Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Logik für Studierende der Informatik

Blatt 2

Abgabe: 13.11.2019, 14 Uhr Gruppennummer angeben!

Aufgabe 1 (6 Punkte).

Beschreibe vollständig alle induzierten Funktionen der Terme in n Variablen bezüglich der Struktur mit Universum $\mathbb Z$ in der leeren Sprache sowie der Strukturen $(\mathbb Z,+,-)$ und $(\mathbb Z,2,+,-,\cdot)$.

Aufgabe 2 (4 Punkte).

- (a) Beschreibe die von der Menge der ungeraden natürlichen Zahlen erzeugte Unterstruktur der Struktur \mathbb{Q} in der leeren Sprache. Ist die davon erzeugte Unterstruktur endlich erzeugt?
- (b) Beschreibe die von der Menge der ungeraden natürlichen Zahlen erzeugte Unterstruktur der Struktur ($\mathbb{Q}, 0, 1, +, -, \cdot$). Ist die davon erzeugte Unterstruktur endlich erzeugt?

Aufgabe 3 (4 Punkte).

Ein $Graph\ (V,E)$ ist eine nichtleere Menge V von Punkten zusammen mit einer Menge E, welche aus 2-elementigen Teilmengen von V (oder Kanten) besteht. Ein Teilgraph von (V,E) ist ein Graph (V',E') derart, dass $V' \subset V$ und $E' \subset E$.

Jeder Graph kann als Struktur in der Sprache mit einem zweistelligen Relationszeichen ${\cal R}$ betrachtet werden.

(a) Zeige, dass jede Unterstruktur (in der Graphensprache) eines Graphen ein Teilgraph ist.

(b) Im obigen Bild, ist A ein Teilgraph von B? Ist die vom Graph A induzierte Struktur eine Unterstruktur von der vom Graph B induzierten Struktur?

Aufgabe 4 (6 Punkte).

Sei \mathcal{L} die Sprache, welche aus einem einstelligen Funktionszeichen f sowie aus zwei einstelligen Relationszeichen P und Q besteht. Betrachte die Klasse \mathcal{K} aller \mathcal{L} -Strukturen \mathcal{A} , deren Universum die disjunkte Vereinigung der beiden unendlichen Mengen $P^{\mathcal{A}}$ und $Q^{\mathcal{A}}$ ist und ferner $f^{\mathcal{A}}$ eingeschränkt auf $P^{\mathcal{A}}$ eine Surjektion $P^{\mathcal{A}} \to Q^{\mathcal{A}}$ und eingeschränkt auf $Q^{\mathcal{A}}$ die Identität ist.

Seien nun \mathcal{B} und \mathcal{C} zwei abzählbare \mathcal{L} -Strukturen in \mathcal{K} mit folgenden Zusatzeigenschaften: In $Q^{\mathcal{B}}$ gibt es ein Element b_0 derart, dass für $b \neq b_0$ aus $Q^{\mathcal{B}}$ die Faser $f^{-1}(b)$ unendlich ist, aber $f^{-1}(b_0)$ Größe 2 hat. In $Q^{\mathcal{C}}$ gibt es zwei Elemente c_1 und c_2 derart, dass für $c \neq c_1, c_2$ aus $Q^{\mathcal{C}}$ die Faser $f^{-1}(c)$ unendlich ist, aber die Fasern $f^{-1}(c_1)$ und $f^{-1}(c_2)$ jeweils Größe 5 haben.

(a) Lassen \mathcal{B} und \mathcal{C} sich jeweils ineinander einbetten?

(b) Sind \mathcal{B} und \mathcal{C} isomorph?

DIE ÜBUNGSBLÄTTER MÜSSEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IN DEN (MIT DEN NUMMERN DER ÜBUNGSGRUPPEN GEKENNZEICHNETEN) FÄCHERN IM EG DES GEBÄUDES 51.