

Probabilidade New

Limites de Conjuntos

▼

• A definição de conceitos de convergência para variáveis aleatórias baseia-se em manipulações de sequências de eventos que requerem limites de conjuntos. Seja $A_n \subset \Omega$ definimos

$$\inf_{k\geq n} A_k := \bigcap_{k=n}^{\infty} A_k, \quad \sup_{k\geq n} A_k := \bigcup_{k=n}^{\infty} A_k$$

$$\liminf_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k,$$

$$\limsup_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

ullet O limite de uma sequência de conjuntos é definido da seguinte forma: Se para alguma sequência $\{B_n\}$ de subconjuntos

$$\limsup_{n\to\infty}B_n=\liminf_{n\to\infty}B_n=B,$$

então B é chamado de limite de B_n e escrevemos $\lim_{n \to \infty} B_n = B$ ou $B_n \to B$ será demonstrado em breve que

$$\liminf_{n\to\infty} A_n = \lim_{n\to\infty} \left(\inf_{k\geq n} A_k \right)$$

and

$$\limsup_{n\to\infty} A_n = \lim_{n\to\infty} \left(\sup_{k\geq n} A_k \right).$$

• Exemplo:

$$\lim_{n \to \infty} \inf[0, n/(n+1)) = \lim_{n \to \infty} \sup[0, n/(n+1)) = [0, 1).$$

Podemos agora dar uma interpretação de $\liminf_{n o \infty} A_n$ e $\limsup_n o \infty A_n$.

LEMA: Seja $\{A_n\}$ uma sequência de subconjuntos de Ω .

a. Para \limsup temos a interpretação

$$\limsup_{n \to \infty} A_n = \left\{ \omega : \sum_{n=1}^{\infty} 1_{A_n}(\omega) = \infty \right\}$$
$$= \left\{ \omega : \omega \in A_{n_k}, k = 1, 2 \dots \right\}$$

para alguma subsequência n_k dependendo de ω . Consequentemente, escrevemos

$$\limsup_{n\to\infty} A_n = [A_n \ i.o.\]$$

onde i.o. significa infinitamente frequentemente.

b. Para lim inf temos a interpretação

$$\begin{aligned} \liminf_{n \to \infty} A_n &= \{\omega : \omega \in A_n \text{ for all } n \text{ except a finite number } \} \\ &= \{\omega : \sum_n 1_{A_n^c}(\omega) < \infty \} \\ &= \{\omega : \omega \in A_n, \forall n \ge n_0(\omega) \}. \end{aligned}$$

Prova (a): Se

 $\omega \in \limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k,$

então para todo n, $\omega\in \cup_{k\geq n}A_k$ e assim para todo n, existe algum $k_n\geq n$ tal que $\omega\in A_{k_n}$, e portanto

$$\sum_{j=1}^{\infty} 1_{A_j}(\omega) \geq \sum_n 1_{A_{k_n}}(\omega) = \infty,$$

que implica

 $\omega \in \left\{ \omega : \sum_{n=1}^{\infty} 1_{A_n}(\omega) = \infty \right\};$

portanto

$$\limsup_{n\to\infty} A_n \subset \{\omega : \sum_{j=1}^{\infty} 1_{A_j}(\omega) = \infty\}.$$

Inversamente, se

 $\omega \in \{\omega: \sum_{j=1}^{\infty} 1_{A_j}(\omega) = \infty\},\,$

então existe $k_n \to \infty$ tal que $\omega \in A_{k_n}$, e portanto para todo n, $\omega \in \cup_{j \ge n} A_j$ tal que $\omega \in \limsup_{n \to \infty} A_n$. Por definição

$$\{\omega: \sum_{j=1}^{\infty} 1_{A_j}(\omega) = \infty\} \subset \limsup_{n \to \infty} A_n.$$

Isso prova a inclusão do conjunto em ambas as direções e mostra a igualdade.

Prova (b): A prova de (b) é análoga.

Leis de De Morgan

- $(A \cup B)^c = A^c \cap B^c$
- $(A \cap B)^c = A^c \cup B^c$

Propriedades distributiva

- $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

Arranjos

$$A_{m, r} = \frac{m!}{(m - r)!}$$

• Seja M um conjunto com m elementos, isto é, $M=\{a_1,a_2,...,a_m\}$. Chamamos de arranjo dos m elementos tomados r a r $(1 \le r \le m)$ a qualquer r-upla (sequência de r elementos) formada com elementos de M, todos distintos.

