- 3. **[Electric vehicles]** Consider a city network where we need to route a set of electric vehicles which may require to be charged during its journey from some source to some destination. Let us assume that we have n cities (v_1, v_2, \ldots, v_n) and the distance between cities v_i and v_j be e_{ij} (if two cities are not connected directly then $e_{ij} = \infty$ and $e_{ij} = e_{ji}$). Assume that each city has a single charging station which can charge one EV at a time. Consider a set of k EVs namely P_1, P_2, \ldots, P_k . For each EV the following information is provided -
 - (a) S_r source node
 - (b) D_r destination node
 - (c) B_r battery charge status initially
 - (d) c_r charging rate for battery at a charging station (energy per unit time)
 - (e) d_r discharging rate of battery while traveling (distance travel per unit charge)
 - (f) M_r maximum battery capacity
 - (g) s_r average traveling speed (distance per unit time).

Assume that all vehicles start their journey at t=0 and P_r reaches it destination at $t=T_r$. We need to route all the vehicles from their respective sources to destinations such that $\max\{T_r\}$ is minimized. You need to develop both optimal as well as heuristic algorithms.

