

5.

15

20

25

BEST AVAILABLE COPY

Derivatives of 2-arylimino-2,3-dihydrothiazoles, their preparation processes and their therapeutic use

A subject of the present Application is new derivatives of 2-arylimino-2,3-dihydrothiazoles and their preparation processes. These products have a good affinity with certain sub-types of somatostatin receptors and therefore have useful pharmacological properties. The invention also relates to these same products as medicaments, the pharmaceutical compositions containing them and their use for the preparation of a medicament intended to treat pathological states or diseases in which one (or more) somatostatin receptors are involved.

Somatostatin (SST) is a cyclic tetradecapeptide which was isolated for the first time from the hypothalamus as a substance which inhibits the growth hormone (Brazeau P. et al., Science 1973, 179, 77-79). It also operates as a neurotransmitter in the brain (Reisine T. et al., Neuroscience 1995, 67, 777-790; Reisine T. et al., Endocrinology 1995, 16, 427-442). Molecular cloning has allowed it to be shown that the bicactivity of somatostatin depends directly on a family of five receptors linked to the membrane.

The heterogeneity of the biological functions of somatostatin has lead to studies which try to identify the structure-activity relationships of peptide analogues on somatostatin receptors, which has led to the discovery of 5 sub-types of receptors (Yamada et al., *Proc. Natl. Acad. Sci. U.S.A.* 89, 251-255, 1992; Raynor, K. et al., *Mol. Pharmacol.*, 44, 385-392, 1993). The functional roles of these receptors are currently being actively studied. The affinities with different sub-types of somatostatin receptors have been associated with the treatment of the following disorders/diseases. Activation of sub-types 2 and 5 has been associated with suppression of the growth hormone (GH) and more particularly with that of adenomas secreting GH (acromegalia) and those secreting hormone TSH. Activation of sub-type 2 but not sub-type 5 has been associated with the treatment of adenomas secreting prolactin. Other indications associated with the activation of sub-types of somatostatin receptors are the recurrence of stenosis, inhibition of the secretion of insulin and/or of glucagon and in particular diabetes mellitus, hyperlipidemia, insensibility to insulin, Syndrome X, angiopathy, proliferative retinopathy, dawn phenomenon and nephropathy; inhibition of the secretion of gastric

acid and in particular peptic ulcers, enterocutaneous and pancreaticocutaneous fistulae, irritable colon syndrome, dumping syndrome, aqueous diarrhoea syndrome, diarrhoea associated with AIDS, diarrhoea induced by chemotherapy, acute or chronic pancreatitis and secretory gastrointestinal tumours; the treatment of cancer such as hepatomas; the inhibition of angiogenesis, the treatment of inflammatory disorders such as arthritis; chronic rejection of allografts; angioplasty; the prevention of bleeding of grafted vessels and gastrointestinal bleeding. The agonists of somatostatin can also be used to reduce the weight of a patient.

5

10

15

20

25

Among the pathological disorders associated with somatostatin (Moreau J.P. et al., Life Sciences 1987, 40, 419; Harris A.G. et al., The European Journal of Medicine, 1993, 2, 97-105), there can be mentioned for example: acromegalia, hypophyseal adenomas, Cushing's disease, gonadotrophinomas and prolactinomas, catabolic side-effects of glucocorticoids, insulin dependent diabetes, diabetic retinopathy, diabetic nephropathy, hyperthyroidism, gigantism, endocrinic gastroenteropancreatic tumours including carcinoid syndrome, VIPoma, insulinoma, nesidioblastoma, hyperinsulinemia, glucagonoma, gastrinoma and Zollinger-Ellison's syndrome, GRFoma as well as acute bleeding of oesophageal veins, gastroesophageal reflux, gastroduodenal reflux, pancreatitis, enterocutaneous and pancreatic fistulae but also diarrhoea, refractory diarrhoea of acquired immune deficiency syndrome, chronic secretary diarrhoea, diarrhoea associated with irritable bowel syndrome, disorders linked with gastrin releasing peptide, secondary pathologies with intestinal grafts, portal hypertension as well as haemorrhages of the veins in patients with cirrhosis, gastro-intestinal haemorrhage, haemorrhage of the gastroduodenal ulcer, Crohn's disease, systemic scleroses, dumping syndrome, small intestine syndrome, hypotension, scleroderma and medullar thyroid carcinoma, illnesses linked with cell hyperproliferation such as cancers and more particularly breast cancer, prostate cancer, thyroid cancer as well as pancreatic cancer and colorectal cancer, fibroses and more particularly fibrosis of the kidney, fibrosis of the liver, fibrosis of the lung, fibrosis of the skin, also fibrosis of the central nervous system as well as that of the nose and fibrosis induced by chemotherapy, and other therapeutic fields such as, for example, cephaleas including cephalea associated with hypophyseal tumours, pain, panic attacks, chemotherapy, cicatrization of wounds, renal insufficiency resulting from delayed development, obesity and delayed development linked with obesity, delayed uterine development, dysplasia of the skeleton, Noonan's syndrome, sleep apnea syndrome, Graves' disease, polycystic disease of the ovaries, pancreatic pseudocysts and ascites, leukemia, meningioma, cancerous cachexia, inhibition of H pylori, psoriasis, as well as

The Applicant found that the compounds of general formula (I) described hereafter have an affinity and a selectivity for the somatostatin receptors. As somatostatin and its peptide analogues often have a poor bioavailability by oral route and a low selectivity (Robinson, C., Drugs of the Future, 1994, 19, 992; Reubi, J.C. et al., TIPS, 1995, 16, 110), said compounds, non-peptide agonists or antagonists of somatostatin, can be advantageously used to treat pathological states or illnesses as presented above and in which one (or more) somatostatin receptors are involved. Preferably, said compounds can be used for the treatment of acromegalia, hypophyseal adenomas or endocrine gastroenteropancreatic tumours including carcinoid syndrome.

10 The compounds of the present invention correspond to general formula (I)

5

15

20

(I)

in racemic, enantiomeric form or all combinations of these forms, in which:

R1 represents an amino(C2-C7)alkyl, aminoalkylarylalkyl, aminoalkylcycloalkylalkyl, (C_1-C_6) alkyl (C_3-C_6) cycloalkyl, (C₃-(C3-C7)cycloalkyl, (C_1-C_{15}) alkyl, C6)cycloalkylalkyl, cyclohexenylalkyl, alkenyl, alkynyl, carbocyclic aryl radical containing at least two rings of which at least one is not aromatic, carbocyclic or heterocyclic aralkyl radical optionally substituted on the aryl group, bis-arylalkyl, tetrahydrofurannylalkyl, dialkylaminoalkyl, furannylalkyl or alkoxyalkyl, alkylthioalkyl, arylhydroxyalkyl, aralkoxyalkyl, acetoamidoalkyl, cyanoalkyl, piperidinoalkyl, N-alkylpyrrolidinoalkyl, morpholinoalkyl, pyrrolidinoalkyl, alkylpiperazinylalkyl or oxypyrrolidinoalkyl radical,

or R1 represents one of the radicals represented below:

$$\overline{H}-N$$

or also R1 represents a -C(R11)(R12)-CO-R10 radical;

R2 represents an optionally substituted carbocyclic or heterocyclic aryl radical,

R3 represents an alkyl, adamantyl, optionally substituted carbocyclic or heterocyclic aryl radical, carbocyclic or heterocyclic aralkyl optionally substituted on the aryl group,

or R3 represents one of the radicals represented below:

or also R3 represents a -CO-R5 radical;

15

20

R4 represents H, alkyl, carbocyclic or heterocyclic aralkyl optionally situated on the aryl radical;

in which i represents an integer from 1 to 3;

35 R5 represents the N(R6)(R7) radical;

R6 represents a (C₁-C₁₆)alkyl, cycloalkylalkyl, hydroxyalkyl, aryloxyalkyl radical, carbocyclic or heterocyclic aralkyl radical optionally substituted on the aryl group, aralkoxyalkyl, arylhydroxyalkyl, alkoxyalkyl, alkylthioalkyl, alkenyl, alkynyl, cyclohexenyl, cyclohexenylalkyl, alkylthiohydroxyalkyl, cyanoalkyl, N-acetamidoalkyl radical, bis-arylalkyl radical optionally substituted on the aryl groups, di-arylalkyl radical optionally substituted on the aryl groups, morpholinoalkyl, pyrrolidinoalkyl, piperidinoalkyl, N-alkylpyrrolidinoalkyl, oxopyrrolidinoalkyl, tetrahydrofurannylalkyl, N-benzylpyrrolidinoalkyl, N-alkylpiperazinylalkyl, N-benzylpiperidinylalkyl or N-alkoxycarbonylpiperidinyl radical, or R6 represents a (C₃-C₈)cycloalkyl radical optionally substituted by a radical chosen from the group comprising the hydroxy radical and an alkyl radical.

or R6 represents one of the radicals represented below:

R7 represents H or an alkyl, hydroxyalkyl, mono- or di-aminoalkyl or aralkyl radical;

15 in which:

5

R8 represents H, alkyl, hydroxyalkyl, optionally substituted carbocyclic or heterocyclic aryl, aralkyl optionally substituted on the aryl group, alkenyl, alkoxyalkyl, cycloalkyl, cycloalkyl, bis-arylalkyl, piperidinyl, pyrrolidinyl, hydroxy, arylalkenyl,

or R8 represents -X-(CH₂)_b-R9;

R9 represents H or an alkyl, alkoxy, aryloxy, optionally substituted carbocyclic or heterocyclic aryl, morpholinyl, pyrrolidinyl, alkylamino or N,N'-(alkyl)(aryl)amino radical;

X represents CO, CO-NH or SO2;

Y represents CH or N;

a represents 1 or 2;

b represents an integer from 0 to 6;

or the N(R6)(R7) radical represents a radical of general formula

in which:

2 represents CH, O or S;

c represents an integer from 0 to 4;

or the N(R6)(R7) radical represents one of the radicals represented below:

R10 represents an amino(C₂-C₇)alkylamino, ((aminoalkyl)aryl)alkylamino, ((aminoalkyl)cycloalkyl)alkylamino, piperazinyl, homopiperazinyl radical, or R10 represents the radical represented below:

$$\frac{\text{H}_2}{2}$$
N $_{\text{O}}$

R11 represents H;

10

15

20

R12 represents H or an alkyl, (C₃-C₇)cycloalkyl, optionally substituted carbocyclic or heterocyclic aralkyl, propargyl, allyl, hydroxyalkyl, alkylthioalkyl, arylalkylalkoxyalkyl, arylalkylthioalkoxyalkyl radical;

or the compounds of the invention are salts of the compounds of general formula (I).

When the compounds of general formula (I) contain the R1, R2, R3, R4, R6, R8, R9 or R12 radicals including a substituted aryl radical or an aralkyl substituted on the aryl group, said aryl or aralkyl radicals are preferably such that:

- For R1, when the aryl group is substituted, it can be from 1 to 5 times (other than the bond which links it with the remainder of the molecule) by radicals chosen independently from the group comprising a halogen atom and an alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryl, aralkoxy or SO₂NH₂ radical. Two substituents can, if appropriate, be linked together and form a ring, for example by representing together a methylenedioxy or propylene radical.
 - For R2, when the aryl group is substituted, it can be from 1 to 5 times (other than the bond which links it with the remainder of the molecule). The aryl radical can be

substituted by radicals chosen independently from the group comprising a halogen atom and an alkyl, alkoxy, alkylthio, haloalkyl, alkenyl, haloalkoxy, nitro, cyano, azido, SO₂N, mono- or di-alkylamino, aminoalkyl, aralkoxy, or aryl radical. Two substituents can, if appropriate, be linked together and form a ring, for example by representing together a methylenedioxy, ethylenedioxy or propylene radical.

5

10 ·

15

20

30

- For R3, when the aryl group or groups (originating from an aryl or aralkyl radical) are substituted, they can be, according to the case, from 1 to 5 times (other than the bond which links them with the remainder of the molecule). The carbocyclic aryl or aralkyl radicals can be substituted from 1 to 5 times on the aryl ring by radicals chosen independently from the group comprising a halogen atom and an alkyl, hydroxy, alkoxy, haloalkyl, haloalkoxy, nitro, cyano, azido, mono- or di-alkylamino, pyrrolidinyl, morpholinyl, aralkoxy or aryl radical. Two substituents can, if appropriate, be linked together and form a ring, for example by representing together an alkylenedioxy radical containing 1 to 3 carbon atoms. The heterocyclic aryl or aralkyl radicals of R3 can be substituted 1 to 2 times on the ring by radicals chosen independently from the group comprising a halogen atom and an alkyl radical.
- For R4, when the aryl group is substituted, it can be from 1 to 5 times (other than the bond which links it with the remainder of the molecule). The aryl radical can be substituted by the radicals chosen independently from the group comprising a halogen atom and an alkyl or alkoxy radical.
- For R6, when the aryl group or groups are substituted, they can be from 1 to 5 times (other than the bond which links them with the remainder of the molecule). The optional substituents on the aryl groups are chosen independently from the group comprising a halogen atom and an alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, aryl, aryloxy or SO₂NH₂ radical.
- For R8, when the aryl group or groups are substituted, they can be from 1 to 5 times (other than the bond which links them with the remainder of the molecule). The optional substituents on the aryl groups are chosen independently from the group comprising a halogen atom and an alkyl, haloalkyl, alkoxy, hydroxy, cyano, nitro or alkylthio radical.
- For R9, when the carbocyclic or heterocyclic aryl radical is substituted, it can be from 1 to 5 times (other than the bond which links it with the remainder of the molecule). The optional substituents on the aryl group are chosen independently from the group comprising a halogen atom and an alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, carbocyclic aryl, hydroxy, cyano or nitro radical.

- For R12, when the carbocyclic or heterocyclic aryl radical is substituted, it can be from 1 to 5 times (other than the bond which links it with the remainder of the molecule). The optional substituents on the aryl group are chosen independently from the group comprising a halogen atom and an alkyl, alkoxy, carbocyclic aryl, aralkoxy, hydroxy, cyano or nitro radical.

5

10

15

20

30

By alkyl, unless specified otherwise, is meant a linear or branched alkyl radical containing 1 to 6 carbon atoms. By cycloalkyl, unless specified otherwise, is meant a monocyclic carbon system containing 3 to 7 carbon atoms. By alkenyl, unless specified otherwise, is meant a linear or branched alkyl radical containing 1 to 6 carbon atoms and having at least one unsaturation (double bond). By alkynyl, unless specified otherwise, is meant a linear or branched alkyl radical containing 1 to 6 carbon atoms and having at least one double unsaturation (triple bond). By carbocyclic or heterocyclic aryl, is meant a carbocyclic or heterocyclic system containing at least one aromatic ring, a system being referred to as heterocyclic when at least one of the rings which comprise it contains a heteroatom (O, N or S). By haloalkyl, is meant an alkyl radical of which at least one of the hydrogen atoms (and optionally all) is replaced by a halogen atom.

By alkylthio, alkoxy, haloalkyl, haloalkoxy, aminoalkyl, alkenyl, alkynyl and aralkyl radicals, is meant respectively the alkylthio, alkoxy, haloalkyl, haloalkoxy, aminoalkyl, alkenyl, alkynyl and aralkyl radicals the alkyl radical of which has the meaning indicated previously.

By linear or branched alkyl having 1 to 6 carbon atoms, is meant in particular the methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl, pentyl, neopentyl, isopentyl, hexyl, isohexyl radicals. By cycloalkyl, is meant in particular the cyclopropanyl, cyclobutanyl, cyclopentanyl, cyclohexyl and cycloheptanyl radicals. By carbocyclic or heterocyclic aryl, is meant in particular the phenyl, naphthyl, pyridinyl, furannyl, thiophenyl, indanyl, indolyl, imidazolyl, benzofurannyl, benzothiophenyl, phthalimidyl radicals. By carbocyclic or heterocyclic aralkyl, is meant in particular the benzyl, phenylethyl, phenylpropyl, phenylbutyl, indolylalkyl, phthalimidoalkyl, naphthylalkyl, furannylalkyl, thiophenylalkyl, benzothiophenylalkyl, pyridinylalkyl and imidazolylalkyl radicals.

When an arrow emanates from a chemical structure, said arrow indicates the point of attachment. For exemple:

represents the benzyl radical.

Preferably, the compounds of general formula (I) are such that:

R1 represents -C(R11)(R12), CO-R10 or one of the following radicals:

10
$$n = 1-6$$

$$\underline{\underline{H_2}}^{N}$$

$$\underline{\underline{H_2}}^{N}$$

$$\underline{\underline{H_2}}^{N}$$

$$\frac{\text{H2}N}{\text{p}} = 0.15$$

[Me, tBu]

[H, Br, Cl, F, OMe, Me]

35

10

ОМе

OMe

ÓМе

[CI, Me, F, OMe]

[CI, F, OMe, Me]

20

25

30

.35

- 25

R2 represents one of the following radicals:

[H, Cl, Br, F, I, OMe, SMe, OEt, CF₃, OCF₃, NO₂, CN, Me, Et, iPr, Ph]

30_

5

15

20

[CI, Br, F, Me, OMe, NO_2 , iPr, CF_3

R3 represents CO-R5 or one of the following radicals:

[Br, Cl, F, OMe, Ph, Me, NO₂, N₃, OCF₃, CN, CF₃, NEt₂, nC_4H_9 , nC_5H_{11} , OCH₂Ph]

OMe [H, Cl] S [H, Et]

$$\bigcap_{N}\bigcap_{CF_3}\bigcap_{CF_3}\bigcap_{CI}$$

35

5

10

15

20

25

30⁺

R4 represents H, alkyl, carbocyclic or heterocyclic aralkyl optionally substituted on the aryl radical;

in which i represents an integer from 1 to 3;

R5 represents one of the following radicals:

 $N - \overline{H}$ $N - \overline{H}$ $N - \overline{H}$

$$\frac{\frac{H}{I}}{I}$$
[OMe, CF₃, OEt, F, Cl, Me]

[CI, Me]
$$\frac{H}{N}$$
[CI, Me] [OMe, Me, CI]

[OMe, Br, Me, SO₂NH₂, OEt, Et, OPh, F, Ph, Br, CI] [OMe, Me, CI]

$$\frac{1}{1}$$

- 25

15
$$\frac{H}{N}$$
 $\frac{H}{N}$ \frac

35
$$H$$
 [H, OMe, Br] [Me, Et] [O, S] NH [H, OMe]

$$r = 0-6$$

$$I = 0-6$$

$$N-\overline{H}$$

.

MeO
$$\frac{N}{N}$$
 $\frac{M}{N}$ $\frac{M}{N}$

[Me, Et, nPr, nBu, iBu, iAm, CH₂Ph, CH₂CH₂Ph] N [Me, Et, nPr, nBu, iBu, iAm, CH₂Ph, CH₂CH₂Ph]

25

30

$$\frac{H_2}{n} = 1-6$$

$$\frac{H_2}{N} = \frac{H_2}{N} = \frac{H_2}{N}$$

30 _

$$\begin{array}{c|c} & & & \\ &$$

R10 represents one of the following radicals:

10
$$\underline{H_2}$$
-N $\underline{H_2}$ NH2 $\underline{H_2}$ -N $\underline{H_2}$ N- \underline{H}

R11 represents H;

25

R12 represents one of the following radicals:

35 [H, OH, F, Br, Cl, I, OMe, Ph, Me, NO₂, CN] [H, F, Br, Cl] [H, F, Br, Cl]

it being understood that for R4, when the aryl group is substituted, it can be from 1 to 5 times (other than the bond which links it with the remainder of the molecule) by radicals chosen independently from the group comprising a halogen atom and an alkyl or alkoxy radical.

The compounds of the invention are preferably such that R4 represents H.

More preferentially, the compounds according to the invention correspond to general formula (II)

35

5

10

15

20

25.

in which:

10

15

20

. 25

30

35

• either R1 represents one of the radicals below

R2 represents one of the radicals below

R3 represents one of the radicals below

and R4 represents H;

or also R1 represents one of the radicals below

$$N_{H2}$$

R2 represents one of the radicals below

R3 represents COR5,

R4 represents H,

and R5 represents one of the radicals below

or finally R1 represents the -C(R11)(R12)-CO-R10 radical in which

R10 represents the radical

R11 represents H

and R12 represents the radical

R2 represents the radical

R3 represents the radical

3**ō**

10

15

and R4 represents H.

The invention also relates to a compound characterized in that it corresponds:

• to formula

5

(i)

10

in which:

radical,

15

25

30

- R2 represents the

radical and R5 represents the

20

- R2 represents the

radical and R5 represents the

radical,

- R2 represents the

radical and R5 represents the

N-H

P F N I

radical,

- R2 represents the radical,

radical and R5 represents the

35

-R2 represents the

e ra

radical and R5 represents the
$$\begin{array}{c} N-\underline{H} \\ \end{array}$$
 radical,

- R2 represents the radical and R5 represents the radical, 5 - R2 represents the radical and R5 represents the radical, 10 - R2 represents the radical and R5 represents the 15 radical, - R2 represents the radical and R5 represents the 20 radical, - R2 represents the radical and R5 represents the radical, 30 - R2 represents the radical and R5 represents the

radical,

÷	
* .	
	F.F.
	F_
	- R2 represents the radical and R5 represents the
	radical,
_	1
5	
•	N-H
- .·	
•	
	- R2 represents the radical and R5 represents the
10	radical,
•	N-H
15	
	- R2 represents the radical and R5 represents the radical,
20	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	Cr !
	-R2 represents the radical and R5 represents the
	radical,
25	
-,	0
20	N-H
_30	
•	
	- R2 represents the radical and R5 represents the
	radical,

- R2 represents the radical and R5 represents the radical, 5 - R2 represents the radical and R5 represents the 10 radical, - R2 represents the radical and R5 represents the radical, 15 - R2 represents the radical and R5 represents the 20 radical, - R2 represents the radical and R5 represents the radical, - R2 represents the radical and R5 represents the radical, 30

radical and R5 represents the

radical,

35

- R2 represents the

radical and R5 represents the - R2 represents the radical, 5 - R2 represents the radical and R5 represents the radical, 10 - R2 represents the radical and R5 represents the radical, 15 - R2 represents the radical and R5 represents the radical, 20 radical and R5 represents the - R2 represents the 25 radical, radical and R5 represents the - R2 represents the 30 radical, - R2 represents the radical and R5 represents the

radical,

radical and R5 represents the

- R2 represents the radical and R5 represents the .10 radical,

- R2 represents the radical and R5 represents the

20

15

- R2 represents the

radical,

<u>Н</u>-и radical,

25

- R2 represents the radical,

radical and R5 represents the

ão

radical and R5 represents the

.10

- R2 represents the radical, or finally

- R2 represents the

radical,

radical and R5 represents the

15

20

- R2 represents the radical;

radical and R5 represents the

to formula

(ii)

$$H_2N$$
 $N - \underline{H}$
 \vdots
 $R2$ represents

- R10 represents

10

- R10 represents,

, R2 represents

and R3 represents

and R3 represents

- R10 represents

, R2 represents

and R3 represents

- R10 represents

, R2 represents

and R3 represents

30

15

20

25

- R10 represents

, R2 represents

and R3 represents

H ₂ N N	- <u>H</u>	•
- R10 represents	, R2 represents	and R3 represents
5	•	
NH ₂ H		•
10 - R10 represents	, R2 represents	and D2 comments
,	, R2 Tepresents	and R3 represents
NH ₂ $\frac{H}{I}$		
- R10 represents	, R2 represents	and R3 represents
20 ,		
$\frac{NH_2}{\frac{H}{I}}$	^ .	.•
-R10 represents	, R2 represents	and R3 represents
F	%	
30		

R2 represents

R10 represents

and R3 represents

H-N- R10 represents R2 represents and R3 represents 5 H- N 10 - R10 represents R2 represents and R3 represents <u>H</u>-15 and R3 represents , R2 represents - R10 represents 20 and R3 represents - R10 represents , R2 represents <u>H</u>- \ 25 R2 represents -R10 represents and R3 represents for finally 30 -R10 represents R2 represents represents R3 and 35

to formula

(iii)

in which:

10

5

$$H^{5}N$$
 $N-\overline{H}$

- R10 represents

, R2 represents

and R3 represents

15

- R10 represents 20

, R2 represents

and R3 represents

- R10 represents

, R2 represents

and R3 represents

_30

25

$$H_2N$$
 $N_{-\overline{H}}$

-R10 represents

, R2 represents

and R3 represents

						. •		
A	n 1							
		H ₂ N						
		2 V 1	<u>H</u> −.					
			1	•				
			J	F				
			•. Ъ				ממ	-
	- R10 represents	•	, R2	represents		and	KS	represents
	•		•					
-		4.						•.•
5	. 1			•				
			_					
•.		H _a N ₅	`			6,65		
		1 2 · · · · · · · · · · · · · · · · · ·	V-Η		•	•		
	•		1 —					
	•	-	, ·		11			
	- · ·	•	• .:				D 2	
	- R10 represents	••	, R2	represents	_	and	ن۲	represents
.10	· •	• •				::		
*•	11 7	•						191
**	•	•						
	• •							
		H ₂ N ,	у- <u>Н</u>		_			,
	•	•	<u>, </u>	•				
15		• •	+				· · · · ·	
1)	•		• • •					
	- R10 represents	•	. R2	represents	✓	and	R3	represents
		• •	•	•				•
		•						
			• •		. •			
	<u> </u>	-						
	CI							. •
20		H ₂ N						
		1,5	м – <u>Н</u>		•			
		••	1					
			7					
	D10.		n o				D7	
* *	- R10 represents		, R2	represents		and	C	represents
	•	• •						
		•		•				
25			•			•		
٠.								. "
	•							
			•					1 1
	• •	LIN			•			
		H ₂ N	N _H	`				• 1
	·	•	-11	•	11 1			
	·		ý ·					
30	1		•		·			
± 20	- R10 represents	•	, R2	represents	(==	and	R3	represents
		.						•
	\							
	λ'	•						

(v)

15

Pan N-H

Represents , R2 represents and R3 represents

, or finally

- R10 represents

and R3 represents

H₂N
$$\frac{H}{1}$$

- R10 represents

and R3 represents

15

10

5

$$H_2N$$
 $\underline{\underline{H}}$

- R10 represents

and R3 represents

- R10 represents ...

, R2 represents

, R2 represents

and R3 represents

30

25

- R10 represents

, R2 represents

and R3 represents

$$H_2N$$
 $\frac{H}{I}$

, R2 represents

and R3 represents

- R10 represents

10

15

20

5

- R10 represents

, R2 represents and R3 represents

to formula

(viii)

25

30

35

H₂N
$$\frac{H}{i}$$

in which R10 represents

, R2 represents

and R3

represents

to formula

(x)

, R2 represents

and R3 represents

35

30

- R10 represents

to formula

10

in which:

5

15

-R10 represents

represents 20

R2 represents

and R3 represents

and R3

25

- R10 represents

R2 represents

and R3 represents

35

				*			•	
•				- 69 -				
	· .	• .				•	•	
		N NH						
	- R10 represents	~ ,	R2	represents	1	and	R3	represents
5	NC NC							• • • • • • • • • • • • • • • • • • •
		•			·		.,	
		HN						•
10	- R10 represents	,	R2	represents	~	and	R3	represents
	N		70	(&)				
								,
15	•				•			•
		· N NH						
20	- R10 represents	~ ,	R2 '	represents	•	and	R3	represents
		. 1						
					•			•
25								
	- R10 represents	NH,	R2	represents		and	R3	represents
		1		,		•		•
30								
	ĆF ₃ ,			*				
		_			•			

in formula

(xii)

10

15

5

in which:

- R10 represents

, R2 represents

and R3 represents

20

- R10 represents

, R2 represents

and R3 represents

, R2 represents

and R3 represents

30

	- R10 represents	N NH, R	2 represents		and	R3	represents
5				· ,	•		
10	- R10 represents	N NH, R	2 represents		and .	R3	represents
	CF ₃						
15	- R10 represents	N NH R	2 represents		and	R3	represents
20	NC ,	y	•				
25	- R10 represents O	N NH, R	2 represents		and	R3	represents
			•			•	
30	•	· _ 'n					
35	-R10 represents	NH, R	2 represents		and	R3	represents
	9 0		. •				

- R10 represents R2 represents and R3 represents 10 - R10 represents R2 represents and R3 represents 15 , or finally 20. - R10 represents R2 represents and R3 represents 25 to formula 30

(xiii)

35

- R10 represents and R3 represents , R2 represents 10 - R10 represents R2 represents and R3 represents -R10 represents R2 represents and R3 represents 25 R10 represents R2 represents and R3

and R3 represents represents - R10 represents 5 . 10 -R2 represents and R3 represents - R10 represents 15 20 and R3 represents - R10 represents R2 represents 25 R2 represents and R3 represents - R10 represents. 30 , or finally

35

-R10 represents R2 represents and R3 represents -5 10 to formula 15 (xiv) 20 in which: , R2 represents - R10 represents and R3 represents 25 30 -<u>H</u>-1 - R10 represents , R2 represents and R3 represents 35

		H ₂ N	N-H			
5	- R10 represents		, R2 repres	ents	and R	3 represents
10		,		, ·	. •	
	-R10 represents	s NNH,	R2 represents		and R3	represents
15						
20	-R10 represents	N NH	R2 represents		and R3	represents
25	CF ₃ ,	N NH	R2 represents		and R3	represents
30	NC .		*			1 !

-R10 represents R2 represents and R3 represents io -R10 represents represents and R3 represents 15 20 -R10 represents R2 represents and R3 represents 25 -R10 represents R2 represents and R3 represents 30 , or finally

- R10 represents and R3 represents R2 represents 5 10 or finally to formula 15 (xv) in which: 20 -R1 represents , R2 represents and R5 represents 25 - R1 represents , R2 represents and R5 represents 30

H₂N² - R1 represents , R2 represents and R5 represents :: 5 10 - R1 represents , R2 represents and R5 represents 15 - R1 represents , R2 represents and R5 represents 20 25 , R2 represents - R1 represents and R5 represents 30

- R1 represents , R2 represents and R5 represents-5 . 10 H₂N - R1 represents , R2 represents and R5 represents 15 - R1 represents 20 , R2 represents and R5 represents , or finally 25 , R2 represents - R1 represents and R5 represents 30

or a salt of one of these compounds.

Even more preferentially, the invention relates to a compound characterized in that it corresponds to the formula

in which:

10

and R5 represents

15 HN

- R1 represents

, R2 represents

and R5 represents

25

20

- R1 represents

, R2 represents

and R5 represents

30

-R1 represents , R2 represents and R5 represents 5 .. 10 - R1 represents , R2 represents and R5 represents 15 , R2 represents - R1 represents and R5 represents 20 25 - R1 represents , R2 represents and R5 represents 30 .

35

or salt of one of these compounds.

In other words, the compounds described in Examples 1642 to 1654, 1656 to 1680, 2468 to 2502, 2525 to 2550, 2556 to 2582, 2605 to 2611, 2614, 2623 to 2630, 2632 to 2646, 2670 to 2678, 2680 to 2694, 2702 to 2710, 2712 to 2726 and 2827 to 2836 or a salt of one of these compounds will be preferred. The compounds of Examples 2827 to 2836 or their salts will be even more particularly preferred.

Moreover, the invention relates to preparation processes on a solid support for the compounds of general formula (I) described previously (also applicable to the corresponding compounds of general formula (II)).

According to the invention, the compounds of general formula (I)a

in which:

R1 represents a -CH₂-A1-NH₂ radical, in which A1 represents a -(CH₂)_n-, -(CH₂)_n-O-(CH₂)_p-, aralkylene or cycloalkylalkylene radical, n and p represent integers from 1 to 6;

R2 and R4 represent the same radicals as in general formula (I);

and R3 represents the same radicals as in general formula (I), with the exception of the - CO-R5 radicals;

can be prepared for example according to a process characterized in that it comprises the following successive stages:

- 1) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of a p-nitrophenylcarbonate Wang resin with a large excess of R1-NH₂ symmetrical diamine;
- 2) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of the resin isolated after stage 1) with an aromatic isothiocyanate of general formula R2-N=C=S in which the R2 radical has the same meaning as in general formula (I)a;
 - 3) treatment, in an aprotic solvent such as dioxane or dimethylformamide, of the resin obtained in Stage 2) with the compound of general formula (III)

in which the R3 and R4 radicals have the same meaning as in general formula (I)a;

- 4) cleavage of the resin under acid conditions;
- 5) treatment under basic conditions of the product obtained after Stage 4).

The preparation of the p-nitrophenylcarbonate Wang resin is described further on in the part entitled "PREPARATION OF THE COMPOUNDS OF THE INVENTION".

Preferably, for the above process, in order to have the large excess in Stage 1), of the order of 10 to 20 equivalents of diamine R1-NH₂ will be used. Stage 1) is preferably carried out at ambient temperature. Stage 3) is carried out at a temperature greater than ambient temperature, for example at a temperature comprised between 60 and 90 °C, using of the order of 2 to 5 equivalents of the compound of general formula (III). In Stage 4), the acid conditions can for example be created by using a dichloromethane / trifluoroacetic acid mixture at 50 %, said acid conditions being preferably maintained for a duration of the order of 1 to 2 hours. In Stage 5), the basic conditions can for example be created by using a saturated solution of sodium hydrogen carbonate or by elution on a basic alumina cartridge.

According to a variant of the invention, the compounds of general formula (1)b

in which:

10

15

20

R1 represents the same radicals as in general formula (I), with the exception of the - CH_2 -A1-NH₂ type radicals, in which A1 represents a - $(CH_2)_n$ -, - $(CH_2)_n$ -O- $(CH_2)_p$ -, aralkylene or cycloalkylalkylene radical, n and p representing integers from 1 to 6, and also with the exception of the -C(R11)(R12)-CO-R10 radicals;

R2 represents an aminoalkylphenyl radical;

R3 represents the same radicals as in general formula (I), with the exception of the -CO-R5 radicals;

can be prepared for example according to a process characterized in that it comprises the following successive stages:

- 1) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of a Wang resin p-nitrophenylcarbonate with an excess of aminoalkylaniline of general formula R2-NH₂ in which the R2 radical has the same meaning as in general formula (I)b;
- 2) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of the resin isolated after Stage 1) with an isothiocyanate of general formula R1-N=C=S in which the R1 radical has the same meaning as in general formula (I)b;
- 3) treatment, in an aprotic solvent such as dioxane or dimethylformamide, of the resin obtained in Stage 2) with the compound of general formula (III)

in which the R3 and R4 radicals have the same meaning as in general formula (I)b;

- 4) cleavage of the resin under acid conditions;
- 5) treatment under basic conditions of the product obtained after Stage 4).
- Preferably, for the above process, in order to have the excess in Stage 1), of the order of 5 to 10 equivalents of aminoalkylaniline will be used. Stage 1) is preferably carried out at ambient temperature. Stage 3) is carried out at a temperature greater than ambient temperature, for example at a temperature comprised between 60 and 90 °C, using of the order of 2 to 5 equivalents of the compound of general formula (III). In Stage 4), the acid conditions can for example be created by using a dichloromethane / trifluoroacetic acid mixture at 50 %, said acid conditions being preferably maintained for a duration of the order of 1 to 2 hours. In Stage 5), the basic conditions can for example be created by using a saturated solution of sodium hydrogen carbonate or by elution on a basic alumina cartridge.
- 25 According to another variant of the invention, the compounds of general formula (I)c

in which:

15

R1 represents a -CH₂-A1-NH₂ radical, in which A1 represents a -(CH₂)_n-, -(CH₂)_n-O- (CH₂)_p-, aralkylene or cycloalkylalkylene radical, n and p representing integers from 1 to 6;

R2 represents the same radicals as in general formula (I);

R3 represents a -CO-R5 radical;

and R4 and R5 represent the same radicals as in general formula (I);

can be prepared according to a process characterized in that it comprises the following successive stages:

- 1) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of a Wang resin p-nitrophenylcarbonate with a large excess of symmetrical diamine of general formula R1-NH₂ in which the R1 radical has the same meaning as in general formula (I)c;
 - 2) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of the resin isolated after Stage 1) with an aromatic isothiocyanate of general formula R2-N=C=S in which the R2 radical has the same meaning as in general formula (I)c;
 - 3) treatment, in an aprotic solvent such as dioxane or dimethylformamide, of the resin obtained in Stage 2) with the acid of general formula (IV)

$$Br$$
 OH
 OH
 OH

in which the R4 radical has the same meaning as in general formula (I)c;

4) peptide coupling;

10

15

20

- 5) cleavage of the resin under acid conditions;
- 6) treatment under basic conditions of the product obtained after Stage 5).

