A számításelmélet alapjai I.

4. előadás

előadó: Tichler Krisztián ktichler@inf.elte.hu

Véges automata

- Formális nyelvek megadása nemcsak generatív eszközökkel, hanem felismerő eszközökkel is lehetséges. Ilyen eszközök az automaták, amelyek szavak feldolgozására és azonosítására alkalmasak.
- Nyelvek megadására a grammatikák szintetizáló, az automaták analitikus megközelítést alkalmaznak.
- Az automata egy szó feldolgozása után kétféle választ adhat, vagy elfogadja (igen), vagy elutasítja (nem) a bemenetet.

Véges automata

- A véges automata diszkrét időintervallumokban végrehajtott lépések sorozatán keresztül működik.
- A véges automata a kezdőállapotából indul, az inputszó az inputszalagon helyezkedik el, az olvasófej pedig az inputszó legbaloldalibb szimbólumán áll.
- Az automata, miután elolvasott egy szimbólumot, az olvasófejet egy pozícióval jobbra mozgatja, majd állapotot vált az állapot-átmenet függvénye szerint.
- Amennyiben az automata még nem olvasta végig a teljes inputot és elfogadó állapotba ér nem dönt még az elfogadásról/elutasításról, tovább működik a szabályai szerint.
- Ha az automata elolvasta az inputot, akkor megáll és aktuális állapota alapján válaszol, hogy felismeri vagy elutasítja a bemeneti szót.

Determinisztikus véges automata

Definíció

Egy determinisztikus véges automata egy rendezett ötös,

$$A = \langle Q, \Sigma, \delta, q_0, F \rangle$$
, ahol

- Q az állapotok egy véges, nemüres halmaza,
- Σ az inputszimbólumok ábécéje,
- δ : $Q \times \Sigma \rightarrow Q$ leképezés, az ún. **állapot-átmenet függvény**, δ értelmezési tartománya a teljes $Q \times \Sigma$.
- ► $q_0 \in Q$ a kezdőállapot,
- $ightharpoonup F \subseteq Q$ az **elfogadó állapotok halmaza**.

Tehát minden $(q, a) \in Q \times \Sigma$ párra **pontosan egy** olyan s állapot létezik, amelyre $\delta(q, a) = s$ fennáll.

Megjegyzés: Az elfogadó állapotokra használható alternatívaként a végállapot szó is.

Az átmenetfüggvény kiterjesztése

Legyen $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ egy determinisztikus véges automata (DVA).

Definíció

A δ leképezés **kiterjesztése** az a $\hat{\delta}: Q \times \Sigma^* \to Q$ (teljes) leképezés, amelyre

- $\hat{\delta}(q,\varepsilon) := q$
- $\hat{\delta}(q, xa) := \delta(\hat{\delta}(q, x), a) \ (\forall x \in \Sigma^*, a \in \Sigma)$

 $\hat{\delta}(q,u)$ tehát az az állapota az automatának, ahova a q állapotból indulva az u szó feldolgozása után eljut.

Ha $\hat{\delta}(q_0, u) \in F$, akkor az u inputot elfogadja A, ha $\hat{\delta}(q_0, u) \notin F$, akkor elutasítja.

Mivel $\hat{\delta}$ a δ kiterjesztése, ezért általában nem zavaró, ha a $\hat{}$ -t elhagyjuk.

Determinisztikus véges automata – példa

1. példa: Legyen $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ véges automata, ahol $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{a, b\}, F = \{q_1, q_2\}$ és legyen

$$\delta(q_0, a) = q_2,$$
 $\delta(q_0, b) = q_1,$ $\delta(q_1, a) = q_3,$ $\delta(q_1, b) = q_0,$ $\delta(q_2, a) = q_0,$ $\delta(q_2, b) = q_3,$ $\delta(q_3, a) = q_1,$ $\delta(q_3, b) = q_2.$

Például

$$\delta(q_2, abb) = \delta(\delta(\delta(q_2, a), b), b) = \delta(\delta(q_0, b), b) = \delta(q_1, b) = q_0.$$

 q_0 : eddig páros sok a és páros sok b volt.

 q_1 : eddig páros sok a és páratlan sok b volt.

q2: eddig páratlan sok a és páros sok b volt.

 q_3 : eddig páratlan sok a és páratlan sok b volt.

