Europäisches Patentamt

European Patent Office

Office européen des brevets

1) EP 0 839 805 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 08.06.1998 Bulletin 1998/19

(51) Int CL*: C07D 207/27, A61K 31/495

(21) Application number 97308798.4

(22) Usate of filling: 03.11.1997

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 01.11.1996 JP 291567/96

(71) Applicant: MITSUI TOATSU CHEMICALS, INC. Tokyo (JF)

(72) Inventors:

Mita, Naruyoshi
 Mobara-shi, Chiba (JP)

Nagase, Hiroshi
 Mobara-shi, Chiba (JP)

 lizuka, Hajime Mobara-shi, Chiba (JP)

 Oguchi, Takahisa Taukuba-shi, Ibaraki (JP) Saksi, Kazuya
 Mobara-shi, Chiba (JP)

Horikomi, Kazutoshi
 Mobara-shi, Chiba (JP)

Miwa, Takaichi
 Mobara-shi, Chiba (JP)

Takahashi, Shinji
 Mobara-shi, Chiba (JP)

(74) Representative: Stuart, lan Alexander et al MEWBURN ELLIS
York House
23 Kingsway
London WC28 6HP (GB)

Romarks

A request for correction in the specification has been filed pursuant to Pule 88 EPC. A decision on the request will be taken during the proceedings before the Examining Division (Guidelines for Examination in the EPC, A-V. 3).

- (54) Pyrrolidinone derivatives and their use as antipsychotic medicaments
- (57) Pyrrolidinone derivatives of general formula

wherein R^{T} is hydrogen or halogen, R^{S} is hydrogen, $\mathsf{C}_{\mathsf{T},\mathsf{S}}$ alikyl, $\mathsf{C}_{\mathsf{S},\mathsf{S}}$ alikenyl or $\mathsf{C}_{\mathsf{S},\mathsf{S}}$ alikynyl, and n is 2 or 3, their pharmaceutically acceptable saits, hydrates and/or enantiomers. are useful as sigma receptor antagenists in the treatment of among others psychosis

Description

10

9.5

20

25

30

ĴŰ

43

ŝă

56

This invention relates to pyrrotidinone derivatives. In particular, this invention relates to a compound represented by formula (1). Embodiments may be useful for treatment of disorders e.g. central nervous system disorders such as sehizophrenia, dementia, manic-depressive psychosis, anxiety, drug poisoning and ischemic brain diseases; disorders associated with immunopathy or endocrine disturbance; and digestive system ulbers. The compound may be in the form of a pharmaceulically acceptable sait or a hydrate thereof. The invention also relates to an optical resolution method for preparation of the compound as well as an intermediate for preparation thereof.

This invention also relates to therapsutic and/or prophylactic agents for the above disorders, comprising, as an active ingredient, a compound represented by general formula (1), a pharmacoutically acceptable self thereof or a tworate of the observaceutically acceptable self.

Central nervous systems disorders such as schizophrenia, dementia, manic depressive psychosis, anxiety, drug poisoning and death of nerve cells due to cerebral ischemia have become significant problems in the modern society. It has been particularly desired to establish a method for treatment, improvement or prevention of the disorders.

Schizophrenia occurs at the incidence of one in 130, mostly occurring in adolescence, if remaining untreated, it will gradually impair a personality, destroying human self-development functions, which makes it a significant problem in a society. Abnormal departmentarisation has been implied as a contributor to schizophrenia, which may be confirmed by the fact that decarmine antagonists such as chiergromazine and halocendol are effective as an anticeychotic.

Dopamine aniagonists, however, have a major problem in their use that besides antipsychoric activity, they may frequently induce extrapyramidal side effects such as acute dystonis and Parkinsonism, in particular terdina dyskinasia.

To overcome the problem, some approaches have been recently investigated from an aspect different from the conventional mechanism of action, for example signs receptor aniagonists. Since it has been shown that SKF-10047, a signal receptor agonist, may induce psychosis-like symptoms to a human, an amagonist to the agonist may be expected to exhibit antipsychotic effect. Furthermore, if it does not have affinity for a departme receptor, the antagonist may be expected to be an antipsychotic without extrapyramidal side effects.

A sigma receptor antagonist may be also expected to have therapeutic offect to gastrointestinal disorders, immunological disorders or asthma, as well as central nervous systems disorders such as schizophrenia, dementia, manic-depressive psychosis, anxiety, drug poisoning and death of nerve cells due to carebral inchemia.

US patent 4787789 has described that a compound represented by general formula (f) has antidementic activity,

wherein R3 is hydrogen or methyl, R2 is phonyl or pyridyl mono- or disubstituted by a C₁₋₈ alkoxy, fluorine, chlorine, bromine, trifluoromethyl or a C₁₋₈ alkyl; R2 and R4, which may be the same or different, are hydrogen or a C₁₋₈ alkyl, or R3 and R4, in combination with a nitrogen atom, form a saturated 5 or 6 membered ring which may comprise O and/ or N atoma as additional heteroatoms, and may be also substituted by methyl group, or form an imidazole ring having an aminoalityl group at 4- or 5-position. It, however, has not described about a sigma receptor or antipsychotic effect in JP-A 7-252219 we have disclosed a compound represented by general formula (II):

$$R^{1}-N$$
 $(CH_{2})_{k}-Q$
 $-N$
 G^{2}
 $(II-A)$
 $(II-B)$

wherein in formula (II-A) \mathbb{R}^3 is a $C_{1,12}$ elkyt, substituted or unsubstituted phenyl, or a substituted or unsubstituted phenyl, it is an integer of 1 or 2; \mathbb{C} has a structure of formula (II-B) wherein \mathbb{C}^3 and \mathbb{C}^2 are hydrogen or a lower alkyt; \mathbb{Z} is hydrogen, a $C_{1,12}$ alkyt, a substituted acyt, a substituted carbamoyl, phenyl, a substituted phenyl aphenyl alkyt, a substituted phenylalkyt or a substituted historocyclic group.

We have also disclosed in JP-A 9-40667, a compound represented by general formula (ill):

wherein \mathbb{R}^n and \mathbb{R}^n are independently hydrogen, a balogen, a $\mathbb{C}_{1,6}$ alkyl, a $\mathbb{C}_{1,6}$ alkoxy, a $\mathbb{C}_{1,9}$ perfluoroalkyl or a $\mathbb{C}_{1,6}$ perfluoroalkoxy; \mathbb{R}^3 is hydrogen, hydroxy, a $\mathbb{C}_{1,6}$ alkyl, a $\mathbb{C}_{1,6}$ perfluoroalkyl, a $\mathbb{C}_{1,6}$ perfluoroalkoxy, a $\mathbb{C}_{2,6}$ alkenyloxy or a $\mathbb{C}_{3,6}$ alkyloxy; and n is an integer of 4 to 7.

Pirronzole is known as a sigma receptor entagonist, but has inadequate affinity or specificity to a sigma receptor. We have intensely attempted to obtain a compound useful as an antipsycholic, and have finally found that a pyrrolldinone derivative having a particular structure, its pharmaceutically acceptable saft and a hydrate of the sall have excellent characteristics as an entipsychotic.

Some aspects of this invention include;

10

7.5

20

25

80

Œ

40

43

56

(1) a pyrrolidinone derivative represented by general formula (1), its pharmaceutically acceptable salt and a hydrate
of the pharmaceutically acceptable salt.

wherein \mathbb{H}^1 is hydrogen or a halogen; \mathbb{H}^2 is hydrogen, a $C_{1,0}$ alkyt, a $C_{2,0}$ alkerryt or a $C_{2,0}$ alkyrryt, and n is 2 or 3:

[2] a pyrrolidinone derivative according to the above [1], represented by general formula (1) wherein \mathbb{H}^1 is chlorine or browing, \mathbb{H}^2 is a \mathbb{C}_{1-0} alkyl, and n is 2, its pharmaceutically acceptable salt and a hydrate of the pharmaceutically acceptable salt.

[3] a pyrrolidinone derivative according to the above [1], represented by general formula (1) wherein H1 is chlorine, H2 is methyl, and n is 2; its pharmaceutically acceptable salt and a hydrate of the pharmaceutically acceptable salt; [4] an optically active pyrrolidinone derivative according to the above [1], represented by general formula (2), its pharmaceutically acceptable salt and a hydrate of the pharmaceutically acceptable salt:

(* : asymmetric carbon)

wherein A¹ is hydrogen or a halogen; A² is hydrogen, a C_{1,3} atkyl, a C_{2,3} atkenyl or a C_{2,3} atkynyl, and n is 2 or 3;

(5) an optically active pyrrolidinone derivative according to the above (4), represented by general formula (2) wherein B1 is obligating. B2 is methyl, and a is 2; its pharmaceutically acceptable sait and a hydrate of the pharmaceutically acceptable sait;

(6) a dihydrate of the sait of the optically active pyrrolidinone derivative according to the above (4), represented by general formula (2) wherein \mathbb{R}^3 is chickine. \mathbb{R}^2 is methyl, and n is 2.

An optical resolution method of this invention comprises.

preparing a mixture of dissersomer salts from a racemic modification of a pyrrolidinone derivative represented by formula (1) wherein \mathbb{R}^3 is hydrogen or a halogen, \mathbb{R}^2 is hydrogen, a $\mathbb{C}_{1,0}$ silkyl, a $\mathbb{C}_{2,3}$ alkenyl or a $\mathbb{C}_{2,$

separating the diastereomer salt of the optically active pyrrolidinone derivative of the above [4] from the mixture of the diastereomer salts;

forming and collecting the optically active pyrrolidinone derivative of the above (4) from the separated diastereomer salt.

Another aspect of this invention is a salt for preparing the compound of the above [4] consisting of the optically active pyrrollidinone derivative of the above [4] represented by general formula (2), wherein Fit is chlorine, Pit is methyland in is 2, and optically active mandelic acid or optically active tartaric acid.

An antipsychotic may be obtained, using a compound of the above [1] to [6] as an active ingredient.

A pyriolidinone derivative represented by general formula (1), its pharmaceutically acceptable salt and a hydrate of the pharmaceutically acceptable salt may be useful for freatment of disorders including central nervous systems disorders such as achizophrania, dementia, manic-depressive psychosis, anxiety, drug poisoning and ischemic brain disorders, disorders associated with immunopathy or endocrine disturbence; and digestive system ulcers.

This invention also provide an optical resolution method and an intermediate for preparing the pyrrolidinone derivative of this invention represented by general formula (2).

DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBOORMENTS

The compound of this invention will be described in detail.

Hallogen in terms of B³ in general formula (1) includes fluorine, chlorine, bromine and lodine, preferably chlorine and bromine, more preferably chlorine. B³ may substitute preferably at para or meta position,

A C politiky) in terms of R[®] includes methyl, ethyl, n-propyl and isopropyl, preferably methyl and ethyl, more preferably methyl

A Cata alkenyl in terms of PP includes viriyl, allyl, 1-propenyl and isoproperiyl.

A C₀₋₀ alkynyt in terms of R2 includes ethynyl, 1-propynyl and 2-propynyt

n may be 2 or 3, preferably 2.

£

28

30

40

43

50

56

Water as a component of the hydrates may be present in the hydrates in various forms including water of crystalfization and adhesive moissures. Different forms of water may be included in a single hydrate. For example, a hydrate may include either water of crystallization or adhesive moisture, or both. The hydration degree may range from 0.001 to 10, preferably, from 0.001 to 4, more preferably from 0.001 to 3. The hydration degree is not restricted to integers

Compounds of this invention are shown in Tables 1 to 3, but this invention is, of course, not limited to these specific compounds. Each compound in the tables can be formed as (R)- or (S)-isomer, or a mixture of these isomers, i.e., recemic modification. In Table 2, Compound Nos. 1-24, 49-72, 97-120 and 145-168 are anhydrous and Compound Nos. 25-49, 73-99, 121-144 and 169-192 are dihydrates.

Table 1

ε

B L CH₂ COH₂ COH₂ COH₂ COH₂

řő	Compound	K,	$\mathbb{R}^{\mathbb{Z}}$	n
	No.		***************************************	***************************************
	i	Ħ		2
5	5	13	CH3	2
	3	H	CH3CH3	2
)	4	H	CHaCHaCHa	2
	. 5	H	CH (CH ₂) ₂	2
	6	Ħ	Aluhi	8
F	7	H	attyl	2
	8	H	(-propeny)	2
	9	H	{seprapeax}	2
>	10	H	ethyayl	2
	1 1	31	l-propysyl	2
	1 2	H	2-propynyi	2
	1.3-	M	Ħ	3
	14	H	CHe	3
>	15	Ħ	CHyCHy	3
	1.6	h	CH2CH2CH2	3
	17	Ħ	CH (CH ₃) ,	3
3	1.8	11	vinyt	3
	1.9	1 -1	allyl	3
	20	ŧŧ.	i-aropesyt	3
\$	2.1	F- F	isoncopenyt	3
	22	Ħ	ethyay:	3
;	2.3	} {	1-propysy)	3

	Table I (2)				
8	Compound No.	R)	RŽ	n	
	2 4	Ħ	2-propyaył	3	
? 0	2.5	2-F	£;	2	
	2.6	2-P	CHa	\$	
	2.7	2-F	CHaCHa	2	
1.5	2.8	2-8	CH oCH oCH o	2	
	2.9	2-P	CH (CHa) a	2	
eo	3.0	8 8,	visyl	2	
·	8 (2-F	#) ¥	2	
	3.2	8 - b	(-propeny)	2	
1£	3.3	2-F	isoproponyl	2	
	8.4	2-F	ethynyl	2	
	3.5	2-F	l-propysyt	2	
10	3 6	2-F	L-brothan)	.2	
	3.7	2-P	R	3	
	38	2-F	CHa	3	
N	3.91	2~F	CHaCHa	3	
	4.0	2 - F	СИсСияСиз	3	
0	4 1	2-F	CH (CH _a) e	3	
	4.2	2-F	vinyi	3	
	4.\$	2-F	allyt	8	
6	44	2-F	1-propenyl	3	
	4.5	2-P	isopropenyl	3	
	4-6	2-F	elbynyi	3	
io	4.7	2-F	i-propysy:	3	
	4 8	3- F	2-propynyt	3	
58 ^	4.9	3-P	H	2	

255	3 3 .	Υ.	400
3.3	316	- 5	(3)

	Table I (3)					
δ	Compound	RI	R ²	n		
	No.					
	50	3-F	CH ₃	2		
?ű	5 1	3~E	CH2CH3	2		
	52	3~F	CH2CH3CH3	2		
25	53	3 - F	CH (CH ₃) :	2		
	5.4	3~F	vinyi	< 5 £3		
	5.5	3-F	allyi	2		
20	5 0	3~F	(-propeny)	2		
	5 7	3-P	isopropesy!	2		
75.0°	5 8	3-F	ethynyl	2		
25	5 9	3~F	1-propyny1	2		
	80	3-F	2-propynyl	2		
30	6 1	3-F	H	3		
	6 2	3 F	C Ha	3		
	6 3	3-F	CH,CH,	3		
Œ	6 4	3-F	CH2CH2CH3	3		
	6 5	3-F	CH (CH3) 2	3		
40	6 6	3-F	vinyl	3		
	6 7	3 ~ k	allyl	3		
	6.8	3~F	[-propeny]	3		
43	6 9	3-8	isopropenyl	3		
	7 0	3-15	ethynyl	3		
50	7 1	3~F	i-propysy	3		
	7 2	3~F	2-propyayi	3		

733	٠.	,	5 4 3
3 55	hle:	3	123

53

	Table 1 (4)				
δ	Compound	\mathcal{K}_1	R^2	8	
	No		***************************************		
	7.3	4-F	H	2	
?0	7 4	4-F	CHa	2	
	7 5	4-F	CH ₂ CH ₃	2	
9.5	7 6	4~F	CHaCHaCHa	2	
	7.7	4-F	CH (CH3) 8	2	
	7.8	4~}	vinyi	2	
20	7 9	4~F	aliyi	8	
	8 0	4~F	1-propenyl	2	
28	8 1	4~F	isopropenyi	2	
A-W	8 2	4~ F	ethynyl	2	
	83	4-F	1-propymy)	2	
30	8 4	4-19	2-propymy!	2	
	8.5	4-F	H	3	
	8.6	4-F	CH3	3	
36	87	4-F	CHaCHs	3	
	88	4-F	CH ₂ CH ₂ CH ₃	3	
40	8 9	4-P	CH (CH ₀) a	3	
	90	4 - F	viny	3	
	9 1	4~F	allyi	3	
46	9 2	4-F	1-propenyl	3	
	9.3	4-F	isopropenyl	3	
56	9.4	4~}	ethynyl	8	
	9 5	1-F	i-propynyi	3	
	9.6	4-8	2-propynyi	3	

