Lecture 13: Costly State Verification

Juan Herreño UCSD

May 12, 2025

Financial Markets

- Core role of financial markets:
 - Match savers with borrowers
 - Allow funds to flow from those that have more funds than projects to those that have more projects than funds
- Core friction in financial markets:
 - Agency problem with asymmetric information
 - Savers know less about projects than borrowers
 - Borrowers can take too much risk / put in too little effort / lie about outcome (moral hazard)
 - Saver can't observe borrower's / project's "type" (adverse selection)

- Entrepreneur has a project that requires 1 unit of resources
- Entrepreneur has wealth W < 1
- Must obtain 1 W of outside financing
- Expected output of project: γ
 - Heterogeneous across projects
 - Publicly observable (no adverse selection)
- Actual output is distributed $Y \sim U[0, 2\gamma]$

- Outside investor must bear some risk
 - Output realization can be lower than 1 W
- For simplicity: Entrepreneur and investor are risk neutral
- Outside option: Technology that yields a net return of *r*
- Perfect competition among outside investors
 - Implies expected net return to outside investors is r

- Socially efficient to undertake project if $\gamma > 1 + r$
- · Entrepreneur undertakes project if

$$E[Y-P] > (1+r)W$$

where ${\it P}$ denotes payments to outside investor

- Entrepreneur knows actual output but investor does not
- Outside investor must pay c to verify actual output
- Costly state verification model of asymmetric information (Townsend, 1979)

- Claim: Projects with $\gamma \ge 1 + r$ get financing, others do not.
- Outside investor gets an expected payment (1+r)(1-W)

- Claim: Projects with $\gamma \ge 1 + r$ get financing, others do not.
- Outside investor gets an expected payment (1 + r)(1 W)
- Many contracts can achieve this: Equity contract is one!

- Claim: Projects with $\gamma \ge 1 + r$ get financing, others do not.
- Outside investor gets an expected payment (1+r)(1-W)
- Many contracts can achieve this: Equity contract is one!
 - Outside investor gets fraction $(1+r)(1-W)/\gamma$ of output

$$E\left[\frac{(1+r)(1-W)}{\gamma}Y\right] = (1+r)(1-W)$$

- Claim: Projects with $\gamma \ge 1 + r$ get financing, others do not.
- Outside investor gets an expected payment (1+r)(1-W)
- Many contracts can achieve this: Equity contract is one!
 - Outside investor gets fraction $(1+r)(1-W)/\gamma$ of output

$$E\left[\frac{(1+r)(1-W)}{\gamma}Y\right] = (1+r)(1-W)$$

Entrepreneur's expected income is

$$\gamma - (1+r)(1-W) = (1+r)W + \gamma - (1+r)$$

which exceeds (1+r)W if $\gamma \ge 1+r$, so entrepreneur is better off

Optimal Contract with Asymmetric Info

- · With asymmetric information, outside investor may need to verify output
- Expected payments to outside investor:

$$(1+r)(1-W)$$
 + expected cost of verifying output

- Efficiency dictates minimizing the cost of verifying output
- Entrepreneur gets output (exogenous) minus payments to investor
 - Wants to minimize payments to outside investor
 - Which means minimizing fraction of time investor needs to verifying output

Optimal Contract with Asymmetric Info

- Optimal contract: Simple debt contract
 - If $Y \ge D$, investor gets D and does not verify output
 - If Y < D, investor verifies output and gets Y
- Intuitively:
 - − Entrepreneur "borrows" 1 − W
 - Pays back D when she can
 - Defaults when Y < D
 (in which case investor verifies output and gets all of it)

Source: Romer (2019)

Why Debt?

- When investor does not verify output, payment cannot depend on actual output
 - Entrepreneur would have an incentive to misreport
 - Always report lowest non-verified output level
- Payment with verification cannot exceed payment without verification
 - Entrepreneur would have an incentive to misreport
 - Always report non-verified output levels when output is at higher levels
- Payment with verification cannot equal D
 - Might as well not verify and save verification cost

Why Debt?

