

Important to distinguish Band & Channel:

Band = entire spectrum occupied by allowers of a particular standard e-g. 935-960MHz in GSM

Channel = signal BW of one neer e-g. 200/cHz in GSM

SBOWHE 1075WF 1610WHZ TO SUSKER 1610WHZ TO SUSKER 2 IGNORING 1610WHZ TO SUSKER 1610W

Low-ride vs. high-tide injection:
AM: fd. = 5301CHZ - 1610KHZ
IF = 455 kHz
High-side injection:
flo-fr==f2F
⇒ f _{LO} = 985 kHz to 2065 kHz
>> 1525 KH 2 ± 540 KHz
tuning range = ± 35.4% <- much
tuning range = ± 35.4% <- much better Low-side injection: (in this case)
frf-fuo = fdf
flo = 75kHz to 1155kHz
= 615KHZ I 540KHz tuming range = = \$7.8%
tumy raye = = = 87.8%
Harrison and more and Craylo RE about 2

How do you represent such RF nignals?

Bandpass signal representation:

Delar: x(t) = a(t) cos (2TT fet + P(t))

Am component

Am component

Am component

Am component

Am and modulators wing PLLS

* rignals are usually narrowboard (e.g. GSM)

2) Cartesian: $x(t) = \chi_{I}(t) \cos(2\pi f_{e}t) - \chi_{Q}(t) \sin(2\pi f_{e}t)$ $a(t) = \sqrt{n_L^2(t) + n_R^2(t)}$ and $\phi(t) = +n_1 \frac{\chi_R(t)}{\chi_L(t)}$ * used in "image reject" receivers 3) Complex : x(t) = complex envelope (i.e. low pars $\tilde{\chi}(t) = \chi_{I}(t) + j \chi_{Q}(t)$ complex bignal) Eulers identity: ejzufet = uszufet + jein zufet x(t) = Re (x (t) · e ttfet 7 = 20(t) coszerfit - 20(t) sin 200 fet * similar to phasor representation * Used in tranceivers having a min of low-pass and bandpass signals

General Tx

Recall: $C(t) = \omega S(2\pi f_c t) \Rightarrow C(f) = \frac{S(f-f_c) + S(f+f_c)}{2}$

Desired nignal m(t) = low pass signal of name w

BW B << fc

$$M(f) \rightarrow \frac{M(f)}{2}$$

For a carterian righd, $r(t) = \chi_{I}(t) \cos 2\pi f_{c}t - \chi_{Q}(t) \sin 2\pi f_{c}t$ $r(t) \cdot \cos 2\pi f_{c}t = \chi_{I}(t) \cos^{2} 2\pi f_{c}t - \chi_{Q} \sin 2\pi f_{c}t \cos 2\pi f_{c}t$ $= \frac{1}{2} \chi_{I}(t) + \frac{1}{2} \chi_{I}(t) \cos (2 \cdot 2\pi f_{c}t)$ $+ \frac{1}{2} \chi_{Q}(t) \sin (2 \cdot 2\pi f_{c}t)$ $r(t) \sin 2\pi f_{c}t = -\frac{1}{2} \chi_{Q}(t) + \frac{1}{2} \chi_{I}(t) \sin (2 \cdot 2\pi f_{c}t)$ $+ \frac{1}{2} \chi_{Q}(t) \cos (2 \cdot 2\pi f_{c}t)$