Lab: Forward Pass

ACTL3143 & ACTL5111 Deep Learning for Actuaries

Figure 1: The structure of a neural network.

At each node in the hidden and output layers, the value z is calculated as a weighted sum of the node outputs in the previous layer, plus a bias. In other words:

$$z = Xw + b$$

where X is a $n \times d_x$ matrix representing the weights, w is an $d_x \times q$ matrix representing the weights (q representing the number of neurons in the current layer), and \boldsymbol{b} is an $n \times q$ matrix representing the biases. n represents the number of observations and d_x represents the dimension of the input.

Example: Calculate the Neuron Values in the First Hidden Layer

$$oldsymbol{X} = egin{pmatrix} 1 & 2 \ 3 & -1 \end{pmatrix}, oldsymbol{w} = egin{pmatrix} 2 \ -1 \end{pmatrix}, oldsymbol{b} = egin{pmatrix} 1 \ 1 \end{pmatrix}$$

We can calculate the neuron value as \boldsymbol{z} follows:

$$z = Xw + b$$

$$= \begin{pmatrix} & & \\ & & \end{pmatrix} \begin{pmatrix} & \\ \end{pmatrix} + \begin{pmatrix} & \\ & \end{pmatrix}$$

$$= \begin{pmatrix} & & \\ & & \end{pmatrix} + \begin{pmatrix} & \\ & \end{pmatrix}$$

$$= \begin{pmatrix} 1\\ 8 \end{pmatrix}$$

Alternatively, one can use Python:

```
import numpy as np
X = np.array([[1, 2], [3, -1]])
w = np.array([[2], [-1]])
b = np.array([[1], [1]])
print(X @ w + b)
```

[[1] [8]]

Exercises

1. $(2 \times 2 \text{ matrices})$ Calculate z, given:

1.
$$\mathbf{X} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathbf{w} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathbf{b} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

2. $\mathbf{X} = \begin{pmatrix} 1 & -1 \\ 0 & 5 \end{pmatrix} \mathbf{w} = \begin{pmatrix} -1 \\ 8 \end{pmatrix} \mathbf{b} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$

2. $(3 \times 3 \text{ matrices})$ Calculate z, given:

1.
$$\mathbf{X} = \begin{pmatrix} 4 & 4 & 0 \\ 2 & 2 & 4 \\ 2 & 4 & 1 \end{pmatrix} \mathbf{w} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \mathbf{b} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$

2. $\mathbf{X} = \begin{pmatrix} 6 & -6 & -2 \\ -3 & -1 & -5 \\ 1 & 1 & -7 \end{pmatrix} \mathbf{w} = \begin{pmatrix} 4 \\ 4 \\ -8 \end{pmatrix} \mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

3. (non-square matrices) Calculate z, given:

1.
$$\mathbf{X} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix} \mathbf{w} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \mathbf{b} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

2.
$$\boldsymbol{X} = \begin{pmatrix} 1 & -1 \\ 0 & 5 \\ 2 & -2 \end{pmatrix} \boldsymbol{w} = \begin{pmatrix} 5 \\ -7 \end{pmatrix} \boldsymbol{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

4. If X is a 2×3 matrix, what does this say about the neural network's architecture? What about a 3×2 matrix?

Activation Functions

The result of z = Xw + b will be in the range $(-\infty, \infty)$. However, sometimes we might want to constrain the values of z. We apply an activation function to z to do this. Activation functions include:

- Sigmoid: S(z_i) = 1/(1+e^{-z_i}, constrains each value in z to (0,1)
 Tanh: tanh(z_i) = e^{2z_i-1}/_{e^{2z_i+1}}, constrains each value in z to (-1,1).
 ReLU: ReLU(z_i) = max(0, z_i), only activates for a value of z if it is positive.
- Softmax: $\sigma(z_i) = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$. This maps the values in z so that each value is in [0,1] and the sum is equal to 1. This is useful for representing probabilities and is often used for the output layer.

Example: Applying Activation Functions

Given $z = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$, calculate the resulting vector $a = \operatorname{activation}(z)$ using the four activation

• Sigmoid:

$$S(z) =$$

• Tanh:

$$tanh(z) =$$

• ReLU

$$ReLU(z) =$$

• Softmax

$$\sigma(z) =$$

Exercises

- Given z = (8)/6, calculate the resulting vector a = activation(z) using the four activation functions above.
 Given z = (-8)/9, calculate the resulting vector a = activation(z) using the four
- activation functions above.

3. For extra practice, try calculating the vector \boldsymbol{a} , using the results of the exercises in section 1.

Final Output

Example: Calculate the Final Output

- 1. With the activations, weights, and activation functions given in the above figure and a constant bias of 1 for each node, calculate the values of **A**, **B**, **C**, and **D**.
- 2. If the C node represents "YES" and the D node represents "NO", what final value is predicted by the neural network?

Hint: Write out

1. The input matrix X (should be 1×3):

$$oldsymbol{X}=\Big(\qquad \qquad \Big)\,.$$

2. The weight matrix \boldsymbol{w}_1 between the input layer and the first hidden layer (should be 3×2):

$$oldsymbol{w}_1 = \left(egin{array}{ccc} oldsymbol{b}_1 = \left(egin{array}{ccc} oldsymbol{b}_1 \end{array}
ight).$$

3. The weight matrix w_2 between the first hidden layer and the output layer (should be 2×2):

$$oldsymbol{w}_2 = igg(egin{array}{c} oldsymbol{b}_2 = igg(egin{array}{c} oldsymbol{b}_2 = igg(egin{array}{c} oldsymbol{b}_2 \end{array} igg).$$

See more details in Week_2_Tutorial_Notebook