ИТОГОВЫЙ ПРОЕКТ по программе «Инженер данных»

Проект № 3. Анализ логов

Выполнила: Лазарева Ирина Михайловна

Название проекта: Анализ логов

Описание проекта:

Разработать скрипт формирования витрины следующего содержания:

- Суррогатный ключ устройства
- Название устройства
- Количество пользователей
- Доля пользователей данного устройства от общего числа пользователей.
- Количество совершенных действий для данного устройства
- Доля совершенных действий с данного устройства, относительно других устройств
- Список из 5 самых популярных браузеров, используемых на данном устройстве различными пользователями, с указанием доли использования для данного браузера относительно остальных браузеров
- Количество ответов сервера отличных от 200 на данном устройстве
- Для каждого из ответов сервера, отличных от 200, сформировать поле, в котором будет содержаться количество ответов данного типа

Источник данных: https://disk.yandex.ru/d/BsdiH3DMTHpPrw

Цели проекта, бизнес-задачи, требования

- Цель: создать скрипт для формирования витрины на основе логов web-сайта.
- Необходимо проанализировать лог-файл с информацией о посещении сайта пользователя и ботами, которая позволит составить более точную и подробную статистику для того, чтобы понять, откуда приходят пользователи, где они находятся и какими устройствами пользуются для визита.
- Благодаря данному лог-файлу нужно получить информацию об используемом устройстве, браузере, IP-адрес посетителя и его действиях.

План реализации

- 1. Постановка задачи.
- 2. Анализ данных в предоставленных файлах.
- 3. Проектирование схемы данных для формирования требуемой витрины.
- 4. Анализ подстроки user-agent и формирование файла, содержащего необходимую информацию.
- 5. Создание на основе лог-файла таблицы для размещения необработанных данных.
- 6. Процесс data quality для анализа данных на корректность, исправление ошибок/опечаток, определение структуры и типов данных.
- 7. Формирование базовой таблицы.
- 8. Разработка запросов для формирования требуемых таблиц в соответствии со схемой данных.

Используемые технологии

- Система виртуализации VirtualBox с операционной системой Ubuntu. Достоинства: opensource и бесплатно.
- Система контейнеризации Docker, сборка Apache Spark Standalone Cluster on Docker (Spark Cluster, JupyterLab). Достоинства: легко масштабируется на решение реальных задач; opensource и бесплатно.
- Инструмент для написания и отладки кода JupyterLab (PySpark). Достоинства: привычный инструмент; opensource и бесплатно.

Структура исходных данных

1. Данные файла access.log сохраняются в следующей схеме:

```
schema = T.StructType(fields=[
   T.StructField("IP", T.StringType(), True),
   T.StructField("sign_1", T.StringType(), True),
   T.StructField("sign_2", T.StringType(), True),
   T.StructField("Date_access", T.StringType(), True),
   T.StructField("Date_access_", T.StringType(), True),
   T.StructField("Action", T.StringType(), True),
   T.StructField("Status", T.IntegerType(), True),
   T.StructField("Size", T.IntegerType(), True),
   T.StructField("sign_3", T.StringType(), True),
   T.StructField("User_agent", T.StringType(), True),
   T.StructField("sign_4", T.StringType(), True),
   T.StructField("Browser", T.StringType(), True),
   T.StructField("Device", T.StringType(), True),
   T.StructField("Device", T.StringType(), True),
])
```

2. Структура базовой таблицы для формирования витрины:

```
IP| Date_access| Action|Status| Size| User_agent| Browser|Device|

54.36.149.41|[22/Jan/2019:03:5...|GET /filter/27|13...| 200|30577|Mozilla/5.0 (comp...| AhrefsBot|Spider|

31.56.96.51|[22/Jan/2019:03:5...|GET /image/60844/...| 200| 5667|Mozilla/5.0 (Linu...|Chrome Mobile|Huawei|

31.56.96.51|[22/Jan/2019:03:5...|GET /image/61474/...| 200| 5379|Mozilla/5.0 (Linu...|Chrome Mobile|Huawei|
```

Описание результирующих таблиц

Таблица 1: Устройства по пользователям(Devices_Users)

таблица 1. Устроиства по пользователим (Devices_Osers)				
Имя атрибута	Тип значений			
id_device	целый			
Device	строковый			
Count_Users	целый			
Ratio_Users	вещественный			
	Имя атрибута id_device Device Count_Users			

Таблица 3: Браузеры (Browsers)

raomina o. ppaysepsi (browsers)				
Атрибуты	Имя атрибута	Тип значений		
Название устройства	Device	строковый		
Популярный браузер	Browser	строковый		
Доля использования	Ratio_browser	вещественный		
данного браузера				
относительно остальных				
браузеров				
Рейтинг браузера	row_number	целый		

Таблица 2: Устройства по действиям (Devices_Actions)

Атрибуты	Имя атрибута	Тип значений
Суррогатный ключ	id_device	целый
устройства		
Название устройства	Device	строковый
Количество совершенных	Count_Actions	целый
действий для данного		
устройства		
Доля совершенных	Ratio_Actions	вещественный
действий с данного		
устройства, относительно		
других устройств		

Таблица 4: Ответы сервера (Server_Answers)

Атрибуты	Имя атрибута	Тип значений
Название устройства	Device	строковый
Общее количество	Count_Status_all	целый >
ответов сервера		
отличных от 200		
Статус ответа отличный	Status	целый
от 200		
Количество ответов	Count_Status	целый
сервера		

Схема хранения данных в таблицах

Результаты разработки

- Создана таблица (датафрейм) для хранения необработанных данных
- Импортированы полученные из сети данные
- Проведена проверка на корректность полученных данных
- Удалены неинформативные столбцы
- Проведен анализ значений полей строки лог-файла. Из подстроки «User_agent» выделены значения «Device.Brand» и «Browser.Family» и добавлены в таблицу
- Сформирована базовая таблица (датафрейм) с результатами предобработки исходных данных
- На основе запросов к базовой таблице сформированы четыре спроектированные таблицы

Выводы

- Поставленная задача выполнена в части проектирования, предобработки исходных данных и реализована в коде
- Возможности выбранных технологий достаточны для решения поставленной задачи
- Полученные витрины данных сохранены в трех файлах с целью уменьшения дублирования