Net-Zero America - north carolina state report

Larson et al. 2020

February 2021

These data underlie graphs and tables presented in the Princeton Net-Zero America study (E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020. Report available at https://netzeroamerica.princeton.edu.)

Notes

- These data are a subset of all data from the study available at https://netzeroamerica.princeton.edu.
- The Net-Zero America study describes five pathways to reach net-zero emissions and one "no new policies" reference scenario. In this document, state-level results are grouped by scenario. For some scenarios, the study generated national, but not state-level results.
- Within results for a given scenario, data tables are organized into corresponding sections of the full net-zero study (e.g., Pillar 1, Pillar 2, etc.)
- Some results are not model outputs, but rather they are limits that apply across all scenarios (e.g., maximum carbon storage potential in agricultural soils).

List of Tables

1	E+ scenario - PILLAR 1: Efficiency/Electrification - Residential	4
2	E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	4
3	E+ scenario - PILLAR 1: Efficiency/Electrification - Overview	4
4	E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	4
5	E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	5
6	E+ scenario - PILLAR 2: Clean Electricity - Generating capacity	5
7	E+ scenario - PILLAR 2: Clean Electricity - Generation	5
8	E+ scenario - PILLAR 3: Clean fuels - Bioenergy	5
9	E+ scenario - PILLAR 4: CCUS - CO2 capture	6
10	E+ scenario - PILLAR 4: CCUS - CO2 storage	6
11	E+ scenario - PILLAR 4: CCUS - CO2 pipelines	6
12	E+ scenario - PILLAR 6: Land sinks - Agriculture	6
13	E+ scenario - PILLAR 6: Land sinks - Forests	7
14	E+ scenario - IMPACTS - Health	9
15	E+ scenario - IMPACTS - Jobs	9
16	E+ scenario - IMPACTS - Fossil fuel industries	0
17	E- scenario - PILLAR 1: Efficiency/Electrification - Residential	O

18	E- scenario - PILLAR 1: Efficiency/Electrification - Transportation	11
19	E- scenario - PILLAR 1: Efficiency/Electrification - Overview	11
20	E- scenario - PILLAR 1: Efficiency/Electrification - Commercial	11
21	E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	11
22	E- scenario - PILLAR 6: Land sinks - Agriculture	11
23	E- scenario - PILLAR 6: Land sinks - Forests	12
24	E- scenario - IMPACTS - Health	14
25	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential	14
26	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	15
27	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview	15
28	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	15
29	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	16
30	E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity	16
31	E+RE+ scenario - PILLAR 2: Clean Electricity - Generation	16
32	E+RE+ scenario - PILLAR 6: Land sinks - Agriculture	16
33	E+RE+ scenario - PILLAR 6: Land sinks - Forests	17
34	E+RE+ scenario - IMPACTS - Health	19
35	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential	19
36	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation	19
37	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview	20
38	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial	20
39	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	20
40	E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity	20
41	E+RE- scenario - PILLAR 2: Clean Electricity - Generation	20
42	E+RE- scenario - PILLAR 6: Land sinks - Agriculture	21
43	E+RE- scenario - PILLAR 6: Land sinks - Forests	21
44	E+RE- scenario - IMPACTS - Health	23
45	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential	23
46	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	24
47	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview	24
48	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	24
49	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	25
50	E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity	25
51	E-B+ scenario - PILLAR 2: Clean Electricity - Generation	25
52	E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy	25
53	E-B+ scenario - PILLAR 4: CCUS - CO2 capture	25
54	E-B+ scenario - PILLAR 4: CCUS - CO2 storage	26
55	E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines	26
56	E-B+ scenario - PILLAR 6: Land sinks - Agriculture	26
57	E-B+ scenario - PILLAR 6: Land sinks - Forests	27
58	REF scenario - PILLAR 1: Efficiency/Electrification - Residential	29

59	REF scenario - PILLAR 1: Efficiency/Electrification - Transportation	29
60	REF scenario - PILLAR 1: Efficiency/Electrification - Overview	29
61	REF scenario - PILLAR 1: Efficiency/Electrification - Commercial	30
62	REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	30
63	REF scenario - PILLAR 6: Land sinks - Forests	30
64	REF scenario - IMPACTS - Health	32

Table 1: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs. REF -	0	7.62	7.56	0	0	0	0
Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric Resistance (%)	75.4	80.6	96.7	99.8	100	100	100
Sales of cooking units - Gas (%)	24.6	19.4	3.31	0.167	0	0	0
Sales of space heating units - Electric Heat Pump	32.3	47.7	81.1	88.9	89.3	89.3	89.2
(%)							
Sales of space heating units - Electric Resistance	22.7	22.3	9.54	6.48	6.3	6.42	6.45
(%)							
Sales of space heating units - Fossil (%)	11.5	13.1	4.52	2.55	2.46	2.42	2.41
Sales of space heating units - Gas (%)	33.5	16.9	4.84	2.03	1.91	1.91	1.9
Sales of water heating units - Electric Heat Pump	0	10	53.3	63.1	63.6	63.6	63.6
(%)							
Sales of water heating units - Electric Resistance	61.4	68.3	40.5	34.3	34	34	34
(%)							
Sales of water heating units - Gas Furnace (%)	34.3	18.9	3.74	0.187	0.002	0	0
Sales of water heating units - Other (%)	4.29	2.81	2.47	2.4	2.41	2.42	2.43

Table 2: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs - Cumulative 5-yr (million \$2018)	0	1,572	4,040	6,528	9,896	10,763	10,266
Public EV charging plugs - DC Fast (1000 units)	0.286	0	3.07	0	13.3	0	21.5
Public EV charging plugs - L2 (1000 units)	1.4	0	73.8	0	320	0	517
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC (%)	0.392	2.54	12.7	30.4	38.2	39.7	40
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.48	1.75	1.23	0.393	0.073	0.013	0
Vehicle sales - Light-duty - EV (%)	4.15	15.9	47.5	82.2	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.5	77.2	47.7	16.1	3.23	0.588	0
Vehicle sales - Light-duty - hybrid (%)	4.65	4.71	3.29	1.21	0.297	0.065	0
Vehicle sales - Light-duty - hydrogen FC (%)	0.11	0.336	0.197	0.061	0.012	0.002	0
Vehicle sales - Light-duty - other (%)	0.099	0.094	0.061	0.021	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen FC (%)	0.196	1.27	6.33	15.2	19.1	19.9	20
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 3: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	253	254	245	233	223	220	224
Final energy use - Industry (PJ)	343	347	348	344	341	338	339
Final energy use - Residential (PJ)	355	335	313	283	260	247	242
Final energy use - Transportation (PJ)	917	853	749	620	504	431	398

Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	34,334	38,227	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric Resistance (%)	32	46	79.9	86.5	86.9	86.9	86.9
Sales of cooking units - Gas (%)	68	54	20.1	13.5	13.1	13.1	13.1
Sales of space heating units - Electric Heat Pump (%)	8.09	27.7	70	83.7	85	85.1	85.1
Sales of space heating units - Electric Resistance (%)	7.4	8.38	10.5	12.6	13	13	13
Sales of space heating units - Fossil (%)	6.11	4.04	0.768	0.033	0	0	0

Table 4: E+ scenario	- PTI I AR 1: FHiciency	//Flertritiration -	Commercial	(Irontinued)

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Gas Furnace (%)	78.4	59.9	18.7	3.71	1.95	1.9	1.9
Sales of water heating units - Electric Heat Pump (%)	0.257	10.4	53.9	64	64.5	64.5	64.5
Sales of water heating units - Electric Resistance (%)	6.38	10.9	28.3	32.5	32.8	32.8	32.8
Sales of water heating units - Gas Furnace (%)	88.8	74.6	14.8	0.738	0.009	0	0
Sales of water heating units - Other (%)	4.56	4.13	3.01	2.74	2.74	2.73	2.73

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -	0	6.1	6.25	10.2	10.8	10.4	10.8
Cumulative 5-yr (billion \$2018)							

Table 6: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

, admoraci		,				
2020	2025	2030	2035	2040	2045	2050
0	0	0	0	0	0	0
0	0	0	0	0	0	0.041
0	0	0	0	0	0	0
0	0	0	0	7.29	3.33	0
0	0	0	0	6.79	2.75	0
0	0.319	11.5	13.4	8.86	6.87	4.82
0	2.3	9.86	12.9	9.89	4.44	3.52
0	0	0.15	0	0.121	0	0
0	0	0.252	0	0	0	0.037
	2020 0 0 0 0 0 0	2020 2025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2020 2025 2030 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.319 11.5 0 2.3 9.86 0 0 0.15	2020 2025 2030 2035 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.319 11.5 13.4 0 2.3 9.86 12.9 0 0.15 0	2020 2025 2030 2035 2040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.29 0 0 6.79 0 0 0 0 0 6.79 0 0 0 9.89 0 0 0 0.15 0 0.121 0 0.121	2020 2025 2030 2035 2040 2045 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	41.1
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	0
OffshoreWind - Base land use assumptions (GWh)	0	0	0	0	17,825	8,896	0
OffshoreWind - Constrained land use	0	0	0	0	17,825	8,896	0
assumptions (GWh)							
Solar - Base land use assumptions (GWh)	4,358	457	18,636	23,584	16,533	13,601	10,077
Solar - Constrained land use assumptions (GWh)	1,582	1,152	15,424	25,126	13,050	10,317	17,301
Wind - Base land use assumptions (GWh)	734	0	381	0	282	0	0
Wind - Constrained land use assumptions (GWh)	734	0	570	0	0	0	127

Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

2020	2025	2030	0005	00/0	00/5	
	2020	2030	2035	2040	2045	2050
0	0	218	218	218	218	920
0	0	0	0	0	0	14,438
0	0	0	0	0	0	1
0	0	0	0	0	0	16
0	0	0	0	0	0	0
0	0	0	0	0	0	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
	0 0 0 0 0 0 0 0	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0

Table 9: E+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)	0	0	0	0.55	4.91	0.67	24.7
Annual - BECCS (MMT)	0	0	0	0	0	0	18.5
Annual - Cement and lime (MMT)	0	0	0	0	0	0	0
Annual - NGCC (MMT)	0	0	0	0.55	4.91	0.67	6.19
Cumulative - All (MMT)	0	0	0	0.55	5.46	6.13	30.9
Cumulative - BECCS (MMT)	0	0	0	0	0	0	18.5
Cumulative - Cement and lime (MMT)	0	0	0	0	0	0	0
Cumulative - NGCC (MMT)	0	0	0	0.55	5.46	6.13	12.3

Table 10: E+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)	0	0	0	0	0	0	0
Injection wells (wells)	0	0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)	0	0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)	0	0	0	0	0	0	0

Table 11: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)	0	0	0	243	245	374	1,682
Cumulative investment - All (million \$2018)	0	0	0	1,364	1,366	1,458	2,604
Cumulative investment - Spur (million \$2018)	0	0	0	9.11	11.6	104	1,250
Cumulative investment - Trunk (million \$2018)	0	0	0	1,354	1,354	1,354	1,354
Spur (km)	0	0	0	15.4	17.9	146	1,455
Trunk (km)	0	0	0	227	227	227	227

