d) Ol	oliczyć gęstość	δ elementu mierzone	go oraz jej niepewność pomiarową uc(p)-kulka
Dane Wartosc			
m[g]	0.72		
u(m)[g]	0.0058		
u(V)[mm3]	2.3		
V [mm3]	90.78966π		_
Obliczanie Gestosci			
$\delta = \frac{m}{V} = \frac{1}{9}$	$\frac{0.72}{0.78966\pi} = 0$	$\frac{1}{\pi}$	

Obliczanie Niepewności gęstości

$$\begin{split} \frac{d\delta}{dV} &= -\frac{1}{V^2} = -\frac{0.72}{V^2} = -\frac{0.72}{8242.762363\pi} = \\ 0.0000873493579336095\pi \end{split}$$

$$u_c(\delta) &= \sqrt{(\frac{d\delta}{dV}u(V))^2 + (\frac{d\delta}{dm}u(m))^2}$$

$$&= \sqrt{0.0000000403622256531792(\frac{1}{\pi})^2 + \frac{0.00003364}{8242.762363}(\frac{1}{\pi})^2}$$

$$&= \sqrt{0.0000000403622256531792(\frac{1}{\pi})^2 + 0.000000004081156112342540000(\frac{1}{\pi})^2}$$

$$&= \sqrt{0.0000000444443381765521700000(\frac{1}{\pi})^2} = 0.000210816\frac{1}{\pi} \approx 0.00022\frac{1}{\pi}$$