### Polígono chico de área máxima Proyecto Final

Roberto Iván López López Adolfo Martínez Erneso Ulloa Pérez José Alonso Solís Lemus

Optimización Numérica, 2013



### Agenda

### Introducción

Descripción del problema Planteamiento del problema

### Restricciones

### Solución

Algoritmo utilizado Adecuaciones

### Resultados

CNPO y valor de f(x)Polígonos



## Agenda

Introducción

### Introducción

Descripción del problema

Algoritmo utilizado Adecuaciones

CNPO y valor de f(x)





## Polígono chico de mayor área

- Encontrar el polígono de área máxima, entre todos los polígonos posibles con n lados y diámetro d < 1. El diámetro de un polígono es la máxima distancia entre dos de sus vértices.
- ▶ El número de mínimos locales es al menos O(n!) [2].
- ► Conforme la *n* crece, el área del polígono se aproxima al área de un círculo de diametro uno, i.e  $\pi/4 \approx 0.7854$ .



## Polígono chico de mayor área

- Encontrar el polígono de área máxima, entre todos los polígonos posibles con n lados y diámetro d < 1. El diámetro de un polígono es la máxima distancia entre dos de sus vértices.
- ► El número de mínimos locales es al menos O(n!) [2].
- Conforme la n crece, el área del polígono se aproxima al área de un círculo de diametro uno, i.e  $\pi/4 \approx 0.7854$ .



## Polígono chico de mayor área

- Encontrar el polígono de área máxima, entre todos los polígonos posibles con n lados y diámetro  $d \le 1$ . El diámetro de un polígono es la máxima distancia entre dos de sus vértices.
- ► El número de mínimos locales es al menos O(n!) [2].
- Conforme la n crece, el área del polígono se aproxima al área de un círculo de diametro uno, i.e  $\pi/4 \approx 0.7854$ .



## Agenda

Introducción

•000

### Introducción

Planteamiento del problema

Algoritmo utilizado Adecuaciones

CNPO y valor de f(x)



0000

- ▶ Se toman los pares  $(r_i, \theta_i)$  como las coordenadas de los vértices del polígono.
- ► El área se calcula sumando las áreas de los n − 2 triángulos que se forman tomando como vértices a dos vértices consecutivos y al origen. (figura)



Figura: Ejemplo del cálculo del área



0000

- Supongamos que tenemos el i-ésimo triángulo. Éste tiene como vértices a  $(0,0), (r_i,\theta_i), (r_{i+1},\theta_{i+1})$ . El ángulo que sale del origen es  $\theta_{i+1} - \theta_i$ .
- Si tomamos como base de este triángulo al lado de longitud  $r_i$ , entonces es fácil ver que la altura para esa base es  $r_{i+1}$  sen $(\theta_{i+1} - \theta_i)$ .
- Por lo tanto, el área de ese triángulo es  $A_i = \frac{1}{2}r_{i+1}r_i sen(\theta_{i+1} - \theta_i).$

00

La función objetivo a maximizar queda como sigue:

$$f(r,\theta) = \frac{1}{2} \sum_{i=1}^{n-1} r_{i+1} r_i sen(\theta_{i+1} - \theta_i)$$

- La primera restricción es que la distancia entre cualesquiera dos vértices sea menor o igual a 1.
- Sea i > i. Tomemos el triángulo cuyos vértices son: el origen, i y j. Es fácil ver que el ángulo que sale del origen es  $\theta_i - \theta_i$ . Si llamamos  $d_{ii}$  a la distancia entre esos últimos vértices, entonces, usando la ley de cosenos, se obtiene  $d_{ii}^2 = r_i^2 + r_i^2 - 2r_i r_i cos(\theta_i - \theta_i).$
- ▶ Entonces, como queremos que  $d_{ij} \le 1 \quad \forall i \forall j$ , la primera restricción es  $r_i^2 + r_i^2 - 2r_ir_i\cos(\theta_i - \theta_i) \le 1 \quad \forall i \forall j \text{ o}$  $1 - r_i^2 - r_i^2 + 2r_ir_i\cos(\theta_i - \theta_i) \ge 0 \quad \forall i \forall j$



Queremos que nuestro polígono esté en el primer y segundo cuadrante. Esto implica que:

$$\theta_i \geq 0, \pi - \theta_i \geq 0$$
  $1 \leq i \leq n$   $y r_i \geq 0$   $1 \leq i \leq n$ 

Además, queremos que los ángulos se vayan incrementando conforme i crece, para que esté planteado como en la figura. Entonces se agrega:

$$\theta_{i+1} - \theta_i \ge 0 \quad \forall i$$



Finalmente, después de poner al origen como un vértice con  $r_n = 0$  y  $\theta_n = \pi$ , el problema queda :

$$\min_{r,\theta} \quad -\frac{1}{2} \sum_{i=1}^{n-1} r_{i+1} r_i sen(\theta_{i+1} - \theta_i)$$

s.a 
$$1 - r_i^2 - r_j^2 + 2r_i r_j cos(\theta_j - \theta_i) \ge 0$$
  $1 \le i < j \le n$ 

$$\theta_{i+1} - \theta_i \ge 0 \quad 1 \le i < n$$

$$\theta \ge 0$$

$$\pi - \theta \ge 0$$

$$r_i \ge 0 \quad 1 \le i \le n$$

$$1 - r_i \ge 0 \quad 1 \le i \le n$$

Solución

•000

## Agenda

### Solución

Algoritmo utilizado

Adecuaciones

CNPO y valor de f(x)



