

Optical detection and classification of precipitation - using light beam with vertical dimension smaller than largest particle to be detected

Publication number: DE4139515

Publication date: 1992-06-04

Inventor: LOEFVING STEN (SE)

Applicant: LOEFVING STEN (SE)

Classification:

- international: B60S1/08; G01N21/53; G01S7/48; G01S17/95;
G01V8/10; B60S1/08; G01N21/47; G01S7/48;
G01S17/00; G01V8/10; (IPC1-7): G01V9/04; G01W1/14

- European: B60S1/08F2; G01N21/53; G01S7/48A; G01S17/95;
G01V8/10

Application number: DE19914139515 19911129

Priority number(s): SE19900003817 19901130

Also published as:

SE9003817 (L)

SE467553 (B)

[Report a data error here](#)

Abstract of DE4139515

An optical method for detecting and classifying precipitation involves an arrangement contg. a radiation source and detection system. The radiation coincides with a detection region. The vertical extent of the light beam is less than the diameter of the largest particle to be detected or between 0.1 and 1 mm. The horizontal extent is greater than the vertical extent. Large rain drops can be distinguished from small ones since they cause shorter pulses. Snow can be distinguished from rain since snow drops cause longer pulses than rain drops. USE - Optical detection and classification of precipitation.

Data supplied from the esp@cenet database - Worldwide

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(10) DE 41 39 515 A 1

(51) Int. Cl. 5:
G 01 W 1/14
G 01 V 9/04

(30) Unionspriorität: (32) (33) (31)
30.11.90 SE 9003817

(71) Anmelder:
Löfving, Sten, Göteborg, SE

(74) Vertreter:
Richter, J., Dipl.-Ing., 1000 Berlin; Gerbaulet, H.,
Dipl.-Ing., Pat.-Anwälte, 2000 Hamburg

(72) Erfinder:
gleich Anmelder

(54) Optisches Klassifizierungsverfahren von Niederschlägen

(57) Optisches Verfahren zum Detektieren und Klassifizieren von Niederschlägen. Eine Ausrüstung kommt zur Anwendung, die eine Bestrahlungsquelle und ein Detektierungssystem beinhaltet, wobei die Strahlen mit dem Detektierungsbereich innerhalb eines Gebietes/Volumens zusammenfallen. Die vertikale Ausstreckung des vom Lichtstrahl verbreiteten bzw. rückwärts verbreiteten Lichtes ist kleiner als der Durchmesser der größten Partikel die detektiert werden sollen oder zwischen 0,1 und 1 mm. Große Regentropfen werden von kleineren dadurch unterschieden, daß sie kürzere Pulse verursachen. Schnee wird von Regen unterscheiden, indem Schneeflocken längere Pulse als Regentropfen verursachen. Die horizontale Ausstreckung des Lichtstrahles ist größer als dessen vertikale Ausstreckung ist.

DE 41 39 515 A 1

DE 41 39 515 A 1

Beschreibung

Es ist heutzutage üblich, daß Wetterdaten von automatischen sogenannten Wetterstationen für verschiedene Zentralen eingesammelt werden, um schnellen Zugang zu Wetterinformationen innerhalb eines relativ großen Gebietes zu erhalten. Beispielsweise ist daß Straßenamt damit beschäftigt, ein Netz solcher Automatstationen aufzubauen, um Beschlußunterlagen für das Straßennetz zu haben, wenn Einsätze beschlossen werden sollen, wie z. B. Sandsträuen oder Schneeflügen. Für die meisten Wettergrößen, wie Temperatur, Windstärke und Windrichtung, sind heute automatische Geber zugängig. Wenn es aber um Niederschläge und Nebel geht, ist es schwierig preiswerte Lösungen zu finden.

