REVISION CLASS TEST (COORDINATION CHEMISTRY)

TIME :30 Min

INORGANIC CHEMISTRY

Single Correct

- Which of the following pair of complex/complex-ion is CORRECT against to their indicated 1. properties?
 - (A) $[Ni(CN)_{a}]^{2\ominus} > [NiF_{e}]^{4\ominus}$; C.F.S.E.
 - (B) $[Ni(CO)_{\alpha}] < [Fe(CO)_{\alpha}]$; Valence shell electrons on central metal ion
 - (C) $[Fe(CN)_e]^{3\odot} > [FeF_e]^{3\odot}$; Number of unpaired electrons of central metal ion
 - (D) $[Co(ox)_3]^{3\ominus} > [Co(CN)_6]^{3\ominus}$; Stability
- 2. Complex which does not follow sidwick EAN rule :-
 - (A) Ferrocene

(B) Brown ring complex

(C) $K_{o}[PtCl_{e}]$

- (D) $[Fe(CO)_{o}(NO)_{o}]$
- Which wavelength of visible light can be absorbed by [Cu(H2O)]SO4.H2O and 3. [Fe(H₂O)₆]SO₄.H₂O complex respectively.
 - (A) Yellow and Voilet

(B) Orange and Red

(C) Blue and Green

- (D) Green and Orange
- 4. Calculate CFSE value and spin only magnetic moment for [RhF_e]³⁻
 - (A) $-2.4 \Delta_0 + 2P$, 0 B.M.

(B) $-2.4 \Delta_0 + 3P$, $\sqrt{24}$ B.M.

(C) $-0.4 \Delta_0 + 2P$, $\sqrt{24}$ B.M.

- (D) $-0.4 \Delta_0 + 3P$, $\sqrt{24}$ B.M.
- Which of the following complex is diamagnetic as well as inner orbital complex? **5**.
 - (A) $[Co(OH_2)_6]SO_4$

(B) $K_4[Fe(CN)_5(O_9)]$

(C) $[Mn(NCS)_6]^{-4}$

- (D) $[Co(NH_3)_6]Cl_3$
- 6. Which of the following statements is/are CORRECT?
 - (A) $\left[\operatorname{CoF_6}\right]^{3\Theta}$ ion is low spin complex due to pairing energy $> \Delta_0$
 - (B) In Zeise's salt, back donation weakens the double bond of alkene.
 - (C) Among Ar, NaCl and HCl, the NaCl shows weakest inter ionic interaction.
 - (D) $O_2^{2\Theta}$ and NO^{\oplus} have same bond order.
- $\overset{(X)}{Salt} + \ Na_2[Fe(CN)_5 \overset{\oplus}{NO}] \xrightarrow{\quad basic \ solution \quad} Purple \ Colour$ 7.

Which of the following statement is **CORRECT** for purple colour complex?

- (A) Denticity of new ligand formed is 3 (B) It's magnetic nature is paramagnetic
- (C) It is low spin complex
- (D) Hybridisation of Fe is sp³d²

Multiple Correct

- Which of the following statement is **CORRECT** against to the indicated properties? 8.
 - (A) $[Pt(NH_2)_4]Cl_2 > K_2[PtCl_4]$; Crystal field splitting energy
 - (B) $[Co(NH_2)_3ClBr(NO_3)] > [Co(NH_2)_3Cl_3]$; Number of geometrical isomers
 - (C) $K_{4}[Fe(CN)_{6}] > K_{3}[Fe(CN)_{6}]$; Valence shell's electrons of central metal ion
 - (D) $[Fe(CO)_2(NO)_2] > [Fe(edta)]^{\Theta}$; Number of Fe–N linkages.
- Which of following species is/are paramagnetic? 9.
 - (A) NO^o
- (B) [NiCl₄]²
- (C) $[CuCl_{\lambda}]^{3\Theta}$
- (D) $O_2[AsF_6]$
- Which of the following order is/are CORRECT for stability? 10.
 - (A) $[CoF_a]^{-3} < [Co(C_2O_4)_2]^{-3} < [Co(CN)_a]^{-3}$
 - (B) $[Os(H_2O)_6]^{+2} < [Ru(H_2O)_6]^{+2} < [Fe(H_2O)_6]^{+2}$
 - (C) $[Co(H_2O)_6]^{+3} < [Co(CN)_6]^{-3} < [Ir(CN)_6]^{-3}$
 - (D) $[NiCl_4]^{-2} < [Ni(NH_3)_6]^{+2} < [Ni(CN)_4]^{-2}$

Paragraph

Paragraph for Q. No. 11 to 12

Addition compound those which retain their identity in solution are termed as co-ordination compound. The bonding in co-ordination compound is explained by VBT & CFT. Co-ordination compound also show both structure and stereoisomerism.

