

Task History

Initiating Search

February 21, 2025, 7:15 PM

Substances:

Filtered By:

Structure Match: Substructure

Search Tasks

Task		Search Type	View
Returned Substance Results + Filters (2,557)		Substances	View Results
Exported: Retr	rieved Related Reaction Results + Filters (295)	■ Reactions	View Results
Filtered By:			
Substance Role:	Reactant, Reagent, Solvent		
Catalyst:	[(2,3,5,6-η)-Bicyclo[2.2.1]hepta-2,5-diene] (triphenylethenyl)(triphenylphosphine)rhodium, (η²-Ethene)[<i>N,N</i> -(1,2-dimethyl-1,2- ethanediylidene)bis[2,3,4,5,6- pentafluorobenzenamine-κ <i>N</i>]](2,2,2- trifluoroacetato-κ <i>O</i>)rhodium, [(3a,4,5,6,6a-η)- (13c <i>R</i>)-3,7-Dihydro-2,8-dimethoxy-3a <i>H</i> - cyclopenta[6,7]cycloocta[2,1-æ3,4-æ']dinaphthalen- 3a-yl]bis(η²-ethene)rhodium, (η ⁵ -2,4- Cyclopentadien-1-yl)diiodorhodium, Bis[(1,2,3,4,5- η)-1,3-bis(ethoxycarbonyl)-2,4,5-trimethyl-2,4- cyclopentadien-1-yl]di-μ-chlorodichlorodirhodium, Bis[(1,2,5,6-η)-1,5-cyclooctadiene]di-μ- hydroxydirhodium, Bis[2,6-bis(1- methylethyl)phenyl (2,3,5,6-η)-(1 <i>R</i> ,4 <i>R</i> ,7 <i>R</i>)-5-methyl- 7-(1-methylethyl)bicyclo[2.2.2]octa-2,5-diene-2- carboxylate]di-μ-chlorodirhodium, Bis[(3a,4,5,6,6a- η)-(13b <i>R</i>)-3,7-dihydro-2,8-dimethoxy-3a <i>H</i> - cyclopenta[6,7]cycloocta[2,1-æ3,4-a']dinaphthalen- 3a-yl]di-μ-iododiiodorhodium, Bis(acetato-κ <i>O</i>) [(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4- cyclopentadien-1-yl]rhodium, Bis[μ-(acetato-κ <i>O</i> :κ <i>O</i> :)]bis[(1,2,5,6-η)-1,5- cyclooctadiene]dirhodium, Bis[μ-(acetato-κ <i>O</i> :κ <i>O</i> :)]bis(acetato-κ <i>O</i>)bis[(1,2,3,4,5-η)-1,2,3,4,5- pentamethyl-2,4-cyclopentadien-1-yl]dirhodium,		

CAS SciFinder® Page 2

Bis[dichloro[n5-(pentamethylcyclopentadienyl)]rhodium], Dicarbonylrhodium acetylacetonate, Di-µchlorobis[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4cyclopentadien-1-yl]dirhodium, Di-µchlorobis[(1,2,5,6-η)-1,5-cyclooctadiene]dirhodium, Di-μ-chlorodichlorobis[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]dirhodate(2-), Di-μ-chlorodichlorobis[(3a,4,5,6,6a-η)-(13bR)-3,7dihydro-2,8-dimethoxy-3aHcyclopenta[6,7]cycloocta[2,1-a:3,4-a']dinaphthalen-3a-yl]dirhodium, Di-µchlorodichlorobis[(3a,4,5,6,6a-η)-(13bR)-5-(1,1dimethylethyl)-3,7-dihydro-2,8-dimethoxy-3aHcyclopenta[6,7]cycloocta[2,1-a:3,4-a']dinaphthalen-3a-yl]dirhodium, Di-µchlorodichlorobis[(3a,4,5,6,6a-η)-(3aR,13bR)-3,7dihydro-2,8-bis(methylenemethyl)-3aHcyclopenta[6,7]cycloocta[2,1-a:3,4-a']dinaphthalen-3a-yl]dirhodium, Di-μ-chlorodichlorobis(η⁵-2,4cyclopentadien-1-yl)dirhodium, Dirhodium tetraacetate, Rhodium(1+), bis[(1,2,5,6-n)-1,5cyclooctadiene]-, tetrafluoroborate(1-) (1:1), Rhodium(1+), bis[(1,2,5,6-η)-1,5-cyclooctadiene]-, tetrakis[3,5-bis(trifluoromethyl)phenyl]borate(1-) (1:1), Rhodium(1+), bis(acetonitrile)[(1,2,5,6-η)-1,5cyclooctadiene]-, tetrafluoroborate(1-) (1:1), Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoroantimonate(1-) (1:2), Rhodium, bis[μ-[1-[2,6-bis(1-methylethyl)phenyl]-2-(diphenylphosphino-κ*P*)-1*H*-imidazole-κ*N*³]]-μcarbonyldichlorodi-, (Rh-Rh), Rhodium, tetracarbonyldi-µ-chlorodi-, Rhodium, tetrakis[µ-[α-(1,1-dimethylethyl)-1,3-dihydro-1,3-dioxo-2*H*isoindole-2-acetato-κ O^2 :κ O^2 ']]di-, (*Rh-Rh*), stereoisomer, Rhodium, tetrakis[μ-(α,αdiphenylbenzeneacetato-κO:κO')]di-, (Rh-Rh), Rhodium trichloride, Rhodium trichloride trihydrate, Tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]rhodium(2+) Journal

Document

Type:

Language: English

Reactions (194)

View in CAS SciFinder

Steps: 1 Yield: 99%

Steps: 1 Yield: 98%

31-116-CAS-19505012

Steps: 1 Yield: 99%

Dual Effects of Cyclopentadienyl Ligands on Rh(III)-Catalyzed Dehydrogenative Arylation of Electron-Rich Alkenes

1.1 Reagents: Acetic acid-d₄, Copper diacetate monohydrate, Oxygen, Silver hexafluoroantimonate

Catalysts: (η⁵-2,4-Cyclopentadien-1-yl)diiodorhodium

Solvents: Tetrahydrofuran; 6 h, 80 °C

Experimental Protocols

By: Lin, Weidong; et al

ACS Catalysis (2018), 8(9), 8070-8076.

Scheme 2 (2 Reactions)

> Suppliers (94)

31-614-CAS-30553997

Steps: 1 Yield: 98%

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver hexafluoroantimonate, Di- μ -chlorodichlorobis [(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl] dirhodate(2-)

Solvents: Acetic acid- d_4 ; 24 h, 60 °C; 60 °C \rightarrow rt

1.2 **Reagents:** Sodium bicarbonate

Solvents: Dichloromethane, Water; rt

Experimental Protocols

Bronsted Acid Enhanced Rhodium-Catalyzed Conjugate Addition of Aryl C-H Bonds to α,β -Unsaturated Ketones under Mild Conditions

By: Yang, Lei; et al

Chemistry - A European Journal (2012), 18(31), 9511-9515, S9511/1-S9511/93.

31-614-CAS-25072964

Steps: 1

.1 **Catalysts:** Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)] rhodium], Silver hexafluoroantimonate

Solvents: Acetic anhydride, Acetic acid-d; overnight, 80 °C

Experimental Protocols

Rhodium(III)-Catalyzed Selective C-H Acetoxylation and Hydroxylation Reactions

By: Wu, Yunxiang; et al

Organic Letters (2017), 19(13), 3532-3535.

Steps: 1 Yield: 98%

Steps: 1 Yield: 98%

Steps: 1 Yield: 98%

Scheme 3 (1 Reaction)

31-116-CAS-20877099

1.1 **Reagents:** Silver acetate, Acetic acid- d_4

Catalysts: Di-μ-chlorobis[(1,2,5,6-η)-1,5-cyclooctadiene]

dirhodium, Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 12 h, 100 °C

Experimental Protocols

Rh^{III}-Catalyzed Synthesis of Cyclopenta[b]carbazoles via Cascade C-H/C-C Bond Cleavage and Cyclization Reactions: Using Amide as a Traceless Directing Group

By: Wang, Yanwei; et al

Organic Letters (2020), 22(1), 83-87.

Scheme 4 (1 Reaction)

31-614-CAS-24765656

Steps: 1 Yield: 98%

Steps: 1 Yield: 98%

1.1 Reagents: Silver acetate, Acetic acid-d₄, Selenium Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro antimonate(1-) (1:2)

Solvents: (Trifluoromethyl)benzene; 2 h, 80 °C

Experimental Protocols

Synthesis of Benzois oselenazolones via Rh(III)-Catalyzed Direct Annulative Selenation by Using Elemental Selenium

By: Xu-Xu, Qing-Feng; et al

Chemistry - A European Journal (2021), 27(71), 17952-17959.

Scheme 5 (1 Reaction)

31-614-CAS-27876697

Steps: 1 Yield: 98%

1.1 Reagents: Silver acetate, Acetic acid-*d*Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-ρentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoro antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 12 h, 130 °C

Highly Efficient Rhodium-Catalyzed Oxindole-Directed
Oxidative Heck-Type Reaction of N-Aryloxindoles with Alkenes

By: Li, Wei-Huan; et al

Asian Journal of Organic Chemistry (2018), 7(12), 2448-2451.

Steps: 1 Yield: 90-98%

Scheme 6 (12 Reactions)

31-614-CAS-23995355

1.1 Reagents: Cupric acetate, Acetic acid-*d*, Water-*d*₂ Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoro antimonate(1-) (1:2); 60 h, 100 °C

Experimental Protocols

Steps: **1** Yield: **98%**

Steps: 1 Yield: 96%

Rh^{III}-Catalyzed Direct Heteroarylation of C(sp³)-H and C(sp²)-H Bonds in Heterocycles with N-Heteroaromatic Boronates

By: Wang, Huai-Wei; et al

Organic Letters (2021), 23(18), 7177-7182.

31-116-CAS-20936903

1.1 **Reagents:** Acetic acid-*d*, Oxygen

Catalysts: Cupric acetate, $Bis[dichloro[\eta^5-(pentamethylcyclope])]$

ntadienyl)]rhodium]

Solvents: Water-d₂; 20 h, 100 °C

Palladium(II)-catalyzed oxidative $C(sp^3)$ -P bond formation via $C(sp^3)$ -H bond activation

By: Chen, Lijin; et al

Chemical Communications (Cambridge, United Kingdom) (2019), 55(91), 13693-13696.

Cp*Rh(III)-catalyzed C(sp³)-H alkylation of 8-methylquinolines

31-116-CAS-16993017

Steps: **1** Yield: **96%**

1.1 Reagents: Cupric acetate, Acetic acid-*d*, Oxygen Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: Water-d₂; 20 h, 100 °C

By: Kim, Saegun; et al

in aqueous media

Chemical Communications (Cambridge, United Kingdom) (2017), 53(21), 3006-3009.

Experimental Protocols

31-116-CAS-20305785

Steps: 1 Yield: 95%

1.1 **Reagents:** Acetic acid-*d*₄, Water-*d*₂

Catalysts: Cupric acetate, Bis[dichloro[η⁵-(pentamethylcyclope

ntadienyl)]rhodium]; rt; 20 h, 100 °C

Rh(III)-Catalyzed straightforward arylation of 8-methyl/f ormylquinolines using diazo compounds

By: Ghosh, Bidhan; et al

Chemical Communications (Cambridge, United Kingdom) (2019), 55(48), 6886-6889.

Palladium catalyzed C(sp³)-H alkylation of 8-methylquinolines

31-614-CAS-43092720

Steps: 1 Yield: 90%

1.1 Reagents: Cupric acetate, Acetic acid-*d*, Water-*d*₂ Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium]; 20 h, 100 °C

By: Sahoo, Anita; et al

lamines

Chemical Communications (Cambridge, United Kingdom) (2024), 60(99), 14818-14821.

with aziridines: access to functionalized y-quinolinylpropy

Experimental Protocols

31-614-CAS-36225712 Steps: 1 Yield: 90%

1.1 **Reagents:** Acetic acid-*d*, Water-*d*₂

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: 1,2-Dichloroethane; 0.5 h, 80 °C; 80 °C → rt

1.2 Reagents: Ethyl acetate, Sodium hydroxide

Solvents: Water
Experimental Protocols

Rh(III)-Catalyzed Alkylation of 8-Methylquinolines with Oxabenzonorbornadienes

By: Sarthi; et al

Organic Letters (2023), 25(15), 2627-2631.

31-6			
1.1	Reagents: Acetic acid- <i>d</i> , 2,6-Bis(trifluoromethyl)benz Catalysts: Bis[dichloro[η ⁵ -(pentamethylcyclopentadic rhodium], Silver hexafluoroantimonate Solvents: Toluene; 24 h, 120 °C		Rhodium-catalyzed three-component C(sp³)/C(sp²)-H activation enabled by a two-fold directing group strategy By: Hou, Fu-Cheng; et al Chemical Communications (Cambridge, United Kingdom)
Exp	erimental Protocols	(2024), 60(43), 5634-5637.	
1.1	Reagents: Cupric acetate, Acetic acid- <i>d</i> , Water- <i>d</i> ₂ Catalysts: Bis[dichloro[η ⁵ -(pentamethylcyclopentadic rhodium] Solvents: 1,2-Dichlorobenzene; 36 h, 110 °C erimental Protocols	Steps: 1	Palladium-Catalyzed C(sp ³)-H Biarylation of 8-Methyl Quinolines with Cyclic Diaryliodonium Salts to Access Functio nalized Biaryls and Fluorene Derivatives By: Maurya, Naveen Kumar; et al Journal of Organic Chemistry (2022), 87(21), 13744-13749.
31-6	514-CAS-24142159	Steps: 1	Cp*Rh(III)-Catalyzed Regioselective C(sp ³)-H Electrophilic
1.1 Exp	Reagents: Cupric acetate, Acetic acid- d_4 Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadic rhodium] Solvents: Water- d_2 ; rt; 20 h, 100 °C erimental Protocols	enyl)]	Trifluoromethylthiolation of 8-Methylquinolines By: Sumit; et al Journal of Organic Chemistry (2021), 86(19), 13754-13761.
1.1	16-CAS-20966839 Reagents: Cupric acetate, Acetic acid-d ₄ , Oxygen Catalysts: Bis[dichloro[η ⁵ -(pentamethylcyclopentadic rhodium], Silver hexafluoroantimonate Solvents: Water-d ₂ ; rt; 20 h, 100 °C	Steps: 1 enyl)]	Cp*Rh(III)-Catalyzed Regioselective C(sp ³)-H Methylation of 8-Methylquinolines with Organoborons By: Kumar, Rakesh; et al Organic Letters (2020), 22(1), 305-309.
Exp	erimental Protocols		
	erimental Protocols 16-CAS-19684830	Steps: 1	Cp*Co ^{III} -Catalyzed Alkylation of Primary and Secondary C(sp ³)
31-1 1.1			Cp*Co ^{III} -Catalyzed Alkylation of Primary and Secondary C (sp ³) -H Bonds of 8-Alkylquinolines with Maleimides By: Kumar, Rakesh; et al Journal of Organic Chemistry (2019), 84(3), 1542-1552.
31-1 1.1	16-CAS-19684830 Reagents: Acetic acid-d ₄ , Methanol-d Catalysts: Bis[dichloro[η ⁵ -(pentamethylcyclopentadic rhodium] Solvents: 1,2-Dichloroethane; 24 h, 70 °C		By: Kumar, Rakesh; et al
31-1 1.1	16-CAS-19684830 Reagents: Acetic acid-d ₄ , Methanol-d Catalysts: Bis[dichloro[η ⁵ -(pentamethylcyclopentadic rhodium] Solvents: 1,2-Dichloroethane; 24 h, 70 °C erimental Protocols	enyl)] Steps: 1	-H Bonds of 8-Alkylquinolines with Maleimides By: Kumar, Rakesh; et al Journal of Organic Chemistry (2019), 84(3), 1542-1552.

