Дано:
$$G:=100 \frac{\text{K}\Gamma}{c}$$
 $P6:=10^5$ Па

$$\alpha 1 := 40^{*}$$
 $k := 1.4$

$$\alpha 2 := 12$$
 *

$$P*1 := 11.1 \cdot 10^5$$
 Па

$$T*1 := 900 K$$

$$R := 287 \frac{\text{Дж}}{\text{кг} \cdot \text{K}}$$

Гидродинамические функции:

$$\tau(\lambda) := 1 - \frac{k-1}{k+1} \cdot \lambda^2$$

$$\Pi(\lambda) := \left(1 - \frac{k-1}{k+1} \cdot \lambda^2\right)^{\frac{k-1}{k-1}}$$

$$\tau(\lambda) := 1 - \frac{k-1}{k+1} \cdot \lambda^2 \qquad \Pi(\lambda) := \left(1 - \frac{k-1}{k+1} \cdot \lambda^2\right)^{\frac{k}{k-1}} \qquad \underbrace{\xi(\lambda)} := \left(1 - \frac{k-1}{k+1} \cdot \lambda^2\right)^{\frac{1}{k-1}}$$

$$q(\lambda) := \left(\frac{k+1}{2}\right)^{\frac{1}{k-1}} \cdot \lambda \cdot \left(1 - \frac{k-1}{k+1} \cdot \lambda^2\right)^{\frac{1}{k-1}}$$

В сечении 3: $\lambda 3 := 1$

Начальное приближение: S3 := 1

$$G = 0.0404 \cdot \frac{P*1}{\sqrt{T*1}} \cdot q(\lambda 3) \cdot S3$$

S3:= Find(S3) = 0.0669 -находим из уравнения выше S3

$$d_kp := d3 = 0.29185 M$$

L
$$dz := d kp = 0.29185 M$$

 $L \ dz := d \ kp = 0.29185 \ M$ длинна дозвуквой части сопла

$$d1:=d3+2L_dz\cdot tanigg(rac{lpha 1}{2}\cdotrac{\pi}{180}igg)=0.5043$$
 м диаметр первого сечения

*п/180 для перевода из градусов в радианы

сверхзвук: для сечения №6:

Начальное приближение: $\lambda 6 := 1$

Given

$$\frac{P6}{P*1} = \left[1 - \frac{k-1}{k+1} \cdot (\lambda 6)^2\right]^{\frac{k}{k-1}}$$

$$\lambda 6 := \text{Find}(\lambda 6) = 1.72731$$

По полученной $\lambda 6$ расчитали:

тид

$$\tau(\lambda 6) = 0.50273$$

$$q(\lambda 6) = 0.48828$$

из уравнения расхода определим площадь сечеия(из которой определим диаметр)

Начальное приближение: S6 := 1 Given

$$G = 0.0404 \cdot \frac{P*1}{\sqrt{T*1}} \cdot q(\lambda 6) \cdot S6$$

$$S6:= Find(S6) = 0.1370 \text{ m}^2$$

$$d6 := \sqrt{4 \cdot \frac{S6}{\pi}} = 0.41767 \,\text{m}$$

L_szv :=
$$\frac{d6 - d3}{2 \tan\left(\frac{\alpha 2}{2} \cdot \frac{\pi}{180}\right)} = 0.59853M$$

Длинна сверхзвуковой части сопла

$$a_kp := \sqrt{\frac{2k}{k+1}} \cdot R \cdot T^* 1 = 548.95355$$
 скорость звука в критическом сечении

$$\lambda 1 := 1$$

Найдем необходимые данные во всех сечениях:

Given

$$\lambda 1 < 1$$

$$G = 0.0404 \cdot \frac{P*1}{\sqrt{T*1}} \cdot q(\lambda 1) \cdot \frac{\pi \cdot d1^2}{4}$$

$$\lambda_{1}^{1} := \operatorname{Find}(\lambda 1) = 0.21652$$

$$T1 := T*1 = 900 \text{ K}$$

$$P1 := P*1 = 1.11 \times 10^6$$
 Πa

$$a1 := \sqrt{k \cdot R \cdot T1} = 601.34848$$
 M/C

$$\lambda 1 = 0.21652$$

$$v1 := \lambda 1 \cdot a \ k\mathfrak{p} = 118.8619 \quad \text{M/c}$$

$$M1 := \frac{v1}{a1} = 0.19766$$

для сечения 2:

$$d2 := \frac{d1 + d3}{2} = 0.39808M$$
 $S2 := \frac{\pi \cdot d2^2}{4} = 0.1244 \text{ m}^2$

