Сложные случаи: PALC, S5CD, PALCD

Мини-курс «Эпистемическая логика: исчисления и модели»

Виталий Долгоруков, Елена Попова

Международная лаборатория логики, лингвистики и формальной философии НИУ ВШЭ

Летняя школа «Логика и формальная философия» Факультет свободных искусств и наук сентябрь 2022

Определение (G-путь, $x \sim_G y$)

Пусть $x, y \in W$, $G \subseteq Ag$. Будем говорить, что существует G-путь из x в y (обозначение: $x \sim_G y$), если найдутся такие $y_1, \ldots y_n \in W$ и $i_1, \ldots, i_n \in G$, что $x \sim_{i_1} y_1 \sim_{i_2} \cdots \sim_{i_n} y_n = y$.

Определение ($G-\varphi$ -путь)

Пусть $x,y \in W$, $G \subseteq Ag$. Будем говорить, что существует $G - \varphi$ -путь из x в y (обозначение: $x \sim_{G,\varphi} y$), если найдутся такие $y_1,\ldots y_n \in W$ и $i_1,\ldots,i_n \in G$, что 1) $x \sim_{i_1} y_1 \sim_{i_2} \cdots \sim_{i_n} y_n = y$ и 2) $M, x, y_1,\ldots,y_n \models \varphi$.

Упражнение

Докажите, что
$$\big(\bigcup_{i\in G}\sim_i^{!arphi}\big)^*=\sim_{G,arphi}$$

1.
$$M, x \models [!\varphi]C_G\psi \iff$$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 6. $\forall y((M, x \models \varphi \land x \sim_{G, \varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 6. $\forall y((M, x \models \varphi \land x \sim_{G, \varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 7. $\forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 6. $\forall y((M, x \models \varphi \land x \sim_{G, \varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 7. $\forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 8. $\forall y((x \sim_{G,\varphi} y \land M, y \models \varphi) \Rightarrow M^{!\varphi}, y \models \psi) \iff$

1.
$$M, x \models [!\varphi]C_G\psi \iff$$

2.
$$M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$$

3.
$$M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$$

4.
$$M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$$

5.
$$\forall y (M, x \models \varphi \Rightarrow (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$$

6.
$$\forall y((M, x \models \varphi \land x \sim_{G, \varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$$

7.
$$\forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$$

8.
$$\forall y((x \sim_{G,\varphi} y \land M, y \models \varphi) \Rightarrow M^{!\varphi}, y \models \psi) \iff$$

9.
$$\forall y (x \sim_{G,\varphi} y \Rightarrow (M, y \models \varphi \Rightarrow M^{!\varphi}, y \models \psi)) \iff$$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 6. $\forall y((M, x \models \varphi \land x \sim_{G, \varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 7. $\forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 8. $\forall y((x \sim_{G,\varphi} y \land M, y \models \varphi) \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 9. $\forall y (x \sim_{G,\varphi} y \Rightarrow (M, y \models \varphi \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 10. $\forall y (x \sim_{G,\varphi} y \Rightarrow M, y \models [!\varphi]\psi)$

- 1. $M, x \models [!\varphi]C_G\psi \iff$
- 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
- 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G, \varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 6. $\forall y((M, x \models \varphi \land x \sim_{G, \varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 7. $\forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 8. $\forall y((x \sim_{G,\varphi} y \land M, y \models \varphi) \Rightarrow M^{!\varphi}, y \models \psi) \iff$
- 9. $\forall y (x \sim_{G,\varphi} y \Rightarrow (M, y \models \varphi \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 10. $\forall y (x \sim_{G,\varphi} y \Rightarrow M, y \models [!\varphi]\psi)$

- - 1. $M, x \models [!\varphi]C_G\psi \iff$
 - 2. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models C_G \psi \iff$
 - 3. $M, x \models \varphi \Rightarrow \forall y (x (\bigcup_{i \in G} \sim_i^{!\varphi})^* y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 4. $M, x \models \varphi \Rightarrow \forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 5. $\forall y (M, x \models \varphi \Rightarrow (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
 - 6. $\forall y((M, x \models \varphi \land x \sim_{G, \varphi} y) \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
 - 7. $\forall y (x \sim_{G,\varphi} y \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 8. $\forall y((x \sim_{G,\varphi} y \land M, y \models \varphi) \Rightarrow M^{!\varphi}, y \models \psi) \iff$
 - 9. $\forall y (x \sim_{G,\varphi} y \Rightarrow (M, y \models \varphi \Rightarrow M^{!\varphi}, y \models \psi)) \iff$
- 10. $\forall y (x \sim_{G,\varphi} y \Rightarrow M, y \models [!\varphi]\psi)$

PALC

Утверждение

Формула $[!\varphi]C_G\psi\leftrightarrow (\varphi\to C_G[!\varphi]\psi)$ не является общезначимой.

