Ontology-Based Data Access with Ontop

Benjamin Cogrel benjamin.cogrel@unibz.it

KRDB Research Centre for Knowledge and Data Free University of Bozen-Bolzano, Italy

Freie Universität Bozen Libera Università di Bolzano Free University of Bozen-Bolzano

JDEV, Marseille, 06 July 2017

Ontology-Based Data Access (OBDA)

- SQL queries over tables can be hard to write manually
- 2 RDF and other Semantic Web standards
- Ontology-Based Data Access
- Optique platform
- Conclusion

(1/32)

Toy example: University Information System Relational source

uni1.student

<u>s_id</u>	first_name	last_name
1	Mary	Smith
2	John	Doe

uni1.academic

<u>a_id</u>	first_name	last_name	position
1	Anna	Chambers	1
2	Edward	May	9
3	Rachel	Ward	8

uni1.teaching

c_id	a₋id
1234	1
1234	2

uni1.course

<u>c_id</u>	title
1234	Linear algebra

Information need	SQL query
1. First and last names of the students	SELECT DISTINCT "first_name", "last_name" FROM "uni1"."student"
2. First and last names of the persons	SELECT DISTINCT "first_name", "last_name" FROM "uni1"."student" UNION SELECT DISTINCT "first_name", "last_name" FROM "uni1"."academic"
3. Course titles and teacher names	SELECT DISTINCT co."title", ac."last_name" FROM "uni1"."course" co, "uni1"."academic" ac, "uni1"."teaching" teach WHERE co."c_id" = teach."c_id" AND ac."a_id" = teach."a_id"
4. All the teachers	SELECT DISTINCT "a_id" FROM "uni1"."teaching" UNION SELECT DISTINCT "a_id" FROM "uni1"."academic" WHERE "position" BETWEEN 1 AND 8

Integration of a second source Fusion of two universities

uni2.person

<u>pid</u>	fname	Iname	status
1	Zak	Lane	8
2	Mattie	Moses	1
3	Céline	Mendez	2

uni2.course

<u>cid</u>	lecturer	lab_teacher	topic
1	1	3	Information
			security

(4/32)

Translation of information needs I

Information need	SQL query
1. First and last names of the students	SELECT DISTINCT "first_name", "last_name" FROM "uni1"."student" UNION SELECT DISTINCT "fname" AS "first_name",
2. First and last names of the persons	SELECT DISTINCT "first_name", "last_name" FROM "uni1"."student" UNION SELECT DISTINCT "first_name", "last_name" FROM "uni1"."academic" UNION SELECT DISTINCT "fname" AS "first_name",

Translation of information needs II

Information need	SQL query
3. Course titles and teacher names	SELECT DISTINCT co."title", ac."last_name" FROM "uni1"."course" co, "uni1"."academic" ac, "uni1"."teaching" teach WHERE co."c_id" = teach."c_id" AND ac."a_id" = teach."a_id" UNION SELECT DISTINCT co."topic" AS "title", pe."lname" AS "last_name" FROM "uni2"."person" pe, "uni2"."course" co WHERE pe."pid" = co."lecturer" OR pe."pid" = co."lab_teacher"

Translation of information needs III

Information need	SQL query
	SELECT DISTINCT 'uni1/' "a_id" AS "id" FROM "uni1"."teaching" UNION SELECT DISTINCT 'uni1/' "a_id" AS "id" FROM "uni1"."academic"
	WHERE "position" BETWEEN 1 AND 8 UNION
4. All the teachers	SELECT DISTINCT 'uni2/' "lecturer" AS "id" FROM "uni2"."course" UNION
	SELECT DISTINCT 'uni2/' "lab_teacher" AS "id" FROM "uni2"."course" UNION
	SELECT DISTINCT 'uni2/' "pid" AS "id" FROM "uni2"."person" WHERE "status" BETWEEN 6 AND 9

Industrial case: stratigraphic model design

Users: domain experts

- ullet \sim 900 geologists et geophysicists
- Data collecting: 30-70% of their time

Sources

- ullet Exploitation and Production Data Store: ~ 1500 tables (100s GB)
- Norwegian Petroleum Directorate FactPages
- OpenWorks

(8/32)

Designing a new (ad-hoc) query

All norwegian wellbores of this type nearby this place having a permeability near this value. [...]
Attributes: completion date, depth, etc.