31-116-CAS-16050667

Steps: 1 Yield: 96%

Reagents: Cupric acetate, Acetic acid- d_4

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: Dimethylformamide; 12 h, 110 °C

Experimental Protocols

Rhodium-Catalyzed Oxidative Benzannulation of N-Adamantyl-1-naphthylamines with Internal Alkynes via Dual C-H Bond Activation: Synthesis of Substituted Anthracenes

By: Zhang, Xuan; et al

Organic Letters (2016), 18(17), 4246-4249.

Scheme 8 (1 Reaction)

Steps: 1 Yield: 96%

Steps: 1 Yield: 73-96%

31-116-CAS-20493707

Steps: 1 Yield: 96%

Reagents: Acetic acid-d4

Suppliers (10)

Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 6 h, 120 °C

Rhodium(III)-Catalyzed Redox-Neutral Weak O-Coordinating Vinylation and Allylation of Arylacetamides with Allylic Acetates

By: Jambu, Subramanian; et al

Organic Letters (2019), 21(14), 5655-5659.

Scheme 9 (7 Reactions)

Suppliers (57)

Supplier (1)

31-116-CAS-18628817

Steps: 1 Yield: 96%

Reagents: Acetic acid- d_4

Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: 1,4-Dioxane; 5 h, 50 °C

Heterobicyclic Core Retained Hydroary lations through C-H Activation: Synthesis of Epibatidine Analogues

By: Li, Deng-Yuan; et al

Organic Letters (2018), 20(7), 2028-2032.

Experimental Protocols

31-116-CAS-19730049 Steps: 1 Yield: 87%

Reagents: Pivalic acid, Acetic acid- d_4 , Silver hexafluoro antimonate

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: 1,2-Dichloroethane; 36 h, 110 °C

Experimental Protocols

Rh^{III}-Catalyzed Straightforward Synthesis of Benzophena nthroline and Benzophenanthrolinone Derivatives using **Anthranils**

By: Biswas, Aniruddha; et al

Chemistry - A European Journal (2019), 25(12), 3000-3004.

31-116-CAS-19180775 Steps: 1 Yield: 73% RhIII-Catalyzed Direct C8-Arylation of Quinoline N-Oxides using Diazonaphthalen-2(1H)-ones: A Practical Approach Reagents: Acetic acid-d₄ towards 8-aza BINOL **Catalysts:** Pivalic acid, Bis[dichloro[η^5 -(pentamethylcyclope ntadienyl)]rhodium], Silver hexafluoroantimonate By: Ghosh, Bidhan; et al Solvents: 1,2-Dichloroethane; 1 h, 80 °C Chemistry - An Asian Journal (2018), 13(17), 2388-2392. **Experimental Protocols** 31-614-CAS-37231271 Construction of unsymmetrical heterobiaryls via the Cp*Rh(II Steps: 1 I)-catalyzed C-H/C-H coupling of heteroarenes Reagents: Pivalic acid, Acetic acid-d4 **Catalysts:** Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)] By: Parmar, Diksha; et al rhodium], Silver hexafluoroantimonate Chemical Communications (Cambridge, United Kingdom) Solvents: 1,2-Dichloroethane; 36 h, 100 °C (2023), 59(63), 9646-9649. **Experimental Protocols** 31-614-CAS-24074649 Installation of Diverse Succinimides at C-8 Position of Steps: 1 Quinoline N-Oxides via Rhodium(III)-Catalyzed C-H Functiona Reagents: Acetic acid-d₄ lization **Catalysts:** Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)] rhodium], Silver hexafluoroantimonate By: Nale, Sagar D.; et al Solvents: 1,2-Dichloroethane; 12 h, 60 °C ChemistrySelect (2021), 6(32), 8244-8248. **Experimental Protocols** 31-116-CAS-27015048 Steps: 1 Rh(III)-Catalyzed Regioselective C8-Alkylation of Quinoline N-Oxides with Maleimides and Acrylates **Reagents:** Methanol- d_4 , Acetic acid- d_4 Catalysts: Silver acetate, Silver hexafluoroantimonate, Di-µ-By: Thakur, Ankita; et al chlorobis[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopen Journal of Organic Chemistry (2021), 86(9), 6612-6621. tadien-1-yl]dirhodium Solvents: 1,2-Dichloroethane; 6 h, 80 °C **Experimental Protocols** 31-116-CAS-13851178 Steps: 1 Rhodium(III)-Catalyzed C-C and C-O Coupling of Quinoline N-Oxides with Alkynes: Combination of C-H Activation with O-Reagents: Acetic acid- d_4 , Bis(4-methylphenyl)acetylene Atom Transfer **Catalysts:** Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium], Silver hexafluoroantimonate By: Zhang, Xueyun; et al Solvents: 1,4-Dioxane; 5 h, 110 °C Angewandte Chemie, International Edition (2014), 53(40), 10794-10798.

31-614-CAS-34167374

Steps: 1 Yield: 96%

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Cupric acetate, Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11) hovefluore antimopate(1,1,1,1,2)

11)-hexafluoroantimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 5 min, rt; 6 h, 100 °C

Rh(III)-Catalyzed Enone Carbonyl/Ketone-Directed Aerobic C-H Olefination of Aromatics with Unactivated Olefins

By: Shambhavi, Chikkabagilu Nagaraju; et al

Journal of Organic Chemistry (2022), 87(19), 13236-13258.

Steps: 1 Yield: 96%

Steps: 1 Yield: 95%

Steps: 1 Yield: 95%

Scheme 11 (1 Reaction)

≒ Suppliers (17)

31-116-CAS-23484663

Steps: 1 Yield: 96%

1.1 **Reagents:** Acetic acid-*d*, Oxygen

Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: Tetrahydrofuran; 5 min, rt; 6 h, 110 °C

Experimental Protocols

Aerobic Oxidative C-H Olefination of Arylamides with Unactivated Olefins via a Rh(III)-Catalyzed C-H Activation

By: Jambu, Subramanian; et al

Organic Letters (2021), 23(8), 2964-2970.

Scheme 12 (1 Reaction)

$$\xrightarrow{0}$$

31-614-CAS-25075781

Steps: 1 Yield: 95%

1.1 **Reagents:** Acetic acid- d_4

Suppliers (10)

 $\label{eq:Catalysts:} \textbf{Catalysts: } Rhodium (2+), tris (acetonitrile) [(1,2,3,4,5-\eta)-1,2,3,4,5-\eta$ -1,2,3,4,5-\eta)-1,2,3,4,5-\eta-1,2,3,4,5-\eta)-1,2,3,4,5-\eta-1,2,3,4,5-\eta

antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 5 min, rt; 6 h, 100 °C

Experimental Protocols

Aerobic Oxidative Alkenylation of Weak O-Coordinating Arylacetamides with Alkenes via a Rh(III)-Catalyzed C-H Activation

By: Jambu, Subramanian; et al

Organic Letters (2019), 21(5), 1320-1324.

Scheme 13 (1 Reaction)

➤ Suppliers (16)

31-614-CAS-29573292

Steps: 1 Yield: 95%

1.1 Reagents: Cupric acetate

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: 1,2-Dichloroethane, Ethylene glycol diethyl ether; 30 min, rt

1.2 Reagents: Acetic acid-d; 2 h, 100 °C

Experimental Protocols

Rhodium-Catalyzed C-H Annulation of Nitrones with Alkynes: A Regiospecific Route to Unsymmetrical 2,3-Diaryl-Substituted Indoles

By: Yan, Hao; et al

Angewandte Chemie, International Edition (2015), 54(36), 10613-10617.

Steps: 1 Yield: 94%

Steps: 1 Yield: 94%

Steps: 1 Yield: 93%

Scheme 14 (1 Reaction)

31-116-CAS-16912855

Steps: 1 Yield: 94%

1.1 Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)] rhodium]

Solvents: Acetic acid-d₄, Methanol-d; 5 h, 100 °C

Experimental Protocols

N-Doped Cationic PAHs by Rh(III)-Catalyzed Double C-H Activation and Annulation of 2-Arylbenzimidazoles with Alkynes

By: Villar, Jose M.; et al

Organic Letters (2017), 19(7), 1702-1705.

Scheme 15 (1 Reaction)

31-614-CAS-25803841

Steps: 1 Yield: 94%

1.1 Reagents: Acetic acid-d

Catalysts: Silver acetate, $Bis[dichloro[\eta^5-(pentamethylcyclope ntadienyl)]rhodium], Silver hexafluoroantimonate$

Solvents: 1,2-Dichloroethane; 9 h, 100 °C

Experimental Protocols

Access to 3-Acyl-(2H)-indazoles via Rh(III)-Catalyzed C-H Addition and Cyclization of Azobenzenes with $\alpha\text{-Keto}$ Aldehydes

By: Jeong, Taejoo; et al

Organic Letters (2016), 18(2), 232-235.

Scheme 16 (1 Reaction)

31-614-CAS-42986873

Steps: 1 Yield: 93%

1.1 **Reagents:** Acetic acid- d_4

Suppliers (61)

Catalysts: Silver acetate, Bis[dichloro[η^5 -(pentamethylcyclope ntadienyl)]rhodium], Silver hexafluoroantimonate

Solvents: 1,2-Dichloroethane; 3 h, 110 °C

1.2 Reagents: Water

Experimental Protocols

Maleimide-Dependent Rh(III)-Catalyzed Site-Selective Mono and Dual C-H Functionalization of 2-Arylbenzo[d]thiazole and Oxazole Derivatives

By: Kumari, Vidya; et al

Journal of Organic Chemistry (2024), 89(24), 18003-18018.

Steps: 1 Yield: 92%

Steps: 1 Yield: 92%

Steps: 1 Yield: 52-92%

Scheme 17 (1 Reaction)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

31-116-CAS-19290504

1.1 Reagents: Acetic acid-d

Catalysts: $Bis[\mu-(acetato-\kappa O:\kappa O')]bis[(1,2,5,6-\eta)-1,5-cyclooc$

tadiene]dirhodium

Solvents: Toluene; 24 h, 160 °C

Rhodium(I)-Catalyzed C8-Alkylation of 1-Naphthylamide Derivatives with Alkenes through a Bidentate Picoli namide Chelation System

By: Rej, Supriya; et al

ACS Catalysis (2018), 8(7), 6699-6706.

Scheme 18 (1 Reaction)

31-116-CAS-24350654

Steps: **1** Yield: **92%**

Steps: 1 Yield: 92%

1.1 Reagents: Cupric acetate, Acetic acid-d₄
Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate **Solvents:** Acetonitrile; 16 h, 100 °C

Experimental Protocols

Rhodium(III)-catalyzed [5+1] annulation of 2-alkenylphenols with maleimides: access to highly functionalized spirocyclic skeletons

By: Kumar, Anil; et al

Chemical Communications (Cambridge, United Kingdom) (2021), 57(66), 8194-8197.

Scheme 19 (4 Reactions)

31-614-CAS-31566653

Steps: 1 Yield: 92%

Reagents: Sodium acetate, Phenylacetylene, Acetic acid-d Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)] rhodium]; 4 h, 100 °C

Experimental Protocols

Rhodium(III)-Catalyzed Regioselective C-H Annulation and Alkenylation of 2-Pyridones with Terminal Alkynes

By: Li, Jiajie; et al

Advanced Synthesis & Catalysis (2022), 364(7), 1264-1270.

31-116-CAS-22212557

Steps: 1 Yield: 75%

Pyridine-directed Rh-catalyzed C6-selective C-H acetoxylation of 2-pyridones

1.1 **Reagents:** Acetic acid-*d*₄, lodobenzene diacetate **Catalysts:** Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoro antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 30 min, 40 °C

By: Hazra, Sunit; et al

Heterocycles (2020), 101(1), 223-234.

Steps: 1 Yield: 90%

Steps: 1 Yield: 89%

Steps: 1 Yield: 88%

31-116-CAS-16271998

Steps: 1 Yield: 52%

Reagents: Acetic acid- d_{4} , Silver oxide (Ag₂O)

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate **Solvents:** 1,2-Dichloroethane; 20 h, 40 °C

Rhodium(III)-catalyzed site-selective C-H alkylation and arylation of pyridones using organoboron reagents

By: Peng, Panfeng; et al

Organic Letters (2016), 18(20), 5376-5379.

31-116-CAS-20234583

Steps: 1

1.1 Reagents: Cupric acetate, Acetic acid-d₄, Cyclohexyl acrylate
 Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 1 h, 50 °C

Solvent-Controlled Rhodium-Catalyzed C6-Selective C-H Alkenylation and Alkylation of 2-Pyridones with Acrylates

By: Hazra, Sunit; et al

Asian Journal of Organic Chemistry (2019), 8(7), 1097-1101.

Scheme 20 (1 Reaction)

$$\xrightarrow{\mathsf{O}} \xrightarrow{\mathsf{OH}} \xrightarrow{\mathsf{D}} \xrightarrow{\mathsf{D}} \xrightarrow{\mathsf{D}} \xrightarrow{\mathsf{O}}$$

31-614-CAS-25051375

Steps: 1 Yield: 90%

.1 Reagents: Acetic acid- d_4

 $\textbf{Catalysts:} \ \, \textbf{Cupric acetate, Bis[dichloro[} \eta^5\text{-}(pentamethylcyclope}$

ntadienyl)]rhodium]

Solvents: Water-*d*₂; rt; 20 h, 100 °C

Experimental Protocols

Rh(III)-Catalyzed mild straightforward synthesis of quinoline-braced cyclophane macrocycles via migratory insertion

By: Ghosh, Bidhan; et al

Chemical Communications (Cambridge, United Kingdom) (2021), 57(97), 13134-13137.

Scheme 21 (1 Reaction)

31-614-CAS-24841676

Steps: 1 Yield: 89%

1.1 Reagents: Acetic acid-*d*, Silver tetrafluoroborate Catalysts: Silver hexafluoroantimonate, Bis[(3a,4,5,6,6a-η)-(13b*R*)-3,7-dihydro-2,8-dimethoxy-3a*H*-cyclopenta[6,7] cycloocta[2,1-*a*:3,4-*a*']dinaphthalen-3a-yl]di-μ-iododiiod orhodium

Solvents: Ethyl acetate; 18 h, 25 °C

Experimental Protocols

Rhodium-Catalyzed Atroposelective Construction of Indoles via C-H Bond Activation

By: Sun, Lincong; et al

Angewandte Chemie, International Edition (2021), 60(15), 8391-8395.

Scheme 22 (1 Reaction)

Steps: 1 Yield: 87%

Steps: 1 Yield: 85%

Steps: 1 Yield: 85%

31-614-CAS-30375387

Steps: 1 Yield: 88%

Reagents: Acetic acid-d, Copper(II) acetylacetonate Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 2 h, 130 °C

Efficient synthesis of N-butadiene substituted oxindole deriva tives

By: Li, Chao; et al

Organic Chemistry Frontiers (2018), 5(23), 3460-3463.

Scheme 23 (1 Reaction)

Suppliers (2)

31-614-CAS-25566579

Steps: 1 Yield: 87%

Reagents: Acetic acid-d Catalysts: Cupric acetate, Bis[dichloro[η⁵-(pentamethylcyclope

ntadienyl)]rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 2 h, rt → 120 °C

Weinreb amide directed cross-coupling reaction between electron-deficient alkenes catalyzed by a rhodium catalyst

By: Li, Feifei; et al

Organic & Biomolecular Chemistry (2017), 15(5), 1236-1244.

