Assignment 4

Poisson Regression

Jan Carreras & Jan Izquierdo

2023-11-6

We consider a data set reporting the daily total of bike counts conducted on the Brooklyn Bridge from 01 April 2017 to 31 October 2017 (Source: NYC Open Data: Bicycle Counts for East River Bridges). The variables included in the dataset are HIGH_T; LOW_T; PRECIP and LABOR_YESNO. The number of bikes (BB_COUNT) is used as response variable in a Poisson regression. Predictors (4 variables) we consider as potentially bearing a relationship with the number of bikes are the high and low temperature (HIGH_T; LOW_T;) the precipitation (PRECIP) and the if day of the week is a working day or not (LABOR_YESNO with values 1 and 0 to indicate yes or no, respectively).

Setting libraries

```
#install.packages("AER")
library(readx1)
library(ggplot2)
library(AER)
```

1.a) Read the dataset, you can use instruction attach the dataset for convenient access to the variables in the dataset.

```
data<-read_excel("./assignment_data/bicyclist_data.xls")
n<-nrow(data)
n</pre>
```

[1] 214

1.b) Make a barplot of the table of the possible outcomes of the response variable BB_COUNT. Calculate descriptive statistics of response BB_COUNT. Is there, at the exploratory level, evidence that the response does not follow a Poisson distribution?

```
bb_table <- table(data$BB_COUNT)
barplot(bb_table, main="BB_count barplot")</pre>
```


151

```
bb_sum<-summary(data$BB_COUNT)
pois_dis<-rpois(214, mean(data$BB_COUNT))
pois_table<-table(pois_dis)
barplot(pois_table, col="red", main="Poisson comparison barplot");barplot(bb_table,col="blue",add=T)</pre>
```

1247 2074 2520 2710 2917 3144 3274 3386 3666

Poisson comparison barplot

25566 829812 1422637 1926661 2226637 9 2522699 5 2623771 1 2724742 5 282774 3 2929747 5 3 1 5 0

```
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                              Max.
##
       151
                                              4960
              2298
                      2857
                              2680
                                      3285
## In the BB_count barplot we can see that, the majority of BB_COUNT values have a frequency of 1, with
## only a few occurrences having a frequency of 2.
## In the barplot above we created data in a poisson distribution arrangement(red) and compare it with
## the distribution of our data(blue), we can see that the distributions are very different so we can
## conclude that BB_count does not follow a Poisson regression
## A feature of the Poisson distribution is that the mean equal to the variance. However, in our
## scenario, the variance significantly exceeds the mean, indicating that our data does not follow
## the distribution. To assess it, we compute the overdispersion parameter for our model.
```

```
model <- glm(BB_COUNT ~ HIGH_T + LOW_T + PRECIP + LABOR_YESNO,data=data, family = poisson(link = "log")
# Get the residual deviance and the degrees of freedom
residual_dev <- model$deviance
df <- model$df.residual

# Calculate the overdispersion parameter
overdispersion <- residual_dev/df</pre>
```

The overdispersion parameter is: 54.22276

The descriptive statistics of BB_count is

1.c) Perform Poisson regression of the number of BB_COUNT on HIGH_T, our first model. Report the regression equation. Is there evidence for association, and if so, what kind of association?

