Questions regarding assignment2

1. Query: Who killed the cat?

 $KB \models Kills(x, Tuna)$?

1. Query: Who killed the cat?

 $KB \models Kills(x, Tuna)$?

► Nonconstructive proofs:

1. Query: Who killed the cat?

$$KB \models Kills(x, Tuna)$$
?

► Nonconstructive proofs:

```
Kills(Jack, Tuna) \lor Kills(Curiosity, Tuna), \neg Kills(x, Tuna)
```

- 1. Query: Who killed the cat?
 - $KB \models Kills(x, Tuna)$?
- Nonconstructive proofs:
 - $Kills(Jack, Tuna) \lor Kills(Curiosity, Tuna), \neg Kills(x, Tuna)$
- Bind once and backtrack

- 1. Query: Who killed the cat?
 - $KB \models Kills(x, Tuna)$?
- Nonconstructive proofs:

$$Kills(Jack, Tuna) \lor Kills(Curiosity, Tuna)$$
, $\neg Kills(x, Tuna)$

- Bind once and backtrack
- 2. The query in 1. is different from checking whether $KB \models \exists x \, Kills(x, Tuna)$?

- 1. Query: Who killed the cat?
 - $KB \models Kills(x, Tuna)$?
- ► Nonconstructive proofs:

```
Kills(Jack, Tuna) \lor Kills(Curiosity, Tuna), \neg Kills(x, Tuna)
```

- Bind once and backtrack
- 2. The query in 1. is different from checking whether

```
\mathsf{KB} \models \exists x \, \mathsf{Kills}(x, \mathit{Tuna}) ?
```

$$\neg \exists x \, Kills(x, Tuna) \equiv \forall x \, \neg Kills(x, Tuna)$$

- 1. Query: Who killed the cat?
 - $KB \models Kills(x, Tuna)$?
- Nonconstructive proofs:

$$Kills(Jack, Tuna) \lor Kills(Curiosity, Tuna)$$
, $\neg Kills(x, Tuna)$

- Bind once and backtrack
- 2. The query in 1. is different from checking whether $KB \models \exists x \, Kills(x, Tuna)$?

$$\neg \exists x \, Kills(x, Tuna) \equiv \forall x \, \neg Kills(x, Tuna)$$

▶ Different substitutions of *x* is allowed:

- 1. Query: Who killed the cat? $\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular$
- ► Nonconstructive proofs:

 $Kills(Jack, Tuna) \lor Kills(Curiosity, Tuna)$, ¬Kills(x, Tuna)

- Bind once and backtrack
- 2. The query in 1. is different from checking whether $KB \models \exists x \, Kills(x, Tuna)$? $\neg \exists x \, Kills(x, Tuna) \equiv \forall x \, \neg Kills(x, Tuna)$
- ▶ Different substitutions of *x* is allowed:
- \Longrightarrow Kills(Jack, Tuna) \lor Kills(Curiosity, Tuna) , \neg Kills(x, Tuna)

Chapter 6: Constraint Satisfaction Problem

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each region so that no neighboring regions have the same color. (b) The map-coloring problem represented as a constraint graph.

Australian map coloring problem

- Australian map coloring problem
- ▶ Problem definition : X, D and C

ERW, 6, 83

- Australian map coloring problem
- ▶ Problem definition : X, D and C

1.
$$X = \{X_1, X_2, \dots, X_n\}$$

- Australian map coloring problem
- ▶ Problem definition : X, D and C

1.
$$X = \{X_1, X_2, \dots, X_n\}$$

2.
$$D = \{D_1, D_2, \dots, D_n\}$$

- Australian map coloring problem
- ▶ Problem definition : X, D and C

1.
$$X = \{X_1, X_2, \dots, X_n\}$$

2.
$$D = \{D_1, D_2, \ldots, D_n\}$$

3. *C* is a set of constraints.

