

Using Bactopia for the complete analysis of bacterial genomes

April 28th, 2022

Robert A. Petit III, PhD

Overview

- Background and Motivations
- Learn about Bactopia
- Use Case: Using Bactopia to describe public Lactobacillus genomes
- Future Directions

Where in the world am I?

Wyoming has a lot to see

Background and Motivations

Bacterial genomics is a rapidly evolving field

Rapid growth of bacterial WGS in the last 10 years

Rapid growth in the bioinformatics as well

Conda, containerization, workflow managers, etc...

BIOCONDA for all your bioinformatic tools

- Makes bioinformatics accessible
 - Easy installs, dependency handling
- Downstream containerization
 - Docker Biocontainers
 - Singularity Images <u>Galaxy Project</u>
- Truly a community driven repository
 - More than 1,300 people have contributed
- Currently ~4,000 recipes are available

Workflow managers make bioinformatics manageable

- Manages the execution of pipelines
 - Linking inputs/outputs of bioinformatic tools
 - Queuing jobs locally, on clusters, or the cloud
 - Logging, errors, audit trails
- Promote reproducible and reusable science
- Common workflow managers:
 - Nextflow, WDL, and Snakemake
- Pick one that works for you

nexiflow

```
nextflow.enable.dsl=2

process sayHello {
   input:
     val cheers
   output:
     stdout

"""
   echo $cheers
"""
}

workflow {
   channel.of('Ciao','Hello','Hola') | sayHello | view
}
```

- A popular workflow manager in Bioinformatics
- Enables scalable and reproducible pipelines
- Supports Conda, Docker, and Singularity
- Seamlessly move between local resources, HPC, and major cloud providers
- Regularly solicits user feedback to guide future developments

nextflow DSL2

- Major evolution in the Nextflow language
- Introduced true modularization in Nextflow workflows
 - Modules A *reusable* Nextflow script with a process definition
 - Subworkflows Multiple modules linked together
- Modules are portable and easily shared between workflows
- Data channels can be used more than once

nf-core pushing Nextflow to the limits

- Community effort to collect curated Nextflow pipelines
 - 2400 Slack users, 1000+ GitHub contributors
- Includes 60+ hi-quality bioinformatic pipelines
 - rnaseq, mag, bactmap, many more
- nf-core/modules has 200+ DSL2 modules available
- Standardized <u>guidelines</u> for developers
- Thorough review process produces robust pipelines

"Bring your own workflow" Platforms

- Freely available web-platforms for the execution of bioinformatic pipelines
- No command-line knowledge required, allowing users to do more science
- Examples:

nextflow tower

- Nextflow Tower from Segera Labs
 - Supports workflows written in Nextflow
 - Platform agnostic and supports many providers
 - HPC, Google Cloud, Microsoft Azure, Amazon Web Services
 - Community showcase of curated pipelines

- Terra from the Broad Institute
 - Supports workflows written in WDL
 - Limited to Google Cloud Platform
 - Microsoft Azure support in the works
 - Import workflows from **Dockstore**

- CGC from Seven Bridges
 - Supports workflows written in CWL, Nextflow and WDL
 - Limited to Amazon Web Services

With the bioinformatic advances, it's hard to ignore public WGS

How can we make use of all this public WGS data?

To take advantage of public data we need:

- Ensure each sample is processed the same way
 - Allows comparison of your data with public data

- Scalable pipeline to process 1 or 1,000s of samples
 - Should also be easy to use, reproducible, and portable

- Account for poor quality data
 - Example: FASTQs missing pairs, mislabeled species

Bactopia is an all-in-one workflow

 Bactopia is built using Nextflow DSL2 and available on Bioconda

- Bactopia is scalable
 - Process a few samples to <u>10s of thousands</u>
- Bactopia is reproducible
 - Version control and audit trails
- Bactopia is portable
 - Move between a laptop to the cloud with ease

