Brief summary

- This is just a brief summary of important points in this course. You certainly need to read the textbook and/or other materials to fully understand these topics.
- Textbook: D.J. Griffiths, "Introduction to Quantum Mechanics", 2nd ed. Chapter "Ch." and Section "§" numbers refer to this book.
- Other references: J.J. Sakurai, "Modern Quantum Mechanics".
- Note: Einstein convention of implicit summation over repeated indices.

Contents

I. Fundamentals and Formalism (\sim Ch.1 & Ch.3)	2
II. One-dimensional Eigenvalue Problems (\sim Ch.2)	5
III. Three-dimensional Problems (\sim Ch.4)	7
IV. Identical Particles (\sim Ch.5)	11
V. Time-independent Perturbation Theory (\sim Ch.6)	13
VI. Variational Principle (\sim Ch.7)	16
VII. The WKB Approximation (\sim Ch.8)	17
III. Time-dependent Perturbation Theory (\sim Ch.9)	19
IX. Adiabatic Approximation (\sim Ch.10)	22
X. Scattering (\sim Ch.11)	25

I. FUNDAMENTALS AND FORMALISM (\sim CH.1 & CH.3)

- Wavefunction: complex function $\psi(\mathbf{r},t)$.
 - Here r labels the classical configuration of the system, e.g. position of a particle.
 - Normalization: $\int d\mathbf{r} |\psi(\mathbf{r},t)|^2 = 1$.
 - Statistical interpretation (by Max Born): $|\psi(\mathbf{r},t)|^2$ is the *a priori* probability density for the particle to be at \mathbf{r} , at time t.
- Hilbert space: \approx complex linear space of wavefunctions, with an "inner product".
 - Inner product: $(\phi, \psi) \equiv \int d\mathbf{r} (\phi(\mathbf{r}))^* \psi(\mathbf{r})$, also called "overlap between ϕ and ψ ".
 - * Hermitivity: $(\phi, \psi) = (\psi, \phi)^*$.
 - * Linear with respect to(w.r.t) the 2nd argument: $(\phi, \sum_i c_i \psi_i) = \sum_i c_i \cdot (\phi, \psi_i)$. Then anti-linear w.r.t. the 1st argument: $(\sum_i c_i \phi_i, \psi) = \sum_i c_i^* \cdot (\phi_i, \psi)$.
 - * Positive semi-definiteness: $(\psi, \psi) \ge 0$.
 - * Cauchy-Schwarz inequality (can be derived from the above three facts): $(\psi, \psi) \cdot (\phi, \phi) \ge (\psi, \phi) \cdot (\phi, \psi) = |(\psi, \phi)|^2$.
- Dirac symbols: 'kets' $|\psi\rangle$, and 'bras' $\langle\psi|$;
 - 'kets': abstract notation for a (pure) quantum state, a 'vector' in Hilbert space.
 - 'bras': a 'dual vector' in the 'dual space' (linear space of linear functionals). $\langle \psi |$ maps a quantum state to a complex number, $| \phi \rangle \mapsto (\psi, \phi)$.
 - $-\langle \psi | \phi \rangle$ is a complex number, the inner product $(\psi, \phi) = \int d\mathbf{r} \, \psi^* \phi$.
 - $|\phi\rangle\langle\psi|$ is a linear operator, maps one quantum state to another, $|\varphi\rangle\mapsto|\phi\rangle\cdot\langle\psi|\varphi\rangle$.
- Linear operators: linear mapping of wavefunctions, $\hat{O}: \psi \mapsto \hat{O}\psi$
 - Products of operators, $\hat{O}_1\hat{O}_2: \psi \mapsto (\hat{O}_1\hat{O}_2)\psi \equiv \hat{O}_1(\hat{O}_2\psi).$
 - Hermitian conjugate \hat{O}^{\dagger} of an operator \hat{O} : $\langle \hat{O}^{\dagger}\psi|\phi\rangle = \langle \psi|\hat{O}\phi\rangle$, for any states ψ,ϕ .
 - $-(\hat{O}^{\dagger})^{\dagger} = \hat{O}. \ (\hat{O}_1\hat{O}_2)^{\dagger} = \hat{O}_2^{\dagger}\hat{O}_1^{\dagger}.$ If $\hat{O}^{\dagger} = \hat{O}$ then \hat{O} is a hermitian operator.
 - Commutator: $[\hat{O}_1, \hat{O}_2] \equiv \hat{O}_1 \hat{O}_2 \hat{O}_2 \hat{O}_1$. Anti-commutator $\{\hat{O}_1, \hat{O}_2\} \equiv \hat{O}_1 \hat{O}_2 + \hat{O}_2 \hat{O}_1$.

- (1D) Position operator, \hat{x} : $\psi(x) \mapsto x \cdot \psi(x)$. Hermitian.
- (1D) Momentum operator, \hat{p}_x : $\psi(x) \mapsto -i\hbar \partial_x \psi(x)$. Hermitian.
- Canonical commutation relation: $[\hat{x}, \hat{p}_x] = i\hbar$.

• Eigenbasis:

- Eigenstates & eigenvalues: if $\hat{O}|\psi\rangle = \lambda|\psi\rangle$, where λ is a complex number, then the state $|\psi\rangle$ is an eigenstate of \hat{O} with eigenvalue λ (also denoted by $|\hat{O} = \lambda\rangle$)
 - * If $[\hat{O}, \hat{B}] = c \cdot \hat{B}$, then $\hat{B} | \hat{O} = \lambda \rangle \propto | \hat{O} = \lambda + c \rangle$ (this state may vanish).
- For "observable" (hermitian operator) \hat{O} : eigenvalues must be real, eigenstates for different eigenvalues are orthogonal to each other (have zero inner product).
- Label the eigenstates $|\psi_k\rangle$ of a hermitian operator by a real number index k (may not be the eigenvalue itself, may be discrete, e.g. integers), without "degeneracy" (given k, there is a unique eigenstate, upto overall phase factor), the normalization of these states are, $\langle \psi_k | \psi_{k'} \rangle = \begin{cases} \delta_{k,k'}, & \text{discrete eigenvalues \& indices,} \\ \delta(k-k'), & \text{continuous eigenvalues \& indices.} \end{cases}$
- Completeness of the eigenbasis: any state $|\psi\rangle$ can be expanded into a linear superposition of the eigenbasis $|\psi_k\rangle$, $|\psi\rangle = "\sum_k" c_k |\psi_k\rangle$, $c_k = \langle \psi_k |\psi\rangle$. Here " \sum_k " may contain integral over continuous index k.
 - * "Resolution of identity": $\hat{1} = \sum_{k} |\psi_k\rangle\langle\psi_k|$.
- (1D) Position eigenbasis $|x\rangle$: $\hat{x}|x\rangle = x|x\rangle$, $\langle x|x'\rangle = \delta(x-x')$. $|\psi\rangle = \int dx \, |x\rangle\langle x|\psi\rangle$, and $\langle x|\psi\rangle = \psi(x)$ is the wavefunction.
- (1D) Momentum eigenbasis $|p\rangle$: $\hat{p}|p\rangle = p|p\rangle$, $\langle p|p'\rangle = \delta(p-p')$, $\langle x|p\rangle = \frac{e^{\mathrm{i}px/\hbar}}{\sqrt{2\pi\hbar}}$. $|\psi\rangle = \int \mathrm{d}p \, |p\rangle \langle p|\psi\rangle$, $\langle p|\psi\rangle = \tilde{\psi}(p)$ is "wavefunction in momentum representation".
 - * In momentum representation: $\hat{x}: \tilde{\psi}(p) \mapsto i\hbar \partial_p \tilde{\psi}(p)$, and $\hat{p}: \tilde{\psi}(p) \mapsto p \cdot \tilde{\psi}(p)$.
- Under complete orthonormal basis $|\psi_k\rangle$, state $|\psi\rangle$ is a column vector $\langle \psi_k | \psi \rangle$, operator \hat{O} is a matrix $O_{k',k} \equiv \langle \psi_{k'} | \hat{O} | \psi_k \rangle$, and $\langle \psi_{k'} | \hat{O} \psi \rangle = \sum_k O_{k',k} \langle \psi_k | \psi \rangle$ (matrix-vector product). The indices k, k' may be continuous.
- Measurement 'postulate' & generalized statistical interpretation:
 - Each measurement of an observable \hat{O} under state $|\psi\rangle$, will produce one of the eigenvalues (say, λ) of \hat{O} , with a priori probability $|\langle \hat{O} = \lambda | \psi \rangle|^2$. $|\hat{O} = \lambda\rangle$ is the 'normalized' eigenstate of \hat{O} .

- If λ is continuous, $|\langle \hat{O} = \lambda | \psi \rangle|^2$ is the probability density.
- "Collapse postulate": after this measurement, the state becomes $|\hat{O} = \lambda\rangle$.
- If the eigenstates $|\hat{O} = \lambda, k\rangle$ are degenerate, and labeled by another index k, then the probability (density) is " \sum_{k} " $|\langle \hat{O} = \lambda, k | \psi \rangle|^2$, the "collapsed" state is $\left(\text{"}\sum_{k}$ " $|\langle \hat{O} = \lambda, k | \psi \rangle|^2 \right)^{-1/2}$ " \sum_{k} " $|\hat{O} = \lambda, k \rangle \langle \hat{O} = \lambda, k | \psi \rangle$.
- Expectation value $\langle \hat{O} \rangle_{\psi}$: a priori average of measurement results, $\langle \psi | \hat{O} | \psi \rangle$.
- Uncertainty principle: $\sigma_{\hat{A}}^2 \cdot \sigma_{\hat{B}}^2 \ge \frac{1}{4} |\langle [\hat{A}, \hat{B}] \rangle|^2$. See §3.5 for proof. The variance is $\sigma_{\hat{A}}^2 \equiv \langle (\hat{A} - \langle \hat{A} \rangle)^2 \rangle = \langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2$.
- Schrödinger equation: $i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) = \hat{H} \psi(\mathbf{r}, t)$.
 - Hamiltonian \hat{H} is a (bosonic) hermitian operator.
 - For classical Hamiltonian $H(\boldsymbol{r},\boldsymbol{p})$, the quantum Hamiltonian is $\hat{H}=H(\hat{\boldsymbol{r}},\hat{\boldsymbol{p}})$, and $\hat{H}\psi(\boldsymbol{r},t)=H(\boldsymbol{r},-\mathrm{i}\hbar\partial_{\boldsymbol{r}})\psi(\boldsymbol{r},t)$. For example: for non-relativistic particle, $H=\frac{\boldsymbol{p}^2}{2m}+V(\boldsymbol{r})$, then $\hat{H}\psi(\boldsymbol{r},t)=[-\frac{\hbar^2}{2m}\nabla^2+V(\boldsymbol{r})]\psi(\boldsymbol{r},t)$
 - * Probability current: $\boldsymbol{J}(\boldsymbol{r}) \equiv \operatorname{Re}[\psi^*(\boldsymbol{r}) \frac{-i\hbar\nabla}{m} \psi(\boldsymbol{r})]$ for non-relativistic particle. It satisfies the *continuity equation* for probability: $\frac{\partial}{\partial t} (|\psi(\boldsymbol{r})|^2) + \operatorname{div} \boldsymbol{J} = 0$.
 - Stationary states: eigenstates for time-independent \hat{H} . Stationary Schrödinger equation: $\hat{H}\psi(\mathbf{r},t) = E\psi(\mathbf{r},t)$, then $\psi(\mathbf{r},t) = \exp(-i\frac{E\cdot t}{\hbar})\psi(\mathbf{r},t=0)$. The expectation value of any observable (not explicitly involving t) under a stationary state, does not change over time.
 - If \hat{H} is independent of time t, generic solutions of Schrödinger equation are linear superpositions of stationary states, $\psi(\mathbf{r},t) = \sum_n c_n e^{-iE_n t/\hbar} \psi_n(\mathbf{r})$.

 Here n labels energy eigenvalues (may be continuous), c_n are complex coefficients, E_n are energy eigenvalues (eigenvalues of \hat{H}), ψ_n are eigenstate wavefunctions of \hat{H} for eigenvalue E_n .
 - Heisenberg equations of motion (Equation 3.71 in §3.5): $\frac{d}{dt}\langle\hat{Q}\rangle = \frac{i}{\hbar}\langle[\hat{H},\hat{Q}]\rangle + \langle\frac{\partial\hat{Q}}{\partial t}\rangle$. The expectation values are taken under a solution $\psi(t)$ of Schrödinger equation.
 - If $\frac{\partial \hat{Q}}{\partial t} = 0$ and $[\hat{H}, \hat{Q}] = 0$, then observable \hat{Q} is conserved, $\frac{d}{dt} \langle \hat{Q} \rangle = 0$.

II. ONE-DIMENSIONAL EIGENVALUE PROBLEMS (\sim CH.2)

- $\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})$. Namely, $\hat{H}\psi(x) = [-\frac{\hbar^2}{2m}\partial_x^2 + V(x)]\psi(x)$.
- Qualitative features (c.f. Sturm-Liouville theory):
 - The "energy spectrum" (collection of energy eigenvalues) contains discrete "bound states", between $\min_x V(x)$ and $\min\{V(+\infty), V(-\infty)\}$; and continuous "scattering states", above $\min\{V(+\infty), V(-\infty)\}$.
 - Bound states are non-degenerate, bound state wavefunctions $\psi_n(x)$, labeled by integer n, are orthonormal, $\langle \psi_n | \psi_{n'} \rangle = \delta_{n,n'}$. And $\psi_n(x)$ can be chosen real.
 - If V(x) is finite in a neighborhood of x, the eigenstate $\psi_n(x)$ is smooth at x. If $V(x) = +\infty$ in a neighborhood of x, the eigenstate $\psi_n(x)$ vanishes at x.
 - Node: where $\psi_n(x) = 0$. (excluding the trivial case above at $V(x) = +\infty$) Nodes are "simple", where $\psi_n(x) = 0$, $\partial_x \psi_n(x) \neq 0$.
 - For bound states, ground state (lowest energy state) wavefunction has no node; n-th excited state wavefunction has n nodes, $x_i^{(n)}$, $i=1,\ldots,n$; nodes of adjacent levels are interpenetrating, $x_1^{(n)} < x_1^{(n-1)} < x_2^{(n)} < x_2^{(n-1)} < \cdots < x_{n-1}^{(n-1)} < x_n^{(n)}$. NOTE: the n here may not be exactly the label(quantum number) of ψ_n .
 - Inversion symmetry: if V(x) = V(-x), for bound states, the ground state is even function, the *n*-th excited state has $\psi_n(-x) = (-1)^n \psi_n(x)$. (see NOTE above) NOTE: the inversion center may be at $x_0 \neq 0$, $V(x_0 + x) = V(x_0 x)$.
- (§2.4) Free particle: $V(x) = V_0 = \text{const.}$
 - System has "translation symmetry": if $\psi(x)$ is eigenstate of \hat{H} , then $\psi(x+a)$ is also eigenstate with the same eigenvalue. Here a is an arbitrary real constant.
 - Eigenstates: plane waves, $\psi_p(x) = \frac{e^{ipx/\hbar}}{\sqrt{2\pi\hbar}}$, $E_p = \frac{p^2}{2m} + V_0$. $p \in \mathbb{R}$.
 - Wave packet: $\Psi(x,t) = \int_{-\infty}^{\infty} \phi(p-p_0) \cdot e^{\frac{i}{\hbar}[(p-p_0)\cdot x (E_p-E_{p_0})\cdot t]} \, \mathrm{d}p \cdot \frac{\exp(\frac{i}{\hbar}(p_0\cdot x E_{p_0}\cdot t))}{\sqrt{2\pi\hbar}}$ = $f(x,t) \cdot \frac{\exp(\frac{i}{\hbar}(p_0\cdot x - E_{p_0}\cdot t))}{\sqrt{2\pi\hbar}}$. Here $\phi(p-p_0)$ has a "narrow" peak around $p=p_0$ (peak width $\ll p_0$), f(x,t) is a "broad" envelope function (relevant length scale $\gg \frac{\hbar}{p_0}$). The peak of the envelop function moves with the "group velocity" $v_g \equiv \frac{\partial E_p}{\partial p}$.

