Logistic Regression over Encrypted Data

Marwan Nour Final Year Project - Spring 2020

Motivation

- Machine Learning as a Service (MLaaS)
- Protecting the tech consumer's privacy

Outline

- I. Homomorphic Encryption
 - A. BFV Encryption Scheme
 - B. CKKS Encryption Scheme
- II. Implemented Functionalities using CKKS
 - A. Linear Transformation
 - B. Matrix Matrix Multiplication
- III. Logistic Regression
 - A. Polynomial approximation of the Sigmoid function
 - B. Polynomial Evaluation
- IV. Benchmark Tests
- V. Challenges
- VI. Possible Optimizations and Improvements

Homomorphic Encryption

BFV (Brakerski-Fan-Vercauteren)

- Computes integers using Modular arithmetic
- Yields exact results
- Number of multiplications limited by "noise budget" of Ciphertexts
- Risk of integer overflow from modular arithmetic (can reduce risk with encoding):
 - Integer Encoding -> Base 2 Polynomials: $26 = 2^4 + 2^3 + 2^1 = x^4 + x^3 + x^1$
 - Batch Encoding -> 2 by N/2 Matrix where N is the "Polynomial Modulus Degree parameter"

CKKS (Cheon-Kim-Kim-Song)

- Uses Additions and Multiplications on encrypted real or complex numbers
- Yields only approximate results
- Number of multiplications limited by the maximum "scale" of Ciphertexts
- No overflow risk since it doesn't use modular arithmetic
- Input Vector is encoded into N/2 vector where N is the "Polynomial Modulus Degree" parameter

Encryption Parameters

- Polynomial Modulus Degree
 - Positive power of 2 (i.e 2048, 4096, 8192, ...)
 - ➤ High Polynomial Modulus Degree = Slower Computations
- Ciphertext Coefficient Modulus
 - Product of distinct prime numbers each up to 60 bits in size
 - > Represented by a vector of prime numbers forming a Modulus Chain

```
params.set_coeff_modulus(CoeffModulus::Create(poly_modulus_degree, {60,
40, 40, 60}));
```

- Plaintext Modulus (BFV Only)
 - Determines the size of the Plaintext data type and the consumption of "noise budget" in multiplications

Ciphertext Size

- The Size of a Ciphertext refers to the number of polynomials and starts at 2
 - Increases with Ciphertext multiplication
 - ➤ If M and N are the sizes of the two inputs then homomorphic multiplication of those inputs results in a Ciphertext of size: MxN -1
 - The larger the Size of a Ciphertext the more noise budget it consumes (for BFV only) and the slower our next computations will be.
- ❖ SEAL allows us to Relinearlize a ciphertext and lower its size from 3 to 2.

Ciphertext Scale (CKKS Only)

- The Scale of a Ciphertext determines the bit-precision of CKKS encoding
 - ➤ Increases with Ciphertext multiplication
 - Can corrupt the encoding if it exceeds the size of the Coefficient Modulus
- ❖ SEAL allows us to Rescale Ciphertexts
 - The number of times we are able to rescale is determined by the 'level': Level
 - = Modulus Chain length 1
 - Cannot add/sub ciphertexts with different scales
 - ➤ Cannot also add/sub/mult ciphertexts with different levels
 - We can bring down the level of a ciphertext by Modulus Switching

Implemented Functionalities using CKKS

Linear Transformation (or MV Multiplication)

- Cannot select a specific element in the vector since it's a Ciphertext
- Need to use available operations: Addition, Multiplication and Rotation
- Sum of the products of the diagonals with the rotations of the vector

$$Uullet m = \sum_{0 \le \ell < n} \; (u_\ell \, \odot
ho(m,\ell))$$

Linear Transformation (or MV Multiplication)

Matrix Matrix Multiplication

• Uses Linear Transformation to compute permutations of the matrices:

$$\circ \quad \sigma(A)i,j = A i, i+j$$

$$\circ \quad \tau(A)i,j = A i+j, j$$

$$\circ \quad \phi k(A)i,j = A i, j+k$$

$$\circ \quad \Psi k(A)i,j = A i+k, j$$

Requires Matrix Encoding

$$Aullet B=\sum_{k=0}^{d-1}\ (\phi^{\,k}\,\circ\sigma(A))\odot(\psi^{\,k}\,\circ au(B))$$

Matrix Encoding Example with 4x4 Matrix

Matrix Matrix Multiplication Example with 3x3 matrices

STEP 1

ctA Matrix:													ctB	ctB Matrix:																				
							1	2	3							7	8	9																
							4	5	6							4	5	6																
							7	8	9							1	2	3																
U_sigma Matrix									ctA Matrix		ctA_re Ma	sult[0] trix				U_ta	u Matı	rix					ctB Matrix	ctB_resul Matrix	lt[0]									
	0	0	0	0	0	0			1	1) 2	l l	1	0	0	0	0	0	0	0	0		7	7										
)	0	0	0	0	0	0			2						2			2	0	0	0	0	1	0	0	0	0		8	5				
	0	0	0	0	0	0			3			3	0	0	0	0	0	0	0	0	1		9	3										
	0	1	0	0	0	0			\Rightarrow	\approx	\approx	\approx	\bowtie	4			5	0	0	0	1	0	0	0	0	0		4	4					
	0	0	1	0	0	0								\bowtie		\$	5			6	0	0	0	0	0	0	0	1	0		5	2		
	1	0	0	0	0	0									6		4	1	0	0	1	0	0	0	0	0	0		6	9				
1	0	0	0	0	0	1			7						9	0	0	0	0	0	0	1	0	0		1	1							
N.	0	0	0	1	0	0			8			0	1	0	0	0	0	0	0	0		2	8											
	0	0	0	0	1	0			9			3	0	0	0	0	0	1	0	0	0		3	6										
												_																						

