Théorème 6.31 - caractérisation de la bonne fondation d'un ordre

Soit (E, \leq) un ensemble ordonné. Les propositions suivantes sont équivalentes :

- 1. \leq est un ordre bien fondé.
- $\mathbf{2}$. Il n'existe pas de suite infinie strictement décroissante d'élements de E.
- 3. Pour tout prédicat P sur E,

$$\left(\forall x \in E, \left(\forall y \in E, x > y \implies P(y)\right) \implies \left(\forall x \in E, P(x)\right)\right)$$

Démonstration

(1) \Longrightarrow (2) : Supposons que \leq est un ordre bien fondé, et par l'absurde, que $(x_n)_{n\in\mathbb{N}}$ est une suite infinie strictement décroissante d'éléments de E. Alors l'ensemble non vide $\{x_n, n\in\mathbb{N}\}\subset E$ admet un élément minimal x_k ; Ainsi, par décroissance stricte de (x_n) , $x_{k+1} < x_k$, Absurde, x_k est l'élément minimal de E.

Démonstration

 $(2) \implies (3)$: Soit P un prédicat sur E. On suppose par l'absurde :

$$(2) \text{ et } \neg (3)$$

$$\Leftrightarrow (2) \text{ et } \left(\forall x \in E, \left(\forall y \in E, x > y \implies P(y) \right) \implies P(x) \right) \text{ et } \left(\exists x \in E, \neg P(x) \right)$$

$$\Leftrightarrow (2) \text{ et } \left(\forall x \in E, \neg P(x) \implies \left(\exists y \in E, x > y \text{ et } \neg P(y) \right) \right) \text{ et } \left(\exists x \in E, \neg P(x) \right)$$

Soit $x \in E$ tel que $\neg P(x)$. On choisit $y \in E$ tel que x > y et $\neg P(y)$. De même, on peut encore choisir $z \in E$ tel que y > z et $\neg P(z)$. De par le principe de récurrence, on construit ainsi une suite strictement décroissante $(x_i) \in E^{\mathbb{N}}$, telle que pour tout $i \in \mathbb{N}, \neg P(x_i)$. Or on a (2), Absurde.

Démonstration

 $(3) \implies (1)$: Remarquons d'abord que :

$$(3) \implies (1)$$

$$\Leftrightarrow \left(\left[\left(\forall x \in E, \left(\forall y \in E, x > y \implies P(y) \right) \implies P(x) \right) \implies \left(\forall x \in E, P(x) \right) \right] \implies (1) \right)$$

$$\Leftrightarrow \left(\left[\left(\exists x \in E, \neg P(x) \right) \implies \left(\exists x \in E, \left(\forall y \in E, x > y \implies P(y) \right) \text{ et } \neg P(x) \right) \right] \implies (1) \right)$$

Soit $A \subset E$, tel que $A \neq \emptyset$. On note P le prédicat de E tel que $P(x) : \ll x \notin A \gg$. Nécessairement, il existe $x \in E$ tel que

$$x \in A$$
 donc $\neg P(x)$

On choisit alors $m \in A$ tel que :

$$\neg P(m) \text{ et } (\forall y \in E, y < m \implies P(y))$$

$$\Leftrightarrow m \in A \text{ et } (\forall y \in E, y < m \implies y \notin A)$$

m est alors l'élément minimal de A. donc \leq est un ordre bien fondé.

Théorème 6.48 - preuve par induction structurelle

Soit $X \subset E$ un ensemble défini de manière inductive par un ensemble de base B et un ensemble de constructeurs K. Soit P un prédicat sur E. si on a :

1. $\forall b \in B, \mathcal{P}(b)$

2.
$$\forall f: E^p \to E \in \mathcal{K}, \forall x_1, \dots, x_p \in X, \quad (\forall i \in [1, p], \mathcal{P}(x_i)) \implies (\mathcal{P}(f(x_1, \dots, x_p)))$$

Alors,

$$\forall x \in X, \mathcal{P}(X)$$

Démonstration

On définit la suite
$$(Y_n)$$
 par
$$\begin{cases} Y_0 = B \\ \forall n \in \mathbb{N}, Y_{n+1} = Y_n \cup \mathcal{K}(Y_n) \end{cases}$$

alors $X = \bigcup_{n \in \mathbb{N}} Y_n$. Pour tout $x \in X$

Définition temporaire - hauteur d'un élément d'ensemble inductif défini récursivement

on définit alors la hauteur de x par $h(x) = \min\{n \in \mathbb{N}, x \in Y_n\}$.

On suppose que :

1. $\forall b \in B, \mathcal{P}(b)$

2.
$$\forall f: E^p \to E \in \mathcal{K}, \forall x_1, \dots, x_p \in X, \quad \Big(\forall i \in [1, p], \mathcal{P}(x_i)\Big) \implies \Big(\mathcal{P}\big(f(x_1, \dots, x_p)\big)\Big)$$

Montrons par récurrence forte sur la hauteur n des éléments de X que $\forall x \in X, \mathcal{P}(X)$.

— Si n = 0:

Soit $x \in X$ tel que h(x) = 0, i.e. tel que $x \in Y_0 = B$. Alors d'après la propriété (1), $\mathcal{P}(x)$

— Soit $n \in \mathbb{N}$ fixé. On suppose que

$$\forall y \in X, h(y) \leq n \implies \mathcal{P}(y)$$

Soit $x \in X$ tel que h(x) = n + 1. Montrons que $\mathcal{P}(x)$ est encore vraie.

Par définition de la hauteur, $x \in Y_{n+1} = Y_n \cup \mathcal{K}(Y_n)$. De plus, $x \notin Y_n$ (h(x) = n + 1).

Alors, $x \in \mathcal{K}(Y_n)$.

Soit donc $f: E^p \to E \in \mathcal{K}$ et $y_1, \ldots, y_p \in Y_n$ tels que $x = f(y_1, \ldots, y_p)$.

Donc $P(y_i)$ est vraie par hypothèse de récurrence $(\forall i \in [1, p], h(y_i) \le n)$.

D'après la proposition (2), on a donc $\mathcal{P}(x)$.

— Ainsi, par récurrence forte sur n,

 $\forall n \in \mathbb{N}, \forall x \in X \text{ de hauteur } n, \mathcal{P}(x)$