Scheme 24 (1 Reaction)

Double bond geometry shown

Suppliers (5)

Double bond geometry shown

31-614-CAS-24639314

Steps: 1 Yield: 85%

A Short Total Synthesis of Benzophenanthridine Alkaloids via a Rhodium(III)-Catalyzed C-H Ring-Opening Reaction

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 1 h, 100 °C

Reagents: Sodium acetate, Acetic acid- d_4

By: Aravindan, Narasingan; et al

Journal of Organic Chemistry (2021), 86(21), 14826-14843.

Scheme 25 (1 Reaction)

■ Suppliers (38)

Steps: 1 Yield: 85%

31-116-CAS-22974023

Steps: 1 Yield: 85%

Direct Integration of Phthalazinone and Succinimide Scaffolds via Rh(III)-Catalyzed C-H Functionalization

Reagents: Acetic acid-d₄

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: Methanol-d₄; 20 h, 80 °C

By: Cho, Yong Sun; et al

Asian Journal of Organic Chemistry (2021), 10(1), 202-209.

Experimental Protocols

Double bond geometry shown

Double bond geometry shown

Suppliers (3)

31-614-CAS-31253799

Steps: 1 Yield: 85%

1.1 Reagents: Acetic acid- d_4

Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 15 h, 80 °C

Experimental Protocols

Rhodium(III)-Catalyzed Diastereoselective Ring-Opening of 7-Azabenzonorbornadienes with Aromatic Ketoximes: Synthesis of Benzophenanthridine Derivatives

By: Vinayagam, Varathan; et al

Journal of Organic Chemistry (2019), 84(23), 15590-15604.

Scheme 27 (1 Reaction)

📜 Suppliers (34)

31-614-CAS-26992457

Steps: 1 Yield: 84%

Reagents: Acetic acid-d₄

Catalysts: $Bis[\mu-(acetato-\kappa O:\kappa O')]bis[(1,2,5,6-\eta)-1,5-cyclooc$

tadiene]dirhodium

Solvents: Toluene; 5 h, 160 °C

Experimental Protocols

Rhodium(I)-catalyzed mono-selective C-H alkylation of benzenesulfonamides with terminal alkenes

By: Rej, Supriya; et al

Chemical Communications (Cambridge, United Kingdom)

(2019), 55(71), 10503-10506.

Scheme 28 (1 Reaction)

Suppliers (70)

Steps: 1 Yield: 84%

Steps: 1 Yield: 84%

31-116-CAS-23744326

Steps: 1 Yield: 84%

1.1 **Reagents:** Acetic acid-*d*

 $\label{lem:catalysts:} \textbf{Catalysts: Silver phosphate, Bis[dichloro[η^5-(pentameth ylcyclopentadienyl)]rhodium], Silver hexafluoroantimonate}$

Solvents: 1,2-Dichloroethane; 24 h, 120 °C

Experimental Protocols

Synthesis of Indenones through Rhodium(III)-catalyzed [3+2] Annulation Utilizing a Recyclable Carbazolyl Leaving Group

By: Ochiai, Shiho; et al

Chemistry Letters (2021), 50(4), 585-588.

Scheme 29 (1 Reaction)

! Suppliers (98)

+ N →

Suppliers (78)

Steps: 1 Yield: 84%

Steps: 1 Yield: 84%

Steps: 1 Yield: 83%

Steps: 1 Yield: 82%

Relative stereochemistry shown

31-614-CAS-27796183

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 12 h, 100 °C

Experimental Protocols

Chemoselective Installation of Diverse Succinimides on Fused
Benzimidazoles via Rhodium-Catalyzed C-H Activation/Annu
lation: Chemosensor for Heavy Metals

By: Aslam, Mohammad; et al

Organic Letters (2021), 23(16), 6206-6211.

Scheme 30 (1 Reaction)

31-614-CAS-31492412

Steps: 1 Yield: 83%

1.1 **Reagents:** Methanol- d_4 , Acetic acid- d_4

> Supplier (1)

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 30 h, 80 °C

Experimental Protocols

Co(II)-Catalyzed C-H/N-H Annulation of Cyclic Alkenes with Indole-2-carboxamides at Room Temperature: One-Step Access to β -Carboline-1-one Derivatives

By: Das Adhikari, Gopal Krushna; et al

Journal of Organic Chemistry (2022), 87(6), 4438-4448.

Scheme 31 (1 Reaction)

Suppliers (2)

Steps: 1 Yield: 80%

Steps: 1 Yield: 80%

Steps: 1 Yield: 76%

31-614-CAS-25605655

Steps: 1 Yield: 82%

Reagents: Sodium acetate, Acetic acid- d_4

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver tetrafluoroborate Solvents: 1,2-Dichloroethane; 12 h, 80 °C phosphonoacetates for the Synthesis of 2H-Isoindoles

By: Qi, Bing; et al

Organic Letters (2019), 21(17), 6860-6863.

Rh(III)-Catalyzed Coupling of N-Chloroimines with α-Diazo-α-

Scheme 32 (1 Reaction)

 $\begin{array}{c|c} & & & & \\ & &$

> Supplier (1)

31-614-CAS-33758038

Steps: 1 Yield: 80%

.1 Reagents: Acetic acid-d₄

Catalysts: Silver acetate, Bis[dichloro[η^5 -(pentamethylcyclope ntadienyl)]rhodium], Silver tetrafluoroborate **Solvents:** 2,2,2-Trifluoroethanol; 5 h, 90 °C

Rhodium(III)-Catalyzed Redox-Neutral [4 + 1]-Annulation of Unactivated Alkenes with Sulfoxonium Ylides

By: Sihag, Pinki; et al

Journal of Organic Chemistry (2022), 87(16), 11073-11089.

Scheme 33 (1 Reaction)

31-116-CAS-17730622

Suppliers (11)

Steps: 1 Yield: 80%

1.1 Reagents: Silver acetate, Acetic acid-d₄ Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro antimonate(1-) (1:2)

Solvents: Dichloromethane, Water-d₂; 3 h, 60 °C

Experimental Protocols

Synthesis of 3-Arylbenzofuran-2-ylphosphines via Rhodium-Catalyzed Redox-Neutral C-H Activation and Their Applic ations in Palladium-Catalyzed Cross-Coupling of Aryl Chlorides

By: Wang, Huanan; et al

Journal of Organic Chemistry (2017), 82(18), 9560-9569.

Scheme 34 (1 Reaction)

Double bond geometry shown

➤ Suppliers (49)

Steps: 1 Yield: 75%

Steps: 1 Yield: 70%

31-614-CAS-34876443

Steps: 1 Yield: 76%

Reagents: Sodium acetate, Acetic acid-d

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: 2,2,2-Trifluoroethanol; 16 h, 80 °C

Experimental Protocols

Rh(III)-catalyzed C-H/C-C bond annulation of enaminones with iodonium ylides to form isocoumarins

By: Yang, Zi; et al

Chemical Communications (Cambridge, United Kingdom)

(2022), 58(97), 13483-13486.

Scheme 35 (1 Reaction)

$$\rightarrow \bigvee_{\mathbb{N}} \bigvee_{\mathbb{N}$$

31-614-CAS-24060273

Suppliers (3)

Steps: 1 Yield: 75%

Reagents: Silver acetate, Acetic acid-d4, Methanol-d **Catalysts:** Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)] rhodium1

Solvents: 1,2-Dichloroethane; 12 h, 120 °C

Experimental Protocols

Rhodium-Catalyzed Spirocyclization of Maleimide with N-Aryl-2,3-dihydrophthalazine-1,4-dione to Access Pentacyclic Spiro-Succinimides

By: Karishma, Pidiyara; et al

Asian Journal of Organic Chemistry (2021), 10(10), 2580-2590.

Scheme 36 (1 Reaction)

31-116-CAS-23455322

Steps: 1 Yield: 70%

Rhodium(III)-catalyzed chemodivergent annulations between phenyloxazoles and diazos via C-H activation

By: Zhang, Xueguo; et al

Chinese Chemical Letters (2021), 32(2), 695-699.

Reagents: Adipic acid, Acetic acid- d_4

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)] rhodium], [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*]

methanesulfonamidato-κO]silver Solvents: 1,4-Dioxane; 10 h, 60 °C

Experimental Protocols

Steps: 1 Yield: 68%

Steps: 1 Yield: 63%

31-085-CAS-20493708

Steps: 1 Yield: 70%

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 16 h, 120 °C

Rhodium(III)-Catalyzed Redox-Neutral Weak O-Coordinating Vinylation and Allylation of Arylacetamides with Allylic Acetates

By: Jambu, Subramanian; et al

Organic Letters (2019), 21(14), 5655-5659.

Scheme 38 (1 Reaction)

 $\longrightarrow \bigvee_{(E)} \bigvee_$

Double bond geometry shown

Suppliers (49)

Double bond geometry shown

31-116-CAS-19407701

Steps: 1 Yield: 68%

1.1 Reagents: Potassium acetate, Cupric acetate, Acetic acid-d, Lithium hydroxide

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium]

Solvents: 1,2-Dichloroethane; 72 h, 125 °C

Experimental Protocols

Synthesis of Polyaromatic Rings: Rh(III)-Catalyzed [5 + 1] Annulation of Enaminones with Vinyl Esters through C-H Bond Functionalization

By: Liang, Gaohui; et al

Organic Letters (2018), 20(22), 7326-7331.

Scheme 39 (1 Reaction)

+ HN → → NH Suppliers (21)

31-116-CAS-21935651

Steps: 1 Yield: 63%

1.1 Reagents: Acetic acid-d, Cesium acetate, [1,1,1-Trifluoro-N-[(trifluoromethyl)sulfonyl-κO]methanesulfonamidato-κO] silver

 $\textbf{Catalysts:} \ \ Bis[dichloro[\eta^5-(pentamethylcyclopentadienyl)]$

rhodium]

Solvents: 1,2-Dichloroethane; 14 h, 100 °C

Experimental Protocols

Highly selective C-H bond activation of N-arylbenzimidamide and divergent couplings with diazophosphonate compounds: a catalyst-controlled selective synthetic strategy for 3phosphorylindoles and 4-phosphorylisoquinolines

By: Yang, Qiaolan; et al

Organic Chemistry Frontiers (2019), 6(3), 393-398.

Scheme 40 (1 Reaction)

Steps: 1 Yield: 62%

31-116-CAS-22410308

Steps: 1 Yield: 62%

Reagents: Acetic acid- d_4 , Disodium phosphate

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver oxide (Ag₂O)

Solvents: Dimethylformamide; 12 h, rt

Rhodium(III)-Catalyzed C-H Olefination of Aromatic/Vinyl Acids with Unactivated Olefins at Room Temper ature

By: Jambu, Subramanian; et al

Organic Letters (2020), 22(13), 5057-5062.

Scheme 41 (2 Reactions)

Steps: 1 Yield: 60%

Double bond geometry shown

Double bond geometry shown

■ Suppliers (32)

31-614-CAS-26907100

Steps: 1 Yield: 60%

Reagents: Zinc acetate, Silver acetate, Acetic acid-d **Catalysts:** Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 12 h, 60 °C

Experimental Protocols

Regioselective Formal [4 + 2] Cycload ditions of Enaminones with Diazocarbonyls through Rh^{III}-Catalyzed C-H Bond Functionalization

By: Zhou, Shuguang; et al

Organic Letters (2018), 20(13), 3975-3979.

31-614-CAS-25584233

Steps: 1

Reagents: Acetic acid- d_4 , Copper diacetate monohydrate **Catalysts:** Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)] rhodium], Silver hexafluoroantimonate

Solvents: 1,2-Dichloroethane; 12 h, 80 °C

Experimental Protocols

Rh(III)-Catalyzed Enaminone-Directed Alkenyl C-H Activation for the Synthesis of Salicylaldehydes

By: Qi, Bing; et al

Organic Letters (2018), 20(13), 3996-3999.

Scheme 42 (1 Reaction)

Double bond geometry shown

> Suppliers (36)

Suppliers (51)

Steps: 1 Yield: 58%

Double bond geometry shown

31-614-CAS-34167370

Steps: 1 Yield: 58%

Reagents: Acetic acid-d4

Catalysts: Cupric acetate, Rhodium(2+), tris(acetonitrile)[(1,2,3, 4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoroantimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 5 min, rt; 12 h, 100 °C

Rh(III)-Catalyzed Enone Carbonyl/Ketone-Directed Aerobic C-H Olefination of Aromatics with Unactivated Olefins

By: Shambhavi, Chikkabagilu Nagaraju; et al Journal of Organic Chemistry (2022), 87(19), 13236-13258.

Steps: 1 Yield: 58%

Steps: 1 Yield: 56%

Steps: 1 Yield: 54%

Scheme 43 (1 Reaction)

Suppliers (17)

Suppliers (51)

Steps: 1 Yield: 58%

Double bond geometry shown

31-116-CAS-23486452

1.1 **Reagents:** Acetic acid-*d*, Oxygen

 $\label{eq:Catalysts: Rhodium (2+), tris (acetonitrile) [(1,2,3,4,5-\eta)-1,2,3,4,5-\eta$ -1,2,3,4,5-\eta)-1,2,3,4,5-\eta)-1,2,3,4,5-\eta-1,2,3,4,5-1,2,3,4,5-1,2,3,4,5-1,2,3,4,5-1,2,4,5-1,2,5

antimonate(1-) (1:2)

Solvents: Tetrahydrofuran; 5 min, rt; 6 h, 110 °C

Experimental Protocols

Aerobic Oxidative C-H Olefination of Arylamides with Unactivated Olefins via a Rh(III)-Catalyzed C-H Activation

By: Jambu, Subramanian; et al

Organic Letters (2021), 23(8), 2964-2970.

Scheme 44 (1 Reaction)

31-116-CAS-22481556

·

1.1 **Reagents:** Acetic acid-*d*

 $\textbf{Catalysts:} \ \, \mathsf{Bis}[\mathsf{dichloro}[\eta^5\text{-}(\mathsf{pentamethylcyclopentadienyl})]$

rhodium], Silver tetrafluoroborate

Solvents: 1,2-Dichloroethane; 30 min, 120 °C

Experimental Protocols

Steps: 1 Yield: 56% Rh^{III}-Catalyzed one-pot cascade synthesis of quinaz olines with N-alkoxyamide as an amidating reagent

By: Xu, Hui-Bei; et al

Organic Chemistry Frontiers (2020), 7(10), 1230-1234.

Scheme 45 (1 Reaction)

Steps: 1 Yield: 54%

31-614-CAS-27218676

1.1 **Reagents:** Acetic acid-d₄, Oxygen

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: 1,2-Dichloroethane; 1 atm, rt; 7 h, 1 atm, 60 °C

Experimental Protocols

Reactivity of Morita-Baylis-Hillman Adducts in C-H Functiona lization of (Hetero)aryl Nitrones: Access to Bridged Cycles and Carbazoles

By: Pandey, Ashok Kumar; et al

Organic Letters (2018), 20(15), 4632-4636.

Steps: 1 Yield: 53%

Steps: 1 Yield: 53%

Steps: 1 Yield: 50%

Steps: 1 Yield: 50%

Scheme 46 (1 Reaction)

31-614-CAS-25396908

1.1 Catalysts: Triphenylphosphine, [(2,3,5,6-η)-Bicyclo[2.2.1] hepta-2,5-diene](triphenylethenyl)(triphenylphosphine)

Solvents: Toluene; 1 h, 30 °C

Double bond geometry shown

1.2 Reagents: Acetic acid-d; 10 min, rt

Experimental Protocols

Characterization of the Polymerization Catalyst [(2,5-norborn adiene)Rh{C(Ph):CPh2}(PPh3)] and Identification of the End Structures of Poly(phenylacetylenes) Obtained by Polymer ization Using This Catalyst

By: Kumazawa, Shohei; et al

Organometallics (2012), 31(19), 6834-6842.

