Midterm stuffs

Typical flow of NLP systems

เขาต้องมีหมอนกอด vs เขาต้องมีหมอรกอด

Pipeline analysis

- Use higher level info to help lower level
 - Iterative process

Joint analysis

Do the task together

Joint analysis

- One single task
 - Input closest to the input form characters, words

High level task with low level structures as input

End-to-end analysis

Spell correction

Showing results for natural language processing Search instead for natural language processing

Rates of spelling errors ~1-20% depending on application

Tasks

- Spell error detection
- Spell error correction
 - Suggestion list
 - Suggest a correction
 - Autocorrect

On my way to hell:)

school*

damn autocorrect

Confidence of the system

Type of spelling errors

- Non-word errors
 - Language
- Real-word errors
 - Typographical errors
 - Three -> there
 - เขาต้องมีหมอรกอด
 - Cognitive errors (homophones)
 - piece->peace
 - too->two
 - ค่ะ -> คะ
- Dictionary is required.

Corpora

- What kind of text?
 - Pantip, twitter, wikipedia, textbook, ...
- Extra: How to actually construct the training corpora?
 - Look at standard sentences and add misspellings
 - By keyboard distance, etc.

Possible solutions

Detecting errors:

Segmentation failure (word not in dictionary)

Using prediction model

Correcting errors:

Simple N-grams

CBOW (neural based)

Edit distance

End-to-end

Seq2seq model (machine transation-based)

A note on dictionary

- Require a large dictionary (millions) to handle real world internet usage
- Automatically generated from unigrams list
 - This list includes misspellings
 - Misspellings occur less frequently than correct words in similar context
- Or let users add new words when not accepting corrections
- Cute solution using NER to ignore NE words if OOV

Assumptions

- This only handle one misspelled word per sentence?
 - How to handle multiple missing words in a row?
- Word level correction:
 - Cannot correct OOV words
- Character level correction:
 - Detecting misspellings in the character level might not be able to handle deletion errors

```
ฉ ันไปเท ี ้ยว
00000000100
ฉ ันไปเท ียว
000000000
```

Assumptions

- Discourse?
 - Only one student actually talks about discourse

A: เดี๋ยวพรุ่งนี้เราต้องไปที่น่าน

B: จะไปที่<mark>นะน</mark>ทำไมละ

นนท์ vs น่าน vs นั่น

Spell correction in literature

- 1. Non-word
- 2. Real-word

Non-word spelling error

- Detection:
 - Any word not in dictionary is an error
- Correction:
 - Generate candidates
 - Choose the one that has the best
 - 1. Smallest edit distance
 - 2. Best noisy channel probability

Real word spelling error

- Detection:
 - ???
- Correction:
 - Generate candidates
 - 1. From similar pronunciations
 - 2. From similar spellings
 - Choose the one that has the best
 - Smallest edit distance
 - 2. Best noisy channel probability

The criterions has to be context sensitive!

ไปไหนดีค่ะ -> ไปไหนดีคะ

Candidate generation

- Words with similar spelling
 - Edit distance
 - Typically at most 2 edit distance
 - Can be weighted based on the task, e.g. keyboard
 - Allow merging and splitting of words
 - Ladygaga -> Lady Gaga
 - |การะ|เกด| -> การะเกด
- Words with similar pronunciation
 - Example: Aspell, Soundex a hash based on sounds
 - Jurafsky, Jarofsky, Jarovsky, and Jarovski all map to J612
 - Modern methods use Letter-2-sound (L2S) rules (also called Grapheme-to-Phoneme G2P)
- How to generate this in an efficient manner?

