| Candidate | Centre | Candidate |
|-----------|--------|-----------|
| Name      | Number | Number    |
|           |        | 2         |



## GCE AS/A level

1091/01 **N** 

**New AS** 

### **CHEMISTRY CH1**

A.M. WEDNESDAY, 3 June 2009  $1\frac{1}{2}$  hours

| 1       | ER'S<br>Y |      |
|---------|-----------|------|
| Section | Question  | Mark |
| A       | 1-4       |      |
| В       | 5         |      |
|         | 6         |      |
|         | 7         |      |
|         | 8         |      |
|         | 9         |      |
| TOTAL   |           |      |

#### **ADDITIONAL MATERIALS**

In addition to this examination paper, you will need a:

- calculator;
- copy of the **Periodic Table** supplied by WJEC. Refer to it for any **relative atomic masses** you require.

#### INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top of this page.

**Section A** Answer all questions in the spaces provided.

**Section B** Answer all questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A** (10 marks) and **Section B** (70 marks).

#### INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

You are reminded that marking will take into account the Quality of Written Communication used in all written answers.

Page 20 may be used for rough work.

Examiner only

### **SECTION A**

Answer all the questions in the spaces provided.

| 1. | The s | symbo | $1 \text{ ls } {}_{17}^{35}\text{Cl}, {}_{17}^{37}\text{Cl and } {}_{19}^{39}$ | K, represen   | t chlorine atoms a | nd potassiu | m atoms re | spectiv | ely.     |
|----|-------|-------|--------------------------------------------------------------------------------|---------------|--------------------|-------------|------------|---------|----------|
|    | (a)   | Use   | these symbols to e                                                             | explain the r | neaning of the ter | ms          |            |         |          |
|    |       | (i)   | atomic number,                                                                 |               |                    |             |            |         | [1]      |
|    |       | (ii)  | isotope.                                                                       |               |                    |             |            |         | [1]      |
|    | (b)   |       | nserting arrows                                                                |               |                    | nplete the  | boxes belo | ow to : | show the |
| 1s | 2     | S     | 2p                                                                             | 3s            | 3p                 |             | 3d         |         | 4s       |

**2.** (a) Cobalt reacts with hydrochloric acid to give cobalt chloride and hydrogen.

$$Co(s) + 2HCl(aq) \longrightarrow CoCl_2(aq) + H_2(g)$$

- (i) Suggest a method for measuring the rate of this reaction. [1]
- (ii) State what could be done to the cobalt to increase the rate of this reaction. [1]
- (b) A radioactive isotope of cobalt has a half-life of 71 days. Starting with 16 g, calculate the mass of this isotope remaining after 213 days. [1]

- 3. State the mass of carbon that contains the same number of atoms as there are molecules in 16 g sulfur dioxide, SO<sub>2</sub>. [1]
  - **A** 3g
  - **B** 6g
  - **C** 12 g
  - **D** 64 g

**4.** (a) The diagram below shows the distribution of molecular energies for a sample of ethene.

On the diagram, draw the distribution curve of molecular energies for the same sample of ethene at a higher temperature. [1]



(b) Ethene can be converted to ethane. The equation for the reaction is shown below.

Using the average bond enthalpy values listed below, calculate the enthalpy change, in kJ mol<sup>-1</sup>, for the reaction. [2]

| Bond  | Average bond enthalpy / kJ mol <sup>-1</sup> |
|-------|----------------------------------------------|
| C-C   | 348                                          |
| C = C | 612                                          |
| С—Н   | 412                                          |
| н—н   | 436                                          |

## **BLANK PAGE**

(1091-01) **Turn over.** 

### **SECTION B**

Answer all the questions in the spaces provided.