data\$HIGH_T <- as.numeric(data\$HIGH_T)</pre>

```
mdl_pois_reg <-glm(formula = BB_COUNT ~ HIGH_T, data = data, family = "poisson")</pre>
summary(mdl_pois_reg)
##
## Call:
## glm(formula = BB_COUNT ~ HIGH_T, family = "poisson", data = data)
## Deviance Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
                               10.984
## -57.269
           -9.559
                     1.597
                                        42.072
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.7117864 0.0101361
                                      662.2
                                              <2e-16 ***
## HIGH T
               0.0157516 0.0001325
                                      118.9
                                              <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 70021 on 213 degrees of freedom
## Residual deviance: 55495 on 212 degrees of freedom
## AIC: 57563
## Number of Fisher Scoring iterations: 4
coefficients <- coef(mdl_pois_reg)</pre>
intercept <- coefficients[1]</pre>
pendent <- coefficients[2]</pre>
## Regression equation:
## ln(BB_COUNT) = 6.711786 + 0.01575161 * HIGH_T
## BB_COUNT = e^(6.711786) * e^(0.01575161 * HIGH_T)
## There is proof of a connection, the p_value(<2e-16) is lower than critical value 0.05, so they are
## significant between each other. Also, according to this equation, a 1-unit elevation in HIGH_T
## leads to a BB_COUNT increase of 0.01575161 . This demonstrates a positive linear correlation between
## the variables, denoting a positive association. The positive sign of the slope signifies that as
## HIGH_T increases, BB_COUNT also experiences an increase.
```

1.d) Make a scatter plot of BB_COUNT against HIGH_T. Add the fitted regression equation to the scatter plot. .

```
#Fit the linear regression model with standardized variables
model <- glm(BB_COUNT ~ HIGH_T, data = data)</pre>
#Create the scatter plot with standardized variables
plot(data$HIGH_T, data$BB_COUNT,
     main = "Scatter Plot with Regression",
     xlab = "HIGH_T", ylab = "BB_COUNT", pch=19)
#Add the regression line to the plot
abline(model, col = "red")
#Get the coefficients of the regression equation
coefficients <- coef(model)</pre>
intercept <- coefficients[1]</pre>
slope <- coefficients[2]</pre>
#Add the regression equation to the plot
equation <- paste("Regression Equation: BB_COUNT =",round(intercept, 2), "+", round(slope, 2), " * HIGH
text(x=70, y=4460,
     equation,
     col="blue")
```

Scatter Plot with Regression

We can see that there exists a positive linear correlation between these variables.

1.e) Estimate the null model without predictors (BB_COUNT \sim 1), and also plot the equation according to this model to the plot. What do you observe?

Scatter Plot

This model is characterized by an equation that remains unaffected by any variable, essentially ## representing the null model. Consequently, it produces a horizontal line, which stays consistent ## along the y-axis at the mean value. Hence, the null model is depicted as a steady line that aligns ## with the mean.

1.f) Interpret the first model by quantifying the effect of the predictor on the average of the response. Give a 95% confidence interval for the parameter representing that effect.

```
# Calculate 95% confidence interval for the coefficient of 'High_T'
summary(mdl_pois_reg)
```

```
##
## Call:
## glm(formula = BB_COUNT ~ HIGH_T, family = "poisson", data = data)
## Deviance Residuals:
##
       Min
                 1Q Median
                                    3Q
                                            Max
## -57.269
           -9.559 1.597 10.984
                                         42.072
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.7117864 0.0101361
                                       662.2
                                               <2e-16 ***
               0.0157516 0.0001325
                                     118.9
                                               <2e-16 ***
## HIGH_T
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 70021 on 213 degrees of freedom
## Residual deviance: 55495 on 212 degrees of freedom
## AIC: 57563
##
## Number of Fisher Scoring iterations: 4
pendent <- summary(mdl_pois_reg)$coefficients[2, 1]</pre>
standard_error <- summary(mdl_pois_reg)$coefficients[2, 2]</pre>
z \leftarrow qnorm(0.975)
upper <- pendent + z*standard_error</pre>
lower <- pendent - z*standard_error</pre>
## The 95% confidence interval is: [ 0.01549186 , 0.01601136 ]
## Within this interval, it can be inferred that a rise of 1 unit in HIGH_T is associated with a
## BB_COUNT change falling between 0.01549186 and 0.01601136
1.q) Is the value 0 inside the interval you obtained? Is the value 1 inside the interval? What
is the relevance of this? .
```

```
## Neither 1 nor 0 are within this interval [ 0.01549186 , 0.01601136 ]. We have a relationship
## between the variables under study. A 0 within our interval would indicate otherwise, as it
## would signify the multiplication of our variable by 0 when HIGH_T increases by one unit.
## A 1 within our interval would mean there would be no change, so it makes sense that neither 0
## nor 1 are in our interval.
```

