Tumor Detection with Transfer Learning from Gigapixel Pathology Images

Chengtian Xu (cx2168)

Motivation

 Time Consuming & Error-Prone Procedure

- Computer-Assisted Diagnosis
 - Reduction to Misdiagnosis
 - Increase in Sensitivity, Speed,
 Consistency
 - Minimal cost with enough data

Data

- CAMELYON 16 challenge
- WSI (Whole Slide Image)
- 8 levels of magnification
- Different Zoom Level provides both context and detail
- Slide level annotation

Approach

- Theoretical Foundation
 - Yun Liu et al., Detecting Cancer Metastases on Gigapixel Pathology Images
- Data Preprocessing using OpenSlide
- Color Normalization & Feature Extraction

Training Slides

- Training Slides #: [016, 101, 084, 094, 096]
 - Extraction Level: 5 & 6
 - Extraction of 120 Positive Patches + 170 Negative Patches

Annotation

- train_slides = tumor_[016, 101, 084, 094, 096].tif
- train_masks = tumor_[016, 101, 084, 094, 096]_mask.tif
- image + mask = overlay

Extraction of Training Patches

- $\sim 10^6 * 10^6$ pixels per image
- Patch Size: 299 * 299
- > 50 % of pixels are tissue
- Positive (1) vs. Negative (0)
 - o 128 * 128 Center Region
 - O Positive Sample: sampled from mask due to small proportion of tumorous tissues
- Multiple Levels
 - Currently 5 & 6

Test Slide

• Test Slide #: 110

Examples of Patches

- Level 6

- Level 5

Transfer Learning

- Models:
 - Convolutional Base:
 - i. VGG16
 - ii. Inception V3
 - o Top:
 - i. Dense(128, activation='relu')
 - ii. Dense(2, activation='sigmoid')
 - Both models trained on Colab

Visualization of Prediction as HeatMap

- Sliding Window
 - Prediction on patches of size (299, 299) from test slide
 - Reference Level Default to 7
 - Prediction on Zoom Level
- Confusion Matrix Based Evaluation Metrics
 - Accuracy
 - o F1
 - Recall
 - Precision

Evaluation Metrics

Confusion Matrix Based

Accuracy

- Recall =
$$\frac{tp}{tp + fn}$$

Precision =
$$\frac{tp}{tp + fp}$$

-
$$+1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Tumor detection:

- Class imbalance
- Accuracy not useful

InceptionV3-Based @ Level 5

Reference

PRED

Accuracy: 0.86 Recall: 0.78 Precision: 0.99 F1 Score: 0.87

VGG16-Based @ Level 5

Reference

PRED

Accuracy: 0.88
Recall: 0.88
Precision: 0.88
F1 Score: 0.88

VGG16-Based @ Level 6

Reference

Accuracy: 0.80
Recall: 0.79
Precision: 0.90
F1 Score: 0.84

PRED

Performance Metrics in Test Slide

Conclusion

- Model Comparison:
 - VGG
 - Precision: 0.9867549668874173, Recall : 0.993333333333333, AUC : 0.9997166666666667
 - Inception V3:
 - Precision: 0.9933554817275747, Recall : 0.99666666666666667, AUC : 0.99987777777778
- Potential Improvements:
 - More Training Data
 - More Levels
 - Image Augmentation

Thank you!

Visit https://git.io/tumor cancer for more information and source code