화학 General Chemistry 034.020-005

2018 Spring Semester

Tue/Thr 9:30~10:45 Building 028-302

송윤주 woonjusong@snu.ac.kr

Electrochemistry

- The study of the interchange of **chemical** and **electrical energy**.
- -Generation of an electric current from a spontaneous chemical reaction
- -Use of a **current** to produce **chemical change**

oxidation-reduction (redox) reaction: involves a transfer of **electrons** from the reducing agent to the oxidizing agent.

oxidation: loss of electrons

reduction: gain of electrons

In many cases, definition of oxidation and reduction is simple. However, in some other cases, it is not obvious.

Covalent bonds, Ionic bonds, and somewhere in between

- Covalent bond between two atoms:
 - Shares electrons
 - One cannot tell the number of electrons in one atom

Ionic bond between two atoms:

- Do not share electrons
- One can tell the number of atoms in anion and cation in ionic compounds

- ** Old Definitions: deal with reaction of metals
- Oxidation: "addition of oxygen"
- Reduction: "loss of oxygen"

Ex)

- $2Na + 1/2O_2 \rightarrow Na_2O$ (Na-atom is oxidized)
- 2Fe + O_2 \rightarrow 2FeO (Fe-atom is oxidized)
- 2FeO \rightarrow 2Fe + O₂ (Fe-atom is reduced)

Generalization of concepts

People already <u>"knew"</u> that Na wants to be in Na⁺ form, and O wants to be in O²⁻.

```
• 2Na + 1/2O_2 \rightarrow Na_2O = 2Na^+ + O^{2-}
• 2\text{Fe} + O_2 \rightarrow 2\text{Fe}O = 2\text{Fe}^{2+} + 2O^{2-}
• Pb + CO<sub>2</sub> \rightarrow PbO + CO = Pb<sup>2+</sup> + O<sup>2-</sup>
    Oxidation = loss of electrons!
    Reduction = gain of electrons
     2Na + Cl_2 \rightarrow 2NaCl = Na^+ + Cl^-
```

Na is oxidized, Cl₂ is reduced

Newer definition of oxidation and reduction

- Oxidation = gain of electrons
- Reduction = loss of electrons

$$2Na + Cl_2 \rightarrow NaCl \sim Na^+ + Cl^-$$

This definition works great for ionic compounds, but...

 For other non-ionic compounds, it is hard to tell which one lost electrons and which one gained electrons.

Pb: reduced or oxidized?

$$2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$$

Pb?+ Pb²⁺

Does the Carbon atom lost electron or gained electron?

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

However, we still want to use the concept of oxidation-reduction.. *So, we invent the rule*

• Regard ALL of the compound as ionic compound.

•
$$H_2O = 2H^+ + O^{2-}$$

 Charges in this artificial ions are called the oxidation number

The Rule

TABLE 4.2 Rules for Assigning Oxidation States		
The Oxidation State of	Summary	Examples
 An atom in an element is zero 	Element: 0	$Na(s)$, $O_2(g)$, $O_3(g)$, $Hg(l)$
 A monatomic ion is the same as its charge 	Monatomic ion: charge of ion	Na ⁺ , Cl ⁻
• Fluorine is −1 in its compounds	Fluorine: -1	HF, PF ₃
 Oxygen is usually -2 in its compounds Exception: peroxides (containing O₂²⁻) in which oxygen is -1 	Oxygen: -2	H ₂ O, CO ₂
 Hydrogen is +1 in its covalent compounds 	Hydrogen: +1	H ₂ O, HCl, NH ₃

Note:

- Oxidation numbers for monoatomic ionic species are actual charges.
- Pure elements have zero charges.
- All other elements follows total charge condition:

- CO_2 : Net charge = $O = 2 \times (-2) + \times$
- X= 4+: oxidation state of C in CO₂ is +4

Newest definition of Oxidation / Reduction

- Oxidation = increase in oxidation number
- Reduction = reduction in oxidation number

