微分几何速查手册

微分几何笔记

Author

John Ji

目录

1	曲线	论	3						
	1.1	弧长参数下	4						
	1.2	非弧长参数下	5						
	1.3	曲面论基本定理	6						
	1.4	平面曲线	6						
2	曲面	论	6						
	2.1	正则参数曲面	6						
	2.2	第一基本形式	9						
	2.3	保长对应和保角对应	12						
	2.4	可展曲面	13						
3	曲面	的第二基本形式	14						
	3.1	第二基本形式	14						
	3.2	法曲率	15						
	3.3	Weingarten 映射和主曲率	17						
	3.4	主曲率和主方向	20						
4	曲面论基本定理								
	4.1	曲面的运动公式	22						
	4.2	Gauss-Codazzi 方程	23						
	4.3	Gauss 绝妙定理	24						
5	测地	曲率和测地线	25						
	5.1	测地曲率和测地挠率	25						
	5.2	测地线	26						
	5.3	测地坐标系	27						
	5.4	常曲率曲面	28						
	5.5	曲面上切向量的平行移动	28						

1 曲线论

Definition (弧长参数). 设 E^3 中的一条正则参数曲线 C 的参数方程为 $r = r(t), a \le t \le b$. 则参数曲线的弧长参数 s 为

$$s = \int_{a}^{b} |\boldsymbol{r}'(t)| dt.$$

两边同时求微分

$$ds = |\mathbf{r}'(t)|dt.$$

这里 s 和 ds 均是曲线的不变量, ds 称为曲线的**弧长元素**。

Proposition. 正则参数曲线 r(t) 中,参数 t 为弧长参数的特征为

$$|\boldsymbol{r}'(t)| = 1$$

Definition (曲率). 设曲线 C 的方程是 $\boldsymbol{r}(s)$, 其中 s 为弧长参数则定义曲线的 曲率为

$$\kappa(s) = \left| \frac{d\alpha(s)}{ds} \right| = |r''(s)|$$

向量 $\alpha(s)$ 称为曲线的曲率向量.

Proposition. 曲线 C 为一条直线当且仅当它的曲率为 0.

证明. 假设曲线 C 的方程为 r(s), 则其曲率 $\kappa(s) = 0$ 等价于

$$r''(s) = 0$$

上式等价于

$$r'(s) = a$$

其中 a 是一个常向量。从而该曲线的切向量为一个常向量,该曲线一定为一条直线。或者更进一步上式可以等价位为

$$r(s) = sa + b$$

其中 b 为一个常向量,这也说明了 C 是一条直线。

Definition (挠率). 设一条曲线 C 的方程为 r(s), 其主法向量为 $\beta(s)$, 其次法向量为 $\gamma(s)$, 曲线 C 的**挠率**定义为

$$\tau(s) = -\beta(s) \cdot \gamma'(s).$$

Proposition. 设曲线 C 不是直线, 则 C 为平面曲线, 当且仅当其挠率为 0.

证明. 分两个方向分别说明以上命题成立

必要性 如果曲线 C 为一条平面曲线,则可以得到其次法向量 $\gamma(s)$ 为一个常向量,从而 其切向量 $\gamma'(s) = 0$,则根据挠率的定义式可得

$$\tau(s) = -\beta(s) \cdot \gamma'(s) = 0$$

(其实这个方向也可以从挠率的几何意义得到, 挠率是描述其密切平面偏转速度的 度量)

充分性 设曲线 C 的方程为 r(s), 其 Frenet 标架为 $\{r(s); \alpha(s), \beta(s), \gamma(s)\}$, 如果其挠率 $\tau(s)=0$, 则

$$\gamma'(s) = -\tau(s)\beta(s) = 0.$$

则向量 $\gamma(s)$ 为一个常向量 γ_0 , 又因为 $\gamma(s) = \alpha(s) \times \beta(s)$, 从而

$$\frac{d\mathbf{r}(s)}{ds} \cdot \mathbf{\gamma}(s) = \frac{d\mathbf{r}(s)}{ds} \cdot \mathbf{\gamma}_0 = 0.$$

从而 $\mathbf{r}(s) \cdot \mathbf{\gamma}_0 = \mathbf{r}(s_0) \cdot \mathbf{\gamma}_0 = const$, 最终得到 $\mathbf{r}(s)$

$$(\boldsymbol{r}(s) - \boldsymbol{r}(s_0)) \cdot \boldsymbol{\gamma}_0 = 0.$$

则曲线 C 一定落在过 $r(s_0)$, 且以 γ_0 为法线的平面上.

1.1 弧长参数下

Frenet 标架

• 切向量: $\alpha(s) = r'(t)$

• 主法向量: $\boldsymbol{\beta}(s) = \frac{\boldsymbol{\alpha'}(s)}{|\boldsymbol{\alpha'}(s)|} = \frac{\boldsymbol{r''}(s)}{|\boldsymbol{r''}(s)|}$

• 次法向量: $\gamma(s) = \alpha(s) \times \beta(s)$

Definition. 将以 α , β , γ 为法线的平面定义为

• 法平面: $(X - r(s)) \cdot \alpha(s) = 0$.

• 从切平面: $(X - r(s)) \cdot \beta(s) = 0$.

• 密切平面: $(\boldsymbol{X} - \boldsymbol{r}(s)) \cdot \boldsymbol{\gamma}(s) = 0$.

Definition (Frenet 标架). 由以上三个向量为基底组成的标架 $\{r(s); \alpha(s)), \beta(s), \gamma(s)\}$ 称为曲线 r(s) 的 **Frenet 标架**。

Frenet 公式

$$\begin{pmatrix} \boldsymbol{\alpha}'(s) \\ \boldsymbol{\beta}'(s) \\ \boldsymbol{\gamma}'(s) \end{pmatrix} = \begin{pmatrix} 0 & \kappa(s) & 0 \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha}(s) \\ \boldsymbol{\beta}(s) \\ \boldsymbol{\gamma}(s) \end{pmatrix}$$

曲率

$$\kappa(s) = |\boldsymbol{\alpha}'(s)| = |\boldsymbol{r}''(s)|$$

挠率

$$\tau(s) = -\gamma(s) \cdot \beta(s) \tag{1}$$

$$\tau(s) = \frac{(\mathbf{r}'(s), \mathbf{r}''(s), \mathbf{r}'''(s))}{|\mathbf{r}''(s)|^2}$$
(2)

1.2 非弧长参数下

曲线 r(t) 其中 t 为一般参数, s = s(t) 为曲线的弧长参数。

$$\left|\frac{d\mathbf{r}}{ds}\right| = \left|\frac{d\mathbf{r}}{dt} \cdot \frac{dt}{ds}\right| = \left|\frac{d\mathbf{r}}{dt}\right| \cdot \frac{dt}{ds} = 1$$

从而 $s'(t) = |\mathbf{r}'(t)|$

Frenet 标架

- 切向量: $\alpha(t) = \frac{r'(t)}{|r'(t)|}$
- 主法向量: $\beta(t) = \gamma(t) \times \alpha(t)$
- 次法向量: $\gamma(t) = \frac{\mathbf{r}'(t) \times \mathbf{r}''(t)}{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}$

Remark. 非弧长参数求 Frenet 标架一般采取先计算 $\alpha(t)$, $\gamma(t)$ 的策略, 然后利用它们的外积计算出 $\beta(t)$:

$$\boldsymbol{\beta}(t) = \boldsymbol{\gamma}(t) \times \boldsymbol{\alpha}(t).$$

