

Natural Language Processing Updates Week 4

Mirko Bronzi <u>mirko.bronzi@mila.quebec</u>

Spoiler

What happened after the Transformer model?

Where should I look at to start using pre-trained Transformers models (like BERT)?

What happened after BERT?

Plan

- Life after Transformers
- Life after BERT
- Tools for NLP

What happened after the Transformer model?

Why Are We Interested In Sequences?

- Audio:
 - Speech recognition
 - Text to speech
- Video:
 - Caption generation
 - Movement detection
- Text:
 - Email classification
 - Machine translation
- Medical and Biological data:
 - DNA study
 - Electrocardiogram
- Time series (stocks, weather, ...)
- Etc...

There is a lot of data with sequences!

Short Sequences: Simple RNN

 Limited to short sequences because of the vanishing gradient problem.

Longer Sequences: LSTM

- Greatly reduces the vanishing gradient problem.
- Still:
 - Hard to parallelize.
 - Information does not flow easily across long sequences.

Even Longer Sequences: Self-Attention

- Can be parallelized.
- Information can flow much better.

Is Self-Attention Perfect?

- It works well with sentences, paragraphs, ...
- What about:
 - Books? For example, 80000 elements (words).
 - Images? For example, 4096 elements (pixels) for a 64x64 image.

Sound? For example, 44100 elements (data points) for 1 second of CD

quality audio.

https://unsplash.com/photos/DgQf1dUKUTM, https://unsplash.com/photos/deb2EnbWPr8, https://unsplash.com/photos/OKLqGsCT8qs

Is Self-Attention Perfect? No...

- Self-Attention scales quadratically with time/memory.
- Why? For every n element in the sequence, compare it with every n other element.

So,
$$O(n^*n) = O(n^2)$$

This is bad news...

Alert: What is Complexity? (1)

- Asymptotic complexity is the analysis of how an operation's cost scales with respect to some factors. For example:
 - The cost of finding an element in a sorted sequence of length n => O(log(n)).
 - The cost of sorting a sequence with length n => O(n log(n)).
 - The cost of applying Self-Attention on a sequence with length n => O(n*n).

Alert: What is Complexity? (2)

Why is it called asymptotic complexity?

Because we are interested in what happens when the factor becomes big.

(in the previous slide examples, when n becomes big)

Self-Attention: Complexity (1)

- Self-Attention is implemented in vectorized form to be efficient.
- Let's confirm that the complexity in vectorized form is O(n²).

Self-Attention: Complexity (2)

- First, let's introduce some terminology: queries (Q), keys (K), values (V).
- In the videos, we saw that Self-Attention works with a single sequence X.
- That is true. But technically (to give more flexibility to the models), we generate three different sequences from X: Q, K, and V.

Self-Attention: Complexity (3)

- Self-Attention, takes every element (from the queries) and compare them with every other element (the keys).
- This comparison provides some weights. We multiply these weights by the values to get the final result.

$$ext{Self-Attention}(Q,K,V) = (rac{Softmax(QK^T)}{\sqrt{d}}) V$$

We will ignore both the Softmax and the scaling factor d in the following slides.

Self-Attention: Complexity (4)

Self-Attention
$$(Q, K, V) = (\frac{Softmax(QK^T)}{\sqrt{d}})V$$

Note: Ignoring Softmax and scaling factor d in the Self-Attention equation for the sake of clarity.

Self-Attention: Complexity (5)

$$ext{Self-Attention}(Q,K,V) = (rac{Softmax(QK^T)}{\sqrt{d}})V$$

Researchers to the Rescue!

- So, Self-Attention has quadratic complexity, and that is bad news.
- We will now investigate some interesting directions to improve Self-Attention complexity:
 - Let's use memory!
 - Let's make Self-Attention computationally less costly!
 - Let's limit Self-Attention to some specific patterns!

Re-Adding Memory to Transformers

- Transformer-XL aims at handling long sequences.
- The idea is simple:
 - Split the sequences into chunks.
 - Apply Self-Attention one chunk at a time, but considering also the previous chunk.

Dai et al. "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context."

Transformer-XL (1)

- Self-Attention has access to the current chunk...
- ...but also to the previous chunk.
- This creates a "memory effect".

Dai et al. "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context."

Transformer-XL (2)

- The same process is repeated for every chunk.
- Note how only the previous chunk is being accessed by Self-Attention (and not the full past).
- This is what lower the computational requirements.

Transformer-XL: Performances

 Good results on Language Modeling.

