МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

ИНСТИТУТ НЕПРЕРЫВНОГО И ДИСТАНЦИОННОГО ОБРАЗОВАНИЯ

КАФЕДРА КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ И ПРОГРАММНОЙ ИНЖЕНЕРИИ

ОЦЕНКА			
ПРЕПОДАВАТЕЛЬ			
ти диодивитель			
д-р техн. наук, прос	beccop		С.И. Колесникова
должность, уч. степень	, звание	подпись, дата	инициалы, фамилия
	ОТЧЕТ О ЛАБ	ОРАТОРНОЙ РАБОТ	TE №1
Моделировани	ие принятия р	решения в многокрі выбора	итериальной задаче
	по дисциплине:	Компьютерное моделиро	вание
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ гр. №	Z1431		М.Д. Быстров
Студенческий билет №	2021/3572	подпись, дата	инициалы, фамилия

ЦЕЛЬ РАБОТЫ

Цель настоящей работы — знакомство с математическим аппаратом СППР для моделирования слабоструктурированных задач.

ХОД РАБОТЫ

Нужно произвести выбор секретаря референта из подавших резюме. Отбор претендентов происходит по трем критериям:

- С1. Филологическое образование и знание предметной области.
- С2. Знание английского языка.
- С3. Знание компьютера.

Собеседование прошли три претендента: П1, П2, П3.

После собеседования получились следующие описания претендентов.

П1: отличное знание английского языка; нет навыков работы на компьютере, посредственное знание предметной области.

П2: незнание английского языка, нет навыков работы на компьютере, предметную область знает посредственно.

П3: очень хорошее знание предметной области и филологическое образование, хорошие навыки работы на компьютере, посредственное знание английского языка.

- 1) На основе метода АНР выбрать претендента, в зависимости от разных наборов «весов» критериев:
 - a) C1=0,4; C2=0,2; C3=0,3
 - б) C1=0,3; C2=0,3; C3=0,4
 - в) C1=0,2; C2=0,5; C3=0,3
- 2) На основе метода АНР+ выбрать претендента, в зависимости от разных наборов «весов» критериев, в зависимости от нового добавленного в группу претендента П4={знает делопроизводство, навыки работы на компьютере, слабое знание английского языка}.

Разработать программу, моделирующую принятие решение о выборе претендента в зависимости от «стоимости» критериев по двум методам.

- 1. На первом этапе реализованы алгоритмы МАИ и ММАИ в программной среде Matlab. Исходные коды реализаций представлены в Приложении 1.
- 2. На втором этапе проведено оценивание всех альтернатив (претендентов) для каждого критерия по шкале от 1 то 9 (Таблица 1). Во время выполнения программы расчета МПС (матрицы парных сравнений) составляются на основе выставленных оценок.

Таблица 1 Оценки альтернатив

	Критерий 1	Критерий 2	Критерий 3
Претендент 1	3	9	1
Претендент 2	3	1	1
Претендент 3	9	5	7
Претендент 4	5	3	7

3. Полученные значения использованы для задания входных данных алгоритмам МАИ и ММАИ. В результате комбинирования различных вариантов «весов» и расширения перечня альтернатив количество вариантов входных данных составило 9: 3 - для выбора претендента алгоритмом МАИ, 6 – для выбора алгоритмом ММАИ.

Для алгоритма ММАИ расчет итогового вектора ВКА происходит по

формуле $V_i^{(1)} = \sum\limits_{j=1}^g w_{ij}$, где $\mathbf{w}(\mathbf{i},\mathbf{j})$ — элементы итоговой матрицы парных сравнений \mathbf{W} .

№ Алгоритм «Веса» критериев Альгернативы Результат МАИ С1=0,4; С2=0,2; С3=0,3 П1, П2, П3 алгоритм {МАИ*}					,
(MAII')	NoNo	Алгоритм	«Веса» критериев	Альтернативы	Результат
3			C1=0,4; C2=0,2;		алгоритм {'МАИ'} Веса критериев 0.4000 0.2000 0.3000 МПС критериев 1 1.0000 1.0000 0.3333 1.0000 1.0000 0.3333 3.0000 3.0000 1.0000 2 1.0000 9.0000 1.8000 0.1111 1.0000 0.2000 0.5556 5.0000 1.0000 3 1.0000 1.0000 0.1429 1.0000 1.0000 0.1429 7.0000 7.0000 1.0000 Проверка МПС критерия 1 на согласованность: МПС (A): 1.0000 1.0000 0.3333 1.0000 1.0000 0.3333 3.0000 3.0000 1.0000 ВКА (W): 0.2000 0.2000 0.2000 0.2000 0.6000 Максимальное собственное значение (п):

0.6000 1.8000
n * W =
0.6000
0.6000
1.8000
МПС согласована
Проверка МПС критерия 2 на согласованность:
МПС (А):
1.0000 9.0000 1.8000
0.1111 1.0000 0.2000
0.5556 5.0000 1.0000
BKA (W):
0.6000
0.0667 0.3333
0.5555
Максимальное собственное значение (n):
3.0000
A * W =
1.8000
0.2000
1.0000
n * W =
1.8000
0.2000 1.0000
1.0000
МПС согласована
Проверка МПС критерия 3 на согласованность:
МПС (А):
1.0000 1.0000 0.1429
1.0000 1.0000 0.1429 7.0000 7.0000 1.0000
7.0000 7.0000 1.0000
BKA (W):
0.1111 0.1111
0.1111
Максимальное собственное значение (n): 3.0000
3.0000
A * W =
0.3333
0.3333 2.3333
n * W = 0.3333
0.3333 0.3333
2.3333
MIIC
МПС согласована наилучшая альтернатива:

				3
				результат: 0.6000
				оценки всех альтернатив: 0.2593 0.1407 0.6000
2	МАИ	C1=0,3; C2=0,3 C3=0,4	; П1, П2, П3	алгоритм {'МАИ'}
				веса критериев 0.3000 0.3000 0.4000
				МПС критериев 1
				1.0000 1.0000 0.3333 1.0000 1.0000 0.3333
				3.0000 3.0000 1.0000 2
				1.0000 9.0000 1.8000 0.1111 1.0000 0.2000
				0.5556 5.0000 1.0000 3
				1.0000 1.0000 0.1429 1.0000 1.0000 0.1429
				7.0000 7.0000 1.0000
				Проверка МПС критерия 1 на согласованность:
				MIIC (A):
				1.0000 1.0000 0.3333 1.0000 1.0000 0.3333
				3.0000 3.0000 1.0000
				BKA (W):
				0.2000
				0.2000 0.6000
				Максимальное собственное значение (n): 3
				A * W = 0.6000
				0.6000 0.6000 1.8000
				n * W = 0.6000
				0.6000 1.8000
				МПС согласована Проверка МПС критерия 2 на согласованность:
				MΠC (A): 1.0000 9.0000 1.8000

