

[SEQUENCE LISTING]

<110> SUNTORY LIMITED

SUNTORY BIOMEDICAL RESEARCH LIMITED

<120> THERAPEUTIC METHODS AND AGENTS FOR DISEASES ASSOCIATED WITH
DECREASED EXPRESSION OF AOP-1 GENE OR AOP-1

<130> YCT-687

<160> 30

<210> 1

<211> 1542

<212> mRNA

<213> Homo sapiens

<400> 1

ctgaagatgg cggctgcgt aggacggttg ctccgagcgt cggttgccccg acatgtgagt 60
gccattccit ggggcatttc tgccactgca gccctcaggc ctgctgcatg tggaagaacg 120
agcttgcacaa atttattgtg ttctggttcc agtcaagcaa aattatttcag caccagttcc 180
tcatgccaig cacctgctgt cacccagcat gcaccctatt ttaagggtac agccgttgtc 240
aatggagagt tcaaagacct aaggcttgcatt gacttttaagg ggaaatattt ggtgcctttc 300
ttctatccit tggatttcac ctttgggtgtt cctacagaaa ttgttgcttt tagtgacaaa 360
gctaacaat ttcacgatgt gaactgtgaa gttgtcgtag tctcagtgga ttcccacitt 420
agccatcttg cctggataaaa tacaccaaga aagaatggtg gtttgggcca catgaacatc 480
gcactcttgt cagacttaac taaggcattt tcccgagact acggtggtgtt gttttaggtt 540
tctggcttgtt cactaagagg tctcttcata attgacccca atggagtcat caagcatttg 600
agcgtcaacg atctcccaagt gggccgaagc gtggaaagaaa ccctccgcctt ggigaaggcg 660
ttccagtgatg tagaaacaca tggagaagtc tgcccagcga actggacacc ggatttcctt 720
acgatcaagc caagtccagc tgcttccaaa gagtactttc agaaggtaaa tcagtagatc 780
acccatgtgt atctgcaccc tctcaactga gagaagaacc acagttgaaa cctgcctttt 840
tcattttcaa gatggttatt tgiagaaggc aaggaaccaa ttatgcttgtt attcataagt 900
attactctaa atgtttttgtt ttgttaattt tggctaggac cttttaaaca tggttagttg 960

ctagtcacagg aatcgtttat tggtaacatc tggggctg gctagctgt tttcacagaa 1020
cataatttgc ctctatagaa ggctattctt agatcatgtc tcaatggaaa cactcttctt 1080
tcttagccctt acttgaatct tgcctataat aaagtagagc aacacacatt gaaagcttct 1140
gatcaacggt cctgaaattt tcatttgaa tgcctttgtt taaaactgaa ttttcttttta 1200
agctaacaaaa gatcataatt ttcaatgatt agccgtgtaa ctccgtcaat gaatgtttat 1260
gttgttgaag caaatgtgaa tcgtattatt taaaaaagtgtc gagagtgac ttaactgtatc 1320
atgcatgtatc cctcatccct gaaatttgagt ttatgtatgtc attttactta ttttattcat 1380
tagcttaactt tgcttatgtt tattttatgtt tattgatttag tgtaatcgat tataaaggat 1440
attttatcaaa tccagggtt gcattttgaa attataattt ttttctttgc tgaagtattc 1500
atgtiaaaaac atacaatataa catatttaaa caaaaaaaaaaa aa 1542