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2050
Carbon sink potential - Aggressive deployment -	0	0	-207
Corn-ethanol to energy grasses (1000 tC02e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-2,978
Cropland measures (1000 tCO2e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-102
Permanent conservation cover (1000 tC02e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-3,287
Total (1000 tC02e/y)			
Carbon sink potential - Moderate deployment -	0	0	-207
Corn-ethanol to energy grasses (1000 tC02e/y)			
Carbon sink potential - Moderate deployment -	0	0	-1,569
Cropland measures (1000 tCO2e/y)			
Carbon sink potential - Moderate deployment -	0	0	-51
Permanent conservation cover (1000 tCO2e/y)			
Carbon sink potential - Moderate deployment -	0	0	-1,827
Total (1000 tC02e/y)			
Land impacted for carbon sink - Aggressive	0	0	117
deployment - Corn-ethanol to energy grasses			
(1000 hectares)			
Land impacted for carbon sink - Aggressive	0	0	1,723
deployment - Cropland measures (1000			
hectares)			
Land impacted for carbon sink - Aggressive	0	0	186
deployment - Permanent conservation cover			
(1000 hectares)			

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2050
Land impacted for carbon sink - Aggressive	0	0	2,025
deployment - Total (1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	117
deployment - Corn-ethanol to energy grasses			
(1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	908
deployment - Cropland measures (1000			
hectares)			
Land impacted for carbon sink - Moderate	0	0	92.8
deployment - Permanent conservation cover			
(1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	1,118
deployment - Total (1000 hectares)			

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests

Table 13: E+ scenario - PILLAR 6: Land sinks - For	rests		
Item	2020	2025	2050
Carbon sink potential - High - Accelerate	0	0	370
regeneration (1000 tCO2e/y)			
Carbon sink potential - High - All (not counting	0	0	44,532
overlap) (1000 tCO2e/y)			
Carbon sink potential - High - Avoid deforestation	0	0	3,061
(1000 tC02e/y)			
Carbon sink potential - High - Extend rotation	0	0	10,827
length (1000 tC02e/y)			
Carbon sink potential - High - Improve	0	0	2,556
plantations (1000 tCO2e/y)			
Carbon sink potential - High - Increase retention	0	0	17,779
of HWP (1000 tCO2e/y)			
Carbon sink potential - High - Increase trees	0	0	1,133
outside forests (1000 tCO2e/y)			
Carbon sink potential - High - Reforest cropland	0	0	567
(1000 tCO2e/y)			
Carbon sink potential - High - Reforest pasture	0	0	4,291
(1000 tC02e/y)			.,
Carbon sink potential - High - Restore	0	0	3,947
productivity (1000 tCO2e/y)			-,
Carbon sink potential - Low - Accelerate	0	0	186
regeneration (1000 tCO2e/y)			
Carbon sink potential - Low - All (not counting	0	0	14,417
overlap) (1000 tCO2e/y)			,
Carbon sink potential - Low - Avoid deforestation	0	0	510
(1000 tC02e/y)			
Carbon sink potential - Low - Extend rotation	0	0	4,159
length (1000 tC02e/y)			, -
Carbon sink potential - Low - Improve	0	0	1,300
plantations (1000 tCO2e/y)			,
Carbon sink potential - Low - Increase retention	0	0	5,926
of HWP (1000 tC02e/y)			-,-=-
Carbon sink potential - Low - Increase trees	0	0	397
outside forests (1000 tCO2e/y)			
Carbon sink potential - Low - Reforest cropland	0	0	284
(1000 tC02e/y)			
Carbon sink potential - Low - Reforest pasture	0	0	325
(1000 tC02e/y)			
Carbon sink potential - Low - Restore	0	0	1,331
productivity (1000 tCO2e/y)			.,
Carbon sink potential - Mid - Accelerate	0	0	278
regeneration (1000 tCO2e/y)			
Carbon sink potential - Mid - All (not counting	0	0	29,452
overlap) (1000 tC02e/y)	-	-	,
Carbon sink potential - Mid - Avoid deforestation	0	0	1,785
(1000 tC02e/y)		-	.,. 55
· · · · · · · · · · · · · · · · · · ·			

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Table 13: E+ scenario - PILLAR 6: Land sinks - Fo	2020	2025	2050
Item Carbon sink potential - Mid - Extend rotation	2020	0	7,493
length (1000 tC02e/y)	0	0	1,473
Carbon sink potential - Mid - Improve plantations	0	0	1,906
(1000 tCO2e/y)	o	0	1,700
Carbon sink potential - Mid - Increase retention	0	0	11,852
	U	0	11,002
of HWP (1000 tCO2e/y)	0	0	7/ 5
Carbon sink potential - Mid - Increase trees	0	0	765
outside forests (1000 tC02e/y)			
Carbon sink potential - Mid - Reforest cropland	0	0	426
(1000 tC02e/y)			
Carbon sink potential - Mid - Reforest pasture	0	0	2,308
(1000 tCO2e/y)			
Carbon sink potential - Mid - Restore	0	0	2,639
productivity (1000 tCO2e/y)			
Land impacted for carbon sink potential - High -	0	0	60.6
Accelerate regeneration (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	414
Avoid deforestation (over 30 years) (1000			
hectares)			
Land impacted for carbon sink potential - High -	0	0	5,521
Extend rotation length (1000 hectares)	-	-	-,
Land impacted for carbon sink potential - High -	0	0	942
Improve plantations (1000 hectares)	0	0	772
Land impacted for carbon sink potential - High -	0	0	0
Increase retention of HWP (1000 hectares)	o	0	U
	0	0	100
Land impacted for carbon sink potential - High -	0	0	108
Increase trees outside forests (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	37.5
Reforest cropland (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	122
Reforest pasture (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	1,308
Restore productivity (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	8,513
Total impacted (over 30 years) (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	30.3
Accelerate regeneration (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	389
Avoid deforestation (over 30 years) (1000	-	-	
hectares)			
Land impacted for carbon sink potential - Low -	0	0	2,115
Extend rotation length (1000 hectares)	0	0	2,110
Land impacted for carbon sink potential - Low -	0	0	471
Improve plantations (1000 hectares)	U	0	471
· · · · · · · · · · · · · · · · · · ·			
Land impacted for carbon sink potential - Low -	0	0	0
Increase retention of HWP (1000 hectares)	_		
Land impacted for carbon sink potential - Low -	0	0	56.7
Increase trees outside forests (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	18.8
Reforest cropland (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	21.1
Reforest pasture (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	792
Restore productivity (1000 hectares)		-	
Land impacted for carbon sink potential - Low -	0	0	3,894
Total impacted (over 30 years) (1000 hectares)	0	0	0,074
Land impacted for carbon sink potential - Mid -	0	0	45.5
	U	0	45.5
Accelerate regeneration (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	402
Avoid deforestation (over 30 years) (1000			
hectares)			
Land impacted for carbon sink potential - Mid -	0	0	3,818
Extend rotation length (1000 hectares)			

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2050
Land impacted for carbon sink potential - Mid -	0	0	708
Improve plantations (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	0
Increase retention of HWP (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	82.2
Increase trees outside forests (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	28.1
Reforest cropland (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	153
Reforest pasture (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	1,594
Restore productivity (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	6,831
Total impacted (over 30 years) (1000 hectares)			

Table 14: E+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)	0	698	0.953	0.922	0.77	0.547	0.048
Monetary damages from air pollution - Natural Gas (million 2019\$)	0	506	354	208	161	83.7	31.2
Monetary damages from air pollution - Transportation (million 2019\$)	0	2,831	2,683	2,069	1,209	552	210
Premature deaths from air pollution - Coal (deaths)	0	78.4	0.107	0.103	0.086	0.061	0.005
Premature deaths from air pollution - Natural Gas (deaths)	0	57.1	39.9	23.5	18.2	9.46	3.53
Premature deaths from air pollution - Transportation (deaths)	0	318	302	233	136	62	23.6

Table 15: E+ scenario - IMPACTS - Jobs

Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)	171	197	583	636	538	432	1,266
By economic sector - Construction (jobs)	8,746	7,710	15,129	19,400	20,839	20,299	21,048
By economic sector - Manufacturing (jobs)	7,124	12,055	22,072	22,363	18,103	20,209	16,696
By economic sector - Mining (jobs)	4,161	2,824	2,017	1,298	785	442	248
By economic sector - Other (jobs)	751	606	2,321	3,208	3,534	3,697	4,221
By economic sector - Pipeline (jobs)	637	624	529	580	306	214	266
By economic sector - Professional (jobs)	4,961	4,232	6,771	8,277	9,663	9,830	11,785
By economic sector - Trade (jobs)	4,254	3,119	4,611	5,448	6,161	6,321	7,179
By economic sector - Utilities (jobs)	12,193	11,455	12,267	15,939	18,359	17,676	17,594
By education level - All sectors - Associates	13,319	13,392	20,878	24,615	25,196	25,524	25,661
degree or some college (jobs)							
By education level - All sectors - Bachelors	9,284	9,152	13,335	15,121	15,273	15,436	15,777
_degree (jobs)							
By education level - All sectors - Doctoral degree	299	270	400	460	492	492	555
(jobs)							
By education level - All sectors - High school	17,889	17,902	28,670	33,470	33,694	34,012	34,450
diploma or less (jobs)							
By education level - All sectors - Masters or	2,207	2,107	3,018	3,481	3,634	3,656	3,861
professional degree (jobs)							
By resource sector - Biomass (jobs)	709	846	1,607	1,811	1,621	1,574	5,404
By resource sector - CO2 (jobs)	0	0	0	1,361	15.5	132	1,102
By resource sector - Coal (jobs)	4,162	1,272	0	0	0	0	0
By resource sector - Grid (jobs)	13,317	12,301	16,441	24,419	32,083	32,774	31,857
By resource sector - Natural Gas (jobs)	5,878	6,808	5,312	4,485	4,655	3,135	3,014
By resource sector - Nuclear (jobs)	2,767	2,723	2,679	1,990	804	265	0
By resource sector - Oil (jobs)	8,051	6,905	5,452	3,846	2,563	1,651	1,037
By resource sector - Solar (jobs)	7,984	11,788	33,795	38,427	31,805	30,735	29,173
By resource sector - Wind (jobs)	129	178	1,013	810	4,744	8,853	8,715
Median wages - Annual - All (\$2019 per job)	58,064	58,191	56,638	57,274	58,525	59,152	60,278

Table 15: E+ scenario - IMPACTS - Jobs (continued)

