Programare logică

Tipuri abstracte de date Algebra de termeni Algebra iniţială

- Un tip abstract de date este o mulţime de date (valori) şi operaţii asociate lor, a căror descriere (specificare) este independentă de implementare.
 - abstract=disassociated from any specific instance
- O algebră este este formată dintr-o mulţime de elemente şi o mulţime de operaţii. Algebrele pot modela tipuri de date.
- ■Două algebre izomorfe au acelaşi comportament, deci trebuie sa fie modele ale acelaşi tip de date. Aceasta asigură independenţa de implementare.

 (S,Σ) signatură multisortată

 $Alg(S,\Sigma)$ clasa tuturor (S,Σ) -algebrelor

■Un tip abstract de date este o clasă \mathcal{C} de (S, Σ) -algebre închisă la izomorfism:

$$A \in \mathcal{C}, A \simeq B \Rightarrow B \in \mathcal{C}.$$

 (S,Σ) signatură multisortată

 $Alg(S,\Sigma)$ clasa tuturor (S,Σ) -algebrelor

■Un tip abstract de date este o clasă \mathcal{C} de (S, Σ) -algebre închisă la izomorfism:

$$A \in \mathcal{C}$$
, $A \simeq B \Rightarrow B \in \mathcal{C}$.

■Un tip abstract de date \mathcal{C} se numeşte monomorfic dacă $A \simeq B$ oricare ar fi $A, B \in \mathcal{C}$.

În caz contrar, \mathcal{C} se numeşte polimorfic.

Orice tip abstract de date monomorfic este de forma $[A]_{\mathcal{K}} = \{B \in \mathcal{K} \, | A \simeq B\},$ unde \mathcal{K} este o clasă de (S, Σ) -algebre şi $A \in \mathcal{K}$ fixată.

- Orice tip abstract de date monomorfic este de forma $[A]_{\mathcal{K}} = \{B \in \mathcal{K} | A \simeq B\},$ unde \mathcal{K} este o clasă de (S, Σ) -algebre şi $A \in \mathcal{K}$ fixată.
- Orice tip abstract de date C se decompune in tipuri monomorfe $C = \bigcup \{ [A]_{C} | A \in C \}.$

- Orice tip abstract de date monomorfic este de forma $[A]_{\mathcal{K}} = \{B \in \mathcal{K} | A \simeq B\},$ unde \mathcal{K} este o clasă de (S, Σ) -algebre şi $A \in \mathcal{K}$ fixată.
- Orice tip abstract de date C se decompune in tipuri monomorfe $C = \bigcup \{ [A]_{C} | A \in C \}.$
- $\blacksquare Alg(S,\Sigma)$ este un tip abstract de date polimorfic.

- Orice tip abstract de date monomorfic este de forma $[A]_{\mathcal{K}} = \{B \in \mathcal{K} | A \simeq B\},$ unde \mathcal{K} este o clasă de (S, Σ) -algebre şi $A \in \mathcal{K}$ fixată.
- Orice tip abstract de date C se decompune in tipuri monomorfe $C = \bigcup \{ [A]_{C} | A \in C \}.$
- $\blacksquare Alg(S,\Sigma)$ este un tip abstract de date polimorfic.
- ■În CafeObj modulele mod* specifică un tip abstract de date polimorfic.

 $\mathcal K$ clasă de (S,Σ) -algebre

■O (S, Σ) -algebră I este iniţială în $\mathcal K$ dacă $I \in \mathcal K$ şi pentru orice $B \in \mathcal K$ există un *unic morfism* $f: I \to B$.

 $\mathcal K$ clasă de (S,Σ) -algebre

- ■O (S, Σ) -algebră I este iniţială în \mathcal{K} dacă $I \in \mathcal{K}$ şi pentru orice $B \in \mathcal{K}$ există un *unic morfism* $f: I \to B$.
- ■Dacă I iniţială în \mathcal{K} , $A \in \mathcal{K}$ şi $A \simeq I$ atunci A iniţială în \mathcal{K} .

 ${\mathcal K}$ clasă de (S,Σ) -algebre

- ■O (S, Σ) -algebră I este iniţială în \mathcal{K} dacă $I \in \mathcal{K}$ şi pentru orice $B \in \mathcal{K}$ există un *unic morfism* $f: I \to B$.
- ■Dacă I iniţială în \mathcal{K} , $A \in \mathcal{K}$ şi $A \simeq I$ atunci A iniţială în \mathcal{K} .
- ■Dacă A_1 și A_2 sunt inițiale în \mathcal{K} atunci $A_1 \simeq A_2$.

