Guía de Proyeccion Econométrica

Francisco Orlando Rosales

2025-05-04

Table of contents

Pı	eface	:	4
1	1.1 1.2 1.3 1.4	Modelos con Variable Dependiente Limitada	5 5 5 6
2	Resi	umen	7
3	Vari	able dependiente binaria	8
	3.1	El modelo de probabilidad lineal (MPL)	8 9
	3.2	Ejemplo 1: Determinantes de la denegación en solicitudes de hipoteca en el mercado inmobiliario (Stock and Watson 2012)	10 16
	3.3	Ejemplo 2: Determinantes del trabajo femenino (Wooldridge 2009)	40 43 43 44
	3.4	Ejemplo 3: Un modelo de probabilidad lineal para arrestos (Wooldridge 2009) . 3.4.1 Porcentaje predicho correctamente	45 47 47
	3.5	Incorporando regresores binarios al MPL	48 49 50
	3.6	Modelos Logit y Probit para la respuesta binaria 3.6.1 Especificación del modelo logit y probit 3.6.2 Variables aproximadamente continuas: 3.6.3 Cuando la variable explicativa es binaria 3.6.4 Cuando la variable explicativa es discreta 3.6.5 Estimación de máxima verosimilitud de los modelos Logit y Probit 3.6.6 Ejemplos de aplicación	54 54 57 58 58 59 59
		3.6.7 Interpretaciones de las estimaciones Logit y Probit	72 73

		3.6.9 Efecto parcial promedio y el efecto parcial en el promedio	74 80 84
4	Ejer	cicio 17.2 del libro de Wooldridge	86
5	Tare	eas	87
6	Mod	delo Tobit	88
	6.1	Motivación	88
	6.2	Especificación matemática	88
	6.3	Interpretaciones de las estimaciones Tobit	89
	6.4	Ejemplo	90
		6.4.1 Verificar que la variable dependiente sea de solución de esquina	91
		6.4.2 Usando MCO	93
		6.4.3 Modelo Tobit	94
		6.4.4 No linealidad del modelo Tobit	98
7	Mod	delo Poisson	103
	7.1	Introducción y motivación	103
		7.1.1 Recordatorio	103
			108
	7.2		112
		7.2.1 Estimación de σ^2	123
		7.2.2 Ajustar los errores estándar	124
		7.2.3 Interpretación	126
		7.2.4 Efectos marginales de la Regresión Exponencial EMCV-Poisson	126
		7.2.5 Interpretaciones:	127
8	Mod	delo de Dos Partes	129
	8.1	Motivación	129
	8.2	Descripción general	129
	8.3	Ejemplo de aplicación	129
	8.4	Ajustar los modelos	153
	8.5	Simulación Predictiva	264
Re	eferer	nces	269

Preface

El presente libro nace de la necesidad de acercar a los estudiantes y profesionales del análisis económico a una segunda etapa en su formación econométrica: aquella que trasciende el modelo lineal clásico para enfrentar los retos empíricos del mundo real. En la práctica, los datos rara vez se ajustan a los supuestos ideales de linealidad, normalidad o independencia. Por ello, el presente texto se concentra en métodos aplicados y técnicas econométricas que permiten abordar con mayor realismo y rigor los problemas más comunes en la evaluación de políticas, el estudio del comportamiento económico y el diseño de proyecciones con fines prácticos.

A lo largo de mi experiencia docente, he constatado una creciente demanda por parte de los estudiantes de herramientas que les permitan no solo comprender la teoría, sino también aplicarla con propiedad en entornos de datos diversos. Este libro busca responder a esa necesidad con un enfoque aplicado, utilizando ejemplos reales, sintaxis en R, y una estructura clara que vincula la teoría con la práctica. Cada capítulo está diseñado para ser autónomo, pero también parte de una secuencia lógica que va desde la especificación de modelos hasta la identificación de efectos causales.

El texto cubre áreas clave como el modelado de variables dependientes limitadas, el uso combinado de cortes transversales, el análisis con datos de panel, y una introducción metodológica a la evaluación de impacto. Estos temas han sido seleccionados no solo por su relevancia metodológica, sino también por su aplicación directa en proyectos de investigación, tesis de grado y análisis institucional en organismos públicos y privados. La selección responde, además, a una visión integral del análisis econométrico como una herramienta de diagnóstico, predicción y evaluación en contextos complejos y reales.

Espero que este libro contribuya a fortalecer una práctica econométrica más crítica, más contextualizada y más comprometida con los problemas que enfrenta nuestra sociedad. Mi deseo es que los lectores no solo dominen las técnicas aquí presentadas, sino que también aprendan a cuestionar los supuestos detrás de los modelos y a interpretar sus resultados con responsabilidad. Si este texto logra acompañar a sus lectores en ese proceso, su propósito habrá sido cumplido.

1 Introducción

La econometría contemporánea ha evolucionado más allá del modelo clásico de regresión lineal, abarcando una diversidad de técnicas diseñadas para abordar preguntas empíricas cada vez más complejas. Este libro de Proyección Econométrica tiene como objetivo servir de puente entre los fundamentos clásicos y las herramientas intermedias y aplicadas que hoy constituyen el núcleo de muchas investigaciones empíricas en economía, ciencias sociales, salud pública y políticas públicas.

En particular, el libro se enfoca en cuatro grandes bloques temáticos que reflejan escenarios reales de análisis económico:

1.1 Modelos con Variable Dependiente Limitada

Muchos fenómenos de interés no se expresan naturalmente como variables continuas y sin restricciones. Por ejemplo, las decisiones de participación laboral, la elección entre múltiples opciones educativas, o el acceso a servicios financieros, son todos ejemplos donde el uso de modelos lineales tradicionales es inadecuado. Este capítulo introduce modelos como el Logit, Probit, Tobit y multinomial, proporcionando una base conceptual y práctica para modelar variables cualitativas o censuradas.

1.2 Combinación Independiente de Cortes Transversales

Ante la escasez de datos panel, los investigadores recurren a combinaciones de cortes transversales para analizar tendencias o realizar inferencias en contextos donde los datos longitudinales no están disponibles. Aquí se discuten estrategias para integrar y modelar múltiples encuestas independientes, cuidando problemas de heterogeneidad no observada y diferencias estructurales entre periodos.

1.3 Modelos con Datos de Panel

Los datos de panel permiten controlar la heterogeneidad individual no observable y estudiar dinámicas temporales con mayor precisión. Este capítulo desarrolla las herramientas fundamentales para trabajar con paneles balanceados y no balanceados, introduciendo modelos de

efectos fijos, efectos aleatorios y modelos dinámicos, junto con criterios de elección entre ellos.

1.4 Introducción a la Evaluación de Impacto

Evaluar el efecto causal de intervenciones o políticas públicas es una tarea central en la econometría aplicada. Este capítulo ofrece una introducción a las metodologías de evaluación de impacto, como el enfoque de diferencias en diferencias (DiD), la asignación aleatoria, los modelos de regresión discontinua y las estrategias de variables instrumentales. Se enfatiza la identificación causal y la interpretación adecuada de los resultados.

A lo largo del texto, se pone especial énfasis en la implementación práctica de los métodos econométricos utilizando software estadístico, análisis de datos reales y ejercicios interpretativos. Cada capítulo está diseñado para proporcionar tanto el aparato teórico como las herramientas empíricas necesarias para enfrentar problemas aplicados de proyección y análisis económico.

Este libro está pensado como un recurso intermedio entre los cursos introductorios de econometría y los enfoques avanzados de inferencia causal y econometría estructural. Es ideal para estudiantes de pregrado avanzado, posgrado o profesionales interesados en fortalecer su capacidad analítica con herramientas modernas y relevantes.

2 Resumen

Este libro de Proyección Econométrica ofrece una guía intermedia-aplicada para abordar problemas empíricos más allá del modelo clásico de regresión. Está dirigido a estudiantes y profesionales que buscan aplicar técnicas como modelos con variable dependiente limitada, combinación de cortes transversales, datos de panel y evaluación de impacto. Con un enfoque práctico y apoyado en ejemplos reales en R, el texto vincula la teoría con la implementación, promoviendo una práctica econométrica rigurosa, contextualizada y comprometida con el análisis de fenómenos económicos complejos.

3 Variable dependiente binaria

3.1 El modelo de probabilidad lineal (MPL)

¿Qué ocurre cuando se desea usar la regresión múltiple para explicar eventos cualitativos?

El caso más sencillo es un evento del tipo binario, es decir, que y toma valores de cero y uno. Por ejemplo, y puede indicar si una persona trabaja o no trabaja, esta empleado o desempleado o, si una empresa es grande o pequeña. En cualquier caso se puede hacer que y=1 denota uno de los resultados o y=0 denota el otro resultado. También podría pensarse como éxito y fracaso. La demostración parte de la función de regresión poblacional.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + u$$
 [1]

Como y solo puede toma dos valores, los β_j no pueden interpretarse como una cambio en y para un aumento de x_j ceteris paribus. Recordar que en este caso y cambia de cero a uno, o no cambia. Partiendo del supuesto de media condicional cero $E(u|X_1,X_2,...,X_k)=0$, tenemos:

$$E(y|\mathbf{X}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + u$$
 [2]

El punto clave es que y es una variable binaria que toma valores de cero y uno, entonces tenemos que $P(y=1|\mathbf{X})=E(y|\mathbf{X})$: la probabilidad de "éxito". Por lo tanto, tenemos

$$P(y = 1|\mathbf{X}) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + u$$
 [3]

La ecuación [3] dice que, la probabilidad de éxito, es decir $p(x) = P(y = 1|\mathbf{X})$, es una función lineal de las variables x_j , también se le conoce como la **probabilidad de respuesta**. Dado que, las probabilidades deben sumar uno, $P(y = 0|\mathbf{X}) = 1 - P(y = 1|\mathbf{X})$, es también una función lineal de las x_j

Por lo tanto, a un modelo de regresión lineal múltiple en el que la variable dependiente es una variable binaria se le conoce como: El modelo de probabilidad lineal (MPL), porque la probabilidad de respuesta es lineal a los parámetros β_j . En el MPL, los β_j miden la variación de la probabilidad de éxito de variar x_j ceteris paribus:

$$\Delta P(y=1|X) = \beta_i \Delta x_i \quad [4]$$

3.1.1 Ejemplo en la clase

Los determinantes del desempleo

$$P(de = 1|educ) = \beta_0 + \beta_1 educ + u$$
 ej1

$$P(de = 1|educ) = 0.23 - 1.04educ + u \quad ej2$$

Donde:

- de: Desempleo, 1 si estas desempleado. 0 otro caso
- educ: años de educación

El modelo de regresión lineal múltiple permite estimar el efecto de diversas variables explicativas sobre un evento cualitativo. Entonces la mecánica de los **MCO** es la misma de siempre:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_k x_k$$
 [5]

Donde:

- \hat{y} : es la probabilidad de éxito predicha
- $\,\hat{\beta}_0 \colon$ es la probabilidad de éxito cuando cada una de las $x_j = 0$
- $\hat{\beta}_1$: mide la variación de la probabilidad de éxito predicha cuando x_1 varia en una unidad, mientras las demás permanecen constantes.
- $\hat{\beta}_j$: mide la variación de la probabilidad de éxito predicha cuando x_j varia en una unidad, mientras las demás permanecen constantes.

¡¡Concepto clave: para interpretar correctamente un MPL, debe saberse qué es lo que constituye el éxito!!

Recomendación: la variable dependiente debe describir el nombre del evento cuando y=1

Por ejemplo, si estudiamos los determinantes del desempleo, la variable y debe llamarse desempleo

3.2 Ejemplo 1: Determinantes de la denegación en solicitudes de hipoteca en el mercado inmobiliario (Stock and Watson 2012)

• denegar = 1 le negaron la hipoteca y 0 otro caso

Variable explicativa:

• $\frac{P}{I}$: Ratio Pagos-ingresos

```
2380 obs. of 14 variables:
'data.frame':
$ deny
           : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 2 1 ...
$ pirat
           : num 0.221 0.265 0.372 0.32 0.36 ...
$ hirat : num 0.221 0.265 0.248 0.25 0.35 ...
$ lvrat : num 0.8 0.922 0.92 0.86 0.6 ...
$ chist : Factor w/ 6 levels "1","2","3","4",..: 5 2 1 1 1 1 1 2 2 2 ...
        : Factor w/ 4 levels "1", "2", "3", "4": 2 2 2 2 1 1 2 2 2 1 ...
$ mhist
$ phist
           : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
$ unemp
           : num 3.9 3.2 3.2 4.3 3.2 ...
$ selfemp : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
$ insurance: Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 2 1 ...
$ condomin : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 2 1 1 1 ...
           : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
$ afam
           : Factor w/ 2 levels "no", "yes": 1 2 1 1 1 1 2 1 1 2 ...
$ single
$ hschool : Factor w/ 2 levels "no", "yes": 2 2 2 2 2 2 2 2 2 2 ...
```

El objetivo es estimar la siguiente ecuación

$$P(Y = 1|x_1) = \beta_0 + \beta_1 x_1 + u \quad [6]$$

ahora usando nuestra ejemplo:

$$P(deny = 1|P/I) = \beta_0 + \beta_1 P/I + u$$
 [7]

Miremos las variables que ingresan. Primero hacemos binaria a la variable deny

Dependent variable:

deny

pirat 0.604*** (0.061)

Constant -0.080*** (0.021)

Note: *p<0.1; **p<0.05; ***p<0.01

p 1011, 11 p 10100, 11 p 1010

Seria $\widehat{\beta_1} = 0.604 \times 0.01 \approx 0.06$

Una vez que tengo el MPL, puedo graficar

```
 plot(x = HMDA\$pirat, \\ y = HMDA\$deny, \\ main = "Gráfico de dispersión de las denegaciones de hipoteca y el ratio pagos-ingresos \\ xlab = "ratio P/I", \\ ylab = "Denegar", \\ pch = 20, \\ ylim = c(-0.4, 1.4),
```

```
cex.main = 0.8)
# Añadir las lineas horizontales
abline(h=1, lty = 2, col = "darkred")
abline(h=0, lty = 2, col = "darkred")
text(2.5, 0.9,
     cex = 0.8,
     "Hipoteca denegada")
text(2.5, -0.1,
     cex = 0.8,
     "Hipoteca concedida")
# Añadiendo la linea del MPL
abline(denymod1,
       lwd = 0.8,
       col = "steelblue")
text(1.25, 0.4,
     cex = 0.8,
     "Modelo de probabilidad lineal")
```

Gráfico de dispersión de las denegaciones de hipoteca y el ratio pagos-ingreso

Presentación de la regresión

	Dependent variable:	
	deny (1) (2)	
pirat	0.604*** (0.098)	0.604*** (0.061)
Constant	-0.080** (0.032)	-0.080*** (0.021)

```
Observations
                                     2,380
                                                    2,380
R2
                                     0.040
                                                    0.040
Adjusted R2
                                     0.039
                                                    0.039
Residual Std. Error (df = 2378)
                                     0.318
                                                    0.318
F Statistic (df = 1; 2378)
                                   98.406***
                                                  98.406***
Note:
                                  *p<0.1; **p<0.05; ***p<0.01
```

Como los modelos de regresión lineal simple poseen el problema de sesgo de variable omitida, y de debido a que el gráfico muestra comportamientos que no son solo explicados por la variable independiente (pirat), se añade otra variable que puede ayudar a explicar el fenómeno. La variable es respecto a la conseción de hipoteca a las personas negras (afam)

Dependent variable:
-----deny
(1) (2)

```
0.604
pirat
                             0.597
                 t = 6.128
                           t = 6.247
                 (0.098)*** (0.096)***
                              0.047
negrayes
                             t = 3.387
                            (0.014)***
Constant
                  -0.080
                             -0.096
                 t = -2.500 t = -3.105
                 (0.032)** (0.031)***
                2,380
Observations
                              2,380
R2
                  0.040
                             0.045
Adjusted R2
                 0.039
                             0.044
Residual Std. Error
                 0.318
                              0.318
F Statistic
               98.406***
                             55.614***
_____
Note:
                *p<0.1; **p<0.05; ***p<0.01
```

Miremos los valores ajustados

 \hat{y}_i

```
# modelo con un solo regresor
summary(denymod1\fitted.values)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. -0.07991 0.08908 0.11926 0.11975 0.14340 1.73070
```

```
# modelo con dos regresores
summary(denymod2$fitted.values)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. -0.09614 0.08800 0.11874 0.11975 0.14859 1.69459

3.2.1 Porcentaje predicho correctamente

Mirada a los valores ajustados

denymod2\$fitted.values

1	2	3	4	5
0.0357740938	0.1088880900	0.1259074499	0.0948681447	0.1187445298
6	7	8	9	10
0.0471153745	0.1596254083	0.0709917596	0.0888990484	0.0581507716
11	12	13	14	15
0.1178417344	0.1357490232	0.0709917596	0.1187445298	0.0113007969
16	17	18	19	20
0.1187445298	0.0411462782	0.0948681447	0.0888990484	0.1715636008
21	22	23	24	25
0.1247136260	0.1366518186	0.1417181195	0.1366518186	0.1476872157
26	27	28	29	30
0.1178417344	0.1715636008	0.1297799269	0.0888990484	0.1059035418
31	32	33	34	35
0.1655945046	0.1247136260	0.1596254083	0.1715636008	0.1068063372
36	37	38	39	40
0.1306827223	0.1664973000	0.1127754335	0.1306827223	0.1715636008
41	42	43	44	45
0.1247136260	0.1485900111	0.1127754335	0.1485900111	0.1536563120
46	47	48	49	50
0.0769608559	0.0650226633	0.1715636008	0.1068063372	0.1655945046
51	52	53	54	55
0.1536563120	0.0650226633	0.0462125791	0.1835017934	0.1187445298
56	57	58	59	60
0.0912866846	0.1068063372	0.1488810396	0.1476872157	0.1888739891
61	62	63	64	65
0.1080001610	0.1751450495	0.0954650452	0.0703948477	0.0930774204
66	67	68	69	70
0.0739763077	0.1217290779	0.1050156129	0.1596254083	0.1608192321
71	72	73	74	75
0.1127754335	0.1091939848	0.1178417344	0.1294888985	0.0578597432
76	77	78	79	80
0.0339833581	0.0411462782	0.0739763077	0.0620381152	0.1655945046
81	82	83	84	85
0.0662164871	0.1655945046	0.0888990484	0.1649976041	0.1408301905
86	87	88	89	90
0.1068063372	0.0345802700	0.1417181195	0.0948681447	0.1178417344

91	92	93	94	95
0.1354579948	0.0999344456	0.1068063372	0.1417181195	0.0900928722
96	97	98	99	100
0.1476872157	0.0948681447	0.1306827223	0.0948681447	0.0411462782
101	102	103	104	105
0.0650226633	0.1381366594	0.1596254083	0.1417181195	0.1175507060
106	107	108	109	110
0.1596254083	0.1068063372	0.1357490232	0.0769608559	0.2679719366
111	112	113	114	115
0.0608442914	0.1070973656	0.1187445298	0.2252854673	0.0859145003
116	117	118	119	120
0.1799203447	0.0614412033	0.1008372410	0.2312545636	0.0172698931
121	122	123	124	125
0.1297799269	0.1187445298	0.1476872157	0.0879962530	0.1485900111
126	127	128	129	130
0.1187445298	0.1485900111	0.1008372410	0.1238108307	0.1485900111
131	132	133	134	135
0.1008372410	0.0411462782	0.1366518186	0.1366518186	0.0650226633
136	137	138	139	140
0.1799203447	0.1787265209	0.1247136260	0.1447026676	0.1882770659
141	142	143	144	145
0.1864863415	0.1936492616	0.1303768388	0.1685790527	0.1094850019
146	147	148	149	150
0.0638288395	0.0644257514	0.1948430854	0.0877052246	0.1363459351
151	152	153	154	155
0.1187445298	0.1366518186	0.0948681447	0.0113007969	0.1068063372
156	157	158	159	160
0.1464933919	0.1798009601	0.1056125134	0.0715886715 164	0.1848746828
161 0.1205352541	162 0.0505774499	163 0.1319362271	0.0948681447	0.0745732196
166	167	168	169	170
0.1094850019	0.0918835965	0.1325853981	0.1524624882	0.1691759532
171	172	173	174	175
0.1253105266	0.1312796228	0.1596254083		
176	177	178	179	180
		0.1835017934		
181	182	183	184	185
0.1127754335	0.1835017934	0.1655945046		
186	187	188	189	190
0.0650226633	0.1638037802	0.0829299521	0.1366518186	
191	192	193	194	195
0.1605282037	0.1426209149			0.0411462782
196	197	198	199	200

0.3864510667 201	0.1775326971 202	0.1793234214	0.0948681447 204	0.0787515802 205
0.0941444263	0.0665075042	0.1261984669	0.1787265209	0.1774133125
206	207	208	209	210
0.1043590087	0.1836808590	0.1851731331	0.0709917596	0.0888990484
211	212	213	214	215
0.1799800257	0.1500748634	0.1238108307	0.1482244353	0.1518058840
216	217	218	219	220
0.1081792266	0.1313915857	0.0943309251	0.0508759001	0.0745732196
221	222	223	224	225
0.1118726381	0.1190355582	0.1443445136	0.1115816097	0.1273922907
226	227	228	229	230
0.0947487600	0.1895305706	0.0687831890	0.1610580014	-0.0222455235
231	232	233	234	235
0.1536563120	0.0301631402	0.0725437260	0.0763639440	0.0829299521
236	237	238	239	240
0.1187445298	0.0948681447	0.0948681447	0.0590535670	0.0590535670
241	242	243	244	245
0.1417181195	0.2014090822	0.1536563120	0.1247136260	0.1238108307
246	247	248	249	250
0.1596254083	0.1894708897	0.1655945046	0.1306827223	0.1247136260
251	252	253	254	255
0.1954399859	0.1417181195	0.1008372410	0.1008372410	0.1238108307
256	257	258	259	260
0.1715636008	0.1655945046	0.1247136260	0.1297799269	0.1068063372
261	262	263	264	265
0.1545591074	0.0232389894	0.0829299521	0.1306827223	0.1536563120
266	267	268	269	270
0.0769608559	0.0948681447	0.1187445298	0.1485900111	0.1417181195
271	272	273	274	275
0.1306827223	0.0700889642	0.1178417344	0.0530844708	0.0769608559
276 0.2431927561	277	278	279	280
0.210202.002	0.1008372410	0.1724663962	0.1954399859	0.1127754335
281	282	283	284	285
	-0.0483901659 287	0.0999344456	0.1903736851	0.1187445298
286	0.0650226633	288 0.1068063372	0.1476872157	290 0.0709917596
291	292	293	294	295
0.1068063372		0.1297799269	0.1187445298	0.1158196626
296	297	298	299	300
	-0.0125755882	0.1664973000	0.1724663962	0.1247136260
301	302	303	304	305
	0.0652614326	0.0411462782		
1.100000012	1.0002011020	5.0111102102	1.100000120	3.11.30.2101

306	307	308	309	310
0.1745481490	0.1042396240	0.0697382548	0.1485900111	0.1204755732
311	312	313	314	315
0.0881827518	0.1223259784	0.1386738790	0.0681265961	0.1127754335
316	317	318	319	320
0.1492988745	0.0948681447	0.0615605879	0.1066272716	0.1066272716
321	322	323	324	325
0.1191026837	0.1287726133	0.0835268640	0.2730382375	0.1133723340
326	327	328	329	330
0.1829048929	0.1605282037	0.1605282037	-0.0066064920	0.1536563120
331	332	333	334	335
0.1357490232	0.1247136260	0.0888990484	0.0829299521	-0.0006373957
336	337	338	339	340
0.1187445298	0.1187445298	0.1426209149	0.1715636008	0.0709917596
341	342	343	344	345
0.1605282037	0.1187445298	0.0471153745	0.1844045888	-0.0015401911
346	347	348	349	350
0.0471153745	0.0351771819	-0.0125755882	0.0292080857	-0.0961429361
351	352	353	354	355
0.0761774451	0.1393379165	0.1297799269	0.1187445298	0.0709917596
356	357	358	359	360
0.0590535670	0.1178417344	0.0855563577	0.0910479267	0.0843028415
361	362	363	364	365
0.0229405391	0.0677087612	0.1405242957	0.1724663962	0.1168941017
366	367	368	369	370
0.1023220818	0.0943234919	0.0709917596	0.1994989732	0.1826661236
371	372	373	374	375
0.1072838759	0.1118726381	0.1127754335	0.1127754335	0.1417181195
376	377	378	379	380
0.1417181195	0.1715636008	0.1596254083	0.2133472748	0.1426209149
381	382	383	384	385
0.1238108307	0.1954399859	0.0530844708	0.1894708897	0.1605282037
386	387	388	389	390
	0.1963427813	0.1954399859		
391	392	393	394	395
		0.1476872157		
396	397	398	399 0.1127754335	400
0.1127754335	0.0948681447	0.1306827223	0.112//54335 404	
401 0.0530844708	402 0.2312545636	403		405 0.0530844708
406	407	0.0113007969 408	409	410
0.0590535670		0.1238108307		
411	412	413	414	415

0.0292080857	0.4709212099	0.0530844708	0.0351771819	0.1247136260
416	417	418	419	420
0.1426209149	0.1238108307	0.1655945046	0.1417181195	0.1306827223
421	422	423	424	425
0.1247136260	0.1426209149	0.0939653493	0.1247136260	0.1596254083
426	427	428	429	430
0.1485900111	0.1485900111	0.1417181195	0.1068063372	0.1835017934
431	432	433	434	435
0.0465184626	0.1014341415	0.1626099564	0.1479334069	0.0491971272
436	437	438	439	440
0.0871083241	0.0441308264	0.0906897727	0.1094850019	0.0417431901
441	442	443	444	445
0.0853175884	0.1109847092	0.1602223088	0.0954650452	0.1312796228
446	447	448	449	450
0.2324483874	0.2043936303	0.0942712328	-0.0075689797	0.1074032377
451	452	453	454	455
0.1121785330	0.1056125134	0.1402332673	0.1835017934	0.1148571862
456	457	458	459	460
0.1360474735	0.2300607398	0.1358161488	0.0483091983	0.3169185078
461	462	463	464	465
0.2476770002	0.1152227621	0.2366267593	0.1163568822	0.1673852289
466	467	468	469	470
0.0614412033	0.0539723997	0.1217290779	0.1924554378	0.0542782946
471	472	473	474	475
0.0987406218	0.1840986939	0.1196324587	0.1321675632	-0.0627159975
476	477	478	479	480
0.1799203447	0.2993022702	0.1076942662	0.1015461043	0.0924805084
481	482	483	484	485
0.1644006808	0.1241167255	0.0832209805	0.1017251699	0.0136884331
486	487	488	489	490
0.1894708897	0.1536563120	0.1319884976	0.1485900111	0.0581507716
491	492	493	494	495
0.1426209149	0.1357490232	0.2202191664	0.1451802062	0.1849343865
496	497	498	499	500
0.0382214224	0.1316974578	0.1521640380	0.0462125791	0.1297799269
501	502	503	504	505
0.0103980015	0.0232389894	-0.0015401911	0.0103980015	0.0053317006
506	507	508	509	510
0.1238108307	0.1715636008	0.1655945046	0.0530844708	0.1187445298
511	512	513	514	515
0.1366518186	0.1775326971	0.1894708897	0.1655945046	0.1306827223
516	517	518	519	520
0.1476872157	0.1247136260	0.0351771819	0.0829299521	0.1655945046

521	522	523	524	525
0.1485900111	0.1596254083	0.1417181195	0.1485900111	0.0948681447
526	527	528	529	530
0.1426209149	0.1476872157	0.0709917596	0.1127754335	0.1426209149
531	532	533	534	535
0.0829299521	0.1596254083	0.0232389894	0.0769608559	0.1187445298
536	537	538	539	540
0.1536563120	0.0590535670	0.0709917596	0.1605282037	0.0650226633
541	542	543	544	545
0.1178417344	0.0650226633	0.1655945046	0.1127754335	0.1476872157
546	547	548	549	550
0.0948681447	0.0411462782	0.1247136260	0.1015535261	0.1604013972
551	552	553	554	555
0.1766447682	0.1142080266	0.1995586542	0.0346399624	0.0731928970
556	557	558	559	560
0.2259420715	0.1107459399	0.0928983434	0.1263849657	0.3452642933
561	562	563	564	565
0.1164762668	0.1273997239	0.0912866846	0.1798606410	0.1195801996
566	567	568	569	570
0.1097237598	0.0961216494	0.0418028825	0.1682806024	0.1584987100
571	572	573	574	575
0.0768414712	0.4367108464	0.1723992707	0.0807810738	0.1148646081
576	577	578	579	580
0.1112831594	0.2489827868	0.1272803393	0.1830316994	0.0129647147
581	582	583	584	585
0.0965394844	0.1257209396	0.1041799431	0.1525892947	0.0575612930
586	587	588	589	590
0.1173716404	0.1824944798	0.0327895457	0.0692010353	0.0650226633
591	592	593	594	595
0.0948681447	0.0999344456	0.2052964257	0.0948681447	0.1626099564
596	597	598	599	600
0.1357490232	0.1297799269	0.0641198679		-0.0483901659
601	602	603	604	605
0.1187445298	-0.0125755882	0.1068063372	0.1068063372	0.0948681447
606	607	608	609	610
0.0172698931	0.0948681447	0.3864510667		0.1297799269
611	612	613	614	615
-0.0125755882	0.0590535670	0.1605282037	0.1844045888	0.0530844708
616	617	618	619	620
0.0829299521	0.0650226633	0.1187445298	0.0524875589	0.0327895457
621	622	623	624	625
0.5962722317	0.1187445298	0.0697979358	0.0948681447	0.0757670321
626	627	628	629	630

0.1921644094	0.0900928722	0.1279892026	0.1560439596	0.1199383536
631	632	633	634	635
0.0739763077	0.0966588690	0.1450085625	0.0924805084	0.1226170068
636	637	638	639	640
0.1175507060	0.0769608559	0.1127754335	0.1068063372	0.1187445298
641	642	643	644	645
0.0650226633	0.1724663962	0.0948681447	0.1476872157	0.1784354925
646	647	648	649	650
0.1596254083	0.1596254083	0.1366518186	0.1784354925	0.1306827223
651	652	653	654	655
0.0650226633	0.1306827223	0.0351771819	0.1775326971	0.1247136260
656	657	658	659	660
0.1247136260	0.0709917596	0.0999344456	0.0590535670	0.0650226633
661	662	663	664	665
0.1775326971	0.1127754335	0.0530844708	0.1306827223	0.1247136260
666	667	668	669	670
0.1118726381	0.0471153745	0.1187445298	0.0879962530	0.1008372410
671	672	673	674	675
0.0709917596	0.1476872157	0.1715636008	0.0948681447	0.1118726381
676	677	678	679	680
0.0709917596	0.1366518186	0.1306827223	0.1306827223	0.1775326971
681	682	683	684	685
0.0829299521	0.1366518186	0.1068063372	0.0172698931	0.1068063372
686	687	688	689	690
0.1476872157	0.0888990484	0.0769608559	0.0232389894	0.1724663962
691	692	693	694	695
0.0948681447	0.0232389894	0.0650226633	0.0283052903	-0.0066064920
696	697	698	699	700
-0.0364519733	0.1306827223	0.0351771819	0.0351771819	-0.0185446845
701	702	703	704	705
-0.0075092874	0.1655945046	0.1655945046	0.0509952848	0.0345802700
706	707	708	709	710
0.0906897727	0.1288919980	0.0229331059	0.0942712328	0.1169538054
711	712	713	714	715
0.1763388733	0.0787515802	0.1312796228	0.0897869773	0.1220201063
716	717	718	719	720
0.0500999226	0.0799454040	0.1384425429	0.1008372410	0.0817361283
721	722	723	724	725
0.1444116392	0.1342641710	0.1787265209	0.1139692573	0.1333613870
726	727	728	729	730
0.1426805958	0.0650226633	0.1805172453	0.0304019095	0.0083162487
731	732	733	734	735
0.1295411576	0.0578597432	0.0626350271	0.0957560736	-0.0036219438

736	737	738	739	740
0.0829299521	0.1420240144	0.0983824792	0.1396363667	0.1655945046
741	742	743	744	745
0.1605282037	0.1366518186	0.1008372410	0.1127754335	0.1008372410
746	747	748	749	750
0.1605282037	0.1238108307	0.0709917596	0.1894708897	0.1247136260
751	752	753	754	755
0.1008372410	0.0709917596	0.1187445298	0.2193163710	0.0829299521
756	757	758	759	760
0.1775326971	0.1238108307	0.1008372410	0.0292080857	0.0888990484
761	762	763	764	765
0.0641198679	0.1655945046	0.1127754335	0.1715636008	0.1536563120
766	767	768	769	770
0.1008372410	0.1357490232	0.1571183988	0.1545591074	0.1775326971
771	772	773	774	775
0.1596254083	0.1476872157	0.0471153745	0.1183789540	0.1417181195
776	777	778	779	780
-0.0006373957	0.0530844708	0.1596254083	0.1775326971	0.1417181195
781	782	783	784	785
0.1596254083	0.1118726381	0.0530844708	0.0769608559	0.1125889347
786	787	788	789	790
0.1417181195	0.1357490232	0.1715636008	0.2969146226	0.1008372410
791	792	793	794	795
0.0462125791	0.1775326971	0.1068063372	0.1366518186	0.1724663962
796	797	798	799	800
0.2551309487	0.1605282037	0.1357490232	0.2252854673	0.0939653493
801 0.0351771819	802 0.0351771819	803 0.0581507716	804 0.3446673928	805 0.2560337441
806	807	808	809	810
0.1596254083	0.2611000449	0.1545591074	0.1485900111	0.1963427813
811	812	813	814	815
0.1784354925	0.0999344456	0.1835017934	0.1485900111	0.1059035418
816	817	818	819	820
0.1655945046		0.1655945046	0.1017251699	
821	822	823	824	825
		0.1178417344		
826	827	828	829	830
0.0411462782	0.0888990484	0.1187445298	0.1485900111	
831	832	833	834	835
0.1664973000	0.1247136260	0.1366518186	0.1306827223	
836	837	838	839	840
0.1068063372	0.1536563120	0.1187445298	0.2261882627	0.1127754335
841	842	843	844	845

0.1008372410	0.1127754335	0.0888990484	0.0530844708	0.1247136260
846	847	848	849	850
0.0650226633	0.0650226633	0.1187445298	0.0292080857	0.1297799269
851	852	853	854	855
0.1068063372	0.0769608559	0.1894708897	0.0829299521	0.1059035418
856	857	858	859	860
0.0709917596	0.1366518186	0.0351771819	0.0715886715	0.1127754335
861	862	863	864	865
0.1199383536	0.1565214755	0.1211321774	0.0089131606	0.1271012737
866	867	868	869	870
0.1181476293	0.1202293706	0.1513283681	0.0560690189	0.1364056274
871	872	873	874	875
0.0984495933	0.1465530957	0.1306827223	0.0960619685	0.0924805084
876	877	878	879	880
0.0850117049	0.0841760350	0.0838178811	0.0515847635	0.2026029060
881	882	883	884	885
0.0985689780	0.0942712328	0.2133472748	0.1318765461	0.0853175884
886	887	888	889	890
0.1536563120	0.1429119433	0.1300858218	0.2918483217	0.1411212076
891	892	893	894	895
0.1470977371	0.1651169659	0.0206125838	0.1273922907	0.1638037802
896	897	898	899	900
0.1667883284	0.1333613870	0.1148571862	0.0873470820	0.1441057671
901	902	903	904	905
0.0399524544	0.1276384932	0.1444116392	0.1748540439	0.0697979358
906	907	908	909	910
0.0753491971	0.0626350271	0.1500748634	0.0545693116	0.1026279653
911	912	913	914	915
0.1026279653	0.1318765461	0.0017502405	0.0945622612	0.1279892026
916	917	918	919	920
0.1435088438	0.0769608559	0.1074032377	0.1978276336	0.0626350271
921	922	923	924	925
0.1055453992	0.1962831004	0.0626350271	0.0357740938	0.1448294741
926	927	928	929	930
0.0292080857	0.1321675632	0.1829048929	0.1276981742	0.1435088438
931	932	933	934	935
0.0942712328	0.0841237759	0.1664301744	0.0829299521	0.0286111738
936	937	938	939	940
0.1900677902	0.1008372410	0.0853175884	-0.0089941282	0.1715636008
941	942	943	944	945
0.0471153745	0.0292080857	0.0590535670	0.1775326971	0.0590535670
946	947	948	949	950
0.0113007969	0.0471153745	0.1178417344	0.0530844708	0.2193163710

951	952	953	954	955
0.1297799269	0.1068063372	0.1297799269	0.1178417344	0.1306827223
956	957	958	959	960
0.1068063372	0.1127754335	0.1476872157	0.1417181195	0.0820271567
961	962	963	964	965
0.1297799269	0.0590535670	0.1536563120	0.1178417344	0.1476872157
966	967	968	969	970
0.1426209149	0.0590535670	0.0232389894	0.1536563120	0.1008372410
971	972	973	974	975
0.1127754335	0.1655945046	0.1417181195	0.0948681447	0.0351771819
976	977	978	979	980
0.0709917596	0.0709917596	0.1357490232	0.1247136260	0.0948681447
981	982	983	984	985
0.1366518186	0.1366518186	0.0581507716	0.1775326971	0.1775326971
986	987	988	989	990
0.1059035418	0.1655945046	0.1118726381	0.0471153745	0.0530844708
991	992	993	994	995
0.1178417344	0.1366518186		-0.0066064920	0.0411462782
996	997	998	999	1000
0.0232389894	0.0948681447	0.1127754335	0.2252854673	0.0292080857
1001	1002	1003	1004	1005
0.0888990484	0.1238108307	0.1357490232	0.1008372410	0.1008372410
1006	1007	1008	1009	1010
0.1605282037	0.1247136260	0.1536563120	0.2073781785	0.1655945046
1011	1012	1013	1014	1015
0.3694465733	0.1775326971	0.1247136260	0.1247136260	0.1545591074
1016	1017	1018	1019	1020
0.1008372410	0.1954399859	0.1306827223	0.1476872157	0.1835017934
1021	1022	1023	1024	1025
0.1118726381	0.3267601040	0.1605282037	0.1476872157	0.1775326971
1026	1027	1028	1029	1030
0.1247136260	0.0760580605	0.0760580605	0.0411462782	0.2909455263
1031	1032	1033	1034	1035
0.1118726381	0.1008372410	0.1844045888	0.1417181195	0.0769608559
1036	1037	1038	1039	1040 0.1187445298
0.1844045888 1041	0.2202191664	0.0888990484	0.1366518186 1044	1045
0.2014090822	0.1187445298 1047	0.1596254083 1048	0.1059035418 1049	0.0351771819 1050
-0.0125755882	0.0948681447	0.1178417344	0.1715636008	0.0709917596
1051	1052	1053	1054	1055
0.1238108307	0.0650226633	0.0999344456	0.0590535670	0.0829299521
1056	1057	1058	1059	1060
1096	1057	1000	1059	1000

0.2023118776	0.1306827223	0.1426209149	0.1068063372	0.0948681447
1061	1062	1063	1064	1065
0.0590535670	0.0232389894	0.0769608559	0.1417181195	0.1835017934
1066	1067	1068	1069	1070
0.0641198679	0.1247136260	0.1485900111	0.1775326971	0.1008372410
1071	1072	1073	1074	1075
0.1590285078	0.1330703699	0.0888990484	0.1118726381	0.1402332673
1076	1077	1078	1079	1080
0.0590535670	0.1241167255	0.0888990484	0.1145661578	0.0686041234
1081	1082	1083	1084	1085
0.0888990484	0.1775326971	0.1247136260	0.1187445298	0.1127754335
1086	1087	1088	1089	1090
0.1655945046	0.1402332673	0.1655945046	0.1187445298	0.1118726381
1091	1092	1093	1094	1095
0.0888990484	0.1068063372	0.0769608559	0.1545591074	1.6945859460
1096	1097	1098	1099	1100
0.1476872157	0.1417181195	0.0829299521	0.0769608559	0.0709917596
1101	1102	1103	1104	1105
0.1247136260	0.1247136260	0.0641198679	0.1187445298	0.4461420294
1106	1107	1108	1109	1110
0.1238108307	0.1715636008	0.0292080857	0.0760580605	0.1238108307
1111	1112	1113	1114	1115
0.0760580605	0.2014090822	0.0351771819	0.0650226633	0.2073781785
1116	1117	1118	1119	1120
0.1247136260	0.1238108307	0.0053317006	0.1536563120	-0.0006373957
1121	1122	1123	1124	1125
-0.0185446845	0.0888990484	0.0411462782	0.0700889642	0.0292080857
1126	1127	1128	1129	1130
0.0471153745	0.0351771819	0.0999344456	0.1536563120	0.1426209149
1131	1132	1133	1134	1135
0.0769608559	0.0769608559	-0.0125755882	0.1485900111	0.1715636008
1136	1137	1138	1139	1140
0.2073781785	0.0590535670	0.0879962530	0.0333864576	0.1715636008
1141	1142	1143	1144	1145
0.1020310648	0.1297799269	0.1253105266	0.1127754335	0.0521816754
1146	1147	1148	1149	1150
0.0601280062	0.0345802700	0.1115816097	0.1187445298	0.1605282037
1151	1152	1153	1154	1155
0.0650226633	0.1187445298	0.0650226633	0.1357490232	0.1127754335
1156	1157	1158	1159	1160
0.1655945046	0.0590535670	0.1187445298	0.0948681447	0.0709917596
1161	1162	1163	1164	1165
0.1536563120	0.0999344456	0.1127754335	0.0223361940	0.1008372410

1166	1167	1168	1169	1170
0.0590535670	0.0700889642	0.1357490232	0.0700889642	0.1247136260
1171	1172	1173	1174	1175
0.1357490232	0.1775326971	0.0769608559	0.1127754335	0.1894708897
1176	1177	1178	1179	1180
0.1068063372	0.1008372410	0.0888990484	0.1954399859	0.0471153745
1181	1182	1183	1184	1185
0.0939653493	0.1306827223	0.1476872157	0.0948681447	0.1247136260
1186	1187	1188	1189	1190
0.1306827223	0.1357490232	0.1357490232	0.1127754335	0.0888990484
1191	1192	1193	1194	1195
0.0939653493	0.1127754335	0.1715636008	0.0829299521	0.1357490232
1196	1197	1198	1199	1200
0.0053317006	0.1247136260	0.0471153745	0.1596254083	0.1596254083
1201	1202	1203	1204	1205
0.1417181195	0.1008372410	0.1127754335	0.1835017934	0.1178417344
1206	1207	1208	1209	1210
0.1426209149	0.2312545636	0.1775326971	0.1835017934	0.0948681447
1211	1212	1213	1214	1215
0.1247136260	0.1963427813	0.0053317006	0.1008372410	0.1008372410
1216	1217	1218	1219	1220
0.1118726381	0.1417181195	0.1127754335	0.1008372410	0.0769608559
1221	1222	1223	1224	1225
0.1417181195	0.1715636008	0.1059035418	0.1596254083	0.0590535670
1226	1227	1228	1229	1230
0.0888990484	0.1596254083	0.2790073338	0.0888990484	0.0471153745
1231	1232	1233	1234	1235
0.1536563120	0.0829299521	0.1008372410	0.1715636008	0.0530844708
1236	1237	1238	1239	1240
0.0769608559	0.1417181195	0.1187445298	0.0939653493	-0.0364519733
1241	1242	1243	1244	1245
0.1068063372	0.2073781785	0.1835017934	0.1357490232	0.1715636008
1246	1247	1248	1249	1250
0.0888990484	0.1715636008	0.0471153745	0.1247136260	0.1596254083
1251	1252	1253	1254	1255
0.0769608559	0.0769608559	-0.0543592622	0.1187445298	0.0530844708
1256	1257	1258	1259	1260
0.0292080857	-0.0185446845	0.1536563120	0.1366518186	0.1297799269
1261	1262	1263	1264	1265
0.0769608559	0.0053317006	0.1247136260	0.1664973000	0.1247136260
1266	1267	1268	1269	1270
0.0530844708		0.3983892592	0.0551662235	0.0113007969
1271	1272	1273	1274	1275

0 1107754335	0 1154540001	0 1170/172//	0 1000270410	0 0501507716
0.1127754335 1276	0.1154540981 1277	0.1178417344 1278	0.1008372410 1279	0.0581507716 1280
0.2372236599	0.0172698931	0.1894708897	0.2321573590	0.1835017934
1281	1282	1283	1284	1285
0.3169185078	0.1462023635	0.1966338097	0.0829299521	0.1115816097
1286	1287	1288	1289	1290
0.1447026676	0.1181476293	0.0829299521	0.0632319390	0.1476872157
1291	1292	1293	1294	1295
0.0859145003	0.1417181195	0.1247136260	0.0495030107	0.0972557923
1296	1297	1298	1299	1300
0.1127754335	0.1306827223	0.0939653493	0.0900928722	0.0948681447
1301	1302	1303	1304	1305
0.1655945046	0.0089131606	0.1357490232	0.0650226633	0.1297799269
1306	1307	1308	1309	1310
0.1485900111	0.0172698931	0.0232389894	0.1894708897	0.1417181195
1311	1312	1313	1314	1315
0.1127754335	0.1715636008	0.1127754335	0.1008372410	-0.0066064920
1316	1317	1318	1319	1320
0.1068063372	0.1118726381	0.1068063372	0.0829299521	0.1417181195
1321	1322	1323	1324	1325
0.6679013869	0.1178417344	0.0471153745	0.0939653493	0.1306827223
1326	1327	1328	1329	1330
0.0948681447	0.1596254083	0.0999344456	0.2133472748	-0.0245137808
1331	1332	1333	1334	1335
0.0760580605	0.0471153745	0.1187445298	0.1417181195	0.1545591074
1336	1337	1338	1339	1340
0.1715636008	0.1476872157	0.0650226633	0.1297799269	0.2372236599
1341	1342	1343	1344	1345
0.0172698931	0.0172698931	0.0888990484	0.1187445298	0.0292080857
1346	1347	1348	1349	1350
0.1008372410	0.1655945046	0.1715636008	0.1127754335	0.2014090822
1351	1352	1353	1354	1355
0.1068063372	0.0471153745	0.1775326971	0.1306827223	0.0113007969
1356	1357	1358	1359	1360
0.1068063372	0.1476872157	0.0530844708	0.1306827223	0.1127754335
1361	1362	1363	1364	1365
0.1775326971	0.1715636008	0.1306827223	0.1187445298	0.1068063372
1366	1367	1368	1369	1370
0.1187445298	0.0411462782	0.1297799269	0.0769608559	0.1366518186
1371	1372	1373	1374	1375
0.1187445298	0.1178417344	0.1306827223	0.0590535670	0.1664973000
1376	1377	1378	1379	1380
0.1068063372	0.1068063372	0.1306827223	0.1306827223	0.1596254083

1381	1382	1383	1384	1385
-0.0006373957	0.0888990484	0.1187445298	0.1357490232	0.2193163710
1386	1387	1388	1389	1390
0.1835017934	0.0700889642	0.0471153745	0.1724663962	0.3148219114
1391	1392	1393	1394	1395
0.1118726381	0.2321573590	0.1417181195	0.0521816754	0.1844045888
1396	1397	1398	1399	1400
-0.0125755882	0.1775326971	0.0888990484	0.2202191664	0.1059035418
1401	1402	1403	1404	1405
0.0232389894	0.1476872157	0.0700889642	0.2142500702	0.1476872157
1406	1407	1408	1409	1410
0.0641198679	0.0793484921	0.1256015550	0.1518655877	0.0238359013
1411	1412	1413	1414	1415
0.1082911781	0.1176626574	0.2133472748	0.0634110046	0.1954399859
1416	1417	1418	1419	1420
0.0736181651	0.1297799269	0.1118726381	0.1492988745	0.0872873897
1421	1422	1423	1424	1425
0.1223856821	0.2128100552	0.0223361940	0.1187445298	0.1485900111
1426	1427	1428	1429	1430
0.1476872157	0.1306827223	0.1417181195	0.1417181195	0.1685790527
1431	1432	1433	1434	1435
0.0709917596	0.1127754335	0.0417431901	0.0888990484	-0.0280952408
1436	1437	1438	1439	1440
0.0829299521	0.1220201063	0.1605282037	0.1127754335	0.1476872157
1441	1442	1443	1444	1445
0.1545591074	0.2491618524	0.1894708897	0.1775326971	0.1476872157
1446	1447	1448	1449	1450
0.0820271567	0.1306827223	0.1306827223	0.1306827223	0.1775326971
1451	1452	1453	1454	1455
0.1306827223	0.1306827223	0.1306827223	0.1306827223	0.1306827223
1456	1457	1458	1459	1460
0.0411462782	0.0590535670	-0.0066064920	0.0053317006	0.0709917596
1461	1462	1463	1464	1465
0.1297799269	0.1297799269	0.0521816754	0.1775326971	0.1247136260
1466	1467	1468	1469	1470
0.1596254083	0.2482739235	0.1715636008	0.1229229017	0.1945520570
1471	1472	1473	1474	1475
0.1420240144	0.1199383536	0.1545591074	0.1611251042	0.1187445298
1476	1477	1478	1479	1480
0.1715636008	0.1536563120	0.1297799269	0.1775326971	0.1306827223
1481	1482	1483	1484	1485
0.1417181195	0.0530844708	0.1118726381	0.1894708897	0.1187445298
1486	1487	1488	1489	1490

0 0040004445				
0.0948681447	0.1775326971	0.0650226633	0.0829299521	0.1476872157
1491 0.0709917596	1492 0.0769608559	1493 0.0948681447	1494 0.0888990484	1495 0.1835017934
1496	1497	1498	1499	1500
0.0951069140	0.1228631980	0.1485303302	0.0590535670	0.1835017934
1501	1502	1503	1504	1505
0.0140988405	0.0948681447	0.1187445298	0.1306827223	0.0709917596
1506	1507	1508	1509	1510
0.1306827223	0.1357490232		-0.0006373957	0.1476872157
1511	1512	1513	1514	1515
0.1835017934	0.0590535670	0.1187445298	0.1068063372	0.1187445298
1516	1517	1518	1519	1520
0.1476872157	0.1187445298	0.1247136260	0.0351771819	0.1068063372
1521	1522	1523	1524	1525
0.1068063372	0.1426209149	-0.0364519733	0.1894708897	0.0709917596
1526	1527	1528	1529	1530
0.1187445298	0.1835017934	0.0820271567	0.1655945046	0.1068063372
1531	1532	1533	1534	1535
0.1417181195	0.1366518186	0.1357490232	0.1247136260	0.1545591074
1536	1537	1538	1539	1540
0.0650226633	0.1715636008	0.1417181195	0.1238108307	0.1247136260
1541	1542	1543	1544	1545
0.1655945046	0.1187445298	0.1008372410	0.1238108307	0.0590535670
1546	1547	1548	1549	1550
0.0769608559	0.0948681447	0.0292080857	0.1417181195	0.0769608559
1551	1552	1553	1554	1555
0.1655945046	0.1187445298	0.0820271567	0.0530844708	0.1596254083
1556	1557	1558	1559	1560
0.1059035418	0.1476872157	0.0888990484	0.1068063372	0.0829299521
1561	1562	1563	1564	1565
0.1008372410	0.1366518186	0.1655945046	0.0709917596	0.1059035418
1566	1567	1568	1569	1570
0.1596254083	0.0769608559	0.1068063372	0.0829299521	0.0999344456
1571	1572	1573	1574	1575
0.0709917596	0.1655945046	0.1596254083		0.0590535670
1576	1577	1578	1579	1580
0.0650226633	0.0948681447	0.1357490232	0.1306827223	0.0650226633
1581	1582	1583	1584	1585
0.0650226633	0.0879962530	0.1008372410	0.1297799269	0.1247136260
1586	1587	1588	1589	1590
0.1596254083	0.0829299521	0.3625746816	0.0471153745	0.0530844708
1591	1592	1593	1594	1595
0.1118726381	0.1238108307		0.1008372410	0.2491618524

1596	1597	1598	1599	1600
0.2014090822	0.0948681447	0.1664973000	0.1775326971	0.1536563120
1601	1602	1603	1604	1605
0.0829299521	0.1835017934	0.0709917596	0.1417181195	0.1485900111
1606	1607	1608	1609	1610
0.1844045888	0.1596254083	0.0948681447	0.0769608559	0.1417181195
1611	1612	1613	1614	1615
0.0999344456	0.1068063372	0.1655945046	0.1476872157	0.0999344456
1616	1617	1618	1619	1620
0.0999344456	0.0650226633	0.0999344456	0.0411462782	0.0641198679
1621	1622	1623	1624	1625
0.0530844708	0.1059035418	0.0113007969	0.1068063372	0.1655945046
1626	1627	1628	1629	1630
0.1059035418	0.1775326971	0.1426209149	0.1297799269	0.0351771819
1631	1632	1633	1634	1635
0.0172698931	0.1835017934	0.1118726381	0.1655945046	0.0650226633
1636	1637	1638	1639	1640
0.1476872157	0.1417181195	0.1426209149	0.1187445298	0.0888990484
1641	1642	1643	1644	1645
-0.0364519733	0.1118726381	0.1118726381	0.1715636008	0.1366518186
1646	1647	1648	1649	1650
0.0948681447	0.1306827223	0.1247136260	0.1536563120	0.1366518186
1651	1652	1653	1654	1655
0.0888990484	0.1127754335	0.0829299521	0.1118726381	0.0530844708
1656	1657	1658	1659	1660
0.1247136260	0.1068063372	0.1187445298	0.1476872157	0.1306827223
1661	1662	1663	1664	1665
0.1357490232	0.1297799269	0.1178417344	0.0888990484	0.0888990484
1666	1667	1668	1669	1670
0.1775326971	0.1068063372	0.1118726381	0.1178417344	0.0939653493
1671	1672	1673	1674	1675
0.1178417344	0.1357490232	0.0760580605	0.1536563120	0.0700889642
1676	1677	1678	1679	1680
0.1417181195	0.1426209149	0.1178417344	0.0888990484	0.0888990484
1681	1682	1683	1684	1685
0.1596254083	0.1247136260	0.0948681447	0.1068063372	0.1068063372
1686	1687	1688	1689	1690
0.1008372410	0.0351771819	0.1715636008	0.1963427813	0.1655945046
1691	1692	1693	1694	1695
0.1187445298	0.1536563120	0.1476872157	0.1178417344	0.1476872157
1696	1697	1698	1699	1700
0.1476872157	0.1187445298	0.1127754335	0.1715636008	0.0948681447
1701	1702	1703	1704	1705

1706 1707 1708 1709 1710 0.1596254083 0.0769608559 0.0769608559 0.0709917596 0.1008372410 1711 1712 1713 1714 1715 0.2073781785 0.0888990484 0.1059035418 0.1068063372 0.1963427813 1716 1717 1718 1719 1720 0.1297799269 0.1476872157 0.1357490232 0.2193163710 0.0411462782 1721 1722 1723 1724 1725 -0.0304828771 0.151563608 0.0939653493 0.0172698931 0.15059035418 1726 1727 1728 1729 1730 0.1008372410 0.0650226633 0.0709917596 0.1247136260 0.0709917596 1731 1732 1733 1734 1735 0.1476872157 0.1844045888 0.2909455263 0.1655945046 0.1596254083 1741 1742 1743 1744 1745 0.0700889642 -0.0304828771 0.1247136260 0.0462125791 </th <th>0.1238108307</th> <th>0.0650226633</th> <th>0.1366518186</th> <th>0.2014090822</th> <th>0.1357490232</th>	0.1238108307	0.0650226633	0.1366518186	0.2014090822	0.1357490232
17111 17112 17113 17114 17115 0.20737817855 0.0888990484 0.1059035418 0.1068063372 0.1963427813 1716 1717 1718 1719 1720 0.1297799269 0.1476872157 0.1357490232 0.2193163710 0.0411462782 1721 1722 1723 1724 1725 -0.0304828771 0.1715636008 0.0939653493 0.0172698931 0.159035418 1726 1727 1728 1729 1730 0.1008372410 0.0650226633 0.0709917596 0.1247136260 0.0709917596 1731 1732 1733 1734 1735 0.2014090822 0.1366518186 0.0590535670 0.1008372410 0.118745298 1736 1737 1738 1739 1740 0.1476872157 0.1844045888 0.2909455263 0.1655945046 0.1596254083 1741 1742 1743 1744 1745 0.127754335 0.1417181195 0.1008372410 0.018546864<	1706	1707	1708	1709	1710
0.207378178155 0.0888990484 0.1059035418 0.1068063372 0.1963427813 1716 1717 1718 1719 1720 0.1297799269 0.1476872157 0.1357490232 0.2193163710 0.0411462782 -0.0304828771 0.1715636008 0.0939653493 0.0172698931 0.1059035418 1726 1727 1728 1729 1730 0.1008372410 0.0650226633 0.0709917596 0.1247136260 0.0709917596 1731 1732 1733 1734 1735 0.2014090822 0.1366518186 0.059053670 0.1008372410 0.118744528 0.1476872157 0.1844045888 0.2909455263 0.1655945046 0.1596254083 1741 1742 1743 1744 1745 0.0700889642 -0.0304828771 0.1247136260 0.0462125791 0.1297799269 1746 1747 1748 1749 175 0.12775335 0.1417181195 0.1008372410 -0.0185446845 0.0888990484 1751 1752	0.1596254083	0.0769608559	0.0769608559	0.0709917596	0.1008372410
1716 1717 1718 1719 1720 0.1297799269 0.1476872157 0.1357490232 0.2193163710 0.0411462782 1721 1722 1723 1724 1725 -0.0304828771 0.1715636008 0.0939653493 0.0172698931 0.1059035418 1726 1727 1728 1729 1730 0.1008372410 0.0650226633 0.0709917596 0.1247136260 0.0709917596 1731 1732 1733 1734 1735 0.2014090822 0.1366518186 0.0590535670 0.1008372410 0.1187445298 1736 1737 1738 1739 1740 0.1476872157 0.1844045888 0.2909455263 0.1655945046 0.1596254083 1741 1742 1743 1744 1745 0.0700889642 -0.0304828771 0.1247136260 0.0462125791 0.1297799269 0.1127754335 0.1417181195 0.1008372410 -0.0185446845 0.0888990484 1751 1752 1753 <	1711	1712	1713	1714	1715
0.1297799269 0.1476872157 0.1357490232 0.2193163710 0.0411462782 1721 1722 1723 1724 1725 -0.0304828771 0.1715636008 0.0939653493 0.0172698931 0.1059035418 1726 1727 1728 1729 1730 0.1008372410 0.0650226633 0.0709917596 0.1247136260 0.0709917596 1731 1732 1733 1734 1735 0.2014090822 0.1366518186 0.0590535670 0.1008372410 0.1187445298 1736 1737 1738 1739 1740 0.1476872157 0.1844045888 0.2909455263 0.1655945046 0.1596254083 1741 1742 1743 1744 1745 0.0700889642 -0.0304828771 0.1247136260 0.0462125791 0.1297799269 1746 1747 1748 1759 0.1536563120 0.1247136260 0.1357490232 0.1357490232 0.1536563120 1756 1757 1758 1759 <t< td=""><td>0.2073781785</td><td>0.0888990484</td><td>0.1059035418</td><td>0.1068063372</td><td>0.1963427813</td></t<>	0.2073781785	0.0888990484	0.1059035418	0.1068063372	0.1963427813
1721 1722 1723 1724 1725 -0.0304828771 0.1715636008 0.0939653493 0.0172698931 0.1059035418 1726 1727 1728 1729 1730 0.1008372410 0.0650226633 0.0709917596 0.1247136260 0.0709917596 1731 1732 1733 1734 1735 0.2014090822 0.1366518186 0.0590535670 0.1008372410 0.1187445298 1736 1737 1738 1739 1740 0.1476872157 0.1844045888 0.2909455263 0.1655945046 0.1596254083 1741 1742 1743 1744 1745 0.0700889642 -0.0304828771 0.1247136260 0.0462125791 0.1297799269 1746 1747 1748 1749 1750 0.1127754335 0.1417181195 0.1008372410 -0.01854645 0.0888990484 1751 1752 1753 1754 1755 0.0650226633 0.2849764300 0.1357490232 0.1357490232 <td>1716</td> <td>1717</td> <td>1718</td> <td>1719</td> <td>1720</td>	1716	1717	1718	1719	1720
-0.0304828771 0.1715636008 0.0939653493 0.0172698931 0.1059035418 1726 1727 1728 1729 1730 0.1008372410 0.0650226633 0.0709917596 0.1247136260 0.0709917596 1731 1732 1733 1734 1735 0.2014090822 0.1366518186 0.0590535670 0.1008372410 0.1187445298 1736 1737 1738 1739 1740 0.1476872157 0.1844045888 0.2909455263 0.1655945046 0.1596254083 1741 1742 1743 1744 1745 0.0700889642 -0.0304828771 0.1247136260 0.0462125791 0.1297799269 1746 1747 1748 1749 1750 0.1127754335 0.1417181195 0.1008372410 -0.0185446845 0.0888990484 1751 1752 1753 1754 1755 0.0650226633 0.2849764300 0.1357490232 0.1417181195 0.1476872157 0.07099175596 0.1247136260 0.	0.1297799269	0.1476872157	0.1357490232	0.2193163710	0.0411462782
1726 1727 1728 1729 1730 0.1008372410 0.0650226633 0.0709917596 0.1247136260 0.0709917596 1731 1732 1733 1734 1735 0.2014090822 0.1366518186 0.0590535670 0.1008372410 0.1187445298 1736 1737 1738 1739 1740 0.1476872157 0.1844045888 0.2909455263 0.1655945046 0.1596254083 1741 1742 1743 1744 1745 0.0700889642 -0.0304828771 0.1247136260 0.0462125791 0.1297799269 1746 1747 1748 1749 1750 0.1127754335 0.1417181195 0.1008372410 -0.0185446845 0.0888990484 1751 1752 1753 1754 1755 0.0650226633 0.2849764300 0.1357490232 0.1357490232 0.1536563120 0.7070917596 0.1247136260 0.1357490232 0.1417181195 0.1476872157 0.0530844708 0.159654567 0.094	1721	1722	1723	1724	1725
0.1008372410 0.0650226633 0.0709917596 0.1247136260 0.0709917596 1731 1732 1733 1734 1735 0.2014090822 0.1366518186 0.0590535670 0.1008372410 0.1187445298 1736 1737 1738 1739 1740 0.1476872157 0.1844045888 0.2909455263 0.1655945046 0.1596254083 1741 1742 1743 1744 1745 0.0700889642 -0.0304828771 0.1247136260 0.0462125791 0.1297799269 1746 1747 1748 1749 1750 0.1127754335 0.1417181195 0.1008372410 -0.0185446845 0.0888990484 1751 1752 1753 1754 1755 0.0650226633 0.2849764300 0.1357490232 0.1357490232 0.1536563120 0.70709917596 0.1247136260 0.1357490232 0.14176872157 1766 0.0530844708 0.1844045888 0.0590535670 0.0948681447 0.1835017934 1766 1767 <td>-0.0304828771</td> <td>0.1715636008</td> <td>0.0939653493</td> <td></td> <td>0.1059035418</td>	-0.0304828771	0.1715636008	0.0939653493		0.1059035418
1731 1732 1733 1734 1735 0.2014090822 0.1366518186 0.0590535670 0.1008372410 0.1187445298 1736 1737 1738 1739 1740 0.1476872157 0.1844045888 0.2909455263 0.1655945046 0.1596254083 1741 1742 1743 1744 1745 0.0700889642 -0.0304828771 0.1247136260 0.0462125791 0.1297799269 1746 1747 1748 1749 1750 0.1127754335 0.1417181195 0.1008372410 -0.0185446845 0.0888990484 1751 1752 1753 1754 1755 0.0650226633 0.2849764300 0.1357490232 0.1357490232 0.1536563120 0.709917596 0.1247136260 0.1357490232 0.141781195 0.1476872157 1761 1762 1763 1764 1765 0.0530844708 0.1844045888 0.0590535670 0.0948681447 0.1835017934 1776 1778 1778		1727	1728	1729	1730
0.2014090822 0.1366518186 0.0590535670 0.1008372410 0.1187445298 1736 1737 1738 1739 1740 0.1476872157 0.1844045888 0.2909455263 0.1655945046 0.1596254083 1741 1742 1743 1744 1745 0.0700889642 -0.0304828771 0.1247136260 0.0462125791 0.1297799269 1746 1747 1748 1749 1750 0.1127754335 0.1417181195 0.1008372410 -0.0185446845 0.0888990484 1751 1752 1753 1754 1755 0.0650226633 0.2849764300 0.1357490232 0.1357490232 0.1536563120 1756 1757 1758 1759 1760 0.0709917596 0.1247136260 0.1357490232 0.1417181195 0.1476872157 0.0530844708 0.1844045888 0.0590535670 0.0948681447 0.1835017934 1766 1767 1768 1769 1770 0.14578545046 0.0530844708 -0.	0.1008372410	0.0650226633	0.0709917596		
1736 1737 1738 1739 1740 0.1476872157 0.1844045888 0.2909455263 0.1655945046 0.1596254083 1741 1742 1743 1744 1745 0.0700889642 -0.0304828771 0.1247136260 0.0462125791 0.1297799269 1746 1747 1748 1749 1750 0.1127754335 0.1417181195 0.1008372410 -0.0185446845 0.0888990484 1751 1752 1753 1754 1755 0.0650226633 0.2849764300 0.1357490232 0.1357490232 0.1536563120 1756 1757 1758 1759 1760 0.0709917596 0.1247136260 0.1357490232 0.1417181195 0.1476872157 1761 1762 1763 1764 1765 0.0530844708 0.0590535670 0.0948681447 0.1835017934 1776 1767 1768 1769 1770 0.1455945046 0.0471153745 0.1655945046 0.1366518186 0.1596254083 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
0.1476872157 0.1844045888 0.2909455263 0.1655945046 0.1596254083 1741 1742 1743 1744 1745 0.0700889642 -0.0304828771 0.1247136260 0.0462125791 0.1297799269 1746 1747 1748 1749 1750 0.1127754335 0.1417181195 0.1008372410 -0.0185446845 0.0888990484 1751 1752 1753 1754 1755 0.0650226633 0.2849764300 0.1357490232 0.1357490232 0.1536563120 1756 1757 1758 1759 1760 0.0709917596 0.1247136260 0.1357490232 0.1417181195 0.1476872157 1761 1762 1763 1764 1765 0.0530844708 0.0590535670 0.0948681447 0.1835017934 1776 1761 1772 1773 1774 1775 0.1655945046 0.0471153745 0.1655945046 0.1366518186 0.1596254083 1776 1777 1778 1779 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
1741 1742 1743 1744 1745 0.0700889642 -0.0304828771 0.1247136260 0.0462125791 0.1297799269 1746 1747 1748 1749 1750 0.1127754335 0.1417181195 0.1008372410 -0.0185446845 0.0888990484 1751 1752 1753 1754 1755 0.0650226633 0.2849764300 0.1357490232 0.1357490232 0.1536563120 1756 1757 1758 1759 1760 0.0709917596 0.1247136260 0.1357490232 0.1417181195 0.1476872157 1761 1762 1763 1764 1765 0.0530844708 0.1844045888 0.0590535670 0.0948681447 0.1835017934 1766 1767 1768 1769 1770 0.1417181195 0.0530844708 -0.0304828771 0.1118726381 0.1357490232 1771 1772 1773 1774 1775 0.1655945046 0.0471153745 0.1655945046 0.1366518186 0.1596254083 1776 1777 1778 1794 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
0.0700889642 -0.0304828771 0.1247136260 0.0462125791 0.1297799269 1746 1747 1748 1749 1750 0.1127754335 0.1417181195 0.1008372410 -0.0185446845 0.0888990484 1751 1752 1753 1754 1755 0.0650226633 0.2849764300 0.1357490232 0.1357490232 0.1536563120 1756 1757 1758 1759 1760 0.0709917596 0.1247136260 0.1357490232 0.1417181195 0.1476872157 1761 1762 1763 1764 1765 0.0530844708 0.0590535670 0.0948681447 0.1835017934 1766 1767 1768 1769 1770 0.1417181195 0.0530844708 -0.0304828771 0.1118726381 0.1357490232 1771 1772 1773 1774 1775 0.1655945046 0.0471153745 0.1655945046 0.1366518186 0.1596254083 1776 1777 1778 1794 1795<					
1746 1747 1748 1749 1750 0.1127754335 0.1417181195 0.1008372410 -0.0185446845 0.0888990484 1751 1752 1753 1754 1755 0.0650226633 0.2849764300 0.1357490232 0.1357490232 0.1536563120 1756 1757 1758 1759 1760 0.0709917596 0.1247136260 0.1357490232 0.1417181195 0.1476872157 1761 1762 1763 1764 1765 0.0530844708 0.1844045888 0.0590535670 0.0948681447 0.1835017934 1766 1767 1768 1769 1770 0.1417181195 0.0530844708 -0.0304828771 0.1118726381 0.1357490232 1771 1772 1773 1774 1775 0.1655945046 0.0471153745 0.1655945046 0.1366518186 0.1596254083 1776 1777 1778 1779 1780 0.1297799269 0.1596254083 0.0879962530 0.0879962530 0.1187445298 1786 1787 1788 1789 <td></td> <td></td> <td></td> <td></td> <td></td>					
0.1127754335 0.1417181195 0.1008372410 -0.0185446845 0.0888990484 1751 1752 1753 1754 1755 0.0650226633 0.2849764300 0.1357490232 0.1357490232 0.1536563120 1756 1757 1758 1759 1760 0.0709917596 0.1247136260 0.1357490232 0.1417181195 0.1476872157 1761 1762 1763 1764 1765 0.0530844708 0.1844045888 0.0590535670 0.0948681447 0.1835017934 1766 1767 1768 1769 1770 0.1417181195 0.0530844708 -0.0304828771 0.1118726381 0.1357490232 1771 1772 1773 1774 1775 0.1655945046 0.0471153745 0.1655945046 0.1366518186 0.1596254083 1776 1777 1778 1779 1780 0.1476872157 0.1536563120 0.2551309487 0.0829299521 0.0471153745 0.1297799269 0.1596254083 0.0879962530 0.0879962530 0.1187445298 1786 1787 <td></td> <td></td> <td></td> <td></td> <td></td>					
1751 1752 1753 1754 1755 0.0650226633 0.2849764300 0.1357490232 0.1357490232 0.1536563120 1756 1757 1758 1759 1760 0.0709917596 0.1247136260 0.1357490232 0.1417181195 0.1476872157 1761 1762 1763 1764 1765 0.0530844708 0.1844045888 0.0590535670 0.0948681447 0.1835017934 1766 1767 1768 1769 1770 0.1417181195 0.0530844708 -0.0304828771 0.1118726381 0.1357490232 1771 1772 1773 1774 1775 0.1655945046 0.0471153745 0.1655945046 0.1366518186 0.1596254083 1776 1777 1778 1779 1780 0.1476872157 0.1536563120 0.2551309487 0.0829299521 0.0471153745 0.1297799269 0.1596254083 0.0879962530 0.0879962530 0.1187445298 1786 1787 1788 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
0.0650226633 0.2849764300 0.1357490232 0.1357490232 0.1536563120 1756 1757 1758 1759 1760 0.0709917596 0.1247136260 0.1357490232 0.1417181195 0.1476872157 1761 1762 1763 1764 1765 0.0530844708 0.1844045888 0.0590535670 0.0948681447 0.1835017934 1766 1767 1768 1769 1770 0.1417181195 0.0530844708 -0.0304828771 0.1118726381 0.1357490232 1771 1772 1773 1774 1775 0.1655945046 0.0471153745 0.1655945046 0.1366518186 0.1596254083 1776 1777 1778 1779 1780 0.1476872157 0.1536563120 0.2551309487 0.0829299521 0.0471153745 0.1297799269 0.1596254083 0.0879962530 0.0879962530 0.1187445298 1786 1787 1788 1789 1790 0.0709917596 0.1476872157 0.0888990484 -0.0254165762 0.1127754335 1791 1792 <td></td> <td></td> <td></td> <td></td> <td></td>					
175617571758175917600.07099175960.12471362600.13574902320.14171811950.1476872157176117621763176417650.05308447080.18440458880.05905356700.09486814470.1835017934176617671768176917700.14171811950.0530844708-0.03048287710.11187263810.1357490232177117721773177417750.16559450460.04711537450.16559450460.13665181860.1596254083177617771778177917800.14768721570.15365631200.25513094870.08292995210.0471153745178117821783178417850.12977992690.15962540830.08799625300.08799625300.1187445298178617871788178917900.07099175960.14768721570.0888990484-0.02541657620.1127754335179117921793179417950.08202715670.05905356700.07696085590.13574902320.141718119517961797179817990.1417181195					
0.07099175960.12471362600.13574902320.14171811950.1476872157176117621763176417650.05308447080.18440458880.05905356700.09486814470.1835017934176617671768176917700.14171811950.0530844708-0.03048287710.11187263810.1357490232177117721773177417750.16559450460.04711537450.16559450460.13665181860.1596254083177617771778177917800.14768721570.15365631200.25513094870.08292995210.0471153745178117821783178417850.12977992690.15962540830.08799625300.08799625300.1187445298178617871788178917900.07099175960.14768721570.0888990484-0.02541657620.1127754335179117921793179417950.08202715670.05905356700.07696085590.13574902320.141718119517961797179817991800					
176117621763176417650.05308447080.18440458880.05905356700.09486814470.1835017934176617671768176917700.14171811950.0530844708-0.03048287710.11187263810.1357490232177117721773177417750.16559450460.04711537450.16559450460.13665181860.1596254083177617771778177917800.14768721570.15365631200.25513094870.08292995210.0471153745178117821783178417850.12977992690.15962540830.08799625300.08799625300.1187445298178617871788178917900.07099175960.14768721570.0888990484-0.02541657620.1127754335179117921793179417950.08202715670.05905356700.07696085590.13574902320.141718119517961797179817991800					
0.0530844708 0.1844045888 0.0590535670 0.0948681447 0.1835017934 1766 1767 1768 1769 1770 0.1417181195 0.0530844708 -0.0304828771 0.1118726381 0.1357490232 1771 1772 1773 1774 1775 0.1655945046 0.0471153745 0.1655945046 0.1366518186 0.1596254083 1776 1777 1778 1779 1780 0.1476872157 0.1536563120 0.2551309487 0.0829299521 0.0471153745 1781 1782 1783 1784 1785 0.1297799269 0.1596254083 0.0879962530 0.0879962530 0.1187445298 1786 1787 1788 1789 1790 0.0709917596 0.1476872157 0.0888990484 -0.0254165762 0.1127754335 1791 1792 1793 1794 1795 0.0820271567 0.0590535670 0.0769608559 0.1357490232 0.1417181195 1796 1797 1798 1799 1800					
176617671768176917700.14171811950.0530844708-0.03048287710.11187263810.1357490232177117721773177417750.16559450460.04711537450.16559450460.13665181860.1596254083177617771778177917800.14768721570.15365631200.25513094870.08292995210.0471153745178117821783178417850.12977992690.15962540830.08799625300.08799625300.1187445298178617871788178917900.07099175960.14768721570.0888990484-0.02541657620.1127754335179117921793179417950.08202715670.05905356700.07696085590.13574902320.1417181195179617971798179917991800					
0.1417181195 0.0530844708 -0.0304828771 0.1118726381 0.1357490232 1771 1772 1773 1774 1775 0.1655945046 0.0471153745 0.1655945046 0.1366518186 0.1596254083 1776 1777 1778 1779 1780 0.1476872157 0.1536563120 0.2551309487 0.0829299521 0.0471153745 1781 1782 1783 1784 1785 0.1297799269 0.1596254083 0.0879962530 0.0879962530 0.1187445298 1786 1787 1788 1789 1790 0.0709917596 0.1476872157 0.0888990484 -0.0254165762 0.1127754335 1791 1792 1793 1794 1795 0.0820271567 0.0590535670 0.0769608559 0.1357490232 0.1417181195 1796 1797 1798 1799 1800					
177117721773177417750.16559450460.04711537450.16559450460.13665181860.1596254083177617771778177917800.14768721570.15365631200.25513094870.08292995210.0471153745178117821783178417850.12977992690.15962540830.08799625300.08799625300.1187445298178617871788178917900.07099175960.14768721570.0888990484-0.02541657620.1127754335179117921793179417950.08202715670.05905356700.07696085590.13574902320.141718119517961797179817991800					
0.1655945046 0.0471153745 0.1655945046 0.1366518186 0.1596254083 1776 1777 1778 1779 1780 0.1476872157 0.1536563120 0.2551309487 0.0829299521 0.0471153745 1781 1782 1783 1784 1785 0.1297799269 0.1596254083 0.0879962530 0.0879962530 0.1187445298 1786 1787 1788 1789 1790 0.0709917596 0.1476872157 0.0888990484 -0.0254165762 0.1127754335 1791 1792 1793 1794 1795 0.0820271567 0.0590535670 0.0769608559 0.1357490232 0.1417181195 1796 1797 1798 1799 1800					
177617771778177917800.14768721570.15365631200.25513094870.08292995210.0471153745178117821783178417850.12977992690.15962540830.08799625300.08799625300.1187445298178617871788178917900.07099175960.14768721570.0888990484-0.02541657620.1127754335179117921793179417950.08202715670.05905356700.07696085590.13574902320.141718119517961797179817991800					
0.1476872157 0.1536563120 0.2551309487 0.0829299521 0.0471153745 1781 1782 1783 1784 1785 0.1297799269 0.1596254083 0.0879962530 0.0879962530 0.1187445298 1786 1787 1788 1789 1790 0.0709917596 0.1476872157 0.0888990484 -0.0254165762 0.1127754335 1791 1792 1793 1794 1795 0.0820271567 0.0590535670 0.0769608559 0.1357490232 0.1417181195 1796 1797 1798 1799 1800					
1781 1782 1783 1784 1785 0.1297799269 0.1596254083 0.0879962530 0.0879962530 0.1187445298 1786 1787 1788 1789 1790 0.0709917596 0.1476872157 0.0888990484 -0.0254165762 0.1127754335 1791 1792 1793 1794 1795 0.0820271567 0.0590535670 0.0769608559 0.1357490232 0.1417181195 1796 1797 1798 1799 1800					
0.1297799269 0.1596254083 0.0879962530 0.0879962530 0.1187445298 1786 1787 1788 1789 1790 0.0709917596 0.1476872157 0.0888990484 -0.0254165762 0.1127754335 1791 1792 1793 1794 1795 0.0820271567 0.0590535670 0.0769608559 0.1357490232 0.1417181195 1796 1797 1798 1799 1800					
1786 1787 1788 1789 1790 0.0709917596 0.1476872157 0.0888990484 -0.0254165762 0.1127754335 1791 1792 1793 1794 1795 0.0820271567 0.0590535670 0.0769608559 0.1357490232 0.1417181195 1796 1797 1798 1799 1800					
0.0709917596 0.1476872157 0.0888990484 -0.0254165762 0.1127754335 1791 1792 1793 1794 1795 0.0820271567 0.0590535670 0.0769608559 0.1357490232 0.1417181195 1796 1797 1798 1799 1800					
179117921793179417950.08202715670.05905356700.07696085590.13574902320.141718119517961797179817991800					
0.0820271567 0.0590535670 0.0769608559 0.1357490232 0.1417181195 1796 1797 1798 1799 1800					
1796					
0.1775326971 0.1068063372 0.1068063372 0.1238108307 0.1357490232	0.1775326971	0.1068063372	0.1068063372	0.1238108307	0.1357490232
1801 1802 1803 1804 1805					
0.0351771819 0.1536563120 0.1357490232 0.0888990484 0.0411462782					
1806 1807 1808 1809 1810					
0.1844045888 0.2014090822 0.1366518186 0.2014090822 0.1835017934					

1811	1812	1813	1814	1815
0.1476872157	0.1178417344		-0.0543592622	0.2133472748
1816	1817	1818	1819	1820
0.1187445298	0.2014090822	0.2133472748	0.1784354925	0.1844045888
1821	1822	1823	1824	1825
0.1306827223	0.1903736851	0.0709917596	0.1247136260	0.1596254083
1826	1827	1828	1829	1830
0.1426209149	0.1655945046	0.1068063372	0.1724663962	0.1426209149
1831	1832	1833	1834	1835
0.1306827223	0.0113007969	0.1306827223	0.1715636008	0.0462125791
1836	1837	1838	1839	1840
0.1715636008	0.0232389894	0.1417181195	0.1417181195	0.1655945046
1841	1842	1843	1844	1845
0.1068063372	0.1536563120	0.1187445298	0.0172698931	0.1536563120
1846	1847	1848	1849	1850
0.0879962530	-0.0125755882	0.1127754335	0.1008372410	0.0581507716
1851	1852	1853	1854	1855
0.1059035418	0.1068063372	0.1059035418	0.1059035418	0.0351771819
1856	1857	1858	1859	1860
0.0769608559	0.1238108307	0.0709917596	0.0530844708	0.1357490232
1861	1862	1863	1864	1865
0.1655945046	0.0471153745	0.1068063372	0.1247136260	0.1068063372
1866	1867	1868	1869	1870
0.0709917596	0.1187445298	0.1187445298	0.1127754335	0.0471153745
1871	1872	1873	1874	1875
0.1306827223	0.1127754335	0.1426209149	0.1426209149	0.1187445298
1876	1877	1878	1879	1880
0.1306827223	0.1426209149	0.1664973000	0.1485900111	0.1247136260
1881	1882	1883	1884	1885
0.1008372410	0.1366518186	0.1417181195	0.1306827223	0.0760580605
1886	1887	1888	1889	1890
0.2133472748	0.0172698931	0.1366518186	0.1426209149	0.1664973000
1891	1892	1893	1894	1895
0.1536563120	0.1655945046	0.0650226633	0.1366518186	0.1187445298
1896	1897	1898	1899	1900
0.1715636008	0.1187445298	0.1605282037	0.1366518186	0.1008372410
1901	1902	1903	1904	1905
0.2073781785	0.1068063372	0.0700889642	0.1178417344	0.2014090822
1906	1907	1908	1909	1910
0.1835017934	0.3924201630	0.0650226633	0.0939653493	0.1247136260
1911	1912	1913	1914	1915
0.2073781785	0.1536563120	0.2969146226	0.1426209149	0.1545591074
1916	1917	1918	1919	1920

0.2014090822	0.1247136260	0.1366518186	0.1835017934	0.1178417344
1921	1922	1923	1924	1925
0.1536563120	0.0530844708	0.1127754335	0.1008372410	0.1247136260
1926	1927	1928	1929	1930
0.0590535670	0.0471153745	0.7983187096	0.7983187096	0.1366518186
1931	1932	1933	1934	1935
0.1545591074	0.1485900111	0.1247136260	0.1059035418	0.1247136260
1936	1937	1938	1939	1940
0.2073781785	0.1894708897	0.2312545636	0.1187445298	0.1536563120
1941	1942	1943	1944	1945
0.0769608559	0.1835017934	0.0888990484	0.1426209149	0.1366518186
1946	1947	1948	1949	1950
0.1485900111	0.1775326971	0.1008372410	0.1835017934	0.0769608559
1951	1952	1953	1954	1955
0.1187445298	0.1187445298	0.1844045888	0.1536563120	0.1187445298
1956	1957	1958	1959	1960
0.1536563120	0.1775326971	0.1306827223	0.1426209149	0.2312545636
1961	1962	1963	1964	1965
0.1127754335	0.1485900111	0.1775326971	0.1306827223	0.0769608559
1966	1967	1968	1969	1970
0.1187445298	0.1835017934	0.1954399859	0.3267601040	0.1059035418
1971	1972	1973	1974	1975
0.0709917596	0.1357490232	0.0411462782	0.1545591074	0.1238108307
1976	1977	1978	1979	1980
0.0948681447	0.1596254083	0.1605282037	0.1485900111	0.1247136260
1981	1982	1983	1984	1985
0.1366518186	0.2252854673	0.1306827223	0.1008372410	0.1068063372
1986	1987	1988	1989	1990
0.0650226633	0.1187445298	0.1247136260	0.0530844708	0.1127754335
1991	1992	1993	1994	1995
0.0590535670	0.1068063372	0.1014341415	0.1276981742	0.0905629662
1996	1997	1998	1999	2000
0.1846956172	0.1118800600	0.0596504789	0.1429119433	0.0333864576
2001	2002	2003	2004	2005
-0.0209323208	0.0906897727	0.0972557923	0.1312796228	0.1127754335
2006	2007	2008	2009	2010
0.0098010896	0.0814302448	0.1342641710	0.1199383536	0.0811392278
2011	2012	2013	2014	2015
0.1420240144	0.0751701315	0.1163568822	0.1109847092	0.1327644751
2016	2017	2018	2019	2020
0.0805423159	0.1265043504	0.0915777131	0.1032248886	0.1363459351
2021	2022	2023	2024	2025
-0.0107848582	0.0787515802	0.0659105922	0.1624905718	0.1074032377

2026	2027	2028	2029	2030
0.1253105266	0.1536563120	0.1469709306	0.1139692573	0.1387932637
2031	2032	2033	2034	2035
0.1125366642	0.1566408602	0.1303768388	0.1050156129	0.1363459351
2036	2037	2038	2039	2040
0.1761598077	0.0954650452	0.1176104097	0.0990465166	0.1211321774
2041	2042	2043	2044	2045
0.0918239042	0.2145410986	0.1644006808	0.0972557923	0.1799203447
2046	2047	2048	2049	2050
0.1817110691	0.1195801996	0.1044186896	0.1579540686	0.0820271567
2051	2052	2053	2054	2055
0.0931967936	0.2599062211	0.1350327266	0.1005387907	0.0996434171
2056	2057	2058	2059	2060
0.1655945046	0.0912866846	0.1354579948	0.1721605014	0.1097908854
2061	2062	2063	2064	2065
0.1715636008	0.0965991881	0.1229229017	0.0817361283	0.1223259784
2066	2067	2068	2069	2070
0.0763639440	0.1253105266	0.0948681447	0.0883021365	0.1151630811
2071	2072	2073	2074	2075
0.1360549181	0.1345551994	0.1632068570 2078	0.0930774204	0.0721855834
2076	2077		2079	2080
0.0805423159	0.1235198022	0.1187445298	0.1267953788	0.1271535214
2081	2082	2083	2084	2085
0.1193414303	0.0703948477	0.0787515802	0.1262655811	0.0694994855
2086	2087	2088	2089	2090
0.1265640541	0.0136884331	0.0952262987	0.1217290779	0.1247136260
2091	2092	2093	2094	2095
0.0942712328	0.0868098624	0.1512686644	0.1211321774	0.0841237759
2096	2097	2098	2099	2100
0.1612370670		-0.0030250319	0.0703948477	0.1870832420
2101	2102	2103	2104	2105
0.1287129096	0.1074032377	0.0434071023	0.1223259784	0.1715636008
2106	2107	2108	2109	2110
0.1638037802	0.1166479106	0.1057916018		0.0894959603
2111	2112	2113	2114	2115
		0.0978526928		
2116	2117	2118	2119	2120
0.0811392278		0.1239376372		
2121	2122	2123	2124	
0.1159987510	0.0894959603	0.1211321774	0.1524624882	
2126	2127	2128	2129	2130
	0.0972557923	0.1439266787	0.0999344456	0.1655945046
2131	2132	2133	2134	2135

0.1127754335	0.1127754335	0.1596254083	0.1031592190	0.0834074794
2136	2137	2138	2139	2140
0.1315706513	0.1102684240	0.1414270911	0.0049138657	0.1072838759
2141	2142	2143	2144	2145
0.1210127927	0.0188815519	0.0099279074	0.1187445298	0.1420165697
2146	2147	2148	2149	2150
0.1664973000	0.1250643354	0.1396363667	0.1247136260	0.1664973000
2151	2152	2153	2154	2155
0.1715636008	0.1261387746	0.1693027825	0.1596254083	0.1649976041
2156	2157	2158	2159	2160
0.1835017934	0.1068063372	0.1388006969	0.0888990484	0.1307349814
2161	2162	2163	2164	2165
0.1589762487	0.1136111033	0.1366518186	0.1123575986	0.1260865155
2166	2167	2168	2169	2170
0.1040008547	0.1357564450	0.1550963270	0.0733793958	0.1151630811
2171	2172	2173	2174	2175
0.1890604766	0.1484706265	0.0198962987	0.1811215904	0.1546710475
2176	2177	2178	2179	2180
0.1403452301	0.1347342764	0.1618339675	0.1857700563	0.1379650271
2181	2182	2183	2184	2185
0.0235374397	0.2368655059	0.1366443854	-0.0283936911	0.0942115404
2186	2187	2188	2189	2190
0.1137901689	0.0496223954	0.0939130902	0.0654330650	0.1554544810
2191	2192	2193	2194	2195
0.1063885023	-0.0317363875	0.1106191334	0.1176700906	0.1703697770
2196	2197	2198	2199	2200
0.1022026971	0.0800647887	0.0788112725	0.1290636304	0.1523431036
2201	2202	2203	2204	2205
0.1239376372	0.1900081092	0.1127754335	0.1838002436	0.1895902743
2206	2207	2208	2209	2210
0.1398154323	0.1205352541	0.1229229017	0.1512089835	0.0953382387
2211	2212	2213	2214	2215
0.0516518890	0.1369502689	0.0961813531	0.1427328549	0.2053486848
2216	2217	2218	2219	2220
0.1353908806	0.1051349976	0.1059035418		0.1142677076
2221	2222	2223	2224	
0.1196921510	0.0952859796	0.1614235772		0.1414793502
2226	2227	2228	2229	2230
0.1423821456	0.0955247489	0.1799203447		-0.0254165762
2231	2232	2233	2234	
0.1575959147	0.1927613327	0.1469112269		0.0923611238
2236	2237	2238	2239	2240
0.1540218878	0.1762791924	0.2133472748	0.1429716242	0.1266834387

2241	2242	2243	2244	2245
0.0781546797	0.0847803688	0.0871680050	0.0948681447	0.1019116801
2246	2247	2248	2249	2250
0.1060303483	0.0945100021	0.0779756027	0.1005387907	0.1324734467
2251	2252	2253	2254	2255
0.0555914917	0.1393304832	0.1262655811	0.1645797691	0.1008372410
2256	2257	2258	2259	2260
0.1775923781	0.1398080105	0.1337866551	0.1568199258	0.0809601508
2261	2262	2263	2264	2265
0.0684847387	0.1431581344	0.1629681104	0.1310931240	0.0342818198
2266	2267	2268	2269	2270
0.0608442914	0.0966588690	0.1161181356	0.0877052246	0.1154540981
2271	2272	2273	2274	2275
0.1220872319	0.1022101304	0.1223185566	0.0603667641	0.1613564517
2276	2277	2278	2279	2280
0.1148049271	0.1303768388	0.1263252848	0.1596254083	0.1596254083
2281	2282	2283	2284	2285
0.0053317006	0.0521816754	0.0829299521	0.1068063372	0.2491618524
2286	2287	2288	2289	2290
0.0760580605	0.1187445298	0.0172698931	0.0948681447	0.1127754335
2291	2292	2293	2294	2295
0.0760580605	0.0709917596	0.0829299521	0.1187445298	0.0650226633
2296	2297	2298	2299	2300
0.1306827223		0.1118726381	0.1247136260	0.0848997534
2301	0.1536563120 2302	2303	2304	2305
0.0820942823	0.1248330107	0.1217290779	0.1223259784	0.1476872157
2306	2307	2308	2309	2310
0.1894708897	0.0650226633	0.0769608559	0.0888990484	0.1775326971
2311	2312	2313	2314	2315
0.1715636008	0.1775326971 2317	0.1536563120	0.2014090822	0.0948681447
2316		2318 0.0495030107	2319	2320
0.1342641710 2321	0.1578346840 2322	2323	0.0411462782	0.1068063372
0.1127754335	0.1769357966	0.1835017934		0.0590535670
2326	2327	2328	2329	2330
0.1605282037			0.1187445298	
2331	2332	2333	2334	2335
0.1596254083	0.1844045888	0.1366518186		0.1306827223
2336	2337	2338	2339	2340
0.1703697770	0.0829299521		0.0829299521	
2341	2342	2343	2344	2345
0.1068063372			-0.0424210696	
2346	2347	2348	2349	2350

