Plots of Time Series Exponential Smoothing Model ETS

In statistics, a time series is a sequence of data points measured at successive points in time spaced at uniform intervals. Examples of time series are the daily closing value of a stock market index or the annual flow volume of a river. Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data.

2

Decomposition Plot separates time series data into several components.
Decomposition method is often used to yield information about time series components i.e. trend, cycle, seasonal, etc.

- Observed: This is the actual data.
- Level: This is the overall baseline without seasonal trends.
- Slope: This is the rate of change associated with the Level.
- Season: This shows the seasonal trend of the data.

Not all of the above components will occur each time.

Forecasts from ETS(M,A,M)

The Forecast Plot shows the historic data in black and the expected value in blue. The orange in the plot shows the 90% confidence interval, and the yellow shows the 95% confidence interval.

Summary of Time Series Exponential Smoothing Model ETS

Method: ETS(M,A,M)

4

6

7

In-sample error measures:

ME RMSE MAE MPE MAPE MASE ACF1 281.3033372 40906.5798105 28212.6317577 -0.9199379 11.2444007 0.4115798 0.2971592

Information criteria:

AIC AICc BIC 1649.9458 1662.9671 1686.9104

Record Report

Smoothing parameters:

Parameter Value alpha 0.521724 beta 0.000108 gamma 0.383041

9

Initial states:

State	Value
l I	108787.932406
b	4827.625519
s0	1.490441
s1	1.820727
s2	1.712194
s3	1.336567
s4	0.971124
s5	0.642641
s6	0.424334
s7	0.431702
s8	0.46189
s9	0.615683
s10	0.801504