



## SEQUENCE LISTING

&lt;110&gt; Wallach et al.

&lt;120&gt; Use of Caspase-8 Inhibitors for Modulating Hematopoiesis

&lt;130&gt; 30694/41943

&lt;140&gt; US 10/575,915

&lt;141&gt; 2006-04-14

&lt;150&gt; PCT/IL2004/000977

&lt;151&gt; 2004-10-26

&lt;150&gt; IL 158599

&lt;151&gt; 2003-10-26

&lt;160&gt; 23

&lt;170&gt; PatentIn version 3.3

&lt;210&gt; 1

&lt;211&gt; 20

&lt;212&gt; DNA

&lt;213&gt; Artificial sequence

&lt;220&gt;

&lt;223&gt; Single strand synthetic DNA oligonucleotide

&lt;400&gt; 1

agctggctgg tggcagatgg

20

&lt;210&gt; 2

&lt;211&gt; 20

&lt;212&gt; DNA

&lt;213&gt; Artificial sequence

&lt;220&gt;

&lt;223&gt; Single strand synthetic DNA oligonucleotide

&lt;400&gt; 2

cgttgatgcc ggtgaacgtg

20

&lt;210&gt; 3

&lt;211&gt; 25

&lt;212&gt; DNA

&lt;213&gt; Artificial sequence

&lt;220&gt;

&lt;223&gt; Single strand synthetic DNA oligonucleotide

&lt;400&gt; 3

tagcctcttt ggggttgttc tactg

25

&lt;210&gt; 4

&lt;211&gt; 25

&lt;212&gt; DNA

&lt;213&gt; Artificial sequence

&lt;220&gt;

<223> Single strand synthetic DNA oligonucleotide

<400> 4  
tggggcttcg ttttagtctct acttc

25

<210> 5  
<211> 25  
<212> DNA  
<213> Artificial sequence

<220>  
<223> Single strand synthetic DNA oligonucleotide

<400> 5  
tagcctcttt ggggttgttc tactg

25

<210> 6  
<211> 25  
<212> DNA  
<213> Artificial sequence

<220>  
<223> Single strand synthetic DNA oligonucleotide

<400> 6  
tagcctcttt ggggttgttc tactg

25

<210> 7  
<211> 36  
<212> DNA  
<213> Artificial sequence

<220>  
<223> Single strand synthetic DNA oligonucleotide

<400> 7  
cgcggtcgac ttatcaagag gtagaagagc tgtaac

36

<210> 8  
<211> 24  
<212> DNA  
<213> Artificial sequence

<220>  
<223> Single strand synthetic DNA oligonucleotide

<400> 8  
gcgaacacgc cgtgtttcaa gggc

24

<210> 9  
<211> 22  
<212> DNA  
<213> Artificial sequence

<220>  
<223> Single strand synthetic DNA oligonucleotide

<400> 9

ggaaacaagg tggtagctga da

22

<210> 10  
<211> 21  
<212> DNA  
<213> Artificial sequence

<220>  
<223> Single strand synthetic DNA oligonucleotide

<400> 10  
cctgggtcaa cacaagatgc t

21

<210> 11  
<211> 20  
<212> DNA  
<213> Artificial sequence

<220>  
<223> Single strand synthetic DNA oligonucleotide

<400> 11  
agccctcctct accgcccagaa

20

<210> 12  
<211> 20  
<212> DNA  
<213> Artificial sequence

<220>  
<223> Single strand synthetic DNA oligonucleotide

<400> 12  
gtgccagact cctccttgct

20

<210> 13  
<211> 21  
<212> DNA  
<213> Artificial sequence

<220>  
<223> Single strand synthetic DNA oligonucleotide

<220>  
<221> misc\_feature  
<222> (1)..(1)  
<223> 6-FAM (6-carboxy-fluorescein) conjugated nucleotide

<220>  
<221> misc\_feature  
<222> (21)..(21)  
<223> MGB(minor groove binder) conjugated nucleotide

