Physics formula booklet

By: Ioannis Karras

Link to revision folder

Table of contents (contains links)

Constants and unit conversions	2
Vectors (Chapter 1)	3
1D motion (Chapter 2)	3
2D motion (Chapter 3)	3
Newton's Laws (Chapters 4 and 5)	4
Work and kinetic energy (Chapter 6)	4
Potential energy (Chapter 7)	5
Momentum (Chapter 8)	5
Rotation of rigid bodies (Chapter 9)	6
Dynamics of rotational motion (Chapter 10)	8
Equilibrium and elasticity (Chapter 11)	9
Fluid mechanics (Chapter 12)	.10
Gravitation (Chapter 13)	.11
Periodic motion (Chapter 14)	.11
Temperature and Heat (Chapter 17)	.13
Thermal properties of matter (Chapter 18)	.14
First law of thermodynamics (Chapter 19)	.15
Second law of thermodynamics (Chanter 20)	16

Constants and unit conversions

Gas constant	R = 8.314 J/(mol K) = 0.082057 $\frac{\text{L atm}}{\text{mol K}}$
Converting between rpm and rad/s	$1 \text{ rpm} = \frac{2\pi}{60} \text{ rad/s}$
Gravitational constant	$G = 6.67 \cdot 10^{-11} \text{Nm}^2/\text{kg}^2$
Converting between Kelvin and Celsius temperatures	$T_K = T_C + 273.15$
Converting between atmospheres and Pascals	$1 \text{ atm} = 1.013 \cdot 10^5 \text{ Pa}$
Stefan- Boltzmann constant	$\sigma = 5.67 \cdot 10^{-8} \text{W/(m}^2 \text{K}^4)$
Avogadro's number	$N_A = 6.02 \cdot 10^{23} \mathrm{mol}^{-1}$
Boltzmann constant	$k = 1.38 \cdot 10^{-23} \text{ J/K} = \frac{R}{N_A}$

Vectors (Chapter 1)

Scalar/dot product	$\vec{A} \cdot \vec{B} = \vec{A} \vec{B} \cos(\theta) = A_x B_x + A_y B_y + A_z B_z$
Vector/cross product	$\vec{A} \times \vec{B} = \begin{bmatrix} A_y B_z - A_z B_y \\ A_z B_x - A_x B_z \\ A_x B_y - A_y B_x \end{bmatrix}$ $ \vec{A} \times \vec{B} = \vec{A} \vec{B} \sin(\theta)$

1D motion (Chapter 2)

Average and instantaneous velocity	$\langle v \rangle = \frac{\Delta x}{\Delta t}$ $v = \frac{dx}{dt}$ The angle brackets denote an average
Average and instantaneous acceleration	$\langle a \rangle = \frac{\Delta v}{\Delta t}$ $a = \frac{dv}{dt}$
Equations for straight line motion with constant acceleration	$v_{x} = v_{0x} + a_{x}t$ $x = x_{0} + v_{0x}t + \frac{1}{2}a_{x}t^{2}$ $v_{x}^{2} = v_{0x}^{2} + 2a_{x}(x - x_{0})$ $x - x_{0} = \frac{1}{2}(v_{0x} + v_{x})t$
Straight line motion with varying acceleration	$v_x = v_{0x} + \int_0^t a_x dt$ $x = x_0 + \int_0^t v_x dt$

2D motion (Chapter 3)

Projectile motion	$x = v_{0x}t$ $y = v_{0y}t - \frac{1}{2}gt^{2}$ $v_{y} = v_{0y} - gt$
Centripetal acceleration	$a_c = \frac{v^2}{R} = \frac{4\pi^2 R}{T^2}$ where R is the radius of the circle in which the object is moving

Relative velocity	$v_{P/A-x}=v_{P/B-x}+v_{B/A-x}\\ \vec{v}_{P/A}=\vec{v}_{P/B}+\vec{v}_{B/A}$ where $\vec{v}_{P/A}$ means the velocity of P relative to A
-------------------	---

Newton's Laws (Chapters 4 and 5)

