Entropic Regularization for (Wasserstein) Robust Optimization

Speaker: Jie Wang Date: June 2, 2023

Rui Gao UT Austin

Yao Xie Gatech

Wasserstein DRO

$$\begin{split} & \textbf{Definition:} \ \mathcal{P} = \{\mathbb{P}: \ W(\mathbb{P}, \hat{\mathbb{P}}_n) \leq \rho\}. \\ & \textbf{Distance:} \ W(\mathbb{P}, \mathbb{Q}) = \min_{\gamma \in \mathcal{P}(\Omega^2)} \left\{ \mathbb{E}_{(\omega, \omega') \sim \gamma}[c(\omega, \omega')]: \ \operatorname{Proj}_{\#1} \gamma = \mathbb{P}, \operatorname{Proj}_{\#2} \gamma = \mathbb{Q} \right\}. \end{split}$$

Contain each \mathbb{P} such that $W(\mathbb{P}, \hat{\mathbb{P}}_n) < \rho$

Worst-case risk: $\sup \mathbb{E}_{\mathbb{P}}[f_{\theta}(z)]$

 $\inf_{\theta \in \Theta} \sup_{\mathbb{P} \in \mathcal{P}} \ \mathbb{E}_{\mathbb{P}}[f_{\theta}(z)]$ Robust Optimal Risk:

Tractability of Wasserstein DRO

$$\begin{split} &\inf_{\theta \in \Theta} \left\{ \sup_{\mathbb{P}: \ W(\mathbb{P},\widehat{\mathbb{P}}) \leq \rho} \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)] \right\} \\ &= \inf_{\theta \in \Theta, \lambda \geq 0} \ \left\{ \lambda \rho + \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \left[\sup_{z \in \mathcal{Z}} \left[f_{\theta}(z) - \lambda c(x, z) \right] \right] \right\} \end{split}$$

References	Loss function $f_{\theta}(z)$	Transport cost	Nominal distribution $\widehat{\mathbb{P}}$	Support \mathcal{Z}	
[Pflug G et. al 2008,] General		General General		Discrete and finite set	
[Esfahani PM et. Piecewise al 2018,] Piecewise concave in z		Norm function	Empirical distribution	Polytope	
[Shafieezade et. al 2015,]	Generalized linear model in (z, θ)	Norm function	Empirical distribution	Whole Euclidean space	
[Sinha et. al 2018,]	$z \mapsto f_{\theta}(z) - \lambda^* c(x, z)$ is strongly concave	Strongly convex function	General	General	

Sinkhorn Distance

Sinkhorn Distance:

$$W_{\epsilon}(\mathbb{P},\mathbb{Q}) \ = \inf_{\gamma \in \Gamma(\mathbb{P},\mathbb{Q})} \ \left\{ \mathbb{E}_{(X,Y) \sim \gamma}[c(X,Y)] + \epsilon H(\gamma \mid \mathbb{P} \otimes \nu) \right\}.$$

Remark: Sinkhorn distance does not satisfy definition of "distance function".

• Relative Entropy between γ and $\mathbb{P} \otimes \nu$:

$$H(\gamma \mid \mathbb{P} \otimes \nu) = \mathbb{E}_{(x,y) \sim \gamma} \left[\log \left(\frac{\mathrm{d}\gamma(x,y)}{\mathrm{d}\mathbb{P}(x) \, \mathrm{d}\nu(y)} \right) \right].$$

Historical Review:

- Originally proposed by [Wilson' 62].
- Convergence of algorithm for the first time by [Sinkhorn'64].
- Operation complexity analysis and GPGPU parallel by [Cuturi'13].

Sinkhorn Distance

Sinkhorn Distance:

$$W_{\epsilon}(\mathbb{P}, \mathbb{Q}) = \inf_{\gamma \in \Gamma(\mathbb{P}, \mathbb{Q})} \left\{ \mathbb{E}_{(X,Y) \sim \gamma}[c(X,Y)] + \epsilon H(\gamma \mid \mathbb{P} \otimes \nu) \right\}.$$

Remark: Sinkhorn distance does not satisfy definition of "distance function".

