Evaluación ML I

Ejercicio 2 (SVM)

$In maculada\ Perea\ Fern\'andez$

junio 2017

EJERCICIO 2

- 1. Construya un clasificador SVM con kernel radial para la base de datos **Glass** del paquete **mlbench**, usando validación cruzada con 10 pliegues y parámetros C=0.8 y $\gamma=0.25$.
- 2. Determine la tasa de clasificación correcta (accuracy) global y en cada pliegue.
- 3. Realice el ajuste de parámetros para obtener los valores más adecuados de C y γ dentro de los siguientes conjuntos de valores:

$$C \in \{2^{-5}, 2^{-3}, \dots, 2^{5}\}\$$
 $\gamma \in \{2^{-7}, 2^{-5}, \dots, 2^{1}, 2^{3}\}\$

4. Utilice el mejor modelo obtenido del ajuste de parámetros para clasificar las siguientes instancias:

RI	Na	Mg	Al	Si	K	Ca	Ba	Fe
1.49	13.45	4.05	1.21	73.18	0.37	7.98	0.2	0
1.52	13.74	3.87	1.29	71.97	0.25	8.02	0	0.13

5. Repita el apartado 3 utilizando validación cruzada con 15 pliegues dentro del procedimiento de ajuste de parámetros (Indicación: utilice la función tune.control).

Figure 1: Enunciado Ejercicio 2 (Evaluación MLI)

Carga de las librerías necesarias

```
if (!require('mlbench')) install.packages('mlbench'); library('mlbench')
if (!require('e1071')) install.packages('e1071'); library('e1071')
if (!require('caret')) install.packages('caret'); library('caret')
```

Establecimiento de la semilla

set.seed(123456789)

Carga, inspección y preparación de los datos

El conjunto de datos Glass consta de 214 observaciones y 10 variables:

- [,1] **RI**: refractive index
- [,2] **Na**: Sodium

```
• [,3] Mg: Magnesium
     [,4] Al: Aluminum
    [,5] Si: Silicon
  • [,6] K: Potassium
     [,7] Ca: Calcium
     [,8] Ba: Barium
    [.9] Fe: Iron
    [,10] Type: Type of glass (class attribute)
data(Glass)
dim(Glass)
## [1] 214 10
summary(Glass)
##
          RI
                           Na
                                            Mg
                                                             Al
##
    Min.
           :1.511
                     Min.
                             :10.73
                                      Min.
                                              :0.000
                                                       Min.
                                                               :0.290
##
    1st Qu.:1.517
                     1st Qu.:12.91
                                      1st Qu.:2.115
                                                       1st Qu.:1.190
##
    Median :1.518
                     Median :13.30
                                      Median :3.480
                                                       Median :1.360
##
    Mean
          :1.518
                     Mean
                            :13.41
                                      Mean
                                             :2.685
                                                       Mean
                                                              :1.445
                                      3rd Qu.:3.600
##
    3rd Qu.:1.519
                     3rd Qu.:13.82
                                                       3rd Qu.:1.630
           :1.534
##
    Max.
                     Max.
                            :17.38
                                      Max.
                                              :4.490
                                                       Max.
                                                               :3.500
##
          Si
                           K
                                             Ca
                                                                Ba
##
    Min.
           :69.81
                            :0.0000
                                              : 5.430
                                                                 :0.000
                     Min.
                                       Min.
                                                         Min.
##
    1st Qu.:72.28
                     1st Qu.:0.1225
                                       1st Qu.: 8.240
                                                         1st Qu.:0.000
##
    Median :72.79
                     Median : 0.5550
                                       Median: 8.600
                                                         Median : 0.000
    Mean
           :72.65
                            :0.4971
                                              : 8.957
                     Mean
                                       Mean
                                                         Mean
                                                                 :0.175
##
    3rd Qu.:73.09
                     3rd Qu.:0.6100
                                       3rd Qu.: 9.172
                                                         3rd Qu.:0.000
##
    Max.
           :75.41
                     Max.
                             :6.2100
                                              :16.190
                                                         Max.
                                       Max.
                                                                 :3.150
##
          Fe
                       Type
##
   Min.
           :0.00000
                       1:70
##
    1st Qu.:0.00000
                       2:76
    Median :0.00000
##
                       3:17
##
    Mean
           :0.05701
                       5:13
    3rd Qu.:0.10000
                       6: 9
##
   Max.
           :0.51000
                       7:29
str(Glass)
   'data.frame':
                     214 obs. of 10 variables:
##
    $ RI : num 1.52 1.52 1.52 1.52 1.52 ...
                 13.6 13.9 13.5 13.2 13.3 ...
    $ Na : num
                  4.49 3.6 3.55 3.69 3.62 3.61 3.6 3.61 3.58 3.6 ...
##
    $ Mg
         : num
##
    $ Al
          : num
                  1.1 1.36 1.54 1.29 1.24 1.62 1.14 1.05 1.37 1.36 ...
##
    $ Si
         : num
                 71.8 72.7 73 72.6 73.1 ...
    $ K
          : num
                  0.06 0.48 0.39 0.57 0.55 0.64 0.58 0.57 0.56 0.57 ...
                  8.75 7.83 7.78 8.22 8.07 8.07 8.17 8.24 8.3 8.4 ...
##
    $ Ca
         : num
    $ Ba
         : num
                 0 0 0 0 0 0 0 0 0 0 ...
         : num 0 0 0 0 0 0.26 0 0 0 0.11 ...
    $ Type: Factor w/ 6 levels "1","2","3","5",..: 1 1 1 1 1 1 1 1 1 1 ...
head(Glass)
```

