

### Collision resistance

Introduction

# Recap: message integrity

So far, four MAC constructions:

PRFs - CMAC : commonly used with AES (e.g. 802.11i)

NMAC : basis of HMAC (this segment)

PMAC: a parallel MAC

randomized Carter-Wegman MAC: built from a fast one-time MAC

This module: MACs from collision resistance.

## **Collision Resistance**

```
Let H: M \to T be a hash function (|M| >> |T|)

A <u>collision</u> for H is a pair m_0, m_1 \in M such that:
H(m_0) = H(m_1) \quad \text{and} \quad m_0 \neq m_1

A function H is <u>collision resistant</u> if for all (explicit) "eff" algs. A:
Adv_{CR}[A,H] = Pr[A \text{ outputs collision for } H]
is "neg".
```

Example: SHA-256 (outputs 256 bits)

### MACs from Collision Resistance

```
Let I = (S,V) be a MAC for short messages over (K,M,T) (e.g. AES)
Let H: M^{big} \rightarrow M
```

```
Def: I^{big} = (S^{big}, V^{big}) over (K, M^{big}, T) as: S^{big}(k,m) = S(k,H(m)) ; V^{big}(k,m,t) = V(k,H(m),t)
```

<u>Thm</u>: If I is a secure MAC and H is collision resistant then I<sup>big</sup> is a secure MAC.

Example:  $S(k,m) = AES_{2-block-cbc}(k, SHA-256(m))$  is a secure MAC.

# MACs from Collision Resistance

```
S^{big}(k, m) = S(k, H(m)); V^{big}(k, m, t) = V(k, H(m), t)
```

Collision resistance is necessary for security:

Suppose adversary can find  $m_0 \neq m_1$  s.t.  $H(m_0) = H(m_1)$ .

Then: Sbig is insecure under a 1-chosen msg attack

step 1: adversary asks for  $t \leftarrow S(k, m_0)$ 

step 2: output (m<sub>1</sub>,t) as forgery

# Protecting file integrity using C.R. hash

#### Software packages:





When user downloads package, can verify that contents are valid

H collision resistant ⇒

attacker cannot modify package without detection

no key needed (public verifiability), but requires read-only space

**End of Segment** 



### Collision resistance

Generic birthday attack

#### Generic attack on C.R. functions

Let H:  $M \rightarrow \{0,1\}^n$  be a hash function ( $|M| >> 2^n$ )

Generic alg. to find a collision in time  $O(2^{n/2})$  hashes

#### Algorithm:

- 1. Choose  $2^{n/2}$  random messages in M:  $m_1, ..., m_2^{n/2}$  (distinct w.h.p)
- 2. For i = 1, ...,  $2^{n/2}$  compute  $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision  $(t_i = t_j)$ . If not found, got back to step 1.

How well will this work?

# The birthday paradox

Let  $r_1, ..., r_n \in \{1,...,B\}$  be indep. identically distributed integers.

<u>Thm</u>: when  $n = 1.2 \times B^{1/2}$  then Pr[∃i≠j:  $r_i = r_j$ ] ≥ ½

Proof: (for uniform indep. 
$$r_1, ..., r_n$$
)
$$\begin{cases} \{r_1 \neq j: r_1 = r_j\} = 1 - f_1 \text{ if } j: r_1 \neq r_j \} = 1 - f_2 \text{ if } j: r_1 \neq r_j \} = 1 - f_3 \text{ if } j: r_2 \neq r_j \} = 1 - f_4 \text{ if } j: r_2 \neq r_j \} = 1 - f_4 \text{ if } j: r_2 \neq r_j \} = 1 - f_4 \text{ if } j: r_3 \neq r_j \} = 1 - f_4 \text{ if } j: r_4 \neq r_3 \neq r_4$$

$$\begin{cases} 1 - f_4 = r_4 \text{ if } j: r_2 \neq r_3 \neq r_4 \\ \text{if } j: r_4 \neq r_5 \neq r_4 \neq r_5 \end{cases} = 1 - f_4 \text{ if } j: r_4 \neq r_5 \neq r_5 \neq r_5 \neq r_6 \neq r_6$$



#### Generic attack

```
H: M \rightarrow \{0,1\}^n . Collision finding algorithm:
```

- 1. Choose  $2^{n/2}$  random elements in M:  $m_1, ..., m_2^{n/2}$
- 2. For i = 1, ...,  $2^{n/2}$  compute  $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision  $(t_i = t_i)$ . If not found, got back to step 1.

