Mathematical Prerequisites

Eigenvalues & Eigenvectors

Matrix Vector Multiplication

- Consider the vector $\vec{x}_1 = [2, 3]^T$
- If the matrix $A = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$ is post multiplied with \vec{x}_1 , then we obtain another vector \vec{x}_1' .

$$\vec{x}_1' = A\vec{x}_1 \implies \vec{x}_1' = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$$

- So we can say that multiplying a vector with a matrix changes the direction and magnitude of the vector.
- However for a given square matrix there are some vectors whose direction remain unchanged after multiplying with the matrix.
- Consider the vector $\vec{x}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T$. If we multiply A with \vec{x}_2 then, $\vec{x}_2' = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- Notice that only the magnitude changed but direction remain unchanged. i.e. the transformed vector \vec{x}_2' is a scalar multiplication of the original vector \vec{x}_2 .

Eigenvalues And Eigenvectors

- For a given square matrix A if we find a vector \vec{v} . Such that multiplying A with \vec{v} doesn't change the direction of \vec{v} but scales it, then that vector \vec{v} is known as the **eigenvector** of A and the scalar value by which it will be scaled after being multiplied with A is known as the corresponding **eigenvalue**.
- Mathematically, if $A\vec{v} = \lambda \vec{v}$, then λ is called the eigenvalue and \vec{v} the eigenvector of matrix A
- $A\vec{v} = \lambda \vec{v} \Rightarrow (A \lambda I)\vec{v} = 0$, here I is the identity matrix of the same order of matrix A.
- For non-trivial solution of the eigenvectors, $|A \lambda I| = 0$
- The above equation is a polynomial of λ of degree same as the order of the matrix A. This equation is also known as the characteristic equation of matrix A.
- We can calculate the eigenvalues by solving the characteristic equation.
- Putting the value of the eigenvalue one can calculate the corresponding eigenvectors.

Mathematical Prerequisites

Lagrange's Multiplier

Constrained Optimization

The unconstrained optimization problem can be stated as: Find the extreme value of y = f(x)

And to solve the problem we find the first derivative of y with respect to x and set that to zero. $\frac{dy}{dx} = 0$

In general a dependent variable could be functions of several independent variable. Then the unconstrained optimization problem is stated as: Find the extreme value of $y = f(x_1, x_2, x_3, ..., x_n)$

And to solve the problem we find the first derivative of y with respect to all independent variables and set those to zero.

$$\frac{\partial y}{\partial x_1} = 0$$
 $\frac{\partial y}{\partial x_2} = 0$ $\frac{\partial y}{\partial x_3} = 0$ • • • $\frac{\partial y}{\partial x_n} = 0$

However in real life we often come across the situations, where we have to optimize the function subject to certain conditions (called the constraints).

Find the extreme value of y = f(x), subjected to the condition g(x) = 0

This type of problems are known as constrained optimization problem.

Lagrange's Multiplier

Find the extreme value of y = f(x), subjected to the condition g(x) = 0

To solve the constrained optimization problem we formulate the **Lagrangian** as following:

$$L(x,\lambda) = f(x) - \lambda g(x)$$

Where, λ is a dummy variable known as **Lagrange's Multiplier**. Then we take derivative of the Lagrangian and set that to zero to find the optimal value.

$$\frac{\partial L}{\partial x} = 0 \to \frac{\partial f}{\partial x} - \lambda \frac{\partial g}{\partial x} = 0 \to \frac{\partial f}{\partial x} = \lambda \frac{\partial g}{\partial x}$$

In general, there could be n many independent variables and m many constraints.

Find the extreme value of
$$y = f(x_1, x_2, x_3, ..., x_n)$$
, subjected to: $g_1(x_1, x_2, x_3, ..., x_n) = 0$; $g_2(x_1, x_2, x_3, ..., x_n) = 0$; ...; $g_m(x_1, x_2, x_3, ..., x_n) = 0$

Then the **Lagrangian** is formulated as following.

$$L(x_1, x_2, ..., x_n, \lambda_1, \lambda_2, ..., \lambda_m) = f - \lambda_1 g_1 - \lambda_2 g_2 - ... - \lambda_m g_m$$

Lagrange's Multiplier

Example: Maximize $y = 5x_1x_2$, subjected to $2x_1 + x_2 = 100$

Step-1: Formulate the Lagrangian. $L(x_1, x_2, \lambda) = 5x_1x_2 - \lambda (2x_1 + x_2 - 100)$

Step-2: Take the partial derivatives of Lagrangian wrt x_1 , x_2 and set them to zero.

$$\frac{\partial L}{\partial x_1} = 0 \to 5x_2 - 2\lambda = 0 \quad ----(1) \qquad \frac{\partial L}{\partial x_2} = 0 \to 5x_1 - \lambda = 0 \quad ----(2)$$

Step-3: Along with these we make use of the constrained equation. $2x_1 + x_2 - 100 = 0$ ---(3)

Step-4: Solving these three equations we get:

$$\lambda = 125$$

$$x_1 = 25$$

$$x_2 = 50$$

Step-5: Hence the maximum value of y; $y_{max} = 5 \cdot 25 \cdot 50 = 6250$

Thank You