Frenet 公式

$$\begin{pmatrix} \boldsymbol{\alpha}'(t) \\ \boldsymbol{\beta}'(t) \\ \boldsymbol{\gamma}'(t) \end{pmatrix} = s'(t) \begin{pmatrix} 0 & \kappa(t) & 0 \\ -\kappa(t) & 0 & \tau(t) \\ 0 & -\tau(t) & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha}(t) \\ \boldsymbol{\beta}(t) \\ \boldsymbol{\gamma}(t) \end{pmatrix}$$

曲率

$$\kappa(t) = \frac{|\boldsymbol{r}'(t) \times \boldsymbol{r}''(t)|}{(s'(t))^3} = \frac{|\boldsymbol{r}'(t) \times \boldsymbol{r}''(t)|}{|\boldsymbol{r}'(t)|^3}$$

挠率

$$\tau(t) = \frac{(\boldsymbol{r}'(t), \boldsymbol{r}''(t), \boldsymbol{r}'''(t))}{|\boldsymbol{r}'(t) \times \boldsymbol{r}''(t)|^2}$$

1.3 曲面论基本定理

Theorem. 设 $r = r_1(t)$ 和 $r = r_2(t)$ 是 E^3 中的两条正则参数曲线,它们的曲率处处不为 0. 如果存在三次以上连续可微的函数 $u = \lambda(t), \lambda'(t) \neq 0$,使得这两条曲线的弧长函数、曲率函数和挠率函数之间满足:

$$s_1(t) = s_2(\lambda(t)), \ \kappa_1(t) = \kappa_2(\lambda(t)), \ \tau_1(t) = \tau_2(\lambda(t)).$$

则在 E^3 中存在刚体运动 σ 将曲线 $r_1(t)$ 映射为 $r_2(t)$.

Remark. 曲线的曲率 κ 和挠率 τ 可以在相差一个刚体运动的意义下确定曲线的形状.

1.4 平面曲线

Proposition. 平面曲线的参数方程为 r(s) = (x(s), y(s)), 则

- 单位切向量: $\alpha(s) = r'(s) = (x'(s), y'(s)).$
- 法向量: $\beta(s) = (-y(s), x(s))$.
- 相对曲率 $\kappa_r = \boldsymbol{\alpha}'(s) \cdot \boldsymbol{\beta}(s) = x'(s)y''(s) x''(s)y'(s)$.

非弧长参数下的相对曲率:

$$\kappa_r = \frac{x'(t)y''(t) - x''(t)y'(t)}{\sqrt{((x'(t))^2 + (y'(t))^2)^3}}$$

2 曲面论

2.1 正则参数曲面

曲面是一个将 E^2 中的一个区域 D 映射为 E^3 的一个连续映射:

$$S: D \to E^3$$
.

一般的一个曲面可以用参数方程表示为:

$$r = r(u, v) = (x(u, v), y(u, v), z(u, v)).$$

为了保证这个映射是一一对应的, 曲面必须为正则的.

Definition (正则参数曲面)**.** 设曲面的方程为 r(u,v), $p_0 = r(u_0,v_0)$ 为其上一点,则 p_0 点有两个切向量为:

$$m{r}_u(u_0,v_0) = \left. rac{dm{r}}{du}
ight|_{(u_0,v_0)}, m{r}_v(u_0,v_0) = \left. rac{dm{r}}{dv}
ight|_{(u_0,v_0)}$$

如果 $r_u(u_0, v_0)$ 与 $r_v(u_0, v_0)$ 是线性无关的,即 $r_u \times r_v|_{(u_0, v_0)} \neq 0$,则称曲线 S 在 p_0 点为**正则的**,如果曲面处处三次以上可微且点点均正则,则称为**正则参数曲面**.

Proposition (切平面).

$$\mathbf{X} = \mathbf{r}(u, v) + \lambda \mathbf{r}_u(u, v) + \mu \mathbf{r}_v(u, v)$$

Proposition (切平面的单位法向量).

$$\boldsymbol{n}(u,v) = \frac{\boldsymbol{r}_u(u,v) \times \boldsymbol{r}_v(u,v)}{|\boldsymbol{r}_u(u,v) \times \boldsymbol{r}_v(u,v)|}$$

Proposition (容许参数变换). 变换

$$\begin{cases} u = u(\tilde{u}, \tilde{v}), \\ v = v(\tilde{u}, \tilde{v}) \end{cases}$$

为曲面的容许参数变换, 如果

1. $u(\tilde{u}, \tilde{v}), v(\tilde{u}, \tilde{v})$ 均为三次以上连续可微函数;

$$2. \ \frac{\partial(u,v)}{\partial(\tilde{u},\tilde{v})} \neq 0.$$

Remark. 一般将正则参数曲面的 $r_u \times r_v$ 所指的方向定义为曲面的**正向**,容许 参数变换保持曲面定向的充分必要条件为:

$$\frac{\partial(u,v)}{\partial(\tilde{u},\tilde{v})} > 0$$

Definition (旋转面). 旋转面的参数方程一般为:

$$\mathbf{r} = \mathbf{r}(u, v) = (f(v)\cos u, f(v)\cos u, g(v)).$$

其中 $0 \le u \le 2\pi$, $a \le v \le b$. 通常旋转面的 u-曲线称为**纬线**, v-曲线称为**经线**.

直纹面

直纹面是一条直线在空间中运动产生的曲面,或者说是一个直线族。

Definition (直纹面). 直纹面的参数方程为

$$r(u, v) = a(u) + vl(u).$$

- 1. 曲线 r = a(u) 称为直纹面的**准线**.
- 2. 曲面的 v-曲线是一条直线, 称为直纹面的**直母线**.

Remark. 如果方向向量 l(u) 有固定的指向, 也即所有的直母线平行, 此时

$$\boldsymbol{l}(u) \times \boldsymbol{l}'(u) = \boldsymbol{0}.$$

这种直纹面称为柱面.

如果所有的直母线都过一个定点, 即存在一个连续可微的函数 $\lambda(u)$ 使得:

$$\boldsymbol{a}(u) + \lambda(u)\boldsymbol{l}(u) = \boldsymbol{r}_0.$$

这种直纹面称为锥面.

Proposition. 常见直纹面的参数方程:

- 柱面: r(u,v) = a(u) + vl
- 锥面: r(u,v) = a + vl(u)
- 切线面: r(u,v) = a(u) + va'(u)

Definition (平面的切向量). 曲面 S 上经过 p 的任一一条连续可微曲线在该点的切向量称为曲面 S 在 p 点的**切向量**.

对于正则参数曲面,任意一点的切向量都可以由该点的 r_u 和 r_v 线性表出,即任何切向量都可以表示为如下形式

$$a\mathbf{r}_u + b\mathbf{r}_v$$
.

Proposition. 曲面 S 在点 p 处正则的充分必要条件为: 在点 p, r_u 和 r_v 线性无关.

