Лекция 5. Мартингальная теория прайсинга

October 20, 2025

Рекап прошлой лекции

- Динамика самофинансируемого портфеля.
- Случайные платёжные обязательства
- Безарбитражность и реплицируемость.
- Уравнение Блэка-Шоулза.
- Европейский колл-опцион, стоимость и греки

План лекции

- Элементы теории меры:
 - Абсолютная непрерывность и эквивалентность мер.
 - Производная Радона-Никодима.
 - Теорема Гирсанова: замена дрифта у броуновского движения.
- Модель Блэка-Шоулза с точки зрения мартингального подхода.
- Фундаментальные теоремы финансов.
- Полнота и безарбитражность многомерной модели Блэка-Шоулза.

Абсолютная непрерывность мер

Пусть (Ω, \mathcal{F}) – измеримое пространство (множество с σ -алгеброй). Пусть \mathbb{Q}, \mathbb{P} – меры на (Ω, \mathcal{F}) .

Определение

Мера $\mathbb Q$ абсолютно непрерывна относительно $\mathbb P$, если $orall A \in \mathcal F$:

$$\mathbb{P}(A) = 0 \rightarrow \mathbb{Q}(A) = 0$$

Обозначение $\mathbb{Q} \ll \mathbb{P}$

Определение

Мера $\mathbb Q$ эквивалентна $\mathbb P$, если $\mathbb Q \ll \mathbb P, \mathbb P \ll \mathbb Q$. Обозначение $\mathbb Q \sim \mathbb P$

Абсолютная непрерывность мер: примеры

Примеры:

ullet Пусть $\Omega = \{1,\ldots, {\it N}\}, {\it F} = 2^{\Omega}.$ Тогда:

$$\mathbb{Q} \ll \mathbb{P} \Leftrightarrow \mathbb{P}(\{n\}) = 0 \to \mathbb{Q}(\{n\}) = 0$$

Абсолютная непрерывность мер: примеры

Примеры:

ullet Пусть $\Omega = \{1,\ldots,N\}, \mathcal{F} = 2^{\Omega}.$ Тогда:

$$\mathbb{Q} \ll \mathbb{P} \Leftrightarrow \mathbb{P}(\{n\}) = 0 \to \mathbb{Q}(\{n\}) = 0$$

ullet Пусть $\Omega=\mathbb{R}, \mathcal{F}=\mathcal{B}(\mathbb{R})$. Пусть меры \mathbb{P},\mathbb{Q} заданы плотностями p(x),q(x), т.е.

$$\mathbb{P}(A) = \int_A p(x) dx, \ \mathbb{Q}(A) = \int_A q(x) dx$$

Тогда

$$\mathbb{Q} \ll \mathbb{P} \Leftrightarrow \operatorname{supp}(q) \subseteq \operatorname{supp}(p)$$

Производная Радона-Никодима

Пусть $\mathbb P$ – мера, $f\in\mathcal F$ – измеримая фунцкия, $f(\omega)\geq 0$. Определим меру $\mathbb Q$ по формуле:

$$\mathbb{Q}(A)=\int_{\mathcal{A}}f(\omega)d\mathbb{P}(\omega),\;A\in\mathcal{F}$$

Тогда \mathbb{Q} — мера и $\mathbb{Q} \ll \mathbb{P}$.

Производная Радона-Никодима

Пусть \mathbb{P} – мера, $f\in\mathcal{F}$ – измеримая фунцкия, $f(\omega)\geq 0$. Определим меру \mathbb{Q} по формуле:

$$\mathbb{Q}(A)=\int_{A}f(\omega)d\mathbb{P}(\omega),\;A\in\mathcal{F}$$

Тогда \mathbb{Q} – мера и $\mathbb{Q} \ll \mathbb{P}$. Верно и обратное:

Теорема Радона-Никодима

Пусть $\mathbb{Q} \ll \mathbb{P}$. Тогда $\exists f \in \mathcal{F}, f(\omega) \geq 0$:

$$\mathbb{Q}(A) = \int_A f(\omega) d\mathbb{P}(\omega)$$

Обозначение: $f(\omega) = \frac{d\mathbb{Q}}{d\mathbb{P}}$

Производная Радона-Никодима: примеры

ullet Пусть $\Omega=\{1,\ldots,N\}, \mathcal{F}=2^{\Omega}$, $\mathbb{Q}\ll\mathbb{P}$. Тогда:

$$\frac{d\mathbb{Q}}{d\mathbb{P}}(n) = \frac{\mathbb{Q}(\{n\})}{\mathbb{P}(\{n\})} \cdot \mathbb{I}(\mathbb{P}(\{n\}) \neq 0)$$

при $n\in\Omega$.