Item	2020	2025	2030	2035	2040	2045	2050
On-Site or In-Plant Training - Total jobs - 1 to 4	6,936	6,898	10,660	12,567	12,874	12,975	13,046
years (jobs)							
On-Site or In-Plant Training - Total jobs - 4 to 10	2,791	2,612	3,938	4,823	5,147	5,102	5,264
years (jobs)							
On-Site or In-Plant Training - Total jobs - None	6,921	6,966	10,945	12,640	12,725	12,884	13,129
(jobs)							
On-Site or In-Plant Training - Total jobs - Over 10	350	350	540	653	685	691	702
years (jobs)							
On-Site or In-Plant Training - Total jobs - Up to 1	26,000	25,996	40,218	46,465	46,857	47,467	48,162
year (jobs)							
On-the-Job Training - All sectors - 1 to 4 years	8,911	8,849	13,610	16,096	16,548	16,660	16,751
(jobs)							
On-the-Job Training - All sectors - 4 to 10 years	2,684	2,495	3,821	4,741	5,104	5,057	5,228
(jobs)							
On-the-Job Training - All sectors - None (jobs)	2,345	2,295	3,591	4,141	4,176	4,216	4,337
On-the-Job Training - All sectors - Over 10 years	406	435	722	818	789	802	784
(jobs)							
On-the-Job Training - All sectors - Up to 1 year	28,651	28,748	44,557	51,353	51,671	52,383	53,203
(jobs)							
Related work experience - All sectors - 1 to 4	15,669	15,457	23,564	27,397	27,890	28,148	28,581
years (jobs)							
Related work experience - All sectors - 4 to 10	10,057	9,983	15,144	17,664	18,040	18,200	18,395
years (jobs)							
Related work experience - All sectors - None	6,132	6,102	9,462	11,124	11,363	11,463	11,716
(jobs)							
Related work experience - All sectors - Over 10	2,719	2,800	4,272	4,887	4,881	4,960	4,918
years (jobs)							
Related work experience - All sectors - Up to 1	8,421	8,481	13,858	16,077	16,115	16,347	16,693
year (jobs)							
Wage income - All (million \$2019)	2,497	2,492	3,756	4,419	4,582	4,681	4,841

Table 16: E+ scenario - IMPACTS - Fossil fuel industries

Item	2020	2025	2030	2035	2040	2045	2050
Natural gas consumption - Annual (tcf)	444	451	380	305	229	144	100
Natural gas consumption - Cumulative (tcf)	0	0	0	0	0	0	9,180
Natural gas production - Annual (tcf)	0	0	0	0	0	0	0
Oil consumption - Annual (million bbls)	165	155	134	102	73.3	50.5	33.8
Oil consumption - Cumulative (million bbls)	0	0	0	0	0	0	3,171
Oil production - Annual (million bbls)	0	0	0	0	0	0	0

Table 17: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs. REF -	0	7.58	7.45	0	0	0	0
Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric Resistance (%)	75.3	75.9	78.2	84.2	92.5	97.6	99.3
Sales of cooking units - Gas (%)	24.7	24.1	21.8	15.8	7.55	2.44	0.656
Sales of space heating units - Electric Heat Pump	32.3	41.3	45.1	56.1	73	84	87.9
(%)							
Sales of space heating units - Electric Resistance	22.7	24.7	23.3	18.9	12.4	8.34	6.89
(%)							
Sales of space heating units - Fossil (%)	11.5	14.8	13.8	11	6.65	3.78	2.79
Sales of space heating units - Gas (%)	33.5	19.2	17.8	13.9	7.91	3.85	2.41
Sales of water heating units - Electric Heat Pump	0	1.73	6.65	20.8	42.6	56.9	61.8
(%)							
Sales of water heating units - Electric Resistance	61.4	73.6	70.5	61.3	47.3	38.2	35.1
(%)							
Sales of water heating units - Gas Furnace (%)	34.3	21.8	20	15.2	7.52	2.43	0.641
Sales of water heating units - Other (%)	4.29	2.87	2.83	2.74	2.59	2.48	2.44

Table 18: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs - Cumulative 5-yr	0	0	256	534	1,808	5,675	8,272
(million \$2018)							
Public EV charging plugs - DC Fast (1000 units)	0.286	0	0.97	0	4.96	0	13.8
Public EV charging plugs - L2 (1000 units)	1.4	0	23.3	0	119	0	331
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC (%)	0.332	0.969	2.74	7.17	15.7	26.3	34
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.49	1.92	2.04	1.62	1.03	0.529	0.227
Vehicle sales - Light-duty - EV (%)	1.97	4.86	12.2	26.4	49	72.4	87.7
Vehicle sales - Light-duty - gasoline (%)	91.5	87.1	79	65.9	45.5	24.4	10.8
Vehicle sales - Light-duty - hybrid (%)	4.83	5.62	6.28	5.69	4.23	2.48	1.19
Vehicle sales - Light-duty - hydrogen FC (%)	0.112	0.378	0.322	0.244	0.172	0.095	0.044
Vehicle sales - Light-duty - other (%)	0.1	0.103	0.094	0.081	0.058	0.032	0.015
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen FC (%)	0.166	0.485	1.37	3.58	7.86	13.2	17
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	253	255	252	248	242	237	235
Final energy use - Industry (PJ)	343	348	349	349	350	347	346
Final energy use - Residential (PJ)	355	336	326	315	300	282	265
Final energy use - Transportation (PJ)	918	861	785	722	672	613	544

Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

•						
2020	2025	2030	2035	2040	2045	2050
0	34,313	38,231	0	0	0	0
32	36.2	40.9	53.4	71	81.7	85.5
68	63.8	59.1	46.6	29	18.3	14.5
8.09	19.7	24.6	38.6	60.7	76.6	82.8
7.4	8.06	8.29	9.07	10.5	11.9	12.7
6.11	4.68	4.33	3.28	1.62	0.513	0.134
78.4	67.5	62.8	49.1	27.1	11	4.45
0.257	2.02	6.97	21.3	43.2	57.6	62.7
6.38	7.55	9.45	15.2	24.1	29.9	32
88.8	86.1	79.3	59.7	29.4	9.53	2.51
4.56	4.35	4.31	3.87	3.3	2.91	2.77
	32 68 8.09 7.4 6.11 78.4 0.257 6.38	0 34,313 32 36.2 68 63.8 8.09 19.7 7.4 8.06 6.11 4.68 78.4 67.5 0.257 2.02 6.38 7.55 88.8 86.1	0 34,313 38,231 32 36.2 40.9 68 63.8 59.1 8.09 19.7 24.6 7.4 8.06 8.29 6.11 4.68 4.33 78.4 67.5 62.8 0.257 2.02 6.97 6.38 7.55 9.45 88.8 86.1 79.3	0 34,313 38,231 0 32 36.2 40.9 53.4 68 63.8 59.1 46.6 8.09 19.7 24.6 38.6 7.4 8.06 8.29 9.07 6.11 4.68 4.33 3.28 78.4 67.5 62.8 49.1 0.257 2.02 6.97 21.3 6.38 7.55 9.45 15.2 88.8 86.1 79.3 59.7	0 34,313 38,231 0 0 32 36.2 40.9 53.4 71 68 63.8 59.1 46.6 29 8.09 19.7 24.6 38.6 60.7 7.4 8.06 8.29 9.07 10.5 6.11 4.68 4.33 3.28 1.62 78.4 67.5 62.8 49.1 27.1 0.257 2.02 6.97 21.3 43.2 6.38 7.55 9.45 15.2 24.1 88.8 86.1 79.3 59.7 29.4	0 34,313 38,231 0 0 0 32 36.2 40.9 53.4 71 81.7 68 63.8 59.1 46.6 29 18.3 8.09 19.7 24.6 38.6 60.7 76.6 7.4 8.06 8.29 9.07 10.5 11.9 6.11 4.68 4.33 3.28 1.62 0.513 78.4 67.5 62.8 49.1 27.1 11 0.257 2.02 6.97 21.3 43.2 57.6 6.38 7.55 9.45 15.2 24.1 29.9 88.8 86.1 79.3 59.7 29.4 9.53

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -	0	5.28	5.33	6.71	6.92	9.8	10.3
Cumulative 5-yr (billion \$2018)							

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2050
Carbon sink potential - Aggressive deployment -	0	0	-207
Corn-ethanol to energy grasses (1000 tCO2e/y)			

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture (continued)

Table 22: E- Scenario - Pillar 6: Lunu Sinks - Ag			0050
Item	2020	2025	2050
Carbon sink potential - Aggressive deployment -	0	0	-2,978
Cropland measures (1000 tC02e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-102
Permanent conservation cover (1000 tC02e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-3,287
Total (1000 tC02e/y)			
Carbon sink potential - Moderate deployment -	0	0	-207
Corn-ethanol to energy grasses (1000 tCO2e/y)			
Carbon sink potential - Moderate deployment -	0	0	-1,569
Cropland measures (1000 tCO2e/y)			
Carbon sink potential - Moderate deployment -	0	0	-51
Permanent conservation cover (1000 tCO2e/y)			
Carbon sink potential - Moderate deployment -	0	0	-1,827
Total (1000 tCO2e/y)			
Land impacted for carbon sink - Aggressive	0	0	117
deployment - Corn-ethanol to energy grasses			
(1000 hectares)			
Land impacted for carbon sink - Aggressive	0	0	1,723
deployment - Cropland measures (1000			
hectares)			
Land impacted for carbon sink - Aggressive	0	0	186
deployment - Permanent conservation cover			
(1000 hectares)			
Land impacted for carbon sink - Aggressive	0	0	2,025
deployment - Total (1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	117
deployment - Corn-ethanol to energy grasses			
(1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	908
deployment - Cropland measures (1000			
hectares)			
Land impacted for carbon sink - Moderate	0	0	92.8
deployment - Permanent conservation cover			
(1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	1,118
deployment - Total (1000 hectares)			•
<u> </u>	1		

Table 23: E- scenario - PILLAR 6: Land sinks - Forests

2020	2025	2050
0	0	370
0	0	44,532
0	0	3,061
0	0	10,827
0	0	2,556
0	0	17,779
0	0	1,133
0	0	567
0	0	4,291
0	0	3,947
0	0	186
0	0	14,417
	0 0 0 0 0 0	