Candidate generation

- 1. Run through dictionary, check edit distance (slow)
- Generate all words with desired edit distance, then intersect with dictionary
- Character n-gram inverted index. Find words which shared the most n-gram (fast)
 - Google -> goo oog ogl gle
 - Inverted index: goo -> google good goon good-bye
- 4. Compute with Finite State Transducer (FST) (fast)
- 5. Precomputed map of words
- 6. Mixture (https://github.com/wolfgarbe/SymSpell) (fast)

The noisy channel model

Used to rank the best candidates

Information theoretic formulation

$$W^* = \underset{W}{\operatorname{arg\,max}} P(W \mid A) \qquad P(W \mid A) = \frac{P(A \mid W)P(W)}{P(A)}$$

The noisy channel intuition

Bayes rule

- An observation x of the misspelled word
- Find the correct word w* from vocab list V

$$= argmax_{w \in V} P(w|x)$$

$$= argmax_{w \in V} \frac{P(x|w)P(w)}{P(x)}$$

$$= argmax_{w \in V} P(x|w)P(w)$$

$$= argmax_{w \in V} P(x|w)P(w)$$

Channel/error model

Noisy channel example

- acress
- Let's generate candidates

Noisy channel example

Edit distance 1 (Damerau-Levenshtein distance)

Levenshtein edit distance – insertion, deletion, substitution Damerau-Levenshtein edit distance - insertion, deletion, substitution, transposition

	Transformation						
		Correct	Error	Position			
Error	Correction	Letter	Letter	(Letter #)	Type		
acress	actress	t	_	2	deletion		
acress	cress		a	0	insertion		
acress	caress	ca	ac	0	transposition		
acress	access	С	r	2	substitution		
acress	across	0	e	3	substitution		
acress	acres	_	S	5	insertion		
acress	acres		S	4	insertion		

Jurafsky, chapter 5

Language model (unigram)

w	count(w)	p(w)
actress	9,321	.0000231
cress	220	.000000544
caress	686	.00000170
access	37,038	.0000916
across	120,844	.000299
acres	12,874	.0000318

Channel/error model

- Easiest to use a confusion matrix conditioned on the previous character.
- Based on counts

$$P(x|w) = \begin{cases} \frac{\text{del}[x_{i-1}, w_i]}{\text{count}[x_{i-1}w_i]}, & \text{if deletion} \\ \frac{\text{ins}[x_{i-1}, w_i]}{\text{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\text{sub}[x_i, w_i]}{\text{count}[w_i]}, & \text{if substitution} \\ \frac{\text{trans}[w_i, w_{i+1}]}{\text{count}[w_iw_{i+1}]}, & \text{if transposition} \end{cases}$$

Learning the confusion matrix

- 1. Have a data of misspellings-corrections pair
- 2. Have a data of misspellings and use EM
 - 1. Initialize the confusion matrix to be equally likely
 - 2. E-step: run the spell checker and correct words
 - 3. M-step: re-estimate the confusion matrix based on corrections

Or use nearby keys (Each phone need to have different model)

Channel/error model

Candidate	Correct	Error		
Correction	Letter	Letter	$\mathbf{x} \mathbf{w}$	P(x w)
actress	t	2	c ct	.000117
cress	-	a	a #	.00000144
caress	ca	ac	ac ca	.00000164
access	С	r	r c	.000000209
across	0	e	e o	.0000093
acres	0.4	s	es e	.0000321
acres	(n 22	S	ss s	.0000342

Noisy channel model

Candidate	Correct	Error	0.0	910		V2002
Correction	Letter	Letter	xw	P(x w)	P(w)	$10^9 *P(\mathbf{x} \mathbf{w})P(\mathbf{w})$
actress	t	-	c ct	.000117	.0000231	2.7
cress	-	a	a #	.00000144	.000000544	0.00078
caress	ca	ac	ac ca	.00000164	.00000170	0.0028
access	С	r	r c	.000000209	.0000916	0.019
across	0	e	elo	.0000093	.000299	2.8
acres	-	S	es e	.0000321	.0000318	1.0
acres	-	S	sss	.0000342	.0000318	1.0

Note1: It is typical to use more than unigrams for the LM (very important for real word errors)

Note2: typically added a weight parameter tuned on dev set

$$P(x|w)P(w)^{\alpha}$$

Real word case for noisy channel

- Need to compare candidates against no correction
 - Error model needs a score for no correction
- Set to some parameter, c, representing how errorful our input is
- P(w|x) = c for w = x
- The rest of the probability 1-c is weighted by the confusion matrix

Classifier-based methods

- Have a pair of correction and features
 - whether/weather
 - Features:
 - 1. cloudy in +- 5 words
 - 2. Followed by "to VERB"
 - 3. Followed by "or not"
- End-to-end model using neural networks
 - Seq2Seq model (more on this in later lectures)

