Faster solver for multiple linear systems via Block Conjugate Gradient

NYU's Courant Institute of Mathematical Sciences

Question

Find x such that Ax= b

- LU Decomposition: high computational cost
- Steepest Descent
- Conjugate Gradient: search directions are orthogonal

Idea: Block Conjugate Gradient

Sometimes we want to solve many problems at the same time.

i.e
$$AX = B, X \in \mathbb{R}^{n \times l}, B \in \mathbb{R}^{n \times l}$$

Can we do better than just solving each of them separately? For instance, solving ℓ linear systems using Block Conjugate Gradient once instead of using CG ℓ times.

We have this hope because of the concept of memory communication cost and information sharing.

Less communication between CPU and memory; Share information between linear systems due to larger Krylov subspace.

CG & Block CG

Algorithm 1 CG	Algorithm 2 Block CG
1: Input : Matrix A , a guessed solution x_0 ,	1: Input: Matrix A, a guessed solution
a RHS b , and a threshold.	X_0 , a RHS B , and a threshold.
2: $r_0 = b - Ax_0$	2: $R_0 = B - AX_0$
3: if r_0 is smaller than the threshold, re-	3: if R_0 is smaller than the threshold, re-
turn x_0 .	turn X_0 .
4: $p_0 = r_0$	4: $P_0 = R_0$
5: while true do	5: while true do
6: $\alpha_k = \frac{r_k^{T} r_k}{p_k^{T} A p_k}$ 7: $x_{k+1} = x_k + \alpha p_k$	6: $\Lambda_k = (P_k^T A P_k)^{-1} R_k^T R_k$
	$7: X_{k+1} = X_k + P_k \Lambda_k$
8: $r_{k+1} = r_k - \alpha A p_k$	8: $R_{k+1} = R_k - AP_k\Lambda_k$
9: if r_{k+1} is smaller than the threshold	9: if R_{k+1} is smaller than the threshold
then	then
10: exit the loop	10: exit the loop
11: else r^{T}	11: else
$\beta_k = \frac{r_{k+1}r_{k+1}}{r_k^T r_k}$	12: $\Phi_k = (R_k^{T} R_k)^{-1} R_{k+1}^{T} R_{k+1}$ 13: $P_{k+1} = R_{k+1} + P_k \Phi_k$
11: else $ \beta_k = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} $ 13: $ p_{k+1} = r_{k+1} + \beta_k p_k $	13: $P_{k+1} = R_{k+1} + P_k \Phi_k$
14: End Repeat	14: End Repeat
15: return x_{k+1}	15: return X_{k+1}

- Ax = b, AX = B
- b, B: the RHS
- ullet A: the positive def symmetric matrix
- r_k , R_k : k-th residual vectors
- p_k , P_k : k-th search direction
- X_k, X_k : k-th iteration
- α_k , Λ_k : k-th coefficient for step magnitude
- β_k , ϕ_k : k-th coefficient for search direction

• CG's Convergence Estimate:

•
$$e_k = x_k - x$$

• $\kappa = \frac{\lambda_n}{\lambda_1}$, condition
number

Convergence theorem:

$$||e_k||_A \le 2(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1})^k ||e_0||_A$$

•
$$||e_k||_A = (e_k^T A e_k)^{\frac{1}{2}}$$

• BCG's Convergence Estimate:

•
$$E_k = X_k - X$$

$$\kappa_{\ell} = \frac{\lambda_n}{\lambda_{\ell}}, \text{ where } \lambda_{\ell} \text{ is the }$$

th largest eigenvalue of A

• Convergence theorem:

$$||E_k||_A \le 2\left(\frac{\sqrt{\kappa_{\ell}-1}}{\sqrt{\kappa_{\ell}+1}}\right)^k ||E_0||_A$$

•
$$||E_k||_A = (E_k^T A E_k)^{\frac{1}{2}}$$

Preconditioned CG & Preconditioned Block CG

Why preconditioning? What's the preconditioner?