				0.1111 1.0000 0.2000 0.5556 5.0000 1.0000
				BKA (W):
				0.6000 0.0667 0.3333
				Максимальное собственное значение (n):
				3.0000
				A * W = 1.8000
				0.2000 1.0000
				n * W =
				1.8000 0.2000 1.0000
				МПС согласована
				Проверка МПС критерия 3 на согласованность:
				МПС (A): 1.0000 1.0000 0.1429
				1.0000 1.0000 0.1429 7.0000 7.0000 1.0000
				BKA (W):
				0.1111 0.1111 0.7778
				Максимальное собственное значение (n):
				3.0000
				A * W = 0.3333
				0.3333 2.3333
				n * W =
				0.3333 0.3333 2.3333
				МПС согласована
				наилучшая альтернатива:
				результат:
				0.5911
3	MATA	C1-0.2: C2-0.5	пі по по	оценки всех альтернатив: 0.2844 0.1244 0.5911
3	МАИ	C1=0,2; C2=0,5; C3=0,3	П1, П2, П3	алгоритм {'МАИ'}
				веса критериев
				0.2000 0.5000 0.3000

МПС критериев
1
1.0000 1.0000 0.3333
1.0000 1.0000 0.3333
3.0000 3.0000 1.0000
2
1.0000 9.0000 1.8000 0.1111 1.0000 0.2000
0.5556 5.0000 1.0000
3
1.0000 1.0000 0.1429
1.0000 1.0000 0.1429
7.0000 7.0000 1.0000
Проверка МПС критерия 1 на согласованность:
МПС (А):
1.0000 1.0000 0.3333 1.0000 1.0000 0.3333
3.0000 3.0000 0.3333
BKA (W): 0.2000
0.2000
0.6000
Максимальное собственное значение (n):
3
A * W =
0.6000
0.6000
1.8000
n * W =
0.6000
0.6000 1.8000
1.0000
МПС согласована
Проверка МПС критерия 2 на согласованность:
МПС (А):
1.0000 9.0000 1.8000
0.1111 1.0000 0.2000 0.5556 5.0000 1.0000
BKA (W):
0.6000 0.0667
0.3333
Mayory (on you ook ()
Максимальное собственное значение (n): 3.0000
A * W =
0

	ı	I	ı	
				1.8000 0.2000
				1.0000
				n * W =
				1.8000 0.2000
				1.0000
				МПС согласована
				Проверка МПС критерия 3 на согласованность:
				МПС (А):
				1.0000 1.0000 0.1429
				1.0000 1.0000 0.1429
				7.0000 7.0000 1.0000
				BKA (W):
				0.1111
				0.1111
				0.7778
				Максимальное собственное значение (n):
				3.0000
				A * W =
				0.3333 0.3333
				2.3333
				n * W =
				0.3333 0.3333
				2.3333
				МПС согласована
				наилучшая альтернатива: 3
				результат:
				0.5200
				оценки всех альтернатив:
				0.3733 0.1067 0.5200
4	ММАИ	C1=0,4; C2=0,2;	П1, П2, П3	алгоритм
		C3=0,3		{'ММАИ'}
				веса критериев
				0.4000 0.2000 0.3000
				MHC
				МПС критериев 1
				•
				1.0000 1.0000 0.3333
				1.0000 1.0000 0.3333
				3.0000 3.0000 1.0000
				2
				1,0000 0,0000 1,9000
				1.0000 9.0000 1.8000 0.1111 1.0000 0.2000
				0.5556 5.0000 1.0000

3
,
1.0000 1.0000 0.1429
1.0000 1.0000 0.1429
7.0000 7.0000 1.0000
- NTG
Проверка МПС критерия 1 на согласованность:
МПС (А):
1.0000 1.0000 0.3333
1.0000 1.0000 0.3333
3.0000 3.0000 1.0000
BKA (W):
0.2000
0.2000 0.6000
0.0000
Максимальное собственное значение (n):
3
A * W =
0.6000
0.6000
1.8000
n * W =
0.6000
0.6000
1.8000
МПС согласована
Проверка МПС критерия 2 на согласованность:
МПС (А):
1.0000 9.0000 1.8000
0.1111 1.0000 0.2000
0.5556 5.0000 1.0000
777
BKA (W):
0.6000
0.0667 0.3333
0.3333
Максимальное собственное значение (n):
3.0000
A * W =
1.8000
0.2000 1.0000
1.0000
n * W =
1.8000
0.2000
1.0000
MIC
МПС согласована
Проверка МПС критерия 3 на согласованность:
МПС (А):
10

	1.0000 1.0000 0.1429
	1.0000 1.0000 0.1429
	7.0000 7.0000 1.0000
	7.0000 7.0000 1.0000
	BKA (W):
	0.1111
	0.1111
	0.7778
	3.7770
	Максимальное собственное значение (n):
	3.0000
	A * W =
	0.3333
	0.3333
	2.3333
	n * W =
	0.3333
	0.3333
	2.3333
	МПС согласована
	АНР+: b-матрица для критерия 1, измерение 1
	0.5000 0.5000 0.2500
	0.5000 0.5000 0.2500
	0.7500 0.7500 0.5000
	AHP+: b-матрица для критерия 1, измерение 2
	0.5000 0.5000 0.7500
	0.5000 0.5000 0.7500
	0.2500 0.2500 0.5000
	АНР+: b-матрица для критерия 2, измерение 1
	0.5000 0.9000 0.6429
	0.1000 0.5000 0.1667
	0.3571 0.8333 0.5000
	АНР+: b-матрица для критерия 2, измерение 2
	0.5000 0.1000 0.3571
	0.9000 0.5000 0.8333
	0.6429 0.1667 0.5000
	АНР+: b-матрица для критерия 3, измерение 1
	0.5000 0.5000 0.1250
	0.5000 0.5000 0.1250
	0.8750 0.8750 0.5000
	АНР+: b-матрица для критерия 3, измерение 2
	0.5000 0.5000 0.8750
	0.5000 0.5000 0.8750
	0.1250 0.1250 0.5000
	АНР+: итоговая W-матрица (измерение 1)
	0.5000 0.5889 0.2956
	0.4111 0.5000 0.1898
	0.7044 0.8102 0.5000
	АНР+: итоговая W-матрица (измерение 2)
	0.5000 0.4111 0.7044
	0.5889 0.5000 0.8102
	0.2956 0.1898 0.5000
	

