Міністерство освіти та науки України Національний технічний університет України "КПІ" Факультет інформатики та обчислювальної техніки Кафедра автоматизованих систем обробки інформації і управління

3BIT

про виконання комп'ютерного практикуму №2 на тему:

«Дослідження основних принципі побудови імітаційних моделей мовою GPSS»

Завдання 12 Варіант (5) 2

Виконав: студент групи IC-32 Капорін Роман

Мета роботи:

Використання імітаційної моделі технологічного процесу складання та випалення деталей для обґрунтування рішень з максимізації доходу виробничої ділянки.

1. Постановка задачі

Завдання. Виробництво деталей певного виду включає тривалий процес складання, що закінчується коротким періодом випалення в печі. Оскільки зміст печі обходиться дуже дорого, декілька збиральників використовують одну піч, в якій одночасно можна обпалювати тільки одну деталь. Збирач не може почати нове складання, поки не витягне з печі попередню деталь.

Таким чином, збиральник працює в наступному режимі:

- 1) збирає наступну деталь;
- 2) чекає можливості використання печі за принципом "першим прийшов першим обслужився";
- 3) використовує піч;
- 4) повертається до п. 1.

Час, необхідний на різні операції, та вартість операцій та виробів представлені в таблиці 2.1.

Мета. Необхідно побудувати на GPSS модель описаного процесу. Маючи цю модель, необхідно визначити оптимальну кількість збиральників, використовуючи одну піч. Під оптимальним розуміють таке число, яке дає максимальний прибуток. Визначення потрібно зробити при моделюванні впродовж 40 год. модельного часу.

Передбачається, що впродовж робочого дня немає перерв, а робочі дні йдуть підряд без вихідних днів.

2. Структурна схема

Рис. 1 – Структурна схема моделі

3. Розрахунок варіанту кількості робітників

Час складання: $T_c = 55 \pm 2$ Час випалювання: $T_c = 5 \pm 2$

Середня кількість робітників: $S = \frac{T_c}{T_0} = \frac{55}{5} = 11$

4. Побудова моделі

У даному процесі ϵ дві основні особливості. По-перше, ϵ лише одна піч. По-друге, існує деяке фіксоване число збиральників, працюючих в системі. Для моделювання печі використовується прилад, а збиральники ототожнюються з транзактами. Таким чином, можна вважати, що збиральники циркулюють у системі. Аналогічно тому, як вони періодично здійснюють складання та випалення, транзакти циркулюють в GPSS- моделі.

Для обмеження числа транзактів - збиральників, циркулюючих в моделі, використовується операнд D блоку GENERATE.

Для того, щоб вичислити доход, що відповідає заданому числу збирачів, необхідно знати, скільки готових деталей вони зробили впродовж модельованого періоду. Кількість випалень в печі в точності співпадає з цим значенням.

Вартість Вартість Час операцій (хв.) Зарплата ∐іна збиральника печі за 8матеріалу готового Варіант Збирання Обпалення годинний за одиницю виробу за годину $T_c \pm t$ $T_o \pm t$ (грн.) день (грн.) (грн.) (грн.) 5 55 ± 2 5 ± 2 2.50 45 3.75 11

Таблиця 1.1 – Варіант завдання

5. Лістинг програми

```
Workers EOU 11
                   INITIAL X$Answer,0
                                         ; Profit
                   INITIAL X$Cost,11
                                         ; Cost of one detail
                   INITIAL X$Wage, 2.5 ; Sallary of one worker per hour
                   INITIAL X$Material, 3.75; Price of material for one
detail
                   INITIAL X$OvenCost,45 ; Oven cost per one day
                                   ,,,Workers
                   GENERATE
                                                   ; Assembly of detail
                   ADVANCE
LabelStart
                                   55,2
                                   Oven
                                                  ; Occupy oven
                   SEIZE
                   ADVANCE
                                   5,2
                                                  ; Firing
Amount
                                  Oven
                                                  ; Leave oven
                   RELEASE
                                   ,LabelStart
                                                  ; Start assembly of new
                   TRANSFER
detail
                                   2400
                                                  ; 40 hours in minutes
                   GENERATE
                                   Answer, (N$Amount#(X$Cost-X$Material) -
                   SAVEVALUE
X$OvenCost#5 - X$Wage#40#Workers)
```

6. Аналіз результатів

Для виконання аналізу над отриманими результатами, необхідно спочатку підключити файл з експериментами (рис. 2). Потім необхідно виконати аналіз за допомогою команди ANOVA (рис. 3). Результат експериментів зображено на рис. 4.

TERMINATE 1

Рис. 2 Підключення файлу з експериментами

Рис. 3 Виконання аналізу

		ANOVA				
11/20/16 05:50:02						
1/20/16 05:50:02	Source of	Sum of	Degrees of	Mean Square	e F	Critical Value
1/20/16 05:50:02 1/20/16 05:50:02	Variance	Squares	Freedom			of F (p=.05)
11/20/16 05:50:02	Α	249510.615	4	62377.654	70.807	2.87
1/20/16 05:50:02						
1/20/16 05:50:02	Error	17618.950	20	880.947		
1/20/16 05:50:02	Total	267129.565	24			
1/20/16 05:50:02						
1/20/16 05:50:02						
1/20/16 05:50:02	Treatment Leve	I Count	Mean	Minimum	Maximum	95% C.I. (SE)
1/20/16 05:50:02 1/20/16 05:50:02	Α					
1/20/16 05:50:02	1	5	1557.550	1551.750	1566.250	(1529.675, 1585.425
1/20/16 05:50:02	2	5	1705.500	1691.000	1727.250	1677.625, 1733.375
1/20/16 05:50:02	3	5	1815.750	1794.000	1837.500	(1787.875, 1843.625
11/20/16 05:50:02	4	5	1827.400	1773.750	1875.250	(1799.525, 1855.275
1/20/16 05:50:02 1/20/16 05:50:02	5	5	1785.400	1717.250	1833.250	(1757.525, 1813.275

Рис. 4 Фінальний результат моделювання

7. Висновок

Як видно з таблиці, кількість робітників ϵ насправді значущим фактором, оскільки критерій Фішера = 70.807 що значно більше його критичного значення 2.87

Результатом виконання даної лабораторної роботи ε здобуття навичок тестування однієї моделі на різних наборах вхідних даних , збирання та аналізу статистичної інформації та її обробка. Так, для даної моделі було встановлена оптимальна кількість робітників — 11 (для варіанту5). При такій кількості робітників середній прибуток буде рівний 1827.4 од. вартості.