PROBABILITÉS CONDITIONNELLES M02

EXERCICE N°1 Avec la définition

VOIR LE CORRIGÉ

(Calculatrice non nécessaire mais autorisée)

Dans un univers Ω , on considère deux événements A et B.

- 1) On donne P(A)=0.7 , P(B)=0.6 et $P(A\cap B)=0.21$. Déterminer $P_A(B)$ et $P_B(A)$.
- 2) On donne $P_A(B)=0.25$, P(B)=0.4 et $P(A\cap B)=0.2$. Déterminer P(A) et $P_B(A)$.
- 3) On donne $P_B(A)=0.5$, P(B)=0.22 et P(A)=0.55. Déterminer $P(A\cap B)$ et $P_A(B)$.

EXERCICE N°2 Avec la propriété en cas d'équiprobabilité

VOIR LE CORRIGÉ

(Calculatrice non nécessaire mais autorisée)

Dans un univers Ω , on considère deux événements A et B.

- 1) On donne $Card(\Omega)=75$, Card(A)=25, Card(B)=35 et $Card(A\cap B)=21$ Déterminer $P_A(B)$ et $P_B(A)$.
- **2)** On donne $Card(\Omega)=400$, $P_A(B)=0.2$, Card(B)=210 et $Card(A\cap B)=42$. Déterminer Card(A), P(A) et enfin $P_B(A)$.
- 3) On donne $P_B(A)=0.5$, Card(B)=66 et Card(A)=165. Déterminer $Card(A\cap B)$ et $P_A(B)$.

EXERCICE N°3 Avec un tableau en cas d'équiprobabilité

VOIR LE CORRIGÉ

(Calculatrice non nécessaire mais autorisée) Inspiré du sésamath 1^{er} Spé

Dans un jeu de construction, il y a des briques de couleurs et de tailles différentes (petite et grande). Un enfant dispose de briques selon la répartition ci-contre. Il prend une brique au hasard et on considère les événements :

	Rouge	Jaune	Vert	Total
Petite	97	101	83	281
Grande	74	86	68	228
Total	171	187	151	509

R: « La brique est rouge »,V: « La brique est verte » etG: « La brique est grande ».

- 1) Calculer $P_R(G)$, $P_G(V)$, $P_{\overline{G}}(\overline{V})$.
- 2) L'enfant prend une grande brique. Calculer la probabilité qu'elle soit jaune.

PROBABILITÉS CONDITIONNELLES M02C

EXERCICE N°1 Avec la définition

RETOUR À L'EXERCICE

(Calculatrice non nécessaire mais autorisée)

Dans un univers Ω , on considère deux événements A et B.

- 1) On donne P(A)=0.7, P(B)=0.6 et $P(A\cap B)=0.21$. Déterminer $P_A(B)$ et $P_B(A)$.
- $P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{0.21}{0.7} = 0.3$; $P_A(B) = 0.3$
- $P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{0.21}{0.6} = 0.35$; $P_B(A) = 0.35$
- 2) On donne $P_A(B) = 0.25$, P(B) = 0.4 et $P(A \cap B) = 0.2$. Déterminer P(A) et $P_B(A)$.
- On a: $P_{A}(B) = \frac{P(A \cap B)}{P(A)}$ $0.25 = \frac{0.2}{P(A)}$

$$P_{B}(A) = \frac{P(A \cap B)}{P(B)} = \frac{0.2}{0.4} = 0.5 ;$$

$$P_{B}(A) = 0.5$$

D'où:

$$P(A) = \frac{0.2}{0.25} = 0.8$$

Ainsi: P(A) = 0.8

3) On donne $P_B(A)=0.5$, P(B)=0.22 et P(A)=0.55 . Déterminer $P(A\cap B)$ et $P_A(B)$.

$$P_B(A) = \frac{P(A \cap B)}{P(B)}$$

$$0.5 = \frac{P(A \cap B)}{0.22}$$

D'où:

$$P(A \cap B) = 0.5 \times 0.22 = 0.11$$

Ainsi: $P(A \cap B) = 0.11$

$$P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{0.11}{0.55} = 0.2 ;$$

$$P_A(B) = 0.2$$

PROBABILITÉS CONDITIONNELLES M02C

EXERCICE N°2 Avec la propriété en cas d'équiprobabilité

RETOUR À L'EXERCICE

(Calculatrice non nécessaire mais autorisée)

Dans un univers Ω , on considère deux événements A et B.

