Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	0

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

Esercizio 2. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

A)
$$y[n] = 2\sin\frac{\pi n}{2}$$

B) Nessuna delle altre risposte

C) y[n] = 0

D) $y[n] = 2\sin\frac{\pi n}{4}$

Esercizio 3. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A) $\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$

B) $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$

C) $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$

D) $\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$

Esercizio 4. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- B) Nessuna delle affermazioni presentate è corretta
- C) La potenza $\mathcal{P}(x) \neq 0$
- **D)** La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- **E)** La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$

Esercizio 5. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Esercizio 6. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{3}a^2$

B)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

C)
$$m_x(t) = 1$$
; $\sigma_x^2 = 1$

D)
$$m_x(t) = |t|; \sigma_x^2 = 1$$

Esercizio 7. (Punti 1) Il segnale $x(t) = 1/2 + \cos(2\pi f_0 t)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- A) nessuno degli altri insiemi di valori
- **B)** $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$
- C) $T_1 = 1/f_0, T_2 = 0, b_1 = -1, b_0 = b_2 = 1$

D) $T_1 = 1/(2f_0), T_2 = 1/(2f_0), b_1 = 1, b_0 = b_2 = 1/2$

E)
$$T_1 = 2/f_0, T_2 = 1/f_0, b_1 = 0, b_0 = -1, b_2 = 1$$

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1-e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- B) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1}).$
- C) Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- **B)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 2. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$
- **B)** $T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$

Figura 1: Schema a blocchi del sistema.

C)
$$T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$$

D)
$$T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$$

E) nessuno degli altri insiemi di valori

Esercizio 3. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

Esercizio 4. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

A)
$$y[n] = 2\cos\frac{\pi n}{4}$$

B)
$$y[n] = 2\cos\frac{\pi n}{2}$$

C)
$$y[n] = 0$$

D) Nessuna delle altre risposte

Esercizio 5. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- A) $\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$
- **B)** $\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$
- C) $\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$
- **D)** $\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$

Esercizio 6. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$

Esercizio 7. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0; \sigma_x^2 = u(t)$
- **B)** $m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$
- C) $m_x(t) = 1$; $\sigma_x^2 = \frac{1}{3}a^2$
- **D)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$

Esercizio 8. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

Figura 2: Sistema

- **A)** Lo spettro di energia $S_x(f) \neq H(f)$
- B) Nessuna delle affermazioni presentate è corretta
- C) L'energia $\mathcal{E}(x) \neq 1/2$
- **D)** La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos{(2\pi f_0 \tau)}$
- **E)** L'energia di $y_2(t)$ è finita

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 2. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1$; $\sigma_x^2 = 1$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- C) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$

D) $m_x(t) = |t|; \sigma_x^2 = 1$

Esercizio 3. (Punti 1) Il segnale $x(t) = 1 + \sin(2\pi f_0 t + \pi/3)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$
- **B)** $T_1 = 1/f_0, T_2 = 3T_1, b_0 = 1/3, b_1 = 1/6, b_2 = -1/2$
- C) $T_1 = 1/f_0, T_2 = 1/(2f_0), b_1 = 0, b_0 = b_2 = 1/2$
- **D)** $T_1 = 1/f_0, T_2 = 1/f_0, b_1 = -1, b_0 = b_2 = 1$
- E) nessuno degli altri insiemi di valori

Esercizio 4. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 5. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

- **A)** y[n] = 0
- **B)** $y[n] = 2\cos\frac{\pi n}{2}$
- C) Nessuna delle altre risposte
- **D)** $y[n] = 2\cos\frac{\pi n}{4}$

Esercizio 6. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- **A)** L'energia $\mathcal{E}(y_1) \neq 1$
- B) La densità spettrale di potenza $G_{y_2}(f) \neq \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- C) La potenza $\mathcal{P}(x) \neq 0$
- **D)** La funzione di autocorrelazione $R_{y_1}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)\frac{\sin(\pi\tau)}{\pi\tau}$
- E) Nessuna delle affermazioni presentate è corretta

Esercizio 7. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Esercizio 8. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	3

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

Esercizio 2. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$
- **B)** $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$
- C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$

Esercizio 3. (Punti 1) Il segnale $x(t) = 1/2 + \sin(2\pi f_1 t + \pi/4)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_1, T_2 = 1/(2f_1), b_1 = -1, b_0 = b_2 = 1/2$
- **B)** $T_1 = 1/f_1, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$
- C) $T_1 = 0, T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$
- D) nessuno degli altri insiemi di valori
- E) $T_1 = 1/f_1, T_2 = 1/(2f_1), b_0 = 1/2, b_1 = 1/2, b_2 = 1$

Esercizio 4. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 5. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

A) La potenza $\mathcal{P}(x) \neq 0$

Figura 2: Sistema

- B) La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f f_0) + \frac{1}{4}\delta(f + f_0)$
- C) L'energia $\mathcal{E}(y_1) \neq 1/2$
- **D)** La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- $\mathbf{E})$ Nessuna delle affermazioni presentate è corretta

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- B) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 7. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = |t|; \sigma_x^2 = 1$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

C) $m_x(t) = 1; \sigma_x^2 = 1$

D) $m_x(t) = 0; \, \sigma_x^2 = \frac{1}{3}a^2$

Esercizio 8. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

- $\mathbf{A)} \ y[n] = 2\sin\frac{\pi n}{6}$
- **B)** y[n] = 0
- C) Nessuna delle altre risposte
- $\mathbf{D)} \ y[n] = 2\sin\frac{\pi n}{3}$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	4

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Il segnale $x(t) = 1/2 + \cos(2\pi f_0 t)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 2/f_0, T_2 = 1/f_0, b_1 = 0, b_0 = -1, b_2 = 1$
- **B)** $T_1 = 1/(2f_0), T_2 = 1/(2f_0), b_1 = 1, b_0 = b_2 = 1/2$
- C) nessuno degli altri insiemi di valori
- **D)** $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$
- **E)** $T_1 = 1/f_0, T_2 = 0, b_1 = -1, b_0 = b_2 = 1$

Esercizio 2. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = |t|; \ \sigma_x^2 = 1$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- C) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- **D)** $m_x(t) = 1; \sigma_x^2 = 1$

Esercizio 3. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$

Esercizio 4. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1}).$
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.

Esercizio 6. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- **A)** $y[n] = 2\sin\frac{\pi n}{4}$
- B) Nessuna delle altre risposte
- **C)** $y[n] = 2\sin\frac{\pi n}{2}$
- **D)** y[n] = 0

Esercizio 7. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- A) Nessuna delle affermazioni presentate è corretta
- **B)** La potenza $\mathcal{P}(x) \neq 0$
- C) La potenza $\mathcal{P}(y_2) = 1/2$

D) L'energia $\mathcal{E}(y_1) \neq 1/2$

E) Lo spettro $S_{y_1}(f) \neq \frac{1}{4}H(f - f_0) + \frac{1}{4}H(f + f_0)$

Esercizio 8. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	5

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

Esercizio 2. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B) y[n] = x[n] - x[n-1] - 1/2y[n-1]

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

Esercizio 3. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- **B)** $m_x(t) = |t|; \ \sigma_x^2 = 1$
- C) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- **D)** $m_x(t) = 1; \sigma_x^2 = 1$

Esercizio 4. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- **B)** La potenza $\mathcal{P}(x) \neq 0$
- C) La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- **D)** La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f f_0) + \frac{1}{4}\delta(f + f_0)$
- E) Nessuna delle affermazioni presentate è corretta

Esercizio 5. (Punti 1) Il segnale $x(t) = 1/2 + \sin(2\pi f_1 t + \pi/4)$ viene inviato in ingresso al sistema mostrato in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

Figura 2: Schema a blocchi del sistema.

A)
$$T_1 = 0, T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$$

B) nessuno degli altri insiemi di valori

C)
$$T_1 = 1/f_1, T_2 = 1/(2f_1), b_1 = -1, b_0 = b_2 = 1/2$$

D)
$$T_1 = 1/f_1, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$$

E)
$$T_1 = 1/f_1, T_2 = 1/(2f_1), b_0 = 1/2, b_1 = 1/2, b_2 = 1$$

Esercizio 6. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

Esercizio 7. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- **B)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.

D) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 8. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

- A) Nessuna delle altre risposte
- **B)** $y[n] = 2\sin\frac{\pi n}{6}$
- $\mathbf{C)} \ y[n] = 2\sin\frac{\pi n}{3}$
- **D)** y[n] = 0

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** La potenza $\mathcal{P}(x) \neq 0$
- B) La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- C) La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- **D)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- E) Nessuna delle affermazioni presentate è corretta

Esercizio 2. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$
- B) nessuno degli altri insiemi di valori

C)
$$T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$$

D)
$$T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$$

E)
$$T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$$

Esercizio 3. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

Esercizio 4. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

$$\mathbf{A)} \ y[n] = 2\cos\frac{\pi n}{2}$$

B) Nessuna delle altre risposte

C)
$$y[n] = 2\cos\frac{\pi n}{4}$$

D)
$$y[n] = 0$$

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

B) Si ha DTFT $\{h[n]\}=0$ per f=0.

C) La funzione di trasferimento del filtro è $H(z) = (1 - z^{-N})^2/(1 - z^{-1})$.

D) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

Esercizio 6. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

Esercizio 7. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

Esercizio 8. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

B)
$$m_x(t) = 1; \sigma_x^2 = 1$$

C)
$$m_x(t) = |t|; \, \sigma_x^2 = 1$$

D)
$$m_x(t) = 0; \sigma_x^2 = \frac{1}{3}a^2$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.

Esercizio 3. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

- **A)** $y[n] = 2\cos\frac{\pi n}{4}$
- B) Nessuna delle altre risposte
- **C**) $y[n] = 2\cos\frac{\pi n}{2}$
- **D)** y[n] = 0

Esercizio 4. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1$; $\sigma_x^2 = \frac{1}{3}a^2$
- **B)** $m_x(t) = 0; \sigma_x^2 = u(t)$
- C) $m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$
- **D)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$

Esercizio 5. (Punti 1) Il segnale $x(t) = 1 + \sin(2\pi f_0 t + \pi/3)$ viene inviato in ingresso al sistema mostrato in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

A) $T_1 = 1/f_0, T_2 = 3T_1, b_0 = 1/3, b_1 = 1/6, b_2 = -1/2$

Figura 1: Schema a blocchi del sistema.