Definition (切平面和切空间). 在正则参数曲面 S 上一点 p, r_u 和 r_v 张成的线性空间称为 S 在点 p 的**切空间**, 记为 T_pS . 由切向量 r_u , r_v 张成的平面称为曲面 S 在点 p 的切平面,其参数方程为:

$$\boldsymbol{X}(\lambda,\mu) = \boldsymbol{r}(u,v) + \lambda \boldsymbol{r}_u(u,v) + \mu \boldsymbol{r}_v(u,v).$$

Definition (法线). 定义正则参数曲面 S 在点 p 处的法向量为

$$\boldsymbol{n}(u,v) = \frac{\boldsymbol{r}_u(u,v) \times \boldsymbol{r}_v(u,v)}{|\boldsymbol{r}_u(u,v) \times \boldsymbol{r}_v(u,v)|}.$$

过点 p, 且方向向量为 n 的直线定义为曲面 S 在点 p 处的法线, 参数方程为

$$X(t) = r(u, v) + tn(u, v).$$

2.2 第一基本形式

Definition (第一类基本量). 称

$$E(u, v) = \mathbf{r}_u(u, v) \cdot \mathbf{r}_u(u, v);$$

$$F(u, v) = \mathbf{r}_u(u, v) \cdot \mathbf{r}_v(u, v);$$

$$G(u, v) = \mathbf{r}_v(u, v) \cdot \mathbf{r}_v(u, v).$$

为曲面 S 的第一类基本量。通常记为矩阵

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix}.$$

Definition (第一类基本形式). 定义正则参数曲面 S 的第一类基本量为

$$\begin{split} I &= d\mathbf{r}(u, v) \cdot d\mathbf{r}(u, v) \\ &= E(du)^2 + 2Fdudv + G(dv)^2 \\ &= (du, dv) \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} du \\ dv \end{pmatrix}. \end{split}$$

第一类基本量不依赖于参数的选择,是曲面的不变量.

Theorem. 在正则参数曲面 $S: \mathbf{r} = \mathbf{r}(u,v)$ 上参数曲线网是正交曲线网的**充分必要**条件为

$$F(u,v) = 0.$$

证明. 由于 $F(u,v) = \mathbf{r}_u(u,v) \cdot \mathbf{r}_v(u,v)$, 则 $\mathbf{r}_u \perp \mathbf{r}_v$, 当且仅当

$$\boldsymbol{r}_u \cdot \boldsymbol{r}_v = F(u, v) = 0.$$

求正交轨线

Example. 求曲面

$$r = (v\cos u - k\sin u, v\sin u + k\cos u, ku).$$

的参数曲线的正交轨线,其中k>0为常数.

曲线的参数曲线即为 u-曲线和 v-曲线,求正交轨线的过程就是要求出与它们正交的曲线族。首先,求出曲线的第一基本量

$$\mathbf{r}_u = (-v\sin u - k\cos u, v\cos u - k\sin u, k)$$
$$\mathbf{r}_v = (\cos u, \sin u, 0).$$

于是

$$\begin{pmatrix} E & F \\ F & G \end{pmatrix} = \begin{pmatrix} v^2 + 2k & -k \\ -k & 1 \end{pmatrix}.$$

曲面的微元可以表示为

$$\delta \boldsymbol{r} = \boldsymbol{r}_u \delta u + \boldsymbol{r}_v \delta v.$$

u-曲线微元可以表示为

$$r_u \delta u$$
.

正交轨线曲线族在曲面上,则其微元表示与曲面相同

$$r_u \delta u + r_v \delta v$$
.

从而正交轨线族应该满足

$$(\mathbf{r}_u \delta u) \cdot (\mathbf{r}_u \delta u + \mathbf{r}_v \delta v) = 0.$$

从而 u-曲线的正交轨线族满足微分方程

$$E\delta u + F\delta v = 0.$$

同理可以得出 v-曲线的正交轨线族满足微分方程

$$F\delta u + G\delta v = 0.$$

对于所给例子, 其 u-曲线满足微分方程

$$(v^2 + 2k)du - kdv = 0.$$

分离变量得

$$du = \frac{k}{v^2 + 2k^2} dv.$$

从而

$$\sqrt{2}u + c = \arctan \frac{v}{\sqrt{2}k}.$$

于是, u-曲线经过点 (u_0, v_0) 的正交轨线为

$$v = \sqrt{2}k \tan \sqrt{2}(u - u_0) + v_0.$$

同理, v-曲线的正交轨线族满足

$$-kdu + 1 \cdot dv = 0.$$

从而经过点 (u_0, v_0) 的 v-曲线正交轨线为

$$v = k(u - u_0) + v_0.$$

Proposition (曲面上的曲线长度). 正则参数曲面 $S: \mathbf{r} = \mathbf{r}(u, v)$ 上一条连续可 微的曲线方程为

$$u = u(t), \quad v = v(t), \quad a \le t \le b.$$

则曲线的长度为

$$\begin{split} L &= \int_a^b |\boldsymbol{r}'(t)| dt \\ &= \int_a^b \sqrt{E\left(\frac{du(t)}{dt}\right)^2 + 2F\frac{du(t)}{dt}\frac{dv(t)}{dt} + G\left(\frac{dv(t)}{dt}\right)^2}. \end{split}$$

Proposition.

$$d\delta = \sqrt{EG - F^2} du dv.$$

称为曲面 S 的面积元素. 曲面 S 的面积为

$$A = \iint_D \sqrt{EG - F^2} du dv.$$

2.3 保长对应和保角对应

Definition (切映射). 假定映射 $\sigma: S_1 \to S_2$ 是三次以上的连续可微的. 则 σ 在 每一点 $p \in S_1$ 上诱导出一个从切空间 T_pS_1 到切空间 $T_{\sigma(p)}S_2$ 的一个线性映射

$$\sigma_{*p}: T_pS_1 \to T_{\sigma(p)}S_2,$$

称此映射为映射 σ 在点 p 的切空间 T_pS_1 上诱导的**切映射**.

Definition (保长对应). 设 $\sigma: S_1 \to S_2(S_1, S_2)$ 均为正则参数曲面) 是 3 次以上连续可微映射, 在任意一点 $p \in S_1$, 其切映射为

$$\sigma_{*p}: T_pS_1 \to T_{\sigma(p)}S_2.$$

如果 $\forall X \in T_pS_1$, 有

$$|X| = |\sigma_{*p}(X)|.$$

则称 σ 是从曲面 S_1 到 S_2 的**保长对应**.

Theorem (保长对应的充要条件). 设正则参数曲面 S_1, S_2 的第一基本形式分别 为 I_1, I_2 ,则 $\sigma: S_1 \to S_2$ 为保长对应的充要条件为

$$\sigma^* I_2 = I_1.$$

也即其第一基本量合同

$$\begin{pmatrix} E_1(u_1, v_1) & F_1(u_1, v_1) \\ F_1(u_1, v_1) & G_1(u_1, v_1) \end{pmatrix} = J \begin{pmatrix} E_2(u_2, v_2) & F_2(u_2, v_2) \\ F_2(u_2, v_2) & G_2(u_2, v_2) \end{pmatrix} J^T.$$

其中
$$J = \begin{pmatrix} \frac{\partial u_2}{\partial u_1} & \frac{\partial v_2}{\partial u_1} \\ \frac{\partial u_2}{\partial v_1} & \frac{\partial v_2}{\partial v_1} \end{pmatrix}$$
.

Theorem (曲面间存在保长对应的充要条件). 正则参数曲面 S_1 与 S_2 之间存在保长映射的充要条件为, 能够在曲面 S_1 和 S_2 上取适当的参数系, 都记为 (u,v), 且在这个参数系下 S_1 与 S_2 有相同的第一基本量, 即

$$\begin{pmatrix} E_1 & F_1 \\ F_1 & G_1 \end{pmatrix} = \begin{pmatrix} E_2 & F_2 \\ F_2 & G_2 \end{pmatrix}.$$

Definition (保角对应). 设 $\sigma: S_1 \to S_2(S_1, S_2)$ 为正则参数曲面) 是 S_1 到 S_2 的 ——对应, 且 σ 和 σ^{-1} 都是 3 次以上连续可微映射, 如果在每一点 $p \in S_1$ 上, σ 在 p 的切映射为

$$\sigma_{*p}: T_pS_1 \to T_{\sigma(p)S_2}.$$

满足 $\forall X, Y \in T_pS_1$ 都有

$$\angle(\boldsymbol{X}, \boldsymbol{Y}) = \angle(\boldsymbol{\sigma}_{*p}(X), \boldsymbol{\sigma}_{*p}(Y)).$$

则称 σ 为曲面 S_1 到 S_2 的**保角对应**.

