GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM protein - protein search, using sw model

Run on: June 15, 2005, 10:19:12; Search time 178.268 Seconds

(without alignments)

846.121 Million cell updates/sec

Title: US-10-053-975A-1

Perfect score: 2047

Sequence: 1 MAVSESQLKKMVSKYKYRDL.....FQLRALMQKARKTAGLSDLY 390

Scoring table: BLOSUM62

Gapop 10.0, Gapext 0.5

Searched: 2105692 seqs, 386760381 residues

Total number of hits satisfying chosen parameters: 2105692

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 100 summaries

Database : A_Geneseq_16Dec04:*

1: geneseqp1980s:*

2: geneseqp1990s:*

3: geneseqp2000s:*

4: geneseqp2001s:*

5: geneseqp2002s:*

6: geneseqp2003as:*
7: geneseqp2003bs:*

3: geneseqp2004s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

			₹			•		
Resul	Lt		Query					
No	٠.	Score	Match	Length	DB	ID	Description	
								-
	1	2047	100.0	390	2	AAW93424	Aaw93424 Human NH	Г
	2	2047	100.0	390	5	ABP52191	Abp52191 Human tur	n
	3	2047	100.0	390	6	ABG73787	Abg73787 Human tur	m
	4	2047	100.0	390	7	ADC35176	Adc35176 Novel hur	m
	5	2047	100.0	390	8	ADF91425	Adf91425 TSG101 #:	S
	6	2047	100.0	390	8	ADL82957	Adl82957 Human PRO	С
	7	2047	100.0	390	8	ADN12256	Adn12256 Human TS	G
	8	2047	100.0	390	8	ADO43235	Ado43235 Human TS	G
	9	2047	100.0	390	8	ADO43233	Ado43233 Human TS	G
		_						

10	2047	100.0	390	8	ADP82614		Adp82614 Human tum
11	2047	100.0	390	8	ADP56114		Adp56114 Human PRO
12	2047	99.8	390	6	AAE34885		Aae34885 Human Tsg
13	2002	97.8	380	2	AAW19111		Aaw19111 Human tum
14		95.0	391	.6	AAE34884		Aae34884 Mouse Tsg
15	1945.5	95.0	391	7	ADB85228		Adb85228 Mouse tum
16	1945.5	92.8	381	2	ADB03220 AAW19110		Aaw19110 Mouse tum
17	1900.5	92.8	381	2	AAW93425		Aaw93425 Mouse tsg
18	1900.5	92.8	381	6	ABG73788		Abg73788 Murine ts
19	1900.5	92.8	381	7	ADC35178		Adc35178 Human tsg
20	1404	68.6	307	5	ABP41729		Abp41729 Human ova
21	1162	56.8	237	4	AAE09328		Aae09328 Human int
22	809.5	39.5	331	4	ABB64607		Abb64607 Drosophil
23		37.9	145	8	ADF91424		Adf91424 TSG101UEV
. 24	479	23.4	90	3	AAG01689		Aag01689 Human sec
25	455	22.2	398	3	AAG06370		Aag01005 Numan sec Aag06370 Arabidops
26	455	22.2	398	8	ADN73283		Adn73283 Thale cre
27	455	22.2	412	3	AAG06369		Adn/3203 Thate Cle Aag06369 Arabidops
28	435	21.3	379	5	ABP43551		Abp43551 L-lactate
29	435	21.3	379	8	ADH13697		Adh13697 Human ENZ
30	424	20.7	340	3	AAG06371		Adnisos/ Human ENZ Aag06371 Arabidops
31	390	19.1	87	8	AB055273		Abo55273 Human gen
32	380	18.6	322	3	AAG13898		Ab033273 Numan gen Aag13898 Arabidops
33	371	18.1	341	4	AAB93473		Aab93473 Human pro
34	371	18.1	433	7	ADM29340		Adm293473 Human pro
35	346	16.9	146	3	AAB53717		Adhi29340 Human nov
36	339	16.6	452	4.	AAU23116		Aau23116 Novel hum
37	328	16.0	73	8	ABO55495		Abo55495 Human gen
38	267.5	13.1	288	3	AAG13899	•	Ab053495 Muman gen Aag13899 Arabidops
39	161.5	7.9	168	3	AAG13099		Aag13099 Arabidops Aag13900 Arabidops
40	161.5	7.9	485	3	AAB57086		Aab57086 Human pro
41	160	7.8	466	6	ABO07215		Abo07215 Human p53
42	160	7.8	466	7	ADD47589		Add47589 Human Pro
43	160	7.8	466	7	ADI15879		Adi15879 Human PP
44	160	7.8	466	7	ADJ68571		Adj68571 Human hea
45	153	7.5	218	4	ABG18833		Abg18833 Novel hum
46	151	7.4	466	2	AAR07084		Aar07084 Recombina
47	148.5	7.3	148	3	AAY86515		Aay86515 Human gen
48	148.5	7.3	148	5	ABB97431		Abb97431 Novel hum
49	148.5	7.3	148	6	AB053679		Abo53679 Novel hum
50	148.5	7.3	148	8	ABM81395		Abm81395 Tumour-as
51	148.5	7.3	176	4	AAG75132	·	Aag75132 Human col
52	148.5	7.3	397	4	AAM39852		Aam39852 Human pol
53	148.5	7.3	397	4	AAG81381		Aag81381 Human AFP
54	148.5	7.3	397	6	ADA55415		Ada55415 Human pro
55	148.5	7.3	442	4	AAM41638		Aam41638 Human pol
56	145.5	7.1	368	8	ADM97711	1	Adm97711 Human MNA
57	145.5	7.1	536	8	ADM97710		Adm97710 Human MNA
58	145.5	7.1	1130	8	ADM97695		Adm97695 Human MNA
59	144.5	7.1	777	5	ABP41839		Abp41839 Human ova
60	144.5	7.1	1130	7	ADC99065		Adc99065 Human KPP
61	144.5	7.1	1130	8	ABM81812		Abm81812 Tumour-as
62	142	6.9	505	2	AAY07117		Aay07117 Lung canc
63	142	6.9	505	6	ABO07216		Abo07216 Human p53
64	142	6.9	505	7	ADJ68733		Adj68733 Human hea
65	142	6.9	505	8	ABM81156		Abm81156 Tumour-as
66	142	6.9	505	8	ADP23965		Adp23965 PRO polyp
	_						1 72F