WISESIGHT Challenge

Predict sentiment from social media text

Leaderboard

1	Non	gLAYyy	0.75316	51	1d	
2	Natt	asit M	0.74556	17	14h	
3	porii	ngz	0.74133	32	1d	
4	Pati	ohan W	0.73710	16	14h	
5	csto	rm3000	0.73372	16	19h	
6	sunb	ooy	0.73203	14	13h	
7	eartl	ту	0.73119	3	10d	
8	Chawan FC		0.73119	17	1d	
9	Pan ¹	ГА	0.73119	19	1d	
10	natti	chai	0.73119	55	13h	
1	4	cstorm3000	0.75968	16	18h	
2	5	earthy	0.75099	3	10d	
3	4 9	Phakhin Deesee	0.75063	45	6d	
4	4	Chawan FC	0.75063	17	1d	
5	▼ 4	NongLAYyy	0.74954	51	1d	
6	▲ 13	AneZreT	0.74809	57	13h	
7	1 6	jumpwmk	0.74629	21	14h	
8	▼ 2	sunboy	0.74592	14	13h	
9		PanTA	0.74448	19	1d	
10	~ 7	Piriyapong Laopongsit	0.74230	5	1d	

4th-7th

BoW + classifier

```
3 Dense layers (7th)
xgboost (6th)
3 Dense layer (4th)
SVC (4th)

BoW
Char n-gram+TF-IDF (4th)
Binarized BoW (7th)
```

3rd

System combination of

- 1. Deep model (thai2fit)
- 2. Deep model (fasttext, char embedding for OOV)
- 3. NBSVM 1
- 4. NBSVM 2

word+char n-gram with binarized counts and smoothing

1st

Semi-supervised learning

- 1. logistic regression + tfidf to predict the test set
- 2. Augment training data with test set and train thai2fit
- 3. System combination of 1+2

3% improvement on validation set

PARSING

PCFG, Recursive Neural Network

Document classification, sentiment analysis, QA, conversation agents, summarization, translation

Discourse

Semantics

CommunicationEvent(e) SpeakerContext(s)
Agent(e, Alice) TemporalBefore(e, s)
Recipient(e, Bob)
Word embeddings

Syntax: Constituents

Syntax: Part of Speech

Words

Morphology

Characters
Ref: Prof. Brendan O'Connor, CS 588 Intro to NLP, @UMass

Use Syntax to create sentence level meanings!

Semantic embeddings of several words

- Compositionality
- We know how to create a dense vector representation for a word
 - What about larger linguistic units? (e.g. phrase, sentence)
- We can combine smaller units into a larger unit

Image ref: Prof. Regina Barzilay, NLP@MIT

Semantic vectors overview

word phrase sentence paragraph document

- Word vectors
 - Co-occurrence
 - PPMI
 - TFIDF
 - Word2vec
 - CBoW
 - Skip-gram

Efgine 15.3 A spatial visualization of the document vectors for the four Shakespeare play documents, showing just two of the dimensions, corresponding to the words battle and fool. The comedies have high values for the fool dimension and low values for the battle dimension.

fool

Doc vectors

Discourse level

- Term-document
 - Bag of words model

Recurrent networks (HW3 ToDo#6)

Semantic vectors overview

How do we represent things in this level? Without ignoring word order (bag of words)

- Word vectors
 - Co-occurrence
 - PPMI
 - TFIDF
 - Word2vec
 - CBoW
 - Skip-gram

- Doc vectors
 - Term-document
 - Bag of words model
 - Doc2Vec
 - LDA2Vec
 - Recurrent networks

Parsing and representation big picture

Parsing and representation big picture

Recursive vs Recurrent representation

Cases where recursive might be better?

But recurrent structures might be able to learn this too...

Application of parse trees: info extraction

A side note: discourse parsing

at tropical latitudes is warm enough to thaw ice

Image ref: Prof. Regina Barzilay , NLP@MIT

Overview

- Types of grammars
 - Context Free Grammar
 - Probabilistic Context Free Grammar
 - CYK parser
 - Dependency Grammar
 - Transition-based parsing
 - Recursive neural networks

Constituents

- Groups of words behaving as a single units
 - Ex: Noun phrase

Harry the Horse

The reason he comes into the house

They

A high-class spot such as Mindy's

- Checking for constituents
 - See if they can appear in similar syntactic environments

They sit...

