信号与系统 公式整理

void NULL 2021.12

声明:

- 1. 本文档主要基于笔者在课余时间学习西安电子科技大学郭宝龙教授的公开网课(b 站也有)作的笔记整理,结合本课程的部分补充公式而成。由于大部分内容基于网课,可能与课程内容有一定出入,笔者已经尽量统一,如还有不符之处,还望多多包涵。
- 2. 笔者虽已反复校对,难免有少量疏漏,如有错误之处,还请指出。
- 3. 本文档尽可能全面包含所有公式,但由于是笔者的经验整理,难免有不足之处,仅作参考,对分数要求较高的同学请谨慎使用。同时,对公式的应用技巧心得还需要自己归纳总结。
- 4. 部分内容在本课程中不要求,但可能出现在其它课程中,故也列出,供参考。
- 5. 本文档中虚数单位统一用j表示,阶跃函数统一用ε表示,离散序列自变量统一用k表示,复数z的共轭统一用上划线z表示,使用时请注意。

文档说明

黑色字体: 常规内容

红色字体:需要特别关注的内容 紫色字体:一些相当好用的二级结论

绿色字体:可相对不作关注 蓝色字体:不在本课程范围内

一、时域分析

1. 冲激函数 $\delta(t)$ 与冲激序列 $\delta(k)$

	连续函数	离散函数
基础定义	$\delta(t) = \begin{cases} 0 & (t \neq 0) \\ \int_{-\infty}^{+\infty} \delta(t) dt = 1 \end{cases}$	$\delta(k) = \begin{cases} 0 & k \neq 0 \\ 1 & k = 0 \end{cases}$
	$\delta(t) = \begin{cases} \int_{-\delta}^{+\infty} \delta(t) dt = 1 \end{cases}$	(1 k = 0)
	$\int_{-\infty}^{\infty} \sigma(t) dt = 1$	
广义函数 定义	$\int_{-\infty}^{+\infty} \delta(t) \varphi(t) dt = \varphi(0)$	无
取样性质		1. $f(k)\delta(k) = f(0)\delta(k)$
及其推广	2. $\int_{-\infty}^{+\infty} f(t)\delta(t)dt = f(0)$	2. $f(k)\delta(k-k_0) = f(k_0)\delta(k-k_0)$
	3. $f(t)\delta(t-a) = f(a)\delta(t-a)$	3.
	4. $\int_{-\infty}^{+\infty} f(t)\delta(t-a)dt = f(a)$	$\sum_{k=0}^{\infty} f(k)\delta(k) = f(0)$
	5. $ \int_{a}^{b} f(t)\delta(t - t_{0})dt = \begin{cases} f(t_{0}) & t_{0} \in (a, b) \\ 0 & t_{0} \notin (a, b) \end{cases} $ 1. $ f(t)\delta'(t) = f(0)\delta'(t) - f'(0)\delta(t) $	<i>k</i> =−∞
冲激函数		无
求导	2. $\int_{-\infty}^{+\infty} f(t)\delta'(t)dt = -f'(0)$	
	3. $\int_{-\infty}^{+\infty} f(t)\delta^{(n)}(t)dt = (-1)^n f^{(n)}(0)$	
尺度变化	1. $\delta(at) = \frac{1}{ a }\delta(t)$	不讨论
	2. $\delta(at - t_0) = \frac{1}{ a } \delta\left(t - \frac{t_0}{a}\right)$	
	3. $\delta^{(n)}(at) = \frac{1}{ a } \frac{1}{a^n} \delta^{(n)}(t)$	
	4. $\delta^{(n)}(-t) = (-1)^n \delta^{(n)}(t)$	
	5. $\delta(t)$ 为偶函数, $\delta'(t)$ 为奇函数	
阶跃函数	$\varepsilon(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}$ 处任意	$\varepsilon(k) = \begin{cases} 0 & k < 0 \\ 1 & k \ge 0 \end{cases}$
冲激函数	1. $\delta(t) = \frac{d}{dt} \varepsilon(t)$	1. $\delta(k) = \varepsilon(k) - \varepsilon(k-1)$
与阶跃函	2. $\varepsilon(t) = \int_{-\infty}^{\mathrm{d}t} \delta(\tau) \mathrm{d}\tau$	2.
数的关系	$J_{-\infty}$	$\sum_{k=1}^{K} s(k) \sum_{k=1}^{\infty} s(k-k)$
		$\varepsilon(k) = \sum_{i=-\infty}^{\kappa} \delta(i) = \sum_{j=0}^{\infty} \delta(k-j)$

2. 系统的时域分析

 2. 系统的的 		キル ブル
111.15.2	连续系统	离散系统
描述方程	微分方程	差分方程
框图部件	加法器、数乘器、积分器	加法器、数乘器、延迟器
经典法		$y_p(\tau) + y_p(\tau)$
齐次解yh	1. 对单特征根λ: Ce ^{λt}	1. 对单特征根λ: <i>Cλ^k</i>
对特征根λ	2. 对二重特征根 λ : $(C_1t + C_2)e^{\lambda t}$	2. 对二重特征根 λ : $(C_1k + C_2)\lambda^k$
的形式	3. 对复特征根 $\lambda = a \pm jb$:	3. 对复特征根 $\lambda = \rho e^{\pm j\beta}$:
	$e^{at}(C_1 \cos bt + C_2 \sin bt)$	$\rho^{k}(C_{1}\cos\beta k + C_{2}\sin\beta k) = A\rho^{k}\cos(\beta k - \theta),$
		$Ae^{j\theta} = C_1 + jC_2$
特解 y_p 对	1. 多项式指数型激励 $f(t) = P_m(t)e^{\lambda t}$:	1. 多项式指数型激励 $f(k) = P_m(k)\lambda^k$:
激励 f 的形	$t^{\mathrm{K}}\mathrm{Q}_{m}(t)\mathrm{e}^{\lambda t}$ (K 为 λ 作为特征根的重	$k^N Q_m(k) \lambda^k$ (N 为 λ 作为特征根的重
式	数)	数)
	2. 三角多项式指数型激励	2. 三角多项式指数型激励
	$f(t) = e^{at}(P_l(t)\cos bt + P_n(t)\sin bt) :$	$f(t) = \rho^{k} [P_{l}(t)\cos\beta k + P_{n}(t)\sin\beta k] $
	$t^{\mathrm{K}} \mathrm{e}^{at} \left[\mathrm{R}_{m}^{(1)}(t) \mathrm{cos}bt + \mathrm{R}_{m}^{(2)}(t) \mathrm{sin}bt \right],$	$t^N \rho^k \left \mathbf{R}_m^{(1)}(t) \cos \beta k + \mathbf{R}_m^{(2)}(t) \sin \beta k \right ,$
	$m = \max\{l, n\}, K 为 a \pm jb$ 作为特征根	$m = \max\{l, n\}, N 为 \rho e^{\pm j\beta}$ 作为特征根的重数
	的重数	
零输入响	1. 初值: 0+与0-相同	
应求解	2. 对应齐次微分方程	
零状态冲	1. 设新变量 $h(t)$, 在 $[0_{-},0_{+}]$ 积分,系数	1. 迭代求初值
激响应求	匹配求初值	2. 求齐次解
解	2. 求齐次解	3. 代入求系数
	3. 考虑 LTI 特性	
零状态阶	1. 初值:连续	1. 迭代求初值
跃响应求	2. t > 0时代1即可求解	2. 求齐次解
解	3. 也可由冲激响应积分求得	3. 求特解
		4. 代入求系数
算子	微分算子P = D = $\frac{d}{dt}$; $P^n = D^n = \frac{d^n}{dt^n}$	差分算子E:
ht = 11 11		$Ef(k) = f(k+1); E^{\pm n}f(k) = f(k \pm n)$
算子的性	1. 可因式分解(可以写传输算子)	略
质	2. 满足交换律	
	3. 不能随意消去公因子:	
	$D(P)\left[\frac{A(P)}{D(P)B(P)}\right]f(t) = \frac{A(P)}{B(P)}f(t);$	
	$\frac{A(P)}{D(P)B(P)}[D(P)f(t)] \neq \frac{A(P)}{B(P)}f(t);$	
	(允许先积分再微分,不允许先微分再	
	积分)	
	特别地,	
	$P\left[\frac{1}{p}f(t)\right] = f(t), \ \ (\exists \frac{1}{p}[Pf(t)] \neq f(t))$	
	$\Gamma \left[\frac{1}{p} \right] \left(i, j \right] = \int \left(i, j \right), 1 \stackrel{\square}{=} \left[\frac{1}{p} \right] \left(i, j \right] \neq \int \left(i, j \right)$	