Начальное приближение: $\lambda 2 := 1$

Given

$$\lambda 2 < 1$$
 (<1 Так как поток дозвуковой)

$$G = 0.0404 \cdot \frac{P*1}{\sqrt{T*1}} \cdot q(\lambda 2) \cdot S2$$

$$\lambda_{2}^{2} := \text{Find}(\lambda_{2}) = 0.35985$$

$$T2 := T*1 \cdot \tau(\lambda 2) = 880.5757 \cdot K$$

$$P2 := P*1 \cdot \Pi(\lambda 2) = 1.02839 \times 10^{\epsilon} \Pi a$$

$$v2 := \lambda 2 \cdot a \text{ kp} = 197.54323 \text{ M/c}$$

$$a2 := \sqrt{k \cdot R \cdot T2} = 594.82378 \,\text{M/c}$$

$$\lambda 2 = 0.35985$$

$$M2 := \frac{v2}{a^2} = 0.3321$$

Сечение 3:

$$P3 := P*1 \cdot \Pi(\lambda 3) = 5.86393 \times 10^5 \Pi a$$

$$T3 := T*1 \cdot \tau(\lambda 3) = 750 \text{ K}$$

$$v3 := \lambda 3 \cdot a_k p = 548.95355 \text{ M/c}$$

$$a3 := \sqrt{k \cdot R \cdot T3} = 548.95355 \,\text{M/c}$$

$$\lambda 3 = 1$$

$$M3 := \frac{v3}{a3} = 1$$

Сечение 4:

$$d4 := 2 \tan \left(\frac{\alpha 2}{2} \cdot \frac{\pi}{180}\right) \cdot \frac{L_szv}{3} + d3 = 0.33379 \text{ m}$$

$$S4 := \frac{\pi \cdot d4^2}{4} = 0.0875 \text{ m}^2$$

Начальное приближение: $\lambda 4 := 1$

Given

$$G = 0.0404 \cdot \frac{P*1}{\sqrt{T*1}} \cdot q(\lambda 4) \cdot S4$$

$$\lambda 4 := \text{Find}(\lambda 4) = 1.46453$$

$$T4 := T*1 \cdot \tau(\lambda 4) = 578.273 \cdot K$$

$$P4 := P*1 \cdot \Pi(\lambda 4) = 2.36015 \times 10^5 \Pi a$$

$$v4 := \lambda 4 \cdot a \text{ kp} = 803.95814 \text{ M/c}$$

$$a4 := \sqrt{k \cdot R \cdot T4} = 482.02724$$
 M/c

$$\lambda 4 = 1.46453$$

$$M4 := \frac{v4}{a^4} = 1.66787$$

Сечение 5:

$$d5 := 2 \tan \left(\frac{\alpha 2}{2} \cdot \frac{\pi}{180}\right) \cdot \frac{L_{szv \cdot 2}}{3} + d3 = 0.37573 \text{ M}$$

$$S5 := \frac{\pi \cdot d5^2}{4} = 0.1108 \text{ M}^2$$

$$S5 := \frac{\pi \cdot d5^2}{4} = 0.1108 \,\mathrm{m}^2$$

 $\lambda 5 := 1$ начальное приближение

Given

G = 0.0404
$$\cdot \frac{P*1}{\sqrt{T*1}} \cdot q(\lambda 5) \cdot S5$$

$$\lambda 5 := \text{Find}(\lambda 5) = 1.62308$$

$$T5 := T*1 \cdot \tau(\lambda 5) = 504.8427$$
 K

T5 :=
$$T*1 \cdot \tau(\lambda 5) = 504.8427$$
 K P5 := $P*1 \cdot \Pi(\lambda 5) = 1.46731 \times 10^5$ Πa

$$v5 := \lambda 5 \cdot a_k p = 890.9943 \text{ M/c}$$

$$a5 := \sqrt{k \cdot R \cdot T5} = 450.38409 \text{ M/c}$$

$$\lambda 5 = 1.62308$$

$$M5 := \frac{v5}{a5} = 1.9783$$

Сечение 6:

P6:=
$$P*1·Π(λ6) = 1 × 10^5$$
 Πα

$$T6 := T*1 \cdot \tau(\lambda 6) = 452.45855$$
 K

$$v6 := \lambda 6 \cdot a \text{ kp} = 948.21452$$
 M/c

$$a6 := \sqrt{k \cdot R \cdot T6} = 426.37759$$
 M/c

$$\lambda 6 = 1.72731$$

$$M6 := \frac{v6}{a6} = 2.22388$$

Составим матрицы полученных значений

$$P_{-} := \begin{pmatrix} P1 \\ P2 \\ P3 \\ P4 \\ P5 \\ P6 \end{pmatrix} \quad T_{-} := \begin{pmatrix} T1 \\ T2 \\ T3 \\ T4 \\ T5 \\ T6 \end{pmatrix} \qquad v_{-} := \begin{pmatrix} v1 \\ v2 \\ v3 \\ v4 \\ v5 \\ v6 \end{pmatrix} \qquad a_{-} := \begin{pmatrix} a1 \\ a2 \\ a3 \\ a4 \\ a5 \\ a6 \end{pmatrix} \quad \lambda_{-} := \begin{pmatrix} \lambda1 \\ \lambda2 \\ \lambda3 \\ \lambda4 \\ \lambda5 \\ \lambda6 \end{pmatrix} \qquad M_{-} := \begin{pmatrix} \lambda1 \\ \lambda2 \\ \lambda3 \\ \lambda4 \\ \lambda5 \\ \lambda6 \end{pmatrix}$$

$$\mathbf{v}_{-} \coloneqq \begin{pmatrix} \mathbf{v}1 \\ \mathbf{v}2 \\ \mathbf{v}3 \\ \mathbf{v}4 \\ \mathbf{v}5 \\ \mathbf{v}6 \end{pmatrix}$$

$$a_{-} := \begin{pmatrix} a1 \\ a2 \\ a3 \\ a4 \\ a5 \\ a6 \end{pmatrix}$$

$$\lambda_{-} := \begin{pmatrix} \lambda 1 \\ \lambda 2 \\ \lambda 3 \\ \lambda 4 \\ \lambda 5 \\ \lambda 6 \end{pmatrix}$$

$$M_{-} := \begin{pmatrix} M1 \\ M2 \\ M3 \\ M4 \\ M5 \\ M6 \end{pmatrix}$$

$L := \begin{bmatrix} \frac{L_{dz}}{2} \\ L_{dz} \\ \frac{L_{dz}}{2} \\ \\ L_{dz} + \frac{L_{szv}}{3} \\ \\ L_{dz} + \frac{L_{szv \cdot 2}}{3} \end{bmatrix} \qquad \text{Расстояния от начала до сечений}$

результаты измерений занесем в матрицу

$$result := \begin{pmatrix} P1 & T1 & v1 & a1 & \lambda1 & M1 \\ P2 & T2 & v2 & a2 & \lambda2 & M2 \\ P3 & T3 & v3 & a3 & \lambda3 & M3 \\ P4 & T4 & v4 & a4 & \lambda4 & M4 \\ P5 & T5 & v5 & a5 & \lambda5 & M5 \\ P6 & T6 & v6 & a6 & \lambda6 & M6 \end{pmatrix}$$

Проинтерполируем:

$$P(x) := interp(lspline(L, P), L, P, x)$$

$$T(x) := interp(lspline(L, T_), L, T_x)$$

$$v(x) := interp(lspline(L, v), L, v, x)$$

изменения х: от 0 до L dz+L szv x := 0, 0.01..L dz + L szv

$$a(x) := interp(lspline(L, a), L, a, x)$$

$$\lambda(x) := interp(lspline(L, \lambda), L, \lambda, x)$$

$$M(x) := interp(lspline(L, M), L, M, x)$$

диапазон изменения координаты x1 от 0 до L_dz+0.02

 $x1 := 0, 0.01..L_dz + 0.02$

увеличенные графиких и М в дозвуке:

сечение	Р,Па	T,K	v,m/c	а,м/с	λ	M
I	1.11*10^6	900.000	118.862	601.348	0.217	0.198
II	1.028*10^6	880.576	197.543	594.824	0.360	0.332
III	5.863*10^5	750.000	548.954	548.954	1.000	1.000
IV	2.360*10^5	578.273	803.958	482.027	1.465	1.668
V	1.467*10^5	504.843	890.994	450.384	1.623	1.978
VI	1*10^5	452.459	948.215	426.378	1.727	2.224

