Mohammed Al Farhan

mohammed.farhan@kaust.edu.sa / farhanma.github.io

Education

King Abdullah University of Science and Technology (KAUST) 2014 — 2019

PhD, Computer Science

Topic: Unstructured Computations on Emerging Architectures

Advisor: David E. Keyes

King Abdullah University of Science and Technology (KAUST) 2012 — 2013

MSc, Computer Science

King Faisal University 2007 - 2012

BSc, Computer Science

Professional Experience

Postdoctoral Researcher, KAUST

2020 — Present

• Research on scalable algorithms exploiting data sparsity (with David E. Keyes)

Postdoctoral Researcher, University of Tennessee, Knoxville

2019 - 2021

• Research on distributed, GPU-accelerated dense linear algebra (with Jack Dongarra)

Co-founder, RoboCrop

2017 - 2019

• A startup initiative that develops automated farming solutions (SABB TAQADAM finalist)

Software Engineer, Saudi Electricity Company

2012

• Developed a smart system to detect anomalies in the reading meters

Software Engineer Intern, Saudi Aramco

Summer 2011

• Developed a distributed key-value store system to track IT change requests

Software Engineer Intern, Saudi Aramco

Summer 2010

• Developed a database management system to log IT reported incidents

Publications

Journal Articles

- M. Al Farhan, A. Abdelfattah, S. Tomov, M. Gates, D. Sukkari, A. Haidar, R. Rosenberg, and J. Dongarra. MAGMA Templates for Scalable Linear Algebra on Emerging Architectures, *IJHPCA 2020*
- M. Abduljabbar, M. Al Farhan, N. Al-Harthi, R. Chen, R. Yokota, H. Bagci, and D. Keyes. Extreme Scale FMM-Accelerated Boundary Integral Equation Solver for Wave Scattering, SISC 2019
- M. Al Farhan and D. Keyes. Optimizations of Unstructured Aerodynamics Computations for Many-core Architectures, IEEE TPDS 2018
- M. Al Farhan, D. Kaushik, and D. Keyes. Unstructured Computational Aerodynamics on Many Integrated Core Architecture, *Parallel Computing 2016*

Conference Papers

- M. Abduljabbar, M. Al Farhan, R. Yokota, and D. Keyes. Performance Evaluation of Computation and Communication Kernels of the Fast Multipole Method on Intel Manycore Architecture, Euro-Par 2017
- H. AbouEisha, M. Al Farhan, I. Chikalov, and M. Moshkov. An Algorithm for Reduct Cardinality Minimization, IEEE GrC 2013

Technical Reports

- A. Abdelfattah, M. Al Farhan, C. Brown, M. Gates, D. Sukkari, A. YarKhan, and J. Dongarra. SLATE port to AMD and Intel platforms, SWAN No. 16 (ICL-UT-21-01), ICL, UTK, Apr 2021
- A. YarKhan, M. Al Farhan, D. Sukkari, M. Gates, and J. Dongarra. SLATE Performance Report: Updates to Cholesky and LU Factorizations (ICL-UT-20-14), ICL, UTK, Oct 2020
- A. Charara, M. Gates, J. Kurzak, A. YarKhan, **M. Al Farhan**, D. Sukkari, and J. Dongarra. SLATE Developers' Guide, SWAN No. 11 (ICL-UT-19-02), ICL, UTK, Aug 2020
- M. Gates, A. Charara, J. Kurzak, A. YarKhan, M. Al Farhan, D. Sukkari, and J. Dongarra. SLATE Users' Guide, SWAN No. 10 (ICL-UT-19-01), ICL, UTK, Jul 2020
- M. Gates, M. Al Farhan, A. Charara, J. Kurzak, D. Sukkari, A. YarKhan, and J. Dongarra. SLATE Working Note 13: Implementing Singular Value and Symmetric/Hermitian Eigenvalue Solvers (ICL-UT-19-07), ICL, UTK, Apr 2020