Model	#Params	Validation PPL	Test PPL
Grave et al. (2016b) – LSTM	-		48.7
Bai et al. (2018) – TCN	<u>=</u>	-	45.2
Dauphin et al. (2016) – GCNN-8	<u>-</u>		44.9
Grave et al. (2016b) – LSTM + Neural cache	-	-0	40.8
Dauphin et al. (2016) – GCNN-14	-	=:	37.2
Merity et al. (2018) – 4-layer QRNN	151M	32.0	33.0
Rae et al. (2018) – LSTM + Hebbian + Cache	=	29.7	29.9
Ours – Transformer-XL Standard	151M	23.1	24.0
Baevski & Auli (2018) – adaptive input [⋄]	247M	19.8	20.5
Ours – Transformer-XL Large	257M	17.7	18.3

 Significant speed-up on long sequences.

Attn Len	How much Al-Rfou et al. (2018) is slower than ours
3,800	1,874x
2,800	1,874x 1,409x
1,800	773x
800	363x

Dai et al. "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context."

Can We Make Self-Attention Less Costly?

 We can use low-rank approximations of the Self-Attention matrix to lower the complexity.

 For example, the Linformer adds projections (matrix multiplications) to lower the matrix dimensions.

Linformer: Complexity (1)

Two additional projections are added: E and F.

Note: Ignoring Softmax and scaling factor d in the Self-Attention equation for the sake of clarity.

$$ext{Self-Attention}(Q,K,V,E,F) = (rac{Softmax(Q(EK)^T)}{\sqrt{d}}(FV)^T)$$

Linformer: Complexity (2)

Two additional projections are added: E and F.

Linformer: Complexity (3)

Two additional projections are added: E and F.

Complexity Comparison

- The complexity of the original Self-Attention is $O(n^2 \cdot d)$.
- The complexity of the Linformer is $O(k \cdot n \cdot d)$.
- Here, both d and k are fixed. So, we are interested only in n.
- As a consequence, original Self-Attention is $O(n^2)$, while Linformer is O(n).
- These matrix dimension reductions may come at the cost of performances. Is this the case in the results?

Linformer: Results

- Results show faster computation...
- ... and no noticeable drop on results.
 (results are on Language Modeling)

Wang et al. "Linformer: Self-Attention with Linear Complexity."

Linformer: Results

- What about results on classification tasks?
- Linformer matches (sometime improves) state-of-the-art results.

n	Model	SST-2	IMDB	QNLI	QQP	Average
	Liu et al. (2019), RoBERTa-base	93.1	94.1	90.9	90.9	92.25
	Linformer, 128	92.4	94.0	90.4	90.2	91.75
	Linformer, 128, shared kv	93.4	93.4	90.3	90.3	91.85
	Linformer, 128, shared kv, layer	93.2	93.8	90.1	90.2	91.83
512	Linformer, 256	93.2	94.0	90.6	90.5	92.08
	Linformer, 256, shared ky	93.3	93.6	90.6	90.6	92.03
	Linformer, 256, shared kv, layer	93.1	94.1	91.2	90.8	92.30
512	Devlin et al. (2019), BERT-base	92.7	93.5	91.8	89.6	91.90
	Sanh et al. (2019), Distilled BERT	91.3	92.8	89.2	88.5	90.45
1024	Linformer, 256	93.0	93.8	90.4	90.4	91.90
	Linformer, 256, shared kv	93.0	93.6	90.3	90.4	91.83
	Linformer, 256, shared kv, layer	93.2	94.2	90.8	90.5	92.18

Wang et al. "Linformer: Self-Attention with Linear Complexity."

Can We Limit the Self-Attention Span? (1)

- We can save computation by allowing Self-Attention to only look at some elements.
- Which elements? We need to find patterns that make sense with the data we are dealing with.

Can We Limit the Self-Attention Span? (2)

- The Sparse Transformer does that.
- In the papers, authors experiment with both images and text.

Alert: Images as Sequences?

An image can be easily flattened as a sequence:

- Do we lose information by doing so (given we lose the 2d structure)?
- In theory yes, but in practice we hope that Self-Attention will be able to "recover" the underlying 2d structure..

Patterns For Images (1)

 On sequences derived by flattening images, the Sparse Transformer looks at the same row/column only. This is called strided pattern.

Child et al. "Generating Long Sequences with Sparse Transformers."

Patterns For Images (2)

- On sequences derived by flattening images, the Sparse Transformer looks at the same row/column only. This is called strided pattern.
- Note: here we consider Self-Attention that does not look at future elements
 (this is called causal attention).