æ

	Table 1 (5)				
8	Compound	R ³	R ²	n	
	No.				
	97	2-C 15	}-{ }-{	2	
} Ø	9.8	2-C 1	CHo	2	
	99	2~C 1	CH4CH3	2	
	100	2-C I	CH2CH2CH3	2	
4.5	101	2-01	CH (CH ₃) ₃	2	
	102	8-C 1	y i ny j	2	
20	103	2-C 1	ally	2	
uv	104	2-C 1	i-propenyl ·	2	
	105	8-0 t	isopropenyl .	2	
25	106	2-C 1	ethynyi	2	
	107	2-C 1	1-propynyi	2	
	108	2-C 1	2-propynyi	2	
30	109	2-C 1	¥	3	
	110	2-C 1	CH;	3	
36	111	8-C 1	CH2CH3	3	
	112	2-C 1	CH2CH2CH3	3	
	113	2-C 1	CH (CH ₃) ₂	3	
40	114	5-C i	vinyl	3	
	115	2-C :	allyl	3	
	116	2-C 1	(-propeny)	3	
43	117	2-C 1	i Sopropeny l	3	
	1 1 8	8-C 1	ethynyl	3	
25	119	2-C 1	l-propyny:	3	
\$6	180	5-C 1	2-propynyi	3	
	121	3-C 1	H	2	
58	122	3-C 1	CH:	3	

Table	٤	(6)
8 (81.08 %	5	3 13 3

	1 ans (0)			
ε	Compound No.	R)	R ²	8
	123	3~C I (CH a CH ₂	2
	124	3-C 1	CH2CH2CH3	2
70	125	3-C 1	CH (CHa);	2
	126	3-C 1	vinyl	2
2.5	127	3-01	allyl	2
	128	3-C]	i-propenyl	2
	129	3-C 1	isopropenyi	2
20	130	3-C 1	ethynyl	57 20
	131	3-01	i-propyny!	S
	132	3-C1	2-propynyl	2
25	133	3-C 1	5.3	3
	134	3-C 1	CH _a	3
30	135	3-C 1	CH2CH3	3
	136	3-C I	CH2CH2CH3	3
	1 3 7	3~C 1	CH (CH3) :	3
N	138	3-01	vinyl	3
	139	3-C 1	aliyi	3
	140	3~C 1	l-propeny!	3
40	141	3-C 1	isopropenyi	3
	142	3-C (ethysy)	3
48	143	3-C 1	1-propyay1	3
	144	3-C 1	2-propynyl	3
	145	4-C 1	H	2
50	146	4-C 1	CH3	2
	147	4-C-3	CH2CH3	2
	148	4-C 1	CH2CH2CH3	2
58	149	4~C.i	CH (CH ₃) 2	2

***	 ,		**
Ta	ro 2		7)
3 33	 . .	٠,	5 5

	Table 1 (7)					
	Compound	R	R ²	£\$.		
ε	No.					
	150	4-C 1	vinyi	2		
70	151	4-C 1	allyl	2		
	152	4-C 1	1-propery)	2		
	158	4-C 1	isopropeny!	2		
1.5	154	4-C 1	ethyayl	2		
	155	4-C 1	i-propynyi	2		
20	156	4-C 1	2-propynyl	2		
	157	4-C 1	H	3		
	158	4-C 1	CHo	3		
25	159	4-C1	CHaCHa	8		
	160	4-C 1	CH2CH2CH2	3		
80	161	4-C 1	CH (CH2) *	3		
	162	4-C 1	Albaj	3		
	163	4-C 1	allyl	3		
Œ	164	4-01	1-propeny!	3		
	165	4-C I	isopropenyl	3		
40	166	4-C I	ethynyl	3 "		
	1 6 7	4-C 1	1-propynyl	3		
	1 6 8	4-C 1	2-propymyi	3		
43	169	2-B r	1.4	2		
	170	2-B r	CH ₃	2		
	171	2-B r	CH2CH3	2		
56	172	2-B r	CH2CH2CH3	5		
	173	2-B r	CH (CH ₃) ₂	2		
58 ~	174	2-8 r	vinyl	\$		

Table 1 (8)

	13010 1 (8)			
8	Compound	R	K2	Ä
ę.	No.			
	175	2-8 r	ailyl	2
?@	176	2-B r	i-propeny!	2
	177	2-B r	isopropeny!	8
	178	2-B r	ethynyl	2
9.5	179	2-B r	l-propynyl	2
	180	2-8 r	2-propysyl	.5
20	181	2-8 r	Ħ	3
	182	2-B r	CH3	3
	183	2-B r	СНаСНа	3
25	184	2-8 r	CH2CH2CH3	8
	185	2-B r	CH (CH ₃) ₂	3
80	186	2-B r	viny)	3
20	187	2-B r	allyl	3
	188	2-B r	1-propenyl	3
36	189	2-B r	isopropenyl	3
	190	2~B t	ethynyl	3
	191	2-8 r	1-propynyl	3
40	192	2-B r	2-propynyl	3
	193	3-8 r	Ħ	2
46	194	3-B r	СНэ	2
	195	3-8 r	CH2CH3	2
	196	3-B r	CH & CH & CH 3	2
ଟ୍ଡ	197	3-8 r	сн (сн.) ,	2

170	2 2		7 -5 5	
- 8 -	A 54.56	۶ ۶	(9)	ζ
۰. ي		. (1

	fable (4)			
٥	Compound	R_1	R^2	1:
ε	No.	· ,		······································
	198	3-B r	vinyi	2
₹ ĕ	199	3-B r	3: (3)	2
	200	3-B r	1-propenyl	2
	501	3-B r	[sopropeny]	2
4.5	808	3-B r	ethyny!	2
	203	3-B r	i-propynyi	2
20	204	3-B r	2-propynyl	S
	205	3-B r	H	3
	206	3-B r	CH ₃	3
25	207	3-B r	CH aCH a	3
	208	3-B r	СН«СН»СН»	3
80	209	8-B r	CH (CH3) 2	3
	210	3-B r	vinyt	3
	311	3-B r	31131	3
36	212	3-8 r	i-propesy)	3
	213	3-B r	isopropeayl	3
40	2 1 4	3-8 r	ethynyi	3
4%	215	3-B r	l-propyny!	3
	216	3-B r	2-propysyl	3
46	217	4-B r	H	2
	218	4-8 r	CH3	2
	2 1 9	4-8 r	CH ₂ CH ₃	2
50	220	4-8 r	CH2CH2CH3	2
	221	4-8 r	CH (CH 3) 3	2
58	222	4-B r	vinyl	2

Table	1	ŧ	ì	(3)	
1 20.17	Ł	٠.	4	\mathbf{v}	

	10015 1 (10)						
	Compound	R ¹	R ²	r.			
8	No.						
	223	4-B r∘	allyl	2			
? ©	224	4-8 r	i-propenyl	2			
10	225	4-Bir	isopropenyi	2			
	226	4-8 r	ethyayi	2			
9.5	227	4-B r	I-blobabal	2			
	228	4-8 r	2-propymyl	2			
	229	4-B r	Ħ	ð			
80	230	4-B r	CH3	3			
	231	4-B r	CH,CH,	3			
× **	232	4-B r	CH . CH . CH .	3			
85	233	4-8 r	CH (CH3) 2	3			
	234	4-B r	rinyl	3			
90	235	4-B r	2(17)	8			
	236	4-B r	l-propesyl	3			
	237	4-B r	isopropenyl	*3			
NJ	238	4-B r	ethynyl	3			
	2 8 9	4-B r	1-propynyi	3			
10	240	4-B r	2-propysyl	3			
ro	241	2-1	H	2			
	242	2-1	СНз	2			
16	243	2-1	СНаСНа	2			
	244	2-1	CHaCHaCHa	2			
	248	2-1	СН (СН3) х	2			
50	246		vinyl	2			
	247	2- 3	allyi	2			
SS	248	2-1	1-propenyl	2			

CC1 . K 1		2.0	2 3
Tabl	50 K	2 2	- ()
5 (23.23		- C X	3 .

	3 8036 3 (33)		3	
8	Compound	R,	K ₃	Ŋ
	No.			***************************************
	249	2-1	isopropemyl	2
70	250	2-1	ethynyl	2
	251	2-1	i-propynyi	2
	252	2- 1	2-propynyi	2
2.5	253	2-1	H	3
	254	5-1	CH:	3
	2 5 5	2-1	CH ₂ CH ₃	3
20	256	2-1	CH2CH2CH3	3
	257	2-1	CH (CH*) *	3
	258	2-1	Ainai	3
25	259	3-1	8()))	3
	260	2~ 1	i-propenyi	3
30	261	2-1	isopropenyi	3
	262	2- I	ethysyl	3
	263	2-1	l-propyny:	3
æ	264	2- I	2-propynyl	8
	265	3-1	H	2
	266	3-1	CH3	2
40	287	3-1	CH ₂ CH ₃	2
	268	3-1	сизсизси»	2
48	269	3-1	CH (CH3) a	2
	270	3-1	41041	8
	271	3-1	ailyl	2
50	272	3-1	i-propesy:	\$
	273	3-1	isopropenyl	2
	274	3-1	ethynyl	2
58	275	3~ {	1-propysyl	2

133 6 1	 	,	25.5
Tab	 	- ?	1/3
- K 50 V	 ٠,	٠.	** *

	19636 1 (10)					
ε	Compound	R	\mathbb{R}^2	8		
Ç.	No.		AAAAAA			
	278	3-1	2-propysyl	2		
10	277	3-1	H	3		
	278	3-1	CH3	3		
	279	3-1	CH2CH3	3		
3.5	280	3-1	CH2CH2CH3	3		
	281	3-1	CH (CH3) a	3		
	288	3-1	visy!	3		
20	283	3-1	allyl	8		
	284	3-1	i-propesyl	3		
25	285	3-1	isopropenyl	3		
××	286	3-1	ethyayi	3		
	287	3-1	l-propynyt	3		
80	288	3-1	S-brobaua;	3		
	289	4-1	H	2		
	880	4-3	CH:	2		
N	291	4-1	CH2CH3	2		
	292	4-1	CH2CH2CH5	2		
	293	4-1	CH (CH3) :	\$		
40	294	4~ 1	vinyt	Ç.		
	995	4-1	allyl	3		
48	296	4-1	1-proseny)	2		
	297	4~ }	isopropeny)	2		
	298	4~ 1	ethynyl	8		
50	299	4-1	1-propyay)	2		
	300	4- I	2-propysy:	2		
	3 0 1	4-1	£.5	â		
58	302	4-1	CH3	3		

033	5 5	4 5	
3 3	ald	1 4	1.53

2 4000 ((20)			
Compound	R	\mathbb{R}^2	В
No.	×		***
303	4-1	CH2CH3	3
3 0 4	4-1	CH2CH2CH3	3
305	4-1	CH (CH3) 2	3
306	4-1	vioy!	3
307	4-1	allyl	3
308	4~ 1	i-propeny:	3
309	4-1	isopropenyl	3
310	4~ ?	ethynyl	3
3 1 1	4-1	1-propymy1	3
3 1 2	4-1	2-propyayi	3

JE

ŞĢ

ZHCI

Table 2

 ε

70	Compound No.	R s	R ²	R
	1	3-C 1		2
2.5	2	3-C 1	CH:	2
	3	3-C 1	CH,CH,	2
20	4	3-C 1	CH; CH, CH,	2
es or	5	3-C 1	CH (CH) x	2
	6	3-C 1	vinyl	2
25	7	3-C I	****	2
	8	3-C 1	i-propenyi	2
	9	3-C 1	isopropenyl	2
30	10	3-C 1	ethynyl	2
	1	3-C 1	1-0100001	2
36	2	3-C 1	2-propynyt	2
000	18	3-C 1	H	Ş
	1.4	3-C 1	CH ₂	3
46	1.5	3-C 1	CHgCHs	3
	18	3-C 1	CHaCHaCHa	3
	17	3-C 1	CH (CH ₀) *	3
43	18	3-C 1	vinyi	3
	1.9	3-C 1	21133	8
**	2.0	3-C 1	l-propeny!	3
56	2 1	3-C 1	(sopropeny)	3
	2 3	3-C 1	ethynyl	3
58	2 3	3-C 1	1-propysyl	3

Tab	3 20	2	133
2 35 2 3	₹.	2	32.1

Table 2 (2)			
Compound	R i	R ²	n
No.	·····		
2 4	3-C 1	2-propyny l	3
25	3-C 1	Н	2
2 6	3-C 1	C H 3	2
2 7	3-C 1	CH2CH3	2
2.8	3~C 1	CH ₂ CH ₂ CH ₃	2
2 9	8-C 1	CH (CH3) ;	2
3.0	3-C 1	*iny!	2
3 1	3-C 1	allyl	2
3 2	3-C 1	1-propery!	2
3 3	-3~C +	isopropenyl	2
3 4	3-C]	etbynyl	2
3 5	3-C I	i-propynyi	2
3 8	3-C 1	2-propyny)	2
3 7	3-C 1	H	3
38	3-C 1	CHs	3
3 9	3-C 1	CH2CH2	3
4 0	3-C 1	CH ₂ CH ₂ CH ₃	3
4 1	3-C 1	CH (CH3) 2	3
42	3-C 1	vioyl	3
4-3	3'-C 1	allyl	3
4.4	3-C 1	i-propenyl	3
4.5	3-C1	isopropesyl	3
4.6	3-C 1	ethynyl	3
4.7	3-C 1	1-propysyl	3

170		4		0	125	
š	3	683	8	2	13)	

