Turing Machine*

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

Algorithm Class @ Shanghai Jiao Tong University

*Special thanks is given to Prof. Yuxi Fu for sharing his teaching materials.

Turing Machine TM Variation and TM-Computability

Xiaofeng Gao

Algorithm Class@SJTU

Basic Concepts

Turing Machine

What is Effective Procedure

- Methods for addition, multiplication · · ·
 - ▷ Given *n*, finding the *n*th prime number.
 - ▶ Differentiating a polynomial.
 - ightharpoonup Finding the highest common factor of two numbers $HCF(x,y) \to Euclidean$ algorithm
 - \triangleright Given two numbers x, y, deciding whether x is a multiple of y.
- Their implementation requires no ingenuity, intelligence, inventiveness.

Effective Procedures
Turing Machine
TM Variation and TM-Computability

Outline

- Effective Procedures
 - Basic Concepts
 - Computable Function
- 2 Turing Machine
 - Introduction
 - One-Tape Turing Machine
 - Multi-Tape Turing Machine
- 3 TM Variation and TM-Computability
 - TM Variations
 - Computable and Decidable

Algorithm Class@SJTU Xiaofeng Gao Turing Machine 2/45

Effective Procedures
Turing Machine
TM Variation and TM-Computability

Basic Concepts Computable Function

Intuitive Definition

An *algorithm* or *effective procedure* is a mechanical rule, or automatic method, or programme for performing some mathematical operations.

Blackbox: input \longrightarrow output

Algorithm Class@SJTU Xiaofeng Gao Turing Machine 4/45 Algorithm Class@SJTU Xiaofeng Gao Turing Machine 5/45

What is "effective procedure"?

An Example: Consider the function g(n) defined as follows:

$$g(n) = \begin{cases} 1, & \text{if there is a run of exactly } n \text{ consecutive } 7' \text{s} \\ & \text{in the decimal expansion of } \pi, \\ 0, & \text{otherwise.} \end{cases}$$

Question: Is g(n) effective?

 \triangleright The answer is unknown \neq the answer is negative.

Other Examples:

- *Theorem Proving* is in general not effective/algorithmic.
- *Proof Verification* is effective/algorithmic.

Algorithm Class@SJTU Xiaofeng Gao Turing Machine 6/45

Effective Procedures
Turing Machine
TM Variation and TM-Computability

Basic Concepts Computable Function

Computable Function

When an algorithm or effective procedure is used to calculate the value of a numerical function then the function in question is effectively calculable (or algorithmically computable, effectively computable, computable).

Examples:

- HCF(x, y) is computable;
- g(n) is non-computable.

Algorithm

An algorithm is a procedure that consists of a finite set of *instructions* which, given an *input* from some set of possible inputs, enables us to obtain an *output* through a systematic execution of the instructions that *terminates* in a finite number of steps.

Algorithm Class@SJTU

Xiaofeng Gao

Turing Machine

7

Effective Procedures
Turing Machine
TM Variation and TM-Computability

Basic Concepts
Computable Function

Development of Computation Models

- 1. Gödel-Kleene (1936): Partial recursive functions.
- 2. Turing (1936): Turing machines.
- 3. Church (1936): λ -terms.
- 4. Post (1943): Post systems.
- 5. Markov (1951): Variants of the Post systems.
- 6. Shepherdson-Sturgis (1963): URM-computable functions.

Church-Turing Thesis: Each of the above proposals for a characterization of the notion of effective computability gives rise to the same class of functions.