Child et al. "Generating Long Sequences with Sparse Transformers."

Patterns For Images: Example (1)

- On sequences derived by flattening images, the Sparse Transformer looks at the same row/column only. This is called strided pattern.
- Note: here we consider Self-Attention that does not look at future elements
 (this is called causal attention).

Patterns For Images: Example (2)

- On sequences derived by flattening images, the Sparse Transformer looks at the same row/column only. This is called strided pattern.
- Note: here we consider Self-Attention that does not look at future elements
 (this is called causal attention).

Child et al. "Generating Long Sequences with Sparse Transformers."

Patterns For Images: Example (3)

- On sequences derived by flattening images, the Sparse Transformer looks at the same row/column only. This is called strided pattern.
- Note: here we consider Self-Attention that does not look at future elements
 (this is called causal attention).

Child et al. "Generating Long Sequences with Sparse Transformers."

Patterns For Text (1)

- Does it also make sense with text?
- Text does not have a 2-dimensional structure, so, strided pattern is not effective.
- The authors use instead a **fixed** pattern, which is: look at neighbours plus at some fixed positions.
- Why fixed positions?
 - They allow the model to look further away.
 - They provide stability to the model.

Patterns For Text (2)

- The authors use a fixed pattern, which is: look at neighbours plus at some fixed positions.
- Note: here we consider Self-Attention that does not look at future elements
 (this is called causal attention).

Patterns For Text (3)

Child et al. "Generating Long Sequences with Sparse Transformers."

- The authors use a fixed pattern, which is: look at neighbours plus at some fixed positions.
- Note: here we consider Self-Attention that does not look at future elements
 (this is called causal attention).

Patterns For Text (4)

- The authors use a fixed pattern, which is: look at neighbours plus at some fixed positions.
- Note: here we consider Self-Attention that does not look at future elements
 (this is called causal attention).

Sparse Transformer: Results

The Sparse Transformer provides good results on Language Modeling.

Enwik8	Bits per byte	Model	Bits per byte
Deeper Self-Attention (Al-Rfou et al., 2018)	1.06	CIFAR-10	
Transformer-XL 88M (Dai et al., 2018)	1.03	PixelCNN (Oord et al., 2016)	3.03
Transformer-XL 277M (Dai et al., 2018)	0.99	PixelCNN++ (Salimans et al., 2017)	2.92
Sparse Transformer 95M (fixed)	0.99	Image Transformer (Parmar et al., 2018)	2.90
-1	,	PixelSNAIL (Chen et al., 2017)	2.85
		Sparse Transformer 59M (strided)	2.80

With a significant speed-up on computation.

Model	Bits per byte	Time/Iter
Enwik8 (12,288 context)		
Dense Attention	1.00	1.31
Sparse Transformer (Fixed)	0.99	0.55
Sparse Transformer (Strided)	1.13	0.35

Child et al. "Generating Long Sequences with Sparse Transformers."

Final Thoughts on Efficient Transformers

- These Transformer architectures that work with long sequences are called Efficient Transformers.
 - Or, sometimes, Long Transformers.
- There are many papers and interesting ideas in this field.
- For a very interesting survey, see Tay et al. "Efficient Transformers: A Survey".
- Also, if you work with images/sound, Efficient Transformers will probably be very important there (in the near future).

Plan

- Life after Transformers
- Life after BERT
- Tools for NLP

What happened after BERT?

How did we arrive to BERT? (1)

- We started by introducing pre-training (a transfer learning technique) and fine-tuning:
- First collect general syntactic and semantic knowledge with a self-supervised task on a lot of data (pre-training)...
- ...then train on the task of interest (fine-tuning).

https://unsplash.com/photos/jedKD4yaTvk, https://unsplash.com/photos/tn57JI3Cewl

How did we arrive to BERT? (2)

- Our pre-training journey started with Word2Vec.
- Word2Vec created distributed representations for tokens trying to capture their syntactic and semantic properties.

Mikolov et al. "Efficient estimation of word representations in vector space."

How did we arrive to BERT? (2)

 We improved on that by considering the context (when creating word representations). This was done in ELMo.

Peters et al. "Deep contextualized word representations." https://unsplash.com/photos/2_K82gx9Uk8, https://unsplash.com/photos/bP6-6xXb-oQ

How did we arrive to BERT? (3)

- Then, BERT improved over ELMo by:
 - Using the Transformer architecture.
 - Using Masked-Language-Modeling task for pre-training (instead of Language Modeling).

What happened after BERT?

