EXERCISES

In Exercises 1–6, the given set is a basis for a subspace
$$W$$
. Use the Gram-Schmidt process to produce an orthogonal basis for W .

the Gram-Schmidt process to produce an orthogonal basis for W.

In Exercises 1–6, the given set is a bas
the Gram–Schmidt process to produce a

$$\begin{bmatrix} 3 \\ 0 \end{bmatrix} \begin{bmatrix} 8 \\ 5 \end{bmatrix}$$

the Gram-Schmidt process to produce an orthogonal basis
$$\begin{bmatrix} 3 \\ 0 \end{bmatrix} \begin{bmatrix} 8 \\ 5 \end{bmatrix}$$

Stant-Schmidt process to produce an orthogonal basis for
$$W$$
.

2. $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 6 \end{bmatrix}$

$$\begin{bmatrix} 2 \\ -7 \\ -4 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ -7 \\ -7 \\ -4 \end{bmatrix}$$

- 7. Find an orthonormal basis of the subspace spanned by the vectors in Exercise 3.
- 8. Find an orthonormal basis of the subspace spanned by the vectors in Exercise 4.

Find an orthogonal basis for the column space of each matrix in Exercises 9–12.

9.
$$\begin{bmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8 \end{bmatrix}$$
10.
$$\begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$$
11.
$$\begin{bmatrix} 1 & 2 & 5 \\ -1 & 1 & -4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1 \end{bmatrix}$$
12.
$$\begin{bmatrix} 1 & 3 & 5 \\ -1 & -3 & 1 \\ 0 & 2 & 3 \\ 1 & 5 & 2 \\ 1 & 5 & 8 \end{bmatrix}$$

In Exercises 13 and 14, the columns of Q were obtained by applying the Gram-Schmidt process to the columns of A. Find an upper triangular matrix R such that A = QR. Check your work.

13.
$$A = \begin{bmatrix} 5 & 9 \\ 1 & 7 \\ -3 & -5 \\ 1 & 5 \end{bmatrix}, Q = \begin{bmatrix} 5/6 & -1/6 \\ 1/6 & 5/6 \\ -3/6 & 1/6 \\ 1/6 & 3/6 \end{bmatrix}$$
14. $A = \begin{bmatrix} -2 & 3 \\ 5 & 7 \\ 2 & -2 \\ 4 & 6 \end{bmatrix}, Q = \begin{bmatrix} -2/7 & 5/7 \\ 5/7 & 2/7 \\ 2/7 & -4/7 \\ 4/7 & 2/7 \end{bmatrix}$

- 15. Find a QR factorization of the matrix in Exercise 11.
- 16. Find a QR factorization of the matrix in Exercise 12.

In Exercises 17 and 18, all vectors and subspaces are in \mathbb{R}^n . Mark each statement True or False. Justify each answer.

- 17. a. If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal basis for W, then multiplying \mathbf{v}_3 by a scalar c gives a new orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, c\mathbf{v}_3\}$.
 - b. The Gram-Schmidt process produces from a linearly independent set $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ an orthogonal set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ with the property that for each k, the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ span the same subspace as that spanned by $\mathbf{x}_1, \dots, \mathbf{x}_k$.
 - c. If A = QR, where Q has orthonormal columns, then $R = Q^{T}A$.
- 18. a. If $W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ with $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ linearly independent, and if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal set in W, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for W.
 - b. If \mathbf{x} is not in a subspace W, then $\mathbf{x} \operatorname{proj}_W \mathbf{x}$ is not zero.
 - c. In a QR factorization, say A = QR (when A has linearly independent columns), the columns of Q form an orthonormal basis for the column space of A.

- 19. Suppose A = QR, where Q is $m \times n$ and R is $n \times n$. Show that if the columns of A are linearly independent, then R must be invertible. [Hint: Study the equation $R\mathbf{x} = \mathbf{0}$ and use the fact that A = QR.]
- **20.** Suppose A = QR, where R is an invertible matrix. Show that A and Q have the same column space. [Hint: Given y in Col A, show that y = Qx for some x. Also, given y in Col Q, show that y = Ax for some x.]
- **21.** Given A = QR as in Theorem 12, describe how to find an orthogonal $m \times m$ (square) matrix Q_1 and an invertible $n \times n$ upper triangular matrix R such that

$$A = Q_1 \begin{bmatrix} R \\ 0 \end{bmatrix}$$

The MATLAB qr command supplies this "full" QR factorization when rank A = n.

