

Federal University Oye-Ekiti Department of Mathematics Second Semester Examination 2015/2016 Session

Course Code: MTH102

Course Title: Elementary Mathematics II

Unit: 3 units Duration: 1hour

Instruction: Answer all questions, choose and indicate clearly the correct option for each question.

Write your matriculation number and your department in spaces provided below.

Matriculation Number _____ Department_____

- 1) Find dy/dx if y=Insinx (a) 1/sinx (B) tanx (C) 1/cosx (D) Incosx.
- 2) Given that y=(5x²)(6/x) . Find dy/dx (a) 30x (B) 30 (C) -30 (D) -30x
- 3) If $y = \cos(-2x)$, dy/dx is (A) $2\sin(-2x)$ (B) $-2\sin(-2x)$ (C) $\sin(-2x)$ (D) $2\sin(2x)$.
- 4) Given that $y = 2x^2u^2z^2 + 6x^2u^4z^3$, dy/dx is (A) $4xu^2z^2 + 18x^2u^4z^3$ (B) $4xu^3z^2 + 18x^2u^4z^3$ (C) $4u^2z^2 + 18x^2u^4z^3$ (D) $2x^2u^2z^2 + 18x^2u^4z^3$.
- 5) Given that $w = 40x^2y$, what is d^2w/dx^2 (a) 40y (B) 80y (C) 40x (D) $40x^2y$
- 6) Given that $w = 40x^2y$ then dw/dy is (A) 80xy (B) $40x^4$ (C) $80x^2y$ (D) $40yx^2$.
- 7) The point of removable discontinuity of $f(x)=(x^2-4)/(x-2)$ is (a)4 (b)-4 (c)-2 (d)2
- 8) A local maximum point for the function $f(x) = x^3 x$ is (a) $\sqrt{3}/3$ (b) $-\sqrt{3}/3$ (c) $3\sqrt{3}$ (d) $-3\sqrt{3} 3\sqrt{3}$
- 9) Let $f(x) = (\frac{1}{2})x \sin(x)$ be defined on $(0, 2\pi)$, f(x) is increasing on the interval.
 - (a) $(0, \pi/3)$ (b) $(\pi/3, 5\pi/3)$ (c) $(5\pi/3, 2\pi)$ (d) none of the above.
- 10) The minimum of $f(x) = 2\sin(x) \cos(2x)$ on $\{0, 2\pi\}$ is (a) -3/2 (b) -1/2 (c) 1/2 (d) 3/2.
- 11) The domain of the function $f(x) = 2x^2 4x + 5$ is (a) R-{1} (b) R-{-1} (c) R (d) {1}
- 12) Given that $f(x) = 3^{\circ}$. Find f(x)f(2+x). (a) $g(3^{\circ})$ (b) $g(3^{\circ})$ (c) $g(3^{\circ})$ (d) $g(3^{\circ})$
- 13) The range of f: Z to Z' defined as f(x)=10|x| is (a)Z (b) Z' (c) 10|x| (d) $\{10x:x \text{ is in }Z'\}$
- 14) The range of a signum function is (a) R (b) (-1, 0.1) (c) (-1, 1) (d) (0, 1)
- 15) The stationary point of $x^2 x + 1$ is (a) $\frac{1}{2}$ (b) 0 (c) 3 (d) $\frac{1}{2}$.
- 16) What is the floor of -2.4? (a)-3 (b) -2 (c) -1 (d) -5
- 17) Lim, ., (x²-4)/(x-2) is (a) 0 (b) -2 (c) -4 (d) 4
- 18) Integrate 5/x (a) In x + c (B) 5In x + c (C) 3In 5x + c (D) In 5x + c
- 19) All the following is a stationary point of $x^5 5x^4 + 5x^3$ except (a) 0 (b) 1 (c) 2 (d) 3

11 Drang

Course Code: MTH102

Course Title: Elementary Mathematics II

Unit: 3 units Duration: 1hour

Instruction: Answer all questions, choose and indicate clearly the correct option for each question .

Write your matriculation number and your department in spaces provided below.