- Many papers tried to improve.
- Important directions:
 - We need bigger models!
 - We need more principled (maybe even smaller) models!
 - We do not want to fine-tune anymore!

Bigger Models

 Using bigger models means more computational power.

	Model: Parameters (Millions)
BERT base	110
BERT large	340
T5	11000

Bigger Models

- Bigger models can also mean:
 - More pre-training data.
 - Different (or more) objective functions.

Variations in the training process to better exploit the added computational

power.

	Model: Parameters (Millions)
BERT base	110
BERT large	340
T5	11000

Raffael et al. "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer."

Text-to-Text Transfer Transformer (T5)

To better exploit the big computational power, the same model is (elegantly) trained on more tasks.

 They introduce the "Colossal Clean Crawled Corpus" (C4), a dataset consisting of hundreds of gigabytes.

Raffael et al. "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer."

T5: (Some) Results

- T5 provides better results on some tasks...
- ...but not on all tasks.
 - Note though that several SOTA are ensemble of models (not just a single model, like T5).

Model	GLUE	CoLA	SST-2	MRPC	MRPC	STS-B	STS-B
	Average	Matthew'	s Accuracy	y F1	Accuracy	Pearson	Spearman
Previous best T5-11B	89.4 ^a 89.7	69.2 ^b 70.8	97.1 ^a 97.1	93.6^{b} 91.9	91.5^{b} 89.2	92.7 ^b 92.5	92.3 ^b 92.1
Model	QQP	QQP	MNLI-m	MNLI-mm	QNLI	RTE	WNLI
	F1	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Previous best T5-11B	74.8 ^c 74.6	90.7 ^b 90.4	91.3^a 92.0	91.0^a 91.7	99.2 ^a 96.7	89.2 ^a 92.5	91.8^{a} 93.2

Raffael et al. "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer."

More Principled Models

- Some papers claim instead that big models are over-parameterized.
- Which means that we can achieve the same (or better) results with smaller/mode efficient models.

A Lite BERT - ALBERT (1)

- ALBERT aims at having a smaller and more efficient model by:
 - Cross-layer parameter sharing.
 - Reducing the input embedding size (but **not** the hidden state size).

A Lite BERT - ALBERT (2)

 h_0^n h_{2}^{n} ...(several layers)... h_0^2 h_2^2 h², Cross-layer parameter sharing. h_0^1 Reducing the input embedding size. X_2

ALBERT: Results

- ALBERT models (except xxlarge) are smaller than any BERT models...
- ...and they provide very competitive (if not better) results.

Mod	lel	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg	Speedup
13	base	108M	90.5/83.3	80.3/77.3	84.1	91.7	68.3	82.1	17.7x
BERT	large	334M	92.4/85.8	83.9/80.8	85.8	92.2	73.8	85.1	3.8x
	xlarge	1270M	86.3/77.9	73.8/70.5	80.5	87.8	39.7	76.7	1.0
20	base	12M	89.3/82.1	79.1/76.1	81.9	89.4	63.5	80.1	21.1x
ALBERT	large	18M	90.9/84.1	82.1/79.0	83.8	90.6	68.4	82.4	6.5x
ALDEKI	xlarge	59M	93.0/86.5	85.9/83.1	85.4	91.9	73.9	85.5	2.4x
	xxlarge	233M	94.1/88.3	88.1/85.1	88.0	95.2	82.3	88.7	1.2x

Lan et al. "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations."

Do We Need Fine-Tuning?

- Is it possible that pre-training is all we need?
- If we can avoid fine-tuning, then one model is enough to rule all the NLP tasks!

GPT-3 (1)

- GPT-3 abandons fine-tuning.
- It only does pre-training (using the Language Modeling task).

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Brown et al. "Language Models are Few-Shot Learners."

GPT-3 (2)

It is a huge model.
 (remember that T5 was a "big" model, a few slides ago..)

	Model: Parameters (Millions)
BERT base	110
BERT large	340
T5	11000
GPT-3	175000

Parameters (Millions) vs.

GPT-3: Results

- The GPT-3 paper provides many results*:
 - Several state-of-the-art results.
 - Many good results.
 - Some less good results.