<400> 13  
ttaacttcct cacttgatca t

21

- <210> 14

```

<211> 16
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand synthetic DNA oligonucleotide

<220>
<221> misc_feature
<222> (1)..(1)
<223> 6-FAM (6-carboxy-fluorescein) conjugated nucleotide

<220>
<221> misc_feature
<222> (16)..(16)
<223> MGB(minor groove binder) conjugated nucleotide

<400> 14
accagaaccg agcaaa                                         16

<210> 15
<211> 64
<212> DNA
<213> Artificial sequence

<220>
<223> SiRNA sense oligonucleotide

<400> 15
gatccccgtt cctgaggcctg gactacttca agagagtagt ccaggctcag gaacttttg   60
gaaa                                         64

<210> 16
<211> 64
<212> DNA
<213> Artificial sequence

<220>
<223> SiRNA anti-sense oligonucleotide

<400> 16
agctttcca aaaagttcct gagcctggac tactctcttg aagttagtcca ggctcaggaa   60
cggg                                         64

<210> 17
<211> 34
<212> DNA
<213> Artificial sequence

<220>
<223> Single strand synthetic DNA oligonucleotide

<400> 17
ataaacttcgt atagcataaca ttatacgaag ttat                                         34

<210> 18

```

<211> 34  
 <212> DNA  
 <213> Artificial sequence  
  
 <220>  
 <223> Single strand synthetic DNA oligonucleotide  
  
 <400> 18  
 ataacttcgt ataatgtatg ctatacgaag ttat 34

<210> 19  
 <211> 1975  
 <212> DNA  
 <213> Mus musculus

<400> 19  
 ctaaacattc ggaggcattt ctgtccctta tgccctagtt ctctcagttg tctttcattc 60  
 tgacttcgggt gcttaaaagt ccagcttctc ggaatcggtta gcaaaccctct gtgagccggc 120  
 gtggaacagg aagtgagttac agttctgggg agcgccggcc cgggctggag gtcggaaag 180  
 cccaagccag cgaggccctc gcccggactg gagttgtgac cggcgccggca ggtactcggc 240  
 cacaggttac agctcttcta cctcttgata agaatggatt tccagagttg tctttatgct 300  
 attgctgaag aactgggcag tgaagacctg gctgccctca agttcctgtg cttggactac 360  
 atccccacaca agaagcagga gaccatcgag gatgccaga agctatttct gaggctgcgg 420  
 gaaaagggga tttttggagga aggcaatctg tctttcctga aagagctgct tttccacattc 480  
 agtcgggtggg acctgctggt caacttcctta gactgcaacc gagaggagat ggtgagagag 540  
 ctgcgggatc cagacaatgc ccagatttct ccctacaggg tcattgtctt taagctctca 600  
 gaagaagtga gcgagttgga attgagatct tttaagttcc ttttgaacaa tgagatcccc 660  
 aaatgttaagc tggaaagatga cttgagccctg cttgaaattt ttgttagaaat ggagaagagg 720  
 accatgctgg cagaaaataa cttggaaacc ctaaaatcaa tctgtgacca ggtcaacaag 780  
 agcctgctgg ggaagatcga ggattatgaa agatcaagca cagagagaag aatgagccctt 840  
 gaaggaaggg aagagttgcc accttcagtt ttggatgaga tgagccctca aatggcggaa 900  
 ctgtgtgact cgccaaagaga acaagacagt gagtcacggc cttcagacaa agtttaccaa 960  
 atgaagaaca aacctcgaaa atactgtctg atcatcaaca atcatgattt cagcaaggcc 1020  
 cggaaagaca taacccaaact ccgaaaaatg aaggacagaa aaggaacaga ctgtgataaa 1080  
 gaggctctga gtaagacatt taaggagctt catttgaga tagtatctt cgtacgtgc 1140  
 actgcaaatg aaatccacga gattcttagaa ggctacaaa ggcacacca caagaacaaa 1200  
 gactgcttca tctgctgtat cctatcccac ggtgacaagg gtgtcgctca tggaaacggat 1260  
 gggaaaggagg cctccatcta tgacctgaca tcttacttca ctggttcaaa gtgccttcc 1320  
 ctgtctggga aacccaaatg ctttttcatt caggcttgcc aaggaagtaa cttccagaaa 1380