1.h) Is there any indication that over dispersion is a problem for you model? Justify your answer. .

```
#Overdispersion in mdl_pois_reg
summary(mdl_pois_reg)
```

```
##
## Call:
## glm(formula = BB_COUNT ~ HIGH_T, family = "poisson", data = data)
## Deviance Residuals:
##
       Min
                1Q Median
                                   3Q
                                           Max
## -57.269
           -9.559 1.597 10.984
                                        42.072
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.7117864 0.0101361
                                      662.2
                                              <2e-16 ***
              0.0157516 0.0001325
                                     118.9
                                              <2e-16 ***
## HIGH_T
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 70021 on 213 degrees of freedom
## Residual deviance: 55495 on 212 degrees of freedom
## AIC: 57563
##
## Number of Fisher Scoring iterations: 4
# Residual deviance and the degrees of freedom
res_dev_1 <- mdl_pois_reg$deviance</pre>
df_1 <- mdl_pois_reg$df.residual</pre>
# Calculate the overdispersion parameter
overdispersion_1 <- res_dev_1/df_1</pre>
## The overdispersion parameter is: 261.77
## We can observe that this overdispersion is nearly twice the size of the previous one. It is too
## large for us to model our data using Poisson distribution, we can say that overdispersion poses
## problem for our model.
1.i) Formally test for overdispersion using the function dispersion test of the AER package.
What is your conclusion?
dispersion_test<-dispersiontest(mdl_pois_reg)</pre>
dispersion_test
##
##
   Overdispersion test
## data: mdl_pois_reg
## z = 9.6905, p-value < 2.2e-16
## alternative hypothesis: true dispersion is greater than 1
## sample estimates:
## dispersion
    228.6938
```

The results from our test strongly support our previous calculation: there is overdispersion. This ## indicates that the variability in the data is higher than what would be expected from a Poisson ## distribution.

1.j) Calculate deviance residuals according to the first model and plot these as a function of the predicted values, using a different color for each category of LABOR_YESNO. What do you observe? .

```
#Calculate residues of first model
res<-resid(mdl_pois_reg)</pre>
```

```
ggplot(data, aes(x=mdl_pois_reg[["linear.predictors"]], y= res,
    color =as.factor(LABOR_YESNO))) +
    xlab("Predicted values") + ylab("Deviance Residuals") +
    labs(color = "LABOR_YESNO") +
    geom_point(alpha = .8, shape = 19) +
    scale_color_manual(values = c("green", "black"))+theme_minimal()
```


This plot is highly scattered and lacks linearity. Which indicates that the data still doesn't fit ## the model.