Algorithm Class@SJTU Xiaofeng Gao Turing Machine 9/45 Algorithm Class@SJTU Xiaofeng Gao Turing Machine 10/45

- An English student of Church
- Introduced a machine model for effective calculation in "On Computable Numbers, with an Application to the Entscheidungsproblem", Proc. of the London Mathematical Society, 42:230-265, 1936.
- Turing Machine, Halting Problem, Turing Test

Algorithm Class@SJTU

Xiaofeng Gao

uring Machine

12/45

Effective Procedures
Turing Machine
TM Variation and TM-Computability

Introduction
One-Tape Turing Machine
Multi-Tape Turing Machine

One-Tape Turing Machine

A Turing machine has five components:

- 1. A finite set $\{s_1, \ldots, s_n\} \cup \{\triangleright, \triangleleft\} \cup \{\square\}$ of symbols.
- 2. A tape consists of an infinite number of cells, each cell may store a symbol.

...

- 3. A reading head that scans and writes on the cells.
- 4. A finite set $\{q_S, q_1, \dots, q_m, q_H\}$ of states.
- 5. A finite set of instructions (specification).

Motivation

What are necessary for a machine to calculate a function?

- The machine should be able to interpret numbers
- The machine must be able to operate and manipulate numbers according to a set of predefined instructions

and

- The input number has to be stored in an accessible place
- The output number has to be put in an accessible place
- There should be an accessible place for the machine to store intermediate results

Algorithm Class@SJTU Xiaofeng Gao Turing Machine 13/45

Effective Procedures **Turing Machine**TM Variation and TM-Computability

One-Tape Turing Machine
Multi-Tape Turing Machine

One-Tape Turing Machine

One-Tape Turing Machine

The input data

$$\triangleright s_1^1 \dots s_{i_1}^1 \square \dots \square s_1^k \dots s_{i_k}^k \triangleleft \square \dots$$

The reading head may write a symbol, move left, move right.

An instruction is of the form:

$$\langle q_i, s_i \rangle \rightarrow \langle q_l, s_k, L/R/S \rangle,$$

which means when reads s_j with state q_i , the machine will turn to state q_l , replace s_i with s_k , and turn one cell to the left.

The direction can be L, R, or S, meaning move to left, right, or stay at the current position.

Algorithm Class@SJTU

Xiaofeng Gao

Turing Machine

17/4

Turing Machine
TM Variation and TM-Computability

One-Tape Turing Machine Multi-Tape Turing Machine

State Transition Diagram

M's action is to work from left to right along the tape, replacing alternate 1's by the symbol 0's.

An Example

Given a Turing machine M with the alphabet $\{0,1\} \cup \{\triangleright, \square, \triangleleft\}$.

Algorithm Class@SJTU

Xiaofeng Ga

Turing Machine

18/4

Effective Procedures **Turing Machine** TM Variation and TM-Computability Introduction
One-Tape Turing Machine
Multi-Tape Turing Machine

Multi-Tape Turing Machine

A multi-tape TM is described by a tuple (Γ, Q, δ) containing

- A finite set Γ called alphabet, of symbols. It contains a blank symbol \square , a start symbol \triangleright , and the digits 0 and 1.
- A finite set Q of states. It contains a start state q_{start} and a halting state q_{halt} .
- A transition function $\delta: Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times L$, S, R^k , describing the rules of each computation step.

Example: A 2-Tape TM will have transition function (also named as specification) like follows:

$$\langle q_s, \rhd, \rhd \rangle \rightarrow \langle q_1, \rhd, R, R \rangle$$

 $\langle q_1, 0, 1 \rangle \rightarrow \langle q_2, 0, S, L \rangle$

Algorithm Class@SJTU Xiaofeng Gao Turing Machine 19/45 Algorithm Class@SJTU Xiaofeng Gao Turing Machine

Computation and Configuration

Computation, configuration, initial/final configuration

Algorithm Class@SJTU

Xiaofeng Gao

Turing Machine

22/4

Effective Procedures
Turing Machine
TM Variation and TM-Computability

Introduction
One-Tape Turing Machine
Multi-Tape Turing Machine

Preparation

To recognize palindrome we need to check the input string, output 1 if the string is a palindrome, and 0 otherwise.

