CSIE5002 Prediction, learning, and games

Lecture 9: Decision theoretic online learning

Yen-Huan Li (yenhuan.li@csie.ntu.edu.tw)

20.05.2019

Department of Computer Science and Information Engineering National Taiwan University

Abstract

We have studied learning with expert advice with mixable (or exp-concave) losses. What if the loss is not mixable?

Recommended reading

 Y. Freund & R. E. Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to boosting.

• S. Arora *et al.* 2012. The multiplicative weights update method: A meta-algorithm and applications.

Table of contents

- 1. Decision theoretic online learning
- 2. Exponentiated gradient method
- 3. Conclusions

Decision theoretic online learning

Decision theoretic online learning

Protocol. (Decision theoretic online learning) Let $T \in \mathbb{N}$. Let $\mathcal{A} \coloneqq \{1, \ldots, K\}$ for some $K \in \mathbb{N}$. Let the initial cumulative (expected) loss $L_0 = 0$. For every $1 \le t \le T$, the following happen sequentially.

- 1. Learner announces a probability distribution $\gamma_t \in \Delta(\mathcal{A})$.
- 2. Reality announces a loss vector $\omega_t \in [0,1]^K$.
- 3. Update $L_t \leftarrow L_{t-1} + \lambda(\omega_t, \gamma_t)$, where the *mixture loss* λ is defined as $\lambda(\omega_t, \gamma_t) := \langle \omega_t, \gamma_t \rangle$.

Question. How do we interpret the protocol?

Y. Freund & R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. 1997.

Regret(s)

We define two notions of regrets:

$$R_T(\gamma) := \sum_{t=1}^T \lambda(\omega_t, \gamma_t) - \sum_{t=1}^T \lambda(\omega_t, \gamma), \quad \forall \gamma \in \Delta(\mathcal{A}),$$
$$R_T(i) := \sum_{t=1}^T \langle \omega_t, \gamma_t \rangle - \sum_{t=1}^T \omega_t(i), \quad \forall 1 \le i \le K,$$

where $\omega_t(i)$ denotes the *i*-th entry of ω_t .

Proposition 1. It holds that

$$\max_{\gamma \in \Delta(\mathcal{A})} R_T(\gamma) = \max_{1 \le i \le K} R_T(i),$$

5

Proof of Proposition 1

Proof. (Proposition 1) It suffices to prove that

$$\min_{\gamma \in \Delta(\mathcal{A})} \left\langle s, \gamma \right\rangle = \min_{1 \leq i \leq K} s(i),$$

where $s := \sum_{t=1}^{T} \omega_t$. Notice that

$$\langle s, \gamma \rangle \ge \min_{1 \le i \le K} s(i), \quad \forall \gamma \in \Delta(\mathcal{A}).$$

Also notice that

$$\min_{1 \le i \le K} s(i) = \langle s, e_{i^*} \rangle \ge \min_{\gamma \in \Delta(\mathcal{A})} \langle s, \gamma \rangle,$$

where $i^* \in \arg\min_{1 \le i \le K} s(i)$. The proposition follows.

Perspective of AA

Theorem 1. The mixture loss is (c, η) -mixable, if and only if

$$c \ge \frac{\eta}{K \log \frac{K}{K + \mathrm{e}^{-\eta} - 1}}.$$

Corollary 1. The AA achieves

$$\sum_{t=1}^{T} \lambda(\omega_t, \gamma_t) \le \frac{\eta}{K \log \frac{K}{K + \mathrm{e}^{-\eta} - 1}} \min_{1 \le i \le K} \sum_{t=1}^{T} \omega_t(i) + \frac{\log K}{K \log \frac{K}{K + \mathrm{e}^{-\eta} - 1}}.$$

V. Vovk. A game of prediction with expert advice. 2011.

Hedge

Algorithm. (Hedge) Let π_1 be the uniform distribution on $\mathcal{A} = \{1, \dots, K\}$. For every $1 \le t \le T$, announce $\gamma_t = \pi_t$, and compute

$$\pi_{t+1}(i) \propto \pi_t(i) e^{-\eta \omega_t(i)}, \quad \forall 1 \le i \le K,$$

for some $\eta > 0$.