	1 able 2 (3)	······		BERNERAL BOOK OF THE STATE OF T
ε	Compound	\mathbb{R}^1	$K_{\mathcal{Z}}$	8
	No.	W. W. A. J. J. L.		······
	48	3-C1	2-propysyl	3
10	4 9	4-C 1	23	2
	5.0	4-C 1	CH3	5
	5 1	4-C 1	C M a C M a	2
7.5	5.2	4-C)	CH2CH2CH3	\$
	5 3	4-C1	CH (CH3) 2	2
00	5 4	4-C I	vinyl	2
20	5.5	4-C)	81131	2
	5 6	4-C1	1-propenyl	2
25	5 7	4-C I	isopropesyl	2
	5.8	4-C 1	ethynyl	2
	5.9	4-C 1	1-propyny!	2
30	6 0	4-C	2-propest	2
	61	4-0 t	Ħ	3
	8.5	4-C 1	CR3	3
35	83	4-C 1	C H 2 C H 5	3
	6 4	4-0 i	CH aCH aCH a	3
40	8.5	4-C 1	CH (CH +) 2	3
	8 8	4-C 1	vinyl	3
	6.7	4-01	21171	3
43	6.8	4-C 1	1-broberat	8
	6.9	4-C 1	isopropenyi	3
	7.0	4-C 1	ethynyl	3
50	7.1	4-C 1	l-propyny!	3
	7.8	4-Č 1	S-bcobkaki	3
55	7.3	4-C 1	H	2
	~~~~~~~~~~ <del>~~~~~~</del>			

.8.	3.80	.3	(4)
8 03		4	3 24 3

	14010 5 (4)			
8	Compound	R.I	R ²	8
	No.			
	7.4	4-C 1,	CH3	2
10	7 5	4-C 1	CH2CH3	2
	7.6	4-C I	CH2CH2CH3	2
	77	4-C I	CH (CH ₂ ) s	2
7.5	78	4-C I	vinyi	2
	7 9	4-C 1	allyl	2
20	80	4-01	i-propeny!	2
	8 1	4-C I	isopropenyl	2
	82	4-C 1	ethydyl	2
25	8.3	4-01	1-propynyl	2
	8 4	4-C 1	2-propysy!	2
30	8 5	4-C 1	H	3
90	8 8	4-C 1	CHa	3
	8 7	4-C 1	CH ₂ CH ₃	3
36	88	4-C 1	CH*CH*CH3	3
	8 9	4-C 1	CH (CH3) 2	3
	9 0	4-C 1	vinyl	3
40	91	4-C 1	allyl	3
	92	4-C 1	1-propenyl	3
43	83	4-C 1	isopropeny!	S
	9 4	4-C 1	ethyayi	3
	9 5	4-C 1	1-propynyl	3
50	96	4-C 1	2-propysyl	8
	9.7	3-B r	ž-ž	2
58	98	3-B r	CH3	2

3.	n is	1,5	3	1	5)

	3 8030 4 (3)	*****************	***********************	
٤	Compound No.	$K_j$	R ²	n
	9 9	3-8 r	CH2CH2	2
10	100	3-B r	CH2CH2CH3	2
	101	3-B r	CH (CH3) 2	2
	102	3-B r	viay)	2
2.5	103	3-8 r	silyl	2
	104	3-B r	1-propessi	2
	105	3-8 r	isoprovenyi	2
20	106	3-8 5	ethynyl	2
	107	3-B r	1-propyny!	2
	108	2-8 r	2-propysyl	2
25	109	3-B r	H	3
	110	3-B c	CH:	3
80	111	3-B r	CH2CHa	3
	112	3-B r	CH _R CH ₂ CH ₃	3
	113	3-B r	CH (CHa) a	3
30	114	3-B r	vinyl	3
	115	3-B r	allyl	3
	116	3~B r	(-propeny)	3
40	117	3-8 r	isoprepenyl	3
	118	3-B r	ethynyl	3
	119	3-8 r	1-propynyl	3
43	120	3-B r	2-propysy)	3
	121	3-B r	<b>}</b> {	2
56	122	3-B r	CH ₃	2
	123	3-B r	CH2CH3	2
	124	3-B r	СИзСИзСИз	2
55	125	3-8 r	СН (СНэ) г	2
	***************************************			

330	3 3 .	$\sim$	15
- 4	able		1 65
•	wire.	44	1 45

	1 apie 2 (b)			
ε	Compound	R	R ²	8
ů.	No			
	126	3-B r .	vinyl	2
10	127	3-B r	allyl	2
	128	3-B r	i-propeny!	5
	129	3-B r	isopropenyl	2
4.5	130	3-B r	ethyayi	2
	131	3-B r	[-propyny]	2
20	132	3-B r	2-propysyl	2
	133	3-8 r	H	3
	134	3-8 r	CH;	3
25	135	3-B r	CH oCH3	3
	136	3-8 r	CH2CH2CH3	3
30	137	3-B r	CH (CH3) 2	3
	138	3-B r	vinyl	3
	139	3-B r	allyl	3
38	140	3-B r	1-propeny!	3
	141	3-B r	isopropeay(	3
10	142	3-B r	ethysyl	3
40	143	3-B r	i-propynyl	3
	144	3-B r	2-propynyl	8
43	145	4-B r	H	2
	148	4-B r	CH3	2
	147	4-B #	CHaCHa	8
SØ	148	4-B r	CH ₂ CH ₂ CH ₄	2
	149	4-B r	CH (CH3) 2	2
58	150	4-B r	vinyi	2
	******************			***************************************

(2) 3 1	•	31	1-41
Tab	4.4.5	- 7	3 6 5
\$ 535.5	( No.	See	5 1 2

	10000 5 (1)	radic C (1)				
ε	Compound No.	R ¹	K ₃	в		
	151	4-B r	e!!x!	2		
10	152	4-B r	1-propesyl	2		
	153	4-B r	isopropeny!	2		
	154	4-B r	ethynyi	\$		
9.5	155	4-8 r	i-propysyl	2		
	150	4-8 r	2-propysyl	2		
20	187	4-8 r	Н	3		
	158	4-B r	CH3	3		
	159	4-B r	C H g C H s	ä		
25	100	4-B r	CH * CH * CH *	3		
	161	4-B r	CH (CH ₂ ) 2	3		
	162	4-B r	vinyl	3		
30	163	4-B r	aliyi	S		
	164	4-B r	1-propery!	3		
36	165	4-B r	(sopropeny)	3		
	166	4-8 r	ethynyl	3		
	167	4-8 r	1-propymy)	3		
40	168	4-B r	2-propyny)	3		
	169	4-B r	11	2		
	170	4-8 r	CH3	8		
46	171	4-B r	CHgCHs	2		
	172	4-B r	CH2CH2CH2	2		
sø	173	4-8 r	CH (CH3) 2	2		
	174	4-B r	vinyt	2		
	175	4-8 r	allyt	8		
55	178	4-B r	l-propenyl	2		
	***************************************					

137		<b>33</b>		3	(8)	5
- 3	а	3.53	٤:	ž.	1.0	3

1 got 5 7 (9)			
Compound No.	R!	R ²	n
177	4-B r	isopropeny)	2
178	4-B r	ethynyl	2
179	4-B r	i-propynyl	2
180	4-B r	2-propynyl	2
181	4-8 r	5.7	3
182	4-8 r	CH3	3
183	4-8 r	CH ₂ CH ₂	3
184	4-8 r	CHaCHeCHs	3
185	4-8 r	CH (CH ₃ ) ?	3
188	4-8 r	viay!	3
187	4-8 r	31131	3
188	4-B r	i-propesy)	3
189	4-B r	(sopropeny)	3
190	4-B r	ethynyl	3
191	4-B r	1-propynyl	3
192	4-B r	2-propynył	3

\$¢

Table 3

\$

3.6

9.5

MH₅. Acid forming a salt with the free form of the compound

x: Molar ratio of the acid to the free form of the compound

C	ompound	No. MH _y	χ	
-	}	Hydrochloric acid	ì	Anhydride
	2	Hydrochloric acid	3	Monohydrate
	3	Hydrochloric acid	1	Dibydrate
	4	Hydrochloric acid	1	Trihydrate
	\$	Hydrochloric acid	2	Monohydrate
	6	Hydrochloric acid	2	Trihydrate
	7	Hydrobromic acid	3	Anhydride
	8	Hydrobromic acid	*	Monohydrate
	9	Hydrobromic acid	į	Dihydtare
	10	Hydrobromic acid	3	Trihydrate
	11	Hydrobromic acid	2	Anhydride
	12	Hydrobromic acid	2	Monohydrate
	13	Hydrobromic acid	2	Dihydrate
	14	Hydrobromic acid	2	Trihydrate
	15	Hydriodic acid	**	Anhydride
	16	Hydrindic acid	9	Monohydrate
	17	Hydriodic acid	1	Dihydrate
	18	Hydriodic acid	1	Trihydrate
	19	Hydriodic acid	2	Anhydride
	20	Hydriodic acid	2	Monohydrate
	21	Hydriodic acid	2	Dihydrate
	22	Hydriodic acid	2	Trihydrate

Table 3 (2)

8	Compound No	MHy	X	
	23	Nitric acid	]	Anhydride
	24	Nitric acid	2	Monohydrate
?ő	25	Nitric acid	1	Dihydrate
10	26	Nitric acid	i	Trihydrate
	27	Nitric acid	2	Anhydride
	28	Nitric acid	2	Monohydrate
£.5	29	Nitric acid	2	Dihydrate
	30	Nitric acid	2	Trihydrate
	31	Sulfuric acid	1	Anhydride
30	32	Sulfuric acid	1	Mnohydrate
	33	Sulfuric acid	1	Dihydrate
	34	Sulfuric acid	1	Trihydrate
35	3.5	Sulfuric acid	2	Anhydride
	36	Sulfuric acid	2	Mnohydrate
	37	Sulfuric acid	2	Dihydrate
80	38	Sulfuric acid	2	Trihydrate
••	39	Phosphoric acid	1	Anhydriáe
	40	Phosphoric acid	3	Monohydrate
	41	Phosphoric acid	1	Dibydrate
NG	42	Phosphoric acid	ì	Trihydrate
	43	Phosphoric acid	2	Anhydride
	44	Phosphoric acid	2	Monohydrate
10	45	Phosphoric acid	2	Dihydrate
	46	Phosphoric acid	2	Trihydrate
	47	Acetic sold	*	Anhydride
43	48	Acetic acid	1	Monohydrate
	49	Acetic acid	Î	Dibydrate
	50	Acetic acid	3	Trikydrate
es.	51	Acetic acid	2	Anhydride
94	52	Acetic acid	2.	Monohydrate
	53	Acetic acid	2	Dihydrate.
	54	Acetic acid	2	Tribydrate

Table 3(3)

	1 2016 3(3)		****	
ε	Compound N	o. MIIy	X	
	55	Fumaric acid	}	Anhydride
	56	Fumaric acid	Ĭ	Monohydrate
Õ.	57	Fumaric acid	100	Dihydrate
•	58	Fumaric acid	784	Trihydrate
	59	Fumaric acid	2	Anhydride
	60	Fumaric acid	2	Monohydrate
5	61	Fumaric acid	2	Dihydrate
	62	Fumaric acid	2	Trihydrate
	63	Maleic acid	1	Anhydride
).	64	Maleic acid	1	Monohydrate
	65	Maleic acid	}	Dibydrate
	66	Maleic acid	1	Trihydrate
ş.	67	Maleic acid	2	Anltydride
	68	Maleic acid	2	Mosobydrate
	69	Maleic acid	2	Dihydrate
)	70	Maleic acid	2	Trihydrate
,	71	Succinic acid	ì	Anhydride
	72	Succinic acid	3	Mnohydrate
	73	Succimic acid	}	Dibydrate
	74	Succinic acid	1	Trihydrate
	75	Succinic acid	2	Anhydride
	76	Supcinic acid	2	Mnohydrate
)	77	Succinic acid	2	Dihydrate
	78	Succinic acid	2	Trihydrate
	79	Citric acid	que en	Anhydride
;	80	Citric acid	1	Monohydrate
	81	Citric acid	3	Dihydrate
	82	Citríc acid	\$	Trihydrate
:	83	Citric acid	2	Anhydride
)	84	Citric acid	2	Monohydrate
	85	Citric acid	2	Dihydrate
	86	Citric acid	2	Trihydrate

Table 3(4)

	(2000 263)	w. c. , , , ,		
£	Compound	No. MH _y	Х	
	87	Citric acid	3	Anbydride
	88	Citric acid	3	Monohydrate
	89	Citric acid	3	Dibydrate
Ϋ́	90	Citric acid	3	Trihydrate
	91	Benzoic acid	3	Anhydride
	92	Benzoic acid	1	Monohydrate
9.5	93	Benzoic acid	}	Dibydrate
	94	Benzoic acid	1	Trihydrate
	95	Benzoic acid	2	Anhydride
20	96	Benzoic acid	2	Monohydrate
	97	Benzoic acid	2	Dihydrate
	98	Benzoic acid	2	Trihydrate
28	99	Trifluoroacetic acid	**	Anhydride
~~	100	Trifluoroacetic acid	}	Monohydrate
	101	Trifluoroacetic acid	3	Dihydrate
	102	Trifluoroacetic acid	*	Trihydrate
30	103	Trifluoroacetic acid	2	Anhydride
	104	Triffuoroacetic acid	2	Monohydrate
	105	Triffuoroacetic acid	2	Dihydrate
36	106	Triffuoroacetic acid	2	Trihydrate
	107	Methanesulfonic acid	i	Anhydride
	108	Methanesulfonic acid	***	Monohydrate
40	109	Methanesulfonic acid	1	Dibydrate
	110	Methanesulfonic acid	1	Trihydrate
	****	Methanesulfonic acid	2	Anhydride
43	112	Methanesulfonic acid	2	Monohydrate
- <b>N</b> O	700	Methanesulfonic acid	2	Dihydrate
	114	Methanesulfonic acid	2	Trihydrate

50

Table 3(5)

Compound No.	MH _y	X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
115	Ethanesulfonic acid	1	Anhydride
116	Ethanesulfonic acid	\$	Monohydrate
117	Ethanesulfonic acid	1	Dihydrate
118	Ethanesulfonic acid	1	Trihydrate
119	Ethanesulfonic acid	2	Anhydride
120	Ethanesulfonic acid	2	Monohydrate
121	Ethanesulfonic acid	2	Dihydrate
132	Ethanesulfonic acid	2	Tribydrate
123	p-Toluenesulfonic acid	1.	Anhydride
124	p-Toluenesulfonic acid	}	Monohydrate
125	p-Toluenesulfonic acid	Ĭ.	Dihydrate
126	p-Toluenesulfonic acid	Î	Trihydrate
127	p-Toluenesulfonic acid	2	Anhydride
128	p-Toluenesulfonic acid	2	Monohydrate
129	p-Toluenesulfonic acid	2	Dihydrate
130	p-Toluenesulfonic acid	2	Trihydrate
131	Benzenesulfonic acid	1	Anbydride
132	Benzenesulfonic acid	į	Monohydrate
133	Benzenesulfonic acid	<b>{</b>	Dihydrate
134	Benzenesulfonic acid	ì	Tribydrate
135	Benzenesulfonic acid	2	Anhydride
136	Benzeneaulfonic acid	2	Monohydrate
137	Benzenesulfonic acid	2	Dibydrate
138	Benzenesulfonic acid	2	Trihydrate
139	Benzenesulfonic acid	2	3.5Hydrate
140	L-Lactic acid	1	Anhydride
141	L-Lactic acid	1	Monohydrate
142	L-Lactic acid	1	Dihydrate
143	L-Lactic acid	1 .	Trihydrate
144	L-Lactic acid	2	Anbydride
145	L-Lactic acid	2	Monohydrate

Table 3(6)

	(able 3(6)			
ε	Compound No	√ MH _y	X	
	146	L-Lactic acid	2	Dilsydrate
	147	L-Lactic acid	2	Tribydrate
10	148	(R)-Mandelic acid	ì	Anbydride
	149	(R)-Mandelic acid	1	Monohydrate
	150	(R.)-Mandelic acid	1	Dihydrate
	151	(R)-Mandelic acid	ì	Trihydrate
7.5	152	(R)-Mandelic acid	2	Anhydride
	153	(R)-Mandelio acid	2	Monohydrate
	154	(R)-Mandelic acid	2	Dibydrate
20	155	(R)-Mandelic acid	2	Trihydrate
	156	(S)-Mandelic acid	1	Anhydride
	157	(S)-Mandelic acid	l	Monohydrate
25	158	(S)-Mandelic acid	1	Dihydrate
	159	(S)-Mandelic acid	}	Trihydrate
	160	(S)-Mandelic acid	2	Anhydride
30	161	(S)-Mandelic acid	2	Monohydrate
	162	(S)-Mandelic acid	2	Dibydrate
	163	(S)-Mandelic acid	2	Trihydrate
	164	(+)-Camphanic acid	1	Anhydride
N	165	(+)-Camphanic acid	<b>\$</b>	Monohydrate
	166	(+)-Camphanic acid	ì	Dihydrate
	167	(+)-Camphanic acid	***	Trihydrate
40	168	(+)-Camphanic acid	2	Anhydride
	169	(+)-Camphanic acid	2	Monohydrate
	170	(+)-Camphanic acid	2	Dihydrate
48	171	(+)-Camphanic acid	2	Triliydrate
	172	(-)-Camphanic acid	1	Anhydride
	173	(-)-Camphanic acid	1	Monohydrate
SØ	174	(-)-Camphanic acid	1	Dibydrate
	175	(-)-Camphanic acid	1	Trinydrate
	176	(-)-Camphanic acid	2	Anhydride

Compound	No. MHy	·X	
177	(-)-Camphanic acid	2	Monohydrate
178	(-)-Camphanic acid	2	Dihydrate
179	(-)-Camphanic acid	2	Trihydrate
180	L-Tartaric acid	ì	Anhydride
181	L-Tartaric acid	}	Monohydrate
182	L-Tartaric acid	1	Dihydrate
183	L-Tartaric acid	}	Trihydrate
184	L-Tartaric acid	2	Anhydride
185	L-Tartaric acid	2	. Monohydrate
186	L-Tartaric acid	2	Dihydrate
187	L-Tartaric acid	2	Tribydrate
188	D-Tartaric acid	}	Anhydride
189	D-Tartaric acid	*	Monohydrate
190	D-Tartaric acid	3	Dihydrate
191	D-Tartaric acid	j	Trihydrate
192	D-Tartaric acid	2	Anhydride
193	D-Tanaric acid	2	Monohydrate
194	D-Tartanic acid	2	Dihydrate
195	D-Tartaric acid	2	Trihydrate
196	Dibenzoyl-L-tartaric acid	I	Anhydride
197	Dibenzoyl-L-tartaric acid	3	Monohydrate
198	Dibenzoyl-L-tartaric acid	\$	Dihydrate
199	Dibenzoyl-L-tartaric acid	3	Trihydrate
200	Dibenzoyl-L-tartaric acid	2	Anhydride
291	Dibenzoyl-L-tartaric acid	2	Monohydrate
202	Dibenzoyl-L-tartaric acid	2	Dihydrate
203	Dibenzoyî-L-tartaric acid	2	Trihydrate
204	Dibenzoyl-D-tartaric acid	\$	Anhydride
205	Dibenzoyl-D-tartaric acid	ŧ	Monohydrais
206	Dibenzoyl-D-tartaric acid	į	Dihydrate

Table 3(8)

	Compound	No. MH _t	<u> </u>	······································
E	207	Dibenzoyl-D-tartaric acid	}	Trihydraie
	208	Dibenzoyl-D-tartaric acid	2	Anhydride
	209	Dibenzoyl-D-tartaric acid	2	Monohydrate
) ŭ	210	Dibenzoyl-D-tartaric acid	2	Dihydrate
	211	Dibenzoyl-D-tartaric acid	2	Trihydrate
	212	Di-p-toluoyl-L-Tartaric acid	}	Anhydride
7.5	213	Di-p-toluoyl-L-Tartaric acid	3	Monohydrate
	214	Di-p-tolnoyl-L-Tartaric acid	ì	Dihydrate
	215	Di-p-tohioyl-L-Tartaric acid.	ì	Trihydrate
20	216	Di-p-tolnoyl-L-Tartaric acid	2	Anhydride
	217	Di-p-toluoyi-L-Tartaric acid	2	Monohydrate
	218	Di-p-tolooyl-L-Tartaric acid	2	Dihydrate
25	219	Di-p-toluoyl-L-Tartaric acid	2	Trihydrate
N. S.	220	Di-p-toluoyl-D-Tarraric acid	1	Anhydride
	221	Di-p-toluoyl-D-Tartaric acid	1	Monohydrate
	222	Di-p-toluoyl-D-Tartaric acid	į	Dihydrate
30	223	Di-p-toluoyl-D-Tartaric acid	ì	Trihydrate
	224	Di-p-toluoyl-D-Tartaric acid	2	Anhydride
	225	Di-p-toluoyl-D-Tartaric acid	2	Monohydrate
39	226	Di-p-toleoyl-D-Tartaric acid	2	Dihydrate
	227	Di-p-toluoyl-D-Tartaric acid	2	Trihydrate
	228	(+)-10-Camphorsulfonic acid	*	
40	229	(+)-10-Camphorsulfonic acid	2	
	230	(-)-10-Camphorsulfonic acid	9 3	
	231	(-)-10-Camphorsulfonic acid	2	
43	232	(R)-Thiazolidine-4-carboxylic acid	ì	
~~	233	(R)-Thiazolidine-4-carboxylic acid	2	
	234	D-3-Phenyllactic acid	3	
	235	D-3-Phenyllactic acid	2	
56	236	L-3-Phenyllactic acid	***	

Table 3(9)

58

Compound	No. MH _y	χ
237	L-3-Phenyllactic acid	2
238	(-)-Bromocamphor-8-solfonic acid	1
239	(-)-Bromocamphor-8-sulfonic acid	2
240	(+)-Bromocamphor-8-sulfonic acid	}
241	(+)-Bromocamphor-8-sulfonic acid	2
242	(R)-2-Pyrogletamic acid	<b>j</b>
243	(R)-2-Pyroglutamic acid	2
244	(S)-2-Pyroglutamic acid	}
245	(S)-2-Pyroghitamic acid	2 '
246	(+)-2'-Nîtrotartronic acid	}
247	(+)-2'-Nitrotartronic acid	2
248	(-)-2'-Nitrotactronic acid	1
249	(-)-2'-Nitrotartronic acid	2
250	L-Malic acid	<b>\$</b>
251	L-Malic acid	2
252	D-Malic acid	1
253	D-Malic acid	2
254	L-Phenylglycine	\$
255	L-Phenylglycine	2.
256	D-Phenylglycine	<b>\$</b>
257	D-Phenylglycine	2
258	L-Phenylalanine	**
259	L-Phenylalaoine	2
260	D-Phenylalanine	\$
261	D-Phenylalanine	2
262	Benzoyl-L-tartaric acid	1
263	Benzoyl-L-tartaric acid	2
264	Benzoyl-D-tartaric acid	3
265	Benzoyl-D-tartaric acid	2 .

Typical preparation methods for the compounds of this invention will be described. First, the compound represented by general formula (1) may be prepared, for example, visithe following Preparation Route 1:

wherein R1, R2 and n are as defined in general formula (1); A is methyl or ethyl: L is a halogen, tosyloxy or mesyloxy

