

obstruction 1. ? If we move in jth-row

col will change [0, M-1]

observation d.: If we wove in jth-col row will change [0, N-1]

Quaiven maj [N] [m]. Print row-wise sum.

	0	ſ	2	3	+
D	Ч	3	1	Ŧ	
1	2	S	8	6	_
2	9	1	3	Ч	

void print Sum (aux, N, M) {

for [i=0; i < N; i+t) {

 Sum = 0

 jor [j=0; j < m; j+t) {

 Sum += arr(i][j]

 // print (Sum)
}

Print column-wise Sum.

To-do J.

Q2) Civen arr[N][N]. Print Diagonals. _____ from I to r

T. C-O(N), S.C-O(1)

j=0, j=0	, , , (
while (i andle	12117
print (arr [i]	[1];
1++	
أ اد	

	0	1	2	3
0				0,3.
1			1,2	
2		길		
3	3,0			

T. C- O(N), S. C-> O(1)

Qi Given a mat [N] [M]. Print all diagonale from R to L.

diagonals starting from 0th row or M-1th column.

0,3	
1, 2	
2,1	
3,0	
i	
4, -1 7 stop.	

8 C.	
1,4.	
1	
2,3	
d	
3,2	
	P
4,7	Sjott.
	7

arr [4] [5].

	Ф	ſ	2	3	Υ
0	5	7	2	2	6
1	M	9	26	21	13
2		-2	3	11	17
	27	37	47	50	60
3	2.1	31			

Final obe. for every s.p., print diagonal from l tor.

pscudo-code-

void print All Diagonals (are, N, M) f

// print all Diagonals starting from oth row

m-1

1/ print all Diagonals Storting from last col.

T.C- O(N+m), S.C-0(1)

we are touching all the Telements once.

Qi Civen mat [N] [N]. Calculate the transpose of the given matrix.

[S.C. o(1)]

Note - take transpose in given matrix only.

rowd - coto
grow1 - (0)1
row2→ col2
rou3 -> co13
rouy - coly

Ð	1	2	3	4	
<u></u>	6	17	16	21	
2	7	12	77	22	
3	8	13	18	23	
4	9	14	19	24	
Š	(0	Ŋ	20	25	,
	2 3 4	1 <u>6</u> 2 7 3 8 4 9	1 6 11 2 7 12 3 8 13 4 9 14	1 <u>6</u> 11 16 2 T 12 17 3 8 13 18 4 9 14 19	1 6 11 16 21 2 7 12 17 22 3 8 13 18 23 4 9 14 19 24

ides: swap elements of upper half with lower half

Noid take Transpose (
$$aux$$
, N) ξ

for $(i = 0; i < N; i+t)$ ξ

for $(j = i+1; j < N; j+t)$ ξ

[Swap $arr(i)(j)$ with $arr[j](i)$
 $temp = arr(i)(j)$
 $arr(i)(j) = arr(j)(i)$
 $arr(j)(i) = temp$

T.C → O(N2) S.C → O(1)

Noid take Transpose (out, N)
$$\leq$$

for (i = 0; i < N; i+t) \leq

for (j = 0; j < N; j+t) \leq

for [j = 0; j < N; j+t) \leq

femp = orr(i)(j)

arr(i)(j) = arr(j)(i)

arr(j)(i) = temp

arr[o][o]
$$\longrightarrow$$
 arr[o][o]

[arr [o][i] \longrightarrow arr[o][i]

arr [o][i] \longrightarrow arr[o][i]

arr [o][2] \longrightarrow arr [2][o]

". Matrix is going to remain as it is.

Mow quite is simplified.

Qui Given mat [N][N]. Rotate matrix by 90° in clockwise direction. \{ S.C. > O(1) }

	0	١	2	3	4	
G.	1	2	3	Ч	2	
٧	6	٦	8	9	10	
2	11	12	13	14	15	
3	[6	17	18	19	20	
٩	21	12	23	24	25	
		.——				1

oth row - 4th col

1st row - 3rd col

2m row - 2nd col

3rd row - 1st col

4th row - 0th col

	b	1	2	3	y
0	21	18	/1	6	þ
1	22	17	12	7	2
2	23	18	13	8	3
3	24	19	14	9	4
4	25	20	ાડ	10	5
-					

1 transpoce.

	ø	1	2	3	4
0	1	6	1(16	21
,	2	7	12	17	22
2	3	8	13	18	23
		<u> </u>		19	24
3	4	9	14	۱۲	29
y l	5	10	15	2.	25
٦.					

reverse otherw n 1st tow reverse 2nd tow reverse 3nd now reverse 4th row

	L 0	1	2	2	4
0	اد	16	11	6	1
1	22	17	2	エ	2
2	23	18	13	8	3
- 3	24	19	14	9	4
ч	25	20	12	ID	7

4			2 M
1	6	11	16/21
10	1	2	34 4 7
(

[Reverse an array]]

		0	1	٤	3	4		
) h *	G	t	2	3	Ч	2		
for 360°	٧	6	٦	8	9	व		(0
	2)1	12	13	14	15		(R)
	3	16	17	18	19	20		
	٦	21	12	23	24	25		
							1	

Remain sami

// for Rectongular Matrix. // We have to take extra Lpace. (XS) (0 & 5x2} TICT O(N+M), SICTO(NAM) Extra Todo - Print Diagonals from 1 to a N(N+1) total us of subarra leyth of every subarray . M.

T. (-, O (N2 x N)

- Bliefing Window + Sproal Matrix? - next session.