Initially the input string is located on the first tape like " $\gt 0110001 \lhd \Box\Box\Box \cdots$ ", strings on all other tapes are " $\gt \Box\Box\Box \cdots$ ".

The head on each tape points the first symbol " \triangleright " as the starting state, with state mark q_S .

In the final state q_F , the output of the k^{th} tape should be " $\triangleright 1 \triangleleft \square$ " if the input is a palindrome, and " $\triangleright 0 \triangleleft \square$ " otherwise.

A 3-Tape TM for the Palindrome Problem

A palindrome is a word that reads the same both forwards and backwards. For instance:

ada, anna, madam, and nitalarbralatin.

Requirement: Give the specification of M with k=3 to recognize palindromes on symbol set $\{0,1,\triangleright,\triangleleft,\square\}$.

Algorithm Class@SJTU

Xiaofeng Gao

Turing Machine

23/4

Effective Procedures **Turing Machine** TM Variation and TM-Computability Introduction
One-Tape Turing Machine
Multi-Tape Turing Machine

A 3-Tape TM for the Palindrome Problem

 $Q = \{q_s, q_h, q_c, q_l, q_t, q_r\}; \Gamma = \{\Box, \triangleright, \triangleleft, 0, 1\};$ two work tapes.

Start State:

$$\langle q_s, \rhd, \rhd, \rhd \rangle \rightarrow \langle q_c, \rhd, \rhd, R, R, R \rangle$$

Begin to copy:

$$\langle q_c, 0, \square, \square \rangle \to \langle q_c, 0, \square, R, R, S \rangle$$
$$\langle q_c, 1, \square, \square \rangle \to \langle q_c, 1, \square, R, R, S \rangle$$
$$\langle q_c, \triangleleft, \square, \square \rangle \to \langle q_l, \square, \square, L, S, S \rangle$$

Return back to the leftmost:

$$\langle q_{I}, 0, \square, \square \rangle \rightarrow \langle q_{I}, \square, \square, L, S, S \rangle$$

$$\langle q_{I}, 1, \square, \square \rangle \rightarrow \langle q_{I}, \square, \square, L, S, S \rangle$$

$$\langle q_{I}, \triangleright, \square, \square \rangle \rightarrow \langle q_{I}, \square, \square, R, L, S \rangle$$

Begin to compare:

$$\begin{split} \langle q_t, \lhd, \rhd, \Box \rangle &\to \langle q_r, \rhd, 1, \mathcal{S}, \mathcal{S}, \mathcal{R} \rangle \\ \langle q_t, 0, 1, \Box \rangle &\to \langle q_r, 1, 0, \mathcal{S}, \mathcal{S}, \mathcal{R} \rangle \\ \langle q_t, 1, 0, \Box \rangle &\to \langle q_r, 0, 0, \mathcal{S}, \mathcal{S}, \mathcal{R} \rangle \\ \langle q_t, 0, 0, \Box \rangle &\to \langle q_t, 0, \Box, \mathcal{R}, \mathcal{L}, \mathcal{S} \rangle \\ \langle q_t, 1, 1, \Box \rangle &\to \langle q_t, 1, \Box, \mathcal{R}, \mathcal{L}, \mathcal{S} \rangle \end{split}$$

Ready to terminate:

$$\langle q_r, \lhd, \rhd, \Box \rangle \to \langle q_h, \rhd, \lhd, S, S, S \rangle$$
$$\langle q_r, 0, 1, \Box \rangle \to \langle q_h, 1, \lhd, S, S, S \rangle$$
$$\langle q_r, 1, 0, \Box \rangle \to \langle q_r, 0, \lhd, S, S, S \rangle$$

Algorithm Class@SJTU Xiaofeng Gao Turing Machine 24/45 Algorithm Class@SJTU Xiaofeng Gao Turing Machine 25/45

Language System

Let $\Sigma = \{a_1, \dots, a_k\}$ be the set of symbols, called alphabet.

