RESOLUCIÓ

1 Considerem l'equació:

$$e^{-x} = \ln x. \tag{1}$$

- a) Enuncieu el Teorema de Bolzano.
- b) Demostreu que l'equació (1) té una solució en el conjunt $[1, +\infty)$.
- c) Doneu un interval de longitud 0.1 que contingui aquesta solució.
- d) Raoneu perquè l'equació donada no pot tenir dues solucions en $[1, +\infty)$.
- e) Apliqueu Newton-Raphson amb el valor inicial $x_0 = 1$ per a determinar l'arrel positiva. Atureu el càlcul quan la diferència entre dos iterats consecutius sigui menor que 10^{-4} . Quantes iteracions calen en aquest cas?

Resolució: (1+2+2+2+3=10 punts)

- a) Teorema de Bolzano. Siguin a < b nombres reals, $f : [a, b] \to \mathbb{R}$ contínua en [a, b] tal que $f(a) \cdot f(b) < 0$, aleshores existeix un nombre real ξ , amb $a < \xi < b$ tal que $f(\xi) = 0$.
- b) Sigui $f(x) = e^{-x} \ln x$, l'equació s'escriu f(x) = 0. Una demostració vàlida s'obté fent servir del teorema de Bolzano i la funció f(x).

 Calculem $f(1) = e^{-1} = \frac{1}{e} > 0$, i, per exemple, $f(2) = e^{-2} \ln 2 \simeq -0.558 < 0$.

 Del fet que $\exp(t)$ és contínua a tot $\mathbb R$ i $\ln(t)$ és contínua a $(0, +\infty)$, podem concloure que f(x) és contínua en el conjunt $[1, +\infty)$. És a dir f(x) satisfà les hipotesis del teorema de Bolzano a l'interval $[1, +\infty)$, conclusió, a l'interval $[1, +\infty)$ hi ha una solució de l'equació.
- c) Com hem vist, f(1) > 0 i f(2) < 0. Calculem $f(1.5) \simeq -0.182 < 0$ i deduïm que la solució es troba a l'interval (1,1.5). Calculem, successivament $f(1.1) \simeq 0.238$, $f(1.2) \simeq 0.119$, $f(1.3) \simeq 0.010$, $f(1.4) \simeq -0.090$ i obtenim que la solució es troba l'interval (1.3,1.4).
- d) La funció és estrictament decreixent a $[1, +\infty)$, ja que $f'(x) = -e^{-x} 1/x$ és negativa per a tot $x \in [1, +\infty)$. I és per aquesta raó que f(x) no pot prendre dues vegades el mateix valor en $[1, +\infty)$.
- e) La successió $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ amb x_0 donat dona els diferents iterats del mètode de Newton-Raphson (també conegut com a mètode de la tangent). Prenent $x_0 = 1$, s'obtenen els valors $x_1 = 1.2689414...$, $x_2 = 1.30910084...$, $x_3 = 1.3097993...$ i $x_4 = 1.3097996...$, i ja no cal seguir ja que x_4 i x_3 ja compleixen la condició $|x_{n+1} x_n| < 10^{-4}$.

- 2 a) Enuncieu el Teorema Fonamental del Càlcul Integral.
 - b) Feu servir aquest teorema per calcular, si és possible, el següent límit:

$$\lim_{x \to 0} \frac{\int_0^x (\ln(1+t) - t) dt}{\int_x^0 (1 - \sqrt{1 - t^2}) dt}.$$

- c) Enuncieu la regla de Barrow.
- d) Calculeu l'àrea de la figura limitada per les tres corbes següents:

$$y = \frac{1}{x}$$
, $y = x^2$, $y = 8x^2$.

Resolució: (1+4+1+4=10 punts)

a) Teorema Fonamental del Càlcul Integral.

Si $f:[a,b]\to\mathbb{R}$ és contínua en [a,b], llavors la funció $F:[a,b]\to\mathbb{R}$ definida per

$$F(x) = \int_{a}^{x} f(t)dt$$

és una funció **contínua i derivable**, la funció derivada és F'(x) = f(x), $\forall x \in [a, b]$.