Arranjos com repetição

$$(AR)_{m, r} = \underbrace{m \cdot m \cdot ... \cdot m}_{r \text{ vezes}} = m^{r}$$

• Seja M um conjunto com m elementos, isto é, $M=\{a_1,a_2,...,a_m\}$. Chamamos arranjo com repetição dos m elementos, tomados r a r, toda r-upla ordenada (sequência de tamanho r) formada com elementos de M não necessariamente distintos.

Permutações

$$P_{m} = m \cdot (m-1) \cdot (m-2) \cdot ... \cdot 3 \cdot 2 \cdot 1$$

• Seja M um conjunto com m elementos, isto é, $M=\{a_1,a_2,...,a_m\}$. Chamamos de permutação dos m elementos a todo arranjo em que r=m.

Permutações Circular

- Quando elementos são dispostos ao redor de um círculo, a cada disposição possível chamamos permutação circular.
- Duas permutações circulares são consideradas idênticas, quando:
 - 1) Tomando o elemento A, a sequência encontrada é (A,C, D, B).

2) Tomando o elemento A, a sequência encontrada é (A, C, D, B).

$$x = \frac{n!}{n} = (n-1)!$$

Permutações Com Repetição

$$P_n^{n_1, n_2, ..., n_r} = \frac{n!}{n_1! n_2! ... n_r!}$$

Combinações

$$C_{m, r} = \binom{m}{r} = \frac{m!}{r! (m-r)!} \qquad \forall m, r \in \mathbb{N}^*, r < m$$

• Casos particulares:

$$1^{\circ} \text{ caso: m, r} \in \mathbb{N}^* \text{ e r} = m$$

$$\begin{cases} C_{m, m} = 1 \\ \frac{m!}{m!(m-m)!} = 1 \end{cases}$$

$$2^{\varrho} \text{ caso: } m \in \mathbb{N}^* \text{ e r} = 0$$

$$\begin{cases} C_{m, \ 0} = 1 \text{ (o unico subconjunto com 0 elemento \'e o vazio)} \\ \frac{m!}{0! \ (m-0)!} = 1 \end{cases}$$

$$3^\circ$$
 caso: $m=0$ e $r=0$
$$\begin{cases} C_{0,\,0}=1 \text{ (o único subconjunto do conjunto vazio \'e o próprio vazio)} \\ \frac{0!}{0!\;(0-0)!}=1 \end{cases}$$

Teorema Conjuntos

- Se $A\subset B$, então $P(A)\leqslant P(B)$.
- Se A é um evento, então $0\leqslant P(A)\leqslant 1$.
- $P(A) = 1 P(A^c)$
- Sendo A e B dois eventos quaisquer, vale $P(B) = P(B \cap A) + P(B \cap A^c)$.
- ullet Regra da Adição de Probabilidades. Se A e B são eventos, então $P(A\cup B)=P(A)+P(B)$ – $P(A\cap B)$
- Para eventos quaisquer $A_1, A_2, ...$

$$P\Big(igcup_{i=1}^{\infty}A_i\Big)\leq \sum_{i=1}^{\infty}Pig(A_i\Big)$$

• Se os eventos $A_1, A_2, ...$ são mutuamente exclusivos, então:

$$P\Big(igcup_{i=1}^{\infty}A_i\Big)=\sum_{i=1}^{\infty}Pig(A_i\Big)$$

• Se A e B são mutuamente exclusivos $(A \cap B = \emptyset)$, então $P(A \cup B) = P(A) + P(B) - P(\emptyset) = P(A) + P(B)$.

- Se A é um evento, então $P(A^C)=1 ext{-}P(A)$
- Continuidade da Probabilidade: Se $A_n \uparrow A$ então $P(A_n) \uparrow P(A)$. De forma similar, se $A_n \downarrow A$ então $P(A_n) \downarrow P(A)$. A notação $A_n \uparrow A$ indica que temos uma sequência monótona não decrescente ($n \leq n+1$) de eventos $A_i, A_2, ...$ tais que $\lim_{i \to \infty} A_i = A = \bigcup_{i=1}^{\infty} A_i$.