				наилучшая альтернатива:
				3
				результат: 0.4477
				оценки всех альтернатив: 0.3077 0.2447 0.4477
5	ММАИ	C1=0,3; C2=0,3; C3=0,4	П1, П2, П3	алгоритм {'ММАИ'}
		·		веса критериев 0.3000 0.3000 0.4000
				МПС критериев 1
				1.0000 1.0000 0.3333 1.0000 1.0000 0.3333
				3.0000 3.0000 1.0000
				2
				1.0000 9.0000 1.8000 0.1111 1.0000 0.2000
				0.5556 5.0000 1.0000
				3
				1.0000 1.0000 0.1429 1.0000 1.0000 0.1429
				7.0000 7.0000 1.0000
				Проверка МПС критерия 1 на согласованность:
				MΠC (A): 1.0000 1.0000 0.3333
				1.0000 1.0000 0.3333 3.0000 3.0000 1.0000
				BKA (W):
				0.2000
				0.2000 0.6000
				Максимальное собственное значение (n): 3
				A * W =
				0.6000 0.6000
				1.8000
				n * W =
				0.6000 0.6000
				1.8000
				МПС согласована Проверка МПС критерия 2 на согласованность:
				проверка ічніе критерия 2 на согласованность:

T
MIIC (A):
1.0000 9.0000 1.8000
0.1111 1.0000 0.2000
0.5556 5.0000 1.0000
DKA (W).
BKA (W): 0.6000
0.0667
0.3333
0.5555
Максимальное собственное значение (n):
3.0000
A * W =
1.8000
0.2000
1.0000
n * W =
1.8000
0.2000
1.0000
МПС согласована
Проверка МПС критерия 3 на согласованность:
трозорки пите критерия з на согласованноств.
МПС (А):
1.0000 1.0000 0.1429
1.0000 1.0000 0.1429
7.0000 7.0000 1.0000
BKA (W):
0.1111
0.1111
0.7778
Mayayyyayy yaa aafarrayyyaa ayayayyy (*);
Максимальное собственное значение (n): 3.0000
3.0000
A * W =
0.3333
0.3333
2.3333
n * W =
0.3333
0.3333
2.3333
MIIC
МПС согласована
АНР+: b-матрица для критерия 1, измерение 1 0.5000 0.5000 0.2500
0.5000 0.5000 0.2500 0.5000 0.5000 0.2500
0.7500 0.7500 0.5000
3.7300 0.7300 0.3000
АНР+: b-матрица для критерия 1, измерение 2
0.5000 0.5000 0.7500
0.5000 0.5000 0.7500
0.2500 0.2500 0.5000
АНР+: b-матрица для критерия 2, измерение 1
0.5000 0.9000 0.6429

	1	T	1	1
				0.1000 0.5000 0.1667
				0.3571 0.8333 0.5000
				AHP+: b-матрица для критерия 2, измерение 2
				0.5000 0.1000 0.3571
				0.9000 0.5000 0.8333
				0.6429 0.1667 0.5000
				АНР+: b-матрица для критерия 3, измерение 1
				0.5000 0.5000 0.1250
				0.5000 0.5000 0.1250
				0.8750 0.8750 0.5000
				АНР+: b-матрица для критерия 3, измерение 2
				0.5000 0.5000 0.8750
				0.5000 0.5000 0.8750
				0.1250 0.1250 0.5000
				AUD
				АНР+: итоговая W-матрица (измерение 1)
				0.5000 0.6200 0.3179
				0.3800 0.5000 0.1750
				0.6821 0.8250 0.5000
				AHD
				АНР+: итоговая W-матрица (измерение 2)
				0.5000 0.3800 0.6821
				0.6200 0.5000 0.8250
				0.3179 0.1750 0.5000
				наилучшая альтернатива:
				3
				результат:
				0.4460
				оценки всех альтернатив:
	3434411	C1 0.2 C2 0.5	пт по по	0.3195 0.2344 0.4460
6	ММАИ	C1=0,2; C2=0,5;	П1, П2, П3	алгоритм
		C3=0,3		{'ММАИ'}
		,		
				веса критериев
				0.2000 0.5000 0.3000
				NIIC
				МПС критериев
				1
				1,0000 1,0000 0,2222
				1.0000 1.0000 0.3333
				1.0000 1.0000 0.3333
				3.0000 3.0000 1.0000
				2
				1.0000 9.0000 1.8000
				0.1111 1.0000 0.2000
				0.5556 5.0000 1.0000
				3
				1.0000 1.0000 0.1429
				1.0000 1.0000 0.1429
				7.0000 7.0000 1.0000
				Проверка МПС критерия 1 на согласованность:
		·		

MIC(A)
MΠC (A):
1.0000 1.0000 0.3333
1.0000 1.0000 0.3333
3.0000 3.0000 1.0000
BKA (W):
0.2000
0.2000
0.6000
Максимальное собственное значение (n):
3
A * W =
0.6000
0.6000
1.8000
n * W =
0.6000
0.6000
1.8000
МПС согласована
Проверка МПС критерия 2 на согласованность:
The section will be a section of the
МПС (А):
1.0000 9.0000 1.8000
0.1111 1.0000 0.2000
0.5556 5.0000 1.0000
0.3330 3.0000 1.0000
BKA (W):
0.6000
0.0667
0.3333
Mayayyayy yaa aafamayyaa ayayayya (a).
Максимальное собственное значение (n):
3.0000
A * W _
A * W =
1.8000
0.2000
1.0000
A XXI
n * W =
1.8000
0.2000
1.0000
МПС согласована
Проверка МПС критерия 3 на согласованность:
МПС (А):
1.0000 1.0000 0.1429
1.0000 1.0000 0.1429
7.0000 7.0000 1.0000
BKA (W):
0.1111
0.1111
0.7778
 0.7770