Preferably, for the above process, in order to have the large excess in Stage 1) of the order of 10 to 20 equivalents of symmetrical diamine will be used. Stage 1) is preferably carried out at ambient temperature. Stage 3) is carried out at a temperature greater than ambient temperature, for example at a temperature comprised between 60 and 90 °C, using of the order of 2 to 5 equivalents of the acid of general formula (TV). The peptide coupling of Stage 4) is carried out for example in DMF with coupling agents such as for example dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), DIC/N-hydroxybenzotriazole (HOBt) mixture, benzotriazolyloxytris(dimethylamino)phosphonium hexafluorophosphate (PyBOP), 2-(1H-benzotriazol-1-yl)-1.1,3,3-tetramethyluronium hexafluorophosphate (HBTU) or 2-(1H-benzotriazol-1-yl)-1.1,3,3-tetramethyluronium tetrafluoroborate (TBTU) aminated compounds. Preferably, the coupling agents are used in proportions of 4 to 5 equivalents, as with the aminated compounds, and the reaction will take place at a temperature of the order of ambient temperature for a duration of the order of 1 to 24 In Stage 5), the acid conditions can for example be created by using a dichloromethane / trifluoroacetic acid mixture at 50 %, said acid conditions being preferably maintained for a duration of the order of 1 to 2 hours. In Stage 6), the basic conditions can for example be created by using a saturated solution of sodium hydrogen carbonate or by elution on a basic alumina cartridge.

According to yet another variant, the compounds of general formula (I)d

in which:

R1 represents the same radicals as in general formula (I), with the exception of the - CH_2 -A1-NH₂ type radicals, in which A1 represents a -(CH_2)_n-, -(CH_2)_n-, -(CH_2)_p-,

aralkylene or cycloalkylalkylene radical, n and p represent integers from 1 to 6, and also with the exception of the -C(R11)(R12)-CO-R10 radicals;

R2 represents an aminoalkylphenyl radical;

R3 represents a -CO-R5 radical;

and R4 and R5 represent the same radicals as in general formula (I);

can be prepared according to a process characterized in that it comprises the following successive stages:

- 1) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of a Wang resin p-nitrophenylcarbonate with an excess of aminoalkylaniline of general formula R2-NH₂ in which the R2 radical has the same meaning as in general formula (I)d;
- 2) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of the resin isolated after Stage 1) with an isothiocyanate of general formula R1-N=C=S in which the R1 radical has the same meaning as in general formula (I)d;
- 3) treatment, in an aprotic solvent such as dioxane or dimethylformamide, of the resin obtained in Stage 2) with the acid of general formula (TV)

in which the R4 radical has the same meaning as in general formula (I)d;

4) peptide coupling;

10

- 5) cleavage of the resin under acid conditions;
- 6) treatment under basic conditions of the product obtained after Stage 5).

Preferably, for the above process, in order to have the excess in Stage 1), of the order of 5 to 10 equivalents of aminoalkylaniline will be used. Stage 1) is preferably carried out at ambient temperature. Stage 3) is carried out at a temperature greater than ambient temperature, for example at a temperature comprised between 60 and 90 °C, using of

the order of 2 to 5 equivalents of the acid of general formula (IV). The peptide coupling of Stage 4) is carried out for example in DMF with coupling agents such as for example dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), a DIC/Nhydroxybenzotriazole (HOBt) benzotriazolyloxytris(dimethylamino) mixture, phosphonium hexafluorophosphate 2-(1H-benzotriazol-1-yl)-1,1,3,3-(PyBOP), tetramethyluronium hexafluorophosphate (HBTU) or 2-(1H-benzotriazol-1-yl)-1,1,3,3tetramethyluronium tetrafluoroborate (TBTU) and aminated compounds. Preferably, the coupling agents are used in proportions of 4 to 5 equivalents, as with the aminated compounds, and the reaction will take place at a temperature of the order of ambient temperature for a duration of the order of 1 to 24 hours. In Stage 5), the acid conditions can for example be created by using a dichloromethane / trifluoroacetic acid mixture at 50 %, said acid conditions being preferably maintained for a duration of the order of 1 to 2 hours. In Stage 6), the basic conditions can for example be created by using a saturated solution of sodium hydrogen carbonate or by elution on a basic alumina cartridge.

According to another variant, the compounds of general formula (I)e

in which:

5

10

15

20

R1 represents the same radicals as in general formula (I), with the exception of the $-CH_2-A1-NH_2$ type radicals, in which A1 represents a $-(CH_2)_n-$, $-(CH_2)_n-$ O- $-(CH_2)_p-$, aralkylene or cycloalkylalkylene radical, n and p representing integers from 1 to 6, and also with the exception of the $-C(R11)(R12)^2CO-R10$ radicals;

R2 represents the same radicals as in general formula (I);

R3 represents a -CO-R5 radical;

R4 represents H;

R5 represents an - NH-CH₂-A1-NH₂ radical, in which A1 represents a linear or branched alkylene radical containing 1 to 6 carbon atoms, -(CH₂)_n-O-(CH₂)_p-,

aralkylene or cycloalkylalkylene, n and p representing integers from 1 to 6, or also R5 represents the N(R6)(R7) radical corresponding to the following general formula:

in which:

R8 represents H;

Y represents N;

a represents 1 or 2;

can be prepared by a process characterized in that it comprises the following successive stages:

- treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of a
 Wang resin p-nitrophenylcarbonate with a large excess of symmetrical diamine of general formula R5-H;
 - 2) peptide coupling with the acid of general formula (IV) on the resin obtained in Stage 1)

in which the R4 radical has the same meaning as in general formula (I)e;

- 3) reaction of the primary amine of general formula R1-NH, with the isothiocyanate of general formula R2-NCS in a solvent such as dimethylformamide or dioxane, R1 and R2 having the same meanings as in general formula (I)e;
 - 4) addition of the thiourea obtained in Stage 3) to the resin obtained in Stage 2) and heating the mixture;
- 20 5) cleavage of the resin under acid conditions:

6) treatment under basic conditions of the product obtained after Stage 5).

Preferably, for the above process, in order to have the large excess in Stage 1), of the order of 10 to 20 equivalents of diamine R5-H will be used. Stage 1) is preferably carried out at ambient temperature. The peptide coupling of Stage 2) is carried out in DMF with coupling agent such DIC/Nhydroxybenzotriazole (HOBt) mixture. Preferably, the reaction of Stage 3) is carried out in a solvent such as dimethylformamide or dioxane. During the addition of Stage 4), 2 to 5 equivalents of thiourea will preferably be used per equivalent of resin; preferably also, heating will be carried out at a temperature greater than ambient temperature, for example at a temperature from 40 to 100°C (in particular at a temperature of approximately 80°C) and for a duration of 2 to 24 hours. In Stage 5), the acid conditions can for example be created by using a dichloromethane / trifluoroacetic acid mixture at 50 %, said acid conditions being preferably maintained for a duration of the order of 1 to 2 hours. In Stage 6), the basic conditions can for example be created by using a saturated solution of sodium hydrogen carbonate or by elution on a basic alumina cartridge.

According to yet another variant, the compounds of general formula (I)f

in which:

10

15

R1 represents a -C(R11)(R12)-CO-R10 radical;

R2, R3 and R4 represent the same radicals as in general formula (I); 20

 $amino(C_2-C_7)alkylamino$, ((aminoalkyl)aryl)alkylamino, R10 represents ((aminoalkyl)cycloalkyl)alkylamino, piperazinyl, homopiperazinyl radical,

or R10 represents the radical represented below:

$$\frac{H_2}{N}$$
 N O N

R11 represents H;

15

20

25

30

R12 represents H or an alkyl, (C₃-C₇)cycloalkyl, optionally substituted carbocyclic or heterocyclic aralkyl, propargyl, allyl, hydroxyalkyl, alkylthioalkyl, arylalkylalkoxyalkyl, arylalkylthioalkoxyalkyl radical;

- can be prepared by a process characterized in that it comprises the following successive stages:
 - 1) treatment, in an aprotic solvent such as dichloromethane or dimethylformamide, of a Wang resin p-nitrophenylcarbonate with a large excess of symmetrical diamine of general formula R10-H in which R10 has the same meaning as in general formula (I)f;
- 2) peptide coupling of the resin obtained in Stage 1) with an amino acid of general formula HOOC-C(R11)(R12)-NH-Fmoc in which R11 and R12 have the same meaning as in general formula (I)f;
 - 3) cleavage of the Fmoc group from the resin obtained in Stage 2);
 - 4) reaction of the resin obtained in Stage 3) with an isothiocyanate of general formula R2-NCS in which R2 has the same meaning as in general formula (I)f;
 - 5) cleavage of the resin under acid conditions;
 - 6) treatment under basic conditions of the product obtained after Stage 5).

Preferably, for the above process, in order to have the large excess in Stage 1), of the order of 10 to 20 equivalents of diamine R10-H will be used. Stage 1) is preferably carried out at ambient temperature. The peptide coupling of Stage 2) is carried out for example in DMF with coupling agents such as for example dicyclohexylcarbodiimide diisopropylcarbodiimide (DIC), a DIC/N-hydroxybenzotriazole (HOBt) (DCC),mixture, benzotriazolyloxytris(dimethylamino) phosphonium hexafluorophosphate (PyBOP), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) or 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU). Preferably, the reaction of Stage 2) is carried out at ambient temperature and for a duration of 1 to 24 hours. The deprotection of Stage 3) can be carried out, for example, by a mixture of DMF containing 20% piperidine. Stage 4) will preferably be carried out in a solvent such as dimethylformamide or dichloromethane, the isothic cyanate preferably being added in a proportion of 5 to 10 equivalents per equivalent of the resin obtained in Stage 3). In Stage 5), the acid conditions can for example be created by using a dichloromerhane / Influorometic acid mixture at 50 %

said acid conditions being preferably maintained for a duration of the order of 1 to 2 hours. In Stage 6), the basic conditions can for example be created by using a saturated solution of sodium hydrogen carbonate or by elution of a basic alumina cartridge.

A subject of the invention is also, as medicaments, the compounds of general formulae (I) and (II) described previously or their pharmaceutically acceptable salts. It also relates to pharmaceutical compositions containing said compounds or their pharmaceutically acceptable salts, and their use for the preparation of a medicament intended to treat pathological states or diseases in which one (or more) of the somatostatin receptors are involved.

5

20

25

30

In particular, the compounds of general formulae (I) and (Π) described previously or their pharmaceutically acceptable salts can be used for the preparation of a medicament intended to treat pathological states or diseases chosen from the group comprising the following pathological states or diseases: acromegalia, hypophyseal adenomas, Cushing's disease, gonadotrophinomas and prolactinomas, catabolic side-effects of glucocorticoids, insulin dependent diabetes, diabetic retinopathy, diabetic nephropathy, syndrome X, dawn phenomenon, angiopathy, angioplasty, hyperthyroidism, gigantism, endocrinic gastroenteropancreatic tumours including carcinoid syndrome, VIPorna, insulinoma, nesidioblastoma, hyperinsulinemia, glucagonoma, gastrinoma Zollinger-Ellison's syndrome, GRFoma as well as acute bleeding of the esophageal gastroesophageal reflux, gastroduodenal reflux, pancreatitis, enterocutaneous and pancreatic fistulae but also diarrhoea, refractory diarrhoea's of acquired immunodeficiency syndrome, chronic secretary diamhoea, diamhoea associated with irritable bowel syndrome, diarrhoea's induced by chemotherapy, disorders linked with gastrin releasing peptide, secondary pathologies with intestinal grafts, portal hypertension as well as haemorrhages of the veins in patients with cirrhosis, gastrointestinal haemorrhage, haemorrhage of the gastroduodenal ulcer, bleeding of grafted vessels, Crohn's disease, systemic scleroses, dumping syndrome, small intestine syndrome, hypotension, scleroderma and medullar thyroid carcinoma, illnesses linked with cell hyperproliferation such as cancers and more particularly breast cancer, prostate cancer, thyroid cancer as well as pancreatic cancer and colorectal cancer, fibroses and more particularly fibrosis of the kidney, fibrosis of the liver, fibrosis of the lung, fibrosis of the skin, also fibrosis of the central nervous system as well as that of the nose and fibrosis induced by chemotherapy, and in other therapeutic fields such as, for example, cephaleas including cephalea associated with hypophyseal tumours, pain, inflammatory disorders such as arthritis, panic attacks, chemotherapy, cicatrization of wounds, renal insufficiency resulting from delayed development, hyperlipidemia, obesity and delayed development linked with obesity, delayed uterine development,

dysplasia of the skeleton, Noonan's syndrome, sleep apnea syndrome, Graves' disease, polycystic disease of the ovaries, pancreatic pseudocysts and ascites, leukemia, meningioma, cancerous cachexia, inhibition of H pylon, psoniasis, chronic rejection of allografts as well as Alzheimer's disease and finally osteoporisis.

Preferably, the compounds of general formulae (I) and (II) described previously or their pharmaceutically acceptable salts can be used for the preparation of a medicament intended to treat the pathological states or diseases chosen from the group comprising the following pathological states or diseases: acromegalia, hypophyseal adenomas or endocrinic gastroenteropancreatic tumors including carcinoid syndrome, and gastrointestinal bleeding.

By pharmaceutically acceptable salt is meant in particular addition salts of inorganic acids such as hydrochloride, sulphate, phosphate, diphosphate, hydrobromide and nitrate, or of organic acids, such as acetate, maleate, fumarate, tartrate, succinate, citrate, lactate, methanesulphonate, p-toluenesulphonate, pamoate, oxalate and stearate. The salts formed from bases such as sodium or potassium hydroxide also fall within the scope of the present invention, when they can be used. For other examples of pharmaceutically acceptable salts, reference can be made to "Pharmaceutical salts", J. Pharm. Sci. 66:1 (1977).

15

20

30

The pharmaceutical composition can be in the form of a solid, for example powders, granules, tablets, capsules, liposomes or suppositories. Appropriate solid supports can be for example calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidine and wax. The suspensions contain in particular suspensions of sustained release microparticles loaded with active ingredient (in particular microparticles of polylactide-co-glycolide or PLGA - cf. for example the Patents US 3,773,919, EP 52 510 or EP 58 481 or the Patent Application PCT WO 98/47489), which allow the administration of a determined daily dose over a period of several days to several weeks.

The pharmaceutical compositions containing a compound of the invention can also be presented in the form of a liquid, for example, solutions, emulsions, suspensions or syrups. Appropriate liquid supports can be, for example, water, organic solvents such as glycerol or glycols, as well as their mixtures, in varying proportions, in water.

The administration of a medicament according to the invention can be carried out by topical, oral, parenteral route, by intramuscular injection, etc.

The administration dose envisaged for a medicament according to the invention is comprised between 0.1 mg and 10 g according to the type of active compound used.

These compounds can be prepared according to the methods described below.

PREPARATION OF THE COMPOUNDS OF THE INVENTION

I) Preparation of α-bromoketones

FIRST METHOD

This method is inspired by the protocols described in the following publications: Macholan, L.; Skursky, L. Chem. Listy 1955, 49, 1385-1388; Bestman, H.J.; Seng, F. Chem. Ber. 1963, 96, 465-469; Jones, R.G.; Kornfeld, E.C.; McLaughlin, K.C. J. Am. Chem. Soc. 1950, 72, 4526-4529; Nimgirawath, S.; Ritchie, E.; Taylor, W.C. Aust. J. Chem. 1973, 26, 183-193).

A carboxylic acid is firstly converted to an acid by using oxalyl or thionyl chloride, or by activating it in the form of an anhydride using an alkyl chloroformate (for example isobutyl chloroformate, cf. Krantz, A.; Copp, L.J. *Biochemistry* 1991, 30, 4678-4687; or ethyl chloroformate, cf. Podlech, J.; Seebach, D. *Liebigs Ann.* 1995, 1217-1228) in the presence of a base (triethylamine or N-methylmorpholine).

The activated carboxyl group is then converted to diazoketone using diazomethane in an ethereal solution or a commercial solution of trimethylsilyldiazomethane (Aoyama, T.; Shiori, T. Chem. Pharm. Bull. 1981, 29, 3249-3255) in an aprotic solvent such as diethyl ether, tetrahydrofuran (THF) or acetonitrile.

The bromination is then carried out using a bromination agent such as hydrobromic acid in acetic acid, aqueous hydrobromic acid in diethyl ether or dichloromethane.

Preparation 1

2-(4-bromo-3-oxobutyl)-IH-isoindole-I,3(2H)-dione $(C_{12}H_{10}BrNO_3, MM = 296.12)$:

10

15

Oxalyl chloride (5.8 ml; 66.7 mmol) is added to Pht- β -Ala-OH (9.96g; 44.5 mmol) dissolved in dichloromethane (120ml) and 3 drops of dimethylformamide (DMF). The mixture is agitated for 3 hours at ambient temperature. After elimination of the solvent, the white solid is taken up in a 1:1 mixture of anhydrous tetrahydrofuran and acetonitrile (200 ml) then 49 ml of a 2M solution of (trimethylsilyl) diazomethane in hexane (97.9 mmol) is added dropwise at 0 °C. The solvents are eliminated after agitation overnight at 0 °C. The pale yellow solid is then dissolved in dichloromethane (60 ml) and 12 ml of aqueous hydrobromic acid (48%) is added dropwise at 0 °C. The mixture is agitated until the temperature reaches 15 °C and 50 ml of a saturated solution of sodium bicarbonate is added. The organic phase is washed with salt water then dried over sodium sulphate. Crystallization from diethyl ether allows a white solid to be obtained (11.39 g; yield = 86%).

5

10

15

NMR ¹H (DMSO D6, 100 MHz, δ): 7.83 (s, 4H); 4.36 (s, 2H, CH₂Br); 3.8 (t, 2H, J = 7.1 Hz, NCH₂); 2.98 (t, 2H, J = 6.9 Hz, CH₂CO).

Preparations 2-11

The following compounds were prepared in a similar fashion to the procedure described in Preparation 1:

Prep.	R3	Yield (%)	Prep.	R3	Yield (%)
2*		78	7		67
3*		60	8	CF ₃	51

4*	10	. 9	38 -
5*	69	10	22
6*	41	11	67

* Compounds already described in the literature.

SECOND METHOD

The starting product is an arylmethylketone or a heteroarylmethylketone.

The starting arylmethylketone or heteroarylmethylketone is converted to the corresponding α-bromoketone by using different brominating agents:

- CuBr₂ (King, L.C.; Ostrum, G.K. J. Org. Chem. 1964, 29, 3459-3461) heated in ethyl acetate or dioxane;
- N-bromosuccinimide in CCl₄ or aqueous acetonitrile (Morton, H.E.; Leanna, M.R. Tetrahedron Lett. 1993, 34, 4481-4484);
- bromine in glacial acetic acid or sulphuric acid;
- phenyltrimethylammonium tribromide (Sanchez, J. P.; Parcell, R. P. J. Heterocyclic Chem, 1988, 25, 469-474) at 20-80 °C in an aprotic solvent such as THF or tetrabutylammonium tribromide (Kajigaeshi, S.; Kakinami, T.; Okamoto, T.; Fujisaki, S. Bull Chem. Soc. Jpn. 1987, 60, 1159-1160) in a dichloromethane/methanol mixture at ambient temperature;
- brominating agent on a polymer support such as perbromide on an Amberlyst A-26 resin, poly(perbromide of vinylpyndinium hydrobromide) (Frechet, J. M. J.; Farrall, M. J. Macromol. Sci. Chem. 1977, 507-514) in a protic solvent such as methanol at approximately 20-35 °C for approximately 2-10 hours.

Preparation 12

1-(1-benzofuran-2-yl)-2-bromo-1-ethanone (C₁₀H₇BrO₂, MM = 239.06):

10

A polymer of perbromide of pyridine hydrobromide (8.75 g; 17.5 mmol; 1.4 equivalent) is added to a solution of (benzofuran-2-yl)methylketone (2 g; 12.5 mmol) in methanol (40 ml). The resulting mixture is agitated at ambient temperature for 7 hours and the reaction is stopped by filtration. The methanol is eliminated under reduced pressure and an additional addition of diethyl ether allows crystallization of the expected product (3.6 g; yield = 60%).

NMR 1 H (DMSO D6, 100 MHz, δ): 8.09 (s, 1H); 7.98 (d, 1H, J = 6.6 Hz); 7.75 (d, 1H, J = 8.4 Hz); 7.58 (t, 1H, J = 8.4 Hz); 7.4 (t, 1H, J = 7 Hz); 4.83 (s, 2H, CH₂Br).

Preparations 8-12

The following compounds were prepared in a similar fashion to the procedure described in Preparation 12:

Ргер.	R3	Duration	Yield (%)
		of reaction (hrs)	
13*	T _s	8	78
14*		2	62
15*	Br S	10	.56
16*	MeO OMe	2	53

17*		, 3	95
18	F	8	27

^{*} Compound already described in the literature.

II) Synthesis of 2-arylimino-2,3-dihydrothiazoles via synthesis on solid phase

Preparation of Wang resin p-nitrophenylcarbonate

This resin was prepared from Wang resin, acquired from Bachem or Novabiochem with a load greater than 0.89 mmol/g, by a well described general procedure (cf. Bunin, B.A. The Combinatorial Index, Academic Press, 1998, p. 62-63; Dressman, B.A.; Spangle, L.A.; Kaldor, S.W. Tetrahedron Lett. 1996, 37, 937-940; Hauske, J.R.; Dorff, P. Tetrahedron Lett. 1995, 36, 1589-1592; Cao, J.; Cuny, G.D.; Hauske, J.R. Molecular Diversity 1998, 3, 173-179): N-methylmorpholine or pyridine as base and 4-nitrophenylchloroformate are successively added to a Wang resin pre-swollen in dichloromethane (DCM) or tetrahydrofuran (THF) at ambient temperature. The mixture is agitated overnight. The resin is then washed successively with THF, diethyl ether and DCM then dried overnight under reduced pressure at 50 °C.

METHOD A

Preparation of monoprotected symmetrical diamines

General procedure: as already described in the literature (Dixit, D.M.; Leznoff, C.C. J. C. S. Chem. Comm. 1977, 798-799; Dixit, D.M.; Leznoff, C.C. Israel J. Chem. 1978, 17, 248-252; Kaljuste K.; Unden, A. Tetrahedron Lett. 1995, 36, 9211-9214; Munson, M.C.; Cook, A.W.; Josey, J.A.; Rao, C. Tetrahedron Lett. 1998, 39, 7223-7226), a Wang resin p-nitrophenylcarbonate is treated with a large excess of symmetrical diamine (10-20 equivalents), in an aprotic solvent such as DCM or DMF, in order to produce a monoprotected diamine resin after agitation overnight.

Preparation of thiourea resins

10

General procedure: aromatic and heteroaromatic isothiocyanates (5-10 equivalents) are added (Smith, J.; Liras, J.L.; Schneider, S.E.; Anslyn, E.V. J. Org. Chem. 1996, 61, 8811-8818) to monoprotected symmetrical diamines in a solvent such as DCM or DMF agitated overnight at ambient temperature. Washed successively with DMF and DCM, the thiourea resin is isolated then dried overnight under reduced pressure at 50 °C.

Preparation 19

(phenylaminothioyl)ethyl Wang resin carbamate

Phenylisothiocyanate (1 ml; 8.5 mmol; 5 eq.) is added to an ethylene diamine Wang resin N-carbamate (2 g; 1.72 mmol; 0.86 mmol/g) swollen in DCM (50 ml). After agitation overnight at ambient temperature, the resin is washed successively with DMF (5 x 20 ml) and DCM (5 x 20 ml). The success of the coupling is monitored using the

Kaiser ninhydrin test (Kaiser, E.; Colescott, R.L.; Bossinger, C.D.; Cook, P.I. Anal Biochem. 1970, 34, 595-598). A pale yellow resin (1.79 g) is obtained with a load of 0.648 mmol/g calculated from the elemental analysis of sulphur.

Synthesis of 2-arylimino-2,3-dihydrothiazoles

10

15

General procedure: regioselective cyclization stage (Korohoda, M.J.; Bojarska, A.B. Polish J. Chem. 1984, 58, 447-453; Ragab, F.A.; Hussein, M.M.; Hanna, M.M.; Hassan, G.S.; Kenawy, S.A. Egypt. J. Pharm. Sci. 1993, 34, 387-400; Hassan, H.Y.; El-Koussi, N.A.; Farghaly, Z.S. Chem. Pharm. Bull. 1998, 46, 863-866) takes place in such as dioxane solvents or DMF 80 °C 2-3 hours between the thiourea resin and the a-bromoketone (2-5 equivalents). The resin is then washed successively with DMF, methanol and DCM then dried under reduced pressure. The 2-arylimino-2,3-dihydrothiazole resin is cleaved under acid conditions (DCM/trifluoroacetic acid at 50%) for 1-2 hours then rinsed with DCM. The solvent is evaporated off and the free base is isolated after treatment under basic conditions (saturated solution of sodium hydrogen carbonate), extraction with DCM or elution with methanol in a basic alumina cartridge (500 mg, Interchim).

Example 1

N-[3-(2-aminoethyl)-4-(4-chlorophenyl)-1,3-thiazol-2(3H)-ylidene]aniline (C₁₇H₁₆ClN₃S, MM = 329.86):

2-bromo-4'-chloroacetophenone (30.2 mg; 129 μmol; 2 eq.) dissolved in DMF (1 ml) is added to a thiourea resin prepared above (100 mg; 64.8 μmol; load of 0.648 mmol/g). The mixture is agitated for 2 hours at 80 °C. The resin is then successively washed with DMF (3 x 2 ml), methanol (3 x 2 ml) and DCM (3 x 2 ml). The release stage, carried out in 1 ml of a mixture of DCM/trifluoroacetic acid at 50%, produces an oil after one hour 30 minutes of agitation which is eluted with methanol in a basic alumina cartridge (500 mg, Interchim). The free base is isolated in a quantitative fashion (21.3 mg) in the form of a yellow oil having a purity measured by UV spectrophotometry of 98% at 220 nm.

NMR ¹H (DMSO D6, 100 MHz) δ : 7.55 (s, 5H); 7.3 (d, 2H, J = 7.1 Hz); 6.99 (d, 2H, J = 7.1 Hz); 6.21 (s, 1H, H azole); 3.74 (t, 2H, J = 6.2 Hz, NCH₂); 3.32 (broad s, 2H, NH₂); 2.72 (t, 2H, J = 6.2 Hz, NCH₂). SM/LC: m/z = 330 (M+H)*.

A series of 2-arylimino-2,3-dihydrothiazoles was synthesized according to method A using our robotic system (ACT MOS 496):

R1 groups:

15

$$n = 1-6$$

R2 groups:

(Cl, Br, F, Me, OMe, NO₂, iPr, CF₃)

35

30 R3 groups:

15

[Br, Cl, F, OMe, Ph, Me, NO₂, N₃, OCF₃, CN, CF₃, NEt₂, nC_4H_9 , nC_5H_{11} , OCH₂Ph]

$$\rightarrow - \cdot \stackrel{}{\searrow} - \cdot \stackrel{}{\searrow}$$

R4 represents H, alkyl, carbocyclic or heterocyclic aralkyl optionally situated on the aryl radical;

in which i represents an integer from 1 to 3;

it being understood that for R4, when the aryl group is substituted, it can be 1 to 5 times (other than the bond which links it to the remainder of the molecule) by radicals chosen independently from the group composed of a halogen atom and an alkyl or alkoxy radical.

METHOD B

Preparation of Wang resin carbamates from aminoalkylanilines

General procedure: as already described (Hulme, C.; Peng, J.; Morton, G.; Salvino, J.M.; Herpin, T.; Labaudiniere, R. Tetrahedron Len. 1998, 39, 7227-7230), a pnitrophenylcarbonate Wang resin is treated with an excess of aminoalkylaniline (5-10 eq.) in DCM or DMF and agitated at ambient temperature overnight. The resin is washed successively with DMF, methanol and DCM then dried overnight under reduced pressure at 50 °C.

Preparation 20

4-aminophenylethyl Wang resin carbamate

10

A solution of 2-(4-aminophenyl)ethylamine (2.48 g; 17.3 mmol; 5 eq.) in 30 ml of annydrous DMF is added to a Wang resin p-mitrophenylcarbonate (4.05 g; 3.47 mmol; load of 0.857 mmol/g) pre-swollen in 50 ml of anhydrous DMF. The mixture is agitated at ambient temperature overnight and filtered. The resin is washed successively with DMF (10 x 30 ml), methanol (5 x 30 ml) and DCM (5 x 30 ml). 3.7 g of yellow resin (load of 0.8 mmol/g calculated from the elemental analysis of the nitrogen), giving a positive Kaiser ninhydrin test, is isolated after drying overnight under reduced pressure at 50 °C.

Preparation of thiourea resins with aliphatic isothiocyanates

General procedure: aliphatic isothiocyanates (5-10 equivalents) are added to an aminoalkylaniline resin in a solvent such as DCM or DMF and agitation is carried out overnight at ambient temperature. After washing successively with DMF and DCM, the thiourea resin is isolated and dried overnight under reduced pressure at 50 °C.

Preparation 21

4-{[(phenylethylamino)carbothioyl]amino}-phenylethyl Wang resin carbamate

10 ml of anhydrous DMF and phenylethylisothiocyanate (624 µl, 4 mmol, 10 eq.) are added under an argon atmosphere to the resin described previously (0.5 g; 0.4 mmol; load of 0.8 mmol/g). The reaction medium is agitated overnight at ambient temperature and produces a negative Kaiser ninhydrin test. The resin is then washed successively with DMF (5 x 20 ml) and DCM (5 x 20 ml). Drying under reduced pressure at 50 °C produces 488 mg of resin with a load of 0.629 mmol/g calculated from elemental analysis of the sulphur.

Synthesis of 2-arylimino-2,3-dihydrothiazoles

15

20

General procedure: the cyclization stage takes place in aprotic solvents such as dioxane or DMF at 80 °C for 2 hours between the thiourea resin and the α -bromoketone (2-5 equivalents). The resin is then washed successively with DMF, methanol and DCM then dried under reduced pressure. The iminothiazole resin is cleaved by treatment under acid conditions (DCM/trifluoroacetic acid at 50%) for 1-2 hours then rinsed with DCM. The solvent is evaporated off and the free base isolated after extraction under basic conditions (saturated solution of sodium hydrogen carbonate), extraction with DCM or elution with methanol in a basic alumina cartridge (500 mg, Interchim).

Example 2

4-(2-aminoethyl)-N-[4-(4-chlorophenyl)-3-phenethyl-1,3-thiazol-2(3H)-ylidene]aniline $(C_{25}H_{24}ClN_3S, MM = 434.01)$:

$$H_2^N$$

100 mg (62.9 µmol, load of 0.629 mmol/g) of thiourea resin and 2-bromo-4'-chloroacetophenone (30 mg; 125.8 µmol; 2 eq.) are dissolved in 1 ml of DMF and heated to 80 °C for 2 hours. The resin is then washed successively with DMF (5 x 1 ml), methanol (5 x 1 ml) and DCM (5 x 1 ml). The resin is agitated in 1 ml of a DCM/urifluoroacetic acid mixture at 50% for one hour and 30 minutes at ambient temperature. The resin is rinsed with DCM (5 x 1 ml) and the filtrate evaporated under reduced pressure. The residue, dissolved in methanol, is eluted in a basic alumina cartridge (500 mg, Interchim) in order to quantitatively produce (27.3 mg) the expected product in the form of a solid (UV purity: 97% at 220 nm).

NMR ¹H (DMSO D6, 100 MHz) δ : 7.9 (broad s, 2H, NH₂); 7.53 (d, 2H, J = 8.5 Hz); 7.32-7.15 (m, 7H); 7.08-6.9 (m, 4H); 6.37 (s, 1H, H azole); 4.07 (m, 2H, NCH₂); 3.03 (m, 2H, NCH₂); 2.88 (m, 4H). MS/LC: m/z = 435 (M+H)⁺.

A series of 2-arylimino-2,3-dihydrothiazoles was synthesized according to method B with our robotic system (ACT MOS 496):

- R1 groups

$$p = 0-15$$

$$q = 0-4$$

- R2 groups

- R3 and R4 groups like those of method A

10

METHOD C

5

10

Synthesis of 2-arylimino-1,3-thiazole-4(3H)-carboxamides

General procedure: a regioselective cyclization stage using a-bromopyruvic acid (2-5 eq.) is carried out starting from the thiourea resin prepared in the method A in aprotic solvents such as dioxane or DMF at 80 °C for 2-3 hours. The resin is then washed successively with DMF, methanol and DCM then dried under reduced pressure. The peptide coupling (Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. Tetrahedron Lett. 989, 30, 1927-1930) takes place in DMF at ambient temperature for 1-24 hours with different standard coupling agents (4-5 eq.) such as dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), a DIC/N-hydroxybenzotriazole (HOBt) benzotriazolyloxytris(dimethylamino)phosphonium hexafluorophosphate (PyBOP), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) or 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) and aminated compounds (4-5 eq.). The 2-arylimino-1,3-thiazole-4(3H)carboxamide resin is cleaved by treatment under acid conditions (DCM/trifluoroacetic acid at 50%) for 1-2 hours then rinsed with DCM. The solvent is evaporated off and the free base is isolated after treatment under basic conditions (saturated solution of sodium hydrogen carbonate), extraction is carried out with DCM or elution with methanol in a basic alumina cartridge (500 mg, Interchim).

Example 3

3-(4-aminobutyl)-N-benzhydryl-2-[(4-bromophenyl)imino]-1,3-thiazole-4(3H)-carboxamide ($C_{27}H_{27}BrN_4OS$, MM = 535.51):

50 mg (27.5 µmol, load of 0.55 mmol/g) of carboxylic acid resin is activated for 15 minutes with 14.8 mg (0.11 mmol, 4 eq.) of N-hydroxybenzotriazole and 35.3 mg (0.11 mmol, 4 eq.) of TBTU in 800 µl of anhydrous DMF. 20.7 mg (0.11 mmol, 4 eq.) of aminodiphenylmethane dissolved in 200µl of anhydrous DMF is then added and the resin is filtered after agitation overnight at ambient temperature. A sequential washing with DMF (5 x 1 ml), methanol (5 x 1 ml) and DCM (5 x 1 ml) produces a resin which is treated for one hour and 30 minutes under acid conditions (DCM/trifluoroacetic acid at 50 %). The resin is rinsed with DCM (5 x 1 ml) and the filtrate evaporated under reduced pressure. The residue, taken up in methanol, is eluted in a basic alumina cartridge (500 mg, Interchim) in order to produce a pale yellow solid (8.2 mg; yield of 55.7 %; UV purity of 94 % at 220 nm).

NMR ¹H (DMSO D6, 100 MHz, δ): 9.6 (d; 1H; J = 8.6Hz; NH); 7.49 (d; 2H; J = 8.6 Hz); 7.35 (s; 10H); 6.92 (s; 1H; H azole); 6.91 (d; 2H; J = 8.5 Hz); 6.27 (d; 1H; J = 8.5 Hz; NHCH); 4.02 (m; 2H; NCH₂); 3.45 (broad m; 2H+2H; NH₂ and NCH₂); 1.55–1.24 (broad m; 4H). MS/LC: m/z = 535 (M+H).

A series of 2-arylimino-1,3-thiazole-4(3H)-carboxamides was synthesized according to method C using our robotic system (ACT MOS 496):

- R1 and R2 groups already described in method A;
- -R3 = -CO-R5;

-R4 = H;

10

15

- R5 groups

-

15

$$N-\underline{H}$$
 $N-\underline{H}$
 $N-\underline{H}$

$$N-\overline{H}$$
 $N-\overline{H}$
 $N-\overline{H}$
 $N-\overline{H}$
 $N-\overline{H}$

$$\frac{\underline{H}}{I} \qquad [Me, Et] \qquad \underbrace{\underline{H}}_{N-\underline{H}}$$

.

10 [Me, Et, nPr, nBu, iBu, iAm, CH₂Ph, CH₂CH₂Ph] [Me, Et, nPr, nBu, iBu, iAm, CH₂Ph, CH₂CH₂Ph]

$$N-N-$$

[CI, OMe] [Me, OMe, F] [Me, OMe, F] [Me, OMe, F]

20

25

35

METHOD D

10

15

Synthesis of 2-arylimino-1,3-thiazole-4(3H)-carboxamides

General procedure: a regioselective cyclization stage using a-bromopyruvic acid (2-5 eq.) is carried out starting from the thiourea resin prepared in method B in aprotic solvents such as dioxane or DMF at 80 °C for 2-3 hours. The resin is then successively washed with DMF, methanol and DCM then dried under reduced pressure. The peptide coupling (Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. Tetrahedron Lett. 1989, 30, 1927-1930) takes place in DMF at ambient temperature for 1-24 hours with different standard coupling agents (4-5 eq.) such as dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), a DIC/N-hydroxybenzotriazole (HOBt) mixture, benzotriazolyloxytris(dimethylamino)phosphonium hexafluorophosphate (PyBOP), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) or 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate aminated compounds (4-5 eq.). The 2-arylimino-1,3-thiazole-4(3H)-carboxamide resin is cleaved by treatment under acid conditions (DCM/trifluoroacetic acid at 50%) for 1-2 hours then rinsed with DCM. The solvent is evaporated off and the free base is isolatedafter treatment under basic conditions (saturated solution of sodium hydrogen carbonate) followed by an extraction with DCM or elution with methanol in a basic alumina cartridge (500 mg, Interchim).