Probabilidade condicional

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B) > 0$$

Teorema da multiplicação

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A \cap B) = P(B) \cdot P(A \mid B)$$

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} \Rightarrow P(A \cap B) = P(A) \cdot P(B \mid A)$$

Independência de dois eventos

• Dois eventos A e B de um espaço amostral Ω , são chamados **independentes** se $P(A \cap B) = P(A) \cdot P(B)$. Ou seja, se os eventos são independentes a ocorrência de um não altera a probabilidade de ocorrência do outro.

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(B) \cdot P(A|B)}{P(A)} = \frac{P(B) \cdot P(A)}{P(A)} = P(B)$$

Dois eventos A e B são independentes se, e somente se a definição é verdadeira:

$$P(A \cap B) = P(A)P(B)$$

• Obs: Sejam A e B eventos de um espaço amostral Ω tais que P(A)>0 e P(B)>0. Se A e B são INDEPENDENTES, então A e B não podem ser MUTUAMENTE EXCLUDENTES.

Variáveis Aleatórias (v.a)

▼ Definição

• A variável aleatória vai associar um valor real para cada valor do espaço amostral Ω .

Ex: Lançar duas moedas consecutivamente

- Notação C = cara, K = coroa.
- $\omega_1 = (C, C); \omega_2 = (C, K); \omega_3 = (K, C); \omega_4 = (K, K)$
- Defina X: O número de coroas observadas.

$$\begin{array}{rcl} \omega_1 \to X & = & 0 \\ \omega_2 \, \mathrm{ou} \, \omega_3 \to X & = & 1 \\ \omega_4 \to X & = & 2 \end{array}$$

- De uma maneira mais formal: Uma variável aleatória é uma função definida num espaço amostral, que assume valores reais.
- Em outras palavras. Uma variável aleatória X representa um valor real, associado a cada resultado de um experimento de probabilidade. Ou seja para cada valor do Ω vai existir um valor x dentro da variável aleatória X.
- Obs: As variáveis aleatórias são representadas por letras maiúsculas X. E os valores assumidos pelas variáveis aleatórias são representados por letras minúsculas (x).

Definição

Sejam ε um experimento aleatório e Ω o espaço amostral associado a este. Uma função X, que associe a cada elemento $\omega \in \Omega$ um número real, $X(\omega)$, é denominada variável aleatória (v.a).

Notação:

- Letras maiúsculas (variável aleatória), X, Y, Z, etc.
- Letras minúsculas, (valor assumido pela variável aleatória), x, y, z etc.

Exemplos:

- (a) Número de peças defeituosas entre n peças retiradas de uma linha de produção.
 - $X = \{x | x \in \{0, 1, 2, \dots, D\}\}$ onde D é o total de peças defeituosas
- (b) Número de veículos que passam por um posto de pedágio durante uma hora.

$$X = \{x | x \in \{0, 1, 2, \dots\}\}\$$

- (c) Sexo de um indivíduo selecionado ao acaso de uma população $X = \{x | x = 0 \text{ ou } x = 1\}$
- (d) Tempo de duração de um componente de um circuito. $X = \{x | x \in [0, \infty)\}$
- (e) Peso de animais sujeitos a uma dieta de engorda. $X = \{x | x \in [0, \infty)\}$
- **Definição:** As variáveis aleatórias que assumem valores em um conjunto enumerável serão denominadas **Discretas** e aquelas que assumem valores em um intervalo da reta real serão denominadas **Contínuas**.
- **▼ Variáveis Aleatórias Discreta**
 - Uma variável aleatória é discreta se ela assume um número finito de valores ou assume um número infinito de valores numeráveis (contáveis).
 - Ou seja, podemos dizer que uma variável é discreta quando seus valores puderem ser listados.

Por exemplo: o número de ligações recebidas por dia em um escritório pode ser um valor igual a 0, 1, 2, 3, 4, ... Assim, definimos a variável aleatória X:

X: número de ligações recebidas pelo escritório.

Os valores que essa variável pode assumir são x=0, 1, 2, 3, ... Dessa forma, se escrevermos X=3 estamos dizendo que "o número de ligações recebidas pelo escritório (X) é igual a 3 ligações (x)".