|                       |                       |                        |      |
|-----------------------|-----------------------|------------------------|------|
| ggagtgcctg atgaggcagg | cttcgagcaa cagaaccaca | ctttagaagt ggattcatca  | 1440 |
| tctcacaaga actatattcc | ggatgaggca gactttctgc | tgggaatggc tacggtaag   | 1500 |
| aactgcgtt cctaccgaga  | tcctgtaat ggaacctgg   | atattcagtc actttgccag  | 1560 |
| agcctgaggg aaagatgtcc | tcaaggagat gacattcta  | gcattcgtac tggcgtgaac  | 1620 |
| tatgacgtga gcaataaaga | cgacaggagg aacaaggaa  | agcagatgcc acagcccacc  | 1680 |
| ttcacactac ggaagaagct | cttcttcct ccctaattgat | gtgtgctctc cacagttcac  | 1740 |
| atggcttatac tgtgcactt | tgtgtggatg agtctaattt | attttttaga atttcttttg  | 1800 |
| ctttgaatt tacatttaca  | taattttccc ttttcttccc | tttaaacccct tctttgttat | 1860 |
| gttccaattt caaatacatg | gcctctttc tcattaactg  | ttgtacacac acatacatac  | 1920 |
| acacacacac acacacacac | acatttctaa atataacctg | tatactatca ctgt        | 1975 |

<210> 20  
<211> 420  
<212> PRT  
<213> Homo sapiens  
  
<400> 20

|                                                                 |   |    |    |
|-----------------------------------------------------------------|---|----|----|
| Ser Phe Leu Lys Glu Leu Leu Phe Arg Ile Asn Arg Leu Asp Leu Leu |   |    |    |
| 1                                                               | 5 | 10 | 15 |

|                                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| Ile Thr Tyr Leu Asn Thr Arg Lys Glu Glu Met Glu Arg Glu Leu Gln |    |    |
| 20                                                              | 25 | 30 |

|                                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| Thr Pro Gly Arg Ala Gln Ile Ser Ala Tyr Arg Val Met Leu Tyr Gln |    |    |
| 35                                                              | 40 | 45 |

|                                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| Ile Ser Glu Glu Val Ser Arg Ser Glu Leu Arg Ser Phe Lys Phe Leu |    |    |
| 50                                                              | 55 | 60 |

|                                                                 |    |    |    |
|-----------------------------------------------------------------|----|----|----|
| Leu Gln Glu Glu Ile Ser Lys Cys Lys Leu Asp Asp Asp Met Asn Leu |    |    |    |
| 65                                                              | 70 | 75 | 80 |

|                                                                 |    |    |
|-----------------------------------------------------------------|----|----|
| Leu Asp Ile Phe Ile Glu Met Glu Lys Arg Val Ile Leu Gly Glu Gly |    |    |
| 85                                                              | 90 | 95 |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| Lys Leu Asp Ile Leu Lys Arg Val Cys Ala Gln Ile Asn Lys Ser Leu |     |     |
| 100                                                             | 105 | 110 |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| Leu Lys Ile Ile Asn Asp Tyr Glu Glu Phe Ser Lys Glu Arg Ser Ser |     |     |
| 115                                                             | 120 | 125 |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| Ser Leu Glu Gly Ser Pro Asp Glu Phe Ser Asn Gly Glu Glu Leu Cys |     |     |
| 130                                                             | 135 | 140 |

Gly Val Met Thr Ile Ser Asp Ser Pro Arg Glu Gln Asp Ser Glu Ser  
145 150 155 160

Gln Thr Leu Asp Lys Val Tyr Gln Met Lys Ser Lys Pro Arg Gly Tyr  
165 170 175

Cys Leu Ile Ile Asn Asn His Asn Phe Ala Lys Ala Arg Glu Lys Val  
180 185 190

Pro Lys Leu His Ser Ile Arg Asp Arg Asn Gly Thr His Leu Asp Ala  
195 200 205

Gly Ala Leu Thr Thr Phe Glu Glu Leu His Phe Glu Ile Lys Pro  
210 215 220

His Asp Asp Cys Thr Val Glu Gln Ile Tyr Glu Ile Leu Lys Ile Tyr  
225 230 235 240

Gln Leu Met Asp His Ser Asn Met Asp Cys Phe Ile Cys Cys Ile Leu  
245 250 255

Ser His Gly Asp Lys Gly Ile Ile Tyr Gly Thr Asp Gly Gln Glu Ala  
260 265 270

Pro Ile Tyr Glu Leu Thr Ser Gln Phe Thr Gly Leu Lys Cys Pro Ser  
275 280 285

Leu Ala Gly Lys Pro Lys Val Phe Phe Ile Gln Ala Cys Gln Gly Asp  
290 295 300

Asn Tyr Gln Lys Gly Ile Pro Val Glu Thr Asp Ser Glu Glu Gln Pro  
305 310 315 320