3. 卷积积分与卷积和

0. 6 1/1///					
	连续函数	离散函数			
信号的时域分解	$f(t) = \int_{-\infty}^{+\infty} f(\tau)\delta(t-\tau)d\tau = f(t) * \delta(t)$	$f(k) = \sum_{i=-\infty}^{\infty} f(i)\delta(k-i)$ $= f(k) * \delta(k)$			

定义	$f_1(t) * f_2(t) = \int_{-\infty}^{+\infty} f_1(\tau) f_2(t-\tau) d\tau$	$f_1(k) * f_2(k) = \sum_{i=-\infty}^{\infty} f_1(i) f_2(k-i)$
卷 积 图 解 法的步骤	换元、反转平移、乘积、积分 (求和)	(=-60
乘法性质	交换律: $f_1 * f_2 = f_2 * f_1$ 结合律: $f_1 * (f_2 * f_3) = (f_1 * f_2) * f_3$	
微积分性质	分配律: $f_1 * (f_2 + f_3) = f_1 * f_2 + f_1 * f_3$ 1. $\frac{d^n}{dt^n} [f_1(t) * f_2(t)] = d^n$ d^n	无
	$ \begin{bmatrix} \frac{\mathrm{d}^n}{\mathrm{d}t^n} f_1(t) \end{bmatrix} * f_2(t) = f_1(t) * \left[\frac{\mathrm{d}^n}{\mathrm{d}t^n} f_2(t) \right] \\ 2. \int_{-\infty}^t [f_1(\tau) * f_2(\tau)] d\tau = \int_{-\infty}^t [f_1(\tau) * f_2(\tau)] d\tau = \int_{-\infty}^t [f_1(\tau) * f_2(\tau)] d\tau $	
	$\int_{-\infty}^{t} f_1(\tau) d\tau * f_2(\tau) = f_1(\tau) * \int_{-\infty}^{t} f_1(\tau) d\tau$ 3. 记 $f_2(t)$ 的 一 个 原 函 数 为 $F_2(t)$ 。 若	
	$f_1(-\infty) = 0$ 或 $F_2(+\infty) = 0$ 二 者 满 足 其 一,有 $f_1(t) * f_2(t) = f_1'(t) * F_2(t)$	
时移特性	$f(t) = f_1(t) * f_2(t)$) - f (t) * f (t + t) - f (t + t)
常用卷积	$f_1(t - t_1) * f_2(t - t_2) = f_1(t - t_1 - t_2) * f_2(t - t_1) $ 1. $K * f(t) = K \int_{-\infty}^{+\infty} f(t) dt = K S_f$	1. $f(k) * \delta(k - k_0) = f(k - k_0)$ $f(k) * \delta(k - k_0) = f(k - k_0)$
公式	2. $f(t) * \delta(t) = f(t);$ $f(t) * \delta^{(n)}(t) = f^{(n)}(t);$ $f(t) * \delta(t - t_0) = f(t - t_0)$	2.
	3. $f(t) * \varepsilon(t) = \int_{-\infty}^{t} f(\tau) d\tau = F(t)$	$f(k) * \varepsilon(k) = \sum_{i=-\infty}^{\infty} f(i)$
	4. $\varepsilon(t) * \varepsilon(t) = t\varepsilon(t);$ $e^{-at}\varepsilon(t) * e^{-at}\varepsilon(t) = te^{-at}\varepsilon(t);$ $e^{-a_1t}\varepsilon(t) * e^{-a_2t}\varepsilon(t) =$	3. $\varepsilon(k) * \varepsilon(k) = (k+1)\varepsilon(k);$ $a^{k}\varepsilon(k) * b^{k}\varepsilon(k) =$
	$\frac{e^{-a_1t} - e^{-a_2t}}{a_2 - a_1} \varepsilon(t) (a_1 \neq a_2);$ $\varepsilon(t) * e^{-at} \varepsilon(t) = \frac{1}{a} (1 - e^{-at}) \varepsilon(t) (a \neq 0)$	$\begin{cases} b^{k} \frac{1 - \left(\frac{a}{b}\right)^{k+1}}{1 - \frac{a}{b}} \varepsilon(k), a \neq b, ab \neq 0 \\ b^{k} (k+1) \varepsilon(k), a = b \end{cases}$
	5. 梳状函数、卷积生成周期函数	$b^k(k+1)\varepsilon(k), a=b$
	$f(t) * \delta_T(t) = f(t) * \sum_{m = -\infty}^{\infty} \delta(t - mT)$	
	$=\sum_{m=-\infty}^{\infty}f(t-mT)$ 6. 矩形脉冲卷积生成三角脉冲和梯形脉冲	
	对 $g_{ au}(t) = egin{cases} 1, t \leq rac{ au}{2}, \ 0, t > rac{ au}{2}, au > 0 \end{cases}$	
	$g_{\tau}(t)*g_{\tau}(t)$: 以 $(\stackrel{\cdot}{\pm}\tau,0),(0,\tau)$ 为顶点的 三角形	
	$g_{\tau_1}(t) * g_{\tau_2}(t)$: 以 $\tau_1 + \tau_2$ 为下底、 $ \tau_1 - \tau_2 $ 为上底、 $\min\{\tau_1, \tau_2\}$ 为高,关于纵轴对称的梯形	
函数的相	1. 互相关函数	(定义类似, 略)
关性	$R_{12}(\tau) = \int_{-\infty}^{+\infty} f_1(t) f_2(t - \tau) d\tau = $ $\int_{-\infty}^{+\infty} f_1(t + \tau) f_2(t) d\tau = R_{21}(-\tau)$	
	2. 自相关函数	
	$R(\tau) = \int_{-\infty}^{+\infty} f(t)f(t-\tau)d\tau = R(-\tau)$ 3. $R_{12}(t) = f_1(t) * f_2(-t)$	
卷积求法	定义、图解、性质	定义、图解、性质、不进位乘法

