3) (10 pts) ANL (Summations)

Determine a closed form solution to the following summation in terms of **n**. Please leave your answer in <u>factored</u> form. Specifically, your answer should be of the form $\frac{(n+a)(n+b)(n+c)}{d}$, where a, b, c and d are all integers.

$$\sum_{i=1}^{n} \sum_{j=1}^{i} j$$

$$\sum_{i=1}^{n} \sum_{j=1}^{i} j = \sum_{i=1}^{n} \frac{i(i+1)}{2}$$

$$= \frac{1}{2} \left[\left(\sum_{i=1}^{n} i^{2} \right) + \left(\sum_{i=1}^{n} i \right) \right]$$

$$= \frac{1}{2} \left[\left(\frac{n(n+1)(2n+1)}{6} \right) + \left(\frac{n(n+1)}{2} \right) \right]$$

$$= \frac{1}{12} \left[\left(n(n+1)(2n+1) \right) + \left(3n(n+1) \right) \right]$$

$$= \frac{n(n+1)}{12} \left[(2n+1) + 3 \right]$$

$$= \frac{n(n+1)}{12} \left[2n + 4 \right]$$

$$= \frac{n(n+1)}{12} \left[2(n+2) \right]$$

$$= \frac{n(n+1)(n+2)}{6}$$

Grading: 1 pt inner sum, 1 pt split sum, 2 pts plug into i^2 formula, 2 pts plug into I formula 4 pts algebra (decide partial as necessary)

Computer Science Foundation Exam

January 13, 2024

Section D

ALGORITHMS

NO books, notes, or calculators may be used, and you must work entirely on your own.

SOLUTION

Question #	Max Pts	Category	Score
1	10	DSN	
2	5	ALG	
3	10	DSN	
TOTAL	25		

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and <u>not</u> graded based on the answer alone. Credit cannot be given unless all work is shown and is readable. Be complete, yet concise, and above all <u>be neat</u>. For each coding question, assume that all of the necessary includes (stdlib, stdio, math, string) for that particular question have been made.