SEQUENCE LISTING

<110> Genentech, Inc. Ashkenazi, Avi Botstein, David Desnoyers, Luc Eaton, Dan L. Ferrara, Napoleone Filvaroff, Ellen Fong, Sherman Gao, Wei-Qiang Gerber, Hanspeter Gerritsen, Mary E. Goddard, A. Godowski, Paul J. Grimaldi, Christopher J. Gurney, Austin L. Hillan, Kenneth, J. Kljavin, Ivar J. Mather, Jennie P. Pan, James Paoni, Nicholas F. Roy, Margaret Ann Stewart, Timothy A. Tumas, Daniel Williams, P. Mickey Wood, William, I.

- <120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same
- <130> 10466-14
- <140> 09/665,350
- <141> 2000-09-18
- <150> PCT/US00/04414
- <151> 2000-02-22
- <150> US 60/143,048
- <151> 1999-07-07
- <150> US 60/145,698
- <151> 1999-07-26
- <150> US 60/146,222
- <151> 1999-07-28
- <150> PCT/US99/20594
- <151> 1999-09-08
- <150> PCT/US99/20944
- <151> 1999-09-13

```
<150> PCT/US99/21090
 <151> 1999-09-15
 <150> PCT/US99/21547
 <151> 1999-09-15
 <150> PCT/US99/23089
 <151> 1999-10-05
 <150> PCT/US99/28214
 <151> 1999-11-29
 <150> PCT/US99/28313
 <151> 1999-11-30
 <150> PCT/US99/28564
 <151> 1999-12-02
<150> PCT/US99/28565
<151> 1999-12-02
<150> PCT/US99/30095
<151> 1999-12-16
<150> PCT/US99/30911
<151> 1999-12-20
<150> PCT/US99/30999
<151> 1999-12-20
<150> PCT/US00/00219
<151> 2000-01-05
<160> 423
<210> 1
<211> 1825
<212> DNA
<213> Homo sapiens
actgcacctc ggttctatcg attgaattcc ccggggatcc tctagagatc cctcgacctc 60
gacccaegeg teegggeegg ageageaegg eegeaggace tggageteeg getgegtett 120
cccgcagcgc tacccgccat gcgcctgccg cgccgggccg cgctggggct cctgccgctt 180
ctgctgctgc tgccgcccgc gccggaggcc gccaagaagc cgacgccctg ccaccggtgc 240
cgggggctgg tggacaagtt taaccagggg atggtggaca ccgcaaagaa gaactttggc 300
ggcgggaaca cggcttggga ggaaaagacg ctgtccaagt acgagtccag cgagattcgc 360
ctgctggaga tcctggaggg gctgtgcgag agcagcgact tcgaatgcaa tcagatgcta 420
gaggegeagg aggageacet ggaggeetgg tggetgeage tgaagagega atateetgae 480
ttattcgagt ggttttgtgt gaagacactg aaagtgtgct gctctccagg aacctacggt 540
cccgactgtc tcgcatgcca gggcggatcc cagaggccct gcagcgggaa tggccactgc 600
ageggagatg ggagcagaca gggcgaeggg teetgeeggt gecacatggg gtaccaggge 660
```

```
cegetgtgea etgaetgeat ggaeggetae tteagetege teeggaaega gaeceaeage 720
atetgeacag eetgtgaega gteetgeaag aegtgetegg geetgaecaa eagagaetge 780
ggcgagtgtg aagtgggctg ggtgctggac gagggcgcct gtgtggatgt ggacgagtgt 840
geggeegage egecteeetg cagegetgeg cagttetgta agaaegeeaa eggeteetae 900
acgtgcgaag agtgtgactc cagctgtgtg ggctgcacag gggaaggccc aggaaactgt 960
aaagagtgta tetetggeta egegagggag caeggacagt gtgeagatgt ggacgagtge 1020
tcactagcag aaaaaacctg tgtgaggaaa aacgaaaact gctacaatac tccagggagc 1080
tacgtetgtg tgtgteetga eggettegaa gaaaeggaag atgeetgtgt geegeeggea 1140
gaggetgaag ccacagaagg agaaageceg acacagetge cetecegega agacetgtaa 1200
tgtgccggac ttacccttta aattattcag aaggatgtcc cgtggaaaat gtggcctga 1260
ggatgccgtc tcctgcagtg gacagcggcg gggagaggct gcctgctctc taacggttga 1320
ttctcatttg tcccttaaac agctgcattt cttggttgtt cttaaacaga cttgtatatt 1380
aaaaaaaaaa aaagggcggc cgcgactcta gagtcgacct gcagaagctt ggccgccatg 1500
gcccaacttg tttattgcag cttataatgg ttacaaataa agcaatagca tcacaaattt 1560
cacaaataaa gcattttttt cactgcattc tagttgtggt ttgtccaaac tcatcaatgt 1620
atettateat gtetggateg ggaattaatt eggegeagea eeatggeetg aaataacete 1680
tgaaagagga acttggttag gtaccttctg aggcggaaag aaccagctgt ggaatgtgtg 1740
tragttaggg tgtggaaagt reccaggete recagragge agaagtatge aagratgeat 1800
ctcaattagt cagcaaccca gtttt
<210> 2
<211> 353
<212> PRT
<213> Homo sapiens
<400> 2
Met Arg Leu Pro Arg Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu
```

5 1.0

Leu Leu Pro Pro Ala Pro Glu Ala Ala Lys Lys Pro Thr Pro Cys His

Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met Val Asp Thr

Ala Lys Lys Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Lys Thr

Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu Leu Glu Ile Leu Glu 70 75

Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys Asn Gln Met Leu Glu Ala

Gln Glu Glu His Leu Glu Ala Trp Trp Leu Gln Leu Lys Ser Glu Tyr 105

Pro Asp Leu Phe Glu Trp Phe Cys Val Lys Thr Leu Lys Val Cys Cys 115

Ser Pro Gly Thr Tyr Gly Pro Asp Cys Leu Ala Cys Gln Gly Gly Ser 135

Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg 150 155 Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly 200 Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp 215 Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro Pro 230 235 Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly 265 Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys 275 280 Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val Arg Lys Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr Val Cys Val Cys Pro 305 310 315 320 Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro Pro Ala Glu Ala Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu Pro Ser Arg Glu Asp

Leu

<210> 3

<211> 2206

<212> DNA

<213> Homo sapiens

<400> 3

caggtccaac tgcacctcgg ttctatcgat tgaattcccc ggggatcctc tagagatccc 60 tcgacctcga cccacgcgtc cgccaggccg ggaggcgacg cgcccagccg tctaaacggg 120 aacagccctg gctgagggag ctgcagcgca gcagagtatc tgacggcgc aggttgcgta 180 ggtgcggcac gaggagtttt cccggcagcg aggaggtcct gagcagcatg gcccggagga 240

```
gegeetteee tgeegeegeg etetggetet ggageateet eetgtgeetg etggeactge 300
gggcggaggc cgggccgccg caggaggaga gcctgtacct atggatcgat gctcaccagg 360
caagagtact cataggattt gaagaagata tcctgattgt ttcagagggg aaaatggcac 420
cttttacaca tgatttcaga aaagcgcaac agagaatgcc agctattcct gtcaatatcc 480
attccatgaa ttttacctgg caagctgcag ggcaggcaga atacttctat gaattcctgt 540
ccttgcgctc cctggataaa ggcatcatgg cagatccaac cgtcaatgtc cctctgctgg 600
gaacagtgcc tcacaaggca tcagttgttc aagttggttt cccatgtctt ggaaaacagg 660
atggggtggc agcatttgaa gtggatgtga ttgttatgaa ttctgaaggc aacaccattc 720
tecaaacace teaaaatget atettettta aaacatgtea acaagetgag tgeecaggeg 780
ggtgccgaaa tggaggcttt tgtaatgaaa gacgcatctg cgagtgtcct gatgggttcc 840
acggacctca ctgtgagaaa gccctttgta ccccacgatg tatgaatggt ggactttgtg 900
tgactcctgg tttctgcatc tgcccacctg gattctatgg agtgaactgt gacaaagcaa 960
actgctcaac cacctgcttt aatggaggga cctgtttcta ccctggaaaa tgtatttgcc 1020
ctccaggact agagggagag cagtgtgaaa tcagcaaatg cccacaaccc tgtcgaaatg 1080
gaggtaaatg cattggtaaa agcaaatgta agtgttccaa aggttaccag ggagacctct 1140
gttcaaagcc tgtctgcgag cctggctgtg gtgcacatgg aacctgccat gaacccaaca 1200
aatgccaatg tcaagaaggt tggcatggaa gacactgcaa taaaaggtac gaagccagcc 1260
tcatacatgc cctgaggcca gcaggcgccc agctcaggca gcacacgcct tcacttaaaa 1320
aggccgagga gcggcgggat ccacctgaat ccaattacat ctggtgaact ccgacatctg 1380
aaacgtttta agttacacca agttcatagc ctttgttaac ctttcatgtg ttgaatgttc 1440
aaataatgtt cattacactt aagaatactg gcctgaattt tattagcttc attataaatc 1500
actgagctga tatttactct tccttttaag ttttctaagt acgtctgtag catgatggta 1560
tagattttct tgtttcagtg ctttgggaca gattttatat tatgtcaatt gatcaggtta 1620
aaattttcag tgtgtagttg gcagatattt tcaaaaattac aatgcattta tggtgtctgg 1680
gggcagggga acatcagaaa ggttaaattg ggcaaaaatg cgtaagtcac aagaatttgg 1740
atggtgcagt taatgttgaa gttacagcat ttcagatttt attgtcagat atttagatgt 1800
ttaccattat tccagagatt cagtattaaa aaaaaaaaa ttacactgtg gtagtggcat 1920
ttaaacaata taatattc taaacacaat gaaataggga atataatgta tgaacttttt 1980
ttttatactg tttgtatgta taaaataaag gtgctgcttt agttttttgg aaaaaaaaa 2100
aaaaaaaaa aaaaaaaaa aaaaaaaaaa gggcggccgc gactctagag tcgacctgca 2160
gaagettgge egecatggee caacttgttt attgeagett ataatg
                                                              2206
<210> 4
<212> PRT
<213> Homo sapiens
```

```
<211> 379
```

<400> 4

Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Ala Leu Trp Leu Trp Ser 1 5 15

Ile Leu Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro Pro Gln

Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala Arg Val Leu 40

Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu Gly Lys Met Ala 50 55 60

Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln Arg Met Pro Ala Ile

65					70					75					80
Pro	Val	Asn	Ile	His 85	Ser	Met	Asn	Phe	Thr 90	Trp	Gln	Ala	Ala	Gly 95	Glr
Ala	Glu	Tyr	Phe 100	Tyr	Glu	Phe	Leu	Ser 105	Leu	Arg	Ser	Leu	Asp 110	Lys	GlΣ
Ile	Met	Ala 115	Asp	Pro	Thr	Val	Asn 120	Val	Pro	Leu	Leu	Gly 125	Thr	Val	Pro
His	Lys 130	Ala	Ser	Val	Val	Gln 135	Val	Gly	Phe	Pro	Cys 140	Leu	Gly	Lys	Glr
Asp 145	Gly	Val	Ala	Ala	Phe 150	Glu	Val	Asp	Val	Ile 155	Val	Met	Asn	Ser	Glu 160
Gly	Asn	Thr	Ile	Leu 165	Gln	Thr	Pro	Gln	Asn 170	Ala	Ile	Phe	Phe	Lys 175	Thi
Сув	Gln	Gln	Ala 180	Glu	Cys	Pro	Gly	Gly 185	Сув	Arg	Asn	Gly	Gly 190	Phe	Суз
Asn	Glu	Arg 195	Arg	Ile	Cys	Glu	Cys 200	Pro	Asp	Gly	Phe	His 205	Gly	Pro	His
Cys	Glu 210	Lys	Ala	Leu	Cys	Thr 215	Pro	Arg	Cys	Met	Asn 220	Gly	Gly	Leu	Суя
Val 225	Thr	Pro	Gly	Phe	Cys 230	Ile	Cys	Pro	Pro	Gly 235	Phe	Tyr	Gly	Val	Asr 240
Cys	Asp	Lys	Ala	Asn 245	Cys	Ser	Thr	Thr	Cys 250	Phe	Asn	Gly	Gly	Thr 255	Суя
Phe	Tyr	Pro	Gly 260	Lys	Cys	Ile	Суѕ	Pro 265	Pro	Gly	Leu	Glu	Gly 270	Glu	Gln
Cys	Glu	Ile 275	Ser	Lys	Cys	Pro	Gln 280	Pro	Cys	Arg	Asn	Gly 285	Gly	Lys	Суя
Ile	Gly 290	Lys	Ser	Lys	Cys	Lys 295	Cys	Ser	Lys	Gly	Tyr 300	Gln	Gly	Asp	Leu
Cys 305	Ser	Lys	Pro	Val	Cys 310	Glu	Pro	Gly	Сув	Gly 315	Ala	His	Gly	Thr	Cys 320
His	Glu	Pro	Asn	Lys 325	Cys	Gln	Cys	Gln	Glu 330	Gly	Trp	His	Gly	Arg 335	His
Cys	Asn	Lys	Arg 340	Tyr	Glu	Ala	Ser	Leu 345	Ile	His	Ala	Leu	Arg 350	Pro	Ala

Gly Ala Gln Leu Arg Gln His Thr Pro Ser Leu Lys Lys Ala Glu Glu 355 360 365	
Arg Arg Asp Pro Pro Glu Ser Asn Tyr Ile Trp 370 375	
<210> 5 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 5 agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca	45
<210> 6 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 6 agagtgtatc tctggctacg c	21
<210> 7 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 7 taagtccggc acattacagg to	22
<210> 8 <211> 49 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 8 cccacgatgt atgaatggtg gactttgtgt gactcctggt ttctgcatc	49

```
<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 9
aaagacgcat ctgcgagtgt cc
                                                                   22
<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 10
tgctgatttc acactgctct ccc
                                                                   23
<210> 11
<211> 2197
<212> DNA
<213> Homo sapiens
<400> 11
cggacgcgtg ggcgtccggc ggtcgcagag ccaggaggcg gaggcgcgcg ggccagcctg 60
ggccccagcc cacacettea ccagggccca ggagccacca tgtggcgatg tccactgggg 120
ctactgctgt tgctgccgct ggctggccac ttggctctgg gtgcccagca gggtcgtggg 180
cgccgggagc tagcaccggg tctgcacctg cggggcatcc gggacgcggg aggccggtac 240
tgccaggage aggacetgtg etgeegegge egtgeegaeg aetgtgeeet geeetacetg 300
ggcgccatet gttactgtga cetettetge aacegeacgg tetecgaetg etgecetgae 360
ttctgggact tctgcctcgg cgtgccaccc ccttttcccc cgatccaagg atgtatgcat 420
ggaggtcgta tctatccaqt cttqqqaacq tactqqqaca actqtaaccq ttqcacctqc 480
caggagaaca ggcagtggca tggtggatcc agacatqatc aaaqccatca accaqqqcaa 540
ctatggctgg caggctggga accacagcgc cttctggggc atgaccctgg atgagggcat 600
tegetacege etgggeacea teegeceate tteeteggte atgaacatge atgaaattta 660
tacagtgctg aacccagggg aggtgcttcc cacagccttc gaggcctctg agaagtggcc 720
caacctgatt catgageete ttgaccaagg caactgtgea ggeteetggg cetteteeac 780
agcagetgtg geateegate gtgteteaat ceattetetg ggacacatga egeetgteet 840
gtegeeceag aacetgetgt ettgtgacae ecaecageag cagggetgee geggtgggeg 900
tetegatggt geetggtggt teetgegteg eegaggggtq qtqtetgaee aetqetaeee 960
etteteggge egtgaaegag aegaggetgg eeetgegeee eeetgtatga tgeaeageeg 1020
agccatgggt cggggcaagc gccaggccac tgcccactgc cccaacagct atgttaataa 1080
caatgacatc taccaggica ciccigicta cogcetegge tecaacgaca aggagateat 1140
gaaggagctg atggagaatg gccctgtcca agccctcatg gaggtgcatg aggacttctt 1200
cctatacaag ggaggcatet acagccacac gccagtgagc cttgggaggc cagagagata 1260
cegeeggeat gggaceeact cagteaagat cacaggatgg ggagaggaga egetgeeaga 1320
```

2197

His Asp Pro Gly

```
tggaaggacg ctcaaatact ggactgcggc caactcctgg ggcccagcct ggggcgagag 1380
gggccacttc cgcatcgtgc gcggcgtcaa tgagtgcgac atcgagagct tcgtgctggg 1440
cgtctggggc cgcgtgggca tggaggacat gggtcatcac tgaggctgcg ggcaccacgc 1500
ggggtccggc ctgggatcca ggctaagggc cqgcggaaga ggccccaatg gggcggtgac 1560
eccagecteg eccgaeagag eccggggege aggegggege eagggegeta ateceggege 1620
qqqttccqct qacqcaqcqc cccqcctqqq aqccqcqqqc aqqcqaqact qqcqqaqccc 1680
ccaqacetee caqtggqqae gggqcagqqe etqqcetggq aagagcacag etqcagatee 1740
caggeetetg gegeeeceae teaagaetae caaageeagg acaeeteaag tetecageee 1800
caatacccca ccccaatccc gtattctttt ttttttttt ttagacaggg tcttgctccg 1860
ttqcccagqt tgqaqtqcag tgqcccatca qqqctcactq taacctccga ctcctggqtt 1920
caagtgacce teccaeetea geeteteaag tagetgggae taeaggtgea ceaeeacaee 1980
tggctaattt ttgtattttt tgtaaagagg ggggtctcac tgtgttgccc aggctggttt 2040
egaacteetg ggeteaageg gteeacetge etcegeetee caaagtgetg ggattgeagg 2100
catgaqccac tgcacccage cetgtattet tattetteaq atatttattt ttettttcac 2160
tgttttaaaa taaaaccaaa gtattgataa aaaaaaa
<210> 12
<211> 164
<212> PRT
<213> Homo sapiens
<400> 12
Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Pro Leu Ala Gly
His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Glu Leu Ala
Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys
Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu
Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr
Val Ser Asp Cys Cys Pro Asp Phe Trp Asp Phe Cys Leu Gly Val Pro
                                     90
                                                         95
Pro Pro Phe Pro Ile Gln Gly Cys Met His Gly Gly Arg Ile Tyr
            100
Pro Val Leu Gly Thr Tyr Trp Asp Asn Cys Asn Arg Cys Thr Cys Gln
                            120
Glu Asn Arg Gln Trp His Gly Gly Ser Arg His Asp Gln Ser His Gln
                        135
    130
Pro Gly Gln Leu Trp Leu Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly
                    150
                                        155
```

```
<210> 13
 <211> 533
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> modified base
 <222> (33)
 <223> a, t, c or g
 <220>
 <221> modified base
 <222> (80)
<223> a, t, c or g
<220>
<221> modified base
<222> (94)
<223> a, t, c or g
<220>
<221> modified base
<222> (144)
<223> a, t, c or g
<220>
<221> modified_base
<222> (188)
<223> a, t, c or q
<400> 13
aggeteettg geeettttte cacageaage tintgenate eegattegtt gieteaaate 60
caattetett gggacacatn acgeetgtee tttngceeca gaacetgetg tettgtacae 120
ccaccagcag cagggctgcc gcgntgggcg tctcgatggt gcctggtggt tcctgcgtcg 180
ccgagggntg gtgtctgacc actgctaccc cttctcgggc cgtgaacgag acgaggctgg 240
ccctgcgccc ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 300
tgcccactgc cccaacagct atgttaataa caatgacatc taccaggtca ctcctgtcta 360
ccgcctcggc tccaacgaca aggagatcat gaaggagctg atggagaatg gccctgtcca 420
agccctcatg gaggtgcatg aggacttctt cctatacaag ggaggcatct acagccacac 480
gccagtgagc cttgggaggc cagagagata ccgccggcat gggacccact cag
                                                                   533
<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 14
```

```
ttcgaggcct ctgagaagtg gccc
                                                                    24
 <210> 15
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide probe
 <400> 15
 ggcggtatct ctctqqcctc cc
                                                                    22
 <210> 16
 <211> 50
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide probe
<400> 16
ttctccacag cagctgtggc atccgatcgt gtctcaatcc attctctggg
                                                                   50
<210> 17
<211> 960
<212> DNA
<213> Homo sapiens
<400> 17
getgettgee etgttgatgg caggettgge cetgeageea ggeactgeee tgetgtgeta 60
ctcctgcaaa gcccaggtga gcaacgagga ctgcctgcag gtggagaact gcacccagct 120
gggggagcag tgctggaccg cgcgcatccg cgcagttggc ctcctgaccg tcatcagcaa 180
aggetgeage ttgaactgeg tggatgaete acaggaetae taegtgggea agaagaacat 240
cacgtgctgt gacaccgact tgtgcaacgc cagcggggcc catgccctgc agccggctgc 300
cgccatectt gegetgetee etgeaetegg eetgetgete tggggaceeg geeagetata 360
ggctctgggg ggccccgctg cagcccacac tgggtgtggt gccccaggcc tctgtgccac 420
tecteacaga eetggeecag tgggageetg teetggttee tgaggeacat eetaacgcaa 480
gtctgaccat gtatgtctgc acccctgtcc cccaccctga ccctcccatg gccctctcca 540
ggacteceae eeggeagate agetetagtg acaeagatee geetgeagat ggeeeeteea 600
accetetetg etgetgttte catggeecag cattetecae cettaaccet gtgeteagge 660
acctettece ccaggaagee tteeetgeee acceeateta tgaettgage caggtetggt 720
ccgtggtgtc ccccgcaccc agcaggggac aggcactcag gagggcccag taaaggctga 780
gatgaagtgg actgagtaga actggaggac aagagtcgac gtgagttcct gggagtctcc 840
agagatgggg cctggaggcc tggaggaagg ggccaggcct cacattcgtg gggctccctg 900
aatggcagcc tgagcacagc gtaggccctt aataaacacc tgttggataa gccaaaaaaa 960
<210> 18
<211> 189
<212> PRT
<213> Homo sapiens
```

<400> 18	< 4	0>	18
----------	-----	----	----

Met Thr His Arg Thr Thr Thr Trp Ala Arg Arg Thr Ser Arg Ala Val 1 5 10 15

Thr Pro Thr Cys Ala Thr Pro Ala Gly Pro Met Pro Cys Ser Arg Leu 20 25 30

Pro Pro Ser Leu Arg Cys Ser Leu His Ser Ala Cys Cys Ser Gly Asp 35 40 45

Pro Ala Ser Tyr Arg Leu Trp Gly Ala Pro Leu Gln Pro Thr Leu Gly 50 55 60

Val Val Pro Gln Ala Ser Val Pro Leu Leu Thr Asp Leu Ala Gln Trp 65 70 75 80

Glu Pro Val Leu Val Pro Glu Ala His Pro Asn Ala Ser Leu Thr Met
85 90 95

Tyr Val Cys Thr Pro Val Pro His Pro Asp Pro Pro Met Ala Leu Ser 100 105 110

Arg Thr Pro Thr Arg Gln Ile Ser Ser Ser Asp Thr Asp Pro Pro Ala 115 120 125

Asp Gly Pro Ser Asn Pro Leu Cys Cys Cys Phe His Gly Pro Ala Phe 130 135 140

Ser Thr Leu Asn Pro Val Leu Arg His Leu Phe Pro Gln Glu Ala Phe 145 150 155 160

Pro Ala His Pro Ile Tyr Asp Leu Ser Gln Val Trp Ser Val Val Ser 165 170 175

Pro Ala Pro Ser Arg Gly Gln Ala Leu Arg Arg Ala Gln
180 185

<210> 19

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 19

tgctgtgcta ctcctgcaaa gccc

24

<210> 20

<211> 24

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 20
tgcacaagtc ggtgtcacag cacq
                                                                   24
<210> 21
<211> 44
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
agcaacgagg actgcctgca ggtggagaac tgcacccagc tggg
                                                                   44
<210> 22
<211> 1200
<212> DNA
<213> Homo sapiens
<400> 22
cccacgcgtc cgaacctctc cagcgatggg agccgcccgc ctgctgccca acctcactct 60
gtgcttacag ctgctgattc tctgctgtca aactcagtac gtgagggacc agggcgccat 120
gaccgaccag ctgagcaggc ggcagatccg cgagtaccaa ctctacagca ggaccagtgg 180
caagcacgtg caggtcaccg ggcgtcgcat ctccgccacc gccgaggacg gcaacaagtt 240
tgccaagctc atagtggaga cggacacgtt tggcagccgg gttcgcatca aaggggctga 300
gagtgagaag tacatctgta tgaacaagag gggcaagctc atcgggaagc ccagcgggaa 360
gagcaaagac tgcgtgttca cggagatcgt gctggagaac aactatacgg ccttccagaa 420
cgcccggcac gagggctggt tcatggcctt cacgcggcag gggcggcccc gccaggcttc 480
degrageded cagaaccage gegaggeeea etteateaag egeetetaee aaggeeaget 540
gcccttcccc aaccacgccg agaagcagaa gcagttcgag tttgtgggct ccgccccac 600
ccgccggacc aagcgcacac ggcggcccca gcccctcacg tagtctggga ggcagggggc 660
agcagecect gggeegeete eccaeceett teeettetta atecaaggae tgggetgggg 720
tggcgggagg ggagccagat ccccgaggga ggaccctgag ggccgcgaag catccgagcc 780
cccagctggg aaggggcagg ccggtgcccc aggggcggct ggcacagtgc ccccttcccg 840
gacgggtggc aggccctgga gaggaactga gtgtcaccct gatctcaqqc caccaqcctc 900
tgccggcctc ccagccgggc tcctgaagcc cgctgaaagg tcagcgactg aaggccttgc 960
agacaaccgt ctggaggtgg ctgtcctcaa aatctgcttc tcggatctcc ctcagtctgc 1020
ccccagcccc caaactcctc ctggctagac tgtaggaagg gacttttgtt tgtttgtttg 1080
tttcaggaaa aaagaaaggg agagagagga aaatagaggg ttgtccactc ctcacattcc 1140
acgacccagg cctgcacccc acccccaact cccagccccg gaataaaacc attttcctgc 1200
<210> 23
<211> 205
<212> PRT
<213> Homo sapiens
```

<400> 23

Met Gly Ala Ala Arg Leu Leu Pro Asn Leu Thr Leu Cys Leu Gln Leu 1 5 10 15

Leu Ile Leu Cys Cys Gln Thr Gln Tyr Val Arg Asp Gln Gly Ala Met
20 25 30

Thr Asp Gln Leu Ser Arg Arg Gln Ile Arg Glu Tyr Gln Leu Tyr Ser 35 40 45

Arg Thr Ser Gly Lys His Val Gln Val Thr Gly Arg Arg Ile Ser Ala 50 55 60

Thr Ala Glu Asp Gly Asn Lys Phe Ala Lys Leu Ile Val Glu Thr Asp
65 70 75 80

Thr Phe Gly Ser Arg Val Arg Ile Lys Gly Ala Glu Ser Glu Lys Tyr 85 90 95

Ile Cys Met Asn Lys Arg Gly Lys Leu Ile Gly Lys Pro Ser Gly Lys
100 105 110

Ser Lys Asp Cys Val Phe Thr Glu Ile Val Leu Glu Asn Asn Tyr Thr 115 120 125

Ala Phe Gln Asn Ala Arg His Glu Gly Trp Phe Met Ala Phe Thr Arg 130 135 140

Gln Gly Arg Pro Arg Gln Ala Ser Arg Ser Arg Gln Asn Gln Arg Glu
145 150 155 160

Ala His Phe Ile Lys Arg Leu Tyr Gln Gly Gln Leu Pro Phe Pro Asn 165 170 175

His Ala Glu Lys Gln Lys Gln Phe Glu Phe Val Gly Ser Ala Pro Thr 180 185 190

Arg Arg Thr Lys Arg Thr Arg Arg Pro Gln Pro Leu Thr 195 200 205

<210> 24

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<400> 24

cagtacgtga gggaccaggg cgccatga

28

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 25
ccqqtqacct qcacqtqctt qcca
                                                                   24
<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<220>
<221> modified base
<222> (21)
<223> a, t, c or g
<400> 26
geggatetge egeetgetea netggteggt eatggegeee t
                                                                   41
<210> 27
<211> 2479
<212> DNA
<213> Homo sapiens
<400> 27
acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt ttgcacatgg 60
aggacagcag caaagaggc aacacaggct gataagacca gagacagcag ggagattatt 120
ttaccatacg ccctcaggac gttccctcta gctggagttc tggacttcaa cagaacccca 180
tocagteatt tigatitige igittatiti tititietti tiettitiee caccacatig 240
tattttattt ccgtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300
cttttttcct gaagtettgg cttateattt ccctggggct ctactcacag gtgtccaaac 360
tectggeetg cectagtgtg tgeegetgeg acaggaactt tgtetactgt aatgagegaa 420
gcttgacctc agtgcctctt gggatcccgg agggcgtaac cgtactctac ctccacaaca 480
accaaattaa taatgctgga tttcctgcag aactgcacaa tgtacagtcg gtgcacacgg 540
totacotgta tggcaaccaa ctggacgaat tccccatgaa cottoccaag aatgtcagag 600
ttetecattt geaggaaaac aatatteaga ceattteaeg ggetgetett geeeagetet 660
tgaagettga agagetgeae etggatgaea acteeatate caeagtgggg gtggaagaeg 720
gggccttccg ggaggctatt agcctcaaat tgttgttttt gtctaagaat cacctgagca 780
gtgtgcctgt tgggcttcct gtggacttgc aagagctgag agtggatgaa aatcgaattg 840
ctgtcatatc cgacatggcc ttccagaatc tcacgagctt ggagcgtctt attgtggacg 900
ggaacctect gaccaacaag ggtategeeg agggcaectt cagecatete accaagetea 960
aggaattttc aattgtacgt aattcgctgt cccaccctcc tcccgatctc ccaggtacgc 1020
atotgatoag gototattig caggacaaco agataaacoa cattoottig acagcottot 1080
caaatctgcg taagctggaa cggctggata tatccaacaa ccaactgcgg atgctgactc 1140
```

65

```
aaggggtttt tgataatete tecaacetga ageageteae tgeteggaat aaccettggt 1200
tttgtgactg cagtattaaa tgggtcacag aatggctcaa atatatccct tcatctctca 1260
acgtgcgggg tttcatgtgc caaggtcctg aacaagtccg ggggatggcc gtcagggaat 1320
taaatatqaa tettitqtee tqteecacca eqaceeeqq eetqeetete tteaeeecaq 1380
ccccaagtac agettetecg accacteage eteccaecet etetatteca aaccetagea 1440
gaagetacac geeteeaact ectaceacat egaaacttee caegatteet gaetgggatg 1500
gcagagaaag agtgacccca cctatttctg aacggatcca gctctctatc cattttgtga 1560
atgatactic cattcaaqtc aqctqqctct ctctcttcac cqtqatqqca tacaaactca 1620
catgggtgaa aatgggccac agtttagtag ggggcatcgt tcaggagcgc atagtcagcg 1680
gtgagaagca acacctgagc ctggttaact tagagccccg atccacctat cggatttgtt 1740
tagtgccact ggatgctttt aactaccgcg cggtagaaga caccatttgt tcagaggcca 1800
ccacccatge etectatetg aacaaeggca gcaacaeage gtecageeat gageagaega 1860
egteceacag catgggetec ceetttetge tggegggett gateggggge geggtgatat 1920
ttgtqctggt qqtcttqctc agcqtctttt qctqqcatat qcacaaaaaq qqqcqctaca 1980
ceteccagaa gtggaaatac aaceggggee ggeggaaaga tgattattge gaggeaggea 2040
ccaaqaaqqa caactccatc ctqqaqatqa caqaaaccaq ttttcaqatc qtctccttaa 2100
ataacgatca actoottaaa ggagatttca gactgcagco catttacaco ccaaatgggg 2160
gcattaatta cacagactgc catatcccca acaacatgcg atactgcaac agcagcgtgc 2220
cagacetgga geactgeeat acgtgacage cagaggeeca gegttateaa ggeggacaat 2280
tagactettg agaacacact egtgtgtgca cataaagaca egcagattac atttgataaa 2340
tgttacacag atgcatttqt qcatttqaat actctgtaat ttatacqqtq tactatataa 2400
tgggatttaa aaaaagtgct atcttttcta tttcaagtta attacaaaca gttttgtaac 2460
tctttgcttt ttaaatctt
                                                                   2479
<210> 28
<211> 660
<212> PRT
<213> Homo sapiens
<400> 28
Met Gly Leu Gln Thr Thr Lys Trp Pro Ser His Gly Ala Phe Phe Leu
Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val Ser Lys
             20
                                 25
Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn Phe Val Tyr
Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly Ile Pro Glu Gly
Val Thr Val Leu Tyr Leu His Asn Asn Gln Ile Asn Asn Ala Gly Phe
```

Gly Asn Gln Leu Asp Glu Phe Pro Met Asn Leu Pro Lys Asn Val Arg

Pro Ala Glu Leu His Asn Val Gln Ser Val His Thr Val Tyr Leu Tyr

90

70

85

Val Leu His Leu Gln Glu Asn Asn Ile Gln Thr Ile Ser Arg Ala Ala 115 120 125

- Leu Ala Gln Leu Leu Lys Leu Glu Glu Leu His Leu Asp Asp Asn Ser 130 135 140
- Ile Ser Thr Val Gly Val Glu Asp Gly Ala Phe Arg Glu Ala Ile Ser 145 150 155 160
- Leu Lys Leu Leu Phe Leu Ser Lys Asn His Leu Ser Ser Val Pro Val
 165 170 175
- Gly Leu Pro Val Asp Leu Gln Glu Leu Arg Val Asp Glu Asn Arg Ile 180 185 190
- Ala Val Ile Ser Asp Met Ala Phe Gln Asn Leu Thr Ser Leu Glu Arg 195 200 205
- Leu Ile Val Asp Gly Asn Leu Leu Thr Asn Lys Gly Ile Ala Glu Gly 210 215 220
- Thr Phe Ser His Leu Thr Lys Leu Lys Glu Phe Ser Ile Val Arg Asn 225 230 235 240
- Ser Leu Ser His Pro Pro Pro Asp Leu Pro Gly Thr His Leu Ile Arg
 245 250 255
- Leu Tyr Leu Gln Asp Asn Gln Ile Asn His Ile Pro Leu Thr Ala Phe 260 270
- Ser Asn Leu Arg Lys Leu Glu Arg Leu Asp Ile Ser Asn Asn Gln Leu 275 280 285
- Arg Met Leu Thr Gln Gly Val Phe Asp Asn Leu Ser Asn Leu Lys Gln 290 295 300
- Leu Thr Ala Arg Asn Asn Pro Trp Phe Cys Asp Cys Ser Ile Lys Trp 305 310 315 320
- Val Thr Glu Trp Leu Lys Tyr Ile Pro Ser Ser Leu Asn Val Arg Gly 325 330 335
- Phe Met Cys Gln Gly Pro Glu Gln Val Arg Gly Met Ala Val Arg Glu 340 345 350
- Leu Asn Met Asn Leu Leu Ser Cys Pro Thr Thr Thr Pro Gly Leu Pro 355 360 365
- Leu Phe Thr Pro Ala Pro Ser Thr Ala Ser Pro Thr Thr Gln Pro Pro 370 375 380
- Thr Leu Ser Ile Pro Asn Pro Ser Arg Ser Tyr Thr Pro Pro Thr Pro 385 390 395 400
- Thr Thr Ser Lys Leu Pro Thr Ile Pro Asp Trp Asp Gly Arg Glu Arg

<212> DNA

				405					410					415	
Val	Thr	Pro	Pro 420	Ile	Ser	Glu	Arg	Ile 425	Gln	Leu	Ser	Ile	His 430	Phe	Va]
Asn	Asp	Thr 435	Ser	Ile	Gln	Val	Ser 440	Trp	Leu	Ser	Leu	Phe 445	Thr	Val	Met
Ala	Tyr 450	Lys	Leu	Thr	Trp	Val 455	Lys	Met	Gly	His	Ser 460	Leu	Val	Gly	Gly
Ile 465	Val	Gln	Glu	Arg	Ile 470	Val	Ser	Gly	Glu	Lys 475	Gln	His	Leu	Ser	Let 480
Val	Asn	Leu	Glu	Pro 485	Arg	Ser	Thr	Tyr	Arg 490	Ile	Cys	Leu	Val	Pro 495	Leu
Asp	Ala	Phe	Asn 500	Tyr	Arg	Ala	Val	Glu 505	Asp	Thr	Ile	Cys	Ser 510	Glu	Ala
Thr	Thr	His 515	Ala	Ser	Tyr	Leu	Asn 520	Asn	Gly	Ser	Asn	Thr 525	Ala	Ser	Ser
His	Glu 530	Gln	Thr	Thr	Ser	His 535	Ser	Met	Gly	Ser	Pro 540	Phe	Leu	Leu	Ala
Gly 545	Leu	Ile	Gly	Gly	Ala 550	Val	Ile	Phe	Val	Leu 555	Val	Val	Leu	Leu	Ser 560
Val	Phe	Cys	Trp	His 565	Met	His	Lys	Lys	Gly 570	Arg	Tyr	Thr	Ser	Gln 575	Lys
Trp	Lys	Tyr	Asn 580	Arg	Gly	Arg	Arg	Lys 585	Asp	Asp	Tyr	Cys	Glu 590	Ala	Gly
Thr	Lys	Lys 595	Asp	Asn	Ser	Ile	Leu 600	Glu	Met	Thr	Glu	Thr 605	Ser	Phe	Glr
Ile	Val 610	Ser	Leu	Asn	Asn	Asp 615	Gln	Leu	Leu	Lys	Gly 620	Asp	Phe	Arg	Let
Gln 625	Pro	Ile	Tyr	Thr	Pro 630	Asn	Gly	Gly	Ile	Asn 635	Tyr	Thr	Asp	Cys	His 640
Ile	Pro	Asn	Asn	Met 645	Arg	Tyr	Cys	Asn	Ser 650	Ser	Val	Pro	Asp	Leu 655	Glu
His	Cys	His	Thr 660												
-210	15 20	,													
)> 29 l> 21														

<213>	Artificial Sequence	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> cggtct	29 acct gtatggcaac c	21
<210> <211> <212> <213>	22	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> gcagga	30 caac cagataaacc ac	22
<210> <211> <211> <212> <213> <	22	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400>		22
<210> 3 <211> 4 <212> 1 <213> 2	46	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 3		46
<210> 3 <211> 3 <212> 1 <213> 1	3449	
	33 agea ageggeggeg geggagaeag aggeagagge agaagetggg geteegteet ceae gagegateee egaggagage egeggeeete ggegaggega	

gaggaagacc cgggtggctg cgccctgcc tcgcttccca ggcgccggcg gctgcagcct 180 tgcccctctt gctcgccttg aaaatggaaa agatgctcgc aggctgcttt ctgctgatcc 240 teggacagat egtecteete eetgeegagg eeagggageg gteaegtggg aggteeatet 300 ctaggggeag acacgetegg acceaecege agaeggeeet tetggagagt teetgtgaga 360 acaagcgggc agacctggtt ttcatcattg acagctctcg cagtgtcaac acccatgact 420 atgcaaaggt caaggagtte ategtggaea tettgeaatt ettggaeatt ggteetgatg 480 tcacccgagt gggcctgctc caatatggca gcactgtcaa gaatgagttc tccctcaaga 540 cetteaagag gaagteegag gtggagegtg etgteaagag gatgeggeat etgteeaegg 600 gcaccatgae tgggetggee atccagtatg ceetgaacat egcattetea gaagcagagg 660 gggcccggcc cctgagggag aatgtgccac gggtcataat gatcgtgaca gatgggagac 720 ctcaggactc cgtggccgag gtggctgcta aggcacggga cacgggcatc ctaatctttg 780 ccattggtgt gggccaggta gacttcaaca ccttgaagtc cattgggagt gagccccatg 840 aggaccatgt cttccttgtg gccaatttca gccagattga gacgctgacc tccgtgttcc 900 agaagaagtt gtgcacggcc cacatgtgca gcaccctgga gcataactgt gcccacttct 960 gcatcaacat ccctggctca tacgtctgca ggtgcaaaca aggctacatt ctcaactcgg 1020 atcagacgac ttgcagaatc caggatctgt gtgccatgga ggaccacaac tgtgagcagc 1080 tetgtgtgaa tgtgeeggge teettegtet geeagtgeta eagtggetae geectggetg 1140 aggatgggaa gaggtgtgtg getgtggact actgtgcete agaaaaccac ggatgtgaac 1200 atgagtgtgt aaatgctgat ggctcctacc tttgccagtg ccatgaagga tttgctctta 1260 acccagatga aaaaacgtgc acaaggatca actactgtgc actgaacaaa ccgggctgtg 1320 agcatgagtg egteaacatg gaggagaget actaetgeeg etgeeacegt ggetacaete 1380 tggaccccaa tggcaaaacc tgcagccgag tggaccactg tgcacagcag gaccatggct 1440 gtgagcagct gtgtctgaac acggaggatt ccttcgtctg ccagtgctca gaaggcttcc 1500 tcatcaacga ggacctcaag acctgctccc gggtggatta ctgcctgctg agtgaccatg 1560 gttgtgaata ctcctgtqtc aacatggaca gatcctttgc ctgtcagtgt cctgagggac 1620 acgtgeteeg cagegatggg aagaegtgtg caaaattgga etettgtget etgggggace 1680 acggttgtga acattcgtgt gtaagcagtg aagattcgtt tgtgtgccag tgctttgaag 1740 gttatatact ccgtgaagat ggaaaaacct gcagaaggaa agatgtctgc caagctatag 1800 accatggctg tgaacacatt tgtgtgaaca gtgacgactc atacacgtgc gagtgcttgg 1860 agggattccg gctcgctgag gatgggaaac gctgccgaag gaaggatgtc tgcaaatcaa 1920 cccaccatgg ctgcgaacac atttgtgtta ataatgggaa ttcctacatc tgcaaatgct 1980 cagagggatt tgttctagct gaggacggaa gacggtgcaa gaaatgcact gaaggcccaa 2040 ttgacctggt ctttgtgatc gatggatcca agagtcttgg agaagagaat tttgaggtcg 2100 tgaagcagtt tgtcactgga attatagatt cettgacaat ttcccccaaa geegetegag 2160 tggggctgct ccagtattcc acacaggtcc acacagagtt cactetgaga aacttcaact 2220 cagccaaaga catgaaaaaa gccgtggccc acatgaaata catgggaaag ggctctatga 2280 ctgggctggc cctgaaacac atgtttgaga gaagttttac ccaaggagaa ggggccaggc 2340 ccctttccac aagggtgccc agagcagcca ttgtgttcac cgacggacgg gctcaggatg 2400 acgtctccga gtgggccagt aaagccaagg ccaatggtat cactatgtat gctgttgggg 2460 taggaaaagc cattgaggag gaactacaag agattgcctc tgagcccaca aacaagcatc 2520 tettetatge egaagaette ageacaatgg atgagataag tgaaaaacte aagaaaggea 2580 tctgtgaagc tctagaagac tccgatggaa gacaggactc tccagcaggg gaactgccaa 2640 aaacggtcca acagccaaca gaatctgagc cagtcaccat aaatatccaa gacctacttt 2700 cctgttctaa ttttgcagtg caacacagat atctgtttga agaagacaat cttttacggt 2760 ctacacaaaa gettteecat teaacaaaac etteaggaag eeetttggaa gaaaaacaeg 2820 atcaatgcaa atgtgaaaac cttataatgt tccagaacct tgcaaacgaa gaagtaagaa 2880 aattaacaca gcgcttagaa gaaatgacac agagaatgga agccctggaa aatcgcctga 2940 gatacagatg aagattagaa atcgcgacac atttgtagtc attgtatcac ggattacaat 3000 gaacgcagtg cagagcccca aagctcaggc tattgttaaa tcaataatgt tgtgaagtaa 3060 aacaatcagt actgagaaac ctggtttgcc acagaacaaa gacaagaagt atacactaac 3120 ttgtataaat ttatctagga aaaaaatcct tcagaattct aagatgaatt taccaggtga 3180 gaatgaataa gotatgcaag gtattttgta atatactgtg gacacaactt gottotgcot 3240 catcctgcct tagtgtgcaa tctcatttga ctatacgata aagtttgcac agtcttactt 3300

ctgtagaaca ctggccatag gaaatgctgt ttttttgtac tggactttac cttgatatat 3360 gtatatggat gtatgcataa aatcatagga catatgtact tgtggaacaa gttggatttt 3420 ttatacaata ttaaaattca ccacttcag 3449

<210> 34

<211> 915

<212> PRT

<213> Homo sapiens

<400> 34

Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln Ile 1 5 10 15

Val Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile 20 25 30

Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala Leu Leu Glu 35 40 45

Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe Ile Ile Asp Ser 50 55 60

Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys Val Lys Glu Phe Ile 65 70 75 80

Val Asp Ile Leu Gln Phe Leu Asp Ile Gly Pro Asp Val Thr Arg Val
85 90 95

Gly Leu Leu Gln Tyr Gly Ser Thr Val Lys Asn Glu Phe Ser Leu Lys 100 105 110

Thr Phe Lys Arg Lys Ser Glu Val Glu Arg Ala Val Lys Arg Met Arg 115 120 125

His Leu Ser Thr Gly Thr Met Thr Gly Leu Ala Ile Gln Tyr Ala Leu 130 135 140

Asn Ile Ala Phe Ser Glu Ala Glu Gly Ala Arg Pro Leu Arg Glu Asn 145 150 155 160

Val Pro Arg Val Ile Met Ile Val Thr Asp Gly Arg Pro Gln Asp Ser 165 170 175

Val Ala Glu Val Ala Ala Lys Ala Arg Asp Thr Gly Ile Leu Ile Phe 180 185 190

Ala Ile Gly Val Gly Gln Val Asp Phe Asn Thr Leu Lys Ser Ile Gly
195 200 205

Ser Glu Pro His Glu Asp His Val Phe Leu Val Ala Asn Phe Ser Gln 210 215 220

Ile Glu Thr Leu Thr Ser Val Phe Gln Lys Lys Leu Cys Thr Ala His

225	;				230					235					240
Met	Cys	Ser	Thr	Leu 245		His	Asn	Cys	Ala 250		Phe	Суѕ	Ile	Asn 255	Ile
Pro	Gly	Ser	Tyr 260		Cys	Arg	Cys	Lys 265		Gly	Tyr	Ile	Leu 270	Asn	Ser
Asp	Gln	Thr 275		Cys	Arg	Ile	Gln 280	Asp	Leu	Cys	Ala	Met 285		Asp	His
Asn	Cys 290		Gln	Leu	Cys	Val 295		Val	Pro	Gly	Ser 300	Phe	Val	Cys	Gln
Cys 305		Ser	Gly	Tyr	Ala 310	Leu	Ala	Glu	Asp	Gly 315	Lys	Arg	Cys	Val	Ala 320
Val	Asp	Tyr	Cys	Ala 325	Ser	Glu	Asn	His	Gly 330	Cys	Glu	His	Glu	Cys 335	Val
Asn	Ala	Asp	Gly 340	Ser	Tyr	Leu	Cys	Gln 345	Cys	His	Glu	Gly	Phe 350	Ala	Leu
Asn	Pro	Asp 355	Glu	Lys	Thr	Cys	Thr 360	Arg	Ile	Asn	Tyr	Cys 365	Ala	Leu	Asn
Lys	Pro 370	Gly	Cys	Glu	His	Glu 375	Cys	Val	Asn	Met	Glu 380	Glu	Ser	Tyr	Tyr
Cys 385	Arg	Cys	His	Arg	Gly 390	Tyr	Thr	Leu	Asp	Pro 395	Asn	Gly	Lys	Thr	Cys 400
Ser	Arg	Val	Asp	His 405	Cys	Ala	Gln	Gln	Asp 410	His	Gly	Сув	Glu	Gln 415	Leu
Cys	Leu	Asn	Thr 420	Glu	Asp	Ser	Phe	Val 425	Cys	Gln	Cys	Ser	Glu 430	Gly	Phe
Leu	Ile	Asn 435	Glu	Asp	Leu	Lys	Thr 440	Cys	Ser	Arg	Val	Asp 445	Tyr	Cys	Leu
Leu	Ser 450	Asp	His	Gly	Cys	Glu 455	Tyr	Ser	Cys	Val	Asn 460	Met	Asp	Arg	Ser
Phe 465	Ala	Суз	Gln	Cys	Pro 470	Glu	Gly	His	Val	Leu 475	Arg	Ser	Asp	Gly	Lys 480
Thr	Cys	Ala	Lys	Leu 485	Asp	Ser	Cys	Ala	Leu 490	Gly	Asp	His	Gly	Cys 495	Glu
His	Ser	Cys	Val 500	Ser	Ser	Glu	Asp	Ser 505	Phe	Val	Cys	Gln	Cys	Phe	Glu

- Gly Tyr Ile Leu Arg Glu Asp Gly Lys Thr Cys Arg Arg Lys Asp Val 515 520 525
- Cys Gln Ala Ile Asp His Gly Cys Glu His Ile Cys Val Asn Ser Asp 530 540
- Asp Ser Tyr Thr Cys Glu Cys Leu Glu Gly Phe Arg Leu Ala Glu Asp 545 550 555
- Gly Lys Arg Cys Arg Arg Lys Asp Val Cys Lys Ser Thr His His Gly
 565 570 575
- Cys Glu His Ile Cys Val Asn Asn Gly Asn Ser Tyr Ile Cys Lys Cys 580 585 590
- Ser Glu Gly Phe Val Leu Ala Glu Asp Gly Arg Arg Cys Lys Cys 595 600 605
- Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile Asp Gly Ser Lys Ser 610 620
- Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln Phe Val Thr Gly Ile 625 630 635 640
- Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg Val Gly Leu Leu 645 650 655
- Gln Tyr Ser Thr Gln Val His Thr Glu Phe Thr Leu Arg Asn Phe Asn 660 665 670
- Ser Ala Lys Asp Met Lys Lys Ala Val Ala His Met Lys Tyr Met Gly
 675 680 685
- Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg Ser 690 695 700
- Phe Thr Gln Gly Glu Gly Ala Arg Pro Leu Ser Thr Arg Val Pro Arg 705 710 715 720
- Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser Glu 725 730 735
- Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile Thr Met Tyr Ala Val Gly 740 745 750
- Val Gly Lys Ala Ile Glu Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro 755 760 765
- Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu 770 780
- Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser
 785 790 795 800

Asp	Gly	Arg	Gln	Asp 805	Ser	Pro	Ala	Gly	Glu 810	Leu	Pro	Lys	Thr	Val 8 1 5	Gln	
Gln	Pro	Thr	Glu 820	Ser	Glu	Pro	Val	Thr 825	Ile	Asn	Ile	Gln	Asp 830	Leu	Leu	
Ser	Cys	Ser 835	Asn	Phe	Ala	Val	Gln 840	His	Arg	Tyr	Leu	Phe 845	Glu	Glu	Asp	
Asn	Leu 850	Leu	Arg	Ser	Thr	Gln 855	Lys	Leu	Ser	His	Ser 860	Thr	Lys	Pro	Ser	
Gly 865	Ser	Pro	Leu	Glu	Glu 870	Lys	His	Asp	Gln	Cys 875	Lys	Cys	Glu	Asn	Leu 880	
Ile	Met	Phe	Gln	Asn 885	Leu	Ala	Asn	Glu	Glu 890	Val	Arg	Lys	Leu	Thr 895	Gln	
Arg	Leu	Glu	Glu 900	Met	Thr	Gln	Arg	Met 905	Glu	Ala	Leu	Glu	Asn 910	Arg	Leu	
Arg	Tyr	Arg 915														
<210 <211 <212 <213	> 23 > DN	B JA	cial	. Sec	luenc	:e										
<220 <223	> De		ptic				ial	Sequ	ience	e: Sy	nthe	etic				
<400 gtga			tgtg	jaata	ıc to	c										23
<210 <211 <212 <213	> 22 > DN	IA.	cial	Seq	uenc	e										
<220 <223	> De		ptio ucle				ial	Sequ	ence	: Sy	nthe	tic				
<400 acag			ctat	agct	t gg											22
<210 <211 <212 <213	> 45 > DN	Α	cial	Seq	uenc	e										

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 37
                                                                  45
gcctgtcagt gtcctgaggg acacgtgctc cgcagcgatg ggaag
<210> 38
<211> 1813
<212> DNA
<213> Homo sapiens
<400> 38
ggagccgccc tgggtgtcag cggctcggct cccgcgcacg ctccggccgt cgcgcagcct 60
cggcacctgc aggtccgtgc gtcccgcggc tggcgccct gactccgtcc cggccaggga 120
gggccatgat ttccctcccg gggcccctgg tgaccaactt gctgcggttt ttgttcctgg 180
qqctqaqtqc cctcqcqccc ccctcqcggg cccagctgca actgcacttg cccgccaacc 240
ggttgcaggc ggtggaggga ggggaagtgg tgcttccagc gtggtacacc ttgcacgggg 300
aggtgtcttc atcccagcca tgggaggtgc cctttgtgat gtggttcttc aaacagaaag 360
aaaaggagga tcaggtgttg tcctacatca atggggtcac aacaagcaaa cctggagtat 420
cettggteta etceatgece teceggaace tgteeetgeg getggagggt etceaggaga 480
aagactctgg cccctacagc tgctccgtga atgtgcaaga caaacaaggc aaatctaggg 540
gccacagcat caaaacctta gaactcaatg tactggttcc tccagctcct ccatcctgcc 600
gtctccaggg tgtgccccat gtgggggcaa acgtgaccct gagctgccag tctccaagga 660
gtaagcccgc tgtccaatac cagtgggatc ggcagcttcc atccttccag actttctttg 720
caccagcatt agatgtcatc cgtgggtctt taagcctcac caacctttcg tcttccatgg 780
ctggagtcta tgtctgcaag gcccacaatg aggtgggcac tgcccaatgt aatgtgacgc 840
tggaagtgag cacagggcct ggagctgcag tggttgctgg agctgttgtg ggtaccctgg 900
ttggactggg gttgctggct gggctggtcc tcttgtacca ccgccggggc aaggccctgg 960
aggagecage caatgatate aaggaggatg ceattgetee eeggaceetg eeetggeeca 1020
agageteaga cacaatetee aagaatggga ceettteete tgteacetee geacgagece 1080
teeggecace ecatggeet eccaggeetg gtgcattgac ecceaegeec agteteteca 1140
qccaqqcct qcctcacca agactgccca cgacagatgg ggcccaccct caaccaatat 1200
cccccatccc tggtggggtt tcttcctctg gcttgagccg catgggtgct gtgcctgtga 1260
tggtgcctgc ccagagtcaa gctggctctc tggtatgatg accccaccac tcattggcta 1320
aaggatttgg ggtctctcct tcctataagg gtcacctcta gcacagaggc ctgagtcatg 1380
ggaaagagtc acactcctga cccttagtac tctgccccca cctctctta ctgtgggaaa 1440
accateteag taagaeetaa gtgteeagga gacagaagga gaagaggaag tggatetgga 1500
attgggagga gcctccaccc acccctgact cctccttatg aagccagctg ctgaaattag 1560
ctactcacca agagtgaggg gcagagactt ccagtcactg agtctcccag gcccccttga 1620
tetgtacece acceptatet aacaceaece ttggeteeca etceagetee etgtattgat 1680
ataacctgtc aggctggctt ggttaggttt tactggggca gaggataggg aatctcttat 1740
taaaactaac atgaaatatg tgttgttttc atttgcaaat ttaaataaag atacataatg 1800
                                                                  1813
tttqtatqaa aaa
<210> 39
<211> 390
<212> PRT
<213> Homo sapiens
<400> 39
Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu
```

1				5					10					15	
Phe	Leu	Gly	Leu 20	Ser	Ala	Leu	Ala	Pro 25	Pro	Ser	Arg	Ala	Gln 30	Leu	Gln
Leu	His	Leu 35	Pro	Ala	Asn	Arg	Leu 40	Gln	Ala	۷al	Glu	Gly 45	Gly	Glu	Val
Val	Leu 50	Pro	Ala	Trp	Tyr	Thr 55	Leu	His	Gly	Glu	Val 60	Ser	Ser	Ser	Gln
Pro 65	Trp	Glu	Val	Pro	Phe 70	Val	Met	Trp	Phe	Phe 75	Lys	Gln	Lys	Glu	Lys 80
Glu	Asp	Gln	Val	Leu 85	Ser	Tyr	Ile	Asn	Gly 90	Val	Thr	Thr	Ser	Lys 95	Pro
Gly	Val	Ser	Leu 100	Val	Tyr	Ser	Met	Pro 105	Ser	Arg	Asn	Leu	Ser 110	Leu	Arg
Leu	Glu	Gly 115	Leu	Gln	Glu	Lys	Asp 120	Ser	Gly	Pro	Tyr	Ser 125	Cys	Ser	Val
Asn	Val 130	Gln	Asp	Lys	Gln	Gly 135	Lys	Ser	Arg	Gly	His 140	Ser	Ile	Lys	Thr
Leu 145	Glu	Leu	Asn	Val	Leu 150	Val	Pro	Pro	Ala	Pro 155	Pro	Ser	Cys	Arg	Leu 160
Gln	Gly	Val	Pro	His 165	Val	Gly	Ala	Asn	Val 170	Thr	Leu	Ser	Cys	Gln 175	Ser
Pro	Arg	Ser	Lys 180	Pro	Ala	Val	Gln	Tyr 185	Gln	Trp	Asp	Arg	Gln 190	Leu	Pro
Ser	Phe	Gln 195	Thr	Phe	Phe	Ala	Pro 200	Ala	Leu	Asp	Val	Ile 205	Arg	Gly	Ser
Leu	Ser 210	Leu	Thr	Asn	Leu	Ser 215	Ser	Ser	Met	Ala	Gly 220	Val	Tyr	Val	Cys
Lys 225	Ala	His	Asn	Glu	Val 230	Gly	Thr	Ala	Gln	Cys 235	Asn	Val	Thr	Leu	Glu 240
Val	Ser	Thr	Gly	Pro 245	Gly	Ala	Ala	Val	Val 250	Ala	Gly	Ala	Val	Val 255	Gly
Thr	Leu	Val	Gly 260	Leu	Gly	Leu	Leu	Ala 265	Gly	Leu	Val	Leu	Leu 270	Tyr	His
Arg	Arg	Gly 275	Lys	Ala	Leu		Glu 280	Pro	Ala	Asn	Asp	Ile 285	Lys	Glu	Asp

Ala :	Ile 290	Ala	Pro	Arg	Thr	Leu 295	Pro	Trp	Pro	Lys	Ser 300	Ser	Asp	Thr	Ile	
Ser 1	Lys	Asn	Gly	Thr	Leu 310	Ser	Ser	Val	Thr	Ser 315	Ala	Arg	Ala	Leu	Arg 320	
Pro 1	Pro	His	Gly	Pro 325	Pro	Arg	Pro	Gly	Ala 330	Leu	Thr	Pro	Thr	Pro 335	Ser	
Leu S	Ser	Ser	Gln 340	Ala	Leu	Pro	Ser	Pro 345	Arg	Leu	Pro	Thr	Thr 350	Asp	Gly	
Ala F	His	Pro 355	Gln	Pro	Ile	Ser	Pro 360	Ile	Pro	Gly	Gly	Val 365	Ser	Ser	Ser	
Gly I	Leu 370	Ser	Arg	Met	Gly	Ala 375	Val	Pro	Val	Met	Val 380	Pro	Ala	Gln	Ser	
Gln <i>A</i> 385	Ala	Gly	Ser	Leu	Val 390											
<210 > <211 > <212 > <212 > <213 >	> 22 > DN	i A	.cial	. Sec	luenc	e										
<220><223>	> De			n of otid			ial	Sequ	ience	e: Sy	nthe	tic				
<400> agggt			gaga	aaga	ic to	:										22
<210><211><211><212><213>	24 DN	A	cial	Seq	uenc	e										
<220> <223>	• De			n of otid			ial	Sequ	ence	: Sy	nthe	tic				
<400> attgt		cc t	tgca	gaca	t ag	ac										24
<210><211><212><212><213>	50 DN	-	cial	Seq	uenc	e										
<220> <223>	Des			n of			ial	Sequ	ence	: Ѕу	nthe	tic				

<400> 42 ggccacagca tcaaaacctt agaactcaat gtactggttc ctccagctcc	50
<210> 43 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 43 gtgtgacaca gcgtgggc	18
<210> 44 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 44 gaccggcagg cttctgcg	18
<210> 45 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 45 cagcagcttc agccaccagg agtgg	25
<210> 46 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 46 ctgagccgtg ggctgcagtc tcgc	24
<210> 47	