二、频域分析

为便于对比,将连续形式与离散形式并列对应给出,从而不再区分微分/差分,积分/求和等名词,便于对照参考。

4. Fourier 变换比较

	时域特性	频域特性
Fourier 变换	连续、非周期	连续、非周期
(FT)	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(j\omega) e^{j\omega t} d\omega$	$F(j\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt$
Fourier 级数	连续、周期	离散、非周期
(FS)	$\tilde{f}(t) = \sum_{k=-\infty}^{\infty} F(jk\Omega) e^{jk\Omega t} \left(F_n = F(jn\Omega) \right)$	$F(jk\Omega) = \frac{1}{T} \int_0^T \tilde{f}(t) e^{-jk\Omega t} dt$
	$= \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega t + \varphi_n)$	
离散时间	离散、非周期	连续、周期
Fourier 变换 (DTFT)	$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(j\omega) e^{j\omega n} d\omega$	$X(j\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$
离散 Fourier	离散、周期	离散、周期
级数 (DFS)	$\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] e^{j\frac{2\pi}{N}kn}, n \in (-\infty, +\infty)$	$\widetilde{X}[k] = \sum_{n=0}^{N-1} \widetilde{x}[n] e^{-j\frac{2\pi}{N}kn}, k \in (-\infty, +\infty)$
离散 Fourier	离散、非周期	离散、非周期
变换 (DFT)	$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}, 0 \le n \le N-1$	$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}, 0 \le k \le N-1$

5. 连续与离散时间 Fourier 变换 (FT、DTFT) 总结

	连续函数		离散函数	
	f(t)	F(jω) 1	f(k)	$F(j\omega) = X(e^{j\omega})$
单边指数	$e^{-\alpha t}\varepsilon(t), \alpha > 0$		$a^k \varepsilon(k), a < 1$	1
函数		$\alpha + j\omega$		$1-ae^{j\omega}$
双边指数	$e^{-\alpha t }$, $\alpha > 0$	2α	$a^{ k }, a < 1$	$1 - a^2$
函数		$\overline{\alpha^2 + \omega^2}$		$1 + a^2 - 2a\cos\omega$
门 函 数	$\left(1, t \leq\frac{\tau}{2}\right)$	$\tau Sa(\frac{\omega\tau}{2})$	$f(k) = \begin{cases} 1, k \le N \\ 0, k > N \end{cases}$	$\sin\left(N+\frac{1}{2}\right)\omega$
(矩形脉	$g_{\tau}(t) = \begin{cases} 1, t \le \frac{\iota}{2} \\ 0, t > \frac{\tau}{2} \end{cases}$	2	$(0, \mathcal{K} >N)$	$\frac{\omega}{\sin \frac{\omega}{2}}$
冲)	$\left(0, t >\frac{1}{2}\right)$			3111 2
冲激函数	$\delta(t)$	1	$\delta(k)$	1
冲激函数	$\delta^{(n)}(t)$	$(j\omega)^n$	7	Ē
求导				
常数	1	$2\pi\delta(\omega)$	1	
				$2\pi \sum_{\gamma=-\infty} \delta(\omega - 2\pi\gamma)$
符号函数	sgn(t)	$\frac{2}{j\omega}$	不论	讨论
		jω	_	
阶跃函数	$\varepsilon(t)$	$\pi\delta(\omega) + \frac{1}{\mathrm{j}\omega}$		
周期性	<u>=</u>	jω 无	$F(j\omega) = F[$	$i(\omega + 2\pi)$
线性性	$af_1(t) + bf_2(t)$	$\frac{aF_1(j\omega) + bF_2(j\omega)}{aF_1(j\omega) + bF_2(j\omega)}$	$af_1(k) + bf_2(k)$	$\frac{aF_1(j\omega) + bF_2(j\omega)}{aF_1(j\omega) + bF_2(j\omega)}$
奇偶性	$\frac{f(-t)}{f(-t)}$	$F(-j\omega)$	f(-k)	$F(-j\omega)$
(反折)	, ()	实信号时= F(jω)) (")	1 () ()
共轭对称	$\overline{f(t)}$	$\frac{\overline{F(-j\omega)}}{F(-j\omega)}$	$\overline{f(k)}$	$\overline{F(-j\omega)}$
性	, , ,	-()~)		2 ())
对称性	F(jt)	$2\pi f(-\omega)$	不论	讨论
取样函数	$\frac{\sin t}{t} = \operatorname{Sa}(t)$	$\pi g_2(\omega)$		
	t			