T
Максимальное собственное значение (п):
3.0000
3.0000
A * W =
0.3333
0.3333
2.3333
n * W =
0.3333
0.3333
2.3333
МПС согласована
АНР+: b-матрица для критерия 1, измерение 1
0.5000 0.5000 0.2500
0.5000 0.5000 0.2500
0.7500 0.7500 0.5000
АНР+: b-матрица для критерия 1, измерение 2
0.5000 0.5000 0.7500
0.5000 0.5000 0.7500
0.2500 0.2500 0.5000
AVID 1
АНР+: b-матрица для критерия 2, измерение 1
0.5000 0.9000 0.6429
0.1000 0.5000 0.1667
0.3571 0.8333 0.5000
АНР+: b-матрица для критерия 2, измерение 2
0.5000 0.1000 0.3571
0.9000 0.5000 0.8333
0.6429 0.1667 0.5000
0.0127 0.1007 0.3000
АНР+: b-матрица для критерия 3, измерение 1
0.5000 0.5000 0.1250
0.5000 0.5000 0.1250
0.8750 0.8750 0.5000
АНР+: b-матрица для критерия 3, измерение 2
0.5000 0.5000 0.8750
0.5000 0.5000 0.8750
0.1250 0.1250 0.5000
АНР+: итоговая W-матрица (измерение 1)
0.5000 0.7000 0.4089
0.3000 0.5000 0.1708
0.5911 0.8292 0.5000
AUD (
АНР+: итоговая W-матрица (измерение 2)
0.5000 0.3000 0.5911
0.7000 0.5000 0.8292
0.4089 0.1708 0.5000
наилучшая альтернатива:
3
результат:
0.4267
оценки всех альтернатив:
I

				0.3575 0.2157 0.4267
				0.00.0
7	3434411	G1 0.4 G2 0.2	П1 П2 П2 П4	
7	ММАИ	C1=0,4; C2=0,2	$\Pi 1, \Pi 2, \Pi 3, \Pi 4$	алгоритм {'ММАИ'}
		C3=0,3		(IVIIVITATE)
				веса критериев
				0.4000 0.2000 0.3000
				МПС критериев
				1
				1.0000 1.0000 0.3333 0.6000 1.0000 1.0000 0.3333 0.6000
				1.0000 1.0000 0.3333 0.6000 3.0000 3.0000 1.0000 1.8000
				1.6667 1.6667 0.5556 1.0000
				110007 110007 010000
				2
				1.0000 9.0000 1.8000 3.0000
				0.1111 1.0000 0.2000 0.3333
				0.5556 5.0000 1.0000 1.6667
				0.3333 3.0000 0.6000 1.0000
				3
				1.0000 1.0000 0.1429 0.1429
				1.0000 1.0000 0.1429 0.1429
				7.0000 7.0000 1.0000 1.0000
				7.0000 7.0000 1.0000 1.0000
				Проверка МПС критерия 1 на согласованность:
				МПС (А):
				1.0000 1.0000 0.3333 0.6000
				1.0000 1.0000 0.3333 0.6000
				3.0000 3.0000 1.0000 1.8000
				1.6667 1.6667 0.5556 1.0000
				BKA (W):
				0.1500
				0.1500
				0.4500
				0.2500
				Максимальное собственное значение (n): 4.0000
				A * W =
				$A \cdot W = 0.6000$
				0.6000
				1.8000
				1.0000
				n * W =
				0.6000
				0.6000
				1.8000
				1.0000
				МПС согласована
L	I	I .	1	volumoobulu

Проверка МПС критерия 2 на согласованность:
MTIC (A):
1.0000 9.0000 1.8000 3.0000
0.1111 1.0000 0.2000 0.3333 0.5556 5.0000 1.0000 1.6667
0.3333 3.0000 1.0000 1.0000
0.5555 5.0000 0.0000 1.0000
BKA (W):
0.5000
0.0556
0.2778
0.1667
Максимальное собственное значение (n):
4
A + W
A * W = 2.0000
0.2222
1.1111
0.6667
3.0007
n * W =
2.0000
0.2222
1.1111
0.6667
1.07.0
МПС согласована
Проверка МПС критерия 3 на согласованность:
МПС (А):
1.0000 1.0000 0.1429 0.1429
1.0000 1.0000 0.1429 0.1429
7.0000 7.0000 1.0000 1.0000
7.0000 7.0000 1.0000 1.0000
BKA (W):
0.0625
0.0625
0.4375
0.4375
Mayorn to a coffee
Максимальное собственное значение (n): 4
+
A * W =
0.2500
0.2500
1.7500
1.7500
n * W =
0.2500
0.2500
1.7500
1.7500
МПС согласована
МПС согласована АНР+: b-матрица для критерия 1, измерение 1
0.5000 0.5000 0.2500 0.3750
1.000 0.000 0.000

