Answers

Chapter 1

Review of Prerequisite Skills, pp. 2-3

- **1. a.** −3

- **b.** -2 **d.** -4 **f.** $-\frac{1}{2}$
- **2. a.** y = 4x 2
 - **b.** y = -2x + 5
 - **c.** $y = \frac{6}{5}(x+1) + 6$
 - **d.** x + y 2 = 0
 - **e.** x = -3
 - **f.** y = 5
- **3.** a. −1
- **c.** −9 **d.** 144
 - **b.** 0

- **c.** 9 **d.** $\sqrt{6}$
- 6. a. $-\frac{1}{2}$
- **c.** 5
- **e.** 10^6
- **d.** 1 **7. a.** $x^2 - 4x - 12$
 - **b.** $15 + 17x 4x^2$
 - **c.** $-x^2 7x$
 - **d.** $-x^2 + x + 7$
 - **e.** $a^3 + 6a^2 + 12a + 8$
 - **f.** $729a^3 1215a^2 + 675a 125$
- **8. a.** x(x+1)(x-1)
 - **b.** (x + 3)(x 2)
 - c. (2x-3)(x-2)
 - **d.** x(x + 1)(x + 1)
 - **e.** $(3x 4)(9x^2 + 12x + 16)$
 - **f.** (x-1)(2x-3)(x+2)
- **9. a.** $\{x \in \mathbb{R} \mid x \ge -5\}$
 - **b.** $\{x \in \mathbb{R}\}$
 - **c.** $\{x \in \mathbb{R} | x \neq 1\}$
 - **d.** $\{x \in \mathbb{R} \mid x \neq 0\}$
 - **e.** $\left\{ x \in \mathbb{R} \, | \, x \neq -\frac{1}{2}, \, 3 \right\}$
- **f.** $\{x \in \mathbb{R} \mid x \neq -5, -2, 1\}$
- **10. a.** 20.1 m/s **b.** 10.3 m/s
- **11. a.** -20 L/min
 - **b.** about -13.33 L/min
 - **c.** The volume of water in the hot tub is always decreasing during that time period, a negative change.

12. a. b.

Section 1.1, p. 9

c. −8

- 1. a. $2\sqrt{3} + 4$
 - **b.** $\sqrt{3} \sqrt{2}$
- **d.** $3\sqrt{3} \sqrt{2}$ **e.** $\sqrt{2} + \sqrt{5}$
- 2. a. $\frac{\sqrt{5} \sqrt{2}}{2}$ c. $\frac{\sqrt{2} + \sqrt{3}}{2}$ c. $\frac{4 + \sqrt{6}}{2}$

- 3. a. $\sqrt{5} + \sqrt{2}$ d. $4 2\sqrt{5}$
- **b.** $\sqrt{6} 3$ **d.** $\frac{3\sqrt{10} 2}{4}$

- **b.** $10 3\sqrt{10}$ **e.** $\frac{11\sqrt{6} 16}{47}$ **c.** $5 2\sqrt{6}$ **f.** $\frac{35 12\sqrt{6}}{19}$
- 4. a. $\frac{1}{\sqrt{5}+1}$

 - c. $\frac{1}{12 5\sqrt{5}}$
- **5. a.** $8\sqrt{10} + 24$
 - **b.** $8\sqrt{10} + 24$
 - c. The expressions are equivalent. The radicals in the denominator of part a. have been simplified in part b.
- **6. a.** $\sqrt{6} + 2$
 - **b.** $\frac{9\sqrt{2} + 2\sqrt{3}}{25}$
 - **c.** $2\sqrt{2} + \sqrt{6}$
 - **d.** $\frac{12 + 5\sqrt{6}}{2}$

- **e.** $-\frac{12\sqrt{15} + 15\sqrt{10}}{2}$
- 7. **a.** $\frac{1}{\sqrt{a}+2}$
 - **b.** $\frac{1}{\sqrt{x+4}+2}$
 - c. $\frac{1}{\sqrt{x+h} + \sqrt{x}}$

Section 1.2, pp. 18-21

- **1. a.** 3 **b.** $-\frac{5}{3}$ **c.** $-\frac{1}{3}$
- 2. a. $-\frac{1}{3}$ b. $-\frac{7}{13}$
- **3. a.** 7x 17y 40 = 0

c.
$$3x - 5y - 15 = 0$$

d.
$$x = 5$$

- **a.** $75 + 15h + h^2$
 - **b.** $108 + 54h + 12h^2 + h^3$
 - **c.** $-\frac{1}{1+h}$
 - **d.** 6 + 3h
- - **b.** $\frac{h + 5}{\sqrt{h^2 + 5h + 4} + 2}$
- **c.** $\frac{1}{\sqrt{5+h}+\sqrt{5}}$ **6. a.** 6+3h
- - **b.** $3 + 3h + h^2$

7. a.