二次分式	$\frac{\alpha}{2}$, $\alpha > 0$	$\pi e^{-\alpha \omega }$		
尺度变换	$\frac{\alpha}{\alpha^2 + t^2}, \alpha > 0$ $f(at) \alpha \neq 0$	1 μ. ω	$f_N(k)$	$F(jN\omega)$
	, , ,	$\frac{1}{ a } F(j\frac{\omega}{a})$	$= \begin{cases} f(\frac{k}{N}), k = mN, m \in \mathbf{Z} \end{cases}$	
时移特性	$f(t-t_0), t_0 \in \mathbf{R}$	$e^{-j\omega t_0}F(j\omega)$	$\begin{array}{c} \text{0, otherwise} \\ f(k-k_0) \end{array}$	$e^{-j\omega k_0}F(j\omega)$
时移性质	$f(at - t_0), a \neq 0$	$\frac{1}{ a } e^{-j\frac{\omega}{a}t_0} F(j\frac{\omega}{a})$	7	V /
推论				
频移特性	$e^{j\omega_0 t} f(t), \omega_0 \in \mathbf{R}$	$F[j(\omega - \omega_0)]$	$e^{j\omega_0 k} f(k), \omega_0 \in \mathbf{R}$	$F[j(\omega - \omega_0)]$
余弦函数	$\cos \omega_0 t$	$\pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$	不论	讨论
正弦函数 余弦调幅	$\frac{\sin \omega_0 t}{f(t)\cos \omega_0 t}$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$		
.,		$\frac{1}{2} \{ F[j(\omega - \omega_0)] + F[j(\omega + \omega_0)] \}$	257	
一般周期	$f_T(t)_{\infty}$	$2\pi\sum_{n=-\infty}^{\infty}F_n\delta(\omega-n\Omega)$	$\widetilde{x}[k]$ $N-1$	$\frac{2\pi}{N} \sum_{m=-\infty}^{\infty} \tilde{X}[m] \delta\left(\omega - m \frac{2\pi}{N}\right)$
函数	$=\sum_{i} F(jk\Omega)e^{jk\Omega t}$	$n = -\infty$	$=\frac{1}{N}\sum \tilde{X}[m]e^{j\frac{2\pi}{N}mk}$	$m=-\infty$
	k		m=0	
	$ \frac{\left(F_n = F(jn\Omega)\right)}{\left(F_T(t) = f(t) * \delta_T(t)\right)} $	$1 2n\pi$		
		$F_n = \frac{1}{T}F(j-\frac{1}{T})$		
时域卷积	$f_1(t) * f_2(t)$	$F_1(j\omega)F_2(j\omega)$	$f_1(k) * f_2(k)$	$F_1(j\omega)F_2(j\omega)$
频域卷积	$f_1(t)f_2(t)$	$F_{n} = \frac{1}{T}F(j\frac{2n\pi}{T})$ $F_{1}(j\omega)F_{2}(j\omega)$ $\frac{1}{2\pi}F_{1}(j\omega)*F_{2}(j\omega)$	$f_1(k)f_2(k)$	$\frac{F_1(j\omega)F_2(j\omega)}{\frac{1}{2\pi}F_1(j\omega)*F_2(j\omega)}$
取样函数 的平方	$(\frac{\sin t}{t})^2$	以(±2,0),(0,π)为顶点的三角形	无	
时域微分	$f^{(n)}(t)$	$(j\omega)^n F(j\omega)$	f(k) - f(k-1)	$(1 - e^{-j\omega})F(j\omega)$
时域积分	$\frac{f^{(n)}(t)}{\int_{-t}^{t} f(\tau) d\tau}$	$\pi F(0)\delta(\omega) + \frac{F(j\omega)}{j\omega},$	$f(k) - f(k-1)$ $\sum_{i=-\infty}^{k} f(i)$	$\frac{(1 - e^{-j\omega})F(j\omega)}{\frac{F(j\omega)}{1 - e^{-j\omega}}} + \pi F(0) \sum_{\gamma = -\infty}^{\infty} \delta(\omega - 2\pi\gamma)$
	$\int_{-\infty}^{\infty}$	$c^{+\infty}$ j ω	$\sum_{i=-\infty}^{f(l)} f(l)$	$1 - e^{-\beta \omega}$
		$F(0) = \int_{-\infty}^{+\infty} f(t) dt$	<i>V</i> = 33	$+\pi F(0) \sum_{\gamma=-\infty} \delta(\omega-2\pi\gamma)$
时域积分 推论	$f(t) (f'(t) \leftrightarrow F_1(j\omega))$	$\frac{F_1(j\omega)}{j\omega} + \pi[f(-\infty) + f(+\infty)]\delta(\omega)$	无	
1年1七	f(t)	$\frac{F_n(j\omega)}{f(z)}$		
	$(f^{(n)}(t) \leftrightarrow F_n(j\omega),$ $f(-\infty) + f(+\infty) = 0)$	$(\mathrm{j}\omega)^n$		
频域微分	$\frac{(-jt)^n f(t)}{(-jt)^n f(t)}$	$F^{(n)}(j\omega)$	kf(k)	$j\frac{d}{d\omega}F(j\omega)$
频域积分	$\pi f(0)\delta(t)$	ω Ε(:Δ) Δ	无	ı uw
	$+\frac{f(t)}{f(t)}$, $f(0)$	$\int_{-\infty} F(jx) dx$		
	-jt'			
	$+\frac{f(t)}{-jt}, f(0)$ $= \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(j\omega) d\omega$ $= \frac{1}{R_{12}(\tau)} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(j\omega) d\omega$			
相关性定	$R_{12}(\tau) =$	$F_1(j\omega)\overline{F_2(j\omega)}$		
理	$\int_{-\infty}^{+\infty} f_1(t) f_2(t-\tau) d\tau$			
	$\frac{\int_{-\infty}^{\infty} R(\tau) = 0}{R(\tau)}$	$ F(j\omega) ^2$		
	$c^{+\infty}$	1 (Jω <i>)</i>		
	$\int_{-\infty} f(t)f(t-\tau)\mathrm{d}\tau$			
Parseval 等式	$f(t) = \sum_{i=1}^{\infty} C_i \varphi_i(t), \int_{0}^{t_2} f(t) ^{2t} dt$	$ f(t) ^2 dt = \sum_{i=1}^{\infty} \int_{t_1}^{t_2} C_i \varphi_i(t) ^2 dt$		
4八	二			
	• • • • • • • • • • • • • • • • • • • •	各正交分量能量之和) ·周期信号的功率:		
	$P = \frac{1}{T} \int_{-T}^{2} f(t) ^2 dt$	$ f(t) ^2 \mathrm{d}t = \sum_{n=-\infty}^{\infty} F_n ^2$		
	$J = \frac{1}{2}$	$n=-\infty$		

Parseval 方程	$E = \lim_{T \to \infty} \int_{-T}^{T} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(j\omega) ^2 d\omega$		$\sum_{n=-\infty}^{\infty} f(k) ^2 = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(j\omega) ^2 d\omega$
	$\lim_{T \to \infty} \int_{-T}^{T} f_1(t) \overline{f_2(t)} dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F_1(j\omega) \overline{F_2(j\omega)} d\omega$		$\sum_{n=-\infty}^{\infty} f_1(k) \overline{f_2(k)} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F_1(j\omega) \overline{F_2(j\omega)} d\omega$
冲激取样 函数	$s(t) = \delta_{T_s}(t)$	$S(j\omega) = \frac{2\pi}{T_s} \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_s)$	不讨论
理想冲激	$f_s(t) = f(t)s(t)$	$F_s(j\omega)$	
取样		$=\frac{1}{T_s}\sum_{n=-\infty}^{\infty}F[j(\omega-n\omega_s)]$	
取样定理	时域: $(-\omega_m, \omega_m)$ 内带	频域: $(-t_m, t_m)$ 内时限信号	$f(t)$ 的 Fourier 变换为 $F(j\omega)$, $x[n] = f(nT_s)$ 为 f
	限信号 $f(t)$ 可唯一由均	的频谱F(jω)可唯一由均匀	的采样结果,则x[n]的 DTFT
	匀间隔 $T_s < \frac{1}{2f_m}$ 上的样值点 $f(nT_s)$ 确定,对应	频域间隔 $f_s < \frac{1}{2t_m}$ 上的样值 点 $f(jn\omega_s)$ 确定。	$X(e^{j\omega}) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} F[j(\frac{\omega}{T_s} - n\omega_s)]$
	的最小频率与最大间	如 $f_s = \frac{1}{2t_m}$	n=-w
	隔称为 Nyquist 频率、	$F(i\omega) =$	
	间隔。如低通滤波器	∞	
	截止频率	$\sum F\left(j\frac{n\pi}{t_m}\right) Sa(\omega t_m - n\pi)$	
	$\omega_c \in (\omega_m, \omega_s - \omega_m),$ $f(t) =$	$n=-\infty$	
	$\frac{I_s\omega_c}{\pi}\sum_{n=-\infty}f(nT_s)\mathrm{Sa}(\omega_c(t$		
	$-nT_s))$		

三、复频域分析

注意!! 下表整理的结论多为单边 L 变换情形,有关双边的结论大部分与单边类似,请自行整理补充。

6. (单边) Laplace 变换与 Z 变换

	连续函数	离散函数		
变换与		ſ ^{+∞}		F(z)
反变换	1 cσ+j∞	$F(s) = \int_{0_{-}}^{+\infty} f(t)e^{-st}dt,$	1 (∞
及支援	$= \left[\frac{1}{2\pi j} \int_{\sigma - i\infty}^{\sigma + j\infty} F(s) e^{st} ds\right] \varepsilon(t)$	$J_{0_{-}}$	$= \frac{1}{2\pi j} \oint F(z) z^{k-1} dz$	$=\sum f(k)z^{-k}$
	$2\pi i J_{\sigma-i\infty}$		211))	$k=-\infty$
		$\sigma = \operatorname{Re}(s) > \sigma_0$		k=-∞ (单边下限为 0)
				$\alpha < z < \beta$
与其它	对 Fourier	· 变换:	对 Laplace 变换:	
变换的	$\sigma_0 < 0, F(j\omega)$	$= F(s) _{s=j\omega}$	$F(z) _{z=e^{sT}}$	$r = F_s(s)$
关系	$\sigma_0 = 0, F(j\omega)$	$= \lim_{s \to \infty} F(s)$	对 Fourier 变换:	
	$\sigma_0>0$ 时不存在	0→0	$F(z) _{z=e^{j\omega T}}$	$r = F_s(j\omega)$
冲激函	$\delta(t)$	$1, \sigma > -\infty$	$\delta(k)$	$1, z \ge 0$
数				
冲激函	$\delta^{(n)}(t)$	s^n	无	
数求导				
阶跃函	$\varepsilon(t)$	$\frac{1}{s}$, $\sigma > 0$	$\varepsilon(k)$	$\frac{z}{-}$, $ z > 1$
数		s,0 > 0	$-\varepsilon(-k-1)$	$\frac{z-1}{z}$
			$-\varepsilon(-\kappa-1)$	$\frac{z}{z-1}$, $ z < 1$
指数函	$e^{\alpha t}$	$\frac{1}{s-\alpha}$, $\sigma > \alpha$	$a^k \varepsilon(k)$	$\frac{z}{z-1}, z > 1$ $\frac{z}{z-1}, z < 1$ $\frac{z}{z-a}, z > a $ $\frac{z}{z-a}, z < a $ $\frac{z}{(z-1)^r}, z > 1$
数		$s-\alpha$	$-a^k \varepsilon(-k-1)$	$\frac{z-a}{z}$
			$-a \varepsilon(-\kappa - 1)$	$\left \frac{1}{z-a}, z < a \right $
多项式	$\underline{t^n}$	1	$C_k^{r-1}\varepsilon(k)$	$\frac{z}{(z-z)^{m}}$, $ z > 1$
函数	$\overline{n!}$	$\overline{s^{n+1}}$		$(z-1)^{r}$

