formula di costo per il percorso è dato dalla formula:

K=V*pv+I*pi+LOS*plos+C (Equazione 1)

dove:

K=costo del tronco (o arco) da usare per Dijkstra; il costo totale del percorso è la sommatoria dei costi dei tronchi;

VARIABILI:

V = vulnerabilità del tratto, ovvero propensione a subire un certo livello di danno in base all'intensità dell'evento; I = rischi per la vita, anche questi scaricati a tempo zero dalla piattaforma;

LOS = presenza di persone; a tempo zero vale 0 (vengono evitate predizioni) e quindi in modalità offline non è una variabile incidente;

C = dati variabili che dipendono dall'intensità dell'evento (es.:intensità del sisma e liquefazione del terreno o presenza di ostruzioni; incendio e sviluppo di sostanze tossiche particolari) e che sono comunicati direttamente dal server moltiplicati per il loro peso; al tempo zero C=0.

PESI RELATIVI ALLE VARIABILI:

pv, pi, plos = pesi, espressi in valore percentuale, che riferiscono l'importanza della variabile sul costo totale; questi valori sono fissi e vengono forniti a priori; sono calcolati per tramite di Multi Criteria Decision Maker.

Il sistema è utilizzabile sia in incendio che in sisma secondo le seguenti interpretazioni dei singoli costi, come da Tabella 1.

Variabile	Fattore in incendio	Fattore in sisma
V	propensione allo sviluppo	vulnerabilità degli edifici e del tratto
	dell'incendio in base a fattori	di strada
	endogeni (es.:carico d'incendio per	
	compartimento/area/vano o	
	corridoio; fonti di pericolo) e	
	sorgente e direzione d'incendio	
I	reazioni a catena di tipo	reazioni indotte mortali o dannose
	tossicologico e/o di danno agli	alla salute (es.: fughe di gas,
	elementi strutturali e non strutturali	esplosioni, incendi)
LOS	mq/persona lungo il tratto di	mq/persona lungo il tratto di
	evacuazione	evacuazione
C	FED oltre livelli imposti, densità di	ostruzioni in funzione dell'intensità
	fumo per visibilità, innesco di	sismica in via probabilistica o
	particolari reazioni a catena	tramite sensori di monitoraggio;
		fenomeni di liquefazione del
		terreno, crolli locali non attesi,
		problemi alle infrastrutture stradali,
		frane

Tabella 1: variabili in caso di incendio e sisma

In modalità online, la piattaforma gestiste l'interscambio di operazioni con le singole applicazioni individuali e quindi anche la possibilità di aggiornare i dati variabili nel tempo. Inoltre, la posizione delle altre persone poste in vicinanza può essere comunicata per far capire che esse si stanno muovendo in un certo modo e quali sono i flussi di evacuazione. La comunicazione della posizione tra device e server dipende dall'ambiente di movimento (esterno/interno). In esterno può essere effettuata tramite coordinate GPS o nodo più vicino qualora in appoggio a sistemi di mappe open-spurce (es.: Open Street Maps) e librerie correlate, per accelerare il passaggio dell'informazione, rendere univoca la posizione e riportarla comunque nella via dove effettivamente si trova la persona. In interno, può vigere un sistema proprio di coordinate in appoggio a reti WiFi e Zig-Bee.

In modalità offline, l'applicazione deve essere ingrado dia vere un livello minimo di informazioni a disposizione ovvero quelle legate a fenomeni statici come V e I. L'equazione 1 è così modificata nel caso di funzionamento

K=V*pv+I*pi+0*plos+0 (Equazione 2)

dell'applicazione in modalità offline:

Infine, per dialogare con l'utente in maniera completa, deve essere inserito un tap che riesca a far interagire la persona