问题 (1): 本系列问题中, 我们研究环的整扩张.

问题 (1.1): 对 $R \subset S$, 其中 S 是交换环, R 是 S 的子环. 对 $s_1, \ldots, s_n \in S$, 我们记:

$$R[s_1,\ldots,s_n] = \{f(s_1,\ldots,s_n) : f(X_1,\ldots,X_n) \in R[X_1,\ldots,X_n]\},\$$

我们称 $R[s_1, ..., s_n]$ 是 $s_1, ..., s_n$ 生成的 R-代数. <u>请证明</u>: $R[s_1, ..., s_n]$ 是 S 的子环. **问题 (1.2):** 对 $R \subset S$, 其中 S 是交换环, R 是 S 的子环. 对 $S \in S$, 若存在首一多项式 $f(X) \in R[X]$, 使得 f(S) = 0, 则我们称 S 是 R 上的整元. 请证明 下列条件等价:

- (1) s 是 R 上的整元.
- (2) R[s] 是有限生成 R-模.
- (3) 存在 S 的有限生成 R-子模 M, 使得 $sM \subset M$.

提示: 对于 (3) 推 (1) 的过程, 考虑使用 Caley-Hamilton 定理得到所需的首一多项式. 问题 (1.3): 对 $R \subset S$, 其中 S 是交换环, R 是 S 的子环. <u>请证明</u>: S 中所有 R 上的整元构成 S 的子环, 我们称该子环为 R 在 S 中的整闭包. 特别地, 若 R 在 S 中的整闭包就是 S, 则我们称 S/R 是环的整扩张.

问题 (1.4): 请证明: 若 S/R 和 S'/S 是环的整扩张, 则 S'/R 是环的整扩张.

问题 (1.5): 对整环 R, 记 $K = \operatorname{Frac}(R)$, 若 R 在 K 中的整闭包就是 R 自身, 则称 R 是整闭的. 请证明 下列条件等价:

- (1) R 是整闭的.
- (2) 对 R 的所有素理想 \mathfrak{p} , 都有 $R_{\mathfrak{p}}$ 是整闭的.
- (3) 对 R 的所有极大理想 \mathfrak{m} , 都有 $R_{\mathfrak{m}}$ 是整闭的.

提示: 对于 (3) 推出 (1), 考虑理想 $I = \left\{ r \in R : r_q^p \in R \right\}$, 此时 $\frac{p}{q} \in R$ 当且仅当 $1 \in I$. 问题 (1.6):请证明: 若 R 是唯一分解整环, 则 R 是整闭的. 特别地, 由 (1.5), 则 Dedekind 整环是整闭的.

问题 (2): 本系列问题中, 我们证明 Noether 正规化引理.

问题 (2.1): 对 $R \subset S$, 其中 S 是交换环,R 是 S 的子环. 对 $s_1, \ldots, s_n \in S$, 若自然 映射 $R[X_1, \ldots, X_n] \to R[s_1, \ldots, s_n]$, $f(X_1, \ldots, X_n) \mapsto f(s_1, \ldots, s_n)$ 是同构, 则我们称 s_1, \ldots, s_n 在 R 上代数无关.请证明 下列条件等价:

- (1) s_1, \ldots, s_n 在 R 上代数无关.
- (2) 对所有 $1 \le k \le n$, s_k 在 $R[s_1, ..., s_{k-1}]$ 上代数无关.

问题 (2.2): 对 $R \subset S$, 其中 S 是交换环, $R = K[X_1, ..., X_r]$ 是 S 的子环, K 是域. 对 $S \in S$, 请证明: 存在在 K 上代数无关的 $Y_1, Y_2, ..., Y_t \in R[s]$, 使得 R[s] 是 $K[Y_1, ..., Y_t]$ 的整扩张.

提示: 当 s 在 R 上代数无关,令 $Y_1 = X_1, \ldots, Y_r = X_r, Y_{r+1} = s$ 即可. 否则,存在 $f(X) \in R[X] = K[X_1, \ldots, X_r, X]$,使得 f(s) = 0. 请尝试对 $f(X) = f(X_1, \ldots, X_r, X)$ 进行换元,将 f(X) 变换为 (关于 X 的) 首一多项式.

问题 (2.3): 对交换环 R, 若域 K 是 R 的子环, 且存在有限多个 $r_1, \ldots, r_n \in R$, 使得 $R = K[r_1, \ldots, r_n]$,请证明: 存在 $x_1, \ldots, x_r \in R$, 使得 x_1, \ldots, x_r 在 K 上代数无关, 且 R 是 $K[x_1, \ldots, x_r]$ 的整扩张.

问题 (3): 本系列问题中, 我们证明 Hilbert 零点定理.

问题 (3.1): 对域 K, 若 R 是 K 的子环, 且 K/R 是整扩张, 请证明: R 是域.

问题 (3.2): 对交换环 R, 若 R/K 是整扩张, 其中 K 是域, 请证明: R 是域.

问题 (3.3): 对交换环 R, 若 K 是 R 的子环, 且存在 $r_1, \ldots, r_n \in R$, 使得 $R = K[r_1, \ldots, r_n]$, 则我们称 R 是一个有限生成 K-代数.<u>请证明</u>: 对域 K 及域 L, 若 $K \subset L$, 且 L 是有限生成 K-代数, 则 L/K 是整扩张.

提示: 利用问题 (2.3)(Noether 正规化引理), 将 L 化为 $K[X_1, \ldots, X_r]$ 的整扩张.

问题 (3.4): 对 $K \subset R \subset S$, 其中 K 是域, R,S 是交换环, 若 S 是有限生成 K-代数, 请证明: 若 \mathfrak{m} 是 S 的极大理想, 则 $\mathfrak{m} \cap R$ 是 R 的极大理想.

