2017-2018 M4 - Probabilités et fonctions

Fiche 3 : Variables aléatoires discrètes

Université

Exercice 1

On jette un dé bleu et un dé vert non pipés et on considère la v.a. X égale à la somme des points obtenus. Quelle est la loi de X? Même question pour la v.a. Y égale au minimum des deux points obtenus.

Exercice 2

Une urne contient N jetons numérotés de 1 à N. On en tire $m \leq N$ au hasard et sans remise. Soit $k \in \{1, \ldots, N\}$.

- a) Décrire un espace de probabilité $(\Omega, \mathcal{P}(\Omega), P)$ associé à l'expérience aléatoire.
- b) Quelle est la probabilité que les jetons tirés aient tous des numéros inférieurs ou égaux à k?
- c) On désigne par X la variable égale au plus grand numéro des jetons tirés. Déterminer la loi de X.
- d) Mêmes questions avec un tirage avec remise.

Exercice 3

- a) Quelle est la probabilité d'obtenir un double lorsqu'on lance une fois une paire de dés?
- b) On lance de façon répétée une paire de dés jusqu'à la première obtention d'un double. Soit X la variable aléatoire égale au nombre de lancers ainsi réalisés. Donner, en justifiant votre réponse, les valeurs de P(X=1), P(X=2) et plus généralement P(X=k) où $k \ge 1$ est un entier quelconque. Comment s'appelle la loi de X?
- c) Soit $n \ge 1$ un nombre entier. Calculer *directement* la probabilité de n'obtenir aucun double lors des n premiers lancers. En déduire P(X > n).
- d) Pour k > n, vérifier que

$$P_{X>n}(X = k) = P(X = k - n).$$

Donner une interprétation.

Exercice 4

Quatre chasseurs tirent indépendamment les uns des autres chacun un coup de fusil sur un bison en fuite. Chaque chasseur a une chance sur 4 de toucher le bison. On suppose qu'il faut au moins 3 balles pour tuer un bison.

- a) Quelle est la loi de la v.a. X égale au nombre de balles touchant le bison?
- b) Quelle est la probabilité que l'animal soit touché?
- c) Quelle est la probabilité qu'il soit tué?
- d) Sachant qu'il a été touché, quelle est la probabilité qu'il soit simplement blessé?

Exercice 5

Soit X une v.a. de Poisson de paramètre $\lambda > 0$. On définit la v.a. Y de la manière suivante :

$$Y = \begin{cases} 0 & \text{si } X \text{ prend une valeur nulle ou impaire,} \\ \frac{X}{2} & \text{si } X \text{ prend une valeur paire.} \end{cases}$$

Trouver la loi de Y.

Exercice 6

Un écran d'ordinateur est formé de petits points lumineux appelés pixels. Il comporte 768 lignes de 1024 pixels, soit 786432 pixels en tout.

- a) On utilise un procédé de fabrication qui assure que les pixels sont indépendants et que chacun n'a qu'une probabilité 9.10^{-7} d'être inutilisable. Quelle est la loi du nombre X de pixels grillés sur l'écran?
- b) L'écran est invendable si trois pixels au moins sont grillés. Calculer (en justifiant!) une valeur approchée de la probabilité pour un écran d'être invendable.

Exercice 7

Une entreprise fabrique des chaises à roulettes, équipées chacune de 5 roulettes.

- a) Par suite d'une erreur de livraison, l'entreprise a reçu 10 000 roulettes en bon état et 1 000 roulettes présentant un défaut de fabrication. Parmi les 2 200 chaises ainsi fabriquées, on en teste une au hasard. Calculer avec précision la probabilité que ses cinq roulettes soient en bon état.
- b) Quelle est la loi du nombre X de roulettes défectueuses dont est munie la chaise testée? Par quelle loi peut-on l'approcher? En utilisant cette approximation, évaluer la probabilité que la chaise testée ait exactement une roulette défectueuse, et la probabilité qu'elle en ait exactement trois.
- c) En utilisant la même approximation, calculer la probabilité que la chaise soit en bon état et comparer avec le résultat de la première question.