ÁLGEBRA

TIAGO MACEDO

Aula 2

Avisos: A página da disciplina é http://ict.unifesp.br/tmacedo/algebra, e ela vai conter a ementa da disciplina e notas de aula.

Notação 2.1. Dado um grupo (G, m), a partir de agora, vamos denotar:

- m(g,h) por gh para quaisquer $g,h \in G$,
- $qq \cdots q$ (k vezes) por q^k para quaisquer $q \in G$ e k > 0,
- \tilde{g} por g^{-1} para qualquer $g \in G$, $g^{-1}g^{-1}\cdots g^{-1}$ (k vezes) por g^{-k} para quaisquer $g \in G$ e k > 0,
- q^0 por e para qualquer $q \in G$.

Além disso, quando não gerar confusão, nós vamos omitir a operação binária m e denotar o grupo (G, m) simplesmente por G.

Exemplo 2.2. O conjunto com um único elemento $\{e\}$ munido da única operação binária $m: \{e\} \times \{e\} \to \{e\}$ (dada por m(e,e) = e) é um grupo (abeliano). Esse grupo é chamado de grupo trivial.

Exercício 2.3. Dado um grupo G, mostre que $e^k = e$ para todo $k \in \mathbb{Z}$. (Sugestão: mostre que $e^{-1} = e$ e use indução duas vezes, para k > 0 e para k < 0.)

Definição 2.4. Dados um grupo G, definimos a ordem de G como |G|. Dado um elemento $g \in G$, definimos a ordem de g como o menor inteiro positivo o tal que $g^o = e$, se tal inteiro existir; e como infinito, se tal inteiro não existir. Denote a ordem de g em G por |g| ou por o(g).

Exemplo 2.5. Considere o conjunto $\mathbb{C}\setminus\{0\}$ munido da operação binária dada pela multiplicação usual de números complexos. Verifique que $(\mathbb{C}\setminus\{0\},\cdot)$ é um grupo abeliano, cujo elemento neutro é 1 e o elemento inverso de $z \in \mathbb{C} \setminus \{0\}$ é $z^{-1} = \frac{\overline{z}}{\|z\|}$.

Se $z=e^{\frac{\pi}{3}}$, a raiz sexta primitiva da unidade, então o(z)=6. De fato,

$$z^2 = e^{\frac{2\pi}{3}} \neq 1, \quad z^3 = e^{\pi} \neq 1, \quad z^4 = e^{\frac{4\pi}{3}} \neq 1, \quad z^5 = e^{\frac{5\pi}{3}} \neq 1 \quad \text{e} \quad z^6 = e^{2\pi} = 1.$$

Verifique também que $o\left(e^{\pi}\right)=2,\,o\left(e^{\frac{2\pi}{3}}\right)=o\left(e^{\frac{4\pi}{3}}\right)=3$ e $o\left(e^{\frac{5\pi}{3}}\right)=6.$

Exemplo 2.6. Considere o grupo abeliano $(\mathbb{Z},+)$. Observe que a ordem do elemento 0 é 1. Além disso, a ordem de todo elemento $n \neq 0$ é infinita. De fato, se a ordem de n fosse k > 0, então teríamos que kn = 0. Como $n \neq 0$ e $k \neq 0$, isso é impossível.

A seguir, nós vamos dar outros exemplos de grupos e, em particular, calcular as ordens de alguns de seus elementos.

0.3. Inteiros módulo n

Durante toda essa seção, fixe um inteiro positivo n. Considere o conjunto \mathbb{Z}_n formado pelos símbolos $\{\overline{0},\overline{1},\ldots,\overline{n-1}\}$. Para definir a operação binária $m:\mathbb{Z}_n\times\mathbb{Z}_n\to\mathbb{Z}_n$, vamos explicar o que esses símbolos representam.

Considere a relação no conjunto \mathbb{Z} dada por

$$a \sim b$$
 se, e somente se, n divide $a - b$ (denotado $n|(a - b)$).