- (§2.2) Infinite square potential well: $V(x) = \begin{cases} +\infty, & x x_0 < 0 \text{ or } x x_0 > a; \\ 0, & 0 < x x_0 < a. \end{cases}$
 - Eigenstates: standing waves, $\psi_n(x) = \sqrt{\frac{2}{a}} \sin(\frac{n\pi}{a}(x-x_0)), E_n = \frac{\hbar^2 n^2 \pi^2}{2ma^2}. n \in \mathbb{Z}^+$
- (§2.5) δ -function potential: $V(x) = \alpha \cdot \delta(x x_0)$. NOTE: α has unit of (energy-length).
 - Boundary condition for eigenstates $\psi_n(x)$ at the δ-function potential position: integrate the stationary Schrödinger equation over an infinitesimal region $-\delta < x x_0 < \delta$, and take limit $\delta \to +0$, $\left[-\frac{\hbar^2}{2m}\partial_x\psi_n\right]_{x=x_0-0}^{x=x_0+0} + \alpha\psi_n(x_0) = 0$. If the potential contains an additional smooth part, this is still true.
 - The eigenstate wavefunction is continuous, but its 1st derivative may not be continuous, at the δ -function potential position.
- (§2.6) Finite square potential well: $V(x) = \begin{cases} 0, & x x_0 < -a \text{ or } x x_0 > a; \\ -V_0, & -a < x x_0 < a. \end{cases}$
 - For any positive V_0 and a, there is at least one "even-parity" bound state.
 - Resonant tunneling for scattering states: when $E = \frac{\hbar^2 n^2 \pi^2}{2m(2a)^2} V_0 > 0$, the would-be bound state energy for infinite square well, the "transmission coefficient" = 1.
- (§2.3) Harmonic oscillator: $V(x) = \frac{m\omega^2}{2}x^2$.
 - Ladder operators: $\hat{a}_{\pm} = \sqrt{\frac{m\omega}{2\hbar}} (\hat{x} \mp \frac{i}{m\omega} \hat{p}) = \sqrt{\frac{m\omega}{2\hbar}} (x \mp \frac{\hbar}{m\omega} \partial_x)$. $[\hat{a}_{-}, \hat{a}_{+}] = 1$. $(\hat{a}_{\pm})^{\dagger} = \hat{a}_{\mp}$. $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} = \hbar\omega \cdot (\hat{a}_{+}\hat{a}_{-} + \frac{1}{2})$.
 - $-\hat{a}_{+}\hat{a}_{-}$ is positive semi-definite: $\langle \psi | \hat{a}_{+}\hat{a}_{-} | \psi \rangle = \langle (\hat{a}_{+})^{\dagger}\psi | \hat{a}_{-}\psi \rangle = \langle \hat{a}_{-}\psi | \hat{a}_{-}\psi \rangle \geq 0$, for any ψ . Therefore hermitian operator $\hat{a}_{+}\hat{a}_{-}$ has non-negative eigenvalues.
 - Commutators $[\hat{a}_+\hat{a}_-, \hat{a}_\pm] = (\pm 1) \cdot \hat{a}_\pm$. Then $\hat{a}_\pm | \hat{a}_+\hat{a}_- = n \rangle \propto |\hat{a}_+\hat{a}_- = n \pm 1 \rangle$.
 - Therefore $\hat{a}_{+}\hat{a}_{-}$ eigenvalues n are non-negative integers.
 - $\psi_0(x) = (\frac{m\omega}{\hbar\pi})^{1/4} \exp(-\frac{m\omega}{2\hbar}x^2), \text{ and } \psi_n(x) = \frac{1}{\sqrt{n!}}(\hat{a}_+)^n \psi_0(x). \ E_n = \hbar\omega \cdot (n + \frac{1}{2}).$ $\hat{a}_+ \psi_n = \sqrt{n+1} \, \psi_{n+1}; \ \hat{a}_- \psi_n = \sqrt{n} \, \psi_{n-1}, \text{ in particular } \hat{a}_- \psi_0 = 0.$
 - See §2.3.2 for "Analytic Method" (solving differential equations): $\psi_n(x) = (\frac{m\omega}{\hbar\pi})^{1/4} \frac{1}{\sqrt{2^n n!}} H_n(\frac{x}{\sqrt{\hbar/m\omega}}) \exp(-\frac{m\omega}{2\hbar}x^2). \quad \hat{H}_n \text{ are Hermite polynomials.}$ $* e^{-(x-t)^2} = \sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(x) e^{-x^2}. \quad [\text{Related to the "coherent state".}]$ $* H_{n+1}(x) = 2x \cdot H_n(x) 2n \cdot H_{n-1}(x). \quad [\text{Check } \hat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a}_- + \hat{a}_+).]$

III. THREE-DIMENSIONAL PROBLEMS (\sim CH.4)

- Central potential problem: $\hat{H} = \frac{\hat{p}^2}{2m} + V(r)$. Potential V depends only on radius r.
 - Separation of variables in polar coordinates (r, θ, ϕ) :

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(r) = -\frac{\hbar^2}{2m} \left[\frac{1}{r^2} \partial_r (r^2 \partial_r) - \frac{1}{r^2} \frac{\hat{L}^2}{\hbar^2} \right] + V(r).$$

$$\hat{L}^2 = -\hbar^2 \cdot \left[\frac{1}{\sin \theta} \partial_\theta (\sin \theta \partial_\theta) + \frac{1}{(\sin \theta)^2} \partial_\phi^2 \right].$$

- Eigenstates are of the form $\psi(r, \theta, \phi) = R(r) \cdot Y_{\ell}^{m}(\theta, \phi)$.
- $\text{ "spherical harmonics": } Y_{\ell}^{m}(\theta,\phi) = \begin{cases} (-1)^{m} \sqrt{\frac{2\ell+1}{4\pi}} \frac{(l-|m|)!}{(l+|m|)!} P_{\ell}^{m}(\cos\theta) e^{\mathrm{i}m\phi}, & m \geq 0; \\ \sqrt{\frac{2\ell+1}{4\pi}} \frac{(l-|m|)!}{(l+|m|)!} P_{\ell}^{m}(\cos\theta) e^{\mathrm{i}m\phi}, & m < 0. \end{cases}$
 - * "associated Legendre polynomial": $P_{\ell}^m(x) = (1-x^2)^{|m|/2} (\frac{\mathrm{d}}{\mathrm{d}x})^{|m|} P_{\ell}(x)$.
 - * "Legendre polynomial": $P_{\ell}(x) = \frac{1}{2^{\ell}\ell!} (\frac{\mathrm{d}}{\mathrm{d}x})^{\ell} [(x^2 1)^{\ell}].$
 - * "orbital angular momentum quantum number" ℓ is a non-negative integer.
 - * "magnetic quantum number" $m = -\ell, -\ell + 1, \dots, \ell$, is integer.
 - * Orthonormal property: $\int_0^{\pi} \sin\theta d\theta \int_0^{2\pi} d\phi \left[Y_{\ell}^m(\theta,\phi) \right]^* Y_{\ell'}^{m'}(\theta,\phi) = \delta_{\ell,\ell'} \delta_{m,m'}.$
- Radial equation: define $u(r) \equiv r \cdot R(r)$, it satisfies a 1D Schrödinger equation, $\left[-\frac{\hbar^2}{2m} \partial_r^2 + V(r) + \frac{\hbar^2 \ell(\ell+1)}{2mr^2} \right] u(r) = E \cdot u(r).$

Here $\frac{\hbar^2\ell(\ell+1)}{2mr^2}$ is the "centrifugal potential". E is the energy eigenvalue.

- * $R(r) \sim r^{\ell}$ when $r \to 0$, for normalizable eigenfunction.
- * Energy eigenvalues depend on ℓ and another "principal quantum number", but will be independent of m, so at least $(2\ell+1)$ -fold degenerate.
- Example: free particle, $V(r) = V_0 = \text{const.}$
 - Spherical waves: $\psi_k(r,\theta,\phi) \propto j_\ell(kr) Y_\ell^m(\theta,\phi), E = V_0 + \frac{\hbar^2 k^2}{2m}$.
 - "spherical Bessel function": $j_{\ell}(x) = (-x)^{\ell} (\frac{1}{x} \frac{\mathrm{d}}{\mathrm{d}x})^{\ell} (\frac{\sin x}{x}).$ $j_{\ell}(x) \sim x^{\ell}$ when $x \to 0, \sim \frac{\sin(x - \frac{\ell}{2}\pi)}{x}$ when $x \to +\infty$.
 - "spherical Neumann function": $n_{\ell}(x) = -(-x)^{\ell} (\frac{1}{x} \frac{d}{dx})^{\ell} (\frac{\cos x}{x})$. $n_{\ell}(x) \sim x^{-\ell-1}$ when $x \to 0$, $\sim -\frac{\cos(x-\frac{\ell}{2}\pi)}{x}$ when $x \to +\infty$.
- Example: finite spherical potential well: $V(r) = \begin{cases} -V_0, & r < a; \\ 0, & r > a. \end{cases}$
 - If V_0 or a is too small, there will be NO bound state. See Textbook Problem 4.9.

- Example: 3D harmonic oscillator (Textbook Problem 4.38, 4.39), $V(r) = \frac{m\omega^2 r^2}{2}$.
 - $-E_{n\ell m}=\hbar\omega\cdot(n+\frac{3}{2})$. Here $(n-\ell)$ is an even non-negative integer.
 - Side remark: the degeneracy $\frac{(n+1)(n+2)}{2}$ is higher than $(2\ell+1)$, due to a hidden SU(3) symmetry, higher than just 3D rotation symmetry SO(3). There are more conserved observables than the orbital angular momentum $\hat{\boldsymbol{L}}$, including $\hat{x}\hat{y} + \frac{\hat{p}_x\hat{p}_y}{m^2\omega^2}, \ \hat{y}\hat{z} + \frac{\hat{p}_y\hat{p}_z}{m^2\omega^2}, \ \hat{z}\hat{x} + \frac{\hat{p}_z\hat{p}_x}{m^2\omega^2}, \ \hat{x}^2 \hat{y}^2 + \frac{\hat{p}_x^2-\hat{p}_y^2}{m^2\omega^2}, \ \hat{x}^2 + \hat{y}^2 2z^2 + \frac{\hat{p}_x^2+\hat{p}_y^2-2\hat{p}_z^2}{m^2\omega^2},$
- (§4.2) Example: "hydrogen atom", $V(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}$, here e is elementary charge.
 - $-E_{n\ell m}=E_1\cdot\frac{1}{n^2}$. Here $(n-\ell)$ is a positive integer.
 - The "Rydberg energy" $E_1 = -\frac{m}{2\hbar^2} (\frac{e^2}{4\pi\epsilon_0})^2 = -\frac{\hbar^2}{2m} (\frac{1}{a_0})^2 = -\frac{1}{2} \frac{e^2}{4\pi\epsilon_0} \frac{1}{a_0} \approx -13.6 \text{eV}.$ The "Bohr radius" $a_0 = \frac{\hbar^2}{m} \frac{4\pi\epsilon_0}{e^2} \approx 0.53 \mathring{A}.$
 - Ground state wavefunction $\psi_{100} = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$.
 - $\psi_{n\ell m} = \sqrt{(\frac{2}{na_0})^3 \frac{(n-\ell-1)!}{2n[(n+\ell)!]^3}} e^{-r/na_0} (\frac{2r}{na_0})^{\ell} L_{n-\ell-1}^{2\ell+1} (\frac{2r}{na_0}) Y_{\ell}^m(\theta, \phi). \text{ (see §4.2)}.$
 - Side remark: the degeneracy n^2 is higher than $(2\ell+1)$, due to a hidden SO(4) symmetry, higher than just 3D rotation symmetry SO(3). There are more conserved observables than the orbital angular momentum $\hat{\boldsymbol{L}}$, including the Laplace-Runge-Lenz vector, $\hat{\boldsymbol{A}} \equiv -(\frac{e^2}{4\pi\epsilon_0}) \cdot m \cdot \frac{\hat{r}}{r} + \frac{1}{2}(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{L}} \hat{\boldsymbol{L}} \times \hat{\boldsymbol{p}})$.
- (§4.3) Orbital angular momentum: $\hat{\boldsymbol{L}} = \hat{\boldsymbol{r}} \times \hat{\boldsymbol{p}}$, or $\hat{L}_a = \epsilon_{abc} \hat{r}_b \hat{p}_c$.
 - Levi-Civita symbol: $\epsilon_{abc} = \begin{cases} +1, & abc = xyz, yzx, zxy; \\ -1, & abc = zyx, xzy, yxz; \\ 0, & \text{otherwise.} \end{cases}$
 - $-\hat{L}_a$ are all hermitian (observable). $[\hat{L}_a, \hat{L}_b] = i\hbar \epsilon_{abc} \hat{L}_c$, or $\hat{L} \times \hat{L} = i\hbar \hat{L}$.
 - $-\hat{\boldsymbol{L}}^2 \equiv \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$ is hermitian and positive semi-definite. $[\hat{\boldsymbol{L}}^2, \hat{\boldsymbol{L}}_a] = 0$.
 - Ladder operators: $\hat{L}_{\pm} = \hat{L}_x \pm i\hat{L}_y$. $(\hat{L}_{\pm})^{\dagger} = \hat{L}_{\mp}$, $[\hat{L}_z, \hat{L}_{\pm}] = \pm \hbar \hat{L}_{\pm}$, $[\hat{L}^2, \hat{L}_{\pm}] = 0$.
 - In polar coordinates, \hat{L}_a does not depend on radius r. $\hat{L}_z = -\mathrm{i}\hbar \frac{\partial}{\partial \phi}, \ \hat{L}_\pm = \pm \hbar e^{\pm \mathrm{i}\phi} (\frac{\partial}{\partial \theta} \pm \mathrm{i} \cot \theta \frac{\partial}{\partial \phi})$
 - Simultaneous eigenstates of $\hat{\boldsymbol{L}}^2$ and \hat{L}_z : $|\ell,m\rangle \equiv |\hat{\boldsymbol{L}}^2 = \ell(\ell+1)\hbar^2, \hat{L}_z = m\hbar\rangle$. Here ℓ is non-negative integer, $m = -\ell, -\ell+1, \ldots, \ell$.