•

67	142	6.9	905	2	AAW31186	Aaw31186	Human p16
68	142	6.9	983	8	ADM87342	Adm87342	Human pro
69	142	6.9	1021	7	ADJ68507	Adj68507	Human hea
70	142	6.9	1135	2	AAW31185	Aaw31185	Human p16
71	142	6.9	1251	7	ADE09332	Ade09332	Novel pro
72	142	6.9	1251	8	ADM87788	Adm87788	Human EST
73	141	6.9	244	3	AAG40015	Aag40015	Arabidops
74	141	6.9	245	3	AAG38059	Aag38059	Arabidops
75	141	6.9	245	3	AAG05889	Aag05889	Arabidops
76	141	6.9	247	3	AAG38058	Aag38058	Arabidops
77	141	6.9	247	3	AAG05888	Aag05888	Arabidops
78	141	6.9	263	3	AAG38057	Aag38057	Arabidops
79	141	6.9	274	3	AAG05887	Aag05887	Arabidops
80	141	6.9	463	7	ADD47587	Add47587	Rát Prote
81	140.5	6.9	1277	4	ABB66688	Abb66688	Drosophil
82	139.5	6.8	258	3	AAB44500	Aab44500	Plant vir
83	138.5	6.8	827	5	ABP35602	Abp35602	Fungal ZB
84	135.5	6.6	177	4	ABG09342	Abg09342	Novel hum
85	135	6.6	121	3	AAG21511		Arabidops
86	134.5	6.6	172	4	ABG18832		Novel hum
87	133	6.5	144	4	AAM42061	Aam42061	Human pol
88	132	6.4	369	7	ADD14178	Add14178	Human src
89	132	6.4	371	2	AAW64535		Human leu
90	132	6.4	371	5	ABP61444	Abp61444	Human NF-
91	132	6.4	371	6	ABR41017	Abr41017	Human MAP
92	132	6.4	371	8	ADR09413		Human pro
93	131	6.4	101	3	AAG21512		Arabidops
94	131	6.4	518	8	ADN20587		Bacterial
95	131	6.4	539	3	AAB10224	Aab10224	Chicken n
96	130.5	6.4	237	6	ABR58292	Abr58292	BCU0371B
97	130.5	6.4	338	· 7	ADB75310		Prostate
98	130.5	6.4	338	8	ADK70560		Respirato
99	130.5	6.4	338	8	ADQ17947		Human sof
100	130.5	6.4	338	8	ADP23414	Adp23414	PRO polyp

```
RESULT 1
AAW93424
    AAW93424 standard; protein; 390 AA.
ID
XX
     AAW93424;
AC
XX
     11-JUN-1999 (first entry)
DT
XX
     Human NHTS protein.
DE
XX
KW
     Human tumour suppressor; NHTS; treatment; diagnosis; lymphoma; cancer;
     brain; breast; colon; heart; kidney; ovary; paraganglia; pancreas;
KW
     prostate; skin; stomach; thyroid; autoimmune disease; asthma; diabetes;
ΚW
     biliary cirrhosis; Crohn's disease; rheumatoid arthritis.
KW
XX
OS
     Homo sapiens.
XX
     US5892016-A.
PN
```

```
XX
PD
    06-APR-1999.
XX
PF
    23-JAN-1997;
                 97US-00786999.
XX
    23-JAN-1997;
                 97US-00786999.
PR
XX
    (INCY-) INCYTE PHARM.
PA
XX
PΙ
    Brie SL, Goli SK;
XX
    WPI; 1999-253932/21.
DR
    N-PSDB; AAX23168.
DR
XX
    Novel human tumor suppressor - useful for the diagnosis or treatment of
PT
PT
    lymphoma, cancer, and autoimmune disease.
XX
    Claim 1; Fig 1A-B; 25pp; English.
PS
XX
    This invention describes the isolation of a novel human tumour suppressor
CC
    (NHTS). The products of the invention may be used for the diagnosis or
CC
    treatment of conditions and diseases which are associated with expression
CC
    of NHTS e.g. lymphoma and cancers of the brain, breast, colon, heart,
CC
    kidney, ovary, paraganglia, pancreas, prostate, skin, stomach and thyroid
CC
    and autoimmune disease e.g. asthma, biliary cirrhosis, Crohn's disease,
CC
CC
    diabetes, and rheumatoid arthritis
XX
    Sequence 390 AA;
SO
                      100.0%; Score 2047; DB 2;
                                              Length 390;
 Query Match
                      100.0%; Pred. No. 7e-149;
  Best Local Similarity
                                                       0;
 Matches 390; Conservative 0; Mismatches
                                                                 0;
                                              Indels
                                                          Gaps
          1 MAVSESQLKKMVSKYKYRDLTVRETVNVITLYKDLKPVLDSYVFNDGSSRELMNLTGTIP 60
Qy
            1 MAVSESOLKKMVSKYKYRDLTVRETVNVITLYKDLKPVLDSYVFNDGSSRELMNLTGTIP 60
Db
         61 VPYRGNTYNIPICLWLLDTYPYNPPICFVKPTSSMTIKTGKHVDANGKIYLPYLHEWKHP 120
Qу
            61 VPYRGNTYNIPICLWLLDTYPYNPPICFVKPTSSMTIKTGKHVDANGKIYLPYLHEWKHP 120
Db
        121 OSDLLGLIOVMIVVFGDEPPVFSRPISASYPPYQATGPPNTSYMPGMPGGISPYPSGYPP 180
Qу
            121 OSDLLGLIOVMIVVFGDEPPVFSRPISASYPPYQATGPPNTSYMPGMPGGISPYPSGYPP 180
Db
        181 NPSGYPGCPYPPGGPYPATTSSQYPSQPPVTTVGPSRDGTISEDTIRASLISAVSDKLRW ·240
Qу
            181 NPSGYPGCPYPPGGPYPATTSSQYPSQPPVTTVGPSRDGTISEDTIRASLISAVSDKLRW 240
Db
        241 RMKEEMDRAQAELNALKRTEEDLKKGHQKLEEMVTRLDQEVAEVDKNIELLKKKDEELSS 300
Qу
            241 RMKEEMDRAQAELNALKRTEEDLKKGHQKLEEMVTRLDQEVAEVDKNIELLKKKDEELSS 300
Db
        301 ALEKMENQSENNDIDEVIIPTAPLYKQILNLYAEENAIEDTIFYLGEALRRGVIDLDVFL 360
Qν
            301 ALEKMENQSENNDIDEVIIPTAPLYKQILNLYAEENAIEDTIFYLGEALRRGVIDLDVFL 360
Db
```

us-10-053-975a-1.rai

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM protein - protein search, using sw model

June 15, 2005, 10:33:17; Search time 46.8487 Seconds Run on:

(without alignments)

621.429 Million cell updates/sec

US-10-053-975A-1 Title:

Perfect score: 2047

Sequence: 1 MAVSESQLKKMVSKYKYRDL......FQLRALMQKARKTAGLSDLY 390

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

513545 segs, 74649064 residues Searched:

Total number of hits satisfying chosen parameters: 513545

Minimum DB seq length: 0

Maximum DB sed length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 100 summaries

Issued_Patents_AA:* Database:

/cgn2_6/ptodata/1/iaa/5A_COMB.pep:*
/cgn2_6/ptodata/1/iaa/5A_COMB.pep:*
/cgn2_6/ptodata/1/iaa/6A_COMB.pep:*
/cgn2_6/ptodata/1/iaa/6B_COMB.pep:*
/cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*
/cgn2_6/ptodata/1/iaa/backfiles1.pep:* 3:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	2047 2047 2047 2047 2002 2002 2002 2002	100.0 100.0 100.0 97.8 97.8 97.8 97.8 97.8 92.8 92.8 92.8 92.8	390 390 403 380 380 380 381 381 381 381 381 381 381	2 4 4 1 1 2 3 4 4 1 1 2 3 4 4	US-08-786-999-1 US-09-216-387-1 US-09-886-319A-2 US-09-949-016-11251 US-08-585-758A-4 US-08-977-818-4 US-08-670-274B-4 US-09-146-187-4 US-09-804-690-4 US-09-886-319A-1 US-08-585-758A-2 US-08-585-758A-2 US-08-670-274B-2 US-08-670-274B-2 US-08-786-999-3 US-09-146-187-2 US-09-216-387-3 US-09-804-690-2	Sequence 1, Appli Sequence 2, Appli Sequence 2, Appli Sequence 11251, A Sequence 4, Appli Sequence 4, Appli Sequence 4, Appli Sequence 4, Appli Sequence 1, Appli Sequence 2, Appli Sequence 2, Appli Sequence 3, Appli Sequence 3, Appli Sequence 3, Appli Sequence 3, Appli Sequence 2, Appli