Ca Ba

0 0.00

Fe Type

RΙ

Na

Mg

1 1.52101 13.64 4.49 1.10 71.78 0.06 8.75

Al

2 1.51761 13.89 3.60 1.36 72.73 0.48 7.83 0 0.00

Si

K

```
## 3 1.51618 13.53 3.55 1.54 72.99 0.39 7.78 0 0.00    1
## 4 1.51766 13.21 3.69 1.29 72.61 0.57 8.22 0 0.00     1
## 5 1.51742 13.27 3.62 1.24 73.08 0.55 8.07 0 0.00     1
## 6 1.51596 12.79 3.61 1.62 72.97 0.64 8.07 0 0.26     1

table(is.na(Glass))
##
## FALSE
## 2140
```

La variable objetivo es *Type* y consta de 6 clases (1, 2, 3, 5, 6 y 7). Todos los datos están completos, no hay valores perdidos.

1)

Construya un clasificador SVM con kernel radial para la base de datos Glass del paquete mlbench, usando validación cruzada con 10 pliegues y parámetros C=0.8 y gamma=0.25

```
# Fórmula
(model_1=svm(Type ~ .,
                                # Dataframe de datos
             data=Glass,
             kernel="radial", # Kernel radial
             scale=TRUE,
                                # Tipifica variables
             gamma=0.25,
                                # Gamma
             cost=0.8,
                                # Parámetro de regularización C
             cross=10))
                                # Validación cruzada con 10 folds
##
## Call:
  svm(formula = Type ~ ., data = Glass, kernel = "radial", gamma = 0.25,
       cost = 0.8, cross = 10, scale = TRUE)
##
##
##
## Parameters:
##
      SVM-Type: C-classification
                 radial
##
   SVM-Kernel:
##
                 0.8
          cost:
##
         gamma: 0.25
##
## Number of Support Vectors: 179
```

2)

Determine la tasa de clasificación correcta (accuracy) global y en cada pliegue

```
cat("Accuracy global (modelo 1): ", round(model_1$tot.accuracy, 3), "\n")
## Accuracy global (modelo 1): 70.093
cat("Accuracy para cada pliegue: \n", round(model_1$accuracies, 3))
## Accuracy para cada pliegue:
## 76.19 57.143 59.091 71.429 59.091 85.714 76.19 86.364 71.429 59.091
```

Realice el ajuste de parámetros para obtener los valores más adecuados de C y gamma dentro de los siguientes conjuntos de valores:

$$C \in \{2^{-5}, 2^{-3}, \ \dots, 2^5\} \qquad \qquad \gamma \in \{2^{-7}, 2^{-5}, \ \dots, 2^1, 2^3\}$$

