riptografie și Securitate

- Prelegerea 21 -Permutări cu trapă secretă

Adela Georgescu, Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Definiție

2. Problema rucsacului

3. Construcția sistemelor de criptare asimetrice

Reamintim noţiunea de funcţie one-way;

- Reamintim noţiunea de funcţie one-way;
- Aceasta este o funcție pentru care este **ușor** de calculat valoarea funcției...

- Reamintim noţiunea de funcţie one-way;
- Aceasta este o funcție pentru care este ușor de calculat valoarea funcției...
- dar este dificil de calculat valoarea funcției inverse;

- Reamintim noţiunea de funcţie one-way;
- Aceasta este o funcție pentru care este ușor de calculat valoarea funcției...
- dar este dificil de calculat valoarea funcției inverse;
- Am întâlnit noţiunea când am studiat funcţiile hash;

- Reamintim noţiunea de funcţie one-way;
- Aceasta este o funcție pentru care este ușor de calculat valoarea funcției...
- dar este dificil de calculat valoarea funcției inverse;
- Am întâlnit noţiunea când am studiat funcţiile hash;
- ▶ Dacă $H: \{0,1\}^* \rightarrow \{0,1\}^n$ este o funcție hash (rezistentă la prima preimagine), atunci:

- Reamintim noţiunea de funcţie one-way;
- Aceasta este o funcție pentru care este ușor de calculat valoarea funcției...
- dar este dificil de calculat valoarea funcției inverse;
- Am întâlnit noţiunea când am studiat funcţiile hash;
- ▶ Dacă $H: \{0,1\}^* \rightarrow \{0,1\}^n$ este o funcție hash (rezistentă la prima preimagine), atunci:
 - Fiind dat x, este *eficient* de calculat H(x);

- Reamintim noţiunea de funcţie one-way;
- Aceasta este o funcție pentru care este ușor de calculat valoarea funcției...
- dar este dificil de calculat valoarea funcției inverse;
- Am întâlnit noţiunea când am studiat funcţiile hash;
- ▶ Dacă $H: \{0,1\}^* \rightarrow \{0,1\}^n$ este o funcție hash (rezistentă la prima preimagine), atunci:
 - Fiind dat x, este *eficient* de calculat H(x);
 - Cunoscând H(x) este (computațional) dificil de calculat x.

▶ Definim noţiunea de permutare cu trapă secretă sau TDP (TrapDoor Permutation);

- ▶ Definim noţiunea de permutare cu trapă secretă sau TDP (TrapDoor Permutation);
- Acesta este o permutare one-way...

- Definim noțiunea de permutare cu trapă secretă sau TDP (TrapDoor Permutation);
- Acesta este o permutare one-way...
- care permite calculul eficient al inversului dacă se cunoaște o informație adițională, numită cheie secretă;

- Definim noțiunea de permutare cu trapă secretă sau TDP (TrapDoor Permutation);
- Acesta este o permutare one-way...
- care permite calculul eficient al inversului dacă se cunoaște o informație adițională, numită cheie secretă;
- Utilizarea cheii secrete permite deţinătorului să folosească o trapă secretă, de unde provine şi denumirea construcţiei.

Definiție

O permutare cu trapă secretă sau \overline{TDP} ($\overline{TrapDoor}$ Permutation) este un triplet ($\overline{Gen}, F, F^{-1}$) unde:

- Gen este un algoritm nedeterminist PPT care generează o pereche de chei (pk, sk);
- 2. $F(pk, \cdot): \mathcal{X} \to \mathcal{X}$ este o funcție one-way;
- 3. $F^{-1}(sk, \cdot) : \mathcal{X} \to \mathcal{X}$ este o funcție eficient calculabilă;

$$\forall x \in \mathcal{X}, F^{-1}(sk, F(pk, x)) = x$$

Definiție

O permutare cu trapă secretă sau \overline{TDP} ($\overline{TrapDoor}$ Permutation) este un triplet ($\overline{Gen}, F, F^{-1}$) unde:

- Gen este un algoritm nedeterminist PPT care generează o pereche de chei (pk, sk);
- 2. $F(pk, \cdot): \mathcal{X} \to \mathcal{X}$ este o funcție one-way;
- 3. $F^{-1}(sk, \cdot) : \mathcal{X} \to \mathcal{X}$ este o funcție eficient calculabilă;

$$\forall x \in \mathcal{X}, F^{-1}(sk, F(pk, x)) = x$$

F este sigură dacă poate fi eficient evaluată, dar nu poate fi inversată fără cunoașterea cheii secrete sk (decât cu probabilitate neglijabilă);

Definiție

O permutare cu trapă secretă sau TDP (TrapDoor Permutation) este un triplet (Gen, F, F^{-1}) unde:

- Gen este un algoritm nedeterminist PPT care generează o pereche de chei (pk, sk);
- 2. $F(pk, \cdot): \mathcal{X} \to \mathcal{X}$ este o funcție one-way;
- 3. $F^{-1}(sk, \cdot): \mathcal{X} \to \mathcal{X}$ este o funcție eficient calculabilă;

$$\forall x \in \mathcal{X}, F^{-1}(sk, F(pk, x)) = x$$

- F este sigură dacă poate fi eficient evaluată, dar nu poate fi inversată fără cunoașterea cheii secrete sk (decât cu probabilitate neglijabilă);
- ► Notații: $F(pk, \cdot) = F_{pk}(\cdot), F^{-1}(sk, \cdot) = F_{sk}^{-1}(\cdot).$

▶ Un exemplu de funcție *one-way* este problema rucsacului;

- ▶ Un exemplu de funcție *one-way* este problema rucsacului;
- ▶ Se dă un vector $A = (a_1, a_2, ..., a_n)$ de n elemente distincte $a_i \in \mathbb{Z}_+$ și o valoare $k \in \mathbb{Z}_+$;

- ▶ Un exemplu de funcție *one-way* este problema rucsacului;
- Se dă un vector $A = (a_1, a_2, ..., a_n)$ de n elemente distincte $a_i \in \mathbb{Z}_+$ și o valoare $k \in \mathbb{Z}_+$;
- Se cere să se determine elementele vectorului a căror sumă este k;

- Un exemplu de funcție one-way este problema rucsacului;
- Se dă un vector $A = (a_1, a_2, ..., a_n)$ de n elemente distincte $a_i \in \mathbb{Z}_+$ și o valoare $k \in \mathbb{Z}_+$;
- Se cere să se determine elementele vectorului a căror sumă este k;
- Pentru un vector de *n* elemente, problema se poate rezolva verificând pe rând toate submulțimile lui *A*;

- ▶ Un exemplu de funcție *one-way* este problema rucsacului;
- Se dă un vector $A = (a_1, a_2, ..., a_n)$ de n elemente distincte $a_i \in \mathbb{Z}_+$ și o valoare $k \in \mathbb{Z}_+$;
- Se cere să se determine elementele vectorului a căror sumă este k;
- Pentru un vector de *n* elemente, problema se poate rezolva verificând pe rând toate submulțimile lui *A*;
- Cum numărul submulțimilor este de în $2^n 1$, această modalitate de rezolvare este imposibilă pentru n mare;

- Un exemplu de funcție one-way este problema rucsacului;
- ▶ Se dă un vector $A = (a_1, a_2, ..., a_n)$ de n elemente distincte $a_i \in \mathbb{Z}_+$ și o valoare $k \in \mathbb{Z}_+$;
- Se cere să se determine elementele vectorului a căror sumă este k;
- Pentru un vector de *n* elemente, problema se poate rezolva verificând pe rând toate submulțimile lui *A*;
- Cum numărul submulțimilor este de în $2^n 1$, această modalitate de rezolvare este imposibilă pentru n mare;
- Problema este (în general) dificilă.

