# Практикум 2.9. Условный экстремум функции нескольких переменных

**Цель работы** — познакомиться с понятием условного экстремума функции нескольких переменных; научиться использовать средства Anaconda для геометрической иллюстрации условного экстремума функции двух переменных и его численного нахождения.

*Продолжительность работы* – 4 часа.

**Оборудование, приборы, инструментарий** – работа выполняется в компьютерном классе с использованием Anaconda.

# Порядок выполнения

- 1. Работа начинается с выполнения общих упражнений. Их наличие в отчете является допуском к сдаче индивидуального зачетного задания по практикуму.
- 2. После выполнения общих упражнений выполняются индивидуальные задания; результаты заносятся в отчет.
- 3. Подготовить отчёт, в который включить упражнения из раздела «Краткие теоретические сведения и практические упражнения» и упражнения для самостоятельной работы. Отчёт представить в виде документа Microsoft Word, имя файла (пример): mp\_10\_Ivanov\_P\_01\_s\_1 (факультет\_группа\_Фамилия студента\_Инициал\_номер лабораторной, семестр). Отчет должен содержать по каждому выполненному упражнению: № упражнения, текст упражнения; команды, скопированные из командного окна, с комментариями к ним и результаты их выполнения, включая построенные графики; тексты defфункций; выводы.

# Краткие теоретические сведения и практические упражнения

# 1. Геометрическая иллюстрация условного экстремума

Напомним понятие условного экстремума для случая функции двух переменных. Пусть дано уравнение  $\varphi(x,y)=0$  и точка  $(x_0,y_0)$  удовлетворяет этому уравнению. Пусть функция z=f(x,y) определена в некоторой окрестности точки  $(x_0,y_0)$  и непрерывна в этой точке. Тогда если для всех точек (x,y) этой окрестности, удовлетворяющих уравнению  $\varphi(x,y)=0$ , выполняется неравенство  $f(x,y) \leq f(x_0,y_0)$  ( $f(x,y) \geq f(x_0,y_0)$ ), то  $(x_0,y_0)$  называется точкой условного максимума (условного минимума) функции z=f(x,y), а  $\varphi(x,y)=0$  - уравнением связи.

Уравнение  $\varphi(x,y)=0$ , задающее некоторую кривую на плоскости xy, определяет в пространстве xyz цилиндрическую поверхность, образующая которой параллельна оси z.

Пусть функция z = f(x, y) определяет некоторую поверхность в пространстве xyz и цилиндрическая поверхность  $\varphi(x, y) = 0$  высекает из поверхности z = f(x, y) некоторую линию. По форме этой линии можно судить об условных максимумах и минимумах функции z = f(x, y).

Для пояснения изложенной идеи рассмотрим функцию z = f(x, y), график которой представлен на рис. 1. В качестве ограничения взята плоскость y - a = 0.



Для геометрической иллюстрации условного экстремума нужно построить в python поверхность z = f(x, y) и линию, которую высекает на этой поверхности цилиндрическая поверхность  $\varphi(x, y) = 0$ . Чтобы построить линию, ее задают параметрическими уравнениями.

Например, мы хотим построить линию, высекаемую на поверхности  $z=4-x^2-y^2$  цилиндрической поверхностью  $x^2+y^2=6x+8y$ . Перепишем последнее уравнение в виде  $(x-3)^2+(y-4)^2=5^2$  и положим  $x=3+5\cos t$ ,  $y=4+5\sin t$ ,  $z=-46-30\cos t-40\sin t$ ,  $t\in[0;2\pi)$ . Полученные параметрические уравнения определяют требуемую линию.

# Упражнение 1.

Построить на поверхности z = f(x, y) кривую, определяемую ограничением  $\varphi(x, y) = 0$ . По возможности, определить визуально наличие и примерное расположение точек безусловного минимума и максимума функции z = f(x, y), а также точек условного минимума и максимума этой функции при ограничении  $\varphi(x, y) = 0$ .

a) 
$$z = \frac{1}{3}x^3 + \frac{1}{3}y^3$$
, если  $1 = x + 4y$ .

б) 
$$z = (x+1)^2 + y^2$$
, если  $y^2 - x^3 = 0$ .

# 2. Прямой метод отыскания точек условного экстремума

Понятие условного экстремума обобщается на случай функции n переменных  $f(x_1,...,x_n)$  и m уравнений связи  $\varphi_1(x_1,...,x_n)=0$ , ...,  $\varphi_m(x_1,...,x_n)=0$ .

Предположим, что из системы уравнений  $\varphi_1(x_1,...,x_n)=0$ , ...,  $\varphi_m(x_1,...,x_n)=0$  можно выразить какие-либо m переменных  $x_i$  через остальные n-m переменных. Тогда, подставив вместо соответствующих переменных  $x_i$  их выражения через остальные n-m переменных в функцию  $f(x_1,...,x_n)$ , получим функцию F от n-m переменных. Тем самым задача о нахождении точек условного экстремума сводится к задаче нахождения обычного (безусловного) экстремума функции F.

