Discrete Math for Computer Science

Peter Schaefer

Freshman Fall

Contents

1	1 Logic	
	1.1 Propositions and Logical Operations	
	1.2 Evaluating Compound Propositions	
	1.3 Conditional Statements	
	1.4 Logical Equivalence	
	1.5 Laws of Propositional Logic	
	1.6 Predicates and Quantifiers	
	1.7 Quantified Statements	
	1.8 DeMorgan's law for Quantified Statements .	
	1.9 Nested Quantifiers	
	1.10 More Nested Quantifiers	
	1.11 Logical Reasoning	
	1.12 Rules of Inference with Propositions	
	1.13 Rules of Inference with Quantifiers	

1 Logic

1.1 Propositions and Logical Operations

Proposition: a statement that is either <u>true</u> or <u>false</u>.

Some examples include "It is raining today" and " $3 \cdot 8 = 20$ ".

However, not all statements are propositions, such as "open the door"

Name	Symbol	alternate name	p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p\oplus q$
NOT	Г	negation	Т	Т	F	Т	Т	F
AND	\wedge	conjunction	\mathbf{T}	F	F	F	Τ	Τ
OR	V	disjunction	\mathbf{F}	Т	Τ	F	T	Τ
XOR	\oplus	exclusive or	\mathbf{F}	F	Τ	F	F	F

XOR is very useful for encryption and binary arithmetic.

1.2 Evaluating Compound Propositions

p: The weather is bad. $p \wedge q$: The weather is bad and the trip is cancelled

q: The trip is cancelled. $p \lor q$: The weather is bad or the trip is cancelled

r: The trip is delayed. $p \wedge (q \oplus r)$: The weather is bad and either the trip is cancelled or delayed

Order of Evaluation \neg , then \wedge , then \vee , but parenthesis always help for clarity.

1.3 Conditional Statements

 $p \to q$ where p is the hypothesis and q is the conclusion

Format	Terminology			
$ \begin{array}{c} p \to q \\ \neg q \to \neg p \\ q \to p \\ \neg p \to \neg q \end{array} $	given contrapositive converse inverse	$\begin{array}{c} p \rightarrow q \\ \neg p \rightarrow \neg q \end{array}$		contrapositive converse

Order of Operations: $p \wedge q \rightarrow r \equiv (p \wedge q) \rightarrow r$

1.4 Logical Equivalence

Tautology: a proposition that is always <u>true</u> Contradiction: a proposition that is always <u>false</u>

Logically equivalent: same truth value regardless of the truth values of their individual propositions

Verbally,

It is not true that the patient has migraines or high blood pressure \equiv

 \equiv The patient does not have migraines and does not have high blood pressure

It is not true that the patient has migraines and high blood pressure \equiv

 \equiv The patient does not have migraines or does not have high blood pressure

1.5 Laws of Propositional Logic

You can use substitution on logically equivalent propositions.

Law Name	∨ or	\wedge and
Idempotent	$p \lor p \equiv p$	$p \wedge p \equiv p$
Associative	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	$(p \land q) \land r \equiv p \land (q \land r)$
Commutative	$p \vee q \equiv q \vee p$	$p \wedge q \equiv q \wedge p$
Distributive	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
Identity	$p \lor F \equiv p$	$p \wedge T \equiv p$
Domination	$p \lor T \equiv T$	$p \wedge F \equiv F$
Double Negation	$\neg \neg p \equiv p$	
Complement	$p \vee \neg p \equiv T$	$p \land \neg p \equiv F$
DeMorgan	$\neg (p \lor q) \equiv \neg p \land \neg q$	$\neg (p \land q) \equiv \neg p \lor \neg q$
Absorption	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
Conditional	$p \to q \equiv \neg p \lor q$	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

1.6 Predicates and Quantifiers

Predicate: a logical statement where truth value is a <u>function</u> of a variable.

P(x): x is an even number.