```
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 47
ccgactacga ctggttcttc atcatgcagg atgacacata tgtgc
                                                                   45
<210> 48
<211> 2822
<212> DNA
<213> Homo sapiens
<400> 48
egecaceact geggecaceg ceaatgaaac geeteceget eetagtggtt titteeactt 60
tgttgaattg ttcctatact caaaattqca ccaaqacacc ttqtctccca aatqcaaaat 120
gtgaaatacg caatggaatt gaagcctgct attgcaacat gggattttca ggaaatggtg 180
tcacaatttg tgaagatgat aatgaatgtg gaaatttaac tcagtcctgt ggcgaaaatg 240
ctaattgcac taacacagaa ggaagttatt attgtatgtg tgtacctggc ttcagatcca 300
gcagtaacca agacaggttt atcactaatg atggaaccgt ctgtatagaa aatgtgaatg 360
caaactgcca tttagataat gtctgtatag ctgcaaatat taataaaact ttaacaaaaa 420
tcagatccat aaaagaacct gtggctttgc tacaagaagt ctatagaaat tctgtgacag 480
atctttcacc aacagatata attacatata tagaaatatt agctgaatca tcttcattac 540
taggttacaa gaacaacact atctcagcca aggacaccct ttctaactca actcttactg 600
aatttgtaaa aaccgtgaat aattttgttc aaagggatac atttgtagtt tgggacaagt 660
tatctgtgaa tcataggaga acacatctta caaaactcat gcacactgtt gaacaagcta 720
ctttaaggat atcccagagc ttccaaaaga ccacagagtt tgatacaaat tcaacggata 780
tageteteaa agttttettt tttgatteat ataacatgaa acatatteat eeteatatga 840
atatggatgg agactacata aatatatttc caaagagaaa agctgcatat gattcaaatg 900
gcaatgttgc agttgcattt ttatattata agagtattgg tcctttgctt tcatcatctg 960
acaacttctt attgaaacct caaaattatg ataattctga agaggaggaa agagtcatat 1020
cttcagtaat ttcagtctca atgagctcaa acccacccac attatatgaa cttgaaaaaa 1080
taacatttac attaagtcat cgaaaggtca cagataggta taggagtcta tgtgcatttt 1140
ggaattactc acctgatacc atgaatggca gctggtcttc agagggctgt gagctgacat 1200
actcaaatga gacccacacc tcatgccgct gtaatcacct gacacatttt gcaattttga 1260
tgtcctctgg tccttccatt ggtattaaag attataatat tcttacaaqg atcactcaac 1320
taggaataat tatttcactg atttgtcttg ccatatgcat ttttaccttc tggttcttca 1380
gtgaaattca aagcaccagg acaacaattc acaaaaatct ttgctgtagc ctatttcttg 1440
ctgaacttgt ttttcttgtt gggatcaata caaatactaa taaqctcttc tqttcaatca 1500
ttgccggact gctacactac ttctttttag ctgcttttgc atggatgtgc attgaaggca 1560
tacateteta teteattgtt gtgggtgtea tetacaacaa gggatttttg cacaagaatt 1620
tttatatett tggetateta ageecageeg tggtagttgg atttteggea geactaggat 1680
acagatatta tggcacaacc aaagtatgtt ggcttagcac cgaaaacaac tttatttgga 1740
gttttatagg accagcatgc ctaatcattc ttgttaatct cttggctttt ggagtcatca 1800
tatacaaagt ttttcgtcac actgcagggt tgaaaccaga agttagttgc tttgagaaca 1860
taaggtettg tgeaagagga geeetegete ttetgtteet teteggeaee aeetggatet 1920
ttggggttet ceatgttgtg caegeateag tggttacage ttacetette acaqteaqea 1980
atgettteea ggggatgtte attttttat teetgtgtgt tttatetaga aagatteaag 2040
aagaatatta cagattgttc aaaaatgtcc cctgttgttt tggatgttta aggtaaacat 2100
agagaatggt ggataattac aactgcacaa aaataaaaat tccaagctgt ggatgaccaa 2160
```

<210> 49

<211> 690

<212> PRT

<213> Homo sapiens

<400> 49

Met Lys Arg Leu Pro Leu Leu Val Val Phe Ser Thr Leu Leu Asn Cys

1 10 15

Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn Ala Lys 20 25 30

Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn Met Gly Phe 35 40 45

Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asp Asn Glu Cys Gly Asn 50 55 60

Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys Thr Asn Thr Glu Gly 65 70 75 80

Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe Arg Ser Ser Ser Asn Gln 85 90 95

Asp Arg Phe Ile Thr Asn Asp Gly Thr Val Cys Ile Glu Asn Val Asn 100 105 110

Ala Asn Cys His Leu Asp Asn Val Cys Ile Ala Ala Asn Ile Asn Lys
115 120 125

Thr Leu Thr Lys Ile Arg Ser Ile Lys Glu Pro Val Ala Leu Leu Gln 130 135 140

Glu Val Tyr Arg Asn Ser Val Thr Asp Leu Ser Pro Thr Asp Ile Ile 145 150 155 160

Thr Tyr Ile Glu Ile Leu Ala Glu Ser Ser Ser Leu Leu Gly Tyr Lys 165 170 175

Asn Asn Thr Ile Ser Ala Lys Asp Thr Leu Ser Asn Ser Thr Leu Thr

			180					185					190		
Glu	Phe	Val 195	Lys	Thr	Val	Asn	Asn 200	Phe	Val	Gln	Arg	Asp 205	Thr	Phe	Val
Val	Trp 210	Asp	Lys	Leu	Ser	Val 215	Asn	His	Arg	Arg	Thr 220	His	Leu	Thr	Lys
Leu 225	Met	His	Thr	Val	Glu 230	Gln	Ala	Thr	Leu	Arg 235	Ile	Ser	Gln	Ser	Phe 240
Gln	Lys	Thr	Thr	Glu 245	Phe	Asp	Thr	Asn	Ser 250	Thr	Asp	Ile	Ala	Leu 255	Lys
Val	Phe	Phe	Phe 260	Asp	Ser	Tyr	Asn	Met 265	Lys	His	Ile	His	Pro 270	His	Met
Asn	Met	Asp 275	Gly	Asp	Tyr	Ile	Asn 280	Ile	Phe	Pro	Lys	Arg 285	Lys	Ala	Ala
Tyr	Asp 290	Ser	Asn	Gly	Asn	Val 295	Ala	Val	Ala	Phe	Leu 300	Tyr	Tyr	Lys	Ser
Ile 305	Gly	Pro	Leu	Leu	Ser 310	Ser	Ser	Asp	Asn	Phe 315	Leu	Leu	Lys	Pro	Gln 320
Asn	Tyr	Asp	Asn	Ser 325	Glu	Glu	Glu	Glu	Arg 330	Val	Ile	Ser	Ser	Val 335	Ile
Ser	Val	Ser	Met 340	Ser	Ser	Asn	Pro	Pro 3 4 5	Thr	Leu	Tyr	Glu	Leu 350	Glu	Lys
Ile	Thr	Phe 355	Thr	Leu	Ser	His	Arg 360	Lys	Val	Thr	Asp	Arg 365	Tyr	Arg	Ser
Leu	Cys 370	Ala	Phe	Trp	Asn	Tyr 375	Ser	Pro	Asp	Thr	Met 380	Asn	Gly	Ser	Trp
Ser 385	Ser	Glu	Gly	Cys	Glu 390	Leu	Thr	Tyr	Ser	Asn 395	Glu	Thr	His	Thr	Ser 400
Cys	Arg	Cys	Asn	His 405	Leu	Thr	His	Phe	Ala 410	Ile	Leu	Met	Ser	Ser 415	Gly
Pro	Ser	Ile	Gly 420	Ile	Lys	Asp	Tyr	Asn 425	Ile	Leu	Thr	Arg	Ile 430	Thr	Gln
Leu	Gly	Ile 435	Ile	Ile	Ser	Leu	Ile 440	Cys	Leu	Ala	Ile	Cys 445	Ile	Phe	Thr
Phe	Trp 450	Phe	Phe	Ser	Glu	Ile 455	Gln	Ser	Thr	Arg	Thr 460	Thr	Ile	His	Lys

Asn Leu Cys Cys Ser Leu Phe Leu Ala Glu Leu Val Phe Leu Val Gly 465 · 470 475 480

Ile Asn Thr Asn Thr Asn Lys Leu Phe Cys Ser Ile Ile Ala Gly Leu 485 490 495

Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile Glu Gly 500 505 510

Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn Lys Gly Phe 515 520 525

Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser Pro Ala Val Val 530 535 540

Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys 545 550 555 560

Val Cys Trp Leu Ser Thr Glu Asn Asn Phe Ile Trp Ser Phe Ile Gly
565 570 575

Pro Ala Cys Leu Ile Ile Leu Val Asn Leu Leu Ala Phe Gly Val Ile 580 585 590

Ile Tyr Lys Val Phe Arg His Thr Ala Gly Leu Lys Pro Glu Val Ser 595 600 605

Cys Phe Glu Asn Ile Arg Ser Cys Ala Arg Gly Ala Leu Ala Leu Leu 610 615 620

Phe Leu Leu Gly Thr Trp Ile Phe Gly Val Leu His Val Val His 625 635 640

Ala Ser Val Val Thr Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln 645 650 655

Gly Met Phe Ile Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln
660 665 670

Glu Glu Tyr Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys 675 680 685

Leu Arg 690

<210> 50

<211> 589

<212> DNA

<213> Homo sapiens

<220>

<221> modified base

<222> (61)

```
<223> a, t, c or g
<400> 50
tggaaacata tcctccctca tatgaatatg gatggagact acataaatat atttccaaag 60
ngaaaagccg gcatatggat tcaaatggca atgttgcagt tgcattttta tattataaga 120
gtattggtcc ctttgctttc atcatctgac aacttcttat tgaaacctca aaattatgat 180
aattotgaag aggaggaaag agtoatatot toagtaattt cagtotoaat gagotoaaac 240
ccacccacat tatatgaact tgaaaaaata acatttacat taagtcatcg aaaggtcaca 300
gataggtata ggagtctatg tggcattttg gaatactcac ctgataccat gaatggcagc 360
tggtcttcag agggctgtga gctgacatac tcaaatgaga cccacacctc atgccgctgt 420
aatcacctqa cacattttqc aattttqatq tcctctqqtc cttccattqq tattaaaqat 480
tataatatto ttacaaggat cactcaacta ggaataatta tttcactgat ttgtcttgcc 540
atatgcattt ttaccttctg gttcttcagt gaaattcaaa gcaccagga
<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 51
ggtaatgagc tccattacag
                                                                   20
<210> 52
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 52
ggagtagaaa gcgcatgg
                                                                   18
<210> 53
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 53
cacctgatac catgaatggc ag
                                                                   22
<210> 54
<211> 18
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 54
cgagctcgaa ttaattcg
                                                                    18
<210> 55
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 55
ggatctcctg agctcagg
                                                                    18
<210> 56
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 56
cctagttgag tgatccttgt aag
                                                                    23
<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 57
atgagaccca cacctcatgc cgctgtaatc acctgacaca ttttgcaatt
                                                                    50
<210> 58
<211> 2137
<212> DNA
<213> Homo sapiens
<400> 58
gctcccagcc aagaacctcg gggccgctgc gcggtgggga ggagttcccc gaaacceggc 60
cgctaagcga ggcctcctcc tcccgcagat ccgaacggcc tgggcggggt caccccggct 120
```

```
gggacaagaa gccgccgcct gcctgcccgg gcccggggag ggggctgggg ctggggccgg 180
aggeggggtg tgagtgggtg tgtgeggggg geggaggett gatgeaatee egataagaaa 240
tgctcgqgtg tcttgggcac ctacccgtgg ggcccgtaag gcgctactat ataaggctgc 300
cggcccggag ccgccgcgcc gtcagagcag gagcgctgcg tccaggatct agggccacga 360
ccatcccaac coggcactca cageccegea gegeateceg gtegeegeec agecteeege 420
acceccateg ceggagetge geegagagee ceagggaggt geeatgegga gegggtgtgt 480
ggtggtccac gtatggatcc tggccggcct ctggctggcc gtggccgggc gcccctcgc 540
cttctcggac gcggggcccc acgtgcacta cggctggggc gaccccatcc gcctgcggca 600
cctqtacacc tccqqccccc acgggctctc cagctgcttc ctgcgcatcc gtgccgacgg 660
cgtcgtggac tgcgcgcggg gccagagcgc gcacagtttg ctggagatca aggcagtcgc 720
tctgcggacc gtggccatca agggcgtgca cagcgtgcgg tacctctgca tgggcgccga 780
cggcaagatg caggggctgc ttcagtactc ggaggaagac tgtgctttcg aggaggagat 840
ccgcccagat ggctacaatg tgtaccgatc cgagaagcac cgcctcccgg tctccctgag 900
caqtqccaaa caqcqqcaqc tqtacaagaa cagaggcttt cttccactct ctcatttcct 960
gcccatgctg cccatggtcc cagaggagcc tgaggacctc aggggccact tggaatctga 1020
catqttctct tegeceetgg agaccgaeag catggaecea tttgggettg teaceggaet 1080
ggaggccgtg aggagtccca gctttgagaa gtaactgaga ccatgcccgg gcctcttcac 1140
tgctqccagg ggctgtggta cctgcagcgt gggggacgtg cttctacaag aacagtcctg 1200
agtccacgtt ctgtttagct ttaggaagaa acatctagaa gttgtacata ttcagagttt 1260
tocattggca gtgccagttt ctagccaata gacttgtctg atcataacat tgtaagcctg 1320
tagettgeec agetgetgee tgggeeceea ttetgeteec tegaggttge tggacaaget 1380
getgeactgt eteagttetg ettgaatace teeategatg gggaacteae tteetttgga 1440
aaaattetta tgtcaagetg aaatteteta atttttete ateaetteee caggageage 1500
cagaagacag gcagtagttt taatttcagg aacaggtgat ccactctgta aaacagcagg 1560
taaatttcac tcaaccccat gtgggaattg atctatatct ctacttccag ggaccatttg 1620
cccttcccaa atccctccag gccagaactg actggagcag gcatggccca ccaggcttca 1680
ggagtagggg aagcetggag ceceacteca geeetgggac aacttgagaa tteeceetga 1740
ggccagttct gtcatggatg ctgtcctgag aataacttgc tgtcccggtg tcacctgctt 1800
ccatctccca gcccaccage cetetgeeca ceteacatge etceecatgg attggggeet 1860
atttgaagac cccaagtctt gtcaataact tgctgtgtgg aagcagcggg ggaagaccta 1980
gaaccctttc cccagcactt ggttttccaa catgatattt atgagtaatt tattttgata 2040
tgtacatctc ttattttctt acattattta tgcccccaaa ttatatttat gtatgtaagt 2100
                                                                2137
gaggtttgtt ttgtatatta aaatggagtt tgtttgt
<210> 59
<211> 216
<212> PRT
<213> Homo sapiens
```

<400> 59

Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly Leu 1 5 10 15

Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala Gly Pro 20 25 30

His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr 35 40 45

Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala
50 55 60

Asp Gly Val Val Asp Cys Ala Arg Gly Gln Ser Ala His Ser Leu Leu 65 70 75 80 Glu Ile Lys Ala Val Ala Leu Arg Thr Val Ala Ile Lys Gly Val His 85 90 95																
Glu	Ile	Lys	Ala	Val 85	Ala	Leu	Arg	Thr	Val 90	Ala	Ile	Lys	Gly	Val 95	His	
Ser	Val	Arg	Tyr 100	Leu	Cys	Met	Gly	Ala 105	Asp	Gly	Lys	Met	Gln 110	Gly	Leu	
Leu	Gln	Tyr 115	Ser	Glu	Glu	Asp	Cys 120	Ala	Phe	Glu	Glu	Glu 125	Ile	Arg	Pro	
Asp	Gly 130	Tyr	Asn	Val	Tyr	Arg 135	Ser	Glu	Lys	His	Arg 140	Leu	Pro	Val	Ser	
Leu 145	Ser	Ser	Ala	Lys	Gln 150	Arg	Gln	Leu	Tyr	Lys 155	Asn	Arg	Gly	Phe	Leu 160	
Pro	Leu	Ser	His	Phe 165	Leu	Pro	Met	Leu	Pro 170	Met	Val	Pro	Glu	Glu 175	Pro	
Glu	Asp	Leu	Arg 180	Gly	His	Leu	Glu	Ser 185	Asp	Met	Phe	Ser	Ser 190	Pro	Leu	
Glu Thr Asp Ser Met Asp Pro Phe Gly Leu Val Thr Gly Leu Glu Ala 195																
Val Arg Ser Pro Ser Phe Glu Lys 210 215																
<210> 60 <211> 26 <212> DNA																
<220)>															
<223			_	on of			cial	Sequ	ience	e: Sy	ynthe	etic				
)> 6(. 4				_									26
acco	geco	cag a	atggo	ctaca	ia tç	gugua	i.									26
	> 61	_														
	.> 42 !> DN															
			icial	l Seç	quenc	ce										
<220)>															
	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe															
<400			-t	1+ <i>~</i>	va ==	*+ ~~ ~ ·	,,,,,		1000	at a	+->					42
geet	.0000	gy C		ctgag	ju as	jugue	_aaa(. ay	-yyca	29 L G	Ld					42

```
<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 62
                                                                22
ccagtccggt gacaagccca aa
<210> 63
<211> 1295
<212> DNA
<213> Homo sapiens
<400> 63
cccaqaaqtt caaqqqcccc cgcctcctg cgctcctgcc gccgggaccc tcgacctcct 60
cagagcagcc ggctgccgcc ccgggaagat ggcgaggagg agccgccacc gcctcctcct 120
gctgctgctg cgctacctgg tggtcgccct gggctatcat aaggcctatg ggttttctgc 180
cccaaaagac caacaagtag tcacagcagt agagtaccaa gaggctattt tagcctgcaa 240
aaccccaaag aagactgttt cctccagatt agagtggaag aaactgggtc ggagtgtctc 300
ctttgtctac tatcaacaga ctcttcaagg tgattttaaa aatcgagctg agatgataga 360
tttcaatatc cqqatcaaaa atgtgacaag aagtgatgcg gggaaatatc gttgtgaagt 420
taqtqccca tctgagcaag gccaaaacct ggaagaggat acagtcactc tggaagtatt 480
agtggctcca gcagttccat catgtgaagt accetettet getetgagtg gaactgtggt 540
agagctacga tgtcaagaca aagaagggaa tccagctcct gaatacacat ggtttaagga 600
tggcatccgt ttgctagaaa atcccagact tggctcccaa agcaccaaca gctcatacac 660
aatqaataca aaaactqqaa ctctgcaatt taatactgtt tccaaactgg acactggaga 720
atattcctgt gaagcccgca attctgttgg atatcgcagg tgtcctggga aacgaatgca 780
aqtaqatqat etcaacataa gtggcatcat agcageegta gtagttgtgg cettagtgat 840
ttccgtttgt ggccttggtg tatgctatgc tcagaggaaa ggctactttt caaaagaaac 900
ctccttccag aagagtaatt cttcatctaa agccacgaca atgagtgaaa atgtgcagtg 960
gctcacgcct gtaatcccag cactttggaa ggccgcggcg ggcggatcac gaggtcagga 1020
gttctagacc agtctggcca atatggtgaa accccatctc tactaaaata caaaaattag 1080
ctqqqcatqq tqqcatqtqc ctqcaqttcc agctgcttgg gagacaggag aatcacttga 1140
accogqqaqq cqqaqqttqc agtgagctga gatcacgcca ctgcagtcca gcctgggtaa 1200
1295
tqtaqaattc ttacaataaa tatagcttga tattc
<210> 64
<211> 312
<212> PRT
<213> Homo sapiens
<400> 64
Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg Tyr
                 5
                                                       15
Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
            20
```

- Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu 35 40 45
- Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys
 50 60
- Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln 65 70 75 80
- Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile
- Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser
- Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu 115 120 125
- Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser 130 135 140
- Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly
 145 150 155 160
- Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu 165 170 175
- Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met 180 185 190
- Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp 195 200 205
- Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg 210 215 220
- Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile 225 230 235 240
- Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu
 245 250 255
- Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser 260 265 270
- Phe Gln Lys Ser Asn Ser Ser Ser Lys Ala Thr Thr Met Ser Glu Asn 275 280 285
- Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala 290 295 300
- Gly Gly Ser Arg Gly Gln Glu Phe

```
305
                    310
<210> 65
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 65
atcgttgtga agttagtgcc cc
                                                                   22
<210> 66
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 66
acctgcgata tccaacagaa ttg
                                                                   23
<210> 67
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 67
ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttcc
                                                                   48
<210> 68
<211> 2639
<212> DNA
<213> Homo sapiens
<400> 68
gacatcggag gtgggctagc actgaaactg cttttcaaga cgaggaagag gaggagaaag 60
agaaagaaga ggaagatgtt gggcaacatt tatttaacat gctccacagc ccggaccctg 120
gcatcatgct gctattcctg caaatactga agaagcatgg gatttaaata ttttacttct 180
aaataaatga attactcaat ctcctatgac catctataca tactccacct tcaaaaagta 240
catcaatatt atatcattaa ggaaatagta accttctctt ctccaatatg catgacattt 300
ttggacaatg caattgtggc actggcactt atttcagtga agaaaaactt tgtggttcta 360
tggcattcat catttgacaa atgcaaqcat cttccttatc aatcaqctcc tattgaactt 420
actagcactg actgtggaat ccttaagggc ccattacatt tctgaagaag aaagctaaga 480
tgaaggacat gccactccga attcatgtgc tacttggcct agctatcact acactagtac 540
```

```
aagctgtaga taaaaaagtg gattgtccac ggttatgtac gtgtgaaatc aggccttggt 600
ttacacccag atccatttat atggaagcat ctacagtgga ttgtaatgat ttaggtcttt 660
taactttccc agccagattg ccagctaaca cacagattct tctcctacag actaacaata 720
ttgcaaaaat tgaatactcc acagactttc cagtaaacct tactggcctg gatttatctc 780
aaaacaattt atcttcagtc accaatatta atgtaaaaaa gatgcctcag ctcctttctg 840
tgtacctaga ggaaaacaaa cttactgaac tgcctgaaaa atgtctgtcc gaactgagca 900
acttacaaga actctatatt aatcacaact tgctttctac aatttcacct ggagccttta 960
ttggcctaca taatcttctt cgacttcatc tcaattcaaa tagattgcag atgatcaaca 1020
gtaagtggtt tgatgctctt ccaaatctag agattctgat gattggggaa aatccaatta 1080
tcagaatcaa agacatgaac tttaagcctc ttatcaatct tcgcagcctg gttatagctg 1140
gtataaacct cacagaaata ccagataacg ccttggttgg actggaaaac ttagaaagca 1200
tctcttttta cgataacagg cttattaaag taccccatgt tgctcttcaa aaagttgtaa 1260
atctcaaatt tttggatcta aataaaaatc ctattaatag aatacgaagg ggtgatttta 1320
gcaatatgct acacttaaaa gagttgggga taaataatat gcctgagctg atttccatcg 1380
atagtettge tgtggataac etgecagatt taagaaaaat agaagetaet aacaaceeta 1440
gattgtctta cattcacccc aatgcatttt tcagactccc caagctggaa tcactcatgc 1500
tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg ccaaacctca 1560
aggaaatcag catacacagt aaccccatca ggtgtgactg tgtcatccgt tggatgaaca 1620
tgaacaaaac caacattega ttcatggage cagattcact gttttgegtg gacceacetg 1680
aattccaagg tcagaatgtt cggcaagtgc atttcaggga catgatggaa atttgtctcc 1740
ctcttatagc tcctgagagc tttccttcta atctaaatgt agaagctggg agctatgttt 1800
cctttcactg tagagctact gcagaaccac agcctgaaat ctactggata acaccttctg 1860
gtcaaaaact cttgcctaat accctgacag acaagttcta tgtccattct gagggaacac 1920
tagatataaa tggcgtaact cccaaagaag ggggtttata tacttgtata gcaactaacc 1980
tagttggcgc tgacttgaag tctgttatga tcaaagtgga tggatctttt ccacaagata 2040
acaatggctc tttgaatatt aaaataagag atattcaggc caattcagtt ttggtgtcct 2100
ggaaagcaag ttctaaaatt ctcaaatcta gtgttaaatg gacagccttt gtcaagactg 2160
aaaattetea tgetgegeaa agtgetegaa taccatetga tgteaaggta tataatetta 2220
ctcatctgaa tccatcaact gagtataaaa tttgtattga tattcccacc atctatcaga 2280
aaaacagaaa aaaatgtgta aatgtcacca ccaaaggttt gcaccctgat caaaaagagt 2340
atgaaaagaa taataccaca acacttatgg cctgtcttgg aggccttctg gggattattg 2400
gtgtgatatg tottatoago tgootototo cagaaatgaa otgtgatggt ggacacagot 2460
atgtgaggaa ttacttacag aaaccaacct ttgcattagg tgagctttat cctcctctga 2520
taaatctctg ggaagcagga aaagaaaaaa gtacatcact gaaagtaaaa gcaactgtta 2580
taggtttacc aacaaatatg tcctaaaaac caccaaggaa acctactcca aaaatgaac 2639
<210> 69
<211> 708
<212> PRT
```

<213> Homo sapiens

<400> 69

Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala Ile

1 5 10 15

Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro Arg Leu 20 25 30

Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Ile Tyr Met
35 40 45

Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu Leu Thr Phe Pro 50 55 60

- Ala Arg Leu Pro Ala Asn Thr Gln Ile Leu Leu Gln Thr Asn Asn 65 70 75 80
- Ile Ala Lys Ile Glu Tyr Ser Thr Asp Phe Pro Val Asn Leu Thr Gly
 85 90 95
- Leu Asp Leu Ser Gln Asn Asn Leu Ser Ser Val Thr Asn Ile Asn Val
- Lys Lys Met Pro Gln Leu Leu Ser Val Tyr Leu Glu Glu Asn Lys Leu 115 120 125
- Thr Glu Leu Pro Glu Lys Cys Leu Ser Glu Leu Ser Asn Leu Gln Glu 130 135 140
- Leu Tyr Ile Asn His Asn Leu Leu Ser Thr Ile Ser Pro Gly Ala Phe 145 150 155 160
- Ile Gly Leu His Asn Leu Leu Arg Leu His Leu Asn Ser Asn Arg Leu 165 170 175
- Gln Met Ile Asn Ser Lys Trp Phe Asp Ala Leu Pro Asn Leu Glu Ile 180 \$185
- Leu Met Ile Gly Glu Asn Pro Ile Ile Arg Ile Lys Asp Met Asn Phe
 195 200 205
- Lys Pro Leu Ile Asn Leu Arg Ser Leu Val Ile Ala Gly Ile Asn Leu 210 215 220
- Thr Glu Ile Pro Asp Asn Ala Leu Val Gly Leu Glu Asn Leu Glu Ser 225 230 235 240
- Ile Ser Phe Tyr Asp Asn Arg Leu Ile Lys Val Pro His Val Ala Leu 245 250 255
- Gln Lys Val Val Asn Leu Lys Phe Leu Asp Leu Asn Lys Asn Pro Ile 260 265 270
- Asn Arg Ile Arg Arg Gly Asp Phe Ser Asn Met Leu His Leu Lys Glu 275 280 285
- Leu Gly Ile Asn Asn Met Pro Glu Leu Ile Ser Ile Asp Ser Leu Ala 290 295 300
- Val Asp Asn Leu Pro Asp Leu Arg Lys Ile Glu Ala Thr Asn Asn Pro 305 310 315 320
- Arg Leu Ser Tyr Ile His Pro Asn Ala Phe Phe Arg Leu Pro Lys Leu 325 330 335
- Glu Ser Leu Met Leu Asn Ser Asn Ala Leu Ser Ala Leu Tyr His Gly

Thr	Ile	Glu 355	Ser	Leu	Pro	Asn	Leu 360	Lys	Glu	Ile	Ser	Ile 365	His	Ser	Asn
Pro	Ile 370	Arg	Cys	Asp	Суѕ	Val 375	Ile	Arg	Trp	Met	Asn 380	Met	Asn	Lys	Thr
Asn 385	Ile	Arg	Phe	Met	Glu 390	Pro	Asp	Ser	Leu	Phe 395	Cys	Val	Asp	Pro	Pro 400
Glu	Phe	Gln	Gly	Gln 405	Asn	Val	Arg	Gln	Val 410	His	Phe	Arg	Asp	Met 415	Met
Glu	Ile	Cys	Leu 420	Pro	Leu	Ile	Ala	Pro 425	Glu	Ser	Phe	Pro	Ser 430	Asn	Leu
Asn	Val	Glu 435	Ala	Gly	Ser	Tyr	Val 440	Ser	Phe	His	Cys	Arg 445	Ala	Thr	Ala
Glu	Pro 450	Gln	Pro	Glu	Ile	Tyr 455	Trp	Ile	Thr	Pro	Ser 460	Glγ	Gln	Lys	Leu
Leu 465	Pro	Asn	Thr	Leu	Thr 470	Asp	Lys	Phe	Tyr	Val 475	His	Ser	Glu	Gly	Thr 480
Leu	Asp	Ile	Asn	Gly 485	Val	Thr	Pro	Lys	Glu 490	Gly	Gly	Leu	Tyr	Thr 495	Cys
Ile	Ala	Thr	Asn 500	Leu	Val	Gly	Ala	Asp 505	Leu	Lys	Ser	Val	Met 510	Ile	Lys
Val	Asp	Gly 515	Ser	Phe	Pro	Gln	Asp 520	Asn	Asn	Gly	Ser	Leu 525	Asn	Ile	Lys
Ile	Arg 530	Asp	Ile	Gln	Ala	Asn 535	Ser	Val	Leu	Val	Ser 540	Trp	Lys	Ala	Ser
Ser 5 4 5	Lys	Ile	Leu	Lys	Ser 550	Ser	Val	Lys	Trp	Thr 555	Ala	Phe	Val	Lys	Thr 560
Glu	Asn	Ser	His	Ala 565	Ala	Gln	Ser	Ala	Arg 570	Ile	Pro	Ser	Asp	Val 575	Lys
Val	Tyr	Asn	Leu 580	Thr	His	Leu	Asn	Pro 585	Ser	Thr	Glu	Tyr	Lys 590	Ile	Cys
Ile	Asp	Ile 595	Pro	Thr	Ile	Tyr	Gln 600	Lys	Asn	Arg	Lys	Lys 605	Сув	Val	Asn
Val	Thr 610	Thr	Lys	Gly	Leu	His 615	Pro	Asp	Gln	Lys	Glu 620	Tyr	Glu	Lys	Asn

<400> 71

Asn Thr Thr Thr Leu Met Ala Cys Leu Gly Gly Leu Leu Gly Ile Ile 625 630 Gly Val Ile Cys Leu Ile Ser Cys Leu Ser Pro Glu Met Asn Cys Asp 645 650 Gly Gly His Ser Tyr Val Arg Asn Tyr Leu Gln Lys Pro Thr Phe Ala 665 Leu Gly Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys 680 Glu Lys Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro 690 695 Thr Asn Met Ser 705 <210> 70 <211> 1305 <212> DNA <213> Homo sapiens <400> 70 gcccgggact ggcgcaaggt gcccaagcaa ggaaagaaat aatgaagaga cacatgtgtt 60 agctgcagcc ttttgaaaca cgcaagaagg aaatcaatag tgtggacagg gctggaacct 120 ttaccacgct tgttggagta gatgaggaat gggctcgtga ttatgctgac attccagcat 180 gaatctggta gacetgtggt taaccegtte cetetecatg tgtetectee tacaaagttt 240 tgttcttatg atactgtgct ttcattctgc cagtatgtgt cccaagggct gtctttgttc 300 ttcctctggg ggtttaaatg tcacctgtag caatgcaaat ctcaaggaaa tacctagaga 360 tetteeteet gaaacagtet taetgtatet ggaeteeaat eagateacat etatteecaa 420 tgaaattttt aaggacctcc atcaactgag agttctcaac ctgtccaaaa atggcattga 480 gtttatcgat gagcatgcct tcaaaggagt agctgaaacc ttgcagactc tgqacttqtc 540 cgacaatcgg attcaaagtg tgcacaaaaa tgccttcaat aacctgaagg ccagggccag 600 aattgccaac aacccctggc actgcgactg tactctacag caagttctga ggagcatggc 660 gtccaatcat gagacagccc acaacgtgat ctgtaaaacg tccgtgttgg atgaacatgc 720 tggcagacca ttcctcaatg ctgccaacga cgctgacctt tgtaacctcc ctaaaaaaaac 780 taccgattat gccatgctgg tcaccatgtt tggctggttc actatggtga tctcatatgt 840 ggtatattat gtgaggcaaa atcaggagga tgcccggaga cacctcgaat acttgaaatc 900 cctgccaagc aggcagaaga aagcagatga acctgatgat attaqcactq tqqtataqtq 960 tccaaactga ctgtcattga gaaagaaaga aagtagtttg cgattgcagt agaaataagt 1020 ggtttacttc tcccatccat tgtaaacatt tgaaactttg tatttcagtt ttttttqaat 1080 tatgccactg ctgaactttt aacaaacact acaacataaa taatttgagt ttaggtgatc 1140 cacccettaa ttgtaccccc gatggtatat ttctgagtaa gctactatct qaacattaqt 1200 tagatccatc tcactattta ataatgaaat ttatttttt aatttaaaag caaataaaag 1260 cttaactttg aaccatggga aaaaaaaaaa aaaaaaaaa aaaca 1305 <210> 71 <211> 259 <212> PRT <213> Homo sapiens

Met Asn Leu Val Asp Leu Trp Leu Thr Arg Ser Leu Ser Met Cys Leu 1 5 10 15

Leu Leu Gln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser Ala Ser 20 25 30

Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly Leu Asn Val

Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg Asp Leu Pro Pro 50 60

Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln Ile Thr Ser Ile Pro 65 70 75 80

Asn Glu Ile Phe Lys Asp Leu His Gln Leu Arg Val Leu Asn Leu Ser 85 90 95

Lys Asn Gly Ile Glu Phe Ile Asp Glu His Ala Phe Lys Gly Val Ala
100 105 110

Glu Thr Leu Gln Thr Leu Asp Leu Ser Asp Asn Arg Ile Gln Ser Val 115 120 125

His Lys Asn Ala Phe Asn Asn Leu Lys Ala Arg Ala Arg Ile Ala Asn 130 135 140

Asn Pro Trp His Cys Asp Cys Thr Leu Gln Gln Val Leu Arg Ser Met 145 150 155 160

Ala Ser Asn His Glu Thr Ala His Asn Val Ile Cys Lys Thr Ser Val 165 170 175

Leu Asp Glu His Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala 180 185 190

Asp Leu Cys Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val 195 200 205

Thr Met Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr 210 215 220

Val Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys 225 230 235 240

Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile Ser 245 250 255

Thr Val Val

<210> 72 <211> 2290

```
<212> DNA
<213> Homo sapiens
<400> 72
accgagccga gcggaccgaa ggcgcgccg agatgcaggt gagcaagagg atgctggcgg 60
ggggcgtgag gagcatgccc agccccctcc tggcctgctg gcagcccatc ctcctgctgg 120
tgctgggctc agtgctgtca ggctcggcca cgggctgccc gccccgctgc gagtgctccg 180
cccaggaccq cgctgtgctg tgccaccgca agtgctttgt ggcagtcccc gagggcatcc 240
ccaccgagac gegectgetg gacctaggea agaaccgcat caaaacgetc aaccaggacg 300
agttcgccag cttcccgcac ctggaggagc tggagctcaa cgagaacatc gtgagcgccg 360
tqqaqccqq cqccttcaac aacctcttca acctccqqac gctgggtctc cgcagcaacc 420
geetgaaget cateeegeta ggegtettea etggeeteag caacetgace aageaggaca 480
tcagcgagaa caagatcgtt atcctactgg actacatgtt tcaggacctg tacaacctca 540
aqteactgga ggttggcgac aatgaceteg tetacatete teacegegee tteageggee 600
tcaacagcct ggagcagctg acgctggaga aatgcaacct gacctccatc cccaccgagg 660
egetqteeca cetqeaeqqe etcateqtee tqaqqeteeq geaceteaac atcaatgeea 720
teegggaeta eteetteaag aggetgtaee gaeteaaggt ettggagate teecaetgge 780
cctacttqqa caccatqaca cccaactqcc tctacggcct caacctgacg tccctgtcca 840
teacacactq caatetqace getgtgeeet acetggeegt eegecaceta gtetatetee 900
qcttcctcaa cctctcctac aaccccatca gcaccattga gggctccatg ttgcatgagc 960
tgctccggct gcaggagate cagctggtgg gcgggcagct ggccgtggtg gagccctatg 1020
ccttccgcgg cctcaactac ctgcgcgtgc tcaatgtctc tggcaaccag ctgaccacac 1080
tggaggaatc agtcttccac tcggtgggca acctggagac actcatcctg gactccaacc 1140
cqctqqcctq cqactqtcgg ctcctgtggg tgttccggcg ccgctggcgg ctcaacttca 1200
aceggeagea geceaegtge gecaegeeg agtttgteea gggeaaggag tteaaggaet 1260
tecetgatgt getaetgeec aactaettea eetgeegeeg egeeegeate egggaeegea 1320
aggcccagca ggtgtttgtg gacgagggcc acacggtgca gtttgtgtgc cgggccgatg 1380
gegaccegee geeegecate etetggetet caeccegaaa geacctggte teagecaaga 1440
geaatgggeg geteacagte tteeetgatg geacgetgga ggtgegetae geecaggtae 1500
aggacaacgg cacgtacctg tgcatcgcgg ccaacgcggg cggcaacgac tccatgcccg 1560
cccacctgca tgtgcgcagc tactcgcccg actggcccca tcagcccaac aagaccttcg 1620
ctttcatctc caaccagccg ggcgagggag aggccaacag cacccgcgcc actgtgcctt 1680
teccettega cateaagace etcateateg ceaceaceat gggetteate tettteetgg 1740
qcqtcqtcct cttctqcctq qtqctqctqt ttctctggag ccggggcaag ggcaacacaa 1800
agcacaacat cgagatcgag tatgtgcccc gaaagtcgga cgcaggcatc agctccgccg 1860
acgcgccccg caaqttcaac atgaagatga tatgaggccg gggcgggggg cagggacccc 1920
egggeggeeg ggeaggggaa ggggeetggt egecacetge teacteteca gteetteeca 1980
cetecete accettetae acaegttete tttetecete eegeeteegt eecetgetge 2040
ccccgccag ccctcaccac ctgccctcct tctaccagga cctcagaagc ccagacctgg 2100
ggaccccacc tacacagggg cattgacaga ctggagttga aagccgacga accgacacgc 2160
ggcagagtca ataattcaat aaaaaagtta cgaactttct ctgtaacttg ggtttcaata 2220
attatqqatt tttatqaaaa cttgaaataa taaaaagaga aaaaaactaa aaaaaaaaa 2280
                                                                  2290
aaaaaaaaa
<210> 73
<211> 620
<212> PRT
<213> Homo sapiens
<400> 73
Met Gln Val Ser Lys Arg Met Leu Ala Gly Gly Val Arg Ser Met Pro
                                     10
                                                         15
                  5
```

- Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Leu Val Leu Gly
 20 25 30
- Ser Val Leu Ser Gly Ser Ala Thr Gly Cys Pro Pro Arg Cys Glu Cys 35 40 45
- Ser Ala Gln Asp Arg Ala Val Leu Cys His Arg Lys Cys Phe Val Ala 50 55 60
- Val Pro Glu Gly Ile Pro Thr Glu Thr Arg Leu Leu Asp Leu Gly Lys
 65 70 75 80
- Asn Arg Ile Lys Thr Leu Asn Gln Asp Glu Phe Ala Ser Phe Pro His
- Leu Glu Glu Leu Glu Leu Asn Glu Asn Ile Val Ser Ala Val Glu Pro $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$
- Gly Ala Phe Asn Asn Leu Phe Asn Leu Arg Thr Leu Gly Leu Arg Ser 115 120 125
- Asn Arg Leu Lys Leu Ile Pro Leu Gly Val Phe Thr Gly Leu Ser Asn 130 135 140
- Tyr Met Phe Gln Asp Leu Tyr Asn Leu Lys Ser Leu Glu Val Gly Asp 165 170 175
- Asn Asp Leu Val Tyr Ile Ser His Arg Ala Phe Ser Gly Leu Asn Ser 180 185 190
- Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ser Ile Pro Thr 195 200 205
- Glu Ala Leu Ser His Leu His Gly Leu Ile Val Leu Arg Leu Arg His 210 215 220
- Leu Asn Ile Asn Ala Ile Arg Asp Tyr Ser Phe Lys Arg Leu Tyr Arg 225 230 235 240
- Leu Lys Val Leu Glu Ile Ser His Trp Pro Tyr Leu Asp Thr Met Thr 245 250 255
- Pro Asn Cys Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Ile Thr His 260 265 270
- Cys Asn Leu Thr Ala Val Pro Tyr Leu Ala Val Arg His Leu Val Tyr
- Leu Arg Phe Leu Asn Leu Ser Tyr Asn Pro Ile Ser Thr Ile Glu Gly 290 295 300

Ser Met Leu His Glu Leu Leu Arg Leu Gln Glu Ile Gln Leu Val Gly 305 310 315 320

Gly Gln Leu Ala Val Val Glu Pro Tyr Ala Phe Arg Gly Leu Asn Tyr 325 330 335

Leu Arg Val Leu Asn Val Ser Gly Asn Gln Leu Thr Thr Leu Glu Glu 340 345 350

Ser Val Phe His Ser Val Gly Asn Leu Glu Thr Leu Ile Leu Asp Ser 355 360 365

Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Val Phe Arg Arg Arg 370 375 380

Trp Arg Leu Asn Phe Asn Arg Gln Gln Pro Thr Cys Ala Thr Pro Glu 385 390 395 400

Phe Val Gln Gly Lys Glu Phe Lys Asp Phe Pro Asp Val Leu Leu Pro 405 410 415

Asn Tyr Phe Thr Cys Arg Arg Ala Arg Ile Arg Asp Arg Lys Ala Gln 420 425 430

Gln Val Phe Val Asp Glu Gly His Thr Val Gln Phe Val Cys Arg Ala 435 440 445

Asp Gly Asp Pro Pro Pro Ala Ile Leu Trp Leu Ser Pro Arg Lys His 450 455 460

Leu Val Ser Ala Lys Ser Asn Gly Arg Leu Thr Val Phe Pro Asp Gly 465 470 480

Thr Leu Glu Val Arg Tyr Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu 485 490 495

Cys Ile Ala Ala Asn Ala Gly Gly Asn Asp Ser Met Pro Ala His Leu 500 505 510

His Val Arg Ser Tyr Ser Pro Asp Trp Pro His Gln Pro Asn Lys Thr 515 520 525

Phe Ala Phe Ile Ser Asn Gln Pro Gly Glu Gly Glu Ala Asn Ser Thr 530 535 540

Arg Ala Thr Val Pro Phe Pro Phe Asp Ile Lys Thr Leu Ile Ile Ala 545 550 550 560

Thr Thr Met Gly Phe Ile Ser Phe Leu Gly Val Val Leu Phe Cys Leu 565 570 575

Val Leu Leu Phe Leu Trp Ser Arg Gly Lys Gly Asn Thr Lys His Asn

	Ile Glu Ile Glu Tyr Val Pro Arg Lys Ser Asp Ala Gly Ile Ser Ser 595 600 605														
	Ala Asp Ala Pro Arg Lys Phe Asn Met Lys Met Ile 610 615 620														
	<210> 74 <211> 22 <212> DNA <213> Artificial Sequence														
	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe														
	<400> 74														
	tcacctggag cctttattgg cc	22													
الما الما الما الما الما الما الما الما	<210> 75 <211> 23 <212> DNA <213> Artificial Sequence														
5년 [편															
the three that	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe														
2 = E	<400> 75														
		23													
արու բարույան արդում	<210> 76 <211> 52 <212> DNA <213> Artificial Sequence														
	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe														
	Caacaqcaaq caacaaca ocooboodaaa oo	50 52													
	<210> 77 <211> 22 <212> DNA <213> Artificial Sequence														
	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe														

<400> 77 ccatgtgtct cctcctacaa ag	22
<210> 78 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 78 gggaatagat gtgatctgat tgg	23
<210> 79 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 79 cacctgtagc aatgcaaatc tcaaggaaat acctagagat cttcctcctg	50
<210> 80 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 80 agcaaccgcc tgaagctcat cc	22
<210> 81 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 81 aaggcgcggt gaaagatgta gacg	24
<210> 82	

<400> 84

```
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 82
                                                                50
qactacatqt ttcaqqacct qtacaacctc aaqtcactgg aggttggcga
<210> 83
<211> 1685
<212> DNA
<213> Homo sapiens
<400> 83
cccacqcqtc cqcacctcqq ccccqqqctc cgaagcggct cgggggcgcc ctttcggtca 60
acategtagt ccacecete eccatececa geeceegggg atteaggete geeagegeee 120
agccagggag ccggccggga agcgcgatgg gggccccagc cgcctcgctc ctgctcctgc 180
teetgetgtt egeetgetge tgggegeeeg geggggeeaa ceteteeeag gaegaeagee 240
agecetggae atetgatgaa acagtggtgg etggtggcae egtggtgete aagtgecaag 300
tgaaagatca cgaggactca tccctgcaat ggtctaaccc tgctcagcag actctctact 360
ttggggagaa gagagccctt cgagataatc gaattcagct ggttacctct acgccccacg 420
ageteageat cageateage aatgtggeee tggcagaega gggegagtae acetgeteaa 480
tetteaetat geetgtgega aetgeeaagt eeetegteae tgtgetagga atteeacaga 540
agcccatcat cactggttat aaatcttcat tacgggaaaa agacacagcc accctaaact 600
gtcagtcttc tgggagcaag cctgcagccc ggctcacctg gagaaagggt gaccaagaac 660
tccacggaga accaacccgc atacaggaag atcccaatgg taaaaccttc actgtcagca 720
gctcggtgac attccaggtt acccgggagg atgatggggc gagcatcgtg tgctctgtga 780
accatgaatc tctaaaggga gctgacagat ccacctctca acgcattgaa gttttataca 840
caccaactgc gatgattagg ccagaccete eccateeteg tgagggecag aagetgttge 900
tacactgtga gggtcgcggc aatccagtcc cccagcagta cctatgggag aaggagggca 960
gtgtgccacc cctgaagatg acccaggaga gtgccctgat cttccctttc ctcaacaaga 1020
gtgacagtgg cacctacggc tgcacagcca ccagcaacat gggcagctac aaggcctact 1080
acacceteaa tgttaatgae eecagteegg tgeeeteete etceageace taceaegeea 1140
teateggtgg gategtgget tteattgtet teetgetget cateatgete atetteettg 1200
gccactactt gatccggcac aaaggaacct acctgacaca tgaggcaaaa ggctccgacg 1260
atgctccaga cgcggacacg gccatcatca atgcagaagg cgggcagtca ggaggggacg 1320
acaagaagga atatttcatc tagaggegee tgeecactte etgegeeece caggggeeet 1380
gtggggactg ctggggccgt caccaacccg gacttgtaca gagcaaccgc agggccgccc 1440
ctcccgcttg ctccccagcc cacccacccc cctgtacaga atgtctgctt tgggtgcggt 1500
ccctttccgt ggcttctctg catttgggtt attattattt ttgtaacaat cccaaatcaa 1620
atctgtctcc aggctggaga ggcaggagcc ctggggtgag aaaagcaaaa aacaaacaaa 1680
                                                                 1685
aaaca
<210> 84
<211> 398
<212> PRT
<213> Homo sapiens
```

- Met Gly Ala Pro Ala Ala Ser Leu Leu Leu Leu Leu Leu Leu Phe Ala 1 5 10 15
- Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Asp Ser Gln 20 25 30
- Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr Val Val Leu
 35 40 45
- Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu Gln Trp Ser Asn 50 55 60
- Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys Arg Ala Leu Arg Asp
 65 70 75 80
- Asn Arg Ile Gln Leu Val Thr Ser Thr Pro His Glu Leu Ser Ile Ser 85 90 95
- Ile Ser Asn Val Ala Leu Ala Asp Glu Gly Glu Tyr Thr Cys Ser Ile
 100 105 110
- Phe Thr Met Pro Val Arg Thr Ala Lys Ser Leu Val Thr Val Leu Gly 115 120 125
- Ile Pro Gln Lys Pro Ile Ile Thr Gly Tyr Lys Ser Ser Leu Arg Glu
 130
 135
 140
- Ala Arg Leu Thr Trp Arg Lys Gly Asp Gln Glu Leu His Gly Glu Pro 165 170 175
- Thr Arg Ile Gln Glu Asp Pro Asn Gly Lys Thr Phe Thr Val Ser Ser 180 185 190
- Ser Val Thr Phe Gln Val Thr Arg Glu Asp Asp Gly Ala Ser Ile Val 195 200 205
- Cys Ser Val Asn His Glu Ser Leu Lys Gly Ala Asp Arg Ser Thr Ser 210 215 220
- Gln Arg Ile Glu Val Leu Tyr Thr Pro Thr Ala Met Ile Arg Pro Asp 225 230 235 240
- Pro Pro His Pro Arg Glu Gly Gln Lys Leu Leu His Cys Glu Gly 245 250 255
- Arg Gly Asn Pro Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu Gly Ser
- Val Pro Pro Leu Lys Met Thr Gln Glu Ser Ala Leu Ile Phe Pro Phe 275 280 285

```
Leu Asn Lys Ser Asp Ser Gly Thr Tyr Gly Cys Thr Ala Thr Ser Asn
    290
                         295
Met Gly Ser Tyr Lys Ala Tyr Tyr Thr Leu Asn Val Asn Asp Pro Ser
                                          315
                                                              320
Pro Val Pro Ser Ser Ser Ser Thr Tyr His Ala Ile Ile Gly Gly Ile
                 325
                                     330
Val Ala Phe Ile Val Phe Leu Leu Leu Ile Met Leu Ile Phe Leu Gly
            340
His Tyr Leu Ile Arg His Lys Gly Thr Tyr Leu Thr His Glu Ala Lys
                             360
Gly Ser Asp Asp Ala Pro Asp Ala Asp Thr Ala Ile Ile Asn Ala Glu
    370
Gly Gly Gln Ser Gly Gly Asp Asp Lys Lys Glu Tyr Phe Ile
385
                     390
<210> 85
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 85
gctaggaatt ccacagaagc cc
                                                                    22
<210> 86
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 86
aacctggaat gtcaccgagc tg
                                                                    22
<210> 87
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
```

oligonucleotide probe

```
<400> 87
                                                                  26
cctagcacag tgacgaggga cttggc
<210> 88
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 88
aagacacage caccetaaac tgtcagtett etgggageaa geetgeagee
                                                                  50
<210> 89
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 89
                                                                  50
gccctggcag acgaggcga gtacacctgc tcaatcttca ctatgcctgt
<210> 90
<211> 2755
<212> DNA
<213> Homo sapiens
<400> 90
gggggttagg gaggaaggaa tccaccccca ccccccaaa cccttttctt ctcctttcct 60
ggcttcggac attggagcac taaatgaact tgaattgtgt ctgtggcgag caggatggtc 120
gctqttactt tqtqatqaqa tcqqqqatqa attgctcgct ttaaaaaatgc tgctttggat 180
totgttgotg gagacgtoto titgttttgo ogotggaaac gitacagggg acgittgcaa 240
agagaagato tgttootgoa atgagataga aggggacota caogtagaot gtgaaaaaaa 300
gggcttcaca agtctgcagc gtttcactgc cccgacttcc cagttttacc atttattct 360
gcatggcaat teceteacte gaetttteee taatgagtte getaactttt ataatgeggt 420
tagtttgcac atggaaaaca atggcttgca tgaaatcgtt ccgggggctt ttctggggct 480
gcagctggtg aaaaggctgc acatcaacaa caacaagatc aagtcttttc gaaagcagac 540
ttttctgggg ctggacgatc tggaatatct ccaggctgat tttaatttat tacgagatat 600
agacccgggg gccttccagg acttgaacaa gctggaggtg ctcattttaa atgacaatct 660
catcagcacc ctacctgcca acgtgttcca gtatgtgccc atcacccacc tcgacctccg 720
gggtaacagg ctgaaaacgc tgccctatga ggaggtcttg gagcaaatcc ctggtattgc 780
ggagatectg ctagaggata accettggga etgeacetgt gatetgetet ecetgaaaga 840
atggctggaa aacattccca agaatgccct gatcggccga gtggtctgcg aagcccccac 900
cagactgcag ggtaaagacc tcaatgaaac caccgaacag gacttgtgtc ctttgaaaaa 960
ccgagtggat tctagtctcc cggcgccccc tgcccaagaa gagacctttg ctcctggacc 1020
cctgccaact cctttcaaga caaatgggca agaggatcat gccacaccag ggtctgctcc 1080
```

```
aaacggaggt acaaagatcc caggcaactg gcagatcaaa atcagaccca cagcagcgat 1140
agcgacgggt agctccagga acaaaccctt agctaacagt ttaccctgcc ctgggggctg 1200
cagetgegae cacateceag ggtegggttt aaagatgaae tgeaacaaca ggaaegtgag 1260
cagettgget gatttgaage ecaagetete taaegtgeag gagettttee taegagataa 1320
caagatccac agcatccgaa aatcgcactt tgtggattac aagaacctca ttctgttgga 1380
tctgggcaac aataacatcg ctactgtaga gaacaacact ttcaagaacc ttttggacct 1440
caggtggcta tacatggata gcaattacct ggacacgctg tcccgggaga aattcgcggg 1500
gctgcaaaac ctagagtacc tgaacgtgga gtacaacgct atccagctca tcctcccggg 1560
cactttcaat gccatgccca aactgaggat cctcattctc aacaacaacc tgctgaggtc 1620
cctgcctgtg gacgtgttcg ctggggtctc gctctctaaa ctcagcctgc acaacaatta 1680
cttcatgtac ctcccggtgg caggggtgct ggaccagtta acctccatca tccagataga 1740
cctccacgga aacccctggg agtgctcctg cacaattgtg cctttcaagc agtgggcaga 1800
acgettgggt teegaagtge tgatgagega eeteaagtgt gagaegeegg tgaaettett 1860
tagaaaggat ttcatgctcc tctccaatga cgagatctgc cctcagctgt acgctaggat 1920
ctcgcccacg ttaacttcgc acagtaaaaa cagcactggg ttggcggaga ccgggacgca 1980
ctccaactcc tacctagaca ccagcagggt gtccatctcg gtgttggtcc cgggactgct 2040
getggtgttt gtcacctccg cettcaccgt ggtgggcatg ctcgtgttta teetgaggaa 2100
ccgaaagcgg tccaagagac gagatgccaa ctcctccgcg tccgagatta attccctaca 2160
gacagtetgt gactetteet actggeacaa tgggeettae aacgeagatg gggeecacag 2220
agtgtatgac tgtggctctc actcgctctc agactaagac cccaacccca ataggggagg 2280
gcagagggaa ggcgatacat cetteeceae egcaggeace eegggggetg gaggggegtg 2340
tacccaaatc cccgcgccat cagcctggat gggcataagt agataaataa ctgtgagctc 2400
gcacaaccga aagggcctga ccccttactt agctccctcc ttgaaacaaa gagcagactg 2460
tggagagetg ggagagegea geeagetege tetttgetga gageecettt tgacagaaag 2520
cccagcacga ccctgctgga agaactgaca gtgccctcgc cctcggcccc ggggcctgtg 2580
gggttggatg ccgcggttct atacatatat acatatatcc acatctatat agagagatag 2640
atatctattt ttcccctgtg gattagcccc gtgatggctc cctgttggct acgcagggat 2700
gggcagttgc acgaaggcat gaatgtattg taaataagta actttgactt ctgac
<210> 91
<211> 696
<212> PRT
<213> Homo sapiens
<400> 91
Met Leu Leu Trp Ile Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala
                                                         15
Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn
             20
Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr
                             40
Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe
     50
```

Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu

- Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His
 100 105 110
- Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly
 115 120 125
- Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp 130 135 140
- Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile 145 150 155 160
- Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr 165 170 175
- Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu 180 185 190
- Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu 195 200 205
- Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys 210 215 220
- Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val 225 230 235 240
- Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr 245 250 255
- Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro 260 265 270
- Ala Pro Pro Ala Gln Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr 275 280 285
- Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala 290 295 300
- Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg 305 310 315 320
- Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala 325 330 335
- Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly 340 345 350
- Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala 355 360 365
- Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp 370 375 380

Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn 400 395 385 Leu Ile Leu Leu Asp Leu Gly Asn Asn Ile Ala Thr Val Glu Asn 410 Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser 425 420 Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn 480 475 465 470 Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu 485 Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala 505 Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly 525 515 Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala 535 Glu Arg Leu Gly Ser Glu Val Leu Met Ser Asp Leu Lys Cys Glu Thr 545 Pro Val Asn Phe Phe Arg Lys Asp Phe Met Leu Leu Ser Asn Asp Glu Ile Cys Pro Gln Leu Tyr Ala Arg Ile Ser Pro Thr Leu Thr Ser His Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser 600 595 Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu 615 Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val 640 625 630 Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser 645 650 Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr

665