Az A véges automata pontosan azokat a szavakat fogadja el, amelyekben az a és b betűk paritása (párossága) különbözik.

Determinisztikus véges automata – példa

1. Az automatát megadhatjuk **táblázattal** is $(q \in Q \text{ sorában és } t \in \Sigma \text{ oszlopában a cella tartalma } \delta(q, t), \rightarrow: kezdőállapot, <math>\leftarrow$: elfogadó állapot, \leftrightarrows : ha a kezdőállapot elfogadó).

2. Vagy **átmenetdiagrammal** (a gráf csúcsai az Q elemeivel vannak címkézve; akkor és csak akkor megy $q \in Q$ -ból egy $t \in \Sigma$ címkéjű él $r \in Q$ -ba, ha $\delta(q, t) = r$. A kezdőállapot \rightarrow -al van megjelölve, az elfogadó állapotok duplán vannak bekarikázva.)

Véges nemdeteminisztikus automata

Determinisztikus véges automata:

A δ függvény mindenütt értelmezett és egyértékű. Azaz minden $(q, a) \in Q \times \Sigma$ párra pontosan egy olyan s állapot létezik, amelyre $\delta(q, a) = s$ fennáll.

Nemdeterminisztikus véges automata:

- Megengedjük az állapot-átmenet függvény többértékűségét, azaz δ ekkor egy $Q \times \Sigma \to \mathcal{P}(Q)$ leképezés.
- ► Több kezdőállapot is megengedett (azaz a kezdőállapotok Q_0 halmazára $Q_0 \subseteq Q$).
- ▶ Úgy interpretálhatjuk, hogy a $q \in Q$ állapotból az $a \in \Sigma$ betű olvasására a gép egy tetszőleges $\delta(q, a)$ -beli új állapotba léphet, azaz adott inputra több működés lehetséges.
- Mivel $\emptyset \in \mathcal{P}(Q)$, ezért előfordulhat, hogy az $\delta(q, a) = \emptyset$ valamely (q, a)-ra, ilyenkor elakad a gép.
- Akkor fogad el egy bemenetet, ha van legalább egy F-beli állapotban termináló működése.

Nemdeterminisztikus véges automata

Definíció

A nemdeterminisztikus véges automata egy rendezett ötös,

$$A = \langle Q, \Sigma, \delta, Q_0, F \rangle$$
, ahol

- Q az állapotok egy véges, nemüres halmaza,
- Σ az inputszimbólumok ábécéje,
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ leképezés, az **állapot-átmenet függvény**,
- $ightharpoonup Q_0 \subseteq Q$ a kezdőállapotok halmaza,
- $ightharpoonup F \subseteq Q$ az **elfogadó állapotok halmaza**.

Megjegyzés: A determinisztikus véges automata a nemdeterminisztikus véges automata speciális esetének tekinthető. Ha minden $(q, a) \in Q \times \Sigma$ esetén $|\delta(q, a)| = 1$, akkor minden bemenetre pontosan 1 működés lehetséges és az elfogadás is ugyanazt jelenti.