Example 4

(2Z)-2- $[(4-(2-aminoethyl)phenyl]imino]-N-(4-chlorobenzyl)-3-(2-phenylethyl)-2,3-dihydro-1,3-thiazole-4-carboxamide (<math>C_{77}H_{27}CIN_4OS$, MM = 491.05):

$$H_2$$
 N $H-N$ CI

Phenylethylisothiocyanate (310 mg; 1.9 mmol; 10 eq.) in 3 ml of dimethylformamide is added to 200 mg (190 µmol, load of 0.946 mmol/g) of aminated resin (see Preparation 20). Agitation overnight at ambient temperature produces a negative Kaiser ninhydrin test. The resin is then successively washed with DMF (5 x 3 ml) and DCM (5 x 3 ml) then dried under vacuum for one hour before adding bromopyruvic acid (63.4 mg; 380 µmol; 2 eq.) diluted beforehand in 3 ml of dimethylformamide. The mixture is agitated for 2.5 hours at 80°C. The resin is filtered and washed with DMF (5 x 3 ml), methanol (3 x 3 ml) then DCM (5 x 3 ml). The carboxylic acid resin is preactivated for 1 hour with 244 mg (0.76 mmol; 4 eq.) of TBTU diluted in 2 ml of anhydrous DMF. 110 mg (0.76 mmol; 4 eq.) of 4-chlorobenzylamine dissolved in 1 ml of anhydrous DMF is then added and the resin is filtered after agitation overnight at ambient temperature. Sequential washing with DMF (5 x 3 ml), methanol (3 x 3 ml) and DCM (3 x 3 ml) produces a resin which is treated for one hour and 30 minutes under acid conditions (DCM/trifluoroacetic acid at 50 %). The resin is rinsed with DCM (5 x 1 ml) and the filtrate evaporated under reduced pressure. The residue, taken up in DCM, is neutralized with a saturated solution of sodium hydrogen carbonate in order to produce after evaporation a solid (38.2 mg; yield of 41%; UV purity of 90% at 210 nm). NMR ¹H (DMSO D6, 400 MHz, δ): 9.1 (m, 1H); 7.39 (d, 2H, J = 8.4 Hz); 7.33 (d, 2H, J = 8.4 Hz; 7.25 (q, 2H, J = 6.8 Hz); 7.19 (q, 1H, J = 7.2 Hz); 7.11 (m, 4H); 6.8 (d, 2H, J = 8 Hz); 6.75 (s, 1H, H azole); 4.34 (d, 2H, J = 6 Hz); 4.27 (t, 2H, J = 6.8 Hz); 3.14 (m, 1H); 2.89 (t, 2H, J = 6.8 Hz); 2.73 (t, 1H, J = 7.2 Hz); 2.62 (m, 2H). MS/LC: m/z =491.24 (M+H)*.

5

10

A series of 2-arylimino-1,3-thiazole-4(3H)-carboxamides was synthesized according to method D using our robotic system (ACT MOS 496):

- R1 and R2 groups already described in method B
- R3 = -CO-R5
- R4 = H

5

15

20

- R5 groups already described in method C.

- METHOD E

Preparation of monoprotected diamine resin functionalized with α-bromopyruvic acid

General procedure: the monoprotected symmetrical primary or secondary diamine resin (the preparation of which is already described in method A) is functionalized by peptide coupling with α -bromopyruvic acid (10 eq.), DIC (10 eq.) and HOBt (10 eq.) in a solvent such as DMF at ambient temperature. The resin is washed successively with DMF then with DCM after 2 to 24 hours of agitation before being dried under vacuum. The negative Kaiser ninhydrin test indicates a complete functionalization.

Preparation 22

N-carbamate of 2-[(3-bromo-2-oxopropanoyl)amino]ethyl Wang resin

HOBt (0.93 g, 6.88 mmol) and α-bromopyruvic acid (1.18 g, 6.88 mmol) are dissolved in 28 ml of DMF (0.5 M). DIC (1.07 ml; 6.88 mmol) is then added by syringe to activate the acid. The mixture is agitated for approximately 15 minutes at ambient temperature before adding it to the ethylene diamine Wang resin N-carbamate (0.8 g; 0.688 mmol; load rate 0.86 mmol/g). After agitation for 3 hours at ambient

temperature, the Kaiser ninhydrin test being negative, the resin is filtered and washed successively with DMF (5 x 20 ml) then with DCM (5 x 20 ml) before being dried under vacuum. An ochre resin (0.812 g) is obtained with a load rate of 0.525 mmol/g-calculated from elemental analysis of the bromine.

Synthesis of 2-arylimino-1,3-thiazole-4(3H)-carboxamides

5

10

15

General procedure: formation of the thiourea is carried out in a solvent such as DMF or dioxane by mixing an equimolar quantity of primary amine and aromatic or heteroaromatic isothiocyanate. After agitation for 2 to 24 hours at ambient temperature, the thiourea (2 to 5 eq.) is added to the functionalized resin then heated at 80°C for 2 to 4 hours. The 2-arylimino-1,3-thiazole-4(3H)-carboxamide resin is cleaved by treatment under acid conditions (DCM/trifluoroacetic acid at 50%) for 1-2 hours then rinsing with DCM. The solvent is evaporated off and the free base isolated after treatment under basic conditions (saturated solution of sodium hydrogen carbonate), extraction with DCM or elution with methanol in a basic alumina cartridge (500 mg, Interchim).

Example 5

(2Z)-N-(2-aminoethyl)-3-[2-(3,4-dimethoxyphenyl)ethyl]-2-(phenylimino)-2,3-dihydro-1,3-thiazole-4-carboxamide ($C_{22}H_{26}N_4O_3S$, MM = 426.54):

18 μ l (105 μ mol; 2 eq.) of β -(3,4-dimethoxyphenyl)ethylamine and 12.6 μ l (105 μ mol; 2 eq.) of phenylisothiocyanate are agitated in 1 ml of DMF for 18 hours. The thiourea is added to 100 mg (52.5 μ mol; load rate of 0.525 mmol/g) of resin (Preparation 22) and the mixture heated at 80°C for 3 hours. The resin is then filtered then washed successively with DMF (5 x 1 ml), methanol (5 x 1 ml) then DCM (5 x 1 ml). The resin is dried under vacuum before adding 1 ml of a 50% DCM/TFA mixture. Agitation is carried out for 1.5 hours at ambient temperature, the resin is filtered and rinsed with DCM. The residue recovered after evaporation is then eluted with methanol in a basic alumina cartridge in order to isolate 22.2 mg (quantitative yield; UV purity of 93.4 % at 230 nm) of a brown solid corresponding to the free amine.

NMR ¹H (DMSO D6, 100 MHz, δ): 8.42 (m, 1H, NH); 7.32 (t, 2H, J = 7.1 Hz); 7.08-6.63 (m, 6H); 5.76 (s, 1H, H azole); 4.31 (t, 2H, J = 6.6 Hz); 3.72 (s, 6H, OCH₃); 3.32 (broad s, 2H); 3.17 (m, 2H); 2.89 (m, 2H); 2.62 (m, 2H). MS/LC: m/z = 427.17 (M+H)⁺.

A series of 2-arylimino-1,3-thiazole-4(3H)-carboxamides was synthesized according to method E using our robotic system (ACT MOS 496):

R1 groups:

$$M_{n}$$

n = 1-6 10

p = 0-13

20

15

25

_ 30

[H, OMe]

15

20

[Me, Et] [Me, Et]

25

- R2 groups already described in method A

 $_{30}$ - R3 = -CO-R5

- R4 = H

- R5 groups:

$$\frac{H_2}{n} = 1-6$$

$$\frac{H_2}{N} = 1-6$$

$$\frac{H_2}{N} = \frac{H_2}{N} =$$

METHOD F

5

10

15

Preparation of monoprotected diamine resins functionalized with N-protected amino acids (Fmoc)

$$\begin{array}{c|c}
O & O & \underline{H} \\
\hline
N & \text{fmoc}
\end{array}$$
R11 R12

General procedure: the peptide coupling of the monoprotected diamine resins with N-Fmoc amino acids (4 to 10 eq.) which are commercially available (Bunin, B.A. The Combinatorial Index, Academic Press, 1998, p. 77-82) is carried out in DMF at ambient temperature for 1 to 24 hours with different standard coupling agents (4 to 10 eq.) such as dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), a DIC/Nmixture, benzotriazolyloxytris(dimethylamino) hydroxybenzotriazole (HOBt) 2-(1H-benzotriazol-1-yl)-1;1,3,3hexafluorophosphate (PyBOP), phosphonium. tetramethyluronium hexafluorophosphate (HBTU) or 2-(1H-benzotriazol-1-yl)-1,1,3,3tetramethyluronium tetrafluoroborate (TBTU). The resin is then washed successively with DMF and DCM. The coupling sequence can be repeated (once or twice) until the Kaiser ninhydrin test is negative.

Preparation 23

4-[([[(9H-fluoren-9-ylmethoxy)carbonyl]amino|acetyl)amino]butyl Wang resin - N-carbamate

$$\begin{array}{c|c}
 & O \\
 & N \\
 & M \\$$

Fmoc-Gly-OH acid (2.36 g, 7.94 mmol) is activated with HOBt (1.07 g, 7.94 mmol) and DIC (1.25 ml, 7.94 mmol) in 22 ml of DMF for 5 minutes before adding the mixture to butylamine Wang resin N-carbamate (1 g, load rate of 0.794 mmol/g) preswollen in 10 ml of DMF. After agitation for 18 hours at ambient temperature, the resin is washed successively with DMF (5 x 20 ml) then with DCM (5 x 20 ml) before being dried under vacuum. 1.27 g of pale yellow resin is thus obtained presenting a negative Kaiser ninhydrin test.

Preparation of the thiourea resins

10

15

General procedure: a resin described above is deprotected with a 20% DMF/piperidine mixture. After agitation for one hour at ambient temperature, the resin is filtered and washed successively with DMF then with DCM. The deprotection/washing sequence is repeated a second time and the resin is dried under vacuum. The latter is preswollen in a solvent such as DMF or DCM then an aromatic or heteroaromatic isothiocyanate (5 to 10 eq.) is added. The mixture is agitated for 2 to 24 hours at ambient temperature before the resin is filtered and washed successively with DMF then with DCM. The resin is then dried under vacuum and a negative Kaiser ninhydrin test confirms that the substitution reaction is complete.

Preparation 24

4-[([[(1-naphthylamino)carbothioyl]amino]acetyl)amino]butyl Wang resin N-carbamate

1.27 g of the above resin (see Preparation 23) is deprotected with 14 ml of DMF/piperidine at 20%. The mixture is agitated for one hour at ambient temperature. The resin is then filtered then washed with DMF (5 x 30 ml) then with DCM (5 x 30 ml). The deprotection/washing sequence is repeated once before the resin is dried under vacuum. 0.781 g of pale yellow resin was thus obtained with a load rate of 0.758 mmol/g calculated after elemental analysis of the sulphur. 416 mg (2.2 mmol, 10 eq.) of 1-naphthylisothiocyanate diluted in 6 ml of DMF is added to 0.3 g (0.22 mmol) of this thiourea resin. The mixture is agitated for 18 hours at ambient temperature. The resin is filtered then washed successively with DMF (5 x 20 ml) then with DCM (5 x 20 ml). 310 mg of a pale yellow resin is isolated after drying under vacuum with a load rate of 0.66 mmol/g calculated after elemental analysis of the nitrogen.

Synthesis of 2-arylimino-2,3-dihydrothiazoles

10

15

General procedure: the regioselective cyclization stage is carried out in aprotic solvents such as dioxane, DMF or N-methylpyrrolidinone at 80 °C for 2 to 3 hours between the thiourea resin and the α-bromoketone (2 to 5 eq.). The resin is then washed successively with DMF, methanol and DCM then dried under reduced pressure. The 2-arylimino-2,3-dihydrothiazole resin is cleaved under acid conditions (DCM/trifluoroacetic acid at 50%) for 1 to 2 hours then rinsed with DCM. The solvent

is evaporated off and the free base isolated after treatment under basic conditions (saturated solution of sodium hydrogen carbonate) followed by an extraction with DCM or elution with methanol in a basic alumina cartridge (500 mg, Interchim).

Example 6

N-(4-aminobutyl)-2-((2Z)-4-(4-chlorophenyl)-2-(1-naphthylimino)-1,3-thiazol-3(2H)-yl)acetamide $(C_{25}H_{25}ClN_4OS,MM=465.02):$

80 mg (52.8 µmol, load rate of 0.66 mmol/g) of thiourea resin (Preparation 24) and 25.1 mg (105.6 mmol, 2 eq.) of 2-bromo-4'-chloroacetophenone are diluted in 1 ml of DMF. The mixture is heated at 80°C for 2 hours. The resin is filtered then washed with DMF (5 x 1 ml), methanol (5 x 1 ml) then DCM (5 x 1 ml) before being dried under vacuum. 1 ml of a 50% DCM/TFA mixture is added followed by agitation for 1 hour 30 minutes. The resin is filtered and rinsed with DCM. The filtrate is evaporated then rediluted in methanol for elution on basic alumina. 20.6 mg (yield of 84%; UV purity of 94.2 % at 220 nm) of yellow solid is thus isolated after evaporation corresponding to the free base.

NMR ¹H (DMSO D6, 100 MHz, δ): 8.36 (t, 1H, J = 4.7 Hz, NH); 8.12 (dd, 1H, J = 2.1 and 7.3 Hz); 7.87 (dd, 1H, J = 2.7 and 6.3 Hz); 7.63-7.34 (m, 8H); 7.13 (dd, 1H, J = 1.6 and 6.7 Hz); 6.33 (s, 1H, H azole); 4.44 (broad s, 2H); 3.14 (m, 2H); 2.7 (m, 2H); 1.5 (m, 4H). MS/LC: m/z = 465.21 (M+H).

A series of 2-arylimino-2,3-dihydrothiazoles was synthesized according to method F using our robotic system (ACT MOS 496):

- 25 R1 = -C(R11R12)-CO-R10
 - R2, R3 and R4 groups already described in method A
 - R10 groups:

10

$$\frac{H_2}{n} = 1-6$$

20

25

10
$$\frac{\underline{H}_{2}}{N}$$
 $\frac{\underline{H}_{2}}{N}$ $\frac{\underline{H}_{2}}{N}$ $\frac{\underline{H}_{2}}{N}$ $\frac{\underline{H}_{2}}{N}$ $\frac{\underline{H}_{2}}{N}$ $\frac{\underline{H}_{2}}{N}$

- R11 = H

15 - R12 groups:

EXAMPLES.

10

Examples obtained according to methods A, B, C, D, E and F described above are shown below in the tables. These examples are shown to illustrate the above processes and must not in any circumstances be considered as limiting the scope of the invention.

The compounds obtained have been characterized by their retention times (rt) and by mass spectrometry (M+H).

The chromatograms are obtained from a high performance liquid chromatography device (Hewlett-Packard 1100) equipped with a scanning UV detector. The following conditions were used to measure the retention times by high performance liquid chromatography, it being understood that the extraction wavelength of each of the chromatograms is 220 nm:

t (min.)	A (%)	B (%)
0	90	10
6	15	85
. 8	15	85

Eluent A: water + 0.02% trifluoroacetic acid; eluent B: acetonitrile.

Flow rate: 1 ml/min; volume injected: 5 μ l; temperature: 40 °C. Column: Uptisphere 3 μ m ODS, 50 x 4.6 mm i.d. (Interchim)

The mass spectra are obtained from a single quadrupole mass spectrometer equipped with an electrospray source (Micromass, Platform II).

RЗ Purity (%) rt (min.) [M+H]* R2 Ex. 3.09 304.2 7 91.2 338.2 93.1 3.38 8 352.2 3.56 94 9 93.3 3.42 338.2 10 3.25 342.2 96.6 11 3.46 365.2 96.4 12 393.2 3.86 91.9 13 358.2 96.4 3.44 14 3.34 382.2 95.6 15 94.5 3.7 408 -16 54.43 2.9 305.2 17 50.4 3.14 339.2 18

5

10

15

20

25

30

. 35

- 149 -R2 Purity (%) rt (min.) $[M+H]^{+}$ R3 Ex. 48.9 3.38 535.2 19 339.2 39.3 3.26 20 343.2 49.5 3.06 21 42.3 3.29 366.2 22 ⁻⁻ 43.4 394.3 3.7 23 56.7 3.16 359.2 24 383.2 25 45.3 3.09 409 45.7 3.3 26 332.3 96.8 3.41 27 366.3 28 92.8 3.7 90.6 3.84 380.3 29 93.7 3.76 366.3 30

5

10

15

20

25 -

30

NH2 R2 Ex. R3 Purity (%) rt (min.) [M+H]* -- 94.4⁻ 370.2 31 3.63 32 89.1 3.82 393.2 33 90.1 4.12 410.2 34 96.7 3.83 386.2 35 410.2 95.8 3.67 36 93.4 4.17 436.1 37 88.4 329.25 3.64 91.8 38 4.03 363.2 39 88.6 4.15 377.2 40 94.1 4.22 363.2 41 95.2 4.1 376.2 In 42 92.8 4.35 390.2

5

1,0

15

20

25

30

			- 151 -			
			NHz			· ·
		R2-N		•		
5		\$	-n3			
	Ex.	R2	1 R3	Purity (%)	rt (min.)	[M+H]
	43			94.1	4.54	418.2
10	44		c	95	4.34	383.1
	45	02		95.1	4.06	407.2
15	46		Br s	93	4.7	433.1
20	47		>-	96.4	3.32	332.3
	48			92.9	3.62	366.3
25	49			95.6	3.76	380.3
	50			95.6	3.64	366.33
30	51		F	96	3.51	370.2
	52		N3 .	87	3.69	390.2
5	53			80.9	4.04	421.3
	54		CI	97.1	3.7	436.1
_				 -		

<u>- 152 - </u> Ex. R2 R3 Purity (%) rt (min.) [M+H] 55 94.6 ...3.59 410.2 56 95.6 3.92 436.1 57 82.1 3.66 368.2 58 90.7 402.2 3.94 59 85.5 4.06 416.2 60 94.4 4.09 402.2 61 95.1 3.99 406.2 62 93.6 4.21 429.2 63 93.6 457.2 4.39 64 96 4.22 422.1 65 91.6 3.96 446.2 66 94.5 4.65 472

. 5

10

15

20

25

30

Ex. R2 R3 Purity (%) rt (min.) [M+H]* 67 97 3.07 348.2 68 93.6 3.36 382.2 69. 93.4 3.54 396.2 70. 94.7 3.41 382.1 71 96.3 3.24 386.2 72 94.5 3.44 409.1 73 93.4 3.83 437.2 74 95.4 3.41 402.1 75 95.7 3.32 426.2 76 92.4 3.64 452.2 77 98.1 3.66 324.2 78 91.2 3.98 388.2

5

İΟ

15 -

20

25

30

		- 154 -			
ŀ		NH ₂			
	·				
	R2-N	—R3		*	
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
79			81.9	4.09	402.2
80	-		96.1	4.12	388.2
81		F	96.1	4.03	392.2
82		N ₃	94.2	4.24	415.2
83			93.3	4.39	443.3
84		Ci	96.3	4.28	408.1
85			94.2	4,0	432.2
86		Br s	95.6	4.7	458.1

NH2 5 Ex. R2 R3 Purity (%) rt (min.) [M+H]* 87 97 -3.35 338.2 10 88 94 3.51 352.3 89 94 3.58 352.3 15 90 97 3.42 356.2 91 86 4.01 422.2 20 92 3.99 96 407.3 93 7. 391.3 3.65 25 94 92 4.11 378.2 95. 95 3.43 435.2 **30** . 96 97 3.91 422.1 35 97 43 3.19 339.2 98 32 3.33 353.2

RЗ Purity (%) rt (min.) $[M+H]^*$ R2 Ex. 39 3.45 353.2 99 357.2 39 3.28 100 3.8 423.2 42 101 41 3.89 408.2 102 14. 392.2 3.43 103 39 3.62 379.2 104 436.2 105 28 3.2 35 3.56 423.1 106 4.65 464.1 95 107 478.2 29 4.64 108 82 4.88 478.1 109 **92** 4.76 482.1 110

5

10

15

20

25

30

NH₂ Ex. Ŗ2 RЗ Purity (%) rt (min.) [M+H]* 111 90 5.41 548.1 112 86 5.13 533.2 113 9 517.1 4.5 114 95 5.49 504.1 115 80. 4.4 561.1 116 89 5.4 548,0 117 96 4.85 422.2 118 91 436.2 4.86 119 88 5.08 436.2 120 95 4.96 440.2 121 81 5.56 506.2 122 83 5.34 491.2

5

10

15

20

25

30

<u>- 158 -</u> NH₂ Ex. R3 R2 Purity (%) rt (min.) [M+H]* 123 475.3 3 4.7 124 91 5.59 462.2 125 92 4.61 519.2 125 92 5.52 506.1 127 98 3.63 366.3 128 97 3.76 380.3 ..129 98 3.82 380.3 130 98 3.67 384.2 131 97 4.16 450.2 132 96 4.2 435.3 133 21 3.9 419.3 134 88 4.28 406.2

5

10

15

20

25

30

NHZ Ex. R2 RЗ Purity (%) rt (min.) [M+H]* 135 97 ~ 3.68 463.3 136 82 4.09 450.1 137 93 3.44 417.2 138 94 3.5 431.2 139 95 · 3.71 431.2 140 95 3.58 435.2 141 94 4.27 501.2 142 93 4.05 486.6 143 94 4.28 457.2 144 92 3.39 514.2 145 85 4.16 501.1 146 97 3.36 382.2

5

10

15.

20

25

30

		- 160 -			•
			NH ₂		
	R2-N	N	,		
	<u> </u>	R3			
 Ex.	R2	R3	Purity (%)	rt (min.) [M+H]
147			94	3.53	396.2
148			97	3.6	396.2
149		F	97	3.43	400.2
150			97	3.95	466.2
 151			95	4.01	451.3
152		C C	15	3.57	435.2
153			94	4.0	422.2
154			95	3.45	479.3
155		B S	95	3.84	466.1
156			96	4.11	388.2
157			90	4.14	402.2
158			96	4.31	402.2

10 .

.

.

25

20

10

- 162 -

			162 -			
			-	NH ₂		
				•		
		R2 -N	-N R3	,		
		S ~	1.			
*****	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
	165			93	3.52	332.3
	166			99	3.76	370.3
	167		N,	97	3.9	393.3
	168			98 	4.25	436.2
, 0	169		CI NO.	98	4.14	431.2
	170			99	4.79	488.2
	171			98	3.74	410.2
	172			98	4.28	410.3
	173			98	4.38	392.2
	174		CI.	98	4.73	456.2
	175		>-	98	4.06	374.3
	176		·	98	4.37	412.3

10 .

			- 163 -			
				NH ₂		
	9	R2 N	-N			
		\$_	<u> </u>	•	_	
•	Ex.	R2:	¹ R3	Purity (%)	rt (min.)	[M+H]
	177		N ₃	97	4.46	435.3
	178		F	98	4.8	478.3
	179		C: 70.	99	4.78	473.3
	180			94	5.43	530.3
	181		C _o	97	4.27	452.3
	182			85	4.73	452.4
	183			98	5.07	434.3
	184		CI.	93	5.33	498.3
	185		\rightarrow	98	4.61	458.2
	186			97	5.23	496.1
	187		N,	96	5.34	519.1
	188		F LO	97	5.72	562.1

0

- 164 -

			- 164 -			
				NH2		
		and the second second			•	•
		R2 N	R3.	,		
٠	Ex.	R2	FI3	Purity (%)	rt (min.)	[M+H]
	189		CI NO.	98	5.57	557.1
	190			96	6.16	614.1
	191			96	4.97	536.1
	192			85 	5.67	536.2
	193			96	5.86	518.1
	194		CI S	97	6.32	582.1
:	195	NC .	>-	96	4.16	357.3
	196	NC .		98	4.74	395.2
	197	NC .	N,	97	4.86	418.2
	198	NC ,		98	5.26	461.2
·	199	NC C	CI NO.	98	5.12	456.2
	200	NC		97	5.72	513.2
			· - 			

	6	- 165 -			
			NH ₂		
			•		
	R2 N	-N R3	,		
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
201	NC		96	4.51	435.2
. 202	NC		98	5.18	435.3
203	NC .		95	5.37	417.2
204	NC .	CI	95	5.84	481.2
205	F.		 96	3.63	350.3
206	F.		98	3.95	388.2
207	F.	N,	95	4.07	411.2
208	F	F O	98	4.44	454.2
209		cı No.	97	4.38	449.2
210	F ,	F F	89	5.03	506.2
211	F		96	3.87	428.2
212		10-	. 97	4.4	428.3

- 166 -Ex. R2 R3 Purity (%) rt (min.) $[M+H]^{*}$ 213 96 4.63 410.2 214 96 4.96 474.2 215 94 5.38 411.2 216 .98 5.63 449.2 217 96 5.77 472.2 218 98 6.04 515.2 219 98-5.74 510.1 220 ... 91 6.29 567.2 221 98 5.53 489.2 222 96 6.38 489.3 To. 223 97 6,0 471.2 224 98 6.49 535.1

5

10

15

20

25

30

	-	\sim	
•	ŧ	n /	-

			- 167 -		•	
				NH ₂		`,
		•				
	ļ	ϵ_i , ϵ_i			•	
		22 N		<i>;</i>		
		R2	R3			
		5	<u> </u>			
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
	225			98 -	3.99	426.3
	226	c i		98	4.34	464.2
	227	CI	N ₃	96	4.43	487.3
	228	c ₁	F To To	97	4.78	530.2
	229	61		98	4.76	525.2
:	230	c.		96	5.36	582.2
	231	ei T		95	4.23	504.3
-	232	c.		97	4.7	504.3
	233	0		98	4.99	486.2
	234		CI S	97	5.3	550.2
	235	H, N - 5 0		96	3.44	411.2
	236	H,N-50		95	3.94	449.2

-10

5.01

535.2

20

25

244

10

245 98.1 3.2 246 96.9 3.78 247 69.3 3.88 248 99.3 3.79 249 99.4 3.86	
Ex. R2 R3 Purity (%) rt (min.) 245 98.1 3.2 246 96.9 3.78 247 99.3 3.88 248 99.3 3.79 249 99.4 3.86	
245 98.1 3.2 246 96.9 3.78 247 99.3 3.88 248 99.4 3.86 250 98 3.97	
246 96.9 3.78 247 69.3 3.88 248 99.3 3.79 249 99.4 3.86 250 98 3.97	[M+H]
247 69.3 3.88 248 99.3 3.79 249 99.4 3.86 250 98 3.97	290.2
248 99.3 3.79 249 99.4 3.86 250 98 3.97	324.2
248 99.3 3.79 249 99.4 3.86 250 98 3.97	355.2
250 98 3.97	335.2
	324.2
	351.2
251 98.7 4.14	388.1
	379.3
253 82.4 5.16	446.2
254 0 98.8 3.7	368.2
255 98.5 3.9	332.3
256 92.3 4.4	366.3

. 5

10 .

15 -

20

25

30

- 170 -NH₂ Ex. Ä3 R2 Purity (%) rt (min.) [M+H] 257 82.3 4.55 397.2 NC. 258 98.4 4.48 377.3 259 97.3 4.49 366.3 260 95.4 4.59 393.3 261 4.77 98.7 430.2 262 90.9 4.76 421.3 263 5.72 98.7 488.2 264 97.7 4.33 410.3 265 98.5 3.42 369.2 266 94.9 3.91 403.2 267 98.1 3.81 434.2

97.9

3.78

414.1

5

10

15

20

25

30

35

- 171 *-*

		- 171 -			
· ·		NI-NI	H ₂		
	R2 N	- N			
	5	R3	,	*	·
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
 269	H, N S 0		98.1	4.06	403.2
270	H ₂ N - S 0	N ₃	96.2	4.14	430.2
271	H ₂ N S	Br	98.3	4.28	467.1
272	H ₁ N S		96.8	4.5	458.2
273	N, N, S		98.3	4.92	525.2
274	H ₁ N S 10		97.1	3.84	447.2
275	CI	>- ·	96.5	4.28 ⁻	354.2
276	CI		93.3	5.02	388.2
277	CI	No.	68.7	4.96	419.2
278	'cı C'	NC .	97.8	4.86	399.2
279	CI O		96	5.13	388.2
280	CI	N, .	96.9	5.18	415.2

4	70	
- 1	17	-

		<u> </u>	- 172 -		•	
			N	IH ₂		· · · · · · · · · · · · · · · · · · ·
		•	·			
		R2 N	_N.	•		
			ЯЗ	,		•
•		S ~ 				
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
	281	CI	Br	98.6	5.31	452.1
	282	CI		89.5	5.54	443.2
	283	CI		65.5	5.89	510.2
	284	CI		97.8	4.89	432.2
·	285	c; , , , , , , , , , , , , , , , , , , ,	>-	93.2	5.08	369.2
	286	CI NO.		94.6	5.31	403.1
	287	ci NO.	NO ₂	97.6	5.07	434.1
	288	cı No.	NC .	99.1	5.05	414.1
	289	CI NO.		99.1	5.39	403.1
	290	c. ,	N ₃	98.3	5.44	430.2
	291	CI	Вг	99.4	5.47	467.1
	292	CI NO.		97.4	5.86	458.2
	292	c, , , , ,		97.4	5.86	458.2

_ 30

.

		- 173 -			·
		N	H ₂		-
	N				
	R2 N	-N	1		
	- S -	R3			
Ex.	R2	1 R3	Purity (%)	rt (min.)	[M+H]
293	C:		99.5	5.87	525.1
294	6 70.		98.5	5.21	447.2
295		\	95.7	4.41	396.3
296			92.9	5.06	430.3
297		, o ,	 54	5.19	461.2
298		NO.	91.8	5.07	441.2
299			95.8	5.18	430.3
300		N	96	5.28	457.3
301		Br	96.9	5.45	494.2
302			87	5.49	485.3
303			35.6	6.18	552.2
304			96.7	4.97	474.3

. 15

	r	·	- 174 -		,	
		:	N	H ₂		
		R2 -N	_N			
		R3			·	
	Ex.		R3	Purity (%)	rt (min.)	[M+H]*
	305	F .	>-	83.9	5.24	380.2
:	306	F F		92.8	5.39	414.2
	307	F F	No.	92	5.14	445.2
· ·	308		NC	97.4	5.11	425.1
	309			98.1	5.47	414.2
:	310	F	N	97.2	5.47	441.1
*	311		В,	97	5.52	478.1
:	312			93.3	5.99	469.2
	313			98.3	5.91	536.1
	314			96.5	5.31	458.2
	315		>-	98.7	4.12	340.3
	316			93.4	4.66	374.2
					 -	

		-1/5- N	H ₂		
	R2 N	R3			
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
317	-	NO ₂	98.9	4.78	405.2
318		NC .	97.8	4.71	385.2
319			98.1	4.78	374.2
320		N3 .	97.2	4.9	401.2
321		Br	98.8	5.09	438.1
322			95.8	5.07	429.3
323			98.5	5.82	496.2
324			97.5	4.59	418.2
. •		·	-	η .	

- 176 -::

NH₂ Ex. R2 R3 Purity (%) rt (min.) $[M+H]^+$ 325 93 3.71 358.2 326 68 + 304.0 + 4.1396.2 327 69 + 314.5 + 4.6462.2 328. 66 + 274.7 + 4.8484.3 329 67 + 314.4 + 4.6457.2 330 67 + 304.3 + 4.5541.2 331 62 + 333.9 + 4.0436.2 332 64 + 303.5 + 3.6447.3 333 65 + 304.7 + 4.9418.2 334 68 + 293.8 + 3.9372.3 335 69 + 294.2 + 4.3410.2 336 .68 + 304.6 + 4.8476.2

5

10

15

20

25

30

·NH₂ 5 Ex. R2 R3 Purity (%) rt (min.) [M+H]337 61 + 324.8 + 4.89498.3 10 338 66 + 304.55 + 4.71 471.2 339 68 + 294.46 + 4.58 555.2 .. 15 340 22 + 115.13 + 5.22520.4 341 67 + 244.09 + 4.14 450.3 20 342 71 + 233.7 + 3.74461.3 343 4.82 + 5.0267 + 31432.2 25 344 66 + 314.14 + 4.39404.3 345 65 + 314.74 + 4.94 442.2 346 65 + 315.25 + 5.47 508.2 347 5.28 + 5.5 62 + 29530.3 35 348 5.21 + 5.3865 + 30503.2

			- 178 -		-	
				NH ₂		
		N				
5		R2	N R3			
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
	349	C s		63 + 30	5.03 + 5.24	587.2
10	350	S-	""	64 + 30	5.59 + 5.84	552.3
15	351	5		58 + 28	4.49 + 4.66	482.3
₹/ 	352	· s	0 N	64 + 26	4.01 + 4.11	493.3
. 20	353	· s		65 + 31	5.54 + 5.71	464.2
Ĭ:	354	N .	>-	57 + 24	4.08 + 4.19	399.3
25	355	N		62 + 28	4.52 + 4.7	437.2
	356	N ₃	Į, D,	62 + 28 -	5 + 5.2	503.2
30	357	N ₃	0.01	58 + 26	5.08 + 5.25	525.3
	358	N3	ci , , , , , , , , , , , , , , , , , , ,	62 + 29	4.98 + 5.19	498.2
35	359	N		62 + 29	4.82 + 4.99	582.2
**	360	N3 .	""	62 + 28	5.39 + 5.58	547.3

			- 179 -			
				NH2		
					·	
		R2-N	N			
		\$	F3			
:	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
	361	N,		56 ÷ 26	4.37 + 4.4	477.3
	362	N ₃		64 + 32	5.32 + 5.5	5 459.2
	363	B, F, F	>-	94	6.36	505.2
	364	Br F		98	6.39	542.1
	365	8, F		25 + 72	6.74 + 6.77	608.1
	366	B, F	0.0	92	7.07	630.2
	367	Br F	ci , , , , , , , , , , , , , , , , , , ,	23 + 73	6.38 + 6.42	603.1
-	368	B, F F		26 + 69	6.73 + 6.76	687.1
	.369	Br F	***	60	7.55	652.3
	370	B, F		82	6.39	582.1
	371	B, F		94	5.74	593.2
	372	e, F F		22 + 73	6.63 + 6.74	564.1

<u>- 180 -</u> -NH₂ Ex. R2 R3 Purity (%) rt (min.) [M+H]* 373 59 + 274.88 + 5.13403.3 374 67 + 305.35 + 5.44441.2 375 64 + 345.84 + 5.92507.2 376 62 + 286 + 6.13529.3 377 97 5.58 502.2 0,0 378 65 + 325.71 + 5.8586.2 O,N 379 49 + 236.45 + 6.58551.3 380 61 + 265.18 + 5.3481.2 381 45 + 214.57 + 4.68 492.3 382 84 5.9 463.2 383 56 + 264.65 + 4.89 410.2 384 64 + 305.29 + 5.47 448.2

5

10

15

20

25

3**0**

•		<u> </u>	- 181 -				
				-NH ₂			
*		R2-N		1,			•
5		F12	R3.	′,			
•	Ex.	- R2	R3	Purity (%)	rt (min.)	[M+	— Н1 ⁺
10	385	F	F	65 + 30	5.78 + 5.9		
10	386	F	0.0	63 + 27	5.8 + 6.02	536.	2
15	387	F	cı No,	65 + 31	5.71 + 5.8	1 509.	1
	388			62 + 32	5.59 + 5.79	593.1	,
20	389		"	30 + 14	6.22 + 6.45	558.3	3
	390	F		57 + 26	5.01 + 5.2	488.2	
25	391		o N	54 + 26	4.46 + 4.61	499.2	
	392			27 + 11	6.09 + 6.18	470.2	
30	393		>-	63 + 29	4.53 + 4.6	464.3	
	394			65 + 30	4.78 + 4.93	502.3	
35	395			61 + 28	5.16 + 5.35	568.2	
	396		0.0	59 + 25	5.3 + 5.42	590.3	
					<u>-</u>		

	r		- 183	· · · · · · · · · · · · · · · · · · ·		
		*		NH₂	. :	
5		F2 N S	N R3		•	
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
	402			88.5	. 4.52	442.1
10	403		F	94.6	4.72	432.15
	404		N ₅	95	4.78	455.16
15	405		ci No.	98.6	5.19	493.12
20	406			95.8	4.99	577.11
20	407			95.1	4.44	472.19
25	408		° CN	96.3	4,0	483.21
	409		Br S	94.5	5.35	498.04
30	410			94.1	5.61	454.15
	411			83	5.43	526.03
35	412		F	94.9	5.4	515.97
	413		N, .	93.4	5.52	539.00

	_	-	
- 7	9	1	_

			- 184 -	·	•	•
				NH ₂	7	
5	*	F2 N S	R3			
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
	414		ci NO,	97.1	-5.48	576.95
10	415			92.7	5.69	660.99
7.5	416			92.2	5.27	555.98
15	417			92	4.7	567.00
20	418		Br s	89.7	5.73	581.87
20	419			87.8	5.77	538.00
25	420	· s		84.4	4.74	446.14
	421	s	F .	92.6	4.9	436.08
: 30	422	· s-	N,	91.2	5,0	459.10
	423	S		72.4	5,0	487.16
35	424	· ·	, NO.	94.9	5.19	497.07
	425	S-		91.7	5.18	581.05