指数多	$e^{-\alpha t} \frac{t^n}{n!}$	1	$a^{k-r+1}C_k^{r-1}\varepsilon(k),$	$ Z _{7} > a$
项式	$e^{-\omega t} \frac{1}{n!}$	$(s+\alpha)^{n+1}$	a > 0	$\frac{z}{(z-a)^r}, z > a$
余弦函数	${ m cos}\omega_0 t$	$\frac{s}{s^2 + \omega_0^2}$	$\cos(\omega_0 k) \varepsilon(k)$	$\frac{z(z-\cos\omega_0)}{z^2-2z\cos\omega_0+1}$
エルフ	ata A	(1)	-1(1-)(1-)	z > 1
正弦函数	${ m sin}\omega_0 t$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\sin(\omega_0 k) \varepsilon(k)$	$\frac{z\sin\omega_0}{z^2 - 2z\cos\omega_0 + 1}$ $ z > 1$
一般正弦函数	$2 K e^{-\alpha t}\cos(\omega t + \theta),$ $K = K e^{j\theta}$	$\frac{K}{s+\alpha-j\omega} + \frac{\overline{K}}{s+\alpha+j\omega}$	$2 K \alpha^k\cos(\omega k + \theta)\varepsilon(k)$	$ z > 1$ $z\left(\frac{K}{z - \alpha e^{j\beta}}\right)$
五四双	n jirje	$S + \alpha - j\omega$ $S + \alpha + j\omega$. 0/0(.0)	$+\frac{\overline{K}}{z-\alpha e^{-j\beta}}$,
			$-2 K \alpha^k\cos(\omega k + \theta)\varepsilon(-k-1)$	$ z > \alpha$ $z\left(\frac{K}{z - \alpha e^{j\beta}}\right)$
				$+\frac{\overline{K}}{z-\alpha e^{-j\beta}}$,
				$ z < \alpha$
梳 状 函数	$\delta_T(t)$	$\frac{1}{1 - e^{-sT}}$	$\sum_{m=0}^{\infty} \delta(k - mN)$	$\frac{ z < \alpha}{1 - z^{-N}}, z > 1$
周期函数	$f_T(t)$	$\sum_{n=0}^{\infty} \int_{nT_{-}}^{(n+1)T} f_{T}(t) e^{-st} dt$	不专门讨论	
奴		$= \frac{1}{1 - e^{-sT}} \int_{0}^{T} f_{T}(t) e^{-st} dt$		
		= 0)()		
线性性	$af_1(t) + bf_2(t)$	$aF_1(s) + bF_2(s),$ $Re(s) > \max\{\sigma_1, \sigma_2\}$	$af_1(k) + bf_2(k)$	$aF_1(z) + bF_2(z)$ 收敛域取交集
尺度变换	$f(at) a \neq 0$ (单边时 $a > 0$)	$\frac{1}{ a } F\left(\frac{s}{a}\right)$	$a^k f(k), a \neq 0$	$ \left F\left(\frac{z}{a}\right), \right \\ a \alpha < z < a \beta $
时移特 性	$f(t-t_0)\varepsilon(t-t_0), t_0 > 0$	$e^{-st_0}F(s), \sigma > \sigma_0$	f(k-m)	$ a \alpha < z < a \beta$ $z^{-m} F(z)$ (双边, $m \in \mathbf{Z}$)
12				$z^{-m} \operatorname{F}(z)$ $m-1$
				$+\sum_{k=0}^{\infty}f(k)$
				- <i>m</i>) <i>z</i> - <i>k</i> (计入原先未计入
				序列, $m > 0$)
			f(k+m) (单边, $m>0$)	$z^m F(z)$ $m-1$
				$-\sum_{k=0}^{\infty}f(k)z^{m-k}$
				(减去移出部)分)
时 移 性 质推论	$f(at-t_0), a \neq 0, t_0 > 0$	$\frac{1}{a}e^{-\frac{t_0}{a}s}F(\frac{s}{a})$	$f(k-m)\varepsilon(k-m)$	z ^{-m} F(z) (因果信号,均
				成立)
反折	尺度变换 <i>a</i> = −1情形,略		f(-k)	$F\left(\frac{1}{z}\right)$,
				$\frac{1}{\beta} < z < \frac{1}{\alpha}$
				(仅对双边成 立)
共轭	$\overline{f(t)}$	$\overline{F(\bar{s})}$	$\overline{f(k)}$	$\overline{F(\bar{z})}$
复频移特性	$e^{s_a t} f(t), s_a = \sigma_a + j\omega_a$	$F(s-s_a), \sigma > \sigma_0 + \sigma_a$	无	
דו ער ⊥		<u> </u>		

