Einführung in die Algebra

BLATT 5

Jendrik Stelzner

16. November 2013

Aufgabe 5.1.

(i)

Nach Definition von N_H ist gH = Hg für alle $g \in N_H$. Da $x \in N_H$, ist $\langle x \rangle \subseteq N_H$ eine Untergruppe, und insbesondere $\langle x \rangle H = H \langle x \rangle$. Es ist

$$1 = 1 \cdot 1 \in \langle x \rangle H,$$

und für $a,b \in \langle x \rangle$ mit $a = x^n h$ und $b = x^m \tilde{h}$ ist

$$ab^{-1} = x^n h \tilde{h}^{-1} x^{-m} \in \langle x \rangle H \langle x \rangle = \langle x \rangle \langle x \rangle H = \langle x \rangle H.$$

Da $\langle x \rangle$, $H \subseteq N_H$ ist $\langle x \rangle H$ eine Untergruppe von N_H , also insbesondere von G.

(ii)

Angenommen, es ist $N_H \neq H$. Dann gibt es ein $x \in N_H$ mit $x \notin H$. Wie oben gezeigt ist $\langle x \rangle H$ eine Untergruppe von N_H . Offenbar ist $H \subsetneq \langle x \rangle H$ eine echte Untergruppe, und da H normal in N_H ist, ist H auch normal in $\langle x \rangle H$. Auch ist

$$\langle x \rangle H/H \cong \langle x \rangle /H \cap \langle x \rangle$$

zyklisch, da $\langle x \rangle$ zyklisch ist, und somit insbesondere abelsch. Da Hauflösbar ist, gibt es eine Normalreihe

$$1 = H_0 \subsetneq H_1 \subsetneq \ldots \subsetneq H_n = H$$

mit abelschen Faktoren. Es folgt nun, dass

$$1 = H_0 \subsetneq H_1 \subsetneq \ldots \subsetneq H_n \subsetneq H_{n+1} = \langle x \rangle H$$

eine Normalreihe von $\langle x \rangle H$ mit abelschen Faktoren ist. Das steht aber im Widerspruch zur Maximalität von H, da H eine echte Untergruppe von $\langle x \rangle H$ ist. Also ist bereits $N_H = H$.

Aufgabe 5.2.

(i)

Bemerkung 1. Sei $n \geq 2$. Dann ist $(\mathfrak{S}_n : \mathfrak{A}_n) = 2$. Insbesondere ist \mathfrak{A}_n normal in \mathfrak{S}_n (dies folgt auch aus $\mathfrak{A}_n = \text{Ker sgn}$).

Beweis. Sei $\tau=\begin{pmatrix}1&2\end{pmatrix}\in\mathfrak{S}_n$ und φ die Linkstranslation mit τ . Aufgrund der Injektivität von φ induziert φ eine injektive Abbildung von der Menge aller gerader Permutation $\mathfrak A$ in die Menge aller ungerader Permutationen $\mathfrak{S}_n-\mathfrak{A}$, sowie auch eine injektive Abbildung von $\mathfrak{S}_n-\mathfrak A$ nach $\mathfrak A$. Es ist daher

$$\operatorname{ord} \mathfrak{A}_n \leq |\mathfrak{S}_n - \mathfrak{A}_n| \leq \operatorname{ord} \mathfrak{A}_n$$

also ord $\mathfrak{A}_n = |\mathfrak{S}_n - \mathfrak{A}_n|$ und somit ord $\mathfrak{S}_n = 2$ ord \mathfrak{A}_n .

Sei $\sigma \in H$ eine ungerade Permutation. Es ist $H\mathfrak{A}_n = \mathfrak{S}_n$: Da $\mathfrak{A}_n \subseteq H\mathfrak{A}_n$ enthält $H\mathfrak{A}$ alle geraden Permutationen. Jede ungerade Permutation $\pi \in \mathfrak{S}_n$ lässt sich als

$$\pi = \sigma \cdot \sigma \pi$$

schreiben, wobei $\sigma \in H$ und $\sigma \pi$ als Produkt zweier ungerader Permutationen gerade ist, also in \mathfrak{A}_n ist. Also ist $\pi \in H\mathfrak{A}_n$.

