

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления и искусственный интеллект

КАФЕДРА Системы обработки информации и управления

Домашнее задание №1

По курсу «Технологии разработки программного обеспечения»

«Оценка затрат на программный продукт по модели СО-СОМО- II»

Подготовил:
Студент группы
ИУ5-14Б Журавлев Н.В
11.10.2023
Проверила:

Виноградова М.В.

Цель работы:

- Изучить методы оценки затрат на разработку программного проекта;
- Получить практические навыки оценки затрат.

Полученное задание:

Оценить размер проекта на основе LOC (используя таблицу аналогов Орлова). Вычислить затраты, длительность и стоимость разработки по модели COCOMO-II раннего проектирования (пояснить параметры модели).

Проанализировать влияние одного из параметров модели (по варианту) на другие параметры, на итоговые затраты и стоимость (построить график зависимости). Предложить варианты сокращения затрат на 10% за счет функционала и за счет параметров модели.

Ход работы:

Перечень функций проекта

В проекте "Информационная экспертная система по подбору диеты" можно выделить следующие функции:

- 1) Подбор диеты;
- 2) База данных диет и способы взаимодействия с ней;
- 3) База данных пользователей и способы взаимодействие с ней.

Обозначим их Π_i , где i – номер функции.

Расчет LOC по таблице аналогов

LOC [Lines of Code] – количество строк в программном продукте. KLOC значение LOC делённое на 1000.

Данная оценка применяется, когда организацией накоплен архив с данными метрического базиса. В данном архиве содержится информация об оценке проектов, функций в LOC. Сравнив функционал разрабатываемого проекта и архивных, можно примерно оценить его размер в LOC.

В данном случае в качестве базиса используется таблица аналогов из книги Орлова С.А.

Результат представлен в таб.1.

Таблица 1. Расчёт затрат, стоимости и LOC по аналогам

Проект	Затраты, челмес.	Стоимость, тыс. руб	KLOC, тыс. LOC	LOC
Π_1	25	170	10	10000
Π_2	40	310	20	20000
Π_3	62	440	27	27000

Функция Π_1 соответствует аналогу "aaa01". Π_2 - "bbb02". Π_3 -"ccc03".

Расчет средней производительности и стоимости по аналогам, оценка затрат и стоимости

Стоимость по аналогам рассчитана в предыдущем пункте в таб.1.

Для расчёта средней производительности посчитаем $\Pi PO M 3B_i$ – производительность і-ой функции:

$$\Pi$$
РОИЗВ₁ = $\frac{LOC_1}{3$ ATPATЫ₁ = 400

$$\Pi$$
РОИ $3B_2 = \frac{LOC_2}{3ATPATЫ_2} = 500$

$$\Pi$$
РОИ $3B_3 = \frac{LOC_3}{3ATPATЫ_3} = 675$

Средняя произвольность рассчитаем по следующей формуле:

$$\Pi POИ3B_{cp} = \frac{\Pi POИ3B_1 + \Pi POИ3B_2 + \Pi POИ3B_3}{3} = 525$$

Так же необходимо посчитать среднюю удельную стоимость, для этого посчитаем $\Pi PO M 3B_i$ – производительность i-ой функции:

УД_СТОИМОСТЬ₁ =
$$\frac{\text{СТОИМОСТЬ}_1}{LOC_1}$$
 = 0.017

УД_СТОИМОСТЬ₂ =
$$\frac{\text{СТОИМОСТЬ}_2}{LOC_2}$$
 = 0.0155

УД_СТОИМОСТЬ₃ =
$$\frac{\text{СТОИМОСТЬ}_3}{LOC_3}$$
 = 0.01(629)

Средняя удельная стоимость рассчитаем по следующей формуле:

Для каждой функции рассчитаем вычисляем LOC-оценки по формуле:

$$LOC_{\text{ож}i} = (LOC_{\text{лучш}i} + LOC_{\text{худш}i} + 4 * LOC_{\text{вероятн}i})/6$$

Получившийся результат:

$$LOC_{\text{ож1}} = \frac{(8000 + 14000 + 4 * 10000)}{6} = 10333,(3)$$

$$LOC_{\text{ож2}} = \frac{(15000 + 23000 + 4 * 20000)}{6} = 19666,(6)$$

$$LOC_{\text{ож3}} = \frac{(25000 + 29000 + 4 * 27000)}{6} = 27000$$

Оценка затрат считается следующем образом:

ЗАТРАТЫ =
$$\left(\sum LOC_{\text{ож}i}\right)$$
 / ПРОИЗВ $_{\text{cp}}=108$,571

Оценка стоимости считается следующем образом:

СТОИМОСТЬ =
$$\left(\sum LOC_{\text{ож}i}\right)*$$
 УД_СТОИМОСТЬ $_{\text{cp}}=927,39$

Расчет затрат

Для расчёта затрат используется формула:

$$3ATPATЫ = A * PA3MEP^B * M_e + 3ATPATЫ_{auto}$$

где:

- Масштабный коэффициент А = 2,5;
- Показатель В отражает нелинейную зависимость затрат от размера проекта (размер системы PA3MEP выражается в тысячах LOC);
- Множитель поправки M_e зависит от 7 формирователей затрат, характеризующих продукт, процесс и персонал;
- Слагаемое 3ATPATЫ $_{auto}$ отражает затраты на автоматически генерируемый программный код.

Значение показателя степени В изменяется в диапазоне 1,01... 1,26, зависит от пяти масштабных факторов W_i и вычисляется по формуле

$$B = 1.01 + 0.01 \sum W_i$$

Таблица 2. Маштабные факторы

Проект	PREC	FLEX	RESL	TEAM	PMAT
Π_1	4	4	4	0	3
Π_2	1	4	1	1	3
Π_3	3	4	1	0	3

На основе оценки для каждого формирователя по таблице Боэма определяется множитель затрат EM_i .

Перемножение всех множителей затрат формирует множитель поправки:

$$M_e = \prod_{i=1}^{7} EM_i$$

Таблица Боэма, по которой определяются множители затрат:

Таблица 3. Таблица Боэма

	0	1	2	3	4	5	6
PERS	1,33	1,22	1,11	1	0,89	0,78	0,67
RCPX	0,67	0,78	0,89	1	1,11	1,22	1,33
RUSE	0,67	0,78	0,89	1	1,11	1,22	1,33
PDIF	0,67	0,78	0,89	1	1,11	1,22	1,33
PREX	1,33	1,22	1,11	1	0,89	0,78	0,67
FCIL	1,33	1,22	1,11	1	0,89	0,78	0,67
SCED	1,33	1,22	1,11	1	1	1	1

Для каждого формирователя затрат определим оценку и занесём множители в таблицу:

Таблица 4. Множетили затрат

Проект	PERS	RCPX	RUSE	PDIF	PREX	FCIL	SCED
Π_1	0,78	1	1,33	0,78	1,11	0,78	1
Π_2	0,78	1	1,33	0,78	1	0,78	1
П ₃	0,78	1	1,33	0,78	1	0,78	1

Слагаемое $\mathrm{3ATPATL}_{auto} = 0$, так как автогенерируемый код отсутствует.

По итогу вычисления затрат получается:

Таблица 5. Подсчёт затрат

Проект	Α	PA3MEP	В	M_e	ЗАТРАТЫ _{auto}	ЗАТРАТЫ
Π_1	2,5	10	1,16	0,7005811176	0	25,31619525
Π_2	2,5	20	1,11	0,63115416	0	43,87516401
Π_3	2,5	27	1,12	0,63115416	0	63,27073412

Расчет длительности и стоимости разработки

Описание длительности вычисляется следующим образом:

$$(TDEV) = [3.0 * 3ATPATbl^{(0.33+0.2(B-1.01))}] * SCEDPercentage/100 [mec],$$

Где:

- Значение показателя степени В изменяется в диапазоне 1,01... 1,26, зависит от масштабных факторов W_i и вычисляется по формуле выше
- SCEDPercentage процент увеличения (уменьшения) номинального графика.

Так как нужно определить номинальный график, то SCEDPercentage = 100.