Производная Радона-Никодима: примеры

ullet Пусть $\Omega=\{1,\ldots,{\it N}\}, {\it F}=2^\Omega$, ${\Bbb Q}\ll{\Bbb P}$. Тогда:

$$\frac{d\mathbb{Q}}{d\mathbb{P}}(n) = \frac{\mathbb{Q}(\{n\})}{\mathbb{P}(\{n\})} \cdot \mathbb{I}(\mathbb{P}(\{n\}) \neq 0)$$

при $n \in \Omega$.

• Пусть $\Omega=\mathbb{R}, \mathcal{F}=\mathcal{B}(\mathbb{R})$. Пусть меры $\mathbb{P}\gg\mathbb{Q}$ заданы плотностями p(x),q(x). Тогда:

$$\frac{d\mathbb{Q}}{d\mathbb{P}}(x) = \frac{q(x)}{p(x)} \cdot \mathbb{I}(p(x) \neq 0)$$

Производная Радона-Никодима: свойства

Пусть

- (Ω, \mathcal{F}) измеримое пространство
- ullet $\mathbb{P} \sim \mathbb{Q}$ вероятностные меры
- ullet $f=rac{d\mathbb{Q}}{d\mathbb{P}}$ производная Радона-Никодима
- ullet $\xi \in \mathcal{F}$ случайная величина.

Производная Радона-Никодима: свойства

Пусть

- (Ω, \mathcal{F}) измеримое пространство
- ullet $\mathbb{P} \sim \mathbb{Q}$ вероятностные меры
- ullet $f=rac{d\mathbb{Q}}{d\mathbb{P}}$ производная Радона-Никодима
- ullet $\xi \in \mathcal{F}$ случайная величина.

Тогда:

- $\mathbb{Q}(A) = \int_A f(\omega) d\mathbb{P}(\omega)$
- $\mathbb{E}^{\mathbb{Q}}\xi = \int_{\Omega} \xi(\omega) dQ(\omega) = \int_{\Omega} \xi(\omega) f(\omega) d\mathbb{P}(\omega) = \mathbb{E}^{\mathbb{P}} [\xi \cdot f]$
- ullet $\mathbb{E}^{\mathbb{Q}}1=\mathbb{E}^{\mathbb{P}}f=1$

Замена меры: пример

Пусть $\Omega=\mathbb{R}, \mathcal{F}=\mathcal{B}(\mathbb{R})$, мера \mathbb{P} задана плотностью $p(x)=\dfrac{\exp\left(-0.5x^2\right)}{\sqrt{2\pi}}.$ Найти меру, относительно которой с.в. $\xi(x)=x$ имеет распределение $\mathcal{N}(a,1)$.

Замена меры: пример

Пусть $\Omega=\mathbb{R}, \mathcal{F}=\mathcal{B}(\mathbb{R})$, мера \mathbb{P} задана плотностью $p(x)=rac{\exp\left(-0.5x^2
ight)}{\sqrt{2\pi}}.$

Найти меру, относительно которой с.в. $\xi(x)=x$ имеет распределение $\mathcal{N}(a,1)$.

• Плотность новой меры Q:

$$q(x) = \frac{\exp(-0.5(x-a)^2)}{\sqrt{2\pi}}$$

• Производная Радона-Никодима:

$$f(x) = \frac{q}{p} = \exp(ax - 0.5a^2)$$

• Проверка:

$$\mathbb{E}^{\mathbb{Q}}\xi = \mathbb{E}^{\mathbb{P}}\xi \cdot f(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x \cdot \exp(ax - 0.5a^2) \exp(-0.5x^2) dx =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x \cdot \exp(-0.5(x - a)^2) dx = a$$