Tyr Leu Glu Met Asp Leu Ser Ser Pro Gln Thr Arg Tyr Ile Pro Asp  
325 330 335

Glu Ala Asp Phe Leu Leu Gly Met Ala Thr Val Asn Asn Cys Val Ser  
340 345 350

Tyr Arg Asn Pro Ala Glu Gly Thr Trp Tyr Ile Gln Ser Leu Cys Gln  
355 360 365

Ser Leu Arg Glu Arg Cys Pro Arg Gly Asp Asp Ile Leu Thr Ile Leu  
370 375 380

Thr Glu Val Asn Tyr Glu Val Ser Asn Lys Asp Asp Lys Lys Asn Met  
385 390 395 400

Gly Lys Gln Met Pro Glu Pro Thr Phe Thr Leu Arg Lys Lys Leu Val  
405 410 415

Phe Pro Ser Asp  
420

<210> 21  
<211> 2827  
<212> DNA  
<213> Homo sapiens

<400> 21  
gattctgcct ttctgttgg gggaaagtgtt ttcacagggtt ctcctccctt tatcttttgt 60  
gtttttttc aagccctgct gaatttgcta gtcaactcaa caggaagtga ggccatggag 120  
ggaggcagaa gagccagggt gtttattgaa agtagaaagaa acttcttcct gggagcctt 180  
cccacccccc tccctgctga gcacgtggag ttaggcaggt tagggactc ggagactgcg 240  
atgggccag gaaagggtgg agcggattat attctcctgc ctttaaaaaa gatggacttc 300  
agcagaaaatc tttatgatat tggggAACAA ctggacagtg aagatctggc ctccctgaag 360  
ttcctgagcc tggactacat tccgcaaagg aagcaagaac ccatcaagga tgccttgatg 420  
ttattccaga gactccagga aaagagaatg ttggaggaaa gcaatctgtc ctccctgaag 480  
gagctgctct tccgaattaa tagactggat ttgctgatta cctacctaaa cactagaaag 540  
gaggagatgg aaaggaaact tcagacacca ggcagggtc aaatttctgc ctacagggtc 600  
atgctctatc agatttcaga agaagtggc agatcagaat tgaggcttt taagtttctt 660  
ttgcaagagg aaatctccaa atgcaaactg gatgatgaca tgaacctgtc ggatattttc 720  
atagagatgg agaagagggt catcctgggaa gaaggaaagt tggacatcct gaaaagagtc 780  
tgtccccaaa tcaacaagag cctgctgaag ataatacaacg actatgaaga attcagcaaa 840  
gagagaagca gcagccttga aggaagtgc gatgaatttt caaatgggaa ggagttgtgt 900  
ggggtaatga caatctcgga ctctccaaga gaacaggatgt gatcacaatttttgc 960  
aaagtttacc aaatgaaaag caaacctcggtt ggtactgtc tgatcatcaa caatcacaat 1020  
tttgcaaaag cacgggagaa agtccccaaa cttcacagca ttagggacag gaatggaaaca 1080  
cacttggatg cagggctttt gaccacgacc tttgaagagc ttcattttga gatcaagccc 1140  
cacgtgact gcacagttaga gcaaatttat gagatttga aaatctacca actcatggac 1200  
cacagtaaca tggactgctt catctgatgt atcctctccc atggagacaa aggcatcatc 1260  
tatggactg atggacagga ggccccatc tatgagctga catctcagtt cactggtttgc 1320  
aagtgcctt cccttgctgg aaaacccaaa gtgtttta ttcaggcttgc tcagggggat 1380  
aactaccaga aaggataacc tggactgact gattcagagg agcaacccta ttttagaaatg 1440  
gatttatcat cacctcaaac gagatatac ccggatgagg ctgactttct gctggggatg 1500

<210> 22  
<211> 528  
<212> PRT  
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (339)..(339)
<223> Xaa can be any naturally occurring amino acid