Observe que essa é uma relação de equivalência. De fato:

- Para todo $a \in \mathbb{Z}$, temos que $a \sim a$, pois n|0 = a a;
- Se $a, b \in \mathbb{Z}$ e $a \sim b$, ou seja, n|(a-b), então n|(b-a), ou seja, $b \sim a$;
- Se $a, b, c \in \mathbb{Z}$, $a \sim b$ e $b \sim c$, isso significa que existem $k, \ell \in \mathbb{Z}$ tais que kn = (a b) e $\ell n = (b c)$. Então temos que $(a c) = (a b) + (b c) = kn + \ell n = (k + l)n$, ou seja, $n \mid (a c)$. Portanto $a \sim c$.

As classes de equivalência desta relação \sim (ou seja, os subconjuntos disjuntos de $\mathbb Z$ dentro dos quais todos os elementos são equivalentes entre si) serão denotados por \overline{k} ($k \in \mathbb Z$). Observe que essas classes de equivalência podem ser representadas pelos restos das divisões dos inteiros por n. De fato, se $k \in \mathbb Z$ for escrito como k = qn + r (onde q é o quociente e r é o resto da divisão), então (k - r) = qn, ou seja, $k \sim r$, ou equivalentemente, $\overline{k} = \overline{r}$. Como $0 \le r < n$ e n não divide a - b quando $a, b \in \{0, \ldots, n-1\}$, então o conjunto $\mathbb Z_n$ é formado exatamente pelas classes de equivalência dos inteiros pela relação \sim .

Agora defina uma operação binária $m \colon \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$ da seguinte forma $m(\overline{a}, \overline{b}) = \overline{(a+b)}$. Primeiro, vamos verificar que m está bem definida (ou seja, que ela não depende dos representantes que nós pegamos para \overline{a} e \overline{b}). Lembre que os elementos da classe de equivalência \overline{a} (respectivamente, \overline{b}) são da forma a + nz (resp. b + nz) para algum $z \in \mathbb{Z}$. Para quaisquer $z, w \in \mathbb{Z}$, pela definição, temos que $m(\overline{a+nz}, \overline{b+nw}) = \overline{(a+b+n(z+w))} = \overline{(a+b)} = m(\overline{a}, \overline{b})$. Portanto m está bem definida.

Exercício 2.7. Verifique que (\mathbb{Z}_n, m) é um grupo abeliano (finito). Além disso, mostre que

$$o(\overline{k}) = \frac{\operatorname{mmc}(k,n)}{k} = \frac{n}{\operatorname{mdc}(k,n)} \qquad \text{para todo } k \in \{1,\dots,n-1\}.$$

1.3. Grupos simétricos

Para cada n > 0, denote por S_n o conjunto formado por todas as permutações (ou seja, todas as bijeções) do conjunto $X = \{1, ..., n\}$. Defina uma operação binária $m: S_n \times S_n \to S_n$ da seguinte forma $m(f,g) = f \circ g$ (a composição das funções $f \in g$). Vamos verificar que (S_n, \circ) é um grupo.

(i) m(m(f,g),h) e m(f,m(g,h)) são bijeções do conjunto $\{1,\ldots,n\}$, então para compará-las, vamos aplicá-las nos elementos de $\{1,\ldots,n\}$. Para cada $x \in \{1,\ldots,n\}$, temos:

$$m(m(f,g),h)(x) = (m(f,g) \circ h)(x) \qquad m(f,m(g,h))(x) = (f \circ m(g,h))(x) = ((f \circ g) \circ h)(x) \qquad = (f \circ (g \circ h))(x) = (f \circ g)(h(x)) \qquad = f(g(h(x))).$$

- (ii) A função identidade $\mathrm{id}_X \colon X \to X$ dada por $\mathrm{id}_X(x) = x$ para todo $x \in \{1, \ldots, n\}$ é uma permutação. Além disso, temos que $m(f, \mathrm{id}_X) = f \circ \mathrm{id}_X = f = \mathrm{id}_X \circ f = m(\mathrm{id}_X, f)$ para toda $f \in S_n$. Portanto id_X é o (único) elemento neutro de (S_n, \circ) .
- (iii) Para cada permutação (uma bijeção) σ do conjunto $\{1, \ldots, n\}$, existe uma função inversa, denotada $\sigma^{-1}: \{1, \ldots, n\} \to \{1, \ldots, n\}$. Pela definição, a função inversa de σ é aquela que

ÁLGEBRA 3

satisfaz $\sigma \circ \sigma^{-1} = \mathrm{id}_X = \sigma^{-1} \circ \sigma$. Portanto σ^{-1} é exatamente o elemento inverso de σ em (S_n, \circ) , um 2-ciclo.

