Tropospheric Ozone in the United Kingdom Chemistry and Aerosols (UKCA) model

Paul Griffiths

Cambridge University and NCAS Climate

Visiting Scientist, NARIT, Thailand

Talk outline

- Ozone in the troposphere
 - Is formed from Volatile Organic Compounds (VOC) and nitrogen oxide emissions
 - Is a non-linear system
 - Large levels of NOx cause a decrease in ozone production
- The UKCA model and what it says about ozone in the present day
 - Where are regions of ozone production and destruction?
 - How accurate are UKCA predictions of ozone?
- Using UKCA to examine how ozone may change in future
 - Anthropogenic emissions of NOx and VOC change
 - Land is used differently deforestation changes biogenic (natural)
 emissions

Model components of Earth System

Earth system modelling within QUEST. Based on a diagram by M. Joshi

- UK Met Office Unified Model (UM) is a weather forecast model run in climate mode
 basis for HadGEM/HadES models, next generation UK-ESM1
- Online chemistry feedbacks between atmospheric composition, radiation and transport

Model components of Earth System

Earth system modelling within QUEST. Based on a diagram by M. Joshi

- UK Met Office Unified Model (UM) is a weather forecast model run in climate mode
 basis for HadGEM/HadES models, next generation UK-ESM1
- Online chemistry feedbacks between atmospheric composition, radiation and transport

Ozone in the troposphere

Ozone in the troposphere

- To a chemist, the atmosphere is an oxidizing environment
- Pollution released into the atmosphere is slowly degraded by oxidation
- Viewed a certain way, the atmosphere is a low temperature combustion system.
- Volatile organic compounds are transformed into CO₂
 - $VOC + O_2 \rightarrow CO_2 + H_2O$
 - Ozone is can be produced or destroyed during this process
 - Ozone affects other pollutants, e.g. NO₂
- Ozone
 - A key component of UK Air Quality
 - Implications for health

Ozone from a chemist's perspective - about in situ production/loss

$$O_3 + h\nu(\lambda < 310 \text{nm}) \rightarrow O_2 + O^1 D$$
 $O^1 D + H_2 O \rightarrow 2O H$
 $OH + VOC \rightarrow RO_2 + H_2 O$
 $RO_2 + NO \rightarrow NO_2 + RO$
 $NO_2 + h\nu + O_2 \rightarrow O_3 + NO$

- Local or regional emissions of volatile organic compounds (VOC)
- VOC can have industrial or natural sources.
- React with oxidant OH to make peroxy radicals, RO2
- Peroxy radicals, RO2 react with local or regional emissions of NO to make NO2
- NO2 is photolysed rapidly to make ozone
- More ozone is produced than is consumed = ozone production
- Ozone production requires sunlight, VOC and NO

Ozone from a chemist's perspective - about in situ production/loss

- Local or regional emissions of volatile organic compounds (VOC)
- VOC can have industrial or natural sources.
- React with oxidant OH to make peroxy radicals, RO2
- Peroxy radicals, RO2 react with local or regional emissions of NO to make NO2
- NO2 is photolysed rapidly to make ozone
- More ozone is produced than is consumed = ozone production
- Ozone production requires sunlight, VOC and NO

Ozone from a chemist's perspective - cycle of O3 production

- Ozone initiates and is the product of this chemistry.
- When NO and VOC present in sufficient concentration, more ozone is
 produced than is consumed = ozone production
- Ozone production requires sunlight, VOC and NO
- OH product affects lifetime of CH₄

Ozone from a chemist's perspective - cycle of O3 production

$$O_3 + h\nu(\lambda < 310 \text{nm}) \rightarrow O_2 + O^1 D$$
 $O^1 D + H_2 O \rightarrow 2OH$
 $OH + VOC \rightarrow RO_2 + H_2 O$
 $RO_2 + NO \rightarrow NO_2 + RO$
 $NO_2 + h\nu + O_2 \rightarrow O_3 + NO$

- Ozone initiates and is the product of this chemistry.
- When NO and VOC present in sufficient concentration, more ozone is produced than is consumed = ozone production
- Ozone production requires sunlight, VOC and NO
- OH product affects lifetime of CH₄

Ozone from a chemist's perspective - cycle of O3 production

$$O_3 + h\nu(\lambda < 310 \text{nm}) \rightarrow O_2 + O^1 D$$

$$O^1 D + H_2 O \rightarrow 2OH$$

$$OH + VOC \rightarrow RO_2 + HO 3O$$

$$RO_2 + NO \rightarrow NS + RO$$

$$NO_2 + b\nu + O_2 + O^2 D_3 + NO$$

- Ozone initiates and is the product of this chemistry.
- When Al Pand VOC present in sufficient concentration, more ozone is Infolited than is consumed = ozone production
 - Ozone production requires sunlight, VOC and NO
 - OH product affects lifetime of CH₄

Ozone in the troposphere

Ozone production in UKCA: ozone production/loss

- Ozone is **produced close to the surface** via VOC oxidation
- Some ozone is lost via deposition to the surface (dry deposition)
- Regions with high NOx may not produce as much ozone

Ozone production in UKCA: ozone production/loss

- There is significant loss in the mid troposphere (via HO2 + O3)
- Most global tropospheric ozone is produced in the NH and lost in the tropics

UKCA vs Simone Tilmes' ozonesonde data comparison

UKCA vs Simone Tilmes' ozonesonde data comparison

UKCA vs Simone Tilmes' ozonesonde data comparison

Ozone in future climate:

Vegetation, emissions and chemistry at work

How does atmospheric chemistry change in future climate?

- Ozone levels in future climate is a wicked problem ['too important to ignore, too difficult to solve']
 - Anthropogenic emissions of VOC and NOx will change
 - The amount of water vapour increases so OH increases
 - What happens to the atmospheric dynamics and transport of ozone?
 - Biomass burning / lightning (future study)
 - The temperature increases most reactions go faster, plant emissions increase e.g. isoprene, C5H8 (emitted by trees)
 - Land use / land cover is changing

Isoprene emissions in future climate

- 500 Tg C isoprene emitted annually
- Broad-leafed trees major emitters, crops emit less
- Reacts quickly in the atmosphere in the presence of NOx to produce ozone.
- As temperature increases, isoprene emission is enhanced
- As CO₂ increases, isoprene emission is inhibited

Need to consider temperature, CO₂ and land use to quantify isoprene

Land use changes - from Sheffield Digital Vegetation Model

Change in grid cell fraction in the model in year 2095

Isoprene emissions changes - from MEGAN

Change in isoprene emissions in the model year 2095

- How does ozone respond?
- Single perturbations to climate system for each forcer
- Focus on isoprene (VOC) from vegetation.
- Then allow perturbations to interact
- UM/UKCA N48L60, CheT chemistry,
 - isoprene emissions from MEGAN
 - vegetation distribution from Sheffield Dynamic Vegeation model,
 - other emissions
 according to IPCC REF
 B2 scenario

Dots indicate regions of significant change compared to model variability

Conclusions

- Ozone in global climate models is challenging
 - While **Emissions, chemistry** have strong effect, **land use change** play a significant role.
 - Strong effects where vegetation cover is changing due to changes to deposition.
- Underpinning emissions estimates and sinks depend crucially on land use and land cover estimates
- Air quality, health, climate connect at local level
 - Long range transport of ozone precursors also important regionally
- Tropospheric ozone burden important to methane lifetime and radiative forcing

Thank you!

Questions?

