Ensembles of Classifiers

Nazerfard, Ehsan

nazerfard@aut.ac.ir

The Wisdom of Crowds

nature

Published: 07 March 1907

Vox Populi

FRANCIS GALTON

Nature 75, 450-451(1907) | Cite this article

Abstract

IN these democratic days, any investigation into the the trustworthiness and peculiarities of popular judgments is of interest. The material about to be discussed refers to a small matter, but is much to the point.

Ask the Audience

□ In Wikipedia's current logo, depicting a spherical jigsaw puzzle, which letter is seen on the piece immediately to the right of the one bearing an " Ω "?

A. W

C. Y

B. X

D. Z

Ask the Audience (cont.)

□ In Wikipedia's current logo, depicting a spherical jigsaw puzzle, which letter is seen on the piece immediately to the right of the one bearing an " Ω "?

A. W

C. Y

B. X

D. Z

© Who wants to be a millionaire

Ensemble of Classifiers

- Goal
 - Improve accuracy of supervised learning task
- Approach
 - Use an ensemble of classifiers, rather than just one
- Challenges
 - How to construct ensemble
 - How to use individual hypotheses of ensemble to produce a classification

Ensemble of Classifiers (cont.)

- □ Given ensemble of L classifiers $h_1, h_2, ..., h_L$ (called base classifiers)
- Decision based on combination of $h'_l s$ (l = 1...L)
 - E.g., weighted or unweighted voting
- How to construct ensemble whose accuracy is better than any individual classifier?

Ensemble of Classifiers (cont.)

- Ensemble requirements
 - o Individual classifiers disagree
 - Each classifier's error < 0.5
 - Classifiers' errors uncorrelated
- \square Then, ensemble will outperform any h_l

Ensemble Methods

- Two main categories:
 - Bagging (bootstrap aggregation)
 - II. Boosting → Adaboost

- Combining a set of heterogeneous classifiers:
 Stacking, blending, voting, ...
- Graph-based cross-validated committees ensembles

O . . .

Bagging

- \Box Given m training examples
- □ Construct *L* random samples of size *m* with replacement (bootstrap step)
 - Each sample called a bootstrap replicate
 - o On average, each replicate contains 63.2% of training data
- \blacksquare Learn a classifier h_l for each of the L samples
- Average over the learned classifiers to produce the final classifier (aggregation step)

Bagging (cont.)

How Bagging combines classifiers:

$$h: X \to \{-1, +1\}$$

Unweighted voting

$$h(\mathbf{x}_{test}) = \operatorname{sgn}[h_1(\mathbf{x}_{test}) + h_2(\mathbf{x}_{test}) + \dots + h_L(\mathbf{x}_{test})]$$

- The main idea behind Bagging is to reduce overfitting.
 - It works well for unstable/ low bias/ high variance models, such as Decision Trees.
 - o It doesn't work for linear models. Why?

Three Iris Types

Decision Tree (DT) - decision boundaries

The full Iris.2D dataset

Learned DTs (Bootstrap step)

Figures © Alex Ihler, Lecture on Ensemble Methods, UCI

Testing/validation step

- Aggregating (averaging) over the learned Bagged Trees
 - o e.g. majority vote/unweighted average (classification)

Average of 5 trees

Average of 25 trees

Average of 100 trees

The Random Forest Algorithm

Boosting

- Boosting is based on the question posed by Michael Kearns (1988) [2]: "Can a set of weak learners create a single strong learner?"
 - Boosting is an ensemble meta-algorithm for primarily reducing bias, and also variance.

Adaboost Training Phase

$$\begin{cases} w_i^1 = \frac{1}{m} & \text{Subject to: i=1..m} \\ \epsilon^1 = \sum_i w_i^1 & \text{Subject to: i_{th} example is incorrectly classified} \end{cases}$$

Total error at step t:
$$\epsilon^t = \sum_i w_i^t$$
 Incorrectly classified examples

Adaboost Final Classifier

How Adaboost combines classifiers:

$$h: X \to \{-1, +1\}$$

Weighted voting

$$h(\mathbf{x}_{test}) = \operatorname{sgn}[\alpha^1 h^1(\mathbf{x}_{test}) + \alpha^2 h^2(\mathbf{x}_{test}) + \cdots]$$