** This definition embraces all of the older definitions

Oxidation: "addition of oxygen" Reduction: "loss of oxygen"

Oxidation = gain of electrons Reduction = loss of electrons

Reduction and oxidation occurs simultaneously for a given reaction= REDOX reaction

a. The oxidation state of oxygen is -2. Because CO_2 has no charge, the sum of the oxidation states must be zero.

$$1(+4) + 2(-2) = 0$$

+4 -2 for each oxygen

b. The oxidation state of fluorine is -1.

$$+6 + 6(-1) = 0$$

+6 -1 for each fluorine

c.
$$NO_3^-$$

+5 + 3(-2) = -1
+5 -2 for each
oxygen

Oxidation-Reduction Reactions

- Oxidizing agent or Oxidizer/Oxidant
 - Something that causes others to oxidize
 - Compound that is being reduced

- Reducing agent or Reducer/Reductant
 - Something that causes others to reduce
 - Compound that is being oxidized

Oxidation-Reduction Reactions

$$2AI(s) + 3I2(s) \longrightarrow 2AII3(s)$$

Identify the atoms that are oxidized and reduced, and specify the oxidizing and reducing agents.

$$PbO(s) + CO(g) \longrightarrow Pb(s) + CO_2(g)$$

Balancing Oxidation-Reduction Reaction (Redox Reaction)

CuS(s) + NO₃⁻(aq) → Cu²⁺(aq) +SO₄²⁻(aq) + NO(g)
H⁺
$$H_2$$
O

- Number of atoms should be conserved
- 2. Reaction can be different for acidic and basic conditions. H₂O, OH⁻, and H⁺ can take parts in the chemical reaction
- 3. Oxidation and reduction occurs at the same time:-Oxidation number change should be conserved

Example 13.1.

Balance the net ionic equation for this skeletal reaction in an **acidic** aqueous solution.

$$MnO_4^-(aq) + H_2C_2O_4(aq) \to Mn^{2+}(aq) + CO_2(g)$$

Example 13.2.

Balance the net ionic equation for this skeletal reaction in a **basic** aqueous solution.

$$MnO_4^-(aq) + Br^-(aq) \to MnO_2(s) + BrO_3^-(aq)$$

Half-Reactions/Balancing Redox Equations

- Half-reaction

: the oxidation or reduction part of a reaction considered alone

- Oxidation/Reduction

Oxidation: loss of electrons

Reduction: gain of electrons

$$Zn(s) + 2 Ag^{+}(aq) \longrightarrow Zn^{2+}(aq) + 2 Ag(s)$$

- oxidation $Zn(s) \longrightarrow Zn^{2+}(s) + 2e^{-}$
- reduction $Ag^+(aq) + e^- \longrightarrow Ag(s)$

Zn²⁺/Zn and Ag⁺/Ag

1. Cu atoms lose electrons and dissolve into the solution:

Cu(s) \rightarrow Cu²⁺(aq) + 2e⁻ (Cu is oxidized)

- 2. Electrons (2e⁻) are deposited onto the remaining Cu metal.
- 3. Ag⁺ ions are attracted to the charged Cu metal surface.
- 4. Ag⁺ ions obtain electrons to become Ag(s) and deposited onto the metallic Cu.

 $Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$ (Ag is reduced)

Overall reaction that is happening in the beaker

$$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$$

Red

Ox

$$2Ag^{+}(aq) + 2e^{-} \rightarrow 2Ag(s)$$

$$Cu(s) + 2Ag^{+}(ag) \rightarrow Cu^{2+}(aq) + Ag(s)$$

Questions:

- 1. Why does the reverse reaction do not occur?
- 2. What determines the direction of the reaction?
- 3. How do we implement this redox reaction?