```
0.1664973000 0.1596254083 0.1366518186 0.0888990484 0.1426209149
        2351
                       2352
                                      2353
                                                     2354
                                                                    2355
0.1485900111 0.0471153745 0.1008372410 0.1247136260
                                                           0.1127754335
        2356
                       2357
                                      2358
                                                     2359
                                                                    2360
0.1545591074 0.1008372410 0.1068063372 0.1187445298 0.1417181195
        2361
                       2362
                                      2363
                                                     2364
                                                                    2365
0.1417181195  0.0650226633  0.1008372410  0.1306827223
                                                           0.1187445298
                       2367
                                      2368
                                                     2369
                                                                    2370
0.0939653493  0.0948681447  0.1775326971  0.1306827223  0.0999344456
        2371
                       2372
                                      2373
                                                     2374
                                                                    2375
0.1417181195 \quad 0.1357490232 \quad 0.1008372410 \quad 0.1596254083 \quad 0.1008372410
        2376
                       2377
                                      2378
                                                     2379
                                                                    2380
0.0888990484 \quad 0.1297799269 \quad 0.0590535670 \quad 0.1417181195 \quad 0.1596254083
```

Porcentaje predicho correctamente
ppc <-data.frame(denymod2\$model\$deny, denymod2\$fitted.values)
head(ppc)</pre>

```
denymod2.model.deny denymod2.fitted.values
                     0
                                    0.03577409
1
2
                     0
                                    0.10888809
3
                     0
                                    0.12590745
4
                     0
                                    0.09486814
5
                     0
                                    0.11874453
6
                                    0.04711537
```

```
# Cambiar de nombre
names(ppc) <- c("deny", "VA")
head(ppc)</pre>
```

```
deny VA
1 0 0.03577409
2 0 0.10888809
3 0 0.12590745
4 0 0.09486814
5 0 0.11874453
6 0 0.04711537
```

```
# Creando la variable y virgulilla
ppc$y.c <- ifelse(ppc$VA>0.5,1,0)
head(ppc)
 deny
             VA y.c
1 0 0.03577409 0
2
    0 0.10888809
3 0 0.12590745
4 0 0.09486814 0
5 0 0.11874453 0
6 0 0.04711537
tail(ppc)
    deny
               VA y.c
2375 0 0.10083724 0
2376 0 0.08889905
2377 0 0.12977993 0
2378 0 0.05905357 0
2379 1 0.14171812 0
2380 1 0.15962541 0
# Creando la variable PPC
ppc$ppc <- ifelse(ppc$deny==ppc$y.c,1,0)</pre>
head(ppc)
 deny
             VA y.c ppc
1 0 0.03577409 0 1
2
    0 0.10888809 0 1
3 0 0.12590745 0 1
4 0 0.09486814 0 1
5 0 0.11874453 0 1
6 0 0.04711537 0 1
# Calculando el PPC
prop.table(table(ppc$ppc))*100
```

3.3 Ejemplo 2: Determinantes del trabajo femenino (Wooldridge 2009)

- y: inlf: (la fuerza de trabajo femenino), una variable binaria que indica, si una mujer casada participó en la fuerza de trabajo durante 1975: infl = 1 la mujer informa haber trabajado fuera de la casa, por un salario ese año, cero otro caso
- $x_1 = nwifeinc$ los ingreso del esposo en miles de dólares (-)
- $x_2 = educ$ años de educación (+)
- $x_3 = exper$ años de experiencia (+)
- $x_4 = exper^2$ años de experiencia al cuadrado (-)
- $x_5 = edad$ en años (-)
- $x_6 = kidslt6$ hijo < 6 años (-)
- $x_7 = kidsge6$ hijos entres 6 y 18 años (+)

```
data("mroz", package = "wooldridge")
str(mroz)
```

```
'data.frame':
               753 obs. of 22 variables:
$ inlf
                 1 1 1 1 1 1 1 1 1 1 ...
$ hours
                 1610 1656 1980 456 1568 2032 1440 1020 1458 1600 ...
           : int
$ kidslt6 : int
                 1 0 1 0 1 0 0 0 0 0 ...
$ kidsge6 : int
                 0 2 3 3 2 0 2 0 2 2 ...
                 32 30 35 34 31 54 37 54 48 39 ...
$ age
           : int
$ educ
           : int
                 12 12 12 12 14 12 16 12 12 12 ...
$ wage
                 3.35 1.39 4.55 1.1 4.59 ...
           : num
$ repwage : num
                 2.65 2.65 4.04 3.25 3.6 ...
$ hushrs
          : int
                 2708 2310 3072 1920 2000 1040 2670 4120 1995 2100 ...
                34 30 40 53 32 57 37 53 52 43 ...
$ husage : int
$ huseduc : int
                12 9 12 10 12 11 12 8 4 12 ...
$ huswage : num 4.03 8.44 3.58 3.54 10 ...
$ faminc
                16310 21800 21040 7300 27300 ...
          : num
           : num 0.721 0.661 0.692 0.781 0.622 ...
$ mtr
$ motheduc: int 12 7 12 7 12 14 14 3 7 7 ...
```

```
\ fatheduc: int \ 7 7 7 7 14 7 7 3 7 7 ...
 $ unem : num 5 11 5 5 9.5 7.5 5 5 3 5 ...
 $ city : int 0 1 0 0 1 1 0 0 0 0 ...
 $ exper : int 14 5 15 6 7 33 11 35 24 21 ...
 $ nwifeinc: num 10.9 19.5 12 6.8 20.1 ...
 $ lwage : num 1.2102 0.3285 1.5141 0.0921 1.5243 ...
 $ expersq : int 196 25 225 36 49 1089 121 1225 576 441 ...
 - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"
# Correr el modelo y crear el objeto
mroz.mpl <- lm(inlf~</pre>
                 nwifeinc+
                 educ+
                 exper+
                 I(exper^2)+
                 age+
                 kidslt6+
                 kidsge6,
               data = mroz)
# usando stargazer
library(stargazer)
stargazer(mroz.mpl,
          type = "text",
          digits = 5)
```

Dependent variable: inlf --- nwifeinc -0.00341** (0.00145) educ 0.03800*** (0.00738) exper 0.03949*** (0.00567)

```
I(exper2)
                         -0.00060***
                           (0.00018)
                          -0.01609***
age
                           (0.00248)
kidslt6
                          -0.26181***
                           (0.03351)
kidsge6
                           0.01301
                           (0.01320)
                          0.58552***
Constant
                           (0.15418)
Observations
                             753
R2
                          0.26422
Adjusted R2
                          0.25730
Residual Std. Error 0.42713 \text{ (df = } 745)
F Statistic 38.21795*** (df = 7; 745)
_____
                 *p<0.1; **p<0.05; ***p<0.01
# Punto de inflexión
abs((coefficients(mroz.mpl)[4])/(coefficients(mroz.mpl)[5]*2))
  exper
33.11387
# Probar la multicolinealidad aproximada
library(car)
mean(vif(mroz.mpl))
[1] 3.417547
# Normalidad de los errores
library(tseries)
jarque.bera.test(mroz.mpl$residuals)
```

Jarque Bera Test

```
data: mroz.mpl$residuals
X-squared = 36.741, df = 2, p-value = 1.051e-08
```

$$H_0: u \sim N(\mu, \sigma^2)$$

3.3.1 El porcentaje predicho correctamente

Es una medida de bondad de ajuste

```
PPC.DTF <- data.frame(mroz$inlf, mroz.mpl$fitted.values)
names(PPC.DTF) <- c("infl", "VA.infl")
PPC.DTF$ajuste <- ifelse(mroz.mpl$fitted.values>=0.5,1,0)
PPC.DTF$PPC <- ifelse(PPC.DTF$infl==PPC.DTF$ajuste,1,0)
prop.table(table(PPC.DTF$PPC))*100</pre>
```

0 1 26.56042 73.43958

3.3.2 Interpretaciones ceteris paribus

- Para interpretar las estimaciones, hay que recordar que una variación en la variable independiente modifica la probabilidad de que inlf = 1. Por ejemplo, educ si las demás variables permanecen constantes, una año más de educación hace que la probabilidad de participación en la fuerza laboral aumente en 3.8%. Si consideramos de forma literal a esta ecuación, entonces 10 años más educación incrementarían la probabilidad de permanecer en la fuerza laboral en 38%.
- El coeficiente de nwifeinc significa que si Δnwifeinc = 10 (un incremento de \$10,000), la probabilidad de que una mujer permanecer en la fuerza de trabajo disminuye en 3.4%. Como se puede ver, esta disminución es pequeña a pesar de aumentar el salario en 10,000 dólares.
- La experiencia ha sido introducida como una función cuadrática para que el efecto de la experiencia sea decreciente sobre la probabilidad de participar en la fuerza laboral. Ceteris paribus, la variación de la probabilidad se aproxima como 0.039 2(0.0006)exper = 0.039 0.0012exper. El punto en el que la experiencia transcurrida no tiene efecto sobre

la probabilidad de participación en la fuerza laboral es: 0.039/0.0012 = 32.5. Sólo 13 mujeres de las 753 en esta muestra tiene más de 32 años de experiencia.

```
mroz$dico.exper <- ifelse(mroz$exper>32.5,1,0)
table(mroz$dico.exper)
```

```
0 1
740 13
```

• A diferencia de la cantidad de hijos entre 6 y 18 años, la cantidad de hijos menores a 6 años tiene un impacto enorme sobre la probabilidad de participación en la fuerza de trabajo. A tal punto que, tener un hijo menor a seis años adicional, reduce la probabilidad de participación en la fuerza trabajo en 26.18%. En la muestra, menos de 20% de las mujeres tienen al menos un hijo pequeño.

```
mroz$dic.hijo <- ifelse(mroz$kidslt6>=1,1,0)
prop.table(table(mroz$dic.hijo))*100
```

```
0 1
80.47809 19.52191
```

• Respecto al PPC el modelo predice en 73.44% a la variable infl.

3.3.3 Límites del MPL

• Las dos desventajas más importantes son que las probabilidades ajustadas pueden ser menores que cero o mayores que uno.

```
summary(mroz.mpl$fitted.values)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. -0.3451 0.4016 0.5880 0.5684 0.7592 1.1272
```

Se demuestra para este ejemplo que algunos valores ajustados son menores que cero y mayores que uno.

• y, el efecto parcial de cualquier variable explicativa (si aparece en la ecuación en su nivel) es constante

3.4 Ejemplo 3: Un modelo de probabilidad lineal para arrestos (Wooldridge 2009)

Sea arr86 una variable binaria igual a uno si un hombre fue arrestado en 1986 e igual a cero si no fue así. La población es un grupo de hombres de California nacidos en 1960 o en 1961, que habían sido detenidos al menos una vez antes de 1986. Un modelo de probabilidad lineal para describir arr86 es:

```
arr86 = \beta_0 + \beta_1 pcnv + \beta_2 avgsen + \beta_3 tottime + \beta_4 ptime \\ 86 + \beta_5 qemp \\ 86 + utilization \\ 86 + ut
```

donde:

- pcnv = proporción de arrestos previos que condujeron a una condena (+)
- avgsen = sentencia promedio cumplida en condenas previas (en meses) (-)
- tottime = meses en prisión y desde los 18 años de edad anteriores a 1986 (-)
- ptime86 = meses en prisión en 1986 (+ -)
- qemp86 = cantidad de trimestres (0 a 4) que el hombre estuvo empleado legalmente en 1986.(-)

```
data("crime1", package = "wooldridge")
str(crime1)
```

```
2725 obs. of 16 variables:
'data.frame':
$ narr86 : int  0 2 1 2 1 0 2 5 0 0 ...
$ nfarr86: int  0 2 1 2 1 0 2 3 0 0 ...
$ nparr86: int
               0 0 0 1 0 0 1 5 0 0 ...
$ pcnv
         : num
                0.38 0.44 0.33 0.25 0 ...
$ avgsen : num
                17.6 0 22.8 0 0 ...
$ tottime: num
                35.2 0 22.8 0 0 ...
$ ptime86: int
                12 0 0 5 0 0 0 0 9 0 ...
$ qemp86 : num
               0 1 0 2 2 4 0 0 0 3 ...
$ inc86 : num
                0 0.8 0 8.8 8.1 ...
$ durat
        : num
                0 0 11 0 1 ...
                0 0 1 0 0 0 1 0 1 0 ...
$ black : int
$ hispan : int 0 1 0 1 0 0 0 0 1 ...
$ born60 : int
                1 0 1 1 0 1 1 1 1 1 ...
$ pcnvsq : num
               0.1444 0.1936 0.1089 0.0625 0 ...
$ pt86sq : int
                144 0 0 25 0 0 0 0 81 0 ...
$ inc86sq: num 0 0.64 0 77.44 65.61 ...
- attr(*, "time.stamp")= chr "25 Jun 2011 23:03"
```

```
# Creando la variable y
table(crime1$narr86)
```

```
0 1 2 3 4 5 6 7 9 10 12
1970 559 121 42 12 13 4 1 1 1 1
```

Dependent variable:

	arr86
pcnv	-0.16244*** (0.02124)
avgsen	0.00611 (0.00645)
tottime	-0.00226 (0.00498)
ptime86	-0.02197*** (0.00463)
qemp86	-0.04283*** (0.00540)

3.4.1 Porcentaje predicho correctamente

```
PPC.arr <- data.frame(crime1$arr86, arr86.MPL$fitted.values)
names(PPC.arr)<- c("arr86", "valores_ajustados")
PPC.arr$ajuste <- ifelse(PPC.arr$valores_ajustados>=0.5,1,0)
PPC.arr$PPC <-ifelse(PPC.arr$arr86==PPC.arr$ajuste,1,0)
prop.table(table(PPC.arr$PPC))*100</pre>
```

0 1 27.70642 72.29358

3.4.2 Interpretaciones

- $\hat{\beta}_0 = 0.44062$, es la probabilidad de ser arrestado que se predice a un hombre, que no ha sido condenado, que no ha estado en prisión despues de los 18 años, que no ha estado en prisión en 1986 y que ha estado desempleado todo el año
- $\hat{\beta}_2$; $\hat{\beta}_3$ que pertenecen a las variables avgsen y tottime, respectivamente. No son estadísticamente significativas (no tiene asteriscos). El signo de avgsen es contrauntuitivo, pues se esperaria que condenas más largas disminuyan la probabilidad de ser arrestado en 1986. Con respecto a tottime, según los datos haber tenido meses en prisión de los 18 y antes de 1986, disminuye la probabilidad de ser arrestado en 1986.
- ptimes86 el aumento de probabilidad de ser condenado en 1986, disminuye la probabilidad de ser arrestado en promedio en 2.2%. Si un hombre esta en prisión no puede ser arrestado. Como ptimes86 esta medida en mese, 6 meses más en prisión, reduce la probabilidad de ser detenido en $0.0022 \times 6 \approx 0.132$. En esta variable se puede observar otra vez, que el MPL no cierto en todos los rangos de variables independientes.

Por ejemplo, si un hombre está en prisión durante 12 meses de 1986, no puede ser detenido en 1986. **Ceteris paribus**, cuando ptimr86 = 12 la probabilidad predicha es de $0.44 - 0.22 \times 12 = 0.177$ que es distinta de cero

• qemp86 tener un empleo reduce la probabilidad de detención de manera significativa. Ceteris paribus un hombre que ha sido empleado durante 4 trimestres, la probabilidad de ser detenido se reduce en $0.04283 \times \approx 0.172$

3.5 Incorporando regresores binarios al MPL

En los modelos de variable dependiente binaria, se puede incluir variables independientes binarias. Este coeficiente mide la diferencia que se predice para la probabilidad en la relación con el grupo base. Así, incluimos regresores binarios en el MPL para **arr86**

	Dependent variable:
	arr86
pcnv	-0.15206*** (0.02107)
avgsen	0.00462 (0.00639)
tottime	-0.00256

```
(0.00493)
                            -0.02370***
ptime86
                             (0.00459)
                            -0.03847***
qemp86
                             (0.00540)
black
                            0.16976***
                             (0.02367)
                            0.09619***
hispan
                             (0.02071)
                            0.38043***
Constant
                             (0.01873)
                               2,725
Observations
R2
                              0.06819
                              0.06579
Adjusted R2
Residual Std. Error 0.43265 (df = 2717)
F Statistic
                    28.40542*** (df = 7; 2717)
Note:
                    *p<0.1; **p<0.05; ***p<0.01
# Limites del MPL
```

```
summary(arr86.MPL.bi$fitted.values)
```

```
Min.
         1st Qu.
                  Median
                             Mean 3rd Qu.
                                              Max.
-0.05598 0.21483 0.26501 0.27706 0.36119 0.61273
```

3.5.1 Interpretaciones

• El coeficiente black significa que, ceteris paribus un hombre negro tiene una probabilidad del 17% mayor de ser detenido frente a un hombre blanco. Otra forma de expresar esto, es que la probabilidad de ser detenido es de 17 puntos porcentuales mayor para los negros que para los blancos.

De la misma manera que la versión del modelo de regresión lineal múltiple en el MPL se puede verificar el cumplimento de los supuestos.

3.5.2 Supuestos

3.5.2.1 Homocedasticidad

- La homocedasticidad o varianza constante, su incumplimiento se conoce como heterocedásticidad o varianza no constante
- Su incumplimento tiene efecto sobre la eficiencia de los estimadores de MCO.
- Su incumplimiento, hace que las pruebas t o f se invaliden, pues el cálculo de la varianza supone homocedásticidad que no se cumple. Por lo tanto, la matriz de varianza covarianza esta mal calculada.
- Existen dos formas de la heterocedasticidad, conocida y desconocida. Es común la forma desconocida, por tal motivo calculamos errores estándar heterocedástico robustos

Hipótesis

```
H_0: \sigma^2
```

$$H_a:\sigma_i^2$$

```
# Test de homcedasticidad
library(lmtest)

# El test de Breusch-Pagan
bptest(mroz.mpl)
```

studentized Breusch-Pagan test

```
data: mroz.mpl
BP = 24.224, df = 7, p-value = 0.00104
```

```
# Test de Goldfeld-Quandt
gqtest(mroz.mpl)
```

Goldfeld-Quandt test

```
data: mroz.mpl
GQ = 2.488e+27, df1 = 369, df2 = 368, p-value < 2.2e-16
alternative hypothesis: variance increases from segment 1 to 2</pre>
```


nwifeinc	-0.00341**	-0.00341**
	(0.00152)	(0.00145)
educ	0.03800***	0.03800***
	(0.00727)	(0.00738)
exper	0.03949***	0.03949***
	(0.00581)	(0.00567)
I(exper2)	-0.00060***	-0.00060***
	(0.00019)	(0.00018)
age	-0.01609***	-0.01609***
	(0.00240)	(0.00248)
kidslt6	-0.26181***	-0.26181***

	(0.03178)	(0.03351)
kidsge6	0.01301	0.01301
	(0.01353)	(0.01320)
Constant	0.58552***	0.58552***
	(0.15226)	(0.15418)
Observations	753	753
R2	0.26422	0.26422
Adjusted R2	0.25730	0.25730
Residual Std. Error (df = 745)	0.42713	0.42713
F Statistic (df = 7; 745)	38.21795***	38.21795***
		============
Note:	*p<0.1; *	*p<0.05; ***p<0.01

3.5.2.2 Multicolinealidad aproximada

library(regclass)

Cargando paquete requerido: bestglm

Cargando paquete requerido: leaps

Cargando paquete requerido: VGAM

Cargando paquete requerido: stats4

Cargando paquete requerido: splines

Adjuntando el paquete: 'VGAM'

The following object is masked from 'package:AER':

tobit

```
The following object is masked from 'package:lmtest':
    lrtest
The following object is masked from 'package:car':
    logit
Cargando paquete requerido: rpart
Cargando paquete requerido: randomForest
randomForest 4.7-1.2
Type rfNews() to see new features/changes/bug fixes.
Important regclass change from 1.3:
All functions that had a . in the name now have an _
all.correlations -> all_correlations, cor.demo -> cor_demo, etc.
VIF(mroz.mpl)
                           exper I(exper^2)
                                                                      kidsge6
  nwifeinc
                 educ
                                                           kidslt6
                                                    age
  1.170686
             1.166001
                        8.636160
                                   8.770985
                                               1.658272
                                                          1.270358
                                                                     1.250370
mean(VIF(mroz.mpl))
```

[1] 3.417547

En promedio el factor de inflación de la varianza es menor que 10. Por lo tanto, no debe preocuparme la multicolinealidad aproximada

Normalidad de los errores

La H_0 : los errores siguen una distribución normal

```
library(tseries)
jarque.bera.test(mroz.mpl$residuals)
```

```
Jarque Bera Test
```

```
data: mroz.mpl$residuals
X-squared = 36.741, df = 2, p-value = 1.051e-08
```

3.6 Modelos Logit y Probit para la respuesta binaria

El MPL es un modelo simple, que tiene varias desventajas. Las dos más importantes, como vimos en los ejemplos anteriores, son que las probabilidades ajustadas pueden ser menores que cero o mayores que uno y el efecto parcial de cualquier variable explicativa es constante. Esta limitaciones del MPL se superan con **modelos de respuesta binaria** más sofisticados.

En un modelo de respuesta binaria, el interés principal yace en la **probabilidad de respuesta**

$$P(y = 1|\mathbf{x}) = P(y = 1|x_1, x_2, ..., x_k)$$
[6]

Donde: \mathbf{x} denota el conjunto total de variable explicativas. Por ejemplo, \mathbf{x} podría contener varias características individuales como la educación, edad, estado civil, etc., que afecta, por ejemplo, al estado del empleo, incluye una variable de binaria para la participación en reciente programa de empleo

3.6.1 Especificación del modelo logit y probit

En el MPL, se suponía que la probabilidad de respuesta es lineal al conjunto de parámetros, β_j . Para evitar las limitaciones del MPL, considere una clase de modelos de respuesta binaria de la forma:

$$P(y = 1 | \mathbf{x}) = G(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k) = G(\beta_0 + \mathbf{x})[7]$$

donde G(.) es una función que asume valores estrictamente entre 0 y 1: 0 < G(.) < 1 para todos los número reales z. Esto asegura que las probabilidades de respuesta estimada sean estrictamente entre cero y uno. Note que: $\mathbf{x} = \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k$

Se han sugerido varias funciones no lineales para la función G(.) a fin de asegurar que las probabilidades estén entre cero y uno. Las dos funciones que estudiaremos en esta clase, se usan en la mayoría de aplicaciones (junto con el MPL). En el **Modelo Logit**, G(.) es la función logística:

$$G(z)=\frac{exp(z)}{[1+exp(z)]}=\frac{e^z}{[1+e^z]}=\Lambda(z)[8]$$

Que está entre cero y uno para todos los números reales z. Esta es la función de distribución acumulada (fda) para una variable aleatoria logística estándar.

En el **Modelo Probit**, G(.) es la función de distribución acumulada normal estándar, que viene dada de la siguiente forma:

$$G(z) = \Phi(z) \equiv \int_{-\infty}^{z} \phi(v) dv[9]$$

Donde:

• $\phi(z)$ es la función de densidad normal estándar

$$\phi(z) = (2\pi)^{-1/2} exp(-z/2) = \frac{e^{-z/2}}{\sqrt{2\pi}} [10]$$

Esta elección de G(.) asegura que $0 < P(y=1|\mathbf{x}) < 1$, para todos los valores de los parámetros y las x_j

Las funciones G(.) de **Logit** y **Probit** son crecientes. Cada una aumenta con más rapidez en $z = 0, G(z) \to 0$ a medida que $z \to -\infty$ y, $G(z) \to 1$ a medida que $z \to \infty$

$\exp(z)/[1+\exp(z)]$

Los modelos Logit y Probit pueden derivarse a partir de un **modelo de variable latente** subyacente.

Sea y^* una variable inobservable, o *latente* determianda por:

$$y^* = \beta_0 + \mathbf{x} + e, y = 1[y^* > 0][11]$$

Aquí se introduce la notación 1[.] para definir un resultado binario. La función 1[.] es la **función indicador**, que asume valor de uno si el evento dentro de los corchetes es verdadero y cero si es falso, Entonces tenemos:

$$y = 1[y^* > 0][12]$$
$$y = 0[y^* \le 0]$$

Se supone que e es independiente de \mathbf{x} y que e tiene un distribución logística estándar o normal estándar. En cualquier caso, e se distribuye simétricamente en torno a cero, lo que significa que 1 - G(-Z) = G(z) para todos los números reales de z.

Los economistas tienden a favorecer el supuesto de normalidad para e, lo cual es la razón por la que en Econometría el **modelo Probit** es más popular que el **logit**. Además, varios problemas de especificación, que se tratarán después, se analizan fácilmente mediante Probit debido a las propiedades de la distribución normal.

Dado estos supuestos podemos calcular la probabilidad de respuesta para y:

$$P(y=1|\mathbf{x}) = P(y^*>0|\mathbf{x}) = P(e>-(\beta_0+\mathbf{x})|\mathbf{x}) = 1 - G[-(\beta_0+\mathbf{x})] = G(\beta_0+\mathbf{x})[13]$$

uno de los objetivos de los modelos de respuesta binaria, es explicar los efectos de las x_j sobre la probabilidad de respuesta $P(y=1|\mathbf{x}).$ Cuidado, la formula de la variable latente tiende a dar la impresión de que lo que principalmente interesa son los efectos de cada x_j sobre y^* . Hay que aclarar que en los modelos Logit y Probit la dirección de efectos de x_j sobre $E(y|\mathbf{x}) = P(y=1|\mathbf{x}) = G(\beta_0 + \mathbf{x})$

Aclarando que:

$$E(y^*|\mathbf{x}) = \beta_0 + \mathbf{x} - [14]$$

Como la variable latente pocas veces tiene una unidad de medición definida, las magnitudes de cada β_j no son, útiles por sí mismas, a diferencia de las magnitudes calculadas por el **MPL**. Entonces para la mayoría de los propósitos, se requiere estimar el efecto de x_j sobre la probabilidad de éxito $P(y=1|\mathbf{x})$, esto se complicado por la naturaleza no lineal de G(.). Esto nos lleva a definir tres casos de efectos parciales:

3.6.2 Variables aproximadamente continuas:

Para hallar el efecto parcial de las variables aproximadamente continuas sobre la probabilidad de respuesta, se recurre al cálculo. Si x_j es una variable aproximadamente continua, su efecto parcial sobre $p(x) = P(y = 1|\mathbf{x})$ se obtiene de la siguiente derivada parcial:

$$\frac{\partial p(\mathbf{x})}{\partial x_i} = g(\beta_0 + \mathbf{x})\beta_j[15]$$

Donde:

$$g(z) \equiv \frac{dG}{dz}(z)[16]$$

Debido a que G es la f
da de una variable aleatoria continua, g es la función de densidad de
 probabilidad.

En los casos de logit y probit, G(.) es una f
da estrictamente creciente y, por lo tanto, $g(z) > 0 \forall z$. Por lo tanto, el efecto parcial de x_j sobre $p(\mathbf{x})$ depende de \mathbf{x} a través de la cantidad positiva $g(\beta_0 + \mathbf{x})$, lo que significa que el efecto parcial siempre tiene el mismo signo que β_j

La ecuación de la derivada parcial muestra que los efectos relativos del cualquiera las variables explicativas continuas no depende de \mathbf{x} , la razón de los efectos parciales de x_j y x_h es $\frac{\beta_j}{\beta_h}$. El caso típico de que g sea un densidad simétrica en torno a cero, con una única moda en cero, el mayor efecto ocurre cuando $\beta_0 + \mathbf{x} = 0$. Por ejemplo:

3.6.2.1 En el caso de Probit

$$g(z) = \phi(z) = \frac{e^{-z/2}}{\sqrt{2\pi}}$$
$$g(0) = \frac{e^{-0/2}}{\sqrt{2\pi}} = \frac{1}{\sqrt{2\pi}} \approx 0.40$$

1/sqrt(2*pi)

[1] 0.3989423

3.6.2.2 En el caso logit

$$g(z) = \frac{e^z}{[1 + e^z]^2}$$

Evaluando cuando z=0

$$g(0) = \frac{e^0}{[1 + e^0]^2}$$

$$g(0) = \frac{1}{[1+1]^2} = \frac{1}{4} = 0.25$$

3.6.3 Cuando la variable explicativa es binaria

Entonces el efecto parcial de cambiar x_1 de cero a uno, manteniendo constante todas las demás variables, es así:

$$G(\beta_0 + \beta_1 + \beta_2 x_2 + \dots + \beta_k x_k) - G(\beta_0 + \beta_2 x_2 + \dots + \beta_k x_k)$$
[17]

De nuevo, esto depende de todos los valores de las otras x_j . Por ejemplo, si y es un indicador de empleo y x_1 es una variable binaria que indica la participación en un programa de capacitación laboral, entonces es el cambio en la probabilidad de empleo debido a este programa de capacitación; esto depende de las demás características que afectan la posibilidad de obtener el empleo, como la educación y la experiencia. Observe que saber el signo del β_1 es suficiente para determinar si el programa tuvo un efecto positivo o negativo. Pero para hallar la **magnitud** del efecto, se tiene que estimar la cantidad usando la anterior ecuación [17].

3.6.4 Cuando la variable explicativa es discreta

Por ejemplo, el número de hijos. Si x_k denota esta variable, el efecto sobre la probabilidad de que x_k cambien de c_k a $c_k + 1$ es simplemente:

$$G[\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k (c_k + 1)] - G[\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k c_k]$$

3.6.5 Estimación de máxima verosimilitud de los modelos Logit y Probit

Para los MPL se uso mínimos cuadrados ordinarios (MCO) o, si existe heterocedasticidad, mínimos cuadrados ponderados (MCP). Ahora bien, debido a naturaleza no lineal $E(y|\mathbf{x})$, MCO y MCP no son aplicables, por esta razón se usa la **estimación de máxima verosimilitud** (**EMV**). Para estimar los modelos de variables dependientes limitadas, los métodos de máxima verosimilitud son indispensables. Como la EMV está basada en la distribución de y dada \mathbf{x} , la heterocedasticidad en $Var(y|\mathbf{x})$ automáticamente se toma en cuenta.

Suponiendo que se tiene una muestra aleatoria n. Para obtener el estimador de máxima verosimilitud, condicional sobre las variables explicativas, es necesario la densidad de y_i dada $\mathbf{x_i}$. Esto se escribe como:

$$f(y|\mathbf{x_i};) = [G(\mathbf{x_i})]^y [1 - G(\mathbf{x_i})]^{1-y}, y = 0, 1[17]$$

Para simplificar, se adsorbe el intercepto en el vector $\mathbf{x_i}$. La **función log-verosimilitud** para cada observación i es una función de los parámetros y los datos $(\mathbf{x_i}; \mathbf{y_i})$, aplicando el logaritmo a la anterior ecuación tenemos:

$$l_i(\beta) = y_i log[G(\mathbf{x_i})] + (1 - y) log[1 - G(\mathbf{x_i})][18]$$

Como G(.) está estrictamente definida entre cero y uno para logit y probit, $l_i(\beta)$ está bien definida para todos los valores β

La log-verosimilitud para un tamaño de muestra n se obtiene al sumar todas las observación de la ecuación anterior:

$$\mathcal{L}_i(\beta) = \sum_{i=1}^n l_i(\beta)[19]$$

La EMV de β , denotada como $\hat{\beta}$, maximiza esta log-verosimilitud. Si G(.) es la fda logit estándar, entonces $\hat{\beta}$ será el estimador Logit; si G(.) es la fda normal estándar, entonces $\hat{\beta}$ será el estimador Probit.

3.6.6 Ejemplos de aplicación

Continuaremos con los ejemplos usados en el MPL, como son: la Participación en la fuerza laboral de las mujeres casadas, un modelo de probabilidad para arrestos y, sumaremos el ejemplo de la denegación de una hipoteca (Stock and Watson 2012)

3.6.6.1 Logit para los datos HMDA

```
library(AER)
data(HMDA)

HMDA |>
str()
```

```
'data.frame':
               2380 obs. of 14 variables:
$ deny : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 2 1 ...
$ pirat : num 0.221 0.265 0.372 0.32 0.36 ...
$ hirat : num 0.221 0.265 0.248 0.25 0.35 ...
$ lvrat : num 0.8 0.922 0.92 0.86 0.6 ...
$ chist : Factor w/ 6 levels "1","2","3","4",..: 5 2 1 1 1 1 1 2 2 2 ...
$ mhist : Factor w/ 4 levels "1","2","3","4": 2 2 2 2 1 1 2 2 2 1 ...
$ phist : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
$ unemp : num 3.9 3.2 3.2 4.3 3.2 ...
$ selfemp : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
$ insurance: Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 2 1 ...
$ condomin : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 2 1 1 1 ...
         : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
$ single : Factor w/ 2 levels "no", "yes": 1 2 1 1 1 1 2 1 1 2 ...
$ hschool : Factor w/ 2 levels "no", "yes": 2 2 2 2 2 2 2 2 2 2 ...
```

3.6.6.2 La participación den la fuerza laboral de las mujeres casadas

3.6.6.2.1 Modelo Probit estimado con fda normal estándar

Para estimar modelos de variable dependiente limitada se usa el comando glm()

	Dependent variable:		
	inlf		
	OLS	probit	
	(1)	(2)	
nwifeinc	-0.003**	-0.012**	
	(0.001)	(0.005)	
educ	0.038***	0.131***	
	(0.007)	(0.025)	
exper	0.039***	0.123***	
•	(0.006)	(0.019)	
expersq	-0.001***	-0.002***	
• •	(0.0002)	(0.001)	
age	-0.016***	-0.053***	
	(0.002)	(0.008)	
kidslt6	-0.262***	-0.868***	
	(0.034)	(0.118)	

kidsge6	0.013	0.036
	(0.013)	(0.044)
	0.500	0.070
Constant	0.586***	0.270
	(0.154)	(0.508)
Observations	753	753
R2	0.264	
Adjusted R2	0.257	
Log Likelihood		-401.302
Akaike Inf. Crit.		818.604
Residual Std. Error	0.427 (df = 745)	
F Statistic	38.218*** (df = 7; 745)	
Note:	*p<0.1; **p<0.05;	***p<0.01

3.6.6.2.1.1 ¿Cómo funciona la mecánica del modelo Probit?

```
Dependent variable:

inlf

-----
nwifeinc

-0.013***
(0.004)

Constant

0.432***
```

```
(0.094)
```

```
Observations 753
Log Likelihood -509.662
Akaike Inf. Crit. 1,023.324
```

Note: *p<0.1; **p<0.05; ***p<0.01

```
mean(mroz$kidslt6)
```

[1] 0.2377158

2 -18.7173

3.6.6.3 Presentación del modelo estimado

Modelo probit simple

$$P(infl = 1|kidslt6) = \Phi\left(0.299 - 0.539kidslt6\right)$$

```
pnorm(coef(mroz.probit.simple)[1]+coef(mroz.probit.simple)[2]*2)-pnorm(coef(mroz.probit.simple)
```

(Intercept) -0.187173

Ecuación estimada de probit

```
coef(mroz.probit)
```

```
(Intercept) nwifeinc educ exper expersq age 0.270073573 -0.012023637 0.130903969 0.123347168 -0.001887067 -0.052852442 kidslt6 kidsge6 -0.868324680 0.036005611 P(inlf=1|nwifeinc,...,kidsge6) = \\ \Phi(0.27-0.012nwifeinc+0.131educ+0.12exper)
```

¿Cuál es la probabilidad de salir de que María salga a trabajar, dado que tiene su esposo un ingreso mensual 300USD, tiene 4 años de educación, nunca ha trabajo, tiene 29 años y un niño de 3 años?

 $-0.0019exper^2 - 0.053age - 0.87kidslt6 + 0.036kidsg6$

```
coef(mroz.probit)
```

```
(Intercept) nwifeinc educ exper expersq age 0.270073573 -0.012023637 0.130903969 0.123347168 -0.001887067 -0.052852442 kidslt6 kidsge6 -0.868324680 0.036005611
```

```
# Pregunta inicial
prediccion<-predict(mroz.probit,</pre>
                     newdata=data.frame("nwifeinc"=(300*12)/1000,
                                          "educ"=4,
                                          "exper"=0,
                                          "expersq"=0,
                                          "age"=29,
                                          "kidslt6"=1,
                                          "kidsge6"=0),
                     type = "response")
predict(mroz.probit,
                     newdata=data.frame("nwifeinc"=(300*12)/1000,
                                          "educ"=4,
                                          "exper"=0,
                                          "expersq"=0,
                                          "age"=29+3,
```

0.03809838

2 -1.130756

2 -3.526018

3.6.6.4 Modelo Logit estimado con FDA logística estándar

	Dependent variable:
	inlf
nwifeinc	-0.021**
	(800.0)
educ	0.221***
	(0.043)
exper	0.206***
•	(0.032)
expersq	-0.003***
	(0.001)
age	-0.088***
460	(0.015)
kidslt6	-1.443***
RIGSICO	(0.204)
	0.000
kidsge6	0.060 (0.075)
	(0.010)

Note: *p<0.1; **p<0.05; ***p<0.01

3.6.6.4.0.1 ¿Cómo funciona la mecánica del modelo Logit?

Dependent variable:

inlf

kidslt6 -0.539***

(0.094)

Constant 0.299***

(0.051)

Observations 753 Log Likelihood -497.367 Akaike Inf. Crit. 998.734

Note: *p<0.1; **p<0.05; ***p<0.01

EFectos en cambios puntuales

```
prediccion<-predict(mroz.logit.simple,</pre>
                    newdata=data.frame("kidslt6"=c(1,2)),
                    type = "response")
diff(prediccion)*100
        2
-18.29326
lambda <- function(z) 1/(1+\exp(-z))
lambda(coef(mroz.logit.simple)[1]+coef(mroz.logit.simple)[2]*2)*100-lambda(coef(mroz.logit.s
(Intercept)
  -18.29326
# Verificando que las probabilidades ajustadas se encuentren entre 0 y 1
summary(mroz.probit$fitted.values)
    Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
0.002475 0.370959 0.609546 0.570109 0.794345 0.979904
summary(mroz.logit$fitted.values)
    Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
0.008672 0.366410 0.610925 0.568393 0.796721 0.968541
```

Presentación del modelo estimado

```
P(inlf=1|nwifeinc,...,kidsge6) = \Lambda(0.425-0.021nwifeinc+...+0.060kidsge6)
```

3.6.6.5 Comparación de los modelos MPL, Logit y Probit

Para esta comparación se va usar los errores heterocedástico robustos.

Tabla 2: Estimaciones MPL, logit y probit de la participación en la fuerza laboral

Dependent variable:

	OLS (1)	inlf logistic (2)	-
nwifeinc	-0.003**	-0.021**	-0.012**
	(0.002)	(0.009)	(0.006)
educ	0.038***	0.221***	0.131***
	(0.007)	(0.045)	(0.026)
exper	0.039***	0.206***	0.123***
	(0.006)	(0.032)	(0.019)
expersq	-0.001***	-0.003***	-0.002***
	(0.0002)	(0.001)	(0.001)
age	-0.016***	-0.088***	-0.053***
	(0.002)	(0.015)	(0.008)
kidslt6	-0.262***	-1.443***	-0.868***
	(0.032)	(0.204)	(0.117)
kidsge6	0.013	0.060	0.036

	(0.014)	(0.080)	(0.047)
Constant	0.586***	0.425	0.270
	(0.152)	(0.864)	(0.507)
Observations	753	753	753
R2	0.264		
Adjusted R2	0.257		
Log Likelihood		-401.765	-401.302
Akaike Inf. Crit.		819.530	818.604
Residual Std. Error	0.427		
F Statistic	38.218***		
Note:	*p<0.1;	**p<0.05;	***p<0.01

Como podemos ver en la tabla 2 los signos y la significancia es la misma para todas las variables en los tres modelos. Por ejemplo, la variable educ y exper son estadísticamente significativas en los tres modelos y ambas tienen un signo positivo respecto a la probabilidad de la participación en la fuerza laboral de las mujeres. En un primer momento no es posible comparar las estimaciones logit y probit con las del MPL. Para hacerlas comparables se debe usar el **efecto parcial promedio (EPP)**. Wooldridge (2010, 585) siguiere factores escalares que se deben pre-multiplicar por los coeficientes de logit y probit para hacerlos comparables con el MPL. Para Probit es 0.301 y para logit es 0.179.

Usando factores escalares logit y probit para comparar con coeficientes MPL

El ejemplo de la variable educ. Si multiplico el coeficiente de educ en logit por su factor se obtiene: $0.179(0.221)\approx 0.040$ y coeficiente probit educ es de alrededor de $0.301(0.131)\approx 0.039$. Como se puede observar, ambos coeficientes son muy cercanos a la estimación de MPL que es de 0.038. También la variable discreta kidslt6, los coeficientes escalados logit y probit son similares al coeficiente del MPL de -0.262. Estos son $0.179(-1.443)\approx -0.258$ (logit) y, $0.301(-0.868)\approx -0.261$ (probit)

La mayor diferencia entre el modelo MPL y los modelos logit y probit es que el MPL supone efectos constantes para educ, exper, kidslt6, etc., mientras que los modelos logit y probit implican magnitudes decrecientes de los efectos parciales

3.6.6.6 Curva decreciente

En esta sección vamos a observar como los modelos no lineales logit y probit muestran que no es lo mismo tener niño pequeño, dos o tres, etc, para reducir la probabilidad de salir a trabajar

```
mpl.simple <- lm(inlf~</pre>
                   kidslt6,
                 mroz)
plot(x = mroz$kidslt6,
     y= mroz$inlf,
     main = "Modelo probit para los determinates del trabajo femenino",
     xlab = "Niños menore a seis años",
     ylab = "Infl, si una mujer casada sale a trabajar por un salario",
     pch=20,
     ylim = c(-0.4, 1.4),
     xlim = c(-0.2,8))
grid()
# Añadir las lineas horizontales y el texto
abline(h=1, lty=2, col="darkred")
abline(h=0, lty=2, col="darkred")
text(2.5, 0.9, cex = 0.8, "Sale a trabajar")
text(2.5, -0.1, cex = 0.8, "No sale a trabajar")
# añadiendo la linea de regresión probit
x < - seq(0,7,1)
y <- predict(mroz.probit.simple,
             list(kidslt6=x),
             type = "response")
lines(x,y,lwd=1.5, col="steelblue")
# añadiendo la linea de regresión logit
t <- predict(mroz.logit.simple,
             list(kidslt6=x),
             type = "response")
lines(x,t,lwd=1.5, col="pink")
# añadiendo la linea de regresión MPL
m <- predict(mpl.simple,</pre>
             list(kidslt6=x),
             type = "response")
lines(x,m,lwd=1.5, col="green")
```


3.6.7 Interpretaciones de las estimaciones Logit y Probit

Las estimaciones de coeficientes, sus errores estándar y el valor de la función de logverosimilitud se pueden obtener mediante todos los paquetes de software (R) que realicen logit y probit, y se deben reportar en cualquier aplicación. Los coeficientes dan los signos de los efectos parciales de cada x_j sobre la probabilidad de respuesta y la significancia estadística de x_j está determinada por si se puede rechazar $H_0: \beta_j = 0$ a un nivel de significancia (α).

Como vimos anteriormente para el MPL se puede calcular el **porcentaje predicho correctamente**

Existen varias medidas de bondad de ajuste como **pseudo R-cuadradas**. MacFadden (1974) sugiere la medida $1-\frac{\mathcal{L}_{nr}}{\mathcal{L}_o}$, donde \mathcal{L}_{nr} es la función de log-verosimilitud para el modelo estimado y, \mathcal{L}_o es la función de probabilidad de log en el modelo con sólo un intercepto. ¿Por qué esta medida es lógica? Recordar que las log-verosimilitud son negativas y, por tanto $\frac{\mathcal{L}_{nr}}{\mathcal{L}_o} = \frac{|\mathcal{L}_{nr}|}{|\mathcal{L}_o|}$. Además. $|\mathcal{L}_{nr}| \leq |\mathcal{L}_o|$. Si las covarianzas no tiene poder explicativo, entonces $\frac{\mathcal{L}_{nr}}{\mathcal{L}_o} = 1$, la **pseudo R-cuadrada** será igual a cero, como la R-cuadrada usual es cero en una regresión lineal cuando las covariadas no tienen poder explicativo.

Por lo general, $|\mathcal{L}_{nr}|<|\mathcal{L}_o|$, en cuyo caso $1-\frac{\mathcal{L}_{nr}}{\mathcal{L}_o}>0$. Supongamos que $\mathcal{L}_{nr}\to 0$, la pseudo-Rcuadrada tiene a uno. Pero en los modelos logit y probit no pueden llegar a cero \mathcal{L}_{nr} ya que eso requeriría que las probabilidades estimadas cuando $y_i=1$ fueran iguales a la unidad y que las probabilidades estimadas cuando $y_i=0$ fueran todas iguales a cero

3.6.8 Cálculo de la speudo- R^2 de MacFadden

Segun Stock y Watson (2011), las llamadas pseudo- \mathbb{R}^2 se usan para medir la calidad del ajuste, estas medidas comparan el valor de la probabilidad máxima log-verosimulitud con todos los regresores, con la probabilidad de un modelo sin regresores (modelo nulo) **regresión en una constante**

Por ejemplo, considere una regresión Probit. El **pseudo-** \mathbb{R}^2 esta dado por:

$$pseudo - R^2 = 1 - \frac{ln(f_{full}^{max})}{ln(f_{null}^{max})}[20]$$

Donde: $f_i^{max} \in [0,1]$ denota la probabilidad máxima para el modelo j

El razonamiento detrás de esto, es que, la probabilidad maximizada aumenta a medida que se agregan regresores adicionales al modelo, de manera similar a la disminución en SRC cuando se agregan regresores en un modelo de regresión lineal. Si el modelo completo tiene una probabilidad maximizada similar a la del modelo nulo, el modelo completo no mejora realmente sobre un modelo que usa solo la información en la variable dependiente, por lo que $pseudo-R^2\approx 0$. Si el modelo completo se ajusta muy bien a los datos, la probabilidad maximizada debe estar cerca de 1, tal que $ln(f_{tul}^{max})\approx 0$ y $pseudo-R^2\approx 1$

En Rstudio para los modelos estimados con glm() podemos utilizar las entradas de desviación residual (desviance) y la desviación nula (null.desviance). Estos han sido calculados de la siguiente forma:

$$desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{full}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satured}^{max}) - ln(f_{null}^{max})] \\ null. \\ desviance = -2 \times [ln(f_{satu$$

Donde: $f_{satured}^{max}$ es la probabilidad maximizada para un modelo que asume que cada observación tiene su propio parámetro (hay n+1 parámetros a estimar que conducen a un ajuste perfecto). Para los modelos con una variable dependiente binaria, se tiene que:

$$pseduo - R^2 = 1 - \frac{desviance}{null.desviance} = 1 - \frac{ln(f_{full}^{max})}{ln(f_{null}^{max})}[21]$$

Cálculo del $pseudo - R^2$ para los modelos Logit y Probit del ejemplo, La participación en la fuerza laboral de las mujeres casadas

```
# Probit
pseudo.R2.P <- 1-(mroz.probit$deviance/mroz.probit$null.deviance)
pseudo.R2.P*100</pre>
```

Logit

Si usamos la interpretación usual del R^2 de la regresión lineal, diremos que según los **pseudo-R2** de logit y probit, aproximadamente la variación de la probabilidad de la participación en la fuerza laboral de las mujeres casadas esta explicada por las variables regresoras en aproximadamente un 22%.

En cualquier caso, la bondad de ajuste suele ser menos importante que intentar obtener estimaciones convincentes de los efectos **ceteris paribus** de las variables explicativas.

3.6.9 Efecto parcial promedio y el efecto parcial en el promedio

Parte importante de estos modelos es estimar los efectos de las x_j sobre las probabilidades de respuesta, $P(y=1|\mathbf{x})$. Si x_j es aproximadamente continua teníamos:

$$\Delta \hat{P}(y=1|\mathbf{x}) \approx [g(\hat{\beta}_0 + \mathbf{x}\hat{\beta})\hat{\beta}_j] \Delta x_j[22]$$

Entonces, para pequeños cambios en x_j . Así que, para $\Delta x_j = 1$ el cambio en la probabilidad de éxito es aproximadamente $g(\hat{\beta}_0 + \mathbf{x}\hat{\beta})\hat{\beta}_j$. En comparación con el MPL, el costo de usar modelos probit y logit es que los efectos parciales en la ecuación anterior son más difíciles de resumir debido a que el factor de escala $g(\hat{\beta}_0 + \mathbf{x}\hat{\beta})$, depende de \mathbf{x} . Una posibilidad es insertar valores interesante para las x_j (medias, medianas, mínimos, máximos, cuartíles, etc.) y, ver como cambia $g(\hat{\beta}_0 + \mathbf{x}\hat{\beta})$. Pero, a pesar de ser un proceso atractivo es tedioso y puede dar como resultado demasiada información aun si el número de variables explicativas es moderado.

Como resumen rápido para obtener magnitudes de efectos parciales, es útil tener un factor escalar único que se pueda multiplicar con cada $\hat{\beta}_j$ (o al menos aquellos coeficiente de variables aproximadamente continuas). Un método que suele usarse en paquetes econométricos es reemplazar cada variable explicativas con su promedio muestral. En otras palabras, el factor de ajuste es:

$$g(\hat{\beta}_0 + \bar{\mathbf{x}}\hat{\beta}) = g(\hat{\beta}_0 + \hat{\beta}_1\bar{x}_1 + \hat{\beta}_2\bar{x}_2 + \dots + \hat{\beta}_k\bar{x}_k)[23]$$

Donde: g(.) es la densidad normal estándar (ϕ) para el caso probit y, $g(z) = \frac{exp(z)}{[1+exp(z)]^2}$ para logit. Cuando a la ecuación anterior se multiplica por $\hat{\beta}_j$ obtenemos el efecto de x_j para la persona promedio en la muestra. Por lo tanto, si multiplico el coeficiente β_j por la ecuación [23], se obtiene el **efecto parcial en el promedio (EPeP)**.

3.6.9.1 Ejemplo con los determinantes del trabajo femenino

Dependent variable:

· ------

inlf

nwifeinc -0.013***

(0.004)

Constant 0.432*** (0.094)

Observations 753 Log Likelihood -509.662 Akaike Inf. Crit. 1,023.324

Note: *p<0.1; **p<0.05; ***p<0.01

Una vez que tengo el modelo, lo uso para ejemplificar el **EPeP**,

```
dnorm(coef(Epep.probit)[1]+coef(Epep.probit)[2]*mean(mroz$nwifeinc))
```

```
(Intercept)
0.3929979
```

```
phi <- function(z) (1/sqrt(2*pi))*exp(-z^2/2)
phi(coef(Epep.probit)[1]+coef(Epep.probit)[2]*mean(mroz$nwifeinc))</pre>
```

```
(Intercept)
 0.3929979
# Efecto de aumentar el salario en una unidad son 1000 USD
dnorm(coef(Epep.probit)[1]+coef(Epep.probit)[2]*mean(mroz$nwifeinc))*coef(Epep.probit)[2]*10
(Intercept)
-0.5052942
El mismo ejemplo para logit
Epep.logit <- glm(inlf~nwifeinc,</pre>
               family = binomial(link = "logit"))
stargazer::stargazer(Epep.logit, type = "text")
______
                  Dependent variable:
               _____
                        inlf
nwifeinc
                      -0.021***
                       (0.007)
                      0.695***
Constant
                       (0.152)
   -----
Observations
                        753
                     -509.654
Log Likelihood
Akaike Inf. Crit. 1,023.309
_____
               *p<0.1; **p<0.05; ***p<0.01
Note:
# fda logística estándar
lambda.minus <- function(z) \exp(z)/(1+\exp(z))^2
```

lambda.minus(coef(Epep.logit)[1]+coef(Epep.logit)[2]*mean(mroz\$nwifeinc))*coef(Epep.logit)[2]

(Intercept) -50.91089

Existen dos problemas con el uso del **EPeP**. Primero, si algunas de las variables explicativas son discretas, sus promedios no representan a nadie en la muestra. Por ejemplo, si $x_1 = mujeres$ y 47.5% de las muestra son mujeres ¿qué sentido tiene insertar $\bar{x}_1 = 0.475$ para representar a la persona "promedio"?. Segundo, si una variable explicativa continua aparece como función no lineal, por ejemplo, como un log-natural o cuadrática, no es claro si se quiere promediar la función no lineal o insertar el promedio en la función no lineal. Por ejemplo, ¿Se debe usar log(ventas) o log(ventas) para representar el tamaño promedio de la empresa?. Los paquetes econométrico se quedan en el primero, el paquete está programado para calcular los promedios de los regresores incluidos en la estimación probit o logit.

Un método diferente para calcular un factor escalar elude la cuestión de qué valores a insertar para las variables explicativas. En lugar de ello, el segundo factor escalar resulta al promediar los efectos parciales individuales a través de la muestra, lo que genera en algunas veces llamado efecto parcial promedio (EPP). Por ejemplo, para una variable aproximadamente continua el EPP es:

$$n^{-1} \sum_{i=1}^n [g(\hat{\beta}_0 + \mathbf{x}\hat{\beta})\hat{\beta}_j] = n^{-1} \sum_{i=1}^n [g(\hat{\beta}_0 + \mathbf{x}\hat{\beta})]\hat{\beta}_j[24]$$

El término que se multiplica a $\hat{\beta}_i$ actúa como un factor escalar:

$$n^{-1} \sum_{i=1}^{n} [g(\hat{\beta}_0 + \mathbf{x}\hat{\beta})][25]$$

Los factores escalares que sirven para obtener el EPP y EPeP que fueron detallados anteriormente de la aproximación del cálculo, ninguna es lógica para variables explicativas discretas. Es su lugar, se debe estimar directamente el cambio de probabilidad. Para un cambio x_k de c_k a c_k+1 , es análogo al efecto parcial en el promedio:

$$G[\hat{\beta}_0 + \hat{\beta}_1 \bar{x}_1 + \dots + \hat{\beta}_{k-1} \bar{x}_{k-1} + \hat{\beta}_k (c_k + 1)] - G[\hat{\beta}_0 + \hat{\beta}_1 \bar{x}_1 + \dots + \hat{\beta}_{k-1} \bar{x}_{k-1} + \hat{\beta}_k c_k][26]$$

El efecto parcial promedio es:

$$n^{-1}\sum_{i=1}^{n}(G[\hat{\beta}_{0}+\hat{\beta}_{1}x_{i1}+\ldots+\hat{\beta}_{k-1}x_{ik-1}+\hat{\beta}_{k}(c_{k}+1)]-G[\hat{\beta}_{0}+\hat{\beta}_{1}x_{i1}+\ldots+\hat{\beta}_{k-1}x_{ik-1}+\hat{\beta}_{k}c_{k}])[27]$$

La función anterior se puede interpretar de forma particular cuando x_k es binaria. Para cada unidad i, se estima la diferencia predicha en la probabilidad de que $y_i=1$ cuando $x_k=1$ y $x_k = 0$, de la siguiente forma:

$$n^{-1}\sum_{i=1}^{n}G[\hat{\beta}_{0}+\hat{\beta}_{1}x_{i1}+\ldots+\hat{\beta}_{k-1}x_{ik-1}+\hat{\beta}_{k}]-G[\hat{\beta}_{0}+\hat{\beta}_{1}x_{i1}+\ldots+\hat{\beta}_{k-1}x_{ik-1}][28]$$

Para finalizar la aplicación de MPL, Logit y Probit. Es importante tener un tipo de efecto marginal que sea interpretable para los modelos no lineales (logit y probit), estos se obtienen de la siguiente manera usando el ejemplo de:

3.6.9.1.1 Efecto parcial promedio ejemplo

```
# Para probit
mean(dnorm(coef(Epep.probit)[1]+coef(Epep.probit)[2]*mroz$nwifeinc))*coef(Epep.probit)[2]*10
  nwifeinc
-0.4998448
# Para logit
mean(lambda.minus(coef(Epep.logit)[1]+coef(Epep.logit)[2]*mroz$nwifeinc))*coef(Epep.logit)[2]
  nwifeinc
-0.5021655
```

[Participación en la fuerza laboral de las mujeres casadas]

```
library(mfx)
# Probando lo hecho a mano
probitmfx(inlf~
            nwifeinc,
          data = mroz)
```

```
Call:
probitmfx(formula = inlf ~ nwifeinc, data = mroz)
```

```
Marginal Effects:
              dF/dx Std. Err. z P>|z|
nwifeinc -0.0050529  0.0015912 -3.1755  0.001496 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
# Efectos marginales Probit
marginales.probit<-probitmfx(inlf~</pre>
           nwifeinc+
            educ+
            exper+
            expersq+
            age+
           kidslt6+
           kidsge6,
          data = mroz)
marginales.probit$mfxest[1:7]*100
[1] -0.46961881 5.11284287
                               4.81768957 -0.07370502 -2.06430891
[6] -33.91499645 1.40630594
# Efectos marginales Logit
marginales.logit<-logitmfx(inlf~</pre>
           nwifeinc+
           educ+
            exper+
            expersq+
            age+
           kidslt6+
           kidsge6,
          data = mroz)
marginales.logit$mfxest[1:7]*100
[1] -0.51900534 5.37773087
                               5.00569282 -0.07669166 -2.14030205
[6] -35.09498193 1.46162143
# Comparación entre logit y probit
variables<-c("nwifeinc", "educ", "exper", "expersq", "age", "kidslt6", "kidsge6")</pre>
```

```
comparacion <-data.frame(variables,marginales.logit$mfxest[1:7]*100, marginales.probit$mfxes
names(comparacion)<-c("Betas", "Logit", "Probit")
comparacion</pre>
```

```
Betas
                 Logit
                             Probit
1 nwifeinc -0.51900534 -0.46961881
     educ 5.37773087
2
                        5.11284287
3
    exper 5.00569282
                        4.81768957
 expersq -0.07669166 -0.07370502
      age -2.14030205 -2.06430891
5
 kidslt6 -35.09498193 -33.91499645
  kidsge6
            1.46162143
                         1.40630594
```

100000/12

[1] 8333.333

Una vez, establecidos los valores de los betas interpretables, podemos pasar a mirar la exactitud del estimaciones de los dos modelos no lineales.

3.6.10 Porcentaje predicho correctamente y la matriz de confusión

En lugar de solo calcular el PPC, se presentará la matriz de confusión que permite mostrar cuantas veces el modelo predijo correctamente los valores de y

1 73.43958


```
Cell Contents
```

```
| Count | | Row Percent | |
```

Total Observations in Table: 753

	estimado		
Observado	0	1 1	Row Total
0	205	120	325 l
	63.08%	36.92%	43.16%
1	80	348	428
	18.69%	81.31%	56.84%
Column Total	285	468	753

- **1. Sensitividad**: % de positivos (1) que sob clasificados como positivos (1). para el modelo probit seria ($\frac{347}{428} = 81.07\%$)
- **2. Especificidad**: % negativos(0) que son clasificado como negativops(0). . en nuestro ejemplo_: $(\frac{207}{325} = 63.98\%)$

Falsos positivos: % de negativos (o) clasificados como positivos (1). En nuestro ejemplo: $(\frac{120}{325} = 36.92\%)$

Falsos Negativos: % de positivos clasificados (1) como negativos (0). en nuestro ejemplo. $(\frac{80}{428} = 18.69\%)$

1 73.57238


```
Cell Contents
|-----|
| Count |
| Row Percent |
```

Total Observations in Table: 753

| estimado

Observado	0	1	Row Total
0	207 63.69%	118 36.31%	325 43.16%
1	81 18.93%	347 81.07%	428 56.84%
Column Total	288 	 465 	 753

Los modelos logit y probit son capaces de clasificar correctamente el 73.5 de las observaciones cuando se emplean los datos de trabajo femenino.

3.6.11 Capacidad discriminante del modelo

Sensibilidad: la probabilidad de que el modelo prediga un resultado positivo (1) para una observación cuando en realidad el resultado es positivo (1)

Especificidad: La probabilidad de que el modelo prediga un resultado negativo para una observación cuando en realidad el resultado es negativo.

4 Ejercicio 17.2 del libro de Wooldridge

Sea grad una variable binaria para si un atleta colegial en una universidad grande se graduará en cinco años. Sean $hsGPAy\ SAT$ el promedio de calificaciones de bachillerato y las puntuaciones del SAT de admisión a la universidad, respectivamente. Sea study el número de horas por semana que pasa un estudiante en un aula de estudio. Suponga que, usando los datos sobre 420 atletas colegiales se obtiene el siguiente modelo logit:

$$\widehat{P}(grad=1|hsGPA,SAT,study) = \Lambda(-1.17+0.24hsGPA+0.00058SAT+0.073study)$$

$$\Lambda = \frac{exp(z)}{[1+exp(z)]}$$

Si mantiene hsGPA = 3.0 y el SAT = 1200, calcule la diferencia estimada en la probabilidad de graduación para alguien que pasa 10 horas a la semana en el aula de estudio y alguien que pasa 5 horas por semana.

