

Production of hydrogen and its use in fuel cells

Yohannes Kiros

Department of Chemical Engineering and Technology, KTH Royal Institute of Technology, 100 44 Stockholm – Sweden

Global fuel shares of electricity generation

The share of renewables in energy supply

Global biofuel production

5406 billion liters of oil/year95 billion ethanol /year17 billion biodiesel/year2% of the total oil supply!

High risk for fuel against food

Available renewable energy sources

- Hydropower potential 1,834 TWh/yr¹ (current use at 7%)
- Biomass resources 70 billion tonnes¹
- Solar insolation at $1800-2850 \text{ kWh/m}^2 \text{ yr.,}$ solar PV at $40,500 \text{ TWh/yr}^1$
- Wind speeds 95 TW²
- Geothermal 14,000 MW¹

² Greenfacts

The Clean Energy Set-up

With renewable resources such as solar, wind and flowing rivers and springs, Geothermal, biomass there can be a sustainable, clean and safe electric generation by displacing fossil fuels

Solar 227 GW (2015) >26% from 2014¹ Wind 433 GW (2015) >17% from 2014² Hydropower 1055 GW (2015) 3% from 2014³

0 at the end of 1990s for solar and wind

- 1. IEA, Report PVPS T1-29-2016
- 2. Global wind energy council (GWEC)
- 3. HydroWorld.com

Energy storage systems (ESS)

ESS converts electrical energy from a power network to a form that can be stored and used again at convenience as electrical energy.

Utilization of renewables means

- **➤** Variable energy outputs
- > Stochastic nature of the sources
- **➤** Decentralized off-grids or on-grids
- > Difficulty in integrating to the existing power grids
- **➤** Supply and demand

Components of ESS

ESS offers integration and flexibility in power systems by providing

- > Predictability without fluctuations
- > Energy arbitrage revenues (off-peak to on peak)
- **→** High energy utilization
- >Stable performance
- >Improvement in power

Different types of ESS and their capacity

Hydrogen as future energy carrier

- The simplest molecule, lightest and most abundant element on Earth
- Current use as a bulk chemical in chemical processes

- Acid-base
- Petrochemical industries (hydrotreatment and hydrocracking of compounds, catalytic reforming)
- Fertilizer (ammonia), Methanol, F-T products, ore reduction
- Fine chemicals, polymers, alcohols, Food industry
- Fuel (rockets, cars, fuel cells)

Hydrogen as future energy carrier

Table 1. Theoretical energy contents of some fuels

Type of Fuel	Specific energy (kWh/kg)	Energy density (kWh/L)
Compressed hydrogen gas	33	0.56
Liquefied hydrogen	33	2.38
Ethanol	8.7	6.58
Methanol	5.6	4.4
Gasoline	12.8	9.5

Current production of hydrogen

Production share of hydrogen in the world (%) 50 10 6 tons/year*

^{*}R. Kothari et al. Ren Sust Energy Rev. 12 (2008) 553 US DOE, Washington DC 20585 (2013)

Current production of hydrogen

Hydrogen production from fossil fuel feedstock through a set of processes

- 3. fuel and water ⇒ hydrogen +CO ⇒ High temperature conversion to hydrogen
- 4. Carbon monoxide removal
- 5. Gas clean up Removal of carbon dioxide and water
- 6. >99% H_2

Electrolysis cell and the reactions

Electricity needed 33.3 kWh/kg H₂

Catalysts and alternatives for the reactions

TEM images of Pt nanostructures³

An electrocatalyst is a substance which increases the rate of the reaction without being consumed in the reaction.

Most of the active catalysts are based on platinum group metals such as platinum, ruthenium, rhodium and iridium.

Would the PGM survive large scale applications as catalysts?

Total supply of Pt in tons (276.5) 2013 (JM)

Total demand of Pt in tons (300), 2013 (JM)

Ir, Rh, Re are by presence and weight among the rarest PGM among the mined in the Earth!

Thus, the incentive and drive to find alternative catalysts with low-cost and abundance

Ref. CCL McCrory et al. JACS, 135 (2013) 16977

Catalysts and additives by SEM characterization

Ni-Fe Raney: ~ 80wt% Ni, 7wt% Al, 13wt% Fe

Carbonyl iron

 Co_3O_4

Carbonyl Nickel

 MoO_3

PTFE bonded Raney-Ni with ad-atoms/mixtures

Test of electrodes for electrolysis

Alkaline electrolyte At 25-100 °C.

Half-cell design and "Zero gap" cell

Results of half-cell measurements

Anodic materials

Improvement of activity and stability

- -The presence of oxyphil materials
- -10 wt.% of Co₃O₄
- -Thickness of active layer ca. 0.5 mm
- -Higher temperature, higher kinetics (100 to 175 mV)

Half-cell measurements

Improvement of activity and stability

- -Additive of MoO3 (10 wt.%)
- -Higher temperature, higher kinetics (100-200 mV)
- -Thickness of active layer ca. 0.5 mm

Test of electrolysis cell

Cell Voltage at 20-22 °C at 100 mA/cm²

Temperature dependence of the zero-gap cell

Stable performances at room temp.
Low decline rate
Gas bubble formations results in cell
voltage fluctuations

Fuel cells

A fuel cell converts the chemical energy of the fuel directly to electrical energy

High theoretical energy conversion
 efficiency (η)

H2+ ½ O2 → H2O + Electricity+ Heat

η> 83% (HHV on aqueous product)

η>94% (LHV on gaseous product)

Advantages of Fuel Cells

- **→** High efficiency
- **≻**Co-generation of heat
- > Flexibility in the source of fuel
- **➤ Modular size and stand-alone**
- **➤** Applicable to transport systems
- **➤**Non-pollutant and noiseless

Principles of a fuel cell operation

 $H_2 = 2H^+ + 2e^-$ (anode)

 $1/2O_2 + 2H^+ + 2e^- = H_2O$ (cathode)

Overall cell reaction 1/20₂+ H₂=H₂O+heat+ elctricity

Types of Fuel cells

Type	AFC	PEFC	PAFC	MCFC	SOFC
Electrolyte	KOH	Membr.	H3PO4	K/Li-CO3	Zr/Y2-O3
T (C)	50-100	50-100	200	650	<1000
Electrode	C/metal	С	С	metal	cermets
Anode	Pt/ Ra-Ni	Pt	Pt	Ni	NiZrO2
Cathode	Ag/Pt/oxi-	Pt	Pt	NiO	Perovskite
	des/TPP				
Fuel	H2	H2	H2	H2	H2-CO
Oxidant	O2/air	O2/air	O2/air	O2/air	O2/air
DMFC-Direct	methanol fu	iel cell,	DBFC-bord	ohydride	
BioFC-Biolog	ical fuel cell,		DHFC- hyd	Irazine	
DEFC-Ethanol fuel cell, DFAFC-formic acid			•		

Main types of fuel cells with flow directions of reactants and products

Irreversibel Thermodynamics

Polarization curve of a fuel cell and its inherent losses

Integration of gasifier for H₂ production with AFC

Fuel Enrichment and gas clean-up

Gas composition after the gasifier & the whole system

Gas	After gasifier (Vol.%)	After the whole system (Vol.%)
СО	15-21	0-15 ppm
H ₂	3-6	20-30
CH ₄	0.5-1	
CO ₂	8-12	20-90 ppm
N ₂	65-70	70-80

Fuel Cell performance with P-gas

Conversion to hydrogen and storage in fuel cells

Thank you for

your attention