时 域 微	f'(t)	$sF(s) - f(0_{-})$		
分	$\frac{f'(t)}{f''(t)}$	$s^2F(s) - sf(0) - f'(0)$		
因果信	$f^{(n)}(t) (f(t) = f_0(t)\varepsilon(t))$	$s^n F(s)$		
号的高				
阶导数				
时域积	$\int_{-\infty}^{t}$	F(s)	k	$\frac{Z}{-}$ F(z)
分(部	$\int_{0}^{\infty} f(\tau) d\tau$	$\frac{F(s)}{s}$	$\sum_{i=-\infty}^{\infty} f(i)$	$\frac{z}{z-1}F(z),$ $\max\{1,\alpha\} < z $
分和)	\int_{t}^{t}	$\frac{1}{s^n}F(s)$	$i=-\infty$	$ \max\{1,\alpha\} < z $ $< \beta$
	$\int_{0_{-}}^{t} f(\tau) d\tau$ $(\int_{0_{-}}^{t})^{n} f(\tau) d\tau$ $f^{(-1)}(t) = \int_{-\infty}^{t} f(\tau) d\tau$	_		νρ
	$f(-1)(t)$ $\int_{-t}^{t} f(-t) dt$	$F(s) = 1_{f(-1)(0)}$		
	$\int_{-\infty}^{\infty} f(t) = \int_{-\infty}^{\infty} f(t) dt$	$\frac{F(s)}{s} + \frac{1}{s}f^{(-1)}(0_{-})$ $\frac{1}{s^{n}}F_{n}(s)$		
因果信	$f(t) (f^{(n)}(t) \leftrightarrow F_n(s))$	$\frac{1}{-}F_n(s)$	无	
号的累		$s^{n-n(s)}$		
次积分		120		
复频域	$(-t)^n f(t)$	$\frac{\mathrm{d}^n}{\mathrm{d}s^n}\mathrm{F}(s)$	kf(k)	$(-z)\frac{\mathrm{d}}{\mathrm{d}z}\mathrm{F}(z)$
微分		ds^n		收敛域不变
				高阶: 迭代
复频域	$\frac{f(t)}{t}$	$\int_{0}^{+\infty} F(\eta) d\eta$	无	
积分		$\int_{S} \Gamma(\eta) d\eta$		
时域卷	$f_1(t) * f_2(t)$	$F_1(s)F_2(s)$	$f_1(k) * f_2(k)$	$F_1(z)F_2(z)$
积				收敛域取交集,
← i+= i N				单边要求其因果
复频域卷积	$f_1(t)f_2(t)$	$\frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} F_1(\eta) F_2(s-\eta) d\eta$ $\lim_{s \to +\infty} sF(s)$	无	
初值定	$f(0_{+}) =$	$\lim sF(s)$	右边序列 $(k < M, f(k))$	k)=0):
理	(要求 lim sF(s)存在,	f(t)不含冲激项及各阶导	$f(M) = \lim_{z \to a}$	$\underset{l}{\text{m}} z^M F(z)$
	数,一般 $F(s)$ 取真分式项			+ω
	30, 132 (-)-105(33 20 3	\ /	f(0) = 1	$\lim_{z \to \infty} F(z)$
终值定	$\lim f(t)$ 存在时: $f(+\infty)$	$s(s) = \lim_{s \to \infty} s(s)$	$\lim_{t\to +\infty} f(t)$ 存在且收敛	→+∞ 対域含单位圆时:
理	$\lim_{t \to +\infty} f(t)$ 存在时: $f(+\infty) = \lim_{s \to 0} sF(s)$ (不用对 $F(s)$ 取真分式项,但不影响)		$f(+\infty) = \lim_{t \to +\infty} f(+\infty) = \lim_{$	
s 平面	1. 左半开平面	() II 1 35 HJ)	1. 单位圆内	1 2)1 (2)
与z平	2. 右半开平面		2. 单位圆外	
面的关			3. 单位圆	
系	о. <i>Ме</i> тн			
极点与	1. 左半开平面上的极点: 衰		1. 单位圆内的极点	
稳定性	2. 虚轴上的一阶极点: 阶段		2. 单位圆上的一阶	
1000	3. 虚轴重极点或右半开平面		3. 单位圆上重极点	
			递增	
			是有	
单极点	N	$\stackrel{N}{\sum}$ A:	N	$\sum_{i=1}^{N} A_{i}$
单极点指数信	$\sum_{i=1}^{N} A_{i} e^{p_{i}t} \varepsilon(t)$	$\sum_{i=1}^{N} \frac{A_i}{s-n_i}$	N	$\sum_{i=1}^{N} \frac{A_i}{1 - e^{p_i T} z^{-1}}$
指 数 信 号之和	$\sum_{i=1}^{N} A_i e^{p_i t} \varepsilon(t)$	$\sum_{i=1}^{N} \frac{A_i}{s - p_i}$	N	$\sum_{i=1}^{N} \frac{A_i}{1 - e^{p_i T} z^{-1}}$
指数信号之和 (冲激	$\sum_{i=1}^{N} A_i e^{p_i t} \varepsilon(t)$	$\sum_{i=1}^{N} \frac{A_i}{s - p_i}$	N	$\sum_{i=1}^{N} \frac{A_i}{1 - e^{p_i T} z^{-1}}$
指数信 号之和 (冲激 响应滤	$\sum_{i=1}^{N} A_i e^{p_i t} \varepsilon(t)$	$\sum_{i=1}^{N} \frac{A_i}{s - p_i}$	N	$\sum_{i=1}^{N} \frac{A_i}{1 - e^{p_i T_Z - 1}}$
指 号 (冲 液 港 设 池 波 波 波 波 波 波 波 波 波 波 波 光	$\sum_{i=1}^{N} A_i e^{p_i t} \varepsilon(t)$	$\sum_{i=1}^{N} \frac{A_i}{s - p_i}$	N	$\sum_{i=1}^{N} \frac{A_i}{1 - e^{p_i T} z^{-1}}$
指号之种 激滤设 响波计)	<i>t</i> =1	$\sum_{i=1}^{N} \frac{A_i}{s - p_i}$	$\sum_{i=1}^{N} A_i e^{p_i k T} \varepsilon(k)$	$\sum_{i=1}^{N} \frac{A_i}{1 - \mathrm{e}^{p_i T} z^{-1}}$
指号(响波计)特征	ɪ=1 Routh-Hurwitz 排列:	$\sum_{i=1}^{N} \frac{A_i}{s - p_i}$	$\sum_{i=1}^{N} A_i e^{p_i k T} \varepsilon(k)$ Jury 列表:	$\sum_{i=1}^{N} \frac{A_i}{1 - \mathrm{e}^{p_i T} z^{-1}}$
指号之种 激滤设 响波计)	<i>t</i> =1	$\sum_{i=1}^{N} \frac{A_i}{s - p_i}$	$\sum_{i=1}^{N} A_i \mathrm{e}^{p_i k T} \varepsilon(k)$ Jury 列表: 对于	77
指号(响波计)特征	n=1 Routh-Hurwitz 排列: 对于	t-1	$\sum_{i=1}^{N} A_i \mathrm{e}^{p_i k T} \varepsilon(k)$ Jury 列表: 对于	77
指号(响波计)特征	ɪ=1 Routh-Hurwitz 排列:	t-1	$\sum_{i=1}^{N} A_i \mathrm{e}^{p_i k T} \varepsilon(k)$ Jury 列表: 对于 $A(z) = \sum_{i=1}^{N} A_i \mathrm{e}^{p_i k T} \varepsilon(k)$	$\sum_{i=0}^{n} a_n z^n$
指号(响波计)特征	Routh-Hurwitz 排列: 对于 $A(s) = \sum_{i=1}^{n} a_i $ 如下排列:	$\sum_{n=0}^{n} a_n s^n$	$\sum_{i=1}^{N} A_i \mathrm{e}^{p_i k T} \varepsilon(k)$ Jury 列表: 对于 $A(z) = \sum_{i=1}^{N} A_i \mathrm{e}^{p_i k T} \varepsilon(k)$	77
指号(响波计)特征	Routh-Hurwitz 排列: 对于 $A(s) = \sum_{i:}^{n} a_{i}$ 如下排列: a_{n} a_{n-1}	$\sum_{n=0}^{n} a_n s^n$ $a_n s^n$ $a_n s^n$	$\sum_{i=1}^{N} A_i e^{p_i kT} \varepsilon(k)$ Jury 列表: 对于 $A(z) = $ 第一行为降幂系数排行反序;以后每奇数	$\sum_{i=0}^{n} a_n z^n$ i i i i i i i i i i
指号(响波计)特征	Routh-Hurwitz 排列: 对于 $A(s) = \sum_{i=1}^{n} a_i $ 如下排列:	$\sum_{n=0}^{n} a_n s^n$ $a_n s^n$ $a_n s^n$	$\sum_{i=1}^{N} A_i e^{p_i kT} \varepsilon(k)$ Jury 列表: 对于 $A(z) = $ 第一行为降幂系数排行反序;以后每奇数	$\sum_{i=0}^{n}a_{n}z^{n}$ 悱列,第二行为第一