Remark. Notice the hedge algorithm is not the AA.

Y. Freund & R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. 1997.

Regret of the hedge (1/2)

Theorem 2. The hedge algorithm achieves

$$\sum_{t=1}^{T} \lambda(\omega_t, \gamma_t) \le \frac{\eta}{1 - e^{-\eta}} \min_{1 \le i \le K} \sum_{t=1}^{T} \omega_t(i) + \frac{\log K}{1 - e^{-\eta}}.$$

Lemma 1. It holds that

$$K \log \frac{K}{K + e^{-\eta} - 1} = 1 - e^{-\eta}, \quad \forall \eta > 0.$$

Remark. Therefore, the regret bound for the hedge is sub-optimal.

V. Vovk. A game of prediction with expert advice. 2011.

Y. Freund & R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. 1997.

Proof of Theorem 2 (1/2)

Proof. (Theorem 2) Equivalently, the hedge starts with a weight vector $w_1=\pi_1$, and computes

$$\pi_t(i) = \frac{w_t(i)}{\sum_{i=1}^K w_t(i)}, \quad \forall 1 \le i \le K,$$
$$w_{t+1}(i) = w_t(i)e^{-\eta\omega_t(i)}, \quad \forall 1 \le i \le K.$$

Then, we write

$$\sum_{i=1}^{K} w_{T+1}(i) = \sum_{i=1}^{K} w_{T}(i) e^{-\eta \omega_{T}(i)} \le \sum_{i=1}^{K} w_{T}(i) \left[1 - \left(1 - e^{-\eta} \right) \omega_{T}(i) \right]$$
$$= \left[\sum_{i=1}^{K} w_{T}(i) \right] \left[1 - \left(1 - e^{-\eta} \right) \lambda(\omega_{T}, \gamma_{T}) \right].$$

Y. Freund & R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. 1997.

Proof of Theorem 2 (2/2)

Proof continued. (Theorem 2) We obtain

$$\sum_{i=1}^{K} w_{T+1}(i) \leq \prod_{t=1}^{T} \left[1 - \left(1 - e^{-\eta} \right) \lambda(\omega_t, \gamma_t) \right]$$

$$\leq \prod_{t=1}^{T} e^{-\left(1 - e^{-\eta} \right) \lambda(\omega_t, \gamma_t)}$$

$$= e^{-\left(1 - e^{-\eta} \right) \sum_{t=1}^{T} \lambda(\omega_t, \gamma_t)}.$$

It remains to notice that

$$w_1(i)e^{-\eta \sum_{t=1}^T \omega_t(i)} \le \sum_{i=1}^K w_{T+1}(i).$$

Y. Freund & R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. 1997.

Regret of the hedge (2/2)

Corollary 2. The hedge achieves

$$R_T(i) \le \sqrt{2T \log K} + \log K, \quad \forall 1 \le i \le K.$$

Proof sketch. Set

$$\eta = \log\left(1 + \sqrt{\frac{2\log K}{T}}\right).$$

Y. Freund & R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. 1997.

Regret of the hedge via the mixability gap

Theorem 3. The hedge achieves

$$R_T(i) \le \sqrt{(1/2)T \log K}, \quad \forall 1 \le i \le K.$$

Lemma 2. It holds that

$$R_T(i) \le \frac{1}{\eta} \log \frac{1}{\pi_1(i)} + \sum_{t=1}^T \delta_t,$$

where δ_t denotes the *mixability gap*:

$$\delta_t := \lambda(\omega_t, \gamma_t) - \left(\frac{-1}{\eta}\right) \log \sum_{i=1}^K \pi_t(i) e^{-\eta \omega_t(i)}.$$

