Esempio. Si estraggono 3 biglie a caso senza reinserimento da un'urna contenente venti biglie numerate da 1 a 20. Qual è la probabilità che almeno una tra le biglie estratte abbia un numero maggiore o uguale a 17?

Soluzione. Se denotiamo con X il maggiore tra i 3 numeri estratti, X è una variabile aleatoria che assume i valori $3, 4, \ldots, 20$. Inoltre, supponendo che ognuna delle $\binom{20}{3}$ possibili terne abbia uguale probabilità, si ha

P(X=i)	P(X=17)	P(X=18)	P(X=19)	P(X=20)
$\binom{i-1}{2}$	$\frac{\binom{16}{2}}{\binom{20}{2}} = \frac{2}{10}$	$\frac{\binom{17}{2}}{\binom{20}{20}} = \frac{34}{295}$	$\frac{\binom{18}{2}}{\binom{20}{2}} = \frac{51}{280}$	$\frac{\binom{19}{2}}{\binom{20}{20}} = \frac{3}{20}$
$\begin{pmatrix} 20 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 20 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 20 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 20 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 20 \\ 3 \end{pmatrix}$

Infatti il numero di terne che compongono l'evento $\{X=i\}$ è il numero di terne per cui una biglia ha numero i e le altre due hanno numero compreso tra 1 e i-1. Si ha

$$P(X \ge 17) = \sum_{i=17}^{20} P(X = i) = \frac{2}{19} + \frac{34}{285} + \frac{51}{380} + \frac{3}{20} = 0,508.$$

Esempio. Si estraggono 3 biglie a caso con reinserimento da un'urna contenente venti biglie numerate da 1 a 20. Qual è la probabilità che almeno una tra le biglie estratte abbia un numero maggiore o uguale a 17?

Soluzione. Sia Y la variabile aleatoria che descrive quante delle 3 biglie estratte abbiano un numero maggiore o uguale a 17. Tale variabile assume i valori 0, 1, 2, 3 e descrive il numero di successi in n=3 prove indipendenti, dove la probabilità p di successo in ogni prova è la probabilità di estrarre un numero maggiore o uguale a 17:

$$p = \frac{4}{20} = \frac{1}{5}.$$

Si ha quindi

$$P(Y = k) = {3 \choose k} \left(\frac{1}{5}\right)^k \left(\frac{4}{5}\right)^{3-k}, \qquad k = 0, 1, 2, 3.$$

Pertanto la probabilità richiesta è

$$P(Y \ge 1) = 1 - P(Y = 0) = 1 - \left(\frac{4}{5}\right)^3 = 1 - 0.512 = 0.488.$$

Esempio. Si lancia ripetutamente una moneta truccata, che in un singolo lancio dà testa con probabilità p, fino a che non appaia testa per la prima volta oppure si siano fatti n lanci. Se X denota il numero totale di volte che lanciamo la moneta, allora X è una variabile aleatoria che assume valori $1, 2, \ldots, n$ con probabilità

$$P(X = 1) = P(T_1) = p$$

$$P(X = k) = P(C_1 \cap C_2 \cap \ldots \cap C_{k-1} \cap T_k) = (1 - p)^{k-1} p \qquad (k = 2, 3, \ldots, n - 1)$$

$$P(X = n) = P(C_1 \cap C_2 \cap \ldots \cap C_n) + P(C_1 \cap C_2 \cap \ldots \cap C_{n-1} \cap T_n) = (1 - p)^{n-1},$$

dove C_i e T_i rappresentano rispettivamenente la fuoriuscita di croce e testa al lancio i-esimo, e dove si è fatto uso dell'indipendenza nei lanci. Verifichiamo che

$$P\left(\bigcup_{k=1}^{n} \{X = k\}\right) = \sum_{k=1}^{n} P(X = k) = \sum_{k=1}^{n-1} (1-p)^{k-1} p + (1-p)^{n-1}$$
$$= p \sum_{k=0}^{n-2} (1-p)^{k} + (1-p)^{n-1} = p \left[\frac{1-(1-p)^{n-1}}{1-(1-p)}\right] + (1-p)^{n-1} = 1,$$

avendo posto r = k - 1 e avendo notato che $\sum_{r=0}^{m} c^r = (1 - c^{m+1})/(1 - c)$ per $c \neq 1$.

4.2 Funzioni di distribuzione

Definizione. Data una variabile aleatoria X, la funzione definita da

$$F(x) = P(X \le x), \qquad -\infty < x < \infty$$

è detta funzione di distribuzione (o di ripartizione) di X.

Quindi, la funzione di distribuzione F(x) di una variabile aleatoria X rappresenta la probabilità che X assuma un valore minore o uguale a x, per ogni $x \in \mathbb{R}$.

Proposizione. Una funzione di distribuzione F(x) è caratterizzata dalle proprietà:

- 1. F(x) è una funzione monotona non decrescente, ovvero $F(a) \leq F(b)$ se a < b.
- 2. $\lim_{x \to \infty} F(x) = 1.$ 3. $\lim_{x \to -\infty} F(x) = 0.$
- 4. F(x) è continua a destra, ossia $\lim_{h\to 0^+} F(x+h) = F(x)$ per ogni $x\in\mathbb{R}$ fissato.

