In [2]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [3]:

```
df=pd.read_csv(r"C:\Users\sravya\Downloads\bottle.csv.zip")
df
```

C:\Users\sravya\AppData\Local\Temp\ipykernel_14680\1103429191.py:1: DtypeW arning: Columns (47,73) have mixed types. Specify dtype option on import o r set low_memory=False.

df=pd.read_csv(r"C:\Users\sravya\Downloads\bottle.csv.zip")

Out[3]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	C
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	_
1 In [4]:	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	
	mns=[' <mark>\$</mark>	','T_deq al','Te		19- 4903CR- HY-060- 0930- 05400560-	10	10.460	33.4370	NaN	25.65400	
df.head	(10)	4	054.0 056.0	0010A-7 19- 4903CR- HY-060- 0930- 05400560-	19	10.450	33.4200	NaN	25.64300	
33.44 1 33.44 2 33.43 3 33.42	10.46 137 10.46	5	054.0 056.0	0019A-3 19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	
4 33.42										
5 33.43 864858 7 33.42 8 33.42	10.45 34404 24 10.24	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	1
9 33.49 864859		864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	1
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	1
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	1

In [6]: Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Salnty O2ml_L STheta (

sns.lmplot(x="Sal",y="Temp",data=df,order=2,ci=None)

Out[6]:

1611SR
1611SR
1611SR
17.533 33.3880 5.774 24.15297 1

09340264-

In [7]:

df.describe()

Out[7]:

	Sal	Temp
count	817509.000000	853900.000000
mean	33.840350	10.799677
std	0.461843	4.243825
min	28.431000	1.440000
25%	33.488000	7.680000
50%	33.863000	10.060000
75%	34.196900	13.880000
max	37.034000	31.140000

```
In [8]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 864863 entries, 0 to 864862
Data columns (total 2 columns):
            Non-Null Count
     Column
                              Dtype
 0
     Sal
             817509 non-null
                              float64
 1
     Temp
             853900 non-null float64
dtypes: float64(2)
memory usage: 13.2 MB
In [9]:
df.fillna(method='ffill',inplace=True)
C:\Users\sravya\AppData\Local\Temp\ipykernel_14680\4116506308.py:1: Settin
gWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://
pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-
view-versus-a-copy)
  df.fillna(method='ffill',inplace=True)
In [10]:
x=np.array(df['Sal']).reshape(-1,1)
y=np.array(df['Temp']).reshape(-1,1)
In [11]:
df.dropna(inplace=True)
C:\Users\sravya\AppData\Local\Temp\ipykernel_14680\1379821321.py:1: Settin
gWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user guide/indexing.html#returning-a-view-versus-a-copy (https://
pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-
view-versus-a-copy)
  df.dropna(inplace=True)
In [19]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x test,y test))
0.2016464616913125
```

In [20]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [21]:

```
df500=df[:][:500]
sns.lmplot(x="Sal",y="Temp",data=df500,order=1,ci=None)
```

Out[21]:

<seaborn.axisgrid.FacetGrid at 0x2850fd4d1d0>

In [28]:

```
df500.fillna(method='ffill',inplace=True)
x=np.array(df500['Sal']).reshape(-1,1)
y=np.array(df500['Temp']).reshape(-1,1)
df500.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression:",regr.score(x_test,y_test))
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```

Regression: 0.8253118068573606

In [30]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
r2=r2_score(y_test,y_pred)
print("R2_score:",r2)
```

R2_score: 0.8253118068573606

conclusion

Data set we have taken is poor for linear model but with the smaller data works well with linear model $\,$