SUJAY D. BAGI

155 Cherry St., Apt 2, Cambridge, MA - 02139
Phone: (469) 648-8081 * Email: sbagi@mit.edu / suji4599@gmail.com

PROFESSIONAL SYNOPSIS

Materials Scientist and Research Assistant in Mechanical Engineering at MIT with focus on developing high-throughput synthesis pathways for accelerated crystallization of Metal–Organic Frameworks (MOFs) and Zeolites. Previous experience of 5+ years in Diesel Aftertreatment System, Lubricants, and Tribology. Effective communicator with expertise in project management, product design & dev.

PROFESSIONAL CONTOUR

Jul'16 - Present

Massachusetts Institute of Technology (MIT)

Research Assistant

- Research thesis focused on developing flow chemistry platform for energy- & cost-efficient synthesis of MOFs & Zeolites, used in atmospheric water harvesting, heat pumps, gas storage, drug delivery, and catalysis.
- Developed *techno-economic framework* and *CFD* models to evaluate potential scalability & trade-off scenarios for manufacturing industrially relevant MOFs at *kg scale*, with an overall goal to reduce synthesis costs for widespread deployment.
- Computed activation energies and rate constants for nucleation & growth of MOF-808 (Zr) via SAXS & reaction quenching in flow.
- Evaluated sinter-resistant core-shell (Pt/Pd-TiWC) catalysts for gasoline engine using packed-bed down-flow reactor.
- Performed engine bench-tests to simulate accelerated DPF aging to elucidate ash sintering, transport and effects on filter ΔP.

Feb'13 - Jun'16

Paccar Inc

Sr. R&D Engineer - Powertrain Systems

- Developed strategies for Diesel Engine Aftertreatment System: Understanding physical/chemical interactions of soot & ash that affect DPF filtration (ΔP) & catalyst performance, DPF maintenance intervals, and approach for NOx control.
- Evaluated *failure modes and wear mechanisms* for MX powertrain components related to Engine oils, Fuels, Coolants, Greases & Driveline fluids using materials characterization techniques during vehicle design and production stages.
- Served as a technical resource to monitor automotive industry trends, legislation, and participate in development of industry standards (PC-11 / NCDT / ASTM) related to Fluid systems & Emissions, of practical significance to Paccar products.

Jan'11 - Dec'12

University of Texas at Arlington

Research Assistant

- Research thesis focused on developing high performance EP grease additives & surface analysis to elucidate wear mechanisms.
- Performed comprehensive studies on investigation of structural, oxidative and morphological aspects of diesel engine soot extracted from crankcase and exhaust stream.

May'12 - Aug'12

Albemarle Corporation

Intern - Polymer Solutions R&D

Formulated aminic and phenolic antioxidant chemistries used in power-plant turbine oils for long-term durability. Investigation of oil
degradation behaviour and varnish deposits using oxidation bench tests, analytical & statistical tools, and condition monitoring.

Jul'09 - Jun'10

John Deere India Pvt Ltd

Engineer - Product Design and Analysis

 Involved in the product development of hydraulic system control-valve for small tractors, including conceptualization, market segmentation, detailed design, prototype development, and reliability testing in adherence with the quality & cost standards.

ACADEMIC CREDENTIALS

2021	Ph.D. Candidate in Mechanical Engineering	Massachusetts Institute of Technology (GPA 4.7/5.0)
2012	M.S. in Materials Science and Engineering	University of Texas at Arlington (GPA 3.6/4.0)
2009	B.E. in Mechanical Engineering	BMS College of Engineering, Bangalore, India (72.91%)

SCHOLARSHIPS & PROFESSIONAL MEMBERSHIP

- Awarded *Tata Trusts fellowship* (2017-19, MIT) for developing sorbents used in heavy-metal sequestration from industrial wastewater and hydrogen/methane storage for automotive applications.
- Materials Science Dept. scholarship (2011-12, UTA) & STLE North Texas Scholarship for Tribological Research (2012).
- Memberships in: <u>STLE</u> (Engine & Drivetrain Technical Committee: PS Chair), <u>EMA</u> (Truck & Engine Manuf. Association), <u>LC</u> (Lubricants Committee), <u>DFC</u> (Diesel Fuel Committee), & *PC-11 taskforce* (Volvo T-13, Daimler Scuffing, CAT Aeration Test). Contributed toward the development of next generation fuel-efficient diesel engine oil standard (*API CK-4* & *FA-4*, 2014-16).