A string (word) from Σ is a sequence a_{i_1}, \dots, a_{i_n} of symbols from Σ .

 Σ^* is the set of all words/strings from Σ . (Kleene Star)

For example, if $\Sigma = \{a, b\}$, we have

 $\Sigma^* = \{a, b\}^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, \ldots\}.$

 Λ is the empty string, that has no symbols. (ε)

 $\{0,1,\square,\rhd\}$ vs. Larger Alphabets

Fact: If $f: \{0,1\}^* \to \{0,1\}^*$ is computable in time T(n) by a TM M using the alphabet set Γ , then it is computable in time $4 \log |\Gamma| T(n)$ by a TM \widetilde{M} using the alphabet $\{0,1,\square,\rhd\}$.

Algorithm Class@SJTU

Xiaofeng Gao

Turing Machine

27/45

es ne

Turing Machine
TM Variation and TM-Computability

TM Variations Computable and Decidable

$\{0,1,\square,\triangleright\}$ vs. Larger Alphabets

Suppose M has k tapes with the alphabet Γ .

A symbol of M is encoded in \widetilde{M} by a string $\sigma \in \{0,1\}^*$ of length $\log |\Gamma|$.

A state q in M is turned into a number of states in \widetilde{M}

- q,
- $\langle q, \sigma_1^1, \dots, \sigma_1^k \rangle$ where $|\sigma_1^1| = \dots = |\sigma_1^k| = 1$,
- ...,
- $\langle q, \sigma^1_{\log |\Gamma|}, \dots, \sigma^k_{\log |\Gamma|} \rangle$, the size of $\sigma^1_{\log |\Gamma|}, \dots, \sigma^k_{\log |\Gamma|}$ is $\log |\Gamma|$.

Effective Procedures

Algorithm Class@SJTU

TM Variations

Turing Machine

Turing Machine
TM Variation and TM-Computability

TM Variation and Decida

$\{0,1,\square,\rhd\}$ vs. Larger Alphabets

To simulate one step of M, the machine M will

- use $\log |\Gamma|$ steps to read from each tape the $\log |\Gamma|$ bits encoding a symbol of Γ ,
- use its state register to store the symbols read,
- \odot use M's transition function to compute the symbols M writes and M's new state given this information,
- store this information in its state register, and
- $\ensuremath{ \bullet}$ use $\log |\Gamma|$ steps to write the encodings of these symbols on its tapes.

Algorithm Class@SJTU Xiaofeng Gao Turing Machine 29/45 Algorithm Class@SJTU Xiaofeng Gao Turing Machine 30/45

$\{0,1,\square,\rhd\}$ vs. Larger Alphabets

Example: $\{0, 1, \square, \triangleright\}$ vs. English Alphabets

Xiaofeng Gao Turing Machine 31/45

Effective Procedures Turing Machine TM Variation and TM-Computability TM Variations Computable and Decidable

Single-Tape vs. Multi-Tape

Algorithm Class@SJTU

- The basic idea is to interleave *k* tapes into one tape.
- The first n + 1 cells are reserved for the input.

M's 3 work tapes:

Tape 1: c o m p 1 e t e 1 y

Tape 2: r e p 1 a c e d

Tape 3: m a c h i n e s

Encoding this in one tape of M:

• Every symbol a of M is turned into two symbols a, \hat{a} in \tilde{M} , with \hat{a} used to indicate head position.

Single-Tape vs. Multi-Tape

Define a single-tape TM to be a TM that has one read-write tape.

Fact: If $f: \{0,1\}^* \to \{0,1\}^*$ is computable in time T(n) by a TM M using k tapes, then it is computable in time $5kT(n)^2$ by a single-tape TM \widetilde{M} .

