НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені Ігоря СІКОРСЬКОГО»

Навчально-науковий фізико-технічний інститут Кафедра математичних методів захисту інформації

«LOCKER - LOw rank parity ChecK codes EncRyption»

Виконали: студенти V курсу, групи ФІ-32мн Володимир Карловський Дар'я Коваленко

1.1 Базові означення

Означення 1.1. Показник рангу над $F_{q^m}^n$ $x=(x_1,...,x_n)$ - вектор в $F_{q^m}^n$ і $(\beta_1,...,\beta_n)$ - базис в $F_{q^m}^m$.

Кожна координата x_j є вектором в F_q^m $x_j = \sum_{i=1}^m m_{ij} \beta_i$, де m_{ij} - елемент матриці M(x)

Тоді:

$$||x|| = RankM(x) \tag{1.1}$$

відстань між x та y d(x,y) = ||x - y||

Означення 1.2. F_{q^m} Лінійний код C розмірності k і довжини n це підпростір розмірності k простору $F_{q^m}^n$ вбудований з метрикою рангу.

Позначається $[n,k]_{q^m}$

C можна виразити двома способами

1) Через породжуючу матрицю $H \in F_{q^m}^{kn}$, кожен рядок матриці G елемент базису C:

$$C = \{xG, x \in F_{q^m}^k\} \tag{1.2}$$

2) Через матриця перевірки парності $H \in F_{q^m}^{(n-k)n}$ кожен рядок H визначає перевірку парності рівняння, перевірене елементами C:

$$C = \{ x \in F_{q^m}^k, Hx^T = 0 \}$$
 (1.3)

Ми говоримо, що G (відповідно H) має систематичний вигляд, якщо він має форму $(I_k|A)$ (відповідно $(I_{n-k}|B)$).

Означення 1.3. (Підтримка слова) $x = (x_1, ..., x_n) \in F_{q^m}^n$.

Підтримка E з x, позначається Supp(x), є F_q -підпростором F_{q^m} , породженим координатами x:

$$E = \langle x_1, ..., x_n \rangle F_q$$
 (1.4)

dimE = ||x||.

Кількість опор розмірності w з F_{q^m} позначається коефіцієнтом Гауса

$$\left[\frac{m}{w}\right] = \prod_{i=0}^{w-1} \frac{q^m - q^i}{q^w - q^i} \tag{1.5}$$

1.2 Подвійний циркулянт і ідеальні коди

Щоб описати $[n,k]_{q^m}$ лінійний код, ми можемо дати його систематичну генераторну матрицю або його систематичну матрицю перевірки парності. В обох випадках кількість бітів, необхідних для

представлення такої матриці, дорівнює $k(n-k)m\log_2 q$. Щоб зменшити розмір подання коду, ми вводимо подвійні циркулянтні коди.

Спочатку нам потрібно визначити циркулянтні матриці.

Означення 1.4. (Циркулянтна матриця). Квадратна матриця Mрозміром $n \times n$ називається циркулянтом, якщо вона має форму:

$$M = \begin{bmatrix} m_0 & m_1 & m_2 & \dots & m_{n-1} \\ m_{n-1} & m_0 & m_1 & \dots & m_{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ m_1 & m_2 & m_3 & \dots & m_0 \end{bmatrix}$$
(1.6)

Позначимо $M_n(F_{q^m})$ множину циркулянтних матриць розміру $n \times n$ F_{q^m} . Наступне твердження визначає важливу властивість циркулянтних матриць.

Твердження 1.1. $M_n(F_{q^m})$ е F_{q^m} -алгеброю, ізоморфною $F_{q^m}[X]/(X^n-1)$, тобто набору поліномів із коефіцієнтами у F_{q^m} за модулем (X^n-1) . Канонічний ізоморфізм задано формулою

$$\phi: F_{q^m}[X]/(X^n - 1) \to M_n(F_{q^m}) \tag{1.7}$$

$$\sum_{i=0}^{n-1} m_i X^i \to \begin{bmatrix} m_0 & m_1 & m_2 & \dots & m_{n-1} \\ m_{n-1} & m_0 & m_1 & \dots & m_{n-2} \\ \dots & \dots & \dots & \dots & \dots \\ m_1 & m_2 & m_3 & \dots & m_0 \end{bmatrix}$$
(1.8)

Далі, щоб спростити позначення, ми будемо ідентифікувати поліном

 $G(X) = \sum_{i=0}^{n-1} g_i X^i \in F_{q^m}[X]$ з вектором $g = (g_0, ..., g_{n-1}) \in F_{q^m}^n$. Позначимо ugmodP вектор коефіцієнтів полінома $(\sum_{j=0}^{n-1} u_j X^j)(\sum_{i=0}^{n-1} g_i X^i) modP$ або просто ug, якщо немає неоднозначності v виборі полінома P.

Означення 1.5. (Подвійні циркулянтні коди) Лінійний $[2n,n]_{q^m}C$ називається подвійним циркулянтом, якщо він має генеруючу матрицю G у вигляді G = (A|B), де A і B є двома циркулянтними матрицями розміру n.

 З попередніми позначеннями маємо $C = \{(xa, xb), x \in F_{q^m}\}$. Якщо aоборотне в $F_{a^m}[X]/(X^n-1)$

тоді $C = \{(x, xg), x \in F_{q^m}\}$, де $g = a^{-1}b$. У цьому випадку Cпороджується $g(modX^n-1)$. Таким чином, нам потрібно лише $nm\log_2 q$ бітів для опису $[2n, n]_{q^m}$ подвійного циркулянтного коду.