 $\mathcal K$ clasă de (S,Σ) -algebre

- ■O (S, Σ) -algebră I este iniţială în \mathcal{K} dacă $I \in \mathcal{K}$ şi pentru orice $B \in \mathcal{K}$ există un *unic morfism* $f: I \to B$.
- ■Dacă I iniţială în \mathcal{K} , $A \in \mathcal{K}$ şi $A \simeq I$ atunci A iniţială în \mathcal{K} .
- ■Dacă A_1 și A_2 sunt inițiale în \mathcal{K} atunci $A_1 \simeq A_2$.
- • $\mathcal{I}_{\mathcal{K}} = \{I \mid I \text{ iniţială în } \mathcal{K}\}$ este un tip abstract de date monomorfic. În CafeObj modulele mod! specifică un astfel de tip monomorfic.

 $\mathcal K$ clasă de (S,Σ) -algebre

- ■O (S, Σ) -algebră I este iniţială în \mathcal{K} dacă $I \in \mathcal{K}$ şi pentru orice $B \in \mathcal{K}$ există un *unic morfism* $f: I \to B$.
- ■Dacă I iniţială în \mathcal{K} , $A \in \mathcal{K}$ şi $A \simeq I$ atunci A iniţială în \mathcal{K} .
- ■Dacă A_1 și A_2 sunt inițiale în \mathcal{K} atunci $A_1 \simeq A_2$.
- • $\mathcal{I}_{\mathcal{K}} = \{I \mid I \text{ iniţială în } \mathcal{K}\}$ este un tip abstract de date monomorfic. În CafeObj modulele mod! specifică un astfel de tip monomorfic.
- ■Vom construi o algebră iniţială în $\mathcal{K}=Alg(S,\Sigma)$, şi anume şi anume algebra termenilor fără variabile.

Mulţime de variabile

 (S,Σ) signatură multisortată

$$|\Sigma| := \bigcup_{w,s} \Sigma_{w,s}$$

 $|X| := \bigcup_{s \in S} X_s$ dacă X mulţime S-sortată

O mulțime de variabile este o mulțime S-sortată X a.î.:

$$\blacksquare X_s \cap X_{s'} = \emptyset$$
 or. $s \neq s'$

$$\blacksquare |X| \cap |\Sigma| = \emptyset$$

simbolurile de variabile sunt distincte între ele şi sunt distincte de simbolurile de operații din Σ

 (S,Σ) signatură, X mulţime de variabile

Mulţimea S-sortată termenilor cu variabile din X, $T_{\Sigma}(X)$, este $cea\ mai\ mică\ mulţime\ de\ şiruri\ finite\ peste\ alfabetul$

$$L = \bigcup_{s \in S} X_s \cup \bigcup_{w,s} \Sigma_{w,s} \cup \{(,)\} \cup \{,\}$$

 (S,Σ) signatură, X mulţime de variabile

Mulţimea S-sortată termenilor cu variabile din X, $T_{\Sigma}(X)$, este $cea\ mai\ mică\ mulţime\ de\ şiruri\ finite\ peste\ alfabetul$

$$L = \bigcup_{s \in S} X_s \cup \bigcup_{w,s} \Sigma_{w,s} \cup \{(,)\} \cup \{,\}$$

$$\blacksquare$$
(T1) $X_s \subseteq T_{\Sigma}(X)_s$

$$\blacksquare$$
(T2) dc. $\sigma : \to s$, at. $\sigma \in T_{\Sigma}(X)_s$,

T3) dc.
$$\sigma: s_1 \cdots s_n \to s$$
 şi $t_i \in T_{\Sigma}(X)_{s_i}$ or. $i=1,\ldots,n$ at. $\sigma(\boldsymbol{t_1},\ldots,\boldsymbol{t_n}) \in T_{\Sigma}(X)_s$.

