<u>Página Principal</u> / Mis cursos / <u>GRADUADO-A EN INGENIERÍA INFORMÁTICA Y MATEMÁTICAS (2011) (297)</u> / <u>TOPOLOGÍA I (2021)-297 11 26 2021</u> / <u>Tema 3. Conexión y compacidad</u> / <u>Tercer cuestionario evaluación continua</u>

Comenzado el viernes, 18 de diciembre de 2020, 10:10

Estado Finalizado

Finalizado en viernes, 18 de diciembre de 2020, 10:45

Tiempo 35 minutos

empleado

Calificación 60,00 de 100,00

Pregunta 1
Correcta

Puntúa 10,00 sobre 10,00 Sea $X = \{(x, y) \in \mathbb{R}^2 : y = 0 \text{ ó } y = 1\}$ con la topología T inducida por la usual de \mathbb{R}^2 . Sea R la relación de equivalencia en X cuyas clases de equivalencia son

$$[(0,0)] = [(0,1)] = \{(0,0),(0,1)\}, \quad [(x,y)] = \{(x,y)\} \text{ si } x \neq 0.$$

Sea (X/R,T/R) el espacio cociente y $\pi:X\to X/R$ la proyección. Entonces el número de componentes conexas de $X/R\setminus \pi(0,0)$ es:

O a. 2

O b. 3

0 c. 1

Los conjuntos

 $\pi((-\infty,0)\times\{0\}),\pi((0,+\infty)\times\{0\}),\pi((-\infty,0)\times\{1\}),\pi((0,+\infty)\times\{1\})$ son una partición de $X/R\setminus\{[(0,0)]\}$ por conjuntos conexos abiertos

Respuesta correcta

Los conjuntos $\pi((-\infty,0)\times\{0\}), \pi((0,+\infty)\times\{0\}), \pi((-\infty,0)\times\{1\}), \pi((0,+\infty)\times\{1\})$ son una partición de $X/R\setminus\{[(0,0)]\}$ por conjuntos conexos abiertos

La respuesta correcta es:

4

Pregunta **2**Correcta
Puntúa 30,00
sobre 30,00

Sea (X,T) un espacio topológico, R una relación de equivalencia en X, y $\pi:(X,T)\to (X/R,T/R)$ la proyección. Sea T_i la topología inicial asociada a la aplicación $\pi:X\to (X/R,T/R)$. Marcar la respuesta correcta

 \bigcirc a. $T_i \subsetneq T$ (T es estrictamente más fina que T_i)

 \bigcirc b. $T = T_i$

c. Ninguna de las restantes respuestas es correcta

 \cup d. $T \subseteq T_i$ (T es estrictamente más gruesa que T_i)

Respuesta correcta

Como $\pi:(X,T)\to (X/R,T/R)$ es continua, $T_i\subset T$. Además, hay casos en los que $T_i=T$ y $T_i\neq T$. Por ejemplo, tomando R tal que X=X/R, se tiene que $T_i=T$. Identificando los extremos del segmento [0,1] se tiene que $T_i\neq T$

La respuesta correcta es:

Ninguna de las restantes respuestas es correcta

Pregunta **3**Incorrecta
Puntúa 0,00

sobre 30,00

Sean (X,T),(Y,T') espacios topológicos, y $A\subset X,B\subset Y$. La frontera $\partial(A\times B)$ de $A\times B$ en el espacio producto $(X\times Y,T\times T')$ es (marcar la respuesta correcta):

- \bigcirc a. $(\overline{A} \times \partial B) \cap (\partial A \times \overline{B})$
- \bigcirc b. $\partial \overline{A} \times \partial \overline{B}$
- \odot c. $(A \times \partial B) \cup (\partial A \times B)$
- \bigcirc d. $(A \times \partial B) \cap (\partial A \times B)$

Respuesta incorrecta.

Esta pregunta ha sido anulada puesto que, por un error tipográfico, ninguna respuesta es correcta. La respuesta correcta sería $(\overline{A} \times \partial B) \cup (\partial A \times \overline{B})$

La respuesta correcta es: Anulación pregunta

Pregunta **4**Parcialmente correcta

Puntúa 20,00 sobre 30,00 Marcar las afirmaciones verdaderas:

- ☑ a. Si (X,T) es un espacio topológico conexo y $A \subset X$ es un subconjunto distinto de \emptyset, X , entonces $\partial A \neq \emptyset$
- Si $\partial A \neq \emptyset$, entonces $\{\operatorname{int}(A), \operatorname{ext}(A)\}$ es una partición de X en conjuntos abiertos no vacíos
- □ b. El interior de un conjunto conexo es un conjunto conexo
- c. Una bola abierta en un espacio métrico es un conjunto conexo
- En un espacio métrico discreto, las bolas con más de un punto no son conjuntos conexos
- d. Un conjunto finito con más de un punto en un espacio Hausdorff es conexo

Respuesta parcialmente correcta.

Ha seleccionado demasiadas opciones.

La respuesta correcta es:

Si (X,T) es un espacio topológico conexo y $A\subset X$ es un subconjunto distinto de \emptyset,X , entonces $\partial A\neq\emptyset$

◆ Pizarras

Ir a...

Pregunta reserva cuestionario 3 ▶