P	Q	Slope of Line PQ
(2, 8)	(3, 27)	19
(2, 8)	(2.5, 15.625)	15.25
(2, 8)	(2.1, 9.261)	12.61
(2, 8)	(2.01, 8.120 601)	12.0601
(2, 8)	(1, 1)	7
(2, 8)	(1.5, 3.375)	9.25
(2, 8)	(1.9, 6.859)	11.41
(2, 8)	(1.99, 7.880 599)	11.9401

- **b.** 12
- **c.** $12 + 6h + h^2$
- **d.** 12
- e. They are the same.

- 9. **a.** $\frac{1}{2}$
- **b.** $\frac{1}{4}$ **c.** $\frac{5}{6}$ **b.** $-\frac{1}{2}$ **c.** $-\frac{1}{25}$

- **11. a.** 1

- **c.** 9

12.

- $y = \sqrt{25 x^2} \rightarrow \text{Semi-circle}$ centre (0,0), rad $5, y \ge 0$ *OA* is a radius. The slope of *OA* is $\frac{4}{3}$. The slope of tangent is $-\frac{3}{4}$.
- **13.** Take values of x close to the point, then determine $\frac{\Delta y}{\Delta x}$.

14.

Since the tangent is horizontal, the slope is 0.

- **15.** 3x y 8 = 0
- **16.** 3x + y 8 = 0
- **17. a.** (3, -2)
 - **b.** (5, 6)
 - **c.** y = 4x 14
 - **d.** y = 2x 8
 - **e.** y = 6x 24
- 18. a. undefined

b. 0

c. about -2.5

d. about 1

e. about -

f. no tangent at point P

19.
$$-\frac{5}{4}$$

20. 500 papers/year

22.
$$\left(-2, \frac{28}{3}\right), \left(-1, \frac{26}{3}\right), \left(1, -\frac{26}{3}\right), \left(2, -\frac{28}{3}\right)$$

23. $y = x^2$ and $y = \frac{1}{2} - x^2$

23.
$$y = x^2 \text{ and } y = \frac{1}{2} - x^2$$

 $x^2 = \frac{1}{2} - x^2$

$$x^2 = \frac{1}{4}$$

$$x = \frac{1}{2}$$
 or
$$x = -\frac{1}{2}$$

The points of intersection are

$$P\left(\frac{1}{2}, \frac{1}{4}\right)$$
 and $Q\left(-\frac{1}{2}, \frac{1}{4}\right)$.

Tangent to y = x

$$m = \lim_{h \to 0} \frac{(a+h)^2 - a^2}{h}$$
$$= \lim_{h \to 0} \frac{2ah + h^2}{h}$$
$$= 2a$$

The slope of the tangent at $a = \frac{1}{2}$ is $1 = m_p$ and at $a = -\frac{1}{2}$ is $-1 = m_q$. Tangents to $y = \frac{1}{2} - x^2$:

Tangents to
$$y = \frac{1}{2} - x^2$$
:
$$m = \lim_{h \to 0} \frac{\left[\frac{1}{2} - (a+h)^2\right] - \left[\frac{1}{2} - a^2\right]}{h}$$

$$= \lim_{h \to 0} \frac{-2ah - h^2}{h}$$

$$= -2a$$

The slope of the tangents at $a = \frac{1}{2}$ is $-1 = M_P$ and at $a = -\frac{1}{2}$ is $1 = M_q$; $m_p M_P = -1$ and $m_a M_a = -1$.

Therefore, the tangents are perpendicular at the points of intersection.

