Neoclassical Growth Theory

Jonathan Colmer September 13, 2025

Introduction and Motivation

Neoclassical Growth Theory

- The starting point for any study of economic growth is the neoclassical growth model.
 - Benchmark model despite limiting assumptions
 - Emphasizes the role of capital accumulation
- The model shows how economic policy can raise an economy's transitional growth rate by inducing people to save more.
- However, in the long-run the growth rate will revert to the rate of technological progress
- Policy shifts levels, not growth.
 - Neoclassical theory takes technological progress as being independent of economic forces
- Underlying this result is the principle of diminishing marginal productivity

The Basic Solow-Swan Model

Model Setup

Aggregate Production Function: Y = F(K)

Key Assumptions:

- Labor supply and technology initially constant
- Diminishing returns: F'(K) > 0, F''(K) < 0
- Inada conditions: $\lim_{K\to 0} F'(K) = \infty$, $\lim_{K\to \infty} F'(K) = 0$

Capital Accumulation: $\dot{K} = sF(K) - \delta K$

- People save fraction s of income
- ullet Capital depreciates at rate δ

Key insight: Given the initial stock of capital K0 we can determine the entire future time path of capital and output.

Graphical Analysis

Adding Population Growth and Technology

With Population Growth:

- Per capita dynamics: $\dot{k} = sf(k) (n + \delta)k$
- Population "dilutes" capital per person
- Still no per capita growth in steady state

With Technological Progress:

- Production: $Y = A(t)L^{1-\alpha}K^{\alpha}$ where $A(t) = A_0e^{gt}$
- Growth in "efficiency units": AL grows at rate n + g
- Per efficiency unit: $\dot{\kappa} = s\kappa^{\alpha} (n+g+\delta)\kappa$, where $\kappa = K/AL$

Take-home: In the long run, the only parameter affecting the growth rate is the exogenous rate of technological progress g.

Overview

- In the short-run the economy can grow for a while by accumulating capital...
- ... But without technological change, decreasing returns to capital choke off growth.
- With technological change, growth can be sustained...
- ... But, the model provides no account as to what drives technological change.
- Provides no economic explanation for persistent differences in growth.

The Ramsey-Cass-Koopmans Model

Endogenizing the Saving Rate

Limitation of Fixed Saving Rate:

- Ignores consumption smoothing motives
- No role for interest rates in saving decisions

Ramsey Approach: Representative household maximizes:

$$W = \sum_{t=0}^{\infty} \beta^t u(c_t), \quad 0 < \beta < 1$$

subject to:
$$K_{t+1} = K_t + F(K_t) - c_t - \delta K_t$$

Key Result: Same long-run conclusions (with no explanation), but richer dynamics

- Provides microfoundations for saving behavior
- Links growth theory to standard consumer theory
- Enables welfare analysis of growth policies

The Euler Equation¹

Optimal Consumption Path:

$$\frac{\dot{c}}{c} = \frac{(r-\rho)}{\varepsilon}$$

where:

- $r = F'(K) \delta$ (net return to capital)
- $\rho > 0$ = rate of time preference (where $\beta = \frac{1}{1+\rho}$).
- ullet $\varepsilon = {
 m elasticity}$ of marginal utility

Intuition:

- If $r > \rho$: Saving more attractive \Rightarrow consumption grows
- If $r < \rho$: Consumption now preferred \Rightarrow consumption falls

¹Continuous time, infinite horizon in which we assume isoelastic utility, s.t., individuals have the same elasticity of substitution $1/\varepsilon$ between present and future consumption no matter the level of consumption. $u(c) = \frac{c^{1-\varepsilon} - 1}{1-\varepsilon}$ where $u'(c) = c^{-\varepsilon}$; $u''(c) = -\varepsilon c^{-(\varepsilon} + 1)$.

Empirical Predictions and Evidence

Conditional Convergence

Key Question: Do poor countries catch up with rich ones?

Neoclassical Prediction: "Conditional convergence"

- Countries converge in levels if they share same fundamentals:
 - Same technology (argued/assumed to be true in the empirical literature)
 - ullet Same saving rate s, depreciation δ , population growth n
- Poor countries grow faster when further from their steady state
- ullet Different fundamentals \Rightarrow different steady states \Rightarrow no convergence

Empirical Evidence on Convergence

• Empirical tests focus on whether poor countries grow faster than rich countries, after controlling for the fundamentals $(s, n, \text{ and } \delta)$,

$$\frac{1}{T}\log\frac{y_{i,t+T}}{y_{i,t}} = \beta_0 + \beta_1\log y_{i,t} + \beta_2 X_{i,t} + \epsilon_{i,t}$$

- growth rates can vary either because of differences in the parameters determining their steady-states $(\beta_2 X_{i,t})$ or because of differences in initial positions $(\beta_1 \log y_{i,t})$.
- ullet An estimated value of $eta_1 < 0$ is taken as evidence of conditional convergence.

Convergence in the OECD

Figure 25: Convergence in the OECD

Source: The Penn World Tables 8.0. Countries in the OECD as of 1970 are shown.

Limited Convergence World Wide

Figure 26: The Lack of Convergence Worldwide

Source: The Penn World Tables 8.0.

Diminishing Returns?

Divergence

Frontier Growth vs. Catchup Growth

• Limited support for conditional convergence overall — "Some countries just have faster technological progress"?

$$A_{it} = \tilde{A}_{it}\hat{A}_{it}$$

- \hat{A}_{it} the world technology frontier, changes slowly
- \bullet \tilde{A}_{it} changes rapidly due to events, changes in policies (miracles and disasters)
 - For countries close to the frontier, growth is only possible by moving the frontier.
 - What forces determine the evolution of \hat{A}_{it} ? (Endogenous growth theory)
- For countries far away from the frontier, reasonable to think that the frontier is exogenous.
 - What forces determine \tilde{A}_{it} ? (Development Economics)