			- 185	5 - :		•
•	*			NH ₂		÷
		R2 N	_N_	1		÷
5		S -	R3			
٠	Ex.	R2	R3	Purity (%)	rt (min.)	[M÷H] ⁺
	426	s		91.5	4.67	476.12
10	427	s	- O	89.5	4.16	487.13
	428	s	Br	. 91.7	5.38	501.96
15	429	s		89.9	5.48	458.10
20	430			87.1	5.26	484.14
	431	F F O	F	95.7	5.41	474.10
25	432	F. C.	N ₅	94.6	5.51	497,12
,	433	F To Co	CI NO,	97.4	⁻ 5.64	535.01
30	434			96.2	5.69	619.04
	435		Common .	94.4	5.21	514.10
35	436		o Company	94.7	4.67	525.11
·	437		Br S	92.7	5.84	539.94
					————L	

- 186 -

			- 186			
				NH ₂		. ;
5		FIZ N	-N -P3			
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]
	438			91	5.93	496.09
10	439			82.4	4.82	492.18
	440	0.0		92.2	5.03	482.14
15	441	0.0	N,	·. 90.4	5.08	505.15
	. 442	0.0		33.4	5.14	533.18
20	443	0.0	C: NO.	97.6	5.45	543.07
25	444	0.0	, , , , , , , , , , , , , , , , , , ,	93.9	5.26	627.10
٠.	445			93.6	4.78	522.14
30	446	0.0		\94	4.34	533.15
	447	0.0	Br S	91.6	5.6	547.98
35	448	0.0		92.6	5.82	504.14
. *	449	C, ci		84.9	5.76	468.08

1	8	7	_

•			- 187 -			·
:				NH ₂		
5		P2 N	R3			
٠	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
	450	C ₁	F .	95.4	5.54	458.03
10	451	C.	N,	93.3	5.74	481.03
	452	C.		85.3	6.21	509.06
15	453	C.	ci No.	97.4	5.62	518.97
20	454	\tilde{v}		92	5.91	602.90
::	455			91.4	5.54	498.06
25	456	\bar{c}		91.4	4.98	509.06
	457		Br s	88.7	5.9	523.88
30	458			88.5	5.88	480.05
3-	459			88.2	4.69	506.18
35	460		F	93.1	4.87	496.15
	461		N,	91.2	4.92	519.15

- 188 -

			- 188 -			
				H ₂	×-	
5		F2 N N	→ R3		,	•
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
	462			26.9	- 5.01	547.17
10	463		0,	93.9	5.26	557.08
	464			93.2	5 . 08	641.13
15	465			95.7	4.64	536.15
20	466		o N	95.3	4.24	547.15
20	467		Br S	92.3	5.39	562.00
· 25	468			92	5.6	518.14
	469			75.3	4.59	494.13
30	470		F	97.1	4.73	484.11
	471	c ₁	N ₃	95.4	4.81	507.11
35	472	c. ,		10.7	4.9	535.14
	473	c ₁	cı No,	96.4	5.07	545.02
		·				

		_		,		
			- 189 -			
5		F2 N N		NH ₂		
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
	474	cı q		96.5	4.98	629.05
10	475	0		95.2	4.5	524.08
15	476			96	4.06	535.09
.19	477		Br s	95.3	5.22	549.95
20	478			94.1	5.36	506.08
· -		- 				

NH, Purity (%) R2 rt (min.) R3 [M+H]* Ex. 45.6 4.95 377.14 479 431.07 79 5.17 480 4.84 442.08 56.8 481 79.2 5.04 415.07 482 438.11 78.4 5.25 483 481.10 82.6 5.47 484 503.17 72.6 5.81 485 79 5.36 560.04 486 480.98 5.34 72.1 487 5,0 441.09 76.9 488 386.09 94.5 4.6 489 95.4 5.34 440.04 490

5

10

15

20

25

30

Purity (%) rt (min.) R2 R3 [M+H]* Ex. 95.3 5.05 451.06 491 Ţ, 95.2 5.23 424.07 492 447.07 93.4 5.35 493 490,07 5.67 96.1 494 512.12 88.5 5.84 495 92.9 5.55 569.00 496 489.95 92.8 5.64 497 92 _ 5.03 450.08 498 -- -96.5 4.87 397.11 499 96.1 5.26 451.06 500 40, 96.1 462.07 4.95 501 To. 96.3 5.15 435.08 502

5

10

15

20

25

30

- 192 -NH2 Purity (%) Ėx. R2 . R3 rt (min.) [M+H]* 96.2 5.31 458.11 503 T0, 501.08 504 96.5 5.57 5.86 523.15 505 89.3 5.46 580.03 506 95.8 40. 5.45 500.96 507 94.2 508 93.5 5.07 461.08 T0, 4.29 408.18 509 98.5 510 97.2 4.98 462.13 96.4 4.81 473.19 511 96.3 4.9 446.17 512 94.7 4.93 469.19 513 96.9 5.29 512.17 514

5

10

15

20

25

30

- 193 *-*R3 Purity (%) R2 rt (min.) Ex. [M+H]* 90.6 515 5.33 534.20 591.13 96.3 5.15 516 517 5.47 512.04 93.5 4.65 472_19 518 95 519 95.5 5.14 420.13 474.07 5.63 520 95.6 485.10 521 93.8 5.35 522 95.1 5.53 458.09 _____ 94.2 5.67 523 481.10 94.6 5.9 524.09 524 6.15 546.11 525 88.4

5.83

603.07

92.6

35

526

10

15

20

25

- 194.--NH2 R2 R3 Purity (%) rt (min.) Ex. [M+H]* 89.8 523.97 5.87 527 92.3 5.41 484.11 528 380.18 98.2 3.75 529 434.11 96.4 4.35 530 96.5 4.19 445.13 531 95.7 4.25 418.14 532 94.4 4.33 441.13 533 95.5 4.69 484.14 534 ---: 89.5 4.81 506.18 535 95.5 4.54 563.08 536 4.79 484.03 92.2 537 93.7 4.07 444.14 538

5

10

15

20

25

30

-NH, R3 Purity (%) rt (min.) Ex. . R2 [M+H]* 95.4 4.25 416.10 539 5.05 95.7 470.07 540 481.05 95.6 4.81 541 454:07 542 95.4 4.96 5.05 477.10 94.4 543 520.04 95.9 5.4 544 5.51 542.11 89.5 545 5.26 599.02 94 546 5.4 519.93 92.9 547 480.08 4.72 548 92.3 585.84 92 6.01 549 96.7 639.79 6.18 550

5

10

15

20

25.

30

		<u>- 196 - </u>			
	A2 N N	NH ₂ → R3			
Ex.	R2.	R3	Purity (%)	rt (min.)	[M+H]*
551	Br Br	NO ₂	95.8	5.84	650.83
552	B, B,		96	6.04	623.81
553	Br Br		94.7	6.22	646.85
554	Br Br		95	6.39	689.82
555	8.	0.0	88.8	6.7	711.88
556	Br Br	;	94.9	6.4	768.76
557	Br Br	Br s	95	6.35	689.71
558			93.7	6.01	649.83

			**************************************	- 197 -			
	, ,			N	^H 2		
5			R2 N	N FI3			
		Ex.	R2	F 3	_ Purity (%)	rt (min.)	[M+H] ⁺
10		559			⁻ 87.5	4.07	408.18
10		560		Br	89.6	4.15	458.09
15		561		N,	89.5	4.04	421.17
		562			54.6	4.37	449.23
20	,	563			92.7	4.85	516.14
		564		G1	92.5	4.27	459.14
25	•	565		C _o	94.2	3.87	438.18
		566			92.6	-4.41	444.2
30		567		· · · · · · · · · · · · · · · · · · ·	92.2	3.5	449.21
		568			92.4	4.53	420.17
35		569			86.7	4.23	422.21
* .		570		Вг	93.7	4.38	472.12

		- 198			
		NH.	I <u>2</u>		
			1		
	R2 N	N A 3	*		
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
571		N,	88.7 ·	4.27	435.19
572			64.2	4.53	463.25
573			93.8	5.15	530.18
574		CI NO.	93.6	4.55	473.17
575			86.8	4.07	452.21
576			93.4	4.65	458.24
577		o L	91.8	3.71	463.23
.578			91.6	4.85	434.20
579			83.1	4.38	436.23
580		Br	92.7	4.56	486.14
581		N	38.9	4.43	449.24
582			€0.4	4.65	477.25

			·	<u>- 199 - </u>			
					H ₂		
	·				1,		
5			R2 N	E FI	,		
		Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
10		583			93	5.34	544.19
		584		0 0	94.3	4.75	487.20
15	·	585			93.2	4.23	466.23
	·	586			94	4.82	472.28
20		587			92.1	3.88	477.28
		588		<u> </u>	91.7	5.06	448.23
25		589			83.1	4.62	419.20
	-	590	C _Z	Br .	93	5.06	469.09
30		591	2	N ₃	88	4.89	432.18
	·	592	2		88.5	5.02	460.23
35		593	2		93.2	5.69	527.16
		594	2	01 20.	91.6	5.11	470.15

			- 200 -			
				⁴ H ₂		
-		R ₂ N	N R3	•		
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
	595	2		90.2	4.53	449.19
	596	2		91.9	5.4	455.19
	597	200	o CNC	90.2	3.99	460.20
	598	2		93	5.41	431.16
	599			86.1	4.05	424.22
	600		Br	91.8	4.17	474.12
	601		N ₃ .	90.2	4.04	437.19
	602			86. <u>4</u>	4.34· ·	465.24
	603			93.5	4.91	532.19
	604		ci No.	93.4	4.3	475.16
	605			87.9	3.86	454.20
	606			91.8	4.47	460.25

- 201 -Purity (%) rt (min.) R2 RЗ [M+H]* Ex. 465.21 90.7 3.48 607 436.19 4.55 92 608 5.19 541.25 85.9 609 . 5.6 591.13 92.4 610 554.23 89.7 5.45 611 582.28 5.58 88.7 612 649.24 6.06 93.2 613 5.55 592.18 94.1 --614 571.23 90 5.09 615 577.26 93.3 5.91 616 4.53 582.24 91.4 617

5.84

92.1

553.22

5

10

15

20

25

30

35

•	_	_	

_			- 202 -			
		; ; ;	∫ N	<u>H2</u>		
					• • •	÷ .
	; ·	R2 N	N A 3	<u>.</u> .		
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	619	F Br		76.6	5.06	490.15
	620	F Br	B	91,2	5.56	539.99
	621	F Br	, N	86.7	5.39	503.12
	622	F Br		81	5.47	531.15
	623	F Br		92.2	6.13	598.06
	624	F B,	ci Zo,	84.8	- 5.59	541.03
-	625	F Br		88	5.04	520.11
	626	F		91.6	5.91	526.14
	627	F Br	ON NOTE OF THE PROPERTY OF THE	89.4	4.49	531.11
	628	F Br	<u></u>	90.3	5.89	502.10
	629	CI		83.3	4.41	458.20
	630	CI	Br	91.5	4.72	508.08

. 5

10,

			· ,	- 203 -			
					H ₂		
			ž.		11		
5			R2N	N A 3			
		Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
		631	ci .	, , , , , , , , , , , , , , , , , , ,	87.8	4.57	471.18
10		632	ci Ci		57.7	4.71	499.23
	·	633	ci		92.8	5.54	566.12
15		634	ci	G	93.5	4.93	509.13
20	8	635	ci Q		89.3	4.29	488.19
2.0		636	61		93.6	4.99	494.21
25		637	CI	o N	91.7	3.88	499.21
-/		638	CI	(<u>)</u> -	91.9	5.22	470.18

2	n	1	_

		·	- 204 -		·	
	-	R2 N S	√R3		,	
5	Ex.	. R2	R3	Purity (%)	rt (min.)	[M+H]*
	. 639	Br.		95	- 7.28	374.10
10	640	CF,		87	7.62	364.24
	641	·s ·		84 	6.75	342.23
15	642	NC .		79	6.6	321.24
	643			81	4.96	339.29
20	644			82	6.44	324.28
	645			83	7.16	338.30
25	646	MeO OMe		59	6:6	356.25
	647			% 86	7.28	402.23
30	648			84	7.29	346.26
	649	Br		85	7.66	388.1
35	650	CF ₃		84	7.96	378.21

			- 205 -		·	
٠.	-		H ₂	·	;	
		R2 N S	R3			
5	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
	651	S		85	7.14	356.23
10	652	NC .		73	7.02	335.26
	653			76	5.37	353.29
15	654			83	6.84	338.30
	655			81	7.51	352.29
20	656	Me0		75	6.99	370.27
	657			77	7:6	416.26
25	658			- 80	7.65 -	360.25
• .	659	Br	F	, 87	7.37	392.10
30	660	CF ₃	F.	71	7.7	382.16
	661	-s .	F	63	6.9	360.21
35	662	NC .	F	59	6.7	339.23

<u>- 206 -</u>

	·	1	<u>- 206 -</u> ∖H <u>'2</u>	· · · ·		
		R2 N N	R3	11	,	:
5	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁻
	663		F	80	5.06	357.26
10	664			63	6.61	342.26
	665		F	82	7.28	356.25
15	666	M • 0 — M •	F	39	6.74	374.22
	667		F	85	7.42	420.24
20	668		F	81	7.39	364.26
	669	Br		93	8.28	443.2
25	670	CF ₃		. 88	8.61	433.2
·	671	\s_s\rightarrow\frac{1}{2}		" 88 "	7.7	411.2
30	672	NC .		80	7.76	390.26
	673			85	6.08	408.3
35	674			. 89	7.36	393.3

			- 207 -			
		1	H ₂			
		R2 N S	R3	11		
5	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	675			84	8.03	407.3
10	676	M.O .		81	7.59	425.3
	677	Q.O-		83	8.03	471.3
15	678			91	8.24	415.2

			- 208 -				
) ^{H2}				
		R2 N S	A3				
5	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺	
	679	Br	0.2	78 -	7.41 	419.09	
10	680		0.2N	75	6.98	369.23	
•	681		0,N	81	7.51	383.23	
15	682		0,N	85 ⁻	7.46	391.20	
15	683	20	M e O	·. ,74	6.79	351.21	
	684		M e O	81	5.18	369.26	
20	685		MeO	76	6.73	354.26	
	686		MeO .	87	7.39	368.27	
25	687		M 0 O	80	7.48	376.22	
	688	в (" 83	8.14	424.11	
30	689	CF,		14 83	8.37	414.14	
	690	NC .		78	7.48	371.21	
35	691	N O		85	5.88	389.24	
	692			79	7.53	374.24	
			 				

	- 209 -						
		· ·	NH2				
	R2 N R3			11			
5	Ex.	R2	R3	Purity (%).	rt (min.)	[M+H]*	
	693			83	8.1	388.23	
10	694			77	8.18	452.23	
	695			81	8.14	396.20	
	696		, , , , , , , , , , , , , , , , , , ,	. 76	7.94	413.16	

		- 210 -			<u>_</u>
Ð	R2 N N	<u>H2</u> R3			
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
697		<u></u>	86 :	7.41	402.01
698	OCF,		93	7.57	360.16
699		1 4-	74	6.32	361.23
700	CF, .	· • •	88	7.75	344.19
701	N ₂	· • •	83	6.88	317.22
702	8r Br		93	8.33	509.9
703	CI CI		90	8.69	411.99
704	Оме		72	8.16	382.21
705	0.0	**	81	7.27	382.2
706			82	7.7	436.05
707	OCF,		91	7.85	394.16
708			80	6.59	395.19

21	1	_

			H ₂			
		R2 N N	R3			
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	709	CF,		. 87 	7.99	378.16
	710	N3 .		83	7.3	351.2
	711	Br Br		89	8.58	543.85
	712	0 0 0		89	8.9	446.01
	713	OME		72	8.35	416.19
	714	O.O.		82	7.62	416.19
	715			85	7.84	436.05
	716	OCF,		88	7.97	394.14
	717			75 -	6.82	395.21
	718	CF,		88	8.13	378.13
	719	N ₃		78	7.5	351.2
	720	Br Br		91	8.65	543.86

		- 212 -			
	R2 N N	NH <u>2</u> NB3			
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
721	0 0 0 0		89 -	8.97	446,0
722	ОМЕ		75	8.55	416.19
723	0.0		83	7.84	416.19
724		CF,0	90	8.24	506.01
725	OCF,	CF,0	88	8.37	464.1
726		CF,0	76	7.43	465.17
727	CF ₃	CF,0 .	86	8.52	448.1
728	N3 .	CF,0	84	8.11	421.11
729	Br Br	CF,0	89	8.97	613.8
730	CI CI	CF,0	90	9.24	515.94
731	Оме	CF,0	74	8.94	486.17
732	0.0	CF,0	81	8.51	486.16

			- 213 -			`
		1	•		•	
		N N	R3	11		
		R2 S		.,,		
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]*
	733		ON-	. 82	8.15	584.93
	734	OCF,	0 N - S	81	8.26 ··	543.05
	735		0 N	69	7.31	544.1
	736	CF ₃	0 N	80	8.43	527.07
	737	N3 .	0 N	82	7.99	500.1
	738	Br	0 N	88 .	8.92	692.79
	739	CI CI	0 4	85	9.23	594.87
	740	Оме	0 N	71	8.84	565.1
•	741	0.0		79	8.36	565.08
	742			82	7.77	475.06
	743	OCF3		81	7.91	433.13
	744		₩ N	. 86	6.72	434.21
						*

15 .

0

_			- 214 -			
	N+12					
		R2 N	R3			
}	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	745	CF ₃		82	8.03	417.15
	746	N.3		74	7.32	390.17
	747	Br		86	8.61	582.85
;	748			76	8.94	485.01
	749	OMe		73	8.33	455.19
	750			84	7.59	455.2
	751		CI_S	67 ·	8.82	525.96
	752	OCF,	CI	75	8.93	484.08
	.753		CI_S	68	8.08	485.14
	754	CF,	c S	75	9.08	, 468.06
	755	N ₃ .	CI_S	78	8.77	441.06
	756	Br Br	cı S	81	9.56	633.79

.

.

		- 216 -			
	R2-N	$N_{\frac{H_2}{2}}$			
-	s	-R3			
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
760		CF,0	92.9	5.03	436.23
761			90.4	5.56	422.33
762		CF,	94.36	4.94	420.26
763			. 88.08	5.09	428.30
764			77.6	4.42	423.34
765		HO	92.4	5.52	480.38
766			84.6	4.8	402.25
767	J	XO-	89.8	5.79	462.37
768		CF,	91.9 -	5.12	460.20
769	OMe .	CF,	91.4	5.14	476.21
770	ÇF,	CF, CF,	94.2	5.67	514.18
771	-	CF,	93,0	5.37	464.18

.

NH₂ R2-N Ex. R2 Purity (%) R3 rt (min.) [M+H]* 772 94.5 5.64 572.07 · CF, 773 87.9 5.76 522.21 774 91.2 5.12 474.23 5.82 530.27 775 78.1 CF,O. 776 88.8 4.55 408.22 777 90.7 5.13 394.34 778 392.23 92.6 4.45 CFs 779 400.30 8.88 4.65 780 76.5 3.94 395.33 781 452.38 90.8 5.11 782 87.7 4.33 374.29 783 5.35 91.5 434.38

5

10

15

20

25

30

,			- 218 -		·	
		R2-N				
	Ex.	S R2	R 3	Purity (%)	rt (min.)	DA. 100
}		OM e		Fully (78)	10 (11411.)	[M+H] ⁺
	784		CF,0	92.1	4.61	424.25
	785	e M M	~~0	89.3	5.28	410.33
	786	o Me	CF ₃	95	4.49	408.22
	787	o M e		82.4	4.74	416.27
	788	0 S		73.8	3.95	411.30
	789		J. D.	92.9	5.27	468.36
	790	0 0 0		84.9	4.39	390.28
. [791			91.5	5.53	450.37
	792	CF.	CF,0	90	5.5	462.19
	793	C.F.3	·~~	93.9	6.25	448.31
	794	CF3	CF,	94.9	5.41	446.22
	795	C.F.o.		93.5	5.76	454.26

1:0

•	_		<u> </u>	- 219 -		,	
				$N_{\rm H2}$			
			R2-N S				
5		Ex.	R2	. R3	Punty (%)	rt (min.)	[M+H] ⁺
	-90	796	CF3		89.8	4.95	449.30
10	- "	797	F. (HO	92.4	6.22	506.34
		798	CF3		93	5.52	428.245
15		799	CF.		92.8	6.39	488.34
	·	800	#	CF,0	87.6 	5.11	412.20
20	::	801	L .	~~0	92.5	5.9	398.30
		802	H——	CF,	93.5	5	396.20
25		803	F		92.2	5.35	404.26
- ·		804	L		90.7	4.41	399.28
30		805	"	H0 .	94.2	5.87	456.34
-		806			89.3	5.05	378.23
35		807	n .	XO-	90.9	6.07	438.33
		·					

		- 220 -	·		
	•	$\sqrt{-N} \frac{H_2}{L}$			
	R2-N S	—R3	,		
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
808		CF,0	88.8	5.43	520.09
809			94	6.19	506.19
810		CF, .	95.9	5.33	504.12
B11			92.9	5.68	512.15
812			88.9	4.8	507.18
813		HO	92.3	6.17	564.20
814			93.9	5.41	486.14
815		XX.	93.5	6.35	546.18
816		CF,0	91.9	5.41	470.25
817		~~	93	5.98	456.34
818		CF ₃	91.4	5.29	454.24
819			90.4	5.49	462.29

	<u>·</u> .		- 221 -			
			NH_2			}
	• •	DO-N		•		
		R2-N			•	
·		s	-R3			
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
	820			86.5	4.75	457.34
	821		HO	90.5	5.94	514.34
	822			90.1	5.21	436.26
	823			89.7	6.18	496.37
	824		CF,0	79.4	4.56	422.22
	825		~~	92.5	5.08	408.32
	826		CF	93	4.45	406.23
	827			90.2	4.63	414.26
	828			76.3	4.01	409.31
	829		HO	94	5.08	466.36
	830			90.7	4.34	388.25
	831			92.9	5.29	448.36

.

5.07

5.91

81

83.5

444.33

504.41

25

838

839

5

10.

15

			- 223 -	·	· .	
			$\frac{N}{M_2}$			
		R2 N N	—R3	,		
-	Ex.	R2	1 R3	Purity (%)	rt (min.)	[M+H]*
	840		70.	35 + 64	3.68 + 3.78	423.2
	841		9 M •	98	3.7	438.3
	842		c i C i	35 + 63	4.3 + 4.4	446.2
	843			97	3.71	436.3
	844			32 + 65	3.28 + 3.34	447.3
	845			96	3.84	392.3
	846			96	4.18	447.3
	847			30 + 64	3.62 + 3.64	475.3
	848			36 + 61	4.46 + 4.61	418.3
	849	B, F.	ZO.	96	5.89	569.1
	850	B, F	9 M •	94	6.09	584.2
	851	Br Br	cı cı	57 + 39	6.55 + 6.6	592.1

20.

- 224 -

·			$\frac{1}{\sqrt{\frac{H_2}{M_2}}}$		•	
		R2 N N	—R3			
	Ex.	R2	¹ .R3	Purity (%)	rt (min.)	[M+H] [†]
	- 852	Br		96 -	6.16	582.2
	853	B, B		28 + 59 ·	5.53 + 5.61	593.2
	854	B .		95	6.35	538.2
·	855	B		54 + 41	6.8 + 6.88	593.3
	856	Br		94	5.96	621.2
	857	Br F		56 + 39	6.46 + 6.55	564.2
	858		, , , , , , , , , , , , , , , , , , ,	34 + 63	4.09 + 4.2	451.3
	859		o M •	96	4.03	466.4
. •	860		-\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -\ -	33 + 64	4.69 + 4.76	474.3
	861	5		27 + 70	4.04 + 4.07	464.4
	862			33 + 63	3.63 + 3.71	475.4
	863	-		95	4.18	420.4

. 5

3 N

- 225 -

			- 225 -		-	
	· .	٠.	N_{H_2}			•
		N, N				
		R2 N	—R3	,		
	Ex.	R2	_{4.} R3	Purity (%)	rt (min.)	[M+H] ⁺
•	864			89	4.46	475.4
	865			22 + 68	3.94 + 3.98	503.4
	866		<u> </u>	35 + 62	4.9 + 5.01	446.4
	867	> 2 2 - - -	20.	35 + 61	4.39 + 4.52	487.3
	868	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 M •	33 + 63	4.22 + 4.29	502.3
	869	2 0	c1 .	35 + 62	5.08 + 5.2	510.2
	870	¥ .		31 + 63	4.26 + 4.34	500.3
	871	M.		33 + 62	3.82 + 3.91	511.3
•	872	o Me		31 + 62	4.42 + 4.51	456.3
	873	PM.		29 + 64	4.66 + 4.72	511.4
	874	ome ,		33 + 57	4.11 + 4.2	539.3
	875	ome .	<u> </u>	35 + 62	5.26 + 5.39	482.3
				•		·

20 .

- 226 -

			·- 226 -			
		N	NH ₂	•	-	
5		R2 N	—A3	,		
	Ex.	· R2	R3	Purity (%)	rt (min.)	[M+H] ⁺
<u></u>	876		NO 21	32 + 65	3.63 + 3.7	467.3
10	877		× • • • • • • • • • • • • • • • • • • •	97	3.69	482.4
	878		c i C i	35 + 62	4.2 + 4.28	490.3
15	879			94	3.69	480.3
	880			28 + 68	3.3 + 3.33	491.3
20	881			96	3.8	436.3
· .	882			96	4.18	491.4
25 	883			94	3.63	519.3
	884			36 + 61	4.28 + 4.42	462.3
30 -	885	cı M.	20,	36 + 62	4.24 + 4.36	517.3
35	886	OM.	9 M o	28 + 69	4.15 + 4.21	532.3
	887	QMe CI OM.	cı Cı	35 ÷ 62	4.84 + 4.96	540.2

			- 227 -	<u> </u>	• .	
			N _{H2}			• "
		H2 N N	—R3	<i>'</i>		. *
-	Ex.	R2	ι R3	Purity (%)	rt (min.)	[M+H] ⁺
	888	CI OM.		33 + 64	4.15 + 4.22	530.3
	889	OM O		32 + 63	3.76 + 3.84	541.3
	890	OM.		32 + 63	4.28 + 4.36	486.3
	891	¥ • 4 • 5 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6		24 + 73	4.56 + 4.6	541.3
	892	2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		31 + 59	4.05 + 4.11	569.3
	893	OM O		35 + 61	4.99 + 5.14	512.3
·	894	0,11	20,00	33 + 64	5.59 + 5.7	576.3
	895	0,14	OM.	35 + 61	5.29 + 5.39	591,3
	896	0,11	c	26 + 71	6.32 + 6.35	599.2
. !	897	0,1		34 + 63	5.41 + 5.5	589.3
	898	0,14	° L	35 + 61	4.88 + 4.99	600.3
	899	O,M		35 + 62	5.63 + 5.72	545.3

- 228 -

		<u> </u>			
	R2 N	—R3	,		
Ex.	R2	R3	Purity (%)	rt (mir)	[M+H] ⁺
900	0,M		34 + 61	5.76 + 5.86	600.3
901	,×,0		34 + 68	5.16 + 5.28	628.3
902	N,o		. 98	6.45	571.3
903	0,000	2-2	35 + 60	3.84 + 3.93	502.3
904	N 75 10	0 M • O M •	32 + 62	3.72 + 3.79	517.3
905	× × × × × × × × × × × × × × × × × × ×	C1 - C1	32 + 62	4.59 ÷ 4.68	525.2
906	, , , , , , , , , , , , , , , , , , ,		33 + 61	3.75 + 3.82	515.3
907			29 + 64	3.18 + 3.26	526.3
908	z 0		32 + 59	4 + 4.09	471.3
909	, , , , , , , , , , , , , , , , , , ,		32 + 60	4.28 + 4.38	526.3
910	N S S S S S S S S S S S S S S S S S S S		34 + 56	3.62 + 3.71	554.3
911	N 3 0	-	31 + 63	4.58 + 4.66	497.3
	900 901 902 903 904 905 906 907 908	Ex. R2 900 0,	EX. R2 R3 900 0,	EX. R2 R3 Purity (%) 900 0, 34 + 61 901 0, 34 + 68 902 0, 34 + 68 903 0, 50 0 0 35 + 60 904 0, 50 0 0 32 + 62 905 0, 50 0 0 33 + 61 907 0, 50 0 0 32 + 62 908 0, 50 0 0 32 + 59 909 0, 50 0 32 + 60 910 0, 50 0 34 + 56	Ex. R2 R3 Purity (%) rt (mir) 900 % 34+61 5.76 - 5.86 901 % 34+68 5.16 + 5.28 902 % 98 6.45 903 % 35+60 3.84 + 3.93 904 % 32+62 3.72 + 3.79 905 % 32+62 4.59 + 4.68 907 % 32+62 4.59 + 4.68 908 % 32+59 4+4.09 909 % 32+60 4.28 + 4.38 910 % 34+56 3.62 + 3.71

_	_	_	
7	~	\mathbf{c}	
_	_	_	•

	*	- 229 -			
		R1 N N			, , , ,
·			R3		
H ₂	5 N $^{\circ}$	· · · · · · · · · · · · · · · · · · ·			
Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
912			6.8 + 91.2	3.6 + 3.76	332.22
913	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		88.1	3.94	352.19
914	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		89.6	4.22	380.22
915	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		61.6	3.95	382.17
916	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		83.5	3.8	377.19
917	·	Br .	84.2	4.41	430.10
918	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N	70.9 ⁻	4.24	393.18
 919	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O,N .	84.1	4.1	397.16
920		Br s.	82.2	4.55	436.05
921			82.8	4.66	392.17
922			98	4.25	380.22
923			91.1	4.26	400.17

.

- 230 -H2-N Purity (%) R1 R3 rt (min.) [M+H]* Ex. 92.4 4.46 428.21 924 4.23 430.20 925 93.8 4.14 425.17 926 86.4 92.3 4.7 478.11 927 82 4.56 441.18 928 445.18 90.9 4.44 929 4.9 484.07 8.83 930 440.17 86.4 5,0 931 4.38 394.22 97.2 932 414.18 86.3 4.48 933 442.22 4.68 92.6 934 91 4.44 444.22 935

5.

10

15

20

25

30

		- 231 <i>-</i>			
	~	R1	•	×	
-			R3		
Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*
936	0	2	85.9	4.34	439.18
937		Br	88.2	4.86	492.12
938		N,	83.6	4.71	455.2
939		024	87.8	4.59	459.19
940		Br s.	89.8	5,0	498.09
941			83.9	5.14	454.20
942	F.	\\ \.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	87.7	4.26	384.17
943	F.		94.7	4.5	404.15
944	F		18.6 + 76.4	4.2 + 4.64	432.18
945	C .		95.2	4.32	434.16
946	F'		92	4.46	429.15
947	F.	Br	94.4	5.08	482.06

		<u>.</u>	- 232 -			
			P1 N N	R3 🗸		
	H ₂			/	·	
	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
·	948	F -	N,	93	4.86	445.16
	949	F.	0,0	94.2	4.82	449.13
	950		Br S	93.1	5.34	488.03
	951			93.7	5.47	444.16
	952		>-	91.5	4.43	400.13
	953	, , ;		95	4.82	420.12
	954			14.8 + 81.2	4.38 + 4.88	448.15
	955			95.8	4.64	450.13
	956	CI		95	4.79	445.11
	957		Br	95.4	5.4	498.06
	958	.,	N,	93.9	5.14	461.12
	959	C ₁	0,N	94.5	5.12	465.10

. 10

- 233 -

_			- 233 -			
			N N	ė.	,	
	H ₂	N		R3	:	
ł	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
	960		Br. s	94.6	5.62	504.00
	961	, i		96.4	5.74	460.13
	962			6.5 + 87.5	4.2 + 4.54	416.19
	963			92.9	4.76	436.17
	964			17.3 + 6.2 	4.5 + 4.9	464.21
	965		0-	92.6	4.64	466.17
	966			89	4.76	461.16
	967		Br	94.1	5.32	514.09
	968		, z	92.1	⁻5.09	477.19
	969		0.10	90.5	5.1	481.16
	970		Br s	92	5.56	520.02
	971			93	5.72	476.17

_

<u></u>		- 234 -			
		N N N	R3 /		
H ₂	N	5.			
Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
972			91.6	4	410.16
973			89.7	4.28	430.15
974			83.4	4.46	458.19
975			96.9	4.19	460.16
976			58.2	4.29	455.12 ·
977		Br	81.4	4.84	508.06
978		,	85.8	4.64	471.15
979		O ₂ N	46.8	4.62	475.14
980		Br s	77.4	5.06	514.02
981			, 61.7	5.24	470.16
982			4.8	3.54	356.15
983	() ·		71.4	4.1	376.14

n

		- 235 -		:	
		R1 N N			:
Нэ́	N		R3	:	
EX.	R1	R3	Purity (%)	rt (min.)	[M+H]*
984			79	4.3	404.17
985			88.3	4.0	406.13
: 986			12.2	5.32	401.11
987		В	46.5	4.72	454.04
988		N	56.3	4.49	417.15
989		02N	13.8	5.52	421.12
990		Br s	35.3	4.95	460.02
991	(°)		9.1	5.71	416.11

10 :

		- 236 -	·		<u> </u>
	•	R1			
H ₂	N	N	·. ·		
		S R3			
			,		*
Ex.	R1	R3	· Purity (%)	rt (min.)	[M+H] ⁺
992	•	NO,	95.3	3.33	367.12
993.	•		91.9	3.97	400.03
994	•		92.5	3.64	336.17
995		×.	83.7	3.75	363.13
996	•		94.7	4.88	458.11
997	- -		93.1	4.03	372.14
998	-> 1		92.6	3.37	380.14
 999	- 		92.1	4.36	362.12
1000			91	3.32	405.11
1001	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NO.	87.8	3.9	397.14
1002	<u>'</u> '		64.2	4.46	430.09
1003			61.6	4.18	366.23

۱ ۵

<u>- 237 -</u> R1 H₂ N Purity (%) R3 R1 rt (min.) Ex. [M+H]* 4.26 393.16 1004 45.6 72.4 5.28 488.17 1005 67 4.47 402.17 1006 410.16 1007 51.1 3.86 4.86 392.16 57.6 1008 75.1 3.92 435.16 1009 3.24 399.13 90.7 1010 3.79 432.06 79.6 1011 74.5 3.55 368.16 1012 3.62 395.15 1013 58.8 490.15 81 4.65 1014 3.88 404.17 86.8 1015

5

10

15

20

25

30

- 238 *-*Ŗ1 R3 Purity (%) Ex. R1 rt (min.) $[M+H]^{+}$ 71.4 3.3 412.13 1016 394.15 73.7 4.13 1017 80.5 3.3 437.15 1018 1019 94.6 4.19 417.10 4.76 450.07 1020 94.8 1021 92.9 4.42 386.13 8.88 4.56 413.11 1022 94.1 1023 5.48 508.13 1024 93.8 4.79 422.13 4.04 430.15 92.3 1025 5.08 412.10 90 1026

93.2

3.95

455.13

35

1027

30

5

10

15

20

			- 239 -		<u> </u>	·
	<u>н</u> 2	N	R1 N S			
	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*
	1028	F.	NO ₂	92.6	4.3	435.1
	1029	F.		92.8	4.9	470.1
	1030	F.		89.2	4.6	404.1
	1031	F.	N, .	89.2	4.76	431.1
	1032	F.		94.3	5.6	526.1
	1033	F.		93.5	5	440.2
	1034	, .		92.4	4.2	448.1
•	:1035	F.	· ·	87.9	5.2	430.1
	1036	F.		93.6	4.1	473.2
	1037		No.	80.4	4.16	447.14
	1038	0		72.7	4.72	480.08
	1039	0		77	4.39	416.14
						. —

 H_2 R3 Purity (%) rt (min.) Ex. R1 R3 [M+H]* 443.16 59.2 1040 4.5 16.8 5.98 538.12 1041 1042 4.74 452.16 59.5 4.02 74 460.16 1043 26.3 5.52 442.13 1044 485.17 3.82 1045 91. 1046 89.8 5.09 507.19

25

20

5

10

15

30

	1102			<u> </u>
1047		84.5	5.52	540.09
1048		86	5.06	476.21
1049	N ₃	, 75.6	5.22	503.21
1050		90.3	6.14	598.15
1051		85.9	5.38	512.22

