NLP & Classification Modeling

Christiaan Dageforde

Problem Statement

- Subreddit
 fields have
 been replaced
 with null
 values
- Develop
 models to
 distinguish
 between
 subreddits

Data & Method

- Using Reddit's API, pulled posts from two different Subreddits
 - o r/Batman
 - r/Joker
- Data
 - 4,230 Posts
 - 2,150 from r/Joker
 - 2,080 from r/Batman
 - Comments/"selftext"
 - Too many non-text or null posts to use in modeling
 - Titles
 - All posts had titles, and so were used for my text data

Data & Method, Cont.

- Three classification models considered
 - Multinomial Naive Bayes
 - Random Forest Classifier
 - Logistic Regression
 - Performed Gridsearch operations to find the optimal parameters to tune each model
 - Selected the two most accurate models for comparison
- Natural Language Processing Methods
 - Count Vectorizer
 - TF-IDF

Natural Language Processing

NLP

- Methods to contextualize human language in a way that computers can understand
- A variety of feature extraction techniques were used in the process of training our models

NLP Methods

- TF-IDF (Term Frequency Inverse Document Frequency)
 - Transforms unstructured text into a matrix of term frequencies by document frequency
 - o TF
 - How many times does a given term appear in a document?
 - o IDF
 - How many documents in our corpus include this term?
- Tells us which words are most unique to each document
 - Valuable in distinguishing between documents

NLP Methods

- CountVectorizer
 - Transforms unstructured text into a matrix of term frequencies
- Stop Words
 - Commonly-used words that contain little information that would help to identify a given document
 - "Noise"; can cause difficulty during the modeling process
- N-Grams
 - Breaks phrases into smaller segments in order to better contextualize words

Models

Model 'A'

- Random Forest Classifier
 - Few parameters to tweak
 - Commonly high-performing
 - Number of estimators: 15
 - Number of trees in forest
 - CountVectorizer
 - Stop Words: None
 - Max. Features: 4,000
 - N-Gram Range: 1,1

Scoring

- 1,058 Predictions
- Correct Predictions

• True Positive: 516

• True Negative: 487

- Incorrect Predictions
 - False Positive: 22
 - False Negative: 33
- Scoring Metrics
 - Accuracy: 94.8%
 - Sensitivity: 95.7%
 - Specificity: 94%
 - Misclassification: 5.2%

Model 'B'

- Logistic Regression
 - Continuous predictions to classify between '1' and '0'
 - C: 10
 - TF-IDF
 - Analyzer: Word
 - N-Gram Range: 1,2
 - Stop Words: None

Term Frequency

Positive Class

- '1'
- r/batman

Negative Class

- '0'
- r/joker

Scoring

- 1,058 Predictions
- Correct Predictions

o True Positive: 519

• True Negative: 496

- Incorrect Predictions
 - False Positive: 19
 - False Negative: 24
- Scoring Metrics
 - Accuracy: 95.9%
 - Sensitivity: 96.3%
 - Specificity: 95.6%
 - o Misclassification: 4.1%

Conclusions

...and the winner is...

- Model 'B'
 - Highly accurate
 - Low misclassification rate