

NGS Genómica Funcional: Transcriptómica Formato y calidad de RNA-Seq

Dra. Selene L. Fernández-Valverde

Unidad de Genómica Avanzada Laboratorio Nacional de Genómica para la Biodiversidad Cinvestav, Irapuato regRNAlab.github.io

1/16/17

Objetivos de aprendizaje

En esta clase aprenderemos:

- Que tipo de datos obtenemos de un experimento de secuenciación masiva
- Que es el formato FastQ
- Como sabemos si los datos obtenidos tienen la calidad suficiente para ser analizados

Fuentes de error

- Existen dos fuentes principales de error:
 - Error humano: mezcla de muestras (en el laboratorio o cuando se recibieron los archivos), errores en el protocolo
 - Error técnico: Errores inherentes a la plataforma (e.g. secuencias de mononucleotidos en pyrosecuenciacion) Todas las plataformas tienen cierto de nivel de error que se debe tomar en cuenta cuando se esta diseñando el experimento.

Errores en preparación de la muestra

- Error del usuario (e.g. etiquetar equivocadamente una muestra)
- Degradación de ADN/ARN por métodos de preservación
- Contaminación con secuencias externas
- Baja cantidad de ADN de inicio

Errores en preparación de la librería

- Error del usuario (e.g. contaminar una muestra con otra, contaminar con reacciones previas, errores en el protocolo)
- Errores de amplificación por PCR
- Sesgo por (cebadores) primers (sesgo de unión, sesgo por metilación, dímeros de cebadores [primer dimers])
- Sesgo por captura (Poly-A, Ribozero)
- Errores de máquina (configuración errónea, interrupción de la reacción)
- Quimeras
- Errores de índice, adaptador (contaminación de adaptadores, falta de diversidad de índices, códigos (barcodes) incompatibles, sobrecargo)

Errores de secuenciación e imagen

- Error del usuario (e.g. sobrecarga de la celda)
- Desfase (e.g. extensión incompleta, adición de múltiples nucleótidos)
- Fluoróforos muertos, nucleótidos dañados y señales superpuestas
- Contexto de la secuencia (e.g. alto contenido de GC, secuencias homologas y de baja complejidad, homopolímeros).
- Errores de máquina (e.g. laser, disco duro, programas)
- Sesgos de cadena

El reto - diferenciar señales biológicas de ruido/errores

- Controles negativos y positivos ¿Qué espero?
- Réplicas técnicas y biológicas ayudan a determinar la tasa de ruido
- Conocer los tipos de errores comunes en determinada plataforma

El formato FastQ (.fastq)

Software de análisis de y control de calidad

- FastQC (http://www.bioinformatics.babraham.ac.uk/
 projects/fastqc/)
- RseQC (http://rseqc.sourceforge.net/)
- RNA-SeQC (https://www.broadinstitute.org/cancer/cga/rna-seqc)
- Picard (http://broadinstitute.github.io/picard/)

Otras medidas de control de calidad

- ¿Cuál es el gen mas expresado en mi muestra?
- ¿Tienen mis observaciones sentido con respecto a lo que se de mi sistema?
- ¿Algunas de las secuencias sobre representadas sugieren errores humanos o errores en el protocolo?
- ¿Qué tan similares/diferentes son mis réplicas?

Práctica - análisis de calidad usando FastQC

https://liz-fernandez.github.io/ Talleres_Bioinfo_Cuernavaca_17/