Expected number of iteration  $\approx 2$ 

Running time:  $O(2^{n/2})$  (space  $O(2^{n/2})$ )

# Sample C.R. hash functions: Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz ( Linux)

| NIST s    | <u>function</u> | digest<br><u>size (bits)</u> | Speed (MB/sec) | generic<br>attack time  |
|-----------|-----------------|------------------------------|----------------|-------------------------|
|           | SHA-1           | 160                          | 153            | <b>2</b> <sup>80</sup>  |
| stano     | SHA-256         | 256                          | 111            | $2^{128}$               |
| standards | SHA-512         | 512                          | 99             | <b>2</b> <sup>256</sup> |
| 0,        | Whirlpool       | 512                          | 57             | <b>2</b> <sup>256</sup> |

<sup>\*</sup> best known collision finder for SHA-1 requires 2<sup>51</sup> hash evaluations

# Quantum Collision Finder

|                                             | Classical algorithms    | Quantum<br>algorithms   |
|---------------------------------------------|-------------------------|-------------------------|
| Block cipher E: K × X → X exhaustive search | o(  K  )                | O(  K  <sup>1/2</sup> ) |
| Hash function  H: M → T  collision finder   | O(  T  <sup>1/2</sup> ) | O(  T  <sup>1/3</sup> ) |

**End of Segment** 



### Collision resistance

The Merkle-Damgard Paradigm

### Collision resistance: review

Let H: M  $\rightarrow$ T be a hash function (|M| >> |T|)

A <u>collision</u> for H is a pair  $m_0$ ,  $m_1 \in M$  such that:  $H(m_0) = H(m_1)$  and  $m_0 \neq m_1$ 

Goal: collision resistant (C.R.) hash functions

Step 1: given C.R. function for **short** messages, construct C.R. function for **long** messages

### The Merkle-Damgard iterated construction



Given  $h: T \times X \longrightarrow T$  (compression function)

we obtain  $H: X^{\leq L} \longrightarrow T$ .  $H_i$  - chaining variables

PB: padding block

1000...0 | msg len

64 bits

If no space for PB add another block

### MD collision resistance

**Thm**: if h is collision resistant then so is H.

**Proof**: collision on  $H \Rightarrow$  collision on h

Suppose H(M) = H(M'). We build collision for h.

$$|V = H_{0} , H_{1} , ... , H_{t} , H_{t+1} = H(M)$$

$$|V = H_{0}' , H_{1}' , ... , H'_{r}, H'_{r+1} = H(M')$$

$$|V = H_{0}' , H_{1}' , ... , H'_{r}, H'_{r+1} = H(M')$$

$$|V = H_{0}' , H_{1}' , ... , H'_{r}, H'_{r+1} = H(M')$$

$$|V = H_{0}' , H_{1}' , ... , H'_{r}, H'_{r+1} = H(M')$$

$$|V = H_{0}' , H_{1}' , ... , H'_{r}, H'_{r+1} = H(M')$$

$$|V = H_{0}' , H_{1}' , ... , H'_{r}, H'_{r+1} = H(M')$$

$$|V = H_{0}' , H_{1}' , ... , H'_{r}, H'_{r+1} = H(M')$$

$$|V = H_{0}' , H_{1}' , ... , H'_{r}, H'_{r+1} = H(M')$$

$$|V = H_{0}' , H_{1}' , ... , H'_{r}, H'_{r+1} = H(M')$$

$$|V = H_{0}' , H_{1}' , ... , H'_{r}, H'_{r+1} = H(M')$$

$$|V = H_{0}' , H_{1}' , ... , H'_{r}, H'_{r+1} = H(M')$$

$$h(H_t, M_t \parallel PB) = H_{t+1} = H'_{r+1} = h(H'_r, M'_r \parallel PB')$$

```
Suppose H_t = H'_r and M_t = M'_r and PB = PB'

Then: h(H_{t-1}, M_{t-1}) = H_t = H'_t = h(H'_{t-1}, M'_{t-1})

If H_{t-1} \neq H'_{t-1} then we have a collision on h. Stop.

Sharmise, H_{t-1} = H'_{t-1}, and M_t = M'_t and M_{t-1} = M'_{t-1}.

Therefore all the way to beginning and either:

Ci) Find collision on h or cannot happen because h M'_t = M'_t.

(2) \forall i : M_i = M'_t. \Rightarrow M = M_t are collision on H_t.
```

⇒ To construct C.R. function,
suffices to construct compression function

**End of Segment** 



### Collision resistance

Constructing Compression Functions

# The Merkle-Damgard iterated construction



Thm: h collision resistant ⇒ H collision resistant

Goal: construct compression function  $h: T \times X \longrightarrow T$ 

# Compr. func. from a block cipher

**E:**  $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$  a block cipher.

The **Davies-Meyer** compression function:  $h(H, m) = E(m, H) \oplus H$ 



<u>Thm</u>: Suppose E is an ideal cipher (collection of |K| random perms.). Finding a collision h(H,m)=h(H',m') takes  $O(2^{n/2})$  evaluations of (E,D).

