

IUT GEII – Outils Mathématiques et Logiciels I (OML1)

Les nombres complexes

Andrés F. López-Lopera Laboratoire de Mathématiques pour l'Ingénieur (LMI) Université Polytechnique Hauts-de-France (UPHF)

Thèmes

- 1. Les nombres complexes
- 2. Formules d'Euler et de Moivre
- 3. Racines d'un nombre complexe
- 4. Résolution d'équations du second degré

Les nombres complexes

Les nombres complexes

- \cdot Les nombres complexes sont largement utilisés en ingénierie (électrique, électronique, automatique, mécanique), en physique, ...
- · Quelques cas d'applications sont :
 - La résolution des équations différentielles
 - L'étude des circuits électriques

 \cdot L'impédance Z est donnée par

$$Z = R + j\omega L$$

- $\omega \in \mathbb{R}^+$: la pulsation du signal [rad/s]
- $v_L(t)$ $R \in \mathbb{R}^+$: la résistance [ohm, Ω]
 - · $L \in \mathbb{R}^+$: le bobinage inductif ou l'inductance [henry, H]
 - $\cdot \ \ j \in \mathbb{C}$: le nombre imaginaire

Les nombres complexes

 \cdot Un nombre complexe $z\in\mathbb{C}$ est donné par la forme algébrique :

$$z = a + jb,$$

où

- · $a \in \mathbb{R}$: partie réelle de z
- · $b \in \mathbb{R}$: partie imaginaire de z
- · $j \in \mathbb{C}$: nombre imaginaire défini comme $j = \sqrt{-1}$

Représentation géométrique

· D'après Pythagore, on obtient :

(module)
$$\rho = \sqrt{a^2 + b^2}$$

(argument)
$$\frac{\theta}{\theta} = \arg(z) = \arctan \frac{b}{a}$$

· Selon les *coordonnées polaires* $M(\rho, \theta)$:

$$z = \rho / \theta$$

· Posons z = a + ib, on dénote les opérateurs Re () et Im () tels que

$$\operatorname{Re}(z) = a, \quad \operatorname{Im}(z) = b$$

· L'élévation du nombre imaginaire j à une puissance n est donné par :

$$j^2 = (\sqrt{-1})^2 = -1$$
, $j^3 = j \cdot j^2 = -j$, $j^4 = j^2 \cdot j^2 = 1$, $j^5 = j \cdot j^4 = j$,

plus généralement, pour $n \in \mathbb{N}$, on obtient [Exercice] :

$$j^{4n} = 1,$$
 $j^{4n+1} = j,$ $j^{4n+2} = -1,$ $j^{4n+3} = 1$

· Le conjugué de z est le nombre complexe noté par

$$\overline{z}=a-jb,$$

et en particulier on a :

$$z \cdot \overline{z} = (a+jb)(a-jb) = a^2 + b^2$$

· L'addition de deux nombres complexes est ainsi définie :

$$(a + jb) \pm (c + jd) = (a + c) \pm j(b + d)$$

Représentation graphique de l'addition

$$z_1 = a + jb$$

$$z_2 = c + jd$$

$$z_1 + z_2 = (a + c) + j(b + d)$$

· La multiplication de deux nombres complexes est ainsi définie [Exercice] :

$$(a+jb)(c+jd) = (ac-bd) + j(ad+bc)$$

· La division de deux nombres complexes est ainsi définie [Exercice] :

$$\frac{a+jb}{c+jd} = \frac{(ac+bd)+j(bc-ad)}{c^2+d^2} = \frac{(ac+bd)}{c^2+d^2} + j\frac{(bc-ad)}{c^2+d^2}$$

· On dit que $z_1 = a + jb$ et $z_2 = c + jd$ sont égaux si et seulement si :

$$a = c$$
 et $b = d$

Solution.

· Multiplication:

$$(a+jb)(c+jd) = ac + jad + jbc + j2bd$$

= $(ac - bd) + j(ad + bc)$

· Division:

$$\frac{a+jb}{c+jd} = \frac{a+jb}{c+jd} \cdot \frac{c-jd}{c-jd}$$
$$= \frac{ac-jad+jbc-j^2bd}{c^2+d^2}$$
$$= \frac{(ac+bd)+j(bc-ad)}{c^2+d^2}$$

Application: montage en parallèle

· L'impédance équivalente Z_{eq} d'un montage en parallèle est donnée par :

$$Z_{eq} = \frac{Z_1 \cdot Z_2}{Z_1 + Z_2} = \frac{(a+jb)(c+jd)}{(a+jb) + (c+jd)}$$

Exercice. Mettre Z_{eq} sous la forme $Z_{eq} = \alpha + j\beta$.

