Game theory

A course for the MSc in ICT for Internet and multimedia

Leonardo Badia

leonardo.badia@gmail.com

Rationalizing solutions

Best responses and beliefs

meglio, non gjorare streategre rempre dominate

Single- vs. multi-player games

- For single-agent problems, once the setup is known, the solution can be found directly
- Not so for multi-player games
 - Here the solution depends on other players
 - Sometimes rationality can help (eg. we identify a dominated strategy → we do not play it)
 - We can extend this reasoning by assuming rationality of other players, which leads to IESDS
 - But still most of the times no solution is found

Best response

Strategy $s_i \in S_i$ is i's best response to the opponent moves $(s_1,...,s_{i-1},s_{i+1},...,s_n)$ if:

$$u_i(s_1,...,s_{i-1},s_i,s_{i+1},...,s_n) \ge u_i(s_1,...,s_{i-1},s_i',s_{i+1},...,s_n)$$

for every $s_i' \in S_i$

- Notation: $(s_1,...,s_{i-1},s_{i+1},...,s_n) \in S_1 \times ... \times S_{i-1} \times S_{i+1} \times ... \times S_i$
- This is often shortened to " $\mathbf{s}_{-i} \in \mathcal{S}_{-i}$ "
- Thus: $s_i \in S_i$ is a best response to $s_{-i} \in S_{-i}$ if $u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i}) \quad \forall s_i' \in S_i$

Best response

- There may be more than one best response!
 - All with identical value of $u_i(s_i, s_{-i})$ of course

c the		L	player B C	R
S;=U/D	₹ U	~3 ₅ 3	5, 1	62
5.; = R	layer v		8,4	(MG3,6) A1
	ם D	4)0	9,6	vi 6 8

■ So, U and D are both best responses to player B's strategy to play R. While for strategy L?

Best response

- Claim: a rational player who believes that the opponents are playing some $s_{-i} \in S_{-i}$, will always choose a best response to s_{-i}
- □ Theorem: if $\underline{s_i} \subseteq S_i$ is a strictly dominated strategy, it is no best response to any $\underline{s_{-i}} \subseteq S_{-i}$
 - Proof: there must be $s_i' \subseteq S_i$ dominating it
 - It is immediate to see that the definition of best response applied to s_i is violated by s_i .

Beliefs

- A **belief** of player i is a possible profile of opponents' strategies, ie., an element of set S_{-i}
 - Beliefs are connected to best responses!
- We define a best-response-correspondence BR: $S_{-i} \to p(S_i)$ that associates to $s_{-i} \in S_{-i}$ a subset of S_i such that each $s_i \in BR(s_{-i})$ is a best response to s_{-i}
 - This is not a function: but $BR(s_{-i})$ can be a singleton (if the best response is unique)

Nash equilibrium

the key tool of game theory

Nash equilibrium

- We want to strengthen the dominated strategy concept with this idea in mind:
 - game theory should make predictions about the outcome of games played by a rational players
 - a prediction is correct if the players are willing to play their predicted strategy
- That is, players choose their best response to the predicted strategy of the others
 If this happens, the prediction is said to be
- If this happens, the prediction is said to be self-enforcing (or also strategically stable)

Formal definition

- In a n-player game $G = \{S_1, ..., S_n; u_1, ..., u_n\}$, strategies $(s_1^*, ..., s_n^*)$ are a **Nash equilibrium** if, for any i, s_i^* is the best response of player i to $(s_1^*, ..., s_{i-1}^*, s_{i+1}^*, ..., s_n^*)$
- □ That is, $\forall s_i \in S_i$: $u_i(s_1^*, ..., s_{i-1}^*, s_i^*, s_{i+1}^*, ..., s_n^*)$ $\geq u_i(s_1^*, ..., s_{i-1}^*, s_i^*, s_{i+1}^*, ..., s_n^*)$

$$s_i^* = \operatorname{argmax}_{s_i} u_i(s_1^*, \dots, s_{i-1}^*, s_i, s_{i+1}^*, \dots s_n^*)$$

Motivation

- □ Take a possible combination $(s_1',...,s_n')$
- If this is not a Nash equilibrium then there exist some player i, such that s_i is **not** the best response to $(s_1', ..., s_{i-1}', s_{i+1}', ..., s_n')$.
- \square That is, $\exists s_i'' \in S_i$ such that

$$u_{i}(s_{1}',...,s_{i-1}',s_{i}',s_{i+1}',...s_{n}')$$

 $< u_{i}(s_{1}',...,s_{i-1}',s_{i}'',s_{i+1}',...s_{n}')$

□ Thus, there exists an incentive for player i to deviate from $(s_1',...,s_n')$

Comment

- Remember this is a static (one-shot) game
- A NE can also be seen as the case where nobody has regrets on his/her choice
 - it is intended as a forecast of the outcome, not as the final result of several moves
 - repeated games will disprove this wrong (but diffuse) misconception
- We will also discuss how useful it is to know that there is such a "natural" outcome