Замена меры для процессов

Теорема

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ – вероятностное пространство, $\mathbb{Q} \sim \mathbb{P}$, $\Lambda = \frac{d\mathbb{Q}}{d\mathbb{P}}$, $\Lambda_t = \mathbb{E}^{\mathbb{P}} [\Lambda | \mathcal{F}_t]$. Тогда:

$$\Lambda_t = rac{d\mathbb{Q}_t}{d\mathbb{P}_t} \in \mathcal{F}_t$$

где $\mathbb{Q}_t, \mathbb{P}_t$ – ограничение мер на σ -алгебру $\mathcal{F}_t.$

Доказательство. Пусть $A_t \in \mathcal{F}_t$. По определению производной Радона-Никодима:

$$\mathbb{Q}(A_t) = \mathbb{E}^{\mathbb{P}}\left[\Lambda \cdot \mathbb{I}_{A_t}\right]$$

С другой стороны, по определению УМО:

$$\mathbb{E}^{\mathbb{P}}\left[lacksquare oxedsymbol{\mathbb{I}}_{A_t}
ight] = \mathbb{E}^{\mathbb{P}}\left[\mathbb{E}^{\mathbb{P}}\left[lacksquare oxedsymbol{\mathbb{I}}_{A_t}
ight] \cdot \mathbb{I}_{A_t}
ight] = \mathbb{E}^{\mathbb{P}}\left[lacksquare oxedsymbol{\mathbb{I}}_{A_t}
ight]$$

A это и означает, что $\Lambda_t = rac{d\mathbb{Q}_t}{d\mathbb{P}_t}$

Замена меры для процессов

Теорема

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ – вероятностное пространство, $\mathbb{Q} \sim \mathbb{P}$, $\Lambda = \frac{d\mathbb{Q}}{d\mathbb{P}}$, $\Lambda_t = \mathbb{E}^{\mathbb{P}} [\Lambda | \mathcal{F}_t]$. Тогда X_t – мартингал относительно \mathbb{Q} тогда и только тогда, когда ΛX_t – мартингал относительно \mathbb{P} .

Доказательство. Пусть $A_s \in \mathcal{F}_s$, тогда:

$$\mathbb{E}^{\mathbb{Q}}\left[X_{t}\mathbb{I}_{A_{s}}\right] = \mathbb{E}^{\mathbb{P}}\left[X_{t}\Lambda_{t}\mathbb{I}_{A_{s}}\right] = \mathbb{E}^{\mathbb{P}}\left[X_{s}\Lambda_{s}\mathbb{I}_{A_{s}}\right] = \mathbb{E}^{\mathbb{Q}}\left[X_{s}\mathbb{I}_{A_{s}}\right]$$

A это и означает, что $\mathbb{E}^{\mathbb{Q}}\left[X_t|\mathcal{F}_s
ight]=X_s.$

Характеризация броуновского движения

Теорема

Пусть $W_0=0$, W_t,W_t^2-t – локальные мартингалы с непрерывными траекториями. Тогда W_t – броуновское движение.

Теорема Гирсанова: мотивация

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ – вероятностное пространство, $(\mathcal{F}_t)_{0 \leq t \leq T}$ – фильтрация.

- Пусть $(W_t)_{t\geq 0}$ броуновское движение.
- ullet Хотим найти меру $\mathbb Q$, относительно которой $Z_t = W_t heta \cdot t$ БД.
- Относительно $\mathbb{Q}\ W_t \sim N(\theta t, t)$.
- "Кандидат" на производную Радона-Никодима:

$$\begin{split} \Lambda &= \exp \big(\theta \cdot W_{\mathcal{T}} - 0.5 \theta^2 \cdot \mathcal{T} \big) \\ \Lambda_t &= \mathbb{E}^{\mathbb{P}} \left[\Lambda | \mathcal{F}_t \right] = \exp \big(\theta \cdot W_t - 0.5 \theta^2 \cdot t \big) \end{split}$$

Теорема Гирсанова: мотивация

Пусть $(\Omega, \mathcal{F}, \mathbb{P})$ – вероятностное пространство, $(\mathcal{F}_t)_{0 \le t \le T}$ – фильтрация.