<400> 22
```

Met Asp Phe Ser Arg Asn Leu Tyr Asp Ile Gly Glu Gly Ile Asn Leu  
 1 5 10 15

Asp Ser Glu Asp Leu Ala Ser Leu Lys Phe Leu Ser Leu Asp Tyr Ile  
20 25 30

Pro Gln Arg Lys Gln Glu Pro Ile Lys Asp Ala Leu Met Leu Phe Gly  
35 40 45

Ile Asn Arg Leu Gly Ile Asn Glu Lys Arg Met Leu Glu Glu Ser Asn  
50 55 60

Leu Ser Phe Leu Lys Glu Leu Leu Phe Arg Ile Asn Arg Leu Asp Leu  
65 70 75 80

Leu Ile Thr Tyr Leu Asn Thr Arg Lys Glu Glu Met Glu Arg Glu Leu  
85 90 95

Gly Ile Asn Thr Pro Gly Ile Tyr Arg Ala Gln Ile Ser Ala Tyr Arg  
100 105 110

Val Met Leu Tyr Gly Ile Asn Ile Ser Glu Glu Val Ser Arg Ser Glu  
115 120 125

Leu Arg Ser Phe Lys Phe Leu Leu Gln Glu Glu Ile Ser Lys Cys Lys  
130 135 140

Leu Asp Asp Asp Met Asn Leu Leu Asp Ile Phe Ile Glu Met Glu Lys  
145 150 155 160

Arg Val Ile Leu Gly Glu Gly Ile Tyr Lys Leu Asp Ile Leu Lys Arg  
165 170 175

Val Cys Ala Gly Ile Asn Ile Asn Lys Ser Leu Leu Lys Ile Ile Asn  
180 185 190

Asp Tyr Glu Glu Phe Ser Lys Gly Ile Tyr Glu Glu Leu Cys Gly Val  
195 200 205

Asn Glu Thr Thr Ile Ser Asp Ser Pro Arg Glu Gly Ile Asn Asp Ser  
210 215 220

Glu Ser Gln Thr Leu Asp Lys Val Tyr Gly Ile Asn Met Lys Ser Lys  
225 230 235 240

Pro Arg Gly Tyr Cys Leu Ile Ile Asn Asn His Asn Phe Ala Lys Ala  
245 250 255

Arg Glu Lys Val Pro Lys Leu His Ser Ile Arg Asp Arg Asn Gly Thr  
260 265 270

His Leu Asp Ala Gly Ala Leu Thr Thr Thr Phe Glu Glu Leu His Phe  
275 280 285

Glu Ile Lys Pro His Asp Asp Cys Thr Val Glu Gln Ile Tyr Glu Ile  
290 295 300

Leu Lys Ile Tyr Gly Ile Asn Leu Met Asp His Ser Asn Met Asp Cys  
305 310 315 320

Phe Ile Cys Cys Ile Leu Ser His Gly Ile Tyr Asp Lys Gly Ile Ile  
325 330 335

Thr Tyr Xaa Gly Ile Tyr Thr Asp Gly Ile Tyr Gly Ile Asn Glu Ala  
340 345 350

Pro Ile Tyr Glu Leu Thr Ser Gln Phe Thr Gly Ile Tyr Leu Lys Cys  
355 360 365

Pro Ser Leu Ala Gly Lys Pro Lys Val Phe Phe Ile Gly Ile Asn Ala  
370 375 380

Cys Gly Ile Asn Gly Asp Asn Tyr Gly Ile Asn Lys Gly Ile Pro Val  
385 390 395 400

Ala Ile Glu Thr Asp Ser Glu Glu Gly Ile Asn Pro Tyr Leu Glu Met  
405 410 415

Asp Leu Ser Ser Pro Gln Thr Arg Tyr Ile Pro Asp Glu Ala Asp Phe  
420 425 430

Leu Leu Gly Ile Tyr Met Ala Thr Val Ala Ile Asn Asn Cys Val Ser  
435 440 445

Tyr Arg Asn Pro Ala Glu Gly Thr Trp Tyr Ile Gly Ile Asn Ser Leu  
450 455 460

Cys Gly Ile Asn Ser Leu Arg Glu Arg Cys Pro Arg Gly Ile Tyr Asp  
465 470 475 480

Asp Ile Leu Thr Ile Leu Thr Glu Val Ala Ile Asn Tyr Glu Val Ser  
485 490 495

Asn Lys Asp Asp Lys Lys Asn Met Gly Ile Tyr Lys Gly Ile Asn Met  
500 505 510

Pro Gln Pro Thr Phe Thr Leu Arg Lys Lys Leu Val Phe Pro Ser Asp  
515 520 525

<210> 23  
<211> 2559  
<212> DNA  
<213> Homo sapiens

<400> 23  
cctttaaaaa agatggactt cagcagaaat ctttatgata ttggggaca actggacagt 60  
gaagatctgg ctcctcaaa gttcctgagc ctggactaca ttccgcaaag gaagcaagaa 120  
cccatcaagg atgccttgat gttattccag agactccagg aaaagagaat gttggaggaa 180  
agcaatctgt cttcctgaa ggagctgctc ttccgaatta atagactgga tttgctgatt 240  