Ми можемо узагальнити подвійні циркулянтні коди, вибравши інший поліном P для визначення факторкільця $F_{q^m}[X]/(P)$.

Означення 1.6. (Ідеальні коди). Нехай $P(X) \in F_q[X]$ — поліном ступеня n і $g_1,g_2 \in F_{q^m}$. Нехай $G_1(X) = \sum_{i=0}^{n-1} g_{1i}X^i, \ G_2(X) = \sum_{j=0}^{n-1} g_{1j}X^j$ поліноми, асоційовані відповідно з g_1 і g_2 .

За визначенням, $[2n,n]_{q^m}$ ідеальний код C генератора (g_1,g_2) є кодом з генераторною матрицею

$$G = \begin{bmatrix} G_1(X)modP & G_2(X)modP \\ XG_1(X)modP & XG_2(X)modP \\ \dots & \dots & \dots \\ X^{n-1}G_1(X)modP & X^{n-1}G_2(X)modP \end{bmatrix}$$
(1.9)

1.3 Складні задачі в ранговій метриці

У цьому розділі представляємо складні проблеми, на яких базується криптосистема.

Задача 1.1. (Розшифровка рангового синдрому) Дано матрицю повного рангу $H \in F_{q^m}^{(n-k) \times n}$ синдрому σ і ваги w, важко взяти вектор $x \in F_{q^m}$ ваги меншої за w так, що $Hx^T = \sigma^T$.

Проблема RSD нещодавно була доведена важкою для ймовірнісної редукції.

Задача 1.2. (Розшифровка синдрому ідеального рангу)

Заданий вектор $h \in F_{q^m}^n$ поліном P ступеня n, синдром σ і вага w, важко взяти вектор $x=(x_1,x_2)F_{q^m}^{2n}$ ваги меншої за w, так що $x_1+x_2h=\sigma m cdP$ $x_1 + x_2 h = \sigma mod P$

Оскільки h і P визначають систематичну матрицю перевірки парності ідеального коду $[2n,n]_{q^m}$, I-RSD Проблема є окремим випадком задачі RSD.

Задача 1.3. (Відновлення підтримки ідеального рангу) Дано вектор $h \in F_{q^m}$, поліном $P \in F_q[X]$ ступеня n, синдрому σ і ваги w, важко відновити опору E розмірності, нижчої за w, так що $e_1 + e_2h = \sigma mod P$, де вектори e_1 і e_2 були відібрані з E.

Проблема I-RSR тривіально зводиться до задачі I-RSD. Дійсно, щоб відновити опору E екземпляра проблеми I-RSD із розв'язку х проблеми I-RSD, нам просто потрібно обчислити опору x. Відповідно, проблему I-RSD також можна звести до задачі I-RSR. Припустимо, що нам відомий носій E розв'язку задачі I-RSR для ваги w. Ми хочемо знайти x=(x1,x2) ваги, меншої за w, щоб $x_1 + x_2h = \sigma mod P$.

1.4 LOCKER IND-CPA PKE на основі метрики рангу

1.4.1 Визначення та модель безпеки

Схема шифрування з відкритим ключем (PKE - Public Key Encryption) визначається трьома алгоритмами: алгоритмом генерації ключів KeyGen, який приймає на вході параметр безпеки λ і виводить пару відкритих і закритих ключів (pk,sk); алгоритм шифрування

Enc(pk,M), який виводить зашифрований текст C, що відповідає повідомленню M, і алгоритм дешифрування Dec(sk,C), який виводить відкритий текст M. Схема РКЕ містить хеш-функцію G.

- 1) $KeyGen(1^{\lambda})$:
 - а) виберемо незвідний поліном $P \in F_q[X]$ ступеня n.
- б) вибрати рівномірно навмання підпростір F у F_{q^m} розмірності d і вибірку а пара векторів (x,y) $F^n \times F^n$ таких, що x є оборотним за модулем P, Supp(x,y) = F.
 - в) обчислити $h = x^{-1}ymodP$.
 - \vec{r}) визначимо pk = (h, P) і sk = (x, y).
 - $2) \ Enc(pk,M)$:
- а) вибрати рівномірно навмання підпростір E у F_{q^m} розмірності r і вибираємо пару векторів (e_1, e_2) $E_n \times E_n$, $Supp(e_1, e_2) = E$.
 - б) обчислити $c = e_1 + e_2 h mod P$ і $\tilde{C} = M \oplus G(E)$.
 - в) вивести зашифрований текст $C = (c, \tilde{C})$.
 - 3) Dec(sk,C):
- а) обчислити $xc = xe_1 + ye_2 mod P$ і відновити E за допомогою алгоритму відновлення підтримки.
 - б) результат $M = \tilde{C} \oplus G(E)$.

Коректність: оскільки P знаходиться у $F_q[X]$, xc має підтримку в просторі продукту < E.F >, отже, знаючи F, можна застосувати алгоритм RS-Recover з попереднього розділу, який відновлює E.

Обчислювальна вартість: Вартість Encaps відповідає поліноміальній інверсії modP у F_{q^m} , для вартості множення елементів F_{q^m} у $m\log(m)\log(\log(m))$, ми отримуємо складність шифрування в $O(n^2\log(n)m\log(m)\log(\log(m)))$. Вартість Decaps — це матриця-вектор множення вартості $O(n^2m\log(m)\log(\log(m)))$ плюс вартість декодування алгоритму RS-Recover (перетинів підпросторів розмірності rd у F_{q^m}) у $O((rd)^2m)$.