Nemdeterminisztikus véges automata – példa

2. példa: Legyen $A = \langle Q, \Sigma, \delta, Q_0, F \rangle$ nemdeterminisztikus véges automata (NVA vagy NDVA), ahol $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{a, b\},$ $Q_0 = \{q_0, q_2\}, F = \{q_1, q_2\}$ és legyen

$$\delta(q_0, a) = \{q_1, q_2\}, \qquad \delta(q_0, b) = \{q_1\}, \\ \delta(q_1, a) = \{q_3\}, \qquad \delta(q_1, b) = \{q_0, q_1\}, \\ \delta(q_2, a) = \{q_0\}, \qquad \delta(q_2, b) = \{q_3\}, \\ \delta(q_3, a) = \{q_1\}, \qquad \delta(q_3, b) = \{\}.$$

Ugyanez táblázattal, illetve átmenetdiagrammal:

	а	b
$\rightarrow q_0$	$\{q_1, q_2\}$	{q ₁ }
$\leftarrow q_1$	{ <i>q</i> ₃ }	$\{q_0, q_1\}$
$\leftrightarrows q_2$	{q ₀ }	{q ₃ }
9 3	{q ₁ }	{}

Nemdeterminisztikus véges automata – példa

Elfogadja aab-t mert erre az inputra van legalább egy elfogadó számítás.

Néhány lehetséges működés az aab bemenetre:

1. lehetőség:

állapot	q_2	90	<i>q</i> ₁	q 0	<i>∉ F</i>
feldolgozandó	aab	ab	b	${\cal E}$	elutasító számítás

2. lehetőség:

állapot	90	<i>q</i> ₁	<i>q</i> ₃	
feldolgozandó	aab	ab	b	elakadó számítás

3. lehetőség:

állapot	q ₂	90	<i>q</i> ₁	91	$\in F$
feldolgozandó	aab	ab	b	${\cal E}$	elfogadó számítás

Szabály alapú alternatív megközelítés

Legyen $A = \langle Q, \Sigma, \delta, Q_0, F \rangle$ egy nemdeterminisztikus véges automata.

Az átmenetek szabály alapon történő megadása:

Az A nemdeterminisztikus véges automatához tartozó M_{δ} szabályrendszerhez minden $p,q\in Q,\ a\in \Sigma,\ p\in \delta(q,a)$ esetén adjuk hozzá a

$$qa \rightarrow p$$

alakú átírási szabályt, azaz

$$M_{\delta} = \{qa \rightarrow p \mid p, q \in Q, a \in \Sigma, p \in \delta(q, a)\}$$

Megjegyzés: Tehát egy egyetlen kezdőállapottal rendelkező A véges automata pontosan akkor determinisztikus, ha minden egyes $(q, a) \in Q \times \Sigma$ pár esetén pontosan egy $p \in Q$ létezik, melyre $qa \rightarrow p \in M_{\delta}$.

Szabály alapú alternatív megközelítés

Nézzük meg a 2. (nemdeterminisztikus) példa esetén mely szabályokból áll M_{δ} .

Példa:

M :	a	b	M_δ :	
$\rightarrow q_0$	$\{q_1, q_2\}$	{q ₁ }	$q_0a \rightarrow q_1 \mid q_2$	$q_0b \rightarrow q_1$
$\leftarrow q_1$	{q ₃ }	$\{q_0, q_1\}$	$q_1a \rightarrow q_3$	$q_1b \rightarrow q_0 \mid q_1$
$\leftrightarrows q_2$	$\{q_0\}$	{q ₃ }	$q_2a \rightarrow q_0$	$q_2b \rightarrow q_3$
9 3	{q ₁ }	{}	$q_3a \rightarrow q_1$	

Megjegyzés: Bár M_{δ} egy szabályrendszer, így önmagában nem tekinthető grammatikának.

Véges automata – egylépéses redukció

Láttuk, hogy az automata további működése mindig csak az aktuális, $q \in Q$ állapottól és a bemenet még hátralévő olvasatlan $w \in \Sigma^*$ suffixétől függ. Ez motiválja a következőt.

Definíció

Egy $u \in Q\Sigma^*$ szót az $A = \langle Q, \Sigma, \delta, Q_0, F \rangle$ NDVA egy **konfigurációjának** nevezzük.