**5.** (a) The table below shows the molar first ionisation energy values, IE, for the first ten elements of the Periodic Table.

| Element                   | Н    | Не   | Li  | Be  | В   | С    | N    | О    | F    | Ne   |
|---------------------------|------|------|-----|-----|-----|------|------|------|------|------|
| IE / kJ mol <sup>-1</sup> | 1310 | 2370 | 520 | 900 | 800 | 1090 | 1400 | 1310 | 1680 | 2080 |

| (i)  | Complete the graph shown on the next page, to show how first ionisation varies for the first ten elements. | energy |
|------|------------------------------------------------------------------------------------------------------------|--------|
|      | Four of the points have been plotted for you.                                                              | [3]    |
| (ii) | Explain why                                                                                                |        |
|      | I. helium has a higher first ionisation energy than neon.                                                  | [2]    |

| 1.   | helium has a higher first ionisation energy than neon,     | [2] |
|------|------------------------------------------------------------|-----|
|      |                                                            |     |
| II.  | neon has a higher first ionisation energy than nitrogen,   | [1] |
| III. | nitrogen has a higher first ionisation energy than oxygen. | [2] |
|      |                                                            |     |



| [2] |
|-----|
| [2] |
|     |
|     |
| nt. |
| [1] |
| [3] |
|     |
|     |

# **BLANK PAGE**

(1091-01) **Turn over.** 

6. (a) Ammonia, a very important industrial product, is produced by the Haber process. Ammonia can be converted to ammonium sulfate,  $(NH_4)_2SO_4$ , a common fertiliser, by reacting it with sulfuric acid,  $H_2SO_4$ .



The Haber process can be represented by the following equation.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
  $\Delta H^{\rightleftharpoons} = -92 \text{ kJ mol}^{-1}$ 

- (i) Explain how a catalyst speeds up a reaction. [2]
- (ii) What **type** of catalyst is iron in the above process? [1]
- (iii) For the equilibrium reaction, explain why
  - I. there has been much research to find a better catalyst, [2]

II. a high pressure is used, [2]

III. ammonia is removed from the equilibrium mixture as it forms. [2]

(iv) In Britain, an ammonia factory is sited at Avonmouth on the banks of the River Severn near Bristol.



| (b) | (i)   | Write an equation for the acid-base reaction of ammonia with sulfuric acid.                                                      | [1] |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (ii)  | Explain why ammonia behaves as a base in this reaction.                                                                          | [1] |
|     | (iii) | Farmers use ammonium sulfate as a fertiliser. Calculate the percentage by mass of nitrogen in ammonium sulfate, $(NH_4)_2SO_4$ . | [2] |

Total [15]

[2]

Turn over.

| 7. | <i>(a)</i> | The diagram | below | shows | the | emission | spectrum | of th | ne l | hydrogen | atom | in | the | visible |
|----|------------|-------------|-------|-------|-----|----------|----------|-------|------|----------|------|----|-----|---------|
|    |            | region.     |       |       |     |          |          |       |      |          |      |    |     |         |

Increasing frequency red violet

| (i) | Explain why hydrogen emits only certain definite frequencies of visible light. | [2] |
|-----|--------------------------------------------------------------------------------|-----|
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |

(ii) The horizontal lines below show the electron energy levels of a hydrogen atom.

Label these horizontal lines and draw the transitions corresponding to the four spectral lines in (a) above, clearly indicating which transition represents the red spectral line. [3]

| Energy |  |
|--------|--|
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |

|     | (iii) | On the diagram, draw and label the transition corresponding to the ionisation of atom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the<br>[1] |
|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (b) | Hydı  | rogen exists as two naturally occurring isotopes, <sup>1</sup> H and <sup>2</sup> H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|     | (i)   | A mass spectrum of a sample of hydrogen showed that it contained <sup>1</sup> H 99.20% a <sup>2</sup> H 0.8000%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ınd        |
|     |       | Calculate the relative atomic mass of the hydrogen sample, giving your answer four significant figures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | to [2]     |
|     | (ii)  | In the mass spectrum, explain why peaks due to hydrogen atoms are present the state of the state |            |
|     |       | although hydrogen gas contains only $H_2$ molecules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [1]        |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| (c) | Belo  | w is a diagram of a mass spectrometer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
|     |       | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|     | (i)   | Name part <b>B</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [1]        |
|     | (ii)  | Name part C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [1]        |
|     | (iii) | State the function of part <b>A</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [1]        |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |

Examiner only

(d) Hydrogen also has an artificial isotope which is radioactive by  $\beta$  decay.