- B) nessuno degli altri insiemi di valori
- C) $T_1 = 1/f_0, T_2 = 1/f_0, b_1 = -1, b_0 = b_2 = 1$
- **D)** $T_1 = 1/f_0, T_2 = 1/(2f_0), b_1 = 0, b_0 = b_2 = 1/2$
- **E)** $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$

Esercizio 6. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- **A)** La potenza $\mathcal{P}(x) \neq 0$
- B) La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- C) Nessuna delle affermazioni presentate è corretta
- **D)** La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- **E)** L'energia $\mathcal{E}(y_1) \neq 1/2$

Esercizio 7. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Esercizio 8. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

Esercizio 2. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

A)
$$y[n] = 0$$

- **B)** $y[n] = 2\sin\frac{\pi n}{2}$
- **C)** $y[n] = 2\sin\frac{\pi n}{4}$
- D) Nessuna delle altre risposte

Esercizio 3. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$
- **B)** $m_x(t) = 0; \sigma_x^2 = u(t)$
- C) $m_x(t) = 1$; $\sigma_x^2 = \frac{1}{3}a^2$
- **D)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$

Esercizio 4. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n] \qquad \quad y[2n+1] = x[n]$$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$

Esercizio 5. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

- **A)** La potenza $\mathcal{P}(x) \neq 0$
- **B)** La funzione di autocorrelazione $R_{y_1}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)\frac{\sin(\pi\tau)}{\pi\tau}$
- C) La densità spettrale di potenza $G_{y_2}(f) \neq \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- **D)** L'energia $\mathcal{E}(y_1) \neq 1$
- E) Nessuna delle affermazioni presentate è corretta

Figura 1: Sistema

Figura 2: Schema a blocchi del sistema.

Esercizio 6. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$
- B) nessuno degli altri insiemi di valori
- C) $T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$
- **D)** $T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$
- **E)** $T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$

Esercizio 7. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- **A)** $\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$
- **B)** $\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$

C) $\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- B) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1}).$
- C) Si ha DTFT $\{h[n]\} = 0$ per f = k/2N (k intero qualsiasi).
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	9

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- **B)** La potenza $\mathcal{P}(x) \neq 0$
- C) Nessuna delle affermazioni presentate è corretta
- **D)** La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- **E)** La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$

Esercizio 2. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

Esercizio 3. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

Esercizio 4. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

Esercizio 5. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

A) Nessuna delle altre risposte

B)
$$y[n] = 0$$

C)
$$y[n] = 2 \sin \frac{\pi n}{3}$$

D)
$$y[n] = 2\sin\frac{\pi n}{6}$$

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

B) La funzione di trasferimento del filtro è $H(z) = (1 - z^{-N})^2/(1 - z^{-1})$.

C) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

D) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 7. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 1$$
; $\sigma_x^2 = \frac{1}{3}a^2$

B)
$$m_x(t) = 0$$
; $\sigma_x^2 = u(t)$

C)
$$m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$$

D)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$

Esercizio 8. (Punti 1) Il segnale $x(t) = 1 + \sin(2\pi f_0 t + \pi/3)$ viene inviato in ingresso al sistema mostrato in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

A) nessuno degli altri insiemi di valori

B)
$$T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$$

C)
$$T_1 = 1/f_0, T_2 = 1/(2f_0), b_1 = 0, b_0 = b_2 = 1/2$$

D)
$$T_1 = 1/f_0, T_2 = 1/f_0, b_1 = -1, b_0 = b_2 = 1$$

E)
$$T_1 = 1/f_0, T_2 = 3T_1, b_0 = 1/3, b_1 = 1/6, b_2 = -1/2$$

Figura 2: Schema a blocchi del sistema.

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

- **A)** $y[n] = 2 \sin \frac{\pi n}{3}$
- B) Nessuna delle altre risposte
- **C)** $y[n] = 2\sin\frac{\pi n}{6}$
- **D)** y[n] = 0

Esercizio 2. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A) $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

Esercizio 3. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- **B)** La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- C) L'energia $\mathcal{E}(y_1) \neq 1/2$
- D) Nessuna delle affermazioni presentate è corretta
- **E)** La potenza $\mathcal{P}(x) \neq 0$

Esercizio 4. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

A) $T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$

B) $T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$

C) $T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$

D) nessuno degli altri insiemi di valori

E) $T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$

Esercizio 5. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$

B) $m_x(t) = |t|; \sigma_x^2 = 1$

C) $m_x(t) = 1; \sigma_x^2 = 1$

D) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

B) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.

C) Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

D) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 7. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

Esercizio 8. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- **B)** $m_x(t) = 1$; $\sigma_x^2 = 1$
- C) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- **D)** $m_x(t) = |t|; \ \sigma_x^2 = 1$

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1\\ -1 & \text{se } N \le n \le 2N - 1\\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 3. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

Esercizio 4. (Punti 1) Il segnale $x(t) = 1/2 + \cos(2\pi f_0 t)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

A)
$$T_1 = 1/f_0, T_2 = 0, b_1 = -1, b_0 = b_2 = 1$$

B)
$$T_1 = 1/(2f_0), T_2 = 1/(2f_0), b_1 = 1, b_0 = b_2 = 1/2$$

C)
$$T_1 = 2/f_0, T_2 = 1/f_0, b_1 = 0, b_0 = -1, b_2 = 1$$

D) nessuno degli altri insiemi di valori

E)
$$T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$$

Esercizio 5. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

- **A)** $y[n] = 2\sin\frac{\pi n}{3}$
- **B)** y[n] = 0
- C) Nessuna delle altre risposte
- **D)** $y[n] = 2\sin\frac{\pi n}{6}$

Esercizio 6. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 7. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

A) La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$

- B) La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- C) Nessuna delle affermazioni presentate è corretta
- **D)** La potenza $\mathcal{P}(x) \neq 0$
- **E)** L'energia $\mathcal{E}(y_1) \neq 1/2$

Esercizio 8. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** L'energia di $y_2(t)$ è finita
- B) Nessuna delle affermazioni presentate è corretta
- C) La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos(2\pi f_0 \tau)$
- **D)** Lo spettro di energia $S_x(f) \neq H(f)$
- **E)** L'energia $\mathcal{E}(x) \neq 1/2$

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1-e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 3. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 4. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$
- C) $m_x(t) = 1$; $\sigma_x^2 = \frac{1}{3}a^2$
- **D)** $m_x(t) = 0; \, \sigma_x^2 = u(t)$

Esercizio 5. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$

Esercizio 6. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$
- **B)** $T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$
- C) $T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$
- D) nessuno degli altri insiemi di valori
- E) $T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$

Esercizio 7. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- **A)** y[n] = 0
- **B)** $y[n] = 2\sin\frac{\pi n}{2}$
- **C)** $y[n] = 2 \sin \frac{\pi n}{4}$
- D) Nessuna delle altre risposte

Esercizio 8. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- A) $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$
- B) $\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$
- C) $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$
- **D)** $\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- A) Nessuna delle affermazioni presentate è corretta
- B) La densità spettrale di potenza $G_{y_2}(f) \neq \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- C) La funzione di autocorrelazione $R_{y_1}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)\frac{\sin(\pi\tau)}{\pi\tau}$
- **D)** La potenza $\mathcal{P}(x) \neq 0$
- **E)** L'energia $\mathcal{E}(y_1) \neq 1$

Esercizio 2. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- **A)** $y[n] = 2\sin\frac{\pi n}{2}$
- B) Nessuna delle altre risposte
- **C)** y[n] = 0
- **D)** $y[n] = 2\sin\frac{\pi n}{4}$

Esercizio 3. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = |t|; \sigma_x^2 = 1$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- C) $m_x(t) = 1; \sigma_x^2 = 1$
- **D)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$

Esercizio 4. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$
- C) $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **B)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 6. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 7. (Punti 1) Il segnale $x(t) = 1/2 + \sin(2\pi f_1 t + \pi/4)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_1, T_2 = 1/(2f_1), b_1 = -1, b_0 = b_2 = 1/2$
- **B)** $T_1 = 1/f_1, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$
- C) nessuno degli altri insiemi di valori

D) $T_1 = 0, T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$

E)
$$T_1 = 1/f_1, T_2 = 1/(2f_1), b_0 = 1/2, b_1 = 1/2, b_2 = 1$$

Esercizio 8. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

Esercizio 2. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- A) Nessuna delle altre risposte
- **B)** $y[n] = 2\sin\frac{\pi n}{2}$
- **C)** y[n] = 0
- $\mathbf{D)} \ y[n] = 2\sin\frac{\pi n}{4}$

Esercizio 3. (Punti 1) Il segnale $x(t) = 1/2 + \sin(2\pi f_1 t + \pi/4)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_1, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$
- B) nessuno degli altri insiemi di valori
- C) $T_1 = 1/f_1, T_2 = 1/(2f_1), b_0 = 1/2, b_1 = 1/2, b_2 = 1$
- **D)** $T_1 = 1/f_1, T_2 = 1/(2f_1), b_1 = -1, b_0 = b_2 = 1/2$
- **E)** $T_1 = 0, T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$

Esercizio 4. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- **A)** La funzione di autocorrelazione $R_{y_1}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)\frac{\sin(\pi\tau)}{\pi\tau}$
- **B)** L'energia $\mathcal{E}(y_1) \neq 1$
- C) La potenza $\mathcal{P}(x) \neq 0$
- **D)** La densità spettrale di potenza $G_{y_2}(f) \neq \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- E) Nessuna delle affermazioni presentate è corretta

Esercizio 5. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 6. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$

Esercizio 7. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- **B)** $m_x(t) = |t|; \sigma_x^2 = 1$
- C) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

D)
$$m_x(t) = 1; \sigma_x^2 = 1$$

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- B) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1}).$
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- **D)** Si ha DTFT $\{h[n]\} = 0$ per f = k/2N (k intero qualsiasi).