### **Puntos Interiores**

| ln: |     | $x_0 \in \Omega^0, f: \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R}^n \to \mathbb{R}^p$       |
|-----|-----|--------------------------------------------------------------------------------------------|
| 1.  |     | $z_0 \leftarrow e, \ \mu_0 \leftarrow e, \gamma_0 \leftarrow 1, \ e = (1, 1, \cdots, 1)^T$ |
|     |     | $\omega_0 = (\mathbf{x}_0, \mathbf{z}_0, \mu_0)^T$                                         |
| 2.  |     | while !CNPO                                                                                |
|     | 2.1 | Resolver:                                                                                  |
|     |     | $F'(\omega_k)\Delta\omega_k = -F(\omega_k)$                                                |
|     | 2.2 | Escoger $\rho_k \in (0, 1]$ , tal que                                                      |
|     |     | $z_k + \rho_k \Delta z_k > 0$ y $\mu_k + \rho_k \Delta \mu_k > 0$                          |
|     | 2.3 | Actualizar: $\omega_{k+1} \leftarrow \omega_k + \rho_k \Delta \omega_k$                    |
|     |     | $\gamma_{k+1} \leftarrow \gamma_k/10$                                                      |

### Puntos interiores

### En particular

El sistema lineal  $F'(\omega_k)\Delta\omega_k = -F(\omega_k)$  lo resolvemos con el sistema equivalente:

$$(B_k + C_k^T Z_k^{-1} U_k C_k) \Delta x_k = \nabla_x \mathcal{L}(\omega, k) - C_k^T Z_k^{-1} U_k (z_k - g(x_k)) + C_k^T Z_k^{-1} (U_k Z_k e - \gamma_k e)$$

### donde

- $\triangleright$   $B_k$  es una matriz simétrica, positiva definida obtenida por un método cuasi-Newton
- $ightharpoonup C_k = \nabla g(x_k), \ U_k = diag(\mu_k), \ Z_k = diag(z_k).$



### Actualización BFGS

Calcular la B<sub>k</sub>

 $B_k$  se escoge con  $s_k$ ,  $y_k$  que satisfacen la ecuación de la secante.

$$S_k = X_{k+1} - X_k$$
  
 $y_k = \nabla_X \mathcal{L}(X_{k+1}, \mu_{k+1}) - \nabla_X \mathcal{L}(X_k, \mu_{k+1})$ 

Definimos  $r_k = \theta_k y_k + (1 - \theta_k) B_k s_k$  donde

$$\theta_k = \begin{cases} 1 & s_k^T y_k \ge \sigma_k s_k^T B_k s_k \\ (1 - \sigma_k)(s_k^T B_k s_k) / (s_k^T B_k s_k - s_k^T y_k) & \text{e.o.c} \end{cases}$$



Solución

000

## Agenda

### Solución

Algoritmo utilizado

Adecuaciones

CNPO y valor de f(x)



### Actualización BFGS

### elección del parámetro $\sigma_n$

- ▶ Se notó que el parámetro  $\sigma_k$  en la actualización BFGS afectaba considerablemente dependiendo el tamaño del problema.
- ▶ Para los tamaños utilizados ( $n = 4, 5, \dots, 13$ ), se corrió el programa con valores de  $\sigma_k \in (0.2, 0.3)$  y se seleccionaron -para cada *n*- las que mejores CNPO ofrecían.

| n | $\sigma$ | n  | $\sigma$ |
|---|----------|----|----------|
| 4 | 0.2850   | 9  | 0.2910   |
| 5 | 0.2810   | 10 | 0.2950   |
| 6 | 0.2750   | 11 | 0.2910   |
| 7 | 0.2810   | 12 | 0.2690   |
| 8 | 0.2620   | 13 | 0.2520   |

### Elección del punto inicial $x_0$

- ▶ Necesita ser un punto factible tal que  $x_0 \in \Omega^0$ .
- $\triangleright$  Se tomó una partición de  $[0, \pi]$  igualmente espaciado, es decir

$$\theta_k = \frac{k\pi}{n}$$

ightharpoonup para los radios, se tomó  $r_k = 0.2$ 

## Agenda

Algoritmo utilizado Adecuaciones

### Resultados

CNPO y valor de f(x)



## Valores de CNPO y f(x) por tamaño





(b) Comparación con MATLAB

## Evolución de f(x) con cada iteración

por tamaño







## Agenda

Algoritmo utilizado Adecuaciones

### Resultados

CNPO y valor de f(x)

Polígonos



## Polígonos de tamaños $n = 4, \dots, 9$



# Polígonos de tamaños $n = 4, \cdots, 9$ punto inicial



## Polígonos de tamaños $n = 10, \dots, 13$



### Polígonos de tamaños $n = 10, \dots, 13$ punto inicial



## Bibliografía I

Jorge Nocedal & Stephen J. Wright. Numerical Optimization. Springer, 2010.