NB: Simplified information needs

(9/32)

Designing a new (ad-hoc) query

All norwegian wellbores of this type nearby this place having a permeability near this value. [...]
Attributes: completion date, depth, etc.

Takes 4 days in average (with EPDS only)

NB: Simplified information needs

Anonymized extract of a typical query

SELECT [...]

FROM db name.table1 table1, db_name.table2 table2a, db name.table2 table2b. db_name.table3 table3a, db_name.table3 table3b, db name.table3 table3c. db name.table3 table3d. db_name.table4 table4a, db_name.table4 table4b, db name.table4 table4c. db name.table4 table4d. db_name.table4 table4e, db name.table4 table4f. db name.table5 table5a. db_name.table5 table5b, db name.table6 table6a. db name.table6 table6b. db name.table7 table7a. db_name.table7 table7b, db_name.table8 table8, db name.table9 table9. db name.table10 table10a. db_name.table10 table10b, db_name.table10 table10c, db_name.table11 table11, db_name.table12 table12, db name.table13 table13. db name.table14 table14. db_name.table15 table15, db name.table16 table16 WHERE [...]

table2a.attr1='keyword' AND table3a.attr2=table10c.attr1 AND table3a.attr6=table6a.attr3 AND table3a.attr9='keyword' AND table4a.attr10 IN ('keyword') AND table4a.attr1 IN ('keyword') AND table5a.kinds=table4a.attr13 AND table5b.kinds=table4c.attr74 AND table5b.name='keyword' AND (table6a.attr19=table10c.attr17 OR (table6a.attr2 IS NULL AND table10c.attr4 IS NULL)) AND table6a.attr14=table5b.attr14 AND table6a.attr2='kevword' AND (table6b.attr14=table10c.attr8 OR (table6b.attr4 IS NULL AND table10c.attr7 IS NULL)) AND table6b.attr19=table5a.attr55 AND table6b.attr2='keyword' AND table7a.attr19=table2b.attr19 AND table7a.attr17=table15.attr19 AND table4b.attr11='keyword' AND table8.attr19=table7a.attr80 AND table8.attr19=table13.attr20 AND table8.attr4='kevword' AND table9.attr10=table16.attr11 AND table3b.attr19=table10c.attr18 AND table3b.attr22=table12.attr63 AND table3b.attr66='keyword' AND table10a.attr54=table7a.attr8 AND table10a.attr70=table10c.attr10 AND table10a.attr16=table4d.attr11 AND table4c.attr99='keyword' AND table4c.attr1='keyword' AND

table11.attr10=table5a.attr10 AND table11.attr40='keyword' AND table11.attr50='kevword' AND table2b.attr1=table1.attr8 AND table2b.attr9 IN ('keyword') AND table2b.attr2 LIKE 'keyword'% AND table12.attr9 IN ('keyword') AND table7b.attr1=table2a.attr10 AND table3c.attr13=table10c.attr1 AND table3c.attr10=table6b.attr20 AND table3c.attr13='kevword' AND table10b.attr16=table10a.attr7 AND table10b.attr11=table7b.attr8 AND table10b.attr13=table4b.attr89 AND table13.attr1=table2b.attr10 AND table13.attr20=''keyword'' AND table13.attr15='keyword' AND table3d attr49mtable12 attr18 AND table3d.attr18=table10c.attr11 AND table3d.attr14='keyword' AND table4d.attr17 IN ('keyword') AND table4d.attr19 IN ('keyword') AND table16.attr28=table11.attr56 AND table16.attr16=table10b.attr78 AND table16.attr5=table14.attr56 AND table4e.attr34 IN ('keyword') AND table4e.attr48 IN ('keyword') AND table4f.attr89=table5b.attr7 AND table4f.attr45 IN ('keyword') AND table4f.attr1='keyword' AND table10c.attr2=table4e.attr19 AND (table10c.attr78=table12.attr56 OR (table10c.attr55 IS NULL AND table12.attr17 IS NULL))