Definíció

Legyen $A = \langle Q, \Sigma, \delta, Q_0, F \rangle$ egy véges automata és legyenek $u, v \in Q\Sigma^*$ konfigurációk. Az A automata az u szót **egy lépésben** (közvetlenül) a v szóra **redukálja** (jelölés: $u \Rightarrow_A v$), ha van olyan $qa \rightarrow p \in M_\delta$ szabály (azaz $p \in \delta(q, a)$) és olyan $w \in \Sigma^*$ szó, hogy u = qaw és v = pw teljesül.

Megjegyzés: Determinisztikus esetben bármely $u \in Q\Sigma^+$ esetén egyértelműen létezik egy olyan $v \in Q\Sigma^*$, melyre $u \Rightarrow_A v$.

Véges automata – redukció

Definíció

Az $A = \langle Q, \Sigma, \delta, Q_0, F \rangle$ véges automata az $u \in Q\Sigma^*$ szót a $v \in Q\Sigma^*$ szóra **redukálja** (jelölés: $u \Rightarrow_A^* v$), ha vagy u = v vagy valamely $k \geq 1$ -re léteznek w_0, \ldots, w_k konfigurációk melyekre $w_{i-1} \Rightarrow_A w_i$ $(1 \leq i \leq k)$, $w_0 = u$ és $w_k = v$.

Megjegyzés: A levezetés hossza (|u| - |v|) szerinti rekurzióval is definiálhatnánk a többlépéses redukciót. Azaz $u \Rightarrow_A^* v$ ha vagy u = v, vagy van olyan $z \in Q\Sigma^*$, |z| = |v| + 1, amelyre $u \Rightarrow_A^* z$ és $z \Rightarrow_A v$ teljesül.

Megjegyzés: $A \Rightarrow_A^*$ reláció $a \Rightarrow_A$ reláció reflexív, tranzitív lezártja.

Megjegyzés: A \Rightarrow_A^* a grammatikák elméletéből ismert levezetés fogalmával azonos (konfigurációk között M_δ -beli szabályok szerint).

Megjegyzés: Míg nemdeterminisztikus esetben egy konfigurációból akár több mint 1, akár 0 darab adott lépésszámú redukció lehetséges, addig determinisztikus esetben pontosan 1.

Véges automata – Elfogadott nyelv

Definíció

Az $A = \langle Q, \Sigma, \delta, Q_0, F \rangle$ nemdeterminisztikus véges automata által **elfogadott nyelv**:

$$L(A) = \{u \in \Sigma^* \mid q_0 u \Rightarrow_A^* p \text{ valamely } q_0 \in Q_0 \text{-ra \'es } p \in F\text{-re}\}.$$

Megjegyzés: L(A)-t az A által felismert nyelvnek is nevezik.

Megjegyzés: $\varepsilon \in L(A) \iff Q_0 \cap F \neq \emptyset$.

Megjegyzés: Determinisztikus esetben $Q_0 = \{q_0\}$ egyelemű, és minden $u \in \Sigma^*$ -ra $q_0 u$ pontosan egyféleképp redukálható valamely $p \in Q$ -ra. A akkor fogadja el u-t, ha $p \in F$ teljesül. Azaz: $L(A) = \{u \in \Sigma^* \mid q_0 u \Rightarrow_A^* p, \text{ ahol } p \in F\}.$

Megjegyzés: Determinisztikus esetben alternatív módon a kiterjesztett δ függvénnyel is definálható L(A):

$$L(A) = \{ u \in \Sigma^* \mid \delta(q_0, u) \in F \}.$$

Megjegyzés: Ha egyértelmű, hogy melyik automatában történik a redukció \Rightarrow_A alsó indexe elhagyható.

Véges automata – példák

Az **1. példa** (DVA) esetén M_{δ} a következő szabályokból áll:

$$q_0a \rightarrow q_2, \quad q_0b \rightarrow q_1, \quad q_1a \rightarrow q_3, \quad q_1b \rightarrow q_0$$

$$q_2a \rightarrow q_0, \quad q_2b \rightarrow q_3, \quad q_3a \rightarrow q_1, \quad q_3b \rightarrow q_2.$$

$$q_0aab \Rightarrow q_2ab \Rightarrow q_0b \Rightarrow q_1$$
.