- * Proof: suppose we have $|\hat{\boldsymbol{L}}^2 = \alpha \hbar^2, \hat{L}_z = \beta \hbar\rangle$, by the commutation relations, $\hat{L}_{\pm}|\hat{\boldsymbol{L}}^2 = \alpha \hbar^2, \hat{L}_z = \beta \hbar\rangle \propto |\hat{\boldsymbol{L}}^2 = \alpha \hbar^2, \hat{L}_z = (\beta \pm 1)\hbar\rangle$. By $\hat{\boldsymbol{L}}^2 = \hat{L}_z(\hat{L}_z \pm 1) + \hat{L}_{\mp}\hat{L}_{\pm}, \hat{L}_{\mp}\hat{L}_{\pm}$ is positive semi-definite, we have $\alpha \geq \beta(\beta \pm 1)$. The "ladder" of β generated by \hat{L}_{\pm} must be truncated on both sides. Namely, there is a β_{\max} such that(s.t.) $\hat{L}_+|\hat{\boldsymbol{L}}^2 = \alpha \hbar^2, \hat{L}_z = \beta_{\max}\hbar\rangle = 0$, and a β_{\min} s.t. $\hat{L}_-|\hat{\boldsymbol{L}}^2 = \alpha \hbar^2, \hat{L}_z = \beta_{\min}\hbar\rangle = 0$. $\beta_{\max} \beta_{\min}$ is non-negative integer. Then $\alpha = \beta_{\max}(\beta_{\max} + 1) = \beta_{\min}(\beta_{\min} 1)$. The solution is $\beta_{\max} = -\beta_{\min} = \ell$, $\alpha = \ell(\ell+1)$, and $\beta_{\max} \beta_{\min} = 2\ell$ is non-negative integer.
- * For orbital angular momentum, consider $\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi}$, and the fact that the wavefunction $\psi(r, \theta, \phi) = \psi(r, \theta, \phi + 2\pi)$, the *m* must be integer, then the ℓ must also be integer. For rigorous argument, see Textbook Problem 4.57.
- Wavefunction for $|\ell, m\rangle$: $R(r)Y_{\ell}^{m}(\theta, \phi)$.
- $-\hat{L}_{\pm}|\ell,m\rangle = \hbar\sqrt{(\ell \mp m)(\ell \pm m+1)}|\ell,m\pm 1\rangle$, under Condon-Shortley convention. NOTE: this fixes the relative phases between $|\ell,m\rangle$ states with different m.
- (§4.4.1) Spin-1/2: internal 2-dimensional Hilbert space.
 - Spin angular momentum operators: \hat{S} . $[\hat{S}_a, \hat{S}_b] = i\hbar\epsilon_{abc}\hat{S}_c$.
 - Two basis states: $|S = \frac{1}{2}, S_z = +\frac{1}{2}\rangle$, $|S = \frac{1}{2}, S_z = -\frac{1}{2}\rangle$. (Usually $|\uparrow\rangle$, $|\downarrow\rangle$)
 - Under above basis, $\hat{S}_a = \frac{\hbar}{2} \sigma_a, \, \sigma_a$ are Pauli matrices.
 - $-\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \sigma_{0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \sigma_{a}\sigma_{b} = \delta_{ab}\sigma_{0} + i\epsilon_{abc}\sigma_{c}.$ So commutator $[\sigma_{a}, \sigma_{b}] = 2i\epsilon_{abc}\sigma_{c}$, anti-commutator $\{\sigma_{a}, \sigma_{b}\} = 2\delta_{ab}\sigma_{0}$.
 - Spin-1/2 state: $|\psi\rangle = \psi_{\uparrow}|\uparrow\rangle + \psi_{\downarrow}|\downarrow\rangle$, also written as $\begin{pmatrix} \psi_{\uparrow} \\ \psi_{\downarrow} \end{pmatrix}$. The expectation values of spin operators are $\langle \psi|\hat{S}_a|\psi\rangle = \frac{\hbar}{2} \cdot (\psi_{\uparrow}^*, \psi_{\downarrow}^*) \cdot \sigma_a \cdot \begin{pmatrix} \psi_{\uparrow} \\ \psi_{\downarrow} \end{pmatrix}$. Here $\psi_{\uparrow}, \psi_{\downarrow}$ are complex numbers, with normalization $|\psi_{\uparrow}|^2 + |\psi_{\downarrow}|^2 = 1$.
 - Spinor wavefunction: the spin-1/2 wavefunctions may depend on \boldsymbol{r} (or other degrees of freedom), $\begin{pmatrix} \psi_{\uparrow}(\boldsymbol{r}) \\ \psi_{\downarrow}(\boldsymbol{r}) \end{pmatrix}$. The normalization is $\int [|\psi_{\uparrow}(\boldsymbol{r})|^2 + |\psi_{\downarrow}(\boldsymbol{r})|^2] d\boldsymbol{r} = 1$. This is also written as $\psi(\boldsymbol{r},s)$ with $s=\uparrow,\downarrow$, and $\sum_s \int d\boldsymbol{r} |\psi(\boldsymbol{r},s)|^2 = 1$.
 - Larmor precession (§4.4): $\hat{H} = -\gamma \boldsymbol{B} \cdot \hat{\boldsymbol{S}} = -\gamma B_b \hat{S}_b$. By the Heisenberg equation of motion, $\frac{d}{dt} \langle \hat{S}_a \rangle = \frac{i}{\hbar} \langle [\hat{H}, \hat{S}_a] \rangle = \gamma \epsilon_{bac} B_b \langle \hat{S}_c \rangle$, or $\frac{d}{dt} \langle \hat{\boldsymbol{S}} \rangle = -\gamma \boldsymbol{B} \times \langle \hat{\boldsymbol{S}} \rangle$. So $\langle \hat{\boldsymbol{S}} \rangle$ will rotate around \boldsymbol{B} without changing length and angle between $\langle \hat{\boldsymbol{S}} \rangle$ and \boldsymbol{B} .

- (§4.4.3) Addition of angular momentum:
 - Consider two independent Hilbert spaces, \mathcal{H}_{J_1} and \mathcal{H}_{J_2} , with complete orthonormal basis $|J_1, m_1\rangle$ and $|J_2, m_2\rangle$ respectively. Here $m_i = -J_i, -J_i + 1, \dots, J_i$.
 - In each \mathcal{H}_{J_i} , there are angular momentum operators $\hat{J}_{i,a}$, satisfying $[\hat{J}_{i,a}, \hat{J}_{i,b}] = i\hbar\epsilon_{abc}\hat{J}_{i,c}, \ \hat{J}_{i,z}|J_i, m_i\rangle = \hbar m_i|J_i, m_i\rangle, \ \hat{J}_{i,\pm} \equiv \hat{J}_{i,x} \pm i\hat{J}_{i,y}$, and $\hat{J}_{i,\pm}|J_i, m_i\rangle = \hbar\sqrt{(J_i \mp m_i)(J_i \pm m_i + 1)}|J_i, m_i \pm 1\rangle.$
 - Make the tensor product Hilbert space $\mathcal{H}_{J_1} \otimes \mathcal{H}_{J_2}$, with $(2J_1+1)(2J_2+1)$ complete orthonormal basis $|J_1, m_1\rangle \otimes |J_2, m_2\rangle$ (usuall just $|J_1, m_1\rangle |J_2, m_2\rangle$).
 - In $\mathcal{H}_{J_1} \otimes \mathcal{H}_{J_2}$, define total angular momentum operators $\hat{J}_a = \hat{J}_{1,a} + \hat{J}_{2,a}$. Here $\hat{J}_{1,a}$ $(\hat{J}_{2,a})$ acts only on the first (second) factor of $|J_1, m_1\rangle |J_2, m_2\rangle$ basis, so actually $\hat{J}_a = \hat{J}_{1,a} \otimes \mathbb{1}_{J_2} + \mathbb{1}_{J_1} \otimes \hat{J}_{2,a}$, where $\mathbb{1}_{J_i}$ is the identity operator(matrix) in \mathcal{H}_{J_i} . \hat{J} still satisfies $[\hat{J}_a, \hat{J}_b] = i\hbar \epsilon_{abc} \hat{J}_c$. So we can find simultaneous eigenstates of \hat{J}^2 and \hat{J}_z in $\mathcal{H}_{J_1} \otimes \mathcal{H}_{J_2}$, $\hat{J}^2 |J, m\rangle = \hbar^2 J(J+1)|J, m\rangle$ and $\hat{J}_z |J, m\rangle = \hbar m |J, m\rangle$.
 - Clebsch-Gordon theorom: the total angular momentum quantum number J can be $|J_1 J_2|$, or $(|J_1 J_2| + 1), \ldots$, up to $(J_1 + J_2)$.
 - * This means that by some unitary transformation (basis change), the tensor product Hilbert space $\mathcal{H}_{J_1} \otimes \mathcal{H}_{J_2} \sim \mathcal{H}_{|J_1-J_2|} \oplus \mathcal{H}_{|J_1-J_2|+1} \oplus \cdots \oplus \mathcal{H}_{J_1+J_2}$, the direct sum of subspaces with fixed J quantum number. As consistency check, the dimensions match, $(2J_1+1)(2J_2+1) = \sum_{J=|J_1-J_2|}^{J_1+J_2} (2J+1)$.
 - Clebsch-Gordon coefficient (C-G coefficient): $C_{m_1m_2m}^{J_1J_2J}$, also $\langle J_1, m_1; J_2, m_2|J, m\rangle$.
 - * Definition: $|J, m\rangle = \sum_{m_1, m_2} C_{m_1 m_2 m}^{J_1 J_2 J} |J_1, m_1\rangle |J_2, m_2\rangle$.
 - * $C_{m_1m_2m}^{J_1J_2J}$ is a $(2J_1+1)(2J_2+1)$ -dimensional unitary matrix, if we view (J,m) combination as row index, (m_1, m_2) combination as column index.
 - * Selection rule: for non-zero $C_{m_1m_2m}^{J_1J_2J}$, $m = m_1 + m_2$, because $\hat{J}_z = \hat{J}_{1,z} + \hat{J}_{2,z}$; and J must be one of $|J_1 J_2|$, $(|J_1 J_2| + 1)$, ..., $(J_1 + J_2)$.
 - * By $0 = \hat{J}_{+}|J,J\rangle = (\hat{J}_{1,+} + \hat{J}_{2,+}) \sum_{m_1,m_2} C_{m_1,m_2,m}^{J_1,J_2,J}|J_1,m_1\rangle|J_2,m_2\rangle$. We have $\sqrt{(J_1 m_1 + 1)(J_1 + m_1)} C_{m_1-1,m_2,J}^{J_1,J_2,J} = -\sqrt{(J_2 m_2 + 1)(J_2 + m_2)} C_{m_1,m_2-1,J}^{J_1,J_2,J}.$ This solves all $C_{m_1,m_2,J}^{J_1,J_2,J}$ up to overall factor.
 - Example: two spin-1/2, total spin S can be $S=0=|\frac{1}{2}-\frac{1}{2}|$ (spin singlet) or $S=1=\frac{1}{2}+\frac{1}{2}$ (spin triplet). See §4.4.3.

IV. IDENTICAL PARTICLES (\sim CH.5)

- Generic N-particle wavefunction: $\psi(\mathbf{r}_1, \dots, \mathbf{r}_N, t)$, $\int |\psi|^2 \prod_i d\mathbf{r}_i = 1$, $i\hbar \frac{\partial}{\partial t} \psi = \hat{H}_N \psi$, and $\hat{H}_N = H_N(\hat{\mathbf{r}}_1, \hat{\mathbf{p}}_1, \dots, \hat{\mathbf{r}}_N, \hat{\mathbf{p}}_N)$, $\hat{H}_N \psi = H_N(\mathbf{r}_1, -i\hbar \partial_{\mathbf{r}_1}, \dots, \mathbf{r}_N, -i\hbar \partial_{\mathbf{r}_N}) \psi$.
- Non-interacting particles: $\hat{H}_N = \sum_{i=1}^N H_{1,i}(\hat{\boldsymbol{r}}_i,\hat{\boldsymbol{p}}_i)$. If $\hat{H}_{1,i}$ has eigenstates $\psi_{k_i,i}(\boldsymbol{r})$ with eigenvalue $E_{k_i,i}$ (k_i labels eigenstates of $\hat{H}_{1,i}$), then $\psi_{k_1,1}(\boldsymbol{r}_1)\cdots\psi_{k_N,N}(\boldsymbol{r}_N)$ is an eigenstate of \hat{H}_N with eigenvalue $\sum_{i=1}^N E_{n_i,i}$. These direct product wavefunctions form complete orthonormal basis for N-particle Hilbert space of distinguishable particles.
 - Generic N-particle states will be superpositions of the direct product basis, and may be entangled (cannot be written as a direct product state).
- For identical particles, legitimate observables $\hat{O}_N(\hat{\boldsymbol{r}}_1, \hat{\boldsymbol{p}}_1, \dots \hat{\boldsymbol{r}}_N, \hat{\boldsymbol{p}}_N)$ including \hat{H}_N must be invariant under permutations of particle labels $1, 2, \dots, N$, so that the particles are indistinguishable. For example, non-interacting \hat{H}_N must be $\hat{H}_N = \sum_{i=1}^N H_1(\hat{\boldsymbol{r}}_i, \hat{\boldsymbol{p}}_i)$, the sum of identical 1-particle Hamiltonians for each particle.
 - For example, 2-particle potentials must be $\frac{1}{2}\sum_{i,j,i\neq j}V(\boldsymbol{r}_i,\boldsymbol{r}_j)$. Here the $\frac{1}{2}$ factor is to remove double-counting of the same (i,j) pair, and $V(\boldsymbol{r}_i,\boldsymbol{r}_j)=V(\boldsymbol{r}_j,\boldsymbol{r}_i)$.
- Permutation group S_N (not required): permutation σ , rearrangement of $\{1, \ldots, N\}$. $\sigma(i)$ for $i = 1, \ldots, N$ is also a number in $1, \ldots, N$, and $\sigma(i) \neq \sigma(j)$ for $i \neq j$. Also represented by $\begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$. There are N! distinct permutations in S_N .
 - Product $\sigma \cdot \mu$ (usually just $\sigma \mu$) of permutations σ and μ : $(\sigma \cdot \mu)(i) = \sigma(\mu(i))$.
 - Identity permutation 1: $\mathbf{1}(i) = i$. So $\sigma \cdot \mathbf{1} = \mathbf{1} \cdot \sigma = \sigma$.
 - Inverse σ^{-1} of a permutation σ : $\sigma^{-1} \cdot \sigma = \sigma \cdot \sigma^{-1} = 1$.
 - Transposition $\sigma_{i,j}$ $(i \neq j)$: swap of i, j only, $\sigma(i) = j$, $\sigma(j) = i$, and $\sigma(k) = k$ for $k \neq i, j$. Note that $\sigma_{i,j} \cdot \sigma_{i,j} = \mathbf{1}$.
 - Any permutation can be represented as a (non-unique) product of transpositions. For example, $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} = \sigma_{2,4}\sigma_{1,3}\sigma_{1,2} = \sigma_{1,3}\sigma_{1,2}\sigma_{1,4} = \sigma_{3,4}\sigma_{2,3}\sigma_{3,4}\sigma_{1,2}\sigma_{2,3} = \dots$
 - Even(odd) permutations: product of even(odd) number of transpositions. Signature (sign) $\operatorname{sgn}(\sigma) = \pm 1$ for even(odd) permutation σ .