Theorem (曲面间存在保角对应的充要条件). 设正则参数曲面 S_1, S_2 的第一基本形式分别为 I_1, I_2 , 则 $\sigma: S_1 \to S_2$ 为保角对应的充要条件为: 在曲面 S_1 上存在连续函数 λ ,使得

$$\sigma^* I_2 = \lambda^2 I_1.$$

如果正则参数曲面 S_1 和 S_2 之间存在保角对应,则可以取适当的参数系 (u,v),使得

$$\begin{pmatrix} E_1 & F_1 \\ F_1 & G_1 \end{pmatrix} = \lambda^2 \begin{pmatrix} E_2 & F_2 \\ F_2 & G_2 \end{pmatrix}.$$

Theorem. 两个正则参数曲面在局部上可以建立保角对应.

Definition (等温参数系). 在曲面 S 上能够使第一基本形式表示为如下形式的

$$I = \frac{1}{|\lambda|^2} (dx^2 + dy^2).$$

参数系 (x,y) 称为 S 的**等温参数系**.

2.4 可展曲面

Definition (可展曲面). 设 S 是直纹面. 如果曲面 S 的切平面沿每一条直母线都是不变的,则称该直纹面为**可展曲面**.

Theorem (可展曲面的充要条件). 设直纹面 S 的参数方程为 r = a(u) + vl(u), 则 S 是可展曲面的充要条件为: 向量函数 a(u), l(u) 满足方程

$$(\boldsymbol{a}'(u), \boldsymbol{l}(u), \boldsymbol{l}'(u)) = 0.$$

Theorem. 可展曲面在局部上是柱面、锥面和一条空间曲线的切线面,或者是用这三种曲面以充分连续可微的方式沿直母线拼接的结果.

Theorem (可展曲面的充要条件). 可展曲面在局部上可以和平面建立保长对应.

3 曲面的第二基本形式

3.1 第二基本形式

Definition (单位法向量). 曲面 $S: \mathbf{r} = \mathbf{r}(u, v)$ 在任意一点 (u_0, v_0) 处的切平面 的**单位法向量**为

$$m{n} = \left. rac{m{r}_u imes m{r}_v}{|m{r}_u imes m{r}_v|}
ight|_{(u_0,v_0)}$$

Definition (曲面的第二类基本量).

$$L = \boldsymbol{r}_{uu} \cdot \boldsymbol{n}$$

$$M = \boldsymbol{r}_{uv} \cdot \boldsymbol{n}$$

$$N = \boldsymbol{r}_{vv} \cdot \boldsymbol{n}.$$

由于 $\mathbf{r}_u \cdot \mathbf{n} = 0, \mathbf{r}_v \cdot \mathbf{n} = 0$, 第二类基本量还可以表示为

$$L = -\boldsymbol{r}_u \cdot \boldsymbol{n}_u$$

$$M = -\boldsymbol{r}_u \cdot \boldsymbol{n}_v = -\boldsymbol{r}_v \cdot \boldsymbol{n}_u$$

$$N = -\boldsymbol{r}_v \cdot \boldsymbol{n}_v.$$

Definition (曲面的第二基本形式). 将

$$II = d^2 \mathbf{r} \cdot \mathbf{n} = -d\mathbf{r} \cdot d\mathbf{n} = L(du)^2 + 2Mdudv + N(dv)^2.$$

称为正则参数曲面 S 的第二基本形式.

Remark. 第二基本形式在容许参数变化下不变, 是曲面的不变量.

Theorem. 一块曲面是平面的一部分, 当且仅当其第二基本量恒为 0.

证明. 一方面, 如果一个曲面是平面, 则其法向量场满足

是一个常向量场,则 $d\mathbf{n} = 0$,从而

$$II = -d\mathbf{r} \cdot d\mathbf{n} = 0.$$

另一方面,如果平面的第二基本形式为 0,则有

$$L = -\boldsymbol{r}_u \cdot \boldsymbol{n}_u = 0,$$

 $M = -\boldsymbol{r}_u \cdot \boldsymbol{n}_v = -\boldsymbol{r}_v \cdot \boldsymbol{n}_u = 0,$
 $N = -\boldsymbol{r}_v \cdot \boldsymbol{n}_v = 0.$

由于 n 是一个单位向量, 则有 $n \cdot n_v = n \cdot n_u = 0$.

因为 $\{\boldsymbol{r}_u, \boldsymbol{r}_v, \boldsymbol{n}\}$ 构成了 E^3 的标架, \boldsymbol{n}_u 与 \boldsymbol{n}_v 与标架中的每个向量内积均为 0, 则 $\boldsymbol{n}_u = \boldsymbol{n}_v = \boldsymbol{0}$. 这说明曲面的法向量场为常向量场 $\boldsymbol{n} = \boldsymbol{n}_0$. 因为 $d\boldsymbol{r} \cdot \boldsymbol{n} = 0$, 于是

$$d(\mathbf{r} \cdot \mathbf{n}) = d\mathbf{r} \cdot \mathbf{n} + \mathbf{r} \cdot d\mathbf{n} = 0.$$

因此 $r \cdot n$ 为一个常数. 从而

$$\boldsymbol{r}(u,v)\cdot\boldsymbol{n}_0=\boldsymbol{r}(u_0,v_0)\cdot\boldsymbol{n}_0.$$

即

$$(\mathbf{r}(u, v) - \mathbf{r}(u_0, v_0)) \cdot \mathbf{n}_0 = 0.$$

曲面为一个过点 (u_0, v_0) 且以 n_0 为法向量的平面.

Theorem (球面的充要条件). 一个正则参数曲面 S 为球面的一部分,当且仅当 $\forall P(u,v) \in S$ 有

$$II = cI$$
.

其中 c 不为 0.

3.2 法曲率

Definition (法曲率). 设曲面的 S 的参数方程为 $\mathbf{r} = \mathbf{r}(u,v)$, S 上的曲线 C 的 参数方程可以表示为

$$\boldsymbol{r} = \boldsymbol{r}(u(s), v(s)).$$

其中 s 为弧长参数. 曲线的单位切向量为 α , 其曲率向量为 α' , 则将曲线的**法曲率**定义为曲率向量在法向量上的投影

$$\kappa_n = \frac{d\boldsymbol{\alpha}}{ds} \cdot \boldsymbol{n} = \kappa \boldsymbol{\beta} \cdot \boldsymbol{n}.$$

Proposition. 如果设 $\angle(\beta, n) = \theta$, 则

$$\kappa_n = \kappa \cos \theta.$$

Definition (法曲率的等价定义). 设正则参数曲面 S 的参数方程是 r = (u, v), 其第一基本形式和第二基本形式分别为 I, II, 则

$$\kappa_n = \frac{\Pi}{\Pi} = \frac{L(du)^2 + 2Mdudv + N(dv)^2}{E(du)^2 + 2Fdudv + G(dv)^2}.$$

称为曲面 S 在点 (u,v) 处沿切方向 (du,dv) 的**法曲率**.