Queste proprietà contraddistinguono una funzione di distribuzione, nel senso che se una funzione F(x) soddisfa tali proprietà allora esiste una variabile aleatoria che ammette F(x) come funzione di distribuzione.

Dimostrazione. La Proprietà 1 segue dal fatto che se a < b, allora

$$\{X \le b\} = \{X \le a\} \cup \{a < X \le b\},\$$

con i 2 eventi a secondo membro incompatibili. Per la proprietà di additività finita:

$$F(b) = P(X \le b) = P(X \le a) + P(a < X \le b) \ge F(a).$$

La Proprietà 2 si dimostra notando che b_n è una successione di reali che cresce verso ∞ , allora gli eventi $\{X \leq b_n\}$ formano una successione crescente di eventi il cui limite è $\{X < \infty\}$. Quindi, per la proprietà di continuità della probabilità, si ha

$$\lim_{n\to\infty} P(X \le b_n) = P(X < \infty) = 1.$$

La Proprietà 3 si dimostra in modo analogo alla Proprietà 2, ed è lasciato come esercizio. Per dimostrare la Proprietà 4 notiamo che se x_n , $n \ge 1$, è una successione decrescente che converge a $x \in \mathbb{R}$, allora $\{X \le x_n\}$, $n \ge 1$, costituisce una successione di eventi decrescente il cui limite coincide con $\{X \le x\}$. Quindi, in conclusione, la proprietà di continuità fa sì che

$$\lim_{n \to \infty} P(X \le x_n) = P(X \le x).$$

Proprietà di $F(x) = P(X \le x)$:

- 1. F(x) è non decrescente.
- 2. $\lim_{x \to \infty} F(x) = 1$. 3. $\lim_{x \to -\infty} F(x) = 0$. 4. F(x) è continua a destra.

Esercizio. Stabilire se le seguenti funzioni sono funzioni di distribuzione:

(i)

$$F(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

(ii)

$$F(x) = \begin{cases} 0, & x \le 0 \\ \frac{1}{2}, & 0 < x < 1 \\ 1, & x \ge 1 \end{cases}$$

(iii)

$$F(x) = \begin{cases} 0, & x \le -1 \\ \frac{x+1}{2}, & -1 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

Proposizione. Sia F(x) la funzione di distribuzione di una variabile aleatoria X. Allora,

- (i) $P(a < X \le b) = F(b) F(a)$ per ogni a < b.
- (ii) $P(X < b) = \lim_{n \to \infty} F(b_n)$ per ogni $b \in \mathbb{R}$ fissato e per ogni successione crescente b_n , $n \ge 1$, che converge a b.

Dimostrazione. Nella Proposizione precedente abbiamo visto che se a < b, allora

$$\{X \le b\} = \{X \le a\} \cup \{a < X \le b\},\$$

e quindi risulta $F(b) = F(a) + P(a < X \le b)$, da cui segue la (i).

Per dimostrare la (ii) notiamo che se b_n , $n \ge 1$, è una successione crescente che converge a b, allora dalla proprietà di continuità otteniamo:

$$P(X < b) = P\left(\lim_{n \to \infty} \{X \le b_n\}\right) = \lim_{n \to \infty} P(X \le b_n) = \lim_{n \to \infty} F(b_n).$$

Una funzione di distribuzione F(x) non è necessariamente continua. Infatti, limite sinistro e limite destro di $F(\cdot)$ in $x \in \mathbb{R}$ non necessariamente coincidono, essendo

$$F(x^{-}) := \lim_{h \to 0^{-}} F(x+h) \le \lim_{h \to 0^{+}} F(x+h) = F(x).$$

Se la disuguaglianza precedente è soddisfatta come uguaglianza, allora $F(\cdot)$ è continua in x e risulta $P(X=x)=F(x)-F(x^-)=0$.

Altrimenti, $F(\cdot)$ è discontinua in x e risulta $P(X = x) = F(x) - F(x^{-}) > 0$.

Esempio. Sia X una variabile aleatoria avente funzione di distribuzione

$$F(x) = \begin{cases} 0, & x < 0 \\ x/2, & 0 \le x < 1 \\ 3/4, & 1 \le x < 2 \\ 1, & x \ge 2. \end{cases}$$

Calcolare (a) P(X < 2), (b) P(X = 1), (c) P(X > 1/2), (d) $P(1 < X \le 3)$, (e) $P(1 \le X \le 2)$, (f) P(X > 1|X > 1/2).