R1 R3 Púrity (%) R1 (min.) [M+F (min.)		<u> </u>	- 241 <i>-</i>		<u>:</u>	
1052 81.3 4.68 520. 1053 83.3 5.66 502. 1054 82 4.92 545. 1055 93.1 4.34 445. 1056 81.5 4.77 478. 1057 79.9 4.46 414. 1058 70.2 4.56 441.	H ₂	N	R1 N	•		
1053	Ex.	R1	.R3	Purity (%)	rt (min.)	[M+H] ⁺
1053	1052			81.3	4.68	520.19
1055 93.1 4.34 445. 1056 81.5 4.77 478. 1057 79.9 4.46 414. 1058 70.2 4.56 441.	1		C·	83.3	5.66	502.20
1056 81.5 4.77 478. 1057 79.9 4.46 414. 1058 70.2 4.56 441.	1054			82	4.92	545.17
1057 79.9 4.46 414. 1058 70.2 4.56 441.	1055		NO.	93.1	4.34	445.16
1058 70.2 4.56 441.	1056			81.5	4.77	478.10
N ₃	1057			79.9	4.46	414.17
1059 85.8 5.56 536.	1058		N ₃	70.2	4.56	441.15
	1059			85.8	5.56	536.11
	1060			84.1	4.73	450.19
1061 78.4 4.12 458.	1061			78.4	4.12	458.20
1062 . 83.3 5.13 440.			-·	83.3	5.13	440.16
1063			n-\.	83.1	4.22	

1,5

_		_	
~	4	'	-

			- 242 -		<u> </u>	
		N N	R1 N N N R3	3		
		N N	,	Purib. (9/)	+ (min)	D 4 1 127
	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*
	1064			86.6	3.52	338.12
	1065	^ .	NO.	90.4	3.44	383.09
•	1066	.		87.3	4.25	422.10
	1067	/ .	B,	85.9	4.04	416.04
	1068	/		70.5	4.4	444.18
: :	1069	^ .		80.1	4.83	474.13
	1070	<u> </u>		80.6	4.34	402.16
	1071	/	- ·	80.8	4.37	378.14
	1072	\\\.	ci S	86.5	4.77	442.06
	1073	\		83.4	4.72	405.12
	1074	/ ⁰ ∕ ∕ . :		90.5	3.02	340.15
	1075	√ ° √ `.	NO ₂	93.5	2.98	385.10

		- 243 -		·	
		R1 N N			
H ₂	N	S R3	<i>f</i>		
Ex.	R1	· R3	Purity (%)	rt (min.)	[M+H] ⁺
1076	^ 0 √ .		91.7	3.9	424.12
1077	∕° √	Br	90.8	3.62	418.04
1078	✓° ✓✓.		80.8	4.09	446.18
1079	∕° ✓ .		88.1	4.6	476.12
1080	✓° ✓✓.		91.5	3.98	404.16
1081	∕° ✓✓.		89.2	3.87	380.13
1082	^ 0 √ .	ci	87.3	4.36	444.10
1083	^ 0 √ .		90.6	4.24	407.13
1084			86.4	4.24	414.15
1085		NO.	91.8	4.21	459.17
1086			88.2	4.89	498.19
1087		Br	85.8	4.71	492.12

- 4		- 244			
Н2	N	$ \begin{array}{c} R1 \\ N \\ N \end{array} $ $ \begin{array}{c} R3 \end{array} $			
Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
1088			76.1	4.9	520.21
1089		H.	83.3	5.45	550.17
1090			84.9	4.9	478.24
1091			86.1	5.08	454.19
1092		CI	78 	5.38	518.14
1093			84.5	5.38	481.21
1094			37.5	3.36	386.14
1095		NO2	57.1	3.35	431.14
1096			44	3.78	470.17
1097		Br i	42	3.62	464.09
1098		0.0	38.8	4.14	492.21
1099			45.2	3.98	522.14

- 245 -

		<u>·</u>	- 245		<u>:</u>	
		~	R1			
* *	H ₂	N	R3	ka ka ∳		
5	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*
	1100			33.4	3.99	450.20
10	1101			44.7	3.68	426.14
	1102		CI	33.4	4.08	490.12
.15	1103			42.4	3.67	453.17
	1104	F		92.6	4.23	390.14
20	1105	F.	NO.	91.9	4.1	439.1
	1106	F .		92.1	5	474.13
25	1107	F.	Br ·	93	4.85	468.04
;	1108			86.5	5.04	496.18
30	1109	F .		92.8	5.5	526.13
-	1110	, ·		92.8	5.1	454.17
35	1111	, .	<u></u>	92	5.1	430.10
.0.		· · · · · · · · · · · · · · · · · · ·				

		<u>- 246 - </u>			
Н2	N	R1 N N $R3$	3 ,		
Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*
1112	C F	CI CI	92.8	5.48	494.08
1113	F.		92.8	5.1	457.18
1114			93.8	4.6	406.10
: 1115		NO ₂	93.6	4.5	451.03
1116			93.1	5.2	490.10
1117	, , ,	8,	94.5	5.1	483.99
1118			89.54	5.29	512.13
1119			95.2	5.6	542.1
1120	$\bigvee_{\bar{0}}\cdots$		92.8	5.38	470.15
1121			93.4	5.3	445.94
1122	.,	CI S	94.7	5.7	510.05
 1123	0		94.3	5.3	473.04

	·.	<u>- 247</u>		<u> </u>	
		R1			•*•
H ₂	N	R3			
Ex.	R1	R3	Puńty (%)	rt (min.)	[M+H] ⁺
1124			89.5	4.06	400.12
1125		NO ₂	92.1	4.13	445.13
1126			88.9	4.81	484.15
1127		Br	88.8	4.56	478.09
1128			82.4	4.76	506.20
1129			88.6	5.36	536.12
1130			85.7	4.78	464.18
1131			84	4.94	440.15
1132		CI	64.3	5.38	504.10
1133			88.4	5.16	467.17
1134			82.7	3.76	446.16
1.135	de la constant de la	NO.	89	3.77	491.14

			- 248 -			
	H ₂	N	R1 N S R3	,		
	Ex.	R1 .	R3	Purity (%)	rt (min.)	[M+H]*
	1136			87.1	4.4	530.13
	1137	-0	Bir	84.6	4.21	524.08
	1138	0-		76	4.52	552.19
	1139	-0-		85.6	4.98	582.12
	1140	-0-		83.1	4.44	510.21
	1141			88.3	4.6	486.19
-	1142		CI S	1.5	5.07	550.12
	1143			84	4.75	513.16

			<u>- 249 - </u>			
	H ₂	N	, ,R1			•
		N S	_N	•		
	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H]*
	1144			75	4.48	300.16
	1145			82	4.89	348.16
	1146		C1	86.7	4.72	354.09
	1147	•	Br	. 89	4.96	398.01
	1148	Ť.	NC .	:87 	4.37	345.18
	1149	•		90	5.4	396.1
	1150	+	HO HO	89	5.9	448.2
	1151	-	Br s.	85	5	404
:	1152	→		·85······	4.96	360.10
	1153			91	.4.39	417.14
	1154	,		95	5.14	366.21
	1155			92	5.52	414.17

_			- 250 -			*
	H ₂	N	R1 -N -R3			
	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] [÷]
	1156			95	5.37	420.13
	1157		Br	93	5.6	464.08
	1158		NC.	94	5	411.2
	1159			91	6.04	462.19
	1160		r _o	91.5	6.4	514.2
	1161		8 S	92.6	5.7	470.1
	1162		~·	93.8	5.6	426.14
	1163			91.4	5.02	483.21
	1164	2	,	96.3	5.55	420.10
	1165			78.2	5.81	468.10
	1166	Ci Ci	ō	96.7	5.6	474.06
	1167	CI CI	Br	96.9	5.8	517.97

	_	_	•	
•	_	~		- 1

	H ₂	N	R1		: :	
		N S	_Ń R3	1		i V
	Ex.	R1	R3	Purity (%)	rt (min.)	[M+H] ⁺
:	1168	C .	NC .	94.2	5.18	465.06
	1169	0		94	6.25	516.10
	1170	G.	T H	96.4	6.52	568.2
:	1171	2	B .	94.6	5.9	524,0
	1172	2	<u> </u>	94.9	5.81	480.07
:	1173	CI .		91.9	5.25	537.09
×	1174	MeO MeO	- ·	77.4	5.24	486.16
	1175		_\\.	96.8	5.36	402.15
:	1176			92.4	5.66	450.19
:	1177		CI	93.3	5.48	456.12
	1178		Br ·	93.3	5.7	500.08
	1179		NC .	90.7	5.12	447.15

10-

- 252 -

			·	- 252 -			<u>. </u>
÷.		H ₂	N	R1		;	
			S	R3	, ,	٠	
5		Ex.	R1	¹ ∴ R3	Purity (%)	rt (min.)	[M+H]*
		1180			91.9	6.12.	498.21
10 .	•	1181	05	I O	95.1	6.5	- 550.3
·.		1182		Br s	92.8	5.7	506,0
15		1183		-·	94.9	5.74	462.15
		1184			91.4	5.13	519.17
20	.•	1185	°.		73.6	3.52	346.19
		1186	°		71.5	4.5	394.17
25		1187	°>.	C.	82.2	4.58	400,10
·. ·		1188	0	Br .	78.6	4.86	444.09
30	·	1189	``````.		70.5	5.3	442.17
		1190	°>	<u></u>	76.8	5	406.13
35	٠.	1191	°.		80.5	4.1	463.19

•	2	5	3	-

-50-		NH ₂			€
	R2 N	,,,	1		
	\$	R5			
Ex.	R2	, R5	Purity (%)	rt (min.)	[M+H]*
1192		<u>H</u> .	28.3	3.61	373.15
1193		H H H	64.3	2.55	396.15
1194			66.8	3.58	425.13
1195		»H	51.9	3.47	387.07
1196		H	75.8	4.43	471.21
1197		THE STATE OF THE S	66.4	2.38	399.15
1198		N N N N N N N N N N N N N N N N N N N	42.6	3.11	474.14
1199		H	45.3	4.39	457.18
1200			64	4.62	485.21
1201		CI NH.	55.1	4.09	429.12
1202		F N	75	4.22	449.13
1203		»H	67.9	3.64	417.11

	· · · · · · · · · · · · · · · · · · ·	- 254 -			
		NH ₂			
	H2 N	O R5	•		*
Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
1204		→ H	31.7 + 17.3	4.65 + 4.8	429.24
1205		Z ,	41.8	3.86	407.14
1206		H	67.8	4.58	487.20
1207		$\overline{\overline{H}}$	33.2	4.31	415.20
1208		H H	60.9	3.29	438.21
1209	+		. 58	4.29	467.18
1210		, t	51.9	4.21	429.15
1211		#1 ;···	70	5.03	513.24
1212		T T	22.9	3.17	441.19
1213	J-',	M, S, O H	71.8	3.81	516.16
1214	-		35.4	5.03	499.23
1215		15	64	5.18	527.25

-,255 -

			-,255 -			
			NH2		, <i>;</i>	
		() () () () () () () () () ()				
		R2 N		•		
		s ~	R5			
	Ex.	R2	į R5	Purity (%)	rt (min.)	[M+H] ⁺
	1216		CI H	68.2	4.71	471.19
	1217		F H	76.5	4.84	491.18
	1218		F .	67.6	4.35	459.16
	1219		X IF.	28.7 + 14.2	5.27 + 5.4	471.30
	1220		□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	66.9	4.52	449.21
	1221			64.1	5.17	529.21
	1222		ZH.	49.7	4.55	423.19
	1223		H z + . H	78.8	3.41	446.17
	1224			76.2	4.48	475.15
	, 1225		S H N	68.3	4.42	437.12
	1226		H : :	79.6	5.24	521.17
••	1227		H H	49.1	3.29	449.20
				1,		

- 256 -

·		- 256 - <u>\H2</u>			· .
•					
	R2 N	O R5			
Ex.	R2	R5	Purity (%)	rt (min.)	[M+H]*
1228	-	N,2,2,0 H H. N,2,2,1,0	72.2	4	524.15
1229		H.	69.7	5.22	507.20
1230		H.	75	5.42	535.20
1231		cı N-H	78	4.93	479.13
1232		F	79.1	5.04	499,16
1233		, H	82.6	4.56	467.13
1234		YOU.	45 + 24.6	5.53 + 5.7	479.26
1235		H H	77	4.75	457.18
1236			70.4	5.41	537.18
1237	c ₁	Jų.	47.7	4.38	407.12
1238	c ₁	H H	71.3	3.27	430.12
1239	CI		70.2	4.35	459.10

- 257 -NH2 R5 Purity (%) rt (min.) R2 [M+H]Ex. 68.1 4.27 421.06 1240 78.8 5.13 505.13 1241 CI 3.17 433.11 24 1242 74.2 3.86 508.08 1243 5.16 491.08 43 1244 71.8 5.38 519.12 1245 463.05 4.85 1246 69.9 4.96 483.10 79.2 1247 CI 77.9 4.45 451.07 1248 42.6 + 23.5 5.42 + 5.6463.20 1249 70 4.65 441.11 1250 CIT

72

5.36

521.12

5

າດ

15

20

25

30.

35

- 258° -NH₂ **R**5 R2 Purity (%) rt (min.) [M+H]Ex. 441.14 4.96 -1252 -28.2 -H 3.69 464.14 65.8 1253 4.86 493.14 51 1254 64.5 4.79 455.08 1255 Ή<u></u> 72.2 5.55 539.16 1256 467.16 3.59 27.2 1257 4.38 542.12 38.6 1258 H 5.53 525.16 49.4 1259 <u>H</u>, 553.20 60.6 5.73 1260 497.13 5.27 67.7 1261 5.34 517.12 8.08 1262 485.13 78 4.92 1263

5

-10

15

20

25

30

<u>- 260 -</u> ¹R5 rt (min.) Purity (%) R2 [M+H]Ex. 439.18 ····--60 ··· -3.86 . 1267 OMe. H 478.24 2.89. 88.1 1268 3.83 389.20 89.1 1269 2.41 396.14 94.3 1270 2.33 418.20 94 1271 4.05 533.17 80.3 1272 93 4.33 485.23 1273 4.27 471.22 90.5 1274 423.20 3.94 82.4 1275 487.10 92.8 4.07 1276 4.09 463.16 92.3 1277 <u>H</u> 90.6 430.20 2.9 1278

5

- 10

15

20

25

30

νH2 Purity (%) rt (min.) R5 [M+H] R2 Ex. 94.7 3.69 431.14 1279 Н 90.6 4.37 471.21 1280 501.20 4.51 86.4 1281 4.16 463.09 93.1 1282 541.11 5.58 63.6 1283 4.23 580.17 82.4 1284 87.6 5.63 491.16 1285 4.03 498.13 91.5 1286 520.13 89.5 3.91 1287 635.14 82.2 5.61 1288 . . . 587.14 92.3 5.9 1289 5.86 573.11 1290 89.9

5

0-

15

20

25

30

- 262 _NH₂ Purity (%) rt (min.) R2 4. R5 [M+H]* Ex. 90 5.66 525.14 1291 589.02 5.73 90.9 1292 5.69 565.07 91.2 1293 4.72 532.13 89.4 1294 533.08 5.44 93.3 1295 CIT 5.95 573.11 93.1 1296 CI-6.06 603.16 90.1 1297 5.79 565.00 90.3 1298 4.65 515.20 63.6 1299 3.63 554.24 82.9 1300 4.67 465.23 85.9 1301 85.4 3.41 472.20 1302

5

. 10

15

20

25

30

- 263 -NH₂ Purity (%) rt (min.) $[M+H]^+$ R5 R2 Ex. иН 3.31 494.23 83.7 1303 609.20 4.79 84.2 1304 561.20 5,11 86.5 1305 547.19 5.11 84.2 1306 499.23 84.8 4.75 1307 H. 539.15 4.89 89 1308 Η 506.23 3.76 85.9 1309 507.17 4.59 88.5 1310 547.20 87.8 5.16 1311 1.5 5.6 577.22 1312 539.10 4.99 89.7 1313 H . 4.81 545.20 65.3 1314

5

10

15

20

25

30

Ŕ5 Purity (%) . rt (min.) [M+H]* R2 Ex. 86.7 -3.82 584.25 1315 495.24 87.6 4.81 1316 3.63 502.20 91 1317 90.2 3.54 524.24 1318 639.22 85.4 4.91 1319 H 591.23 5.21 85.7 1320 577.22 90 5.19 1321 4.87 529.22 87.9 1322 593.12 86.4 1323 569.16 5.01 87.5 1324 536.23 89.7 . 4 1325 537.18 89.6 4.73 1326

- 264 -

5.

,10

15

20

25

30

νH2 rt (min.) R5 Purity (%) R2 [M+H]* Ex. 5.24 89.6 577.24 1327 5.33 607.24 86.7 1328 5.1 569.10 90.6 1329 4.17 467.23 62.1 1330 506.28 3.23 .92.8 1331 417.24 81.3 4.14 1332 μ H 424.19 2.95 91.9 1333 2.87 446.24 91.8 1334 561.19 78.7 4.31 1335 89.5 4.58 513.25 1336 4.54 499.24 91.3 1337 4.24 80.3 451.23 1338

5

10

15

20

25

30

	· · · · · · · · · · · · · · · · · · ·	- 266 -			
	,	NH ₂			
	R2 N	O R5	,		
Ex.	R2 .	R5	Purity (%)	rt (min.)	[M+H]*
1339		Br NH.	77.6	4.37	515.12
1340		NH T	85.7	4.37	491.18
1341		° H	92.3	3.34	458.25
1342		H.	90.8	4.05	459.19
1343			79.9	4.63	499.25
1344		O D H	76.6	4.75	529.24
1345		C1 H	91.9	4.45	491.13

- 267 -Purity (%) rt (min.) $[M+H]^+$ **R5** Ex. R2 4.07 + 4.2 417.23 56.9 + 24.51346 526.30 4.98 + 5.164.6 + 24.41347 430.25 3.96 + 4.162.4 + 25.11348 490.37 80.5 3.44 1349 4.9 + 5.0503.31 65.4 + 27.81350 5.6 + 5.7536.35 $64.5 \div 25.5$ 1351 509.30 86.8 3.3 1352 537.26 5.02 + 5.164.1 + 29.81353 <u>H</u> 5.37 + 5.5543.32 60.8 + 32.21354 545.30 5.24 + 5.3 59.6 + 31.51355 4.69 + 4.8 | 527.31 61.6 + 24.81356 3.8 536.36 88.7 1357

. 5

10

15

20

25

30

		- 268 -		·	,
	٠	<u> </u>	**************************************		i
		Z			
	H2-N	_N0	. ,		
	\$	R5			·
Ex.	R2	¹ R5	Purity (%)	rt (min.)	[M+H]*
1358			87.5.	3.8	528.38
1359		Z H	58 + 25.2	4.12 + 4.3	417.27
1360	L		68.1 + 24.5	5.22 + 5.3	529.31
1361	m		64.8 + 23.1	5.12 ÷ 5.2	535.19
1362		~ ·	61.9 ÷ 21.6	5.46 + 5.5	535.23
1363		F	90.4	6.06	644.33
1364		м <u>Н</u>	89.7	5.31	548.24
1365			84.3	4.5	608.34
1366			95.2	6.06	621.27
1367			90.9	6.6	654.4
1368		N_N_N	84.2	4.41	627.29
1369	; J.		92.8	6.12	655.27

<u>- 269 -</u>

	· · · · · · · · · · · · · · · · · · ·	<u>- 269</u>			
		<u> </u>		*	
•		Z			
	R2-N	_N/0	•		
		R5			
Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
1370		H H	91.9	6.4	661.33
1371		O. O.	93.2	6.3	663.32
1372		MeO H	87.3	. 5.9	645.32
1373			87.5	4.7	654.4
1374			84.8	4.7	646.38
1375		Ä.	71.8	5.53	535.23
1376		i. i	94.2	6.28	647.32
1377		eı H eı	91.6	6.25	653.22
1378		$N \rightarrow .$	63 + 26.1	3.98 + 4.2	441.30
1379		F — N — N —	64.5 + 28	4.8 + 5.0	550.36
1380	10	<u>v</u> <u>√</u> <u>H</u> <u></u>	65.1 + 26.9	3.93 + 4.1	454.30
1381	10	THE	56.6 + 30.1	3.54 + 3.6	514.40

- 270 -~H2 1R5 Purity (%) rt (min.) R2 $[M+H]^*$ Ex. 527.34 64.8 + 30.34.64 + 4.91382 5.33 + 5.6 | 560.39 64.3 + 28.31383 533.35 64.5 + 24.83.5 + 3.61384 4.77 + 5.0 | 561.29 62.9 + 27.51385 48.5 + 20.85.08 + 5.3 | 567.361386 20 4.98 + 5.2 | 569.33 61.2 + 27.51387 551.36 4.5 + 4.758.4 + 22.71388 25 3.92 + 4.0 | 560.38 65.1 + 26.41389 552.43 3.92 + 4.163.6 + 26.11390 30 4.01 + 4.2 | 441.30 64 + 27.31391 4.96 + 5.2 | 553.35 66.2 + 28.91392 7<u>H</u> 35 559.23 62.8 + 26.64.84 + 5.01393

5

10

- 271 -

		<u> </u>			
	R2 N	N O RS			
Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
1394	ļ .		59.4 + 26.3	3.95 + 4.1	445.26
1395	\$	F-__\N-+ \	63.7 + 28.7	4.89 + 5.1	554.28 -
1396	\$.	N N H	62 + 27.9	3.9 + 4.1	458.27
1397			58.9 + 28.7	3.48 + 3.5	518.35
1398	-s -		62.9 + 29.3	4.75 + 5.0	531.28
1399	S .		63.2 + 28.4	5.46 + 5.7	564.32
1400	is .	N N N N N N N N N N N N N N N N N N N	58.3 + 30.4	3.39 + 3.5	537.30
1401	is .	ŢĦ.	61.8 + 28.3	4.88 + 5.0	565.23
1402	I .	O H	61.5 + 27.9	5.2 + 5.4	571.28
1403	I .	O.O.	62.2 + 29.5	5.09 + 5.3	573.28
1404	5	MeQ H	60.6 + 26.7	4.54 + 4.7	555.30
1405	s ·	0-0-	59.2 + 31.8	3.86 + 4.0	564.32

. 20

30 -

- 272 -R2 -R5 Purity (%) rt (min.) $[M+H]^{\dagger}$ Ex. 59.3 + 31.23.86 + 4.0556.37 1406 4 + 4.2445.26 49.3 + 21.71407 5.07 + 5.3 | 557.28 64.4 + 29.71408 4.96 + 5:1563.20 1409 61.7 + 27.9552.27 5.24 + 5.462.4 + 25.41410 5.91 + 6.0 661.33 63.6 + 28.11411 60.5 + 30.25.14 + 5.2 565.25 1412 625.36 4.43 1413 87.2 5.88 + 6.0 | 638.30 60.9 + 31.91414 61.1 + 31.26.47 + 6.6 | 671.37 1415 644.35 89.3 4.34 1416 5.96 + 6.0 | 672.28 66.6 + 25.71417

5

10

15

20

25

30

Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
1418	0,4,0	O HÍ.	65.1 + 25.4 	6.25 + 6.3	678.35
1419	0,1,0	O. I.	63 + 27.5	6.13 + 6.2	680.32
1420	0,4,0	Med H	54.7 + 29.8	5.75 + 5.8	662.33
1421	2 C		91.7	4.71	671.38
1422			89.3	4.72	663.41
1423	°.*.	$\overline{\overline{H}}$	49 + 23.9	5.34 + 5.4	552.26
1424	0,41	H +	64.1 + 27.2	6.18 + 6.2	664.34
1425	°**O,O	6.	62.3 + 27.3	6.13 + 6.2	670.25

	\\ \frac{\text{NH2}}{				
		>	1		
	R2 N	As	,		
Ex.	R2 .	R5	Purity (%)	rt (min.)	[M+H] ⁺
1426		<u>H</u> 2	78.4 ⁻	4.58	463.27
1427		\bar{H}_{μ}	53.4	4.48	471.23
1428			86.2	3.67	526.29
1429		OMe N N	86	4.58	542.25
1430		C1 N	84.9	4.98	546.21
1431		i H	42.9	3.26	494.27
1432		J. H.	84.4	4.14	522.26
 1433			83.2 	4.72	570.25
1434			87.1	4.04	530.22
1435		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	45.6	3.16	464.25
1436		H 2 - + .	85.6	4.4	475.20
1437			84.2	4.96	541.18

			<u>- 275 - </u>	· · · · · · · · · · · · · · · · · · ·	·	
		NH ₂				
		R2 N) >—{°			
	Ex.	R2) A5	Purity (%)	rt (min.)	[M+H]*
	1438			87.2	3.88	554.28
	1439		z H	84.5	4.39	437.23
	1440		H	33.8	5.34	593.17
.*	1441			9.5	4.7	463.24
	1442	\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\) 	78.8	5.11	499.20
· ·	1443) \$ 0		46.9	4.98	507.17
	1444	2 0		87.9	3.88	562.19
	1445	\$ 0	OM •	85.6 	4.95	578.19
	1446	200	C1 N +	84.9	5.3	582.14
	1447	2 -	F T	49	3.45	530.19
	1448	200	, Line of the state of the stat	81.4	4.62	558.18
	1449			83	5.06	606.20

3 0

		<u>- 276 - </u>			
	NH2				
		•	1		
	HZ N	>			
	\$) A5			
Ex.	R2	R5	Purity (%)	rt (min.)	[M+H]*
 1450	PM• -		84.9	4.42	566.15
1451	**•	~~~H	40.7	3.5	500.19
1452		#	85.1	4.87	511.13
1453		i, C	87.4	5.33	577.13
1454			85.6	4.08	590.24
1455		- H	54.9	4.92	473.21
 1456		H.	43	5.66	629.13
1457	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\) (H)	17.2	5.2	499.20
1458		±1 2-()	77.6	4.3	479.20
1459			55.3	4. <u>2</u>	487.18
1460			85.2 [°]	3.32	542.22
1461		ONe N -	87	4.22	558.19

- 277 -

<u> </u>	- 277 -		·	
∠ H ₂	,			
F2-N) \	•		
\$	R S	!	·	
R2	, R5	Purity (%)	rt (min.)	[M+H] ⁺
	C) N -	85.9	4.64	562.14
	NH NH	82.9	2.74	510.23
		81.6	3.84	538.20
		84.1	4.41	586.21
		85.5	3.66	546.16
	~H	49.3	2.8	480.20
	ž H	81.7	4.11	491.15
	F NH	83.7	4.71	557.14
		82.2	3.59	570.24
	<u></u>	66.1	4.11	453.19
	, L, H	29.5	5.12	609.14
	H H 2	9.9	4.44	479.20
			R2 R5 Purity (%) R5 Purity (%) 85.9 NH 82.9 NH 82.9 R5 R5 R5 R5 R5.9 NH 82.9 R5 R5 R5 R5 R5.9 R6 R5 R5 R5 R5 R5.9 R6 R5 R5 R5 R5 R5.9 R6 R5 R5 R5 R5 R5 R5.9 R6 R5	R2 R5 Purity (%) rt (min.) R2 R5 Purity (%) rt (min.) 85.9 4.64 1 R5 R5 R5 R5 R5.9 1 R6 R5 R5.9 1 R6 R5.

- 278 -R5 R2 Purity (%) rt (min.) [M+H]* Ex. 5.36 1474 82.8 491.28 5.29 1475 58.2 499.26 554.27 1476 86.5 4.37 5.33 570.26 1477 86.6 84.1 5.67 574.20 1478 522.29 70.3 3.89 1479 550.28 1480 84.2 -4.94 598.26 1481 5.44 84.5 1482 558.24 86 4.84 50.1 3.93 492.29 1483 82.5 5.23 503.25 1484 79.3 5.68 569.19 1485

. 5

,10

15

20

25

30

- 279 -

		<u>·</u>	<u>- 279 - </u>	······································		
		NH2			•	
			>			
		R2 N	O R 5			·
	Ex.	R2	1. R5	Purity (%)	rt (min.)	[M+H]*
· 	1486			87.3	4.51	582.31
-	1487		THE PERSON NAMED IN COLUMN THE PERSON NAMED IN C	79.7	5.22	465.25
	1488		i, i, ii	26.1	6.06	621.20
	1489			16.1	5.51	491.28
	1490	F	1 2-1	77	5.02	453.22
•	1491	F	Ē.	48.4	4.88	461.16
	1492	F .		83.3	3.74	516.22
	1493	F	OM+	84.6	4.85	532.2
	1494		C1 , , , , , , , , , , , , , , , , , , ,	84.4	5.23	536.15
	1495	F	N N N E	69.9	3.29	484.23
	1496	F	J. H.	79.5	4.51	512.22
	1497	F ·		81.9	4.96	560.17
		*		·		

		<u>-</u> 280 -			
	H2 N N) >			
Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
1498			85.5	4.29	520.16

10 1499 67.7

5

15

20

25

1500 82.7 4.78 465.14

454.19

3.32

1501 82.1 5.26 531.13

1502 544.22 3.95 84.8

<u>7</u> H 427.16 1503 77.5 4.83

H

1504 24 583.11 5.6

1505 17.7 5.12 453.21

		* *	
		- 281 -	
	NH2	v	1
	R2 N N S	O 1 _{R5}	: '
Ex.	R2	, R5	Р
1506			

1507 Tool 1508 Tool 1509 Tool 1509

_		·			
Ex.	R2	, R5	Purity (%)	rt (min.)	[M+H] ⁺
1506			89.7	5.52	596.26
1507		· C1	87.2	5.37	562.23
1508	Q.O	H-5	77	4.62	583.26
1509	Q.0	○ - ८	89.1	3.7	579.25
1510	Q.O-	- ·	88.6	5.32	535.23
1511	Q.O-	-000	87.6	4	570.27
1512	F		88	5.12	474.19
1513	F—CI	0 ₂ N-(90.5	5.09	519.14
1514	F	ct—(91.2	5.7	505.1
1515	F	<u></u>	88	3.74	475.17
1516	F		86.7	5.58	487.20
1517	F—CI	-000	88.3	3.88	532.18

10

	_			÷283 -	: 		•
٠.			NH2	:	•	:	
					:		
			R2 N N	.0	1		
5	.,		s	R5	· :		
		Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
10		1521	+		90.4	5.2	478.28
10		1522	+		79.8	5.37	488.26
15		1523	+	· + N - N - N - N - N - N - N - N - N - N	90.3	5.13	523.27
		1524	+	c	81.2	5.7	509.2
20		1525	+		91	3.88	479.26
		1526	+		91.5	5.62	491.29
25		1527	+	000	91.1	4.1	536.28
:	<i>:</i>	1528	+		91.9	5.6 8 	546.25
30	,	1529	+	. — , , ,	92	5.54	512.24
-		1530	+->,-:	○- ¹	91.4	3.7	529.3
35		1531	+	<u></u>	92.4	5.49	485.23
,	e e	1532	+		89.4	4.2	520.28

				- 284 -			
			H ₂ ^N				·
			R2 -N N		•		
5			s	R5			
	<u> </u>	Ex.	R2_	¹ R5	Purity (%)	rt (min.)	[M+H] ⁺
		1533	MeO		90.1	4:56	452.20
10		1534	MeO		76.8	4.76	462.18
ic		1535	MeO .	0'H————————————————————————————————————	92.5	4.58	497.22
15		1536	MeO .		93.4	3.21	453.21
20	÷	1537	MeO .		91.2	5.04	465.22
	·	1538	MeO .	-000	92:7	3.44	510.22
25	:	1539	MeO .	·	89.6	5.14	520.18
		1540	MeO		90.2	4.93	486.17
30		1541	Me O .		89.4	2.98	503.26
		1542	MeO .	<u></u>	90.9	4.84	459.18
35		1543	Me O .		89.1	3.55	494.26
			<u> </u>	 			

- 285 -

			· .	<u> </u>			
			·	N H2			•
	·	٠	·	<i></i> :	1		
_	-	•	SS-N. N	· .	<i>.</i>		
5			R2 N	4	.'		
			5	¹ R5			
		Ex.	R2	, R5	Purity (%)	rt (min.)	[M+H]*
10		1544		, JH	83.5	4.19	425.25 -
	·	1545		H',	78.8	5.1	535.25
15		1546			79.7	4.67	484.23 . ·
·		1547			88	5.46	537.27
20	•	1548			87.4	4.72	480.22
		1549		H _Z	82	4.94	494.23
25		1550		ZHI	89.6	4.92	522.18
		1551			86.9	5.03	599.27
30		1552	0-N-	H.	84.3	4.7	486.20
		1553		Z H	82.7	3.36	455.18
35		1554	,	\$	82	3.68	543.20
		<u> </u>	l		<u> </u>		

- 286 -

				- 286 -			
				N H ₂	: .		
						· ·	(
					•	. •	
5			R2 N				
			\$//	R5			
 		Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
10		1555			86.7	3.91	557.20
		1556		The state of the s	80.9	5.06	496.26
15		1557		\bar{H}	83.1	4.35	420.21
	٠.	1558		$\overline{\mathbb{H}}^{N}$	87.5	5.2	530.22
20		1559		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	76.7	4.62	495.27
	,	1560		- +- NO	80.9	4.44	531.25
25		1561			85.7	5.16	584.30 . ·
		1562			85.4	4.51	527.25
30		1563		HZ.	. 82.1	4.66	541.25
		1564	0.0'	F H	87.4	4.66	569.19
35	·	1565	0.0	3 -0-	82.9	5.03	646.34

- 287 -NH₂ `RŞ R2 R5 rt (min.) [M+H]* Purity (%) Ex. 82.7 4.44 533:23 1566 м <u>Н</u> 502.24 3.46 85 1567 590.27 3.82 81.8 1568 4.03 604.26 84.5 1569 H H 543.27 81.9 4.74 1570 467.25 4.13 84.3 1571 77.4 577.2 4.9 1572 H 77.7 _5.15 550.3 1573 0/50 4.9 586.24 80.7 1574 639.34 5.6 86.4 1575 582.25 4.94 86.2 1576

5

10

15

20

25

30

- 288 -NH2 Purity (%) Ex. R2 R5 rt (min.) [M+H]* 596.28 82 5.17 1577 1578 89.7 5.14 524.22

5

10

20

30

	ł	0 0				<u> </u>
	1579			86.1	5.22	701.35
	1580		₩.	85.1	4.92	588.23
. :	1581		2 :	81.7	3.67	557.23
	1582		\$	81	3.9	645.32
	1583			85.2	4.12	659,31
	1584		ŽH.	82.4	5.26	598.26
	1585		μn	83.6	4.62	522.25
	1586		\vec{H}^{N}	85.3	5.39	632.29
	1587	B .	NH	82.8	4.94	481.16

- 289 -NH₂ RS R5 rt (min.) R2 Purity (%) Ex. [M+H] 1588 84.3 4.71 517.16 5.54 570.16 1589 89.6 513.13 4.78 1590 87.8 527.15 85.2 4.99 1591 4.98 555.07 1592 90.9 5.21 632.22 88.1 1593 Br~ 4.72 519.10 86.9 1594 87.4 3.47 488.12 1595 82.5 3.82 576.16 1596 590.12 86.1 4.06 1597 1598 85.1 5.08 529.16

5

10

15

20

25

30

- 290 -N H2 Purity (%) rt (min.) R2 R5 [M+H]* Ex. 1599 84.8 4.34 453.13 Ħ, 74.9 1600 5.26 563.13

15

1:0

	- 4		<u>- 291 - </u>			
			NH ₂			,
·						
		R2 N N	_{<	,	. •	· •
	Ex.	S// R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
 O	1601		, H	88.1	3.87	409.24
. ·	1602		1	90.1	4.0	423.26
5	1603		, TH	60.2	4.1	443.21
·	1604		L Z + .	91	3.9	427.24
0	1605		H		4.4	493.23
	1606		;	48.1	4.12	423.27
5	1607		CI NH	45.1	4.2	443.22
·	1,608			60.8	4.49	493.24
0	1609		O'N WH	54.5	3.98	454.26
	1610		CI NH	84	4.19	443.23
5	1611		F	92.8	4.49	493.25
	1612		C ZH	86.2	4.51	477.21

			·	- 292 -			
:				NH ₂	<i>:</i> .		
			•				
			N N	0	•	,	4
	·		R2 N	<u></u>	•		
		Ex.	_ S// R2.	`R5	Purity (%)	rt (min.)	[M+H] ⁺
O		1613		F F	84.1	4.84	545.22
	·	1614		ŽH.	77.7	4.34	459.30
5		1615		Z H	90.6	3.95	423.29
		1616			91.8	4.6	499.35
o .		1617		H	91.9	4.86	519.27
		1618			62	4.6	545.3
5		1619	P-	N H M	91.7	4.28	449.32
		1620		<u>H</u> ,	63.1	4.62	483.29
10		1621		, H	83.8	4.41	431.26
		1622		Ū,	64.2	4.55	445.26
35		1623		Ç'ı NH	48.9	4.66	465.21
		1624		, NH	89	4.46	449.27

.