Best possible!!

Suppose we define h(H, m) = E(m, H)

Then the resulting h(.,.) is not collision resistant:

to build a collision (H,m) and (H',m') choose random (H,m,m') and construct H' as follows:

- O H'=D(m', E(m,H)) = E(m',H') E(m,H)
- $\bigcirc$  H'=E(m', D(m,H))
- $\bigcirc$  H'=E(m', E(m,H))
- $\bigcirc$  H'=D(m', D(m,H))

# Other block cipher constructions

Let  $E: \{0,1\}^n \times \{0,1\}^n \longrightarrow \{0,1\}^n$  for simplicity

Miyaguchi-Preneel:  $h(H, m) = E(m, H) \oplus H \oplus m$  (Whirlpool)

 $h(H, m) = E(H \oplus m, m) \oplus m$ 

total of 12 variants like this

Other natural variants are insecure:

$$h(H, m) = E(m, H) \oplus m$$
 (HW)

# Case study: SHA-256

- Merkle-Damgard function
- Davies-Meyer compression function
- Block cipher: SHACAL-2



# Provable compression functions

Choose a random 2000-bit prime p and random  $1 \le u, v \le p$ .

For m,h 
$$\subseteq$$
 {0,...,p-1} define  $h(H,m) = u^H \cdot v^m \pmod{p}$ 

Fact: finding collision for h(.,.) is as hard as

solving "discrete-log" modulo p.

Problem: slow.

**End of Segment** 

#### Online Cryptography Course



### Collision resistance

HMAC: a MAC from SHA-256

# The Merkle-Damgard iterated construction



Thm: h collision resistant ⇒ H collision resistant

Can we use H(.) to directly build a MAC?

#### MAC from a Merkle-Damgard Hash Function

**H**: X<sup>≤L</sup> → **T** a C.R. Merkle-Damgard Hash Function

Attempt #1:  $S(k, m) = H(k \parallel m)$ 

This MAC is insecure because:

- Given H(k | m) can compute H(w | k | m | l PB) for any w.
- Given H(k||m) can compute H(k||m||w) for any w.
- ⇒ Given H(k∥m) can compute H(k∥m ll PB ll w) for any w.
  - $\bigcirc$  Anyone can compute  $H(k \parallel m)$  for any m.

# Standardized method: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H: hash function.

example: SHA-256; output is 256 bits

Building a MAC out of a hash function:

HMAC:  $S(k, m) = H(k \oplus \text{opad } || H(k \oplus \text{ipad } || m))$ 

# **HMAC** in pictures



Similar to the NMAC PRF.

main difference: the two keys  $k_1$ ,  $k_2$  are dependent

# **HMAC** properties

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF

- Can be proven under certain PRF assumptions about h(.,.)
- Security bounds similar to NMAC
  - Need  $q^2/|T|$  to be negligible (  $q \ll |T|^{\frac{1}{2}}$ )

In TLS: must support HMAC-SHA1-96

**End of Segment** 



### Collision resistance

Timing attacks on MAC verification

## Warning: verification timing attacks [L'09]

Example: Keyczar crypto library (Python) [simplified]

```
def Verify(key, msg, sig_bytes):
    return HMAC(key, msg) == sig_bytes
```

The problem: '==' implemented as a byte-by-byte comparison

Comparator returns false when first inequality found

## Warning: verification timing attacks [L'09]



Timing attack: to compute tag for target message m do:

Step 1: Query server with random tag

Step 2: Loop over all possible first bytes and query server.

stop when verification takes a little longer than in step 1

Step 3: repeat for all tag bytes until valid tag found



#### Defense #1

Make string comparator always take same time (Python):

```
return false if sig_bytes has wrong length
result = 0
for x, y in zip( HMAC(key,msg) , sig_bytes):
    result |= ord(x) ^ ord(y)
return result == 0
```

Can be difficult to ensure due to optimizing compiler.

#### Defense #2

Make string comparator always take same time (Python):

```
def Verify(key, msg, sig_bytes):
    mac = HMAC(key, msg)
    return HMAC(key, mac) == HMAC(key, sig_bytes)
```

Attacker doesn't know values being compared

# Lesson

Don't implement crypto yourself!

**End of Segment**