

Aprendizagem 2023

Lab 10: Dimensionality Reduction

Prof: Rui Henriques

Practical exercises

1. Given the following datasets where observations are in \mathbb{R}^2 and belong to one of two classes:

	<i>y</i> 1	у 2
\mathbf{X}_1	0	0
\mathbf{X}_2	4	0
X 3	2	1
\mathbf{X}_4	6	3

Which principal components can accurately discriminate the class per dataset?

2. The following top-7 eigenvalues explain 90% of the variation of dataset *X*:

$$\lambda_1=20, \ \lambda_2=10, \ \lambda_3=5, \ \lambda_4=4, \ \lambda_5=3, \ \lambda_6=2, \ \lambda_7=1$$

What is the most accurate information regarding *X*:

- i. X has less than 7 attributes
- ii. X has 7 attributes
- iii. X has more than 7 attributes
- iv. X has more than 11 attributes
- **3.** Given a set of data points in \mathbb{R}^3 , the following covariance matrix was obtained:

as well as the following eigenvectors retrieved:

$$u_1 = \begin{pmatrix} 0.2179 \\ 0.4145 \\ 0.8836 \end{pmatrix}, u_2 = \begin{pmatrix} -0.2466 \\ -0.8525 \\ 0.4608 \end{pmatrix}, u_3 = \begin{pmatrix} 0.9443 \\ -0.3183 \\ -0.0836 \end{pmatrix}$$

Please select the more complete answer:

- i. eigenvalue λ1 is approximately 1626
- ii. eigenvalue λ2 is approximately 129
- iii. eigenvalues $\lambda 1$ and $\lambda 2$ explain >99% of the variation in data
- iv. all of the above
- **4.** Given the following dataset:

	y_1	<i>y</i> ₂
\mathbf{X}_1	1	-1
X 2	0	1
\mathbf{X}_3	-1	0

and the corresponding eigenvectors and eigenvalues:

$$\lambda_1$$
=3/2 and λ_2 =1/2

$$u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 , $u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

- a) Transform the input data using PCA
- b) [optional] Assess the recovery error when considering the most informative component only