Tutorat 1 de Mathématiques (2ème année)

Etienne Reyssat

ÉQUATIONS AUX DÉRIVÉES PARTIELLES

N'hésitez pas à me contacter (etienne.reyssat@espci.fr) si au cours de la préparation vous rencontriez des difficultés, aviez besoin de précisions...

1 Équation de diffusion à une dimension

(A) Considérons l'équation de diffusion à une dimension spatiale,

$$\frac{\partial \phi}{\partial t} = D\Delta\phi \tag{1}$$

Quelle est la solution "standard"? Quelles sont les hypothèses utilisées pour son obtention?

(B) Transformation en une EDO : Quelle est la variable s qui apparaît naturellement dans l'équation de diffusion, i.e. quelle combinaison de x et t apparaît dans les solutions? Y a-t-il plusieurs choix possible pour s? Écrivez l'équation pour F telle que

$$\phi(x,t) = t^{\alpha} F(s) \tag{2}$$

et trouvez une équation différentielle ordinaire pour F. Cherchez une solution de la forme suivante : $F(s) = Ae^{-Bs}$. Quelle solution retrouvez -vous?

(C) Cherchez des solutions de la forme

$$\phi(x,t) = f(x - \beta t) \tag{3}$$

Pourquoi n'avez vous pas trouvé cette solution par la méthode standard?

2 Nivellement d'un film mince

Nous discutons ici l'évolution du profil d'épaisseur d'un mince film de liquide déposé sur une surface solide. La viscosité du liquide est notée η , sa tension de surface γ . L'épaisseur h(x,t) du film dépend de la position et du temps. Sous l'influence de la capillarité, le film tend à s'aplanir.

(A) L'évolution du profil h(x,t) est régie par l'équation des films minces :

$$\frac{\partial h}{\partial t} + \frac{\gamma}{3\eta} \frac{\partial}{\partial x} \left(h^3 \frac{\partial^3 h}{\partial x^3} \right) = 0 \tag{4}$$

Expliquer comment on obtient cette équation.

- (B) En divisant les longueurs par h_0 , adimensionner l'équation d'évolution de h. On notera l'épaisseur adimensionnée H(X,T). Comment s'exprime le temps adimensionné T?
- (C) Nous supposons ici que le profil est faiblement perturbé, c'est-à-dire qu'on peut écrire l'épaisseur du film sous la forme suivante :

$$H(X,T) = 1 + \Delta(X,T) \tag{5}$$

où $\Delta \ll 1$ est une petite perturbation à la surface d'un film très étendu d'épaisseur 1. Dans cette limite, que devient l'équation des films minces? Voyez-vous des similarités avec une autre équation courante de la physique?

(D) En utilisant un raisonnement analogue à celui utilisé pour l'opérateur de diffusion, montrer que la fonction de Green du problème s'écrit :

$$\mathcal{G}(X,T) = \frac{\Theta(T)}{2\pi} \int_{-\infty}^{+\infty} e^{-K^4 T} e^{iKX} dK$$
 (6)

où $X = x/h_0$ et T sont la position et le temps adimensionnés, et Θ est la fonction de Heaviside.

- (E) Quelle variable autosimilaire naturelle S apparaît ici? Vérifier que la fonction de Green est autosimilaire, c'est-à-dire qu'elle s'exprime sous la forme $\mathcal{G}(X,T) = T^{\alpha}G(S)$.
- (F) On cherche des solutions de l'équation des films minces sous la forme $\Delta(X,T) = T^{\alpha}F(S)$. De quelle équation différentielle ordinaire F est-elle solution?
- (G) On considère une condition initiale sommable $\Delta(X,0) = \Delta_0(X)$, d'intégrale non-nulle \mathcal{I}_0 . Donner la solution formelle générale $\Delta(X,T)$.
- (H) À temps long, vers quelle fonction semble tendre la fonction $f(X,T) = T^{1/4}\Delta(X,T)/\mathcal{I}_0$? Connaissezvous un comportement semblable dans un autre problème de physique?

3 Équation de Burgers

(A) Discutez les solutions de l'équation de transport convectif :

$$\frac{\partial v}{\partial t} + c \frac{\partial v}{\partial x} = 0, \tag{7}$$

où c est un champ c(x,t).

(B) Qu'arrive-t-il si on considère c=v? Les singularités peuvent être lissées par ajout d'un petit terme diffusif. Celui-ci change la nature de l'EDP, qui d'hyperbolique devient parabolique. On obtient l'équation de Burgers :

$$\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} = \epsilon \frac{\partial^2 v}{\partial x^2}.$$
 (8)

Expliquez qualitativement pourquoi l'ajout du terme d'ordre 2 permet de lisser les singularités.

(C) Chose inhabituelle pour une équation aux dérivées partielles non-linéaire, l'équation de Burgers admet des solutions analytiques. Construisez la solution générale en introduisant ϕ tel que

$$v = -2\epsilon \frac{\partial}{\partial x} \ln \phi \tag{9}$$

(transformation de Hopf et Cole). Écrivez l'équation de Burgers en fonction de ϕ . La substitution se fait en trois étapes :(1) $v = -2\epsilon \partial_x \psi$, (2) Intégrer l'équation obtenue, (3) $\psi = \ln \phi$.