Algorithm Class@SJTU

Xiaofeng Gao

Turing Machine

32/4

Effective Procedures Turing Machine TM Variation and TM-Computability

TM Variations Computable and Decidal

Single-Tape vs. Multi-Tape

The outline of the algorithm:

The machine \widetilde{M} places \triangleright after the input string and then starts copying the input bits to the imaginary input tape. During this process whenever an input symbol is copied it is overwritten by \triangleright .

 \widetilde{M} marks the n+2-cell, . . ., the n+k-cell to indicate the initial head positions.

 \widetilde{M} Sweeps kT(n) cells from the (n+1)-th cell to right, recording in the register the k symbols marked with the hat \hat{L} .

 \widetilde{M} Sweeps kT(n) cells from right to left to update using the transitions of M. Whenever it comes across a symbol with hat, it moves right k cells, and then moves left to update.

Algorithm Class@SJTU Xiaofeng Gao Turing Machine 33/45 Algorithm Class@SJTU Xiaofeng Gao Turing Machine

Unidirectional Tape vs. Bidirectional Tape

Define a bidirectional Turing Machine to be a TM whose tapes are infinite in both directions.

Fact: If $f:\{0,1\}^* \to \{0,1\}^*$ is computable in time T(n) by a bidirectional TM M, then it is computable in time 4T(n) by a TM \widetilde{M} with one-directional tape.

Algorithm Class@SJTU

Xiaofeng Gao

Turing Machine

Effective Procedures
Turing Machine
TM Variation and TM-Computability

TM Variations Computable and Decidable

Unidirectional Tape vs. Bidirectional Tape

Let H range over $\{L, S, R\}$ and let -H be defined by

$$-H = \begin{cases} R, & \text{if } H = L, \\ S, & \text{if } H = S, \\ L, & \text{if } H = R. \end{cases}$$

 \widetilde{M} contains the following transitions:

$$\langle \overline{q}, (\triangleright, \triangleright) \rangle \to \langle \underline{q}, (\triangleright, \triangleright), R \rangle$$
$$\langle q, (\triangleright, \triangleright) \rangle \to \langle \overline{q}, (\triangleright, \triangleright), R \rangle$$

$$\begin{split} \langle \overline{q}, (a, b) \rangle &\rightarrow \langle \overline{q'}, (a', b), H \rangle \text{ if } \langle q, a \rangle \rightarrow \langle q', a', H \rangle \\ \langle q, (a, b) \rangle &\rightarrow \langle q', (a, b'), -H \rangle \text{ if } \langle q, b \rangle \rightarrow \langle q', b', H \rangle \end{split}$$

Unidirectional Tape vs. Bidirectional Tape

 $\bullet \ \ {\it The idea}$ is that \widetilde{M} makes use of the alphabet $\Gamma \times \Gamma.$

• Every state q of M is turned into \bar{q} and q.

Algorithm Class@SJTU

Xiaofeng Gao

Turing Machine

36/4

Effective Procedures Turing Machine TM Variation and TM-Computability

TM Variations
Computable and Decidable

TM-Computable Function

What does it mean that a TM computes a (partial) *n*-ary function *f*?

Let M be a TM and $a_1, \ldots, a_n, b \in \mathbb{N}$. When computation $M(a_1, \ldots, a_n)$ converges to b if $M(a_1, \ldots, a_n) \downarrow$ and $r_1 = b$ in the final configuration. We write $M(a_1, \ldots, a_n) \downarrow b$.

• M TM-computes f if, for all $a_1, \ldots, a_n, b \in \mathbb{N}$,

$$M(a_1,\ldots,a_n)\downarrow b \text{ iff } f(a_1,\ldots,a_n)=b$$

- Function *f* is TM-computable if there is a Turing Machine that TM-computes *f*.
- (We abbreviate "TM-computable" to "computable")

Algorithm Class@SJTU Xiaofeng Gao Turing Machine 37/45 Algorithm Class@SJTU Xiaofeng Gao Turing Machine 39/45

