- Analyse des Ventes -

SOMMAIRE

Nettoyage des données

1- Gestion des tests

2- Gestion des NaN

3 - Autres opérations

1/4 - Identification du problème

```
products.describe(include='all')
Entrée [7]:
   Out[7]:
                      id_prod
                                    price
                                                categ
                        3287
                              3287.000000
                                          3287.000000
               count
                        3287
                                     NaN
                                                 NaN
               unique
                      0_2060
                                                 NaN
                 top
                                     NaN
                 freq
                                     NaN
                                                 NaN
                         NaN
                                21.856641
                                             0.370246
               mean
                                29.847908
                         NaN
                                             0.615387
                 std
                                -1.000000
                         NaN
                                             0.000000
                 min
                         NaN
                                 6.990000
                                             0.000000
                25%
                         NaN
                                13.060000
                                             0.000000
                50%
                75%
                         NaN
                                22.990000
                                             1.000000
                         NaN
                               300.000000
                                             2.000000
                max
```

2/4 - Recherche d'informations

```
Entrée [22]: #On verifie le prix -1 que l'on à aperçu auparavant
df.loc[df.price== -1.0]
```

Out[22]:

	id_prod		date	session_id	client_id	sex	age	price	categ
309439	T_0	test	2021-03-01 02:30:02.237419	s_0	ct_0	f	22	-1.0	0.0
309440	T_0	test	2021-03-01 02:30:02.237425	s_0	ct_0	f	22	-1.0	0.0
309441	T_0	test	2021-03-01 02:30:02.237436	s_0	ct_0	f	22	-1.0	0.0
309442	T_0	test	2021-03-01 02:30:02.237430	s_0	ct_0	f	22	-1.0	0.0
309443	T_0	test	2021-03-01 02:30:02.237449	s_0	ct_0	f	22	-1.0	0.0
			8.00		***	•••			525
517697	T_0	test	2021-03-01 02:30:02.237420	s_0	ct_1	m	22	-1.0	0.0
517698	T_0	test	2021-03-01 02:30:02.237427	s_0	ct_1	m	22	-1.0	0.0
517699	T_0	test	2021-03-01 02:30:02.237449	s_0	ct_1	m	22	-1.0	0.0
517700	T_0	test	2021-03-01 02:30:02.237424	s_0	ct_1	m	22	-1.0	0.0
517701	T_0	test	2021-03-01 02:30:02.237425	s_0	ct_1	m	22	-1.0	0.0

200 rows x 8 columns

3/4 - On retire les lignes « test » et on les place dans un autre dataset

```
Entrée [23]: #On les stock dans un df appelé test
test = df.loc[df.date.str.contains("test"),:]

Entrée [24]: #On les suprimme du df principal
df=df[-df.date.str.contains("test")]
```

4/4 - Conclusion

Toutes les valeurs négatives étaient des tests.

2 - Gestion des NaN

3 - Autres opérations

3 - Autres opérations

1/2 - Transformation de la colonne « date »

date
2022-05-20 13:21:29.043970
2022-06-18 05:55:31.816994
2023-02-08 17:31:06.898425

3 - Autres opérations

2/2 - Création d'un df « commandes »

session_id	client_id	age	price	number_items	date	hour	day_week
s_1	c_329	56	11.99	1	2021-03-01	0	Lun
s_10	c_2218	53	26.99	1	2021-03-01	0	Lun
s_100	c_3854	45	33.72	2	2021-03-01	4	Lun

Analyse univariée

1 - Etude du CA

- CA annuel
- CA mensuel
- CA Journalier
- CA par catégorie
- CA mensuel selon la catégorie
- CA journalier selon la catégorie
- CA par heure et catégorie

2 - Etude des produits

- Prix selon la catégorie
- Répartition du CA
- Meilleurs et Pires produits

3 - Etude des clients

- Âge et sexe
- Visualisations en fonction du sexe
- Répartition du CA
- Meilleurs clients

CA annuel 2022: 6,1 Millions €

CA de Mars 2021 à Mars 2023: 11,8 Millions €

CA annuel: 5,9 Millions €

CA en fonction des catégories

Fréquence d'achat selon les catégories

2 - Etude des produits

Les meilleurs produits...

selon le montant des achats.

selon le nombre d'achats.

	number_purchases	monetary_value
id_prod		
2 159	650	94893.50
2_135	1005	69334.95
2_112	968	65407.76
2 102	1027	60736.78
2 209	814	56971.86
1 395	1875	54356.25
1 369	2252	54025.48
2 110	865	53846.25
2 39	915	53060.85
2_166	228	52449.12

	number_purchases	monetary_value
id_prod		
1_369	2252	54025.48
1_417	2189	45947.11
1 414	2180	51949.40
1 498	2128	49731.36
1_425	2096	35611.04
1 403	1960	35260.40
1 412	1951	32484.15
1_413	1945	34990.55
1_406	1939	48106.59
1 407	1935	30940.65