Definition (法截线与法截面). 曲面 S 在点 (u,v) 处由切方向 (du,dv) 与法向量 $\mathbf{n}(u,v)$ 决定了一个平面, 称为**法截面**; 在点 (u,v) 处, 以曲面的切向量 (du,dv) 为切方向的曲线, 称为曲面在该点的一条**法截线**.

Proposition. 对于法截线而言,由于其以 (du, dv) 为切方向,从而其主法向量 $\boldsymbol{\beta}$ 与曲面在 (u, v) 的法向量满足 $\boldsymbol{\beta} = \pm \boldsymbol{n}$,所以

$$\kappa = |\kappa_n|$$
.

如果对法截面定义正向, 假设以

$$(du, dv) \times \boldsymbol{n}$$

为法截面的正向,则有以下定理.

Theorem. 设曲面 S 在点 (u,v) 处沿切方向 (du,dv) 的法曲率为 κ_n ; 曲面由 (du,dv) 确定的法截线在相应的有向法截面上的平面曲线的相对曲率为 κ_r , 则

$$\kappa_n = \kappa_r$$
.

Definition (主曲率). 正则参数曲面在任意一个固定点, 其法曲率取最大值和最小值的方向称为曲面在该点的**主方向**, 相应的法曲率称为曲面在这点的**主曲率**.

Theorem (Euler 公式). 正交参数网下, 主方向与 u-曲线的夹角为 θ_0 和 $\theta_0 + \pi/2$. 主曲率分别为 κ_1, κ_2 , 则沿方向角为 θ 的切方向的法曲率为

$$\kappa_n(\theta) = \kappa_1 \cos^2(\theta - \theta_0) + \kappa_2 \sin^2(\theta - \theta_0).$$

Definition (渐进方向). 在曲面 S 上一点, 其法曲率为 0 的切方向称为曲面 S 在该点的**渐进方向**. 如果曲面 S 上一条曲线在每一点的切方向都是 S 的渐进方向, 则称该曲线是 S 的**渐进曲线**.

Theorem. 曲面上的参数曲线网是渐进曲线网的充分必要条件是

$$L = N = 0.$$

Theorem. 曲面上一条直线是渐进曲线, 当且仅当它是一条直线, 或者它的密切平面恰好是曲面的切平面.

证明. 曲面上一条曲线的法曲率为

$$\kappa_n = \kappa \cos \theta$$
.

其中 θ 是曲面的法向量 n 和曲线的主法向量 β 的夹角. 如果 $\kappa_n = 0$, 则 $\kappa = 0$ 或者 $\cos \theta = 0$, 如果 $\kappa = 0$ 处处成立,则曲线是一条直线,如果存在点的 $\kappa \neq 0$,那么在这一点 $\cos \theta = 0$,从而 $\theta = \pi/2$,从而 β 与 n 垂直,而密切平面以 β 为法向量,从而密切平面与曲面相切.

3.3 Weingarten 映射和主曲率

Definition (Weingarten 映射). 曲面 S 在 p 点的切空间为 T_pS , 定义 $T_pS \to T_pS$ 的线性映射 W, 其将

$$egin{aligned} oldsymbol{r}_u &
ightarrow -oldsymbol{n_u}, \ oldsymbol{r}_v &
ightarrow -oldsymbol{n_v} \end{aligned}$$

W 称为曲面 S 在点 p 的 Weingarten 映射.

Theorem. 曲面 S 的第二基本形式 II 可以用 Weingarten 映射表示为

$$II = W(d\mathbf{r}) \cdot d\mathbf{r}.$$

证明.

$$W(d\mathbf{r}) \cdot d\mathbf{r} = W(\mathbf{r}_u du + \mathbf{r}_v dv) \cdot d\mathbf{r}$$

= $-(\mathbf{n}_u du + \mathbf{n}_v dv) \cdot d\mathbf{r}$
= $-d\mathbf{n} \cdot d\mathbf{r} = II$.

Theorem. Weingarten 映射 W 是从切空间 T_pS 到它自身的**自共轭映射**,即对曲面 S 在点 (u,v) 的任意两个切方向 $d\mathbf{r}$ 和 $\delta\mathbf{r}$,有

$$W(d\mathbf{r}) \cdot \delta \mathbf{r} = d\mathbf{r} \cdot W(\delta \mathbf{r}).$$

Definition (特征值). 如果有非零切向量 dr 与实数 λ 使得

$$W(d\mathbf{r}) = \lambda d\mathbf{r}.$$

则 λ 称为 Weingarten 映射的**特征值**.

Proposition. 曲面沿特征向量 dr 的法曲率即为 Weingarten 映射在该点的特征 值.

$$\kappa_n = \frac{\mathrm{II}}{\mathrm{I}} = \frac{W(d\mathbf{r}) \cdot d\mathbf{r}}{d\mathbf{r} \cdot d\mathbf{r}} = \lambda.$$

Theorem. 正则参数曲面在每一点的 Weingarten 映射的两个特征值恰好是该曲面在这一点的主曲率, 对应的特征方向是曲面的主方向.

Theorem (Euler 公式). 设 e_1, e_2 是曲面 S 在点 p 处两个彼此正交的主方向的单位向量,对应的主曲率分别为 κ_1, κ_2 ,则曲面在 p 点沿任意一个切向量 $e = \cos \theta e_1 + \sin \theta e_2$ 的法曲率为

$$\kappa_n = \kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta.$$

Definition (脐点). 如果在点 p 有

$$\frac{E}{L} = \frac{F}{M} = \frac{G}{N}.$$

则 p 称为曲面的**脐点**.

Definition (曲率线). 设 C 为正则参数曲面 S 上的一条曲线, 如果曲线 C 在每一点的切向量都是曲面 S 在该点的主方向,则称曲线 C 为曲面 S 的一条**曲率 线**.

Proposition.

$$\begin{vmatrix} (dv)^2 & -dudv & (du)^2 \\ E & F & G \\ L & M & N \end{vmatrix} = 0.$$

对于定点 (u,v) 上式求的是主方向 (du,dv) 的方程, 对于动点 (u,v) 上述方程是 曲率线满足的微分方程.

Theorem (Rodriques 定理). 曲面 S: r = r(u,v) 上的一条曲线 C: u = u(t), v = v(t) 是曲率线的充分必要条件为: 曲面 S 沿曲线 C 的法向量场 n(u(t), v(t) 沿曲线 C 的导数与曲线 C 相切, 即

$$\frac{d \boldsymbol{n}(\boldsymbol{u}(t),\boldsymbol{v}(t))}{dt} / / \frac{d \boldsymbol{r}(\boldsymbol{u}(t),\boldsymbol{v}(t))}{dt}.$$

Theorem. 曲面 S 上的一条曲线 C 是曲率线的充要条件为: 曲面 S 沿曲线 C 的法线构成一个可展曲面.

证明. 设曲面 S 的参数方程为 $\mathbf{r} = \mathbf{r}(u, v)$, 曲线 $C \in S$ 上的一条曲线, 其方程为

$$r(s) = r(u(s), v(s)).$$

其中 s 为弧长参数, 设曲面 S 沿曲线 C 上的法向量为 $\mathbf{n}=\mathbf{n}(u(s),v(s))$, 则曲面 S 沿曲线 C 的法线构成的直纹面可以表示为

$$r = r(s) + tn(s)$$
.