		- 293 -		ė.	•
	<i>:</i>	№ H ₂			··
		5	•		
	R2 N N	O (R5		·	
Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
1625		H	56.7	4.94	515.24
1626		i i	78.4	4.65	- 445.25
1627		C NH	44.5	4.72	465.21
1628		H.	84.7	5.01	515.24
1629		H. N. P.	73.9	4.5	476.27
1630		cr ZH	76.8	4.74	465.21
1631			88.6	5.02	515.24
1632			90.6	5.05	499.19
1633			89.4	5.35	567.21
1634			80.6	4.88	481.28
1635		- Z H-	90.6	4.49	445.26
1636		H H	91.1	5.14	521.28

LO

		<u> </u>			
		N H ₂	1	,	
	R2-N N	O 	,		
Ex.	R2-	R5.	Purity (%)	rt (min.)	[M+H]*
1637		e H	91.2	5.38	541.23
1638			90	5.1	567.3
1639		<u>H</u>	92.9	4.84	471.28
1640	-	Ĭ.	- 88.3	5.13	505.28

10.

<u>- 295 -</u> R5 -R5 R2 Purity (%) rt (min.) Ex. [M+H]* 83.5 3.86 423.29 1641 81.9 4 437.30 1642 81.1 4.07 457.25 1643 89.9 3.89 441.27 1644 4.35 507.27 1645 91.5 437.31 .70.6 4.08 1646 4.14 457.26 73.2 1647 91.7 4.42 507.27 1648 468.26 61.9 3.96 1649 νН 457.25 82.6 4.16 1650 507.26 78.5 4.46 1651 491.21 08 4.46 1652

5

10

15

20

25

30

	2	O		
•	/	,	n	

_		· · · · · · · · · · · · · · · · · · ·	<u>- 296 - </u>			
			NH ₂	•		
	-	R2 N N	0	· /		
	Ex.	. S~) R2	R5	Purity (%)	rt (min.)	[M÷H] ⁺
	1653		H H	80.7	4.78	559.24
	1654		Z + ·	90.3	4.28	473.33
-	1655		H1.	91.4	3.93	437.30
	1656			93.5	4.55	513.33
	1657			92.8	4.82	533.27
	1658		H.	58	4.5	559.3
	1659			92.1	4.24	463.32
	1660			92.2	4.53	497.29
	1661		, Figure 1	36.9	4.42	445.25
	1662	<u> </u>	H.	31	4.56	459.28
	1663		Şi H	38.9	4.67	479.24
•	1664	·	H.	43.4	4.47	463.27

フ

10.

- 297 -Purity (%) **R2** R5 rt (min.) [M+H]* Ex. 47.9 529.2 4.98 1665 459.28 32.1 4.66 1666 479.23 1667 23 4.74 5.02 529.25 1668 38.1 490.27 35.5 4.51 1669 479.23 47.1 4.74 1670 529.25 5.04 1671 37.1 5.07 513.19 60.9 1672 5.34 581.23 1673 82.8 4.91 495.27 20.5 1674

7<u>H</u>

72 ·

91.1

4.52

5.14

459.28

535.30

35

1675

1676

30 ·

5

10

15

20 .

<u>.</u> 5

			- 299 <i>-</i>			
			$N_{\underline{H}_2}$: ;	
			_ 0	• •		
		R2 N N				
5		S//	R5	<u>, , , , , , , , , , , , , , , , , , , </u>	T	
	Ex.	R2	R5	Purity (%)	rt (min.)	[M+H]*
	1681		HN	72.7	4.26	471.34
10	1682		HN	76.3	4.36	485.34
·	1683		HN	51.6	4.47	485.33
15	1684		, z	33.6	4.39	501.32
	1685		r Z	79.9	4.7	539.29
20	1686		Z Z Z	76	4.77	555.28
25	1687		. Tr	53.2	4.34	489.30
25	1688		HN	59.2	4.51	505.27
30	1689		HN	74.7	4.57	 549.21
-	1690		712	82	4.84	547.34
35	1691		HN	68.8	4.49	485.32
	1692		HN	73.4	4.25	501.37
,	لــــــــــــــــــــــــــــــــــــــ					

·.		·	- 300 -			·
	٠.		$\int N \frac{H_2}{2}$	1		
		R2-N_N	0			
5		s.	R5 1			
•	Ex.	R2	R5	Purity (%)	rt (min.)	[M+H] ⁺
	1693		HN	75.0	4.83	555.27
10	1694		HN	44.5	4.39	489.30
	1695		HN	42.7	4.57	505.25
15	1696		· AN COLON	79.8 	4.97	547.32
	1697		HN	78.9	4.56	499.39
20	1698		, H	70.8	4.27	531.36
25	1699		HN	77.5	4.35	507.33
25	1700		I Z Z	78.9	4.34	507.33
30	1701		HN	75.8	4.27	507.32
3.	1702		HN	74.9	4.41	507.32
.35	1703		HN	75.3	4.49	507.29
	1704		HN	73.5	4.75	539.22
		<u></u>	·			

- 302 R1 H₂ N Purity (%) R5 · rt (min.) Ex. R1 [M+H]* 3.8 87.3 448.31 1706 10 482.24 86.0 4.3 1707 370.24 2.4 90.0 1708 ĬΪ 15 387.26 76.6 3.88 1709 ⁷ <u>H</u> 3,0 394.2 53.2 1710 20 91.2 2.3 449.29 1711 87.7 4.13 443.29 1712 25 88.3 3.7 419.28 1713 70.8 3.5 437.25 1714 30 469.30 4.4 87.0 1715 485.20 1716 82.5 4.12 35 2.59 428.29 88.1 171,7 <u>, H</u>

- 303 -H₂N 5: R1 Purity (%) rt (min.) R5 $[M+H]^{+}$ Ex. 2.8 88.7 490.35 1718 10 ; <u>H</u>. 4.68 529.23 79.0 1719 399.29 3.94 78.0 1720 15 3.7 480.32 87.4 1721 514.28 4.14 83.1 1722 20 2.44 402.24 89.1 1723 ĬΪ <u>H</u> Ņ<u>H</u> 3.73 419.3 81.5 1724 :25 3,0 416.2 56.1 1725 .. 90.1 2.3 481.33 1726 ï. 30 475.31 87.3 3.96 1727 2.9 448.3 75.2 1728 35 3.61 451.29 85.7 1729

- 304 *-*Ŗ1 $_{\rm H_2}$ N 5 Purity (%) R1 R5 rt (min.) [M+H]* Ex. 3.37 469.28 74.5 1730 10 4.22 501.32 83.7 1731 3.95 517.20 86.7 1732 15 2.61 460.32 <u>, H</u> 8.08 1733 80.8 2.8 522.35 1734 20 74.0 4.48 561.23 1735 иΗ 431.31 81.2 3.8 1736 25 546.27 4.76 87.1 1737 √ 85.5 5.16 580.24 1738 30 468.24 3.72 1739 85.5 III 1 485.29 82.1 4.74 1740 35 Ņ<u>H</u> † 80.7 3.04 492.24 1741

			- 305 -			
	He	, N	N S N	R1 0 R5		
5	Ex.	. R1	R5 -4.	Purity (%)	rt (min.)	[M+H]*
	1742	ci	- N N	87.7	_ 3.4	547.28
10	1743	cı	<u>H</u> .	81.9	4.96	541.23
÷	1744	ci		55.2	2.9	514.27
15	1745	ci		87.2	4.7	517.25
•.	1746		THE STATE OF THE S	 73.7	4.39	535.21
20	1747	<u></u>	HI,	84.3	5.22	567.25
	1748		Br H	74.7	4.9	583.16
25	1749		ů H	76.8	3.53	526.28
···	1750			84.3	3.7	588.34
30	1751	c	; ; ; <u>H</u>	74.4	5.41	627.20
25	1752	ci	N H	80.9	4.88	497.31
35	1753		_N → .	. 83.4	4.53	516.2

. •

<u>- 306 -</u> <u>野2</u> N 5 R5 Purity (%) rt (min.) [M+H]* R1 Ex. 83.2 4.96 550.24 1754 Í0 3.39 438.25 84.1 1755 II H 84.7 4.71 455.28 1756 15 462.24 2.8 56.6 1757 85.0 3,0 517.30 1758 20 84.6 4.9 511.26 1759 484.3 82.1 2.8 1760 25 487.27 84.4 4.44 1761 505.23 52.0 4.3 1762 30 537.28 5.12 84.5 1763 553.17 1764 81.5 4.93 35 80.2 3.34 496.29 1765 <u>, H</u>

			- 307 -			
-	$H_2 N$ R_1 R_5					
5	Ex.	R1 .	R5	Punty (%)	rt (min.)	[M+H] ⁺
	1766			85.9	3.5	558.31
10	1767		H	53.4	5.39	597.22
·	1768		z H	81.6	4.81	467.29
15	1769		N	83.5	3.5	540.32
	1770		C1 N -	82.4	5.01	574.27
20	1771		· → Z H	80.9	3.72	462.30
	1772		H H	77.9	4.78	479.36
25	1773		Z +·	79.3	3.11	486.32
	1774		N N N N N N N N N N N N N N N N N N N	` 85.0	3.4	541.35
30	1775		H.	85.3	4.9	535.31
	1776		M M M M M M M M M M M M M M M M M M M	74.9	3,0	508.34
35	1777			83.9	4.58	511.33

٠.			- 308 -			
-	H ₂	N	N N	R1 / O / R5		-
Ì	Ex.	R1	R5 ^{3.}	Purity (%)	rt (min.)	[M+H]*
	1778		-° H	69.1	4.4	529.3
	1779			83.1	5.1	561.3
	1780		$\underbrace{\underline{\underline{H}}^{N}}_{Br}$	81.8	4.9	577.23
	1781		H.	83.6	3.64	520.34
	1782		Q,O'	e.03	3.7	582.4
	1783		H.	68.0	5.34	621.28
	1784		, The state of the	76.3	4.85	491.36

309	-	

iii					•	
			- 309 -	2	·	
	<u>H2</u>	N	N N N O	1	i.	
5	Ex.	· R1	R5	Purity (%) '	rt (min.)	[M+H] ⁺
÷	1785		$\overline{\overline{H}}$	77.9	4.44	435.25
10	1786		- , H	78.8	4.83	437.30
	1787		N	79.5	3.13	464.27
15	1788			80.3	3.28	526.38
**	1789		N — N — N — N — N . 0	86.6	4.67	543.32
20	1790		H V	74.8	2.9	458.32
•	1791		, H	81.7	3.99	508.34
25	1792		~~·	86.9	5.41	526.38
· 	1793		iΨ	86.4	4.85	511.27
30	1794		; H	82.2	5.07	533.35
-	1795		M S S S S S S S S S S S S S S S S S S S	83.1	3.55	536.28
35	1796		N H	82.3	4.66	471.3

		<u> </u>	- 310 -	· · · · · · · · · · · · · · · · · · ·		
	<u>H2</u>	N	N N N O			
5	Ex.	. R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
	:1797 		F H	86.3	4.41	461.31
10	1798			85.1	4.95	505.33
· :	1799			76.0	3.5	532.3
15	1800		H	81.1	4.87	483.34
	1801		五一	68.62	3.96	387.33
20	1802		, H	73.4	4.39	389.33
	1803		» · · ·	81.2	2.57	416.32
25	1804	•		79.2	2.9	478.3
:	1805	<u> </u>	-1,0°	83.2	4.26	495.34
, 3 0	1806	1	, H	70.2	2.5	410.3
·	1807		€ H	73.3	3.6	460.37
35	1808			75.0	5.01	478.39

::

_	•	•	
- 4	1	- 1	_

			- 311 -			
	<u>H2</u>	2N	R1 S			
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H]*
	1809	<u> </u>	H H	70.3	4.45	463.31
10	1810	•		83.9	- 4.73	485.37
	1811	<u> </u>	M. S.	76.5	3.14	488.31
15	1812		· HI	79.1	4.28	423.35
	1813	·	F Z H	79.2	3.99	413.29
20	1814	<u> </u>		75.5	4.55	457.33
	1815	<u></u>		67.7	3.1	484.3
25	1816	<u></u>	H	62.7	4.44	435.33
	1817.		<u>H</u>	<u> </u>	5.02_	471.33
30	1818		, H	¹ 70.2	5.31	473.37
-	1819		N	86.6	3.59	500.35
35	1820		$\underbrace{\underbrace{\underline{H}}}_{M}$	83.8	3.7	562.4

Ċ

H2N R5 R5 Purity (%) rt (min.) R1 [M+H]* Ex. 5 88.5 5.04 579.32 1821 494.3 3.3 39.8 1822 10 4.55 544.33 85.8 1823 86.4 5.78 562.36 1824 15 ₹ <u>H</u> 547.25 84.3 5.27 1825 <u>H</u> 569.32 69.7 5.58 1826 20 <u>H</u> 4.17 572.27 70.3 1827 507.34 85.4 5.17 25 1828 82.3 4.91 497.28 1829 541.29 5.41 82.4 30 1830 3.8 568.3 79.4 1831 35 519.33 86.9 5.31 1832

						· .
W.			- 313 -	. ,		
			R1			
	H ₂	N	S. N. O.) 		
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H]*
·	1833	cı .	$\overline{\overline{\mu}}$.	86.3	4.99	455.27
10	1834	ci .	H	84.5	5.3	457.30
	1835	ci .	N	88.3	3.42	484.27
15	1836	cı .	○ ○ H	83.6	3.65	546.29
	1837	cı .	0 ² N-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	88.8	4.91	563.24
20	1838	cı .	7 <u>H</u>	65.2	3.3	478.24
 : :	1839	cı .	× Hi	87.6	4.5	528.30
25	1840	cr .		90.4	5.68	546.30
	1841	cı .	. + Z	82.8	5.31	531.23
30	1842	CI .	H	. 68.2	5.57	553.28
-	1843	cı .	H H	72.4	4.11	556.21
35	1844	CI .	NH.	83.9	5.15	491.29
		<u> </u>		:	·	<u></u>
			,			

•		·	- 314 -			
	Н2	N	R1 S	5		
5	Ex.	. R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
	1845		* NH	86.4	4.93	481.27
10	1846	CI		86.3	5.29	525.25
	1847	CI .		82.6	3.7	552.3
15	1848	c ₁	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	88.1	5,3	503.29
	1849	o M •	$\underbrace{\qquad \qquad }_{\mathbf{z}}\overline{\mathbf{H}}.$	82.9	4.25	451.32
20	1850	OMe .	, H	; 82.1	4.64	453.35
	1851	ом•	N	85.6	2.72	480.33
25	1852	°M•	J. J.	82.9	3.16	542.35
,	1853	ом•	0 × − − − − − − − − − − − − − − − − − −	87.7	4.28	559.29
30	1854	OM•	, H	¹ . 75.3	2.82	474.33
-	1855	OMe .	H.	84.4	3.83	524.32
35	1856	OMe .		87.0	5,0	542.36

			- 315 -			
5	H ₂	N	R1 N C) 15		
_	Ex.	R1	R5 ·	Purity (%)	rt (min.)	[M+H] ⁺
·	1857	OMe	进	82.6	4.73	527.28
10	1858	OMe :		65.8	5.01	549.31
• .	1859	O Me	M. S. S. S. B. H.	76.4	3.49	552.26
15	1860	OMe .	×H.	80.4	4.54	487.35
	1861	O Me	# H	81.3	4.28	477.30
20	1862	S .		79.9	4.59	521.29
	1863	OM9	S	77.5	3.2	548.3
25	1864	ОМе	H V	86.5	4.65	499.32

3	1	8	_

		·	- 316 -		· · · · ·	
·	Н2	N	N N N	O 		
5	Ex.	R1	R5 .	Purity (%)	rt (min.)	[M+H] ⁺
	1865		H.	84.7	4.94	435.29
10	1866		$\overline{\overline{H}}_{\nu}$	- 85.0	4.66	443.26
÷	1867			26.2	4.82	494.26
15	1868		F	. 88.4	4.8	502.28
·	1869			83.6	5.48	519.28
20	1870		$\langle \rangle$	63.17	5.3	451.33
·	1871			91.1	3.4	542.3
25	1872		s H	35.7	4.48	435.20
	1873			, 88.8	3.8	502.26
30	1874		, Hi	87.1	5.41	533.29
-	1875		;H	89.5	√5.14	513.22
35	1876		The H	. 47.8	4.82	455.24

,	,		247			
			-317- R1 N)		·
:	Н2	N	s F	R5		·
	Ex.	R1	R5 .	Purity (%)	rt (min.)	[M+H]*
	1877		O.J.	77.1	5.32	521.24
	1878			81.8	5.31	505.26
-	1879		× H.	19.7	4.37	395.24
	1880		;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	61.4	5.14	511.22
	1881		H _N	82.7	4.95	463.31
	1882		<u>H</u> .	82.2	4.71	471.27
	1883	·	~~~·	67.2 ·	4.84	522.26
	1884		F	87.7	4.9	530.28
	1885			79.4	5.54	547.28
	1886			80.8	5.3	479.34
	1887	0.		88.9	3.6	570.24
	1888	0	»H ,	30.2	4.53	463.23

, 5

:

.

. ,	·		- 318 -	·		
	H2	<u>R</u> N	N R1) 		·
5	Ex.	R1	R5	Purity (%)	rt (min.)	(M+H) ⁺
	1889			88.9	3.98	530.26
10	1890		<u> </u>	84.2	5.42	561.30
	1891			75.8	5.17	541.22
15	1892		TH.	85.8	4.86	483.28
	1893			71.7	5.33	549.26
20	1894		₹ H	86.6	5.34	533.29
*	1895		<u>H</u> .	54.1	4.43	423.28
25	1896		H.	47.7	5.16	539.26
·.	1897	MeO MeO	È.	74.6	4.44	509.30
30	1898	MeO MeO	Ţ,	77.6	4.2	517.27
-	1899	MeO MeO	J'N-	38.8	4.53	568.26
35	1900	MeO MeO	F-\(\)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	80.1	4.5	576.3

. --

1			- 319 -		<u> </u>	 1
			R1			
		N N	N N N			
	H ₂	·		R5 /		
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
	1901	MeO MeO		72.3	5.17	593.30
10	1902	MeO		77.0 -	4.88	525.34
,	1903	MeO MeO		80.5	3.3	616.3
15	1904	MeO .	»H Ý	34.6	4.03	509.21
	1905	MeO MeO		81.3	3.6	576.2
20	1906	MeO .	H.	77.1	5.04	607.31
	1907	MeO .		79.6	4.76	587.24
25	1908	MeO MeO	H.	77.8	4.38	529.28
· ·	1909	MeO MeO		78.0	4.95 	595.28
30	1910	MeO MeO	H.	∖ 81.1	4.88	579.29
-	1911	MeO .	<u>H</u> N.	32.4	3.89	469.29
35	1912	MeO MeO	Ţ,	49.3	4.7	585.26

(<u> </u>	- 320 -	·		···
	: _{H2}	N	N N C)		·
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H]*
*	1913	G .	$\frac{\overline{H}}{N}$	87.0 	5.59	503.20
10	1914		$\overline{\overline{H}}$	- 88.5	5.3	511.15
	1915	G C C		69.5	5.28	562.16
15	1916	o	F————————————————————————————————————	89.4	5.3	570.1
	1917	G C C C C C C C C C C C C C C C C C C C		79.1	5.98	587.17
20	1918	ci .		82.4	5.84	519.23
	1919	ci .		89.5	3.9	610.1
25	1920	CI CI	s NH V	27.2	5.12	503.11
	1921	CI CI		· 88.6	4.41	570.13
30	1922	CI CI	, DH	86.4	5.91	601.19
	1923	CI .	T. H	84.9	5.66	581.11
35 .·	1924	CI CI	<u>H</u> `.	86.4	5.44	523.13
	<u></u>		.LL			

.2	2	1	

_			- 321 -			·
	Н	2 N	R1 N N	35		
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
	1925		Q. C.	61.9	5.81	589.16
10	1926	CI	H.	84.7	5.85	573.15
	1927	c c	H.	36.8	5.1	463.16
15	1928	CT CT	, H	76.4	5.68	579.13
	1929	\ \	HZZ.	79.4	4.65	415.30
20	1930	\	$\frac{1}{2} \frac{1}{2} \frac{1}$	84.5	4.41	423.29
	1931	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		44.0	4.62	474.29
25	1932		F	86.1	4.65	482.3
	1933			78.5	5.33 ·	499.31
30	1934			79.6	5.06	431.33
	1935	•		84.6	3.4	522.30
35	1936		s NH	54.6	4.2	415.21
•						

			- 323 -				
			R1				
			T N N				
	H ₂ N						
5	Ex.	R1	R5	Purity (%) /	rt (min.)	[M+H]*	
. (1945			84.3	4.24	512.26	
10	1946			85.4	3.63	514.25	
•	1947		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	86.8	3.1	526.27	
15	1948		F-\(\)_\H_\\\	87.7	4.32	530.23	
	1949		0.1M————————————————————————————————————	87.5	4.24	557.23	
20	1950		N N N N N N N N N N N N N N N N N N N	88.8	2.9	513.26	
	1951			84.5	4.92	540.28	
25	1952		∑ -N_N ·	87.7	4.49	526.27	
	1953			62.5	3.66	567.26	
30	1954		0	89	4.08	542.26	
-	1955		N -	87.7	4.38	530.24	
35	1956		N_N+.	82.4	2.7	513.28	

- 324 0 R5 H₂ N R5 Purity (%) rt (min.) R1 [M+H]* Ex. 5 87.7 4.31. 557.23 1957 556.27 91.0 4.44 1958 10 514.25 3.44 80.7 1959 535.24 4,67 1960 68.6 15 526.27 4.32 85.3 1961 3.75 528.25 83.0 1962 20 540.28 3.28 1963 88.7 86.8 4.37 544.25 1964 25 89.4 4.29 571.24 1965 3.1 527.25 86.9 30 1966 4.94 554.29 1967 86.1 35 4.54 540.27 1968 87.6

225	
3/7	-

		<u> </u>	- 325 -			
			R1	,0		
. •	H	2 N		R5		
. 5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H]*
	1969	0~.		65.4	3.76	581.27
10	1970		0-	86.3	4.16	556.28
,	1971		F N N	86.0	4.43	544.25
15	1972		N_N-	83.2	2.8	527.3
	1973		NO. N-	84.8	4.38	571.24
20	1974			87.8	4.5	570.28
	1975		N N N N N N N N N N N N N N N N N N N	80.9	3.55	528.26
25	1976	O .	\$\frac{1}{2} - \cdot	62.7	4.71	549.27
	1977		N+	85.7	4.41	526.29
30	1978		~ N N N - '	84.2	3.82	528.27
-	1979			 87.4	3.28	540.28
35	1980		FN-N-'	86.6	4.47	544.24

_			- 326 -			<u> </u>
			N N	,o		
··	Н2	N				•
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H]*
	1981		0 ² N-_N-,	86.4	4.38	571.24
1Ò	1982			85.9	3.1	527.27
-	1983		~~~	85.3	5.06	554.28
15	1984		× × ·	85.3	4.66	540.28
	1985			60.8	3.8	581.28
20	1986		0-{\rightarrow H \rightarrow H \rightarrow	86.1	4.25	556.28 :
	1987		<u></u>	86.4	4.54	544.25
25 -	1988		N N + 1	75.9	2.86	527.28
	1989		NO N	86.5	4.46	571.24
30	1990			88.4	4.6	570.29
	1991		N N N +	79.8	3.62	528.27
35	1992		\$\frac{1}{2} \cdot \frac{1}{2}	63.2	4.82	549.26

٠.			- 327 -	•	:	
	H ₂	N	N N N N N N N N N N N N N N N N N N N	O R5		::
5 ·	Ex.	R1	R5 :	Purity (%)	rt (min.)	[M+H]*
4	1993	om.	N-V N-	81.8 :	4.15	572.25
10	1994	9M•	$\sqrt{\sum_{N}^{N}} N$	81.0	3.58	574.25
	1995	OM.		83.5	3.08	586.3
15	1996	M.	F—NN+	84.3	4.2	590.27
 .	1997	N. N.	N-4-6	85.3	4.12	617.26
20	1998 ::	o Me	N-N-'	86.1	2.91	573.28
•	1999	M	△ -~~	85.5	4.74	600.31
25	2000	M.		87.3	4.37	586.28
· .	2001	₩• ₩•		68.4	3.6	627.28
30	2002	OM.	0-{N-	85.4	3.98	602.28
•	2003	OM•	F N N- '	83.1	4.26	590.27
35	2004	OMe Ome	N - N:	84.5	2.7	573.26

		· · · · · · · · · · · · · · · · · · ·	- 328 -		·	
	н	2 N	N N N	O ,	·	
5	Ex.	R1	R5).	Purity (%)	rt (min.)	[M+H] ⁺
	2005	ome ome	NO 2 N -	85.9	4.2	617.27
10	2006	o M.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	86.9	4.32	616.31
	2007	2 2 2	N N	81.2	3.4	574.24
15	2008	om.	S	69.0	4.54	595.29
	2009			82.1	4.72	574.25
20	2010		$\left\langle \begin{array}{c} N \\ N \end{array} \right\rangle$	80.1	4.15	576.27
,	2011			83.9	3.53	588.27
25	2012		E————————————————————————————————————	80.8	4.78	592.26
	2013	$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)$	0.N-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	83.0	.4.68	619.26
30	2014		N+-	85.6	3.35	575.25
	2015			82.9	5.41	602.30
35	2016		<u></u>	. 81.9	4.96	588.26

82.6

79.5

64.2

4.89

3.9

5.15

618.29

576.27

597.27

20

2022

2023

2024

5

10

15

			- 330 -	· · · · · · · · · · · · · · · · · · ·		
			R1			
			N N	//		
	<u>H2</u>	N	s	R5		
5	Ex.	R1	`R5	Purity (%)	rt (min.)	[M+H]*
	2025			88.8	- ··· 4.94 ·· .	574.23
10.	2026		F————————————————————————————————————	88.4	4.96	592.25
	2027		0³H- √ H H ,	87.7	4.86	619.24
15	2028			89. <i>7</i>	3.61	575.2
	2029			70.4	5.13	571.25
20	2030		~~~~	88.0	5.58	602. <u>2</u> 8
•	2031	0		87.8	5.15	588.26
25	2032			76.5	4.24	629.28
•	2033		,	88.8	4.7	604.27
30	2034	Q,	F N N-	88.3	5.04	592.25
	2035	00.	NO,	89.5	4.96	619.24
35	2036		F N N + 1	87.5	5.41	642.26

,			- 331 -		·	· ·
			R1			æ • • i
	I		T"\\	<u>/</u> /		
	H ₂	2N	j \$_//	R5 /		
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
	2037		F	88.9	5.12	610.24
10	2038			89.4	5.07	618.27
	2039		F - NO, N+ .	88.7	5.42	687.24
15	2040		N	87.7	3.68	580.30
	2041		N-N-N-	85.2 ·	4.89	574.23
20	2042 ::		F-_N-N	84.4	4.9	592.25
	2043		0,N-(N-,_N-,_N-,_N-,_N-,_N-,_N-,_N-,_N-,_N-	84.7	4.78	619.23
25	2044			89.0	3.58	575.25
	2045		N-	61.5 `	5.16	571.22
30	2046			83.2	5.57	602.28
.	2047		<u></u>	84.4	5.1	588.25
35	2048			73.2	4.25	629.27

			- 332 -		·	 -
		•	R1	0		
	·			4		
	H ₂	N	" s_//	R5 '		
5	Ex.	R1	Ą5	Purity (%)	rt (min.)	[M+H] ⁺
	2049		0	85.5	4.64	604.26
10	2050		F	85.6	4.99	592.2
	2051		NO ³	85.7	4.93	619.24
15	2052		£ → H H + ,	86.2	5.34	642.25
. •	2053		F	85.1	5.06	610.23
20	2054			84.6	5.06	618.27
	2055		F NO 2	85.4	5.37	687.23
25	2056		N + 1	85.8	3.68	580.30
······································	2057	0~.		68.0	4.37	528.26
30	2058	O, .	FN-N-	86.3	4.41	546.22
	2059	0	0°H-\(\big \rightarrow \mathbb{N} \rightarrow \rightarrow \rightarrow \mathbb{N} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \mathbb{N} \rightarrow \rightarrow \rightarrow \mathbb{N} \right	88.1	4.32	573.19
35	2060	0	N	86.1	3	529.25

			- 333 -			
			, N. N.			. '
	÷		T"\\			
÷	H2) s	R5		
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H]*
	2061	~~·		67.2	4.56	525.25
10	2062	°~.		91.2	4.98	556.26
	2063		_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	87.8	4.56	542.26
15	2064			75.6	3.73	583.23
	2065	O .	,0—(88.7	4.16	558.23
20	2066	· .		88.4	4.46	546.22
	2067	O .	NO 2 N	87.4	4.4	573.20
25	2068	○ · · ·	F N N - '	87.7	4.88	596.21
	2069	O .	F	87.9	4.56	564.21
30	2070	O .	\$-\frac{1}{2}-\fra	87.5	4.51	572.26
~	2071	0.	F NO 1	88.8	4.91	641.20
35	2072	0		86.2	3.08	534.27

			- 334 -		•	
			R1 N N	4		
	<u>H</u> ;	2N	<i></i>	`R5		
5	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
· · · · · · · · · · · · · · · · · · ·	2073		N-10-1	71.7	4.78	562.25
	2074		FN-N-	82.1	4.8	580.23
	2075		02N-__N-_\	82.6	4.68	607.23
15	2076			79.5	3.4	563.21
	2077		N-	67.5	4.92	559.23
20	2078		~~.	83.0	5.39 _.	590.27
	2079	5		82.5	4.98	576.26
25	2080	05	H	42.5	4.1	617.23
	2081		0-0-1	86.9	4.58	592.26
30	2082		F-N-N	82.5	4.88	580.23
	2083	5	NO1	81.4	4.77	607.23
·35	2084		F F	82.3	5.24	630.26

			335 -	•		
			R1 N N			
	<u>I</u>	12N	" s"	R5 .		·
5 .	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
	2085		F	83.5	4.97	598.20
10	2086		~~~~·	81.6	4.93	606.28
•	2087		F F NO 1	82.7	5.25	675.23
15	2088			84.4	3.4	568.26
	2089		N-N-	67.0	4.64	562.24
20	2090		F	83.0	4.66	580.23
:	2091		O ¹ H — N — ,	83.6	4.54	607.22
25	2092		N N N - '	82.5	3.3	563.25
	2093		N- '	84.2	4.8	559.22
30	2094		~~~~	86.2	5.21	590.29
· -	2095		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	83.2	4.82	576.28
35	2096		H-1,	62.8	3.99	617.26
				•		

			- 336 -			
	Ηz	, N	N N N	O ,		
5 .	Ex.	R1	R5	Purity (%)	rt (min.)	[M+H] ⁺
	2097		0-()-N()-1	86.0	4.44	592.2
10	2098		F	85.8	4.72	580.25
	2099		NO1 N-	84.0	4.62	607.23
15	2100		<u>t</u>	83.4	5.09	630.26
	2101		F −	84.8'	4.8	598.21
20	2102			83.7	4.78	606.29
	2103		$\downarrow \frac{1}{k} - $	83.6	5.1	675.24
25	2104		N	5.6	3.05	568.28

337 -

			- 33	<u>/-</u>			
		R2 N N	R1 ,0				
		s_//	R5	÷ :	<i>f</i>		
5	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
,	2105	N NH,	ō		81.5	4.9	468.27
10	2106	<u>Н</u>			81.4	5.01	465.28
10	2107	, N V NH ³	ē-		77.3	5.34	505.31
	2108	$\overline{H}_{N} \longrightarrow NH^{2}$	\bar{c}	:	73.5	4.7	447.29
15	2109	$\overline{H}_{N} \sim		F.C.	70.5	5.28	499.26
	2110	\overline{H} N NH	<u>6</u> 1		73.9	5.38	491.30
20	2111	\overline{H} N \longrightarrow NH ₂		om.	72.0	4.5	489.31
	2112	\overline{H} N \longrightarrow NH ²	-		73.0	5.5	521.29
25	2113	H N NH	91		90.0	4.23	381.29
-	2114	H N NH,			76.1	5.02	443.30
30	2115	H N NH,			56.9	4.2	434.32
-	2116	$\overline{H}_{N} \sim \sim_{NH^{2}}$			79.8	4.29	431.31
35	2117	H N NH2			79.1	4.45	471.35
÷	2118	$\overline{H}_{N} \longrightarrow NH^{2}$			70.2	3.56	413.29

- 338 -

				8 -			
		R2 N N	O R5		1	. :	,
5	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H] [*]
	2119	$\overline{H}_{N} \sim \sim_{NH^{3}}$		FLOU .	. 72.4	4.68	465.27
10	2120	\overline{H}_{N}		OT	78.3	4.66	457.33
	2121	\overline{H} N NH2		OM.	90.1	3.41	455.33
	2122	\overline{H}^{N}			82.2	4.38	487.36
15	2123	\overline{H}_{N}		<u></u>	68.8	2.99	347.34
	2124	$\overline{H}_{N} \sim \sim_{NH^{2}}$			 75.2	4.13	409.33
20	2125	$\overline{H}_{N} \sim \sim_{NH^{2}}$	0/20		56.9	4.01	513.30
	2126	$\overline{H}_{N} \sim \sim_{NH^{2}}$	H2 200		70.1	3.88	510.29
25	2127	\overline{H} N \longrightarrow NH 2			77.8	4.16	550.29
	2128	$\overline{H}_{N} \sim \sim_{NH^{3}}$	H2 200	L	67.7	3.49	492.28
30	2129	\overline{H}_{N}	<u>H2</u> 200		71	4.27	536.28
-	2130.	\overline{H} N \longrightarrow NH ²	H2 2	× × ×	71.4	3.38	534.30
35	2131	$\overline{H}_{N} \sim \sim_{NH^2}$	H2 Z		67.7	4.29	566.30
	2132	\overline{H} N NH,	H2 N		54.5	2.98	426.29

			33!	9 -			
	·	R2 N N	0 R5	-			
5	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
	2133	H N NH,	2,70		70.1	3.85	488.31
10	2134	\overline{H} N \longrightarrow NH ⁵			57.1	4.5	462.36
	2135	$\overline{\overline{H}}$ N \longrightarrow NH,		5	83.2	4.61	459.35
	2136	\overline{H} N NH2			91.6	4.72	499.40
15	2137	$\overline{H}_{N} \sim \sim_{NH^2}$			80.7	3.94	441.32
	2138	\overline{H} N \longrightarrow NH ²			. 73.9	4.99	493.32
20	2139	\overline{H} N \longrightarrow NH2			77.5	4.95	485.37
٠	2140	\overline{H} N NHz		¥ 2 0	77.4	3.79	483.36
25	2141	$\frac{H}{N}$			66.1	4.62	515.38
	2142	H N NH ₂			70.1	3.49	375.33
30	2143	H N NH2			74.1	4.46	437.35
-	2144	H N NH,	\bar{v}		93.8	5.14	516.28
35	2145	H N NH,	<u>ō</u>		90.0	5.27	513.28 ·
	2146	H N NH	\bar{c}		81.4	5.58	553.30

			34	0 -			
		R2 N N	0 >(· .	
		s _//	R5			•	
5	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
	2147	H			78.6	5.02	495.27
-	2148	\overline{H}		7.	81.4	5.51	547.21
10	2149	\overline{H} N \longrightarrow NH,	ō		85.5	5.62	539.29
	2150	\overline{H}	<u>c</u> -	× .	78.9	4.86	537.28
15	2151	\underline{H}	- ا		83.2	5.76	569.28
	2152	\overline{H} MH t	§1	1	90.5	4.62	429.28
20	2153	\overline{H} MM,	٠	7	91.8	5.31	491.31
:	2154	\overline{H} N \longrightarrow NH,		○ .	60.4	4.47	462.33
25 [.]	2155	\overline{H}		05	83.6	4.62	479.31
· · ·	2156	H N NH,			79.1	4.72	519.34
30	2157	\overline{H} N NH ²			72.6	3.96	461.31
	2158	HI N NH,		FY ₀	75.7	5,0	513.27
35	2159	H NH,			79.3	4.99	505.34
	2160	H N NH;		QMe OMe	89.6	3.72	503.34

			34	1 -			
	·	R2 N N	N1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		993		
·			R5	<i>,</i>			
5	Ex.	R5	R2	R1 4	Purity (%)	rt (min.)	[M+H] ⁺
	2161	H NH,			89.6	4.7	535.32
	2162	\overline{H}			73.5	3.38	395.32
. 10	2163	\overline{H}			80.1	4.5.	457.32
	2164	\overline{H}_{M}	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		58.8	4.24	561.29
15	2165	\overline{H}_{M}	Z NO		77.9	4.16	558.27
	2166	\overline{H}	2750		85.5	4.42	598.29
20	2167	\overline{H}	2700		82.8	3.87	540.27
	2168	\overline{H}	Z 200	FLOCI	1.54	4.52	592.25
25	2169	\overline{H}	270		56.0	4.54	584.25
	2170	HH NH,	2/3/0	OM.	82.5	3.76	582.30
30	2171	H NH,		0.00	71.8	4.58	614.31
-	2172	H NH,	27.00		71.9	3.43	474.30
35	2173	\overline{H}^{N}	2,200		80.9	4.16	536.28
	2174	H N NH2		C.	61.9	4.76	510.36

