Práctico 6

Regresión lineal. Regresión logística. Redes Neuronales.

Ejercicio 1

Considere al siguiente conjunto de entrenamiento, utilizado para aprender la función de hipótesis $h_{\theta}(x) = \theta_0 + \theta_1 x_1$ mediante regresión lineal.

#	X ₁	У
1	-1.0	2.6
2	0.0	2.0
3	1.0	2.4
4	2.0	4.1
5	3.0	6.5
6	4.0	9.8

- a) Utilice el método de las ecuaciones normales para calcular los valores de θ que minimizan la función de costo.
- Implemente el algoritmo de descenso por gradiente y utilícelo para calcular θ. Compare los resultados con los obtenidos en el punto anterior.
- c) ¿Cómo mejoraría la función de hipótesis para este problema en particular? Repita los pasos a) y b) con la nueva función de hipótesis.
- d) ¿Cuál es el objetivo de utilizar regularización en la función de costo?

Ejercicio 2

Considere el siguiente conjunto de entrenamiento:

#	X ₁	X ₂	Clase
1	-2	1	0
3	-1	1	0
3	0	1	1
4	1	1	1
5	-2	1	1
6	-2	-1	0
7	-1	-1	0
8	0	-1	0
9	1	-1	1
10	2	-1	1

- a) Obtenga el valor de la función de hipótesis de regresión logóstica para los ejemplos. ¿Qué representan estos valores? Prediga una clase para cada instancia de entrenamiento según esta hipótesis.
- b) Calcule la función de pérdida para los ejemplos del conjunto de entrenamiento.
- c) Utilice descenso por gradiente para determinar si la pérdida es mínima.
- d) Indique la clase asignada al ejemplo:

#	X ₁	X ₂	Clase
1	-2.5	1.5	?

Ejercicio 3

Considere el siguiente conjunto de entrenamiento:

#	X 1	X ₂	Clase
1	-2	1	В
2	-1	1	В

3	0	1	Α
4	1	1	Α
5 6	2	1	Α
6	-2	-1	В
7	-1	-1	С
8	0	-1	Α
9	1	-1	Α
10	2	-1	Α

Implemente el método regresión logística multiclase (1-versus-all) y obtenga los parámetros de las función de hipótesis de cada clase. Indique la clase asignada al ejemplo:

#	X ₁	\mathbf{X}_2	Clase
1	-2.5	1.5	?

Ejercicio 4 (Evaluación 2019)

Dado el siguiente conjunto de entrenamiento, indique si es posible utilizar regresión lineal para construir un modelo que no sufra de *underfitting*.

#	Х	У
1	- 1,0	1,2
2	0,0	- 0,2
3	1,0	1,2
4	2,0	4,2
5	3,0	8,7

Eiercicio 5

- a) Explique la diferencia entre descenso por gradiente batch y descenso por gradiente estocástico. Enumere ventajas y desventajas comparativas.
- b) ¿Cual es el rol de α en el descenso por gradiente? ¿Cuales son las ventajas de utilizar un valor muy grande o muy pequeño para este hiperparámetro?
- c) ¿Cuál es el propósito de normalizar las variables de entrada en la regresión lineal y en la regresión logística?

Ejercicio 5

- a) Diseñe unidades sigmoide para las operaciones lógicas AND, OR y NOT.
- b) Diseñe una red multicapa para la operación XOR.
- c) Diseñe una red multicapa para la función booleana: (((A \land B) \lor C) $\land \neg$ D).
- d) ¿Cómo implementaría un problema de clasificación multiclase utilizando una red neuronal?

Ejercicio 6

- Diseñe e implemente una red neuronal con una única capa oculta pero cantidad arbitraria de neuronas.
- Implemente el algoritmo de Backpropagation (realice chequeo de gradiente durante el desarrollo para verificar la corrección del algoritmo implementado)
- Considere las siguientes funciones con las entradas en el rango [-1,1]:

$$f(x) = x^3 - x^2 + 1$$

 $g(x,y) = 1 - x^2 - y^2$
 $h(x,y) = x + y$

Utilice su implementación para ajustar estas funciones, inicializando los pesos con valores aleatorios y utilizando como ejemplos de entrenamiento 40 puntos uniformemente distribuidos en el espacio. Grafique:

- i. el error cometido en el conjunto de entrenamiento en cada iteración;
- ii. las aproximación de las funciones obtenidas luego de 10², 10³, 10⁴ y 10⁵ iteraciones.

Ejercicio 7

- ¿Qué problema presenta la función sigmoide al aprendizaje de redes neuronales?
- ¿Cuáles son las ventjas de la función de activación ReLU? b)
- ¿Cuándo se utiliza una capa softmax como última capa de una red neuronal? Calcule la función softmax para el vector (55,43,11,8). Verifique que el resultado es una distribución de probabilidad.
- e) ¿Qué medida utilizaría como condición de finalización para el entrenamiento de una red néuronal, suponiendo que tiene suficientes datos y cómputo disponibles? Justifique.