P(5): false

P(2): true

Domain: the set of all possible values for a variable in a predicate.

Ex. \mathbb{Z}^+ is the set of all positive integers.

*If domain is not clear from context, it should be given as part of the definition of the predicate.

Quantifier: converts a predicate to a proposition.

Quantifier	Symbol	Meaning
Universal	\forall	"for all"
Existential	∃	"there exists"

$$\exists x(x+1 < x)$$
 is false.

Counter Example: universally quantified statement where an element in the domain for which the predicate is false. Useful to prove a \forall statement false.

1.7 Quantified Statements

Consider the two following two predicates:

$$P(x): x \text{ is prime, } x \in \mathbb{Z}^+$$

$$O(x): x \text{ is odd}$$

Proposition made of predicates:

 $\exists x (P(x) \land \neg O(x))$

Verbally: there exists a positive integer that is prime but is <u>not</u> odd.

Free Variable: a variable that is free to be any value in the domain.

Bound Variable: a variable that is bound to a quantifier.

				P(x)	S(x)	$\neg S(x)$
$\mathbf{D}(m)$.	x came to the party	P() ? G()	Joe	Т	F	Τ
\ /	- v	$P(x) \stackrel{?}{\equiv} \neg S(x)$	Theo	F	${ m T}$	\mathbf{F}
S(x):	x was sick	$P(x) \not\equiv \neg S(x)$	Gert	Т	\mathbf{F}	${ m T}$
			Sam	F	\mathbf{F}	${ m T}$

1.8 DeMorgan's law for Quantified Statements

Consider the predicate: F(x): "x can fly", where x is a bird. According to the DeMorgan Identity for Quantified Statements,

$$\neg \forall x F(x) \equiv \exists x \neg F(x)$$

"not every bird can fly \equiv " there exists a bird that cannot fly

Example using DeMorgan Identities:

$$\neg \exists x (P(x) \to \neg Q(x)) \equiv \forall x \neg (P(x) \to \neg Q(x))$$
$$\equiv \forall x (\neg \neg P(x) \land \neg \neg Q(x))$$
$$\equiv \forall x (P(x) \land Q(x))$$

1.9 Nested Quantifiers

A logical expression with more than one quantifier that binds different variables in the same predicate is said to have **Nested Quantifiers**.

Logic	Logic Variable Boundedness		Meaning
		$\forall x \forall y \ \mathrm{M}(x,y)$	"everyone sent an email to everyone"
$\forall x \exists y \ P(x,y)$ $\forall x \ P(x,y)$	x, y bound x bound, y free	$\forall x \exists y \ \mathbf{M}(x,y)$	"everyone sent an email to someone"
(, 0)	$\exists x \exists y \ \mathrm{T}(x,y,z)$ $x \text{ bound, } y \text{ free}$ $x, y \text{ bound, } z \text{ free}$	$\exists x \forall y \ \mathbf{M}(x,y)$	"someone sent an email to everyone"
$\exists x \exists y \ 1(x, y, z)$		$\exists x \exists y \ \mathrm{M}(x,y)$	"someone sent an email to someone"

There is a two-player game analogy for how quantifiers work:

Player	Action	Goal
Existential Player ∃	selects value for existentially-bound variables	tries to make expression <u>true</u>
Universal Player \forall	selects value for universally-bound variables	tries to make expression <u>false</u>

Consider the predicate L(x, y): "x likes y".

 $\exists x \forall y \mathbf{L}(x,y)$ means "there is a student who likes everyone in the school".

 $\neg \exists x \forall y \mathsf{L}(x,y) \text{ means "there is no student who likes everyone in the school"}.$

After applying DeMorgan's Laws,

 $\forall x \exists y \neg L(x, y)$ means "there is no student who likes everyone in the school".

- 1.10 More Nested Quantifiers
- 1.11 Logical Reasoning
- 1.12 Rules of Inference with Propositions
- 1.13 Rules of Inference with Quantifiers