24.
$$y = -11x + 24$$

25. a.
$$8a + 5$$

b.
$$(0, -2)$$

c.
$$(-5, 73)$$

Section 1.3, pp. 29-31

1. 0 s or 4 s

a. Slope of the secant between the points (2, s(2)) and (9, s(9))

> **b.** Slope of the tangent at the point (6, s(6))

Slope of the tangent to the function with equation $y = \sqrt{x}$ at the point (4, 2)

a. *A* and *B*

b. greater; the secant line through these two points is steeper than the tangent line at B.

5. Speed is represented only by a number, not a direction.

Yes, velocity needs to be described by a number and a direction. Only the speed of the school bus was given, not the direction, so it is not correct to use the word "velocity."

7. a. first second = -5 m/s, third second = -25 m/s, eighth second = -75 m/s

b. -55 m/s

c. -20 m/s

8. a. i. 72 km/h ii. 64.8 km/h iii. 64.08 km/h

b. 64 km/h

c. 64 km/h

9. a. 15 terms

b. 16 terms/h

10. a. $-\frac{1}{3}$ mg/h

b. Amount of medicine in 1 mL of blood being dissipated throughout

11. $\frac{1}{50}$ s/m

12. $-\frac{12}{5}$ °C/km

13. 2 s; 0 m/s

14. a. \$4800

b. \$80 per ball

c. 0 < x < 80

15. a. 6

b. -1

c. $\frac{1}{10}$

16. \$1 162 250/year

a. 75 m

b. 30 m/s

c. 60 m/s

d. 14 s

18. The coordinates of the point are $\left(a, \frac{1}{a}\right)$.

The slope of the tangent is $-\frac{1}{a^2}$.

The equation of the tangent is

$$y - \frac{1}{a} = -\frac{1}{a^2}(x - a)$$
, or $y = -\frac{1}{a^2}x + \frac{2}{a}$. The intercepts are

 $\left(0,\frac{2}{a}\right)$ and $\left(-2a,0\right)$. The tangent line and the axes form a right triangle with legs of length $\frac{2}{a}$ and 2a. The area of the

triangle is $\frac{1}{2} \left(\frac{2}{a} \right) (2a) = 2$.

19. C(x) = F + V(x)C(x+h) = F + V(x+h)

Rate of change of cost is

$$\lim_{h \to 0} \frac{C(x+h) - C(x)}{h}$$

$$= \lim_{h \to 0} \frac{V(x+h) - V(x)}{h},$$
which is independent of F – (fixed

costs)

20. $200\pi \text{ m}^2/\text{m}$

21. Cube of dimensions x by x by x has volume $V = x^3$. Surface area is $6x^2$. $V'(x) = 3x^2 = \frac{1}{2}$ surface area.

22. a. 80π cm²/unit of time **b.** -100π cm³/unit of time

Mid-Chapter Review, pp. 32-33

1. a. 3

c. 61

b. 37

2. a. $\frac{6\sqrt{3} + \sqrt{6}}{3}$

b. $\frac{6+4\sqrt{3}}{3}$

c. $-\frac{5(\sqrt{7}+4)}{9}$

d. $-2(3+2\sqrt{3})$

e.
$$\frac{10\sqrt{3}-15}{2}$$

f.
$$-\frac{3\sqrt{2}(2\sqrt{3}+5)}{13}$$

3. a.
$$\frac{2}{5\sqrt{2}}$$

b.
$$\frac{3}{\sqrt{3}(6+\sqrt{2})}$$

c.
$$-\frac{9}{5(\sqrt{7}+4)}$$

d.
$$-\frac{13}{3\sqrt{2}(2\sqrt{3}+5)}$$

e.
$$-\frac{1}{(\sqrt{3} + \sqrt{7})}$$

f.
$$\frac{1}{(2\sqrt{3} - \sqrt{7})}$$

e.
$$-\frac{1}{(\sqrt{3} + \sqrt{7})}$$
f. $\frac{1}{(2\sqrt{3} - \sqrt{7})}$
4. a. $\frac{2}{3}x + y - 6 = 0$

b.
$$x - y + 5 = 0$$

c.
$$4x - y - 2 = 0$$

d.
$$x - 5y - 9 = 0$$

Р	Q	Slope of Line PQ
(-1, 1)	(-2, 6)	-5
(-1, 1)	(-1.5, 3.25)	-4.5
(-1, 1)	(-1.1, 1.41)	-4.1
(-1, 1)	(-1.01, 1.0401)	-4.01
(-1, 1)	(-1.001, 1.004 001)	-4.001

