Gautam Buddha University

Engineering Mathematics-III (MA-201) Second semester (2016-2017)

Tutorial Sheet-4

Linear Differential equations: Homogeneous Linear DEs with Real Constants Coefficients.

LDE:
$$P_0(x)\frac{d^n y}{dx^n} + P_1(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + P_{n-1}(x)\frac{dy}{dx} + P_n(x)y = R(x)$$
 (NH)

corresponding homogeneous LDE:
$$P_0(x)\frac{d^ny}{dx^n} + P_1(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + P_{n-1}(x)\frac{dy}{dx} + P_n(x)y = 0$$
 (H)

Homogeneous LDE with constants coefficients: $\frac{d^n y}{dx^n} + p_1 \frac{d^{n-1} y}{dx^{n-1}} + \dots + p_{n-1} \frac{dy}{dx} + p_n y = 0$ (HWC)

- **Q.** 1 Write a note on the following:
 - (a) Complementary function and Particular integral.
 - (b) Wronskian of functions, a relation between wronskian and linearly independent solutions.
 - (c) Form of the general solution of a non-homogeneous linear differential equation (see Q.4).
- **Q. 2** Let y_1, y_2, \dots, y_m be any m-solutions of equation (H). Then show that their linear combination:

$$y = c_1 y_1 + c_2 y_2 + \dots + c_m y_m$$
.

is also a solution of (H).

- **Q. 3** Let y_h be a solution of equation (H) and y_p a solution of equation (NH). Then show that $y_h + y_p$ is a solution of equation (NH).
- **Q.** 4 Let $y_h = f(x, c_1, c_2, \dots, c_n)$ be the general solution of equation (H) and y_p be a particular solution of equation (NH). Then show that every solution of (NH) is given by $f(x, c_1, c_2, \dots, c_n) + y_p$ for certain values of c_1, c_2, \dots, c_n . Hence conclude that the general solution of (NH) is $y_h + y_p$, that is sum of CF and PI.
- **Q.** 5 Show that if a complex valued function y = u(x) + iv(x) is a solution of equation (HWC) then so are the real valued functions u(x) and v(x). Hence prove that the conjugation of y, viz, $\overline{y} = u(x) iv(x)$ is also a solution of equation (HWC).
- **Q. 6** Suppose y_1, y_2, \dots, y_n are *n*-solutions of equation (H) over I and W(x) is the Wronskian of y_1, y_2, \dots, y_n . Then show that
 - (a) the set $\{y_1, y_2, \dots, y_n\}$ is LI on I if and only if Wronskian $W(x) \neq 0$ for all $x \in I$
 - (b) either $W(x) \equiv 0$ on I or it is nowhere zero over I
- **Q.** 7 Suppose y_1, y_2, \dots, y_n are n LI solutions of equation (H). Then any solution y(x) of (H) can be written as linear combination $y = c_1y_1 + c_2y_2 + \dots + c_ny_n$ for some suitable values of c_1, \dots, c_n .