

GBI Tutorium Nr.

Foliensatz 01

Vincent Hahn – vincent.hahn@student.kit.edu | 23. Oktober 2012

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

1 Allgemeines

Eigenschaften von

Abbildungen

Totalität

Eindeutigkeit

Funktionen

2 Aussagenlogik

- 3 Eigenschaften von Abbildungen
 - Totalität
 - Eindeutigkeit
 - Funktionen

Kontaktmöglichkeiten

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

- Mail: vincent.hahn@student.kit.edu
- Web: http://www.stud.uni-karlsruhe.de/~uddgw/

Kontaktmöglichkeiten

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von

Abbildungen

Totalität

Eindeutigkeit

- Mail: vincent.hahn@student.kit.edu
- Web: http://www.stud.uni-karlsruhe.de/~uddgw/

Termine

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von

Abbildungen

Totalität

Eindeutigkeit

- Übungsblattabgabe:
- Übung:
- Vorlesung:
- Klausurtermin: gewöhnlich Anfang März des kommenden Jahres

Termine

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von

Abbildungen

Totalität

Eindeutigkeit

- Übungsblattabgabe:
- Übung:
- Vorlesung:
- Klausurtermin: gewöhnlich Anfang März des kommenden Jahres

Termine

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von

Abbildungen

Totalität

Eindeutigkeit

- Übungsblattabgabe:
- Übung:
- Vorlesung:
- Klausurtermin: gewöhnlich Anfang März des kommenden Jahres

Übungsblatter

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von

Abbildungen

Totalität

Eindeutigkeit

Funktionen

Die Übungsbläter müssen...

- handbeschrieben sein,
- mit Deckblatt abgeben werden und
- selbst bearbeiten sein.

Für den Übungsschein reichen 50 % der Punkte der Blätter.

Weitere Links

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Vorlesung

- Website: http://gbi.ira.uka.de
- Dozentin: tanja.schultz@kit.edu

Weitere Links

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Vorlesung

- Website: http://gbi.ira.uka.de
- Dozentin: tanja.schultz@kit.edu

Fachschaft

- Website: http://www.fsmi.uni-karlsruhe.de/
- Forum: http://www.fsmi.uni-karlsruhe.de/forum/

Junktoren

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Definition

Ein Junktor ist eine logische Verknüpfung zwischen Aussagen innerhalb der Aussagenlogik, also ein logischer Operator. (Aus Wikipedia)

Beispiele

- Logisches "Oder" ∨
- Logisches "Und" ∧
- . . .

Junktoren

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Definition

Ein Junktor ist eine logische Verknüpfung zwischen Aussagen innerhalb der Aussagenlogik, also ein logischer Operator. (Aus Wikipedia)

Beispiele

- Logisches "Oder" ∨
- Logisches "Und" ∧
- . . .

Logisches Und ("Konjunktion")

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Tabelle: Wahrheitswerte für \wedge

Α	В	$A \wedge B$
f	f	f
f	W	f
W	f	f
W	W	W

Logisches Oder "Disjunktion"

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Tabelle: Wahrheitswerte für \lor

Α	В	$A \vee B$
f	f	f
f	W	W
W	f	W
W	W	W

Negation

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Tabelle: Wahrheitswerte für \neg

Α	$\neg A$	
f	W	
f	f	

Subjunktion

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Tabelle: Wahrheitswerte für ightarrow

В	$A \rightarrow B$	
f	w	
W	W	
f	f	
W	W	
	f w f	

Alternative Schreibeweise

Finde eine Schreibweise, die nur aus ∨ und ¬ besteht!

Subjunktion

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Tabelle: Wahrheitswerte für ightarrow

В	$A \rightarrow B$
f	W
W	W
f	f
W	W
	f w f

Alternative Schreibeweise

Finde eine Schreibweise, die nur aus \vee und \neg besteht!