Scheme 47 (1 Reaction)

31-117-CAS-14707811

Steps: 1 Yield: 50% **Reagents:** Cupric acetate, Acetic acid- d_4

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 24 h, 120 °C

1.2 Reagents: Ammonia Solvents: Water; 5 min

Experimental Protocols

Rh(III)-catalyzed regioselective hydroarylation of alkynes via directed C-H functionalization of pyridines

By: Qian, Zhen-Chao; et al

Organic & Biomolecular Chemistry (2014), 12(22), 3594-3597.

Scheme 48 (1 Reaction)

31-116-CAS-13531404

Steps: 1 Yield: 50%

Double bond geometry shown

Formal Gold- and Rhodium-Catalyzed Regiodivergent C-H Alkynylation of 2-Pyridones

By: Li, Yunyun; et al

Journal of Organic Chemistry (2016), 81(2), 715-722.

Reagents: Acetic acid-d₄

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: Acetic acid-d₄; 12 h, 80 °C

Experimental Protocols

Steps: 1 Yield: 50%

Steps: 1 Yield: 49%

Steps: 1 Yield: 50%

Steps: 1 Yield: 49%

Steps: 1 Yield: 47%

Scheme 49 (1 Reaction)

☐ Suppliers (111)

31-614-CAS-36774506

.1 **Reagents:** Silver acetate, Acetic acid- d_4

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)]

hodium]

Solvents: 1,2-Dichlorobenzene; 15 h, 140 °C

Experimental Protocols

Synthesis of Fused Lactones through Transition-Metal-Catalyzed peri C-H Functionalization

By: Nishida, Ayako; et al

Asian Journal of Organic Chemistry (2023), 12(5), e202300136.

Scheme 50 (1 Reaction)

Suppliers (10)

31-614-CAS-26143020

1.1 Reagents: Acetic acid-d

Catalysts: Cupric acetate, Bis[dichloro[n⁵-(pentamethylcyclope

ntadienyl)]rhodium]

Solvents: Acetonitrile; 30 h, 100 °C

Rhodium-Catalyzed Spiro Indenyl Benzoxazine Synthesis via C-H Activation/Annulation of 3-Aryl-2H-Benzo[b][1,4]oxazines and Alkynes

By: Tan, Heng; et al

European Journal of Organic Chemistry (2020), 2020(29), 4542-4546.

Scheme 51 (1 Reaction)

Suppliers (25)

31-614-CAS-35850508

Steps: 1 Yield: 47%

1.1 **Reagents:** Silver acetate, Acetic acid- d_4

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: 1,4-Dioxane; 2 h, rt

1.2 Reagents: Water; rt

Experimental Protocols

Rh(III)-Catalyzed Spiroannulation Reaction of N-Aryl Nitrones with 2-Diazo-1,3-indandiones: Synthesis of Spirocyclic Indole-N-oxides and Their 1,3-Dipolar Cycloaddition with Maleimides

By: Guo, Shenghai; et al

Journal of Organic Chemistry (2023), 88(6), 3845-3858.

Steps: 1 Yield: 35%

Steps: 1 Yield: 35%

Scheme 52 (1 Reaction)

📜 Suppliers (59)

Double bond geometry shown

31-116-CAS-8801173

Steps: **1** Yield: **35%**

Ester-directed selective olefination of acrylates by rhodium catalysis

1.1 **Reagents:** Cupric acetate, Acetic acid- d_4

Catalysts: Di- μ -chlorodichlorobis(η^5 -2,4-cyclopentadien-1-yl)

dirhodium, Silver hexafluoroantimonate Solvents: Acetone- d_6 ; 1 h, rt \rightarrow 110 °C

Experimental Protocols

By: Feng, Ruokun; et al

Advanced Synthesis & Catalysis (2014), 356(7), 1501-1508.

31-116-CAS-18998648

Steps: 1 Yield: 35%

1.1 Reagents: Silver carbonate, Trifluoroacetic acid-*d*, Water-*d*₂ Catalysts: Copper fluoride (CuF₂), Rhodium trichloride

Solvents: Toluene; 2 h, 150 °C; cooled

Oxidative C-H/C-H Cross-Coupling Reactions between N-Acylanilines and Benzamides Enabled by a Cp*- Free RhCl₃/TF A Catalytic System

By: Shi, Yang; et al

Angewandte Chemie, International Edition (2018), 57(29), 9108-9112.

31-116-CAS-20224330

Steps: 1

1.1 **Reagents:** Acetic acid-*d*, Oxygen, 2-(2,6-Dimethylphenoxy) pyridine

Catalysts: Di- μ -chlorobis[(1,2,5,6- η)-1,5-cyclooctadiene] dirhodium, (*T*-4)-Bis[1,1,1-trifluoro-*N*-[(trifluoromethyl) sulfonyl-κ*O*]methanesulfonamidato-κ*O*]zinc

Solvents: Chlorobenzene; 5 h, 140 °C

Highly Regio- and Chemose lective Oxidative C-H/C-H Cross-Couplings of Anilines and PhenoIs Enabled by a Co-Oxidant-Free Rh(I)/Zn(NTf₂)₂/Air Catalytic System

By: Zhang, Luoqiang; et al

ACS Catalysis (2019), 9(6), 5358-5364.

Scheme 54 (2 Reactions)

➤ Suppliers (11)

Steps: 1 Yield: 34%

Steps: 1 Yield: 27%

Steps: 1 Yield: 25%

31-116-CAS-16412296

Steps: 1 Yield: 34%

Reagents: Sodium acetate, Cupric acetate, Acetic acid- d4 **Catalysts:** Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: 1,2-Dichloroethane; 3 h, 90 °C; 90 °C → rt

Reagents: Ammonium chloride

Solvents: Water

Experimental Protocols

Synthesis of o-Alkenylated 2-Arylbenzoxazoles via Rh-Catalyzed Oxidative Olefination of 2-Arylbenzoxazoles: Scope Investigation, Structural Features, and Mechanism Studies

By: Zhou, Quan; et al

Journal of Organic Chemistry (2016), 81(24), 12169-12180.

31-116-CAS-20456614

Steps: 1

Reagents: Acetic acid- d_4 Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-

pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; -196 °C; -196 °C → rt; 18 h, 60 °C

Transition metal catalyzed C7 and ortho-selective haloge nation of 2-arylbenzo[d]oxazoles

By: Hong, Xi; et al

Organic Chemistry Frontiers (2019), 6(13), 2226-2233.

Scheme 55 (1 Reaction)

31-116-CAS-6953210

Steps: 1 Yield: 27%

Reagents: Acetic acid- d_4

Catalysts: Tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]rhodium(2+) Solvents: Methanol-d₄; 2 h, 80 °C

Experimental Protocols

Rhodium(III)-Catalyzed Redox-Neutral C-H Annulation of Arylnitrones and Alkynes for the Synthesis of Indole Deriva tives

By: Zhou, Zhi; et al

Advanced Synthesis & Catalysis (2015), 357(13), 2944-2950.

Scheme 56 (1 Reaction)

31-614-CAS-37156326

Steps: 1 Yield: 25%

Reagents: Sodium carbonate, Acetic acid-d

Suppliers (10)

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)] rhodium], [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*]

methanesulfonamidato-κO]silver Solvents: Ethyl acetate; 30 min, rt

Experimental Protocols

Efficient synthesis of spirooxazine-pyrans via rhodiumcatalyzed [3+3] cascade spiroannulation of benzoxazines with 1-diazonaphthalen-2(1H)-ones

By: Huang, Junwei; et al

New Journal of Chemistry (2023), 47(30), 14430-14435.

Steps: 1 Yield: 25%

Steps: 1 Yield: 24%

Steps: 1 Yield: 22%

Scheme 57 (1 Reaction)

Suppliers (16)

Suppliers (88)

Steps: 1 Yield: 25%

31-614-CAS-24941390

.1 Reagents: Cupric acetate

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: 1,2-Dichloroethane, Ethylene glycol diethyl ether; 30

min, rt

1.2 Reagents: Acetic acid-d; 5 h, 100 °C

Experimental Protocols

Rhodium-Catalyzed C-H Annulation of Nitrones with Alkynes: A Regiospecific Route to Unsymmetrical 2,3-Diaryl-Substituted Indoles

By: Yan, Hao; et al

Angewandte Chemie, International Edition (2015), 54(36), 10613-10617.

Scheme 58 (1 Reaction)

31-116-CAS-1801371

S-1801371 Steps: 1 Yield: 24%

1.1 Reagents: Silver acetate, Acetic acid-d₄ Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 2 h, rt

Suppliers (16)

A [4+1] Cyclative Capture Approach to 3H-Indole-N-oxides at Room Temperature by Rhodium(III)-Catalyzed C-H Activation

By: Yang, Yaxi; et al

Angewandte Chemie, International Edition (2015), 54(51), 15400-15404.

Scheme 59 (1 Reaction)

Steps: 1 Yield: 22%

➤ Suppliers (111)

= Suppliers (11

31-614-CAS-36774505

.1 **Reagents:** Silver acetate, Acetic acid-*d*₄

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)]

rhodium]

Solvents: 1,2-Dichlorobenzene; 15 h, 100 °C

Experimental Protocols

Synthesis of Fused Lactones through Transition-Metal-Catalyzed peri C-H Functionalization

By: Nishida, Ayako; et al

Asian Journal of Organic Chemistry (2023), 12(5), e202300136.

Scheme 60 (1 Reaction)

► Suppliers (69)

O O

Steps: 1 Yield: 17%

Steps: 1 Yield: 17%

Steps: 1 Yield: 10%

Steps: 1 Yield: 9%

Relative stereochemistry shown

31-614-CAS-36225716

1.1 **Reagents:** Acetic acid-*d*, Water-*d*₂

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: 1,2-Dichloroethane; 0.5 h, 80 °C; 80 °C → rt

1.2 Reagents: Ethyl acetate, Sodium hydroxide

Solvents: Water

Experimental Protocols

Rh(III)-Catalyzed Alkylation of 8-Methylquinolines with Oxabenzonorbornadienes

By: Sarthi; et al

Organic Letters (2023), 25(15), 2627-2631.

Scheme 61 (1 Reaction)

➤ Suppliers (193)

Suppliers (6)

31-614-CAS-40653174

Steps: 1 Yield: 10%

1 Reagents: Acetic acid- d_4 , Silver oxide (Ag₂O) Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium], [1,1,1-Trifluoro-N-[(trifluoromethyl)sulfonyl- κO] methanesulfonamidato- κO]silver

Solvents: Acetic acid, Acetonitrile; 24 h, 150 °C

Experimental Protocols

Oxidative Tandem Cyclization of Aromatic Acids with (Benzo) thiophenes: One-Pot Access to Planar Sulfur-Containing Polycyclic Heteroarenes for Lipid-Droplet-Targeted Probes

By: Li, Wan-Di; et al

Organic Letters (2024), 26(23), 4857-4862.

Scheme 62 (1 Reaction)

📜 Suppliers (2)

D N—CI

Steps: 1 Yield: 9%

1.1 **Reagents:** Sodium acetate, Acetic acid- d_4

Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro antimonate(1-) (1:2)

Solvents: Ethanol; 12 h, 60 °C

Experimental Protocols

31-116-CAS-21679019

Rh(III)-catalyzed synthesis of isoquinolines using the N-Cl bond of N-chloroimines as an internal oxidant

By: Qi, Bing; et al

Tetrahedron Letters (2020), 61(16), 151771.

Scheme 63 (1 Reaction)

Steps: 1

Steps: 1

Suppliers (28)

31-116-CAS-19191940

Steps: 1

Rhodium-Catalyzed peri-Selective Direct Alkenylation of 1-(Methylthio)naphthalene

Reagents: Diphenylacetylene, Acetic acid-d4

Catalysts: Cupric acetate, Rhodium(2+), tris(acetonitrile)[(1,2,3, 4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-

11)-hexafluoroantimonate(1-) (1:2) Solvents: Chlorobenzene; 30 min, 80 °C

Experimental Protocols

By: Shigeno, Masanori; et al

Asian Journal of Organic Chemistry (2018), 7(7), 1334-1337.

Scheme 64 (1 Reaction)

Suppliers (94)

Suppliers (6)

31-614-CAS-33432088

Reagents: Acetic acid-d

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 16 h, rt

Experimental Protocols

Steps: 1

Unlocking C-H Functionalization at Room Temper ature via a **Light-Mediated Protodemetalation Reaction**

By: Empel, Claire; et al

ACS Catalysis (2022), 12(14), 8229-8236.

Scheme 65 (2 Reactions)

Suppliers (5)

Steps: 1

31-116-CAS-5387652

Steps: 1

Reagents: Cupric acetate, Acetic acid-d

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: Tetrahydrofuran; rt → 80 °C; 2 h, 80 °C; cooled

Experimental Protocols

Selective alkenylation and hydroalkenylation of enol phosphates through direct C-H functionalization

By: Hu, Xu-Hong; et al

Angewandte Chemie, International Edition (2015), 54(51), 15535-15539.

31-116-CAS-7515421

Steps: 1

1.1 Reagents: Methyl acrylate, Cupric acetate, Acetic acid- d
 Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: Tetrahydrofuran; rt → 80 °C; 2 h, 80 °C; cooled

Experimental Protocols

Selective alkenylation and hydroalkenylation of enol phosphates through direct C-H functionalization

By: Hu, Xu-Hong; et al

Angewandte Chemie, International Edition (2015), 54(51), 15535-15539.

Scheme 66 (2 Reactions)

Steps: 1

31-614-CAS-36455538

Steps: 1

1.1 **Reagents:** Cupric acetate, Acetic acid-*d*₄, Silver hexafluoro antimonate

rhodium]

Solvents: Dimethylformamide; 12 h, 90 °C

Experimental Protocols

Chemo- and Diastereoselective Synthesis of Polyhete rocycles by Rhodium(III)-Catalyzed sp²/sp³ C-H Activation of 2-Arylquin azolin-4(3H)-ones with 3-Methylmaleimides

By: Devkota, Shreedhar; et al

Advanced Synthesis & Catalysis (2023), 365(9), 1465-1470.

31-116-CAS-20747951

Steps: 1

1.1 Reagents: Cupric acetate, Acetic acid- d_4

Suppliers (72)

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: Dimethylformamide; 4 h, 90 °C

Experimental Protocols

Direct Construction of Diverse Polyheterocycles Bearing Pyrrolidinediones via Rh(III)-Catalyzed Cascade C-H Activatio n/Spirocyclization

By: Devkota, Shreedhar; et al

Advanced Synthesis & Catalysis (2019), 361(24), 5587-5595.

Scheme 67 (1 Reaction)

Steps: 1

Suppliers (107)

31-614-CAS-34636537

Steps: 1

1.1 **Reagents:** Aniline, Acetic acid-*d*

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 12 h, 60 °C

Experimental Protocols

Rhodium-Catalyzed Tandem C-H Annulation Enabled by Transient Directing Group Strategy and Sequential Nucleo philic Substitution

By: Li, Zhong-Yuan; et al

Organic Letters (2022), 24(43), 7888-7893.

Scheme 68 (1 Reaction)

📜 Supplier (1)

31-116-CAS-17728664

Steps: 1

Reagents: Citric acid, Acetic acid-d₄, Methanesulfonic acid, 1,1, 1-trifluoro-, nickel(2+) salt (2:1)

Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 12 h, 90 °C

Naphthol synthesis: annulation of nitrones with alkynes via rhodium(III)-catalyzed C-H activation

By: Wang, Qiang; et al

Chemical Communications (Cambridge, United Kingdom) (2017), 53(69), 9640-9643.