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = |t|; \sigma_x^2 = 1$
- **B)** $m_x(t) = 1; \sigma_x^2 = 1$
- C) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- **D)** $m_x(t) = 0; \ \sigma_x^2 = \frac{1}{12} (a + |t|)^2$

Esercizio 2. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]

C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]

Esercizio 3. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

- **A)** $y[n] = 2 \sin \frac{\pi n}{3}$
- **B)** y[n] = 0
- **C**) $y[n] = 2\sin\frac{\pi n}{6}$
- **D)** Nessuna delle altre risposte

Esercizio 4. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

- A) nessuno degli altri insiemi di valori
- **B)** $T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$
- C) $T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$
- **D)** $T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$
- **E)** $T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$

Esercizio 5. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

Esercizio 6. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

Esercizio 7. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

A) L'energia $\mathcal{E}(x) \neq 1/2$

- B) Nessuna delle affermazioni presentate è corretta
- C) La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos{(2\pi f_0 \tau)}$
- **D)** Lo spettro di energia $S_x(f) \neq H(f)$
- **E)** L'energia di $y_2(t)$ è finita

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- B) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 2. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

A) y[n] = 0

B) $y[n] = 2\sin\frac{\pi n}{4}$

C) $y[n] = 2\sin\frac{\pi n}{2}$

D) Nessuna delle altre risposte

Esercizio 3. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A) $m_x(t) = 1; \sigma_x^2 = 1$

B) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

C) $m_x(t) = |t|; \sigma_x^2 = 1$

D) $m_x(t) = 0; \sigma_x^2 = \frac{1}{3}a^2$

Esercizio 4. (Punti 1) Il segnale $x(t) = 1 + \sin(2\pi f_0 t + \pi/3)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_0, T_2 = 1/f_0, b_1 = -1, b_0 = b_2 = 1$
- B) nessuno degli altri insiemi di valori
- C) $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$
- **D)** $T_1 = 1/f_0, T_2 = 3T_1, b_0 = 1/3, b_1 = 1/6, b_2 = -1/2$
- **E)** $T_1 = 1/f_0, T_2 = 1/(2f_0), b_1 = 0, b_0 = b_2 = 1/2$

Figura 2: Sistema

Esercizio 5. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

- **A)** La funzione di autocorrelazione $R_{y_1}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)\frac{\sin(\pi\tau)}{\pi\tau}$
- **B)** La potenza $\mathcal{P}(x) \neq 0$
- C) Nessuna delle affermazioni presentate è corretta
- **D)** La densità spettrale di potenza $G_{y_2}(f) \neq \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- **E)** L'energia $\mathcal{E}(y_1) \neq 1$

Esercizio 6. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 7. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Esercizio 8. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	17

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** L'energia $\mathcal{E}(x) \neq 1/2$
- B) Lo spettro di energia $S_x(f) \neq H(f)$
- C) L'energia di $y_2(t)$ è finita
- D) Nessuna delle affermazioni presentate è corretta
- **E)** La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos(2\pi f_0 \tau)$

Esercizio 2. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- **A)** $\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$
- **B)** $\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$
- C) $\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$
- **D)** $\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$

Esercizio 3. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$
- C) $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$

Esercizio 4. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 5. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$

B) $m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$

C) $m_x(t) = 0$; $\sigma_x^2 = u(t)$

D) $m_x(t) = 1; \sigma_x^2 = \frac{1}{3}a^2$

Esercizio 6. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

 $\mathbf{A)} \ y[n] = 2\sin\frac{\pi n}{6}$

B) Nessuna delle altre risposte

C) y[n] = 0

D) $y[n] = 2\sin\frac{\pi n}{3}$

Esercizio 7. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

B) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.

C) Si ha DTFT $\{h[n]\}=0$ per f=0.

D) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 8. (Punti 1) Il segnale $x(t) = 1 + \sin(2\pi f_0 t + \pi/3)$ viene inviato in ingresso al sistema mostrato in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

A) nessuno degli altri insiemi di valori

Figura 2: Schema a blocchi del sistema.

B)
$$T_1 = 1/f_0, T_2 = 3T_1, b_0 = 1/3, b_1 = 1/6, b_2 = -1/2$$

C)
$$T_1 = 1/f_0, T_2 = 1/f_0, b_1 = -1, b_0 = b_2 = 1$$

D)
$$T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$$

E)
$$T_1 = 1/f_0, T_2 = 1/(2f_0), b_1 = 0, b_0 = b_2 = 1/2$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	18

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

Esercizio 2. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$
- **B)** $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$
- C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$

Esercizio 3. (Punti 1) Il segnale $x(t) = 1/2 + \cos(2\pi f_0 t)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$
- **B)** $T_1 = 1/f_0, T_2 = 0, b_1 = -1, b_0 = b_2 = 1$
- C) $T_1 = 1/(2f_0), T_2 = 1/(2f_0), b_1 = 1, b_0 = b_2 = 1/2$
- D) nessuno degli altri insiemi di valori
- E) $T_1 = 2/f_0, T_2 = 1/f_0, b_1 = 0, b_0 = -1, b_2 = 1$

Esercizio 4. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- **B)** $m_x(t) = |t|; \sigma_x^2 = 1$
- C) $m_x(t) = 1$; $\sigma_x^2 = 1$
- **D)** $m_x(t) = 0; \ \sigma_x^2 = \frac{1}{12} (a + |t|)^2$

Esercizio 5. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 6. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- **A)** Lo spettro $S_{y_1}(f) \neq \frac{1}{4}H(f f_0) + \frac{1}{4}H(f + f_0)$
- B) Nessuna delle affermazioni presentate è corretta
- C) L'energia $\mathcal{E}(y_1) \neq 1/2$
- **D)** La potenza $\mathcal{P}(x) \neq 0$
- **E)** La potenza $\mathcal{P}(y_2) = 1/2$

Esercizio 7. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) Si ha
$$e^{j\frac{2\pi}{N}n} * h[n] = 0.$$

- **B)** La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- C) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **D)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.

Esercizio 8. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

- A) Nessuna delle altre risposte
- **B)** y[n] = 0
- C) $y[n] = 2\cos\frac{\pi n}{2}$
- **D)** $y[n] = 2\cos\frac{\pi n}{4}$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	19

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 2. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- **A)** $\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$
- B) $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$

C) $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$

D) $\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$

Esercizio 3. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- **B)** $m_x(t) = 0; \sigma_x^2 = \frac{1}{3}a^2$
- C) $m_x(t) = |t|; \sigma_x^2 = 1$
- **D)** $m_x(t) = 1; \sigma_x^2 = 1$

Esercizio 4. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** La densità spettrale di potenza $G_{y_2}(f) \neq \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- **B)** La potenza $\mathcal{P}(x) \neq 0$
- C) La funzione di autocorrelazione $R_{y_1}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)\frac{\sin(\pi\tau)}{\pi\tau}$
- **D)** L'energia $\mathcal{E}(y_1) \neq 1$
- E) Nessuna delle affermazioni presentate è corretta

Figura 2: Schema a blocchi del sistema.

Esercizio 5. (Punti 1) Il segnale $x(t) = 1/2 + \sin(2\pi f_1 t + \pi/4)$ viene inviato in ingresso al sistema mostrato in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 0, T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$
- **B)** $T_1 = 1/f_1, T_2 = 1/(2f_1), b_1 = -1, b_0 = b_2 = 1/2$
- C) $T_1 = 1/f_1, T_2 = 1/(2f_1), b_0 = 1/2, b_1 = 1/2, b_2 = 1$
- D) nessuno degli altri insiemi di valori
- **E)** $T_1 = 1/f_1, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- C) Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 7. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- **A)** $y[n] = 2\sin\frac{\pi n}{2}$
- B) Nessuna delle altre risposte
- C) $y[n] = 2\sin\frac{\pi n}{4}$
- **D)** y[n] = 0

Esercizio 8. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$
- C) $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	20

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- B) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

D) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 3. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- A) Nessuna delle affermazioni presentate è corretta
- **B)** Lo spettro $S_{y_1}(f) \neq \frac{1}{4}H(f f_0) + \frac{1}{4}H(f + f_0)$
- C) La potenza $\mathcal{P}(y_2) = 1/2$
- **D)** La potenza $\mathcal{P}(x) \neq 0$
- **E)** L'energia $\mathcal{E}(y_1) \neq 1/2$

Esercizio 4. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- **B)** $m_x(t) = 1; \sigma_x^2 = 1$
- C) $m_x(t) = 0; \sigma_x^2 = \frac{1}{3}a^2$
- **D)** $m_x(t) = |t|; \ \sigma_x^2 = 1$

Esercizio 5. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

- **A)** $y[n] = 2\sin\frac{\pi n}{6}$
- B) Nessuna delle altre risposte
- **C)** $y[n] = 2\sin\frac{\pi n}{3}$
- **D)** y[n] = 0

Esercizio 6. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$

Esercizio 7. (Punti 1) Il segnale $x(t) = 1/2 + \cos(2\pi f_0 t)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- A) nessuno degli altri insiemi di valori
- **B)** $T_1 = 1/f_0, T_2 = 0, b_1 = -1, b_0 = b_2 = 1$
- C) $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$

D) $T_1 = 2/f_0, T_2 = 1/f_0, b_1 = 0, b_0 = -1, b_2 = 1$

E)
$$T_1 = 1/(2f_0), T_2 = 1/(2f_0), b_1 = 1, b_0 = b_2 = 1/2$$

Esercizio 8. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	21

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 2. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

A) $T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$

B)
$$T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$$

C)
$$T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$$

D)
$$T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$$

E) nessuno degli altri insiemi di valori

Esercizio 3. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

B)
$$m_x(t) = 0; \, \sigma_x^2 = \frac{1}{3}a^2$$

C)
$$m_x(t) = 1; \sigma_x^2 = 1$$

D)
$$m_x(t) = |t|; \ \sigma_x^2 = 1$$

Esercizio 4. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Esercizio 5. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

B) $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$

C) $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$

D) $\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$

Esercizio 6. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

A) $y[n] = 2\sin\frac{\pi n}{6}$

B) y[n] = 0

C) $y[n] = 2 \sin \frac{\pi n}{3}$

D) Nessuna delle altre risposte

Esercizio 7. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

B) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.

C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

D) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 8. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

A) L'energia $\mathcal{E}(y_1) \neq 1/2$

B) Nessuna delle affermazioni presentate è corretta

C) Lo spettro $S_{y_1}(f) \neq \frac{1}{4}H(f - f_0) + \frac{1}{4}H(f + f_0)$

D) La potenza $\mathcal{P}(x) \neq 0$

E) La potenza $\mathcal{P}(y_2) = 1/2$

Figura 2: Sistema

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	22

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 2. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

- **A)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- B) Nessuna delle affermazioni presentate è corretta
- C) La potenza $\mathcal{P}(x) \neq 0$
- **D)** La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- E) La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$

Figura 1: Sistema

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- B) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- C) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 4. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$
- **B)** $m_x(t) = 0; \sigma_x^2 = u(t)$
- C) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$
- **D)** $m_x(t) = 1; \sigma_x^2 = \frac{1}{3}a^2$

Esercizio 5. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

A) Nessuna delle altre risposte

B)
$$y[n] = 0$$

C)
$$y[n] = 2 \sin \frac{\pi n}{2}$$

D)
$$y[n] = 2\sin\frac{\pi n}{4}$$

Esercizio 6. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

Esercizio 7. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

Esercizio 8. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

Figura 2: Schema a blocchi del sistema.