• Relative Entropy between γ and $\mathbb{P} \otimes \nu$:

$$H(\gamma \mid \mathbb{P} \otimes \nu) = \mathbb{E}_{(x,y) \sim \gamma} \left[\log \left(\frac{\mathrm{d}\gamma(x,y)}{\mathrm{d}\mathbb{P}(x)\,\mathrm{d}\nu(y)} \right) \right].$$

$$\mathbb{P}$$

$$\varepsilon = 10$$

$$\varepsilon = 1$$

$$\varepsilon = 0.5$$

$$\varepsilon = 10^{-1}$$

$$\varepsilon = 10^{-2}$$

Main Framework

Sinkhorn DRO:

$$\begin{split} &\inf_{\theta} \sup_{\mathbb{P} \in \mathbb{B}_{\rho,\epsilon}(\widehat{\mathbb{P}})} \ \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)], \\ &\text{where } \mathbb{B}_{\rho,\epsilon}(\widehat{\mathbb{P}}) = \big\{ \mathbb{P}: \ W_{\epsilon}(\widehat{\mathbb{P}},\mathbb{P}) \leq \rho \big\}. \end{split}$$

General DRO Models

KL-DRO:

$$\inf_{\theta} \sup_{\mathbb{P} \in \mathbb{B}^{\mathsf{KL}}_{\rho}(\widehat{\mathbb{P}})} \ \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)],$$

 $\text{ where } \mathbb{B}^{\mathrm{KL}}_{\rho}(\widehat{\mathbb{P}}) = \big\{\mathbb{P}: \ D_{\mathrm{KL}}(\widehat{\mathbb{P}},\mathbb{P}) \leq \rho\big\}.$

General DRO Models

Wasserstein-DRO:

$$\begin{split} &\inf_{\theta} \sup_{\mathbb{P} \in \mathbb{B}_{\rho}^{\mathsf{Wasserstein}}(\widehat{\mathbb{P}})} \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)], \\ &\mathsf{where} \ \mathbb{B}_{\rho}^{\mathsf{Wasserstein}}(\widehat{\mathbb{P}}) = \big\{\mathbb{P}: \ W(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho\big\}. \end{split}$$

Ongoing Outline

Sinkhorn DRO:

$$\inf_{\theta} \sup_{\mathbb{P} \in \mathbb{B}_{\rho,\epsilon}(\widehat{\mathbb{P}})} \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)],$$
 where $\mathbb{B}_{\rho,\epsilon}(\widehat{\mathbb{P}}) = \left\{ \mathbb{P} : \ W_{\epsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\}.$

- Duality Formulation and Properties
- Algorithm with Optimal Sample Complexity
- Numerical Results

Tractable Formulation

Under mild conditions, the primal

$$V_{\mathrm{P}} = \sup_{\mathbb{P} \in \mathbb{B}_{\rho,\epsilon}(\widehat{\mathbb{P}})} \ \mathbb{E}_{z \sim \mathbb{P}}[f(z)], \quad \text{where } \mathbb{B}_{\rho,\epsilon}(\widehat{\mathbb{P}}) = \big\{\mathbb{P}: \ W_{\epsilon}(\widehat{\mathbb{P}},\mathbb{P}) \leq \rho\big\}.$$

(Sinkhorn DRO)

has the strong dual reformulation:

$$V_{\mathrm{D}} = \inf_{\lambda \geq 0} \left\{ \lambda \overline{\rho} + \lambda \epsilon \, \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \Big[\log \mathbb{E}_{z \sim \mathbb{Q}_{x, \epsilon}} \big[e^{f(z)/(\lambda \epsilon)} \big] \Big] \right\},$$

where

$$\overline{\rho} = \rho + \epsilon \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \Big[\log \mathbb{E}_{z \sim \nu} \Big[e^{-c(x,z)/\epsilon} \Big] \Big],$$
$$d\mathbb{Q}_{x,\epsilon}(z) = \frac{e^{-c(x,z)/\epsilon}}{\mathbb{E}_{u \sim \nu} \Big[e^{-c(x,u)/\epsilon} \Big]} d\nu(z).$$

