Twitter data sentiment analysis

Lize Du, Chen Xing, Jitian Zhao

STAT 479

April 29, 2019

Outline

- Data cleaning
 - ✓ NLTK and regular expression
 - ✓ Word Embedding
- Naive Bayes
- Multi-layer perceptron
- Convolution neural network
- RNN
- LSTM
 - ✓ Normal LSTM
 - ✓ Bidirectional LSTM
- GRU

Sentiment140

- 2-class text classification problem
- 1.6 million labeled training samples randomly seperated into validation and training dataset.

8000 - Roadive Repative Repati

(b) label over number of words

Figure: label distribution

3 / 16

Data Cleaning: NLTK

- Stopwords use *nltk.stopwords.words* except:
 - 1 Adverb of degree: few, most, more...
 - 2 Negative: don't, didn't, doesn't aren't...
- Pattern matching: words, abbreviation, [a-zA-Z]-[a-zA-Z], ..., ?, !
- Substitute: n'/n't→not, 'd→would...
- Delete: noun's, number+th/st/nd/rd;
- Change to lower case;
- Add __neg to the words between not/never and the first punctuation(naive bayes);
- Use porter stemmer to do stem extracting, such as amazing→amaz(naive bayes);
- Use wordnet lemmatizer to lemmstize the verb to a normal form, such as loving→love

Data Cleaning

Happy birthday, mi amor!!! 🔘 💝 I misss youuuu big time. I loveeee youuuu!!!! 🚱 😘 @iamAndalioLoisa #BenteNaSiLOISA

Figure: a text example from Twitter

- Replace the certain features in tweets:
 - 1 '!!!!!' to '!'<repeat>
 - 2 website to <url>
 - 3 @user to <user>
 - 4 number to <number>
 - 5 'loveeeee' to 'love'<elong>

Word Embedding

- Use pretrained word embedding: glove.twitter.27B.100d
 - 1 Use large set of twitter texts to train word vector.
 - 2 Special tokenization for tweets dataset.
 - 2 Word vector has similar semantic meaning to their neighbors.

Naive Bayes

- Use it as a baseline to compare with our deep learning method
- Use the data processed by NLTK and regular expression
- Use the most frequent 371 words(term frequency>=6000)
- The test accuracy is 0.7194, the confusion matrix is $\begin{pmatrix} 0.66 & 0.34 \\ 0.22 & 0.78 \end{pmatrix}$
- The advantage of naive bayes is it is fast and simple; The disadvantage is its accuracy is relatively low.

Multi-layer perceptron

- (b) minibatch loss
- Use max-pooling to make size match.
- Test accuracy:80.5%
- Advantage: simple model, very fast (1 min/epoch). Disadvantage: accuracy is not satisfactory. begin to over-fit after 3 epoches.

Convolutional neural network

(c) model architecture

- Implemented the model in paper Convolutional Neural Networks for Sentence Classification.
- Test accuracy:84.15%
- Advantage: fast (2 min/epoch), acceptable accuracy

RNN

- Too slow to train(more than 4 hours for one epoch)
- Vanishing gradient problem.

Normal LSTM

- (e) model architecture
- The test accuracy is 81.22%
- Disadvantage: low accuracy.

(f) minibatch loss

Bidirectional LSTM

- (g) model architecture
- The test accuracy is 86.72%
- a forward RNN and a backward RNN.

(h) minibatch loss

12 / 16

GRU

0.60

(i) model architecture

- (j) minibatch loss
- Fewer parameters to train. Much faster.
- Satisfactory result. Test accuracy 86.33%.

Model Comparison

Table: result comparison

model	run-time	test accuracy
Naive Bayes	really fast	71.9%
MLP	pprox 1min $/$ epoc h	80.5%
CNN	pprox 2min/epoch	84.15%
RNN	>4 hour/epoch	/
Normal LSTM	>50 min/epoch	81.27%
Bidirectional LSTM	>3 h/epoch	86.72%
GRU	pprox 1.5 h/epoch	86.33%

Future work

- Try other RNN models.
- Use a more stable cloud computing engine to estimate a more precise training time.