Net force	$\vec{F}_{net} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \cdots$
	$\vec{F}_{net} = m\vec{a}$
Newton's second law	$F_{net,x} = ma_x$
	$F_{net,y} = ma_y$
	$F_{net,z} = ma_z$
Gravitational force (weight)	$F_g = mg$
Newton's third law	$\vec{F}_{A \ on \ B} = -\vec{F}_{B \ on \ A}$
	$F_k = \mu_k N$
Kinetic friction	where μ_k is the coefficient of kinetic friction and N is the normal force acting on the object
Static friction	$F_s \leq \mu_s N$ where μ_s is the coefficient of static friction and N is the normal force acting on the object

Work and kinetic energy (Chapter 6)

Work	$W = \vec{F} \cdot \vec{s} = Fs \cos(\theta)$ where \vec{s} is the displacement vector and θ is the angle between the force and displacement vectors
Kinetic energy	$E_{kin} = \frac{1}{2}mv^2$
Work-energy theorem	$W_{tot} = \Delta E_{kin}$
Work done by a varying force or on a curved path	$W = \int_{x_1}^{x_2} F_x dx$ $W = \int_{P_1}^{P_2} \vec{F} \cdot d\vec{s} = \int_{P_1}^{P_2} F \cos(\theta) ds = \int_{P_1}^{P_2} F_{\parallel} ds$ where P_1 is the initial position, P_2 is the final position, and \vec{s} is displacement

	$\langle P \rangle = \frac{\Delta W}{\Delta t}$
Power	$P = \frac{dW}{dt}$
	$P = \vec{F} \cdot \vec{v} = F \cdot v \cdot \cos(\theta)$
	where $\langle P \rangle$ is average power and P is instantaneous power

Potential energy (Chapter 7)

Gravitational potential energy	$E_{pot,g} = mgh$
Elastic potential energy	$E_{pot,s} = \frac{1}{2}kx^2$ where k is the spring constant and x is the displacement from the equilibrium position
Work done by gravity or a spring	$W_g = -\Delta E_{pot,g}$ $W_s = -\Delta E_{pot,s}$
Mechanical energy	$E_{mec} = E_{kin} + E_{pot} \label{eq:energy}$ where E_{pot} is the sum of all the different potential energies involved
Work-mechanical energy theorem	$\Delta E_{mec} = W_{nc}$ $E_{mec,i} + W_{nc} = E_{mec,f}$ where W_{nc} is the work done by non-conservative forces. "i" means initial and "f" means final

Momentum (Chapter 8)

Momentum	$\overrightarrow{m{p}}=m\overrightarrow{m{v}}$
Newton's second law in terms of momentum	$\vec{F}_{net} = \frac{d\vec{p}}{dt}$
Impulse	$\vec{\pmb{J}} = \Delta \vec{\pmb{p}}$ $\vec{\pmb{J}} = \langle \vec{\pmb{F}}_{net} \rangle \Delta t$ $\vec{\pmb{J}} = \int_{t_1}^{t_2} \vec{\pmb{F}}_{net} dt$ where $\langle \vec{\pmb{F}}_{net} \rangle$ is the average net force and $\vec{\pmb{F}}_{net}$ is the instantaneous net force

Conservation of momentum	$\overrightarrow{\boldsymbol{P}} = \overrightarrow{\boldsymbol{p}}_A + \overrightarrow{\boldsymbol{p}}_B + \cdots = m_A \overrightarrow{\boldsymbol{v}}_A + m_B \overrightarrow{\boldsymbol{v}}_B + \cdots$ $\overrightarrow{\boldsymbol{P}}_i = \overrightarrow{\boldsymbol{P}}_f$ The sum of the momenta of the objects that make up a system is constant if the net external force on the system is 0. "i" means initial and "f" means final
Kinetic energy in terms of momentum	$E_{kin} = \frac{p^2}{2m}$
Center of mass	$ec{m{r}}_{cm} = rac{\sum_i m_i ec{m{r}}_i}{\sum_i m_i}$
Total momentum and net force using center of mass	$\vec{P} = M\vec{v}_{cm}$ $\vec{F}_{net,external} = M\vec{a}_{cm}$
Force of thrust on a rocket	$F_{thrust} = -v_{ex}\frac{dm}{dt}$ where v_{ex} is the exhaust $speed$ (positive) and $\frac{dm}{dt}$ is the rate of change of mass of the rocket as it loses fuel (negative)
Speed of a rocket after launch	$v_f = v_i + v_{ex} \ln \left(\frac{m_i}{m} \right)$ where v_i is the initial speed, v_{ex} is the exhaust speed (positive), m_i is the initial mass of the rocket, and m is the mass of the rocket at the time when you want to find its speed