**Упражнение 2.** Используя прямой метод, найдите точки условного экстремума функции  $z = \frac{1}{3}x^3 + \frac{1}{3}y^3$ , если 1 = x + 4y.

Заметим, что ввиду трудности разрешения уравнений связей относительно какой-либо группы переменных прямой метод нахождения условного экстремума редко бывает эффективным. Далее рассмотрим другой способ решения задачи — метод множителей Лагранжа.

# 3. Метод множителей Лагранжа

Метод множителей Лагранжа поиска условного экстремума рассмотрим для случая функции двух переменных z = f(x, y) и одного уравнения связи  $\varphi(x, y) = 0$ .

Рассмотрим функцию  $L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y)$ . Число  $\lambda$  называется множителем Лагранжа, а функция  $L(x, y, \lambda)$  функцией Лагранжа. Метод множителей Лагранжа применяется при определенных ограничениях на функции f(x, y) и  $\varphi(x, y)$  и вытекает из двух теорем.

Теорема 1. Пусть  $(x_0, y_0)$  - точка условного экстремума функции f(x, y) при наличии связи  $\varphi(x, y) = 0$ , и пусть функции f(x, y) и  $\varphi(x, y)$  непрерывно дифференцируемы в окрестности точки  $(x_0, y_0)$  и хотя бы одна из частых производных  $\varphi'_x(x_0, y_0)$ ,  $\varphi'_y(x_0, y_0)$  отлична от нуля. Тогда найдется такое значение  $\lambda_0$ , что  $(x_0, y_0, \lambda_0)$  удовлетворяет системе  $L'_x(x_0, y_0, \lambda_0) = 0$ ,  $L'_y(x_0, y_0, \lambda_0) = 0$ ,  $L'_\lambda(x_0, y_0, \lambda_0) = 0$ .

Заметим, что точка  $(x_0,y_0,\lambda_0)$ , определяемая системой  $L_x'(x_0,y_0,\lambda_0)=0$ ,  $L_y'(x_0,y_0,\lambda_0)=0,\ L_\lambda'(x_0,y_0,\lambda_0)=0$ , называется *стационарной точкой*.

Теорема 2 (достаточные условия условного экстремума). Пусть функции, f(x,y).  $\varphi(x,y)$  имеют непрерывные частные производные второго порядка в окрестности точки  $(x_0,y_0)$ ,  $(x_0,y_0,\lambda_0)$  - стационарная точка функции Лагранжа  $L(x,y,\lambda)$  и  $\Delta$  - определитель вида

$$\Delta = - \begin{vmatrix} 0 & \varphi_x'(x_0, y_0) & \varphi_y'(x_0, y_0) \\ \varphi_x'(x_0, y_0) & L_{xx}''(x_0, y_0, \lambda_0) & L_{xy}''(x_0, y_0, \lambda_0) \\ \varphi_y'(x_0, y_0) & L_{xy}''(x_0, y_0, \lambda_0) & L_{yy}''(x_0, y_0, \lambda_0) \end{vmatrix}.$$

Тогда, если  $\Delta < 0$ , то функция z = f(x, y) имеет в точке  $(x_0, y_0)$  условный максимум; если  $\Delta > 0$ , то условный минимум.

Обратите внимание, что наличие ограничений на функции f(x,y) и  $\varphi(x,y)$  в формулировках теорем говорит о том, что есть функции z = f(x,y) и ограничения

 $\varphi(x,y)$ , для которых точки условного экстремума могут не быть стационарными точками.

# Упражнение 3.

Выясните, для каких из перечисленных ниже задач можно использовать метод множителей Лагранжа:

- а) Найти условный экстремум  $z = \frac{1}{3}x^3 + \frac{1}{3}y^3$ , если 1 = x + 4y.
- б) Найти условный экстремум  $z = (x+1)^2 + y^2$ , если  $y^2 x^3 = 0$ .

# Упражнение 4.

Используя метод множителей Лагранжа, найдите точки условного экстремума в тех из перечисленных ниже задачах, к которым этот метод применим:

- а) Найти условный экстремум  $z = \frac{1}{3}x^3 + \frac{1}{3}y^3$ , если 1 = x + 4y.
- б) Найти условный экстремум  $z = (x+1)^2 + y^2$ , если  $y^2 x^3 = 0$ .