Задача 2:

Основные формулы:

$$S_{ck} = S_{nck}$$
 $P_{nck}^* = P^*1 \cdot \frac{q(\lambda ck)}{q(\frac{1}{\lambda ck})}$
 $\lambda_{nck} = \frac{1}{\lambda ck}$

давление на выходе для второй задачи:

$$P6_2 := \frac{P*1}{2} + 2 \cdot 10^5 = 7.55 \times 10^5$$

Предположим, что скачек произошел в каком-то сечении. Определим Рпск* в сечениях II III IV V VI:

$$i := 2,3..5$$

$$P\pi c \kappa^*_i := P^* 1 \cdot \frac{q(\lambda_{-i})}{q(\frac{1}{\lambda_{-i}})}$$

$$\lambda_{-} = \begin{pmatrix} 0.21652 \\ 0.35985 \\ 1 \\ 1.46453 \\ 1.62308 \\ 1.72731 \end{pmatrix}$$

λ в каждом сечении:

Сечение	Рпск*,Па
III	1.11*10^6
IV	9.64432*10^5
V	8.11419*10^5
VI	6.85197*10^5

Из уравнения расхода найдем λ_6 (приведенную скорость в 6 сечении) для каждого Рпск*

G = 0.0404
$$\cdot \frac{P\pi c\kappa^*}{\sqrt{T^*1}} \cdot q(\lambda_6) \cdot S6$$

Сечение	λ_6
III	0.32345
IV	0.37844
V	0.46393
VI	0.57893

$$\lambda_{-6} := \begin{pmatrix} 0.32345 \\ 0.37844 \\ 0.46393 \\ 0.57893 \end{pmatrix}$$

Найдем давления Р6 в 6 сечении для каждого случая(скачка в каждом сечении):

$$P6_{-i} := P\pi c\kappa^*_i \cdot \Pi(\lambda_6_{i-2})$$

$$P6_{-i} = \Pi a$$

i	
Ш	1.04372·10 ⁶
IV	8.86236·10 ⁵
V	7.1403·10 ⁵
V	5.60329·10 ⁵

Т.к нам задано давление при выходе Р6_2:

$$P6_2 = 7.55 \times 10^5$$

Видно что скачек произойдет между 4 и 5 сечениями

Для повышения точности разобьем участок между 4 и 5 сечениями и по той же схеме проведем расчеты P6_ и λ_6 _ для этих участков.

Для этого определим диаметры сечений:

длинна сверхзуковой части сопла до сечений в которых будет вестись расчет

$$Ls := \frac{L_szv}{3}, \frac{L_szv}{3} + \frac{L_szv}{24} .. \frac{2}{3} \cdot L_szv$$

L_szv /3 -начало 4 сечения L_szv /24 -шаг (т.к 8 частей, а весь участок L_szv/3 то длинна одной части L_szv/24) (2/3)*L szv - 5 сечение

$$Ls = M$$

0.19951
0.22445
0.24939
0.27432
0.29926
0.3242
0.34914

0.37408

0.39902

 расстояние до каждого сечения между 4 и 5 сечением (от критического сечения) Функция зависимости диаметра сечения от расстояния до него

$$d_{Ls} := 2 \tan \left(\frac{\alpha 2}{2} \cdot \frac{\pi}{180} \right) \cdot Ls + d3$$

$$d_L(Ls) = M$$

0.333/9
0.33903
0.34428
0.34952
0.35476
0.36
0.36524
0.37049
0.37573

- диаметр каждого сечения между 4 и 5 сечением

*1 диаметр -диаметр 4 сечения последний - диаметр 5 сечения

Зависимость площади от Ls:

$$S_{-}(Ls) := \frac{\pi \cdot d_{-}(Ls)^2}{4}$$

Найдем λ_i в каждом сечении из уравнения расхода:

$$G = 0.0404 \cdot \frac{P*1}{\sqrt{T*1}} \cdot q(\lambda_{-}i) \cdot S_{-}(Ls)$$

$$\begin{array}{c} \left(\begin{array}{c} 1.46456 \\ 1.48936 \\ 1.51229 \\ 1.53372 \\ \end{array}\right) \\ \lambda_i := \begin{pmatrix} 1.55375 \\ 1.57256 \\ 1.59035 \\ 1.60711 \end{pmatrix}$$