Rotation of rigid bodies (Chapter 9)

Angular velocity	$\omega_z = rac{d heta}{dt}$
Angular acceleration	$\alpha_z = \frac{d\omega_z}{dt}$
Equations for angular motion with constant angular acceleration	$\theta = \theta_0 + \omega_{0z}t + \frac{1}{2}\alpha_z t^2$ $\theta - \theta_0 = \frac{1}{2}(\omega_{0z} + \omega_z)t$ $\omega_z = \omega_{0z} + \alpha_z t$ $\omega_z^2 = \omega_{0z}^2 + 2\alpha_z(\theta - \theta_0)$
Linear speed and angular speed	$v = r \omega$ where r is the distance of a particle from the rotation axis
Tangential acceleration and angular acceleration	$a_{tan} = r\alpha$

Radial (centripetal) acceleration and angular speed		$a_{rad} = \frac{v^2}{r} = \omega^2 r$	
Moment of inertia		$I = \sum_{i} m_{i} r_{i}^{2}$	
Rotational kinetic energy		$E_{\rm kin,rot} = \frac{1}{2}I\omega^2$	
Moment of inertia for various shapes	(a) Slender rod, axis through center $I = \frac{1}{12}ML^2$ (c) Rectangular plate, axis through center $I = \frac{1}{12}M(a^2 + b^2)$ (e) Hollow cylinder $I = \frac{1}{2}M(R_1^2 + R_2^2)$ (continued on next page	(b) Slender rod, axis through one end $I = \frac{1}{3}ML^2$ (d) Thin rectangular plate, axis along edge $I = \frac{1}{3}Ma^2$ (f) Solid cylinder $I = \frac{1}{2}MR^2$	(g) Thin-walled hollow cylinder $I = MR^2$
	, 1-3-	,	

Dynamics of rotational motion (Chapter 10)

	$\tau = Fl = rF\sin(\phi) = F_{tan}r$
	l is the length of the lever arm
	\ensuremath{r} is the distance of the point where the force is applied from the axis of rotation
Torque	ϕ is the angle between the force vector and the position vector \vec{r} of the point where the force is applied with respect to the axis of rotation
	F_{tan} is the tangential force component
	In vector form,
	$ec{ au} = ec{r} imes ec{F}$
Rotational analog of Newton's second law	$ au_{ m z,net}=Ilpha_{ m z}$
Kinetic energy in combined translation and rotation	$E_{kin} = \frac{1}{2}Mv_{cm}^2 + \frac{1}{2}I_{cm}\omega^2$
Condition for rolling without slipping	$v_{cm} = R\omega$
Manta dana hiya tanaya	$W = \int_{\theta_1}^{\theta_2} \tau_z d\theta$
Work done by a torque	For a constant torque,
	$W = \tau_z \Delta \theta$

Work-kinetic energy theorem for rotational motion	$W_{tot} = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2$
Power of a torque	$P = \tau_z \omega_z$
	For a particle:
	$ec{m{L}} = ec{m{r}} imes ec{m{p}} = ec{m{r}} imes m ec{m{v}}$
	$L_z = rp\sin(\theta) = rmv\sin(\theta)$
Angular momentum	For a rigid body rotating about its axis of symmetry:
	$ec{m{L}} = I \overrightarrow{m{\omega}}$
	$L_z = I\omega_z$
Rotational analog of Newton's second law with angular momentum	$ec{ au}_{net} = rac{dec{m L}}{dt}$
Precession angular speed for a gyroscope	$\Omega = \frac{F_g r}{I \omega}$ F_g is the gravitational force acting on the gyroscope and r is the radius of precession

Equilibrium and elasticity (Chapter 11)

