## Numerical Analysis MATH50003 (2023–24) Problem Sheet 3

**Problem 1** What is  $\pi$  to 5 binary places? Hint: recall that  $\pi \approx 3.14$ .

**Problem 2** What are the single precision  $F_{32} = F_{127,8,23}$  floating point representations for the following:

$$2, 31, 32, 23/4, (23/4) \times 2^{100}$$

**Problem 3** Let  $m(y) = \min\{x \in F_{32} : x > y\}$  be the smallest single precision number greater than y. What is m(2) - 2 and m(1024) - 1024?

**Problem 4** Suppose x = 1.25 and consider 16-bit floating point arithmetic  $(F_{16})$ . What is the error in approximating x by the nearest float point number fl(x)? What is the error in approximating 2x, x/2, x+2 and x-2 by  $2 \otimes x$ ,  $x \otimes 2$ ,  $x \oplus 2$  and  $x \ominus 2$ ?

**Problem 5** Show that  $1/5 = 2^{-3}(1.1001100110011...)_2$ . What are the exact bits for  $1 \oslash 5$ ,  $1 \oslash 5 \oplus 1$  computed using half-precision arithmetic  $(F_{16} := F_{15,5,10})$  (using default rounding)?

**Problem 6** Prove the following bounds on the *absolute error* of a floating point calculation in idealised floating-point arithmetic  $F_{\infty,S}$  (i.e., you may assume all operations involve normal floating point numbers):

$$(fl(1.1) \otimes fl(1.2)) \oplus fl(1.3) = 2.62 + \varepsilon_1$$
  
 $(fl(1.1) \ominus 1) \oslash fl(0.1) = 1 + \varepsilon_2$ 

such that  $|\varepsilon_1| \leq 11\epsilon_m$  and  $|\varepsilon_2| \leq 40\epsilon_m$ , where  $\epsilon_m$  is machine epsilon.

**Problem 7** Assume that  $f^{\text{FP}}: F_{\infty,S} \to F_{\infty,S}$  satisfies  $f^{\text{FP}}(x) = f(x) + \delta_x$  where  $|\delta_x| \leq c\epsilon_{\text{m}}$  for all  $x \in F_{\infty,S}$ . Show that

$$\frac{f^{\text{FP}}(x+h) \ominus f^{\text{FP}}(x-h)}{2h} = f'(x) + \varepsilon$$

where the (absolute) error is bounded by

$$|\varepsilon| \le \frac{|f'(x)|}{2} \epsilon_{\rm m} + \frac{M}{3} h^2 + \frac{2c\epsilon_{\rm m}}{h}.$$

**Problem 8(a)** Suppose  $|\epsilon_k| \leq \epsilon$  and  $n\epsilon < 1$ . Show that  $\prod_{k=1}^n (1 + \epsilon_k) = 1 + \theta_n$  for some constant  $\theta_n$  satisfying

$$|\theta_n| \le \underbrace{\frac{n\epsilon}{1 - n\epsilon}}_{E_n \epsilon}.$$

**Problem 8(b)** Show if  $x_1, \ldots, x_n \in F_{\infty,S}$  then

$$x_1 \otimes \cdots \otimes x_n = x_1 \cdots x_n (1 + \theta_{n-1})$$

where  $|\theta_n| \leq E_{n,\epsilon_m/2}$ , assuming  $n\epsilon_m < 2$ .

**Problem 8(c)** Show if  $x_1, \ldots, x_n \in F_{\infty,S}$  then

$$x_1 \oplus \cdots \oplus x_n = x_1 + \cdots + x_n + \sigma_n$$

where, for  $M = \sum_{k=1}^{n} |x_k|$ ,  $|\sigma_n| \leq M E_{n-1,\epsilon_m/2}$ , assuming  $n\epsilon_m < 2$ .