

4 Policiais versus Ladrões – 1

(++)

Considere um "minimundo" quadrado, formado por $n \times n$ células, com $n \in \mathbb{N}^*$. Neste "minimundo" são aplicadas as seguintes regras:

- 1. Cada célula pode conter tão somente um policial (P) ou um ladrão (L);
- 2. Um policial apenas pode prender um ladrão se ambos estiverem na mesma linha do "minimundo";
- 3. Um policial não pode prender um ladrão que está a mais de *k* células de distância dele;
- 4. Cada policial somente é capaz de prender um único ladrão.

Você deseja elaborar um programa para determinar o número máximo de ladrões (\max_L) que podem ser presos para uma determinada configuração (ou estado) do "minimundo" fornecido como entrada.

Entrada

A primeira linha contém um número natural T ($1 \le T \le 10$) que representa o número de casos de testes a serem fornecidos em seguida.

Cada grupo de (n+1) linhas seguintes, representando um caso de teste, conterá:

- primeira linha: os números naturais n e k, com $1 \le n \le 1000$ e $1 \le k \le n^2$;
- próximas *n* linhas: conterá, cada uma, *n* caracteres separados por um único espaço em branco entre eles. Cada caractere pode ser um **P** representando um policial ou um **L** indicando um ladrão.

Saída

A saída deverá conter n linhas, cada uma representando a quantidade máxima de ladrões (max $_L$) que pode ser presa no caso de teste correspondente.

Exemplos

Entrada	Saída
1	3
3 1	
PLP	
L P L	
LLP	

Entrada	Saída
1	7
5 1	
LPLLP	
LPLLL	
LLLPL	
LPLLL	
PLLLP	

Entrada	Saída
1	7
7 2	
LLLLLP	
LLLLLL	
LPLLPL	
LLLPLLL	
LLLLPL	
PPPLLLL	

Observação:

No primeiro caso de teste, note que há CINCO ladrões (um na 1^a linha, 2 na 2^a e 3^a linhas), como k = 1, significa que um policial não pode prender um ladrão que "está a mais de uma célula de distância" dele.

Note que o ladrão que está na 3^a linha e 1^a coluna não pode ser preso por nenhum dos policiais. Todos os demais ladrões são podem, potencialmente, serem presos, pois há um policial do lado de cada um deles.

Entretanto, deve-se lembrar que um policial somente pode prender um único ladrão que está na mesma linha que ele, o que faz com que um dos ladrões da 2ª linha não possa ser preso.

Resultado: no máximo TRÊS ladrões podem ser presos.