30

36

40

43

56

Compound (4) may be prepared by dehydrafing an aniline derivative represented by general formula (3) with  $\gamma$  butyrolactons. The reaction may be conducted with no solvent, or 50 to 250 °C, preferably 150 to 200 °C, for 5 to 20 hours, preferably 10 to 15 hours, if necessary, an axid catalyst such as hydrochloric acid can be added.

Compound (5) may be prepared by alkoxycarbonylating Compound (4) in an inert solvent in the presence of a base. They can be macted at 30 to 200 °C, preferably 70 to 150 °C for 3 to 20 hours, preferably 5 to 15 hours, inert solvents which may be used include aromatic hydrocarbons such as benzene, toluene and xylenes; ethers such as tetrahydrofuran, 1,4-dioxane, butyl ether, ethyleneglycol directlyl ether, and alcohols such as methanol, ethanol and propanol. Reaction agents for alkoxycarbonylation include enters such as directlyl carbonate, diethyl exibonate, athyl phosphonolormate and diethyl existent. The base includes inorganic bases such as potassium carbonate, sodium carbonate, and organic bases such as triethylamine, tripropylamine, pyridine, 1,8-diazabicyolo[6,4,0]undec-7-ene(DBU), potassium teri-butoxide.

Compound (6) may be prepared by reducing Compound (5) in an inert solvent at -75 to 200 °C, preferably 0 to 100 °C, for 1 to 20 hours, more preferably 5 to 15 hours, finert solvents which may be used include aromatic hydrocarbons such as benzene and initiate; eithers such as dictityl either, tetrahydrofuren, 1,4-dioxidie, 1,2-dimethoxyathane and ethylene glycol dimethyl ether; halogenated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane; alcohols such as methanol and ethanol; these may be used solely or in combination. Reducing agents which may be used include aluminum hydride, lithium aluminum hydride, sodium borohydride, and of sodium borohydride and aluminum chloride, of sodium borohydride and calcium chloride, and of sodium borohydride and atuminum chloride.

Compound (7) may be prepared by converting Compound (6) to a corresponding helicimethyl compound with a thionyl halide or a phosphorous halide, or to a corresponding toeyl or masyl ester with a tosyl or mesyl halide. The reaction is preterably conducted in an inert organic solvent such as chlorotorm, dichtoromethene, tetrahydrofuren or N.N-denethyllormamide at room temperature to the bolling point of the solvent used. A halomethyl compound or a toeyl or mesyl ester formed as an intermediate may be isolated or be in alto subject to a further reaction.

Reaction of Compound (7) with an amine represented by general formula (8) will give the desired compound of general formula (1). This reaction may be conducted in tetrahydrofuran, 1,4-dioxane, acetonitrile or N.N-dimetry/formamide. Reaction temperature may be 50 to 150 °C, whereas individual conditions depend on basicity of the smine used and the boiling point of the system. Bases which may be used include inorganic bases such as potassium carbonate, sodium carbonate, sodium hydroxide, sodium hydroxide, and organic bases such as triethylamine, tripropylamine, pyridine, 1,8-diszabicyclo[5.4.0]undec-7-ene(DBU). This reaction may be conducted in an excess amount of amine with no other solvents.

To the reaction may be, if necessary, added an alkali metal lockide such as potassium todide and sodium lockide as a reaction accelerator. A molar ratio of the compound represented by formula (8) to the compound represented by formula (7) may be, but not limited to, at least one, preferably 1 to 5.

The compound represented by formula (8) may be prepared, for example, via the following Preparation Route (2).

10

2.5

99

25

30

43

53

wherein FR and n are as defined in general formula (1); and X is chlorine, bromine or iodine.

A formyloppiarazine represented by formula (9) may be reacted with a halide represented by general formula (10) in the presence of a base such as polassium carbonate and sodium carbonate in appropriate solvent such as an alcohol, at 30 to 150 °C, preferably 50 to 100 °C for 1 to 15 hours, more preferably 3 to 10 hours, to give the compound represented by general formula (10) to formyloppiarazine is 1 to 2, preferably 1.

Compound (11) may be subject to deprotection by treatment with an acid such as hydrochloric acid/1,4-dioxane or a base such as acidium hydroxide in scivint such as methanol, to give the compound of general formula (8)

The compound represented by formula (8) may be prepared by reading a hydroxyalkylated piperazine whose amino group is protected with tert-butoxycarbonyl group, with an alkyl halide in the presence of a base, and then deprotecting the product. Bases which may be used in the alkylation include sodium amide, potassium cerbonate, triethylamine, sodium hydroxide, barium oxide, silver oxide and sodium hydride. Solvents which may be used include dimethylsulfoxide, N,N-dimethylformamide, 1,2-dimethoxyeshane and tetrahydrofunar. The reaction may be conducted at 0 °C to the boiling point of the solvent for tens of minutes to 24 hours.

The optically active compound of general formula (2)may be isolated from the recemic modification of the compound represented by general formula (1) thus obtained, using an optical resolution agent. Specifically, the optical resolution may be conducted by reading the recemic modification of the pyrrolidinone derivative with an optical resolution agent to form diastereomer salts and separating the desired optically active pyrrolidinone derivative, utilizing the diliterence in solubility between the diastereomer salts.

Optical resolution agents which may be used include optically active dibenzoyliarlaric acid, optically active 10-camphoreulionic acid, optically active di-p-tolucyliarlaric acid, optically active tartaric acid, optically active di-p-tolucyliarlaric acid, optically active tartaric acid, optically active 3-phenyl factic acid, optically active mandelic acid, optically active 3-phenyl faction acid, optically active 8-promocumphor 8-sulfonic acid, optically active pyroglutanic acid, optically active 2-nitrotartronic acid, optically active male acid, optically active N-acetylphenylatenine and optically active camphanic acid, optically active mandelic acid, optically active tartaric acid, optically active di-p-tolucylladaric acid; most preferably optically active mandelic acid or optically active tartaric acid.

The motar ratio of the optical resolution agent to the recembinodification of the pyrrolidinone is 0.5 to 2.0, preferably 0.9 to 1.1. Solvents which may be used include acatona, methyl athyl ketone, acatonitrite, 1,4-dioxane, ethyl acetate, methyl acetate, propyl acetate, methanol, ethanol, isopropyl alcohol and a mixture thereof. The distancement may be crystallized at 0 to 50 °C, preferably 10 to 30 °C.

The diastersomer salt obtained may be separated by liftration to give (A)- or (S)-isomer with a high optical purity. For further increasing its optical purity, it may be repeatedly recrystallized. Solvent for recrystallization is preferably, but not limited to, ethyl adetate, ethanol or methanol.

The desired optically active compound from the diastercomer salt may be readily prepared by suspending or dis-

solving the disstereomer salf in water, treating it with a base such as sodium hydroxide, potassium hydroxide, sodium carbonate and sodium hydrogen carbonate to desaff it, and filtrating or extracting the optically active pyrrollidinone derivative formed.

The compound of this invention represented by general formula (1) may readily form a salt with a common pharmaceutically-acceptable acid. Acids which may be used include inorganic acids such as hydrochloric acid, hydrobromic acid, hydrodic acid, nitric acid, suffur acid and phosphoric acid; and organic acids such as acetic acid, fumaric acid, maleic acid, succinic acid, citric acid, benzoic acid, hiftuoroacetic acid, methanesulfonic acid, ethanesulfonic acid, optically active faction acid, optically active mendalic acid, optically active camphanic acid, optically active tarteric acid, optically active benzoyltariaric acid, optically active tarteric acid, optically active benzoyltariaric acid, optically active dibenzovliariaric acid and amino acids.

When using a monobasic or dibasic acid, a salt whose composition ratio, i.e., the ratio of the tree form of the compound of general formula (1) to the acid used, is 1;1 or 1;2, can be prepared, respectively.

10

30

28

43

50

56

When a sait of a compound of the general formula (1) with optically active mandetic acid or optically active tartaric acid is used as an active ingredien in a pharmaceutical composition, the sait can be directly produced by optical resolution using optically active mandetic acid or optically active tartaric acid without desaiting of the corresponding disstereometric sait. When an optical resolution agent other than optically active mandetic acid and optically active tartaric acid is used, desaiting of the corresponding disstereometric sait and formation of the sait with optically active mandetic acid or optically active tartaric acid are necessary. However, those procedures can be omitted by the optical resolution using optically active mandetic acid or optically active tartaric acid.

A hydrain of the salt of the compound of general formula (1) may be prepared by maintaining the salt at 10 to 80 °C, preferably 20 to 60 °C, more preferably 25 to 40 °C, under a relative humidity of 50 to 90 %, preferably 60 to 80 %, for 3 hours to 1 week, preferably 6 hours to 2 days.

Alternatively, a hydrate may be prepared by forming the self in an aqueous solvent, or by recrystallizing the self from an aqueous solvent.

Such salts and their hydrafes may be also utilized as an active ingredient of this invention, as the free form of the compound of general formula (1).

The active-ingredient compounds thus obtained may be useful as an antipsychotic, which may be used in a common plus-inaceutical formulation. Such a formulation may be prepared with generally used diluents or excipients such as fillers, extenders, binders, writing agents, disintegrators, surfactants and jubricants. A variety of pharmaceutical formulations may be selected depending on a therapeutic goal; typically, tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, suppositories and injections(a.g., liquids and suspensions).

Tableting may be done with a wide variety of carriers well known in the art; for example, excipients such as lactose, sucrose, sodium chloride, dextrose, starch, calcium carbonate, kanline, crystritine cellulose and silicic acid; binders such as water, athanol, propanol, simple syrup, glucose solution, starch solution, galatin solution, carboxymethyl cellulose, shellad, methyl cellulose, potassium phosphate and polyvinylpyrrolidone; disintegrators such as dry starch, sodium alginate, powdered agar, sodium bioarbonate, calcium carbonate, polyoxyethylene-sorbitan latily acid esters, sodium lauryl sulfate, monoglyceride stearate, starch and factose; disintegration inhibitors such as sucrose, stearid acid, codos butter and hydrogenated vegetable oil, absorption promoters such as quaternary ammonium bases and sodium lauryl sulfate; wetting agents such as glycerin and erarch; adsorbents such as starch, factose, kaoline, bentonite and colloidal silicid acid; and lubricants such as tald, stearates, powdered borid acid and polyethylene glycol. Furthermore, tablets may be, it recessary, coated with common coating; for example, sugar coated tablets, gelatin-encapsulated liablets, enteric-coating liablets, film-coated tablets, or bilayered or multi-layered tablets.

Pills may be prepared with a wide variety of carriers well-known in the art for example, excipients such as glucose, factose, starch, cacac butter, hydrogenated vegetable oil, keoline and talc; binders such as powdered acacla, powdered traggeranth and galatin; disintegrators such as neleium carmerose and ager.

Suppositories may be prepared with a wide variety of carriers well-known in the art such as polyethylene glycol, oxcao butter, higher alcohols, higher alcohol exters, gelatin and semi-synthetic glycerides.

Capsules may be prepared as usual by fitting a mixture of active ingredients with one or more of the above various cardiers, in, for example, a hard or soft galatin capsule.

Solutions, emulsions or suspensions as an injection are preferably sterilized and made to be labtonic with blood. They may be prepared with diluents commonly used in the sirt, such as water, ethanoi, macrogot, propylene glycot, athoxylated isostearyl alcohols, polyoxylated isostearyl alcohols and polyoxylated isostearyl alcohols, polyoxylated isostearyl alcohols and polyoxylated isostearyl alcohols, polyoxylated isostearyl alcohols and polyoxylated isostearyl alcohols. In this case, the pharmaceutical formulation may contain a sufficient amount of sodium chloride, dextrose or glycerin to prepare an isotonic solution, as well as common solubilizing agents, buffer agents and scothing agents.

The pharmaceutical formulation may, if necessary, contain coloring agents, preservatives, aromatics, flavoring agents, sweeteners and/or other pharmaceutical agents.

The amount of active ingredients to be contained in the pharmaceutical formulation of this invention may be selected as appropriate from a wide range with no limitations, but generally from about 1 to 70 vs %, preferably about 5 to 50 vs %.

Dosage regimen for the pharmaceutical formulation of this invention may be selected with no limitations. In the light of its dosage form, age, sex and other conditions of the patient, and severity of the disorder, for example, tablets, pills, solutions, suspensions, emulsions, granules and capsules may be orally administered: injections may be intravenously administered solely or in combination with common replacing fluid such as glucose solution and arnino acid solution, or it necessary, administered intramuscularly, subcular sously or intraperitoneally, and suppositories may be intrareolally administered.