<210> 2

<211> 1433

<212> mRNA

<213> Rattus norvegicus

<400> 2

gctatacggtgg ctcgtgcgtt ctctgaagat ggcggcagct gcggggaaagg 60
tcggggct cggccgtgcga gcactattt ccggagttt tcgtcctcaa cagtcttag 120
gcctgttgct tctagaagaa cctgcttgac agacatgctg tggtcgtcct gtccccaaagc 180
aaagttgcc tttagcacca gtttttcatt ccacacccct gcgtcacccc agcatgcgcc 240
ccatttaaa ggtactgctg ttgtcaatgg agagtccaa gagctgagtc tcgacgactt 300
taagggaaa tactgggtgc ttttcttcata ccctttggat ttcacatttg tgtgtcctac 360
agaaatgtt gcttcagtg acaaagccaa tgagttcat gacgtaaact gtgaagtagt 420
tgtcggttct gtggattccc acttcagtc tcttgcctgg atcaacacgc caagaaagaa 480
tggtggtttg ggccacatga acatcacgct gtgtcgaccc ttaactaagc agatatcccg 540
agactacgga gtactgttgg aaagtgcgtgg cattgcgcctc agaggctct tcattatiga 600
ccctaattgtt gtcataaggc acctgagttt caatgacctt ccggggggcc gaagtgttgg 660
agaaccactc cgtttggtaa aggcggttcca gtttggag acccatggag aagtctgccc 720
accacaactgg acaccagagt cccctacgat caagccaaat ccaacagctt caaaagagta 780

ctttgagaag gtccatcaat aataggcat cctatgtctg cgggttacc tgaagcttct 840
catgccaaa gagagccccca gctggaatcc tgaagattat ttatagaatg gcaaaaacct 900
caccatgctt gtgttataa gtactgcctc atggcttig taattttaag acaggltcag 960
gttaaaggtg gccagctcc tccatagctg tccttacttag ggacitctg atggctacca 1020
atitcttaca agtgccttgtt ccccatttct tagatcatgt cttagaggg ttaagatttc 1080
ttagccgtcc ctgaagcttig gcttacagt aagttagcaca tagcaccagt acttagtgaa 1140
atgaagtagc acatagcgcc agcactttagt gaaatgaagt agcatalagt gccagcactt 1200
agtgaaagct tctgatcaag gtcctgaaat ttccctttgg atttttgtt attatgtga 1260
atitcccatt attttttagt gtatgttacca actcacagtg tccttgggtg ttcttaaggta 1320
ttgtatgatgtt ataatcatga aggactatgt ttctaaaaca ctatgttacca ttctttctt 1380
caagtgcgtgg atgtaaaagaa taaaaataaa cattaagata aaaaaaaaaaaa aaa 1433

<210> 3

<211> 1382

<212> mRNA

<213> mouse

<400> 3

ctactccctcg gtatctccgc ctatcgigcc tcttgcgtgc tctgaagatg gggcagctg 60
cgggaaagggtt gctctggicc tcgggttgcgc gtcatgcaag tgcttatttcc cggagtttattt 120
ctgcctcaac agtttttagg cctgttgcctt cttagaagaac ctgtttgaca gacatactgt 180
ggtctgcctc tgcccaagga aagttagcactt tttagcaccag ttcccttttc cacacccctg 240
ctgtcaccca gcacgcgccc tattttaaag gtactgctgt tgtcaatggaa gagtttcaaag 300
agctgagttt cgacgacttt aaggaaaaat acttgggtctt ttcttttac cccttggattt 360
tcacatttgtt gtgtcctaca gaaatttttg ctttcagtgtt caaagccaaat gaattttcatg 420
atgtaaaactg tgaagtagttt gcagttttagt tggattccca cttcagttcat ctgtccgtgg 480
tcaacacacc aagaaagaat ggtgggttgg gccacatgaa catcacactg tttgtccggata 540
taactaagca gatatcccga gactacggag tgctgttggaa aagtgcgtggc attgcactca 600
gagggtctt cattatttgcac cctaattgggtg tcgtcaagca cctgagttgtc aacgacccctt 660
cggtggcccg cagtgtggaa gaaacactcc gtttggtaaa ggcgttccag ttgttagaga 720