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Table 23: E- scenario - PILLAR 6: Land sinks - Fo			
Item	2020	2025	2050
Carbon sink potential - Low - Avoid deforestation (1000 tCO2e/y)	0	0	510
Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)	0	0	4,159
Carbon sink potential - Low - Improve	0	0	1,300
plantations (1000 tCO2e/y) Carbon sink potential - Low - Increase retention	0	0	5,926
of HWP (1000 tCO2e/y) Carbon sink potential - Low - Increase trees	0	0	397
outside forests (1000 tCO2e/y) Carbon sink potential - Low - Reforest cropland	0	0	284
(1000 tCO2e/y) Carbon sink potential - Low - Reforest pasture	0	0	325
(1000 tCO2e/y) Carbon sink potential - Low - Restore	0	0	1,331
productivity (1000 tC02e/y) Carbon sink potential - Mid - Accelerate	0	0	278
regeneration (1000 tCO2e/y)			
Carbon sink potential - Mid - All (not counting overlap) (1000 tC02e/y)	0	0	29,452
Carbon sink potential - Mid - Avoid deforestation (1000 tCO2e/y)	0	0	1,785
Carbon sink potential - Mid - Extend rotation length (1000 tCO2e/y)	0	0	7,493
Carbon sink potential - Mid - Improve plantations (1000 tCO2e/y)	0	0	1,906
Carbon sink potential - Mid - Increase retention of HWP (1000 tCO2e/y)	0	0	11,852
Carbon sink potential - Mid - Increase trees outside forests (1000 tCO2e/y)	0	0	765
Carbon sink potential - Mid - Reforest cropland (1000 tC02e/y)	0	0	426
Carbon sink potential - Mid - Reforest pasture	0	0	2,308
(1000 tCO2e/y) Carbon sink potential - Mid - Restore	0	0	2,639
productivity (1000 tC02e/y) Land impacted for carbon sink potential - High -	0	0	60.6
Accelerate regeneration (1000 hectares) Land impacted for carbon sink potential - High - Avoid deforestation (over 30 years) (1000 hectares)	0	0	414
Land impacted for carbon sink potential - High - Extend rotation length (1000 hectares)	0	0	5,521
Land impacted for carbon sink potential - High - Improve plantations (1000 hectares)	0	0	942
Land impacted for carbon sink potential - High -	0	0	0
Increase retention of HWP (1000 hectares) Land impacted for carbon sink potential - High -	0	0	108
Increase trees outside forests (1000 hectares) Land impacted for carbon sink potential - High -	0	0	37.5
Reforest cropland (1000 hectares) Land impacted for carbon sink potential - High -	0	0	122
Reforest pasture (1000 hectares) Land impacted for carbon sink potential - High -	0	0	1,308
Restore productivity (1000 hectares) Land impacted for carbon sink potential - High -	0	0	8,513
Total impacted (over 30 years) (1000 hectares) Land impacted for carbon sink potential - Low -	0	0	30.3
Accelerate regeneration (1000 hectares) Land impacted for carbon sink potential - Low -	0	0	389
Avoid deforestation (over 30 years) (1000 hectares)	U	U	389

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2050
Land impacted for carbon sink potential - Low -	0	0	2,115
Extend rotation length (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	471
Improve plantations (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	0
Increase retention of HWP (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	56.7
Increase trees outside forests (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	18.8
Reforest cropland (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	21.1
Reforest pasture (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	792
Restore productivity (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	3,894
Total impacted (over 30 years) (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	45.5
Accelerate regeneration (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	402
Avoid deforestation (over 30 years) (1000			
hectares)			
Land impacted for carbon sink potential - Mid -	0	0	3,818
Extend rotation length (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	708
Improve plantations (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	0
Increase retention of HWP (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	82.2
Increase trees outside forests (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	28.1
Reforest cropland (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	153
Reforest pasture (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	1,594
Restore productivity (1000 hectares)			•
Land impacted for carbon sink potential - Mid -	0	0	6,831
Total impacted (over 30 years) (1000 hectares)			•

Table 24: E- scenario - IMPACTS - Health

Table 24. L- Scenario - Intracto - Health							
Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)	0	698	0.953	0.922	0.77	0.547	0.048
Monetary damages from air pollution - Natural Gas (million 2019\$)	0	474	317	122	48.3	17.1	9.1
Monetary damages from air pollution - Transportation (million 2019\$)	0	2,881	2,959	2,922	2,667	2,149	1,488
Premature deaths from air pollution - Coal (deaths)	0	78.4	0.107	0.103	0.086	0.061	0.005
Premature deaths from air pollution - Natural Gas (deaths)	0	53.5	35.8	13.7	5.46	1.94	1.03
Premature deaths from air pollution - Transportation (deaths)	0	324	333	329	300	242	167

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs. REF -	0	7.62	7.56	0	0	0	0
Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric Resistance (%)	75.4	80.6	96.7	99.8	100	100	100
Sales of cooking units - Gas (%)	24.6	19.4	3.31	0.167	0	0	0
Sales of space heating units - Electric Heat Pump	32.3	47.7	81.1	88.9	89.3	89.3	89.2
(%)							

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Sales of space heating units - Electric Resistance	22.7	22.3	9.54	6.48	6.3	6.42	6.45
(%)							
Sales of space heating units - Fossil (%)	11.5	13.1	4.52	2.55	2.46	2.42	2.41
Sales of space heating units - Gas (%)	33.5	16.9	4.84	2.03	1.91	1.91	1.9
Sales of water heating units - Electric Heat Pump	0	10	53.3	63.1	63.6	63.6	63.6
(%)							
Sales of water heating units - Electric Resistance	61.4	68.3	40.5	34.3	34	34	34
(%)							
Sales of water heating units - Gas Furnace (%)	34.3	18.9	3.74	0.187	0.002	0	0
Sales of water heating units - Other (%)	4.29	2.81	2.47	2.4	2.41	2.42	2.43

Table 26: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Table 20. ETRET Geenatie Tiletin I. Efficiency,	ziooti ijioat	ion manop	or tation				
Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs - Cumulative 5-yr	0	1,572	4,040	6,528	9,896	10,763	10,266
(million \$2018)							
Public EV charging plugs - DC Fast (1000 units)	0.286	0	3.07	0	13.3	0	21.5
Public EV charging plugs - L2 (1000 units)	1.4	0	73.8	0	320	0	517
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC (%)	0.392	2.54	12.7	30.4	38.2	39.7	40
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.48	1.75	1.23	0.393	0.073	0.013	0
Vehicle sales - Light-duty - EV (%)	4.15	15.9	47.5	82.2	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.5	77.2	47.7	16.1	3.23	0.588	0
Vehicle sales - Light-duty - hybrid (%)	4.65	4.71	3.29	1.21	0.297	0.065	0
Vehicle sales - Light-duty - hydrogen FC (%)	0.11	0.336	0.197	0.061	0.012	0.002	0
Vehicle sales - Light-duty - other (%)	0.099	0.094	0.061	0.021	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen FC (%)	0.196	1.27	6.33	15.2	19.1	19.9	20
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 27: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	253	254	245	233	223	220	224
Final energy use - Industry (PJ)	343	347	348	344	341	338	339
Final energy use - Residential (PJ)	355	335	313	283	260	247	242
Final energy use - Transportation (PJ)	917	853	749	620	504	431	398

Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	34,334	38,227	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric Resistance (%)	32	46	79.9	86.5	86.9	86.9	86.9
Sales of cooking units - Gas (%)	68	54	20.1	13.5	13.1	13.1	13.1
Sales of space heating units - Electric Heat Pump	8.09	27.7	70	83.7	85	85.1	85.1
(%)							
Sales of space heating units - Electric Resistance	7.4	8.38	10.5	12.6	13	13	13
(%)							
Sales of space heating units - Fossil (%)	6.11	4.04	0.768	0.033	0	0	0
Sales of space heating units - Gas Furnace (%)	78.4	59.9	18.7	3.71	1.95	1.9	1.9
Sales of water heating units - Electric Heat Pump	0.257	10.4	53.9	64	64.5	64.5	64.5
(%)							
Sales of water heating units - Electric Resistance	6.38	10.9	28.3	32.5	32.8	32.8	32.8
(%)							
Sales of water heating units - Gas Furnace (%)	88.8	74.6	14.8	0.738	0.009	0	0

Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Sales of water heating units - Other (%)	4.56	4.13	3.01	2.74	2.74	2.73	2.73

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -	0	6.1	6.25	10.2	10.8	10.4	10.8
Cumulative 5-yr (billion \$2018)							

Table 30: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Offshore Wind - Base (billion \$2018)	0	0	0	11.4	17.2	57.9	14.5
Capital invested - Solar PV - Base (billion \$2018)	0	4.49	12.2	19	6.47	9.14	7.8
Capital invested - Wind - Base (billion \$2018)	0	0	0.15	0.078	0.046	0	0

Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
OffshoreWind - Base land use assumptions (GWh)	0	0	0	23,197	42,394	163,125	48,099
OffshoreWind - Constrained land use assumptions (GWh)	0	0	0	19,916	6,805	0	246,279
Solar - Base land use assumptions (GWh)	4,688	6,532	19,814	33,357	12,143	18,047	16,222
Solar - Constrained land use assumptions (GWh)	3,990	4,618	20,627	39,021	15,784	23,677	21,317
Wind - Base land use assumptions (GWh)	734	0	381	172	111	0	0
Wind - Constrained land use assumptions (GWh)	734	0	570	0	0	0	552

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2050
Carbon sink potential - Aggressive deployment -	0	0	-207
Corn-ethanol to energy grasses (1000 tCO2e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-2,978
Cropland measures (1000 tCO2e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-102
Permanent conservation cover (1000 tC02e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-3,287
Total (1000 tCO2e/y)			
Carbon sink potential - Moderate deployment -	0	0	-207
Corn-ethanol to energy grasses (1000 tC02e/y)			
Carbon sink potential - Moderate deployment -	0	0	-1,569
Cropland measures (1000 tCO2e/y)			
Carbon sink potential - Moderate deployment -	0	0	-51
Permanent conservation cover (1000 tC02e/y)			
Carbon sink potential - Moderate deployment -	0	0	-1,827
Total (1000 tCO2e/y)			
Land impacted for carbon sink - Aggressive	0	0	117
deployment - Corn-ethanol to energy grasses			
(1000 hectares)			
Land impacted for carbon sink - Aggressive	0	0	1,723
deployment - Cropland measures (1000			
hectares)			
Land impacted for carbon sink - Aggressive	0	0	186
deployment - Permanent conservation cover			
(1000 hectares)			
Land impacted for carbon sink - Aggressive	0	0	2,025
deployment - Total (1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	117
deployment - Corn-ethanol to energy grasses			
(1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	908
deployment - Cropland measures (1000			
hectares)			

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2050
Land impacted for carbon sink - Moderate	0	0	92.8
deployment - Permanent conservation cover			
(1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	1,118
deployment - Total (1000 hectares)			

