Bestimmte Integral + Fläche A unter Funktion f im Bereich [a,b] bestimmen + $A = \int_a^b f(x) dx = F(b) - F(a)$, wenn + $f : [a,b] - - > \mathbb{R}$ stetig + $F : [a,b] - - > \mathbb{R}$ eine Stammfunktion von f + Substitutionsregel beim bestimmten Regal + Grenzen werden bei Substitution verändert + $x = \dots = g(t) + dx = g'(t)dt + a = g^{-1}(a) + b = g^{-1}(b)$ + keine Rücksubstitution notwendig

Herleitung

- viele untere und obere Schranken für Fläche finden
 - Unterschied zwischen Schranken muss beliebig klein werden
- Fläche wird in x Bereiche unterteilt
 - Untersummen und Obersummen entstehen
 - desto mehr Zerteilungen,
 - * desto größer die Untersummen
 - * desto kleiner die Obersummen
 - * größte Untersumme \leq kleinste Obersumme
- Fläche = Infimum der Obersummen = Supremum der Untersummen
 - gleich, wenn genug Zerteilungen stattfanden
 - Riemann-Darboux-Integral
 - beide gleich <==> f ist Riemann-integrierbar auf [a,b]

Riemannsches Integralibilitätskriterium

- f ist Riemann-integrierbar auf [a,b], wenn
 - $\ \forall \varepsilon > 0 \\ \exists Z : \bar{S}(f,Z) \underline{S}(f,Z) < \varepsilon$
- \bullet Sei f<==> fist Riemann-integrierbar
 - Beweis VO#35
- \bullet Sei f monoton (wachsend/fallend) <==> f ist Riemann-integrierbar
 - Beweis VO#35
- \bullet Vorzeichenwechsel in [a,b] ==> Fläche mit positiven y Fläche mit negativen y
- $\bullet\,$ MWS der Integralrechnung
 - Sei f:[a,b] –> \mathbb{R} stetig $* \exists \alpha \in [a,b] : \int_a^b f(x) dx = f(\alpha)(b-a)$
 - MWS
 - * Integralwert liegt zwischen Minimum und Maximum
 - * Laut MWS: jeder Wert zwischen Minimum und Maximum wird angenommen

Eigenschaften

• a < b < c ==>
$$\int_a^b f(x) + \int_b^c f(x) = \int_a^c f(x)$$

- $\int_a^b f(x) = -\int_b^a f(x)$ Linearität
- - Summe von Integrale = Integral von Summen
 - Konstanten darf man herausziehen

[[Integral rechnung]]