

Ciência de Dados

Licenciatura Engenharia Informática 2° Semestre – 2021/2022

> Ricardo Jesus Ferreira ricardojesus.ferreira@my.istec.pt

Dados

- Tipos de Dados
- Estrutura de Dados
- Tipos Ficheiros Dados

Tipos de Dados

- O tipo de dados é um esquema detalhado da codificação que será realizada
- Esta codificação terá que estar de acordo com o DBMS
- A escolha do tipo de dados terá que garantir:
 - Abrangência dos valores a representar
 - Integridade
 - Permitir todas as manipulações
 - O menor espaço em memoria

Date

 Utilizado para armazenar datas e tempo (horas, minutos, segundos)

Existem diversas variações

DATE

YYYY-MM-DD = 2022-02-05

TIMESTAMP

YYYY-MM-DD HH24:MI:SS.FF

= 2022-02-05 05:24:05.12

Numérico

 Utilizado para armazenar números

 Múltiplos tipos dependendo da linguagem e DBMS

$$INT = 5$$

FLOAT/DOUBLE = 5,5

Alfanumérico

 Utilizado para armazenar mistura de números e letras

 Tipicamente associado à STRING ou VARCHAR

 Utilizado para armazenar IDs, como o produto ID, cliente ID, etc.. PRD0001

CUST666

Moeda

 Utilizado para armazenar dimensão monetária na DBMS

• Exemplos podem ser Euros, dólares, yen, libras, etc..

800€

85,23\$

Texto

- Utilizado para armazenar grandes dados de informação de texto
- Guarda uma string com um comprimento máximo de 65.535 bytes

Imagens, vídeos e audios

- Estes dados são tipicamente guardados como
 - BLOB (Binary Large Object)
- Os BLOBs são tipicamente utilizados para guardar imagens, vídeos, áudios ou executáveis
- Possui variações:
 - Binary
 - VarBinary(n)
 - VarBinary(max = 2G)

Tipos de dados SQL

Classes de Dados

Nominal

Unordered, categories which are mutually exclusive e.g. male/female, smoker/non-smoker

Classes de Dados

Categorical (qualitative)

Ordinal

Ordered, categories
which are mutually exclusive
e.g. IOTN 1/2/3/4/5 or
minimal/moderate/severe/unberable pain

Variable

Numerical (quantitative)

Discrete

Whole numerical value - typically counts e.g. number of visits to dentist, DMF

Continuous

Can take any value within a range e.g. height in cm, pocket depth in mm

12

Discretos

 O tipo de dados discreto é um tipo de dados <u>quantitativo</u> que apenas assume valores fixos. Pode ser contado, mas não pode ser medido

- São tipicamente representados por:
 - Pie Charts
 - Bar Charts
 - Scatterplots

INSTITUTO SUPERIOR DE TECNOLOGIAS

AVANÇADAS

Continuos

 Dados contínuos podem potencialmente ser medidos com bastante precisão

- São tipicamente representados por:
 - Histograms
 - Line Charts

Count by Total: Auto binned

Discretos vs Contínuos

Categorias Dados

- Dados que são tipicamente armazenados em categorias ou grupos, utilizando nomes ou etiquetas
- São tipicamente associados a dados <u>qualitativos</u>
- Existem dois tipos de dados de categoria:
 - Nominais
 - Ordinais

Nominais vs Ordinais

	Nominal	Examples	Suitable graphical
1	Can be identified by		representation
	particular names or	Gender: female or	Bar Chart, Pictogram,
	categories, and	male	Pie Chart
	cannot be	Hair colour: black,	
Categorical	organized according	blonde etc	
	to any natural	Favourite sport:	
	order.	soccer, rugby etc	
7	Ordinal	Watching TV: never,	Bar Chart, Pictogram,
	Identified by	rarely, sometimes,	Pie Chart
	categories which	a lot	rie chart
	categories writer		
	some way		

09/05/2022 Ciência de Dados 17

Estruturas de Dados

Dados Estruturados

• Os dados estruturados têm por natureza 2 dimensões, e são organizados em linhas e colunas.

• Estão altamente normalizados

• Têm uma elevada integridade e consistência

Dados Não Estruturados

- Não possuem estrutura
- Podem ser textuais ou n\u00e3o textuais
- São tipicamente armazenados em base de dados NoSQL
- Por exemplo:
 - Emails
 - Imagens
 - Redes sociais

Estruturados vs Não Estruturados

	Structured Data	Unstructured Data
Characteristics	Pre-defined data models Usually text only Easy to search	 No pre-defined data model May be text, images, sound, video or other formats Difficult to search
Resides in	Relational databases Data warehouses	 Applications NoSQL databases Data warehouses Data lakes
Generated by	Humans or machines	Humans or machines
Typical applications	Airline reservation systems Inventory control CRM systems ERP systems	 Word processing Presentation software Email clients Tools for viewing or editing media
Examples	Phone numbers Social security numbers Credit card numbers Customer names Addresses Product names and numbers Transaction information	 Text files Reports Email messages Audio files Video files Images Surveillance imagery