- For identical particles, a legitimate wavefunction $\psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$ should be invariant (up to overall complex phase factor) under permutations of particle labels $1, \dots, N$.
 - $-\psi(\boldsymbol{r}_{\sigma(1)},\boldsymbol{r}_{\sigma(2)},\ldots,\boldsymbol{r}_{\sigma(N)})=R(\sigma)\cdot\psi(\boldsymbol{r}_1,\boldsymbol{r}_2,\ldots,\boldsymbol{r}_N),$ here $R(\sigma)$ is a complex phase factor ($|R(\sigma)|=1$) that depends only on the permutation σ .
 - $-R(\sigma\mu) = R(\sigma)R(\mu)$. Then $[R(\sigma_{i,j})]^2 = R(\mathbf{1}) = 1$, so $R(\sigma_{i,j}) = \pm 1$, and because $\sigma_{i',j'} = \sigma_{i,i'}\sigma_{i,j'}\sigma_{i,j'}\sigma_{i,j'}\sigma_{i,j'}$, $R(\sigma_{i',j'}) = [R(\sigma_{i,i'})]^2[R(\sigma_{i,j'})]^2R(\sigma_{i,j}) = R(\sigma_{i,j})$.
 - Bosons: $R(\sigma_{i,j}) = +1$, then $R(\sigma) = +1$ for permutation σ . ψ is fully symmetric.
 - Fermions: $R(\sigma_{i,j}) = -1$, then $R(\sigma) = \operatorname{sgn}(\sigma)$. ψ is fully anti-symmetric.
 - Given 1-particle basis $\psi_k(\boldsymbol{r})$ labeled by quantum number k, N-identical-particle state with 1 particle in ψ_{k_1} , 1 particle in ψ_{k_2} , ..., 1 particle in ψ_{k_N} , is: bosons: $\propto \sum_{\sigma} \psi_{k_1}(\boldsymbol{r}_{\sigma(1)}) \cdots \psi_{k_N}(\boldsymbol{r}_{\sigma(N)}) = \text{perm}[\psi_{k_i}(\boldsymbol{r}_j)];$ fermions: $\frac{1}{\sqrt{N!}} \sum_{\sigma} \text{sgn}(\sigma) \cdot \prod_{i=1}^{N} \psi_{k_i}(\boldsymbol{r}_{\sigma(i)}) = \frac{1}{\sqrt{N!}} \text{det}[\psi_{k_i}(\boldsymbol{r}_j)].$ (Slater determinant)
 - Pauli exclusion principle: if $k_i = k_j$ for $i \neq j$, the above anti-symmetrized N fermion state vanishes. Fermions cannot occupy the same 1-particle state twice.
- Spinful wavefunctions: $\psi(\mathbf{r}_1, s_1; \mathbf{r}_2, s_2; \dots; \mathbf{r}_N, s_N)$. Here s_i labels discrete internal states (e.g. spin) of particle i.
 - $\psi(\boldsymbol{r}_{\sigma(1)}, s_{\sigma(1)}; \dots; \boldsymbol{r}_{\sigma(N)}, s_{\sigma(N)}) = \psi(\boldsymbol{r}_1, s_1; \dots; \boldsymbol{r}_N, s_N) \text{ for bosons;}$ $\psi(\boldsymbol{r}_{\sigma(1)}, s_{\sigma(1)}; \dots; \boldsymbol{r}_{\sigma(N)}, s_{\sigma(N)}) = \operatorname{sgn}(\sigma) \cdot \psi(\boldsymbol{r}_1, s_1; \dots; \boldsymbol{r}_N, s_N) \text{ for fermions.}$
 - Simple case: $\psi = \psi_{\text{orbital}}(\boldsymbol{r}_1, \dots, \boldsymbol{r}_N)\chi_{\text{spin}}(s_1, \dots, s_N)$ factorizes into orbital and spin wavefunctions. Here χ_{spin} is a complex number for given (s_1, \dots, s_N) . The permutation signs will be distributed to the orbital and spin wavefunctions.
 - For two spin-1/2 identical particles, the spin wavefunction can be anti-symmetric (spin singlet), $\chi_{\rm spin}(\uparrow,\downarrow) = -\chi_{\rm spin}(\downarrow,\uparrow) = \frac{1}{\sqrt{2}}$, $\chi_{\rm spin}(\uparrow,\uparrow) = \chi_{\rm spin}(\downarrow,\downarrow) = 0$, then $\psi_{\rm orbital}$ is anti-symmetric/symmetric for bosons/fermions respectively.
 - The spin triplet states for two spin-1/2 are symmetric. $|S = 1, S_z = 1\rangle = |\uparrow\uparrow\rangle$, $|S = 1, S_z = 0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle), |S = 1, S_z = -1\rangle = |\downarrow\downarrow\rangle$. Then $\psi_{\text{orbital}}(\boldsymbol{r}_1, \boldsymbol{r}_2)$ is symmetric/anti-symmetric for bosons/fermions respectively.
 - For N spin-1/2, the highest total spin (total $S = \frac{N}{2}$) states are fully symmetric, $|S = \frac{N}{2}, S_z\rangle \propto (\hat{S}_-)^{\frac{N}{2} S_z} |S = \frac{N}{2}, S_z = \frac{N}{2}\rangle = (\sum_i \hat{S}_{i,-})^{\frac{N}{2} S_z} |\uparrow \dots \uparrow\rangle.$

V. TIME-INDEPENDENT PERTURBATION THEORY (\sim CH.6)

- The problem: time-independent Hamiltonian $\hat{H} = \hat{H}^{(0)} + \lambda \hat{H}^{(1)}$, λ is a "small" real parameter. $\hat{H}^{(0)}$ has complete orthonormal eigenstates $\psi_n^{(0)}$ with eigenvalues $E_n^{(0)}$. Solve the eigenvalues and eigenstates of \hat{H} as (asymptotic) series of λ .
- Non-degenerate perturbation: energy level $E_n^{(0)}$ is non-degenerate. Assume the *n*-th eigenvalue for \hat{H} is $E_n = E_n^{(0)} + \sum_{k=1}^{\infty} \lambda^k E_n^{(k)}$, and eigenstate $\psi_n \propto \psi_n^{(0)} + \sum_{k=1}^{\infty} \lambda^k \psi_n^{(k)}$.
 - Here $\psi_n^{(k)}$ is not normalized, and $\langle \psi_n^{(k)} | \psi_n^{(0)} \rangle = 0$ for $k \ge 1$ can be assumed without loss of generality: If $\langle \psi_n^{(k)} | \psi_n^{(0)} \rangle \ne 0$, define $|\tilde{\psi}_n^{(k)} \rangle = |\psi_n^{(k)} \rangle |\psi_n^{(0)} \rangle \langle \psi_n^{(0)} | \psi_n^{(k)} \rangle$, then $\langle \tilde{\psi}_n^{(k)} | \psi_n^{(0)} \rangle = 0$, and $|\psi_n\rangle \propto (1 + \sum_{k=1}^{\infty} \lambda^k \langle \psi_n^{(0)} | \psi_n^{(k)} \rangle) |\psi_n^{(0)}\rangle + \sum_{k=1}^{\infty} \lambda^k |\tilde{\psi}_n^{(k)}\rangle$ $\propto |\psi_n^{(0)}\rangle + \frac{1}{1+\sum_{k'=1}^{\infty} \lambda^{k'} \langle \psi_n^{(0)} | \psi_n^{(k')}\rangle} \sum_{k=1}^{\infty} \lambda^k |\tilde{\psi}_n^{(k)}\rangle$, the 2nd term is orthogonal to $\psi_n^{(0)}$ and can be re-expanded into Taylor series of λ .
 - Then $|\psi_n^{(k)}\rangle = \sum_{m,m\neq n} |\psi_m^{(0)}\rangle \cdot c_m^{(k)}$, for $k \ge 1$. And $c_m^{(k=0)} \equiv \delta_{m,n}$.
 - $-\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle \text{ expanded to } \lambda^k \text{ order is } (k \ge 1),$ $\hat{H}^{(0)}|\psi_n^{(k)}\rangle + \hat{H}^{(1)}|\psi_n^{(k-1)}\rangle = \sum_{j=0}^k E_n^{(j)}|\psi_n^{(k-j)}\rangle.$ [1]
 - Overlap Eq. [1] with $\langle \psi_n^{(0)} |$, use $\langle \psi_n^{(0)} | \hat{H}^{(0)} = E_n^{(0)} \langle \psi_n^{(0)} |$, $\langle \psi_n^{(0)} | \hat{H}^{(1)} | \psi_n^{(k-1)} \rangle = E_n^{(k)}$. [2] For k > 1, this is $\sum_{m,m \neq n} \langle \psi_n^{(0)} | \hat{H}^{(1)} | \psi_m^{(0)} \rangle c_m^{(k-1)} = E_n^{(k)}$.
 - Overlap Eq. [1] with $\langle \psi_m^{(0)} |$, for $m \neq n$, $\sum_{m',m'\neq n} \langle \psi_m^{(0)} | \hat{H}^{(1)} | \psi_{m'}^{(0)} \rangle c_{m'}^{(k-1)} - \sum_{j=1}^{k-1} E_n^{(j)} c_m^{(k-j)} = (E_n^{(0)} - E_m^{(0)}) c_m^{(k)}.$ [3]
 - $-E_n^{(k)}$ and $c_m^{(k)}$ can be solved recursively from Eq. [2,3].
 - 1st order perturbation: $E_n^{(1)} = \langle \psi_n^{(0)} | \hat{H}^{(1)} | \psi_n^{(0)} \rangle$, $c_m^{(1)} = \frac{\langle \psi_m^{(0)} | \hat{H}^{(1)} | \psi_n^{(0)} \rangle}{E_n^{(0)} E_m^{(0)}}$.
 - 2nd order perturbation: $E_n^{(2)} = \sum_{m,m\neq n} \frac{\langle \psi_n^{(0)}|\hat{H}^{(1)}|\psi_m^{(0)}\rangle\langle \psi_m^{(0)}|\hat{H}^{(1)}|\psi_n^{(0)}\rangle}{E_n^{(0)}-E_m^{(0)}}$.

 2nd order perturbation always lowers the ground state energy, because the denominator is negative, and numerator $|\langle \psi_n^{(0)}|\hat{H}^{(1)}|\psi_m^{(0)}\rangle|^2$ is non-negative.
 - Side remark: each term in $E_n^{(k)}$ can be viewed as a "virtual" k-step transition process, starting and ending at $\psi_n^{(0)}$. Each step contribute a matrix element of $\hat{H}^{(1)}$, and there are k-1 energy difference $E_n^{(0)}$ (intermediate state energy) in the denominator. For notation simplicity, define $T_{n,m} \equiv \langle \psi_n^{(0)} | \hat{H}^{(1)} | \psi_m^{(0)} \rangle$, $\Delta_{n,m} \equiv E_n^{(0)} E_m^{(0)}$, and \sum_m' as $\sum_{m,m\neq n}$. We have

- * 3rd order (not required): $E_n^{(3)} = \sum_{m=1}^{\prime} \sum_{p=1}^{\prime} \frac{T_{n,m} T_{m,p} T_{p,n}}{\Delta_{n,m} \Delta_{n,p}} \sum_{m=1}^{\prime} \frac{T_{n,m} T_{m,n}}{(\Delta_{n,m})^2} T_{n,n}$.
- * 4th order (not required): $E_n^{(4)} = \sum_m' \sum_p' \sum_q' \frac{T_{n,m} T_{m,p} T_{p,q} T_{q,n}}{\Delta_{n,m} \Delta_{n,p} \Delta_{n,q}} (\sum_m' \sum_p' \frac{T_{n,m} T_{m,p} T_{p,n}}{(\Delta_{n,m})^2 \Delta_{n,p}} \sum_m' \frac{T_{n,m} T_{m,n} T_{n,n}}{(\Delta_{n,m})^3}) T_{n,n} \sum_m' \frac{T_{n,m} T_{m,n}}{(\Delta_{n,m})^2} \sum_p' \frac{T_{n,p} T_{p,n}}{\Delta_{n,p}}.$
- Non-degenerate perturbation theory is good for $|\langle \psi_n^{(0)} | \lambda \hat{H}^{(1)} | \psi_m^{(0)} \rangle| \ll |E_n^{(0)} E_m^{(0)}|$.
- Example: harmonic oscillator under constant force,

$$\hat{H}^{(0)} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2} = \hbar\omega(\hat{a}_+ \hat{a}_- + \frac{1}{2}), E_n^{(0)} = \hbar\omega(n + \frac{1}{2}), |\psi_n^{(0)}\rangle = \frac{(\hat{a}_+)^n}{\sqrt{n!}} |\psi_0^{(0)}\rangle.$$

$$\lambda \hat{H}^{(1)} = -f\hat{x} = -f\sqrt{\frac{\hbar}{2m\omega}}(\hat{a}_+ + \hat{a}_-)$$
. (Let $\lambda = 1$ here, or view f as the parameter)

*
$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2(\hat{x} - f/m\omega^2)^2}{2} - \frac{f^2}{2m\omega^2}$$
. Exact eigenvalues are $E_n = \hbar\omega(n + \frac{1}{2}) - \frac{f^2}{2m\omega^2}$.

*
$$T_{n,m} = -f\sqrt{\frac{\hbar}{2m\omega}}(\sqrt{n}\delta_{n,m+1} + \sqrt{m}\delta_{n+1,m}), \Delta_{n,m} = \hbar\omega(n-m).$$

- * $E_n^{(1)} = T_{n,n} = 0.$
- * $E_n^{(2)} = \sum_{p}' \frac{T_{n,p}T_{p,n}}{\Delta_{n,p}} = (-f\sqrt{\frac{\hbar}{2m\omega}})^2(\frac{n}{\hbar\omega} + \frac{n+1}{-\hbar\omega}) = -\frac{f^2}{2m\omega^2}$, from $p = n \mp 1$.
- * Exercise (not required): check $E_n^{(3)} = 0$ and $E_n^{(4)} = 0$.
- * Note: $\hat{H}(-f) = \hat{I} \cdot \hat{H}(f) \cdot \hat{I}^{-1}$, where \hat{I} is the unitary spatial-inversion operator $(x \to -x)$, then $E_n(-f) = E_n(f)$, odd-order perturbations must vanish.
- Degenerate perturbation: energy level $E_n^{(0)}$ is g-fold degenerate (g > 1), with orthonormal eigenstates $\psi_{n,i}^{(0)}$ (i = 1, ..., g). Assume an eigenvalue for \hat{H} is $E_{n,i} = E_n^{(0)} + \sum_{k=1}^{\infty} \lambda^k E_{n,i}^{(k)}$, and eigenstate $\psi_{n,i} \propto \sum_{j=1}^g \psi_{n,j}^{(0)} c_{j,i} + \sum_{k=1}^{\infty} \lambda^k \psi_{n,i}^{(k)}$, for i = 1, ..., g.
 - Here $\psi_{n,i}^{(k)}$ is not normalized, and $\langle \psi_{n,j}^{(0)} | \psi_{n,i}^{(k)} \rangle = 0$ for $k \geq 1$ for any $i, j = 1, \dots, g$.
 - $-c_{j,i}$ is a $g \times g$ unitary matrix to be solved. Define new basis for the degenerate subspace, $|\tilde{\psi}_{n,i}^{(0)}\rangle = \sum_{j=1}^{g} |\psi_{n,j}^{(0)}\rangle c_{j,i}$. Then $\lim_{\lambda \to 0} \psi_{n,i} = \tilde{\psi}_{n,i}^{(0)}$.
 - Assume $|\psi_{n,i}^{(k)}\rangle = \sum_{m,m\neq n} |\psi_m^{(0)}\rangle c_{m,i}^{(k)}$, for $k \ge 1$.
 - Consider $\hat{H}|\psi_{n_i}\rangle = E_{n,i}|\psi_{n,i}\rangle$, for λ^1 order, overlap with $\langle \psi_{n,j'}^{(0)}|$, we have
 - 1st order secular equation: $\sum_{j=1}^{g} \langle \psi_{n,j'}^{(0)} | \hat{H}^{(1)} | \psi_{n,j}^{(0)} \rangle c_{j,i} = E_{n,i}^{(1)} c_{j',i}$. Each column of $c_{j,i}$ matrix is an eigenvector of $\hat{H}^{(1)}$ restricted on the degenerate subspace with $g \times g$ matrix element $\langle \psi_{n,j'}^{(0)} | \hat{H}^{(1)} | \psi_{n,j}^{(0)} \rangle$.
 - If the g eigenvalues $E_{n,i}^{(1)}$ of 1st order secular equation are non-degenerate, each column of $c_{j,i}$ (namely $|\tilde{\psi}_{n,i}^{(0)}\rangle$) is determined up to phase factors. Then higher order perturbations are given by non-degenerate perturbation theory under $\tilde{\psi}_{n,i}^{(0)}$ basis. For example, $|\psi_{n,i}^{(1)}\rangle = \sum_{m,m\neq n} |\psi_m^{(0)}\rangle \frac{\langle \psi_m^{(0)}|\hat{H}^{(1)}|\tilde{\psi}_{n,i}^{(0)}\rangle}{E_n^{(0)}-E_m^{(0)}}$, $E_{n,i}^{(2)} = \sum_{m,m\neq n} \frac{|\langle \psi_m^{(0)}|\hat{H}^{(1)}|\tilde{\psi}_{n,i}^{(0)}\rangle|^2}{E_n^{(0)}-E_m^{(0)}}$.