Р	Q	Slope of Line PQ
(-1, 1)	(0, -2)	-3
(-1, 1)	(-0.5, -0.75)	-3.5
(-1, 1)	(-0.9, 0.61)	-3.9
(-1, 1)	(-0.99, 0.960 1)	-3.99
(-1, 1)	(-0.999, 0.996 001)	-3.999

- **b.** −4
- c. h 4
- **d.** −4
- e. The answers are equal.

c.
$$-\frac{1}{4}$$

d.
$$\frac{1}{6}$$

- **8. a. i.** 36 km/h
 - ii. 30.6 km/h
 - iii. 30.06 km/h
 - **b.** velocity of car appears to approach 30 km/h
 - **c.** (6h + 30) km/h
 - **d.** 30 km/h
- **9. a.** −4
 - **b.** −12
- **10. a.** −2000 L/min
 - **b.** $-1000 \, \text{L/min}$
- **11. a.** -9x + y + 19 = 0
 - **b.** 8x + y + 15 = 0
 - **c.** 4x + y + 8 = 0
 - **d.** -2x + y + 2 = 0
- **12. a.** -3x + 4y 25 = 0
 - **b.** 3x + 4y + 5 = 0

Section 1.4, pp. 37-39

- 1. a. $\frac{72}{99}$
- **b.** π
- 2. Evaluate the function for values of the independent variable that get progressively closer to the given value of the independent variable.
- 3. a. A right-sided limit is the value that a function gets close to as the values of the independent variable decrease and get close to a given value.
 - **b.** A left-sided limit is the value that a function gets close to as the values of the independent variable increase and get close to a given value.
 - c. A (two-sided) limit is the value that a function gets close to as the values of the independent variable get close to a given value, regardless of whether the values increase or decrease toward the given value.
- **4. a.** −5
- **d.** -8
- **b.** 10 **c.** 100
- **e.** 4 **f.** 8
- 5. - 1
 - **a.** 0
- c. -1**d.** 2
- **b.** 2 **7. a.** 2
 - **b.** 1
- c. does not exist
- 8. **a.** 8
 - **b.** 2
 - **c.** 2

9. 5

- **10. a.** 0
- **b.** 0
- **c.** 5
- **f.** does not exist; substitution causes division by zero, and there is no way to remove the factor from the denominator.
- **11. a.** does not exist **c.** 2
 - **b.** 2
- d. does not exist
- **12.** Answers may vary. For example:

c.

13.
$$m = -3; b = 1$$

14.
$$a = 3, b = 2, c = 0$$

- **b.** 6; 4
- **c.** 2000
- d. about 8.49 years

Section 1.5, pp. 45-47

- 1. $\lim_{x\to 2} (3+x)$ and $\lim_{x\to 2} (x+3)$ have the same value, but $\lim_{x\to 2} 3+x$ does not. Since there are no brackets around the expression, the limit only applies to 3, and there is no value for the last term, x.
- 2. Factor the numerator and denominator. Cancel any common factors. Substitute the given value of x.
- 3. Yes, if the two one-sided limits have the same value, then the value of the limit is equal to the value of the one-sided limits. If the one-sided limits do not have the same value, then the limit does not exist.
- **4. a.** 1
- **d.** $5\pi^3$ **e.** 2
- **b.** 1
- **f.** $\sqrt{3}$
- **5. a.** 2
- **6.** Since substituting t = 1 does not make the denominator 0, direct substitution works. $\frac{1-1-5}{6-1} = \frac{-5}{5}$ = -1
- **7. a.** 4
- **b.** 1

- **c.** 27 **f.** $-\frac{1}{\sqrt{7}}$

8. a.
$$\frac{1}{12}$$
 d. $\frac{1}{2}$
b. -27 e. $\frac{1}{12}$
c. $\frac{1}{6}$ f. $\frac{1}{12}$

b.
$$-27$$
 e. $\frac{1}{12}$

c.
$$\frac{1}{6}$$
 f. $\frac{1}{12}$

- - **b.** 0
 - **c.** -1 **f.** $\frac{1}{32}$
- 10. a. does not exist

b. does not exist

c. does not exist

d. exists

11. a.