Nach Bemerkung 1 ist \mathfrak{A}_n normal in \mathfrak{S}_n mit $(\mathfrak{S}_n:\mathfrak{A}_n)=2$. Also ist $\mathfrak{A}_n\cap H$ normal in H mit

$$H/\mathfrak{A}_n \cap H \cong H\mathfrak{A}_n/\mathfrak{A}_{\mathfrak{n}} = \mathfrak{S}_n/\mathfrak{A}_n.$$

Insbesondere ist daher

$$(H:\mathfrak{A}\cap H)=\operatorname{ord} H/\mathfrak{A}_n\cap H=\operatorname{ord}\mathfrak{S}_n/\mathfrak{A}_n=(\mathfrak{S}_n:\mathfrak{A}_n)=2.$$

(ii)

Da ord H>2 enthält H eine $\pi\neq \operatorname{id}$ gerader Ordnung: Da H nichttrivial ist, gibt es ein $\sigma\in H$ mit $\sigma\neq \operatorname{id}$. Ist σ gerade, so sei $\pi:=\sigma$. Ist σ ungerade so wird zwischen zwei Fällen unterschieden: Ist σ nicht selbstinvers, so sei $\pi:=\sigma^2$. Ist σ selbstinvers, so muss H wegen ord H>2 noch ein weiteres Element $\tau\in H-\{\operatorname{id},\sigma\}$ beinhalten. Wiederholt man die oberen Schritte für τ , so findet man entweder ein entsprechendes Element π oder auch τ ist selbstinvers. Sind σ und τ selbstinvers, so sei $\pi:=\sigma\tau$. Es folgt, dass $H\cap\mathfrak{A}_n\supseteq\{\operatorname{id},\pi\}$ nichttrivial ist. Da \mathfrak{A}_n normal in \mathfrak{S}_n ist, ist $H\cap\mathfrak{A}_n$ normal in H. Da H einfach ist, folgt, dass $H\cap\mathfrak{A}_n=H$ ist. Also ist $H\subseteq\mathfrak{A}_n$ eine Untergruppe.

Aufgabe 5.3.

Bemerkung 2. Sei R ein Ring mit mindestens zwei Elementen. Dann ist sind Null-und Einselement in R verschieden.

Beweis. Da R mindestens zwei Elemente besitzt, gibt es ein $a \in R$ mit $a \neq 0$. Es ist

$$1 \cdot a = a \neq 0 = 0 \cdot a,$$

also $0 \neq 1$.

Bemerkung 3. Sei R ein Integritätsring. Gibt es für $b \in R$ ein $a \in R$ mit $a \neq 0$ und ab = a oder ba = a, so ist bereits b = 1. Insbesondere gilt für jede Ringerweiterung $R' \subseteq R$ mit $R' \neq 0$, dass R' genau dann ein Einselement beinhaltet, wenn $1 \in R'$.

Beweis. Da $a \neq 0$ impliziert die Nullteilerfreiheit von R direkt die Injektivität der Links-, bzw. Rechtsmultiplikation mit a. Da $1 \cdot a = a = a \cdot 1$ ist daher b = 1.

Nach Aufgabenstellung ist R ein kommutativer Ring mit Einselement. Da R mindestens zwei Elemente besitzt folgt aus Bemerkung 2, dass $0 \neq 1$. Es gilt also nur noch zu zeigen, dass es für jedes $a \in R$ mit $a \neq 0$ ein multiplikativ Inverses $b \in R$ mit ab = 1 gibt.

Sei $a \in R$ mit $a \neq 0$ beliebig aber fest und $\mathfrak{a} := (a)$ das von a erzeugte Ideal in R. Da $a \in \mathfrak{a}$ ist $\mathfrak{a} \neq 0$, und es gilt bereits $\mathfrak{a} = R$: Als Ideal ist \mathfrak{a} eine additive Untergruppe von R sowie unter der Multiplikation abgeschlossen, wobei sich Assoziativität, Kommutativität und Distributivität der Multiplikation von R auf \mathfrak{a} vererben. Aus der entsprechenden Eigenschaft von R folgt, dass \mathfrak{a} ein Ring mit Einselement bildet. Aus Bemerkung 3 folgt damit, dass $1 \in \mathfrak{a}$, und daher bereits $\mathfrak{a} = R$. Da $aR = \mathfrak{a} = R$ gibt es insbesondere ein $b \in R$ mit ab = 1.