- If some (or all) of $E_{n,i}^{(1)}$ are degenerate, we need to find proper basis in that degenerate subspace, $\tilde{\psi}_{n,i}^{(0)} = \sum_{j} \tilde{\psi}_{n,j}^{(0)} \tilde{c}_{j,i}$, from the 2nd order secular equation, $\sum_{j} \left(\sum_{m,m \neq n} \frac{\langle \tilde{\psi}_{n,j'}^{(0)} | \hat{H}^{(1)} | \psi_{m}^{(0)} \rangle \langle \psi_{m}^{(0)} | \hat{H}^{(1)} | \tilde{\psi}_{n,j}^{(0)} \rangle}{E_{n}^{(0)} E_{m}^{(0)}} \right) \tilde{c}_{j,i} = E_{n,i}^{(2)} \tilde{c}_{j',i}.$
- If there is an observable \hat{A} that commutes with $\hat{H}^{(0)}$ and $\hat{H}^{(1)}$, then you can divide the Hilbert space by the different eigenvalues of \hat{A} , and degenerate perturbation theory may be avoided in each subspace. See §6.2.1.
- Almost-degenerate case: if the off-diagonal matrix element of perturbation is larger than energy difference between the two original levels connected by this matrix element, $|\langle \psi_n^{(0)} | \lambda \hat{H}^{(1)} | \psi_m^{(0)} \rangle| \gg |E_n^{(0)} E_m^{(0)}|$, then these two levels should be treated by degenerate perturbation theory. See for example §6.4.2.
- Hellmann-Feynman theorem: if \hat{H}_{λ} depends on parameter λ , and ψ_{λ} is the non-degenerate normalized n-th eigenstate with eigenvalue $E_n(\lambda)$, $\hat{H}_{\lambda}\psi_{\lambda} = E_n(\lambda)\psi_{\lambda}$, then $\frac{\partial}{\partial \lambda}E_n(\lambda) = \langle \psi_{\lambda}|\frac{\partial \hat{H}_{\lambda}}{\partial \lambda}|\psi_{\lambda}\rangle$.
 - Proof: take derivative w.r.t. λ on, $E_n(\lambda) \cdot \langle \psi_{\lambda} | \psi_{\lambda} \rangle = \langle \psi_{\lambda} | \hat{H}_{\lambda} | \psi_{\lambda} \rangle$. And then use $\hat{H}_{\lambda} | \psi_{\lambda} \rangle = E_n(\lambda) | \psi_{\lambda} \rangle$ and $\langle \psi_{\lambda} | \hat{H}_{\lambda} = \langle \psi_{\lambda} | E_n(\lambda)$.
 - This can be used to evaluate certain expectation values under energy eigenstates. For example, harmonic oscillator $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2\hat{x}^2}{2}$ has eigenvalue $E_n = \hbar\omega \cdot (n + \frac{1}{2})$, then $\langle \psi_n | \hat{x}^2 | \psi_n \rangle = \langle \psi_n | \frac{1}{m\omega} \frac{\partial \hat{H}}{\partial \omega} | \psi_n \rangle = \frac{1}{m\omega} \frac{\partial E_n}{\partial \omega} = \frac{\hbar}{m\omega} (n + \frac{1}{2})$.
 - The " $\frac{\partial}{\partial \lambda}$ " needs careful treatment, on what other parameters to be held fixed. For example, to evaluate $\langle \frac{1}{r^2} \rangle$ in a eigenstate of a 3D central potential problem, you can formally take derivative w.r.t. the orbital angular momentum quantum number ℓ (although ℓ should be integers), because the radial equation is (see III), $-\frac{\hbar^2}{2m} \left[\frac{1}{r^2} \partial_r (r^2 \partial_r) \frac{\ell(\ell+1)}{r^2} \right] R(r) = E \cdot R(r), \text{ then } \langle \frac{1}{r^2} \rangle = \frac{2m}{\hbar^2 (2\ell+1)} \frac{\partial E}{\partial \ell}. \text{ However, when computing } \frac{\partial E}{\partial \ell}, \text{ it is usually not the "principal quantum number" that should be held fixed. For the 3D harmonic oscillator and hydrogen atom problems, <math>(n-\ell)$ should be held fixed instead, because it labels the energy levels for a given ℓ . See Textbook Problem 6.33.

VI. VARIATIONAL PRINCIPLE (\sim CH.7)

- For a Hamiltonian (hermitian operator) \hat{H} , its ground state energy (lowest eigenvalue) $E_0 = \min_{\psi} \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle}$. Here \min_{ψ} is the minimum with respect to all wavefunction ψ .
 - Conversely, for any ψ , $\frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle} \geq E_0$. The equal sign happens if and only if ψ is (one of) the ground state(s).
 - In practice, we cannot go over all states ψ in the Hilbert space. Usually we compute the expectation value $E(\vec{\lambda}) \equiv \frac{\langle \psi(\vec{\lambda}) | \hat{H} | \psi(\vec{\lambda}) \rangle}{\langle \psi(\vec{\lambda}) | \psi(\vec{\lambda}) \rangle}$ under states $\psi(\vec{\lambda})$ parametrized by parameter $\vec{\lambda}$ (which can contain more than one parameters λ_i). Then $\min_{\vec{\lambda}} E(\vec{\lambda})$, the minimum of $E(\vec{\lambda})$ with respect to $\vec{\lambda}$, can be a good approximation (upper bound) for the ground state energy.
 - In practice, we may not obtain the analytic formula for $E(\vec{\lambda})$. And some times $E(\vec{\lambda})$ has to be evaluated by Monte Carlo with statistical error.
 - To minimize $E(\vec{\lambda})$, it may be helpful to know its gradient $\frac{\partial}{\partial \lambda_i} E(\vec{\lambda})$, and then use methods like "steepest descent". Similar to the Hellmann-Feynman theorem, $\frac{\partial}{\partial \lambda_i} E(\vec{\lambda}) = \frac{2}{\langle \psi(\vec{\lambda}) | \psi(\vec{\lambda}) \rangle} \{ \text{Re}[\langle \psi(\vec{\lambda}) | \hat{H} | \frac{\partial}{\partial \lambda_i} \psi(\vec{\lambda}) \rangle] E(\vec{\lambda}) \cdot \text{Re}[\langle \psi(\vec{\lambda}) | \frac{\partial}{\partial \lambda_i} \psi(\vec{\lambda}) \rangle] \}.$ If $\psi(\vec{\lambda})$ is always normalized, the second term vanishes.
 - Although you may get very accurate ground state energy by this variational method, the wavefunction you get may not be very accurate approximation to the true ground state wavefunction. Example: \hat{H} has two levels $E_0 < E_1$ with orthonormal eigenstates $\psi_{0,1}$, take a not-very-accurate $\psi = \psi_0 + 0.1\psi_1$, then the expectation value $\frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle} = E_0 + \frac{0.01}{1.01} (E_1 E_0)$ is very close to E_0 .
- Extension (see Textbook Problem 7.4): once we find a good approximation $\tilde{\psi}_0$ to the ground state, then the first excited state energy can be approximated by $\min_{\psi,\langle\psi|\tilde{\psi}_0\rangle=0} \frac{\langle\psi|\hat{H}|\psi\rangle}{\langle\psi|\psi\rangle}$. Here the minimum is taken in the subspace orthogonal to $\tilde{\psi}_0$.
 - Related theorem (not required) (see e.g. Section I.4 of "Methods of Mathematical Physics" volume I by Courant & Hilbert): Hermitian \hat{H} in n-dimensional Hilbert space has eigenvalues $E_1 \leq E_2 \leq \cdots \leq E_n$. Restrict \hat{H} onto a (n-1) dimensional subspace (orthogonal to one state in original Hilbert space), with new eigenvalues $E'_1 \leq E'_2 \leq \cdots \leq E'_{n-1}$. Then $E_1 \leq E'_1 \leq E_2 \leq E'_2 \leq \cdots \leq E'_{n-1} \leq E_n$.

VII. THE WKB APPROXIMATION (\sim CH.8)

- Consider eigenvalue problem of $\hat{H} = -\frac{\hbar^2}{2m}\partial_x^2 + V(x)$, $\hat{H}\psi(x) = E \cdot \psi(x)$.
- The eigenstate "wave" function is $\psi(x) = A(x) \cdot e^{i\phi(x)}$, where A,ϕ are real functions (amplitude and phase). Rewrite it as $\psi(x) = A_0 e^{iu(x)}$, where $u(x) = \phi(x) i\log\frac{A(x)}{A_0}$ is a complex function. The Schrödinger equation becomes $(\frac{\mathrm{d}u}{\mathrm{d}x})^2 i\frac{\mathrm{d}^2u}{\mathrm{d}x^2} = \frac{2m}{\hbar^2}[E V(x)]$. Define $K(x) \equiv \sqrt{\frac{2m}{\hbar^2}[E V(x)]}$ and $\kappa(x) \equiv \sqrt{\frac{2m}{\hbar^2}[V(x) E]}$.
- Assume $\left|\frac{\mathrm{d}^2 u}{\mathrm{d}x^2}\right| \ll \left|\left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)^2\right|$, this equation can be solved recursively, $\frac{\mathrm{d}}{\mathrm{d}x}u_0 = \pm K(x)$; and $\frac{\mathrm{d}}{\mathrm{d}x}u_{n+1} = \pm \sqrt{[K(x)]^2 + \mathrm{i}\frac{\mathrm{d}^2}{\mathrm{d}x^2}u_n}$, for $n = 0, 1, \ldots$ In particular, $\frac{\mathrm{d}}{\mathrm{d}x}u_1 = \pm \sqrt{[K(x)]^2 + \mathrm{i}\frac{\mathrm{d}^2}{\mathrm{d}x^2}u_0} = \pm \sqrt{[K(x)]^2 \pm \mathrm{i}\frac{\mathrm{d}}{\mathrm{d}x}K(x)}$.
- Assume $|\frac{d}{dx}K(x)| \ll |[K(x)]^2|$, the 1st order result is $\frac{d}{dx}u_1 \approx \pm K(x) + i\frac{1}{2}\frac{d}{dx}\log[K(x)]$. We get the WKB approximation, $\psi(x) \propto \frac{1}{\sqrt{K(x)}}\exp[\pm i\int^x K(x')dx']$.
 - Classically-allowed region: E > V(x). K(x) is real (local wavevector), ψ is traveling waves (to the right/left for \pm sign). The probability amplitude $|\psi(x)|^2$ is inversely proportional to the classical velocity $\sqrt{\frac{2[E-V(x)]}{m}}$ at x. The probability current for $\frac{A}{\sqrt{K(x)}}e^{\pm i\int_{-\infty}^{x}K(x')\mathrm{d}x'}$ is a constant $\pm |A|^2$.
 - Classically-forbidden region: E < V(x). $K(x) = i\kappa(x)$ is pure imaginary, ψ is exponentially decaying/growing functions $\frac{1}{\sqrt{i\kappa(x)}} \exp[\mp \int^x \kappa(x) dx]$.
 - Close to the turning point [where V(x) = E], the above assumptions and the WKB approximation does not work.
- Connection formula: consider a turning point x_0 , with $V(x) \sim E + V'(x_0)(x x_0)$ around it. First consider the case $V'(x_0) > 0$, define $z = (\frac{2mV'(x_0)}{\hbar^2})^{1/3}(x x_0)$.
 - ψ approximately satisfy the *Airy's equation*, $\frac{d^2}{dz^2}\psi = z \cdot \psi$. The solution is $\psi = a \cdot \text{Ai}(z) + b \cdot \text{Bi}(z)$. Here Ai, Bi are *Airy functions*, with asymptotic behavior: for $z \gg 0$, $\text{Ai}(z) \sim \frac{1}{2\sqrt{\pi}z^{1/4}}e^{-\frac{2}{3}z^{3/2}}$, $\text{Bi}(z) \sim \frac{1}{\sqrt{\pi}z^{1/4}}e^{\frac{2}{3}z^{3/2}}$; for $z \ll 0$, $\text{Ai}(z) \sim \frac{1}{\sqrt{\pi}(-z)^{1/4}}\sin[\frac{2}{3}(-z)^{3/2} + \frac{\pi}{4}]$, $\text{Bi}(z) \sim \frac{1}{\sqrt{\pi}(-z)^{1/4}}\cos[\frac{2}{3}(-z)^{3/2} + \frac{\pi}{4}]$.
 - For $x \gg x_0$, $\psi(x)$ is linear superposition of $\frac{1}{\sqrt{\kappa(x)}} \exp(\mp \int_{x_0}^x \kappa(x') dx')$, decays/grows exponentially, and $\int_{x_0}^x \kappa(x') dx' \approx \frac{2}{3} z^{3/2}$.

- For $x \ll x_0$, $\psi(x)$ is linear superposition of $\frac{1}{\sqrt{K(x)}} \exp(\mp i \int_x^{x_0} K(x') dx')$, traveling to the right/left, and $\int_x^{x_0} K(x') dx' \approx \frac{2}{3} (-z)^{3/2}$.
- Match the Airy functions asymptotic form with the WKB results, where $|z| \gg 1$ but the linear approximation to V(x) is still good (possible when $\hbar \to 0$).

For
$$V'(x_0) > 0$$
 case, $\psi(x) \sim \begin{cases} \frac{1}{\sqrt{K(x)}} \left\{ 2A \sin[\phi(x) + \frac{\pi}{4}] + B \cos[\phi(x) + \frac{\pi}{4}] \right\}, & x \ll x_0; \\ \frac{1}{\sqrt{\kappa(x)}} \left\{ A \exp[-\gamma(x)] + B \exp[\gamma(x)] \right\}, & x \gg x_0. \end{cases}$ where $\phi(x) \equiv \int_x^{x_0} K(x') \mathrm{d}x'$, and $\gamma(x) \equiv \int_{x_0}^x \kappa(x') \mathrm{d}x'$, are both positive.

- For
$$V'(x_0) < 0$$
 case, $\psi(x) \sim \begin{cases} \frac{1}{\sqrt{K(x)}} \left\{ 2A \sin[\phi(x) + \frac{\pi}{4}] + B \cos[\phi(x) + \frac{\pi}{4}] \right\}, & x \gg x_0; \\ \frac{1}{\sqrt{\kappa(x)}} \left\{ A \exp[-\gamma(x)] + B \exp[\gamma(x)] \right\}, & x \ll x_0. \end{cases}$ but here $\phi(x) \equiv \int_{x_0}^x K(x') \mathrm{d}x'$, and $\gamma(x) \equiv \int_{x}^{x_0} \kappa(x') \mathrm{d}x'$, are both positive.

