

Kimia Unsur Radioaktif

A. PENDAHULUAN

- Sifat radioaktif adalah sifat yang dimiliki atom sebuah unsur karena memiliki inti tidak stabil.
- Pita kestabilan adalah daerah keberadaan intiinti isotop stabil suatu unsur.

Nada pita kestabilan:

- 1) **Isotop stabil** terletak pada pita kestabilan, sedangkan yang tidak berada di atas, bawah atau luar pita kestabilan.
- 2) Unsur bernomor 83 ke bawah bersifat stabil (kecuali teknisium dan prometium), namun dapat memiliki isotop yang tidak stabil yang disebut **radioisotop.**
- 3) Unsur bernomor di atas 83 pasti bersifat radioaktif.
- 4) Unsur bernomor 83 ke bawah berada **pada** pita kestabilan, sedangkan bernomor di atas 83 berada **di luar** pita kestabilan.
- Radioisotop dan unsur radioaktif dapat mencapai kestabilan dengan melepas sinar radioaktif dan partikel dasar.
- Sinar radioaktif adalah sinar yang dipancarkan dari reaksi inti.

Nacam-macam sinar radioaktif:

🔪 Sifat-sifat sinar radioaktif:

- Dapat menembus kertas atau lempengan logam tipis.
- 2) Dapat mengionisasi gas.
- 3) Dapat menghitamkan pelat film.
- 4) Dapat menyebabkan ZnS berpendar.
- 5) Dapat diuraikan oleh medan magnet.
- Nenis-jenis partikel dasar:

Partikel/gelombang	Muatan	Notasi
Sinar α	+	⁴ ₂ α, ⁴ ₂ He
Sinar β	_	-0β
Sinar γ/foton	0	0γ
Elektron	_	₋₁ e
Proton	+	¹ ₁ p, ¹ H
Neutron	0	¹ ₀ n
Positron (antielektron)	+	⁰ ₁ ē
Antiproton	_	. ₁ p
Deuteron/deuterium	+	² H
Triton/tritium	+	³ H

- Cara radioisotop dan unsur radioaktif mencapai kestabilan:
 - Radioisotop terletak di atas pita kestabilan mengurangi jumlah neutron untuk stabil.

$$_{0}^{1}n \rightarrow _{1}^{1}p + _{-1}^{0}e$$

Radioisotop terletak di bawah pita kestabilan mengurangi jumlah proton untuk stabil.

$${}_{1}^{1}p \rightarrow {}_{0}^{1}n + {}_{1}^{0}\bar{e}$$

$${}_{1}^{1}p + {}_{-1}^{0}e \rightarrow {}_{0}^{1}n$$

3) **Unsur radioaktif** cenderung mengurangi jumlah proton dan neutron untuk stabil.

$$2_{1}^{1}p + 2_{0}^{1}n \rightarrow {}_{2}^{4}\alpha$$

PERSAMAAN REAKSI INTI B.

- 🦠 **Reaksi inti** adalah reaksi yang melibatkan perubahan jumlah neutron dan proton inti.
- 🔪 Persamaan reaksi inti adalah persamaan reaksi yang melibatkan perubahan nomor massa dan nomor atom.
- 🔪 Aturan pada reaksi inti:
 - Berlakunya hukum kekekalan nomor massa.
 - Berlakunya hukum kekekalan nomor atom.
 - 3) Berlakunya hukum kekekalan energi.
- 🦠 **Reaksi inti** terbagi menjadi **reaksi** (peluruhan inti) dan reaksi fusi (peleburan inti) yang melepas energi dan tergolong reaksi eksoterm.
- 🔪 Perbedaan reaksi fisi dan fusi:

Sifat	Fisi	Fusi
Reaksi	peluruhan inti	peleburan inti
Massa inti	massa reaktan lebih besar	massa produk lebih besar
Energi	lebih besar	lebih kecil

- Neaksi fisi adalah reaksi peluruhan (disintegrasi) radioisotop/unsur radioaktif.
- 🔦 Contoh persamaan reaksi fisi:
 - 1) Transmutasi alami

Menghasilkan inti yang mencapai kestabilan.

$$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}\alpha$$

$$^{212}_{84}Po \rightarrow ^{208}_{82}Pb + ^{4}_{2}\alpha$$

$$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$$

$$^{31}_{16}S \rightarrow ^{31}_{15}P + ^{0}_{1}\overline{e}$$

2) Transmutasi buatan (penembakan inti)

Menghasilkan inti yang tidak stabil.