cccatggaga agtctgccc gccaactgga caccagagtc ccctacgtc aagccaagtc 780
caacagcttc caaagagtac ttgagaagg tccatcgta ggccatccta tgtctgcaat 840
tacctgaagc tttagggcc aaaaaagagc cccagctgga atccttccaa tgccttgaag 900
attatttata gaatggcaaa acctcattat gtttgttta ataagtactg ctccacaggc 960
tttgtaattc taagacaggt tcaggcttc taaagggtgc tagctgcttc catacgctcc 1020
cttacttaggg acttcgtgtt ggcttaaccaa ttctccccga gtgtttgcc cccattttt 1080
ggatcatgtc cttagagggt aagcatctt tcccttagcc tgccctgaac ctggctcac 1140
agtgaagtag cacatagtgc cagttacttgg tgaaatgaag tagcacatag caccagcact 1200
taatggaagc ttctgatcaa ggtcctaaaa ttccctttt aatttttgta aattatgctg 1260
aatttccctt tttttttt taaacagttt ctttgtgtt tctgaggta tgaagaggta 1320
taatcatgaa ggactatgtc taatccataa gtcatttct tcaagagctg gatatataga 1380
at 1382

<210> 4

<211> 256

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Ala Ala Val Gly Arg Leu Leu Arg Ala Ser Val Ala Arg His

5 10 15

Val Ser Ala Ile Pro Trp Gly Ile Ser Ala Thr Ala Ala Leu Arg Pro

20 25 30

Ala Ala Cys Gly Arg Thr Ser Leu Thr Asn Leu Leu Cys Ser Gly Ser

35 40 45

Ser Gln Ala Lys Leu Phe Ser Thr Ser Ser Cys His Ala Pro Ala

50 55 60

Val Thr Gln His Ala Pro Tyr Phe Lys Gly Thr Ala Val Val Asn Gly

65 70 75 80

Glu Phe Lys Asp Leu Ser Leu Asp Asp Phe Lys Gly Lys Tyr Leu Val

85	90	95
Leu Phe Phe Tyr Pro Leu Asp Phe Thr Phe Val Cys Pro Thr Glu Ile		
100	105	110
Val Ala Phe Ser Asp Lys Ala Asn Glu Phe His Asp Val Asn Cys Glu		
115	120	125
Val Val Ala Val Ser Val Asp Ser His Phe Ser His Leu Ala Trp Ile		
130	135	140
Asn Thr Pro Arg Lys Asn Gly Gly Leu Gly His Met Asn Ile Ala Leu		
145	150	155
Leu Ser Asp Leu Thr Lys Gln Ile Ser Arg Asp Tyr Gly Val Leu Leu		
165	170	175
Glu Gly Ser Gly Leu Ala Leu Arg Gly Leu Phe Ile Ile Asp Pro Asn		
180	185	190
Gly Val Ile Lys His Leu Ser Val Asn Asp Leu Pro Val Gly Arg Ser		
195	200	205
Val Glu Glu Thr Leu Arg Leu Val Lys Ala Phe Gln Tyr Val Glu Thr		
210	215	220
His Gly Glu Val Cys Pro Ala Asn Trp Thr Pro Asp Ser Pro Thr Ile		
225	230	235
Lys Pro Ser Pro Ala Ala Ser Lys Glu Tyr Phe Gln Lys Val Asn Gln		
245	250	255