Δτ	Т	V	Δν
	-40	19.1482	
20			1.6426
20	-20	20.7908	
20	0	22.4334	1.6426
20	0	22.4334	1 6426
	20	24.0760	
20	40	25.7186	1.6426
20	40	25.7186	1.6426
20	60	27.3612	1.0420
20			1.6426
	80	29.0038	

 ΔV is constant; therefore, T and V form a linear relationship.

b.
$$V = 0.082 \ 13T + 22.4334$$

$$\mathbf{c.} \ T = \frac{V - 22.4334}{0.082 \ 13}$$

d.
$$\lim_{v \to 0^+} T = \frac{0 - 22.4334}{0.082 \ 13}$$

= -273.145

e.

12. $\lim_{x \to 5} \frac{x^2 - 4}{f(x)}$ $= \frac{\lim_{x \to 5} (x^2 - 4)}{\lim_{x \to 5} f(x)}$ = 7

17. does not exist

b.
$$0$$
b. $\frac{1}{2}$

16. -2

c.
$$x = 0$$

4. a.
$$x = 3$$
 b. $x = 0$

c.
$$x =$$

d.
$$x = 3$$
 and $x = -3$

e.
$$x = -3$$
 and $x = 2$

f.
$$x = 3$$

- **5. a.** continuous for all real numbers
 - **b.** continuous for all real numbers
 - c. continuous for all real numbers, except 0 and 5
 - d. continuous for all real numbers greater than or equal to -2
 - e. continuous for all real numbers
 - f. continuous for all real numbers
- **6.** g(x) is a linear function (a polynomial), and so is continuous everywhere, including x = 2.

Yes, the function is continuous everywhere.

Section 1.6, pp. 51-53

1. Anywhere that you can see breaks or jumps is a place where the function is not continuous.

2

0

- 2. On a given domain, you can trace the graph of the function without lifting your pencil.
- 3. point discontinuity

jump discontinuity

infinite discontinuity

8.

The function is discontinuous at x = 0.

Discontinuities at 0, 100, 200, and 500

- **10.** no
- **11.** Discontinuous at x = 2
- **12.** k = 16
- 13. a.

- **b. i.** −1
 - **ii.** 1
 - iii. does not exist
- **c.** f is not continuous since $\lim f(x)$ does not exist.
- **14. a.** 2
 - **b.** 4

c.
$$\lim_{x \to 3^{-}} f(x) = 4 = \lim_{x \to 3^{+}} f(x)$$

Thus, $\lim_{x \to 3} f(x) = 4$. But, $f(3) = 2$.

Hence, f is not continuous at x = 3and also not continuous on -3 < x < 8.

15. (1)
$$A = B - 3$$

(1)
$$A - B - S$$

(2) $4B - A \neq 6$ (if $B > 1$, then $A > -2$: if $B < 1$, then $A < -2$)

16.
$$a = -1, b = 6$$

17. a.
$$\lim_{\substack{x \to 1^- \\ \lim_{x \to 1^+} g(x) = 1}} g(x) = -1$$
 $\lim_{\substack{x \to 1^+ \\ y \to 1}} g(x) = 1$

 $\lim g(x)$ does not exist.

b.

g(x) is discontinuous at x = 1.

Review Exercise, pp. 56-59

c.
$$2x - y - 5 = 0$$

c.
$$-\frac{1}{27}$$

b.
$$\frac{1}{2}$$

d.
$$-\frac{5}{4}$$

4. a. 1st second =
$$-5 \text{ m/s}$$
,
2nd second = -15 m/s

b.
$$-40 \text{ m/s}$$

c.
$$-60 \text{ m/s}$$

b.
$$18 \times 10^4$$
 t per year

c.
$$15 \times 10^4$$
 t per year

c.
$$t = 3$$
 and $t = 4$

b. Answers may vary. For example:

9. a.

b.
$$x = -1$$
 and $x = 1$

10. not continuous at
$$x = -4$$

11. a.
$$x = 1$$
 and $x = -2$

b.
$$\lim_{x \to 1} f(x) = \frac{2}{3}$$
,

 $\lim_{x \to \infty} f(x)$ does not exist.