 (S,Σ) signatură, X mulţime de variabile

Mulţimea S-sortată termenilor cu variabile din X, $T_{\Sigma}(X)$, este $cea\ mai\ mică\ mulţime\ de\ şiruri\ finite\ peste\ alfabetul$

$$L = \bigcup_{s \in S} X_s \cup \bigcup_{w,s} \Sigma_{w,s} \cup \{(,)\} \cup \{,\}$$

- \blacksquare (T1) $X_s \subseteq T_{\Sigma}(X)_s$
- \blacksquare (T2) dc. $\sigma : \to s$, at. $\sigma \in T_{\Sigma}(X)_s$,
- T3) dc. $\sigma: s_1 \cdots s_n \to s$ şi $t_i \in T_{\Sigma}(X)_{s_i}$ or. $i = 1, \ldots, n$ at. $\sigma(t_1, \ldots, t_n) \in T_{\Sigma}(X)_s$.
- Var(t) := mulţimea variabilelor care apar în $t \in T_{\Sigma}$ p.12

 (S,Σ) signatură multisortată

$$L = \bigcup_{w,s} \Sigma_{w,s} \cup \{(,)\} \cup \{,\}$$

- \blacksquare (T2) dc. $\sigma : \to s$, at. $\sigma \in T_{\Sigma,s}$,
- ullet (T3) dc. $\sigma: s_1 \cdots s_n o s$ şi $t_i \in T_{\Sigma, s_i}$ or. $i=1,\ldots,n$ at. $oldsymbol{\sigma(t_1,\ldots,t_n)} \in T_{\Sigma,s}$.
- $\bullet T_{\Sigma} = T_{\Sigma}(\emptyset)$

■STIVA = (S, Σ) $S = \{elem, stiva\}, X_{elem} = \{x, y\}, X_{stiva} = \emptyset,$ $\Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva,$ $push : elem stiva \rightarrow stiva,$ $pop : stiva \rightarrow stiva,$ $top : stiva \rightarrow elem\}$

```
\blacksquare STIVA = (S, \Sigma)
  S = \{elem, stiva\}, X_{elem} = \{x, y\}, X_{stiva} = \emptyset,
  \Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva,
       push: elem\ stiva \rightarrow stiva,
       pop: stiva \rightarrow stiva,
        top: stiva \rightarrow elem \}
\blacksquare T_{\Sigma}(X)_{elem} = \{\mathbf{0}, x, y, \mathbf{top}(\mathbf{pop}(\mathbf{empty})),
                  top(push(x, empty)), \ldots
  T_{\Sigma}(X)_{stiva} = \{empty, push(y, empty), pop(empty), \}
               push(top(empty), empty), \ldots \}
```

```
\blacksquare STIVA = (S, \Sigma)
  S = \{elem, stiva\}, X_{elem} = \{x, y\}, X_{stiva} = \emptyset,
  \Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva,
       push: elem\ stiva \rightarrow stiva,
       pop: stiva \rightarrow stiva,
        top: stiva \rightarrow elem \}
\blacksquare T_{\Sigma}(X)_{elem} = \{\mathbf{0}, x, y, \mathbf{top}(\mathbf{pop}(\mathbf{empty})),
                  top(push(x, empty)), \ldots
  T_{\Sigma}(X)_{stiva} = \{empty, push(y, empty), pop(empty), \}
               push(top(empty), empty), \ldots \}
siruri care nu sunt termeni
```

 $pop(0), (pop)top(empty), empty(y), \dots$

■ $NATBOOL = (S, \Sigma)$ $S = \{bool, nat\}$ $\Sigma = \{T : \rightarrow bool, F : \rightarrow bool, 0 : \rightarrow nat,$ $s : nat \rightarrow nat,$ $\leq : nat \ nat \rightarrow bool\}$

■ $NATBOOL = (S, \Sigma)$ $S = \{bool, nat\}$ $\Sigma = \{T : \rightarrow bool, F : \rightarrow bool, 0 : \rightarrow nat,$ $s : nat \rightarrow nat,$ $\leq : nat \ nat \rightarrow bool\}$

$$T_{NATBOOL,nat} = \{0, s(0), s(s(0)), \ldots\}$$
 $T_{NATBOOL,bool} = \{T, F, \leq (0, 0), \leq (0, s(0)), \ldots\}$

