

The Effects of Colloidal Processing on the Densification of Titanium Diboride (TiB_2) - Alumina (Al_2O_3) Composites

Lisa Prokurat Franks

Materials Engineer

U.S. Army Tank-automotive and Armaments Command
(TACOM), Warren, MI

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

20060824152

Dr. Melissa J. Crimp
Michigan State University, E. Lansing, MI

Dr. Ernest Chin and Mr. Gary Gilde
Army Research Laboratory (ARL), Aberdeen Proving Ground, MD

Abstract

Titanium diboride/Alumina ($\text{TiB}_2/\text{Al}_2\text{O}_3$) powders produced using self-propagating high-temperature synthesis (SHS) can be hot pressed into armor tiles that exhibit superior resistance to penetration as compared to TiB_2 , SiC , B_4C or Al_2O_3 .¹ As with other advanced ceramics² however, difficulties in processing $\text{TiB}_2/\text{Al}_2\text{O}_3$ arise from the inability to reproduce specimens having identical microstructure and properties. Since the SHS powders are available commercially, the interactions between TiB_2 and Al_2O_3 have been analyzed with respect to their colloidal properties, as measured by their respective zeta potentials, density, volume fraction, and particle size. A comparison of colloidal properties, green and sintered densities and microstructure of Composite SHS $\text{TiB}_2/\text{Al}_2\text{O}_3$ and SHS TiB_2 with commercially available Aluminas has been completed. Although *SuspensionStability*[©] predicts the colloidal behavior of SHS TiB_2 in Alumina, the SHS Composite powders seem to be insensitive to colloidal processing, and the continuous microstructure associated with penetration resistance is predominantly characteristic of SHS Composite $\text{TiB}_2/\text{Al}_2\text{O}_3$ starting powders.

Z

References

- [1] K.V. Logan, "Elastic-Plastic Behavior of Hot Pressed Composite Titanium Diboride/Alumina Powders Produced Using Self-Propagating High Temperature Synthesis," Georgia Institute of Technology, September 1992
- [2] B.A. Wilson and M.J. Crimp, "Prediction of Composite Colloidal Suspension Stability Based upon the Hogg, Healy, and Fuerstenau Interpretation," *Langmuir* 1993, 9, 2836-2843

Why Investigate the Titanium Diboride - Alumina Ceramic Composite System for Vehicle Protection?

- Penetration resistance similar to pure TiB₂ at lower cost
- Performance better than expected by Rule-of-Mixtures suggesting unique, exploitable failure mode(s)
- Opportunity to optimize microstructure to decrease range of variation in performance and increase penetration resistance
- Commercial availability of SHS powders enable investigation of other processing routes

Future Work

- Quantify the sintering parameters that optimize microstructure
- Evaluate and scale-up processing to produce armor targets for evaluation against small and medium caliber threats
- Shots on 4" targets scheduled to begin 9/00

Depth of Penetration Vs. Composition

Microstructures

Discontinuous

Continuous

Superior Penetration Resistance

TiB_2 (light areas)/ Al_2O_3 (dark areas)

DOP Target Assembly

8

*SHS Composite Titanium
Diboride (TiB_2) - Alumina (Al_2O_3)*

9

*SHS Titanium Diboride (TiB_2) -
Alcoa-SG 1000 Alumina (Al_2O_3)*

10

*SHS Titanium Diboride (TiB_2) -
Sumitomo AKP50 Alumina (Al_2O_3)*

11

Electrokinetic Sonic Analysis (ESA)

Suspension Stability[©] Predictions

Stability Ratio W	SHS TiB ₂ / SHS TiB ₂ Interactions	SHS TiB ₂ / AKP50 Al ₂ O ₃ Interactions	AKP50 Al ₂ O ₃ / AKP50 Al ₂ O ₃ Interactions
Range of Predicted Stability	pH 4-6 and pH 8.5-9.5	pH 4-6 and pH 8.5-9.5	pH 4-7 and pH 8-9.5