Table 33: F+RF+ scenario - PILLAR 6: Land sinks - Forests

Table 33: E+RE+ scenario - PILLAR 6: Land sinks			
Item	2020	2025	2050
Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y)	0	0	370
Carbon sink potential - High - All (not counting overlap) (1000 tCO2e/y)	0	0	44,532
Carbon sink potential - High - Avoid deforestation (1000 tCO2e/y)	0	0	3,061
Carbon sink potential - High - Extend rotation length (1000 tC02e/y)	0	0	10,827
Carbon sink potential - High - Improve plantations (1000 tCO2e/y)	0	0	2,556
Carbon sink potential - High - Increase retention	0	0	17,779
of HWP (1000 tCO2e/y) Carbon sink potential - High - Increase trees	0	0	1,133
outside forests (1000 tCO2e/y) Carbon sink potential - High - Reforest cropland	0	0	567
(1000 tCO2e/y) Carbon sink potential - High - Reforest pasture	0	0	4,291
(1000 tCO2e/y) Carbon sink potential - High - Restore	0	0	3,947
productivity (1000 tCO2e/y) Carbon sink potential - Low - Accelerate	0	0	186
regeneration (1000 tCO2e/y) Carbon sink potential - Low - All (not counting	0	0	14,417
overlap) (1000 tCO2e/y) Carbon sink potential - Low - Avoid deforestation	0	0	510
(1000 tCO2e/y) Carbon sink potential - Low - Extend rotation	0	0	4,159
length (1000 tC02e/y) Carbon sink potential - Low - Improve	0	0	1,300
plantations (1000 tCO2e/y) Carbon sink potential - Low - Increase retention	0	0	5,926
of HWP (1000 tCO2e/y) Carbon sink potential - Low - Increase trees	0	0	397
outside forests (1000 tCO2e/y) Carbon sink potential - Low - Reforest cropland	0	0	284
(1000 tCO2e/y) Carbon sink potential - Low - Reforest pasture	0	0	325
(1000 tCO2e/y) Carbon sink potential - Low - Restore	0	0	1,331
productivity (1000 tCO2e/y) Carbon sink potential - Mid - Accelerate	0	0	278
regeneration (1000 tCO2e/y) Carbon sink potential - Mid - All (not counting	0	0	29,452
overlap) (1000 tCO2e/y) Carbon sink potential - Mid - Avoid deforestation	0	0	1,785
(1000 tCO2e/y) Carbon sink potential - Mid - Extend rotation	0	0	7,493
length (1000 tC02e/y) Carbon sink potential - Mid - Improve plantations	0	0	1,906
(1000 tCO2e/y) Carbon sink potential - Mid - Increase retention	0	0	11,852
of HWP (1000 tCO2e/y) Carbon sink potential - Mid - Increase trees	0	0	765
outside forests (1000 tCO2e/y)	U	U	100

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Table 33: E+RE+ scenario - PILLAR 6: Land sinks	- Forests (co	ntınuedJ	
Item	2020	2025	2050
Carbon sink potential - Mid - Reforest cropland	0	0	426
(1000 tC02e/y)			0
Carbon sink potential - Mid - Reforest pasture	0	0	2,308
(1000 tCO2e/y)	0	0	2,000
Carbon sink potential - Mid - Restore	0	0	2,639
	U	0	2,039
productivity (1000 tCO2e/y)			
Land impacted for carbon sink potential - High -	0	0	60.6
Accelerate regeneration (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	414
Avoid deforestation (over 30 years) (1000			
hectares)			
Land impacted for carbon sink potential - High -	0	0	5,521
Extend rotation length (1000 hectares)			-,
Land impacted for carbon sink potential - High -	0	0	942
Improve plantations (1000 hectares)	0	0	742
	0	0	
Land impacted for carbon sink potential - High -	0	0	0
Increase retention of HWP (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	108
Increase trees outside forests (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	37.5
Reforest cropland (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	122
Reforest pasture (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	1,308
	0	0	1,300
Restore productivity (1000 hectares)			0.510
Land impacted for carbon sink potential - High -	0	0	8,513
Total impacted (over 30 years) (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	30.3
Accelerate regeneration (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	389
Avoid deforestation (over 30 years) (1000			
hectares)			
Land impacted for carbon sink potential - Low -	0	0	2,115
	0	١	2,113
Extend rotation length (1000 hectares)	0	0	/71
Land impacted for carbon sink potential - Low -	0	0	471
Improve plantations (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	0
Increase retention of HWP (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	56.7
Increase trees outside forests (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	18.8
Reforest cropland (1000 hectares)		0	10.0
	0	0	01.1
Land impacted for carbon sink potential - Low -	0	0	21.1
Reforest pasture (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	792
Restore productivity (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	3,894
Total impacted (over 30 years) (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	45.5
Accelerate regeneration (1000 hectares)	ŭ	<u> </u>	10.0
Land impacted for carbon sink potential - Mid -	0	0	402
	o	0	402
Avoid deforestation (over 30 years) (1000			
hectares)			
Land impacted for carbon sink potential - Mid -	0	0	3,818
Extend rotation length (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	708
Improve plantations (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	0
Increase retention of HWP (1000 hectares)	0	١ .	U
			00.0
Land impacted for carbon sink potential - Mid -	0	0	82.2
Increase trees outside forests (1000 hectares)			
Increase trees outside forests (1000 hectares) Land impacted for carbon sink potential - Mid - Reforest cropland (1000 hectares)	0	0	28.1

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2050
Land impacted for carbon sink potential - Mid -	0	0	153
Reforest pasture (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	1,594
Restore productivity (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	6,831
Total impacted (over 30 years) (1000 hectares)			

Table 34: E+RE+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)	0	698	0.953	0.922	0.77	0.547	0.048
Monetary damages from air pollution - Natural Gas (million 2019\$)	0	419	347	198	120	31.9	9.23
Monetary damages from air pollution - Transportation (million 2019\$)	0	2,831	2,683	2,069	1,209	552	210
Premature deaths from air pollution - Coal (deaths)	0	78.4	0.107	0.103	0.086	0.061	0.005
Premature deaths from air pollution - Natural Gas (deaths)	0	47.3	39.2	22.3	13.6	3.61	1.04
Premature deaths from air pollution - Transportation (deaths)	0	318	302	233	136	62	23.6

Table 35: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs. REF -	0	7.62	7.56	0	0	0	0
Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric Resistance (%)	75.4	80.6	96.7	99.8	100	100	100
Sales of cooking units - Gas (%)	24.6	19.4	3.31	0.167	0	0	0
Sales of space heating units - Electric Heat Pump	32.3	47.7	81.1	88.9	89.3	89.3	89.2
(%)							
Sales of space heating units - Electric Resistance	22.7	22.3	9.54	6.48	6.3	6.42	6.45
(%)							
Sales of space heating units - Fossil (%)	11.5	13.1	4.52	2.55	2.46	2.42	2.41
Sales of space heating units - Gas (%)	33.5	16.9	4.84	2.03	1.91	1.91	1.9
Sales of water heating units - Electric Heat Pump	0	10	53.3	63.1	63.6	63.6	63.6
(%)							
Sales of water heating units - Electric Resistance	61.4	68.3	40.5	34.3	34	34	34
(%)							
Sales of water heating units - Gas Furnace (%)	34.3	18.9	3.74	0.187	0.002	0	0
Sales of water heating units - Other (%)	4.29	2.81	2.47	2.4	2.41	2.42	2.43

${\it Table~36:}~\textit{E+RE-scenario-PILLAR~1:}~\textit{Efficiency/Electrification-Transportation}$

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs - Cumulative 5-yr	0	1,572	4,040	6,528	9,896	10,763	10,266
(million \$2018)							
Public EV charging plugs - DC Fast (1000 units)	0.286	0	3.07	0	13.3	0	21.5
Public EV charging plugs - L2 (1000 units)	1.4	0	73.8	0	320	0	517
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC (%)	0.392	2.54	12.7	30.4	38.2	39.7	40
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	1.48	1.75	1.23	0.393	0.073	0.013	0
Vehicle sales - Light-duty - EV (%)	4.15	15.9	47.5	82.2	96.4	99.3	100
Vehicle sales - Light-duty - gasoline (%)	89.5	77.2	47.7	16.1	3.23	0.588	0
Vehicle sales - Light-duty - hybrid (%)	4.65	4.71	3.29	1.21	0.297	0.065	0
Vehicle sales - Light-duty - hydrogen FC (%)	0.11	0.336	0.197	0.061	0.012	0.002	0
Vehicle sales - Light-duty - other (%)	0.099	0.094	0.061	0.021	0.004	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0

Table 36: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen FC (%)	0.196	1.27	6.33	15.2	19.1	19.9	20
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	253	254	245	233	223	220	224
Final energy use - Industry (PJ)	343	347	348	344	341	338	339
Final energy use - Residential (PJ)	355	335	313	283	260	247	242
Final energy use - Transportation (PJ)	917	853	749	620	504	431	398

Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	34,334	38,227	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric Resistance (%)	32	46	79.9	86.5	86.9	86.9	86.9
Sales of cooking units - Gas (%)	68	54	20.1	13.5	13.1	13.1	13.1
Sales of space heating units - Electric Heat Pump	8.09	27.7	70	83.7	85	85.1	85.1
(%)							
Sales of space heating units - Electric Resistance	7.4	8.38	10.5	12.6	13	13	13
(%)							
Sales of space heating units - Fossil (%)	6.11	4.04	0.768	0.033	0	0	0
Sales of space heating units - Gas Furnace (%)	78.4	59.9	18.7	3.71	1.95	1.9	1.9
Sales of water heating units - Electric Heat Pump	0.257	10.4	53.9	64	64.5	64.5	64.5
(%)							
Sales of water heating units - Electric Resistance	6.38	10.9	28.3	32.5	32.8	32.8	32.8
(%)							
Sales of water heating units - Gas Furnace (%)	88.8	74.6	14.8	0.738	0.009	0	0
Sales of water heating units - Other (%)	4.56	4.13	3.01	2.74	2.74	2.73	2.73

Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

•••			•				
Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -	0	6.1	6.25	10.2	10.8	10.4	10.8
Cumulative 5-yr (billion \$2018)							

Table 40: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Solar PV - Base (billion \$2018)	0	0.351	0.989	7.64	7.58	5.7	1.48
Capital invested - Solar PV - Constrained (billion \$2018)	0	1.15	0.299	6.56	6.89	6.54	0
Capital invested - Wind - Base (billion \$2018)	0	0.052	0	0	0.056	0	0
Capital invested - Wind - Constrained (billion \$2018)	0	0.049	0.06	0	0	0	0

Table 41: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	3,833	510	1,609	13,501	14,099	11,285	3,070
Solar - Constrained land use assumptions (GWh)	3,350	1,650	487	11,596	12,828	12,962	0
Wind - Base land use assumptions (GWh)	734	127	0	0	152	0	0
Wind - Constrained land use assumptions (GWh)	734	119	145	0	0	0	0

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2050
Carbon sink potential - Aggressive deployment -	0	0	-207
Corn-ethanol to energy grasses (1000 tC02e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-2,978
Cropland measures (1000 tCO2e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-102
Permanent conservation cover (1000 tC02e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-3,287
Total (1000 tC02e/y)			
Carbon sink potential - Moderate deployment -	0	0	-207
Corn-ethanol to energy grasses (1000 tC02e/y)			
Carbon sink potential - Moderate deployment -	0	0	-1,569
Cropland measures (1000 tCO2e/y)			
Carbon sink potential - Moderate deployment -	0	0	-51
Permanent conservation cover (1000 tC02e/y)			
Carbon sink potential - Moderate deployment -	0	0	-1,827
Total (1000 tC02e/y)			
Land impacted for carbon sink - Aggressive	0	0	117
deployment - Corn-ethanol to energy grasses			
(1000 hectares)			
Land impacted for carbon sink - Aggressive	0	0	1,723
deployment - Cropland measures (1000			
hectares)			
Land impacted for carbon sink - Aggressive	0	0	186
deployment - Permanent conservation cover			
(1000 hectares)			
Land impacted for carbon sink - Aggressive	0	0	2,025
deployment - Total (1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	117
deployment - Corn-ethanol to energy grasses			
(1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	908
deployment - Cropland measures (1000			
hectares)			
Land impacted for carbon sink - Moderate	0	0	92.8
deployment - Permanent conservation cover			
(1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	1,118
deployment - Total (1000 hectares)			