Ez aab egyetlen olyan redukciója, amely a teljes szót feldolgozza. Mivel $q_1 \in F$, ezért $aab \in L(A)$.

A 2. példa (NDVA) esetén M_{δ} a következő szabályokból áll:

$$q_0 a \to q_1 | q_2, \quad q_0 b \to q_1, \quad q_1 a \to q_3, \quad q_1 b \to q_0 | q_1$$

 $q_2 a \to q_0, \quad q_2 b \to q_3, \quad q_3 a \to q_1.$

Tekintsük az alábbi két redukciót:

 $q_2aab \Rightarrow q_0ab \Rightarrow q_1b \Rightarrow q_0$. (a korábbi "1. lehetőség" megfelelője)

 $q_2aab \Rightarrow q_0ab \Rightarrow q_1b \Rightarrow q_1$. (a korábbi "3. lehetőség" megfelelője)

Ez két olyan redukció, amelyik az *aab* bemenetre, valamely kezdőállapotból a teljes bemenetet feldolgozza. Mivel $q_1 \in F$, ezért a 2. redukció alapján $aab \in L(A)$.

Tétel

Minden A nemdeterminisztikus véges automatához meg tudunk adni egy 3-típusú G grammatikát úgy, hogy L(G) = L(A) teljesül.

Bizonyítás: Legyen $A = \langle Q, \Sigma, \delta, Q_0, F \rangle$ egy nemdeterminisztikus véges automata.

Minden $qa \rightarrow p \in M_{\delta}$ $(q, p \in Q, a \in \Sigma, p \in \delta(q, a))$ állapot-átmeneti szabály hossz-csökkentő, de könnyen belátható, hogy a redukció megfelel egy bal-lineáris grammatikabeli levezetés fordítottjának.

Legyen $G = \langle N, \Sigma, P, S \rangle$ egy grammatika, melyre $N = Q \cup \{S\}$ $(S \notin Q)$. és defináljuk a P szabályrendszert a következőképpen.

- 1. $p \rightarrow a :\in P$ akkor és csak akkor, ha $q_0 a \rightarrow p \in M_\delta$ valamely $q_0 \in Q_0$ -ra,
- 2. $p \rightarrow qa :\in P$ akkor és csak akkor, ha $qa \rightarrow p \in M_{\delta}$,
- 3. $S \rightarrow p :\in P$ akkor és csak akkor, ha $p \in F$,
- **4.** $S \rightarrow \varepsilon :\in P$ akkor és csak akkor, ha $Q_0 \cap F \neq \emptyset$

Nyilvánvaló, hogy $\varepsilon \in L(G)$ akkor és csak akkor, ha $\varepsilon \in L(A)$. $L(A) \subseteq L(G)$:

- ► Tegyük fel, hogy $u \neq \varepsilon$, $u \in L(A)$. Akkor van olyan $q_0 \in Q_0$ kezdőállapot és olyan $p \in F$ elfogadó állapot, hogy $q_0 u \Rightarrow_A^* p$ teljesül. Tekintve ennek a redukciónak a megfordítását, a 2. csoportba tartozó szabályok használatával meg tudjuk konstruálni a $p \Rightarrow_G^* q_0 u$ levezetést.
- Ez a G-beli levezetés egy $p_1 o q_0 a$ alakú szabály alkalmazásával ér véget valamely $p_1 \in Q$ -ra. Ekkor a 2. pont szerint $q_0 a o p_1 \in M_\delta$, de ekkor az 1. pont szerint $p_1 o a \in P$. Tehát $p \Rightarrow_G^* u$ is igaz, ha a $p_1 o a$ szabályt alkalmazzuk $p_1 o q_0 a$ helyett utoljára.
- Mivel $p \in F$, ezért a 3. pont alapján $S \rightarrow p \in P$, tehát $S \Rightarrow_G^* u$.
- ► Tehát mivel *u* tetszőleges L(A)-beli volt, $L(A) \subseteq L(G)$.

