Zadania z mechaniki mikroświata (2)

- 1. Rozważyć zagadnienie masy m na sprężynie o współczynniku k>0 wykonującej jednowymiarowe oscylacje pod wpływem siły sprężystości. Zapisać równanie ruchu w oparciu o zasady dynamiki Newtona. Zapisać funkcję Lagrange'a dla tego problemu. Zapisać równanie Eulera–Lagrange'a. Wyzanaczyć Hamiltonian dla tego problemu i zapisać odpowiednie równania Hamiltona.
- 2. Dane jest równanie różniczkowe opisujące oscylator harmoniczny

$$\ddot{x}(t) + \omega^2 \ x(t) = 0.$$

Rozwiązać analitycznie to równanie (scałkować) i uzyskać ogólną postać rozwiązań. Wskazówka. Zastosować podstawienie funkcji z(t): $x(t) = \exp(z(t))$ a następnie kolejne podstawienie $u(t) := \dot{z}(t)$.

- Rozważyć ruch masy m na płaszczyźnie. Zapisać wyrażenie na energię kinetyczną we współrzędnych biegunowych, tzn. wyrazić kwadrat prędkości we współrzędnych biegunowych.
- 4. Wyznaczyć długość trajektorii punktu materialnego w rzucie ukośnym przy powierzchni Ziemi. Rozwiązanie w postaci analitycznej wyrazić poprzez parametry problemu. Punkt materialny o masie m ma prędkość początkową \vec{v}_0 pod kątem θ do kierunku poziomego. W kierunku pionowym działa grawitacja scharakteryzowana stałym przyspieszeniem ziemskim \vec{g} . Pominąć opory ruchu.
- 5. Rozważyć spadek z niewielkiej wysokości masy m pod wpływem siły ciężkości. Na ciało działa również siła oporu lepkiego proporcjonalna do prędkości. Wyznaczyć położenie oraz prędkość masy jako funkcje czasu. Jak długo trwa upadek masy z wysokości h?
- 6. Środek masy układu N punktów materialnych z definicji dany jest poprzez wektor położenia \vec{r}_{SM}

$$\vec{r}_{SM} = \frac{\sum_{i=1}^{N} m_i \vec{r}_i}{\sum_{i=1}^{N} m_i}.$$

Wykazać, że tak zdefiniowany środek masy jest niezależny od wyboru punktu początkowego dla wektorów położeń. Wykazać, że pęd układu punktów materialnych jest równowaźny pędowi punktu materialnego o masie $M = \sum_{i=1}^N m_i$, który jest umieszczony w środku masy układu.

- 7. Wykazać, że zagadnienie ruchu w układzie inercjalnym dwóch ciał o masach m_1 i m_2 , których oddziaływanie zależy jedynie od wzajemnej odległości $r = |\vec{r}_1(t) \vec{r}_2(t)|$ daje się zredukować do zagadnienia ruchu środka masy tego układu oraz zagadnienia ruchu pojedynczej masy zredukowanej $\mu = m_1 \ m_2/(m_1 + m_2)$.
- 8. Rozważyć sprężynujące wahadło, przy czym sprężyna układa się na lini prostej. Swobodna

długość wahadła wynosi ℓ , masa m jest zaczepiona na sprężynie o współczynniku sprężystości k. Zapisać funkcje Lagrange'a dla tego problemu oraz równania Eulera–Lagrange'a dla współrzędnych x(t) oraz $\theta(t)$.

9. Rozważyć podwójne wahadło, wykonane z dwóch mas m_1 i m_2 polączonych nieważkimi prętami o długości ℓ_1 i ℓ_2 Wyznaczyć równa-

nia ruchu dla tego układu. Dla przypadku małych oscylacji wyznaczyć drgania normalne i odpowiadające im częstości dla szczególnych przypadków $\ell_1=\ell_2$ oraz $m_1=m_2$.

(RG)