```
gaggggaagg gagggggaac cgggttgggg aagccagctg tagagggcgg tgaccgcgct 240
ccagacacag ctetgegtee tegageggga cagatecaag ttgggageag ctetgegtge 300
ggggcctcag agaatgaggc cggcgttcgc cctgtgcctc ctctggcagg cgctctggcc 360
egggeeggge ggeggegaac acceeactge egacegtget ggetgetegg ceteggggge 420
etgetacage etgeaceaeg etaceatgaa geggeaggeg geegaggagg cetgeateet 480
gcgaggtggg gcgctcagca ccgtgcgtgc gggcgccgag ctgcgcgctg tgctcgcgct 540
cctgcgggca ggcccagggc ccggaggggg ctccaaagac ctgctgttct gggtcgcact 600
qqaqcqcaqq cqttcccact qcaccctqqa qaacgagcct ttgcggggtt tctcctqqct 660
gtcctccgac cccggcggtc tcgaaagcga cacgctgcag tgggtggagg agccccaacg 720
ctcctgcacc gegeggagat gegeggtact ccaggccacc ggtggggteg agccegcagg 780
ctgqaaggag atgcgatgcc acctgcgcgc caacggctac ctgtgcaagt accagtttga 840
qqtcttqtqt cctqcqccqc qccccqqqqc cqcctctaac ttgagctatc gcgcgccctt 900
ccagctgcac agegeegete tggaettcag tecacetggg acegaggtga gtgegetetg 960
ccqqqqacaq ctcccqatct caqttacttq catcqcqqac qaaatcqqcq ctcqctqqqa 1020
caaactctcg ggcgatgtgt tgtgtccctg ccccgggagg tacctccgtg ctggcaaatg 1080
cqcaqaqctc cctaactqcc taqacqactt qqqaqqcttt qcctqcqaat qtqctacqqq 1140
cttcgagctg gggaaggacg gccgctcttg tgtgaccagt ggggaaggac agccgaccct 1200
tggggggacc ggggtgccca ccaggcgccc gccggccact gcaaccagcc ccgtgccgca 1260
gagaacatgg ccaatcaggg tcgacgagaa gctgggagag acaccacttg tccctgaaca 1320
agacaattca gtaacatcta ttcctgagat tcctcgatgg ggatcacaga gcacgatgtc 1380
taccetteaa atgteeette aageegagte aaaggeeaet ateaceeeat eagggagegt 1440
gatttccaag tttaattcta cgacttcctc tgccactcct caggctttcg actcctcctc 1500
tgccgtggtc ttcatatttg tgagcacagc agtagtagtg ttggtgatct tgaccatgac 1560
agtactgggg cttgtcaagc tctgctttca cgaaagcccc tcttcccagc caaggaagga 1620
gtctatqqqc ccqccqqqcc tqqaqaqtqa tcctqagccc gctgctttgq gctccagttc 1680
tgcacattgc acaaacaatg gggtgaaagt cggggactgt gatctgcggg acagagcaga 1740
gggtgccttg ctggcggagt cccctcttgg ctctagtgat gcatagggaa acaggggaca 1800
tgggcactcc tgtgaacagt ttttcacttt tgatgaaacg gggaaccaag aggaacttac 1860
ttqtqtaact qacaatttct qcaqaaatcc cccttcctct aaattccctt tactccactg 1920
aggagetaaa teagaactge acaeteette eetgatgata gaggaagtgg aagtgeettt 1980
aggatggtga tactggggga ccgggtagtg ctggggagag atattttctt atgtttattc 2040
ggagaatttg gagaagtgat tgaacttttc aagacattgg aaacaaatag aacacaatat 2100
aatttacatt aaaaaataat ttctaccaaa atggaaagga aatgttctat gttgttcagg 2160
ctaggagtat attggttcga aatcccaggg aaaaaaataa aaataaaaaa ttaaaggatt 2220
                                                                  2226
gttgat
<210> 96
<211> 490
<212> PRT
<213> Homo sapiens
```

<400> 96

Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro 1 5 10 15

Gly Pro Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser 20 25 30

Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln 35 40 45

Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val
50 60

Arg Ala Gly Ala Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly 65 70 75 80

Pro Gly Pro Gly Gly Ser Lys Asp Leu Leu Phe Trp Val Ala Leu 85 90 95

Glu Arg Arg Arg Ser His Cys Thr Leu Glu Asn Glu Pro Leu Arg Gly
100 105 110

Phe Ser Trp Leu Ser Ser Asp Pro Gly Gly Leu Glu Ser Asp Thr Leu 115 120 125

Gln Trp Val Glu Glu Pro Gln Arg Ser Cys Thr Ala Arg Arg Cys Ala 130 135 140

Val Leu Gln Ala Thr Gly Gly Val Glu Pro Ala Gly Trp Lys Glu Met 145 150 155 160

Arg Cys His Leu Arg Ala Asn Gly Tyr Leu Cys Lys Tyr Gln Phe Glu 165 170 175

Val Leu Cys Pro Ala Pro Arg Pro Gly Ala Ala Ser Asn Leu Ser Tyr 180 185 190

Arg Ala Pro Phe Gln Leu His Ser Ala Ala Leu Asp Phe Ser Pro Pro 195 200 205

Gly Thr Glu Val Ser Ala Leu Cys Arg Gly Gln Leu Pro Ile Ser Val 210 215 220

Thr Cys Ile Ala Asp Glu Ile Gly Ala Arg Trp Asp Lys Leu Ser Gly 225 230 235 240

Asp Val Leu Cys Pro Cys Pro Gly Arg Tyr Leu Arg Ala Gly Lys Cys 245 250 255

Ala Glu Leu Pro Asn Cys Leu Asp Asp Leu Gly Gly Phe Ala Cys Glu 260 265 270

Cys Ala Thr Gly Phe Glu Leu Gly Lys Asp Gly Arg Ser Cys Val Thr 275 280 285

Ser Gly Glu Gly Gln Pro Thr Leu Gly Gly Thr Gly Val Pro Thr Arg 290 295 300

Arg Pro Pro Ala Thr Ala Thr Ser Pro Val Pro Gln Arg Thr Trp Pro 305 310 315 320

Ile Arg Val Asp Glu Lys Leu Gly Glu Thr Pro Leu Val Pro Glu Gln
325 330 335

Asp Asn Ser Val Thr Ser Ile Pro Glu Ile Pro Arg Trp Gly Ser Gln

			340					345					350			
Ser T		Met 355	Ser	Thr	Leu	Gln	Met 360	Ser	Leu	Gln	Ala	Glu 365	Ser	Lys	Ala	
Thr 1:	le 70	Thr	Pro	Ser	Gly	Ser 375	Val	Ile	Ser	Lys	Phe 380	Asn	Ser	Thr	Thr	
Ser Se 385	er	Ala	Thr	Pro	Gln 390	Ala	Phe	Asp	Ser	Ser 395	Ser	Ala	Val	Val	Phe 400	
Ile P	he	Val	Ser	Thr 405	Ala	Val	Val	Val	Leu 410	Val	Ile	Leu	Thr	Met 415	Thr	
Val L	eu	Gly	Leu 420	Val	Lys	Leu	Cys	Phe 425	His	Glu	Ser	Pro	Ser 430	Ser	Gln	
Pro A	rg	Lys 435	Glu	Ser	Met	Gly	Pro 440	Pro	Gly	Leu	Glu	Ser 445	Asp	Pro	Glu	
Pro A	la 50	Ala	Leu	Gly	Ser	Ser 455	Ser	Ala	His	Cys	Thr 460	Asn	Asn	Gly	Val	
Lys V	al	Gly	Asp	Cys	Asp 470	Leu	Arg	Asp	Arg	Ala 475	Glu	Gly	Ala	Leu	Leu 480	
Ala G	lu	Ser	Pro	Leu 485	Gly	Ser	Ser	Asp	Ala 490							
<210> 97 <211> 24 <212> DNA <213> Artificial Sequence																
<220>																
<223>			_	on or eotic			cial	Seq	uence	e: S	ynth	etic				
<400> tggaa			gcg	atgc	ca c	ctg										24
<210><211><211>	20)														
<213>			icia:	l Sec	quen	ce										
<220> <223>	De			on o: eotic			cial	Seq	uenc	e: S	ynth	etic				
<400> tgacc			ggaa	ggac	ag											20

<210> 99 <211> 20 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe
<400> 99 acagagcaga gggtgccttg 20
<210> 100 <211> 24 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe
<400> 100 tcagggacaa gtggtgtctc tccc 24
<210> 101 <211> 24 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe
<400> 101 tcagggaagg agtgtgcagt tctg
<210> 102 <211> 50 <212> DNA <213> Artificial Sequence
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe
<400> 102 acageteeeg ateteagtta ettgeatege ggacgaaate ggegeteget 5
<210> 103 <211> 2026 <212> DNA <213> Homo sapiens

```
<400> 103
cggacgcgtg ggattcagca gtggcctgtg gctgccagag cagctcctca ggggaaacta 60
agegtegagt cagaeggeac cataategee tttaaaagtg ceteegeeet geeggeegeg 120
tateceeegg ctaeetggge egeceegegg eggtgegege gtgagaggga gegegeggge 180
agecgagege eggtgtgage eagegetget gecagtgtga geggeggtgt gagegeggtg 240
ggtgcggagg ggcgtgtgtg ccggcgcgcg cgccgtgggg tgcaaacccc gagcgtctac 300
gctgccatga ggggcgcgaa cgcctgggcg ccactctgcc tgctgctggc tgccgccacc 360
cagetetege ggeageagte eccagagaga cetgttttea catgtggtgg cattettact 420
ggagagtctg gatttattgg cagtgaaggt tttcctggag tgtaccctcc aaatagcaaa 480
tgtacttgga aaatcacagt tcccgaagga aaagtagtcg ttctcaattt ccgattcata 540
gacctcgaga gtgacaacct gtgccgctat gactttgtgg atgtgtacaa tggccatgcc 600
aatggccagc gcattggccg cttctgtggc actttccggc ctggagccct tgtgtccagt 660
ggcaacaaga tgatggtgca gatgatttct gatgccaaca cagctggcaa tggcttcatg 720
qccatqttct ccqctqctqa accaaacqaa aqaggggatc agtattgtgg aggactcctt 780
gacagacett ceggetettt taaaaceece aactggeeag acegggatta eeetgeagga 840
gtcacttgtg tgtggcacat tgtagcccca aagaatcagc ttatagaatt aaagtttgag 900
aagtttgatg tggagcgaga taactactgc cgatatgatt atgtggctgt gtttaatggc 960
qqqqaaqtca acqatqctaq aagaattqqa aagtattqtg qtgataqtcc acctqcqcca 1020
attgtgtctg agagaaatga acttcttatt cagtttttat cagacttaag tttaactgca 1080
gatgggttta ttggtcacta catattcagg ccaaaaaaac tgcctacaac tacagaacag 1140
cctgtcacca ccacattccc tgtaaccacg ggtttaaaac ccaccgtggc cttgtgtcaa 1200
caaaagtgta gacggacggg gactctggag ggcaattatt gttcaagtga ctttgtatta 1260
gccggcactg ttatcacaac catcactcgc gatgggagtt tgcacgccac agtctcgatc 1320
atcaacatct acaaagaggg aaatttggcg attcagcagg cgggcaagaa catgagtgcc 1380
aggetgactg tegtetgeaa geagtgeest etecteagaa gaggtetaaa ttacattatt 1440
atgggccaag taggtgaaga tgggcgaggc aaaatcatgc caaacagctt tatcatgatg 1500
ttcaaqacca agaatcagaa gctcctggat gccttaaaaa ataagcaatg ttaacagtga 1560
actgtgtcca tttaagctgt attctgccat tgcctttgaa agatctatgt tctctcagta 1620
qaaaaaaaa tacttataaa attacatatt ctgaaagagg attccgaaag atgggactgg 1680
ttgactette acatgatgga ggtatgagge eteegagata getgagggaa gttetttgee 1740
tgctgtcaga ggagcagcta tctgattgga aacctgccga cttagtgcgg tgataggaag 1800
ctaaaagtgt caagcgttga cagcttggaa gcgtttattt atacatctct gtaaaaggat 1860
attttagaat tgagttgtgt gaagatgtca aaaaaagatt ttagaagtgc aatatttata 1920
gtgttatttg tttcaccttc aagcctttgc cctgaggtgt tacaatcttg tcttgcgttt 1980
                                                                  2026
tctaaatcaa tgcttaataa aatattttta aaggaaaaaa aaaaaa
<210> 104
<211> 415
<212> PRT
<213> Homo sapiens
<400> 104
Met Arg Gly Ala Asn Ala Trp Ala Pro Leu Cys Leu Leu Leu Ala Ala
                                     10
  1
Ala Thr Gln Leu Ser Arq Gln Gln Ser Pro Glu Arg Pro Val Phe Thr
Cys Gly Gly Ile Leu Thr Gly Glu Ser Gly Phe Ile Gly Ser Glu Gly
                                                 45
Phe Pro Gly Val Tyr Pro Pro Asn Ser Lys Cys Thr Trp Lys Ile Thr
```

55

- Val Pro Glu Gly Lys Val Val Leu Asn Phe Arg Phe Ile Asp Leu 65 70 75 80
- Glu Ser Asp Asn Leu Cys Arg Tyr Asp Phe Val Asp Val Tyr Asn Gly
 85 90 95
- His Ala Asn Gly Gln Arg Ile Gly Arg Phe Cys Gly Thr Phe Arg Pro 100 105 110
- Gly Ala Leu Val Ser Ser Gly Asn Lys Met Met Val Gln Met Ile Ser
- Asp Ala Asn Thr Ala Gly Asn Gly Phe Met Ala Met Phe Ser Ala Ala 130 135 140
- Glu Pro Asn Glu Arg Gly Asp Gln Tyr Cys Gly Gly Leu Leu Asp Arg 145 150 155 160
- Pro Ser Gly Ser Phe Lys Thr Pro Asn Trp Pro Asp Arg Asp Tyr Pro 165 170 175
- Ala Gly Val Thr Cys Val Trp His Ile Val Ala Pro Lys Asn Gln Leu 180 185 190
- Ile Glu Leu Lys Phe Glu Lys Phe Asp Val Glu Arg Asp Asn Tyr Cys
 195 200 205
- Arg Tyr Asp Tyr Val Ala Val Phe Asn Gly Glu Val Asn Asp Ala 210 215 220
- Arg Arg Ile Gly Lys Tyr Cys Gly Asp Ser Pro Pro Ala Pro Ile Val 225 230 235 240
- Ser Glu Arg Asn Glu Leu Leu Ile Gln Phe Leu Ser Asp Leu Ser Leu 245 250 255
- Thr Ala Asp Gly Phe Ile Gly His Tyr Ile Phe Arg Pro Lys Lys Leu 260 265 270
- Pro Thr Thr Glu Gln Pro Val Thr Thr Thr Phe Pro Val Thr Thr 275 280 285
- Gly Leu Lys Pro Thr Val Ala Leu Cys Gln Gln Lys Cys Arg Arg Thr 290 295 300
- Gly Thr Leu Glu Gly Asn Tyr Cys Ser Ser Asp Phe Val Leu Ala Gly 305 310 315
- Thr Val Ile Thr Thr Ile Thr Arg Asp Gly Ser Leu His Ala Thr Val 325 330 335
- Ser Ile Ile Asn Ile Tyr Lys Glu Gly Asn Leu Ala Ile Gln Gln Ala

	340					345					350				
Gly Lys	Asn Met 355	Ser	Ala	Arg	Leu 360	Thr	Val	Val	Cys	Lys 365	Gln	Cys	Pro		
Leu Leu 370	Arg Arg	Gly	Leu	Asn 375	Tyr	Ile	Ile	Met	Gly 380	Gln	Val	Gly	Glu		
Asp Gly 385	Arg Gly	Lys	Ile 390	Met	Pro	Asn	Ser	Phe 395	Ile	Met	Met	Phe	Lys 400		
Thr Lys	Asn Gln	Lys 405	Leu	Leu	Asp	Ala	Leu 410	Lys	Asn	Lys	Gln	Cys 415			
<210> 105 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe															
<400> 105 ccgattcata gacctcgaga gt														22	
<211> 22 <212> Di	<210> 106 <211> 22 <212> DNA <213> Artificial Sequence														
	<400> 106 gtcaaggagt cctccacaat ac														
<210> 10 <211> 4! <212> DI <213> A	5	l Sec	quen	ce											
	escripti ligonucl					Seq	uenc	e: S	ynth	etic					
<400> 10 gtgtaca	07 atg gcca	tgcca	aa t	ggcc	agcg	c at	tggc	cgct	tct	gt				45	
<210> 10<211> 18<212> DI	838														

<213> Homo sapiens

```
<400> 108
cggacgcgtg ggcggacgcg tgggcggccc acggcgcccg cgggctgggg cggtcgcttc 60
ttccttctcc gtggcctacg agggtcccca gcctgggtaa agatggcccc atggcccccg 120
aagggcctag teccagetgt getetgggge etcageetet teetcaacet eccaggacet 180
atotggetee agecetetee accteeceag tetteteece egecteagee ecateegtgt 240
catacetgee ggggaetggt tgacagettt aacaagggee tggagagaac cateegggae 300
aactttggag gtggaaacac tgcctgggag gaagagaatt tgtccaaata caaagacagt 360
gagacccgcc tggtagaggt gctggagggt gtgtgcagca agtcagactt cgagtgccac 420
cgcctgctgg agctgagtga ggagctggtg gagagctggt ggtttcacaa gcagcaggag 480
gccccggacc tcttccagtg gctgtgctca gattccctga agctctgctg ccccgcaggc 540
accttcgggc cctcctgcct tccctgtcct gggggaacag agaggccctg cggtggctac 600
gggcagtgtg aaggagaagg gacacgaggg ggcagcgggc actgtgactg ccaagccggc 660
tacgggggtg aggcctgtgg ccagtgtggc cttggctact ttgaggcaga acgcaacgcc 720
agccatctgg tatgttcggc ttgttttggc ccctgtgccc gatgctcagg acctgaggaa 780
tcaaactgtt tgcaatgcaa gaagggctgg gccctgcatc acctcaagtg tgtagacatt 840
gatgagtgtg gcacagaggg agccaactgt ggagctgacc aattctgcgt gaacactgag 900
ggctcctatg agtgccgaga ctgtgccaag gcctgcctag gctgcatggg ggcagggcca 960
ggtcgctgta agaagtgtag ccctggctat cagcaggtgg gctccaagtg tctcgatgtg 1020
gatgagtgtg agacagaggt gtgtccggga gagaacaagc agtgtgaaaa caccgagggc 1080
ggttateget geatetgtge egagggetae aageagatgg aaggeatetg tgtgaaggag 1140
cagatcccag agtcagcagg cttcttctca gagatgacag aagacgagtt ggtggtgctg 1200
cagcagatgt tetttggcat catcatetgt geactggeca egetggetge taagggegae 1260
ttggtgttca ccgccatctt cattggggct gtggcggcca tgactggcta ctggttgtca 1320
gagegeagtg accepted geagegette atcaagegea gataategee gecaccacet 1380
gtaggacete eteccaceca egetgeecee agagettggg etgeceteet getggacaet 1440
caggacaget tggtttattt ttgagagtgg ggtaagcace cetacetgee ttacagagea 1500
geccaggtac ccaggecegg geagacaagg cccetggggt aaaaagtage cetgaaggtg 1560
gataccatga gctcttcacc tggcggggac tggcaggctt cacaatgtgt gaatttcaaa 1620
agtttttcct taatggtggc tgctagagct ttggcccctg cttaggatta ggtggtcctc 1680
acaggggtgg ggccatcaca gctccctcct gccagctgca tgctgccagt tcctgttctg 1740
tgttcaccac atccccacac cccattgcca cttatttatt catctcagga aataaagaaa 1800
                                                                  1838
ggtcttggaa agttaaaaaa aaaaaaaaa aaaaaaaa
```

<210> 109

<211> 420

<212> PRT

<213> Homo sapiens

<400> 109

Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly
1 5 10 15

Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser 20 25 30

Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr 35 40 45

Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile
50 55 60

Arg Asp Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Glu Asn Leu 65 70 75 80

Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu Val Glu Val Leu Glu Gly 85 90 95

Val Cys Ser Lys Ser Asp Phe Glu Cys His Arg Leu Leu Glu Leu Ser 100 105 110

Glu Glu Leu Val Glu Ser Trp Trp Phe His Lys Gln Gln Glu Ala Pro 115 120 125

Asp Leu Phe Gln Trp Leu Cys Ser Asp Ser Leu Lys Leu Cys Cys Pro 130 135 140

Ala Gly Thr Phe Gly Pro Ser Cys Leu Pro Cys Pro Gly Gly Thr Glu 145 150 155 160

Arg Pro Cys Gly Gly Tyr Gly Gln Cys Glu Gly Glu Gly Thr Arg Gly 165 170 175

Gly Ser Gly His Cys Asp Cys Gln Ala Gly Tyr Gly Glu Ala Cys 180 185 190

Gly Gln Cys Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ala Ser His 195 200 205

Leu Val Cys Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Ser Gly Pro 210 215 220

Glu Glu Ser Asn Cys Leu Gln Cys Lys Lys Gly Trp Ala Leu His His 225 230 235 240

Leu Lys Cys Val Asp Ile Asp Glu Cys Gly Thr Glu Gly Ala Asn Cys 245 250 255

Gly Ala Asp Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg 260 265 270

Asp Cys Ala Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Arg 275 280 285

Cys Lys Lys Cys Ser Pro Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu 290 295 300

Asp Val Asp Glu Cys Glu Thr Glu Val Cys Pro Gly Glu Asn Lys Gln 305 310 315

Cys Glu Asn Thr Glu Gly Gly Tyr Arg Cys Ile Cys Ala Glu Gly Tyr 325 330 335

Lys Gln Met Glu Gly Ile Cys Val Lys Glu Gln Ile Pro Glu Ser Ala 340 345 350

Gly	Phe	Phe 355	Ser	Glu	Met	Thr	Glu 360	Asp	Glu	Leu	Val	Val 365	Leu	Gln	Gln	
Met	Phe 370	Phe	Gly	Ile	Ile	Ile 375	Cys	Ala	Leu	Ala	Thr 380	Leu	Ala	Ala	Lys	
Gly 385	Asp	Leu	Val	Phe	Thr 390	Ala	Ile	Phe	Ile	Gly 395	Ala	Val	Ala	Ala	Met 400	
Thr	Gly	Tyr	Trp	Leu 405	Ser	Glu	Arg	Ser	Asp 410	Arg	Val	Leu	Glu	Gly 415	Phe	
Ile	Lys	Gly	Arg 420													
<210	<210> 110															
<211> 50																
	> DN															
<213	8> A1	rtifi	ıcıa.	L Sec	queno	ce										
<220)>															
<223	3> De	escri	iptic	on of	E Art	ific	cial	Sequ	ience	e: Sy	ynthe	etic				
	0]	ligor	nucle	eotic	de pi	cobe										
~100× 110																
<pre><400> 110 cctggctatc agcaggtggg ctccaagtgt ctcgatgtgg atgagtgtga</pre>														50		
					-											
)> 1]															
	l> 22 l> DN															
			icial	l Sec	queno	ce										
~	, , , , ,				140											
<220											_					
<223					f Art de pi		cial	Seq	uence	e: S	ynth	etic				
<400	<400> 111															
atto	tgc	gtg a	aaca	ctga	gg go	2										22
-210)> 11	12														
	l> 22															
	2> DI															
<213	3> A1	ctif:	icia:	l Sed	quen	ce										
<220	١.															
		scr	intio	מ מכ	E Art	ific	cial	Seq	uence	e: S	vnth	etic				
					de p			1			•					
		_														
)> 11				~~ ~											22
acct	.gctt	.gc a	agcco	ucgg	gc a	<u>.</u>										22
<210)> 11	L3														

```
<211> 1616
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (1461)
<223> a, t, c or g
<400> 113
tgagaccete etgeageett eteaagggae ageceeacte tgeetettge teeteeaggg 60
cagcaccatg cagcccctgt ggctctgctg ggcactctgg gtgttgcccc tqqccaqccc 120
cggggccgcc ctgaccgggg agcagctcct gggcagcctg ctgcggcagc tgcagctcaa 180
agaggtgccc accctggaca gggccgacat ggaggagctg gtcatcccca cccacgtgag 240
ggcccagtac gtggccctgc tgcagcgcag ccacggggac cgctcccqcq qaaaqaqqtt 300
cagecagage tteegagagg tggeeggeag gtteetggeg ttggaggeea geacacacet 360
getggtgtte ggeatggage ageggetgee geecaacage gagetggtge aggeegtget 420
geggetette caggageegg teeceaagge egegetgeae aggeaeggge ggetgteece 480
gegeagegee egggeeeggg tgacegtega gtggetgege gteegegaeg aeggeteeaa 540
cegeacetec eteategaet ecaggetggt gteegteeae gagagegget ggaaggeett 600
cgacgtgacc gaggccgtga acttctggca gcagctgagc cggccccggc agccgctgct 660
gctacaggtg tcggtgcaga gggagcatct gggcccgctg gcgtccggcg cccacaagct 720
ggtccgcttt gcctcgcagg gggcgccagc cgggcttggg gagccccagc tggagctgca 780
caccetggae ettggggaet atggagetea gggegaetgt gaecetgaag caccaatgae 840
cgagggcacc cgctgctgcc gccaggagat gtacattgac ctgcagggga tgaagtgggc 900
cgagaactgg gtgctggagc ccccgggctt cctggcttat gagtgtgtgg gcacctgccg 960
gcagcccccg gaggccctgg ccttcaagtg gccgtttctg gggcctcgac agtgcatcgc 1020
ctcggagact gactcgctgc ccatgatcgt cagcatcaag gagggaggca ggaccaggcc 1080
ccaggtggtc agcctgccca acatgagggt gcagaagtgc agctgtgcct cqqatqqtqc 1140
getegtgeca aggaggetee agecatagge geetagtgta gecategagg gaettgaett 1200
gtgtgtgttt ctgaagtgtt cgagggtacc aggagagctg gcgatgactg aactgctgat 1260
ggacaaatgc tetgtgetet etagtgagec etgaattige tteetetgae aagttacete 1320
acctaatttt tgcttctcag gaatgagaat ctttggccac tggagagccc ttgctcagtt 1380
ttctctattc ttattattca ctgcactata ttctaagcac ttacatgtqq agatactqta 1440
acctgagggc agaaagccca ntgtgtcatt gtttacttgt cctgtcactg gatctgggct 1500
aaagteetee accaccacte tggacctaag acetggggtt aagtgtgggt tgtqcatcce 1560
caatccagat aataaagact ttgtaaaaca tgaataaaac acattttatt ctaaaa
<210> 114
<211> 366
<212> PRT
<213> Homo sapiens
<400> 114
Met Gln Pro Leu Trp Leu Cys Trp Ala Leu Trp Val Leu Pro Leu Ala
 1
                                                         15
Ser Pro Gly Ala Ala Leu Thr Gly Glu Gln Leu Leu Gly Ser Leu Leu
Arg Gln Leu Gln Leu Lys Glu Val Pro Thr Leu Asp Arg Ala Asp Met
                                                 45
```

- Glu Glu Leu Val Ile Pro Thr His Val Arg Ala Gln Tyr Val Ala Leu 50 55 60
- Leu Gln Arg Ser His Gly Asp Arg Ser Arg Gly Lys Arg Phe Ser Gln 65 70 75 80
- Ser Phe Arg Glu Val Ala Gly Arg Phe Leu Ala Leu Glu Ala Ser Thr
 85 90 95
- His Leu Leu Val Phe Gly Met Glu Gln Arg Leu Pro Pro Asn Ser Glu 100 105 110
- Leu Val Gln Ala Val Leu Arg Leu Phe Gln Glu Pro Val Pro Lys Ala 115 120 125
- Ala Leu His Arg His Gly Arg Leu Ser Pro Arg Ser Ala Arg Ala Arg 130 135 140
- Val Thr Val Glu Trp Leu Arg Val Arg Asp Asp Gly Ser Asn Arg Thr 145 150 155 160
- Ser Leu Ile Asp Ser Arg Leu Val Ser Val His Glu Ser Gly Trp Lys 165 170 175
- Ala Phe Asp Val Thr Glu Ala Val Asn Phe Trp Gln Gln Leu Ser Arg 180 185 190
- Pro Arg Gln Pro Leu Leu Gln Val Ser Val Gln Arg Glu His Leu 195 200 205
- Gly Pro Leu Ala Ser Gly Ala His Lys Leu Val Arg Phe Ala Ser Gln 210 215 220
- Gly Ala Pro Ala Gly Leu Gly Glu Pro Gln Leu Glu Leu His Thr Leu 225 230 235 240
- Asp Leu Gly Asp Tyr Gly Ala Gln Gly Asp Cys Asp Pro Glu Ala Pro 245 250 255
- Met Thr Glu Gly Thr Arg Cys Cys Arg Gln Glu Met Tyr Ile Asp Leu 260 265 270
- Gln Gly Met Lys Trp Ala Glu Asn Trp Val Leu Glu Pro Pro Gly Phe 275 280 285
- Leu Ala Tyr Glu Cys Val Gly Thr Cys Arg Gln Pro Pro Glu Ala Leu 290 295 300
- Ala Phe Lys Trp Pro Phe Leu Gly Pro Arg Gln Cys Ile Ala Ser Glu 305 310 315 320
- Thr Asp Ser Leu Pro Met Ile Val Ser Ile Lys Glu Gly Gly Arg Thr 325 330 335

Arg Pro Gln Val Val Ser Leu Pro Asn Met Arg Val Gln Lys Cys Ser 340 345 350												
Cys Ala Ser Asp Gly Ala Leu Val Pro Arg Arg Leu Gln Pro 355 360 365												
<210> 115 <211> 21 <212> DNA <213> Artificial Sequence												
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe												
<400> 115 aggactgcca taacttgcct g	21											
<210> 116 <211> 22 <212> DNA <213> Artificial Sequence												
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe												
<400> 116 ataggagttg aagcagcgct gc	22											
<210> 117 <211> 45 <212> DNA <213> Artificial Sequence												
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe												
<400> 117 tgtgtggaca tagacgagtg ccgctaccgc tactgccagc accgc	45											
<210> 118 <211> 1857 <212> DNA <213> Homo sapiens												
<400> 118 gtctgttccc aggagtcctt cggcggctgt tgtgtcagtg gcctgatcgc gatggggaca aaggcgcaag tcgagaggaa actgttgtgc ctcttcatat tggcgatcct gttgtgctcc ctggcattgg gcagtgttac agtgcactct tctgaacctg aagtcagaat tcctgagaat	120											

```
aatcctqtqa agttgtcctg tgcctactcg ggcttttctt ctccccgtgt ggagtggaag 240
tttgaccaag gagacaccac cagactcgtt tgctataata acaagatcac agcttcctat 300
gaggaccggg tgaccttctt gccaactggt atcaccttca agtccgtgac acgggaagac 360
actgggacat acacttgtat ggtctctgag gaaggcggca acagctatgg ggaggtcaag 420
gtcaagetea tegtgettgt geetecatee aageetacag ttaacateee etectetgee 480
accattggga accgggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540
tacacctggt tcaaagatgg gatagtgatg cctacgaatc ccaaaagcac ccgtgccttc 600
agcaactett cetatgteet gaateecaca acaggagage tggtetttga teecetgtea 660
gcctctgata ctggagaata cagctgtgag gcacggaatg ggtatgggac acccatgact 720
tcaaatgctg tgcgcatgga agctgtggag cggaatgtgg gggtcatcgt ggcagccgtc 780
cttgtaaccc tgattctcct gggaatcttg gtttttggca tctggtttgc ctatagccga 840
ggccactttg acagaacaaa gaaagggact tcgagtaaga aggtgattta cagccagcct 900
agtgcccgaa gtgaaggaga attcaaacag acctcgtcat tcctggtgtg agcctggtcg 960
geteacegee tateatetge atttgeetta eteaggtget aceggaetet ggeecetgat 1020
gtctgtagtt tcacaggatg ccttatttgt cttctacacc ccacagggcc ccctacttct 1080
teggatgtgt ttttaataat gteagetatg tgeeceatee teetteatge eetceeteec 1140
tttcctacca ctgctgagtg gcctggaact tgtttaaagt gtttattccc catttctttg 1200
agggatcagg aaggaatcct gggtatgcca ttgacttccc ttctaagtag acagcaaaaa 1260
tggcgggggt cgcaggaatc tgcactcaac tgcccacctg gctggcaggg atctttgaat 1320
aggtatettg agettggtte tgggetettt cettgtgtae tgaegaecag ggeeagetgt 1380
tctagagcgg gaattagagg ctagagcggc tgaaatggtt gtttggtgat gacactgggg 1440
teetteeate tetggggeee actetettet gtetteeeat gggaagtgee actgggatee 1500
ctctgccctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt ggaaaatggg 1560
agctcttgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggatttaaa 1620
accgctgctc taaagaaaag aaaactggag gctgggcgca gtggctcacg cctgtaatcc 1680
cagaggetga ggeaggegga teacetgagg tegggagtte gggateagee tgaecaacat 1740
ggagaaaccc tactggaaat acaaagttag ccaggcatgg tggtgcatgc ctgtagtccc 1800
agctgctcag gagcctggca acaagagcaa aactccagct caaaaaaaaa aaaaaaa
<210> 119
<211> 299
<212> PRT
<213> Homo sapiens
<400> 119
Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile
                                     10
                  5
Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
             20
```

Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu 35 40 45

Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe 50 55 60

Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr 65 70 75 80

Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe
85 90 95

Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser 100 105 110

Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val 115 120 125

Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr 130 135 140

Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro 145 150 155 160

Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn 165 170 175

Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro 180 185 190

Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly
195 200 205

Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser 210 215 220

Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val 225 230 235 240

Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly 245 250 255

Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly 260 265 270

Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu 275 280 285

Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val 290 295

<210> 120

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 120

tegeggaget gtgttetgtt teee

<210> 121

<211> 50

<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tgatc		50
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> acacct		20
<210><211><211><212><213>	24	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> taggaa	·	24
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> ttgcct	124 tact caggtgctac	20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic	

oligonucleotide probe

```
<400> 125
actcagcagt ggtaggaaag
                                                                   20
<210> 126
<211> 1210
<212> DNA
<213> Homo sapiens
<400> 126
cagcgcgtgg ccggccgc tgtggggaca gcatgagcgg cggttggatg gcgcaggttg 60
gagegtggcg aacaggggct ctgggcctgg cgctgctgct gctgctcggc ctcggactag 120
gcctggaggc cgccgcgagc ccgctttcca ccccgacctc tgcccaggcc gcaggcccca 180
gctcaggctc gtgcccaccc accaagttcc agtgccgcac cagtggctta tgcgtgcccc 240
teacetggeg etgegaeagg gaettggaet geagegatgg eagegatgag gaggagtgea 300
ggattgagcc atgtacccag aaagggcaat gcccaccgcc ccctggcctc ccctgcccct 360
gcaccggcgt cagtgactgc tctgggggaa ctgacaagaa actgcgcaac tgcagccgcc 420
tggcctgcct agcaggcgag ctccgttgca cgctgagcga tgactgcatt ccactcacgt 480
ggegetgega eggeeaceca gaetgteeeg aetecagega egagetegge tgtggaacea 540
atgagatect eceggaaggg gatgecacaa ceatggggee ecetgtgace etggagagtg 600
teacetetet caggaatgee acaaceatgg ggeeceetgt gaecetggag agtgteeeet 660
ctgtcgggaa tgccacatcc tcctctgccg gagaccagtc tggaagccca actgcctatq 720
gggttattgc agctgctgcg gtgctcagtg caagcctggt caccgccacc ctcctccttt 780
tgtcctggct ccgagcccag gagcgcctcc gcccactggg gttactggtg gccatgaagg 840
agtccctgct gctgtcagaa cagaagacct cgctgccctg aggacaagca cttgccacca 900
ccgtcactca gccctgggcg tagccggaca ggaggagagc aqtqatqcqq atqqqtaccc 960
gggcacacca gccctcagag acctgagttc ttctggccac gtggaacctc gaacccgage 1020
teetgeagaa gtggeeetgg agattgaggg teeetggaca eteeetatgg agateeqqqq 1080
agetaggatg gggaacetge cacaqeeaqa actqaqqqqe tqqeeecaqq caqeteecaq 1140
ggggtagaac ggccctgtgc ttaagacact ccctgctgcc ccgtctgagg gtggcgatta 1200
aagttgcttc
                                                                   1210
<210> 127
<211> 282
<212> PRT
<213> Homo sapiens
<400> 127
Met Ser Gly Gly Trp Met Ala Gln Val Gly Ala Trp Arg Thr Gly Ala
                                     10
Leu Gly Leu Ala Leu Leu Leu Leu Gly Leu Gly Leu Gly Leu Glu
Ala Ala Ala Ser Pro Leu Ser Thr Pro Thr Ser Ala Gln Ala Ala Gly
                             40
Pro Ser Ser Gly Ser Cys Pro Pro Thr Lys Phe Gln Cys Arg Thr Ser
     50
                         55
Gly Leu Cys Val Pro Leu Thr Trp Arg Cys Asp Arg Asp Leu Asp Cys
                     70
```

Ser Asp Gly Ser Asp Glu Glu Glu Cys Arg Ile Glu Pro Cys Thr Gln 85 90 95

Lys Gly Gln Cys Pro Pro Pro Pro Gly Leu Pro Cys Pro Cys Thr Gly
100 105 110

Val Ser Asp Cys Ser Gly Gly Thr Asp Lys Leu Arg Asn Cys Ser 115 120 125

Arg Leu Ala Cys Leu Ala Gly Glu Leu Arg Cys Thr Leu Ser Asp Asp 130 135 140

Cys Ile Pro Leu Thr Trp Arg Cys Asp Gly His Pro Asp Cys Pro Asp 145 150 155 160

Ser Ser Asp Glu Leu Gly Cys Gly Thr Asn Glu Ile Leu Pro Glu Gly 165 170 175

Asp Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val Thr Ser 180 185 190

Leu Arg Asn Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val
195 200 205

Pro Ser Val Gly Asn Ala Thr Ser Ser Ser Ala Gly Asp Gln Ser Gly 210 215 220

Ser Pro Thr Ala Tyr Gly Val Ile Ala Ala Ala Ala Val Leu Ser Ala 225 230 235 240

Ser Leu Val Thr Ala Thr Leu Leu Leu Ser Trp Leu Arg Ala Gln 245 250 255

Glu Arg Leu Arg Pro Leu Gly Leu Leu Val Ala Met Lys Glu Ser Leu 260 265 270

Leu Leu Ser Glu Gln Lys Thr Ser Leu Pro 275 280

<210> 128

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<400> 128

aagttccagt gccgcaccag tggc

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 129
ttggttccac agccgagctc gtcg
                                                                  24
<210> 130
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 130
gaggaggagt gcaggattga gccatgtacc cagaaagggc aatgcccacc
                                                                  50
<210> 131
<211> 1843
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (1837)
<223> a, t, c or g
<400> 131
cccacgcgtc cggtctcgct cgctcgcgca gcggcggcag cagaggtcgc gcacagatgc 60
gggttagact ggcggggga ggaggcggag gagggaagga agctgcatgc atgagaccca 120
cagactettg caagetggat geeetetgtg gatgaaagat gtateatgga atgaaceega 180
gcaatggaga tggattteta gagcagcagc agcagcagca gcaacctcag tecceccaga 240
gactettgge egtgateetg tggttteage tggegetgtg etteggeeet geacagetea 300
egggegggtt egatgaeett caagtgtgtg etgaeeeegg catteeegag aatggettea 360
ggacccccag cggaggggtt ttctttgaag gctctgtagc ccgatttcac tgccaagacg 420
gattcaagct gaagggcgct acaaagagac tgtgtttgaa gcattttaat ggaaccctag 480
gctggatccc aagtgataat tccatctgtg tgcaagaaga ttgccgtatc cctcaaatcg 540
aaqatqctqa qattcataac aagacatata gacatggaga gaagctaatc atcacttgtc 600
atgaaggatt caagatccgg taccccgacc tacacaatat ggtttcatta tgtcgcgatg 660
atggaacgtg gaataatctg cccatctgtc aaggctgcct gagacctcta gcctcttcta 720
atgqctatqt aaacatctct gagctccaga cctccttccc ggtggggact gtgatctcct 780
ategetgett teeeggattt aaaettgatg ggtetgegta tettgagtge ttacaaaacc 840
ttatctggtc gtccagccca ccccggtgcc ttgctctgga agcccaagtc tgtccactac 900
ctccaatqqt gagtcacgga gatttcgtct gccacccgcg gccttgtgag cgctacaacc 960
acggaactgt ggtggagttt tactgcgatc ctggctacag cctcaccagc gactacaagt 1020
acatcacctg ccagtatgga gagtggtttc cttcttatca agtctactgc atcaaatcag 1080
aqcaaacqtq qcccagcacc catgagaccc tcctgaccac gtggaagatt gtggcgttca 1140
```

```
cggcaaccag tgtgctgct gtgctgct tcgtcatcct ggccaggatg ttccagacca 1200 agttcaaggc ccactttccc cccaggggc ctccccggag ttccagcagt gaccctgact 1260 ttgtggtggt agacggcgtg cccgtcatgc tcccgtccta tgacgaagct gtgagtggcg 1320 gcttgagtgc cttaggccc gggtacatgg cctctgtggg ccagggctgc cccttacccg 1380 tggacgacca gagccccca gcataccccg gctcagggga cacggacaca ggcccagggg 1440 agtcagaac ctgtgacagc gtctcaggct cttctgagct gctccaaagt ctgtattcac 1500 ctcccaggtg ccaagagag acccaccctg cttcggacaa ccctgacata attgccagca 1560 cggcagagga ggtggcatcc accaccctg gcatccatca tgcccactgg gtgttgttcc 1620 taagaaactg gtggttgatt cctttcctc tcttggttt agacaaatgt aaacaaagct 1740 ctgatccta aaattgctat gctgatagag tggtgaggc tggaagcttg atcaagact 1800 gtttcttctt gaccagact gattaaaaat taaaagnaaa aaa 1843
```

<211> 490

<212> PRT

<213> Homo sapiens

<400> 132

Met Tyr His Gly Met Asn Pro Ser Asn Gly Asp Gly Phe Leu Glu Gln 1 5 10 15

Gln Gln Gln Gln Gln Pro Gln Ser Pro Gln Arg Leu Leu Ala Val 20 25 30

Ile Leu Trp Phe Gln Leu Ala Leu Cys Phe Gly Pro Ala Gln Leu Thr 35 40 45

Gly Gly Phe Asp Asp Leu Gln Val Cys Ala Asp Pro Gly Ile Pro Glu 50 55 60

Asn Gly Phe Arg Thr Pro Ser Gly Gly Val Phe Phe Glu Gly Ser Val 65 70 75 80

Ala Arg Phe His Cys Gln Asp Gly Phe Lys Leu Lys Gly Ala Thr Lys 85 90 95

Arg Leu Cys Leu Lys His Phe Asn Gly Thr Leu Gly Trp Ile Pro Ser 100 105 110

Asp Asn Ser Ile Cys Val Gln Glu Asp Cys Arg Ile Pro Gln Ile Glu 115 120 125

Asp Ala Glu Ile His Asn Lys Thr Tyr Arg His Gly Glu Lys Leu Ile 130 135 140

Ile Thr Cys His Glu Gly Phe Lys Ile Arg Tyr Pro Asp Leu His Asn 145 150 155 160

Met Val Ser Leu Cys Arg Asp Asp Gly Thr Trp Asn Asn Leu Pro Ile 165 170 175

Cys Gln Gly Cys Leu Arg Pro Leu Ala Ser Ser Asn Gly Tyr Val Asn

			180					185					190		
Ile	Ser	Glu 195	Leu	Gln	Thr	Ser	Phe 200	Pro	Val	Gly	Thr	Val 205	Ile	Ser	Tyr
Arg	Cys 210	Phe	Pro	Gly	Phe	Lys 215	Leu	Asp	Gly	Ser	Ala 220	Tyr	Leu	Glu	Cys
Leu 225	Gln	Asn	Leu	Ile	Trp 230	Ser	Ser	Ser	Pro	Pro 235	Arg	Cys	Leu	Ala	Leu 240
Glu	Ala	Gln	Val	Cys 245	Pro	Leu	Pro	Pro	Met 250	Val	Ser	His	Gly	Asp 255	Phe
Val	Cys	His	Pro 260	Arg	Pro	Cys	Glu	Arg 265	Tyr	Asn	His	Gly	Thr 270	Val	Val
Glu	Phe	Tyr 275	Cys	Asp	Pro	Gly	Tyr 280	Ser	Leu	Thr	Ser	Asp 285	Tyr	Lys	Tyr
Ile	Thr 290	Cys	Gln	Tyr	Gly	Glu 295	Trp	Phe	Pro	Ser	Tyr 300	Gln	Val	Tyr	Cys
Ile 305	Lys	Ser	Glu	Gln	Thr 310	Trp	Pro	Ser	Thr	His 315	Glu	Thr	Leu	Leu	Thr 320
Thr	Trp	Lys	Ile	Val 325	Ala	Phe	Thr	Ala	Thr 330	Ser	Val	Leu	Leu	Val 335	Leu
Leu	Leu	Val	Ile 340	Leu	Ala	Arg	Met	Phe 345	Gln	Thr	Lys	Phe	Lys 350	Ala	His
Phe	Pro	Pro 355	Arg	Gly	Pro	Pro	Arg 360	Ser	Ser	Ser	Ser	Asp 365	Pro	Asp	Phe
Val	Val 370	Val	Asp	Gly	Val	Pro 375		Met	Leu	Pro	Ser 380		Asp	Glu	Ala
Val 385	Ser	Gly	Gly	Leu	Ser 390	Ala	Leu	Gly	Pro	Gly 395	Tyr	Met	Ala	Ser	Va]
Gly	Gln	Gly	Cys	Pro 405		Pro	Val	Asp	Asp 410		Ser	Pro	Pro	Ala 415	
Pro	Gly	Ser	Gly 420		Thr	Asp	Thr	Gly 425		Gly	Glu	Ser	Glu 430		Суз
Asp	Ser	Val 435		Gly	Ser	Ser	Glu 440		Leu	Gln	. Ser	Leu 445		Ser	Pro
Pro	Arg 450	_	Gln	Glu	Ser	Thr 455		Pro	Ala	Ser	Asp 460		Pro	Asp	ıl.

```
Ile Ala Ser Thr Ala Glu Glu Val Ala Ser Thr Ser Pro Gly Ile His
                                         475
                    470
465
His Ala His Trp Val Leu Phe Leu Arg Asn
                485
<210> 133
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 133
                                                                   23
atctcctatc gctgctttcc cgg
<210> 134
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 134
                                                                   23
agccaggatc gcagtaaaac tcc
<210> 135
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
                                                                   50
atttaaactt gatgggtctg cgtatcttga gtgcttacaa aaccttatct
<210> 136
<211> 1815
<212> DNA
<213> Homo sapiens
<400> 136
cccacgcgtc cgctccgcgc cctcccccc gcctcccgtg cggtccgtcg gtggcctaga 60
gatgctgctg cegeggttgc agttgtegeg caegectetg eeegecagec egetecaeeg 120
ccgtagcgcc cgagtgtcgg ggggcgcacc cgagtcgggc catgaggccg ggaaccgcgc 180
tacaggccgt gctgctggcc gtgctgctgg tggggctgcg ggccgcgacg ggtcgcctgc 240
tgagtgcctc ggatttggac ctcagaggag ggcagccagt ctgccgggga gggacacaga 300
```

50

```
ggccttgtta taaagtcatt tacttccatg atacttctcg aagactgaac tttgaggaag 360
ccaaagaagc ctgcaggagg gatggaggcc agctagtcag catcgagtct gaagatgaac 420
agaaactgat agaaaagttc attgaaaacc tcttgccatc tgatggtgac ttctggattg 480
ggctcaggag gcgtgaggag aaacaaagca atagcacagc ctgccaggac ctttatgctt 540
ggactgatgg cagcatatca caatttagga actggtatgt ggatgagccg tcctgcggca 600
gcgaggtctg cgtggtcatg taccatcagc catcggcacc cgctggcatc ggaggcccct 660
acatgttcca gtggaatgat gaccggtgca acatgaagaa caatttcatt tgcaaatatt 720
ctgatgagaa accagcagtt ccttctagag aagctgaagg tgaggaaaca gagctgacaa 780
cacctqtact tccaqaaqaa acacaqqaaq aaqatqccaa aaaaacattt aaagaaagta 840
gagaagetge ettgaatetg geetacatee taateeceag catteecett etceteetee 900
ttgtggtcac cacagttgta tgttgggttt ggatctgtag aaaaagaaaa cgggagcagc 960
cagaccetag cacaaagaag caacacacca tetggccete teeteaccag ggaaacagee 1020
cggacctaga ggtctacaat gtcataagaa aacaaagcga agctgactta gctgagaccc 1080
ggccagacct gaagaatatt tcattccgag tgtgttcggg agaagccact cccgatgaca 1140
tgtcttgtga ctatgacaac atggctgtga acccatcaga aagtgggttt gtgactctgg 1200
tgagcgtgga gagtggattt gtgaccaatg acatttatga gttctcccca gaccaaatgg 1260
ggaggagtaa ggagtctgga tgggtggaaa atgaaatata tggttattag gacatataaa 1320
aaactgaaac tgacaacaat ggaaaagaaa tgataagcaa aatcctctta ttttctataa 1380
ggaaaataca cagaaggtct atgaacaagc ttagatcagg tcctgtggat gagcatgtgg 1440
tecceaegae etectgttgg acceeeaegt tttggetgta teetttatee eageeagtea 1500
tccagetcga ccttatgaga aggtacettg cccaggtctg gcacatagta gagtctcaat 1560
aaatqtcact tqqttqqttq tatctaactt ttaagggaca gagctttacc tggcagtgat 1620
aaagatgggc tgtggagctt ggaaaaccac ctctgttttc cttgctctat acagcagcac 1680
atattatcat acagacagaa aatccagaat cttttcaaag cccacatatg gtagcacagg 1740
ttggcctgtg catcggcaat tctcatatct gtttttttca aagaataaaa tcaaataaag 1800
                                                                  1815
agcaggaaaa aaaaa
<210> 137
<211> 382
<212> PRT
<213> Homo sapiens
<400> 137
Met Arg Pro Gly Thr Ala Leu Gln Ala Val Leu Leu Ala Val Leu Leu
                                                          15
  1
                  5
                                     10
Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Ala Ser Asp Leu
Asp Leu Arg Gly Gly Gln Pro Val Cys Arg Gly Gly Thr Gln Arg Pro
Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg Arg Leu Asn Phe
```

Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile Glu Lys Phe Ile Glu Asn
85 90 95

Glu Glu Ala Lys Glu Ala Cys Arg Arg Asp Gly Gly Gln Leu Val Ser

55

Leu Leu Pro Ser Asp Gly Asp Phe Trp Ile Gly Leu Arg Arg Glu
100 105 110

- Glu Lys Gln Ser Asn Ser Thr Ala Cys Gln Asp Leu Tyr Ala Trp Thr 115 120 125
- Asp Gly Ser Ile Ser Gln Phe Arg Asn Trp Tyr Val Asp Glu Pro Ser 130 135 140
- Cys Gly Ser Glu Val Cys Val Val Met Tyr His Gln Pro Ser Ala Pro 145 150 155 160
- Ala Gly Ile Gly Gly Pro Tyr Met Phe Gln Trp Asn Asp Asp Arg Cys 165 170 175
- Asn Met Lys Asn Asn Phe Ile Cys Lys Tyr Ser Asp Glu Lys Pro Ala 180 185 190
- Val Pro Ser Arg Glu Ala Glu Gly Glu Glu Thr Glu Leu Thr Thr Pro
 195 200 205
- Val Leu Pro Glu Glu Thr Gln Glu Glu Asp Ala Lys Lys Thr Phe Lys 210 215 220
- Glu Ser Arg Glu Ala Ala Leu Asn Leu Ala Tyr Ile Leu Ile Pro Ser 225 230 235 240
- Ile Pro Leu Leu Leu Leu Val Val Thr Thr Val Val Cys Trp Val 245 250 255
- Trp Ile Cys Arg Lys Arg Lys Arg Glu Gln Pro Asp Pro Ser Thr Lys 260 265 270
- Lys Gln His Thr Ile Trp Pro Ser Pro His Gln Gly Asn Ser Pro Asp 275 280 285
- Leu Glu Val Tyr Asn Val Ile Arg Lys Gln Ser Glu Ala Asp Leu Ala 290 295 300
- Glu Thr Arg Pro Asp Leu Lys Asn Ile Ser Phe Arg Val Cys Ser Gly 305 310 315
- Glu Ala Thr Pro Asp Asp Met Ser Cys Asp Tyr Asp Asn Met Ala Val 325 330 335
- Asn Pro Ser Glu Ser Gly Phe Val Thr Leu Val Ser Val Glu Ser Gly 340 345 350
- Phe Val Thr Asn Asp Ile Tyr Glu Phe Ser Pro Asp Gln Met Gly Arg 355 360 365
- Ser Lys Glu Ser Gly Trp Val Glu Asn Glu Ile Tyr Gly Tyr 370 375 380

```
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 138
                                                                   50
qttcattqaa aacctcttqc catctqatqq tqacttctgg attgggctca
<210> 139
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 139
                                                                   24
aagccaaaga agcctgcagg aggg
<210> 140
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 140
                                                                   24
cagtccaagc ataaaggtcc tggc
<210> 141
<211> 1514
<212> DNA
<213> Homo sapiens
<400> 141
ggggtctccc tcagggccgg gaggcacagc ggtccctgct tgctgaaggg ctggatgtac 60
gcateegeag gtteeegegg acttggggge geeegetgag eeeeggegee egeagaagae 120
ttgtgtttgc ctcctgcagc ctcaacccgg agggcagcga gggcctacca ccatgatcac 180
tggtgtgttc agcatgcgct tgtggacccc agtgggcgtc ctgacctcgc tggcgtactg 240
cctgcaccag cggcgggtgg ccctggccga gctgcaggag gccgatggcc agtgtccggt 300
cgaccgcagc ctgctgaagt tgaaaatggt gcaggtcgtg tttcgacacg gggctcggag 360
tecteteaag eegeteeege tggaggagea ggtagagtgg aacceeeage tattagaggt 420
cccaccccaa actcagtttg attacacagt caccaatcta gctggtggtc cgaaaccata 480
ttctccttac gactctcaat accatgagac caccctgaag gggggcatgt ttgctgggca 540
gctgaccaag gtgggcatgc agcaaatgtt tgccttggga gagagactga ggaagaacta 600
tgtggaagac attccctttc tttcaccaac cttcaaccca caggaggtct ttattcgttc 660
cactaacatt tttcggaatc tggagtccac ccgttgtttg ctggctgggc ttttccagtg 720
```

```
tcaqaaagaa ggacccatca tcatccacac tgatgaagca gattcagaag tcttgtatcc 780
caactaccaa agctgctgga gcctgaggca gagaaccaga ggccggaggc agactgcctc 840
tttacagcca ggaatctcag aggatttgaa aaaggtgaag gacaggatgg gcattgacag 900
tagtgataaa gtggacttct tcatcctcct ggacaacgtg gctgccgagc aggcacacaa 960
cctcccaagc tgccccatgc tgaagagatt tgcacggatg atcgaacaga gagctgtgga 1020
cacatecttg tacatactge ccaaggaaga cagggaaagt etteagatgg cagtaggeec 1080
attectecae atectagaga geaacetget gaaageeatg gaetetgeea etgeeeeega 1140
caaqatcaqa aaqctqtatc tctatgcggc tcatgatgtg accttcatac cgctcttaat 1200
gaccetgggg atttttgacc acaaatggcc accgtttgct gttgacctga ccatggaact 1260
ttaccagcac ctggaatcta aggagtggtt tgtgcagctc tattaccacg ggaaggagca 1320
ggtgccgaga ggttgccctg atgggctctg cccgctggac atgttcttga atgccatgtc 1380
agtttatacc ttaagcccag aaaaatacca tgcactctgc tctcaaactc aggtgatgga 1440
aqttqqaaat qaaqaqtaac tqatttataa aagcaggatg tgttgatttt aaaataaagt 1500
                                                                  1514
gcctttatac aatg
<210> 142
<211> 428
<212> PRT
<213> Homo sapiens
<400> 142
Met Ile Thr Gly Val Phe Ser Met Arg Leu Trp Thr Pro Val Gly Val
Leu Thr Ser Leu Ala Tyr Cys Leu His Gln Arg Arg Val Ala Leu Ala
Glu Leu Gln Glu Ala Asp Gly Gln Cys Pro Val Asp Arg Ser Leu Leu
         35
Lys Leu Lys Met Val Gln Val Val Phe Arg His Gly Ala Arg Ser Pro
Leu Lys Pro Leu Pro Leu Glu Glu Gln Val Glu Trp Asn Pro Gln Leu
                     70
                                         75
Leu Glu Val Pro Pro Gln Thr Gln Phe Asp Tyr Thr Val Thr Asn Leu
```

Ala Gly Gly Pro Lys Pro Tyr Ser Pro Tyr Asp Ser Gln Tyr His Glu 100 105 110

Thr Thr Leu Lys Gly Gly Met Phe Ala Gly Gln Leu Thr Lys Val Gly
115 120 125

Met Gln Gln Met Phe Ala Leu Gly Glu Arg Leu Arg Lys Asn Tyr Val 130 135 140

Glu Asp Ile Pro Phe Leu Ser Pro Thr Phe Asn Pro Gln Glu Val Phe 145 150 155 160

Ile Arg Ser Thr Asn Ile Phe Arg Asn Leu Glu Ser Thr Arg Cys Leu 165 170 . 175 Leu Ala Gly Leu Phe Gln Cys Gln Lys Glu Gly Pro Ile Ile Ile His 180 185 190

Thr Asp Glu Ala Asp Ser Glu Val Leu Tyr Pro Asn Tyr Gln Ser Cys 195 200 205

Trp Ser Leu Arg Gln Arg Thr Arg Gly Arg Arg Gln Thr Ala Ser Leu 210 215 220

Gln Pro Gly Ile Ser Glu Asp Leu Lys Lys Val Lys Asp Arg Met Gly 225 230 235 240

Ile Asp Ser Ser Asp Lys Val Asp Phe Phe Ile Leu Leu Asp Asn Val 245 250 255

Ala Ala Glu Gln Ala His Asn Leu Pro Ser Cys Pro Met Leu Lys Arg 260 265 270

Phe Ala Arg Met Ile Glu Gln Arg Ala Val Asp Thr Ser Leu Tyr Ile 275 280 285

Leu Pro Lys Glu Asp Arg Glu Ser Leu Gln Met Ala Val Gly Pro Phe 290 295 300

Leu His Ile Leu Glu Ser Asn Leu Leu Lys Ala Met Asp Ser Ala Thr 305 310 315 320

Ala Pro Asp Lys Ile Arg Lys Leu Tyr Leu Tyr Ala Ala His Asp Val 325 330 335

Thr Phe Ile Pro Leu Leu Met Thr Leu Gly Ile Phe Asp His Lys Trp 340 345 350

Pro Pro Phe Ala Val Asp Leu Thr Met Glu Leu Tyr Gln His Leu Glu 355 360 365

Ser Lys Glu Trp Phe Val Gln Leu Tyr Tyr His Gly Lys Glu Gln Val 370 380

Pro Arg Gly Cys Pro Asp Gly Leu Cys Pro Leu Asp Met Phe Leu Asn 385 390 395 400

Ala Met Ser Val Tyr Thr Leu Ser Pro Glu Lys Tyr His Ala Leu Cys 405 410 415

Ser Gln Thr Gln Val Met Glu Val Gly Asn Glu Glu
420 425

<210> 143

<211> 24

<212> DNA

<213> Artificial Sequence

<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 143	
ccaactacca aagctgctgg agcc	24
<210> 144	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 144	
gcagctctat taccacggga agga	24
<210> 145	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide probe	
<400> 145	
teetteeegt ggtaatagag etge	24
<210> 146	
<211> 45	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 146	
ggcagagaac cagaggccgg aggagactgc ctctttacag ccagg	45
<210> 147	
<211> 1686	
<212> DNA	
<213> Homo sapiens	
<400> 147	
ctcctcttaa catacttgca gctaaaacta aatattgctg cttggggacc tccttctagc	60
cttaaatttc agetcatcac ettcacetge ettggtcatg getetgetat tetcettgat	120
cettgecatt tgeaceagae etggatteet agegteteea tetggagtge ggetggtggg	180

```
gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt ggggcaccgt 240
gtgtgatgac ggctgggaca ttaaggacgt ggctgtgttg tgccgggagc tgggctgtgg 300
agetgecage ggaaceeta gtggtatttt gtatgageca ceageagaaa aagageaaaa 360
ggtcctcatc caatcagtca gttgcacagg aacagaagat acattggctc agtgtgagca 420
agaagaagtt tatgattgtt cacatgatga agatgctggg gcatcgtgtg agaacccaga 480
gagetettte tecceagtee cagagggtgt caggetgget gaeggeeetg ggeattgeaa 540
gggacgcgtg gaagtgaagc accagaacca gtggtatacc gtgtgccaga caggctggag 600
cctccgggcc gcaaaggtgg tgtgccggca gctgggatgt gggagggctg tactgactca 660
aaaacgctgc aacaagcatg cctatggccg aaaacccatc tggctgagcc agatgtcatg 720
ctcaggacga gaagcaaccc ttcaggattg cccttctggg ccttggggga agaacacctg 780
caaccatgat gaagacacgt gggtcgaatg tgaagatccc tttgacttga gactagtagg 840
aggagacaac ctctgctctg ggcgactgga ggtgctgcac aagggcgtat ggggctctgt 900
ctgtgatgac aactggggag aaaaggagga ccaggtggta tgcaagcaac tgggctgtgg 960
gaagtccctc tctccctcct tcagagaccg gaaatgctat ggccctgggg ttggccgcat 1020
ctggctggat aatgttcgtt gctcagggga ggagcagtcc ctggagcagt gccagcacag 1080
attttggggg tttcacgact gcacccacca ggaagatgtg gctgtcatct gctcagtgta 1140
ggtgggcatc atctaatctg ttgagtgcct gaatagaaga aaaacacaga agaagggagc 1200
atttactgtc tacatgactg catgggatga acactgatct tcttctgccc ttggactggg 1260
acttatactt ggtgcccctg attctcaggc cttcagagtt ggatcagaac ttacaacatc 1320
aggtctagtt ctcaggccat cagacatagt ttggaactac atcaccacct ttcctatgtc 1380
tccacattgc acacagcaga ttcccagcct ccataattgt gtgtatcaac tacttaaata 1440
catteteaca cacacaca cacacacaca cacacacaca cacacataca ccattegtee 1500
tgtttctctg aagaactctg acaaaataca gattttggta ctgaaagaga ttctagagga 1560
acggaatttt aaggataaat tttctgaatt ggttatgggg tttctgaaat tggctctata 1620
atctaattag atataaaatt ctggtaactt tatttacaat aataaagata gcactatgtg 1680
<210> 148
<211> 347
<212> PRT
<213> Homo sapiens
<400> 148
Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro Gly
                                                          15
  1
                  5
                                     10
Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu His Arg
Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp Gly Thr Val
Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val Leu Cys Arg Glu
     50
                         55
```