Combination (M,R) is a Nash equilibrium player B

	L	R		
∀ U	6, 0	0, 5		
player A U W C	1,0	4,3		
pla D	0, 7	2,0		

- (M,R) satisfies the NE condition
- A first way to find Nash equilibria is brute force search: here, (M,R) is the only one

Another way is to focus on "best responses"

 (D,R) is the only Nash equilibrium, found by checking the cell with both entries highlighted

- Here there is no Nash equilibrium
- We will see that there is actually one, but we need to "extend" the game somehow

- □ (R,R) and (S,S) are both Nash equilibria
- This reflects our previous intuition

 However, here the NE concept is less useful as it cannot be used to make predictions

Combination (F,F) is a Nash equilibrium

 It seems that Nash equilibrium extends iterated elimination of strictly dominated strategies (i.e., if any exists, it is a NE)

Theorem

- □ In a finite game, if $(s_1^*,...,s_n^*)$ is:
 - the only survivor of IESDS
 - or the only rationalizable profile \Rightarrow interests then $(s_1^*, ..., s_n^*)$ is a NE supple
- □ Lemma: a $NE(s_1^*,...,s_n^*)$ survives iterated elimination of strictly dominated strategies
- Another result: IESDS is order irrelevant

To sum up

- Two requirements must be satisfied by a NE
 - Everyone plays a best response to their beliefs
 - Everyone's beliefs are correct
- Actually the first requirement is quite logical and consequent from rationality, while the second requirement is quite demanding
 - It may be inferred only from some external reasoning (for example, one player being particularly "influential" in the game)

Dominance, efficiency

further comparisons

Strict/weak dominance

□ For brevity, we write thereafter

$$S_{-i} = (S_j)_{j \neq i} = (S_1, S_2, ..., S_{i-1}, S_{i+1}, ..., S_n)$$

- Recall that s_i strictly dominates s_i if $u_i(s_i',s_{-i}) > u_i(s_i,s_{-i})$ for every s_{-i}
- \square We say that s_i weakly dominates s_i if

$$u_{i}(s_{i}',s_{-i}) \ge u_{i}(s_{i},s_{-i})$$
 for **every** s_{-i}
 $u_{i}(s_{i}',s_{-i}) > u_{i}(s_{i},s_{-i})$ for **some** s_{-i} (*)

 \square Without (*), we say that s_i dominates s_i

Dominance/Nash equilibrium

 A strategy that (strictly, weakly) dominates every other strategy of a user is said to be (strictly, weakly) dominant

Lemma

If every user i has a dominant strategy s_i^* then $(s_1^*,...,s_i^*,...,s_n^*)$ is a Nash equilibrium.

- It directly follows from the definition of NE
- The reverse statement is false (only sufficient condition, not necessary)

Do not eliminate weakly dom.

- Enlarge the Odd/Even game with a third strategy "Punch the opponent" (P)
- P is weakly dominated, yet it is a NE
- □ If we eliminate it, we lost the only NE

(a strange NE: later	ne	0	Even l	P	
course we will see similar situation)	a T	0	-5, 5	5, -5	-5, -5
, and the second	Odc	1	5, -5	-5, 5	-5, -5
		P	-5, -5	-5, -5	-5, -5

NE vs. Pareto efficiency

- Pareto efficiency is different from NE:
 - Pareto efficiency: no way (in the whole game) a user can improve without somebody else being worse
 - Nash equilibrium: no way a user can improve with a unilateral change
 - The outcome of the Prisoner's Dilemma is not "efficient!"

These strategies are Pareto efficient

(F,F) is the only Nash equilibrium

NE vs. Pareto efficiency

non formulato bene

- Pareto inefficient Nash equilibria arise as we assume players are only driven by egoism
- To estimate the inefficiency of being selfish (or distributed) one can compare Nash equilibria with Pareto efficient strategies
- □ To this end, assume that a joint strategy s has a social cost K(s)
 - E.g., $K(s) = \sum_{i} -u(s_{i})$, or $K(s) = \max_{j} -u(s_{j})$ (this means overall welfare) (this is minmax tairness)

Price of anarchy

The price of anarchy is the ratio between the social costs in the worst NE s* and in the best Pareto efficient strategy (i.e., social optimum)

$$A = K(s^*) / (\min K(s))$$

- If the <u>best NE</u> is considered, it is sometimes spoken of **price of stability**
- For certain classes of problems, there are theoretical results on the price of anarchy

Fun game

- A (crazy) professor decides your grade in the exam he teaches will be decided by a game
- You are paired with an unknown classmate
- You secretly choose an integer from 18 to 30, and so does the classmate
- Then the numbers are checked
 - If they match, this is the score you both get.
 - If they don't, let L be the lower number. Who proposed L gets L+R, the other gets L-R (score <18 means rejection, >30 means honors)
- □ Play the game with R=2... Now with R=10

Solution of the game

- If R > 1, there is a unique Nash equilibrium,
 which is to play 18 for both students
- However, cooperative behaviors may arise, even though they are not NE
 - Criticism against rationality of players
- Usually, a high R (for example 10) dampens the cooperation