Semantic gap

Querying over tables

Requires a lot of knowledge about:

- Magic numbers (e.g. $1 \rightarrow full\ professor$)
- Cardinalities and normal forms
- Spreading of closely-related information across many tables

Data integration

- Exacerbates these issues
- Variety: challenge #1 for most Big Data initiatives

unibz

High-level translation

Main bottleneck: translation

- of the information needs
- ... into a formal query

Goal

Make such a translation easy (Ideally: IT expertise not required)

Mediator 1 could be a user, an IT expert or a GUI

General approach: two steps

- Translate the information needs into a high-level query
- Answer the high-level query automatically

Choice 1: How to derive data from the data sources

Extract Transform Load (ETL) process

E.g. relational data warehouse, triplestore

Virtual views

E.g. virtual databases (Teiid, Apache Drill, Exareme), OBDA (Ontop)

Choice 2: New representation of the data

New representation	Corresponding query language
Relational schema	SQL
JSON document	Mongo Aggregate, SQL (with e.g. Drill or Teiid)
XML document	XPath, XQuery, SQL (with e.g. Teiid)
RDF graph	SPARQL

(14/32)

Ontology-Based Data Access (OBDA)

Choice 1: How to derive data from the DBs

- Extract Transform Load (ETL) process
- Virtual views

Choice 2: How to represent the derived data

- New relational schema, JSON or XML documents
- Resource Description Framework (RDF)

RDF provides a description of the domain in terms of triples:

Triple elements: resources denoted by **global identifiers** (IRIs)

Subject: IRI of the described resource

Predicate: IRI of the property

Object: attribute value or IRI of another resource

RDF provides a description of the domain in terms of triples:

Triple elements: resources denoted by **global identifiers** (IRIs)

Subject: IRI of the described resource

Predicate: IRI of the property

Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information

@prefix foaf: <http://xmlns.com/foaf/0.1/>

RDF provides a description of the domain in terms of triples:

Triple elements: resources denoted by **global identifiers** (IRIs)

Subject: IRI of the described resource

Predicate: IRI of the property

Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information

```
@prefix foaf: <http://xmlns.com/foaf/0.1/>
```

RDF provides a description of the domain in terms of triples:

Triple elements: resources denoted by **global identifiers** (IRIs)

Subject: IRI of the described resource

Predicate: IRI of the property

Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information

```
@prefix foaf: <http://xmlns.com/foaf/0.1/>
```

@prefix : <http://example.org/voc#>

RDF provides a description of the domain in terms of triples:

Triple elements: resources denoted by **global identifiers** (IRIs)

Subject: IRI of the described resource

Predicate: IRI of the property

Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information

```
@prefix foaf: <http://xmlns.com/foaf/0.1/>
```

@prefix : <http://example.org/voc#>

RDF provides a description of the domain in terms of triples:

Triple elements: resources denoted by **global identifiers** (IRIs)

Subject: IRI of the described resource

Predicate: IRI of the property

Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information

@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix : <http://example.org/voc#>

RDF graph

SPARQL SPARQL Protocol and RDF Query Language

Title of courses taught by a professor and professor names

```
PREFIX : <http://example.org/voc#>
# Other prefixes omitted
SELECT ?title ?fName ?lName {
  ?teacher rdf:type :Professor .
  ?teacher :teaches ?course .
  ?teacher foaf:lastName ?lName .
  ?course :title ?title .
  OPTIONAL {
    ?teacher foaf:firstName ?fName .
```

Algebra

- Basic Graph Patterns
- OPTIONAL
- UNION
- GROUP BY
- MINUS
- FILTER NOT EXISTS

RDF Schema (RDFS)