- Пусть $(W_t)_{t>0}$ броуновское движение.
- ullet Хотим найти меру $\mathbb Q$, относительно которой $Z_t = W_t heta \cdot t$ БД.
- Относительно $\mathbb{Q}\ W_t \sim N(\theta t, t)$.
- "Кандидат" на производную Радона-Никодима:

$$\Lambda = \exp(\theta \cdot W_T - 0.5\theta^2 \cdot T)$$

$$\Lambda_t = \mathbb{E}^{\mathbb{P}} \left[\Lambda | \mathcal{F}_t \right] = \exp(\theta \cdot W_t - 0.5\theta^2 \cdot t)$$

• По формуле Ито:

$$d\Lambda_t = \Lambda_t \theta dW_t$$

ullet Докажем, что $\Lambda_t Z_t$ мартингал относительно ${\mathbb P}$:

$$d(\Lambda_t Z_t) = d\Lambda_t Z_t + \Lambda_t dZ_t + d\Lambda_t dZ_t = \Lambda_t \left(\theta Z_t dW_t + dW_t - \theta dt + \theta dt\right) = \Lambda_t (1 + \theta Z_t) dW_t + dW_t - \theta dt + \theta dt$$

• Аналогично для $Z_t^2 - t$. Отсюда Z_t – броуновское движение относительно \mathbb{Q} .

Теорема Гирсанова

Теорема

Пусть θ_t – согласованный процесс, $\int_0^T \theta_s^2 ds < \infty$. Положим

$$\Lambda = \exp\biggl(\int_0^T \theta_s dW_s - 0.5 \int_0^T \theta_s^2 ds\biggr)$$

Определим новую меру $d\mathbb{Q}=\Lambda d\mathbb{P}$, тогда процесс:

$$Z_t = W_t - \int_0^t \theta_s ds$$

является \mathbb{Q} -броуновским движением при $t \leq T$.

Модель Блэка-Шоулза

- $(\Omega, \mathcal{F}, \mathbb{P})$ вероятностное пространство
- ullet W_t броуновское движение, $(\mathcal{F}_t)_{t\geq 0}$ фильтрация, порождённая W_t .
- Два торгуемых актива, банковский счёт:

$$dB_t = rB_t dt$$
$$B_0 = 1$$

Акция:

$$dS_t = S_t \mu dt + S_t \sigma dW_t$$

$$S_t = S_0 \exp((\mu - 0.5\sigma^2) t + \sigma W_t)$$

 Рынком будем называть вероятностное пространство + фильтрация + динамика торгуемых активов + класс допустимых портфелей.

Уравнение Блэка-Шоулза

Теорема

Пусть $\Phi(S_T)$ – простой дериватив, тогда его цена $p(t,\Phi)=F(t,S_t)$, где F(t,S) является решением УРЧП:

$$\frac{\partial F}{\partial t} + rS \frac{\partial F}{\partial S} + \sigma^2 S^2 \frac{1}{2} \frac{\partial^2 F}{\partial S^2} = rF,$$

$$F(T, S) = \Phi(S).$$

Простой дериватив является реплицируемым, веса реплицирующего портфеля задаются формулами:

$$\begin{aligned} x_t &= \frac{\partial F(t, S_t)}{\partial S}, \\ B_t y_t &= F(t, S_t) - \frac{\partial F(t, S_t)}{\partial S} S_t. \end{aligned}$$

Формула Феймана-Каца

Теорема

Пусть функция F(t,S) удовлетворяет УРЧП:

$$\frac{\partial F}{\partial t} + rS \frac{\partial F}{\partial S} + \sigma^2 S^2 \frac{1}{2} \frac{\partial^2 F}{\partial S^2} = rF,$$

$$F(T, S) = \Phi(S).$$

Тогда решение может быть выраженно через условное мат. ожидание:

$$F(t,S) = \mathbb{E}^Q \left[e^{-r(T-t)} \Phi(S_T) | S_t = S \right]$$

где S_u подчиняется геометрическому броуновскому движению:

$$dS_{u} = rS_{u}du + \sigma S_{u}dW_{u}^{Q}, u > t$$

$$S_{t} = S$$

Определение

Мера, относительно которой цена процесса подчиняются уравнению:

$$dS_t = rS_t dt + \sigma S_t dW_t^Q$$

называется риск-нейтральной \mathbb{Q} . Здесь $W_t^Q - \mathbb{Q}$ -броуновское движение.