Thr Gly Thr Glu Asp Thr Leu Ala Gln Cys Glu Gln Glu Glu Val Tyr 100 105 110

Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser Gly Ile Leu Tyr Glu

Pro Pro Ala Glu Lys Glu Gln Lys Val Leu Ile Gln Ser Val Ser Cys

85

Asp Cys Ser His Asp Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu
115 120 125

Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro 130 135 140

Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr 145 150 155 160

Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys
165 170 175

Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn 180 185 190

Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys 195 200 205

Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly 210 215 220

Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp 225 230 235 240

Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg 245 250 255

Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn 260 265 270

Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly
275 280 285

Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly 290 295 300

Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Glu Gln 305 310 315 320

Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr 325 330 335

His Gln Glu Asp Val Ala Val Ile Cys Ser Val 340 345

<210> 149

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

```
<400> 149
 ttcagctcat caccttcacc tqcc
                                                                   24
 <210> 150
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 150
ggctcataca aaataccact aggg
                                                                   24
<210> 151
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 151
gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt
                                                                   50
<210> 152
<211> 1427
<212> DNA
<213> Homo sapiens
<400> 152
actgcactcg gttctatcga ttgaattccc cggggatcct ctagagatcc ctcgacctcg 60
acccacgcgt ccgcggacgc gtgggcggac gcgtgggccg gctaccagga agagtctgcc 120
gaaggtgaag gccatggact tcatcacctc cacagccatc ctgcccctgc tgttcggctg 180
cctgggcgtc ttcggcctct tccggctgct gcagtgggtg cgcgggaagg cctacctgcg 240
gaatgetgtg gtggtgatca caggegecae etcagggetg ggcaaagaat gtgcaaaagt 300
cttctatgct gegggtgcta aactggtgct etgtggeegg aatggtgggg cectagaaga 360
gctcatcaga gaacttaccg cttctcatgc caccaaggtg cagacacaca agccttactt 420
ggtgaccttc gacctcacag actctggggc catagttgca gcagcagctg agatcctgca 480
gtgctttggc tatgtcgaca tacttgtcaa caatgctggg atcagctacc gtggtaccat 540
catggacacc acagtggatg tggacaagag ggtcatggag acaaactact ttggcccagt 600
tgctctaacg aaagcactcc tgccctccat gatcaagagg aggcaaggcc acattgtcgc 660
catcagcagc atccagggca agatgagcat teettttega teageatatg cageeteeaa 720
gcacgcaacc caggetttet ttgactgtet gegtgeegag atggaacagt atgaaattga 780
ggtgaccgtc atcagccccg gctacatcca caccaacctc tctgtaaatg ccatcaccgc 840
ggatggatet aggtatggag ttatggacae caccacagee cagggeegaa geeetgtgga 900
ggtggcccag gatgttcttg ctgctgtggg gaagaagaag aaagatgtga tcctggctga 960
cttactgcct teettggetg tttatetteg aactetgget eetgggetet tetteageet 1020
catggcctcc agggccagaa aagagcggaa atccaagaac tcctagtact ctgaccagcc 1080
```

agggccaggg cagagaagca gcactcttag gcttgcttac tctacaaggg acagttgcat 1140 ttgttgagac tttaatggag atttgtctca caagtgggaa agactgaaga aacacatctc 1200 gtgcagatct gctggcagag gacaatcaaa aacgacaaca agcttcttcc cagggtgagg 1260 ggaaacactt aaggaataaa tatggagctg gggtttaaca ctaaaaacta gaaataaaca 1320 tctcaaacag taaaaaaaaa aaaaaagggc ggccgcgact ctagagtcga cctgcagaag 1380 cttggccgcc atggcccac ttgtttattg cagcttataa tggttac 1427

<210> 153

<211> 310

<212> PRT

<213> Homo sapiens

<400> 153

Met Asp Phe Ile Thr Ser Thr Ala Ile Leu Pro Leu Leu Phe Gly Cys
1 5 10 15

Leu Gly Val Phe Gly Leu Phe Arg Leu Leu Gln Trp Val Arg Gly Lys 20 25 30

Ala Tyr Leu Arg Asn Ala Val Val Ile Thr Gly Ala Thr Ser Gly
35 40 45

Leu Gly Lys Glu Cys Ala Lys Val Phe Tyr Ala Ala Gly Ala Lys Leu 50 60

Val Leu Cys Gly Arg Asn Gly Gly Ala Leu Glu Glu Leu Ile Arg Glu 65 70 75 80

Leu Thr Ala Ser His Ala Thr Lys Val Gln Thr His Lys Pro Tyr Leu 85 90 95

Val Thr Phe Asp Leu Thr Asp Ser Gly Ala Ile Val Ala Ala Ala 100 105 110

Glu Ile Leu Gln Cys Phe Gly Tyr Val Asp Ile Leu Val Asn Asn Ala 115 120 125

Gly Ile Ser Tyr Arg Gly Thr Ile Met Asp Thr Thr Val Asp Val Asp 130 135 140

Lys Arg Val Met Glu Thr Asn Tyr Phe Gly Pro Val Ala Leu Thr Lys 145 150 155 160

Ala Leu Leu Pro Ser Met Ile Lys Arg Arg Gln Gly His Ile Val Ala 165 170 175

Ile Ser Ser Ile Gln Gly Lys Met Ser Ile Pro Phe Arg Ser Ala Tyr 180 185 190

Ala Ala Ser Lys His Ala Thr Gln Ala Phe Phe Asp Cys Leu Arg Ala 195 200 205

Glu Met Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr

	210					215					220					
Ile 225	His	Thr	Asn	Leu	Ser 230	Val	Asn	Ala	Ile	Thr 235	Ala	Asp	Gly	Ser	Arg 240	
Tyr	Gly	Val	Met	Asp 245	Thr	Thr	Thr	Ala	Gln 250	Gly	Arg	Ser	Pro	Val 255	Glu	
Val	Ala	Gln	Asp 260	Val	Leu	Ala	Ala	Val 265	Gly	Lys	Lys	Lys	Lys 270	Asp	Val	
Ile	Leu	Ala 275	Asp	Leu	Leu	Pro	Ser 280	Leu	Ala	Val	Tyr	Leu 285	Arg	Thr	Leu	
Ala	Pro 290	Gly	Leu	Phe	Phe	Ser 295	Leu	Met	Ala	Ser	Arg 300	Ala	Arg	Lys	Glu	
Arg 305	Lys	Ser	Lys	Asn	Ser 310											
<210 <211 <212 <213	> 24 > DN	! IA	icial	l Sec	puenc	ce										
<220 <223	> De		iptic nucle				cial	Seqı	ience	e: S <u>y</u>	nthe	etic				
<400 ggtg			ggts	gatat	g to	gc										24
<210 <211 <212 <213	> 20 > DN	IA	cial	. Sec	luenc	ee										
<220 <223	> De		ptic ucle				ial	Sequ	ience	e: Sy	nthe	etic				
<400 cagg			gago	atto	c											20
<210 <211 <212 <213	> 24 > DN	A	.cial	. Seq	wenc	e:e										
<220:	> De		ptic				ial	Sequ	ience	e: Sy	mthe	etic				

```
<400> 156
teatactgtt ceatetegge acge
                                                                  24
<210> 157
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 157
aatggtgggg ccctagaaga gctcatcaga gaactcaccg cttctcatgc
                                                                  50
<210> 158
<211> 1771
<212> DNA
<213> Homo sapiens
<400> 158
cccacgegte egetggtgtt agategagea accetetaaa agcagtttag agtggtaaaa 60
aaaaaaaaaa acacaccaaa cgctcgcagc cacaaaaggg atgaaatttc ttctggacat 120
cotcotgott etecegitae tgategietg etecetagag teettegiga agettittat 180
tectaagagg agaaaatcag teaceggega aategtgetg attacaggag etgggeatgg 240
aattgggaga ctgactqcct atgaatttgc taaacttaaa agcaaqctqq ttctctqqqa 300
tataaataaq catqqactqq aqqaaacaqc tqccaaatqc aaqqqactqq qtqccaaqqt 360
tcataccttt qtqqtaqact qcaqcaaccq aqaaqatatt tacaqctctq caaaqaaqqt 420
gaaqqcaqaa attggagatg ttagtatttt agtaaataat gctggtgtag tctatacatc 480
agatttgttt gctacacaaq atcctcaqat tqaaaaqact tttqaaqtta atqtacttqc 540
acatttctgg actacaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600
tgtcactgtg gcttcggcag ctggacatgt ctcggtcccc ttcttactgg cttactgttc 660
aagcaagttt getgetgttg gattteataa aactttgaca gatgaactgg etgeettaca 720
aataactgga gtcaaaacaa catgtctgtg tcctaatttc gtaaacactg gcttcatcaa 780
aaatccaagt acaagtttgg gacccactct ggaacctgag gaagtggtaa acaggctgat 840
gcatgggatt ctgactgagc agaagatgat ttttattcca tcttctatag cttttttaac 900
aacattggaa aggateette etgagegttt eetggeagtt ttaaaaegaa aaateagtgt 960
taagtttgat gcagttattg gatataaaat gaaagcgcaa taagcaccta gttttctgaa 1020
aactgattta ccaggtttag gttgatgtca tctaatagtg ccagaatttt aatgtttgaa 1080
cttctgtttt ttctaattat ccccatttct tcaatatcat ttttgaggct ttggcaqtct 1140
tcatttacta ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200
tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac tttattaaaa 1260
taatttccaa gattatttgt ggctcacctg aaggctttgc aaaatttgta ccataaccgt 1320
ttatttaaca tatattttta tttttgattg cacttaaatt ttgtataatt tgtgtttctt 1380
tttctgttct acataaaatc agaaacttca agctctctaa ataaaatqaa qqactatatc 1440
tagtggtatt tcacaatgaa tatcatgaac tctcaatggg taggtttcat cctacccatt 1500
gccactetgt ttcctgagag atacctcaca ttccaatgcc aaacatttct gcacagggaa 1560
gctagaggtg gatacacgtg ttgcaaqtat aaaaqcatca ctgggattta aqqagaattg 1620
agagaatgta cccacaaatg gcagcaataa taaatggatc acacttaaaa aaaaaaaaa 1680
авазавава авазавава вазававава вазававава авазавава вазававава 1740
aaaaaaaaaa aaaaaaaaaa a
                                                                  1771
```

<211> 300

<212> PRT

<213> Homo sapiens

<400> 159

Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Pro Leu Leu Ile Val

1 10 15

Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg Arg Lys
20 25 30

Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile 35 40 45

Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys Ser Lys Leu Val
50 55 60

Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu Thr Ala Ala Lys Cys 65 70 75 80

Lys Gly Leu Gly Ala Lys Val His Thr Phe Val Val Asp Cys Ser Asn 85 90 95

Arg Glu Asp Ile Tyr Ser Ser Ala Lys Lys Val Lys Ala Glu Ile Gly
100 105 110

Asp Val Ser Ile Leu Val Asn Asn Ala Gly Val Val Tyr Thr Ser Asp 115 120 125

Leu Phe Ala Thr Gln Asp Pro Gln Ile Glu Lys Thr Phe Glu Val Asn 130 135 140

Val Leu Ala His Phe Trp Thr Thr Lys Ala Phe Leu Pro Ala Met Thr 145 150 155 160

Lys Asn Asn His Gly His Ile Val Thr Val Ala Ser Ala Ala Gly His 165 170 175

Val Ser Val Pro Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala 180 185 190

Val Gly Phe His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile 195 200 205

Thr Gly Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly 210 215 220

Phe Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu 225 230 235 240

Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys Met 245 250 255 Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu Arg Ile

265 260 Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile Ser Val Lys 280 Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln 295 <210> 160 <211> 23 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 160 23 ggtgaaggca gaaattggag atg <210> 161 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 161 atcccatgca tcagcctgtt tacc 24 <210> 162 <211> 48 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe 48 getggtgtag tetatacate agatttgttt getacacaag atceteag <210> 163 <211> 2076 <212> DNA <213> Homo sapiens <400> 163 cccacgcgtc cgcggacgcg tgggtcgact agttctagat cgcgagcggc cgcccgcggc 60 tcagggagga gcaccgactg cgccgcaccc tgagagatgg ttggtgccat gtggaaggtg 120

```
attgtttcgc tggtcctgtt gatgcctggc ccctqtqatq ggctgtttcg ctccctatac 180
agaagtgttt ccatgccacc taagggaqac tcaggacagc cattatttct caccccttac 240
attgaagetg ggaagateea aaaaqqaaqa qaattqaqtt tqqteqqeec tttcccaqqa 300
ctgaacatga agagttatgc cggcttcctc accgtgaata agacttacaa cagcaacctc 360
ttettetggt tetteecage teagatacag ceagaagatg ceceagtagt tetetggeta 420
cagggtgggc cgggaggttc atccatgttt ggactctttg tggaacatgg gccttatgtt 480
gtcacaagta acatgacctt gcgtgacaga gacttcccct ggaccacaac gctctccatg 540
ctttacattg acaatccagt gggcacaggc ttcagtttta ctgatgatac ccacggatat 600
gcagtcaatg aggacgatgt agcacgggat ttatacagtg cactaattca gtttttccag 660
atatttcctg aatataaaaa taatgacttt tatgtcactg qqqaqtctta tgcaqqqaaa 720
tatgtgccag ccattgcaca cctcatccat tccctcaacc ctgtgagaga ggtgaagatc 780
aacctgaacg gaattgctat tggagatgga tattctgatc ccgaatcaat tataggggc 840
tatgcagaat tcctgtacca aattggcttg ttggatgaga agcaaaaaaa gtacttccag 900
aagcagtgcc atgaatgcat aqaacacatc aqqaaqcaqa actggtttqa ggcctttqaa 960
atactggata aactactaga tqqcqactta acaaqtqatc cttcttactt ccaqaatqtt 1020
acaggatgta gtaattacta taactttttg cggtgcacgg aacctgagga tcagctttac 1080
tatgtgaaat ttttgtcact cccagaggtg agacaagcca tccacgtggg gaatcagact 1140
tttaatgatg gaactatagt tgaaaagtac ttgcgagaag atacagtaca gtcagttaag 1200
ccatggttaa ctgaaatcat gaataattat aaggttctga tctacaatgg ccaactggac 1260
atcategtgg cagetgeeet gacagagege teettgatgg geatggaetg gaaaggatee 1320
caggaataca agaaggcaga aaaaaaagtt tggaagatct ttaaatctga cagtgaagtg 1380
gctggttaca tccggcaagc gggtgacttc catcaggtaa ttattcgagg tggaggacat 1440
attttaccct atgaccagcc tctgagagct tttgacatga ttaatcgatt catttatgga 1500
aaaggatggg atccttatgt tggataaact accttcccaa aagagaacat cagaggtttt 1560
cattgctgaa aagaaaatcg taaaaacaga aaatgtcata ggaataaaaa aattatcttt 1620
tcatatctgc aagatttttt tcatcaataa aaattatcct tgaaacaagt gagcttttgt 1680
ttttgggggg agatgtttac tacaaaatta acatgagtac atgagtaaga attacattat 1740
ttaacttaaa ggatgaaagg tatggatgat gtgacactga gacaagatgt ataaatgaaa 1800
ttttagggtc ttgaatagga agttttaatt tcttctaaga gtaagtgaaa agtgcagttg 1860
taacaaacaa agctgtaaca tctttttctg ccaataacag aagtttggca tgccgtgaag 1920
gtgtttggaa atattattgg ataagaatag ctcaattatc ccaaataaat ggatgaagct 1980
ataatagttt tggggaaaag attctcaaat gtataaagtc ttagaacaaa agaattcttt 2040
gaaataaaaa tattatatat aaaaqtaaaa aaaaaa
                                                                  2076
<210> 164
<211> 476
<212> PRT
<213> Homo sapiens
<400> 164
```

Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu Met

Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser Val Ser 20 25 30

Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu Thr Pro Tyr

Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu Ser Leu Val Gly 50 60

Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala Gly Phe Leu Thr Val

65					70					75					80
Asn	Lys	Thr	Tyr	Asn 85	Ser	Asn	Leu	Phe	Phe 90	Trp	Phe	Phe	Pro	Ala 95	Gln
Ile	Gln	Pro	Glu 100	Asp	Ala	Pro	Val	Val 105	Leu	Trp	Leu	Gln	Gly 110	Gly	Pro
Gly	Gly	Ser 115	Ser	Met	Phe	Gly	Leu 120	Phe	Val	Glu	His	Gly 125	Pro	Tyr	Val
Val	Thr 130	Ser	Asn	Met	Thr	Leu 135	Arg	Asp	Arg	Asp	Phe 140	Pro	Trp	Thr	Thr
Thr 145	Leu	Ser	Met	Leu	Tyr 150	Ile	Asp	Asn	Pro	Val 155	Gly	Thr	Gly	Phe	Ser 160
Phe	Thr	Asp	Asp	Thr 165	His	Gly	Tyr	Ala	Val 170	Asn	Glu	Asp	Asp	Val 175	Ala
Arg	Asp	Leu	Tyr 180	Ser	Ala	Leu	Ile	Gln 185	Phe	Phe	Gln	Ile	Phe 190	Pro	Glu
Tyr	Lys	Asn 195	Asn	Asp	Phe	Tyr	Val 200	Thr	Gly	Glu	Ser	Tyr 205	Ala	Gly	Lys
Tyr	Val 210	Pro	Ala	Ile	Ala	His 215	Leu	Ile	His	Ser	Leu 220	Asn	Pro	Val	Arg
Glu 225	Val	Lys	Ile	Asn	Leu 230	Asn	Gly	Ile	Ala	Ile 235	Gly	Asp	Gly	Tyr	Ser 240
Asp	Pro	Glu	Ser	Ile 245	Ile	Gly	Gly	Tyr	Ala 250	Glu	Phe	Leu	Tyr	Gln 255	Ile
Gly	Leu	Leu	Asp 260	G1u	Lys	Gln	Lys	Lys 265	Tyr	Phe	Gln	Lys	Gln 270	Cys	His
Glu	Cys	Ile 275	Glu	His	Ile	Arg	Lys 280	Gln	Asn	Trp	Phe	Glu 285	Ala	Phe	Glu
Ile	Leu 290	Asp	Lys		Leu			Asp	Leu		Ser 300		Pro	Ser	Tyr
Phe 305	Gln	Asn	Val	Thr	Gly 310	Cys	Ser	Asn	Tyr	Tyr 315	Asn	Phe	Leu	Arg	Cys 320
Thr	Glu	Pro	Glu	Asp 325	Gln	Leu	Tyr	Tyr	Val 330	Lys	Phe	Leu	Ser	Leu 335	Pro
Glu	Val	Arg	G1n 340	Ala	Ile	His	Val	Gly 345	Asn	Gln	Thr	Phe	Asn 350	Asp	Gly

```
Thr Ile Val Glu Lys Tyr Leu Arg Glu Asp Thr Val Gln Ser Val Lys
         355
                             360
Pro Trp Leu Thr Glu Ile Met Asn Asn Tyr Lys Val Leu Ile Tyr Asn
                         375
Gly Gln Leu Asp Ile Ile Val Ala Ala Ala Leu Thr Glu Arg Ser Leu
385
                                         395
Met Gly Met Asp Trp Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys
                405
                                     410
Lys Val Trp Lys Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile
                                 425
Arg Gln Ala Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly His
        435
Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg
Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly
465
<210> 165
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 165
ttccatgcca cctaagggag actc
                                                                   24
<210> 166
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 166
tggatgaggt gtgcaatggc tggc
                                                                   24
<210> 167
<211> 24
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 167
agctctcaga ggctggtcat aggg
                                                                 24
<210> 168
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 168
gtcggccctt tcccaggact gaacatgaag agttatgccg gcttcctcac
                                                                 50
<210> 169
<211> 2477
<212> DNA
<213> Homo sapiens
<400> 169
cgagggettt teeggeteeg gaatggeaca tgtgggaate ceagtettgt tggetacaac 60
atttttecet tteetaacaa gttetaacag etgttetaae agetagtgat eaggggttet 120
tettgetgga gaagaaaggg etgagggeag ageagggeae teteaeteag ggtgaeeage 180
teettgeete tetgtggata acagageatg agaaagtgaa gagatgeage ggagtgaggt 240
gatggaagtc taaaatagga aggaattttg tgtgcaatat caqactctqq qaqcaqttqa 300
cctggagagc ctgggggagg gcctgcctaa caagctttca aaaaacagga gcgacttcca 360
ctgggctggg ataagacgtg ccggtaggat agggaagact gggtttagtc ctaatatcaa 420
attgactggc tgggtgaact tcaacagcct tttaacctct ctgggagatg aaaacgatgg 480
tatagcataa aggctagaga ccaaaataga taacaggatt ccctgaacat tcctaagagg 600
gagaaagtat gttaaaaata gaaaaaccaa aatgcagaaq qaqqaqactc acagaqctaa 660
accaggatgg ggaccetggg teaggeeage etetttgete eteceggaaa ttatttttgg 720
tctgaccact ctgccttgtg ttttgcagaa tcatgtgagg gccaaccggg gaaggtggag 780
cagatgagca cacacaggag ccgtctcctc accgccgccc ctctcagcat ggaacagagg 840
cagccctggc cccgggccct ggaggtggac agccgctctg tggtcctgct ctcagtggtc 900
tgggtgctgc tggccccccc agcagccggc atgcctcagt tcagcacctt ccactctgag 960
aatcgtgact ggaccttcaa ccacttgacc gtccaccaag ggacgggggc cgtctatgtg 1020
ggggccatca accgggtcta taagctgaca ggcaacctga ccatccaggt ggctcataag 1080
acagggccag aagaggacaa caagtctcgt tacccgcccc tcatcgtqca qccctqcaqc 1140
gaagtgetea eeeteaceaa caatgteaac aagetgetea teattgaeta etetgagaac 1200
cgcctgctgg cctgtgggag cctctaccag ggggtctgca agctgctgcg gctggatgac 1260
ctcttcatcc tggtggagcc atcccacaag aaggagcact acctgtccag tgtcaacaag 1320
acgggcacca tgtacggggt gattgtgcgc tctgagggtg aggatggcaa gctcttcatc 1380
ggcacggctg tggatgggaa gcaggattac ttcccgaccc tgtccagccg gaagctgccc 1440
cgagaccctg agtcctcagc catgctcgac tatgagctac acagcgattt tgtctcctct 1500
ctcatcaaga tecetteaga caccetggee etggteteee aetttgacat ettetacate 1560
tacggctttg ctagtggggg ctttgtctac tttctcactg tccagcccga gacccctgag 1620
ggtgtggcca tcaactccgc tggagacctc ttctacacct cacgcatcgt gcggctctqc 1680
```

```
aaggatgacc ccaagttcca ctcatacgtg teeetgeeet teggetgeac eegggeeggg 1740
qtqqaatacc qcctcctqca qqctqcttac ctggccaagc ctggggactc actggcccag 1800
qccttcaata tcaccaqcca qqacqatqta ctctttqcca tcttctccaa agggcagaag 1860
cagtatcacc accegecega tgactetgee etgtgtgeet tecetateeg ggecateaac 1920
ttqcaqatca aqqaqcqcct gcaqtcctgc taccagggcg agggcaacct ggagctcaac 1980
tggctgctgg ggaaggacgt ccagtgcacg aaggcgcctg tccccatcga tgataacttc 2040
tgtggactgg acatcaacca gcccctggga ggctcaactc cagtggaggg cctgaccctg 2100
tacaccacca gcagggaccg catgacctct gtggcctcct acgtttacaa cggctacagc 2160
gtggtttttg tggggactaa gagtggcaag ctgaaaaagg taagagtcta tgagttcaga 2220
tgctccaatg ccattcacct cctcagcaaa gagtccctct tggaaggtag ctattggtgg 2280
agatttaact ataggcaact ttattttctt ggggaacaaa ggtgaaatgg ggaggtaaga 2340
aggggttaat tttgtgactt agcttctagc tacttcctcc agccatcagt cattgggtat 2400
gtaaggaatg caagcgtatt tcaatatttc ccaaacttta agaaaaaact ttaagaaggt 2460
acatctgcaa aagcaaa
<210> 170
<211> 552
<212> PRT
<213> Homo sapiens
<400> 170
Met Gly Thr Leu Gly Gln Ala Ser Leu Phe Ala Pro Pro Gly Asn Tyr
Phe Trp Ser Asp His Ser Ala Leu Cys Phe Ala Glu Ser Cys Glu Gly
             20
                                 25
Gln Pro Gly Lys Val Glu Gln Met Ser Thr His Arg Ser Arg Leu Leu
Thr Ala Ala Pro Leu Ser Met Glu Gln Arg Gln Pro Trp Pro Arg Ala
                         55
Leu Glu Val Asp Ser Arg Ser Val Val Leu Leu Ser Val Val Trp Val
Leu Leu Ala Pro Pro Ala Ala Gly Met Pro Gln Phe Ser Thr Phe His
                                      90
                 85
Ser Glu Asn Arg Asp Trp Thr Phe Asn His Leu Thr Val His Gln Gly
            100
                                105
                                                     110
Thr Gly Ala Val Tyr Val Gly Ala Ile Asn Arg Val Tyr Lys Leu Thr
                            120
Gly Asn Leu Thr Ile Gln Val Ala His Lys Thr Gly Pro Glu Glu Asp
                        135
                                             140
    130
Asn Lys Ser Arg Tyr Pro Pro Leu Ile Val Gln Pro Cys Ser Glu Val
                    150
145
Leu Thr Leu Thr Asn Asn Val Asn Lys Leu Leu Ile Ile Asp Tyr Ser
                                     170
                165
```

- Glu Asn Arg Leu Leu Ala Cys Gly Ser Leu Tyr Gln Gly Val Cys Lys 180 185 190
- Leu Leu Arg Leu Asp Asp Leu Phe Ile Leu Val Glu Pro Ser His Lys
 195 200 205
- Lys Glu His Tyr Leu Ser Ser Val Asn Lys Thr Gly Thr Met Tyr Gly 210 215 220
- Val Ile Val Arg Ser Glu Gly Glu Asp Gly Lys Leu Phe Ile Gly Thr 225 230 235 240
- Ala Val Asp Gly Lys Gln Asp Tyr Phe Pro Thr Leu Ser Ser Arg Lys 245 250 255
- Leu Pro Arg Asp Pro Glu Ser Ser Ala Met Leu Asp Tyr Glu Leu His 260 265 270
- Ser Asp Phe Val Ser Ser Leu Ile Lys Ile Pro Ser Asp Thr Leu Ala 275 280 285
- Leu Val Ser His Phe Asp Ile Phe Tyr Ile Tyr Gly Phe Ala Ser Gly 290 295 300
- Gly Phe Val Tyr Phe Leu Thr Val Gln Pro Glu Thr Pro Glu Gly Val
- Ala Ile Asn Ser Ala Gly Asp Leu Phe Tyr Thr Ser Arg Ile Val Arg
- Leu Cys Lys Asp Asp Pro Lys Phe His Ser Tyr Val Ser Leu Pro Phe 340 345 350
- Gly Cys Thr Arg Ala Gly Val Glu Tyr Arg Leu Leu Gln Ala Ala Tyr 355 360 365
- Leu Ala Lys Pro Gly Asp Ser Leu Ala Gln Ala Phe Asn Ile Thr Ser 370 375 380
- Gln Asp Asp Val Leu Phe Ala Ile Phe Ser Lys Gly Gln Lys Gln Tyr 385 390 395 400
- His His Pro Pro Asp Asp Ser Ala Leu Cys Ala Phe Pro Ile Arg Ala 405 410 415
- Ile Asn Leu Gln Ile Lys Glu Arg Leu Gln Ser Cys Tyr Gln Gly Glu 420 425 430
- Gly Asn Leu Glu Leu Asn Trp Leu Leu Gly Lys Asp Val Gln Cys Thr 435 440 445
- Lys Ala Pro Val Pro Ile Asp Asp Asn Phe Cys Gly Leu Asp Ile Asn

45	0				455					460					
Gln Pr 465	o Leu	Gly	Gly	Ser 470	Thr	Pro	Val	Glu	Gly 475	Leu	Thr	Leu	Tyr	Thr 480	
Thr Se	r Arg	Asp	Arg 485	Met	Thr	Ser	Val	Ala 490	Ser	Tyr	Val	Tyr	Asn 495	Gly	
Tyr Se	r Val	Val 500	Phe	Val	Gly	Thr	Lys 505	Ser	Gly	Lys	Leu	Lys 510	Lys	Val	
Arg Va	1 Tyr 515	Glu	Phe	Arg	Cys	Ser 520	Asn	Ala	Ile	His	Leu 525	Leu	Ser	Lys	
Glu Se 53		Leu	Glu	Gly	Ser 535	Tyr	Trp	Trp	Arg	Phe 540	Asn	Tyr	Arg	Gln	
Leu Ty 545	r Phe	Leu	Gly	Glu 550	Gln	Arg									
<210><211><211><212><213><223><400> <tggaat< td=""><td>20 DNA Artif Descr oligo 171 accg</td><td>ipti nucl</td><td>on o eoti</td><td>f Ar de p</td><td>tifi</td><td>cial</td><td>Seq</td><td>uence</td><td>e: S</td><td>ynth:</td><td>etic</td><td></td><td></td><td></td><td>20</td></tggaat<>	20 DNA Artif Descr oligo 171 accg	ipti nucl	on o eoti	f Ar de p	tifi	cial	Seq	uence	e: S	ynth:	e ti c				20
<210><211><212>	24 DNA														
<213> <220> <223>		ipti	on o	f Ar	tifi	cial	Seq	uenc	e: S	ynth	etic				
<400> cttctg		ttgg	agaa	ga t	ggc										24
<210><211><212><213>	43 DNA	icia	l Se	quen	ce	·									
<220> <223>	Descr oligo	ipti nucl	on o eoti	f Ar de p	tifi robe	cial	Seq	uenc	e: S	ynth	etic				

```
<400> 173
                                                                  42
ggactcactg gcccaggcct tcaatatcac cagccaggac gat
<210> 174
<211> 3106
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (1683)
<223> a, t, c or g
<400> 174
aggetecege gegeggetga gtgeggaetg gagtgggaae eegggteeee gegettagag 60
aacacgcgat gaccacgtgg agcctccggc ggaggccggc ccgcacgctg ggactcctgc 120
tgctggtcgt cttgggcttc ctggtgctcc gcaggctgga ctggagcacc ctggtccctc 180
tgcggctccg ccatcgacag ctggggctgc aggccaaggg ctggaacttc atgctggagg 240
attccacctt ctggatcttc gggggctcca tccactattt ccgtgtgccc agggagtact 300
ggagggaccg cctgctgaag atgaaggcct gtggcttgaa caccctcacc acctatgttc 360
cgtggaacct gcatgagcca gaaagaggca aatttgactt ctctgggaac ctggacctgg 420
aggeettegt cetgatggee geagagateg ggetgtgggt gattetgegt eeaggeecet 480
acatetgeag tgagatggae eteggggget tgeceagetg getaeteeaa gaeeetggea 540
tgaggctgag gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600
tgatgtccag ggtggtgcca ctccagtaca agcgtggggg acctatcatt gccgtgcagg 660
tggagaatga atatggttcc tataataaag accccgcata catgccctac gtcaagaagg 720
cactggagga ccgtggcatt gtggaactgc tcctgacttc agacaacaag gatgggctga 780
gcaaggggat tgtccaggga gtcttggcca ccatcaactt gcagtcaaca cacgagctgc 840
agctactgac cacctttctc ttcaacgtcc aggggactca gcccaagatg gtgatggagt 900
actggacggg gtggtttgac tcgtggggag gccctcacaa tatcttggat tcttctgagg 960
ttttgaaaac cgtgtctgcc attgtggacg ccggctcctc catcaacctc tacatgttcc 1020
acggaggcac caactttggc ttcatgaatg gagccatgca cttccatgac tacaagtcag 1080
atgtcaccag ctatgactat gatgctgtgc tgacagaagc cggcgattac acggccaagt 1140
acatgaaget tegagaette tteggeteea teteaggeat eceteteeet ececeacetg 1200
accttcttcc caagatgccg tatgagccct taacgccagt cttgtacctg tctctgtggg 1260
acgccctcaa gtacctgggg gagccaatca agtctgaaaa gcccatcaac atggagaacc 1320
tgccagtcaa tgggggaaat ggacagtcct tcgggtacat tctctatgag accagcatca 1380
cctcgtctgg catcctcagt ggccacgtgc atgatcgggg gcaggtgttt gtgaacacag 1440
tatccatagg attcttggac tacaagacaa cgaagattgc tgtccccctg atccagggtt 1500
acaccgtgct gaggatcttg gtggagaatc gtgggcgagt caactatggg gagaatattg 1560
atgaccageg caaaggetta attggaaate tetatetgaa tgatteacee etgaaaaact 1620
tcagaatcta tagcctggat atgaagaaga gcttctttca gaggttcggc ctggacaaat 1680
ggngttccct cccagaaaca cccacattac ctgctttctt cttgggtagc ttgtccatca 1740
gctccacgcc ttgtgacacc tttctgaagc tggagggctg ggagaagggg gttgtattca 1800
tcaatggcca gaaccttgga cgttactgga acattggacc ccagaagacg ctttacctcc 1860
caggicccig gitgagcagc ggaatcaacc aggicatcgt tittgaggag acgaiggcgg 1920
gccctgcatt acagttcacg gaaacccccc acctgggcag gaaccagtac attaagtgag 1980
cggtggcacc ccctcctgct ggtgccagtg ggagactgcc gcctcctctt gacctgaagc 2040
ctggtggctg ctgccccacc cctcactgca aaagcatctc cttaagtagc aacctcaggg 2100
actggggget acagtetgee cetgteteag etcaaaacee taageetgea gggaaaggtg 2160
ggatggetet gggeetgget ttgttgatga tggettteet acageeetge tettgtgeeg 2220
aggetgtegg getgteteta gggtgggage agetaateag ategeecage etttggeeet 2280
```

```
cagaaaaagt gctgaaacgt gcccttgcac cggacgtcac agccctgcga gcatctgctg 2340
gactcaggeg tgetetttge tggtteetgg gaggettgge cacatecete atggeeceat 2400
tttatccccg aaatcctggg tgtgtcacca gtgtagaggg tggggaaggg gtgtctcacc 2460
tgagetgaet ttgttettee tteacaacet tetgageett etttgggatt etggaaggaa 2520
ctcggcgtga gaaacatgtg acttcccctt tcccttccca ctcgctgctt cccacagggt 2580
gacaggetgg getggagaaa cagaaateet caccetgegt etteceaagt tageaggtgt 2640
ctctggtgtt cagtgaggag gacatgtgag tcctggcaga agccatggcc catgtctgca 2700
catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga agccatggcc 2760
catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga 2820
agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag 2880
teetggeaga agecatggee catgtetgea catecaggga ggaggaeaga aggeeeaget 2940
cagtggcccc cgctccccac cccccacgcc cgaacagcag gggcagagca gccctccttc 3000
gaagtgtgtc caagtccgca tttgagcctt gttctggggc ccagcccaac acctggcttg 3060
ggctcactgt cctgagttgc agtaaagcta taaccttgaa tcacaa
<210> 175
<211> 636
<212> PRT
<213> Homo sapiens
<220>
<221> MOD RES
<222> (539)
<223> Any amino acid
<400> 175
Met Thr Thr Trp Ser Leu Arg Arg Arg Pro Ala Arg Thr Leu Gly Leu
                  5
                                      10
  1
Leu Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu Asp Trp
             20
Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gly Leu Gln
Ala Lys Gly Trp Asn Phe Met Leu Glu Asp Ser Thr Phe Trp Ile Phe
     50
                         55
Gly Gly Ser Ile His Tyr Phe Arg Val Pro Arg Glu Tyr Trp Arg Asp
Arg Leu Leu Lys Met Lys Ala Cys Gly Leu Asn Thr Leu Thr Thr Tyr
                 85
Val Pro Trp Asn Leu His Glu Pro Glu Arg Gly Lys Phe Asp Phe Ser
                                                     110
                                 105
Gly Asn Leu Asp Leu Glu Ala Phe Val Leu Met Ala Ala Glu Ile Gly
                             120
Leu Trp Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ser Glu Met Asp
                                             140
                         135
    130
```

Leu Gly Gly Leu Pro Ser Trp Leu Leu Gln Asp Pro Gly Met Arg Leu 145 150 155 160

Arg Thr Thr Tyr Lys Gly Phe Thr Glu Ala Val Asp Leu Tyr Phe Asp 165 170 175

His Leu Met Ser Arg Val Val Pro Leu Gln Tyr Lys Arg Gly Gly Pro 180 185 190

Ile Ile Ala Val Gln Val Glu Asn Glu Tyr Gly Ser Tyr Asn Lys Asp 195 200 205

Pro Ala Tyr Met Pro Tyr Val Lys Lys Ala Leu Glu Asp Arg Gly Ile 210 215 220

Val Glu Leu Leu Thr Ser Asp Asn Lys Asp Gly Leu Ser Lys Gly 225 230 235 240

Ile Val Gln Gly Val Leu Ala Thr Ile Asn Leu Gln Ser Thr His Glu 245 250 255

Leu Gln Leu Leu Thr Thr Phe Leu Phe Asn Val Gln Gly Thr Gln Pro 260 265 270

Lys Met Val Met Glu Tyr Trp Thr Gly Trp Phe Asp Ser Trp Gly Gly 275 280 285

Pro His Asn Ile Leu Asp Ser Ser Glu Val Leu Lys Thr Val Ser Ala 290 295 300

Ile Val Asp Ala Gly Ser Ser Ile Asn Leu Tyr Met Phe His Gly Gly 305 310 315 320

Thr Asn Phe Gly Phe Met Asn Gly Ala Met His Phe His Asp Tyr Lys 325 330 335

Ser Asp Val Thr Ser Tyr Asp Tyr Asp Ala Val Leu Thr Glu Ala Gly 340 345 350

Asp Tyr Thr Ala Lys Tyr Met Lys Leu Arg Asp Phe Phe Gly Ser Ile 355 360 365

Ser Gly Ile Pro Leu Pro Pro Pro Pro Asp Leu Leu Pro Lys Met Pro 370 375 380

Tyr Glu Pro Leu Thr Pro Val Leu Tyr Leu Ser Leu Trp Asp Ala Leu 385 390 395 400

Lys Tyr Leu Gly Glu Pro Ile Lys Ser Glu Lys Pro Ile Asn Met Glu 405 410 415

Asn Leu Pro Val Asn Gly Gly Asn Gly Gln Ser Phe Gly Tyr Ile Leu 420 425 430 Tyr Glu Thr Ser Ile Thr Ser Ser Gly Ile Leu Ser Gly His Val His 440 Asp Arg Gly Gln Val Phe Val Asn Thr Val Ser Ile Gly Phe Leu Asp 455 Tyr Lys Thr Thr Lys Ile Ala Val Pro Leu Ile Gln Gly Tyr Thr Val 470 465 Leu Arg Ile Leu Val Glu Asn Arg Gly Arg Val Asn Tyr Gly Glu Asn 485 Ile Asp Asp Gln Arg Lys Gly Leu Ile Gly Asn Leu Tyr Leu Asn Asp 505 Ser Pro Leu Lys Asn Phe Arg Ile Tyr Ser Leu Asp Met Lys Lys Ser 520 515 Phe Phe Gln Arg Phe Gly Leu Asp Lys Trp Xaa Ser Leu Pro Glu Thr 535 Pro Thr Leu Pro Ala Phe Phe Leu Gly Ser Leu Ser Ile Ser Ser Thr 555 545 Pro Cys Asp Thr Phe Leu Lys Leu Glu Gly Trp Glu Lys Gly Val Val 570 565 Phe Ile Asn Gly Gln Asn Leu Gly Arg Tyr Trp Asn Ile Gly Pro Gln 585 590 Lys Thr Leu Tyr Leu Pro Gly Pro Trp Leu Ser Ser Gly Ile Asn Gln 595 600 Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr 615 Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys 625 630 <210> 176 <211> 2505 <212> DNA <213> Homo sapiens <400> 176 ggggacgcgg agctgagagg ctccgggcta gctaggtgta ggggtggacg ggtcccagga 60 ccctggtgag ggttctctac ttggccttcg gtgggggtca agacgcaggc acctacgcca 120 aaggggagca aagccgggct cggcccgagg cccccaggac ctccatctcc caatgttgga 180 ggaatccgac acgtgacggt ctgtccgccg tctcagacta gaggagcgct gtaaacgcca 240 tggctcccaa gaagctgtcc tgccttcgtt ccctgctgct gccgctcagc ctgacgctac 300

tgctgcccca ggcagacact cggtcgttcg tagtggatag gggtcatgac cggtttctcc 360 tagacggggc cccgttccgc tatgtgtctg gcagcctgca ctactttcgg gtaccgcggg 420

```
tgctttgggc cgaccggctt ttgaagatgc gatggagcgg cctcaacgcc atacagtttt 480
atgtgccctg gaactaccac gagccacagc ctggggtcta taactttaat ggcagccggg 540
acctcattgc ctttctgaat gaggcagctc tagcgaacct gttggtcata ctgagaccag 600
gacettacat etgtgeagag tgggagatgg ggggtetece atcetggttg ettegaaaac 660
ctgaaattca tctaagaacc tcagatccag acttccttgc cgcagtggac tcctggttca 720
aggtettget geccaagata tateeatgge tttateacaa tgggggcaac ateattagca 780
ttcaggtgga gaatgaatat ggtagctaca gagcctgtga cttcagctac atgaggcact 840
tggctgggct cttccgtgca ctgctaggag aaaagatctt gctcttcacc acagatgggc 900
ctgaaggact caagtgtggc teeeteeggg gactetatae caetgtagat tttggcccag 960
ctgacaacat gaccaaaatc tttaccctgc ttcggaagta tgaaccccat gggccattgg 1020
taaactctga gtactacaca ggctggctgg attactgggg ccagaatcac tccacacggt 1080
ctgtgtcagc tgtaaccaaa ggactagaga acatgctcaa gttgggagcc agtgtgaaca 1140
tgtacatgtt ccatggaggt accaactttg gatattggaa tggtgccgat aagaagggac 1200
gcttccttcc gattactacc agctatgact atgatgcacc tatatctgaa gcaggggacc 1260
ccacacctaa gctttttgct cttcgagatg tcatcagcaa gttccaggaa gttcctttgg 1320
gacctttacc tcccccgagc cccaagatga tgcttggacc tgtgactctg cacctggttg 1380
ggcatttact ggctttccta gacttgcttt gcccccgtgg gcccattcat tcaatcttgc 1440
caatgacctt tgaggctgtc aagcaggacc atggcttcat gttgtaccga acctatatga 1500
cccataccat ttttgagcca acaccattct gggtgccaaa taatggagtc catgaccgtg 1560
cctatgtgat ggtggatggg gtgttccagg gtgttgtgga gcgaaatatg agagacaaac 1620
tatttttgac ggggaaactg gggtccaaac tggatatctt ggtggagaac atggggaggc 1680
tcagctttgg gtctaacagc agtgacttca agggcctgtt gaagccacca attctggggc 1740
aaacaatcct tacccagtgg atgatgttcc ctctgaaaat tgataacctt gtgaagtggt 1800
ggtttcccct ccagttgcca aaatggccat atcctcaagc tccttctggc cccacattct 1860
actccaaaac atttccaatt ttaggctcag ttggggacac atttctatat ctacctggat 1920
ggaccaaggg ccaagtctgg atcaatgggt ttaacttggg ccggtactgg acaaagcagg 1980
ggccacaaca gaccctctac gtgccaagat tcctgctgtt tcctagggga gccctcaaca 2040
aaattacatt getggaacta gaagatgtae eteteeagee eeaagteeaa tttttggata 2100
agectatect caatageact agtactttge acaggacaca tateaattee ettteagetg 2160
atacactgag tgcctctgaa ccaatggagt taagtgggca ctgaaaggta ggccgggcat 2220
ggtggctcat gcctgtaatc ccagcacttt gggaggctga gacgggtgga ttacctgagg 2280
traggartte aagarrager tggcraarat ggtgaaarer cgtrtccart aaaaataraa 2340
aaattageeg ggegtgatgg tgggeaeete taateeeage taettgggag getgagggea 2400
ggagaattgc ttgaatccag gaggcagagg ttgcagtgag tggaggttgt accactgcac 2460
                                                                  2505
tccagcctgg ctgacagtga gacactccat ctcaaaaaaa aaaaa
<210> 177
<211> 654
<212> PRT
<213> Homo sapiens
<400> 177
Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Leu Pro Leu
Ser Leu Thr Leu Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val
                                                      30
                                 25
             20
```

Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg Val Leu Trp Ala
50 55 60

Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr

- Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu Asn Ala Ile Gln Phe 65 70 75 80
- Tyr Val Pro Trp Asn Tyr His Glu Pro Gln Pro Gly Val Tyr Asn Phe 85 90 95
- Asn Gly Ser Arg Asp Leu Ile Ala Phe Leu Asn Glu Ala Ala Leu Ala 100 105 110
- Asn Leu Leu Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ala Glu Trp 115 120 125
- Glu Met Gly Gly Leu Pro Ser Trp Leu Leu Arg Lys Pro Glu Ile His 130 135 140
- Leu Arg Thr Ser Asp Pro Asp Phe Leu Ala Ala Val Asp Ser Trp Phe 145 150 155 160
- Lys Val Leu Leu Pro Lys Ile Tyr Pro Trp Leu Tyr His Asn Gly Gly 165 170 175
- Asn Ile Ile Ser Ile Gln Val Glu Asn Glu Tyr Gly Ser Tyr Arg Ala 180 185 190
- Cys Asp Phe Ser Tyr Met Arg His Leu Ala Gly Leu Phe Arg Ala Leu 195 200 205
- Leu Gly Glu Lys Ile Leu Leu Phe Thr Thr Asp Gly Pro Glu Gly Leu 210 215 220
- Lys Cys Gly Ser Leu Arg Gly Leu Tyr Thr Thr Val Asp Phe Gly Pro 225 235 235
- Ala Asp Asn Met Thr Lys Ile Phe Thr Leu Leu Arg Lys Tyr Glu Pro 245 250 255
- His Gly Pro Leu Val Asn Ser Glu Tyr Tyr Thr Gly Trp Leu Asp Tyr 260 265 270
- Trp Gly Gln Asn His Ser Thr Arg Ser Val Ser Ala Val Thr Lys Gly 275 280 285
- Leu Glu Asn Met Leu Lys Leu Gly Ala Ser Val Asn Met Tyr Met Phe 290 295 300
- His Gly Gly Thr Asn Phe Gly Tyr Trp Asn Gly Ala Asp Lys Lys Gly 305 310 315 320
- Arg Phe Leu Pro Ile Thr Thr Ser Tyr Asp Tyr Asp Ala Pro Ile Ser 325 330 335
- Glu Ala Gly Asp Pro Thr Pro Lys Leu Phe Ala Leu Arg Asp Val Ile

			340					345					350		
Ser	Lys	Phe 355	Gln	Glu	Val	Pro	Leu 360	Gly	Pro	Leu	Pro	Pro 365	Pro	Ser	Pro
Lys	Met 370	Met	Leu	Gly	Pro	Val 375	Thr	Leu	His	Leu	Val 380	Gly	His	Leu	Leu
Ala 385	Phe	Leu	Asp	Leu	Leu 390	Cys	Pro	Arg	Gly	Pro 395	Ile	His	Ser	Ile	Leu 400
Pro	Met	Thr	Phe	Glu 405	Ala	Val	Lys	Gln	Asp 410	His	Gly	Phe	Met	Leu 415	Tyr
Arg	Thr	Tyr	Met 420	Thr	His	Thr	Ile	Phe 425	Glu	Pro	Thr	Pro	Phe 430	Trp	Val
Pro	Asn	Asn 435	Gly	Val	His	Asp	Arg 440	Ala	Tyr	Val	Met	Val 445	Asp	Gly	Val
Phe	Gln 450	Gly	Val	Val	Glu	Arg 455	Asn	Met	Arg	Asp	Lys 460	Leu	Phe	Leu	Thr
Gly 465	Lys	Leu	Gly	Ser	Lys 470	Leu	Asp	Ile	Leu	Val 475	Glu	Asn	Met	Gly	Arg 480
Leu	Ser	Phe	Gly	Ser 485	Asn	Ser	Ser	Asp	Phe 490	Lys	Gly	Leu	Leu	Lys 495	Pro
Pro	Ile	Leu	Gly 500	Gln	Thr	Ile	Leu	Thr 505	Gln	Trp	Met	Met	Phe 510	Pro	Leu
Lys	Ile	Asp 515	Asn	Leu	Val	Lys	Trp 520	Trp	Phe	Pro	Leu	Gln 525	Leu	Pro	Lys
Trp	Pro 530	Tyr	Pro	Gln	Ala	Pro 535	Ser	Gly	Pro	Thr	Phe 540	Tyr	Ser	Lys	Thr
Phe 545	Pro	Ile	Leu	Gly	Ser 550	Val	Gly	Asp	Thr	Phe 555	Leu	Tyr	Leu	Pro	Gly 560
Trp	Thr	Lys	Gly	Gln 565	Val	Trp	Ile	Asn	Gly 570	Phe	Asn	Leu	Gly	Arg 575	Tyr
Trp	Thr	Lys	Gln 580	Gly	Pro	Gln	Gln	Thr 585	Leu	Tyr	Val	Pro	Arg 590	Phe	Leu
Leu	Phe	Pro 595	Arg	Gly	Ala	Leu	Asn 600	Lys	Ile	Thr	Leu	Leu 605	Glu	Leu	Glu
Asp	Val 610	Pro	Leu	Gln	Pro	Gln 615	Val	Gln	Phe	Leu	Asp 620	Lys	Pro	Ile	Leu

Asn Se 625	r Tnr	ser	THE	630	HIS	Arg	1111	HIS	635	ASII	ser	Leu	Ser	640	
Asp Th	r Leu	Ser	Ala 6 4 5	Ser	Glu	Pro	Met	Glu 650	Leu	Ser	Gly	His			
<210>	178														
<211>	24														
<212>	DNA														
<213>	Artif:	icial	l Se	quen	ce										
<220>									_						
<223>	Descr: oligo						Seq	uenc	e:S	ynth	etic				
<400>	178														
tggcta	ctcc a	aaga	cact	gg c	atg										24
<210>	1 79														
<211>															
<212>															
<213>	Artif	icia	l Se	quen	ce										
<220>							_		_						
<223>	Descr oligo						Seq	uenc	e: S	yntn	etic				
<400>															
tggaca	aatc	cccti	tgct	ca g	ccc										24
<210>	180														
<211>															
<212>															
<213>	Artif	icia.	l Se	quen	ce										
<220>				_			_		_						
<223>	Descr						Seq	uenc	e: S	ynth	etic				
<400>															
gggctt	cacc	gaag	cagt	gg a	cctt	tatt	t tg	acca	cctg	atg	tcca	999			50
<210>	181														
<211>															
<212>															
<213>	Artif	icia	l Se	quen	ce										
<220>															
<223>	Descr oligo						Seq	uenc	e: S	ynth	etic				
<400>															
ccaget	atga	ctat	gatg	ca c	C										22

```
<210> 182
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 182
                                                                  24
tggcacccag aatggtgttg gctc
<210> 183
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 183
cgagatgtca tcagcaagtt ccaggaagtt cctttgggac ctttacctcc
                                                                  50
<210> 184
<211> 1947
<212> DNA
<213> Homo sapiens
<400> 184
gctttgaaca cgtctgcaag cccaaagttg agcatctgat tggttatgag gtatttgagt 60
gcacccacaa tatggcttac atgttgaaaa agcttctcat cagttacata tccattattt 120
gtgtttatgg ctttatctgc ctctacactc tcttctggtt attcaggata cctttgaagg 180
aatattettt egaaaaagte agagaagaga geagttttag tgacatteea gatgteaaaa 240
acgattttgc gttccttctt cacatggtag accagtatga ccagctatat tccaagcgtt 300
ttggtgtgtt cttgtcagaa gttagtgaaa ataaacttag ggaaattagt ttgaaccatg 360
agtggacatt tgaaaaactc aggcagcaca tttcacgcaa cgcccaggac aagcaggagt 420
tgcatctgtt catgctgtcg ggggtgcccg atgctgtctt tgacctcaca gacctggatg 480
tgctaaagct tgaactaatt ccagaagcta aaattcctgc taagatttct caaatgacta 540
acctccaaga gctccacctc tgccactgcc ctgcaaaagt tgaacagact gcttttagct 600
ttcttcgcga tcacttgaga tgccttcacg tgaagttcac tgatgtggct gaaattcctg 660
cctgggtgta tttgctcaaa aaccttcgag agttgtactt aataggcaat ttgaactctg 720
aaaacaataa gatgatagga cttgaatctc tccgagagtt gcggcacctt aagattctcc 780
acgtgaagag caatttgacc aaagttccct ccaacattac agatgtggct ccacatctta 840
caaagttagt cattcataat gacggcacta aactcttggt actgaacagc cttaagaaaa 900
tgatgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc ccacatgcta 960
ttttcagcct ctctaattta caggaactgg atttaaagtc caataacatt cgcacaattg 1020
aggaaatcat cagtttccag catttaaaac gactgacttg tttaaaatta tggcataaca 1080
aaattgttac tattcctccc tctattaccc atgtcaaaaa cttggagtca ctttatttct 1140
ctaacaacaa gctcgaatcc ttaccagtgg cagtatttag tttacagaaa ctcagatgct 1200
tagatgtgag ctacaacaac atttcaatga ttccaataga aataggattg cttcagaacc 1260
tgcagcattt gcatatcact gggaacaaag tggacattct gccaaaacaa ttgtttaaat 1320
```

```
gcataaagtt gaggactttg aatctgggac agaactgcat cacctcactc ccagagaaag 1380
ttggtcagct ctcccagctc actcagctgg agctgaaggg gaactgcttg gaccgcctgc 1440
cagcccagct gggccagtgt cggatgctca agaaaagcgg gcttgttgtg gaagatcacc 1500
tttttgatac cctgccactc gaagtcaaag aggcattgaa tcaagacata aatattccct 1560
ttgcaaatgg gatttaaact aagataatat atgcacagtg atgtgcagga acaacttcct 1620
agattgcaag tgctcacgta caagttatta caagataatg cattttagga gtagatacat 1680
cttttaaaat aaaacagaga ggatgcatag aaggctgata gaagacataa ctgaatgttc 1740
aatgtttgta gggttttaag tcattcattt ccaaatcatt ttttttttc ttttggggaa 1800
agggaaggaa aaattataat cactaatctt ggttcttttt aaattgtttg taacttggat 1860
gctgccgcta ctgaatgttt acaaattgct tgcctgctaa agtaaatgat taaattgaca 1920
ttttcttact aaaaaaaaa aaaaaaa
<210> 185
<211> 501
<212> PRT
<213> Homo sapiens
<400> 185
Met Ala Tyr Met Leu Lys Lys Leu Leu Ile Ser Tyr Ile Ser Ile Ile
Cys Val Tyr Gly Phe Ile Cys Leu Tyr Thr Leu Phe Trp Leu Phe Arg
                                 25
Ile Pro Leu Lys Glu Tyr Ser Phe Glu Lys Val Arg Glu Glu Ser Ser
         35
Phe Ser Asp Ile Pro Asp Val Lys Asn Asp Phe Ala Phe Leu Leu His
```

Met Val Asp Gln Tyr Asp Gln Leu Tyr Ser Lys Arg Phe Gly Val Phe 65 70 75 80

Leu Ser Glu Val Ser Glu Asn Lys Leu Arg Glu Ile Ser Leu Asn His

Glu Trp Thr Phe Glu Lys Leu Arg Gln His Ile Ser Arg Asn Ala Gln 100 105 110

Asp Lys Gln Glu Leu His Leu Phe Met Leu Ser Gly Val Pro Asp Ala 115 120 125

Val Phe Asp Leu Thr Asp Leu Asp Val Leu Lys Leu Glu Leu Ile Pro 130 135 140

Glu Ala Lys Ile Pro Ala Lys Ile Ser Gln Met Thr Asn Leu Gln Glu 145 150 155 160

Leu His Leu Cys His Cys Pro Ala Lys Val Glu Gln Thr Ala Phe Ser 165 170 175

Phe Leu Arg Asp His Leu Arg Cys Leu His Val Lys Phe Thr Asp Val 180 185 190 Ala Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu 195 200 205

Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly Leu 210 215 220

Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val Lys Ser 225 230 235 240

Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala Pro His Leu 245 250 255

Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu Leu Val Leu Asn 260 265 270

Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu Glu Leu Gln Asn Cys 275 280 285

Glu Leu Glu Arg Ile Pro His Ala Ile Phe Ser Leu Ser Asn Leu Gln 290 295 300

Glu Leu Asp Leu Lys Ser Asn Asn Ile Arg Thr Ile Glu Glu Ile Ile 305 310 315 320

Ser Phe Gln His Leu Lys Arg Leu Thr Cys Leu Lys Leu Trp His Asn 325 330 335

Lys Ile Val Thr Ile Pro Pro Ser Ile Thr His Val Lys Asn Leu Glu 340 345 350

Ser Leu Tyr Phe Ser Asn Asn Lys Leu Glu Ser Leu Pro Val Ala Val 355 360 365

Phe Ser Leu Gln Lys Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile 370 375 380

Ser Met Ile Pro Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu 385 390 395 400