Interpretation of Worst-case Distribution

$$\widetilde{\mathbb{P}} = \arg\max_{\mathbb{P}} \ \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f(z)] : \ W_{\epsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\}$$

• For each $x \in \text{supp}(\widehat{\mathbb{P}})$, optimal transport maps it to a (conditional) distribution γ_x such that

$$\frac{\mathrm{d}\gamma_x(z)}{\mathrm{d}\nu(z)} = \alpha_x \cdot \exp\Big(\big(f(z) - \lambda^* c(x,z)\big)/(\lambda^* \epsilon)\Big),$$

where α_x is the normalizing constant.

• Closed-form expression on $\tilde{\mathbb{P}}$:

$$\frac{\mathrm{d}\widetilde{\mathbb{P}}(z)}{\mathrm{d}\nu(z)} = \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \left[\alpha_x \cdot \exp\left(\left(f(z) - \lambda^* c(x, z) \right) / (\lambda^* \epsilon) \right) \right].$$

Worst-case distribution $\tilde{\mathbb{P}}$ support on whole space, while W-DRO is discrete.

Connection of Sinkhorn DRO with Wasserstein DRO

When $\epsilon \to 0$, the dual objective of Sinkhorn DRO converges into

$$\lambda \rho + \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \Big[\mathrm{ess\text{-}sup}_{\nu} \ \left(f(\cdot) - \lambda c(x, \cdot) \right) \Big].$$

When $supp(\nu) = \Omega$,

Connection of Sinkhorn DRO with KL DRO

Upper bound of Sinkhorn DRO:

$$\begin{split} V_{\mathbf{D}} &\triangleq \inf_{\lambda > 0} \ \lambda \overline{\rho} + \lambda \epsilon \, \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \Big[\log \mathbb{E}_{z \sim \mathbb{Q}_{x, \epsilon}} \big[e^{f(z)/(\lambda \epsilon)} \big] \Big] \\ &\leq \inf_{\lambda > 0} \ \lambda \overline{\rho} + \lambda \epsilon \log \mathbb{E}_{y \sim \mathbb{P}^0} \left[e^{f(y)/(\lambda \epsilon)} \right] \end{split}$$

 \mathbb{P}^0 : kernel density estimate based on $\widehat{\mathbb{P}}$:

$$d\mathbb{P}^0(z) = \mathbb{E}_{x \sim \widehat{\mathbb{P}}}[d\mathbb{Q}_x(z)].$$

Connection of Sinkhorn DRO with SAA

$$V_{\mathrm{P}} = \sup_{\gamma_x \in \mathcal{P}(\mathcal{Z}), x \in \mathrm{supp}(\widehat{\mathbb{P}})} \left\{ \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \mathbb{E}_{z \sim \gamma_x} [f(z)] : \epsilon \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \Big[D_{\mathsf{KL}}(\gamma_x || \mathbb{Q}_{x, \epsilon}) \Big] \leq \overline{\rho} \right\}$$

When $\overline{\rho} = 0$, Sinkhorn DRO becomes SAA:

$$V_{\mathrm{P}} = \mathbb{E}_{z \sim \mathbb{P}^0}[f(z)]$$

 \mathbb{P}^0 : kernel density estimate based on $\widehat{\mathbb{P}}$:

$$\mathrm{d}\mathbb{P}^0(z) = \mathbb{E}_{x \in \widehat{\mathbb{P}}}[\,\mathrm{d}\mathbb{Q}_x(z)].$$

Optimization Algorithm for Sinkhorn DRO

Based on strong duality,

$$\begin{split} & \underset{\theta \in \Theta}{\min} \sup_{\mathbb{P}} \ \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)] : \quad W_{\epsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ & = \underset{\lambda \geq 0}{\min} \ \left\{ \lambda \overline{\rho} + \underbrace{\underset{\theta \in \Theta}{\min} \ \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \ \left[\lambda \epsilon \mathbb{E}_{z \sim \mathbb{Q}_{x, \epsilon}} \left[e^{f_{\theta}(z)/(\lambda \epsilon)} \right] \right]}_{V(\lambda)} \right\} \end{split}$$

