Radioactivity

Adam Kelly

November 30, 2018

1 A Short History

DEFINITION

Radioactivity.

The spontaneous breaking up of certain unstable nuclei, accompanied by the emission of radiation.

- It can be said that the purpouse or radiation is to make an atom more stable.
- Radioactivity was first discovered by a French physicist called Henri Becquerel in 1896.
- A substance that gives off rays is said to be radioactive.
- Uranium was the first radioactive substance discovered.

1.1 Marie Curie

- Pierre and Married Currie, 1898.
- Investigated the radioactivity of uranium salts.
- Isolated radioactive isotopes.
- Discovered Polonium and Radium.
- Discovered Alpha, Beta and Gamma radiation.

DEFINITION

Radioisotope.

A radioactive isotope

2 Radioactivity

- Radiation is emitted in three forms:
 - Alpha particles (α)
 - Beta particles (β)
 - Gamma particles (γ)

2.1 Alpha Particles (α)

- Consist of two protons and two neutrons, stuck together.
- Same as nucleus of a Helium atom.
- Therefore alpha particles can be represented as ${}_{2}^{4}$ He.

Figure 1: Diagram of Alpha Radiation

- Emitted out of an unstable nucleus of a radioactive element as it becomes more stable.
- Example: Smoke detectors contain Americum-241 which is a source of radioactive alpha particles.

2.2 Beta Particles (β)

- Just an electron.
- A beta particle is formed when an unstable neutron is changed into a proton and an electron, the electron is then emitted.
- Carbon-14 emits beta particles.

Figure 2: Diagram of Beta Radiation

2.3 Gamma Radiation (γ)

- Gamma radiation is a form of energy similar of X-Rays.
- Therefore it doesn't contain particles.
- An unstable nucleus emits gamma radiation to lose surplus energy.

Figure 3: Diagram of Gamma Radiation

- If it is absorbed in large quantities into the body it can alter chemicals in our bodies and cause cancer.
- It can also be used to kill cancer cells by focusing the gamma rays on specific areas of the body.

• Cobalt-60 gives off gamma rays.

2.4 Penetrating Ability of Radioactive Particles

Radiation	Stopped By
Alpha (α)	Paper
Beta (β)	$5 \mathrm{mm}$ Aluminum
Gamma (γ)	Thick Lead

Figure 4: Diagram of Radioactive particles penitrating materials

3 Decay

3.1 Alpha Decay

$$_{\rm Z}^{\rm AX} \longrightarrow _{\rm Z-2}^{\rm A-4} {\rm Y} + _{\rm 2}^{\rm 4} {\rm He}$$

 $\begin{array}{c} ^A_ZX & \longrightarrow \ ^{A-4}_{Z-2}Y \ + \ ^4_2He \\ Z \ - \ atomic \ number \ and \ A \ is \ atomic \ mass. \end{array}$

3.2 Beta Decay

$$^{\rm A}_{\rm Z} {\rm X} \, \longrightarrow \, ^{\rm A}_{\rm Z+1} {\rm Y} \, + \, ^{\rm 0}_{\rm -1} \beta$$

Nuclear Reactions vs. Chemical Reactions

Chemical Reaction	Nuclear Reaction
Involves electrons rather than	Changes take place in nucleus and electrons not
nucleus.	involved.
No new element is formed.	A new element is formed.
No release of nuclear radiation.	Nuclear radiation is released.
Chemical bonds broken and	No chemical bond breaking or bond formation
formed.	involved.

Half Life

DEFINITION

Half Life.

The time taken for half of the nuclei in any given sample to decay.

- This occurs at different rates and different rates and different times for each elements.
- \bullet It is not a fixed process and not fully understood by scientists.