Lightweight ontology

rdfs:subClassOf

rdfs:subPropertyOf

rdfs:domain

rdfs:range

Web Ontology Language (OWL)

Some constructs

owl:inverseOf

owl:disjointWith

```
:Student owl:disjointWith :Professor .

<uni1/academic/19> rdf:type Professor .

<uni1/academic/19> rdf:type Student .

⇒ Inconsistent RDF graph
```

owl:sameAs

Full OWL 2 is very expressive

- Many more constructs
- Computation costs become easily prohibitive

Profile OWL 2 QL Based on the Description Logic DL-Lite_R.

Supported constructs

- Class and property hierarchies (rdfs:subClassOf and (rdfs:subPropertyOf)
- Property domain and range (rdfs:domain, rdfs:range)
- Inverse properties (owl:inverseOf)
- Class disjunction (owl:disjointWith)
- Mandatory participation (advanced)

Not supported

- Individual identities (owl:sameAs)
- Cardinality constraints (functional property, etc.)
- Many other constructs

Summary

- Lightweight ontologies
- A bit more than RDFS
- First-order rewritability (rewritable into a SQL query)

Mappings RDB-RDF

Ontop native format (similar to the R2RML standard)

Source (SQL)

```
SELECT s_id, firstName, lastName
FROM uni1.student
```

```
Target (RDF, Turtle-like)
```

Result

- DBs unified into one RDF graph
- This graph can be queried with SPARQL

Mappings RDB-RDF Other mappings

Object property (:teaches)

Object property (:teaches)

```
Target
        ex:uni1/academic/{a id}
                                  :teaches
(RDF)
                                    ex:uni1/course/{c id} .
        SELECT
Source
        FROM "uni1"."teaching"
```

Magic number

Target (RDF)	ex:uni1/academic/{a_id} a :FullProfessor .
Source	SELECT * FROM "uni1"."academic" WHERE "position" = 1

Querying the saturated RDF graph With SPARQL

(24/32)

Querying the saturated RDF graph With SPARQL

Saturated RDF graph

- Saturation of the RDF graph derived from the mappings
- According to the ontology constraints
- Usually much bigger graph!

Querying the saturated RDF graph With SPARQL

Saturated RDF graph

- Saturation of the RDF graph derived from the mappings
- According to the ontology constraints
- Usually much bigger graph!

Materialized RDF graph

- ETL + saturation
- Maintenance
- OWL 2 RL

Virtual RDF graph

- Query reformulation
- + No materialization (mapping saturation instead)
- OWL 2 QL

Mapping saturation example

Mapping saturation example

```
TBox, user-defined mapping assertions and foreign key
Student \sqcup PostDoc \sqcup AssociateProfessor \sqcup \existsteaches \sqsubseteq Person
                        Student(URI_1(p)) \leftarrow uni1-student(p, f, l)
                                                                                                      (1)
                       \mathsf{PostDoc}(\mathsf{URI}_2(a)) \leftarrow \mathsf{uni1}\text{-}\mathsf{academic}(a,f,l,s), s = 9
                                                                                                      (2)
         \mathsf{AssociateProfessor}(\mathrm{URI}_2(a)) \leftarrow \mathtt{uni1-academic}(a,f,l,s), s = 2
                                                                                                      (3)
              FacultyMember(URI<sub>2</sub>(a)) \leftarrow uni1-academic(a, f, l, s)
                                                                                                      (4)
            teaches(URI_2(a), URI_3(c)) \leftarrow uni1-teaching(c, a)
                                                                                                      (5)
FK: \exists y_1.\text{uni1-teaching}(y_1, x) \rightarrow \exists y_2 y_3 y_4.\text{uni1-academic}(x, y_2, y_3, y_4)
Non-optimized saturated mapping assertions for Person
                  Person(URI_1(p)) \leftarrow uni1-student(p, f, l)
                                                                                                      (6)
                  Person(URI_2(a)) \leftarrow uni1-academic(a, f, l, s), s = 9
                                                                                                      (7)
                 Person(URI_2(a)) \leftarrow uni1-academic(a, f, l, s), s = 2
                                                                                                      (8)
                 \mathsf{Person}(\mathsf{URI}_2(a)) \leftarrow \mathsf{uni1}\text{-}\mathsf{academic}(a,f,l,s)
                                                                                                      (9)
```