Complete the table below which shows the nature and effect of radioactive emission. [4]

| Туре        | Nature                                   | Effect on atomic<br>number |
|-------------|------------------------------------------|----------------------------|
| α particle  |                                          |                            |
| β particle  |                                          |                            |
| γ radiation | Electromagnetic radiation of high energy | No effect                  |

Total [16]

## **BLANK PAGE**

(1091-01) **Turn over.** 

| 8. | (a) |      | 087, the United Nations published a report on sustainable development, which included ollowing statement:                                                                                      |
|----|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |     |      | tainable development is development which meets the needs of the present without promising the ability of future generations to meet their own needs."                                         |
|    |     | (i)  | In the UK, most electricity is generated in gas-fired power stations.  Give <b>two</b> reasons why the use of gas to generate electricity does not match the definition of sustainability. [2] |
|    |     |      | QWC [1]                                                                                                                                                                                        |
|    |     |      |                                                                                                                                                                                                |
|    |     |      |                                                                                                                                                                                                |
|    |     |      |                                                                                                                                                                                                |
|    |     | (ii) | Suggest <b>one</b> method of generating electricity which would be sustainable and outline how it works. [2]                                                                                   |
|    |     |      |                                                                                                                                                                                                |
|    |     |      |                                                                                                                                                                                                |
|    |     |      |                                                                                                                                                                                                |

| (b) | In some countries, | ethanol is replacing | petrol (octane) | as a car fuel |
|-----|--------------------|----------------------|-----------------|---------------|
|-----|--------------------|----------------------|-----------------|---------------|

| (i) | When ethanol, | $C_2H_5OH$ , | is b | ournt in | air, | the | only | products | are | carbon | dioxide | and |
|-----|---------------|--------------|------|----------|------|-----|------|----------|-----|--------|---------|-----|
|     | water.        |              |      |          |      |     |      |          |     |        |         |     |

Balance the following equation for this reaction. [1]

$$C_2H_5OH + \dots CO_2 + \dots H_2O$$

(ii) Use the standard enthalpy change of formation values given in the table to calculate the standard enthalpy change,  $\Delta H^{\ominus}$ , for the combustion of ethanol.

[2]

| Compound                            | $\Delta H_f^{\Phi}$ / kJ mol <sup>-1</sup> |
|-------------------------------------|--------------------------------------------|
| C <sub>2</sub> H <sub>5</sub> OH(l) | -278                                       |
| CO <sub>2</sub> (g)                 | -394                                       |
| H <sub>2</sub> O(1)                 | -286                                       |
| O <sub>2</sub> (g)                  | 0                                          |

| <br> | <br> | <br> | <br> | <br> | <br> |
|------|------|------|------|------|------|
|      |      |      |      |      |      |
|      |      |      |      |      |      |
|      |      |      |      |      |      |
|      |      |      |      |      |      |
| <br> | <br> | <br> | <br> | <br> | <br> |
|      |      |      |      |      |      |
|      |      |      |      |      |      |

(iii) The standard enthalpy change of combustion for octane  $\Delta H_c^{\Theta}(C_8H_{18})$  is -5512 kJ mol<sup>-1</sup>.

Using this value and your answer to (b)(ii), show that octane gives more energy per gram of fuel burned than ethanol. [2]

| <br> |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| <br> |

(iv) Suggest a reason why ethanol is being used rather than petrol. [1]

Total [11]

**9.** Elinor is given a mixture containing sodium carbonate and she carries out a two-part experiment to determine the percentage of sodium carbonate in the mixture.

In part 1, she accurately weighs  $2.05\,\mathrm{g}$  of the mixture, transfers all of it to an appropriate container, adds  $100\,\mathrm{cm}^3$  of distilled water to ensure that it all dissolves and accurately makes up the solution to  $250\,\mathrm{cm}^3$  with distilled water.