acctacctaa acactagaaa ggaggagatg gaaagggAAC ttcagacacc aggcaaggct 300  
caaattctg cctacagggt catgctctat cagatttcag aagaagttag cagatcgaa 360  
ttgaggtctt ttaagttct tttgcaagag gaaatctcca aatgcaaact ggatgtgac 420  
atgaacctgc tggatatttt catagagatg gagaagaggg tcatcctggg agaaggaaag 480  
ttggacatcc tgaaaagagt ctgtccccaa atcaacaaga gcctgctgaa gataatcaac 540  
gactatgaag aattcagcaa aggggaggag ttgtgtgggg taatgacaat ctcggactct 600  
ccaagagaac aggatagtga atcacagact ttggacaaag tttaccaaatt gaaaagcaaa 660  
cctcggggat actgtctgat catcaacaat cacaatttg caaaagcacg ggagaaagtg 720  
cccaaacttc acagcattag ggacaggaat ggaacacact tggatgcagg ggcttgacc 780  
acgaccttg aagagctca ttttgagatc aagccccacg atgactgcac agtagagcaa 840  
atctatgaga ttttggaaat ctaccaactc atggaccaca gtaacatgga ctgcttcatc 900  
tgctgtatcc tctccatgg agacaaaggc atcatctatg gcactgatgg acaggaggcc 960  
cccatctatg agctgacatc tcagttcaact ggttgaagt gccctccct tgctggaaaa 1020  
cccaaagtgt ttttattca ggcttgcag gggataact accagaaagg tatacctgtt 1080  
gagactgatt cagaggagca accctattta gaaatggatt tatcatcacc tcaaacgaga 1140  
tatatcccgg atgaggctga ctttctgctg gggatggcca ctgtgaataa ctgtgtttcc 1200  
taccgaaacc ctgcagaggg aacctggtag atccactcac tttgcaagag cctgagagag 1260  
cgatgtcctc gaggcgatga tattctcacc atcctgactg aagtgaacta tgaagtaagc 1320  
aacaaggatg acaagaaaaa catggggaaa cagatgcctc agcctacttt cacactaaga 1380  
aaaaaaacttg tcttccttc tgattgatgg tgctatTTT tttgtttgt tttgtttgt 1440  
tttttgaga cagaatctcg ctctgtcgcc caggctggag tgcagtggcg tgatctcgcc 1500  
tcaccgcaag ctccgcctcc cgggttcacg ccattctcct gcctcagcct cccgagtagc 1560  
tgggactaca ggggcccccc accacacctg gctaattttt taaaaatatt ttttagtagag 1620  
acagggtttc actgtgttag ccagggtggc cttgatctcc tgacctcgat atccacccac 1680  
ctcggcctcc caaagtgctg ggattacagg cgtgagccac cgccgcctggc cgatggtaact 1740

|                                                                   |      |
|-------------------------------------------------------------------|------|
| attagatat aacactatgt ttatTTacta attttctaga ttttctactt tattaattgt  | 1800 |
| tttgcacttt ttataaagag ctaaagttaa ataggatatt aacaacaata acactgtctc | 1860 |
| ctttctctta tgcttaaggc tttgggaatg ttttagctg gtggcaataa ataccagaca  | 1920 |
| cgtacaaaat ccagctatga atatagaggg cttatgattc agattgttat ctatcaacta | 1980 |
| taagcccact gttaatattc tattaacttt aattctcttt caaagctaaa ttccacacta | 2040 |
| ccacattaaa aaaatttagaa agtagccacg tatggtggt catgtctata atcccagcac | 2100 |
| tttgggaggt tgaggtggga ggatttgctt gaacccaaga ggtccaaggc tgcagtgagc | 2160 |
| catgttcaca ccgctgcact caagcttggg tgacagagca agacccgtc cccaaaaaaaa | 2220 |
| ttttttttt aataaaccctt aatttggggaaaactttttaaaaattcaaa tgatttttac   | 2280 |
| aagttttaaa taagctctcc ccaaacttgc tttatgcctt cttattgctt ttatgatata | 2340 |
| tatatgcttg gctaactata tttgctttt gctaacaatg ctctgggtc ttttatgca    | 2400 |
| tttgcatttg ctcttcatc tctgcttggaa ttatTTaaa tcatttagaa ttaagttatc  | 2460 |
| tttaaaattt aagtatcttt tttccaaaac atttttaat agaataaaaat ataatttgat | 2520 |
| cttaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa             | 2559 |