Metal Electrodes and Equilibrium

$$Zn(s)$$
 $\xrightarrow{oxidation}$ $Zn^{2+}(aq) + 2e^{-}$ reduction

Structure of Galvanic Cells

- Electrochemical cell

: A device in which an electric current (a flow of electrons through a circuit) is either produced by a spontaneous chemical reaction or used to bring about a nonspontaneous reaction.

-Galvanic cell

: An electrochemical cell in which a spontaneous chemical reaction is used to generate an electric current.

- **Battery**: a collection of galvanic cells joined in series

GALVANIC CELL

- 1.Metal electrodes (provide electrons)
- 2. Electrolyte solutions
- 3. Salt bridge (Current between two beakers)

OX: $Cu(s) \rightarrow Cu^{2+} + 2e^{-}$

Anode

© 2007 Thomson Higher Education

RED:

 $Ag^{+}(aq)+e^{-} \rightarrow Ag(s)$

Cathode

 $Cu(s)|Cu^{2+}(aq)||Ag^{+}(aq)|Ag(s)|$

13.5. The Notation for Cells

- Cell diagram

Oxidation: Reduction:
$$Zn(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$$

$$Zn^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$

$$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$$
 $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$ (reduction)

Overall (R + L):
$$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$$
 $E_{cell} = +1.10 \text{ V}$

Net Reaction

Cu(s)
$$\rightarrow$$
 Cu²⁺ + 2e⁻ Half-reactions
2Ag⁺ + 2e⁻ \rightarrow Ag(s)

$$Cu(s) + 2Ag^+ \rightarrow Cu^{2+} + Ag(s)$$

Purpose of salt bridge

- Two separate beakers without salt bridge
 - > The reaction will stop after a short period of time.
- One beaker:
 - \rightarrow mixture of Zn²⁺ and Ag+ leads to ill-defined potential.

Electric potential difference, ΔΕ

Voltmeter measures voltage difference:

Cell Potential and Reaction Gibbs Free E

Units in electrochemisty

- Volt (V): electric potential energy/charge = N·m/C = J/C
- Coulomb (C): electric charge (Q or q) transported by a constant current of one ampere in second: $A \cdot s$
- Ampere (A): electric current, one coulomb of charge going past a given point per second=C/s
- Watt (W): unit of power: J/s = V *A

Force: changes the state of motion of an object (N, kg·m·s⁻²): F = ma

Work: the process of moving an object against an opposing force Work = force X distance (J, kg·m²·s⁻²)

Energy: the capacity of a system to do work

Cell Potential and Reaction Gibbs Free E

 $\Delta G = w_{non-expansion, rev} = w_{non-expansion, Max} (at const. T and P)$

- $W_{non-expansion, Max}$
- = (Amount of charge through the circuit) x (Potential Difference)
- = (Total number of electrons x electron charge) $\times E$
- = N x (-e) x E
- $= n \times N_{avogadro} \times (-e) \times E$
- $= n \times (6 \times 10^{23} \times 1.6 \times 10^{-19} \text{ C}) \times \text{E}$
- = n F E

$$\therefore \Delta G = -nFE$$

$$F (Faraday constant) = eN_A = (1.60 \times 10^{-19} C) \times (6.02 \times 10^{23} mol^{-1})$$
$$= 9.632 \times 10^4 C \cdot mol^{-1}$$

 $\Delta G < 0 \iff E > 0$ (spontaneous reaction)

Cell Potential and Reaction Gibbs Free E

- For the cell at standard state, $\Delta G = -nFE$ Standard cell potential
- Standard state: 1 atm, 1mole/liter, and usually at 298 K
- : The cell potential measured when all reactants and products are in their standard states.

$$\Delta G = \Delta G^{\circ} + RTInQ$$
 where Q = reaction quotient
 $\Delta G = -nFE$, $\Delta G_{\circ} = -nFE^{\circ}$
 $-nFE = -nFE^{\circ} + RTInQ$

$$E = E^o - \frac{RT}{nF} \ln(Q)$$
 Nernst Equation
$$E = E^o - \frac{0.0592}{n} \log(Q)$$
 (at room temp.)
$$(n = number of electrons involved in the cell)$$