Agora vamos introduzir uma notação para lidar com os elementos de S_n . Fixe $\sigma \in S_n$. Primeiro, verifique que, para cada $x \in \{1, \ldots, n\}$ existe $k \leq n$ (que depende de σ e x) tal que $\sigma^k(x) = x$. (Use o fato de que σ é uma bijeção e que $\{1, \ldots, n\}$ é um conjunto finito.) Em particular, tome o menor $k \leq n$ tal que $\sigma(1) = 1$. Se k = n, então denotamos σ por $(1 \sigma(1) \ldots \sigma^{n-1}(1))$. Se k < n, então $\{1, \sigma(1), \ldots, \sigma^{k-1}(1)\} \subseteq \{1, \ldots, n\}$. Tome o menor $i \in \{1, \ldots, n\} \setminus \{1, \sigma(1), \ldots, \sigma^{k-1}(1)\}$ e o menor $\ell \leq n$ tal que $\sigma^{\ell}(i) = i$. Se $k + \ell = n$, então denotamos σ por $(i \sigma(i) \ldots \sigma^{\ell-1}(i))(1 \sigma(1) \ldots \sigma^{k-1}(1))$. Caso contrário, repita esse processo até esgotar todos os elementos de $\{1, \ldots, n\}$.

Os termos da forma $(i \ \sigma(i) \dots \sigma^p(i))$ são chamados de p-ciclos. Caso existam 1-ciclos na decomposição de σ , eles são cancelados (exceto se $\sigma = \mathrm{id}_X$). Por exemplo, se $\sigma = \mathrm{id}_{\{1,\dots,n\}}$, então nós teríamos $\sigma = (n)(n-1)\dots(2)(1)$, e nesse caso, nós denotamos σ simplesmente por (1).

Exemplo 2.8. Considere S_2 , o conjunto de permutações do conjunto $X = \{1, 2\}$. Observe que as únicas permutações de $\{1, 2\}$ são: id_X e $\sigma \colon \{1, 2\} \to \{1, 2\}$ dada por $\sigma(1) = 2$ e $\sigma(2) = 1$. Portanto $|S_2| = 2$. Além disso, observe que $\sigma^2 = \mathrm{id}_X$, ou seja, $o(\sigma) = 2$. Usando a notação acima, denotamos id_X por (1) e σ por (1, 2).

Exemplo 2.9. Considere S_3 , o conjunto de permutações do conjunto $X = \{1, 2, 3\}$. Usando a notação acima, observe que as permutações de $\{1, 2, 3\}$ são as seguintes:

Em particular, observe que $|S_3| = 6$. Para calcular a multiplicação entre desses elementos, basta ler os elementos como funções (da direita para a esquerda), seguindo o caminho que cada $x \in \{1, 2, 3\}$ faz. Por exemplo, $(1\ 2) \circ (1\ 3) = (1\ 3\ 2)$. Em particular, observe que os 2-ciclos $(1\ 2)$, $(1\ 3)$, $(2\ 3)$ tem ordem 2, e os 3-ciclos $(1\ 2\ 3)$, $(1\ 3\ 2)$ tem ordem 3. Além disso, observe que esse grupo não é comutativo. De fato $(1\ 2) \circ (1\ 3) = (1\ 3\ 2)$ e $(1\ 3) \circ (1\ 2) = (1\ 2\ 3)$.

Exercício 2.10. Mostre que $|S_n| = n!$ e que a ordem de todo p-ciclo é p.