```
lambda <-(-1.17+0.24*3+0.00058*1200+0.073*10)
lambda_5 <- (-1.17+0.24*3+0.00058*1200+0.073*5)

diferencia <-(exp(lambda)/(1+exp(lambda)))-(exp(lambda_5)/(1+exp(lambda_5)))
diferencia*100</pre>
```

[1] 7.814493

5 Tareas

1. Tarea: realizar todos los cálculos para el modelo de los arrestos, igual como se hizo en clase para los dos modelos, es decir, con y sin variables binarias.

6 Modelo Tobit

6.1 Motivación

Otro tipo de variable dependiente limitada es una de respuesta de solución de esquina. La variable dependiente es cero para una fracción no trivial representativa, pero también existen valores de una distribución **aproximadamente continua** a través de valores positivos. Por ejemplo, el salario, habrá algunos individuos que ganen cero dólares por hora y otros que ganen valores aproximadamente continuos. Otro ejemplo, la cantidad que el individuo gasta en alcohol cada mes. Esta variable asume un amplio rango de valores en personas mayores a los 18 años.

6.2 Especificación matemática

Sea y una variable que asume datos aproximadamente continuos en valores estrictamente positivos, pero que asume cero con probabilidad positiva. En este caso se podría usar un modelo lineal para y. De hecho, un modelo lineal podría ser una buena aproximación a $E(y|x_1,x_2,...,x_k)$ en especial para x_j cerca de los valores promedio. Nuevamente, obtendríamos valores ajustado negativos, lo que generaría predicciones negativas para y, es decir, problemas análogos a los del MPL. También el supuesto de que una variable explicativa que aparece en la forma de nivel tiene un efecto parcial constante sobre $E(y|\mathbf{X})$ puede ser egañoso. Problablemente la $Var(y|\mathbf{X})$ sería no constante o heterocedástica, debido a que la distribución de y se acumula en cero; esta claro que y no puede tener una distribución normal condicional. Por lo tanto, al igual que en el MPL la inferencia sólo se justifica asintóticamente.

Es importante tener un modelo que implique valores predichos no negativos para y y, que tenga efectos parciales sensatos sobre un amplio rango de las variables independientes. Además, algunas veces es necesario estimar las características de la distribución de y dadas $x_1, ..., x_k$ más alla de la expectativa condicional. El **Modelo Tobit** es idóneo, el cual expresa la respuesta observada, y, en términos de una variable latente subyacente:

$$y^* = \beta_0 + \mathbf{x} + u, u | \mathbf{x} \sim Normal(0, \sigma^2)[1]$$
$$y = max(0, y^*)[2]$$

La variable latente y^* satisface los supuesto del modelo lineal clásico, en particular tiene:

- Distribución normal
- Homocedástica con una media condicional lineal

La ecuación [2] implica que la variable observable, $y = y^* \Leftrightarrow y^* \geq 0$, caso contrario $y = 0 \Leftrightarrow y^* < 0$. Debido a que y^* se distribuye como una normal, y tiene una distribución continua a través de valores estrictamente positivos. En particular, la densidad de $y|\mathbf{X}$ es la misma de $y^*|\mathbf{X}$ para valores positivos, Además:

$$P(y = 0 | \mathbf{x}) = P(y^* < 0 | \mathbf{x}) = P(u < -\mathbf{x} | \mathbf{x}) = P(u | \sigma < -\mathbf{x} / | \mathbf{x}) = \Phi(-\mathbf{x} /) = 1 - \Phi(\mathbf{x} /) [3]$$

Notar que $u/\sigma \sim N(0,1)$ y es independiente de \mathbf{x} ; se ha absorbido el intercepto en \mathbf{x} por simplicidad notacional. Por lo tanto, si $\mathbf{x_i}, y_i$ se extraen aleatoriamente de la población, la densidad de $y_i|\mathbf{x_i}$ es:

$$(2\pi\sigma^2)^{-1/2}exp[-(y-\mathbf{x_i})^2/(2\sigma^2)] = (1/\sigma)\phi[(y-\mathbf{x_i})/\sigma], y > 0[4]$$

$$P(y_i = 0|y - \mathbf{x_i}) = 1 - \Phi(\mathbf{x_i} /)[5]$$

Donde ϕ es la función de densidad normal estándar

De las ecuaciones [4] y [5] se obtiene la función log-verosimilitud para cada observación i:

$$l_i(\beta, \sigma) = 1(y_i = 0)log[1 - \Phi(\mathbf{x_i} /)] + 1(y_i > 0)log((1/\sigma)\phi[(y_i - \mathbf{x_i} / \sigma))][6]$$

Notese que, esto depende de σ , la desviación estándar de u, así como de las β_j . La logverosimilitud para una n aleatoria se obtiene al sumar [6], a través de todas i. Las estimaciones de máxima verosimilitud de β y σ se obtienen al maximizar la log-verosimilitud; esto requiere métodos numéricos, pero el software lo realiza.

Para restricciones de exclusión múltiples es fácil usar la prueba de **Wald** o la razón de verosimilitudes.

6.3 Interpretaciones de las estimaciones Tobit.

Los resultados de Tobit y MCO son casi siempre similares, lo que hace tentador interpretar las $\hat{\beta}_i$ de Tobit como si fueran estimaciones de MCO, pero se advierte que no es así de fácil.

La [1] muestra que las β_j miden efectos parciales de las x_j sobre el $E(y^*|\mathbf{x})$. La variable que se busca explicar es y, pues es el resultado observado (las horas trabajadas o la cantidad donaciones)

De la ecuación [5] podemos obtener $P(y = 0|\mathbf{x})$, de ahi podemos estimar $P(y > 0|\mathbf{x})$; Qué pasa si se quiere estimar el valor esperado de y en función \mathbf{x} ?. En los modelos Tobit, existe dos expectativas. La primera $E(y|y > 0, \mathbf{x})$, que recibe el nombre de **expectativa condicional**. La segunda es $E(y|\mathbf{x})$, conocida como la **expectativa no condicional**. La expectativa $E(y|y > 0, \mathbf{x})$ nos dice que, para los valores dados de \mathbf{x} , el valor esperado de y para la subpoblación donde y > 0, esta expectativa se hallar con facilidades a partir $E(y|\mathbf{x})$:

$$E(y|\mathbf{x}) = P(y > 0|\mathbf{x}).E(y|y > 0, \mathbf{x}) = \Phi(\mathbf{x}/\sigma).E(y|y > 0, \mathbf{x})[7]$$

Para obtener $E(y|y>0,\mathbf{x})$ se puede usar un resultado para las variables aleatorias con distribución normal: si $z\sim Normal(0,1)$ entonces $E(z|z>c)=\phi(c)/[1-\Phi(c)]\forall c$ constante. Pero $E(y|y>0,\mathbf{x})=\mathbf{x}+E(u|u>-\mathbf{x})=$

$$\mathbf{x} + \sigma E[(u/\sigma)|(u/\sigma) > -\mathbf{x} /] =$$

$$\mathbf{x} + \sigma \phi_0 \mathbf{x} / \sigma) / \Phi(\mathbf{x} / \sigma)$$

Debido a que: $\phi(-c) = \phi(c), 1 - \Phi(c) = \Phi(c), u/\sigma \sim Normal(0,1)$ independiente de **x**. Podemos reecribir a [7] así:

$$E(y|y > 0, \mathbf{x}) = \mathbf{x} + \sigma \lambda(\mathbf{x} /)$$

Donde: $\lambda(c) = \frac{\phi(c)}{\Phi(c)}$ recibe el nombre de la razón inversa de Mills

6.4 Ejemplo

Estimación Tobit y MCO de las horas anuales trabajas

La variables

- Dependiente (Y) son las horas anuales trabajadas por las mujeres
- Variables explicativas o regresoras:
- nwifeinc: Salario de esposo en miles de dólares
- educ: años de educación
- exper : años de experiencia
- $exper^2$: años de experiencia al cuadrado
- age : edad de las mujeres
- kidslt6: Niños menores a seis años
- kidsqe6: Niños entres 6 y 18 años

6.4.1 Verificar que la variable dependiente sea de solución de esquina

activación de paquetes

```
datos <- data("mroz")

# Histograma
hist(mroz$hours, main = "Histograma de las horas trabajadas", xlab = "Horas trabajadas")</pre>
```

Histograma de las horas trabajadas


```
library(ggplot2)

ggplot(data = mroz, aes(x=hours))+
  geom_histogram(bindwidth=10)+
```

```
theme_bw()+
labs(title = "Distribución de las horas trabajas\n de las mujeres")
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Distribución de las horas trabajas de las mujeres

En el anterior histograma se puede observar que las mayor cantidad de obervaciones se encuentran en cero, así tenemos indicios de que la variable y es de solución de esquina, pues a además, la horas trabajadas anuales se amplían hasta 5000 al año. Para saber la proporcion de ceros que tiene la variable dependiente dicotomizamos dicha variables

```
# Transformación de la variable en binaria
mroz$dico.hours <- ifelse(mroz$hours==0,0,1)

# Calculando el porcentaje de ceros en Y
prop.table(table(mroz$dico.hours))*100</pre>
```

0 1 43.16069 56.83931

6.4.2 Usando MCO

Vamos a determinar las horas trabajadas al año por la mujeres, usando MCO

	Dependent variable:	
	Horas al año trabajadas	
nwifeinc	-3.447	
	(2.544)	
educ	28.761**	
	(12.955)	
exper	65.673***	
	(9.963)	
expersq	-0.700**	
	(0.325)	
age	-30.512***	
-	(4.364)	
kidslt6	-442.090***	

```
(58.847)
kidsge6
                          -32.779
                         (23.176)
                       1,330.482***
Constant
                         (270.785)
Observations
                           753
R2
                          0.266
                          0.259
Adjusted R2
Residual Std. Error
                    750.179 (df = 745)
                   38.495*** (df = 7; 745)
F Statistic
_____
```

Si la variable "y" ajustada tiene valores menores que cero, significa que no es un buen aj summary(model.mco\fitted.values)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. -719.8 417.5 737.7 740.6 1093.1 1614.7
```

summary(mroz\$hours)

Note:

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0 0.0 288.0 740.6 1516.0 4950.0
```

Como me arroja valores negativos ajustados, significa que el MCO no esta ajustando de forma adecuada a la variable y de solución de esquina. Además, el efecto es constante. Esto me siguiere que se debe usar un modelo Tobit para ajustar una variable de solución de esquina.

6.4.3 Modelo Tobit

Por lo antes mencionado, ajustamos a la variable *hours* con un modelo **Tobit** Verificar el cumpliendo de la variable *hours* para usar un modelo Tobit.

*p<0.1; **p<0.05; ***p<0.01

```
# Porcentaje de ceros en la variable hours

mroz$dico <- ifelse(mroz$hours==0,0,1)
prop.table(table(mroz$dico))*100</pre>
```

```
0 1
43.16069 56.83931
```

En este ejemplo aproximadamente el 43% de los datos de *hours* son cero y el resto datos aproximadamente continuos

Procedemos a ajustar un modelo Tobit

```
modelo.tobit <- censReg(hours~</pre>
                 nwifeinc+
                   educ+
                   exper+
                   expersq+
                   age+
                  kidslt6+
                  kidsge6,
                data=mroz,
                left = 0)
modelo.tobit2 <- tobit(hours~</pre>
                 nwifeinc+
                   educ+
                   exper+
                   expersq+
                   age+
                  kidslt6+
                  kidsge6,
                data=mroz)
```

Una vez, ejecutadas las dos regresiones (MCO y Tobit) las ponemos a comparación, de tal forma que, se replique la ${f Tabla}$ 17.2 ${f B}$ del libro de Wooldridge (2010)

```
digits = 2,
  type = "text",
  df=F,
  title = "Estimación Tobit y MCO de las horas anuales trabajas",
  dep.var.labels = "Variable dependiente: horas anuales trabajadas",
  header = F,
  column.labels = c("MCO", "Tobit", "Tobit2"),
  model.names = F)
```

Estimación Tobit y MCO de las horas anuales trabajas

	Dependent variable:		
	Variable depend	iente: horas anu	ales trabajadas
	MCO	Tobit	Tobit2
	(1)	(2)	(3)
nwifeinc	-3.45	-8.81**	-8.81**
	(2.54)	(4.46)	(4.46)
educ	28.76**	80.65***	80.65***
	(12.95)	(21.58)	(21.58)
exper	65.67***	131.56***	131.56***
	(9.96)	(17.28)	(17.28)
expersq	-0.70**	-1.86***	-1.86***
	(0.32)	(0.54)	(0.54)
age	-30.51***	-54.41***	-54.41***
	(4.36)	(7.42)	(7.42)
kidslt6	-442.09***	-894.02***	-894.02***
	(58.85)	(111.88)	(111.88)
kidsge6	-32.78	-16.22	-16.22
	(23.18)	(38.64)	(38.64)
logSigma		7.02*** (0.04)	

Constant	1,330.48*** (270.78)	965.31** (446.44)	965.31** (446.44)
Observations	753	753	753
R2	0.27		
Adjusted R2	0.26		
Log Likelihood		-3,819.09	-3,819.09
Akaike Inf. Crit.		7,656.19	
Bayesian Inf. Crit.		7,697.81	
Residual Std. Error	750.18		
F Statistic	38.50***		
Wald Test			253.86***
Note:		*p<0.1; **p	<0.05; ***p<0.01

Si quiero hacer comparables las estimaciones Tobit con MCO se debe multiplicar por el factor de ajuste. El factor escalar **EPP** $n^{-1}\sum_{i=1}^{n}\Phi(\mathbf{x_i}^*/\hat{\sigma})$ resulta que es aproximadamente de 0.589. Por ejemplo, educ por 0.589 se obtiene $0.589(80.65)\approx 47.50$, por lo tanto, si una mujer aumenta un año a su educación, en promedio se sumara 47.5 horas de trabajo, esto es mayor al MCO, que es de 28.76. Se podría usar otro escalar a partir de los valores promedio de todas las variables explicativas, entonces se calcula el EPA $\Phi(\mathbf{x_i}^*/\hat{\sigma})$, es aproximadamente 0.645

6.4.3.1 Efecto marginal

A continuación, uso el comando margEff() para encontrar los efectos marginales de la estimación Tobit

summary(margEff(modelo.tobit))

```
Marg. Eff. Std. Error t value Pr(>|t|)
nwifeinc
           -5.32644
                       2.69073 -1.9796 0.0481217 *
educ
           48.73409
                      12.96341
                                3.7594 0.0001837 ***
                                7.7151 3.886e-14 ***
exper
           79.50423
                      10.30497
expersq
           -1.12651
                       0.32326 -3.4848 0.0005213 ***
          -32.87692
                       4.45770 -7.3753 4.383e-13 ***
age
kidslt6
         -540.25683
                      66.62393 -8.1091 2.220e-15 ***
           -9.80053
                      23.36134 -0.4195 0.6749580
kidsge6
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Interpretaciones

• Si el salario del esposo aumenta en 1000 dólares al año, las horas de trabajo de la mujer disminuyen en 5.32 horas. El mayor efecto, que es altamente significativo, sigue siendo el aumento de niños pequeños, pues en promedio, si se aumenta un infante menor a seis años las horas de trabajo decrecen en 540 horas al año.

6.4.4 No linealidad del modelo Tobit

=======================================	
	Dependent variable:
	hours
kidslt6	-774.751***
	(116.086)
logSigma	7.191***
	(0.038)
Constant	489.522***
	(59.105)
Observations	753
Log Likelihood	-3,930.753
Akaike Inf. Crit.	7,867.505
Bayesian Inf. Crit.	7,881.377
=======================================	
Note:	*p<0.1; **p<0.05; ***p<0.01

```
# Añadiendo la curva de regresión Tobit

x <- seq(0,4, 0.5)

y <- pnorm((coef(mod.stobit)[1]+coef(mod.stobit)[2]*x)/exp(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.stobit)[3]))*(coef(mod.sto
```

Tobit para la relación niños pequeños y horas trabajadas de

En el gráfico anterior podemos observar que añadir un niño menor a seis años hace que se reduzca las horas dedicadas al trabajo. Sin embargo, en la linea azul del modelo Tobit la reducción de horas es decreciente a medida que se tiene más hijos pequeños, en el MCO (linea de color rojo), la reducción de las horas trabajadas es la misma con el aparecimiento de menor a seis años. Es decir, no importa si pasas de cero hijo a a uno hijo o de 3 a 4, la reducción de las horas trabajadas es la misma. No esta tomando en cuenta el aprendizaje de la madre con cada nuevo hijo.

6.4.4.1 Evaluación informal del modelo Tobit [Problemas de especificación]

```
probit.tobit <-glm(dico.hours~</pre>
                nwifeinc+
                 educ+
                 exper+
                 expersq+
                 age+
                 kidslt6+
                 kidsge6,
               data=mroz,
               family = binomial(link = "probit"))
stargazer(probit.tobit,
          type = "text",
          title = "Estimación Tobit y MCO de las horas anuales trabajas",
          dep.var.labels = "Variable dependiente: horas anuales trabajadas 0 y 1")
```

Estimación Tobit y MCO de las horas anuales trabajas

kidslt6

Dependent variable:

Variable dependiente: horas anuales trabajadas 0 y 1 -0.012** nwifeinc (0.005)educ 0.131*** (0.025)0.123*** exper (0.019)-0.002*** expersq (0.001)-0.053*** age (0.008)

-0.868***

```
(0.118)
                                        0.036
kidsge6
                                       (0.044)
                                        0.270
Constant
                                       (0.508)
Observations
                                         753
                                       -401.302
Log Likelihood
Akaike Inf. Crit.
                                       818.604
_____
Note:
                                          *p<0.1; **p<0.05; ***p<0.01
```

Luego procedemos a usar los coeficientes para la comparación entre el modelo Probit y el Tobit, el objetivo es evaluar la validez del modelo Tobit.

```
z <- coef(probit.tobit)
m <- coef(modelo.tobit)

comparacion <- data.frame(z, (m[1:8])/exp(m[9]), z-(m[1:8])/exp(m[9]))
names(comparacion) <- c("probit", "beta/sigma", "diferencia")
comparacion</pre>
```

```
probit
                        beta/sigma
                                    diferencia
           (Intercept)
nwifeinc
           -0.012023637 -0.007855680 -0.004167957
educ
           0.130903969 0.071875266 0.059028703
           0.123347168 0.117256469 0.006090698
exper
expersq
           -0.001887067 -0.001661427 -0.000225640
           -0.052852442 -0.048488379 -0.004364063
age
kidslt6
           -0.868324680 -0.796795431 -0.071529248
           0.036005611 -0.014454263 0.050459873
kidsge6
```

Tobit de nwifeinc entre $\hat{\sigma}=1122.02$, se obtuvo -8.81/1122.02=-0.0079; el coeficiente probit de nwifein es de cerca de -0.012, lo cual es diferente, pero no de forma drástica. En kidslt6, el coeficiente estimado entre $\hat{\sigma}$ es de cerca de -0.797, en comparación con la estimación probit de -0.868. De nuevo, ésta no es una diferencia enorme, pero indica que tener niños pequeños tiene un efecto mayor sobre la decisión inicial de participar en la fuerza laboral que sobre cuántas horas elige trabajar una mujer una vez que está en dicha fuerza. (Tobit promedia de

forma efectiva estos dos efectos.) No se sabe si los efectos son estadísticamente diferentes, pero son del mismo orden de magnitud.

Por lo tanto, se podría decir que el modelo Tobit es adecuado, parar ajustar a la variable hours

¿Qué sucede si se concluye que el modelo Tobit es inadecuado? Existen modelos, que suelen conocerse como modelos de **dos partes** o **de obstáculos**, que se pueden usar cuando Tobit es inadecuado

7 Modelo Poisson

7.1 Introducción y motivación

Una tercera clase de variable dependiente no negativa es una variable de conteo, que puede asumir valores enteros no negativos: [0, 1, 2, ...], específicamente los que nos interesa son los casos en los que y asume pocos valores, incluido el cero. Ejemplos:

- El número de medallas que puede obtener un deportista en una olimpiada,
- El número de hijos que tiene una mujer
- El número de publicaciones al año de un científico

Al igual que las respuestas, binaria y Tobit, un modelo lineal para $E(y|x_1,x_2,...,x_k)$, quizá no proporciona el mejor ajuste a lo largo de todos los valores de las variables explicativas. Sin embargo, es informativo comenzar con un modelo lineal.

Como en un modelo **Tobit** no se puede obtener el logaritmo de una variable de conteo que asume valores de cero. Un método útil es modelar el valor esperado como una función exponencial:

$$E(y|x_1,x_2,...,x_k) = exp(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k) \ [1]$$

7.1.1 Recordatorio

```
data("wage1", package = "wooldridge")

#Modelo lineal
salario.lm<-lm(wage~educ,</pre>
```

```
_____
                   Dependent variable:
                        wage
                       0.541***
educ
                        (0.053)
                        -0.905
Constant
                        (0.685)
Observations
                         526
R2
                        0.165
Adjusted R2
                        0.163
Residual Std. Error 3.378 (df = 524)
F Statistic
               103.363*** (df = 1; 524)
```

Note:

abline(salario.lm,

```
# Gráfica de la relación salario y la educación

plot(wage~educ,
    wage1,
    pch=20,
    col="steelblue",
    ylab = "Salario en USD por hora",
    xlab="años de educación",
    main="La relación entre el salario y la educación")

abline(0,0)
```

*p<0.1; **p<0.05; ***p<0.01

```
lw=2,
col="red")
```

La relación entre el salario y la educación


```
plot(y=wage1$wage,
    x=wage1$educ,
    col="blue",
    pch=19,
    xlab="Años de educación",
    ylab="Salario en USD/hora")
```


Interpretaciones

• Un aumento de un año de educación, esta asociado en promedio a un incremento en el salario de 54 centavos por cada trabajada.

Es decir que la forma funcional al parecer, es la siguiente:

$$wage = exp(\beta_0 + \beta_1 educ + u)$$
 [2]

La ecuación [2] no es lineal en los parámetros, para usar el modelo de regresión se usa un cambio usando la función logarítmica, tenemos:

$$log(wage) = \beta_0 + \beta_1 educ + u$$

Dependent variable:

```
-----
```

```
log(wage)
                        0.083***
educ
                         (0.008)
Constant
                        0.584***
                         (0.097)
Observations
                          526
R2
                          0.186
Adjusted R2
                          0.184
Residual Std. Error 0.480 (df = 524)
                119.582*** (df = 1; 524)
F Statistic
_____
Note:
                *p<0.1; **p<0.05; ***p<0.01
```

Intepretación

```
exp(coef(log.lin)[1])
```

(Intercept)

- 1.792789
- $e^{0.584} = 1.79$ Si no hay cambios en la educación, se predice un ingreso promedio por hora trabajada de 1.79 USD
- \bullet Un aumento de un año en la educación esta asociado a un incremento de 8.3% en el salario por hora trabajada

```
# Gráfica de la relación salario y la educación

plot(log(wage)~educ,
    wage1,
    pch=20,
    col="steelblue",
    ylab = "Salario en USD por hora",
    xlab="años de educación",
    main="La relación entre el salario y la educación")
```

```
abline(log.lin,
    lw=2,
    col="green")

abline(salario.lm,
    col="red",
    lwd=2)

abline(0,0)
```

La relación entre el salario y la educación

7.1.2 Otro ejemplo

Linea de regresión Notas-ingreso

Volviendo a la ecuación [1], debido a que exp(.) siempre es positivo. [1] asegura que los valores predichos para y también sean positivos. Aunque [1] es más complicada que un modelo lineal, básicamente ya se sabe como interpretar los coeficientes, al obtener el logaritmo de la ecuación [1]

$$log[E(y|x_1,...,x_k)] = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k$$
[2]

es decir, que el logaritmo del valor esperado es lineal. Por lo tanto, mediante las propiedades de la aproximación de la función logaritmo tenemos:

$$\%\Delta E(y|\mathbf{x}) \approx (100\beta_i)\Delta x_i[3]$$

Es decir, $100\beta_j$ es el cambio porcentual en $E(y|\mathbf{x})$, dado un incremento de una unidad en x_j . A veces, es necesaria una estimación más precisa y es fácil de encontrar una, al observar los cambios discretos en el valor esperado. Manteniendo todas la variables explicativas fijas, excepto x_j y, sea x_k^0 el valor inicial y x_k^1 el valor siguiente. Entonces, el cambio proporcional en el valor esperado es:

$$[exp(\beta_o + \mathbf{x_{k-1}} + \beta_k x_k^1)/exp(\beta_o + \mathbf{x_{k-1}} + \beta_k x_k^0)] - 1 = exp(\beta_k \Delta x_k) - 1$$
 [4]

Donde: $\mathbf{x_{k-1}}_{k-1}$ es una abreviatura de $\beta_1 x_1 + \ldots + \beta_{k-1} x_{k-1}$ y, $\Delta x_k = x_k^1 - x_k^0$. Cuando $\Delta x_k = 1$, la variable x_k es binaria que se cambia de cero a uno, entonces el cambio es $exp(\beta_k) - 1$. Dada $\hat{\beta}_k$, se obtiene $exp(\hat{\beta}_k) - 1$ y se multiplica por el 100 para transformar el cambio proporcional en un cambio porcentual.

Si por ejemplo $x_j=log(z_j)$ para alguna variable $z_j>0$, entonces su coeficiente β_j se interpreta como una elasticidad respecto a z_j

Debido a que [1] es no lineal en sus parámetros, no se puede usar métodos de regresión lineal. Entonces usamos la estimación máxima verosimilitud (EMV) y también el método relacionado a la estimación de cuasi máxima verosimilitud (ECMV)

A lo largo de los cursos de econometría se ha presentado la normalidad como el supuesto de distribución estándar para regresión lineal. Este supuesto no puede usarse en una variable de conteo (pues la distribución normal es para variables continuas que asuman todos los valores) que asume sólo pocos valores, la distribución será muy distinta a la normal. En su lugar, la distribución nominal para los datos de conteo es la **distribución Poisson**

Como nos interesa el efecto de las variables explicativas sobre y, se debe observar la distribución de Poisson condicional a \mathbf{x} . La distribución Poisson está determinada por completo por su media, así sólo se necesita especificar $E(y|\mathbf{x})$, esta tiene la misma forma de [1] que se abrevia $exp(\mathbf{x})$. Entonces, la probabilidad de que y será igual al valor h, condicional sobre \mathbf{x} , es:

$$P(y=h|\mathbf{x})=exp[-exp(\mathbf{x}\;)][exp(\mathbf{x}\;)]^h/h!, h=0,1,\dots\;[5]$$

Donde h! denota el factorial. Esta distribución, que es la base del **modelo de regresión de Poisson**, permite hallar las probabilidades condicionales para cualquier valor de variables explicativas. Por ejemplo, $P(y=0|\mathbf{x})=exp[-exp(\mathbf{x})]$. Una vez que se tienen las estimaciones de β_i , se pueden insertar en las probabilidades para diferentes valores \mathbf{x} .

Dada una muestras aleatoria $[(\mathbf{x_i}, y_i) : i = 1, 2, ..., n]$, se puede construir la función **log-verosimilitud**:

$$\mathcal{L}(\beta) = \sum_{i=1}^{n} l_i(\beta) = \sum_{i=1}^{n} [y_i \mathbf{x_i} - exp(\mathbf{x_i})] [6]$$

Se desecha el término $log(y_i!)$. Esta función se maximiza usando EMV, aunque la EMV de Poisson no es cerrada.

Igual que los modelo logit, probit y Tobit, no se pueden comparar directamente las magnitudes de las estimaciones del Poisson de una función exponencial con las estimaciones de MCO. se hace comparables de la siguiente forma:

7.1.2.1 Variables explicativas continuas

Se aplica el efecto parcial de x_j respecto a $E(y|x_1, x_2, ..., x_k)$:

$$\frac{\partial E(y|x_1,x_2,..,x_k)}{\partial x_i} = exp(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k) \times \beta_j[7]$$

Es interesante el factor escalar **EPP**:

$$n^{-1} \Sigma_{i=1}^n exp(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \ldots + \hat{\beta}_k x_k) = n^{-1} \Sigma_{i=1}^n \hat{y}_i[8]$$

es simplemente el promedio muestral \bar{y} de y_i donde se definen los valores ajustados como $\hat{y}_i = exp(\hat{\beta}_0 + \mathbf{x_i^*})$. Es decir, para la regresión Poisson con una función media exponencial, el promedio de los valores ajustados es el mismo que el promedio de los resultados originales de y_t , tal como el caso de regresión lineal. Esto simplifica el escalar de las estimaciones Poisson $\hat{\beta}_j$, para hacerlas comparables a las estimaciones MCO, $\hat{\gamma}_j$ para una variable explicativa continua, se puede comparar con $\hat{\gamma}_j$ con $\bar{y}.\hat{\beta}_j$

Aunque el análisis de EMV de Poisson es un primer paso para los datos de conteo, suele ser muy restrictivo. Todas las probabilidades y los momentos mayores de la distribución Poisson se determinan por completo por la media. Por ejemplo, la varianza es igual a la media:

$$Var(y|\mathbf{x}) = E(y|\mathbf{x})$$
 [9]

Esto es restrictivo y se viola en muchas aplicaciones. Por fortuna, la distribución de Poisson tiene una propiedad de robustez muy buena, es decir, que se mantenga o no la distribución de Poisson, se obtienen estimadores asistóticamente normales y consistentes con las β_i

Cuando se EMV de Poisson, pero no se supone que la distribución de Poisson sea correcta, este análisis recibe el nombre de **Estimación de cuasi máxima verosimilitud (ECMV)**. LA ECMV de Poisson es muy útil debido a que esta programada en muchos paquetes econométricos. Sin embargo, a menos que el supuesto de varianza de Poisson [9] se mantenga, se deben ajustar los errores estándar, de la siguiente forma:

El ajuste a los errores estándar está disponible cuando se supone que la varianza es proporcional a la media:

$$Var(y|\mathbf{x}) = \sigma^2 E(y|\mathbf{x})$$
 [10]

Donde: σ^2 es un parámetro desconocido.

- Cuando $\sigma^2 = 1$ se obtiene el supuesto de varianza de Poisson [9]
- Si $\sigma^2 > 1$ la varianza es mayor que la media para toda \mathbf{x} , esto se llama **sobredispersión** común en regresiones de conteo.
 - Si $\sigma^2 < 1$ la varianza es menor que la media para toda \mathbf{x} , esto se llama **subdispersión** es poco común.

Bajo [10] es fácil ajustar los errores estándar de la EMV de Poisson. Si $\hat{\beta}_j$ denota la ECMV de Poisson y se definen los residuales como $\hat{u}_i = y_i - \hat{y}_i$, donde $\hat{y}_i = \exp(\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + ... + \hat{\beta}_k x_{ik})$. Un estimador consistente de $\sigma^2 = (n-k-1)^{-1} \sum_{i=1}^n \frac{\hat{u}_i^2}{\hat{y}_i}$, donde la división entre \hat{y}_i es el ajuste apropiado de heterocedasticidad y n-k-1=gl dadas las n observaciones y k+1 estimadores $\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_k$. Si $\sigma = \sqrt{\sigma^2}$, se multiplican los errores estándar Poisson usuales por $\hat{\sigma}$. Si $\hat{\sigma}$ es notablemente mayor que uno, los errores estándar corregidos pueden ser mucho mayores que los errores estándar nominales, generalmente son incorrectos, de la EMV de Poisson.

Bajo el supuesto de distribución de Poisson, se puede usar el estadístico de la razón de verosimilitudes para probar las restricciones de exclusión, que siempre, tienen la forma de $RV=2(l_{nr}-L_r)$. Si se tiene q restricciones de exclusión, el estadístico se distribuye aproximadamente con χ^2_q bajo la hipótesis nula. Bajo el supuesto menos restrictivo de [10], un simple ajuste está disponible si se divide $RV=2(l_{nr}-L_r)$ entre σ^2 donde σ^2 se obtiene del modelo no restringido.

7.2 Ejemplo [Regresión de Poisson para número de arrestos]

La base de datos **crime1** contiene información sobre arrestos durante 1986 y otros datos, sobre 2725 hombres nacidos en California en 1960 o 1961. Cada hombre de la muestra fue arrestado al menos una vez antes 1986.

Las variables:

• narr86: indica el número de veces que un hombre fue arrestado durante 1986: esta variable es cero para la mayoría de los hombres de la muestra (72.29%) y varía desde 0 hasta 12. (El porcentaje de hombres detenidos una sola vez durante 1986 es 20.51%)

```
pacman::p_load(wooldridge,
               tidyverse)
data("crime1")
crime1 %>%
str()
'data.frame':
               2725 obs. of 16 variables:
 $ narr86 : int  0 2 1 2 1 0 2 5 0 0 ...
 $ nfarr86: int 0 2 1 2 1 0 2 3 0 0 ...
 $ nparr86: int 0 0 0 1 0 0 1 5 0 0 ...
 $ pcnv
         : num 0.38 0.44 0.33 0.25 0 ...
 $ avgsen : num 17.6 0 22.8 0 0 ...
 $ tottime: num 35.2 0 22.8 0 0 ...
 $ ptime86: int 12 0 0 5 0 0 0 0 9 0 ...
 $ qemp86 : num 0 1 0 2 2 4 0 0 0 3 ...
 $ inc86 : num 0 0.8 0 8.8 8.1 ...
 $ durat : num 0 0 11 0 1 ...
 $ black : int 0 0 1 0 0 0 1 0 1 0 ...
 $ hispan : int 0 1 0 1 0 0 0 0 1 ...
 $ born60 : int 1 0 1 1 0 1 1 1 1 1 ...
 $ pcnvsq : num 0.1444 0.1936 0.1089 0.0625 0 ...
 $ pt86sq : int 144 0 0 25 0 0 0 0 81 0 ...
 $ inc86sq: num 0 0.64 0 77.44 65.61 ...
 - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"
# Tabla de porcentaje
crime1 %>%
  with(table(narr86)) %>%
  prop.table() %>%
 round(digits = 2) %>%
 print()
narr86
                                                    12
```

```
2
   3
     4
      5
        7
          10
 1
       6
```

• pcnv: Es la proporción (no el porcentaje) de detenciones anteriores a 1986 que condujeron a una condena (?)

```
crime1 %>%
  with(table(pcnv)) %>%
  round(digits = 2) %>%
  print()
```

```
pcnv
```

```
0 0.0799999982118607 0.0900000035762787
                                                           0.10000001490116
             1260
0.109999999403954
                    0.129999995231628
                                        0.14000000596046
                                                            0.170000001788139
                 1
                                    3
                                                        6
                                                                           17
0.180000007152557
                    0.200000002980232
                                        0.219999998807907
                                                            0.230000004172325
                                   24
                                                             0.2899999165535
             0.25
                    0.259999990463257
                                        0.270000010728836
               53
                                    1
0.30000011920929
                    0.310000002384186
                                        0.319999992847443
                                                            0.330000013113022
                                                                          139
0.360000014305115
                    0.379999995231628
                                       0.389999985694885
                                                            0.40000005960464
                                   20
0.409999996423721
                    0.419999986886978
                                       0.430000007152557
                                                            0.439999997615814
                                    5
                                                       14
                                                                           10
0.449999988079071
                    0.469999998807907
                                                           0.529999971389771
                                                      0.5
                                                      313
0.540000021457672
                    0.560000002384186
                                        0.569999992847443
                                                            0.600000023841858
                 2
                                    8
                                                                           34
0.620000004768372
                    0.629999995231628
                                        0.639999985694885
                                                            0.670000016689301
                                                                           85
0.699999988079071
                    0.709999978542328
                                        0.730000019073486
                                                                         0.75
                                     2
                                                        1
                                                                           20
0.80000011920929
                    0.829999983310699
                                                        1
                                                      574
                 8
                                    3
```

 avgsen es la duración promedio de las condenas anteriores cumplidas (cero para la mayoría de casos)

```
crime1 %>%
  with(table(avgsen)) %>%
  print()
```

```
avgsen
```

```
0 0.300000011920929 0.800000011920929 0.899999976158142
2591 1 2 2
```

1.10000002384186	1.39999997615814	2.20000004768372	2.29999995231628
1.10000002304100	1.09999997013014	2.20000004700372	2.299999990201020
2.59999990463257	2.90000009536743	3.5	4
2	1	1	2
4.30000019073486	4.80000019073486	4.90000009536743	5.5
1	1	1	2
5.59999990463257	6	6.09999990463257	6.19999980926514
4	1	2	1
6.30000019073486	6.69999980926514	6.90000009536743	7.09999990463257
1	1	1	3
7.19999980926514	7.59999990463257	7.80000019073486	7.90000009536743
1	1	2	1
8.10000038146973	8.19999980926514	8.30000019073486	8.39999961853027
1	1	1	1
8.60000038146973	8.89999961853027	9	9.10000038146973
2	1	2	1
9.30000019073486	9.5	9.60000038146973	9.69999980926514
9.80000019073486	1 9.89999961853027	1	10.5
9.0000019073400	9.09999901055027	10	10.5
10.6000003814697	10.6999998092651	10.8999996185303	11
10.0000000014037	10.0333330032001	2	1
11.1000003814697	11.3000001907349	11.3999996185303	11.6000003814697
1	1	1	2
11.6999998092651	11.8000001907349	11.8999996185303	12.1000003814697
1	2	3	1
12.1999998092651	12.3999996185303	12.5	12.6999998092651
2	1	2	1
12.8999996185303	13.3000001907349	13.3999996185303	13.6999998092651
1	1	1	1
14.1999998092651	14.3000001907349	14.3999996185303	14.8000001907349
1	1	1	1
15	15.6999998092651	16	16.1000003814697
1	1	1	1
16.2000007629395	16.5	16.6000003814697	17
17 1000003914607	1 17.6000003814697	17 7000007620205	10 2000006105202
17.1000003814697	17.6000003614697	17.7000007629395	18.3999996185303
18.5	18.7000007629395	18.8999996185303	19.2999992370605
10.0	10.7000007023333	2	2
20.2999992370605	20.6000003814697	21.7000007629395	21.7999992370605
1	1	1	1
22	22.7999992370605	23.5	23.8999996185303

• tottime: tiempo en prisión desde los 18 años (meses)

```
crime1 %>%
  with(table(tottime)) %>%
  print()
```

tottime

COCCINE			
0	0.30000011920929	0.800000011920929	0.899999976158142
2591	1	2	2
1.10000002384186	1.39999997615814	2.20000004768372	2.29999995231628
5	1	1	1
2.59999990463257	2.90000009536743	4	4.80000019073486
2	1	2	1
5.5	5.59999990463257	6	6.19999980926514
1	2	1	1
6.69999980926514	7	7.09999990463257	7.19999980926514
1	1	1	1
7.59999990463257	7.80000019073486	8.10000038146973	8.19999980926514
1	1	1	1
8.30000019073486	8.60000038146973	8.89999961853027	9
1	2	1	1
9.10000038146973	9.30000019073486	9.5	9.60000038146973
1	1	1	1
9.80000019073486	9.89999961853027	10.5	10.8999996185303
1	1	1	1
11	11.1000003814697	11.1999998092651	11.3000001907349
2	1	1	1
11.3999996185303	11.6000003814697	11.6999998092651	11.8000001907349
1	1	1	1
11.8999996185303	12.1999998092651	12.3999996185303	12.5
3	4	1	2
12.8999996185303	13.3000001907349	13.3999996185303	13.6999998092651
1	1	1	1
14.1999998092651	14.3000001907349	14.3999996185303	14.6999998092651

```
1
15.6999998092651
                   16.1000003814697
                                                         16.6000003814697
                                                   16.5
                                   1
                                                                         1
16.7999992370605
                                  17
                                      17.1000003814697
                                                                        18
                                   1
                                                                         1
18.3999996185303
                                      18.8999996185303
                                                          19.2999992370605
                                18.5
                                   1
19.3999996185303
                                  20
                                      20.2999992370605
                                                         20.7000007629395
                                   1
                                                                         1
21.2000007629395
                                      21.3999996185303
                                                         21.7000007629395
                   21.2999992370605
                                                                         1
                                   1
21.7999992370605
                                  22
                                      22.3999996185303
                                                         22.7999992370605
                                   1
23.2000007629395
                                23.5
                                      23.7000007629395
                                                         23.8999996185303
                                   1
24.2000007629395
                   24.3999996185303
                                      24.6000003814697
                                                         25.2000007629395
                                                                         1
                                   1
25.7999992370605
                   29.1000003814697
                                      29.6000003814697
                                                                        30
                                                                         1
                1
                                   1
30.3999996185303
                   31.2000007629395
                                      31.2999992370605
                                                         31.8999996185303
               32
                   32.4000015258789
                                      35.2000007629395
                                                         35.4000015258789
                1
36.0999984741211
                   36.7999992370605
                                      37.4000015258789
                                                         38.0999984741211
                1
                                                                         1
                                   1
               39
                                40.5
                                      41.2000007629395
                                                         43.5999984741211
                1
47.0999984741211
                   49.2000007629395
                                      59.2000007629395
                                                         63.4000015258789
```

• ptime86: es el tiempo en meses que se ha pasado en prisión durante 1986

```
crime1 %>%
  with(table(ptime86)) %>%
  print()
```

```
ptime86
   0
                2
                                                                             12
          1
                      3
                                   5
                                         6
                                                                       11
2594
               15
                      8
                            7
                                   5
                                        10
                                               7
                                                     2
                                                                             58
```

• qemp86: es la cantidad de trimestres que la persona tuvo empleo en 1986 (de cero a cuatro)

```
crime1 %>%
  with(table(qemp86)) %>%
  print()
```

qemp86

- ince86: ingresos legales, 1986, \$100s
- black 1 si es negro, cero otro caso
- hispan 1 si es hispano, cero otro caso
- born60 1 nacido en 1960, cero otro caso

7.2.0.1 Modelo de regresión Poisson

$$\begin{split} E[\text{narr86} \mid \mathbf{x}] &= \exp\left(\beta_0 + \beta_1 \text{pcnv} + \beta_2 \text{avgsen} + \beta_3 \text{tottime} \right. \\ &+ \beta_4 \text{ptime86} + \beta_5 \text{qemp86} + \beta_6 \text{ince86} \\ &+ \delta_1 \text{black} + \delta_2 \text{hispan} + \delta_3 \text{born} \right) \end{split}$$

```
# Comprobar la variable de conteo

crime1 %>%
  with(table(narr86)) %>%
  print()
```

narr86

```
0
        1
              2
                                                     10
                                                           12
                    3
                          4
                               5
1970
      559
            121
                   42
                         12
                              13
                                                      1
                                                            1
```

Histograma con densidad de kernel del número de arrestos

Ajustar el modelo usando MCO

=======================================		
	Dependent	variable:
	nar	 r86
	(1)	(2)
pcnv	-0.132***	
	(0.040)	
avgsen	-0.011	
	(0.012)	
tottime	0.012	
	(0.009)	
ptime86	-0.041***	
	(0.009)	
qemp86	-0.051***	
	(0.014)	
inc86	-0.001***	
	(0.0003)	
black	0.327***	
	(0.045)	
hispan	0.194***	0.110***
1	(0.040)	(0.040)

I(hispan * black)

```
born60
                       -0.022
                       (0.033)
Constant
                       0.577***
                                          0.380***
                       (0.038)
                                           (0.019)
Observations
                       2,725
                                            2,725
R2
                       0.072
                                            0.003
                       0.069
                                            0.002
Adjusted R2
Residual Std. Error 0.829 (df = 2715) 0.858 (df = 2723)
                23.572*** (df = 9; 2715) 7.671*** (df = 1; 2723)
F Statistic
______
Note:
                                 *p<0.1; **p<0.05; ***p<0.01
```

El modelo MCO supone que la variable y es cuantitativa aproximadamente continua, tenemos una variable de conteo

```
summary(narr86.MCO$fitted.values)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. -0.4978 0.2346 0.4092 0.4044 0.5541 1.0210
```

No esta ajustando bien, pues arroja valores ajustados negativos el modelo MCO, recordar que la variable y es de conteo y comienza en cero y termina en 12

Ajuste con el modelo Poisson

Tabla 1. Determinantes del número de arrestos de hombres jóvenes

	Variable dependiente	: Número de arrestos
	nar	 r86
	MCO	Poisson
	(1)	(2)
pcnv	-0.132	-0.402
	t = -3.264***	t = -4.726***
avgsen	-0.011	-0.024
	t = -0.926	t = -1.192
tottime	0.012	0.024
	t = 1.279	t = 1.660*
ptime86	-0.041	-0.099
-	t = -4.638***	t = -4.763***
qemp86	-0.051	-0.038

-0.001

t = -4.261***

inc86

t = -3.542*** t = -1.310

-0.008

t = -7.762***

black	0.327	0.661
	t = 7.199***	t = 8.950***
hispan	0.194	0.500
	t = 4.880***	t = 6.761***
I(hispan * black)		
born60	-0.022	-0.051
	t = -0.675	t = -0.797
Constant	0.577	-0.600
	t = 15.215***	t = -8.916***
Observations	2,725	2,725
R2	0.072	_,;
Adjusted R2	0.069	
Log Likelihood	0.000	-2,248.761
Akaike Inf. Crit.		4,517.522
Residual Std. Error	0.829	4,017.022
F Statistic	23.572***	
Note:		.; **p<0.05; ***p<0.01
	1	

mean(crime1\$narr86)

[1] 0.4044037

Es común en los modelos **Poisson** que exista un mal cálculo de los errores estándar, pues puede haber sobre o sub dispersión de la varianza de acuerdo a la ecuación [10]

7.2.1 Estimación de σ^2

Recordemos la ecuación:

$$\sigma^2 = (n-k-1)^{-1} \Sigma_{i=1}^n \frac{\hat{u}_i^2}{\hat{y}_i} [11]$$

También recordar la ecuación para los residuales

```
\hat{u}_i = y_i - \hat{y}_i[12]
```

```
residuales <- narr86.poisson$y- narr86.poisson$fitted.values
sigma2<-(sum(residuales^2/narr86.poisson$fitted.values))/narr86.MCO[["df.residual"]]
sigma2</pre>
```

[1] 1.516788

```
raiz.sigma <- sqrt(sigma2)
raiz.sigma</pre>
```

[1] 1.23158

Comprobamos que en este caso $\hat{\sigma}^2 \approx 1.52 > 1$, entonces existe **sobredispersión** por lo que no se cumple la [9] $Var(y|\mathbf{X}) = E(y|\mathbf{X})$. Por lo tanto, se esta analizando con la **ECMV**

7.2.2 Ajustar los errores estándar

Tabla 2. Determinantes del número de arrestos de hombres jóvenes (ESHRA)

Variable dependiente: Número de arrestos

		narr86
	Lineal MCO (1)	Exponecial ECMV-Poisson (2)
pcnv	-0.132***	-0.402***
	(0.034)	(0.125)
avgsen	-0.011	-0.024
	(0.014)	(0.029)
tottime	0.012	0.024
	(0.013)	(0.025)
ptime86	-0.041***	-0.099***
	(0.007)	(0.028)
qemp86	-0.051***	-0.038
	(0.014)	(0.042)
inc86	-0.001***	-0.008***
	(0.0002)	(0.002)
black	0.327***	0.661***
	(0.058)	(0.123)
hispan	0.194***	0.500***
-	(0.040)	(0.114)
<pre>I(hispan * black)</pre>		
	0.000	0.054
born60	-0.022 (0.032)	-0.051 (0.100)
a		
Constant	0.577*** (0.043)	-0.600*** (0.110)
	•	
Observations	2,725	2,725
R2	0.072	
Adjusted R2	0.069	

7.2.3 Interpretación

Como se puede ver en la Tabla 2 los errores estándar MCO y Poisson son heterocedasticosrobustos. Los errores estándar de Poisson han sido multiplicados por el valor de sigma $\hat{\sigma} = 1.232$, lo cual incide sobre la prueba t y por ende en su significancia estadística.

Los coeficientes del MCO y Poisson no son comparables directamente y tienen significados muy diferentes. Por ejemplo, el coeficiente de pcnv implica que, si pcnv=0.10 el número esperado de arrestos deciende en $0.013~(0.10\times0.132\approx0.013)~(pcnv)$ es la proporcion de arrestos previos que desembocaron en una condena). El coeficiente de Poisson implica que $\Delta pcnv=0.10$ reduce los arresto en cerca de $4\%~[0.402\times0.10\approx0.0402]$ y se multiplica esto por el 100% para obtener el efecto porcentual. Como cuestión de políticas, esto siguiere que se pueden reducir los arrestos generales en 4% si se incremente la probabilidad de condena en 0.10.

El coeficiente de Poisson de **black** implica que, ceteris paribus, el número esperado de arrestos para los hombres negros se estima cerca de $100 \times [exp(0.661) - 1] \approx 93.7$, es decir que la probabilidad de arrestos para los hombres negros es 93.7% mayor que para los hombres blancos con los mismos valores de las variables explicativas.

```
hispan<-(exp(coef(narr86.poisson)[9])-1)*100
hispan
```

hispan 64.84134

El coeficiente de Poisson de **hispan** implica que, ceteris paribus, el número esperado de arrestos para los hombres hispanos se estima cerca de $100 \times [exp(0.5) - 1] \approx 64.84$, es decir que la probabilidad de arrestos para los hombres hispanos es 64.87% mayor que para los hombres no hispanos con los mismos valores de las variables explicativas.

7.2.4 Efectos marginales de la Regresión Exponencial EMCV-Poisson

```
library(mfx)
poissonmfx(narr86~
               pcnv+
               avgsen+
               tottime+
               ptime86+
               qemp86+
               inc86+
               black+
               hispan+
               born60,
             crime1)
Call:
poissonmfx(formula = narr86 ~ pcnv + avgsen + tottime + ptime86 +
   qemp86 + inc86 + black + hispan + born60, data = crime1)
Marginal Effects:
                  Std. Err.
                                     P>|z|
            dF/dx
                                z
pcnv
      avgsen -0.00782541 0.00656405 -1.1922
                                   0.23320
tottime 0.00806178 0.00485401 1.6608
                                   0.09674 .
ptime86 -0.03244365 0.00677624 -4.7879 1.686e-06 ***
qemp86 -0.01251507 0.00960118 -1.3035
                                   0.19241
      -0.00266002  0.00031733  -8.3825  < 2.2e-16 ***
inc86
black
       hispan
       born60 -0.01668211 0.02079586 -0.8022
                                   0.42245
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
dF/dx is for discrete change for the following variables:
```

7.2.5 Interpretaciones:

[1] "black" "hispan" "born60"

• Como se puede observar los efectos marginales de Poisson ya son comparables a los coeficientes de MCO, de tal manera que, el **EPP** de Poisson para la variables **pcnv** es igual al coeficiente de MCO, es decir ambos son de **-0.13** aproximadamente. Donde existe diferencias marcadas entre el **EPP** y coeficiente de MCO es en **black** y en **hispan**.

De la misma manera que se hizo en las interpretaciones de la Tabla 2 se debe aproximar mejor el efecto parcial de las variables binarias usando la ecuación [4]. Por ejemplo para black:

```
black.epp <-100*(exp(0.27712004)-1)
black.epp
```

[1] 31.93247

El coeficiente de Poisson de **black** de los efectos marginales implica que, ceteris paribus, el número esperado de arrestos para los hombres negros se estima cerca de $100 \times [exp(0.2771) - 1] \approx 31.93$, es decir que el porcentaje de arrestos para los hombres negros es 31.93% mayor que para los hombres blancos con los mismos valores de las variables explicativas.

```
hispan.epp <-100*(exp(0.19144813)-1)
hispan.epp
```

[1] 21.1002

8 Modelo de Dos Partes

8.1 Motivación

¿Qué sucede si se concluye que el modelo Tobit es inadecuado? Existen modelos que suelen conocerse como modelos de **dos partes** o de **obstáculos**, que se pueden usar cuando Tobit es inadecuado.

8.2 Descripción general

Los modelos de dos partes o de obstáculos se usan para modelar variables estrictamente positivas con una gran cantidad de valores cero $y \geq 0$. En consecuencia, existe una suerte de mezcla de una distribución binomial y=1;y=0 y una distribución estrictamente positiva y>0. En este caso, nos centramos en una distribución aproximadamente continua para valores positivos, aunque, este modelo se puede usar también para datos de conteo. El código en R se puede encontrar aquí

8.3 Ejemplo de aplicación

Recordemos el modelo

$$\widehat{hours} = \Phi\left(\frac{\beta_0 + \mathbf{X}}{\sigma}\right)$$

Donde las variables explicativas son:

• nwifeinc: Salario de esposo en miles de dólares

• educ: años de educación

• exper: años de experiencia

• $exper^2$: años de experiencia al cuadrado

 \bullet age: edad de las mujeres

• kidslt6: Niños menores a seis años

• kidsge6: Niños entres 6 y 18 años

Histograma de hours con curva normal

La distribución de las horas esta muy sesgada a la derecha, hay muchos valores de cero y muy pocos grandes. Esto siguiere que un modelo de dos partes podría ser apropiado para estos datos. Las horas trabajadas no siguen una distribución normal. Las distribuciones sesgadas a

la derecha comunes que se podrían usar para modelar las horas trabajadas son: la distribución **lognormal** y la distribución **gamma**.

Si los datos siguen una distribución logarítmica normal, entonces el registro de horas trabajadas sigue una distribución normal

Histograma de loghours

Una vez usada la función logaritmo sobre los valores estrictamente positivos (hours > 0) de la variable hours, notamos que la distribución se acerca a una distribución normal

El comando del modelo de dos partes

```
# Conjunto de variable explicativas necesarias

xvars<-c("nwifeinc", "educ", "exper", "expersq", "age", "kidslt6", "kidsge6")

fm <- function(y, xvars){
   return(as.formula(paste(y, "~", paste(xvars, collapse = "+"))))
}

# Se creo una nueva base de datos con las variables (Provisional)
d_dospartes <- mroz %>%
   select(hours,nwifeinc, educ, exper, expersq, age, kidslt6, kidsge6) %>%
   print()
```

hours nwifeinc educ exper expersq age kidslt6 kidsge6

1	1610	10.91005993	12	14	196	32	1	0
2	1656	19.49998093	12	5	25	30	0	2
3	1980	12.03991032	12	15	225	35	1	3
4	456	6.79999590	12	6	36	34	0	3
5	1568	20.10005760	14	7	49	31	1	2
6	2032	9.85905361	12	33	1089	54	0	0
7	1440	9.15204811	16	11	121	37	0	2
8	1020	10.90003777	12	35	1225	54	0	0
9	1458	17.30500031	12	24	576	48	0	2
10	1600	12.92500019	12	21	441	39	0	2
11	1969	24.29995346	12	15	225	33	0	1
12	1960	19.70007133	11	14	196	42	0	1
13	240	15.00000763	12	0	0	30	1	2
14	997	14.60000038	12	14	196	43	0	2
15	1848	24.63091469	10	6	36	43	0	1
16	1224	17.53102684	11	9	81	35	0	3
17	1400	14.09998035	12	20	400	43	0	2
18	640	15.83899975	12	6	36	39	0	5
19	2000	14.10000038	12	23	529	45	0	0
20	1324	10.29996109	12	9	81	35	0	4
21	2215	22.65498161	16	5	25	42	0	2
22	1680	8.09004784	12	11	121	30	0	0
23	1600	17.47900009	13	18	324	48	0	0
24	800	9.56000042	12	15	225	45	0	0
25	1955	8.27495289	12	4	16	31	1	1
26	660	27.34998512	17	21	441	43	0	2
27	525	16.00000000	12	31	961	59	0	0
28	1904	16.99998283	12	9	81	32	0	3
29	1516	15.10005569	17	7	49	31	1	0
30	346	15.69998360	12	7	49	42	0	0
31	1040	5.11895990	11	32	1024	50	0	0
32	732	16.75001144	16	11	121	59	0	0
33	1880	13.59993172	13	16	256	36	0	2
34	1680	17.10004807	12	14	196	51	0	1
35	2081	16.73404884	16	27	729	45	0	3
36	690	14.19697762	11	0	0	42	0	1
37	4210	10.31998730	12	17	289	46	0	0
38	2205	11.38410473	10	28	784	46	0	1
39	1952	14.59407806	14	24	576	51	0	0
40	1302	17.50043869	17	11	121	30	0	0
41	112	15.50999641	12	1	1	30	1	2
42	893	21.99997520	12	14	196	57	0	0
43	583	22.50000000	16	6	36	31	1	2

44	480	19.99399948	12	10	100	48	0	2
45	1900	14.13000011	12	6	36	30	0	3
46	576	5.00001287	12	4	16	34	0	2
47	2056	21.15489769	16	10	100	48	0	2
48	1984	7.14194584	12	22	484	45	0	0
49	2640	16.65007210	12	16	256	51	0	0
50	240	6.35199976	12	6	36	30	0	2
51	1173	27.31394768	12	12	144	46	0	1
52	3640	14.50000381	12	32	1024	58	0	0
53	340	16.25798988	12	15	225	37	0	8
54	500	9.50000000	8	17	289	52	0	0
55	1599	7.99995613	10	34	1156	52	0	0
56	1830	12.50002861	16	9	81	31	0	0
57	1920	14.00003242	14	37	1369	55	0	0
58	2052	20.80007362	17	10	100	34	0	0
59	2312	19.38511276	14	35	1225	55	0	0
60	196	12.38699150	12	6	36	39	0	2
61	2500	28.50000000	14	19	361	40	0	3
62	1980	15.04990864	12	10	100	43	0	4
63	1840	10.49998379	8	11	121	48	0	0
64	320	11.81000042	12	15	225	47	0	0
65	419	6.95007324	12	12	144	41	0	4
66	1880	12.41997147	8	12	144	36	0	0
67	72	17.40000343	17	14	196	46	0	2
68	120	15.49999619	12	11	121	34	0	0
69	1885	21.21704292	12	9	81	41	0	3
70	240	18.00000000	12	24	576	51	0	1
71	1729	11.89991856	12	12	144	33	0	0
72	1850	26.75195503	12	13	169	52	0	0
73	2033	12.14996147	9	29	841	58	0	0
74	608	10.19999027	10	11	121	34	2	4
75	1153	8.12001514	12	13	169	31	0	1
76	2208	10.65996456	12	19	361	48	0	1
77	252	18.10000992	12	2	4	32	0	2
78	337	8.59998608	17	24	576	49	0	0
79	90	13.66499996	15	9	81	32	2	2
80	1174	32.34996033	12	6	36	58	0	0
81	372	12.08500576	6	22	484	50	0	0
82	30	12.14999962	14	30	900	60	0	0
83	1800	17.69502068	12	10	100	50	0	1
84	282	24.70000076	14	6	36	56	0	0
85	720	2.13399196	9	29	841	51	0	0
86	1440	20.95004845	17	29	841	54	0	1

87	2100	10.50008011	13	36	1296	59	0	0
88	1000	10.55000019	9	19	361	46	0	2
89	952	45.75000000	15	8	64	46	0	1
90	1413	13.63204002	12	13	169	39	1	3
91	2100	18.23893929	12	16	256	44	0	2
92	120	17.08999634	12	11	121	33	2	0
93	3000	30.23489952	12	15	225	33	1	2
94	1000	28.70000076	12	6	36	48	0	2
95	336	19.62999535	12	13	169	31	0	4
96	1216	12.82494259	12	22	484	45	0	1
97	988	23.79999924	12	24	576	45	0	1
98	2581	26.30002594	13	2	4	32	0	2
99	2030	20.69990730	12	6	36	47	0	0
100	413	26.00000381	13	2	4	34	0	2
101	782	10.87702084	12	2	4	37	0	1
102	1388	25.61206245	12	14	196	36	0	1
103	1450	20.98899460	12	9	81	47	1	2
104	1720	70.74993134	16	11	121	48	0	1
105	800	17.04999924	12	9	81	42	0	2
106	360	20.99999619	13	6	36	33	0	3
107	2000	8.11999989	11	19	361	46	0	0
108	1176	20.88599014	12	26	676	47	0	3
109	2058	17.66891861	12	19	361	44	0	1
110	900	25.20002937	12	3	9	36	0	4
111	215	14.24500561	17	7	49	31	2	0
112	2000	14.30000019	14	28	784	55	0	0
113	757	23.70001030	16	13	169	45	0	1
114	1264	45.99999619	17	9	81	47	0	0
115	2064	42.99990463	12	15	225	46	0	3
116	1280	14.74899960	11	20	400	49	0	0
117	1715	16.15005493	12	29	841	49	0	0
118	2000	17.77400017	12	9	81	45	0	2
119	12	91.00000000	17	1	1	38	1	3
120	1528	22.29993439	10	8	64	47	0	0
121	561	34.60001373	13	19	361	54	0	3
122	2058	9.62000179	11	23	529	41	0	0
123	1823	10.89994621	12	3	9	43	0	2
124	1680	14.49994373	16	13	169	31	1	1
125	1440	22.00001526	17	8	64	47	0	0
126	4950	17.90007973	12	17	289	35	0	2
127	1176	23.67506218	16	4	16	45	0	3
128	1100	11.79996014	12	15	225	33	1	0
129	1516	16.14195442	16	11	121	54	0	1

130	900	18.39997101	8	7	49	35	0	4
131	1080	15.49994755	12	0	0	31	1	2
132	480	17.32399940	12	0	0	55	0	0
133	288	19.20500374	12	10	100	34	0	2
134	1875	21.30006218	13	8	64	38	0	1
135	630	23.55999565	11	2	4	45	0	1
136	234	20.85000038	12	4	16	47	0	1
137	1600	26.14999962	12	6	36	39	0	2
138	960	17.00000000	14	18	324	36	1	0
139	120	20.72000313	12	3	9	33	1	2
140	2025	17.00008965	12	22	484	50	0	0
141	1809	15.99999809	12	33	1089	58	0	0
142	3087	19.50004959	17	28	784	49	0	0
143	910	12.00000381	14	23	529	41	0	2
144	1840	13.73191166	12	27	729	51	0	1
145	784	27.19999123	9	11	121	53	0	0
146	400	5.31500006	12	6	36	36	1	2
147	1000	16.00000000	12	11	121	46	0	2
148	1904	27.87198257	12	14	196	36	0	2
149	1771	40.00001144	14	17	289	53	0	1
150	1486	15.90003395	16	17	289	40	0	3
151	740	27.49996948	17	14	196	42	0	2
152	1820	17.02005005	15	11	121	33	1	1
153	1275	22.39493942	12	7	49	43	0	3
154	450	11.10000038	16	8	64	31	1	0
155	1221	32.70001221	17	6	36	47	0	0
156	1550	27.79996109	17	8	64	54	0	0
157	180	2.19999409	12	4	16	33	1	3
158	2090	19.72095108	16	25	625	43	0	0
159	1960	9.99998760	13	24	576	46	0	1
160	1440	13.19996834	12	11	121	35	0	3
161	794	12.70897484	11	19	361	37	0	3
162	993	27.30004692	16	9	81	37	0	2
163	160	21.20000076	14	19	361	34	0	3
164	105	14.40000439	16	14	196	43	1	0
165	1200	20.57596016	12	22	484	46	0	0
166	450	12.49999046	9	6	36	35	0	3
167	996	17.50021553	17	23	529	46	0	0
168	1052	44.00003815	14	15	225	46	0	0
169	1128	13.11895466	12	6	36	43	0	2
170	1840	14.00005627	12	11	121	30	0	0
171	1910	9.64508629	11	2	4	41	0	2
172	980	17.39704514	12	22	484	54	0	1

173	2317	7.79988861	12	10	100	31	0	1
174	1089	13.13397694	10	14	196	44	0	0
175	800	25.60000038	12	12	144	32	0	1
176	1230	13.90002537	5	9	81	47	0	0
177	1158	19.29794312	17	13	169	46	0	1
178	2272	9.20001602	11	18	324	37	0	0
179	528	37.99998856	12	8	64	51	0	2
180	1000	44.00000000	12	11	121	49	0	1
181	520	21.37202454	14	9	81	36	0	4
182	760	23.66802025	11	9	81	39	0	1
183	1920	9.00000000	12	14	196	48	0	2
184	1220	25.19995117	14	9	81	38	0	2
185	200	21.21999931	12	2	4	40	0	2
186	2480	33.96991348	10	12	144	39	1	5
187	2750	17.06999969	16	15	225	37	0	0
188	2014	6.01602364	13	11	121	49	0	1
189	1355	17.10000992	12	7	49	33	0	3
190	80	8.23700047	12	9	81	30	0	0
191	1670	13.30008221	12	19	361	54	0	0
192	520	16.00002098	11	11	121	39	0	4
193	288	12.53999043	12	8	64	43	0	3
194	2014	18.00003815	9	13	169	31	0	3
195	800	31.20000076	13	4	16	33	0	3
196	1984	20.74991035	12	7	49	40	0	3
197	1823	11.09992027	12	19	361	36	0	1
198	1500	20.68000031	12	14	196	51	0	0
199	2261	18.00000954	13	14	196	44	0	1
200	1728	32.43006516	16	3	9	42	0	3
201	1960	32.90003204	12	9	81	40	0	1
202	1578	24.10000610	16	7	49	34	1	1
203	1316	17.80039215	17	7	49	30	0	0
204	1530	20.50001717	12	14	196	54	0	0
205	2220	10.49989796	12	29	841	51	0	0
206	1336	10.43703461	9	19	361	44	0	2
207	1008	18.19499016	12	14	196	43	0	1
208	1944	12.84507656	12	16	256	34	0	1
209	2000	13.80000019	13	10	100	45	0	0
210	258	22.19999504	12	12	144	39	0	0
211	1785	6.69994116	12	24	576	50	0	0
212	480	6.25001574	12	6	36	52	0	0
213	772	15.60000801	12	9	81	41	0	2
214	900	3.30000997	10	14	196	59	0	0
215	1428	3.67097759	12	26	676	52	0	0

216	210	7.78999710	16	7	49	46	0	0
217	239	18.27198982	12	4	16	41	1	5
218	1878	10.95397949	11	15	225	33	0	2
219	215	13.49999237	12	23	529	45	0	0
220	2340	11.20001221	10	1	1	36	1	2
221	1960	20.99990845	12	29	841	48	0	1
222	532	25.69999886	12	9	81	47	0	1
223	394	8.93299389	12	6	36	45	0	0
224	675	19.15997696	12	11	121	37	0	2
225	1515	26.58998680	16	17	289	46	0	4
226	1030	22.40000534	17	6	36	43	0	3
227	1250	20.63299942	12	7	49	42	0	2
228	1158	28.20000648	17	2	4	34	1	2
229	112	28.79999924	12	24	576	52	0	0
230	336	8.99999714	12	4	16	37	0	3
231	1984	11.39994240	12	11	121	37	0	1
232	716	10.40001392	8	25	625	52	0	0
233	1410	19.08005524	12	11	121	30	1	0
234	1300	9.46603966	13	2	4	31	0	1
235	1640	6.50006008	12	19	361	38	0	1
236	1202	29.11701393	12	7	49	43	0	3
237	489	19.10301971	8	2	4	49	0	1
238	2076	16.34997177	12	20	400	55	0	0
239	526	32.02501678	17	10	100	38	0	2
240	1721	16.70006180	17	19	361	52	0	0
241	1327	4.81103754	12	17	289	48	0	0
242	584	24.62600899	13	12	144	32	0	2
243	1376	17.40001297	12	11	121	32	0	1
244	1040	13.02503967	12	6	36	38	0	2
245	548	19.00698280	12	10	100	46	0	3
246	15	14.02999973	12	4	16	40	0	3
247	1980	14.89990616	9	2	4	31	0	4
248	1520	25.00005531	10	13	169	43	0	1
249	1880	10.70006752	12	21	441	51	0	0
250	1260	24.25000381	16	9	81	30	1	0
251	1092	39.13996506	13	4	16	52	0	0
252	1587	7.19997311	8	2	4	30	1	5
253	156	31.81099892	16	19	361	51	0	0
254	1939	10.00004768	13	4	16	31	0	2
255	1250	20.65999985	12	9	81	34	0	4
256	610	13.49997616	11	14	196	49	0	0
257	270	25.37999535	13	6	36	35	1	3
258	660	18.27497673	12	24	576	53	1	0

259	1000	39.21300125	12	1	1	32	0	3
260	1920	10.49993610	10	13	169	38	0	3
261	200	34.85699844	12	3	9	54	0	0
262	1500	28.50199890	17	10	100	47	0	1
263	868	12.99995995	15	16	256	45	0	1
264	2318	41.39990997	16	9	81	47	0	1
265	2000	14.77999973	10	19	361	59	0	0
266	60	15.04999828	11	4	16	32	0	1
267	1715	29.69997787	12	10	100	45	0	1
268	550	16.16501999	12	5	25	40	0	4
269	1960	25.20515823	14	7	49	47	0	2
270	44	14.19999886	16	3	9	36	1	2
271	1920	18.15896797	14	38	1444	56	0	0
272	2540	28.98106384	8	16	256	41	0	1
273	156	13.39200306	7	13	169	48	0	3
274	780	9.17502022	12	1	1	36	1	2
275	3120	27.03984833	12	7	49	41	0	0
276	2040	13.14995193	14	15	225	41	0	0
277	1610	16.40007019	12	10	100	36	0	3
278	215	21.29999161	12	2	4	37	0	3
279	1120	17.20101547	12	19	361	38	0	0
280	846	8.56002617	14	25	625	43	0	2
281	3225	6.49083996	16	25	625	54	0	0
282	1376	12.49996758	12	7	49	38	0	1
283	980	27.00002480	12	15	225	30	1	0
284	1838	53.50004959	12	11	121	49	0	0
285	1494	52.49994659	13	25	625	45	0	1
286	450	38.39997864	13	19	361	51	0	0
287	1976	13.89194489	10	4	16	34	0	0
288	2012	3.89999294	12	14	196	34	0	2
289	561	34.19999695	12	19	361	41	0	1
290	1715	19.70007896	12	18	324	49	0	1
291	1912	18.49995232	12	14	196	32	0	0
292	3686	10.99997616	14	11	121	32	0	0
293	1080	43.30001068	17	4	16	32	0	2
294	1799	18.76000786	10	29	841	47	0	0
295	1984	4.80009604	9	21	441	39	0	1
296	1839	21.50000191	12	24	576	49	0	0
297	1579	28.03993797	12	19	361	37	0	3
298	96	26.00000381	16	31	961	59	0	0
299	1920	27.00000000	12	28	784	50	0	0
300	1688	17.79968834	17	15	225	32	0	1
301	1589	17.40194511	12	27	729	46	0	0

302	345	19.30999184	17	13	169	43	0	2
303	1521	9.99997997	11	4	16	37	0	3
304	1490	11.17998028	16	10	100	32	0	2
305	989	18.85695648	11	8	64	39	0	1
306	600	12.30002022	13	4	16	34	0	2
307	2646	13.67711830	11	18	324	39	0	1
308	2149	9.55999660	8	3	9	45	0	3
309	320	24.49998474	11	11	121	50	0	0
310	1600	23.14999962	12	8	64	40	0	1
311	2419	15.59088326	10	10	100	30	0	1
312	2005	14.42092419	17	33	1089	57	0	0
313	1960	17.45490837	12	19	361	39	0	1
314	2147	9.80001926	12	35	1225	53	0	0
315	1207	17.57446480	17	21	441	48	0	1
316	2000	16.55500031	14	7	49	46	0	1
317	1260	13.29497433	12	18	324	47	0	0
318	90	11.84400272	12	4	16	43	0	1
319	1800	46.64506149	12	12	144	47	0	0
320	573	14.69998932	12	16	256	47	0	1
321	1825	26.09008026	12	14	196	47	0	0
322	75	9.89999962	12	3	9	46	0	0
323	1348	9.04802608	9	1	1	34	0	4
324	1880	30.75006485	10	27	729	48	0	0
325	1240	8.49993992	12	12	144	30	0	1
326	848	22.24999237	12	6	36	51	0	1
327	150	42.90999985	12	9	81	52	0	5
328	2000	33.29999924	12	2	4	37	0	2
329	1952	13.81990337	12	6	36	32	0	2
330	1456	23.60000801	17	9	81	36	0	2
331	1740	13.00006771	12	16	256	35	0	2
332	1400	20.74994087	17	22	484	45	0	0
333	2000	6.30000019	12	26	676	56	0	0
334	1750	7.78892469	10	11	121	40	0	2
335	1101	10.47004032	12	11	121	45	1	2
336		12.00000000	12	15	225	32	0	2
337	1877	16.97991562	12	13	169	45	0	0
338	160	17.89999962	12	6	36	40	0	2
339	1886	15.53993702	12	20	400	38	0	1
340	1446	9.88398552	12	17	289	49	0	4
341	1500	28.59995079	16	8	64	47	0	1
342		17.66001129	13	13	169	52	0	0
343		25.99991798	13	15	225	34	0	1
344	1678	13.60200977	12	14	196	44	0	2

345	160	15.80000019	16	14	196	36	0	3
346	108	41.09999466	17	6	36	50	0	0
347	1738	10.77504158	12	24	576	45	0	0
348	1170	9.00004673	14	10	100	44	0	2
349	15	24.39899445	12	2	4	57	0	2
350	2088	37.30009079	17	9	81	35	0	0
351	2490	27.99994850	12	23	529	46	0	0
352	135	13.70000267	14	12	144	30	2	1
353	1944	17.20994377	12	8	64	42	0	3
354	690	14.00001431	12	16	256	34	0	1
355	608	35.75502014	17	10	100	45	0	2
356	63	23.49999619	16	7	49	35	1	2
357	154	31.99993324	16	19	361	40	0	0
358	420	17.14999580	12	2	4	32	0	1
359	651	20.25002480	9	9	81	54	0	0
360	675	5.48598480	12	14	196	38	0	3
361	1663	25.07504082	12	9	81	43	0	3
362	1680	18.21995163	16	16	256	54	0	0
363	180	25.99999619	14	7	49	39	0	3
364	1581	34.50007248	12	6	36	37	0	1
365	1200	12.39999962	12	22	484	46	0	2
366	450	10.78684998	11	9	81	56	0	0
367	547	16.32300758	12	9	81	41	0	3
368	300	30.50000000	16	14	196	45	0	1
369	975	51.29962540	17	17	289	44	0	1
370	1621	33.04997253	17	12	144	50	0	1
371	300	34.75001144	14	13	169	37	0	5
372	1868	16.40003967	12	8	64	44	0	1
373	1803	19.70007324	14	10	100	32	0	2
374	2143	6.60000277	12	16	256	34	1	1
375	1080	9.02000809	10	1	1	32	0	2
376	1352	10.40000820	12	6	36	37	0	3
377	537	14.51998806	13	4	16	44	0	1
378	352	17.19999695	16	8	64	34	0	2
379	200	43.00000000	12	4	16	33	1	3
380	2045	13.87195969	7	15	225	43	0	3
381	1253	-0.02905745	16	7	49	35	0	2
382	1960	16.76994324	14	14	196	43	0	1
383	2000	7.79999971	12	16	256	34	0	0
384	1960	14.50006390	10	15	225	36	0	3
385	2000	7.90000010	12	23	529	41	0	2
386	1568	79.80001068	16	19	361	41	0	0
387	1225	7.17597008	10	4	16	35	0	3

388	780	17.50698280	12	12	144	32	1	3
389	480	20.60000038	14	12	144	30	0	0
390	1923	18.55991554	12	25	625	43	0	0
391	2000	9.30000019	6	14	196	54	0	0
392	2110	5.12000751	15	14	196	35	0	2
393	1664	14.50003815	12	11	121	50	0	0
394	48	19.79999924	17	7	49	34	1	1
395	1791	18.29994965	14	18	324	52	0	0
396	1404	33.99993515	13	4	16	35	0	3
397	1920	11.62793636	6	37	1369	55	0	0
398	2141	11.80004597	16	13	169	35	0	0
399	1720	39.09997559	14	14	196	49	0	1
400	3533	18.43007088	15	17	289	38	2	2
401	2000	21.00000000	14	5	25	42	0	2
402	800	59.00000000	8	2	4	48	0	1
403	3000	25.29999924	14	0	0	51	0	0
404	293	23.24899101	12	3	9	43	0	2
405	1872	24.92808723	12	21	441	43	0	1
406	2058	14.78198814	12	20	400	38	0	1
407	1832	18.90002823	12	19	361	44	0	1
408	120	21.00000000	12	4	16	36	1	3
409	1632	10.00000954	12	19	361	38	0	0
410	778	29.30997467	8	11	121	47	0	0
411	1984	13.14003181	12	14	196	34	0	2
412	225	25.08999443	17	8	64	40	1	2
413	1960	14.59993172	12	13	169	31	0	1
414	444	1.20000124	12	24	576	46	0	0
415	384	32.00000381	14	1	1	36	0	3
416	1170	16.11997032	13	1	1	39	1	2
417	1330	26.50002289	17	3	9	36	0	2
418	1350	12.75005531	8	4	16	37	0	4
419	480	12.89999962	12	21	441	39	0	4
420	1984	10.69997501	11	10	100	36	1	3
421	1944	14.43403149	12	13	169	49	0	2
422	50	23.70899963	12	9	81	45	1	1
423	460	15.10000420	17	14	196	32	2	0
424	680	18.19997597	10	2	4	36	0	5
425	2450	22.64105606	12	21	441	40	0	1
426	2144	21.64007950	13	22	484	43	0	2
427	1760	23.99998474	12	14	196	33	0	1
428	490	16.00001526	12	7	49	30	0	1
429	0	21.02499962	12	2	4	49	0	1
430	0	23.60000038	16	5	25	30	2	0

431	0	22.79999924	12	12	144	30	1	0
432	0	35.90999985	12	1	1	41	0	4
433	0	21.70000076	12	12	144	45	0	1
434	0	21.82299995	12	4	16	43	0	5
435	0	31.00000000	13	9	81	42	0	1
436	0	15.30000019	12	9	81	60	0	0
437	0	12.92500019	12	6	36	57	0	0
438	0	15.82999992	10	5	25	38	0	2
439	0	30.20000076	12	5	25	56	0	0
440	0	16.60000038	12	8	64	32	0	3
441	0	11.00000000	7	2	4	49	0	1
442	0	15.00000000	12	6	36	55	0	0
443	0	20.52799988	9	0	0	36	1	1
444	0	13.12600040	12	3	9	44	0	3
445	0	15.55000019	10	7	49	44	0	1
446	0	18.01000023	14	3	9	35	1	2
447	0	18.87400055	14	10	100	44	2	3
448	0	24.79999924	12	3	9	45	0	1
449	0	17.50000000	12	2	4	34	1	0
450	0	16.14999962	17	12	144	30	2	0
451	0	15.18900013	8	15	225	39	0	1
452	0	6.00000000	12	5	25	36	0	2
453	0	37.25000000	17	4	16	38	0	2
454	0	27.76000023	12	10	100	53	0	0
455	0	9.09000015	12	1	1	36	0	2
456	0	14.50000000	12	8	64	32	1	1
457	0	19.70000076	9	20	400	51	0	3
458	0	16.78800011	11	4	16	38	0	0
459	0	18.52000046	12	7	49	33	2	0
460	0	20.95000076	12	10	100	54	0	0
461	0	7.57399988	9	3	9	38	0	3
462	0	10.02700043	11	5	25	30	2	2
463	0	5.00000000	12	10	100	34	2	3
464	0	7.03999996	9	0	0	34	0	1
465	0	40.79999924	12	3	9	50	0	2
466	0	16.04999924	17	10	100	30	2	0
467	0	33.09999847	12	2	4	38	0	2
468	0	33.85599899	14	10	100	54	0	0
469	0	20.50000000	12	4	16	30	1	2
470	0	28.60000038	12	0	0	55	0	0
471	0	18.75000000	10	10	100	51	0	1
472	0	20.29999924	12	5	25	44	0	1
473	0	13.42000008	12	0	0	53	0	0

474	0	18.39999962	10	0	0	42	0	2
475	0	16.68199921	12	19	361	38	0	2
476	0	32.68500137	13	2	4	38	1	3
477	0	7.05000019	12	12	144	41	1	4
478	0	10.86699963	8	5	25	35	0	3
479	0	18.21999931	12	5	25	33	1	2
480	0	26.61300087	13	5	25	48	0	0
481	0	25.00000000	12	10	100	47	0	0
482	0	15.69999981	12	0	0	34	0	5
483	0	40.25000000	13	4	16	33	2	1
484	0	73.59999847	13	3	9	31	3	1
485	0	10.59200001	8	2	4	58	0	0
486	0	8.00000000	12	1	1	49	0	0
487	0	13.39999962	8	0	0	55	0	1
488	0	23.70000076	14	1	1	44	0	0
489	0	18.89999962	9	1	1	44	0	0
490	0	48.29999924	16	6	36	36	0	3
491	0	24.46999931	12	12	144	38	0	3
492	0	28.62999916	16	6	36	37	0	3
493	0	25.31999969	12	9	81	47	0	0
494	0	13.52999973	12	14	196	47	0	3
495	0	14.80000019	12	13	169	32	1	1
496	0	17.39999962	12	8	64	43	1	2
497	0	15.97999954	11	0	0	42	1	4
498	0	16.57600021	12	1	1	56	0	0
499	0	21.85000038	13	3	9	38	0	5
500	0	14.60000038	12	13	169	52	0	2
501	0	21.60000038	12	3	9	50	0	0
502	0	24.00000000	16	8	64	33	0	0
503	0	20.88299942	16	8	64	44	0	2
504	0	19.50000000	12	18	324	41	0	1
505	0	42.79999924	12	2	4	45	0	1
506	0	41.50000000	14	3	9	53	0	0
507	0	18.96500015	14	5	25	53	0	0
508	0	16.10000038	12	2	4	42	0	1
509	0	14.69999981	13	10	100	32	2	0
510	0	18.79999924	12	30	900	56	0	0
511	0	14.75000000	11	1	1	37	1	3
512	0	21.00000000	12	5	25	40	1	2
513	0	35.40000153	15	8	64	54	0	3
514	0	10.69999981	7	0	0	53	0	0
515	0	24.50000000	12	4	16	48	0	1
516	0	17.04500008	12	2	4	36	1	2

517	0	18.79999924	12	30	900	57	0	0
518	0	14.00000000	12	25	625	51	0	0
519	0	18.21400070	13	3	9	33	0	4
520	0	20.17700005	12	20	400	52	0	0
521	0	8.30000019	10	20	400	56	0	0
522	0	14.19999981	12	0	0	36	1	2
523	0	21.76799965	14	15	225	36	1	0
524	0	29.55299950	12	10	100	46	0	1
525	0	4.34999990	10	4	16	31	0	3
526	0	24.00000000	11	3	9	52	0	0
527	0	18.29999924	12	10	100	46	0	2
528	0	17.20000076	12	9	81	35	2	0
529	0	16.47599983	12	7	49	59	0	0
530	0	13.39999962	8	12	144	36	0	1
531	0	44.98799896	7	0	0	51	1	3
532	0	18.20000076	16	16	256	31	1	0
533	0	28.00000000	14	4	16	31	0	2
534	0	11.55000019	12	7	49	32	1	1
535	0	28.45000076	16	7	49	35	1	2
536	0	15.09599972	12	14	196	40	0	3
537	0	8.00899982	10	2	4	33	1	2
538	0	10.03999996	7	20	400	54	0	0
539	0	16.70000076	12	5	25	36	1	1
540	0	8.39999962	10	10	100	50	0	1
541	0	13.00000000	8	20	400	54	0	0
542	0	17.96999931	11	10	100	48	0	1
543	0	18.45000076	15	8	64	41	0	4
544	0	31.00000000	12	11	121	50	0	4
545	0	24.13500023	12	3	9	46	0	2
546	0	31.70000076	13	6	36	42	0	1
547	0	10.18999958	9	4	16	31	1	2
548	0	21.57399940	12	4	16	53	0	0
549	0	26.68000031	12	9	81	51	0	1
550	0	17.70000076	12	10	100	47	0	1
551	0	29.39999962	12	3	9	50	0	1
552	0	22.15900040	6	2	4	37	0	1
553	0	35.00000000	12	2	4	30	2	2
554	0	8.63000011	12	0	0	49	0	0
555	0	17.07999992	12	8	64	52	0	2
556	0	32.50000000	12	6	36	47	0	2
557	0	16.00000000	12	15	225	49	0	0
558	0	18.85000038	12	15	225	44	0	4
559	0	17.50000000	8	9	81	53	0	0

560	0	19.39200020	12	8	64	30	1	0
561	0	14.44999981	12	18	324	54	0	2
562	0	21.79999924	7	3	9	47	1	1
563	0	7.69999981	15	10	100	56	0	0
564	0	31.79999924	12	6	36	49	0	1
565	0	17.25799942	6	20	400	48	0	0
566	0	13.39900017	12	8	64	49	0	1
567	0	16.07299995	12	3	9	56	0	1
568	0	23.26000023	12	4	16	46	0	0
569	0	37.29999924	12	13	169	45	0	2
570	0	11.00000000	12	4	16	32	0	2
571	0	13.07499981	12	17	289	43	1	1
572	0	13.69999981	12	4	16	34	1	1
573	0	25.10000038	12	0	0	30	1	1
574	0	18.60000038	17	15	225	38	2	0
575	0	29.00000000	16	11	121	33	1	1
576	0	19.23699951	12	23	529	52	0	0
577	0	19.85499954	11	1	1	43	0	3
578	0	9.44999981	12	5	25	33	1	1
579	0	30.00000000	10	1	1	45	0	0
580	0	15.00000000	10	5	25	36	2	1
581	0	24.70100021	12	3	9	34	1	1
582	0	15.89999962	14	3	9	37	0	2
583	0	16.23999977	10	19	361	46	0	1
584	0	21.10000038	12	20	400	47	0	0
585	0	23.00000000	16	5	25	31	2	1
586	0	6.34000015	5	0	0	57	0	0
587	0	42.25000000	12	3	9	30	1	1
588	0	14.69400024	12	3	9	30	0	0
589	0	21.41699982	12	7	49	44	0	3
590	0	20.20000076	13	7	49	53	0	0
591	0	12.09000015	8	1	1	51	0	0
592	0	24.76000023	12	13	169	39	1	3
593	0	23.00000000	8	0	0	52	0	0
594	0	19.36499977	8	0	0	46	0	4
595	0	5.55000019	12	12	144	47	0	5
596	0	68.03500366	8	0	0	52	0	2
597	0	29.29999924	12	5	25	45	0	2
598	0	18.50000000	11	45	2025	60	0	0
599	0	22.58200073	13	10	100	41	0	2
600	0	21.50000000	8	2	4	39	0	3
601	0	28.06999969	12	3	9	49	0	1
602	0	50.29999924	15	1	1	32	1	1

603	0	23.50000000	12	5	25	33	1	3
604	0	15.50000000	10	10	100	36	0	4
605	0	13.43999958	13	4	16	37	3	3
606	0	8.10000038	12	7	49	30	1	2
607	0	9.80000019	11	9	81	44	1	1
608	0	20.29999924	12	5	25	48	0	1
609	0	15.00000000	11	4	16	40	0	4
610	0	56.09999847	13	11	121	47	0	0
611	0	22.84600067	12	9	81	36	0	2
612	0	22.22500038	11	4	16	40	0	2
613	0	17.63500023	12	2	4	46	0	1
614	0	18.50000000	12	23	529	52	0	0
615	0	13.39000034	12	3	9	44	0	1
616	0	15.14999962	10	15	225	45	0	1
617	0	16.20000076	7	8	64	30	2	1
618	0	33.91999817	12	3	9	40	1	3
619	0	14.00000000	12	25	625	43	0	1
620	0	16.73600006	12	2	4	49	0	2
621	0	30.64999962	12	0	0	46	1	4
622	0	12.39999962	11	19	361	52	0	0
623	0	19.02199936	12	3	9	31	1	1
624	0	11.20300007	10	7	49	42	1	1
625	0	19.87599945	11	1	1	33	0	3
626	0	57.00000000	16	9	81	57	0	0
627	0	18.29000092	10	3	9	49	0	0
628	0	20.21999931	14	8	64	45	0	1
629	0	22.14999962	11	0	0	56	0	0
630	0	30.62299919	12	5	25	41	1	3
631	0	9.38000011	5	20	400	56	0	0
632	0	22.00000000	10	3	9	48	0	1
633	0	23.67499924	16	12	144	52	0	2
634	0	33.67100143	12	5	25	51	0	0
635	0	12.36699963	11	1	1	35	0	3
636	0	21.95000076	12	0	0	45	0	0
637	0	32.00000000	12	7	49	54	0	0
638	0	22.61000061	12	13	169	54	0	2
639	0	12.09200001	12	3	9	31	1	0
640	0	3.77699995	6	0	0	53	0	3
641	0	36.00000000	14	2	4	35	2	2
642	0	26.89999962	12	0	0	36	1	3
643	0	32.24200058	12	2	4	59	0	0
644	0	35.02000046	16	1	1	54	0	0
645	0	37.59999847	12	10	100	37	1	1

646	0	1.50000000	12	10	100	44	0	0
647	0	96.00000000	17	1	1	34	1	2
648	0	18.14999962	12	3	9	49	0	0
649	0	15.50000000	12	32	1024	49	0	0
650	0	14.00000000	9	0	0	60	0	0
651	0	14.75599957	12	7	49	51	0	0
652	0	22.00000000	12	5	25	30	1	1
653	0	24.46599960	12	2	4	47	0	2
654	0	24.39999962	12	5	25	36	0	4
655	0	24.00000000	12	3	9	35	1	3
656	0	15.50000000	12	25	625	58	0	0
657	0	30.79999924	14	0	0	41	1	3
658	0	10.65999985	10	3	9	51	0	1
659	0	13.35000038	12	10	100	47	0	0
660	0	10.09000015	9	10	100	45	1	2
661	0	55.59999847	14	7	49	60	0	0
662	0	25.70000076	16	5	25	30	1	1
663	0	29.00000000	11	15	225	55	0	0
664	0	7.28599977	12	1	1	32	1	2
665	0	37.75199890	12	5	25	36	0	2
666	0	13.07199955	12	9	81	55	0	0
667	0	7.04400015	12	18	324	47	0	0
668	0	18.20000076	12	1	1	47	0	1
669	0	27.00000000	11	0	0	37	0	1
670	0	30.29999924	12	6	36	50	0	2
671	0	12.00000000	12	1	1	30	0	3
672	0	31.50000000	17	2	4	48	0	1
673	0	27.09199905	10	15	225	43	0	2
674	0	20.96800041	11	25	625	48	1	0
675	0	27.00000000	14	1	1	41	1	2
676	0	11.22500038	12	0	0	50	0	0
677	0	37.70000076	8	0	0	58	0	0
678	0	28.20000076	13	0	0	38	0	5
679	0	34.00000000	12	8	64	37	0	1
680	0	63.20000076	16	22	484	50	0	0
681	0	7.50000000	8	5	25	42	0	4
682	0	17.40999985	9	10	100	37	1	3
683	0	51.00000000	16	1	1	41	0	2
684	0	12.91600037	12	1	1	31	0	2
685	0	21.89999962	12	6	36	51	0	0
686	0	17.63999939	12	4	16	36	1	2
687	0	20.00000000	15	6	36	54	0	0
688	0	15.00000000	12	0	0	49	0	0

689	0	14.06000042	9	1	1	48	1	1
690	0	15.82499981	9	3	9	42	0	2
691	0	16.51000023	12	15	225	41	1	2
692	0	13.00000000	16	33	1089	55	0	0
693	0	10.00000000	9	2	4	42	0	0
694	0	22.00000000	15	1	1	32	0	1
695	0	29.79999924	12	10	100	43	0	2
696	0	15.00000000	12	0	0	33	1	3
697	0	22.29999924	15	14	196	48	0	1
698	0	14.55000019	12	15	225	43	0	2
699	0	19.72999954	17	15	225	47	1	3
700	0	35.00000000	12	10	100	54	0	0
701	0	21.01399994	12	6	36	51	0	1
702	0	10.87600040	10	18	324	51	0	1
703	0	27.85000038	13	15	225	43	1	1
704	0	9.56000042	12	30	900	53	0	0
705	0	30.29999924	11	15	225	34	1	1
706	0	7.71999979	8	10	100	31	1	1
707	0	10.55000019	12	0	0	56	0	0
708	0	24.10600090	16	0	0	42	0	1
709	0	22.99500084	12	4	16	32	0	2
710	0	6.00000000	12	0	0	35	1	3
711	0	24.35000038	12	3	9	30	1	1
712	0	7.60799980	10	20	400	51	0	0
713	0	28.20000076	12	3	9	47	0	3
714	0	16.14999962	12	1	1	54	0	1
715	0	51.20000076	15	5	25	31	3	0
716	0	12.64599991	10	7	49	47	0	0
717	0	19.00000000	14	6	36	47	0	3
718	0	19.00000000	12	2	4	40	0	3
719	0	14.39999962	8	0	0	48	0	0
720	0	7.23199987	8	10	100	34	0	7
721	0	21.94300079	12	6	36	38	0	3
722	0	47.50000000	12	4	16	32	1	3
723	0	28.89999962	16	8	64	48	0	1
724	0	12.39999962	12	18	324	41	0	2
725	0	6.53100014	5	7	49	49	0	2
726	0	22.42200089	8	15	225	59	0	0
727	0	22.20000076	13	7	49	58	0	0
728	0	77.00000000	12	8	64	41	0	3
729	0	88.00000000	12	8	64	45	0	2
730	0	26.04000092	14	3	9	30	1	1
731	0	63.50000000	12	10	100	41	0	1