Scheme 69 (1 Reaction)

Steps: 1

Suppliers (32)

31-116-CAS-17910511

Steps: 1

Reagents: Pivalic acid, Acetic acid-d4

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 20 h, 40 °C

Experimental Protocols

Rhodium-Catalyzed Site-Selective Coupling of Indoles with Diazo Esters: C4-Alkylation versus C2-Annulation

By: Chen, Xiaohong; et al

Organic Letters (2017), 19(22), 6184-6187.

Scheme 70 (2 Reactions)

Suppliers (32)

31-614-CAS-41629875

Steps: 1

Rh-Catalyzed C-H Alkynylation of Indole Derivatives with Silver(I)-Controlled Regiodivergence

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: 1,2-Dichloroethane; 8 h, 100 °C

Reagents: Silver carbonate, Acetic acid- d_4

Experimental Protocols

By: Zhao, Yaokun; et al

Organic Letters (2024), 26(35), 7285-7290.

31-116-CAS-17910513

Steps: 1

1.1 **Reagents:** Acetic acid, Acetic acid-d₄

 $\label{eq:Catalysts:Bis[dichloro[n-5-(pentamethylcyclopentadienyl)]} $$ rhodium], Zinc triflate, [1,1,1-Trifluoro-$N-[(trifluoromethyl)] $$ rhodium], Zinc triflate, [1,1,1] $$ rhod$

sulfonyl- κ *O*]methanesulfonamidato- κ *O*]silver Solvents: 1,2-Dichloroethane; 10 h, 100 °C

Experimental Protocols

Rhodium-Catalyzed Site-Selective Coupling of Indoles with Diazo Esters: C4-Alkylation versus C2-Annulation

By: Chen, Xiaohong; et al

Organic Letters (2017), 19(22), 6184-6187.

Scheme 71 (1 Reaction)

Steps: 1

31-614-CAS-41477553

Steps: 1

1.1 **Reagents:** Zinc acetate, Acetic acid-*d*

Suppliers (98)

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)]

rhodium]

Solvents: Toluene; 30 min, 120 °C

Experimental Protocols

Combinatorial synthesis of substituted pyrazolo-fused quinaz olines by the Rh(III)-catalyzed [5 + 1] annulation of phenyl- 1H-pyrazol-5-amine with alkynoates and alkynamides

By: Chiu, Wei-Jung; et al

Organic & Biomolecular Chemistry (2024), 22(33), 6841-6846.

Scheme 72 (1 Reaction)

Steps: 1

$$\xrightarrow{(E)} N$$

Double bond geometry shown

Double bond geometry shown

➤ Suppliers (49)

31-116-CAS-16023742

Steps: 1

1.1 **Reagents:** Silver acetate, Acetic acid- d_4

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: 1,2-Dichloroethane; 10 min, 80 °C

1.2 **Reagents:** Water-*d*₂; 12 h, 80 °C

Experimental Protocols

Enaminones as Synthons for a Directed C-H Functionalization: Rh^{III}-Catalyzed Synthesis of Naphthalenes

By: Zhou, Shuguang; et al

Angewandte Chemie, International Edition (2016), 55(32), 9384-9388.

Scheme 73 (1 Reaction)

Steps: 1

Steps: 1

$$\xrightarrow{N}$$

Double bond geometry shown

➤ Suppliers (49)

31-614-CAS-40820150

Steps: 1

1 Reagents: Silver carbonate, Acetic acid-*d*, Water-*d*₂ Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoro antimonate(1-) (1:2)

Solvents: Dichloromethane; 24 h, 110 °C

Experimental Protocols

Catalytic C-H activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic y-lactones

By: Li, Qiuyun; et al

Chinese Chemical Letters (2024), 35(9), 109494.

Scheme 74 (1 Reaction)

Double bond geometry shown

ometry shown Double bond geometry shown

□ Suppliers (3)

31-614-CAS-29522688

Steps: 1

1.1 Reagents: Zinc triflate

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium], [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*]

methanesulfonamidato-к*O*]silver

Solvents: 1,2-Dichloroethane; 5 min, 60 °C

1.2 **Reagents:** Acetic acid- d_4

Solvents: 1,2-Dichloroethane; 4 h, 60 °C

Experimental Protocols

Rapid Synthesis of Functionalized Hydrocarbazolones via Indole C2-H Activation Using Enone Functionality as a Directing Group/Electrophilic Species

By: Yanagawa, Mai; et al

Advanced Synthesis & Catalysis (2021), 363(8), 2189-2198.

→ → →

Suppliers (92)

HO

➤ Suppliers (3)

31-116-CAS-22749332

Steps: 1

Rhodium(III)-catalyzed carboxylate-directed ortho-selective thiolation of benzoic acids

Reagents: Sodium acetate, Acetic acid-d, Cuprous iodide, Silver hexafluoroantimonate

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: Dimethylacetamide; 2 h, 120 °C

By: Wang, Dongjie; et al

Organic Chemistry Frontiers (2020), 7(20), 3229-3233.

Scheme 76 (1 Reaction)

Steps: 1

31-614-CAS-34076575

Steps: 1

Reagents: Sodium acetate, Acetic acid- d_4

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: Toluene; 12 h, 120 °C

Suppliers (59)

Experimental Protocols

Rhodium-catalysed regioselective [4 + 2]-type annulation of 1-H-indazoles with propargyl alcohols: direct access to 6alkenylindazolo[3,2-a]isoquinolines

By: Zhao, Xiang; et al

Organic Chemistry Frontiers (2022), 9(20), 5617-5623.

Scheme 77 (1 Reaction)

Steps: 1

31-614-CAS-38142897

Steps: 1

1.1 Reagents: Sodium carbonate, 1-Adamantanecarboxylic acid, Acetic acid-d4

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium1

Solvents: 1,2-Dichloroethane; 12 h, 100 °C

Experimental Protocols

Rhodium-Catalysed Selective C-H Allylation of 1H-Indazoles with Vinylethylene Carbonate: Easily Introducing Allylic Alcohol

By: Zhao, Xiang; et al

European Journal of Organic Chemistry (2023), 26(40), e202300823.

Scheme 78 (1 Reaction)

Steps: 1

📜 Suppliers (24)

31-614-CAS-24234890

Steps: 1

1.1 Reagents: Silver acetate, Acetic acid- d_4

Catalysts: Silver triflate, [(3a,4,5,6,6a-η)-(13c*R*)-3,7-Dihydro-2,8-dimethoxy-3a *H*-cyclopenta[6,7]cycloocta[2,1-*a*:3,4-*a*']dinapht

halen-3a-yl]bis(η^2 -ethene)rhodium Solvents: Dichloromethane; 24 h, 60 °C

Experimental Protocols

Twofold C-H Activation-Based Enantio- and Diastereoselective C-H Arylation Using Diarylacetylenes as Rare Arylating Reagents

By: Hu, Panjie; et al

Angewandte Chemie, International Edition (2021), 60(37), 20424-20429.

Scheme 79 (1 Reaction)

Steps: 1

31-614-CAS-26638681

Steps: 1

1.1 **Reagents:** Lithium carbonate (Li₂CO₃), Silver acetate, Acetic acid- d_4 , (*SP*-4-1)-Bis(1,1,1,5,5,5-hexafluoro-2,4-pentaned ionato- κO^2 , κO^4)copper

Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoro antimonate(1-) (1:2)

Solvents: Dichloromethane; 24 h, 80 °C

Suppliers (43)

Experimental Protocols

Rhodium-catalyzed enone carbonyl directed C-H activation for the synthesis of indanones containing all-carbon quaternary centers

By: Lou, Jiang; et al

Organic Chemistry Frontiers (2021), 8(7), 1447-1453.

Scheme 80 (1 Reaction)

Steps: 1

31-116-CAS-14955659

Steps: 1

1.1 **Reagents:** Acetic acid-*d*

 $\textbf{Catalysts:} \ \, \textbf{Silver acetate, Bis[dichloro[} \eta^5\text{-}(pentamethylcyclope})$

ntadienyl)]rhodium]

Solvents: 1,2-Dichloroethane; 7 h, rt

1.2 Solvents: Dichloromethane; rt

Experimental Protocols

Rhodium(III)-Catalyzed Cyclative Capture Approach to Diverse 1-Aminoindoline Derivatives at Room Temperature

By: Zhao, Dongbing; et al

Angewandte Chemie, International Edition (2015), 54(5), 1657-1661.

Scheme 81 (1 Reaction)

Steps: 1

Steps: 1

31-614-CAS-40420492

Steps: 1

1.1 Reagents: Acetic acid-d, 2,6-Bis(trifluoromethyl)benzoic acid Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)] rhodium], Silver hexafluoroantimonate

Solvents: Toluene; 24 h, 120 °C

Experimental Protocols

Rhodium-catalyzed three-component C(sp³)/C(sp²)-H activation enabled by a two-fold directing group strategy

By: Hou, Fu-Cheng; et al

Chemical Communications (Cambridge, United Kingdom) (2024), 60(43), 5634-5637.

Scheme 82 (1 Reaction)

31-116-CAS-13782933

Steps: 1

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Benzoyl peroxide, [(3a,4,5,6,6a- η)-(13c*R*)-3,7-Dihydro-2,8-dimethoxy-3a*H*-cyclopenta[6,7]cycloocta[2,1-*a*:3, 4-*a*']dinaphthalen-3a-yl]bis(η^2 -ethene)rhodium

Solvents: Dichloromethane-d₂; 12 h

Experimental Protocols

Chiral Cp-Rhodium(III)-Catalyzed Asymmetric Hydroarylations of 1,1-Disubstituted Alkenes

By: Ye, Baihua; et al

Angewandte Chemie, International Edition (2014), 53(2), 507-511.

Scheme 83 (1 Reaction)

> Suppliers (56)

31-614-CAS-40796412

Steps: 1

1.1 Reagents: Thiodiglycol, Acetic acid-d, Silver trifluoroacetate, Copper sulfate

Catalysts: Bis(acetato- κ O)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2, 4-cyclopentadien-1-yl]rhodium; 24 h, 120 °C

1.2 Reagents: Sodium bicarbonate

Solvents: Water

Experimental Protocols

Rhodium(III)-Catalyzed Annulation Synthesis of Difluor inated Quinazolinone Derivatives Using an Amide Carbonyl as the Directing Group

By: Luo, Wen; et al

Journal of Organic Chemistry (2024), 89(13), 9627-9640.

Scheme 84 (1 Reaction)

31-116-CAS-4710528

Reagents: Acetic acid-d

Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: Methanol-d; 12 h, 80 °C

Experimental Protocols

Steps: 1

Rhodium(III)-Catalyzed Synthesis of Indole Derivatives From Pyrimidyl-Substituted Anilines and Diazo Compounds

By: Yu, Ke; et al

Advanced Synthesis & Catalysis (2016), 358(4), 661-666.

Scheme 85 (1 Reaction)

Steps: 1 H_2N Suppliers (41) Suppliers (115)

31-614-CAS-39824678

Reagents: Acetic acid- d_4

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: Tetrahydrofuran; 36 h, 100 °C

Experimental Protocols

Steps: 1

Rh(III)-catalyzed controlled ortho-amidation of arylamides with dioxazolones using weakly coordinating native primary amide as directing group

By: Mishra, Saksham; et al

Journal of Organic Chemistry (2024), 89(8), 5606-5618.

31-116-CAS-9580518

Steps: 1

Reagents: Acetic acid-d

Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: Methanol-d; 12 h, 80 °C

Experimental Protocols

Rhodium(III)-Catalyzed Synthesis of Indole Derivatives From Pyrimidyl-Substituted Anilines and Diazo Compounds

By: Yu, Ke; et al

Advanced Synthesis & Catalysis (2016), 358(4), 661-666.

Steps: 1

Steps: 1

Scheme 87 (1 Reaction)

31-614-CAS-31961752

1.1 **Reagents:** Silver acetate, Acetic acid- d_4

Catalysts: Cupric acetate, Silver hexafluoroantimonate, Di- μ -chlorodichlorobis[(3a,4,5,6,6a- η)-(13b*R*)-3,7-dihydro-2,8-dimethoxy-3a*H*-cyclopenta[6,7]cycloocta[2,1- α :3,4- α]dinapht halen-3a-yl]dirhodium

Solvents: 1,2-Dichloroethane; 20 °C; 12 h, 20 °C

Experimental Protocols

Rhodium-Catalyzed Atroposelective C-H Arylation of (Hetero) Arenes Using Carbene Precursors as Arylating Reagents

By: Zou, Yun; et al

Organic Letters (2022), 24(17), 3189-3193.

Scheme 88 (2 Reactions)

31-614-CAS-32014043

Steps: 1

Steps: 1

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: 2-Propan-*2-d*-ol-*d*, 1,1,1,3,3,3-hexafluoro-; 10 min,

70 °C

Synthesis of Indenone Derivatives by Rh(III)-Catalyzed C-H Functionalization of Sulfoxonium Ylides with 1,3-Diynes

By: Kumar, Sanjeev; et al

Organic Letters (2022), 24(18), 3395-3400.

Experimental Protocols

31-614-CAS-30659932

.1 Reagents: Acetic acid- d_4

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)]

rhodium]

Solvents: 1,2-Dichloroethane; 30 min, 110 °C

1.2 **Reagents:** Sodium chloride

Solvents: Water; rt

Rhodium-Catalyzed Reaction of Sulfoxonium Ylides and Anthranils toward Indoloindolones via a (4 + 1) Annulation

By: Wu, Xiaopeng; et al

Organic Letters (2019), 21(17), 6653-6657.

Scheme 89 (1 Reaction)

Steps: 1

$$(E)$$

$$(E)$$

$$(E)$$

$$(E)$$

$$(E)$$

$$(E)$$

$$(E)$$

Double bond geometry shown

Double bond geometry shown

Supplier (1)

31-116-CAS-17049791

Steps: 1

1.1 Reagents: Potassium acetate, Acetic acid-d₄

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: 1,4-Dioxane; 20 h, 80 °C

Experimental Protocols

Associative Covalent Relay: An Oxadiazolone Strategy for Rhodium(III)-Catalyzed Synthesis of Primary Pyridinylamines

By: Yu, Xiaolong; et al

Angewandte Chemie, International Edition (2017), 56(19), 5222-5226.

Scheme 90 (1 Reaction)

31-614-CAS-37646095

Steps: 1

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Silver carbonate, Rhodium(2+), tris(acetonitrile)[(1,2, 3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoroantimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 6 h, 115 °C

Experimental Protocols

Weakly coordinating tert-amide assisted Rh(III)-catalyzed C4cyanation of indoles: application in photophysical studies

By: Sarkar, Souradip; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(75), 11200-11203.

Scheme 91 (1 Reaction)

31-614-CAS-24291996

Steps: 1

1.1 Reagents: Acetic acid-d, Methanol-d₄
Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoro
antimonate(1-) (1:2); 12 h, 120 °C

Experimental Protocols

Rh(III)-Catalyzed Divergent C2-carboxymethylation of Indoles and C7-formylmethylation of Indolines with Vinylene Carbonate

By: Hu, Weinan; et al

Asian Journal of Organic Chemistry (2021), 10(10), 2557-2561.

Scheme 92 (1 Reaction)

➤ Suppliers (59)

Steps: 1

1.1 **Reagents:** Zinc acetate, Acetic acid- d_4

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: Dichloromethane; 1 h, 80 °C

Experimental Protocols

Access to Substituted Propenoic Acids via Rh(III)-Catalyzed C-H Allylation of (Hetero)Arenes with Methyleneoxetanones

By: Xia, Jintao; et al

Organic Letters (2017), 19(21), 5972-5975.

