МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА»

Институт информационных технологий и технологического образования Кафедра компьютерных технологий и электронного обучения

ЛАБОРАТОРНАЯ РАБОТА №1

по дисциплине: «Физика полупроводников» "Метод диэлектрической спектроскопии"

Руководитель: профессор, доктор физ.-мат. наук Аванесян Вачаган Тигранович Автор работы студент 2 курса 2 группы 1 подгруппы Стецук Максим Николаевич

Теоретические сведения

Диэлектрик - вещество, основным электрическим свойством которого является способность поляризоваться в электрическом поле.

Характерной особенностью диэлектриков является наличие сильно связанных положительных и отрицательных зарядов в молекулах. В качестве носителей заряда выступают диполи.

При отсутствии внешнего электрического поля в диэлектриках диполи расположены хаотически и находятся в состоянии равновесия. Под действием внешнего электрического поля происходит смещение связанных зарядов относительно устойчивых положений на небольшие расстояния, а именно происходит их ориентация внешним электрическим полем. Это явление называется диэлектрической поляризацией.

За счёт поляризации в диэлектрике возникает внутреннее электрическое поле, следовательно, при подключении к диэлектрику двух электродов, он является конденсатором.

Сила взаимодействия полей точечного заряда q_1 и заряда q_2 , помещенного в это поле в диэлектрике выражена законом Кулона:

$$f = \frac{q_1 q_2}{\varepsilon \varepsilon_0 r^2}$$

Для количественной оценки способности диэлектрика поляризоваться или степени поляризации пользуются характеристика диэлектрическая проницаемость є. Чем она выше, тем выше степень поляризации диэлектрика.

Емкость конденсатора измеряется в Фарадах (Ф) и выражается формулой:

$$C = \frac{\varepsilon \varepsilon_0 S}{d}$$

Релаксация — это процесс поляризации, при котором происходит переход от возбуждённого состояния к стабильному.

Заряженные объекты, релаксирующие при поляризации – релаксаторы.

Потерями в диэлектрике или **диэлектрическими потерями** называют мощность, рассеиваемую в виде тепла в диэлектрике, помещённом в электрическое поле.

 ε^* - диэлектрическая проницаемость (является комплексной величиной).

 ε' - действительная часть диэлектрической проницаемости.

$$C \sim \varepsilon'$$

 ε'' - мнимая часть диэлектрической проницаемости, которую называют фактором диэлектрических потерь.

$$\varepsilon^{\prime\prime} \sim C * tg \delta$$

$$\varepsilon^* = \varepsilon' - i\varepsilon''$$

 $tg \ \delta$ – тангенс угла диэлектрических потерь

Данный параметр используется для проведения количественной оценки.

 φ – угол, на который по фазе сдвинут полный ток, относительно напряжения.

 δ –

угол, дополняющий угол сдвига фаз φ между током и напряжением до 90°

$$\tan \delta = \frac{\varepsilon''}{\varepsilon'}$$

Тангенс угла диэлектрических потерь связан с активной проводимостью G (См) и реактивной проводимостью ωC (См) следующим соотношением:

$$\tan \delta = \frac{G}{\omega C},$$

где $\omega = 2\pi f$

Полное сопротивление конденсатора выражено импедансом, который является комплексной величиной Z.

$$\mathbf{Z}^{\prime\prime}=rac{1}{\omega\mathcal{C}}$$
 — емкостное сопротивление (Мнимая чать импеданса)

Z' = R -сопротивление (Действительная часть импеданса)

|Z| — модуль импеданса

Действительная и мнимая части импеданса определяются следующими формулами:

$$Z' = |Z| \cdot cos(\varphi)$$

$$\mathbf{Z}^{\prime\prime} = |Z| \cdot sin(\varphi)$$

Результаты проведённого эксперимента

f, kHz	C, pF	tg δ	Z , Om	φ	C tg δ, pF	Z', Om	Z'', Om	G, CM	In f	In G
0,5	77,2	0,11	4081000	83,52	8,492	460567	4054928	37,994	-0,69315	3,63743
1	74,084	0,1095	2139000	83,75	8,1122	232866	2126287	75,29877	0	4,32146
3	68,91	0,1043	765600	84,05	7,18731	79362,5	761476	204,950752	1,09861	5,32277
5	66,68	0,1018	474860	84,18	6,78802	48152,5	472412	325,405736	1,60944	5,78507
8	64,66	0,0997	306150	84,31	6,4466	30353,6	304642	499,390122	2,07944	6,21339
10	63,753	0,0993	248400	84,33	6,33067	24541,6	247185	619,238772	2,30259	6,42849
12	63,08	0,0985	209200	84,37	6,21338	20523,4	208191	731,16156	2,48491	6,59463
15	61,75	0,0983	171000	84,39	6,07003	16716,4	170181	910,244238	2,70805	6,81371
18	61,14	0,0982	143800	84,39	6,00395	14057,4	143111	1090,07185	2,89037	6,994
20	60,82	0,0979	130200	84,4	5,95428	12705,3	129579	1203,8019	2,99573	7,09324
25	60	0,0985	105500	84,32	5,91	10441,6	104982	1523,25325	3,21888	7,3286
30	59,38	0,0998	88890	84,3	5,92612	8828,53	88450,5	1876,47154	3,4012	7,53715
40	58,28	0,1009	67867	84,23	5,88045	6823,03	67523,2	2557,41947	3,68888	7,84675
50	57,49	0,1027	55080	84,14	5,90422	5623,56	54792,2	3311,84906	3,91202	8,10526
60	56,81	0,104	46433	84,07	5,90824	4797,15	46184,5	4075,4688	4,09434	8,31274
70	56,2	0,1055	40226	83,98	5,9291	4218,73	40004,2	4892,8579	4,2485	8,49553
80	55,63	0,1075	35550	83,87	5,98023	3796,2	35346,7	5805,86	4,38203	8,66662
90	55,15	0,1101	31867	83,72	6,07202	3485,85	31675,8	6851,36005	4,49981	8,8322
100	54,696	0,1126	28913	83,58	6,15877	3232,93	28731,7	7962,26128	4,60517	8,98247

Таблица 1 (сводная таблица результатов измерений)

График 1 (зависимость емкости конденсатора от частоты)

Объяснение: с увеличением частоты уменьшается диэлектрическая проницаемость, а значит, уменьшается ёмкость конденсатора, т.к. эти две величины пропорциональны.

График 2 (зависимость фактора диэлектрических потерь от диэлектрической проницаемости)

Объяснение: Мы знаем, что ε' и ε'' пропорциональны С и С * tg δ соответственно, а значит зависимость $\varepsilon''(\varepsilon')$ можно представить как зависимость С * tg δ (C).

Из графика видно, что в данном процессе на разных частотах присутствовало 2 вида релаксаторов. Это мы можем увидеть из изменения величины $C*tg\delta$ (убывает, возрастает, убывает), т.к. образуются два полукруга.

График 3 (зависимость тангенса угла диэлектрических потерь от частоты)

График 4 (логарифмическая зависимость активной проводимости от частоты) Объяснение: Т.к. данная зависимость является линейной, то можно сказать, что активная проводимость будет экспоненциально возрастать при увеличении частоты.

График 5 (зависимость модуля импеданса от частоты)

График 6 (зависимость действительной части импеданса от частоты)

График 7 (зависимость мнимой части импеданса от частоты)

Объяснение: т.к полное сопротивление конденсатора выражено импедансом, а действительная и мнимая части импеданса являются соответственно сопротивлением и емкостным сопротивлением, то уменьшение данных величин связано с увеличением обратной им величины, а именно проводимости, которая возрастает с увеличением частоты, т.к. чем выше частота, тем выше скорость, а значит и концентрация носителей в конкретной точке выше. А при увеличении концентрации носителей заряда увеличивается проводимость.

График 8 (зависимость угла фазового сдвига между током и напряжением от частоты)

Объяснение: т.к. угол диэлектрических потерь это угол, который дополняет угол фазового сдвига до 90°, то данный график является обратным графику зависимости тангенса угла диэлектрических потерь от частоты.

Вывод: В ходе лабораторной работы мы на практике определили диэлектрические свойства диэлектрика. Нами были получены результаты измерений, а также построены графики зависимости определённых величин, а именно: зависимость емкости конденсатора от частоты, зависимость фактора диэлектрических потерь от диэлектрической проницаемости, зависимость тангенса угла диэлектрических потерь от частоты, логарифмическая зависимость активной проводимости от частоты, зависимость модуля импеданса от частоты, зависимость действительной части импеданса от частоты, зависимость мнимой части импеданса от частоты, зависимость угла фазового сдвига между током и напряжением от частоты.