A)
$$T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$$

B)
$$T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$$

C) nessuno degli altri insiemi di valori

D)
$$T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$$

E)
$$T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	23

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Il segnale $x(t) = 1/2 + \sin(2\pi f_1 t + \pi/4)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 0, T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$
- B) nessuno degli altri insiemi di valori
- C) $T_1 = 1/f_1, T_2 = 1/(2f_1), b_1 = -1, b_0 = b_2 = 1/2$
- **D)** $T_1 = 1/f_1, T_2 = 1/(2f_1), b_0 = 1/2, b_1 = 1/2, b_2 = 1$
- **E)** $T_1 = 1/f_1, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$

Esercizio 2. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- A) $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$
- B) $\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$
- C) $\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$
- **D)** $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$

Esercizio 3. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- **A)** La funzione di autocorrelazione $R_{y_1}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)\frac{\sin(\pi\tau)}{\pi\tau}$
- **B)** L'energia $\mathcal{E}(y_1) \neq 1$
- C) La potenza $\mathcal{P}(x) \neq 0$
- D) Nessuna delle affermazioni presentate è corretta
- **E)** La densità spettrale di potenza $G_{y_2}(f) \neq \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$

Esercizio 4. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- B) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- C) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 5. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

- **A)** y[n] = 0
- **B)** $y[n] = 2\sin\frac{\pi n}{3}$
- **C)** $y[n] = 2\sin\frac{\pi n}{6}$
- D) Nessuna delle altre risposte

Esercizio 6. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 7. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Esercizio 8. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$

B)
$$m_x(t) = 1; \sigma_x^2 = \frac{1}{3}a^2$$

C)
$$m_x(t) = 0; \sigma_x^2 = u(t)$$

D)
$$m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$
- **B)** $T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$
- C) $T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$
- **D)** $T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$
- E) nessuno degli altri insiemi di valori

Esercizio 2. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- **A)** $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$
- **B)** $\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$
- C) $\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$
- **D)** $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$

Esercizio 3. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- A) Nessuna delle affermazioni presentate è corretta
- **B)** La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- C) La potenza $\mathcal{P}(x) \neq 0$
- **D)** La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- **E)** L'energia $\mathcal{E}(y_1) \neq 1/2$

Esercizio 4. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A) y[n] = x[n] - x[n-1] - 1/2y[n-1]

B) y[n] = x[n] + x[n-1] + 1/2y[n-1]

C) y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]

Esercizio 5. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

A) Nessuna delle altre risposte

B) $y[n] = 2\sin\frac{\pi n}{3}$

C) y[n] = 0

D) $y[n] = 2\sin\frac{\pi n}{6}$

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.

B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

C) La funzione di trasferimento del filtro è $H(z) = (1 - z^{-N})^2/(1 - z^{-1})$.

D) Si ha DTFT $\{h[n]\}=0$ per f=0.

Esercizio 7. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{3}a^2$

B)
$$m_x(t) = 1; \, \sigma_x^2 = 1$$

C)
$$m_x(t) = |t|; \sigma_x^2 = 1$$

D)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

Esercizio 8. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

B)
$$m_x(t) = 0; \, \sigma_x^2 = \frac{1}{3}a^2$$

C)
$$m_x(t) = |t|; \sigma_x^2 = 1$$

D)
$$m_x(t) = 1; \sigma_x^2 = 1$$

Esercizio 2. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 3. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

- **A)** y[n] = 0
- **B)** $y[n] = 2\cos\frac{\pi n}{4}$
- C) $y[n] = 2\cos\frac{\pi n}{2}$
- D) Nessuna delle altre risposte

Esercizio 4. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- C) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- **D)** La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1}).$

Esercizio 5. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

- **A)** La densità spettrale di potenza $G_{y_2}(f) \neq \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- **B)** La potenza $\mathcal{P}(x) \neq 0$
- ${f C}$) Nessuna delle affermazioni presentate è corretta
- **D)** L'energia $\mathcal{E}(y_1) \neq 1$

Figura 1: Sistema

Figura 2: Schema a blocchi del sistema.

E) La funzione di autocorrelazione $R_{y_1}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)\frac{\sin(\pi\tau)}{\pi\tau}$

Esercizio 6. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

A)
$$T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$$

B)
$$T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$$

C) nessuno degli altri insiemi di valori

D)
$$T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$$

E)
$$T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$$

Esercizio 7. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

B) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Esercizio 8. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

A) Nessuna delle altre risposte

B) y[n] = 0

C) $y[n] = 2\cos\frac{\pi n}{4}$

D) $y[n] = 2\cos\frac{\pi n}{2}$

Esercizio 2. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro di energia $S_x(f) \neq H(f)$
- B) Nessuna delle affermazioni presentate è corretta

Figura 1: Sistema

- C) L'energia di $y_2(t)$ è finita
- **D)** L'energia $\mathcal{E}(x) \neq 1/2$
- **E)** La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)$

Esercizio 3. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

B)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

Esercizio 4. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- **B)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- C) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 6. (Punti 1) Il segnale $x(t) = 1/2 + \sin(2\pi f_1 t + \pi/4)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_1, T_2 = 1/(2f_1), b_1 = -1, b_0 = b_2 = 1/2$
- **B)** $T_1 = 1/f_1, T_2 = 1/(2f_1), b_0 = 1/2, b_1 = 1/2, b_2 = 1$
- C) $T_1 = 0, T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$
- D) nessuno degli altri insiemi di valori
- **E)** $T_1 = 1/f_1, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$

Esercizio 7. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 1; \sigma_x^2 = 1$$

B)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

C)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{3}a^2$

D)
$$m_x(t) = |t|; \sigma_x^2 = 1$$

Esercizio 8. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	27

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** La funzione di autocorrelazione $R_{y_1}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)\frac{\sin(\pi\tau)}{\pi\tau}$
- B) Nessuna delle affermazioni presentate è corretta
- C) La densità spettrale di potenza $G_{y_2}(f) \neq \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- **D)** La potenza $\mathcal{P}(x) \neq 0$
- **E)** L'energia $\mathcal{E}(y_1) \neq 1$

Esercizio 2. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 3. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$$

B)
$$m_x(t) = 1$$
; $\sigma_x^2 = \frac{1}{3}a^2$

C)
$$m_x(t) = 0; \sigma_x^2 = u(t)$$

D)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$

Esercizio 4. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) Si ha
$$e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 - e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$$
.

- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 5. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- **A)** $y[n] = 2 \sin \frac{\pi n}{4}$
- B) Nessuna delle altre risposte
- **C**) y[n] = 0
- **D)** $y[n] = 2\sin\frac{\pi n}{2}$

Esercizio 6. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

Esercizio 7. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

Esercizio 8. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

A)
$$T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$$

B)
$$T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$$

C)
$$T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$$

D)
$$T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$$

E) nessuno degli altri insiemi di valori

Figura 2: Schema a blocchi del sistema.

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- A) Nessuna delle affermazioni presentate è corretta
- **B)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- C) La potenza $\mathcal{P}(x) \neq 0$
- **D)** La potenza $\mathcal{P}(y_2) = 1/2$
- **E)** Lo spettro $S_{y_1}(f) \neq \frac{1}{4}H(f f_0) + \frac{1}{4}H(f + f_0)$

Esercizio 2. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

- **A)** y[n] = 0
- **B)** $y[n] = 2\cos\frac{\pi n}{2}$
- C) Nessuna delle altre risposte
- **D)** $y[n] = 2\cos\frac{\pi n}{4}$

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- C) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1-z^{-N})^2/(1-z^{-1})$.

Esercizio 4. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$

Esercizio 5. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1; \sigma_x^2 = \frac{1}{3}a^2$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$
- **C)** $m_x(t) = 0$; $\sigma_x^2 = u(t)$
- **D)** $m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$

Esercizio 6. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$
- **B)** $T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$
- C) $T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$
- **D)** $T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$
- E) nessuno degli altri insiemi di valori

Esercizio 7. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

Esercizio 8. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	29

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Il segnale $x(t) = 1 + \sin(2\pi f_0 t + \pi/3)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_0, T_2 = 3T_1, b_0 = 1/3, b_1 = 1/6, b_2 = -1/2$
- **B)** $T_1 = 1/f_0, T_2 = 1/(2f_0), b_1 = 0, b_0 = b_2 = 1/2$
- C) $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$
- **D)** $T_1 = 1/f_0, T_2 = 1/f_0, b_1 = -1, b_0 = b_2 = 1$
- E) nessuno degli altri insiemi di valori

Esercizio 2. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1; \sigma_x^2 = 1$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- C) $m_x(t) = |t|; \sigma_x^2 = 1$
- **D)** $m_x(t) = 0; \sigma_x^2 = \frac{1}{3}a^2$

Esercizio 3. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- **A)** La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- B) Nessuna delle affermazioni presentate è corretta
- C) La potenza $\mathcal{P}(x) \neq 0$
- **D)** La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- **E)** L'energia $\mathcal{E}(y_1) \neq 1/2$

Esercizio 4. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A) $\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$

B) $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$

C) $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$

D) $\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$

Esercizio 5. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

A) $y[n] = 2\sin\frac{\pi n}{3}$

B) y[n] = 0

C) Nessuna delle altre risposte

D) $y[n] = 2\sin\frac{\pi n}{6}$

Esercizio 6. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$

B) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$

C) $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$

Esercizio 7. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- B) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 8. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] x[n-1] 1/2y[n-1]
- **B)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- **B)** La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- C) L'energia $\mathcal{E}(y_1) \neq 1/2$
- **D)** La potenza $\mathcal{P}(x) \neq 0$
- E) Nessuna delle affermazioni presentate è corretta

Esercizio 2. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

Esercizio 3. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

Esercizio 4. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- A) Nessuna delle altre risposte
- $\mathbf{B)} \ y[n] = 2\sin\frac{\pi n}{2}$
- $\mathbf{C)} \ y[n] = 2\sin\frac{\pi n}{4}$
- **D)** y[n] = 0

Esercizio 5. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

Esercizio 7. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1$; $\sigma_x^2 = 1$
- **B)** $m_x(t) = |t|; \sigma_x^2 = 1$
- C) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- **D)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

Esercizio 8. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

Figura 2: Schema a blocchi del sistema.

A)
$$T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$$

B)
$$T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$$

C)
$$T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$$

D)
$$T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$$

E) nessuno degli altri insiemi di valori

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	31

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

- **A)** y[n] = 0
- B) Nessuna delle altre risposte
- **C)** $y[n] = 2\cos\frac{\pi n}{2}$
- **D)** $y[n] = 2\cos\frac{\pi n}{4}$

Esercizio 2. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

Esercizio 3. (Punti 1) Il segnale $x(t) = 1/2 + \cos(2\pi f_0 t)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_0, T_2 = 0, b_1 = -1, b_0 = b_2 = 1$
- **B)** $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$
- C) $T_1 = 2/f_0, T_2 = 1/f_0, b_1 = 0, b_0 = -1, b_2 = 1$
- **D)** $T_1 = 1/(2f_0), T_2 = 1/(2f_0), b_1 = 1, b_0 = b_2 = 1/2$
- E) nessuno degli altri insiemi di valori

Esercizio 4. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **D)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).