<210> 5

<211> 257

<212> PRT

<213> Rattus norvegicus

<400> 5

Met Ala Ala Ala Ala Gly Arg Leu Leu Trp Ser Ser Val Ala Arg Pro

Ala Ser Thr Ile Phe Arg Ser Ile Ser Ala Ser Thr Val Leu Arg Pro
 20 25 30
 Val Ala Ser Arg Arg Thr Cys Leu Thr Asp Met Leu Trp Ser Ala Cys
 35 40 45
 Pro Gln Ala Lys Phe Ala Phe Ser Thr Ser Ser Phe His Thr Pro
 50 55 60
 Ala Val Thr Gln His Ala Pro His Phe Lys Gly Thr Ala Val Val Asn
 65 70 75 80
 Gly Glu Phe Lys Glu Leu Ser Leu Asp Asp Phe Lys Gly Lys Tyr Leu
 85 90 95
 Val Leu Phe Phe Tyr Pro Leu Asp Phe Thr Phe Val Cys Pro Thr Glu
 100 105 110
 Ile Val Ala Phe Ser Asp Lys Ala Asn Glu Phe His Asp Val Asn Cys
 115 120 125
 Glu Val Val Ala Val Ser Val Asp Ser His Phe Ser His Leu Ala Trp
 130 135 140
 Ile Asn Thr Pro Arg Lys Asn Gly Gly Leu Gly His Met Asn Ile Thr
 145 150 155 160
 Leu Leu Ser Asp Leu Thr Lys Gln Ile Ser Arg Asp Tyr Gly Val Leu
 165 170 175
 Leu Glu Ser Ala Gly Ile Ala Leu Arg Gly Leu Phe Ile Ile Asp Pro
 180 185 190
 Asn Gly Val Ile Lys His Leu Ser Val Asn Asp Leu Pro Val Gly Arg
 195 200 205
 Ser Val Glu Glu Pro Leu Arg Leu Val Lys Ala Phe Gln Phe Val Glu
 210 215 220
 Thr His Gly Glu Val Cys Pro Pro Asn Trp Thr Pro Glu Ser Pro Thr
 225 230 235 240
 Ile Lys Pro Ser Pro Thr Ala Ser Lys Glu Tyr Phe Glu Lys Val His

245

250

255

Gln

<210> 6

<211> 257

<212> PRT

<213> mouse

<400> 6

Met Ala Ala Ala Ala Gly Arg Leu Leu Trp Ser Ser Val Ala Arg His

5

10

15

Ala Ser Ala Ile Ser Arg Ser Ile Ser Ala Ser Thr Val Leu Arg Pro

20

25

30

Val Ala Ser Arg Arg Thr Cys Leu Thr Asp Ile Leu Trp Ser Ala Ser

35

40

45

Ala Gln Gly Lys Ser Ala Phe Ser Thr Ser Ser Phe His Thr Pro

50

55

60

Ala Val Thr Gln His Ala Pro Tyr Phe Lys Gly Thr Ala Val Val Asn

65

70

75

80

Gly Glu Phe Lys Glu Leu Ser Leu Asp Asp Phe Lys Gly Lys Tyr Leu

85

90

95

Val Leu Phe Phe Tyr Pro Leu Asp Phe Thr Phe Val Cys Pro Thr Glu

100

105

110

Ile Val Ala Phe Ser Asp Lys Ala Asn Glu Phe His Asp Val Asn Cys

115

120

125

Glu Val Val Ala Val Ser Val Asp Ser His Phe Ser His Leu Ala Trp

130

135

140

Ile Asn Thr Pro Arg Lys Asn Gly Gly Leu Gly His Met Asn Ile Thr

145

150

155

160

Leu Leu Ser Asp Ile Thr Lys Gln Ile Ser Arg Asp Tyr Gly Val Leu

	165	170	175
Leu Glu Ser Ala Gly Ile Ala Leu Arg Gly Leu Phe Ile Ile Asp Pro			
	180	185	190
Asn Gly Val Val Lys His Leu Ser Val Asn Asp Leu Pro Val Gly Arg			
	195	200	205
Ser Val Glu Glu Thr Leu Arg Leu Val Lys Ala Phe Gln Phe Val Glu			
	210	215	220
Thr His Gly Glu Val Cys Pro Ala Asn Trp Thr Pro Glu Ser Pro Thr			
	225	230	235
Ile Lys Pro Ser Pro Thr Ala Ser Lys Glu Tyr Phe Glu Lys Val His			
	245	250	255
Gln			