Proof of Lemma 2

Proof. (Lemma 2) We write

$$\lambda(\omega_t, \gamma_t) = \delta + \left(\frac{-1}{\eta}\right) \log \sum_{i=1}^K \pi_t(i) e^{-\eta \omega_t(i)}.$$

It remains to notice

$$\sum_{t=1}^{T} \left[\left(\frac{-1}{\eta} \right) \log \sum_{i=1}^{K} \pi_t(i) e^{-\eta \omega_t(i)} \right]$$

$$= \frac{-1}{\eta} \log \sum_{i=1}^{K} \pi_1(i) e^{-\eta \sum_{t=1}^{T} \omega_t(i)}$$

$$\leq \frac{-1}{\eta} \log \left[\pi_1(i) e^{-\eta \sum_{t=1}^{T} \omega_t(i)} \right], \quad \forall 1 \leq i \leq K.$$

Proof of Theorem 3

Proof. (Theorem 3) Notice that $\omega_t(i) \in [0,1]$ for all i and t. By Hoeffding's lemma, we have

$$\delta_t \leq \frac{\eta}{8}$$
.

Then, we obtain

$$R_T(i) \le \frac{1}{\eta} \log K + \frac{\eta T}{8}.$$

Choosing

$$\eta = 2\sqrt{\frac{2\log K}{T}}$$

competes the proof.

Exponentiated gradient method

Online convex optimization on the probability simplex

Protocol. (Online convex optimization on the probability simplex) Let $T \in \mathbb{N}$. Let the initial cumulative loss $L_0 = 0$. For every $1 \le t \le T$, the following happen sequentially.

- 1. Learner announces $x_t \in \Delta \subset \mathbb{R}^n$.
- 2. Reality announces a convex function $f_t: \Delta \to \mathbb{R}$.
- 3. Update the cumulative loss as $L_t \leftarrow L_{t-1} + f_t(x_t)$.

Definition. (Regret) The regret is standard:

$$R_T(x) := \sum_{t=1}^T f_t(x_t) - \sum_{t=1}^T f_t(x), \quad \forall x \in \Delta.$$

Online gradient descent

Suppose for every $1 \leq t \leq T$ and $x \in \Delta$, there exists some $g_t(x) \in \mathbb{R}^n$ such that

$$g_t(x) \in \partial f_t(x), \quad ||g_t(x)||_2 \le L_2.$$

Suppose we adopt the online gradient descent:

$$\begin{split} \tilde{x}_t \leftarrow x_{t-1} - \eta g_{t-1}(x_{t-1}), \\ x_t \leftarrow & \operatorname*{arg\,min}_{x \in \Delta} \|x - \tilde{x}_t\|_2^2. \end{split}$$

Recall the online gradient descent achieves

$$R_T(\gamma) \le L_2 \max_{x \in \Delta} \|x - x_1\|_2 \sqrt{T}.$$

Exponentiated gradient method (1/2)

Recall online convex optimization can be reduced to online linear optimization, as

$$R_T(x) \le \sum_{t=1}^T \langle g_t(x_t), x_t \rangle - \sum_{t=1}^T \langle g_t(x_t), x \rangle, \quad \forall x \in \Delta.$$

Notice online linear optimization on the probability simplex is equivalent to decision theoretic online learning. Therefore, we can adopt the hedge.

J. Kivinen & M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. 1997.

Regret of the exponentiated gradient method (2/2)

Algorithm. (Exponentiated gradient method) Let x_1 be the uniform distribution. For every $2 \le t \le T$, announce $x_t = (x_t(i))_{1 \le i \le n}$ such that

$$x_t(i) \propto x_{t-1}(i) e^{-\eta [g_{t-1}(x_{t-1})]_i}, \quad \forall 1 \le i \le n,$$

where $[g_{t-1}(x_{t-1})]_i$ denotes the *i*-th entry of $[g_{t-1}(x_{t-1})]$.