$$L(G) \subseteq L(A)$$
:

- Legyen u ∈ L(G) és u ≠ ε. Ekkor $S ⇒_G^* u$, ahol $u ∈ Σ^+$.
- A G konstrukciója alapján akkor létezik az

$$S \Rightarrow_G p \Rightarrow_G^* p_1 v \Rightarrow_G av = u$$

levezetés, ahol $p \in F$ és $p_1 \rightarrow a \in P$.

- Mivel p₁ → a ∈ P, ezért az 1. pont alapján q₀a → p₁ ∈ M_δ valamely q₀ ∈ Q₀-ra, és így a 2. pont alapján p₁ → q₀a ∈ P. Ha az utolsóként alkalmazott p₁ → a szabályt p₁ → q₀a-ra cseréljük a levezetésben kapjuk, hogy p ⇒^{*}_G q₀u.
- ► A 2. pont szabályaival ebből $q_0 u \Rightarrow_A^* p$ következik.
- Mivel $p \in F$, ezért $u \in L(A)$, azaz mivel u tetszőleges L(G)-beli volt, $L(G) \subseteq L(A)$.

G bal-lineáris grammatika. Korábbi tételünk szerint létezik G' jobb-lineáris grammatika, melyre L(G') = L(G) teljesül bizonyítva a tételt.

Következmény:

NDVA NDVA (M_{δ})	bal-lineáris	jobb-lineáris
--------------------------	--------------	---------------

q ₀ kezdőállapot		S ÚJ kezd	őszimbólum
$p \in \delta(q_0, a)$	$q_0a \rightarrow p(q_0 \in Q_0)$	$p \rightarrow a$	$S \rightarrow ap$
$p \in \delta(q, a)$	qa → p	p → qa	$q \rightarrow ap$
$p \in F$		$S \rightarrow p$	ho ightarrow arepsilon
Q	$_0 \cap F \neq \emptyset$	S ightarrow arepsilon	S o arepsilon

Következmény: (ha A determinisztikus)

DVA

DVA (M_{δ}) jobb-lineáris

q ₀ kezdőállapot		q ₀ kezdőszimbólum
$\delta(q,a) = p qa \rightarrow p$		$q \rightarrow ap$
$p \in$	F	$p o \varepsilon$

1. példa:

	а	b
$\rightarrow q_0$	q ₂	91
$\leftarrow q_1$	9 3	q 0
$\leftarrow q_2$	90	9 3
9 3	91	q ₂

2. példa:

	а	b
$\rightarrow q_0$	$\{q_1, q_2\}$	{q ₁ }
$\leftarrow q_1$	{q ₃ }	$\{q_0, q_1\}$
$\leftrightarrows q_2$	{q ₀ }	{ <i>q</i> ₃ }
9 3	{q ₁ }	{}

3-as típusú grammatika:

$$q_0 \rightarrow aq_2 | bq_1$$
 $q_1 \rightarrow aq_3 | bq_0 | \varepsilon$
 $q_2 \rightarrow aq_0 | bq_3 | \varepsilon$
 $q_3 \rightarrow aq_1 | bq_2$

3-as típusú grammatika:

$$S \rightarrow aq_1 | aq_2 | bq_1 | aq_0 | bq_3 | \varepsilon$$
 $q_0 \rightarrow aq_1 | aq_2 | bq_1$
 $q_1 \rightarrow aq_3 | bq_0 | bq_1 | \varepsilon$
 $q_2 \rightarrow aq_0 | bq_3 | \varepsilon$
 $q_3 \rightarrow aq_1$

Tétel

Minden 3-típusú G grammatikához meg tudunk adni egy A nemdeterminisztikus véges automatát úgy, hogy L(A) = L(G) teljesül.

