Optimization notes

Ying Jia Lin

National Cheng Kung University

May 3rd, 2021

Directional derivative

From a starting point \underline{x}_0 and a given direction \underline{u} :

- $\underline{x}(\lambda) = \underline{x}_0 + \lambda \underline{u}$
 - λ is a scalar.
- $d\underline{x} = \underline{u}d\lambda$
 - For a small change in λ .
- $F(\lambda) = f(\underline{x}_0 + \lambda \underline{u})$

$$dF = df = (\nabla f(\underline{x}))^{\top} d\underline{x}$$
$$= (\nabla f(\underline{x}))^{\top} \underline{u} d\lambda = \nabla^{\top} f \underline{u} \lambda$$

- $\frac{df}{d\lambda} = \nabla^{\top} f \underline{u}$
 - If f is minimized at $\underline{x}^* = \underline{x}_0 + \lambda \underline{u}$, then:
 - $\nabla f(\underline{x}^*))^{\top} f\underline{u} = 0$
 - gradient f evaluated at the minimum point is orthogonalto \underline{u} .

Weierstrass Theorem

If $f(\underline{x})$ is continuous on a nonempty feasible set that is cloased and bounded, then $f(\underline{x})$ has a global minimum in this set.

- ▶ A set *S* is bounded if for any point \underline{x} in *S*, we have $\underline{x}^{\top}\underline{x} < c$
 - c is a finite positive number.

Single-variable unconstrained optimization

- Necessary condition
 - If a function f(x) has a local minimum at $x = x^*$, and f'(x) exists as a finite number at $x = x^*$, then $f'(x^*) = 0$.
- Sufficient condition
 - Suppose $f'(x^*) = f''(x^*) = \cdots = f^{(m-1)}(x^*) = 0$, but $f^{(m-1)}(x^*) \neq 0$, then $f(x^*)$ is:
 - 1. a local minimum if $f^{(m-1)}(x^*) > 0$ and m is even.
 - 2. a local maximum if $f^{(m-1)}(x^*) < 0$ and m is even.
 - 3. neither a maximum nor a minimum if *m* is odd.

Multi-variable unconstrained optimization (1)

Definition of r^{th} differential of function f:

$$d^r f(\underline{x}^*) = \sum_{i=1}^n \sum_{j=1}^n \cdots \sum_{k=1}^n h_i h_j \dots h_k \frac{\partial^r f(\underline{x}^*)}{\partial x_i \partial x_j \dots \partial x_k}$$

Example:

$$d^{2}f(\underline{x}^{*}) = d^{2}f(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}) = \sum_{i=1}^{3} \sum_{j=1}^{3} h_{i}h_{j} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{i}\partial x_{j}}$$

$$= h_{1}^{2} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{1}^{2}} + h_{2}^{2} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{2}^{2}} + h_{3}^{2} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{3}^{2}}$$

$$+ 2h_{1}h_{2} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{1}\partial x_{2}} + 2h_{2}h_{3} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{2}\partial x_{3}} + 2h_{1}h_{3} \frac{\partial^{2}f(\underline{x}^{*})}{\partial x_{1}\partial x_{3}}$$

Multi-variable unconstrained optimization (2)