The reason he comes into the house is...

Context-Free Grammar (CFG)

- A grammar specifies what kind of parse tree can be generated.
- CFG or Phrase-Structure Grammars assumes the grammar is context-free
 - Most forms of natural language are context-free
 - Thai and English are typically CFG languages
 - Used in many programming languages
- CFG is based on constituents structures

A context-free grammar example

- A CFG is defined by $G = (N, S, \Sigma, R)$
- N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN} Nonterminals
- S = S Starting symbol
- Σ = {sleeps, saw, man, woman, telescope, the, with, in}

R =	S	\Rightarrow	NP	VP
	VP	\Rightarrow	Vi	
	VP	\Rightarrow	Vt	NP
	VP	\Rightarrow	VP	PP
	NP	\Rightarrow	DT	NN
	NP	\Rightarrow	NP	PP
	PP	\Rightarrow	IN	NP

		100
Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

Terminal

S

Production rules

 $X \rightarrow Y_1 \dots Y_n$

Y, can be terminal or nonterminal

The rule only relies on

X (no context)

(vs context-sensitive)

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition

Generation using left-most derivation

strategy

Recursive strategy

rhs = right_hand_side(rule)

rule = choose (rules(A))

```
NP
             VP
VP
        Vi
        Vt
             NP
VP
        VP
            PP
NP
        DT
             NN
NP
        NP
            PP
PP
        IN
             NP
```

```
Vi
            sleeps
Vt
            saw
NN
            man
NN
            woman
NN
            telescope
DT
            the
      \Rightarrow
IN
            with
      \Rightarrow
IN
            in
```

To generate we call left_most_derivation(S) (top down)

return concatenate([left_most_derivation(A') for A' in rhs])

 A string belongs to the language of a CFG if there exist a sequence of left-most derivation that can generate the string

$$L = \{s \in \Sigma^* | s = left_most_derivation(S)\}$$

The woman saw the man with the telescope

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

The woman saw the man with the telescope

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

• The woman saw the man with the telescope

R =	S	\Rightarrow	NP	VP
	VP	\Rightarrow	Vi	
	VP	\Rightarrow	Vt	NP
	VP	\Rightarrow	VP	PP
	NP	\Rightarrow	DT	NN
	NP	\Rightarrow	NP	PP
	PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

• The woman saw the man with the telescope

R =	S	\Rightarrow	NP	VP
	VP	\Rightarrow	Vi	
	VP	\Rightarrow	Vt	NP
	VP	\Rightarrow	VP	PP
	NP	\Rightarrow	DT	NN
	NP	\Rightarrow	NP	PP
	PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

• The woman saw the man with the telescope

R =	S	\Rightarrow	NP	VP
	VP	\Rightarrow	Vi	
	VP	\Rightarrow	Vt	NP
	VP	\Rightarrow	VP	PP
	NP	\Rightarrow	DT	NN
	NP	\Rightarrow	NP	PP
	PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
IN	\Rightarrow	in

The woman saw the man with the telescope

Ambiguities

- There can be multiple derivations for the same string
- These sentences are ambiguous as each parse represents a different meaning

Probabilistic Context-Free Grammar

Production rules now have probabilities

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

The probability of a (sentence, parse tree) pair is

$$p(S,T) = \prod_{i=1}^{m} p(\alpha_i \to \beta_i | \alpha_i)$$

m is the number of transitions

 $P(NN \rightarrow man \mid NN) = 0.7$

P(S,T)

• P(S,T) = [1.0 * 0.3 * 1.0 * 0.2] * [0.4 * 1.0 * 0.7 * (0.3 * 1.0 * 0.7) * (1.0 * 0.5 * 0.3 * 1.0 * 0.1)]

IN

with

NP

NN

telescope

DT

the

DT

the

NN

man

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Estimating transition probabilities

Counts from training set!