					us-10-053-975a-1.rai		
18	1404.5	68.6	285	4	US-09-886-319A-82	Sequence 82, A	\pp1
19	1162	56.8	237	3	US-08-999-774A-8	Sequence 8, Ap	pli
20	852.5	41.6	369	4	us-09-270-767-43042	Sequence 43042	2, A
21	479	23.4	90	4	US-09-513-999C-5770	Sequence 5770,	
22	342.5	16.7	173	4	US-09-270-767-58371	Sequence 58371	
23	173	8.5	361	4	US-09-248-796A-16547	Sequence 16547	
24	160	7.8	466	3	US-08-526-136-13	Sequence 13, A	\pp I
25	160	7.8	467	4	US-09-949-016-7070	Sequence 7070,	
26 27	160 148.5	7.8 7.3	467 148	4	US-09-949-016-7071 US-09-461-325-453	Sequence 7071,	
28	148.5	7.3	148	4	US-10-012-542-453	Sequence 453, Sequence 453,	App
29	148.5	7.3	148	4	US-10-115-123-453	Sequence 453,	
30	147	7.2	489	4	US-09-949-016-7068	Sequence 7068,	
31	147	7.2	489	4	US-09-949-016-7069	Sequence 7069	
32	142	6.9	557	4	US-09-949-016-7621	Sequence 7621,	
33	141	6.9	905	2	US-08-574-959A-9	Sequence 9, Ar	
34	141	6.9	905	3	US-09-357-014-9	Sequence 9, Ap	pli
35	141	6.9	1135	2	US-08-574-959A-7	Sequence 7, Ap	pli
36	141	6.9	1135	3	US-09-357-014-7	Sequence 7, Ap	pli
37	130.5	6.4	452	4	US-09-949-016-7289	Sequence 7289	
38	130.5	6.4	475	4	US-09-248-796A-14568	Sequence 14568	
39 40	130 130	6.4 6.4	543 577	4	US-09-535-008-63 US-09-535-008-61	Sequence 63, A	Appi
41	130	6.4	1646	4	US-09-535-008-67	Sequence 61, A Sequence 67, A	
42	130	6.4	1647	4	US-09-535-008-2	Sequence 2, Ap	n li
43	130	6.4	1647	4	US-09-824-574-4	Sequence 4, Ap	bli
44	130	6.4	1647	4	US-09-538-092-1172	Sequence 1172	Αp
45	130	6.4	1649	4	us-09-535-008-75	Sequence 75, A	lqqı
46	130	6.4	1650	4	US-09-535-008-71	Sequence 71, A	\pp1
47	130	6.4	1659	4	US-09-949-016-9752	Sequence 9752,	
48	130	6.4	1678	4	US-09-535-008-69	Sequence 69, A	vpb I
49 50	130 130	6.4	1679 1681	4 4	US-09-535-008-65	Sequence 65, A	
51	130	6.4 6.4	1682	4	US-09-535-008-77 US-09-535-008-73	Sequence 77, A Sequence 73, A	i qq
52	127	6.2	1184	4	US-09-266-225D-18	Sequence 18, A	ippi inn1
53	127	6.2	1185	3	US-09-041-886-23	Sequence 23, A	ipp i
54	127	6.2	1185	4	US-09-538-092-1209	Sequence 1209,	Ap
55	126	6.2	172	4	us-09-800-729-138	Sequence 138,	App
56	126	6.2	868	4	us-09-800-729-106	Sequence 106,	App
57	126	6.2	921	4	US-09-800-729-199	Sequence 199,	
58	126	6.2	8991	4	US-08-714-741-32	Sequence 32, A	
59 60	125.5 125.5	$\substack{6.1\\6.1}$	330 408	1 1	US-08-642-255-32 US-07-609-716-65		App I
61	125.5	6.1	408	3	US-08-475-411A-65	Sequence 65, A Sequence 65, A	uppi Innl
62	125.5	6.1	408	3	US-08-478-029A-65	Sequence 65, A	ipp i
63	124.5	6.1	1162	2	US-08-728-323A-2	Sequence 2, Ap	
64	124.5	6.1	1162	3	US-09-298-568-2	Sequence 2, Ar	
65.	124.5	6.1	1162	4	us-09-410-399 - 2	Sequence 2, Ap	pli
66	124.5	6.1	1162	4	us-09-894-273-2	Sequence 2, Ap	pli
67	124.5	6.1	1274	3	us-09-095-443-2	Sequence 2, Ap	
68	123.5	6.0	258	4	US-09-270-767-46446	Sequence 46446	
69 70	123.5 123.5	6.0 6.0	380 380	2	US-09-026-587-4 US-09-227-420-4	Sequence 4, Ap	
71	123.5	6.0	380	4	US-09-227-420-4 US-09-387-811-4	Sequence 4, Ap Sequence 4, Ap	
72	123.5	6.0	380	4	US-09-823-240A-10	Sequence 10, A	
73	123.5	6.0	381	4	US-09-949-016-7291	Sequence 7291,	Ap
74	123.5	6.0	635	4	US-09-417-197-125	Sequence 125,	App
75	123	6.0	1248	2	us-09-080-897-2	Sequence 2, Ap	pji
76	123	6.0	1248	3	US-09-323-735-2	Sequence 2, Ar	pli
77 78	122	6.0	1315	3	US-08-899-595-3	Sequence 3, Ar	pli
78 79	121.5 121.5	5.9 5.9	420 553	4	US-09-902-540-13993 US-09-949-016-7961	Sequence 13993), A
80	121.5	5.9	777	4	US-09-949-016-7961 US-09-949-016-8706	Sequence 7961, Sequence 8706,	
50	120	J . J	,,,	7	03 03 343 010-0700	sequence 6700;	Λh.

					us-10-053-975a-1.rai		
81	120	5.9	777	4	us-09-949-016-8707	Sequence	8707, Ap
82	119.5	5.8	503	3	us-08-526-136-2	Sequence	2, Appli
83	119.5	5.8	505	3	us-08-526-136-4	Sequence	
84	118.5	5.8	397	4	US-09-248-796A-18882	Sequence	18882, A
85	118.5	5.8	1255	2	us-09-080-897-4	Sequence	4, Appli
86	118.5	5.8	1255	3	US-08-899-595-1	Sequence	1, Appli
87	118.5	5.8	1255 .	3	US-09-323-735-4	Sequence	4, Appli
88	118	5.8	214	1	us-08-217-327-4	Sequence	4, Appli
89	118	5.8	581	4	us-09-949-016 - 9978	Sequence	
90	117 ·	5.7	416	4	us-09-690-454 -1 36	Sequence	
91	117	5.7	779	4	US-10-164-595-56	Sequence	56, Appl
92	117	5.7	843	4	US-10-164-595-54	Sequence	
93	116.5	5.7	338	1	us-08-218-686-2	Sequence	
94	116.5	5.7	338	3	US-08-460-242-2	Sequence	2, Appli
95	116	5.7	1461	4	us-09-585-887-9	Sequence	
96	116	5.7	1461	4	us-09-289-578-9	Sequence	
97	116	5.7	1464	4	US-09-331-347C-21	Sequence	21, App]
98	115.5	5.6	357	1	US-07-609-716-66	Sequence	
99	115.5	5.6	357	1	us-08-642-255 - 33	Sequence	
100	115.5	5.6	357	3	US-08-475-411A-66	Sequence	66, Appl

```
RESULT 1
us-08-786-999-1
  Sequence 1, Application US/08786999 Patent No. 5892016
   GENERAL INFORMATION:
     APPLICANT: La Brie, Sam
     APPLICANT: Goli, Surya K.
     TITLE OF INVENTION: NOVEL HUMAN TUMOR
     TITLE OF INVENTION:
                             SUPPRESSOR
     NUMBER OF SEQUENCES:
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Incyte Pharmaceuticals, Inc. STREET: 3174 Porter Drive
        CITY: Palo Alto
       STATE: CA
COUNTRY: USA
        ZIP: 94304
     COMPUTER READABLE FORM:
        MEDIUM TYPE: Diskette
        COMPUTER: IBM Compatible
       OPERATING SYSTEM: DOS
                   FastSEQ for Windows Version 2.0
        SOFTWARE:
     CURRENT APPLICATION DATA:
        APPLICATION NUMBER: US/08/786,999
        FILING DATE: Filed Herewith
        CLASSIFICATION: 530
     PRIOR APPLICATION DATA:
        APPLICATION NUMBER:
        FILING DATE:
     ATTORNEY/AGENT INFORMATION:
       NAME: Billings, Lucy J.
REGISTRATION NUMBER: 36,749
REFERENCE/DOCKET NUMBER: PF-0199 US
     TELECOMMUNICATION INFORMATION:
        TELEPHONE: 415-855-0555
        TELEFAX: 415-845-4166
   INFORMATION FOR SEQ ID NO:
     SEQUENCE CHARACTERISTICS:
```

us-10-053-975a-1.rai

```
LENGTH: 390 amino acids
     TYPE: amino acid
     STRANDEDNESS: single
     TOPOLOGY: linear
    IMMEDIATE SOURCE:
     LIBRARY: Colnnot01
     CLONE: 609476
ús-08-786-999-1
                     100.0%; Score 2047; DB 2; 100.0%; Pred. No. 7.3e-159;
                                            Length 390;
 Query Match
                     100.0%;
 Best Local Similarity
                          0; Mismatches
                                                        Gaps
                                                              0:
 Matches 390: Conservative
                                            Indels
         1 MAVSESQLKKMVSKYKYRDLTVRETVNVITLYKDLKPVLDSYVFNDGSSRELMNLTGTIP 60
Qy
           Db
         1 MAVSESQLKKMVSKYKYRDLTVRETVNVITLYKDLKPVLDSYVFNDGSSRELMNLTGTIP 60
         61 VPYRGNTYNIPICLWLLDTYPYNPPICFVKPTSSMTIKTGKHVDANGKIYLPYLHEWKHP 120
Qy
           61 VPYRGNTYNIPICLWLLDTYPYNPPICFVKPTSSMTIKTGKHVDANGKIYLPYLHEWKHP 120
Db
        121 QSDLLGLIQVMIVVFGDEPPVFSRPISASYPPYQATGPPNTSYMPGMPGGISPYPSGYPP 180
Qy
           121 QSDLLGLIQVMIVVFGDEPPVFSRPISASYPPYQATGPPNTSYMPGMPGGISPYPSGYPP 180
Db
        181 NPSGYPGCPYPPGGPYPATTSSQYPSQPPVTTVGPSRDGTISEDTIRASLISAVSDKLRW 240
Qy
           181 NPSGYPGCPYPPGGPYPATTSSQYPSQPPVTTVGPSRDGTISEDTIRASLISAVSDKLRW 240
Db
        241 RMKEEMDRAQAELNALKRTEEDLKKGHQKLEEMVTRLDQEVAEVDKNIELLKKKDEELSS 300
Qy
           241 RMKEEMDRAQAELNALKRTEEDLKKGHQKLEEMVTRLDQEVAEVDKNIELLKKKDEELSS 300
Db
        301 ALEKMENQSENNDIDEVIIPTAPLYKQILNLYAEENAIEDTIFYLGEALRRGVIDLDVFL 360
Qy
        301 ALEKMENQSENNDIDEVIIPTAPLYKQILNLYAEENAIEDTIFYLGEALRRGVIDLDVFL 360
Db
        361 KHVRLLSRKQFQLRALMQKARKTAGLSDLY 390
Qy
           Db
        361 KHVRLLSRKQFQLRALMQKARKTAGLSDLY 390
```

us-10-053-975a-1.rapb

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM protein - protein search, using sw model