▼ Variáveis Aleatórias Continua

- Uma variável aleatória é contínua se ela possui um número incontável de possíveis resultados.
- Ou seja, uma variável é dita contínua quando os valores que ela pode assumir puderem ser representados como um intervalo na reta dos números reais.
- Neste caso, os valores assumidos por uma variável contínua não podem ser listados, visto que são infinitos os possíveis valores dessa variável.

Por exemplo: consideremos o tempo de duração de uma ligação recebida em minutos (incluindo frações de minutos). Neste caso, podemos definir uma variável aleatória Y da seguinte forma:

Y: tempo de duração de uma ligação em minutos.

Perceba que os valores de Y podem assumir qualquer valor em um intervalo real. Suponhamos, para facilitar, que o tempo máximo de uma ligação seja de 120 minutos. Neste caso, os valores y pertencem ao intervalo [0, 120].

Distribuição de Probabilidade

- **▼ Função Discreta de Probabilidade**
 - Para cada valor $x_1, x_2, x_3...$ de uma variável aleatória discreta (X) pode-se determinar uma probabilidade correspondente a esse valor. Ou seja, para cada x_i vai ser atribuído uma probabilidade de ocorrer.
 - Representamos essa probabilidade da seguinte maneira: $P(x_i)$ que é a mesma coisa que $\mathbb{P}(X=x_i)$. Essas duas expressões são chamadas de Função de Probabilidade ou Funções Discretas de Probabilidade.

$$P(x_i) = \mathbb{P}(X = x_i)$$

- **▼** Definição de Distribuição de Probabilidade
 - A **Distribuição de probabilidade** vai ser a coleção de todas as probabilidades que foram atribuídas aos x_i .
 - Uma distribuição de probabilidades deve satisfazer a duas condições:
 - i. A probabilidade de cada valor $p(x_i)$ da variável aleatória tem que ser um número de 0 á 1.

$$0 \leq \mathbb{P}(X = x) \leq 1$$
 ou $0 \leq P(x) \leq 1$

ii. A soma de todas as probabilidades tem que ser igual a 1.

$$\sum_i \mathbb{P}(X=x_i) = 1 \qquad ou \qquad \sum_i p(x_i) = 1$$

Definição

Seja X uma variável aleatória discreta. Portanto, X assume no máximo um número infinito enumerável de valores x_1, x_2, \ldots A cada possível resultado x_i associaremos um número $p(x_i) = \mathbb{P}(X = x_i)$, denominado probabilidade de x_i satisfazendo as seguintes condições:

- (a) $p(x_i) \ge 0$ para todo i,
- (b) $\sum_{i} p(x_i) = 1$.

A função $p(x_i)$ é chamada função de probabilidade e a coleção de pares $[x_i, p(x_i)], i = 1, 2, \ldots$, é denominada distribuição de probabilidade de X.

- **▼** Exemplos
 - ▼ Ex 1

• Considere uma urna com duas bolas brancas e três bolas vermelhas. Dessa urna, são extraídas, sem reposição, duas bolas. Seja X: "número de bolas vermelhas obtidas nas duas extrações". Determine a distribuição de probabilidade de X.

• Os casos possíveis de retirar duas bolas da urna sem reposição são: $\Omega = (B, B), (B, V), (V, B), (V, V)$.

- Seja X: "número de bolas vermelhas obtidas nas duas extrações". Logo os valores que a variável aleatória (X) pode assumir são $x=\{0,1,2\}$.
- Então a probabilidade de cada x vai ser:

$$P(x) = P(X = x)$$
 $\forall x \in \{0, 1, 2\}$
 $P(0) = P(X = 0) = \frac{1}{\binom{5}{2}} = \frac{1}{10}$
 $P(1) = P(X = 1) = \frac{\binom{3}{1}\binom{2}{1}}{\binom{5}{2}} = \frac{6}{10}$
 $P(0) = P(X = 0) = \frac{\binom{3}{2}}{\binom{5}{2}} = \frac{3}{10}$

- Só para termos certeza que é realmente uma distribuição de probabilidade, vamos ver se ela satisfaz as duas condições de distribuição de probabilidade.
 - 1. Nitidamente percebemos que os valores são $0 \le x_i \le 1$.
 - 2. Vamos somar todos os valores para ver se resulta em 1.