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2050
Carbon sink potential - High - Accelerate	0	0	370
regeneration (1000 tCO2e/y)			
Carbon sink potential - High - All (not counting	0	0	44,532
overlap) (1000 tCO2e/y)			
Carbon sink potential - High - Avoid deforestation	0	0	3,061
(1000 tC02e/y)			
Carbon sink potential - High - Extend rotation	0	0	10,827
length (1000 tCO2e/y)			
Carbon sink potential - High - Improve	0	0	2,556
plantations (1000 tCO2e/y)			
Carbon sink potential - High - Increase retention	0	0	17,779
of HWP (1000 tCO2e/y)			
Carbon sink potential - High - Increase trees	0	0	1,133
outside forests (1000 tCO2e/y)			
Carbon sink potential - High - Reforest cropland	0	0	567
(1000 tC02e/y)			
Carbon sink potential - High - Reforest pasture	0	0	4,291
(1000 tC02e/y)			
Carbon sink potential - High - Restore	0	0	3,947
productivity (1000 tCO2e/y)			
Carbon sink potential - Low - Accelerate	0	0	186
regeneration (1000 tCO2e/y)			

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Table 43: E+RE- scenario - PILLAR 6: Land sinks -	- Forests (coi	ntinued)	
Item	2020	2025	2050
Carbon sink potential - Low - All (not counting	0	0	14,417
overlap) (1000 tCO2e/y)			
Carbon sink potential - Low - Avoid deforestation	0	0	510
(1000 tCO2e/y)			
Carbon sink potential - Low - Extend rotation	0	0	4,159
length (1000 tCO2e/y)			
Carbon sink potential - Low - Improve	0	0	1,300
plantations (1000 tCO2e/y)			
Carbon sink potential - Low - Increase retention	0	0	5,926
of HWP (1000 tC02e/y)			,
Carbon sink potential - Low - Increase trees	0	0	397
outside forests (1000 tC02e/y)			07.
Carbon sink potential - Low - Reforest cropland	0	0	284
(1000 tC02e/y)			20 .
Carbon sink potential - Low - Reforest pasture	0	0	325
(1000 tCO2e/y)	0	0	323
Carbon sink potential - Low - Restore	0	0	1,331
productivity (1000 tCO2e/y)	0	0	1,331
	0	0	070
Carbon sink potential - Mid - Accelerate	U	U	278
regeneration (1000 tC02e/y)	0	0	00 / 50
Carbon sink potential - Mid - All (not counting	0	0	29,452
overlap) (1000 tC02e/y)			1=0=
Carbon sink potential - Mid - Avoid deforestation	0	0	1,785
(1000 tC02e/y)			
Carbon sink potential - Mid - Extend rotation	0	0	7,493
length (1000 tCO2e/y)			
Carbon sink potential - Mid - Improve plantations	0	0	1,906
(1000 tCO2e/y)			
Carbon sink potential - Mid - Increase retention	0	0	11,852
of HWP (1000 tCO2e/y)			
Carbon sink potential - Mid - Increase trees	0	0	765
outside forests (1000 tCO2e/y)			
Carbon sink potential - Mid - Reforest cropland	0	0	426
(1000 tC02e/y)			
Carbon sink potential - Mid - Reforest pasture	0	0	2,308
(1000 tC02e/y)			
Carbon sink potential - Mid - Restore	0	0	2,639
productivity (1000 tCO2e/y)		-	_,,,,,
Land impacted for carbon sink potential - High -	0	0	60.6
Accelerate regeneration (1000 hectares)			00.0
Land impacted for carbon sink potential - High -	0	0	414
Avoid deforestation (over 30 years) (1000	0	0	714
hectares)			
Land impacted for carbon sink potential - High -	0	0	5,521
Extend rotation length (1000 hectares)	0	0	3,321
	0	0	0/0
Land impacted for carbon sink potential - High -	0	0	942
Improve plantations (1000 hectares)	0		
Land impacted for carbon sink potential - High -	0	0	0
Increase retention of HWP (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	108
Increase trees outside forests (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	37.5
Reforest cropland (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	122
Reforest pasture (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	1,308
Restore productivity (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	8,513
Total impacted (over 30 years) (1000 hectares)			,
Land impacted for carbon sink potential - Low -	0	0	30.3
Accelerate regeneration (1000 hectares)		-	

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

25	2050
0	389
0	2,115
0	471
0	0
0	56.7
0	18.8
0	21.1
0	792
0	3,894
0	45.5
0	402
0	3,818
0	708
0	0
0	82.2
0	28.1
0	153
_	.50
0	1,594
	1,074
0	6,831
U	

Table 44: E+RE- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)	0	698	0.953	0.922	0.77	0.547	0.048
Monetary damages from air pollution - Natural Gas (million 2019\$)	0	578	457	461	351	107	36
Monetary damages from air pollution - Transportation (million 2019\$)	0	2,831	2,683	2,069	1,209	552	210
Premature deaths from air pollution - Coal (deaths)	0	78.4	0.107	0.103	0.086	0.061	0.005
Premature deaths from air pollution - Natural Gas (deaths)	0	65.3	51.6	52	39.6	12.1	4.07
Premature deaths from air pollution - Transportation (deaths)	0	318	302	233	136	62	23.6

Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs. REF -	0	7.58	7.45	0	0	0	0
Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric Resistance (%)	75.3	75.9	78.2	84.2	92.5	97.6	99.3

Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Sales of cooking units - Gas (%)	24.7	24.1	21.8	15.8	7.55	2.44	0.656
Sales of space heating units - Electric Heat Pump (%)	32.3	41.3	45.1	56.1	73	84	87.9
Sales of space heating units - Electric Resistance (%)	22.7	24.7	23.3	18.9	12.4	8.34	6.89
Sales of space heating units - Fossil (%)	11.5	14.8	13.8	11	6.65	3.78	2.79
Sales of space heating units - Gas (%)	33.5	19.2	17.8	13.9	7.91	3.85	2.41
Sales of water heating units - Electric Heat Pump (%)	0	1.73	6.65	20.8	42.6	56.9	61.8
Sales of water heating units - Electric Resistance (%)	61.4	73.6	70.5	61.3	47.3	38.2	35.1
Sales of water heating units - Gas Furnace (%)	34.3	21.8	20	15.2	7.52	2.43	0.641
Sales of water heating units - Other (%)	4.29	2.87	2.83	2.74	2.59	2.48	2.44

Table 46: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs - Cumulative 5-yr	0	0	256	534	1,808	5,675	8,272
(million \$2018)							
Public EV charging plugs - DC Fast (1000 units)	0.286	0	0.97	0	4.96	0	13.8
Public EV charging plugs - L2 (1000 units)	1.4	0	23.3	0	119	0	331
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC (%)	0.332	0.969	2.74	7.17	15.7	26.3	34
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	1.49	1.92	2.04	1.62	1.03	0.529	0.227
Vehicle sales - Light-duty - EV (%)	1.97	4.86	12.2	26.4	49	72.4	87.7
Vehicle sales - Light-duty - gasoline (%)	91.5	87.1	79	65.9	45.5	24.4	10.8
Vehicle sales - Light-duty - hybrid (%)	4.83	5.62	6.28	5.69	4.23	2.48	1.19
Vehicle sales - Light-duty - hydrogen FC (%)	0.112	0.378	0.322	0.244	0.172	0.095	0.044
Vehicle sales - Light-duty - other (%)	0.1	0.103	0.094	0.081	0.058	0.032	0.015
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen FC (%)	0.166	0.485	1.37	3.58	7.86	13.2	17
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	253	255	252	248	242	237	235
Final energy use - Industry (PJ)	343	348	349	349	350	347	346
Final energy use - Residential (PJ)	355	336	326	315	300	282	265
Final energy use - Transportation (PJ)	918	861	785	722	672	613	544

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	34,313	38,231	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric Resistance (%)	32	36.2	40.9	53.4	71	81.7	85.5
Sales of cooking units - Gas (%)	68	63.8	59.1	46.6	29	18.3	14.5
Sales of space heating units - Electric Heat Pump	8.09	19.7	24.6	38.6	60.7	76.6	82.8
(%)							
Sales of space heating units - Electric Resistance	7.4	8.06	8.29	9.07	10.5	11.9	12.7
(%)							
Sales of space heating units - Fossil (%)	6.11	4.68	4.33	3.28	1.62	0.513	0.134
Sales of space heating units - Gas Furnace (%)	78.4	67.5	62.8	49.1	27.1	11	4.45
Sales of water heating units - Electric Heat Pump	0.257	2.02	6.97	21.3	43.2	57.6	62.7
(%)							

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Sales of water heating units - Electric Resistance	6.38	7.55	9.45	15.2	24.1	29.9	32
(%)							
Sales of water heating units - Gas Furnace (%)	88.8	86.1	79.3	59.7	29.4	9.53	2.51
Sales of water heating units - Other (%)	4.56	4.35	4.31	3.87	3.3	2.91	2.77

Table 49: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -	0	5.28	5.33	6.71	6.92	9.8	10.3
Cumulative 5-yr (billion \$2018)							

Table 50: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant (billion	0	0.006	0.925	0	0	0	0
\$2018)							
Capital invested - Biomass w/ccu allam power	0	0	0	0	0	0	0
plant (billion \$2018)							
Capital invested - Biomass w/ccu power plant	0	0	0	0	0	0	0
(billion \$2018)							

Table 51: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	11.5	1,827	1,827	1,827	1,827	1,827
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	0

Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

,						
2020	2025	2030	2035	2040	2045	2050
0	314	656	656	656	656	656
0	6.65	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	1	1	1
0	0	0	0	0	0	0
0	1	1	1	1	1	1
0	0	0	0	0	0	0
0	0	0	1	1	1	1
0	0	0	0	0	0	0
0	1	1	1	1	1	1
0	0	0	0	0	0	0
	0 0 0 0 0 0 0 0 0	0 314 0 6.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 314 656 0 6.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1	0 314 656 656 0 6.65 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1	0 314 656 656 656 0 6.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1	0 314 656 656 656 656 0 6.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1

Table 53: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)	0	0	0	0	0	0	0
Annual - BECCS (MMT)	0	0	0	0	0	0	0
Annual - Cement and lime (MMT)	0	0	0	0	0	0	0
Annual - NGCC (MMT)	0	0	0	0	0	0	0
Cumulative - All (MMT)	0	0	0	0	0	0	0
Cumulative - BECCS (MMT)	0	0	0	0	0	0	0
Cumulative - Cement and lime (MMT)	0	0	0	0	0	0	0
Cumulative - NGCC (MMT)	0	0	0	0	0	0	0