$$P(S \to NP \ VP|S) = \frac{count(S \to NP \ VP)}{count(S)}$$

PCFG related questions

- What is the most likely parse? (parsing task)
 - argmax_T P(T,S)
- What is the probability of the sentence, P(S)? (Language modeling task)
 - $P(S) = \Sigma_T P(T,S)$

How?
Dynamic programming
(CYK algorithm –
Cocke–Younger–Kasami algorithm)

Chomsky Normal Form

- CYK can be used if the CFG is in Chomsky Normal Form
- A CFG is in Chomsky Normal Form if each rule either converts to two nonterminals or a single terminal.

$$X \rightarrow Y_1 Y_2$$

Uppercase letters mean nonterminal Lowercsae letters mean terminal

$$X \rightarrow y$$

- Any CFG can be converted to CNF
 - For example NP -> DT, ADJ, NN
 - Turns into two rules
 - NP -> DT, ADJP
 - ADJP -> ADJ, NN

- N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN} Nonterminals
- S = S Starting symbol
- Σ = {sleeps, saw, man, woman, telescope, the, with, in}

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
DD		TNI	NID

Vi	\Rightarrow	sleeps
Vt	\Rightarrow	saw
NN	\Rightarrow	man
NN	\Rightarrow	woman
NN	\Rightarrow	telescope
DT	\Rightarrow	the
IN	\Rightarrow	with
TAT	-	1

Production rules
X -> Y₁... Y_n
Y_i can be terminal or
nonterminal
The rule only relies on
X (no context)
(ys context-sensitive)

Terminals

CYK algorithm for parsing

3 dimensional

probability that words i to j can be generated by nonterminal N

• Base case:
$$\pi(i,i,N) = P(N \to w_i|N)$$

Inductive case:

k is the index that splits the subsentence

$$\pi(i,j,N) = \max_{k,P,Q} Pr(N \to P|Q|N) \cdot \pi(\underline{i,k},P) \cdot \pi(\underline{k+1,j},Q)$$

where
$$k \in \{i, ..., j-1\}$$
, $P \in \mathcal{N}$, and $Q \in \mathcal{N}$.

Saves the rule that gave max probability to backtrack

CYK algorithm for language modeling

• $\pi(i,j,N)$ probability that words i to j can be generated by nonterminal N

• Base case:
$$\pi(i,i,N) = P(N \to w_i|N)$$

Inductive case:

$$\pi(i,j,N) = \max_{k,P,Q} Pr(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

$$\operatorname{argmax}_{\mathsf{T}} \mathsf{P}(\mathsf{T},\mathsf{S}) \quad \text{vs} \quad \mathsf{P}(\mathsf{S}) = \Sigma_{\mathsf{T}} \mathsf{P}(\mathsf{T},\mathsf{S})$$

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P | Q|N) \cdot \pi(\underline{i,k,P}) \cdot \pi(\underline{k+1,j,Q})$$

where
$$k \in \{i, ..., j-1\}$$
, $P \in \mathcal{N}$, and $Q \in \mathcal{N}$.

Language modeling example CYK with

PCFG

$$\cdot N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

•
$$S = \{A\}$$

$A \rightarrow AB$	0.8
$A \rightarrow a$	0.2
$B \to BB$	0.7
$B \rightarrow b$	0.1
$B \rightarrow c$	0.2

$$\pi(i,j,N)$$

Α

а		
b		
С		

В

а		
b		
С		

Base case

•
$$N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

•
$$S = \{A\}$$

$$A \rightarrow AB$$
 0.8
 $A \rightarrow a$ 0.2
 $B \rightarrow BB$ 0.7
 $B \rightarrow b$ 0.1
 $B \rightarrow c$ 0.2

$$\pi(i,i,N) = P(N \to w_i|N)$$

Α

а	0.2		
b		0	
С			0

В

а	0		
b		0.1	
С			0.2

1st step

•
$$N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

$$-S = \{A\}$$

$A \rightarrow AB$	0.8
$A \rightarrow a$	0.2
$B \rightarrow BB$	0.7
$B \rightarrow b$	0.1
$B \rightarrow c$	0.2

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

A

а	0.2					
b			0			
С					0	
		0:5	li i a a a a a	al a .a :	:	$\begin{bmatrix} & & & & & & & & & & & \\ & & & & & & & $