En particular, si $F(x) = \int_{v(x)}^{u(x)} f(t)dt$, amb u(x) i v(x) funcions derivables, fent ús de la regla de la cadena i el teorema fonamental es té F'(x) = u'(x)f(u(x)) - v'(x)f(v(x)) per a tot x de [a,b].

b) En un primer pas, s'obté indeterminació: $\lim_{x \to 0} \frac{\int_0^x (\ln(1+t) - t) \ dt}{\int_x^0 \left(1 - \sqrt{1 - t^2}\right) \ dt} = \left(\frac{0}{0}\right).$

Les funcions del numerador i el denominador respectivament satisfan les hipòtesis de la Regla de L'Hôpital. Comprovació:

Notem

$$F(x) = \int_0^x (\ln(1+t) - t) dt \quad i \quad G(x) = \int_x^0 \left(1 - \sqrt{1 - t^2}\right) dt.$$

La funció $f(t) = \ln(1+t) - t$ és contínua per a tot real t > 0, llavors pel teorema del fonamental del càlcul, la funció F(x) és derivable i la seva derivada és $F'(x) = \ln(1+x) - x$ per a x > 0.

Com que la funció $g(t)=1-\sqrt{1-t^2}$ és contínua per a tot real t>0, llavors pel teorema del fonamental del càlcul, la funció G(x) és derivable i la seva derivada és $G'(x)=\sqrt{1-x^2}-1$ per a x>0.

En un segon pas, altre vegada s'obté indeterminació:

$$\lim_{x \to 0} \frac{F'(x)}{G'(x)} = \lim_{x \to 0} \frac{\ln(1+x) - x}{\sqrt{1 - x^2} - 1} = \left(\frac{0}{0}\right).$$

Com que el numerador i del denominador són funcions derivables en tot els reals positius podem fer ús de la Regla de L'Hôpital per resoldre aquest límit. Llavors,

$$\lim_{x\to 0} \frac{F''(x)}{G''(x)} = \lim_{x\to 0} \frac{1/(1+x)-1}{-2x/2\sqrt{1-x^2}} = \lim_{x\to 0} \frac{-x\sqrt{1-x^2}}{-x(1+x)} = \lim_{x\to 0} \frac{\sqrt{1-x^2}}{1+x} = 1.$$

Finalment, el valor del límit és 1, fet que es dedueix de:

$$\lim_{x \to 0} \frac{F''(x)}{G'''(x)} = 1 \implies \lim_{x \to 0} \frac{F'(x)}{G'(x)} = 1 \implies \lim_{x \to 0} \frac{\int_0^x (\ln(1+t) - t) dt}{\int_x^0 (1 - \sqrt{1 - t^2}) dt} = 1.$$

c) Regla de Barrow.

Si $f:[a,b]\to R$ és contínua en [a,b] i F(x) és una primitiva de f(x) llavors es verifica que

$$\int_{a}^{b} f(t)dt = F(b) - F(a).$$

d) El següent gràfic és un esquema de la regió definida per les corbes de l'exercici.

Les corbes $y = x^2$ i $y = 8x^2$ es tallen a (0,0). Resolent el sistema format per les equacions $y = x^2$ i y = 1/x trobem el punt Q = (1,1). Resolent el sistema format per les equacions $y = 8x^2$ i y = 1/x trobem el punt P = (1/2,2). Aleshores, l'àrea de la regió demanada és

$$A = \int_0^{1/2} (8x^2 - x^2) dx + \int_{1/2}^1 \left(\frac{1}{x} - x^2\right) dx$$

Fent els càlculs tenim

$$A = \left[\frac{7x^3}{3}\right]_0^{1/2} + \left[\ln(x) - \frac{x^3}{3}\right]_{1/2}^1 = \frac{7}{24} - 0 + \ln 1 - \frac{1}{3} - \ln\left(\frac{1}{2}\right) + \frac{1}{24} = \ln(2).$$

Aleshores, l'àrea demanada és ln(2).