MC558 – Análise de Algoritmos II Lista de Exercícios - Programação Linear Orlando Lee

Os exercícios 1 a 5 foram retirados do capítulo 1 do livro de M.S. Bazaraa, J.J. Jarvis e H.D. Sherali, *Linear Programming and Network Flows*, segunda edição, Wiley. Há outros exercícios de modelagem no livro.

1. Um moinho fabrica comida para gado, ovelhas e galinhas. Isto é feito misturando-se os seguintes ingredientes: milho, calcário, soja, e ração de peixe. Estes ingredientes contêm os seguintes nutrientes: vitaminas, proteína, cálcio e gordura. Os ingredientes dos nutrientes em cada quilo estão indicados na tabela abaixo.

	Nutrientes				
Ingrediente	Vitaminas	Proteína	Cálcio	Gordura	
Milho	8	10	6	8	
Calcário	6	5	10	6	
Soja	10	12	6	6	
Ração de peixe	4	8	6	9	

O moinho é contratado para produzir 10, 6 e 8 toneladas de comida para gado, ovelhas e galinhas. Ele tem a sua disposição 6 toneladas de milho, 10 toneladas de calcário, 4 toneladas de soja e 5 toneladas de ração de peixe. O preço por quilo desses ingredientes é respectivamente R\$20, R\$12, R\$24 e R\$12. As quantidades mínima e máxima permitidas dos nutrientes em um quilo de comida para gado, ovelhas e galinhas estão indicadas abaixo.

	Nutrientes							
	Vitai	minas	Proteína		Cálcio		Gordura	
Comida p/	Min	Max	Min	Max	Min	Max	Min	Max
Gado	6	∞	6	∞	7	∞	4	8
Ovelhas	6	∞	6	∞	6	∞	4	6
Galinhas	4	6	6	∞	6	∞	4	6

Formule este problema como um programa linear que minimiza o custo total de produção.

2. Considere o problema de atribuir uma localização a uma nova máquina a um leiaute existente que consiste de quatro máquinas. As máquinas estão localizadas nas seguintes coordenadas: (3,0), (0,-3), (-2,1) e (1,4). Formule o problema de encontrar uma localização (x_1,x_2) da nova máquina como um programa linear para os seguintes casos:

- (a) A soma das distâncias da nova máquina para as quatro máquinas é minimizada. Use distância de Manhattan onde a distância entre dois pontos (a, b) e (c, d) é |a c| + |b d|.
- (b) Devido a várias quantidades de fluxo entre a nova máquina e as máquinas já existentes, reformule o problema onde a soma das distâncias ponderadas é minimizada. Aqui os pesos correspondentes às quatro máquinas são 5,7,3 e 1, respectivamente.
- (c) De modo a evitar congestionamento, suponha que a nova máquina deve ser colocada dentro do quadrado $\{(x_1, x_2) : -1 \le x_1 \le 2, 0 \le x_2 \le 1\}$. Reformule (a) e (b) levando em conta esta nova restrição.
- (d) Suponha agora que a nova máquina deve estar localizada de modo que sua distância para a primeira máquina não exceda 3/2. Reformule (a) e (b) levando em conta esta nova restrição.
- 3. Uma fábrica de aço produz quatro tamanhos de "I beams" (consulte a Wikipedia!): pequeno, médio, grande e extragrande. Esses beams podem ser produzidas por qualquer das máquinas A, B e C. Os comprimentos em metros de I beams que podem ser produzidas nas máquinas em uma hora estão indicadas abaixo.

Beam	A	В	С
pequeno	300	600	800
médio	250	400	700
grande	200	350	600
extragrande	100	200	300

Suponha que cada máquina pode ser usada até 50 horas por semana e que os custos de operação (por hora) das máquinas são respectivamente R\$30, R\$50 e R\$80. Suponha ainda que 10.000, 8.000, 6.000 e 6.000 metros dos diferentes tipos de I beams são requisitados por semana. Formule o problema de escalonar as máquinas de modo a minimizar o custo total de produção como um programa linear.

4. Uma companhia está planejando a manufatura de 3 produtos em quatro máquinas. Cada produto pode ser manufaturado em qualquer das máquinas. Os custos de produção por unidade estão indicados na tabela:

	Máquinas			
Produto	1	2	3	4
1	4	4	5	7
2	6	7	5	6
3	12	10	8	11

Os tempos em horas necessário para produzir cada unidade de um produto em cada máquina estão indicados abaixo.

	Máquinas				
Produto	1	2	3	4	
1	0.3	0.25	0.2	0.2	
2	0.2	0.3	0.2	0.25	
3	0.8	0.6	0.6	0.5	

Suponha que 4000, 5000 e 3000 unidades dos produtos são exigidos e que os tempos em horas disponíveis para cada máquina são 1500, 1200, 1500 e 2000, respectivamente. Formule o problema como um programa linear visando minimizar o custo total.

- 5. Um investidor tem a sua disposição atividades lucrativas de investimento A e B para cada um dos próximos cinco anos. Cada real investido no começo do ano um na atividade A torna-se 1, 4 reais dois anos depois. Cada real investido na atividade B para cada ano torna-se 1, 7 reais três anos depois. Além disso, atividades de investimento C e D ficam disponíveis a partir do início do ano 2. Cada real investido em C no começo do ano 2 torna-se 1, 9 reais no início do ano 6. Cada real investido em D no começo do ano 2 torna-se 1, 3 reais no início do ano 6.
 - O investidor começa com 50.000 reais e quer saber como fazer as aplicações (em cada ano) de modo a maximizar o dinheiro que ele receberá no começo do ano 6. Formule este problema como um problema de programação linear.
- 6. Uma agência de planejamento governamental quer determinar as fontes de combustível para uso de n galpões entre m empresas que oferecem o serviço. A quantidade máxima oferecida pela empresa i é a_i litros e a demanda do galpão j é de b_j litros. Seja c_{ij} o custo de transporte por unidade da empresa i para o galpão j. Formule o problema de minimizar o custo total de compra pela agência como um programa linear.
- 7. Suponha que existam m fábricas que produzem lixo e n sítios de tratamento de lixo. A quantidade de lixo produzida pela fábrica i é a_i e capacidade do sítio j é b_j (em toneladas). Deseja-se escolher certas instalações de transferências entre t possíveis candidatas (suponha que são numeradas $1, \ldots, t$). Uma instalação k tem custo fixo de abertura f_k (caso seja escolhida), capacidade q_k e custo unitário de processamento p_k por tonelada de lixo. Sejam c_{ik} e c'_{kj} os custos unitários de transporte da fábrica i para a instalação k e da instalação k ao sítio j, respectivamente. O problema é escolher quais instalações utilizar e o esquema de transporte que minimize o custo total de abertura das instalações mais os custos de transporte. Formule este problema como um **programa linear inteiro**. Sugestão: defina variáveis binárias y_k tais que $y_k = 1$ se a instalação k é escolhida e 0 caso contrário.