INEGRAL & KBESEVE

Not:
$$I = [0]^{J}$$

RECORDAN: $f: I \rightarrow IR$ ES SIMPLE SI

 $f = \sum_{i=1}^{n} d_i \text{ YEI}$, CON DIELE;

 $I = [0]^{n}$ EI, CON EI MEDIBLE;

 $I = [0]^{n}$ EI, CON EI MEDIBLE;

PREORDAN: $f: I \rightarrow IR$ MEDIBLE

JACOTADA.

 $f = Amp \left\{ I_{i}^{p} \right\} : f \leq f, J \leq IMPLE$

$$\int f = Am \left\{ \frac{1}{1}, \frac{1}{3} \right\} : \frac{1}{3} = \frac{1}{3} \left\{ \frac{1}{1}, \frac{1}{3} \right\} : \frac{1}{3} \left\{ \frac{1}{1},$$

PROP: f SIMPLE. ENTONGES If = I(f)

DEM: BUP If SIMPLE, J& f SE TIENE

PROP: f SIMPLE, J& f SE TIENE

PROP: f SIMPLE, J& f SE TIENE

ON P, D, = I, D; MEDIBLES. NOTAR PIK E: = D), D; DE; LVEGO (a) χ_E es medible $\iff E \in \mathcal{M}$. (b) $\chi_{E\cap F} = \chi_E \cdot \chi_F$. = Zj=1 / D; YEi; ADEMÁS (c) $\chi_{E \cup F} = \chi_E + \chi_F - \chi_{E \cap F}$. $M(E_i) = \sum_{i=1}^{n} M(D_i \cap E_i).$ como J3+, SONEi +\$ (NONGS B; Edi. (NTONGS B. WD; UE:) E S: MD. UE!) SKNER (Ari) $I_{j} = \sum_{i} \lambda_{i} M_{Ei} = \sum_{i} \lambda_{i} M_{Ei} D_{j}$ $\sum_{i,j} B_{j} M_{Ei} D_{j}$ $= \sum_{i} B_{i} \sum_{i} M_{Ei} D_{j} = I_{j}$ = M(J.)

SUP
$$f = \sum_{i=1}^{n} \alpha_i \sum_{E_i} \alpha_i \sum_{AE_i} \alpha_i \sum_{AE_i} \sum_{AE_i} \sum_{AE_i} \sum_{E_i} \sum_{AE_i} \sum_{AE_i}$$

LEMA:
$$A,B \ge 0$$
 TALES QUE

 $A-B = A+13$
 $AB = A+13$
 A