- Australian map coloring problem
- ▶ Problem definition : X, D and C

1.
$$X = \{X_1, X_2, \dots, X_n\}$$

2.
$$D = \{D_1, D_2, \dots, D_n\}$$

- 3. *C* is a set of constraints.
- Consistent assignment

- Australian map coloring problem
- ▶ Problem definition : X, D and C

1.
$$X = \{X_1, X_2, \dots, X_n\}$$

2.
$$D = \{D_1, D_2, \dots, D_n\}$$

- 3. C is a set of constraints.
- Consistent assignment
- ► Complete assignment

- Australian map coloring problem
- ▶ Problem definition : X, D and C

1.
$$X = \{X_1, X_2, \dots, X_n\}$$

2.
$$D = \{D_1, D_2, \dots, D_n\}$$

- 3. C is a set of constraints.
- Consistent assignment
- Complete assignment
- Solution : consistent and complete

constraint graph vs. state space graph

- constraint graph vs. state space graph

- constraint graph vs. state space graph
- \triangleright $X = \{WA, NT, Q, NSW, V, SA, T\}$
- $D_i = \{red, green, blue\}$

- constraint graph vs. state space graph
- \triangleright $X = \{WA, NT, Q, NSW, V, SA, T\}$
- $ightharpoonup D_i = \{red, green, blue\}$

 $C = \{ WA \neq NT, WA \neq SA, \dots, V \neq NSW \}$

- constraint graph vs. state space graph
- \triangleright $X = \{WA, NT, Q, NSW, V, SA, T\}$
- $ightharpoonup D_i = \{red, green, blue\}$
- $C = \{ WA \neq NT, WA \neq SA, \dots, V \neq NSW \}$
- Multiple solutions are possible.

- constraint graph vs. state space graph
- \triangleright $X = \{WA, NT, Q, NSW, V, SA, T\}$
- $ightharpoonup D_i = \{red, green, blue\}$
- $C = \{ WA \neq NT, WA \neq SA, \dots, V \neq NSW \}$
- Multiple solutions are possible.
- Goal: understand general approaches for solving CSPs.

$$X = \{Axle_F, Axle_B, Wheel_{RF}, Wheel_{RB}, Nuts_{RF}, Nuts_{RB}, Cap_{RF}, Cap_{RB}, Inspect\}$$

- $X = \{Axle_F, Axle_B, Wheel_{RF}, Wheel_{RB}, Nuts_{RF}, Nuts_{RB}, Cap_{RF}, Cap_{RB}, Inspect\}$
- Precedence constraints : $T_1 + d_1 \le T_2$

- $X = \{Axle_F, Axle_B, Wheel_{RF}, Wheel_{RB}, Nuts_{RF}, Nuts_{RB}, Cap_{RF}, Cap_{RB}, Inspect\}$
- ▶ Precedence constraints : $T_1 + d_1 \le T_2$
 - $ightharpoonup Axle_F + 10 \le Wheel_{RF}$; $Axle_B + 10 \le Wheel_{RB}$

- $X = \{Axle_F, Axle_B, Wheel_{RF}, Wheel_{RB}, Nuts_{RF}, Nuts_{RB}, Cap_{RF}, Cap_{RB}, Inspect\}$
- ▶ Precedence constraints : $T_1 + d_1 \le T_2$
 - $ightharpoonup Axle_F + 10 \le Wheel_{RF}$; $Axle_B + 10 \le Wheel_{RB}$
 - lacksquare Wheel_{RF} + $1 \le Nuts_{RF}$; Wheel_{RB} + $1 \le Nuts_{RB}$

- $X = \{Axle_F, Axle_B, Wheel_{RF}, Wheel_{RB}, Nuts_{RF}, Nuts_{RB}, Cap_{RF}, Cap_{RB}, Inspect\}$
- ▶ Precedence constraints : $T_1 + d_1 \le T_2$
 - ► $Axle_F + 10 \le Wheel_{RF}$; $Axle_B + 10 \le Wheel_{RB}$
 - $ightharpoonup Wheel_{RF} + 1 \leq Nuts_{RF}; Wheel_{RB} + 1 \leq Nuts_{RB}$
 - ightharpoonup Nuts_{RF} + 2 \leq Cap_{RF}

