

Statistical Inference

PCHN62121 Image Analysis

Dr Martyn McFarquhar

Introduction

- Statistics lie at the heart of everything we will be doing during this module
- Our ability to reach conclusions about our fMRI and M/EEG data depends entirely upon statistical modelling and statistical inference
- Poldrack, Mumford & Nichols (2011) name Probability and Statistics as their number 1 prerequisite for fMRI data analysis
 - 1. *Probability and statistics*. There is probably no more important foundation for fMRI analysis than a solid background in basic probability and statistics. Without this, nearly all of the concepts that are central to fMRI analysis will be foreign.
- In this session we will review the **fundamentals** of statistical inference to prepare you for the content that is to come on this module

Probability

- Probability is the foundation of everything in statistics.
- Statistics is the science of uncertainty of reaching conclusions based on noisy or incomplete information
- Probability is the language of uncertainty
- Statistics uses probability to describe the nature of data and how we can reach general conclusions about a phenomena by examining a small part of it
- Probability provides a mechanism for inductive reasoning going from the specific to the general
 - Induction is a big philosophical problem that is not fully resolved - hence why we cannot *prove* anything in science

Probability

Kolmogorov axioms

- Mathematically, for a number to be called a probability it must adhere to some rules known as the Kolmogorov axioms
- Imagine rolling a six-sided die:
 - There are 6 **mutually exclusive** events the numbers 1 to 6
 - Each event needs to be assigned a number that is ≥ 0 (Axiom 1)
 - They cannot all be 0 (Axiom 2)
 - The sum of all the probabilities must be equal to 1 (Axiom 3)
- Therefore, if we believe all the outcomes to be equally probable we can define

Kolmogorov axioms

The probability of rolling a 5 would be

$$P(5) = \frac{1}{6}$$

The probability of rolling an even number would be

$$P(2 \cup 4 \cup 6) = \frac{3}{6} = \frac{1}{2}$$

- All these examples satisfy the Kolmogorov axioms and thus can be called probabilities
- Notice that any notion of what probability means is completely absent Kolmogorov tells us how to calculate the numbers, but he does not tell us what they mean

Probability

Interpreting Probability

- One of the greatest divides in modern science between the Frequentist and Bayesian approaches to statistics
- For the Frequentist, probabilities represent physical phenomena that can be counted
 - A probability is the **long-run frequency** of an event
- For the Bayesian, probabilities represent degrees of belief
 - A probability indicates, based on the available evidence, how likely an event is to occur
- A Bayesian can apply probability to events that cannot be counted (e.g. the probability of rain tomorrow)
- The Bayesian view leads to a much more flexible analysis framework the notion of degree of belief has been criticised as too subjective
- The development during the 20th century of inferential statistics by Ronald Fisher was motivated by his deep disdain for the Bayesian perspective on probability

Random variables

- Irrespective of your philosophical views on interpretation, one of the most important concepts from probability for statistics is the random variable
- A random variable is
 - A variable whose value is dependent upon the outcome of some random processes
 - A variable where we will measure a different value every time we observe it
 - A variable where each possible values can be associated with a probability
- A basic example would be the outcome of flipping a coin

Outcome	Probability
Н	1/2
Т	1/2

Random variables

• Another example would be counting the number of **heads** after 3 flips of a coin

Outcome	Number of Heads
ННН	3
ННТ	2
нтн	2
THH	2
HTT	1
THT	1
TTH	1
TTT	0

Number of heads	Probability
3	1/8
2	3/8
1	3/8
0	1/8

Random variables

• Another example would be counting the number of **heads** after 3 flips of a coin

Number of heads	Probability
3	1/8
2	3/8
1	3/8
0	1/8

Probability distributions

These shapes are known as probability distributions - they tell us the probability of all possible values of the random variable

- These shapes are examples of the binomial distribution
- $y \sim \text{Binomial}(n, p)$
- Each probability distribution is controlled by parameters that describe the shape
 - \circ n = the number of trials, p = the probability of success on a single trial

Probability distributions

The Normal Distribution

- The binomial distribution is an example of a discrete probability distribution because the measurements are whole numbers
- In the real world we often deal with random variables that can take on an infinite number of possible values
 - Time, height, weight, reaction time, BOLD signal etc.
- In these cases we have to use a continuous probability distribution
- Although there are many continuous distributions available, the most commonly used is the **normal distribution**
- Also known as the Gaussian distribution

Probability distributions

The Normal Distribution

The normal distribution is fully described by the formula

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

- The important point is that this is parameterised by two values:
 - \circ The **mean** (μ) the centre of the distribution
 - \circ The **standard deviation** (σ) the width of the distribution

$$y \sim \mathcal{N}\left(\mu, \sigma
ight)$$

 If we assume our random variable of interest comes from a normal distribution, our aim is to estimate the mean and standard deviation and how these change under different experimental conditions