Function Defined by Program

Given any program P and $n \ge 1$, by thinking of the effect of P on initial configurations of the form $a_1, \dots, a_n, 0, 0, \dots$, there is a unique n-ary function that P computes, denoted by $f_P^{(n)}$.

$$f_P^{(n)}(a_1,\ldots,a_n) = \begin{cases} b, & \text{if } P(a_1,\ldots,a_n) \downarrow b, \\ \text{undefined}, & \text{if } P(a_1,\ldots,a_n) \uparrow . \end{cases}$$

Algorithm Class@SJTU

Xiaofeng Gao

Turing Machine

Machine

40/45

Turing Machine
TM Variation and TM-Computability

TM Variations

Computable and Decidable

Decidable Predicate and Decidable Problem

Suppose that $P(x_1, ..., x_n)$ is an *n*-ary predicate of natural numbers. The characteristic function $c_P(\mathbf{x})$,

$$f_M^{(n)}(a_1,\ldots,a_n) = \begin{cases} 1, & \text{if } P(\mathbf{x}) \text{ holds,} \\ 0, & \text{if otherwise.} \end{cases}$$

The predicate $P(\mathbf{x})$ is decidable if c_P is computable; it is undecidable otherwise.

Predicate and Decision Problem

The value of a predicate is either 'true' or 'false'.

The answer of a *decision problem* is either 'yes' or 'no'.

Example: Given two numbers x, y, check whether x is a multiple of y.

Input: *x*, *y*; Output: 'Yes' or 'No'.

The operation amounts to calculation of the function

$$f(x,y) = \begin{cases} 1, & \text{if } x \text{ is a multiple of } y, \\ 0, & \text{if otherwise.} \end{cases}$$

Thus the property or predicate 'x is a multiple of y' is algorithmically or effectively decidable, or just decidable if function f is computable.

Algorithm Class@SJTU

Xiaofeng Gao

Turing Machine

41/45

Effective Procedures Turing Machine TM Variation and TM-Computability

TM Variations

Computable and Decidable

Computability on other Domains

Suppose D is an object domain. A coding of D is an explicit and effective injection $\alpha:D\to\mathbb{N}$. We say that an object $d\in D$ is coded by the natural number $\alpha(d)$.

A function $f: D \to D$ extends to a numeric function $f^*: \mathbb{N} \to \mathbb{N}$. We say that f is computable if f^* is computable.

$$f^* = \alpha \circ f \circ \alpha^{-1}$$

Algorithm Class@SJTU Xiaofeng Gao Turing Machine 42/45 Algorithm Class@SJTU Xiaofeng Gao Turing Machine 43/45

Example

Consider the domain $\mathbb{Z}.$ An explicit coding is given by the function α where

$$\alpha(n) = \begin{cases} 2n, & \text{if } n \ge 0, \\ -2n - 1, & \text{if } n < 0. \end{cases}$$

Then α^{-1} is given by

$$\alpha^{-1}(m) = \begin{cases} \frac{1}{2}m, & \text{if } m \text{ is even,} \\ -\frac{1}{2}(m+1), & \text{if } m \text{ is odd.} \end{cases}$$

Example (Continued)

Consider the function f(x) = x - 1 on \mathbb{Z} , then $f^* : \mathbb{N} \to \mathbb{N}$ is given by

$$f^*(x) = \begin{cases} 1 & \text{if } x = 0 \text{ (i.e. } x = \alpha(0)), \\ x - 2 & \text{if } x > 0 \text{ and } x \text{ is even (i.e. } x = \alpha(n), n > 0), \\ x + 2 & \text{if } x \text{ is odd (i.e. } x = \alpha(n), n < 0). \end{cases}$$

It is a routine exercise to write a program that computes f^* , hence x-1 is a computable function on \mathbb{Z} .

Algorithm Class@SJTU Xiaofeng Gao Turing Machine 44/45 Algorithm Class@SJTU Xiaofeng Gao Turing Machine 45/45