```
732
        0 12.10000038
                        12
                              9
                                       81 30
                                                    2
                                                            0
733
        0 17.50499916
                        12
                                      576 53
                                                    0
                              24
                                                            1
734
        0 18.00000000
                                                            0
                        12
                              12
                                      144
                                           31
                                                    0
735
        0 28.06900024
                        14
                               2
                                       4 43
                                                    0
                                                            2
736
        0 14.00000000
                        12
                                       36 31
                                                    1
                                                            1
                               6
737
        0 8.11699963
                        12
                                      324 51
                                                    0
                                                            0
                              18
738
        0 11.89500046
                         9
                              17
                                     289
                                          43
                                                    0
                                                            0
739
        0 45.25000000
                                                            2
                        14
                               7
                                       49
                                           31
                                                    1
740
        0 31.10600090
                        11
                               6
                                       36 48
                                                    0
                                                            0
741
        0 4.00000000
                        12
                              10
                                      100
                                          31
                                                    1
                                                            1
742
        0 40.50000000
                        12
                               5
                                       25 44
                                                    0
                                                            1
743
        0 21.62000084
                               7
                                      49
                                          48
                                                    0
                                                            1
                        11
744
        0 23.42600060
                                                    0
                                                            1
                        12
                                      121
                                           53
                              11
                                                            3
745
        0 26.00000000
                        10
                              14
                                      196 42
                                                    0
746
        0 7.84000015
                        12
                                       25
                                          39
                                                    2
                                                            6
                               5
                                                            2
747
        0 6.80000019
                        10
                               2
                                       4 32
                                                    1
748
        0 5.32999992
                        12
                               4
                                       16 36
                                                    0
                                                            2
749
        0 28.20000076
                                                            2
                        13
                               5
                                       25 40
                                                    0
750
        0 10.00000000
                        12
                              14
                                     196 31
                                                    2
                                                            3
751
                                                            0
        0 9.95199966
                        12
                               4
                                      16 43
                                                    0
752
                                                            0
        0 24.98399925
                        12
                              15
                                      225
                                           60
                                                    0
753
        0 28.36300087
                         9
                              12
                                      144
                                                    0
                                                            3
                                           39
```

\$Firstpart.model

Call:

```
glm(formula = nonzero ~ nwifeinc + educ + exper + expersq + age +
   kidslt6 + kidsge6, family = binomial(link = "logit"), data = mroz)
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|) (Intercept) 0.425452 0.860365 0.495 0.62095 nwifeinc -0.021345 0.008421 -2.535 0.01126 * educ 0.221170 0.043439 5.091 3.55e-07 *** exper 0.205870 0.032057 6.422 1.34e-10 ***
```

```
expersq
         age
kidslt6
         0.060112 0.074789 0.804 0.42154
kidsge6
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1029.75 on 752 degrees of freedom
Residual deviance: 803.53 on 745 degrees of freedom
AIC: 819.53
Number of Fisher Scoring iterations: 4
$Secondpart.model
Call:
glm(formula = hours ~ nwifeinc + educ + exper + expersq + age +
   kidslt6 + kidsge6, family = Gamma(link = "log"), data = mroz)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.7164988 0.2928967 26.345 < 2e-16 ***
nwifeinc -0.0003793 0.0030546 -0.124 0.901231
        -0.0191886 0.0138927 -1.381 0.167951
educ
exper
         0.0427191 0.0123052 3.472 0.000571 ***
      -0.0005876 0.0003697 -1.589 0.112732
expersq
        age
kidslt6
        kidsge6 -0.0559110 0.0256653 -2.178 0.029927 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Gamma family taken to be 0.3763689)
   Null deviance: 261.43 on 427 degrees of freedom
Residual deviance: 237.94 on 420 degrees of freedom
ATC: 6898.7
```

Number of Fisher Scoring iterations: 7

```
# Provisional
mod.2P2 <- twopartm::tpm(hours~.,</pre>
            data=d_dospartes,
            link_part1 = "logit",
            family_part2 = Gamma(link = "log"))
summary(mod.2P2)
$Firstpart.model
Call:
glm(formula = nonzero ~ ., family = binomial(link = "logit"),
   data = d_dospartes)
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.425452 0.860365 0.495 0.62095
        nwifeinc
educ
         exper
        expersq
         age
kidslt6
        -1.443354 0.203583 -7.090 1.34e-12 ***
         0.060112 0.074789 0.804 0.42154
kidsge6
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1029.75 on 752 degrees of freedom
Residual deviance: 803.53 on 745 degrees of freedom
AIC: 819.53
Number of Fisher Scoring iterations: 4
$Secondpart.model
Call:
glm(formula = hours ~ ., family = Gamma(link = "log"), data = d_dospartes)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
```

```
(Intercept) 7.7164988 0.2928967 26.345 < 2e-16 ***
nwifeinc
         -0.0003793 0.0030546 -0.124 0.901231
educ
         -0.0191886 0.0138927 -1.381 0.167951
exper
          0.0427191 0.0123052 3.472 0.000571 ***
         -0.0005876 0.0003697 -1.589 0.112732
expersq
         age
kidslt6
         kidsge6
         -0.0559110 0.0256653 -2.178 0.029927 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Gamma family taken to be 0.3763689)
   Null deviance: 261.43 on 427
                             degrees of freedom
Residual deviance: 237.94 on 420 degrees of freedom
AIC: 6898.7
Number of Fisher Scoring iterations: 7
```

8.4 Ajustar los modelos

Para esto es necesario ajustar las variables