Доказательство.

Рассмотрим модель M, x

- 1. $M, x \models [!p]C_{ab}q$
- 2. $M, x \models p$
- 3. $M,x \not\models C_{ab}[!p]q$, поскольку $M,x \models \hat{K}_a\hat{K}_b\langle !p \rangle \neg q$

Публичные объявления и общее знание

Лемма

$$\frac{\models \chi \to [!\varphi]\psi \quad \models (\chi \land \varphi) \to E_G \chi}{\models \chi \to [!\varphi]C_G \psi}$$

Исчисление PALC

- S5
- $[!\varphi]p \leftrightarrow (\varphi \rightarrow p)$
- $[!\varphi]\neg\psi\leftrightarrow(\varphi\rightarrow\neg[!\varphi]\psi)$
- $[!\varphi](\psi \wedge \chi) \leftrightarrow ([!\varphi]\psi \wedge [!\varphi]\chi)$
- $[!\varphi]K_i\psi \leftrightarrow (\varphi \rightarrow K_i[!\varphi]\psi)$
- Аксиомы и правила вывода S5C
- Правила вывода: MP, NEC, RE!
- Правило вывода

$$\frac{\chi \to [!\varphi]\psi \quad (\chi \land \varphi) \to E_G \chi}{\chi \to [!\varphi]C_G \psi}$$

Полнота и корректность

Теорема о полноте: схема доказательства

- Замыкание
- Случай $[!\varphi] C_G \psi$

Утверждение: $\vdash [!\varphi]C_G\psi \to (\varphi \to K_i[!\varphi]C_G\psi)$ для $i \in G$

- 1. $C_G \psi \rightarrow K_i C_G \psi$
- 2. $[!\varphi]C_G\psi \rightarrow [!\varphi]K_iC_G\psi$
- 3. $[!\varphi]K_iC_G\psi \rightarrow (\varphi \rightarrow K_i[!\varphi]C_G\psi)$
- 4. $[!\varphi]C_G\psi \rightarrow (\varphi \rightarrow K_i[!\varphi]C_G\psi)$

Лемма: $[!\varphi]C_G\psi \in X \Rightarrow \forall Y(X \sim_{G,\varphi}^{\Phi} Y \Rightarrow [!\varphi]\psi \in Y)$

```
[!\varphi]C_G\psi\in X
 2 Y X \sim_{G,\varphi}^{\Phi} Y
                                                                                                              \triangleright [!\varphi]\psi \in Y
 X\sim^{\Phi}_{i_1}Y_1\sim^{\Phi}_{i_2}\cdots\sim^{\Phi}_{i_n}Y_n=Y т.ч. \varphi\in X, \varphi\in Y_i и i_1,\ldots,i_n\in G из 2 по опр.
 4 \varphi \to K_i[!\varphi]C_G\psi \in X
                                                                                                              по утв. на сл. 10 и \varphi \to K_i[!\varphi]C_G\psi \in X \in \Phi
 5 \varphi \in X
                                                                                                              из 3
 6 K_{i_1}[!\varphi]C_G\psi \in X
                                                                                                              из 4.5 по МР
      X \sim_{i}^{\Phi} Y_1
                                                                                                              из 3
 8 [!\varphi]C_G\psi \in Y_1
                                                                                                              из 6,7 по опр.
                                                                                                              повторяем шаги 5–8 для Y_2 и т.д. до Y_n = Y
10 [!\varphi]C_G\psi \in Y
                                                                                                              из 9
11 [!\varphi]\psi \in Y
                                                                                                              из 10, \vdash C_G \psi \rightarrow [!\varphi]\psi и [!\varphi]\psi \in \Phi
12 \forall Y(X \sim_{G}^{\Phi} Y \Rightarrow [!\varphi]\psi \in Y)
                                                                                                              2−11 B\forall \Rightarrow
```

$$[!\varphi]C_G\psi\in X\Rightarrow M^{\Phi},X\models [!\varphi]C_G\psi$$

Что мы уже доказали?