- 11. Which of the following complex having maximum number of optically active isomer.
 - (A) [Ma_obcde]^{n±}
- (B) $[M(AB)c_{2}d_{2}]^{n\pm}$
- (C) $[Ma_0b_0c_0]^{n\pm}$
- (D) $[M(AB)_{o}(CC)]^{n\pm}$
- 12. Identify the INCORRECT matching in the following.

Complex	Isomerism	Complex type
(A) $[Co(H_2O)_6]Cl_2$	Show structural isomersim	low spin
(B) $K_3[Co(ox)_3]$	Show optical isomerism	low spin
(C) $[Pt(NH_3)_2Cl_2Br_2]$	Form 6 stereo isomers	low spin
(D) $[Cu(NO_2)_4]^{2-}$	Show structural isomerism	square planar

Matching List

13. Match list I with list II and select the CORRECT answer?

List-I

List-II

(Complex compound)

- (P) $[CoF_3(H_2O)_3]$
- (Q) $[Co(NO_2)_6]^{-4}$
- (R) $\left[\operatorname{Cr}(\operatorname{CN})_{3}^{2}(\operatorname{H}_{2}\operatorname{O})_{3}\right]$
- (S) $[Zn(NO_2)_4]^{-2}$

- (Characteristics)
 Hybridisation of central metal ion is sp³d²
- (A) Hybridisation(B) Paramagnetic
- (C) Inner orbital complex
- (D) $\mu_{m} = 0$ B.M.

The correct option is

- (A) $P \rightarrow 1, 3; Q \rightarrow 3, 4; R \rightarrow 2, 3; S \rightarrow 2, 4$
- (B) $P \rightarrow 1, 2; Q \rightarrow 2; R \rightarrow 2, 4; S \rightarrow 4$
- (C) $P \rightarrow 1, 2; Q \rightarrow 2, 3; R \rightarrow 2, 3; S \rightarrow 4$
- (D) $P \to 1, 4 ; Q \to 2, 3 ; R \to 2, 3 ; S \to 4$

Integer

- 1. Find the number of species which are diamagnetic and square planar geometry. [IrCl(PPh₃)₃], [RhCl(PPh₃)₃], trans-platin, [Co(edta)] $^{\circ}$, [NiCl₄] $^{2\circ}$, [Cu(CN)₄] $^{3\circ}$, [Ni(CO)₄], [AuCl₄] $^{\circ}$ [Z of Ir = 77, Rh = 45, Pt = 78, Co = 27, Ni = 28, Cu = 29, Au = 79]
- 2. Find the number of the paramagnetic and inner orbital complex in the following :- $[Ni(CO)_4]$, $[Ni(CN)_4]^{2-}$, $[Co(H_2O)_6]^{3+}$, $[Cu(NH_3)_4]^{2+}$, $[Cr(NH_3)_6]^{3+}$, $[Fe(CN)_6]^{3-}$
- 3. The total number of electrons in t_{2g} orbital of Sodium nitropruside i.e. $Na_2[Fe(CN)_5NO] = X$ and the total number of electrons in t_{2g} orbital of brown ring complex i.e. $[Fe(H_2O)_5NO]^{+2} = Y$

then find value of $\frac{X+Y}{2}$

4.
$$[Fe(H_2O)_6]_{(aq.)}^{3+} + \underbrace{SCN}_{(aq.)}^{\odot} \longrightarrow [Fe(H_2O)_3(SCN)_3] \\ + F_{(aq.)}^{\odot} \\ (excess)$$

Colourless complex [Y]

The spin magnetic moment of hexa fluoro complex (Y) is:

- 5. "Crystal field splitting energy" (CFSE = " Δ_0 ") for $[Ti(H_2O)_6]^{3+}$ is 242 KJ/mol.
 - Then the "Crystal field stabilisation energy" (CFSE) in KJ/mol will be