Există însă clase ușoare ale problemei rucsacului;

- Există însă clase ușoare ale problemei rucsacului;
- ► Una dintre acestea o reprezintă vectorii super-crescători;

- Există însă clase ușoare ale problemei rucsacului;
- ▶ Una dintre acestea o reprezintă vectorii super-crescători;
- ▶ Un vector $A = (a_1, a_2, ..., a_n)$ este *super-crescător* dacă satisface:

$$\forall j \geq 2, a_j > \sum_{i=1}^{j-1} a_i$$

- Există însă clase ușoare ale problemei rucsacului;
- Una dintre acestea o reprezintă vectorii super-crescători;
- ▶ Un vector $A = (a_1, a_2, ..., a_n)$ este *super-crescător* dacă satisface:

$$\forall j \geq 2, a_j > \sum_{i=1}^{J-1} a_i$$

Un exemplu este vectorul:

$$A = \{1, 3, 5, 11, 21, 44, 87\}$$

$$3 > 1$$

 $5 > 1 + 3$
 $11 > 1 + 3 + 5$
 $21 > 1 + 3 + 5 + 11$
 $44 > 1 + 3 + 5 + 11 + 21$
 $87 > 1 + 3 + 5 + 11 + 21 + 44$

▶ Dăm un algoritm de rezolvare a problemei rucsacului pentru vectori super-crescători;

- ▶ Dăm un algoritm de rezolvare a problemei rucsacului pentru vectori super-crescători;
- ► Cunoscând k, se parcurge vectorul de la dreapta spre stânga;

- ▶ Dăm un algoritm de rezolvare a problemei rucsacului pentru vectori super-crescători;
- ightharpoonup Cunoscând k, se parcurge vectorul de la dreapta spre stânga;
- ▶ Dacă $k \ge a_i$, atunci a_i face parte din sumă (suma tuturor celorlalte elemente este mai mică decât a_i);

- ▶ Dăm un algoritm de rezolvare a problemei rucsacului pentru vectori super-crescători;
- ► Cunoscând k, se parcurge vectorul de la dreapta spre stânga;
- ▶ Dacă $k \ge a_i$, atunci a_i face parte din sumă (suma tuturor celorlalte elemente este mai mică decât a_i);
- ▶ Dacă a_i face parte din sumă, atunci valoarea k se actualizează cu $k a_i$;

- ▶ Dăm un algoritm de rezolvare a problemei rucsacului pentru vectori super-crescători;
- ► Cunoscând k, se parcurge vectorul de la dreapta spre stânga;
- ▶ Dacă $k \ge a_i$, atunci a_i face parte din sumă (suma tuturor celorlalte elemente este mai mică decât a_i);
- ▶ Dacă a_i face parte din sumă, atunci valoarea k se actualizează cu $k a_i$;
- Se repetă procedeul până se parcurge întreg vectorul sau k devine 0.

▶ Pentru exemplul anterior $A = \{1, 3, 5, 11, 21, 44, 87\}$, fie k = 58;

- ▶ Pentru exemplul anterior $A = \{1, 3, 5, 11, 21, 44, 87\}$, fie k = 58;
- Se obţine: $k = 58 < 87 \Rightarrow 87$ nu apare în sumă

- ▶ Pentru exemplul anterior $A = \{1, 3, 5, 11, 21, 44, 87\}$, fie k = 58;
- ► Se obţine:

$$k=58<87\Rightarrow87$$
 nu apare în sumă $k=58>44\Rightarrow44$ apare în sumă și $k=58-44=14$

- ▶ Pentru exemplul anterior $A = \{1, 3, 5, 11, 21, 44, 87\}$, fie k = 58;
- ► Se obţine:

```
k=58<87\Rightarrow87 nu apare în sumă k=58>44\Rightarrow44 apare în sumă și k=58-44=14 k=14<21\Rightarrow21 nu apare în sumă
```

- ▶ Pentru exemplul anterior $A = \{1, 3, 5, 11, 21, 44, 87\}$, fie k = 58;
- ► Se obţine:

```
k=58<87\Rightarrow87 nu apare în sumă k=58>44\Rightarrow44 apare în sumă și k=58-44=14 k=14<21\Rightarrow21 nu apare în sumă k=14>11\Rightarrow11 apare în sumă și k=14-11=3
```

- ▶ Pentru exemplul anterior $A = \{1, 3, 5, 11, 21, 44, 87\}$, fie k = 58;
- ► Se obţine:

$$k=58<87\Rightarrow87$$
 nu apare în sumă $k=58>44\Rightarrow44$ apare în sumă și $k=58-44=14$ $k=14<21\Rightarrow21$ nu apare în sumă $k=14>11\Rightarrow11$ apare în sumă și $k=14-11=3$ $k=3<5\Rightarrow5$ nu apare în sumă