Application: montage en parallèle

Solution.

$$\begin{split} Z_{eq} &= \frac{Z_1 \cdot Z_2}{Z_1 + Z_2} \\ &= \frac{(a+jb)(c+jd)}{(a+jb) + (c+jd)} \\ &= \frac{(ac-bd) + j(ad+bc)}{(a+c) + j(b+d)} \\ &= \frac{[(ac-bd) + j(ad+bc)][(a+c) - j(b+d)]}{(a+c)^2 + (b+d)^2} \\ &= \frac{[(ac-bd)(a+c) + (ad+bc)(b+d)]}{(a+c)^2 + (b+d)^2} + j \frac{[-(ac-bd)(b+d) + (ad+bc)(a+c)]}{(a+c)^2 + (b+d)^2} \\ &= \frac{a^2c - abd + ac^2 - bcd + abd + b^2c + ad^2 + bcd}{(a+c)^2 + (b+d)^2} \\ &+ j \frac{-abc + b^2d - acd + bd^2 + a^2d + abc + acd + bc^2}{(a+c)^2 + (b+d)^2} \\ &= \frac{a^2c + ac^2 + b^2c + ad^2}{(a+c)^2 + (b+d)^2} + j \frac{b^2d + bd^2 + a^2d + bc^2}{(a+c)^2 + (b+d)^2} \end{split}$$

Forme trigonométrique

Définition

· Un nombre complexe z peut être défini par son module ρ et son argument θ :

$$z = \rho[\cos\theta + j\sin\theta],$$

où $\rho = \text{mod}(z)$ et $\theta = \text{arg}(z)$

Lien entre la forme trigonométrique et la forme algébrique

· On a:

$$\rho=|z|=\sqrt{a^2+b^2}$$

$$\tan\theta=\frac{b}{a},\quad \cos\theta=\frac{a}{\sqrt{a^2+b^2}},\quad \sin\theta=\frac{b}{\sqrt{a^2+b^2}}$$

· Réciproquement :

$$a = \rho \cos \theta, \qquad b = \rho \sin \theta$$

Définition

 \cdot La forme exponentielle complexe est également utilisée par la relation :

$$\cos\theta + j\sin\theta = e^{j\theta}$$

· On en déduit l'écriture du nombre complexe z suivante :

$$z = a + jb = \rho[\cos\theta + j\sin\theta] = \rho e^{j\theta}$$

Règles de calcul

· Multiplication:

$$z_1 \cdot z_2 = \rho_1 e^{j\theta_1} \cdot \rho_2 e^{j\theta_2}$$

= $\rho_1 \rho_2 e^{j(\theta_1 + \theta_2)} = \rho_1 \rho_2 [\cos(\theta_1 + \theta_2) + j\sin(\theta_1 + \theta_2)]$

· Division:

$$\begin{split} \frac{z_1}{z_2} &= \frac{\rho_1 e^{j\theta_1}}{\rho_2 e^{j\theta_2}} \\ &= \frac{\rho_1}{\rho_2} e^{j(\theta_1 - \theta_2)} = \frac{\rho_1}{\rho_2} [\cos(\theta_1 - \theta_2) + j\sin(\theta_1 - \theta_2)] \end{split}$$

· On peut déduire les propriétés suivantes sur les modules et arguments :

$$\begin{aligned} |z_1 z_2| &= |z_1| \, |z_2| \,, \qquad \operatorname{arg}(z_1 z_2) = \operatorname{arg}(z_1) + \operatorname{arg}(z_2) \\ \left| \frac{z_1}{z_2} \right| &= \frac{|z_1|}{|z_2|}, \qquad \operatorname{arg}\left(\frac{z_1}{z_2}\right) = \operatorname{arg}(z_1) - \operatorname{arg}(z_2) \\ |z^n| &= |z|^n \,, \qquad \operatorname{arg}(z^n) = n \operatorname{arg}(z) \end{aligned}$$