В

а	0		
b		0.1	
С			0.2

Only consider i, j where i < j

1st step

•
$$N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

•
$$S = \{A\}$$

$$A \rightarrow AB$$
 0.8
 $A \rightarrow a$ 0.2
 $B \rightarrow BB$ 0.7
 $B \rightarrow b$ 0.1
 $B \rightarrow c$ 0.2

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

Α

а	0.2	0.016	
b		0	
С			0

$$\pi[1,2,A] = P(A \to AA) \cdot P(A \to a|A) \cdot P(A \to b|A) + P(A \to AB) \cdot P(A \to a|A) \cdot P(B \to b|B) + P(A \to BA) \cdot P(B \to a|B) \cdot P(A \to b|A) + P(A \to BB) \cdot P(B \to a|B) \cdot P(B \to b|B) = 0 + P(A \to AB) \cdot \pi[1,1,A] \cdot \pi[2,2,B] + 0 + 0 = 0.8 \cdot 0.2 \cdot 0.1 = 0.016$$

1st step

 $-S = \{A\}$

Find P("abc")

$A \rightarrow AB$	0.8
$A \rightarrow a$	0.2
$B \rightarrow BB$	0.7
$B \rightarrow b$	0.1
$B \rightarrow c$	0.2

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

$$\pi(1,2,B) = P(B \rightarrow BB)P(B\rightarrow a|B)P(B\rightarrow b|B)$$

= $P(B \rightarrow BB)\pi(1,1,B)\pi(2,2,B)$
= $0.7*0*0.1 = 0$

В

а	0	0	
b		0.1	
С			0.2

2nd step

•
$$N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

$$-S = \{A\}$$

$$A \rightarrow AB$$
 0.8
 $A \rightarrow a$ 0.2
 $B \rightarrow BB$ 0.7
 $B \rightarrow b$ 0.1
 $B \rightarrow c$ 0.2

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

В

A

а	0.2	0.016	
b		0	0
С			0

а	0	0	
b		0.1	0.014
С			0.2

$$\pi(2,3,A) = P(A \rightarrow A B)\pi(2,2,A)\pi(3,3,B) = 0.8*0*0.2 = 0$$

2nd step

•
$$N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

$$-S = \{A\}$$

$A \rightarrow AB$	0.8
$A \rightarrow a$	0.2
$B \to BB$	0.7
$B \rightarrow b$	0.1
$B \rightarrow c$	0.2

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

Α

а	0.2	0.016	
b		0	0
С			0

а	0	0	
b		0.1	0.014
С			0.2

$$\pi(2,3,B) = P(B \rightarrow B B)\pi(2,2,B)\pi(3,3,B) + 0 = 0.7*0.1*0.2 = 0.014$$

В

Finish

•
$$N = \{A, B\}$$

•
$$\Sigma = \{a, b, c\}$$

$$-S = \{A\}$$

$$A \rightarrow AB$$
 0.8
 $A \rightarrow a$ 0.2
 $B \rightarrow BB$ 0.7
 $B \rightarrow b$ 0.1
 $B \rightarrow c$ 0.2

$$\pi(i,j,N) = \sum_{k,P,Q} P(N \to P|Q|N) \cdot \pi(i,k,P) \cdot \pi(k+1,j,Q)$$

B

A

а	0.2	0.016	0.0048
b		0	0
С			0

а	0	0	0
b		0.1	0.014
С			0.2

$$\pi(1,3,A) = P(A \rightarrow A B)\pi(1,2,A)\pi(3,3,B) + P(A \rightarrow A B)\pi(1,1,A)\pi(2,3,B)$$

= 0.8 * 0.016 * 0.2 + 0.8 * 0.2 * 0.014 = 0.0048

PCFG weakness

- Lack of sensitivity to lexical info (does not consider semantics)
- Lack of sensitivity to structural frequency

Lack of lexical info

The probabilities only see terminals and expansions

The street in the car

Lack of sensitivity to structural frequency

Both trees have same expansion and so same probability

Turns out, left hand side structure appears more frequently in the training set

Methods to improve PCFG

- Add lexical information to the tree
 - Label each node with associate words
 - Lexicalized trees
 - Latent variable grammars
- Look at bigger portions of the tree at a time