Aufgabe 5.4.

(ii)

Für alle $a \in R$ ist

$$a^{2} + 1 = a + 1 = (a + 1)^{2} = a^{2} + 2a + 1,$$

also 2a = 0. Insbesondere ist a = -a.

(i)

Für alle $a,b \in R$ ist

$$ab - ba = ab + ba = (a + b)^{2} - a^{2} - b^{2} = a + b - a - b = 0.$$

also ab = ba, und daher R kommutativ.

(iii)

Seien $a, b \in R$ mit $a \neq b$. Es ist

$$(a-b)ab = a^2b - ab^2 = ab - ab = 0.$$

Da $a \neq b$ ist $a-b \neq 0$, wegen der Nullteilerfreiheit von R also ab=0. Wegen der Nullteilerfreiheit ist also a=0 oder b=0. Aus der Beliebigkeit von a und b folgt, dass es neben 0 nur ein weiters Element in R gibt. Da aus Bemerkung 2 folgt, dass $0 \neq 1$, ist also $R=\{0,1\}$. Betrachtet man die Verknüpfungstabellen von R,

+	0	1			0	1	
0	0	1	und	0	0	0	
1	1	0		1	0	1	

so ist R offenbar isomorph zu \mathbb{F}_2 .

Aufgabe 5.5.

(i)

Da $\mathfrak a$ ein Ideal in R ist, ist $ar \in \mathfrak a$ für alle $a \in \mathfrak a$ und $r \in R$. Es ist daher

$$\mathfrak{b} = (\mathfrak{a}) = \sum_{a \in \mathfrak{a}} a R[X] = \sum_{a \in \mathfrak{a}} \left\{ a \sum_{i=0}^{n} a_i X^i : n \ge 0, a_i \in R \right\}$$

$$= \sum_{a \in \mathfrak{a}} \left\{ \sum_{i=0}^{n} a a_i X^i : n \ge 0, a_i \in R \right\} = \left\{ \sum_{i=0}^{n} a_i X^i : n \ge 0, a_i \in \mathfrak{a} \right\}. \tag{1}$$

Dabei ergibt sich die Gleichheit bei (1) wie folgt: Für alle $f=\sum_{i=0}^n aa_iX^i\in aR[X]$ ist $aa_i\in\mathfrak{a}$, da $a\in\mathfrak{a}$ und \mathfrak{a} ein Ideal in R ist, also f ein Polynom mit Koeffizienten in \mathfrak{a} .

Andererseits ist jedes Polynom $f = \sum_{i=0}^{n} a_i X^i$ mit Koeffizienten $a_0, \ldots, a_n \in \mathfrak{a}$ die Summe der Monome $f_i := a_i X^i \in a_i R[X]$. Also ist $f \in \sum_{i=1}^{n} a_i R[X]$.

(ii)

Lemma 4. Seien R,R' Ringe und $\phi:R\to R'$ ein Ringhomomorphismus. Dann induziert ϕ einen Ringhomomorphismus $\psi:R[X]\to R'[X]$ mit

$$\psi\left(\sum_{i=0}^n a_i X^i\right) := \sum_{i=0}^n \phi(a_i) X^i.$$

Dabei ist

$$\operatorname{Ker} \psi = \left\{ f \in R[X] : f = \sum_{i=0}^n a_i X^i \text{ mit } n \geq 0 \text{ und } a_i \in \operatorname{Ker} \phi \text{ für alle } i \right\}$$

und

$$\operatorname{Im} \psi = \left\{ g \in R'[X] : g = \sum_{i=0}^n b_i X^i \text{ mit } n \ge 0 \text{ und } b_i \in \operatorname{Im} \phi \text{ für alle } i \right\}.$$

Insbesondere ist ψ genau dann injektiv, wenn ϕ injektiv ist, und ψ genau dann surjektiv, wenn ϕ surjektiv ist.