					0.5000 0.5000 0.2500 0.3750
					0.7500 0.7500 0.5000 0.6429
					0.6250 0.6250 0.3571 0.5000
					АНР+: b-матрица для критерия 1, измерение 2
					0.5000 0.5000 0.7500 0.6250
					0.5000 0.5000 0.7500 0.6250
					0.2500 0.2500 0.5000 0.3571
					0.3750 0.3750 0.6429 0.5000
					АНР+: b-матрица для критерия 2, измерение 1
					0.5000 0.9000 0.6429 0.7500
					0.1000 0.5000 0.1667 0.2500
					0.3571 0.8333 0.5000 0.6250
					0.2500 0.7500 0.3750 0.5000
					АНР+: b-матрица для критерия 2, измерение 2
					0.5000 0.1000 0.3571 0.2500
					0.9000 0.5000 0.8333 0.7500
					0.6429 0.1667 0.5000 0.3750
					0.7500 0.2500 0.6250 0.5000
					0.7300 0.2300 0.0230 0.3000
					АНР+: b-матрица для критерия 3, измерение 1
					0.5000 0.5000 0.1250 0.1250
					0.5000 0.5000 0.1250 0.1250
					0.8750 0.8750 0.5000 0.5000
					0.8750 0.8750 0.5000 0.5000
					0.0730 0.0730 0.3000
					ALID Lab Acompanyo Ting amaginanya 2 ayaasan ayaa 2
					АНР+: b-матрица для критерия 3, измерение 2
					0.5000 0.5000 0.8750 0.8750
					0.5000 0.5000 0.8750 0.8750
					0.1250 0.1250 0.5000 0.5000
					0.1250 0.1250 0.5000 0.5000
					АНР+: итоговая W-матрица (измерение 1)
					0.5000 0.5889 0.2956 0.3750
					0.4111 0.5000 0.1898 0.2639
					0.7044 0.8102 0.5000 0.5913
					0.6250 0.7361 0.4087 0.5000
					АНР+: итоговая W-матрица (измерение 2)
					0.5000 0.4111 0.7044 0.6250
					0.2956 0.1898 0.5000 0.4087
					0.3750 0.2639 0.5913 0.5000
					наилучшая альтернатива:
					3
					резупьтат:
					результат: 0.3257
					0.5457
					оценки всех альтернатив:
<u></u>					0.2199 0.1706 0.3257 0.2837
8	ММАИ	C1=0,3; C2=	=0,3;	П1, П2, П3, П4	алгоритм
			- /		{'MMAИ'}
		C3=0,4			
					peca kuntennen
					веса критериев
					0.3000 0.3000 0.4000
					МПС критериев
					1
					_

 ,
4,0000, 4,0000, 0,2222, 0,5000
1.0000 1.0000 0.3333 0.6000
1.0000 1.0000 0.3333 0.6000
3.0000 3.0000 1.0000 1.8000
1.6667 1.6667 0.5556 1.0000
2
1.0000 9.0000 1.8000 3.0000
0.1111 1.0000 0.2000 0.3333
0.5556 5.0000 1.0000 1.6667
0.3333 3.0000 0.6000 1.0000
3
1.0000 1.0000 0.1429 0.1429
1.0000 1.0000 0.1429 0.1429
7.0000 7.0000 1.0000 1.0000
7.0000 7.0000 1.0000 1.0000
Проверка МПС критерия 1 на согласованность:
MΠC (A):
1.0000 1.0000 0.3333 0.6000
1.0000 1.0000 0.3333 0.6000
3.0000 3.0000 1.0000 1.8000
1.6667 1.6667 0.5556 1.0000
BKA (W):
0.1500
0.1500
0.4500
0.2500
Максимальное собственное значение (n):
4.0000
A * W =
0.6000
0.6000
1.8000
1.0000
n * W =
0.6000
0.6000
1.8000
1.0000
МПС согласована
Проверка МПС критерия 2 на согласованность:
MΠC (A):
1.0000 9.0000 1.8000 3.0000
0.1111 1.0000 0.2000 0.3333
0.5556 5.0000 1.0000 1.6667
0.3333 3.0000 0.6000 1.0000
1.000
BKA (W):
0.5000
0.0556
0.2778

0.1667
0.1007
Максимальное собственное значение (n):
4
A * W =
2.0000
0.2222
1.1111 0.6667
0.0007
n * W =
2.0000 0.2222
1.1111
0.6667
NEGO.
МПС согласована Проверка МПС критерия 3 на согласованность:
МПС (А):
1.0000 1.0000 0.1429 0.1429
1.0000 1.0000 0.1429 0.1429
7.0000 7.0000 1.0000 1.0000 7.0000 7.0000 1.0000 1.0000
7.0000 7.0000 1.0000
BKA (W):
0.0625 0.0625
0.4375
0.4375
Manager and a Sampanna a system (7):
Максимальное собственное значение (n): 4
A * W = 0.2500
0.2500
1.7500
1.7500
n * W =
0.2500
0.2500
1.7500 1.7500
1.7500
МПС согласована
АНР+: b-матрица для критерия 1, измерение 1 0.5000 0.5000 0.2500 0.3750
0.5000 0.5000 0.2500 0.3750 0.5000 0.5000 0.2500 0.3750
0.7500 0.7500 0.5000 0.6429
0.6250 0.6250 0.3571 0.5000
АНР+: b-матрица для критерия 1, измерение 2
0.5000 0.5000 0.7500 0.6250
0.5000 0.5000 0.7500 0.6250
0.2500 0.2500 0.5000 0.3571 0.3750 0.3750 0.6429 0.5000
0.5750 0.5750 0.0427 0.5000
АНР+: b-матрица для критерия 2, измерение 1
0.5000 0.9000 0.6429 0.7500

	1	T		1	1
					0.1000 0.5000 0.1667 0.2500
					0.3571 0.8333 0.5000 0.6250
					0.2500 0.7500 0.3750 0.5000
					0.2300 0.7300 0.3730 0.3000
					L L TYPE L
					AHP+: b-матрица для критерия 2, измерение 2
					0.5000 0.1000 0.3571 0.2500
					0.9000 0.5000 0.8333 0.7500
					0.6429 0.1667 0.5000 0.3750
					0.7500 0.2500 0.6250 0.5000
					АНР+: b-матрица для критерия 3, измерение 1
					0.5000 0.5000 0.1250 0.1250
					0.5000 0.5000 0.1250 0.1250
					0.8750 0.8750 0.5000 0.5000
					0.8750 0.8750 0.5000 0.5000
					A LID 1
	1				АНР+: b-матрица для критерия 3, измерение 2
					0.5000 0.5000 0.8750 0.8750
					0.5000 0.5000 0.8750 0.8750
					0.1250 0.1250 0.5000 0.5000
					0.1250 0.1250 0.5000 0.5000
					АНР+: итоговая W-матрица (измерение 1)
					0.5000 0.6200 0.3179 0.3875
					0.3800 0.5000 0.1750 0.2375
					0.6821 0.8250 0.5000 0.5804
					0.6125 0.7625 0.4196 0.5000
					A LID L. vygopopog W. vogpovyco (vypycomovyco 2)
					АНР+: итоговая W-матрица (измерение 2)
					0.5000 0.3800 0.6821 0.6125
					0.6200 0.5000 0.8250 0.7625
					0.3179 0.1750 0.5000 0.4196
					0.3875 0.2375 0.5804 0.5000
					0.3873 0.2373 0.3804 0.3000
					наилучшая альтернатива:
					3
					результат:
					0.3234
					оценки всех альтернатив:
					0.2282 0.1616 0.3234 0.2868
	10.6433	01.02	G2 0.5	П1 П2 П2 П4	
9	ММАИ	C1=0,2;	C2=0,5;	$\Pi 1, \Pi 2, \Pi 3, \Pi 4$	алгоритм
		C3=0,3			{'ММАИ'}
		C3-0,3			
					веса критериев
					0.2000 0.5000 0.3000
					0.2000 0.3000 0.3000
					МПС критериев
					1,0000 1,0000 0,2222 0,6000
					1.0000 1.0000 0.3333 0.6000
					1.0000 1.0000 0.3333 0.6000
					3.0000 3.0000 1.0000 1.8000
					1.6667 1.6667 0.5556 1.0000
					1.000, 1.000, 1.0000
					2
					1.0000 9.0000 1.8000 3.0000
					0.1111 1.0000 0.2000 0.3333
1					0.5556 5.0000 1.0000 1.6667
					0.3333 3.0000 1.0000 1.0000