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	P	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Lexicalized tree

Dependency grammar

- CFG is based on constituency relation
- In dependency grammar the structure is composed of lexical items (words) linked by edges to form a tree
- Assumptions
 - Each words in a sentence is related or modifies another word
 - All words have a direct or indirect relation to the main verb

Example

- Add ROOT node as the root of the tree
- The main verb always point to ROOT

A -> B means
A governs B or
B depends on A

A is the head of B

- Each arc can have a category for the relationship.
- Each word can have a PoS label

Constituency structures vs dependency structures

Figure 14.1 A dependency-style parse alongside the corresponding constituent-based analysis for *I prefer the morning flight through Denver.*

Constituency structures vs dependency structures

- Constituency structures use more nodes to represent sentences at different levels.
- Constituency structures explicitly label non-terminal nodes (NP vs VP)
- Constituency structures encode more info than dependency structures
- You can convert constituency structures to dependency structures
 - Dependency parsers trained on this is usually better than dependency parsers trained on original dependency structures

Criteria for heads (basics)

- Head, H. Dependent D
- D modifies H
 - Big (D) dogs (H), willow (D) tree (H)
- H can often replace D
 - I love big (D) dogs (H) -> I love dogs
- H is obligatory while D sometimes is optional
- H determines whether D is obligatory
 - Sarah sneezed (H) vs George kicks (H) the chair (D)
- More criterias! Mostly depends on corpus

Dependency and meaning

Scientists study whales from space

Scientists study whales from space

Dependency and meaning

Scientists study whales from space

Scientists study whales from space

Sample Thai sentences

- วัน หนึ่ง เกิด เหตุ ที่ ไม่ คาดคิด ขึ้น มา
- การ ที่ เรา จะ รู้ ถึง สิ่ง เหล่านั้น ได้ ก็ ต้อง อาศัย ปัจจัย หลาย ๆ อย่าง ประกอบ เข้า ด้วยกัน

Sample Thai sentences

Sample Thai sentences

Note these criteria depends on the corpus convention

Dependency graph requirements

- Syntactic structure is complete (connectedness, spanning)
- Hierarchical (acyclic)
- Every word has a single head

Projectivity

A dependency graph is projective if the arcs do not cross

English and Thai are mostly projective.

Some languages are more non-projective than others, for example German, Dutch, Czech.

When picking a parser algo, check whether it assumes projectivity

Transition-based parsing (Nivre 2007)

- Use a stack and buffer data structure and sequentially add edges
- Characteristics
 - Greedy algo. Only goes left to right. No backtracking
 - Fast O(n)
 - Requires projectivity
 - The algo is closely related to how human parse sentences (left to right one word at a time instead of looking at the sentence as a whole)

Arc-standard Transition-based parsing

- A stack σ, written with top of the stack to the right
 - Starts with the ROOT symbol
- A buffer β, written with top to the left
 - Starts with the input sentence
- A set of dependency arcs A
 - Starts of empty

$$\sigma = [ROOT], \beta = w_1, ..., w_n, A = \emptyset$$

- A set of actions
- 1. Shift $\sigma, w_i | \beta, A \rightarrow \sigma | w_i, \beta, A$ Move buffer to stack
- 2. Left-Arc_r $\sigma|w_i|w_j$, β , $A \rightarrow \sigma|w_j$, β , $A \cup \{r(w_j,w_i)\}$
- 3. Right-Arc, $\sigma|w_i|w_j$, β , $A \rightarrow \sigma|w_i$, β , $A \cup \{r(w_i, w_j)\}$
 - Finishes when β becomes empty

I ate fish

I ate fish

Left Arc

Discriminative parsing

- How to choose an action?
 - Shift, left-arc, right-arc
- Each action is predicted by a discriminative classifier (SVM, logistic regression, Neural networks) over legal moves
 - Features: top two word from stack, POS, children info; first word in buffer, POS, children info; etc.
- Greedy and no beamsearch
 - But you can include beamsearch (modern parsers do)