Run on:

June 15, 2005, 10:46:54; Search time 160.016 Seconds

(without alignments)

934.287 Million cell updates/sec

Title:

US-10-053-975A-1

Perfect score:

2047

Sequence:

1 MAVSESQLKKMVSKYKYRDL......FQLRALMQKARKTAGLSDLY 390

Scoring table:

BLOSUM62

Gapop 10.0, Gapext 0.5

Searched:

1710399 seqs, 383334425 residues

Total number of hits satisfying chosen parameters:

1710399

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 100 summaries

Database :

Published_Applications_AA:* /cgn2_6/ptodata/1/pubpaa/US07_PUBCOMB.pep:*

/cgn2_6/ptodata/1/pubpaa/0307_POBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/PCT_NEW_PUB.pep:*
/cgn2_6/ptodata/1/pubpaa/US06_NEW_PUB.pep:*
/cgn2_6/ptodata/1/pubpaa/US07_NEW_PUB.pep:*
/cgn2_6/ptodata/1/pubpaa/PCTUS_PUBCOMB.pep:*

/cgn2_6/ptodata/1/pubpaa/US08_NEW_PUB.pep:*/cgn2_6/ptodata/1/pubpaa/US08_PUBCOMB.pep:* 9: 10:

/cgn2_6/ptodata/1/pubpaa/US09A_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US09B_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US09C_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US09_NEW_PUB.pep:*
/cgn2_6/ptodata/1/pubpaa/US10A_PUBCOMB.pep:* 11: 12: 13:

/cgn2_6/ptodata/1/pubpaa/US10A_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US10B_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US10C_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US10D_PUBCOMB.pep:*
/cgn2_6/ptodata/1/pubpaa/US10_NEW_PUB.pep:*
/cgn2_6/ptodata/1/pubpaa/US11A_PUBCOMB.pep:* 14: 15:

16: 17:

18: 19:

/cgn2_6/ptodata/1/pubpaa/US11_NEW_PUB.pep:* 20: /cgn2_6/ptodata/1/pubpaa/US60_NEW_PUB.pep:* 21:

22: /cgn2_6/ptodata/1/pubpaa/US60_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1	2047	100.0	390	9	US-09-886-319A-2	Sequence 2, Appli

```
Sequence 1, Appli Sequence 2, Appli Sequence 1, Appli Sequence 1, Appli Sequence 1, Appli Sequence 1, Appli Sequence 109, App Sequence 1, Appli Sequence 2, Appli Sequence 3, Appli Sequence 82, Appli Sequence 82, Appli Sequence 82, Appli Sequence 82, Appli Sequence 2861, Ap Sequence 164064, Sequence 1257, Ap Sequence 1257, Ap Sequence 1257, Ap Sequence 29129, A Sequence 29129, A Sequence 29129, A Sequence 295478, Sequence 295478, Sequence 298552, Sequence 386, App Sequence 283387, Sequence 283387, Sequence 1664, Ap Sequence 1664, Ap Sequence 453, App Sequence 453, App Sequence 453, App Sequence 453, App Sequence 2983, Ap Sequence 2983, Ap Sequence 2971, Ap Sequence 191498, Sequence 2971, Ap Sequence 106668, Sequence 7139, Ap Sequence 539, App Sequence 624, App Sequence 624, App Sequence 626, App Sequence 626, App Sequence 626, App Sequence 10, Appl
                                                                                                                    us-10-053-975a-1.rapb
                         2047
                                                   100.0
                                                                                         390
                                                                                                             14 US-10-243-815A-1
                                                                                                            14 US-10-243-815A-1

14 US-10-053-975A-1

14 US-10-376-564-2

16 US-10-675-979-1

9 US-09-804-690-4

9 US-09-886-319A-1

14 US-10-205-194-109

14 US-10-376-564-1
                         2047
                                                   100.0
                                                                                         390
                                                                                        2047
                                                   100.0
                         2047
                                                   100.0
                         2002
                                                       97.8
                1945.5
1945.5
1945.5
                                                       95.0
                                                       95.0
                                                      95.0
92.8
                                                                                                         9 US-09-804-690-2
14 US-10-243-815A-3
9 US-09-886-319A-82
14 US-10-376-564-82
15 US-10-264-049-2861
16 US-10-437-963-164064
14 US-10-029-386-28907
9 US-09-925-299-1257
10 US-09-925-299-1257
14 US-10-029-386-29129
16 US-10-425-115-299224
16 US-10-425-115-295478
15 US-10-424-599-239306
16 US-10-425-115-298252
9 US-09-801-368-386
15 US-10-424-599-283387
17 US-10-734-049A-223
                                                                                                              9 US-09-804-690-2
                 1900.5
 11
                 1900.5
                                                       92.8
12
13
                1404.5
1404.5
                                                       68.6
                                                      68.6
68.6
                    1404
396.5
390
 15
                                                       19.4
 16
                                                       19.1
                             346
346
328
269
266
                                                      16.9
16.9
16.0
13.1
 17
 18
19
20
21
22
23
                    231
217.5
200
169.5
162
                                                       11.3
                                                       10.6
 24
25
                                                      8.3
                                                                                                          15 US-10-424-399-28336

17 US-10-734-049A-223

9 US-09-925-300-1664

16 US-10-408-765A-377

14 US-10-012-542-453

14 US-10-115-123-453
                                                         7.9
7.9
7.8
7.3
 26
27
28
29
30
                              161
                             160
                     148.5
148.5
                                                                                                          14 US-10-115-123-453

14 US-10-106-698-5906

15 US-10-094-749-2983

17 US-10-927-644-1

16 US-10-437-963-191498

15 US-10-264-049-2971

16 US-10-437-963-106668

16 US-10-408-7654-539
                     148.5
148.5
145.5
 31
32
33
                                                           7.3
                                                           7.3
7.1
                                                                                    1130
 34
35
36
37
38
                             145
                                                           7.1
                                                                                    483
777
587
263
505
505
505
983
1021
1251
258
278
827
1066
180
1613
371
371
371
371
371
371
371
101
                     144.5
142.5
                                                           7.1
7.0
                    142
142
142
142
142
142
142
139.5
139.5
                                                           6.9
                                                           6.9
                                                                                                           16
16
                                                                                                                               US-10-408-765A-539
                                                                                                                               US-10-719-993-624
                                                                                                                                                                                                                                        Sequence 624, App
Sequence 626, App
Sequence 10, Appl
Sequence 435, App
Sequence 313, App
Sequence 881, App
                                                         6.9
                                                                                                            16
                                                                                                                               US-10-719-993-626
 40
                                                                                                                           US-10-719-993-626

US-10-952-459-10

US-10-112-944-435

US-10-408-765A-313

US-10-112-944-881

US-10-424-599-176931

US-10-425-114-68284

US-10-149-310-68

US-10-437-963-157156

US-10-437-963-191496

US-10-437-963-201912

US-09-284-320-2

US-10-197-666A-4

US-10-024-298A-41
                                                                                                             17
15
16
 41
 42
                                                           6.9
                                                          6.9
6.9
 43
                                                                                                          15
15
15
16
16
17
16
10
14
14
                                                                                                                                                                                                                              Sequence 881, App
Sequence 176931,
Sequence 68284, A
Sequence 68, Appl
Sequence 157156,
Sequence 191496,
Sequence 8825, Ap
Sequence 201912,
Sequence 2, Appli
 45
                                                           6.8
 46
47
                                                           6.8
 48
                             136
                                                           6.6
                    135.5
134
133.5
132
                                                        6.6
 49
 50
51
52
53
54
                                                           6.4
                             132
132
132
132
132
                                                                                                                                                                                                                                              Sequence 4, Appli
Sequence 41, Appl
                                                           6.4
                                                                                                                             US-10-197-666A-4

US-10-024-298A-41

US-10-042-211A-41

US-10-617-217A-41

US-10-024-298A-41

US-10-437-963-102875

US-10-437-963-197045

US-10-739-930-6173
                                                           6.4
                                                                                                                                                                                                                                              Sequence 41, Appl
Sequence 41, Appl
Sequence 41, Appl
Sequence 102875,
                                                                                                             14
15
16
 55
56
57
58
59
                                                           6.4
                                                           6.4
                                                           6.4
                              132
                     131.5
131.5
                                                           6.4
                                                                                                              16
                                                                                                             16
16
17
                                                     6.4
                                                                                                                                                                                                                                               Sequence 197045,
                              131
                                                                                                                                                                                                                                               Sequence 6173, Ap
Sequence 2393, Ap
                                                           6.4
                                                           6.4
                                                                                                                                US-10-732-923-2393
                              131
                                                                                                                                                                                                                                              Sequence 3240, Ap
Sequence 150465,
Sequence 142576,
                                                                                                                              US-10-369-493-3240
US-10-437-963-150465
US-10-437-963-142576
                             131
                                                                                         518
                                                                                                              15
                                                           6.4
 62
                              131
                                                           6.4
                                                                                         588
873
                                                                                                              16
 63
                              131
                                                           6.4
```