Определение

Мера, относительно которой цена процесса подчиняются уравнению:

$$dS_t = rS_t dt + \sigma S_t dW_t^Q$$

называется риск-нейтральной \mathbb{Q} . Здесь $W_t^Q - \mathbb{Q}$ -броуновское движение.

Утверждение

Относительно риск-нейтральной меры дисконтированные цены $\widetilde{S}_t = \frac{S_t}{B_t}, \widetilde{V}_t = \frac{V_t}{B_t}$ мартингалы.

Определение

Мера, относительно которой цена процесса подчиняются уравнению:

$$dS_t = rS_t dt + \sigma S_t dW_t^Q$$

называется риск-нейтральной \mathbb{Q} . Здесь $W_t^Q - \mathbb{Q}$ -броуновское движение.

Утверждение

Относительно риск-нейтральной меры дисконтированные цены $\widetilde{S}_t = \frac{S_t}{B_t}, \widetilde{V}_t = \frac{V_t}{B_t}$ мартингалы.

Доказательство.

$$\begin{split} d\widetilde{S}_t &= \sigma \widetilde{S}_t dW_t^Q \\ d\widetilde{V}_t &= x_t d\widetilde{S}_t = \sigma x_t \widetilde{S}_t dW_t^Q \end{split}$$

Риск-нейтральная мера: существование

ullet Динамика в реальной мере ${\mathbb P}$:

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

• Динамика в риск-нейтральной мере Q:

$$dS_t = rS_t dt + \sigma S_t dW_t^Q$$

Отсюда:

$$W_t^Q = W_t + \lambda t$$

где
$$\lambda = \frac{\mu - r}{\sigma}$$
 – риск-премия.

• Производная Радона-Никодима:

$$\Lambda_T = \frac{d\mathbb{Q}}{d\mathbb{P}} = \exp(-\lambda \cdot W_T - 0.5\lambda^2 \cdot T)$$

• В терминах нового БД:

$$\Lambda_T = \frac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(-\lambda \cdot W_T^Q + 0.5\lambda^2 \cdot T\right)$$

Безарбитражность

Формула прайсинга:

$$\frac{V_t}{B_t} = \mathbb{E}^{\mathbb{Q}} \left[\frac{\Phi(S_T)}{B_T} \mid \mathcal{F}_t \right]$$

Теорема

Модель Блэка-Шоулза безарбитражна.

Доказательство. Пусть $(h_t)_{t\geq 0}$ — арбитражный портфель. Пусть $V_0^h=0, V_T^h\geq 0$. Тогда:

$$0=V_0^h=\mathbb{E}^\mathbb{Q}rac{V_T^h}{B_T}
ightarrow\mathbb{Q}(V_T=0)=1
ightarrow\mathbb{P}(V_T=0)=1$$

Пришли к противоречию.

Полнота

Определение

Платёжное обязательство $X \in \mathcal{F}_T$ называется реплицируемым, если \exists самофинансируемый портфель $h_t = (x_t, y_t)$ такой, что:

$$V_T^h \stackrel{a.s.}{=} X$$

Определение

Рынок называется полный, если любое * платёжное обязательство является реплицируемым.

- На прошлой лекции доказали для случая $X = \Phi(S_T)$.
- Полнота эквивалентна представлению произвольного функционала от БД $X = X(\{W_s\}_{s \le T})$ в виде интеграла Ито:

$$X = \int_0^T g_s dW_s$$

Полнота: контр-пример

- ullet Пусть W_t, Z_t два независимых БД, $\mathcal{F}_t = \sigma(\{W_s\}_{s \leq t}, \{Z_s\}_{s \leq t}).$
- Динамика активов:

$$dB_t = rB_t dt$$
$$dS_t = \sigma S_t dW_t$$

• Платёжное обязательство $X = \Phi(Z_T)$ не является реплицируемым \to рынок не полный.

Мета-теорема

Рынок полный \Leftrightarrow число источинков случайности = числу рисковых активов.