In part 2, she pipettes 25.0 cm<sup>3</sup> of the solution into a container, adds 3 drops of an appropriate indicator and titrates this solution with hydrochloric acid of concentration 0.100 mol dm<sup>-3</sup>. She repeats this procedure three times and obtains the following results.

| Titration                          | 1     | 2     | 3     | 4     |
|------------------------------------|-------|-------|-------|-------|
| Final reading (cm <sup>3</sup> )   | 23.50 | 24.10 | 24.10 | 23.40 |
| Initial reading (cm <sup>3</sup> ) | 0.40  | 0.15  | 0.90  | 0.25  |
| Titre (cm <sup>3</sup> )           |       |       |       |       |

| <i>(a)</i> | Name a suitable container to make up the solution that could be used in part 1. | [1] |
|------------|---------------------------------------------------------------------------------|-----|
|------------|---------------------------------------------------------------------------------|-----|

|     | /1 \           | Complete the table to show the values of the titres. | F17 |
|-----|----------------|------------------------------------------------------|-----|
| - ( | nı             | Complete the table to show the values of the fitres  | 111 |
| - 1 | $\upsilon_{j}$ | complete the tuble to show the values of the titles. | [ 1 |

$$Na_2CO_3 + 2HC1 \longrightarrow 2NaC1 + H_2O + CO_2$$

| (i) | Use your   | answer to | part ( | ( <i>c</i> ) to | calculate | the | number | of | moles | of | HCl | used | in | the |
|-----|------------|-----------|--------|-----------------|-----------|-----|--------|----|-------|----|-----|------|----|-----|
|     | titration. |           | _      |                 |           |     |        |    |       |    |     |      |    | [1] |

(ii) Deduce the number of moles of 
$$Na_2CO_3$$
 in 25.0 cm<sup>3</sup> of the solution. [1]

| Exa | minei |
|-----|-------|
| O   | nlv   |

|     | (iii)                                                                                            | Calculate the total number of moles of Na <sub>2</sub> CO <sub>3</sub> in the original 250 cm <sup>3</sup> solut                                                             | tion. [1]      |
|-----|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|     | (iv)                                                                                             | Calculate the mass of $Na_2CO_3$ in the original solution.                                                                                                                   | [1]            |
|     | (v)                                                                                              | Calculate the percentage of Na <sub>2</sub> CO <sub>3</sub> in the mixture.                                                                                                  | [1]            |
| (e) | asked why, she stated 'I did not add the acid drop by drop at the end and so oversho end-point'. |                                                                                                                                                                              | ershot the     |
|     | state                                                                                            | e <b>two</b> other common sources of error in such experiments and explain why ement cannot be correct.  Source that all the equipment is clean and all chemicals are pure.) | Elinor's       |
|     |                                                                                                  |                                                                                                                                                                              | <i>QWC</i> [2] |
|     |                                                                                                  |                                                                                                                                                                              |                |
|     |                                                                                                  |                                                                                                                                                                              |                |
|     |                                                                                                  |                                                                                                                                                                              |                |
|     |                                                                                                  |                                                                                                                                                                              |                |
|     |                                                                                                  |                                                                                                                                                                              |                |
|     |                                                                                                  | 7                                                                                                                                                                            | Гotal [14]     |
|     |                                                                                                  | Section B 7                                                                                                                                                                  | Total [70]     |

(1091-01)

| Rough Work |  |  |  |  |
|------------|--|--|--|--|
|            |  |  |  |  |
|            |  |  |  |  |
|            |  |  |  |  |
|            |  |  |  |  |
|            |  |  |  |  |
|            |  |  |  |  |
|            |  |  |  |  |
|            |  |  |  |  |
|            |  |  |  |  |
|            |  |  |  |  |
|            |  |  |  |  |
|            |  |  |  |  |
|            |  |  |  |  |
|            |  |  |  |  |
|            |  |  |  |  |
| (1091-01)  |  |  |  |  |