# Упражнение 5.

Построить на поверхности z=f(x,y) кривую, определяемую ограничением  $\phi(x,y)=0$ . По возможности, определить визуально наличие и примерное расположение точек безусловного минимума и максимума функции z=f(x,y), а также точек условного минимума и максимума этой функции при ограничении  $\phi(x,y)=0$ . Выясните, для каких из перечисленных ниже задач можно использовать метод множителей Лагранжа. Используя метод множителей Лагранжа, найдите точки условного экстремума в тех из перечисленных ниже задачах, к которым этот метод применим.

| Номер компьютера | f(x,y)                  | <b>ф</b> (x, y)    |
|------------------|-------------------------|--------------------|
| 1.               | $x^2+12 x y+2 y^2$      | $4x^2 + y^2 - 25$  |
| 2.               | $x^2-2xy+y^2$           | $4x^2+2y^2-9$      |
| 3.               | $2x^2 + 6xy + y^3$      | $x^2 + y^2 - 12$   |
| 4.               | $x^2 + y^2 - 2x + 3y$   | $2x^2 + y^2 + 2xy$ |
| 5.               | $x^3+2xy+y^2$           | $4x^2 + y^3 - 12$  |
| 6.               | $4x^2 - 12xy + 3y^2$    | $4x^2+y^2-9$       |
| 7.               | $2x^3 + 6xy + y^3 + 2y$ | $x^2+2y^2-12$      |
| 8.               | $x^2+y^2-2x+3y$         | $x^2+y^2-2xy-5$    |
| 9.               | $x^2+2y^2-12$           | $x^2+2y^2-12$      |
| 10.              | $x^2+2y^2+3y$           | $x^2 + y^2 - 2xy$  |
| 11.              | $2x^2 + xy + 2y^2$      | $4x^2+4y^2-36$     |

| 12. | $x^2 - 2xy - 4y^2$      | $2x^2-4y^2-25$        |
|-----|-------------------------|-----------------------|
| 13. | $2x^2 + xy + y^3$       | $x^2 + y^2 - 1$       |
| 14. | $x^2 + y^2 - y$         | $2x^2 + y^2 - 1$      |
| 15. | $x^3+2xy+y^2$           | $4x^2 + y^2 - 9$      |
| 16. | $4x^2 - 6xy + 9y^2$     | $x^2 - y^2 - 25$      |
| 17. | $2x^3 + 6xy + y^3 + 2y$ | $x^2+2y^2-12$         |
| 18. | $x^2 + y^2 - 2x + 3y$   | $x^2 + y^2 - 2xy - 5$ |
| 19. | $x^3 + 2xy - y^2$       | $x^2+2y^2-1$          |
| 20. | $x^2+2y^2-y$            | $x^2 + y^2 - 9$       |
| 21. | $x^2 - x y - y^2$       | $4x^2+y^2-25$         |
| 22. | $x^2 + 2xy - y^2$       | $4x^2-2y^2-1$         |
| 23. | $2x^3 + 6xy - y^3$      | $x^2 + y^2 - 12$      |
| 24. | $x^2 - y^2 - 2x$        | $2x^2 - y^2 + 2xy$    |
| 25. | $x^3 + 2xy + y^2$       | $4x^2+y^3-12$         |
| 26. | $4x^2 - 12xy + 3y^2$    | $4x^2 - y^2 - 9$      |
| 27. | $2x^3 + xy + y^3 + 2y$  | $x^2 - 2y^2 - 12$     |
| 28. | $x^2 - y^2 - 2x + 3y$   | $x^2 + y^2 - 2xy - 5$ |

# Задания для самостоятельной работы

- **1.** Выполнить упражнения из раздела «Краткие теоретические сведения и практические упражнения», которые не успели сделать в аудитории.
- 2. Самостоятельно выполнить упражнения:

# Упражнение 1С.

Построить на поверхности  $z = x^2 + 12xy + 2y^2$  кривую, определяемую ограничением  $4x^2 + y^2 = 25$ . По возможности, определить визуально наличие и примерное расположение точек безусловного минимума и максимума функции z = f(x, y), а также точек условного минимума и максимума этой функции при данном ограничении.

# Упражнение 2С.

Используя метод множителей Лагранжа, найдите точки условного экстремума функции  $z = x^2 + 12xy + 2y^2$ , если  $4x^2 + y^2 = 25$ .

- 3. Ответить на контрольные вопросы:
- 1) В чем состоит прямой метод отыскания точек условного экстремума?
- 2) Сформулируйте необходимое условие условного экстремума функции двух переменных.
- 3) Сформулируйте достаточное условие условного экстремума функции двух переменных.

#### Список рекомендуемой литературы

- **1.** Официальная документация по языку программирования Python https://docs.python.org/3/
- **2.** Официальная документация к библиотеке numpy <a href="https://numpy.org/doc/stable/index.html">https://numpy.org/doc/stable/index.html</a>
- **3.** Официальная документация к библиотеке scipy https://docs.scipy.org/doc/scipy/index.html
- **4.** Сборник задач по математике для втузов под ред. А.В.Ефимова и А.С.Поспелова, часть 2, М.2002, 5.5.