приведенная скорость в каждом из сечений между 4 и 5 сечениями

3	(Ls)) =
,	(LS)	, –

_\ /
0.08751
0.09028
0.09309
0.09595
0.09885
0.10179
0.10478
0.1078
0.11088

Теперь, когда все необходимые параметры сечения нам известны рассчитаем давление на выходе (P6_) и λ_6 _ для каждой точки:

$$i := 0, 1...8$$

1.62309

$$\text{Ppck}_{i}^{*} \coloneqq P^{*}1 \cdot \frac{q\left(\lambda_{-i}^{i}\right)}{q\left(\frac{1}{\lambda_{-i}^{i}}\right)}$$

$$\begin{pmatrix}
9.64407 \times 10^{5} \\
9.44057 \times 10^{5} \\
9.24008 \times 10^{5} \\
9.0422 \times 10^{5} \\
8.84831 \times 10^{5} \\
8.65858 \times 10^{5} \\
8.47252 \times 10^{5} \\
8.29155 \times 10^{5} \\
8.11405 \times 10^{5}
\end{pmatrix}$$

Из уравнения расхода определим λ_6_(приведенную скорость на выходном сечении при расчете каждой точки)

$$G = 0.0404 \cdot \frac{\text{Рпск}^*}{\sqrt{\text{T*1}}} \cdot \text{q}(\lambda_6_-) \cdot \text{S6}$$

$$\begin{pmatrix} 0.37845 \\ 0.38779 \\ 0.3975 \\ 0.40762 \\ 0.4181 \\ 0.42895 \\ 0.44022 \\ 0.45184 \\ 0.46394 \end{pmatrix}$$

Найдем получившееся давление на выходе Р6 для каждой точки

i := 0, 1...8

$$P6_{\underline{}_{i}} := P\pi c\kappa^*_{i} \cdot \Pi(\lambda_{\underline{}}6_{-i})$$

$$P6_ = \begin{pmatrix} 8.86209 \times 10^{5} \\ 8.63804 \times 10^{5} \\ 8.41608 \times 10^{5} \\ 8.19572 \times 10^{5} \\ 7.97842 \times 10^{5} \\ 7.55278 \times 10^{5} \\ 7.34538 \times 10^{5} \\ 7.14014 \times 10^{5} \end{pmatrix}$$

Давление в 6 сечении для разных точек(случаев скачка)

 $P6f(x) := linterp(\lambda_i, P6_, x)$ -проинтерполируем точки и найдем значение λ ck

x := 1.46456, 1.46456 + 0.01...1.62309 -диапазон изменения λ_i (от $\lambda 4$ до $\lambda 5$ с шагом 0.01)

$$\lambda ck := 1$$

Given

$$P6f(\lambda ck) = P6_2$$

$$\lambda ck$$
 = Find(λck) = 1.59057 λ скачка

$$\lambda$$
пск := $\frac{1}{\lambda ck} = 0.6287$ λ после скачка

Найдем площадь сечения в котором произойдет скачек:

Sck := 1 начальное приближение

Given

По найденной аск определим давление торможения после скачка:

P*πcκ := P*1· $\frac{q(\lambda ck)}{q(\frac{1}{\lambda ck})}$ = 8.47013 × 10⁵

$$G = 0.0404 \cdot \frac{P*1}{\sqrt{T*1}} \cdot q(\lambda ck) \cdot Sck$$

Sck:= Find(Sck) =
$$0.10482 \text{ m}^2$$

$$Sck := Find(Sck) = 0.10482 \quad M^2$$

$$d_{ck} := \sqrt{4 \cdot \frac{Sck}{\pi}} = 0.36532$$
 м -диаметр сечения в котором произошел скачек.