- $X = \{Axle_F, Axle_B, Wheel_{RF}, Wheel_{RB}, Nuts_{RF}, Nuts_{RB}, \}$ Cap_{RF} , Cap_{RB} , Inspect
- ▶ Precedence constraints : $T_1 + d_1 < T_2$
 - ightharpoonup Axle_F + 10 < Wheel_{RF}; Axle_R + 10 < Wheel_{RR}
 - \blacktriangleright Wheel_{RF} + 1 < Nuts_{RF}; Wheel_{RB} + 1 < Nuts_{RR}
 - ightharpoonup Nuts_{RF} + 2 < Cap_{RF}
 - $(Axle_F + 10 \le Axle_B) \text{ or } (Axle_B + 10 \le Axle_F)$

- $X = \{Axle_F, Axle_B, Wheel_{RF}, Wheel_{RB}, Nuts_{RF}, Nuts_{RB}, \}$ Cap_{RF} , Cap_{RB} , Inspect
- ▶ Precedence constraints : $T_1 + d_1 < T_2$
 - ightharpoonup Axle_F + 10 < Wheel_{RF}; Axle_R + 10 < Wheel_{RR}
 - \blacktriangleright Wheel_{RF} + 1 < Nuts_{RF}; Wheel_{RB} + 1 < Nuts_{RR}
 - \triangleright Nuts_{RF} + 2 < Cap_{RF}
 - \land $(Axle_F + 10 \le Axle_B)$ or $(Axle_B + 10 \le Axle_F)$

- $X = \{Axle_F, Axle_B, Wheel_{RF}, Wheel_{RB}, Nuts_{RF}, Nuts_{RB}, Cap_{RF}, Cap_{RB}, Inspect\}$
- ▶ Precedence constraints : $T_1 + d_1 \le T_2$
 - $ightharpoonup Axle_F + 10 \leq Wheel_{RF}$; $Axle_B + 10 \leq Wheel_{RB}$
 - $ightharpoonup Wheel_{RF} + 1 \leq Nuts_{RF}; Wheel_{RB} + 1 \leq Nuts_{RB}$
 - ightharpoonup Nuts_{RF} + 2 \leq Cap_{RF}
 - $(Axle_F + 10 \le Axle_B)$ or $(Axle_B + 10 \le Axle_F)$
 - ightharpoonup Cap_{RF} $+1 \le Inspect$

 \triangleright $D_i = \{1, 2, 3, \ldots, 27\}$

Types of constraints

► Unary constraint

Types of constraints

Unary constraint

 $W\!A \neq Green$

Types of constraints

- Unary constraint $WA \neq Green$
- Binary constraint

Types of constraints

- ► Unary constraint
 WA ≠ Green
- ► Binary constraint

$$WA \neq NT$$

Types of constraints

- Unary constraint $WA \neq Green$
- ▶ Binary constraintWA ≠ NT
- Global constraint

Types of constraints

- Unary constraint $WA \neq Green$
- ▶ Binary constraintWA ≠ NT
- ► Global constraint Alldiff (A, B, C, D)

$$ightharpoonup$$
 Alldiff (F, T, U, W, R, O)

► Alldiff(F, T, U, W, R, O) It is given that all letters are distinct.

$$\begin{array}{ccccc} T & W & O \\ + & T & W & O \\ \hline F & O & U & R \end{array}$$

- ► Alldiff (F, T, U, W, R, O) It is given that all letters are distinct.