После расчёта длительности получаются следующие результаты:

Таблица 6. Расчёт длительности

Проект	(TDEV)
Π_1	9,601623931
Π_2	11,26932278
Π_3	12,91649458

Стоимости проекта рассчитывается по формуле:

$$CTOИMOCTb = 3ATPATЫ x PAБ_KOЭФ$$
,

где $PAF_KOЭФ = 5$

После расчёта стоимости получаем следующие результаты:

Таблица 7. Расчёт стоимости

Проект	Стоимость
Π_1	126,5809763
Π_2	219,37582
Π_3	316,3536706

Зависимости между параметрами модели

Варьируемым параметром является ТЕАМ, построим таблицу значений остальных параметров в значимости его изменения:

Таблица 8. Таблица параметров в зависимости от ТЕАМ

TEAM	5	4	3	2	1	0
PREC	5	4	2	1	1	1
FLEX	4	4	4	4	4	4
RESL	1	1	1	1	1	1
PMAT	5	4	3	3	3	2
PERS	0,78	0,89	1	1	1,11	1,11
PCPX	1	1	1	1	1	1
RUSE	0,67	0,67	0,67	0,67	0,67	0,67
PDIF	1	1	1	1	1	1
PREX	1,11	1	1	1	1	0,89
FCIL	1	1	1	1	1	1
SCED	1,33	1,22	1,11	1	1	1

На рис.1 можно увидеть зависимость параметров:

Рисунок 1. Зависимость между параметрами

График зависимости затрат и стоимости от варьируемого параметра модели

Пересчитаем затраты и стоимость при изменении параметра ТЕАМ:

Таблица 9. Зависимость затрат и стоимости от ТЕАМ

TEAM	Затраты	Стоимость
5	152,4714406	762,3572031
4	147,9463254	739,7316268
3	143,5574296	717,7871479
2	139,3006043	696,5030216
1	135,1718282	675,859141
0	131,1672035	655,8360175

На рисунке 2 можно увидеть график описываемой зависимости:

Рисунок 2. Зависимость затрат и стоимости от ТЕАМ

Расчет уменьшения затрат за счет функционала

Один из способов уменьшения затрат – сокращение размера проекта за счет исключения некоторых функций, например, можно уменьшить количество объектных указателей в разрабатываемом проекте или от количества вводов и выводов и т.д.

Для Π_3 по формуле:

$$3$$
ATPATЫ = $A * PA3MEP^B * M_e + 3ATPATЫ_{auto}$

Предыдущее значение затрат ЗАТРАТЫ = 63,27073412.

Новое значение затрат должно быть на 10% меньше, тогда целевое значение затрат = 56,943660708 [чел.-мес.].

Составим уравнение: $2,5 * (новый_размер)^{1,17} * 0,63115416 = 56,943660708$ [чел.-мес.]

И решим его:

(новый размер) = 21,38814 [KLOC]

Получили, что необходимо сократить размер на 27 – 21,38814 = 5,61186 [KLOC]

Расчет уменьшения затрат за счет параметров модели

Предположим менеджер решил, закончить проект быстрее, тем самым сократив стоимость. Он провел анализ и решил, что разработку ускорит внедрение нового средства поддержки, так как оно удобное и мощное (уменьшит для Π_2). Следовательно, оценка FCIL вырастет, а коэффициент уменьшится (аналогично изза введения новой технологии возрастёт параметром PERS). Теперь персоналу необходимо обучиться работать с новым средством, поэтому пока этап обучения не будет пройден, эффективность не станет выше. Она, наоборот, уменьшится, скорость разработки снизится, так как персонал будет занят переобучением. Это значит, что формирователь затрат PREX получит меньшую оценку. Первоначально значения формирователей были следующие:

Таблица 10. Стартовые оценка и значение формирователей PERS, PREX, FCIL

Формирователь	Оценка	Значения
PERS	5	0,78
PREX	3	1
FCIL	5	0,78

ЗАТРАТЫ = 63,27073412 [чел.-мес.]. После внедрения нового средства поддержки получим новые значения формирователей:

Таблица 11. Новые оценка и значение формирователей PERS, PREX, FCIL

Формирователь	Оценка	Значения
PERS	6	0,67
PREX	2	1,11
FCIL	6	0,67

ЗАТРАТЫ = 51,81866885 [чел.-мес.]. Как видно, затраты уменьшились. Подсчитаем на сколько 51,81866885*100 / 63,27073412 = 81,8999%. Что показывает уменьшение затрат на почти 19%, что необходимо было сделать.

Список источников

- 1. Конспект лекций по курсу Технологии разработки программного обеспечения.
- 2. Орлов С.А. Технологии разработки программного обеспечения. Спб.: Питер. 2002 г.