Precalculus Homework

Trigonometric equations and inequalities

- 1. Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation.
 - (a) $2\cos x 1 = 0$.

Suswer:
$$x = \frac{\pi}{3}$$
 of $x = \frac{5\pi}{3}$

(b)
$$\sin(2x) = \cos x$$
.

answer:
$$x = x \cdot \frac{\pi}{\delta} = x \cdot \frac{\pi}{\delta} = x \cdot \frac{\pi}{\delta} = x \cdot \frac{\pi}{\delta} = x$$

(c)
$$\sqrt{3}\sin x = \sin(2x)$$
.

(d)
$$2\sin^2 x = 1$$
.

(a)
$$2\sin^2 x = 1$$
.

$$\frac{\frac{\mathfrak{p}}{\mu_L} = x \log \frac{\mathfrak{p}}{\mu_Q} = x \cdot \frac{\mathfrak{p}}{\mu_R} = x \cdot \frac{\mathfrak{p}}{\mu} = x \text{ diagsue}}{2 + \cos(2x) = 3 \cos x}.$$

answer:
$$x=0$$
 , $x=x$, $\pi \leq x$, $\pi \leq x$, $0 \leq x$. The work is a subsequent of $\pi \leq x$.

(f)
$$2\cos x + \sin(2x) = 0$$
.

answer $x = \frac{\pi}{2} = x \cdot \frac{\pi}{2} = x$ Then $\frac{3\pi}{2}$

(g)
$$2\cos^2 x - (1+\sqrt{2})\cos x + \frac{\sqrt{2}}{2} = 0.$$

 $_{^{u_{\overline{5}}, u_{,0}}, 0, \frac{9}{2}}, \frac{9}{2}} = x \text{ (h) } |\tan x| = 1.$

answer:
$$x=x$$
 to , $\frac{\pi \xi}{\hbar}=x$, $\frac{\pi \xi}{\hbar}=x$, $\frac{\pi}{\hbar}=x$. Then we have

(i) $3 \cot^2 x = 1$.

$$\frac{\mathbb{E}}{\mathbb{E}} = x$$
 10 , $\frac{\mathbb{E}}{\mathbb{E}} = x$, $\frac{\mathbb{E}}{\mathbb{E}} = x$, $\frac{\mathbb{E}}{\mathbb{E}} = x$:19Ansur

(i) $\sin x = \tan x$.

answer: x = 0, $\pi = x$, of x = 2

Solution. 1.g Set $\cos x = u$. Then

$$2\cos^2 x - (1+\sqrt{2})\cos x + \frac{\sqrt{2}}{2} = 0$$

becomes

$$2u^2 - (1 + \sqrt{2})u + \frac{\sqrt{2}}{2} = 0.$$

This is a quadratic equation in u and therefore has solutions

$$u_{1}, u_{2} = \frac{1 + \sqrt{2} \pm \sqrt{(1 + \sqrt{2})^{2} - 4\sqrt{2}}}{4}$$

$$= \frac{1 + \sqrt{2} \pm \sqrt{1 - 2\sqrt{2} + 2}}{4}$$

$$= \frac{1 + \sqrt{2} \pm \sqrt{(1 - \sqrt{2})^{2}}}{4}$$

$$= \frac{1 + \sqrt{2} \pm (1 - \sqrt{2})}{4} = \begin{cases} \frac{1}{2} & \text{or} \\ \frac{\sqrt{2}}{2} \end{cases}$$

Therefore $u=\cos x=\frac{1}{2}$ or $u=\cos x=\frac{\sqrt{2}}{2}$, and, as x is in the interval $[0,2\pi]$, we get $x=\frac{\pi}{3},\frac{5\pi}{3}$ (for $\cos x=\frac{1}{2}$) or $x=\frac{\pi}{4},\frac{7\pi}{4}$ (for $\cos x=\frac{\sqrt{2}}{2}$).

1