

EVALUACIÓN 3 – 40% ESTUDIO DE CASO – Cálculo de la Pseudoinversa

Nombre de los Integrantes	
Fecha de Entrega	
Carrera	Ingeniería Civil Informática/Magíster en Ciencias de la Computación
Académico	M. Sc. Sergio Antonio Baltierra Valenzuela
Actividad Curricular	Evaluación 3

Resultados de Aprendizajes Evaluados:	Aplicar técnicas de computación paralela en sistemas many-core.
Indicadores de	Desarrollar algoritmos de programación multi-hilos en GPU para la
Evaluación:	solución problemas.

PUNTAJE MÁXIMO	35	PUNTAJE DE CORTE	21	PUNTAJE OBTENIDO		CALIFICACIÓN	
-------------------	----	------------------------	----	---------------------	--	--------------	--

INSTRUCCIONES

Se Pide

- Debe desarrollar un algoritmo paralelo usando CUDA C.
- Debe hacer un buen balance entre el número de bloques e hilos por bloque en CUDA C.
- Debe calcular la métrica speedup.
- Debe guardar los resultados de los ensayos y la métrica en un solo archivo.

Entrega

La solución se debe entregar en un solo archivo comprimido el cual debe tener la denominación: NOMBRE_APELLIDOPATERNO_APELLIDO_MATERNO.{zip,tar,rar} y subir el archivo al UCM Virtual dentro del plazo definido.

Ejemplo de archivo a subir: SERGIO_BALTIERRA_VALENZUELA.{zip,tar,rar}.

El archivo comprimido debe contener:

- El código paralelo de extensión .cu
- El archivo de resultados de nombre "metrica.met".

Plazo

• 9 de julio hasta las 12:00 horas (UCM Virtual).

Integrantes

Se puede trabajar de manera individual o en grupo de máximo dos integrantes los cuales serán conformados por afinidad.

En caso de trabajar en grupo debe denominarse el archivo a subir con los dos integrantes, ejemplo: JUAN_PEREZ_PEREZ_Y_ALAM_BRITO_DELGADO.{zip,tar,rar}

Restricciones

- Se aplicará artículo 67º del reglamento del estudiante, el cual indica que, en caso de sorprender copia parcial o exacta, ya sea entre compañeros o reproducidos de algún medio, lo cual implica un 1,0 para todos los involucrados.
- Si hay algún requerimiento sin contestar, y en la rúbrica no se puede observar, no aplica puntaje.

DESCRIPCIÓN DEL CASO Y DE LAS PREGUNTAS O REQUERIMIENTOS A SER RESUELTOS

Contexto

La empresa "No Compila, S.A." necesita optimizar algoritmos para sus sistemas usando CUDA C que permite paralizar estos algoritmos. El algoritmo que se debe optimizar es el más importante que se denomina: "Cálculo de la Pseudoinversa".

Caso

En algebra lineal, una matriz cuadrada A tiene inversa A^{-1} cuando al multiplicarse por ella da como resultado la matriz identidad.

$$A \cdot A^{-1} = A^{-1} \cdot A = I$$

Ahora, que pasa cuando la matriz no es cuadrada, es decir tiene dimensiones A_{mxn} , donde m!=n,m y n pertenecen a los naturales mayor que cero, donde:

1. Existe una matriz P_{nxm} denominada R, tal que:

$$A_{mnn} \cdot R = I_m$$

Por lo que R es la <u>pseudoinversa</u> de A_{mxn} <u>por la derecha</u>.

2. Existe una matriz P_{nxm} denominada L, tal que:

$$L \cdot A_{mxn} = I_n$$

Por lo que L es la <u>pseudoinversa</u> de A_{mxn} <u>por la izquierda</u>.

En ambos casos, pseudoinversa por la derecha y la izquierda, se pueden obtener usando la siguiente ecuación:

Pseudoinversa por la
$$\begin{cases} R = A^{t}(AA^{t})^{-1} \\ L = (A^{t}A)^{-1}A^{t} \end{cases}$$

Para verificar si una matriz tiene pseudoinversa, se puede saber usando la siguiente ecuación:

$$Existe\ pseudoinversa\ por\ la\ \begin{cases} Derecha, ssi\ tiene\ rango(A_{mxn}) = m\\ Izquierda, ssi\ tiene\ rango(A_{mxn}) = n \end{cases}$$

Ejemplo:

Dada la matriz $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$, el rango(A) = 2, por lo que solo tiene pseudoinversa por la

izquierda, lo que implica que debemos usar la ecuación
$$L=(A^tA)^{-1}A^t$$
. Quedando como resultado final $L=\begin{bmatrix} -\frac{4}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{13}{12} & \frac{1}{3} & -\frac{5}{12} \end{bmatrix}=\begin{bmatrix} -1.333333 & -0.333333 & 0.666667 \\ 1.083333 & 0.333333 & -0.416667 \end{bmatrix}$

Entrada

Se debe leer un archivo de texto denominado "entrada.ent", el cual tiene la siguiente estructura:

3 2

12

3 4 56

Donde:

- La primera línea contiene los valores m y n, que son las dimensiones de la matriz A.
- La segunda línea en adelante contiene la matriz A.