```
# Creando la variable dicotómica para hours

mroz <- mroz %>%
  mutate(d_hours=ifelse(hours==0,0,1)) %>%
  print()
```

	inlf	hours	kidslt6	kidsge6	age	educ	wage	repwage	${\tt hushrs}$	husage	huseduc
1	1	1610	1	0	32	12	3.3540	2.65	2708	34	12
2	1	1656	0	2	30	12	1.3889	2.65	2310	30	9
3	1	1980	1	3	35	12	4.5455	4.04	3072	40	12
4	1	456	0	3	34	12	1.0965	3.25	1920	53	10
5	1	1568	1	2	31	14	4.5918	3.60	2000	32	12
6	1	2032	0	0	54	12	4.7421	4.70	1040	57	11
7	1	1440	0	2	37	16	8.3333	5.95	2670	37	12
8	1	1020	0	0	54	12	7.8431	9.98	4120	53	8
9	1	1458	0	2	48	12	2.1262	0.00	1995	52	4
10	1	1600	0	2	39	12	4.6875	4.15	2100	43	12
11	1	1969	0	1	33	12	4.0630	4.30	2450	34	12

12	1	1960	0	1	42	11	4.5918	4.58	2375	47	14
13	1	240	1	2	30	12	2.0833	0.00	2830	33	16
14	1	997	0	2	43	12	2.2668	3.50	3317	46	12
15	1	1848	0	1	43	10	3.6797	3.38	2024	45	17
16	1	1224	0	3	35	11	1.3472	0.00	1694	38	12
17	1	1400	0	2	43	12	3.2143	4.00	2156	45	12
18	1	640	0	5	39	12	5.1750	2.25	2250	40	12
19	1	2000	0	0	45	12	2.0000	2.30	2024	51	11
20	1	1324	0	4	35	12	7.5529	3.94	2123	40	10
21	1	2215	0	2	42	16	3.5052	3.30	4160	48	16
22	1	1680	0	0	30	12	3.5714	3.80	2000	35	12
23	1	1600	0	0	48	13	3.2500	3.26	2420	52	17
24	1	800	0	0	45	12	3.2500	2.20	1150	53	17
25	1	1955	1	1	31	12	2.1545	2.30	2024	31	12
26	1	660	0	2	43	17	3.7879	0.00	1904	43	17
27	1	525	0	0	59	12	4.0000	3.18	2448	53	16
28	1	1904	0	3	32	12	4.7269	6.07	2000	33	13
29	1	1516	1	0	31	17	7.2559	6.00	2390	30	17
30	1	346	0	0	42	12	5.8671	6.39	1920	47	10
31	1	1040	0	0	50	11	1.5385	0.00	1840	53	10
32	1	732	0	0	59	16	2.4590	2.50	3360	57	17
33	1	1880	0	2	36	13	5.8511	5.20	2284	35	13
34	1	1680	0	1	51	12	3.5714	3.29	1875	50	8
35	1	2081	0	3	45	16	3.8068	4.19	2140	47	17
36	1	690	0	1	42	11	2.4638	0.00	1896	44	8
37	1	4210	0	0	46	12	2.3753	4.63	1040	49	16
38	1	2205	0	1	46	10	4.5351	4.55	2200	52	12
39	1	1952	0	0	51	14	5.6183	5.60	1952	58	12
40	1	1302	0	0	30	17	14.6310	9.53	1560	30	17
41	1	112	1	2	30	12	2.6786	0.00	4030	33	16
42	1	893	0	0	57	12	3.9194	3.50	2570	58	12
43	1	583	1	2	31	16	2.5729	9.98	1530	34	16
44	1	480	0	2	48	12	4.5375	4.65	3149	48	8
45	1	1900	0	3	30	12	2.0000	2.23	2690	32	12
46	1	576	0	2	34	12	3.4722	3.84	3096	33	12
47	1	2056	0	2	48	16	2.0161	0.00	2552	53	16
48	1	1984	0	0	45	12	4.5716	4.82	2040	47	11
49	1	2640	0	0	51	12	2.2727	0.00	2180	50	13
50	1	240	0	2	30	12	2.6375	0.00	1864	37	12
51	1	1173	0	1	46	12	2.2899	2.50	2068	46	12
52	1	3640	0	0	58	12	1.0989	0.00	2010	58	12
53	1	340	0	8	37	12	1.1765	0.00	2152	40	10
54	1	500	0	0	52	8	1.6000	0.00	1496	54	11

55	1	1599	0	0	52	10	1.8762	2.80	2100	47	4
56	1	1830	0	0	31	16	4.0437	4.20	1960	35	14
57	1	1920	0	0	55	14	9.6354	8.75	1985	55	15
58	1	2052	0	0	34	17	8.0409	8.25	2020	33	17
59	1	2312	0	0	55	14	4.5990	5.58	2178	56	16
60	1	196	0	2	39	12	2.1429	2.50	3684	39	12
61	1	2500	0	3	40	14	4.4000	5.50	5010	42	13
62	1	1980	0	4	43	12	3.5354	3.75	1880	47	12
63	1	1840	0	0	48	8	2.7174	4.80	1904	56	8
64	1	320	0	0	47	12	6.2500	6.25	2083	47	12
65	1	419	0	4	41	12	11.9330	6.30	2125	44	12
66	1	1880	0	0	36	8	3.5931	3.75	1985	37	12
67	1	72	0	2	46	17	6.9444	0.00	2640	48	17
68	1	120	0	0	34	12	2.9167	0.00	2070	51	8
69	1	1885	0	3	41	12	3.0769	2.90	2107	48	8
70	1	240	0	1	51	12	3.7500	0.00	2250	54	10
71	1	1729	0	0	33	12	5.7259	4.76	2880	34	16
72	1	1850	0	0	52	12	3.6757	3.40	1848	53	12
73	1	2033	0	0	58	9	5.1648	4.32	1927	53	7
74	1	608	2	4	34	10	8.2237	3.00	1304	38	9
75	1	1153	0	1	31	12	4.3365	4.52	3000	35	12
76	1	2208	0	1	48	12	4.9819	5.31	1892	52	12
77	1	252	0	2	32	12	0.3571	0.00	3644	32	12
78	1	337	0	0	49	17	2.9674	0.00	1430	47	17
79	1	90	2	2	32	15	1.0000	0.00	2350	31	14
80	1	1174	0	0	58	12	2.5554	4.87	1948	59	16
81	1	372	0	0	50	6	0.8602	2.25	1804	42	12
82	1	30	0	0	60	14	1.0000	0.00	2326	51	12
83	1	1800	0	1	50	12	2.9261	0.00	1739	55	11
84	1	282	0	0	56	14	3.5461	2.50	1176	57	17
85	1	720	0	0	51	9	1.6264	2.20	1100	55	8
86	1	1440	0	1	54	17	8.3333	6.00	1528	58	17
87	1	2100	0	0	59	13	3.0952	2.95	2250	52	15
88	1	1000	0	2	46	9	2.7000	2.35	1927	47	10
89	1	952	0	1	46	15	5.2521	0.00	2414	47	16
90	1	1413	1	3	39	12	1.4154	2.20	768	49	8
91	1	2100	0	2	44	12	4.7986	4.85	1984	43	14
92	1	120	2	0	33	12	1.6667	2.37	2246	36	12
93	1	3000	1	2	33	12	1.1217	0.00	3024	30	17
94	1	1000	0	2	48	12	0.5000	0.00	2921	52	12
95	1	336	0	4	31	12	0.7143	0.00	2045	37	17
96	1	1216	0	1	45	12	2.7961	2.90	1928	44	12
97	1	988	0	1	45	12	4.8583	4.50	1920	44	10

98	1	2581	0	2	32	13	1.7435	2.60	2280	37	17
99	1	2030	0	0	47	12	2.4631	2.80	2300	47	17
100	1	413	0	2	34	13	2.4213	3.00	2480	35	13
101	1	782	0	1	37	12	1.5345	2.30	1135	34	10
102	1	1388	0	1	36	12	2.8818	1.87	1384	39	12
103	1	1450	1	2	47	12	2.4069	3.00	1848	50	14
104	1	1720	0	1	48	16	5.2326	4.68	2499	46	17
105	1	800	0	2	42	12	3.7500	2.50	2390	43	12
106	1	360	0	3	33	13	1.3889	0.00	2400	44	14
107	1	2000	0	0	46	11	4.0000	4.61	1920	53	8
108	1	1176	0	3	47	12	3.2313	3.35	2301	48	13
109	1	2058	0	1	44	12	3.4014	3.80	1944	43	10
110	1	900	0	4	36	12	1.3333	2.20	2100	37	17
111	1	215	2	0	31	17	9.3023	9.98	1920	32	16
112	1	2000	0	0	55	14	4.5000	4.37	2880	55	14
113	1	757	0	1	45	16	4.6235	4.50	1932	48	16
114	1	1264	0	0	47	17	3.9557	0.00	3234	48	17
115	1	2064	0	3	46	12	5.8140	6.00	2805	47	12
116	1	1280	0	0	49	11	0.5000	0.00	2272	52	9
117	1	1715	0	0	49	12	4.0816	3.75	2227	52	14
118	1	2000	0	2	45	12	6.0000	4.95	1720	49	6
119	1	12	1	3	38	17	3.6667	0.00	2300	38	13
120	1	1528	0	0	47	10	3.8613	2.95	3410	50	12
121	1	561	0	3	54	13	2.7629	2.53	2304	57	16
122	1	2058	0	0	41	11	2.9310	2.90	1984	42	12
123	1	1823	0	2	43	12	4.3884	4.20	1890	33	14
124	1	1680	1	1	31	16	5.4167	4.70	1970	32	12
125	1	1440	0	0	47	17	9.8611	7.10	2400	46	12
126	1	4950	0	2	35	12	0.1616	2.75	2504	37	12
127	1	1176	0	3	45	16	0.3826	3.75	2398	48	17
128	1	1100	1	0	33	12	3.6364	3.58	1960	39	12
129	1	1516	0	1	54	16	2.3747	2.40	2550	55	12
130	1	900	0	4	35	8	4.6667	3.95	2500	41	12
131	1	1080	1	2	31	12	1.8519	2.25	2164	37	10
132	1	480	0	0	55	12	5.2000	0.00	2640	60	12
133	1	288	0	2	34	12	3.2986	4.62	1936	36	12
134	1	1875	0	1	38	13	8.5333	8.50	2136	41	12
135	1	630	0	1	45	11	2.0635	0.00	1955	51	10
136	1	234	0	1	47	12	2.5641	2.50	1980	48	10
137	1	1600	0	2	39	12	2.1875	0.00	2550	42	11
138	1	960	1	0	36	14	6.2500	0.00	2058	37	13
139	1	120	1	2	33	12	3.3333	0.00	2263	32	14
140	1	2025	0	0	50	12	4.4444	4.80	1763	54	13

141	1	1809	0	0	58	12	6.6335	6.45	2096	59	14
142	1	3087	0	0	49	17	8.4224	9.98	2059	47	13
143	1	910	0	2	41	14	4.3956	0.00	1820	40	17
144	1	1840	0	1	51	12	2.4457	2.50	2832	53	8
145	1	784	0	0	53	9	1.2245	2.25	1990	60	10
146	1	400	1	2	36	12	1.6250	0.00	2000	40	7
147	1	1000	0	2	46	12	3.0000	5.50	1885	46	12
148	1	1904	0	2	36	12	4.7269	4.20	2860	37	12
149	1	1771	0	1	53	14	1.1293	9.98	1913	48	16
150	1	1486	0	3	40	16	7.4024	6.25	1800	54	16
151	1	740	0	2	42	17	4.4595	1.65	2880	45	16
152	1	1820	1	1	33	15	2.4725	0.00	1993	32	16
153	1	1275	0	3	43	12	1.8824	3.00	2250	47	14
154	1	450	1	0	31	16	4.0000	4.00	2286	30	16
155	1	1221	0	0	47	17	8.1900	5.99	1880	47	16
156	1	1550	0	0	54	17	7.0968	6.00	2350	58	17
157	1	180	1	3	33	12	1.6667	0.00	3640	33	11
158	1	2090	0	0	43	16	3.4450	3.85	1770	47	14
159	1	1960	0	1	46	13	4.2347	4.20	1875	49	13
160	1	1440	0	3	35	12	2.7778	4.10	2200	38	9
161	1	794	0	3	37	11	1.8892	3.85	2033	39	12
162	1	993	0	2	37	16	5.0352	8.30	2739	39	17
163	1	160	0	3	34	14	1.2500	0.00	1626	38	14
164	1	105	1	0	43	16	2.8571	0.00	2248	44	17
165	1	1200	0	0	46	12	4.1167	4.33	2140	48	12
166	1	450	0	3	35	9	1.7778	2.60	1985	42	12
167	1	996	0	0	46	17	13.5540	9.98	1528	59	17
168	1	1052	0	0	46	14	4.5627	4.90	1920	48	16
169	1	1128	0	2	43	12	2.1277	2.40	1918	46	10
170	1	1840	0	0	30	12	2.9891	3.75	2112	30	12
171	1	1910	0	2	41	11	2.5654	2.57	2144	46	9
172	1	980	0	1	54	12	5.6122	5.00	1920	54	15
173	1	2317	0	1	31	12	2.8054	3.87	2241	41	9
174	1	1089	0	0	44	10	1.6070	0.00	880	47	11
175	1	800	0	1	32	12	2.2500	0.00	2070	31	16
176	1	1230	0	0	47	5	2.0325	2.82	1050	53	5
177	1	1158	0	1	46	17	5.5320	8.10	2635	57	17
178	1	2272	0	0	37	11	1.5845	3.71	3000	47	8
179	1	528	0	2	51	12	3.7879	0.00	2500	50	11
180	1	1000	0	1	49	12	3.0000	0.00	1990	49	12
181	1	520	0	4	36	14	8.6538	0.00	2390	37	13
182	1	760	0	1	39	11	4.2105	3.95	1430	44	12
183	1	1920	0	2	48	12	4.6875	4.30	1800	50	8

184	1	1220	0	2	38	14	4.0984	4.84	2103	43	17
185	1	200	0	2	40	12	25.0000	3.00	1350	42	12
186	1	2480	1	5	39	10	2.6331	4.20	2880	36	17
187	1	2750	0	0	37	16	6.0000	9.00	2400	43	17
188	1	2014	0	1	49	13	5.4126	4.05	1135	47	12
189	1	1355	0	3	33	12	0.6642	1.00	2750	35	17
190	1	80	0	0	30	12	1.2500	0.00	2085	32	16
191	1	1670	0	0	54	12	2.2754	2.10	2600	56	8
192	1	520	0	4	39	11	3.4615	3.05	3542	40	12
193	1	288	0	3	43	12	4.1667	3.00	1975	43	12
194	1	2014	0	3	31	9	4.4687	4.26	2400	32	12
195	1	800	0	3	33	13	1.7500	0.00	3000	37	14
196	1	1984	0	3	40	12	3.6694	4.25	1960	39	14
197	1	1823	0	1	36	12	6.5826	6.00	2000	39	9
198	1	1500	0	0	51	12	2.6000	2.00	3000	51	12
199	1	2261	0	1	44	13	4.8651	5.50	2400	43	12
200	1	1728	0	3	42	16	5.7870	6.25	2450	48	14
201	1	1960	0	1	40	12	4.5408	5.00	2423	40	8
202	1	1578	1	1	34	16	9.5057	7.72	2000	33	16
203	1	1316	0	0	30	17	10.6380	7.00	2526	41	16
204	1	1530	0	0	54	12	1.1111	1.13	2695	53	12
205	1	2220	0	0	51	12	4.0541	4.37	2048	54	12
206	1	1336	0	2	44	9	2.6871	2.64	1920	46	11
207	1	1008	0	1	43	12	2.9762	2.50	2338	42	9
208	1	1944	0	1	34	12	3.1728	3.23	2945	37	8
209	1	2000	0	0	45	13	3.5500	3.45	2047	52	12
210	1	258	0	0	39	12	17.9070	0.00	1668	47	7
211	1	1785	0	0	50	12	3.4174	5.75	175	48	10
212	1	480	0	0	52	12	3.3333	0.00	1798	53	12
213	1	772	0	2	41	12	3.8860	7.50	1222	45	12
214	1	900	0	0	59	10	2.3111	2.22	1820	59	7
215	1	1428	0	0	52	12	1.7108	2.50	1560	60	8
216	1	210	0	0	46	16	2.1143	4.00	2210	49	12
217	1	239	1	5	41	12	9.9331	4.50	2874	48	16
218	1	1878	0	2	33	11	3.0277	3.50	2499	35	8
219	1	215	0	0	45	12	1.8605	2.30	3088	38	12
220	1	2340	1	2	36	10	0.1282	0.00	2020	37	8
221	1	1960	0	1	48	12	6.6327	6.30	1980	56	10
222	1	532	0	1	47	12	5.6391	3.60	1968	47	11
223	1	394	0	0	45	12	1.5990	2.50	2100	45	12
224	1	675	0	2	37	12	2.6667	3.00	2651	48	17
225	1	1515	0	4	46	16	7.9208	6.80	1918	49	14
226	1	1030	0	3	43	17	5.3398	5.80	2585	46	16

227	1	1250	0	2	42	12	4.0000	4.00	2250	46	17
228	1	1158	1	2	34	17	6.0449	5.10	2480	39	17
229	1	112	0	0	52	12	6.2500	0.00	2924	53	12
230	1	336	0	3	37	12	2.9762	2.20	1896	52	9
231	1	1984	0	1	37	12	4.2339	4.78	2332	40	12
232	1	716	0	0	52	8	3.4916	2.20	3482	59	7
233	1	1410	1	0	30	12	4.9645	1.28	2106	30	14
234	1	1300	0	1	31	13	2.7692	0.00	1160	32	12
235	1	1640	0	1	38	12	3.6585	3.25	2040	46	12
236	1	1202	0	3	43	12	5.3935	0.00	2856	48	16
237	1	489	0	1	49	8	0.6564	2.29	950	51	8
238	1	2076	0	0	55	12	4.7688	4.68	2068	58	10
239	1	526	0	2	38	17	8.5551	4.20	1896	42	17
240	1	1721	0	0	52	17	10.4590	9.50	2000	56	16
241	1	1327	0	0	48	12	2.6375	2.57	288	51	11
242	1	584	0	2	32	13	6.8493	4.32	2160	33	12
243	1	1376	0	1	32	12	5.0872	5.00	3120	33	17
244	1	1040	0	2	38	12	0.9615	0.00	1944	41	17
245	1	548	0	3	46	12	4.3066	3.69	2046	47	12
246	1	15	0	3	40	12	7.0667	0.00	2005	42	9
247	1	1980	0	4	31	9	2.5253	2.56	2070	36	10
248	1	1520	0	1	43	10	7.8947	5.00	3000	50	12
249	1	1880	0	0	51	12	4.1489	3.90	2640	51	12
250	1	1260	1	0	30	16	8.1746	8.17	2450	34	17
251	1	1092	0	0	52	13	9.5971	0.00	1000	53	15
252	1	1587	1	5	30	8	2.0164	2.30	2080	33	8
253	1	156	0	0	51	16	7.6218	0.00	2413	51	16
254	1	1939	0	2	31	13	3.1975	3.43	2570	31	12
255	1	1250	0	4	34	12	1.6000	1.36	2030	52	12
256	1	610	0	0	49	11	4.0984	4.00	4684	59	17
257	1	270	1	3	35	13	1.4815	5.00	2802	41	17
258	1	660	1	0	53	12	3.6364	3.15	2090	59	12
259	1	1000	0	3	32	12	1.0000	0.00	2053	46	16
260	1	1920	0	3	38	10	2.6042	2.93	1984	42	10
261	1	200	0	0	54	12	1.7500	0.00	2040	54	16
262	1	1500	0	1	47	17	4.8000	3.60	2794	58	8
263	1	868	0	1	45	15	5.5300	6.00	3290	47	14
264	1	2318	0	1	47	16	4.0984	4.20	1911	46	16
265	1	2000	0	0	59	10	1.2500	0.00	2000	60	12
266	1	60	0	1	32	11	1.6667	0.00	2580	31	12
267	1	1715	0	1	45	12	3.7901	3.38	2400	49	17
268	1	550	0	4	40	12	2.3636	2.26	1740	47	12
269	1	1960	0	2	47	14	10.2040	0.00	2500	50	12

270	1	44	1	2	36	16	6.8182	1.36	1840	37	17
271	1	1920	0	0	56	14	7.2146	6.92	2036	56	14
272	1	2540	0	1	41	8	2.4484	0.00	3536	43	11
273	1	156	0	3	48	7	1.1987	0.00	880	51	11
274	1	780	1	2	36	12	1.6410	0.00	2007	38	12
275	1	3120	0	0	41	12	1.7821	0.00	2632	44	13
276	1	2040	0	0	41	14	2.9412	2.80	2600	43	12
277	1	1610	0	3	36	12	4.9689	4.25	2156	36	13
278	1	215	0	3	37	12	1.8605	0.00	3625	41	12
279	1	1120	0	0	38	12	8.0357	0.00	2420	42	12
280	1	846	0	2	43	14	3.9716	4.20	2080	43	9
281	1	3225	0	0	54	16	3.0416	0.00	3443	59	17
282	1	1376	0	1	38	12	2.9070	3.75	2250	41	12
283	1	980	1	0	30	12	3.0612	3.60	2535	34	16
284	1	1838	0	0	49	12	4.8966	5.00	2352	48	15
285	1	1494	0	1	45	13	4.0161	2.50	3036	49	6
286	1	450	0	0	51	13	5.5556	3.50	2600	57	14
287	1	1976	0	0	34	10	1.2227	2.45	2223	39	7
288	1	2012	0	2	34	12	2.6839	3.61	2666	34	10
289	1	561	0	1	41	12	2.6738	3.25	2006	41	17
290	1	1715	0	1	49	12	9.3294	7.05	1710	49	17
291	1	1912	0	0	32	12	3.1381	3.60	1920	46	14
292	1	3686	0	0	32	14	0.5426	0.00	1647	39	14
293	1	1080	0	2	32	17	8.6111	4.65	3080	35	15
294	1	1799	0	0	47	10	3.6687	3.25	1920	48	10
295	1	1984	0	1	39	9	2.3185	2.30	2420	47	4
296	1	1839	0	0	49	12	2.8820	3.27	2205	53	15
297	1	1579	0	3	37	12	3.1666	0.00	3035	39	14
298	1	96	0	0	59	16	3.6458	0.00	2185	60	15
299	1	1920	0	0	50	12	6.2500	5.47	1880	56	12
300	1	1688	0	1	32	17	10.2490	9.80	1863	33	17
301	1	1589	0	0	46	12	3.2096	5.54	2456	48	16
302	1	345	0	2	43	17	7.6522	5.00	1847	46	17
303	1	1521	0	3	37	11	1.9724	2.30	2000	42	6
304	1	1490	0	2	32	16	4.6980	3.90	1856	35	14
305	1	989	0	1	39	11	2.1234	2.76	1880	43	14
306	1	600	0	2	34	13	2.3333	2.90	3020	35	12
307	1	2646	0	1	39	11	2.3896	0.00	2646	41	8
308	1	2149	0	3	45	8	1.2564	2.50	1640	48	9
309	1	320	0	0	50	11	1.0938	0.00	1950	54	11
310	1	1600	0	1	40	12	3.7500	3.30	1920	39	12
311	1	2419	0	1	30	10	3.3072	3.90	2025	34	12
312	1	2005	0	0	57	17	5.1352	5.25	2470	56	17

313	1	1960	0	1	39	12	6.6327	3.60	1800	43	12
314	1	2147	0	0	53	12	4.5645	4.90	1920	56	8
315	1	1207	0	1	48	17	11.8480	7.15	2039	53	17
316	1	2000	0	1	46	14	3.7500	3.75	2570	48	16
317	1	1260	0	0	47	12	4.3651	4.35	1914	54	12
318	1	90	0	1	43	12	3.9333	4.00	1516	47	10
319	1	1800	0	0	47	12	3.3333	3.25	2520	47	16
320	1	573	0	1	47	12	3.3159	2.20	2327	48	12
321	1	1825	0	0	47	12	3.5616	3.00	2188	50	12
322	1	75	0	0	46	12	1.6000	0.00	1864	48	12
323	1	1348	0	4	34	9	2.2255	2.30	2183	33	10
324	1	1880	0	0	48	10	4.7872	4.25	1920	55	12
325	1	1240	0	1	30	12	5.8065	6.90	1824	31	12
326	1	848	0	1	51	12	2.3585	2.30	2878	54	12
327	1	150	0	5	52	12	2.0000	0.00	2390	54	16
328	1	2000	0	2	37	12	1.9000	1.85	3120	39	13
329	1	1952	0	2	32	12	5.1230	3.25	2040	33	12
330	1	1456	0	2	36	17	5.4945	6.04	2151	35	15
331	1	1740	0	2	35	12	6.3218	5.50	1976	37	14
332	1	1400	0	0	45	17	7.1429	7.14	2286	51	16
333	1	2000	0	0	56	12	2.3750	2.70	2032	60	10
334	1	1750	0	2	40	10	2.5429	2.74	1680	45	4
335	1	1101	1	2	45	12	2.1798	2.30	1560	49	14
336	1	2000	0	2	32	12	2.6000	2.50	2895	30	12
337	1	1877	0	0	45	12	3.7294	3.60	1820	50	8
338	1	160	0	2	40	12	4.3750	1.85	2450	44	12
339	1	1886	0	1	38	12	4.4433	4.00	1748	42	8
340	1	1446	0	4	49	12	4.2877	4.40	1020	45	12
341	1	1500	0	1	47	16	1.6667	1.50	2342	49	17
342	1	860	0	0	52	13	3.2558	5.83	2250	53	12
343	1	1848	0	1	34	13	5.4113	6.00	2880	40	16
344	1	1678	0	2	44	12	2.2050	2.30	2032	46	12
345	1	160	0	3	36	16	4.0625	0.00	3120	42	16
346	1	108	0	0	50	17	0.6482	0.00	1760	57	16
347	1	1738	0	0	45	12	5.3826	6.18	1725	47	12
348	1	1170	0	2	44	14	0.1709	0.00	2080	46	13
349	1	15	0	2	57	12	23.4670	0.00	2040	57	10
350	1	2088	0	0	35	17	9.5785	9.98	2940	42	17
351	1	2490	0	0	46	12	3.6948	3.77	2280	52	12
352	1	135	2	1	30	14	2.2222	0.00	2164	35	16
353	1	1944	0	3	42	12	1.7490	2.30	1999	44	12
354	1	690	0	1	34	12	1.1594	2.25	1824	36	13
355	1	608	0	2	45	17	6.9901	3.00	2182	47	16

356	1	63	1	2	35	16	3.9683	0.00	2385	37	16
357	1	154	0	0	40	16	21.4290	8.13	2460	44	17
358	1	420	0	1	32	12	0.4762	2.85	2595	35	16
359	1	651	0	0	54	9	2.1505	1.44	2400	57	10
360	1	675	0	3	38	12	1.8578	2.20	3120	42	8
361	1	1663	0	3	43	12	4.3295	3.60	2850	42	12
362	1	1680	0	0	54	16	8.9286	7.00	760	60	12
363	1	180	0	3	39	14	2.7778	4.00	2500	37	17
364	1	1581	0	1	37	12	2.6565	3.25	2630	39	14
365	1	1200	0	2	46	12	2.5000	3.08	2597	48	8
366	1	450	0	0	56	11	18.2670	0.00	2760	60	11
367	1	547	0	3	41	12	0.8190	2.00	2070	44	8
368	1	300	0	1	45	16	2.0000	0.00	2256	48	16
369	1	975	0	1	44	17	15.3850	8.50	1505	47	16
370	1	1621	0	1	50	17	6.4775	0.00	2364	52	17
371	1	300	0	5	37	14	8.3333	3.50	2895	38	14
372	1	1868	0	1	44	12	4.5503	4.25	2041	46	12
373	1	1803	0	2	32	14	2.4958	1.90	2195	34	17
374	1	2143	1	1	34	12	4.4797	4.80	1935	40	12
375	1	1080	0	2	32	10	2.2324	2.30	1950	35	10
376	1	1352	0	3	37	12	2.0710	1.80	2375	38	14
377	1	537	0	1	44	13	1.6760	0.00	1920	55	8
378	1	352	0	2	34	16	3.4091	0.00	3300	33	12
379	1	200	1	3	33	12	2.5000	8.00	3680	33	16
380	1	2045	0	3	43	7	3.9609	4.07	1968	43	12
381	1	1253	0	2	35	16	6.2275	3.97	2504	33	10
382	1	1960	0	1	43	14	3.9286	3.85	2000	45	14
383	1	2000	0	0	34	12	2.9000	2.50	1656	37	12
384	1	1960	0	3	36	10	4.0816	4.55	1968	39	7
385	1	2000	0	2	41	12	2.8500	4.20	2016	41	12
386	1	1568	0	0	41	16	7.0153	6.31	2602	44	17
387	1	1225	0	3	35	10	2.9388	2.40	1560	43	9
388	1	780	1	3	32	12	1.9231	3.25	1827	37	10
389	1	480	0	0	30	14	6.8750	0.00	2080	34	14
390	1	1923	0	0	43	12	3.9002	4.74	3390	47	12
391	1	2000	0	0	54	6	2.0000	0.00	2524	57	6
392	1	2110	0	2	35	15	4.9763	4.37	2777	34	12
393	1	1664	0	0	50	12	1.2019	5.00	3120	54	13
394	1	48	1	1	34	17	22.5000	0.00	2700	36	17
395	1	1791	0	0	52	14	6.8677	6.18	1904	57	12
396	1	1404	0	3	35	13	3.5613	5.30	2360	38	14
397	1	1920	0	0	55	6	1.9792	2.58	1960	58	8
398	1	2141	0	0	35	16	5.3713	6.00	2000	42	16

399	1	1720	0	1	49	14	1.7442	0.00	2600	45	16
400	1	3533	2	2	38	15	5.0948	8.50	2000	38	9
401	1	2000	0	2	42	14	2.5000	0.00	2218	45	14
402	1	800	0	1	48	8	3.8250	2.30	2000	52	5
403	1	3000	0	0	51	14	1.0000	0.00	2595	53	16
404	1	293	0	2	43	12	3.0717	4.00	2400	47	12
405	1	1872	0	1	43	12	1.7163	0.00	2856	48	12
406	1	2058	0	1	38	12	4.0209	4.00	2601	38	14
407	1	1832	0	1	44	12	5.4585	4.95	2054	48	9
408	1	120	1	3	36	12	25.0000	9.98	2500	35	12
409	1	1632	0	0	38	12	2.3897	2.30	1960	31	12
410	1	778	0	0	47	8	3.2134	7.25	2058	51	8
411	1	1984	0	2	34	12	3.3770	3.14	2410	49	10
412	1	225	1	2	40	17	1.7778	0.00	1278	38	17
413	1	1960	0	1	31	12	3.1633	3.18	2875	35	12
414	1	444	0	0	46	12	2.7027	0.00	2340	49	12
415	1	384	0	3	36	14	1.6927	0.00	3060	43	17
416	1	1170	1	2	39	13	0.2137	0.00	1920	47	12
417	1	1330	0	2	36	17	6.7669	4.50	3390	38	12
418	1	1350	0	4	37	8	1.7407	2.10	2400	41	12
419	1	480	0	4	39	12	2.5000	0.00	1640	40	11
420	1	1984	1	3	36	11	4.4859	3.26	1656	38	8
421	1	1944	0	2	49	12	2.5720	2.70	1920	53	16
422	1	50	1	1	45	12	3.4600	5.00	1780	46	10
423	1	460	2	0	32	17	4.7826	0.00	1850	31	17
424	1	680	0	5	36	10	2.3118	0.00	3430	43	12
425	1	2450	0	1	40	12	5.3061	6.50	2008	40	8
426	1	2144	0	2	43	13	5.8675	0.00	2140	43	11
427	1	1760	0	1	33	12	3.4091	3.21	3380	34	12
428	1	490	0	1	30	12	4.0816	2.46	2430	33	11
429	0	0	0	1	49	12	NA	0.00	2550	54	15
430	0	0	2	0	30	16	NA	0.00	1928	34	16
431	0	0	1	0	30	12	NA	0.00	1100	39	17
432	0	0	0	4	41	12	NA	0.00	3193	40	16
433	0	0	0	1	45	12	NA	0.00	2250	46	16
434	0	0	0	5	43	12	NA	0.00	2012	44	13
435	0	0	0	1	42	13	NA	0.00	3856	46	15
436	0	0	0	0	60	12	NA	0.00	1645	58	12
437	0	0	0	0	57	12	NA	0.00	1554	57	12
438	0	0	0	2	38	10	NA	0.00	2352	41	8
439	0	0	0	0	56	12	NA	0.00	1980	58	12
440	0	0	0	3	32	12	NA	0.00	2352	37	7
441	0	0	0	1	49	7	NA	0.00	1784	58	6

442	0	0	0	0	55	12	NA	0.00	2500	58	12
443	0	0	1	1	36	9	NA	0.00	2088	39	14
444	0	0	0	3	44	12	NA	0.00	4640	50	12
445	0	0	0	1	44	10	NA	0.00	3900	60	12
446	0	0	1	2	35	14	NA	0.00	1988	34	17
447	0	0	2	3	44	14	NA	0.00	1920	45	10
448	0	0	0	1	45	12	NA	0.00	2400	45	12
449	0	0	1	0	34	12	NA	0.00	1867	38	12
450	0	0	2	0	30	17	NA	0.00	3570	32	17
451	0	0	0	1	39	8	NA	0.00	2805	44	12
452	0	0	0	2	36	12	NA	0.00	1110	39	15
453	0	0	0	2	38	17	NA	0.00	2695	42	16
454	0	0	0	0	53	12	NA	0.00	1950	54	16
455	0	0	0	2	36	12	NA	0.00	2128	42	12
456	0	0	1	1	32	12	NA	0.00	3260	31	12
457	0	0	0	3	51	9	NA	0.00	1987	51	12
458	0	0	0	0	38	11	NA	0.00	2185	46	11
459	0	0	2	0	33	12	NA	0.00	2475	36	12
460	0	0	0	0	54	12	NA	0.00	2610	53	12
461	0	0	0	3	38	9	NA	0.00	1920	44	12
462	0	0	2	2	30	11	NA	0.00	2352	31	14
463	0	0	2	3	34	12	NA	0.00	3160	30	12
464	0	0	0	1	34	9	NA	0.00	1040	37	13
465	0	0	0	2	50	12	NA	0.00	3120	49	12
466	0	0	2	0	30	17	NA	0.00	2240	30	16
467	0	0	0	2	38	12	NA	0.00	1980	42	16
468	0	0	0	0	54	14	NA	0.00	1960	58	14
469	0	0	1	2	30	12	NA	3.00	2940	31	17
470	0	0	0	0	55	12	NA	0.00	2467	56	11
471	0	0	0	1	51	10	NA	0.00	2256	56	12
472	0	0	0	1	44	12	NA	0.00	1680	46	12
473	0	0	0	0	53	12	NA	0.00	2250	55	12
474	0	0	0	2	42	10	NA	0.00	2400	49	9
475	0	0	0	2	38	12	NA	0.00	2196	42	11
476	0	0	1	3	38	13	NA	0.00	2400	40	12
477	0	0	1	4	41	12	NA	0.00	3825	41	11
478	0	0	0	3	35	8	NA	0.00	2860	44	9
479	0	0	1	2	33	12	NA	2.75	2750	34	12
480	0	0	0	0	48	13	NA	0.00	2103	50	16
481	0	0	0	0	47	12	NA	0.00	1880	51	12
482	0	0	0	5	34	12	NA	0.00	3185	41	13
483	0	0	2	1	33	13	NA	0.00	2677	37	17
484	0	0	3	1	31	13	NA	0.00	3600	36	17

485	0	0	0	0	58	8	NA	0.00	4334	58	8
486	0	0	0	0	49	12	NA	0.00	2874	52	8
487	0	0	0	1	55	8	NA	0.00	1936	56	9
488	0	0	0	0	44	14	NA	1.50	1964	49	8
489	0	0	0	0	44	9	NA	0.00	1900	48	8
490	0	0	0	3	36	16	NA	0.00	2500	37	17
491	0	0	0	3	38	12	NA	0.00	3173	46	14
492	0	0	0	3	37	16	NA	0.00	2916	38	17
493	0	0	0	0	47	12	NA	0.00	2208	51	12
494	0	0	0	3	47	12	NA	0.00	2094	47	10
495	0	0	1	1	32	12	NA	0.00	2250	33	12
496	0	0	1	2	43	12	NA	0.00	2000	46	12
497	0	0	1	4	42	11	NA	0.00	2600	48	10
498	0	0	0	0	56	12	NA	0.00	4368	57	8
499	0	0	0	5	38	13	NA	2.25	3068	40	16
500	0	0	0	2	52	12	NA	0.00	2218	51	11
501	0	0	0	0	50	12	NA	0.00	1848	56	12
502	0	0	0	0	33	16	NA	0.00	2430	33	17
503	0	0	0	2	44	16	NA	0.00	2640	44	17
504	0	0	0	1	41	12	NA	0.00	2108	42	16
505	0	0	0	1	45	12	NA	0.00	1998	45	12
506	0	0	0	0	53	14	NA	0.00	2500	55	16
507	0	0	0	0	53	14	NA	0.00	1665	56	17
508	0	0	0	1	42	12	NA	0.00	2990	46	12
509	0	0	2	0	32	13	NA	0.00	1795	35	16
510	0	0	0	0	56	12	NA	0.00	2500	53	12
511	0	0	1	3	37	11	NA	0.00	2205	40	11
512	0	0	1	2	40	12	NA	0.00	2460	42	14
513	0	0	0	3	54	15	NA	0.00	1880	55	16
514	0	0	0	0	53	7	NA	0.00	3481	53	9
515	0	0	0	1	48	12	NA	0.00	2450	51	12
516	0	0	1	2	36	12	NA	0.00	2062	38	14
517	0	0	0	0	57	12	NA	0.00	2146	52	14
518	0	0	0	0	51	12	NA	0.00	1575	49	7
519	0	0	0	4	33	13	NA	0.00	3096	37	12
520	0	0	0	0	52	12	NA	0.00	3280	49	11
521	0	0	0	0	56	10	NA	0.00	1680	60	8
522	0	0	1	2	36	12	NA	0.00	2625	38	11
523	0	0	1	0	36	14	NA	0.00	1846	50	16
524	0	0	0	1	46	12	NA	0.00	2178	47	10
525	0	0	0	3	31	10	NA	0.00	960	33	9
526	0	0	0	0	52	11	NA	0.00	2210	51	12
527	0	0	0	2	46	12	NA	0.00	2192	55	12

528	0	0	2	0	35	12	NA	0.00	1960	44	16
529	0	0	0	0	59	12	NA	0.00	1920	56	10
530	0	0	0	1	36	8	NA	0.00	2286	40	12
531	0	0	1	3	51	7	NA	0.00	2000	52	7
532	0	0	1	0	31	16	NA	0.00	2256	31	12
533	0	0	0	2	31	14	NA	0.00	2370	36	17
534	0	0	1	1	32	12	NA	0.00	1800	39	13
535	0	0	1	2	35	16	NA	0.00	2250	38	16
536	0	0	0	3	40	12	NA	4.10	1080	43	12
537	0	0	1	2	33	10	NA	0.00	2840	38	12
538	0	0	0	0	54	7	NA	0.00	2250	52	11
539	0	0	1	1	36	12	NA	0.00	2746	37	12
540	0	0	0	1	50	10	NA	0.00	2300	60	8
541	0	0	0	0	54	8	NA	0.00	2860	49	8
542	0	0	0	1	48	11	NA	0.00	1765	49	12
543	0	0	0	4	41	15	NA	0.00	2520	42	16
544	0	0	0	4	50	12	NA	0.00	2208	53	12
545	0	0	0	2	46	12	NA	0.00	2119	51	8
546	0	0	0	1	42	13	NA	0.00	2580	47	17
547	0	0	1	2	31	9	NA	0.00	1984	34	12
548	0	0	0	0	53	12	NA	0.00	1880	58	8
549	0	0	0	1	51	12	NA	0.00	2185	57	12
550	0	0	0	1	47	12	NA	0.00	2080	57	12
551	0	0	0	1	50	12	NA	0.00	1920	50	12
552	0	0	0	1	37	6	NA	0.00	3000	52	5
553	0	0	2	2	30	12	NA	0.00	2100	31	12
554	0	0	0	0	49	12	NA	0.00	1690	39	12
555	0	0	0	2	52	12	NA	0.00	2600	49	16
556	0	0	0	2	47	12	NA	0.00	1984	49	16
557	0	0	0	0	49	12	NA	0.00	2064	53	12
558	0	0	0	4	44	12	NA	0.00	2553	31	16
559	0	0	0	0	53	8	NA	0.00	2776	59	9
560	0	0	1	0	30	12	NA	0.00	2315	31	13
561	0	0	0	2	54	12	NA	0.00	1880	55	12
562	0	0	1	1	47	7	NA	0.00	2160	51	7
563	0	0	0	0	56	15	NA	0.00	900	56	12
564	0	0	0	1	49	12	NA	0.00	2467	52	16
565	0	0	0	0	48	6	NA	0.00	1820	55	12
566	0	0	0	1	49	12	NA	0.00	2223	53	10
567	0	0	0	1	56	12	NA	0.00	2142	60	12
568	0	0	0	0	46	12	NA	0.00	1928	46	11
569	0	0	0	2	45	12	NA	0.00	2783	49	17
570	0	0	0	2	32	12	NA	0.00	1960	35	12

571	0	0	1	1	43	12	NA	2.70	1920	41	12
572	0	0	1	1	34	12	NA	0.00	1587	39	12
573	0	0	1	1	30	12	NA	0.00	2496	51	10
574	0	0	2	0	38	17	NA	4.80	2280	39	12
575	0	0	1	1	33	16	NA	0.00	2750	36	17
576	0	0	0	0	52	12	NA	0.00	2115	55	12
577	0	0	0	3	43	11	NA	0.00	2590	45	12
578	0	0	1	1	33	12	NA	0.00	2372	34	12
579	0	0	0	0	45	10	NA	0.00	2295	48	12
580	0	0	2	1	36	10	NA	0.00	2096	38	12
581	0	0	1	1	34	12	NA	0.00	3315	39	17
582	0	0	0	2	37	14	NA	0.00	1777	50	16
583	0	0	0	1	46	10	NA	0.00	1880	51	12
584	0	0	0	0	47	12	NA	0.00	2184	55	10
585	0	0	2	1	31	16	NA	0.00	3250	32	16
586	0	0	0	0	57	5	NA	0.00	1520	58	5
587	0	0	1	1	30	12	NA	0.00	3119	30	13
588	0	0	0	0	30	12	NA	0.00	640	43	17
589	0	0	0	3	44	12	NA	0.00	2250	45	12
590	0	0	0	0	53	13	NA	0.00	3000	53	13
591	0	0	0	0	51	8	NA	0.00	2028	54	8
592	0	0	1	3	39	12	NA	0.00	2412	36	14
593	0	0	0	0	52	8	NA	0.00	2452	54	12
594	0	0	0	4	46	8	NA	0.00	2304	50	12
595	0	0	0	5	47	12	NA	0.00	3120	49	12
596	0	0	0	2	52	8	NA	0.00	1670	54	8
597	0	0	0	2	45	12	NA	0.00	2137	46	15
598	0	0	0	0	60	11	NA	0.00	2071	52	11
599	0	0	0	2	41	13	NA	0.00	1960	54	7
600	0	0	0	3	39	8	NA	0.00	2068	45	12
601	0	0	0	1	49	12	NA	0.00	2190	51	12
602	0	0	1	1	32	15	NA	0.00	2295	37	13
603	0	0	1	3	33	12	NA	0.00	2970	34	13
604	0	0	0	4	36	10	NA	0.00	2068	37	8
605	0	0	3	3	37	13	NA	0.00	2419	39	14
606	0	0	1	2	30	12	NA	0.00	2150	34	11
607	0	0	1	1	44	11	NA	0.00	1152	37	10
608	0	0	0	1	48	12	NA	0.00	2640	49	12
609	0	0	0	4	40	11	NA	0.00	2550	45	11
610	0	0	0	0	47	13	NA	0.00	1360	49	16
611	0	0	0	2	36	12	NA	0.00	2420	40	12
612	0	0	0	2	40	11	NA	0.00	2205	42	14
613	0	0	0	1	46	12	NA	0.00	3268	46	12

614	0	0	0	0	52	12	NA	0.00	3672	54	12
615	0	0	0	1	44	12	NA	0.00	1800	45	12
616	0	0	0	1	45	10	NA	0.00	1926	46	14
617	0	0	2	1	30	7	NA	0.00	1920	35	7
618	0	0	1	3	40	12	NA	0.00	2080	44	12
619	0	0	0	1	43	12	NA	0.00	2856	43	12
620	0	0	0	2	49	12	NA	0.00	2115	53	10
621	0	0	1	4	46	12	NA	3.45	1880	48	12
622	0	0	0	0	52	11	NA	0.00	2000	52	12
623	0	0	1	1	31	12	NA	0.00	2044	33	15
624	0	0	1	1	42	10	NA	0.00	1677	47	11
625	0	0	0	3	33	11	NA	0.00	2184	38	8
626	0	0	0	0	57	16	NA	0.00	3185	57	13
627	0	0	0	0	49	10	NA	0.00	2680	51	10
628	0	0	0	1	45	14	NA	0.00	3615	47	14
629	0	0	0	0	56	11	NA	0.00	2139	56	12
630	0	0	1	3	41	12	NA	0.00	3080	43	12
631	0	0	0	0	56	5	NA	0.00	1261	53	6
632	0	0	0	1	48	10	NA	0.00	2227	48	10
633	0	0	0	2	52	16	NA	0.00	1920	53	16
634	0	0	0	0	51	12	NA	0.00	2350	55	12
635	0	0	0	3	35	11	NA	0.00	1785	39	10
636	0	0	0	0	45	12	NA	0.00	2598	51	12
637	0	0	0	0	54	12	NA	0.00	2455	58	17
638	0	0	0	2	54	12	NA	0.00	2450	54	13
639	0	0	1	0	31	12	NA	0.00	1218	32	8
640	0	0	0	3	53	6	NA	0.00	2040	54	4
641	0	0	2	2	35	14	NA	0.00	2600	34	14
642	0	0	1	3	36	12	NA	0.00	2450	40	16
643	0	0	0	0	59	12	NA	0.00	2717	60	12
644	0	0	0	0	54	16	NA	0.00	2701	54	17
645	0	0	1	1	37	12	NA	0.00	2600	47	17
646	0	0	0	0	44	12	NA	0.00	3640	54	10
647	0	0	1	2	34	17	NA	0.00	2940	40	16
648	0	0	0	0	49	12	NA	0.00	1880	50	12
649	0	0	0	0	49	12	NA	0.00	3500	51	12
650	0	0	0	0	60	9	NA	0.00	3320	60	8
651	0	0	0	0	51	12	NA	0.00	1605	55	12
652	0	0	1	1	30	12	NA	0.00	2500	30	14
653	0	0	0	2	47	12	NA	0.00	2400	49	9
654	0	0	0	4	36	12	NA	0.00	1634	45	17
655	0	0	1	3	35	12	NA	0.00	2260	38	12
656	0	0	0	0	58	12	NA	0.00	3478	53	12

657	0	0	1	3	41	14	NA	0.00	2550	42	16
658	0	0	0	1	51	10	NA	0.00	840	52	8
659	0	0	0	0	47	12	NA	0.00	1520	52	12
660	0	0	1	2	45	9	NA	0.00	1920	35	9
661	0	0	0	0	60	14	NA	0.00	2703	55	17
662	0	0	1	1	30	16	NA	2.00	1896	46	16
663	0	0	0	0	55	11	NA	0.00	1960	57	13
664	0	0	1	2	32	12	NA	0.00	3060	50	8
665	0	0	0	2	36	12	NA	0.00	2805	38	12
666	0	0	0	0	55	12	NA	0.00	1944	53	7
667	0	0	0	0	47	12	NA	0.00	1960	47	12
668	0	0	0	1	47	12	NA	0.00	2112	52	8
669	0	0	0	1	37	11	NA	0.00	2544	39	12
670	0	0	0	2	50	12	NA	0.00	1700	53	17
671	0	0	0	3	30	12	NA	0.00	2550	31	12
672	0	0	0	1	48	17	NA	0.00	2080	45	17
673	0	0	0	2	43	10	NA	0.00	2060	49	12
674	0	0	1	0	48	11	NA	0.00	1955	46	8
675	0	0	1	2	41	14	NA	0.00	2500	44	17
676	0	0	0	0	50	12	NA	0.00	2750	52	10
677	0	0	0	0	58	8	NA	0.00	2040	59	5
678	0	0	0	5	38	13	NA	0.00	3275	43	15
679	0	0	0	1	37	12	NA	0.00	2400	39	12
680	0	0	0	0	50	16	NA	0.00	2024	51	17
681	0	0	0	4	42	8	NA	0.00	1840	44	6
682	0	0	1	3	37	9	NA	0.00	2033	37	17
683	0	0	0	2	41	16	NA	0.00	1946	40	17
684	0	0	0	2	31	12	NA	0.00	3660	31	12
685	0	0	0	0	51	12	NA	0.00	2088	55	11
686	0	0	1	2	36	12	NA	0.00	2048	41	12
687	0	0	0	0	54	15	NA	0.00	1920	52	15
688	0	0	0	0	49	12	NA	0.00	2000	54	12
689	0	0	1	1	48	9	NA	0.00	2204	47	8
690	0	0	0	2	42	9	NA	0.00	3157	45	10
691	0	0	1	2	41	12	NA	0.00	1665	44	14
692	0	0	0	0	55	16	NA	0.00	2304	56	11
693	0	0	0	0	42	9	NA	0.00	2275	46	8
694	0	0	0	1	32	15	NA	0.00	2760	33	17
695	0	0	0	2	43	12	NA	0.00	1750	44	14
696	0	0	1	3	33	12	NA	0.00	3366	37	13
697	0	0	0	1	48	15	NA	0.00	2205	51	16
698	0	0	0	2	43	12	NA	0.00	1990	48	9
699	0	0	1	3	47	17	NA	0.00	1930	57	16
	-		_	-	•	•					

700	0	0	0	0	54	12	NA	0.00	1350	60	12
701	0	0	0	1	51	12	NA	0.00	3340	52	12
702	0	0	0	1	51	10	NA	0.00	960	57	10
703	0	0	1	1	43	13	NA	0.00	2732	42	13
704	0	0	0	0	53	12	NA	0.00	1624	59	8
705	0	0	1	1	34	11	NA	0.00	1804	36	12
706	0	0	1	1	31	8	NA	0.00	2805	31	10
707	0	0	0	0	56	12	NA	0.00	2160	59	8
708	0	0	0	1	42	16	NA	0.00	2052	55	15
709	0	0	0	2	32	12	NA	0.00	2250	35	16
710	0	0	1	3	35	12	NA	0.00	1120	37	12
711	0	0	1	1	30	12	NA	0.00	2450	36	14
712	0	0	0	0	51	10	NA	0.00	3432	50	11
713	0	0	0	3	47	12	NA	0.00	2700	48	12
714	0	0	0	1	54	12	NA	0.00	2817	55	13
715	0	0	3	0	31	15	NA	0.00	3000	34	17
716	0	0	0	0	47	10	NA	0.00	2125	45	11
717	0	0	0	3	47	14	NA	0.00	1864	42	16
718	0	0	0	3	40	12	NA	0.00	2400	39	12
719	0	0	0	0	48	8	NA	0.00	2160	50	7
720	0	0	0	7	34	8	NA	0.00	1040	51	7
721	0	0	0	3	38	12	NA	0.00	2450	42	16
722	0	0	1	3	32	12	NA	0.00	2500	34	16
723	0	0	0	1	48	16	NA	0.00	2131	45	17
724	0	0	0	2	41	12	NA	0.00	2165	46	7
725	0	0	0	2	49	5	NA	0.00	2230	43	3
726	0	0	0	0	59	8	NA	0.00	1995	55	12
727	0	0	0	0	58	13	NA	0.00	2025	57	16
728	0	0	0	3	41	12	NA	0.00	2450	48	15
729	0	0	0	2	45	12	NA	0.00	2160	45	12
730	0	0	1	1	30	14	NA	0.00	1715	32	17
731	0	0	0	1	41	12	NA	0.00	3018	42	16
732	0	0	2	0	30	12	NA	0.00	2216	33	16
733	0	0	0	1	53	12	NA	0.00	2499	54	12
734	0	0	0	0	31	12	NA	0.00	2250	37	14
735	0	0	0	2	43	14	NA	0.00	2116	44	17
736	0	0	1	1	31	12	NA	0.00	2016	30	14
737	0	0	0	0	51	12	NA	0.00	2470	60	10
738	0	0	0	0	43	9	NA	0.00	1640	45	12
739	0	0	1	2	31	14	NA	0.00	2016	34	16
740	0	0	0	0	48	11	NA	0.00	2185	48	12
741	0	0	1	1	31	12	NA	0.00	800	33	14
742	0	0	0	1	44	12	NA	0.00	3022	46	12

743	0	0	0	1	48	11	NA	0.00	1.5	512 50	
744	0	0	0	1	53	12	NA	0.00		577 53	
745	0	0	0	3	42	10	NA	2.75		.50 44	
746	0	0	2	6	39	12	NA	0.00		130 34	
747	0	0	1	2	32	10	NA	0.00		307 36	
748	0	0	0	2	36	12	NA	0.00		.20 39	
749	0	0	0	2	40	13	NA	0.00		20 43	
750	0	0	2	3	31	12	NA	0.00	20)56 33	
751	0	0	0	0	43	12	NA	0.00	23	883 43	
752	0	0	0	0	60	12	NA	0.00	17	'05 55	
753	0	0	0	3	39	9	NA	0.00	31	.20 48	
	huswage	faminc	mtr	mothe	duc	fatheduc	unem	city ex	per	nwifein	C
1	4.0288		0.7215		12	7	5.0	0	14	10.9100599	3
2	8.4416	21800	0.6615		7	7	11.0	1	5	19.4999809	3
3	3.5807	21040	0.6915		12	7	5.0	0	15	12.0399103	2
4	3.5417	7300	0.7815		7	7	5.0	0	6	6.7999959	0
5	10.0000	27300	0.6215		12	14	9.5	1	7	20.1000576	0
6	6.7106	19495	0.6915		14	7	7.5	1	33	9.8590536	1
7	3.4277	21152	0.6915		14	7	5.0	0	11	9.1520481	1
8	2.5485	18900	0.6915		3	3	5.0	0	35	10.9000377	7
9	4.2206	20405	0.7515		7	7	3.0	0	24	17.3050003	1
10	5.7143	20425	0.6915		7	7	5.0	0	21	12.9250001	9
11	9.7959	32300	0.5815		12	3	5.0	0	15	24.2999534	6
12	8.0000	28700	0.6215		14	7	5.0	0	14	19.7000713	3
13	5.3004	15500	0.7215		16	16	5.0	0	0	15.0000076	3
14	4.3413	16860	0.7215		10	10	7.5	1	14	14.6000003	8
15	10.8700	31431	0.5815		7	7	7.5	1	6	24.6309146	9
16	9.1499	19180	0.7215		16	10	7.5	1	9	17.5310268	4
17	6.1224	18600	0.6915		10	7	7.5	1		14.0999803	
18	6.1498		0.7215		12	12	7.5	1	6	15.8389997	5
19	6.9170	18100	0.6915		7	7	5.0	1		14.1000003	
20	4.7103		0.6915		12	7		0		10.2999610	
21	3.1310	30419	0.6215		10	16	7.5	0	5	22.6549816	1
22	4.0000	14090	0.7215		12	10	3.0	0	11	8.0900478	
23	7.2227		0.6615		7	3		1	18	17.4790000	9
24	7.9652		0.7215		7	7	11.0	0	15	9.5600004	
25	4.0884	12487	0.7515		12	7	5.0	1	4	8.2749528	9
26	14.1810		0.5815		16	14		1		27.3499851	
27	6.5359		0.6915		3	7		1		16.0000000	
28	8.5000		0.6615		3		11.0	1		16.9999828	
29	6.2762		0.6215		12	12		0		15.1000556	
30	5.2083		0.7215		12	12		0		15.6999836	
31	2.7821	6719	0.7515		7	7	7.5	1	32	5.1189599	0

00	4 0407	40550 0		0			10 75001111
32	4.9107	18550 0			3 14.0		16.75001144
33	5.8669	24600 0		12 10			13.59993172
34	7.5200	23100 0		7 14			17.10004807
35	7.5449	24656 0		12 12		1 27	
36	5.5380	15897 0		10 3		0 (
37	6.9231	20320 0			3 11.0	1 17	
38	5.0000	21384 0			3 11.0		3 11.38410473
39	7.3064	25561 0			14.0		14.59407806
40	11.2180	36550 0		14 17			17.50043869
41	3.8462	15810 0		12 12			15.50999641
42	5.8366	25500 0		9 9			21.99997520
43	13.7250	24000 0		14 16			22.50000000
44	6.3493	22172 0		3 3		0 10	
45	5.2528	17930 0		12 7		0 6	
46	1.3075	7000 0		12 7		0 4	
47	2.7998	25300 0		14 16	5.0	1 10	21.15489769
48	2.6961	16212 0	7215	10 10	11.0	0 22	7.14194584
49	7.5688	22650 0		7 7	3.0	0 16	16.65007210
50	3.4077	6985 0	.7815	12 7	14.0	0 6	6.35199976
51	6.5401	30000 0	.6915	7 7	11.0	1 12	27.31394768
52	7.2139	18500 0	.6915	7 3	9.5	1 32	14.50000381
53	6.2732	16658 0	.7515	12 7	5.0	0 15	16.25798988
54	5.8824	10300 0	7515	7 7	5.0	1 17	9.5000000
55	3.8095	11000 0	.7515	7 3	7.5	0 34	7.99995613
56	6.3776	19900 0	.6915	12 12	7.5	1 9	12.50002861
57	6.0453	32500 0	.6400	7 7	14.0	1 37	14.00003242
58	8.8119	37300 0	.5800	17 17	7.5	1 10	20.80007362
59	8.8765	30018 0	.5815	17 7	11.0	1 35	19.38511276
60	3.3420	12807 0	.7515	12 7	14.0	1 6	12.38699150
61	3.1836	39500 0	.5515	14 3	7.5	0 19	28.50000000
62	6.9149	22050 0	.6915	12 12	9.5	1 10	15.04990864
63	5.5147	15500 C	.7215	7 7	14.0	1 11	10.49998379
64	5.2808	13810 0	.7215	7 7	9.5	1 15	11.81000042
65	3.2000	11950 0	.7515	7 7	5.0	1 12	6.95007324
66	5.8791	19175 0	.6915	12 12	7.5	0 12	12.41997147
67	6.2500	17900 0	.6915	12 16	7.5	0 14	17.40000343
68	7.4879	15850 C	.7215	12 7	5.0	1 11	15.49999619
69	6.9767	27017 0	.6915	7 7	5.0	1 9	21.21704292
70	8.0000	18900 0	.6915	12 7			18.0000000
71	4.1319	21800 0		12 12			11.89991856
72	14.4760	33552 0		10 10			26.75195503
73	5.7343	22650 0		7 9			12.14996147
74	3.3742	15200 0		0 (10.19999027
-	- · - · 			-			·

75	1.8333	13120	0.7215	7	10	7.5	1	13	8.12001514
76	5.6025	21660	0.6615	12	14	5.0	1	19	10.65996456
77	4.2975	18190	0.7215	7	7	3.0	0	2	18.10000992
78	3.9161	9600	0.7515	3	3	14.0	1	24	8.59998608
79	4.8787	13755	0.7515	10	12	7.5	1	9	13.66499996
80	9.2402	35350	0.6615	7	12	7.5	1	6	32.34996033
81	6.6519	12405	0.7215	12	7	7.5	1	22	12.08500576
82	4.6217	12180	0.7515	12	17	9.5	0	30	12.14999962
83	9.9741	22962	0.6615	7	3	7.5	1	10	17.69502068
84	20.9180	25700	0.6215	7	7	9.5	1	6	24.70000076
85	1.9400	3305	0.7915	7	7	3.0	0	29	2.13399196
86	8.8351	32950	0.5815	7	12	5.0	1	29	20.95004845
87	4.6667	17000	0.6915	7	7	5.0	1	36	10.50008011
88	5.1894	13250	0.7515	7	7	5.0	1	19	10.55000019
89	18.7240	50750	0.4415	7	12	5.0	1	8	45.75000000
90	10.4170	15632	0.7715	10	10	14.0	0	13	13.63204002
91	8.8458	28316	0.6215	7	0	11.0	1	16	18.23893929
92	7.5690	17290	0.7215	12	12	9.5	1	11	17.08999634
93	4.4507	33600	0.6215	10	10	7.5	1	15	30.23489952
94	9.3204	29200	0.6215	12	7	9.0	1	6	28.70000076
95	9.1687	19870	0.6915	7	7	11.0	0	13	19.62999535
96	6.4834	16225	0.7215	7	7	11.0	0	22	12.82494259
97	7.8125	28600	0.6915	7	3	5.0	1	24	23.79999924
98	11.4040	30800	0.5815	14	12	7.5	1	2	26.30002594
99	5.0870	25700	0.6915	7	7	3.0	0	6	20.69990730
100	6.9758	27000	0.6215	12	12	3.0	0	2	26.00000381
101	5.2863	12077	0.7715	12	7	9.5	1	2	10.87702084
102	11.5620	29612	0.6615	7	7	11.0	0	14	25.61206245
103	8.6061	24479	0.6915	7	10	9.5	1	9	20.98899460
104	12.8050	79750	0.4415	14	14	7.5	1	11	70.74993134
105	6.6946	20050	0.6915	12	7	11.0	0	9	17.04999924
106	8.3333	21500	0.6915	10	12	11.0	1	6	20.99999619
107	4.1667	16120	0.6915	7	7	5.0	0	19	8.11999989
108	5.4759	24686	0.7215	7	7	9.5	0	26	20.88599014
109	5.1440	24669	0.6915	7	10	9.5	1	19	17.66891861
110	11.6670	26400	0.6615	7	7	7.5	1	3	25.20002937
111	7.2917	16245	0.7215	12	12	7.5	1	7	14.24500561
112	4.8611	23300	0.6615	7	7	9.5	1	28	14.30000019
113	12.1640	27200	0.6215	12	7	9.5	1	13	23.70001030
114	10.8230	51000	0.4615	10	17	9.5	1	9	45.99999619
115	12.4780	55000	0.4615	10	7	14.0	1	15	42.99990463
116	6.1620	15389	0.7215	7	7	7.5	1	20	14.74899960
117	7.1846	23150	0.6615	7	7	9.5	1	29	16.15005493

118 7.0930 29774 0.6215 7 10 14.0 1 9 17.77400017 119 17.8260 91044 0.4415 12 10 14.0 1 1 91.00000000 120 6.3930 28200 0.5815 7 12 14.0 1 8 22.29993439 121 11.7190 36150 0.5515 7 7 9.5 1 19 34.60001373 122 4.7883 15652 0.7215 12 12 7.5 0 23 9.62000179 123 4.2328 18900 0.7515 14 7 11.0 0 3 10.89994621 124 7.1066 23600 0.6615 12 10 7.5 0 13 14.49994373 125 8.3333 36200 0.6615 10 10 7.5 0 13 14.49994373 125 8.3333 36200 0.6615 7 7 11.0 1 4 23.67506218 126 6.988 18700 0.6915 7 7 11.0 1 4 23.67506218 128 6.0204 15800 0.7215 7 7 7.5
120 6.3930 28200 0.5815 7 12 14.0 1 8 22.29993439 121 11.7190 36150 0.5515 7 7 9.5 1 19 34.60001373 122 4.7883 15652 0.7215 12 12 7.5 0 23 9.62000179 123 4.2328 18900 0.7515 14 7 11.0 0 3 10.89994621 124 7.1066 23600 0.6615 12 10 7.5 0 13 14.49994373 125 8.3333 36200 0.6100 7 7 7.5 1 8 22.00001526 126 6.9888 18700 0.6915 10 10 7.5 0 17 17.90007973 127 9.5913 24125 0.6615 7 7 11.0 1 4 23.67506218 128 6.0204 15800 0.7215 7 7 7.5 0 15 11.79906014 129 2.9686 19742 0.7215 7 7 7.5 0 15 11.7996014 129 2.9686 19742 0.7215 7 7 7.5 0
121 11.7190 36150 0.5515 7 7 9.5 1 19 34.60001373 122 4.7883 15652 0.7215 12 12 7.5 0 23 9.62000179 123 4.2328 18900 0.7515 14 7 11.0 0 3 10.89994621 124 7.1066 23600 0.6615 12 10 7.5 0 13 14.49994373 125 8.3333 36200 0.6100 7 7 7.5 1 8 22.00001526 126 6.9888 18700 0.6915 10 10 7.5 0 17 17.90007973 127 9.5913 24125 0.6615 7 7 11.0 1 4 23.67506218 128 6.0204 15800 0.7215 7 7.5 0 15 11.79996014 129 2.9686 19742 0.7215 7 7.5 0 0 15 14.79996014 130 7.000 22600 0.6
122 4.7883 15652 0.7215 12 12 7.5 0 23 9.62000179 123 4.2328 18900 0.7515 14 7 11.0 0 3 10.89994621 124 7.1066 23600 0.6615 12 10 7.5 0 13 14.49994373 125 8.3333 36200 0.6100 7 7 7.5 1 8 22.00001526 126 6.9888 18700 0.6915 10 10 7.5 0 17 17.90007973 127 9.5913 24125 0.6615 7 7 11.0 1 4 23.67506218 128 6.0204 15800 0.7215 7 7 7.5 0 15 11.79996014 129 2.9686 19742 0.7215 7 7 7.5 0 15 11.79996014 130 7.0000 22600 0.6915 10 7 9.5 0 7 18.39997101 131 7.1627 17500 </td
123 4.2328 18900 0.7515 14 7 11.0 0 3 10.89994621 124 7.1066 23600 0.6615 12 10 7.5 0 13 14.49994373 125 8.3333 36200 0.6100 7 7 7.5 1 8 22.00001526 126 6.9888 18700 0.6915 10 10 7.5 0 17 17.90007973 127 9.5913 24125 0.6615 7 7 11.0 1 4 23.67506218 128 6.0204 15800 0.7215 7 7 7.5 0 15 11.7996014 129 2.9686 19742 0.7215 7 7 7.5 0 15 11.79996014 129 2.9686 19742 0.7215 7 7 7.5 0 11 16.14195442 130 7.0000 22600 0.6915 7 7 7.5 0 0 15.49994755 132 4.7364 19820
124 7.1066 23600 0.6615 12 10 7.5 0 13 14.49994373 125 8.3333 36200 0.6100 7 7.55 1 8 22.00001526 126 6.9888 18700 0.6915 10 10 7.5 0 17 17.90007973 127 9.5913 24125 0.6615 7 7 11.0 1 4 23.67506218 128 6.0204 15800 0.7215 7 7.55 0 15 11.79996014 129 2.9686 19742 0.7215 12 7 3.0 0 11 16.14195442 130 7.0000 22600 0.6915 10 7 9.5 0 7 18.39997101 131 7.1627 17500 0.7215 7 7.55 0 0 15.49994755 132 4.7364 19820 0.6915 7 7.55 0 0 17.32399940 133 8.7810 20155 0.6915 7 7.55
125 8.3333 36200 0.6100 7 7 7.5 1 8 22.00001526 126 6.9888 18700 0.6915 10 10 7.5 0 17 17.90007973 127 9.5913 24125 0.6615 7 7 11.0 1 4 23.67506218 128 6.0204 15800 0.7215 7 7 7.5 0 15 11.79996014 129 2.9686 19742 0.7215 12 7 3.0 0 11 16.14195442 130 7.0000 22600 0.6915 10 7 9.5 0 7 18.39997101 131 7.1627 17500 0.7215 7 7.5 0 0 15.49994755 132 4.7364 19820 0.6915 7 7 7.5 0 0 17.32399940 133 8.7810 20155 0.6915 12 16 11.0 1 10 19.20500374 134 9.8315 37300 0.5800 10 12 7.5 1 8 21.30006218 135 6.6496 24860 0.7215 7 7.5 1
126 6.9888 18700 0.6915 10 10 7.5 0 17 17.90007973 127 9.5913 24125 0.6615 7 7 11.0 1 4 23.67506218 128 6.0204 15800 0.7215 7 7.5 0 15 11.79996014 129 2.9686 19742 0.7215 12 7 3.0 0 11 16.14195442 130 7.0000 22600 0.6915 10 7 9.5 0 7 18.39997101 131 7.1627 17500 0.7215 7 7.5 0 0 15.49994755 132 4.7364 19820 0.6915 7 7.5 0 0 17.32399940 133 8.7810 20155 0.6915 12 16 11.0 1 10 19.20500374 134 9.8315 37300 0.5800 10 12 7.5 1 8 21.30006218 135 6.6496 24860 0.7215 7 7.5
127 9.5913 24125 0.6615 7 7 11.0 1 4 23.67506218 128 6.0204 15800 0.7215 7 7.55 0 15 11.79996014 129 2.9686 19742 0.7215 12 7 3.0 0 11 16.14195442 130 7.0000 22600 0.6915 10 7 9.5 0 7 18.39997101 131 7.1627 17500 0.7215 7 7.55 0 0 15.49994755 132 4.7364 19820 0.6915 7 7.55 0 0 17.32399940 133 8.7810 20155 0.6915 12 16 11.0 1 10 19.20500374 134 9.8315 37300 0.5800 10 12 7.5 1 8 21.30006218 135 6.6496 24860 0.7215 7 7.5 1 2 23.55999565 136 9.8485 21450 0.6615 12 3 7.5 1
128 6.0204 15800 0.7215 7 7.7.5 0 15 11.79996014 129 2.9686 19742 0.7215 12 7 3.0 0 11 16.14195442 130 7.0000 22600 0.6915 10 7 9.5 0 7 18.39997101 131 7.1627 17500 0.7215 7 7.5 0 0 15.49994755 132 4.7364 19820 0.6915 7 7.5 0 0 17.32399940 133 8.7810 20155 0.6915 12 16 11.0 1 10 19.20500374 134 9.8315 37300 0.5800 10 12 7.5 1 8 21.30006218 135 6.6496 24860 0.7215 7 7.5 1 2 23.55999565 136 9.8485 21450 0.6615 12 3 7.5 1 4 2
129 2.9686 19742 0.7215 12 7 3.0 0 11 16.14195442 130 7.0000 22600 0.6915 10 7 9.5 0 7 18.39997101 131 7.1627 17500 0.7215 7 7.5 0 0 15.49994755 132 4.7364 19820 0.6915 7 7.5 0 0 17.32399940 133 8.7810 20155 0.6915 12 16 11.0 1 10 19.20500374 134 9.8315 37300 0.5800 10 12 7.5 1 8 21.30006218 135 6.6496 24860 0.7215 7 7.5 1 2 23.55999565 136 9.8485 21450 0.6615 12 3 7.5 1 4 20.85000038 137 9.8039 29650 0.6215 7 7 5.0 1 6 26.14999962 138 8.2604 23000 0.6615 7 7<
130 7.0000 22600 0.6915 10 7 9.5 0 7 18.39997101 131 7.1627 17500 0.7215 7 7.5 0 0 15.49994755 132 4.7364 19820 0.6915 7 7.5 0 0 17.32399940 133 8.7810 20155 0.6915 12 16 11.0 1 10 19.20500374 134 9.8315 37300 0.5800 10 12 7.5 1 8 21.30006218 135 6.6496 24860 0.7215 7 7.5 1 2 23.55999565 136 9.8485 21450 0.6615 12 3 7.5 1 4 20.8500038 137 9.8039 29650 0.6215 7 7 5.0 1 6 26.14999962 138 8.2604 23000 0.6615 7 7 11.0 1 18 17.00000000 139 9.0676 21120 0.6915 7 7 9.0 1 3 20.72000313 140 8.5082 26000 0.6215 7 7 9.0 1 22
131 7.1627 17500 0.7215 7 7.55 0 0 15.49994755 132 4.7364 19820 0.6915 7 7.55 0 0 17.32399940 133 8.7810 20155 0.6915 12 16 11.0 1 10 19.20500374 134 9.8315 37300 0.5800 10 12 7.5 1 8 21.30006218 135 6.6496 24860 0.7215 7 7.5 1 2 23.55999565 136 9.8485 21450 0.6615 12 3 7.5 1 4 20.85000038 137 9.8039 29650 0.6215 7 7 5.0 1 6 26.14999962 138 8.2604 23000 0.6615 7 7 11.0 1 18 17.00000000 139 9.0676 21120 0.6915 7 7 9.0 1 3 20.72000313 140 8.5082 26000 0.6215 3 7
132 4.7364 19820 0.6915 7 7 7.5 0 0 17.32399940 133 8.7810 20155 0.6915 12 16 11.0 1 10 19.20500374 134 9.8315 37300 0.5800 10 12 7.5 1 8 21.30006218 135 6.6496 24860 0.7215 7 7.5 1 2 23.55999565 136 9.8485 21450 0.6615 12 3 7.5 1 4 20.85000038 137 9.8039 29650 0.6215 7 7 5.0 1 6 26.14999962 138 8.2604 23000 0.6615 7 7 11.0 1 18 17.00000000 139 9.0676 21120 0.6915 7 7 9.0 1 3 20.72000313 140 8.5082 26000 0.6215 7 12 5.0 1 22 17.00008965 141 7.1565 28000 0.6215 3 7 7.5 1 33 15.99999809 142 7.0423 45500 0.5200 12 12 11.0 1
133 8.7810 20155 0.6915 12 16 11.0 1 10 19.20500374 134 9.8315 37300 0.5800 10 12 7.5 1 8 21.30006218 135 6.6496 24860 0.7215 7 7.5 1 2 23.55999565 136 9.8485 21450 0.6615 12 3 7.5 1 4 20.85000038 137 9.8039 29650 0.6215 7 7 5.0 1 6 26.14999962 138 8.2604 23000 0.6615 7 7 11.0 1 18 17.00000000 139 9.0676 21120 0.6915 7 7 9.0 1 3 20.72000313 140 8.5082 26000 0.6215 7 12 5.0 1 22 17.00008965 141 7.1565 28000 0.6215 3 7 7.5 1 33 15.99999809 142 7.0423 45500 0.520
134 9.8315 37300 0.5800 10 12 7.5 1 8 21.30006218 135 6.6496 24860 0.7215 7 7.5 1 2 23.55999565 136 9.8485 21450 0.6615 12 3 7.5 1 4 20.85000038 137 9.8039 29650 0.6215 7 7 5.0 1 6 26.14999962 138 8.2604 23000 0.6615 7 7 11.0 1 18 17.00000000 139 9.0676 21120 0.6915 7 7 9.0 1 3 20.72000313 140 8.5082 26000 0.6215 7 12 5.0 1 22 17.00008965 141 7.1565 28000 0.6215 3 7 7.5 1 33 15.99999809 142 7.0423 45500 0.5200 12 12 11.0 1 28 19.50004959 143 6.5934 16000 0.721
135 6.6496 24860 0.7215 7 7.5 1 2 23.55999565 136 9.8485 21450 0.6615 12 3 7.5 1 4 20.85000038 137 9.8039 29650 0.6215 7 7 5.0 1 6 26.14999962 138 8.2604 23000 0.6615 7 7 11.0 1 18 17.00000000 139 9.0676 21120 0.6915 7 7 9.0 1 3 20.72000313 140 8.5082 26000 0.6215 7 12 5.0 1 22 17.00008965 141 7.1565 28000 0.6215 3 7 7.5 1 33 15.99999809 142 7.0423 45500 0.5200 12 12 11.0 1 28 19.50004959 143 6.5934 16000 0.7215 16 12 14.0 1 23 12.00000381 144 4.3457 18232 0.6915 7 14 11.0 0 27 13.73191166 145 7.2362 28160 0.7215 3 7 14.0 1
136 9.8485 21450 0.6615 12 3 7.5 1 4 20.85000038 137 9.8039 29650 0.6215 7 7 5.0 1 6 26.14999962 138 8.2604 23000 0.6615 7 7 11.0 1 18 17.00000000 139 9.0676 21120 0.6915 7 7 9.0 1 3 20.72000313 140 8.5082 26000 0.6215 7 12 5.0 1 22 17.00008965 141 7.1565 28000 0.6215 3 7 7.5 1 33 15.99999809 142 7.0423 45500 0.5200 12 12 11.0 1 28 19.50004959 143 6.5934 16000 0.7215 16 12 14.0 1 23 12.00000381 144 4.3457 18232 0.6915 7 14 11.0 0 27 13.73191166 145 7.2362 28160 0.7215 3 7 14.0 1 12 27.19999123 146 1.7400 5965 0.8015 12 7 11.0 1 6 5.31500006 147 6.8966 19000 0.7215 7 9.5 1 11 16.00000000 148 5.0455 36872 0.5515 12 12 11.0
137 9.8039 29650 0.6215 7 7 5.0 1 6 26.14999962 138 8.2604 23000 0.6615 7 7 11.0 1 18 17.00000000 139 9.0676 21120 0.6915 7 7 9.0 1 3 20.72000313 140 8.5082 26000 0.6215 7 12 5.0 1 22 17.00008965 141 7.1565 28000 0.6215 3 7 7.5 1 33 15.99999809 142 7.0423 45500 0.5200 12 12 11.0 1 28 19.50004959 143 6.5934 16000 0.7215 16 12 14.0 1 23 12.00000381 144 4.3457 18232 0.6915 7 14 11.0 0 27 13.73191166 145 7.2362 28160 0.7215 3 7 14.0 1 12 7.19999123 146 1.7400 5965 0.8015 12 7 11.0 1 6 5.31500006 147 6.8966 19000 0.7215 7 7 9.5
138 8.2604 23000 0.6615 7 7 11.0 1 18 17.00000000 139 9.0676 21120 0.6915 7 7 9.0 1 3 20.72000313 140 8.5082 26000 0.6215 7 12 5.0 1 22 17.00008965 141 7.1565 28000 0.6215 3 7 7.5 1 33 15.99999809 142 7.0423 45500 0.5200 12 12 11.0 1 28 19.50004959 143 6.5934 16000 0.7215 16 12 14.0 1 23 12.00000381 144 4.3457 18232 0.6915 7 14 11.0 0 27 13.73191166 145 7.2362 28160 0.7215 3 7 14.0 1 11 27.19999123 146 1.7400 5965 0.8015 12 7 11.0 1 6 5.31500006 147 6.8966 19000 0.7215 7 7 9.5 1 11 16.00000000 148 5.0455 36872 0.5515 12 12 11.0 1 14 27.87198257
139 9.0676 21120 0.6915 7 7 9.0 1 3 20.72000313 140 8.5082 26000 0.6215 7 12 5.0 1 22 17.00008965 141 7.1565 28000 0.6215 3 7 7.5 1 33 15.99999809 142 7.0423 45500 0.5200 12 12 11.0 1 28 19.50004959 143 6.5934 16000 0.7215 16 12 14.0 1 23 12.00000381 144 4.3457 18232 0.6915 7 14 11.0 0 27 13.73191166 145 7.2362 28160 0.7215 3 7 14.0 1 11 27.19999123 146 1.7400 5965 0.8015 12 7 11.0 1 6 5.31500006 147 6.8966 19000 0.7215 7 7 9.5 1 11 16.00000000 148 5.0455 36872 0.5515 12 12 11.0 1 14 27.87198257
140 8.5082 26000 0.6215 7 12 5.0 1 22 17.00008965 141 7.1565 28000 0.6215 3 7 7.5 1 33 15.99999809 142 7.0423 45500 0.5200 12 12 11.0 1 28 19.50004959 143 6.5934 16000 0.7215 16 12 14.0 1 23 12.00000381 144 4.3457 18232 0.6915 7 14 11.0 0 27 13.73191166 145 7.2362 28160 0.7215 3 7 14.0 1 11 27.19999123 146 1.7400 5965 0.8015 12 7 11.0 1 6 5.31500006 147 6.8966 19000 0.7215 7 7 9.5 1 11 16.00000000 148 5.0455 36872 0.5515 12 12 11.0 1 14 27.87198257
141 7.1565 28000 0.6215 3 7 7.5 1 33 15.99999809 142 7.0423 45500 0.5200 12 12 11.0 1 28 19.50004959 143 6.5934 16000 0.7215 16 12 14.0 1 23 12.00000381 144 4.3457 18232 0.6915 7 14 11.0 0 27 13.73191166 145 7.2362 28160 0.7215 3 7 14.0 1 11 27.19999123 146 1.7400 5965 0.8015 12 7 11.0 1 6 5.31500006 147 6.8966 19000 0.7215 7 7 9.5 1 11 16.00000000 148 5.0455 36872 0.5515 12 12 11.0 1 14 27.87198257
142 7.0423 45500 0.5200 12 12 11.0 1 28 19.50004959 143 6.5934 16000 0.7215 16 12 14.0 1 23 12.00000381 144 4.3457 18232 0.6915 7 14 11.0 0 27 13.73191166 145 7.2362 28160 0.7215 3 7 14.0 1 11 27.19999123 146 1.7400 5965 0.8015 12 7 11.0 1 6 5.31500006 147 6.8966 19000 0.7215 7 7 9.5 1 11 16.00000000 148 5.0455 36872 0.5515 12 12 11.0 1 14 27.87198257
143 6.5934 16000 0.7215 16 12 14.0 1 23 12.00000381 144 4.3457 18232 0.6915 7 14 11.0 0 27 13.73191166 145 7.2362 28160 0.7215 3 7 14.0 1 11 27.19999123 146 1.7400 5965 0.8015 12 7 11.0 1 6 5.31500006 147 6.8966 19000 0.7215 7 7 9.5 1 11 16.00000000 148 5.0455 36872 0.5515 12 12 11.0 1 14 27.87198257
144 4.3457 18232 0.6915 7 14 11.0 0 27 13.73191166 145 7.2362 28160 0.7215 3 7 14.0 1 11 27.19999123 146 1.7400 5965 0.8015 12 7 11.0 1 6 5.31500006 147 6.8966 19000 0.7215 7 7 9.5 1 11 16.00000000 148 5.0455 36872 0.5515 12 12 11.0 1 14 27.87198257
145 7.2362 28160 0.7215 3 7 14.0 1 11 27.19999123 146 1.7400 5965 0.8015 12 7 11.0 1 6 5.31500006 147 6.8966 19000 0.7215 7 7 9.5 1 11 16.00000000 148 5.0455 36872 0.5515 12 12 11.0 1 14 27.87198257
146 1.7400 5965 0.8015 12 7 11.0 1 6 5.31500006 147 6.8966 19000 0.7215 7 7 9.5 1 11 16.00000000 148 5.0455 36872 0.5515 12 12 11.0 1 14 27.87198257
147 6.8966 19000 0.7215 7 7 9.5 1 11 16.00000000 148 5.0455 36872 0.5515 12 12 11.0 1 14 27.87198257
148 5.0455 36872 0.5515 12 12 11.0 1 14 27.87198257
148 5.0455 36872 0.5515 12 12 11.0 1 14 27.87198257
149 17.2500 42000 0.4915 12 12 14.0 1 17 40.00001144
150 8.3333 26900 0.6215 16 14 11.0 1 17 15.90003395
151 9.3750 30800 0.5815 12 10 9.0 0 14 27.49996948
152 8.2790 21520 0.6915 12 12 11.0 1 11 17.02005005
153 4.5000 24795 0.6915 7 7 7.5 1 7 22.39493942
154 4.1995 12900 0.7215 14 16 14.0 1 8 11.10000038
155 16.0640 42700 0.4915 7 7 7.5 1 6 32.70001221
156 11.2770 38800 0.5215 10 17 11.0 1 8 27.79996109
157 0.5494 2500 0.9415 7 3 3.0 0 4 2.19999409
158 9.5480 26921 0.6215 14 10 11.0 1 25 19.72095108
159 5.3333 18300 0.6915 7 9 3.0 0 24 9.99998760
160 5.4545 17200 0.7215 7 7 14.0 1 11 13.19996834

161	5.9026	14209	0.7515	12	3	9.5	1	19	12.70897484
162	9.8576	32300	0.5815	12	16	14.0	1	9	27.30004692
163	11.6850	21400	0.7215	17	12	7.5	1	19	21.20000076
164	6.2278	14700	0.7215	7	7	9.5	0	14	14.40000439
165	9.1748	25516	0.6215	7	7	9.5	1	22	20.57596016
166	6.2972	13300	0.7515	3	7	5.0	1	6	12.49999046
167	10.4710	31000	0.5815	12	12	9.5	1	23	17.50021553
168	14.5830	48800	0.4915	7	3	11.0	1	15	44.00003815
169	6.2143	15519	0.7215	7	7	14.0	1	6	13.11895466
170	6.6288	19500	0.6915	7	7	7.5	0	11	14.00005627
171	3.8246	14545	0.7215	3	7	5.0	0	2	9.64508629
172	7.8125	22897	0.6915	7	7	14.0	1	22	17.39704514
173	3.4806	14300	0.7215	10	10	7.5	1	10	7.79988861
174	5.5500	14884	0.7515	10	10	9.5	1	14	13.13397694
175	11.5940	27400	0.6215	12	7	11.0	1	12	25.60000038
176	9.5238	16400	0.7215	7	12	14.0	1	9	13.90002537
177	7.2805	25704	0.6215	14	17	7.5	0	13	19.29794312
178	3.0000	12800	0.7215	10	10	7.5	0	18	9.20001602
179	10.4000	40000	0.6215	7	7	7.5	0	8	37.99998856
180	10.0500	47000	0.6615	7	7	14.0	1	11	44.0000000
181	8.7866	25872	0.6615	10	12	9.5	1	9	21.37202454
182	10.1400	26868	0.6915	12	7	9.5	1	9	23.66802025
183	5.0000	18000	0.6915	12	12	9.5	1	14	9.00000000
184	11.8880	30200	0.5815	7	7	5.0	1	9	25.19995117
185	13.3330	26220	0.6615	7	7	7.5	1	2	21.21999931
186	8.6806	40500	0.5815	7	7	3.0	0	12	33.96991348
187	7.2917	33570	0.6100	12	7	7.5	1	15	17.06999969
188	3.5242	16917	0.7215	7	14	14.0	1	11	6.01602364
189	6.1818	18000	0.7215	12	7	9.5	0	7	17.10000992
190	2.9755	8337	0.7515	12	12	11.0	1	9	8.23700047
191	4.5769	17100	0.7215	12	7	9.5	0	19	13.30008221
192	3.1056	17800	0.7515	10	7	11.0	0	11	16.00002098
193	5.8228	13740	0.7515	12	12	14.0	1	8	12.53999043
194	7.5000	27000	0.6215	10	3	9.5	1	13	18.00003815
195	8.3333	32600	0.6215	12	7	7.5	1	4	31.20000076
196	9.2347	28030	0.6615	12	12	14.0	1	7	20.74991035
197	5.5000	23100	0.6615	12	12	3.0	0	19	11.09992027
198	6.0000	24580	0.6615	7	7	9.5	1	14	20.68000031
199	6.6667	29000	0.6215	12	7	9.5	1	14	18.00000954
200	13.0610	42430	0.5215	12	14	9.5	1	3	32.43006516
201	12.7940	41800	0.5215	12	12	7.5	1	9	32.90003204
202	12.0000	39100	0.5800	12	17	9.5	1	7	24.10000610
203	6.7300	31800	0.5815	16	17	11.0	1	7	17.80039215

204	6.6790	22200 0.6915	7	7	14.0	0	14	20.50001717
205	4.3945	19500 0.6915	16	7	3.0	0	29	10.49989796
206	4.6875	14027 0.7515	7	10	11.0	0	19	10.43703461
207	7.6989	21195 0.6615	7	7	11.0	1	14	18.19499016
208	4.3287	19013 0.6915	10	7	7.5	0	16	12.84507656
209	6.7416	20900 0.6615	12	7	11.0	1	10	13.80000019
210	9.3525	26820 0.6215	10	3	11.0	0	12	22.19999504
211	9.1429	12800 0.7515	0	0	14.0	1	24	6.69994116
212	2.6418	7850 0.7515	7	7	14.0	0	6	6.25001574
213	7.3650	18600 0.7215	12	12	7.5	1	9	15.60000801
214	1.4066	5380 0.7715	12	7	5.0	0	14	3.30000997
215	1.5192	6114 0.7715	10	7	14.0	0	26	3.67097759
216	3.3439	8234 0.7515	12	12	14.0	0	7	7.78999710
217	2.9106	20646 0.7215	3	7	11.0	1	4	18.27198982
218	4.3834	16640 0.7215	7	7	9.5	0	15	10.95397949
219	4.2098	13900 0.7215	12	12	5.0	1	23	13.49999237
220	3.7129	11500 0.7815	10	7	7.5	0	1	11.20001221
221	10.6060	34000 0.5515	7	7	14.0	1	29	20.99990845
222	8.6382	28700 0.6615	7	3	11.0	1	9	25.69999886
223	3.8367	9563 0.7515	7	7	7.5	0	6	8.93299389
224	7.1671	20960 0.6915	7	7	7.5	0	11	19.15997696
225	8.8634	38590 0.6215	12	10	14.0	1	17	26.58998680
226	7.7369	27900 0.6615	12	12	5.0	1	6	22.40000534
227	9.1702	25633 0.6215	7	7	7.5	1	7	20.63299942
228	11.2900	35200 0.5515	12	12	7.5	1	2	28.20000648
229	6.3269	29500 0.5815	7	7	7.5	1	24	28.79999924
230	4.7468	10000 0.7515	10	7	7.5	0	4	8.99999714
231	4.8885	19800 0.6915	10	7	5.0	0	11	11.39994240
232	2.4842	12900 0.7215	7	7	5.0	0	25	10.40001392
233	8.5470	26080 0.6215	12	12	7.5	0	11	19.08005524
234	6.6379	13066 0.7515	17	7	11.0	1	2	9.46603966
235	3.1863	12500 0.7215	7	7	7.5	0	19	6.50006008
236	4.5466	35600 0.5815	7	7	9.0	1	7	29.11701393
237	12.7890	19424 0.7515	7	7	5.0	1	2	19.10301971
238	6.5280	26250 0.6615	7	7	5.0	1	20	16.34997177
239	16.4030	36525 0.5515	12	14	9.5	1	10	32.02501678
240	7.0000	34700 0.6100	14	17	14.0	1	19	16.70006180
241	13.5420	8311 0.7515	7	7	11.0	1	17	4.81103754
242	6.7130	28626 0.6915	12	10	11.0	1	12	24.62600899
243	5.4487	24400 0.6615	7	7	5.0	1	11	17.40001297
244	6.6872	14025 0.7215	7	7	7.5	1	6	13.02503967
245	9.0943	21367 0.6915	16	12	14.0	1	10	19.00698280
246	6.5337	14136 0.7515	7	7	7.5	0	4	14.02999973

247	4.6860	19900	0.7515	10	7	5.0	1	2	14.89990616
248	8.0000	37000	0.5215	12	9	9.5	1	13	25.00005531
249	4.0530	18500	0.6915	7	7	7.5	0	21	10.70006752
250	8.1633	34550	0.5515	16	14	5.0	1	9	24.25000381
251	16.5000	49620	0.4615	10	7	11.0	1	4	39.13996506
252	3.4615	10400	0.7815	3	3	7.5	0	2	7.19997311
253	11.3610	33000	0.5515	16	16	11.0	1	19	31.81099892
254	3.8911	16200	0.7215	7	3	7.5	1	4	10.00004768
255	9.6059	22660	0.6915	12	16	7.5	1	9	20.65999985
256	2.6687	16000	0.7215	7	7	7.5	1	14	13.49997616
257	8.8865	25780	0.6615	7	16	9.5	1	6	25.37999535
258	6.3636	20675	0.7215	7	12	7.5	1	24	18.27497673
259	17.7280	40213	0.5515	12	7	11.0	0	1	39.21300125
260	5.2923	15500	0.7215	12	7	7.5	1	13	10.49993610
261	15.6860	35207	0.5815	7	12	9.5	1	3	34.85699844
262	5.2423	35702	0.5515	10	12	11.0	1	10	28.50199890
263	3.0395	17800	0.7215	14	12	9.5	1	16	12.99995995
264	16.7450	50900	0.4915	16	16	5.0	1	9	41.39990997
265	3.7500	17280	0.6915	7	7	5.0	0	19	14.77999973
266	5.8140	15150	0.7215	10	9	5.0	1	4	15.04999828
267	10.8330	36200	0.5815	7	7	7.5	1	10	29.69997787
268	9.0029	17465	0.7215	14	12	5.0	1	5	16.16501999
269	6.5400	45205	0.6100	14	12	3.0	1	7	25.20515823
270	5.9783	14500	0.7515	12	10	5.0	0	3	14.19999886
271	8.6248	32011	0.5815	7	7	7.5	0	38	18.15896797
272	4.8329	35200	0.6215	7	12	9.5	0	16	28.98106384
273	10.9090	13579	0.7515	3	7	11.0	0	13	13.39200306
274	3.8864	10455	0.7515	7	7	11.0	0	1	9.17502022
275	8.4574	32600	0.5515	7	3	5.0	0	7	27.03984833
276	5.0000	19150	0.6915	7	10	11.0	1	15	13.14995193
277	7.4212	24400	0.6615	12	17	9.5	1	10	16.40007019
278	4.4938	21700	0.6915	10	7	3.0	0	2	21.29999161
279	7.0252	26201	0.6215	7	3	9.5	1	19	17.20101547
280	3.2788	11920	0.7515	3	3	7.5	1	25	8.56002617
281	1.2861	16300	0.7215	12	12	9.5	1	25	6.49083996
282	5.5556	16500	0.7215	7	7	5.0	1	7	12.49996758
283	7.4951	30000	0.5815	12	7	11.0	1	15	27.00002480
284	22.1090	62500	0.4415	7	7	9.5	1	11	53.50004959
285	9.0580	58500	0.4415	10	10	9.5	1	25	52.49994659
286	11.5380	40900	0.5215	7	7	9.5	1	19	38.39997864
287	6.0468	16308	0.6915	0	10	7.5	1	4	13.89194489
288	1.3653	9300	0.7515	7	7	7.5	1	14	3.89999294
289	16.5500	35700	0.5515	10	9	7.5	1	19	34.19999695

290	8.7719	35700	0.6400	9	9	11.0	1	18	19.70007896
291	9.6354	24500	0.6615	12	12	5.0	1	14	18.49995232
292	6.6788	13000	0.7215	12	12	7.5	1	11	10.99997616
293	7.5727	52600	0.4415	12	12	5.0	0	4	43.30001068
294	7.8125	25360	0.6615	3	7	7.5	1	29	18.76000786
295	1.9835	9400	0.7515	9	9	7.5	0	21	4.80009604
296	9.5238	26800	0.6215	12	12	11.0	1	24	21.50000191
297	6.4250	33040	0.6615	12	7	7.5	1	19	28.03993797
298	10.9840	26350	0.6215	14	12	7.5	1	31	26.00000381
299	12.7660	39000	0.5215	7	7	14.0	1	28	27.00000000
300	9.5545	35100	0.6100	12	12	9.5	1	15	17.79968834
301	5.4967	22502	0.6615	12	12	11.0	0	27	17.40194511
302	9.7618	21950	0.6915	12	14	14.0	0	13	19.30999184
303	5.0000	13000	0.7515	7	7	7.5	0	4	9.99997997
304	5.9995		0.7215	12	14	9.0	1	10	11.17998028
305	6.9149	20957	0.6915	10	10	9.0	1	8	18.85695648
306	4.9669		0.7215	12	12	7.5	0	4	12.30002022
307	2.3896		0.6915	7	7	5.0	1	18	13.67711830
308	4.5122		0.7515	7	7	5.0	1	3	9.55999660
309	9.2308		0.6615	3	12	7.5	1	11	24.49998474
310	11.4580		0.5815	12	7	7.5	1	8	23.14999962
311	7.6993		0.6615	7	7	11.0	1	10	15.59088326
312	4.1830		0.6615	16		11.0	1	33	14.42092419
313	8.3333		0.6215	12	12	9.0	1	19	17.45490837
314	5.1042		0.6915	12	12	7.5	1	35	9.80001926
315	8.2271		0.6400	7	12	5.0	1	21	17.57446480
316	5.6634		0.6615	14	14	7.5	0	7	16.55500031
317	5.2220		0.7215	7	10	7.5	0	18	13.29497433
318	7.1900		0.7515	7	7	7.5	0	4	11.84400272
319	13.9070		0.4915	12	7	7.5	1		46.64506149
320	6.0163		0.7215	10	7		0	16	14.69998932
321	7.6782		0.6215	7	7	7.5	1	14	26.09008026
322	5.3112		0.7515	3	7	7.5	1	3	9.89999962
323	4.1228		0.7515	7	7	11.0	0	1	9.04802608
324	7.8125		0.6215	7		11.0	0		30.75006485
325	4.6053		0.7215	10	7	7.5	1	12	8.49993992
326	3.9746		0.6615	7	7	3.0	0		22.24999237
327	15.0630		0.5215	7		14.0	1		42.90999985
328	4.5064		0.6215	12	12	5.0	0		33.29999924
329	5.8824		0.6615	12	7	5.0	0		13.81990337
330	10.2280		0.5815	12	14	5.0	1		23.60000801
331	6.5789		0.6615	10	10	7.5	1		13.00006771
332	8.8145		0.5815	14	12	5.0	0		20.74994087
002	0.0140	55155	0.0010	1-1	12	0.0	9	~~	20.11001001

333	2.9528	11050	0.7515	7	7	14.0	0	26	6.30000019
334	4.5173	12239	0.7515	7	7	14.0	0	11	7.78892469
335	5.1282	12870	0.7515	14	12	7.5	1	11	10.47004032
336	4.1451	17200	0.7215	10	7	7.5	0	15	12.00000000
337	8.7912	23980	0.6615	10	10	7.5	0	13	16.97991562
338	7.3061	18600	0.6915	7	12	14.0	1	6	17.89999962
339	6.0069	23920	0.6915	7	10	9.5	1	20	15.53993702
340	8.3333	16084	0.7515	7	7	14.0	1	17	9.88398552
341	11.5290	31100	0.5815	14	14	11.0	1	8	28.59995079
342	6.6667	20460	0.6615	7	7	11.0	1	13	17.66001129
343	8.6806	36000	0.5515	12	12	7.5	1	15	25.99991798
344	3.4680	17302	0.7215	14	12	3.0	0	14	13.60200977
345	3.0321	16450	0.7215	14	7	3.0	0	14	15.80000019
346	13.8070	41170	0.5815	14	16	9.5	1	6	41.09999466
347	6.2174	20130	0.6615	0	0	7.5	1	24	10.77504158
348	4.2308	9200	0.7515	16	12	9.5	1	10	9.00004673
349	11.4700	24751	0.6615	7	7	11.0	1	2	24.39899445
350	12.2450	57300	0.5000	12	17	9.5	1	9	37.30009079
351	9.2105	37200	0.5815	7	7	7.5	1	23	27.99994850
352	6.3309	14000	0.7215	10	12	14.0	1	12	13.70000267
353	7.8039	20610	0.6915	7	3	14.0	0	8	17.20994377
354	7.6754	14800	0.7215	10	7	7.5	1	16	14.00001431
355	15.5820	40005	0.5515	10	14	14.0	1	10	35.75502014
356	9.6436	23750	0.6615	14	7	14.0	1	7	23.49999619
357	12.8860	35300	0.5515	7	12	14.0	1	19	31.99993324
358	6.5511	17350	0.6915	12	12	7.5	1	2	17.14999580
359	8.2500	21650	0.6615	7	7	7.5	1	9	20.25002480
360	1.3792	6740	0.7915	7	7	14.0	0	14	5.48598480
361	5.2632	32275	0.6915	12	14	5.0	1	9	25.07504082
362	10.5260	33220	0.7200	14	7	9.5	1	16	18.21995163
363	10.0000	26500	0.6215	12	12	7.5	1	7	25.99999619
364	12.5480	38700	0.5215	7	12	5.0	1	6	34.50007248
365	4.6207	15400	0.7215	7	7	5.0	1	22	12.39999962
366	1.8540	19007	0.6915	7	7	3.0	0	9	10.78684998
367	7.4266	16771	0.7215	12	7	7.5	0	9	16.32300758
368	13.2980	31100	0.5815	16	7	11.0	1	14	30.50000000
369	26.5780	66300	0.5000	3	3	7.5	1	17	51.29962540
370	13.9590	43550	0.4915	16	12	5.0	0	12	33.04997253
371	13.1260	37250	0.6215	7	7	11.0	0	13	34.75001144
372	7.8883	24900	0.6615	16	7	14.0	0	8	16.40003967
373	8.6560	24200	0.6615	7	14	9.5	1	10	19.70007324
374	3.4109	16200	0.7215	10	10	14.0	0	16	6.60000277
375	4.6256	11431	0.7515	10	10	7.5	0	1	9.02000809

376	4.2105	13200	0.7515	10	10	11.0	0	6	10.40000820
377	4.2708	15420	0.7715	10	10	9.0	1	4	14.51998806
378	3.3424	18400	0.6915	12	12	14.0	0	8	17.19999695
379	8.6359	43500	0.4915	10	3	5.0	1	4	43.00000000
380	6.7581	21972	0.6915	7	7	7.5	1	15	13.87195969
381	0.5843	7774	0.7715	16	16	11.0	0	7	-0.02905745
382	5.3350	24470	0.6915	7	7	7.5	0	14	16.76994324
383	4.7101	13600	0.7215	7	7	7.5	0	16	7.79999971
384	4.9797	22500	0.7215	7	0	7.5	0	15	14.50006390
385	2.9762	13600	0.7215	7	7	14.0	0	23	7.90000010
386	12.7440	90800	0.4415	7	7	7.5	0	19	79.80001068
387	3.8462	10776	0.7515	10	10	7.5	0	4	7.17597008
388	7.2233	19007	0.7515	10	7	5.0	1	12	17.50698280
389	8.8077	23900	0.6615	12	12	14.0	1	12	20.60000038
390	5.3864	26060	0.6215	7	7	7.5	1	25	18.55991554
391	3.6846	13300	0.7215	7	7	7.5	0	14	9.30000019
392	1.8437	15620	0.7215	7	7	7.5	0	14	5.12000751
393	1.3013	16500	0.7215	7	7	7.5	0	11	14.50003815
394	7.2222	20880	0.6915	14	16	5.0	1	7	19.79999924
395	7.3529	30600	0.6615	14	12	9.5	1	18	18.29994965
396	11.8640	39000	0.6215	7	10	9.0	1	4	33.99993515
397	5.3327	15428	0.7215	7	7	7.5	0	37	11.62793636
398	5.5000	23300	0.6615	7	7	7.5	0	13	11.80004597
399	7.2308	42100	0.5215	16	16	9.5	1	14	39.09997559
400	7.0000	36430	0.6400	12	7	9.5	1	17	18.43007088
401	7.2137	26000	0.6915	7	7	9.5	1	5	21.00000000
402	4.5000	62060	0.7515	7	7	7.5	0	2	59.00000000
403	8.8632	28300	0.6215	12	12	9.5	1	0	25.29999924
404	9.3333	24149	0.6615	12	10	7.5	1	3	23.24899101
405	3.8263	28141	0.6615	12	10	7.5	1	21	24.92808723
406	5.4448	23057	0.6615	10	10	7.5	1	20	14.78198814
407	8.7634	28900	0.6215	3	7	7.5	1	19	18.90002823
408	8.4000	24000	0.6615	12	10	9.5	1	4	21.00000000
409	5.1020		0.7215	12	12	7.5	0		10.00000954
410	7.4101		0.6915	12	12	5.0	1		29.30997467
411	5.3527		0.6915	7	7	7.5	0		13.14003181
412			0.6615	16	17	14.0	1		25.08999443
413	5.0783		0.6915	12	12	7.5	0		14.59993172
414	0.5128		0.8015	10	16	7.5	1	24	1.20000124
415	5.4020		0.5815	10		14.0	1		32.00000381
416	7.8646		0.7215	12		11.0	1		16.11997032
417	6.0531		0.5515	7		14.0	0		26.50002289
418	5.0000		0.7515	7	7	3.0	0		12.75005531

423 8.1081 17300 0.7215 7 7.55 0 14 15.100004 424 5.3061 19772 0.7215 7 7.55 0 2 18.199975 425 7.2709 35641 0.6215 7 7.50 1 21 22.641056 426 8.1776 34220 0.5815 7 7.75 1 22 21.640079 427 7.1006 30000 0.5815 12 16 11.0 1 14 23.999984 428 6.5844 18000 0.6615 14 12 7.5 1 7 16.000015 429 7.8529 21025 0.6615 14 17 .5 1 2 21.024999 430 11.9290 23600 0.6615 14 7 .5 1 2 21.024999 431 18.0000 22800 0.6615 14 7 .95 1 12 22.7029999 432 10.020 35910 0.5815 7 7 .5 1 1 21.700000 433									
421 5.8510 19434 0.7215 7 7 5.0 1 13 14.434031 422 6.7416 23882 0.7215 7 7 7.5 0 14 15.100004 423 8.1081 17300 0.7215 7 7.5 0 14 15.100004 424 5.3061 19772 0.7215 7 7.5 0 2 18.199975 425 7.2709 35641 0.6215 7 7.5 0 2 18.199976 426 8.1776 34220 0.5815 7 7.5 1 22 21.640079 427 7.003 3000 0.5815 12 16 11.0 1 14 23.999984 428 6.5844 18000 0.6615 14 12 7.5 1 2 21.024999 430 11.9290 23600 0.6615 14 7 9.5 1 5 23.60000 431 18.0000 22800 0.6615 7 7 7.5 1 12 21.024999 <td>419</td> <td>7.6829</td> <td>14100</td> <td>0.7515</td> <td>7 9</td> <td>3.0</td> <td>0</td> <td>21</td> <td>12.89999962</td>	419	7.6829	14100	0.7515	7 9	3.0	0	21	12.89999962
422 6.7416 23882 0.7215 7 7 9.5 1 9 23.708999 423 8.1081 17300 0.7215 7 7.5 0 14 15.100004 424 5.3061 19772 0.7215 7 7.5 0 2 18.199975 425 7.2709 35641 0.6215 7 7.5 0 1 21 22.641056 426 8.1776 34220 0.5815 7 7.5 1 22 21.640079 427 7.1006 30000 0.5815 12 16 11.0 1 14 23.999984 428 6.5844 18000 0.6615 14 12 7.5 1 7 16.00016 429 7.8529 21025 0.6615 14 7 9.5 1 5 23.600000 431 18.0000 22800 0.6615 12 12 7.5 0 12 22.799999 432 10.0220 35910 0.5815 7 7 5.0 1 12 21.70000 433 </td <td>420</td> <td>6.0386</td> <td>19600</td> <td>0.7215</td> <td>7 3</td> <td>14.0</td> <td>0</td> <td>10</td> <td>10.69997501</td>	420	6.0386	19600	0.7215	7 3	14.0	0	10	10.69997501
423 8.1081 17300 0.7215 7 7.55 0 14 15.100004 424 5.3061 19772 0.7215 7 7.55 0 2 18.199975 425 7.2709 35641 0.6215 7 7.50 1 21 22.641056 426 8.1776 34220 0.5815 7 7.75 1 22 21.640079 427 7.1006 30000 0.5815 12 16 11.0 1 14 23.999984 428 6.5844 18000 0.6615 14 12 7.5 1 7 16.000015 429 7.8529 21025 0.6615 14 17 .5 1 2 21.024999 430 11.9290 23600 0.6615 14 7 .5 1 2 21.024999 431 18.0000 22800 0.6615 14 7 .95 1 12 22.7029999 432 10.020 35910 0.5815 7 7 .5 1 1 21.700000 433	421	5.8510	19434	0.7215	7 7	5.0	1	13	14.43403149
424 5.3061 19772 0.7215 7 7.55 0 2 18.199975 425 7.2709 35641 0.6215 7 7.50 1 21 22.641066 426 8.1776 34220 0.5815 7 7.55 1 22 21.640069 427 7.1006 30000 0.5815 12 16 11.0 1 14 23.99984 428 6.5844 18000 0.6915 12 12 7.5 1 7 16.000015 429 7.8529 21025 0.6615 14 12 7.5 1 2 21.024999 430 11.9290 23600 0.6615 14 7 9.5 1 5 23.60000 431 18.0000 23800 0.6615 7 7.5 1 12 21.7024999 432 10.0020 35910 0.5815 7 7.5 1 12 21.700000 433 9.3333 21700 0.6615 7 7.55 1 12 21.700000 436 </td <td>422</td> <td>6.7416</td> <td>23882</td> <td>0.7215</td> <td>7 7</td> <td>9.5</td> <td>1</td> <td>9</td> <td>23.70899963</td>	422	6.7416	23882	0.7215	7 7	9.5	1	9	23.70899963
425 7.2709 35641 0.6215 7 7 5.0 1 21 22.641056 426 8.1776 34220 0.5815 7 7 7.5 1 22 21.640079 427 7.1006 30000 0.5815 12 16 11.0 1 14 23.99984 428 6.5844 18000 0.6915 12 12 7.5 1 7 16.000015 429 7.8529 21025 0.6615 14 12 7.5 1 7 16.000001 431 18.0000 22800 0.6615 14 7 9.5 1 5 23.600000 431 18.0000 22800 0.6615 7 7 7.5 0 12 22.7799999 432 10.0220 35910 0.5815 7 7 7.5 1 135.00000 433 9.333 2.7000 0.6615 7 7 7.5 1 1 21.270000 434 6.0850 21823 0.7515	423	8.1081	17300	0.7215	7 7	7.5	0	14	15.10000420
426 8.1776 34220 0.5815 7 7.55 1 22 21.640079 427 7.1006 30000 0.5815 12 16 11.0 1 14 23.999984 428 6.5844 18000 0.6615 12 12 7.5 1 7 16.000015 430 11.9290 23600 0.6615 14 7 9.5 1 5 23.600000 431 18.0000 22800 0.6615 12 12 7.5 0 12 22.799999 432 10.0220 35910 0.5815 7 7 7.5 1 1 35.909999 433 9.3333 21700 0.6615 7 7 7.5 1 4 11.82219999 435 5.7054 31000 0.6615 7 7 7.5 1 4 11.8229999 435 5.7054 31000 0.6615 10 7 7.5	424	5.3061	19772	0.7215	7 7	7.5	0	2	18.19997597
427 7.1006 30000 0.5815 12 16 11.0 1 14 23.999984 428 6.5844 18000 0.6915 12 12 7.5 1 7 16.000015 429 7.8529 21025 0.6615 14 12 7.5 1 5 23.6000000 430 11.9290 23600 0.6615 14 7.55 1 5 23.600000 431 18.0000 22800 0.6615 7 7.55 1 13.5909999 432 10.0220 35910 0.5815 7 7 7.5 1 13.59099999 433 9.3333 21700 0.6615 7 7 7.5 1 41.8229999 435 5.7054 31000 0.6615 10 7 11.0 1 9 31.00000 436 9.1185 15300 0.7215 7 7.55 1 9 15.300000 4	425	7.2709	35641	0.6215	7 7	5.0	1	21	22.64105606
428 6.5844 18000 0.6915 12 12 7.5 1 7 16.000015 429 7.8529 21025 0.6615 14 12 7.5 1 2 21.024999 430 11.9290 23600 0.6615 14 7 9.5 1 5 23.600000 431 18.0000 22800 0.6615 12 12 7.5 0 12 22.799999 432 10.0220 35910 0.5815 7 7.5 1 1 35.909999 433 9.3333 21700 0.6615 7 7.5 1 4 21.822999 435 5.7054 31000 0.6615 10 7 11.0 1 9 31.000000 436 9.1185 15300 0.7215 7 7.5 1 4 21.822999 435 5.7054 31000 0.6615 10 7 11.0 1 9 31.000000 437 7.2072 12925 0.7215 7 7.5 1 <td>426</td> <td>8.1776</td> <td>34220</td> <td>0.5815</td> <td>7 7</td> <td>7.5</td> <td>1</td> <td>22</td> <td>21.64007950</td>	426	8.1776	34220	0.5815	7 7	7.5	1	22	21.64007950
