Power Transmission (การส่งกำลัง)

ME 310: Mechanical Design

Sappinandana Akamphon

Thammasat University

What is Power?

- Rate of energy (input or output) in [J/s] or [W]

Power Transmission in Mechanical Systems

 Mechanical power comes in rotational form: motors, engines, turbine

Power =
$$Fv = (Fr)\frac{v}{r}$$

= $T\omega$

- Both ${\it T}$ and ω will factor into the shaft design

Mechanical Power Sources

Mechanical Power Sources

- 1. Motors
- 2. Engines
- 3. Turbines

Internal Combustion Engines

Diesel Fuel efficiency High torque Low rpm

Gasoline High rpm Less vibration Less weight

- ++ operate in remote area
- - noise and vibration
- - maintenance issues

Motors

- ++ Smooth
- ++ Less noise and vibration
- ++ Less energy cost
- - Need electricity

6

Overview of Power Transmission Components

Machine Elements for Power Transmission

Power Transmission Drives

Typical Components

Shafts transfer torque between aligned components over distance

Gears transfer torque between components

Clutches engages/disengages torque transfer

Bearings support shaft rotation, axial, and bending loads

Pins and Keys fix and transfer torque from components to shaft and from shaft to components

Couplings connect two shafts with misalignment

Shafts

- · Most important element in power transmission system
- · Transfer torques among all adjacent components

Welds and Bolts

- Shafts don't float \rightarrow must be fixed somewhere
- \cdot Glues aren't always the answer \rightarrow welds and bolts

Shaft Loading Conditions

- Torque
- \cdot Bending \implies radial load from torque transmission

$$F = \frac{T}{r \cos \theta}$$
 $F = \frac{T}{r}$ $F_1 - F_2 = \frac{T}{r}$

Gears vs Chain vs Belt

Properties	Belt	Chain	Gear
Main elements	pulleys, belt	sprockets, chain	gears
Slip	some	none	none
Distance	large	medium	small
Space	large	medium	small
Complexity	low	medium	high
Damage to system under Failure	none	small - medium	serious
Life	short	medium	long
Lubrication	not required	required	required
Installation	easy	medium	hard
Speed	low	medium	high

Pin, Keys, Couplings

- Fix components to shaft
- Transfer torques to and from shaft

Bearings

- · Support bending and axial loads from shaft
- Facilitate rotation

Clutches and Brakes

- Provide way to engage/disengage from drive
- · Rely on friction or positive contact