由于 $\mathbf{n}(s)$ 为曲面的单位法向量, 则有 $\mathbf{n}(s)\cdot\mathbf{r}'(s)=0$, $\mathbf{n}(s)\cdot\mathbf{n}'(s)=0$, 从而 $\mathbf{n}(s)//\mathbf{r}'(s)\times\mathbf{n}'(s)$, 设

$${m r}'(s) imes {m n}'(s) = \lambda {m n}(s).$$

由于曲面为可展曲面的充要条件为

$$(\mathbf{r}'(s), \mathbf{n}(s), \mathbf{n}'(s)) = 0.$$

带入 n(s) 得

$$0 = (\mathbf{r}'(s), \mathbf{n}(s), \mathbf{n}'(s))$$

$$= -(\mathbf{r}'(s) \times \mathbf{n}'(s)) \cdot \mathbf{n}(s)$$

$$= -\lambda \mathbf{n}(s) \cdot \mathbf{n}(s)$$

$$= -\lambda$$

从而 $\mathbf{r}'(s) \times \mathbf{n}'(s) = 0$, 即 $\mathbf{r}'(s)//\mathbf{n}'(s)$. 最终有

曲面 S 沿曲线 C 的法线构成可展曲面 \iff $r'(s)//n'(s) <math>\iff$ 曲线 C 为曲率线.

3.4 主曲率和主方向

Definition (Gauss 曲率和平均曲率).

$$\kappa_1 + \kappa_2 = 2H = \frac{LG - 2MF + NE}{EG - F^2}.$$

$$\kappa_1 \kappa_2 = K = \frac{LN - M^2}{EG - F^2}.$$

把 $H = \frac{1}{2}(\kappa_1 + \kappa_2)$ 称为**平均曲率**, 把 $K = \kappa_1 \kappa_2$ 称为 Gauss 曲率.

Proposition (张量记号下的 Gauss 曲率和平均曲率).

$$H = \frac{1}{2} b_{\alpha\beta} g^{\alpha\beta}$$

$$K = \frac{b}{g}$$

Proposition (计算主方向). 曲面的 r(u,v) 的主方向可以由下列公式计算

$$\frac{du}{dv} = -\frac{b_{12} - \kappa_1 g_{12}}{b_{11} - \kappa_1 g_{11}} = -\frac{b_{22} - \kappa_1 g_{22}}{b_{12} - \kappa_1 g_{12}}.$$

和

$$\frac{du}{dv} = -\frac{b_{12} - \kappa_2 g_{12}}{b_{11} - \kappa_2 g_{11}} = -\frac{b_{22} - \kappa_2 g_{22}}{b_{12} - \kappa_2 g_{12}}$$

Theorem. 在曲面 $S: \mathbf{r} = \mathbf{r}(u,v)$ 上任意一固定点 (u,v), **参数曲线方向是彼此正交的主方向**当且仅当在该点有

$$F = M = 0.$$

此时, u-曲线方向的主曲率为 $\kappa_1 = L/E$, v-曲线方向的主曲率为 $\kappa_2 = N/G$.

Theorem (直接推论). 在曲面 S 上,参数曲线网是正交的曲率线网的充要条件为 $F=M\equiv 0$.

此时曲面的两个基本形式分别为

$$I = E(du)^{2} + G(dv)^{2},$$

$$II = \kappa_{1}E(du)^{2} + \kappa_{2}G(dv)^{2}.$$

Theorem. 在正则参数曲面 S 的每一个非脐点的一个邻域内存在参数系 (u,v),使得参数曲线构成正交的曲率线网.

Proposition (Weingarten 映射在自然基底下的矩阵).

$$W \begin{pmatrix} \boldsymbol{r}_u \\ \boldsymbol{r}_v \end{pmatrix} = \frac{1}{EG - F^2} \begin{pmatrix} LG - MF & -LF + ME \\ MG - NF & -MF + NE \end{pmatrix} \begin{pmatrix} \boldsymbol{r}_u \\ \boldsymbol{r}_v \end{pmatrix}.$$

Remark. 将 Weingarten 映射的矩阵记为 W,则曲面的平均曲率 H 和 Gauss 曲率 K 满足

$$2H = Tr(W)$$

$$K = \det(W)$$

4 曲面论基本定理

4.1 曲面的运动公式

Definition (Einstein 记号). 用 $g_{\alpha\beta}$ 和 $b_{\alpha\beta}$ 表示曲面的第一类基本量和第二类基本量

$$g_{lphaeta}=m{r}_{lpha}\cdotm{r}_{eta},$$
 $b_{lphaeta}=m{r}_{lphaeta}\cdotm{n}=-m{r}_{lpha}\cdotm{n}_{eta}=-m{r}_{eta}\cdot r_{lpha}.$

曲面的两个基本形式可以表示为

$$I = g_{\alpha\beta}du^{\alpha}du^{\beta}, II = b_{\alpha\beta}du^{\alpha}du^{\beta}.$$

此外,记

$$g = \det(g_{\alpha\beta}) = g_{11}g_{22} - (g_{12})^2,$$

 $b = \det(b_{\alpha\beta}) = b_{11}b_{22} - (b_{12})^2.$

Gauss 记号	u	v	$m{r}_u$	$oldsymbol{r}_v$	E	F	G	L	M	N
Tensor mark	u^1	u^2	r_1	$oldsymbol{r}_2$	g_{11}	g_{12}	g_{22}	b_{11}	b_{12}	b_{22}

表 1: 高斯记号与张量记号对照表

Definition (曲面的运动公式). 曲面 S 上的自然标架场 $\{ {m r}; {m r}_1, {m r}_2, {m n} \}$ 的运动公式为

$$egin{aligned} rac{\partial m{r}}{\partial u^lpha} &= m{r}_lpha, \ rac{\partial m{r}_lpha}{\partial u^eta} &= \Gamma^\gamma_{lphaeta}m{r}_\gamma + b_{lphaeta}m{n}, \ rac{\partial m{n}}{\partial u^eta} &= -b^\gamma_etam{r}_\gamma \end{aligned}$$

其中 $b^{\gamma}_{\beta} = g^{\gamma\xi}b_{\xi\beta}$.

Definition (Christoffel 记号).

$$\Gamma^{\gamma}_{\alpha\beta} = \frac{1}{2} g^{\gamma\xi} \left(\frac{\partial g_{\alpha\xi}}{\partial u^{\beta}} + \frac{\partial g_{\xi\beta}}{\partial u^{\alpha}} - \frac{\partial g_{\alpha\beta}}{\partial u^{\xi}} \right).$$

Theorem (曲面的唯一性定理). 设 S_1, S_2 是定义在同一个参数区域 $D \subset E^2$ 上的两个正则参数曲面. 若在每一点 $(u^1, u^2) \in D$, 曲面 S_1 和 S_2 都有相同的 I 和 II, 则曲面 S_1 和 S_2 在空间 E^3 中的一个刚体运动下是重合的.

Theorem. 设 S_i , i=1,2 是空间 E^3 中的两个正则参数曲面, 其第一基本形式和第二基本形式分别为 I_i , II_i . 如果有光滑映射 $\sigma: S_1 \to S_2$, 使得

$$\sigma^* I_2 = I_1, \ \sigma^* II_2 = II_1.$$

则曲面 S_1, S_2 在 E^3 中的一个刚体运动下是重合的.

Proposition (第一类基本量的 Riemann 记号).

$$R_{\alpha\beta\gamma}^{\delta} = \frac{\partial}{\partial u^{\gamma}} \Gamma_{\alpha\beta}^{\delta} - \frac{\partial}{\partial u^{\beta}} \Gamma_{\alpha\gamma}^{\delta} + \Gamma_{\alpha\beta}^{\eta} \Gamma_{\eta\gamma}^{\delta} - \Gamma_{\alpha\gamma}^{\eta} \Gamma_{\eta\beta}^{\delta}.$$

称为曲面 S 的第一类基本量的 Riemman 记号.