Solve the Monte-Carlo approximated formulation [Shapiro et. al 2014]:

$$V(\lambda) \approx \min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \lambda \epsilon \log \left(\frac{1}{m} \sum_{j=1}^{m} e^{f_{\theta}(z_{i,j})/(\lambda \epsilon)} \right)$$

where $\{\hat{x}_i\}_{i=1}^n \sim \widehat{\mathbb{P}}$ and $\{z_{i,j}\}_{j=1}^m$ are i.i.d. samples generated from $\mathbb{Q}_{\hat{x}_i,\epsilon}$

• Cons: It requires $\tilde{O}(\delta^{-3})$ samples to obtain δ -optimal solution [Yifan et. al SIAMOP2020].

Optimization Algorithm for Sinkhorn DRO

Based on strong duality,

$$\begin{split} & \underset{\theta \in \Theta}{\min} \sup_{\mathbb{P}} \ \left\{ \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)] : \quad W_{\epsilon}(\widehat{\mathbb{P}}, \mathbb{P}) \leq \rho \right\} \\ & = \underset{\lambda \geq 0}{\min} \ \left\{ \lambda \overline{\rho} + \underbrace{\underset{\theta \in \Theta}{\min} \ \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \ \left[\lambda \epsilon \mathbb{E}_{z \sim \mathbb{Q}_{x, \epsilon}} \left[e^{f_{\theta}(z)/(\lambda \epsilon)} \right] \right]}_{V(\lambda)} \right\} \end{split}$$

Solve the Monte-Carlo approximated formulation [Shapiro et. al 2014]:

$$V(\lambda) \approx \min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \lambda \epsilon \log \left(\frac{1}{m} \sum_{j=1}^{m} e^{f_{\theta}(z_{i,j})/(\lambda \epsilon)} \right),$$

where $\{\hat{x}_i\}_{i=1}^n \sim \widehat{\mathbb{P}}$ and $\{z_{i,j}\}_{i=1}^m$ are i.i.d. samples generated from $\mathbb{Q}_{\hat{x}_i,\epsilon}$.

ullet Cons: It requires $ilde{O}(\delta^{-3})$ samples to obtain δ -optimal solution [Yifan et. al SIAMOP2020] 16

Optimization Algorithm for Sinkhorn DRO: Biased Gradient Update

Goal:

$$\min_{\theta \in \Theta} \left\{ F(\theta) := \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \left[\lambda \epsilon \log \mathbb{E}_{z \sim \mathbb{Q}_x} \left[e^{f_{\theta}(z)/(\lambda \epsilon)} \right] \right] \right\}.$$

- ullet Biased gradient update: for each iteration t
 - Construct a gradient estimate of $F(\theta_t)$, denoted as $v(\theta_t)$;
 - Update $\theta_{t+1} = \mathbf{Proximal}_{\theta_t} (\gamma_t v(\theta_t))$.

Estimator of solution: average (or randomly selected) over $\{\theta_t\}_{t=1}^T$

 Remark: optimally pick gradient estimator to balance bias versus (2nd)moment (or variance by [Hu, Chen and He 2021]) trade-off.

Optimization Algorithm for Sinkhorn DRO: Biased Gradient Update

Goal:

$$\min_{\theta \in \Theta} \left\{ F(\theta) := \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \left[\lambda \epsilon \log \mathbb{E}_{z \sim \mathbb{Q}_x} \left[e^{f_{\theta}(z)/(\lambda \epsilon)} \right] \right] \right\}.$$

- Biased gradient update: for each iteration t,
 - Construct a gradient estimate of $F(\theta_t)$, denoted as $v(\theta_t)$;
 - Update $\theta_{t+1} = \mathbf{Proximal}_{\theta_t} (\gamma_t v(\theta_t))$.