Conditions for	$\vec{F}_{net} = 0$
equilibrium	$ec{ au}_{net} = extbf{0}$ about any point
Hooke's law in general	Elastic modulus = $\frac{\text{Stress}}{\text{Strain}}$
Tensile and compressive stress	$Y = \frac{\sigma}{\varepsilon} = \frac{F_\perp/A}{\Delta l/l_0}$ where V is Young's modulus, σ is tappile/compressive stress, σ is
	where Y is Young's modulus, σ is tensile/compressive stress, ε is tensile/compressive strain, and F_{\perp} is the normal force component applied to opposite sides
Bulk stress	$B = -\frac{\Delta p}{\Delta V/V_0}$
	where B is the bulk modulus and Δp is the pressure change

	$S = \frac{\tau}{\gamma} = \frac{F_{\parallel}/A}{x/h}$
	S is the shear modulus
	au is shear stress
Shear stress	γ is shear strain
	F_{\parallel} is the parallel force component applied to opposite sides
	x is the displacement of one side
	h is the transverse dimension, or height

Fluid mechanics (Chapter 12)

Density	$ \rho = \frac{m}{V} $
Pressure at a point in a fluid	$p=rac{dF_{\perp}}{dA}$
IIIIII	where F_{\perp} is the normal force applied on both sides of the area A
	$p_2 - p_1 = -\rho g(h_2 - h_1)$
Pressure in a fluid at	where h_1 and h_2 are elevations
rest	$p = p_0 + \rho g h$
	where p_0 is the pressure at the surface of the fluid and h is the distance from the surface
Force of buoyancy	$F_B = F_{ m g,fluid} = V_{ m object} ho_{ m fluid} g$
	The force of buoyancy on an object is the weight of the fluid that was displaced, or the volume of the object times the fluid density times g
Continuity equation for a fluid in motion	$A_1v_1 = A_2v_2$
Volume flow rate	$\dot{V} = \frac{dV}{dt} = Av$
Bernoulli's equation	$p + \rho g h + \frac{1}{2} \rho v^2 = \text{constant}$
	where h is elevation
Pressure difference required for viscous flow in a circular tube	$\Delta P = rac{8\eta L}{\pi r^4} \cdot \dot{V}$
	where r is the radius of the flow tube, L is its length, and η is the fluid viscosity

	$N_R = \frac{2r\rho v}{\eta}$
Reynold's number for	where r is the radius of the flow tube and η is the fluid viscosity
determining flow type in a circular tube	If $N_R < 2000$, the flow is laminar
	If $N_R > 3000$, the flow is turbulent
	If $2000 < N_R < 3000$, it needs to be tested

Gravitation (Chapter 13)

Law of gravitation	$F_g = \frac{Gm_1m_2}{r^2}$
	G is the gravitational constant, $6.67 \cdot 10^{-11} \ \mathrm{Nm^2/kg^2}$
	$m_{ m 1}$ and $m_{ m 2}$ are the masses of two objects
	r is the distance between the two objects
Acceleration due to gravity at the surface of	$g = \frac{GM}{R^2}$
a planet	where M is the mass of the planet and R is its radius
Gravitational potential energy	$E_{ m pot,g} = -rac{Gm_1m_2}{r}$
Speed in circular orbit	$v = \sqrt{\frac{GM}{r}}$
	where M is the mass of the planet and r is the radius of orbit
Period in circular orbit	$T = \frac{2\pi r}{v} = \frac{2\pi r^{\frac{3}{2}}}{\sqrt{GM}}$
	where \boldsymbol{v} is the speed of orbit, \boldsymbol{M} is the mass of the planet, and \boldsymbol{r} is the radius of orbit

Periodic motion (Chapter 14)

Period and frequency	$T = \frac{1}{f}$
Angular frequency	$\omega = 2\pi f = \frac{2\pi}{T}$
Condition for simple harmonic motion (SHM)	$F_x = -kx$