<210> 7

<211> 21

<212> DNA

<213> Artificial Sequence

<400> 7

tgcagtttca gtggattccc a

<210> 8

<211> 18

<212> DNA

<213> Artificial Sequence

<400> 8

ttcatgtggc ccaaacca

<210> 9

<211> 28

<212> DNA

<213> Artificial Sequence

<400> 9

tcttgccctgg atcaacacac caagaaag

<210> 10

<211> 22

<212> DNA

<213> Artificial Sequence

<400> 10

ccctctgctt gctgatgtga ct

<210> 11

<211> 20

<212> DNA

<213> Artificial Sequence

<400> 11

cctgttaaggcg atgccctcat

<210> 12

<211> 29

<212> DNA

<213> Artificial Sequence

<400> 12

agcttttgtccc agaattacgg cgtgttggaa

<210> 13

<211> 19

<212> DNA

<213> Artificial Sequence

<400> 13

gcggatgaag agaggcatg

<210> 14

<211> 18

<212> DNA

<213> Artificial Sequence

<400> 14

gccacacccgt cctttcca

<210> 15

<211> 23

<212> DNA

<213> Artificial Sequence

<400> 15

tggagacctg ggcaatgtgg ctg

<210> 16

<211> 17

<212> DNA

<213> Artificial Sequence

<400> 16

acgggtgcic agcciccc

<210> 17

<211> 18

<212> DNA

<213> Artificial Sequence

<400> 17
aggcttgc cctgc

<210> 18
<211> 25
<212> DNA
<213> Artificial Sequence
<400> 18
cagcctgcac tgaggagatc cctca

<210> 19
<211> 28
<212> DNA
<213> Artificial Sequence
<400> 19
aaccgcggtc gtggctttg cgttct

<210> 20
<211> 30
<212> DNA
<213> Artificial Sequence
<400> 20
gcgccttagctt attatggac ctctcaaag

<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence
<400> 21

ttacagattg ccgcctgctc

<210> 22

<211> 20

<212> DNA

<213> Artificial Sequence

<400> 22

ccagcagtggtt aataaggcct

<210> 23

<211> 25

<212> DNA

<213> Artificial Sequence

<400> 23

aatcacgacc cactgcaagg aacca

<210> 24

<211> 19

<212> DNA

<213> Artificial Sequence

<400> 24

tgcaccacca actgcttag

<210> 25

<211> 19

<212> DNA

<213> Artificial Sequence

<400> 25

ggatgcaggg atgaatgttc

<210> 26
<211> 23
<212> DNA
<213> Artificial Sequence
<400> 26
cagaagactg tggatggccc ctc

<210> 27
<211> 877
<212> mRNA
<213> Rattus norvegicus
<400> 27

gaattcggca cgagggtcg t ccgcgtgtcc ggctcttgcc cacgcagtca tggctccgg 60
caacgcgcac atcgaaagc ctgccccgtga ctgcacgggc accgcccgtgg tggatggtgc 120
ctttaaggaa atcaagcttt cagactacag agggaaagtac gtggccctt ttttctatcc 180
actggacttc actttttttt gccccacgga gatcatcgct tttagcgacc acgctgagga 240
cttccgaaag cttaggctgctg agggtgcgtgg agtgcgtgtg gactctcagt tcacccacct 300
ggccctggatc aataccccac ggaaggaggg aggcttgggc ccactgaata tccctctgtc 360
tgtgtatgtg actaaaagct tgcctcagaa ttacggcggt tgaaaaatg atgagggcat 420
cgcttacagg ggcctcttta tcatcgatgc caagggtgtc ctgcgccaga tcacagtc aa 480
cgacctacct gtgggacgct ctgtatgtca ggctctccgc ctgcgtccagg cccttcagta 540
tacagatgag catgggaaag tcgttgc tggctggaaag cccggcagtg acaccatcaa 600
accctaattgt gatgacagca aggaatactt ctccaaacac aactgagatg gttaaacatc 660
ggtgagccgt aatcccgat ctacccgtcg cccttacccgt gatgtccgt gctggcccg 720
aaaacgcgtat atcttccctt acattctaaa gggctggag gctaggccga ggcttttcata 780
ttacccacctt ggaatctggt gaatagtgac cctgccccgtga gcacacccag ctggcccg 840
gtctatagga aaccaataaaa gtataggga cagtgtia 877

