OpenStack and Resource Management-1 – Revision Notes

OpenStack - Overview & Capabilities

- Definition: OpenStack is a cloud operating system that manages large pools of compute, storage, and networking
 in a datacenter, accessible via a web dashboard.
- Service Models:
 - $\circ \quad \textbf{SaaS} \hbox{: Access through browser/thin client}.$
 - o **PaaS**: Platforms like **Cloud Foundry**, built on laaS.
 - o laaS: Provisioning of compute, network, and storage.

OpenStack Major Components

Service	Project	Function
Compute	Nova	Manages VMs lifecycle – spawn, schedule, decommission.
Networking	Neutron	Provides Network-as-a-Service . API to define networks.
Object Storage	Swift	RESTful API for unstructured data; replicates across servers.
Block Storage	Cinder	Persistent block storage for VMs; pluggable drivers.
Identity	Keystone	Authentication/authorization; catalog of service endpoints.
Image Service	Glance	Stores/retrieves VM disk images.
Telemetry	Ceilometer	Monitoring and metering for billing/statistics.
Dashboard	Horizon	Web-based UI for OpenStack services (e.g. launch VMs, manage IPs).

OpenStack Provisioning Flow

- 1. User requests VM via Horizon.
- 2. Keystone authenticates.
- 3. Nova API → Scheduler via MQ.
- 4. Scheduler picks node, updates DB.
- 5. Nova Compute provisions VM:
 - Fetches DB info via Nova Conductor.
 - o Calls **Neutron** for networking (IP, DNS, L2).
 - o Calls **Cinder** to attach volumes.
 - o Fetches image from Glance.
 - o Image retrieved via Swift.
 - VM rendered by Hypervisor.

♦ Storage Types in OpenStack

Туре	Persists Until	Managed By	Accessible As
Ephemeral	VM termination	Nova	Local file system
Block Storage	User deletion	Cinder	Block device (e.g., /dev)
Object Storage	User deletion	Swift	Anywhere (web/API)

⋄ Google Cloud Platform (GCP)

- Definition: Google's cloud service to build, test, deploy applications on its infrastructure.
- User-End Services:
 - o App Engine: Migrate apps for better performance.
 - Cloud Endpoints: Scale apps globally.
 - o Google APIs: Integrate Google services.

Resource Types in Cloud

- Physical Resources: Computers, disks, networks, instruments.
- Logical Resources: Application execution, monitoring, communication.

◆ Data Center Energy Use

- Servers use ~0.5% of global electricity.
- Energy demand doubles every 5-6 years.
- Leads to high CO₂ emissions from fossil fuels.

⋄ Green Computing Strategies

- Goals: Reduce energy with minimal performance impact.
- Techniques
 - o Power-aware scheduling: Consolidate VMs on fewer cores.
 - $\circ \quad \textbf{Thermal-aware scheduling} : A void thermal hot spots.$
 - Efficient cooling and rack design.

o VM Image minimization.

♦ VM Scheduling on Multi-core Systems

- Nonlinear relation between processes & power.
- Greedy algorithm: Schedule multiple VMs per node.
- Track available cores, match with VM needs.

♦ Key Summaries for Quick Recall

OpenStack Workflow:

• Horizon \rightarrow Keystone \rightarrow Nova (Scheduler + Compute) \rightarrow Neutron \rightarrow Cinder \rightarrow Glance \rightarrow Swift \rightarrow Hypervisor **Storage:**

- Ephemeral temp (Nova),
- Block persistent (Cinder),
- Object distributed (Swift)

Cloud & Green Computing:

- Power-aware + thermal-aware scheduling.
- Optimize infrastructure & images for energy efficiency.