us-10-053-975a-1.rapb 1613 17 US-10-732-923-8824 Sequence 8824, Ap 131 6.4 130.5 6.4 237 237 15 US-10-144-194A-30 Sequence 30, Appl 66 6.4 US-10-491-566-30 Sequence 30, Appl 67 130.5 16 US-10-205-823-134 US-10-723-860-764 US-10-369-493-13040 Sequence 134, App Sequence 764, App 6.4 338 14 68 130.5 338 1322 1647 69 70 71 72 73 74 130.5 6.4 16 Sequence 13040, A 15 130.5 6.4 US-09-824-574-4 US-10-370-715B-356 Sequence 4, Appli Sequence 356, App 6.4 10 130 1647 130 6.4 16 US-10-732-923-8821 Sequence 8821, Ap 6.4 130 1647 17 1647 Sequence 8822, Ap 130 6.4 17 US-10-732-923-8822 US-10-732-923-8823 US-10-437-963-153141 US-10-369-493-2333 75 6.4 1679 17 Sequence 8823, Ap 130 76 77 78 79 358 753 1419 Sequence 153141, Sequence 2333, Ap Sequence 2, Appli Sequence 1810, Ap 129.5 6.3 16 129.5 129.5 15 US-10-473-115-2 US-10-408-765A-1810 16 6.3 129 6.3 1449 16 128.5 128.5 US-10-133-234A-5 US-10-437-963-112229 Sequence 5, Appli Sequence 112229, 80 6.3 262 15 754 16 1121 16 6.3 81 US-10-437-963-196036 Sequence 196036, 128 82 Sequence 196030, Sequence 187693, Sequence 62, Appl Sequence 62, Appl Sequence 62, Appl Sequence 236, App 127.5 127.5 127.5 127.5 127.5 256 284 6.2 6.2 6.2 6.2 6.2 6.2 16 US-10-425-115-187693 83 US-10-006-867-62 US-10-052-586-236 US-10-063-547-62 13 13 84 284 284 284 284 284 85 86 13 87 13 US-10-063-551-62 127.5 127.5 127.5 US-10-174-590-236 88 14 US-10-176-758-236 Sequence 236, App Sequence 236, App 14 89 6.2 6.2 6.2 284 284 90 14 US-10-175-737-236 127.5 127.5 127.5 127.5 127.5 US-10-063-616-62 US-10-174-581-236 US-10-176-483-236 Sequence 62, Appl Sequence 236, App Sequence 236, App 91 14 284 284 14 6.2 93 14 94 6.2 284 14 US-10-176-749-236 Sequence 236, App 6.2 US-10-176-914-236 Sequence 236, App 95 284 14 Sequence 236, App 284 284 127.5 127.5 US-10-176-915-236 96 14 97 6.2 Sequence 62, App] 14 US-10-063-569-62 6.2 6.2 6.2 Sequence 62, Appl Sequence 62, Appl Sequence 62, Appl 98 127.5 284 14 US-10-063-513-62 US-10-063-515-62 US-10-063-512-62 99 127.5 284 14 284 127.5 14 100

```
RESULT 1
US-09-886-319A-2
; Sequence 2, Application US/09886319A
; Publication No. US20020086019A1
; GENERAL INFORMATION:
; APPLICANT: Wolf, Eckard
; APPLICANT: Werner, Sabine
; APPLICANT: Werner, Sabine
; APPLICANT: Regenbogen, Johannes
; APPLICANT: Regenbogen, Johannes
; APPLICANT: Goppelt, Andreas
; TITLE OF INVENTION: Use of Polypeptides or Nucleic Acids for
; TITLE OF INVENTION: the Diagnosis or Treatment of Skin Disorders and Wound
; TITLE OF INVENTION: Healing and for the Identification of Pharmacologically
; TITLE OF INVENTION: Active Substances
; FILE REFERENCE: 50125/014002
; CURRENT APPLICATION NUMBER: US/09/886,319A
; CURRENT FILING DATE: 2001-06-20
; PRIOR APPLICATION NUMBER: US 60/222,081
; PRIOR FILING DATE: 2000-08-01
; PRIOR APPLICATION NUMBER: DE 10030149.5
; PRIOR FILING DATE: 2000-06-20
; NUMBER OF SEQ ID NOS: 84
```

us-10-053-975a-1.rapb;

SOFTWARE: FastSEQ for Windows Version 4.0;

SEQ ID NO 2;

LENGTH: 390;

TYPE: PRT;

ORGANISM: Homo sapiens
US-09-886-319A-2

Query Match 100.0%; Score 2047; DB 9; Length 390;

Best Local Similarity 100.0%; Pred. No. 3.2e-133;

Matches 390; Conservative 0; Mismatches 0; Indels 0

Matches	390;	Conserva	tive	0;	Misr	natch		0;	Indels	0;	Gaps	0;
Qy									SYVFNDGSSR			60
Db									SYVFNDGSSR			60
Qy									CHVDANGKIY			120
Db									(HVDANGKI)			120
Qy									TSYMPGMPGG			180
Db									TSYMPGMPGG			180
Qy	181 NF	PSGYPGCPYF	PEGENTA	TTSS	QYPSO)PPVT	TVGPS	RDGT:	ISEDTIRASL	ISAV	SDKLRW	240
Db									ISEDTIRASL			240
Qy									/AEVDKNIEL			300
Db									/AEVDKNIEL			300
Qy									TIFYLGEALF			360
Db									TIFYLGEALF			360
Qy	361 KI		QLRALMO				390					•
Db	361 KI	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					390					

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM protein - protein search, using sw model

Run on: June 15, 2005, 10:32:03; Search time 36.5055 Seconds

(without alignments)

1027.916 Million cell updates/sec

Title: US-10-053-975A-1

Perfect score: 2047

Sequence: 1 MAVSESQLKKMVSKYKYRDL......FQLRALMQKARKTAGLSDLY 390

Scoring table: BLOSUM62

Gapop 10.0, Gapext 0.5

Searched: 283416 segs, 96216763 residues

Total number of hits satisfying chosen parameters: 283416

Minimum DB seq length: 0

Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 100 summaries

Database : PIR_79:*

1: pir1:*

2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

		용				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	658	32.1	404	2	Н88650	protein C09G12.9 [
2	388	19.0	83	2	I48283	gene CC2 protein -
3	153.5	7.5	169	2	T34520	hypothetical prote
4	148.5	7.3	397	2	JC8036	hepatocellular car
5	147	7.2	488	1	LUHU7	annexin VII, long
6	145.5	7.1	212	2	S74288	hypothetical prote
7	142	6.9	505	2	A53152	annexin XI - human
8	141	6.9	463	2	S29170	annexin VII - mous
9	138.5	6.8	827	2	T39608	zinc finger transc
10	136.5	6.7	503	1	LURB11	annexin XI - rabbi
11	135.5	6.6	437	2	T14192	extensin homolog T
12	134	6.5	198	2	D70509	hypothetical prote
13	134	6.5	485	2	Т37550	hypothetical coile

14	132.5	6.5	671	2	т36037
15	131.5	6.4	370	2	T42532
16	131	6.4	1613	2	s39059
		6.4			T18531
17	131		1880	2	
18	130.5	6.4	338	2	I53043
19	130	6.4	1647	2	S4.5252
20	128.5	6.3	1006	2	T42731
21	128	6.3	139	2	H84809
22	128	6.3	3942	2	T42730
23	127	6.2	1184	2	G01763
24		6.2	678	2	Н88187
	126.5				
25	126	6.2	1453	2	S21626
26	125	6.1	2715	2	T13049
27	124.5	6.1	669	2	T28754
28	124.5	6.1	990	2	T14756
29	124	6.1	964	2	T21865
30	123.5	6.0	279	2	T05421
31	123.5	6.0	380	2	S51797
32	123	6.0	564	2	H70804
33	122	6.0	887	1	S57219
34	122	6.0	978	2	A70387
					C86349
35	122	6.0	1181	2	686349
36	121.5	5.9	551	2	S57447
37	121	5.9	792	2	T49989
38	120.5	5.9	1902	2	C97702
39	119.5	5.8	, 503	1	LUB011
40	119.5	5.8	505	1	523447
41	119	5.8	577	2	T09024
42	119	5.8	859	2	H70327
43	119	5.8	1357	2	T29265
44	119	5.8	1422	2	T24212
45	118.5	5.8	384	2	S51796
46	118.5	5.8	400	2	E70318
47	118.5	5.8	915	2	T12526
48	118.5	5.8	1255	2	T31065
49	118.5	5.8	1281	2	JC5368
50	118	5.8	176	2	A86441
51	118	5.8	214	2	T10737
52		5.8	214	2.	Т09854
52	118	5.0	214	۷.	109034
53	118	5.8	530	2	Т48627
					T43168
54	118	5.8	1018	2	
55	118	5.8	1171	2	T17454
56	118	5.8	1259	2	T16038
57	118	5.8	1736	2	T00391
58	117.5	5.7	316	2	T20497
59	117.5	5.7	620	2	S06733
60	117.5	5.7	853	2	T51505
61	117.5	5.7	1802	2	H88444
62	117	5.7	177	2	S65780
63	117	5.7	491	2	S14182
64	117	5.7	505	2	s72273
65	117	5.7	650	2	S14181
66	117	5.7	785	2	T09491
67	117	5.7	1100	2	JC8033
68 -	116.5	5.7	338	1	TVMSFB
69	116.5	5.7	1790	2	s67593
70	116	5.7	393	2	PQ0479

