	802	686	662
Test	1038	997	830	855

1 s samples

CONCLUSION

1. Largest Lyapunov exponent seem to be predictive of treatment response.

- 1. Largest Lyapunov exponent seem to be predictive of treatment response.
- 2. Analysis of correlations between nonlinear measures and 2.1 depression score.
 - 2.2 treatment response.

- 1. Largest Lyapunov exponent seem to be predictive of treatment response.
- 2. Analysis of correlations between nonlinear measures and 2.1 depression score.
 - 2.2 treatment response.
- 3. Analysis of spatial distribution across brain regions in depression.

- 1. Largest Lyapunov exponent seem to be predictive of treatment response.
- 2. Analysis of correlations between nonlinear measures and 2.1 depression score.
 - 2.2 treatment response.
- 3. Analysis of spatial distribution across brain regions in depression.
- 4. Analysis of nonlinear measure and input parameter estimation algorithms and procedures for EEG analysis.

- 1. Largest Lyapunov exponent seem to be predictive of treatment response.
- 2. Analysis of correlations between nonlinear measures and 2.1 depression score.
 - 2.2 treatment response.
- 3. Analysis of spatial distribution across brain regions in depression.
- 4. Analysis of nonlinear measure and input parameter estimation algorithms and procedures for EEG analysis.
- 5. Evaluation of FBCSP-inspired neural network architectures for depression diagnosis and prognosis.

LIMITATIONS AND FUTURE WORK

Limitations

- Binary output
- Most patients initially depressed and in remission

NL approach

- Nonstationarity (windowing?)
- Spatially local
- Temporally global
- Inconclusive surrogate tests
- "Theoretically too ambitious"

DL approach

■ Short samples

Future Work

- Implement application to aid treatment
- Generalization to other datasets (sample bias)
- Output depression severity measure
- Ensemble of models combining (neuroimaging) modalities
- Incorporate information about treatment details (drugs,...)

NL approach

- Compare with spatial embedding
- New (spatiotemporal) measures

DL approach

- Model interpretation
- Compare with FBCSP
- Dimensionality reduction techniques

REFERENCES I

GALKA ANDREAS.

TOPICS IN NONLINEAR TIME SERIES ANALYSIS, WITH IMPLICATIONS FOR EEG ANALYSIS, VOLUME 14.

World Scientific, 2000.

HOLGER KANTZ AND THOMAS SCHREIBER.

NONLINEAR TIME SERIES ANALYSIS, VOLUME 7.

Cambridge university press, 2004.

ROBIN TIBOR SCHIRRMEISTER AND JOST TOBIAS SPRINGENBERG.

DEEP LEARNING WITH CONVOLUTIONAL NEURAL NETWORKS FOR EEG DECODING AND VISUALIZATION.

Human brain mapping, 38(11):5391-5420, 2017.

KEES STAM.

NONLINEAR DYNAMICAL ANALYSIS OF EEG AND MEG: REVIEW OF AN EMERGING FIELD.

Clinical Neurophysiology, 116(10):2266–2301, 2005.

THANK YOU FOR ATTENTION