问题 (3.5): 对多项式环 $R = K[X_1, ..., X_n]$, 当 K 是代数闭域, <u>请证明</u>: 若 **m** 是 R 的极大理想, 则存在 $(k_1, ..., k_n) \in K^n$, 使得 **m** = $(X_1 - k_1, ..., X_n - k_n)$.

问题 (3.6): 当 K 是代数闭域, 对多项式 $R = K[X_1, ..., X_n]$ 的理想 I, 我们记 $V(I) = \{(k_1, ..., k_n) \in K^n : f(k_1, ..., k_n)$ 对所有 $f \in I$ 成立 $\}$. 另一方面, 对 $S \subset K^n$, 我们记 $I(S) = \{f \in R : f(k_1, ..., k_n) = 0$ 对所有 $(k_1, ..., k_n) \in S$ 成立 $\}$.请证明: 对 R 的理想 I, 则:

$$I(V(I)) = \sqrt{I} = \{ f \in R : \overline{\varphi} \in \mathbb{Z}_{\geq 1} \notin \mathcal{F}^n \in I \}.$$

提示: 若 $f \notin \sqrt{I}$, 考虑乘性子集 $S = \{1, f, f^2, \dots\}$, 则 $S^{-1}I$ 是 $S^{-1}R$ 的非平凡理想. 此 时 $S^{-1}R$ 也是有限生成 K 代数, 利用 (3.4) 将 $S^{-1}R$ 的极大理想拉回为 R 的极大理想.

问题 (4): 本系列问题中, 我们证明 Hilbert 基定理.

问题 (4.1): 对交换环 R, 若 R 的理想都是有限生成的,则我们称 R 是 Noetherian 的.请证明 下列条件等价:

- (1) R 是 Noetherian.
- (2) 对 R 中的理想族 $\{I_n\}_{n=1}^{\infty}$,若 $I_1 \subset I_2 \subset \cdots$,则存在 $N \in \mathbb{Z}_{\geq 1}$,使得任取 $n \geq N$,都 有 $I_N = I_n$.

问题 (4.2): 对交换环 R 上的多项式环 R[X], 若 I 是 R[X] 的理想, 对 $d \in \mathbb{Z}_{\geq 0}$, 我们记 $I_d = \{r \in R : 存在 f \in I$ 使得 rX^d 是f 的最高次项 $\}$. 请证明: I_d 是 R 的理想, 且 $I_0 \subset I_1 \subset I_2 \subset \cdots$

问题 (4.3): 对交换环 R 上的多项式环 R[X]. <u>请证明</u>: 若 R 是 Noetherian 的, 则 R[X] 也是 Noetherian 的.

问题 (4.4): 对 $R \subset S$, 若 S 是交换环, R 是子环, S 是有限生成 R-代数, <u>请证明</u>: 若 R 是 Noetherian 的, 则 S 也是 Noetherian 的.

问题 (5): 本系列问题中, 我们研究交换环的维数.

问题 (5.1): 对交换环 R, 若 R 的素理想 $\mathfrak{p}_0,\mathfrak{p}_1,\ldots,\mathfrak{p}_l$ 满足 $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_l$, 则我们称其为 R 的一个长度为 l 的素理想升链. 若存在一条长度最大的素理想升链, 则我们称 R 是有限维的, 并记 $\dim(R) = l$, 其中 l 是长度最大的素理想升链的长度 (若并不存在长度最大的素理想升链, 则我们记 $\dim(R) = \infty$). 请证明: 当 K 是域, 则 $\dim(K[X_1,\ldots,X_n]) \geq n$

问题 (5.2): 对交换环 S, 若 R 是 S 的子环, 且 S/R 是整扩张. 则对 S 的素理想 $\mathfrak{P}_1, \mathfrak{P}_2$, 满足 $\mathfrak{P}_1 \subset \mathfrak{P}_2$, 请证明: 若 $\mathfrak{P}_1 \cap R = \mathfrak{P}_2 \cap R$, 则 $\mathfrak{P}_1 = \mathfrak{P}_2$.

问题 (5.3): 对交换环 S, 若 R 是 S 的子环, 且 S/R 是整扩张. 则对 R 的素理想 $\mathfrak{p}_1 \subset \mathfrak{p}_2$,请证明: 存在 S 的素理想 \mathfrak{P}_1 ,使得 $\mathfrak{P}_1 \cap R = \mathfrak{p}_1$. 进一步地, <u>请证明</u>: 若 S 的素理想 \mathfrak{P}_1 满足 $\mathfrak{P}_1 \cap R = \mathfrak{p}_1$, 则存在 S 的素理想 $\mathfrak{P}_2 \supset \mathfrak{P}_1$, 使得 $\mathfrak{P}_2 \cap R = \mathfrak{p}_2$.

问题 (5.4): 对交换环 S, 若 R 是 S 的子环, 且 S/R 是整扩张.<u>请证明</u>: $\dim(S) = \dim(R)$. 问题 (5.5): 当 K 是域, 请证明: $\dim(K[X_1, ..., X_n]) = n$.

提示: 同理于 Noether 正规化引理的证明, 若 I 是 $K[X_1, \ldots, X_n]$ 的非平凡理想, 则商环 $K[X_1, \ldots, X_n]/I$ 是 $K[Y_1, \ldots, Y_r]$ 的整扩张, 其中 r < n, 且 Y_1, \ldots, Y_r 代数无关, 进而 利用归纳法证明.

问题 (5.6): 当 K 是域, 请证明: 若交换环 R 是有限生成 K-代数, 则 $\dim(R) < \infty$.