UNIVERSIDAD NACIONAL DE COLOMBIA

Dirección Nacional de Programas de Pregrado

FICHA DE ASIGNATURAS DE PREGRADO

4100889
ΓURA
MANIZALES
FACULTAD DE INGENIERÍA Y ARQUITECTURA
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA, ELECTRÓNICA Y COMPUTACIÓN MANIZALES
PREGRADO
SEÑALES Y SISTEMAS

2. DURACIÓN					
A LA SEMANA					
HAP =	4	HAI =	8	THS = (HAP + HAI) =	12
AL SEMESTRE					
Nro de semanas =	16	THP = (THSxSemanas)	192	Nro_de Créditos (THP/48)	4

CONVENCIONES UTILIZADAS

HAP: Horas de Actividad Presencial a la semana o intensidad horaria

HAI: Horas de Actividad Independiente a la semana **THS**: Total Horas de actividad académica por Semana

Semanas: Número de semanas por periodo académico (o semestre)

3. VALIDABLE		
ASIGNATURA VALIDABLE =>	ASIGNATURA	NO VALIDABLE => X

4. PO	4. PORCENTAJE DE ASISTENCIA					
%	75	Total de Horas presenciales al semestre (HAP x Semanas)	64	Mínimo de horas Semestre	48	
Porce	Porcentajes aceptados: 75, 80, 85, 90, 95 y 100%					

5. TIPOLOGÍA Y PLANES DE ESTUDIO ASOCIADOS

5.1. TIPOLOGÍA				
Asignatura de Libre Elección		(C) - Componente Disciplinar	SI	
Escriba SI o NO al frente de la casilla en la columna azul				

lan	4022 Ingeniería eléctrica				
1	REQUISITO	S			
	Código	Nombre	Tipo		
	10000007	Ecuaciones diferenciales	Prerrequisito		
	10000006	Cálculo vectorial	Prerrequisito		
	Tipo = Prerre	equisito o Correquisito	•		
lan	4028 Ingenie	ería electrónica			
2	REQUISITOS				
	Código	Nombre	Tipo		
	10000007	Ecuaciones diferenciales	Prerrequisito		
	10000006	Cálculo vectorial	Prerrequisito		

6. DESCRIPCIÓN DE LA ASIGNATURA

6.1. DESCRIPCIÓN

El curso de señales y sistemas describe las herramientas básicas de tratamiento y modelado de sistemas lineales orientadas a la presentación y manejo de información de naturaleza continua y discreta en el dominio del tiempo y la frecuencia.

Objetivo general: Desarrollar competencias en análisis abstracto y modelado matemático orientadas al estudio de señales y sistemas a partir de herramientas matemáticas y computacionales para el manejo de información de naturaleza continua y discreta. Objetivos específicos:

- Estimular el espíritu crítico y generar actitudes ético científicas dentro de los cuales se orienta el plan de estudios.
- Formar ingenieros emprendedores a partir de una sólida fundamentación técnicocientífica en el análisis de señales y sistemas en el dominio del tiempo y la frecuencia.
- Desarrollar competencias de aprendizaje autónomo en aras de adaptarse a las necesidades del medio, en concordancia con el continuo cambio tecnológico y científico en el área de la ingeniería.
- Leer y comprender una segunda lengua de influencia científica, posibilitando la asimilación de literatura técnica en otro idioma relacionada con su área de conocimientos.
- Facilitar la orientación hacia determinados campos de trabajo e investigación, característicos de la ingeniería eléctrica y electrónica.

<u>Metodología:</u> clases magistrales acompañadas con simulaciones en Python (mediante servicios de cómputo en la nube) orientadas al estudio de señales y sistemas en tiempo y frecuencia (continuo y discreto). Esta metodología será complementada mediante la realización de talleres en clase, promoviendo siempre la participación de los estudiantes a través de discusiones académicas.

Evaluación:

- Tres parciales teórico-prácticos (simulación en Python) relacionados con los conetenidos del curso (75%): Semana 6 (Módulos 1 y 2); Semana 10 (Módulos 3 y 4), Semana 15 (Módulos 5 y 6).
- Ejercicios en clase (25%): Todas las semanas.

6.2. CONCEPTOS PREVIOS NECESARIOS

Se requieren conceptos básicos en: cálculo diferencial, cálculo integral, algebra lineal, circuitos eléctricos y programación.

7. CONTENIDOS BÁSICOS

Lista Contenido Básico			Contenido Detallado		
		1	Repaso programación en Python y conceptos matemáticos básicos		
١.		2	Definición y clasificación de señales.		
1.	Conceptos preliminares	3	Definición y clasificación de		
		4	Transformación de variable		
		5	Funciones exponenciales y		
		=			
		1.	Conceptos básicos de convolución.		
2.	Sistemas lineales invariantes en el tiempo	2.	Representación de SLIT		
2.	(SLIT)	3.	Propiedades de SLIT		
		4.	Descripción de SLIT		
	Series de Fourier	1.	Ortogonalidad y representación		
3.		2.	Serie de Fourier compleja.		
ا ع.		3.	Serie de Fourier trigonométrica		
			Aplicaciones de la serie de Fourier.		
	Transformada de Fourier	1.	Transformada de Fourier continua.		
4.		2.	Transformada de Fourier discreta.		
J 7.		3.	Propiedades de la transformada de		
		4.	Representación de SLIT con Fourier		
		1.	Definicion de transformada de		
5.	Transformada de Laplace	2.	Propiedades.		
		3.	Modelado de SLIT con Laplace		
		1.	Definicion de transformada Z.		
6.	Transformada Z	2.	Propiedades.		
		3.	Modelado de SLIT con Laplace		

8. BIBLIOGRAFÍA BÁSICA				
Autor (es)	Título	Editorial-Revista-País	Año	
OPPENHEIM, Alan V	Signals and systems.	Prentice Hall.	1997	
HWEI PSU	Análisis de Fourier.	Iberoamerica.	1987	
PHILLIPS, Charles L	Signals, systems and transforms.	Prentice Hall.	1995	
PROAKIS, Jhon G	Tratamiento digital de señales.	Prentice Hall.	1998	
OPPENHEIM, Alan V	Digital signal processing.	Prentice Hall.	1975	
UNPINGCO, José	Python for signal processing	Springer	2013	