429 7.8529 21025 0.6615 14 12 7.5 1 2 21.024999 430 11.9290 23600 0.6615 14 7 9.5 1 5 23.600000 431 18.0000 22800 0.6615 12 12 7.5 0 12 22.799999 432 10.0220 35910 0.5815 7 7.5 1 1 35.909999 433 9.3333 21700 0.6615 7 7.5 0 1 2 21.700000 434 6.0850 21823 0.7515 7 7.5 1 4 21.822999 435 5.7054 31000 0.6615 10 7 11.0 1 9 31.000000 436 9.1185 15300 0.7215 7 7.5 1 9 15.300000 437 7.2072 12925 0.7215 9 3 7.5 1 6 12.925000 438 5.3146 15830 0.7515 12 7 5.0 0 5 15.829999 439 8.2828 30200 0.6915 12 12	427	7.1006	30000	0.5815	12 16	11.0	1	14	23.99998474
430 11.9290 23600 0.6615 14 7 9.5 1 5 23.600000 431 18.0000 22800 0.6615 12 12 7.5 0 12 22.799999 432 10.0220 35910 0.5815 7 7 7.5 1 1 35.909999 433 9.3333 21700 0.6615 7 7 5.0 1 12 21.700000 434 6.0850 21823 0.7515 7 7.5 1 4 21.822999 435 5.7054 31000 0.6615 10 7 11.0 1 9 31.000000 436 9.1185 15300 0.7215 7 7.5 1 9 15.300000 437 7.2072 12925 0.7215 9 3 7.5 1 6 12.925000 438 5.3146 15830 0.7515 12 7 5.0 0 5 15.829999 439 8.2828 30200 0.6915 12 1	428	6.5844	18000	0.6915	12 12	7.5	1	7	16.00001526
431 18.0000 22800 0.6615 12 12 7.5 0 12 22.799999 432 10.0220 35910 0.5815 7 7.55 1 1 35.909999 433 9.3333 21700 0.6615 7 7.50 1 12 21.700000 434 6.0850 21823 0.7515 7 7.55 1 4 21.822999 435 5.7054 31000 0.6615 10 7 11.0 1 9 31.000000 436 9.1185 15300 0.7215 7 7.5 1 9 15.300000 437 7.2072 12925 0.7215 9 3 7.5 1 6 12.925000 438 5.3146 15830 0.7515 12 7 5.0 0 5 15.829999 439 8.2828 30200 0.6915 12 12 7.5 1 5 30.200000 440 7.0578 16600 0.7215 10 7.5 1 2 11.000000	429	7.8529	21025	0.6615	14 12	7.5	1	2	21.02499962
432 10.0220 35910 0.5815 7 7 7.5 1 1 35.909999 433 9.3333 21700 0.6615 7 7 5.0 1 12 21.700000 434 6.0850 21823 0.7515 7 7 7.5 1 4 21.822999 435 5.7054 31000 0.6615 10 7 11.0 1 9 31.000000 436 9.1185 15300 0.7215 7 7 7.5 1 9 15.30000 437 7.2072 12925 0.7215 9 3 7.5 1 6 12.925000 438 5.3146 15830 0.7515 12 7 5.0 0 5 15.829999 439 8.2828 30200 0.6915 12 12 7.5 1 5 30.200000 440 7.0578 16600 0.7215 10 7 5.0 0 8 16.600000 441 6.1659 11000 0.7515 7 7 7.5 1 2 11.000000 442 2.7000 15000 0.7215 7 7 7.5 1 2 11.000000 443 7.6628 20528 0.7215 7 7 11.0 0 0 20.527999 444 1.8491<	430	11.9290	23600	0.6615	14 7	9.5	1	5	23.60000038
433 9.3333 21700 0.6615 7 7 5.0 1 12 21.700000 434 6.0850 21823 0.7515 7 7 7.5 1 4 21.822999 435 5.7054 31000 0.6615 10 7 11.0 1 9 31.000000 436 9.1185 15300 0.7215 7 7.5 1 9 15.300000 437 7.2072 12925 0.7215 9 3 7.5 1 6 12.925000 438 5.3146 15830 0.7515 12 7 5.0 0 5 15.829999 439 8.2828 30200 0.6915 12 12 7.5 1 5 30.200000 440 7.0578 16600 0.7215 10 7 5.0 0 8 16.600000 441 6.1659 11000 0.7215 7 7.5 1 2 11.000000 442 2.7000 15000 0.7215	431	18.0000	22800	0.6615	12 12	7.5	0	12	22.79999924
434 6.0850 21823 0.7515 7 7.55 1 4 21.822999 435 5.7054 31000 0.6615 10 7 11.0 1 9 31.000000 436 9.1185 15300 0.7215 7 7.55 1 9 15.300000 437 7.2072 12925 0.7215 9 3 7.5 1 6 12.925000 438 5.3146 15830 0.7515 12 7 5.0 0 5 15.829999 439 8.2828 30200 0.6915 12 12 7.5 1 5 30.200000 440 7.0578 16600 0.7215 10 7 5.0 0 8 16.600000 441 6.1659 11000 0.7515 7 7 7.5 1 2 11.000000 442 2.7000 15000 0.7215 7 7 11.0 0 20.527999 444 1.8491 13126 0.7515 9 9 14.0 0 3 13.126000 444	432	10.0220	35910	0.5815	7 7	7.5	1	1	35.90999985
435 5.7054 31000 0.6615 10 7 11.0 1 9 31.000000 436 9.1185 15300 0.7215 7 7 7.5 1 9 15.300000 437 7.2072 12925 0.7215 9 3 7.5 1 6 12.925000 438 5.3146 15830 0.7515 12 7 5.0 0 5 15.829999 439 8.2828 30200 0.6915 12 12 7.5 1 5 30.200000 440 7.0578 16600 0.7215 10 7 5.0 0 8 16.600000 441 6.1659 11000 0.7515 7 7 7.5 1 2 11.000000 442 2.7000 15000 0.7215 7 7 7.5 1 2 11.000000 443 7.6628 20528 0.7215 7 7 11.0 0 0 20.527999 444 1.8491 13126 0.75	433	9.3333	21700	0.6615	7 7	5.0	1	12	21.70000076
436 9.1185 15300 0.7215 7 7.5 1 9 15.300000 437 7.2072 12925 0.7215 9 3 7.5 1 6 12.925000 438 5.3146 15830 0.7515 12 7 5.0 0 5 15.829999 439 8.2828 30200 0.6915 12 12 7.5 1 5 30.200000 440 7.0578 16600 0.7215 10 7 5.0 0 8 16.600000 441 6.1659 11000 0.7515 7 7 7.5 1 2 11.000000 442 2.7000 15000 0.7215 7 7 15 1 2 11.000000 443 7.6628 20528 0.7215 7 7 11.0 0 0 20.527999 444 1.8491 13126 0.7515 9 9 14.0 0	434	6.0850	21823	0.7515	7 7	7.5	1	4	21.82299995
437 7.2072 12925 0.7215 9 3 7.5 1 6 12.925000 438 5.3146 15830 0.7515 12 7 5.0 0 5 15.829999 439 8.2828 30200 0.6915 12 12 7.5 1 5 30.200000 440 7.0578 16600 0.7215 10 7 5.0 0 8 16.600000 441 6.1659 11000 0.7515 7 7 7.5 1 2 11.000000 442 2.7000 15000 0.7215 7 7 11.0 0 0 20.527999 444 1.8491 13126 0.7515 9 9 14.0 0 3 13.126000 445 3.8462 15550 0.7215 7 14 7.5 1 7 15.550000 446 9.0543 18010 0.7215 3 12 7.5 </td <td>435</td> <td>5.7054</td> <td>31000</td> <td>0.6615</td> <td>10 7</td> <td>11.0</td> <td>1</td> <td>9</td> <td>31.00000000</td>	435	5.7054	31000	0.6615	10 7	11.0	1	9	31.00000000
438 5.3146 15830 0.7515 12 7 5.0 0 5 15.829999 439 8.2828 30200 0.6915 12 12 7.5 1 5 30.200000 440 7.0578 16600 0.7215 10 7 5.0 0 8 16.600000 441 6.1659 11000 0.7515 7 7 7.5 1 2 11.000000 442 2.7000 15000 0.7215 7 10 3.0 0 6 15.000000 443 7.6628 20528 0.7215 7 7 11.0 0 0 20.527999 444 1.8491 13126 0.7515 9 9 14.0 0 3 13.126000 445 3.8462 15550 0.7215 7 14 7.5 1 7 15.550000 446 9.0543 18010 0.7215 3 12 7.5 1 3 18.010000 447 9.3733 17500 0.	436	9.1185	15300	0.7215	7 7	7.5	1	9	15.30000019
439 8.2828 30200 0.6915 12 12 7.5 1 5 30.200000 440 7.0578 16600 0.7215 10 7 5.0 0 8 16.600000 441 6.1659 11000 0.7515 7 7 7.5 1 2 11.000000 442 2.7000 15000 0.7215 7 10 3.0 0 6 15.000000 443 7.6628 20528 0.7215 7 7 11.0 0 0 20.527999 444 1.8491 13126 0.7515 9 9 14.0 0 3 13.126000 445 3.8462 15550 0.7215 7 14 7.5 1 7 15.550000 446 9.0543 18010 0.7215 3 12 7.5 1 3 18.010000 447 9.3750 18874 0.7215 10 10 14.0 0 10 18.874000 448 8.3333 24800 0.6615	437	7.2072	12925	0.7215	9 3	7.5	1	6	12.92500019
440 7.0578 16600 0.7215 10 7 5.0 0 8 16.600000 441 6.1659 11000 0.7515 7 7 7.5 1 2 11.000000 442 2.7000 15000 0.7215 7 10 3.0 0 6 15.00000 443 7.6628 20528 0.7215 7 7 11.0 0 0 20.527999 444 1.8491 13126 0.7515 9 9 14.0 0 3 13.126000 445 3.8462 15550 0.7215 7 14 7.5 1 7 15.550000 446 9.0543 18010 0.7215 3 12 7.5 1 3 18.010000 447 9.3750 18874 0.7215 10 10 14.0 0 10 18.874000 448 8.3333 24800 0.6615 12 12 14.0 1 3 24.799999 449 9.3733 17500 0.6915 <td< td=""><td>438</td><td>5.3146</td><td>15830</td><td>0.7515</td><td>12 7</td><td>5.0</td><td>0</td><td>5</td><td>15.82999992</td></td<>	438	5.3146	15830	0.7515	12 7	5.0	0	5	15.82999992
441 6.1659 11000 0.7515 7 7.55 1 2 11.000000 442 2.7000 15000 0.7215 7 10 3.0 0 6 15.00000 443 7.6628 20528 0.7215 7 7 11.0 0 0 20.527999 444 1.8491 13126 0.7515 9 9 14.0 0 3 13.126000 445 3.8462 15550 0.7215 7 14 7.5 1 7 15.550000 446 9.0543 18010 0.7215 3 12 7.5 1 3 18.010000 447 9.3750 18874 0.7215 10 10 14.0 0 10 18.874000 448 8.3333 24800 0.6615 12 12 14.0 1 3 24.799999 449 9.3733 17500 0.6915 12 17 5.0 1 2 17.500000 450 4.4818 16150 0.7215 12 12 7.5 1 12 16.149999 451 5.3476 15189 0.7215 7	439	8.2828	30200	0.6915	12 12	7.5	1	5	30.20000076
442 2.7000 15000 0.7215 7 10 3.0 0 6 15.000000 443 7.6628 20528 0.7215 7 7 11.0 0 0 20.527999 444 1.8491 13126 0.7515 9 9 14.0 0 3 13.126000 445 3.8462 15550 0.7215 7 14 7.5 1 7 15.550000 446 9.0543 18010 0.7215 3 12 7.5 1 3 18.010000 447 9.3750 18874 0.7215 10 10 14.0 0 10 18.874000 448 8.3333 24800 0.6615 12 12 14.0 1 3 24.799999 449 9.3733 17500 0.6915 12 17 5.0 1 2 17.500000 450 4.4818 16150 0.7215 12 12 7.5 1 12 16.149999 451 5.3476 15189 0	440	7.0578	16600	0.7215	10 7	5.0	0	8	16.60000038
443 7.6628 20528 0.7215 7 7 11.0 0 0 20.527999 444 1.8491 13126 0.7515 9 9 14.0 0 3 13.126000 445 3.8462 15550 0.7215 7 14 7.5 1 7 15.550000 446 9.0543 18010 0.7215 3 12 7.5 1 3 18.010000 447 9.3750 18874 0.7215 10 10 14.0 0 10 18.874000 448 8.3333 24800 0.6615 12 12 14.0 1 3 24.799999 449 9.3733 17500 0.6915 12 17 5.0 1 2 17.500000 450 4.4818 16150 0.7215 12 12 7.5 1 12 16.149999 451 5.3476 15189 0.7215 7 3 3.0 0 15 15.189000 452 3.2027 6000 0.	441	6.1659	11000	0.7515	7 7	7.5	1	2	11.00000000
444 1.8491 13126 0.7515 9 9 14.0 0 3 13.126000 445 3.8462 15550 0.7215 7 14 7.5 1 7 15.550000 446 9.0543 18010 0.7215 3 12 7.5 1 3 18.010000 447 9.3750 18874 0.7215 10 10 14.0 0 10 18.874000 448 8.3333 24800 0.6615 12 12 14.0 1 3 24.799999 449 9.3733 17500 0.6915 12 17 5.0 1 2 17.500000 450 4.4818 16150 0.7215 12 12 7.5 1 12 16.149999 451 5.3476 15189 0.7215 7 3 3.0 0 15 15.189000 452 3.2027 6000 0.7815 7 7 14.0 0 5 6.000000 453 12.8010 37250 0.5515 10 10 7.5 1 10 27.760000 454 6.9103 27760 0.6215 10 10 7.5 1 10 27	442	2.7000	15000	0.7215	7 10	3.0	0	6	15.00000000
445 3.8462 15550 0.7215 7 14 7.5 1 7 15.550000 446 9.0543 18010 0.7215 3 12 7.5 1 3 18.010000 447 9.3750 18874 0.7215 10 10 14.0 0 10 18.874000 448 8.3333 24800 0.6615 12 12 14.0 1 3 24.799999 449 9.3733 17500 0.6915 12 17 5.0 1 2 17.500000 450 4.4818 16150 0.7215 12 12 7.5 1 12 16.149999 451 5.3476 15189 0.7215 7 3 3.0 0 15 15.189000 452 3.2027 6000 0.7815 7 7 14.0 0 5 6.000000 453 12.8010 37250 0.5515 10 12 9.5 1 4 37.250000 454 6.9103 27760 0.6215 10 10 7.5 1 10 27.760000	443	7.6628	20528	0.7215	7 7	11.0	0	0	20.52799988
446 9.0543 18010 0.7215 3 12 7.5 1 3 18.010000 447 9.3750 18874 0.7215 10 10 14.0 0 10 18.874000 448 8.3333 24800 0.6615 12 12 14.0 1 3 24.799999 449 9.3733 17500 0.6915 12 17 5.0 1 2 17.500000 450 4.4818 16150 0.7215 12 12 7.5 1 12 16.149999 451 5.3476 15189 0.7215 7 3 3.0 0 15 15.189000 452 3.2027 6000 0.7815 7 7 14.0 0 5 6.000000 453 12.8010 37250 0.5515 10 12 9.5 1 4 37.250000 454 6.9103 27760 0.6215 10 10 7.5 1 10 27.760000 455 4.2293 9090	444	1.8491	13126	0.7515	9 9	14.0	0	3	13.12600040
447 9.3750 18874 0.7215 10 10 14.0 0 10 18.874000 448 8.3333 24800 0.6615 12 12 14.0 1 3 24.799999 449 9.3733 17500 0.6915 12 17 5.0 1 2 17.500000 450 4.4818 16150 0.7215 12 12 7.5 1 12 16.149999 451 5.3476 15189 0.7215 7 3 3.0 0 15 15.189000 452 3.2027 6000 0.7815 7 7 14.0 0 5 6.000000 453 12.8010 37250 0.5515 10 12 9.5 1 4 37.250000 454 6.9103 27760 0.6215 10 10 7.5 1 10 27.760000 455 4.2293 9090 0.7715 7 7.5 1 8 14.500000 457 8.0523 19700 0.7215 7 7.5 1 8 14.500000 458 7.5057 16788 0.6915	445	3.8462	15550	0.7215	7 14	7.5	1	7	15.55000019
448 8.3333 24800 0.6615 12 12 14.0 1 3 24.799999 449 9.3733 17500 0.6915 12 17 5.0 1 2 17.500000 450 4.4818 16150 0.7215 12 12 7.5 1 12 16.149999 451 5.3476 15189 0.7215 7 3 3.0 0 15 15.189000 452 3.2027 6000 0.7815 7 7 14.0 0 5 6.000000 453 12.8010 37250 0.5515 10 12 9.5 1 4 37.250000 454 6.9103 27760 0.6215 10 10 7.5 1 10 27.760000 455 4.2293 9090 0.7715 7 7 3.0 0 1 9.090000 456 4.4479 14500 0.7215 12 7 7.5 1 8 14.500000 457 8.0523 19700 0.7215 7 7 14.0 1 20 19.700000 458 7.5057 16788 0.6915 10 7 14.0 1 4 16.7880	446	9.0543	18010	0.7215	3 12	7.5	1	3	18.01000023
449 9.3733 17500 0.6915 12 17 5.0 1 2 17.500000 450 4.4818 16150 0.7215 12 12 7.5 1 12 16.149999 451 5.3476 15189 0.7215 7 3 3.0 0 15 15.189000 452 3.2027 6000 0.7815 7 7 14.0 0 5 6.000000 453 12.8010 37250 0.5515 10 12 9.5 1 4 37.250000 454 6.9103 27760 0.6215 10 10 7.5 1 10 27.760000 455 4.2293 9090 0.7715 7 7 3.0 0 1 9.090000 456 4.4479 14500 0.7215 12 7 7.5 1 8 14.500000 458 7.5057 16788 0.6915 10 7 14.0 1 4 16.788000 459 7.4747 18520 0.6915	447	9.3750	18874	0.7215	10 10	14.0	0	10	18.87400055
450 4.4818 16150 0.7215 12 12 7.5 1 12 16.149999 451 5.3476 15189 0.7215 7 3 3.0 0 15 15.189000 452 3.2027 6000 0.7815 7 7 14.0 0 5 6.000000 453 12.8010 37250 0.5515 10 12 9.5 1 4 37.250000 454 6.9103 27760 0.6215 10 10 7.5 1 10 27.760000 455 4.2293 9090 0.7715 7 7 3.0 0 1 9.090000 456 4.4479 14500 0.7215 12 7 7.5 1 8 14.500000 457 8.0523 19700 0.7215 7 7 14.0 1 20 19.700000 458 7.5057 16788 0.6915 10 7 14.0 1 4 16.788000 459 7.4747 18520 0.6915 10 10 11.0 1 7 18.520000 460 6.3218 20950 0.6915 16 10 9.5 1	448	8.3333	24800	0.6615	12 12	14.0	1	3	24.79999924
451 5.3476 15189 0.7215 7 3 3.0 0 15 15.189000 452 3.2027 6000 0.7815 7 7 14.0 0 5 6.000000 453 12.8010 37250 0.5515 10 12 9.5 1 4 37.250000 454 6.9103 27760 0.6215 10 10 7.5 1 10 27.760000 455 4.2293 9090 0.7715 7 7 3.0 0 1 9.090000 456 4.4479 14500 0.7215 12 7 7.5 1 8 14.500000 457 8.0523 19700 0.7215 7 7 14.0 1 20 19.700000 458 7.5057 16788 0.6915 10 7 14.0 1 4 16.788000 459 7.4747 18520 0.6915 10 10 11.0 1 7 18.520000 460 6.3218 20950 0.6915 16 10 9.5 1 10 20.950000	449	9.3733	17500	0.6915	12 17	5.0	1	2	17.50000000
452 3.2027 6000 0.7815 7 7 14.0 0 5 6.000000 453 12.8010 37250 0.5515 10 12 9.5 1 4 37.250000 454 6.9103 27760 0.6215 10 10 7.5 1 10 27.760000 455 4.2293 9090 0.7715 7 7 3.0 0 1 9.090000 456 4.4479 14500 0.7215 12 7 7.5 1 8 14.500000 457 8.0523 19700 0.7215 7 14.0 1 20 19.700000 458 7.5057 16788 0.6915 10 7 14.0 1 4 16.788000 459 7.4747 18520 0.6915 10 10 11.0 1 7 18.520000 460 6.3218 20950 0.6915 16 10 9.5 1 10 20.950000	450	4.4818	16150	0.7215	12 12	7.5	1	12	16.14999962
453 12.8010 37250 0.5515 10 12 9.5 1 4 37.250000 454 6.9103 27760 0.6215 10 10 7.5 1 10 27.760000 455 4.2293 9090 0.7715 7 7 3.0 0 1 9.090000 456 4.4479 14500 0.7215 12 7 7.5 1 8 14.500000 457 8.0523 19700 0.7215 7 7 14.0 1 20 19.700000 458 7.5057 16788 0.6915 10 7 14.0 1 4 16.788000 459 7.4747 18520 0.6915 10 10 11.0 1 7 18.520000 460 6.3218 20950 0.6915 16 10 9.5 1 10 20.950000	451	5.3476	15189	0.7215	7 3	3.0	0	15	15.18900013
454 6.9103 27760 0.6215 10 10 7.5 1 10 27.760000 455 4.2293 9090 0.7715 7 7 3.0 0 1 9.090000 456 4.4479 14500 0.7215 12 7 7.5 1 8 14.500000 457 8.0523 19700 0.7215 7 7 14.0 1 20 19.700000 458 7.5057 16788 0.6915 10 7 14.0 1 4 16.788000 459 7.4747 18520 0.6915 10 10 11.0 1 7 18.520000 460 6.3218 20950 0.6915 16 10 9.5 1 10 20.950000	452	3.2027	6000	0.7815	7 7	14.0	0	5	6.00000000
455 4.2293 9090 0.7715 7 7 3.0 0 1 9.090000 456 4.4479 14500 0.7215 12 7 7.5 1 8 14.500000 457 8.0523 19700 0.7215 7 7 14.0 1 20 19.700000 458 7.5057 16788 0.6915 10 7 14.0 1 4 16.788000 459 7.4747 18520 0.6915 10 10 11.0 1 7 18.520000 460 6.3218 20950 0.6915 16 10 9.5 1 10 20.950000	453	12.8010	37250	0.5515	10 12	9.5	1	4	37.25000000
456 4.4479 14500 0.7215 12 7 7.5 1 8 14.500000 457 8.0523 19700 0.7215 7 7 14.0 1 20 19.700000 458 7.5057 16788 0.6915 10 7 14.0 1 4 16.788000 459 7.4747 18520 0.6915 10 10 11.0 1 7 18.520000 460 6.3218 20950 0.6915 16 10 9.5 1 10 20.950000	454	6.9103	27760	0.6215	10 10	7.5	1	10	27.76000023
457 8.0523 19700 0.7215 7 7 14.0 1 20 19.700000 458 7.5057 16788 0.6915 10 7 14.0 1 4 16.788000 459 7.4747 18520 0.6915 10 10 11.0 1 7 18.520000 460 6.3218 20950 0.6915 16 10 9.5 1 10 20.950000	455	4.2293	9090	0.7715	7 7	3.0	0	1	9.09000015
458 7.5057 16788 0.6915 10 7 14.0 1 4 16.788000 459 7.4747 18520 0.6915 10 10 11.0 1 7 18.520000 460 6.3218 20950 0.6915 16 10 9.5 1 10 20.950000	456	4.4479	14500	0.7215	12 7	7.5	1	8	14.50000000
459 7.4747 18520 0.6915 10 10 11.0 1 7 18.520000 460 6.3218 20950 0.6915 16 10 9.5 1 10 20.950000	457	8.0523	19700	0.7215	7 7	14.0	1	20	19.70000076
460 6.3218 20950 0.6915 16 10 9.5 1 10 20.950000	458	7.5057	16788	0.6915	10 7	14.0	1	4	16.78800011
	459	7.4747	18520	0.6915	10 10	11.0	1	7	18.52000046
761 2 1357 7577 0 8015 7 3 11 0 0 2 7 572000	460	6.3218	20950	0.6915	16 10	9.5	1	10	20.95000076
TOT 2.100T 101T 0.0010 1 0 11.0 0 0 1.010999	461	2.1354	7574	0.8015	7 3	11.0	0	3	7.57399988

462	4.2092	10027	0.7715	7	7	3.0	0	5	10.02700043
463	0.7595		0.9415	12	12	7.5	0	10	5.00000000
464	4.8077		0.7915	12	7	3.0	0	0	7.03999996
465	12.7880		0.5215	10	7	7.5	1	3	40.79999924
466	7.1429		0.7215	12		11.0	0	10	16.04999924
467	15.1520		0.5815	10		11.0	1	2	33.09999847
468	7.9082		0.7215	12	12	9.5	1		33.85599899
469	6.9728		0.6915	12	12	7.5	1		20.50000000
470	4.9181	28600	0.5815	7	7	5.0	1	0	28.60000038
471	8.3112	18750	0.6915	10	10	11.0	0	10	18.75000000
472	7.1429	20300	0.7215	7	7	9.5	1	5	20.29999924
473	5.6889	13420	0.7215	7	7	5.0	0	0	13.42000008
474	7.0833	18400	0.7215	3	3	5.0	0	0	18.39999962
475	5.6922	16682	0.7215	10	7	7.5	0	19	16.68199921
476	11.4000	32685	0.6215	7	7	7.5	1	2	32.68500137
477	1.4152	7050	0.8015	3	3	9.5	1	12	7.05000019
478	2.7507	10867	0.7815	12	7	9.5	1	5	10.86699963
479	6.6182	18220	0.7215	12	12	9.5	1	5	18.21999931
480	9.2725	26613	0.6915	7	7	7.5	0	5	26.61300087
481	12.2870	25000	0.6215	12	10	7.5	1	10	25.00000000
482	2.8549	15700	0.7515	7	7	7.5	1	0	15.69999981
483	7.9709	40250	0.5215	12	10	5.0	1	4	40.25000000
484	19.4440	73600	0.4415	12	16	11.0	0	3	73.59999847
485	1.4806	10592	0.7515	12	7	7.5	1	2	10.59200001
486	1.8918	8000	0.7515	7	7	3.0	0	1	8.00000000
487	6.9215	13400	0.7215	7	3	7.5	1	0	13.39999962
488	10.6920	23700	0.6615	12	12	14.0	1	1	23.70000076
489	9.9474		0.6915	7		11.0	1	1	18.89999962
490	19.0000		0.4615	7	12	9.5	1	6	
491	7.4882	24470	0.6615	14	14	9.5	1	12	24.46999931
492	9.2590		0.6215	16	7	7.5	1	6	28.62999916
493	11.3220		0.6215	12	7	5.0	1	9	25.31999969
494	6.4470	13530	0.7515	12	10	7.5	1	14	13.52999973
495	6.5778	14800	0.7215	7	7	9.0	1	13	14.80000019
496	6.1000	17400	0.7515	12	7	7.5	0	8	17.39999962
497	4.2308		0.7815	10	10	3.0	0	0	15.97999954
498	2.2170		0.7215	7	7	7.5	0	1	16.57600021
499	6.5189	21850	0.6915	12		11.0	1	3	21.85000038
500	6.4923		0.7215	7		14.0	1		14.60000038
501	11.3640		0.6615	12	12	7.5	1		21.60000038
502	9.8765		0.6615	12	12	7.5	1		24.00000000
503	7.6576		0.6915	7	7	7.5	1		20.88299942
504	8.3017	19500	0.6915	7	7	14.0	0	18	19.50000000

505 14.1140 42800 0.6215 14 12 11.0 1	42.79999924
	41.50000000
507 11.2910 18965 0.6915 12 12 14.0 1 5	18.96500015
508 2.3395 16100 0.7215 12 10 9.5 1 2	16.10000038
509 7.7994 14700 0.7215 12 17 7.5 1 10	14.69999981
510 6.0000 18800 0.7215 7 7 7.5 1 30	18.79999924
511 6.6893 14750 0.7515 10 7 11.0 1	14.75000000
512 8.5366 21000 0.6915 12 7 14.0 1 5	21.00000000
513 13.8300 35400 0.6215 0 7 7.5 1 8	35.40000153
514 1.4800 10700 0.7515 7 7 7.5 0 0	10.69999981
515 8.5714 24500 0.6615 7 7 9.5 1 4	24.50000000
516 8.2299 17045 0.7215 7 7 9.5 1 2	17.04500008
517 8.3877 18800 0.6915 7 7 7.5 1 30	18.79999924
518 7.3651 14000 0.7215 10 7 14.0 1 25	14.00000000
519 3.4415 18214 0.7215 7 0 3.0 0 3	18.21400070
520 3.3537 20177 0.7515 7 7 7.5 1 20	20.17700005
521 2.9762 8300 0.7815 0 7 7.5 1 20	8.30000019
522 5.1810 14200 0.7515 14 9 7.5 1 0	14.19999981
523 10.2930 21768 0.6915 12 12 7.5 0 15	21.76799965
524 13.2430 29553 0.5815 10 7 14.0 1 10	29.55299950
525 3.6458 4350 0.9415 7 7 7.5 0 4	4.34999990
526 10.4070 24000 0.6615 7 7 11.0 1 3	24.00000000
527 8.2117 18300 0.6915 7 7 7.5 1 10	18.29999924
528 8.6735 17200 0.7215 7 3 7.5 1 9	17.20000076
529 8.3208 16476 0.6915 7 7 14.0 0 7	16.47599983
530 4.2870 13400 0.7515 0 0 14.0 0 12	13.39999962
531 10.5000 44988 0.5215 3 3 14.0 0 0	44.98799896
532 7.9787 18200 0.6915 12 12 9.0 1 16	18.20000076
533 11.8140 28000 0.6215 12 12 14.0 1 4	28.00000000
534 6.1111 11550 0.7515 12 12 7.5 1 7	11.55000019
535 12.5780 28450 0.6215 12 7 14.0 1 7	28.45000076
536 11.2440 15096 0.7515 7 10 7.5 1 14	15.09599972
537 2.7408 8009 0.7815 7 7 14.0 0 2	8.00899982
538 4.4444 10040 0.7515 0 0 3.0 1 20	10.03999996
539 5.8267 16700 0.7215 12 12 7.5 1 5	16.70000076
540 2.3478 8400 0.7815 12 7 3.0 0 10	8.39999962
541 4.4755 13000 0.7215 0 0 3.0 0 20	13.00000000
542 8.4986 17970 0.7215 7 7 7.5 1 10	17.96999931
543 7.1825 18450 0.7215 14 17 5.0 0 8	18.45000076
544 10.8700 31000 0.6615 12 7 14.0 1 11	31.00000000
545 7.1222 24135 0.7215 10 7 7.5 1 3	24.13500023
546 10.6592 31700 0.5815 12 12 7.5 0 6	31.70000076
547 3.2762 10190 0.7915 3 3 14.0 0 4	10.18999958

548 7.7521 21574 0.7215 10 10 14.0 0 4 21,57399940 549 11.9450 26680 0.6215 3 3 7.5 1 9 26.68000030 551 13.0210 29400 0.6215 12 12 14.0 1 3 29.39999962 552 2.6667 22159 0.7515 7 7.55 0 2 22.15900040 553 8.8333 35000 0.5815 12 12 11.0 0 2 35.0000000 554 2.3669 8630 0.7915 16 16 5.0 1 0 8.300001 555 5.0000 17080 0.7515 7 0 14.0 1 817.07999992 556 7.4597 32500 0.7215 7 7 11.0 1 15 16.0000000 557 7.7519 16000 0.7215 7 7 11.0 1
550 4.6154 17700 0.7515 7 9 11.0 1 10 17.70000076 551 13.0210 29400 0.6215 12 12 14.0 1 3 29.3999962 552 2.6667 22159 0.7515 7 7.5 0 2 25.159000000 553 8.8333 35000 0.5815 12 12 11.0 0 2 35.00000000 554 2.3669 8630 0.7915 7 0 14.0 1 8 17.07999992 556 7.4597 32500 0.7215 7 7 11.0 1 6 32.5000000 557 7.7519 16000 0.7215 7 7 11.0 1 15 18.85000036 558 5.4054 18850 0.7515 7 7 11.0 1 15 18.85000000 558 5.4054 18850 0.7515 7 11.0 1 15 18.85000000 560 8.3369 19392 0.6915 7 12 14.0 0 8 19.3920002
551 13.0210 29400 0.6215 12 12 14.0 1 3 29.3999962 552 2.6667 22159 0.7515 7 7 7.5 0 2 22.15900040 553 8.833 35000 0.5815 12 12 11.0 0 2 35.0000000 554 2.3669 8630 0.7915 16 16 5.0 1 0 8.63000011 555 5.0000 17080 0.7515 7 0 14.0 1 8 17.07999992 556 7.4597 32500 0.7215 7 7 11.0 1 15 16.0000000 557 7.7519 16000 0.7215 7 7 11.0 1 15 16.0000000 558 5.4054 18850 0.7515 9 9 5.5 1 9 17.5000000 560 8.3369 19392 0.6915 9 9 5.5 1 9 17.5000000 561 7.1277 14450 0.7215 7 10 7.5 1 18 14.44999981 <tr< td=""></tr<>
552 2.6667 22159 0.7515 7 7.5 0 2 22.15900040 553 8.8333 35000 0.5815 12 12 11.0 0 2 35.0000000 554 2.3669 8630 0.7915 16 16 5.0 1 0 8.63000011 555 5.0000 17080 0.7515 7 0 14.0 1 8 17.07999992 556 7.4597 32500 0.7215 7 7 11.0 1 15 16.0000000 557 7.7519 16000 0.7215 7 7 11.0 1 15 18.8500038 559 6.1239 17500 0.6915 9 9 9.5 1 9 17.5000000 560 8.3369 19392 0.6915 9 9 9.5 1 9 17.5000000 561 7.1277 14450 0.7215 7 10 7.5 1 18 14.44999981 562 6.1204 21800 0.6915 0 0 7.5 1 3 21.79999924
553 8.8333 35000 0.5815 12 12 11.0 0 2 35.0000000 554 2.3669 8630 0.7915 16 16 5.0 1 0 8.63000011 555 5.0000 17080 0.7515 7 0 14.0 1 8 17.07999992 556 7.4597 32500 0.7215 7 7 11.0 1 15 16.0000000 557 7.7519 16000 0.7515 12 10 14.0 1 15 18.85000038 559 6.1239 17500 0.6915 9 9 9.5 1 9 17.5000000 560 8.3369 19392 0.6915 7 12 14.0 0 8 19.3920020 561 7.1277 14450 0.7615 7 10 7.5 1 18 14.44999981 562 6.1204 21800 0.6915 7 7
554 2.3669 8630 0.7915 16 16 5.0 1 0 8.63000011 555 5.0000 17080 0.7515 7 0 14.0 1 8 17.07999992 556 7.4597 32500 0.7215 7 7 14.0 1 6 32.50000000 557 7.7519 16000 0.7215 7 7 11.0 1 15 16.0000000 558 5.4054 18850 0.7515 12 10 14.0 1 15 18.85000038 559 6.1239 17500 0.6915 9 9.5 1 9 17.5000000 560 8.3369 19392 0.6915 7 12 14.0 0 8 19.39200020 561 7.1277 14450 0.7215 7 10 7.5 1 18 14.4499981 562 5.3846 17258 0.7515 7 7 11.0
555 5.0000 17080 0.7515 7 0.14.0 1 8.17.07999992 556 7.4597 32500 0.7215 10 7.14.0 1 6.32.50000000 557 7.7519 16000 0.7215 7 7.11.0 1 15.16.0000000 558 5.4054 18850 0.7515 12 10.14.0 1 15.18.85000038 559 6.1239 17500 0.6915 9 9.5.5 1 9.17.5000000 560 8.3369 19392 0.6915 7 12.14.0 0 8.19.3920020 561 7.1277 14450 0.7215 7 10.7.5 1 18.14.44999981 562 6.1204 21800 0.6915 0 0.7.5 1 3.21.7999924 563 3.1111 7700 0.7515 7 7.14.0 1 0.7.69999981 564 12.1610 31800 0.5815 7 7.11.0 0 6.31.79999924
556 7.4597 32500 0.7215 10 7 14.0 1 6 32.5000000 557 7.7519 16000 0.7215 7 7 11.0 1 15 16.0000000 558 5.4054 18850 0.7515 12 10 14.0 1 15 18.85000038 559 6.1239 17500 0.6915 9 9.5 1 9 17.5000000 560 8.3369 19392 0.6915 7 12 14.0 0 8 19.39200020 561 7.1277 14450 0.7215 7 10 7.5 1 18 14.44999981 562 6.1204 21800 0.6915 0 7.5 1 3 21.7999924 563 3.1111 7700 0.7515 7 7 14.0 1 10 7.69999981 564 12.1610 31800 0.5815 7 7 11.0 0 6 31.79999924 565 5.3846 17258 0.7515 7 7 9.5 1 20 17.25799942 <tr< td=""></tr<>
557 7.7519 16000 0.7215 7 7 11.0 1 15 16.0000000 558 5.4054 18850 0.7515 12 10 14.0 1 15 18.85000038 559 6.1239 17500 0.6915 9 9 9.5 1 9 17.5000000 560 8.3369 19392 0.6915 7 12 14.0 0 8 19.39200202 561 7.1277 14450 0.7215 7 10 7.5 1 18 14.44999981 562 6.1204 21800 0.6915 0 0 7.5 1 3 21.79999924 563 3.1111 7700 0.7515 7 7 14.0 1 10 7.69999981 564 12.1610 31800 0.5815 7 7 11.0 0 6 31.79999924 565 5.8846 17258 0.7515 7 7 9.5 1 20 17.25799942 566 3.9838 13399 0.7515 10 12 9.5 0 8 13.3990017
558 5.4054 18850 0.7515 12 10 14.0 1 15 18.85000038 559 6.1239 17500 0.6915 9 9 9.5 1 9 17.50000000 560 8.3369 19392 0.6915 7 12 14.0 0 8 19.39200020 561 7.1277 14450 0.7215 7 10 7.5 1 18 14.4999981 562 6.1204 21800 0.6915 0 0 7.5 1 3 21.79999924 563 3.1111 7700 0.7515 7 7 14.0 1 10 7.69999981 564 12.1610 31800 0.5815 7 7 11.0 0 6 31.79999924 565 5.3846 17258 0.7515 10 12 9.5 0 8 13.3990017 566 3.9838 133399 0.7515 12 16 </td
559 6.1239 17500 0.6915 9 9.55 1 9 17.5000000 560 8.3369 19392 0.6915 7 12 14.0 0 8 19.39200020 561 7.1277 14450 0.7215 7 10 7.5 1 18 14.44999981 562 6.1204 21800 0.6915 0 0 7.5 1 3 21.79999924 563 3.1111 7700 0.7515 7 7 14.0 1 10 7.69999981 564 12.1610 31800 0.5815 7 7 11.0 0 6 31.79999924 565 5.3846 17258 0.7515 7 7 9.5 1 20 17.25799942 566 3.9838 13399 0.7515 7 7 9.5 1 20 17.25799942 567 7.4697 16073 0.7215 12 16 11.0 3 16.0729995 568 11.4110 23260 0.6615 7 7 7.5 1 4 23.26000023
560 8.3369 19392 0.6915 7 12 14.0 0 8 19.39200020 561 7.1277 14450 0.7215 7 10 7.5 1 18 14.4499981 562 6.1204 21800 0.6915 0 0 7.5 1 3 21.79999924 563 3.1111 7700 0.7515 7 7 14.0 1 10 7.69999981 564 12.1610 31800 0.5815 7 7 11.0 0 6 31.79999924 565 5.3846 17258 0.7515 7 7 9.5 1 20 17.25799942 566 3.9838 13399 0.7515 10 12 9.5 0 8 13.3990017 567 7.4697 16073 0.7215 12 16 11.0 0 3 16.0729995 568 11.4110 23260 0.6615 7 7
561 7.1277 14450 0.7215 7 10 7.5 1 18 14.44999981 562 6.1204 21800 0.6915 0 0 7.5 1 3 21.79999924 563 3.1111 7700 0.7515 7 7 14.0 1 10 7.69999981 564 12.1610 31800 0.5815 7 7 11.0 0 6 31.79999924 565 5.3846 17258 0.7515 7 7 9.5 1 20 17.25799942 566 3.9838 13399 0.7515 10 12 9.5 0 8 13.39900017 567 7.4697 16073 0.7215 12 16 11.0 0 3 16.07299995 568 11.4110 23260 0.6615 7 7 7.5 1 4 23.26000023 569 12.9360 37300 0.5515 12 11.0 1 4 11.0000000 571 6.8099 13075 0.75
562 6.1204 21800 0.6915 0 0 7.5 1 3 21.79999924 563 3.1111 7700 0.7515 7 7 14.0 1 10 7.69999981 564 12.1610 31800 0.5815 7 7 11.0 0 6 31.79999924 565 5.3846 17258 0.7515 7 7 9.5 1 20 17.25799942 566 3.9838 13399 0.7515 10 12 9.5 0 8 13.3990017 567 7.4697 16073 0.7215 12 16 11.0 0 3 16.07299995 568 11.4110 23260 0.6615 7 7 7.5 1 4 23.2600023 569 12.9360 37300 0.5515 12 11.0 1 4 11.0000000 571 6.8099 13075 0.7515 7 7 9.5
563 3.1111 7700 0.7515 7 7 14.0 1 10 7.69999981 564 12.1610 31800 0.5815 7 7 11.0 0 6 31.79999924 565 5.3846 17258 0.7515 7 7 9.5 1 20 17.25799942 566 3.9838 13399 0.7515 10 12 9.5 0 8 13.39900017 567 7.4697 16073 0.7215 12 16 11.0 0 3 16.07299995 568 11.4110 23260 0.6615 7 7 7.5 1 4 23.26000023 569 12.9360 37300 0.5515 12 12 14.0 1 13 37.29999924 570 5.6122 11000 0.7515 12 7 11.0 1 4 11.0000000 571 6.8099 13075 0.7515 7 7 14.0 1 17
564 12.1610 31800 0.5815 7 7 11.0 0 6 31.79999924 565 5.3846 17258 0.7515 7 7 9.5 1 20 17.25799942 566 3.9838 13399 0.7515 10 12 9.5 0 8 13.39900017 567 7.4697 16073 0.7215 12 16 11.0 0 3 16.07299995 568 11.4110 23260 0.6615 7 7 7.5 1 4 23.26000023 569 12.9360 37300 0.5515 12 12 14.0 1 13 37.29999924 570 5.6122 11000 0.7515 12 7 11.0 1 4 11.0000000 571 6.8099 13075 0.7515 7 7 14.0 1 17 13.07499981 572 8.5066 13700 0.7215 7 <td< td=""></td<>
565 5.3846 17258 0.7515 7 7 9.5 1 20 17.25799942 566 3.9838 13399 0.7515 10 12 9.5 0 8 13.39900017 567 7.4697 16073 0.7215 12 16 11.0 0 3 16.07299995 568 11.4110 23260 0.6615 7 7 7.5 1 4 23.26000023 569 12.9360 37300 0.5515 12 12 14.0 1 13 37.29999924 570 5.6122 11000 0.7515 12 7 11.0 1 4 11.0000000 571 6.8099 13075 0.7515 7 7 14.0 1 17 13.07499981 572 8.5066 13700 0.7215 7 7 9.5 1 4 13.69999981 573 5.5080 25100 0.6615 7 1
566 3.9838 13399 0.7515 10 12 9.5 0 8 13.39900017 567 7.4697 16073 0.7215 12 16 11.0 0 3 16.07299995 568 11.4110 23260 0.6615 7 7 7.5 1 4 23.26000023 569 12.9360 37300 0.5515 12 12 14.0 1 13 37.29999924 570 5.6122 11000 0.7515 12 7 11.0 1 4 11.0000000 571 6.8099 13075 0.7515 7 7 14.0 1 17 13.07499981 572 8.5066 13700 0.7215 7 7 9.5 1 4 13.6999981 573 5.5080 25100 0.6615 7 10 5.0 0 0 25.1000038 574 7.2285 18600 0.6915 12 16 5.0 1 15 18.60000038 575 9.4545 29000
567 7.4697 16073 0.7215 12 16 11.0 0 3 16.07299995 568 11.4110 23260 0.6615 7 7 7.5 1 4 23.26000023 569 12.9360 37300 0.5515 12 12 14.0 1 13 37.29999924 570 5.6122 11000 0.7515 12 7 11.0 1 4 11.00000000 571 6.8099 13075 0.7515 7 7 14.0 1 17 13.07499981 572 8.5066 13700 0.7215 7 7 9.5 1 4 13.6999981 573 5.5080 25100 0.6615 7 10 5.0 0 0 25.1000038 574 7.2285 18600 0.6915 12 16 5.0 1 15 18.60000038 575 9.4545 29000 0.6215 16
568 11.4110 23260 0.6615 7 7 7.5 1 4 23.26000023 569 12.9360 37300 0.5515 12 12 14.0 1 13 37.29999924 570 5.6122 11000 0.7515 12 7 11.0 1 4 11.00000000 571 6.8099 13075 0.7515 7 7 14.0 1 17 13.07499981 572 8.5066 13700 0.7215 7 7 9.5 1 4 13.69999981 573 5.5080 25100 0.6615 7 10 5.0 0 0 25.1000038 574 7.2285 18600 0.6915 12 16 5.0 1 15 18.6000038 575 9.4545 29000 0.6215 16 16 9.5 0 11 29.00000000 576 8.9835 19237 0.6915 7 7 9.5 1 23 19.23699951 577 5.9846 19855 0.7215 12 14 7.5 1 1 19.85499954 </td
569 12.9360 37300 0.5515 12 12.14.0 1 13.37.299999924 570 5.6122 11000 0.7515 12 7.11.0 1 4.11.00000000 571 6.8099 13075 0.7515 7 7.14.0 1 17.13.07499981 572 8.5066 13700 0.7215 7 7.9.5 1 4.13.69999981 573 5.5080 25100 0.6615 7 10.5.0 0 0.25.1000038 574 7.2285 18600 0.6915 12 16.5.0 1 15.18.6000038 575 9.4545 29000 0.6215 16 16.9.5 0 11.29.00000000 576 8.9835 19237 0.6915 7 7.9.5 1 23.19.23699951 577 5.9846 19855 0.7215 12 14.7.5 1 1.9.85499954 578 3.9629 9450 0.7515 12 7.9.5 0 5.9.44999981 579 7.0575 30000 0.5815 7 7.5 0
570 5.6122 11000 0.7515 12 7 11.0 1 4 11.000000000 571 6.8099 13075 0.7515 7 7 14.0 1 17 13.07499981 572 8.5066 13700 0.7215 7 7 9.5 1 4 13.69999981 573 5.5080 25100 0.6615 7 10 5.0 0 0 25.10000038 574 7.2285 18600 0.6915 12 16 5.0 1 15 18.60000038 575 9.4545 29000 0.6215 16 16 9.5 0 11 29.00000000 576 8.9835 19237 0.6915 7 7 9.5 1 23 19.23699951 577 5.9846 19855 0.7215 12 14 7.5 1 1 19.85499954 578 3.9629 9450 0.7515 12 7 9.5 0 5 9.44999981 579 7.0575 30000 0.5815 7 7 7.5 0 1 30.0000000 580 7.1565 15000 0.7215 10 10 14.0 1 5 15.00000000 581 4.0145 24701 0.6615 12 12 9.5 1 3 24.70100021 582 3.8829 15900 0.7215 7 11.0
571 6.8099 13075 0.7515 7 14.0 1 17 13.07499981 572 8.5066 13700 0.7215 7 7 9.5 1 4 13.69999981 573 5.5080 25100 0.6615 7 10 5.0 0 0 25.10000038 574 7.2285 18600 0.6915 12 16 5.0 1 15 18.60000038 575 9.4545 29000 0.6215 16 16 9.5 0 11 29.00000000 576 8.9835 19237 0.6915 7 7 9.5 1 23 19.23699951 577 5.9846 19855 0.7215 12 14 7.5 1 19.85499954 578 3.9629 9450 0.7515 12 7 9.5 0 5 9.44999981 579 7.0575 30000 0.5815 7 7 7.5 0 1 30.0000000 580 7.1565 15000 0.7215 10
572 8.5066 13700 0.7215 7 7.9.5 1 4.13.69999981 573 5.5080 25100 0.6615 7 10.5.0 0 0.25.10000038 574 7.2285 18600 0.6915 12 16.5.0 1 15.18.60000038 575 9.4545 29000 0.6215 16 16.9.5 0 11.29.00000000 576 8.9835 19237 0.6915 7 7.9.5 1 23.19.23699951 577 5.9846 19855 0.7215 12 14.7.5 1 1.9.85499954 578 3.9629 9450 0.7515 12 7.9.5 0 5.9.44999981 579 7.0575 30000 0.5815 7 7.5 0 1.30.0000000 580 7.1565 15000 0.7215 10 10.14.0 1 5.15.00000000 581 4.0145 24701 0.6615 12 12.9.5 1 3.24.70100021 582 3.8829 15900 0.7215 7 7.11.0 0
573 5.5080 25100 0.6615 7 10 5.0 0 0 25.10000038 574 7.2285 18600 0.6915 12 16 5.0 1 15 18.60000038 575 9.4545 29000 0.6215 16 16 9.5 0 11 29.00000000 576 8.9835 19237 0.6915 7 7 9.5 1 23 19.23699951 577 5.9846 19855 0.7215 12 14 7.5 1 1 19.85499954 578 3.9629 9450 0.7515 12 7 9.5 0 5 9.44999981 579 7.0575 30000 0.5815 7 7 7.5 0 1 30.00000000 580 7.1565 15000 0.7215 10 10 14.0 1 5 15.00000000 581 4.0145 24701 0.6615 12 12 9.5 1 3 24.70100021 582 3.8829 15900 </td
574 7.2285 18600 0.6915 12 16 5.0 1 15 18.60000038 575 9.4545 29000 0.6215 16 16 9.5 0 11 29.00000000 576 8.9835 19237 0.6915 7 7 9.5 1 23 19.23699951 577 5.9846 19855 0.7215 12 14 7.5 1 1 19.85499954 578 3.9629 9450 0.7515 12 7 9.5 0 5 9.44999981 579 7.0575 30000 0.5815 7 7 7.5 0 1 30.00000000 580 7.1565 15000 0.7215 10 10 14.0 1 5 15.00000000 581 4.0145 24701 0.6615 12 12 9.5 1 3 24.70100021 582 3.8829 15900 0.7215 7 7 11.0 0 19 16.23999977 584 5.0366 21100<
575 9.4545 29000 0.6215 16 16 9.5 0 11 29.00000000 576 8.9835 19237 0.6915 7 7 9.5 1 23 19.23699951 577 5.9846 19855 0.7215 12 14 7.5 1 1 19.85499954 578 3.9629 9450 0.7515 12 7 9.5 0 5 9.44999981 579 7.0575 30000 0.5815 7 7 7.5 0 1 30.0000000 580 7.1565 15000 0.7215 10 10 14.0 1 5 15.00000000 581 4.0145 24701 0.6615 12 12 9.5 1 3 24.70100021 582 3.8829 15900 0.7215 10 14 11.0 0 3 15.89999962 583 7.9787 16240 0.7215 7 7 11.0 0 19 16.23999977 584 5.0366 21100 0.7515 12 12 9.5 1 20 21.10000038 585 7.0769 23000 0.6615 12 12 7.5 1 5 23.000000000
576 8.9835 19237 0.6915 7 7 9.5 1 23 19.23699951 577 5.9846 19855 0.7215 12 14 7.5 1 19.85499954 578 3.9629 9450 0.7515 12 7 9.5 0 5 9.44999981 579 7.0575 30000 0.5815 7 7.5 0 1 30.0000000 580 7.1565 15000 0.7215 10 10 14.0 1 5 15.00000000 581 4.0145 24701 0.6615 12 12 9.5 1 3 24.70100021 582 3.8829 15900 0.7215 10 14 11.0 0 3 15.89999962 583 7.9787 16240 0.7215 7 7 11.0 0 19 16.23999977 584 5.0366 21100 0.7515 12 12 9.5 1 20 21.10000038 585 7.0769 23000 0.6615 12 12 7.5 1 5 23.000000000
577 5.9846 19855 0.7215 12 14 7.5 1 1 19.85499954 578 3.9629 9450 0.7515 12 7 9.5 0 5 9.44999981 579 7.0575 30000 0.5815 7 7 7.5 0 1 30.00000000 580 7.1565 15000 0.7215 10 10 14.0 1 5 15.00000000 581 4.0145 24701 0.6615 12 12 9.5 1 3 24.70100021 582 3.8829 15900 0.7215 10 14 11.0 0 3 15.89999962 583 7.9787 16240 0.7215 7 7 11.0 0 19 16.23999977 584 5.0366 21100 0.7515 12 12 9.5 1 20 21.10000038 585 7.0769 23000 0.6615 12 12 7.5 1 5 23.000000000
578 3.9629 9450 0.7515 12 7 9.5 0 5 9.44999981 579 7.0575 30000 0.5815 7 7 7.5 0 1 30.00000000 580 7.1565 15000 0.7215 10 10 14.0 1 5 15.00000000 581 4.0145 24701 0.6615 12 12 9.5 1 3 24.70100021 582 3.8829 15900 0.7215 10 14 11.0 0 3 15.89999962 583 7.9787 16240 0.7215 7 7 11.0 0 19 16.23999977 584 5.0366 21100 0.7515 12 12 9.5 1 20 21.10000038 585 7.0769 23000 0.6615 12 12 7.5 1 5 23.000000000
579 7.0575 30000 0.5815 7 7 7.5 0 1 30.00000000 580 7.1565 15000 0.7215 10 10 14.0 1 5 15.00000000 581 4.0145 24701 0.6615 12 12 9.5 1 3 24.70100021 582 3.8829 15900 0.7215 10 14 11.0 0 3 15.89999962 583 7.9787 16240 0.7215 7 7 11.0 0 19 16.23999977 584 5.0366 21100 0.7515 12 12 9.5 1 20 21.10000038 585 7.0769 23000 0.6615 12 12 7.5 1 5 23.000000000
580 7.1565 15000 0.7215 10 10 14.0 1 5 15.00000000 581 4.0145 24701 0.6615 12 12 9.5 1 3 24.70100021 582 3.8829 15900 0.7215 10 14 11.0 0 3 15.89999962 583 7.9787 16240 0.7215 7 7 11.0 0 19 16.23999977 584 5.0366 21100 0.7515 12 12 9.5 1 20 21.10000038 585 7.0769 23000 0.6615 12 12 7.5 1 5 23.000000000
581 4.0145 24701 0.6615 12 12 9.5 1 3 24.70100021 582 3.8829 15900 0.7215 10 14 11.0 0 3 15.89999962 583 7.9787 16240 0.7215 7 7 11.0 0 19 16.23999977 584 5.0366 21100 0.7515 12 12 9.5 1 20 21.10000038 585 7.0769 23000 0.6615 12 12 7.5 1 5 23.00000000
582 3.8829 15900 0.7215 10 14 11.0 0 3 15.89999962 583 7.9787 16240 0.7215 7 7 11.0 0 19 16.23999977 584 5.0366 21100 0.7515 12 12 9.5 1 20 21.10000038 585 7.0769 23000 0.6615 12 12 7.5 1 5 23.000000000
583 7.9787 16240 0.7215 7 7 11.0 0 19 16.23999977 584 5.0366 21100 0.7515 12 12 9.5 1 20 21.10000038 585 7.0769 23000 0.6615 12 12 7.5 1 5 23.000000000
584 5.0366 21100 0.7515 12 12 9.5 1 20 21.10000038 585 7.0769 23000 0.6615 12 12 7.5 1 5 23.00000000
585 7.0769 23000 0.6615 12 12 7.5 1 5 23.00000000
586 3.6184 6340 0.7715 7 7 14.0 0 0 6.34000015
587 13.4660 42250 0.4915 10 10 5.0 1 3 42.25000000
588 14.5310 14694 0.7215 12 10 11.0 1 3 14.69400024
589 6.8000 21417 0.7215 12 12 9.5 1 7 21.41699982
590 6.6667 20200 0.6615 7 12 7.5 1 7 20.20000076

591	5.9172	12090	0.7215	7	7	9.5	1	1	12.09000015
592	10.2400	24760	0.6615	12	7	5.0	1	13	24.76000023
593	8.1566	23000	0.6915	7	3	3.0	0	0	23.00000000
594	6.6775	19365	0.7215	3	3	11.0	1	0	19.36499977
595	0.9615	5550	0.9415	7	7	3.0	0	12	5.55000019
596	16.9070	68035	0.4415	7	3	7.5	1	0	68.03500366
597	13.5700	29300	0.6215	10	14	7.5	1	5	29.29999924
598	8.9329	18500	0.6915	7	7	7.5	1	45	18.50000000
599	4.7372	22582	0.7215	17	7	11.0	0	10	22.58200073
600	8.5106	21500	0.7215	7	7	7.5	1	2	21.50000000
601	5.2511	28070	0.7515	7	7	7.5	0	3	28.06999969
602	21.7860	50300	0.4415	12	12	14.0	1	1	50.29999924
603	7.9125	23500	0.6615	12	12	14.0	1	5	23.50000000
604	7.1083	15500	0.7515	7	9	14.0	0	10	15.50000000
605	5.0434	13440	0.7715	7	0	5.0	0	4	13.43999958
606	2.2442	8100	0.7815	12	12	11.0	0	7	8.10000038
607	8.5069	9800	0.7515	7	12	9.5	1	9	9.80000019
608	7.5758	20300	0.6915	7	12	5.0	1	5	20.29999924
609	5.8824	15000	0.7515	7	7	14.0	1	4	15.00000000
610	40.4410	56100	0.4415	9	9	5.0	1	11	56.09999847
611	6.2339	22846	0.7215	12	7	5.0	1	9	22.84600067
612	9.2971	22225	0.6915	7	12	5.0	1	4	22.22500038
613	0.7038	17635	0.9415	12	7	7.5	1	2	17.63500023
614	2.5425	18500	0.6915	3	12	7.5	0		18.50000000
615	5.0833	13390	0.7515	12	12	11.0	0	3	13.39000034
616	7.6843	15150	0.7215	7	7	7.5	1	15	15.14999962
617	4.0625		0.7815	7	3	7.5	0	8	16.20000076
618	6.5106	33920	0.6615	12	12	14.0	1	3	33.91999817
619	2.9510		0.7215	7	12	7.5	0	25	14.00000000
620	5.6738		0.7515	12		11.0	1	2	
621	12.7660		0.6615	12		11.0	1	0	30.64999962
622	6.0000		0.7515	7		11.0	0	19	12.39999962
623	9.2955		0.6915	7	10	9.5	1		19.02199936
624	5.1324		0.7515	7	7		0		11.20300007
625	9.0659		0.6915	7	14	7.5	1		19.87599945
626	11.9310		0.4415	7		14.0	1		57.00000000
627	6.7164		0.6915	10		11.0	1	3	18.29000092
628	4.5851		0.6915	14		11.0	1	8	20.21999931
629	9.2567		0.6915	7		14.0	1	0	22.14999962
630	8.5656		0.6215	10	10	7.5	1		30.62299919
631	6.7407		0.7515	3		14.0	1	20	9.38000011
632	9.8788		0.6915	7	7	5.0	1		22.00000000
633	9.3750		0.6615	12	10	7.5	1		23.67499924
				-	_ •		-		

634 6.2770 33671 0.7215 7 7 14.0 1 5 33.67100143 635 6.4241 12367 0.7515 7 7.5 0 1 12.36699963 636 8.3718 21950 0.6615 7 7 5.0 0 0 21.95000076 637 12.2200 32000 0.5815 7 7 9.5 1 7 32.00000000 638 3.5612 22610 0.7215 10 10 9.5 1 13 22.61000061 639 8.8670 12092 0.7515 7 7 3.0 0 3 12.0920001 640 1.8515 3777 0.9415 7 7 11.0 0 0 3.77699995 641 8.0769 36000 0.5515 16 14 3.0 0 2 36.0000000 642 8.9796 26900 0.6615 12 16 7.5 0
636 8.3718 21950 0.6615 7 7 5.0 0 0 21.95000076 637 12.2200 32000 0.5815 7 7 9.5 1 7 32.00000000 638 3.5612 22610 0.7215 10 10 9.5 1 13 22.61000061 639 8.8670 12092 0.7515 7 7 3.0 0 3 12.0920001 640 1.8515 3777 0.9415 7 7 11.0 0 0 3.77699995 641 8.0769 36000 0.5515 16 14 3.0 0 2 36.0000000 642 8.9796 26900 0.6615 12 16 7.5 0 0 26.89999962 643 6.6618 32242 0.6615 7 7 11.0 1 2 32.24200058 644 11.1070 35020 0.5815 7 7 11.0 1 35.0200008 645 14.0770 37600 0.5515
637 12.2200 32000 0.5815 7 7 9.5 1 7 32.00000000 638 3.5612 22610 0.7215 10 10 9.5 1 13 22.61000061 639 8.8670 12092 0.7515 7 7 3.0 0 3 12.0920001 640 1.8515 3777 0.9415 7 7 11.0 0 0 3.77699995 641 8.0769 36000 0.5515 16 14 3.0 0 2 36.0000000 642 8.9796 26900 0.6615 12 16 7.5 0 0 26.89999962 643 6.6618 32242 0.6615 7 7 11.0 1 2 32.24200058 644 11.1070 35020 0.5815 16 17 5.0 1 1 35.02000046 645 14.0770 37600 0.5515 7 7 7.5 1 10 1.50000000 647 23.8100 96000
638 3.5612 22610 0.7215 10 10 9.5 1 13 22.61000061 639 8.8670 12092 0.7515 7 7 3.0 0 3 12.09200001 640 1.8515 3777 0.9415 7 7 11.0 0 0 3.77699995 641 8.0769 36000 0.5515 16 14 3.0 0 2 36.0000000 642 8.9796 26900 0.6615 12 16 7.5 0 0 26.89999962 643 6.6618 32242 0.6615 7 7 11.0 1 2 32.24200058 644 11.1070 35020 0.5815 16 17 5.0 1 1 35.02000046 645 14.0770 37600 0.5515 7 7 9.0 1 10 37.59999847 646 0.4121 1500 0.9415 7 7 7.5 1 10 1.5000000 647 23.8100 96000
639 8.8670 12092 0.7515 7 7 3.0 0 3 12.09200001 640 1.8515 3777 0.9415 7 7 11.0 0 0 3.77699995 641 8.0769 36000 0.5515 16 14 3.0 0 2 36.00000000 642 8.9796 26900 0.6615 12 16 7.5 0 0 26.89999962 643 6.6618 32242 0.6615 7 7 11.0 1 2 32.24200058 644 11.1070 35020 0.5815 16 17 5.0 1 1 35.02000046 645 14.0770 37600 0.5515 7 7 9.0 1 10 37.59999847 646 0.4121 1500 0.9415 7 7 7.5 1 10 1.50000000 647 23.8100 96000 0.4415 12 12 5.0 1 1 96.00000000 648 9.5745 18150
640 1.8515 3777 0.9415 7 7 11.0 0 0 3.77699995 641 8.0769 36000 0.5515 16 14 3.0 0 2 36.00000000 642 8.9796 26900 0.6615 12 16 7.5 0 0 26.89999962 643 6.6618 32242 0.6615 7 7 11.0 1 2 32.24200058 644 11.1070 35020 0.5815 16 17 5.0 1 1 35.02000046 645 14.0770 37600 0.5515 7 7 9.0 1 10 37.59999847 646 0.4121 1500 0.9415 7 7 7.5 1 10 1.5000000 647 23.8100 96000 0.4415 12 12 5.0 1 1 96.0000000 648 9.5745 18150 0.6915 7 7 11.0 0 3 18.14999962 649 1.9286 15500
641 8.0769 36000 0.5515 16 14 3.0 0 2 36.00000000 642 8.9796 26900 0.6615 12 16 7.5 0 0 26.89999962 643 6.6618 32242 0.6615 7 7 11.0 1 2 32.24200058 644 11.1070 35020 0.5815 16 17 5.0 1 1 35.02000046 645 14.0770 37600 0.5515 7 7 9.0 1 10 37.59999847 646 0.4121 1500 0.9415 7 7 7.5 1 10 1.50000000 647 23.8100 96000 0.4415 12 12 5.0 1 1 96.00000000 648 9.5745 18150 0.6915 7 7 11.0 0 3 18.14999962 649 1.9286 15500 0.7215 7 7 3.0 0 32 15.50000000 650 2.5783 14000 0.7215 7 7 7.5 1 7 14.75599957 652 8.8000 22000 0.6615 7
642 8.9796 26900 0.6615 12 16 7.5 0 0 26.89999962 643 6.6618 32242 0.6615 7 7 11.0 1 2 32.24200058 644 11.1070 35020 0.5815 16 17 5.0 1 1 35.02000046 645 14.0770 37600 0.5515 7 7 9.0 1 10 37.59999847 646 0.4121 1500 0.9415 7 7.5 1 10 1.50000000 647 23.8100 96000 0.4415 12 12 5.0 1 1 96.00000000 648 9.5745 18150 0.6915 7 7 11.0 0 3 18.14999962 649 1.9286 15500 0.7215 7 7 3.0 0 32 15.50000000 650 2.5783 14000 0.7215 7 7.5 1 7 14.75599957 652 8.8000 22000 0.6615
643 6.6618 32242 0.6615 7 7 11.0 1 2 32.24200058 644 11.1070 35020 0.5815 16 17 5.0 1 1 35.02000046 645 14.0770 37600 0.5515 7 7 9.0 1 10 37.59999847 646 0.4121 1500 0.9415 7 7.5 1 10 1.50000000 647 23.8100 96000 0.4415 12 12 5.0 1 1 96.0000000 648 9.5745 18150 0.6915 7 7 11.0 0 3 18.14999962 649 1.9286 15500 0.7215 7 7 3.0 0 32 15.50000000 650 2.5783 14000 0.7215 7 7 3.0 0 0 14.00000000 651 7.2274 14756 0.7215 7 7.5 1 7 14.75599957 652 8.8000 22000 0.6615 7 </td
644 11.1070 35020 0.5815 16 17 5.0 1 1 35.02000046 645 14.0770 37600 0.5515 7 7 9.0 1 10 37.59999847 646 0.4121 1500 0.9415 7 7.5 1 10 1.50000000 647 23.8100 96000 0.4415 12 12 5.0 1 1 96.0000000 648 9.5745 18150 0.6915 7 7 11.0 0 3 18.14999962 649 1.9286 15500 0.7215 7 7 3.0 0 32 15.50000000 650 2.5783 14000 0.7215 7 7 3.0 0 14.00000000 651 7.2274 14756 0.7215 7 7.5 1 7 14.75599957 652 8.8000 22000 0.6615 12 10 5.0 1 5 22.00000000 653 7.7500 24466 0.6615 7 7<
645 14.0770 37600 0.5515 7 7 9.0 1 10 37.59999847 646 0.4121 1500 0.9415 7 7.55 1 10 1.50000000 647 23.8100 96000 0.4415 12 12 5.0 1 1 96.00000000 648 9.5745 18150 0.6915 7 7 11.0 0 3 18.14999962 649 1.9286 15500 0.7215 7 7 3.0 0 32 15.50000000 650 2.5783 14000 0.7215 7 7 3.0 0 14.00000000 651 7.2274 14756 0.7215 7 7.5 1 7 14.75599957 652 8.8000 22000 0.6615 12 10 5.0 1 5 22.00000000 653 7.7500 24466 0.6615 7 7 11.0 1 2 24.46599960 654 14.6880 24400 0.6615 12
646 0.4121 1500 0.9415 7 7.5 1 10 1.50000000 647 23.8100 96000 0.4415 12 12 5.0 1 1.96.0000000 648 9.5745 18150 0.6915 7 7.11.0 0 3.18.14999962 649 1.9286 15500 0.7215 7 7.3.0 0 32.15.50000000 650 2.5783 14000 0.7215 7 7.3.0 0 0.14.00000000 651 7.2274 14756 0.7215 7 7.5 1 7.14.75599957 652 8.8000 22000 0.6615 12 10 5.0 1 5.22.00000000 653 7.7500 24466 0.6615 7 7.11.0 1 2.24.46599960 654 14.6880 24400 0.6615 12 12 7.5 1 5.24.39999962 655 10.4870 24000 0.6615 7 7 9.5 1 3.24.00000000 656 4.0253 15500 0.
647 23.8100 96000 0.4415 12 12 5.0 1 1 96.00000000 648 9.5745 18150 0.6915 7 7 11.0 0 3 18.14999962 649 1.9286 15500 0.7215 7 7 3.0 0 32 15.50000000 650 2.5783 14000 0.7215 7 7 3.0 0 0 14.00000000 651 7.2274 14756 0.7215 7 7.5 1 7 14.75599957 652 8.8000 22000 0.6615 12 10 5.0 1 5 22.00000000 653 7.7500 24466 0.6615 7 7 11.0 1 2 24.46599960 654 14.6880 24400 0.6615 12 12 7.5 1 5 24.39999962 655 10.4870 24000 0.6615 7 7 9.5 1 3 24.00000000 656 4.0253 15500 0.721
648 9.5745 18150 0.6915 7 7 11.0 0 3 18.14999962 649 1.9286 15500 0.7215 7 7 3.0 0 32 15.50000000 650 2.5783 14000 0.7215 7 7.3.0 0 0 14.00000000 651 7.2274 14756 0.7215 7 7.5 1 7 14.75599957 652 8.8000 22000 0.6615 12 10 5.0 1 5 22.00000000 653 7.7500 24466 0.6615 7 7 11.0 1 2 24.46599960 654 14.6880 24400 0.6615 12 12 7.5 1 5 24.39999962 655 10.4870 24000 0.6615 7 7 9.5 1 3 24.00000000 656 4.0253 15500 0.7215 12 9 11.0 0 25 15.500000000
649 1.9286 15500 0.7215 7 7 3.0 0 32 15.50000000 0 650 2.5783 14000 0.7215 7 7 3.0 0 0 14.00000000 0 0 0 14.00000000 0 0 0 14.00000000 0 0 0 14.00000000 0 0 0 14.00000000 0 0 14.75599957 0 0 14.75599957 0 0 14.75599957 0 0 1 5 22.000000000 0 0 0 0 14.75599957 0 0 1 5 22.000000000 0 0 0 0 1 5 22.000000000 0 0 0 0 1 5 22.000000000 0 0 0 0 1 0 24.465999960 0 0 0 0 1 5 24.39999962 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
650 2.5783 14000 0.7215 7 7 3.0 0 0 14.00000000 0 651 7.2274 14756 0.7215 7 7.5 1 7 14.75599957 14.755999957 14.75599957 14.755999960 14.755999960 14.755999960 14.755999960 14.755999960 14.75599999962 14.75599999962 14.755999999962 14.755999999962 14.755999999962 14.7559999999962 14.75599999999999999999999999999999999999
651 7.2274 14756 0.7215 7 7.5 1 7 14.75599957 652 8.8000 22000 0.6615 12 10 5.0 1 5 22.00000000 653 7.7500 24466 0.6615 7 7 11.0 1 2 24.46599960 654 14.6880 24400 0.6615 12 12 7.5 1 5 24.39999962 655 10.4870 24000 0.6615 7 7 9.5 1 3 24.00000000 656 4.0253 15500 0.7215 12 9 11.0 0 25 15.50000000
652 8.8000 22000 0.6615 12 10 5.0 1 5 22.00000000 653 7.7500 24466 0.6615 7 7 11.0 1 2 24.46599960 654 14.6880 24400 0.6615 12 12 7.5 1 5 24.39999962 655 10.4870 24000 0.6615 7 7 9.5 1 3 24.00000000 656 4.0253 15500 0.7215 12 9 11.0 0 25 15.50000000
653 7.7500 24466 0.6615 7 7 11.0 1 2 24.46599960 654 14.6880 24400 0.6615 12 12 7.5 1 5 24.39999962 655 10.4870 24000 0.6615 7 7 9.5 1 3 24.00000000 656 4.0253 15500 0.7215 12 9 11.0 0 25 15.500000000
654 14.6880 24400 0.6615 12 12 7.5 1 5 24.39999962 655 10.4870 24000 0.6615 7 7 9.5 1 3 24.00000000 656 4.0253 15500 0.7215 12 9 11.0 0 25 15.500000000
655 10.4870 24000 0.6615 7 7 9.5 1 3 24.00000000 656 4.0253 15500 0.7215 12 9 11.0 0 25 15.500000000
656 4.0253 15500 0.7215 12 9 11.0 0 25 15.50000000
657 11.7650 30800 0.6215 14 12 7.5 0 0 30.79999924
658 9.5238 10660 0.7515 7 7 14.0 1 3 10.65999985
659 6.9079 13350 0.7215 7 7 11.0 0 10 13.35000038
660 5.1510 10090 0.7515 12 3 11.0 0 10 10.09000015
661 20.4960 55600 0.4415 16 14 14.0 1 7 55.59999847
662 13.5550 25700 0.6615 12 12 9.5 1 5 25.70000076
663 14.7960 29000 0.5815 7 3 5.0 1 15 29.00000000
664 1.6905 7286 0.7815 10 7 3.0 0 1 7.28599977
665 7.2296 37752 0.5215 7 7 3.0 0 5 37.75199890
666 4.1152 13072 0.7515 3 3 14.0 0 9 13.07199955
667 2.9990 7044 0.7715 3 3 14.0 0 18 7.04400015
668 8.0492 18200 0.6915 7 7 14.0 1 1 18.20000076
669 8.5770 27000 0.6215 12 7 3.0 0 0 27.00000000
670 9.3235 30300 0.5815 10 12 3.0 0 6 30.29999924
671 4.7059 12000 0.7515 3 7 14.0 0 1 12.00000000
672 9.1346 31500 0.6615 16 17 3.0 0 2 31.50000000
673 7.7670 27092 0.7215 10 10 5.0 1 15 27.09199905
674 4.1269 20968 0.7515 7 7 3.0 0 25 20.96800041
675 10.0000 27000 0.6615 17 7 14.0 1 1 27.00000000
676 4.0727 11225 0.7515 7 10 7.5 1 0 11.22500038

					_		_	_	
677	7.8529		0.5815	3	3	7.5	0		37.70000076
678	7.8168		0.6615	12	16	7.5	1	0	28.20000076
679	9.1667		0.6615	7	12	5.0	0	8	34.00000000
680	29.6440		0.4415	12	7	9.5	1	22	
681	4.0761		0.7915	3	3	7.5	1	5	7.50000000
682	8.3620	17410	0.7215	10	10	9.5	1	10	17.40999985
683	12.0620	51000	0.4415	16	17	9.0	1	1	51.00000000
684	2.3251	12916	0.7515	10	7	3.0	0	1	12.91600037
685	10.0100	21900	0.6615	7	7	5.0	1	6	21.89999962
686	5.2734	17640	0.7515	7	7	5.0	0	4	17.63999939
687	10.4170	20000	0.6915	14	16	14.0	0	6	20.00000000
688	7.5000	15000	0.7215	7	7	14.0	1	0	15.00000000
689	6.3521	14060	0.7215	10	12	5.0	0	1	14.06000042
690	3.8071	15825	0.7215	7	14	9.5	0	3	15.82499981
691	9.9099	16510	0.7215	3	16	9.5	1	15	16.51000023
692	2.6701	13000	0.7215	12	12	7.5	0	33	13.00000000
693	4.3956	10000	0.7515	7	7	5.0	1	2	10.00000000
694	7.9710	22000	0.6615	12	12	7.5	1	1	22.00000000
695	15.4290	29800	0.5815	7	7	7.5	1	10	29.79999924
696	1.9854	15000	0.7215	7	7	5.0	1	0	15.00000000
697	7.2562	22300	0.7215	10	14	9.5	1	14	22.29999924
698	7.0352	14550	0.7215	3	16	7.5	1	15	14.55000019
699	8.1347	19730	0.6915	14	12	7.5	1	15	19.72999954
700	11.9810	35000	0.5515	12	12	7.5	1	10	35.00000000
701	5.9922	21014	0.6615	7	3	7.5	1	6	21.01399994
702	4.1458	10876	0.7515	14	7	7.5	0	18	10.87600040
703	8.5102	27850	0.6215	12	10	7.5	0	15	27.85000038
704	2.9631	9560	0.7515	0	3	3.0	0	30	9.56000042
705	8.8149	30300	0.6215	7	7	7.5	0	15	30.29999924
706	2.4955	7720	0.7815	7	7	7.5	0	10	7.71999979
707	4.8843	10550	0.7515	10	7	7.5	1	0	10.55000019
708	10.2000	24106	0.6615	12	7	9.5	1	0	24.10600090
709	10.0000	22995	0.6615	12	14	9.5	1	4	22.99500084
710	5.3571	6000	0.8015	12	12	9.5	1	0	6.00000000
711	9.7959		0.6615	14	14	9.5	1	3	24.35000038
712	1.3741		0.7715	7	7	7.5	0	20	7.60799980
713	3.4630		0.7215	7	7	3.0	0	3	28.20000076
714	5.0408		0.7215	3	7	3.0	0	1	
715	16.6670		0.4415	7	10	7.5	1	5	
716	4.3294		0.7515	7	7	5.0	1		12.64599991
	10.1930		0.6915	7	7	11.0	1		19.00000000
718	7.5833		0.7215	7	7	7.5	1		19.00000000
719	4.1204		0.7515	3	3	7.5	0		14.39999962

700 4 0077	7020	0.0415	2	7	11 0	4	10	7 0210002
720 4.8077		0.9415	3 7		11.0	1	10	7.23199987
721 3.1531		0.7515		10	9.5	1		21.94300079
722 19.0000		0.4615	7	10	7.5	1		47.50000000
723 6.0535		0.6215	12	7	7.5	1	8	28.89999962
724 3.7875		0.7715	7	7	7.5	0	18	12.39999962
725 2.9287		0.7815	0	0	7.5	0	7	6.53100014
726 9.2972		0.6915	3	7		1	15	22.42200089
727 9.3827		0.6615	7	7		1	7	22.20000076
728 26.5310		0.4415	7	14	14.0	1	8	77.00000000
729 40.5090	88000	0.4415	10	10	14.0	1	8	88.00000000
730 15.1600	26040	0.6215	12	10	11.0	0	3	26.04000092
731 18.9640	63500	0.4415	7	7	7.5	1	10	63.50000000
732 5.4152	12100	0.7515	10	10	7.5	0	9	12.10000038
733 1.9988	17505	0.7515	12	7	7.5	1	24	17.50499916
734 8.0000	18000	0.6915	10	7	7.5	0	12	18.00000000
735 11.1530	28069	0.6615	12	12	11.0	1	2	28.06900024
736 5.9524	14000	0.7515	12	14	14.0	1	6	14.00000000
737 2.1194	8117	0.7515	10	3	7.5	1	18	8.11699963
738 3.8384	11895	0.7715	7	7	5.0	1	17	11.89500046
739 17.3610		0.4915	16	16	5.0	1	7	45.25000000
740 8.0092		0.6915	7	10	9.5	1	6	31.10600090
741 3.0000		0.8015	12	7	9.5	1	10	4.00000000
742 10.5890		0.5815	7	7	7.5	1	5	40.50000000
743 10.9130		0.7215	10	7	7.5	1	7	21.62000084
744 5.6033		0.7215	0	0	7.5	1		23.42600060
745 7.9365		0.6615	3	3	11.0	1		26.00000000
746 2.9476		0.9415	7	0	9.5	1	5	7.84000015
747 2.0562		0.7915	7	3	7.5	0	2	6.80000019
748 1.3013		0.7915	7	12	14.0	0	4	5.32999992
749 9.2715		0.6215	10	10	9.5	1	5	28.20000076
750 4.8638		0.7715	12	12	7.5	0	14	10.00000000
751 1.0898		0.7515	10	3	7.5	0	4	9.95199966
752 12.4400		0.6215	12		14.0	1		24.98399925
753 6.0897			7		11.0	1		28.36300087
			oghours d		11.0	-	12	20.0000000
1 1.21015	•	-	.383989	_mourb 1				
2 0.32851			.412160	1				
3 1.51413			.590852	1				
4 0.09212			.122493	1				
5 1.52427			.357556	1				
6 1.55648			.616776	1				
7 2.12025			.272398	1				
				_				
8 2.05963	421	1225 6	.927558	1				

9	0.75433636	576	7.284821	1
10	1.54489934	441	7.377759	1
11	1.40192163	225	7.585281	1
12	1.52427220	196	7.580700	1
13	0.73395324	0	5.480639	1
14	0.81836909	196	6.904751	1
15	1.30283117	36	7.521859	1
16	0.29802838	81	7.109879	1
17	1.16760957	400	7.244228	1
18	1.64383936	36	6.461468	1
19	0.69314718	529	7.600902	1
20	2.02193165	81	7.188413	1
21	1.25424755	25	7.703008	1
22	1.27295768	121	7.426549	1
23	1.17865503	324	7.377759	1
24	1.17865503	225	6.684612	1
25	0.76755869	16	7.578145	1
26	1.33181179	441	6.492240	1
27	1.38629436	961	6.263398	1
28	1.55326962	81	7.551712	1
29	1.98181486	49	7.323831	1
30	1.76936042	49	5.846439	1
31	0.43080789	1024	6.946976	1
32	0.89975482	121	6.595781	1
33	1.76662970	256	7.539027	1
34	1.27295768	196	7.426549	1
35	1.33678889	729	7.640604	1
36	0.90170485	0	6.536692	1
37	0.86512369	289	8.345218	1
38	1.51184714	784	7.698483	1
39	1.72602916	576	7.576610	1
40	2.68314242	121	7.171657	1
41	0.98529428	1	4.718499	1
42	1.36593854	196	6.794587	1
43	0.94503367	36	6.368187	1
44	1.51237619	100	6.173786	1
45	0.69314718	36	7.549609	1
46	1.24478841	16	6.356108	1
47	0.70116490	100	7.628518	1
48	1.51986325	484	7.592870	1
49	0.82096857	256	7.878534	1
50	0.96983153	36	5.480639	1
51	0.82850820	144	7.067320	1

52	0.09430964	1024	8.199739	1
53	0.16254389	225	5.828946	1
54	0.47000363	289	6.214608	1
55	0.62924844	1156	7.377134	1
56	1.39716017	81	7.512071	1
57	2.26544380	1369	7.560080	1
58	2.08454108	100	7.626570	1
59	1.52583885	1225	7.745868	1
60	0.76216006	36	5.278115	1
61	1.48160458	361	7.824046	1
62	1.26282644	100	7.590852	1
63	0.99967557	121	7.517521	1
64	1.83258152	225	5.768321	1
65	2.47930765	144	6.037871	1
66	1.27901530	144	7.539027	1
67	1.93793559	196	4.276666	1
68	1.07045281	121	4.787492	1
69	1.12392259	81	7.541683	1
70	1.32175589	576	5.480639	1
71	1.74499977	144	7.455298	1
72	1.30174363	169	7.522941	1
73	1.64186645	841	7.617268	1
74	2.10702014	121	6.410175	1
75	1.46706760	169	7.050123	1
76	1.60581136	361	7.699842	1
77	-1.02973938	4	5.529429	1
78	1.08768618	576	5.820083	1
79	0.00000000	81	4.499810	1
80	0.93820870	36	7.068172	1
81	-0.15059038	484	5.918894	1
82	0.00000000	900	3.401197	1
83	1.07367051	100	7.495542	1
84	1.26584840	36	5.641907	1
85	0.48636898	841	6.579251	1
86	2.12025952	841	7.272398	1
87	1.12985253	1296	7.649693	1
88	0.99325180	361	6.907755	1
89	1.65862799	64	6.858565	1
90	0.34741220	169	7.253470	1
91	1.56832421	256	7.649693	1
92	0.51084560	121	4.787492	1
93	0.11484543	225	8.006368	1
94	-0.69314718	36	6.907755	1

95	-0.33645228		5.817111	1
96	1.02822554	484	7.103322	1
97	1.58068860	576	6.895683	1
98	0.55589461	4	7.855932	1
99	0.90142071	36	7.615791	1
100	0.88430458	4	6.023448	1
101	0.42820460	4	6.661855	1
102	1.05841506	196	7.235619	1
103	0.87833959	81	7.279319	1
104	1.65490830	121	7.450080	1
105	1.32175589	81	6.684612	1
106	0.32851210	36	5.886104	1
107	1.38629436	361	7.600902	1
108			7.069874	1
109			7.629490	1
	0.28765708		6.802395	1
111			5.370638	1
112			7.600902	1
113			6.629363	1
114			7.142037	1
115			7.632401	1
	-0.69314718		7.154615	1
117			7.134013	1
118				
			7.600902	1
119		1		1
120			7.331715	1
121			6.329721	1
122			7.629490	1
123			7.508239	1
	1.68948674	169	7.426549	1
125	2.28859782		7.272398	1
126	-1.82263112	289	8.507143	1
127	-0.96076518	16	7.069874	1
128	1.29099417	225	7.003065	1
129	0.86487114	121	7.323831	1
130	1.54045212	49	6.802395	1
131	0.61621213	0	6.984716	1
132	1.64865863	0	6.173786	1
133	1.19349813	100	5.662960	1
134	2.14397621	64	7.536364	1
135	0.72440356	4	6.445720	1
136	0.94160753	16	5.455321	1
137			7.377759	1

138	1.83258152	324	6.866933	1
139	1.20396280	9	4.787492	1
140	1.49164486	484	7.613325	1
141	1.89213264	1089	7.500529	1
142	2.13089490	784	8.034955	1
143	1.48060405	529	6.813445	1
144	0.89433134	729	7.517521	1
145	0.20253254	121	6.664409	1
146	0.48550782	36	5.991465	1
147	1.09861231	121	6.907755	1
148	1.55326962	196	7.551712	1
149	0.12159797	289	7.479300	1
150	2.00180435	289	7.303843	1
151	1.49503660	196	6.606650	1
152	0.90522981	121	7.506592	1
153	0.63254756	49	7.150701	1
154	1.38629436	64	6.109248	1
155	2.10291386	36	7.107425	1
156	1.95964396	64	7.346010	1
157	0.51084560	16	5.192957	1
158	1.23692393	625	7.644919	1
159	1.44331253	576	7.580700	1
160	1.02165926	121	7.272398	1
161	0.63615346	361	6.677083	1
162	1.61645329	81	6.900731	1
163	0.22314355	361	5.075174	1
164	1.04980707	196	4.653960	1
165	1.41505194	484	7.090077	1
166	0.57537663	36	6.109248	1
167	2.60668159	529	6.903747	1
168	1.51791453	225	6.958448	1
169	0.75504160	36	7.028201	1
170	1.09497237	121	7.517521	1
171	0.94211435	4	7.554859	1
172	1.72494280	484	6.887553	1
173	1.03154612	100	7.748029	1
174	0.47436908	196	6.993015	1
175	0.81093019	144	6.684612	1
176	0.70926660	81	7.114769	1
177	1.71054947	169	7.054450	1
178	0.46026888	324	7.728416	1
179	1.33181179	64	6.269096	1
180	1.09861231	121	6.907755	1

181	2.15799856	81	6.253829	1
182	1.43758130	81	6.633318	1
183	1.54489934	196	7.560080	1
184	1.41059673	81	7.106606	1
185	3.21887589	4	5.298317	1
186	0.96816188	144	7.816014	1
187	1.79175949	225	7.919356	1
188	1.68872952	121	7.607878	1
189	-0.40917197	49	7.211557	1
190	0.22314355	81	4.382027	1
191	0.82215583	361	7.420579	1
192	1.24170196	121	6.253829	1
193	1.42712438	64	5.662960	1
194	1.49709749	169	7.607878	1
195	0.55961579	16	6.684612	1
196	1.30002820	49	7.592870	1
197	1.88442981	361	7.508239	1
198	0.95551139	196	7.313220	1
199	1.58208728	196	7.723562	1
200	1.75561404	9	7.454720	1
201	1.51310325	81	7.580700	1
202	2.25189161	49	7.363914	1
203	2.36443233	49	7.182352	1
204	0.10535048	196	7.333023	1
205	1.39972878	841	7.705262	1
206	0.98846251	361	7.197435	1
207	1.09064734	196	6.915723	1
208	1.15461445	256	7.572503	1
209	1.26694763	100	7.600902	1
210	2.88519168	144	5.552960	1
211	1.22888005	576	7.487174	1
212	1.20396280	36	6.173786	1
213	1.35738027	81	6.648985	1
214	0.83772361	196	6.802395	1
215	0.53696114	676	7.264030	1
216	0.74872380	49	5.347108	1
217	2.29587269	16	5.476464	1
218	1.10780323	225	7.537963	1
219	0.62084526	529	5.370638	1
220	-2.05416369	1	7.757906	1
221	1.89201200	841	7.580700	1
222	1.72972453	81	6.276643	1
223	0.46937841	36	5.976351	1

224	0.98084170	121	6.514713	1
225	2.06949234	289	7.323171	1
226	1.67518818	36	6.937314	1
227	1.38629436	49	7.130899	1
228	1.79921496	4	7.054450	1
229	1.83258152	576	4.718499	1
230	1.09064734	16	5.817111	1
231	1.44312358	121	7.592870	1
232	1.25036013	625	6.573680	1
233	1.60231256	121	7.251345	1
234	1.01855850	4	7.170120	1
235	1.29705322	361	7.402452	1
236	1.68519449	49	7.091742	1
237	-0.42098489	4	6.192362	1
238	1.56209469	400	7.638198	1
239	2.14652753	100	6.265301	1
240	2.34746289	361	7.450661	1
241	0.96983153	289	7.190676	1
242	1.92414641	144	6.369901	1
243	1.62672758	121	7.226936	1
244	-0.03926073	36	6.946976	1
245	1.46014869	100	6.306275	1
246	1.95539355	16	2.708050	1
247	0.92635989	4	7.590852	1
248	2.06619167	169	7.326466	1
249	1.42284322	441	7.539027	1
250	2.10103178	81	7.138867	1
251	2.26146102	16	6.995766	1
252	0.70131379	4	7.369601	1
253	2.03101254	361	5.049856	1
254	1.16236925	16	7.569928	1
255	0.47000363	81	7.130899	1
256	1.41059673	196	6.413459	1
257	0.39305511	36	5.598422	1
258	1.29099417	576	6.492240	1
259	0.00000000	1	6.907755	1
260	0.95712548	169	7.560080	1
261	0.55961579	9	5.298317	1
262	1.56861591	100	7.313220	1
263	1.71018791	256	6.766192	1
264	1.41059673	81	7.748460	1
265	0.22314355	361	7.600902	1
266	0.51084560	16	4.094345	1

267	1.33239245	100	7.447168	1
268	0.86018586	25	6.309918	1
269	2.32277989	49	7.580700	1
270	1.91959548	9	3.784190	1
271	1.97610676	1444	7.560080	1
272	0.89543474	256	7.839919	1
273	0.18123759	169	5.049856	1
274	0.49530584	1	6.659294	1
275	0.57779241	49	8.045588	1
276	1.07881773	225	7.620705	1
277	1.60319853	100	7.383989	1
278	0.62084526	4	5.370638	1
279	2.08389401	361	7.021084	1
280	1.37916911	625	6.740519	1
281	1.11238372	625	8.078688	1
282	1.06712162	49	7.226936	1
283	1.11880696	225	6.887553	1
284	1.58854103	121	7.516433	1
285	1.39031124	625	7.309212	1
286	1.71480644	361	6.109248	1
287	0.20106153	16	7.588830	1
288	0.98727101	196	7.606885	1
289	0.98350066	361	6.329721	1
290	2.23317075	324	7.447168	1
291	1.14361751	196	7.555905	1
292	-0.61138290	121	8.212297	1
293	2.15305209	16	6.984716	1
294	1.29983735	841	7.494986	1
295	0.84092045	441	7.592870	1
296	1.05848444	576	7.516977	1
297	1.15265846	361	7.364547	1
298	1.29357588	961	4.564348	1
299	1.83258152	784	7.560080	1
300	2.32718015	225	7.431300	1
301	1.16614628	729	7.370860	1
302	2.03499317	169	5.843544	1
303	0.67925107	16	7.327123	1
304	1.54713690	100	7.306531	1
305	0.75301856	64	6.896694	1
306	0.84728360	16	6.396930	1
307	0.87112600	324	7.880804	1
308	0.22825047	9	7.672758	1
309	0.08965783	121	5.768321	1

310	1.32175589	64	7.377759	1
311	1.19610190	100	7.791110	1
312	1.63611877	1089	7.603399	1
313	1.89201200	361	7.580700	1
314	1.51830900	1225	7.671827	1
315	2.47215915	441	7.095893	1
316	1.32175589	49	7.600902	1
317	1.47364104	324	7.138867	1
318	1.36947882	16	4.499810	1
319	1.20396280	144	7.495542	1
320	1.19872916	256	6.350886	1
321	1.27020991	196	7.509335	1
322	0.47000363	9	4.317488	1
323	0.79998165	1	7.206377	1
324	1.56594563	729	7.539027	1
325	1.75897801	144	7.122867	1
326	0.85802585	36	6.742881	1
327	0.69314718	81	5.010635	1
328	0.64185387	4	7.600902	1
329	1.63374019	36	7.576610	1
330	1.70374763	81	7.283448	1
331	1.84400403	256	7.461640	1
332	1.96611881	484	7.244228	1
333	0.86499745	676	7.600902	1
334	0.93330520	121	7.467371	1
335	0.77923316	121	7.003974	1
336	0.95551139	225	7.600902	1
337	1.31624734	169	7.537430	1
338	1.47590649	36	5.075174	1
339	1.49139726	400	7.542213	1
340	1.45575047	289	7.276556	1
341	0.51084560	64	7.313220	1
342	1.18043804	169	6.756932	1
343	1.68848944	225	7.521859	1
344	0.79072750	196	7.425358	1
345	1.40179861	196	5.075174	1
346	-0.43355602	36	4.682131	1
347	1.68317151	576	7.460490	1
348	-1.76667666	100	7.064759	1
349	3.15559506	4	2.708050	1
350	2.25952101	81	7.643962	1
351	1.30692637	529	7.820038	1
352	0.79849768	144	4.905275	1

353	0.55904418	64	7.572503	1
354	0.14790262	256	6.536692	1
355	1.94449484	100	6.410175	1
356	1.37833786	49	4.143135	1
357	3.06474519	361	5.036953	1
358	-0.74191731	4	6.040255	1
359	0.76570040	81	6.478510	1
360	0.61939299	196	6.514713	1
361	1.46545208	81	7.416378	1
362	2.18925953	256	7.426549	1
363	1.02165926	49	5.192957	1
364	0.97700948	36	7.365813	1
365	0.91629076	484	7.090077	1
366	2.90509605	81	6.109248	1
367	-0.19967119	81	6.304449	1
368	0.69314718	196	5.703782	1
369	2.73339295	289	6.882437	1
370	1.86833465	144	7.390799	1
371	2.12025952	169	5.703782	1
372	1.51519322	64	7.532624	1
373	0.91460931	100	7.497207	1
374	1.49955606	256	7.669962	1
375	0.80307722	1	6.984716	1
376	0.72803164	36	7.209340	1
377	0.51640999	16	6.285998	1
378	1.22644830	64	5.863631	1
379	0.91629076	16	5.298317	1
380	1.37647128	225	7.623153	1
381	1.82897496	49	7.133296	1
382	1.36828315	196	7.580700	1
383	1.06471074	256	7.600902	1
384	1.40648913	225	7.580700	1
385	1.04731894	529	7.600902	1
386	1.94809341	361	7.357556	1
387	1.07800138	16	7.110696	1
388	0.65393847	144	6.659294	1
389	1.92789161	144	6.173786	1
390	1.36102784	625	7.561642	1
391	0.69314718	196	7.600902	1
392	1.60468662	196	7.654443	1
393	0.18390365	121	7.416980	1
394	3.11351538	49	3.871201	1
395	1.92682922	324	7.490529	1

396	1.27012563	16	7.247081	1
397	0.68269271	1369	7.560080	1
398	1.68106997	169	7.669028	1
399	0.55629599	196	7.450080	1
400	1.62822044	289	8.169903	1
401	0.91629076	25	7.600902	1
402	1.34155846	4	6.684612	1
403	0.00000000	0	8.006368	1
404	1.12223125	9	5.680173	1
405	0.54017079	441	7.534763	1
406	1.39150572	400	7.629490	1
407	1.69717395	361	7.513164	1
408	3.21887589	16	4.787492	1
409	0.87116778	361	7.397562	1
410	1.16732955	121	6.656727	1
411	1.21698773	196	7.592870	1
412	0.57537663	64	5.416100	1
413	1.15161574	169	7.580700	1
414	0.99425125	576	6.095825	1
415	0.52632493	1	5.950643	1
416	-1.54318213	1	7.064759	1
417	1.91204309	9	7.192934	1
418	0.55428731	16	7.207860	1
419	0.91629076	441	6.173786	1
420	1.50093913	100	7.592870	1
421	0.94468379	169	7.572503	1
422	1.24126863	81	3.912023	1
423	1.56498432	196	6.131226	1
424	0.83802646	4	6.522093	1
425	1.66885710	441	7.803843	1
426	1.76942861	484	7.670429	1
427	1.22644830	196	7.473069	1
428	1.40648913	49	6.194405	1
429	NA	4	NA	0
430	NA	25	NA	0
431	NA	144	NA	0
432	NA	1	NA	0
433	NA	144	NA	0
434	NA	16	NA	0
435	NA	81	NA	0
436	NA	81	NA	0
437	NA	36	NA	0
438	NA	25	NA	0

439	NA	25	NA	0
440	NA	64	NA	0
441	NA	4	NA	0
442	NA	36	NA	0
443	NA	0	NA	0
444	NA	9	NA	0
445	NA	49	NA	0
446	NA	9	NA	0
447	NA	100	NA	0
448	NA	9	NA	0
449	NA	4	NA	0
450	NA	144	NA	0
451	NA	225	NA	0
452	NA	25	NA	0
453	NA	16	NA	0
454	NA	100	NA	0
455	NA	1	NA	0
456	NA	64	NA	0
457	NA	400	NA	0
458	NA	16	NA	0
459	NA	49	NA	0
460	NA	100	NA	0
461	NA	9	NA	0
462	NA	25	NA	0
463	NA	100	NA	0
464	NA	0	NA	0
465	NA	9	NA	0
466	NA	100	NA	0
467	NA	4	NA	0
468	NA	100	NA	0
469	NA	16	NA	0
470	NA	0	NA	0
471	NA	100	NA	0
472	NA	25	NA	0
473	NA	0	NA	0
474	NA	0	NA	0
475	NA	361	NA	0
476	NA	4	NA	0
477	NA	144	NA	0
478	NA	25	NA	0
479	NA	25	NA	0
480	NA	25	NA	0
481	NA	100	NA	0

482	NA	0	NA	0
483	NA	16	NA	0
484	NA	9	NA	0
485	NA	4	NA	0
486	NA	1	NA	0
487	NA	0	NA	0
488	NA	1	NA	0
489	NA	1	NA	0
490	NA	36	NA	0
491	NA	144	NA	0
492	NA	36	NA	0
493	NA	81	NA	0
494	NA	196	NA	0
495	NA	169	NA	0
496	NA	64	NA	0
497	NA	0	NA	0
498	NA	1	NA	0
499	NA	9	NA	0
500	NA	169	NA	0
501	NA	9	NA	0
502	NA	64	NA	0
503	NA	64	NA	0
504	NA	324	NA	0
505	NA	4	NA	0
506	NA	9	NA	0
507	NA	25	NA	0
508	NA	4	NA	0
509	NA	100	NA	0
510	NA	900	NA	0
511	NA	1	NA	0
512	NA	25	NA	0
513	NA	64	NA	0
514	NA	0	NA	0
515	NA	16	NA	0
516	NA	4	NA	0
517	NA	900	NA	0
518	NA	625	NA	0
519	NA	9	NA	0
520	NA	400	NA	0
521	NA	400	NA	0
522	NA	0	NA	0
523	NA	225	NA	0
524	NA	100	NA	0

525	NA	16	NA	0
526	NA	9	NA	0
527	NA	100	NA	0
528	NA	81	NA	0
529	NA	49	NA	0
530	NA	144	NA	0
531	NA	0	NA	0
532	NA	256	NA	0
533	NA	16	NA	0
534	NA	49	NA	0
535	NA	49	NA	0
536	NA	196	NA	0
537	NA	4	NA	0
538	NA	400	NA	0
539	NA	25	NA	0
540	NA	100	NA	0
541	NA	400	NA	0
542	NA	100	NA	0
543	NA	64	NA	0
544	NA	121	NA	0
545	NA	9	NA	0
546	NA	36	NA	0
547	NA	16	NA	0
548	NA	16	NA	0
549	NA	81	NA	0
550	NA	100	NA	0
551	NA	9	NA	0
552	NA	4	NA	0
553	NA	4	NA	0
554	NA	0	NA	0
555	NA	64	NA	0
556	NA	36	NA	0
557	NA	225	NA	0
558	NA	225	NA	0
559	NA	81	NA	0
560	NA	64	NA	0
561	NA	324	NA	0
562	NA	9	NA	0
563	NA	100	NA	0
564	NA	36	NA	0
565	NA	400	NA	0
566	NA	64	NA	0
567	NA	9	NA	0

568	NA	16	NA	0
569	NA	169	NA	0
570	NA	16	NA	0
571	NA	289	NA	0
572	NA	16	NA	0
573	NA	0	NA	0
574	NA	225	NA	0
575	NA	121	NA	0
576	NA	529	NA	0
577	NA	1	NA	0
578	NA	25	NA	0
579	NA	1	NA	0
580	NA	25	NA	0
581	NA	9	NA	0
582	NA	9	NA	0
583	NA	361	NA	0
584	NA	400	NA	0
585	NA	25	NA	0
586	NA	0	NA	0
587	NA	9	NA	0
588	NA	9	NA	0
589	NA	49	NA	0
590	NA	49	NA	0
591	NA	1	NA	0
592	NA	169	NA	0
593	NA	0	NA	0
594	NA	0	NA	0
595	NA	144	NA	0
596	NA	0	NA	0
597	NA	25	NA	0
598	NA	2025	NA	0
599	NA	100	NA	0
600	NA	4	NA	0
601	NA	9	NA	0
602	NA	1	NA	0
603	NA	25	NA	0
604	NA	100	NA	0
605	NA	16	NA	0
606	NA	49	NA	0
607	NA	81	NA	0
608	NA	25	NA	0
609	NA	16	NA	0
610	NA	121	NA	0

611	NA	81	NA	0
612	NA	16	NA	0
613	NA	4	NA	0
614	NA	529	NA	0
615	NA	9	NA	0
616	NA	225	NA	0
617	NA	64	NA	0
618	NA	9	NA	0
619	NA	625	NA	0
620	NA	4	NA	0
621	NA	0	NA	0
622	NA	361	NA	0
623	NA	9	NA	0
624	NA	49	NA	0
625	NA	1	NA	0
626	NA	81	NA	0
627	NA	9	NA	0
628	NA	64	NA	0
629	NA	0	NA	0
630	NA	25	NA	0
631	NA	400	NA	0
632	NA	9	NA	0
633	NA	144	NA	0
634	NA	25	NA	0
635	NA	1	NA	0
636	NA	0	NA	0
637	NA	49	NA	0
638	NA	169	NA	0
639	NA	9	NA	0
640	NA	0	NA	0
641	NA	4	NA	0
642	NA	0	NA	0
643	NA	4	NA	0
644	NA	1	NA	0
645	NA	100	NA	0
646	NA	100	NA	0
647	NA	1	NA	0
648	NA	9	NA	0
649	NA	1024	NA	0
650	NA	0	NA	0
651	NA	49	NA	0
652	NA	25	NA	0
653	NA	4	NA	0

654	NA	25	NA	0
655	NA	9	NA	0
656	NA	625	NA	0
657	NA	0	NA	0
658	NA	9	NA	0
659	NA	100	NA	0
660	NA	100	NA	0
661	NA	49	NA	0
662	NA	25	NA	0
663	NA	225	NA	0
664	NA	1	NA	0
665	NA	25	NA	0
666	NA	81	NA	0
667	NA	324	NA	0
668	NA	1	NA	0
669	NA	0	NA	0
670	NA	36	NA	0
671	NA	1	NA	0
672	NA	4	NA	0
673	NA	225	NA	0
674	NA	625	NA	0
675	NA	1	NA	0
676	NA	0	NA	0
677	NA	0	NA	0
678	NA	0	NA	0
679	NA	64	NA	0
680	NA	484	NA	0
681	NA	25	NA	0
682	NA	100	NA	0
683	NA	1	NA	0
684	NA	1	NA	0
685	NA	36	NA	0
686	NA	16	NA	0
687	NA	36	NA	0
688	NA	0	NA	0
689	NA	1	NA	0
690	NA	9	NA	0
691	NA	225	NA	0
692	NA	1089	NA	0
693	NA	4	NA	0
694	NA	1	NA	0
695	NA	100	NA	0
696	NA	0	NA	0

		400	***	_
697	NA	196	NA	0
698	NA	225	NA	0
699	NA	225	NA	0
700	NA	100	NA	0
701	NA	36	NA	0
702	NA	324	NA	0
703	NA	225	NA	0
704	NA	900	NA	0
705	NA	225	NA	0
706	NA	100	NA	0
707	NA	0	NA	0
708	NA	0	NA	0
709	NA	16	NA	0
710	NA	0	NA	0
711	NA	9	NA	0
712	NA	400	NA	0
713	NA	9	NA	0
714	NA	1	NA	0
715	NA	25	NA	0
716	NA	49	NA	0
717	NA	36	NA	0
718	NA	4	NA	0
719	NA	0	NA	0
720	NA	100	NA	0
721	NA	36	NA	0
722	NA	16	NA	0
723	NA	64	NA	0
724	NA	324	NA	0
725	NA	49	NA	0
726	NA	225	NA	0
727	NA	49	NA	0
728	NA	64	NA	0
729	NA	64	NA	0
730	NA	9	NA	0
731	NA	100	NA	0
732	NA	81	NA	0
733	NA	576	NA	0
734	NA	144	NA	0
735	NA	4	NA	0
736	NA	36	NA	0
737	NA	324	NA	0
738	NA	289	NA	0
739	NA	49	NA	0
. 00	1411	10	1411	J