Estimator of solution: average (or randomly selected) over $\{\theta_t\}_{t=1}^T$.

 Remark: optimally pick gradient estimator to balance bias versus (2nd)moment (or variance by [Hu, Chen and He 2021]) trade-off.

Optimization Algorithm for Sinkhorn DRO: Biased Gradient Update

Goal:

$$\min_{\theta \in \Theta} \ \left\{ F(\theta) := \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \ \left[\lambda \epsilon \log \mathbb{E}_{z \sim \mathbb{Q}_x} \left[e^{f_{\theta}(z)/(\lambda \epsilon)} \right] \right] \right\}.$$

- ullet Biased gradient update: for each iteration t,
 - Construct a gradient estimate of $F(\theta_t)$, denoted as $v(\theta_t)$;
 - Update $\theta_{t+1} = \mathbf{Proximal}_{\theta_t} (\gamma_t v(\theta_t))$.

Estimator of solution: average (or randomly selected) over $\{\theta_t\}_{t=1}^T$.

• **Remark:** optimally pick gradient estimator to balance bias versus (2nd)moment (or variance by [Hu, Chen and He 2021]) trade-off.

Estimators	Convex (Possibly Nonsmooth)	Nonconvex Smooth		
Vanilla SGD	$O(\delta^{-3})$	$O(\delta^{-6})$		
RT-MLMC	$ ilde{O}(\delta^{-2})$	$ ilde{O}(\delta^{-4})$		

Bias-(2nd)Moment-Cost Trade-off for SMD

Consider convex optimization problem

$$\begin{array}{ll} \text{Minimize} & F(\theta) \\ \text{s.t.} & \theta \in \Theta \subseteq \mathbb{R}^d. \end{array}$$

- Stochastic Mirror Descent: iteratively,
 - Step 1: generate random vector $v(\theta_t)$ with

$$\mathbb{E}[v(\theta_t)] = \nabla \overline{F}(\theta_t), \quad \Delta_F := \sup_{\theta \in \Theta} |\overline{F}(\theta) - F(\theta)|, \quad \mathbb{E}\left[\|v(\theta_t)\|^2\right] \leq M^2.$$

- Step 2: $\theta_{t+1} = \mathbf{Proximal}_{\theta_t} \left(\gamma v(\theta_t) \right)$.
- ullet Take $\widehat{ heta}_{1:T}$ as average over $\{ heta_t\}_{t=1}^T$, then

$$\mathbb{E}\big[F(\widehat{\theta}_{1:T}) - F(\theta^*)\big] \le c \cdot \left(\Delta_F + \sqrt{\frac{M^2}{T}}\right).$$

Gradient Estimators

Goal:

$$\min_{\theta \in \Theta} \left\{ F(\theta) := \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \left[\lambda \epsilon \log \mathbb{E}_{z \sim \mathbb{Q}_x} \left[e^{f_{\theta}(z)/(\lambda \epsilon)} \right] \right] \right\}.$$

• Construct a sequence of approximation functions $\{F^{\ell}(\theta)\}_{\ell\geq 0}$ instead, where

$$F^{\ell}(\theta) = \mathbb{E}_{x^{\ell} \sim \widehat{\mathbb{P}}} \mathbb{E}_{\{z_{j}^{\ell}\}_{j \in [2^{\ell}]} | x^{\ell}} \left[\lambda \epsilon \log \left(\frac{1}{2^{\ell}} \sum_{j \in [2^{\ell}]} \exp \left(\frac{f_{\theta}(z_{j}^{\ell})}{\lambda \epsilon} \right) \right) \right].$$

Remark: generating unbiased gradient estimate of $F^{\ell}(\theta)$ is easy!