 $\mathsf{Person}(\mathsf{URI}_2(a)) \leftarrow \mathsf{uni1}\text{-}\mathsf{teaching}(c,a)$

(10)

Mapping saturation example

```
TBox, user-defined mapping assertions and foreign key
Student \sqcup PostDoc \sqcup AssociateProfessor \sqcup \existsteaches \sqsubseteq Person
                        Student(URI_1(p)) \leftarrow uni1-student(p, f, l)
                                                                                                        (1)
                       \mathsf{PostDoc}(\mathsf{URI}_2(a)) \leftarrow \mathsf{uni1}\text{-}\mathsf{academic}(a,f,l,s), s = 9
                                                                                                        (2)
          AssociateProfessor(URI<sub>2</sub>(a)) \leftarrow uni1-academic(a, f, l, s), s = 2
                                                                                                        (3)
              FacultyMember(URI<sub>2</sub>(a)) \leftarrow uni1-academic(a, f, l, s)
                                                                                                        (4)
            teaches(URI_2(a), URI_3(c)) \leftarrow uni1-teaching(c, a)
                                                                                                        (5)
FK: \exists y_1.\text{uni1-teaching}(y_1, x) \rightarrow \exists y_2 y_3 y_4.\text{uni1-academic}(x, y_2, y_3, y_4)
Non-optimized saturated mapping assertions for Person
                  \mathsf{Person}(\mathsf{URI}_1(p)) \leftarrow \mathsf{uni1}\text{-student}(p, f, l)
                                                                                                        (6)
                  Person(URI_2(a)) \leftarrow uni1-academic(a, f, l, s), s = 9
                                                                                                        (7)
                  Person(URI_2(a)) \leftarrow uni1-academic(a, f, l, s), s = 2
                                                                                                        (8)
                  \mathsf{Person}(\mathsf{URI}_2(a)) \leftarrow \mathsf{uni1}\text{-}\mathsf{academic}(a,f,l,s)
                                                                                                        (9)
                  \mathsf{Person}(\mathsf{URI}_2(a)) \leftarrow \mathsf{uni1}\text{-}\mathsf{teaching}(c,a)
                                                                                                      (10)
Mapping assertions for Person after optimization (query containment)
```

 $Person(URI_1(p)) \leftarrow uni1-student(p, f, l)$

 $\mathsf{Person}(\mathsf{URI}_2(p)) \leftarrow \mathsf{uni1}\text{-}\mathsf{academic}(p, f, l, s)$

(11)

(12)

QL queries Semantic Web OBDA Optique platform Conclusion Reference

Query reformulation

(26/32)

QL queries Semantic Web OBDA Optique platform Conclusion Reference

Query reformulation

Role of the OWL 2 QL ontology

- Minor: SPARQL query rewriting (very specific cases)
- Main: mapping saturation (offline)

Query reformulation

Role of the OWL 2 QL ontology

- Minor: SPARQL query rewriting (very specific cases)
- Main: mapping saturation (offline)

Mapping saturation

- Query containment optimization
- Not only OWL 2 QL:
 - Horn fragment of OWL 2 [Botoeva et al., 2016]
 - SWRL with linear recursion [Xiao et al., 2014]

R queries Semantic Web OBDA Optique platform Conclusion Reference

SQL query optimization

Objective : produce a SQL query. . .

- Similar to manually written ones
- Adapted to existing query planners

R queries Semantic Web OBDA Optique platform Conclusion Reference

SQL query optimization

Objective : produce a SQL query. . .

- Similar to manually written ones
- Adapted to existing query planners

Structural optimization

- From Join-of-unions to union-of-joins
- IRI decomposition for pruning and improving joining perf.