probable export as hypothetical prote protein BRG1 - hum tractin - medicina transforming prote SNF2beta protein atrophin-1 related hypothetical prote Bassoon protein atrophin-1 - human protein C18H9.8 [i collagen alpha 1(I eyelid - fruit fly hypothetical prote hypothetical prote hypothetical prote hypothetical prote vasodilator-stimul hypothetical prote 1-phosphatidylinos conserved hypothet F8K7.4 protein - A HPBRII-7 protein hypothetical prote cell surface antig annexin XI form A annexin XI form B proline-rich prote DNA mismatch repai hypothetical prote hypothetical prote vasodilator-stimul hypothetical prote hypothetical prote diaphanous protein dynactin 1 - mouse hypothetical prote extensin-like cell proline-rich cell hypothetical prote hypothetical prote diaphanous-related hypothetical prote hypothetical prote hypothetical prote hydroxyproline-ric hypothetical prote protein C26E6.12 [glycine/proline-ri DNA-directed RNA p actin-depolymerizi DNA-directed RNA p hemagglutinin, pha leukocyte formin p transforming prote transport protein pistil extensin-li

71	116	5.7	451	2	B70792	hypothetical prote
72	116	5.7	462	1	LUDO7	annexin VII - slim
73	116	5.7	504	2	A49467	occludin - chicken
74	116	5.7	513	2	T03916	hypothetical prote
75	116	5.7	609	2	S46019	YSW1 protein - yea
76	116	5.7	821	2	s67087	hypothetical prote
77	115.5	5.6	177	2	T47549	hypothetical prote
78	115.5	5.6	428	2	T24769	hypothetical prote
79	115.5	5.6	1189	2	T42726	guanine nucleotide
80	115	5.6	240	2	D70894	probable pra prote
81	114.5	5.6	240	2	A24264	proline-rich prote
82	114.5	5.6	272	2	T25608	hypothetical prote
83	114.5	5.6	324	2	S13497	cAMP-binding prote
84	114.5	5.6	398	2	T34947	hypothetical prote
85	114.5	5.6	554	2	F86244	hypothetical prote
86	114.5	5.6	817	2	S51342	verprolin - yeast
87	114.5	5.6	1633	2	JC5056	polybromo 1 - chic
88	114.5	5.6	1940	1	S04090	myosin heavy chain
89	114	5.6	342	2	A24263	myosin heavy chain
90	114	5.6	1017	2	T31354	probable potassium
91	114	5.6	1179	2 ·	F71190	probable chromosom
92	114	5.6	1464	1	CGHU1S	collagen alpha 1(I
93	113.5	5.5	347	1	TVHUJB	transforming prote
94	113.5	5.5	1046	2	T42734	cytoplasmic linker
95	113.5	5.5	1487	1	CGHU6C	collagen alpha 1(I
96	113	5.5	242	2	S35060	tropomyosin - hydr
97	113	5.5	481	2	F86208	protein F22G5.30 [
98	113	5.5	1638	2	A42091	transcription acti
99	112.5	5.5	199	2	S14981	extensin class I (
100	112.5	5.5	324	2	G86222	hypothetical prote

```
RESULT 1
H88650
protein C09G12.9 [imported] - Caenorhabditis elegans
C; Species: Caenorhabditis elegans
C;Date: 10-May-2001 #sequence revision 10-May-2001 #text change 09-Jul-2004
C; Accession: H88650
R; anonymous, The C. elegans Sequencing Consortium.
Science 282, 2012-2018, 1998
A; Title: Genome sequence of the nematode C. elegans: a platform for
investigating biology.
A; Reference number: A75000; MUID: 99069613; PMID: 9851916
A; Note: see websites genome.wustl.edu/gsc/C elegans/ and
www sanger.ac.uk/Projects/C_elegans/ for a list of authors
A; Note: published errata appeared in Science 283, 35, 1999; Science 283, 2103,
1999; and Science 285, 1493, 1999
A; Accession: H88650
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-404 <STO>
A; Cross-references: UNIPROT: 076258; GB: chr_IV; PIDN: AAC25822.1; PID: g3294495;
GSPDB:GN00022; CESP:C09G12.9
C; Genetics:
```

A; Gene: C09G12.9 A; Map position: 4

	Query Ma			
			Similarity 36.7%; Pred. No. 1.1e-30; 1; Conservative 74; Mismatches 121; Indels 66; Gaps	11
Q	7	16	KYRDLTVRETVNVITLYKDLKPVLDSYVFNDGSSRELMNLTGTIPVPYRGNTYNIPICLW	75
Dŀ)	16	KYADSAKKDIIGALSQFKDLSPGTDTFMFPDGKRRTAFRLKGTIPVYYKGACYNIPVTVY	75
Qς	7	76	LLDTYPYNPPICFVKPTSSMTIKTGKHVDANGKIYLPYLHEWKHPQSDLLGLIQVMIVVF	135
Dŀ)	76	LWDTHPYYAPICYVNPTSTMESEHVNKEGKVFLPYLNEWRFPGYDLSGLLQM	127
Q	1	136	GDEPPVFSRPISASYPPYQATGPPNTSYMPGMPGGISPYPSGYP	179
Dk)	128	IFARSAANSATNASATNPSAGSSASSTPTPYPSSQPTMPTPYPTGSGAAPYP	179
Qy	7	180	PNPSGYPGCPYPPGGPYPATTSSQYPSQPPVTTVG	214
Dŀ)	180	PSSTPYPSAGAMGYNPYMNVPQSTPYPMGASGASPYPSASSNPAPPPPRPPPVTAQTSVS	239
Qy	7	215	PSRDGTISEDTIRASLISAVSDKLRWRMKEEMDRAQAELNALKRTEEDLKKGHQKLEEMV	274
Dł)	240	SSSGGTIQADTIRASVMSAVEEKIRAKLRERMGTNSAEMASIRTTSDELREGQQKLKRML	299
Q	7	275	TRLDQEVAEVDKNIELLKKKDEELSSALEKMENQSENNDIDEVIIPTAPLYKQILNLYAE : : : : : : : : :	334
Dł	o	300	EELETQRSSLQTACEIYTAKKAELAKALSD-AGGTDAPPIDEAIDAAFPLHRQIVLNYAK	358
Q;	7	335	ENAIEDTIFYLGEALRRGVIDLDVFLKHVRLLSRKQFQLRALMQKARKTAGL 386 : :::: :: : :	
Dl)	359	DLTCQSLKKRQITLAEYLRHVRDVSREQFIYRATMQKCRRTAGL 402	

us-10-053-975a-1.rup

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM protein - protein search, using sw model

Run on:

June 15, 2005, 10:20:07; Search time 168.534 Seconds

(without alignments) 1184.992 Million cell updates/sec

Title:

US-10-053-975A-1

2047 Perfect score:

1 MAVSESQLKKMVSKYKYRDL......FQLRALMQKARKTAGLSDLY 390

Scoring table:

BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched:

Sequence:

1612378 seqs, 512079187 residues

Total number of hits satisfying chosen parameters:

1612378

Minimum DB seq length: 0 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 100 summaries

Database:

UniProt_03:*

1: uniprot_sprot:* 2: uniprot_trembl:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No.	Score	% Query Match	Length	DB	ID	Description
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	2047 2041 1945.5 1927.5 1908.5 1899 1705.5 1682.5 1024.5 976 754.5 749.5 522 455 435 432 429.5 427 415.5	100.0 99.7 95.0 94.2 93.2 92.8 83.3 82.2 50.0 47.7 36.6 29.3 25.5 22.2 21.3 21.0 20.9 20.3	390 391 391 391 392 390 394 395 408 402 425 326 249 114 398 379 580 249 174		T101_HUMAN Q9BUM5 T101_MOUSE Q6IRE4 Q7TSE5 Q918G8 Q6IQ70 Q6NUD5 Q6P2Z8 Q9VVA7 Q7Q6B6 Q76258 Q6DDX9 Q8MQZ0 Q7T2M2 Q9LHG8 Q8IXO4 Q7S4R9 Q7TQD3 Q08761 Q66KB7	Q99816 homo sapien Q9bum5 homo sapien Q61187 mus musculu Q6ire4 rattus norv Q7tse5 rattus norv Q9i8g8 chelonia my Q6iq70 brachydanio Q6nud5 xenopus lae Q6p2z8 xenopus tro Q9vva7 drosophila Q7q6b6 anopheles g Q76258 caenorhabdi Q6ddx9 xenopus lae Q8mqz0 drosophila Q7t2m2 ameiurus ne Q9lhg8 arabidopsis Q8ix04 homo sapien Q7s4r9 neurospora Q7tqd3 mus musculu Q66kb7 xenopus tro