#t /T +11	(缺项补 0) 此后每一行每一个元素为:该位置上两行第一列与右上方一列组成的行列式乘以该位置上一行第一个元素的负倒数。排列至第n+2行为全零行。特殊情况 I:第一列单独为 0可将原函数乘(s-1)重新排列,或作升幂排列,或引入无穷小量Δ代替 0。特殊情况 II:提前出现全零行以上一行构造偶次多项式,求导作为下一行	式,偶数行为这一行反序;如此反复直到最后一行为三个元素。
特 征 排列 判别稳定性	Routh-Hurwitz 准则: 以上排列第一列全部同号,则极点全在左半平面,系统稳定。	Jury 准则: $A(1) > 0$, $(-1)^n A(-1) > 0$, 奇数行首元素> 该行末元素 : 则所有根在单位圆内。
Mason 公式	$H=rac{1}{\Delta}\sum_{i}P_{i}\Delta_{i}$ Δ : 流图特征行列式, $\Delta=1-\sum_{j}L_{j}+\sum_{m,n}L_{m}L_{n}-\sum_{p,j}L_{j}$ L_{j} : 第 j 个环的增益 乘积项: 环之间两两不接触 l : 由源点到汇点第 i 条前向通路的编号 P_{i} : 第 i 条前向通路的增益	$\sum_{q,r} L_p L_q L_r + \cdots$
零极点效益	Δ _i : 去除第 i 条前向通路,剩余图的特征行列式 极点增强,零点削弱	
低通滤波器	原点、 ω_c 半径左半圆上配置无穷多个极点: $(0,\omega_c)$ 内频带增强	在 $z = 1$ 附近配置多个极点,在 $z = -1$ 配置一个零点 (高通滤波器与此相反)
带通滤波器	$(0,\pm j\omega_0)$ 、 ω_0 半径左半圆上配置多个极点: ω_0 两边频带增强	略
带 (油油) () ($(0,\pm j\omega_0)$ 配置两零点、靠近处配置两极点: ω_0 处削弱但两边急剧升高	
双线性不变法IIR设计	$y'(t) + ay(t) = bf(t)$ $H_a(s) = \frac{b}{s+a}$ $s = \frac{2}{T} \cdot \frac{T-1}{T+1}$	$y(kT) - y[(k-1)T] + \frac{aT}{2}y(kT)$ $+ y[(k-1)T]$ $= \frac{T}{2}\{bf[(k-1)T] + bf(kT)\}$ $H(z) = \frac{b}{\frac{2}{T}(\frac{z-1}{z+1}) + a}$ $z = \frac{1 + \frac{sT}{2}}{1 - \frac{sT}{2}}$ 对传输函数 $H_a(j\omega)$,相应频率响应
窗函数 FIR设计		对传输函数 $H_a(j\omega)$,相应频率响应 $H_a(e^{j\Omega T})$ 和对应响应序列 $h_a(k)$ (满足 $H_a(e^{j\Omega T})=\sum_{k=0}^{\infty}h_a(k)e^{-j\Omega Tk}$)可能为无限长的非因果序列。为得到因果有限序列 $h(k),k=0,1,\cdots N,$ $h_d(k)=\frac{1}{2\pi}\int_{-\pi}^{\pi}H_d(e^{j\Omega T})e^{j\Omega Tk}\mathrm{d}(\Omega T)$ 对窗函数设计的要求: $H(e^{j\Omega T})$ 与所要求的 $H_d(e^{j\Omega T})$ 在频域均方误差最小的意

义 下 进 行 逼 近 , 即 $\overline{\varepsilon^2}$ = $\frac{1}{2\pi}\int_{-\pi}^{\pi}|H(e^{j\Omega T})-H_d(e^{j\Omega T})|^2\mathrm{d}\Omega$ 最小 其中 $h(k)=h_d(k)H_N(k)$, $H_N(k)$ 为长度 为 N 的序列

四、其他内容(本课程不要求,在其它课程可能涉及)

7. 状态变量与状态方程

	连续系统	离散系统
描述方程	$\mathbf{\hat{X}} = \mathbf{AX} + \mathbf{B}\mathbf{f}$	$(\mathbf{X}(k+1) = \mathbf{A}\mathbf{X}(k) + \mathbf{B}\mathbf{f}(k))$
	(Y = CX + Df)	$Y(k+1) = \mathbf{CX}(k) + \mathbf{D}f(k)$ $k-1$
时域求解	$\mathbf{X}(\mathbf{t}) = e^{\mathbf{A}t}\mathbf{X}(0) + e^{\mathbf{A}t} \int_{0}^{t} e^{-\mathbf{A}t} \mathbf{B} \mathbf{f}(\tau) d\tau$	$\mathbf{X}(k) = \mathbf{A}^{k}\mathbf{X}(0) + \mathbf{A}^{k-1}\sum_{i=0}^{k-1} \mathbf{A}^{-i}\mathbf{B}\boldsymbol{f}(i)$
	$\mathbf{e}^{\mathbf{A}t} = \mathcal{L}^{-1} (s\mathbf{E} - \mathbf{A})^{-1}$ 1. 求出矩阵 A 的 n 个特征值 $\lambda_1, \lambda_2, \cdots \lambda_n$	<i>t</i> -0
状态转移		1. 求出矩阵 A 的 n 个特征值 $\lambda_1, \lambda_2, \cdots \lambda_n$
矩阵的线	2. 对每个λ _j 由	2. 对每个 λ_j 由
性代数解法——有	$\mathrm{e}^{\lambda_j t} = \sum_{i=1}^{n-1} lpha_i \lambda^i_j$	$\lambda_j^k = \sum_{i=1}^{n-1} lpha_i \lambda_j^i$
限项法	i=0 列写方程组,解出待定系数α;	i=0 列写方程组,解出待定系数 $lpha_i$
	3. 利用 Hamilton-Calay 定理:	3. 利用 Hamilton-Calay 定理:
	$\mathrm{e}^{\mathbf{A}t} = \sum_{i=0}^{n-1} lpha_i \mathbf{A}^i$ * 支京	$\mathbf{A}^k = \sum_{i=0}^{n-1} \alpha_i \mathbf{A}^i$
	**	
状态方程	$e^{\mathbf{A}t} = \mathcal{L}^{-1}(s\mathbf{E} - \mathbf{A})^{-1}$ 1. $\mathbf{\mathbf{W}}\mathbf{\Phi}(s) = (s\mathbf{E} - \mathbf{A})^{-1}$	1. $\mathbb{E}\Phi(z) = (z\mathbf{E} - \mathbf{A})^{-1}z$
变换法求	2. 零輸入响应 $\mathbf{X}_{zi}(s) = \mathbf{\Phi}(s)\mathbf{X}(0_{-})$	2. 零输入响应 $\mathbf{X}_{zi}(z) = \mathbf{\Phi}(z)\mathbf{X}(0)$
解	3. 零状态响应 $\mathbf{X}_{zs}(s) = \mathbf{\Phi}(s)\mathbf{BF}(s)$	3. 零状态响应 $\mathbf{X}_{zs}(z) = z^{-1}\mathbf{\Phi}(z)\mathbf{BF}(z)$
731	4. $\mathbf{X}(s) = \mathbf{X}_{zi}(s) + \mathbf{X}_{zs}(s)$	4. $\mathbf{X}(z) = \mathbf{X}_{zi}(z) + \mathbf{X}_{zs}(z)$
	5. L 反变换	5. z 反变换
	6. 输出的零输入分量	6. 输出的零输入分量
	$\mathbf{Y}_{zi}(s) = \mathbf{C}\mathbf{\Phi}(s)\mathbf{X}(0_{-})$	$\mathbf{Y}_{zi}(z) = \mathbf{C}\mathbf{\Phi}(z)\mathbf{X}(0)$
	7. 传输函数 $\mathbf{H}(s) = \mathbf{C}\mathbf{\Phi}(s)\mathbf{B} + \mathbf{D}$	7. 传输函数 $\mathbf{H}(z) = \mathbf{C}z^{-1}\mathbf{\Phi}(z)\mathbf{B} + \mathbf{D}$
	8. 输出的零状态分量	8. 输出的零状态分量
	$\mathbf{Y}_{ZS}(s) = \mathbf{H}(s)\mathbf{F}(s) = [\mathbf{C}\mathbf{\Phi}(s)\mathbf{B} + \mathbf{D}]\mathbf{F}(s)$	$\mathbf{Y}_{zs}(z) = \mathbf{H}(z)\mathbf{F}(z) = [\mathbf{C}z^{-1}\mathbf{\Phi}(z)\mathbf{B} + \mathbf{D}]\mathbf{F}(z)$
	9. $\mathbf{Y}(s) = \mathbf{Y}_{zi}(s) + \mathbf{Y}_{zs}(s)$	9. $\mathbf{Y}(z) = \mathbf{Y}_{zi}(z) + \mathbf{Y}_{zs}(z)$
稳定性判	$ s\mathbf{E} - \mathbf{A} $	$ z\mathbf{E} - \mathbf{A} $
别的多项		
式		