Interprétation graphique

· Ici, on suppose $z_1 = e^{i\theta_1}$ et $z_2 = e^{i\theta_2}$

Exercice. Sachant que
$$z=\rho e^{j\theta}=\rho[\cos\theta+j\sin\theta]$$
, montrez :
$$\bar{z}=\rho e^{-j\theta}$$

Exercice. Sachant que
$$z = \rho e^{i\theta} = \rho [\cos \theta + j \sin \theta]$$
, montrez :

Solution.

$$\begin{split} \overline{z} &= \overline{\rho[\cos\theta + j\sin\theta]} \\ &= \rho[\cos\theta + j\sin\theta] \\ &= \rho[\cos\theta - j\sin\theta] \\ &= \rho[\cos(-\theta) + j\sin(-\theta)] \\ &= \rho e^{j(-\theta)} \end{split}$$

 $\bar{z} = \rho e^{-j\theta}$

Formules d'Euler et de Moivre

Formules d'Euler

 \cdot Les formules d'Euler sont les expressions réciproques de l'expression :

$$\cos\theta + j\sin\theta = e^{j\theta}$$

· On a également :

$$\cos\theta - j\sin\theta = e^{-j\theta}$$

· Par l'addition et la soustraction de ceux expressions, on obtient [Exercice] :

$$\cos \theta = \frac{e^{i\theta} + e^{-j\theta}}{2}$$
$$\sin \theta = \frac{e^{i\theta} - e^{-j\theta}}{2i}$$

Formules d'Euler

Linéarisation

· Les formules d'Euler permettent de linéariser les fonctions trigonométriques, par exemple :

$$\cos^{3}\theta = \left(\frac{e^{i\theta} + e^{-j\theta}}{2}\right)^{3}$$

$$= \frac{1}{8}(e^{i3\theta} + 3e^{j2\theta}e^{-j\theta} + 3e^{i\theta}e^{-j2\theta} + e^{-j3\theta})$$

$$= \frac{1}{8}(e^{i3\theta} + 3e^{i\theta} + 3e^{-j\theta} + e^{-j3\theta})$$

$$= \frac{1}{4}\left(\frac{e^{i3\theta} + e^{-j3\theta}}{2}\right) + \frac{3}{4}\left(\frac{e^{i\theta} + e^{-j\theta}}{2}\right) = \frac{1}{4}\cos 3\theta + \frac{3}{4}\cos \theta$$

Remarque. La linéarisation s'appuie du triangle de Pascal pour trouver les coefficients λ_i de l'expression :

$$(a+b)^n = \sum_{i=0}^n \lambda_i \ a^{n-i}b^i$$

Formule de Moivre

- · La formule de Moivre donne une relation entre l'argument d'un nombre complexe et l'argument de ce nombre élevé a une puissance
- · Soit $z = e^{j\theta}$, on a :

$$z^{n} = (\cos \theta + j \sin \theta)^{n} = (e^{j\theta})^{n} = e^{jn\theta} = \cos n\theta + j \sin n\theta$$

· Ceci établie la formule de Moivre :

$$(\cos\theta + j\sin\theta)^n = \cos n\theta + j\sin n\theta$$

Formule de Moivre

Interprétation graphique

· Ici, on suppose $z = e^{j\theta}$

Racines d'un nombre complexe

Racines n-ième d'un nombre complexe quelconque

 \cdot On appelle racine n-ième d'un nombre complexe w, tout nombre complexe z tel que

$$z^n = w$$
 où $n \in \mathbb{N}$

· Posons $w = \mu e^{j\alpha}$ et $z = \rho e^{j\theta}$. Il vient :

$$z^n = \rho^n e^{jn\theta} = \mu e^{j\alpha},$$

d'où on déduit avec $k \in \mathbb{Z}$:

$$\mu = \rho^n,$$
 $\rho = \sqrt[n]{\mu}$
 $\alpha = n\theta + 2k\pi,$ $\theta = \frac{\alpha}{n} + k\frac{2\pi}{n}$

