

Rohan Walia presents problem No. 12 Gyroscope Teslameter

32nd IYPT 2019 WARSAW

Problem statement

A spinning **gyroscope** made from a **conducting**, but **non-ferromagnetic** material slows down when placed in a magnetic field. Investigate how the **deceleration** depends on **relevant parameters**.

Basic concepts

Lorenz Force acts on electrons Flow of charge \rightarrow Eddy currents Currents Force opposite to plate torque \(\rightarrow\) Lenz's Law Heat produced by plate resistance Electric potential Picture: Wikipedia-Eddy currents

Fundamentals of the theory

 $\phi(x,y)$ and j(x,y) are assumed such that a stationary state is reached, we assume that this happens instantaneously

Force on charge vanishes in the **stationary state**:

(I)
$$F_R + q(-\nabla \phi + (v \times B)) \approx 0$$

Ohms' law connects F_R and j

$$F_R = -q \rho j$$

No accumulation of currents in the stationary state:

$$I_{in} = I_{out}$$
 (for an arbitrary Volume V)

This can also be formulated as

(II)
$$\nabla \cdot \mathbf{j} = 0$$

 $\phi[V]$...electrical potential

j [A/m²]... current density

 $F_R[N]$...force caused by resistance

v[m/s]... velocity of electron due to rotation of plate

B[T]...magnetic field strength

R_a[m]...outer radius of magnet

R_i [m]...inner radius of magnet

 $\rho [\Omega m]...$ resistivity

 I_{in} [A].. current into volume V

 I_{out} [A].. current out of volume V

Area of constant magnetic field

Numerical computation of $\phi(x,y)$

For $\phi(x,y)$ and j(x,y) we divide the plate into small squares of length Δx

In every square there is a value for ϕ and \mathbf{j}

We can write eq. (I) for every square and use (II) to eliminate j in this equation, to obtain one equation for ϕ per square:

$$4 \phi(x,y) = \phi(x+\Delta x,y) + \phi(x-\Delta x,y) + \phi(x,y+\Delta x)$$

$$+ \phi(x,y-\Delta x) - \int_{x} dx' B(x',y) \omega x' - \int_{x} dx' B(x',y) \omega x'$$

$$- \int_{y} dy' B(x,y') \omega y' - \int_{y} dy' B(x,y') \omega y'$$

Numerical computation of $\phi(x, y)$

For resolution 200×200 squares \rightarrow a linear equation system with $40 \mathbf{k}$ equations and $40 \mathbf{k}$ unknown $\phi(\mathbf{x}, \mathbf{y})$ values \rightarrow solved them numerically with the scipy libraries for Python

$$\boldsymbol{j}(x,y) = \frac{1}{d \cdot \Delta x} \cdot \begin{pmatrix} \boldsymbol{I}_x \\ \boldsymbol{I}_y \end{pmatrix}$$

Computing the deceleration power P_{dec}

 $\mathbf{f}(x,y) = Force per Area$

Computing the deceleration power P_{dec}

Power converted into heat Pohm

Power Loss given by 2 theories

- $\mathbf{P}_{\mathrm{ohm}}$
 - Heat loss through resistance
- P_{dec}
 - Kinetic energy loss per second due to torque on eddy currents in magnetic field
- identical (except for small numerical discrepancies)

Due to energy conservation $P_{dec} = P_{Ohm}$

Relevant parameters

Parameters maintaining the system geometry

- Angular velocity
 - $\omega^2 \rightarrow P$
- Magnetic field strength
 - $B^2 \rightarrow P$
- Resistance of plate
 - Resistivity of material
 - $1/\rho \rightarrow P$
 - Thickness of plate
 - $d \rightarrow P$

Variations of P_{dec} described by master formula:

$$P_{dec}(B_{max}, \omega, \rho, d) = P_{dec}(B_{max}^{0}, \omega^{0}, \rho^{0}, d^{0}) \frac{(B_{max}\omega)^{2} \rho^{0} d}{(B_{max}^{0}\omega^{0})^{2} \rho d^{0}}$$

Parameters changing the system geometry

- Position of magnet (at which radius)
- Size of magnet (width in direction of radius)

Impact on P_{dec} & P_{Ohm} is less obvious (however, well described by our numerical model)

Measuring B Field profile of the magnet

Obtained with 300 values

Experimental setup

- Electromagnet
 - Strength with Teslameter
- Frequency with photogate
 - Wooden stick attached
- Spin on plastic pin (low friction)
- Speed with cordless screw-driver

Parameter variation

- 10 magnetic field strengths
 - 0-100 mT
- 2 Radii
 - 1.5 cm
 - 3.5 cm
- 3 Materials
 - Copper
 - Brass
 - Aluminum
- 2 Thicknesses
 - 35 μm
 - 1 mm

Experimental Power Loss

$$P_{\text{dec}} = T \cdot \omega = I_m \cdot \frac{d\omega}{dt} \cdot \omega$$

Using:

$$I_m = \frac{m \cdot r^2}{2}$$

Friction term P_f from a trend line Yields:

$$P_{\text{dec}} = \frac{m \cdot r^2}{2} \cdot \frac{d\omega}{dt} \cdot \omega - Pf$$

