Perceptron

What is a Perceptron?

A **Perceptron** is the smallest and simplest unit of a neural network, similar to a single "brain cell" in artificial intelligence.

It performs the following steps:

- 1. Takes inputs (data)
- 2. Multiplies them by weights (importance)
- 3. Adds a bias (adjustment)
- 4. Passes the result through an activation function
- 5. Produces an output (decision)

The mathematical formula of a perceptron is:

Output =
$$f(w_1x_1 + w_2x_2 + ... + b)$$

where:

- x_1, x_2, \ldots are the input values
- w_1, w_2, \ldots are the weights (importance of each input)
- b is the bias (a constant to shift the decision boundary)
- f() is the activation function (which decides the final output)

Example 1: Should I Drink Coffee?

Imagine you want to decide whether to drink coffee or not. You think about three factors:

Input	Example Value	Meaning
$x_1 = $ Sleep hours	4 hours	Less sleep \rightarrow likely yes
$x_2 = \text{Energy}$ level		Low energy \rightarrow likely yes
x_3 = Time of day	8 PM	Late night \rightarrow likely no

Weights show how important each factor is:

Input	Weight (w)	Meaning
Sleep hours	-0.7	More sleep \rightarrow less coffee
Energy level	-0.5	More energy \rightarrow less coffee
Time of day	+0.3	Later time \rightarrow less likely

Bias: b = +0.2 (you usually like coffee)

Step 1: Weighted Sum

Total =
$$(-0.7)(4) + (-0.5)(2) + (0.3)(8) + 0.2$$

= $-2.8 - 1.0 + 2.4 + 0.2 = -1.2$

Step 2: Activation Function (Decision)

Use a step function:

$$f(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{if } z \le 0 \end{cases}$$

Here, z = -1.2, so:

$$f(-1.2) = 0$$

Decision: Do not drink coffee.

Meaning

The perceptron learned that since you slept enough or it's late, it's better not to drink coffee. If you had less sleep or lower energy, the weighted sum would be positive, leading to f(z) = 1, meaning **drink coffee**.

Example 2: Should I Bring an Umbrella?

Inputs:

- x_1 : Is the sky cloudy? (1 = yes, 0 = no)
- x_2 : Did the weather app say rain? (1 = yes, 0 = no)

Weights:

$$w_1 = 0.6, \quad w_2 = 0.8, \quad b = -0.4$$

Weighted sum:

$$Total = 0.6(1) + 0.8(1) - 0.4 = 1.0$$

Activation:

$$f(z) = \begin{cases} 1, & z > 0 \\ 0, & z \le 0 \end{cases}$$

Since z = 1.0 > 0, output $= 1 \Rightarrow$ Take umbrella.

Summary

Step	Description	Example
Input	Features or data	Sleep, energy, time
Weight	Importance of each input	-0.7, -0.5, +0.3
Bias	Small adjustment	+0.2
Sum	Weighted total	-1.2
Activation	Decision rule	Do not drink coffee

In Summary

A **Perceptron** is a simple decision-maker that combines inputs, assigns importance through weights, adds bias, and applies an activation function to make a final yes/no decision—just like a human makes quick judgments based on multiple factors.