Theorem 4. Suppose that

$$||g_t(x_t)||_{\infty} \le L_{\infty}, \quad \forall 1 \le t \le T.$$

Then, the exponentiated gradient method achieves

$$R_T(x) \le L_{\infty} \sqrt{\frac{T \log n}{2}}, \quad \forall x \in \Delta.$$

Proof of Theorem 4

Proof. (Theorem 4) Recall that

$$R_T(x) \le \frac{1}{\eta} \log n + \sum_{t=1}^T \delta_t,$$

where δ_t denotes the mixability gap in the t-th round. By Hoeffding's lemma, we have

$$\delta_t \le \frac{\eta L^2}{8}, \quad \forall 1 \le t \le T.$$

Therefore, we write

$$R_T(x) \le \frac{1}{\eta} \log n + \frac{\eta L^2 T}{8}, \quad \forall x \in \Delta.$$

Optimizing η completes the proof.

Online gradient descent vs. exponentiated gradient method (1/2)

Online gradient descent. Requires $||g_t(x_t)||_2 \leq L_2$, and achieves

$$R_T = O\left(L_2\sqrt{T\gamma}\right),\,$$

where $\gamma = O(1)$.

Exponentiated gradient method. Requires $||g_t(x_t)||_{\infty} \leq L_{\infty}$, and achieves

$$R_T = O\left(L_{\infty}\sqrt{T\log n}\right).$$

Online gradient descent vs. exponentiated gradient method (2/2)

Notice that

$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}, \quad \forall x \in \mathbb{R}^n.$$

Then, we have

$$\frac{1}{\sqrt{\log n}} \le \frac{L_2\sqrt{T}}{L_\infty\sqrt{T\log n}} \le \sqrt{\frac{n}{\log n}}.$$

Observation. In terms of dependence on the dimension, the exponentiated gradient method can be significantly better or slightly worse than the online gradient descent.

Application: Online portfolio selection (1/)

Recall the online portfolio selection problem. We formulate it as online convex optimization on the probability simplex.

Protocol. (Online portfolio selection) Let $T\in\mathbb{N}$. Let the initial cumulative loss $L_0=0$. For every $1\leq t\leq T$, the following happen sequentially.

- 1. Learner announces $x_t \in \Delta \subset \mathbb{R}^n$.
- 2. Reality announces $f_t: x \mapsto -\log \langle y_t, x \rangle$ for some $y_t \in \mathbb{R}^n$.
- 3. Update the cumulative regret: $L_t \leftarrow L_{t-1} + f_t(x_t)$.

Application: Online portfolio selection (2/)

Notice the loss function is convex, as

$$\nabla^2 f_t(x) = \frac{y_t y_t^{\mathrm{T}}}{\langle y_t, x \rangle^2} \ge 0, \quad \forall x \in \{ z \in \Delta \mid \langle y_t, z \rangle > 0 \}, 1 \le t \le T.$$

Then, we can reduce online portfolio selection to online linear optimization on the probability simplex, with the linear losses defined by

$$\nabla f_t(x_t) = -\frac{y_t}{\langle y_t, x_t \rangle}.$$

Exponentiated gradient method for online portfolio selection

Algorithm. (Exponentiated gradient method for online portfolio selection) Let x_1 be the uniform distribution. For every $1 \le t \le T$, announce x_t such that

$$x_t(i) \propto x_{t-1}(i) e^{\frac{\eta y_{t-1}(i)}{\langle y_{t-1}, x_{t-1} \rangle}}, \quad \forall 1 \le i \le n.$$

Question. Does the exponentiated gradient method achieve a $O\left(\sqrt{T\log n}\right)$ regret?

D. P. Helmbold et al. On-line portfolio selection using multiplicative updates. 1998.

EG for OPS with the market variability condition (1/2)

Observation. Notice that

$$\|\nabla f_t(x)\|_{\infty} = \left\|\frac{y_t}{\langle y_t, x\rangle}\right\|_{\infty}$$

can be arbitrarily large on $\{z \in \Delta \mid \langle y_t, z \rangle > 0 \}$. Therefore, the standard regret guarantee for the EG method does not apply.