Acceleration in SHM as a function of position	$a_x = -\frac{k}{m}x$
Angular frequency, frequency, and period in SHM	$\omega = \sqrt{\frac{k}{m}}$ $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$
	$T = 2\pi \sqrt{\frac{m}{k}}$
Position, velocity, and acceleration in SHM as functions of time	$x = A\cos(\omega t + \phi)$ $v_x = -\omega A\sin(\omega t + \phi)$ $a_x = -\omega^2 A\cos(\omega t + \phi)$ where A is the amplitude and ϕ is the phase angle. v_x oscillates between ωA and $-\omega A$, and a_x oscillates between $\omega^2 A$ and $-\omega^2 A$
Energy in SHM	$E_{mec} = \frac{1}{2}mv_x^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2 = \text{constant}$
Angular SHM	$\omega=\sqrt{\frac{\kappa}{I}}$ $f=\frac{1}{2\pi}\sqrt{\frac{\kappa}{I}}$ where κ is the torsion constant and I is the moment of inertia
Simple pendulum	$\omega = \sqrt{\frac{g}{L}}$ $f = \frac{1}{2\pi} \sqrt{\frac{g}{L}}$ $T = 2\pi \sqrt{\frac{L}{g}}$
Physical pendulum	$\omega = \sqrt{\frac{mgd}{I}}$ $T = 2\pi \sqrt{\frac{I}{mgd}}$ where d is the distance between the center of gravity and the axis of rotation and I is the moment of inertia about the axis

	$x = Ae^{-\left(\frac{b}{2m}\right)t}\cos\left(\omega't + \phi\right)$
	$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$
Damped oscillations	A is the initial amplitude
	b is the damping constant
	ω' is the angular frequency of the damped oscillations
	ϕ is the phase angle
	k is the force constant of the restoring force
	Underdamping: $b < 2\sqrt{km}$
Types of damped oscillations	Critical damping: $b = 2\sqrt{km}$
	Overdamping: $b > 2\sqrt{km}$
	$A = \frac{F_{max}}{\sqrt{(k - m\omega_d^2)^2 + b^2\omega_d^2}}$
Resonance	ω_d is the driving frequency
	k is the force constant of the restoring force
	b is the damping constant

Temperature and Heat (Chapter 17)

Thermal expansion	Linear:
	$\Delta L = \alpha L_0 \Delta T$
	Volume:
	$\Delta V = \beta V_0 \Delta T$
	where α is the coefficient of linear thermal expansion and β is the coefficient of volume thermal expansion. In solids,
	$\beta = 3\alpha$
Tensile stress from thermal expansion	$\sigma = \frac{F}{A} = -Y\alpha\Delta T$
	where Y is Young's modulus
Heat required for a temperature change	$Q = mc\Delta T$ $Q = nC\Delta T$
	where ${\it Q}$ is heat, ${\it c}$ is specific heat capacity, ${\it C}$ is molar heat capacity, and ${\it n}$ is number of moles

	O = +mL
Heat required for a phase change	where L is the latent heat of fusion, vaporization, or sublimation. If only part of the substance undergoes a phase change,
	$Q = \pm xmL$
	where x is the fraction that undergoes a phase change
Calorimetry equation	$\sum Q = 0$
	for heat flow between objects isolated from their surroundings
	$H = \frac{dQ}{dt} = kA \frac{T_H - T_C}{L}$
	H is heat current
Heat current in	A is the area through which the heat flows
conduction	L is the length of the heat flow path
	T_H is the temperature of the hot end
	T_C is the temperature of the cold end
	k is the thermal conductivity of the material
Heat current through materials in series	$H_1 = H_2 = H_3 = \cdots$
Heat current through materials in parallel	$H_{total} = H_1 + H_2 + H_3 + \cdots$
Heat current in radiation	$H = Ae\sigma T^4$ $H_{net} = Ae\sigma (T^4 - T_s^4)$
	A is the surface area of the object
	e is the emissivity of the object
	σ is the Stefan-Boltzmann constant, 5.67 \cdot 10 ⁻⁸ W/(m 2 K 4)
	T is the temperature of the object
	T_s is the temperature of the surroundings

Thermal properties of matter (Chapter 18)

Ideal gas equation	pV = nRT
Comparing two states of a constant mass of ideal gas	$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$