Scheme 93 (1 Reaction)

Steps: 1

31-116-CAS-11790982

Steps: 1

1.1 Reagents: Acetic acid-d

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)] rhodium], Silver hexafluoroantimonate, Zinc triflate

Solvents: 1,2-Dichloroethane; 12 h, 100 °C

Rh(III)-Catalyzed Trifluoromethylthiolation of Indoles via C-H Activation

By: Wang, Qiang; et al

Journal of Organic Chemistry (2015), 80(16), 8361-8366.

Scheme 94 (1 Reaction)

Steps: 1

31-116-CAS-18485377

Steps: 1

1.1 **Reagents:** Acetic acid- d_4

Catalysts: 1,3-Bis(diphenylphosphino)propane, Rhodium,

tetracarbonyldi-µ-chlorodi-**Solvents:** Toluene; 24 h, 140 °C

Experimental Protocols

Rhodium(I)-catalysed decarbonylative direct C-H vinylation and dienylation of arenes

By: Xu, Jianbin; et al

Organic Chemistry Frontiers (2018), 5(5), 734-740.

Scheme 95 (1 Reaction)

Steps: 1

31-116-CAS-21550914

Steps: 1

Switching the site-selectivity of C-H activation in aryl sulfon amides containing strongly coordinating N-heterocycles

1.1 Reagents: Acetic acid-d₄

 $\textbf{Catalysts:} \ \, \textbf{Silver acetate, Bis[dichloro[} \eta^5\text{-}(pentamethylcyclope}$

ntadienyl)]rhodium]

Solvents: 1,2-Dichloroethane; overnight, 60 °C

Experimental Protocols

By: Dong, Yi; et al

Chemical Science (2019), 10(38), 8744-8751.

Scheme 96 (1 Reaction)

Steps: 1

31-116-CAS-21550904

Steps: 1

Switching the site-selectivity of C-H activation in aryl sulfon amides containing strongly coordinating N-heterocycles

Catalysts: Silver acetate, Bis[dichloro[η⁵-(pentamethylcyclope ntadienyl)]rhodium]

Solvents: Toluene; 3 h, 60 °C

1.2 Reagents: Acetic acid-d₄; 5 min, 60 °C

Experimental Protocols

By: Dong, Yi; et al

Chemical Science (2019), 10(38), 8744-8751.

Scheme 97 (1 Reaction)

Steps: 1

31-614-CAS-31582339

Steps: 1

Reagents: Cupric acetate, Acetic acid- d_4

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: Acetone; 40 °C

Rhodium-catalyzed cascade C-H activation/annulation/1,6acyl migration: direct construction of free N-H indoles under mild conditions

By: Thombal, Raju S.; et al

New Journal of Chemistry (2022), 46(13), 6126-6133.

Scheme 98 (1 Reaction)

Steps: 1

31-614-CAS-25965120

Steps: 1

Reagents: Acetic acid-d

Catalysts: Bis[μ-(acetato-κ \mathcal{O} :κ \mathcal{O})]bis[(1,2,5,6-η)-1,5-cyclooc

tadiene]dirhodium

Solvents: Toluene; 24 h, 110 °C

Suppliers (87)

Experimental Protocols

Rh^I-Catalyzed P^{III}-Directed C-H Bond Alkylation: Design of Multifunctional Phosphines for Carboxylation of Aryl **Bromides with Carbon Dioxide**

By: Zhang, Zhuan; et al

Angewandte Chemie, International Edition (2019), 58(40), 14110-14114.

Steps: 1

Steps: 1

Scheme 99 (1 Reaction)

Double bond geometry shown

Double bond geometry shown

Steps: 1

31-116-CAS-22786649

1.1 **Reagents:** Acetic acid-*d*

 $\label{eq:catalysts:pivalic acid, Bis[dichloro[η^5-(pentamethylcyclope ntadienyl)]rhodium], [1,1,1-Trifluoro-N-[(trifluoromethyl)].}$

sulfonyl- κ *O*]methanesulfonamidato- κ *O*]silver Solvents: 2,2,2-Trifluoroethanol; 0.5 h, 120 °C

Experimental Protocols

Rhodium(III)-catalyzed C4-amidation of indole-oximes with dioxazolones via C-H activation

By: Tang, Shi-Biao; et al

Organic & Biomolecular Chemistry (2020), 18(39), 7922-7931.

Scheme 100 (1 Reaction)

Suppliers (7)

31-614-CAS-39311053

.1 Reagents: Acetic acid-d₄, Tetrabutylammonium bromide, Cesium acetate

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: Toluene; 40 min, 130 °C

Experimental Protocols

Rh(III)-Catalyzed C7-Alkylation of Isatogens with Malonic Acid Diazoesters

By: Guan, Xiang; et al

Journal of Organic Chemistry (2024), 89(5), 2984-2995.

Scheme 101 (1 Reaction)

Double bond geometry shown

Double bond geometry shown

Steps: 1

Steps: 1

31-116-CAS-23223182

1.1 Reagents: Cupric acetate, Acetic acid-d₄, Potassium pyropho sphate

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: Toluene; 24 h, 160 °C

Experimental Protocols

Rhodium-Catalyzed C4-Selective C-H Alkenylation of 2-Pyridones by Traceless Directing Group Strategy

By: Hazra, Sunit; et al

Organic Letters (2021), 23(4), 1388-1393.

Steps: 1

Steps: 1

Scheme 102 (1 Reaction)

→ D O N

📜 Suppliers (5)

31-116-CAS-17888715

1.1 Reagents: Acetic acid-d₄, Silver hexafluoroantimonate
 Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

Solvents: Fluorobenzene; 12 h, rt → 110 °C

Steps: 1 Rhodium(III)-Catalyzed Sequential Cleavage of Two C-H Bonds for the Synthesis of Polyarylated Naphthols

By: Feng, Ruokun; et al

Synlett (2017), 28(16), 2147-2152.

Scheme 103 (1 Reaction)

31-116-CAS-23525197

1.1 Reagents: Methanol-*d*₄, Acetic acid-*d*₄

Catalysts: Silver acetate, Silver hexafluoroantimonate, Di-μ-chlorobis[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopen tadien-1-yl]dirhodium

Solvents: 1,2-Dichloroethane; 6 h, 80 °C

Experimental Protocols

Rh(III)-Catalyzed Regioselective C8-Alkylation of Quinoline N-Oxides with Maleimides and Acrylates

By: Thakur, Ankita; et al

Steps: 1

Steps: 1

Journal of Organic Chemistry (2021), 86(9), 6612-6621.

Scheme 104 (1 Reaction)

31-614-CAS-25058199

1.1 Reagents: Sodium acetate, Acetic acid-*d*Catalysts: Bis[dichloro[ŋ⁵-(pentamethylcyclopentadienyl)]

rnoaiumj

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 12 h, 80 °C

Experimental Protocols

A Facile Route to Pyrazolo [1,2-a]cinnoline via Rhodium(III)-catalyzed Annulation of Pyrazolidinoes and Iodonium Ylides

By: Yang, Zi; et al

Asian Journal of Organic Chemistry (2022), 11(1), e202100656.

Scheme 105 (1 Reaction)

Steps: 1

Page 42

31-614-CAS-37456939

Steps: 1

1.1 Reagents: Acetic acid- d_4 , [1,1,1-Trifluoro-N-[(trifluoromethyl) sulfonyl- $\kappa \mathcal{O}$]methanesulfonamidato- $\kappa \mathcal{O}$]copper Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: Acetone; 4 h, 80 °C

Suppliers (15)

Experimental Protocols

Construction of Diversified Penta-Spiro-Heterocyclic and Fused-Heterocyclic Frameworks with Potent Antitumor Activity

By: Liu, Qi; et al

Chemistry - A European Journal (2023), 29(54), e202301553.

Scheme 106 (1 Reaction)

Steps: 1

31-614-CAS-42450396

Steps: 1

1.1 **Reagents:** Acetic acid-d, Methanol- d_4

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: 2,2,2-Trifluoroethanol; 0.5 h, 80 °C

Microwave-Assisted Rhodium (III)-Catalyzed [3+3] Annulation of 2-Benzyl-2H-Indazole-6-carboxylic Acids with Iodonium Ylides: A Regioselective Synthesis of Indazole-Fused Chromenes

By: Chen, Hong-Ren; et al

Advanced Synthesis & Catalysis (2025), 367(1), e202400756.

Scheme 107 (1 Reaction)

$$\longrightarrow \bigvee_{O} \bigvee_$$

31-614-CAS-42450400

Steps: 1

1.1 **Reagents:** Acetic acid-d, Water- d_2

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: 2,2,2-Trifluoroethanol; 5 min, 80 °C

Microwave-Assisted Rhodium (III)-Catalyzed [3+3] Annulation of 2-Benzyl-2H-Indazole-6-carboxylic Acids with Iodonium Ylides: A Regioselective Synthesis of Indazole-Fused Chromenes

By: Chen, Hong-Ren; et al

Advanced Synthesis & Catalysis (2025), 367(1), e202400756.

Steps: 1

Steps: 1

Scheme 108 (1 Reaction)

Steps: 1

Suppliers (84)

31-116-CAS-764891

Reagents: Acetic acid-d4

Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: Chlorobenzene; 12 h, 140 °C

Experimental Protocols

Rhodium-catalyzed direct ortho-alkenylation of phenyl sulfones with alkynes utilizing sulfonyl function as modifiable directing group

By: Nobushige, Kazunori; et al

Tetrahedron (2015), 71(37), 6506-6512.

Scheme 109 (1 Reaction)

Suppliers (36)

31-116-CAS-23761586

Reagents: Cupric acetate, Acetic acid- d_4

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: 1,2-Dichloroethane; 12 h, 110 °C

Experimental Protocols

Steps: 1

Rh(III)-Catalyzed synthesis of cinnolinium and fluoranthenium salts using C-H activation/annulation reactions: organelle specific mitochondrial staining applications

By: Mayakrishnan, Sivakalai; et al

Organic & Biomolecular Chemistry (2021), 19(24), 5413-5425.

Scheme 110 (1 Reaction)

Suppliers (49)

31-614-CAS-36065424

Reagents: Acetic acid-d₄, Silver fluoride

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: Chlorobenzene; 24 h, 70 °C

Experimental Protocols

Steps: 1

Rh(III)-catalyzed direct ortho-C-H diarylation of arylsulf oximines with arylsilanes

By: Zhang, Xiuqi; et al

New Journal of Chemistry (2023), 47(14), 6536-6539.

Steps: 1

Scheme 111 (1 Reaction)

Suppliers (8)

31-116-CAS-20224327

1.1 **Reagents:** Acetic acid-*d*, Oxygen

Catalysts: Di-μ-chlorobis[(1,2,5,6-η)-1,5-cyclooctadiene] dirhodium, (*T*-4)-Bis[1,1,1-trifluoro-*N*-[(trifluoromethyl)

sulfonyl- κ *O*]methanesulfonamidato- κ *O*]zinc Solvents: Chlorobenzene; 5 h, 140 °C

Steps: 1 Highly Regio- and Chemose lective Oxidative C-H/C-H Cross-Couplings of Anilines and Phenols Enabled by a Co-Oxidant-Free Rh(I)/Zn(NTf₂)₂/Air Catalytic System

By: Zhang, Luoqiang; et al

ACS Catalysis (2019), 9(6), 5358-5364.

Scheme 112 (1 Reaction)

Suppliers (38)

31-614-CAS-35771488

1.1 Reagents: Sodium acetate, Acetic acid- d_4

 $\textbf{Catalysts:} \ \, \textbf{Bis[dichloro[} \eta^5\text{-(pentamethylcyclopentadienyl)]}$

rhodium]

Solvents: Tetrahydrofuran; 6 h, 60 °C

1.2 Solvents: Ethyl acetate

Experimental Protocols

Steps: 1

Rhodium(III)-catalyzed C-H alkylation of arylhydrophthalazi nediones with α -Cl ketones as sp 3 -carbon alkylated agents

By: Li, He; et al

Organic & Biomolecular Chemistry (2023), 21(10), 2096-2100.

Scheme 113 (1 Reaction)

31-614-CAS-39824671

.1 **Reagents:** Acetic acid- d_{Δ}

Catalysts: Bis[dichloro[η^5 -(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: Tetrahydrofuran; 36 h, 100 °C

Experimental Protocols

Steps: 1

Rh(III)-catalyzed controlled ortho-amidation of arylamides with dioxazolones using weakly coordinating native primary amide as directing group

By: Mishra, Saksham; et al

Journal of Organic Chemistry (2024), 89(8), 5606-5618.

Steps: 1

Steps: 1

Steps: 1

Steps: 1

Scheme 114 (1 Reaction)

Suppliers (8)

31-614-CAS-31909667

1.1 Reagents: Sodium acetate, Acetic acid- d_4

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

hodium]

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 6 h, 100 °C

Experimental Protocols

A New Approach to Isoindolinones: Rhodium(III)-Catalyzed [3+2] Annulation Reactions of N-Methoxybenzamides with Bis (tosylamido)methane

By: Fang, Zhang; et al

European Journal of Organic Chemistry (2022), 2022(14), e202200047.

Scheme 115 (1 Reaction)

31-614-CAS-27949369

1.1 **Reagents:** Acetic acid-*d*

 $\label{eq:Catalysts: Rhodium (2+), tris (acetonitrile) [(1,2,3,4,5-\eta)-1,2,3,4,5-\eta$ -1,2,3,4,5-\eta)-1,2,3,4,5-\eta-1,2,3,4,5-\eta)-1,2,3,4,5-\eta-1,2,3,4,5-1,2,3,4,5-\eta)-1,2,3,4,5-\eta-1,2,3,4,5-1,2

antimonate(1-) (1:2)

Solvents: Methanol-d; 12 h, 80 °C

Experimental Protocols

Steps: 1

Rhodium(III)-Catalyzed Synthesis of Indole Derivatives From Pyrimidyl-Substituted Anilines and Diazo Compounds

By: Yu, Ke; et al

Advanced Synthesis & Catalysis (2016), 358(4), 661-666.

Scheme 116 (2 Reactions)

31-116-CAS-23488691

Steps: 1

1.1 Reagents: Ethanol, Acetic acid-d

Catalysts: Cupric acetate, Bis[dichloro[η^5 -(pentamethylcyclope

ntadienyl)]rhodium]

Solvents: Water-*d*₂; 20 h, 100 °C

Experimental Protocols

Pd-Catalyzed sp³ C-H alkoxycarbonylation of 8-methylqu inolines using Mo(CO)₆ as a CO surrogate

By: Talukdar, Kangkan; et al

Chemical Communications (Cambridge, United Kingdom) (2021), 57(27), 3359-3362.

31-116-CAS-22501045

Steps: 1

1.1 **Reagents:** Cupric acetate, Acetic acid-*d*

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: Water-d₂; 20 h, 100 °C

Ru(II)-Catalyzed Chemoselective C(sp³)-H Monoarylation of 8-Methyl Quinolines with Arylboronic Acids

By: Parmar, Diksha; et al

Journal of Organic Chemistry (2020), 85(18), 11844-11855.

Scheme 117 (1 Reaction)

Steps: 1

31-614-CAS-41689791

Steps: 1

1.1 Reagents: Cupric acetate, Acetic acid-d₄, Water-d₂

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium]; 24 h, 100 °C

1.2 **Reagents:** Hydrogen peroxide **Catalysts:** Methyltrioxorhenium

Solvents: Dichloromethane; 10 min, 0 °C; 0 °C → rt; 24 h, rt

1.3 Reagents: Manganese oxide (MnO₂); rt

Experimental Protocols

Dual C(sp³)-H and C(sp²)-H Activation of 8-Methylquinoline N-Oxides: A Route to Access C7-H Bond

By: Mandal, Santu; et al

Organic Letters (2024), 26(36), 7560-7564.