Se pide

- 1. Debe desarrollar un algoritmo paralelo usando CUDA C el cual calcule la pseudoinversa de una matriz A no cuadrada.
- 2. Debe medir los tiempos de la solución tanto secuencial como paralela, para poder verificar si su solución es eficiente, debe calcular la métrica speedup, cuyas fórmula son:

A.-

$$speedup = \frac{T_{secuencial}}{T_{paralelo}}$$

Donde:

- $T_{secuencial}$ es el tiempo de ejecución secuencial.
- $T_{paralelo}$ es el tiempo de ejecución paralelo.

Observación: use el tiempo secuencial de la evaluación 2.

El tiempo T de ejecución se calcula usando la fórmula:

$$Tiempo_{ejecuci\'on} = T_{final} - T_{inicial}$$

Donde:

- El T_{final} es el tiempo antes de comenzar las instrucciones del algoritmo.
- El *T_{inicial}* es el después de terminar las instrucciones del algoritmo.
- 3. Debe calcular la métricas del punto 3, donde los resultados obtenidos los debe almacenar y entregar en un archivo. El nombre del archivo es "metrica.met", y debe tener la siguiente estructura:

Ensayo	Número de Bloques	Número de Hilos por Bloque	Speedup	
1	Α	2 ⁿ	X.XXX	
2	В	2 ⁿ⁻¹	Y.YYY	
3	С	2 ⁿ⁻²	Z.ZZZ	

Donde:

- La primera columna es el número del ensayo que debe ser mínimo 10.
- La segunda columna es el número de bloques que se usan en los ensayos y que debe ser un valor entero positivo.
- La tercera columna es el número de hilos por bloque que se usan en los ensayos que debe ser un valor de potencia base 2.
- La cuarta columna es el resultado del *Speedup* por cada ensayo (usar el máximo de decimales posibles).

Salida

El resultado del algoritmo se debe guardar en un archivo de texto de salida denominado "salida.sal", el cual tiene la siguiente estructura:

L -1.333333 -0.333333 0.666667 1.083333 0.333333 -0.416667

Donde:

- La primera línea contiene una letra, *L* para pseudoinversa a la izquierda o *R* para pseudoinversa a la derecha.
- La segunda línea en adelante contiene la pseudoinversa de la matriz A (usar el máximo de decimales posibles).

Observación: en caso que una matriz no tenga pseudoinversa, debe guardar como resultado un -1 dentro del archivo de salida.

Restricciones

- La matriz A a calcular pseudoinversa debe tener rango completo, es decir, rango = min(m, n).
- Máximo de decimales de la matriz A en el archivo de "entrada.ent" son seis.
- Máximo valor de *m* y *n* en la matriz *A* es 100.

Rúbrica

Indicadores	Destacado (5 puntos)	Competente (4 puntos)	Básico (3 puntos)	En desarrollo (1 punto)	Observaciones
Correctitud del Algoritmo Paralelo	El algoritmo paralelo en CUDA C distribuye eficientemente las tareas entre bloques e hilos por bloque (potencias de 2), calcula correctamente la pseudoinversa y	El algoritmo paralelo en CUDA C distribuye eficazmente las tareas entre bloques e hilos por bloque (potencias de 2), calcula la pseudoinversa y mejora en parte el	El algoritmo paralelo en CUDA C distribuye poco eficazmente las tareas entre bloques e hilos por bloque (potencias de 2), calcula en parte la pseudoinversa y el	El algoritmo paralelo no funciona o no implementa correctamente CUDA C.	
	mejora el rendimiento sin errores de sincronización.	rendimiento.	rendimiento.		
CUDA C	Hace uso correcto de la sintaxis y semántica en CUDA C, realiza un eficiente balance entre el número de bloques e hilos por bloque en cada ensayo.	Hace un buen uso de la sintaxis y semántica en CUDA C, realiza un eficaz balance entre el número de bloques e hilos por bloque en cada ensayo.	Hace uso de la sintaxis o semántica con leves errores o problemas en CUDA C, realiza un poco eficaz balance entre el número de bloques e hilos por bloque en cada ensayo.	Hace uso de la sintaxis o semántica con muchos errores o problemas en CUDA C, realiza un mal balance entre el número de bloques e hilos por bloque en cada ensayo.	
Archivos de entrada y salida	El programa lee y escribe los archivos con el formato especificado perfectamente en el enunciado y con el nombre correcto	El programa lee y escribe archivos correctamente pero con un error en el formato y con el nombre correcto "entrada.ent" y "salida.sal".	El programa lee y escribe archivos pero tiene varios dos errores en el formato. El nombre no es el correcto "entrada.ent" y "salida.sal".	El programa no lee y escribe archivos en el formato especificado. El nombre no es el correcto "entrada.ent" y "salida.sal".	