Ficheiros

Ficheiros de Texto

 Não contem ligações para outros ficheiros

Por exemplo: Um script, um email

CSV

 Comma-Separated Values (CSV), é um ficheiro de texto que é separado por virgulas

 Cada linha do ficheiro é uma linha de informação

 Cada linha contem um ou mais campos separados por virgulas

TSV

 Tab-Separated Value é um ficheiro que usa o "tab" para separar os valores

 Cada linha do ficheiro é uma linha de informação

XML

• Linguagem semiestruturada

 Utilizador define as suas próprias tags

 XML possui algumas regras de formatação

Flexível

```
<?xml version="1.0" encoding="utf-8"?>
    <Time Nome="Nome 1" Cidade="Cidade 1">
         <!-- Atributos do time 1-->
         <Vitorias>Vitorias 1
         <Empates>Empates 1</Empates>
         <Derrotas>Derrotas 1
8
       </Time>
9
       <Time Nome="Nome 2" Cidade="Cidade 2">
         <!--Atributos do time 2-->
10
11
         <Vitorias>Vitorias 2
12
         <Empates>Empates 2</Empates>
13
         <Derrotas>Derrotas 2
14
       </Time>
15
       <Time Nome="Nome 3" Cidade="Cidade 3">
16
         <!-- Atributos do time 3-->
17
         <Vitorias>Vitorias 3</Vitorias>
18
         <Empates>Empates 3</Empates>
19
         <Derrotas>Derrotas 3
20
       </Time>
21
      </Times>
```


JSON

- JavaScript Object Notation
- Linguagem semiestruturada
- Consiste num par campo/valor
- Utilizado para comunicação entre cliente e servidor
- Extensão .json

```
localhost/json-lite/m ×
             (i) localhost/json-lite/manifest.json
{ ▼ 6 properties, 427 bytes
  "manifest version": 2,
  "name": "JSON Lite",
  "version": "0.12",
  "description": "Fast JSON highlighter - shows items count/size, handles
  large files, collapse items",
  "browser_action": { ▼ 1 property, 40 bytes
    "default popup": "README.html"
  "content scripts": [ ▼ 1 item, 167 bytes
    { ▼ 4 properties, 157 bytes
       "all frames": true,
      "matches": [ ▼ 1 item, 30 bytes
         "<all urls>"
       "js": [ ▼ 1 item, 30 bytes
         "content.js"
       "run at": "document end"
```

XML

JSON


```
<empinfo>
  <employees>
    <employee>
       <name>James Kirk</name>
       <age>40></age>
    </employee>
    <employee>
       <name>Jean-Luc Picard</name>
       <age>45</age>
    </employee>
    <employee>
       <name>Wesley Crusher</name>
       <age>27</age>
    </employee>
  </employees>
</empinfo>
```

```
"empinfo":
        "employees": [
            "name": "James Kirk",
            "age": 40,
            "name": "Jean-Luc Picard",
            "age": 45,
        },
            "name": "Wesley Crusher",
            "age": 27,
```


HTML

- Hypertext Markup Language
- Código utilizado para definir a estrutura de uma pagina web

Linguagem estruturada

```
font1.html ‡
  <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/</pre>
  xhtml1-strict.dtd">
  <a href="http://www.w3.org/1999/xhtml">
          <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-</pre>
  scale=1.0, user-scalable=no, target-densitydpi=device-dpi"/>
         <title>font1.html</title>
         <link rel="stylesheet" href="../HTMLResources/css/style.css" type="text/css" />
      </head>
      <body>
         <div id="untitled-1">
             Font Embedding Test - Uses "style.css."
              <div class="myFontOne">
                 Flood Font
                 The text above should be RED and be in the font "Flood." The text is
  styled with "myFontOne."
             <div class="myFontTwo">
                 FetteFraktur Font
                 The text above should be GREEN and be in the font "FetteFraktur." The
  text is styled with "myFontTwo."
                 <b>Compare the fonts above to this screen
  shot.</b>
                 <img src="FontTest_ReferenceImage.jpg">
         </div>
      </body>
30 </html>
```


Bibliografia

- B. Gomez, (2020) "Resolviendo problemas de Big Data", Alfaomega.
- D. Insua, (2019) "Big data: Conceptos, tecnologías y aplicaciones", CSIC.
- H. Jones, (2019) "Analítica de datos", HJ,...
- J. Somed, (2020)"Big Data Analytics", JLC.
- D. Petković (2020)"Microsoft® SQL Server® 2019 A Beginner's Guide Seventh Edition", McGraw Hill.