	_		34	2 •	·		
		R2 N N	O R5		•		
5	Ex.	. R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
,	2175	\overline{H}			B3.1	4.93	507.35
-	2176	\overline{H}_{M}			92.0	4.99	547.36
10	2177	H N NH,			88.3	4.27	489.35
	2178	H N NH2			86.3	5.41	541.29
15	2179	\overline{H}_{M}			79.7	5.36	533.36
	2180	\overline{H}_{M}		QM ·	82.5	4.13	531.35
20	2181	\overline{H}_{M}			74.0	4.99	563.34
	2182	$\overline{H}_{MM^{1}}$			76	3.89	423.35
25	2183	H NH,			79.8	4.89	485.38

			34	13 -			
•		R2 N N	O R5		• •		
_	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H] ⁺
5	2184	\overline{H} N \longrightarrow NH,	Q.01		80.8	4.43	501.32
	2185	\overline{H} N \longrightarrow NH $^{\prime}$	20	, i	66.2	4.18	545.31
10	2186	H WWW.			64.6	5.18	569.27
	2187	$\overline{\mathrm{H}}$ M \sim MH i		0,N	57.2	4.78	589.30
15	2188	$\overline{\mathrm{H}}$ M $\sim\sim\sim$ MH $^{'}$	Q.O.	·	65.7	4.41	529.36
	218 <u>9</u>	\overline{H} $^{\mu}$ $^{\mu}$		CI	65.4	4.52	549.28
20	2190	$\overline{\overline{H}}$ M \sim	20		65.8	4.24	521.29
	2,191	\overline{H} N NH,			71.4	4.19	481.37
25	2192	$\overline{H}_{N} \sim \sim MH^{3}$	Qo.		83.9	4.8	577.32
	2193	\overline{H}_{M}			76.5	4.54	583.24
30	2194	\overline{H} M \sim MH 2	BY		67.2	4.76	473.22
-	2195	\overline{H} M	B',	QM:	66.6	4.69	517.20
35	2196	\overline{H} N $\overline{}$ NH 5	8#		71	5.2	541.18
	2197	\overline{H} N \longrightarrow NH 3	8,	0,1	69	4.73	561.15

- 344 -

_			- 34	4		<u> </u>	
		R2 N N N	O (R5			•	
	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
5	2198	$\overline{H}_{N} \sim \sim ^{MH^{2}}$			74.8	5.04	501.24
	2199	\overline{H} N \longrightarrow NH 1	a a	¢!	69.5	5.18	521.16
10	2200	$\overline{\overline{H}}^{N}$		\	79.3	4.8	493.18
	2201	$\overline{\mathbb{H}}$ N \sim NH,		<u></u>	74.9	4.79	453.24
15	2202	\overline{H} N $\sim\sim$ NH 1			68.9	5,41	549.20
	2203	\overline{H} N \longrightarrow NH 3	Br -	Ç	68	5.2	555.11
20	2204	$\overline{H}_{N} \sim \sim MH^{4}$		0	66	5.02	463.27
	2205	\overline{H} N \sim NH 1		QMe	62.2	4.83	507.28
25	2206	\overline{H} N \sim NH,		F	65.2	5.48	531.24
	2207	\overline{H} N \sim NH,		0,1	66.3	4.99	551.22
30	2208	\overline{H}_{N} NH.			72.9	5.22	491.31
	2209	\overline{H} M	1	cı	77.2	5.31	511.24
	2210	$\frac{H}{H}$ N \sim NH,	F F	Cs.	62.8	4.98	483.24
35	2211	\overline{H}_{M}			62.4	4.98	443.31

			34	45 -			
	·	R2 N N					•.
		s.//	R5	· ·	r		
	Ex.	R5	R2	. R1	Purity (%)	rt (min.)	[M+H]*
5	2212	<u>н</u> и~~~~ин,			69.6	5.55	539.29
	2213	\overline{H} N \longrightarrow NH,		Ci.	63.5	5,41	545.19
10	2214	\overline{H} N \longrightarrow NH 1			41.2	4.09	455.28 ·
	2215	\overline{H} N \longrightarrow NH 1		°Me	58.5	3.7 3	499.35
15	2216	\overline{H} N \longrightarrow NH,			68.8	4.78	523.28
	2217	\overline{H} N \longrightarrow NH $_{z}$		O,NO	36.2	4.37	543.28
20	2218	\overline{H} N \longrightarrow NH 1	0		42.9	4.1	483.36
	2219	\overline{H}_{N}		cı Ci	46.1	4.24	503.30
25	2220	\overline{H}_{N}		(S).	48.4	3.87	475.28
	2221	\overline{H} N \sim NH 1		<u></u>	39	3.8	435.34
30	2222	\overline{H}_{N}			48.3	4.55	531.30
-	2223	\overline{H} , \overline{H}		C1 .	47	4.33	537.20
35	2224	HN NH,			57.4	4.64	541.34
	2225	\overline{H}_{M}		Q M e	69.1	4.34	585.37

••			34	6 -	·		
		R2 N N	O —(R5				
	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
5	2226	<u>Н</u> м мн ⁵	20		64.6	5.36	609.35
-	2227	\overline{H} N \longrightarrow NH 1		0,N .	40.2	4.94	629.34
10.	2228	$\overline{\overline{H}}$ N NH ¹	20		62.6	4.57	569.3
	2229	· Hu WH'	Q.O.	cr.	68	4.72	589.31
15	2230	\overline{H} N \longrightarrow NH ²		\[\sqrt{s}\.	61.2	4.44	561.31
	2231	$\overline{\overline{H}}$ M $\overline{\overline{H}}$ M $\overline{\overline{H}}$ M $\overline{\overline{H}}$			61.2	4.37	521.36
20	2232	$\overline{\overline{H}}$ H \longrightarrow HH 2			80.7	5.02	617.37
•	2233	\overline{H}_{M}		C1 .	74.2	4.77	623.28
25	2234	\overline{H} N NH,	Br.		68.1	4.99	513.23
	2235	\overline{H} N NH,	Br	°M.	66.1	4.98	557.22
30	2236	H M NH,	Br.		68.8	5.38	581.20
	2237	\overline{H} N NH ¹	/Br	O,N	69.7	4.9	601.19
	2238	\overline{H}_{N}			67.1	5.27	541.23
35	2239	\overline{H} N \longrightarrow NH,		cr !	72.6	5.45	561.16

- 347 -

			- 34		·		
;		R2 N N N	O R5	,			
	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
5	2240	$\underline{\underline{H}}^{N}$	Pr	(s).	75.6	5.09	533.17
-	2241	$\overline{\underline{H}}$ $\overline{\underline{M}}$ $\overline{\underline{M}}$ $\overline{\underline{M}}$	`	<u></u>	. 74.6	5.08	493.26
10	2242	\overline{H} N \longrightarrow NH,			74.2	5.6	589.22
	2243	<u>Ħ</u> n NH,	-	C1 .	70	5.48	595.14
15	2244	HN NH,			63.2	5.24	503.32
	2245	$\overline{\underline{H}}$ NH2		ome	61.1	5.1	547.30
20	2246	HM NH1			63.3	5.65	571.25
	2247	\overline{H}_{M}		O,N	63.7	5.15	591.28
25	2248	\overline{H}_{M}			67.2	5.46	531.31
	22,49	\overline{H}_{M}		cr.	76	5.58	551.24
30	2250	HM NH,		5.	60.2	5.25	523.26
-	2251	HN NH'		<u></u>	58.8	5.24	483.3
35	2252	\overline{H}_{M}			72.1	5.76	579.31
<i>.,</i>	2253	. HM NH1		C1 .	65.2	5.66	585.20

÷		R2 N N N	O (R5				
	Ex.	R5	R2	· R1	Purity (%)	rt (min.)	(M+H)*
)	2254	₩ NH ²		·	36	4.36	495.33
	2255	H N NH,	-0	QMe	- 58.6	3.97	539.36
10	2256	$\underline{\underline{H}}^{N}$		F .	70	5,0	563.28
: :	2257	\overline{H} N NH ₂	0	0,N,O	50.2	4.55	583.28
15	2258	\overline{H} M 2	0		43.2	4.34	523.35
	2259	\overline{H}	-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	ci.	 52	4.53	543.29
20	2260	$\overline{\underline{H}} = \overline{\underline{M}} = \underline{$	0	\[\sqrt{s}\\ \cdot\ \c	52.1	4.16	515.30
	2261	$\overline{\underline{H}}$ N $\overline{\underline{\underline{H}}}$ N $\underline{\underline{\underline{H}}}$ N $\underline{$	0-0	<u></u>	46.2	4.07	475.38
25	2262	$\overline{\overline{H}}$ N NH ²			55.2	4.82	571.33
	2263	H ii NH²		Ci .	51.5	4.63	577.22

			34				
		R2 N N	R1 O				
\vdash	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H] ⁺
];	2264	H N H	J-:		81.1	4.49	465.35
	2265	H H H	+		84.1	4.7	481.36
2	2266	$\frac{1}{\kappa}$	H -	> .	65.7	4.78	445.36
[2267	H H	H		63.0	4.51	399.29
[2268	H	+		77.B	5.39	555.37
2	2269	\overline{H}		Ç'	78.5 	5.21	485.32
2	2270	$\overline{\overline{H}}_{N}$ $\overline{\overline{H}}$	H-		74.0	5.02	557.37
2	2271	$\overline{\overline{H}}$	-	M • 0	78.1	4.38	525.37
2	2272	$\overline{H}_{\overline{h}}$ \longrightarrow \overline{H}		00.	. 89.2	5.42	527.38
4	2273	H H			83.0	5.75	537.30
2	2274	<u>H</u>	<u>c</u>		67.8	5.87	525.21
	2275	H H	C C		83.2	5.75	541.16
[2276	H H H	CI	> .	71.9	6.11	505.25
	2277	<u>н</u>	c ₁		70.5	5.14	459.15

- 350 *-*

				- 350) -	· .		
		R2/	N	11 → 0		,		
			S//	R5		,		
	Ex.	1	R5	R2	R1	Purity (%)	rt (min.)	[M+H]*
5	2278	H,~~	Щ	CI CI		74.6	6.44	615.23
- :	2279	-	√√N H	CI CI		- 71.5	5.88	545.10
10	2280	N H	√√√ H			80.2	6.43	617.19
	2281	H~~	M H	c c c	M.O M.O	93.4	5.82	585.18
15	2282	H _A ~~	$\sim \frac{H}{N}$	<u>0</u>		74.9	6.28	587.19
	2283	H~~	√ <u>H</u>	<u>0</u>		68.3	6.24	597.14
20	2284	H,~~	<u>H</u>			65.8	4.02	463.35
÷	2285	H,~~	√ <u>H</u>			75.8	4.22	479.33
25	2286	H~~	$\sim \frac{N}{\overline{H}}$		≯ √.	69.0	4.21	443.37
	2287	H _N ~	✓✓✓N			4.2	4.36	397.33
. 30	2288	B HN~	<u>H</u>			82.7	4.74	553.37
* *	2289	, N	<u>H</u>		Şī .	89.8	· 4.62	483.29 . ·
25	2290		<u>Н</u>			77.2	4.52	555.33
35	229	1	<u>H</u>		MeO Me	69.3	3.98	523.35

2	5	1	

			- 35	1			· · · · · · · · · · · · · · · · · · ·
,		5	3.1				
		R2 N	\				
		\$	R5		r		
	Ex.	R5	R2 .	. R1	Purity (%)	rt (min.)	[M+H] ⁺
5	2292	H H		00	73.3	4.98	525.34
<u>.</u> .	2293	- H H			73.1	5.44	535.29
10	2294	H H	0,000		59.4	5.14	482.30
	2295	刊 			76.0	5.09	498.28
15	2296	H H	70.	> .	62.3	5.47	462.32
	2297	₩ ₩ ₩	20.		58.6	4.55	416.22
20	2298	H H	-0"		79.5	5.84	572.32
	2299	H H H		٠	74.9	5.3 ·	502.25
25	2300	H H	0,000		72.7	5.71	574.28
· · · · · · · · · · · · · · · · · · ·	2301	H H H	0.00	MeO	71.1	5.06	542.32
30	2302	₩ ₩ Ħ			73.0	5.66	544.29
-	2303	H H			64.6	5.62	554.24
35	2304	<u>n</u>			92.2	4.62	435.30
رو	2305	<u>√</u> - ·			90.1	4.67	451.29

- 352 -

			- 35	<u>2 · </u>			
× •			₹1				
		R2 N	,,,,				
		\$- //	·><	1		•	
		<u>٠</u>	R 5		•		
	Ex.	R5	R2	R1 :	Purity (%)	rt (min.)	[M+H] ⁺
5		H N		7			-
	2306			<i></i> .	84.3	4.76	415.32
:		H					
	2307	$N \rightarrow N - \frac{1}{2}$			43.7	4.34	369.27
;				-		#	
10	:		\mathcal{T}				
	2308	<u>``</u>			83.7	5.44	525.34
		H		Çı			
	2309	<u>~</u>			80.3	4.96	455.25
•		11					
15	2310	$\frac{\mathbb{H}}{\mathbb{N}}$ $ \cdot$			83.7	5.26	527.32
		H N		M.O.	7	-	
	2311	, —			82.8	4.64	495.34
		H_/					
20	2312	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $			94.1	5.44	497.32
		H		F =		,	
	2313	N 1			90.1	5.55	507.29
				Ţ			
•			ç _i				
25	2314	N - 1	c, Ci		64.7	5.62	495.16
:		11	Ç1	\$ 0. \(\sigma\)			:
	2315	n $ n-$			50.7	5.54	511.15
:			C1	,		·	
	2316	H			78.0	5.8	475.22
30	2510		CI		70.0	3.0	
,		H	, Çı .				
-	2317	N - N		i -	20.9	4.86	429.14
:		Н	CI CI				
	2318				79.2	6.27	585.15
25			CI			8	
35			Çı .	<u>[</u>]			
	2319	N - :			46.3	5.58	515.12
	<u> </u>		CI CI				

		R2 N	R1 /0				•
		s_	R5	: . •			
	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H] ⁺
5	2320	$\frac{1}{H}$	CI CI		84.1	6.23	587.20
	2321	N ·	CI CI	MeO OMe	91.1	5.64	555.18
10	2322	<u>n</u>	CI CI	00	67.8	6.07	557.22
	2323	<u>n</u>	CI		23.9	5.96	567.17
15	2324	<u>r</u>			68.1	4.02	433.40
	2325				65.6	4.2	449.38
20	2326	<u> </u>		> .	83.5	4.14	413.39
	2327	<u>z</u>			36.4	3.94	367.35
25	2328	, — ;			87.5	4.82	523.39
-	2329	- , - ;		-	65.1	4.42	453.33
30	2330				91.7	4.59	525.37
- .	2331	N.— .		MeO OMe	81.5	4.01	493.40
35	2332	, , , , , , , , , , , , , , , , , , ,		00.	73.9	4.96	495.39
رد	2333	м — ·			72.7	5.3	505.33

				<u>4</u>			
·		R2 N N	R1 O R5			,	•
	Ex.	R5	R2	. R1	Purity (%)	rt (min.)	[M+H]*
5	2334	$\frac{N}{H}$			79.9	4.93	452.35
<u>-</u> .	2335	<u>r</u>		· .	81.8	4.88	468.33
10	2336	<u>n</u>	2 0 0	> .	85.9	5.17	432.36
	2337	<u></u>	2-()-	•	36.2	4.25	386.28
15	2338	<u>n</u>			93.3	5.62	542.36
	2339.	$\frac{1}{H}$			76.5	4.96	472.3
20	2340	<u>n</u>			84.9	5.53	544.34
	2341	<u> </u>	2-{\bigcirc}	OMe MeO .	80.6	4.96	512.34
25	2342	<u>n</u>			79.6	5.42	514.35
	2343	<u> </u>	2		64.9	5.34	524.27

- 3<u>55 -</u>

- 355 -						
e.	R2 N	R 1	••		· .	
	\$	R5				
Ex.	R5	R2 ·	R1	Purity (%)	rt (min.)	[M+H]*
2344	H _N N _{H2}		<i>^</i> 0 <i>√</i> .	76.9	4.54	431.32
 2345	HN H2		~~~ .	80.7	5.47	457.38
 2346	HN H2		MeO	82.2	5.19	507.34
2347	HN H2			82.1	5.38	491.35
2348	HN A2			76.7	5.2	495.30
2349	HN H2			83.1	5.42	531.30
2350	HN H2			78.5	5.4	547.27
2351	HY H2			86.8	5.58	539.33
2352	HN H2		<u> </u>	79.3	5.37	469.38
2353	HN N2			83.1	5.18	499.31
2354.	HV N2	0.00	<i>^</i> ○` <i>`</i> .	82.3	4.32	422.33
2355	H. <u>N. M.</u>	No.	~~ .	78.2	5.26	448.39
2356	HY H2	No.	MeO	79.7	4.98	498.37
2357	H N H2	No.		80.0	5.2	482.38
		•				

2Ô

- 356 -

			- 35	56 -		· .	<u> </u>
		R2 N	R1		, ,		
	Ex.	R5	R2 .	R1	Purity (%)	rt (min.)	[M+H] ⁺
5	2358	H N H2	NO.		75.3	5,0	486.34
	2359	H, Ψ	20,		81.9	5.26	522.30
10	2360	H2	20.		77.7	5.25	538.29
	2361	HZ HZ	20,		83.9	5.4	530.35
15	2362	HY H2	No.	<u> </u>	81.8	5.16	460.38
	2363	H ¹ H2	, , , , , , , , , , , , , , , , , , ,		79.3	5.03	490.31
20	2364	H ¹ H2	в .	<i>></i> ° <i>∨</i> .	82.5	4.01	441.22
	2365	HY N	B	~~	80.6	4.98	467.28
25	2366		B .	MeO	82.7	4.72	517.25
	2367	H ^r M ₂	В		83.6	5,0	501.26
30	2368	HY M2	В		84.3	4.9	505.23
-	2369	H2	8		82.5	5.48	541.19
35	2370		в		86.6	5.5	557.19
	2371	N H H	8	3	85.4	5.53	549.24

2	_	7	_
J	J		-

,		R2 N N	R1				•
		\$	R 5	:			
· _	Ex.	R5	R2	R1.	Purity (%)	rt (min.)	[M+H] ⁺
5	2372	H N HZ	B .	\\ \tag{\chi}	82.3	4.9	479.30
10	2373	H N FIX	В		81.5	5.26	509.21
10	2374	H Z A		^ 0~~.	83.4	4.23	469.37
•	2375	H N H2		~~ .	82.3	4.94	495.40
15	2376	N N H2		меО	88.1	4.73	545.36
	2377	H N N		0	90.4	4.99	529.39
20	2378	h N			90.6	4.92	533.35
	2379	H ^N N _{H2}		F .	·85 <i>.</i> 2	5.62	569.33
25	2380	H N H2		-	84.2	5.6	585.33
-	2381	H N H2			85.0	5.54	577.38
30	2382	H N HZ			80.6	4.87	507.41
	2383	H2 H2			. 85.9	5.42	537.34
35	2384			~~ .	74.2	5.32	455.34
	2385	H N	" " " " " " " " " " " " " " " " " " "	MeO	92.3	5.1	505.32

		· · · · · · · · · · · · · · · · · · ·	<u>- 35</u>	8 -			
	2	R2 N N	R 1				
5	Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H] ⁺
*	2386	H Z Z Z			78.4	5.23	489.33
10	2387	H N			71.3	5.12	493.32
	2388	H N			74.4	5.32	529.27
	2389	H N			68.8	5.29	545.25
15	2390	\overline{Y}			77.7	5.44	537.33
	2391	H Z Z			80.7	5.24	467.36
20	2392	H Z			63.3	5.04	497.30
	2393	HZ T	, , , , , , , , , , , , , , , , , , ,	^	87.4	4.16	420.33
25	2394		20,	~~	82.7	5.12	446.38
•	2395		No.	MeO	82.4	4.88	496.35
30	2396	HZZ.	NO.		78.0	5.04	480.37
-	2397	H N .	NO ₂		75.9	4.9	484.33
35	2398	<u> </u>	202	F	71.5	5.16	520.29
	2399	H Z	NO2 .		65.4	5.12	536.30

			<u> </u>	35	9 -			
. :			D 0 / N / N	R1				
			R2 S	R5				·
5	E	 Ex.	R5	R2	R1	Purity (%)	rt (min.)	[M+H] ⁺
		400	Ħ.	NO ₂		76.0	5.28	528.33
10	24	401	THE SHEET STATES OF THE SH	NO.	, · ·	93.8	5.03	458.38
•	24	402	H Z	20.	F .	69 <i>.</i> 2	4.88	488.30
	24	403	H Z	В	<i>^</i> 0 <i>√</i> · .	68.3	3.88	439.23
15	24	404	H Z	в	~~ .	70.8	4.89	465.28
- ;	24	405	H Z	B .	MeO	76.2	4.72	515 <i>.</i> 23
20	24	406	H	в.	0	76.5	4.88	499 <i>.</i> 27
-	2	407	H	В		90.1	4.88	503.26
25	2	408	H Z	В	F	78.8	5.36	539.19
· · · · ·	2.	409	H. Z	В	-	76.1	5.31	555.17
30	2	410	H Z	B		80.5	5.29	547.22
	2	411	H Z	8		68.2	4.86	477.30
35	2	412	H .	8	-	55.7	5.1	507.20
	. 2	413	E Z		<i>^</i> 0 <i>√</i> .	69.2	4.12	467.36
						•		

	- 360 -						
		R2 N N	•				
			A5	· · · · · · · · · · · · · · · · · · ·	/		
5	Ex.	R5	. R2	R1	Purity (%)	rt (min.)	(M+H)*
	2414	H 2		· · · · · · · · · · · · · · · · · · ·	73.6	4.85	493.41
-	2415		0.0	MeO	73.9	4.72	543.36
10	2415		0.0	0.	73.4	4.87	527.39
	2417	H N N	00		90.6	4.92	531.36
15	2413	2			71.6	5.5	567.32
	2419	H	00		60.5	5.4	583.32
20	2420		00		50.8	5.29	575.36
	2421	H Z Z	0.0	<u> </u>	58.8	4.82	505.39
25	2422		O.C.		54.7	5.29	535.31

:

	•			- 31	61 -			
			N. Y.	Chiral				
5		R2		R10		,		
	Ex.	Ι.	R10 .	R2	1. R3	Purity (%)	rt (min.)	[M+H]+
-	2423	H ₂ N	H !		>-	79.8	3.66	476.30
10	2424	H ₂ N	<u>H</u> !			59.3	3.68	496.26
	2425	H _z N	\overline{H}		; <u>L</u>	60.5	4.2	580.22
15	2426	H ₂ N	<u>H</u> :			52.7	3.68	554.24
	2427	н,н	<u>H</u> .		>-	72.3	3.87	490.30
20	2428	H ₂ N	<u>H</u>			53. B	3,85	510.26
	2429	H.N	<u>H</u> ;		F. L. O	63.0	4.34	594.23
25	2430	H ₂ N	H - Z			54.1	3.82	568.25
	2431	H ³ M~	<u>H</u> :		>-	76.9	3.72 -	490.30
	2432	H ₁ N	<u>H</u> !			70.7_	3.73	510.26
	2433	н,н	<u>H</u> ;		[69.1	4.23	594.24
- 35	2434	н,и	<u>Н</u> ;			52.7	3.72	568.24
	2435	H,N_	<u>H</u> +			76.6	3.92	504.32
								•

		<u> </u>	- 362	2 - ·		<u> </u>	
		N.	C hiral				
			R10				٠
5		R2 N	_R3				
	Ex.	R10	_ R2 ·	· R3	Purity (%)	rt (min.)	[M+H]+
	2436	<u>H</u> H			64.8	3.9	524.28
10	2437	H ;		F. L.	66.2	4.37	608.24
	2438	<u>H</u> ;			59.3	3.86	582.27
15	2439	<u>H</u>		\\	74.3	3.9	544.32
. •	2440	<u>H</u> .			65.4	3.91	564.29
20	2441	<u>H</u>		F O	63.8	4.41	648.30
	2442	H .		COL	57.6	3.92	622.31
25	2443	<u>H</u>		>-	77.8	4.09	558.34
	2444	H			65.5	4.08	578.30
30	2445	H H		F F O	64.3	4.5	662.31
-	2446	<u>H</u> .			47.6	4.04	636.36
35	2447	H,N H			78.6	3.88	538.28
	2448	H ₂ N $\stackrel{\cdot}{\underbrace{H}}$			61.2	3.9	558.24
	L	<u> </u>					

- 363 -

				3 -			
		N	Chiral				•
			R10				
5		R2 N	_R3				
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	(M+H)+
10	2449	H ₂ N ${\underbrace{\underline{H}}}$ $\stackrel{N}{\underbrace{\underline{H}}}$		F L O	59.8	4 . 38.	642.27
10	2450	H,N H			48.4	3.88	616.30
	2451	H,N <u>H</u> :			79.9	4.06	552.28
15	2452	H ₂ N <u>H</u> ;			59.4	4.04	572.25
	2453	H,N <u>H</u> ;		F. J.	61.4	4.52	656.29
20	2454	H ₁ N <u>H</u> !			50.0	4.02	630.31
·	2455	· / / / / / / / / / / / / / / / / / / /			76.1	3.74	488.29
25	2456	$\begin{pmatrix} z \\ z \end{pmatrix}$			88.3	3.72	508.25
	2457	\(\bigcirc_{z}\)		F.L.	84.2	4.21	592.22
30	2458	2			82.1	3.71	566.24
-	2459	2		7	72.4	3.96	502.32
35	2460	2			88.5	3.89	522.27
	2461	\(\bigcirc \)		F.J.O	86.6	4.37	606.25
			•				

- 364 -

		<u>.</u>	- 36	4 -		<u> </u>	
		On .	Chiral	·	•		
5		R2 N N	R10		!		
	Ex.	R10	. R2	· R3	Purity (%)	rt (min.)	[M+H]+
	2462	H Z			77.2	3.8	·580.26
10			Chiral O	• •			
15		R2 N S	R10				
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	(M+H)+
	2463	H ₂ N $\underline{\underline{H}}$		\	86.6	3.96	487.31
20	2464	H _z N H ·			58.7	4	507.27
	2465	H ₂ N N H .		F LO	64.9	4.48	591.22
25	2466	H ₂ N H ;			40.3	4	565.25
	2467	H ^z N H ^z ,		>-	91.3	4.12	501.31
30	2468	H ₂ N $\overline{\underline{H}}$,			61.2	4.14	521.25
•	2469	H ₂ N N	- ·	F T O	62.4	4.62	605.25
35	2470	H ₂ N N			33.1	4.13	579.27
	2471	H ² N H		\\\	87.3	4.01	501.31

- 365 -

	- 365 -						 . 7
			Chiral O		•		
5		R2 N N	R10	•	.		
	Ex.	R10	. R2 1	R3	Purity (%)	rt (min.)	[M+H]+
	2472	H ₂ N	-		54.0	4.05	521.25
10	2473	H ₂ N		F To	69.1	4.51	605.26
	2474	H H			35.4	4.04	579.27
15	2475	\overline{H}		<u>\</u>	88.4	4.18	515.31
	2476	<u>H</u> ;			68.0	4.19	535.28
20	2477	<u>H</u>		F Lo	72.9	4.64	619.25
	2478	<u>H</u> ;			32.6	4.17	593.28
25	2479	™, <u>H</u>		>-	92.7	4.18	555.33
	2480	H .			59.4	4.24	575.29
30	2481	<u>H</u> .		F, O	71.8	4.72	659.33
	2482	H H			36.4	4.2	633.44
35	2483	NM, H		>-	92.4	4.36	569.34
رر :	2484	мм. <u>Н</u>			62.9	4,38	589.32
		1					

			. Chiral				•
			0				
			R10		1		
5		R2 N N	R3				
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
-	2485	<u>H</u>		F. C.	71.9	4.82	673.33
10.	2486	<u>H</u> .			32.2	4.36	647.19
	2487	H ₂ N <u>H</u>		>-	90.2	4.14	549.28
15	2488	H,N <u>H</u>			59.7	4.22	569.24
	2489	H,N H		F. T.	66.6	4.7	653.25
20	2490	H,IN H			34.5	4.22	627.27
	2491	H, N H		>-	91.3	4.32	563.30
25	2492	H ¹ N H			60.8	4.35	583.26
	2493	H ¹ N H H			73.3	4.8	667.27
30	2494	$H_1N \longrightarrow \overline{H}_1^N$			32.9	4.34	641.29
	2495			>-	60.4	3.94	499.30
25	2496				87.0	3.92	519.24
35	2497	Z-H		F_0 .	84.4	4.41	603.24

<u> </u>		- 30	·			
		Chiral				
	\bigvee_{N}	H10	· · · · · · · · · · · · · · · · · · ·	. •		
	R2 N	→ R3		/	·	
Ex.	R10	R2 *	R3	Purity (%)	rt (min.)	[M+H]+
2498	<u>z</u>			81.4 	3.94	577.26
2499	<u>z</u>		\	73.9	4.12	513.31
2500	H.			91.5)	4.09	533.26
2501	Z-H1		F CO	89.6	4.54	617.26
2502	<u>H</u>	-		85.4	4.09	591.27

		<u> </u>	- 300	<u> </u>			•
			`R10	1	·		
5		R2 N N	_R3	•			
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	(M+H]+
	2503	H,N NH		\	77.7	3.8	471.39
10	2504	<u>н</u> ,и <u>Н</u>			37.7	3.82	491.34
	2505	H ^T N H		cr .	79.7	4.09	525.28
15	2506	r'n ✓ H			58.5	4.23	541.33
	2507	**************************************		>-	84.6	4,0	485.38
20	2508	H.W.			73.2	4,0	505.34
	2509	H. N. N. N.		c. C.	. 82.3	4.25	539.29
25	2510	H,N H			74.2	4.37	555.34
	2511	H ² N N		>-	57.5	3.56	417.32
30	2512	H ₂ N H H			66.9	3.56	437.27
-	2513	H ₂ N N		cr	69.0	3.85	471.26
	2514	H ₂ N			71.1	4,0	487.33
35	2515	H ⁱ N H		7	76.4	3.76	431.34
	<u> </u>						

	3	69	-
--	---	----	---

			- 36	9			
		1	Chiral	·:			
		<u></u>]
			70.00		* .		
]	Ĭ	R10	1		•	
•		R2 N	_R3				
5		s			' .		
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
		H ² N N		(
	2516	H			67.8	3.75	451.30
10	0517	H ₂ N N			75 <i>.</i> 2	4.02	485.27
-	2517	$\dot{ar{ ext{H}}}$		c		1.02	-
-		H ² N N		(-	
	2518	<u> </u>			70.4	4.16	501.32
			•				
15		\	Chiral				
		Y	w.				
			R10				
		N N N	R3				
		R2 S		٠			•
20	Ex.	R10	F12	. R3	Purity (%)	rt (min.)	[M+H]+
		H ₂ N N _H			70.4	0.70	474 00
	2519	○ !≔			76.4	3.73	471.38
		H ⁴ N N	•				
	2520	I U			67.9	3.76	491.33
25						·	
	2521	H ₂ N <u>H</u>			75.0	4.04	525.28
	2521	-:-		cr	. 0.5		020.20
		H ₂ N N _{TT}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ ·			
	2522	H,N IH			71.2	4.17	541.34
						<u> </u>	
30 .	2523	H-M H			87.9	3.94	485.39
	2523	\					
		H ₁ N N	· ·				
*	2524	H C H			72.2	3.94	505.34
			<u> </u>		<u>.</u>		<u> </u>
35	0555	H'N \\		· .	. 82.1	4.2	539.30
				1 11 1		7.2	1005.00
	2525			cr		ļ.	1
	2525			cr ·			
	2525	H ₁ N ₁ H ₂		CH	80.9	4.33	555.34

			- 370	<u>) ,</u>			
			Chiral			•	
		9	•	•	•		
•		l,	R10	. •			į
	ı		R3		•		İ
_		R2 N	u2				Т.
5 .		5—					
	Ex.	R10	R2	1 R3	Purity (%)	rt (min.)	[M+H]+
	2527	I I H			70.7	3.51	417.32
		· · · · · · · · · · · · · · · · · · ·					
		H ² H N N T T				·	٠.
10	2528				50.3	3.52	437.28
		H ₂ N N					
	2529	H			72.4	3.8	471.26
				cr			
	2530	H ₂ N N	·		74.5	3.96	487.32
15	2330	H				0,00	
		H ₂ N N					
	2531	<u>‡H</u>			84.4	3.72	431.32
		H ^z N NII			·		
00	2532	H _N			68	3.71	451.29
20		H ₂ N NTT	1				
	2533	H''			89.6	3.98	485.26
•		•	T	Cr			
	050.	H ^z M MH	-		77.9	4.12	501.32
	2534	!-			17.9	4.12	501.52
25			Chiral	·			
			Chiral		•		
			<u>-</u>	*	٠		
			R10 =				
		R2 N N	-R3	· · ·			
30		``\$					
	Ex.	R10	/R2	Ř3	Purity (%)	rt (min.)	(M+H)+
-		H ² N H	-				505.5
	2535	\(\) !			84.7	3.83	505.34
		H,N~NH		-		·	
35	2536	H ² M H			75.2	3.89	525.30
		•			·		
		• •					

•			37	<u> </u>			
			Chiral		•		
	,						
		N N	`R10 -R3	1		•	
5		R2 S	·	· 	,	•	
	Ex.	· R10	R2	R3	Purity (%)	rt (min.)	(M+H]+
•	2537	H-M-V-H-			75.9	4.17	559.25
10	2538	H-IN H			70.4	4.29	575.30 -
	2539	H, M, M, H		>-	90.9	4.03	519.35
15	2540	<u>*</u> . №			71.5	4.04	539.31
	2541	×× ×HI.		cr	79.2	4.31	573.25
20	2542	i <u>H</u>			80.6	4.43	589.33
	2543	五元 人工工		7	77.2	3.62	451.30
25 .	2544	H. Z. Z. Z. L.			69.9	3.65	471.27
· · · · ·	2545	+144 - 144 -		cr	74.8	3.92	505.22
30	2546	五元 人			66.7	4.06	521.26
	2547	H.Z.			83.5	3.82	465.31
~	2548	H,N ,H			72.9	3.82	485.28
35	2549	H, N		cr ·	33.1	4.1	519.23

- 372 -Chiral R10 5 R3 Purity (%) rt (min.) [M+H]+ R2 R10 Ex. H,N. 51.2 4.22 535.28 2550 10 Chiral R2 15 rt (min.) [M+H]+ Purity (%) R2 RЗ R10 Ex. 79.8 521.33 3.45 2551 541.29 72.6 4.14 2552 3.79 575.24 63.7 2553 cr 3.93 591,31 73.8 2554 91.2 3.65 535.35 2555 νH 3.66 555.29 75.6 2556 30 589.26 78.3 3.94 2557 605.35 4.06 69.7 2558 H 3.22 467.29 69.1 2559

20

25

- 373 -

			37	3 -			
		ОН		• • •			
			Chiral				
			R10_	,			
5		R2 N N	R3	•			
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2560	H ₂ N W H		,	73.7	3.26	487.27
10		•					<u> </u>
	2561	H ³ N H			79.6	3.56	521.20
	2501	•		CI			
	2562	H _z N N H			73.5	3.72	537.27
	2302						* .
15	2563	H,N N			86.1	3.42	481.31
	2330						
	2564	H ² N NH			77.1	3.43	501.29
**.	2504	•					
20	2565	H ² N NH			83.0	3.73	535.22
	::	•		c			
	2566	H ⁴ N NH			71.9	3.86	551.28
		•					
25	. <i>.</i>				- 8		
			Chiral		•		
·			Rio	•	•		
•] .	R2 N	R3 -	•			
30		<u> </u>		, h			
	Ex.	R10,	R2	R3	Purity (%)	rt (min.)	[M+H]+
~	2567	H,N NH		>	82.0	3.99	535.3
35	2568	H'N NH			40.6	4.04	555.31
	2300	· !					
	0555	H ^z h h ^z h			47.5	4.31	589.26
	2569			cr	47.5	4.31	303.20
		<u> </u>					

_			- 374	<u> </u>			
			Chiral				
5			R10 R3		•		
		R2 S		١.			
	Ex.	R10	. R2	' R3	Purity (%)	rt (min.)	(M+H)+
10	2570	H²N H³N H			37.4	4.43	605.33
•	2571	H ^z N H H		>-	79.3	4.18	549.35
15	2572	H ^z N H H H			38.8	4.19	569.30
. •	2573	H³N I		c.	51.6	4.46	603.28
• • • • • • • • • • • • • • • • • • • •	2574	H ₄ N I E			36	4.55	619.35
20	2575	H ² N N		>-	61.4	3.77	481.30
	2576	H ² N 1			37.9	3.81	501.28
25	2577	H ^z N NI		cr .	45.6	4.08	535.21
· .	2578	H ² N N ¹			34.9	4.2	551.27
30	2579	H ³ N VI		>-	66.2	3.95	495.31
-	2580	H ² N N			44.8	3.96	515.25
35	2581	H ³ N		cr	54,4	4.23	549.24
	2582	H ₂ NN			36.5	4.34	565.28

			- 31				
			Chiral			•	
		V NI	`R10	,	·	1	
5		R2 N S	_R3		,		·
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
•	2583	H-in → H-i			52.2	3.91	465.24
10	2584	H-N H-I		Br	55.9	4	529.14
÷	2585	H-M H- H		>-	51.3	3.9	445.29
15	2586	H ₂ N H .		02N	57.4	3.9	510.24
	2587	H, N H +			54.3	4.04	479.28
20	2588	H ₂ N N H .		Br	61.7	4.12	543.15
	2589	H ₁ M H .			80.0	3.82	465.25
25	2590	H_1N H		0,1	61.6	3.85	530.20
-	2591	H,N H			61.1	3.97	499.25
30	2592	H,N H		Br	61.3	4.06	563.1
٠.	2593	H_{μ} , $\frac{H}{\mu}$.		>-	84.2	3.96	479.29
-	2594	$H_{N} \longrightarrow \frac{H}{N}$		0,1	58.8	3.98	544.20
35	L						(3)

					3	76 -			
				 '.	Chiral				
					`R10		, ,		
5	·	R2	$N \sim 1$		_R3		. ,		·
	Ex.		R10		· R2	1. R3	Purity (%)	rt (min.)	[M+H]+
•	2595	Н [*] Н	Q	<u>H</u> ,× .			61.5	4.1	513.26
10	2596	М .Н	Q	<u>H</u> ^^∼.		Br	65.5	4.19	577.1
		_	s	О Ц	Chiral				
15		R2	N S	Y N	R10 . _R3				·
	Ex.		R10		R2	R3	Purity (%)	rt (min.)	[M+H]+
20	2597	H ₂ N	~~~	(H).		0,1	28.6	3.7	514.16
20	2598	M _F H	~~ 	(社)			39.0	3.83	483.24
	2599	H ₂ N	~~~	Ĥ, ,		Br	39.9	3.92	547.1
25	2600	H ₂ N	~~	H +		>-	53.5	3.8	463.26
	2601	H ₂ N		H +		02N	28.8	3.83	528.19
30	2602	H _z N	\sim	Ĥ 'n			31.0	3.96	497.24
	2603	HZŅ	~~	H +		Br	34.0	4.05	561.1
35	2604	н,и^	Q	<u>H</u> .		>-	64.5	3.72	483.24

	0		- 37	7 -			
		.S.	Chiral	-			
			`R10		•	,	
		$N \longrightarrow N$	_R3	•	•		
5		R2 S		·			
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2605	H,N H		0,0	25.4	3.78	548.12
10	2606	H-M			36.8	3.9	517.20
•	2607	H ₁ N H		Br ·	31.2	4	581.1
15	2608	H ₂ N H.			72.8	3.86	497.24
	2509	H.N H.		02N	. 31.7	3.9	562.17
20	2610	H ₁ N H N			40.1	4.02	531.21
	2611	H,N H.		Br	38.2	4.12	595.1
	\$	·	Chiral			•	
25		он о І Л	75.0	·			
		N	_R10 R3		•		
		R2 N S	_H3	•			
-	Ex.	R10	- R2	R3	Purity (%)	rt (min.)	[M+H]+
30	2612	H ² N H H		>-	45.2	3.49	419.24
	2613	H,N H		>-	56.6	3.39	439,21
. 35	2614	H,N H.		>-	58.6	3.56	453.23
٠.							