Gradient Estimators

Goal:

$$\min_{\theta \in \Theta} \left\{ F(\theta) := \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \left[\lambda \epsilon \log \mathbb{E}_{z \sim \mathbb{Q}_x} \left[e^{f_{\theta}(z)/(\lambda \epsilon)} \right] \right] \right\}.$$

ullet Construct a sequence of approximation functions $\{F^\ell(\theta)\}_{\ell\geq 0}$ instead, where

$$F^{\ell}(\theta) = \mathbb{E}_{x^{\ell} \sim \widehat{\mathbb{P}}} \mathbb{E}_{\{z_{j}^{\ell}\}_{j \in [2^{\ell}]} | x^{\ell}} \left[\lambda \epsilon \log \left(\frac{1}{2^{\ell}} \sum_{j \in [2^{\ell}]} \exp \left(\frac{f_{\theta}(z_{j}^{\ell})}{\lambda \epsilon} \right) \right) \right].$$

 $\mathbf{Remark}:$ generating unbiased gradient estimate of $F^\ell(\theta)$ is easy!

Vanilla SGD Estimator

Sample $x^L\sim\widehat{\mathbb{P}}$ and next sample $\{z_j^L\}_{j\in[2^L]}\sim\mathbb{Q}_{x^L,\epsilon}.$ Construct

$$v^{L}(\theta) = \nabla_{\theta} \left\{ \lambda \epsilon \log \left(\frac{1}{2^{L}} \sum_{j \in [2^{L}]} \exp \left(\frac{f_{\theta}(z_{j}^{L})}{\lambda \epsilon} \right) \right) \right\}.$$

Pros:

- Low-bias $\Delta_F = \mathcal{O}(2^{-L})$.
- Bounded moment $M^2 = \mathcal{O}(1)$.

Cons:

• Generating a single gradient estimator has cost $\mathcal{O}(2^L)$.

Overall:

• Sample complexity to get δ -optimal solution is $\mathcal{O}(\delta^{-3})$.

Algorithm Improvement

- Directly computing $v^L(\theta)$ for large L seems expensive;
- Define $v^{-1}(\theta) \equiv 0$ and rewrite

$$v^{L}(\theta) = \sum_{\ell=0}^{L} \left[v^{\ell}(\theta) - v^{\ell-1}(\theta) \right]$$
$$= \sum_{\ell=0}^{L} p_{\ell} \cdot \frac{v^{\ell}(\theta) - v^{\ell-1}(\theta)}{p_{\ell}} = \mathbb{E}_{\ell \sim \{p_{\ell}\}_{\ell=0}^{L}} \left[\frac{v^{\ell}(\theta) - v^{\ell-1}(\theta)}{p_{\ell}} \right]$$

• Randomized Sampling Gradient Estimator: sample ℓ from truncated geometric distribution $\{p_\ell\}_{\ell=0}^L$ with $p_\ell \propto 2^{-\ell}$. Construct

$$v^{\mathsf{RT-MLMC}}(\theta) = \frac{1}{p_{\ell}} \cdot \left[v^{\ell}(\theta) - v^{\ell-1}(\theta) \right].$$

Bias, 2nd Moment, and Costs

- **Bias**: For same level L, the bias of RT-MLMC/Vanilla SGD are same.
- 2nd Moment: $v^{\ell}(\theta) v^{\ell-1}(\theta) \to 0$ for large ℓ :

$$\mathbb{E}\left[\|v^{\mathsf{RT-MLMC}}(\theta_t)\|^2\right] = \mathcal{O}(L) = \tilde{\mathcal{O}}(1).$$

• Sampling Cost: Cost for generating RT-MLMC estimator reduces from $\mathcal{O}(2^L)$ to $\mathcal{O}(L)$!

The sample complexity of RT-MLMC is $\tilde{O}(\delta^{-2})$ with storage cost $\tilde{O}(1)$.

Figure: Plot for Portfolio optimizaiton with $d \in \{50, 100, 400\}$.