INDUSTRIAL & ACADEMIC WORKSHOPS

- Fuels, Biofuels, Engine Oils and Drivetrain Fluids Workshop Afton Chemicals R&D Centre (Richmond, VA 06/2015)
- Engine and Drivetrain Components for Trucks & Heavy Equipment Paccar Technical Centre (Mt Vernon, WA 04/2014)
- Lubrication and Fuels Conference Lubrizol R&D Centre (Wickliffe, OH 09/2014)
- GD&T (Geometric Dimensioning & Tolerancing) Workshop & Manufacturing Aluminium Hybrid Composites (04/2010)

TECHNIQUES – Materials Characterization & Mechanical Modelling/Simulation

• Electron Microscopy & Spectroscopy: SEM, TEM, XPS, AES. X-ray Analysis: XRD, SAXS, XRF, EDS. Molecular Vibrational Spectroscopy: Raman, FTIR. Surface Analysis: WLI, GDS, AFM. Thermal Analysis: TGA, DSC.

- Chemical Analysis: ICP-OES, GC-MS, BET, DLS, TAN, TBN, Calorimetry, Flash/Pour/Cloud Point Tests.
- Tribology & Lubricant Analysis: 4-Ball, HFRR, SRV, BOCLE, Pin-On-Disk, HTHS, KV, RPVOT, TEOST, TFOUT.
- Modelling & Analysis: COMSOL, OriginLab, SolidWorks, ANSYS, Minitab, Design Expert (DOE), 3D Printing (SLA/FDM).

PUBLICATIONS (Updated July 2020)