Moles	$m_{total} = nM$
	$M = N_A m_{molecule}$
	where n is the number of moles, M is molar mass, and N_A is Avogadro's number, $6.02 \cdot 10^{23} \; \mathrm{mol^{-1}}$
Total translational kinetic energy of the molecules in an ideal gas	$E_{\rm kin,tr} = \frac{3}{2}nRT$
Average translational kinetic energy of a single molecule in an ideal gas	$\langle E_{\rm kin,tr}\rangle = \frac{1}{2}m\langle v^2\rangle = \frac{3}{2}kT$ where $\langle v^2\rangle$ is the average squared speed and k is the Boltzmann constant, $1.38\cdot 10^{-23}$ J/K = R/N_A
Root-mean-square speed of molecules in an ideal gas	$v_{rms} = \sqrt{\langle v^2 \rangle} = \sqrt{\frac{3kT}{m}}$
Mean free path of molecules in an ideal gas	$\lambda=vt_{mean}=\frac{V}{4\pi\sqrt{2}r^2N}$ where t_{mean} is the mean free time, r is the molecular radius, and N is the number of molecules
	Monatomic gas:
Theoretical heat capacities	$C_V = \frac{3}{2}R$
	Diatomic gas:
	$C_V = \frac{5}{2}R$
	Monatomic solid:
	$C_V = 3R$
	where R is the gas constant, 8.314 J/(mol K)

First law of thermodynamics (Chapter 19)

Work in a thermodynamic process	$W = \int_{V_1}^{V_2} p dV$
The first law of thermodynamics	$\Delta E_{int} = Q - W$ where E_{int} is the internal energy of a system, Q is the heat added to the system, and W is the work done by the system

Types of thermodynamic processes	Adiabatic: No heat transfer, $Q = 0$
	Isochoric: Constant volume, $W = 0$
	Isobaric: Constant pressure, $W=p\Delta V$ and $Q=n\mathcal{C}_p\Delta T$
	Isothermal: Constant temperature
Work/heat in an isothermal process in an ideal gas	$W = Q = nRT \ln \left(\frac{V_2}{V_1}\right) = nRT \ln \left(\frac{p_1}{p_2}\right)$
Internal energy change in an ideal gas	$\Delta E_{int} = nC_v \Delta T$
Deletienskip ketus	$C_p = C_V + R$
Relationship between heat capacities in an ideal gas	where \mathcal{C}_p is the molar heat capacity at constant pressure, \mathcal{C}_V is the molar heat capacity at constant volume, and R is the gas constant, 8.314 J/K mol
	$\gamma = \frac{C_p}{C_W}$
Ratio of heat capacities	For air, $\gamma=1.4$
Adiabatic processes in ideal gases	$T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}$
	$p_1 V_1^{\gamma} = p_2 V_2^{\gamma}$
	$p_1^{1-\gamma} T_1^{\gamma} = p_2^{1-\gamma} T_2^{\gamma}$
Work done in an adiabatic process in an ideal gas	$W = nC_V(T_1 - T_2)$
	$=\frac{c_V}{R}(p_1V_1-p_2V_2)$
	$= \frac{C_V}{R} (p_1 V_1 - p_2 V_2)$ $= \frac{1}{\gamma - 1} (p_1 V_1 - p_2 V_2)$

Second law of thermodynamics (Chapter 20)

Efficiency in a heat engine	$e = \frac{W}{Q_H} = 1 + \frac{Q_C}{Q_H} = 1 - \left \frac{Q_C}{Q_H} \right $
Efficiency in the Otto cycle	$e = 1 - \frac{1}{r^{\gamma - 1}}$
Coefficient of performance of a refrigerator	$K = \frac{ Q_C }{ W } = \frac{ Q_C }{ Q_H - Q_C }$
Heat transfer in a Carnot engine	$\frac{Q_C}{Q_H} = -\frac{T_C}{T_H}$
Efficiency of a Carnot engine	$e_{Carnot} = 1 - \frac{T_C}{T_H} = \frac{T_H - T_C}{T_H}$

Coefficient of performance of a Carnot refrigerator	$K_{Carnot} = \frac{T_C}{T_H - T_C}$
Entropy change for a reversible process	$\Delta S = \int_1^2 \frac{dQ}{T}$ where 1 and 2 are the initial and final states. If the process is isothermal, $\Delta S = \frac{Q}{T}$
Entropy change for an object undergoing a temperature change	$\Delta S = mc \ln \left(\frac{T_2}{T_1}\right)$
Entropy in terms of microstates	$S = k \ln(w)$ where k is the Boltzmann constant, $1.38 \cdot 10^{-23}$ J/K and w is the number of microstates
Entropy change in terms of microstates	$\Delta S = k \ln \left(\frac{w_2}{w_1} \right)$