QL queries Semantic Web OBDA Optique platform Conclusion Reference

SQL query optimization

Objective: produce a SQL query...

- Similar to manually written ones
- Adapted to existing query planners

Structural optimization

- From Join-of-unions to union-of-joins
- IRI decomposition for pruning and improving joining perf.

Semantic optimization

- Redundant join elimination
- Redundant union elimination
- Using DB constraints

QL queries Semantic Web OBDA Optique platform Conclusion References

SQL query optimization

Objective: produce a SQL query...

- Similar to manually written ones
- Adapted to existing query planners

Structural optimization

- From Join-of-unions to union-of-joins
- IRI decomposition for pruning and improving joining perf.

Semantic optimization

- Redundant join elimination
- Redundant union elimination
- Using DB constraints

DB constraints

- Unique constraints (e.g. primary keys)
- Inclusion dependencies (foreign keys)
- Vital for query reformulation!

Ontop

http://ontop.inf.unibz.it

Ontop framework

- Started in 2010
- Open-source (Apache 2)
- W3C standard compliant (SPARQL, OWL 2 QL, R2RML)
- Supports all major relational DBs (Oracle, DB2, Postgres, MySQL, etc.) and some virtual DBs (Teiid, Exareme)

Components

- Java APIs
- Protégé extension (GUI)
- Sesame/RD4J endpoint

Integration

- Stardog 4.0 (virtual graphs)
- Fluidops Information Workbench
- Metaphacts semantic data management platform

Ontop

http://ontop.inf.unibz.it

Ontop framework

- Started in 2010
- Open-source (Apache 2)
- W3C standard compliant (SPARQL, OWL 2 QL, R2RML)
- Supports all major relational DBs (Oracle, DB2, Postgres, MySQL, etc.) and some virtual DBs (Teiid, Exareme)

Version 3

Beta in a few weeks

Components

- Java APIs
- Protégé extension (GUI)
- Sesame/RD4J endpoint

Integration

- Stardog 4.0 (virtual graphs)
- Fluidops Information Workbench
- Metaphacts semantic data management platform

QL queries Semantic Web OBDA Optique platform Conclusion References

Optique platform

Visual query formulation (Optique VQS)

http://optique-northwind.fluidops.net demo/demo

QL queries Semantic Web OBDA Optique platform Conclusion Reference:

Conclusion

Main message: we need high-level access to data

- SQL queries over tables can be difficult to write manually (low-level)
- OBDA is a powerful solution for high-level data access
- Ontop is an open-source OBDA framework

Work in progress

- Nested data (MongoDB)
- Streaming and temporal reasoning
- Better SPARQL OPTIONAL
- SPARQL aggregation
- SPARQL MINUS

Links

- Github : ontop/ontop
- ontop4obda@googlegroups.com
- Twitter: @ontop4obda
- http://ontop.inf.unibz.it

(31/32)

Ontop team

- Diego Calvanese
- Guohui Xiao
- Elena Botoeva
- Julien Corman
- Sarah Komla-Ebri
- Davide Lanti
- Elem Güzel Kalayci
- Vladislav Ryzhikov
- Roman Kontchakov (Birkbeck, London)
- Dag Hovland (Oslo)
- Mariano Rodriguez-Muro (now in IBM Research, NY)
- Martin Rezk (now in Rakuten, Tokyo)
- Me

References I

[Botoeva *et al.*, 2016] Elena Botoeva, Diego Calvanese, Valerio Santarelli, Domenico F. Savo, Alessandro Solimando, and Guohui Xiao.

Beyond OWL 2 QL in OBDA: Rewritings and approximations.

In Proc. of the 30th AAAI Conf. on Artificial Intelligence (AAAI), 2016.

[Xiao et al., 2014] Guohui Xiao, Martin Rezk, Mariano Rodriguez-Muro, and Diego Calvanese.

Rules and ontology based data access.

volume 8741 of LNCS, pages 157-172. Springer, 2014.