Matriculation Number	Deportment
1) Find dy/dx if y=Insinx (a) 1/si	nx (B) tanx (C) 1/cosx (D) incosx.
	dy/dx (a) 30x (B) 30 (C) -30 (D) -30x
	2sin (-2x) (B) -2sin (-2x) (C) sin (-2x) (D) 2sin (2x).
	z ³ , dy/dx is (A) 4xu ² z ² + 18x ² u ⁴ z ³ (B) 4xu ³ z ² + 18x ² u ⁴ z ³ (C) 4u ² z ² +
5) Given that $w = 40x^2y$, what is	s d ² w/ dx ² (a)40y (B) 80y (C) 40x (D) 40x ² y
6) Given that w= 40x² y then dv	w/dy is (A) 80xy (B) 40x ² (C) 80x ² y (D) 40yx ² .
7) The point of removable disco	oritinuity of $f(x)=(x^2-4)/(x-2)$ is (a)4 (b) -4 (c) -2 (d) 2
8) A local maximum point for th	se function $f(x) = x^3 - x$ is (a) $\sqrt{3}/3$ (b) $-\sqrt{3}/3$ (c) $3\sqrt{3}$ (d) $-3\sqrt{3} - 3\sqrt{3}$
	fined on (0, 2n). f(x) is increasing on the interval.
(a) (0, n/3) (b) (n/3, 5n/3) (c)	(5n/3, 2n) (d) none of the above.
11) The domain of the function	x) - cos (2x) on [0, 2n] is (a) - 3/2 (b) - 1/2 (c) 1/2 (d) 3/2. $f(x) = 2x^2 - 4x + 5$ is (a) R-{1} (b) R-{-1} (c) R (d) {1}
	f(2+x). (a) 9(3*) (b) 3(9*) (c) 9(3 ² *) (d) 3(9 ² *)
13) The range of f: Z to Z' defin	ed as $f(x) = 10 x $ is (a)Z (b) Z* (c) $10 x $ (d) $(10x : x is in Z*)$
15) The same of a signum funct	tion is (a) R (b) {-1, 0, 1} (c) {-1, 1} (d) (0, 1)
16) What we want	-x+1 is (a) ½ (b) 0 (c) 3 (d) %.
	(a)-3 (b)-2 (c)-1 (d)-5 (a) 0 (b)-2 (c)-4 (d) 4
18) Integrate 5/x (a) in x + c (B) 5ln x + c (C) 3ln 5x + c (D) ln 5x + c
19) All the following is a station	vary point of $x^3 - 5x^4 + 5x^3$ except (a) 0 (b) 1 (c) 2 (d) 3

FEDERAL UNIVERSITY OYE-EKITI FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS

Second Semester Examination, 2014/2015 Session

MTH102 - General Mathematics II

3 units

INSTRUCTION: Answer four(4) questions in all with at least one question

from each section.

Duration: 21/hrs

Section A

Answer at least one question in this section.

- 1. (a) Let $\sin \theta = \frac{4}{5}$, where $90 < \theta < 180^{\circ}$. Find the exact values of $\cos \theta$ and $\tan \theta$.
 - (b) Show that

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

- (c) Evaluate each of the following trigonometric functions:
 - (i) cos 5 to
 - $(ii) \sin \frac{5\pi}{6}$
 - (iii) tan 57
- (d) Show that $2\sin A\cos B = \sin(A+B) + \sin(A-B)$.
- (a) If cos θ = 0.8, evaluate :
 - (i) $\cos(180^{\circ} + \theta)$
 - (iii) $\sin(90^{\circ} \theta)$.
 - (b) Show that

$$\tan \theta + \frac{\cos \theta}{1 + \sin \theta} = \sec \theta.$$

- (c) A circle has a radius of 6 inches. Find the length of the arc intercepted by a central angle of 150°.
- (d) If the length of arc intercepted by a central angle is \(\frac{16\pi}{3}cm\), find the radius of the circle.

Section B

Answer at least one question in this section.

- (a) Differentiate y = sinx from the first principle.
 - (b) Find the derivative of the function y = 3x² and the gradient of the tangent to the curve y = 3x² at the point with abscissa 3.

- (c) Find \(\frac{x}{2} \) and \(\frac{x}{2} \) at \((x, y) = (1, 1) \) if $x^3 + 3xy^2 + 4x + 2y = 16$
- (a) Differentiate the following:

(i)
$$\frac{(x-1)}{(x+1)}$$
 (ii) $e^x \ln x$

- (b) If x = sint and y = cos2t, find dy/dx.
- (c) Find the coordinates of the stationary points of the function

$$y=\frac{x^3}{3}-\frac{x^2}{2}-2x+5,$$

and determine their nature.

Section C Answer at least one question in this section.

- 5. (a) Integrate the following functions with respect to x (i) $x^3 + 4x^2 + 6x + 3$ (ii) $\frac{1}{x^3} - 3x^5 + \sqrt{x} - 1$ (iii) $e^x - \sin x + 4\cos x$
 - (b) By writing the integrand as partial fractions, find

$$\int \frac{8x+10}{4x^2+8x+3} dx$$

(c) Use the product rule of differentiation to verify

$$\frac{d}{dx}(xe^{2x}) = e^{2x} + 2xe^{2x}.$$

Hence, show that

$$\int xe^{2x}dx = \frac{xe^{2x}}{2} - \frac{e^{2x}}{4} + c$$

6. (a) Evaluate

(i)
$$\int_0^1 e^{3x} dx$$

(ii)
$$\int_{-1}^{1} 5x^3 + 4x dx$$
 (iii) $\int_{0}^{\pi} \sin 2x dx$

(iii)
$$\int_0^{\pi} \sin 2x dx$$

(b) Approximate to six decimal places

$$\int_{1}^{3} e^{x3} dx$$

using Simpson's rule for n = 8.

(c) Find the area enclosed by the curve $y = x^3 - 2x^2 - x + 2$, the x-axis and the lines x = -1 and x = 2.