<210> 28

<211> 198

<212> PRT

<213> Rattus norvegicus

<400> 28

Met Ala Ser Gly Asn Ala His Ile Gly Lys Pro Ala Pro Asp Phe Thr				
	5	10	15	
Gly Thr Ala Val Val Asp Gly Ala Phe Lys Glu Ile Lys Leu Ser Asp				
	20	25	30	
Tyr Arg Gly Lys Tyr Val Val Leu Phe Phe Tyr Pro Leu Asp Phe Thr				
	35	40	45	
Phe Val Cys Pro Thr Glu Ile Ile Ala Phe Ser Asp His Ala Glu Asp				
	50	55	60	
Phe Arg Lys Leu Gly Cys Glu Val Leu Gly Val Ser Val Asp Ser Gln				
	65	70	75	80
Phe Thr His Leu Ala Trp Ile Asn Thr Pro Arg Lys Glu Gly Gly Leu				
	85	90	95	
Gly Pro Leu Asn Ile Pro Leu Leu Ala Asp Val Thr Lys Ser Leu Ser				
	100	105	110	
Gln Asn Tyr Gly Val Leu Lys Asn Asp Glu Gly Ile Ala Tyr Arg Gly				
	115	120	125	
Leu Phe Ile Ile Asp Ala Lys Gly Val Leu Arg Gln Ile Thr Val Asn				
	130	135	140	
Asp Leu Pro Val Gly Arg Ser Val Asp Glu Ala Leu Arg Leu Val Gln				
	145	150	155	160
Ala Phe Gln Tyr Thr Asp Glu His Gly Glu Val Cys Pro Ala Gly Trp				
	165	170	175	
Lys Pro Gly Ser Asp Thr Ile Lys Pro Asn Val Asp Asp Ser Lys Glu				
	180	185	190	

Tyr Phe Ser Lys His Asn

195

<210> 29

<211> 560

<212> mRNA

<213> Homo sapiens

<400> 29

atggcgacga aggccgtgtc cgtgctgaag ggcgacggcc cagtgcaggg catcatcaat 60
ttcgagcaga aggaaagtaa tggaccagtg aagggtgtggg gaagcattaa aggactgact 120
gaaggcctgc atggattcca ttttcatgag tttggagata atacggcagg ctgtaccagt 180
gcaggcccttc actttaatcc tctatccaga aaacacggtg ggccaaagga tgaagagagg 240
catgttggag acttggcaa tgtgactgt gacaaagatg gtgtggccga tgtgtctatt 300
gaagatctg tgatctact ctctaggagac cattgcatca ttggccgcac actggggtc 360
catgaaaaag cagatgactt gggcaaaggt ggaaatgaag aaagtacaaa gacaggaaac 420
gttgttggcttg tggtgtaatt gggatcgccc aataaacatt cccttggatg 480
tagtctgagg ccccttaact catctgttat cctgctagct gttagaaatgt atccctgataa 540
acattaaaca ctgtaatctt 560

<210> 30

<211> 154

<212> PRT

<213> Homo sapiens

<400> 30

Met Ala Thr Lys Ala Val Cys Val Leu Lys Gly Asp Gly Pro Val Gln

5

10

15

Gly Ile Ile Asn Phe Glu Gln Lys Glu Ser Asn Gly Pro Val Lys Val

20

25

30

Trp Gly Ser Ile Lys Gly Leu Thr Glu Gly Leu His Gly Phe His Val

35 40 45
His Glu Phe Gly Asp Asn Thr Ala Gly Cys Thr Ser Ala Gly Pro His
50 55 60
Phe Asn Pro Leu Ser Arg Lys His Gly Gly Pro Lys Asp Glu Glu Arg
65 70 75 80
His Val Gly Asp Leu Gly Asn Val Thr Ala Asp Lys Asp Gly Val Ala
85 90 95
Asp Val Ser Ile Glu Asp Ser Val Ile Ser Leu Ser Gly Asp His Cys
100 105 110
Ile Ile Gly Arg Thr Leu Val Val His Glu Lys Ala Asp Asp Leu Gly
115 120 125
Lys Gly Gly Asn Glu Glu Ser Thr Lys Thr Gly Asn Ala Gly Ser Arg
130 135 140
Leu Ala Cys Gly Val Ile Gly Ile Ala Gln
145 150