3
1.0000 1.0000 0.1429 0.1429
1.0000 1.0000 0.1429 0.1429
7.0000 7.0000 1.0000 1.0000
7.0000 7.0000 1.0000 1.0000
Проверка МПС критерия 1 на согласованность:
МПС (А):
1.0000 1.0000 0.3333 0.6000 1.0000 1.0000 0.3333 0.6000
3.0000 3.0000 0.3333 0.0000 3.0000 1.0000 1.8000
1.6667 1.6667 0.5556 1.0000
BKA (W):
0.1500
0.1500
0.4500 0.2500
Максимальное собственное значение (n): 4.0000
A * W =
0.6000
0.6000
1.8000
1.0000
n * W =
0.6000
0.6000 1.8000
1.0000
МПС согласована
Проверка МПС критерия 2 на согласованность:
МПС (А):
1.0000 9.0000 1.8000 3.0000
0.1111 1.0000 0.2000 0.3333 0.5556 5.0000 1.0000 1.6667
0.3333 3.0000 0.6000 1.0000
BKA (W): 0.5000
0.556
0.2778
0.1667
Максимальное собственное значение (n):
4
A * W =
2.0000
0.2222
1.1111
0.6667
n * W =

<u></u>	
	2.0000
	0.2222
	1.1111
	0.6667
	МПС согласована
	Проверка МПС критерия 3 на согласованность:
	МПС (А):
	1.0000 1.0000 0.1429 0.1429
	1.0000 1.0000 0.1429 0.1429
	7.0000 7.0000 1.0000 1.0000
	7.0000 7.0000 1.0000 1.0000
	DICA (W).
	BKA (W):
	0.0625 0.0625
	0.4375 0.4375
	V. 1 373
	Максимальное собственное значение (n):
	4
	·
	A * W =
	0.2500
	0.2500
	1.7500
	1.7500
	n * W =
	0.2500
	0.2500
	1.7500
	1.7500
	МПС согласована
	АНР+: b-матрица для критерия 1, измерение 1
	0.5000 0.5000 0.2500 0.3750
	0.5000 0.5000 0.2500 0.3750
	0.7500 0.7500 0.5000 0.6429
	0.6250 0.6250 0.3571 0.5000
	AUD - h Marrania mag venuranua 1 marranua 2
	АНР+: b-матрица для критерия 1, измерение 2 0.5000 0.5000 0.7500 0.6250
	0.5000 0.5000 0.7500 0.6250
	0.3500 0.3600 0.7500 0.6230 0.2500 0.2500 0.5000 0.3571
	0.3750 0.3750 0.6429 0.5000
	0.0700 0.0700 0.0127 0.0000
	АНР+: b-матрица для критерия 2, измерение 1
	0.5000 0.9000 0.6429 0.7500
	0.1000 0.5000 0.1667 0.2500
	0.3571 0.8333 0.5000 0.6250
	0.2500 0.7500 0.3750 0.5000
	АНР+: b-матрица для критерия 2, измерение 2
	0.5000 0.1000 0.3571 0.2500
	0.9000 0.5000 0.8333 0.7500
	0.6429 0.1667 0.5000 0.3750
	0.7500 0.2500 0.6250 0.5000
	АНР+: b-матрица для критерия 3, измерение 1
	0.5000 0.5000 0.1250 0.1250

		0.5000	0.5000	0.1250	0.1250
		0.8750	0.8750	0.5000	0.5000
		0.8750	0.8750	0.5000	0.5000
		AHP+: b-M	матрица д	для крите	рия 3, измерение 2
			0.5000		
		0.5000	0.5000	0.8750	0.8750
		0.1250	0.1250	0.5000	0.5000
		0.1250	0.1250	0.5000	0.5000
		АНР+: ито	оговая W	-матрица	і (измерение 1)
			0.7000		
		0.3000	0.5000	0.1708	0.2375
		0.5911	0.8292	0.5000	0.5911
		0.5125	0.7625	0.4089	0.5000
		АНР+: ито	оговая W	-матрица	и (измерение 2)
			0.3000		
		0.7000	0.5000	0.8292	0.7625
		0.4089	0.1708	0.5000	0.4089
		0.4875	0.2375	0.5911	0.5000
		наилучша	я альтерн	натива:	
		3	•		
		результат	:		
		0.3139			
		оценки вс	ех альтер	натив:	
			0.1510		0.2730

ВЫВОДЫ

В ходе выполнения первой лабораторной работы №1 была написана программа, позволяющая решать слабоструктурированные задачи выбора с помощью метода анализа иерархий (МАИ), а также с помощью его модифицированной версии (ММАИ). Программа написана в среде МАТLAB (R2023b).

Решен вариант слабоструктурированной задачи с использованием разных методов, «весов» критериев, набора альтернатив. В итоговых оценках альтернатив видна разница при использовании одинаковых входных данных для разных вариантов алгоритмов. При выполнении работы оба варианта алгоритма всегда выбирали одну и ту же альтернативу, однако разница в оценивании видна при рассмотрении наборов итоговых оценок альтернатив.