Figure 2: valores C y gamma

Ajuste de los parámetros del kernel (gamma) y de regularización (C) con la función tune.svm

```
t1=tune.svm(Type ~ .,
            data=Glass,
            gamma=2^seq(from=-7,to=3, by=2),
            cost=2^seq(from=-5, to=5, by=2))
summary(t1)
##
## Parameter tuning of 'svm':
##
##
  - sampling method: 10-fold cross validation
##
## - best parameters:
##
    gamma cost
##
      0.5
##
## - best performance: 0.304329
##
## - Detailed performance results:
          gamma
##
                   cost
                            error dispersion
## 1 0.0078125 0.03125 0.6445887 0.08226880
     0.0312500 0.03125 0.6445887 0.08226880
## 3 0.1250000 0.03125 0.6445887 0.08226880
## 4 0.5000000 0.03125 0.6445887 0.08226880
     2.0000000 0.03125 0.6445887 0.08226880
## 5
## 6 8.0000000 0.03125 0.6445887 0.08226880
## 7 0.0078125 0.12500 0.6445887 0.08226880
## 8 0.0312500 0.12500 0.5333333 0.09701542
## 9 0.1250000 0.12500 0.4679654 0.07995843
## 10 0.5000000 0.12500 0.4904762 0.10811057
## 11 2.0000000 0.12500 0.5515152 0.09154704
## 12 8.0000000 0.12500 0.6445887 0.08226880
## 13 0.0078125
                0.50000 0.5283550 0.08587041
## 14 0.0312500 0.50000 0.4493506 0.08986783
## 15 0.1250000 0.50000 0.3274892 0.07843513
## 16 0.5000000 0.50000 0.3649351 0.10795155
## 17 2.0000000
                0.50000 0.4445887 0.10792262
## 18 8.0000000 0.50000 0.5419913 0.08575970
## 19 0.0078125 2.00000 0.4484848 0.06902164
## 20 0.0312500 2.00000 0.3367965 0.09926445
## 21 0.1250000 2.00000 0.3179654 0.10881250
## 22 0.5000000 2.00000 0.3463203 0.08321378
```

```
## 23 2.000000 2.00000 0.3792208 0.12150295
## 24 8.000000 2.00000 0.4811688 0.07059692
## 25 0.0078125 8.00000 0.3452381 0.11036485
## 26 0.0312500 8.00000 0.3086580 0.10270785
## 27 0.1250000 8.00000 0.3181818 0.10495294
## 28 0.5000000 8.00000 0.3043290 0.09714948
## 29 2.0000000 8.00000 0.3887446 0.14278497
## 30 8.000000 8.00000 0.3268398 0.12197417
## 32 0.0312500 32.00000 0.3177489 0.10776139
## 33 0.1250000 32.00000 0.3188312 0.10257523
## 35 2.000000 32.00000 0.3978355 0.13051308
## 36 8.000000 32.00000 0.4811688 0.07059692
```

Visualización del resultado del ajuste de parámetros

plot(t1)

Performance of `svm'

Modelo con los parámetros ajustados

(model_2=t1\$best.model)

```
##
## Call:
## best.svm(x = Type ~ ., data = Glass, gamma = 2^seq(from = -7,
## to = 3, by = 2), cost = 2^seq(from = -5, to = 5, by = 2))
##
```

```
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: radial
## cost: 8
## gamma: 0.5
##
## Number of Support Vectors: 165
Medida de rendimiento
cat("Tasa de clasificación incorrecta (modelo 2): ", round(t1$best.performance, 3), "\n")
## Tasa de clasificación incorrecta (modelo 2): 0.304
cat("Accuracy global (modelo 2): ", round(100*(1-t1$best.performance), 3), "\n")
```

Para el modelo 1 obtuvimos un accuracy de 70.093, mayor que el obtenido con el modelo 2, por tanto el nuevo modelo ajustando parámetros C y gamma es peor que el construido en el primer apartado.

4)

Utilice el mejor modelo obtenido del ajuste de parámetros para clasificar las siguientes instancias:

RI	Na	Mg	Al	Si	K	Ca	Ва	Fe
1.49	13.45	4.05	1.21	73.18	0.37	7.98	0.2	0
	13.74							

Figure 3: Valores instancia a predecir

Creación de las instancias

Accuracy global (modelo 2): 69.567

```
Predicción de la instancia 1

predict(model_1, instancia_1)

## 1

## 2

## Levels: 1 2 3 5 6 7

Predicción de la instancia 2

(predict(model_1, instancia_2))
```

1

```
## 2
## Levels: 1 2 3 5 6 7
```

Ambas instancias son clasificadas como pertenecientes a la clase "2" segun el modelo con parámetros ajustados modelo _2.