Esercizio 5. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

Figura 2: Sistema

- A) La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- **B)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- C) La potenza $\mathcal{P}(x) \neq 0$
- **D)** La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- E) Nessuna delle affermazioni presentate è corretta

Esercizio 6. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

Esercizio 7. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 0; \, \sigma_x^2 = u(t)$$

B)
$$m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$$

C)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$

D)
$$m_x(t) = 1; \sigma_x^2 = \frac{1}{3}a^2$$

Esercizio 8. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Esercizio 2. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

C) $\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

Esercizio 3. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

Esercizio 4. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** Lo spettro $S_{y_1}(f) \neq \frac{1}{4}H(f f_0) + \frac{1}{4}H(f + f_0)$
- B) Nessuna delle affermazioni presentate è corretta
- C) La potenza $\mathcal{P}(y_2) = 1/2$
- **D)** La potenza $\mathcal{P}(x) \neq 0$
- **E)** L'energia $\mathcal{E}(y_1) \neq 1/2$

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **B)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- C) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 6. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = |t|; \sigma_x^2 = 1$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- C) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- **D)** $m_x(t) = 1$; $\sigma_x^2 = 1$

Esercizio 7. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- **A)** y[n] = 0
- B) Nessuna delle altre risposte
- C) $y[n] = 2\sin\frac{\pi n}{2}$
- **D)** $y[n] = 2\sin\frac{\pi n}{4}$

Esercizio 8. (Punti 1) Il segnale $x(t) = 1/2 + \cos(2\pi f_0 t)$ viene inviato in ingresso al sistema mostrato in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

A) nessuno degli altri insiemi di valori

Figura 2: Schema a blocchi del sistema.

B)
$$T_1 = 1/(2f_0), T_2 = 1/(2f_0), b_1 = 1, b_0 = b_2 = 1/2$$

C)
$$T_1 = 1/f_0, T_2 = 0, b_1 = -1, b_0 = b_2 = 1$$

D)
$$T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$$

E)
$$T_1 = 2/f_0, T_2 = 1/f_0, b_1 = 0, b_0 = -1, b_2 = 1$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	33

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$$

B)
$$m_x(t) = 1$$
; $\sigma_x^2 = \frac{1}{2}a^2$

C)
$$m_x(t) = 0; \sigma_x^2 = u(t)$$

D)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$

Esercizio 2. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

Esercizio 3. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- **A)** $\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$
- **B)** $\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$
- C) $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$
- **D)** $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$

Esercizio 4. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- **B)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1-z^{-N})^2/(1-z^{-1})$.

Esercizio 5. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$

Esercizio 6. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

Figura 1: Sistema

- **A)** L'energia $\mathcal{E}(x) \neq 1/2$
- B) Nessuna delle affermazioni presentate è corretta
- C) Lo spettro di energia $S_x(f) \neq H(f)$
- **D)** La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos(2\pi f_0 \tau)$
- **E)** L'energia di $y_2(t)$ è finita

Esercizio 7. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

- A) nessuno degli altri insiemi di valori
- **B)** $T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$
- C) $T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$
- **D)** $T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$
- **E)** $T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$

Esercizio 8. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

A)
$$y[n] = 2\sin\frac{\pi n}{4}$$

B)
$$y[n] = 0$$

C) Nessuna delle altre risposte

$$\mathbf{D)} \ y[n] = 2\sin\frac{\pi n}{2}$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$
- **B)** $T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$
- C) nessuno degli altri insiemi di valori
- **D)** $T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$
- **E)** $T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$

Esercizio 2. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

- **A)** y[n] = 0
- **B)** $y[n] = 2\sin\frac{\pi n}{6}$
- C) $y[n] = 2\sin\frac{\pi n}{3}$
- **D)** Nessuna delle altre risposte

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.

Esercizio 4. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$

Esercizio 5. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- A) $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$
- B) $\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$
- C) $\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$
- **D)** $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$

Esercizio 6. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- C) $m_x(t) = 1$; $\sigma_x^2 = 1$
- **D)** $m_x(t) = |t|; \sigma_x^2 = 1$

Esercizio 7. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- **A)** Lo spettro di energia $S_x(f) \neq H(f)$
- **B)** L'energia $\mathcal{E}(x) \neq 1/2$
- C) La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos(2\pi f_0 \tau)$
- **D)** L'energia di $y_2(t)$ è finita
- ${\bf E})$ Nessuna delle affermazioni presentate è corretta

Esercizio 8. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

- A) Nessuna delle altre risposte
- **B)** $y[n] = 2\cos\frac{\pi n}{2}$
- C) $y[n] = 2\cos\frac{\pi n}{4}$
- **D)** y[n] = 0

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- **B)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.

Esercizio 3. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

Esercizio 4. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- A) Nessuna delle affermazioni presentate è corretta
- **B)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- C) La potenza $\mathcal{P}(x) \neq 0$
- **D)** Lo spettro $S_{y_1}(f) \neq \frac{1}{4}H(f f_0) + \frac{1}{4}H(f + f_0)$
- **E)** La potenza $\mathcal{P}(y_2) = 1/2$

Esercizio 5. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1$; $\sigma_x^2 = 1$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- C) $m_x(t) = |t|; \sigma_x^2 = 1$
- **D)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$

Esercizio 6. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- **A)** $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$
- **B)** $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$
- C) $\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$
- **D)** $\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$

Esercizio 7. (Punti 1) Il segnale $x(t) = 1 + \sin(2\pi f_0 t + \pi/3)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

A)
$$T_1 = 1/f_0, T_2 = 1/f_0, b_1 = -1, b_0 = b_2 = 1$$

B)
$$T_1 = 1/f_0, T_2 = 1/(2f_0), b_1 = 0, b_0 = b_2 = 1/2$$

C)
$$T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$$

D) nessuno degli altri insiemi di valori

E)
$$T_1 = 1/f_0, T_2 = 3T_1, b_0 = 1/3, b_1 = 1/6, b_2 = -1/2$$

Esercizio 8. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	36

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

Esercizio 2. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

A)
$$T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$$

B)
$$T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$$

Figura 1: Schema a blocchi del sistema.

C)
$$T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$$

D)
$$T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$$

E) nessuno degli altri insiemi di valori

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **B)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- C) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.

Esercizio 4. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

Esercizio 5. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

A) Nessuna delle altre risposte

B)
$$y[n] = 0$$

C)
$$y[n] = 2\sin\frac{\pi n}{2}$$

D)
$$y[n] = 2\sin\frac{\pi n}{4}$$

Esercizio 6. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Esercizio 7. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- **A)** Lo spettro di energia $S_x(f) \neq H(f)$
- **B)** L'energia $\mathcal{E}(x) \neq 1/2$

- C) Nessuna delle affermazioni presentate è corretta
- **D)** La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos(2\pi f_0 \tau)$
- **E)** L'energia di $y_2(t)$ è finita

Esercizio 8. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- **B)** $m_x(t) = 1; \, \sigma_x^2 = 1$
- C) $m_x(t) = |t|; \sigma_x^2 = 1$
- **D)** $m_x(t) = 0; \, \sigma_x^2 = \frac{1}{3}a^2$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** La potenza $\mathcal{P}(x) \neq 0$
- B) Nessuna delle affermazioni presentate è corretta
- C) La densità spettrale di potenza $G_{y_2}(f) \neq \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- **D)** L'energia $\mathcal{E}(y_1) \neq 1$
- **E)** La funzione di autocorrelazione $R_{y_1}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)\frac{\sin(\pi\tau)}{\pi\tau}$

Esercizio 2. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- **A)** $y[n] = 2\sin\frac{\pi n}{4}$
- **B)** $y[n] = 2\sin\frac{\pi n}{2}$
- C) Nessuna delle altre risposte
- **D)** y[n] = 0

Esercizio 3. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n] x[n-1] 1/2y[n-1]
- C) y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]

Esercizio 4. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- **B)** $m_x(t) = |t|; \sigma_x^2 = 1$
- C) $m_x(t) = 1$; $\sigma_x^2 = 1$
- **D)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

Esercizio 5. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- **A)** $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$
- **B)** $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$
- C) $\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$
- **D)** $\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$

Esercizio 6. (Punti 1) Il segnale $x(t) = 1/2 + \cos(2\pi f_0 t)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/(2f_0), T_2 = 1/(2f_0), b_1 = 1, b_0 = b_2 = 1/2$
- **B)** $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$
- C) $T_1 = 2/f_0, T_2 = 1/f_0, b_1 = 0, b_0 = -1, b_2 = 1$
- **D)** $T_1 = 1/f_0, T_2 = 0, b_1 = -1, b_0 = b_2 = 1$
- E) nessuno degli altri insiemi di valori

Esercizio 7. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A) $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con ${\cal N}$ costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- C) Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	38

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Il segnale $x(t) = 1 + \sin(2\pi f_0 t + \pi/3)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_0, T_2 = 3T_1, b_0 = 1/3, b_1 = 1/6, b_2 = -1/2$
- B) nessuno degli altri insiemi di valori
- C) $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$
- **D)** $T_1 = 1/f_0, T_2 = 1/(2f_0), b_1 = 0, b_0 = b_2 = 1/2$
- E) $T_1 = 1/f_0, T_2 = 1/f_0, b_1 = -1, b_0 = b_2 = 1$

Esercizio 2. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1; \, \sigma_x^2 = \frac{1}{3}a^2$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$
- C) $m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$
- **D)** $m_x(t) = 0; \, \sigma_x^2 = u(t)$

Esercizio 3. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- A) Nessuna delle altre risposte
- **B)** $y[n] = 2\sin\frac{\pi n}{2}$
- **C**) y[n] = 0
- **D)** $y[n] = 2 \sin \frac{\pi n}{4}$

Esercizio 4. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- **A)** La potenza $\mathcal{P}(y_2) = 1/2$
- **B)** Lo spettro $S_{y_1}(f) \neq \frac{1}{4}H(f f_0) + \frac{1}{4}H(f + f_0)$
- C) Nessuna delle affermazioni presentate è corretta
- **D)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- **E)** La potenza $\mathcal{P}(x) \neq 0$

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 6. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$
- C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$

Esercizio 7. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 8. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

- **A)** $y[n] = 2\cos\frac{\pi n}{2}$
- B) Nessuna delle altre risposte
- **C**) $y[n] = 2\cos\frac{\pi n}{4}$
- **D)** y[n] = 0

Esercizio 2. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$
- **B)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$
- C) $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$

Esercizio 3. (Punti 1) Il segnale $x(t) = 1/2 + \sin(2\pi f_1 t + \pi/4)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_1, T_2 = 1/(2f_1), b_1 = -1, b_0 = b_2 = 1/2$
- B) nessuno degli altri insiemi di valori
- C) $T_1 = 0, T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$
- **D)** $T_1 = 1/f_1, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$
- E) $T_1 = 1/f_1, T_2 = 1/(2f_1), b_0 = 1/2, b_1 = 1/2, b_2 = 1$

Esercizio 4. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1; \sigma_x^2 = 1$
- **B)** $m_x(t) = |t|; \sigma_x^2 = 1$
- C) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- **D)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **D)** Si ha DTFT $\{h[n]\} = 0$ per f = k/2N (k intero qualsiasi).