Dosage of the pharmaceulical formulation of this invention may be selected as appropriate, in the light of its dosage regimen; age, sex and other conditions of the patient, and severity of the disorder. Preferably, the daily amount of the active ingredients may be about 0,0001 to 50 mg/kg. Preferably, a unit dosage form may contain about 0,001 to 1000 mg of the active ingredients.

The compounds of this invention have indicated no serious side effects or death within their effective design range in pharmacological studies.

# EXAMPLES

4.5

20

10

Examples of proparation, formulation and evaluation for the compounds of this invention will be described, but this invention is not timited to the specific embodiments.

# Preparation Example 1

W. E. Francisco

Preparation of 1 (4-chterophenyt)-3-(4-(2-methoxyethyt)p:perazin-1-vtimethyt-2-pyrrolidinone(Table 1: Compound No. 146, recemic modification)

#### (1)Preparation of 1-(4-chlorophernyl)-2-pyrrotidinone

28

To a mixture of 372 g of p-chloroaniline and 251 g of p-butyrolactone was added 75 mL of hydrochloric acid. The mixture was slowly warned to an inner temperature of 110 io 115°C, and refluxed for 9 hours. Then, removing the refluxing liquid to slowly raise the inner temperature to 140°C, the reaction was continued for 8 hours. Consequently, 80 mL of the refluxing liquid was removed. After cooling to an inner temperature of 70°C, the mixture was dissolved in 2000 mL of ethyl acetate and washed sequentially with water, aqueous sodium carbonate solution and water. The organic layer was dried over magnesium suffate and concentrated to about 1000 mL, and the precipitated crystals were collected by filtration. The filtrate was further concentrated to about 200 mL to collect the precipitated crystals. The combined crystals were washed with ethyl acetate and dried in vacuo to give 947 g of the little compound.

¹H NMR(COC)₃, 8 ppm): 2.17(2H, quintet), 2,61(2H, f), 3.93(2H, f), 7,62(2H, d), 7.58 (2H, d).

30

30

# (2) Preparation of 1-(4-chlorophenyl)-3-ethoxycsrbonyl-2-pytrolidinone

To a suspension of 25 g of sodium hydride (60 % oil dispersion) in 100 mL of tetrahydrofusian was added 37 g of diethyl distribute. Under reflux, to the mixture was added dropwise a solution of 52 0 g of 1-(4-chlorophenyl)-2-pyrrolidinone in 150 mL of tetrahydrofusian over about 1.5 hours. After refluxing for 4.5 hours, the reaction mixture was cooled, and carefully poured into ice-stater. The mixture was made to weakly alkaline with diluted hydrochloric acid and extracted with 300 mL of ethyl acetate. The organic layer was washed sequentially with water, aqueous sodium bicarbonate solution and water, dried over anhydrous magnesium sulfate and concentrated to give an oil. To the residue was added 200 mL of n-hexane, and the precipitated crystals were collected by filtration. The crystals were washed with n-hexane and dried in vacuo to give 60 g of the title compound.

³H NMF (CDCl₃, 6 ppm): 1,32(3H, t), 2,35-2,61(2H, m), 3,60-3,86(1H, m), 3,75-3,86(1H, m), 3,89-4,07(1H, m), 4,26(2H, q), 7,33(2H, d), 7, 68(2H, d)

# (3) Preparation of 1-(4-chlorophenyl)-3-hydroxymethyl-2-pyrrolidinone

50

43

Under ice-cooling, 3.9 g of sodium borohydride was added portionwise to a solution of 90.0 g of 1-(4-chlorophenyt)-3-cihoxycarbonyt-2-cyrrolidinone and 15 g of anhydrous calcium chloride in 150 mt, of methanol. After completion of the reaction, the mixture was concentrated, and water and ethyl acetate were added. The mixture was acidified with diluted hydrochloric acid. After separation, the organic layer was washed with water, dried over anhydrous magnesium sulfate and concentrated. The residue was crystallized with n-hexane-ethyl ether. The crystalls were collected by fittration, washed with a mixture of n-hexane and diethyl ether and dried in vacuo to give 23.9 g of the title compound

¹H NMP(CDCl₃, 5 ppm): 1.94-2.09(1H, m), 2.23-2.35(1H, m), 2.83-2.94(1H, m), 2.99(1H, bs), 3.75-3.89(3H, m), 3.94-4.00(1H, m), 7.03(2H, dd), 7.68(2H, dd)

# (4) Preparation of 1-(4-chlorophenyl)-3-masyloxymathyl-2-pyrrolidinone

Under ice-cooling, 14.0 g of methanesulfonyl chloride was added dropwise to a solution of 23.2 g of 1 (4-chlorophenyl)-3-hydroxymethyl-2-pyrrolidinone and 12.5 g of triethylamine in 200 mL of dichicromethan. After 2 hours, the reaction mixture was washed with water, dried over anhydrous magnesium suitate and concentrated to give crystals. The crystals were sludged with diethyl other and collected by filtration. The crystals were washed with diethyl other and dried in vacuo to give 29.8 g of the title compound.

¹H NMR(CDCl₃, 8 ppm); 2.16-2.50(2H, m), 2.87-3.18(4H, m), 3.77-3.87(2H, m), 4.43-4.67(8H, m), 7.94(2H, d), 7.58(2H, d)

(5) Preparation of 1-formyt-4-(2-methoxyethyl)piperazine

To a solution of 37,1 g of N-formylpherazare and 37.1 g of anhydrous sodium carbonate in 50 mt, of methanol was added dropwise 53.15 g of methoxyethyl bromide, and the mixture was reflexed for 9.5 hours. After cooling to room temperature, insolubles were filtered out and the filtrate was concentrated. To the residue was added water and chloroform. After separating the organic layer, the aqueous layer was extracted with chloroform. The combined organic layer was dried over arrhydrous magnesium sulfate and concentrated to give 57.2 g of the title compound.

³H NMR(CDCl₃, § ppm): 2.45-2.54(4H, m), 2.59-2.63(2H, m), 3.35-3.43(2H, m), 3.36(3H, s), 3.50-3.61(4H, m), 8.02(1H, s)

(6) Preparation of 1-(2-methoxyethyl)piperazine dihydrochloride

To a solution of 57.2 g of 1-torrayl-4-methoxyethylpiperazine in 100 mt, of methanol was added dropwise 190 mt, of 4N-hydrochloric acid/1,4-dioxane over 1.5 hours. The mixture was stirred at room temperature for 1 hour, and the resulting crystals were filtered, washed with isopropyl either and dried in vacuo to give 68.8 g of the title compound.

(7) Preparation of 1-(2-methoxyethylippoerazine

To an equeous solution of 68.8 g of 1-(2-mathoxyethyl)piperexine dihydrochloride (water; 50 mL) was added dropwise an equeous solution of 33.0 g of sodium hydroxide (water; 100 mL). The mixture was extracted with chloroform. The organic layer was dried over enhydrous magnesium suffate and evaporated to give 41.3 g of the title compound. 1H NMP(CDCL, 8 ppm): 1.90(1H, e), 2.47-2.50(5H, m), 2.90-2.94(4H, m), 3.96(3H, e), 3.52(2H, f)

(8) Preparation of 1-(4-chlorophanyi)-3-(4-(2-methoxyethyl)piperazin-1-yi)methyt-2-pytrolidinona

Triethylamine (8.0 g) was added to a solution of 18.5 g of 1-(4-chicrophenyl)-3-mesyloxymethyl-2-pyrrolidinone and 17.6 g of 1-(2-methoxyethyl)piperazine in 50 mL of acetonitrile, and the mixture was heated under reflux for 4 hours. After concentrating, water was added to the reaction mixture to precipitate crystals, which were then collected by filtration and drind in vacuo to give 18.5 g of the title compound.

Melting point: 103-105 °C

¹H NMH(CDCl₃, § ppm); 2, 01-2,12(1H, m), 2,29-2,62(12H, m), 2,78-2,94(2H, m), 3,36(3H, s), 3,51(2H, t), 3,74-3,80(2H, m), 7,92(2H, d), 7,59(2H, d)

Preparation Example 2

Preparation of 1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)siperazin-1-ytimethyl-2-pytrolidinone dihydrochlonde (Table 2; Compound No. 50; recenic modification)

A solution of 1.41 g of 1-(4-chlorophenyi)-3-(4-(2-methoxyethyf)piperazin-l-yf)methyl-2-pytrolidinone in 10 mL of methanol was acidified by adding 4N hydrochloric acid/1,4-diaxana. The precipitated crystals were collected by filtration, washed with clieflyl ether and dried in vacuo to give 1.62 g of the title compound.

Meiting point: 251-252 °C

1H NMR(OMSO, 8 ppm): 2 00-2,12(1H, m), 2,55(1H, m), 3,31(3H, s), 3,31-3,84(17H, m), 7,48(2H, d), 7,72(2H, d)

56

10

20

28

30

30

40

# Preparation Example 3

Preparation of 1: (4-chlorophenyl): 3-(4-(2-hydroxyethyl)piperazin-1-yi)methyl-2-pyrrolidinone[Table 1, Compound No. 145, racemic modification)

S

10

2.5

The fifte compound was prepared from 1-(4-ohlorophenyi) 3-masyloxymathyi-2-pyrrolidinone and I-hydroxyathytpiperazine, in the same manner as in Preparation Example 1(8).

Melting point: 130-131 °C

³H NMR(CDCl₃, δ ppm): 2.01-2.13(1H, m), 2.30-2.93(14H, m), 3.61(2H, t), 3.75-8.60(2H, m), 7.29-7.35(2H, m), 7.56-7.62(2H, m)

#### Preparation Example 4

.....

Preparation of 1-(4-chlorophenyl) 3-(4-(2-hydroxyethylipiperazin-1-yl)methyl-2-pyrrolidinons dihydrochloride(Table 2-Compound NO, 49: recemic modification)

The title compound was prepared in the same menner as in Preparation Example 2.

Melting point: 269.6-271,3 °C

¹H NMP(D₂O, 8 ppm): 2 03-2.15(1H, m), 2.50-2.50(1H, m), 3.37-2.59(4H, m), 3.59-4.04(13H, m), 7.49(4H, s)

90

## Preparation Example 5

Proparation of 1:(4-chlorophanyl)-3-(4-(3-hydroxypropyl)piparazin-1-yl)methyl-2-pytrolidinone(Table 1; Compound No. 157; racemic modification)

25

30

36

(1) Preparation of 1-(3-hydroxypropytipiperazine

The title compound was prepared from formylpherazine and 3-bromo-1-properci in the same manner as in Preparation Example 1(5) to (7).

¹H NMR(CDCl₀, 8 ppm): 1.67-1.84(2H, m), 2.32-2.52(2H, m), 2.59-2.67(4H, m), 2.88-2.94(1H, m), 3.77-3.82(2H, m)

(2) Preparation of 1-(4-chlorophenyl)-3-(4-(3-hydroxypropyl)piperazin-1-yl)methyl-2-pytrolidinone

The title compound was prepared from 1-(4-chlorophenyl):3-nesyloxymethyl-2-pyrrolidinons and 1-hydroxypropylpiperazine, in the same manner as in Preparation Example 1(8).

14 NMR(CDCl₃, 8 ppm): 1.66-1.86(2H, m), 1.92-2.14(1H, m), 2.29-2.41(1H, m), 2.43-2.66(11H, m), 2.76-2.98 (2H,m), 3.76-3.62(4H, m), 7.32(2H, d), 7.59(2H, d)

40 Preparation Example 6

Proparation of 1 (4-chlorophenyti-3-(4-(3-hydroxypropytip/parazin-1-yt)methyl-2-pyrrolidinone dihydrochloride(Table 2 Compound No.61; racemic modification)

The title compound was prepared in the same menner as in Preparation Example 2. Melting point; 268.8-264.2 °C

1H NMR(D₂O, 3 ppm); 1.98-2.14(3H, m), 2.48-2.50(1H, m), 3.92-4.04(17H, m), 7.48(4H, s)

# Preparation Example 7

\$Ø

43

Preparation of 1-(4-chiorophenyl)-9-(4-(2-ethoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinona(Table 1; Compound No. 147; recemic modification)

(1) Preparation of 1-(2-ethoxyethy/piperazine

56

The title compound was prepared from formylpiperszine and 2-bromoethyl ethyl ether in the same manner as in Preparation Example 1(5) to (7).

¹H NMR(CDC)₁, 8 ppm); 1.19(3H, 1), 2.48-2.49(2H, m), 2.58-2.61(4H, m), 2.68-2.92(4H, m), 3.45-3.59(4H, m)

(2) Preparation of 1 (4-chlorophenyl)-3-(4-(2-ethoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinone

The title compound was prepared from 1-(4-chlorophenyt)-3-mesyloxymethyt-2-pyrrolldinone and 1-ethoxyethyl-piperazine, in the same manner as in Preparation Example 1(6).

"H NMP(CDCl₅, 3 ppm) 1,20(3H, t), 1,99-2,15(1H, m), 2,29-2,41(1H, m), 2,49-2,61(11H, m), 2,77-2,93(2H, m), 3,46-3,58(4H, m), 2,74-3,80(2H, m), 7,32(2H, d), 7,59(2H, d)

## Propagation Example 8

Š.

2.5

28

50

56

Preparation of 1-(4-chlorophenyl)-S-(4-(2-ethoxyethylipiperazin-1-ylimethyl-2-pymolidinone dihydrochloride(Table 2) Compound No. S1; recemic modification;

The title compound was prepared in the same manner as in Preparation Example 2. Melting point: 261.0-261,4 °C

¹H NMP(O₂O, 8 ppm); 1,21(3H, 1), 1,99-2,15(1H, m), 2,50-2,61(1H, m), 3,94-9,46(1H, m), 3,53-4,13(18H, m), 7,48(4H, s)

# Preparation Example 9

- Properation of 1-(4-chierophenyl)-9-(4-i2-(3-propyryloxylethylipiperazio-1-ylimethyl-2-pyrrolidinone(Table 1, Compound No. 156; recernic modification)
  - (1) Preparation of 1-fee-butoxycarbonyl-4-(2-bydroxyethyl)piperazine
  - To a solution of 10 00 g of 1-(2-hydroxyethyl)piperazine in 70 mt. of dioxane at room temperature was added dropwise a solution of 16 43 g of di-tert-butyl dicarbonate in 30 mt. of 1,4-dioxane with stirring. After completion of the reaction, the mixture was concentrated and n-hexane was added to the residue. The solid was collected by filtration and dried to give 14.11 g of the title compound.
- 90 (2) Preparation of 1-tent-butoxycarbonyl-4-(2-(2-propynyl)ethyl)piperazine.

To a refluxing solution of 1.67 g of sodium hydride in 20 mt, of tetrahydrofuran was added dropwise a solution of 5.00 g of 1-tent-butthy/cerbonyl-4-(2-hydroxyethyf)piperazine in 15 mt, of tetrahydrofuran and then 5.63 g of propargyl bromide was added dropwise to the resultant mixture. After completion of the reaction, the mixture was concentrated, poured into ice-water, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and evaporated to give 10.70 g of the liftle compound.

- (3) Preparation of 1-(2-(2-propynyloxy)ethyl)piperazine dihydrochloride
- To a solution of 10.70 g of 1-tert-butoxycarbonyl-4-(2-(2-propynyl)ethyl)piperazine in 1,4-dioxane was added 4N hydrochloric acid/1,4-dioxane, and the mixture was stirred at 60 °C. After completion of the reaction, the mixture was concentrated and diethyl other was added. The solid was collected by filtration and diethyl other was added. The solid was collected by filtration and dried to give 11.63 g of the title compound.
- 48 (4) Preparation of 1-(2-(2-propyriyloxy)ethyl)piperazine

To an aqueous solution of 11.93 g of 1-(2-(2-propynyloxy)ethyl)piperazine dihydrochloride (water: 10 mL) was added aqueous sodium hydroxide solution, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and evaporated to give 3.09 g of the fifte compound.

"H NMFI(COCI₃, 8 ppm), 2.42(1H, t), 2.41-2.49(2H, m), 2.60(4H, t), 2.91(4H, t), 3.67(2H, t), 4.18(2H, d)

(5) Preparation of 1-(4-chlorophenyl)-3-(4-(2-(2-propynyloxy)ethyl)piperazin-1-yl)methyl-2-pyrrokdinone

The title compound was prepared from 1-(4-chlorophenyl)-9-mesyloxymethyl-2-pyrrolidinorie and 1-(2-(2-propynyloxy)ethylipiperazine, in the same manner as in Preparation Example 1(8).

³H NMR(CDCl₃, 8 ppm); 1,94-2,12(1H, m); 2,29-2,39(1H, m); 2,42(1H, I); 2,53-2,74(11H, m); 2,78-2,94(2H, m); 3,65-9,71(2H, m); 3,74-2,80(2H, m); 4,18(2H, d); 7,32(2H, d); 7,59(2H, d)

# Preparation Example 10

Ý.

10

1.5

90

28

30

36

Preparation of 1:(4-chlorophanyl)-3:(4-(2-(2-propynyloxy)ethylipiperazin-1-y/limethyl-2 -pyrrolidinona dihydrochlorida (Tabla 2, Compound No 60, racamic modification)

The fittle compound was prepared in the same manner as in Preparation Example 2.

Metting point: 246.2-247.0 °C