Subjunktion

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Tabelle: Wahrheitswerte für \rightarrow

A	В	A o B
f	f	W
f	W	W
W	f	f
W	W	W

Alternative Schreibeweise

Finde eine Schreibweise, die nur aus \vee und \neg besteht!

$$A \rightarrow B \Leftrightarrow \neg A \lor B$$

Klausuraufgabe

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Sommer 2010, Aufgabe 2 2 von 46 Punkten

Zeigen Sie (etwa mit Wahrheitstabellen), dass die Formeln äquivalent sind:

$$(((B \Rightarrow A) \lor B) \Rightarrow (\neg A)) \land B$$

$$\neg A \wedge B$$

Totalität

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Definition

Eine Relation $R \subseteq A \times B$ heißt linkstotal, wenn es zu jedem Element der Urbildmenge A ein zugehöriges Element der Bildmenge B gibt. Die Relation heißt rechtstotal, wenn es zu jedem Element der Bildmenge B ein zugehöriges Element der Urbildmenge A gibt.

$$f(x) = x^2$$

Totalität

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Definition

Eine Relation $R \subseteq A \times B$ heißt linkstotal, wenn es zu jedem Element der Urbildmenge A ein zugehöriges Element der Bildmenge B gibt. Die Relation heißt rechtstotal, wenn es zu jedem Element der Bildmenge B ein zugehöriges Element der Urbildmenge A gibt.

Beispiel

Welche Eigenschaft hat diese Funktion, wenn $x \in \mathbb{R}$ und $f(x) \in \mathbb{R}$?

$$f(x) = x^2$$

Totalität

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Definition

Eine Relation $R \subseteq A \times B$ heißt linkstotal, wenn es zu jedem Element der Urbildmenge A ein zugehöriges Element der Bildmenge B gibt. Die Relation heißt rechtstotal, wenn es zu jedem Element der Bildmenge B ein zugehöriges Element der Urbildmenge A gibt.

Beispiel

Welche Eigenschaft hat diese Funktion, wenn $x \in \mathbb{R}$ und $f(x) \in \mathbb{R}$?

$$f(x)=x^2$$

Linkstotal.

Eindeutigkeit

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Definition

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig, wenn einem Element der Bildmenge *B* höchstens ein Element der Urbildmenge *A* zugeordnet ist. Eine Relation $R \subseteq A \times B$ heißt rechtseindeutig, wenn einem Element der Urbildmenge A höchstens ein Element der Bildmenge B zugeordnet ist.

Eindeutigkeit

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Definition

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig, wenn einem Element der Bildmenge *B* höchstens ein Element der Urbildmenge *A* zugeordnet ist. Eine Relation $R \subseteq A \times B$ heißt rechtseindeutig, wenn einem Element der Urbildmenge A höchstens ein Element der Bildmenge B zugeordnet ist.

Beispiel

Welche Eigenschaft hat die Funktion $f(x) = x^2$ (Wertebereiche wie oben)?

Eindeutigkeit

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Definition

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig, wenn einem Element der Bildmenge B höchstens ein Element der Urbildmenge A zugeordnet ist. Eine Relation $R \subseteq A \times B$ heißt rechtseindeutig, wenn einem Element der Urbildmenge A höchstens ein Element der Bildmenge B zugeordnet ist.

Beispiel

Welche Eigenschaft hat die Funktion $f(x) = x^2$ (Wertebereiche wie oben)? Rechtseindeutig.

Funktionen

 $Vincent\ Hahn-vincent.hahn@student.kit.edu$

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Definition

Eine Relation $R \subseteq A \times B$ heißt Funktion, wenn sie linkstotal und rechtseindeutig ist.

Eigenschaften einer Funktion

Tabelle: Eigenschaften von Funktionen. Dabei sei $x \in \mathbb{R}$ und $f(x) \in \mathbb{R}$ (also keine komplexen Zahlen).

rechtstotal	linkseindeutig	Bezeichnung	Beispiel
			$f(x) = x^2$
			$f(x) = e^x$
			$f(x) = x^3 - x$
			f(x) = x

Funktionen

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Definition

Eine Relation $R \subseteq A \times B$ heißt Funktion, wenn sie linkstotal und rechtseindeutig ist.

