ANC 使用手册

Rev 2.0

This translated version is for reference only, and the English version shall prevail in case of any discrepancy between the translated and English versions.

版权所有 2018 杰理科技有限公司未经许可,禁止转载

目 录

版本说明	3
适用 sdk 列表	4
ANC 设计要点	5
ANC 参数配置	6
ANC 配置读取和修改	8
ANC 训练说明	10

版本说明

版本号	修改说明	
V1.0	ANC 配置说明	
V1.1	增加 ANC 训练说明	
V2.0	修改 ANC 配置存储和读取方式(不兼容旧的版本)	

适用 sdk 列表

芯片系列	SDK 类型	备注
AC897N	earphone	
AD697N	earphone	

ANC 设计要点

1、要实现预期的效果,需要严格遵照硬件相关设计要求,具体参照硬件设计指南

ANC 参数配置

首先, 先检查更新一下工具

ANC 参数配置分为: ANC 参数 (如图②), 对应配置文件 anc_gains.bin) 和 ANC 系数 (如图③, 对应配置文件: anc_coeff.bin)。

- 1、打开 sdk 配套工具,切换到 ANC 配置页面,如下图1:
- 2、ANC 参数配置说明:
- (1) dac_gain 和 ref_mic_gain/err_mic_gain,均为芯片内部的模拟增益。ANC 功能使能的情况下,其他出声的情景:播歌/通话/提示音等均使用 ANC 配置好的模拟增益。声音大小通过调整数字音量来控制和限制,故程序默认系统音量配置成了数字音量模式。
- (2) 降噪模式增益 (anc_gain) 理论上使用训练的时候的参数值,训练完再改动该值,可能会导致效果不是最优的,可以通过修改该增益来实现左右耳平衡。
- (3) 通透模式增益 (transparency_gain) ,可以通过修改该增益来调整通透模式的深度。

注意: ANC 参数配置支持 fw 文件编辑

3、ANC 系数仅支持加载查看版本信息,不支持编辑。

ANC 配置读取和修改

1、打开 ANC 配置工具

2、工具使用说明

(1) 通过 usb 下载工具 (USB Updater V4.0 及以上),通过串口连接设备的 LDOIN5V,然后"打

开设备",结果如上图所示

(2) 选择要读取或者更新的文件: ANC 系数/ANC 参数

文件	ANC系数(anc_coeff.bin) ▼
	ANC系数(and coeff.bin)
	ANC参数(anc_gains.bin)

点击"读取配置",提示如下,表示成功读取

这个时候点击"保存配置文件",即可保存对应的文件

点击"**更新配置**"(确认文件栏中要更新的文件类型:ANC 系数/ANC 参数),选择对应的文件,确认,即可更新相应的配置到设备中去。

(3) 将(2) 中读取或者保存的配置文件下载到芯片里面, ini 文件配置如下:

```
#ANC配置区,如果不想ANC配置因为代码大小变化而改变位置,从而失效,需要手动指定(flash末尾8K位置)
#4Mbit:0x7E000 8Mbit:0xFE000 16Mbit:0x1FE000
#ANC增益配置保留区
如果更新升级样机的时候,不想修改里面的ANC增益或者
ANCIF_FILE=anc_gains.bin;#加载该文件,则使用该文件的影響,则不要加载任何一个其中的文件
ANCIF_ADR=0xFE000;
ANCIF_LEN=0x80;
ANCIF1_FILE=anc_coeff.bin;#加载该文件,则使用该文件的配置
ANCIF1_FILE=anc_coeff.bin;#加载该文件,则使用该文件的配置
ANCIF1_ADR=0xFE080;
ANCIF1_LEN=0xF80;
ANCIF1_LEN=0xF80;
ANCIF1_OPT=1;
```

注意: 无需在下载批处理 -res 后面添加任何文件

(4) 在 fw 文件中编辑 ANC 配置

编辑好,点击"保存",即可保存成新的 fw 文件

ANC 训练说明

1. 耳机放置说明

耳机放置下, 蓝灯亮起则表示通讯成功 (尾塞触角接触正常)

2. 参数设置说明 (其他参数保持默认即可)

- ①蓝牙设置:左右蓝牙端口号需要选择对应的 USB 端口,否则会串口不能正常通讯
- ②双 MAC 地址:勾选表示训练对耳,不勾选可以通过下面的左(右)通道,单独训练左右耳
- ③这里需要选择适合样机的训练激励源,格式要求 (WAV, 单声道, 16bit, 48k 采样率)
- ④训练系数: 训练系数与人工嘴的音量, 样机的 DAC 模拟增益成反比。训练系数过小, 收敛比较慢, 降噪深度不足; 训练系数过大, 收敛容易饱和, 导致降噪效果差, 甚至将外部噪声放大。
- ⑤噪声训练时间:时间越长,降噪深度越接近最深值。

Tips: 训练部分时间 (不包括连接+测试) = 设置指令延迟*10 + 静音检测时间*2 + 误差 MIC 静音训练时间 + 参考 MIC 静音训练时间 + 噪声训练时间

2. 测试音源说明

可以根据所需要的测试精度,选择对应的测试激励源,不同的激励源对应的测试曲线有所区别,其中粉噪测试最快,曲线相对会比较曲折,图下测试为高精度步进扫频,测试曲线比较平滑。

3. 训练操作

点击自动测试则开始自动训练、等待显示退出训练成功则表现训练成功。

4. 训练失败原因说明

- ①读取左(右)耳真实 MAC 地址失败:治具上面没有放置耳机,或者没有接触好导致,或者串口没插好;
- ②误差/参考 MIC 工作不正常: MIC 坏了或者没有正常供电导致;
- ③通讯失败:命令没有正常回复,可能样机训练到一半没电导致。