```
740
                        36
                                  NA
                                            0
               NA
741
               NA
                       100
                                  NA
                                            0
742
               NA
                        25
                                  NA
                                            0
743
               NA
                        49
                                  NA
                                            0
                       121
                                            0
744
               NA
                                  NA
                                            0
745
               NA
                       196
                                  NA
                                            0
746
               NA
                        25
                                  NA
747
               NA
                         4
                                  NA
                                            0
748
               NA
                        16
                                  NA
                                            0
749
               NA
                        25
                                  NA
                                            0
750
                                            0
               NA
                       196
                                  NA
751
               NA
                        16
                                  NA
                                            0
752
                       225
                                            0
               NA
                                  NA
753
                       144
                                            0
               NA
                                  NA
```

Una vez creadas las variables necesarias, se procede a generar dos subconjuntos de observaciones de forma aleatoria con el nombre **entrenamiento** y **prueba**

	inlf	hours	${\tt kidslt6}$	kidsge6	age	educ	wage	repwage	hushrs	husage	huseduc
1	1	1610	1	0	32	12	3.3540	2.65	2708	34	12
2	1	1656	0	2	30	12	1.3889	2.65	2310	30	9
3	1	1980	1	3	35	12	4.5455	4.04	3072	40	12
4	1	456	0	3	34	12	1.0965	3.25	1920	53	10
5	1	1568	1	2	31	14	4.5918	3.60	2000	32	12
6	1	2032	0	0	54	12	4.7421	4.70	1040	57	11
7	1	1440	0	2	37	16	8.3333	5.95	2670	37	12
8	1	1020	0	0	54	12	7.8431	9.98	4120	53	8
9	1	1458	0	2	48	12	2.1262	0.00	1995	52	4
10	1	1600	0	2	39	12	4.6875	4.15	2100	43	12
11	1	1969	0	1	33	12	4.0630	4.30	2450	34	12
12	1	1960	0	1	42	11	4.5918	4.58	2375	47	14
13	1	240	1	2	30	12	2.0833	0.00	2830	33	16
14	1	997	0	2	43	12	2.2668	3.50	3317	46	12
15	1	1848	0	1	43	10	3.6797	3.38	2024	45	17
16	1	1224	0	3	35	11	1.3472	0.00	1694	38	12

17	1	1400	0	2	43	12	3.2143	4.00	2156	45	12
18	1	640	0	5	39	12	5.1750	2.25	2250	40	12
19	1	2000	0	0	45	12	2.0000	2.30	2024	51	11
20	1	1324	0	4	35	12	7.5529	3.94	2123	40	10
21	1	2215	0	2	42	16	3.5052	3.30	4160	48	16
22	1	1680	0	0	30	12	3.5714	3.80	2000	35	12
23	1	1600	0	0	48	13	3.2500	3.26	2420	52	17
24	1	800	0	0	45	12	3.2500	2.20	1150	53	17
25	1	1955	1	1	31	12	2.1545	2.30	2024	31	12
26	1	660	0	2	43	17	3.7879	0.00	1904	43	17
27	1	525	0	0	59	12	4.0000	3.18	2448	53	16
28	1	1904	0	3	32	12	4.7269	6.07	2000	33	13
29	1	1516	1	0	31	17	7.2559	6.00	2390	30	17
30	1	346	0	0	42	12	5.8671	6.39	1920	47	10
31	1	1040	0	0	50	11	1.5385	0.00	1840	53	10
32	1	732	0	0	59	16	2.4590	2.50	3360	57	17
33	1	1880	0	2	36	13	5.8511	5.20	2284	35	13
34	1	1680	0	1	51	12	3.5714	3.29	1875	50	8
35	1	2081	0	3	45	16	3.8068	4.19	2140	47	17
36	1	690	0	1	42	11	2.4638	0.00	1896	44	8
37	1	4210	0	0	46	12	2.3753	4.63	1040	49	16
38	1	2205	0	1	46	10	4.5351	4.55	2200	52	12
39	1	1952	0	0	51	14	5.6183	5.60	1952	58	12
40	1	1302	0	0	30	17	14.6310	9.53	1560	30	17
41	1	112	1	2	30	12	2.6786	0.00	4030	33	16
42	1	893	0	0	57	12	3.9194	3.50	2570	58	12
43	1	583	1	2	31	16	2.5729	9.98	1530	34	16
44	1	480	0	2	48	12	4.5375	4.65	3149	48	8
45	1	1900	0	3	30	12	2.0000	2.23	2690	32	12
46	1	576	0	2	34	12	3.4722	3.84	3096	33	12
47	1	2056	0	2	48	16	2.0161	0.00	2552	53	16
48	1	1984	0	0	45	12	4.5716	4.82	2040	47	11
49	1	2640	0	0	51	12	2.2727	0.00	2180	50	13
50	1	240	0	2	30	12	2.6375	0.00	1864	37	12
51	1	1173	0	1	46	12	2.2899	2.50	2068	46	12
52	1	3640	0	0	58	12	1.0989	0.00	2010	58	12
53	1	340	0	8	37	12	1.1765	0.00	2152	40	10
54	1	500	0	0	52	8	1.6000	0.00	1496	54	11
55	1	1599	0	0	52	10	1.8762	2.80	2100	47	4
56	1	1830	0	0	31	16	4.0437	4.20	1960	35	14
57	1	1920	0	0	55	14	9.6354	8.75	1985	55	15
58	1	2052	0	0	34	17	8.0409	8.25	2020	33	17
59	1	2312	0	0	55	14	4.5990	5.58	2178	56	16

60	1	196	0	2	39	12	2.1429	2.50	3684	39	12
61	1	2500	0	3	40	14	4.4000	5.50	5010	42	13
62	1	1980	0	4	43	12	3.5354	3.75	1880	47	12
63	1	1840	0	0	48	8	2.7174	4.80	1904	56	8
64	1	320	0	0	47	12	6.2500	6.25	2083	47	12
65	1	419	0	4	41	12	11.9330	6.30	2125	44	12
66	1	1880	0	0	36	8	3.5931	3.75	1985	37	12
67	1	72	0	2	46	17	6.9444	0.00	2640	48	17
68	1	120	0	0	34	12	2.9167	0.00	2070	51	8
69	1	1885	0	3	41	12	3.0769	2.90	2107	48	8
70	1	240	0	1	51	12	3.7500	0.00	2250	54	10
71	1	1729	0	0	33	12	5.7259	4.76	2880	34	16
72	1	1850	0	0	52	12	3.6757	3.40	1848	53	12
73	1	2033	0	0	58	9	5.1648	4.32	1927	53	7
74	1	608	2	4	34	10	8.2237	3.00	1304	38	9
75	1	1153	0	1	31	12	4.3365	4.52	3000	35	12
76	1	2208	0	1	48	12	4.9819	5.31	1892	52	12
77	1	252	0	2	32	12	0.3571	0.00	3644	32	12
78	1	337	0	0	49	17	2.9674	0.00	1430	47	17
79	1	90	2	2	32	15	1.0000	0.00	2350	31	14
80	1	1174	0	0	58	12	2.5554	4.87	1948	59	16
81	1	372	0	0	50	6	0.8602	2.25	1804	42	12
82	1	30	0	0	60	14	1.0000	0.00	2326	51	12
83	1	1800	0	1	50	12	2.9261	0.00	1739	55	11
84	1	282	0	0	56	14	3.5461	2.50	1176	57	17
85	1	720	0	0	51	9	1.6264	2.20	1100	55	8
86	1	1440	0	1	54	17	8.3333	6.00	1528	58	17
87	1	2100	0	0	59	13	3.0952	2.95	2250	52	15
88	1	1000	0	2	46	9	2.7000	2.35	1927	47	10
89	1	952	0	1	46	15	5.2521	0.00	2414	47	16
90	1	1413	1	3	39	12	1.4154	2.20	768	49	8
91	1	2100	0	2	44	12	4.7986	4.85	1984	43	14
92	1	120	2	0	33	12	1.6667	2.37	2246	36	12
93	1	3000	1	2	33	12	1.1217	0.00	3024	30	17
94	1	1000	0	2	48	12	0.5000	0.00	2921	52	12
95	1	336	0	4	31	12	0.7143	0.00	2045	37	17
96	1	1216	0	1	45	12	2.7961	2.90	1928	44	12
97	1	988	0	1	45	12	4.8583	4.50	1920	44	10
98	1	2581	0	2	32	13	1.7435	2.60	2280	37	17
99	1	2030	0	0	47	12	2.4631	2.80	2300	47	17
100	1	413	0	2	34	13	2.4213	3.00	2480	35	13
101	1	782	0	1	37	12	1.5345	2.30	1135	34	10
102	1	1388	0	1	36	12	2.8818	1.87	1384	39	12

103	1	1450	1	2	47	12	2.4069	3.00	1848	50	14
104	1	1720	0	1	48	16	5.2326	4.68	2499	46	17
105	1	800	0	2	42	12	3.7500	2.50	2390	43	12
106	1	360	0	3	33	13	1.3889	0.00	2400	44	14
107	1	2000	0	0	46	11	4.0000	4.61	1920	53	8
108	1	1176	0	3	47	12	3.2313	3.35	2301	48	13
109	1	2058	0	1	44	12	3.4014	3.80	1944	43	10
110	1	900	0	4	36	12	1.3333	2.20	2100	37	17
111	1	215	2	0	31	17	9.3023	9.98	1920	32	16
112	1	2000	0	0	55	14	4.5000	4.37	2880	55	14
113	1	757	0	1	45	16	4.6235	4.50	1932	48	16
114	1	1264	0	0	47	17	3.9557	0.00	3234	48	17
115	1	2064	0	3	46	12	5.8140	6.00	2805	47	12
116	1	1280	0	0	49	11	0.5000	0.00	2272	52	9
117	1	1715	0	0	49	12	4.0816	3.75	2227	52	14
118	1	2000	0	2	45	12	6.0000	4.95	1720	49	6
119	1	12	1	3	38	17	3.6667	0.00	2300	38	13
120	1	1528	0	0	47	10	3.8613	2.95	3410	50	12
121	1	561	0	3	54	13	2.7629	2.53	2304	57	16
122	1	2058	0	0	41	11	2.9310	2.90	1984	42	12
123	1	1823	0	2	43	12	4.3884	4.20	1890	33	14
124	1	1680	1	1	31	16	5.4167	4.70	1970	32	12
125	1	1440	0	0	47	17	9.8611	7.10	2400	46	12
126	1	4950	0	2	35	12	0.1616	2.75	2504	37	12
127	1	1176	0	3	45	16	0.3826	3.75	2398	48	17
128	1	1100	1	0	33	12	3.6364	3.58	1960	39	12
129	1	1516	0	1	54	16	2.3747	2.40	2550	55	12
130	1	900	0	4	35	8	4.6667	3.95	2500	41	12
131	1	1080	1	2	31	12	1.8519	2.25	2164	37	10
132	1	480	0	0	55	12	5.2000	0.00	2640	60	12
133	1	288	0	2	34	12	3.2986	4.62	1936	36	12
134	1	1875	0	1	38	13	8.5333	8.50	2136	41	12
135	1	630	0	1	45	11	2.0635	0.00	1955	51	10
136	1	234	0	1	47	12	2.5641	2.50	1980	48	10
137	1	1600	0	2	39	12	2.1875	0.00	2550	42	11
138	1	960	1	0	36	14	6.2500	0.00	2058	37	13
139	1	120	1	2	33	12	3.3333	0.00	2263	32	14
140	1	2025	0	0	50	12	4.4444	4.80	1763	54	13
141	1	1809	0	0	58	12	6.6335	6.45	2096	59	14
142	1	3087	0	0	49	17	8.4224	9.98	2059	47	13
143	1	910	0	2	41	14	4.3956	0.00	1820	40	17
144	1	1840	0	1	51	12	2.4457	2.50	2832	53	8
145	1	784	0	0	53	9	1.2245	2.25	1990	60	10

146	1	400	1	2	36	12	1.6250	0.00	2000	40	7
147	1	1000	0	2	46	12	3.0000	5.50	1885	46	12
148	1	1904	0	2	36	12	4.7269	4.20	2860	37	12
149	1	1771	0	1	53	14	1.1293	9.98	1913	48	16
150	1	1486	0	3	40	16	7.4024	6.25	1800	54	16
151	1	740	0	2	42	17	4.4595	1.65	2880	45	16
152	1	1820	1	1	33	15	2.4725	0.00	1993	32	16
153	1	1275	0	3	43	12	1.8824	3.00	2250	47	14
154	1	450	1	0	31	16	4.0000	4.00	2286	30	16
155	1	1221	0	0	47	17	8.1900	5.99	1880	47	16
156	1	1550	0	0	54	17	7.0968	6.00	2350	58	17
157	1	180	1	3	33	12	1.6667	0.00	3640	33	11
158	1	2090	0	0	43	16	3.4450	3.85	1770	47	14
159	1	1960	0	1	46	13	4.2347	4.20	1875	49	13
160	1	1440	0	3	35	12	2.7778	4.10	2200	38	9
161	1	794	0	3	37	11	1.8892	3.85	2033	39	12
162	1	993	0	2	37	16	5.0352	8.30	2739	39	17
163	1	160	0	3	34	14	1.2500	0.00	1626	38	14
164	1	105	1	0	43	16	2.8571	0.00	2248	44	17
165	1	1200	0	0	46	12	4.1167	4.33	2140	48	12
166	1	450	0	3	35	9	1.7778	2.60	1985	42	12
167	1	996	0	0	46	17	13.5540	9.98	1528	59	17
168	1	1052	0	0	46	14	4.5627	4.90	1920	48	16
169	1	1128	0	2	43	12	2.1277	2.40	1918	46	10
170	1	1840	0	0	30	12	2.9891	3.75	2112	30	12
171	1	1910	0	2	41	11	2.5654	2.57	2144	46	9
172	1	980	0	1	54	12	5.6122	5.00	1920	54	15
173	1	2317	0	1	31	12	2.8054	3.87	2241	41	9
174	1	1089	0	0	44	10	1.6070	0.00	880	47	11
175	1	800	0	1	32	12	2.2500	0.00	2070	31	16
176	1	1230	0	0	47	5	2.0325	2.82	1050	53	5
177	1	1158	0	1	46	17	5.5320	8.10	2635	57	17
178	1	2272	0	0	37	11	1.5845	3.71	3000	47	8
179	1	528	0	2	51	12	3.7879	0.00	2500	50	11
180	1	1000	0	1	49	12	3.0000	0.00	1990	49	12
181	1	520	0	4	36	14	8.6538	0.00	2390	37	13
182	1	760	0	1	39	11	4.2105	3.95	1430	44	12
183	1	1920	0	2	48	12	4.6875	4.30	1800	50	8
184	1	1220	0	2	38	14	4.0984	4.84	2103	43	17
185	1	200	0	2	40	12	25.0000	3.00	1350	42	12
186	1	2480	1	5	39	10	2.6331	4.20	2880	36	17
187	1	2750	0	0	37	16	6.0000	9.00	2400	43	17
188	1	2014	0	1	49	13	5.4126	4.05	1135	47	12

189	1	1355	0	3	33	12	0.6642	1.00	2750	35	17
190	1	80	0	0	30	12	1.2500	0.00	2085	32	16
191	1	1670	0	0	54	12	2.2754	2.10	2600	56	8
192	1	520	0	4	39	11	3.4615	3.05	3542	40	12
193	1	288	0	3	43	12	4.1667	3.00	1975	43	12
194	1	2014	0	3	31	9	4.4687	4.26	2400	32	12
195	1	800	0	3	33	13	1.7500	0.00	3000	37	14
196	1	1984	0	3	40	12	3.6694	4.25	1960	39	14
197	1	1823	0	1	36	12	6.5826	6.00	2000	39	9
198	1	1500	0	0	51	12	2.6000	2.00	3000	51	12
199	1	2261	0	1	44	13	4.8651	5.50	2400	43	12
200	1	1728	0	3	42	16	5.7870	6.25	2450	48	14
201	1	1960	0	1	40	12	4.5408	5.00	2423	40	8
202	1	1578	1	1	34	16	9.5057	7.72	2000	33	16
203	1	1316	0	0	30	17	10.6380	7.00	2526	41	16
204	1	1530	0	0	54	12	1.1111	1.13	2695	53	12
205	1	2220	0	0	51	12	4.0541	4.37	2048	54	12
206	1	1336	0	2	44	9	2.6871	2.64	1920	46	11
207	1	1008	0	1	43	12	2.9762	2.50	2338	42	9
208	1	1944	0	1	34	12	3.1728	3.23	2945	37	8
209	1	2000	0	0	45	13	3.5500	3.45	2047	52	12
210	1	258	0	0	39	12	17.9070	0.00	1668	47	7
211	1	1785	0	0	50	12	3.4174	5.75	175	48	10
212	1	480	0	0	52	12	3.3333	0.00	1798	53	12
213	1	772	0	2	41	12	3.8860	7.50	1222	45	12
214	1	900	0	0	59	10	2.3111	2.22	1820	59	7
215	1	1428	0	0	52	12	1.7108	2.50	1560	60	8
216	1	210	0	0	46	16	2.1143	4.00	2210	49	12
217	1	239	1	5	41	12	9.9331	4.50	2874	48	16
218	1	1878	0	2	33	11	3.0277	3.50	2499	35	8
219	1	215	0	0	45	12	1.8605	2.30	3088	38	12
220	1	2340	1	2	36	10	0.1282	0.00	2020	37	8
221	1	1960	0	1	48	12	6.6327	6.30	1980	56	10
222	1	532	0	1	47	12	5.6391	3.60	1968	47	11
223	1	394	0	0	45	12	1.5990	2.50	2100	45	12
224	1	675	0	2	37	12	2.6667	3.00	2651	48	17
225	1	1515	0	4	46	16	7.9208	6.80	1918	49	14
226	1	1030	0	3	43	17	5.3398	5.80	2585	46	16
227	1	1250	0	2	42	12	4.0000	4.00	2250	46	17
228	1	1158	1	2	34	17	6.0449	5.10	2480	39	17
229	1	112	0	0	52	12	6.2500	0.00	2924	53	12
230	1	336	0	3	37	12	2.9762	2.20	1896	52	9
231	1	1984	0	1	37	12	4.2339	4.78	2332	40	12

232	1	716	0	0	52	0	2 4016	2 20	3482	ΕO	-
			O	U	52	8	3.4916	2.20	3402	59	7
233	1	1410	1	0	30	12	4.9645	1.28	2106	30	14
234	1	1300	0	1	31	13	2.7692	0.00	1160	32	12
235	1	1640	0	1	38	12	3.6585	3.25	2040	46	12
236	1	1202	0	3	43	12	5.3935	0.00	2856	48	16
237	1	489	0	1	49	8	0.6564	2.29	950	51	8
238	1	2076	0	0	55	12	4.7688	4.68	2068	58	10
239	1	526	0	2	38	17	8.5551	4.20	1896	42	17
240	1	1721	0	0	52	17	10.4590	9.50	2000	56	16
241	1	1327	0	0	48	12	2.6375	2.57	288	51	11
242	1	584	0	2	32	13	6.8493	4.32	2160	33	12
243	1	1376	0	1	32	12	5.0872	5.00	3120	33	17
244	1	1040	0	2	38	12	0.9615	0.00	1944	41	17
245	1	548	0	3	46	12	4.3066	3.69	2046	47	12
246	1	15	0	3	40	12	7.0667	0.00	2005	42	9
247	1	1980	0	4	31	9	2.5253	2.56	2070	36	10
248	1	1520	0	1	43	10	7.8947	5.00	3000	50	12
249	1	1880	0	0	51	12	4.1489	3.90	2640	51	12
250	1	1260	1	0	30	16	8.1746	8.17	2450	34	17
251	1	1092	0	0	52	13	9.5971	0.00	1000	53	15
252	1	1587	1	5	30	8	2.0164	2.30	2080	33	8
253	1	156	0	0	51	16	7.6218	0.00	2413	51	16
254	1	1939	0	2	31	13	3.1975	3.43	2570	31	12
255	1	1250	0	4	34	12	1.6000	1.36	2030	52	12
256	1	610	0	0	49	11	4.0984	4.00	4684	59	17
257	1	270	1	3	35	13	1.4815	5.00	2802	41	17
258	1	660	1	0	53	12	3.6364	3.15	2090	59	12
259	1	1000	0	3	32	12	1.0000	0.00	2053	46	16
260	1	1920	0	3	38	10	2.6042	2.93	1984	42	10
261	1	200	0	0	54	12	1.7500	0.00	2040	54	16
262	1	1500	0	1	47	17	4.8000	3.60	2794	58	8
263	1	868	0	1	45	15	5.5300	6.00	3290	47	14
264	1	2318	0	1	47	16	4.0984	4.20	1911	46	16
265	1	2000	0	0	59	10	1.2500	0.00	2000	60	12
266	1	60	0	1	32	11	1.6667	0.00	2580	31	12
267	1	1715	0	1	45	12	3.7901	3.38	2400	49	17
268	1	550	0	4	40	12	2.3636	2.26	1740	47	12
269	1	1960	0	2	47	14	10.2040	0.00	2500	50	12
270	1	44	1	2	36	16	6.8182	1.36	1840	37	17
271	1	1920	0	0	56	14	7.2146	6.92	2036	56	14
272	1	2540	0	1	41	8	2.4484	0.00	3536	43	11
273	1	156	0	3	48	7	1.1987	0.00	880	51	11
274	1	780	1	2	36	12	1.6410	0.00	2007	38	12

275	1	3120	0	0	41	12	1.7821	0.00	2632	44	13
276	1	2040	0	0	41	14	2.9412	2.80	2600	43	12
277	1	1610	0	3	36	12	4.9689	4.25	2156	36	13
278	1	215	0	3	37	12	1.8605	0.00	3625	41	12
279	1	1120	0	0	38	12	8.0357	0.00	2420	42	12
280	1	846	0	2	43	14	3.9716	4.20	2080	43	9
281	1	3225	0	0	54	16	3.0416	0.00	3443	59	17
282	1	1376	0	1	38	12	2.9070	3.75	2250	41	12
283	1	980	1	0	30	12	3.0612	3.60	2535	34	16
284	1	1838	0	0	49	12	4.8966	5.00	2352	48	15
285	1	1494	0	1	45	13	4.0161	2.50	3036	49	6
286	1	450	0	0	51	13	5.5556	3.50	2600	57	14
287	1	1976	0	0	34	10	1.2227	2.45	2223	39	7
288	1	2012	0	2	34	12	2.6839	3.61	2666	34	10
289	1	561	0	1	41	12	2.6738	3.25	2006	41	17
290	1	1715	0	1	49	12	9.3294	7.05	1710	49	17
291	1	1912	0	0	32	12	3.1381	3.60	1920	46	14
292	1	3686	0	0	32	14	0.5426	0.00	1647	39	14
293	1	1080	0	2	32	17	8.6111	4.65	3080	35	15
294	1	1799	0	0	47	10	3.6687	3.25	1920	48	10
295	1	1984	0	1	39	9	2.3185	2.30	2420	47	4
296	1	1839	0	0	49	12	2.8820	3.27	2205	53	15
297	1	1579	0	3	37	12	3.1666	0.00	3035	39	14
298	1	96	0	0	59	16	3.6458	0.00	2185	60	15
299	1	1920	0	0	50	12	6.2500	5.47	1880	56	12
300	1	1688	0	1	32	17	10.2490	9.80	1863	33	17
301	1	1589	0	0	46	12	3.2096	5.54	2456	48	16
302	1	345	0	2	43	17	7.6522	5.00	1847	46	17
303	1	1521	0	3	37	11	1.9724	2.30	2000	42	6
304	1	1490	0	2	32	16	4.6980	3.90	1856	35	14
305	1	989	0	1	39	11	2.1234	2.76	1880	43	14
306	1	600	0	2	34	13	2.3333	2.90	3020	35	12
307	1	2646	0	1	39	11	2.3896	0.00	2646	41	8
308	1	2149	0	3	45	8	1.2564	2.50	1640	48	9
309	1	320	0	0	50	11	1.0938	0.00	1950	54	11
310	1	1600	0	1	40	12	3.7500	3.30	1920	39	12
311	1	2419	0	1	30	10	3.3072	3.90	2025	34	12
312	1	2005	0	0	57	17	5.1352	5.25	2470	56	17
313	1	1960	0	1	39	12	6.6327	3.60	1800	43	12
314	1	2147	0	0	53	12	4.5645	4.90	1920	56	8
315	1	1207	0	1	48	17	11.8480	7.15	2039	53	17
316	1	2000	0	1	46	14	3.7500	3.75	2570	48	16
317	1	1260	0	0	47	12	4.3651	4.35	1914	54	12

318	1	90	0	1	43	12	3.9333	4.00	1516	47	10
319	1	1800	0	0	47	12	3.3333	3.25	2520	47	16
320	1	573	0	1	47	12	3.3159	2.20	2327	48	12
321	1	1825	0	0	47	12	3.5616	3.00	2188	50	12
322	1	75	0	0	46	12	1.6000	0.00	1864	48	12
323	1	1348	0	4	34	9	2.2255	2.30	2183	33	10
324	1	1880	0	0	48	10	4.7872	4.25	1920	55	12
325	1	1240	0	1	30	12	5.8065	6.90	1824	31	12
326	1	848	0	1	51	12	2.3585	2.30	2878	54	12
327	1	150	0	5	52	12	2.0000	0.00	2390	54	16
328	1	2000	0	2	37	12	1.9000	1.85	3120	39	13
329	1	1952	0	2	32	12	5.1230	3.25	2040	33	12
330	1	1456	0	2	36	17	5.4945	6.04	2151	35	15
331	1	1740	0	2	35	12	6.3218	5.50	1976	37	14
332	1	1400	0	0	45	17	7.1429	7.14	2286	51	16
333	1	2000	0	0	56	12	2.3750	2.70	2032	60	10
334	1	1750	0	2	40	10	2.5429	2.74	1680	45	4
335	1	1101	1	2	45	12	2.1798	2.30	1560	49	14
336	1	2000	0	2	32	12	2.6000	2.50	2895	30	12
337	1	1877	0	0	45	12	3.7294	3.60	1820	50	8
338	1	160	0	2	40	12	4.3750	1.85	2450	44	12
339	1	1886	0	1	38	12	4.4433	4.00	1748	42	8
340	1	1446	0	4	49	12	4.2877	4.40	1020	45	12
341	1	1500	0	1	47	16	1.6667	1.50	2342	49	17
342	1	860	0	0	52	13	3.2558	5.83	2250	53	12
343	1	1848	0	1	34	13	5.4113	6.00	2880	40	16
344	1	1678	0	2	44	12	2.2050	2.30	2032	46	12
345	1	160	0	3	36	16	4.0625	0.00	3120	42	16
346	1	108	0	0	50	17	0.6482	0.00	1760	57	16
347	1	1738	0	0	45	12	5.3826	6.18	1725	47	12
348	1	1170	0	2	44	14	0.1709	0.00	2080	46	13
349	1	15	0	2	57	12	23.4670	0.00	2040	57	10
350	1	2088	0	0	35	17	9.5785	9.98	2940	42	17
351	1	2490	0	0	46	12	3.6948	3.77	2280	52	12
352	1	135	2	1	30	14	2.2222	0.00	2164	35	16
353	1	1944	0	3	42	12	1.7490	2.30	1999	44	12
354	1	690	0	1	34	12	1.1594	2.25	1824	36	13
355	1	608	0	2	45	17	6.9901	3.00	2182	47	16
356	1	63	1	2	35	16	3.9683	0.00	2385	37	16
357	1	154	0	0	40	16	21.4290	8.13	2460	44	17
358	1	420	0	1	32	12	0.4762	2.85	2595	35	16
359	1	651	0	0	54	9	2.1505	1.44	2400	57	10
360	1	675	0	3	38	12	1.8578	2.20	3120	42	8

361	1	1663	0	3	43	12	4.3295	3.60	2850	42	12
362	1	1680	0	0	54	16	8.9286	7.00	760	60	12
363	1	180	0	3	39	14	2.7778	4.00	2500	37	17
364	1	1581	0	1	37	12	2.6565	3.25	2630	39	14
365	1	1200	0	2	46	12	2.5000	3.08	2597	48	8
366	1	450	0	0	56	11	18.2670	0.00	2760	60	11
367	1	547	0	3	41	12	0.8190	2.00	2070	44	8
368	1	300	0	1	45	16	2.0000	0.00	2256	48	16
369	1	975	0	1	44	17	15.3850	8.50	1505	47	16
370	1	1621	0	1	50	17	6.4775	0.00	2364	52	17
371	1	300	0	5	37	14	8.3333	3.50	2895	38	14
372	1	1868	0	1	44	12	4.5503	4.25	2041	46	12
373	1	1803	0	2	32	14	2.4958	1.90	2195	34	17
374	1	2143	1	1	34	12	4.4797	4.80	1935	40	12
375	1	1080	0	2	32	10	2.2324	2.30	1950	35	10
376	1	1352	0	3	37	12	2.0710	1.80	2375	38	14
377	1	537	0	1	44	13	1.6760	0.00	1920	55	8
378	1	352	0	2	34	16	3.4091	0.00	3300	33	12
379	1	200	1	3	33	12	2.5000	8.00	3680	33	16
380	1	2045	0	3	43	7	3.9609	4.07	1968	43	12
381	1	1253	0	2	35	16	6.2275	3.97	2504	33	10
382	1	1960	0	1	43	14	3.9286	3.85	2000	45	14
383	1	2000	0	0	34	12	2.9000	2.50	1656	37	12
384	1	1960	0	3	36	10	4.0816	4.55	1968	39	7
385	1	2000	0	2	41	12	2.8500	4.20	2016	41	12
386	1	1568	0	0	41	16	7.0153	6.31	2602	44	17
387	1	1225	0	3	35	10	2.9388	2.40	1560	43	9
388	1	780	1	3	32	12	1.9231	3.25	1827	37	10
389	1	480	0	0	30	14	6.8750	0.00	2080	34	14
390	1	1923	0	0	43	12	3.9002	4.74	3390	47	12
391	1	2000	0	0	54	6	2.0000	0.00	2524	57	6
392	1	2110	0	2	35	15	4.9763	4.37	2777	34	12
393	1	1664	0	0	50	12	1.2019	5.00	3120	54	13
394	1	48	1	1	34	17	22.5000	0.00	2700	36	17
395	1	1791	0	0	52	14	6.8677	6.18	1904	57	12
396	1	1404	0	3	35	13	3.5613	5.30	2360	38	14
397	1	1920	0	0	55	6	1.9792	2.58	1960	58	8
398	1	2141	0	0	35	16	5.3713	6.00	2000	42	16
399	1	1720	0	1	49	14	1.7442	0.00	2600	45	16
400	1	3533	2	2	38	15	5.0948	8.50	2000	38	9
401	1	2000	0	2	42	14	2.5000	0.00	2218	45	14
402	1	800	0	1	48	8	3.8250	2.30	2000	52	5
403	1	3000	0	0	51	14	1.0000	0.00	2595	53	16

404	1	293	0	2	43	12	3.0717	4.00	2400	47	12
405	1	1872	0	1	43	12	1.7163	0.00	2856	48	12
406	1	2058	0	1	38	12	4.0209	4.00	2601	38	14
407	1	1832	0	1	44	12	5.4585	4.95	2054	48	9
408	1	120	1	3	36	12	25.0000	9.98	2500	35	12
409	1	1632	0	0	38	12	2.3897	2.30	1960	31	12
410	1	778	0	0	47	8	3.2134	7.25	2058	51	8
411	1	1984	0	2	34	12	3.3770	3.14	2410	49	10
412	1	225	1	2	40	17	1.7778	0.00	1278	38	17
413	1	1960	0	1	31	12	3.1633	3.18	2875	35	12
414	1	444	0	0	46	12	2.7027	0.00	2340	49	12
415	1	384	0	3	36	14	1.6927	0.00	3060	43	17
416	1	1170	1	2	39	13	0.2137	0.00	1920	47	12
417	1	1330	0	2	36	17	6.7669	4.50	3390	38	12
418	1	1350	0	4	37	8	1.7407	2.10	2400	41	12
419	1	480	0	4	39	12	2.5000	0.00	1640	40	11
420	1	1984	1	3	36	11	4.4859	3.26	1656	38	8
421	1	1944	0	2	49	12	2.5720	2.70	1920	53	16
422	1	50	1	1	45	12	3.4600	5.00	1780	46	10
423	1	460	2	0	32	17	4.7826	0.00	1850	31	17
424	1	680	0	5	36	10	2.3118	0.00	3430	43	12
425	1	2450	0	1	40	12	5.3061	6.50	2008	40	8
426	1	2144	0	2	43	13	5.8675	0.00	2140	43	11
427	1	1760	0	1	33	12	3.4091	3.21	3380	34	12
428	1	490	0	1	30	12	4.0816	2.46	2430	33	11
429	0	0	0	1	49	12	NA	0.00	2550	54	15
430	0	0	2	0	30	16	NA	0.00	1928	34	16
431	0	0	1	0	30	12	NA	0.00	1100	39	17
432	0	0	0	4	41	12	NA	0.00	3193	40	16
433	0	0	0	1	45	12	NA	0.00	2250	46	16
434	0	0	0	5	43	12	NA	0.00	2012	44	13
435	0	0	0	1	42	13	NA	0.00	3856	46	15
436	0	0	0	0	60	12	NA	0.00	1645	58	12
437	0	0	0	0	57	12	NA	0.00	1554	57	12
438	0	0	0	2	38	10	NA	0.00	2352	41	8
439	0	0	0	0	56	12	NA	0.00	1980	58	12
440	0	0	0	3	32	12	NA	0.00	2352	37	7
441	0	0	0	1	49	7	NA	0.00	1784	58	6
442	0	0	0	0	55	12	NA	0.00	2500	58	12
443	0	0	1	1	36	9	NA	0.00	2088	39	14
444	0	0	0	3	44	12	NA	0.00	4640	50	12
445	0	0	0	1	44	10	NA	0.00	3900	60	12
446	0	0	1	2	35	14	NA	0.00	1988	34	17

447	0	0	2	3	44	14	NA	0.00	1920	45	10
448	0	0	0	1	45	12	NA	0.00	2400	45	12
449	0	0	1	0	34	12	NA	0.00	1867	38	12
450	0	0	2	0	30	17	NA	0.00	3570	32	17
451	0	0	0	1	39	8	NA	0.00	2805	44	12
452	0	0	0	2	36	12	NA	0.00	1110	39	15
453	0	0	0	2	38	17	NA	0.00	2695	42	16
454	0	0	0	0	53	12	NA	0.00	1950	54	16
455	0	0	0	2	36	12	NA	0.00	2128	42	12
456	0	0	1	1	32	12	NA	0.00	3260	31	12
457	0	0	0	3	51	9	NA	0.00	1987	51	12
458	0	0	0	0	38	11	NA	0.00	2185	46	11
459	0	0	2	0	33	12	NA	0.00	2475	36	12
460	0	0	0	0	54	12	NA	0.00	2610	53	12
461	0	0	0	3	38	9	NA	0.00	1920	44	12
462	0	0	2	2	30	11	NA	0.00	2352	31	14
463	0	0	2	3	34	12	NA	0.00	3160	30	12
464	0	0	0	1	34	9	NA	0.00	1040	37	13
465	0	0	0	2	50	12	NA	0.00	3120	49	12
466	0	0	2	0	30	17	NA	0.00	2240	30	16
467	0	0	0	2	38	12	NA	0.00	1980	42	16
468	0	0	0	0	54	14	NA	0.00	1960	58	14
469	0	0	1	2	30	12	NA	3.00	2940	31	17
470	0	0	0	0	55	12	NA	0.00	2467	56	11
471	0	0	0	1	51	10	NA	0.00	2256	56	12
472	0	0	0	1	44	12	NA	0.00	1680	46	12
473	0	0	0	0	53	12	NA	0.00	2250	55	12
474	0	0	0	2	42	10	NA	0.00	2400	49	9
475	0	0	0	2	38	12	NA	0.00	2196	42	11
476	0	0	1	3	38	13	NA	0.00	2400	40	12
477	0	0	1	4	41	12	NA	0.00	3825	41	11
478	0	0	0	3	35	8	NA	0.00	2860	44	9
479	0	0	1	2	33	12	NA	2.75	2750	34	12
480	0	0	0	0	48	13	NA	0.00	2103	50	16
481	0	0	0	0	47	12	NA	0.00	1880	51	12
482	0	0	0	5	34	12	NA	0.00	3185	41	13
483	0	0	2	1	33	13	NA	0.00	2677	37	17
484	0	0	3	1	31	13	NA	0.00	3600	36	17
485	0	0	0	0	58	8	NA	0.00	4334	58	8
486	0	0	0	0	49	12	NA	0.00	2874	52	8
487	0	0	0	1	55	8	NA	0.00	1936	56	9
488	0	0	0	0	44	14	NA	1.50	1964	49	8
489	0	0	0	0	44	9	NA	0.00	1900	48	8

490	0	0	0	3	36	16	NA	0.00	2500	37	17
491	0	0	0	3	38	12	NA	0.00	3173	46	14
492	0	0	0	3	37	16	NA	0.00	2916	38	17
493	0	0	0	0	47	12	NA	0.00	2208	51	12
494	0	0	0	3	47	12	NA	0.00	2094	47	10
495	0	0	1	1	32	12	NA	0.00	2250	33	12
496	0	0	1	2	43	12	NA	0.00	2000	46	12
497	0	0	1	4	42	11	NA	0.00	2600	48	10
498	0	0	0	0	56	12	NA	0.00	4368	57	8
499	0	0	0	5	38	13	NA	2.25	3068	40	16
500	0	0	0	2	52	12	NA	0.00	2218	51	11
501	0	0	0	0	50	12	NA	0.00	1848	56	12
502	0	0	0	0	33	16	NA	0.00	2430	33	17
503	0	0	0	2	44	16	NA	0.00	2640	44	17
504	0	0	0	1	41	12	NA	0.00	2108	42	16
505	0	0	0	1	45	12	NA	0.00	1998	45	12
506	0	0	0	0	53	14	NA	0.00	2500	55	16
507	0	0	0	0	53	14	NA	0.00	1665	56	17
508	0	0	0	1	42	12	NA	0.00	2990	46	12
509	0	0	2	0	32	13	NA	0.00	1795	35	16
510	0	0	0	0	56	12	NA	0.00	2500	53	12
511	0	0	1	3	37	11	NA	0.00	2205	40	11
512	0	0	1	2	40	12	NA	0.00	2460	42	14
513	0	0	0	3	54	15	NA	0.00	1880	55	16
514	0	0	0	0	53	7	NA	0.00	3481	53	9
515	0	0	0	1	48	12	NA	0.00	2450	51	12
516	0	0	1	2	36	12	NA	0.00	2062	38	14
517	0	0	0	0	57	12	NA	0.00	2146	52	14
518	0	0	0	0	51	12	NA	0.00	1575	49	7
519	0	0	0	4	33	13	NA	0.00	3096	37	12
520	0	0	0	0	52	12	NA	0.00	3280	49	11
521	0	0	0	0	56	10	NA	0.00	1680	60	8
522	0	0	1	2	36	12	NA	0.00	2625	38	11
523	0	0	1	0	36	14	NA	0.00	1846	50	16
524	0	0	0	1	46	12	NA	0.00	2178	47	10
525	0	0	0	3	31	10	NA	0.00	960	33	9
526	0	0	0	0	52	11	NA	0.00	2210	51	12
527	0	0	0	2	46	12	NA	0.00	2192	55	12
528	0	0	2	0	35	12	NA	0.00	1960	44	16
529	0	0	0	0	59	12	NA	0.00	1920	56	10
530	0	0	0	1	36	8	NA	0.00	2286	40	12
531	0	0	1	3	51	7	NA	0.00	2000	52	7
532	0	0	1	0	31	16	NA	0.00	2256	31	12

533	0	0	0	2	31	14	NA	0.00	2370	36	17
534	0	0	1	1	32	12	NA	0.00	1800	39	13
535	0	0	1	2	35	16	NA	0.00	2250	38	16
536	0	0	0	3	40	12	NA	4.10	1080	43	12
537	0	0	1	2	33	10	NA	0.00	2840	38	12
538	0	0	0	0	54	7	NA	0.00	2250	52	11
539	0	0	1	1	36	12	NA	0.00	2746	37	12
540	0	0	0	1	50	10	NA	0.00	2300	60	8
541	0	0	0	0	54	8	NA	0.00	2860	49	8
542	0	0	0	1	48	11	NA	0.00	1765	49	12
543	0	0	0	4	41	15	NA	0.00	2520	42	16
544	0	0	0	4	50	12	NA	0.00	2208	53	12
545	0	0	0	2	46	12	NA	0.00	2119	51	8
546	0	0	0	1	42	13	NA	0.00	2580	47	17
547	0	0	1	2	31	9	NA	0.00	1984	34	12
548	0	0	0	0	53	12	NA	0.00	1880	58	8
549	0	0	0	1	51	12	NA	0.00	2185	57	12
550	0	0	0	1	47	12	NA	0.00	2080	57	12
551	0	0	0	1	50	12	NA	0.00	1920	50	12
552	0	0	0	1	37	6	NA	0.00	3000	52	5
553	0	0	2	2	30	12	NA	0.00	2100	31	12
554	0	0	0	0	49	12	NA	0.00	1690	39	12
555	0	0	0	2	52	12	NA	0.00	2600	49	16
556	0	0	0	2	47	12	NA	0.00	1984	49	16
557	0	0	0	0	49	12	NA	0.00	2064	53	12
558	0	0	0	4	44	12	NA	0.00	2553	31	16
559	0	0	0	0	53	8	NA	0.00	2776	59	9
560	0	0	1	0	30	12	NA	0.00	2315	31	13
561	0	0	0	2	54	12	NA	0.00	1880	55	12
562	0	0	1	1	47	7	NA	0.00	2160	51	7
563	0	0	0	0	56	15	NA	0.00	900	56	12
564	0	0	0	1	49	12	NA	0.00	2467	52	16
565	0	0	0	0	48	6	NA	0.00	1820	55	12
566	0	0	0	1	49	12	NA	0.00	2223	53	10
567	0	0	0	1	56	12	NA	0.00	2142	60	12
568	0	0	0	0	46	12	NA	0.00	1928	46	11
569	0	0	0	2	45	12	NA	0.00	2783	49	17
570	0	0	0	2	32	12	NA	0.00	1960	35	12
571	0	0	1	1	43	12	NA	2.70	1920	41	12
572	0	0	1	1	34	12	NA	0.00	1587	39	12
573	0	0	1	1	30	12	NA	0.00	2496	51	10
574	0	0	2	0	38	17	NA	4.80	2280	39	12
575	0	0	1	1	33	16	NA	0.00	2750	36	17

576	0	0	0	0	52	12	NA	0.00	2115	55	12
577	0	0	0	3	43	11	NA	0.00	2590	45	12
578	0	0	1	1	33	12	NA	0.00	2372	34	12
579	0	0	0	0	45	10	NA	0.00	2295	48	12
580	0	0	2	1	36	10	NA	0.00	2096	38	12
581	0	0	1	1	34	12	NA	0.00	3315	39	17
582	0	0	0	2	37	14	NA	0.00	1777	50	16
583	0	0	0	1	46	10	NA	0.00	1880	51	12
584	0	0	0	0	47	12	NA	0.00	2184	55	10
585	0	0	2	1	31	16	NA	0.00	3250	32	16
586	0	0	0	0	57	5	NA	0.00	1520	58	5
587	0	0	1	1	30	12	NA	0.00	3119	30	13
588	0	0	0	0	30	12	NA	0.00	640	43	17
589	0	0	0	3	44	12	NA	0.00	2250	45	12
590	0	0	0	0	53	13	NA	0.00	3000	53	13
591	0	0	0	0	51	8	NA	0.00	2028	54	8
592	0	0	1	3	39	12	NA	0.00	2412	36	14
593	0	0	0	0	52	8	NA	0.00	2452	54	12
594	0	0	0	4	46	8	NA	0.00	2304	50	12
595	0	0	0	5	47	12	NA	0.00	3120	49	12
596	0	0	0	2	52	8	NA	0.00	1670	54	8
597	0	0	0	2	45	12	NA	0.00	2137	46	15
598	0	0	0	0	60	11	NA	0.00	2071	52	11
599	0	0	0	2	41	13	NA	0.00	1960	54	7
600	0	0	0	3	39	8	NA	0.00	2068	45	12
601	0	0	0	1	49	12	NA	0.00	2190	51	12
602	0	0	1	1	32	15	NA	0.00	2295	37	13
603	0	0	1	3	33	12	NA	0.00	2970	34	13
604	0	0	0	4	36	10	NA	0.00	2068	37	8
605	0	0	3	3	37	13	NA	0.00	2419	39	14
606	0	0	1	2	30	12	NA	0.00	2150	34	11
607	0	0	1	1	44	11	NA	0.00	1152	37	10
608	0	0	0	1	48	12	NA	0.00	2640	49	12
609	0	0	0	4	40	11	NA	0.00	2550	45	11
610	0	0	0	0	47	13	NA	0.00	1360	49	16
611	0	0	0	2	36	12	NA	0.00	2420	40	12
612	0	0	0	2	40	11	NA	0.00	2205	42	14
613	0	0	0	1	46	12	NA	0.00	3268	46	12
614	0	0	0	0	52	12	NA	0.00	3672	54	12
615	0	0	0	1	44	12	NA	0.00	1800	45	12
616	0	0	0	1	45	10	NA	0.00	1926	46	14
617	0	0	2	1	30	7	NA	0.00	1920	35	7
618	0	0	1	3	40	12	NA	0.00	2080	44	12

619	0	0	0	1	43	12	NA	0.00	2856	43	12
620	0	0	0	2	49	12	NA	0.00	2115	53	10
621	0	0	1	4	46	12	NA	3.45	1880	48	12
622	0	0	0	0	52	11	NA	0.00	2000	52	12
623	0	0	1	1	31	12	NA	0.00	2044	33	15
624	0	0	1	1	42	10	NA	0.00	1677	47	11
625	0	0	0	3	33	11	NA	0.00	2184	38	8
626	0	0	0	0	57	16	NA	0.00	3185	57	13
627	0	0	0	0	49	10	NA	0.00	2680	51	10
628	0	0	0	1	45	14	NA	0.00	3615	47	14
629	0	0	0	0	56	11	NA	0.00	2139	56	12
630	0	0	1	3	41	12	NA	0.00	3080	43	12
631	0	0	0	0	56	5	NA	0.00	1261	53	6
632	0	0	0	1	48	10	NA	0.00	2227	48	10
633	0	0	0	2	52	16	NA	0.00	1920	53	16
634	0	0	0	0	51	12	NA	0.00	2350	55	12
635	0	0	0	3	35	11	NA	0.00	1785	39	10
636	0	0	0	0	45	12	NA	0.00	2598	51	12
637	0	0	0	0	54	12	NA	0.00	2455	58	17
638	0	0	0	2	54	12	NA	0.00	2450	54	13
639	0	0	1	0	31	12	NA	0.00	1218	32	8
640	0	0	0	3	53	6	NA	0.00	2040	54	4
641	0	0	2	2	35	14	NA	0.00	2600	34	14
642	0	0	1	3	36	12	NA	0.00	2450	40	16
643	0	0	0	0	59	12	NA	0.00	2717	60	12
644	0	0	0	0	54	16	NA	0.00	2701	54	17
645	0	0	1	1	37	12	NA	0.00	2600	47	17
646	0	0	0	0	44	12	NA	0.00	3640	54	10
647	0	0	1	2	34	17	NA	0.00	2940	40	16
648	0	0	0	0	49	12	NA	0.00	1880	50	12
649	0	0	0	0	49	12	NA	0.00	3500	51	12
650	0	0	0	0	60	9	NA	0.00	3320	60	8
651	0	0	0	0	51	12	NA	0.00	1605	55	12
652	0	0	1	1	30	12	NA	0.00	2500	30	14
653	0	0	0	2	47	12	NA	0.00	2400	49	9
654	0	0	0	4	36	12	NA	0.00	1634	45	17
655	0	0	1	3	35	12	NA	0.00	2260	38	12
656	0	0	0	0	58	12	NA	0.00	3478	53	12
657	0	0	1	3	41	14	NA	0.00	2550	42	16
658	0	0	0	1	51	10	NA	0.00	840	52	8
659	0	0	0	0	47	12	NA	0.00	1520	52	12
660	0	0	1	2	45	9	NA	0.00	1920	35	9
661	0	0	0	0	60	14	NA	0.00	2703	55	17

662	0	0	1	1	30	16	NA	2.00	1896	46	16
663	0	0	0	0	55	11	NA	0.00	1960	57	13
664	0	0	1	2	32	12	NA	0.00	3060	50	8
665	0	0	0	2	36	12	NA	0.00	2805	38	12
666	0	0	0	0	55	12	NA	0.00	1944	53	7
667	0	0	0	0	47	12	NA	0.00	1960	47	12
668	0	0	0	1	47	12	NA	0.00	2112	52	8
669	0	0	0	1	37	11	NA	0.00	2544	39	12
670	0	0	0	2	50	12	NA	0.00	1700	53	17
671	0	0	0	3	30	12	NA	0.00	2550	31	12
672	0	0	0	1	48	17	NA	0.00	2080	45	17
673	0	0	0	2	43	10	NA	0.00	2060	49	12
674	0	0	1	0	48	11	NA	0.00	1955	46	8
675	0	0	1	2	41	14	NA	0.00	2500	44	17
676	0	0	0	0	50	12	NA	0.00	2750	52	10
677	0	0	0	0	58	8	NA	0.00	2040	59	5
678	0	0	0	5	38	13	NA	0.00	3275	43	15
679	0	0	0	1	37	12	NA	0.00	2400	39	12
680	0	0	0	0	50	16	NA	0.00	2024	51	17
681	0	0	0	4	42	8	NA	0.00	1840	44	6
682	0	0	1	3	37	9	NA	0.00	2033	37	17
683	0	0	0	2	41	16	NA	0.00	1946	40	17
684	0	0	0	2	31	12	NA	0.00	3660	31	12
685	0	0	0	0	51	12	NA	0.00	2088	55	11
686	0	0	1	2	36	12	NA	0.00	2048	41	12
687	0	0	0	0	54	15	NA	0.00	1920	52	15
688	0	0	0	0	49	12	NA	0.00	2000	54	12
689	0	0	1	1	48	9	NA	0.00	2204	47	8
690	0	0	0	2	42	9	NA	0.00	3157	45	10
691	0	0	1	2	41	12	NA	0.00	1665	44	14
692	0	0	0	0	55	16	NA	0.00	2304	56	11
693	0	0	0	0	42	9	NA	0.00	2275	46	8
694	0	0	0	1	32	15	NA	0.00	2760	33	17
695	0	0	0	2	43	12	NA	0.00	1750	44	14
696	0	0	1	3	33	12	NA	0.00	3366	37	13
697	0	0	0	1	48	15	NA	0.00	2205	51	16
698	0	0	0	2	43	12	NA	0.00	1990	48	9
699	0	0	1	3	47	17	NA	0.00	1930	57	16
700	0	0	0	0	54	12	NA	0.00	1350	60	12
701	0	0	0	1	51	12	NA	0.00	3340	52	12
702	0	0	0	1	51	10	NA	0.00	960	57	10
703	0	0	1	1	43	13	NA	0.00	2732	42	13
704	0	0	0	0	53	12	NA	0.00	1624	59	8

705	0	0	1	1	34	11	NA	0.00	1804	36	12
706	0	0	1	1	31	8	NA	0.00	2805	31	10
707	0	0	0	0	56	12	NA	0.00	2160	59	8
708	0	0	0	1	42	16	NA	0.00	2052	55	15
709	0	0	0	2	32	12	NA	0.00	2250	35	16
710	0	0	1	3	35	12	NA	0.00	1120	37	12
711	0	0	1	1	30	12	NA	0.00	2450	36	14
712	0	0	0	0	51	10	NA	0.00	3432	50	11
713	0	0	0	3	47	12	NA	0.00	2700	48	12
714	0	0	0	1	54	12	NA	0.00	2817	55	13
715	0	0	3	0	31	15	NA	0.00	3000	34	17
716	0	0	0	0	47	10	NA	0.00	2125	45	11
717	0	0	0	3	47	14	NA	0.00	1864	42	16
718	0	0	0	3	40	12	NA	0.00	2400	39	12
719	0	0	0	0	48	8	NA	0.00	2160	50	7
720	0	0	0	7	34	8	NA	0.00	1040	51	7
721	0	0	0	3	38	12	NA	0.00	2450	42	16
722	0	0	1	3	32	12	NA	0.00	2500	34	16
723	0	0	0	1	48	16	NA	0.00	2131	45	17
724	0	0	0	2	41	12	NA	0.00	2165	46	7
725	0	0	0	2	49	5	NA	0.00	2230	43	3
726	0	0	0	0	59	8	NA	0.00	1995	55	12
727	0	0	0	0	58	13	NA	0.00	2025	57	16
728	0	0	0	3	41	12	NA	0.00	2450	48	15
729	0	0	0	2	45	12	NA	0.00	2160	45	12
730	0	0	1	1	30	14	NA	0.00	1715	32	17
731	0	0	0	1	41	12	NA	0.00	3018	42	16
732	0	0	2	0	30	12	NA	0.00	2216	33	16
733	0	0	0	1	53	12	NA	0.00	2499	54	12
734	0	0	0	0	31	12	NA	0.00	2250	37	14
735	0	0	0	2	43	14	NA	0.00	2116	44	17
736	0	0	1	1	31	12	NA	0.00	2016	30	14
737	0	0	0	0	51	12	NA	0.00	2470	60	10
738	0	0	0	0	43	9	NA	0.00	1640	45	12
739	0	0	1	2	31	14	NA	0.00	2016	34	16
740	0	0	0	0	48	11	NA	0.00	2185	48	12
741	0	0	1	1	31	12	NA	0.00	800	33	14
742	0	0	0	1	44	12	NA	0.00	3022	46	12
743	0	0	0	1	48	11	NA	0.00	1512	50	14
744	0	0	0	1	53	12	NA	0.00	2677	53	12
745	0	0	0	3	42	10	NA	2.75	3150	44	12
746	0	0	2	6	39	12	NA	0.00	1430	34	12
747	0	0	1	2	32	10	NA	0.00	3307	36	4

748	0	0	0	2	36	12	NA	0.00	31	120 39	
749	0	0	0	2	40	13	NA	0.00	30)20 43	
750	0	0	2	3	31	12	NA	0.00	20)56 33	
751	0	0	0	0	43	12	NA	0.00	23	383 43	
752	0	0	0	0	60	12	NA	0.00	17	705 55	
753	0	0	0	3	39	9	NA	0.00	31	120 48	
	huswage	${\tt faminc}$	mtr	mothe	duc	${\tt fatheduc}$	unem	city ex	per	nwifeinc	
1	4.0288	16310	0.7215		12	7	5.0	0	14	10.91005993	
2	8.4416	21800	0.6615		7	7	11.0	1	5	19.49998093	
3	3.5807	21040	0.6915		12	7	5.0	0	15	12.03991032	
4	3.5417	7300	0.7815		7	7	5.0	0	6	6.79999590	
5	10.0000	27300	0.6215		12	14	9.5	1	7	20.10005760	
6	6.7106	19495	0.6915		14	7	7.5	1	33	9.85905361	
7	3.4277	21152	0.6915		14	7	5.0	0	11	9.15204811	
8	2.5485	18900	0.6915		3	3	5.0	0	35	10.90003777	
9	4.2206	20405	0.7515		7	7	3.0	0	24	17.30500031	
10	5.7143	20425	0.6915		7	7	5.0	0	21	12.92500019	
11	9.7959	32300	0.5815		12	3	5.0	0	15	24.29995346	
12	8.0000	28700	0.6215		14	7	5.0	0	14	19.70007133	
13	5.3004	15500	0.7215		16	16	5.0	0	0	15.00000763	
14	4.3413	16860	0.7215		10	10	7.5	1	14	14.60000038	
15	10.8700	31431	0.5815		7	7	7.5	1	6	24.63091469	
16	9.1499	19180	0.7215		16	10	7.5	1	9	17.53102684	
17	6.1224	18600	0.6915		10	7	7.5	1	20	14.09998035	
18	6.1498	19151	0.7215		12	12	7.5	1	6	15.83899975	
19	6.9170	18100	0.6915		7	7	5.0	1	23	14.10000038	
20	4.7103	20300	0.6915		12	7	5.0	0	9	10.29996109	
21	3.1310	30419	0.6215		10	16	7.5	0	5	22.65498161	
22	4.0000	14090	0.7215		12	10	3.0	0	11	8.09004784	
23	7.2227	22679	0.6615		7	3	5.0	1	18	17.47900009	
24	7.9652	12160	0.7215		7	7	11.0	0	15	9.56000042	
25	4.0884	12487	0.7515		12	7	5.0	1	4	8.27495289	
26	14.1810	29850	0.5815		16	14	9.5	1	21	27.34998512	
27	6.5359	18100	0.6915		3	7	9.5	1	31	16.00000000	
28	8.5000	26000	0.6615		3	7	11.0	1	9	16.99998283	
29	6.2762	26100	0.6215		12	12	5.0	0	7	15.10005569	
30	5.2083	17730	0.7215		12	12	9.5	0	7	15.69998360	
31	2.7821	6719	0.7515		7	7	7.5	1	32	5.11895990	
32	4.9107	18550	0.6915		3	3	14.0	1	11	16.75001144	
33	5.8669	24600	0.6615		12	10	7.5	0	16	13.59993172	
34	7.5200	23100	0.6915		7	14	5.0	1	14	17.10004807	
35	7.5449		0.6615		12	12	5.0	1	27	16.73404884	
36	5.5380	15897	0.7515		10	3	7.5	0	0	14.19697762	

37	6.9231	20320	0.6915	3	3	11.0	1	17	10.31998730
38	5.0000	21384	0.6615	10	3	11.0	0	28	11.38410473
39	7.3064	25561	0.6215	7	7	14.0	0	24	14.59407806
40	11.2180	36550	0.5800	14	17	5.0	1	11	17.50043869
41	3.8462	15810	0.7215	12	12	3.0	0	1	15.50999641
42	5.8366	25500	0.6215	9	9	7.5	1	14	21.99997520
43	13.7250	24000	0.6615	14	16	9.5	1	6	22.50000000
44	6.3493	22172	0.6615	3	3	5.0	0	10	19.99399948
45	5.2528	17930	0.7215	12	7	5.0	0	6	14.13000011
46	1.3075	7000	0.7815	12	7	3.0	0	4	5.00001287
47	2.7998	25300	0.7215	14	16	5.0	1	10	21.15489769
48	2.6961	16212	0.7215	10	10	11.0	0	22	7.14194584
49	7.5688	22650	0.6615	7	7	3.0	0	16	16.65007210
50	3.4077	6985	0.7815	12	7	14.0	0	6	6.35199976
51	6.5401	30000	0.6915	7	7	11.0	1	12	27.31394768
52	7.2139	18500	0.6915	7	3	9.5	1	32	14.50000381
53	6.2732	16658	0.7515	12	7	5.0	0	15	16.25798988
54	5.8824	10300	0.7515	7	7	5.0	1	17	9.50000000
55	3.8095	11000	0.7515	7	3	7.5	0	34	7.99995613
56	6.3776	19900	0.6915	12	12	7.5	1	9	12.50002861
57	6.0453	32500	0.6400	7	7	14.0	1	37	14.00003242
58	8.8119	37300	0.5800	17	17	7.5	1	10	20.80007362
59	8.8765	30018	0.5815	17	7	11.0	1	35	19.38511276
60	3.3420	12807	0.7515	12	7	14.0	1	6	12.38699150
61	3.1836	39500	0.5515	14	3	7.5	0	19	28.50000000
62	6.9149	22050	0.6915	12	12	9.5	1	10	15.04990864
63	5.5147	15500	0.7215	7	7	14.0	1	11	10.49998379
64	5.2808	13810	0.7215	7	7	9.5	1	15	11.81000042
65	3.2000	11950	0.7515	7	7	5.0	1	12	6.95007324
66	5.8791	19175	0.6915	12	12	7.5	0	12	12.41997147
67	6.2500	17900	0.6915	12	16	7.5	0	14	17.40000343
68	7.4879	15850	0.7215	12	7	5.0	1	11	15.49999619
69	6.9767	27017	0.6915	7	7	5.0	1	9	21.21704292
70	8.0000	18900	0.6915	12	7	5.0	0	24	18.00000000
71	4.1319	21800	0.6915	12	12	7.5	1	12	11.89991856
72	14.4760	33552	0.5515	10	10	7.5	1	13	26.75195503
73	5.7343	22650	0.6615	7	9	7.5	1	29	12.14996147
74	3.3742	15200	0.7915	0	0	7.5	1	11	10.19999027
75	1.8333	13120	0.7215	7	10	7.5	1	13	8.12001514
76	5.6025	21660	0.6615	12	14	5.0	1	19	10.65996456
77	4.2975	18190	0.7215	7	7	3.0	0	2	18.10000992
78	3.9161	9600	0.7515	3	3	14.0	1	24	8.59998608
79	4.8787	13755	0.7515	10	12	7.5	1	9	13.66499996

80	9.2402	35350	0.6615	7	12	7.5	1	6	32.34996033
81	6.6519	12405 (12	7	7.5	1		12.08500576
82	4.6217	12180 (12	17	9.5	0		12.14999962
83	9.9741	22962		7	3	7.5	1	10	17.69502068
84	20.9180	25700 (0.6215	7	7	9.5	1	6	24.70000076
85	1.9400	3305 (0.7915	7	7	3.0	0	29	2.13399196
86	8.8351	32950	0.5815	7	12	5.0	1	29	20.95004845
87	4.6667	17000	0.6915	7	7	5.0	1	36	10.50008011
88	5.1894	13250		7	7	5.0	1	19	10.55000019
89	18.7240	50750	0.4415	7	12	5.0	1	8	45.75000000
90	10.4170	15632 (0.7715	10	10	14.0	0	13	13.63204002
91	8.8458	28316	0.6215	7	0	11.0	1	16	18.23893929
92	7.5690	17290 (0.7215	12	12	9.5	1	11	17.08999634
93	4.4507	33600	0.6215	10	10	7.5	1	15	30.23489952
94	9.3204	29200	0.6215	12	7	9.0	1	6	28.70000076
95	9.1687	19870 (0.6915	7	7	11.0	0	13	19.62999535
96	6.4834	16225	0.7215	7	7	11.0	0	22	12.82494259
97	7.8125	28600 (0.6915	7	3	5.0	1	24	23.79999924
98	11.4040	30800	0.5815	14	12	7.5	1	2	26.30002594
99	5.0870	25700 (0.6915	7	7	3.0	0	6	20.69990730
100	6.9758	27000 (0.6215	12	12	3.0	0	2	26.00000381
101	5.2863	12077	0.7715	12	7	9.5	1	2	10.87702084
102	11.5620	29612	0.6615	7	7	11.0	0	14	25.61206245
103	8.6061	24479 (0.6915	7	10	9.5	1	9	20.98899460
104	12.8050	79750	0.4415	14	14	7.5	1	11	70.74993134
105	6.6946	20050	0.6915	12	7	11.0	0	9	17.04999924
106	8.3333	21500	0.6915	10	12	11.0	1	6	20.99999619
107	4.1667	16120 (0.6915	7	7	5.0	0	19	8.11999989
108	5.4759	24686	0.7215	7	7	9.5	0	26	20.88599014
109	5.1440	24669	0.6915	7	10	9.5	1	19	17.66891861
110	11.6670	26400 (0.6615	7	7	7.5	1	3	25.20002937
111	7.2917	16245	0.7215	12	12	7.5	1	7	
112	4.8611	23300 (0.6615	7	7		1	28	14.30000019
	12.1640	27200		12	7		1		23.70001030
	10.8230	51000		10	17	9.5	1		45.99999619
	12.4780	55000		10		14.0	1		42.99990463
116	6.1620	15389		7	7	7.5	1		14.74899960
117	7.1846	23150		7	7	9.5	1		16.15005493
118	7.0930	29774		7		14.0	1		17.77400017
	17.8260	91044		12		14.0	1		91.00000000
120	6.3930	28200		7		14.0	1		22.29993439
	11.7190	36150		7	7	9.5	1		34.60001373
122	4.7883	15652		12	12	7.5	0	23	9.62000179
	1	10002			12		•		3.0200110

400	4 0000				_		•	_	
123	4.2328		0.7515	14		11.0	0		10.89994621
124	7.1066		0.6615	12	10	7.5	0		14.49994373
125	8.3333		0.6100	7	7	7.5	1		22.00001526
126	6.9888		0.6915	10	10	7.5	0	17	17.90007973
127	9.5913		0.6615	7	7	11.0	1	4	23.67506218
128	6.0204		0.7215	7	7	7.5	0		11.79996014
129	2.9686		0.7215	12	7	3.0	0	11	16.14195442
130	7.0000		0.6915	10	7	9.5	0	7	18.39997101
131	7.1627		0.7215	7	7	7.5	0	0	15.49994755
132	4.7364		0.6915	7	7	7.5	0	0	17.32399940
133	8.7810		0.6915	12		11.0	1	10	19.20500374
134	9.8315	37300	0.5800	10	12	7.5	1	8	21.30006218
135	6.6496	24860	0.7215	7	7	7.5	1	2	23.55999565
136	9.8485	21450	0.6615	12	3	7.5	1	4	20.85000038
137	9.8039	29650	0.6215	7	7	5.0	1	6	26.14999962
138	8.2604	23000	0.6615	7	7	11.0	1	18	17.00000000
139	9.0676	21120	0.6915	7	7	9.0	1	3	20.72000313
140	8.5082	26000	0.6215	7	12	5.0	1	22	17.00008965
141	7.1565	28000	0.6215	3	7	7.5	1	33	15.99999809
142	7.0423	45500	0.5200	12	12	11.0	1	28	19.50004959
143	6.5934	16000	0.7215	16	12	14.0	1	23	12.00000381
144	4.3457	18232	0.6915	7	14	11.0	0	27	13.73191166
145	7.2362	28160	0.7215	3	7	14.0	1	11	27.19999123
146	1.7400	5965	0.8015	12	7	11.0	1	6	5.31500006
147	6.8966	19000	0.7215	7	7	9.5	1	11	16.00000000
148	5.0455	36872	0.5515	12	12	11.0	1	14	27.87198257
149	17.2500	42000	0.4915	12	12	14.0	1	17	40.00001144
150	8.3333	26900	0.6215	16	14	11.0	1	17	15.90003395
151	9.3750	30800	0.5815	12	10	9.0	0	14	27.49996948
152	8.2790	21520	0.6915	12	12	11.0	1	11	17.02005005
153	4.5000	24795	0.6915	7	7	7.5	1	7	22.39493942
154	4.1995	12900	0.7215	14	16	14.0	1	8	11.10000038
155	16.0640	42700	0.4915	7	7	7.5	1	6	32.70001221
156	11.2770	38800	0.5215	10	17	11.0	1	8	27.79996109
157	0.5494	2500	0.9415	7	3	3.0	0	4	2.19999409
158	9.5480	26921	0.6215	14	10	11.0	1	25	19.72095108
159	5.3333	18300	0.6915	7	9	3.0	0	24	9.99998760
160	5.4545	17200	0.7215	7	7	14.0	1	11	13.19996834
161	5.9026		0.7515	12	3	9.5	1		12.70897484
162	9.8576	32300	0.5815	12	16	14.0	1		27.30004692
163	11.6850	21400	0.7215	17	12	7.5	1	19	21.20000076
164	6.2278	14700	0.7215	7	7	9.5	0	14	14.40000439
165	9.1748		0.6215	7	7	9.5	1		20.57596016

166	6.2972		0.7515	3	7	5.0	1		12.49999046
167	10.4710		0.5815	12	12	9.5	1		17.50021553
168	14.5830		0.4915	7		11.0	1		44.00003815
169	6.2143		0.7215	7	7	14.0	1		13.11895466
170	6.6288		0.6915	7	7	7.5	0	11	14.00005627
171	3.8246	14545	0.7215	3	7	5.0	0	2	9.64508629
172	7.8125	22897	0.6915	7	7	14.0	1	22	17.39704514
173	3.4806	14300	0.7215	10	10	7.5	1	10	7.79988861
174	5.5500		0.7515	10	10	9.5	1	14	13.13397694
175	11.5940	27400	0.6215	12	7	11.0	1	12	25.60000038
176	9.5238	16400	0.7215	7	12	14.0	1	9	13.90002537
177	7.2805	25704	0.6215	14	17	7.5	0	13	19.29794312
178	3.0000	12800	0.7215	10	10	7.5	0	18	9.20001602
179	10.4000	40000	0.6215	7	7	7.5	0	8	37.99998856
180	10.0500	47000	0.6615	7	7	14.0	1	11	44.0000000
181	8.7866	25872	0.6615	10	12	9.5	1	9	21.37202454
182	10.1400	26868	0.6915	12	7	9.5	1	9	23.66802025
183	5.0000	18000	0.6915	12	12	9.5	1	14	9.0000000
184	11.8880	30200	0.5815	7	7	5.0	1	9	25.19995117
185	13.3330	26220	0.6615	7	7	7.5	1	2	21.21999931
186	8.6806	40500	0.5815	7	7	3.0	0	12	33.96991348
187	7.2917	33570	0.6100	12	7	7.5	1	15	17.06999969
188	3.5242	16917	0.7215	7	14	14.0	1	11	6.01602364
189	6.1818	18000	0.7215	12	7	9.5	0	7	17.10000992
190	2.9755	8337	0.7515	12	12	11.0	1	9	8.23700047
191	4.5769	17100	0.7215	12	7	9.5	0	19	13.30008221
192	3.1056	17800	0.7515	10	7	11.0	0	11	16.00002098
193	5.8228	13740	0.7515	12	12	14.0	1	8	12.53999043
194	7.5000	27000	0.6215	10	3	9.5	1	13	18.00003815
195	8.3333	32600	0.6215	12	7	7.5	1	4	31.20000076
196	9.2347	28030	0.6615	12	12	14.0	1	7	20.74991035
197	5.5000	23100	0.6615	12	12	3.0	0	19	11.09992027
198	6.0000	24580	0.6615	7	7	9.5	1	14	20.68000031
199	6.6667	29000	0.6215	12	7	9.5	1	14	18.00000954
200	13.0610	42430	0.5215	12	14	9.5	1	3	32.43006516
201	12.7940	41800	0.5215	12	12	7.5	1	9	32.90003204
202	12.0000	39100	0.5800	12	17	9.5	1	7	24.10000610
203	6.7300	31800	0.5815	16	17	11.0	1	7	17.80039215
204	6.6790		0.6915	7		14.0	0	14	20.50001717
205	4.3945		0.6915	16	7	3.0	0		10.49989796
206	4.6875		0.7515	7		11.0	0		10.43703461
207	7.6989		0.6615	7		11.0	1		18.19499016
208	4.3287		0.6915	10	7	7.5	0		12.84507656
				•	•	-	-	-	

209	6.7416	20900	0.6615	12	7	11.0	1	10	13.80000019
210	9.3525		0.6215	10		11.0	0		22.19999504
211	9.1429		0.7515	0		14.0	1	24	6.69994116
212	2.6418	7850	0.7515	7		14.0	0	6	6.25001574
213	7.3650		0.7215	12	12	7.5	1	9	15.60000801
214	1.4066	5380	0.7715	12	7	5.0	0	14	3.30000997
215	1.5192	6114	0.7715	10	7	14.0	0	26	3.67097759
216	3.3439	8234	0.7515	12	12	14.0	0	7	7.78999710
217	2.9106	20646	0.7215	3	7	11.0	1	4	18.27198982
218	4.3834	16640	0.7215	7	7	9.5	0	15	10.95397949
219	4.2098	13900	0.7215	12	12	5.0	1	23	13.49999237
220	3.7129	11500	0.7815	10	7	7.5	0	1	11.20001221
221	10.6060	34000	0.5515	7	7	14.0	1	29	20.99990845
222	8.6382	28700	0.6615	7	3	11.0	1	9	25.69999886
223	3.8367	9563	0.7515	7	7	7.5	0	6	8.93299389
224	7.1671	20960	0.6915	7	7	7.5	0	11	19.15997696
225	8.8634	38590	0.6215	12	10	14.0	1	17	26.58998680
226	7.7369	27900	0.6615	12	12	5.0	1	6	22.40000534
227	9.1702	25633	0.6215	7	7	7.5	1	7	20.63299942
228	11.2900	35200	0.5515	12	12	7.5	1	2	28.20000648
229	6.3269	29500	0.5815	7	7	7.5	1	24	28.79999924
230	4.7468	10000	0.7515	10	7	7.5	0	4	8.99999714
231	4.8885	19800	0.6915	10	7	5.0	0	11	11.39994240
232	2.4842	12900	0.7215	7	7	5.0	0	25	10.40001392
233	8.5470		0.6215	12	12	7.5	0	11	19.08005524
234	6.6379	13066	0.7515	17	7	11.0	1	2	9.46603966
235	3.1863		0.7215	7	7	7.5	0	19	6.50006008
236	4.5466		0.5815	7	7	9.0	1	7	29.11701393
237	12.7890		0.7515	7	7	5.0	1	2	19.10301971
238	6.5280		0.6615	7	7	5.0	1	20	16.34997177
239	16.4030		0.5515	12	14	9.5	1	10	32.02501678
240	7.0000		0.6100	14	17	14.0	1	19	16.70006180
241	13.5420		0.7515	7	7	11.0	1	17	4.81103754
242	6.7130		0.6915	12		11.0	1		24.62600899
243	5.4487		0.6615	7	7	5.0	1		17.40001297
244	6.6872		0.7215	7	7	7.5	1		13.02503967
245	9.0943		0.6915	16		14.0	1		19.00698280
246	6.5337		0.7515	7	7	7.5	0		14.02999973
247	4.6860		0.7515	10	7	5.0	1		14.89990616
248	8.0000		0.5215	12	9	9.5	1		25.00005531
249	4.0530		0.6915	7	7	7.5	0		10.70006752
250	8.1633		0.5515	16	14	5.0	1		24.25000381
251	16.5000	49620	0.4615	10	7	11.0	1	4	39.13996506

252 3.4615 10400 0.7815 3 3 7.5 0 2 7.19997311 253 11.3610 33000 0.5515 16 16 11.0 1 19 31.81099892 254 3.8911 16200 0.7215 7 7.5 1 4 10.00004768 255 9.6059 22660 0.6915 12 16 7.5 1 29 20.6599985 256 2.6687 16000 0.7215 7 7.5 1 24 18.27497673 259 17.7280 40213 0.5515 12 7 11.0 0 1 39.21300125 260 5.2923 15500 0.7215 12 7 7.5 1 13 10.49993610 261 15.8680 35207 0.5515 10 12 11.0 0 1 39.21300125 262 5.2423 35702 0.5515 10 12 1.0										
254 3.8911 16200 0.7215 7 3 7.5 1 4 10.00004768 256 9.6059 22660 0.6915 12 16 7.5 1 9 20.65999985 256 2.6867 16000 0.7215 7 7.5 1 14 13.49997616 257 8.8865 25780 0.6615 7 16 9.5 1 6 25.37999535 258 6.3636 20675 0.7215 7 12 7.5 1 24 18.2497673 259 17.7280 40213 0.5515 12 7 1.1 0 1 3.91300125 260 5.2923 15500 0.7215 12 7 7.5 1 13 0.418993610 261 16.860 35207 0.8815 7 12 9.5 1 13 24.182993610 262 5.2423 35702 0.5515 10 12 11.	252	3.4615	10400	0.7815	3			0	2	7.19997311
255 9.6059 22660 0.6915 12 16 7.5 1 9 20.6599988 256 2.6687 16000 0.7215 7 7.5 1 14 13.49997616 257 8.8865 25780 0.6615 7 16 9.5 1 6 25.37999535 258 6.3636 20675 0.7215 7 12 7.5 1 24 18.27497673 259 17.7280 40213 0.5515 12 7 11.0 0 1 39.21300125 260 5.2823 15500 0.7215 12 7 7.5 1 13 10.49993610 261 15.6860 35702 0.5515 10 12 11.0 1 0 28.48869844 262 5.2423 35702 0.5515 10 12 11.0 1 0 28.50199896 26 26 5.2423 35702 0.5515 10 12 11.0 1 0 41.77999973 26 18.16.775	253	11.3610			16		11.0	1		
256 2.6687 16000 0.7215 7 7.5 1 14 13.49997616 257 8.8865 25780 0.6615 7 16 9.5 1 6 25.37999535 258 6.3636 20675 0.7215 7 12 7.5 1 24 18.27497673 259 17.7720 40213 0.5515 12 7 1.1 0 1 39.21300125 260 5.2923 15500 0.7215 12 7 7.5 1 13 10.49993610 261 15.6860 35207 0.5815 7 12 9.5 1 3 34.85699844 262 5.2423 35702 0.5515 10 12 11.0 1 0 28.50199989 263 3.0393 37800 0.7215 14 12 9.5 1 4 13.39990997 265 3.7500 1780 0.6915 7 7.5 0 0 19 14.77999973 266 5.8140 15150 <	254	3.8911	16200	0.7215	7	3	7.5	1	4	10.00004768
257 8.8865 25780 0.6615 7 16 9.5 1 6 25.37999535 258 6.3636 20675 0.7215 7 12 7.5 1 24 18.27497673 259 17.7280 40213 0.5515 12 7 7.5 1 39.21300125 22 7 7.5 1 13 10.49993610 260 5.2923 15500 0.7215 12 7 7.5 1 13 10.49993610 262 16.6860 35207 0.5815 7 12 9.5 1 13 34.88669844 262 5.2423 35702 0.5515 10 12 11.0 1 10 28.50199890 263 3.0395 17800 0.7215 14 12 9.5 1 16 12.99995995 264 16.7450 50900 0.4915 16 16 5.0 1 9 1.0 19 4.77999973 266 5.8140 15150 0.7215 10 <t< td=""><td>255</td><td>9.6059</td><td>22660</td><td>0.6915</td><td>12</td><td>16</td><td>7.5</td><td>1</td><td>9</td><td>20.65999985</td></t<>	255	9.6059	22660	0.6915	12	16	7.5	1	9	20.65999985
258 6.3636 20675 0.7215 7 12 7.5 1 24 18.27497673 259 17.7280 40213 0.5515 12 7 11.0 0 1 39.21300125 260 5.2923 15500 0.7215 12 7 7.5 1 13 10.49993615 261 15.6860 35207 0.5815 7 12 9.5 1 13 34.85699844 262 5.2423 35702 0.5515 10 12 11.0 1 10 28.50198990 263 3.0395 17800 0.7215 14 12 9.5 1 16 12.99995995 264 16.7450 50900 0.4915 16 16 5.0 1 9 41.59999895 264 16.7450 50900 0.4915 16 16 5.0 1 9 41.504999828 266 5.8140 15150 0.7215 14 12 5.0 1 15 16.16501999 269 6.5400	256		16000	0.7215	7	7	7.5	1	14	13.49997616
259 17.7280 40213 0.5515 12 7 11.0 0 1 39.21300125 260 5.2923 15500 0.7215 12 7 7.5 1 13 10.49993610 261 15.6860 35207 0.5815 7 12 9.5 1 3 34.85699844 262 5.2423 35702 0.5515 10 12 11.0 1 10 28.50199890 263 3.0395 17800 0.7215 14 12 9.5 1 16 12.99995995 264 16.7450 50900 0.4915 16 16 5.0 1 9 41.3999097 265 3.7500 17280 0.6915 7 7 5.0 0 19 14.7799973 266 5.8140 15150 0.7215 10 9 5.0 1 4 15.04999228 267 10.8330 36200 0.5815 7 7 7.5 1 10 29.69997787 268 9.0029 17465 0.7215 14 12 5.0 1 5 1.616501999 269 6.5400 45205 0.6100 14 12 3.0 1 7 25.20515823 270 5.9783 14500 0.7515 12 10 5.0 3 14.19999864	257	8.8865	25780	0.6615	7	16	9.5	1	6	25.37999535
260 5.2923 15500 0.7215 12 7 7.5 1 13 10.49993610 261 15.6860 35207 0.5815 7 12 9.5 1 3 34.85699844 262 5.2423 35702 0.5515 10 12 11.0 1 10 28.5019890 263 3.0395 17800 0.7215 14 12 9.5 1 16 12.99995995 264 16.7450 50900 0.4915 16 16 5.0 1 9 1.33990997 265 3.7500 17280 0.6915 7 7 5.0 0 19 1.477999973 266 5.8140 15150 0.7215 10 9 5.0 1 4 15.04999828 267 10.8330 36200 0.5815 7 7 7.5 1 10 29.6997787 268 9.029 17465 0.7215 14 1	258	6.3636	20675	0.7215	7	12	7.5	1	24	18.27497673
261 15.6860 35207 0.5815 7 12 9.5 1 3 34.85699844 262 5.2423 35702 0.5515 10 12 11.0 1 10 28.50199890 263 3.0395 17800 0.7215 14 12 9.5 1 16 12.99995995 264 16.7450 50900 0.4915 16 16 5.5 1 9 41.399990997 265 3.7500 17280 0.6915 7 7 5.0 0 19 14.77999973 266 5.8140 15150 0.7215 10 9 5.0 1 4 15.04999828 267 10.8330 36200 0.5815 7 7 7.5 1 10 29.69997787 268 9.0291 17465 0.7215 14 12 5.0 1 4 15.04999828 267 10.8330 36200 0.5815 7 7.5	259	17.7280	40213	0.5515	12	7	11.0	0	1	39.21300125
262 5.2423 35702 0.5515 10 12 11.0 1 10 28.50199890 263 3.0395 17800 0.7215 14 12 9.5 1 16 12.99995995 264 16.7450 50900 0.4915 16 16 5.0 1 9 41.39990997 265 3.7500 17280 0.6915 7 7 5.0 0 19 14.77999973 266 5.8140 15150 0.7215 10 9 5.0 1 4 15.04999828 267 10.8330 36200 0.5815 7 7 7.5 1 10 29.69997787 268 9.0029 17465 0.7215 14 12 5.0 1 5 16.16501999 269 6.5400 45205 0.6100 14 12 3.0 1 7 25.20515823 270 5.9783 14500 0.7515 12 10 5.0 0 3 14.1999886 271 8.6248 32	260	5.2923	15500	0.7215	12	7	7.5	1	13	10.49993610
263 3.0395 17800 0.7215 14 12 9.5 1 16 12.99995995 264 16.7450 50900 0.4915 16 16 5.0 1 9 41.39990997 265 3.7500 17280 0.6915 7 7 5.0 0 19 14.77999973 266 5.8140 15150 0.7215 10 9 5.0 1 4 15.04999828 267 10.8330 36200 0.5815 7 7 7.5 1 10 29.69997787 268 9.0029 17465 0.7215 14 12 3.0 1 7 25.20515823 270 5.9783 14500 0.7515 12 10 5.0 0 3 14.19999886 271 8.6248 32011 0.5815 7 7 7.5 0 38 18.15896797 272 4.8329 35200 0.6215 7 12 9.5 0 16 28.98106384 273 10.999 1357	261	15.6860	35207	0.5815	7	12	9.5	1	3	34.85699844
264 16.7450 50900 0.4915 16 16 5.0 1 9 41.39990997 265 3.7500 17280 0.6915 7 7 5.0 0 19 14.77999973 266 5.8140 15150 0.7215 10 9 5.0 1 4 15.04999828 267 10.8330 36200 0.5815 7 7.5 1 10 29.69997787 268 9.0029 17465 0.7215 14 12 5.0 1 5 16.16501999 269 6.5400 45205 0.6100 14 12 5.0 1 7 25.20515823 270 5.9783 14500 0.7515 12 10 5.0 0 3 14.1999886 271 8.6248 32011 0.5815 7 7 7.5 0 38 18.15896797 272 4.8329 35200 0.6215 7 12 9.5 0 16 28.98106384 273 1.9990 13579 0.7515 3 7 11.0 0 1 9.17502022	262	5.2423	35702	0.5515	10	12	11.0	1	10	28.50199890
265 3.7500 17280 0.6915 7 7 5.0 0 19 14.77999973 266 5.8140 15150 0.7215 10 9 5.0 1 4 15.04999828 267 10.8330 36200 0.5815 7 7 7.5 1 10 29.69997787 268 9.0029 17465 0.7215 14 12 5.0 1 5 16.16501999 269 6.5400 45205 0.6100 14 12 3.0 1 7 25.20515823 270 5.9783 14500 0.7515 12 10 5.0 0 3 14.1999886 271 8.6248 32011 0.5815 7 7.5 0 38 18.15896797 272 4.8329 35200 0.6215 7 7.5 0 38 18.15896797 272 4.8329 35200 0.6215 7 7 7.5 0 16 28.98106384 273 10.900 13579 0.7515	263	3.0395	17800	0.7215	14	12	9.5	1	16	12.99995995
266 5.8140 15150 0.7215 10 9 5.0 1 4 15.04999828 267 10.8330 36200 0.5815 7 7 7.5 1 10 29.69997787 268 9.0029 17465 0.7215 14 12 5.0 1 5 16.16501999 269 6.5400 45205 0.6100 14 12 3.0 1 7 25.20515823 270 5.9783 14500 0.7515 12 10 5.0 0 3 14.19999886 271 8.6248 32011 0.5815 7 7.55 0 38 18.15896797 272 4.8329 35200 0.6215 7 7.5 0 13 13.3990366 273 10.9090 13579 0.7515 3 7 11.0 0 13 13.39200306 274 3.8864 10455 0.7515 7 7 11.0 0 1 9.17502022 275 8.4574 32600 0.5515 <t< td=""><td>264</td><td>16.7450</td><td>50900</td><td>0.4915</td><td>16</td><td>16</td><td>5.0</td><td>1</td><td>9</td><td>41.39990997</td></t<>	264	16.7450	50900	0.4915	16	16	5.0	1	9	41.39990997
267 10.8330 36200 0.5815 7 7 7.5 1 10 29.69997787 268 9.0029 17465 0.7215 14 12 5.0 1 5 16.16501999 269 6.5400 45205 0.6100 14 12 3.0 1 7 25.20515823 270 5.9783 14500 0.7515 12 10 5.0 0 3 14.19999886 271 8.6248 32011 0.5815 7 7 7.5 0 38 18.15896797 272 4.8329 35200 0.6215 7 12 9.5 0 16 28.98106384 273 10.9090 13579 0.7515 3 7 11.0 0 13 13.39200306 274 3.8864 10455 0.7515 7 7 11.0 0 1 9.17502022 275 8.4574 32600 0.5515 7 3 5.0 0 7 27.03984833 276 5.0000 19150 0.6915 7 10 11.0 1 15 13.14995193 277 7.4212 24400 0.6615 12 17 9.5 1 10 16.40007019 278 4.4938 21700 0.6915 7 3 9.5 1 19 17.20101547 280 3.2788 11920 0.7515 3 3.5 1 25	265	3.7500	17280	0.6915	7	7	5.0	0	19	14.77999973
268 9.0029 17465 0.7215 14 12 5.0 1 5 16.16501999 269 6.5400 45205 0.6100 14 12 3.0 1 7 25.20515823 270 5.9783 14500 0.7515 12 10 5.0 0 3 14.19999886 271 8.6248 32011 0.5815 7 7 7.5 0 38 18.15896797 272 4.8329 35200 0.6215 7 12 9.5 0 16 28.98106384 273 10.9090 13579 0.7515 3 7 11.0 0 13 13.39200306 274 3.8864 10455 0.7515 7 7 11.0 0 1 9.17502022 275 8.4574 32600 0.5515 7 3 5.0 0 7 27.03984833 276 5.0000 19150 0.6915 7 10 11.0 1 15 13.14995193 277 7.4212 24400 0.6615 12 1	266	5.8140	15150	0.7215	10	9	5.0	1	4	15.04999828
269 6.5400 45205 0.6100 14 12 3.0 1 7 25.20515823 270 5.9783 14500 0.7515 12 10 5.0 0 3 14.19999886 271 8.6248 32011 0.5815 7 7 7.5 0 38 18.15896797 272 4.8329 35200 0.6215 7 12 9.5 0 16 28.98106384 273 10.9090 13579 0.7515 3 7 11.0 0 13 13.39200306 274 3.8864 10455 0.7515 7 7 11.0 0 1 9.17502022 275 8.4574 32600 0.5515 7 3 5.0 0 7 27.03984833 276 5.0000 19150 0.6915 7 10 11.0 1 15 13.14995193 277 7.4212 24400 0.6615 12 17 9.5 1 10 16.40007019 278 4.4938 21700	267	10.8330	36200	0.5815	7	7	7.5	1	10	29.69997787
270 5.9783 14500 0.7515 12 10 5.0 0 3 14.19999886 271 8.6248 32011 0.5815 7 7.55 0 38 18.15896797 272 4.8329 35200 0.6215 7 12 9.5 0 16 28.98106384 273 10.9090 13579 0.7515 3 7 11.0 0 13 13.39200306 274 3.8864 10455 0.7515 7 7 11.0 0 1 9.17502022 275 8.4574 32600 0.5515 7 3 5.0 0 7 27.03984833 276 5.0000 19150 0.6915 7 10 11.0 1 15 13.14995193 277 7.4212 24400 0.6615 12 17 9.5 1 10 16.40007019 278 4.4938 21700 0.6915 10 7 3.0 0 2 21.29999161 279 7.0252 26201 0	268	9.0029	17465	0.7215	14	12	5.0	1	5	16.16501999
271 8.6248 32011 0.5815 7 7 7.5 0 38 18.15896797 272 4.8329 35200 0.6215 7 12 9.5 0 16 28.98106384 273 10.9090 13579 0.7515 3 7 11.0 0 13 13.39200306 274 3.8864 10455 0.7515 7 7 11.0 0 1 9.17502022 275 8.4574 32600 0.5515 7 3 5.0 0 7 27.03984833 276 5.0000 19150 0.6915 7 10 11.0 1 15 13.14995193 277 7.4212 24400 0.6615 12 17 9.5 1 10 16.40007019 278 4.4938 21700 0.6915 10 7 3.0 0 2 21.29999161 279 7.0252 26201 0.6215 7 3 9.5 1 19 17.20101547 280 3.2788 11920 0.7515 3 3 7.5 1 25 8.56002617 281 1.2861 16300 0.7215 7 7 5.0 1 7 12.49996758 283	269	6.5400	45205	0.6100	14	12	3.0	1	7	25.20515823
272 4.8329 35200 0.6215 7 12 9.5 0 16 28.98106384 273 10.9090 13579 0.7515 3 7 11.0 0 13 13.39200306 274 3.8864 10455 0.7515 7 7 11.0 0 1 9.17502022 275 8.4574 32600 0.5515 7 3 5.0 0 7 27.03984833 276 5.0000 19150 0.6915 7 10 11.0 1 15 13.14995193 277 7.4212 24400 0.6615 12 17 9.5 1 10 16.40007019 278 4.4938 21700 0.6915 10 7 3.0 0 2 21.29999161 279 7.0252 26201 0.6215 7 3 9.5 1 19 17.20101547 280 3.2788 11920 0.7515 3 3 7.5 1 25 6.49083996 281 1.2861 16300 <td>270</td> <td>5.9783</td> <td>14500</td> <td>0.7515</td> <td>12</td> <td>10</td> <td>5.0</td> <td>0</td> <td>3</td> <td>14.19999886</td>	270	5.9783	14500	0.7515	12	10	5.0	0	3	14.19999886
273 10.9090 13579 0.7515 3 7 11.0 0 13 13.39200306 274 3.8864 10455 0.7515 7 7 11.0 0 1 9.17502022 275 8.4574 32600 0.5515 7 3 5.0 0 7 27.03984833 276 5.0000 19150 0.6915 7 10 11.0 1 15 13.14995193 277 7.4212 24400 0.6615 12 17 9.5 1 10 16.40007019 278 4.4938 21700 0.6915 10 7 3.0 0 2 21.29999161 279 7.0252 26201 0.6215 7 3 9.5 1 19 17.20101547 280 3.2788 11920 0.7515 3 3 7.5 1 25 8.56002617 281 1.2861 16300 0.7215 7 7 5.0 1 7 12.49996758 282 5.5556 16500	271	8.6248	32011	0.5815	7	7	7.5	0	38	18.15896797
274 3.8864 10455 0.7515 7 7 11.0 0 1 9.17502022 275 8.4574 32600 0.5515 7 3 5.0 0 7 27.03984833 276 5.0000 19150 0.6915 7 10 11.0 1 15 13.14995193 277 7.4212 24400 0.6615 12 17 9.5 1 10 16.40007019 278 4.4938 21700 0.6915 10 7 3.0 0 2 21.29999161 279 7.0252 26201 0.6215 7 3 9.5 1 19 17.20101547 280 3.2788 11920 0.7515 3 3 7.5 1 25 8.56002617 281 1.2861 16300 0.7215 7 7 5.0 1 7 12.49996758 282 5.5556 16500 0.7215 7 7 5.0 1 7 12.49996758 283 7.4951 30000	272	4.8329	35200	0.6215	7	12	9.5	0	16	28.98106384
275 8.4574 32600 0.5515 7 3 5.0 0 7 27.03984833 276 5.0000 19150 0.6915 7 10 11.0 1 15 13.14995193 277 7.4212 24400 0.6615 12 17 9.5 1 10 16.40007019 278 4.4938 21700 0.6915 10 7 3.0 0 2 21.29999161 279 7.0252 26201 0.6215 7 3 9.5 1 19 17.20101547 280 3.2788 11920 0.7515 3 3 7.5 1 25 8.56002617 281 1.2861 16300 0.7215 12 12 9.5 1 25 6.49083996 282 5.5556 16500 0.7215 7 7 5.0 1 7 12.49996758 283 7.4951 30000 0.5815 12 7 11.0 1 15 27.00002480 284 22.1090 62500 0.4415 7 7 9.5 1 11 53.50004959 285 9.0580 58500 0.4415 10 10 9.5 1	273	10.9090	13579	0.7515	3	7	11.0	0	13	13.39200306
276 5.0000 19150 0.6915 7 10 11.0 1 15 13.14995193 277 7.4212 24400 0.6615 12 17 9.5 1 10 16.40007019 278 4.4938 21700 0.6915 10 7 3.0 0 2 21.29999161 279 7.0252 26201 0.6215 7 3 9.5 1 19 17.20101547 280 3.2788 11920 0.7515 3 7.5 1 25 8.56002617 281 1.2861 16300 0.7215 12 12 9.5 1 25 6.49083996 282 5.5556 16500 0.7215 7 5.0 1 7 12.49996758 283 7.4951 30000 0.5815 12 7 11.0 1 15 27.00002480 284 22.1090 62500 0.4415 7 7 9.5 1 11 53.50004959 285 9.0580 58500 0.4415 10 10 9.5 1 25 52.49994659 286 11.5380 40900 0.5215 7 7 9.5 1 19 38.39997864 287 6.0468 16308 0.6915 0 10 7.5 1 4 13.89194489 288 1.3653 9300	274	3.8864	10455	0.7515	7	7	11.0	0	1	9.17502022
277 7.4212 24400 0.6615 12 17 9.5 1 10 16.40007019 278 4.4938 21700 0.6915 10 7 3.0 0 2 21.29999161 279 7.0252 26201 0.6215 7 3 9.5 1 19 17.20101547 280 3.2788 11920 0.7515 3 3 7.5 1 25 8.56002617 281 1.2861 16300 0.7215 12 12 9.5 1 25 6.49083996 282 5.5556 16500 0.7215 7 7 5.0 1 7 12.49996758 283 7.4951 3000 0.5815 12 7 11.0 1 15 27.00002480 284 22.1090 62500 0.4415 7 7 9.5 1 11 53.50004959 285 9.0580 58500 0.4415 10 10 9.5 1 25 52.49994659 286 11.5380 40900<	275	8.4574	32600	0.5515	7	3	5.0	0	7	27.03984833
278 4.4938 21700 0.6915 10 7 3.0 0 2 21.29999161 279 7.0252 26201 0.6215 7 3 9.5 1 19 17.20101547 280 3.2788 11920 0.7515 3 3 7.5 1 25 8.56002617 281 1.2861 16300 0.7215 12 12 9.5 1 25 6.49083996 282 5.5556 16500 0.7215 7 7 5.0 1 7 12.49996758 283 7.4951 30000 0.5815 12 7 11.0 1 15 27.00002480 284 22.1090 62500 0.4415 7 7 9.5 1 11 53.50004959 285 9.0580 58500 0.4415 10 10 9.5 1 25 52.49994659 286 11.5380 40900 0.5215 7 7 9.5 1 19 38.39997864 287 6.0468 16308 0.6915 0 10 7.5 1 4 13.89194489 288 1.3653 9300 0.7515 7 7 7.5	276	5.0000	19150	0.6915	7	10	11.0	1	15	13.14995193
279 7.0252 26201 0.6215 7 3 9.5 1 19 17.20101547 280 3.2788 11920 0.7515 3 3 7.5 1 25 8.56002617 281 1.2861 16300 0.7215 12 12 9.5 1 25 6.49083996 282 5.5556 16500 0.7215 7 7 5.0 1 7 12.49996758 283 7.4951 30000 0.5815 12 7 11.0 1 15 27.00002480 284 22.1090 62500 0.4415 7 7 9.5 1 11 53.50004959 285 9.0580 58500 0.4415 10 10 9.5 1 25 52.49994659 286 11.5380 40900 0.5215 7 7 9.5 1 19 38.39997864 287 6.0468 16308 0.6915 0 10 7.5 1 4 13.89194489 288 1.3653 9300 0.7515 7 7 7.5 1 14 3.89999294 289 16.5500 35700 0.5515 10 9 7.5 1	277	7.4212	24400	0.6615	12	17	9.5	1	10	16.40007019
280 3.2788 11920 0.7515 3 3 7.5 1 25 8.56002617 281 1.2861 16300 0.7215 12 12 9.5 1 25 6.49083996 282 5.5556 16500 0.7215 7 7 5.0 1 7 12.49996758 283 7.4951 30000 0.5815 12 7 11.0 1 15 27.00002480 284 22.1090 62500 0.4415 7 7 9.5 1 11 53.50004959 285 9.0580 58500 0.4415 10 10 9.5 1 25 52.49994659 286 11.5380 40900 0.5215 7 7 9.5 1 19 38.39997864 287 6.0468 16308 0.6915 0 10 7.5 1 4 13.89194489 288 1.3653 9300 0.7515 7 7.5 1 14 3.89999294 289 16.5500 35700 0.55	278	4.4938	21700	0.6915	10	7	3.0	0	2	21.29999161
281 1.2861 16300 0.7215 12 12 9.5 1 25 6.49083996 282 5.5556 16500 0.7215 7 7 5.0 1 7 12.49996758 283 7.4951 30000 0.5815 12 7 11.0 1 15 27.00002480 284 22.1090 62500 0.4415 7 7 9.5 1 11 53.50004959 285 9.0580 58500 0.4415 10 10 9.5 1 25 52.49994659 286 11.5380 40900 0.5215 7 7 9.5 1 19 38.39997864 287 6.0468 16308 0.6915 0 10 7.5 1 4 13.89194489 288 1.3653 9300 0.7515 7 7.5 1 14 3.89999294 289 16.5500 35700 0.5515 10 9 7.5 1 19 34.19999695 290 8.7719 35700 0.	279	7.0252	26201	0.6215	7	3	9.5	1	19	17.20101547
282 5.5556 16500 0.7215 7 7 5.0 1 7 12.49996758 283 7.4951 30000 0.5815 12 7 11.0 1 15 27.00002480 284 22.1090 62500 0.4415 7 7 9.5 1 11 53.50004959 285 9.0580 58500 0.4415 10 10 9.5 1 25 52.49994659 286 11.5380 40900 0.5215 7 7 9.5 1 19 38.39997864 287 6.0468 16308 0.6915 0 10 7.5 1 4 13.89194489 288 1.3653 9300 0.7515 7 7.55 1 14 3.89999294 289 16.5500 35700 0.5515 10 9 7.5 1 19 34.19999695 290 8.7719 35700 0.6400 9 9 11.0 1 18 19.70007896 291 9.6354 24500 0	280	3.2788	11920	0.7515	3	3	7.5	1	25	8.56002617
283 7.4951 30000 0.5815 12 7 11.0 1 15 27.00002480 284 22.1090 62500 0.4415 7 7 9.5 1 11 53.50004959 285 9.0580 58500 0.4415 10 10 9.5 1 25 52.49994659 286 11.5380 40900 0.5215 7 7 9.5 1 19 38.39997864 287 6.0468 16308 0.6915 0 10 7.5 1 4 13.89194489 288 1.3653 9300 0.7515 7 7.5 1 14 3.89999294 289 16.5500 35700 0.5515 10 9 7.5 1 19 34.19999695 290 8.7719 35700 0.6400 9 9 11.0 1 18 19.70007896 291 9.6354 24500 0.6615 12 12 5.0 1 14 18.49995232 292 6.6788 13000 0.7215 12 12 7.5 1 11 10.99997616 293 7.5727 52600 0.4415 12 12 5.0 0 4 43.30001068 </td <td>281</td> <td>1.2861</td> <td>16300</td> <td>0.7215</td> <td>12</td> <td>12</td> <td>9.5</td> <td>1</td> <td>25</td> <td>6.49083996</td>	281	1.2861	16300	0.7215	12	12	9.5	1	25	6.49083996
283 7.4951 30000 0.5815 12 7 11.0 1 15 27.00002480 284 22.1090 62500 0.4415 7 7 9.5 1 11 53.50004959 285 9.0580 58500 0.4415 10 10 9.5 1 25 52.49994659 286 11.5380 40900 0.5215 7 7 9.5 1 19 38.39997864 287 6.0468 16308 0.6915 0 10 7.5 1 4 13.89194489 288 1.3653 9300 0.7515 7 7.5 1 14 3.89999294 289 16.5500 35700 0.5515 10 9 7.5 1 19 34.19999695 290 8.7719 35700 0.6400 9 9 11.0 1 18 19.70007896 291 9.6354 24500 0.6615 12 12 5.0 1 14 18.49995232 292 6.6788 13000 0.7215 12 12 7.5 1 11 10.99997616 293 7.5727 52600 0.4415 12 12 5.0 0 4 43.30001068 </td <td>282</td> <td>5.5556</td> <td>16500</td> <td>0.7215</td> <td>7</td> <td>7</td> <td>5.0</td> <td>1</td> <td>7</td> <td>12.49996758</td>	282	5.5556	16500	0.7215	7	7	5.0	1	7	12.49996758
285 9.0580 58500 0.4415 10 10 9.5 1 25 52.49994659 286 11.5380 40900 0.5215 7 7 9.5 1 19 38.39997864 287 6.0468 16308 0.6915 0 10 7.5 1 4 13.89194489 288 1.3653 9300 0.7515 7 7.5 1 14 3.89999294 289 16.5500 35700 0.5515 10 9 7.5 1 19 34.19999695 290 8.7719 35700 0.6400 9 9 11.0 1 18 19.70007896 291 9.6354 24500 0.6615 12 12 5.0 1 14 18.49995232 292 6.6788 13000 0.7215 12 12 7.5 1 11 10.99997616 293 7.5727 52600 0.4415 12 12 5.0 0 4 43.30001068	283	7.4951	30000	0.5815	12	7	11.0	1	15	27.00002480
286 11.5380 40900 0.5215 7 7 9.5 1 19 38.39997864 287 6.0468 16308 0.6915 0 10 7.5 1 4 13.89194489 288 1.3653 9300 0.7515 7 7.5 1 14 3.89999294 289 16.5500 35700 0.5515 10 9 7.5 1 19 34.19999695 290 8.7719 35700 0.6400 9 9 11.0 1 18 19.70007896 291 9.6354 24500 0.6615 12 12 5.0 1 14 18.49995232 292 6.6788 13000 0.7215 12 12 7.5 1 11 10.99997616 293 7.5727 52600 0.4415 12 12 5.0 0 4 43.30001068	284	22.1090	62500	0.4415	7	7	9.5	1	11	53.50004959
287 6.0468 16308 0.6915 0 10 7.5 1 4 13.89194489 288 1.3653 9300 0.7515 7 7 7.5 1 14 3.89999294 289 16.5500 35700 0.5515 10 9 7.5 1 19 34.19999695 290 8.7719 35700 0.6400 9 9 11.0 1 18 19.70007896 291 9.6354 24500 0.6615 12 12 5.0 1 14 18.49995232 292 6.6788 13000 0.7215 12 12 7.5 1 11 10.99997616 293 7.5727 52600 0.4415 12 12 5.0 0 4 43.30001068	285	9.0580	58500	0.4415	10	10	9.5	1	25	52.49994659
287 6.0468 16308 0.6915 0 10 7.5 1 4 13.89194489 288 1.3653 9300 0.7515 7 7 7.5 1 14 3.89999294 289 16.5500 35700 0.5515 10 9 7.5 1 19 34.19999695 290 8.7719 35700 0.6400 9 9 11.0 1 18 19.70007896 291 9.6354 24500 0.6615 12 12 5.0 1 14 18.49995232 292 6.6788 13000 0.7215 12 12 7.5 1 11 10.99997616 293 7.5727 52600 0.4415 12 12 5.0 0 4 43.30001068			40900	0.5215					19	38.39997864
288 1.3653 9300 0.7515 7 7.5 1 14 3.89999294 289 16.5500 35700 0.5515 10 9 7.5 1 19 34.19999695 290 8.7719 35700 0.6400 9 9 11.0 1 18 19.70007896 291 9.6354 24500 0.6615 12 12 5.0 1 14 18.49995232 292 6.6788 13000 0.7215 12 12 7.5 1 11 10.99997616 293 7.5727 52600 0.4415 12 12 5.0 0 4 43.30001068					0	10			4	13.89194489
289 16.5500 35700 0.5515 10 9 7.5 1 19 34.19999695 290 8.7719 35700 0.6400 9 9 11.0 1 18 19.70007896 291 9.6354 24500 0.6615 12 12 5.0 1 14 18.49995232 292 6.6788 13000 0.7215 12 12 7.5 1 11 10.99997616 293 7.5727 52600 0.4415 12 12 5.0 0 4 43.30001068					7				14	3.89999294
290 8.7719 35700 0.6400 9 9 11.0 1 18 19.70007896 291 9.6354 24500 0.6615 12 12 5.0 1 14 18.49995232 292 6.6788 13000 0.7215 12 12 7.5 1 11 10.99997616 293 7.5727 52600 0.4415 12 12 5.0 0 4 43.30001068					10	9			19	34.19999695
291 9.6354 24500 0.6615 12 12 5.0 1 14 18.49995232 292 6.6788 13000 0.7215 12 12 7.5 1 11 10.99997616 293 7.5727 52600 0.4415 12 12 5.0 0 4 43.30001068	290					9	11.0	1		
292 6.6788 13000 0.7215 12 12 7.5 1 11 10.99997616 293 7.5727 52600 0.4415 12 12 5.0 0 4 43.30001068			24500	0.6615						
293 7.5727 52600 0.4415 12 12 5.0 0 4 43.30001068										
294 7.8125 25360 0.6615 3 7 7.5 1 29 18.76000786	294	7.8125			3	7	7.5	1		18.76000786

005	4 0005	0400		•	•		•	~ 4	4 00000004
295	1.9835	9400 (9	9	7.5	0	21	4.80009604
296	9.5238	26800 (12		11.0	1		21.50000191
297	6.4250	33040 (12	7	7.5	1	19	28.03993797
298	10.9840	26350 (14	12	7.5	1	31	26.00000381
299	12.7660	39000 (7	7	14.0	1	28	27.00000000
300	9.5545	35100 (0.6100	12	12	9.5	1	15	17.79968834
301	5.4967	22502 (0.6615	12	12	11.0	0	27	17.40194511
302	9.7618	21950 (0.6915	12	14	14.0	0	13	19.30999184
303	5.0000	13000 0	0.7515	7	7	7.5	0	4	9.99997997
304	5.9995	18180 (0.7215	12	14	9.0	1	10	11.17998028
305	6.9149	20957	0.6915	10	10	9.0	1	8	18.85695648
306	4.9669	13700 (0.7215	12	12	7.5	0	4	12.30002022
307	2.3896	20000 0	0.6915	7	7	5.0	1	18	13.67711830
308	4.5122	12260 (0.7515	7	7	5.0	1	3	9.55999660
309	9.2308	24850 (0.6615	3	12	7.5	1	11	24.49998474
310	11.4580	29150 (0.5815	12	7	7.5	1	8	23.14999962
311	7.6993	23591 (0.6615	7	7	11.0	1	10	15.59088326
312	4.1830	24717 (0.6615	16	12	11.0	1	33	14.42092419
313	8.3333	30455 (0.6215	12	12	9.0	1	19	17.45490837
314	5.1042	19600 (0.6915	12	12	7.5	1	35	9.80001926
315	8.2271	31875 (0.6400	7	12	5.0	1	21	17.57446480
316	5.6634	24055 (0.6615	14	14	7.5	0	7	16.55500031
317	5.2220	18795 (0.7215	7	10	7.5	0	18	13.29497433
318	7.1900	12198 (0.7515	7	7	7.5	0	4	11.84400272
319	13.9070	52645 (0.4915	12	7	7.5	1	12	46.64506149
320	6.0163	16600 (0.7215	10	7	14.0	0	16	14.69998932
321	7.6782	32590 (0.6215	7	7	7.5	1	14	26.09008026
322	5.3112	10020 (0.7515	3	7	7.5	1	3	9.89999962
323	4.1228	12048 (0.7515	7	7	11.0	0	1	9.04802608
324	7.8125	39750 (0.6215	7	7	11.0	0	27	30.75006485
325	4.6053	15700 (0.7215	10	7	7.5	1	12	8.49993992
326	3.9746	24250 (0.6615	7	7	3.0	0	6	22.24999237
327	15.0630	43210 (0.5215	7	12	14.0	1	9	42.90999985
328	4.5064	37100 (0.6215	12	12	5.0	0	2	33.29999924
329	5.8824	23820 (0.6615	12	7	5.0	0	6	13.81990337
	10.2280	31600 (12	14	5.0	1		23.60000801
331	6.5789	24000 (0.6615	10	10	7.5	1	16	13.00006771
332	8.8145	30750 (14	12	5.0	0		20.74994087
333	2.9528	11050 (7		14.0	0	26	6.30000019
334	4.5173	12239 (7		14.0	0	11	7.78892469
335	5.1282	12870 (14	12	7.5	1		10.47004032
336	4.1451	17200 (10	7	7.5	0		12.00000000
337	8.7912	23980 (10	10	7.5	0		16.97991562

338	7.3061	18600	0.6915	7	12	14.0	1	6	17.89999962
339	6.0069	23920	0.6915	7	10	9.5	1	20	15.53993702
340	8.3333	16084	0.7515	7	7	14.0	1	17	9.88398552
341	11.5290	31100	0.5815	14	14	11.0	1	8	28.59995079
342	6.6667	20460	0.6615	7	7	11.0	1	13	17.66001129
343	8.6806	36000	0.5515	12	12	7.5	1	15	25.99991798
344	3.4680	17302	0.7215	14	12	3.0	0	14	13.60200977
345	3.0321	16450	0.7215	14	7	3.0	0	14	15.80000019
346	13.8070	41170	0.5815	14	16	9.5	1	6	41.09999466
347	6.2174	20130	0.6615	0	0	7.5	1	24	10.77504158
348	4.2308	9200	0.7515	16	12	9.5	1	10	9.00004673
349	11.4700	24751	0.6615	7	7	11.0	1	2	24.39899445
350	12.2450	57300	0.5000	12	17	9.5	1	9	37.30009079
351	9.2105	37200	0.5815	7	7	7.5	1	23	27.99994850
352	6.3309	14000	0.7215	10	12	14.0	1	12	13.70000267
353	7.8039	20610	0.6915	7	3	14.0	0	8	17.20994377
354	7.6754	14800	0.7215	10	7	7.5	1	16	14.00001431
355	15.5820	40005	0.5515	10	14	14.0	1	10	35.75502014
356	9.6436	23750	0.6615	14	7	14.0	1	7	23.49999619
357	12.8860	35300	0.5515	7	12	14.0	1	19	31.99993324
358	6.5511	17350	0.6915	12	12	7.5	1	2	17.14999580
359	8.2500	21650	0.6615	7	7	7.5	1	9	20.25002480
360	1.3792	6740	0.7915	7	7	14.0	0	14	5.48598480
361	5.2632	32275	0.6915	12	14	5.0	1	9	25.07504082
362	10.5260	33220	0.7200	14	7	9.5	1	16	18.21995163
363	10.0000	26500	0.6215	12	12	7.5	1	7	25.99999619
364	12.5480	38700	0.5215	7	12	5.0	1	6	34.50007248
365	4.6207	15400	0.7215	7	7	5.0	1	22	12.39999962
366	1.8540	19007	0.6915	7	7	3.0	0	9	10.78684998
367	7.4266	16771	0.7215	12	7	7.5	0	9	16.32300758
368	13.2980	31100	0.5815	16	7	11.0	1	14	30.50000000
369	26.5780	66300	0.5000	3	3	7.5	1	17	51.29962540
370	13.9590	43550	0.4915	16	12	5.0	0	12	33.04997253
371	13.1260	37250	0.6215	7	7	11.0	0	13	34.75001144
372	7.8883	24900	0.6615	16	7	14.0	0	8	16.40003967
373	8.6560	24200	0.6615	7	14	9.5	1	10	19.70007324
374	3.4109	16200	0.7215	10	10	14.0	0	16	6.60000277
375	4.6256	11431	0.7515	10	10	7.5	0	1	9.02000809
376	4.2105	13200	0.7515	10	10	11.0	0	6	10.40000820
377	4.2708	15420	0.7715	10	10	9.0	1	4	14.51998806
378	3.3424		0.6915	12		14.0	0		17.19999695
379	8.6359		0.4915	10	3	5.0	1		43.00000000
380	6.7581		0.6915	7	7	7.5	1		13.87195969

381	0.5843	7774	0.7715	16	16	11.0	0	7	-0.02905745
382	5.3350	24470	0.6915	7	7	7.5	0	14	16.76994324
383	4.7101	13600	0.7215	7	7	7.5	0	16	7.79999971
384	4.9797	22500	0.7215	7	0	7.5	0	15	14.50006390
385	2.9762	13600	0.7215	7	7	14.0	0	23	7.90000010
386	12.7440	90800	0.4415	7	7	7.5	0	19	79.80001068
387	3.8462	10776	0.7515	10	10	7.5	0	4	7.17597008
388	7.2233	19007	0.7515	10	7	5.0	1	12	17.50698280
389	8.8077	23900	0.6615	12	12	14.0	1	12	20.60000038
390	5.3864	26060	0.6215	7	7	7.5	1	25	18.55991554
391	3.6846	13300	0.7215	7	7	7.5	0	14	9.30000019
392	1.8437	15620	0.7215	7	7	7.5	0	14	5.12000751
393	1.3013	16500	0.7215	7	7	7.5	0	11	14.50003815
394	7.2222	20880	0.6915	14	16	5.0	1	7	19.79999924
395	7.3529	30600	0.6615	14	12	9.5	1	18	18.29994965
396	11.8640	39000	0.6215	7	10	9.0	1	4	33.99993515
397	5.3327	15428	0.7215	7	7	7.5	0	37	11.62793636
398	5.5000	23300	0.6615	7	7	7.5	0	13	11.80004597
399	7.2308	42100	0.5215	16	16	9.5	1	14	39.09997559
400	7.0000	36430	0.6400	12	7	9.5	1	17	18.43007088
401	7.2137	26000	0.6915	7	7	9.5	1	5	21.00000000
402	4.5000	62060	0.7515	7	7	7.5	0	2	59.00000000
403	8.8632	28300	0.6215	12	12	9.5	1	0	25.29999924
404	9.3333	24149	0.6615	12	10	7.5	1	3	23.24899101
405	3.8263	28141	0.6615	12	10	7.5	1	21	24.92808723
406	5.4448	23057	0.6615	10	10	7.5	1	20	14.78198814
407	8.7634	28900	0.6215	3	7	7.5	1	19	18.90002823
408	8.4000	24000	0.6615	12	10	9.5	1	4	21.00000000
409	5.1020	13900	0.7215	12	12	7.5	0	19	10.00000954
410	7.4101	31810	0.6915	12	12	5.0	1	11	29.30997467
411	5.3527	19840	0.6915	7	7	7.5	0	14	13.14003181
412	19.5620	25490	0.6615	16	17	14.0	1	8	25.08999443
413	5.0783	20800	0.6915	12	12	7.5	0	13	14.59993172
414	0.5128	2400	0.8015	10	16	7.5	1	24	1.20000124
415	5.4020	32650	0.5815	10	10	14.0	1	1	32.00000381
416	7.8646	16370	0.7215	12	16	11.0	1	1	16.11997032
417	6.0531	35500	0.5515	7	7	14.0	0	3	26.50002289
418	5.0000	15100	0.7515	7	7	3.0	0	4	12.75005531
419	7.6829	14100	0.7515	7	9	3.0	0	21	12.89999962
420	6.0386	19600	0.7215	7	3	14.0	0	10	10.69997501
421	5.8510	19434	0.7215	7	7	5.0	1	13	14.43403149
422	6.7416	23882	0.7215	7	7	9.5	1	9	23.70899963
423	8.1081	17300	0.7215	7	7	7.5	0	14	15.10000420

424	5.3061	19772	0.7215	7	7	7.5	0	2	18.19997597
425	7.2709	35641	0.6215	7	7	5.0	1	21	22.64105606
426	8.1776	34220	0.5815	7	7	7.5	1	22	21.64007950
427	7.1006	30000	0.5815	12	16	11.0	1	14	23.99998474
428	6.5844	18000	0.6915	12	12	7.5	1	7	16.00001526
429	7.8529	21025	0.6615	14	12	7.5	1	2	21.02499962
430	11.9290	23600	0.6615	14	7	9.5	1	5	23.60000038
431	18.0000	22800	0.6615	12	12	7.5	0	12	22.79999924
432	10.0220	35910	0.5815	7	7	7.5	1	1	35.90999985
433	9.3333	21700	0.6615	7	7	5.0	1	12	21.70000076
434	6.0850	21823	0.7515	7	7	7.5	1	4	21.82299995
435	5.7054	31000	0.6615	10	7	11.0	1	9	31.00000000
436	9.1185	15300	0.7215	7	7	7.5	1	9	15.30000019
437	7.2072	12925	0.7215	9	3	7.5	1	6	12.92500019
438	5.3146	15830	0.7515	12	7	5.0	0	5	15.82999992
439	8.2828	30200	0.6915	12	12	7.5	1	5	30.20000076
440	7.0578	16600	0.7215	10	7	5.0	0	8	16.60000038
441	6.1659	11000	0.7515	7	7	7.5	1	2	11.00000000
442	2.7000	15000	0.7215	7	10	3.0	0	6	15.00000000
443	7.6628	20528	0.7215	7	7	11.0	0	0	20.52799988
444	1.8491	13126	0.7515	9	9	14.0	0	3	13.12600040
445	3.8462	15550	0.7215	7	14	7.5	1	7	15.55000019
446	9.0543	18010	0.7215	3	12	7.5	1	3	18.01000023
447	9.3750	18874	0.7215	10	10	14.0	0	10	18.87400055
448	8.3333	24800	0.6615	12	12	14.0	1	3	24.79999924
449	9.3733	17500	0.6915	12	17	5.0	1	2	17.50000000
450	4.4818	16150	0.7215	12	12	7.5	1	12	16.14999962
451	5.3476	15189	0.7215	7	3	3.0	0	15	15.18900013
452	3.2027	6000	0.7815	7	7	14.0	0	5	6.00000000
453	12.8010	37250	0.5515	10	12	9.5	1	4	37.25000000
454	6.9103	27760	0.6215	10	10	7.5	1	10	27.76000023
455	4.2293	9090	0.7715	7	7	3.0	0	1	9.09000015
456	4.4479	14500	0.7215	12	7	7.5	1	8	14.50000000
457	8.0523	19700	0.7215	7	7	14.0	1	20	19.70000076
458	7.5057	16788	0.6915	10	7	14.0	1	4	16.78800011
459	7.4747	18520	0.6915	10	10	11.0	1	7	18.52000046
460	6.3218	20950	0.6915	16	10	9.5	1	10	20.95000076
461	2.1354	7574	0.8015	7	3	11.0	0	3	7.57399988
462	4.2092	10027	0.7715	7	7	3.0	0	5	10.02700043
463	0.7595	5000	0.9415	12	12	7.5	0	10	5.00000000
464	4.8077	7040	0.7915	12	7	3.0	0	0	7.03999996
465	12.7880	40800	0.5215	10	7	7.5	1	3	40.79999924
466	7.1429	16050	0.7215	12	12	11.0	0	10	16.04999924

167	15.1520	33100 0.583	.5 10	7	11.0	1	2	33.09999847
468	7.9082	33856 0.72			9.5	1		33.85599899
469	6.9728	20500 0.691			7.5	1		20.50000000
470	4.9181	28600 0.583			5.0	1	0	28.60000038
471	8.3112	18750 0.691			11.0	0	10	18.7500000
472	7.1429	20300 0.72			9.5	1	5	20.29999924
473	5.6889	13420 0.72		•	5.0	0	0	13.42000008
474	7.0833	18400 0.72			5.0	0	0	18.39999962
475	5.6922	16682 0.723			7.5	0	19	16.68199921
476	11.4000	32685 0.623		·	7.5	1		32.68500137
477	1.4152	7050 0.801			9.5	1	12	7.05000019
478	2.7507	10867 0.783			9.5	1	5	10.86699963
479	6.6182	18220 0.72			9.5	1	5	18.21999931
480	9.2725	26613 0.693			7.5	0	5	26.61300087
	12.2870	25000 0.621		·				25.00000000
481					7.5	1 1	10	
482	2.8549	15700 0.751			7.5		0	15.69999981
483	7.9709	40250 0.523			5.0	1	4	40.25000000
484	19.4440	73600 0.443			11.0	0	3	73.59999847
485	1.4806	10592 0.753			7.5	1	2	10.59200001
486	1.8918	8000 0.751			3.0	0	1	8.00000000
487	6.9215	13400 0.721			7.5	1	0	13.39999962
488	10.6920	23700 0.661			14.0	1	1	
489	9.9474	18900 0.691			11.0	1	1	
490	19.0000	48300 0.461			9.5	1	6	48.29999924
491	7.4882	24470 0.661			9.5	1		24.46999931
492	9.2590	28630 0.623			7.5	1	6	28.62999916
493	11.3220	25320 0.623			5.0	1	9	25.31999969
494	6.4470	13530 0.753			7.5	1	14	13.52999973
495	6.5778	14800 0.723			9.0	1		14.80000019
496	6.1000	17400 0.751			7.5	0	8	17.39999962
497	4.2308	15980 0.783			3.0	0	0	15.97999954
498	2.2170	16576 0.72			7.5	0	1	16.57600021
499	6.5189	21850 0.693			11.0	1		21.85000038
500	6.4923	14600 0.723			14.0	1		14.60000038
	11.3640	21600 0.663			7.5	1		21.60000038
502	9.8765	24000 0.663			7.5	1		24.00000000
503	7.6576	20883 0.693			7.5	1		20.88299942
504	8.3017	19500 0.693			14.0	0		19.50000000
505	14.1140	42800 0.623			11.0	1		42.79999924
	16.0000	41500 0.523			7.5	0		41.50000000
	11.2910	18965 0.693			14.0	1		18.96500015
508	2.3395	16100 0.72			9.5	1		16.10000038
509	7.7994	14700 0.723	.5 12	17	7.5	1	10	14.69999981

510	6.0000	18800 0.7215	7	7 7	.5 1	30	18.79999924
511	6.6893	14750 0.7515	10	7 11	.0 1	1	14.75000000
512	8.5366	21000 0.6915	12	7 14	.0 1	5	21.00000000
513	13.8300	35400 0.6215	0	7 7	.5 1	8	35.40000153
514	1.4800	10700 0.7515	7	7 7	.5 0	0	10.69999981
515	8.5714	24500 0.6615	7	7 9	.5 1	4	24.50000000
516	8.2299	17045 0.7215	7	7 9	.5 1	2	17.04500008
517	8.3877	18800 0.6915	7	7 7	.5 1	30	18.79999924
518	7.3651	14000 0.7215	10	7 14	.0 1	25	14.00000000
519	3.4415	18214 0.7215	7	0 3	.0 0	3	18.21400070
520	3.3537	20177 0.7515	7	7 7	.5 1	20	20.17700005
521	2.9762	8300 0.7815	0	7 7	.5 1	20	8.30000019
522	5.1810	14200 0.7515	14	9 7	.5 1	0	14.19999981
523	10.2930	21768 0.6915	12	12 7	.5 0	15	21.76799965
524	13.2430	29553 0.5815	10	7 14	.0 1	10	29.55299950
525	3.6458	4350 0.9415	7	7 7	.5 0	4	4.34999990
526	10.4070	24000 0.6615	7	7 11	.0 1	3	24.00000000
527	8.2117	18300 0.6915	7	7 7	.5 1	10	18.29999924
528	8.6735	17200 0.7215	7	3 7	.5 1	9	17.20000076
529	8.3208	16476 0.6915	7	7 14	.0 0	7	16.47599983
530	4.2870	13400 0.7515	0	0 14	.0 0	12	13.39999962
531	10.5000	44988 0.5215	3	3 14	.0 0	0	44.98799896
532	7.9787	18200 0.6915	12	12 9	.0 1	16	18.20000076
533	11.8140	28000 0.6215	12	12 14	.0 1	4	28.00000000
534	6.1111	11550 0.7515	12	12 7	.5 1	7	11.55000019
535	12.5780	28450 0.6215	12	7 14	.0 1	7	28.45000076
536	11.2440	15096 0.7515	7	10 7	.5 1	14	15.09599972
537	2.7408	8009 0.7815	7	7 14	.0 0	2	8.00899982
538	4.4444	10040 0.7515	0	0 3	.0 1	20	10.03999996
539	5.8267	16700 0.7215	12	12 7	.5 1	5	16.70000076
540	2.3478	8400 0.7815	12	7 3	.0 0	10	8.39999962
541	4.4755	13000 0.7215	0	0 3	.0 0	20	13.00000000
542	8.4986	17970 0.7215	7	7 7	.5 1	10	17.96999931
543	7.1825	18450 0.7215	14	17 5	.0 0	8	18.45000076
544	10.8700	31000 0.6615	12	7 14	.0 1	11	31.00000000
545	7.1222	24135 0.7215	10	7 7	.5 1	3	24.13500023
546	10.6592	31700 0.5815	12	12 7	.5 0	6	31.70000076
547	3.2762	10190 0.7915	3	3 14	.0 0	4	10.18999958
548	7.7521	21574 0.7215	10	10 14	.0 0	4	21.57399940
549	11.9450	26680 0.6215	3	3 7	.5 1	9	26.68000031
550	4.6154	17700 0.7515	7	9 11	.0 1	10	17.70000076
551	13.0210	29400 0.6215	12	12 14	.0 1	3	29.39999962
552	2.6667	22159 0.7515	7	7 7	.5 0	2	22.15900040

553	8.8333	35000	0.5815	12	12	11.0	0	2	35.00000000
554	2.3669	8630	0.7915	16	16	5.0	1	0	8.63000011
555	5.0000	17080	0.7515	7	0	14.0	1	8	17.07999992
556	7.4597	32500	0.7215	10	7	14.0	1	6	32.50000000
557	7.7519	16000	0.7215	7	7	11.0	1	15	16.00000000
558	5.4054	18850	0.7515	12	10	14.0	1	15	18.85000038
559	6.1239	17500	0.6915	9	9	9.5	1	9	17.50000000
560	8.3369	19392	0.6915	7	12	14.0	0	8	19.39200020
561	7.1277	14450	0.7215	7	10	7.5	1	18	14.44999981
562	6.1204	21800	0.6915	0	0	7.5	1	3	21.79999924
563	3.1111	7700	0.7515	7	7	14.0	1	10	7.69999981
564	12.1610	31800	0.5815	7	7	11.0	0	6	31.79999924
565	5.3846	17258	0.7515	7	7	9.5	1	20	17.25799942
566	3.9838	13399	0.7515	10	12	9.5	0	8	13.39900017
567	7.4697	16073	0.7215	12	16	11.0	0	3	16.07299995
568	11.4110	23260	0.6615	7	7	7.5	1	4	23.26000023
569	12.9360	37300	0.5515	12	12	14.0	1	13	37.29999924
570	5.6122	11000	0.7515	12	7	11.0	1	4	11.00000000
571	6.8099	13075	0.7515	7	7	14.0	1	17	13.07499981
572	8.5066	13700	0.7215	7	7	9.5	1	4	13.69999981
573	5.5080	25100	0.6615	7	10	5.0	0	0	25.10000038
574	7.2285	18600	0.6915	12	16	5.0	1	15	18.60000038
575	9.4545	29000	0.6215	16	16	9.5	0	11	29.00000000
576	8.9835	19237	0.6915	7	7	9.5	1	23	19.23699951
577	5.9846	19855	0.7215	12	14	7.5	1	1	19.85499954
578	3.9629	9450	0.7515	12	7	9.5	0	5	9.44999981
579	7.0575	30000	0.5815	7	7	7.5	0	1	30.00000000
580	7.1565	15000	0.7215	10	10	14.0	1	5	15.00000000
581	4.0145	24701	0.6615	12	12	9.5	1	3	24.70100021
582	3.8829	15900	0.7215	10	14	11.0	0	3	15.89999962
583	7.9787	16240	0.7215	7	7	11.0	0	19	16.23999977
584	5.0366	21100	0.7515	12	12	9.5	1	20	21.10000038
585	7.0769	23000	0.6615	12	12	7.5	1	5	23.00000000
586	3.6184	6340	0.7715	7	7	14.0	0	0	6.34000015
587	13.4660	42250	0.4915	10	10	5.0	1	3	42.25000000
588	14.5310	14694	0.7215	12	10	11.0	1	3	14.69400024
589	6.8000	21417	0.7215	12	12	9.5	1	7	21.41699982
590	6.6667	20200	0.6615	7	12	7.5	1	7	20.20000076
591	5.9172	12090	0.7215	7	7	9.5	1	1	12.09000015
592	10.2400	24760	0.6615	12	7	5.0	1	13	24.76000023
593	8.1566	23000	0.6915	7	3	3.0	0	0	23.00000000
594	6.6775	19365	0.7215	3	3	11.0	1	0	19.36499977
595	0.9615	5550	0.9415	7	7	3.0	0	12	5.55000019

596	16.9070	68035	0.4415	7	3	7.5	1	0	68.03500366
597	13.5700	29300	0.6215	10	14	7.5	1	5	29.29999924
598	8.9329	18500	0.6915	7	7	7.5	1	45	18.50000000
599	4.7372	22582	0.7215	17	7	11.0	0	10	22.58200073
600	8.5106	21500	0.7215	7	7	7.5	1	2	21.50000000
601	5.2511	28070	0.7515	7	7	7.5	0	3	28.06999969
602	21.7860	50300	0.4415	12	12	14.0	1	1	50.29999924
603	7.9125	23500	0.6615	12	12	14.0	1	5	23.50000000
604	7.1083	15500	0.7515	7	9	14.0	0	10	15.50000000
605	5.0434	13440	0.7715	7	0	5.0	0	4	13.43999958
606	2.2442	8100	0.7815	12	12	11.0	0	7	8.10000038
607	8.5069	9800	0.7515	7	12	9.5	1	9	9.80000019
608	7.5758	20300	0.6915	7	12	5.0	1	5	20.29999924
609	5.8824	15000	0.7515	7	7	14.0	1	4	15.00000000
610	40.4410	56100	0.4415	9	9	5.0	1	11	56.09999847
611	6.2339	22846	0.7215	12	7	5.0	1	9	22.84600067
612	9.2971	22225	0.6915	7	12	5.0	1	4	22.22500038
613	0.7038	17635	0.9415	12	7	7.5	1	2	17.63500023
614	2.5425	18500	0.6915	3	12	7.5	0	23	18.50000000
615	5.0833	13390	0.7515	12	12	11.0	0	3	13.39000034
616	7.6843	15150	0.7215	7	7	7.5	1	15	15.14999962
617	4.0625	16200	0.7815	7	3	7.5	0	8	16.20000076
618	6.5106	33920	0.6615	12	12	14.0	1	3	33.91999817
619	2.9510	14000	0.7215	7	12	7.5	0	25	14.00000000
620	5.6738	16736	0.7515	12	3	11.0	1	2	16.73600006
621	12.7660	30650	0.6615	12	12	11.0	1	0	30.64999962
622	6.0000	12400	0.7515	7	7	11.0	0	19	12.39999962
623	9.2955	19022	0.6915	7	10	9.5	1	3	19.02199936
624	5.1324	11203	0.7515	7	7	5.0	0	7	11.20300007
625	9.0659	19876	0.6915	7	14	7.5	1	1	19.87599945
626	11.9310	57000	0.4415	7	12	14.0	1	9	57.00000000
627	6.7164	18290	0.6915	10	10	11.0	1	3	18.29000092
628	4.5851	20220	0.6915	14	12	11.0	1	8	20.21999931
629	9.2567	22150	0.6915	7	7	14.0	1	0	22.14999962
630	8.5656	30623	0.6215	10	10	7.5	1	5	30.62299919
631	6.7407	9380	0.7515	3	3	14.0	1	20	9.38000011
632	9.8788	22000	0.6915	7	7	5.0	1	3	22.00000000
633	9.3750	23675	0.6615	12	10	7.5	1	12	23.67499924
634	6.2770	33671	0.7215	7	7	14.0	1	5	33.67100143
635	6.4241	12367	0.7515	7	7	7.5	0	1	12.36699963
636	8.3718	21950	0.6615	7	7	5.0	0	0	21.95000076
637	12.2200	32000	0.5815	7	7	9.5	1	7	32.00000000
638	3.5612	22610	0.7215	10	10	9.5	1	13	22.61000061

639	8.8670	12092	0.7515	7	7	3.0	0	3	12.09200001
640	1.8515	3777	0.9415	7	7	11.0	0	0	3.77699995
641	8.0769	36000	0.5515	16	14	3.0	0	2	36.00000000
642	8.9796	26900	0.6615	12	16	7.5	0	0	26.89999962
643	6.6618	32242	0.6615	7	7	11.0	1	2	32.24200058
644	11.1070	35020	0.5815	16	17	5.0	1	1	35.02000046
645	14.0770	37600	0.5515	7	7	9.0	1	10	37.59999847
646	0.4121	1500	0.9415	7	7	7.5	1	10	1.50000000
647	23.8100	96000	0.4415	12	12	5.0	1	1	96.00000000
648	9.5745	18150	0.6915	7	7	11.0	0	3	18.14999962
649	1.9286	15500	0.7215	7	7	3.0	0	32	15.50000000
650	2.5783	14000	0.7215	7	7	3.0	0	0	14.00000000
651	7.2274	14756	0.7215	7	7	7.5	1	7	14.75599957
652	8.8000	22000	0.6615	12	10	5.0	1	5	22.00000000
653	7.7500	24466	0.6615	7	7	11.0	1	2	24.46599960
654	14.6880	24400	0.6615	12	12	7.5	1	5	24.39999962
655	10.4870	24000	0.6615	7	7	9.5	1	3	24.00000000
656	4.0253	15500	0.7215	12	9	11.0	0	25	15.50000000
657	11.7650	30800	0.6215	14	12	7.5	0	0	30.79999924
658	9.5238	10660	0.7515	7	7	14.0	1	3	10.65999985
659	6.9079	13350	0.7215	7	7	11.0	0	10	13.35000038
660	5.1510	10090	0.7515	12	3	11.0	0	10	10.09000015
661	20.4960	55600	0.4415	16	14	14.0	1	7	55.59999847
662	13.5550	25700	0.6615	12	12	9.5	1	5	25.70000076
663	14.7960	29000	0.5815	7	3	5.0	1	15	29.00000000
664	1.6905	7286	0.7815	10	7	3.0	0	1	7.28599977
665	7.2296	37752	0.5215	7	7	3.0	0	5	37.75199890
666	4.1152	13072	0.7515	3	3	14.0	0	9	13.07199955
667	2.9990	7044	0.7715	3	3	14.0	0	18	7.04400015
668	8.0492	18200	0.6915	7	7	14.0	1	1	18.20000076
669	8.5770	27000	0.6215	12	7	3.0	0	0	27.00000000
670	9.3235	30300	0.5815	10	12	3.0	0	6	30.29999924
671	4.7059	12000	0.7515	3	7	14.0	0	1	12.00000000
672	9.1346	31500	0.6615	16	17	3.0	0	2	31.50000000
673	7.7670	27092	0.7215	10	10	5.0	1	15	27.09199905
674	4.1269	20968	0.7515	7	7	3.0	0	25	20.96800041
675	10.0000	27000	0.6615	17	7	14.0	1	1	27.00000000
676	4.0727	11225	0.7515	7	10	7.5	1	0	11.22500038
677	7.8529	37700	0.5815	3	3	7.5	0	0	37.70000076
678	7.8168	28200	0.6615	12	16	7.5	1	0	28.20000076
679	9.1667	34000	0.6615	7	12	5.0	0	8	34.00000000
680	29.6440	63200	0.4415	12	7	9.5	1	22	63.20000076
681	4.0761	7500	0.7915	3	3	7.5	1	5	7.50000000

682	8.3620	17410	0.7215	10	10	9.5	1	10	17.40999985
683	12.0620	51000	0.4415	16	17	9.0	1	1	51.00000000
684	2.3251	12916	0.7515	10	7	3.0	0	1	12.91600037
685	10.0100	21900	0.6615	7	7	5.0	1	6	21.89999962
686	5.2734	17640	0.7515	7	7	5.0	0	4	17.63999939
687	10.4170	20000	0.6915	14	16	14.0	0	6	20.00000000
688	7.5000	15000	0.7215	7	7	14.0	1	0	15.00000000
689	6.3521	14060	0.7215	10	12	5.0	0	1	14.06000042
690	3.8071	15825	0.7215	7	14	9.5	0	3	15.82499981
691	9.9099	16510	0.7215	3	16	9.5	1	15	16.51000023
692	2.6701	13000	0.7215	12	12	7.5	0	33	13.00000000
693	4.3956	10000	0.7515	7	7	5.0	1	2	10.00000000
694	7.9710	22000	0.6615	12	12	7.5	1	1	22.00000000
695	15.4290	29800	0.5815	7	7	7.5	1	10	29.79999924
696	1.9854	15000	0.7215	7	7	5.0	1	0	15.00000000
697	7.2562	22300	0.7215	10	14	9.5	1	14	22.29999924
698	7.0352	14550	0.7215	3	16	7.5	1	15	14.55000019
699	8.1347	19730	0.6915	14	12	7.5	1	15	19.72999954
700	11.9810	35000	0.5515	12	12	7.5	1	10	35.00000000
701	5.9922	21014	0.6615	7	3	7.5	1	6	21.01399994
702	4.1458	10876	0.7515	14	7	7.5	0	18	10.87600040
703	8.5102	27850	0.6215	12	10	7.5	0	15	27.85000038
704	2.9631	9560	0.7515	0	3	3.0	0	30	9.56000042
705	8.8149	30300	0.6215	7	7	7.5	0	15	30.29999924
706	2.4955	7720	0.7815	7	7	7.5	0	10	7.71999979
707	4.8843	10550	0.7515	10	7	7.5	1	0	10.55000019
708	10.2000	24106	0.6615	12	7	9.5	1	0	24.10600090
709	10.0000	22995	0.6615	12	14	9.5	1	4	22.99500084
710	5.3571	6000	0.8015	12	12	9.5	1	0	6.00000000
711	9.7959	24350	0.6615	14	14	9.5	1	3	24.35000038
712	1.3741	7608	0.7715	7	7	7.5	0	20	7.60799980
713	3.4630	28200	0.7215	7	7	3.0	0	3	28.20000076
714	5.0408	16150	0.7215	3	7	3.0	0	1	16.14999962
715	16.6670	51200	0.4415	7	10	7.5	1	5	51.20000076
716	4.3294	12646	0.7515	7	7	5.0	1	7	12.64599991
717	10.1930	19000	0.6915	7	7	11.0	1	6	19.00000000
718	7.5833	19000	0.7215	7	7	7.5	1	2	19.00000000
719	4.1204	14400	0.7515	3	3	7.5	0	0	14.39999962
720	4.8077	7232	0.9415	3	7	11.0	1	10	7.23199987
721	3.1531	21943	0.7515	7	10	9.5	1	6	21.94300079
722	19.0000	47500	0.4615	7	10	7.5	1	4	47.50000000
723	6.0535	28900	0.6215	12	7	7.5	1	8	28.89999962
724	3.7875	12400	0.7715	7	7	7.5	0	18	12.39999962