- ▶ Pentru exemplul anterior $A = \{1, 3, 5, 11, 21, 44, 87\}$, fie k = 58;
- ► Se obtine:

$$k=58<87\Rightarrow87$$
 nu apare în sumă $k=58>44\Rightarrow44$ apare în sumă și $k=58-44=14$ $k=14<21\Rightarrow21$ nu apare în sumă $k=14>11\Rightarrow11$ apare în sumă și $k=14-11=3$ $k=3<5\Rightarrow5$ nu apare în sumă $k=3=3\Rightarrow3$ apare în sumă și $k=3-3=0$

- ▶ Pentru exemplul anterior $A = \{1, 3, 5, 11, 21, 44, 87\}$, fie k = 58;
- ► Se obtine:

$$k=58<87\Rightarrow87$$
 nu apare în sumă $k=58>44\Rightarrow44$ apare în sumă și $k=58-44=14$ $k=14<21\Rightarrow21$ nu apare în sumă $k=14>11\Rightarrow11$ apare în sumă și $k=14-11=3$ $k=3<5\Rightarrow5$ nu apare în sumă $k=3=3\Rightarrow3$ apare în sumă și $k=3-3=0$

► S-a obţinut deci k = 44 + 11 + 3.

 Transformăm o problemă simplă a rucsacului într-o problemă dificilă pe baza unei informații secrete și obținem astfel o funcție cu trapă secretă;

- Transformăm o problemă simplă a rucsacului într-o problemă dificilă pe baza unei informații secrete și obținem astfel o funcție cu trapă secretă;
- Fie un vector supercrescător $A = (a_1, a_2, \dots, a_n)$;

- Transformăm o problemă simplă a rucsacului într-o problemă dificilă pe baza unei informații secrete și obținem astfel o funcție cu trapă secretă;
- Fie un vector supercrescător $A = (a_1, a_2, \dots, a_n)$;
- ▶ Se aleg un **modul** m și un **multiplicator** t a.î. gcd(c, m) = 1;

- Transformăm o problemă simplă a rucsacului într-o problemă dificilă pe baza unei informații secrete și obținem astfel o funcție cu trapă secretă;
- Fie un vector supercrescător $A = (a_1, a_2, \dots, a_n)$;
- ▶ Se aleg un **modul** m și un **multiplicator** t a.î. gcd(c, m) = 1;
- ▶ Se calculează $B = (b_1, b_2, ..., b_n)$, unde $b_i = a_i \cdot t \pmod{m}$;

- Transformăm o problemă simplă a rucsacului într-o problemă dificilă pe baza unei informații secrete și obținem astfel o funcție cu trapă secretă;
- Fie un vector supercrescător $A = (a_1, a_2, \dots, a_n)$;
- ▶ Se aleg un **modul** m și un **multiplicator** t a.î. gcd(c, m) = 1;
- ▶ Se calculează $B = (b_1, b_2, ..., b_n)$, unde $b_i = a_i \cdot t \pmod{m}$;
- Cunoscând A problema este simplă, dar cunoscând B problema este dificilă.

Pentru exemplul anterior: $A = \{1, 3, 5, 11, 21, 44, 87\}$, fie t = 43 și m = 1590;

- Pentru exemplul anterior: $A = \{1, 3, 5, 11, 21, 44, 87\}$, fie t = 43 și m = 1590;
- Se obţine $B = \{43, 129, 215, 473, 903, 302, 561\}$;

- Pentru exemplul anterior: $A = \{1, 3, 5, 11, 21, 44, 87\}$, fie t = 43 și m = 1590;
- Se obţine $B = \{43, 129, 215, 473, 903, 302, 561\}$;
- Se cere rezolvarea problemei rucsac pentru k = 904 și B, care este dificilă (facem abstracție de dimensiunea lui n);

- Pentru exemplul anterior: $A = \{1, 3, 5, 11, 21, 44, 87\}$, fie t = 43 și m = 1590;
- Se obţine $B = \{43, 129, 215, 473, 903, 302, 561\}$;
- Se cere rezolvarea problemei rucsac pentru k = 904 și B, care este dificilă (facem abstracție de dimensiunea lui n);
- Pentru deținătorul trapei secrete (t, m) = (43, 1590) problema devine ușoară;

