INSTITUTO FEDERAL Pernambuco Campus Garanhuns	Disciplina: Arquitetura de Computadores	Turma: 2º ADS	Período: 2024.1
	Prof.: David Alain do Nascimento	Atividade Unidade 1	Data: 07/04/2023
	Estudante:		

1. Um computador IAS possui o início de sua memória RAM preenchida com o conteúdo mostrado na tabela a seguir.

Preencha na tabela as células em branco.

- A coluna **Tipo** representa o tipo da palavra armazenada. Use '**I**' quando o conteúdo for um par de instruções ou '**N**' quando for uma palavra de número.
- A coluna Representação do conteúdo representa o valor legível do conteúdo. Quando for uma palavra de número, este campo deverá ser preenchido com o valor do número em decimal com seu respectivo sinal. Quando for um par de instruções, este campo deverá ser preenchido com a representação simbólica das instruções esquerda e direita com respectivos valores do endereço X representados em decimal.

Endereço	Conteúdo	Tipo	Representação do conteúdo
00000000000	0000110100000001011 <mark>00000001</mark> 000000100100	I	JUMP M(11, 0:19) / LOAD M(36)
00000000001	10000000000000000000000000000100100010	N	-1161
00000000010	1101001001001000001011010010010010000010		
00000000011	000001010000000010110100100100001000100		
00000000100	100000000000000000000000000000000011001		
00000000101	000000000000000000000000000000000000000		
00000000110	100000000000000000000000000000000000000		
00000000111	00000000000000000011010010010010000010		
00000001000	1101001001001000001011010010010010000010		
00000001001	1010010010000100010010100100100001000100		
00000001010	010001101001001000000000000000000000000		
00000001011	0000001000000001010000010100000000110		
00000001100	00000110000000001000010101001001001001		
00000001101	00000000000000000011010010010010000010		
00000001110	1101001001001000001011010010010010000010		
00000001111	1010010010000100010010100100100001000100		

- a) Assuma os seguintes valores dos registradores do computador IAS:
 - IBR = tudo zero
 - PC = tudo zero
 - AC = tudo zero
 - MQ = tudo zero

Execute 4 ciclos de instrução e responda o valor dos registradores PC e AC após a execução.

ANEXO A Instruções do computador IAS

Tabela 2.1 O conjunto de instruções do IAS

Tipo de instrução	0pcode	Representação simbólica	Descrição	
	00001010	LOAD MQ	Transfere o conteúdo de MQ para AC	
	00001001	LOAD MQ,M(X)	Transfere o conteúdo do local de memória X para MQ	
	00100001	STOR M(X)	Transfere o conteúdo de AC para o local de memória X	
Transferência de dados	0000001	LOAD M(X)	Transfere M(X) para o AC	
	00000010	LOAD — M(X)	Transfere — M(X) para o AC	
	00000011	LOAD M(X)	Transfere o valor absoluto de M(X) para o AC	
	00000100	LOAD – M(X)	Transfere - M(X) para o acumulador	
Description and internal	00001101	JUMP M(X,0:19)	Apanha a próxima instrução da metade esquerda de M(X)	
Desvio incondicional	00001110	JUMP M(X,20:39)	Apanha a próxima instrução da metade direita de M(X)	
Davida anadidanal	00001111	JUMP+ M(X,0:19)	Se o número no AC for não negativo, apanha a próxima instrução da metade esquerda de M(X)	
Desvio condicional	00010000	JUMP+ M(X,20:39)	Se o número no AC for não negativo, apanha a próxima instrução da metade direita de M(X)	
	00000101	ADD M(X)	Soma M(X) a AC; coloca o resultado em AC	
	00000111	ADD M(X)	Soma M(X) a AC; coloca o resultado em AC	
	00000110	SUB M(X)	Subtrai M(X) de AC; coloca o resultado em AC	
	00001000	SUB M(X)	Subtrai M(X) de AC; coloca o resto em AC	
Aritmética	00001011	MUL M(X)	Multiplica M(X) por MQ; coloca os bits mais significativos do resultado em AC; coloca bits menos significativos em MQ	
	00001100	DIV M(X)	Divide AC por M(X); coloca o quociente em MQ e o resto em AC	
	00010100	LSH	Multiplica o AC por 2; ou seja, desloca à esquerda uma posição de bit	
	00010101	RSH	Divide o AC por 2; ou seja, desloca uma posição à direita	
	00010010	STOR M(X,8:19)	Substitui campo de endereço da esquerda em M(X) por 12 bits mais à direita de AC	
Modificação de endereço	00010011	STOR M(X,28:39)	Substitui campo de endereço da direita em M(X) por 12 bits mais à direita de AC	

ANEXO B Fluxograma parcial de operação do computador IAS

M(X) = contents of memory location whose address is X (i:j) = bits i through j

Figure 1.8 Partial Flowchart of IAS Operation