• Applications: tunneling through a smooth potential barrier.

V(x) > E for a < x < b; V(x) < E otherwise. Assume incoming(A) and reflected(B) waves in x < a, and transmitted waves(F) in x > b. Define $\phi(x) \equiv \int_x^a K(x') dx'$, and $\gamma(x) \equiv \int_a^x \kappa(x') dx'$. And $\gamma \equiv \gamma(b) = \int_a^b \frac{1}{\hbar} \sqrt{2m[V(x) - E]} dx$ is assumed to be large.

$$\int_{a}^{b} h \sqrt{2\pi t} \left\{ \int_{K(x)}^{a} \left\{ B \exp\left[i\left(\phi(x) + \frac{\pi}{4}\right)\right] + A \exp\left[-i\left(\phi(x) + \frac{\pi}{4}\right)\right] \right\}, \quad x \ll a; \\
\psi(x) \sim \begin{cases}
\frac{1}{\sqrt{K(x)}} \left\{ \frac{i(B-A)}{2} \exp\left[-\gamma(x)\right] + (B+A) \exp\left[\gamma(x)\right] \right\}, \quad a \ll x \ll b; \\
\frac{2}{\sqrt{K(x)}} F \exp\left[i\left(\int_{b}^{x} K(x') dx' + \frac{\pi}{4}\right)\right], \quad x \gg b.
\end{cases}$$
Note that $\gamma(x) = \gamma - \int_{x}^{b} \kappa(x') dx'.$ The connection formula at b is: $\frac{i(B-A)}{2} e^{-\gamma} = F$,

and $(B+A)e^{\gamma}=\frac{\mathrm{i}F}{2}$. So $F=-\mathrm{i}\frac{4}{4e^{\gamma}+e^{-\gamma}}A\approx -\mathrm{i}Ae^{-\gamma}$, the transmission coefficient $T \equiv \frac{|F|^2}{|A|^2} \approx e^{-2\gamma}$.

• Applications: bound state in a smooth potential well.

$$V(x) < E \text{ for } a < x < b; V(x) > E \text{ otherwise. Define } \phi(x) \equiv \int_a^x K(x') \mathrm{d}x'.$$

$$\int_a^x \int_a^x K(x') \mathrm{d}x' = \int_a^x \kappa(x') \mathrm{d}x', \qquad x \ll a;$$

$$\int_a^x \int_a^x K(x') \mathrm{d}x' = \int_a^x \kappa(x') \mathrm{d}x' = \int_a^x K(x') \mathrm{d}x' =$$

The connection formula at b is: $\phi(b) - \frac{\pi}{2} = n\pi$ and $A' = (-1)^n A$, with integer n. This is the Bohr-Sommerfeld quantization condition $\int_a^b \frac{1}{\hbar} \sqrt{2m[E-V(x)]} dx = (n+\frac{1}{2})\pi$, or $\oint p \cdot dx = (n + \frac{1}{2})h$, where \oint is integrating over a closed classical trajectory in the phase space (x-p space).

VIII. TIME-DEPENDENT PERTURBATION THEORY (\sim CH.9)

- The problem: Hamiltonian $\hat{H}(t) = \hat{H}_0 + \lambda \hat{V}(t)$, λ is a "small" parameter. $\hat{H}^{(0)}$ has complete orthonormal eigenstates $\psi_n^{(0)}(\mathbf{r})$ with eigenvalues $E_n^{(0)}$. Assume the solution to $i\hbar \frac{\partial}{\partial t}\psi = \hat{H}(t)\psi$ is $\psi(\mathbf{r},t) = \sum_n c_n(t)e^{-iE_n^{(0)}t/\hbar}\psi_n^{(0)}(\mathbf{r})$. Solve the coefficients $c_n(t)$ as (asymptotic) series of λ .
- The differential equations for $c_n(t)$ is, $\frac{\mathrm{d}}{\mathrm{d}t}c_n(t) = -\frac{\mathrm{i}}{\hbar}\sum_m \lambda V_{n,m}(t)e^{\mathrm{i}\omega_{n,m}t}\cdot c_m(t)$. Here $V_{n,m}(t) \equiv \langle \psi_n^{(0)}|\hat{V}(t)|\psi_m^{(0)}\rangle$, $\omega_{m,n} \equiv \frac{1}{\hbar}(E_m^{(0)} - E_n^{(0)})$. Assume $c_n(t) = \sum_{k=0}^{\infty} \lambda^k c_n^{(k)}(t)$, and $c_n^{(0)}(t) = c_n(0)$, $c_n^{(k)}(t=0) = 0$ for $k \geq 1$. Then $c_n^{(k)}(t) = \int_0^t -\frac{\mathrm{i}}{\hbar}\sum_m V_{n,m}(t')e^{\mathrm{i}(E_n^{(0)} - E_m^{(0)})t'}\cdot c_m^{(k-1)}(t')\,\mathrm{d}t'$, this can in principle solve $c_n(t)$ to all orders of λ (Dyson series).
- "Sudden approximation": if $\hat{V}(t)$ is nonzero for a "short" period $0 < t < \epsilon$, and $\hat{V}(t)$ is "bounded" (for example, $\sqrt{\sum_{m} |V_{n,m}(t)|^2} \le V_0 < +\infty$, for any n), then $|c_n(\epsilon) c_n(0)| \le \frac{1}{\hbar} \lambda V_0 \epsilon$, the final state equals to the initial state when $\epsilon \to 0$.
- "Pulse" perturbation (see Textbook Problem 9.3): $\hat{V}(t) = \hat{V}_0 \cdot f(t)$, here \hat{V}_0 is independent of t, and $f(t) \sim \delta(t)$ has a "sharp" peak at t = 0 with $\int f(t) dt = 1$. Then the above series expansion solution does not work. If the peak width $\epsilon \ll \frac{1}{\omega_{m,n}}$, then for $-\epsilon < t < \epsilon$, the equation is approximately $\frac{d}{dt}c_n(t) = f(t) \cdot \sum_m \frac{-i}{\hbar}(\hat{V}_0)_{n,m} \cdot c_m(t)$. The solution is $c_n(\epsilon) = \exp[\int_{-\epsilon}^{\epsilon} f(t) dt \cdot \sum_m \frac{-i}{\hbar}(\hat{V}_0)]_{n,m} \cdot c_m(-\epsilon) = \exp[\frac{-i}{\hbar}(\hat{V}_0)]_{n,m} \cdot c_m(-\epsilon)$. Here $\exp[\frac{-i}{\hbar}(\hat{V}_0)]$ is the exponential of the constant matrix $\frac{-i}{\hbar}(\hat{V}_0)$.
- Transition probability, $P_{n\to m}(t)$: initial (t=0) state is one of original eigenstates, $c_m(0) = \delta_{m,n}$, turn on the perturbation for time up to t, the final probability $|c_m(t)|^2$ is the "transition probability from initial state n to final state m over time t" $(m \neq n)$.
- Transition rate, $\Gamma_{n\to m} \equiv \lim_{t\to +\infty} \frac{P_{n\to m}(t)}{t}$.
- Usually just use the 1st order result: $c_n(t) \approx c_n(0) + \sum_m \frac{-i}{\hbar} \int_0^t \lambda V_{n,m}(t') e^{i\omega_{n,m}t'} dt' \cdot c_m(0)$. Then the transition probability $P_{n\to m}(t) \approx |\frac{-i}{\hbar} \int_0^t \lambda V_{m,n}(t') e^{i\omega_{m,n}t'} dt'|^2$.
- $$\begin{split} \bullet & \text{ Harmonic perturbation: } \hat{V}(t) = \hat{V}_{+}e^{-\mathrm{i}\omega t} + \hat{V}_{-}e^{\mathrm{i}\omega t}. \ \hat{V}_{-} = (\hat{V}_{+})^{\dagger} \text{ are time-independent.} \\ & \text{ Then } \tfrac{-\mathrm{i}}{\hbar} \int_{0}^{t} \lambda V_{m,n}(t')e^{\mathrm{i}\omega_{m,n}t'}\mathrm{d}t' = \tfrac{-\mathrm{i}}{\hbar} \big[(\lambda V_{+})_{m,n} \tfrac{e^{\mathrm{i}(\omega_{m,n}-\omega)t}-1}{\omega_{m,n}-\omega} + (\lambda V_{-})_{m,n} \tfrac{e^{\mathrm{i}(\omega_{m,n}+\omega)t}-1}{\omega_{m,n}+\omega} \big]. \\ & P_{n\to m}(t) = \tfrac{1}{\hbar^{2}} \left[|(\lambda V_{+})_{m,n}|^{2} \cdot \tfrac{4\sin^{2}(\tfrac{(\omega_{m,n}-\omega)t}{2})}{(\omega_{m,n}-\omega)^{2}} + |(\lambda V_{-})_{m,n}|^{2} \cdot \tfrac{4\sin^{2}(\tfrac{(\omega_{m,n}+\omega)t}{2})}{(\omega_{m,n}+\omega)^{2}} + (\mathrm{cross terms}) \right]. \end{split}$$

Use
$$\lim_{t\to +\infty} \frac{\sin^2(xt)}{x^2t} = \pi \delta(x)$$
, we have the "Fermi's golden rule":
$$\Gamma_{n\to m} = \frac{2\pi}{\hbar} \left[|(\lambda V_+)_{m,n}|^2 \delta(E_m^{(0)} - E_n^{(0)} - \hbar \omega) + |(\lambda V_-)_{m,n}|^2 \delta(E_m^{(0)} - E_n^{(0)} + \hbar \omega) \right].$$

- Under 1st order approximation, the system can absorb or emit one energy quantum $\hbar\omega$ (e.g. one photon) in the transition.
- Lifetime of a state: the total "decay rate" of state n is $\Gamma_n \equiv \sum_{m,m\neq n} \Gamma_{n\to m}$. Then $P_{n\to n}(t) \sim (1-\Gamma_n t) \sim e^{-\Gamma_n t}$, the lifetime of state n is $\tau_n = \frac{1}{\Gamma_n}$. This can be formally represented by an imaginary part of energy, $-i\frac{\Gamma_n \hbar}{2}$.
- About the δ functions: define density of states $\rho(E) = \sum_m \delta(E E_m^{(0)})$, here \sum_m may be an integral, define average square matrix element from state n to energy level E, $\overline{|(\lambda V_{\pm})_{n\to E}|^2} \equiv \frac{1}{\rho(E)} \sum_m \delta(E E_m^{(0)}) |(\lambda V_{\pm})_{m,n}|^2$, then the 1st order result is, $\Gamma_n = \frac{2\pi}{\hbar} \rho(E_n^{(0)} + \hbar\omega) \overline{|(\lambda V_+)_{n\to(E_n^{(0)} + \hbar\omega)}|^2} + \frac{2\pi}{\hbar} \rho(E_n^{(0)} \hbar\omega) \overline{|(\lambda V_-)_{n\to(E_n^{(0)} \hbar\omega)}|^2}$.
- Detailed balance (§9.3): $\Gamma_{n\to m} = \Gamma_{m\to n}$. Absorption rate = emission rate.
- (§9.2) Application: coupling to classical electromagnetic wave (see also Sakurai's "Modern Quantum Mechanics", Section 5.7).
 - Time-dependent electrostatic potential $\phi(\mathbf{r},t)$ and vector potential $\mathbf{A}(\mathbf{r},t)$. Electric field $\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t}$, magnetic field $\mathbf{B} = \nabla \times \mathbf{A}$.
 - Hamiltonian for a non-relativistic particle with mass m and electric charge q, $\hat{H} = \frac{\hat{\boldsymbol{p}}^2}{2m} + q\phi(\boldsymbol{r},t) + V(\boldsymbol{r}). \quad \hat{\boldsymbol{P}} \equiv -i\hbar\nabla q\boldsymbol{A}. \quad [\hat{P}_a,\hat{P}_b] = i\hbar q\epsilon_{abc}B_c. \quad \text{Under Coulomb}$ $\text{gauge}(\nabla \cdot \boldsymbol{A} = 0), \quad \hat{H} = [\frac{1}{2m}\hat{\boldsymbol{p}}^2 + V(\boldsymbol{r})] + [q\phi(\boldsymbol{r},t) \frac{q}{m}\boldsymbol{A}(\boldsymbol{r},t) \cdot \hat{\boldsymbol{p}} + \frac{q^2}{2m}\boldsymbol{A}^2].$
 - * The Schrödinger equation is preserved under "gauge transformation", $\mathbf{A} \to \mathbf{A} + \frac{\hbar}{q} \nabla \theta, \ \phi \to \phi \frac{\hbar}{q} \frac{\partial}{\partial t} \theta, \ \psi \to e^{\mathrm{i}\theta} \psi, \ \text{where} \ \theta = \theta(\mathbf{r}, t).$ Exercise: check $\hat{\mathbf{P}} \psi \to e^{\mathrm{i}\theta} \hat{\mathbf{P}} \psi, \ (\mathrm{i}\hbar \frac{\partial}{\partial t} - q\phi)\psi \to e^{\mathrm{i}\theta} (\mathrm{i}\hbar \frac{\partial}{\partial t} - q\phi)\psi.$
 - * Classical equations of motion: Exercise: check that \hat{H} produces, $m \frac{\mathrm{d}^2}{\mathrm{d}t^2} \langle \boldsymbol{r} \rangle = -\langle \nabla V \rangle + q \langle \boldsymbol{E} \rangle + q \langle \hat{\boldsymbol{P}} \times \boldsymbol{B} \rangle$, for time-independent fields.
 - Monochromatic linear-polarized electromagnetic wave: choose $\phi(\boldsymbol{r},t) = 0$, $\boldsymbol{A}(\boldsymbol{r},t) = 2A_0\boldsymbol{\mathcal{E}}\cos(\frac{\omega}{c}\boldsymbol{n}\cdot\boldsymbol{r} \omega t)$, here $\boldsymbol{\mathcal{E}}$ is a unit vector (polarization vector), \boldsymbol{n} is another unit vector (propagation direction), and $\boldsymbol{n}\cdot\boldsymbol{\mathcal{E}} = 0$ (transverse wave). Then $\boldsymbol{E}(\boldsymbol{r},t) = 2A_0\omega\boldsymbol{\mathcal{E}}\sin(\frac{\omega}{c}\boldsymbol{n}\cdot\boldsymbol{r} \omega t)$.