Bizonyítás:

- Az általánosság megszorítása nélkül feltehetjük, hogy $G = \langle N, \Sigma, P, S \rangle$ normálformában van (minden szabály vagy $X \to aY$, vagy $X \to \varepsilon$ alakú, ahol $X, Y \in N$ és $a \in \Sigma$).
- Legyen $A = \langle Q, \Sigma, \delta, Q_0, F \rangle$ az a nemdeterminisztikus véges automata melyre

$$Q = N$$
, $Q_0 = \{S\}$, és $F = \{Z \in N | Z \rightarrow \varepsilon \in P\}$.

Legyen M_{δ} úgy definiálva, hogy

 $Xa \rightarrow Y \in M_{\delta}$ akkor és csak akkor, ha $X \rightarrow aY \in P$.

A levezetés hosszára vonatkozó teljes indukcióval egyszerűen adódik, hogy minden $X, Y \in N, u \in \Sigma^*$ esetén

$$X \Rightarrow_G^* uY \iff Xu \Rightarrow_A^* Y.$$

- Az $S \Rightarrow_G^* uZ \Rightarrow_G u$ G-beli levezetéshez tehát van A-ban olyan redukció, amelyre $Su \Rightarrow_A^* Z$ teljesül. Mivel G a $Z \to \varepsilon$ szabályt használta ezért $Z \in F$.
- ▶ Megfordítva, minden A-beli $Su \Rightarrow_A^* Z, Z \in F$ redukcióhoz tudunk egy megfelelő $S \Rightarrow_G^* uZ$ levezetést találni G-ben. Mivel $Z \in F$, ezért van $Z \to \varepsilon$ szabály, tehát $S \Rightarrow_G^* uZ \Rightarrow u$. □

b

a

Példa:

$$S \rightarrow aA \mid aB \mid bB \mid \varepsilon$$
 \iff $S = \{A, B\} = \{B\}$
 $A \rightarrow bS \mid bB = A = \{S, B\}$
 $B \rightarrow aS \mid aA \mid \varepsilon = C = B = \{S, A\} = \{S\}$

Véges automata determinizálása

Tétel

Minden $A = \langle Q, \Sigma, \delta, Q_0, F \rangle$ nemdeterminisztikus véges automatához megkonstruálható egy $A' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ determinisztikus véges automata úgy, hogy L(A') = L(A) teljesül.

A konstrukció:

$$Q':=\mathcal{P}(Q), \quad q_0':=Q_0, \quad F':=\{q'\in Q'\mid q'\cap F\neq\emptyset\},$$

$$\delta'(q',a):=\bigcup_{q\in q'}\delta(q,a).$$

A konstrukció helyességét a jövő héten látjuk be.

Tehát mind a determinisztikus véges automaták, mind a nemdeterminisztikus véges automaták reguláris (\mathcal{L}_3 -beli) nyelveket leíró formális eszközök.

Véges automata determinizálása – példa

			{}
	а	b	$\{q_0\}$ $\{\}$
\ <i>O</i> =			$\leftarrow \{q_1\} \qquad \{q_0\}$
$\rightarrow q_0$	{}	$\{q_1, q_2\}$	$\leftarrow \{q_2\} \qquad \{q_1\}$
$\leftrightarrows q_1$	{q ₀ }	{}	$\Leftrightarrow \{q_0, q_1\} \qquad \{q_0\}$
$\leftarrow q_2$	{q ₁ }	{q ₂ }	$\leftarrow \{q_0, q_2\} \qquad \{q_1\}$
			(90, 92)
NVA			$\leftarrow \{q_1, q_2\} \qquad \{q_0, q_1\}$
			$\leftarrow \{q_0, q_1, q_2\} \mid \{q_0, q_1\}$

DVA

a

b

{}

 $\{q_1, q_2\}$

{ }

 $\{q_2\}$

 $\{q_1, q_2\}$

 $\{q_1, q_2\}$

 $\{q_2\}$

 $\{q_1, q_2\}$