Prueba de oposición - Algoritmos 2016

Brian Bokser

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

17 de octubre de 2016

Contenidos

Introducción

Prácticas de la materia

Introducción

Materia : Algoritmos y Estructuras de Datos II

Práctica: Séptima práctica - Dividir y Conquistar

Contexto

Los alumnos ya tuvieron la teórica de Divide and Conquer.

Conocen las ideas clásicas, ahora tienen que ejercitarlas.

Conocen el teorema maestro, y pueden usar alguno de sus casos para determinar la complejidad de una recursión.

Presentación

Primera parte

Especificación con Tipos Abstractos de Datos

Demostración de propiedades

Diseño: invariante de representación y función de abstracción

Segunda Parte

Complejidad Algorítmica

Diseño: elección de estructuras de datos

Ordenamiento

Dividir y Conquistar

Enunciado

Enunciado

Suponga que se tiene un método potencia que, dada un matriz cuadrada A de orden 4×4 y un número n, computa la matriz A^n . Dada una matriz cuadrada A de orden 4×4 y un número natural n que es potencia de 2 (i.e., $n = 2 \times k$ para algun $k \ge 1$), desarrollar, utilizando la técnica de dividir y conquistar y el método potencia, un algoritmo que permita calcular:

$$A^1 + A^2 + \ldots + A^n$$

Calcule el número de veces que el algoritmo propuesto aplica el método potencia. Si no es estrictamente menor que O(n), resuelva el ejercicio nuevamente.

Motivación

Vamos a usar técnicas muy recurrentes en ejercicios de Divide and Conquer

Vamos a usar el Teorema Maestro e identificar en que caso nos encontramos

Introducimos otros problemas conocidos

Primer idea:

Primer idea: Buscar la fórmula de serie geométrica.

Primer idea: Buscar la fórmula de serie geométrica. No parece servir para matrices

Primer idea: Buscar la fórmula de serie geométrica. No parece servir para matrices

Segunda idea:

Primer idea: Buscar la fórmula de serie geométrica. No parece servir para matrices

Segunda idea: algoritmo ingenuo.

Primer idea: Buscar la fórmula de serie geométrica. No parece servir para matrices

Segunda idea: algoritmo ingenuo. O(n) llamados a potencia.

Primer idea: Buscar la fórmula de serie geométrica. No parece servir para matrices

Segunda idea: algoritmo ingenuo. O(n) llamados a potencia.

Buscamos algo sublineal...

Primer idea: Buscar la fórmula de serie geométrica. No parece servir para matrices

Segunda idea: algoritmo ingenuo. O(n) llamados a potencia.

Buscamos algo sublineal...

¿Como resolver un problema de Divide and Conquer?

Primer idea: Buscar la fórmula de serie geométrica. No parece servir para matrices

Segunda idea: algoritmo ingenuo. O(n) llamados a potencia.

Buscamos algo sublineal...

¿Como resolver un problema de Divide and Conquer?

Idea importante

¡Queremos algun subproblema que nos sirva para dar una solución al problema original!

Queremos encontrar alguna propiedad que nos ayude a dar esta formulación en base a subproblemas.

Queremos encontrar alguna propiedad que nos ayude a dar esta formulación en base a subproblemas.

Idea:

$$(A^1 + A^2 + \ldots + A^{n/2}) \times A^{n/2} = (A^{n/2+1} + A^{n/2+2} + \ldots + A^n)$$

Queremos encontrar alguna propiedad que nos ayude a dar esta formulación en base a subproblemas.

Idea:

$$(A^1 + A^2 + \ldots + A^{n/2}) \times A^{n/2} = (A^{n/2+1} + A^{n/2+2} + \ldots + A^n)$$

$$A^1 + \ldots + A^n = (A^1 + \ldots + A^{n/2}) + (A^1 + \ldots + A^{n/2}) \times A^{n/2}$$

Queremos encontrar alguna propiedad que nos ayude a dar esta formulación en base a subproblemas.

Idea:

$$(A^1 + A^2 + \ldots + A^{n/2}) \times A^{n/2} = (A^{n/2+1} + A^{n/2+2} + \ldots + A^n)$$

$$A^{1} + \ldots + A^{n} = (A^{1} + \ldots + A^{n/2}) + (A^{1} + \ldots + A^{n/2}) \times A^{n/2}$$
 ¡Subproblema!

¿Estamos resolviendo el problema?

Importante: estamos haciendo menos operaciones de potencia. ¿Pero cuantas?