4.2 Gauss-Codazzi 方程

Definition (Gauss 方程).

$$R_{\alpha\beta\gamma}^{\delta} = b_{\alpha\beta}b_{\gamma}^{\delta} - b_{\alpha\gamma}b_{\beta}^{\delta}.$$

or

$$R_{\alpha\delta\beta\gamma} = b_{\alpha\beta}b_{\delta\gamma} - b_{\alpha\gamma}b_{\delta\beta}.$$

称为 Gauss 方程, 是曲面的第一类基本量与第二类基本量必须满足的相容条件.

Proposition. 由 Gauss 方程可以得出 Riemann 记号有下列对称性

$$R_{\alpha\delta\beta\gamma} = R_{\beta\gamma\alpha\delta} = -R_{\delta\alpha\beta\gamma} = -R_{\alpha\delta\gamma\beta}$$

$$R_{11\beta\gamma} = R_{22\beta\gamma} = R_{\alpha\delta11} = R_{\alpha\delta22} = 0$$

Definition (Codazzi 方程).

$$\frac{\partial b_{\alpha\beta}}{\partial u^{\gamma}} - \frac{\partial b_{\alpha\gamma}}{\partial u^{\beta}} = \Gamma^{\delta}_{\alpha\gamma} b_{\delta\beta} - \Gamma^{\delta}_{\alpha\beta} b_{\delta\gamma}.$$

称为 Codazzi 方程.

Proposition (正交参数曲率网下的 Codazzi 方程).

$$\begin{split} \frac{\partial L}{\partial v} &= H \frac{\partial E}{\partial v} \\ \frac{\partial N}{\partial u} &= H \frac{\partial G}{\partial u}. \end{split}$$

其中 $H = \frac{1}{2} \left(\frac{L}{E} + \frac{N}{G} \right)$, 是曲面的平均曲率.

4.3 Gauss 绝妙定理

Theorem (Gauss 绝妙定理). 曲面的 Gauss 曲率仅依赖于曲面的第一基本形式 I.

Proposition. 任何两块具有相同 Gauss 曲率的平面之间可以建立保长对应.

Proposition.

$$K = -\frac{1}{\sqrt{EG}} \left(\left(\frac{(\sqrt{G})_u}{\sqrt{E}} \right)_u + \left(\frac{(\sqrt{E})_v}{\sqrt{G}} \right)_v \right)$$

Proposition (等温参数系下的 Gauss 曲率). 特别的,如果曲面 S 取等温参数 系 (u,v), 其第一基本形式为

$$I = \lambda^2 ((du)^2 + (dv)^2).$$

其 Gauss 曲率为

$$K = -\frac{1}{\lambda} \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right) \log \lambda.$$

Theorem. 空间 E^3 中一块无脐点的曲面 S 是可展曲面的**充分必要条件**为

$$K \equiv 0$$
.

Theorem. 无脐点的曲面 S 为可展曲面的**充分必要条件**是: 它能和一块平面建立保长对应.

5 测地曲率和测地线

5.1 测地曲率和测地挠率

为研究曲面 S 上曲线 C 和曲面 S 的联系,沿着曲线 C 建立新的正交标架 $\{r; e_1, e_2, e_3\}$

$$egin{aligned} oldsymbol{e}_1 &= oldsymbol{lpha}(s), \ oldsymbol{e}_2 &= oldsymbol{n}(s) imes oldsymbol{lpha}(s), \ oldsymbol{e}_3 &= oldsymbol{n}(s) \end{aligned}$$

Definition (测地标架下的运动公式). 在这个正交标架下的运动公式为

$$\begin{pmatrix} \mathbf{e}_1'(s) \\ \mathbf{e}_2'(s) \\ \mathbf{e}_3'(s) \end{pmatrix} = \begin{pmatrix} 0 & \kappa_g & \kappa_n \\ -\kappa_g & 0 & \tau_g \\ -\kappa_n & \tau_g & 0 \end{pmatrix} \begin{pmatrix} \mathbf{e}_1(s) \\ \mathbf{e}_2(s) \\ \mathbf{e}_3(s) \end{pmatrix}.$$

其中

$$\kappa_n = \mathbf{e}'(s) \cdot \mathbf{n}(s) = \kappa \boldsymbol{\beta}(s) \cdot \mathbf{n}(s).$$

就是曲线的法曲率。同样可以计算

$$\kappa_g = \boldsymbol{\alpha}'(s) \cdot \boldsymbol{n}(s) \times \boldsymbol{\alpha}(s) = (\boldsymbol{n}(s), \boldsymbol{\alpha}(s), \boldsymbol{\alpha}'(s)) = (\boldsymbol{n}(s), \boldsymbol{r}'(s), \boldsymbol{r}''(s))$$

$$\tau_g = \boldsymbol{n}'(s) \cdot \boldsymbol{n}(s) \times \boldsymbol{\alpha}(s) = (\boldsymbol{n}(s), \boldsymbol{n}'(s), \boldsymbol{r}'(s)).$$

Definition (测地曲率和挠率).

$$\kappa_g = (\boldsymbol{n}(s), \boldsymbol{r}'(s), \boldsymbol{r}''(s))$$

$$\tau_g = (\boldsymbol{n}(s), \boldsymbol{n}'(s), \boldsymbol{r}'(s))$$

将 κ_g 称为曲面 S 上曲线 C 的**测地曲率**, τ_g 称为曲面 S 上曲线 C 的**测地挠率**.

Theorem. 设 C 是曲面 S 上的一条正则曲线,则曲线 C 在 p 的**测地曲率**等于 把曲线 C 投影到 T_pS 上的曲线 \tilde{C} 在点 p 的相对曲率,其中切平面的正向由曲面 S 在点 p 的法向量 n 给出.

Proposition. 曲面上曲线的测地曲率 κ_g 在曲面作保长对应时是不变的. 曲面上曲线的测地曲率是属于曲面的**内蕴几何量**.

Theorem (计算测地曲率). 设 (u,v) 是曲面 S 上的正交参数系, 设 C: u = u(s), v = v(s) 是曲面 S 上的一条曲线, 其中 s 为弧长参数. 假设曲线 C 与 u-曲线的夹角为 θ , 则曲线 C 的测地曲率为

$$\kappa_g = \frac{d\theta}{ds} - \frac{1}{2\sqrt{G}} \frac{\partial \log E}{\partial v} \cos \theta + \frac{1}{2\sqrt{E}} \frac{\partial \log G}{\partial u} \sin \theta.$$

Proposition. $\theta = 0$ 时, 得到 u-曲线的测地曲率为

$$\kappa_{g_u} = -\frac{1}{2\sqrt{G}} \frac{E_v}{E}.$$

 $\theta = \pi/2$ 时, 得到 v-曲线的测地曲率为

$$\kappa_{g_v} = \frac{1}{2\sqrt{E}} \frac{G_u}{G}.$$

Proposition (计算挠率).

$$\tau_g = \frac{1}{\sqrt{g}} \begin{vmatrix} \left(\frac{du^2}{ds}\right)^2 & -\frac{du^1}{ds}\frac{du^2}{ds} & \left(\frac{du^1}{dv}\right)^2 \\ g_{11} & g_{12} & g_{22} \\ b_{11} & b_{12} & b_{22} \end{vmatrix}.$$

5.2 测地线

Definition. 在曲面 S 上测地曲率恒等于 0 的曲线称为曲面 S 的**测地线**.