Zweck der Erfindung und die wichtigsten Kennzeichen der Erfindung

Der Zweck der vorliegenden Erfindung ist ein unikes und billiges optisches Verfahren zum Detektieren und Klassifizieren von Niederschlägen der oben angegebenen Art vorzuschlagen. Diese Aufgabe wurde dadurch gelöst, daß die vertikale Ausstreckung des vom Lichtstrahl verbreiteten Lichtes kleiner ist als der Durchmesser der größten Partikel die detektiert werden sollen oder zwischen 0,1 und 1 mm beträgt, wobei große Regentropfen von kleineren dadurch unterschieden werden indem sie kürzere Pulse verursachen, und Schnee von Regen unterschieden wird, indem Schneeflocken längere Pulse als Regentropfen verursachen, und daß die horizontale Ausstreckung des Lichtstrahles größer ist als dessen vertikale Ausstreckung.

Beschreibung eines Ausführungsbeispiels

Die vorliegende Erfindung nützt einen schmalen und ovalen Lichtstrahl aus, dessen vertikale Ausstreckung in der Größenordnung von 0,1 bis 1,0 mm ist, was mit Hilfe eines Halbleiterlasers realisiert werden kann. Wenn Partikel in der Luft angestrahlt werden, wird ein Licht nach hinten abgestreut, das von einem Detektor aufgefangen wird, der mit der Bestrahlungsquelle zusammengebaut ist und welches rückwärts verbreitete Licht detektiert wird. Wenn die betreffende Partikeln Nebelpartikel sind, verursacht dies ein Signal mit einer kontinuierlichen Komponente, was in einem DC-Signal vom Detektor resultiert. Wenn dagegen beispielsweise Hagelkörner in den Strahl hineinfallen, erzeugt dieses einen Puls. Die Länge dieser Pulse hängt von der Fallgeschwindigkeit der Partikel ab, sodaß ein schnell fallendes Partikel einen kürzeren Puls als ein langsam fallendes Partikel verursacht. Außerdem beeinflußt die Struktur des Partikels die Länge des Pulses, sodaß ein Wassertropfen einen kürzeren Puls als eine ebensoschnell fallende Schneeflocke verursacht. Dies hat seinen Grund darin, daß die peripheren Teile der Schneeflocken licht nach Rückwärts verbreiten, während nur die zentralen Teile des Regentropfens licht nach hinten verbreiten (reflektieren). Zur Sache gehört auch, daß kleine Regentropfen langsamer fallen als große, was seinen Grund darin hat, daß das Verhältnis zwischen den antriebenden und bremsenden Kräften für große Regentropfen größer ist als für kleine.

Das somit beschriebene Phänomen bietet eine Möglichkeit an, nur mit Hilfe von gemessener Pulszeit, die Niederschläge zu klassifizieren. Für einen Strahl mit ei-

ner Höhe von etwa 0,3 mm kann man folgende typische Resultate erwarten:

	Art des Niederschlages	Pulszeit
5	Regen ($D=1 \text{ mm}$)	0.10 ms
	Nieselregen ($D=0,1 \text{ mm}$)	0.15 ms
	Schnee	0.25 ms

10 Der Lichtstrahl wird mit ovalen Querschnitt ausgebildet, dessen kürzere Achse vertikal verläuft. Dadurch werden in gewisser Hinsicht die Fehler die durch Wind verursacht sind, vermieden. Wenn die Partikeln durch Einfluß eines Windes schräg durch die zentralen Teile des ovalen Strahles fallen, entspricht die Pulslänge der vertikalen Geschwindigkeit, was ja das ist, was man zu messen wünscht.

Ein wichtiges Kennzeichen der vorliegende Erfindung ist somit, daß das nach hinten verbreitete Licht registriert wird, wenn ein Niederschlagspartikel einen Lichtstrahl passiert, dessen vertikale Ausstreckung kleiner oder vergleichbar mit dem Durchmesser der Partikeln ist, die registriert und klassifiziert werden sollen. Nichts hindert jedoch daran, daß man die Strahlung detektiert, die in anderen Richtungen als rückwärts verbreitet werden. Der Grund weshalb in der vorliegenden Erfindung die Zerstreuung nach hinten ausgenutzt wird ist, daß dadurch die Konstruktion sehr einfach und widerstandsfähig ist, und außerdem den geringsten denkbaren Einfluß auf die Luftströmungen um den Geber herum mitführt, wobei die Luftströmung beim Messen eine Fehlerquelle ausmacht.