 $\blacksquare NATBOOL = (S, \Sigma)$

$$S = \{bool, nat\}$$

$$\Sigma = \{T : \rightarrow bool, F : \rightarrow bool, 0 : \rightarrow nat,$$

$$s : nat \rightarrow nat,$$

 $\leq : nat \ nat \rightarrow bool \}$

- $T_{NATBOOL,nat} = \{0, s(0), s(s(0)), \ldots\}$ $T_{NATBOOL,bool} = \{T, F, \leq (0, 0), \leq (0, s(0)), \ldots\}$
- siruri care nu sunt termeni

$$\leq (T, F), s \leq (0), Ts(0), \dots$$

```
■AUTOMAT = (S, \Sigma), S = \{intrare, stare, iesire\},
\Sigma = \{s0 : \rightarrow stare,
f : intrare \ stare \rightarrow stare,
g : stare \rightarrow iesire\}
T_{AUTOMAT,stare} = \{s0\}, T_{AUTOMAT,intrare} = \emptyset,
T_{AUTOMAT,iesire} = \{g(s0)\}
```

```
\blacksquare AUTOMAT = (S, \Sigma), S = \{intrare, stare, iesire\},\
  \Sigma = \{s0 : \rightarrow stare,
       f: intrare\ stare \rightarrow stare,
        g: stare \rightarrow iesire
  T_{AUTOMAT,stare} = \{s0\}, T_{AUTOMAT,intrare} = \emptyset,
  T_{AUTOMAT.iesire} = \{g(s0)\}
\blacksquare GRAF = (S, \Sigma), S = \{arc, nod\}
  \Sigma = \{v0 : arc \rightarrow nod, v1 : arc \rightarrow nod\}
  T_{GRAF,arc} = T_{GRAF,nod} = \emptyset
```

- $AUTOMAT = (S, \Sigma), S = \{intrare, stare, iesire\},$ $\Sigma = \{s0 : \rightarrow stare,$ $f : intrare \ stare \rightarrow stare,$ $g : stare \rightarrow iesire\}$ $T_{AUTOMAT, stare} = \{s0\}, T_{AUTOMAT, intrare} = \emptyset,$ $T_{AUTOMAT, iesire} = \{g(s0)\}$
- ■ $GRAF = (S, \Sigma), S = \{arc, nod\}$ $\Sigma = \{v0 : arc \rightarrow nod, v1 : arc \rightarrow nod\}$ $T_{GRAF,arc} = T_{GRAF,nod} = \emptyset$
- ■Atunci când signatura defineşte un modul mod*, mulţimea termenilor fără variabile poate fi neinteresantă.

 $\blacksquare NATEXP = (S = \{nat\}, \Sigma)$

- $\blacksquare NATEXP = (S = \{nat\}, \Sigma)$
- $$\begin{split} \blacksquare \Sigma &= \{0 : \rightarrow nat, s : nat \rightarrow nat, \\ &+ : nat \ nat \rightarrow nat, * : nat \ nat \rightarrow nat \} \end{split}$$

- $\blacksquare NATEXP = (S = \{nat\}, \Sigma)$
- $\Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat, \\ + : nat \ nat \rightarrow nat, * : nat \ nat \rightarrow nat \}$
- $egin{aligned} lacksquare T_{NATEXP} &= \{0, s(0), s(s(0)), \ldots \ &+ (0, 0), *(0, +(s(0), 0)), *(s(0), s(s(0))), \ldots \} \end{aligned}$

- $\blacksquare NATEXP = (S = \{nat\}, \Sigma)$
- $\Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat,$ $+: nat \ nat \rightarrow nat, *: nat \ nat \rightarrow nat \}$
- $egin{aligned} lackbox{$\mathbb{I}$} T_{NATEXP} &= \{\mathbf{0}, s(\mathbf{0}), s(s(\mathbf{0})), \ldots \ &+ (\mathbf{0}, \mathbf{0}), *(\mathbf{0}, +(s(\mathbf{0}), \mathbf{0})), *(s(\mathbf{0}), s(s(\mathbf{0}))), \ldots \} \end{aligned}$
- siruri care nu sunt termeni $+(0), 0(s)s(0), *(0), \dots$

- $\blacksquare NATEXP = (S = \{nat\}, \Sigma)$
- $\Sigma = \{0 : \rightarrow nat, s : nat \rightarrow nat,$ $+: nat \ nat \rightarrow nat, *: nat \ nat \rightarrow nat \}$
- $egin{aligned} lacksquare T_{NATEXP} &= \{0, s(0), s(s(0)), \ldots \ &+ (0, 0), *(0, +(s(0), 0)), *(s(0), s(s(0))), \ldots \} \end{aligned}$
- siruri care nu sunt termeni +(0), 0(s)s(0), *(0), ...
- $\blacksquare T_{NATEXP}$ este mulţimea expresiilor aritmetice peste \mathbb{N} .

