Skipping meals, skipping words, and how the latter can benefit you and the first just makes you hungry

Bayesian Language Modelling with Skipgrams

Bayesian Language Modelling with Skipgrams

Louis Onrust
Centre for Language Studies, Radboud University
Center for Processing Speech and Images, KU Leuven
Lonrust@let.ru.nl
github.com/naiaden

Language Models

Applications

- Input assists on telephones
- Automatic translation of search results
- Digital court reporting

Language Models

Applications

- Input assists on telephones
- Automatic translation of search results
- Digital court reporting

Flavours

- Frequentist language models
- Bayesian language models
- Neural language models
- ..

After all , tomorrow is another [...]

After all , tomorrow is another [...]

Word prediction Word probability Pattern probability

After all , tomorrow is another [. . .]

Word prediction Word probability Pattern probability

day

After all , tomorrow is another [...]

After all , tomorrow is another [. . .]

Generalising the *n*-gram

n-grams

• Continuous sequence of *n* words

Skipgrams

• n-gram with at most n-2 skips of length 1

Flexgrams

• *n*-gram with any number of skips of any length

Skipgrams in other works

- A Generalized Language Model as the Combination of Skipped n-grams and Modified Kneser Ney Smoothing, Pickhardt et alia, 2014
- Skip-gram Language Modeling Using Sparse Non-negative Matrix Probability Estimation, Shazeer et alia, 2014
- X Skipgrams in word2vec

Backoff Patterns with Skipgrams

Backoff patterns

simple Only *n*-grams

limited All patterns until known pattern

full All patterns until words

Probability Estimation

Maximum Likelihood Estimate

$$p_{\mathsf{ML}}(w_i|w_{i-N+1},\ldots,w_{i-1}) = \frac{C(w_{i-N+1},\ldots,w_i)}{C(w_{i-N+1},\ldots,w_{i-1})}$$

- Parameter estimation is impossible for N > 2
- Naïve priors assuming independent parameters fail as well

Probability Estimation

Maximum Likelihood Estimate

$$p_{\mathsf{ML}}(w_i|w_{i-N+1},\ldots,w_{i-1}) = \frac{C(w_{i-N+1},\ldots,w_i)}{C(w_{i-N+1},\ldots,w_{i-1})}$$

- Parameter estimation is impossible for N > 2
- Naïve priors assuming independent parameters fail as well

Smoothing

$$p_{SM}(w_i|w_{i-N+1},\ldots,w_{i-1}) = \sum_{n=1}^N \lambda(n)Q_n(w_i|w_{i-N+1},\ldots,w_{i-1})$$

 Chen and Goodman found that interpolated and modified Kneser-Ney are best under virtually all circumstances

Bayesian Probability Estimation

Parametrise conditional probabilities

$$p(w_i = w | w_{i-N+1}, \dots, w_{i-1} = u) = G_u(w)$$

$$G_u = [G_u(w)]_{w \in W}$$

$$\pi(w_{i-N+1}, \dots, w_{i-1}) = w_{i-N+2}, \dots, w_{i-1}$$

• G_u is a probability vector associated with context u

Bayesian Probability Estimation

Parametrise conditional probabilities

$$p(w_i = w | w_{i-N+1}, \dots, w_{i-1} = u) = G_u(w)$$

$$G_u = [G_u(w)]_{w \in W}$$

$$\pi(w_{i-N+1}, \dots, w_{i-1}) = w_{i-N+2}, \dots, w_{i-1}$$

• G_u is a probability vector associated with context u

Hierarchical Dirichlet language model

- What is $p(G_u|G_{\pi(u)})$?
- Standard Dirichlet distribution over probability vectors: does not outperform ikn and mkn (MacKay and Peto, 1994)

Bayesian Probability Estimation

Parametrise conditional probabilities

$$p(w_i = w | w_{i-N+1}, \dots, w_{i-1} = u) = G_u(w)$$

$$G_u = [G_u(w)]_{w \in W}$$

$$\pi(w_{i-N+1}, \dots, w_{i-1}) = w_{i-N+2}, \dots, w_{i-1}$$

G_u is a probability vector associated with context u

Hierarchical Dirichlet language model

- What is $p(G_u|G_{\pi(u)})$?
- Standard Dirichlet distribution over probability vectors: does not outperform ikn and mkn (MacKay and Peto, 1994)

Hierarchical Pitman-Yor process

- Two-parameter extension of the Dirichlet distribution
- PYP produces power-law distributions
- Outperforms ikn and mkn (Teh, 2006)

Experimental Setup

Mixed-domain data

- Google 1 Billion Words
- Wikipedia November 2013

Sampling

1bws 10% of the words wps 5% of the words

Domain-specific data

- JRC-ACQUIS: European legislation
- European Medicines Agency documents

Tresholding on 1BW

unigrams Threshold on 100: 99561 types *n*-grams Thresholds 2, 5, and 10

Method

cpyp C++ library for nonparametric Bayesian modelling with
Pitman-Yor process priors: https://github.com/redpony/cpyp

Colibri Core C++ library for working with basic linguistic constructions such as n-grams and skipgrams:

https://github.com/proycon/colibri-core cococpyp C++ toolkit for Bayesian language modelling:

https://github.com/naiaden/cococpyp

Comparing the Models

Relative change in perplexity w.r.t. HPYLM (test on Google 1BW)

Skipping Meals

Contribution of Skipgrams

HPYLM							
		jrc	1bw	emea	wp		
jrc		13	1195	961	1011		
1bw		1232	171	1749	724		
1bws		768	158	946	493		
emea		600	1143	4	843		
wps		555	455	1005	217		

HPYLM + Skipgrams									
	jrc	1bw	emea	wp					
	13	1162	938	1008					
	728	81	1069	542					
	751	162	921	507					
	581	1155	4	842					
	565	470	990	227					

Preliminary conclusions

Sampled versus tresholded corpus

- For in-domain evaluation we need about 2 times the amount of tresholded data
- For cross-domain evaluation we need at least 5 times as much data

When to use tresholding

- Within-domain better with tresholding, because more training data (patterns) like test data
- Cross-domain better without tresholding, because more types (100k vs. 1.1M types)

Skipgrams help in all situations

- Within-domain performance converges with ngrams
- Cross-domain performance increases (30-40% reduction in perplexity)

Intrinsic evaluation

• Apply HPYLM+S to ASR, MT, ...

Choosing a Language Model

Quick turnaround

Improved backing-off for m-gram language modeling, Kneser & Ney, 1995

Best results

- Hierarchical Pitman-Yor process language model, Teh, 2006
- A parallel training algorithm for hierarchical Pitman-Yor process language models, Huang & Renals, 2009
- Recurrent neural network language model, Mikolov et alia, 2010

Newest

- Sparse Non-negative Matrix Language Modeling For Skip-grams, Shazeer et alia, 2014
- Language Modeling with Power Low Rank Ensembles, Parikh et alia, 2014
- Word representations via Gaussian embedding, Vilnis and MacCallum, under review