- 1) On donne $Card(\Omega)=75$, Card(A)=25, Card(B)=35 et $Card(A\cap B)=21$ Déterminer $P_A(B)$ et $P_B(A)$.
- $P_A(B) = \frac{Card(A \cap B)}{Card(A)} = \frac{21}{25} = 0.84$; $P_A(B) = 0.84$
- $P_B(A) = \frac{Card(A \cap B)}{Card(B)} = \frac{21}{35} = 0.6$; $P_B(A) = 0.6$
- 2) On donne $Card(\Omega)=400$, $P_{A}(B)=0.2$, Card(B)=210 et $Card(A\cap B)=42$.

Déterminer Card(A), P(A) et enfin $P_B(A)$.

• On a :

$$P_{A}(B) = \frac{Card(A \cap B)}{Card(A)}$$

$$0.7 = \frac{42}{Card(A)}$$

D'où:

$$Card(A) = \frac{42}{0.7} = 60$$

Ainsi: Card(A) = 60

• $P(A) = \frac{Card(A)}{Card(\Omega)} = \frac{60}{400} = 0.15$

Ainsi: P(A) = 0.15

• $P_B(A) = \frac{Card(A \cap B)}{Card(B)} = \frac{42}{210} = 0.2$

Ainsi $P_B(A) = 0.2$

- **3)** On donne $P_B(A)=0.5$, Card(B)=66 et Card(A)=165. Déterminer $Card(A\cap B)$ et $P_A(B)$.
- On a :

$$P_{B}(A) = \frac{Card(A \cap B)}{Card(B)}$$

$$0.5 = \frac{Card(A \cap B)}{66}$$

D'où:

$$Card(A \cap B) = 0.5 \times 66 = 33$$

Ainsi: $Card(A \cap B) = 33$

 $P_A(B) = \frac{Card(A \cap B)}{Card(A)} = \frac{33}{165} = 0.2$ Ainsi $P_A(B) = 0.2$

PROBABILITÉS CONDITIONNELLES M02C

EXERCICE N°3

Avec un tableau en cas d'équiprobabilité

RETOUR À L'EXERCICE

(Calculatrice non nécessaire mais autorisée) Inspiré du sésamath 1^{er} Spé

Dans un jeu de construction, il y a des briques de couleurs et de tailles différentes (petite et grande). Un enfant dispose de briques selon la répartition ci-contre. Il prend une brique au hasard et on considère les événements :

	Rouge	Jaune	Vert	Total
Petite	97	101	83	281
Grande	74	86	68	228
Total	171	187	151	509

R: « La brique est rouge »,V: « La brique est verte » et

G: « La brique est grande ».

1) Calculer $P_R(G)$, $P_G(V)$, $P_{\overline{G}}(\overline{V})$.

•
$$P_R(G) = \frac{Card(R \cap G)}{Card(R)} = \frac{74}{171}$$
, ainsi $P_R(G) = \frac{74}{171}$

$$P_G(V) = \frac{Card(V \cap G)}{Card(G)} = \frac{68}{228} \text{, ainsi} P_G(V) = \frac{17}{57}.$$

$$P_{\overline{G}}(\overline{V}) = \frac{Card(\overline{G} \cap \overline{V})}{Card(\overline{G})} = \frac{97 + 101}{281} = \frac{198}{281} , \text{ ainsi } P_{\overline{G}}(\overline{V}) = \frac{198}{281} .$$

2) L'enfant prend une grande brique. Calculer la probabilité qu'elle soit jaune.

On pourrait noter J l'événement « la brique est jaune » et calculer

$$P_G(J) = \frac{Card(J \cap G)}{Card(G)} = \frac{86}{187}$$

mais on peut n'utiliser que les notations de l'exercice car $J = \overline{R \cup V}$

Il s'agit de calculer $P_G(\overline{R \cup V})$

$$P_G(\overline{R \cup V}) = \frac{Card(\overline{R \cup V})}{Card(G)} = \frac{86}{187}$$
.

Ainsi,
$$P_G(\overline{R \cup V}) = \frac{86}{187}$$