Многомерная модель Блэка-Шоулза

- ullet W_t^1,\ldots,W_t^K независимые броуновские движения
- ullet $\mathcal{F}_t = \sigma(\{W^j_s\}_{s \leq t}, k = \overline{1,K})$ фильтрация
- ullet Один безрисковый актив S^0_t и N рисковых активов:

$$dS_t^0 = rS_t^0 dt$$
 $dS_t^i = S_t^i \left(\mu_i dt + \sum_{j=1}^K \sigma_{ij} dW_t^j
ight)$

- ullet $\mu \in \mathbb{R}^{N}$ вектор доходностей
- $\sigma \in \mathbb{R}^{N \times K}, \sigma \sigma^{\top}$ матрица ковариаций лог-доходностей.

Динамика портфелей

- ullet Самофинансируемый портфель $h_t = (h_t^0, h_t^1, \dots, h_t^N)$.
- Динамика самофинансируемого портфеля:

$$dV_{t}^{h} = \sum_{i=0}^{N} h_{i}^{t} dS_{t}^{i} = h_{t}^{0} dS_{t}^{0} + \sum_{i=1}^{N} h_{t}^{i} dS_{t}^{i}$$

ullet Динамика относительного портфеля $ilde{V}_t^h = rac{V_t^h}{B_t}$

$$d\tilde{V}_t^h = \sum_{i=1}^N h_t^i d\tilde{S}_t^i$$

Определение

Мера $\mathbb Q$ называется риск-нейтральной, если $\mathbb Q \sim \mathbb P$ и рисковые активы имеют динамику:

$$dS_t^i = S_t^i \left(rdt + \sum_{j=1}^K \sigma_{ij} dZ_t^j \right)$$

где Z_t^j – \mathbb{Q} -броуновские движения.

• Замена дрифта у броуновского движения:

$$W_t^j = Z_t^j - \lambda_j$$

• Дрифт относительно новой меры:

$$dS_t^i = S_t^i \left((\mu_i - \sum_{j=1}^K \sigma_{ij} \lambda_j) dt + \sum_{j=1}^K \sigma_{ij} dZ_t^j
ight)$$

• Уравнение на дрифт:

$$\vec{\mu} - \sigma \vec{\lambda} = r \cdot \vec{1}$$

• В случае общего положения решение \exists , если $K \geq N$, решение \exists !, если K = N.

Первая фундаментальная теорема

Первая фундаментальная теорема

Рынок безарбитражен \Leftrightarrow существует риск-нейтральная мера.

Первая фундаментальная теорема

Первая фундаментальная теорема

Рынок безарбитражен ⇔ существует риск-нейтральная мера.

- \Rightarrow Для случая r=0.
 - ullet От противного. Пусть система $\sigma ec{\lambda} = ec{\mu}$ не имеет решения.
 - ullet Альтернатива Фредгольма: система $\sigma^{ op} ec{g} = ec{0}$ имеет решение, $\langle ec{g}, \mu
 angle
 eq 0$.
 - ullet Портфель с весами $h_t^i=rac{g_i}{S^i}, i\geq 1.$ h_t^0 из условия самофинансируемости.
 - Динамика портфеля:

$$dV_t^h = \sum_{i=1}^n g_i \frac{dS_i}{S_i} = \langle \vec{g}, \vec{\mu} \rangle dt + \langle \vec{g}, \hat{\sigma} d\vec{W}_t \rangle = \langle \vec{g}, \vec{\mu} \rangle dt \neq 0$$

ullet Получили два безрисковых портфеля с разной доходностью o арбитраж.

Вторая фундаментальная теорема

Вторая фундаментальная теорема

Рынок безарбитражный и полный \Leftrightarrow риск-нейтральная мера единственна.

Вторая фундаментальная теорема

- Пусть $X \in \mathcal{F}_T$ произвольное платежное обязательство.
- По теореме о представлении:

$$X = \int_0^T \sum_{j=1}^K g_t^j dW_t^j = \int_0^T \langle \vec{g}_t, d\vec{W}_t \rangle$$