1.k) Do a Poisson regression of BB_COUNT on HIGH_T and LABOR_YESNO. Report the fitted equation. Is there evidence for any effect of the variable LABOR_YESNO? Justify your answer.

```
mdl_pois_reg_laboral <- glm(formula = BB_COUNT ~ HIGH_T + LABOR_YESNO,</pre>
                          data = data, family = "poisson"(link="log"))
summary(mdl_pois_reg_laboral)
##
## Call:
## glm(formula = BB_COUNT ~ HIGH_T + LABOR_YESNO, family = poisson(link = "log"),
##
       data = data)
##
## Deviance Residuals:
##
      Min
                 1Q
                      Median
                                   3Q
                                           Max
## -53.936
           -8.833
                       2.650
                                9.405
                                        47.349
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.6273727 0.0103142 642.55
                                              <2e-16 ***
           0.0156238 0.0001323 118.07
                                              <2e-16 ***
## HIGH T
## LABOR_YESNO 0.1298549 0.0030017 43.26 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
       Null deviance: 70021 on 213 degrees of freedom
##
## Residual deviance: 53586 on 211 degrees of freedom
## AIC: 55656
## Number of Fisher Scoring iterations: 4
coef(mdl_pois_reg_laboral )
## (Intercept)
                    HIGH_T LABOR_YESNO
## 6.62737271 0.01562384 0.12985492
intercept <- coef(mdl_pois_reg_laboral )[1]</pre>
slope <- coef(mdl_pois_reg_laboral )[2]</pre>
labor<-coef(mdl_pois_reg_laboral )[3]</pre>
#Create the fitted
fitted_equation <- paste("Regression Equation: BB_COUNT =",round(intercept, 2),"+",round(slope, 2),
" * HIGH_T ","+", round(labor, 2), "* LABOR_YESNO ")
## [1] "Regression Equation: BB_COUNT = 6.63 + 0.02 * HIGH_T + 0.13 * LABOR_YESNO "
1.1) Make a graphic by representing the newly fitted model in a scatterplot of BB_COUNT
against HIGH_T.
res_lab<-resid(mdl_pois_reg_laboral)</pre>
ggplot(data, aes(x=mdl_pois_reg_laboral[["linear.predictors"]], y= res_lab,
  color =as.factor(LABOR_YESNO))) + geom_point()+
  xlab("HIGH_T") + ylab("BB_COUNT") + labs(color = "LABOR_YESNO",
  title="BB COUNT vs HIGH T with LABOR YESNO distinction")+
```

scale_color_manual(values = c("green", "black"))+theme_minimal()

1.m) Is there evidence for interaction between the variables LABOR_YESNO and HIGH_T? Justify your answer. Try to make a graphical representation of the fitted model with interaction in a scatterplot of BB_COUNT against HIGH_T.

It seems that when HIGH_T 8 BB_COUNT is higher, but there seems to be no relation between
LABOR_YESNO and HIGH_T, it would make sense if there was no relation, as they are the temperature
andif the day is laborable or not, wich are things we know are not related. Nevertheless, we will
prove it

plot(data\$HIGH_T, data\$LABOR_YESNO)


```
model_H_lab <- lm(formula =HIGH_T ~ LABOR_YESNO, data = data)</pre>
anova(model_H_lab, test="Chisq")
## Analysis of Variance Table
##
## Response: HIGH_T
                Df
                   Sum Sq Mean Sq F value Pr(>F)
## LABOR_YESNO
                 1
                       4.7
                             4.719 0.0435 0.835
## Residuals
               212 22991.0 108.448
## In the plot we can observe that they are not related, we confirm it through an anova on a lm test
## of LABOR_YESNO on HIGH_T, where we can see that they are not significant on each other, which means
## that they are not related
```

1.n) Add the variable PRECIP to the model. Is it a significant predictor? Justify your answer.

```
data$PRECIP<-as.double(data$PRECIP)
mdl_pois_reg_laboral <- glm(BB_COUNT ~ HIGH_T + LABOR_YESNO + PRECIP,data=data,
    family = "poisson"(link="log"))
summary(mdl_pois_reg_laboral)</pre>
```