Adaboost: Components and Steps

Base Classifier: Decision Stump

Trained classifier

Figures © Alex Ihler, Lecture on Ensemble Methods, UCI

Incorrectly Classified Examples

Trained classifier

Emphasizing Incorrectly Classified Examples

Figures © Alex Ihler, Lecture on Ensemble Methods, UCI

Incorrectly Classified Examples

Figures © Alex Ihler, Lecture on Ensemble Methods, UCI

Emphasizing Incorrectly Classified Examples

Training Done

Final Classifier: Weighted Voting

- Adaboost (Adaptive Boosting)
 - Yoav Freund and Schapire, 97 [1]

Final Classifier: Weighted Voting

- □ AdaBoost (Gödel Prize, 2003)
 - This paper [3] (simplified version)

Adaboost Details

How to update weights at each step:

$$\begin{cases} w_i^{t+1} = \frac{w_i^t}{Z^t} \times \exp[-\alpha^t h^t(\mathbf{x_i}) y(\mathbf{x_i})] \\ \alpha^t = \frac{1}{2} \ln \frac{1 - \epsilon^t}{\epsilon^t} \end{cases}$$

Adaboost Details (cont.)

How to update weights at each step:

$$\begin{cases} w_i^{t+1} = \frac{w_i^t}{Z^t} \times \exp[-\alpha^t h^t(\mathbf{x_i}) y(\mathbf{x_i})] \\ \alpha^t = \frac{1}{2} \ln \frac{1 - \epsilon^t}{\epsilon^t} \end{cases}$$

$$\Rightarrow w_i^{t+1} = \frac{w_i^t}{Z^t} \times \begin{cases} \sqrt{\frac{\epsilon^t}{1 - \epsilon^t}} & h^t(\mathbf{x_i}) = y_i \\ \sqrt{\frac{1 - \epsilon^t}{\epsilon^t}} & h^t(\mathbf{x_i}) \neq y_i \end{cases}$$

Adaboost Details (cont.)

Normalization factor:

$$Z^{t} = \sum_{i} w_{i}^{t} \times \sqrt{\frac{\epsilon^{t}}{1 - \epsilon^{t}}} + \sum_{i} w_{i}^{t} \times \sqrt{\frac{1 - \epsilon^{t}}{\epsilon^{t}}} = 2\sqrt{\epsilon^{t}(1 - \epsilon^{t})}$$
Correctly classified classified

Adaboost Details (cont.)

Normalization factor:

$$Z^{t} = \sum_{i} w_{i}^{t} \times \sqrt{\frac{\epsilon^{t}}{1 - \epsilon^{t}}} + \sum_{i} w_{i}^{t} \times \sqrt{\frac{1 - \epsilon^{t}}{\epsilon^{t}}} = 2\sqrt{\epsilon^{t}(1 - \epsilon^{t})}$$
Correctly classified classified

Weight updating rule:

$$\begin{cases} w_i^{t+1} = \frac{w_i^t}{2} \times \frac{1}{1 - \epsilon^t} & h^t(\mathbf{x_i}) = y_i \\ w_i^{t+1} = \frac{w_i^t}{2} \times \frac{1}{\epsilon^t} & h^t(\mathbf{x_i}) \neq y_i \end{cases}$$

Adaboost Properties

- Adaboost is sensitive to noisy data & outliers, less sensitive to overfitting. (Why?)
- Bias-variance Tradeoff

Adaboost Properties (cont.)

- Adaboost is sensitive to noisy data & outliers, less sensitive to overfitting.
- Adaboost (with decision stump/trees as the weak classifier) is often referred to as the best out-of-the-box classifier.

Further Reading

- Other ensemble methods:
 - Gradient Boosting
 - Extreme Gradient Boosting (XGBoost)
 - LightBoost
 - CatBoost
 - Logit Boost
 - O . . .
 - Random Forest Regression

Further Reading (cont.)

- □ T. Dietterich, Ensemble Methods in Machine Learning, International Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science, pp.1–15, 2000.
- J. H. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, 1999.
- □ J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: a statistical view of boosting, Annals of Statistics. 28 (2): 337–407, 2000. → LogitBoost Algorithm

References

- Yoav Freund and Robert E. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, computer and system sciences 55, 119-139,1997.
- 2. Michael Kearns, Thoughts on Hypothesis Boosting, Unpublished manuscript (ML class project), 1988.
- Yoav Freund, Robert E. Schapire, A Short Introduction to Boosting, Journal of Japanese Society for Artificial Intelligence, 14(5):771–780, 1999 (translated).
- 4. Patrick Winston, Lecture on Boosting, MIT