Newsvendor Model

$$\min_{\theta} \max_{\mathbb{P} \in \mathbb{B}_{\rho,\epsilon}(\widehat{\mathbb{P}})} \ \mathbb{E}_{z \sim \mathbb{P}} \big[k\theta - u \min(\theta,z) \big].$$

Newsvendor Model

$$\min_{\theta} \max_{\mathbb{P} \in \mathbb{B}_{\rho,\epsilon}(\widehat{\mathbb{P}})} \mathbb{E}_{z \sim \mathbb{P}} [k\theta - u \min(\theta, z)].$$

Average computational time (in seconds) per problem instance:

Model	Exponential			Gamma		Gaussian Mixture			
	n = 10	n = 30	n = 100	n = 10	n = 30	n = 100	n = 10	n = 30	n = 100
SAA	0.017	0.017	0.018	0.019	0.019	0.019	0.023	0.024	0.024
KL-DRO	0.027	0.029	0.040	0.027	0.028	0.039	0.027	0.028	0.038
1-SDRO	0.110	0.124	0.161	0.105	0.119	0.162	0.105	0.119	0.157
2-WDRO	0.123	0.358	1.307	0.128	0.354	1.337	0.134	0.402	1.428
2-SDRO	0.061	0.069	0.106	0.100	0.121	0.161	0.095	0.115	0.154

Mean-risk Portfolio Optimization

$$\begin{split} \min_{\theta} \max_{\mathbb{P} \in \mathbb{B}_{\rho,\epsilon}(\widehat{\mathbb{P}})} \quad \mathbb{E}_{z \sim \mathbb{P}}[-\theta^{\mathrm{T}}z] + \varrho \cdot \mathbb{P}\text{-CVaR}_{\alpha}(-\theta^{\mathrm{T}}z) \\ \text{s.t.} \quad \theta \in \Theta = \{\theta \in \mathbb{R}_{+}^{d}: \, \theta^{\mathrm{T}}1 = 1\}, \end{split}$$

Mean-risk Portfolio Optimization

$$\begin{split} \min_{\theta} \max_{\mathbb{P} \in \mathbb{B}_{\rho,\epsilon}(\widehat{\mathbb{P}})} \quad \mathbb{E}_{z \sim \mathbb{P}}[-\theta^{\mathrm{T}}z] + \varrho \cdot \mathbb{P}\text{-CVaR}_{\alpha}(-\theta^{\mathrm{T}}z) \\ \text{s.t.} \quad \theta \in \Theta = \{\theta \in \mathbb{R}_{+}^{d}: \, \theta^{\mathrm{T}}1 = 1\}, \end{split}$$

Average computational time (in seconds) per problem instance:

(n,d) Values	SAA	KL-DRO	1-WDRO	1-SDRO	2-WDRO	2-SDRO
(30, 30)	0.013	0.038	0.018	0.125	0.015	0.090
(50, 30)	0.014	0.042	0.020	0.163	0.016	0.110
(100, 30)	0.017	0.065	0.024	0.167	0.021	0.144
(150, 30)	0.019	0.084	0.029	0.158	0.027	0.152
(200, 30)	0.023	0.115	0.035	0.151	0.032	0.150
(400, 30)	0.045	0.136	0.061	0.167	0.056	0.142

Adversarial Multi-class Logistic Regression

$$\min_{B \in \mathbb{R}^{d \times C}} \ \max_{\mathbb{P} \in \mathbb{B}_{\rho,\epsilon}(\widehat{\mathbb{P}})} \mathbb{E}_{(x,\boldsymbol{y}) \sim \mathbb{P}} \big[h_B(x,\boldsymbol{y}) \big], \quad h_B(x,\boldsymbol{y}) = -\boldsymbol{y}^{\mathrm{T}} B^{\mathrm{T}} x + \log \big(\boldsymbol{1}^{\mathrm{T}} e^{B^{\mathrm{T}} x} \big).$$

- We solve WDRO formulations using gradient-descent-ascent heuristic in [Sinha et. al 2018].
- Error rate for tinylmageNet dataset (90000 training samples with dimension 512):

• Computation Time:

		•				
Dataset	SAA	KL-DRO	1-WDRO	1-SDRO	2-WDRO	2-SDRO
tinyImageNet	45.54	44.50	325.25	227.91	347.16	197.55

