1 Generic PDE Model 04 v15.04.16

class II, negative feedback, RyR, closed cell, four variables

$$\frac{\partial c}{\partial t} = D_{\rm c} \nabla^2 c + (J_{\rm IPR} + k_{\rm leak} + k_{\rm RyR} P_{\rm RyR})(c_{\rm e} - c) - J_{\rm serca}$$
(1)

$$\frac{\partial p}{\partial t} = D_{\rm p} \nabla^2 p + V_{\rm PLC}(\vec{x}) - V_{\rm deg} \left(\frac{c^2}{K_{\rm 3K}^2 + c^2}\right) p \tag{2}$$

$$\frac{\partial h}{\partial t} = \frac{h_{\infty} - h}{\tau} \tag{3}$$

$$\frac{\partial c_{\rm e}}{\partial t} = D_{\rm e} \nabla^2 c_{\rm e} - \left((J_{\rm IPR} + k_{\rm leak} + k_{\rm RyR} P_{\rm RyR}) (c_{\rm e} - c) - J_{\rm serca} \right) / \gamma \tag{4}$$

$$J_{\text{serca}} = V_{\text{s}} \frac{c^2}{K_{\text{s}}^2 + c^2} \tag{5}$$

$$J_{\rm IPR} = k_{\rm IPR}(\vec{x})P_O \tag{6}$$

$$P_{\rm RyR} = \frac{c^2}{K_{\rm RyR}^2 + c^2} \tag{7}$$

$$P_O = \phi_c \phi_p h \tag{8}$$

$$\phi_c = \frac{c^3}{K_a^3 + c^3} \tag{9}$$

$$\phi_p = \frac{p^4}{K_p^4 + p^4} \tag{10}$$

$$h_{\infty} = \frac{K_{\rm i}^2}{K_{\rm i}^2 + c^2} \tag{11}$$

c	0.06(init)	$\mu \mathrm{M}$	cytosolic Ca ²⁺ concentration
p	0.26(init)	$\mu { m M}$	IP ₃ concentration
h	0.334(init)	_	IPR modelling variable
$c_{ m e}$	26.7(init)	$\mu\mathrm{M}$	ER Ca ²⁺ concentration
γ	0.185	_	ratio of ER volume to cystolic volume
t		\mathbf{s}	time
7		s^{-1}	1. C DD
$J_{\rm IPR}$	7.4(s^{-1}	calcium from ER
$k_{\rm IPR}(\vec{x})$	7.4(max)	S	parameter (highest near apical region)
P_{RyR}	0.01	_1	calcium from ER
k_{RyR}	0.01	s^{-1}	parameter
K_{RyR}	0.42	$\mu\mathrm{M}$	parameter
P_O		-	open probability of IPR (range: 0.0 - 1.0)
ϕ_c	0.0	-	function of Ca ²⁺ concentration
K_{a}	0.3	$\mu\mathrm{M}$	parameter
$\phi_{m p}$		_	function of IP_3 concentration
$K_{ m p}$	0.5	$\mu\mathrm{M}$	parameter
h_{∞}		-	function of Ca ²⁺ concentration
$K_{ m i}$	0.06	$\mu\mathrm{M}$	parameter
au	0.5	s^{-1}	parameter
$D_{ m c}$	5.0	$\mu\mathrm{m}^2~\mathrm{s}^{-1}$	systolic Ca ²⁺ diffusion coefficient
$D_{ m e}$	1.0	$\mu\mathrm{m}^2~\mathrm{s}^{-1}$	ER Ca ²⁺ diffusion coefficient
$J_{ m serca}$		$\mu { m M~s^{-1}}$	calcium flux into ER
$V_{ m s}$	0.25	$\mu \mathrm{M} \; \mathrm{s}^{-1}$	parameter
$K_{ m s}$	0.1	$\mu \mathrm{M}$	parameter
k_{leak}	0.00148	s^{-1}	calcium from ER (to balance J_{serca} at rest)
n _{leak}	0.00140	ъ	carefulli from Eff (to barance serva at rest)
$V_{\mathrm{PLC}}(\vec{x})$	0.03(max)	$\mu { m M~s^{-1}}$	parameter (highest near basal membrane)
$V_{ m deg}$	0.16	s^{-1}	parameter
$K_{ m 3K}$	0.4	$\mu \mathrm{M}$	parameter
$D_{\rm p}$	283	$\mu \rm{m}^{2} \; \rm{s}^{-1}$	IP ₃ diffusion coefficient