1

LINEAR SYSTEMS AND SIGNAL PROCESSING QUIZ 2

GANJI VARSHITHA - AI20BTECH11009

Download latex codes from

https://github.com/VARSHITHAGANJI/ EE3900_GATE_ASSIGNMENTS/blob/main/ QUIZ2/QUIZ2.tex

Download all python codes from

https://github.com/VARSHITHAGANJI/ EE3900_GATE_ASSIGNMENTS/blob/main/ QUIZ2/quiz2code.py

QUESTION

Problem 3.24(b) Sketch each of the following sequences and determine their \mathbb{Z} - transforms, including the region of convergence

(a)
$$\sum_{k=-\infty}^{\infty} \delta[n-k]$$

(b) $\frac{1}{2} \left[e^{j\pi n} + \cos\left(\frac{\pi}{2}n\right) + \sin\left(\frac{\pi}{2} + 2\pi n\right) \right] u[n]$

SOLUTION

(b) Let

$$a[n] = \frac{1}{2} \left[e^{j\pi n} + \cos\left(\frac{\pi}{2}n\right) + \sin\left(\frac{\pi}{2} + 2\pi n\right) \right] u[n]$$
(0.0.1)

We have

$$e^{j\pi n} = (-1)^n \ \forall n$$
 (0.0.2)

$$\sin\left(\frac{\pi}{2} + 2\pi n\right) = 1 \,\,\forall n \tag{0.0.3}$$

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & \text{otherwise} \end{cases}$$
 (0.0.4)

$$\cos\left(\frac{\pi}{2}n\right) = \begin{cases} 1, & n = 4k, \ k \ge 0 \\ -1, & n = 4k + 2, \ k \ge 0 \\ 0, & \text{otherwise} \end{cases}$$
 (0.0.5)

Substituting (0.0.2), (0.0.3),(0.0.4) and (0.0.5) in (0.0.1), we get Let

$$a[n] = \frac{1}{2} \left[(-1)^n + \cos\left(\frac{\pi}{2}n\right) + 1 \right] u[n] \qquad (0.0.6)$$

$$= \begin{cases} \frac{3}{2}, & n = 4k, \ k \ge 0\\ \frac{1}{2}, & n = 4k + 2, \ k \ge 0\\ 0, & \text{otherwise} \end{cases}$$
 (0.0.7)

Let the \mathbb{Z} -transform of a[n] be A(z). By definition of \mathbb{Z} -transform, we have

$$A(z) = \sum_{n=-\infty}^{\infty} a[n] z^{-n}$$
 (0.0.8)

As $u[n] = 0 \forall n < 0$

$$A(z) = \sum_{n=0}^{\infty} a[n] z^{-n}$$
 (0.0.9)

Let the sequence be $a_1[n]$ for n = 4k and $a_2[n]$ for n = 4k+2.

Let their corresponding \mathbb{Z} -transforms be $A_1(z)$ and $A_2(z)$ respectively.

Take $k = \frac{n}{4}$

$$A_1(z) = \sum_{k=0}^{\infty} a_1[n] z^{-4k}$$
 (0.0.10)

$$=\sum_{k=0}^{\infty} \frac{3}{2} z^{-4k} \tag{0.0.11}$$

$$=\frac{\frac{3}{2}}{1-z^{-4}}\tag{0.0.12}$$

ROC is |z| > 1.

Take $k = \frac{n-2}{4}$

$$A_2(z) = \sum_{k=0}^{\infty} a_2[n] z^{-4k-2}$$
 (0.0.13)

$$=\sum_{k=0}^{\infty} \frac{1}{2} z^{-2} z^{-4k} \tag{0.0.14}$$

$$=\frac{\frac{1}{2}z^{-2}}{1-z^{-4}}\tag{0.0.15}$$

ROC is |z| > 1.

Since $A(z) = A_1(z) + A_2(z)$,

$$A(z) = \frac{\frac{3}{2} + \frac{1}{2}z^{-2}}{1 - z^{-4}}$$
 (0.0.16)

ROC is |z| > 1.

Solving for poles and zeros of A(z), we get

Zeros =
$$z = \pm \frac{1}{3}i$$

Poles = $z = 1$

Fig. 1: Stem plot of a[n]

Fig. 2: Poles zero plot of A[z]