P[W]...power loss

T[Nm]...torque

 ω [rad/s]...angular velocity opposing

obtained by experiment

I_m...[kgm²]...moment of inertia of homogenous disk

m[kg]...mass of plate

r[m]...radius of plate

Power Loss of Experiment

Aluminum-60mT

- Angular velocity instead of time as plate slows down
- Angular velocity is a function of time
- Easier to compare → no time delays
- Aluminum-60 mT
 - Average of 3 runs
 - Square relationship

Comparison of 3 Power Losses

Comparison-Aluminum-60 mT

- Good correspondance
- Discrepancies
 - \rightarrow error estimation

Different Magnetic Field Strengths

Different Materials

- Copper, Aluminum, Brass
- 60 mT
- Copper
 - Resistivity: 1.68*10⁻⁸
 - Thickness: 1mm
 - Radius: 4.9 cm
- Aluminum
 - Resistivity: 2.65*10⁻⁸
 - Thickness: 4 mm
 - Radius: 4.2 cm
- Brass
 - Resistivity: 0.9*10⁻⁷
 - Thickness: 3mm
 - Radius: 4.2 cm

Different Thicknesses

Different Radii

Comparison-Radii-Aluminum

- Aluminum
- 50 mT
- Radius 1: 3.5 cm
- Radius 2: 1.5 cm

Error estimation

- Moment of inertia of wooden sticks
 - Negligible
- Drag of rotational pivot & air
 - Approximated with trend line
 - Negligible at high B
- B profile
 - Finer grid for more accuracy
- Heat created
 - Negligible
- Higher resolution with more sticks
 - 4 suffice

• Light wavering of plate in vertical direction

Conclusion

- Theory
 - Simulation
 - Energy loss
 - Force
- Experiment
 - Paramter variation
 - Setup
- Comparison
 - Theory proved to be right
 - Relationships identified for:
 - ω, Β, d, ρ
 - Numerical solutions for others

Thank you for your attention!

Appendix

Teslameter-Comparison-Aluminum

- Find out B with P at certain parameters
- Unable to do that
 - No uniform magnetic field
 - Need magnetic B profile
- Magnetic field strength calculation:
 - Invert the formula
 - Apply on power loss of experiment
- Example:
- Aluminum, 100 rad/s
- Magnetic field strength measured: 50 mT
- Magnetic field strength from gyroscope teslameter: 51,4 mT

$$P_{dec}(B_{max}, \omega, \rho, d) = P_{dec}(B_{max}^{0}, \omega^{0}, \rho^{0}, d^{0}) \frac{(B_{max}\omega)^{2}\rho^{0}d}{(B_{max}^{0}\omega^{0})^{2}\rho d^{0}}$$

Case of many magnets

Magnets on different places on plate

Deceleration rate adds up

Magnets next to each other

• No effect

Special case-whole plate under magnet

Special case-electric field exerted on ring structure

- Electric field only on small part
- Electrical potential in ring → electrical field opposing external external field
- Causing currents to flow
- Power loss $\rightarrow P = U^2 \cdot R$

Special case-magnetic field exerted on ring structure

Special case-magnetic field with different angles

- High angles to full plate
 - No place for the charges to flow back
- Low angles to no magnet
 - Charges do not build up that fast
- Between extreme cases power loss is quite constant
 - → angle does not have effect

Comparison of 3 Power Losses-Copper, Brass

Angular velocity as a function of time

$$P = P_0 \cdot \frac{\omega^2}{\omega_0^2}$$

$$P = \alpha \cdot I_m \cdot \omega$$

$$\alpha = \frac{P_0 \cdot \frac{\omega^2}{\omega_0^2}}{I_m \cdot \omega} = \frac{P_0}{I_m \cdot \omega_0^2} \cdot \omega$$

$$\omega(t) = \omega_0 \cdot (\frac{P_0}{I_m \cdot \omega_0^2})^t$$

 ω over time is exponential \rightarrow power over time is exponential

$$P = P_0 \cdot \frac{\omega^2}{\omega_0^2}$$

$$P = P_0 \cdot (\frac{P_0}{I_m \cdot \omega_0^2})^{2t}$$

Power loss over time

Joule heating-Copper

Temperature increase relatively small

- Small effect
- About 0.5°C-1°C

Only effects resistance

- Depends on material properties
- Not considerable

Trend line for friction term P_f

- Value taken for different angular velocities
- Assumed with a square function
- Subtracted from total power loss
- Power loss from magnetic field obtained

3 runs

• Average deviation of 2%

OUTLINE

<u>Introduction</u>

- Problem statement
- Basic concepts

<u>Theory</u>

- Theoretical power loss
 - Derivation
 - Resistance & current
- Relevant parameters

Conclusion

- Teslameter-comparison
- Error estimation

Experiment

- Experimental Setup
- Parameter variation

Comparison

- Result of experiment
- Magnetic field
- Frequency
- Thickness
- Radius