Szeregowanie zadań Wykład nr 3

dr Hanna Furmańczyk

04.03.2020

Algorytm McNaughtona

- Wylicz optymalną długość $C_{\max}^* = \max\{\sum_{j=1,...,n} p_j/m, \max_{j=1,...,n} p_j\},$
- Szereguj kolejno zadania na maszynie, po osiągnięciu C^{*}_{max} przerwij zadanie i (jeśli się nie zakończyło) kontynuuj je na następnym procesorze począwszy od chwili 0.

Algorytm McNaughtona

- Wylicz optymalną długość $C_{\max}^* = \max\{\sum_{j=1,...,n} p_j/m, \max_{j=1,...,n} p_j\},$
- Szereguj kolejno zadania na maszynie, po osiągnięciu C^{*}_{max} przerwij zadanie i (jeśli się nie zakończyło) kontynuuj je na następnym procesorze począwszy od chwili 0.

Złożoność obliczeniowa:

Algorytm McNaughtona

- Wylicz optymalną długość $C_{\max}^* = \max\{\sum_{j=1,...,n} p_j/m, \max_{j=1,...,n} p_j\},$
- Szereguj kolejno zadania na maszynie, po osiągnięciu C^{*}_{max} przerwij zadanie i (jeśli się nie zakończyło) kontynuuj je na następnym procesorze począwszy od chwili 0.

Złożoność obliczeniowa: O(n).

Przykład

Przykład.
$$n=3$$
, $n=5$, $p_1,...,p_5=4,5,2,1,2$.
$$\Sigma_{i=1,...,5} p_i=14, \max p_i=5, \\ C_{\max}*=\max\{14/3,5\}=5.$$

$$M_1$$

$$M_2$$

$$Z_1$$

$$Z_2$$

$$Z_3$$

$$M_3$$

$$Z_3$$

$$Z_4$$

$$Z_5$$

Minimalizacja C_{max} . Maszyny równoległe Procesory identyczne, zadania niezależne, niepodzielne: $P||C_{\text{max}}|$

Twierdzenie

Problem $P2||C_{max}$ jest NP-trudny.

Minimalizacja C_{max} . Maszyny równoległe Procesory identyczne, zadania niezależne, niepodzielne: $P||C_{\text{max}}|$

Twierdzenie

Problem $P2||C_{max}|$ jest NP-trudny.

Dowód

Redukcja problemu podziału do $P2||C_{max}|$.

Twierdzenie

Problem $P2||C_{\text{max}}|$ jest NP-trudny.

Dowód

Redukcja problemu podziału do $P2||C_{max}$.

Problem podziału:

Dany jest ciąg liczb naturalnych a_1, a_2, \ldots, a_n tż. $S = \sum_{i=1}^n a_i$ jest I. parzystą.

Pytanie: Czy istnieje jego podciąg o sumie S/2?

Minimalizacja C_{max} . Maszyny równoległe Procesory identyczne, zadania niezależne, niepodzielne: $P||C_{\text{max}}|$

Twierdzenie

Problem $P2||C_{\text{max}}|$ jest NP-trudny.

Dowód

Redukcja problemu podziału do $P2||C_{max}$.

Problem podziału:

Dany jest ciąg liczb naturalnych a_1, a_2, \ldots, a_n tż. $S = \sum_{i=1}^n a_i$ jest l. parzystą.

Pytanie: Czy istnieje jego podciąg o sumie S/2?

Redukcja: bierzemy n zadań o $p_j = a_j$, dwie maszyny. Pytamy o istnienie uszeregowania z $C_{\text{max}} \leq S/2$.

Minimalizacja C_{max} . Maszyny równoległe Procesory identyczne, zadania niezależne, niepodzielne: $P||C_{\text{max}}|$

Twierdzenie

Problem $P2||C_{\text{max}}|$ jest NP-trudny.

Dowód

Redukcja problemu podziału do $P2||C_{max}$.

Problem podziału:

Dany jest ciąg liczb naturalnych a_1, a_2, \ldots, a_n tż. $S = \sum_{i=1}^n a_i$ jest I. parzystą.

Pytanie: Czy istnieje jego podciąg o sumie S/2?

Redukcja: bierzemy n zadań o $p_j = a_j$, dwie maszyny. Pytamy o istnienie uszeregowania z $C_{\text{max}} \leq S/2$.

Dokładne algorytmy - programowanie dynamiczne, złożoność wykładnicza; algorytmy przybliżone

Minimalizacja C_{max} . Maszyny równoległe $P||C_{\text{max}}$ - algorytmy przybliżone

Szeregowanie listowe (ang. List Scheduling LS); ogólnie

- Ustal kolejność zadań na liście.
- Za każdym razem, gdy zwalnia się jakaś maszyna/maszyny, wybieraj pierwsze (według "listy") wolne (w tym momencie)[zadania zależne] zadania i przypisuj je do zwalniających się procesorów.

