

Klasifikasi Signal *Trading* pada Saham **Asus** Menggunakan **Random Forest Classifier**

Kelompok 4

ANGGOTA

TABLE OF CONTENTS

O1

LATAR
BELAKANG

02

LANDASAN TEORI 03

METODOLOGI PENELITIAN 04

HASIL PENELITIAN 05

KESIMPULAN

LATAR BELAKANG

APA ITU SIGNAL TRADING?

-1

SELL SIGNAL

Sinyal menjual saham

0

HOLD SIGNAL

Sinyal memegang atau menahan saham

1

BUY SIGNAL

Sinyal membeli saham

MENGAPA ASUS?

ASUS Market Leader Laptop di Indonesia dengan 41% Market Share. Untuk seorang *Trader* saham ASUS sesuai karena Memiliki <mark>Volume</mark> perdagangan tinggi, <mark>volatilitas</mark> harga, serta <mark>likuiditas</mark> tinggi.

LANDASAN TEORI

PENELITIAN TERDAHULU

Penelitian yang dilakukan oleh Jiang Xianya, et.al pada klasifikasi sinyal pada saham dengan menggunakan *platform* SPARK mengungkapkan bahwa Random Forest menghasilkan akurasi terbaik pada angka 83% dengan AUC 70%.

RANDOM FOREST CLASSIFIER

Pembelajaran Ansambel dengan Basis model Decision Tree

Decision Node yakni sebuah komponen kondisi atau kriteria tertentu dievaluasi, dan berdasarkan hasil evaluasi tersebut, alur kerja akan berpindah ke jalur yang berbeda.singkatnya diberikan 2 keputusan antara A dan B.

Sedangkan **Leaf node** adalah Node terakhir dalam decision tree atau jaringan saraf yang tidak memiliki anak.

Entropy mengukur ketidakberaturan dataset

$$Entropy(S) = \sum_{i=1}^{c} P_{i} \log 2^{p_{i}}$$

Information Gain menandakan jumlah 'informasi bersih' (*impurity*) pada data

$$Gain(S, A) = Entropy(S) - \sum |Sv| / |S| * Entropy(Sv)$$

Semakin rendah entropy menandakan semakin tingginya information gain. Hal ini mengindikasikan **baiknya pemisahan data** untuk kebutuhan prediksi

METODOLOGI PENELITIAN

FLOWCHART PENELITIAN

PEMBUATAN MODEL

PERTAMA

Pembuatan model dengan data tanpa oversampling.

KEDUA

Pembuatan model dengan data setelah oversampling.

KETIGA

Pembuatan model hanya dengan dua *class* tanpa 0.

HASIL MODEL

Data	Parameter Terbaik	Akurasi <i>Training</i>	Akurasi Testing	
Sebelum Oversampling	'max_depth': None, 'max_features': 'log2', 'min_samples_leaf': 2, 'min_samples_split': 10, 'n_estimators': 100	88.9%	72.15%	
Setelah Oversampling	'max_depth': None, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200	100%	65.82%	
Tanpa <i>class</i> 0 (sinyal hold)			82.29%	

VALIDASI MODEL

Data	Array Skor Cross Validation	Rata-rata Skor Cross-Validation	
Sebelum Oversampling	[0.72631579, 0.70899471, 0.72486772, 0.75661376, 0.7989418]	0.7431467557783347	
Setelah Oversampling	[0.7316176, 0.78228782, 0.77859779, 0.80811808, 0.80811808]	0.7817478836553071	
Tanpa <i>class</i> 0 (sinyal hold)	[0.833333333, 0.75308642, 0.79012346, 0.78395062, 0.82716049]	0.7975308641975308	

LAPORAN KLASIFIKASI MODEL

01 SEBELUM OVERSAMPLING

	Precision	Recall	F1-Score	Support
-1	72%	81%	76%	103
0	0%	0%	0%	21
1	72%	78%	75%	113
Accuracy	72%		237	

LAPORAN KLASIFIKASI MODEL

02 SETELAH OVERSAMPLING

	Precision	Recall	F1-Score	Support
-1	72%	73%	72%	103
0	0.16%	24%	19%	21
1	75%	67%	71%	113
Accuracy	66%		237	

LAPORAN KLASIFIKASI MODEL

TANPA CLASS MODEL 0

	Precision	Recall	F1-Score	Support
-1	81%	81%	81%	129
1	83%	83%	83%	142
Accuracy	82%		271	

ROC CURVE KETIGA MODEL

SEBELUM OVERSAMPLING

SETELAH OVERSAMPLING

BINARY CLASS ATAU TANPA CLASS 0

FEATURES IMPORTANCES

Pada data dengan binary class

KESIMPULAN

Model Random Forest menggunakan data binary class dengan parameter {'max_depth': 10, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples split': 5, 'n estimators': 100}.

Secara keseluruhan menghasilkan model dengan nilai terbaik

dan akurasi sebesar 82.28%.

Features yang paling mempengaruhi klasifikasi sinyal trading pada saham Asustek menggunakan Random Forest Classifier adalah feature WILLR.

SARAN

Menambahkan faktor lainnya yang mungkin mempengaruhi fluktualitas serta volatilitas daripada perdagangan saham ASUS. seperti sentimen masyarakat, nilai fundamental perusahaan ke dalam pembuatan model. Serta Pengujian lebih lanjut mengenai oversampling pada keseluruhan data sebelum pemisahan data ketimbang hanya pada data training juga dapat dilakukan dalam rangka menyelidiki lebih lanjut mengenai overfitting yang terjadi pada data setelah dilakukannya oversampling.

THANK YOU

Any Questions?

LAMPIRAN VIDEO

Link Video