At Equilibrium,

$$G = -nFE = -nFE + RTInQ$$

 $\Delta G = 0$, E = 0, and Q = K(equilibr ium const)

Therefore,

 $nFE^0 = RTInK$

 $E^{\circ} = (RT/nF)lnK$

$$E^o = \frac{0.0592}{n} \log(K)$$

$$K = \exp\left(\frac{nE^0}{0.0592}\right)$$

Walther Nernst

1920 Nobel Prize in chemistry

For a combination of an anode and a cathode, How much voltage difference (E) is generated?

$$E = E^{0}(Y) - E^{0}(X)$$
 (E⁰: Standard reduction potential)

How to determine $E^0(X)$ and $E^0(Y)$ separately?

- 1. Need to define $E^0 = 0$ volt.
- 2. Need systematic ways to tabulate E(X).

13.6. Standard Potentials

- Standard *electrode* potential (standard reduction potential)
- Standard cell potential
 - = difference between two standard electrode potential

$$E_{cell}^{o} = E_{R}^{o} - E_{L}^{o}$$

$$if \quad E_{cell}^{o} > 0 \Leftrightarrow \Delta G^{o} < 0 \Leftrightarrow K > 1$$

→ Spontaneous reaction at standard state (all substances)

→ Electrode on right = cathode

Fe(s) | Fe²⁺(aq) || Ag⁺(aq) | Ag(s)
2 Ag⁺(aq) + Fe(s)
$$\rightarrow$$
 2 Ag(s) + Fe²⁺(aq)
 $E_{cell}^{\circ} = E^{\circ}(Ag^{+}/Ag) - E^{\circ}(Fe^{2+}/Fe) = +1.24 \text{ V at 25 °C}$

Need a Reference Electrode!!!! (standard hydrogen electrode, SHE)

Standard Reduction Potentials:

$$E_{cell}^{\ o} = E_R^{\ o} - E_L^{\ o}$$

$$E^{\circ}_{\text{cell}} = E^{\circ}_{\text{H+}\rightarrow\text{H2}} - E^{\circ}_{\text{Zn2+}\rightarrow\text{Zn}}$$
$$= 0 - E^{0}_{\text{Zn 2+}\rightarrow\text{Zn}} = 0.76 \text{ V}$$

$$E^0_{\text{Zn2+}\to\text{Zn}} = -0.76 \text{ V}$$

$$Zn(s)|Zn^{2+}(aq)| | H^{+}(aq)| H_{2}(g)$$

Standard Reduction Potential

Electric Potential of half-cell *reduction reaction* in standard state:

$$X^{n+} + ne^{-} \rightarrow X$$
, where $[X^{n+}] = [X] = 1$ M

$$E_{Zn2+\to Zn}^{O} = -0.76 \text{ V}$$

* Standard reduction potentials are measured with SHE.

$$E^0(X/X^+) > 0 :: Favors reduction : X^+ + e^-$$

$$E^0(X/X^+) < 0 :: Favors oxidation : X^+ + e^- \leftarrow X$$

$$E^o = \frac{0.0592}{n} \log(K)$$

Standard Reduction Potentials:

Species	Reduction half-reaction	E° (V)
Oxidized form is strongly oxi	dizing	
F_2/F^-	$F_2(g) + 2 e^- \longrightarrow 2 F^-(aq)$	+2.87
Au ⁺ /Au	$Au^{+}(aq) + e^{-} \longrightarrow Au(s)$	+1.69
Ce^{4+}/Ce^{3+}	$Ce^{4+}(aq) + e^{-} \longrightarrow Ce^{3+}(aq)$	+1.61
$MnO_4^-, H^+/Mn^{2+}, H_2O$	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$	+1.51
Cl ₂ /Cl ⁻	$Cl_2(g) + 2 e^- \longrightarrow 2 Cl^- (aq)$	+1.36
$Cr_2O_7^{2-},H^+/Cr^{3+},H_2O$	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(1)$	+1.33
$O_2,H^+/H_2O$	$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	+1.23; $+0.82$ at pH = 7
Br ₂ /Br ⁻	$Br_2(l) + 2 e^- \longrightarrow 2 Br^-(aq)$	+1.09
$NO_3^-, H^+/NO, H_2O$	$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$	+0.96
Ag^{+}/Ag	$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0.80
Fe^{3+}/Fe^{2+}	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.77
I_2/I^-	$I_2(s) + 2 e^- \longrightarrow 2 I^-(aq)$	+0.54
$O_2,H_2O/OH^-$	$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^- (aq)$	+0.40; $+0.82$ at pH = 7
Cu ²⁺ /Cu	$Cu^{2+}(aq) + 2 e^{-} \longrightarrow Cu(s)$	+0.34
AgCl/Ag,Cl	$AgCl(s) + e^{-} \longrightarrow Ag(s) + Cl^{-}(aq)$	+0.22
H^+/H_2	$2 H^{+}(aq) + 2 e^{-} \longrightarrow H_{2}(g)$	0, by definition
Fe ³⁺ /Fe	$Fe^{3+}(aq) + 3e^{-} \longrightarrow Fe(s)$	-0.04
$O_2, H_2O/HO_2^-, OH^-$	$O_2(g) + H_2O(l) + 2e^- \longrightarrow HO_2^-(aq) + OH^-(aq)$	-0.08
Pb ²⁺ /Pb	$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.13
$\mathrm{Sn}^{2+}/\mathrm{Sn}$	$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2 \operatorname{e}^{-} \longrightarrow \operatorname{Sn}(\operatorname{s})$	-0.14
Fe ²⁺ /Fe	$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.44
Zn^{2+}/Zn	$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0.76
$H_2O/H_2,OH^-$	$2 H_2O(l) + 2 e^- \longrightarrow H_2(g) + 2 OH^-(aq)$	-0.83; -0.42 at pH = 7
Al^{3+}/Al	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1.66
Mg^{2+}/Mg	$Mg^{2+}(aq) + 2 e^{-} \longrightarrow Mg(s)$	-2.36
Na ⁺ /Na	$Na^+(aq) + e^- \longrightarrow Na(s)$	-2.71
K ⁺ /K	$K^+(aq) + e^- \longrightarrow K(s)$	-2.93
Li ⁺ /Li	$Li^+(aq) + e^- \longrightarrow Li(s)$	-3.05
Reduced form is strongly redu	ucing	

^{*}For a more extensive table, see Appendix 2B.

For a Gavanic Cell of the type:

$$X|X+||Y+|Y$$

If
$$E^0(Y/Y^+) > E^0(X/X^+)$$
,

$$Y^+$$
 will be reduced $X + Y^+ \rightarrow X^+ + Y$

If
$$E^{0}(Y/Y^{+}) < E^{0}(X/X^{+})$$
,

Cell voltage
=
$$E^0(Y/Y^+) - E^0(X/X^+)$$

$$Pt(s) |H_2(g)|H^+(aq)||Zn^{2+}(aq)|Zn(s)$$

$$Zn^{2+}(aq) + 2 e^{-} \longrightarrow Zn(s)$$
 $E^{\circ}(Zn^{2+}/Zn) = -0.76 V$

the reverse of the cell reaction,

$$Zn(s) + 2 H^{+}(aq) \longrightarrow Zn^{2+}(aq) + H_2(g)$$
 K > 1

$$E^o = \frac{0.0592}{n} \log(K)$$

Pt(s)
$$|H_2(g)|H^+(aq)||Cu^{2+}(aq)|Cu(s)$$

 $Cu^{2+}(aq) + 2 e^- \longrightarrow Cu(s)$ $E^{\circ}(Cu^{2+}/Cu) = +0.34 \text{ V}$
 $Cu^{2+}(aq) + H_2(g) \longrightarrow Cu(s) + 2 H^+(aq)$ **K** > **1**