Определим расстояние от критического сечения до сечения в котором произойдет скачек:

$$Xck := 1$$

Given

$$d_{ck} = 2 \tan \left(\frac{\alpha 2}{2} \cdot \frac{\pi}{180} \right) \cdot Xck + d3$$

$$Xck := Find(Xck) = 0.34951$$
 M

Определим необходимые параметры после скачка:

Pck := $P*1 \cdot \Pi(\lambda ck) = 1.63297 \times 10^5$ Πa Давление в сечении скачка

 $P_{\Pi C K} := P^*_{\Pi C K} \cdot \Pi(\lambda_{\Pi C K}) = 6.67272 \times 10^5 \, \Pi_a$ Давление в сечении скачка сразу после скачка

начальное приближение $\lambda 5$ пск := 1

Given

$$G = 0.0404 \cdot \frac{P*\pi c\kappa}{\sqrt{T*1}} \cdot q(\lambda 5_{\pi}c\kappa) \cdot S5$$
 $\lambda 5_{\pi}c\kappa < 1$ <1 т.к после скачка дозвук.

$$\lambda_{5}$$
 пск := Find(λ_{5} пск) = 0.57863 λ в 5 сечении после скачка

λ6 пск := 1

Given

$$G = 0.0404 \cdot \frac{P^* \pi c \kappa}{\sqrt{T^* 1}} \cdot q(\lambda 6_ \pi c \kappa) \cdot S6 \qquad \lambda 6_ \pi c \kappa < 1$$

$$\lambda 6$$
 пск := Find($\lambda 6$ пск) = 0.44037 λ в 6 сечении после скачка

Р5пск := $P*пск \cdot \Pi(\lambda 5 \ пск) = 6.92807 \times 10^5 \ \Pi a$

давления в 5 и 6 сечениях после скачка

Р6пск := $P*пск \cdot \Pi(\lambda 6 \ пск) = 7.55006 \times 10^5 \ \Pi a$

координаты сечения скачка, 5 сечения и 6:

$$X := \begin{pmatrix} Xck + L_dz \\ \frac{2L_szv}{3} + L_dz \\ L_szv + L_dz \end{pmatrix} = \begin{pmatrix} 0.64136 \\ 0.69087 \\ 0.89038 \end{pmatrix}$$

давление после скачка, в 5 и в 6 сечениях:

$$Ppsk := \begin{pmatrix} Pпск \\ P5пск \\ P6пск \end{pmatrix} = \begin{pmatrix} 6.67272 \times 10^5 \\ 6.92807 \times 10^5 \\ 7.55006 \times 10^5 \end{pmatrix} \quad \Pia$$

$$L_{SZV} + L_{dZ}$$
 (Р6пск) λ_{DCK} (Р6пск)

Результаты вычисление по второй задаче:

сечение	λ	Р,Па	Р*,Па
I	0.21652	1.11*10^6	1.11*10^6
II	0.35985	1.02839*10^6	1.11*10^6
III	1	5.86393*10^5	1.11*10^6
IV	1.46453	2.36015*10^5	1.11*10^6
СК	1.59057	1.63297*10^5	1.11*10^6
пск	0.6287	6.67272*10^5	8.47013*10^5
V	0.57863	6.92807*10^5	8.47013*10^5
VI	0.44037	7.55006*10^5	8.47013*10^5

Построим графики:

x пск := Xck + L dz, L dz + Xck + 0.01 .. L szv + L dz

-изменение координаты X после скачка

Ppsk (x пск) := interp(pspline(X, Ppsk), X, Ppsk, x пск)

-интерполяция значений(чтобы была

 $\lambda psk_{x_mck} := interp(pspline(X, \lambda psk), X, \lambda psk, x_mck)$

парабола а не две прямые построенные по 3 точкам)

x до := 0,0.01..L dz + Xck -изменение координаты X до скачка

Р*до (х до) := **Р***1

-давление торможения до скачка

P*пск (x пск) := P*пск

-давление торможения после скачка

для построения прямых, соединяющих значения до скачка и после

$$ckP := \begin{pmatrix} Pck \\ P\pi c\kappa \end{pmatrix}$$

$$ck\lambda := \begin{pmatrix} \lambda ck \\ \lambda \pi c \kappa \end{pmatrix}$$

$$ck := \begin{pmatrix} L_dz + Xck \\ L_dz + Xck \end{pmatrix}$$

$$ckP^* := \begin{pmatrix} P^*1 \\ P^*\pi c\kappa \end{pmatrix}$$

Задача 3:

Задано:

$$P6_3 := P6 = 1 \times 10^5$$
 Πa

давление в 6 сечении равно давлению в 6 сечении в первой задаче

$$\lambda_{3} := 0.8$$

$$T*3 := T*1 = 900 \text{ K}$$

Размеры такие же как в первой задаче

Прировняв уравнения расхода для 3 и 6 сечений полчим:

$$0.0404 \cdot \frac{P*3}{\sqrt{T*3}} \cdot q(\lambda 3) \cdot S3 = 0.0404 \cdot \frac{P*3}{\sqrt{T*3}} \cdot q(\lambda 6) \cdot S6$$

Откуда:

$$q(\lambda 6) = q(\lambda 3) \cdot \frac{S3}{S6}$$

Откуда выразим $\lambda6$:

Given

$$q(\lambda 6) = q(\lambda 3) \cdot \frac{S3}{S6}$$
 $\lambda 6 < 1$ (до звук)

$$\lambda 6 := \text{Find}(\lambda 6) = 0.30649$$

$$P*3 := \frac{P6_3}{\Pi(\lambda 6)} = 1.05678 \times 10^5 \text{ }\Pi a$$

Определим расход:

$$G3 := 0.0404 \cdot \frac{P*3}{\sqrt{T*3}} \cdot q(\lambda 6) \cdot S6 = 9.06234 \, \text{kg/c}$$

$$\frac{P6_3}{\Pi(\lambda 6)} = 1.05678 \times 10^5 \ \Pi a$$

$$9.06234 \, \text{кг/c}$$

$$\boxed{ \begin{tabular}{l} $\frac{\pi \, d^2}{4}$ \\ $\frac{\pi \, d^2}{4}$$$

Найдем необходимые параметры:

Из уравнения расхода найдем λ в каждом сечении

$$G3 = 0.0404 \cdot \frac{P*3}{\sqrt{T*3}} \cdot q(\lambda i) \cdot S$$

$$\lambda_{-} := \begin{pmatrix} 0.20570769565821529988 \\ 0.34057152321899313553 \\ 0.8 \\ 0.51698279139270648018 \\ 0.38795688453086823087 \\ 0.30649383474700579244 \end{pmatrix}$$

$$i := 0, 1 ... 5$$

$$P_{-i} := P*3 \cdot \Pi(\lambda_{-i})$$

$$P_{-} = \begin{pmatrix} 1.03093 \times 10^{5} \\ 9.86993 \times 10^{4} \\ 7.12088 \times 10^{4} \\ 9.00994 \times 10^{4} \\ 9.66874 \times 10^{4} \\ 1 \times 10^{5} \end{pmatrix}$$

Результаты

Сечение	λ	Р,Па
I	0.20571	1.03093*10^5
II	0.34057	9.86993*10^4
III	0.80000	7.12088*10^4
IV	0.51698	9.00994*10^4
V	0.38796	9.66874*10^4
VI	0.30649	1*10^5

Построение графика:

$$P_-d := egin{pmatrix} 1.03 imes 10^5 \\ 9.8 imes 10^4 \\ 7.12 imes 10^4 \end{pmatrix}$$
 значения давлений в сечениях до Зего $X_-do := egin{pmatrix} 0 \\ \frac{L_-dz}{2} \\ L_-dz \end{pmatrix}$ координаты сечений $Y_-do := egin{pmatrix} 0 \\ \frac{L_-dz}{2} \\ L_-dz \end{pmatrix}$ координаты сечений $Y_-do := b$ Y_-do

$$\lambda_{-}d := egin{pmatrix} 0.20570 \\ 0.34057 \\ 0.8 \end{pmatrix}$$
 значения λ в сечениях $\lambda_{-}p := egin{pmatrix} 0.8 \\ 0.51698 \\ 0.38796 \\ 0 & 30649 \end{pmatrix}$ значения λ в сечениях от Зего

изменение координаты х до 3 сечения

изменение координаты х после 3 сечения

$$x_d := 0, 0.01..L_dz$$

$$x p := L dz, L dz + 0.01..L dz + L szv$$

 $P_d(x_d) := interp(lspline(X_do, P_d), X_do, P_d, x_d)$

$$P p(x p) := interp(pspline(X p, P p), X p, P p, x p)$$

Интерполяция точек

 $\lambda_d(x_d) := interp(pspline(X_do, \lambda_d), X_do, \lambda_d, x_d)$

 $\lambda_p(x_p) := interp(pspline(X_p, \lambda_p), X_p, \lambda_p, x_p)$

