Chapitre IV

Algèbre linéaire Partie 3

Exercice - 1

Soient les matrices
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 2 \\ -2 & -3 \\ 1 & 4 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 2 & 5 \\ 0 & 2 & 0 \end{pmatrix}$

Calculer

- *AC*
- *CB*
- BC
- A³
- *AB*

Exercice - 2

Soient les matrices
$$A = \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & -3 \\ 1 & 1 & 4 \end{pmatrix}$

Calculer

- A^{-1}
- ^tB
- B^{-1}

Exercice - 3

Reprenons la matrice des prix des timbres en fonction du poids des envois. Supposons que nous voulions augmenter tous les tarifs de 10%. Calculer les nouveaux tarifs.

Lettre : Tarif				
Jusqu'à	Normal	Tarif 1	Tarif 2	Tarif 3
20g	0,46 €	2,82 €	3,35 €	4,12 €
50g	0,69€	3,05 €	3,58 €	4,34 €
100g	1,02 €	3,38 €	3,92 €	4,68 €

Déterminant

Le déterminant d'une matrice carrée est un outil qui permet

- De vérifier l'inversibilité d'une matrice
- De calculer l'inverse d'une matrice

• ...

Formule générale

Soit la matrice
$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & a_{i,j} & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \in M_n(\mathbb{R})$$

Le déterminant: $\det(A) = |A| = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{\sigma(i),i}$

Où $\mathfrak S$ désigne l'ensemble des permutations de $\{1,2,\dots,n\}$ et ε la signature de la permutation σ

Ordre 2 et Ordre 3

Matrice d'ordre 2:
$$\begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$$
, $\det(A) = a_{1,1}$. $a_{2,2} - a_{1,2}$. $a_{2,1}$

Matrice d'ordre 3:
$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}$$

$$\det(A) = a_{1,1}. a_{2,2}. a_{3,3} + a_{2,1}. a_{3,2}. a_{1,3} + a_{3,1}. a_{1,2}. a_{2,3} - a_{3,1}. a_{2,2}. a_{1,3} - a_{2,1}. a_{3,3}. a_{1,2} - a_{1,1}. a_{3,2}. a_{2,3}$$

Exemple

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}$$
, $d\acute{e}t(A) = 1.4 - 1.2 = 2$

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix}, d\acute{e}t(A) = 1.0.1 + 2.2.0 + 1.3.1 - 1.0.0 - 1.2.3 - 2.1.1 = -5$$

Règle de Sarrus

Matrice d'ordre 3:
$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}$$

$$\det(A) = a_{1,1}. a_{2,2}. a_{3,3} + a_{2,1}. a_{3,2}. a_{1,3} + a_{3,1}. a_{1,2}. a_{2,3} - a_{3,1}. a_{2,2}. a_{1,3} - a_{2,1}. a_{3,3}. a_{1,2} - a_{1,1}. a_{3,2}. a_{2,3}$$

$$\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}$$

$$a_{1,1} & a_{1,2} & a_{1,3}$$

$$a_{2,1} & a_{2,2} & a_{2,3}$$

Soit la matrice
$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & a_{i,j} & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \in M_n(\mathbb{R})$$

On appelle **mineur** relatif au terme $a_{i,j}$, le déterminant A_{ij} de la matrice obtenue en supprimant dans A la ligne i et la colonne j

$$A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots & & \vdots \\ a_{i,1} & \cdots & a_{i,j} & \cdots & a_{i,n} \\ \vdots & & \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,n} \end{pmatrix} \rightarrow A_{ij} = \begin{vmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots & & \vdots \\ a_{i,1} & \cdots & a_{i,j} & \cdots & a_{i,n} \\ \vdots & & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,n} \end{vmatrix}$$

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix} \Rightarrow$$

$$\begin{pmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix} \Rightarrow A_{11} = \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} = -2$$

$$\begin{pmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix} \Rightarrow A_{23} = \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix} = -1$$

$$\begin{pmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix} \Rightarrow A_{22} = \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = 1$$

On appelle cofacteur $\Delta_{ij} = (-1)^{i+j} A_{ij}$ de l'élément $a_{i,j}$ et $(\Delta_{ij})_{i,j} \in M_n(\mathbb{R})$ la matrice des cofacteurs

$$(-1)^{i+j} = \pm 1 \Rightarrow \begin{pmatrix} + & - & \cdots & - \\ - & + & \cdots & + \\ \vdots & \vdots & \ddots & \vdots \\ - & + & \cdots & + \end{pmatrix}$$

Formules de Laplace: on peut calculer le déterminant d'une matrice A en fonction des coefficients d'une seule colonne ou d'une seule ligne de la matrice et des cofacteurs correspondants.

Par rapport à la colonne j: $\det(A) = \sum_{k=1}^{n} a_{kj} \Delta_{kj}$

Par rapport à la ligne i: $\det(A) = \sum_{k=1}^{n} a_{ik} \Delta_{ik}$

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix} \Rightarrow$$

$$|A| = a_{21}\Delta_{21} + a_{22}\Delta_{22} + a_{23}\Delta_{23}$$

$$|A| = 2(-1)^{2+1} \begin{vmatrix} 3 & 0 \\ 2 & 1 \end{vmatrix} + 0(-1)^{2+2} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} + 1(-1)^{2+3} \begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix}$$

$$|A| = -2.3 + 0 + (-1).(-1) = -6 + 1 = -5$$

Particulièrement simple lorsque la matrice contient plusieurs 0

$$A = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 1 & -1 \\ 2 & 3 & 1 \end{pmatrix} \Rightarrow$$

$$|A| = a_{11}\Delta_{11} + a_{12}\Delta_{12} + a_{13}\Delta_{13}$$

$$|A| = 0 + 0 + 2(-1)^{1+3} \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix}$$

$$|A| = 2.1 = 2$$

Propriétés

 On ne change pas la valeur du déterminant en ajoutant à une ligne (resp. une colonne) une combinaison linéaire des autres lignes (resp. colonnes)

 Si on permute 2 lignes (2colonnes), on change le signe du déterminant

Exemple

$$\begin{vmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \\ 1 & 2 & 1 \end{vmatrix} \xrightarrow{\mathbb{Z}} \begin{vmatrix} 1 & 3 & 0 \\ 1 & -2 & 0 \\ 1 & 2 & 1 \end{vmatrix} = 1 \begin{vmatrix} 1 & 3 \\ 1 & -2 \end{vmatrix} = -5$$

$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} \stackrel{=}{\underset{L_2 \leftrightarrow L_3}{\rightleftharpoons}} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = - \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -1$$

Inverse d'une matrice

Une matrice est inversible si $det(A) \neq 0$

Alors
$$A^{-1} = \frac{1}{\det(A)} t_{\Delta}$$

Inverse d'une matrice

Exemple:
$$A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\det(A) = 1 \neq 0$$

$$\Delta = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 0 \\ -2 & 1 & 1 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$