- Payment is D whenever output exceeds D
 - If lower, possible to increase investor's expected returns and lower expected verification costs by raising payment to D
- Investor must verify if output is less than D
 - Entrepreneur cannot pay D in this case
 - So, investor must verify
- Payment equals output if output is less than D
 - If lower, possible to increase investor's expected returns and lower expected verification costs by raising payment to Y

Optimal pure strategy contract. Subgame perfect? Bankcruptcy as commitment device?

Investor Expected Net Revenue

$$R(D) = \begin{cases} \frac{2\gamma - D}{2\gamma}D + \frac{D}{2\gamma}\left(\frac{D}{2} - c\right) & \text{if} \quad D \le 2\gamma \\ \gamma - c & \text{if} \quad D > 2\gamma \end{cases}$$

- Recall that Y ~ U[0, 2γ]
- If $D \le 2\gamma$ probability output is above D is $(2\gamma D)/(2\gamma)$
- Expected output if Y < D is D/2

Source: Romer (2019). Raising D above $2\gamma - c$ is not worth the extra verification cost.

Source: Romer (2019). V_1 , V_2 , V_3 are three levels of required revenue (1+r)(1-W).

Determination of D

- If required net revenue exceed R^{MAX}, project not funded
 - Example of credit rationing
- If required net revenue below R^{MAX}, project funded and equilibrium value of D given by smaller solution to

$$R(D) = (1+r)(1-W)$$

which is

$$D^*=2\gamma-c-\sqrt{(2\gamma-c)^2-4\gamma(1+r)(1-W)}$$

(Competition among investors drives D down to lower value)

Expected Verification Costs

Expected verification costs are

$$A(c,r,W,\gamma) = \frac{D^*}{2\gamma}c$$

$$= \left[\frac{2\gamma - c}{2\gamma} - \sqrt{\left(\frac{2\gamma - c}{2\gamma}\right)^2 - \frac{(1+r)(1-W)}{\gamma}}\right]c$$

• Derivatives of $A(c, r, W, \gamma)$:

$$A_{c} > 0$$
, $A_{r} > 0$, $A_{W} < 0$, $A_{\gamma} < 0$

Will Project Be Undertaken?

Project will be undertaken if:

• Investor willing to lend:

$$R^{MAX} \geq (1+r)(1-W)$$

• Entrepreneur's return above outside option:

$$\gamma - (1+r)(1-W) - A(c,r,W,\gamma) \ge (1+r)W$$

Will Project Be Undertaken?

- With symmetric information project undertaken if $\gamma \geq (1+r)$
- With asymmetric information, other considerations come into play
- Entrepreneur's wealth matters
 - Easier to finance when entrepreneur has more wealth (more skin in the game)
 - Less debt means lower D* and therefore less default/verification

Cost of Outside Finance

- Cost of outside finance higher than of inside finance
 - Cost of inside finance:

$$1 + r$$

Cost of outside finance

$$1+r+\frac{A(c,r,W,\gamma)}{1-W}$$

Will Project Be Undertaken?

- Financial system itself matters for whether projects are funded
- An increase in verification cost c reduces investment
- Two interpretations:
 - Efficiency of financial system in processing information and monitoring borrowers is important for investment
 - Financial system itself needs funding
 - Shocks to the financial system increase its cost of outside finance and reduce its ability to fund investment (e.g., Gertler-Kiyotaki 11)
 - Large empirical literature (e.g., Peek-Rosengren 00, Khwaja-Mian 08, Chodorow-Reich 14, Huber 18)

Financial Accelerator

- Financial frictions amplify macro shocks
 - Bad shock lowers profitability and entrepreneurial wealth
 - Increases agency costs
 - Resulting fall in investment amplifies initial shock
- Feedback loop can cause large amplification
 - Fall in investment can further weaken profitability and entrepreneurial wealth (especially in a Keynesian model)
 - Further increases agency costs and weakens investment.
- Strong enough feedback can result in multiple equilibria
- Key theoretical references: Bernanke-Gertler 89, Kiyotaki-Moore 97, Bernanke-Gertler-Gilchrist 99