- 1. $M, x \models [!\varphi] C_G \psi$ e.r.e. $\forall y (x \sim_{G,\varphi} y \Rightarrow M, y \models [!\varphi] \psi)$
- 2. $[!\varphi]C_G\psi \in X \Rightarrow \forall Y(X \sim_{G,\varphi}^{\Phi} Y \Rightarrow [!\varphi]\psi \in Y)$
- 1 $[!\varphi]C_G\psi \in X$
- $2 \quad \forall Y(X \sim_{G, \varphi}^{\Phi} Y \Rightarrow [!\varphi]\psi \in Y)$
- 3 $\forall Y(X \sim_{G,\varphi}^{\Phi} Y \Rightarrow M^{\Phi}, Y \models [!\varphi]\psi)$ по ПИ
- 4 $M^{\Phi}, X \models [!\varphi]C_G\psi$

 $[!\varphi]C_G\psi \in X \Leftarrow M^{\Phi}, X \models [!\varphi]C_G\psi$

Лемма $(\chi \wedge \varphi) \to E_G \neg \underline{Y}$

Достаточно доказать, для любых $X \in S, Y \in \overline{S}, i \in G \vdash (\underline{X} \land \varphi) \to K_i \neg \underline{Y}$

1	$X \in S$	9	$X \sim^{\Phi}_{i} Y$	
2	$Y \in \overline{S}$	10	$M^{\Phi},X\modelsarphi$	из 6 по ПИ
3	$\forall (\underline{X} \land \varphi) \rightarrow K_i \neg \underline{Y} \rhd \ll \bot \gg$	11	$\models [!\varphi]C_G\psi \rightarrow (\varphi \rightarrow K_i[!\varphi]C_G\psi)$	
4	$X, \varphi, \neg K_i \neg \underline{Y} \not\vdash \bot$	12	$M^{\Phi}, X \models \varphi \rightarrow K_i[!\varphi]C_G\psi$	
5	$X, \varphi, \hat{K}_i \underline{Y} \not\vdash \bot$	13	$M^{\Phi}, X \models K_i[!\varphi]C_G\psi$	
6	$X, \varphi ot \perp$	14	$M^{\Phi}, Y \models [!\varphi]C_G\psi$	
	$\varphi \in X$	15	$Y \in S$	
8	$X, \hat{K}_i \underline{Y} \not\vdash \bot$	16	«⊥»	1, 14

Условное общее знание

Определение (RC)

$$M, x \models C_G^{\psi} \varphi \text{ e.t.e. } \forall y (x (\bigcup_{i \in G} \sim_i \cap (W \times [\psi]_M))^+ y \Rightarrow M, y \models \varphi)$$

Утверждение

Общее знание выразимо через условное общее знание:

$$C_{G}\varphi \equiv C_{G}^{\top}\varphi$$

Доказательство: упражнение

Исчисление для условного общего знания

Исчисление $S5_mRC$

Аксиомные схемы:

$$(S5_K)$$
 Аксиомные схемы $S5$ для K_i (K_{RC}) $C_G^\chi(\varphi \to \psi) \to (C_G^\chi \varphi \to C_G^\chi \psi)$ (mix_{RC}) $C_G^\psi \varphi \leftrightarrow E_G(\psi \to (\varphi \land C_G^\psi \varphi))$ (ind_{RC}) $C_G^\psi(\varphi \to E_G(\psi \to \varphi)) \to (E_G(\psi \to \varphi) \to C_G^\psi \varphi)$

Правила вывода:

$$\frac{\varphi \qquad \varphi \to \psi}{\psi} \ MP \qquad \qquad \frac{\varphi}{K_i \varphi} \ G_K \qquad \qquad \frac{\varphi}{C_G^{\psi} \varphi} \ G_C F_C = \frac{\varphi}{C_G^{\psi} \varphi} \ G_C = \frac{\varphi}{C_G^{\psi} \varphi} \$$

Аксиома редукции для условного общего знания

Исчисление
$$S5_m[]$$
- RC (PAL - RC) ($S5_mRC$) Аксиомные схемы и правила вывода исчисления $S5_mRC$ (R_{RC}) $[!\varphi]C_C^{\chi}\psi\leftrightarrow(\varphi\to C_C^{\varphi\wedge[!\varphi]\chi}[!\varphi]\psi)$

Упражнение

Сформулируйте аксиому редукции для общего знания: $[!arphi] \mathcal{C}_{\mathsf{G}} \psi \leftrightarrow$?

Упражнение

Для формулы $[!p]C_Gq$ найдите эквивалентную, но из языка $\mathcal{EL} ext{-}\mathcal{RC}$.

Сравнение языков по выразительной силе

•
$$\mathcal{EL}$$
- $\mathcal{C} \prec \mathcal{PAL}$ - \mathcal{C}

$$[!(\neg p o K_a \neg p)]C_{ab} \neg p$$

- \mathcal{EL} - $\mathcal{RC} \equiv \mathcal{PAL}$ - \mathcal{RC}
- $PAL-C \prec EL-RC$

$$C_{ab}^p \neg K_a p$$

Подробнее: [vanDitmarsch2008]