12. a.
$$\lim_{x \to a} f(x)$$
 does not exist.

b.
$$\lim_{x \to 0} g(x) = 0$$

c.
$$\lim_{x \to 4} h(x) = \frac{37}{7}$$

 $\lim h(x)$ does not exist.

X	1.9	1.99	1.999	2.001	2.01	2.1
$\frac{x-2}{x^2-x-2}$	0.344 83	0.334 45	0.333 44	0.333 22	0.332 23	0.322 58

$$\frac{1}{3}$$

b.

х	0.9	0.99	0.999	1.001	1.01	1.1
$\frac{x-1}{x^2-1}$	0.526 32	0.502 51	0.500 25	0.499 75	0.497 51	0.476 19

1 2

14.

Х	-0.1	-0.01	-0.001	0.001	0.01	0.1
$\sqrt{x+3}-\sqrt{3}$	0.291 12	0.288 92	0.2887	0.288 65	0.288 43	0.286 31
X						

 $\frac{1}{2\sqrt{3}}$; This agrees well with the values in the table.

15. a.

х	2.1	2.01	2.001	2.0001
f(x)	0.248 46	0.249 84	0.249 98	0.25

$$\lim_{x \to 2} f(x) \doteq 0.25$$

b.
$$\lim_{x \to 2} f(x) = 0.25$$

16. a. 10 **b.**
$$\frac{1}{4}$$
 c. $-\frac{1}{4}$

$$\frac{1}{\sqrt{5}}$$
 e. $-\frac{1}{8}$

d.
$$\frac{1}{3}$$

f.
$$-\frac{1}{4}$$

18. a. The function is not defined for
$$x < 3$$
, so there is no left-side limit.

b. Even after dividing out common factors from numerator and denominator, there is a factor of
$$x - 2$$
 in the denominator; the graph has a vertical asymptote at $x = 2$.

c.
$$\lim_{x \to 1^{-}} f(x) = -5 \neq \lim_{x \to 1^{+}} f(x) = 2$$

d. The function has a vertical asymptote at
$$x = 2$$
.

e.
$$x \to 0^- |x| = -x$$

$$\lim_{x \to 0^-} \frac{|x|}{x} = -1$$

$$\lim_{x \to 0^+} \frac{|x|}{x} = 1$$

$$\lim_{x \to 0^{+}} \frac{|x|}{x} \neq \lim_{x \to 0^{-}} \frac{|x|}{x}$$

f.	$\lim_{x \to -1^+} f(x) = -1$
	$\lim_{x \to -1^{-}} f(x) = 5$
	$\lim_{x \to -1^+} f(x) \neq \lim_{x \to -1^-} f(x)$
	Therefore, $\lim_{x\to -1} f(x)$ does not exist
	$x \rightarrow -1$

19. a.
$$y = 7$$

b.
$$y = -5x - 5$$

$$\mathbf{c.} \ y = 18x + 9$$

$$\mathbf{d.}\,y = -216x + 486$$

Chapter 1 Test, p. 60

1.
$$\lim_{x \to 1^+} \frac{1}{x - 1} = +\infty \neq \lim_{x \to 1^-} \frac{1}{x - 1} = -\infty$$

3. a.
$$\lim_{x\to 1} f(x)$$
 does not exist.

d.
$$x = 1$$
 and $x = 2$

$$\frac{\sqrt{16+h}-4}{h}$$

d.
$$-\frac{3}{4}$$

b.
$$\frac{7}{5}$$

e.
$$\frac{1}{6}$$

f.
$$\frac{1}{12}$$

8. a.
$$a = 1, b = -\frac{18}{5}$$

Chapter 2

Review of Prerequisite Skills, d. $\frac{1}{a^2b^7}$ e. $48e^{18}$ f. $-\frac{b}{2a^6}$ b. $4x^4$ c. $-\frac{3}{5}$ pp. 62-63