Random samples

- Imagine we have an interest in the weight of males who are suffering from major depressive disorder in the UK
- Weight is a continuous random variable with some distribution if we assume this
 is a normal distribution then

weight
$$\sim \mathcal{N}\left(\mu,\sigma\right)$$

- This distribution represents the entire population under study
- We want to know the parameter values of this distribution we would need to weight every male who has major depression in the UK
- Instead we take a **sample** and use this to **infer** something about the population
- Using a sample to say something about the population distribution lies at the heart of parametric statistical methods

Random samples

• A **random sample** of size n from a **population** can be conceptualised as a sequence of n independent random variables $(y_1, y_2, y_3, ..., y_n)$, where each random variable is drawn from the **same distribution** (i = 1,...,n)

$$y_i \sim \mathcal{N}(\mu, \sigma)$$

- These are known as independent and identically distributed (i.i.d.) random variables
- This random sampling model describes an experimental situation where repeated observations are made on the same variable y
- For our current example, each observation represents the weight of a different subject in our experiment

Estimating population parameters

- Our aim is now to use our random sample to estimate values for the population mean and the population standard deviation
- It would seem that what we want to calculate is

$$P(\mu, \sigma|y)$$

 This cannot be calculated without using Bayesian methods (which Fisher hated) so classical statistical methods instead use something called the likelihood

$$\mathcal{L}(\mu, \sigma | y) = P(y | \mu, \sigma)$$

- An optimisation algorithm is used to search through different values of the parameters to find those that maximise the likelihood
- In some cases, optimisation is not needed because there are closed form solutions to finding the estimates that maximise the likelihood

Uncertainty in the parameter estimates

- So let us take a step back:
 - We have a phenomena of interest characterised as a random variable from a normal population distribution
 - We want to know the population parameter values, but cannot measure the whole population
 - We take a sample and use the method of maximum likelihood to estimate the population parameters
 - For a normal distribution, this involves calculating the sample mean and sample standard deviation
- There is a problem with doing this:
 - What happens if we take a different sample? Will we get the same estimates?
 - No! Because a different sample will contain different data so which estimates do we use?
 - We need some way of characterising the uncertainty in our estimates.

Uncertainty in the parameter estimates

 The key insight is to recognise that with each new sample we will get different parameter estimates - our estimates are also random variables

This means they have an associated probability distribution – the sampling

distribution

Uncertainty in the parameter estimates

- The key insight is to recognise that with each new sample we will get different parameter estimates - our estimates are also random variables
- This means they have an associated probability distribution the sampling distribution
- For a normal population distribution the sampling distribution of the mean is also normal

$$\hat{\mu} \sim \mathcal{N}\left(\mu, rac{\sigma}{\sqrt{n}}
ight)$$

- The mean of this distribution is the true population mean on average, we should estimate this correctly across samples
- The standard deviation of this distribution depends upon the sample size the more data the more accurate we will be – this is known as the standard error

- By this point we have successfully managed to:
 - Characterise our phenomena of interest as a random variable with a distribution
 - Use formulas derived from maximum likelihood to estimate the parameters of this distribution based on a single sample
 - Calculate the standard error of these estimates as a means of characterising their uncertainty
- So we now have estimates and standard errors how do we use these to reach conclusions about the population under study?
- This is where the process of **null hypothesis significance testing** comes in

Test Statistics

- Trying to draw conclusions based on the parameter estimates has two issues:
 - The estimates are on the same scale as the data (e.g. weight) so depend upon our domain knowledge to interpret
 - The estimates alone do **not** take the **uncertainty** into account
- Both of these issues can be solved by dividing the estimate by the standard error

$$t = \frac{\text{estimate}}{\text{standard error}} = \frac{\hat{\mu}}{\sigma \{\hat{\mu}\}}$$

- The quantity t is now a standardised variable same units irrespective of the data
- The quantity *t* contains both the **estimate** and **uncertainty** the value will increase as the uncertainty decreases

Test Statistics

 Using t for hypothesis testing involves comparing our estimate with some hypothesised value for the population parameter

$$t = \frac{\hat{\mu} - \mu^{H_1}}{\sigma \left\{\hat{\mu}\right\}}$$

- The **larger** the value of *t*, the greater the **discrepancy** between our estimate and our hypothesised value
- So big values of t suggest that our hypothesised population value is incorrect
- In this example, the hypothesised value of the mean would depend upon domain knowledge (e.g. average weight of males in the UK)

Null Hypothesis Significance Testing

- The insight that Ronald Fisher provided was that our test should form a null hypothesis
- In this instance, it would be there the difference between the true mean and the hypothesised mean is 0 in the population
- To see why this is useful, consider that t is also a random variable because it is calculated from two other random variables
- This means that t has a distribution that can be derived from knowing the sampling distribution of the estimates
- If we assume that the null hypothesis is true then the t-distribution will be centered
 on 0 with a width that depends upon the sample size

Null Hypothesis Significance Testing

- This distribution tells us the various values of t we would expect to calculate if the null hypothesis were true
- So what we can do is use this distribution to calculate the **probability** of obtaining our particular value of t
- This gives the *p*-value
 - The probability of obtaining a test statistic as larger, or larger, assuming the null hypothesis is true
- A **small** *p*-value suggests that our calculated test statistic is **unlikely**, if the null were true either we observed a **rare event** or the **null hypothesis is not accurate**