Inducţia pe termeni

 (S,Σ) signatură multisortată, X mulţime de variabile Fie ${\bf P}$ o proprietate a.î. următoarele condiţii sunt satisfăcute:

■pasul iniţial:

$$\mathbf{P}(x) = true \text{ or. } x \in X, \ \mathbf{P}(\boldsymbol{\sigma}) = true \text{ or. } \sigma :\to s,$$

Inducția pe termeni

 (S, Σ) signatură multisortată, X mulţime de variabile Fie ${\bf P}$ o proprietate a.î. următoarele condiţii sunt satisfăcute:

■pasul iniţial:

$$\mathbf{P}(x) = true \text{ or. } x \in X, \ \mathbf{P}(\boldsymbol{\sigma}) = true \text{ or. } \sigma :\to s,$$

■pasul de inducţie:

dacă
$$t_1 \in T_{\Sigma}(X)_{s_1}, \ldots, t_n \in T_{\Sigma}(X)_{s_n}$$
 şi
$$\mathbf{P}(t_1) = \cdots = \mathbf{P}(t_n) = true \text{ atunci}$$

$$\mathbf{P}(\boldsymbol{\sigma(t_1, \ldots, t_n)}) = true \text{ or. } \sigma: s_1 \ldots s_n \to s.$$

Inducția pe termeni

 (S,Σ) signatură multisortată, X mulţime de variabile Fie ${\bf P}$ o proprietate a.î. următoarele condiţii sunt satisfăcute:

■pasul iniţial:

$$\mathbf{P}(x) = true \text{ or. } x \in X, \ \mathbf{P}(\boldsymbol{\sigma}) = true \text{ or. } \sigma :\to s,$$

■pasul de inducţie:

dacă
$$t_1 \in T_{\Sigma}(X)_{s_1}, \ldots, t_n \in T_{\Sigma}(X)_{s_n}$$
 şi $\mathbf{P}(t_1) = \cdots = \mathbf{P}(t_n) = true$ atunci $\mathbf{P}(\boldsymbol{\sigma(t_1, \ldots, t_n)}) = true$ or. $\sigma: s_1 \ldots s_n \to s$.

Atunci $\mathbf{P}(t) = true$ oricare $t \in T_{\Sigma}(X)$. p.6

Algebra de termeni

 (S,Σ) signatură, X mulţime de variabile Mulţimea termenilor $T_\Sigma(X)=\{T_\Sigma(X)_s\}_{s\in S}$ este (S,Σ) -algebră astfel:

- ■pt. $\sigma : \to s$, operaţia corespunzătoare este $T_{\sigma} := \sigma$
- ■pt. $\sigma: s_1 \cdots s_n \to s$, operaţia corespunzătoare este $T_\sigma: T_\Sigma(X)_{s_1} \times \cdots \times T_\Sigma(X)_{s_n} \to T_\Sigma(X)_s$

$$T_{\sigma} \cdot I_{\Sigma}(X)_{s_{1}} \wedge \cdots \wedge I_{\Sigma}(X)_{s_{n}} \wedge I_{\Sigma}$$

$$T_{\sigma}(t_1,\ldots,t_n):=\boldsymbol{\sigma(t_1,\ldots,t_n)}$$

or.
$$t_1 \in T_{\Sigma}(X)_{s_1}$$
, ..., $t_n \in T_{\Sigma}(X)_{s_n}$

 $T_{\Sigma}(X)$ algebra termenilor cu variabile din X T_{Σ} algebra termenilor fără variabile ($X = \emptyset$)

– p. 14/1

Iniţialitate

 (S,Σ) signatură multisortată

Teoremă.

Algebra T_{Σ} este iniţială în $Alg(S, \Sigma)$.

- ■or. (S, Σ) -algebra B, ex. un unic morfism $f: T_{\Sigma} \to B$.
- • $\mathcal{I}_{\Sigma} := \{A | A \in Alg(S, \Sigma), A \simeq T_{\Sigma}\} = [T_{\Sigma}]$ este un tip abstract de date monomorfic. Acesta reprezintă semantica unui modul mod! în CafeOBj care conţine numai declaraţii de sorturi şi operaţii.