His Ile Thr Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys 405 410 415

Cys Ile Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser 420 425 430

Leu Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu 435 440 445

Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys Arg
450
455
460

Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe Asp Thr

C
.]
C)
Ļij
ĻĦ
ſIJ
[]
6
C
4 1
₽à
<u> </u>
C
ļà

465	470	475		480	
Leu Pro Leu Glu Val 485	Lys Glu Ala	Leu Asn Gln As		Ile Pro 495	
Phe Ala Asn Gly Ile 500					
<210> 186 <211> 21 <212> DNA <213> Artificial Se	quence				
<220> <223> Description o oligonucleoti		Sequence: Synt	thetic		
<400> 186 cctccctcta ttacccat	gt c				21
<210> 187 <211> 24 <212> DNA <213> Artificial Se	quence				
<220> <223> Description o oligonucleoti		Sequence: Synt	thetic		
<400> 187 gaccaacttt ctctggga	gt gagg				24
<210> 188 <211> 47 <212> DNA <213> Artificial Se	quence				
<220> <223> Description o oligonucleoti		Sequence: Synt	thetic		
<400> 188 gtcactttat ttctctaa	ca acaagctcga	a atcettacea g	tggcag		47
<210> 189 <211> 2917 <212> DNA <213> Homo sapiens					
<400> 189 cccacgcgtc cggccttc acttttttta tttctttt aagacatttg tgttttac	tt tccatctctg	g ggccagcttg g	gatcctagg c	ccgccctggg	120

acattggcat tgcttagtgg ttgtgtgggg agggagacca cgtgggctca gtgcttgctt 240 gcacttatct gcctaggtac atcgaagtct tttgacctcc atacagtgat tatgcctgtc 300 ategetggtg gtatectgge ggeettgete etgetgatag ttgtegtget etgtetttae 360 ttcaaaatac acaacgcgct aaaagctgca aaggaacctg aagctgtggc tgtaaaaaat 420 cacaacccag acaaggtgtg gtgggccaag aacagccagg ccaaaaccat tgccacggag 480 tettgteetg eeetgeagtg etgtgaagga tatagaatgt gtgeeagttt tgatteeetg 540 ccaccttgct gttgcgacat aaatgagggc ctctgagtta ggaaaggctc ccttctcaaa 600 gcagagccct gaagacttca atgatgtcaa tgaggccacc tgtttgtgat gtgcaggcac 660 agaagaaagg cacageteee cateagttte atggaaaata acteagtgee tgetgggaac 720 cagctgctgg agatccctac agagagcttc cactgggggc aacccttcca ggaaggagtt 780 ggggagagag aaccetcact gtggggaatg ctgataaacc agtcacacag ctgctctatt 840 ctcacacaaa tctacccctt gcgtggctgg aactgacgtt tccctggagg tgtccagaaa 900 gctgatgtaa cacagagcct ataaaagctg tcggtcctta aggctgccca gcgccttgcc 960 aaaatggagc ttgtaagaag gctcatgcca ttgaccctct taattctctc ctgtttggcg 1020 gagetgacaa tggeggagge tgaaggeaat geaagetgea eagteagtet agggggtgee 1080 aatatggcag agacccacaa agccatgatc ctgcaactca atcccagtga gaactgcacc 1140 tggacaatag aaagaccaga aaacaaaagc atcagaatta tcttttccta tgtccagctt 1200 gatccagatg gaagctgtga aagtgaaaac attaaagtct ttgacggaac ctccagcaat 1260 gggcctctgc tagggcaagt ctgcagtaaa aacgactatg ttcctgtatt tgaatcatca 1320 tccagtacat tgacgtttca aatagttact gactcagcaa gaattcaaag aactgtcttt 1380 gtottotact acttottoto toctaacato totattocaa actgtggcgg ttacctggat 1440 accttggaag gateetteae eageeceaat tacceaaage egeateetga getggettat 1500 tgtgtgtggc acatacaagt ggagaaagat tacaagataa aactaaactt caaagagatt 1560 ttcctagaaa tagacaaaca gtgcaaattt gattttcttg ccatctatga tggcccctcc 1620 accaactctg gcctgattgg acaagtctgt ggccgtgtga ctcccacctt cgaatcgtca 1680 tcaaactctc tgactgtcgt gttgtctaca gattatgcca attcttaccg gggattttct 1740 gcttcctaca cctcaattta tgcagaaaac atcaacacta catctttaac ttgctcttct 1800 gacaggatga gagttattat aagcaaatcc tacctagagg cttttaactc taatgggaat 1860 aacttgcaac taaaagaccc aacttgcaga ccaaaattat caaatgttgt ggaattttct 1920 gtccctctta atggatgtgg tacaatcaga aaggtagaag atcagtcaat tacttacacc 1980 aatataatca cettttetge ateeteaact tetgaagtga teaceegtea gaaacaacte 2040 cagattattg tgaagtgtga aatgggacat aattctacag tggagataat atacataaca 2100 gaagatgatg taatacaaag tcaaaatgca ctgggcaaat ataacaccag catggctctt 2160 tttgaatcca attcatttga aaagactata cttgaatcac catattatgt ggatttgaac 2220 caaactettt ttgttcaagt tagtetgeac aceteagate caaatttggt ggtgtttett 2280 gatacetgta gageetetee cacetetgae titgeatete caacetaega eetaateaag 2340 agtggatgta gtcgagatga aacttgtaag gtgtatccct tatttggaca ctatgggaga 2400 ttccagttta atgcctttaa attcttgaga agtatgagct ctgtgtatct gcagtgtaaa 2460 gttttgatat gtgatagcag tgaccaccag tctcgctgca atcaaggttg tgtctccaga 2520 agcaaacgag acatttette atataaatgg aaaacagatt ecateatagg acceattegt 2580 ctgaaaaggg atcgaagtgc aagtggcaat tcaggatttc agcatgaaac acatgcggaa 2640 gaaactccaa accagcettt caacagtgtg catetgtttt eetteatggt tetagetetg 2700 aatgtggtga ctgtagcgac aatcacagtg aggcattttg taaatcaacg ggcagactac 2760 aaataccaga agctgcagaa ctattaacta acaggtccaa ccctaagtga gacatgtttc 2820 tccaggatgc caaaggaaat gctacctcgt ggctacacat attatgaata aatgaggaag 2880 2917 ggcctgaaag tgacacacag gcctgcatgt aaaaaaa

<210> 190

<211> 607

<212> PRT

<213> Homo sapiens

Met Glu Leu Val Arg Arg Leu Met Pro Leu Thr Leu Leu Ile Leu Ser Cys Leu Ala Glu Leu Thr Met Ala Glu Ala Glu Gly Asn Ala Ser Cys Thr Val Ser Leu Gly Gly Ala Asn Met Ala Glu Thr His Lys Ala Met Ile Leu Gln Leu Asn Pro Ser Glu Asn Cys Thr Trp Thr Ile Glu Arg 50 Pro Glu Asn Lys Ser Ile Arg Ile Ile Phe Ser Tyr Val Gln Leu Asp Pro Asp Gly Ser Cys Glu Ser Glu Asn Ile Lys Val Phe Asp Gly Thr Ser Ser Asn Gly Pro Leu Leu Gly Gln Val Cys Ser Lys Asn Asp Tyr Val Pro Val Phe Glu Ser Ser Ser Thr Leu Thr Phe Gln Ile Val 120 Thr Asp Ser Ala Arg Ile Gln Arg Thr Val Phe Val Phe Tyr Tyr Phe 130 Phe Ser Pro Asn Ile Ser Ile Pro Asn Cys Gly Gly Tyr Leu Asp Thr Leu Glu Gly Ser Phe Thr Ser Pro Asn Tyr Pro Lys Pro His Pro Glu 170 165 Leu Ala Tyr Cys Val Trp His Ile Gln Val Glu Lys Asp Tyr Lys Ile Lys Leu Asn Phe Lys Glu Ile Phe Leu Glu Ile Asp Lys Gln Cys Lys Phe Asp Phe Leu Ala Ile Tyr Asp Gly Pro Ser Thr Asn Ser Gly Leu 215 210 Ile Gly Gln Val Cys Gly Arg Val Thr Pro Thr Phe Glu Ser Ser Ser 230 235 Asn Ser Leu Thr Val Val Leu Ser Thr Asp Tyr Ala Asn Ser Tyr Arg 245 Gly Phe Ser Ala Ser Tyr Thr Ser Ile Tyr Ala Glu Asn Ile Asn Thr 260 Thr Ser Leu Thr Cys Ser Ser Asp Arg Met Arg Val Ile Ile Ser Lys 280

565 570 575

Leu Ala Leu Asn Val Val Thr Val Ala Thr Ile Thr Val Arg His Phe
580 585 590

Val Asn Gln Arg Ala Asp Tyr Lys Tyr Gln Lys Leu Gln Asn Tyr 595 600 605

<210> 191

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<400> 191

tctctattcc aaactgtggc g

21

<210> 192

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<400> 192

tttgatgacg attcgaaggt gg

22

<210> 193

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<400> 193

ggaaggatee tteaceagee ceaattacee aaageegeat eetgage

47

<210> 194

<211> 2362

<212> DNA

<213> Homo sapiens

<400> 194

gacggaagaa cagcgctccc gaggccgcgg gagcctgcag agaggacagc cggcctgcgc 60 cgggacatgc ggccccagga gctccccagg ctcgcgttcc cgttgctgct gttgctgttg 120 ctgctgctgc cgccgccgcc gtgccctgcc cacagcgcca cgcgcttcga ccccacctgg 180

```
qaqtecetqq acqcecqcca qetqeecqcq tqqtttqacc aggccaaqtt eggcatette 240
atccactqqq qaqtqttttc cqtqcccaqc ttcggtagcg agtggttctg gtggtattgg 300
caaaaqqaaa aqataccqaa qtatgtggaa tttatgaaag ataattaccc tcctagtttc 360
aaatatgaag attttggacc actatttaca gcaaaatttt ttaatgccaa ccagtgggca 420
gatatttttc aggcctctgg tgccaaatac attgtcttaa cttccaaaca tcatgaaggc 480
tttaccttgt gggggtcaga atattcgtgg aactggaatg ccatagatga ggggcccaag 540
agggacattg tcaaggaact tgaggtagcc attaggaaca gaactgacct gcgttttgga 600
ctqtactatt ccctttttqa atggtttcat ccgctcttcc ttgaggatga atccagttca 660
ttccataagc ggcaatttcc agtttctaag acattgccag agctctatga gttagtgaac 720
aactatcagc ctgaggttct gtggtcggat ggtgacggag gagcaccgga tcaatactgg 780
aacaqcacaq qcttcttqqc ctqgttatat aatgaaagcc cagttcgggg cacagtagtc 840
accaatgate gttggggage tggtageate tgtaageatg gtggetteta tacetgeagt 900
qatcqttata acccaqqaca tcttttqcca cataaatggg aaaactgcat gacaatagac 960
aaactgteet ggggetatag gagggaaget ggaatetetg actatettae aattgaagaa 1020
ttgqtgaaqc aacttqtaqa gacagtttca tgtggaggaa atcttttgat gaatattggg 1080
cccacactag atggcaccat ttctgtagtt tttgaggagc gactgaggca agtggggtcc 1140
tgqctaaaaq tcaatggaqa aqctatttat gaaacctata cctggcgatc ccagaatgac 1200
actgtcaccc cagatgtgtg gtacacatcc aagcctaaag aaaaattagt ctatgccatt 1260
tttcttaaat ggcccacatc aggacagctg ttccttggcc atcccaaagc tattctgggg 1320
gcaacagagg tgaaactact gggccatgga cagccactta actggatttc tttggagcaa 1380
aatggcatta tggtagaact gccacagcta accattcatc agatgccgtg taaatggggc 1440
tgggctctag ccctaactaa tgtgatctaa agtgcagcag agtggctgat gctgcaagtt 1500
atgtctaagg ctaggaacta tcaggtgtct ataattgtag cacatggaga aagcaatgta 1560
aactggataa gaaaattatt tqqcagttca gccctttccc tttttcccac taaatttttc 1620
ttaaattacc catgtaacca ttttaactct ccagtgcact ttgccattaa agtctcttca 1680
cattgatttg tttccatgtg tgactcagag gtgagaattt tttcacatta tagtagcaag 1740
gaattggtgg tattatggac cgaactgaaa attttatgtt gaagccatat cccccatgat 1800
tatatagtta tgcatcactt aatatgggga tattttctgg gaaatgcatt gctagtcaat 1860
ttttttttgt gccaacatca tagagtgtat ttacaaaaatc ctagatggca tagcctacta 1920
cacacctaat qtqtatqqta taqactqttq ctcctagget acagacatat acagcatqtt 1980
actgaatact gtaggcaata gtaacagtgg tatttgtata tcgaaacata tggaaacata 2040
qaqaaqqtac aqtaaaaata ctqtaaaata aatqqtqcac ctqtataqqq cacttaccac 2100
qaatqgaqct tacaqqactq gaagttgctc tgggtgagtc agtgagtgaa tgtgaaggcc 2169
taggacatta ttgaacactg ccagacgtta taaatactgt atgcttaggc tacactacat 2220
ttataaaaaa aagtttttct ttcttcaatt ataaattaac ataagtgtac tgtaacttta 2280
caaacgtttt aatttttaaa acctttttgg ctcttttgta ataacactta gcttaaaaca 2340
taaactcatt gtgcaaatgt aa
<210> 195
<211> 467
<212> PRT
<213> Homo sapiens
```

<400> 195

Met Arg Pro Gln Glu Leu Pro Arg Leu Ala Phe Pro Leu Leu Leu 5

Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser Ala Thr 20

Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln Leu Pro Ala 40 45

- Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His Trp Gly Val Phe 50 55 60
- Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp Trp Tyr Trp Gln Lys 65 70 75 80
- Glu Lys Ile Pro Lys Tyr Val Glu Phe Met Lys Asp Asn Tyr Pro Pro 85 90 95
- Ser Phe Lys Tyr Glu Asp Phe Gly Pro Leu Phe Thr Ala Lys Phe Phe 100 105 110
- Asn Ala Asn Gln Trp Ala Asp Ile Phe Gln Ala Ser Gly Ala Lys Tyr 115 120 125
- Ile Val Leu Thr Ser Lys His His Glu Gly Phe Thr Leu Trp Gly Ser 130 135 140
- Glu Tyr Ser Trp Asn Trp Asn Ala Ile Asp Glu Gly Pro Lys Arg Asp 145 150 155 160
- Ile Val Lys Glu Leu Glu Val Ala Ile Arg Asn Arg Thr Asp Leu Arg 165 170 175
- Phe Gly Leu Tyr Tyr Ser Leu Phe Glu Trp Phe His Pro Leu Phe Leu 180 185 190
- Glu Asp Glu Ser Ser Ser Phe His Lys Arg Gln Phe Pro Val Ser Lys 195 200 205
- Thr Leu Pro Glu Leu Tyr Glu Leu Val Asn Asn Tyr Gln Pro Glu Val 210 215 220
- Leu Trp Ser Asp Gly Asp Gly Gly Ala Pro Asp Gln Tyr Trp Asn Ser 225 230 235 240
- Thr Gly Phe Leu Ala Trp Leu Tyr Asn Glu Ser Pro Val Arg Gly Thr
 245 250 255
- Val Val Thr Asn Asp Arg Trp Gly Ala Gly Ser Ile Cys Lys His Gly 260 265 270
- Gly Phe Tyr Thr Cys Ser Asp Arg Tyr Asn Pro Gly His Leu Leu Pro 275 280 285
- His Lys Trp Glu Asn Cys Met Thr Ile Asp Lys Leu Ser Trp Gly Tyr 290 295 300
- Arg Arg Glu Ala Gly Ile Ser Asp Tyr Leu Thr Ile Glu Glu Leu Val 305 310 315 320
- Lys Gln Leu Val Glu Thr Val Ser Cys Gly Gly Asn Leu Leu Met Asn 325 330 335

	Ile	Gly	Pro	Thr 340	Leu	Asp	Gly	Thr	Ile 345	Ser	Val	Val	Phe	Glu 350	Glu	Arg	
	Leu	Arg	Gln 355	Val	Gly	Ser	Trp	Leu 360	Lys	Val	Asn	Gly	Glu 365	Ala	Ile	Tyr	
•	Glu	Thr 370	Tyr	Thr	Trp	Arg	Ser 375	Gln	Asn	Asp	Thr	Val 380	Thr	Pro	Asp	Val	
	Trp 385	Tyr	Thr	Ser	Lys	Pro 390	Lys	Glu	Lys	Leu	Val 395	Tyr	Ala	Ile	Phe	Leu 400	
j	Lys	Trp	Pro	Thr	Ser 405	Gly	Gln	Leu	Phe	Leu 410	Gly	His	Pro	Lys	Ala 415	Ile	
3	Leu	Gly	Ala	Thr 420	Glu	Val	Lys	Leu	Leu 425	Gly	His	Gly	Gln	Pro 430	Leu	Asn	
•	Trp	Ile	Ser 435	Leu	Glu	Gln	Asn	Gly 440	Ile	Met	Val	Glu	Leu 445	Pro	Gln	Leu	
•	Thr	Ile 450	His	Gln	Met	Pro	Cys 4 55	Lys	Trp	Gly	Trp	Ala 460	Leu	Ala	Leu	Thr	
	Asn 465	Val	Ile														
	<210> 196 <211> 23 <212> DNA <213> Artificial Sequence																
	<220 <223		escri	.ptic	on of	: Art	ific	cial	Sequ	ience	e: Sy	nthe	etic				
				ucle	otic	le pr	obe										
		> 19 ttga		ggcc	aagt	t cg	ıa										23
	<21 1 <212	> 19 > 24 > DN > Ar	IA	.cial	. Sec	luenc	e										
	<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>																
		> 19 tcat		caag	gaag	ja go	:99										24
	<210	> 19	8														

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 198
aacttgcagc atcagccact ctgc
                                                                   24
<210> 199
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 199
ttccgtgccc agcttcggta gcgagtggtt ctggtggtat tggca
                                                                  45
<210> 200
<211> 2372
<212> DNA
<213> Homo sapiens
<400> 200
agcagggaaa tccggatgtc tcggttatga agtggagcag tgagtgtgag cctcaacata 60
gttccagaac tctccatccg gactagttat tgaqcatctg cctctcatat caccagtgqc 120
catctgaggt gtttccctgg ctctgaaggg gtaggcacga tggccaggtg cttcagcctq 180
gtgttgcttc tcacttccat ctggaccacg aggctcctgg tccaaggctc tttgcgtgca 240
gaagagettt ecateeaggt gteatgeaga attatgggga teaceettgt gageaaaaag 300
gcgaaccagc agctgaattt cacagaagct aaggaggcct gtaggctgct gggactaagt 360
ttggccggca aggaccaagt tgaaacagcc ttgaaagcta gctttgaaac ttgcagctat 420
ggetgggttg gagatggatt cgtggtcatc tctaggatta gcccaaaccc caagtgtggg 480
aaaaatgggg tgggtgteet gatttggaag gtteeagtga geegaeagtt tgeageetat 540
tqttacaact catctqatac ttqqactaac tcqtqcattc caqaaattat caccaccaaa 600
qatcccatat tcaacactca aactgcaaca caaacaacag aatttattgt cagtgacagt 660
acctactegg tggcatcecc ttactctaca atacctgccc ctactactac tectectgct 720
ccagcttcca cttctattcc acggagaaaa aaattgattt gtgtcacaga agtttttatg 780
gaaactagca ccatgtctac agaaactgaa ccatttgttg aaaataaagc agcattcaag 840
aatgaagetg etgggtttgg aggtgteece aeggetetge tagtgettge teteetette 900
tttggtgctq caqctqqtct tqqattttqc tatqtcaaaa qqtatqtqaa qqccttccct 960
tttacaaaca agaatcagca gaaggaaatg atcgaaacca aagtagtaaa ggaggagaaq 1020
gccaatgata gcaaccctaa tgaggaatca aagaaaactg ataaaaaccc agaagagtcc 1080
aagagtecaa gcaaaactac cgtgcgatgc ctggaagctg aagtttagat gagacagaaa 1140
tgaggagaca cacctgaggc tggtttcttt catgctcctt accctqcccc aqctqqqgaa 1200
atcaaaaggg ccaaagaacc aaagaagaaa gtccaccctt ggttcctaac tggaatcagc 1260
teaggaetge cattggaeta tgqagtgeac caaaqaqaat qeeettetee ttattgtaac 1320
cctqtctqqa tcctatcctc ctacctccaa agcttcccac ggcctttcta gcctggctat 1380
gtcctaataa tatcccactg ggagaaagga gttttgcaaa gtgcaaggac ctaaaacatc 1440
```

```
tcatcagtat ccagtggtaa aaaggcctcc tggctgtctg aggctaggtg ggttgaaagc 1500
caaggagtca ctgagaccaa ggctttctct actgattccg cagctcagac cctttcttca 1560
gctctgaaag agaaacacgt atcccacctg acatgtcctt ctgagcccgg taagagcaaa 1620
agaatggcag aaaagtttag ccctgaaag ccatggagat tctcataact tgagacctaa 1680
tctctgtaaa gctaaaataa agaaatagaa caaggctgag gatacgacag tacactgtca 1740
gcagggactg taaacacaga cagggtcaaa gtgttttctc tgaacacatt gagttggaat 1800
cactgtttag aacacacac cttactttt ctggtctcta ccactgctga tattttctct 1860
aggaaatata cttttacaag taacaaaaat aaaaactctt ataaatttct atttttatct 1920
gagttacaga aatgattact aaggaagatt actcagtaat ttgtttaaaa agtaataaaa 1980
ttcaacaaac atttgctgaa tagctactat atgtcaagtg ctgtgcaagg tattacactc 2040
tgtaattgaa tattattcct caaaaaattg cacatagtag aacgctatct gggaagctat 2100
ttttttcagt tttgatattt ctagcttatc tacttccaaa ctaattttta tttttgctga 2160
gactaatctt attcattttc tctaatatgg caaccattat aaccttaatt tattattaac 2220
atacctaaga agtacattgt tacctctata taccaaagca cattttaaaa qtqccattaa 2280
caaatgtatc actagccctc ctttttccaa caagaaggga ctgagagatg cagaaatatt 2340
tgtgacaaaa aattaaagca tttagaaaac tt
<210> 201
<211> 322
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic protein
Met Ala Arg Cys Phe Ser Leu Val Leu Leu Leu Thr Ser Ile Trp Thr
Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu Ser Ile
                                 25
Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser Lys Lys Ala
         35
                             40
Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala Cys Arg Leu Leu
Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu Thr Ala Leu Lys Ala
 65
                     70
Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Asp Gly Phe Val Val
Ile Ser Arg Ile Ser Pro Asn Pro Lys Cys Gly Lys Asn Gly Val Gly
            100
Val Leu Ile Trp Lys Val Pro Val Ser Arg Gln Phe Ala Ala Tyr Cys
Tyr Asn Ser Ser Asp Thr Trp Thr Asn Ser Cys Ile Pro Glu Ile Ile
```

135

140

Thr Thr Lys Asp Pro Ile Phe Asn Thr Gln Thr Ala Thr Gln Thr 145 150 155 160

Glu Phe Ile Val Ser Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser 165 170 175

Thr Ile Pro Ala Pro Thr Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser 180 185 190

Ile Pro Arg Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu
195 200 205

Thr Ser Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala 210 215 220

Ala Phe Lys Asn Glu Ala Ala Gly Phe Gly Gly Val Pro Thr Ala Leu 225 230 235 240

Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Ala Gly Leu Gly Phe 245 250 255

Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn Lys Asn 260 265 270

Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu Glu Lys Ala 275 280 285

Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr Asp Lys Asn Pro 290 295 300

Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val Arg Cys Leu Glu Ala 305 310 315 320

Glu Val

<210> 202

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 202

gagettteca tecaggtgte atge

<210> 203

<211> 22

<212> DNA

<213> Artificial Sequence

24

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 203
                                                                   22
gtcagtgaca gtacctactc gg
<210> 204
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 204
                                                                   24
tggagcagga ggagtagtag tagg
<210> 205
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 205
aggaggeetg taggetgetg ggactaagtt tggeeggeaa ggaccaagtt
                                                                   50
<210> 206
<211> 1620
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (973)
<223> a, t, c or g
<220>
<221> modified base
<222> (977)
<223> a, t, c or g
<220>
<221> modified_base
<222> (996)
<223> a, t, c or g
<220>
<221> modified_base
```

<222> (1003)

<223> a, t, c or g <400> 206 agatggeggt cttggcacct ctaattgctc tegtgtattc ggtgcegega ctttcacgat 60 ggetegeeca acettaetae ettetgtegg eestgetete tgetgeette etaetegtga 120 ggaaactgcc gccgctctgc cacggtctgc ccacccaacg cgaagacggt aacccgtgtg 180 actttgactg gagagaagtg gagatcctga tgtttctcag tgccattgtg atgatgaaga 240 accqcaqatc catcactgtg gaqcaacata taggcaacat tttcatgttt agtaaagtgg 300 ccaacacaat tettttette egettggata ttegeatggg cetaetttae atcacactet 360 gcatagtgtt cctgatgacg tgcaaacccc ccctatatat gggccctgag tatatcaagt 420 acttcaatga taaaaccatt gatgaggaac tagaacggga caagagggtc acttggattg 480 tggagttett tgecaattgg tetaatgaet gecaateatt tgeceetate tatgetgaee 540 totooottaa atacaactgt acagggotaa attttgggaa ggtggatgtt ggacgotata 600 ctgatgttag tacgcggtac aaagtgagca catcacccct caccaagcaa ctccctaccc 660 tgateetgtt ccaaggtgge aaggaggeaa tgeggeggee acagattgae, aagaaaggae 720 gggctgtctc atggaccttc tctgaggaga atgtgatccg agaatttaac ttaaatgagc 780 tataccageg ggccaagaaa ctatcaaagg ctggagacaa tatccctgag gagcagcctg 840 tggcttcaac ccccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatcctc 900 actttggcag tgcttcctct cctgtcaatt ccaggctctt tccataacca caagcctgag 960 gctgcagcct ttnattnatg ttttcccttt ggctgngact ggntggggca gcatgcagct 1020 totgatttta aagaggcatc tagggaattg toaggcaccc tacaggaagg cotgocatgc 1080 tgtggccaac tgtttcactg gagcaagaaa gagatctcat aggacggagg gggaaatggt 1140 ttccctccaa gcttgggtca gtgtgttaac tgcttatcag ctattcagac atctccatgg 1200 tttctccatg aaactctgtg gtttcatcat tccttcttag ttgacctgca cagcttggtt 1260 agacctagat ttaaccctaa ggtaagatgc tggggtatag aacgctaaga attttccccc 1320 aaggactett getteettaa geeettetgg ettegtttat ggtetteatt aaaagtataa 1380 gcctaacttt gtcgctagtc ctaaggagaa acctttaacc acaaagtttt tatcattgaa 1440 gacaatattg aacaaccccc tattttgtgg ggattgagaa ggggtgaata gaggcttgag 1500 acttteettt gtgtggtagg acttggagga gaaateeett ggaettteae taaeeetetg 1560 acatactece cacacccagt tgatggettt eegtaataaa aagattggga ttteettttg 1620 <210> 207 <211> 296 <212> PRT <213> Homo sapiens <400> 207 Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg 5 Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu Ser Ala Ala Phe Leu Leu Val Arq Lys Leu Pro Pro Leu Cys His Gly Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn

Arg Arg Ser Ile Thr Val Glu Gln His Ile Gly Asn Ile Phe Met Phe 85 90 95

Ser Lys Val Ala Asn Thr Ile Leu Phe Phe Arg Leu Asp Ile Arg Met

Gly Leu Leu Tyr Ile Thr Leu Cys Ile Val Phe Leu Met Thr Cys Lys 115 120 125

Pro Pro Leu Tyr Met Gly Pro Glu Tyr Ile Lys Tyr Phe Asn Asp Lys 130 135 140

Thr Ile Asp Glu Glu Leu Glu Arg Asp Lys Arg Val Thr Trp Ile Val 145 150 155 160

Glu Phe Phe Ala Asn Trp Ser Asn Asp Cys Gln Ser Phe Ala Pro Ile 165 170 175

Tyr Ala Asp Leu Ser Leu Lys Tyr Asn Cys Thr Gly Leu Asn Phe Gly
180 185 190

Lys Val Asp Val Gly Arg Tyr Thr Asp Val Ser Thr Arg Tyr Lys Val

Ser Thr Ser Pro Leu Thr Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln 210 215 220

Gly Gly Lys Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg 225 230 235 240

Ala Val Ser Trp Thr Phe Ser Glu Glu Asn Val Ile Arg Glu Phe Asn 245 250 255

Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp 260 265 270

Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val Ser 275 280 285

Asp Gly Glu Asn Lys Lys Asp Lys 290 295

<210> 208

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 208
gcttggatat tcgcatgggc ctac

```
<210> 209
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 209
tggagacaat atccctgagg
                                                                   20
<210> 210
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 210
aacagttggc cacagcatgg cagg
                                                                   24
<210> 211
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 211
ccattgatga ggaactagaa cgggacaaga gggtcacttq gattgtggag
                                                                   50
<210> 212
<211> 1985
<212> DNA
<213> Homo sapiens
<400> 212
ggacageteg eggeceeega gagetetage egtegaggag etgeetgggg aegtttgeee 60
tggggcccca gcctggcccg ggtcaccctg gcatgaggag atgggcctgt tgctcctggt 120
cecattgete etgetgeeg geteetaegg actgeeette tacaaegget tetactaete 180
caacagegee aaegaceaga acetaggeaa eggteatgge aaagacetee ttaatggagt 240
gaagetggtg gtggagacac cegaggagac cetgttcace taccaagggg ceagtgtgat 300
cotgocotgo ogotacogot acgagooggo cotggtotoc cogoggogtg tgogtgtoaa 360
atggtggaag ctgtcggaga acggggcccc agagaaggac gtgctggtgg ccatcgggct 420
gaggcaccgc tectttgggg actaccaagg eegegtgcac etgeggcagg acaaagagca 480
tgacgtctcg ctggagatcc aggatctgcg gctggaggac tatgggcgtt accgctgtga 540
ggtcattgac gggctggagg atgaaagcgg tctggtggag ctggagctgc ggggtgtggt 600
```

```
ctttccttac cagtccccca acgggcgcta ccagttcaac ttccacgagg gccagcaggt 660
ctgtgcagag caggctgcgg tggtggcctc ctttgagcag ctcttccggg cctgggagga 720
gggcctggac tggtgcaacg cgggctggct gcaggatgct acggtgcagt accccatcat 780
gttgccccgg cagccctgcg gtggcccagg cctggcacct ggcgtgcgaa gctacggccc 840
cegecacege egeetgeace getatgatgt attetgette getactgece teaaggggeg 900
ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg aggcctgcca 960
ggaagatgat gccacgatcg ccaaggtggg acagetettt gccgcctgga agttccatgg 1020
cetggacege tgegacgetg getggetgge agatggeage gteegetace etgtggttea 1080
cccgcatcct aactgtgggc ccccagagcc tggggtccga agctttggct tccccgaccc 1140
gcagagccgc ttgtacggtg tttactgcta ccgccagcac taggacctgg ggccctcccc 1200
tgccgcattc cctcactggc tgtgtattta ttgagtggtt cgttttccct tgtgggttgg 1260
agccatttta actgttttta tacttctcaa tttaaatttt ctttaaacat ttttttacta 1320
ttttttgtaa agcaaacaga acccaatgcc tccctttgct cctqqatqcc ccactccaqq 1380
aatcatgett geteecetgg gecatttgeg gttttgtggg ettetggagg gtteecegee 1440
atccaggetg gtctccctcc cttaaggagg ttggtgccca gagtgggcgg tggcctgtct 1500
agaatgeege egggagteeg ggeatggtgg geacagttet ecetgeecet eageetgggg 1560
gaagaagagg gcctcggggg cctccggagc tgggctttgg gcctctcctg cccacctcta 1620
cttctctgtg aagccgctga ccccagtctg cccactgagg ggctagggct ggaagccagt 1680
tctaggcttc caggcgaaat ctgagggaag gaagaaactc ccctccccgt tccccttccc 1740
ctctcggttc caaagaatct gttttgttgt catttgtttc tcctgtttcc ctgtgtgggg 1800
aggggccctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc cttccgccaa 1860
aaaaa
                                                              1985
<210> 213
<211> 360
<212> PRT
<213> Homo sapiens
<400> 213
Met Gly Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser Tyr
Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp
                               25
Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys
Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala
    50
                       55
Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu Pro Ala Leu Val Ser
Pro Arg Arg Val Arg Val Lys Trp Trp Lys Leu Ser Glu Asn Gly Ala
```

Pro Glu Lys Asp Val Leu Val Ala Ile Gly Leu Arg His Arg Ser Phe

Gly Asp Tyr Gln Gly Arg Val His Leu Arg Gln Asp Lys Glu His Asp

105

110

100

		115					120					125			
Val	Ser 130		Glu	Ile	Gln	Asp 135	Leu	Arg	Leu	Glu	Asp 140	Tyr	Gly	Arg	Tyr
Arg 145	Сув	Glu	Val	Ile	Asp 150		Leu	Glu	Asp	Glu 155	Ser	Gly	Leu	Val	Glu 160
Leu	Glu	Leu	Arg	Gly 165	Val	Val	Phe	Pro	Tyr 170	Gln	Ser	Pro	Asn	Gly 175	Arg
Tyr	Gln	Phe	Asn 180	Phe	His	Glu	Gly	Gln 185	Gln	Val	Cys	Ala	Glu 190	Gln	Ala
Ala	Val	Val 195	Ala	Ser	Phe	Glu	Gln 200	Leu	Phe	Arg	Ala	Trp 205	Glu	Glu	Gly
Leu	Asp 210	Trp	Cys	Asn	Ala	Gly 215	Trp	Leu	Gln	Asp	Ala 220	Thr	Val	Gln	Tyr
Pro 225	Ile	Met	Leu	Pro	Arg 230	Gln	Pro	Cys	Gly	Gly 235	Pro	Gly	Leu	Ala	Pro 240
Gly	Val	Arg	Ser	Tyr 245	Gly	Pro	Arg	His	Arg 250	Arg	Leu	His	Arg	T yr 255	Asp
Val	Phe	Cys	Phe 260	Ala	Thr	Ala	Leu	Lys 265	Gly	Arg	Val	Tyr	Tyr 270	Leu	Glu
His	Pro	Glu 275	Lys	Leu	Thr	Leu	Thr 280	Glu	Ala	Arg	Glu	Ala 285	Cys	Gln	Glu
Asp	Asp 290	Ala	Thr	Ile	Ala	Lys 295	Val	Gly	Gln	Leu	Phe 300	Ala	Ala	Trp	Lys
Phe 305	His	Gly	Leu	Asp	Arg 310	Cys	Asp	Ala	Gly	Trp 315	Leu	Ala	Asp	Gly	Ser 320
Val	Arg	Tyr	Pro	Val 325	Val	His	Pro	His	Pro 330	Asn	Cys	Gly	Pro	Pro 335	Glu
Pro	Gly	Val	Arg 340	Ser	Phe	Gly	Phe	Pro 345	Asp	Pro	Gln	Ser	Arg 350	Leu	Tyr
Gly	Va1	Tyr 355	Сув	Tyr	Arg	Gln	His 360								
<210> 214 <211> 18 <212> DNA <213> Artificial Sequence															
<220	>														

	<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
	<400> 214 tgcttcgcta ctgccctc	18
	<210> 215	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
	<400> 215	
	ttcccttgtg ggttggag	18
H-H	<210> 216	
3	<211> 18	
2	<212> DNA	
	<213> Artificial Sequence	
Ų	<220>	
П	<223> Description of Artificial Sequence: Synthetic	
4t G Gt 8t 9t 8t	oligonucleotide probe	
	<400> 216	
	agggetggaa geeagtte	18
년 ·	<210> 217	
å	<211> 18	
<u>.</u>	<212> DNA	
1 1	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
	<400> 217	
	agccagtgag gaaatgcg	18
	<210> 218	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
	<400> 218	
	tgtccaaagt acacacct gagg	24

```
<210> 219
 <211> 45
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 219
gatgccacga tcgccaaggt gggacagctc tttgccgcct ggaag
                                                                 45
<210> 220
<211> 1503
<212> DNA
<213> Homo sapiens
<400> 220
ggagagcgga gcgaagctgg ataacagggg accgatgatg tggcgaccat cagttctgct 60
gettetgttg etactgagge aeggggecca ggggaageca teeccagaeg eaggeeetca 120
tggccagggg agggtgcacc aggcggcccc cctgagcgac gctccccatg atgacgccca 180
cgggaacttc cagtacgacc atgaggcttt cctgggacgg gaagtggcca aggaattcga 240
ccaactcacc ccagaggaaa gccaggcccg tctggggcgg atcgtggacc gcatggaccg 300
cgcgggggac ggcgacggct gggtgtcgct ggccgagctt cgcgcgtgga tcgcgcacac 360
gcagcagcgg cacatacggg actcggtgag cgcggcctgg gacacgtacg acacggaccg 420
cgacgggcgt gtgggttggg aggagctgcg caacgccacc tatggccact acgcgcccgg 480
tgaagaattt catgacgtgg aggatgcaga gacctacaaa aagatgctgg ctcgggacga 540
gcggcgtttc cgggtggccg accaggatgg ggactcgatg gccactcgag aggagctgac 600
agcetteetg caceeegagg agtteeetca catgegggae ategtgattg etgaaaceet 660
ggaggacctg gacagaaaca aagatggcta tgtccaggtg gaggagtaca tcgcggatct 720
gtactcagcc gagcctgggg aggaggagcc ggcgtgggtg cagacggaga ggcagcagtt 780
ccgggacttc cgggatctga acaaggatgg gcacctggat gggagtgagg tgggccactg 840
ggtgctgccc cctgcccagg accagccct ggtggaagcc aaccacctgc tgcacgagag 900
cgacacggac aaggatgggc ggctgagcaa agcggaaatc ctgggtaatt ggaacatgtt 960
tgtgggcagt caggccacca actatggcga ggacctgacc cggcaccacg atgagctgtg 1020
agcaccgege acetgecaca geetcagagg ecegeacaat gaceggagga ggggeegetg 1080
tggtctggcc ccctccctgt ccaggccccg caggaggcag atgcagtccc aggcatcctc 1140
ctgcccctgg gctctcaggg accccctggg tcggcttctg tccctgtcac acccccaacc 1200
ccagggaggg gctgtcatag tcccagagga taagcaatac ctatttctga ctgagtctcc 1260
cagcccagac ccagggaccc ttggccccaa gctcagctct aagaaccgcc ccaacccctc 1320
cagetecaaa tetgageete caecacatag aetgaaaete eeetggeeee ageeetetee 1380
tgcctggcct ggcctgggac acctcctctc tgccaggagg caataaaagc cagcgccggg 1440
aaa
                                                                1503
<210> 221
<211> 328
<212> PRT
<213> Homo sapiens
<400> 221
Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Leu Arg His
```

1				5					10					15	
Gly	Ala	Gln	Gly 20	Lys	Pro	Ser	Pro	Asp 25	Ala	Gly	Pro	His	Gly 30	Gln	Gly
Arg	Val	His 35	Gln	Ala	Ala	Pro	Leu 40	Ser	Asp	Ala	Pro	His 45	Asp	Asp	Ala
His	Gly 50	Asn	Phe	Gln	Tyr	Asp 55	His	Glu	Ala	Phe	Leu 60	Gly	Arg	Glu	Val
Ala 65	Lys	Glu	Phe	Asp	Gln 70	Leu	Thr	Pro	Glu	Glu 75	Ser	Gln	Ala	Arg	Leu 80
Gly	Arg	Ile	Val	Asp 85	Arg	Met	Asp	Arg	Ala 90	Gly	Asp	Gly	Asp	Gly 95	Trp
Val	Ser	Leu	Ala 100	Glu	Leu	Arg	Ala	Trp 105	Ile	Ala	His	Thr	Gln 110	Gln	Arg
His	Ile	Arg 115	Asp	Ser	Val	Ser	Ala 120	Ala	Trp	Asp	Thr	Tyr 125	Asp	Thr	Asp
Arg	Asp 130	Gly	Arg	Val	Gly	Trp 135	Glu	Glu	Leu	Arg	Asn 140	Ala	Thr	Туr	Gly
His 145	Tyr	Ala	Pro	Gly	Glu 150	Glu	Phe	His	Asp	Val 155	Glu	qsA	Ala	Glu	Thr 160
Tyr	Lys	Lys	Met	Leu 165	Ala	Arg	Asp	Glu	Arg 170	Arg	Phe	Arg	Val	Ala 175	Asp
Gln	Asp	Gly	Asp 180	Ser	Met	Ala	Thr	Arg 185	Glu	Glu	Leu	Thr	Ala 190	Phe	Leu
His	Pro	Glu 195	Glu	Phe	Pro	His	Met 200	Arg	Asp	Ile	Val	Ile 205	Ala	Glu	Thr
Leu	Glu 210	Asp	Leu	Asp	Arg	Asn 215	Lys	Asp	Gly	Tyr	Val 220	Gln	Val	Glu	Glu
Tyr 225	Ile	Ala	qaA	Leu	Tyr 230	Ser	Ala	Glu	Pro	Gly 235	Glu	Glu	Glu	Pro	Ala 240
Trp	Val	Gln	Thr	Glu 245	Arg	Gln	Gln	Phe	Arg 250	Asp	Phe	Arg	Asp	Leu 255	Asn
Lys	Asp	Gly	His 260	Leu	Asp	Gly	Ser	Glu 265	Val	Gly	His	Trp	Val 270	Leu	Pro
Pro	Ala	Gln 275	Asp	Gln	Pro	Leu	Val 280	Glu	Ala	Asn	His	Leu 285	Leu	His	Glu

```
Ser Asp Thr Asp Lys Asp Gly Arg Leu Ser Lys Ala Glu Ile Leu Gly
    290
                         295
                                              300
Asn Trp Asn Met Phe Val Gly Ser Gln Ala Thr Asn Tyr Gly Glu Asp
                     310
                                          315
Leu Thr Arg His His Asp Glu Leu
                 325
<210> 222
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 222
cgcaggccct catggccagg
                                                                    20
<210> 223
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 223
gaaatcctgg gtaattgg
                                                                    18
<210> 224
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 224
gtgcgcggtg ctcacagctc atc
                                                                    23
<210> 225
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
```

```
<400> 225
ccccctgag cgacgetece ccatgatgae geccaeggga actt
                                                                  44
<210> 226
<211> 2403
<212> DNA
<213> Homo sapiens
<400> 226
ggggccttgc cttccgcact cgggcgcagc cgggtggatc tcgagcaggt gcggagcccc 60
gggcggcggg cgcgggtgcg agggatccct gacgcctctg tccctgtttc tttgtcgctc 120
ccaqcctqtc tqtcqtcqtt ttqqcqcccc cgcctccccg cggtgcgggg ttgcacaccg 180
atcetggget tegetegatt tgeegeegag gegeeteeca gaeetagagg ggegetggee 240
tggageageg ggtegtetgt gteetetete etetgegeeg egeeegggga teegaagggt 300
geggggetet gaggaggtga egegegggge etceeggace etggeettge eegeattete 360
cetetetece aggtgtgage agectateag teaceatgte egeageetgg atceeggete 420
teggeetegg tgtgtgtetg etgetgetge eggggeeege gggeagegag ggageegete 480
ccattgctat cacatgtttt accagaggct tggacatcag gaaagagaaa gcagatgtcc 540
tetgeecagg gggetgeect ettgaggaat tetetgtgta tgggaacata gtatatgett 600
ctgtatcgag catatgtggg gctgctgtcc acaggggagt aatcagcaac tcagggggac 660
ctgtacgagt ctatagccta cctggtcgag aaaactattc ctcagtagat gccaatggca 720
tecagtetea aatgetteet agatggtetg ettettteae agtaactaaa ggeaaaagta 780
gtacacagga ggccacagga caagcagtgt ccacagcaca tccaccaaca ggtaaacgac 840
taaagaaaac acccgagaag aaaactggca ataaagattg taaagcagac attgcatttc 900
tgattgatgg aagetttaat attgggeage geegatttaa tttacagaag aattttgttg 960
qaaaaqtqqc tctaatqttq qqaattqqaa caqaagqacc acatqtqggc cttgttcaag 1020
ccagtgaaca tcccaaaata gaattttact tgaaaaactt tacatcagcc aaagatgttt 1080
tgtttgccat aaaggaagta ggtttcagag ggggtaattc caatacagga aaagccttga 1140
agcatactgc tcagaaattc ttcacggtag atgctggagt aagaaaaggg atccccaaag 1200
tggtggtggt atttattgat ggttggcctt ctgatgacat cgaggaagca ggcattgtgg 1260
ccagagagtt tggtgtcaat gtatttatag tttctgtggc caagcctatc cctgaagaac 1320
tggggatggt tcaggatgtc acatttgttg acaaggctgt ctgtcggaat aatggcttct 1380
totottacca catqoccaac tqqtttqgca ccacaaaata cgtaaagcct ctggtacaga 1440
agetgtgcae teatgaacaa atgatgtgca geaagaeetg ttataaetea gtgaacattg 1500
cetttetaat tgatggetee ageagtgttg gagatageaa ttteegeete atgettgaat 1560
ttgtttccaa catagccaag acttttgaaa tctcggacat tggtgccaag atagctgctg 1620
tacagtttac ttatgatcag cgcacggagt tcagtttcac tgactatagc accaaagaga 1680
atgtcctage tgtcatcaga aacatccgct atatgagtgg tggaacagct actggtgatg 1740
ccatttcctt cactgttaga aatgtgtttg gccctataag ggagagcccc aacaagaact 1800
tectagtaat tgteacagat gggeagteet atgatgatgt ceaaggeeet geagetgetg 1860
cacatgatgc aggaatcact atcttctctg ttggtgtggc ttgggcacct ctggatgacc 1920
tgaaagatat ggcttctaaa ccgaaggagt ctcacgcttt cttcacaaga gagttcacag 1980
gattagaacc aattgtttct gatgtcatca gaggcatttg tagagatttc ttagaatccc 2040
agcaataatg gtaacatttt gacaactgaa agaaaaagta caaggggatc cagtgtgtaa 2100
attgtattct cataatactg aaatgcttta gcatactaga atcagataca aaactattaa 2160
gtatgtcaac agccatttag gcaaataagc actcctttaa agccgctgcc ttctggttac 2220
aatttacagt gtactttgtt aaaaacactg ctgaggcttc ataatcatgg ctcttagaaa 2280
ctcaggaaag aggagataat gtggattaaa accttaagag ttctaaccat gcctactaaa 2340
tgtacagata tgcaaattcc atagctcaat aaaagaatct gatacttaga ccaaaaaaaa 2400
                                                                  2403
aaa
```

<211> 550

<212> PRT

<213> Homo sapiens

<400> 227

Met Ser Ala Ala Trp Ile Pro Ala Leu Gly Leu Gly Val Cys Leu Leu 1 5 10 15

Leu Leu Pro Gly Pro Ala Gly Ser Glu Gly Ala Ala Pro Ile Ala Ile 20 25 30

Thr Cys Phe Thr Arg Gly Leu Asp Ile Arg Lys Glu Lys Ala Asp Val 35 40 45

Leu Cys Pro Gly Gly Cys Pro Leu Glu Glu Phe Ser Val Tyr Gly Asn 50 55 60

Ile Val Tyr Ala Ser Val Ser Ser Ile Cys Gly Ala Ala Val His Arg 65 70 75 80

Gly Val Ile Ser Asn Ser Gly Gly Pro Val Arg Val Tyr Ser Leu Pro 85 90 95

Gly Arg Glu Asn Tyr Ser Ser Val Asp Ala Asn Gly Ile Gln Ser Gln
100 105 110

Met Leu Ser Arg Trp Ser Ala Ser Phe Thr Val Thr Lys Gly Lys Ser 115 120 125

Ser Thr Gln Glu Ala Thr Gly Gln Ala Val Ser Thr Ala His Pro Pro 130 135 140

Thr Gly Lys Arg Leu Lys Lys Thr Pro Glu Lys Lys Thr Gly Asn Lys 145 150 155 160

Asp Cys Lys Ala Asp Ile Ala Phe Leu Ile Asp Gly Ser Phe Asn Ile 165 170 175

Gly Gln Arg Arg Phe Asn Leu Gln Lys Asn Phe Val Gly Lys Val Ala 180 185 190

Leu Met Leu Gly Ile Gly Thr Glu Gly Pro His Val Gly Leu Val Gln 195 200 205

Ala Ser Glu His Pro Lys Ile Glu Phe Tyr Leu Lys Asn Phe Thr Ser 210 215 220

Ala Lys Asp Val Leu Phe Ala Ile Lys Glu Val Gly Phe Arg Gly Gly 225 230 235 240

Asn Ser Asn Thr Gly Lys Ala Leu Lys His Thr Ala Gln Lys Phe Phe 245 250 255

- Thr Val Asp Ala Gly Val Arg Lys Gly Ile Pro Lys Val Val Val Val 260 265 270
- Phe Ile Asp Gly Trp Pro Ser Asp Asp Ile Glu Glu Ala Gly Ile Val 275 280 285
- Ala Arg Glu Phe Gly Val Asn Val Phe Ile Val Ser Val Ala Lys Pro 290 295 300
- Ile Pro Glu Glu Leu Gly Met Val Gln Asp Val Thr Phe Val Asp Lys 305 310 315 320
- Ala Val Cys Arg Asn Asn Gly Phe Phe Ser Tyr His Met Pro Asn Trp 325 330 335
- Phe Gly Thr Thr Lys Tyr Val Lys Pro Leu Val Gln Lys Leu Cys Thr 340 345 350
- His Glu Gln Met Met Cys Ser Lys Thr Cys Tyr Asn Ser Val Asn Ile 355 360 365
- Ala Phe Leu Ile Asp Gly Ser Ser Ser Val Gly Asp Ser Asn Phe Arg 370 375 380
- Leu Met Leu Glu Phe Val Ser Asn Ile Ala Lys Thr Phe Glu Ile Ser 385 390 395 400
- Asp Ile Gly Ala Lys Ile Ala Ala Val Gln Phe Thr Tyr Asp Gln Arg
- Thr Glu Phe Ser Phe Thr Asp Tyr Ser Thr Lys Glu Asn Val Leu Ala
 420 425 430
- Val Ile Arg Asn Ile Arg Tyr Met Ser Gly Gly Thr Ala Thr Gly Asp 435 440 445
- Ala Ile Ser Phe Thr Val Arg Asn Val Phe Gly Pro Ile Arg Glu Ser 450 460
- Pro Asn Lys Asn Phe Leu Val Ile Val Thr Asp Gly Gln Ser Tyr Asp 465 470 475 480
- Asp Val Gln Gly Pro Ala Ala Ala Ala His Asp Ala Gly Ile Thr Ile 485 490 495
- Phe Ser Val Gly Val Ala Trp Ala Pro Leu Asp Asp Leu Lys Asp Met 500 505 510
- Ala Ser Lys Pro Lys Glu Ser His Ala Phe Phe Thr Arg Glu Phe Thr 515 520 525
- Gly Leu Glu Pro Ile Val Ser Asp Val Ile Arg Gly Ile Cys Arg Asp 530 535 540

```
Phe Leu Glu Ser Gln Gln
545
<210> 228
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
       oligonucleotide probe
<400> 228
tggtctcgca caccgatc
                                                                    18
<210> 229
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 229
ctgctgtcca caggggag
                                                                    18
<210> 230
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 230
ccttgaagca tactgctc
                                                                    18
<210> 231
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 231
gagatagcaa tttccgcc
                                                                    18
<210> 232
```

```
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 232
ttcctcaaga gggcagcc
                                                                   18
<210> 233
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 233
cttggcacca atgtccgaga tttc
                                                                   24
<210> 234
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 234
gctctgagga aggtgacgcg cggggcctcc gaacccttgg ccttg
                                                                   45
<210> 235
<211> 2586
<212> DNA
<213> Homo sapiens
<400> 235
egeogegete degeaceege ggeoegedea degegeeget deegeatetq cadeeqeaqe 60
ccggcggcct cccggcggga gcgagcagat ccagtccggc ccgcagcgca actcggtcca 120
gtcggggcgg cggctgcggg cgcagagcgg agatgcagcg gcttggggcc accctgctgt 180
geetgetget ggeggeggeg gteeceaegg ceeeeggee egeteegaeg gegaeetegg 240
ctccagtcaa gcccggcccg gctctcagct acccgcagga ggaggccacc ctcaatgaga 300
tgttccgcga ggttgaggaa ctgatggagg acacgcagca caaattgcgc agcgcggtgg 360
aagagatgga ggcagaagaa gctgctgcta aagcatcatc agaagtgaac ctqgcaaact 420
tacctcccag ctatcacaat qaqaccaaca caqacacqaa qqttqqaaat aataccatcc 480
atgtgcaccg agaaattcac aagataacca acaaccagac tggacaaatg gtcttttcag 540
agacagttat cacatctgtg ggagacgaag aaggcagaag gagccacgag tgcatcatcg 600
acgaggactg tgggcccagc atgtactgcc agtttgccag cttccagtac acctgccagc 660
catgoogggg ccagaggatg ctctgcaccc gggacagtga gtgctgtgga gaccagctgt 720
```

```
gtgtetgggg teactgcace aaaatggcca ceaggggcag caatgggace atetgtgaca 780
accagaggga etgecageeg gggetgtget gtgeetteea gagaggeetg etgtteeetq 840
tgtgcacacc cetgceegtg gagggegage tttgccatga eccegceage eggettetgg 900
acctcatcac ctgggagcta gagcctgatg gagccttgga ccgatgccct tgtgccagtg 960
geotectetg ccageeccac agecacagee tggtgtatgt gtgcaageeg acettegtgg 1020
ggagccgtga ccaagatggg gagatcctgc tgcccagaga ggtccccgat gagtatgaag 1080
ttggcagett catggaggag gtgcgccagg agetggagga cetggagagg ageetgactg 1140
aagagatggc gctgggggag cctgcggctg ccgccgctgc actgctggga ggggaagaga 1200
tttagatctg gaccaggctg tgggtagatg tgcaatagaa atagctaatt tatttcccca 1260
ggtgtgtgtct ttaggcgtgg gctgaccagg cttcttccta catcttcttc ccagtaagtt 1320
teccetetgg ettgacagea tgaggtgttg tgcatttgtt cagetecece aggetgttet 1380
ccaggettca cagtetggtg cttgggagag tcaggcaggg ttaaactgca ggagcagttt 1440
gccacccctg tccagattat tggctgcttt gcctctacca gttggcagac agccgtttgt 1500
tctacatggc tttgataatt gtttgagggg aggagatgga aacaatgtgg agtctccctc 1560
tgattggttt tggggaaatg tggagaagag tgccctgctt tgcaaacatc aacctggcaa 1620
aaatgcaaca aatgaatttt ccacgcagtt ctttccatgg gcataggtaa gctgtgcctt 1680
cagctgttgc agatgaaatg ttctgttcac cctgcattac atgtgtttat tcatccagca 1740
gtgttgctca gctcctacct ctgtgccagg gcagcatttt catatccaag atcaattccc 1800
teteteagea eageetgggg agggggteat tgtteteete gteeateagg gateteagag 1860
gctcagagac tgcaagctgc ttgcccaagt cacacagcta gtgaagacca gagcaqtttc 1920
atctggttgt gactctaagc teagtgetet etecaetace ceacaceage ettggtgeea 1980
ccaaaagtgc tccccaaaag gaaggagaat gggatttttc ttgaggcatg cacatctgga 2040
attaaggtca aactaattct cacatecete taaaagtaaa etaetgttag gaacageagt 2100
gttctcacag tgtggggcag cegtcettet aatgaagaca atgatattga cactgtccet 2160
ctttggcagt tgcattagta actttgaaag gtatatgact gagcgtagca tacaggttaa 2220
cctgcagaaa cagtacttag gtaattgtag ggcgaggatt ataaatgaaa tttgcaaaat 2280
cacttagcag caactgaaga caattatcaa ccacgtggag aaaatcaaac cgagcagggc 2340
tgtgtgaaac atggttgtaa tatgcgactg cgaacactga actctacgcc actccacaaa 2400
tgatgttttc aggtgtcatg gactgttgcc accatgtatt catccagagt tcttaaagtt 2460
taaagttgca catgattgta taagcatgct ttctttgagt tttaaattat gtataaacat 2520
aaaaaa
                                                                2586
<210> 236
<211> 350
<212> PRT
<213> Homo sapiens
Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Ala Ala Ala
```

<400> 236

10

Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala Pro Val

Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala Thr Leu Asn 35 40

Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp Thr Gln His Lys 55

Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu Glu Ala Ala Lys 65 70 75

Ala Ser Ser Glu Val Asn Leu Ala Asn Leu Pro Pro Ser Tyr His Asn 85 90 95

Glu Thr Asn Thr Asp Thr Lys Val Gly Asn Asn Thr Ile His Val His
100 105 110

Arg Glu Ile His Lys Ile Thr Asn Asn Gln Thr Gly Gln Met Val Phe
115 120 125

Ser Glu Thr Val Ile Thr Ser Val Gly Asp Glu Glu Gly Arg Arg Ser 130 135 140

His Glu Cys Ile Ile Asp Glu Asp Cys Gly Pro Ser Met Tyr Cys Gln 145 150 155 160

Phe Ala Ser Phe Gln Tyr Thr Cys Gln Pro Cys Arg Gly Gln Arg Met 165 170 175

Leu Cys Thr Arg Asp Ser Glu Cys Cys Gly Asp Gln Leu Cys Val Trp 180 185 190

Gly His Cys Thr Lys Met Ala Thr Arg Gly Ser Asn Gly Thr Ile Cys 195 200 205

Asp Asn Gln Arg Asp Cys Gln Pro Gly Leu Cys Cys Ala Phe Gln Arg 210 215 220

Gly Leu Leu Phe Pro Val Cys Thr Pro Leu Pro Val Glu Gly Glu Leu 225 230 235 240

Cys His Asp Pro Ala Ser Arg Leu Leu Asp Leu Ile Thr Trp Glu Leu 245 250 255

Glu Pro Asp Gly Ala Leu Asp Arg Cys Pro Cys Ala Ser Gly Leu Leu 260 265 270

Cys Gln Pro His Ser His Ser Leu Val Tyr Val Cys Lys Pro Thr Phe 275 280 285

Val Gly Ser Arg Asp Gln Asp Gly Glu Ile Leu Leu Pro Arg Glu Val 290 295 300

Pro Asp Glu Tyr Glu Val Gly Ser Phe Met Glu Glu Val Arg Gln Glu 305 310 315 320

Leu Glu Asp Leu Glu Arg Ser Leu Thr Glu Glu Met Ala Leu Gly Glu
325 330 335

Pro Ala Ala Ala Ala Ala Leu Leu Gly Gly Glu Glu Ile 340 345 350

	<211> 17	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic oligonucleotide probe	
	<400> 237	
	ggagetgeac ecettge	17
	554545444 44444	- '
	<210> 238	
	<211> 49	
	<212> DNA	
	<213> Artificial Sequence	
	1225 Medicial Bequence	
	<220>	
	<223> Synthetic Oligonucleotide Probe	
	Table by Mindele Gligoria Citation	
1	<400> 238	
74 1	ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg	49
보 제 .	ggaggacege geodecodega gagaceceee addecodaagg caddaeegg	
.d =4,	<210> 239	
.	<211> 24	
Ų.	<212> DNA	
Ŋ	<213> Artificial Sequence	
<u>i</u>	1210/ McIlletal bequence	
السلاسا السا السا السيدية المدينة المسال السال السال السال السال السال السال السال المسالة الم	<220>	
-	<223> Synthetic Oligonucleotide Probe	
7		
H. Herr Greek	<400> 239	
·	gcagagcgga gatgcagcgg cttg	24
	Janjanjan jarajenjeja eeea	
i.	<210> 240	
]	<211> 18	
<u>.</u>	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Oligonucleotide Probe	
	<400> 240	
	ttggcagctt catggagg	18
	<210> 241	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	.	
	<220>	
	<223> Synthetic Oligonucleotide Probe	
	• · · · · · · · · · · · · · · · · · · ·	
	<400> 241	
	cctgggcaaa aatgcaac	18

```
<210> 242
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 242
 ctccagctcc tggcgcacct cctc
                                                                    24
<210> 243
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 243
ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg
                                                                    45
<210> 244
<211> 3679
<212> DNA
<213> Homo Sapien
<400> 244
 aaggaggctg ggaggaaaga ggtaagaaag gttagagaac ctacctcaca 50
 tctctctggg ctcagaagga ctctgaagat aacaataatt tcagcccatc 100
 cacteteett eecteecaaa cacacatgtg catgtacaca cacacataca 150
 cacacataca cetteetete etteaetgaa gaeteaeagt caeteaetet 200
 gtgagcaggt catagaaaag gacactaaag ccttaaggac aggcctggcc 250
 attacctctg cagctccttt ggcttgttga gtcaaaaaac atgggagggg 300
 ccaggcacgg tgactcacac ctgtaatccc agcattttgg gagaccgagg 350
 tgagcagatc acttgaggtc aggagttcga gaccagcctg gccaacatgg 400
 agaaaccccc atctctacta aaaatacaaa aattagccag gagtggtggc 450
 aggtgcctgt aatcccagct actcaggtgg ctgagccagg agaatcgctt 500
 gaatecagga ggeggaggat geagteaget gagtgeaceg etgeacteca 550
```

gcctgggtga cagaatgaga ctctgtctca aacaaacaaa cacgggagga 600

ggggtagata ctgcttctct gcaacctcct taactctgca tcctcttctt 650 ccagggctgc ccctgatggg gcctggcaat gactgagcag gcccagcccc 700 agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgcccg 750 gtgtagaatg actgccctgg gagggtggtt ccttgggccc tggcagggtt 800 gctgaccctt accctgcaaa acacaaagag caggactcca gactctcctt 850 gtgaatggtc ccctgccctg cagctccacc atgaggcttc tcgtggcccc 900 actettgeta gettgggtgg etggtgeeac tgeeactgtg eeegtggtac 950 cctggcatgt tccctgcccc cctcagtgtg cctgccagat ccggccctgg 1000 tatacgeece getegteeta eegegagget accaetgtgg actgeaatga 1050 cctattcctg acggcagtcc ccccggcact ccccgcaggc acacagaccc 1100 tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctgggc 1150 tacctggcca atctcacaga gctggacctg tcccagaaca gcttttcgga 1200 tgcccgagac tgtgatttcc atgccctgcc ccagctgctg agcctgcacc 1250 tagaggagaa ccagctgacc cggctggagg accacagctt tgcagggctg 1300 gccagcctac aggaactcta tctcaaccac aaccagctct accgcatcgc 1350 ccccagggcc ttttctggcc tcagcaactt gctgcggctg cacctcaact 1400 ccaacctcct gagggccatt gacagccgct ggtttgaaat gctgcccaac 1450 ttggagatac tcatgattgg cggcaacaag gtagatgcca tcctggacat 1500 gaactteegg eeeetggeea aeetgegtag eetggtgeta geaggeatga 1550 acetgeggga gateteegae tatgeeetgg aggggetgea aageetggag 1600 agoctotoot totatgacaa coagotggoo ogggtgooca ggogggoact 1650 ggaacaggtg cccgggctca agttcctaga cctcaacaag aacccgctcc 1700 agegggtagg geegggggae tttgeeaaca tgetgeaeet taaggagetg 1750 ggactgaaca acatggagga gctggtctcc atcgacaagt ttgccctggt 1800 gaacctcccc gagctgacca agctggacat caccaataac ccacggctgt 1850 cetteateea eccegegee ttecaccace tgeeceagat ggagaccete 1900 atgeteaaca acaaegetet eagtgeettg caceageaga eggtggagte 1950

cctgcccaac ctgcaggagg taggtctcca cggcaacccc atccgctgtg 2000 actgtgtcat ccgctgggcc aatgccacgg gcacccgtgt ccgcttcatc 2050 gageegeaat ecaecetgtg tgeggageet eeggacetee agegeeteec 2100 ggtecgtgag gtgcccttcc gggagatgac ggaccactgt ttgcccctca 2150 tetececaeg aagetteece ceaageetee aggtageeag tggagagage 2200 atggtgctgc attgccgggc actggccgaa cccgaacccg agatctactg 2250 ggtcactcca gctgggcttc gactgacacc tgcccatgca ggcaggaggt 2300 accgggtgta ccccgagggg accctggagc tgcggagggt gacagcagaa 2350 gaggcagggc tatacacctg tgtggcccag aacctggtgg gggctgacac 2400 taagacggtt agtgtggttg tgggccgtgc tctcctccag ccaggcaggg 2450 acgaaggaca ggggctggag ctccgggtgc aggagaccca cccctatcac 2500 atcctgctat cttgggtcac cccacccaac acagtgtcca ccaacctcac 2550 ctggtccagt gcctcctccc tccggggcca gggggccaca gctctggccc 2600 geetgeeteg gggaacceac agetacaaca ttaccegeet cetteaggee 2650 acggagtact gggcctgcct gcaagtggcc tttgctgatg cccacaccca 2700 gttggcttgt gtatgggcca ggaccaaaga ggccacttct tgccacagag 2750 cettagggga tegteetggg etcattgeca teetggetet egetgteett 2800 cteetggeag etgggetage ggeceaeett ggeacaggee aacceaggaa 2850 gggtgtgggt gggaggcggc ctctccctcc agcctgggct ttctggggct 2900 ggagtgeece ttetgteegg gttgtgtetg eteceetegt eetgeeetgg 2950 aatccaggga ggaagctgcc cagatcctca gaaggggaga cactgttgcc 3000 accattgtct caaaattctt gaagctcagc ctgttctcag cagtagagaa 3050 atcactagga ctacttttta ccaaaagaga agcagtctgg gccagatgcc 3100 ctgccaggaa agggacatgg acccacgtgc ttgaggcctg gcagctgggc 3150 caagacagat ggggctttgt ggccctgggg gtgcttctgc agccttgaaa 3200 aagttgccct tacctcctag ggtcacctct gctgccattc tgaggaacat 3250

ctccaaggaa caggaggac tttggctaga gcctcctgcc tccccatctt 3300 ctctctgccc agaggetect gggcctggct tggctgtccc ctacctgtgt 3350 ccccgggctg caccccttcc tcttctcttt ctctgtacag tctcagttgc 3400 ttgctcttgt gcctcctggg caagggctga aggaggccac tccatctcac 3450 ctcggggggc tgccctcaat gtgggagtga ccccagccag atctgaagga 3500 catttgggag agggatgccc aggaacgcct catctcagca gcctgggctc 3550 ggcattccga agctgacttt ctataggcaa ttttgtacct ttgtggagaa 3600 atgtgtcacc tcccccaacc cgattcactc ttttctcctg ttttgtaaaa 3650 aataaaaata aataataaca ataaaaaaa 3679