5)

Repita el apartado 3 utilizando validación cruzada con 15 pliegues dentro del procedimiento de ajuste de parámetros (Indicación: utilice la función tune.control)

```
#?tune.control
#?tune.svm
tc=tune.control(sampling="cross", # validacion cruzada
               cross=15,
                                   # 15 pliegues
                nrepeat=1,
                best.model=TRUE)
t2=tune.svm(Type ~ .,
            data=Glass,
            tunecontrol=tc,
            gamma=2^seq(from=-7,to=3, by=2),
            cost=2^seq(from=-5,to=5,by=2))
summary(t2)
##
## Parameter tuning of 'svm':
##
## - sampling method: 15-fold cross validation
##
## - best parameters:
##
   gamma cost
   0.125
##
##
## - best performance: 0.2803175
##
## - Detailed performance results:
##
          gamma
                    cost
                            error dispersion
## 1 0.0078125 0.03125 0.6555556 0.12689339
## 2 0.0312500 0.03125 0.6365079 0.15804387
## 3 0.1250000 0.03125 0.6365079 0.15804387
## 4 0.5000000 0.03125 0.6365079 0.15804387
## 5 2.0000000 0.03125 0.6412698 0.14743973
## 6 8.0000000 0.03125 0.6365079 0.15804387
## 7 0.0078125 0.12500 0.6555556 0.12689339
## 8 0.0312500 0.12500 0.5336508 0.15477987
## 9 0.1250000 0.12500 0.4720635 0.15424946
## 10 0.5000000 0.12500 0.4961905 0.13739206
## 11 2.0000000 0.12500 0.5714286 0.13274896
## 12 8.0000000 0.12500 0.6365079 0.15804387
```

13 0.0078125 0.50000 0.5434921 0.11097627 ## 14 0.0312500 0.50000 0.4396825 0.12463964

```
## 15 0.1250000 0.50000 0.3501587 0.12768486
## 16 0.5000000 0.50000 0.3600000 0.12643475
## 17 2.0000000 0.50000 0.4117460 0.09284173
## 18 8.0000000 0.50000 0.5380952 0.12384876
## 19 0.0078125 2.00000 0.4447619 0.13371907
## 20 0.0312500 2.00000 0.3457143 0.11806122
## 21 0.1250000 2.00000 0.3088889 0.13535717
## 22 0.5000000 2.00000 0.3171429 0.11796515
## 23 2.0000000 2.00000 0.3644444 0.10752188
## 24 8.0000000 2.00000 0.4634921 0.13246396
## 25 0.0078125 8.00000 0.3650794 0.12797375
## 26 0.0312500 8.00000 0.3088889 0.11176162
## 27 0.1250000 8.00000 0.3222222 0.11539522
## 28 0.5000000 8.00000 0.2939683 0.10132691
## 29 2.0000000 8.00000 0.3730159 0.10039873
## 30 8.0000000 8.00000 0.4634921 0.13246396
## 31 0.0078125 32.00000 0.3273016 0.12518165
## 32 0.0312500 32.00000 0.3177778 0.12887928
## 33 0.1250000 32.00000 0.2803175 0.11458106
## 34 0.5000000 32.00000 0.3076190 0.10788181
## 35 2.0000000 32.00000 0.3774603 0.10659295
## 36 8.0000000 32.00000 0.4634921 0.13246396
model 3=t2$best.model
cat("Tasa de clasificación incorrecta (modelo 3): ", round(t2$best.performance, 3), "\n")
## Tasa de clasificación incorrecta (modelo 3): 0.28
cat("Accuracy global (modelo 3): ", round(100*(1-t2$best.performance), 3), "\n")
## Accuracy global (modelo 3): 71.968
```

Comparativa

A continuación construiremos una tabla comparativa con el accuracy de los tres modelos obtenidos.

	Accuracy	Tasa clasificación incorrecta
modelo 1 (folds=10, C=0.8, gamma=0.25)	70.093	0.299
modelo 2 (folds= 10 , C= 8 , gamma= 0.5)	69.567	0.304
modelo 3 (folds=15, C=32, gamma=0.125)	71.968	0.280

El mejor modelo, que presenta mayor accuracy y por tanto menor tasa de clasificación incorrecta, es el último modelo construido con parámetros ajustados usando validación cruzada con 15 pliegues $modelo_3$.