					us-10-053-975a-1.rup			
22	398	19.4	471	2	Q6DBY5	Q6	dby5	brachydanio
23	396.5	19.4	402	2	Q6ESB7	Q6	esb7 🧸	oryza sativ
24	391	19.1	368		Q9FFY6			arabidopsis
25	388	19.0	83	2 2 2	Q6LBE4			mus musculu
26	371	18.1	177	2	Q96FF5			homo sapien
27	371	18.1	341	2 2 1	Q9NUX7			homo sapien
28	341	16.7	357 385	4	Q6P2F0			homo sapien saccharomyc
29 30	303 301.5	14.8 14.7	378		ST22_YEAST Q6C148	06	2004 - 2148 -	yarrowia li
31	301.5	14.7	378 378	2 2 2	Q873M7	08	73m7	yarrowia li
32	294	14.4	111	5	Q8BU96			mus musculu
33	294	14.4	468	2	Q6FS29			candida gla
34	239	11.7	496	2	Q6BID5	Q6I	bid5	debaryomýce
35	215	10.5	445	2	Q75EU1			ashbya goss
36	169	8.3	376	2	P78998			saccharomyc
37	155.5	7.6	299	2	Q6CS18			kluyveromyc
38	154.5	7.5	397	2	Q6NW27			homo sapien
39 40	153.5 153	7.5 7.5	148 283	2 2 2	Q6FIG7 Q641Z8			homo sapien rattus norv
40 41	152	7.3	1158	. 2	Q6GM32			xenopus lae
42	151.5	7.4	485	2	Q804G3			brachydanio
43	148.5	7.3	148	2	Q6NXQ6			homo sapien
44	148.5	7.3	148	Ž	Q9NZ81			homo sapien
45	148.5	7.3 7.3	397	2	Q8NEZ2			homo sapien
46	148.5	7.3	397	2	Q96DL9			homo sapien
47	147.5	7.2 7.2	263	1	Y737_DROME			drosophila
48	147	7.2	397	2	Q8CHS8			mus musculu
49	145.5	$\frac{7.1}{1}$	1130	2	Q8IZL8			homo sapien
50	144.5	$\frac{7.1}{1}$	743	2	Q9BU60			homo sapien homo sapien
51 52	144.5 144.5	7.1 7.1	1048 1130	2	Q96FT1 Q6NTE6			homo sapien
53	144.3	7.1	483	2	Q7T391			brachydanio
54	144	7.0	488	1	ANX7_HUMAN			homo sapien
55	143	7.0	664	2	Q6CDQ5			yarrowia li
56	142	6.9	505	1	ANXB_HUMAN	P5	0995	homo sapien
57	142	6.9	1021	2	015451	01	5451	homo sapien
58	141.5	6.9	284	2	Q6BGN1	Q6	bgn1	debaryomyce
59	141.5	6.9	503	1.	ANXB_MOUSE			mus musculu
60	141.5	6.9	503	2	Q921F1			mus musculu
61	141	6.9	247 463	2 1	Q945K9 ANX7_MOUSE			arabidopsis mus musculu
62 63	141 141	6.9 6.9	463	2	Q922A2	09	7070 22a2	mus musculu
64	140.5	6.9	1167	2	Q640S7			xenopus tro
65	139.5	6.8	900	2	Q6PSU8		psu8	arabidopsis
66	139	6.8	415	2	Q8CCV9	Q8	ccv9	mus musculu
67	139	6.8	1284	2	015450	01	5450	homo sapien
68	138.5	6.8	827	2	060130			schizosacch
69	138.5	6.8	838	2	Q871B7			neurospora
70	138.5	6.8	4903	1	MLL3_MOUSE			mus musculu
71 72	138 137	6.7 6.7	526 463	2	Q804G4 Q8BP75			brachydanio mus musculu
72 73	136.5	6.7	503	2 1	ANXB_RABIT			oryctolagus
74	136.3	6.6	137	2	Q9CQJ5			m mus muscu
75	136	6.6	1066	2	Q7XE90			oryza sativ
7 6	135.5	6.6	437	2	Q9STNO	Q9	stn0	arabidopsis
77.	135.5	6.6	895	2	Q9LIW7	Q9	liw7	oryza sativ
78	135.5	6.6	998	2	Q6GNM2			xenopus lae
79	135.5	6.6	1105	2	Q8BMJ4			mus musculu
80.	135	6.6	463	2 2	Q8VIN2			rattus norv
81 82	135 135	6.6	463 674	2	Q6IRJ7 Q18106			rattus norv caenorhabdi
82 83	135	6.6 6.6	703	2 2	Q7SCK8			neurospora
84	134.5	6.6	809	2	Q7ZVN7			brachydanio
U 1	-5115	0.0	303	-		٠,		

```
us-10-053-975a-1.rup
                                                                         086316 mycobacteri
          134
                   6.5
                            198
                                       086316
                                   2 2
                             201
                                                                         Q7d8k1 mycobacteri
 86
          134
                   6.5
                                       Q7D8K1
                                                                         Q9utp6 schizosacch
Q641h0 xenopus lae
Q7u0b9 mycobacteri
                   6.5
 87
          134
                             485
                                       Q9UTP6
 88
          134
                             502
                                       Q641H0
          133
                   6.5
 89
                             198
                                       Q7U0B9
 90
                             548
                                                                         Q6ddw4 xenopus lae
          133
                                       Q6DDW4
                   6.5
                            471
512
 91
       132.5
                                       Q9LD31
                                                                         Q91d31 crypthecodi
 92
       132.5
                                       Q6NRE3
                                                                         Q6nre3 xenopus lae
 93
       132.5
                   6.5
                            671
                                       Q9Z502
                                                                         Q9z502 streptomyce
 94
95
96
                                                                         Q7z429 homo sapien
Q94b77 arabidopsis
          132
                   6.4
                            371
                                       Q7Z429
       131.5
131.5
                   6.4
                            900
                                       Q94B77
                                                                         Q9fiuO arabidopsis
Q8lcl8 arabidopsis
O59907 neurospora
                            900
                                       Q9FIU0
                   6.4
 97
                   6.4
                                       Q8LCL8
          131
                            101
 98
                            472
                                       059907
          131
                   6.4
 99
          131
                   6.4
                             472
                                       Q6M9D4
                                                                         Q6m9d4 neurospora
                   6.4
                            475
100
          131
                                       Q7RZ53
                                                                         Q7rz53 neurospora
```

```
RESULT 1
T101_HUMAN
       T101_HUMAN
                            STANDARD;
                                                 PRT;
                                                           390 AA.
ΙD
       Q99816;
AC
      16-OCT-2001 (Rel. 40, Created)
16-OCT-2001 (Rel. 40, Last sequence update)
25-OCT-2004 (Rel. 45, Last annotation update)
DT
DT
DT
       Tumor susceptibility gene 101 protein.
DE
      Name=TSG101:
GN
05
      Homo sapiens (Human).
      Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
0C
OC.
ox
       NCBI_TaxID=9606:
       [1]
RN
RP
       SEQUENCE FROM N.A.
       TISSUE=Placenta;
RC
      MEDLINE=97148696; PubMed=9019400; DOI=10.1016/S0092-8674(00)81866-8;
RX
      Li L., Li X., Francke U., Cohen S.N.;
"The TSG101 tumor susceptibility gene is located in chromosome 11 band p15 and is mutated in human breast cancer.";
RA
RT
RT
       Cell 88:143-154(1997).
RL
       [2]
RN
RP
       ERRATUM.
      MEDLINE=99080983; PubMed=9867424; DOI=10.1016/S0092-8674(00)89342-3;
RX
       Li L., Francke U., Cohen S.N.;
RA
       cell 93:660-660(1998).
RL
RN
RP
       ALTERNATIVE SPLICING (ISOFORM 2).
      MEDLINE=98031856; PubMed=9366528; DOI=10.1038/sj.onc.1201591;
RX
       Gayther S.A., Barski P., Batley S.J., Li L., de Foy K.A., Cohen S.N.,
RA
      Ponder B.A., Caldas C.;
"Aberrant splicing of the TSG101 and FHIT genes occurs frequently in multiple malignancies and in normal tissues and mimics alterations previously described in tumours.";
Oncogene 15:2119-2126(1997).
RA
RT
RT
RT
RL
RN
       [4]
RP
       ALTERNATIVE SPLICING.
      MEDLINE=97384943; PubMed=9242438;
RX
       Lee M.P., Feinberg A.P.;
"Aberrant splicing but not mutations of TSG101 in human breast
RA
RT
       cancer."
RT
      Cancer Res. 57:3131-3134(1997).
RL
```

```
us-10-053-975a-1.rup
```

```
RN
RP
      ALTERNATIVE SPLICING.
      MEDLINE=99054675; PubMed=9840940; DOI=10.1038/sj.onc.1202529;
RX
      Wagner K.-U., Dierisseau P., Rucker E.B. III, Robinson G.W.,
RA
RA
      Hennighausen L.;
      "Genomic architecture and transcriptional activation of the mouse and
RT
      human tumor susceptibility gene TSG101: common types of shorter
RT
      transcripts are true alternative splice variants.
RT
      Oncogene 17:2761-2770(1998).
RL
RN
      [6]
RP
      INTERACTION WITH DMAP1.
      MEDLINE=20347709; PubMed=10888872; DOI=10.1038/77023;
RX
      Rountree M.R., Bachman K.E., Baylin S.B.;
"DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at
RA
RT
      replication foci.";
RT
      Nat. Genet. 25:269-277(2000).
RL
RN
      [7]
      STRUCTURE BY NMR OF 1-145.
MEDLINE=22001147; PubMed=12006492; DOI=10.1093/emboj/21.10.2397;
RP
RX
      Pornillos O., Alam S.L., Rich R.L., Myszka D.G., Davis D.R.,
RA
      Sundquist W.I.; "Structure and functional interactions of the Tsg101 UEV domain.";
RA
RT
      EMBO J. 21:2397-2406(2002).
RL
RN
      STRUCTURE BY NMR OF 1-145.
RP
      MEDLINE=22289677; PubMed=12379843; DOI=10.1038/nsb856;
RX
      Pornillos O., Alam S.L., Davis D.R., Sundquist W.I.; "Structure of the Tsg101 UEV domain in complex with the PTAP motif of
RA
RT
      the HIV-1 p6 protein.
RT
      Nat. Struct. Biol. 9:812-817(2002).
RL
      -!- FUNCTION: May be involved in cell growth and differentiation. Acts
CC
CC
           as a negative growth regulator.
      -!- SUBUNIT: Interacts with ubiquitin, stathmin, GMCL and DMAP1 (By
CC
CC
           similarity).
      -!- SUBCELLULAR LOCATION: Mainly cytoplasmic. Depending on the stage of the cell cycle, detected in the nucleus.
CC
cc
      -!- ALTERNATIVE PRODUCTS:
CC
           Event=Alternative splicing; Named isoforms=2;
CC
              Comment=Additional isoforms seem to exist. Several shorter
CC
              isoforms are detected in primary breast cancers and other
\mathsf{CC}
CC
              tumors:
CC
           Name=1;
              IsoId=Q99816-1; Sequence=Displayed;
CC
\mathsf{CC}
           Name=2;
              IsoId=Q99816-2; Sequence=VSP_004440;
CC
      Note=Detected in normal as well as cancer tissues;
-!- TISSUE SPECIFICITY: Heart, brain, placenta, lung, liver, skeletal,
CC
CC
      kidney and pancreas.
-!- DOMAIN: The UEV domain is required for the interaction of the complex with ubiquitin.
CC
CC
CC
      -!- DOMAIN: The coiled coil domain may interact with stathmin.
CC
CC
      -!- SIMILARITY: Contains 1 UEV (ubiquitin E2 variant) domain.
CC
      This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
      between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial
CC
CC
CC
CC
      entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
      or send an email to license@isb-sib.ch).
CC
CC
      EMBL; U82130; AAC52083.1; -.
DR
DR
      PDB: 1KPP: NMR; A=1-145.
```

```
us-10-053-975a-1.rup
     PDB; 1KPQ; NMR; A=1-145.
DR
DR
     PDB; 1M4P; NMR; A=1-145.
     PDB; 1M4Q; NMR; A=1-145.
DR
     IntAct; Q99816; -.
Genew; HGNC:15971; TSG101.
DR
DR
     H-InvDB; HIX0009490; -.
DR
     MIM: 601387;
DR
     GO: GO:0003677; F:DNA binding; TAS.
DR
     GO; GO:0003714; F:transcription corepressor activity; TAS. GO; GO:0006512; P:ubiquitin cycle; TAS.
DR
DR
    InterPro; IPR010983; EF_Hand_like.
InterPro; IPR008883; Tsg101.
InterPro; IPR000608; UBQ_conjugat.
Pfam; PF05743; Tsg101; 1.
PROSITE; PS00183; UBIQUITIN_CONJUGAT_1; FALSE_NEG.
PROSITE; PS0127; UBIQUITIN_CONJUGAT_2; FALSE_NEG.
DR
DR
DR
DR
DR
DR
     3D-structure; Alternative splicing; Coiled coil; Growth regulation;
KW
     Protein transport; Transport; Ubl conjugation pathway.
KW
                         133
316
                                   UEV.
FT
     DOMAIN
                   1
                 235
                                   Coiled coil (Potential). Missing (in isoform 2).
FT
     DOMAIN
                         119
FT
     VARSPLIC
                  15
                                   /FTId=VSP_004440.
FT
                          11
FT
     HELIX
                          31
FT
     HELIX
                   33
                          34
     TURN
FT
                          44
47
FT
     STRAND
     TURN
FT
                          63
FT
     STRAND
                          65
FT
     TURN
                   64
                          75
     STRAND
                   66
FT
                          88
FT
     STRAND
                  86
                 103
                         103
FT
     STRAND
                         106
FT
     TURN
                 105
FT
     STRAND
                 108
                         109
                         115
FT
     HELIX
                 112
                 116
                         116
FT
     TURN
                 119
                         120
FT
     TURN
     HELIX
                 124
                         137
FT
     SEQUENCE
                390 AA;
                          43944 MW;
                                    ADD6912FC22DF162 CRC64;
SQ
                           100.0%;
                                    Score 2047; DB 1; Pred. No. 2.1e-99;
                                                         Length 390;
  Query Match
  Best Local Similarity
                           100.0%;
                                  0; Mismatches
                                                    0;
                                                         Indels
                                                                   0; Gaps
                                                                                0:
  Matches 390; Conservative
            1 MAVSESQLKKMVSKYKYRDLTVRETVNVITLYKDLKPVLDSYVFNDGSSRELMNLTGTIP 60
Qy
              1 MAVSESQLKKMVSKYKYRDLTVRETVNVITLYKDLKPVLDSYVFNDGSSRELMNLTGTIP 60
Db
           61 VPYRGNTYNIPICLWLLDTYPYNPPICFVKPTSSMTIKTGKHVDANGKIYLPYLHEWKHP 120
Qy
               61 VPYRGNTYNIPICLWLLDTYPYNPPICFVKPTSSMTIKTGKHVDANGKIYLPYLHEWKHP 120
Db
          121 QSDLLGLIQVMIVVFGDEPPVFSRPISASYPPYQATGPPNTSYMPGMPGGISPYPSGYPP 180
Qy
               Db
          121 OSDLLGLIOVMIVVFGDEPPVFSRPISASYPPYQATGPPNTSYMPGMPGGISPYPSGYPP 180
          181 NPSGYPGCPYPPGGPYPATTSSQYPSQPPVTTVGPSRDGTISEDTIRASLISAVSDKLRW 240
Qу
               181 NPSGYPGCPYPPGGPYPATTSSQYPSQPPVTTVGPSRDGTISEDTIRASLISAVSDKLRW 240
Db
          241 RMKEEMDRAQAELNALKRTEEDLKKGHQKLEEMVTRLDQEVAEVDKNIELLKKKDEELSS 300
Qу
               241 RMKEEMDRAQAELNALKRTEEDLKKGHQKLEEMVTRLDQEVAEVDKNIELLKKKDEELSS 300
Db
```

us-10-053-975a-1.rup

Qy	301 ALEKMENQSENNDIDEVIIPTAPLYKQILNLYAEENAIEDTIFYLGEALRRGVIDLDVFL 360
Db	301 ALEKMENQSENNDIDEVIIPTAPLYKQILNLYAEENAIEDTIFYLGEALRRGVIDLDVFL 360
Qy	361 KHVRLLSRKQFQLRALMQKARKTAGLSDLY 390
Db	361 KHVRLLSRKQFQLRALMQKARKTAGLSDLY 390