A few Bactopia highlights

- Supports Illumina and Nanopore reads
 - Local or from public databases
- Includes more than <u>130 bioinformatic tools</u>
- <u>30+ Bactopia Tools</u> provide more workflows for more science
- Extensively tested with 100+ tests for 10,000+ output files
- Available on Bioconda, Docker, and Singularity
- Well documented at <u>bactopia.github.io</u>

Bactopia design principles

Bactopia requires tools be available from Bioconda

• Easy to install, downstream Docker and Singularity containers

All modules used by Bactopia Tools must be on nf-core/modules

Developers can use these modules in their own workflows

Bactopia should be flexible and easily adapted to fit user needs

Nextflow DSL2 has made this much easier

Three Sides of Bactopia

Bactopia Helpers

Bactopia

Bactopia Tools

Bactopia Helpers, help get started using Bactopia

- bactopia citations
 - Print citations for all datasets, tools and Bactopia
- bactopia datasets
 - Download and setup useful datasets for Bactopia
- bactopia download
 - Build Conda, Docker or Singularity environments for all steps in bactopia
- bactopia prepare
 - Create a file of filenames for analysis
- bactopia search
 - Generate a list of SRA accessions for analysis

Bactopia Datasets supplement analyses

 Makes including public datasets is easy, while bringing a lot of value to your analysis

- Includes:
 - Sketches for all RefSeq and GenBank
 - Reference genomes
 - Custom proteins for annotation
 - MLST schemas
 - Ariba datasets
 - Genes, proteins and primers
- Bactopia datasets handles all this for you

Bactopia Tools - More workflows for more science

- Allow easy comparative analysis of Bactopia outputs
- Two Types:
 - Modules: single tool (Kleborate, TB Profiler)
 - Subworkflows: multiple tools connected together
 - pangenome: Prokka -> PIRATE -> IQ-Tree
- 30+ Bactopia Tools are available
 - Frame-worked for easy addition
 - Simple command to create new Bactopia Tool
- Because of Nextflow DSL2, every Bactopia Tool can be reused

BACTOPIA TOOLS

More workflows for more science

SPECIES

AgrVATE

ECTyper

coli serotype

emmtyper

HpsuisSero

assemblies

LisSero

lus parasuis assemblies

pyogenes assemblies

SPECIFIC

Rapid identification of Staphylo-

In-silico prediction of Escherichia

emm-typing of Streptococcus

cap locus serotype and structure in Haemophilus influenzae assemblies

Serotype prediction of Haemophi-

Screen Klebsiella assemblies for MLST.

sub-species, and genes of interest

Typing of Legionella pneumophila

Serogroup typing prediction for

Serotyping of Neisseria meningitidis

Multi-antigen sequence typing for

Salmonella serotype prediction

Serovar prediction of Salmonella

Computational method for finding

spa types in Staphylococcus aureus

Serotype prediction of Streptococ-

Listeria monocytogenes

Neisseria gonorrhoeae

from reads or assemblies

meningotype

ngmaster

SeaSero2

assemblies

spaTyper

SsuisSero

coccus aureus agr locus type

ANTIMICROBIAL RESISTANCE

Mass screening of contigs for antimicrobial and virulence genes

AMRFinder+

Identify antimicrobial resistance in genes or proteins

Resistance Gene Identifier

Predict antibiotic resistance from assemblies

ANNOTATION

Bakta

Rapid annotation of bacterial genomes and plasmids

eggNOG-Mapper

Functional annotation of proteins using orthologous groups and phylogenies

DISTANCE

FastANI

Fast alignment-free computation of Average Nucleotide Identity (ANI)

mash dist

Calculate Mash distances between

mashtree

Quickly create a tree using Mash

SEOUENCE SURVEY

CheckM

Assess the assembly quality of your

Automatic MLST calling from assembled contigs

PANGENOME

Create a pan-genome and core-genome phylogeny of your samples. Additionally, supplement your samples by including publicly available assemblies.

