ÁLGEBRA II-ÁLGEBRA – RECUPERATORIO SEGUNDO PARCIAL 2018

NOMBRE Y APELLIDO:

COMISIÓNS S

Ejercicio	1	2	3	4	Total
Nota					

Justificar todas las respuestas. No está permitido el uso de dispositivos electrómicos. Se aprueba con 51 puntos.

Ejercicio 1. (30 pts.) Sean W_1 y W_2 los siguientes subespacios de \mathbb{R}^4 :

$$\begin{aligned} W_1 &= \{(x_1,x_2,x_3,x_4) \in \mathbb{R}^4 : x_1 - x_2 + 3x_4 = 0, & x_1 + 2x_2 + 3x_3 + 6x_4 = 0\}, \\ W_2 &= \langle (1,1,-1,0), (-2,-2,-2,-2) \rangle. \end{aligned}$$

(a) Dar una base de Wi

- (b) Probar que $dim(W_2) = 2$
- (c) Dar una presentación implícita de $W_1 \cap W_2$. (d) Probar que $\dim(W_1 + W_2) = 3$.

Ejercicio 2. (25 pts.) Sea {e₁, e₂, e₃, e₄} la base canónica de ℝ⁴. Sea W ⊂ ℝ⁴ el subespacio generado por $w_1 = e_1 + e_2$, $w_2 = 2e_3$, $w_3 = e_1 - e_4$.

- (a) Mostrar que $B = \{w_1, w_2, w_3\}$ es una base de W.
- (b) Comprobar que el vector (0, 1, 2, 1) ∈ W y dar las coordenadas de ese vector en la base B.

Ejercicio 3. (20 pts.)

(a) Hallar una transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^2$ que satisfaga

$$T(1,1,1) = (1,1), T(1,2,3) = (1,1).$$

- (b) ¿Es única?
- (c) Calcular T(1,0,0), T(0,1,0), T(0,0,1) y dar una fórmula para T(x,y,z).

Ejercicio 4. (25 pts.) Sea $U: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal dada por

$$U(x, y, z) = (x + y + z, x + z, -y).$$

- (a) Dar una base de la imagen.
- (b) Calcular la dimensión del núcleo.
- (c) Calcular la matriz de U con respecto a la base canónica de R³.