Scheme 118 (1 Reaction)

Steps: 1

31-614-CAS-29791163

Steps: 1

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 0.5 h, 80 °C

Experimental Protocols

Rh^{III}-Catalyzed Hydroarylation of Internal Alkynes through C-H Bond Activation

By: Wang, Cheng-Qiang; et al

Asian Journal of Organic Chemistry (2016), 5(8), 1002-1007.

Scheme 119 (1 Reaction)

Steps: 1

Steps: 1

1.1 Reagents: Acetic anhydride, Silver acetate

Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (OC-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; rt; rt → 95 °C; 10 h, 95 °C

1.2 Reagents: Acetic acid-d

Experimental Protocols

Construction of Benzoxazinones from Anilines and Their Derivatives

By: Zhao, Teng-Fei; et al

Organic Letters (2023), 25(27), 4968-4973.

Scheme 120 (1 Reaction)

Steps: 1

31-116-CAS-20224328

Steps: 1

Reagents: Acetic acid-d, Oxygen

Catalysts: Di-μ-chlorobis[(1,2,5,6-η)-1,5-cyclooctadiene] dirhodium, (7-4)-Bis[1,1,1-trifluoro-N-[(trifluoromethyl)

sulfonyl-κ*O*]methanesulfonamidato-κ*O*]zinc Solvents: Chlorobenzene; 5 h, 140 °C

Highly Regio- and Chemose lective Oxidative C-H/C-H Cross-Couplings of Anilines and Phenols Enabled by a Co-Oxidant-Free Rh(I)/Zn(NTf₂)₂/Air Catalytic System

By: Zhang, Luoqiang; et al

ACS Catalysis (2019), 9(6), 5358-5364.

Scheme 121 (1 Reaction)

Steps: 1

Steps: 1

31-614-CAS-37211228

Steps: 1

Rhodium(III)-catalysed redox neutral alkylation of 3- arylbenzo [d]isoxazoles: easy access to substituted succinimides

By: Yue, Xuelin; et al

Organic & Biomolecular Chemistry (2023), 21(29), 5985-5989.

Reagents: Acetic acid-d

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)] rhodium], [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*]

methanesulfonamidato-κO]silver

Solvents: 1,2-Dichloroethane; 12 h, 100 °C

Scheme 122 (1 Reaction)

Suppliers (68)

Steps: 1

1.1 **Reagents:** Acetic acid-d₄

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: 2,2,2-Trifluoroethanol; 10 min, 80 °C

1.2 Solvents: Ethyl acetate

Experimental Protocols

Three-Component Synthesis of Isoquinolone Derivatives via Rh(III)-Catalyzed C-H Activation and Tandem Annulation

By: Yang, Zhenke; et al

Journal of Organic Chemistry (2022), 87(21), 14809-14818.

Scheme 123 (1 Reaction)

📜 Suppliers (179)

➤ Suppliers (143)

31-116-CAS-16473386

Steps: 1 Failed

Reagents: Trifluoroacetic acid-d
 Catalysts: (η²-Ethene)[N,N-(1,2-dimethyl-1,2-ethanediylidene)
 bis[2,3,4,5,6-pentafluorobenzenamine-κN]](2,2,2-trifluoro
 acetato-κO)rhodium; 4 h, 150 °C

Electrophilic Rh^I catalysts for arene H/D exchange in acidic media: Evidence for an electrophilic aromatic substitution mechanism

By: Webster-Gardiner, Michael S.; et al

Journal of Molecular Catalysis A: Chemical (2017), 426(Part_B), 381-388.

Scheme 124 (1 Reaction)

31-116-CAS-965008

Steps: 1

Rh(III)-Catalyzed synthesis of sultones through C-H activation directed by a sulfonic acid group

1.1 **Reagents:** Silver acetate, Acetic acid- d_4

Catalysts: Bis[dichloro[n⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: 1,4-Dioxane; 16 h, 100 °C

Experimental Protocols

By: Qi, Zisong; et al

Chemical Communications (Cambridge, United Kingdom) (2014), 50(68), 9776-9778.

Scheme 125 (2 Reactions)

Steps: 1

1.1 Reagents: Acetic acid-d₄

Catalysts: Zinc acetate, Bis[dichloro[η⁵-(pentamethylcyclope

ntadienyl)]rhodium]

Solvents: Toluene; 10 min, 120 °C

Rh(III)-Catalyzed (4 + 1) Annulation of Pyrazol-3-ones with Alkynoates via Ortho-Alkenylation/Cyclization Cascade: Synthesis of Indazole-Fused Pyrazoles

By: Chiu, Wei-Jung; et al

Journal of Organic Chemistry (2022), 87(18), 12109-12114.

31-116-CAS-18701627

Steps: 1

1.1 Reagents: Acetic acid-d₄

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 12 h, 80 °C

Experimental Protocols

Gold(I)- and rhodium(III)-catalyzed formal regiodivergent C-H alkynylation of 1-arylpyrazolones

By: Wang, Xueli; et al

Organic & Biomolecular Chemistry (2018), 16(16), 2860-2864.

Scheme 126 (1 Reaction)

Steps: 1

Suppliers (92)

31-116-CAS-21901864

Steps: 1

1.1 **Reagents:** Sodium acetate, Acetic acid-*d*

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium1

Solvents: 1,2-Dichloroethane; 12 h, 100 °C

Experimental Protocols

Rhodium(III)-catalyzed [4 + 3] annulation of N- aryl-pyrazoli dinones and propargylic acetates: access to benzo[c][1,2] diazepines

By: Li, Tingfang; et al

Organic Letters (2020), 22(11), 4078-4082.

Scheme 127 (1 Reaction)

Steps: 1

31-116-CAS-12827583

Steps: 1

1.1 **Reagents:** Acetic acid-*d*

Catalysts: Silver acetate, Bis[dichloro[n⁵-(pentamethylcyclope

ntadienyl)]rhodium]

Solvents: 1,2-Dichloroethane; 1 h, rt

Suppliers (3)

Experimental Protocols

Rhodium(III)-Catalyzed Cyclative Capture Approach to Diverse 1-Aminoindoline Derivatives at Room Temperature

By: Zhao, Dongbing; et al

Angewandte Chemie, International Edition (2015), 54(5), 1657-1661.

Steps: 1

Steps: 1

Scheme 128 (1 Reaction)

31-614-CAS-38854046

📜 Suppliers (5)

Reagents: Lithium acetate, Acetic acid- d_4 **Catalysts:** Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)] rhodium], [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*] methanesulfonamidato-κO]silver

Solvents: 1,2-Dichloroethane; 12 h, 100 °C

Experimental Protocols

Steps: 1

Substrate- and Catalyst-Controlled C-H Bond Activation/Ann ulation for Construction of Pyrido[2,3,4-de]quinazolinones and Indolo[1,2-c]quinazolinones

By: Hou, Xinjiao; et al

Advanced Synthesis & Catalysis (2024), 366(1), 134-140.

Scheme 129 (1 Reaction)

31-614-CAS-31316870

Reagents: Acetic acid-d

Catalysts: $Bis[\mu-(acetato-\kappa \textit{O}:\kappa \textit{O}')]bis[(1,2,5,6-\eta)-1,5-cyclooc$

tadiene]dirhodium

Solvents: Toluene; 8 h, 170 °C

Experimental Protocols

Steps: 1

Rh(I)-catalyzed imine-directed C-H functionalization via the oxidative [3+2] cycloaddition of benzylamine derivatives with maleimides

By: Das, Amrita; et al

Chemical Communications (Cambridge, United Kingdom) (2022), 58(8), 1123-1126.

Scheme 130 (1 Reaction)

Suppliers (88)

31-116-CAS-18640825

Steps: 1 Reagents: Sodium acetate, Silver carbonate, Acetic acid- d4

Catalysts: Silver acetate, Bis[dichloro[η⁵-(pentamethylcyclope

ntadienyl)]rhodium]

Solvents: Cyclohexane; 15 h, 80 °C

Experimental Protocols

Access to Quaternary Stereogenic Centers via Rhodium(III)-Catalyzed Annulations between 2-Phenylindoles and Ketenes

By: Yang, Xifa; et al

Organic Letters (2018), 20(7), 1957-1960.

Steps: 1 Yield: 83%

Steps: 1 Yield: 77%

Scheme 131 (1 Reaction)

N N N

Suppliers (10)

Suppliers (5)

31-080-CAS-19542440

Steps: 1 Yield: 83%

1.1 Reagents: Acetic acid-*d*Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-ρentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoro antimonate(1-) (1:2)

Solvents: Tetrahydrofuran; 90 min, 30 °C

Rhodium-Catalyzed Mild C7-Amination of Indolines with Nitrosobenzenes

By: Xiong, Dan; et al

ChemistrySelect (2018), 3(47), 13497-13500.

Scheme 132 (1 Reaction)

➤ Suppliers (70)

Suppliers (88)

Steps: 1 Yield: 77%

➤ Supplier (1)

➤ Suppliers (26)

31-116-CAS-23747282

1.1 **Reagents:** Acetic acid-*d*

Catalysts: Silver phosphate, Bis[dichloro[η⁵-(pentameth ylcyclopentadienyl)]rhodium], Silver hexafluoroantimonate

Solvents: 1,2-Dichloroethane; 24 h, 120 °C

Experimental Protocols

Synthesis of Indenones through Rhodium(III)-catalyzed [3+2] Annulation Utilizing a Recyclable Carbazolyl Leaving Group

By: Ochiai, Shiho; et al

Chemistry Letters (2021), 50(4), 585-588.

Steps: 1 Yield: 71%

Scheme 133 (1 Reaction)

Suppliers (10)

📜 Suppliers (88)

31-116-CAS-18881756

Steps: 1 Yield: 74%

1.1 **Reagents:** Cupric acetate, Acetic acid-*d*

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: N-Methyl-2-pyrrolidone; 15 min, 100 °C

Experimental Protocols

Rhodium-catalyzed oxidative homologation of N-pyrimidyl indolines with alkynes via dual C-H activation: Facile synthesis of benzo[g]indolines

By: Wang, Lianhui; et al

Chinese Chemical Letters (2018), 29(6), 907-910.

📜 Suppliers (82)

Scheme 134 (1 Reaction)

31-614-CAS-33428955

Steps: 1 Yield: 71%

Reagents: Acetic acid-d₄, Oxygen

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate

Solvents: Acetone-d₆; 4 h, 80 °C

Synthesis of Succinimide-Linked Indazol-3-ols Derived from Maleimides under Rh(III) Catalysis

By: Kang, Ju Young; et al

ACS Omega (2022), 7(17), 14712-14722.

Steps: 1 Yield: 70%

Scheme 135 (1 Reaction)

➤ Suppliers (70)

31-614-CAS-38709270

Steps: 1 Yield: 70%

Rh(III)-catalyzed selective C2 C-H acyloxylation of indoles

Reagents: Manganese oxide (MnO₂)

Catalysts: Silver acetate, Bis[dichloro[η^5 -(pentamethylcyclope

ntadienyl)]rhodium]

Solvents: 1,2-Dichloroethane; 0.5 h, 60 °C

By: Fang, Chaoying; et al

Chemical Communications (Cambridge, United Kingdom) (2024), 60(2), 216-219.

Experimental Protocols

Scheme 136 (1 Reaction)

Suppliers (82)

📜 Suppliers (25)

31-614-CAS-37155960

Steps: 1 Yield: 69%

Reagents: Silver carbonate, Acetic acid- d_4

Catalysts: Bis(acetato-κ*O*)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,

4-cyclopentadien-1-yl]rhodium Solvents: Toluene; rt; 0.5 h, 130 °C

Experimental Protocols

Rh(III)-Catalyzed C8-Spiroannulation of 1-Aminonaphthalenes with Maleimides

By: Chung, Eunjae; et al

Journal of Organic Chemistry (2023), 88(15), 11227-11239.

Steps: 1 Yield: 64%

Scheme 137 (1 Reaction)

➤ Suppliers (88)

Suppliers (11)

31-116-CAS-9077826

Steps: 1 Yield: 64%

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-

2,4-cyclopentadien-1-yl]rhodium(2+) Solvents: Methanol-d₄; 2 h, 80 °C

Experimental Protocols

Rhodium(III)-Catalyzed Redox-Neutral C-H Annulation of Arylnitrones and Alkynes for the Synthesis of Indole Deriva tives

By: Zhou, Zhi; et al

Advanced Synthesis & Catalysis (2015), 357(13), 2944-2950.

Scheme 138 (1 Reaction)

Suppliers (59)

Supplier (1)

Steps: 1 Yield: 63%

31-614-CAS-34866700

Steps: 1 Yield: 63%

Reagents: Sodium acetate, Acetic acid- d_4

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 7 h, 80 °C

Experimental Protocols

Methylene Thiazolidinediones as Alkylation Reagents in Catalytic C-H Functionalization: Rapid Access to Glitazones

By: Byun, Youjung; et al

Organic Letters (2022), 24(46), 8578-8583.

Steps: 1 Yield: 53%

Steps: 1 Yield: 46%

Scheme 139 (1 Reaction)

+

➤ Suppliers (82)

> Suppliers (59)

O D

Steps: **1** Yield: **53%**

1.1 **Reagents:** Methanol-*d*₄, Acetic acid-*d*₄, Silver hexafluoro antimonate

 $\textbf{Catalysts:} \ \, \textbf{Bis[dichloro[} \eta^5\text{-(pentamethylcyclopentadienyl)]}$

rhodium]

31-085-CAS-23554246

Solvents: 1,2-Dichloroethane; 5 h, 80 °C

Experimental Protocols

Site-Selective C8-Alkylation of Quinoline N-Oxides with Maleimides under Rh(III) Catalysis

By: An, Won; et al

Journal of Organic Chemistry (2021), 86(11), 7579-7587.

Scheme 140 (1 Reaction)

N O

Suppliers (5)

Steps: 1 Yield: 46%

➤ Suppliers (41)

0—___

31-614-CAS-42340819

1.1 Reagents: Sodium acetate, Acetic acid-d₄
Catalysts: Silver hexafluoroantimonate, Di-μ-chlorobis[(1,2,3,4,5-η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]dirhodium Solvents: Toluene; 2 h, 120 °C

Experimental Protocols

Thione-Directed C-H Amidation of Chromone Analogues with Dioxazolones under Rh(III) Catalysis

By: Min, Jeonghyun; et al

Organic Letters (2024), 26(42), 9157-9161.

Steps: 1 Yield: 45%

Scheme 141 (1 Reaction)

Suppliers (69)

Steps: 1 Yield: 45%

Supplier (1)

31-116-CAS-16095939

Reagents: Acetic acid-d

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; rt; 3 h, 70 °C

Experimental Protocols

Rhodium(III)-Catalyzed C(sp³)-H Alkylation of 8-Methylqu inolines with Maleimides

By: Han, Sangil; et al

Organic Letters (2016), 18(18), 4666-4669.

Scheme 142 (1 Reaction)

Suppliers (38)

Suppliers (82)

Steps: 1 Yield: 42%

Steps: 1 Yield: 42%

31-085-CAS-22972222

Reagents: Acetic acid-d₄

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium], Silver hexafluoroantimonate Solvents: Dichloromethane; 2 h, 80 °C

Experimental Protocols

Direct Integration of Phthalazinone and Succinimide Scaffolds via Rh(III)-Catalyzed C-H Functionalization

By: Cho, Yong Sun; et al

Asian Journal of Organic Chemistry (2021), 10(1), 202-209.