Setting	Winograd	Winogrande (XL)		
Fine-tuned SOTA	90.1a	84.6 ^b		
GPT-3 Zero-Shot	88.3*	70.2		
GPT-3 One-Shot	89.7*	73.2		
GPT-3 Few-Shot	88.6*	77.7		

Setting	LAMBADA (acc)	LAMBADA (ppl)	StoryCloze (acc)	HellaSwag (acc)
SOTA	68.0^{a}	8.63b	91.8°	85.6 ^d
GPT-3 Zero-Shot	76.2	3.00	83.2	78.9
GPT-3 One-Shot	72.5	3.35	84.7	78.1
GPT-3 Few-Shot	86.4	1.92	87.7	79.3

Setting	En→Fr	Fr→En	En→De	De→En	En→Ro	Ro→En
SOTA (Supervised)	45.6 ^a	35.0 ^b	41.2 ^c	40.2^{d}	38.5^{e}	39.9^{e}
XLM [LC19] MASS [STQ ⁺ 19] mBART [LGG ⁺ 20]	33.4 <u>37.5</u>	33.3 34.9	26.4 28.3 29.8	34.3 35.2 34.0	33.3 35.2 35.0	31.8 33.1 30.5
GPT-3 Zero-Shot GPT-3 One-Shot GPT-3 Few-Shot	25.2 28.3 32.6	21.2 33.7 39.2	24.6 26.2 29.7	27.2 30.4 40.6	14.1 20.6 21.0	19.9 38.6 39.5

^{*} Many more results can be found in the paper: Brown et al. "Language Models are Few-Shot Learners."

GPT-3: Why So Important? (1)

- As we saw, it is **not** fine-tuned.
- What does it mean?
 The pre-trained model can be downloaded and used right away.
- Also, it seems to hint to the fact that just solving the pre-training objective (Language Modeling) is enough to achieve human intelligence on language...

GPT-3: Why So Important? (2)

- ...but there are (important) limitations:
- GPT-3 is not as good as humans in reasoning and text synthesis:
 - "GPT-3 [...] repeat themselves semantically at the document level, start to lose coherence over sufficiently long passages, contradict themselves, and occasionally contain non-sequitur sentences or paragraphs".
 - "GPT-3 seems to have special difficulty with "common sense physics" ".
- Language Modeling may not be enough to achieve intelligence:
 - "[GPT-3] may eventually run into (or could already be running into) the limits of the pretraining objective".

GPT-3: Why So Important? (3)

- To summarize: GPT-3 opens the floor to interesting discussions.
- GPT-3 is a huge model. Just training such a big model is an outstanding achievement.
- GPT-3 provides some impressive results.
- Still, analysis of the failures may indicate that we need more complex approaches (instead of just training on Language Modeling) to reach human intelligence on language.

Final Thoughts on NLP and Pre-Training

- Pre-training in NLP is now extremely used.
- There are plenty of models, everyone with its own advantages/disadvantages.
- If you have an NLP task, most likely you want to start with a pre-trained model.
- If you are wondering where you can find those models, wait for the next slide...

Plan

- Life after Transformers
- Life after BERT
- Tools for NLP

Where should I look at to start using pre-trained Transformers models (like BERT)?

Tools for NLP

- Is there a single tool that includes everything I need?
- Almost...
- For classification tasks (word/single sentence/two sentence-classification) and sequence-to-sequence tasks, Hugging Face is a mature and well organized project that implements many interesting models.

Why Hugging Face?

- Ready to download pre-trained models!
 - Already fine-tuned models are also available, if you want!
- Very easy to use!
- New models added frequently!
- Supports PyTorch and Tensorflow!
- Cool icon!

How hard is it? (1)

 Assuming you just want to do extractive Question Answering with an already pre-trained/fine-tuned model:

• That's it!

How hard is it? (2)

Is that result cherry-picked?
 No (but note the example is not terribly hard).

Is That A Realistic Use Case?

Possibly, but in most cases you will want to fine-tune the model on your data.

- To this end, Hugging Face provides (among the others) a Trainer object that easily allow to fine-tune a pre-trained model.
- See https://huggingface.co/transformers/custom_datasets.html for more details.

Which Models Are There?

- Big models for great computational capacity:
 t5-11b, bert-large-cased, gpt2, ...
- Small/efficient models for great performances in production:
 DistilBERT, ALBERT, ...
- Models for various languages:
 bert-base-japanese, bert-base-italian-cased, bert-base-finnish-cased-v1, ...
- Models for sequence-to-sequence NLP tasks:
 T5, BART, mBART, ...

Final Thoughts on Hugging Face

- If you need an example about how to fine-tune some data with Hugging Face, see this week's tutorial.
- You will use a sequence-to-sequence Transformer model (T5) to perform machine translation.
- Hugging Face is a mature and efficient implementations for many Transformer models.
- If you have a NLP problem that can be shaped as classification or as sequence-to-sequence, Hugging Face should probably be your first option.

Questions?