Приложение 1 Исходный код программы

```
1. ./ahp.m
function [solution, score, alternativeScores] = ahp(criteriaWeights.
pairComparisonMatrix)
% analytic hierarchy process
% criteriaWeights: array of the criterias' weights -> array[criteriaNum] =
% criteria weight
% pairComparisonMatrix: matrix[criteria, alternative, alternative] =
rate
% returns - number of selected alternative, score, result score vector
    % get numbers of criterias and alternatives
    criteriaNum = size(criteriaWeights, 2);
    alternativeNum = size(pairComparisonMatrix, 2);
   % array[criteria] = array[alternativeNum] = counted weight (rows -
    criteriaAlternativeWeightVectorArray = zeros(criteriaNum,
alternativeNum);
    % normalize weights vector
    criteriaWeights = criteriaWeights / sum(criteriaWeights);
    bufPairComparisonMatrix = pairComparisonMatrix;
    % iterate on criterias
    for criteria = 1:criteriaNum
        % matrix normalization
        for alternative = 1:alternativeNum
            s = sum(pairComparisonMatrix(criteria, 1:alternativeNum,
alternative));
            normalizedColumn = pairComparisonMatrix(criteria,
1:alternativeNum, alternative) / s;
            pairComparisonMatrix(criteria, 1:alternativeNum,
alternative) = normalizedColumn:
        end
        %find score by criteria for alternatives
        for alternative = 1:alternativeNum
            alternativeVector = pairComparisonMatrix(criteria,
alternative, :);
            score = mean(alternativeVector):
            criteriaAlternativeWeightVectorArray(criteria.
alternative) = score;
        mps = permute(bufPairComparisonMatrix(criteria, :, :), [2, 3,
1]);
        vka = criteriaAlternativeWeightVectorArray(criteria,
1:alternativeNum);
```

```
fprintf('Проверка МПС критерия %d на согласованность: \n\n'.
criteria):
        % check mps consistency
        printMpsConsistencyCheck(mps, vka);
        criteriaWeight = criteriaWeights(criteria);
        criteriaAlternativeWeightVectorArray(criteria.
1:alternativeNum) = ...
        criteriaAlternativeWeightVectorArray(criteria,
1:alternativeNum) * criteriaWeight;
% weightedCriteria = score * criteriaWeight;
end
    alternativeScores = zeros(1, alternativeNum);
    for alternative = 1:alternativeNum
        alternativeScores(alternative) =
sum(criteriaAlternativeWeightVectorArray( ...
            1:criteriaNum, ...
            alternative)):
   end
   %disp(alternativeScores);
    [score, solution] = max(alternativeScores);
end
./ahpPlus.m
function [solution, score, alternativeScores] =
ahpPlus(criteriaWeights, pairComparisonMatrix)
% analytic hierarchy process - modified
% criteriaWeights: array of the criterias' weights ->
array[criteriaNum] =
% criteria weight
% pairComparisonMatrix: matrix[criteria, alternative, alternative] =
rate
% returns - number of selected alternative, score, result score vector
    % get numbers of criterias and alternatives
    criteriaNum = size(criteriaWeights, 2);
    alternativeNum = size(pairComparisonMatrix, 2);
    % array[criteria] = array[alternativeNum] = counted weight (rows -
w^i)
    criteriaAlternativeScoreMatrix = zeros(criteriaNum,
alternativeNum);
    % normalize weights vector
    criteriaWeights = criteriaWeights / sum(criteriaWeights);
    bufPairComparisonMatrix = pairComparisonMatrix;
    % STAGE 1 - iterate on criterias and calculate alternative rates
    for criteria = 1:criteriaNum
        % matrix normalization
        for alternative = 1:alternativeNum
```

```
s = sum(pairComparisonMatrix(criteria. 1:alternativeNum.
alternative)):
            pairComparisonMatrix(criteria, 1:alternativeNum,
alternative) =
                pairComparisonMatrix(criteria, 1:alternativeNum,
alternative) / s;
        end
       %find_score by criteria for alternatives
        for alternative = 1:alternativeNum
            alternativeVector = pairComparisonMatrix(criteria,
alternative, :);
            score = mean(alternativeVector);
            criteriaAlternativeScoreMatrix(criteria, alternative) =
score;
        end
        mps = permute(bufPairComparisonMatrix(criteria, :, :), [2, 3,
1]);
        vka = criteriaAlternativeScoreMatrix(criteria,
1:alternativeNum);
        fprintf('Проверка МПС критерия %d на согласованность:\n\n',
criteria):
        % check mps consistency
        printMpsConsistencyCheck(mps, vka);
   end
   % STAGE 2 - create b-matrixes for criterias
   criteriaBMatrixes =
containers.Map('KeyType','int32','ValueType','any');
   for criteria = 1:criteriaNum
        bMatrix = zeros(alternativeNum, alternativeNum, 2);
        for alternative1 = 1:alternativeNum
            for alternative2 = 1:alternativeNum
                score1 = criteriaAlternativeScoreMatrix(criteria,
alternative1):
                score2 = criteriaAlternativeScoreMatrix(criteria,
alternative2);
                s = score1 + score2;
                normScore1 = score1 / s;
                normScore2 = score2 / s;
                bMatrix(alternative1, alternative2, 1) = normScore1;
                bMatrix(alternative1, alternative2, 2) = normScore2;
            end
        end
        criteriaBMatrixes(criteria) = bMatrix;
        fprintf('AHP+: b-матрица для критерия %d, измерение 1\n',
criteria):
       disp(bMatrix(:, :, 1));
```

```
fprintf('AHP+: b-матрица для критерия %d. измерение 2\n'.
criteria);
    disp(bMatrix(:, :, 2));
    end
    % STAGE 3 - create common W-matrix
    wMatrix = zeros(alternativeNum, alternativeNum, 2);
    for alternative1 = 1:alternativeNum
        for alternative2 = 1:alternativeNum
             sum1 = 0:
             sum2 = 0;
             for criteria = 1:criteriaNum
                 bMatrix = criteriaBMatrixes(criteria);
                 alternateScore1 = bMatrix(alternative1, alternative2,
1);
                 alternateScore2 = bMatrix(alternative1, alternative2,
2);
                 criteriaWeight = criteriaWeights(criteria);
                 sum1 = sum1 + criteriaWeight * alternateScore1;
sum2 = sum2 + criteriaWeight * alternateScore2;
             end
            wMatrix(alternative1, alternative2, 1) = sum1;
            wMatrix(alternative1, alternative2, 2) = sum2;
        end
    end
    disp('AHP+: итоговая W-матрица (измерение 1)');
    disp(wMatrix(:, :, 1));
    disp('AHP+: итоговая W-матрица (измерение 2)');
    disp(wMatrix(:, :, 2));
    % STAGE 4 - count global alternative scores
    alternativeScores = zeros(1, alternativeNum);
    scoreSum = 0;
    for alternative1 = 1:alternativeNum
        s = 0;
        for alternative2 = 1:alternativeNum
            s = s + wMatrix(alternative1, alternative2, 1):
        end
        alternativeScores(alternative1) = s;
        scoreSum = scoreSum + s;
    end
    alternativeScores = alternativeScores / scoreSum;
    [score, solution] = max(alternativeScores);
```

