CF - Vectors

What are the 2 equations for the scalar product?	$\begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix} = a_1 a_2 + b_1 b_2 + c_1 c_2$ $a.b = a b \cos \theta$ Where ϑ is the acute angle between the 2 vectors.
When are two vectors perpendicular?	When a.b = 0
What is the vector/cross product?	 a x b = n where n is a vector normal to both a and b. a × b =
When are 2 vectors parallel?	When a x b = 0

A third possibility is the vector product form.

A straight line passing through the point with position $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = \mathbf{0}$ vector \mathbf{a} and parallel to the vector \mathbf{b} has equation $(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = \mathbf{0}$

This follows from the fact that any vector on the line will be parallel to the vector ${\bf b}$ and the vector product of two parallel vectors is zero.

You can expand the brackets of $(r-a)\times b=0$ to give $r\times b-a\times b=0$ which rearranges to $r\times b=a\times b$

You should calculate the result of $\mathbf{a} \times \mathbf{b}$ using the vectors given.

What is the dot/scalar product equation of a plane?

$\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n} = p$

Since...

Consider a plane containing the point with position vector \mathbf{a} and with a perpendicular vector \mathbf{n} . Any vector on this plane will be perpendicular to the vector \mathbf{n} . Using the definition of the scalar product, any point on the plane with position vector \mathbf{r} , satisfies $(\mathbf{r}-\mathbf{a})\cdot\mathbf{n}=0$. Expanding the bracket gives $\mathbf{r}\cdot\mathbf{n}-\mathbf{a}\cdot\mathbf{n}=0$, which you can rearrange to give $\mathbf{r}\cdot\mathbf{n}=\mathbf{a}\cdot\mathbf{n}$

The scalar product equation of the plane perpendicular to the vector \mathbf{n} and passing through the point with position vector \mathbf{a} is $\mathbf{r} \cdot \mathbf{n} = p$, where $p = \mathbf{a} \cdot \mathbf{n}$

What is the Cartesian equation of a plane and how does it relate to another form?

Find the cartesian equation of a plane that passes through the point (2,-4,-5) and is perpendicular to the vector $3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.

Second Method:

- 1. Consider the component of the general vector perpendicular to the lines.
- 2. Multiply by the magnitude of that unit vector.
- 3. Use the dot product in reverse.
- 4. Use the scalar product.

How do you work out the distance between a point

First Method:

1. Calculate the vector between a general point on the line and the point in question (P).

and line (or 2 parallel lines) using 2 different methods?

- 2. Dot this vector with the direction vector of the line.
- 3. Calculate its magnitude.

Second Method:

How can you find the line of intersection of 2 planes?

- 1. Eliminate one of the variables.
- 2. Let another variable equal λ .
- 3. Find the remaining variables that define the line.

Example:

(A),
$$x + y + z = -1$$

(B),
$$x + 2y + 3z = -4$$

(B) - (A) gives (C), y + 2z = -3 which is true for all points on the line.

Let $z = \lambda$ so $y = -2\lambda - 3$ from (C) and $x = 2 + \lambda$ from (A). These all define the line of intersection.