- **22.** Let $\mathbf{u}_1, \dots, \mathbf{u}_p$ be an orthogonal basis for a subspace W of \mathbb{R}^n , and let $T: \mathbb{R}^n \to \mathbb{R}^n$ be defined by $T(\mathbf{x}) = \operatorname{proj}_W \mathbf{x}$. Show that T is a linear transformation.
- 23. Suppose A = QR is a QR factorization of an $m \times n$ matrix A (with linearly independent columns). Partition A as $[A_1 \quad A_2]$, where A_1 has p columns. Show how to obtain a QR factorization of A_1 , and explain why your factorization has the appropriate properties.
- **24.** [M] Use the Gram-Schmidt process as in Example 2 to produce an orthogonal basis for the column space of

$$A = \begin{bmatrix} -10 & 13 & 7 & -11 \\ 2 & 1 & -5 & 3 \\ -6 & 3 & 13 & -3 \\ 16 & -16 & -2 & 5 \\ 2 & 1 & -5 & -7 \end{bmatrix}$$

- 25. [M] Use the method in this section to produce a QR factorization of the matrix in Exercise 24.
- 26. [M] For a matrix program, the Gram-Schmidt process works better with orthonormal vectors. Starting with $\mathbf{x}_1, \dots, \mathbf{x}_p$ as in Theorem 11, let $A = [\mathbf{x}_1 \cdots \mathbf{x}_p]$. Suppose Q is an $n \times k$ matrix whose columns form an orthonormal basis for the subspace W_k spanned by the first k columns of A. Then for \mathbf{x} in \mathbb{R}^n , $QQ^T\mathbf{x}$ is the orthogonal projection of \mathbf{x} onto W_k (Theorem 10 in Section 6.3). If \mathbf{x}_{k+1} is the next column of A, then equation (2) in the proof of Theorem 11 becomes

$$\mathbf{v}_{k+1} = \mathbf{x}_{k+1} - Q(Q^T \mathbf{x}_{k+1})$$

(The parentheses above reduce the number of arithmetic operations.) Let $\mathbf{u}_{k+1} = \mathbf{v}_{k+1}/\|\mathbf{v}_{k+1}\|$. The new Q for the next step is $[Q \quad \mathbf{u}_{k+1}]$. Use this procedure to compute the QR factorization of the matrix in Exercise 24. Write the keystrokes or commands you use.

SOLUTION TO PRACTICE PROBLEMS

1. Let
$$\mathbf{v}_1 = \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - 0 \mathbf{v}_1 = \mathbf{x}_2$. So $\{\mathbf{x}_1, \mathbf{x}_2\}$ is altitudent of the vectors. Let

ready orthogonal. All that is needed is to normalize the vectors. Let

$$\mathbf{u}_1 = \frac{1}{\|\mathbf{v}_1\|} \mathbf{v}_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3}\\1/\sqrt{3}\\1/\sqrt{3} \end{bmatrix}$$

Instead of normalizing \mathbf{v}_2 directly, normalize $\mathbf{v}_2' = 3\mathbf{v}_2$ instead:

$$\mathbf{u}_2 = \frac{1}{\|\mathbf{v}_2'\|} \mathbf{v}_2' = \frac{1}{\sqrt{1^2 + 1^2 + (-2)^2}} \begin{bmatrix} 1\\1\\-2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{6}\\1/\sqrt{6}\\-2/\sqrt{6} \end{bmatrix}$$

Then $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthonormal basis for W.

2. Since the columns of A are linearly dependent, there is a nontrivial vector \mathbf{x} such that $A\mathbf{x} = \mathbf{0}$. But then $QR\mathbf{x} = \mathbf{0}$. Applying Theorem 7 from Section 6.2 results in $||R\mathbf{x}|| = ||QR\mathbf{x}|| = ||\mathbf{0}|| = 0$. But $||R\mathbf{x}|| = 0$ implies $R\mathbf{x} = \mathbf{0}$, by Theorem 1 from Section 6.1. Thus there is a nontrivial vector \mathbf{x} such that $R\mathbf{x} = \mathbf{0}$ and hence, by the Invertible Matrix Theorem, R cannot be invertible.