Extension (I): Entropy Regularization for ∞-Wasserstein DRO

Original formulation:

$$\min_{\theta \in \Theta} \left\{ \sup_{\mathbb{P}} \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)] : W_{\infty}(\mathbb{P}, \widehat{\mathbb{P}}) \leq \rho \right\}$$

$$= \min_{\theta \in \Theta} \sup_{\mathbb{P}, \gamma} \left\{ \sup_{\mathbb{P}} \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)] : \begin{array}{c} \operatorname{Proj}_{1 \# \gamma} = \widehat{\mathbb{P}}, \operatorname{Proj}_{2 \# \gamma} = \mathbb{P}, \\ \operatorname{ess.sup}_{\gamma} d(\zeta_{1}, \zeta_{2}) \leq \rho \end{array} \right\}$$

• Formulation with entropic regularization [Chiara et. al 2023]:

$$\begin{split} & \underset{\theta \in \Theta}{\min} & \sup_{\mathbb{P}, \gamma} \; \left\{ \sup_{\mathbb{P}} \; \mathbb{E}_{z \sim \mathbb{P}}[f_{\theta}(z)] - \eta H(\gamma \mid \pi) : \; \begin{array}{l} \operatorname{Proj}_{1 \# \gamma} = \widehat{\mathbb{P}}, \operatorname{Proj}_{2 \# \gamma} = \mathbb{P}, \\ & \operatorname{ess.sup}_{\gamma} d(\zeta_{1}, \zeta_{2}) \leq \rho \end{array} \right\} \\ & = \min_{\theta \in \Theta} \; \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \left[\eta \log \mathbb{E}_{z \sim \mathbb{Q}_{x}} \left[\exp \left(\frac{f_{\theta}(z)}{\eta} \right) \right] \right], \quad \text{where} \; \frac{\mathrm{d} \mathbb{Q}_{x}}{\mathrm{d} \nu_{x}}(z) = \operatorname{vol}(\nu_{x})^{-1}. \end{split}$$

Extension (II): Bilevel Optimization for Sinkhorn DRO

Reformulation:

$$\begin{split} & \min_{\theta} \ \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \ \left[\lambda \epsilon \log \mathbb{E}_{z \sim \mathbb{Q}_x} \left[e^{f_{\theta}(z)/(\lambda \epsilon)} \right] \right] \\ &= \min_{\theta} \ - \lambda \epsilon \mathbb{E}_{x \sim \widehat{\mathbb{P}}} \ \max_{u \leq 0} \ \left\{ u \mathbb{E}_{z \sim Q_{x, \epsilon}} \left[e^{f_{\theta}(z)/(\lambda \epsilon)} \right] + 1 + \log(-u) \right\}. \end{split}$$

Contextual bilevel optimization¹:

$$\begin{split} & \min_{x \in \mathbb{R}^{d_x}} \quad F(x) := \mathbb{E}_{\xi \sim \mathbb{P}_{\xi}, \eta \sim \mathbb{P}_{\eta \mid \xi}}[f(x, y^*(x; \xi); \eta, \xi)] & \text{(upper level)} \end{split}$$
 where
$$& y^*(x; \xi) := \operatorname{argmin}_{y \in \mathbb{R}^{d_y}} \mathbb{E}_{\eta \sim \mathbb{P}_{\eta \mid \xi}}[g(x, y; \eta, \xi)] \quad \forall \; \xi \; \text{and} \; x. \quad \text{(lower-level)} \end{split}$$

Yifan Hu, MS132, Thursday, June 1, 11:45-12:10

Contextual Stochastic Bilevel Optimization and Its Applications to Wasserstein DRO with Side

Information

¹Yifan Hu, Jie Wang, Yao Xie, Andreas Krause, Daniel Kuhn. "Contextual Stochastic Bilevel Optimization". In: (2023). To be released soon.

Sinkhorn Distributionally Robust Optimization

- Winner of 2022 Informs Best Poster Awa

Submitted to Operations Research

Online Available: https://arxiv.org/abs/2109.11926

(originally posted in Sep 2021, Updated on May 2023)

Code: https://github.com/WalterBabyRudin/SDRO_code

Website: https://walterbabyrudin.github.io/

Contact: jwang3163@gatech.edu