Es existieren sogenannte "present weather instruments", die mit optischen Verfahren, zusammen mit einem kraftvollen Computer Niederschlag detektieren und klassifizieren. Diese Instrumente unterscheiden sich von der vorliegende Erfindung durch zwei wichtige Punkte. Erstens arbeiten sie mit einem Lichtstrahl, dessen Querschnittsfläche bedeutend größer ist als die Niederschlagspartikel, was für die Funktion eine Bedingung ist. Diese Instrumente bearbeiten nämlich die Querschnittsfläche via die Amplitude der registrierten Signale. Zum zweiten wird das Licht detektiert, welches die Niederschlagspartikel nicht verbreite (Transmissionsprinzip) oder das Licht welches die Partikel in einem Winkel verbreiten, der annähernd in Richtung des Lichtstrahles liegen (Verbreitung in Richtung vorwärts).

Es ist möglich auf Basis der Pulslänge jedes Tropfens dessen Volumen zu berechnen, was auch eine Berechnung des Niederschlages in Millimetern ermöglicht.

Die Erfindung ist nicht auf das oben beschriebene Beispiel begrenzt sondern kann im Rahmen der Ansprüche variiert werden. Somit kann ein AM-modulierter Halbleiterlaser nebst Fokussierungsobjektiv neben einem Detektor mit dazugehörender Sammellinse gemäß beigefügter Abbildung montiert werden. Wenn der Laserstrahl die optische Achse der Detektorlinse in einem Winkel schneidet, der größer als halbe Öffnungswinkel des Detektierungsbereiches ist, gemäß Abbildung, wird der Detektor verbreitetes Licht von eventuellen Partikeln innerhalb eines begrenzen Gebietes empfangen, daß von einem Schnitt zwischen dem Detektierungsbereich und dem Laserstrahl definiert wird. Nach der Synkronmodulierung des Detektorsignales werden Pulse erhalten, wenn Partikeln durch daß eben definierte Gebiet passieren. Die Elektronik enthält Kreise zur Bestimmung der Pulslängen.

Patentansprüche

1. Optisches Verfahren zum Detektieren und Klassifizieren von Niederschlägen, wobei eine Ausrüstung zur Anwendung kommt, die eine Bestrahlungsquelle und ein Detektierungssystem beinhaltet, wobei die Strahlen mit dem Detektierungsbe- 5
reich innerhalb eines Gebietes zusammenfallen, da-
durch gekennzeichnet, daß vertikale Ausstrek-
kung des vom Lichtstrahl verbreiteten Lichtes klei-
ner ist als der Durchmesser der größten Partikel die
detektiert werden sollen oder zwischen 0,1 und
1 mm beträgt, wobei große Regentropfen von klei-
neren dadurch unterschieden werden indem sie
kürzere Pulse verursachen, und Schnee von Regen 15
unterschieden wird, indem Schneeflocken längere
Pulse als Regentropfen verursachen und daß die
horizontale Ausstreckung des Lichtstrahles größer
als dessen vertikale Ausstreckung ist.

2. Optisches Verfahren zum Detektieren und Klas- 20
sifizieren von Niederschlägen, wobei eine Ausrü-
stung zur Anwendung kommt, die eine Bestrahlungsquelle und ein Detektierungssystem beinhaltet, wobei die Strahlen mit dem Detektierungsbe- 25
reich innerhalb eines Volumens zusammenfallen,
dadurch gekennzeichnet, daß die vertikale Aus-
streckung des vom Lichtstrahl rückwärts verbreite-
ten Lichtes kleiner ist als der Durchmesser der
größten Partikel die detektiert werden sollen oder
zwischen 0,1 und 1 mm beträgt, wobei große Re- 30
gentropfen von kleineren dadurch unterschieden
werden indem sie kürzere Pulse verursachen, und
Schnee von Regen unterschieden wird, indem
Schneeflocken längere Pulse als Regentropfen ver-
ursachen, und daß die horizontale Ausstreckung 35
des Lichtstrahles größer als dessen vertikale Aus-
streckung ist.

Hierzu 1 Seite(n) Zeichnungen

Fig 1