· On obtient alors n racines distinctes s'écrivant :

$$z_k = \sqrt[n]{\mu} e^{j\left(\frac{\alpha}{n} + \frac{2k\pi}{n}\right)},$$

avec $k: \{0, 1, 2, \dots, n-1\}$

Racine carrée d'un nombre complexe

 \cdot On appelle racine carrée de d'un nombre complexe w , tout nombre z tel que

$$z^2 = w$$

· Posons $w = \mu e^{j\alpha}$ et $z = \rho e^{j\theta}$. Il vient :

$$z^2 = \rho^2 e^{j2\theta} = \mu e^{j\alpha},$$

d'où on déduit avec $k \in \mathbb{Z}$:

$$\mu = \rho^2,$$
 $\rho = \sqrt{\mu}$
 $\alpha = 2\theta + 2k\pi,$ $\theta = \frac{\alpha}{2} + k\pi$

· On obtient alors deux racines distinctes s'écrivant :

$$z_k = \sqrt{\mu} e^{i\left(\frac{\alpha}{2} + k\pi\right)},$$

avec $k : \{0, 1\}$

Racines n-ième de l'unité

 \cdot On s'intéresse ici à la résolution des équations du type :

$$z^{n} - 1 = 0$$

- · Cette équation est de la forme $z^n = w$ avec w = 1, donc $\mu = 1$ et $\alpha = 0$.
- \cdot On obtient alors les n racines distinctes :

$$z_k = \sqrt[n]{\mu} e^{j\left(\frac{\alpha}{n} + \frac{2k\pi}{n}\right)} = e^{j\frac{2k\pi}{n}}$$

avec $k: \{0, 1, 2, \dots, n-1\}$

Représentation graphique avec n = 5

Racines n-ième de -1

 \cdot On s'intéresse ici à la résolution des équations du type :

$$z^{n} + 1 = 0$$

- · Cette équation est de la forme $z^n = w$ avec w = -1, donc $\mu = 1$ et $\alpha = \pi$.
- \cdot On obtient alors les n racines distinctes :

$$z_k = \sqrt[n]{\mu} e^{j\left(\frac{\alpha}{n} + \frac{2k\pi}{n}\right)} = e^{j(1+2k)\frac{\pi}{n}}$$

avec $k: \{0, 1, 2, \dots, n-1\}$

Représentation graphique avec n = 5 et n = 6

Racine carrée d'un nombre complexe

- · Si le nombre complexe est de la forme w=a+jb, on cherche z=x+jy tel que $z^2=a+jb$
- · Il vient :

$$\begin{vmatrix} z^2 \end{vmatrix} = \sqrt{a^2 + b^2} = x^2 + y^2 = |z|^2,$$

$$z^2 = (x + jy)^2 = (x^2 - y^2) + 2jxy = aj + b,$$

d'où on a le système suivant pour déterminer x et y:

$$x^2 - y^2 = a \tag{1}$$

$$2xy = b \tag{2}$$

$$x^2 + y^2 = \sqrt{a^2 + b^2} (3)$$

· En exprimant (3) \pm (1), on obtient [Exercice]:

$$x = \pm \sqrt{\frac{a + \sqrt{a^2 + b^2}}{2}}, \qquad y = \pm \sqrt{\frac{-a + \sqrt{a^2 + b^2}}{2}}$$

De \mathbb{Q} notez que le signe de b indique si x et y sont de même signe ou non ramaths \mathbb{Q} notez que le signe de b indique si x et y sont de même signe ou non

Résolution d'équations du second degré

Résolution d'équations du second degré

· Soit une équation du second degré à coefficients $a, b, c \in \mathbb{R}$

$$az^2 + bz + c = 0$$

- · La nature des solutions de cette équation dépend du signe de $\Delta=b^2-4ac$
 - · Si $\Delta > 0$, les deux solutions de l'équation sont réelles

$$z = \frac{-b \pm \sqrt{\Delta}}{2a}$$

· Si Δ < 0, les deux solutions de l'équation sont complexes

$$z = \frac{-b \pm j\sqrt{-\Delta}}{2a}$$

Résolution d'équations du second degré

- · Soit une équation du second degré $az^2 + bz + c = 0$ à coefficients $a, b, c \in \mathbb{C}$
- \cdot Le calcul de $\Delta=b^2-4ac$ donne en général un nombre complexe de la forme

$$\Delta = \alpha + j\beta$$

 \cdot Si tel est le cas, on calcule la racine carrée de Δ et on a les solutions :

$$z = \frac{-b \pm \operatorname{rac}(\Delta)}{2a}$$

 \cdot Si Δ est un nombre réel, les solutions se déterminent de manière classique et celles-ci peuvent être complexes si les coefficients a et/ou b son complexes