Notasi reaksi transmutasi buatan:

T(x,y)P

T = inti target

x = partikel yang ditembakkan (proyektil)

y = partikel yang dipancarkan

P = inti produk

$$^{27}_{13}Al + ^{4}_{2}He \rightarrow ^{30}_{15}P + ^{1}_{0}n$$

 $^{14}_{7}N + ^{4}_{2}He \rightarrow ^{17}_{8}O + ^{1}_{1}H$

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{139}_{56}Ba + ^{94}_{36}Kr + 3 ^{1}_{0}n$$

 $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{38}_{36}Sr + ^{143}_{54}Xe + 3 ^{1}_{0}n$

🔪 Laju peluruhan inti (aktivitas) dapat dirumuskan:

$$A = \lambda.N$$

$$A = \lambda.N$$

$$A = laju peluruhan inti (Bq atau dps)$$

$$λ = tetapan peluruhan (1/s)$$

$$N = jumlah inti$$

🦠 **Waktu hidup** adalah waktu yang dibutuhkan inti sampai seluruhnya meluruh, dapat dirumuskan:

$$\tau = \frac{1}{\lambda}$$
 $\tau = \text{waktu hidup (s)}$ $\lambda = \text{tetapan peluruhan (1/s)}$

🦠 Waktu paruh adalah waktu yang dibutuhkan inti untuk meluruh setengah dari massa awal, dapat dirumuskan:

$$\mathbf{t_{1/2}} = \frac{\ln 2}{\lambda} = \tau.\ln 2$$
 $\ln 2 = 0.693$

🦠 **Jumlah inti sisa** peluruhan setelah meluruh selama waktu tertentu dapat dirumuskan:

$$\frac{N_t}{N_o} = \left(\frac{1}{2}\right)^n \qquad n = \frac{t}{t_{1/2}}$$

$$Nt = jumlah sisa$$

$$No = jumlah mula-mula$$

$$t = waktu (s)$$

$$t_{1/2} = waktu paruh (s)$$

🦠 Laju peluruhan inti (aktivitas) pada waktu tertentu dapat dirumuskan:

$$\frac{A_t}{A_o} = \left(\frac{1}{2}\right)^n \qquad n = \frac{t}{t_{1/2}}$$

Neret radioaktif dalam reaksi peluruhan inti:

Deret	Rumus inti	Inti induk	Inti stabil
Thorium	4n	²³² Th	²⁰⁸ ₈₂ Pb
Neptunium	4n + 1	²³⁷ Np	²⁰⁹ 8i
Uranium	4n + 2	²³⁸ ₉₂ U	²⁰⁶ ₈₂ Pb
Aktinium	4n + 3	²³⁵ ₉₂ U	²⁰⁷ ₈₂ Pb

- 🦠 **Reaksi fusi** adalah reaksi peleburan dua inti yang menghasilkan suatu inti baru.
- 🔪 Contoh persamaan reaksi fusi:

$${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$$
 ${}_{1}^{1}H + {}_{1}^{1}H \rightarrow {}_{1}^{2}H + {}_{1}^{0}\bar{e}$

PENGGUNAAN RADIOISOTOP

- 🦠 Secara garis besar, radioisotop digunakan dalam dua hal:
 - 1) Sebagai perunut, yaitu untuk mempelajari suatu sistem.
 - 2) Sebagai sumber radiasi, yaitu untuk menghasilkan sinar-sinar radioaktif.

Penggunaan radioisotop dalam bidang kedokteran dan ilmu biologi:

Radioisotop	Fungsi/fokus
P-32	
Co-60	kanker/tumor
Ir-192	
I-131	
Cs-137	
Ra-226	
C-14	diabetes, anemia
O-15	paru-paru
Na-24	peredaran darah
P-32	mata, hati
Cr-51	limpa, protein darah, ginjal
Fe-59	sel darah merah
Co-60	sterilisasi alat kedokteran
Ga-67	getah bening
Se-75	pankreas
Sr-89	kelenjar prostat dan tulang
Tc-99	jantung, hati, paru-paru, tulang
I-125	hormon
I-131	kelenjar tiroid, hati, ginjal
Xe-133	paru-paru
Cs-137	sterilisasi alat kedokteran
Tl-201	jantung

Penggunaan radioisotop dalam ilmu kimia dan fisika:

Radioisotop	Fungsi/fokus
C-14	fotosintesis
O-15	
O-18	esterifikasi
I-131	kesetimbangan kimia
Ag-110	titrasi

Nenggunaan radioisotop dalam bidang lainnya:

Radioisotop	Fungsi/fokus
C-14	usia fosil, khasiat tumbuhan
N-15	pupuk
Na-24	kebocoran pipa, aliran sungai
P-32	pupuk
Xe-41	kebocoran tangki reaksi
Co-60	pengawetan makanan
Kr-85	detektor polusi, pengukur ketebalan benda
Sb-124	kebocoran pipa

Cs-137	pengawetan makanan, aliran minyak, erosi tanah	
Ir-192	kebocoran pipa, keretakan logam	
U-235	pembangkit listrik (energi)	
Pu-238		
U-238	usia batuan	
Am-241	detektor asap, detektor hidrokarbon, pengukur ketebalan benda	