Call:

```
## glm(formula = BB_COUNT ~ HIGH_T + LABOR_YESNO + PRECIP, family = poisson(link = "log"),
##
       data = data)
##
## Deviance Residuals:
       Min
                1Q
                    Median
                                   3Q
                                           Max
## -35.485
           -6.402 0.914
                                6.667
                                        41.863
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.9585590 0.0105923 656.95
                                               <2e-16 ***
## HIGH_T
               0.0123747 0.0001353
                                       91.46
                                               <2e-16 ***
## LABOR_YESNO 0.1105169 0.0030027
                                               <2e-16 ***
                                       36.81
## PRECIP
              -0.8393595 0.0067742 -123.91
                                              <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
       Null deviance: 70021 on 213 degrees of freedom
## Residual deviance: 30380 on 210 degrees of freedom
## AIC: 32452
## Number of Fisher Scoring iterations: 5
## PRECIP is a significant predictor for BB_COUNT, along with LABOR_YESNO and HIGH_T as they all are
## significant (p_value<0.05)
1.0) Add the variable LOW_T to the model. Is it a significant predictor? Justify your answer.
data$LOW_T<-as.double(data$LOW_T)</pre>
mdl_pois_reg_laboral <- glm(formula = BB_COUNT ~ HIGH_T + LABOR_YESNO + PRECIP + LOW_T ,
                          data = data, family = "poisson"(link="log"))
summary(mdl_pois_reg_laboral)
##
## glm(formula = BB_COUNT ~ HIGH_T + LABOR_YESNO + PRECIP + LOW_T,
##
       family = poisson(link = "log"), data = data)
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
                                6.427
## -34.186
           -6.887
                     -0.026
                                        40.232
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) 6.9543297 0.0105798 657.32
                                               <2e-16 ***
## HIGH T
               0.0239511 0.0002970
                                       80.64
                                               <2e-16 ***
## LABOR_YESNO 0.1211231 0.0030127
                                       40.20
                                               <2e-16 ***
## PRECIP
               -0.7734866 0.0068100 -113.58
                                               <2e-16 ***
## LOW_T
              -0.0140505 0.0003202 -43.88
                                               <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## (Dispersion parameter for poisson family taken to be 1)
##
##
      Null deviance: 70021 on 213 degrees of freedom
## Residual deviance: 28467 on 209 degrees of freedom
## AIC: 30541
## Number of Fisher Scoring iterations: 4
## LOW_T is a significant predictor for BB_COUNT, along with LABOR_YESNO, HIGH_T and PRECIP as they
## all are significant (p_value<0.05)</pre>
1.p) What would be your final model for the data? Justify your answer.
## A model predicting BB_COUNT with all the other variables, to see if they are all significant in
## predicting the outcome variable
mdl_pois_reg_laboral <- glm(formula = BB_COUNT ~ HIGH_T + LABOR_YESNO + as.double(PRECIP) + as.double(L
summary(mdl_pois_reg_laboral)
##
## Call:
  glm(formula = BB_COUNT ~ HIGH_T + LABOR_YESNO + as.double(PRECIP) +
       as.double(LOW_T) + Date, family = poisson(link = "log"),
##
##
       data = data)
##
## Deviance Residuals:
                     Median
                                   3Q
                                           Max
                 1Q
## -33.039
           -6.437
                      0.099
                                5.866
                                        38.610
##
## Coefficients:
                      Estimate Std. Error z value Pr(>|z|)
                     -6.825e-01 3.915e-01
                                            -1.743 0.0813 .
## (Intercept)
## HIGH_T
                     2.432e-02 2.983e-04
                                            81.541
                                                      <2e-16 ***
## LABOR YESNO
                     1.209e-01 3.012e-03
                                            40.149
                                                      <2e-16 ***
## as.double(PRECIP) -7.647e-01 6.816e-03 -112.195
                                                      <2e-16 ***
## as.double(LOW_T) -1.516e-02 3.255e-04 -46.568
                                                      <2e-16 ***
## Date
                     5.117e-09 2.622e-10 19.517
                                                      <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 70021 on 213 degrees of freedom
## Residual deviance: 28087 on 208 degrees of freedom
## AIC: 30163
```

1.q) Give examples of outcomes that can be modelled using a Poisson regression, such as the number of goals in a handball match.

Number of Fisher Scoring iterations: 4

```
## Some examples of outcomes would be:
```

- ## Number of traffic accidents based on weather conditions.
- ## Number of visits to E.R. from different causes of injury.
- ## The number of calls a call center receives in a fixed period of time.
- ## The number of hits a website receives in a given period of time