- <u>Bagi, S.</u>, Bowker, R., and Andrew, R., "Understanding Chemical Composition & Phase Transitions of Ash from Field Returned DPF Units and their Correlation with Filter Operating Conditions", SAE Int. J. Fuels Lubr. 9(1):2016, DOI: 10.4271/2016-01-0898
- <u>Bagi S.</u>, Sharma V., Patel M., and Aswath P., "Effects of Diesel Soot Composition and Accumulated Vehicle Mileage on Soot Oxidation Characteristics", Energy and Fuels, 2016, 30(10), 8479-8490. *DOI: 10.1021/acs.energyfuels.6b01304*
- <u>Bagi S.</u>, Sharma V., and Aswath P., "Role of Dispersant on Soot-Induced Wear in Cummins ISB Engine", Carbon, 2018, 136, 395-408. DOI: 10.1016/j.carbon.2018.04.066
- <u>Bagi, S.</u>, Singh, N., and Andrew, R., "Investigation into Ash from Field Returned DPF Units: Composition, Distribution, Cleaning Ability and DPF Performance Recovery". SAE Technical Paper 2016-01-0928, 2016. DOI: 10.4271/2016-01-0928
- Kamp, C., Zhang, S., <u>Bagi, S.</u> et al., "Ash Permeability Determination in the Diesel Particulate Filter from Ultra-High Resolution 3D X-Ray Imaging and Image-Based Direct Numerical Simulations," SAE Int. J. Fuels Lubr. 10(2):2017. DOI: 10.4271/2017-01-0927
- Sharma V., <u>Bagi S.</u>, Patel M., and Aswath P., "Influence of engine age on morphology and chemistry of diesel soot extracted from crankcase oil", Energy and Fuels, 2016, 30(3), 2276-2284. *DOI: 10.1021/acs.energyfuels.5b02512*
- <u>Bagi S.D.</u>, Aswath, P.B. Mechanism of Friction and Wear in MoS₂ and ZDDP/F-PTFE Greases under Spectrum Loading Conditions. Lubricants 2015, 3(4), 687-711. *DOI:* 10.3390/lubricants3040687
- Kamp, C. J., <u>Bagi, S.</u>, & Wang, Y. (2019). Phenomenological Investigations of Mid-Channel Ash Deposit Formation and Characteristics in Diesel Particulate Filters. SAE Technical Paper 2019-01-0973. DOI: 10.4271/2019-01-0973
- Kamp, C. J., & <u>Bagi, S.</u>, (2019). Advanced analytical methods for the study of lubricant-derived ash and associated impacts on engine aftertreatment components. SAE Technical Paper 2019-01-2293. DOI: 10.4271/2019-01-2293
- <u>S. D. Bagi</u> and P. B. Aswath "Role of MoS₂ Morphology on Wear & Friction Coefficient under Spectrum Loading Conditions", Lubr. Sci., 27: 429-449. *DOI:* 10.1002/ls.1296
- Sharma V., <u>Bagi S.</u>, Patel M., Aderniran S., and Aswath P., "Structure and Chemistry of Soot and its Role in Wear of Diesel Engines", Tribology Online, 11, 5 (2016) 551-555. DOI: 10.2474/trol.11.551
- Shah, A., <u>Bagi, S</u>. and Aswath, P., 2017. Wear and Friction of Greases Containing Organic and Inorganic Sulfur Carriers. Tribology Online, 12(4), pp.162-170. DOI: 10.2474/trol.12.162
- <u>Bagi, S.</u>, Vyavhare, K., and Aswath, P., "Tribological characteristics of greases with and without metallo-organic friction-modifiers".
 Tribology Materials, Surfaces & Interfaces, 12:4, 223-236, 2018. ISSN: 1751-5831. DOI: 10.1080/17515831.2018.1542790
- Vyavhare, K., <u>Bagi, S.</u>, Patel, M., and Aswath, P., "Impact of diesel engine oil additives-soot interactions on physiochemical, oxidation and wear characteristics of soot". Energy and Fuels, 2019, 33(5), 4515-4530, *DOI: 10.1021/acs.energyfuels.8b03841*
- S. D. Bagi., Effect of Additive Morphology & Chemistry on Wear & Friction of Greases under Spectrum Loading, M.S. Thesis, 2012. DOI: https://uta-ir.tdl.org/uta-ir/handle/10106/25525
- <u>Bagi, S.</u> et al., High Throughput Synthesis of Metal–Organic Frameworks for Atmospheric Fresh Water Capture, 2020, *Manuscript in preparation*.
- <u>Bagi, S.</u> et al., Continuous Flow Chemistry Approach for Ultrafast and Low-Cost Synthesis of MOF-808 and Techno-Economic Analysis, 2020, *Manuscript in preparation*.
- <u>Bagi S.</u>, Kamp C. J., Sharma V., and Aswath P., Multiscale Characterization of Exhaust and Crankcase Soot Extracted from Heavy-Duty Diesel Engine and Implications for DPF Ash, 2020, Fuel, *JFUE-D-20-03448*.
- Vyavhare, K., <u>Bagi, S.</u>, Pichumani, P., and Aswath, P., Chemical and Physical Properties of Tribofilms formed by the Interaction of Ashless Dithiophosphate Anti-wear Additives, 2020, *Manuscript in preparation*.
- Yuan, S. ... <u>Bagi, S.</u> et al., Conversion of Methane into Liquid Fuels Bridging Thermal Catalysis with Electrocatalysis, 2020, Advanced Energy Materials, AENM 202000268.

PATENTS

- Aswath, P. B., <u>Bagi, S.</u>, Shah, A., Shah, K., and Mordaunt, K. "Lubricant Compositions." U.S. Patent 20,170,066,990, *Issued March* 9, 2017. (Application Number 15/259,608)
- <u>Bagi, S.</u> and Román-Leshkov, Y., High-throughput Flow Synthesis of Crystalline Microporous Materials On-demand. *US Provisional Patent Application*, 2019.

POSTER PRESENTATIONS

- <u>Bagi, S.</u> and Román-Leshkov, Y., On-demand Synthesis of Zeolites In-Flow for Water Purification, Tata Center for Technology & Design, MIT, 2018.
- <u>Bagi, S.</u> and Román-Leshkov, Y., High-throughput Synthesis of Metal–Organic Frameworks (MOFs) for Catalysis and Water Uptake, Tata Center for Technology & Design, *MIT*, 2019.
- P. Pitchumani, S. Bagi, V. Sharma, and P Aswath, "Wear and Tribofilm Formation with Zinc-Free Antiwear Additives "Fundamentals II, STLE 67th Annual Meeting, St. Louis. MO, May 6th -10th, 2012. p. 28. (Tribology & Lubrication Technology 2 (2013): 1.)
- Kamp, C. J., ... <u>Bagi, S.</u>, et al., High-Resolution X-Ray Computed Tomography and Direct Numerical Simulation for the Measurement and Calculation of Decreased Permeability in the Wall-Flow Diesel Particulate Filter due to the Accumulation of Lubricant-Derived Ash, *Materials Research Society*, TC02.03.09, 2017.