- Ignore \mathbf{A}^2 term, treat $[-\frac{q}{m}\mathbf{A}(\mathbf{r},t)\cdot\hat{\mathbf{p}}]$ as time-dependent perturbation, for monochromatic wave, it is a harmonic perturbation, $\hat{V}_+ = -\frac{q}{m}A_0e^{\mathrm{i}\frac{\omega}{c}\mathbf{n}\cdot\mathbf{r}}\mathbf{\mathcal{E}}\cdot\hat{\mathbf{p}}$.
- Electric dipole approximation: when the relevant wavelength $\lambda = \frac{c}{\omega}$ is much larger than relevant wavefunctions' length scale, we can approximate $e^{i\frac{\omega}{c}\boldsymbol{n}\cdot\boldsymbol{r}} \sim 1$. Then $(\hat{V}_{+})_{m,n} = -qA_{0}\boldsymbol{\mathcal{E}}\cdot\langle\psi_{m}^{(0)}|\frac{\hat{\boldsymbol{p}}}{m}|\psi_{n}^{(0)}\rangle = -qA_{0}\boldsymbol{\mathcal{E}}\cdot\langle\psi_{m}^{(0)}|\frac{i}{\hbar}[\hat{H}_{0},\hat{\boldsymbol{r}}]|\psi_{n}^{(0)}\rangle$ = $-i\omega_{m,n}A_{0}\boldsymbol{\mathcal{E}}\cdot\langle\psi_{m}^{(0)}|q\boldsymbol{r}|\psi_{n}^{(0)}\rangle$. Here $\omega_{m,n}\equiv\frac{E_{m}^{(0)}-E_{n}^{(0)}}{\hbar}$. At resonance, $\omega_{m,n}=\pm\omega$, then $(\hat{V}_{+})_{m,n}=\mp\frac{i}{2}\boldsymbol{E}_{0}\cdot\boldsymbol{p}_{m,n}$, where $\boldsymbol{E}_{0}=2A_{0}\omega\boldsymbol{\mathcal{E}}$ is the amplitude of electric field, $\boldsymbol{p}_{m,n}\equiv\langle\psi_{m}^{(0)}|q\boldsymbol{r}|\psi_{n}^{(0)}\rangle$ is the electric dipole matrix element. This justifies formulas (9.32-9.33) in §9.2.1.
 - * For hydrogen atom problem, $V(\mathbf{r}) = -\frac{Zq^2}{4\pi\epsilon_0 r}$, wavefunctions length scale is $R_{\text{atom}} \sim \frac{a_0}{Z}$, where a_0 is Bohr radius, relevant energy scale $\hbar\omega \sim \frac{Zq^2}{4\pi\epsilon_0(a_0/Z)}$, so $\frac{R_{\text{atom}}}{\lambda} \sim Z \cdot \alpha$, where $\alpha \equiv \frac{q^2}{4\pi\epsilon_0\hbar c} \sim \frac{1}{137}$ is fine-structure constant. For light atoms (small Z), we can use the electric dipole approximation.
- The energy density for this electromagnetic wave is $u = \frac{\epsilon_0}{2} E_0^2$. So $\Gamma_{n \to m} = u \cdot \frac{\pi}{\epsilon_0 \hbar} |\mathbf{p}_{m,n}|^2 [\delta(E_m^{(0)} E_n^{(0)} \hbar\omega) + \delta(E_m^{(0)} E_n^{(0)} + \hbar\omega)].$ For incoherent electromagnetic radiation (§9.2.3), with frequency distribution $\rho(\omega)$ for energy density, (energy density for frequency in $[\omega, \omega + d\omega]$ is $\rho(\omega)d\omega$), the "stimulated" transition rate is $\Gamma_{n \to m} = \frac{\pi}{3\epsilon_0 \hbar^2} |\mathbf{p}_{m,n}|^2 \rho(|\omega_{m,n}|)$.
- Spontaneous emission (§9.3): rate "A" = $\frac{\pi}{3\epsilon_0\hbar^2}|\mathbf{p}_{m,n}|^2 \cdot \hbar\omega \cdot \rho_0(\omega)$, where ρ_0 is the "density of states" for photons, $\frac{\omega^2}{\pi^2c^3}$ [see §5.4.5]. This can be viewed as coupling to zero-point fluctuation of electromagnetic fields.
- (§9.3.3) Dipole selection rule: for central potential problem, states $\psi_{n\ell m}$ are labeled by "principal quantum number" n, orbital angular momentum quantum number ℓ , and magnetic quantum number m. Conservation of angular momentum restricts possible nonzero dipole matrix elements $\langle \psi_{n'\ell'm'} | \boldsymbol{r} | \psi_{n\ell m} \rangle$.
 - Nonzero $\langle \psi_{n'\ell'm'} | \hat{z} | \psi_{n\ell m} \rangle$ must have m' = m, because $[\hat{L}_z, \hat{z}] = 0$, then $0 = \langle \psi_{n'\ell'm'} | [\hat{L}_z, \hat{z}] | \psi_{n\ell m} \rangle = (m' m)\hbar \langle \psi_{n'\ell'm'} | \hat{z} | \psi_{n\ell m} \rangle$.
 - Nonzero $\langle \psi_{n'\ell'm'} | \hat{x} | \psi_{n\ell m} \rangle = (m'-m) i \langle \psi_{n'\ell'm'} | \hat{y} | \psi_{n\ell m} \rangle = (m'-m)^2 \langle \psi_{n'\ell'm'} | \hat{x} | \psi_{n\ell m} \rangle$, must have $m' = m \pm 1$, because $[\hat{L}_z, \hat{y}] = -i\hbar \hat{x}$, $[\hat{L}_z, \hat{x}] = i\hbar \hat{y}$.
 - Nonzero $\langle \psi_{n'\ell'm'} | \boldsymbol{r} | \psi_{n\ell m} \rangle$ must have $\ell' = \ell \pm 1$. (see §9.3.3)

IX. ADIABATIC APPROXIMATION (~ CH.10)

- Adiabatic theorem: For $i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H}(t) |\psi(t)\rangle$, if $\hat{H}(t)$ changes "slowly", and $\psi(t=0)$ is the *n*-th instantaneous eigenstate of $\hat{H}(t=0)$, then $\psi(t)$ will remain to be the *n*-th instantaneous eigenstate of $\hat{H}(t)$.
 - Suppose $|\psi_{n,t}\rangle$ is the *n*-th instantaneous eigenstate of $\hat{H}(t)$, $\hat{H}(t)|\psi_{n,t}\rangle = E_n(t)|\psi_{n,t}\rangle$. [4]

 Define $\theta_n(t) = \frac{1}{\hbar} \int_0^t E_n(t') dt'$. Assume $|\psi(t)\rangle = \sum_n c_n(t) e^{-i\theta_n(t)} |\psi_{n,t}\rangle$. Then $\frac{d}{dt}c_m(t) = -\sum_n c_n(t) e^{i[\theta_m(t) \theta_n(t)]} \langle \psi_{m,t} | \frac{\partial}{\partial t} \psi_{n,t} \rangle$. [5]

 Take $\frac{\partial}{\partial t}$ on Eq. [4], overlap with $\langle \psi_{m,t} |$, for $m \neq n$, $\langle \psi_{m,t} | \frac{\partial}{\partial t} \psi_{n,t} \rangle = \frac{\langle \psi_{m,t} | \frac{\partial \hat{H}}{\partial t} |\psi_{n,t} \rangle}{E_n(t) E_m(t)}$. [6]

 If $|\frac{\langle \psi_{m,t} | \frac{\partial \hat{H}}{\partial t} |\psi_{n,t} \rangle}{E_n(t) E_m(t)}| \cdot \text{(time scale)} \ll 1$, the 2nd term in Eq. [6] can be ignored. Define $A_m(t) = -i \langle \psi_{m,t} | \frac{\partial}{\partial t} \psi_{m,t} \rangle$, $\gamma_m(t) = \int_0^t A_m(t') dt'$, then $c_m(t) \sim e^{-i\gamma_m(t)} c_m(t = 0)$. A_m and γ_m are real, $A_m (A_m)^* = -i \frac{\partial}{\partial t} (\langle \psi_{m,t} | \psi_{m,t} \rangle) = 0$.
- Berry's phase (γ_m above): If \hat{H} depends on a vector parameter $\vec{R}(t)$, so instantaneous eigenvalues $E_n(\vec{R})$ and eigenstates $\psi_{n,\vec{R}}$ are also functions of \vec{R} .
 - $-\gamma_n(T) = -i \int_0^T \langle \psi_n | \nabla_{\vec{R}} \psi_n \rangle \cdot \frac{d\vec{R}}{dt} dt = -i \int_{\vec{R}(0)}^{\vec{R}(T)} \langle \psi_n | \nabla_{\vec{R}} \psi_n \rangle \cdot d\vec{R} = \int_{\vec{R}(0)}^{\vec{R}(T)} \vec{A}_n(\vec{R}) \cdot d\vec{R}.$ $\vec{A}_n \equiv -i \langle \psi_n | \nabla_{\vec{R}} \psi_n \rangle \text{ is the "Berry connection" (analogue of vector potential)}.$ Here \vec{A}_n is a vector in parameter space, $(\vec{A}_n)_i \equiv -i \langle \psi_n | \frac{\partial}{\partial R_i} \psi_n \rangle$.
 - Gauge transformation: redefine $\tilde{\psi}_{n,\vec{R}} = e^{i\theta(\vec{R})} \psi_{n,\vec{R}}$, then $\vec{\tilde{A}}_n = \vec{A}_n + \nabla_{\vec{R}} \theta$, $\tilde{\gamma}_n = \gamma_n + [\theta(\vec{R}(T)) \theta(\vec{R}(0))]$.
 - For periodic evolution, $\vec{R}(T) = \vec{R}(0)$, the Berry's phase, $\gamma_n = \oint \vec{A}_n \cdot d\vec{R}$, is well-defined modulo integer multiple of 2π . It only depends on the path in parameter space, independent of speed of evolution (is a "geometric phase").
 - By Stokes theorem, $\oint_{\text{closed path}} \vec{A}_n \cdot d\vec{R} = \iint_{\text{area enclosed}} \vec{B}_n \cdot d\vec{a}$, here $\vec{B}_n \equiv \nabla_{\vec{R}} \times \vec{A}_n$ is the "Berry curvature" (analogue of magnetic field, gauge invariant), $d\vec{a}$ is area element for the surface enclosed by $\vec{R}(t)$.
 - The "cross product" of two vectors is a rank-2 antisymmetric tensor, $(\vec{A} \times \vec{A'})_{i,j} \equiv A_i A'_j A_j A'_i = -(\vec{A} \times \vec{A'})_{j,i}$. So $(\vec{B_n})_{i,j} \equiv \frac{\partial}{\partial R_i} (\vec{A_n})_j \frac{\partial}{\partial R_j} (\vec{A_n})_i$. In 3D space, $\vec{B_n}$ is dual to a vector, $\frac{1}{2} \epsilon_{ijk} (\vec{B_n})_{i,j}$.

- Area element $d\vec{a}$ is also a rank-2 antisymmetric tensor, if the surface is defined by real parameters u, v as $\vec{R}(u, v)$, then $(d\vec{a})_{i,j} = (\frac{\partial R_i}{\partial u} \frac{\partial R_j}{\partial v} - \frac{\partial R_j}{\partial u} \frac{\partial R_i}{\partial v}) du dv$. The surface integral's integrand is $\vec{B}_n \cdot d\vec{a} \equiv \frac{1}{2} \sum_{i,j} (\vec{B}_n)_{i,j} (d\vec{a})_{i,j}$.
- $$\begin{split} &-\vec{B}_n = -\mathrm{i} [\langle \nabla_{\vec{R}} \psi_n |] \times [|\nabla_{\vec{R}} \psi_n \rangle] = -\mathrm{i} \sum_m \langle \nabla_{\vec{R}} \psi_n | \psi_m \rangle \times \langle \psi_m | \nabla_{\vec{R}} \psi_n \rangle, \\ &\mathrm{namely,} \ (\vec{B}_n)_{i,j} = -\mathrm{i} (\langle \frac{\partial}{\partial R_i} \psi_n | \frac{\partial}{\partial R_j} \psi_n \rangle \langle \frac{\partial}{\partial R_j} \psi_n | \frac{\partial}{\partial R_i} \psi_n \rangle) \\ &= -\mathrm{i} \sum_m (\langle \frac{\partial}{\partial R_i} \psi_n | \psi_m \rangle \langle \psi_m | \frac{\partial}{\partial R_j} \psi_n \rangle \langle \frac{\partial}{\partial R_j} \psi_n | \psi_m \rangle \langle \psi_m | \frac{\partial}{\partial R_i} \psi_n \rangle), \\ &\mathrm{note the} \ m = n \ \mathrm{term does not contribute, because} \ \langle \psi_n | \nabla_{\vec{R}} \psi_n \rangle = -\langle \nabla_{\vec{R}} \psi_n | \psi_n \rangle, \\ &\mathrm{so the "cross product" vanishes; for} \ m \neq n, \ \langle \psi_m | \nabla_{\vec{R}} \psi_n \rangle = \frac{\langle \psi_m | \nabla_{\vec{R}} \hat{H} | \psi_n \rangle}{E_n E_m}, \ \mathrm{similar to} \\ &\langle \psi_{m,t} | \frac{\partial}{\partial t} \psi_{n,t} \rangle. \ \mathrm{Then} \ \vec{B}_n = -\mathrm{i} \sum_{m,m \neq n} \frac{\langle \psi_n | \nabla_{\vec{R}} \hat{H} | \psi_m \rangle \times \langle \psi_m | \nabla_{\vec{R}} \hat{H} | \psi_n \rangle}{(E_m E_n)^2} \end{split}$$
- Sum of Berry curvatures for all eigenstates vanishes, $\sum_{n} \vec{B}_{n} = 0$.
- Example: spin-1/2, parameter \vec{R} is unit 3D vector $(|\vec{R}| = 1)$, $\hat{H}(\vec{R}) = \vec{R} \cdot \frac{2}{\hbar} \hat{S}$.
 - Under $|\hat{S}_z = \pm \frac{\hbar}{2}\rangle$ eigenbasis $(|\uparrow\rangle, |\downarrow\rangle)$, $\hat{H} = \vec{R} \cdot \boldsymbol{\sigma} = R_x \sigma_x + R_y \sigma_y + R_z \sigma_z$, here $\sigma_{x,y,z}$ are Pauli matrices. Then $\hat{H}^2 = \vec{R}^2 \cdot \mathbb{1}_{2\times 2} = \mathbb{1}_{2\times 2}$, eigenvalues are $E_{\pm} = \pm 1$.
 - If $\vec{R} = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$, then (up to complex phase factors), $|\psi_{+}(\vec{R})\rangle = \cos \frac{\theta}{2}|\uparrow\rangle + \sin \frac{\theta}{2}e^{i\varphi}|\downarrow\rangle, \ |\psi_{-}(\vec{R})\rangle = -\sin \frac{\theta}{2}|\uparrow\rangle + \cos \frac{\theta}{2}e^{i\varphi}|\downarrow\rangle.$ $\langle\psi_{+}|\boldsymbol{\sigma}|\psi_{+}\rangle = \vec{R}, \ \langle\psi_{-}|\boldsymbol{\sigma}|\psi_{-}\rangle = -\vec{R}.$ Also note that $\nabla_{\vec{R}}\hat{H} = \boldsymbol{\sigma}.$
 - Any spin-1/2 state $\psi_{\uparrow}|\uparrow\rangle + \psi_{\downarrow}|\downarrow\rangle$ is a $|\psi_{+}(\vec{R})\rangle$ state upto a complex phase factor. All inequivalent spin-1/2 states are faithfully parametrized by \vec{R} .
 - For the E_+ level, the Berry curvature $\vec{B}_+ = -i\frac{\langle \psi_+ | \boldsymbol{\sigma} | \psi_- \rangle \times \langle \psi_- | \boldsymbol{\sigma} | \psi_+ \rangle}{(E_+ E_-)^2}$ = $-\frac{i}{4}[\langle \psi_+ | \boldsymbol{\sigma} \times \boldsymbol{\sigma} | \psi_+ \rangle - \langle \psi_+ | \boldsymbol{\sigma} | \psi_+ \rangle \times \langle \psi_+ | \boldsymbol{\sigma} | \psi_+ \rangle] = \frac{1}{4} \langle \psi_+ | 2\boldsymbol{\sigma} | \psi_+ \rangle = \frac{1}{2}\vec{R}$.
 - For a closed path in the parameter space of \vec{R} (unit sphere S^2 , also called "Bloch sphere"), the Berry's phase = $(\frac{1}{2}$ of the surface area enclosed on the sphere).
 - $-\iint_{\text{Bloch sphere}} \vec{B}_+ \cdot d\vec{a} = 2\pi \neq 0$. There is a "magnetic monopole" in the center! So you CANNOT define a smooth single-valued \vec{A}_+ over entire sphere.
 - You can define \vec{A}_+ on the sphere excluding one point, e.g. the above $|\psi_+(\vec{R})\rangle$ produces $\vec{A}_+ = -\frac{1-\cos\theta}{2\sin\theta}\vec{e}_{\varphi}$, where \vec{e}_{φ} is the unit vector along φ -direction, which is well-defined except at the "south pole" $\theta = \pi$.
- (§10.2.3) Aharonov-Bohm effect: for a closed path in real space, enclosing magnetic flux $\Phi = \oint A(\mathbf{R}) \cdot d\mathbf{R}$, from a static magnetic field, adiabatically transporting a "local"

electron wavefunction (e.g. a bound state in a small potential well moving with \mathbf{R}) will generate Berry's phase $\frac{q\Phi}{\hbar}$, here q is the electric charge.