- Pentru exemplul anterior: $A = \{1, 3, 5, 11, 21, 44, 87\}$, fie t = 43 și m = 1590;
- Se obţine $B = \{43, 129, 215, 473, 903, 302, 561\}$;
- Se cere rezolvarea problemei rucsac pentru k = 904 și B, care este dificilă (facem abstracție de dimensiunea lui n);
- Pentru deținătorul trapei secrete (t, m) = (43, 1590) problema devine ușoară;
- Aceasta se rezumă la rezolvarea problemei pentru $k = 904 \cdot 43^{-1} \pmod{1590} = 58$ și A pe care am rezolvat-o anterior.

► Pentru calculul 43⁻¹ (mod 1590) am folosit algoritmul lui Euclid extins;

- ► Pentru calculul 43⁻¹ (mod 1590) am folosit algoritmul lui Euclid extins;
- ► Se fac împărțiri cu rest repetate (împărțitorul se împarte la rest) până se obține restul 1:

```
1590 = 43 \cdot 36 + 42
```

$$43 = 42 \cdot 1 + 1$$

- ▶ Pentru calculul 43⁻¹ (mod 1590) am folosit algoritmul lui Euclid extins;
- Se fac împărțiri cu rest repetate (împărțitorul se împarte la rest) până se obține restul 1:

$$1590 = 43 \cdot 36 + 42$$
$$43 = 42 \cdot 1 + 1$$

Se înlocuiesc valorile restului în sens invers:

$$1 = 43 - 42 \pmod{1590}$$

$$1 = 43 - (1590 - 43 \cdot 36) \pmod{1590} = 43 \cdot 37 \pmod{1590}$$

- ▶ Pentru calculul 43⁻¹ (mod 1590) am folosit algoritmul lui Euclid extins;
- Se fac împărțiri cu rest repetate (împărțitorul se împarte la rest) până se obține restul 1:

$$1590 = 43 \cdot 36 + 42$$
$$43 = 42 \cdot 1 + 1$$

Se înlocuiesc valorile restului în sens invers:

$$1 = 43 - 42 \pmod{1590}$$

$$1 = 43 - (1590 - 43 \cdot 36) \pmod{1590} = 43 \cdot 37 \pmod{1590}$$

• Cum $43 \cdot 37 \pmod{1590} = 1 \Rightarrow 43^{-1} \pmod{1590} = 37$.

Construcția sistemelor de criptare asimetrice

 Folosim TDP pentru construcția sistemelor de criptare asimetrice;

Construcție

Fie (Gen, F, F⁻¹) TDP cu F: $\mathcal{X} \to \mathcal{Y}$, (Enc, Dec) un sistem de criptare simetric sigur cu autentificarea mesajelor definit peste $(\mathcal{X}, \mathcal{Y})$ și $H: \mathcal{X} \to \mathcal{K}$ o funcție hash. Definim un sistem de criptare asimetrică peste $(\mathcal{K}, \mathcal{X}, \mathcal{Y})$ în felul următor:

- $\operatorname{Enc}_{pk}(\mathbf{m}) = (y, c) = (F_{pk}(x), \operatorname{Enc}_k(m)), \text{ unde } k = H(x) \text{ \sharp i}$ $x \leftarrow^R \mathcal{X};$

Exemple

- ► Merkle-Hellman
 - definit în 1978 de R.Merkle și M.Hellman
 - bazat pe problema rucsacului
 - spart la numai câţiva ani de la publicare

Exemple

▶ Merkle-Hellman

- definit în 1978 de R.Merkle și M.Hellman
- bazat pe problema rucsacului
- spart la numai câțiva ani de la publicare

► RSA

- definit în 1977 de R.Rivest, A.Shamir și L.Adleman
- bazat pe problema RSA și indirect a factorizării numerelor mari
- cel mai cunoscut sistem de criptare cu cheie publică

Important de reținut!

- ▶ Noțiunea de permutare cu trapă secretă (TDP)
- ► Construcția sistemelor de criptare asimetrice folosind TDP