Steps: 1 Yield: 38%

Steps: 1 Yield: 36%

Scheme 143 (1 Reaction)

➤ Suppliers (59)

Double bond geometry shown

Steps: 1 Yield: 38%

Double bond geometry shown

31-116-CAS-2125021

Reagents: Cupric acetate, Acetic acid- d_4 **Catalysts:** Di-µ-chlorodichlorobis(η⁵-2,4-cyclopentadien-1-yl)

dirhodium, Silver hexafluoroantimonate **Solvents:** Acetone-d₆; 1 h, rt \rightarrow 110 °C

Experimental Protocols

Ester-directed selective olefination of acrylates by rhodium catalysis

By: Feng, Ruokun; et al

Advanced Synthesis & Catalysis (2014), 356(7), 1501-1508.

Scheme 144 (1 Reaction)

Suppliers (25) Suppliers (88)

31-116-CAS-9677729

Reagents: Silver carbonate, Acetic acid-d

Catalysts: Bis[dichloro[η⁵-(pentamethylcyclopentadienyl)]

rhodium]

Solvents: Dimethylformamide; rt; 2 h, 70 °C

Experimental Protocols

Steps: 1 Yield: 36%

Rh(III)-Catalyzed Regioselective Functionalization of C-H Bonds of Naphthylcarbamates for Oxidative Annulation with

By: Zhang, Xuan; et al

Organic Letters (2014), 16(18), 4830-4833.

Alkynes

Scheme 145 (1 Reaction)

Steps: 1 Yield: 35%

📜 Suppliers (25)

> Suppliers (88)

31-116-CAS-11805374

Steps: 1 Yield: 35%

1.1 Reagents: Acetic acid-*d*, Oxygen

Catalysts: Cupric acetate, Bis[dichloro[η⁵-(pentamethylcyclope ntadienyl)]rhodium], Silver hexafluoroantimonate

Solvents: Dichloromethane; 1 atm, rt; 2 h, 100 °C

Experimental Protocols

Rh(III)-Catalyzed Regioselective Functionalization of C-H Bonds of Naphthylcarbamates for Oxidative Annulation with Alkynes

By: Zhang, Xuan; et al

Organic Letters (2014), 16(18), 4830-4833.

Scheme 146 (1 Reaction)

Steps: **1** Yield: **34%**

> Suppliers (24)

➤ Suppliers (4)

OH D

31-614-CAS-37644337

Steps: 1 Yield: 34%

1.1 Reagents: Cupric acetate, Acetic acid- d_4

 $\textbf{Catalysts:} \ \, \textbf{Bis[dichloro[} \eta^5 \text{-} (pentamethylcyclopentadienyl)]}$

rhodium], Silver hexafluoroantimonate Solvents: 1,2-Dichloroethane; 24 h, 80 °C

Experimental Protocols

Catalyst-Controlled C-H Allylation and Annulation of 2-Aryl Quinazolinones with 2-Methylidene Cyclic Carbonate

By: Ko, Nayoung; et al

Journal of Organic Chemistry (2023), 88(18), 13315-13326.

Steps: 1 Yield: 14%

Scheme 147 (1 Reaction)

➤ Suppliers (78)

➤ Suppliers (55)

31-116-CAS-18998649

Steps: 1 Yield: 14%

1.1 Reagents: Silver carbonate, Trifluoroacetic acid-*d*, Water-*d*₂ Catalysts: Copper fluoride (CuF₂), Rhodium trichloride Solvents: Toluene; 2 h, 150 °C; cooled

Oxidative C-H/C-H Cross-Coupling Reactions between N-Acylanilines and Benzamides Enabled by a Cp*- Free RhCl₃/TF A Catalytic System

By: Shi, Yang; et al

Angewandte Chemie, International Edition (2018), 57(29), 9108-9112.

Scheme 148 (1 Reaction)

Steps: 1

➤ Suppliers (94)

➤ Supplier (1)

31-116-CAS-17826892

Steps: 1

1.1 **Reagents:** Pivalic acid, Acetic acid- d_4

Catalysts: Zinc acetate, Rhodium(2+), tris(acetonitrile)[(1,2,3,4, $5-\eta$)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)

-hexafluoroantimonate(1-) (1:2)

Solvents: 1,2-Dichloroethane; 2 h, 70 °C

Experimental Protocols

Sulfoxonium Ylides as a Carbene Precursor in Rh (III)-Catalyzed C-H Acylmethylation of Arenes

By: Xu, Youwei; et al

Organic Letters (2017), 19(19), 5256-5259.

Scheme 149 (1 Reaction)

Steps: 1

N N

 $N \longrightarrow N$

➤ Suppliers (94)

Suppliers (6)

> Supplier (1)

31-116-CAS-20419185

Steps: 1

Traceless-Activation Strategy for Rh-Catalyzed Csp²-H Arylation of Coumarins

By: Han, Fuzhong; et al

Organic Letters (2019), 21(15), 5907-5911.

1.1 **Reagents:** Acetic acid-*d*

Catalysts: Bis[dichloro[$η^5$ -(pentamethylcyclopentadienyl)] rhodium], [1,1,1-Trifluoro-*N*-[(trifluoromethyl)sulfonyl-κ*O*]

methanesulfonamidato-κ*O*]silver **Solvents:** Toluene; 24 h, 120 °C

Scheme 150 (1 Reaction)

Steps: 1

➤ Suppliers (57)

Suppliers (77)

Double bond geometry shown

Double bond geometry shown

31-116-CAS-19505013

Steps: 1

1.1 Reagents: Acetic acid-d₄, Copper diacetate monohydrate, Oxygen, Silver hexafluoroantimonate

 $\textbf{Catalysts:} \ (\eta^5 \text{-} 2, 4 \text{-} Cyclopenta dien-1-yl) diiodorhodium$

Solvents: Tetrahydrofuran; 6 h, 80 °C

Experimental Protocols

Dual Effects of Cyclopentadienyl Ligands on Rh(III)-Catalyzed Dehydrogenative Arylation of Electron-Rich Alkenes

By: Lin, Weidong; et al

ACS Catalysis (2018), 8(9), 8070-8076.

Scheme 151 (1 Reaction)

Steps: 1

Suppliers (24)

Suppliers (88)

31-614-CAS-24234901

Steps: 1

1.1 **Reagents:** Silver acetate, Acetic acid- d_4 Catalysts: Silver triflate, [(3a,4,5,6,6a-η)-(13cR)-3,7-Dihydro-2,8dimethoxy-3a H-cyclopenta[6,7]cycloocta[2,1-a:3,4-a']dinapht halen-3a-yl]bis(η²-ethene)rhodium

Solvents: Dichloromethane; 6 h, 60 °C

Experimental Protocols

Twofold C-H Activation-Based Enantio- and Diastereoselective C-H Arylation Using Diarylacetylenes as Rare Arylating Reagents

By: Hu, Panjie; et al

Angewandte Chemie, International Edition (2021), 60(37), 20424-20429.

Scheme 152 (1 Reaction)

Steps: 1

31-085-CAS-11661736

Steps: 1

Reagents: Acetic acid- d_4

Catalysts: Benzoyl peroxide, [(3a,4,5,6,6a-η)-(13cR)-3,7-Dihydro-2,8-dimethoxy-3a H-cyclopenta[6,7]cycloocta[2,1-a:3,

4-a']dinaphthalen-3a-yl]bis(η^2 -ethene)rhodium

Solvents: Dichloromethane- d_2 ; 12 h

By: Ye, Baihua; et al

Angewandte Chemie, International Edition (2014), 53(2), 507-511.

Chiral Cp-Rhodium(III)-Catalyzed Asymmetric Hydroarylations

Experimental Protocols

Scheme 153 (1 Reaction)

Steps: 1

of 1,1-Disubstituted Alkenes

Suppliers (57)

Supplier (1)

➤ Supplier (1)

Steps: 1

1.1 **Catalysts:** Pivalic acid, Bis[dichloro[η⁵-(pentamethylcyclope ntadienyl)]rhodium], Silver hexafluoroantimonate **Solvents:** 1,2-Dichloroethane, Acetic acid-*d*; 36 h, 110 °C

Experimental Protocols

Rhodium(I)-Catalyzed Asymmetric Hydroarylative Cyclization of 1,6-Diynes to Access Atropisomerically Labile Chiral Dienes

By: Hu, Panjie; et al

Angewandte Chemie, International Edition (2024), 63(1), e202312923.

Scheme 154 (1 Reaction)

Steps: 1

Suppliers (59)

Suppliers (3)

Relative stereochemistry shown

31-116-CAS-19615499

Steps: 1

1.1 Reagents: Silver acetate, Acetic acid-d₄
Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5-η)-1,2,3,4,5pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoro
antimonate(1-) (1:2)

Solvents: Dichloromethane; 14 h, 60 °C

Experimental Protocols

Rhodium(III)-Catalyzed Enantioselective Coupling of Indoles and 7-Azabenzonorbornadienes by C-H Activation/Desymme trization

By: Yang, Xifa; et al

Angewandte Chemie, International Edition (2019), 58(1), 322-326.

Scheme 155 (1 Reaction)

Steps: 1

► Suppliers (2)

Suppliers (59)

31-116-CAS-18400346

Steps: 1

Rh(III)-Catalyzed Acceptorless Dehydrogenative Coupling of (Hetero)arenes with 2-Carboxyl Allylic Alcohols

1.1 **Reagents:** Acetic acid-*d*₄, Oxygen

Catalysts: Zinc acetate, Bis[dichloro[η^5 -(pentamethylcyclope

ntadienyl)]rhodium]

Solvents: Acetone; 0.5 h, 80 °C

Experimental Protocols

By: Xia, Jintao; et al

Organic Letters (2018), 20(3), 740-743.

Scheme 156 (1 Reaction)

Steps: 1

Suppliers (25)

31-614-CAS-34897428

Steps: 1

Synthesis of Diarylselenides through Rh-catalyzed Direct Diarylation of Elemental Selenium with Benzamides

1.1 Reagents: Silver acetate, Acetic acid-*d*₄, Selenium Catalysts: Silver hexafluoroantimonate, Bis[(1,2,3,4,5-η)-1,3-bis (ethoxycarbonyl)-2,4,5-trimethyl-2,4-cyclopentadien-1-yl]di-μ-chlorodichlorodirhodium

By: Xu-Xu, Qing-Feng; et al Journal of Organic Chemistry (2022), 87(24), 16887-16894.

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 2 h, rt

Scheme 157 (1 Reaction)

Steps: 1

$$+ \qquad + \qquad + \qquad + \qquad +$$

` Suppliers (78)

Suppliers (8)

31-116-CAS-20224329

Steps: 1

1.1 Reagents: Acetic acid-d, Oxygen

> Suppliers (30)

sulfonyl-κ*O*]methanesulfonamidato-κ*O*]zinc **Solvents:** Chlorobenzene; 5 h, 140 °C

Highly Regio- and Chemose lective Oxidative C-H/C-H Cross-Couplings of Anilines and Phenols Enabled by a Co- Oxidant-Free Rh(I)/Zn(NTf₂)₂/Air Catalytic System

By: Zhang, Luoqiang; et al

ACS Catalysis (2019), 9(6), 5358-5364.

Scheme 158 (1 Reaction)

Steps: 1

31-116-CAS-17829067

Steps: 1

1.1 Reagents: Trifluoroacetic acid-d

Catalysts: Silver triflate, Bis[dichloro[η^5 -(pentamethylcyclope

 $ntadienyl)] rhodium], Silver\ hexafluoroantimonate$

Solvents: 1,2-Dichloroethane; 12 h, 40 °C

Experimental Protocols

Rh(III)-Catalyzed Diastereodivergent Spiroannulation of Cyclic Imines with Activated Alkenes

By: Liu, Bingxian; et al

Organic Letters (2017), 19(19), 5402-5405.

Scheme 159 (1 Reaction)

> Suppliers (109)

Supplier (1)

Steps: 1

Steps: 1

эсерэ.

Steps: 1

Suppliers (40)

31-116-CAS-19313273

1.1 **Reagents:** Acetic acid- d_4

Catalysts: 3,5-Bis(trifluoromethyl)benzenamine, Silver hexafluorophosphate, Bis[μ -(acetato- $\kappa \mathcal{O}$: $\kappa \mathcal{O}$)]bis(acetato- $\kappa \mathcal{O}$) bis[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl] dirhodium

Solvents: 2,2,2-Trifluoroethanol; 24 h, 100 °C

Experimental Protocols

Rh(III)-Catalyzed ortho-C-(sp²)-H amidation of ketones and aldehydes under synergistic ligand-accelerated catalysis

By: Hande, Akshay Ekanath; et al

Chemical Communications (Cambridge, United Kingdom) (2018), 54(85), 12113-12116.

Scheme 160 (1 Reaction)

➤ Suppliers (2)

31-116-CAS-8587608

Steps: 1

1.1 **Reagents:** Acetic acid- d_4

Catalysts: Rhodium(2+), tris(acetonitrile)[(1,2,3,4,5- η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]-, (*OC*-6-11)-hexafluoro

antimonate(1-) (1:2)

Solvents: Chlorobenzene; 3 h, 120 °C

Experimental Protocols

Rhodium(III)-Catalyzed Regioselective C-H Alkenylation of Phenylphosphine Sulfides

By: Yokoyama, Yuki; et al

Journal of Organic Chemistry (2014), 79(16), 7649-7655.

31-116-CAS-19505014

Steps: 1 Yield: 90%

📜 Supplier (1)

Dual Effects of Cyclopentadienyl Ligands on Rh(III)-Catalyzed Dehydrogenative Arylation of Electron-Rich Alkenes

1.1 **Reagents:** Acetic acid-*d*₄, Copper diacetate monohydrate, Oxygen, Silver hexafluoroantimonate

 $\textbf{Catalysts:} \ \, \textbf{Bis[dichloro[} \eta^5\text{-(pentamethylcyclopentadienyl)]}$

rhodium]

Solvents: Tetrahydrofuran; 6 h, 80 °C

Double bond geometry shown

By: Lin, Weidong; et al

ACS Catalysis (2018), 8(9), 8070-8076.

Experimental Protocols

31-116-CAS-19507616 Steps: **1** Yield: **50%**

1.1 Reagents: Acetic acid-d₄, Copper diacetate monohydrate, Oxygen, Silver hexafluoroantimonate

Catalysts: (η⁵-2,4-Cyclopentadien-1-yl)diiodorhodium

Solvents: Tetrahydrofuran; 2 h, 80 °C

Dual Effects of Cyclopentadienyl Ligands on Rh(III)-Catalyzed Dehydrogenative Arylation of Electron-Rich Alkenes

By: Lin, Weidong; et al

ACS Catalysis (2018), 8(9), 8070-8076.

Experimental Protocols

31-085-CAS-17263150 Steps: 1 Yield: 86% 1.1 Reagents: Acetic acid-*d*

Catalysts: Cupric acetate, Bis[dichloro[η^5 -(pentamethylcyclope ntadienyl)]rhodium], Silver hexafluoroantimonate **Solvents:** 1,2-Dichloroethane; rt; 30 min, 60 °C

Experimental Protocols

Rh(III)-catalyzed C-H alkylation of indolines with enones through conjugate addition and protonation pathway

By: Oh, Hyunjung; et al

Tetrahedron (2017), 73(32), 4739-4749.

31-116-CAS-17829068

1.1 **Reagents:** Trifluoroacetic acid-*d*

 $\textbf{Catalysts:} \ \, \textbf{Silver triflate, Bis[dichloro[} \eta^5\text{-}(pentamethylcyclope}$

ntadienyl)]rhodium], Silver hexafluoroantimonate

Solvents: 1,2-Dichloroethane; 12 h, 40 °C

Experimental Protocols

Steps: **1** Yield: **73%**

Imines with Activated Alkenes

By: Liu, Bingxian; et al

Organic Letters (2017), 19(19), 5402-5405.

Rh(III)-Catalyzed Diastereodivergent Spiroannulation of Cyclic

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.