	Reduction Half-Reaction	E° (V)	
Stronger	$F_2(g) + 2e^- \longrightarrow 2F(aq)$	2.87	Weaker
oxidizing	$H_2O_2(aq) + 2 H^+(aq) + 2 e^- \longrightarrow 2 H_2O(l)$	1.78	reducin
agent	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq)$	+ 4 H2O(l) 1.51	agent
	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	1.36	
	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq)$	q) + 7 H ₂ O(l) 1.33	
	$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$	1.23	
	$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$	1.09	
	$Ag^+(aq) + e^- \longrightarrow Ag(s)$	0.80	
	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	0.77	
	$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$	0.70	
	$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	0.54	
	$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^-(a)$	q) 0.40	
	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	0.34	
	$\operatorname{Sn}^{4+}(aq) + 2 e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	0.15	
	$2 H^+(aq) + 2 e^- \longrightarrow H_2(g)$	0	
	$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.13	
	$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	-0.26	
	$Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s)$	-0.40	
	$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.45	
	$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0.76	
	$2 H_2O(l) + 2 e^- \longrightarrow H_2(g) +$	$2 \text{ OH}^-(aq)$ -0.83	
	$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1.66	
Veaker	$Mg^{2+}(aq) + 2e^{-} \longrightarrow Mg(s)$	-2.37	Stronge
veaker xidizing	$Na^+(aq) + e^- \longrightarrow Na(s)$	-2.71	reducii
gent	$Li^+(aq) + e^- \longrightarrow Li(s)$	-3.04	agent

Dissolution (or corrosion) of metals in acid solution

Cr versus Au: which one will be corroded?

HNO₃ is an oxidizing agent:

$$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O, E^0(NO_3^-) = 0.96 V$$

$$Au^{3+} + 3e^{-} \rightarrow Au, E^{0} (Au^{3+}) = 1.5 V$$

$$Cr^{3+} + 3e^{-} \rightarrow Cr$$
, $E^{0}(Cr^{3+}) = -0.73 \text{ V}$

 $E^{0}(Au^{3+}) > E^{0}(NO^{3-})$:

Therefore, Au³⁺ wants to be reduced. Au is not oxidized by HNO₃.

 $E^{0}(Cr^{3+}) < E^{0}(NO^{3-})$:

Therefore, Cr wants to be oxidized.

Example The standard potential of the following standard cell potential is 0.91V when Zn^{2+}/Zn standard potential is -0.76 V. What is the standard potential for Sn^{4+}/Sn^{2+} ? $Zn(s)|Zn^{2+}(aq)|Sn^{4+}(aq), Sn^{2+}(aq)|Pt(s)$

$$0.91 = x - (-0.76) = x + 0.76$$

Therefore, $x = 0.15$ V

Example The standard potential of Ce^{4+} (aq) + $4e^{-}$ \rightarrow Ce (s) ?

$$Ce^{3+}(aq) + 3 e^{-} \longrightarrow Ce(s)$$
 $E^{\circ} = -2.48 \text{ V}$
 $Ce^{4+}(aq) + e^{-} \longrightarrow Ce^{3+}(aq)$ $E^{\circ} = +1.61 \text{ V}$

Stoichiometry of electrochemical reaction: Obtain the potential for the following redox reaction:

$$3Ag(s) + Cr^{3+}(aq) \rightarrow 3Ag^{+}(aq) + Cr(s)$$

Reduction half-reactions:

Ag⁺(aq) + e⁻
$$\rightarrow$$
 Ag(s)
Cr³⁺(aq) + 3e⁻ \rightarrow Cr(s)

$$E^0 = 0.80 \text{ volts}$$

$$E^0 = -0.73 \text{ volts}$$

$$3Ag(s) \rightarrow 3Ag^{+}(aq) + 3e^{-}$$

 $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$

$$-3E^0 = -3x0.80 \text{ volts}$$

$$E^0 = -0.73 \text{ volts}$$

$$E^0 = -0.73-3 \times 0.80$$

= -3.13 volt

$$3Ag(s) \rightarrow 3Ag^{+}(aq) + 3e^{-}$$

 $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$

$$-E^0 = -0.80 \text{ volts}$$

$$E^0 = -0.73 \text{ volts}$$

$$E^0 = -0.73 - 0.80$$

= -1.53 volt

Ex) Cu^{2+} (aq) + Fe(s) \rightarrow Cu(s) + Fe²⁺ (aq)

Is this reaction spontaneous at standard state? What is the ΔG^0 of this reaction?

$$Cu^{2+} + 2e^{-} \rightarrow Cu(s)$$

 $Cu^{+} + e^{-} \rightarrow Cu(s)$

$$E_1^0 = 0.340 \text{ V}$$

 $E_2^0 = 0.522 \text{ V}$

$$Cu^{2+} + e^{-} \rightarrow Cu^{+}$$

$$E^0 = E_1^0 - E_2^0$$
?

Disproportionation rxn:

a process in which a single substance is both reduced and oxidized

$$Cu^+ + Cu^+ \rightarrow Cu(s) + Cu^{2+}$$

Is it a spontaneous reaction?

Standard Potentials and K

- Equilibrium constant
- $\Delta G = -nFE (Chapter 13)$
- $\Delta G = -RT \ln K$ (Chapter 10)

$$\frac{-\Delta G^o}{RT} = \ln K = \frac{nFE^o}{RT}$$

Example: Calculate the equilibrium constant of $AgCl(s) \leftrightarrow Ag^{+}(aq) + Cl^{-}(aq)$ at 298 K.

Concentration Cell

: a cell in which both compartments have the same components but at different concentrations.

Reduction Potentials of Half-Cells $Ag^+ + e^- \rightarrow Ag(s)$

$$E(Right) = E^{0} (Ag/Ag^{+}) - 0.0592/1 \times log (1) = E^{0} (Ag/Ag^{+})$$

$$E(Left) = E0 (Ag/Ag+) - 0.0592/1 \times log (1/0.1)$$

Potential Difference = Right - Left =
$$0.0592/1 \times \log (1/0.1) = 0.0592 \times volt >$$

Reduction occurs at concentrated region!

An example of conc. cell: pH meter

$$E(left) = E^{0}(2H^{+}/H_{2}) = 0 \text{ volt}$$

$$E(right) = E^{0}(2H^{+}/H_{2}) - \frac{0.0529}{2} \log\left(\frac{1}{[H^{+}]^{2}}\right)$$

$$= 0.0529 \log([H^{+}]) = -0.0592 pH$$

Electrolytic Cells

13.11. Electrolysis

- Electrolysis (전기분해)

: process of driving a reaction in a nonspontaneous direction by

Electrolysis

:forcing a current through a cell to produce a chemical change for which the cell potential is negative.

Spontaneous rxn:

Electron flows from anode to cathode because of the potential difference between the cells.

 $Zn \rightarrow Zn^{2+} + 2e^{-} \qquad Cu^{2+} + 2e^{-} \rightarrow Cu$

Disappearance of Zn Deposition of Cu

Now, apply external voltage source:

 (E_{ext})

1. If $|E_{ext}| < 1.10$ volt; spontaneous electron flow will be slowed down

2. If
$$|E_{ext}| = 1.10$$
 volt:
electron flow stops

We can reverse the direction of the redox reaction!!!