• M. Gates, A. Charara, A. YarKhan, D. Sukkari, M. Al Farhan, and J. Dongarra. SLATE Working Note 14 Performance Tuning SLATE (ICL-UT-20-01), ICL, UTK, Jan 2020

Programming Skills

- Languages: C/C++, Python, Java, POSIX Shell, Perl, MATLAB, SQL, LATEX
- Technologies: MPI, OpenMP, CUDA, POSIX Threads, HIP, TBB, SYCL

TEACHING Assistantships

- AMCS 312 High Performance Computing course (with David E. Keyes)
 - Fall 2013, Fall 2014, Fall 2015, Fall 2016, Fall 2017, Fall 2018 (KAUST)
 - Fall 2016 (Blue Waters online courses, funded by US NSF at UIUC)
 - Fall 2018 (Saudi Aramco EXPEC Advanced Research Center)

ORAL/POSTER PRESENTATIONS

- HiCMA: Hierarchical Computations on Manycore Architectures
 - oneAPI Developer Summit at SC 2021, St. Louis, MO
 - Intel IXPUG Annual Conference 2021, Austin, TX
- Tile Low-Rank Matrix-Vector Multiplication for Scientific Applications
 - oneAPI Developer Summit at SC 2021, St. Louis, MO
 - Intel IXPUG Annual Conference 2021, Austin, TX
- $\bullet\,$ SLATE: Software for Linear Algebra Targeting Exascale
 - ECP Annual Meeting 2020, Houston, TX
- Unstructured Computations on Emerging Architectures
 - SIAM CSE 2019, Spokane, Washington
- BEMFMM: An Extreme Scale FMM-Accelerated BIE Solver for Wave Scattering
 - SIAM CSE 2019, Spokane, Washington
 - Intel IXPUG 2018, KAUST
 - SIAM PP 2018, Tokyo, Japan
- Optimizations of Unstructured Aerodynamics Computations for Intel KNL Hardware
 - Intel IXPUG 2018, KAUST
 - SIAM PP 2018, Tokyo, Japan
 - Intel HPC Developer Conference 2017, Denver, Colorado
 - PCCFD Workshop 2017, KAUST
 - HPC Saudi Conference 2017, KAUST [best poster award]
 - $-\,$ SIAM CSE 2017, Atlanta, Georgia
 - SHAXC-3 Workshop 2017, KAUST
- Performance Evaluation of Fast Multipole Method on Intel Manycore Architecture
 - $-\,$ Euro-Par 2017, Santiago de Compostela, Spain
 - ISC 2017, Frankfurt, Germany
- Implicit Unstructured Computational Aerodynamics on MIC Architecture
 - ParCFD 2014, Trondheim, Norway
 - SHAXC-2 Workshop 2014, KAUST

SERVICE AND OUTREACH

- Reviewer: ACM/IEEE SC 2015, ACM PPoPP 2016, Euro-Par 2016, IEEE Cluster 2016, PLOS One 2018, IJHPCA 2018, IEEE IPDSPS 2019, ACM TOPC 2019, Parallel Computing 2019, ACM PASC 2020, Parallel Computing 2020, ICCS 2021, Euro-Par 2021, ACM/IEEE SC 2021, IEEE Cluster 2021
- Artifact Evaluator: ACM PPoPP 2016, ACM/IEEE SC 2021
- Vice president: KAUST IEEE Student Chapter (2012-2013), KAUST ACM Student Chapter (2012-2015), and KAUST SIAM Student Chapter (2012-2017)
- Treasurer: KAUST SIAM/ACM Student Chapter (2017-2019)
- Member: KAUST Graduate Council: Academic and Research Committee (2012-2013) and University Relation Committee (2013-2014)
- Co-organizer: KAUST Code Clinic (2014-2019), Python Programming Camp (Spring 2014 and 2015), and Scientific Software Engineering Lecture Series: Fundamentals of High Performance Computing (Summer 2014 and 2015), PETSc: Portable, Extensible Toolkit for Scientific Computation (Summer 2016), and Version Control using Git (Fall 2020)