¹H NMR( $D_2$ C,  $\delta$  ppm) 1 99-2.14(1H, m), 2.48-2.60(1H, m), 2.95(1H, I), 3.32-3.49(1H, m), 3.51-4.23 (16H, m), 4.29(2H, d), 7.48(4H, s)

Preparation Example 11

Preparation of 1-(4 chlorophenyth-3-(4-(3-methoxygropytholograzin-1-yf/methyl-2-pyrrolidinone(Table 1; Compound No. 158; mesmic modification)

Preparation of 1-(0-methoxypropyl)piperazine

The title compound was prepared from 1-piperazine propanol in the same manner as in Preparation Example 9(1) to (4).

14 NMP(CDC), 8 gpm): 1.72-1.82(2H, m), 2.37-2.43(6H, m), 2.89(4H, t), 3.33(9H, s), 3.42(2H, t)

(2) Preparation of 1-(4-chilorophenyl)-0-(4-(3-methoxypropyl)piperezin-1-yl)methyl-2-pyrrotidinone

The title compound was prepared from 1-(4-chlorophenyi)-3-mesyloxymethyl-2-pyrrolidinone and 1-(3-methoxy-propylipiperazina, in the same menner as in Preparation Example 1(8).

¹H NMR(CDCl₃, 5 ppm): 1.71-1.82(2H, m), 2.01-2.12(1H, m), 2.29-2.73(12H, m), 2.78-2.93(2H, m), 3.83(3H, s), 3.42(2H, t), 9.74-3.82(2H, m), 7.02(2H, d), 7.69(2H, d)

#### Preparation Example 12

Preparation of 1-(4-chlorophenyl)-3-(4-(4-mathoxypropylipiperazin-1-yl)methyl-2-pyrrolidinone dihydrophloride(Table 2; Compound No. 62; recemic modification)

The title compound was prepared in the same manner as in Preparation Example 2. Metring point: 264,1-265.0 °C

"H NMR(D₀O, 8 ppm): 2.02-2.14(3H, m), 2.49-2.60(1H, m), 3.37(3H, s), 3.32-4.04(17H, m), 7.48(4H, s)

#### Preparation Example 13

- 4º Preparation of 1-(3-chtoroshenyi)-3-(4-(2-methoxyethyiipiperazin-1-ylimethyi-2-pyrrolidinone(Table 1: Compound No. 122, recenic modification)
  - (1) Preparation of 1-(3-chlorophenyl)-3-mesyloxymethyl-2-pyrrolidinone

The title compound was prepared from m-chloroaniline and y-butyrotectors in the same manner as in Preparation Example 1(1) to (4).

¹H NMFI(CDCl₃, 8 ppm): 2.17-2.82(1H, m), 2.36-2.49(1H, m), 2.99-3.08(1H, m), 3.96(3H, s), 3.82-8.87(2H, m), 4.48-4.52(1H, m), 4.58-4.63(1H, m), 7.10-7.13(1H, m), 7.20-7.34(1H, m), 7.50-7.54(1H, m), 7.69-7.70(1H, m)

(2) Preparation of 1-(3-chlorophenyl)-3-(4-(2-methoxyethyl)piperazin-1-yi)methyl-2-pyrrolipinone

The title compound was prepared from 1-(3-chlorophenyl)-3-mesyloxymethyl-2-pyrrolidinone and 1-(2-methoxys-thyl)piperaxine, in the same menner as in Preparation Example 1(8).

¹H MMP(COO₁₃, 5 ppm); 1.98-2.25(1H, m), 2.36-2.42(1H, m), 2.53-2.65(11H, m), 2.78-2.94(2H, m), 3.35(3H, s), ³ 3.49-3.54(2H, m), 3.71-3.64(2H, m), 7.10-7.13(1H, m), 7.25-7.31(1H, m), 7.54-7.59(1H, m), 7.67-7.59(1H, m)

# Preparation Example 14

Preparation of 1: (3: chlorophenyt) 3: (4-(2-methaxvethyl)piperazin-1-vtimethyl-2-pytrolidinone dihydrochloride (Tabla 2: Compound No. 2: recemic modification)

ε

The title compound was prepared in the same maneer as in Preparation Example 2. Melting point, 227.6-228 1 °C

"H NMF(O₂O, 8 ppm); 2.02-2.14(1H, m), 2.49-2.60(1H, m), 3.03-3.46(1H, m), 3.42(3H, s), 3.49-3.57(3H, m), 3.67-4.04(13H, m), 7.32-7.38(1H, m), 7.41-7.48(2H, m), 7.81(1H, s)

10

# Preparation Example 15

Preparation of 1-(4-bromophenyi)-3-(4-(2-methoxyethyt)piperazin-1-yi)methyl-2-pyrrolidinone(Table 1, Compound No. 218; racemic modification)

9.5

20

28

(1) Preparation of 1-(4-bromophenyl)-3-masyloxymethyl-2-pyrrolidenone

The title compound was prepared from p-bromoanitine and y-butyrolactone in the same manner as in Preparation Example 1(1) to (4).

Melting point: 120-123 °C

indittaid former into inte

(2) Preparation of 1-(4-bromophenyl)-3-(4-(2-methoxyethyl)piperaxin-1-yl)methyl-2-pyrrolidinone

The life compound was prepared from 1-(4-promophenyl)-3-mesyloxymethyl-2-pyrrolidinone and 1-(2-methoxyethyl)piperazine, in the same manner as in Preparation Example 1(8).

¹H NMR(CDO₆, 8 ppm): 1.98-2.12(1H, m), 2.29-2.41(1H, m), 2.53-2.63(11H, m), 2.78-2.94(2H, m), 3.36(3H, s), 3.61(2H, t), 3.74-3.82(2H, m), 7.46(2H, d), 7.54(2H, d)

Of elements notisargery

30

33

Ersparation of 1. (4-brancobsoy): 2.(4.(2-inethoxyeihyt)pherizin-1.-ylimeihyt-2-pyrrolidinone tihydrochloride(Table 2. Compound No. 146; recenic modification)

The title compound was prepared in the same manner as in Preparation Example 2. Metring point: 272.1-272.6 °C

1H NMR(DMSO, 8 ppm), 1.99-2.07(1H, m), 3.06-0.64(18H, m), 3.01(0H, s), 7.59(2H, d), 7.65(2H, d)

## Preparation Example 17

- Preparation of 1-(3-bromophenyl)-3-(4-(2-methoxyethyl)piperezin-1-yl)methyl-2 pyrrolidinone(Table 1: Compound No. 194; recenic modification)
  - (1) Preparation of 1-(3-bromophenyl)-3-mesyloxymethyl-2-pyrrolidinone

The title compound was prepared from m-bromosniline and p-butyrolactons in the same manner as in Preparation Example 1(1) to (4).

¹H NMP(CDCl₈, ii ppm): 2.21-2.99(1H, m), 2.41-2.49(1H, m), 2.83-3.06(1H, m), 3.97(9H, s), 3.82-9.87(2H, m), 4.48-4.59(1H, m), 4.58-4.64(1H, m), 7.22-7.33(2H, m), 7.57-7.61(1H, m), 7.82-7.84(1H, m)

(2) Proparation of 1-(9-bromophenyl)-3-(4-(2-methoxyethylipiperazin-1-yl)methyl-2-pyrrolidmona

The liftle compound was prepared from 1-(3-bromophenyt)-3-mesyloxymethyt-2-pyrrolidinone and 1-(2-methoxys-thyt)pipurazine, in the same manner as in Preparation Example 1(9).

¹H NMP(COCI₃, δ ppm); 2.01-2.12(1H, m), 2.34-2.60(12H, m), 2.78-2.94(2H, m), 3.35(3H, s), 3.48-3.68(2H, m), 6. 3.74-3.80(2H, m), 7.19-7.28(2H, m), 7.59-7.64(1H, m), 7.81(1H, d)

# Preparation Example 18

Preparation of 1: (3-bromogheny): 3: (4: (2-methoxyerhyt)piperazin-1-yi)methyt-2-symolidinong dihydrochloride (Table 2: Compound No. 98; racernic modification)

E

The filte compound was prepared in the same manner as in Preparation Example 2.

Melting point, 207,9-238 5 °C

¹H NMP(DMSO, 8 ppm); 2 94(1H, m); 3 31(3H, s); 3,31-3,86(18H, m); 7,96-7,37(2H, m); 7,60-7,62(1H, m); 8,00-(1H, s)

10

#### Preparation Example 19

Preparation of (R)-1-(4-chicrophenyl)-9-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-gynolidinona (R)-(-)-mandelate (Tablis 3, Compound No. 148; (R)-isomer)

7.5

To a not solution of 66.6 g of 1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinone in 350 mL of ethyl acetate was added a trot solution of (B)-(-)-mendelic acid in 120 mL of ethyl acetate. After cooling, the precipitated crystals were filtered, washed with ethyl acetate and dried in vacuo to give 36.4 g of the little compound.

Molting point 197-138 *C

Enantiomer excess: at least 99 % ecloalculated from the HPLC area ratio)

The enantiomer excess was calculated from the peak areas determined by liquid chromatography using a chiral column. The values hereinafter were determined in a similar manner.

1H NMR(DMSO, 6 ppm); 1 83-1.97(1H, m), 2.19-2 97(14H, m), 3 23(3H, s), 3.41-3 48(2H, m), 3 70-3.81(2H, m), 4.94(1H, s), 7.21-7.98(3H, m), 7.41(2H, d), 7.69(2H, d)

2S

20

#### Preparation Example 20

# Preparation of (B)-1-(4-chlorophenyl)-9-(4-(2-methoxyethyl)piperazin-1-yijmethyl-8-pytrolidinone (Table 1, Compound No. 146; (B)-isomer)

30

36

40

(R)-1-(4-chlorophenyl)-3-(4-(2-molhoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinene (R)-(-)-mandelate (30.5 g) recrystallized from 100 mt. of ethanol was dissolved in 300 mt. of water, and the solution was desalted with sodium carbonate and extracted with ethyl acetals. The organic layer was dried over arrhydrous magnesium sulfate and concentrated to give 19.5 g of the title compound.

Melting point: 102-109 °C

Optical relation. +

Enantiomer excess: at least 99 % ee

¹H NMH(COCl₃, 8 ppm); 2.04(1H, m), 2.35(1H, m), 2.4-2.7(11H, m), 2.81(1H, m), 2.91(1H, dd), 3.05(0H, s), 0.51 (2H, I), 3.77(2H, m), 7.32(2H, d), 7.59(2H, d)

The fille compound could be also synthesized by the following procedure:

A solution of L-tarteric acid (150 mg) in ethanol (1.5 ml) was added to 1-(4-chlorophenyt)-3-(4-(2-methoxyethyt) piperazin-1-yi)methyt-2-pyrrollidinone (351 mg) in ethanol (6 ml). The solid material thus precipitated was collected and subjected to desailing in an aqueous solution of sodium carbonate to obtain the title compound.

Enantiomer exess: 25% se

43

#### Preparation Example 21

# Preparation of (R)-1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinone dihydrochlorida (Table 2; Compound No. 50; (R)-isomer)

ŝĢ

56

A solution of 18.7 g of (R)-1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)piperazin-1-yi)methyl-2-pyrrolidinone in 130 mil. of methanol was acidified with 4N hydrophloric acid/1,4-dioxane. The precipitated crystate were filtered, washed with diethyl ether and dried in vacuo to give 22.6 g of the title compound.

Mailting point: 252-253 °C (decomposed)

Option: rotation. -

Enantiomer excess: at least 99 % pe

¹H NMH(D₂O, 8 ppm); 2.06(1H, m), 2.52(1H, m), 3.41(3H, s), 3.32-4.03(17H, m), 7.48(4H, s)

# Preparation Example 22

٤

7.5

20

28

80

36

Eraparation of (S): 1:(4-chioropheny():3:(4-(2-methoxyethyl)piperazin:1-v))methyl-2-pytrolidinona (S):(+)-mandelata (Table 9, Compound No. 156, (S)-isomer)

Under heating, 152 mg of (S)-(+)-mandatic acid was added to a solution of 382 mg of 1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)piparazin-1-yl/methyl-2-pyrrolidinone in 3 mt, of ethyl acetate. After cooling, the precipitated crystals were fillered and dried in vacuo to give 180 mg of the title compound.

14 NMR (DMSO, &ppm): 1,83-1,97(14, m), 2,19-2,97(14H, m), 3,23(3H, s), 3,41-3,48(2H, m), 3,70-3,81(2H, m), 4,94(1H, s), 7,21-7,38(6H, m), 7,41(2H, d), 7,59(2H, d)

#### Preparation Example 23

Proparation of (S): 1: (4-chloroptianyl): 3: (4-(2-methoxyathyl)piperaxin-1-yhmathyl-2-pyrrolidinone (Table 1: Compound No. 146: (S)-leamer

Into 2 ml, of water was dissolved 180 mg of (S)-1-(4-chlorophenyl)-3 (4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinone (S)-(x)-mandelate, and the solution was desalted with sodium carbonate and extracted with ethyl acetate. The organic layer was dried over arrhydrous magnesium sulfate and concentrated to give 120 mg of the fille compound.

Melting point: 105-106 °C

Optical rotation: -

Enantiomer excess; at least 92 % es

⁷H NMR (CDCl₆, 8 ppm): 2.01-2.12(1H,m), 2.30-2.63(12H, m), 2.75-2.94(2H, m), 3.35(3H, s), 3.51(2H, 1), 3.74-3.90(2H, m), 7.30-7.95(2H, m), 7.56-7.62(2H, m)

#### Preparation Example 24

<u>Proparation of (5): 1-(4-chlorophenyt): 3-(4-t2-meihoxyethyt)piperazin: 1-yt)methyt-2-pyrrolidinone dihydrochloride</u> (Table 2; Compound No. 50; (5)-isomer)

A solution of 1.0 g of (5)-1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinone in 50 mil. of ethanol was apidified with 4N hydrophlaric abid/1.4-dimmans. The precipitated crystals were fittered, washed with distribution and dried in vacuo to give 1.18 g of the tille compound.

Melting point: 258 °C (decomposed)

Optical rotation. +

Enantiomer excess: at least 99 % ee

¹H NMR(D₂O, 8 ppm); 2 06(1H. m), 2.52(1H. m), 3.41(3H, s), 3.92-4.03(17H, m), 7.48(4H, s)

## 40 Preparation Example 25

Preparation of (R)-1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)piperazin-1-yi)methyl-2-pyrrolidinone dihydrochloride dihydrate(Table 2; Compound No. 74; (R)-(somer)

(R) 1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)piperazin-1-yl)methyl-3-pyrrolidhone dihydrochloride (1.98 g) was placed in an incubator kept at 25 °C under a relative humidity of 75 % for 24 hours to give 2.14 g of the title compound.

Melting point 264.6-265.1 °C (decomposed)

Optical rotation: -

Enemisorner excess; at least 99 % ee

³H NMP(O₂O, & ppim): 2.05(1H, m): 2.52(1H, m), 3.41(9H, s), 3.32-4.03(17H, m), 7.49(4H, s)

Alternatively, the compound may be prepared as follows.

Under reflux, water was added dropwise to a suspension of 100 mg of (F)-1-(4-chlorophenyi)-3-(4-(2-methoxyethyl) piperexin-1-yi)methyl-2-pyrrolidinone dihydrochloride in 3 mL of ethanoi until the reaction system became homogeneous. After cooling to room temperature, the precipitated solid was filtered and dried to give 88.5 mg of the title compound.

56

50

# Preparation Example 26

ŝ,

20

Preparation of (R):1:(4-chiorophenyi):3-(4-(2-methoxyethyl)piperazin:1-yi)methyl-2-pyrrolidinona dihydropromida (Table 9, Compound No. 11; (R)-isomer)

To a mixture of 379 mg of 47 % hydrobromic acid ag, and 10 mL of ethanol was added a solution of 352 mg of (R)-1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinone in 10 mL of othanol. The mixture was stored at room temperature and then cooled. The precipitated solid was liftered and dried to give 488 mg of the little compound.

Meiting point, 244, 1-245, 1 °C

1H NMR(DMSO, 5 ppm), 1,90-2,50(1H, m), 2,40-2,55(1H, m), 2,79-4,00(20H, m), 7,46(2H, d), 7,73(2H, d),

#### Preparation Example 27

Preparation of (B):1-(4-chlorophenyl)-3-(4-(2-mathoxyethyl)piperazin-1-yrimethyl-2-pyrrolidinons sulfate monchydrate(Table 3, Compound No. 92, (R)-isomer)

A solution of 101 mg of cond sulfuric acid in 8 mL of ethanol was added to a solution of 352 mg of (FI)-1-(4-chlorophenyl)-9-(4-(2-methoxyethyl)piperazin-1-yi)methyl-8-pyrrolidinone in 10 mL of ethanol. The mixture was stirred at room temperature and then concentrated to 3 mL. To the mixture was added 5 mL of ethyl scatalia. The precipitalish solid was littered and dried to give 399 mg of the title compound.

Metting point 166,4-166.7 °C

¹H NMR (DMSO, 8 ppm): 1-84-1.99(1H, m), 2.15-4.35(21H, m), 7.44(2H, d), 7.71(2H, d)

## 25 Preparation Example 28

Preparation of (R)-1-(4-chiorophenyi)-3-(4-(2-methoryethylipiperezin-1-yi)methyl-2-pyrrolidinene benzenesulfonate monohydratel Table 3, Compound No, 192: (R)-isomer)

To a solution of 176 mg of benzenesultonic acid monohydrale in 10 mL of ethanol was added a solution of 362 mg of (R)-1-(4-chlorophenyl)-9-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinone in 10 mL of ethanol. The mixture was concentrated. The residue was studged with ethanol. The solid formed was filtered and dried to give 407 mg of the filte compound.

Melting point: 82,2-95.9 °C

¹H NMA (UMSO, 8 ppm)¹ 1.88-1.99(1H, m), 2.31-3.81(21H, m), 7.31-7.98(3H, m), 7.49(2H, d), 7.59-7.68(2H, m), 7.69-7.72(2H, m)

# Preparation Example 29

49 <u>Preparation of (Fi):1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)piperazin-1-yilmethyl-2-pyrrolidinone dibenzenesulfonate, 3.5 hydrate(Table 3, Compound No. 139, (FI)-legmer).</u>