Les pires produits...

selon le montant des achats.

selon le nombre d'achats.

	number_purchases	monetary_value
id_prod		
0_1539	1	0.99
0_1284	1	1.38
0_1653	2	1.98
0_541	1	1.99
0_807	1	1.99
0_1601	1	1.99
0_1728	1	2.27
0_1498	1	2.48
0_898	2	2.54
0 1840	2	2.56

	number_purchases	monetary_value
id_prod	90766	
0 549	1	2.99
0_2201	1	20.99
2_23	1	115.99
0 1284	1	1.38
0_1683	1	2.99
0_833	1	2.99
2_98	1	149.74
0_1633	1	24.99
0_1601	1	1.99
2 81	1	86.99

3 - Etude des clients

3 - Etude des clients

price

25

30

m

Les meilleurs clients...

selon le montant des achats.

	client_id	Recency	Frequency	MonetaryValue
0	c_1609	1	10997	324033.350000
1	c_4958	1	3851	289760.340000
2	c_6714	1	2620	153662.749128
3	c_3454	1	5573	113669.844564
4	c_3263	3	143	5276.870000
5	c_1570	8	158	5271.620000
6	c_2899	8	69	5214.050000
7	c_2140	1	147	5208.820000
8	c_7319	3	145	5155.770000
9	c_8026	3	146	5093.218188

selon la fréquence d'achat.

	client_id	Recency	Frequency	MonetaryValue
0	c_1609	1	10997	324033.350000
1	c_3454	1	5573	113669.844564
2	c_4958	1	3851	289760.340000
3	c_6714	1	2620	153662.749128
4	c_8526	8	165	3975.060000
5	c_1637	5	164	4698.870000
6	c_669	3	163	4499.360000
7	c_2265	1	163	3271.280000
8	c_682	1	161	4102.180000
9	c_8510	4	161	4798.630000

Analyse des corrélations

- 1 Sexe et catégorie
- 2 Âge et taille du panier
- 3 Âge et montant total
- 4- Âge et fréquence d'achat
- 5 Âge et catégorie

1 - Sexe et catégorie

2 - Âge et taille du panier

2 - Âge et taille du panier

2 - Âge et taille du panier

2 - Âge et taille du panier

Ici: p-value = 0 R = 0,54

On rejette H0 : il y a une corrélation forte entre la catégorie d'âge et la taille du panier.

lci :

p-value = 3,12e-138

R = 0.26

On rejette H0 : il y a une corrélation faible entre la catégorie d'âge et la taille du panier.

Ici: p-value = 2,48e-255

R = 0.35

On rejette H0 : il y a une corrélation moyenne entre la catégorie d'âge et la taille du panier.

5 - Âge et catégorie

5 - Âge et catégorie

5 - Âge et catégorie

Conclusion

Conclusion générale

Conclusion des corrélations

Conclusion générale

- Gamme de prix différente selon les catégories
- Stabilité des ventes : selon les mois, les jours, les heures
- Equilibre (CA) des différentes catégories (pas de catégorie particulièrement faible)

Conclusion des corrélations

- Corrélation variable entre le sexe et la catégorie :
 - nulle concernant la catégorie 2
 - très faible pour la catégorie 1
 - faible pour la catégorie 0
- Pas de corrélation linéaire entre les ventes et l'âge, <u>mais</u> corrélation entre les ventes et la <u>catégorie d'âge</u>
- Corrélation forte entre la catégorie 2 et la plus jeune tranche d'âge

Quel est la probabilité qu'un client achète la référence 0_525 sachant qu'il a acheté la référence 2_159 ?

```
\begin{array}{l} df\_2\_159 = df[df['id\_prod'] == '2\_159'] \\ df\_0\_525 = df[df['id\_prod'] == '0\_525'] \\ df\_2\_159 = df\_2\_159['client\_id'].drop\_duplicates() \\ df\_0\_525 = df\_0\_525['client\_id'].drop\_duplicates() \\ nb\_client\_commun = len(df\_0\_525.isin(df\_2\_159)) \\ proba=(nb\_client\_commun/len(df\_2\_159))*100 \\ \end{array}
```

#On selectionne toutes les références 2_159
#On selectionne toutes les références 0_525
#On selectionne les clients unique de la référence 2_159
#On selectionne les clients unique de la référence 0_525
#On selectionne les clients unique qui ont commandés les deux références
#On calcul la probabilité

#On affiche la probabilité:

La Probabilité qu'un client achète la référence 0_525 sachant qu'il a acheté la référence 2_159 est de: 86.5 %