<210> 245

<211> 713

<212> PRT

<213> Homo Sapien

<400> 245

Met Arg Leu Leu Val Ala Pro Leu Leu Leu Ala Trp Val Ala Gly
1 5 10 15

Ala Thr Ala Thr Val Pro Val Val Pro Trp His Val Pro Cys Pro
20 25 30

Pro Gln Cys Ala Cys Gln Ile Arg Pro Trp Tyr Thr Pro Arg Ser 35 40 45

Ser Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Phe Leu 50 55 60

Thr Ala Val Pro Pro Ala Leu Pro Ala Gly Thr Gln Thr Leu Leu 65 70 75

Leu Gln Ser Asn Ser Ile Val Arg Val Asp Gln Ser Glu Leu Gly
80 85 90

Tyr Leu Ala Asn Leu Thr Glu Leu Asp Leu Ser Gln Asn Ser Phe
95 100 105

Ser Asp Ala Arg Asp Cys Asp Phe His Ala Leu Pro Gln Leu Leu 110 115 120

Ser Leu His Leu Glu Glu Asn Gln Leu Thr Arg Leu Glu Asp His
125 130 135

Ser Phe Ala Gly Leu Ala Ser Leu Gln Glu Leu Tyr Leu Asn His
140 145 150

Asn	Gln	Leu	Tyr	Arg 155	Ile	Ala	Pro	Arg	Ala 160		Ser	Gly	Leu	Ser 165
Asn	Leu	Leu	Arg	Leu 170	His	Leu	Asn	Ser	Asn 175	Leu	Leu	Arg	Ala	Ile 180
Asp	Ser	Arg	Trp	Phe 185	Glu	Met	Leu	Pro	Asn 190	Leu	Glu	Ile	Leu	Met 195
Ile	Gly	Gly	Asn	Lys 200	Val	Asp	Ala	Ile	Leu 205	Asp	Met	Asn	Phe	Arg 210
Pro	Leu	Ala	Asn	Leu 215	Arg	Ser	Leu	Val	Leu 220	Ala	Gly	Met	Asn	Leu 225
Arg	Glu	Ile	Ser	Asp 230	Tyr	Ala	Leu	Glu	Gly 235	Leu	Gln	Ser	Leu	Glu 240
Ser	Leu	Ser	Phe	Tyr 245	Asp	Asn	Gln	Leu	Ala 250	Arg	Val	Pro	Arg	Arg 255
Ala	Leu	Glu	Gln	Val 260	Pro	Gly	Leu	Lys	Phe 265	Leu	Asp	Leu	Asn	Lys 270
Asn	Pro	Leu	Gln	Arg 275	Val	Gly	Pro	Gly	Asp 280	Phe	Ala	Asn	Met	Leu 285
His	Leu	Lys	Glu	L eu 290	Gly	Leu	Asn	Asn	Met 295	Glu	Glu	Leu	Val	Ser 300
Ile	Asp	Lys	Phe	Ala 305	Leu	Val	Asn	Leu	Pro 310	Glu	Leu	Thr	Lys	Leu 315
Asp	Ile	Thr	Asn	Asn 320	Pro	Arg	Leu	Ser	Phe 325	Ile	His	Pro	Arg	Ala 330
Phe	His	His	Leu	Pro 335	Gln	Met	Glu	Thr	Leu 340	Met	Leu	Asn	Asn	Asn 345
Ala	Leu	Ser	Ala	Leu 350	His	Gln	Gln	Thr	Val 355	Glu	Ser	Leu	Pro	Asn 360
Leu	Gln	Glu	Val	Gly 365	Leu	His	Gly	Asn	Pro 370	Ile	Arg	Cys	Asp	Cys 375
Val	Ile	Arg	Trp	Ala 380	Asn	Ala	Thr	Gly	Thr 385	Arg	Val	Arg	Phe	Ile 390
Glu	Pro	Gln	Ser	Thr 395	Leu	Cys	Ala	Glu	Pro 400	Pro	Asp	Leu	Gln	Arg 405
Leu	Pro	Val	Arg	Glu	Val	Pro	Phe	Arg	Glu	Met	Thr	Asp	His	Cys

				410					415					420
Leu	Pro	Leu	Ile	Ser 425	Pro	Arg	Ser	Phe	Pro 430	Pro	Ser	Leu	Gln	Val 435
Ala	Ser	Gly	Glu	Ser 440	Met	Val	Leu	His	Cys 445	Arg	Ala	Leu	Ala	Glu 450
Pro	Glu	Pro	Glu	Ile 455	Tyr	Trp	Val	Thr	Pro 460	Ala	Gly	Leu	Arg	Leu 465
Thr	Pro	Ala	His	Ala 470	Gly	Arg	Arg	Tyr	Arg 475	Val	Tyr	Pro	Glu	Gly 480
Thr	Leu	Glu	Leu	Arg 485	Arg	Val	Thr	Ala	Glu 490	Glu	Ala	Gly	Leu	Tyr 495
Thr	Cys	Val	Ala	Gln 500	Asn	Leu	Val	Gly	Ala 505	Asp	Thr	Lys	Thr	Val 510
Ser	Val	Val	Val	Gly 515	Arg	Ala	Leu	Leu	Gln 520	Pro	Gly	Arg	Asp	Glu 525
Gly	Gln	Gly	Leu	Glu 530	Leu	Arg	Val	Gln	Glu 535	Thr	His	Pro	Tyr	His 540
Ile	Leu	Leu	Ser	Trp 545	Val	Thr	Pro	Pro	Asn 550	Thr	Val	Ser	Thr	Asn 555
Leu	Thr	Trp	Ser	Ser 560	Ala	Ser	Ser	Leu	Arg 565	Gly	Gln	Gly	Ala	Thr 570
Ala	Leu	Ala	Arg	Leu 575	Pro	Arg	Gly	Thr	His 580	Ser	Tyr	Asn	Ile	Thr 585
Arg	Leu	Leu	Gln	Ala 590	Thr	Glu	Tyr	Trp	Ala 595	Cys	Leu	Gln	Val	Ala 600
Phe	Ala	Asp	Ala	His 605	Thr	Gln	Leu	Ala	Cys 610	Val	Trp	Ala	Arg	Thr 615
Lys	Glu	Ala	Thr	Ser 620	Cys	His	Arg	Ala	Leu 625	Gly	Asp	Arg	Pro	Gly 630
Leu	Ile	Ala	Ile	Leu 635	Ala	Leu	Ala	Val	Le u 640	Leu	Leu	Ala	Ala	Gly 645
Leu	Ala	Ala	His	L eu 650	Gly	Thr	Gly	Gln	Pro 655	Arg	Lys	Gly	Val	Gly 660
Gly	Arg	Arg	Pro	L eu 665	Pro	Pro	Ala	Trp	Al a 670	Phe	Trp	Gly	Trp	Ser 675

```
Ala Pro Ser Val Arg Val Val Ser Ala Pro Leu Val Leu Pro Trp
                 680
                                      685
                                                          690
 Asn Pro Gly Arg Lys Leu Pro Arg Ser Ser Glu Gly Glu Thr Leu
                                      700
 Leu Pro Pro Leu Ser Gln Asn Ser
<210> 246
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 246
 aacaaggtaa gatgccatcc tg 22
<210> 247
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 247
aaacttgtcg atggagacca gctc 24
<210> 248
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 248
 aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45
<210> 249
<211> 3401
<212> DNA
<213> Homo Sapien
<400> 249
gcaagccaag gcgctgtttg agaaggtgaa gaagttccqq acccatqtqq 50
aggagggga cattgtgtac cgcctctaca tgcggcagac catcatcaag 100
```

gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150

catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200 accgcaccta ccgctgtgcc cacccctgg ccacactctt caagatcctg 250 gcgtccttct acatcagcct agtcatcttc tacggcctca tctgcatgta 300 cacactgtgg tggatgctac ggcgctccct caagaagtac tcgtttgagt 350 cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400 ttcgccttca tgctgcacct cattgaccaa tacgacccgc tctactccaa 450 gcgcttcgcc gtcttcctgt cggaggtgag tgagaacaag ctgcggcagc 500 tgaacctcaa caacgagtgg acgctggaca agctccggca gcggctcacc 550 aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600 ccctgacact gtgtttgacc tggtggagct ggaggtcctc aagctggagc 650 tgateccega egtgaceate eegeeeagea ttgeeeaget caegggeete 700 aaggagetgt ggetetacea caeageggee aagattgaag egeetgeget 750 ggcetteetg egegagaace tgegggeget geacateaag tteacegaca 800 tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850 cacctgacgg gcaacctgag cgcggagaac aaccgctaca tcgtcatcga 900 cgggctgcgg gagctcaaac gcctcaaggt gctgcggctc aagagcaacc 950 taagcaagct gccacaggtg gtcacagatg tgggcgtgca cctgcagaag 1000 ctgtccatca acaatgaggg caccaagctc atcgtcctca acagcctcaa 1050 gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100 gcatccccca ctccatcttc agcctccaca acctgcagga gattgacctc 1150 aaggacaaca acetcaagac categaggag atcatcaget tecagcacet 1200 gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250 ccatccagat cggcaacctc accaacctgg agcgcctcta cctgaaccgc 1300 aacaagateg agaagateee caeeeagete ttetaetgee geaagetgeg 1350 ctacctggac ctcagccaca acaacctgac cttcctccct gccgacatcg 1400 gecteetgea gaaceteeag aacetageea teaeggeeaa eeggategag 1450

acgetecete eggagetett ceagtgeegg aagetgeggg ceetgeacet 1500 gggcaacaac gtgctgcagt cactgccctc cagggtgggc gagctgacca 1550 acctgacgca gatcgagctg cggggcaacc ggctggagtg cctgcctgtg 1600 gagetgggeg agtgeecaet geteaagege ageggettgg tggtggagga 1650 ggacctgttc aacacactgc cacccgaggt gaaggagcgg ctgtggaggg 1700 ctgacaagga gcaggcctga gcgaggccgg cccagcacag caagcagcag 1750 gaccgctgcc cagtcctcag gcccggaggg gcaggcctag cttctcccag 1800 aactcccgga cagccaggac agcctcgcgg ctgggcagga gcctggggcc 1850 gcttgtgagt caggccagag cgagaggaca gtatctgtgg ggctggcccc 1900 ttttctccct ctgagactca cgtcccccag ggcaagtgct tgtggaggag 1950 agcaagtctc aagagcgcag tatttggata atcagggtct cctccctgga 2000 ggccagetet geceeagggg etgagetgee accagaggte etgggaeeet 2050 cactttagtt cttggtattt atttttctcc atctcccacc tccttcatcc 2100 agataactta tacattccca agaaagttca gcccagatgg aaggtgttca 2150 gggaaaggtg ggctgccttt tccccttgtc cttatttagc gatgccgccg 2200 ggcatttaac acccacctgg acttcagcag agtggtccgg ggcgaaccag 2250 ccatgggacg gtcacccagc agtgccgggc tgggctctgc ggtgcggtcc 2300 acgggagage aggeeteeag etggaaagge caggeetgga gettgeetet 2350 tcagtttttg tggcagtttt agttttttgt ttttttttt tttaatcaaa 2400 aaacaatttt ttttaaaaaa aagctttgaa aatggatggt ttgggtatta 2450 aaaagaaaaa aaaaacttaa aaaaaaaaag acactaacgg ccagtgagtt 2500 ggagteteag ggeagggtgg eagttteeet tgageaaage agceagaegt 2550 tgaactgtgt ttcctttccc tgggcgcagg gtgcagggtg tcttccggat 2600 ctggtgtgac cttggtccag gagttctatt tgttcctggg gagggaggtt 2650 tttttgtttg ttttttgggt ttttttggtg tcttgtttc tttctcctcc 2700 atgtgtcttg gcaggcactc atttctgtgg ctgtcggcca gagggaatgt 2750 totggagetg ccaaggaggg aggagacteg ggttggetaa tecceggatg 2800

aacggtgete cattegeace teccetecte gtgeetgeee tgeeteteea 2850
cgcacagtgt taaggagcca agaggagcca ettegeecag actttgtte 2900
cccacctect geggcatggg tgtgteeagt gecacegetg geeteegetg 2950
cttecateag ecctgtegee acetggteet teatgaagag cagacactta 3000
gaggetggte gggaatgggg aggtegeeee tgggagggea ggegttggtt 3050
ccaageeggt teeegteeet ggegeetgga gtgeacacag eccagtegge 3100
acetggtgge tggaagceaa ectgetttag ateaeteggg teeecacett 3150
agaagggtee ecgeettaga teaateaegt ggacactaag geacgttta 3200
gagtetettg tettaatgat tatgteeate egtetgeeg teeatttgtg 3250
ttttetgegt egtgeattg gatataatee teagaaataa tgeacactag 3300
cctetgacaa ecatgaagea aaaateegtt acatgtgggt etgaacttgt 3350
agaeteeggte acagtateaa ataaaateta taacagaaaa aaaaaaaaa 3400
a 3401

<210> 250

<211> 546

<212> PRT

<213> Homo Sapien

<400> 250

Met Arg Gln Thr Ile Ile Lys Val Ile Lys Phe Ile Leu Ile Ile 1 5 10 15

Cys Tyr Thr Val Tyr Tyr Val His Asn Ile Lys Phe Asp Val Asp 20 25 30

Cys Thr Val Asp Ile Glu Ser Leu Thr Gly Tyr Arg Thr Tyr Arg
35 40 45

Cys Ala His Pro Leu Ala Thr Leu Phe Lys Ile Leu Ala Ser Phe 50 55 60

Tyr Ile Ser Leu Val Ile Phe Tyr Gly Leu Ile Cys Met Tyr Thr
65 70 75

Leu Trp Trp Met Leu Arg Arg Ser Leu Lys Lys Tyr Ser Phe Glu
80 85 90

Ser Ile Arg Glu Glu Ser Ser Tyr Ser Asp Ile Pro Asp Val Lys

				95					100					105
Asn	Asp	Phe	Ala	Phe 110		Leu	His	Leu	11e		Gln	Tyr	Asp	Pro 120
Leu	Tyr	Ser	Lys	Arg 125		Ala	Val	Phe	Leu 130		Glu	Val	Ser	Glu 135
Asn	Lys	Leu	Arg	Gln 140		Asn	Leu	Asn	Asn 145		Trp	Thr	Leu	Asp 150
Lys	Leu	Arg	Gln	Arg 155	Leu	Thr	Lys	Asn	Ala 160		Asp	Lys	Leu	Glu 165
Leu	His	Leu	Phe	Met 170	Leu	Ser	Gly	Ile	Pro 175	Asp	Thr	Val	Phe	Asp 180
Leu	Val	Glu	Leu	Glu 185	Val	Leu	Lys	Leu	Glu 190	Leu	Ile	Pro	Asp	Val 195
Thr	Ile	Pro	Pro	Ser 200	Ile	Ala	Gln	Leu	Thr 205	Gly	Leu	Lys	Glu	Leu 210
Trp	Leu	Tyr	His	Thr 215	Ala	Ala	Lys	Ile	Glu 220	Ala	Pro	Ala	Leu	Ala 225
Phe	Leu	Arg	Glu	Asn 230	Leu	Arg	Ala	Leu	His 235	Ile	Lys	Phe	Thr	Asp 240
Ile	Lys	Glu	Ile	Pro 245	Leu	Trp	Ile	Tyr	Ser 250	Leu	Lys	Thr	Leu	Glu 255
Glu	Leu	His	Leu	Thr 260	Gly	Asn	Leu	Ser	Ala 265	Glu	Asn	Asn	Arg	Туг 270
Ile	Val	Ile	Asp	Gly 275	Leu	Arg	Glu	Leu	Lys 280	Arg	Leu	Lys	Val	Leu 285
Arg	Leu	Lys	Ser	Asn	Leu	Ser	Lys	Leu		Gln	Val	Val	Thr	_
Val	Gly	Val	His	Leu	Gln	Lys	Leu	Ser	295 Ile	Asn	Asn	Glu	Glv	300 Thr
				305		-			310				1	315
Lys	Leu	Ile	Val	Leu 320	Asn	Ser	Leu	Lys	Lys 325	Met	Ala	Asn	Leu	Thr 330
Glu	Leu	Glu	Leu	Ile 335	Arg	Cys	Asp	Leu	Glu 340	Arg	Ile	Pro	His	Ser 345
Ile	Phe	Ser	Leu	His 350	Asn	Leu	Gln	Glu	11e	Asp	Leu	Lys	Asp	Asn

```
Asn Leu Lys Thr Ile Glu Glu Ile Ile Ser Phe Gln His Leu His
                                      370
 Arg Leu Thr Cys Leu Lys Leu Trp Tyr Asn His Ile Ala Tyr Ile
 Pro Ile Gln Ile Gly Asn Leu Thr Asn Leu Glu Arg Leu Tyr Leu
                 395
 Asn Arg Asn Lys Ile Glu Lys Ile Pro Thr Gln Leu Phe Tyr Cys
                 410
 Arg Lys Leu Arg Tyr Leu Asp Leu Ser His Asn Asn Leu Thr Phe
                 425
                                      430
                                                          435
 Leu Pro Ala Asp Ile Gly Leu Leu Gln Asn Leu Gln Asn Leu Ala
 Ile Thr Ala Asn Arg Ile Glu Thr Leu Pro Pro Glu Leu Phe Gln
 Cys Arg Lys Leu Arg Ala Leu His Leu Gly Asn Asn Val Leu Gln
                 470
                                      475
                                                          480
 Ser Leu Pro Ser Arg Val Gly Glu Leu Thr Asn Leu Thr Gln Ile
 Glu Leu Arg Gly Asn Arg Leu Glu Cys Leu Pro Val Glu Leu Gly
                 500
 Glu Cys Pro Leu Leu Lys Arg Ser Gly Leu Val Val Glu Glu Asp
                 515
 Leu Phe Asn Thr Leu Pro Pro Glu Val Lys Glu Arg Leu Trp Arg
Ala Asp Lys Glu Gln Ala
                 545
<210> 251
<211> 20
<212> DNA
<213> Artificial Sequence
```

<220>

<223> Synthetic Oligonucleotide Probe

<400> 251 caacaatgag ggcaccaagc 20

<210> 252 <211> 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 252
gatggctagg ttctggaggt tctg 24
<210> 253
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 253
caacctgcag gagattgacc tcaaggacaa caacctcaag accatcg 47
<210> 254
<211> 1650
<212> DNA
<213> Homo Sapien
<400> 254
gcctgttgct gatgctgccg tgcggtactt gtcatggagc tggcactgcg 50
gegeteteee gteeegeggt ggttgetget getgeegetg etgetgggee 100
tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150
tgggattatg tgacggtccg caaggatgcc tacatgttct ggtggctcta 200
ttatgccacc aactcctgca agaacttctc agaactgccc ctggtcatgt 250
ggcttcaggg cggtccaggc ggttctagca ctggatttgg aaactttgag 300
gaaattgggc cccttgacag tgatctcaaa ccacggaaaa ccacctggct 350
ccaggctgcc agtctcctat ttgtggataa tcccgtgggc actgggttca 400
gttatgtgaa tggtagtggt gcctatgcca aggacctggc tatggtggct 450
tcagacatga tggttctcct gaagaccttc ttcagttgcc acaaagaatt 500
ccagacagtt ccattctaca ttttctcaga gtcctatgga ggaaaaatgg 550
cagctggcat tggtctagag ctttataagg ccattcagcg agggaccatc 600
aagtgcaact ttgcgggggt tgccttgggt gattcctgga tctcccctgt 650
tgattcggtg ctctcctggg gaccttacct gtacagcatg tctcttctcg 700
```

aagacaaagg tctggcagag gtgtctaagg ttgcagagca agtactgaat 750 geegtaaata aggggeteta cagagagee acagagetgt gggggaaage 800 agaaatgatc attgaacaga acacagatgg ggtgaacttc tataacatct 850 taactaaaag cactcccacg tctacaatgg agtcgagtct agaattcaca 900 cagagecace tagtttgtet ttgtcagege caegtgagae acetacaaeg 950 agatgeetta agecagetea tgaatggeee cateagaaag aageteaaaa 1000 ttatteetga ggateaatee tggggaggee aggetaceaa egtetttgtg 1050 aacatggagg aggacttcat gaagccagtc attagcattg tggacgagtt 1100 gctggaggca gggatcaacg tgacggtgta taatggacag ctggatctca 1150 tegtagatae catgggteag gaggeetggg tgeggaaaet gaagtggeea 1200 gaactgccta aattcagtca gctgaagtgg aaggccctgt acagtgaccc 1250 taaatetttg gaaacatetg ettttgteaa gteetacaag aacettgett 1300 tctactggat tctgaaagct ggtcatatgg ttccttctga ccaaggggac 1350 atggctctga agatgatgag actggtgact cagcaagaat aggatggatg 1400 gggctggaga tgagctggtt tggccttggg gcacagagct gagctgaggc 1450 cgctgaagct gtaggaagcg ccattettee etgtatetaa etggggetgt 1500 gatcaagaag gttctgacca gcttctgcag aggataaaat cattgtctct 1550 ggaggcaatt tggaaattat ttctgcttct taaaaaaacc taagattttt 1600 taaaaaattg atttgttttg atcaaaataa aggatgataa tagatattaa 1650

<210> 255

<211> 452

<212> PRT

<213> Homo Sapien

<400> 255

Met Glu Leu Ala Leu Arg Arg Ser Pro Val Pro Arg Trp Leu Leu 1 5 10 15

Leu Leu Pro Leu Leu Gly Leu Asn Ala Gly Ala Val Ile Asp
20 25 30

Trp Pro Thr Glu Glu Gly Lys Glu Val Trp Asp Tyr Val Thr Val
35 40 45

Arg	Lys	Asp	Ala	Туr 50	Met	Phe	Trp	Trp	Leu 55	Tyr	Tyr	Ala	Thr	Asn 60
Ser	Cys	Lys	Asn	Phe 65	Ser	Glu	Leu	Pro	Leu 70	Val	Met	Trp	Leu	Gln 75
Gly	Gly	Pro	Gly	Gly 80	Ser	Ser	Thr	Gly	Phe 85	Gly	Asn	Phe	Glu	Glu 90
Ile	Gly	Pro	Leu	Asp 95	Ser	Asp	Leu	Lys	Pro 100	Arg	Lys	Thr	Thr	Trp 105
Leu	Gln	Ala	Ala	Ser 110	Leu	Leu	Phe	Val	Asp 115	Asn	Pro	Val	Gly	Thr 120
Gly	Phe	Ser	Tyr	Val 125	Asn	Gly	Ser	Gly	Al a 130	Tyr	Ala	Lys	Asp	Leu 135
Ala	Met	Val	Ala	Ser 140	Asp	Met	Met	Val	Leu 145	Leu	Lys	Thr	Phe	Phe 150
Ser	Cys	His	Lys	Glu 155	Phe	Gln	Thr	Val	Pro 160	Phe	Tyr	Ile	Phe	Ser 1 65
Glu	Ser	Tyr	Gly	Gly 170	Lys	Met	Ala	Ala	Gly 175	Ile	Gly	Leu	Glu	Leu 180
Tyr	Lys	Ala	Ile	Gln 185	Arg	Gly	Thr	Ile	Lys 190	Cys	Asn	Phe	Ala	Gly 195
Val	Ala	Leu	Gly	Asp 200	Ser	Trp	Ile	Ser	Pro 205	Val	Asp	Ser	Val	Leu 210
Ser	Trp	Gly	Pro	Tyr 215	Leu	Tyr	Ser	Met	Ser 220	Leu	Leu	Glu	Asp	Lys 225
Gly	Leu	Ala	Glu	Val 230	Ser	Lys	Val	Ala	Glu 235	Gln	Val	Leu	Asn	Ala 240
Val	Asn	Lys	Gly	Leu 245	Tyr	Arg	Glu	Ala	Thr 250	Glu	Leu	Trp	Gly	Lys 255
Ala	Glu	Met	Ile	Ile 260	Glu	Gln	Asn	Thr	Asp 265	Gly	Val	Asn	Phe	Tyr 270
Asn	Ile	Leu	Thr	Lys 275	Ser	Thr	Pro	Thr	Ser 280	Thr	Met	Glu	Ser	Ser 285
Leu	Glu	Phe	Thr	Gln 290	Ser	His	Leu	Val	Cys 295	Leu	Cys	Gln	Arg	His 300
Val	Arg	His	Leu	Gln	Arg	Asp	Ala	Leu	Ser	Gln	Leu	Met	Asn	Gly

				305					310					315
Pro	Ile	Arg	Lys	Lys 320	Leu	Lys	Ile	Ile	Pro 325	Glu	Asp	Gln	Ser	Trp 330
Gly	Gly	Gln	Ala	Thr 335	Asn	Val	Phe	Val	Asn 340	Met	Glu	Glu	Asp	Phe 345
Met	Lys	Pro	Val	Ile 350	Ser	Ile	Val	Asp	Glu 355	Leu	Leu	Glu	Ala	Gly 360
Ile	Asn	Val	Thr	Val 365	Tyr	Asn	Gly	Gln	Leu 370	Asp	Leu	Ile	Val	Asp 375
Thr	Met	Gly	Gln	Glu 380	Ala	Trp	Val	Arg	Lys 385	Leu	Lys	Trp	Pro	Glu 390
Leu	Pro	Lys	Phe	Ser 395	Gln	Leu	Lys	Trp	Lys 400	Ala	Leu	Tyr	Ser	Asp 405
Pro	Lys	Ser	Leu	Glu 410	Thr	Ser	Ala	Phe	Val 415	Lys	Ser	Tyr	Lys	Asn 420
Leu	Ala	Phe	Tyr	Trp 425	Ile	Leu	Lys	Ala	Gly 430	His	Met	Val	Pro	Ser 435
Asp	Gln	Gly	Asp	Met 440	Ala	Leu	Lys	Met	Met 445	Arg	Leu	Val	Thr	Gln 450
Gln	Glu													
<210> <211> <212> <213>	110 DNA	0	pien	ı										

<400> 256
ggccgcggga gaggaggcca tgggcgcgc cggggcgctg ctgctggcgc 50

tgctgctggc tcgggctgga ctcaggaagc cggagtcgca ggaggcggcg 100

ccgttatcag gaccatgcgg ccgacgggtc atcacgtcgc gcatcgtggg 150

tggagaggac gccgaactcg ggcgttggcc gtggcagggg agcctgcgcc 200

tgtgggattc ccacgtatgc ggagtgagcc tgctcagcca ccgctgggca 250

ctcacggcgg cgcactgctt tgaaacctat agtgacctta gtgatccctc 300

cgggtggatg gtccagtttg gccagctgac ttccatgcca tccttctgga 350

gcctgcaggc ctactacacc cgttacttcg tatcgaatat ctatctgagc 400

tgcacctgtc acctacacta aacactaca gcccatctgt ctccaggcct 500 ccacatttga gtttgagaac cggacagact gctgggtgac tggctggggg 550 tacatcaaag aggatgaggc actgccatct cccacaccc tccaggaagt 600 tcaggtcgcc atcataaaca actctatgtg caaccacctc ttcctcaagt 650 acagtttccg caaggacatc tttggagaca tggctggcc 700 caaggcggga aggatgcctg cttcggtgac tcaggtggac ccttggcctg 750 taacaagaat ggactgtgt atcagattgg agtcgtgac ccttggcctg 750 taacaagaat ggactgtgt atcagattgg agtcgtgac tggggagtgg 800 gctgtggtcg gcccaatcgg cccggtgtct acaccacatat cagccaccac 850 tttgagtgga tccagaagct gatggcccag agtggcatgt cccagccaga 900 cccctcctgg ccactactct ttttccctct tctctgggc cccactccc 950 tgggggccggt ctgagcctac ctgagcccat gcagcctggg gccactgcca 1000 agtcaggccc tggggcatt cttcaaaaaa aaaaaaaaa aaaaaaaaa 1100

<400> 257

Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg
1 5 10 15

Ala Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Pro Leu Ser

20 25 30

Gly Pro Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Gly
35 40 45

Glu Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg
50 55 60

Leu Trp Asp Ser His Val Cys Gly Val Ser Leu Leu Ser His Arg

Trp Ala Leu Thr Ala Ala His Cys Phe Glu Thr Tyr Ser Asp Leu

<210> 257

<211> 314

<212> PRT

<213> Homo Sapien

Ser Asp	Pro	Ser	Gly 95	Trp	Met	Val	Gln	Phe 100	Gly	Gln	Leu	Thr	Ser 105
Met Pro	Ser	Phe	Trp 110	Ser	Leu	Gln	Ala	Tyr 115	Tyr	Thr	Arg	Tyr	Phe 120
Val Ser	Asn	Ile	Tyr 125	Leu	Ser	Pro	Arg	Tyr 130	Leu	Gly	Asn	Ser	Pro 135
Tyr Asp	Ile	Ala	Leu 140	Val	Lys	Leu	Ser	Ala 145	Pro	Val	Thr	Tyr	Thr 150
Lys His	Ile	Gln	Pro 155	Ile	Cys	Leu	Gln	Ala 160	Ser	Thr	Phe	Glu	Phe 165
Glu Asn	Arg	Thr	Asp 170	Cys	Trp	Val	Thr	Gly 175	Trp	Gly	Tyr	Ile	Lys 180
Glu Asp	Glu	Ala	Leu 185	Pro	Ser	Pro	His	Thr 190	Leu	Gln	Glu	Val	Gln 195
Val Ala	Ile	Ile	Asn 200	Asn	Ser	Met	Cys	Asn 205	His	Leu	Phe	Leu	Lys 210
Tyr Ser	Phe	Arg	Lys 215	Asp	Ile	Phe	Gly	Asp 220	Met	Val	Cys	Ala	Gly 225
Asn Ala	Gln	Gly	Gly 230	Lys	Asp	Ala	Cys	Phe 235	Gly	Asp	Ser	Gly	Gly 240
Pro Leu	Ala	Cys	Asn 245	Lys	Asn	Gly	Leu	Trp 250	Tyr	Gln	Ile	Gly	Val 255
Val Ser	Trp	Gly	Val 260	Gly	Cys	Gly	Arg	Pro 265	Asn	Arg	Pro	Gly	Val 270
Tyr Thr	Asn	Ile	Ser 275	His	His	Phe	Glu	Trp 280	Ile	Gln	Lys	Leu	Met 285
Ala Gln	Ser	Gly	Met 290	Ser	Gln	Pro	Asp	Pro 295	Ser	Trp	Pro	Leu	Leu 300
Phe Phe	Pro	Leu	Leu 305	Trp	Ala	Leu	Pro	Leu 310	Leu	Gly	Pro	Val	

<210> 258

<211> 2427

<212> DNA

<213> Homo Sapien

<400> 258

cccacgcgtc cgcggacgcg tgggaagggc agaatgggac tccaagcctg 50

cctcctaggg ctctttgccc tcatcctctc tggcaaatgc agttacagcc 100 cggagcccga ccagcggagg acgctgccc caggctgggt gtccctgggc 150 cgtgcggacc ctgaggaaga gctgagtctc acctttgccc tgagacagca 200 gaatgtggaa agactctcgg agctggtgca ggctgtgtcg gatcccagct 250 ctcctcaata cggaaaatac ctgaccctag agaatgtggc tgatctggtg 300 aggecatece caetgacect ceacaeggtg caaaaatgge tettggeage 350 cggagcccag aagtgccatt ctgtgatcac acaggacttt ctgacttgct 400 ggctgagcat ccgacaagca gagctgctgc tccctggggc tgagtttcat 450 cactatgtgg gaggacctac ggaaacccat gttgtaaggt ccccacatcc 500 ctaccagett ccacaggeet tggcccccca tgtggaettt gtggggggae 550 tgcaccgttt tcccccaaca tcatccctga ggcaacgtcc tgagccgcag 600 gtgacaggga ctgtaggcct gcatctgggg gtaaccccct ctgtgatccg 650 taagcgatac aacttgacct cacaagacgt gggctctggc accagcaata 700 acagccaagc ctgtgcccag ttcctggagc agtatttcca tgactcagac 750 ctggctcagt tcatgcgcct cttcggtggc aactttgcac atcaggcatc 800 ccagtctaga tgtgcagtac ctgatgagtg ctggtgccaa catctccacc 900 tgggtctaca gtagccctgg ccggcatgag ggacaggagc ccttcctgca 950 gtggctcatg ctgctcagta atgagtcagc cctgccacat gtgcatactg 1000 tgagctatgg agatgatgag gactccctca gcagcgccta catccagcgg 1050 gtcaacactg agctcatgaa ggctgccgct cggggtctca ccctgctctt 1100 cgcctcaggt gacagtgggg ccgggtgttg gtctgtctct ggaagacacc 1150 agttccgccc taccttccct gcctccagcc cctatgtcac cacagtggga 1200 ggcacatect tecaggaace ttteeteate acaaatgaaa ttgttgaeta 1250 tatcagtggt ggtggcttca gcaatgtgtt cccacggcct tcataccagg 1300 aggaagetgt aacgaagtte etgageteta gececeacet gecaceatee 1350 agttacttca atgccagtgg ccgtgcctac ccagatgtgg ctgcactttc 1400

tgatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450 gaacctcggc ctctactcca gtgtttgggg ggatcctatc cttgatcaat 1500 gagcacagga teettagtgg eegeeeect ettggettte teaacceaag 1550 gctctaccag cagcatgggg caggtctctt tgatgtaacc cgtggctgcc 1600 atgagtcctg tctggatgaa gaggtagagg gccagggttt ctgctctggt 1650 cctggctggg atcctgtaac aggctgggga acaccaactt cccagctttg 1700 ctgaagactc tactcaaccc ctgacccttt cctatcagga gagatggctt 1750 gtcccctgcc ctgaagctgg cagttcagtc ccttattctg ccctgttgga 1800 agccctgctg aaccctcaac tattgactgc tgcagacagc ttatctccct 1850 aaccctgaaa tgctgtgagc ttgacttgac tcccaaccct accatgctcc 1900 atcatactca ggtctcccta ctcctgcctt agattcctca ataagatgct 1950 gtaactagca ttttttgaat gcctctccct ccgcatctca tctttctctt 2000 ttcaatcagg cttttccaaa gggttgtata cagactctgt gcactatttc 2050 acttgatatt cattccccaa ttcactgcaa ggagacctct actgtcaccg 2100 tttactcttt cctaccctga catccagaaa caatggcctc cagtgcatac 2150 ttctcaatct ttgctttatg gcctttccat catagttgcc cactccctct 2200 ccttacttag cttccaggtc ttaacttctc tgactactct tgtcttcctc 2250 tctcatcaat ttctgcttct tcatggaatg ctgaccttca ttgctccatt 2300 tgtagatttt tgctcttctc agtttactca ttgtcccctg gaacaaatca 2350 ctgacatcta caaccattac catctcacta aataagactt tctatccaat 2400 aatgattgat acctcaaatg taaaaaa 2427

Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr

<210> 259

<211> 556

<212> PRT

<213> Homo Sapien

<400> 259

Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu 1 5 10 15

				20					25					30
Leu	Pro	Pro	Gly	Trp 35	Val	Ser	Leu	Gly	Arg 40		Asp	Pro	Glu	Glu 45
Glu	Leu	Ser	Leu	Thr 50	Phe	Ala	Leu	Arg	Gln 55		Asn	Val	Glu	Arg
Leu	Ser	Glu	Leu	Val 65	Gln	Ala	Val	Ser	Asp 70		Ser	Ser	Pro	Gln 75
Tyr	Gly	Lys	Tyr	Leu 80	Thr	Leu	Glu	Asn	Val 85		Asp	Leu	Val	Arg
Pro	Ser	Pro	Leu	Thr 95	Leu	His	Thr	Val	Gln 100		Trp	Leu	Leu	Ala 105
Ala	Gly	Ala	Gln	Lys 110	Cys	His	Ser	Val	Ile 115		Gln	Asp	Phe	Leu 120
Thr	Cys	Trp	Leu	Ser 125	Ile	Arg	Gln	Ala	Glu 130	Leu	Leu	Leu	Pro	Gly 135
Ala	Glu	Phe	His	His 140	Tyr	Val	Gly	Gly	Pro 145	Thr	Glu	Thr	His	Val 150
Val	Arg	Ser	Pro	His 155	Pro	Tyr	Gln	Leu	Pro 160	Gln	Ala	Leu	Ala	Pro 165
His	Val	Asp	Phe	Val 170	Gly	Gly	Leu	His	Ar g 175	Phe	Pro	Pro	Thr	Ser 180
Ser	Leu	Arg	Gln ·	Arg 185	Pro	Glu	Pro	Gln	Val 190	Thr	Gly	Thr	Val	Gly 195
Leu	His	Leu	Gly	Val 200	Thr	Pro	Ser	Val	11e 205	Arg	Lys	Arg	Tyr	Asn 210
Leu	Thr	Ser	Gln	Asp 215	Val	Gly	Ser	Gly	Thr 220	Ser	Asn	Asn	Ser	Gln 225
Ala	Cys	Ala	Gln	Phe 230	Leu	Glu	Gln	Tyr	Phe 235	His	Asp	Ser	Asp	Leu 240
Ala	Gln	Phe	Met	Arg 245	Leu	Phe	Gly	Gly	Asn 250	Phe	Ala	His	Gln	Ala 255
Ser	Val	Ala	Arg	Val 260	Val	Gly	Gln	Gln	Gly 265	Arg	Gly	Arg	Ala	Gly 270
Ile	Glu	Ala	Ser	Leu 275	Asp	Val	Gln	Tyr	Leu 280	Met	Ser	Ala	Gly	Ala 285

Asn Ile Ser Thr Trp Val Tyr Ser Ser Pro Gly Arg His Glu Gly 290 Gln Glu Pro Phe Leu Gln Trp Leu Met Leu Ser Asn Glu Ser Ala Leu Pro His Val His Thr Val Ser Tyr Gly Asp Asp Glu Asp Ser Leu Ser Ser Ala Tyr Ile Gln Arg Val Ash Thr Glu Leu Met Lys Ala Ala Ala Arg Gly Leu Thr Leu Leu Phe Ala Ser Gly Asp Ser Gly Ala Gly Cys Trp Ser Val Ser Gly Arg His Gln Phe Arg 370 Pro Thr Phe Pro Ala Ser Ser Pro Tyr Val Thr Thr Val Gly Gly Thr Ser Phe Gln Glu Pro Phe Leu Ile Thr Asn Glu Ile Val Asp 400 Tyr Ile Ser Gly Gly Gly Phe Ser Asn Val Phe Pro Arg Pro Ser 410 Tyr Gln Glu Glu Ala Val Thr Lys Phe Leu Ser Ser Pro His 430 Leu Pro Pro Ser Ser Tyr Phe Asn Ala Ser Gly Arg Ala Tyr Pro Asp Val Ala Ala Leu Ser Asp Gly Tyr Trp Val Val Ser Asn Arg Val Pro Ile Pro Trp Val Ser Gly Thr Ser Ala Ser Thr Pro Val 470 475 Phe Gly Gly Ile Leu Ser Leu Ile Asn Glu His Arg Ile Leu Ser Gly Arg Pro Pro Leu Gly Phe Leu Asn Pro Arg Leu Tyr Gln Gln 500 His Gly Ala Gly Leu Phe Asp Val Thr Arg Gly Cys His Glu Ser Cys Leu Asp Glu Glu Val Glu Gly Gln Gly Phe Cys Ser Gly Pro Gly Trp Asp Pro Val Thr Gly Trp Gly Thr Pro Thr Ser Gln Leu 545

Cys

<210> 260

<211> 1638

<212> DNA

<213> Homo Sapien

<400> 260 gccgcgcgct ctctcccggc gcccacacct gtctgagcgg cgcagcgagc 50 cgcggcccgg gcgggctgct cggcgcggaa cagtgctcgg catggcaggg 100 attccagggc tectetteet tetettett etgetetgtg etgttgggca 150 agtgagccct tacagtgccc cctggaaacc cacttggcct gcataccgcc 200 tecetgtegt ettgeeceag tetaceetea atttageeaa geeagaettt 250 ggagccgaag ccaaattaga agtatcttct tcatgtggac cccagtgtca 300 taagggaact ccactgccca cttacgaaga ggccaagcaa tatctgtctt 350 atgaaacgct ctatgccaat ggcagccgca cagagacgca ggtgggcatc 400 tacatcctca gcagtagtgg agatggggcc caacaccgag actcagggtc 450 ttcaggaaag tctcgaagga agcggcagat ttatggctat gacagcaggt 500 tcagcatttt tgggaaggac ttcctgctca actacccttt ctcaacatca 550 gtgaagttat ccacgggctg caccggcacc ctggtggcag agaagcatgt 600 cctcacagct gcccactgca tacacgatgg aaaaacctat gtgaaaggaa 650 cccagaagct tcgagtgggc ttcctaaagc ccaagtttaa agatggtggt 700 cgaggggcca acgactccac ttcagccatg cccgagcaga tgaaatttca 750 gtggatccgg gtgaaacgca cccatgtgcc caagggttgg atcaagggca 800 atgccaatga catcggcatg gattatgatt atgccctcct ggaactcaaa 850 aagccccaca agagaaaatt tatgaagatt ggggtgagcc ctcctgctaa 900 gcagctgcca gggggcagaa ttcacttctc tggttatgac aatgaccgac 950 caggcaattt ggtgtatcgc ttctgtgacg tcaaagacga gacctatgac 1000

ttgctctacc agcaatgcga tgcccagcca ggggccagcg ggtctggggt 1050

ctatgtgagg atgtggaaga gacagcagca gaagtgggag cgaaaaatta 1100

ttggcattt ttcagggcac cagtgggtgg acatgaatgg ttccccacag 1150
gatttcaacg tggctgtcag aatcactcct ctcaaatatg cccagatttg 1200
ctattggatt aaaggaaact acctggattg tagggagggg tgacacagtg 1250
ttccctcctg gcagcaatta agggtcttca tgttcttatt ttaggagaggg 1300
ccaaattgtt ttttgtcatt ggcgtgcaca cgtgtgtgtg tgtgtgtgtg 1350
tgtgtgtaag gtgtcttata atcttttacc tatttcttac aattgcaaga 1400
tgactggctt tactatttga aaactggttt gtgtatcata tcatataca 1450
tttaagcagt ttgaaggcat acttttgcat agaaataaaa aaaatactga 1500
tttggggcaa tgaggaatat ttgacaatta agttaatctt cacgtttttg 1550
caaactttga ttttatttc atctgaactt gtttcaaaga tttatattaa 1600
atatttggca tacaagagat atgaaaaaaa aaaaaaaa 1638

<210> 261 <211> 383 <212> PRT <213> Homo Sapien

<400> 261

Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Phe Leu Leu

1 10 15

Cys Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro
20 25 30

Thr Trp Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr 35 40 45

Leu Asn Leu Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu 50 55 60

Val Ser Ser Ser Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu
65 70 75

Pro Thr Tyr Glu Glu Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu 80 85 90

Tyr Ala Asn Gly Ser Arg Thr Glu Thr Gln Val Gly Ile Tyr Ile

95 100 105

Leu Ser Ser Ser Gly Asp Gly Ala Gln His Arg Asp Ser Gly Ser 110 115 120

Ser	Gly	Lys	Ser	Arg 125	Arg	Lys	Arg	Gln	Ile 130	Tyr	Gly	Tyr	Asp	Ser 135
Arg	Phe	Ser	Ile	Phe 140	Gly	Lys	Asp	Phe	Leu 145	Leu	Asn	Tyr	Pro	Phe 150
Ser	Thr	Ser	Val	Lys 155	Leu	Ser	Thr	Gly	Cys 160	Thr	Gly	Thr	Leu	Val 165
Ala	Glu	Lys	His	Val 170	Leu	Thr	Ala	Ala	His 175	Cys	Ile	His	Asp	Gly 180
Lys	Thr	Tyr	Val	Lys 185	Gly	Thr	Gln	Lys	Leu 190	Arg	Val	Gly	Phe	Leu 195
Lys	Pro	Lys	Phe	Lys 200	Asp	Gly	Gly	Arg	Gly 205	Ala	Asn	Asp	Ser	Thr 210
Ser	Ala	Met	Pro	Glu 215	Gln	Met	Lys	Phe	Gln 220	Trp	Ile	Arg	Val	Lys 225
Arg	Thr	His	Val	Pro 230	Lys	Gly	Trp	Ile	Lys 235	Gly	Asn	Ala	Asn	Asp 240
Ile	Gly	Met	Asp	Tyr 2 4 5	Asp	Tyr	Ala	Leu	Leu 250	Glu	Leu	Lys	Lys	Pro 255
His	Lys	Arg	Lys	Phe 260	Met	Lys	Ile	Gly	Val 265	Ser	Pro	Pro	Ala	Lys 270
Gln	Leu	Pro	Gly	Gly 275	Arg	Ile	His	Phe	Ser 280	Gly	Tyr	Asp	Asn	Asp 285
Arg	Pro	Gly	Asn	Leu 290	Val	Tyr	Arg	Phe	Cys 295	Asp	Val	Lys	Asp	Gl·u 300
Thr	Tyr	Asp	Leu	Leu 305	Tyr	Gln	Gln	Cys	Asp 310	Ala	Gln	Pro	Gly	Ala 315
Ser	Gly	Ser	Gly	Val 320	Tyr	Val	Arg	Met	Trp 325	Lys	Arg	Gln	Gln	Gln 330
Lys	Trp	Glu	Arg	Lys 335	Ile	Ile	Gly	Ile	Phe 340	Ser	Gly	His	Gln	Trp 345
Val	Asp	Met	Asn	Gly 350	Ser	Pro	Gln	Asp	Phe 355	Asn	Val	Ala	Val	Arg 360
Ile	Thr	Pro	Leu	Lys 365	Tyr	Ala	Gln	Ile	Cys 370	Tyr	Trp	Ile	Lys	Gly 375
Asn	Tyr	Leu	Asp	Cys 380	Arg	Glu	Gly							

```
<210> 262
```

<400> 262 gcategeect gggteteteg agectgetge etgeteece geeceaceag 50 ccatggtggt ttctggagcg cccccagccc tgggtggggg ctgtctcggc 100 accttcacct ccctgctgct gctggcgtcg acagccatcc tcaatgcggc 150 caggatacct gttcccccag cctgtgggaa gccccagcag ctgaaccggg 200 ttgtgggcgg cgaggacagc actgacagcg agtggccctg gatcgtgagc 250 atccagaaga atgggaccca ccactgcgca ggttctctgc tcaccagccg 300 ctgggtgatc actgctgccc actgtttcaa ggacaacctg aacaaaccat 350 acctgttctc tgtgctgctg ggggcctggc agctggggaa ccctggctct 400 cggtcccaga aggtgggtgt tgcctgggtg gagccccacc ctgtgtattc 450 ctggaaggaa ggtgcctgtg cagacattgc cctggtgcgt ctcgagcgct 500 ccatacagtt ctcagagcgg gtcctgccca tctgcctacc tgatgcctct 550 atccacctcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600 ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650 ttcctatcat cgactcggaa gtctgcagcc atctgtactg gcggggagca 700 ggacagggac ccatcactga ggacatgctg tgtgccggct acttggaggg 750 ggagcgggat gcttgtctgg gcgactccgg gggccccctc atgtgccagg 800 tggacggcgc ctggctgctg gccggcatca tcagctgggg cgagggctgt 850 gccgagcgca acaggcccgg ggtctacatc agcctctctg cgcaccgctc 900 ctgggtggag aagatcgtgc aaggggtgca gctccgcggg cgcgctcagg 950 ggggtgggc cctcagggca ccgagccagg gctctggggc cgccgcgcgc 1000 tectagggeg cagegggaeg eggggetegg atetgaaagg eggeeagate 1050 cacatetgga tetggatetg eggeggeete gggeggttte eecegeegta 1100

aataggetea tetaeeteta eetetggggg eeeggaegge tgetgeggaa 1150

<211> 1378

<212> DNA

<213> Homo Sapien

aggaaacccc ctccccgacc cgcccgacgg cctcaggccc ccctccaagg 1200 catcaggccc cgcccaacgg cctcatgtcc ccgccccac gacttccggc 1250 cccgcccccg ggccccagcg cttttgtgta tataaatgtt aatgatttt 1300 ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350 ataaattatt tattctccaa aaaaaaaa 1378

<210> 263

<211> 317

<212> PRT

<213> Homo Sapien

<400> 263

Met Val Val Ser Gly Ala Pro Pro Ala Leu Gly Gly Gly Cys Leu

1 5 10 15

Gly Thr Phe Thr Ser Leu Lou Lou Ala Car Thr Ala Lla Lau

Gly Thr Phe Thr Ser Leu Leu Leu Leu Ala Ser Thr Ala Ile Leu 20 25 30

Asn Ala Ala Arg Ile Pro Val Pro Pro Ala Cys Gly Lys Pro Gln 35 40 45

Gln Leu Asn Arg Val Val Gly Gly Glu Asp Ser Thr Asp Ser Glu
50 55 60

Trp Pro Trp Ile Val Ser Ile Gln Lys Asn Gly Thr His His Cys
65 70 75

Ala Gly Ser Leu Leu Thr Ser Arg Trp Val Ile Thr Ala Ala His
80 85 90

Cys Phe Lys Asp Asn Leu Asn Lys Pro Tyr Leu Phe Ser Val Leu 95 100 105

Leu Gly Ala Trp Gln Leu Gly Asn Pro Gly Ser Arg Ser Gln Lys 110 115 120

Val Gly Val Ala Trp Val Glu Pro His Pro Val Tyr Ser Trp Lys 125 130 135

Glu Gly Ala Cys Ala Asp Ile Ala Leu Val Arg Leu Glu Arg Ser 140 145 150

Ile Gln Phe Ser Glu Arg Val Leu Pro Ile Cys Leu Pro Asp Ala

Ser Ile His Leu Pro Pro Asn Thr His Cys Trp Ile Ser Gly Trp 170 175 180

<211> 24

```
Gly Ser Ile Gln Asp Gly Val Pro Leu Pro His Pro Gln Thr Leu
                  185
                                      190
                                                           195
 Gln Lys Leu Lys Val Pro Ile Ile Asp Ser Glu Val Cys Ser His
                  200
 Leu Tyr Trp Arg Gly Ala Gly Gln Gly Pro Ile Thr Glu Asp Met
                                      220
 Leu Cys Ala Gly Tyr Leu Glu Gly Glu Arg Asp Ala Cys Leu Gly
                                                           240
 Asp Ser Gly Gly Pro Leu Met Cys Gln Val Asp Gly Ala Trp Leu
 Leu Ala Gly Ile Ile Ser Trp Gly Glu Gly Cys Ala Glu Arg Asn
                                      265
                 260
 Arg Pro Gly Val Tyr Ile Ser Leu Ser Ala His Arg Ser Trp Val
 Glu Lys Ile Val Gln Gly Val Gln Leu Arg Gly Arg Ala Gln Gly
                 290
                                      295
                                                           300
 Gly Gly Ala Leu Arg Ala Pro Ser Gln Gly Ser Gly Ala Ala Ala
                 305
 Arg Ser
<210> 264
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 264
 gtccgcaagg atgcctacat gttc 24
<210> 265
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 265
gcagaggtgt ctaaggttg 19
<210> 266
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 266
agetetagae caatgecage ttee 24
<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 267
gccaccaact cctgcaagaa cttctcagaa ctgcccctgg tcatg 45
<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 268
ggggaattca ccctatgaca ttgcc 25
<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 269
gaatgccctg caagcatcaa ctgg 24
<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50
```

```
<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 271
 gcggaagggc agaatgggac tccaag 26
<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 272
cagecetgee acatgtge 18
<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 273
tactgggtgg tcagcaac 18
<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 274
ggcgaagagc agggtgagac cccg 24
<210> 275
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
```

```
<400> 275
gccctcatcc tctctggcaa atgcagttac agcccggagc ccgac 45
<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 276
gggcagggat tccagggctc c 21
<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 277
ggctatgaca gcaggttc 18
<210> 278
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 278
tgacaatgac cgaccagg 18
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
gcatcgcatt gctggtagag caag 24
<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic Oligonucleotide Probe
<400> 280
 ttacagtgcc ccctggaaac ccacttggcc tgcataccgc ctccc 45
<210> 281
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 281
 cgtctcgagc gctccataca gttcccttgc ccca 34
<210> 282
<211> 61
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 282
tggagggga gcgggatgct tgtctgggcg actccggggg ccccctcatg 50
tgccaggtgg a 61
<210> 283
<211> 119
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 283
ccctcagacc ctgcagaagc tgaaggttcc tatcatcgac tcggaagtct 50
gcagccatct gtactggcgg ggagcaggac agggacccat cactgaggac 100
atgctgtgtg ccggctact 119
<210> 284
<211> 1875
<212> DNA
<213> Homo Sapien
<400> 284
gacggctggc caccatgcac ggctcctgca gtttcctgat gcttctgctg 50
ccgctactgc tactgctggt ggccaccaca ggccccgttg gagccctcac 100
```

agatgaggag aaacgtttga tggtggagct gcacaacctc taccgggccc 150 aggtatecee gaeggeetea gaeatgetge acatgagatg ggaegaggag 200 ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt ggggccacaa 250 caaggagege gggegeegeg gegagaatet gttegeeate acagaegagg 300 gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350 tacaacetca gegeegeeac etgeageeea ggeeagatgt geggeeacta 400 cacgcaggtg gtatgggcca agacagagag gatcggctgt ggttcccact 450 tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500 tgcaactatg agcctccggg gaacgtgaag gggaaacggc cctaccagga 550 ggggactccg tgctcccaat gtccctctgg ctaccactgc aagaactccc 600 tctgtgaacc catcggaagc ccggaagatg ctcaggattt gccttacctg 650 gtaactgagg ccccatcctt ccgggcgact gaagcatcag actctaggaa 700 aatgggtact ccttcttccc tagcaacggg gattccggct ttcttggtaa 750 cagaggtete aggeteeetg geaaceaagg etetgeetge tgtggaaace 800 caggeeceaa etteettage aacgaaagae eegeeeteea tggeaacaga 850 ggctccacct tgcgtaacaa ctgaggtccc ttccattttg gcagctcaca 900 gcctgccctc cttggatgag gagccagtta ccttccccaa atcgacccat 950 gttcctatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000 ctctaggagc ccagagaact ctctggaccc caagatgtcc ctgacagggg 1050 caagggaact cctaccccat gcccaggagg aggctgaggc tgaggctgag 1100 ttgcctcctt ccagtgaggt cttggcctca gtttttccag cccaggacaa 1150 gccaggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200 agtecetgee caattteece aatacetetg ceacegetaa tgecaegggt 1250 gggcgtgccc tggctctgca gtcgtccttg ccaggtgcag agggccctga 1300 caageetage gttgtgteag ggetgaaete gggeeetggt catgtgtggg 1350 gccctctcct gggactactg ctcctgcctc ctctggtgtt ggctggaatc 1400

ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctcctgt 1450
catcttcccc accctgtccc cagcccctaa acaagatact tcttggttaa 1500
ggccctccgg aagggaaagg ctacggggca tgtgcctcat cacaccatcc 1550
atcctggagg cacaaggcct ggctggctgc gagctcagga ggccgcctga 1600
ggactgcaca ccgggcccac acctctcctg cccctccctc ctgagtcctg 1650
ggggtgggag gatttgaggg agctcactgc ctacctggcc tgggggtgtc 1700
tgcccacaca gcatgtgcgc tctccctgag tgcctgtgta gctggggatg 1750
gggattccta ggggcagatg aaggacaagc cccactggag tggggttctt 1800
tgagtgggg aggcagggac gagggaagga aagtaactcc tgactctcca 1850
ataaaaacct gtccaacctg tqaaa 1875

<210> 285

<211> 463

<212> PRT

<213> Homo Sapien

<400> 285

Met His Gly Ser Cys Ser Phe Leu Met Leu Leu Leu Pro Leu Leu

1 5 10 15

Leu Leu Val Ala Thr Thr Gly Pro Val Gly Ala Leu Thr Asp 20 25 30

Glu Glu Lys Arg Leu Met Val Glu Leu His Asn Leu Tyr Arg Ala 35 40 45

Gln Val Ser Pro Thr Ala Ser Asp Met Leu His Met Arg Trp Asp
50 55 60

Glu Glu Leu Ala Ala Phe Ala Lys Ala Tyr Ala Arg Gln Cys Val 65 70 75

Trp Gly His Asn Lys Glu Arg Gly Arg Arg Gly Glu Asn Leu Phe 80 85 90

Ala Ile Thr Asp Glu Gly Met Asp Val Pro Leu Ala Met Glu Glu 95 100 105

Trp His His Glu Arg Glu His Tyr Asn Leu Ser Ala Ala Thr Cys 110 115 120

Ser Pro Gly Gln Met Cys Gly His Tyr Thr Gln Val Val Trp Ala 125 130 135

Lys	Thr	Glu	Arg	11e		Cys	Gly	Ser	His 145		суя	Glu	Lys	Leu 150
Glr	Gly	Val	Glu	Glu 155		Asn	Ile	Glu	Leu 160		. Val	Сув	Asn	Tyr 165
Glu	Pro	Pro	Gly	Asn 170		Lys	Gly	Lys	Arg 175		Tyr	Gln	Glu	Gly 180
Thr	Pro	Cys	Ser	Gln 185		Pro	Ser	Gly	Tyr 190	His	Cys	Lys	Asn	Ser 195
Leu	Cys	Glu	Pro	Ile 200		Ser	Pro	Glu	Asp 205	Ala	Gln	. Asp	Leu	Pro 210
Tyr	Leu	Val	Thr	Glu 215		Pro	Ser	Phe	Arg 220	Ala	Thr	Glu	Ala	Ser 225
Asp	Ser	Arg	Lys	Met 230	Gly	Thr	Pro	Ser	Ser 235	Leu	Ala	Thr	Gly	Ile 240
Pro	Ala	Phe	Leu	Val 245	Thr	Glu	Val	Ser	Gly 250	Ser	Leu	Ala	Thr	Lys 255
Ala	Leu	Pro	Ala	Val 260	Glu	Thr	Gln	Ala	Pro 265	Thr	Ser	Leu	Ala	Thr 270
Lys	Asp	Pro	Pro	Ser 275	Met	Ala	Thr	Glu	Ala 280	Pro	Pro	Cys	Val	Thr 285
Thr	Glu	Val	Pro	Ser 290	Ile	Leu	Ala	Ala	His 295	Ser	Leu	Pro	Ser	Leu 300
Asp	Glu	Glu	Pro	Val 305	Thr	Phe	Pro	Lys	Ser 310	Thr	His	Val	Pro	Ile 315
Pro	Lys	Ser	Ala	Asp 320	Lys	Val	Thr	Asp	Lys 325	Thr	Lys	Val	Pro	Ser 330
Arg	Ser	Pro	Glu	Asn 335	Ser	Leu	Asp	Pro	Lys 340	Met	Ser	Leu	Thr	Gly 345
Ala	Arg	Glu	Leu	Leu 350	Pro	His	Ala	Gln	Glu 355	Glu	Ala	Glu	Ala	Glu 360
Ala	Glu	Leu	Pro	Pro 365	Ser	Ser	Glu	Val	Leu 370	Ala	Ser	Val	Phe	Pro 375
Ala	Gln	Asp	Lys	Pro 380	Gly	Glu	Leu	Gln	Ala 385	Thr	Leu	Asp	His	Thr 390
Gly	His	Thr	Ser	Ser 395	Lys	Ser	Leu	Pro	Asn 400	Phe	Pro	Asn	Thr	Ser 405