Esercizio 6. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 7. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- **A)** $\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$
- **B)** $\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$
- C) $\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$
- **D)** $\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$

Esercizio 8. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

Figura 2: Sistema

- A) Lo spettro $S_{y_1}(f) \neq \frac{1}{4}H(f-f_0) + \frac{1}{4}H(f+f_0)$
- **B)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- C) La potenza $\mathcal{P}(x) \neq 0$
- D) Nessuna delle affermazioni presentate è corretta
- **E)** La potenza $\mathcal{P}(y_2) = 1/2$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos{(2\pi f_0 \tau)}$
- B) Nessuna delle affermazioni presentate è corretta
- C) Lo spettro di energia $S_x(f) \neq H(f)$
- **D)** L'energia $\mathcal{E}(x) \neq 1/2$
- **E)** L'energia di $y_2(t)$ è finita

Esercizio 2. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) La funzione di trasferimento del filtro è $H(z) = (1 - z^{-N})^2/(1 - z^{-1})$.

B) Si ha
$$e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 - e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$$
.

- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 4. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

A) nessuno degli altri insiemi di valori

B)
$$T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$$

C)
$$T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$$

D)
$$T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$$

E)
$$T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$$

Esercizio 5. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

A) Nessuna delle altre risposte

B)
$$y[n] = 2\cos\frac{\pi n}{4}$$

C)
$$y[n] = 0$$

D)
$$y[n] = 2\cos\frac{\pi n}{2}$$

Esercizio 6. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

B)
$$m_x(t) = 0; \, \sigma_x^2 = \frac{1}{3}a^2$$

C)
$$m_x(t) = |t|; \sigma_x^2 = 1$$

D)
$$m_x(t) = 1; \sigma_x^2 = 1$$

Esercizio 7. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

Esercizio 8. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	41

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

- A) nessuno degli altri insiemi di valori
- **B)** $T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$
- C) $T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$
- **D)** $T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$
- E) $T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$

Esercizio 2. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

Esercizio 3. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 4. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- **A)** L'energia $\mathcal{E}(y_1) \neq 1$
- B) Nessuna delle affermazioni presentate è corretta
- C) La funzione di autocorrelazione $R_{y_1}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)\frac{\sin(\pi\tau)}{\pi\tau}$
- **D)** La densità spettrale di potenza $G_{y_2}(f) \neq \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$

E) La potenza $\mathcal{P}(x) \neq 0$

Esercizio 5. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

- **A)** y[n] = 0
- B) Nessuna delle altre risposte
- **C**) $y[n] = 2\sin\frac{\pi n}{3}$
- $\mathbf{D)} \ y[n] = 2\sin\frac{\pi n}{6}$

Esercizio 6. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1; \ \sigma_x^2 = \frac{1}{3}a^2$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$
- C) $m_x(t) = 0; \sigma_x^2 = u(t)$
- **D)** $m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$

Esercizio 7. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- **A)** $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$
- **B)** $\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$

C) $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1}).$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

Esercizio 2. (Punti 1) Il segnale $x(t) = 1/2 + \cos(2\pi f_0 t)$ viene inviato in ingresso al sistema mostrato in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

A)
$$T_1 = 1/(2f_0), T_2 = 1/(2f_0), b_1 = 1, b_0 = b_2 = 1/2$$

B) nessuno degli altri insiemi di valori

Figura 1: Schema a blocchi del sistema.

C)
$$T_1 = 1/f_0, T_2 = 0, b_1 = -1, b_0 = b_2 = 1$$

D)
$$T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$$

E)
$$T_1 = 2/f_0, T_2 = 1/f_0, b_1 = 0, b_0 = -1, b_2 = 1$$

Esercizio 3. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

B)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

C)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

Esercizio 4. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

B)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

Esercizio 5. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

- A) Nessuna delle affermazioni presentate è corretta
- **B)** La potenza $\mathcal{P}(x) \neq 0$

Figura 2: Sistema

- C) La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- **D)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- **E)** La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$

Esercizio 6. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_{a}(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$
- **B)** $m_x(t) = 1; \ \sigma_x^2 = \frac{1}{3}a^2$
- C) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$
- **D)** $m_x(t) = 0; \sigma_x^2 = u(t)$

Esercizio 7. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

- A) Nessuna delle altre risposte
- **B)** y[n] = 0

C) $y[n] = 2\sin\frac{\pi n}{6}$

D) $y[n] = 2\sin\frac{\pi n}{3}$

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **B)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **D)** La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	43

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- **A)** $y[n] = 2 \sin \frac{\pi n}{2}$
- **B)** $y[n] = 2\sin\frac{\pi n}{4}$
- C) Nessuna delle altre risposte
- **D)** y[n] = 0

Esercizio 2. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A) $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

Esercizio 3. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** La funzione di autocorrelazione $R_{y_1}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)\frac{\sin(\pi\tau)}{\pi\tau}$
- **B)** La potenza $\mathcal{P}(x) \neq 0$
- C) L'energia $\mathcal{E}(y_1) \neq 1$
- **D)** La densità spettrale di potenza $G_{y_2}(f) \neq \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- E) Nessuna delle affermazioni presentate è corretta

Esercizio 4. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- **B)** Si ha $e^{i\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 6. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

- **A)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1]
- C) y[n] = x[n] + x[n-1] + 1/2y[n-1]

Esercizio 7. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$
- **B)** $m_x(t) = 1; \ \sigma_x^2 = \frac{1}{3}a^2$
- **C)** $m_x(t) = 0; \sigma_x^2 = u(t)$
- **D)** $m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$

Esercizio 8. (Punti 1) Il segnale $x(t) = 1 + \sin(2\pi f_0 t + \pi/3)$ viene inviato in ingresso al sistema mostrato in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

A) nessuno degli altri insiemi di valori

Figura 2: Schema a blocchi del sistema.

B)
$$T_1 = 1/f_0, T_2 = 3T_1, b_0 = 1/3, b_1 = 1/6, b_2 = -1/2$$

C)
$$T_1 = 1/f_0, T_2 = 1/(2f_0), b_1 = 0, b_0 = b_2 = 1/2$$

D)
$$T_1 = 1/f_0, T_2 = 1/f_0, b_1 = -1, b_0 = b_2 = 1$$

E)
$$T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	44

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **B)** Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1-z^{-N})^2/(1-z^{-1})$.

Esercizio 3. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- B) La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- C) La potenza $\mathcal{P}(x) \neq 0$
- D) Nessuna delle affermazioni presentate è corretta
- **E)** La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$

Esercizio 4. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

- **A)** $y[n] = 2\cos\frac{\pi n}{2}$
- B) Nessuna delle altre risposte

- **C**) y[n] = 0
- **D)** $y[n] = 2\cos\frac{\pi n}{4}$

Esercizio 5. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0; \ \sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- C) $m_x(t) = |t|; \sigma_x^2 = 1$
- **D)** $m_x(t) = 1; \sigma_x^2 = 1$

Esercizio 6. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 7. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

- **A)** $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} 1)$
- **B)** $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 e^{-j2\pi f})$
- C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 e^{-j2\pi f})$

Esercizio 8. (Punti 1) Il segnale $x(t) = 1/2 + \sin(2\pi f_1 t + \pi/4)$ viene inviato in ingresso al sistema mostrato in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

Figura 2: Schema a blocchi del sistema.

A)
$$T_1 = 1/f_1, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$$

B)
$$T_1 = 1/f_1, T_2 = 1/(2f_1), b_1 = -1, b_0 = b_2 = 1/2$$

C) nessuno degli altri insiemi di valori

D)
$$T_1 = 1/f_1, T_2 = 1/(2f_1), b_0 = 1/2, b_1 = 1/2, b_2 = 1$$

E)
$$T_1 = 0, T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	45

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- **B)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- **C)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 2. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

- A) nessuno degli altri insiemi di valori
- **B)** $T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$

Figura 1: Schema a blocchi del sistema.

C)
$$T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$$

D)
$$T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$$

E)
$$T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$$

Esercizio 3. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Esercizio 4. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

B)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{3}a^2$

C)
$$m_x(t) = |t|; \sigma_x^2 = 1$$

D)
$$m_x(t) = 1; \sigma_x^2 = 1$$

Esercizio 5. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

A) Nessuna delle altre risposte

B)
$$y[n] = 2\cos\frac{\pi n}{2}$$

C)
$$y[n] = 0$$

D)
$$y[n] = 2\cos\frac{\pi n}{4}$$

Esercizio 6. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

Esercizio 7. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

B)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

Esercizio 8. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

A) La funzione di autocorrelazione $R_{y_1}(\tau) \neq \frac{1}{2}\cos(2\pi f_0\tau)\frac{\sin(\pi\tau)}{\pi\tau}$

Figura 2: Sistema

- **B)** La densità spettrale di potenza $G_{y_2}(f) \neq \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- C) La potenza $\mathcal{P}(x) \neq 0$
- $\mathbf{D})$ Nessuna delle affermazioni presentate è corretta
- **E)** L'energia $\mathcal{E}(y_1) \neq 1$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	46

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 2. (Punti 1) Il segnale $x(t) = 1 + 2\cos(2\pi f_1 t + \pi)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 2. Indicare un insieme ammissibile di parametri del sistema:

A) $T_1 = 1/f_1, T_2 = 1/f_1, b_1 = -2, b_0 = b_2 = 2$

B) $T_1 = 0, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$

C) $T_1 = 1/f_1, T_2 = 2/f_1, b_1 = -1, b_0 = b_2 = 1/2$

D) nessuno degli altri insiemi di valori

E) $T_1 = 1/(2f_1), T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$

Esercizio 3. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

A) $y[n] = 2 \sin \frac{\pi n}{4}$

 $\mathbf{B)} \ y[n] = 2\sin\frac{\pi n}{2}$

C) y[n] = 0

D) Nessuna delle altre risposte

Esercizio 4. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$

B) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$

C) $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$

Esercizio 5. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A) $\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$

B) $\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$

C) $\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$

D) $\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$

Esercizio 6. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- **A)** L'energia di $y_2(t)$ è finita
- B) La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos{(2\pi f_0 \tau)}$
- C) L'energia $\mathcal{E}(x) \neq 1/2$
- **D)** Lo spettro di energia $S_x(f) \neq H(f)$
- E) Nessuna delle affermazioni presentate è corretta

Esercizio 7. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- B) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.

D) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Esercizio 8. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- **B)** $m_x(t) = |t|; \, \sigma_x^2 = 1$
- C) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- **D)** $m_x(t) = 1; \, \sigma_x^2 = 1$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

- **A)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- B) La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- C) La potenza $\mathcal{P}(x) \neq 0$
- **D)** La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- E) Nessuna delle affermazioni presentate è corretta

Esercizio 2. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- **A)** $y[n] = 2\sin\frac{\pi n}{4}$
- **B)** $y[n] = 2\sin\frac{\pi n}{2}$
- **C**) y[n] = 0
- D) Nessuna delle altre risposte

Esercizio 3. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 4. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- **B)** $m_x(t) = |t|; \sigma_x^2 = 1$
- C) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$
- **D)** $m_x(t) = 1; \sigma_x^2 = 1$

Esercizio 5. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n] \hspace{1cm} y[2n+1] = -x[n]$$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$

B) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$

C) $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

A) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 - e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.

B) Si ha DTFT $\{h[n]\} = 0$ per f = 0.

C) La funzione di trasferimento del filtro è $H(z) = (1 - z^{-N})^2/(1 - z^{-1})$.

D) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 7. (Punti 1) Il segnale $x(t) = 1/2 + \cos(2\pi f_0 t)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

A) $T_1 = 1/f_0, T_2 = 0, b_1 = -1, b_0 = b_2 = 1$

B) $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$

C) $T_1 = 1/(2f_0), T_2 = 1/(2f_0), b_1 = 1, b_0 = b_2 = 1/2$

D) nessuno degli altri insiemi di valori

E) $T_1 = 2/f_0, T_2 = 1/f_0, b_1 = 0, b_0 = -1, b_2 = 1$

Esercizio 8. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	48

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

- **A)** $y[n] = 2\sin\frac{\pi n}{6}$
- B) Nessuna delle altre risposte
- **C)** y[n] = 0
- **D)** $y[n] = 2\sin\frac{\pi n}{3}$

Esercizio 2. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A) $Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$

B) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$

C) $Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è **falsa**.

A) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

B) Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

C) Si ha DTFT $\{h[n]\}=0$ per f=0.

D) La funzione di trasferimento del filtro è $H(z) = (1 - z^{-N})^2/(1 - z^{-1})$.

Esercizio 4. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A) $\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$

B) $\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$

C) $\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$

D) $\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$

Esercizio 5. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

A) La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos(2\pi f_0 \tau)$

B) Nessuna delle affermazioni presentate è corretta

C) L'energia di $y_2(t)$ è finita

Figura 1: Sistema

- **D)** L'energia $\mathcal{E}(x) \neq 1/2$
- **E)** Lo spettro di energia $S_x(f) \neq H(f)$

Esercizio 6. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + 1/2y[n-1] 1/4y[n-2]
- C) y[n] = x[n] x[n-1] 1/2y[n-1]

Esercizio 7. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 1; \sigma_x^2 = 1$
- **B)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- C) $m_x(t) = |t|; \sigma_x^2 = 1$
- **D)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{3}a^2$

Esercizio 8. (Punti 1) Il segnale $x(t) = 1/2 + \sin(2\pi f_1 t + \pi/4)$ viene inviato in ingresso al sistema mostrato in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

Figura 2: Schema a blocchi del sistema.

- A) nessuno degli altri insiemi di valori
- **B)** $T_1 = 1/f_1, T_2 = 1/(2f_1), b_1 = -1, b_0 = b_2 = 1/2$
- C) $T_1 = 0, T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$
- **D)** $T_1 = 1/f_1, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$
- **E)** $T_1 = 1/f_1, T_2 = 1/(2f_1), b_0 = 1/2, b_1 = 1/2, b_2 = 1$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	49

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **B)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.

Esercizio 2. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

- **A)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- **B)** Lo spettro $S_{y_1}(f) \neq \frac{1}{4}H(f f_0) + \frac{1}{4}H(f + f_0)$
- C) Nessuna delle affermazioni presentate è corretta

Figura 1: Sistema

- **D)** La potenza $\mathcal{P}(y_2) = 1/2$
- **E)** La potenza $\mathcal{P}(x) \neq 0$

Esercizio 3. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- **A)** $\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$
- **B)** $\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$
- C) $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$
- **D)** $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$

Esercizio 4. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- A) Nessuna delle altre risposte
- **B)** y[n] = 0

C) $y[n] = 2\sin\frac{\pi n}{4}$

D)
$$y[n] = 2\sin\frac{\pi n}{2}$$

Esercizio 5. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 0, 1 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = 0.5^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A) y[n] = x[n] + x[n-1] + 1/2y[n-1]

B)
$$y[n] = x[n-1] + 1/2y[n-1] - 1/4y[n-2]$$

C)
$$y[n] = x[n] - x[n-1] - 1/2y[n-1]$$

Esercizio 6. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

B)
$$m_x(t) = |t|; \sigma_x^2 = 1$$

C)
$$m_x(t) = 1$$
; $\sigma_x^2 = 1$

D)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{3}a^2$

Esercizio 7. (Punti 1) Il segnale $x(t) = 1/2 + \sin(2\pi f_1 t + \pi/4)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

A)
$$T_1 = 1/f_1, T_2 = 1/f_1, b_0 = b_1 = b_2 = 1/3$$

B)
$$T_1 = 0, T_2 = 1/f_1, b_0 = 1, b_1 = b_2 = 1/2$$

C) nessuno degli altri insiemi di valori

D)
$$T_1 = 1/f_1, T_2 = 1/(2f_1), b_1 = -1, b_0 = b_2 = 1/2$$

E)
$$T_1 = 1/f_1, T_2 = 1/(2f_1), b_0 = 1/2, b_1 = 1/2, b_2 = 1$$

Esercizio 8. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	50

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Il segnale $x(t) = 1 + \sin(2\pi f_0 t + \pi/3)$ viene inviato in ingresso al sistema mostrato

Figura 1: Schema a blocchi del sistema.

in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 1/f_0, T_2 = 1/(2f_0), b_1 = 0, b_0 = b_2 = 1/2$
- **B)** $T_1 = 1/f_0, T_2 = 1/f_0, b_1 = -1, b_0 = b_2 = 1$
- C) nessuno degli altri insiemi di valori
- **D)** $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$
- **E)** $T_1 = 1/f_0, T_2 = 3T_1, b_0 = 1/3, b_1 = 1/6, b_2 = -1/2$

Figura 2: Sistema

Esercizio 2. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

- **A)** L'energia $\mathcal{E}(x) \neq 1/2$
- B) Nessuna delle affermazioni presentate è corretta
- C) Lo spettro di energia $S_x(f) \neq H(f)$
- **D)** La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos(2\pi f_0 \tau)$
- **E)** L'energia di $y_2(t)$ è finita

Esercizio 3. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

- **A)** $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$
- **B)** $m_x(t) = |t|; \, \sigma_x^2 = 1$
- C) $m_x(t) = 1; \sigma_x^2 = 1$
- **D)** $m_x(t) = 0; \ \sigma_x^2 = \frac{1}{3}a^2$

Esercizio 4. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

B) y[n] = x[n] + x[n-1] + 1/2y[n-1]

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0$.
- B) La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- C) Si ha DTFT $\{h[n]\} = 0$ per f = k/2N (k intero qualsiasi).
- **D)** La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.

Esercizio 6. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$$

Esercizio 7. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Esercizio 8. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \cos\frac{\pi n}{2} + \cos\frac{\pi n}{4}$$

vale

- A) Nessuna delle altre risposte
- $\mathbf{B)} \ y[n] = 2\cos\frac{\pi n}{2}$
- **C**) y[n] = 0
- **D)** $y[n] = 2\cos\frac{\pi n}{4}$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	51

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- **A)** y[n] = 0
- **B)** $y[n] = 2\sin\frac{\pi n}{2}$
- **C**) $y[n] = 2 \sin \frac{\pi n}{4}$
- D) Nessuna delle altre risposte

Esercizio 2. (Punti 1) Il segnale $x(t) = 1 + \sin(2\pi f_0 t + \pi/3)$ viene inviato in ingresso al sistema mostrato in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

A)
$$T_1 = 1/f_0, T_2 = 3T_1, b_0 = 1/3, b_1 = 1/6, b_2 = -1/2$$

Figura 1: Schema a blocchi del sistema.

- **B)** $T_1 = 1/f_0, T_2 = 1/f_0, b_1 = -1, b_0 = b_2 = 1$
- C) $T_1 = 1/f_0, T_2 = 1/(2f_0), b_1 = 0, b_0 = b_2 = 1/2$
- D) nessuno degli altri insiemi di valori
- E) $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$

Esercizio 3. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- **A)** La potenza $\mathcal{P}(x) \neq 0$
- **B)** La potenza $\mathcal{P}(y_2) = 1/2$
- C) Lo spettro $S_{y_1}(f) \neq \frac{1}{4}H(f f_0) + \frac{1}{4}H(f + f_0)$
- D) Nessuna delle affermazioni presentate è corretta
- **E)** L'energia $\mathcal{E}(y_1) \neq 1/2$

Esercizio 4. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

B)
$$m_x(t) = |t|; \sigma_x^2 = 1$$

C)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{3}a^2$

D)
$$m_x(t) = 1; \sigma_x^2 = 1$$

Esercizio 5. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

Esercizio 6. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

B)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

Esercizio 7. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A)
$$\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$$

B)
$$\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$$

C)
$$\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$$

D)
$$\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$$

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha DTFT $\{h[n]\}=0$ per f=0.
- B) La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.
- C) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1}).$
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	52

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.
- **B)** Si ha DTFT $\{h[n]\} = 0$ per f = 0.
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = \frac{4}{1 e^{-j\pi/N}} e^{j\frac{2\pi}{N}n}$.

