MAT-255– Number Theory	Spring 2024	In Class Work March 18
Your Name:	Group Members:	
Previous Results		
Lemma 1. Let $a, b \in \mathbb{Z}$, not both zero. T	Then any common divisor of a and	b divides the greatest common divisor.
Lemma 2. Let $a, b \in \mathbb{Z}$, not both zero. T	Then any divisor of (a,b) is a comm	mon divisor of a and b.
Proposition (Proposition 5.1). Let a, m integer n if and only if $\operatorname{ord}_m a \mid n$. In par	* * * * * * * * * * * * * * * * * * * *	Then $a^n \equiv 1 \pmod{m}$ for some positive
Problems		
Problem 1 Let p be prime, m a positive $a^d \equiv 1 \pmod{p}$.	tive integer, and $d = (m, p - 1)$. I	Prove that $a^m \equiv 1 \pmod{p}$ if and only if
Proof Let p be prime, m a positive integers. Otherwise, $a^{p-1} \equiv 1$ (m		\mathbb{Z} . If $p \mid a$, then $a^i \equiv \underline{\hspace{1cm}}$ for all
Thus, is a common divisor	of and if and only if ord _p o	if and only if Combining Lemmas 1 and 2 gives $\operatorname{ord}_p a$ $a \mid d$. One final application of Proposition

Problem 2 Let p be prime and m a positive integer. Prove that

$$x^m \equiv 1 \pmod{p}$$

has exactly (m, p-1) in congruent solutions modulo p.

Proof Let p be prime, m a positive integer, and d = (m, p - 1). From Problem 1,

Now find a result that allows you to finish the proof in 1-2 sentences.

If you have time, start working on this problem from the homework.

Problem 3 Prove the following statement, which is the converse of Proposition 5.4 (for a prime):

Let p be prime, and let $a \in \mathbb{Z}$. If every $b \in \mathbb{Z}$ such that $p \nmid b$ is congruent to a power of a modulo p, then a is a primitive root modulo p.