1. a.
$$a^8$$

d.
$$\frac{1}{2i7}$$

$$a^2b^7$$
 e. $48e^{18}$

$$\frac{b}{2a^6}$$

2. a.
$$x^{\frac{7}{6}}$$

3. a.
$$-\frac{3}{2}$$

4. a.
$$x - 6y - 21 = 0$$

b.
$$3x - 2y - 4 = 0$$

c.
$$4x + 3y - 7 = 0$$

5. a.
$$2x^2 - 5xy - 3y^2$$

b.
$$x^3 - 5x^2 + 10x - 8$$

c. $12x^2 + 36x - 21$

$$c 12x^2 + 36x - 21$$

d.
$$-13x + 42y$$

e.
$$29x^2 - 2xy + 10y^2$$

$$\mathbf{f.} \ \ -13x^3 - 12x^2y + 4xy^2$$

6. a.
$$\frac{15}{2}x$$
; $x \neq 0, -2$

b.
$$\frac{y-5}{4y^2(y+2)}$$
; $y \neq -2, 0, 5$

c.
$$\frac{8}{9}$$
; $h \neq -k$

d.
$$\frac{2}{(x+y)^2}$$
; $x \neq -y, +y$

e.
$$\frac{11x^2 - 8x + 7}{2x(x - 1)}; x \neq 0, 1$$
f.
$$\frac{4x + 7}{(x + 3)(x - 2)}; x \neq -3, 2$$

f.
$$\frac{4x+7}{(x+3)(x-2)}$$
; $x \neq -3, 2$

7. **a.**
$$(2k+3)(2k-3)$$

b.
$$(x-4)(x+8)$$

c.
$$(a+1)(3a-7)$$

d.
$$(x^2 + 1)(x + 1)(x - 1)$$

e.
$$(x - y)(x^2 + xy + y^2)$$

f.
$$(r+1)(r-1)(r+2)(r-2)$$

8. a.
$$(a-b)(a^2+ab+b^2)$$

b.
$$(a - b)(a^4 + a^3b + a^2b^2 + ab^3 + b^4)$$

c.
$$(a - b)(a^6 + a^5b + a^4b^2 + a^3b^3 + a^2b^4 + ab^5 + b^6)$$

d.
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + a^2b^{n-3} + ab^{n-2} + b^{n-1})$$

c.
$$\frac{53}{8}$$

10. a.
$$\frac{3\sqrt{2}}{2}$$

b.
$$\frac{4\sqrt{3} - \sqrt{6}}{3}$$

c.
$$-\frac{30 + 17\sqrt{2}}{23}$$

d. $-\frac{11 - 4\sqrt{6}}{5}$

d.
$$-\frac{11-4\sqrt{6}}{5}$$

11. a.
$$3h + 10$$
; expression can be used to determine the slope of the secant line between $(2, 8)$ and $(2 + h, f(2 + h))$

b. For
$$h = 0.01$$
: 10.03

Section 2.1, pp. 73-75

1. **a.**
$$\{x \in \mathbb{R} \mid x \neq -2\}$$

b.
$$\{x \in \mathbb{R} \mid x \neq 2\}$$

c.
$$\{x \in \mathbf{R}\}$$

d.
$$\{x \in \mathbb{R} | x \neq 1\}$$

e.
$$\{x \in \mathbb{R}\}$$

f.
$$\{x \in \mathbb{R} \mid x > 2\}$$

3. Answers may vary. For example:

4. a.
$$5a + 5h - 2$$
; $5h$

b.
$$a^2 + 2ah + h^2 + 3a + 3h - 1$$
; $2ah + h^2 + 3h$

c.
$$a^3 + 3a^2h + 3ah^2 + h^3 - 4a - 4h + 1$$
;

$$3a^2h + 3ah^2 + h^3 - 4h$$

d.
$$a^2 + 2ah + h^2 + a + h - 6$$
; $2ah + h^2 + h$

e.
$$-7a - 7h + 4; -7h$$

f.
$$4 - 2a - 2h - a^2 - 2ah - h^2$$
; $-2h - h^2 - 2ah$

c.
$$\frac{1}{2}$$

a.
$$-5$$
c. $18x^2 - 7$

b.
$$4x +$$

d.
$$\frac{3}{2\sqrt{3x+2}}$$

$$\frac{1}{1}$$
 c. 6.

b.
$$4x + 4$$
 d. $\frac{3}{2\sqrt{3x + 2}}$
7. a. -7 **b.** $-\frac{2}{(x - 1)^2}$ **c.** $6x$
8. $f'(0) = -4; f'(1) = 0; f'(2) = 4$