Soluzione. Si ha

(a)
$$P(X < 2) = F(2^{-}) = 3/4$$
;

(b)
$$P(X = 1) = F(1) - F(1^{-}) = 3/4 - 1/2 = 1/4;$$

(c)
$$P(X > 1/2) = 1 - P(X \le 1/2) = 1 - F(1/2) = 1 - 1/4 = 3/4$$
;

(d)
$$P(1 < X \le 3) = F(3) - F(1) = 1 - 3/4 = 1/4;$$

(e)
$$P(1 \le X \le 2) = P(X \le 2) - P(X < 1) = F(2) - F(1^{-}) = 1 - 1/2 = 1/2;$$

(f)
$$P(X > 1|X > 1/2) = \frac{P(X>1)}{P(X>1/2)} = \frac{1 - P(X \le 1)}{3/4} = \frac{1 - F(1)}{3/4} = \frac{1 - 3/4}{3/4} = \frac{1/4}{3/4} = \frac{1}{3}$$

4.3 Variabili aleatorie discrete

Una variabile aleatoria che possa assumere al più un'infinità numerabile di valori è detta discreta. Per una variabile aleatoria discreta X, definiamo la densità discreta (o funzione di probabilità) p(k) di X come

$$p(k) = P(X = k).$$

La densità discreta p(k) è positiva al più per un'infinità numerabile di valori di k. Quindi, se X assume i valori x_1, x_2, \ldots , allora

$$p(x_i) \ge 0 \qquad i = 1, 2, \dots,$$

$$p(x) = 0$$
 altrimenti.

Poiché X deve assumere almeno uno dei valori x_i , abbiamo che

$$\sum_{i=1}^{\infty} p(x_i) = \sum_{i=1}^{\infty} P(X = x_i) = P\left(\bigcup_{i=1}^{\infty} \{X = x_i\}\right) = 1.$$

Può essere utile rappresentare la densità discreta in forma grafica ponendo i valori x_i in ascissa e $p(x_i)$ in ordinata. Per esempio, se la densità discreta di X è

$$p(0) = \frac{1}{4},$$
 $p(1) = \frac{1}{2},$ $p(2) = \frac{1}{4},$

graficamente si ha

La densità discreta consente di calcolare la probabilità che la variabile aleatoria assuma valori in un sottoinsieme qualsiasi B di \mathbb{R} ; ad esempio nell'intervallo [a, b]:

$$P(X \in B) = \sum_{k: x_k \in B} p(x_k), \qquad P(a \le X \le b) = \sum_{k: a \le x_k \le b} p(x_k).$$

Esempio. Sia X la variabile aleatoria discreta che descrive il numero di bit pari a $\mathbf{1}$ in un vettore booleano, di lunghezza n, scelto a caso.

- (a) Calcolare P(X = k), per k = 0, 1, ..., n.
- (b) Verificare che $\sum_{k=0}^{n} P(X=k) = 1$.
- (c) Calcolare $P(X \ge 1)$.

Soluzione. (a) Dividendo il numero di vettori booleani con k bit pari a $\mathbf{1}$ per il numero di vettori booleani di lunghezza n, si trae

$$P(X = k) = \frac{\binom{n}{k}}{2^n}, \qquad k = 0, 1, \dots, n.$$

(b) Pertanto,

$$\sum_{k=0}^{n} P(X=k) = \frac{1}{2^n} \sum_{k=0}^{n} \binom{n}{k} = \frac{1}{2^n} \cdot 2^n = 1.$$

(c) Si ha infine

$$P(X \ge 1) = 1 - P(X = 0) = 1 - \frac{1}{2^n}.$$

Esempio. Sia $p(k) = c \frac{\lambda^k}{k!}$, k = 0, 1, 2, ..., dove λ è una costante positiva. Si calcoli

- (a) P(X = 0),
- (b) P(X > 2).

Soluzione. Per determinare c, imponendo che sia $\sum_{k=0}^{\infty} p(k) = 1$ abbiamo

$$1 = c \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = c e^{\lambda} \qquad \Longrightarrow \qquad c = e^{-\lambda},$$

avendo ricordato che $\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$. Si ha quindi $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}$, $k \ge 0$, e pertanto

(a)
$$P(X = 0) = p(0) = e^{-\lambda} \lambda^0 / 0! = e^{-\lambda}$$
,

(b)
$$P(X > 2) = 1 - P(0 \le X \le 2) = 1 - p(0) - p(1) - p(2) = 1 - e^{-\lambda} \left(1 + \lambda + \frac{\lambda^2}{2} \right)$$
.

Esempio. Determinare la densità della variabile aleatoria discreta X, che descrive il massimo che si ottiene lanciando 2 dadi.

Soluzione. Notiamo che X=1 se esce la coppia (1,1), X=2 se esce (1,2), (2,1) oppure (2,2), e così via. Posto p(k)=P(X=k) risulta quindi

$$p(1) = \frac{1}{36}$$
, $p(2) = \frac{3}{36}$, $p(3) = \frac{5}{36}$, $p(4) = \frac{7}{36}$, $p(5) = \frac{9}{36}$, $p(6) = \frac{11}{36}$

ossia

$$p(k) = \frac{2k-1}{36}, \qquad k = 1, 2, \dots, 6.$$

Notiamo che poiché

$$\left| \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \right|$$

si trae

$$\sum_{k=1}^{6} p(k) = \sum_{k=1}^{6} \frac{2k-1}{36} = \frac{1}{18} \sum_{k=1}^{6} k - \frac{1}{6} = \frac{1}{18} \frac{6 \cdot 7}{2} - \frac{1}{6} = 1.$$