Week 3

Machine Learning and Big Data - DATA622

CUNY School of Professional Studies

K-Nearest Neighbor

Classify data according to its k-closest neighbors

k-Nearest Neighbor (KNN)

Choice of k

- Choosing the value of k:
 - o If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other

Rule of thumb:

$$k = \sqrt{N}$$

N: number of training points

Lazy Learning

- Lazy Learning
 - Simply stores training data and delays processing ("lazy evaluation") until given an input
 - Uses Euclidean distance (straight line, where all dimensions are linear & scaled similarly)
- Eager Learning
 - Given a set of training set, constructs a classification model before inference (prediction)
 - New input uses the classification model (usually the training data is not stored)
- Lazy: Less time in training but more time in inference (prediction)
- Eager: More time in training but less time in inference

Principal Component Analysis (PCA)

Dimension reduction technique based on maximum variance in data.

Principal Component Analysis (PCA)

- Dimensionality reduction technique
- Project data from the high-dimensional space to a lower-dimensional space
- Criteria: Maximize data variance to construct principal components

Visualization Example

Example: Iris data set

4-dimensional input space

2-components (2-dimensions)

Linear Discriminant Analysis (LDA)

Dimension reduction technique based on maximizing distance between means <u>and</u> minimizing spread.

Linear Discriminant Analysis (LDA)

- Dimensionality reduction approach
- Two criteria are used by LDA to create a new axis:
 - 1. Maximize the distance between means of the two classes.
 - 2. Minimize the variation (spread) within each class.

PCA vs LDA

	PCA	LDA		
Transformation	Linear	Linear		
Supervised vs Unsupervised	Un-supervised	Supervised		
Objective	Capture variability by finding principal components	Separate classes by identifying a lower dimension which has better discriminatory power		
Туре	Component: maximize the variance in the data	Discriminant: maximize the separation between classes		
Compute requirements	Low	High		
Use-cases	Visualization (and classification)	Any classification		

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

PC1

Source: Guide to Intelligent Data Science, Berthold et al

PCA vs LDA

- Discriminants (LDA) maximize the separation between classes
- Components (PCA) maximize the variance in the data
- Dimensionality reduction technique
- Project data from the high-dimensional space to a lower-dimensional space
- Criteria: Maximize data variance to construct principal components

Curse of Dimensionality

As dimensions increase, the data we need to generalize grows exponentially

Curse of dimensionality

- The Iris data set has 150 instances in 4-dimensions: an average of ~3.5 values per dimension (3.5⁴)
- Labeled data is hard to get and expensive (about \$2/instance on average for outsourced labeling services)

Let's look at the flip-side

 Dimension reduction results in information loss – important for pattern recognition

 Domain knowledge (understanding data and business context) helps minimize information loss during dimension reduction

Impact of the Curse of Dimensionality

Issues with too many dimensions:

- Data Sparsity
- Increased distance between points
- Higher computational cost
- Overfitting (due to too many features)
- Difficulty in Visualization & Interpretation
- Data needs grows with dimensions

Data point-cloud

Tabular (structured) data can be plotted on an n-dimensional space (where n=number of input columns in the table). This creates a point-cloud of data points in the table (with each dot a line in the table). Unstructured data can also be plotted – but needs processing first.

Types of Data

Types of Data

Example: Iris data set

Iris data

Data is labeled (with 3 classes).

		Features (inputs)			Labels		
	Instance	Sepal Length	Sepal width	Petal legth	Petal width	Class	
	~	(cm) ×	(cm) 💌	(cm) 💌	(cm) 🔽	~	
	0	5.1	3.5	1.4	0.2	Iris-setosa	
	1	4.9	3	1.4	0.2	Iris-setosa	
	2	4.7	3.2	1.3	0.2	Iris-setosa	
A single	3	4.6	3.1	1.5	0.2	Iris-setosa	
instance	4	5	3.6	1.4	0.2	Iris-setosa	
mstance	5	5.4	3.9	1.7	0.4	Iris-setosa	
			• •	•			
	50	7	3.2	4.7	1.4	Iris-versicolor	
	51	6.4	3.2	4.5	1.5	Iris-versicolor	
	52	6.9	3.1	4.9	1.5	Iris-versicolor	Labels (output) will
	53	5.5	2.3	4	1.3	Iris-versicolor	
	54	6.5	2.8	4.6	1.5	Iris-versicolor	have 3 classes
	55	5.7	2.8	4.5	1.3	Iris-versicolor	
	56	6.3	3.3	4.7	1.6	Iris-versicolor	
			• •	•			1
	100	6.3	3.3	6	2.5	Iris-virginica	
	101	5.8	2.7	5.1	1.9	Iris-virginica	
	102	7.1	3	5.9	2.1	Iris-virginica	
	103	6.3	2.9	5.6	1.8	Iris-virginica	
	104	6.5	3	5.8	2.2	Iris-virginica	
	105	7.6	3	6,6	2.1	Iris-virginica	
	There	are 4 fea	itures (ii	nputs): a	x_1, x_2, x	x ₃ & x ₄	School of Professional Stud

Features ("Independent inputs")

- Every feature is a dimension
 4 features = 4 dimensions
- An instance is a <u>single point</u> in that 4dimensional space
- All of the data forms a <u>point-cloud</u> in that 4dimensional space

 $\boldsymbol{x_2}$

Demo

projector.tensorflow.org

One-hot encoding

- ML requires numbers: labels must be converted to numbers
- Each class (type of label must be its own dimension)
- The value in each dimension conveys the probability it is of that class
- Training Data Labels always have a probability of 1 (100%) i.e. they are the "Ground Truth"

© Joe Sabelja 2022

Solution Manifold

- The number of dimensions = number of classes. In this case 3 dimensions.
- A Label (or prediction) is one data-point in that 3dimensional space
- Probabilities of all classes add up to 1 (100%) so points lie on a manifold
- Only labels have values of 1

Decision Boundary

- A decision boundary separates the classes.
- For 2 classes the decision boundary is typically 0.5 (when probability of either class is 50%)
- It may be linear or non-linear

Putting it together

Three class results in a 3-dimensional output space, with the prediction landing on a line where: $p(y_1) + p(y_2) + p(y_3) = 1$

2 vs 3 classes

Two class results in a 2-dimensional output space, with the prediction landing on a line where: $p(y_1) + p(y_2) = 1$