¿Estamos resolviendo el problema?

Importante: estamos haciendo menos operaciones de potencia. ¿Pero cuantas?

Escribamos un pseudocódigo y despues medimos la complejidad en términos de la función potencia.

Pseudocódigo

```
function SUMA_GEOMETRICA(A, n)

if n == 1 then

return A

end if

subsuma \leftarrow suma\_geometrica(A, n/2)

pot \leftarrow potencia(A, n/2)

pot \leftarrow potencia(A, n/2)

return subsuma + subsuma \times pot

end function
```

Pseudocódigo

```
function SUMA GEOMETRICA(A, n)
   if n == 1 then
                                                                   \triangleright A = A^1
       return A
   end if
    subsuma \leftarrow suma geometrica(A, n/2)
                                                                      \triangleright A^{n/2}
   pot \leftarrow potencia(A, n/2)
   return subsuma + subsuma × pot
end function
     ¿Complejidad (en función de operaciones potencia)?:
```

Pseudocódigo

function SUMA_GEOMETRICA(A, n)

if n == 1 then

return A

end if

ordinates the properties of the pro

 $subsuma \leftarrow suma_geometrica(A, n/2)$

$$pot \leftarrow potencia(A, n/2)$$

 $\triangleright A^{n/2}$

return subsuma + subsuma × pot

end function

¿Complejidad (en función de operaciones potencia)?:

$$P(n) = \begin{cases} \mathcal{O}(1) & n = 1 \\ P(\frac{n}{2}) + \mathcal{O}(1) & n > 1 \end{cases}$$

El Teorema Maestro

$$P(n) = \begin{cases} \Theta(1) & n = 1 \\ P(\frac{n}{2}) + \Theta(1) & n > 1 \end{cases}$$

¿Podemos usar el Teorema Maestro? Veamos sus casos:

El Teorema Maestro

$$P(n) = \begin{cases} \Theta(1) & n = 1 \\ P(\frac{n}{2}) + \Theta(1) & n > 1 \end{cases}$$

¿Podemos usar el Teorema Maestro? Veamos sus casos:

$$P(n) = aT(n/b) + f(n)$$

- 1. $f(n) = \mathcal{O}(n^{\log_b a + \epsilon})$ para algun $\epsilon > 0 \implies P(n) = \Theta(n^{\log_b a})$
- 2. $f(n) = \Theta(n^{log_b a}) \implies P(n) = \Theta(n^{log_b a} \lg n)$
- 3. $f(n) = \Omega(n^{\log_b a + \epsilon})$ para algun $\epsilon > 0$, $af(n/b) \le cf(n)$ para algún c > 1 y todo $n \ge n_0 \implies P(n) = \Theta(f(n))$

El Teorema Maestro

$$P(n) = \begin{cases} \Theta(1) & n = 1 \\ P(\frac{n}{2}) + \Theta(1) & n > 1 \end{cases}$$

¿Podemos usar el Teorema Maestro? Veamos sus casos:

$$P(n) = aT(n/b) + f(n)$$

- 1. $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ para algun $\epsilon > 0 \implies P(n) = \Theta(n^{\log_b a})$
- 2. $f(n) = \Theta(n^{\log_b a}) \implies P(n) = \Theta(n^{\log_b a} \lg n)$
- 3. $f(n) = \Omega(n^{\log_b a + \epsilon})$ para algun $\epsilon > 0$, $af(n/b) \le cf(n)$ para algún c > 1 y todo $n \ge n_0 \implies P(n) = \Theta(f(n))$

b = 2, a = 1, $log_b a = 0 \implies$ Estamos en el segundo caso. $P(n) = \Theta(\lg n)$

Ejercicio Adicional

Supongamos que la multiplicación de matrices es $\mathcal{O}(1)$ ¿Como es la complejidad en función de operaciones elementales?

Ejercicio Adicional

Supongamos que la multiplicación de matrices es $\mathcal{O}(1)$ ¿Como es la complejidad en función de operaciones elementales?

¿Como varía segun las implementaciones de potencia?

Ejercicio Adicional

Supongamos que la multiplicación de matrices es $\mathcal{O}(1)$ ¿Como es la complejidad en función de operaciones elementales?

¿Como varía segun las implementaciones de potencia?

Para pensar:

Enunciado

Ejercicio 3 de la práctica: Encuentre un algoritmo para calcular a^b en $\mathcal{O}(\lg b)$. Piense cómo reutilizar los resultados ya calculados

¿Preguntas?