To a solution of 352 mg of benzenesulfonic acid monohydrate in 10 mL of ethyl acetate was added a solution of 352 mg of (F1)-1-(4-chlorophenyt)-3-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinone in 10 mL of ethyl acetate. The mixture was stirred at room temperature and cooled. The precipitated solid was filtered and dried to give 585 mg of the title compound.

Melting point 162,5-163.4 °C

¹H NMP(DMSO, 8 ppm): 1.78-1.97(1H, m), 2.18-3.84(21H, m), 7.23-7.36(6H, m), 7.45-7.49(2H, m), 7.58-7.64 (4H, m), 7.70-7.75(2H, m)

# Preparation Example 30

Preparation of (R):1-(4-chlorophenyl):3-(4-(2 methoxyethyl)piperazin:1-yl)methyl-2-pyrrolidinone di-ptoluenesulionate dihydrate(Table 2; Compound No. 129; (R) Isomer)

To a solution of 380 mg of p-toluenesulfonic acid monohydrate in 10 mt. of ethyl acetate was added a solution of 362 mg of (R)-1-(4-oblerophenyl)-3-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinone in 10 mt. of ethyl acetate. The mixture was stirred at room temperature and cooled. The precipitated solid was filtered and dried to give 712 mg

46

43

36

SØ

ψŲ

of the title compound.

Melting point: 209 8-210.3 °C

¹H NMF(DMSO, 8 ppm); 1,85-2,10(1H, m), 2,25-2,50(1H, m), 2,29(6H, s), 2,70-3,95(20H, m), 7,12(4H, d), 7,30-(2H, d), 7,45-7,49(6H, m)

Preparation Example 31

5

20

2.5

25

33

40

43

50

Proparation of (R): 1-(4-chloroptionyl)-3-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinone methanosullonate (Tunie 3: Compound No. 107; (R)-isomer)

A solution of 240 mg of methanesulfonic acid in 5 mt, of ethyl acetate was added to a sciution of 880 mg of (R)-1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinone in 15 mt, of ethyl acetate. The mixture was stirred at room temperature and cooled. The precipitated solid was filtered and dried to give 892 mg of the title compound.

*H NMR (D₂O, 5 ppm), 1.95-2.10(1H, s), 2.41-2.55(1H, s), 2.74-3.45(13H, m), 2.80(3H, s), 3.39(3H, s), 3.75-3.77 (2H, m), 3.81-0.97(2H, m), 7.46(4H, s)

# Preparation Example 32

Proparation of (6):1:(4-chlorophenyl):3-(4-(2-methoxysihyl)piperazin-1-yl)methyl-2-pyrrolidinona dimathenesullonate (1):pipe 3: Compound No. 111: (R)-isomer)

A solution of 480 mg of methanesultonic acid in 5 mt, of othy) acetate was added to a solution of 880 mg of (H)-1-(4-chlorophenyi)-3-(4-(2-methoxyethyi)piperazin-1-yi)methyi-2-pyrolidinone in 15 mt, of ethyl acetate. The mixture was alimed at room temperature and cooted. The precipitated solid was littered and dried to give 1127 mg of the title compound.

¹H NMH(D₂O, 8 ppm): 1,98-2-19(1H, m), 2.49-2.52(1H, m), 2.60(6H, s), 3,91-4,19(17H,m), 3.41(3H, s), 7,46(4H, s)

30 Preparation Example 33

Preparation of (PI)-1-(4-chlorophenyi)-8-(4-(2-methoxyethyi)piperazin-1-yijmethyi-2-pyrrolidhone t-factate(Table 3; Compound No. 140; (PI)-isomer)

A mixture of 106 mg of 85 % L-lactic acid ac, and 10 mt. of ethyl acetate was added to a solution of 352 mg of (R)-1-(4-chlorophenyl)-3-(4-(2-methoxyothyl)piperazin-1-yl)methyl-2-pyrrolidinone in 10 mi. of ethyl acetate. The mixture was stirred at room temperature and then concentrated. The residue was studged with diethyl ether and dried to give 180 mg of the title compound.

¹H NMR(DMSO, 8 ppm), 1,23(3H, d), 1,80-2,00(1H, m), 2,15-4,10(23H, m), 7,43(2H, d), 7,70(2H, d)

Preparation Example 34

Preparation of (R)-1-(4-chiorophenyl)-3-(4-(2-methoxyethyl)piperazin-1-y/)methyl-2-pyrrolidinone Litartrate (1able 3; Compound No. 180; (R)-labmer)

To a solution of 150 mg of L-tentaric acid in 10 mL of ethanol was added a solution of 352 mg of (R)-1-(4-chlorophonyl)-3-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pytrolidinone in 10 mL of ethyl acetate. The mixture was stirred at room temperature and cooled. The precipitated solid was littered and dried to give 489 mg of the title compound.

Melling point: 183.2-184.9 °C

¹H NMR(DMSO, 8 pcm); 1 82-1.94(1H, m), 2:21-9 79(21H, m), 4:17(2H, s), 7 40-7.46(2H, m), 7:67-7 73(2H, m). Alternatively, the compound may be prepared as follows:

Into 62 mt, of 18 % water-ethanol were suspended 5.00 g of (F1)-1-(4-chlorophenyt)-3-(4-(2-methoxyethyt)piperazin-1-yl)mithyl-2-pyriolidinone and 2.13 g of L-tartaric acid. After making it homogeneous by hosting under rollux, the solution was cooled. The precipitated solid was liftered and dried to give 6.39 g of the title compound.

# Preparation Example 35

Š.

10

30

36

43

Preparation of (Fi):1-(4-chlorophenyi):3-(4-(2-methoxyethyl)piperazin-1-yi)methyl-2-pyrrotidinona oʻr-L-tartrate dinydrate(Table 3, Compound No. 186; (Fi)-isoman

To a solution of 300 mg of L-tertario acid in 20 mL of sthenot was added a solution of 352 mg of (R)-1-(4-chlorophonyl)-3-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pytrolidinone in 10 mL of athanot. The mixture was stirred at room temperature and cooled. The precipitated solid was filtered and dried to give 205 mg of the title compound.

¹H NMR(DMSO, 5 ppm): 1.87-1.98(1H, m), 2.25-2.89(14H, m), 3.25(3H, s), 9.41-3.51(2H, m), 3.74-3.80(2H, m), 4.21(4H, s), 7.42(2H, dd), 7.70(2H, dd)

#### Preparation Example 36

Preparation of (R): 1-(4-objectory): 3-(4-(2-methoxyethy))piperazin-1-y);methyl-2-pyrrolidinone (3-0-agrate(Table 3, Compound No. 192; (R)-isosner)

A solution of 75 mg of D-tartiaric acid in 3 mt, of ethanol was added to a solution of 176 mg of (R)-1-(4-chlorophanyl)-3-(4-(2-methoxysthyl)piperazin-1-yl)methyl-2-pyrrolidinone in 3 mt, of ethanol. The mixture was stirred at room temperature and cooled. The precipitated solid was littered and dried to give 110 mg of the title compound.

¹H NMR (DMSO, 8 ppm), 1.86-1.94(1H, m), 2.26-3.00(14H, m), 3.25(3H, s), 3.47-3.51(2H, m), 3.74-3.90(2H, m), 4.22(2H, s), 7.43(2H, d), 7.70(2H, d)

The tale compound could be also synthesized by the following procedure:

A solution of D-fanaric acid (460 mg) in ethanol (6 ml) was added dropwise at an outer temperature between 50 and 60 °C to a solution of 1-(4-oblorophenyi)-3-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinone (1056 mg) in ethanol (6 ml). The reaction mixture was allowed to stand for cooling and the solid material thus precipitated was collected by filtration. The solid material was further crystallized in 10 ml of ethanol to obtain 972 mg of the title compound.

Enantiomer excess: 97% se-

## 30 Preparation Example 97

Preparation of (R)-1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)piperazin-1-ylimethyl-2-pyrrolidinone disuccinate (fable 8, Compound No. 75, (R)-isomer)

A solution of 591 mg of succinic sold in 20 mL of ethenol was added to a solution of 880 mg of (R)-1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)piperazin-1-yl)methyl-2-pyrrolidinone in 20 mL of attanol. The mature was stirred at room temperature and cooled. The precipitated solid was liftered and dried to give 356 mg of the title compound.

Melting point, 98.1-99.1 °C

¹H NMR(DMSO, 8 ppm) 1.82-1.96(1H, m), 2.18-2.97(14H, m), 2.41(4H, s), 9.23(3H, s), 3.41-3.46(2H, m), 9.70-3.81(2H, m), 7.43(2H, d), 7.70(2H, d)

# Preparation Example 38

Preparation of (R)-1-(4-chlorophenyl)-3-(4-(2-mathoxyethyl)piparazin-1-yl)methyl-2-pyrrolidinons dilumarate(Tabis 3; Compound No. 59, (B)-isomer)

Into 62 mL of 13 % water-ethanol were suspended 5,00 g of (R)-1-(4-chlorophenyl)-3-(4-(2-methoxyethyl)ciperazin-1-yl)methyl-2-pyrrolidinone and 3,30 g of furnaric acid. After making if homogeneous by heating under reflux, the solution was cooled. The precipitated solid was illtered and dried to give 7,45 g of the title compound.

Melting paint: 192-193 *0

¹H NMP(DMSO, δ ppm): 1.82-1.97(1H, m), 2.19-2.31(1H, m), 2.38-2.97(13H, m), 3.24(9H, ε), 9.44-3.48 (2H, m), 9.73-3.79(2H, m), 6.80(4H, ε), 7.43(2H, d), 7.70(2H, d)

# Preparation Example 39

£

10

4.5

20

25

80

36

30

43

50

Preparation of (Fi):1:(4-chlosophenyl):3-(4-(2-methoxyethyl)piperazin-1-yi)methyl-2-pyrrolidinona dimaleste (Table 3: Compound No. 67, (Fi)-isomer)

Into 62 mil. of 9 % water-ethanol were suspended 5.00 g of (FI)-1-(4-chlorophenyt)-3-(4-(2-methoxyethyt)piperszin-1-yt)methyt-2-pyrrolidinone and 3.30 g of maleic acid. After making it homogeneous by heating under reflux, the solution was occled. The precipitated solid was tiftered and dried to give 7.10 g of the title compound.

Melting point: 178.5-179.1 °C

1H NMF(DMSO, 8 ppm), 1,76-1,98(1H, m), 2,29-2,36(1H, m), 2,86-9,30(13H, m), 3,30(3H, s), 3,60-3,72(2H, m), 3,76-3,91(2H, m), 6,14(4H, s), 7,44(2H, d), 7,71(2H, d)

## Formulation Example 1

Tablets were prepared using the following components.

1-(4-chlorophenyl)-8-((4-methoxyethytaiperexin-1-yt)methyl)-2-pytrolidinone hydrochloride (Table 2, Compound No. 50; (R)-facmer; produced in Preparation

Example 21	120 g
Citric acid	1 g
Lactose	35 g
Calcium phosphate, dibasic	72.9
Prulonic F-68	90 g
Sodium lauryi sulfate	20 g
Polyvinylpyrrolidona	149
Polysthylene glycol (Carbowsx 1500)	5 ធ្វ
Polyethylene glycol (Carbowax 5000)	45 g
Corn starch	39 g
Dried sodium sjesinds	39
Dried magnesium stearate	3 9
Ethanol	quantum sufficiat

First, the above pytrolidinone derivative hydrochloride, citric acid, lectose, dibasic calcium phosphate, Prulonic F-68 and sodium lauryl sulfate were blended. The mixture was sieved with a No.60 screen and wet-granulated with an alcoholic solution containing polyvinylpytrotidene, Carbowax 1500 and Carbowax 6000, during which alcohol was, when necessary, added to make the powder a paste mass. Corn starch was added to the resulting granules, and the mixture was blended until homogeneous granules were formed. The mixture was passed through a No.10 screen, placed on a tray, dried in an oven at 100 °C for 12 to 15 hours, and sleved with a No.16 screen. To the powder were added dried sodium lauryl sulfate, and the mixture was blended and compressed with a tablet machine to a desired form to give uncoated tablets.

The uncomed tablets were treated with varnish after spraying talc for prevention of moisture absorption, the tablets were coaled with a primer layer (varnish-coating layer). The primer layer was formed by a sufficient number of application of varnish for oral administration. For rounding and smoothing the tablets, a further primer layer and a smooth coating were applied with varnish. Furthermore, coloring obeling was applied until a desired coating was formed. After drying the coated tablets were polished to give evenly bright tablets.

# Evaluation Example 1 (Pladforeceptor assay for a og receptor)

# Procedure

Radioreceptor assay for a o₁ receptor was conducted according to a modified method of Vitner et at (8 J. Vitner and W.D. Bower. Multiple Sigma and PCP Receptor Ligarida: Mechanisms for Nauromodulation and Neuroprotection?, NPP Books: pp.341(1992)). P₂ fraction (20 mg/mL) prepared from a whole brain of a guinea pig without cerebellium and medulia was incubated with a test drug and a ³H-ligand (3 nM ³H-(+)pentazooine(NEN)) at room temperature for 2 hours.

The brain tissue was vacuum-filtrated on a glass-fiber filter paper(Whatman, GF/B) with Cell Hervester(Brandel,

LL-12), and then washed with buffer (3 mL × 2). The glass-fiber fitter paper was placed in a vial, into the vial was added 3.5 mL of sontiliator (Ameraham, ACSII), and after 10 hours the amount of the ⁵H-figand binding to the receptor was determined with a liquid scintiliation counter. Blank was determined using (+)-pentazocine (10 µM).

Binding rates of the ³H-ligand to the receptor for various concentration of the test drug were plotted in a graph where a rate without the test drug = 100 % and a rate with the blank compound = 0.%, and the concentration of the test drug showing a binding rate of 50 % was determined as IC₅₀. From the IC₅₀ KI value was calculated according to the following equation

$$Ki = IC_{80} / \{14(^{3}H-ligand)/K_{0}\}$$

wherein  $K_0$  is a dissociation constant between the  $^{9}H$ -ligand and the receptor calculated by Scatchard plotting for binding of the  $^{9}H$ -ligand to the receptor, changing the concentration of the  $^{9}H$ -ligand.

Pirnoszole was also evaluated

# Results

14

4.5

25

30

30

40

43

The results are shown in Table 4, indicating that the compounds of this invention had high effinity for a  $\sigma_{i}$  receptor.

# Evaluation Example 2 (Radioranegtor assay for D₅ receptor)

#### Procedure

³H-spiperone (Amersham) and a test drug were incubated with a homogenete of rat cerebral streatal site as described in D.R.Burn et al., Proc. Natl. Acad.Sci.U.S.A. 72:4855 (1975), and Ki value was determined as described in the above σ₄ radioreceptor assety.

Rimoszole was also evaluated.

#### Results

The results are also shown in Table 4, indicating that the compounds of this invention did not have affinity for a  $\Omega_2$  receptor.

Table 4:

Affinity for a receptor	****************	*************	
Preparation Example No.	Ki (nM)		
	ø,	$D_2$	
2	85	>3300	
8	14	>3300	
10	10	s-3390	
18	7.5	>2800	
2)	72	>3900	
Flimcezole	1000	11600	

# Evaluation Example 3 (Anti-SKF effect)

# Procedure

Artipsycholic solivity for a test drug was studied by means of head weaving tichavior induced by a direction agonist SKF-10047 for a mouse. For the experiment were used 10 male ddY mice aged 5 weeks (Nippon SLC) per a group. The mice were placified in a measuring cage and calmed 1 hour before the initiation of the test. To the mice was orally administered a test drug and after 60 min was subcutaneously administered SKF-10047 in a dose of 20 mg/kg. After 20 min, head weaving was counted for 10 min. Efficacy of the drug was evaluated by determining an inhibition (%) compared with the control group from the average of the 10 min scores of the lest-drug groups, 20 min after

administering SKF-10047, and then estimating a ED_{se} value.

The compound represented by the following formula (IV) which is described in Japanese Patent Laid-Open (Kokai) No. 252219/95 (JP-A 7-252219) was also evaluated.

 $F_{3}C$  2HCI (IV)

# <u> Results</u>

ξ

10

9.5

20

25

30

æ

40

43

The results are shown in Table 5, indicating that the compounds of this invention had a higher antipsychotic activity than the compound of formula (IV).