Beweis. Es gilt zunächst zu zeigen, dass ψ ein Ringhomomorphismus ist. Es seien $f,g\in R[X]$ mit $f=\sum_{i=0}^n a_iX^i$ und $g=\sum_{i=0}^n b_iX^i$. Es ist

$$\psi(f+g) = \psi\left(\sum_{i=0}^{n} (a_i + b_i)X^i\right) = \sum_{i=0}^{n} \phi(a_i + b_i)X^i$$

$$= \sum_{i=0}^{n} (\phi(a_i) + \phi(b_i))X^i = \sum_{i=0}^{n} \phi(a_i)X^i + \sum_{i=0}^{n} \phi(b_i)X^i$$

$$= \psi\left(\sum_{i=0}^{n} a_i X^i\right) + \psi\left(\sum_{i=0}^{n} b_i X^i\right) = \psi(f) + \psi(g),$$

sowie

$$\begin{split} \psi(fg) &= \psi\left(\sum_{i=0}^{2n} \left(\sum_{\mu+\nu=i} a_{\mu} b_{\nu}\right) X^{i}\right) = \sum_{i=0}^{2n} \phi\left(\sum_{\mu+\nu=i} a_{\mu} b_{\nu}\right) X^{i} \\ &= \sum_{i=0}^{2n} \left(\sum_{\mu+\nu=i} \phi(a_{\mu}) \phi(b_{\nu})\right) X^{i} = \left(\sum_{i=0}^{n} \phi(a_{i}) X^{i}\right) \left(\sum_{i=0}^{n} \phi(b_{i}) X^{i}\right) \\ &= \psi\left(\sum_{i=0}^{n} a_{i} X^{i}\right) \psi\left(\sum_{i=0}^{n} b_{i} X^{i}\right) = \psi(f) \ \psi(g). \end{split}$$

 ψ ist auch unitär, da

$$\psi(1) = \psi(1 \cdot X^0) = \phi(1) \cdot X^0 = 1 \cdot X^0 = 1.$$

Dies zeigt, dass ψ ein Ringhomomorphismus ist.

Es ist $f = \sum_{i=0}^{n} a_i X^i \in R[X]$ genau dann in Ker ψ , wenn $\psi(f) = 0$, also $\phi(a_i) = 0$ für alle i, also $a_i \in \operatorname{Ker} \phi$ für alle i.

Andererseits ist $g=\sum_{i=0}^n b_i X^i\in R'[X]$ genau dann in $\operatorname{Im}\psi$, wenn es ein $f=\sum_{i=0}^n a_i X^i\in R[X]$ mit $\psi(f)=g$ gibt, also $\phi(a_i)=b_i$ für alle i, also $b_i\in\operatorname{Im}\phi$ für alle i.

Bemerkung 5. Betrachtet man R[X] als abzählbare direkte Summe der additiven Gruppe von R mit sich selbst, so folgt das obige Lemma fast direkt daraus, dass dann $\psi = \bigoplus_{n \in \mathbb{N}} \phi$. Nur dass ψ bezüglich \cdot ein Monoidhomomorphismus ist, folgt dann nicht direkt, da die Multiplikation in R[X] nicht komponentenweise ist.

Es sei $\pi:R \twoheadrightarrow R/\mathfrak{a}$ die kanonische Projektion. Da π ein Ringepimorphismus ist, folgt aus Lemma 4, dass π einen Ringepimorphismus $\psi:R[X] \twoheadrightarrow (R/\mathfrak{a})[X]$ induziert. Auch folgt wegen Ker $\pi=\mathfrak{a}$ aus dem Lemma, dass Ker ψ genau aus den Polynomen besteht, deren Koeffizienten alle in \mathfrak{a} liegen; wie im vorherigen Aufgabenteil gezeigt, ist dies gerade \mathfrak{b} . Es ist daher

$$R[X]/\mathfrak{b} = R[X]/\operatorname{Ker} \psi \cong \operatorname{Im} \psi = (R/\mathfrak{a})[X].$$