- ► Alldiff (F, T, U, W, R, O) It is given that all letters are distinct.
- $O + O = 10 \times C_1 + R$
- $ightharpoonup C_1 + W + W = 10 \times C_2 + U$

$$\begin{array}{cccc} & T & W & O \\ + & T & W & O \\ \hline F & O & U & R \end{array}$$

- ► Alldiff (F, T, U, W, R, O) It is given that all letters are distinct.
- $O + O = 10 \times C_1 + R$
- $ightharpoonup C_1 + W + W = 10 \times C_2 + U$
- $C_2 + T + T = 10 \times C_3 + O$

- ► Alldiff (F, T, U, W, R, O) It is given that all letters are distinct.
- $O + O = 10 \times C_1 + R$
- $ightharpoonup C_1 + W + W = 10 \times C_2 + U$
- $C_2 + T + T = 10 \times C_3 + O$
- $ightharpoonup C_3 = F$

$$\begin{array}{ccccc}
T & W & O \\
+ & T & W & O \\
\hline
F & O & U & R
\end{array}$$

- ► Alldiff (F, T, U, W, R, O) It is given that all letters are distinct.
- $O + O = 10 \times C_1 + R$
- $ightharpoonup C_1 + W + W = 10 \times C_2 + U$
- $C_2 + T + T = 10 \times C_3 + O$
- $C_3 = F \leftarrow$ $F \neq 0 \leftarrow$

$$\begin{array}{cccc} T & W & O \\ + & T & W & O \\ \hline F & O & U & R \end{array}$$

- ► Alldiff (F, T, U, W, R, O) It is given that all letters are distinct.
- $ightharpoonup O + O = 10 \times C_1 + R$
- $ightharpoonup C_1 + W + W = 10 \times C_2 + U$
- $C_2 + T + T = 10 \times C_3 + O$
- $ightharpoonup C_3 = F$
- ► *F* ≠ 0
- ► $D_i = \{0, \ldots, 9\}$

Constraint satisfaction problem (CSP)

$$D_E = \{ <1,2,3>, <2,1,3>, <1,1,2> \}$$

- $D_E = \{ <1,2,3>, <2,1,3>, <1,1,2> \}$
- ▶ Constraint b_1 checks whether A equals first element of the tuple assigned to E.

- $D_E = \{ <1, 2, 3>, <2, 1, 3>, <1, 1, 2> \}$
- ightharpoonup Constraint b_1 checks whether A equals first element of the tuple assigned to E.
- \blacktriangleright Constraint b_2 checks whether B equals second element of the tuple assigned to E.

- $D_E = \{ <1,2,3>, <2,1,3>, <1,1,2> \}$
- ▶ Constraint b_1 checks whether A equals first element of the tuple assigned to E.
- ▶ Constraint b_2 checks whether B equals second element of the tuple assigned to E.
- Constraint b₃ checks whether K equals third element of the tuple assigned to E.

Dual-graph transformation

Add a new variable corresponding to each n-ary constraint, where n > 2.

Dual-graph transformation

- Add a new variable corresponding to each n-ary constraint, where n > 2.
- ► The domain of the new variable consists of *n*-tuples whose elements satisfy the corresponding *n*-ary constraint.

Dual-graph transformation

- Add a new variable corresponding to each n-ary constraint, where n > 2.
- ► The domain of the new variable consists of *n*-tuples whose elements satisfy the corresponding *n*-ary constraint.
- ▶ Add a binary constraint between the new variable and each of the original *n* variables (that were participating in the original *n*-ary constraint).

L

▶ The problem : $O(d^n)$ possible assignments.

d + d + ... d

79

- ▶ The problem : $O(d^n)$ possible assignments.
- Reduce the number of legal values for different variables.

- ▶ The problem : $O(d^n)$ possible assignments.
- ▶ Reduce the number of legal values for different variables.
- ► Achieve node consistency

$$\mathit{WA} \neq \mathit{Green}$$

- ▶ The problem : $O(d^n)$ possible assignments.
- ▶ Reduce the number of legal values for different variables.
- Achieve node consistency $WA \neq Green$

Achieve arc consistency