- Consider $\hat{H} = \frac{[\hat{p} q\mathbf{A}(\mathbf{r})]^2}{2m} + V(\mathbf{r})$, $i\frac{\partial}{\partial t}\psi = \hat{H}\psi$, in a region with $\mathbf{B} = \nabla \times \mathbf{A} = 0$. Define $\psi'(\mathbf{r}) = e^{-i\int_{\mathbf{r}_0}^{\mathbf{r}} \frac{q}{\hbar}\mathbf{A}(\mathbf{r}')\cdot d\mathbf{r}'} \cdot \psi(\mathbf{r})$. Here the integral is from a fixed point \mathbf{r}_0 to \mathbf{r} through a smooth path in the region. Then $i\frac{\partial}{\partial t}\psi' = [\frac{\hat{p}^2}{2m} + V(\mathbf{r})]\psi'$. By semi-classical (WKB-like) approximation, ψ for particle traveling along this path acquires total phase, $\int_{\mathbf{r}_0}^{\mathbf{r}} \frac{1}{\hbar}\mathbf{p} \cdot d\mathbf{r} + \int_{\mathbf{r}_0}^{\mathbf{r}} \frac{q}{\hbar}\mathbf{A} \cdot d\mathbf{r}$, (kinetic phase) + ("A-B phase").
- If the region is "not simply connected" (has a hole, and magnetic fulx Φ through the hole, $\oint_{\text{hole}} \mathbf{A} \cdot d\mathbf{r} = \Phi$). The "A-B phase" depends on path from \mathbf{r}_0 to \mathbf{r} , different paths around the hole produce interference pattern depending on Φ .
- Bohr-Sommerfeld quantization condition is, $\oint \boldsymbol{p} \cdot d\boldsymbol{r} + \oint q\boldsymbol{A} \cdot d\boldsymbol{r} = (n + \frac{1}{2})h$. For cyclotron motion, suppose the cyclotron orbit radius is r, angular frequency $\omega = qB/m$ (solved by $q \cdot r\omega \cdot B = m \cdot r\omega^2$), then $(mr\omega \cdot 2\pi r - q\pi r^2B) = (n + \frac{1}{2})h$. This produces the exact Landau level energy, $E_n = \frac{m(r\omega)^2}{2} = \hbar\omega(n + \frac{1}{2})$.
- Magnetic flux changes "momentum" quantization [Textbook Eq. (10.74)]: use cylindrical coordinates (r, θ, z) ; magnetic flux Φ along r = 0 line, $\mathbf{A} = \frac{\Phi}{2\pi r} \mathbf{e}_{\theta}$; particle is on a ring (r = R, z = 0), $\hat{H} = \frac{\hat{P}_{\theta}^2}{2m}$, $\hat{P}_{\theta} = -\mathrm{i}\hbar \frac{1}{r}\partial_{\theta} \frac{q\Phi}{2\pi r}$. Wavefunction ψ must be periodic w.r.t. θ mod 2π . "Momentum" eigenvalues are $\hat{P}_{\theta} = \frac{2\pi\hbar n q\Phi}{2\pi R}$, for integer n. Quantized energy levels depend on Φ . Adiabatically change Φ by $\Phi_0 \equiv \frac{2\pi\hbar}{q}$ (magnetic flux quantum) will shift the energy levels by one step in n.
- Dirac quantization condition for magnetic monopole: a real magnetic monopole with magnetic charge q_m at $\vec{r}=0$ will produce magnetic field $\vec{B}=\frac{\mu_0}{4\pi}\frac{q_m}{r^2}\frac{\vec{r}}{r}$ at \vec{r} . The magnetic flux through a sphere enclosing the monopole is $\Phi=\iint \vec{B}\cdot d\vec{a}=\mu_0q_m$. Consider a electric charge q_e moving around the monopole, e.g. along the equator, the A-B phase obtained can be computed by the magnetic flux either through the upper hemisphere or the lower hemisphere, $\frac{q_e\Phi_{\text{upper hemisphere}}}{\hbar}=\frac{\mu_0q_mq_e}{2\hbar}$ or $-\frac{q_e\Phi_{\text{lower hemisphere}}}{\hbar}=-\frac{\mu_0q_mq_e}{2\hbar}$. Therefore $q_mq_e=\frac{2\pi n\hbar}{\mu_0}$, for some integer n.
 - * If there is one magnetic monopole q_m somewhere in the universe, then all electric charges must be quantized!

X. SCATTERING (\sim CH.11)

- Hamiltonian is free particle kinetic energy plus a (short-ranged) scattering potential $V(\mathbf{r})$, we will consider only 3D non-relativistic particle here. $\hat{H} = \frac{\hat{\mathbf{p}}^2}{2m} + V(\mathbf{r})$.
 - We will only consider *elastic scattering* here. Scattering potential is time-independent. Particle's energy is conserved.
- Scattering can be viewed as (degenerate) time-independent perturbation problem: The eigenstate for energy $E = \frac{\hbar^2 k^2}{2m}$ is incoming plane wave e^{ikz} (assumed to be along +z direction), plus outgoing scattered waves, $\psi(r,\theta,\phi) = e^{ikz} + f(\theta,\phi) \frac{e^{ikr}}{r}$.
 - Current density of incoming plane wave is $\frac{\hbar k}{m}$. Scattered particle current through a solid angle element $d\Omega$ is $\frac{\hbar k}{m} |f(\theta,\phi)|^2 d\Omega$. The ratio is the . . .
 - Differential cross section: $\frac{d\sigma}{d\Omega} = |f(\theta,\phi)|^2$. (See Textbook Figure 11.3)
 - Scattering cross section: $\sigma \equiv \int \frac{d\sigma}{d\Omega} d\Omega$. Total scattered particle current divided by incoming current density. Note: both $\frac{d\sigma}{d\Omega}$ and σ have units of "area".
- Scattering can also be viewed as time-dependent perturbation problem: Initial $(t \to -\infty)$ state is plane wave (broad wave packet) e^{ikz} ; slowly turn on/off the scattering potential, $e^{-\epsilon|t|}V(\mathbf{r})$, $(\epsilon \to 0+)$; final $(t \to +\infty)$ state contains outgoing scattered waves and "forward scattering" (remnant of incoming wave).
- General solution: stationary Schrödinger equation becomes, $(\nabla^2 + k^2)\psi = \frac{2mV(r)}{\hbar^2}\psi$.
 - Define the Green's function: $G(\mathbf{r}, \mathbf{r}')$ satisfies, $(\nabla_{\mathbf{r}}^2 + k^2)G(\mathbf{r}, \mathbf{r}') = -4\pi\delta(\mathbf{r} \mathbf{r}')$. Note: $G(\mathbf{r}, \mathbf{r}')$ as a function of \mathbf{r} is a spherical wave emitted from \mathbf{r}' .
 - $-G(\boldsymbol{r},\boldsymbol{r}')=G(\boldsymbol{r}-\boldsymbol{r}')$. Fourier transform $G(\boldsymbol{r}),\,g(\boldsymbol{k}')\equiv\frac{1}{(2\pi)^3}\int G(\boldsymbol{r})e^{-\mathrm{i}\boldsymbol{k}'\cdot\boldsymbol{r}}\mathrm{d}\boldsymbol{r}$, then $g(\boldsymbol{k}')=\frac{4\pi}{(2\pi)^3}\frac{1}{k'^2-k^2}$. But we need to avoid the poles at k'=k.
 - Green's function: $G_{+}(\boldsymbol{r}) = \frac{4\pi}{(2\pi)^3} \int \frac{1}{k'^2 (k^2 + \mathrm{i}\epsilon)} e^{\mathrm{i}\boldsymbol{k'}\cdot\boldsymbol{r}} \mathrm{d}\boldsymbol{k'} \ (\epsilon \to 0+)$ $= \frac{1}{2\pi^2} \int_0^\infty (k')^2 \mathrm{d}k' \int_{-1}^1 \mathrm{d}(\cos\theta) \int_0^{2\pi} \mathrm{d}\phi \, \frac{e^{\mathrm{i}k'r\cos\theta}}{k'^2 (k^2 + \mathrm{i}\epsilon)} = \frac{1}{\mathrm{i}\pi r} \int_{-\infty}^\infty \frac{k'}{k'^2 (k^2 + \mathrm{i}\epsilon)} e^{\mathrm{i}k'r} \mathrm{d}k' = \frac{e^{\mathrm{i}kr}}{r}.$ This is an outgoing spherical wave.
 - Lippman-Schwinger equation: $\psi(\mathbf{r}) = \frac{e^{\mathrm{i}kz}}{(2\pi)^{3/2}} \frac{1}{4\pi} \int G_{+}(\mathbf{r}, \mathbf{r}') \frac{2mV(\mathbf{r}')}{\hbar^{2}} \psi(\mathbf{r}') d\mathbf{r}'.$ When $|\mathbf{r}| \gg |\mathbf{r}'|$, $|\mathbf{r} - \mathbf{r}'| \approx r - \frac{\mathbf{r}}{r} \cdot \mathbf{r}'$. Define outgoing wavevector $\mathbf{k}' = k \cdot \frac{\mathbf{r}}{r}$.

- $-\psi_{\mathbf{k}}(\mathbf{r}) = \frac{1}{(2\pi)^{3/2}} (e^{i\mathbf{k}\cdot\mathbf{r}} + \frac{e^{ikr}}{r} f(\mathbf{k}', \mathbf{k})). \text{ Here } \mathbf{k} (\mathbf{k}') \text{ is incoming(outgoing) wavevector.}$ The scattering amplitude $f(\mathbf{k}', \mathbf{k}) = -\frac{(2\pi)^{3/2}}{4\pi} \int e^{-i\mathbf{k}'\cdot\mathbf{r}'} \frac{2mV(\mathbf{r}')}{\hbar^2} \psi_{\mathbf{k}}(\mathbf{r}') d\mathbf{r}'.$
- (First-order) Born approximation:

$$f(\mathbf{k}',\mathbf{k}) \approx -\frac{(2\pi)^{3/2}}{4\pi} \int e^{-\mathrm{i}\mathbf{k}'\cdot\mathbf{r}'} \frac{2mV(\mathbf{r}')}{\hbar^2} \frac{e^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}}}{(2\pi)^{3/2}} \mathrm{d}\mathbf{r}' = -\frac{m}{2\pi\hbar^2} \int e^{-\mathrm{i}\mathbf{q}\cdot\mathbf{r}'} V(\mathbf{r}') \mathrm{d}\mathbf{r}'.$$
Here $\mathbf{q} = \mathbf{k}' - \mathbf{k}$ is the "momentum transfer". For central potential $V(r)$,
$$f(\mathbf{k}',\mathbf{k}) \approx f(q) = -\frac{2m}{\hbar^2} \int_0^\infty \frac{r\sin(qr)}{q} V(r) \mathrm{d}r, \text{ depends only on } q = |\mathbf{q}| = 2k \sin(\frac{\theta}{2}).$$

- Range of validity of Born approximation: need " $\frac{1}{r}f(\mathbf{k}',\mathbf{k})$ " to be small in the range of V. Consider a finite-range V(r), $|V(r)| \leq V_0$, and V(r > a) = 0. For small q, we need $\frac{2mV_0a^2}{\hbar^2} \ll 1$; for large q, we need $\frac{2mV_0}{\hbar^2q^2} \ll 1$.
- Example: Coulomb potential (Rutherford scattering, Textbook Example 11.6). $V(r) = -\frac{A}{r}$, then $f(q) = \frac{2mA}{\hbar^2q^2} = \frac{A}{4E\sin^2(\frac{\theta}{2})}$. The total cross section diverges.
- Partial wave analysis: for central scattering potential V(r), $\psi(r,\theta,\phi) = e^{ikr\cos\theta} + f(\theta)\frac{e^{ikr}}{r}$. Expand into Legendre polynomials $P_{\ell}(\cos\theta)$.
 - $-e^{ikr\cos\theta} = \sum_{\ell=0}^{\infty} (2\ell+1)i^{\ell} j_{\ell}(kr) P_{\ell}(\cos\theta) \sim \sum_{\ell=0}^{\infty} (2\ell+1) \frac{e^{ikr} (-1)^{\ell} e^{-ikr}}{2ikr} P_{\ell}(\cos\theta),$ for large r, contains both outgoing and incoming spherical waves.
 - Expand $f(\theta)$, $f(\theta) = \sum_{\ell=0}^{\infty} (2\ell+1) f_{\ell} P_{\ell}(\cos \theta)$, f_{ℓ} are complex numbers. Total cross section $\sigma = 2\pi \int_0^{\pi} |f(\theta)|^2 \sin \theta d\theta = \sum_{\ell=0}^{\infty} 4\pi (2\ell+1) |f_{\ell}|^2$. For large $r, \psi \sim \sum_{\ell=0}^{\infty} (2\ell+1) \frac{(1+2ikf_{\ell})e^{ikr} - (-1)^{\ell}e^{-ikr}}{2ikr} P_{\ell}(\cos \theta)$.
 - $-1+2ikf_{\ell}=e^{2i\delta_{\ell}}$, for conservation of probability current in each channel. Here δ_{ℓ} is the "phase shift" in angular momentum ℓ channel. Then $f_{\ell}=\frac{1}{k}e^{i\delta_{\ell}}\sin\delta_{\ell}$.
 - Total cross section $\sigma = \sum_{\ell=0}^{\infty} \sigma_{\ell}$. σ_{ℓ} is cross section in angular momentum ℓ channel, $\sigma_{\ell} = 4\pi (2\ell+1)|f_{\ell}|^2 = \frac{4\pi}{k^2} (2\ell+1) \sin^2 \delta_{\ell} \leq \frac{4\pi}{k^2} (2\ell+1)$.
 - To compute δ_{ℓ} , solve radial equation $\left[-\frac{1}{r}\frac{\mathrm{d}^2}{\mathrm{d}r^2}r + \frac{\ell(\ell+1)}{r^2} + \frac{2mV(r)}{\hbar^2}\right]R(r) = k^2R(r)$, then $R(r) \sim j_{\ell}(kr)\cos\delta_{\ell} n_{\ell}(kr)\sin\delta_{\ell} \sim \frac{\sin(kr+\delta_{\ell}-\frac{\ell\pi}{2})}{kr}$, for large r.
- Optical theorem: $\frac{4\pi}{k} \text{Im}[f(\theta \to 0)] = \sigma$. (See *e.g.* Sakurai's "Modern Quantum Mechanics" Section 7.3). Forward scattering amplitude is related to total cross section.
 - In partial wave expansion, $\sigma_{\ell} = \frac{4\pi}{k}(2\ell+1)\mathrm{Im}(f_{\ell})$, using $P_{\ell}(1) = 1$.