EP 2		
k = 1 V_1 Mate		ctA_result[0] ctA_result[1] Matrix Matrix
0 1 0 0 0	0 0 0 0	1
0 0 1 0 0	0 0 0 0	2
1 0 0 0 0	0 0 0 0	3
0 0 0 0 1	0 0 0 0	5 6
0 0 0 0 0	1 0 0 0	
0 0 0 1 0	0 0 0 0	9 7
0 0 0 0 0	0 0 1 0	7
0 0 0 0 0	0 1 0 0	8 9
W_1 Mat		ctB_result[0] ctB_result[1] Matrix Matrix
0 0 0 1 0	0 0 0 0	7 4
	0 0 0	
0 0 0 0 1	0 0 0 0	
0 0 0 0 1 0 0 0 0 0	0 0 0 0	5 2 9
		5
0 0 0 0 0	1 0 0 0 0 1 0 0	5 3 9
0 0 0 0 0	1 0 0 0	5 3 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 1 0 0 0 0 1 0	5 3 4 2 1 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1	5 3 4 2 9 1 8 9

Matrix Transpose

It's a permutation of the matrix -> Use linear transformation

ct Matrix:

1	2	3
4	5	6
7	8	9

ct_T Matrix:

1	4	7
2	5	8
3	6	9

U transpose Matrix

1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	1	0	0
0	1	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	1

ct Matrix

ct_T Matrix

Logistic Regression

Polynomial approximation of the Sigmoid function

- Cannot Divide in CKKS -> Division of real numbers is finding a certain multiple of the divisor that is either equal or rounded to the dividend, which involves multiplication and comparison.
- Sigmoid function:

$$S(x) = rac{1}{1 + e^{-x}} = rac{e^x}{e^x + 1}.$$

• Polynomial Approximations of Sigmoid:

$$g_3(x) = 0.5 + 1.20096 \cdot (x/8) - 0.81562 \cdot (x/8)^3,$$

$$g_5(x) = 0.5 + 1.53048 \cdot (x/8) - 2.3533056 \cdot (x/8)^3 + 1.3511295 \cdot (x/8)^5,$$

$$g_7(x) = 0.5 + 1.73496 \cdot (x/8) - 4.19407 \cdot (x/8)^3 + 5.43402 \cdot (x/8)^5 - 2.50739 \cdot (x/8)^7.$$

Polynomial Evaluation - Horner's Method

- Uses a sequence of multiplication and addition to compute a polynomial.
- O(D) circuit depth: Need to rescale and relinearize D times

Consider the polynomial:

$$f(x) = x^5 + 12x^4 - 42x^3 + 10x^2 + 2x - 1$$

For x = 2:

Polynomial Evaluation - Tree Method

- O(log D) circuit depth
- Computes powers of x in a tree (figure on the right)
- Performs a dot product between the variables (1, x,... xn-1) and the coefficients (a0, a1,... an-1)

Higher Polynomial Degree = Better Approx.?

- In theory, the higher the degree of polynomial approximation of the sigmoid function, the better the approximation
- Evaluating large polynomials affects bit-precision
- More error the larger the polynomial

To get the best Performance and Precision -> use degree 3 polynomial with Horner's method

Training Protocol

Benchmark Tests

Vector Operations

Matrix Operations (with Naive Matrix-Matrix Multiplication)

Linear Transformation

Linear Transformation Pi Chart

Matrix Multiplication Pi Chart

Possible Optimizations and Improvements

- Parallelizing on a GPU
 - Vectors are encoded in batches -> Great for SIMD
 - > Data Reuse in Linear Transformation and Matrix Matrix Multiplication
 - Requires CUDA implementation for SEAL
- Fragmented Encoding and Encrypting
- Security Evaluation
 - > Test for Data leakage from ciphertext
- Linear Transformation and Matrix Matrix Multiplication with Rectangular Matrices

Challenges

- Circuit Optimization
 - > Reducing Multiplication Depth and allowing further computations
- Scale, Level and Bit-Precision
 - Need to keep track of ciphertext level and scale
 - ➤ Bad re-scaling can significantly harm bit-precision
- Minimal Documentation and Steep Learning Curve
 - Implementing algorithms from scratch (including logistic regression)
 - Coming up with workarounds (i.e matrix encoding, duplicate vector...)

References

- "Secure Outsourced Matrix Computation and Application to Neural Networks"
 https://eprint.iacr.org/2018/1041.pdf
- "Algorithms in HElib"
 https://shoup.net/papers/helib.pdf
- "GAZELLE: A Low Latency Framework For Secure Neural Network Inference"
 https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-juvekar.pdf
- Hao Chen's Repository for Polynomial Evaluation
 https://github.com/haochenuw/algorithms-in-SEAL/
- "Logistic Regression ML Glossary documentation"
 https://ml-cheatsheet.readthedocs.io/en/latest/logistic regression.html
- "Secure Logistic Regression Based on Homomorphic Encryption: Design and Evaluation"
 https://eprint.iacr.org/2018/074.pdf

Thank You

Email: marwan.s.nour@gmail.com

Project Repository:

github.com/MarwanNour/SEAL-FYP-Logistic-Regression