```
Ala Thr Ala Asn Ala Thr Gly Gly Arg Ala Leu Ala Leu Gln Ser
 Ser Leu Pro Gly Ala Glu Gly Pro Asp Lys Pro Ser Val Val Ser
                                      430
 Gly Leu Asn Ser Gly Pro Gly His Val Trp Gly Pro Leu Leu Gly
                                                          450
 Leu Leu Leu Pro Pro Leu Val Leu Ala Gly Ile Phe
                 455
<210> 286
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 286
 tcctgcagtt tcctgatgc 19
<210> 287
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 287
ctcatattgc acaccagtaa ttcg 24
<210> 288
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 288
atgaggagaa acgtttgatg gtggagctgc acaacctcta ccgqq 45
<210> 289
<211> 3662
<212> DNA
<213> Homo Sapien
<400> 289
gtaactgaag tcaggctttt catttgggaa gccccctcaa cagaattcgg 50
```

tcattctcca agttatggtg gacgtacttc tgttgttctc cctctgcttg 100 ctttttcaca ttagcagacc ggacttaagt cacaacagat tatctttcat 150 caaggcaagt tccatgagcc accttcaaag ccttcgagaa gtgaaactga 200 acaacaatga attggagacc attccaaatc tgggaccagt ctcggcaaat 250 attacacttc tctccttggc tggaaacagg attgttgaaa tactccctga 300 acatetgaaa gagttteagt ceettgaaac tttggaeett ageageaaca 350 atatttcaga gctccaaact gcatttccag ccctacagct caaatatctg 400 tatctcaaca gcaaccgagt cacatcaatg gaacctgggt attttgacaa 450 tttggccaac acactccttg tgttaaagct gaacaggaac cgaatctcag 500 ctatcccacc caagatgttt aaactgcccc aactgcaaca tctcgaattg 550 aaccgaaaca agattaaaaa tgtagatgga ctgacattcc aaggccttgg 600 tgctctgaag tctctgaaaa tgcaaagaaa tggagtaacg aaacttatgg 650 atggagettt ttgggggetg ageaacatgg aaattttgea getggaeeat 700 aacaacctaa cagagattac caaaggctgg ctttacggct tgctgatgct 750 gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800 cctgggagtt ctgccagaag ctcagtgagc tggacctaac tttcaatcac 850 ttatcaaggt tagatgattc aagcttcctt ggcctaagct tactaaatac 900 actgcacatt gggaacaaca gagtcagcta cattgctgat tgtgccttcc 950 gggggctttc cagtttaaag actttggatc tgaagaacaa tgaaatttcc 1000 tggactattg aagacatgaa tggtgctttc tctgggcttg acaaactgag 1050 gcgactgata ctccaaggaa atcggatccg ttctattact aaaaaagcct 1100 tcactggttt ggatgcattg gagcatctag acctgagtga caacgcaatc 1150 atgtctttac aaggcaatgc attttcacaa atgaagaaac tgcaacaatt 1200 gcatttaaat acatcaagcc ttttgtgcga ttgccagcta aaatggctcc 1250 cacagtgggt ggcggaaaac aactttcaga gctttgtaaa tgccagttgt 1300 gcccatcctc agctgctaaa aggaagaagc atttttgctg ttagcccaga 1350

tggctttgtg tgtgatgatt ttcccaaacc ccagatcacg gttcagccag 1400 aaacacagtc ggcaataaaa ggttccaatt tgagtttcat ctgctcagct 1450 gccagcagca gtgattcccc aatgactttt gcttggaaaa aagacaatga 1500 actactgcat gatgctgaaa tggaaaatta tgcacacctc cgggcccaag 1550 gtggcgaggt gatggagtat accaccatcc ttcggctgcg cgaggtggaa 1600 tttgccagtg aggggaaata tcagtgtgtc atctccaatc actttggttc 1650 atectaetet gteaaageea agettaeagt aaatatgett eesteattea 1700 ccaagacccc catggatctc accatccgag ctggggccat ggcacgcttg 1750 gagtgtgctg ctgtggggca cccagccccc cagatagcct ggcagaagga 1800 tgggggcaca gacttcccag ctgcacggga gagacgcatg catgtgatgc 1850 ccgaggatga cgtgttcttt atcgtggatg tgaagataga ggacattggg 1900 gtatacaget geacagetea gaacagtgea ggaagtattt cagcaaatge 1950 aactctgact gtcctagaaa caccatcatt tttgcggcca ctgttggacc 2000 gaactgtaac caagggagaa acagccgtcc tacagtgcat tgctggagga 2050 agecetecee etaaactgaa etggaceaaa gatgatagee cattggtggt 2100 aaccgagagg cacttttttg cagcaggcaa tcagcttctg attattgtgg 2150 actcagatgt cagtgatgct gggaaataca catgtgagat gtctaacacc 2200 cttggcactg agagaggaaa cgtgcgcctc agtgtgatcc ccactccaac 2250 ctgcgactcc cctcagatga cagccccatc gttagacgat gacggatggg 2300 ccactgtggg tgtcgtgatc atagccgtgg tttgctgtgt ggtgggcacg 2350 tcactcgtgt gggtggtcat catataccac acaaggcgga ggaatgaaga 2400 ttgcagcatt accaacacag atgagaccaa cttgccagca gatattccta 2450 gttatttgtc atctcaggga acgttagctg acaggcagga tgggtacgtg 2500 tetteagaaa gtggaageea eeaceagttt gteacatett eaggtgetgg 2550 atttttctta ccacaacatg acagtagtgg gacctgccat attgacaata 2600 gcagtgaagc tgatgtggaa gctgccacag atctgttcct ttgtccgttt 2650 ttgggatcca caggccctat gtatttgaag ggaaatgtgt atggctcaga 2700

teettttgaa acatateata caggttgeag teetgaeeca agaacagttt 2750 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800 tgttctcatc cttcagaaga atcctgcgaa cggagcttca gtaatatatc 2850 gtggccttca catgtgagga agctacttaa cactaqttac tctcacaatq 2900 aaggacctgg aatgaaaaat ctqtqtctaa acaaqtcctc tttaqatttt 2950 agtgcaaatc cagagccagc gtcggttgcc tcgagtaatt ctttcatggg 3000 tacetttgga aaagetetea qqaqaeetea eetaqatqee tatteaaqet 3050 ttggacagcc atcagattgt cagccaagag ccttttattt gaaagctcat 3100 tetteeceag aettggaete tgggteagag gaagatggga aagaaaggae 3150 agattttcag gaagaaaatc acatttgtac ctttaaacag actttagaaa 3200 actacaggac tccaaatttt cagtcttatg acttggacac atagactgaa 3250 tgagaccaaa ggaaaagctt aacatactac ctcaagtgaa cttttattta 3300 aaagagagag aatcttatgt tttttaaatg gagttatgaa ttttaaaaaqq 3350 ataaaaatgc tttatttata cagatgaacc aaaattacaa aaagttatga 3400 aaatttttat actgggaatg atgctcatat aagaatacct ttttaaacta 3450 ttttttaact ttgttttatg caaaaaagta tcttacgtaa attaatgata 3500 taaatcatga ttattttatg tatttttata atgccagatt tctttttatg 3550 gaaaatgagt tactaaagca ttttaaataa tacctgcctt gtaccatttt 3600 ttaaatagaa gttacttcat tatattttqc acattatatt taataaaatq 3650 tgtcaatttg aa 3662

<210> 290

<211> 1059

<212> PRT

<213> Homo Sapien

<400> 290

Met Val Asp Val Leu Leu Leu Phe Ser Leu Cys Leu Leu Phe His

Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys
20 25 30

Ala	Ser	Ser	Met	Ser 35	His	Leu	Gln	Ser	Leu 40		Glu	Val	Lys	Let 45
Asn	Asn	. Asn	Glu	Leu 50	Glu	Thr	Ile	Pro	Asn 55		Gly	Pro	Val	Ser 60
Ala	Asn	Ile	Thr	Leu 65	Leu	Ser	Leu	Ala	Gly 70		Arg	Ile	Val	Gl u 75
Ile	Leu	Pro	Glu	His 80	Leu	Lys	Gl u	Phe	Gln 85		Leu	Glu	Thr	Leu 90
Asp	Leu	Ser	Ser	Asn 95	Asn	Ile	Ser	Glu	Leu 100		Thr	Ala	Phe	Pro 105
Ala	Leu	Gln	Leu	Lys 110	Tyr	Leu	Tyr	Leu	Asn 115		Asn	Arg	Val	Thr 120
Ser	Met	Glu	Pro	Gly 125	Tyr	Phe	Asp	Asn	Leu 130	Ala	Asn	Thr	Leu	Leu 135
Val	Leu	Lys	Leu	Asn 140	Arg	Asn	Arg	Ile	Ser 145	Ala	Ile	Pro	Pro	Lys 150
Met	Phe	Lys	Leu	Pro 155	Gln	Leu	Gln	His	Leu 160	Glu	Leu	Asn	Arg	Asn
Lys	Ile	Lys	Asn	Val 170	Asp	Gly	Leu	Thr	Phe 175	Gln	Gly	Leu	Gly	Ala 180
Leu	Lys	Ser	Leu	Lys 185	Met	Gln	Arg	Asn	Gly 190	Val	Thr	Lys	Leu	Met 195
Asp	Gly	Ala	Phe	Trp 200	Gly	Leu	Ser	Asn	Met 205	Glu	Ile	Leu	Gln	Leu 210
Asp	His	Asn	Asn	Leu 215	Thr	Glu	Ile	Thr	Lys 220	Gly	Trp	Leu	Tyr	Gly 225
Leu	Leu	Met	Leu	Gln 230	Glu	Leu	His	Leu	Ser 235	Gln	Asn	Ala	Ile	Asn 240
Arg	Ile	Ser	Pro	Asp 245	Ala	Trp	Glu	Phe	Cys 250	Gln	Lys	Leu	Ser	Glu 255
Leu	Asp	Leu	Thr	Phe 260	Asn	His	Leu	Ser	Arg 265	Leu	Asp	Asp	Ser	Ser 270
Phe	Leu	Gly	Leu	Ser 275	Leu	Leu	Asn	Thr	Leu 280	His	Ile	Gly	Asn	Asn 285
Arg	Val	Ser	Tyr	Ile	Ala	Asp	Cys	Ala	Phe	Arg	Gly	Leu	Ser	Ser

				290					295					300
Leu	Lys	Thr	Leu	Asp 305	Leu	Lys	Asn	Asn	Glu 310	Ile	Ser	Trp	Thr	Ile 315
Glu	Asp	Met	Asn	Gly 320	Ala	Phe	Ser	Gly	L eu 325	Asp	Lys	Leu	Arg	Arg 330
Leu	Ile	Leu	Gln	Gly 335	Asn	Arg	Ile	Arg	Ser 340	Ile	Thr	Lys	Lys	Ala 345
Phe	Thr	Gly	Leu	Asp 350	Ala	Leu	Glu	His	Leu 355	Asp	Leu	Ser	Asp	Asn 360
Ala	Ile	Met	Ser	Leu 365	Gln	Gly	Asn	Ala	Phe 370	Ser	Gln	Met	Lys	Lys 375
Leu	Gln	Gln	Leu	His 380	Leu	Asn	Thr	Ser	Ser 385	Leu	Leu	Суз	Asp	Cys 390
Gln	Leu	Lys	Trp	Leu 395	Pro	Gln	Trp	Val	Ala 400	Glu	Asn	Asn	Phe	Gln 405
Ser	Phe	Val	Asn	Ala 410	Ser	Cys	Ala	His	Pro 415	Gln	Leu	Leu	Lys	Gly 420
Arg	Ser	Ile	Phe	Ala 425	Val	Ser	Pro	Asp	Gly 430	Phe	Val	Cys	Asp	Asp 435
				440				Gln	445					450
				455				Ile	460					465
Ser	Asp	Ser	Pro	Met 470	Thr	Phe	Ala	Trp	Lys 475	Lys	Asp	Asn	Glu	Leu 480
Leu	His	Asp	Ala	Glu 485	Met	Glu	Asn	Tyr	Ala 490	His	Leu	Arg	Ala	Gln 495
Gly	Gly	Glu	Val	Met 500	Glu	Tyr	Thr	Thr	Ile 505	Leu	Arg	Leu	Arg	Glu 510
Val	Glu	Phe	Ala	Ser 515	Glu	Gly	Lys	Tyr	Gln 520	Сув	Val	Ile	Ser	Asn 525
His	Phe	Gly	Ser	Ser 530	Tyr	Ser	Val	Lys	Ala 535	Lys	Leu	Thr	Val	Asn 540
Met	Leu	Pro	Ser	Phe 545	Thr	Lys	Thr	Pro	Met 550	Asp	Leu	Thr	Ile	Arg 555

Ala	Gly	Ala	Met	Ala 560		Leu	Glu	Cys	Ala 565		Val	Gly	His	9rc 570
Ala	Pro	Gln	Ile	Ala 575		Gln	Lys	Asp	Gly 580		Thr	Asp	Phe	Pro 589
Ala	Ala	Arg	Glu	Arg 590	Arg	Met	His	Val	Met 595		Glu	Asp	Asp	Val
Phe	Phe	Ile	Val	Asp 605	Val	Lys	Ile	Glu	Asp 610		Gly	Val	Tyr	Ser 615
Cys	Thr	Ala	Gln	Asn 620	Ser	Ala	Gly	Ser	Ile 625		Ala	Asn	Ala	Thr 630
Leu	Thr	Val	Leu	Glu 635	Thr	Pro	Ser	Phe	Leu 640	Arg	Pro	Leu	Leu	Asp 645
Arg	Thr	Val	Thr	Lys 650	Gly	Glu	Thr	Ala	Val 655	Leu	Gln	Cys	Ile	Ala 660
Gly	Gly	Ser	Pro	Pro 665	Pro	Lys	Leu	Asn	Trp 670	Thr	Lys	Asp	Asp	Ser 675
Pro	Leu	Val	Val	Thr 680	Glu	Arg	His	Phe	Phe 685	Ala	Ala	Gly	Asn	Gln 690
Leu	Leu	Ile	Ile	Val 695	Asp	Ser	Asp	Val	Ser 700	Asp	Ala	Gly	Lys	Tyr 705
Thr	Cys	Glu	Met	Ser 710	Asn	Thr	Leu	Gly	Thr 715	Glu	Arg	Gly	Asn	Val 720
Arg	Leu	Ser	Val	Ile 725	Pro	Thr	Pro	Thr	Cys 730	Asp	Ser	Pro	Gln	Met 735
Thr	Ala	Pro	Ser	Leu 740	Asp	Asp	Asp	Gly	Trp 745	Ala	Thr	Val	Gly	Val 750
Val	Ile	Ile	Ala	Val 755	Val	Cys	Cys	Val	Val 760	Gly	Thr	Ser	Leu	Val 765
Trp	Val	Val	Ile	Ile 770	Tyr	His	Thr	Arg	Arg 775	Arg	Asn	Glu	Asp	Cys 780
Ser	Ile	Thr	Asn	Thr 785	Asp	Glu	Thr	Asn	Leu 790	Pro	Ala	Asp	Ile	Pro 795
Ser	Tyr	Leu	Ser	Ser 800	Gln	Gly	Thr	Leu	Ala 805	Asp	Arg	Gln	Asp	

Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser 815 820 Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr 830 Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr 860 Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr 900 Glu Pro Ser Tyr Ile Lys Lys Glu Cys Tyr Pro Cys Ser His 905 910 Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn 935 Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu 955 Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn 965 970 975 Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg 995 1000 1005 Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly 1010 1015 Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn 1025 1030 His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro 1040 1045 1050 Asn Phe Gln Ser Tyr Asp Leu Asp Thr

<210> 291 <211> 2906

1055

<212> DNA <213> Homo Sapien

<400> 291 ggggagagga attgaccatg taaaaggaga ctttttttt tggtggtggt 50 ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100 tggaaccgaa cgcaatggat aaactgattg tgcaagagag aaggaagaac 150 gaagettttt ettgtgagee etggatetta acacaaatgt gtatatgtge 200 acacagggag cattcaagaa tgaaataaac cagagttaga cccgcggggg 250 ttggtgtgtt ctgacataaa taaataatct taaagcagct gttcccctcc 300 ccaccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350 agaaaaaagt atgttcattt ttctctataa aggagaaagt gagccaagga 400 gatatttttg gaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450 aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550 gcagattgag gcattgattg ggggagagaa accagcagag cacagttgga 600 tttgtgccta tgttgactaa aattgacgga taattgcagt tggattttc 650 ttcatcaacc tcctttttt taaattttta ttccttttgg tatcaagatc 700 atgcgttttc tcttgttctt aaccacctgg atttccatct ggatgttgct 750 gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800 ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850 ataggtccta ggtttaacag ggccctattt gaccccctgc ttgtggtgct 900 getggetett caacttettg tggtggetgg tetggtgegg geteagacet 950 gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgtgtt 1000 cggaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050 gctgaacctc catgagaacc aaatccagat catcaaagtg aacagcttca 1100 agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150 accattgaaa ttggggcttt caatggtctg gcgaacctca acactctgga 1200 actctttgac aatcgtctta ctaccatccc gaatggagct tttgtatact 1250

tgtctaaact gaaggagctc tggttgcgaa acaaccccat tgaaagcatc 1300 ccttcttatg cttttaacag aattccttct ttgcgccgac tagacttagg 1350 ggaattgaaa agactttcat acatctcaga aggtgccttt gaaggtctgt 1400 ccaacttgag gtatttgaac cttgccatgt gcaaccttcg ggaaatccct 1450 aacctcacac cgctcataaa actagatgag ctggatcttt ctgggaatca 1500 tttatctgcc atcaggcctg gctctttcca gggtttgatg caccttcaaa 1550 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgccttt 1600 gacaacette agteactagt ggagateaac etggeacaca ataatetaac 1650 attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700 atttacatca caaccettgg aactgtaact gtgacatact gtggctcagc 1750 tggtggataa aagacatggc cccctcgaac acagcttgtt gtgcccggtg 1800 taacactcct cccaatctaa aggggaggta cattggagag ctcgaccaga 1850 attacttcac atgctatgct ccggtgattg tggagccccc tgcagacctc 1900 aatgtcactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950 cctgacatct gtatcttgga ttactccaaa tggaacagtc atgacacatg 2000 gggcgtacaa agtgcggata gctgtgctca gtgatggtac gttaaatttc 2050 acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100 ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150 ccactactee titetettae titteaaceg teacagtaga gaetatggaa 2200 ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250 agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300 gcacaaggtc gacagagaaa accttcacca tcccagtgac tgatataaac 2350 agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400 tgggtgtttt gtggccatca cactcatggc tgcagtgatg ctggtcattt 2450 tctacaagat gaggaagcag caccatcggc aaaaccatca cgccccaaca 2500 aggactgttg aaattattaa tgtggatgat gagattacgg gagacacacc 2550

catggaaagc cacctgccca tgcctgctat cgagcatgag cacctaaatc 2600 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650 ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700 ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750 caaaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800 tgactgggct aaatctactg tttcaaaaaa gtgtctttac aaaaaaacaa 2850 aaaaagaaaag aaatttattt attaaaaatt ctattgtgat ctaaagcaga 2900 caaaaa 2906

<210> 292

<211> 640

<212> PRT

<213> Homo Sapien

<400> 292

Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly
1 5 10 15

Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu 20 25 30

Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln
35 40 45

Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val
50 55 60

Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser
65 70 75

Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile 80 85 90

Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu 95 100 105

Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe 110 115 120

Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg 125 130 135

Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu
140 145 150

Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser

				155					160	,				165
Tyr	Ala	Phe	Asn	Arg 170	Ile	Pro	Ser	Leu	Arg 175	Arg	Leu	Asp	Leu	Gly 180
Gl u	Leu	Lys	Arg	Leu 185	Ser	Tyr	Ile	Ser	Glu 190	Gly	Ala	Phe	Glu	Gly 195
Leu	Ser	Asn	Leu	Arg 200	туг	Leu	Asn	Leu	Ala 205	Met	Сув	Asn	Leu	Arg 210
Gl u	Ile	Pro	Asn	Leu 215	Thr	Pro	Leu	Ile	L ys 220	Leu	Asp	Glu	Leu	Asp 225
Leu	Ser	Gly	Asn	His 230	Leu	Ser	Ala	Ile	Arg 235	Pro	Gly	Ser	Phe	Gln 240
Gly	Leu	Met	His	Leu 245	Gln	Lys	Leu	Trp	Met 250	Ile	Gln	Ser	Gln	Ile 255
Gln	Val	Ile	Glu	Arg 260	Asn	Ala	Phe	Asp	Asn 265	Leu	Gln	Ser	Leu	Val 270
Glu	Ile	Asn	Leu	Ala 275	His	Asn	Asn	Leu	Thr 280	Leu	Leu	Pro	His	Asp 285
Leu	Phe	Thr	Pro	Leu 290	His	His	Leu	Glu	Arg 295	Ile	His	Leu	His	His 300
Asn	Pro	Trp	Asn	Cys 305	Asn	Cys	Asp	Ile	Leu 310	Trp	Leu	Ser	Trp	Trp 315
Ile	Lys	Asp	Met	Ala 320	Pro	Ser	Asn	Thr	Ala 325	Cys	Cys	Ala	Arg	Cys 330
Asn	Thr	Pro	Pro	Asn 335	Leu	Lys	Gly	Arg	Tyr 340	Ile	Gly	Glu	Leu	Asp 345
Gln	Asn	Tyr	Phe	Thr 350	Cys	Tyr	Ala	Pro	Val 355	Ile	Val	Glu	Pro	Pro 360
Ala	Asp	Leu	Asn	Val 365	Thr	Glu	Gly	Met	Ala 370	Ala	Glu	Leu	Lys	Cys 375
Arg	Ala	Ser	Thr	Ser 380	Leu	Thr	Ser	Val	Ser 385	Trp	Ile	Thr	Pro	Asn 390
Gly	Thr	Val	Met	Thr 395	His	Gly	Ala	Tyr	Lys 400	Val	Arg	Ile	Ala	Val 405
Leu	Ser	Asp	Gly	Thr 410	Leu	Asn	Phe	Thr	Asn 415	Val	Thr	Val	Gln	Asp 420

Thr	Gly	Met	Tyr	Thr 425		Met	Val	Ser	Asn 430	Ser	Val	Gly	Asn	Thr 435
Thr	Ala	Ser	Ala	Thr 440		Asn	Val	Thr	Ala 445	Ala	Thr	Thr	Thr	Pro 450
Phe	Ser	Tyr	Phe	Ser 455	Thr	Val	Thr	Val	Glu 460	Thr	Met	Glu	Pro	Ser 465
Gln	Asp	Glu	Ala	Arg 470	Thr	Thr	Asp	Asn	Asn 475	Val	Gly	Pro	Thr	Pro 480
Val	Val	Asp	Trp	Glu 485	Thr	Thr	Asn	Val	Thr 490	Thr	Ser	Leu	Thr	Pro 495
Gln	Ser	Thr	Arg	Ser 500	Thr	Glu	Lys	Thr	Phe 505	Thr	Ile	Pro	Val	Thr 510
Asp	Ile	Asn	Ser	Gly 515	Ile	Pro	Gly	Ile	Asp 520	Glu	Val	Met	Lys	Thr 525
Thr	Lys	Ile	Ile	Ile 530	Gly	Суѕ	Phe	Val	Ala 535	Ile	Thr	Leu	Met	Ala 540
Ala	Val	Met	Leu	Val 545	Ile	Phe	Tyr	Lys	Met 550	Arg	Lys	Gln	His	His 555
Arg	Gln	Asn	His	His 560	Ala	Pro	Thr	Arg	Thr 565	Val	Glu	Ile	Ile	Asn 570
Val	Asp	Asp	Glu	Ile 575	Thr	Gly	Asp	Thr	Pro 580	Met	Glu	Ser	His	Leu 585
Pro	Met	Pro	Ala	Ile 590	Glu	His	Glu	His	Leu 595	Asn	His	Tyr	Asn	Ser 600
Tyr	Lys	Ser	Pro	Phe 605	Asn	His	Thr	Thr	Thr 610	Val	Asn	Thr	Ile	Asn 615
Ser	Ile	His	Ser	Ser 620	Val	His	Glu	Pro	Leu 625	Leu	Ile	Arg	Met	Asn 630
Ser	Lys	Asp	Asn	Val 635	Gln	Glu	Thr	Gln	Ile 640					

<210> 293

<211> 4053

<212> DNA

<213> Homo Sapien

<400> 293

ageogacget geteaagetg caactetgtt geagttggea gttetttteg 50

gtttccctcc tgctgtttgg gggcatgaaa gggcttcgcc gccgggagta 100 aaagaaggaa ttgaccgggc agcgcgaggg aggagcgcgc acgcgaccgc 150 gaggggggg gtgcaccctc ggctggaagt ttgtgccggg ccccgagcgc 200 gegeeggetg ggagettegg gtagagaeet aggeegetgg acegegatga 250 gegegeegag ceteegtgeg egegeegegg ggttgggget getgetgtge 300 geggtgetgg ggegegetgg eeggteegae ageggeggte geggggaaet 350 egggeagece tetggggtag eegeegageg eccatgeece actacetgee 400 gctgcctcgg ggacctgctg gactgcagtc gtaagcggct agcgcgtctt 450 cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500 attatettte ateaaggeaa gtteeatgag ceaeetteaa ageettegag 550 aagtgaaact gaacaacaat gaattggaga ccattccaaa tctgggacca 600 gtctcggcaa atattacact tctctccttg gctggaaaca ggattgttga 650 aatactccct gaacatctga aagagtttca gtcccttgaa actttggacc 700 ttagcagcaa caatatttca gagctccaaa ctgcatttcc agccctacag 750 ctcaaatatc tgtatctcaa cagcaaccga gtcacatcaa tggaacctgg 800 gtattttgac aatttggcca acacactcct tgtgttaaag ctgaacagga 850 accgaatctc agctatccca cccaagatgt ttaaactgcc ccaactgcaa 900 catctcgaat tgaaccgaaa caagattaaa aatgtagatg gactgacatt 950 ccaaggeett ggtgetetga agtetetgaa aatgeaaaga aatggagtaa 1000 cgaaacttat ggatggagct ttttgggggc tgagcaacat ggaaattttg 1050 cagetggace ataacaacet aacagagatt accaaagget ggetttacgg 1100 cttgctgatg ctgcaggaac ttcatctcag ccaaaatgcc atcaacagga 1150 tcagccctga tgcctgggag ttctgccaga agctcagtga gctggaccta 1200 actttcaatc acttatcaag gttagatgat tcaagcttcc ttggcctaag 1250 cttactaaat acactgcaca ttgggaacaa cagagtcagc tacattgctg 1300 attgtgcctt ccgggggctt tccagtttaa agactttgga tctgaagaac 1350 aatgaaattt cctggactat tgaagacatg aatggtgctt tctctgggct 1400 tgacaaactg aggcgactga tactccaagg aaatcggatc cgttctatta 1450 ctaaaaaagc cttcactggt ttggatgcat tggagcatct agacctgagt 1500 gacaacgcaa tcatgtcttt acaaggcaat gcattttcac aaatgaagaa 1550 actgcaacaa ttgcatttaa atacatcaag cettttgtge gattgccage 1600 taaaatggct cccacagtgg gtggcggaaa acaactttca gagctttgta 1650 aatgccagtt gtgcccatcc tcagctgcta aaaggaagaa gcatttttgc 1700 tgttagccca gatggctttg tgtgtgatga ttttcccaaa ccccagatca 1750 cggttcagcc agaaacacag tcggcaataa aaggttccaa tttgagtttc 1800 atctgctcag ctgccagcag cagtgattcc ccaatgactt ttgcttggaa 1850 aaaagacaat gaactactge atgatgetga aatggaaaat tatgcacacc 1900 teegggeeca aggtggegag gtgatggagt ataccaccat cetteggetg 1950 cgcgaggtgg aatttgccag tgaggggaaa tatcagtgtg tcatctccaa 2000 tcactttggt tcatcctact ctgtcaaagc caagcttaca gtaaatatgc 2050 tteceteatt caccaagace eccatggate teaccateeg agetggggee 2100 atggcacgct tggagtgtgc tgctgtgggg cacccagccc cccagatagc 2150 ctggcagaag gatgggggca cagacttccc agctgcacgg gagagacgca 2200 tgcatgtgat gcccgaggat gacgtgttct ttatcgtgga tgtgaagata 2250 gaggacattg gggtatacag ctgcacagct cagaacagtg caggaagtat 2300 ttcagcaaat gcaactctga ctgtcctaga aacaccatca tttttgcggc 2350 cactgttgga ccgaactgta accaagggag aaacagccgt cctacagtgc 2400 attgctggag gaagccctcc ccctaaactg aactggacca aagatgatag 2450 cccattggtg gtaaccgaga ggcacttttt tgcagcaggc aatcagcttc 2500 tgattattgt ggactcagat gtcagtgatg ctgggaaata cacatgtgag 2550 atgtctaaca cccttggcac tgagagagga aacgtgcgcc tcagtgtgat 2600 ccccactcca acctgcgact cccctcagat gacagcccca tcgttagacg 2650 atgacggatg ggccactgtg ggtgtcgtga tcatagccgt ggtttgctgt 2700

gtggtgggca cgtcactcgt gtgggtggtc atcatatacc acacaaggcg 2750 gaggaatgaa gattgcagca ttaccaacac agatgagacc aacttgccag 2800 cagatattcc tagttatttg tcatctcagg gaacgttagc tgacaggcag 2850 gatgggtacg tgtcttcaga aagtggaagc caccaccagt ttgtcacatc 2900 ttcaggtgct ggatttttct taccacaaca tgacagtagt gggacctgcc 2950 atattgacaa tagcagtgaa gctgatgtgg aagctgccac agatctgttc 3000 ctttgtccgt ttttgggatc cacaggccct atgtatttga agggaaatgt 3050 gtatggctca gatccttttg aaacatatca tacaggttgc agtcctgacc 3100 caagaacagt tttaatggac cactatgagc ccagttacat aaagaaaaag 3150 gagtgctacc catgttctca tccttcagaa gaatcctgcg aacggagctt 3200 cagtaatata tcgtggcctt cacatgtgag gaagctactt aacactagtt 3250 actctcacaa tgaaggacct ggaatgaaaa atctgtgtct aaacaagtcc 3300 tctttagatt ttagtgcaaa tccagagcca gcgtcggttg cctcgagtaa 3350 ttctttcatg ggtacctttg gaaaagctct caggagacct cacctagatg 3400 cctattcaag ctttggacag ccatcagatt gtcagccaag agccttttat 3450 ttgaaagete attetteece agaettggae tetgggteag aggaagatgg 3500 gaaagaaagg acagattttc aggaagaaaa tcacatttgt acctttaaac 3550 agactttaga aaactacagg actccaaatt ttcagtctta tgacttggac 3600 acatagactg aatgagacca aaggaaaagc ttaacatact acctcaagtg 3650 aacttttatt taaaagagag agaatcttat gttttttaaa tggagttatg 3700 aattttaaaa ggataaaaat gctttattta tacagatgaa ccaaaattac 3750 aaaaagttat gaaaattttt atactgggaa tgatgctcat ataagaatac 3800 ctttttaaac tattttttaa ctttgtttta tgcaaaaaag tatcttacgt 3850 aaattaatga tataaatcat gattatttta tgtatttta taatgccaga 3900 tttcttttta tggaaaatga gttactaaag cattttaaat aatacctgcc 3950 ttgtaccatt ttttaaatag aagttacttc attatatttt gcacattata 4000 tttaataaaa tgtgtcaatt tgaaaaaaaa aaaaaaaaa aaaaaaaaa 4050

aaa 4053

<210> 294

<211> 1119

<212> PRT

<213> Homo Sapien

<400> 294

Met Ser Ala Pro Ser Leu Arg Ala Arg Ala Ala Gly Leu Gly Leu

1 5 10 15

Leu Leu Cys Ala Val Leu Gly Arg Ala Gly Arg Ser Asp Ser Gly

Gly Arg Gly Glu Leu Gly Gln Pro Ser Gly Val Ala Ala Glu Arg
35 40 45

Pro Cys Pro Thr Thr Cys Arg Cys Leu Gly Asp Leu Leu Asp Cys 50 55 60

Ser Arg Lys Arg Leu Ala Arg Leu Pro Glu Pro Leu Pro Ser Trp
65 70 75

Val Ala Arg Leu Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys 80 85 90

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu 95 100 105

Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser

Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu 125 130 135

Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu 140 145 150

Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro 155 160 165

Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr 170 175 180

Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu 185 190 195

Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys 200 205 210

Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn

				215					220					225
Lys	Ile	Lys	Asn	Val 230	Asp	Gly	Leu	Thr	Phe 235	Gln	Gly	Leu	Gly	Ala 240
Leu	Lys	Ser	Leu	Lys 245	Met	Gln	Arg	Asn	Gly 250	Val	Thr	Lys	Leu	Met 255
Asp	Gly	Ala	Phe	Trp 260	Gly	Leu	Ser	Asn	Met 265	Glu	Ile	Leu	Gln	Leu 270
Asp	His	Asn	Asn	Leu 275	Thr	Glu	Ile	Thr	Lys 280	Gly	Trp	Leu	Tyr	Gly 285
Leu	Leu	Met	Leu	Gln 290	Glu	Leu	His	Leu	Ser 295	Gln	Asn	Ala	Ile	Asn 300
Arg	Ile	Ser	Pro	Asp 305	Ala	Trp	Glu	Phe	Cys 310	Gln	Lys	Leu	Ser	Glu 315
Leu	Asp	Leu	Thr	Phe 320	Asn	His	Leu	Ser	Arg 325	Leu	Asp	Asp	Ser	Ser 330
Phe	Leu	Gly	Leu	Ser 335	Leu	Leu	Asn	Thr	Leu 340	His	Ile	Gly	Asn	Asn 345
Arg	Val	Ser	Tyr	11e 350	Ala	Asp	Cys	Ala	Phe 355	Arg	Gly	Leu	Ser	Ser 360
Leu	Lys	Thr	Leu	Asp 365	Leu	Lys	Asn	Asn	Glu 370	Ile	Ser	Trp	Thr	Ile 375
Glu	Asp	Met	Asn	Gly 380	Ala	Phe	Ser	Gly	Leu 385	Asp	Lys	Leu	Arg	Arg 390
Leu	Ile	Leu	Gln	Gly 395	Asn	Arg	Ile	Arg	Ser 400	Ile	Thr	Lys	Lys	Ala 405
Phe	Thr	Gly	Leu	Asp 410	Ala	Leu	Glu		Leu 415		Leu	Ser	Asp	Asn 420
Ala	Ile	Met	Ser	Leu 425	Gln	Gly	Asn	Ala	Phe 430	Ser	Gln	Met	Lys	Lys 435
Leu	Gln	Gln	Leu	His 440	Leu	Asn	Thr	Ser	Ser 445	Leu	Leu	Cys	Asp	Cys 450
Gln	Leu	Lys	Trp	Leu 455	Pro	Gln	Trp	Val	Ala 460	Glu	Asn	Asn	Phe	Gln 465
Ser	Phe	Val	Asn	Ala 470	Ser	Cys	Ala	His	Pro 475	Gln	Leu	Leu	Lys	Gly 480

Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp 490 485 Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala 505 Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser 520 525 Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu 530 Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln Gly Gly Glu Val Met Glu Tyr Thr Thr Ile Leu Arg Leu Arg Glu 565 Val Glu Phe Ala Ser Glu Gly Lys Tyr Gln Cys Val Ile Ser Asn His Phe Gly Ser Ser Tyr Ser Val Lys Ala Lys Leu Thr Val Asn Met Leu Pro Ser Phe Thr Lys Thr Pro Met Asp Leu Thr Ile Arg 610 Ala Gly Ala Met Ala Arg Leu Glu Cys Ala Ala Val Gly His Pro Ala Pro Gln Ile Ala Trp Gln Lys Asp Gly Gly Thr Asp Phe Pro Ala Ala Arg Glu Arg Arg Met His Val Met Pro Glu Asp Asp Val Phe Phe Ile Val Asp Val Lys Ile Glu Asp Ile Gly Val Tyr Ser 665 675 Cys Thr Ala Gln Asn Ser Ala Gly Ser Ile Ser Ala Asn Ala Thr Leu Thr Val Leu Glu Thr Pro Ser Phe Leu Arg Pro Leu Leu Asp Arg Thr Val Thr Lys Gly Glu Thr Ala Val Leu Gln Cys Ile Ala 710 715 720 Gly Gly Ser Pro Pro Pro Lys Leu Asn Trp Thr Lys Asp Asp Ser Pro Leu Val Val Thr Glu Arg His Phe Phe Ala Ala Gly Asn Gln

Leu Leu Ile Ile Val Asp Ser Asp Val Ser Asp Ala Gly Lys Tyr Thr Cys Glu Met Ser Asn Thr Leu Gly Thr Glu Arg Gly Asn Val 770 775 780 Arg Leu Ser Val Ile Pro Thr Pro Thr Cys Asp Ser Pro Gln Met Thr Ala Pro Ser Leu Asp Asp Gly Trp Ala Thr Val Gly Val Val Ile Ile Ala Val Val Cys Cys Val Val Gly Thr Ser Leu Val 815 Trp Val Val Ile Ile Tyr His Thr Arg Arg Arg Asn Glu Asp Cys Ser Ile Thr Asn Thr Asp Glu Thr Asn Leu Pro Ala Asp Ile Pro 850 Ser Tyr Leu Ser Ser Gln Gly Thr Leu Ala Asp Arg Gln Asp Gly Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser 875 Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr 905 Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr 920 930 Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr Glu Pro Ser Tyr Ile Lys Lys Lys Glu Cys Tyr Pro Cys Ser His Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp 980 985 Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn 1005

Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu

Į,	
71	E. H. H. H. H.
1	į
4.4	j
ř	į
į,	
2	j
4	-
Ξ	
Il il	5
-	į
1111	
1	÷
North miles	3

			10	LO			1	015				1	L020
Asp	Phe	Ser	Ala As		Glu	Pro		Ser 030	Val	Ala	Ser		Asn L035
Ser	Phe	Met	Gly Ti		e Gly	Lys		Leu 045	Arg	Arg	Pro		Leu L050
Asp	Ala	Tyr	Ser Se		Gly	Gln		Ser 060	Asp	Сув	Gln		Arg 1065
Ala	Phe	Tyr	Leu Ly 107		His	Ser		Pro 075	Asp	Leu	Asp		Gly .080
Ser	Glu	Glu	Asp Gl		Glu	Arg		Asp 090	Phe	Gln	Glu		Asn .095
His	Ile	Cys	Thr Ph 110		Gln	Thr		Glu 105	Asn	Tyr	Arg		Pro 110
Asn	Phe	Gln	Ser Ty 111		Leu	Asp	Thr						
<210><211><211>	18 DNA												
<213>	Art	ific	ial Se	quenc	e								
<220>													
<223>	Syn	thet	ic Oli	gonuc	leoti	ide E	robe						
<400>	295												
		at c	tcagct	a 18									
<210>	296												
<211>	19												
<212>	DNA												
<213>	Art:	ific.	ial Se	quenc	9								
<220>													
<223>	Synt	:het:	ic Oli	gonuc:	leoti	.de P	robe						
<400>	296												
cctaa	aacto	ga a	ctggac	ca 19									
<210>	297												
<211>	19												
<212>													
<213>	Arti	fic	ial Se	quence	9								
<220>													
	Synt	heti	ic Oli	gonuc]	leoti	de P	robe						

```
<400> 297
  ggctggagac actgaacct 19
 <210> 298
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Synthetic Oligonucleotide Probe
 <400> 298
 acagetgeae ageteagaae agtg 24
 <210> 299
 <211> 22
 <212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 299
 cattcccagt ataaaaattt tc 22
<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 300
 gggtcttggt gaatgagg 18
<210> 301
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 301
 gtgcctctcg gttaccacca atgg 24
<210> 302
<211> 50
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 302
 gcggccactg ttggaccgaa ctgtaaccaa gggagaaaca gccgtcctac 50
<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 303
 gcctttgaca accttcagtc actagtgg 28
<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 304
ccccatgtgt ccatgactgt tccc 24
<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 305
 tactgcctca tgacctcttc actcccttgc atcatcttag agegg 45
<210> 306
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 306
actecaagga aateggatee gtte 24
<210> 307
<211> 24
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 307
 ttagcagctg aggatgggca caac 24
<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 308
 actccaagga aatcggatcc gttc 24
<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 309
 gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50
<210> 310
<211> 3296
<212> DNA
<213> Homo Sapien
<400> 310
 caaaacttgc gtcgcggaga gcgcccagct tgacttgaat ggaaggagcc 50
cgagcccgcg gagcgcagct gagactgggg gagcgcgttc ggcctgtggg 100
gcgccgctcg gcgccggggc gcagcaggga aggggaagct gtggtctgcc 150
ctgctccacg aggcgccact ggtgtgaacc gggagagccc ctgggtggtc 200
ccgtccccta tccctccttt atatagaaac cttccacact gggaaggcag 250
cggcgaggca ggagggctca tggtgagcaa ggaggccggc tgatctgcag 300
gcgcacagca ttccgagttt acagattttt acagatacca aatggaaggc 350
gaggaggcag aacagcctgc ctggttccat cagccctggc gcccaggcgc 400
```

atctgactcg gcacccctg caggcaccat ggcccagagc cgggtgctgc 450 tgctcctgct gctgctgccg ccacagctgc acctgggacc tgtgcttgcc 500 gtgagggccc caggatttgg ccgaagtggc ggccacagcc tgagccccga 550 agagaacgaa tttgcggagg aggagccggt gctggtactg agccctgagg 600 agcccgggcc tggcccagcc gcggtcagct gcccccgaga ctgtgcctgt 650 tcccaggagg gcgtcgtgga ctgtggcggt attgacctgc gtgagttccc 700 gggggacctg cctgagcaca ccaaccacct atctctgcag aacaaccagc 750 tggaaaagat ctaccctgag gagctctccc ggctgcaccg gctggagaca 800 ctgaacctgc aaaacaaccg cctgacttcc cgagggctcc cagagaaggc 850 gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc 900 tgaccttggc accccgcttc ctgccaaacg ccctgatcag tgtggacttt 950 getgecaact ateteaceaa gatetatggg eteacetttg gecagaagee 1000 aaacttgagg tetgtgtace tgcacaacaa caagetggca gacgeeggge 1050 tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg 1100 tecageaact teetgegeea egtgeeeaag eacetgeege etgeeetgta 1150 caagetgeac eteaagaaca acaagetgga gaagateece eegggggeet 1200 tcagcgaget gageageetg egegagetat acetgeagaa caactacetg 1250 actgacgagg gcctggacaa cgagacette tggaagetet ccageetgga 1300 gtacctggat ctgtccagca acaacctgtc tcgggtccca gctgggctgc 1350 cgcgcagcct ggtgctgctg cacttggaga agaacgccat ccggagcgtg 1400 gacgcgaatg tgctgacccc catccgcagc ctggagtacc tgctgctgca 1450 cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccagggcc 1500 tcaageggtt gcacacggtg cacctgtaca acaacgeget ggagegegtg 1550 cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca 1600 gatcacaggc attggccgcg aagactttgc caccacctac ttcctggagg 1650 agctcaacct cagctacaac cgcatcacca gcccacaggt gcaccgcgac 1700

gccttccgca agctgcgcct gctgcgctcg ctggacctgt cgggcaaccg 1750 gctgcacacg ctgccacctg ggctgcctcg aaatgtccat gtgctgaagg 1800 tcaagcgcaa tgagctggct gccttggcac gaggggcgct ggcgggcatg 1850 getcagetge gtgagetgta cetcaccage aaccgaetge geageegage 1900 cctgggcccc cgtgcctggg tggacctcgc ccatctgcag ctgctggaca 1950 tegeegggaa teageteaca gagateeeeg aggggeteee egagteactt 2000 gagtacctgt acctgcagaa caacaagatt agtgcggtgc ccgccaatgc 2050 cttcgactcc acgcccaacc tcaaggggat ctttctcagg tttaacaagc 2100 tggctgtggg ctccgtggtg gacagtgcct tccggaggct gaagcacctg 2150 caggtettgg acattgaagg caacttagag tttggtgaca tttccaagga 2200 aggaagagga aacaagatag tgacaaggtg atgcagatgt gacctaggat 2300 gatggaccgc cggactcttt tetgcagcac acgcetgtgt getgtgaqcc 2350 ccccactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400 teccacatga caegggetga caeagtetea tatececaee cetteccaeg 2450 gegtgteeca eggeeagaea catgeacaea cateacaeee teaaacaeee 2500 ageteageca cacacaacta cectecaaac caccacagte tetqteacac 2550 ecceactace getgecacge cetetgaate atgeagggaa gggtetgece 2600 ctgccctggc acacacaggc acccattccc tccccctgct gacatgtgta 2650 tgcgtatgca tacacaccac acacacaca atgcacaagt catgtgcgaa 2700 cageceteca aageetatge cacagacage tettgeecca gecagaatea 2750 gccatagcag ctcgccgtct gccctgtcca tctgtccgtc cgttccctgg 2800 agaagacaca agggtateca tgetetgtgg eeaggtgeet geeaccetet 2850 ggaactcaca aaagctggct tttattcctt tcccatccta tggggacagg 2900 agectteagg actgetggee tggeetggee caecetgete etceaggtge 2950 tgggcagtca ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000 caggcacttt tccaatgggc aagcccagtg gaggcaggat gggagagccc 3050

```
cctgggtgct gctggggcct tggggcagga gtgaagcaga ggtgatgggg 3100
 ctgggctgag ccagggagga aggacccagc tgcacctagg agacaccttt 3150
 gttcttcagg cctgtggggg aagttccggg tgcctttatt ttttattctt 3200
 ttctaaggaa aaaaatgata aaaatctcaa agctgatttt tcttgttata 3250
 gaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaa 3296
<210> 311
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 311
 gcattggccg cgagactttg cc 22
<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 312
gcggccacgg tccttggaaa tg 22
<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 313
tggaggaget caaceteage tacaacegea teaceagece acage 45
<210> 314
<211> 3003
<212> DNA
<213> Homo Sapien
<400> 314
gggaggggc teegggegee gegeageaga cetgeteegg eegegegeet 50
```

cgccgctgtc ctccgggagc ggcagcagta gcccgggcgg cgagggctgg 100

gggttcctcg agactctcag aggggcgcct cccatcggcg cccaccaccc 150 caacctgttc ctcgcgcgcc actgcgctgc gccccaggac ccgctgccca 200 acatggattt teteetggeg etggtgetgg tateeteget etacetgeag 250 gcggccgccg agttcgacgg gaggtggccc aggcaaatag tgtcatcgat 300 tggcctatgt cgttatggtg ggaggattga ctgctgctgg ggctgggctc 350 gccagtcttg gggacagtgt cagcctgtgt gccaaccacg atgcaaacat 400 ggtgaatgta tcgggccaaa caagtgcaag tgtcatcctg gttatgctgg 450 aaaaaacctgt aatcaagatc taaatgagtg tggcctgaag ccccggccct 500 gtaagcacag gtgcatgaac acttacggca gctacaagtg ctactgtctc 550 aacggatata tgctcatgcc ggatggttcc tgctcaagtg ccctgacctg 600 ctccatggca aactgtcagt atggctgtga tgttgttaaa ggacaaatac 650 ggtgccagtg cccatcccct ggcctgcacc tggctcctga tgggaggacc 700 tgtgtagatg ttgatgaatg tgctacagga agagcctcct gccctagatt 750 taggcaatgt gtcaacactt ttgggagcta catctgcaag tgtcataaag 800 gcttcgatct catgtatatt ggaggcaaat atcaatgtca tgacatagac 850 gaatgctcac ttggtcagta tcagtgcagc agctttgctc gatgttataa 900 cgtacgtggg tcctacaagt gcaaatgtaa agaaggatac cagggtgatg 950 gactgacttg tgtgtatatc ccaaaagtta tgattgaacc ttcaggtcca 1000 attcatgtac caaagggaaa tggtaccatt ttaaagggtg acacaggaaa 1050 taataattgg attoctgatg ttggaagtac ttggtggcct ccgaagacac 1100 catatattcc tcctatcatt accaacagge ctacttctaa gccaacaaca 1150 agacctacac caaagccaac accaattcct actccaccac caccaccacc 1200 cctgccaaca gagctcagaa cacctctacc acctacaacc ccagaaaggc 1250° caaccaccgg actgacaact atagcaccag ctgccagtac acctccagga 1300 gggattacag ttgacaacag ggtacagaca gaccctcaga aacccagagg 1350 agatgtgttc agtgttctgg tacacagttg taattttgac catggacttt 1400

gtggatggat cagggagaaa gacaatgact tgcactggga accaatcagg 1450 gacccagcag gtggacaata tctgacagtg tcggcagcca aagccccagg 1500 gggaaaagct gcacgcttgg tgctacctct cggccgcctc atgcattcag 1550 gggacctgtg cctgtcattc aggcacaagg tgacggggct gcactctggc 1600 acactccagg tgtttgtgag aaaacacggt gcccacggag cagccctgtg 1650 gggaagaaat ggtggccatg gctggaggca aacacagatc accttgcgag 1700 gggctgacat caagagcgaa tcacaaagat gattaaaggg ttggaaaaaa 1750 agatctatga tggaaaatta aaggaactgg gattattgag cctggagaag 1800 agaagactga ggggcaaacc attgatggtt ttcaagtata tgaagggttg 1850 gcacagagag ggtggcgacc agctgttctc catatgcact aagaatagaa 1900 caagaggaaa ctggcttaga ctagagtata agggagcatt tcttggcagg 1950 ggccattgtt agaatacttc ataaaaaaag aagtgtgaaa atctcagtat 2000 ctctctctct ttctaaaaaa ttagataaaa atttgtctat ttaagatggt 2050 taaagatgtt cttacccaag gaaaagtaac aaattataga atttcccaaa 2100 agatgttttg atcctactag tagtatgcag tgaaaatctt tagaactaaa 2150 taatttggac aaggettaat ttaggeattt ceetettgac eteetaatgg 2200 agagggattg aaaggggaag agcccaccaa atgctgagct cactgaaata 2250 tetetecett atggeaatee tageagtatt aaagaaaaaa ggaaactatt 2300 tattccaaat gagagtatga tggacagata ttttagtatc tcagtaatgt 2350 cctagtgtgg cggtggtttt caatgtttct tcatggtaaa ggtataagcc 2400 tttcatttgt tcaatggatg atgtttcaga ttttttttt tttaagagat 2450 ccttcaagga acacagttca gagagatttt catcgggtgc attctctctg 2500 ettegtgtgt gacaagttat ettggetget gagaaagagt geeetgeeee 2550 acaccggcag acctttcctt cacctcatca gtatgattca gtttctctta 2600 tcaattggac tctcccaggt tccacagaac agtaatattt tttgaacaat 2650 aggtacaata gaaggtette tgteatttaa eetggtaaag geagggetgg 2700 agggggaaaa taaatcatta agcctttgag taacggcaga atatatggct 2750

gtagatccat ttttaatggt tcatttcctt tatggtcata taactgcaca 2800 gctgaagatg aaaggggaaa ataaatgaaa attttacttt tcgatgccaa 2850 tgatacattg cactaaactg atggaagaag ttatccaaag tactgtataa 2900 catcttgttt attattaat gttttctaaa ataaaaaatg ttagtggttt 2950 tccaaatggc ctaataaaaa caattatttg taaataaaaa cactgttagt 3000 aat 3003

<210> 315

<210> 515

<212> PRT

<213> Homo Sapien

<400> 315

Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu

1 5 10 15

Gln Ala Ala Glu Phe Asp Gly Arg Trp Pro Arg Gln Ile Val 20 25 30

Ser Ser Ile Gly Leu Cys Arg Tyr Gly Gly Arg Ile Asp Cys Cys
35 40 45

Trp Gly Trp Ala Arg Gln Ser Trp Gly Gln Cys Gln Pro Val Cys
50 55 60

Gln Pro Arg Cys Lys His Gly Glu Cys Ile Gly Pro Asn Lys Cys
65 70 75

Lys Cys His Pro Gly Tyr Ala Gly Lys Thr Cys Asn Gln Asp Leu 80 85 90

Asn Glu Cys Gly Leu Lys Pro Arg Pro Cys Lys His Arg Cys Met

95 100 105

Asn Thr Tyr Gly Ser Tyr Lys Cys Tyr Cys Leu Asn Gly Tyr Met 110 115 120

Leu Met Pro Asp Gly Ser Cys Ser Ser Ala Leu Thr Cys Ser Met
125 130 135

Ala Asn Cys Gln Tyr Gly Cys Asp Val Val Lys Gly Gln Ile Arg 140 145 150

Cys Gln Cys Pro Ser Pro Gly Leu His Leu Ala Pro Asp Gly Arg 155 160 165

Thr	Cys	Val	Asp	Val 170	Asp	Glu	Cys	Ala	Thr 175	Gly	Arg	Ala	Ser	Cys 180
Pro	Arg	Phe	Arg	Gln 185	Cys	Val	Asn	Thr	Phe 190	Gly	Ser	Tyr	Ile	Cys 195
Lys	Суѕ	His	Lys	Gly 200	Phe	Asp	Leu	Met	Tyr 205	Ile	Gly	Gly	Lys	Tyr 210
Gln	Cys	His	Asp	Ile 215	Asp	Glu	Cys	Ser	Leu 220	Gly	Gln	Tyr	Gln	Cys 225
Ser	Ser	Phe	Ala	Arg 230	Cys	Tyr	Asn	Val	Arg 235	Gly	Ser	Tyr	Lys	Cys 240
Lys	Cys	Lys	Glu	Gly 245	Tyr	Gln	Gly	Asp	Gly 250	Leu	Thr	Суз	Val	Tyr 255
Ile	Pro	Lys	Val	Met 260	Ile	Glu	Pro	Ser	Gly 265	Pro	Ile	His	Val	Pro 270
Lys	Gly	Asn	Gly	Thr 275	Ile	Leu	Lys	Gly	Asp 280	Thr	Gly	Asn	Asn	Asn 285
Trp	Ile	Pro	Asp	Val 290	Gly	Ser	Thr	Trp	Trp 295	Pro	Pro	Lys	Thr	Pro 300
Tyr	Ile	Pro	Pro	Ile 305	Ile	Thr	Asn	Arg	Pro 310	Thr	Ser	Lys	Pro	Thr 315
Thr	Arg	Pro	Thr	Pro 320	Lys	Pro	Thr	Pro	Ile 325	Pro	Thr	Pro	Pro	Pro 330
Pro	Pro	Pro	Leu	Pro 335	Thr	Gl u	Leu	Arg	Thr 340	Pro	Leu	Pro	Pro	Thr 345
Thr	Pro	Glu	Arg	Pro 350	Thr	Thr	Gly	Leu	Thr 355	Thr	Ile	Ala	Pro	Ala 360
Ala	Ser	Thr	Pro	Pro 365	Gly	Gly	Ile	Thr	Val 370	Asp	Asn	Arg	Val	Gln 375
Thr	Asp	Pro	Gln	Lys 380	Pro	Arg	Gly	Asp	Val 385	Phe	Ser	Val	Leu	Val 390
His	Ser	Cys	Asn	Phe 395	Asp	His	Gly	Leu	Cys 400	Gly	Trp	Ile	Arg	Glu 405
Lys	Asp	Asn	Asp	Leu 410	His	Trp	Glu	Pro	Ile 415	Arg	Asp	Pro	Ala	Gly 420
Glv	Gln	ጥኒ፣ም	T.eu		TeV	Ser	Δls	Δla		Δl =	Dro	Glv	Glv	
OTA	CIII	- Y -	-ca	TIIT	val	PCT	пта	via	пyъ	пта	LLU	ary	GTA	ыys