Theorem. 曲面 S 上一条曲线 C 为测地线的充要条件为: C 为一条直线或者其主法向量处处是 S 的法向量.

Theorem. 对于曲面 S 上的任意一点 p 和曲面 S 在点 p 的任意一个单位切向量 v, 在曲面 S 上必存在唯一的一条以弧长为参数的测地线 C 通过点 p, 并且在点 p 以 v 为它的切向量.

Proposition (测地线的微分方程组).

$$\begin{split} \frac{du}{ds} &= \frac{1}{\sqrt{E}}\cos\theta \\ \frac{dv}{ds} &= \frac{1}{\sqrt{G}}\sin\theta \\ \frac{d\theta}{ds} &= \frac{1}{2\sqrt{G}}\frac{\partial \log E}{\partial v}\cos\theta - \frac{1}{2\sqrt{E}}\frac{\partial \log G}{\partial u}\sin\theta \end{split}$$

Proposition. 设 p,q 是曲面 S 上的任意两点,如果曲线 C 是在曲面 S 上连接 p,q 两点的最短线,则 C 必是 S 的测地线.

5.3 测地坐标系

Definition (测地坐标系). 假定曲面 S 上有依赖一个参数的测地线族 Σ , 如果对于区域 $D \subset S$ 中的每一个点 p, 有且只有一条属于 Σ 的测地线经过点 p, 则称 Σ 是在曲面 S 上覆盖了区域 D 的一个**测地线**族.

Theorem. 在曲面 S 的每一点 p 的一个充分小的邻域 U 内必定存在参数系 (u,v), 使得点 p 对应于 u=0,v=0, 而曲面 S 的第一基本形式成为

$$I = (du)^2 + G(u, v)(dv)^2.$$

其中 G(u,v) 满足条件

$$G(0,v) = 1, \ \frac{\partial G}{\partial u}(0,v) = 0.$$

这样的参数系 (u,v) 称为曲面 S 在点 p 附近的**测地平行坐标系**.

Theorem (测地极坐标系). 在曲面 S 的每一点 p 的邻域内, 除去从 p 出发的一条测地线外, 必存在**测地极坐标系** (s,θ) , 使得曲面 S 的第一基本形式成为

$$I = ds^2 + G(s, \theta)d\theta^2$$
.

其中 $G(s,\theta)$ 满足

$$\lim_{s \to 0} \sqrt{G(s, \theta)} = 0; \ \lim_{s \to 0} \frac{\partial}{\partial s} \sqrt{G(s, \theta)} = 1.$$

5.4 常曲率曲面

Proposition (常曲率曲面的第一基本形式). 具有常曲率 K 的曲面第一基本形式在测地平行坐标系下有完全确定的形式:

$$K > 0;$$
 $I = (du)^2 + \cos(\sqrt{K}u)(dv)^2,$
 $K = 0;$ $I = (du)^2 + (dv)^2,$
 $K < 0;$ $I = (du)^2 + \cosh\sqrt{-K}u(dv)^2$

Theorem. 具有相同常数 Gauss 曲率 K 的任意两块常曲率的曲面在局部上必定可以建立保长对应.

5.5 曲面上切向量的平行移动

假定 $X(u^1, u^2)$ 是定义在曲面 S 上的一个切向量场

$$X(u^1, u^2) = x^{\alpha}(u_1.u_2)r_{\alpha}(u_1, u_2).$$

对其微分得 $dX(u^1, u^2)$

$$dX(u^{1}, u^{2})$$

$$= dx^{\alpha} \mathbf{r}_{\alpha} + x^{\alpha} d\mathbf{r}_{\alpha}$$

$$= dx^{\alpha} \mathbf{r}_{\alpha} + x^{\beta} (\Gamma^{\alpha}_{\beta\gamma} \mathbf{r}_{\alpha} + b_{\beta\gamma} \mathbf{n}) du^{\gamma}$$

$$= (dx^{\alpha} + x^{\beta} \Gamma^{\alpha}_{\beta\gamma} du^{\gamma}) \mathbf{r}_{\alpha} + x^{\alpha} b_{\beta\gamma} du^{\gamma} \mathbf{n}.$$

Definition (协变微分).

$$D\boldsymbol{X}(u^1, u^2) := Dx^{\alpha}\boldsymbol{r}_{\alpha}.$$

其中 $Dx^{\alpha} = dx^{\alpha} + x^{\beta}\Gamma^{\alpha}_{\beta\gamma}du^{\gamma}$, 为切向量场 X 的分量 $x^{\alpha}(u^{1}, u^{2})$ 的协变微分. 称 $DX(u^{1}, u^{2})$ 为曲面 S 上切向量场 $X(u^{1}, u^{2})$ 的**协变微分**.

Theorem. 如果 $\sigma:S\to \tilde{S}$ 是保长对应, 则对曲面 S 上任意一个可微的切向量场 X 下式成立

$$\sigma_*(D\boldsymbol{X}) = D(\sigma_*\boldsymbol{X}).$$

Proposition (协变微分的运算性质). 设 X,Y 是曲面 S 上可微的切向量场, f 是定义在 S 上的可微函数, 则协变微分满足如下性质:

1.
$$D(X + Y) = DX + DY$$
;

2.
$$D(f \cdot \mathbf{X}) = df \cdot \mathbf{X} + f \cdot D\mathbf{X};$$

3.
$$d(X \cdot Y) = DX \cdot Y + X \cdot DY$$
.

Definition (沿曲线的协变导数). 称

$$\frac{D\boldsymbol{X}(t)}{dt} = \left(\frac{d\boldsymbol{X}(t)}{dt}\right)^{\top}.$$

为曲面 S 上沿曲线 C 定义的切向量场 X(t) 沿曲线 C 的**协变导数**. 若令

$$\frac{Dx^{\alpha}(t)}{dt} = \frac{x^{\alpha}(t)}{dt} + \Gamma^{\alpha}_{\beta\gamma}x^{\beta}(t)\frac{du^{\gamma}(t)}{dt}.$$

则

$$\frac{D\boldsymbol{X}(t)}{dt} = \frac{Dx^{\alpha}(t)}{dt}\boldsymbol{r}_{\alpha}.$$

Definition. 设 $\boldsymbol{X}(t)$ 是曲面 S 上沿曲线 $C:u^{\gamma}=u^{\gamma}(t)$ 定义的可微向量场. 如 果

$$\frac{DX(t)}{dt} = 0.$$

则称切向量场 X(t) 沿曲线 C 是**平行的**.

容易得出,切向量场 $\boldsymbol{X}(t)$ 沿曲线 C 平行的充要条件即为: 其分量 $x^{\alpha}(t)$ 满足微分方程

$$\frac{x^{\alpha}(t)}{dt} + \Gamma^{\alpha}_{\beta\gamma}x^{\beta}(t)\frac{du^{\gamma}(t)}{dt} = 0, \alpha = 1, 2.$$

Theorem. 设空间 E^3 中两个曲面 S_1 和 S_2 沿曲线 C 相切, 曲面 S_1, S_2 沿曲线 $C: u^{\gamma} = u^{\gamma}(t)$ 的协变导数算子分别记为 $\frac{D^{(1)}}{dt}, \frac{D^{(1)}}{dt}$,设 $\boldsymbol{X}(t)$ 是这两个曲面沿曲线 C 定义的切向量场,则

$$\frac{D^{(1)}\boldsymbol{X}(t)}{dt} = \frac{D^{(2)}\boldsymbol{X}(t)}{dt}.$$