end

```
4. ./buildPairComparisonMatrix.m
function [pairComparisonMatrix] =
buildPairComparisonMatrix(alternativeCriteriaRates)
%create pair-comparison matrix from alternative-criteria matrix rates
    criteriaNum = size(alternativeCriteriaRates, 2);
    alternativeNum = size(alternativeCriteriaRates, 1);
    pairComparisonMatrix = zeros(criteriaNum. alternativeNum.
alternativeNum):
    % fill the pair comparison matrix
    for criteria = 1:criteriaNum
        for alternative1 = 1:alternativeNum
            for alternative2 = 1:alternativeNum
                % get alternatives' rates on current criteria
                 rate1 = alternativeCriteriaRates(alternative1,
criteria):
                 rate2 = alternativeCriteriaRates(alternative2,
criteria):
                 rate = rate1 / rate2;
                 pairComparisonMatrix(criteria, alternative1,
alternative2) = rate:
            end
        end
    end
end
5. ./lab1.m% "веса" критериев
criteriasWeights = [
    0.4, 0.2, 0.3;
    0.3, 0.3, 0.4;
0.2, 0.5, 0.3];
% оценки по 3-м критериям каждой альтернативы
alternativeCriteriaRates = [
    3,9,1;
    3,1,1;
9,5,7;
5,3,7];
% МПС альтернатив по критериям
criteriaMps = containers.Map('KeyType','int32','ValueType','any');
mpsMatrix = buildPairComparisonMatrix(alternativeCriteriaRates):
for criteria = 1:size(mpsMatrix, 1)
    criteriaMps(criteria) = permute(mpsMatrix(criteria, :, :),
[2,3,1]);
end
% расчет решений
disp('Решение 1.'); compare(1, criteriaMps, criteriasWeights(1, :),
3);
disp('Решение 2.'); compare(1, criteriaMps, criteriasWeights(2, :),
3);
disp('Решение 3.'); compare(1, criteriaMps, criteriasWeights(3, :),
3);
```

```
disp('Решение 4.'): compare(2. criteriaMps. criteriasWeights(1.:).
3);
disp('Решение 5.'); compare(2, criteriaMps, criteriasWeights(2, :),
3);
diśp('Решение 6.'); compare(2, criteriaMps, criteriasWeights(3, :),
3);
disp('Решение 7.'); compare(2, criteriaMps, criteriasWeights(1, :),
4);
disp('Решение 8.'); compare(2, criteriaMps, criteriasWeights(2, :),
4);
disp('Решение 9.'); compare(2, criteriaMps, criteriasWeights(3, :),
4);
function [result] = compare(alg, criteriaMps, criteriaWeights,
alternativeNum)
% выполнить поиск наилучшей альтернативы
% alg - используемый алгоритм - 1 - маи, 2 - ммаи
% criteriaMps - containers.Мар (№ критерия -> МПСГ№ альтернативы, №
альтернативы])
% criteriaWeights - веса критериев
% alternateNum - кол-во альтернатив
criteriaNum = size(criteriaWeights, 2);
pairComparisonMatrix = zeros(criteriaNum, alternativeNum,
alternativeNum);
% заполнение трехмерной матрицы МПС [критерий - альтернатива -
альтернатива
% -> оценка
for criteria = 1:criteriaNum
mps = criteriaMps(criteria);
    mps = mps(1:alternativeNum, 1:alternativeNum);
    pairComparisonMatrix(criteria, :, :) = mps;
end
algs = {'MAN', 'MMAN'};
% вывод результатов
disp('алгоритм');
disp(algs(alg));
disp('веса критериев');
disp(criteriaWeights);
disp('MПС критериев');
for criteria = 1:criteriaNum
    disp(criteria);
    disp(permute(pairComparisonMatrix(criteria, :, :), [2,3,1]));
end
% запуск работы алгоритма
switch (alg)
    case 1
        [solution, score, scores] = ahp(criteriaWeights,
pairComparisonMatrix);
        [solution, score, scores] = ahpPlus(criteriaWeights,
pairComparisonMatrix);
  otherwise
```

```
error('wrong algorithm number');
end
disp('наилучшая альтернатива:');
disp(solution);
disp('результат:');
disp(score);
disp('оценки всех альтернатив:');
disp(scores);
result = solution:
./printMpsConsistencyCheck.m
function [result] = printMpsConsistencyCheck(mps, w)
%Ensure that provided pair comparison matrix is valid and print result
% mps - matrix
% w - normalized
    rows = size(mps, 1);
cols = size(mps, 2);
    if (rows ~= cols)
        error('mps size is not valid');
    % максимальное собственное значение матрицы
    eigenValue = max(eig(mps));
    % вектор-столбец ВКА
    w = transpose(w);
    disp('MΠC (A):');
    disp(mps);
    disp('BKA (W):');
    disp(w);
    disp('Максимальное собственное значение (n):');
    disp(eigenValue);
    checkEigenVector1 = mps * w;
    checkEigenVector2 = w * eigenValue;
     % с точностью до 4х - знаков - против арифметики с плавающей
запятой
    checkEigenVector1 = round(checkEigenVector1, 4);
    checkEigenVector2 = round(checkEigenVector2, 4);
    disp('A * W =');
    disp(checkEigenVector1);
    disp('n * W =');
    disp(checkEigenVector2);
    if (checkEigenVector1 == checkEigenVector2)
        disp('MПС согласована');
         result = 1;
    else
         error('MПС не согласована');
         result = 0;
    end
```

end