TAXONOMIC CLASSIFICATION

GTDB

Identify marker genes and assign taxonomic classifications

Kraken2

Taxonomic classifications of sequence reads

MOBILE GENETIC ELEMENTS

ISMapper

Identify insertion site positions in bacterial genomes

MOB-suite

Klebsiella

Legionella

Listeria

Reconstruct and annotate plasmids in bacterial assemblies

MERLIN

Use Merlin to automatically run species-specific tools for the following organisms

Escherichia Mycobacterium Haemophilus Neisseria

Salmonella

Staphylococcus

Streptococcus

Staphylococcus aureus genomes

cus suis assemblies

Detect resistance and lineages of Mycobacterium tuberculosis

staphopia-scemee Primer based SCCmec typing of

Because of DSL2, every Bactopia Tool can be reused!

Demonstration of Bactopia Tool reusability

- There are 15+ species-specific Bactopia Tools
 - Sometimes the species is known
 - Sometimes the species is unknown

Can we automatically execute these speciesspecific tools?

SPECIES SPECIFIC

AgrVATE

Rapid identification of Staphylococcus aureus agr locus type

ECTyper

In-silico prediction of Escherichia coli serotype

emmtyper

emm-typing of Streptococcus pyogenes assemblies

hicar

cap locus serotype and structure in Haemophilus influenzae assemblies

HpsuisSero

Serotype prediction of Haemophilus parasuis assemblies

Kleborate

Screen Klebsiella assemblies for MLST sub-species, and genes of interest

legsta

Typing of Legionella pneumophila assemblies

LisSero

Serogroup typing prediction for Listeria monocytogenes

meningotype

Serotyping of Neisseria meningitidis assemblies

ngmaster

Multi-antigen sequence typing for Neisseria gonorrhoeae

SeqSero2

Salmonella serotype prediction from reads or assemblies

SISTR

Serovar prediction of Salmonella assemblies

spaTyper

Computational method for finding spa types in Staphylococcus aureus

SsuisSero

Serotype prediction of Streptococcus suis assemblies

staphopia-sccmec

Primer based SCCmec typing of Staphylococcus aureus genomes

TBProfiler

Detect resistance and lineages of Mycobacterium tuberculosis

Merlin - MinmER assisted species-specific bactopia tool seLectIoN

- Mash distances select species-specific tools
 - Re-uses the RefSeq Mash Sketch downloaded by Bactopia Datasets

Currently includes members of 10+ genera

Highlights module reuse and condition-based execution

MERLIN

Use Merlin to automatically run species-specific tools for the following organisms.

Escherichia Mycobacterium

Haemophilus Neisseria

Klebsiella Salmonella

Legionella Staphylococcus

Listeria Streptococcus

Describing public Lactobacillus genomes

In just a few commands using Bactopia

Use Case: Investigating Lactobacillus

- Gram-positive, rod-shaped bacterium
- Common in human and animal microbiota
 - 40+ species adapted to microbiome hosts
 - Gastrointestinal and vaginal
 - Inhibits growth of other bacteria
- Economic uses include food production and probiotics
- We can use Bactopia to analyze Lactobacillus genomes in just a few commands

Lactobacillus bulgaricus From <u>Utah State University</u>

Bactopia Helpers to get things setup

- Build public datasets with "bactopia datasets"
 - Downloads general and Lactobacillus-specific datasets
 - Ex. bactopia datasets -species "lactobacillus"
- "bactopia search" to identify publicly available WGS of Lactobacillus
 - Creates a list of accessions for Bactopia to process
 - Ex. bactopia search 1578

Use Case: Process Lactobacillus WGS

- Processed 1,664 genomes with Bactopia
 - Bactopia handles downloading from SRA/ENA
- Most of the samples were good quality

	No. of	Original	Post-Bactopia	Per-read quality	Read length	Contig
Quality rank	samples	coverage	coverage	score	(bp)	count
Gold	967	213×	100×	Q35	100	52
Silver	386	160×	100×	Q35	100	110
Bronze	205	102×	100×	Q34	100	90
Exclude	48	$26 \times$	22×	Q34	100	706
Unprocessed	58					