Przykład

Minimalizacja C_{max} . Maszyny równoległe $P||C_{\text{max}}|$ - algorytmy przybliżone

Szeregowanie listowe dla $P||C_{max}|$

Z ustalonego ciągu zadań wybieraj pierwsze wolne (według "listy"), przypisując je zawsze do zwalniającego się procesora.

Minimalizacja C_{max} . Maszyny równoległe $P||C_{\text{max}}$ - algorytmy przybliżone

Szeregowanie listowe dla $P||C_{max}$

Z ustalonego ciągu zadań wybieraj pierwsze wolne (według "listy"), przypisując je zawsze do zwalniającego się procesora.

Algorytm LS jest 2-przybliżony $C_{\max}(LS) \leq (2-m^{-1})C_{\max}^*$.

Minimalizacja C_{max} . Maszyny równoległe $P||C_{\text{max}}|$ - algorytmy przybliżone cd.

Szeregowanie LPT (ang. Longest Processing Time)

Szereguj listowo, przy czym zadania na liście są wstępnie posortowane według nierosnących czasów wykonania p_j .

Minimalizacja C_{max} . Maszyny równoległe $P||C_{\text{max}}$ - algorytmy przybliżone cd.

Szeregowanie LPT (ang. Longest Processing Time)

Szereguj listowo, przy czym zadania na liście są wstępnie posortowane według nierosnących czasów wykonania p_j .

LPT jest 4/3-przybliżony: $C_{\max}(LPT) \le (4/3 - (3m)^{-1})C_{\max}^*$.

Minimalizacja C_{max} . Maszyny równoległe $P|pmtn, prec|C_{\text{max}}$

Zadania zależne, podzielne

- w ogólności problem jest NP-trudny
- istnieje algorytm $(O(n^2))$ dla $P2|pmtn, prec|C_{max}$ i $P|pmtn, forest|C_{max}$

- problem NP-trudny
- znane przypadki wielomianowe:
 - $P|p_i = 1$, $in forest|C_{max}$, $P|p_i = 1$, $out forest|C_{max}$ (alg. Hu, O(n))
 - $P2|p_i=1, prec|C_{max}$ (alg. Coffmana-Grahama, $O(n^2)$)

- problem NP-trudny
- znane przypadki wielomianowe:
 - $P|p_i = 1$, $in forest|C_{max}$, $P|p_i = 1$, $out forest|C_{max}$ (alg. Hu, O(n))
 - $P2|p_i=1, prec|C_{\sf max}$ (alg. Coffmana-Grahama, $O(n^2)$)

ALgorytm Hu - wstęp

 redukcja out-forest do in-forest: odwrócenie relacji prec, a po uzyskaniu harmonogramu – odwrócenie go,

- problem NP-trudny
- znane przypadki wielomianowe:
 - $P|p_i = 1$, $in forest|C_{max}$, $P|p_i = 1$, $out forest|C_{max}$ (alg. Hu, O(n))
 - $P2|p_i=1, prec|C_{\sf max}$ (alg. Coffmana-Grahama, $O(n^2)$)

ALgorytm Hu - wstęp

- redukcja out-forest do in-forest: odwrócenie relacji prec, a po uzyskaniu harmonogramu – odwrócenie go,
- redukcja in-forest \to in tree: dodanie "dodatkowego korzenia" dla wszystkich drzew, a po uzyskaniu harmonogramu usunięcie go

- problem NP-trudny
- znane przypadki wielomianowe:
 - $P|p_i = 1$, $in forest|C_{max}$, $P|p_i = 1$, $out forest|C_{max}$ (alg. Hu, O(n))
 - $P2|p_i = 1$, $prec|C_{max}$ (alg. Coffmana-Grahama, $O(n^2)$)

ALgorytm Hu - wstęp

- redukcja out-forest do in-forest: odwrócenie relacji prec, a po uzyskaniu harmonogramu – odwrócenie go,
- redukcja in-forest \to in tree: dodanie "dodatkowego korzenia" dla wszystkich drzew, a po uzyskaniu harmonogramu usunięcie go
- algorytm w skrócie: LS z prec + lista utworzona wg nierosnącej odległości od korzenia drzewa

Minimalizacja C_{max} . Maszyny równoległe $P|p_i=1$, $in-forest|C_{\text{max}}$ - algorytm Hu

Algorytm Hu $P|p_i = 1, in - tree|C_{max}|$

- Ustal dla każdego zadania jego poziom liczba węzłów na drodze do korzenia.
- 2 t := 1;
- repeat
 - Wyznacz listę L_t zadań wolnych w chwili t;
 - Uporządkuj L_t według nierosnącego poziomu;
 - Przypisz m (lub mniej) zadań z początku L_t do maszyn;
 - Usuń przypisane zadania z grafu;
 - t := t + 1;

until uszeregowano wszystkie zadania;

Zadania niepodzielne

Przykład. Algorytm Hu. n=12, n=3.

Minimalizacja C_{max} . Maszyny równoległe $P2|p_i=1, prec|C_{\text{max}}$ - algorytm Coffmana-Grahama

Slajdy autorstwa P. Semprucha