```
425
                                       430
                                                           435
 Ala Ala Arg Leu Val Leu Pro Leu Gly Arg Leu Met His Ser Gly
                  440
 Asp Leu Cys Leu Ser Phe Arg His Lys Val Thr Gly Leu His Ser
                  455
                                       460
 Gly Thr Leu Gln Val Phe Val Arg Lys His Gly Ala His Gly Ala
                                     475
 Ala Leu Trp Gly Arg Asn Gly Gly His Gly Trp Arg Gln Thr Gln
                  485
                                                           495
 Ile Thr Leu Arg Gly Ala Asp Ile Lys Ser Glu Ser Gln Arg
                  500
                                      505
<210> 316
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 316
 gatggttcct gctcaagtgc cctg 24
<210> 317
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 317
 ttgcacttgt aggacccacg tacg 24
<210> 318
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 318
ctgatgggag gacctgtgta gatgttgatg aatgtgctac aggaagagcc 50
<210> 319
<211> 2110
<212> DNA
```

<213> Homo Sapien

<400> 319 cttctttgaa aaggattatc acctgatcag gttctctctg catttgcccc 50 tttagattgt gaaatgtggc tcaaggtctt cacaactttc ctttcctttg 100 caacaggtgc ttgctcgggg ctgaaggtga cagtgccatc acacactgtc 150 catggcgtca gaggtcaggc cctctaccta cccgtccact atggcttcca 200 cactccagca tcagacatcc agatcatatg gctatttgag agaccccaca 250 caatgcccaa atacttactg ggctctgtga ataagtctgt ggttcctgac 300 ttggaatacc aacacaagtt caccatgatg ccacccaatg catctctgct 350 tatcaaccca ctgcagttcc ctgatgaagg caattacatc gtgaaggtca 400 acattcaggg aaatggaact ctatctgcca gtcagaagat acaagtcacg 450 gttgatgatc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500 ggctgtggag tatgtgggga acatgaccct gacatgccat gtggaagggg 550 gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600 agetecacet acteetttte teeceaaaac aataceette atattgetee 650 agtaaccaag gaagacattg ggaattacag ctgcctggtg aggaaccctg 700 tcagtgaaat ggaaagtgat atcattatgc ccatcatata ttatggacct 750 tatggacttc aagtgaattc tgataaaggg ctaaaagtag gggaagtgtt 800 tactgttgac cttggagagg ccatcctatt tgattgttct gctgattctc 850 atcccccaa cacctactcc tggattagga ggactgacaa tactacatat 900 atcattaagc atgggcctcg cttagaagtt gcatctgaga aagtagccca 950 gaagacaatg gactatgtgt gctgtgctta caacaacata accggcaggc 1000 aagatgaaac tcatttcaca gttatcatca cttccgtagg actggagaag 1050 cttgcacaga aaggaaaatc attgtcacct ttagcaagta taactggaat 1100 atcactattt ttgattatat ccatgtgtct tctcttccta tggaaaaaat 1150 atcaacccta caaagttata aaacagaaac tagaaggcag gccagaaaca 1200 gaatacagga aagctcaaac attttcaggc catgaagatg ctctggatga 1250

cttcggaata tatgaatttg ttgcttttcc agatgtttct ggtgtttcca 1300 ggattccaag caggtctgtt ccagcctctg attgtgtatc ggggcaagat 1350 ttgcacagta cagtgtatga agttattcag cacatccctg cccagcagca 1400 agaccateca gagtgaactt teatgggeta aacagtacat tegagtgaaa 1450 ttctgaagaa acattttaag gaaaaacagt ggaaaagtat attaatctgg 1500 aatcagtgaa gaaaccagga ccaacacctc ttactcatta ttcctttaca 1550 tgcagaatag aggcatttat gcaaattgaa ctgcaggttt ttcagcatat 1600 acacaatgtc ttgtgcaaca gaaaaacatq ttggggaaat attcctcaqt 1650 ggagagtegt teteatgetg aeggggagaa egaaagtgae aggggtttee 1700 tcataagttt tgtatgaaat atctctacaa acctcaatta gttctactct 1750 acactttcac tatcatcaac actgagacta tcctgtctca cctacaaatg 1800 tggaaacttt acattgttcg atttttcagc agactttgtt ttattaaatt 1850 tttattagtg ttaagaatgc taaatttatg tttcaatttt atttccaaat 1900 ttotatottg ttatttgtac aacaaagtaa taaggatqqt tgtcacaaaa 1950 acaaaactat gccttctctt ttttttcaat caccagtagt atttttgaga 2000 agacttgtga acacttaagg aaatgactat taaagtctta tttttatttt 2050 tttcaaggaa agatggattc aaataaatta ttctgttttt gcttttaaaa 2100 aaaaaaaaa 2110

<210> 320

<211> 450

<212> PRT

<213> Homo Sapien

<400> 320

Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly
1 5 10

Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His
20 25 30

Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe
35 40 45

His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg
50 55 60

Pro His Thr Met Pro Lys Tyr Leu Leu Gly Ser Val Asn Lys Ser Val Val Pro Asp Leu Glu Tyr Gln His Lys Phe Thr Met Met Pro Pro Asn Ala Ser Leu Leu Ile Asn Pro Leu Gln Phe Pro Asp Glu 100 Gly Asn Tyr Ile Val Lys Val Asn Ile Gln Gly Asn Gly Thr Leu Ser Ala Ser Gln Lys Ile Gln Val Thr Val Asp Asp Pro Val Thr Lys Pro Val Val Gln Ile His Pro Pro Ser Gly Ala Val Glu Tyr Val Gly Asn Met Thr Leu Thr Cys His Val Glu Gly Gly Thr Arg Leu Ala Tyr Gln Trp Leu Lys Asn Gly Arg Pro Val His Thr Ser Ser Thr Tyr Ser Phe Ser Pro Gln Asn Asn Thr Leu His Ile Ala Pro Val Thr Lys Glu Asp Ile Gly Asn Tyr Ser Cys Leu Val Arg Asn Pro Val Ser Glu Met Glu Ser Asp Ile Ile Met Pro Ile Ile Tyr Tyr Gly Pro Tyr Gly Leu Gln Val Asn Ser Asp Lys Gly Leu Lys Val Gly Glu Val Phe Thr Val Asp Leu Gly Glu Ala Ile Leu Phe Asp Cys Ser Ala Asp Ser His Pro Pro Asn Thr Tyr Ser Trp 260 265 Ile Arg Arg Thr Asp Asn Thr Thr Tyr Ile Ile Lys His Gly Pro Arg Leu Glu Val Ala Ser Glu Lys Val Ala Gln Lys Thr Met Asp 290 Tyr Val Cys Cys Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp Glu 310 Thr His Phe Thr Val Ile Ile Thr Ser Val Gly Leu Glu Lys Leu

320		325	330						
Ala Gln Lys Gly Lys Ser 335	Leu Ser Pr	ro Leu Ala Ser 340	Ile Thr Gly 345						
Ile Ser Leu Phe Leu Ile 350	Ile Ser Me	et Cys Leu Leu 355	Phe Leu Trp 360						
Lys Lys Tyr Gln Pro Tyr 365	Lys Val Il	le Lys Gln Lys 370	Leu Glu Gly 375						
Arg Pro Glu Thr Glu Tyr 380	Arg Lys Al	la Gln Thr Phe 385	Ser Gly His 390						
Glu Asp Ala Leu Asp Asp 395	Phe Gly Il	Le Tyr Glu Phe 400	Val Ala Phe 405						
Pro Asp Val Ser Gly Val 410	Ser Arg Il	le Pro Ser Arg 415	Ser Val Pro 420						
Ala Ser Asp Cys Val Ser 425	Gly Gln As	Ep Leu His Ser 430	Thr Val Tyr 435						
Glu Val Ile Gln His Ile 440	Pro Ala Gl	in Gln Gln Asp 445	His Pro Glu 450						
<210> 321 <211> 25 <212> DNA <213> Artificial Sequenc	e								
<223> Synthetic Oligonuc	leotide Pro	obe							
<400> 321 gateetgtea caaageeagt g	gtgc 25								
<210> 322									
<211> 24 <212> DNA <213> Artificial Sequenc	e								
<220> <223> Synthetic Oligonucleotide Probe									
<400> 322 cactgacagg gttcctcacc c	agg 24								
<210> 323 <211> 45 <212> DNA <213> Artificial Sequenc									

<220> <223> Synthetic Oligonucleotide Probe <400> 323 ctccctctgg gctgtggagt atgtggggaa catgaccctg acatg 45 <210> 324 <211> 2397 <212> DNA <213> Homo Sapien <400> 324 geaageggeg aaatggegee eteegggagt ettgeagtte eeetggeagt 50 cetggtgetg ttgetttggg gtgetceetg gaegeaeggg eggeggagea 100 acgttcgcgt catcacggac gagaactgga gagaactgct ggaaggagac 150 tggatgatag aattttatgc cccgtggtgc cctgcttgtc aaaatcttca 200 accggaatgg gaaagttttg ctgaatgggg agaagatctt gaggttaata 250 ttgcgaaagt agatgtcaca gagcagccag gactgagtgg acggtttatc 300 ataactgctc ttcctactat ttatcattgt aaagatggtg aatttaggcg 350 ctatcagggt ccaaggacta agaaggactt cataaacttt ataagtgata 400 aagagtggaa gagtattgag cccgtttcat catggtttgg tccaggttct 450 gttctgatga gtagtatgtc agcactcttt cagctatcta tgtggatcag 500 gacgtgccat aactacttta ttgaagacct tggattgcca gtgtggggat 550 catatactgt ttttgcttta gcaactctgt tttccggact gttattagga 600 ctctgtatga tatttgtggc agattgcctt tgtccttcaa aaaggcgcag 650

accacagoca tacccataco ottoaaaaaa attattatoa gaatotgoac 700

aacctttgaa aaaagtggag gaggaacaag aggcggatga agaagatgtt 750

tcagaagaag aagctgaaag taaagaagga acaaacaaag actttccaca 800

gaatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850

cctagttaaa ttttatagtt atcttaatat tatgattttg ataaaaacag 900

aagattgatc attttgtttg gtttgaagtg aactgtgact tttttgaata 950

ttgcagggtt cagtctagat tgtcattaaa ttgaagagtc tacattcaga 1000

acataaaagc actaggtata caagtttgaa atatgattta agcacagtat 1050 gatggtttaa atagttctct aatttttgaa aaatcgtgcc aagcaataag 1100 atttatgtat atttgtttaa taataaccta tttcaagtct gagttttgaa 1150 aatttacatt teecaagtat tgeattattg aggtatttaa gaagattatt 1200 ttagagaaaa atatttctca tttgatataa tttttctctg tttcactgtg 1250 tgaaaaaaag aagatatttc ccataaatgg gaagtttgcc cattgtctca 1300 agaaatgtgt atttcagtga caatttcgtg gtctttttag aggtatattc 1350 caaaatttcc ttgtattttt aggttatgca actaataaaa actaccttac 1400 attaattaat tacagttttc tacacatggt aatacaggat atgctactga 1450 tttaggaagt ttttaagttc atggtattct cttgattcca acaaagtttg 1500 attttctctt gtatttttct tacttactat gggttacatt ttttattttt 1550 caaattggat gataatttct tggaaacatt ttttatgttt tagtaaacag 1600 tatttttttg ttgtttcaaa ctgaagttta ctgagagatc catcaaattg 1650 aacaatctgt tgtaatttaa aattttggcc acttttttca gattttacat 1700 cattettget gaacttcaac ttgaaattgt ttttttttt tttttggatg 1750 tgaaggtgaa cattcctgat ttttgtctga tgtgaaaaag ccttggtatt 1800 ttacattttg aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850 caggaaaaag catcttcttg tatatgtctt aaatgtattt ttgtcctcat 1900 atacagaaag ttcttaattg attttacagt ctgtaatgct tgatgtttta 1950 aaataataac atttttatat tttttaaaag acaaacttca tattatcctg 2000 tgttctttcc tgactggtaa tattgtgtgg gatttcacag gtaaaagtca 2050 gtaggatgga acattttagt gtatttttac tccttaaaga gctagaatac 2100 atagttttca ccttaaaaga agggggaaaa tcataaatac aatgaatcaa 2150 ctgaccatta cgtagtagac aatttctgta atgtcccctt ctttctaggc 2200 tctgttgctg tgtgaatcca ttagatttac agtatcgtaa tatacaagtt 2250 ttctttaaag ccctctcctt tagaatttaa aatattgtac cattaaagag 2300 tttggatgtg taacttgtga tgccttagaa aaatatccta agcacaaaat 2350

aaacctttct aaccacttca ttaaagctga aaaaaaaaa aaaaaaa 2397

<210> 325

<211> 280

<212> PRT

<213> Homo Sapien

<400> 325

Met Ala Pro Ser Gly Ser Leu Ala Val Pro Leu Ala Val Leu Val 1 5 10 15

Leu Leu Leu Trp Gly Ala Pro Trp Thr His Gly Arg Arg Ser Asn
20 25 30

Val Arg Val Ile Thr Asp Glu Asn Trp Arg Glu Leu Leu Glu Gly
35 40 45

Asp Trp Met Ile Glu Phe Tyr Ala Pro Trp Cys Pro Ala Cys Gln 50 55 60

Asn Leu Gln Pro Glu Trp Glu Ser Phe Ala Glu Trp Gly Glu Asp
65 70 75

Leu Glu Val Asn Ile Ala Lys Val Asp Val Thr Glu Gln Pro Gly
80 85 90

Leu Ser Gly Arg Phe Ile Ile Thr Ala Leu Pro Thr Ile Tyr His
95 100 105

Cys Lys Asp Gly Glu Phe Arg Arg Tyr Gln Gly Pro Arg Thr Lys 110 115 120

Lys Asp Phe Ile Asn Phe Ile Ser Asp Lys Glu Trp Lys Ser Ile 125 130 135

Glu Pro Val Ser Ser Trp Phe Gly Pro Gly Ser Val Leu Met Ser 140 145 150

Ser Met Ser Ala Leu Phe Gln Leu Ser Met Trp Ile Arg Thr Cys 155 160 165

His Asn Tyr Phe Ile Glu Asp Leu Gly Leu Pro Val Trp Gly Ser 170 175 180

Tyr Thr Val Phe Ala Leu Ala Thr Leu Phe Ser Gly Leu Leu Leu 185 190 195

Gly Leu Cys Met Ile Phe Val Ala Asp Cys Leu Cys Pro Ser Lys 200 205 210

Arg Arg Arg Pro Gln Pro Tyr Pro Tyr Pro Ser Lys Lys Leu Leu

```
215
                                      220
                                                           225
 Ser Glu Ser Ala Gln Pro Leu Lys Lys Val Glu Glu Glu Gln Glu
                  230
                                      235
 Ala Asp Glu Glu Asp Val Ser Glu Glu Glu Ala Glu Ser Lys Glu
                  245
 Gly Thr Asn Lys Asp Phe Pro Gln Asn Ala Ile Arg Gln Arg Ser
                  260
                                      265
 Leu Gly Pro Ser Leu Ala Thr Asp Lys Ser
                 275
<210> 326
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 326
 tgaggtgggc aagcggcgaa atg 23
<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 327
 tatgtggatc aggacgtgcc 20
<210> 328
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 328
 tgcagggttc agtctagatt g 21
<210> 329
<211> 25
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 329
ttgaaggaca aaggcaatct gccac 25
<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 330
ggagtettge agtteeettg geagteetgg tgetgttget ttggg 45
<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien
<400> 331
gcgagtgtcc agctgcggag acccgtgata attcgttaac taattcaaca 50
aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
ggacaggcgg attggaagag cgggaaggtc ctggcccaga gcagtgtgac 150
acttccctct gtgaccatga aactctgggt gtctgcattg ctgatggcct 200
ggtttggtgt cetgagetgt gtgcaggeeg aattetteac etetattggg 250
cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
agagtacatc cttgtggagg aagccaagct ttccaagatt aagagctggg 350
ccaacaaaat ggaagccttg actagcaagt cagctgctga tgctgagggc 400
 tacctggctc accctgtgaa tgcctacaaa ctggtgaagc ggctaaacac 450
agactggcct gcgctggagg accttgtcct gcaggactca gctgcaggtt 500
ttatcgccaa cctctctgtg cagcggcagt tcttccccac tgatgaggac 550
gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
ggacccaggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
caatgctgag tgtggatgac tgctttggga tgggccgctc ggcctacaat 700
gaaggggact attatcatac ggtgttgtgg atggagcagg tgctaaagca 750
```

gcttgatgcc ggggaggagg ccaccacaac caagtcacag gtgctggact 800 acctcagcta tgctgtcttc cagttgggtg atctgcaccg tgccctggag 850 ctcaccegce geetgetete cettgaceca ageeacgaac gagetggagg 900 gaatctgcgg tactttgagc agttattgga ggaagagaga gaaaaaacgt 950 taacaaatca gacagaagct gagctagcaa ccccagaagg catctatgag 1000 aggeetgtgg actaectgee tgagagggat gtttacgaga geetetgteg 1050 tggggagggt gtcaaactga cacccgtag acagaagagg cttttctgta 1100 ggtaccacca tggcaacagg gccccacage tgctcattgc ccccttcaaa 1150 gaggaggacg agtgggacag cccgcacatc gtcaggtact acgatgtcat 1200 gtctgatgag gaaatcgaga ggatcaagga gatcgcaaaa cctaaacttg 1250 cacgagccac cgttcgtgat cccaagacag gagtcctcac tgtcgccagc 1300 taccgggttt ccaaaagctc ctggctagag gaagatgatg accctgttgt 1350 ggcccgagta aatcgtcgga tgcagcatat cacagggtta acagtaaaga 1400 ctgcagaatt gttacaggtt gcaaattatg gagtgggagg acagtatgaa 1450 ccgcacttcg acttctctag gcgacctttt gacagcggcc tcaaaacaga 1500 ggggaatagg ttagcgacgt ttcttaacta catgagtgat gtagaagctg 1550 gtggtgccac cgtcttccct gatctggggg ctgcaatttg gcctaagaag 1600 ggtacagctg tgttctggta caacctcttg cggagcgggg aaggtgacta 1650 cegaacaaga catgetgeet geeetgtget tgtgggetge aagtgggtet 1700 ccaataagtg gttccatgaa cgaggacagg agttcttgag accttgtgga 1750 tcaacagaag ttgactgaca tccttttctg tccttcccct tcctggtcct 1800 tcagcccatg tcaacgtgac agacaccttt gtatgttcct ttgtatgttc 1850 ctatcaggct gatttttgga gaaatgaatg tttgtctgga gcagagggag 1900 accatactag ggcgactcct gtgtgactga agtcccagcc cttccattca 1950 geetgtgeea teeetggeee caaggetagg ateaaagtgg etgeageaga 2000 gttagctgtc tagcgcctag caaggtgcct ttgtacctca ggtgttttag 2050 gtgtgagatg tttcagtgaa ccaaagttct gataccttgt ttacatgttt 2100

gtttttatgg catttctatc tattgtggct ttaccaaaaa ataaaatgtc 2150 cctaccagaa aaaaaaaa 2168

<210> 332

<211> 533

<212> PRT

<213> Homo Sapien

<400> 332

Met Lys Leu Trp Val Ser Ala Leu Leu Met Ala Trp Phe Gly Val
1 5 10 15

Leu Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met
20 25 30

Thr Asp Leu Ile Tyr Ala Glu Lys Glu Leu Val Gln Ser Leu Lys
35 40 45

Glu Tyr Ile Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser 50 55 60

Trp Ala Asn Lys Met Glu Ala Leu Thr Ser Lys Ser Ala Ala Asp
65 70 75

Ala Glu Gly Tyr Leu Ala His Pro Val Asn Ala Tyr Lys Leu Val 80 85 90

Lys Arg Leu Asn Thr Asp Trp Pro Ala Leu Glu Asp Leu Val Leu 95 100 105

Gln Asp Ser Ala Ala Gly Phe Ile Ala Asn Leu Ser Val Gln Arg
110 115 120

Gln Phe Phe Pro Thr Asp Glu Asp Glu Ile Gly Ala Ala Lys Ala 125 130 135

Leu Met Arg Leu Gln Asp Thr Tyr Arg Leu Asp Pro Gly Thr Ile 140 145 150

Ser Arg Gly Glu Leu Pro Gly Thr Lys Tyr Gln Ala Met Leu Ser 155 160 165

Val Asp Asp Cys Phe Gly Met Gly Arg Ser Ala Tyr Asn Glu Gly
170 175 180

Asp Tyr Tyr His Thr Val Leu Trp Met Glu Gln Val Leu Lys Gln 185 190 195

Leu Asp Ala Gly Glu Glu Ala Thr Thr Lys Ser Gln Val Leu 200 205 210

Asp	Tyr	Leu	Ser	Tyr 215	Ala	Val	Phe	Gln	Leu 220	Gly	Asp	Leu	His	Arg 225
Ala	Leu	Glu	Leu	Thr 230	Arg	Arg	Leu	Leu	Ser 235	Leu	Asp	Pro	Ser	His 240
Glu	Arg	Ala	Gly	Gly 245	Asn	Leu	Arg	Tyr	Phe 250	Glu	Gln	Leu	Leu	Glu 255
Glu	Glu	Arg	Glu	Lys 260	Thr	Leu	Thr	Asn	Gln 265	Thr	Glu	Ala	Glu	Leu 270
Ala	Thr	Pro	Glu	Gly 275	Ile	Tyr	Glu	Arg	Pro 280	Val	Asp	Tyr	Leu	Pro 285
Glu	Arg	Asp	Val	Tyr 290	Glu	Ser	Leu	Cys	Arg 295	Gly	Glu	Gly	Val	Lys 300
Leu	Thr	Pro	Arg	Arg 305	Gln	Lys	Arg	Leu	Phe 310	Cys	Arg	Tyr	His	His 315
Gly	Asn	Arg	Ala	Pro 320	Gln	Leu	Leu	Ile	Ala 325	Pro	Phe	Lys	Glu	Glu 330
Asp	Glu	Trp	Asp	Ser 335	Pro	His	Ile	Val	Arg 340	Tyr	Tyr	Asp	Val	Met 345
Ser	Asp	Glu	Glu	11e 350	Glu	Arg	Ile	Lys	Glu 355	Ile	Ala	Lys	Pro	Lys 360
Leu	Ala	Arg	Ala	Thr 365	Val	Arg	Asp	Pro	Lys 370	Thr	Gly	Val	Leu	Thr 375
Val	Ala	Ser	Tyr	Arg 380	Val	Ser	Lys	Ser	Ser 385	Trp	Leu	Glu	Glu	Asp 390
Asp	Asp	Pro	Val	Val 395	Ala	Arg	Val	Asn	Arg 400	Arg	Met	Gln	His	Ile 405
Thr	Gly	Leu	Thr	Val 410	Lys	Thr	Ala	Glu	Leu 415	Leu	Gln	Val	Ala	Asn 420
Tyr	Gly	Val	Gly	Gly 425	Gln	Tyr	Glu	Pro	His 430	Phe	Asp	Phe	Ser	Arg 435
Arg	Pro	Phe	Asp	Ser 440	Gly	Leu	Lys	Thr	Glu 445	Gly	Asn	Arg	Leu	Ala 450
Thr	Phe	Leu	Asn	Tyr 455	Met	Ser	Asp	Val	Glu 460	Ala	Gly	Gly	Ala	Thr 465
Val	Phe	Pro	Asp	Leu 470	Gly	Ala	Ala	Ile	Trp 475	Pro	Lys	Lys	Gly	Thr 480

```
Ala Val Phe Trp Tyr Asn Leu Leu Arg Ser Gly Glu Gly Asp Tyr
                 485
 Arg Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Cys Lys Trp
                                                           510
 Val Ser Asn Lys Trp Phe His Glu Arg Gly Gln Glu Phe Leu Arg
                                      520
                 515
 Pro Cys Gly Ser Thr Glu Val Asp
<210> 333
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 333
ccaggcacaa tttccaga 18
<210> 334
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 334
 ggaccettet gtgtgccag 19
<210> 335
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 335
ggtctcaaga actcctgtc 19
<210> 336
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
```

<400> 336 acactcagca ttgcctggta cttg 24 <210> 337 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe gggcacatga ctgacctgat ttatgcagag aaagagctgg tgcag 45 <210> 338 <211> 2789 <212> DNA <213> Homo Sapien <400> 338 gcagtattga gttttacttc ctcctctttt tagtggaaga cagaccataa 50 tcccagtgtg agtgaaattg attgtttcat ttattaccgt tttggctggg 100 ggttagttcc gacaccttca cagttgaaga gcaggcagaa ggagttgtga 150 agacaggaca atcttcttgg ggatgctggt cctggaagcc agcgggcctt 200 gctctgtctt tggcctcatt gaccccaggt tctctggtta aaactgaaag 250 cctactactg gcctggtgcc catcaatcca ttgatccttg aggctgtgcc 300 cctggggcac ccacctggca gggcctacca ccatgcgact gagctccctg 350 ttggctctgc tgcggccagc gcttcccctc atcttagggc tgtctctggg 400 gtgcagcctg agcctcctgc gggtttcctg gatccagggg gagggagaag 450 atccctgtgt cgaggctgta ggggagcgag gagggccaca gaatccagat 500 tcgagagete ggetagaeca aagtgatgaa gaetteaaae eeeggattgt 550 cccctactac agggacccca acaagcccta caagaaggtg ctcaggactc 600 ggtacateca gacagagetg ggetecegtg ageggttget ggtggetgte 650 ctgacctccc gagctacact gtccactttg gccgtggctg tgaaccgtac 700 ggtggcccat cacttccctc ggttactcta cttcactggg cagcgggggg 750 cccgggctcc agcagggatg caggtggtgt ctcatgggga tgagcggccc 800 gcctggctca tgtcagagac cctgcgccac cttcacacac actttggggc 850 cgactacgac tggttcttca tcatgcagga tgacacatat gtgcaggccc 900 cccgcctggc agcccttgct ggccacctca gcatcaacca agacctgtac 950 ttaggccggg cagaggagtt cattggcgca ggcgagcagg cccggtactg 1000 teatggggge tttggetace tgttgtcacq gagteteetq ettegtetge 1050 ggccacatct ggatggctgc cgaggagaca ttctcagtgc ccgtcctgac 1100 gagtggettg gaegetgeet cattgaetet etgggegteg getgtgtete 1150 acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaataggg 1200 accetgagaa ggaagggage teggetttee tgagtgeett egeegtgeae 1250 cetgtetecg aaggtaceet catgtacegg etecacaaac getteagege 1300 tctggagttg gagcgggctt acagtgaaat agaacaactg caggctcaga 1350 tccggaacct gaccgtgctg acccccgaag gggaggcagg gctgagctgg 1400 cccgttgggc tccctgctcc tttcacacca cactctcgct ttgaggtgct 1450 gggctgggac tacttcacag agcagcacac cttctcctgt gcagatgggg 1500 ctcccaagtg cccactacag ggggctagca gggcggacgt gggtgatgcg 1550 ttggagactg ccctggagca gctcaatcgg cgctatcagc cccgcctgcg 1600 cttccagaag cagcgactgc tcaacggcta tcggcgcttc gacccagcac 1650 ggggcatgga gtacaccctg gacctgctgt tggaatgtgt gacacagcgt 1700 gggcaccggc gggccctggc tcgcagggtc agcctgctgc ggccactgag 1750 ccgggtggaa atcctaccta tgccctatgt cactgaggcc acccgagtgc 1800 agetggtget gecacteetg gtggetgaag etgetgeage eeeggettte 1850 ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgct 1900 caccetgttg etggtetaeg ggecaegaga aggtggeegt ggageteeag 1950 acceatttct tggggtgaag getgeageag eggagttaga gegaeggtae 2000 cctgggacga ggctggcctg gctcgctgtg cgagcagagg ccccttccca 2050 ggtgcgactc atggacgtgg tctcgaagaa gcaccctgtg gacactctct 2100

tettecttac caccetetes acaaegeete geeteette cagtecatet 2200
ccaggagtte aatectgee teteceete etgegegee eeceteete caggeetee 2300
cgggggeteg ccetgacee ceeteecete etgegtege eggaggeteg 2300
ggggeteeta tagggggag atttgaceg caggettete eggagggeteg 2350
ettetacaae getgactace tegeggeeeg ageeeggeteg geaggtgaae 2400
tggeaggeea ggaagaggag gaageeeteg aggggetega ggtgatggat 2450
gtttteetee ggtteteag getecaeete tttegggeeg tagageeag 2500
getggtgeag aagttetee tgegagaete etgagggeet aggggeeg 2550
actetacaa eegetgeege eteageaete tegagggget aggggeeg 2500
getggtgeag aagtteteee tgegagaete eggaggget aggggeeg 2600
geeeageteg etatggetet etttgageag gageaggee atagaeetta 2650
geeeageteg gggeeetaae eteataeet tteetttgte tgeeteagee 2700
ceaggaaggg caaggeaaga tggtggaeag atagagaatt gttgetgtat 2750
tttttaaata tgaaaatgtt attaaaeatg tettetgee 2789

<400> 339

Met Arg Leu Ser Ser Leu Leu Ala Leu Leu Arg Pro Ala Leu Pro 1 5 10 15

Leu Ile Leu Gly Leu Ser Leu Gly Cys Ser Leu Ser Leu Leu Arg
20 25 30

Val Ser Trp Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala 35 40 45

Val Gly Glu Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg
50 55 60

Leu Asp Gln Ser Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr
65 70 75

Tyr Arg Asp Pro Asn Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg
80 85 90

Tyr Ile Gln Thr Glu Leu Gly Ser Arg Glu Arg Leu Leu Val Ala

<210> 339

<211> 772

<212> PRT

<213> Homo Sapien

				95					100					105
Val	Leu	Thr	Ser	Arg 110	Ala	Thr	Leu	Ser	Thr 115	Leu	Ala	Val	Ala	Val 120
Asn	Arg	Thr	Val	Ala 125	His	His	Phe	Pro	Arg 130	Leu	Leu	Tyr	Phe	Thr 135
Gly	Gln	Arg	Gly	Ala 140	Arg	Ala	Pro	Ala	Gly 145	Met	Gln	Val	Val	Ser 150
His	Gly	Asp	Glu	Arg 155	Pro	Ala	Trp	Leu	Met 160	Ser	Glu	Thr	Leu	Arg 165
His	Leu	His	Thr	His 170	Phe	Gly	Ala	Asp	Tyr 175	Asp	Trp	Phe	Phe	Ile 180
Met	Gln	Asp	Asp	Thr 185	Tyr	Val	Gln	Ala	Pro 190	Arg	Leu	Ala	Ala	Leu 195
Ala	Gly	His	Leu	Ser 200	Ile	Asn	Gln	Asp	Leu 205	Tyr	Leu	Gly	Arg	Ala 210
Glu	Glu	Phe	Ile	Gly 215	Ala	Gly	Glu	Gln	Ala 220	Arg	Tyr	Cys	His	Gly 225
Gly	Phe	Gly	Tyr	Leu 230	Leu	Ser	Arg	Ser	Leu 235	Leu	Leu	Arg	Leu	Arg 240
Pro	His	Leu	Asp	Gly 245	Cys	Arg	Gly	Asp	Ile 250	Leu	Ser	Ala	Arg	Pro 255
Asp	Glu	Trp	Leu	Gly 260	Arg	Cys	Leu	Ile	Asp 265	Ser	Leu	Gly	Val	Gly 270
Cys	Val	Ser	Gln	His 275	Gln	Gly	Gln	Gln	Tyr 280	Arg	Ser	Phe	Glu	Leu 285
Ala	Lys	Asn	Arg	Asp 290	Pro	Glu	Lys	Glu	Gly 295	Ser	Ser	Ala	Phe	Leu 300
Ser	Ala	Phe	Ala	Val 305	His	Pro	Val	Ser	Glu 310	Gly	Thr	Leu	Met	Туг 315
Arg	Leu	His	Lys	Arg 320	Phe	Ser	Ala	Leu	Glu 325	Leu	Glu	Arg	Ala	Tyr 330
Ser	Glu	Ile	Glu	Gln 335	Leu	Gln	Ala	Gln	Ile 340	Arg	Asn	Leu	Thr	Val 345
Leu	Thr	Pro	Glu	Gly 350	Glu	Ala	Gly	Leu	Ser 355	Trp	Pro	Val	Gly	Leu 360

Pro	Ala	Pro	Phe	Thr 365	Pro	His	Ser	Arg	Phe 370	Glu	Val	Leu	Gly	Trp 375
Asp	Tyr	Phe	Thr	Glu 380	Gln	His	Thr	Phe	Ser 385	Cys	Ala	Asp	Gly	Ala 390
Pro	Lys	Cys	Pro	Leu 395	Gln	Gly	Ala	Ser	Arg 400	Ala	Asp	Val	Gly	Asp 405
Ala	Leu	Glu	Thr	Ala 410	Leu	Glu	Gln	Leu	Asn 415	Arg	Arg	Tyr	Gln	Pro 420
Arg	Leu	Arg	Phe	Gln 425	Lys	Gln	Arg	Leu	Leu 430	Asn	Gly	Tyr	Arg	Arg 435
Phe	Asp	Pro	Ala	Arg 440	Gly	Met	Glu	Tyr	Thr 445	Leu	Asp	Leu	Leu	Leu 450
Glu	Cys	Val	Thr	Gln 455	Arg	Gly	His	Arg	Arg 460	Ala	Leu	Ala	Arg	Arg 465
Val	Ser	Leu	Leu	Arg 470	Pro	Leu	Ser	Arg	Val 475	Glu	Ile	Leu	Pro	Met 480
Pro	Tyr	Val	Thr	Glu 485	Ala	Thr	Arg	Val	Gln 490	Leu	Val	Leu	Pro	Leu 495
Leu	Val	Ala	Glu	Ala 500	Ala	Ala	Ala	Pro	Ala 505	Phe	Leu	Glu	Ala	Phe 510
Ala	Ala	Asn	Val	Leu 515	Glu	Pro	Arg	Glu	His 520	Ala	Leu	Leu	Thr	Leu 525
Leu	Leu	Val	Tyr	Gly 530	Pro	Arg	Glu	Gly	Gly 535	Arg	Gly	Ala	Pro	Asp 540
Pro	Phe	Leu	Gly	Val 545	Lys	Ala	Ala	Ala	Ala 550	Glu	Leu	Glu	Arg	Arg 555
Tyr	Pro	Gly	Thr	Arg 560	Leu	Ala	Trp	Leu	Ala 565	Val	Arg	Ala	Glu	Ala 570
Pro	Ser	Gln	Val	Arg 575	Leu	Met	Asp	Val	Val 580	Ser	Lys	Lys	His	Pro 585
Val	Asp	Thr	Leu	Phe 590	Phe	Leu	Thr	Thr	Val 595	Trp	Thr	Arg	Pro	Gly 600
Pro	Glu	Val	Leu	Asn 605	Arg	Cys	Arg	Met	Asn 610	Ala	Ile	Ser	Gly	Trp 615
Gln	Ala	Phe	Phe	Pro 620	Val	His	Phe	Gln	Glu 625	Phe	Asn	Pro	Ala	Leu 630

Ser Pro Gln Arg Ser Pro Pro Gly Pro Pro Gly Ala Gly Pro Asp Pro Pro Ser Pro Pro Gly Ala Asp Pro Ser Arg Gly Ala Pro Ile Gly Gly Arg Phe Asp Arg Gln Ala Ser Ala Glu Gly Cys Phe Tyr 665 675 Asn Ala Asp Tyr Leu Ala Ala Arg Ala Arg Leu Ala Gly Glu Leu Ala Gly Glu Glu Glu Glu Ala Leu Glu Gly Leu Glu Val Met 695 700 705 Asp Val Phe Leu Arg Phe Ser Gly Leu His Leu Phe Arg Ala Val 710 Glu Pro Gly Leu Val Gln Lys Phe Ser Leu Arg Asp Cys Ser Pro Arg Leu Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu Glu Gly Leu Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu 765 760 Gln Glu Gln Ala Asn Ser Thr

<210> 340

<211> 1572

<212> DNA

<213> Homo Sapien

770

<400> 340

cggagtggtg cgccaacgtg agaggaaacc cgtgcgcgc tgcgctttcc 50
tgtccccaag ccgttctaga cgcgggaaaa atgctttctg aaagcagctc 100
ctttttgaag ggtgtgatgc ttggaagcat tttctgtgct ttgatcacta 150
tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200
catcatcacc tacaagctcc taacaaagaa gatatcttga aaatttcaga 250
ggatgagcgc atggagctca gtaagagctt tcgagtatac tgtattatcc 300
ttgtaaaacc caaagatgtg agtctttggg ctgcagtaaa ggagacttgg 350
accaaacact gtgacaaagc agagttcttc agttctgaaa atgttaaagt 400

gtttgagtca attaatatgg acacaaatga catgtggtta atgatgagaa 450 aagettacaa atacgeettt gataagtata gagaccaata caactggtte 500 ttccttgcac gccccactac gtttgctatc attgaaaacc taaagtattt 550 tttgttaaaa aaggatccat cacagccttt ctatctaggc cacactataa 600 aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700 teetgaacag ggagggatga tttggaagat atetgaagat aaacagetag 750 cagtttgcct gaaatatgct ggagtatttg cagaaaatgc agaagatgct 800 gatggaaaag atgtatttaa taccaaatct gttgggcttt ctattaaaga 850 ggcaatgact tatcacccca accaggtagt agaaggctgt tgttcagata 900 tggetgttae ttttaatgga etgaeteeaa ateagatgea tgtgatgatg 950 tatggggtat accgccttag ggcatttggg catattttca atgatgcatt 1000 ggttttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050 agogtgaata tgatotttgt ataggacgtg tgttgtcatt atttgtagta 1100 gtaactacat atccaataca gctgtatgtt tctttttctt ttctaatttg 1150 gtggcactgg tataaccaca cattaaagtc agtagtacat ttttaaatga 1200 gggtggtttt tttctttaaa acacatgaac attgtaaatg tgttggaaag 1250 aagtgtttta agaataataa ttttgcaaat aaactattaa taaatattat 1300 atgtgataaa ttctaaatta tgaacattag aaatctgtgg ggcacatatt 1350 tttgctgatt ggttaaaaaa ttttaacagg tctttagcgt tctaagatat 1400 gcaaatgata tetetagttg tgaatttgtg attaaagtaa aacttttage 1450 tgtgtgttcc ctttacttct aatactgatt tatgttctaa gcctccccaa 1500 gttccaatgg atttgccttc tcaaaatgta caactaagca actaaagaaa 1550 attaaagtga aagttgaaaa at 1572

<210> 341

<211> 318

<212> PRT

<213> Homo Sapien

<400> 341 Met Leu Ser Glu Ser Ser Phe Leu Lys Gly Val Met Leu Gly Ser Ile Phe Cys Ala Leu Ile Thr Met Leu Gly His Ile Arg Ile Gly His Gly Asn Arg Met His His His Glu His His Leu Gln 35 Ala Pro Asn Lys Glu Asp Ile Leu Lys Ile Ser Glu Asp Glu Arg Met Glu Leu Ser Lys Ser Phe Arg Val Tyr Cys Ile Ile Leu Val Lys Pro Lys Asp Val Ser Leu Trp Ala Ala Val Lys Glu Thr Trp Thr Lys His Cys Asp Lys Ala Glu Phe Phe Ser Ser Glu Asn Val 105 Lys Val Phe Glu Ser Ile Asn Met Asp Thr Asn Asp Met Trp Leu Met Met Arg Lys Ala Tyr Lys Tyr Ala Phe Asp Lys Tyr Arg Asp 130 Gln Tyr Asn Trp Phe Phe Leu Ala Arg Pro Thr Thr Phe Ala Ile 150 Ile Glu Asn Leu Lys Tyr Phe Leu Leu Lys Lys Asp Pro Ser Gln Pro Phe Tyr Leu Gly His Thr Ile Lys Ser Gly Asp Leu Glu Tyr 170 Val Gly Met Glu Gly Gly Ile Val Leu Ser Val Glu Ser Met Lys Arg Leu Asn Ser Leu Leu Asn Ile Pro Glu Lys Cys Pro Glu Gln 205 Gly Gly Met Ile Trp Lys Ile Ser Glu Asp Lys Gln Leu Ala Val 225 220 215 Cys Leu Lys Tyr Ala Gly Val Phe Ala Glu Asn Ala Glu Asp Ala Asp Gly Lys Asp Val Phe Asn Thr Lys Ser Val Gly Leu Ser Ile Lys Glu Ala Met Thr Tyr His Pro Asn Gln Val Val Glu Gly Cys

260 270 265 Cys Ser Asp Met Ala Val Thr Phe Asn Gly Leu Thr Pro Asn Gln 275 Met His Val Met Met Tyr Gly Val Tyr Arg Leu Arg Ala Phe Gly His Ile Phe Asn Asp Ala Leu Val Phe Leu Pro Pro Asn Gly Ser Asp Asn Asp <210> 342 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 342 tececaagee gttetagaeg egg 23 <210> 343 <211> 18 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 343 ctggttcttc cttgcacg 18 <210> 344 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 344 gcccaaatgc cctaaggcgg tatacccc 28 <210> 345 <211> 50 <212> DNA <213> Artificial Sequence <220>

```
<223> Synthetic Oligonucleotide Probe
<400> 345
 gggtgtgatg cttggaagca ttttctgtgc tttgatcact atgctaggac 50
<210> 346
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 346
 gggatgcagg tggtgtctca tgggg 25
<210> 347
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 347
ccctcatgta ccggctcc 18
<210> 348
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 348
 ggattctaat acgactcact atagggctca gaaaagcgca acagagaa 48
<210> 349
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 ctatgaaatt aaccctcact aaagggatgt cttccatgcc aaccttc 47
<210> 350
<211> 48
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 350
 ggattctaat acgactcact atagggcggc gatgtccact ggggctac 48
<210> 351
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 351
 ctatgaaatt aaccctcact aaagggacga ggaagatggg cggatggt 48
<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 352
ggattctaat acgactcact atagggcacc cacgcgtccg gctgctt 47
<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 353
ctatgaaatt aaccctcact aaagggacgg gggacaccac ggaccaga 48
<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 354
ggattctaat acgactcact atagggcttg ctgcggtttt tgttcctg 48
<210> 355
<211> 48
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 355
 ctatgaaatt aaccctcact aaagggagct gccgatccca ctggtatt 48
<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 356
 ggattctaat acgactcact atagggcgga tcctggccgg cctctg 46
<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 357
ctatgaaatt aaccctcact aaagggagcc cgggcatggt ctcagtta 48
<210> 358
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 358
ggattctaat acgactcact atagggcggg aagatggcga ggaggag 47
<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 359
ctatgaaatt aaccctcact aaagggacca aggccacaaa cggaaatc 48
```

```
<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 360
 ggattctaat acgactcact atagggctgt gctttcattc tgccagta 48
<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 361
ctatgaaatt aaccctcact aaagggaggg tacaattaag gggtggat 48
<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 362
ggattctaat acgactcact atagggcccg cctcgctcct gctcctg 47
<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 363
ctatgaaatt aaccetcact aaagggagga ttgccgcgac cetcacag 48
<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 364
```

```
ggattctaat acgactcact atagggcccc tcctgccttc cctgtcc 47
<210> 365
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 365
 ctatgaaatt aaccctcact aaagggagtg gtggccgcga ttatctgc 48
<210> 366
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ggattctaat acgactcact atagggcgca gcgatggcag cgatgagg 48
<210> 367
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 367
ctatgaaatt aaccctcact aaagggacag acggggcaga gggagtg 47
<210> 368
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 368
 ggattctaat acgactcact atagggccag gaggcgtgag gagaaac 47
<210> 369
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic Oligonucleotide Probe
<400> 369
 ctatgaaatt aaccctcact aaagggaaag acatgtcatc gggagtgg 48
<210> 370
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 370
 ggattctaat acgactcact atagggccgg gtggaggtgg aacagaaa 48
<210> 371
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 371
ctatgaaatt aaccctcact aaagggacac agacagagcc ccatacgc 48
<210> 372
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
 ggattctaat acgactcact atagggccag ggaaatccgg atgtctc 47
<210> 373
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 373
ctatgaaatt aaccctcact aaagggagta aggggatgcc accgagta 48
<210> 374
<211> 47
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
ggattctaat acgactcact atagggccag ctacccgcag gaggagg 47
<210> 375
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 375
ctatgaaatt aaccctcact aaagggatcc caggtgatga ggtccaga 48
<210> 376
<211> 997
<212> DNA
<213> Homo Sapien
<400> 376
cccacgcgtc cgatcttacc aacaaaacac tcctgaggag aaagaaagag 50
aaaaaatgaa ttcatctaaa tcatctgaaa cacaatgcac agagagagga 150
tgcttctctt cccaaatgtt cttatggact gttgctggga tccccatcct 200
atttctcagt gcctgtttca tcaccagatg tgttgtgaca tttcgcatct 250
ttcaaacctg tgatgagaaa aagtttcagc tacctgagaa tttcacagag 300
ctctcctgct acaattatgg atcaggttca gtcaagaatt gttgtccatt 350
gaactgggaa tattttcaat ccagctgcta cttcttttct actgacacca 400
tttcctgggc gttaagttta aagaactgct cagccatggg ggctcacctg 450
taaaatgaga gagtttttta ttggactgtc agaccaggtt gtcgagggtc 550
agtggcaatg ggtggacggc acacctttga caaagtctct gagcttctgg 600
gatgtagggg agcccaacaa catagctacc ctggaggact gtgccaccat 650
gagagactct tcaaacccaa ggcaaaattg gaatgatgta acctgtttcc 700
tcaattattt tcggatttgt gaaatggtag gaataaatcc tttgaacaaa 750
```

<210> 377

<211> 219

<212> PRT

<213> Homo Sapien

<400> 377

Met Asn Ser Ser Lys Ser Ser Glu Thr Gln Cys Thr Glu Arg Gly

1 5 10 15

Cys Phe Ser Ser Gln Met Phe Leu Trp Thr Val Ala Gly Ile Pro 20 25 30

Ile Leu Phe Leu Ser Ala Cys Phe Ile Thr Arg Cys Val Val Thr
35 40 45

Phe Arg Ile Phe Gln Thr Cys Asp Glu Lys Lys Phe Gln Leu Pro
50 55 60

Glu Asn Phe Thr Glu Leu Ser Cys Tyr Asn Tyr Gly Ser Gly Ser 65 70 75

Val Lys Asn Cys Cys Pro Leu Asn Trp Glu Tyr Phe Gln Ser Ser 80 85

Cys Tyr Phe Phe Ser Thr Asp Thr Ile Ser Trp Ala Leu Ser Leu 95 100 105

Lys Asn Cys Ser Ala Met Gly Ala His Leu Val Val Ile Asn Ser 110 115 120

Gln Glu Glu Gln Glu Phe Leu Ser Tyr Lys Lys Pro Lys Met Arg 125 130 135

Glu Phe Phe Ile Gly Leu Ser Asp Gln Val Val Glu Gly Gln Trp 140 145 150

Gln Trp Val Asp Gly Thr Pro Leu Thr Lys Ser Leu Ser Phe Trp
155 160 165

Asp Val Gly Glu Pro Asn Asn Ile Ala Thr Leu Glu Asp Cys Ala 170 175 180

```
Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val
                 185
 Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile
 Asn Pro Leu Asn Lys Gly Lys Ser Leu
                 215
<210> 378
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 378
ttcagcttct gggatgtagg g 21
<210> 379
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 379
tattcctacc atttcacaaa tccg 24
<210> 380
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 380
ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49
<210> 381
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 381
gcagattttg aggacagcca cctcca 26
```

```
<211> 18
           <212> DNA
           <213> Artificial Sequence
           <223> Synthetic oligonucleotide probe
           <400> 382
            ggeettgeag acaaccgt 18
           <210> 383
           <211> 21
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic oligonucleotide probe
A. B. B. B. B. U.R Q. B
           <400> 383
            cagactgagg gagatccgag a 21
           <210> 384
           <211> 20
ĮŊ
           <212> DNA
ΓIJ
           <213> Artificial Sequence
[]
           <220>
           <223> Synthetic oligonucleotide probe
IJ
¥. **
           <400> 384
į.
            cagetgeeet teeceaacea 20
14
O
           <210> 385
ļ.
           <211> 18
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic oligonucleotide probe
           <400> 385
            catcaagege etetacca 18
           <210> 386
           <211> 21
           <212> DNA
           <213> Artificial Sequence
           <223> Synthetic oligonucleotide probe
           <400> 386
```

<210> 382

```
<210> 387
           <211> 18
           <212> DNA
           <213> Artificial Sequence
           <223> Synthetic oligonucleotide probe
           <400> 387
           gggccatcac agctccct 18
           <210> 388
           <211> 22
           <212> DNA
           <213> Artificial Sequence
<220>
           <223> Synthetic oligonucleotide probe
           <400> 388
           gggatgtggt gaacacagaa ca 22
Ų
In
           <210> 389
fy
           <211> 22
<212> DNA
E
           <213> Artificial Sequence
O
٦,إ
           <220>
ķ4
           <223> Synthetic oligonucleotide probe
Ŋ
ė
           tgccagctgc atgctgccag tt 22
           <210> 390
           <211> 20
           <212> DNA
           <213> Artificial Sequence
           <223> Synthetic oligonucleotide probe
           <400> 390
           cagaaggatg tcccgtggaa 20
           <210> 391
           <211> 17
           <212> DNA
           <213> Artificial Sequence
           <220>
```

cacaaactcg aactgettet g 21

```
<223> Synthetic oligonucleotide probe
<400> 391
 gccgctgtcc actgcag 17
<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 392
 gacggcatcc tcagggccac a 21
<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 393
atgtcctcca tgcccacgcg 20
<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 394
gagtgcgaca tcgagagctt 20
<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 395
ccgcagcctc agtgatga 18
<210> 396
<211> 21
<212> DNA
<213> Artificial Sequence
```

```
The first that the
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 396
gaagagcaca gctgcagatc c 21
<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 397
gaggtgtcct ggctttggta gt 22
<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 398
 cctctggcgc ccccactcaa 20
<210> 399
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 399
 ccaggagagc tggcgatg 18
<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 400
 gcaaattcag ggctcactag aga 23
<210> 401
<211> 29
```

```
<212> DNA
            <213> Artificial Sequence
            <223> Synthetic oligonucleotide probe
            <400> 401
            cacagagcat ttgtccatca gcagttcag 29
            <210> 402
            <211> 22
            <212> DNA
            <213> Artificial Sequence
            <220>
            <223> Synthetic oligonucleotide probe
           <400> 402
            ggcagagact tccagtcact ga 22
Street Street Street Street Street Street
           <210> 403
           <211> 22
           <212> DNA
           <213> Artificial Sequence
fU
           <220>
IJ
           <223> Synthetic oligonucleotide probe
           <400> 403
Ö
            gccaagggtg gtgttagata gg 22
į.
           <210> 404
ļ.
           <211> 24
Ü
           <212> DNA
ļ.d
           <213> Artificial Sequence
           <223> Synthetic oligonucleotide probe
           <400> 404
            caggccccct tgatctgtac ccca 24
           <210> 405
           <211> 23
           <212> DNA
           <213> Artificial Sequence
           <220>
           <223> Synthetic oligonucleotide probe
           <400> 405
            gggacgtgct tctacaagaa cag 23
```

```
Rost Gene can blan hand Rost Bart Bart
èé
ķ≈
ij
```

```
<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 406
caggettaca atgttatgat cagaca 26
<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 407
tattcagagt tttccattgg cagtgccagt t 31
<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 408
tctacatcag cctctctgcg c 21
<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 409
cgatcttctc cacccaggag cgg 23
<210> 410
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 410
```

```
<210> 411
                                                 <211> 23
                                                 <212> DNA
                                                 <213> Artificial Sequence
                                                 <223> Synthetic oligonucleotide probe
                                                 <400> 411
                                                   ctccctgaat ggcagcctga gca 23
                                                 <210> 412
                                                 <211> 24
                                                 <212> DNA
                                                 <213> Artificial Sequence
the the same are the same than the state that the s
                                      <223> Synthetic oligonucleotide probe
                                                 <400> 412
                                                 aggtgtttat taagggccta cgct 24
 6
                                                 <210> 413
O
                                                 <211> 19
                                                 <212> DNA
 H
                                                 <213> Artificial Sequence
(j
 4.4
                                                <220>
þà
                                                 <223> Synthetic oligonucleotide probe
ļ.
ij
                                                 <400> 413
                                                   cagagcagag ggtgccttg 19
                                                 <210> 414
                                                 <211> 21
                                                 <212> DNA
                                                 <213> Artificial Sequence
                                                 <220>
                                                 <223> Synthetic oligonucleotide probe
                                                 <400> 414
                                                    tggcggagtc ccctcttggc t 21
                                                 <210> 415
                                                 <211> 22
                                                 <212> DNA
                                                 <213> Artificial Sequence
                                                 <220>
```

gecaggeete acattegt 18

```
<223> Synthetic oligonucleotide probe
                                             <400> 415
                                                ccctgtttcc ctatgcatca ct 22
                                             <210> 416
                                             <211> 21
                                             <212> DNA
                                             <213> Artificial Sequence
                                             <220>
                                             <223> Synthetic oligonucleotide probe
                                             <400> 416
                                                tcaacccctg accctttcct a 21
                                             <210> 417
                                             <211> 24
 South Committees from the fact of the fact
                                             <212> DNA
                                             <213> Artificial Sequence
                                             <220>
                                             <223> Synthetic oligonucleotide probe
                                             <400> 417
                                                ggcaggggac aagccatctc tect 24
 e
Cj
                                             <210> 418
                                             <211> 20
                                             <212> DNA
 ٦. أ
                                             <213> Artificial Sequence
ŗ÷
þà
                                             <220>
O
                                             <223> Synthetic oligonucleotide probe
                                             <400> 418
                                                gggactgaac tgccagcttc 20
                                             <210> 419
                                             <211> 22
                                             <212> DNA
                                             <213> Artificial Sequence
                                             <223> Synthetic oligonucleotide probe
                                             <400> 419
                                                gggccctaac ctcattacct tt 22
                                             <210> 420
                                             <211> 23
                                             <212> DNA
                                             <213> Artificial Sequence
```

<220>

```
<223> Synthetic oligonucleotide probe
<400> 420
tgtetgeete ageeecagga agg 23
<210> 421
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 421
tctgtccacc atcttgcctt g 21
<210> 422
<211> 3554
<212> DNA
<213> Homo Sapien
<400> 422
gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50
atggcgctga ggcggccacc gcgactccgg ctctgcgctc ggctgcctga 100
cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaatc 150
tcaaatccag caatcgaacc ccagtggtac aggaatttga aagtgtggaa 200
ctgtcttgca tcattacgga ttcgcagaca agtgacccca ggatcgagtg 250
gaagaaaatt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300
ttcagggaga cttggcgggt cgtgcagaaa tactggggaa gacatccctg 350
aagatetgga atgtgacaeg gagagaetea geeetttate getgtgaggt 400
cgttgctcga aatgaccgca aggaaattga tgagattgtg atcgagttaa 450
ctgtgcaagt gaagccagtg accectgtct gtagagtgcc gaaggctgta 500
ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550
ccggcctcac tacagctggt atcgcaatga tgtaccactg cccacggatt 600
ccagagecaa teccagattt egeaattett ettteeaett aaactetgaa 650
acaggcactt tggtgttcac tgctgttcac aaggacgact ctgggcagta 700
ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750
```

agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800 gttgtccttg ctgtactggc cctgatcacg ttgggcatct gctgtgcata 850 cagacgtggc tacttcatca acaataaaca ggatggagaa agttacaaga 900 acccagggaa accagatgga gttaactaca teegcaetga egaggaggge 950 gacttcagac acaagtcatc gtttgtgatc tgagacccgc ggtgtggctg 1000 agagegeaca gagegeacgt geacatacet etgetagaaa eteetgteaa 1050 ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100 ttttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150 catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200 ggaagcgaaa ctgggtgcgt tcactgagtt gggttcctaa tctgtttctg 1250 gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300 aaacgcccgt gctgggccct gtgaagccag catgttcacc actggtcgtt 1350 cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400 ageagegeat eceggeggga acceagaaaa ggettettae acageageet 1450 tacttcatcg gcccacagac accaccgcag tttcttctta aaggetctgc 1500 tgatcggtgt tgcagtgtcc attgtggaga agctttttgg atcagcattt 1550 tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600 cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650 accttcgtct taggctaagt ctgaaatggt actgaaatat gcttttctat 1700 gggtcttgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750 tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800 catacaatgt taaataacct attttttaa aaaagttcaa cttaaggtag 1850 aagttccaag ctactagtgt taaattggaa aatatcaata attaagagta 1900 ttttacccaa ggaatcctct catggaagtt tactgtgatg ttccttttct 1950 cacacaagtt ttageetttt teacaaggga acteatactg tetacacate 2000 agaccatagt tgcttaggaa acctttaaaa attccagtta agcaatgttg 2050

aaatcagttt gcatctcttc aaaagaaacc tctcaggtta gctttgaact 2100 gcctcttcct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150 gccctcagat gtacatacac agatgccagt cagctcctgg ggttgcgcca 2200 ggegeeeeg etetagetea etgttgeete getgtetgee aggaggeeet 2250 gccatccttg ggccctggca gtggctgtgt cccagtgagc tttactcacg 2300 tggcccttgc ttcatccagc acagctctca ggtgggcact gcagggacac 2350 tggtgtcttc catgtagcgt cccagctttg ggctcctgta acagacctct 2400 ttttggttat ggatggctca caaaataggg cccccaatgc tattttttt 2450 ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500 tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550 cccactgttc ctctttgcca cagagaaagc acccagacgc cacaggctct 2600 gtcgcatttc aaaacaaacc atgatggagt ggcggccagt ccagcctttt 2650 aaagaacgtc aggtggagca gccaggtgaa aggcctggcg gggaggaaag 2700 tgaaacgcct gaatcaaaag cagttttcta attttgactt taaatttttc 2750 atccgccgga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800 teagaageet gtgttettea agageaggtg tteteageet cacatgeeet 2850 gccgtgctgg actcaggact gaagtgctgt aaagcaagga gctgctgaga 2900 aggagcactc cactgtgtgc ctggagaatg gctctcacta ctcaccttgt 2950 ctttcagctt ccagtgtctt gggtttttta tactttgaca gctttttttt 3000 aattgcatac atgagactgt gttgactttt tttagttatg tgaaacactt 3050 tgccgcaggc cgcctggcag aggcaggaaa tgctccagca gtggctcagt 3100 gctccctggt gtctgctgca tggcatcctg gatgcttagc atgcaagttc 3150 ectecateat tgccaecttg gtagagaggg atggeteece acceteageg 3200 ttggggattc acgctccagc ctccttcttg gttgtcatag tgatagggta 3250 gccttattgc cccctcttct tataccctaa aaccttctac actagtgcca 3300 tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctgggaa 3350 gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatttt 3400

aagatatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450 gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500 caccgtaatt tggcatttgt ttaacctcat ttataaaagc ttcaaaaaaa 3550 ccca 3554

<210> 423

<211> 310

<212> PRT

<213> Homo Sapien

<400> 423

Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu

1 5 10 15

Pro Asp Phe Phe Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly 20 25 30

Ala Val Asn Leu Lys Ser Ser Asn Arg Thr Pro Val Val Gln Glu
35 40 45

Phe Glu Ser Val Glu Leu Ser Cys Ile Ile Thr Asp Ser Gln Thr
50 55 60

Ser Asp Pro Arg Ile Glu Trp Lys Lys Ile Gln Asp Glu Gln Thr
65 70 75

Thr Tyr Val Phe Phe Asp Asn Lys Ile Gln Gly Asp Leu Ala Gly 80 85 90

Arg Ala Glu Ile Leu Gly Lys Thr Ser Leu Lys Ile Trp Asn Val 95 100 105

Thr Arg Arg Asp Ser Ala Leu Tyr Arg Cys Glu Val Val Ala Arg 110 115 120

Asn Asp Arg Lys Glu Ile Asp Glu Ile Val Ile Glu Leu Thr Val 125 130 135

Gln Val Lys Pro Val Thr Pro Val Cys Arg Val Pro Lys Ala Val 140 145 150

Pro Val Gly Lys Met Ala Thr Leu His Cys Gln Glu Ser Glu Gly
155 160 165

His Pro Arg Pro His Tyr Ser Trp Tyr Arg Asn Asp Val Pro Leu 170 175 180

Pro Thr Asp Ser Arg Ala Asn Pro Arg Phe Arg Asn Ser Ser Phe 185 190 195

His	Leu	Asn	Ser	Glu 200	Thr	Gly	Thr	Leu	Val 205	Phe	Thr	Ala	Val	His 210
Lys	Asp	Asp	Ser	Gly 215	Gln	Tyr	Tyr	Cys	Ile 220	Ala	Ser	Asn	Asp	Ala 225
Gly	Ser	Ala	Arg	Cys 230	Glu	Glu	Gln	Glu	Met 235	Glu	Val	Tyr	Asp	Leu 240
Asn	Ile	Gly	Gly	Ile 245	Ile	Gly	Gly	Val	Leu 250	Val	Val	Leu	Ala	Val 255
Leu	Ala	Leu	Ile	Thr 260	Leu	Gly	Ile	Cys	C ys 265	Ala	Tyr	Arg	Arg	Gly 270
Tyr	Phe	Ile	Asn	Asn	Lys	Gln	Asp	Gly	Gl u	Ser	Tyr	Lys	Asn	Pro
				275					280					285
Gly	Lys	Pro	Asp	Gly 290	Val	Asn	Tyr	Ile	Arg 295	Thr	Asp	Glu	Glu	Gly 300
Asp	Phe	Arg	His	Lys 305	Ser	Ser	Phe	Val	Ile 310					