Zn(s)

(b)

 Zn^{2+}

1.0 M Zn²⁴ solution

Anode

Anions-

Power source greater than

1.10 V

Cu(s)

Cu2+

1.0 M Cu2+

Cathode

Cations

Downs cell for Na production

i.e.) **Dow process**: commercial production of Mg from molten MgCl₂

Anode reaction: $2Cl^{-}(melt) \rightarrow Cl_{2}(g) + 2e^{-}$

Cathode reaction: $Mg^{2+}(melt) + 2e^{-} \rightarrow Mg(l)$

Oxidation: Reduction:

$$2Cl^{-}(melt) \rightarrow Mg^{2+}(melt) + 2e^{-}$$

 $Cl_{2}(g) + 2e^{-} \rightarrow Mg(s)$

- Overpotential (additional voltage)
- : For electrolysis to occur, an external potential at least as great as that of the spontaneous cell reaction must be applied to an electrolytic cell.

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(l)$$
 $E_{cell}^o = 1.23 V$
 $2 H_2O(l) \rightarrow 2 H_2(g) + O_2(g)$ $E_{cell}^o = -1.23 V$

- In practice, the high overpotential may produce byproducts.

$$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$$
 $E = +0.82 V \text{ at } pH = 7$ $Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$ $E^o = +1.36 V$

The Products of Electrolysis

- Faraday's law of electrolysis

: The number of moles of product formed is stoichiometrically equivalent to the number of moles of electrons supplied.

Example Calculate the mass of **AI** produced from the electrolysis of Na_3AIF_6 operating at 1.00 * 10^5 A in one day.

The Impact on Materials

13.13. Applications of Electrolysis

13.14. Corrosion

- Corrosion: unwanted oxidation of metal

$$2 H_2 O(l) + 2 e^- \rightarrow H_2(g) + 2 OH^-(aq)$$
 $E = -0.42 V \text{ at } pH = 7$ $Fe^{2+}(aq) + 2 e^- \rightarrow Fe(s)$ $E^o = -0.44 V$

→ Fe slightly reduces water in an oxygen-free condition.

$$O_2(g) + 2 H_2 O(l) + 4 e^- \rightarrow 4 OH^-(aq)$$
 $E = +0.82 V at pH = 7$

→ Water containing oxygen oxidize Fe.

- Corrosion prevention

- 1. Coating the metal with paint
- 2. Galvanization (coating the iron with the layer of zinc)
- 3. Passivation (protective oxide)
- 4. Cathodic protection (sacrificial anode)

13.15. Practice Cells

- Conventional battery

- Alkaline battery

$$Zn(s) + 2 OH^{-}(aq) \rightarrow ZnO(s) + H_2O(l) + 2 e^{-}$$
 (anode)
 $2 MnO_2(s) + H_2O(l) + 2 e^{-} \rightarrow Mn_2O_3(s) + 2 OH^{-}$ (cathode)
 $Zn(s) + 2 MnO_2(s) \rightarrow ZnO(s) + Mn_2O_3(s)$ (overall)

- Zn-Hg alkaline cell

$$Zn(s) + 20H^{-}(aq) \rightarrow ZnO(s) + H_{2}O(l) + 2e^{-}$$
 (anode)
 $HgO(s) + H_{2}O(l) + 2e^{-} \rightarrow Hg(l) + 20H^{-}$ (cathode)
 $Zn(s) + HgO(s) \rightarrow ZnO(s) + Hg(l)$ (overall)

- Lithium battery

$$Li_nC \rightarrow n Li^+ + n e^- + C$$
 (anode)
 $Li_{1-n}CoO_2 + n Li^+ + n e^- \rightarrow LiCoO_2$ (cathode)

- Lead-acid battery

$$Pb(s) + SO_4^{2-} \longrightarrow PbSO_4(s) + 2 e^{-} \qquad \text{(anode)}$$

$$PbO_2(s) + SO_4^{2-} + 4 H_3O^+ + 2 e^{-} \longrightarrow PbSO_4(s) + 6 H_2O(\ell) \qquad \text{(cathode)}$$

$$Pb(s) + PbO_2(s) + 2 SO_4^{2-} + 4 H_3O^+ \longrightarrow 2 PbSO_4(s) + 6 H_2O(\ell)$$

- Fuel cell