Esercizio 2. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A) $\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$

B) $\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$

C) $\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$

D) $\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$

Esercizio 3. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

A) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

B) y[n] = x[n] + x[n-1] + 1/2y[n-1]

C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]

Esercizio 4. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

A) $y[n] = 2\sin\frac{\pi n}{6}$

B) Nessuna delle altre risposte

C) y[n] = 0

D) $y[n] = 2\sin\frac{\pi n}{3}$

Esercizio 5. (Punti 1) Il segnale $x(t) = 1/2 + \cos(2\pi f_0 t)$ viene inviato in ingresso al sistema mostrato in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

A) nessuno degli altri insiemi di valori

B)
$$T_1 = 2/f_0, T_2 = 1/f_0, b_1 = 0, b_0 = -1, b_2 = 1$$

C) $T_1 = 1/(2f_0), T_2 = 1/(2f_0), b_1 = 1, b_0 = b_2 = 1/2$

Figura 1: Schema a blocchi del sistema.

D)
$$T_1 = 1/f_0, T_2 = 0, b_1 = -1, b_0 = b_2 = 1$$

E)
$$T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$$

Esercizio 6. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 2: Sistema

affermazioni è corretta.

- **A)** La densità spettrale di potenza $G_{y_2}(f) = \frac{1}{4}\delta(f-f_0) + \frac{1}{4}\delta(f+f_0)$
- B) La funzione di autocorrelazione di x(t) vale $R_x(\tau) \neq \frac{\sin(\pi\tau)}{\pi\tau}$
- C) La potenza $\mathcal{P}(x) \neq 0$
- **D)** L'energia $\mathcal{E}(y_1) \neq 1/2$
- E) Nessuna delle affermazioni presentate è corretta

Esercizio 7. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = -x[n]$$
 $y[2n+1] = x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

C)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

Esercizio 8. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$$

B)
$$m_x(t) = 0; \sigma_x^2 = u(t)$$

C)
$$m_x(t) = 1$$
; $\sigma_x^2 = \frac{1}{3}a^2$

D)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	53

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-6]$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{3} + \sin\frac{\pi n}{6}$$

vale

- **A)** $y[n] = 2\sin\frac{\pi n}{6}$
- B) Nessuna delle altre risposte
- **C**) y[n] = 0
- **D)** $y[n] = 2\sin\frac{\pi n}{3}$

Esercizio 2. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a}p_a(x)u(t) + \frac{1}{2a}p_{2a}(x)u(-t)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A) $m_x(t) = 1$; $\sigma_x^2 = \frac{1}{3}a^2$

B) $m_x(t) = 1 + 2tu(t); \ \sigma_x^2 = \frac{1}{3}a^2[1 + 2u(t)]$

C) $m_x(t) = 0; \sigma_x^2 = u(t)$

D) $m_x(t) = 0$; $\sigma_x^2 = \frac{1}{12}a^2[1 + 3u(-t)]$

Esercizio 3. (1.5 Punti) Sia dato il sistema mostrato in figura 1, dove $f_0 > 1$. Indicare quale delle seguenti

Figura 1: Sistema

affermazioni è corretta.

A) Nessuna delle affermazioni presentate è corretta

B) La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos(2\pi f_0 \tau)$

C) Lo spettro di energia $S_x(f) \neq H(f)$

D) L'energia di $y_2(t)$ è finita

E) L'energia $\mathcal{E}(x) \neq 1/2$

Esercizio 4. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{5} \alpha_i \delta(t - iT)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

A) $\sum_{i=0}^{5} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$

B) $\sum_{i=0}^{5} |\alpha_i|^2 > T \int_0^{1/T} |X(f)|^2 df$

C) $\sum_{i=0}^{5} |\alpha_i|^2 < T \int_0^{1/T} |X(f)|^2 df$

D) $\sum_{i=0}^{5} |\alpha_i|^2 = T \int_0^{1/T} |X(f)|^2 df$

Esercizio 5. (Punti 1) Il segnale $x(t) = 1 + \sin(2\pi f_0 t + \pi/3)$ viene inviato in ingresso al sistema mostrato

Figura 2: Schema a blocchi del sistema.

in figura 2 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- **A)** $T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$
- **B)** $T_1 = 1/f_0, T_2 = 1/f_0, b_1 = -1, b_0 = b_2 = 1$
- C) nessuno degli altri insiemi di valori
- **D)** $T_1 = 1/f_0, T_2 = 3T_1, b_0 = 1/3, b_1 = 1/6, b_2 = -1/2$
- **E)** $T_1 = 1/f_0, T_2 = 1/(2f_0), b_1 = 0, b_0 = b_2 = 1/2$

Esercizio 6. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso-uscita dei due filtri in cascata è

- **A)** y[n] = x[n] + x[n-1] + 1/2y[n-1]
- **B)** y[n] = x[n-1] + x[n-2] + 1/4y[n-1] 1/8y[n-2]
- C) y[n] = x[n-1] + x[n-2] + 1/4y[n-1]

Esercizio 7. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- **A)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- B) La funzione di trasferimento del filtro è $H(z)=(1-z^{-N})^2/(1-z^{-1})$.
- C) Si ha DTFT $\{h[n]\}=0$ per f=0.
- **D)** La funzione di trasferimento del filtro H(z) non ha zeri sul cerchio unitario.

Esercizio 8. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Compito TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	54

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Si consideri una sequenza x[n] con DTFT $X(e^{j2\pi f})$. Si costruisca una sequenza y[n] a partire da x[n] con la regola:

$$y[2n] = x[n]$$
 $y[2n+1] = -x[n]$

La DTFT di y[n], $Y(e^{j2\pi f})$, vale

A)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(1 - e^{-j2\pi f})$$

B)
$$Y(e^{j2\pi f}) = X(e^{j4\pi f})(e^{-j2\pi f} - 1)$$

C)
$$Y(e^{j2\pi f}) = X(e^{j2\pi f})(1 - e^{-j2\pi f})$$

Esercizio 2. (Punti 1.5) Si consideri un processo casuale x(t) con densità di probabilità del primo ordine pari a

$$f_{\xi}(x;t) = \frac{1}{a+|t|} p_{a+|t|}(x)$$

dove $p_y(x)$ vale 1 per |x| < y/2 e zero altrove. Quanto valgono la media e la varianza di x(t)?

A)
$$m_x(t) = 0; \, \sigma_x^2 = \frac{1}{3}a^2$$

B)
$$m_x(t) = |t|; \, \sigma_x^2 = 1$$

C)
$$m_x(t) = 1; \sigma_x^2 = 1$$

D)
$$m_x(t) = 0$$
; $\sigma_x^2 = \frac{1}{12} (a + |t|)^2$

Esercizio 3. (Punti 1) Un filtro numerico è caratterizzato dalla relazione ingresso-uscita

$$y[n] = x[n] - x[n-4],$$

La risposta del filtro al segnale di ingresso

$$x[n] = \sin\frac{\pi n}{2} + \sin\frac{\pi n}{4}$$

vale

- **A)** y[n] = 0
- **B)** $y[n] = 2\sin\frac{\pi n}{2}$
- C) Nessuna delle altre risposte
- **D)** $y[n] = 2\sin\frac{\pi n}{4}$

Esercizio 4. (Punti 1) Si consideri il segnale

$$x(t) = \sum_{i=0}^{9} \alpha_i \delta(t - i2T)$$

dove le α_i sono costanti note. Si calcoli $|X(f)|^2$. Dire quali delle seguenti relazioni è corretta.

- **A)** $\sum_{i=0}^{9} |\alpha_i|^2 = T \int_0^{2/T} |X(f)|^2 df$
- B) $\sum_{i=0}^{9} |\alpha_i|^2 = 2T \int_0^{1/(2T)} |X(f)|^2 df$
- C) $\sum_{i=0}^{9} |\alpha_i|^2 = \int_{-\infty}^{+\infty} |X(f)|^2 df$
- **D)** $\sum_{i=0}^{9} |\alpha_i|^2 > 2T \int_0^{1/(2T)} |X(f)|^2 df$

Esercizio 5. (Punti 1) Il segnale $x(t) = 1/2 + \cos(2\pi f_0 t)$ viene inviato in ingresso al sistema mostrato in figura 1 (dove i blocchi T_i rappresentano dei ritardatori), ottenendo in uscita y(t) = 1. Indicare un insieme ammissibile di parametri del sistema:

- A) nessuno degli altri insiemi di valori
- **B)** $T_1 = 1/f_0, T_2 = 0, b_1 = -1, b_0 = b_2 = 1$
- C) $T_1 = 2/f_0, T_2 = 1/f_0, b_1 = 0, b_0 = -1, b_2 = 1$

Figura 1: Schema a blocchi del sistema.

D)
$$T_1 = 0, T_2 = 1/f_0, b_0 = b_1 = b_2 = 1/3$$

E)
$$T_1 = 1/(2f_0), T_2 = 1/(2f_0), b_1 = 1, b_0 = b_2 = 1/2$$

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico con risposta all'impulso

$$h[n] = \begin{cases} 1 & \text{se } 0 \le n \le N - 1 \\ -1 & \text{se } N \le n \le 2N - 1 \\ 0 & altrove \end{cases}$$

con N costante intera positiva. Dire quale delle seguenti affermazioni è falsa.

- A) Si ha DTFT $\{h[n]\}=0$ per f=k/2N (k intero qualsiasi).
- **B)** Si ha $e^{j\frac{2\pi}{N}n} * h[n] = 0.$
- C) La funzione di trasferimento del filtro H(z) ha zeri sul cerchio unitario.
- **D)** La funzione di trasferimento del filtro è $H(z) = (1 z^{-N})^2/(1 z^{-1})$.

Esercizio 7. (Punti 1) Si considerino due filtri numerici in cascata. Il primo ha risposta all'impulso $h_1[n] = 1$ per n = 1, 2 e zero altrove. Il secondo ha risposta all'impulso $h_2[n] = (1/4)^n u[n]$. Si indichi con x[n] il segnale all'ingresso del primo filtro, z[n] il segnale all'uscita del primo filtro e all'ingresso del secondo, e con y[n] il segnale all'uscita del secondo filtro. La relazione ingresso—uscita dei due filtri in cascata è

A)
$$y[n] = x[n] + x[n-1] + 1/2y[n-1]$$

B)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1]$$

C)
$$y[n] = x[n-1] + x[n-2] + 1/4y[n-1] - 1/8y[n-2]$$

Esercizio 8. (1.5 Punti) Sia dato il sistema mostrato in figura 2, dove $f_0 > 1$. Indicare quale delle seguenti affermazioni è corretta.

A) L'energia di $y_2(t)$ è finita

Figura 2: Sistema

- B) La funzione di autocorrelazione $\Phi_{y_2}(\tau) \neq \frac{1}{2}\cos{(2\pi f_0 \tau)}$
- ${\bf C})$ Nessuna delle affermazioni presentate è corretta
- **D)** Lo spettro di energia $S_x(f) \neq H(f)$
- **E)** L'energia $\mathcal{E}(x) \neq 1/2$