Table 54: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)	0	0	0	0	0	0	0
Injection wells (wells)	0	0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)	0	0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)	0	0	0	0	0	0	0

Table 55: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)	0	0	0	227	227	227	358
Cumulative investment - All (million \$2018)	0	0	0	1,354	1,354	1,354	1,459
Cumulative investment - Spur (million \$2018)	0	0	0	0	0	0	105
Cumulative investment - Trunk (million \$2018)	0	0	0	1,354	1,354	1,354	1,354
Spur (km)	0	0	0	0	0	0	130
Trunk (km)	0	0	0	227	227	227	227

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

Table 30. L-D+ Scellal 10 - FILLAR O. Lalla Siliks	- Agi icultui c		
Item	2020	2025	2050
Carbon sink potential - Aggressive deployment -	0	0	-639
Corn-ethanol to energy grasses (1000 tCO2e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-2,559
Cropland measures (1000 tCO2e/y)			
Carbon sink potential - Aggressive deployment -	0	0	0
Cropland to woody energy crops (1000 tCO2e/y)			
Carbon sink potential - Aggressive deployment -	0	0	0
Pasture to energy crops (1000 tCO2e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-86.7
Permanent conservation cover (1000 tCO2e/y)			
Carbon sink potential - Aggressive deployment -	0	0	-3,285
Total (1000 tC02e/y)			
Carbon sink potential - Moderate deployment -	0	0	-639
Corn-ethanol to energy grasses (1000 tCO2e/y)			
Carbon sink potential - Moderate deployment -	0	0	-1,348
Cropland measures (1000 tCO2e/y)			
Carbon sink potential - Moderate deployment -	0	0	0
Cropland to woody energy crops (1000 tCO2e/y)			
Carbon sink potential - Moderate deployment -	0	0	0
Pasture to energy crops (1000 tCO2e/y)			
Carbon sink potential - Moderate deployment -	0	0	-43.3
Permanent conservation cover (1000 tCO2e/y)			
Carbon sink potential - Moderate deployment -	0	0	-2,030
Total (1000 tCO2e/y)			
Land impacted for carbon sink - Aggressive	0	0	379
deployment - Corn-ethanol to energy grasses			
(1000 hectares)			
Land impacted for carbon sink - Aggressive	0	0	3,635
deployment - Cropland measures (1000			
hectares)			
Land impacted for carbon sink - Aggressive	0	0	104
deployment - Cropland to woody energy crops			
(1000 hectares)			
Land impacted for carbon sink - Aggressive	0	0	134
deployment - Pasture to energy crops (1000			
hectares)			
Land impacted for carbon sink - Aggressive	0	0	158
deployment - Permanent conservation cover			
(1000 hectares)			
Land impacted for carbon sink - Aggressive	0	0	4,410
deployment - Total (1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	379
deployment - Corn-ethanol to energy grasses			
(1000 hectares)			

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2050
Land impacted for carbon sink - Moderate	0	0	775
deployment - Cropland measures (1000			
hectares)			
Land impacted for carbon sink - Moderate	0	0	104
deployment - Cropland to woody energy crops			
(1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	134
deployment - Pasture to energy crops (1000			
hectares)			
Land impacted for carbon sink - Moderate	0	0	78.8
deployment - Permanent conservation cover			
(1000 hectares)			
Land impacted for carbon sink - Moderate	0	0	1,472
deployment - Total (1000 hectares)			

able 57: <i>E-B+ scenario - PILLAR 6: Land sinks - I</i> Item	2020	2025	2050
Carbon sink potential - High - Accelerate			370
regeneration (1000 tCO2e/y)	0	0	
Carbon sink potential - High - All (not counting overlap) (1000 tCO2e/y)	0	0	44,53
Carbon sink potential - High - Avoid deforestation (1000 tC02e/y)	0	0	3,06
Carbon sink potential - High - Extend rotation length (1000 tC02e/y)	0	0	10,82
Carbon sink potential - High - Improve plantations (1000 tCO2e/y)	0	0	2,55
Carbon sink potential - High - Increase retention of HWP (1000 tCO2e/y)	0	0	17,77
Carbon sink potential - High - Increase trees outside forests (1000 tCO2e/y)	0	0	1,13
Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)	0	0	56
Carbon sink potential - High - Reforest pasture (1000 tCO2e/y)	0	0	4,29
Carbon sink potential - High - Restore	0	0	3,94
productivity (1000 tCO2e/y) Carbon sink potential - Low - Accelerate	0	0	18
regeneration (1000 tCO2e/y) Carbon sink potential - Low - All (not counting	0	0	14,41
overlap) (1000 tCO2e/y) Carbon sink potential - Low - Avoid deforestation	0	0	51
(1000 tC02e/y) Carbon sink potential - Low - Extend rotation	0	0	4,15
length (1000 tCO2e/y) Carbon sink potential - Low - Improve	0	0	1,30
plantations (1000 tCO2e/y) Carbon sink potential - Low - Increase retention	0	0	5,92
of HWP (1000 tCO2e/y)			
Carbon sink potential - Low - Increase trees outside forests (1000 tCO2e/y)	0	0	39
Carbon sink potential - Low - Reforest cropland (1000 tCO2e/y)	0	0	28
Carbon sink potential - Low - Reforest pasture (1000 tCO2e/y)	0	0	32
Carbon sink potential - Low - Restore productivity (1000 tCO2e/y)	0	0	1,33
Carbon sink potential - Mid - Accelerate regeneration (1000 tCO2e/y)	0	0	27
Carbon sink potential - Mid - All (not counting overlap) (1000 tCO2e/y)	0	0	29,45
Carbon sink potential - Mid - Avoid deforestation (1000 tC02e/y)	0	0	1,78

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Table 57: E-B+ scenario - PILLAR 6: Land sinks -	Forests (cor	ntinued)	
Item	2020	2025	2050
Carbon sink potential - Mid - Extend rotation	0	0	7,493
length (1000 tC02e/y)			
Carbon sink potential - Mid - Improve plantations	0	0	1,906
(1000 tC02e/y)			
Carbon sink potential - Mid - Increase retention	0	0	11,852
of HWP (1000 tC02e/y)			
Carbon sink potential - Mid - Increase trees	0	0	765
outside forests (1000 tCO2e/y)			
Carbon sink potential - Mid - Reforest cropland	0	0	426
(1000 tC02e/y)			
Carbon sink potential - Mid - Reforest pasture	0	0	2,308
(1000 tC02e/y)			0.400
Carbon sink potential - Mid - Restore	0	0	2,639
productivity (1000 tC02e/y)	0	0	(0.4
Land impacted for carbon sink potential - High - Accelerate regeneration (1000 hectares)	0	0	60.6
Land impacted for carbon sink potential - High -	0	0	414
Avoid deforestation (over 30 years) (1000		0	414
hectares)			
Land impacted for carbon sink potential - High -	0	0	5,521
Extend rotation length (1000 hectares)		0	3,321
Land impacted for carbon sink potential - High -	0	0	942
Improve plantations (1000 hectares)		0	742
Land impacted for carbon sink potential - High -	0	0	0
Increase retention of HWP (1000 hectares)			-
Land impacted for carbon sink potential - High -	0	0	108
Increase trees outside forests (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	37.5
Reforest cropland (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	122
Reforest pasture (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	1,308
Restore productivity (1000 hectares)			
Land impacted for carbon sink potential - High -	0	0	8,513
Total impacted (over 30 years) (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	30.3
Accelerate regeneration (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	389
Avoid deforestation (over 30 years) (1000			
hectares)			
Land impacted for carbon sink potential - Low -	0	0	2,115
Extend rotation length (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	471
Improve plantations (1000 hectares)			
Land impacted for carbon sink potential - Low -	0	0	0
Increase retention of HWP (1000 hectares)			F / 7
Land impacted for carbon sink potential - Low -	0	0	56.7
Increase trees outside forests (1000 hectares)	0	0	10.0
Land impacted for carbon sink potential - Low -	0	0	18.8
Reforest cropland (1000 hectares) Land impacted for carbon sink potential - Low -	0	0	21.1
Reforest pasture (1000 hectares)		0	21.1
Land impacted for carbon sink potential - Low -	0	0	792
Restore productivity (1000 hectares)	"	U	174
Land impacted for carbon sink potential - Low -	0	0	3,894
Total impacted (over 30 years) (1000 hectares)		0	3,074
Land impacted for carbon sink potential - Mid -	0	0	45.5
Accelerate regeneration (1000 hectares)	"	0	40.0
Land impacted for carbon sink potential - Mid -	0	0	402
Avoid deforestation (over 30 years) (1000		·	-02
hectares)			
Land impacted for carbon sink potential - Mid -	0	0	3,818
Extend rotation length (1000 hectares)		-	-,
	<u> </u>		

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2050
Land impacted for carbon sink potential - Mid -	0	0	708
Improve plantations (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	0
Increase retention of HWP (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	82.2
Increase trees outside forests (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	28.1
Reforest cropland (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	153
Reforest pasture (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	1,594
Restore productivity (1000 hectares)			
Land impacted for carbon sink potential - Mid -	0	0	6,831
Total impacted (over 30 years) (1000 hectares)			

Table 58: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
				2000	2040		2000
Residential HVAC investment in 2020s vs. REF -	0	7.46	6.79	U	U	0	U
Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric Resistance (%)	75.1	75.1	75.1	75.1	75.1	75.1	75.1
Sales of cooking units - Gas (%)	24.9	24.9	24.9	24.9	24.9	24.9	24.9
Sales of space heating units - Electric Heat Pump	30.3	53.9	54.7	55.8	56.8	58.1	60.1
(%)							
Sales of space heating units - Electric Resistance	23.3	20.2	19.9	19.3	18.5	17.3	15.2
(%)							
Sales of space heating units - Fossil (%)	11.8	10.1	7.34	6.13	5.97	5.93	5.99
Sales of space heating units - Gas (%)	34.5	15.8	18.1	18.8	18.7	18.7	18.7
Sales of water heating units - Electric Heat Pump	0	0	0	0	0	0	0
(%)							
Sales of water heating units - Electric Resistance	61.4	74.7	74.8	74.6	74.5	74.5	74.4
(%)							
Sales of water heating units - Gas Furnace (%)	34.3	22.4	22.4	22.5	22.6	22.6	22.7
Sales of water heating units - Other (%)	4.29	2.88	2.88	2.9	2.93	2.93	2.94