Discriminative parsing with neural networks

Shift, left, right (in actual, left/right + type of dependency) So 2N+1, where N = dependency types

https://cs.stanford.edu/people/danqi/papers/emnlp2014.pdf

Improvements

- Bigger networks
- Beam search
- Global inference over the sequence (CRF style)
- Lead to SyntaxNet and Parsey McParseFace model

https://github.com/tensorflow/models/tree/master/research/syntaxnet

https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Parsing evaluation

- Labeled parsing accuracy (LAS)
- Unlabeled parsing accuracy (UAS)

Acc =	# correct deps	
	# of deps	
UAS =	4/5 = 80%	
LAS =	2/5 = 40%	

Go	old		
1	2	She	nsubj
2	0	saw	root
3	5	the	det
4	5	video	nn
5	2	lecture	obj

Pa	Parsed						
1	2	She	nsubj				
2	0	saw	root				
3	4	the	det				
4	5	video	nsubj				
5	5 2 lecture		ccomp				

UAS of Parsey McParseFace

Model	News	Web	Questions
Martins et al. (2013)	93.10	88.23	94.21
Zhang and McDonald (2014)	93.32	88.65	93.37
Weiss et al. (2015)	93.91	89.29	94.17
Andor et al. (2016)*	94.44	90.17	95.40
Parsey McParseface	94.15	89.08	94.77

Recursive neural networks

- Not really used in parsing anymore but interesting concept
- Recursive vs Recurrent

Recursive neural networks

- Concept: try different connections, see if which one gives the highest score (graph-based dependency parsers)
- Inputs: two candidate children representations
- Output:
 - Semantic representation of the parent
 - Score of new node

Shared recursive structure

score =
$$U^T p$$

$$p = \tanh(W\binom{c_1}{c_2} + b),$$

Same W parameters at all nodes of the tree

Parsing with recursive networks

Follow the highest scoring pair

http://ai.stanford.edu/~ang/papers/icml11-ParsingWithRecursiveNeuralNetworks.pdf

Recursive neural networks for scene parsing

Resources for parsing

- Orchid & some corpus in development by NECTEC
- http://universaldependencies.org/

-		Russian	3	1,226K	₽®0 W	IE, Slavic
F	8	Sanskrit	1	1K	8	IE, Indic
-	3	Serbian	1	86K	■W	IE, Slavic
+	2	Slovak	1	106K	8 @0	IE, Slavic
	-	Slovenian	2	170K		IE, Slavic
+	E	Spanish	3	1,004K	⊞ ©W	IE, Romance
	+	Swedish	3	195K		IE, Germanic
+	+	Swedish Sign Language	1	1K	Q	Sign Language
	8	Tamil	1	9K		Dravidian, Southern
+	-	Telugu	1	6K	7	Dravidian, South Central
		Thai	1	23K	■W	Tai-Kadai
þ.	0	Turkish	2	74K	■6 W	Turkic, Southwestern
		Ukrainian	1	100K	<u> </u>	IE, Slavic
		Upper Sorbian	1	10K	0 W	IE, Slavic
		Urdu	1	138K		IE, Indic
-	*200	Uyghur	1	15K	8	Turkic, Southeastern
-	*	Vietnamese	1	43K		Austro-Asiatic

Recursive vs Recurrent representation

Towards unsupervised dependency parsing

Towards unsupervised dependency parsing

Discourse

Semantics

CommunicationEvent(e) SpeakerContext(s)
Agent(e, Alice) TemporalBefore(e, s)
Recipient(e, Bob)
Word embeddings

Syntax: Constituents

Syntax: Part of Speech

Words

Morphology

Characters
Ref: Prof. Brendan O'Connor, CS 586 Intro to NLP, @UMass

An top down end-to-end approach

- Input: text
- Output: some task, sentiment analysis score
- Automatically gets parse tree (without any treebank corpus)

Example of generated parse tree

Three men are socializing during happy hour

Workers filling orders at Basking Robbins https://arxiv.org/pdf/1705.09207.pdf

filling

Can also use recursive neural networks to learn unsupervised parse trees Example https://arxiv.org/pdf/1707.02786.pdf

Summary

- Parsing
- Types of grammars
 - Context Free Grammar
 - Probabilistic Context Free Grammar (Constituency parsers)
 - CYK parser
 - Dependency Grammar (Dependency parsers)
 - Transition-based parsing
 - Recursive Neural networks