PEER-REVIEWER FOR SCHOLARLY JOURNALS

- SAE International Journal of Fuels and Lubricants (ISSN: 1946-3952): 30+ papers reviewed
- Emission Control Science and Technology (ISSN: 2199-3637): 2+ papers reviewed

MAJOR PROJECTS EXECUTED

Description Description	Project Synopsis
Development of High- Throughput Flow Chemistry Platform for Material Synthesis On- demand (06'2017 - present)	 Designed & built a modular and scalable materials discovery platform, for ultrafast synthesis of porous materials (Zeolites & MOFs) on a <i>gram to kg scale</i>. Employed microfluidic reactions using biphasic liquid-liquid slug flow to perform continuous crystallization; miniaturized reactions (µL to mL) enable fast heat/mass transport accelerating synthesis Supervised machine learning modules coupled with rapid synthesis helps minimize time-consuming steps in screening large number of reaction space parameters and aids pilot-scale production. Employed a robust <i>techno-economic model</i> coupled with <i>CFD</i> simulations to analyse cost and energy savings achieved in flow compared to batch, and scalable configurations to synthesize at <i>kg</i> scale.
Harvesting Fresh Water from Air (07'2019 - 05'2020)	 Employed flow chemistry for accelerated crystallization of Ni₂Cl₂BTDD MOF-adsorbs nearly its own weight of water from air, delivering unprecedented performance in water harvesters & heat pumps. Explored chemical synthesis space of solvents, residence time and temperature, using DoE to minimize synthesis costs enabling widespread deployment of sorbent-based devices. Atmosphere holds ~10% of global fresh water. Energy- & cost-efficient capture along with decentralized distribution in remote arid areas would be a major breakthrough to address water scarcity.
Evaluate Crystallization Kinetics for industrially attractive MOFs (07'2020 - present)	 Employed rapid sampling module developed in-house to quench crystallization reactions for MOF-808 (Zr), an industrially attractive MOF with open metal sites, used in catalysis, heat pumps, separation etc. Determined activation energies and rate constants for nucleation and crystal growth using Gualtieri model for solution-mediated transformation. Explored the effects of coordination modulation, temperature, & linker concentration on particle sizes.
MIT Consortium on Diesel Engine Lubricants & Emission Control System (06'2016 - 05'2017)	 Developed bench-tests to simulate accelerated lubricant ash loading in DPF and monitor ash transport, HC light-off performance, mid-channel ash deposits and filter backpressure (ΔP). Computed permeability of aged filters taking into account resistances of filter wall and ash morphology, using X-ray CT (Computed Tomography) and CFD models. Evaluation of hydrated ash species on filter durability & correlations with vehicle operating environment.
Tailoring Hardware Specific Engine Oils (CK-4) for Improved Vehicle Fuel Economy (10'2014 - 04'2016)	 Executed the collaborative project from conception to engine testing with a goal of establishing engine-oil performance standard for MX13/MX11 engines. Additive chemistry formulations with low-ash & low-P content were developed for enhanced MX engine durability and improved service life of DPF catalyst. Developed and evaluated low HTHS engine oils to understand effects on engine durability and achieved ~0.5% fuel-economy improvement on MX platform.
After-treatment Performance & Extension of DPF Service Intervals (06'2013 - 02'2015)	 Collaborated with Cummins for evaluation of efficient DPF ash cleaning protocols. Dry or wet methods that recovered catalyst performance while removing most of the ash (lose & sintered) were selected. Investigated the relationship between accumulated vehicle mileage, duty-cycles, ash morphology (chemical makeup & distribution) and DOC/DPF catalyst performance for extension of DPF cleaning intervals of on-highway vehicles.
Projects at University of Texas at Arlington (04'2011 - 02'2013)	 Research collaboration with Boeing for development of Low Friction Aerospace Greases under spectrum loading conditions for landing gear application. Studied chemical & structural characteristics of tribofilms from Ashless Anti-Wear additives.

<u>Areas of Interest</u>: Materials Development, Renewable Energy Technologies, Crystallization Science, MOFs, Automotive Emissions. <u>References</u> provided on request.