$$\sum_{x=0}^{2} P(x) = \frac{1}{10} + \frac{6}{10} + \frac{3}{10} = 1$$

• Logo a distribuição de probabilidade vai ser

x	0	1	2
P(x)	1/10	6/10	3/10

▼ Ex 2

• Número de filhos - Com dados do último censo, a assistente social de um centro de saúde constatou que para as famílias de uma determinada região:

- 20% não têm filhos
- 30% têm 1 filho
- 35% têm 2 filhos
- 15% têm igualmente 3, 4 ou 5 filhos
- Vamos definir a variável aleatória N= "número de filhos por família".
- Suponha que uma família será selecionada aleatoriamente nessa região e o número de filhos averiguado, queremos estudar a v.a N .

Função de Distribuição Acumulada (f.d.a)

- O conceito de Função de Distribuição Acumulada (ou Distribuição Cumulativa de Probabilidade ou Função de Distribuição) que introduziremos aplica-se tanto a variáveis aleatórias discretas quanto a variáveis aleatórias contínuas.
- A função de distribuição acumulada nos dá uma outra maneira de descrever como as probabilidades são associadas aos valores de uma variável aleatória.
- **▼** Definição
 - A função de distribuição acumulada (f.d.a) de uma variável aleatória (discreta ou contínua) X é definida como

$$F(x) = \mathbb{P}(X \le x)$$
 para todo x

- Propriedades: Uma função de distribuição acumulada tem que satisfazer as seguintes condições:
 - (F1) $0 \le F(x) \le 1$
 - $F(F(x)) \in \mathsf{n}(F(x)) = \mathsf{n}(F(x)) \in \mathsf{n}(F(x)) = \mathsf{n}(F(x)) \in \mathsf{n}(F(x)) = \mathsf{n}(F$
 - (F3) Continuidade à direita. Se $x_n \downarrow x$, então $F(x) \downarrow F(y)$.

$$(F4) \ F(-\infty) = \lim_{x \to -\infty} F(x) = 0 \quad e \quad F(\infty) = \lim_{x \to \infty} F(x) = 1.$$

▼ Demostração das Propriedades

- F1: Como F(x) representa uma probabilidade segue-se que $0 \le F(x) \le 1$.
- F2: Note que $[X \leq x] \cap [X \leq y]$ sempre que $x \leq y$. Logo as probabilidades satisfazem à desigualdade:

$$F(x) = P(X \le x) \le P(Xy) = F(y).$$

- F3: Seja $x \in \mathbb{R}$ e considere uma sequência $\{x_n, n \geq 1, n \in \mathbb{N}\}$ tal que $x_n \downarrow x$. Isto é, os x_n 's se aproximam de x pela direita ou, em outras palavras, por valores superiores a x. Então, $[X \leq x_n] \downarrow [X \leq x]$ e, assim, $P(X \leq x_n) \downarrow P(X \leq x)$. Como o resultado vale para qualquer x, a propriedade está verificada.
- F4: Aplicamos a continuidade da probabilidade. Observe que para $X_n \downarrow -\infty$, os eventos $[X \leq x_n] = \{w \in \Omega : X(w) \leq x_n\}$ têm como limite o conjunto vazio. Logo $F(x_n) = P(X \leq x_n) \downarrow 0$. De modo análogo, tomando $X_n \uparrow \infty$, os eventos $[X \leq x_n] \uparrow \Omega$ e, portanto $F(x_n) = P(X \leq x_n) \uparrow 1$.

▼ De Distribuição de Probabilidade para f.d.a

• Quando quisemos encontrar a **f.d.a** de uma **v.a.**, e o problema der a Distribuição de Probabilidade, podemos encontrar a **f.d.a** a partir da Distribuição de Probabilidade por meio da expressão:

$$F(x) = \sum_{i: x_i \leq x} P[X = x_i]$$

• O inverso também é possível:

$$P[X=x_i] = F(x_i) - \lim_{x o -x_i} F(x)$$

Probabilidade New 10

▼ Exemplos

▼ Ex 1:

- Um grupo de 1000 crianças foi analisado para determinar a efetividade de uma vacina contra um tipo de alergia. As crianças recebiam uma dose de vacina e após um mês passavam por um novo teste. Caso ainda tivessem tido alguma reação alérgica, recebiam outra dose. Ao fim de 5 doses, foram consideradas imunizadas.
- Variável de interesse: X ="número de doses"

Doses (X)	1	2	3	4	5
Freq.	245	288	256	145	66

• Uma criança é sorteada ao acaso, qual será a probabilidade dela ter recebido 2 doses?

$$P(X=2) = \frac{288}{1000} = 0,288$$

Doses (X)	1	2	3	4	5
p(x)	0,245	0,288	0,256	0,145	0,066

• Qual a probabilidade da criança ter recebido até duas doses?

$$F(2) = P(X \le 2) = P(X = 1) + P(X = 2) = 0,245 + 0,288 = 0,533$$

- Note que, tendo em vista que a variável só assume valores inteiros, esse valor fica inalterado no intervalo [2,3). Isto é , F(2) = F(2,1) = F(2,45) = F(2,99).
- Por essa razão escrevemos:

$$F(x) = P(X \le x) = 0,533$$
 para $2 \le x < 3$

• Logo os valores completos da função de distribuição são os seguintes:

$$F(x) = \begin{cases} 0 & \text{se } x < 1; \\ 0,245 & \text{se } 1 \le x < 2; \\ 0,533 & \text{se } 2 \le x < 3; \\ 0,789 & \text{se } 3 \le x < 4; \\ 0,934 & \text{se } 4 \le x < 5; \\ 1 & \text{se } x \ge 5. \end{cases}$$

• A figura a seguir apresenta um diagrama dessa função:

Esperança de v.a. Discretas ($\mathbb{E}(X)$)

▼ Definição

• Seja X uma variável aleatória discreta, com função de probabilidade p(x) = P(X = x), x = 1, 2, ..., n, ... Então, a esperança (ou valor esperado ou média) de X, denotada por $\mathbb{E}(X)$ é definida como:

$$\mathbb{E}(X) = \sum_{x=1}^{\infty} x p(x)$$

• Colocando em palavras, o valor esperado de X é uma **média ponderada** dos possíveis valores que X pode receber, com cada valor sendo ponderado pela probabilidade de que X seja igual a esse valor. Por exemplo, se a função de probabilidade de X é dada por:

$$p(0) = \frac{1}{2} = p(1)$$

então

$$E[X] = 0\left(\frac{1}{2}\right) + 1\left(\frac{1}{2}\right) = \frac{1}{2}$$

Nesse caso acima é somente a média ordinária dos dois valores possíveis, 0 e 1, que X pode assumir. Por outro lado, se

$$p(0) = \frac{1}{3}$$
 $p(1) = \frac{2}{3}$

então

$$E[X] = 0\left(\frac{1}{3}\right) + 1\left(\frac{2}{3}\right) = \frac{2}{3}$$

- Agora suponha que conheçamos uma variável aleatória discreta e sua função de probabilidade e que queiramos calcular o valor esperado de alguma função de X, digamos, g(X). Como podemos fazer isso?
- Uma maneira é a seguinte: como g(X) é ela mesmo uma variável aleatória discreta, ela tem uma função de probabilidade, que pode ser determinada a partir da função de probabilidade de X. Uma vez que tenhamos determinado a função de probabilidade deg(X), podemos calcular E[g(x)] usando a definição de valor esperado.
- lacktriangle Exemplo: Seja X uma variável aleatória que pode receber os valores -1,0,1 com respectivas probabilidades:

$$P{X = -1} = 0.2$$
 $P{X = 0} = 0.5$ $P{X = 1} = 0.3$

Calcule $E[X^2]$

Solução: Seja $Y=X^2$. Então a função de probabilidade de Y é dada por

$$P{Y = 1} = P{X = -1} + P{X = 1} = 0,5$$

 $P{Y = 0} = P{X = 0} = 0,5$

Logo

$$E[X^2] = E[Y] = 1(0.5) + 0(0.5) = 0.5$$

Observe que

$$0.5 = E[X^2] \neq (E[X])^2 = 0.01$$

Embora o procedimento anterior sempre nos permita calcular o valor esperado de qualquer função de X a partir do conhecimento da função de probabilidade de X, há uma outra maneira de raciocinar sobre E[g(X)]: já que g(X) será igual a g(x) sempre que X for igual a x, parece razoável que E[g(X)] deva ser uma média ponderada dos valores g(x), com g(x) sendo ponderado pela probabilidade de que X seja igual a x. Isto é, o resultado a seguir é bastante intuitivo:

$$E[g(X)] = \sum_{i} g(x_i)p(x_i)$$

• O exemplo acima refeito com esse novo método:

$$E{X^{2}} = (-1)^{2}(0,2) + 0^{2}(0,5) + 1^{2}(0,3)$$

= 1(0,2 + 0,3) + 0(0,5)
= 0,5

▼ Propriedades

- Nas seguintes propriedades, X é uma variável aleatória e a, b são constantes.
 - $\mathbb{E}(a) = a$
 - $\mathbb{E}(a+X) = a + \mathbb{E}(X)$
 - $\mathbb{E}(bX) = b\mathbb{E}(X)$
 - $\mathbb{E}(a+bX) = a+b\mathbb{E}(X)$
 - Para $r \ge 1$, o r-ésimo momento de uma variável aleatória é definido por $\mathbb{E}(X^r)$ (se existe).

Variância de uma v.a. (Var(X))

▼ Definição

- Dada uma variável aleatória X e sua função distribuição F, seria extremamente útil se pudéssemos resumir as propriedades essenciais de F em certas medidas convenientemente definidas.
- Uma dessas medidas seria E[X] o , valor esperado de X.
- Entretanto, embora E[A] forneça a média ponderada dos valores possíveis de X, ela não nos diz nada sobre a variação, ou dispersão, desses valores.
- Por exemplo, embora as v.a W, Y e Z com funções discretas de probabilidade determinadas por

$$W = 0 \quad \text{com probabilidade 1}$$

$$Y = \begin{cases} -1 & \text{com probabilidade } \frac{1}{2} \\ +1 & \text{com probabilidade } \frac{1}{2} \end{cases}$$

$$Z = \begin{cases} -100 & \text{com probabilidade } \frac{1}{2} \\ +100 & \text{com probabilidade } \frac{1}{2} \end{cases}$$

tenham todas a mesma esperança, que é igual a 0. Existe uma dispersão muito maior nos valores possíveis de Y do que naqueles de W (que é uma constante) e nos valores possíveis de Z do que naqueles de Y.

- Como esperamos que X assuma valores em torno de sua média E[X], parece razoável que uma maneira de medir a possível variação de X seja ver, em média, quão distante X estaria de sua média.
- Uma possível maneira de se medir essa variação seria considerar a grandeza $E[|X-\mu|]$, onde $\mu=E[X]$. Entretanto, a manipulação dessa grandeza seria matematicamente inconveniente. Por esse motivo, uma grandeza mais tratável é usualmente considerada esta é a esperança do quadrado da diferença entre X e sua média. Temos assim a definição a seguir.
- **Definição:** Se X é uma variável aleatória com média μ , então a variância de X, representada por Var(X), é definida como:

$$Var(X) = E[(X - \mu)^2] = E[(X - E(X))^2]$$

• Denominamos **Desvio-Padrão** de X a raiz quadrada positiva de Var(X), e é denotada por DP(X).

$$DP(X) = +\sqrt{Var(X)}$$

▼ Propriedades

• Nas seguintes propriedades, X é uma variável aleatória e a, b são constantes.

•
$$Var(a) = 0$$

•
$$Var(a + X) = Var(X)$$

•
$$Var(bX) = b^2 Var(X)$$

•
$$Var(a + bX) = b^2 Var(X)$$

•
$$\operatorname{Var}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2$$

 $(F1) \ 0 \le F(x) \le 1$

Probabilidade New 14

- (F2) F é **não decrescente** , isto é, $F(x) \leq F(y)$ sempre que $\ x \leq y, \ \ orall x, y \in \mathbb{R}.$
- (F3) Continuidade à direita. Se $x_n\downarrow x$, então $F(x)\downarrow F(y)$.
- $(F4)\ F(-\infty) = \lim_{x \to -\infty} F(x) = 0 \quad e \quad F(\infty) = \lim_{x \to \infty} F(x) = 1.$

Probabilidade New 15