# Evaluation Example 4 (Anti-PCP effect)

Antipsychotic activity for a test drug was studied by means of head weaving behavior induced by phencyclidine (PCP) for a rat. For the experiment were used male Wistar(ST) rate aged 4 weeks (Nippon SLC). The rate were placed in a measuring cage and calmed 1 hour before the initiation of the test. To the rate was orally administered a test drug and after 60 min was intrapentoneally administered PCP in a close of 7.5 mg/kg. After 20 min, head weaving was counted for 10 min, Efficacy of the drug was evaluated by determining an inhibition (%) compared with the control group from the average of the scores of the test-drug groups, and then estimating a ED₅₀ value.

The compound of formula (IV) described in JP-A 7-252219 was also evaluated.

# Results

The results are also shown in Table 5, indicating that the compounds of this invention had a higher antipsychotic activity than the compound of formula (IV).

Table 5:

Antipaychose activity		******************************	
Preparation Example No.	ED ₅₀ (mg/kg) Orei treatment before 60 min		
	Anti-SKF	Anti-PCF	
2.	2.1	1.3	
16	0.62	1.9	
23	9.77	0.75	
37	•	1.15	
38	,	1,48	
39	*	1,08	
Compound of formula (IV)	14	11	

# Evaluation Example 5 (Persistence of anti-SKF effect) Procedure

Pensistence of amipsychotic activity for a test drug was studied by means of head weaving behavior induced by a or receptor agonist SKF-10047 for a mouse. For the experiment were used 10 male ddY mice aged 5 weeks (Nippon SLC) per a group. The mice were placed in a measuring cage and calmed 1 hour before the initiation of the test. To the mice was orally administered a test drug and after 4 hours was subcutaneously administered SKF-10047 in a dose of 20 mg/kg. After 20 min, head weaving was counted for 10 min. Efficacy of the drug was evaluated by determining an inhibition (%) compared with the control group from the average of the 10 min scores of the test-drug groups, 20

min after administering of SKF-10047, and then estimating a ED_{sc} value:

The compound of formula (IV) described in JP-A 7-252219 and the compound represented by the following formula (V) which is described in Japanose Palont Laid-Open (Kokel) No. 40867/97 (JP-A 9-40867) were also evaluated

# Results

ξ.

10

7.5

20

25

Œ

40

43

56

The results are shown in Table 6, indicating that the compound of this invention was effective for more than 4 hours and improved in its duration of affectiveness compared with the compounds of the above formulas (IV) and (V)

Persistence of anti-SKF effect Preparation Example No. EO_{s0} (mg/kg) (after 4 hours) 3.19 Compd. of formula (IV) >100 Compd of formula (V) 20.2

Table 6

Evaluation Example 6 (Effect to reverse tolerance development due to repetitive administration of methamphetamine)

#### 30 Procedure

For the experiment, mate Std:Wister(ST) rat (Nippon SLC) aged 5 weeks were used, A test drug, the compound of formula (IV) described in JP-A 7-252219 or the compound of formula (V) described in JP-A 9-40567 was dissolved in purillad water or 0.5 % C.M.C./salina, Methamphetamina (mAMP) was dissolved in saline. Dosaga volume was 1 mlukg body weight.

# Test procedure

a) Repetitive administration of a test drug and mAMP.

The drugs were repetitively administered for 10 days with a regimen that to a rat, a test drug was draffy or intraperliancelly administered and after 60 min mAMP was intraperliancelly administered in a dose of 2 mg/kg. To a normal group, solvent alone was administered in place of the combination of the test drug and mAMP. To a control group, solvent was crafty or intraper to neatly administered, and then intraperatoneally mAMP was additionally administered,

b) Effect of a test drug on a process of reverse totalance development

After the repetitive administration, there was provided a withdrawal period for 7 days during which the test drug or mAMP was not administered. After the withdrawal, the test drug was discontinued and mAMP was administered in a dose of 2 mo/kg, and then elerentyped behavior of the animal was observed

# c) Rating of stereotyped behavior

After administering mAMP, stereotyped behavior was rated in accordance with the tollowing scale, for 1 min every 10 min until 60 min.

# Scale

ε

2.5

20

25

- 0: Calm
- 1. Common behavior with exploratory activities
- 2: Sniffing and head-movement with hyperknesis
- 3, Intermittent snilling and head-movement with periodical hyperkinesis
- 4. Almost continuous sniffing and head-movement with occasional transposition movement
- 5: Continuous shiffing and bead-movement without transposition movement

10 The results are expressed as an inhibition (%) of reverse tolerance development calculated from the following equation, using a total score for six minutes: Inhibition of reverse tolerance development (%) = 100 - A wherein A represents a value calculated from the following equation

A=[I(Score for the test drug group)-(Score for the normal

group)] / [(Score for the control group)-(Score for the

normal group)[] × 100

Results

The results are shown in Table 7, indicating that the compound of this invention dose-dependently intibited reverse tolerance development to methamphetamine, specifically it almost completely inhibited reverse tolerance in a dose of 15 mg/kg (oral administration), in contrast, the cited compounds in an intraperatoneal dose of 30 mg/kg showed inhibition affect comparable to the compound of this invention, which indicates that the compound of this invention had significantly higher affect than the cited compounds.

Table 70

30

Œ

Effect on reverse tolerance	development du	re to repetitive administrati	on of methemphatemine
Preparation Example No.	Dose (mg/kg)	Poure of administration	Inhibition of reverse tolerance (%)
21	7.5	Oral:	81.0
21	15.0	Orali	93.9
Compd of formula (V	30.0	Intrapedion eat	92.9
Compd. of formula V	10.0	Intrepenton sal	81,7
Compd of formula V	30.0	intrapenton eal	87.8

40

56

Evaluation Example 7(Blood kinetics)

# Procedure

43

For the experiment, mate beagle dogs were employed. A test drug was intravenously or craftly administered in a dose of 10 mg/kg. Blood samples were obtacted at 0.25, 0.5, 1, 2, 4, 5 and 24 hours after administering the test drug, and the samples were contributed to separate plasma, for which a plasma level of the test drug was determined by HPLC. Half-life of the test drug in blood was estimated from the results at the intravenous administration. An extent of bloavailability is expressed as a rate of AUC at the eral administration to AUC at the intravenous administration.

The compound of formula (V) described in JP-A 9-40667 was also evaluated.

# Results

The results are shown in Table 8, indicating that the compound of this invention had a longer half-life and was significantly improved in an extent of bioevaliability, compared with the compound of formula (V).

Table 8:

Blood kinetics parameters			
Preparation Example No	Half-life (hour)	C _{MAX} (ug/mL)	Extent of Bioavailability (%)
21	3.5	1.52	831
Compd, of formula (V)	1.5	0.48	84.3

## Evaluation Example 8 (Safety)

# Procedure

ġ,

10

28

80

ĴĒ

43

For the experiment, male Std.ddY mice aged 5 weeks were used. The mice were weighed, and then calmed in an observation cage for more than 1 hour. To the mice, a test drug was crally administered in a dose of 300 mg/kg to observe them for general symptoms until 2 hours.

The compounds of formulas (IV) and (V) described in JP-A 7-25/2/19 and 9-40667, respectively, were also evaluated.

# so Results

The results are shown in Table 9, indicating that the compounds of this invention exhibited no toxicity, I e., a significant reduction in toxicity compared with the compound of formula (IV)

Table St

Preparation Example No.	Convulsion /Treatment	Death/Treatmoni
Ş	5/8	0/8
8	0/3	0/3
18	Q/5	0/5
21	874	0/4
Compd. of formulis (IV)	5/5	5/5
Compd. of formula (V)	1/3	9/3

It was demonstrated that the compounds of this invention had allinky for a preceptor and high antipsychotic activity. Let, anti-SKF and anti-PCP effects. They were highly affective to a methamphetamine (mAMP)-induced reverse tolerance model, Let, an exacerbation model of schizophrenia. Since they do not have affinity for a departine receptor and can inhibit reverse tolerance without extrapyramidal side effects, the compounds of this invention may be expected to be effective against recurrence or intractabilization of schizophrenia.

Furthermore, the compounds of this invention are highly selective towards  $\alpha_1$  receptor compared with a  $\alpha_2$  receptor, and inhibited not only head weaving but also rearing, for PCP-induced abnormal behavior. Furthermore, the compounds of this invention surprisingly inhibited a departmental activity, approximate induced of inburg behavior, in spite of no allimity for a department receptor, while exhibiting no effect on approximate induced starsolyped behavior (side offsets)

Optically resolved compounds of this invention which were optically resolved from the recemic modifications exhibited more improved affinity for a 6 receptor, and more improved antipsycholic activity.

The compounds of this invention showed significantly longer duration of drug efficacy and an improved extent of bioavailability than the cited compounds described in JP-A 7-252219 and JP-A 9-40667, respectively, and much higher effect in a matamphotamine (mAMP) reverse tolerance model than the cited compounds. Furthermore, the compounds of this invention were significantly improved in safety compared with the compound described in JP-A 7-252219.

# 55 Claims

1. A pyricilidinoral derivative represented by general formula (1), a pharmaceutically acceptable salt thereof or a

hydrate of the pharmaceutically acceptable salt:

ξ

10

1.5

28

30

Œ

40

43

53

$$\mathbb{R}^{1} = \mathbb{C} \setminus \mathbb{C$$

wherein FT is hydrogen or a helogen;  $H^0$  is hydrogen, a  $C_{1-3}$  alkyl, a  $C_{2-3}$  alkenyl or a  $C_{2-3}$  alkynyl, and n is 2 or 3.

- Approximate derivative, a pharmaceulically acceptable salf thereof or a hydrate of the pharmaceutically acceptable salf thereof or a hydrate of the pharmaceutically acceptable salf as claimed in Craim 1, wherein B1 is obtorine or bromine. B2 is a C₁₋₃ alkyl, and n is 2 in general formula (1)
- A pyrrolidinone derivative, a pharmaceutically acceptable salt thereof or a hydrate of the pharmaceutically acceptable salt thereof or a hydrate of the pharmaceutically acceptable salt thereof or a hydrate of the pharmaceutically acceptable salt thereof or a hydrate of the pharmaceutically acceptable salt thereof or a hydrate of the pharmaceutically acceptable salt thereof or a hydrate of the pharmaceutically acceptable salt thereof or a hydrate of the pharmaceutically acceptable salt thereof or a hydrate of the pharmaceutically acceptable salt thereof or a hydrate of the pharmaceutically acceptable salt thereof or a hydrate of the pharmaceutically acceptable salt thereof.
- An optically active pyrrotidinone derivative, a pharmaconically acceptable salt thereof or a hydrate of the pharmaceptically acceptable salt as claimed in Claim 1, represented by general formula (2):

(* : asymmetric carbon)

wherein  $\mathbb{R}^{3}$  is hydrogen or a halogen;  $\mathbb{R}^{2}$  is hydrogen, a  $C_{1,3}$  alkelyl, a  $C_{2,3}$  alkelyl or a  $C_{2,4}$  alkylyl; and n is 2 or 3.

- An optically active pyrrolidinone derivative, a phermaceutically acceptable salt thereof or a hydrate of the pharmsceutically acceptable salt as claimed in Claim 4, wherein FP is chiorine. FP is methyl, and n is 2 in general formula (2).
- The dihydrate of the pharmaceutically acceptable salt of Claim 4, wherein R¹ is chlorine, R² is methyl, and n is 2 in general formula (2).
- 7. An optical resolution method for preparing a compound according to claim 4, 5 or 6 comprising:
  - preparing a mixture of diastereomer salts from a racemic modification of a pyrrolidinone derivative represented by general formula (1), as defined in claim 1, 2 or 3 and optically active mandelic acid or optically active tarteric acid.
  - separating the dissistences self of the optically active pyrrolidinone derivative as claimed in Claim 4 from the mixture of the dissistences calls; and
- forming and cottecting the optically active pyrrolidinone derivative as claimed in Claim 4 from the separated dissersomer sali.
  - An optical resolution method as claimed in Claim 7, wherein B^{*} is obtaine, R² is methyl, and n is 2 in general formula (1).
  - An intermediate salt for preparation of the compound as claimed in Claim 4, consisting of the compound as claimed
    in Claim 4, wherein R1 is chlorine, R8 is methyl, and n is 2 in general formula (2) and optically active mandelic acid
    or optically active tarteric acid.

	10.	A pharmaceutical comprising the compound as claimed in any of Claims 1 to 6 as an active ingredient.
S	11.	Use of a compound as defined in any of claims 1-6 in the manufacture of a therapeutic and/or prophylactic for a central nervous system disorder, a disorder associated with immunopathy or andooring disturbance, or digestive system objects.
	12.	Use according to claim 11 wherein the therepoulic and/or prophylactic is an antipsychotic.
₹Ğ		
9.5		
20		
25		
30		
15,04		
<b>35</b>		
40		
46		
50		
55		



# EUROPEAN SEARCH REPORT

Application Number EP 97 30 8798

	DOCUMENTS CONSIDERED	*************		
Juppikes.	Olisten G document with indicator of relevant passages	i, where appropriate,	Reievant to skien	CLASSIFICATION OF THE APPLICATION (INLCIS)
D,X	PATENT ABSTRACTS OF JAPA vol. 096, no. 002, 29 Fa -& JP 07 252219 A (MITS INC), 3 October 1995, * abstract *	ebruary 1996	Z	C970207/27 A61K31/495
				TECHNICAL FIELDS SEARCHED SOLCLES CO70
	The present search report tres been to Paratheren	erwices provided the local state of the second		Eventor
	THE HAGUE	26 January 1998	A11	ard, N
X . 587 Y 587 808 A 380	4TEGORY OF GITEO DOCUMENTS  colory received tighter digns colory received tighter digns colory received tighter digns altered of the earlier colorying relegions haring colory relegions colory relegions haring colory relegions colory re	To the early or congo to earlies played of other than filling to to the common come to the common come	Sie underlying the Scienties bergus See I in the application I for their reasons	Projection Spinistry or