٠,

j

				- 37	8 -			
				Chiral			,	
			\\\	R10				
5		R2	N = N	- R3				·
-	Ex.		R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
-	2615	H ₂ N				65.5	3.96	479.28
10	2616	H ₂ N	√√ H]		O2N .	50.5	4	544.19
	2617	н'n	H ;			55.7	4.11	513.26
15	2618	H _z N	H̄;		Br	55.5	4.2	577.13
	2519	H ₂ N	\overline{H}		>-	67.1	4.09	493.30
20	2620	H³N	<u>H</u> +	·	0,2N	53.7	4.11	558.20
	2621	H ₂ N	\overline{H}			55.5	4.22	527.27
25	2622	Η _N	H -		Br .	. 72.1	4.3	591.13
	2623	н,н	$\frac{H}{N}$.			81.1	4.02	513.26
30	2624	H ₁ M	$\frac{\underline{H}}{\underline{N}}$.		0,4	51.0	4.08	578.18
	2625	н,н	$\frac{H}{M}$.			54.1	4.17	547.21
35	2626	н,н	$\bigcup_{N} \frac{H}{N}$.		Br.	65.2	4.26	611.11
	2627	H ₂ N	<u>H</u> ,.			83.9	4.16	527.27

•			37	79 -			•
			Chiral				. •
)\	H10	• 100	,		
		R2 N S	R 3		• • • • • • • • • • • • • • • • • • • •		
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2628	M,M <u>H</u>		0,1	60.2	4.18	592.21
	2629	H,N H			63	4.3	561.21
	2630	H		Br .	74.0	4.36	625.11
			Chiral	8.0			
1			_	•			
	•	R2 N N	R10				•
	Ex.	R2 N N N N S N S N S N N N N N N N N N N	•	R3	Purity (%)	rt (min.)	[M+H]+
	Ex. 2631	R10 H,N H,N H,I	R3	P3	Purity (%) 83.1	rt (min.) 4.06	[M+H]+ 515.26
		R10	R3	P3			
	2631	R10 H,V H, I	R3	>	83.1	4.06	515.26
	2631 2632	R10 H,N \ \frac{\overline{H}}{-1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R3	>	83.1 57.8	4.06	515.26 580.20
	2631 2632 2633	$\begin{array}{c c} & & & \\ \hline &$	R3	0.10	83.1 57.8 37.4	4.06 4.13 4.22	515.26 580.20 549.23

64.3

37.0

4.22

4.32

594.19

563.25

35

2636

2637

H.

10

20

25

			- 38	0 -			
•			Chiral				
			R10		•		
5 .		R2 N N	R3				, i
	Ex.	R10	R2	РЗ	Purity (%)	rt (min.)	[M+H]+
	2638	H,N H,		Br	44.3	4.4	627.15
10	2639	H ₂ M $\frac{H}{N}$		\\ \tag{\}	86.9	4.14	549.23
	2640	$H_{r}M$ H		0.1	53.4	4.23	614.17
15	2641	H _N , N			37	4.3	583.21
	2542	$H_r V \longrightarrow \frac{H}{N}$		Br	45.7	4.4	647.11
20	2643	H _r N $\frac{H}{N}$		>-	88.9	4.24	563.25
	2644	H ₂ N H N		0.1	57.3	4.3	628.19
25	2645	H,N H			39.4	4.39	597.22
	2646	H ₂ N H N		Br	44.1	4.48	661.15
	*			· V			

		·	- 38	11			
		он (Chiral				. • •
		\longrightarrow	R10	:		· .	
		R2 N N	R3	•			
5		S		·	,	·	
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2647	ни мн,			25.6	3.18	495.23
10	2648	, JHNNH ⁷		CF.	33.1	3.59	533.15
	2649	, МИ		NC .	27.0	3	490.2
15	2650				33.6	3.14	562.16
	2651	HN NH2		P	27.2	3.36	509.21
20	2652	HN		OF,	32.5	3.76	547.16
	2653	, ми мн		NC .	29.7	3.2	504.2
·	2654	HN NH2			34.8	3.32	576.21
25	2655	, / 2 / 1			73.7	2.93	439.15
·	2656	$\left\langle \sum_{z}^{z}\right\rangle$, CF,	60.6	3.37	477.14
30	2657	,		NC .	65.1	2.7	434.1
	2658	, / T			69.3	2.92	506.14
35	2659	, _ Z _ I		°	72.5	3.14	453.17
	2660	- Z T		ČF3	77.2	3.55	491.14

		<u> </u>	- 38	2			
	8	OH C	Chiral			•	
			R10	• • • • • • • • • • • • • • • • • • •			
		R2 N N	_R3				
. 5	Ex.	S — 7	R2	R3	Purity (%)	rt (min.)	[M+H]+
T t	2661	HZ		NC	66.4	2.9	448.1
10	2662				65.9	3.14	520.15
			Chiral `R10			:	
15		R2 N N	-R3				
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2663 .:	НИ НИ			63.3 ·	3.82	555.21
20	2564	HN NH ₁		OF,	. 85.8	4.24	593.19
	2665	, HN NH ¹		NC.	87.5	3.8	550.2
25	2666	HN NH ₁			75.1	3.78	622.22
•	2667	HN		P	66.1	3.98	569.21
_ 30	2668	HN HH ₂		CF.	87.2	4.35	607.21
	2669	, HH NH ¹		NC .	82.9	3.9	564.2
35	2670	ни			79.1	3.94	636.25
	2671	Z _ I		9	62.0	3.55	499.18

			- 38	3			
			Chiral		· ·		
5	·	R2 N S	-R3				
	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
	2672	$\begin{pmatrix} z \\ z \end{pmatrix}$		ĊF,	82.2	3.93	537.14
10	2673	Z I		NC .	86.4	3.4	494.2
	2674	Z Z			90.4	3.52	566.15
15	2675			P	88.0	3.72	513;19
	2676			CF3	88.8	4.08	551.15
20	2677			NC .	88.9	3.6	508.2
	2678				93.6	3.7	580.17
25) Chiral				
		R2 N S	R10	,	· · · · · · · · · · · · · · · · · · ·		· · · · · ·
30	Ex.	R10	R2	R3	Purity (%)	rt (min.)	[M+H]+
- -	2679	HN NH _z		0	59.5	4	569.20
35	2680	. MN NH.		CF,	82.6	4.37	607.21
رد	2681	HN NH ₂		NC .	74.9	3.9	564.2

			- 38				
			Chiral R10		•		
5		R2 N S	_R3	1			
	Ex.	R10	R2	R 3	Purity (%)	rt (min.)	[M+H]+
	2718	нн Мн,			76:9	3.92	675.26
10	2719	$\left\langle \sum_{z=1}^{z}\right\rangle$			75.5	3.63	538.18
:	2720			ČF,	79.4	3.96	576.13
15	2721			NC .	73	3.5	533.2
	2722	$\begin{pmatrix} -z \\ z \\ z \end{pmatrix}$			·· 87.0	3.56	605.17
20	2723				81.8	3.8	552.18
	2724	$\begin{pmatrix} z \\ z \\ z \end{pmatrix}$		0 ""	80.1	4.11	590.15
25	2725			NC C	79.4	3.6	547.2
	2726	,	·		86.3	3.73	619.18

			- 388			
			C hir	al · :	•	
			_и мн			
5		R2 N N	_R3		·	
	Ex.	R2	_ R3 '	Purity (%)	rt (min.)	[M+H]+
- ·	2727		>	- 73.7	4.7	488.3
10	2728			87.1	4.2	508.2
٠	2729			90.3	4.3	522.3
.15	2730.		Br	78.2	4.5	586.1
	2731		, z	. 73	4.1	533.2
20	2732		CI .	86.4	4.5	542.2
	2733		F F	77.7	4.6	576.2
25	2734		F To C	80	4.7	592.2
	2735			, 76.4	4.9	644.2
30	2736			81.4	4.6	558.2
	2737			79.8	4.4	502.3
	<u> </u>					

	- 389 -								
		H	Chi	iral					
·			О МН		•				
· 5	:	R2 N S	R3						
	Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]+			
	2738			87.5 -	4.4	522.3			
10	2739			91.4	4.5	536.3			
	2740		B r	83.3	4.6	600.1			
15	2741		, , , , , , , , , , , , , , , , , , ,	82	4.3	547.2			
	2742		CI .	83.9	4.6	556.2			
20	2743		F	85.4	4.7	590.2			
	2744			85.2	4.8	606.2			
25	2745			82	4.3	658.2			
 . T.	2746			86.7 `	4.7	572.2			
30	2747		\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	31.6	4.3	506.3			
-	2748			71.1	4.3	526.2			
				•					

	- 390 -								
			Chi	ral	,				
			Д м мн		,				
5		R2 N S	R3						
	Ex.	R2	·_ R3	Purity (%)	rt (min.)	[M+H]+			
	2749			- 89,5 	4.4	540.2			
10	2750		B.	59.6	· 4.5	604.1			
	2751		2 -0	51.3	4.2	551.2			
15	2752	F	c _i	62.2	4.5	560.2			
, ·.	2753		F F	59.6	4.7	594.2			
20	2754		F. T.	63	4.7	610.2			
	2755		F F	52.5	4.9	662.2			
25	2756			67.8	4.6	576.1			
	2757		7.	81.1	4.6	516.3			
30	2758			85.8	4.5	536.3			
	2759			85.4	4.7	550.3			

	·	- 39	1		
	H	Chi	ral	٠	
ŀ					
-		ин ин			
	\longrightarrow				
	R2 N	R3	•		
	h2 's/				·
Ex.	R2	R3	Purity (%)	rt (min.)	[M+H]+
2760		Br.	76.6	4.7	614.1
	H	Chi	iral .		
1					
· [ни и			
	R2 N N	R3			
	s — '				
Ex.	R2	R3	Punty (%)	rt (min.)	[M+H]+
2761			77.2	4.4	561.2
2762			85.4	4.7	570.2
-	-	CI			
2763		F	79.7	4.8	604.2
2764			81.1	4.9	620.2
<u> </u>	-	F 0 0			
2765			79.2	5.1	672.2
2766			82	4.8	586.3

				- 392	<u></u>			
	:	ZH	·	Chir	al			
	; ;		R10		•			
5	. :	R2 N N	_R3	· 4 .		10.00		·
	Ex.	R2	- R10		R3	Purity (%)	rt (min.)	[M+H]+
•	2767		H ₂ N.	т Т		64.3	3.91	530.20
10	2768		H 2 N	-4-1 H		58.3	3.57	521.22
	2769		H ₂ N	- + - +	- L	66.7	4.03	564.20
15	2770		H ₂ N		0	65.1	3.71	541.19
	2771		H ₂ N	_ + - H	NC .	56.1	3.58	521.21
20	2772		H ₂ N ~	/± + 1		42.1	3.93	544.19
:	2773		H ₂ N	_ + z		34.6	3.59	535.22
25	2774		Hzn	~ + + ·	F F	46.9	4.05	578.21
	2775		H-14	- nH	0,000	33.3	3.73	555.19
30	2776		, H ² N	_ +	NC .	- 33.4	3.6	535.22
-	2777		H ₂ N			39.6	3.97	558.22

			·	393	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
		- H	C	hir	al			
			P10					
5		R2 N S	_R10 R3	٠		<u>,</u> *		
	Ex.	R2	R10	3.	R3	Purity (%)	rt (min.)	[M+H]+
. •	2778		- N ² N	H.		47.5	3.63	549.23
10	2779			Ħ H		50.3	4.09	592.23
			· · · · · · · ·	hir	al · `			·
15		R2 N N	R10					
	Ex.	R2	R10		R3	Purity (%)	rt (min.)	(M+H)+
20	2780		u u	н Н	NO.	40.6	3.76	569.19
	2781		H ₂ N	H .	NC .	42.7	3.63	549.25
25	2782		H ₂ N	'нн 		35.5	4,0	572.17
	2783		H ₂ N	ин 	Z Z	33.2	3.69	563.26
30	2784		н,и	'nн Н	F. F.	45	4.1	606.27
•	2785		н,и,	Ни`	0 2	36.0	3.82	583.23

	<u>·</u>							
	:	TH.		Chir	al :			
		$N \sim N$	R10	· ·				
5	÷	R2 S		3 ,			· ·	
	Ex.	R2	R10		R3	Pureté (%)	tr (min)	(M+H)+
-	2786		H ₂ N ~~~	^ νΗ •	NC .	27.1	3.7	563.26
·10	2787		H ₂ N	-+-		73.6	3.98	530.19
	2788		H ₂ N		Z Z	62.5	3.64	521.21
15	2789		H ₂ N	, , , ,	# # H	74.8	4.09	564.2
	2790		H ₂ N	, 4- Z		67.7	3.77	541.20
20	2791		H ₂ N	7 Z - + +	NC .	71.3	3.65	521.21
	2792		H _z N	- Н Н	61	52.4	4,0	544.18
25			D	Chi	ral			
		, N	R10		•			
		R2 S	R3			-		
30	Ex.	· 1R2	, R10		. R3	Purity (%)	rt (min.)	(M+H.]+
	2793		H ₂ N	_ NH	OZ.	47.0	3.65	535.22
		•		•				

		/ H	Chir	al	•		·
			R10		f		
5		R2 N N	_R3				
	Ex.	R2	R10	R3	Purity (%)	rt (min.)	[M+H]+
	2794		H2N		54.7	4.11	578.22
10	2795		H ₂ N N H	0,	43.7	3.79	555.20
	2796		H ^x N →	NC .	44.6	3.67	535.22
15	2797		н ₁ м		53.7	4.03	558.20
	2798		H ₂ N NH		51.0	3.69	549.23
20	2799		H ₂ N NH		56.5	4.15	592.23
	2800		, ht	70.	48.9	3.83	569.20
25	2801		H ₂ N NH	NC .	46.0	3.7	549.24
	2802		H ₂ N NH		41.2	-4,1	572.21
30	2803		H ₂ N NH	J. Z	36.7	3.76	563.26
-	2804		H ¹ N NH	F F	47.4	4.2	606.26
	<u> </u>	·	·				

			- 39	6 -			
	HZ N N	R10	Chi	ral .			
Ex.	R2	_ R10	`	R3	Purity (%)	rt (min.)	[M+H]+
2805		H ² N	^NH		37.0	3.89	583.22
2806		H _z N	∕ нн	20	37.3	3.76	563.26

		T.	*	hiral		
5		R2 N	NH NH		•	
	Ex.	R3	FI2	Purity (%)	rt (min.)	[M+H]+
10	2807	2		52.1	3.65	547.22
	2808	2	0-	61.7	3.61	563.24
	2809	2		54.1	3.91	561.26
15 ·	2810	Z 2		56.7	3.69	563.23
	2811) _ z		54.7	3.65	547.23
20	2812	, z		63.6	3.96	561.25
	2813	, z		66.1	4.13	575.26
25	2814	, z	+0-	34.9	4.29	589.29
	2815			69.3	3.66	563.24
30	2816	NC .		47.6	3.66	547.23
-	2817	NC .	P	41.4	3.61	563.23

		H	C	hiral		·
			NH NH			
5	• .	R2 N S	R3			
	Ex.	R3	R2	Purity (%)	rt (min.)	(M+H)+
10	2818	20		28.5	3.97	561.24
10	2819	20		56.4	3.71	563.23
•	2820	NC .		45.6	3.65	547.22
15	2821	NC .		62.6	3.99	561.24
	2822	NC .		42.0	4.17	575.26
20	2823	NC .		45.7	4.32	589.28
	2824	NC .	F	23.5	3.65	551.21
25	2825	NC .	-,	70.9	3.67	563.22

Some compounds according to the invention can be obtained according to method G described hereafter.

METHOD G

Synthesis in solution of 2-iminothiazole-4-carboxamide derivatives from monoprotected symmetrical diamines (Boc)

General procedure:

10

15

The monoprotected symmetrical diamine (Boc) (I equiv) is agitated overnight with an aromatic isothiocyanate (I equiv) at ambient temperature in an anhydrous solvent such as dioxane, dimethylformamide or chloroform., I equivalent of an inorganic base such as sodium or potassium hydrogen carbonate and I equivalent of ethyl bromopyruvate dissolved beforehand in an anhydrous solvent such as dioxane or dimethylformamide is successively added to the crude isothiourea intermediate. The mixture is then heated at 80 °C for I to 3 hours and the inorganic salts are eliminated by filtration. The solvents are evaporated off under vacuum and the residue is purified by flash chromatography on silica gel using an ethyl acetate / heptane gradient. Saponification of the ester intermediate is carried out in a solvent such as tetrahydrofuran using a IN solution of KOH, LiOH or NaOH. The mixture is agitated vigorously for 6 to 20 hours at ambient temperature then acidified with a IN aqueous solution of hydrochloric acid to pH 2.5.

The organic phase is extracted several times with dichloromethane then the organic phase is washed with water until neutral pH and dried over sodium sulphate.

A primary or secondary amine (1.1 to 2 equiv.) pre-dissolved in a anhydrous solvent such as dimethylformamide is added under argon to a solution of carboxylic acid intermediate (1 equiv.) and a peptide coupling agent such as DIC, DIC/HOBt, HATU or TBTU (1.1 to 2 equiv.), dissolved beforehand in an anhydrous solvent such as dimethylformamide,. The mixture is agitated overnight at ambient temperature. The solvent is evaporated off under vacuum and the residue purified by flash chromatography on silica gel using an ethyl acetate / heptane gradient. The carboxamide intermediate is diluted in a solvent such as dichloromethane or ethyl acetate and deprotected after passage through the solution of a current of dry hydrogen chloride for 1 to 6 hours at ambient temperature. The corresponding dihydrochloride is isolated either by filtration of the precipitate or, after evaporation under vacuum of the solvent, by adding diethylether for better crystallisation.

5

10

15

20

25

Preparation 25

ethyl (2Z)-3- $\{5-[(tert-butoxycarbonyl)amino]pentyl\}-2-[(3,5-dimethylphenyl)imino]-2,3-dihydro-1,3-thiazole-4-carboxylate (<math>C_{14}H_{15}N_3O_4S$; MM = 461.63)

N-Boc-1,5-diaminopentane (1.04 g; 5 mmol) is agitated with 3,5-dimethylisothiocyanate (824 mg; 5 mmol) in 10 ml anhydrous dioxane. 420 mg (5 mmol) of sodium hydrogen carbonate and 1.08 g (5 mmol) of ethyl bromopyruvate dissolved beforehand in 2 ml of anhydrous dioxane are successively added to the crude isothiourea intermediate. The mixture is then heated at 80 °C for one hour and the inorganic salts are eliminated by filtration. The dioxane is evaporated off under vacuum and the yellow residue is purified by flash chromatography on silica gel (eluent: ethyl acetate / heptane 2:8 then 3:7). A yellow oil (1.8 g; yield of 77.9%) corresponding to the expected compound is then isolated.

NMR ¹H (DMSO- d_6 , 400 MHz) δ : 7.23 (s, 1H); 6.71 (broad s, 1H); 6.65 (s, 1H); 6.54 (s, 2H); 4.26 (q, 2H, J = 6.4 Hz); 4.13 (t, 2H, J = 6.4 Hz); 2.9 (q, 2H, J = 6 Hz); 2.22 (s, 6H); 1.63 (m, 2H); 1.4 (m, 2H); 1.36 (s, 9H); 1.29-1.23 (m, 2H + 3H). MS/LC: m/z = 462.3 (M+H)⁺.

Preparation 26

5

10

15

(2Z)-3-{5-[(tert-butoxycarbonyl)amino]pentyl}-2-[(3,5-dimethylphenyl)imino]-2,3-dihydro-1,3-thiazole-4-carboxylic acid ($C_{n}H_{n}N_{3}O_{s}$; MM = 433.57)

The compound of Preparation 25 (1.77 g; 3.83 mmol) is dissolved in 20 ml of tetrahydrofuran and treated with 15 ml of a 1N aqueous solution of NaOH. The mixture is agitated vigorously for 6 hours at ambient temperature. The carboxylate is then acidified with a 1N aqueous solution of hydrochloric acid to pH 2.5. The aqueous phase is extracted with dichloromethane (4 x 50 ml) and the organic phases are washed with water until neutral pH and dried over sodium sulphate. A pale yellow solid is isolated (1.51 g; yield of 90.9%) after evaporation under vacuum of the solvents.

NMR ¹H (DMSO- d_6 , 400 MHz) δ : 13.28 (broad s, 1H); 7.16 (s, 1H); 6.69 (broad s, 1H); 6.65 (s, 1H); 6.54 (s, 2H); 4.17 (t, 2H, J = 7.2 Hz); 2.89 (q, 2H, J = 6.4 Hz); 2.22 (s, 6H); 1.63 (q, 2H, J = 6.8 Hz); 1.41 (m, 2H); 1.36 (s, 9H); 1.25 (m, 2H). MS/LC: m/z = 434.27 (M+H)⁺

Preparation 24

tert-butyl 5-[(2Z)-2-[(3,5-dimethylphenyl)imino]-4-{[(1-phenylpropyl)amino]carbonyl} -1,3-thiazol-3(2H)-yl]pentylcarbamate $(C_{31}H_{42}N_{4}O_{3}S; MM = 550.76)$

5 600 mg (1.38 mmol) of carboxylic acid of Preparation 26 are activated beforehand with 888 mg (2.76 mmol; 2 equiv.) of TBTU in 10 ml of anhydrous dimethylformamide for one hour. 410 μl (2.76 mmol; 2 equiv.) of α-ethylbenzylamine is then added and the mixture is agitated at ambient temperature overnight. After evaporation of the dimethylformamide, the crude residue is purified by flash chromatography on silica gel (eluent: ethyl acetate / heptane 4:6) in order to produce a white solid (498 mg; yield of 65.5%).

NMR 'H (DMSO- d_6 , 400 MHz) •: 9.00 (d, 1H, J = 8.4 Hz); 7.36-7.30 (m, 4H); 7,25-7.21 (m, 1H); 6.72 (t, 1H, J = 5.4 Hz); 6.67 (s, 1H); 6.63 (s, 1H); 6.53 (s, 2H); 4.77 (q, 1H, J = 8.8 Hz); 3.95 (m, 2H); 2.84 (q, 2H, J = 6 Hz); 2.21 (s, 6H); 1.74 (m, 2H); 1.51 (m, 2H); 1.36 (s, 9H); 1.31 (q, 2H, J = 7.2 Hz); 1.13 (m, 2H); 0.89 (t, 3H, J = 7.2 Hz). MS/LC: m/z = 551.44^{-1} (M+H)*.

15

Example 2826

(2Z)-3-(5-aminopentyl)-2-[(3,5-dimethylphenyl)imin σ]-N-(1-phenylpropyl)-2,3-dihydro-1,3-thiazole-4-carboxamide dihydrochloride (C₁₆H₂₁N₁OS.2HCl; MM = 523.57)

5 300 mg (0.54 mmol) of ten-butyl 5-[(2Z)-2-[(3,5-dimethylphenyl)imino]-4-{[(1-phenylpropyl)amino]carbonyl}-1,3-thiazol-3(2H)-yl]pentylcarbamate is dissolved in 15 ml of ethyl acetate. After bubbling anhydrous hydrogen chloride through the reaction medium for one hour at ambient temperature, the corresponding dihydrochloride salt precipitates. It is recovered by filtration and washed with diethyl ether in order to produce a white solid (268 mg; yield of 94.8%).

NMR 'H (DMSO- d_6 , 400 MHz) •: 9.48 (broad s, 1H); 8.03 (broad s, 3H); 7.39-7.32 (m, 5H); 7.25 (t, 1H, J = 7.2 Hz); 7.00 (m, 3H); 4.80 (q, 1H, J = 8.4 Hz); 4.33 (broad s, 2H); 2.70 (q, 2H, J = 6.8 Hz); 2.29 (s, 6H); 1.77 (m, 2H); 1.65 (m, 2H); 1.52 (m, 2H); 1.27 (m, 2H); 0.89 (t, 3H, J = 7.2 Hz).

15 MS/LC: $m/z = 451.35 (M+H)^{2}$.

According to method G, a series of compounds can be synthesized which include:

- the R1 and R2 groups already described for method A; and
- the R5 groups already described for method C.
- In particular, the compounds shown in the table below have been synthesised using method G.

		- 404				
	R2-N N N	1 2HCI O R5				-
Ex.	R1 :	R2	R5	Purity (%)	rt (min)	[M+H]*
2827	H ₂ N -		HN	69 + 27	4.57 + 4.73	477.33
2828	H ₂ N .		, MH	98	4.36	437.29
2829	H ₂ N .		, MA	98	4.37	437.33
2830	H ₂ N .		, z ,	98	3.72	423.37
2831	H ₂ N		H H H	. 99	3.73	423.37
2832	H ₂ N~~~.		HN	99	4.07	455.32
2833	H ₂ N~~.		HN	99	4.29	471.32
2834	H ₂ N~~.		HN	. 98	4.33	515.24
2835	H ₂ N .	P	, MN	99	3.87	451.34
2836	H ₂ N .	, P	HN	99	3.88	451.34
L						

PHARMACOLOGICAL PROPERTIES OF THE PRODUCTS OF THE INVENTION

The compounds of the present invention can and have been tested as regards their affinity for different sub-types of somatostatin receptors according to the procedures described below.

Study of the affinity for the sub-types of human somatostatin receptors:

10

15

25

30

The affinity of a compound of the invention on sub-types of human somatostatin receptors 1 to 5 (sst₁, sst₂, sst₃, sst₄ and sst₅, respectively) is determined by measurement of the inhibition of the bond of ["I-Tyr"]SRIF-14 to transfected CHO-K1 cells.

The gene of the sst₁ receptor of human somatostatin was cloned in the form of a genomic fragment. A segment *Pst*I-XmnI of 1.5 Kb containing 100 bp of the non transcribed 5' region, 1.17 Kb of the coding region in totality, and 230 bp of the non transcribed 3' region is modified by the addition of the linker Bg1II. The resulting DNA fragment is subcloned in the *BamH*I site of a pCMV-81 in order to produce the expression plasmid in mammals (provided by Dr. Graeme Bell, Univ. Chicago). A cloned cell line expressing in a stable fashion the sst₁ receptor is obtained by transfection in CHO-K1 cells (ATCC) using the calcium phosphate co-precipitation method. The plasmid pRSV-neo (ATCC) is included as selection marker. Cloned cell lines were selected in an RPMI 1640 medium containing 0.5 mg/ml of G418 (Gibco), followed by circular cloning and multiplication in culture.

The gene of the sst₂ receptor of human somatostatin, isolated in the form of a genomic fragment of DNA of 1.7 Kb BamHI-HindIII and subcloned in a plasmid vector pGEM3Z (Promega), was provided by Dr. G. Bell (Univ. of Chicago). The expression vector of the mammalian cells is constructed by inserting the BamHI-HindII fragment of 1.7 Kb in endonuclease restriction sites compatible with the plasmid pCMV5. A cloned cell line is obtained by transfection in CHO-K1 cells using the calcium phosphate co-precipitation method. The plasmid pRSV-neo is included as selection marker.

The sst₃ receptor is isolated as a genomic fragment, and the complete coding sequence is contained in a *BamHI/HindIII* fragment of 2.4 Kb. The expression plasmid in

mammals, pCMV-h3, is constructed by insertion of the NcoI-HindIII fragment of 2.0 Kb in the EcoR1 site of the vector pCMV after modification of the terminations and addition of EcoR1 linkers. A cloned cell line expressing in a stable fashion the sst3 receptor is obtained by transfection in CHO-K1 cells (ATCC) by the calcium phosphate co-precipitation method. The plasmid pRSV-neo (ATCC) is included as selection marker. Cloned cell lines were selected in an RPMI 1640 medium containing 0.5 mg/ml of G418 (Gibco), followed by circular cloning and multiplication in culture.

The expression plasmid of the human sst₄ receptor, pCMV-HX, was provided by Dr. Graeme Bell (Univ. Chicago). This vector contains the genomic fragment coding for the human sst₄ receptor of 1.4 Kb Nhel-Nhel, 456 bp of the non transcribed 5' region, and 200 bp of the non transcribed 3' region, cloned in the Xbal/EcoR1 sites of PCMV-HX. A cloned cell line expressing in a stable fashion the sst₄ receptor is obtained by transfection in CHO-K1 (ATCC) cells by the calcium phosphate co-precipitation method. The plasmid pRSV-neo (ATCC) is included as selection marker. Cloned cell lines were selected in an RPMI 1640 medium containing 0.5 mg/ml of G418 (Gibco), followed by circular cloning and multiplication in culture.

10

15

20

25

30

35

The gene corresponding to the human sst₅ receptor, obtained by the PCR method using a genomic λ clone as probe, was provided by Dr. Graeme Bell (Univ. Chicago). The resulting PCR fragment of 1.2 Kb contains 21 base pairs of the non transcribed 5' region, the coding region in totality, and 55 bp of the non transcribed 3' region. The clone is inserted in an EcoR1 site of the plasmid pBSSK(+). The insert is recovered in the form of a HindIII-Xbal fragment of 1.2 Kb for subcloning in an expression vector in mammals, pCVM5. A cloned cell line expressing in a stable fashion the sst₅ receptor is obtained by transfection in CHO-K1 cells (ATCC) by the calcium phosphate coprecipitation method. The plasmid pRSV-neo (ATCC) is included as selection marker. Cloned cell lines were selected in an RPMI 1640 medium containing 0.5 mg/ml of G418 (Gibco), followed by circular cloning and multiplication in culture.

The CHO-K1 cells which express in a stable fashion the human sst receptors are cultured in an RPMI 1640 medium containing 10% of foetal calf serum and 0.4 mg/ml of geneticin. The cells are collected with EDTA at 0.5 mM and centrifuged at 500 g for approximately 5 minutes at approximately 4°C. The pellet is resuspended in a Tris 50 mM buffer at pH 7.4 and centrifuged twice at 500 g for approximately 5 minutes at approximately 4°C. The cells are lysed by sonication then centrifuged at 39000 g for approximately 10 minutes at 4°C. The pellet is resuspended in the same buffer and centrifuged at 50000 g for approximately 10 minutes at approximately 4°C and the membranes in the pellet obtained are stored at -80°C.

The competitive inhibition experiments of the bond with [125I-Tyr11]SRIF-14 are carried out in duplicate in 96-well polypropylene plates. The cell membranes (10 µg protein/well) are incubated with [125I-Tyr11]SRIF-14 (0.05 nM) for approximately 60 min. at approximately 37 °C in a HEPES 50 mM buffer (pH 7.4) containing BSA 0.2 %, MgCl₂ 5 mM, Trasylol 200 KIU/ml, bacitricin 0.02 mg/ml and phenylmethylsulphonyl fluoride 0.02 mg/ml.

The bound [125I-Tyr¹¹]SRIF-14 is separated from the free [125I-Tyr¹¹]SRIF-14 by immediate filtration through GF/C glass fibre filter plates (Unifilter, Packard) pre-impregnated with 0.1 % of polyethylenimine (P.E.I.), using a Filtermate 196 (Packard). The filters are washed with 50 mM HEPES buffer at approximately 0-4 °C for approximately 4 seconds and their radioactivity is determined using a counter (Packard Top Count).

The specific bond is obtained by subtracting the non-specific bond (determined in the presence of 0.1 μ M of SRIF-14) from the total bond. The data relative to the bond is analyzed by computer-aided non-linear regression analysis (MDL) and the values of the inhibition constants (Ki) are determined.

15

Determination of the agonist or antagonist character of a compound of the present invention is carried out using the test described below.

Functional test: Inhibition of production of intracellular cAMP:

CHO-K1 cells expressing the sub-types of human somatostatin receptors (SRIF-14) are cultured in 24-well plates in an RPMI 1640 medium with 10% of foetal calf serum and 0.4 mg/ml of geneticin. The medium is changed the day preceding the experiment.

5	The cells at a rate of 10 ³ cells/well are washed twice with 0.5 ml of new RPMI medium comprising 0.2 % BSA completed by 0.5 mM of 3-isobutyl-1-methylxanthine (IBMX)
••••	and incubated for approximately 5 minutes at approximately 37 °C.
	The production of cyclic AMP is stimulated by the addition of 1 mM of forskolin (FSK) for 15-30 minutes at approximately 37 °C.
10	The inhibitory effect of the somatostatin of an agonist compound is measured by the simultaneous addition of FSK (1 μ M), SRIF-14 (10 ⁻¹² M to 10 ⁻⁶ M) and of the compound to be tested (10 ⁻¹⁰ M to 10 ⁻⁵ M).
15	The antagonist effect of a compound is measured by the simultaneous addition of FSK (1 μ M), SRIF-14 (1 to 10 nM) and of the compound to be tested (10 ⁻¹⁰ M to 10 ⁻⁵ M).
	The reaction medium is eliminated and 200 ml of 0.1 N HCl is added. The quantity of cAMP is measured by a radioimmunological test (FlashPlate SMP001A kit, New England Nuclear).

Results:

The tests carried out according to the protocols described above have demonstrated that the products of general formula (I) defined in the present Application have a good affinity for at least one of the sub-types of somatostatin receptors, the inhibition constant K_i being lower than micromolar for certain exemplified compounds, and in particular for the products shown in the table below.

	Formula of compound	K _i (nM)
	N _{H2} ÇF₃	< 200
5	CF ₃	
-10		
10	H2N CI NO ₂	< 200
	CI	
15	H2 N	< 200
20	N S H	
	<u>H2</u> N	< 200
25		
	H2 N	< 200
30	N H F	

Γ	Formula of compound	K _i (nM)
	NH2	< 200
5	S H	
10	$\frac{\text{H2}}{\text{N}}$	< 200
	S H CI	
15	CI'	< 200
20	S H	200
*	F F	·
25	N <u>H2</u>	
	S N N N N N N N N N N N N N N N N N N N	
30		

In addition to the compounds in the above tables, each of the compounds of Examples 2827 to 2836 also has a K_i constant lower than 200 nM.

5

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.