Definition. (Market variability condition) We say the *market* variability condition holds, if for some $\varepsilon > 0$, we have

$$\varepsilon \le y_t(i) \le 1, \quad \forall 1 \le t \le t, 1 \le i \le n.$$

D. P. Helmbold *et al.* On-line portfolio selection using multiplicative updates. 1998. E. Hazan & S. Kale. An online portfolio selection algorithm with regret logarithmic in price variation. 2015.

EG for OPS with the market variability condition (2/2)

Lemma 3. If the market variability condition holds for some $\varepsilon>0$, then we have

$$\|\nabla f_t(x)\|_{\infty} \le \frac{1}{\varepsilon}, \quad \forall x \in \Delta, 1 \le t \le T.$$

Remark. With the market variability condition, the standard guarantee for the exponentiated gradient method applies.

Theorem 5. Suppose the market variability condition holds for some $\varepsilon > 0$. Then, the exponentiated gradient method achieves an $O\left(\varepsilon^{-1}\sqrt{T\log n}\right)$ regret for online portfolio selection.

Some state-of-the-art results for online portfolio selection

MVC = market variability condition

- Universal portfolio selection: Logarithmic regret, high computational complexity, no need for MVC.
- 2. Exponentiated gradient method: $O(\sqrt{T})$ regret, low computational complexity, requiring MVC.
- 3. Online Newton step: Logarithmic regret, moderate computational complexity, requiring MVC.

T. M. Cover & E. Ordentlich. Universal portfolios with side information. 1996.

D. P. Helmbold et al. On-line portfolio selection using multiplicative updates. 1998.

E. Hazan et al. Logarithmic regret algorithms for online convex optimization. 2007.

H. Luo et al. Efficient online portfolio with logarithmic regret. 2018.

Matrix exponentiated gradient method? (1/2)

Define the *spectraplex* as

$$\mathcal{D} \coloneqq \left\{ \left. \rho \in \mathbb{R}^{d \times d} \; \right| \; \rho \ge 0, \rho = \rho^{\mathrm{T}}, \mathrm{Tr} \rho = 1 \; \right\}.$$

Protocol. (Online convex optimization on the spectraplex) Let $T \in \mathbb{N}$. Let the initial cumulative loss $L_0 = 0$. For every $1 \le t \le T$, the following happen sequentially.

- 1. Learner announces $\rho_t \in \mathcal{D}$.
- 2. Reality announces a convex function $f_t: \mathcal{D} \to \mathbb{R} \cup \{+\infty\}$.
- 3. Update the cumulative loss: $L_t \leftarrow L_{t-1} + f_t(\rho_t)$.

Matrix exponentiated gradient method? (2/2)

Observation. The spectraplex is a matrix counterpart of the probability simplex. In particular, for any density matrix, its vector of eigenvalues is a probability vector.

Question. How do we extend the exponentiated gradient method for the matrix case?

Matrix exponentiated gradient method

Algorithm. (Matrix exponentiated gradient method) Let $\rho_1 \in \mathcal{D}$ be non-singular. For every $1 \leq t \leq T$, announce

$$\rho_{t+1} \leftarrow C_t^{-1} \exp \left[\log \left(\rho_t\right) - \eta_t \nabla f_t\left(\rho_t\right)\right].$$

Idea.

- 1. Hedge is equivalent to *entropic mirror descent*.
- 2. Entropic mirror descent can be directly extended for the matrix case using the *quantum relative entropy*.

K. Tsuda et al. Matrix exponentiated gradient updates for on-line learning and Bregman projection. 2005.

Conclusions

Conclusions

- We have studied the problem of decision theoretic online learning and the hedge algorithm.
- The regret analysis for the hedge algorithm is similar to that for the AA. The key difference is for the former, the mixability gaps are non-zero.
- Online convex optimization on the probability simplex can be solved via the exponentiated gradient method, or the hedge for the associated online linear optimization problem.

Next lecture

 Second-order & quantile regret bounds for decision theoretic online learning.

• Shifting regret.