Tarea 4

Jonathan Andrés Niño Cortés

1 de marzo de 2016

(1.) Sea \mathfrak{m} una medida exterior de Carathéodory sobre X. Si para todo $A \subseteq X$ existe $B \in M_{\mathfrak{m}}$ con $A \subseteq B$ y $\mathfrak{m}(A) = \mathfrak{m}(B)$ la medida exterior se llama regular. Muestre que si \mathfrak{m} es una medida de Carathéodory regular y $\mathfrak{m}(A) < \infty$, entonces $A \in M_{\mathfrak{m}}$ si y sólo si

$$\mathfrak{m}(A) + \mathfrak{m}(X \backslash A) = \mathfrak{m}(X) \tag{1.1}$$

Demostración. Si suponemos que A es \mathfrak{m} —medible entonces por la definición de medibilidad de Carathéodory tenemos que $\mathfrak{m}(X) = \mathfrak{m}(A) + \mathfrak{m}(X \setminus A)$. Para la otra implicación tómese A tal que cumple la expresión (1.1). Por regularidad, tenemos que existe $B \subseteq X$ tal que

$$B \in \mathfrak{M}_{\mathfrak{m}}, A \subseteq B \text{ y } \mathfrak{m}(A) = \mathfrak{m}(B)$$
 (1.2)

.

Puesto que B es \mathfrak{m} -medible tenemos en particular que

$$\mathfrak{m}(X) = \mathfrak{m}(B) + \mathfrak{m}(X \backslash B). \tag{1.3}$$

Utilizando (1.1), (1.2), (1.3) concluimos que

$$\mathfrak{m}(X\backslash A) = \mathfrak{m}(X) - \mathfrak{m}(A) = \mathfrak{m}(X) - \mathfrak{m}(B) = \mathfrak{m}(X\backslash B). \tag{1.4}$$

Ahora tenemos de nuevo por medibilidad de B que

$$\mathfrak{m}(X\backslash A) = \mathfrak{m}([X\backslash A]\cap B) + \mathfrak{m}([X\backslash A]\cap [X\backslash B]). \tag{1.5}$$

Puesto que $A \subseteq B$ tenemos que $X \setminus B \subseteq X \setminus A$ y por lo tanto $[X \setminus A] \cap [X \setminus B] = [X \setminus B]$, es decir que

$$\mathfrak{m}([X\backslash A]\cap [X\backslash B]) = \mathfrak{m}(X\backslash B) \tag{1.6}$$

•

Utilizando (1.4) (1.5) y (1.6) deducimos que

$$\mathfrak{m}([X\backslash A]\cap B)=\mathfrak{m}(X\backslash A)-\mathfrak{m}([X\backslash A]\cap [X\backslash B])=\mathfrak{m}(X\backslash A)-\mathfrak{m}(X\backslash B)=0. \ \ (1.7)$$

Así, concluimos que el conjunto $[X \setminus A] \cap B$ tiene medida 0 y por lo tanto es m-medible. Ver [HS75, Teorema 10.7]. Por ultimo, puesto que podemos escribir A como intersección de \mathfrak{m} -medibles, valiendonos de la siguiente expresión,

$$A = B \cap ([X \backslash A] \cap B)^C \tag{1.8}$$

concluimos que A es medible.

(ii.) Muestre que aunque se tenga $\mathfrak{m}(X) < \infty$ en general pueden existir conjuntos $A \subseteq X$ no medibles según Carathéodory tales que

$$\mathfrak{m}(A) + \mathfrak{m}(X|A) = \mathfrak{m}(X)$$

(Sugerencia: Existe un ejemplo con |X| = 3.)

- (2.) (i.) Denote por \mathbb{R}_d la recta real con la topología discreta. Muestre que el espacio $\mathbb{R}_d \times \mathbb{R}$ con la topología producto es localmente compacto.
 - (ii.) Para f definida sobre $\mathbb{R}_d \times \mathbb{R}$ y $x \in \mathbb{R}$ fijo, sea $f_{[x]}$ la función definida sobre \mathbb{R} por:

$$f_{[x]}(y) := f(x, y).$$

Muestre que si $f \in C_{00}(\mathbb{R}_d \times \mathbb{R})$ se tiene que $f_{[x]}$ es idénticamente cero excepto que para un número finito de elementos $x \in \mathbb{R}$.

(iii.) Sea S la integral de Riemann y defina I sobre $C_{00}(\mathbb{R}_d \times \mathbb{R})$ por:

$$I(f) := \sum_{x \in \mathbb{R}} S(f_{|x|}).$$

Muestre que I es un funcional lineal positivo sobre $C_{00}(\mathbb{R}_d \times \mathbb{R})$.

- (iv.) Sea $\iota(A) := \overline{\overline{I}}(\chi_A)$, muestre que el conjunto $A = \{(x,0) : x \in \mathbb{R}\}$ es localmente ι -nulo, sin embargo no es ι -nulo.
- (3.) Sea $T \subseteq \mathbb{R}$ un conjunto λ -medible tal que $\lambda(T) > 0$. Muestre que T T contiene un intervalo. (Ejercicio 10.43 del libro de texto, viene con sugerencia.)

Referencias

[HS75] Edwin Hewitt and Karl Stromberg. *Real and Abstract Analysis*. Springer, New York, 1st edition edition, May 1975.