Algorithm 3 PCG

- Input: Matrix A, a preconditioner M, a guessed solution x₀, a RHS b, and a threshold.
- 2: $r_0 = b Ax_0$
- 3: $z_0 = M^{-1}r_0$
- 4: if r_0 is smaller than the threshold, return x_0 .
- 5: $p_0 = r_0$
- 6: while true_do

7:
$$\alpha_k = \frac{r_k^T z_k}{p_k^T A p_k}$$

- 8: $x_{k+1} = x_k + \alpha p_k$
- 9: $r_{k+1} = r_k \alpha A p_k$
- 10: **if** r_{k+1} is smaller than the threshold 10: **then**
- 11: exit the loop
- 12: else
- 13: $z_{k+1} = M^{-1} r_{k+1}$
- $\beta_k = \frac{\overline{r_{k+1}^{\dagger} z_{k+1}}}{r_k^{\dagger} z_k}$
- 15: $p_{k+1} = z_{k+1} + \beta_k p_k$
- 16: End Repeat
- 17: return x_{k+1}

Algorithm 4 PBCG

- Input: Matrix A, a preconditioner M, a guessed solution X₀, a RHS B, and a threshold.
- 2: $R_0 = B AX_0$
- 3: $Z_0 = M^{-1}R_0$
- 4: if R_0 is smaller than the threshold, return X_0 .
- 5: $P_0 = R_0$
- 6: while true do

7:
$$\Lambda_k = (P_k^\mathsf{T} A P_k)^{-1} R_k^\mathsf{T} Z_k$$

8:
$$X_{k+1} = X_k + P_k \Lambda_k$$

$$R_{k+1} = R_k - AP_k\Lambda_k$$

if R_{k+1} is smaller than the threshold

then

- 11: exit the loop
- 12: else

$$Z_{k+1} = M^{-1}R_{k+1}$$

$$\Phi_k = (R_k^{\mathsf{T}} Z_k)^{-1} R_{k+1}^{\mathsf{T}} Z_{k+1}$$

15:
$$P_{k+1} = Z_{k+1} + \Phi_k P_k$$

- 16: End Repeat
- 17: return x_{k+1}

- AX = B
- M: preconditioner
- $M^{-1} \approx A^{-1} \cdot M^{-1} A \approx I$.
- $M^{-1}AX = M^{-1}B$

Number of iterations for Block is fewer

- matrix of size 3362
- *l* is the block size

•
$$T_{\{PCG,\ell\}} = Iter_{\{PCG,1\}} \cdot T_{\{MatVec,1\}} \cdot \ell$$

 $\cdot T_{\{PBCG,\ell\}} = Iter_{\{PBCG,\ell\}} \cdot T_{\{MatMat,\ell\}}$

$$A_{\{n\}}, n \in \{882, 3362, 13122\}$$

Fewer iterations. Each iteration is cheaper for large block size.

•
$$T_{\{PCG,\ell\}} = Iter_{\{PCG,1\}} \cdot T_{\{MatVec,1\}} \cdot \ell$$

•
$$T_{\{PBCG,\ell\}} = Iter_{\{PBCG,\ell\}} \cdot T_{\{MatMat,\ell\}}$$

$$T_{\{MatMat,\ell\}} = T_{\{A,\ell\}} + T_{\{P,\ell\}}$$

Solving ℓ linear systems using PBCG once is faster than using PCG ℓ times.

$$A_{\{n\}}, n \in \{882, 3362, 13122\}$$

Conclusions

- Solving ℓ linear systems using BCG or PBCG once is faster than using CG or PCG ℓ times separately. We need fewer iterations, and each iteration is cheaper for BCG when the linear system is large.
- The larger the Block size, the fewer the number of iterations.
- A well chosen preconditioner lead to fewer iterations.
- Using Pseudo Inverse can deal with singular matrices.

Accomplishment

- Fast iterative methods and concepts
- Implementation and testing of four algorithms

Future work

- Block versions of other iterative methods. e.g. GMRES.
- Use specialized routine for the sparse matrix & dense matrix product.
- Integrate solver in to PDE code and make code publicly available.

Reference

- [1] Rowan Cockett. The block conjugate gradient for multiple right hand sides in a direct current resistivity inversion. 2015.
- [2] Howard C Elman, David J Silvester, and Andrew J Wathen. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Numerical Mathematics and Scie, 2014.
- [3] Dianne P O'Leary. "The block conjugate gradient algorithm and related methods". In: Linear algebra and its applications 29 (1980), pp. 293–322.
- [4] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method without the agonizing pain. 1994.

Questions?

Thank You