	"entrada.ent" y "salida.sal".				
Buenas prácticas	El código está bien	El código está	El código es funcional	El código es difícil de	
de programación	estructurado, con	mayormente bien	pero tiene varios	seguir, con poca o	
	comentarios claros,	estructurado, con	problemas de estructura	ninguna estructura y	
	nombres de variables	algunos comentarios y	y falta de comentarios, el		
	significativos, y sigue las	nombres de variables	código sigue	no sigue por completo	
	buenas prácticas de	significativos, y sigue las	parcialmente las buenas	las buenas prácticas de	
	programación.	buenas prácticas de	prácticas de	programación.	
		programación.	programación.		
Cumplimiento del	Entregado dentro del	Entregado con 5 a 30	Entregado con 31 a 60	Entregado con 61 o	
plazo de entrega	plazo definido en el	minutos de atraso en el	minutos de atraso en el	más de la fecha límite	
	UCM Virtual. Además,	UCM Virtual. Además,	UCM Virtual. Además,	en UCM Virtual.	
	entrega en el formato	entrega en el formato	entrega en el formato	Además, entrega en el	
	solicitado, incluyendo	solicitado, incluyendo la	solicitado, incluyendo	formato solicitado,	
	todos los elementos	mayoría de los	algunos de los elementos	•	
	solicitados y los	elementos solicitados y	solicitados y los algunos	los elementos	
	elementos propios de	la mayoría de los	de los elementos propios	solicitados y pocos	
	nombre y tipo de	elementos propios de	de nombre y tipo de	elementos propios de	
	archivos.	nombre y tipo de	archivos.	nombre y tipo de	
		archivos.		archivos.	
Optimización	El programa está	El programa usa	El programa usa	El programa tiene	
	altamente optimizado,	paralelismo con CUDA C	paralelismo de manera	intentos de paralelismo	
	usando paralelismo	pero tiene algunas áreas	básica pero no está bien	pero no mejora	
	efectivamente con	que podrían estar mejor	optimizado.	significativamente el	
	CUDA C para reducir	optimizadas.		rendimiento.	
	significativamente el				
	tiempo de ejecución.				

Cálculo de	Calcula correctamente	Calcula speedup	Calcula la métrica,	Calcula la métrica	
Métrica Speedup	speedup para al	correctamente, pero	pero con errores	incorrectamente o no	
	menos 10 ensayos con	con errores menores	significativos en las	realiza suficientes	
	bloques e hilos por	en los cálculos o en	fórmulas o en la	ensayos, con	
	bloque en potencias	menos de 10 ensayos,	cantidad de ensayos,	resultados poco	
	de 2, usando las	o los resultados son	afectando la validez de	confiables. El archivo	
	fórmulas	ligeramente	los resultados. El	no tiene el formato y	
	proporcionadas, y los	inconsistentes. Todo	archivo no tiene el	nombre según el	
	resultados son	en el archivo debe ser	formato y/o nombre	enunciado	
	consistentes con el	entregado con el	según el enunciado	"metrica.met".	
	rendimiento del	formato y nombre	"metrica.met".		
	algoritmo paralelo.	según el enunciado			
	Todo en el archivo	"metrica.met".			
	debe ser entregado				
	con el formato y				
	nombre según el				
	enunciado				
	"metrica.met".				

Escala de notas

Puntaje	Nota
0.0	1.0
1.0	1.1
2.0	1.3
3.0	1.4
4.0	1.6
5.0	1.7
6.0	1.9
7.0	2.0
8.0	2.1
9.0	2.3

Puntaje	Nota
10.0	2.4
11.0	2.6
12.0	2.7
13.0	2.9
14.0	3.0
15.0	3.1
16.0	3.3
17.0	3.4
18.0	3.6
19.0	3.7

Puntaje	Nota
20.0	3.9
21.0	4.0
22.0	4.2
23.0	4.4
24.0	4.6
25.0	4.9
26.0	5.1
27.0	5.3
28.0	5.5
29.0	5.7

Puntaje	Nota
30.0	5.9
31.0	6.1
32.0	6.4
33.0	6.6
34.0	6.8
35.0	7.0