Use Case: Lactobacillus 16S Tree

- phyloflash and gtdb Bactopia Tools
 - PhyloFlash for 16S construction
 - GTDB for taxonomic classification
- 5 species represented 45% of the samples
- 58 samples were not Lactobacillus

Use Case: Closer Look at *L. crispatus*

- fastani and pangenome Bactopia Tools
 - <u>FastANI</u> to identify *L. crispatus*
 - Roary to create core-genome alignment
 - **IQ-TREE** for core-genome phylogeny
- 38 *L. crispatus* samples clustered into two groups
 - Human vaginal samples
 - Chicken, turkey, human gut

Use Case: A few Bactopia commands from start to finish

- With just a few commands we analyzed 1,600 public WGS genomes
 - Built general and Lactobacillus specific datasets
 - bactopia datasets
 - Identified all publicly available Lactobacillus genomes
 - bactopia search
 - Processed all available Lactobacillus genomes
 - Bactopia
 - Taxonomic classification and core-genome phylogeny
 - Bactopia Tools
 - PhyloFlash, GTDB, FastANI, Roary, IQ-TREE

Additional Bactopia highlights

Bactopia as an introduction to bacterial genomics

- More than <u>130 bioinformatic tools</u> are used by Bactopia
 - Description, citation, and code links are provided for each tool
- Bactopia is easily <u>installed through Bioconda</u>
- Bactopia is well documented
 - <u>Detailed pipeline overview</u>
 - Tutorial to get started
 - Output file descriptions

Tests keep the wheels turning

- Every step is tested in Bactopia using real data
 - Usages, workflows, subworkflows, modules
- More than 10,000 output files are tested
 - MD5sums match, contains strings, file exists
- Testing conducted by pytest
 - Adapted from nf-core/modules
- All automated through GitHub Actions

By using Nextflow, Bactopia is platform independent

- Execute on a laptop of the cloud, with a simple parameter change
- Available on:
 - Bioconda, Docker, Singularity
 - Google Cloud Platform
 - Amazon Web Services
 - Microsoft Azure
 - HPC
- Executable from:
 - Nextflow Tower
 - Terra.bio

Bactopia contributes back to the community

Bactopia requires tools be available from Bioconda

• Submitted 20 recipes, reviewed 1300+ Bioconda pull requests

All Bactopia Tools must be available from nf-core/modules

Submitted 30+ modules to nf-core/modules

Multiple PRs submitted, and issues resolved

- Bactopia user finds bug in "X" tool, I attempt to fix and submit a PR
- Bowtie2, Prokka, Shovill, PIRATE, Ariba, ISMapper, PhyloFlash, etc....

Bactopia has spawned stand-alone tools

- <u>assembly-scan</u> Quickly generate basic stats for an assembly in JSON format
- <u>dragonflye</u> Assemble bacterial isolate genomes from Nanopore reads
- <u>fastq-dl</u> Download FASTQ files from SRA or ENA repositories
- <u>fastq-scan</u> Output FASTQ summary statistics in JSON format
- <u>shovill-se</u> A fork of Shovill that includes support for single-end reads
- vcf-annotator Add biological annotations to variants in a VCF file

Conclusions

Future directions for Bactopia

Bactopia still has a lot of room to grow

- Future directions
 - Improve the result reporting
 - Additional Bactopia Tools
 - Expansion of the documentation

Always open to contributions and user feedback

Acknowledgements

The developers of open-source tools that make their tools freely available to the community

- <u>Tim Read</u> and the <u>EMERGENT Group</u>
- <u>Davi Marcon</u>, <u>Abhinav Sharma</u>, and <u>nf-core</u>
- Wyoming Public Health Laboratory
 - Taylor Fearing
 - Jim Mildenberger
 - Chayse Rowley
- Theiagen Genomics

• The many users of Bactopia providing feedback and helping guide future developments

Questions and Comments

Learn more about Bactopia at <u>bactopia.github.io</u>