• Класс реплицируемых пэйоффов:

$$V_T = \int_0^T \sum_{i=1}^N h_t^i dS_t^i = \int_0^T \langle \vec{h}_t \circ \vec{S}_t, \hat{\sigma} dW_t
angle = \int_0^T \langle \hat{\sigma}^ op (\vec{h}_t \circ \vec{S}_t), d\vec{W}_t
angle$$

ullet Для полноты нужно, чтобы система имела решение $orall ec{g}_t$:

$$\hat{\sigma}^{ op}(ec{h}_t \circ ec{\mathcal{S}}_t) = ec{g}_t$$

Отсюда

$$\operatorname{Im}(\hat{\sigma}^{\top}) = \mathbb{R}^{K} \Leftrightarrow \operatorname{Ker}(\hat{\sigma}) = \emptyset$$

Эквивалентные мартингальные меры

Определение

Пусть $N_t>0$ — numerair (единица измерения). Вероятностная мера \mathbb{Q}_N называется эквивалентной мартингальной мерой (EMM) относительно N_t , если

- ullet $\mathbb{Q}_{N}\sim\mathbb{P}$
- ullet Процессы $ilde{B}_t = rac{B_t}{N_t}, ilde{S}_t = rac{S_t}{N_t}$ являются мартингалами относительно \mathbb{Q}_N

Теорема

Пусть \mathbb{Q}_N — мартингальная мера, V_t^h — самофинансируемый портфель. Тогда

$$\tilde{V}_t^h = \frac{V_t^h}{N_t}$$

тоже самофинансируемый.

Эквивалентные мартингальные меры

Определение

Пусть $N_t>0$ — numerair (единица измерения). Вероятностная мера \mathbb{Q}_N называется эквивалентной мартингальной мерой (EMM) относительно N_t , если

- ullet $\mathbb{Q}_{N}\sim\mathbb{P}$
- ullet Процессы $ilde{B}_t = rac{B_t}{N_t}, ilde{S}_t = rac{S_t}{N_t}$ являются мартингалами относительно \mathbb{Q}_N
- ullet Стоимость $ilde{V}_t$ любого самофинансируемого портфеля \mathbb{Q}_N -мартингал.
- Общая формула для ценообразования:

$$\frac{V_t}{N_t} = \mathbb{E}^{Q_N} \left[\frac{V_T}{N_T} | F_t \right]$$

$$V_t = \mathbb{E}^{Q_N} \left[\frac{N_t}{N_T} V_T | F_t
ight]$$

Пример

- ullet Контракт с пэйоффом $\Phi(S_T) = S_T \mathbb{I}(S_T \geq K)$
- Выберем $N_t = S_t$. Формула ценообразования:

$$rac{V_t}{S_t} = \mathbb{E}^{Q_S}\left[rac{V_T}{S_T}|\mathcal{F}_t
ight] = \mathbb{E}^{Q_S}\left[\mathbb{I}(S_T \geq K)|\mathcal{F}_t
ight] = Q_S\left(S_T \geq K|\mathcal{F}_t
ight)$$

- ullet Q_S EMM относительно S_t , $ilde{S}_t=1$ и $ilde{B}_t=rac{B_t}{S_t}$ мартингалы.
- Процесс для \tilde{B}_t :

$$\tilde{B}_t = \frac{1}{S_0} e^{rt} e^{-(r - 0.5\sigma^2)t - \sigma W_t^Q} = \frac{1}{S_0} e^{0.5\sigma^2 t - \sigma W_t^Q} = \frac{1}{S_0} e^{-0.5\sigma^2 t - \sigma W_t^{Q_S}}$$

• Динамика исходного актива:

$$S_t = \frac{B_t}{\tilde{B}_t} = S_0 e^{(r+0.5\sigma^2)t + \sigma W_t^{Q_S}}$$

Пример

• Динамика исходного актива:

$$S_t = rac{B_t}{ ilde{B}_t} = S_0 e^{(r+0.5\sigma^2)t + \sigma W_t^{Q_S}}$$

$$S_T \geq K \rightarrow (r + 0.5\sigma^2)\tau + \sigma\xi\sqrt{\tau} \geq -\log\frac{S_t}{K} \rightarrow \xi \geq -\frac{\log(S_t/K) + (r + 0.5\sigma^2\tau)}{\sigma\sqrt{\tau}}$$

Отсюда:

$$V_t = S_t \cdot Q_S (S_T \geq K | \mathcal{F}_t) = S_t \cdot N(-d_1) = S_t \cdot N(d_1)$$