

操作系统实验 Labs of Operating Systems

Lab 4 保护模式下中断的实现

中山大学 计算机学院(软件学院) SIN YAT-SEN UNIVERSITY SCHOOL OF COMPUTER SCIENCE AND ENGINEERI

实验安排

实验-4: 保护模式下中断的实现

进入保护模式后,了解内核如何接管操作系统,了解保护模式下计算机如何处理中断程序,如何对8259A芯片进行编程,添加处理时钟中断函数,理解两类中断-"外设中断""异常"等。

- 1. 使用混合编程编写内核;
- 2. 实现在保护模式下中断的处理;
- 3. 在8259A芯片基础上,实现处理时钟中断函数;
- 4. 了解混合编程下, Makefile的使用和编写;

更多详情请阅读gitee实验教程!

-

中山大 學 计算机学院(软件学院) 中断 中断类型 异步的 外部的中断 隐式的 陷阱 同步的 系统调用 显式的 外部的/硬件 内部的/软件 ▶ 内部中断/软中断,可在程序中使用int指令调用。 ▶ 在实模式下, BIOS中集成了一些中断程序, 在BIOS加电启动 后这些中断程序便被放置在内存中。 ➤ 但是,BIOS内置的中断程序是16位的,在保护模式下不再 适用。在保护模式下,我们需要自己去实现中断程序。

保护模式下中断向量号约定

向量 号	助记 符	说明	类型	错误 号	产生源
0	#DE	除出错	故障	无	DIV或IDIV指令
1	#DB	调试	故障/ 陷阱	无	任何代码或数据引用,或是INT 1指令
2		NMI中断	中断	无	非屏蔽外部中断
3	#BP	断点	陷阱	无	INT 3指令
4	#OF	溢出	陷阱	无	INTO指令
5	#BR	边界范围超出	故障	无	BOUND指令
6	#UD	无效操作码(未定义操 作码)	故障	无	UD2指令或保留的操作码。(Pentium Pro中加入的新指令)
7	#NM	设备不存在 (无数学协 处理器)	故障	无	浮点或WAIT/FWAIT指令

5

保护模式下中断向量号约定

8	#DF	双重错误	异常 终止	有 (0)	任何可产生异常、NMI或INTR的指令
9		协处理器段超越 (保 留)	故障	无	浮点指令(386以后的CPU不产生该异常)
10	#TS	无效的任务状态段TSS	故障	有	任务交换或访问TSS
11	#NP	段不存在	故障	有	加载段寄存器或访问系统段
12	#SS	堆栈段错误	故障	有	堆栈操作和SS寄存器加载
13	#GP	一般保护错误	故障	有	任何内存引用和其他保护检查
14	#PF	页面错误	故障	有	任何内存引用
15		(Intel保留,请勿使 用)		无	

6

保护模式下中断向量号约定

16	#MF	x87 FPU浮点错误(数 学错误)	故障	无	x87 FPU浮点或WAIT/FWAIT指令
17	#AC	对起检查	故障	有 (0)	对内存中任何数据的引用
18	#MC	机器检查	异常 终止	无	错误码(若有)和产生源与CPU类型有关 (奔腾处理器引进)
19	#XF	SIMD浮点异常	故障	无	SSE和SSE2浮点指令 (PIII处理器引进)
20- 31		(Intel保留,请勿使 用)			
32- 255		用户定义 (非保留) 中 断	中断		外部中断或者INT n指令

7

保护模式下中断程序处理过程

- 1. 中断前的准备,准备IDT
- 2. CPU检查是否有中断信号。
- 3. CPU根据中断向量号到IDT中取得处理这个向量的中断描述符。
- 4. CPU根据中断描述符中的段选择符到GDT中找到相应的段描述符。
- 5. CPU根据特权级的判断设定即将运行程序的栈地址。
- 6. CPU保护现场。
- 7. CPU跳转到中断服务程序的第一条指令开始处执行。
- 8. 中断服务程序运行。
- 9. 中断服务程序处理完成,使用iret返回。

更多详情请阅读gitee实验教程!

8

