

1 Automate vers Expression Rationnelle

Exercice 1:

En utilisant le Lemme d'Arden, donnez l'expression régulière représentant les langages reconnus par les automates suivants.

\mathcal{A}_7	0	1	2	3	4	5
a	$\{4, 3\}$	$\{4, 2\}$	{0}	$\{1, 5\}$	Ø	{4}
b	{1}	{5}	$\{1, 2\}$	Ø	{4}	{3}
initial	oui	non	non	non	oui	non
terminal	non	non	non	oui	non	oui

Exercice 2:

À l'aide de la méthode vue en cours, donnez une expression rationnelle définissant l'intersection du langage défini par $b^*(ab^*ab^*)$ et du langage défini par $(ab)^*$.

2 Morphisme linéaire

Exercice 3:

Soit $A = \{a, b, c\}$ et $B = \{d, e\}$ deux alphabets. Soit $\mu : A \to B$ un morphisme de langage défini par $\mu(a) = d$, $\mu(b) = d$ et $\mu(c) = e$.

- Donner une expression rationnelle qui définit l'image par μ de $(ab)^* + (c^*b)$, noté $\mu((ab)^* + (c^*b))$.
- Donner une expression rationnelle qui définit l'image inverse par μ de $(dd+e)^*$, noté $\mu^{-1}((dd+e)^*)$.
- Donner un algorithme qui, étant donné deux alphabets A et B, un morphisme linéaire $\mu:A\to B$ et une expression rationnelle e sur B rend une expression rationnelle sur A qui définit l'inverse par μ du langage défini par e, c'est à dire $\mu^{-1}(e)$.