

Natural language processing and Sentiment analysis

How can we efficiently analyze the sentiment in these data?

Two Approaches

Two Approaches

Statistical/ML

Linguistics

Goal

['word1' 'word2' 'word3']

High sentiment

Low sentiment

["She runs a lot!!
When I run that much
I normally need to enjoy a good pizza alone in the evening."]

["She runs a lot!!
When I run that much
I normally need to enjoy a good pizza alone in the evening."]

Tokenize

["She runs a lot!!
When I run that much
I normally need to enjoy a good pizza alone in the evening."]

Tokenize

['She' 'runs' 'a' lot' '!' '!' 'When' 'l' 'run' 'that' 'much' 'l' 'normally' 'need' 'to' 'enjoy' 'a' 'good' 'pizza' 'alone' 'in' 'the' 'evening' '.']

Remove stop words

```
['She' 'runs' 'a' lot' '!' '!' 'When' 'l' 'run' 'that' 'much' 'l' 'normally' 'need' 'to' 'enjoy' 'a' 'good' 'pizza' 'alone' 'in' 'the' 'evening' '.']
```

Remove stop words

```
['She' 'runs' 'lot' 'l' 'run' 'much' 'l' 'normally' 'need' 'enjoy' 'good' 'pizza' 'alone' 'evening']
```

Lemmatize

```
['She' 'runs' 'lot' 'l' 'run' 'much' 'l' 'normally' 'need' 'enjoy' 'good' 'pizza' 'alone' 'evening']
```

Lemmatize

```
['She' 'run' 'lot' 'l' 'run' 'much' 'l' 'normally' 'need' 'enjoy' 'good' 'pizza' 'alone' 'evening']
```

Eliminate duplicates

```
['She' 'run' 'lot' 'l' 'run' 'much' 'l' 'normally' 'need' 'enjoy' 'good' 'pizza' 'alone' 'evening']
```

Eliminate duplicates

```
['She' 'run' 'lot' 'much' 'l' 'normally' 'need' 'enjoy' 'good' 'pizza' 'alone' 'evening']
```

Tagging

```
['She' 'run' 'lot' 'much' 'l' 'normally' 'need' 'enjoy' 'good' 'pizza' 'alone' 'evening']
```

- Verbs & Adverbs
- Adjectives
- Nouns & Personal Pronouns

Eliminate objective parts

```
['She' 'run' 'lot' 'much' 'l' 'normally' 'need' 'enjoy' 'good' 'pizza' 'alone' 'evening']
```

- Verbs & Adverbs
- Adjectives
- Nouns & Personal Pronouns

Eliminate objective parts

['run' 'lot' 'much' 'normally' 'need' 'enjoy' 'good' 'alone']

- Verbs & Adverbs
- Adjectives

Valence Aware Dictionary for sEntiment Reasoning [1]

['run' 'lot' 'much' 'normally' 'need' 'enjoy' 'good' 'alone']

- Verbs & Adverbs
- Adjectives

VADER

['run' 'lot' 'much' 'normally' 'need' 'enjoy' 'good' 'alone']

Verbs & Adverbs

Adjectives

VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text

C.J. Hutto

Eric Gilbert

Georgia Institute of Technology, Atlanta, GA 30032 cjhutto@gatech.edu gilbert@cc.gatech.edu

VADER

['run' 'lot' 'much' 'normally' 'need' 'enjoy' 'good' 'alone']

VADER score ≠ 0

VADER

['enjoy' 'good' 'alone']

VADER score ≠ 0

Binarize

1 2 3 4 5 ['play' 'funny' 'sad' 'good' 'bad'] Minimal Dictionary

Binarize

1 2 3 4 5 ['play' 'funny' 'sad' 'good' 'bad'] Minimal Dictionary

'This food is very good' Review

Binarize

1 2 3 4 5 ['play' 'funny' 'sad' 'good' 'bad'] Minimal Dictionary

'This food is very good' Review

[0 0 0 1 0] Binarized Review

Small Intro to ML models

Discriminative

e.g., Linear/Logistic Regression

Generative

e.g., Naïve Bayes

Discriminative

Generative

Generative

Generative

Training data

Training data

Testing the Classifier

Testing the Classifier

Testing the Classifier

Some comparisons

Fang and Zhan *Journal of Big Data* (2015) 2:5 DOI 10.1186/s40537-015-0015-2

METHODOLOGY

Open Access

Sentiment analysis using product review data crossMark

Xing Fang* and Justin Zhan

METHODOLOGY

Open Access

Sentiment analysis using product review data CrossMark

Xing Fang* and Justin Zhan

Number of features

Some comparisons

METHODOLOGY

Open Access

Sentiment analysis using product review data crossMark

Xing Fang^{*} and Justin Zhan

Number of features

F1 scores

Improving

Bigger Dictionary

Pipeline

Try different ML model (e.g. SVM)

Thank you

What does all that means from the perspective of probabilities?

Discriminative

p(y|x) Estimates "directly" the probability of y given x

$$y = \frac{1}{1 + e^x}$$

$$y = \begin{cases} 0 \\ 1 \end{cases}$$
 Classifying in classes '0' and '1'

e.g.,
$$y = 1 \text{ if } x > 0$$

Generative

p(x|y) Estimates "directly" the probability of y given x