Eigenschaften einer Funktion

Tabelle: Eigenschaften von Funktionen. Dabei sei $x \in \mathbb{R}$ und $f(x) \in \mathbb{R}$ (also keine komplexen Zahlen).

rechtstotal	linkseindeutig	Bezeichnung	Beispiel
0	0	-	$f(x) = x^{2}$ $f(x) = e^{x}$ $f(x) = x^{3} - x$ $f(x) = x$

Funktionen

 $Vincent\ Hahn-vincent.hahn@student.kit.edu$

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Definition

Eine Relation $R \subseteq A \times B$ heißt Funktion, wenn sie linkstotal und rechtseindeutig ist.

Eigenschaften einer Funktion

Tabelle: Eigenschaften von Funktionen. Dabei sei $x \in \mathbb{R}$ und $f(x) \in \mathbb{R}$ (also keine komplexen Zahlen).

rechtstotal	linkseindeutig	Bezeichnung	Beispiel
0	0	-	$f(x)=x^2$
0	1	injektiv	$f(x) = e^x$
			$f(x) = x^3 - x$
			f(x) = x

Funktionen

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Definition

Eine Relation $R \subseteq A \times B$ heißt Funktion, wenn sie linkstotal und rechtseindeutig ist.

Eigenschaften einer Funktion

Tabelle: Eigenschaften von Funktionen. Dabei sei $x \in \mathbb{R}$ und $f(x) \in \mathbb{R}$ (also keine komplexen Zahlen).

rechtstotal	linkseindeutig	Bezeichnung	Beispiel
0	0	-	$f(x) = x^2$
0	1	injektiv	$f(x) = e^x$
1	0	surjektiv	$f(x) = x^3 - x$
			f(x)=x

Funktionen

 $Vincent\ Hahn-vincent.hahn@student.kit.edu$

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Definition

Eine Relation $R \subseteq A \times B$ heißt Funktion, wenn sie linkstotal und rechtseindeutig ist.

Eigenschaften einer Funktion

Tabelle: Eigenschaften von Funktionen. Dabei sei $x \in \mathbb{R}$ und $f(x) \in \mathbb{R}$ (also keine komplexen Zahlen).

rechtstotal	linkseindeutig	Bezeichnung	Beispiel
0	0	-	$f(x) = x^2$
0	1	injektiv	$f(x) = e^x$
1	0	surjektiv	$f(x) = x^3 - x$
1	1	bijektiv	f(x) = x

Graphen

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von

Abbildungen

Totalität

Eindeutigkeit

Funktionen

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Vorsicht

Unbedingt den Definitionsbereich einer Funktion beachten. Die Normalparabel ist im Bereich der komplexen Zahlen surjektiv!

Übungsaufgabe

Vincent Hahn - vincent.hahn@student.kit.edu

Allgemeines

Aussagenlogik

Eigenschaften von Abbildungen

Totalität

Eindeutigkeit

Funktionen

Winter 2010/2011, Aufgabe 1.2

Es sei A die Menge aller Kinobesucher in einer Vorstellung und B die Menge aller Sitzplätze. Die Abbildung f ordnet den Kinobesuchern die Sitzplätze zu: $f:A\to B$

- Was bedeutet es im Kino, wenn f linkstotal, linkseindeutig, rechtstotal, rechtseindeutig ist?
- Was wünschen sich die Kinobesucher: Eine injektive, surjektive oder bijektive Abbildung auf die Sitzplätze? Was wünscht sich der Besitzer?
- In dieser Teilaufgabe nehmen wir an, 6 Kinobesucher besuchten ein Kino mit 8 Plätzen. Zeichnen Sie eine injektive Abbildung f. Wie viele injektive Abbildungen gibt es?