5.1

(a)

The silhouette index for each datapoint is shown below.

<pre>> sil[index,]</pre>					
	cluster	neighbor	sil_width		
1	1	2			
2	1	3	0.492025309		
3	1	3	0.360955118		
4	1	3	0.674635084		
5	1	3	0.585709176		
6	2	1	0.010931851		
7	1	3	0.660220623		
8	1	3	0.662412984		
9	1	3	0.655503199		
10) 1	3	0.417245716		
11	1	3	0.633478230		
12	2 1	3	0.678251100		
13	3 1	3	0.684044106		
14	1	3	0.421288165		
15	5 2	1	0.130873219		
16	5 1	2	0.643091216		
17	7 2	1	0.221440098		
18	3 1	3	0.418036991		
19) 1	2	0.266411223		
20) 1	3	0.601719525		
21		3	0.424553629		
22		3	0.661914655		
23		3	0.659057269		
24		2	0.514315643		

(b)
The average silhouette index for different clustering choices is plotted
below:

Here we see that the silhouette index peaks at K=4. We know this is the optimal choice because "simdatxy" was generated from four Gaussian distributions centered at (0,0), (0,8), (8,0) and (8,8) with the same standard deviation of 2. At K=4, we may approximate A(i)=2 and B(i)=4. Hence $S(i)=\frac{B(i)-A(i)}{\max_i(A(i),B(i))}\approx 0.5$.

(c) 400 random datapoints, whose x and y components follow uniform distributions in the range [-10,10], are generated using the "runif()" function.

By varying the number of clusters, we see that the silhouette index fluctuates around 0.375 and its profile lacks an obvious peak. As a result, we cannot infer what number of clusters is optimal.

R Code:

```
#5.1
#a
library("dplyr")
simdat = lapply(c(0, 8), function(mx)) 
 lapply(c(0,8), function(my) {
  tibble(x = rnorm(100, mean = mx, sd = 2),
       y = \text{rnorm}(100, \text{mean} = \text{my}, \text{sd} = 2),
       class = paste(mx, my, sep = ":"))
 }) %>% bind rows
}) %>% bind rows
simdatxy = simdat[, c("x", "y")]
library("cluster")
pam4 <- pam(simdatxy, 4)
sil <- silhouette(pam4, 4)
index <- order(as.array(as.numeric(row.names(sil))))</pre>
sil[index,]
```

```
plot(sil, col=c("red","green","blue","purple"), main="Silhouette")
#b
sil wid <- function(k){
 p <- pam(simdatxy,k)
 s \le silhouette(p,k)
 return(mean(s[,"sil width"]))
}
k vector \leq- c(2:11)
width_vector <- c()
for (val in k_vector){
 val
 w <- sil wid(val)
 width vector <- c(width_vector,w)
}
plot(k vector,width_vector,xlab = "K", ylab = "silhouette index")
#c
library(ggplot2)
simdatxy2 < -tibble(x = runif(400,min=-10,max=10), y = runif(400,min=-10,max=10))
ggplot(simdatxy2, aes(x = x, y = y)) + geom point() +
 coord_fixed()
sil wid2 <- function(k){
 p <- pam(simdatxy2,k)
 s <- silhouette(p,k)
 return(mean(s[,"sil_width"]))
}
k vector \leq- c(2:20)
width_vector <- c()
```

```
for (val in k_vector){
  val
  w <- sil_wid2(val)
  width_vector <- c(width_vector,w)
}
plot(k_vector,width_vector,xlab = "K", ylab = "silhouette index")</pre>
```

5.3

(a)

"kmeans()" was used to separate the *spirals* data into 2 clusters. It is evident that the result is far from satisfactory.

(b)

Using "dbscan::dbscan()" has proven to provide us with better results, except a small amount of misclassifications at the tail. The eps and minPts parameters were 0.15 and 3 respectively.

The density-based clustering method starts from a randomly selected seed. Branching out from that seed, all data points within *eps* are labeled as the next frontier where breadth-first search is executed. When all nodes of the outermost layer no longer have enough close-by neighbours to hop to, a new class is created along with a new seed and the algorithm repeats [1].

(c) As soon as the eps and minPts parameters leaves their ranges of tolerance 0.15 ± 0.02 and 3 ± 2 , the clustering algorithm fails and produces too many groups.

Setting *minPts* constant at 3, sweeping *eps* from 0.01 to 1 with increments of 0.01 changes the number of clustering produced as shown in the Figure below:

Setting *eps* constant at 0.15, sweeping *minPts* from 1 to 20 with increments of 1 changes the number of clustering produced as shown in the Figure below:

It is thus evident that the clustering algorithm used by *dbscan* is not robust for this non-convex set. The more efficient way would be to use kernel clustering to transform the datapoints into a linearly separable space.

```
R Code:
#5.3
#a
library(kernlab)
data(spirals)
s data <- tibble(x = spirals[,1], y = spirals[,2],cluster = as.factor(kmeans(spirals, centers=2)$cluster))
ggplot(s data, aes(x = x, y = y, col = cluster)) + geom point() + coord fixed()
#b
library(dbscan)
s data2 <- tibble(x = spirals[,1], y = spirals[,2],cluster = as.factor(dbscan::dbscan(spirals, eps = 0.15,
minPts = 3)$cluster))
ggplot(s data2, aes(x = x, y = y, col = cluster)) + geom point() + coord fixed()
#c
s data3 <- tibble(x = spirals[,1], y = spirals[,2],cluster = as.factor(dbscan::dbscan(spirals, eps = 0.15,
minPts = 3)$cluster))
ggplot(s data3, aes(x = x, y = y, col = cluster)) + geom point() + coord fixed()
e vector \leq seq(0.01,1,0.01)
ncluster vector <- vapply(e vector, function(x){length(unique(as.factor(dbscan::dbscan(spirals, eps = x,
minPts = 3)$cluster)))},numeric(1))
plot(e vector, ncluster vector, xlab="Parameter eps", ylab="Number of Clusters")
P vector <- seq(1,20,1)
ncluster vector2 <- vapply(P vector, function(x){length(unique(as.factor(dbscan::dbscan(spirals, eps =
0.15, minPts = x)$cluster)))},numeric(1))
plot(P vector,ncluster vector2, xlab="Parameter minPts", ylab="Number of Clusters")
Reference
```

[1] "DBSCAN Clustering Tutorial - Nearist.ai - Medium." [Online]. Available: https://medium.com/nearist-ai/dbscan-clustering-tutorial-dd6a9b637a4b. [Accessed: 27-Jun-2020].