Table 59: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Heavy-duty - diesel (%)	98.1	98.2	97.9	97	95.6	93.5	91.6
Vehicle sales - Heavy-duty - EV (%)	0	0	0	0	0	0	0
Vehicle sales - Heavy-duty - gasoline (%)	0.229	0.242	0.257	0.274	0.294	0.317	0.343
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.096	0.112	0.13	0.15	0.174	0.202
Vehicle sales - Heavy-duty - hydrogen FC (%)	0.119	0.138	0.16	0.186	0.216	0.25	0.29
Vehicle sales - Heavy-duty - other (%)	1.51	1.31	1.57	2.37	3.69	5.71	7.57
Vehicle sales - Light-duty - diesel (%)	1.48	1.91	2.17	2.02	1.82	1.69	1.61
Vehicle sales - Light-duty - EV (%)	3.79	5.9	6.7	8.25	10	11.5	12.7
Vehicle sales - Light-duty - gasoline (%)	89.8	86.2	84	82	79.9	78	76.5
Vehicle sales - Light-duty - hybrid (%)	4.67	5.5	6.72	7.28	7.83	8.38	8.78
Vehicle sales - Light-duty - hydrogen FC (%)	0.11	0.374	0.342	0.303	0.299	0.299	0.31
Vehicle sales - Light-duty - other (%)	0.099	0.103	0.099	0.099	0.099	0.098	0.1
Vehicle sales - Medium-duty - diesel (%)	65.2	63.5	61.6	59.6	58	56.5	55.2
Vehicle sales - Medium-duty - EV (%)	0.027	0.105	0.329	0.671	0.895	0.973	0.993
Vehicle sales - Medium-duty - gasoline (%)	34	35.5	37	38.5	39.7	40.8	41.7
Vehicle sales - Medium-duty - hybrid (%)	0.365	0.427	0.496	0.577	0.674	0.793	0.929
Vehicle sales - Medium-duty - hydrogen FC (%)	0.175	0.208	0.242	0.285	0.339	0.409	0.487
Vehicle sales - Medium-duty - other (%)	0.255	0.271	0.298	0.345	0.42	0.528	0.671

Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	253	258	261	264	267	276	291
Final energy use - Industry (PJ)	344	359	375	389	406	422	442
Final energy use - Residential (PJ)	355	338	334	334	339	348	357

Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Overview (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Transportation (PJ)	917	863	796	756	756	778	806

Table 61: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	33,829	35,143	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric Resistance (%)	32	34.3	34.3	34.3	34.4	34.3	34.3
Sales of cooking units - Gas (%)	68	65.7	65.7	65.7	65.6	65.7	65.7
Sales of space heating units - Electric Heat Pump (%)	8.09	26.8	56.4	70.2	72	72.2	72.3
Sales of space heating units - Electric Resistance (%)	7.4	9.19	13.8	20.2	25.1	25.8	25.8
Sales of space heating units - Fossil (%)	6.11	4.41	2.99	1.35	0.201	0.017	0
Sales of space heating units - Gas Furnace (%)	78.4	59.6	26.8	8.28	2.71	1.96	1.9
Sales of water heating units - Electric Heat Pump (%)	0.257	0.277	0.272	0.274	0.275	0.273	0.274
Sales of water heating units - Electric Resistance (%)	6.38	6.85	6.76	6.78	6.8	6.76	6.77
Sales of water heating units - Gas Furnace (%)	88.8	88.5	88.5	88.5	88.5	88.5	88.5
Sales of water heating units - Other (%)	4.56	4.4	4.5	4.42	4.47	4.48	4.45

Table 62: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -	0	6.29	6.46	8.19	8.55	7.99	8.24
Cumulative 5-yr (billion \$2018)							

Table 63: REF scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2050
Business-as-usual carbon sink - Natural uptake (Mt CO2e/y)	-30.9	0	-14.5	-11.7
Business-as-usual carbon sink - Retained in Hardwood Products (Mt CO2e/y)	-4.84	0	-8.07	-8.49
Business-as-usual carbon sink - Total (Mt CO2e/y)	-35.8	0	-22.6	-20.2
Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y)	0	0	0	370
Carbon sink potential - High - All (not counting overlap) (1000 tCO2e/y)	0	0	0	44,532
Carbon sink potential - High - Avoid deforestation (1000 tCO2e/y)	0	0	0	3,061
Carbon sink potential - High - Extend rotation length (1000 tCO2e/y)	0	0	0	10,827
Carbon sink potential - High - Improve plantations (1000 tCO2e/y)	0	0	0	2,556
Carbon sink potential - High - Increase retention of HWP (1000 tCO2e/y)	0	0	0	17,779
Carbon sink potential - High - Increase trees outside forests (1000 tCO2e/y)	0	0	0	1,133
Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)	0	0	0	567
Carbon sink potential - High - Reforest pasture (1000 tCO2e/y)	0	0	0	4,291
Carbon sink potential - High - Restore productivity (1000 tCO2e/y)	0	0	0	3,947
Carbon sink potential - Low - Accelerate regeneration (1000 tCO2e/y)	0	0	0	186
Carbon sink potential - Low - All (not counting overlap) (1000 tCO2e/y)	0	0	0	14,417
Carbon sink potential - Low - Avoid deforestation (1000 tCO2e/y)	0	0	0	510

Table 63: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Table 63: REF scenario - PILLAR 6: Land sinks - F	Forests (con	tinued)		
Item	2020	2025	2030	2050
Carbon sink potential - Low - Extend rotation	0	0	0	4,159
length (1000 tCO2e/y)				
Carbon sink potential - Low - Improve	0	0	0	1,300
plantations (1000 tCO2e/y)				
Carbon sink potential - Low - Increase retention	0	0	0	5,926
of HWP (1000 tCO2e/y)				
Carbon sink potential - Low - Increase trees	0	0	0	397
outside forests (1000 tCO2e/y)				
Carbon sink potential - Low - Reforest cropland	0	0	0	284
(1000 tCO2e/y)				_
Carbon sink potential - Low - Reforest pasture	0	0	0	325
(1000 tCO2e/y)				020
Carbon sink potential - Low - Restore	0	0	0	1,331
productivity (1000 tCO2e/y)	0	Ŭ	0	1,001
Carbon sink potential - Mid - Accelerate	0	0	0	278
regeneration (1000 tCO2e/y)	0	0	0	210
Carbon sink potential - Mid - All (not counting	0	0	0	29,452
overlap) (1000 tC02e/y)	o	0	0	27,432
	0	0	0	1705
Carbon sink potential - Mid - Avoid deforestation	0	0	0	1,785
(1000 tC02e/y)				7,00
Carbon sink potential - Mid - Extend rotation	0	0	0	7,493
length (1000 tC02e/y)				100/
Carbon sink potential - Mid - Improve plantations	0	0	0	1,906
(1000 tC02e/y)				
Carbon sink potential - Mid - Increase retention	0	0	0	11,852
of HWP (1000 tC02e/y)				
Carbon sink potential - Mid - Increase trees	0	0	0	765
outside forests (1000 tCO2e/y)				
Carbon sink potential - Mid - Reforest cropland	0	0	0	426
(1000 tCO2e/y)				
Carbon sink potential - Mid - Reforest pasture	0	0	0	2,308
(1000 tCO2e/y)				
Carbon sink potential - Mid - Restore	0	0	0	2,639
productivity (1000 tCO2e/y)				
Land impacted for carbon sink potential - High -	0	0	0	60.6
Accelerate regeneration (1000 hectares)				
Land impacted for carbon sink potential - High -	0	0	0	414
Avoid deforestation (over 30 years) (1000				
hectares)				
Land impacted for carbon sink potential - High -	0	0	0	5,521
Extend rotation length (1000 hectares)				•
Land impacted for carbon sink potential - High -	0	0	0	942
Improve plantations (1000 hectares)				, . _
Land impacted for carbon sink potential - High -	0	0	0	0
Increase retention of HWP (1000 hectares)				ŭ
Land impacted for carbon sink potential - High -	0	0	0	108
Increase trees outside forests (1000 hectares)	0	0	0	100
Land impacted for carbon sink potential - High -	0	0	0	37.5
Reforest cropland (1000 hectares)	o	0	0	31.5
	0	0	0	100
Land impacted for carbon sink potential - High -	0	0	0	122
Reforest pasture (1000 hectares)				1.000
Land impacted for carbon sink potential - High -	0	0	0	1,308
Restore productivity (1000 hectares)				
Land impacted for carbon sink potential - High -	0	0	0	8,513
Total impacted (over 30 years) (1000 hectares)				
Land impacted for carbon sink potential - Low -	0	0	0	30.3
Accelerate regeneration (1000 hectares)				
Land impacted for carbon sink potential - Low -	0	0	0	389
Avoid deforestation (over 30 years) (1000				
hectares)				
		_		
Land impacted for carbon sink potential - Low -	0	0	0	2,115

Table 63: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Table 63: REF Scenario - PILLAR 6: Luna Sinks - Forests (continuea)									
Item	2020	2025	2030	2050					
Land impacted for carbon sink potential - Low -	0	0	0	471					
Improve plantations (1000 hectares)									
Land impacted for carbon sink potential - Low -	0	0	0	0					
Increase retention of HWP (1000 hectares)									
Land impacted for carbon sink potential - Low -	0	0	0	56.7					
Increase trees outside forests (1000 hectares)									
Land impacted for carbon sink potential - Low -	0	0	0	18.8					
Reforest cropland (1000 hectares)									
Land impacted for carbon sink potential - Low -	0	0	0	21.1					
Reforest pasture (1000 hectares)									
Land impacted for carbon sink potential - Low -	0	0	0	792					
Restore productivity (1000 hectares)									
Land impacted for carbon sink potential - Low -	0	0	0	3,894					
Total impacted (over 30 years) (1000 hectares)									
Land impacted for carbon sink potential - Mid -	0	0	0	45.5					
Accelerate regeneration (1000 hectares)									
Land impacted for carbon sink potential - Mid -	0	0	0	402					
Avoid deforestation (over 30 years) (1000									
hectares)									
Land impacted for carbon sink potential - Mid -	0	0	0	3,818					
Extend rotation length (1000 hectares)									
Land impacted for carbon sink potential - Mid -	0	0	0	708					
Improve plantations (1000 hectares)									
Land impacted for carbon sink potential - Mid -	0	0	0	0					
Increase retention of HWP (1000 hectares)									
Land impacted for carbon sink potential - Mid -	0	0	0	82.2					
Increase trees outside forests (1000 hectares)									
Land impacted for carbon sink potential - Mid -	0	0	0	28.1					
Reforest cropland (1000 hectares)									
Land impacted for carbon sink potential - Mid -	0	0	0	153					
Reforest pasture (1000 hectares)									
Land impacted for carbon sink potential - Mid -	0	0	0	1,594					
Restore productivity (1000 hectares)				•					
Land impacted for carbon sink potential - Mid -	0	0	0	6,831					
Total impacted (over 30 years) (1000 hectares)		-	-						
	L								

Table 64: REF scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal	0	2,290	1,493	1,300	1,212	1,176	1,119
(million 2019\$)							
Monetary damages from air pollution - Natural	0	397	445	518	510	562	542
Gas (million 2019\$)							
Monetary damages from air pollution -	0	2,876	2,995	3,110	3,238	3,364	3,495
Transportation (million 2019\$)							
Premature deaths from air pollution - Coal	0	257	168	146	136	132	126
(deaths)							
Premature deaths from air pollution - Natural	0	44.9	50.3	58.5	57.6	63.5	61.2
Gas (deaths)							
Premature deaths from air pollution -	0	323	337	350	364	378	393
Transportation (deaths)							