Stability Ratio W	SHS TiB ₂ / SHS TiB ₂ Interactions	SHS TiB ₂ / Alcoa-SG Al ₂ O ₃ Interactions	Alcoa-SG Al ₂ O ₃ / Alcoa-SG Al ₂ O ₃ Interactions
Range of Predicted Stability	pH 4-6 and pH 8.5-9.5	pH 4-6 and pH 8.5-9.5	pH 4-6.5 and pH 7.5-9.5

Stability Ratio (W) Data
Titanium Diboride (SHS TiB₂) : Alumina (Alcoa-SG Al₂O₃)
Electrolyte Concentration 10⁻³M KNO₃

14
 SHS TiB₂ : SHS TiB₂ SHS TiB₂:Al₂O₃ Alcoa-SG Al₂O₃

**Stability Ratio (W) Data
Titanium Diboride (SHS TiB₂) : Alumina (AKP50 Al₂O₃)
Electrolyte Concentration 10⁻³M KNO₃**

—♦— SHS TiB₂:SHS TiB₂ —△— SHS TiB₂:AKP50 Al₂O₃ —▲— AKP50 Al₂O₃:AKP50 Al₂O₃

Processing Conditions

Processing Conditions	SHS Composite TiB ₂ /Al ₂ O ₃	SHS TiB ₂ / AKP50 Al ₂ O ₃	SHS TiB ₂ / Alcoa-SG Al ₂ O ₃
Traditional Binder	PEG	PEG	PEG
Dispersed	pH 4	pH 4	pH 4
Coagulated	pH 7	pH 7.5	pH 7
Heterocoagulated	pH 9	pH 8	pH 8

16

PEG Binder

(no colloid processing - no influence on coagulation)

*SHS TiB_2 -
AKP50 Al_2O_3*

Dispersed Phases -

18

Low pH

SHS Composite

SHS TiB_2 - AKP50 Al_2O_3

Coagulated Phases -

Neutral pH

15

Heterocoagualted Phases -

Basic pH

*SHS TiB_2 -
 $AKP50 Al_2O_3$*

72

Hot Isostatic Press

Hot-Pressed
4" Diam.
 $TiB_2 \cdot Al_2O_3$

Complete Densification

SHS Composite TiB₂-Al₂O₃

X-Ray Diffraction Patterns

273

Conclusions

- SHS Composite TiB_2/Al_2O_3 powders are insensitive to colloidal processing and require HIP'ing for complete densification
- *Suspension Stability*[©] successfully predicted the behavior of SHS TiB_2 in Alumina
- The Continuous Microstructure is characteristic of SHS Composite TiB_2/Al_2O_3 starting powders

OPSEC REVIEW CERTIFICATION

(AR 530-1, Operations Security)

I am aware that there is foreign intelligence interest in open source publications. I have sufficient technical expertise in the subject matter of this paper to make a determination that the net benefit of this public release outweighs any potential damage.

Reviewer: Douglas W. Templeton GS-15 Team Leader, Emerging Technologies
Name Grade Title
Douglas W. Templeton 20 Mar 00
Signature Date

Description of Information Reviewed: Slides / Poster

Title: EFFECTS OF COLLOIDAL PROCESSING ON THE DENSIFICATION OF TITANIUM DIBORIDE INTO ALUMINA COMPOSITES

Author/Originator(s): Lisa Prokurat Franks

Publication/Presentation/Release Date: 27 March 2000

Purpose of Release: Participation in Ground Vehicle Survivability Symposium

An abstract, summary, or copy of the information reviewed is available for review.

Reviewer's Determination (check one)

- 1. Unclassified Unlimited.
- 2. Unclassified Limited, Dissemination Restrictions IAW _____
- 3. Classified. Cannot be released, and requires classification and control at the level _____

Security Office (AMSTA-CM-XS):

Concur/Nonconcur

[Handwritten signature]

Date

Public Affairs Office (AMSTA-CM-PI):

Concur/Nonconcur

Signature

Date _____