8. 小波变换初步

短时 Fourier 变换	对平方可积 $x(t)$ 和窗函数 $W(t)$,定义 $X(\tau,\omega) = \int_{-\infty}^{+\infty} x(t)W(t-\tau)e^{-j\omega t}dt$ 选取 Gauss 函数为窗函数,则为 Gabor 变换
(STFT)	选取 Gduss 函数为窗函数,则为 Gdb0f 支挟
母小波函数	对平方可积函数 $\varphi(t)$,若其 Fourier 变换 $\Psi(\omega)=\int_{-\infty}^{+\infty}\varphi(t)\mathrm{e}^{-\mathrm{j}\omega t}\mathrm{d}t$ 满足容许条件 $\mathcal{C}_{\Psi}=$
	$\int_{-\infty}^{+\infty} rac{ \Psi(\omega) ^2}{ \omega } \mathrm{d}\omega < +\infty$ 时,称 $\varphi(t)$ 为母小波函数。
	若作变换 $\varphi\left(\frac{t-b}{a}\right)$, a 为尺度,b 为时移。
连续小波变 对平方可积信号f(t), 定义连续小波变换	
换(CWT)	$W_f^{\varphi}(a,b) = \int_{-\infty}^{+\infty} f(t) \overline{\varphi_{a,b}(t)} dt = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{a}} \varphi\left(\frac{t-b}{a}\right) dt, a > 0$
	$\varphi_{a,b}(t) = \frac{1}{\sqrt{a}} \varphi\left(\frac{t-b}{a}\right)$ 为小波函数,a 为尺度,b 为平移, $W_f^{\varphi}(a,b)$ 为小波变换系数
	逆变换: 二重积分 $f(t) = \frac{1}{c_{\psi}} \int_0^{+\infty} \mathrm{d}a \int_{-\infty}^{+\infty} a^{-2} W_f^{\varphi}(a,b) \varphi_{a,b}(t) \mathrm{d}b$
典型的连续 小波函数	1. Mexicanhat 墨西哥帽小波 $\varphi(t) = \frac{1}{\sqrt{2\pi}\sigma^3} \left[e^{-\frac{t^2}{2\sigma^2}} \left(\frac{t^2}{\sigma^2} - 1 \right) \right]$

	2. Gauss 差分小波 $\varphi(t) = e^{-\frac{t^2}{2}} - \frac{1}{2}e^{-\frac{t^2}{8}}$	
	3. Morlet 小波 $\varphi(t) = e^{iat} \cdot e^{-\frac{t^2}{2\sigma^2}}$	
	4. 复 Shannon 小波 $\varphi(t) = \sqrt{b} \sin bt \cdot e^{j \cdot 2\pi ct}$	
	5. 复 Gauss 小波 $\varphi(t) = C_p e^{\mathrm{j}t} e^{-t^2}$	
尺度离散采样	对 $\varphi_{a,b}(t) = \frac{1}{\sqrt{a}} \varphi\left(\frac{t-b}{a}\right)$ 取 $a = a_0^j, a_0 > 0$ 得 $\varphi_{j,b}(t) = a_0^{-\frac{j}{2}} \varphi(a_0^{-j}t - a_0^{-j}b)$,得尺度指数离散、时移连续采样, $a_0 = 2$ 时称二进小波。	
离散小波变 换 (DWT)	$\varphi_{a,b}(t)$ 同时对尺度、时移离散指数采样 $\begin{cases} a = a_0^j \\ b = k a_0^j b_0 \end{cases}$ 可得 $\varphi_{a,b}(t) = \varphi_{j,k}(t) = a_0^{-\frac{j}{2}} \varphi(a_0^{-j}t - a_0^{-j}t)$	
	kb_0)称为离散小波函数 若 取 $b_0=1,a_0>0$, 变 为 对 j,k 的 函 数, 则 对 平 方 可 积 信 号 $f(t)$, $W_j^{\varphi}(j,k)=<$	
	$f(t), \varphi_{j,k}(t) >= \int_{-\infty}^{+\infty} f(t) \overline{\varphi_{j,k}(t)} dt = \int_{-\infty}^{+\infty} f(t) a_0^{-\frac{j}{2}} \overline{\varphi(a_0^{-j}t - k)} dt$ 为离散小波变换, $W_i^{\varphi}(j,k)$ 为第 j 级变换的小波系数	
	$arphi_{j,k}(t)$ 构成标准正交基时分别称为正交小波和正交小波变换	
	逆变换(小波级数): $f(t) = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} W_j^{\varphi}(j,k) \varphi_{j,k}(t)$	
	DWT 快速分解: (下 2 采样)	
	$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(2n-k)$	
Haar 小波与 方小波函数	Haar 函数: $\Phi(t) = \begin{cases} 1, & 0 \le t < 1 \\ 0, & otherwise \end{cases}$	
	$\Phi_{j,k}(t) = 2^{\frac{1}{2}}\Phi(2^jt - k)$	
	$\mathbb{E}\Phi(t) = \Phi(2t) + \Phi(2t-1) = \frac{1}{\sqrt{2}}\Phi_{1,0}(t) + \frac{1}{\sqrt{2}}\Phi_{1,1}(t)$	
	$\Psi(t) = \Phi(2t) - \Phi(2t - 1) = \Phi(t) = \begin{cases} 1, 0 \le t < \frac{1}{2} \\ -1, \frac{1}{2} \le t < 1 \end{cases}$ (Haar 小波函数)	
	\ <u>"</u>	