P-values

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

P-values

- How do we use this information?
 - \circ Fisher's recommendation was to count any p < 0.05 as evidence against the null
 - In our example, the null was that the population mean is the same as the hypothesised mean (their difference was 0)
 - \circ If p < 0.05
 - We would call this a **significant** result and **reject** the null hypothesis it is unlikely that the population mean is the same as the hypothesised mean
 - o If p > 0.05
 - We would call this a **non-significant** result and **fail to reject** the null hypothesis it is possible that the population mean is the same as the hypothesis mean
- The *p*-value is a way of reaching binary conclusions from our results

Application to multiple groups

Two sample tests

 To see how this method applies to more complex experiments, consider comparing the weights of depressed individuals taking two different drugs

$$y_{ij} \sim \mathcal{N}(\mu_j, \sigma_j)$$

We now have two population distributions

$$y_i^{(\text{Drug A})} \sim \mathcal{N}\left(\mu^{(\text{Drug A})}, \sigma^{(\text{Drug A})}\right)$$
$$y_i^{(\text{Drug B})} \sim \mathcal{N}\left(\mu^{(\text{Drug B})}, \sigma^{(\text{Drug B})}\right)$$

Our aim is still to estimate the parameters of these distributions – we want to compare
the means to see whether average weight changes due to the drug

Application to multiple groups

Two sample tests

- We use the same procedure as before to estimate the means and standard deviations
 of these populations, as well as the standard errors of the estimates
- The *t*-statistic then involves comparing the **mean difference** to a **hypothesised mean difference** typically taken to be **0**

$$t = \frac{(\hat{\mu}_1 - \hat{\mu}_2) - D^{H_1}}{\sqrt{\sigma\{\hat{\mu}_1\} + \sigma\{\hat{\mu}_2\}}} = \frac{\hat{\mu}_1 - \hat{\mu}_2}{\sqrt{\sigma\{\hat{\mu}_1\} + \sigma\{\hat{\mu}_2\}}}$$

- We can then use the **same** null t-distribution to calculate a *p*-value to provide evidence for or against the null hypothesis of the population distributions having the **same mean**
- The process is **the same** assume a population distribution, estimate the parameters from a sample, form a hypothesis test about the parameters, calculate a *p*-value

Regression models

- We can also use the same framework to reach conclusions about the relationship between our random variable of interest and other continuous measures
- Imagine that we are interested in how the weight of our depressed males relates to the severity of their symptoms
- In this situation, we might start with the normal distribution model

weight
$$\sim \mathcal{N}(\mu, \sigma)$$

But then specify a more complex form for the mean

$$\mu = \beta_0 + \beta_1$$
 severity

• So the value of the mean depends upon the severity of symptoms

Regression models

• Assuming a **mean function** of

$$\mu = \beta_0 + \beta_1$$
 severity

is an example of a linear regression model

- This assumes that the relationship between weight and symptom severity is a straight-line
 - \circ β_0 is the intercept
 - \circ β_1 is the **slope**
- The probability model is that there is a different normal distribution for each value of severity
- The standard deviations are the same and the means sit along a straight line defined by the two parameters

Regression models

- In order to estimate the mean of our population distribution we need to estimate the values of the intercept and the slope – in this example the mean depends upon two further parameters
- Maximum likelihood can do this for us

Test Statistics

• We can again calculate a *t*-statistic, but this time on the *intercept* and the *slope*

$$t=rac{\hat{eta}_1-eta_1^{H_0}}{\sigma\{\hat{eta}_1\}}$$

 The hypothesised value for the slope is usually taken as 0 – no relationship between weight and severity

$$t=rac{\hat{eta}_1-0}{\sigma\{\hat{eta}_1\}}=rac{\hat{eta}_1}{\sigma\{\hat{eta}_1\}}$$

 So this is the same approach as before – the only difference is that the mean function is more complex – this is the difference between different statistical models

Summary

- We have now seen the process of statistical inference, from first principles about probability,
 all the way up to p-values and hypothesis testing
- This is a somewhat complex process:
 - Our data are conceptualised as random variables drawn from a distribution
 - This distribution has parameters that characterise the whole population
 - We want to know these parameters but cannot use the whole population
 - o Instead, we take a sample and estimate the population parameters
 - These estimates are random variables with an associated sampling distribution
 - The standard deviation of the sampling distribution is known as the standard error
 - Dividing the estimates by the standard error produces a test statistic
 - This test statistic is also a random variable with a distribution
 - We can calculate the shape of this distribution under the null hypothesis of no effect
 - We can then calculate a *p*-value to tell us how likely it would have been to obtain our test statistic if the null hypothesis were true
 - \circ p < 0.05 is evidence against the null

Summary

- This may take some time to sink in if it is new to you it is the fundamental process used to reach conclusions about fMRI and M/EEG data
- We will see all of this in action as we learn how statistical modelling and inference works inside of SPM

