HASEonGPU talk - AAC jena 2014

E. Zenker, C. Eckert

June 24, 2014

1 Outline

- 1. ASE physics (not too much details!)
 - (a) gain medium is pumped
 - (b) spontaneous emission of photons
 - (c) amplification of photons
 - (d) loss of pumped energie (pump plot + 3D dndt ASE)
 - (e) motivation for ASE flux calculation in laser physics
 - wall plug efficiency, for efficient laser systems (use cases)
 - higher resolution of gain medium
 - large gain media
 - fundamental process (no simplified formula)
 - there are no tools able to simulate ASE fast
 - ASE sim \rightarrow Temp \rightarrow optical, mechanical transformation \rightarrow ASE sim (multiscale simulation)
- 2. simulating ASE with Monte Carlo (transition to parallel simulation)
 - (a) describe meshed gain medium
 - (b) Φ ASE formula
 - (c) describe Monte Carlo integration in general (see wikipedia)
 - (d) transformation of Φ ASE formula to Monte Carlo integration formula

- (e) Monte Carlo integration solved by raytracing
- 3. parallelization of Monte Carlo (main focus!)
 - (a) Monte Carlo is suitable for usage of accelerator hardware (CUDA)
 - (b) rays
 - i. processing of rays by threads
 - ii. distribution of rays (IS, load balancing on ray level)
 - iii. memory usage
 - iv. MSE
 - v. AS + RS
 - (c) sample points
 - i. load balancing on sample point level (MPI)

4. result

- (a) validation
 - experiment plot + simulated mesh and size of simulation
 - simulation plot (no fit!)
 - give feeling for runtime of whole simulation
- (b) runtime (CPU vs. GPU also for whole simulation approximated)
- (c) scaling
 - large gain media, require large cluster systems
 - almost perfect strong scaling of Monte Carlo code
- (d) conclusion
 - future: ASE simulation of massive gain media
 - simulate loop for large gain media in reasonable amount of time