```
0 7.5
725
     2.9287
               6531 0.7815
                                    0
                                                         0
                                                               7 6.53100014
726
     9.2972
              22422 0.6915
                                    3
                                              7 11.0
                                                              15 22.42200089
                                                         1
     9.3827
                                    7
                                              7 11.0
727
              22200 0.6615
                                                         1
                                                               7 22.20000076
728 26.5310
              77000 0.4415
                                    7
                                             14 14.0
                                                         1
                                                               8 77.00000000
729 40.5090
              88000 0.4415
                                   10
                                             10 14.0
                                                         1
                                                               8 88.00000000
730 15.1600
              26040 0.6215
                                   12
                                             10 11.0
                                                               3 26.04000092
731 18.9640
              63500 0.4415
                                    7
                                              7
                                                 7.5
                                                              10 63.50000000
                                                 7.5
732
     5.4152
              12100 0.7515
                                   10
                                             10
                                                               9 12.10000038
733
     1.9988
              17505 0.7515
                                   12
                                              7
                                                 7.5
                                                              24 17.50499916
                                                         1
     8.0000
                                              7
                                                 7.5
734
              18000 0.6915
                                   10
                                                         0
                                                              12 18.00000000
735 11.1530
                                   12
                                             12 11.0
                                                               2 28.06900024
              28069 0.6615
                                                         1
736
     5.9524
              14000 0.7515
                                   12
                                             14 14.0
                                                               6 14.00000000
                                                         1
     2.1194
                                              3
                                                 7.5
737
               8117 0.7515
                                   10
                                                                  8.11699963
                                                         1
                                    7
                                              7
                                                 5.0
738
     3.8384
              11895 0.7715
                                                              17 11.89500046
                                                         1
739 17.3610
                                   16
                                             16
                                                 5.0
                                                               7 45.25000000
              45250 0.4915
740
     8.0092
              31106 0.6915
                                    7
                                             10
                                                 9.5
                                                               6 31.10600090
                                                         1
741
     3.0000
               4000 0.8015
                                   12
                                              7
                                                 9.5
                                                         1
                                                                  4.0000000
                                    7
                                              7
                                                 7.5
742 10.5890
              40500 0.5815
                                                         1
                                                               5 40.50000000
743 10.9130
              21620 0.7215
                                   10
                                              7
                                                 7.5
                                                         1
                                                               7 21.62000084
                                                 7.5
744
     5.6033
              23426 0.7215
                                    0
                                              0
                                                         1
                                                              11 23.42600060
                                    3
                                              3 11.0
                                                              14 26.00000000
745
     7.9365
              26000 0.6615
                                                         1
746
     2.9476
               7840 0.9415
                                    7
                                              0
                                                 9.5
                                                                  7.84000015
                                                 7.5
747
     2.0562
               6800 0.7915
                                    7
                                              3
                                                                   6.80000019
748
                                    7
     1.3013
               5330 0.7915
                                             12 14.0
                                                                  5.32999992
                                                         0
749
     9.2715
              28200 0.6215
                                   10
                                             10
                                                 9.5
                                                         1
                                                               5 28.20000076
750
     4.8638
              10000 0.7715
                                   12
                                             12
                                                 7.5
                                                              14 10.00000000
                                                         0
                                                7.5
751
     1.0898
               9952 0.7515
                                   10
                                              3
                                                                  9.95199966
                                                         0
752 12.4400
              24984 0.6215
                                   12
                                             12 14.0
                                                              15 24.98399925
                                                         1
753
     6.0897
                                    7
                                              7 11.0
              28363 0.6915
                                                         1
                                                              12 28.36300087
           lwage expersq loghours d_hours
                                                    sample
1
     1.21015370
                      196 7.383989
                                           1
                                                    prueba
2
     0.32851210
                       25 7.412160
                                           1
                                             entrenamiento
3
     1.51413774
                      225 7.590852
                                           1
                                                    prueba
4
     0.09212332
                       36 6.122493
                                           1
                                                    prueba
5
     1.52427220
                       49 7.357556
                                           1
                                            entrenamiento
     1.55648005
6
                    1089 7.616776
                                             entrenamiento
7
                                           1
     2.12025952
                      121 7.272398
                                                    prueba
8
     2.05963421
                    1225 6.927558
                                           1
                                                    prueba
9
     0.75433636
                      576 7.284821
                                          1
                                                    prueba
10
     1.54489934
                     441 7.377759
                                           1
                                            entrenamiento
11
     1.40192163
                      225 7.585281
                                           1
                                                    prueba
12
                      196 7.580700
                                           1
     1.52427220
                                                    prueba
13
     0.73395324
                        0 5.480639
                                           1
                                                    prueba
```

14	0.81836909	196	6.904751	1	prueba
15	1.30283117	36	7.521859	1	${\tt entrenamiento}$
16	0.29802838	81	7.109879	1	prueba
17	1.16760957	400	7.244228	1	prueba
18	1.64383936	36	6.461468	1	${\tt entrenamiento}$
19	0.69314718	529	7.600902	1	${\tt entrenamiento}$
20	2.02193165	81	7.188413	1	${\tt entrenamiento}$
21	1.25424755	25	7.703008	1	${\tt entrenamiento}$
22	1.27295768	121	7.426549	1	prueba
23	1.17865503	324	7.377759	1	prueba
24	1.17865503	225	6.684612	1	${\tt entrenamiento}$
25	0.76755869	16	7.578145	1	prueba
26	1.33181179	441	6.492240	1	${\tt entrenamiento}$
27	1.38629436	961	6.263398	1	${\tt entrenamiento}$
28	1.55326962	81	7.551712	1	prueba
29	1.98181486	49	7.323831	1	prueba
30	1.76936042	49	5.846439	1	${\tt entrenamiento}$
31	0.43080789	1024	6.946976	1	prueba
32	0.89975482	121	6.595781	1	${\tt entrenamiento}$
33	1.76662970	256	7.539027	1	prueba
34	1.27295768	196	7.426549	1	prueba
35	1.33678889	729	7.640604	1	prueba
36	0.90170485	0	6.536692	1	prueba
37	0.86512369	289	8.345218	1	prueba
38	1.51184714	784	7.698483	1	prueba
39	1.72602916	576	7.576610	1	${\tt entrenamiento}$
40	2.68314242	121	7.171657	1	${\tt entrenamiento}$
41	0.98529428	1	4.718499	1	${\tt entrenamiento}$
42	1.36593854	196	6.794587	1	${\tt entrenamiento}$
43	0.94503367	36	6.368187	1	prueba
44	1.51237619	100	6.173786	1	${\tt entrenamiento}$
45	0.69314718	36	7.549609	1	prueba
46	1.24478841	16	6.356108	1	prueba
47	0.70116490	100	7.628518	1	prueba
48	1.51986325	484	7.592870	1	entrenamiento
49	0.82096857	256	7.878534	1	entrenamiento
50	0.96983153	36	5.480639	1	prueba
51	0.82850820	144	7.067320	1	prueba
52	0.09430964	1024	8.199739	1	entrenamiento
53	0.16254389	225	5.828946	1	entrenamiento
54	0.47000363	289	6.214608	1	${\tt entrenamiento}$
55	0.62924844	1156	7.377134	1	entrenamiento
56	1.39716017	81	7.512071	1	entrenamiento

57	2.26544380	1369	7.560080	1	entrenamiento
58	2.08454108	100	7.626570	1	prueba
59	1.52583885	1225	7.745868	1	${\tt entrenamiento}$
60	0.76216006	36	5.278115	1	${\tt entrenamiento}$
61	1.48160458	361	7.824046	1	prueba
62	1.26282644	100	7.590852	1	${\tt entrenamiento}$
63	0.99967557	121	7.517521	1	${\tt entrenamiento}$
64	1.83258152	225	5.768321	1	${\tt entrenamiento}$
65	2.47930765	144	6.037871	1	prueba
66	1.27901530	144	7.539027	1	prueba
67	1.93793559	196	4.276666	1	${\tt entrenamiento}$
68	1.07045281	121	4.787492	1	${\tt entrenamiento}$
69	1.12392259	81	7.541683	1	${\tt entrenamiento}$
70	1.32175589	576	5.480639	1	${\tt entrenamiento}$
71	1.74499977	144	7.455298	1	${\tt entrenamiento}$
72	1.30174363	169	7.522941	1	prueba
73	1.64186645	841	7.617268	1	prueba
74	2.10702014	121	6.410175	1	prueba
75	1.46706760	169	7.050123	1	entrenamiento
76	1.60581136	361	7.699842	1	${\tt entrenamiento}$
77	-1.02973938	4	5.529429	1	prueba
78	1.08768618	576	5.820083	1	prueba
79	0.00000000	81	4.499810	1	${\tt entrenamiento}$
80	0.93820870	36	7.068172	1	prueba
81	-0.15059038	484	5.918894	1	prueba
82	0.00000000	900	3.401197	1	${\tt entrenamiento}$
83	1.07367051	100	7.495542	1	${\tt entrenamiento}$
84	1.26584840	36	5.641907	1	${\tt entrenamiento}$
85	0.48636898	841	6.579251	1	prueba
86	2.12025952	841	7.272398	1	prueba
87	1.12985253	1296	7.649693	1	${\tt entrenamiento}$
88	0.99325180	361	6.907755	1	prueba
89	1.65862799	64	6.858565	1	prueba
90	0.34741220	169	7.253470	1	${\tt entrenamiento}$
91	1.56832421	256	7.649693	1	${\tt entrenamiento}$
92	0.51084560	121	4.787492	1	${\tt entrenamiento}$
93	0.11484543	225	8.006368	1	${\tt entrenamiento}$
94	-0.69314718	36	6.907755	1	prueba
95	-0.33645228	169	5.817111	1	prueba
96	1.02822554	484	7.103322	1	${\tt entrenamiento}$
97	1.58068860	576	6.895683	1	${\tt entrenamiento}$
98	0.55589461	4	7.855932	1	prueba
99	0.90142071	36	7.615791	1	prueba

100	0.88430458	4	6.023448	1	prueba
101	0.42820460	4	6.661855	1	prueba
102	1.05841506	196	7.235619	1	${\tt entrenamiento}$
103	0.87833959	81	7.279319	1	${\tt entrenamiento}$
104	1.65490830	121	7.450080	1	${\tt entrenamiento}$
105	1.32175589	81	6.684612	1	prueba
106	0.32851210	36	5.886104	1	${\tt entrenamiento}$
107	1.38629436	361	7.600902	1	prueba
108	1.17288458	676	7.069874	1	prueba
109	1.22418714	361	7.629490	1	${\tt entrenamiento}$
110	0.28765708	9	6.802395	1	${\tt entrenamiento}$
111	2.23026180	49	5.370638	1	prueba
112	1.50407743	784	7.600902	1	${\tt entrenamiento}$
113	1.53115201	169	6.629363	1	${\tt entrenamiento}$
114	1.37515759	81	7.142037	1	prueba
115	1.76026881	225	7.632401	1	prueba
116	-0.69314718	400	7.154615	1	${\tt entrenamiento}$
117	1.40648913	841	7.447168	1	prueba
118	1.79175949	81	7.600902	1	prueba
119	1.29929209	1	2.484907	1	${\tt entrenamiento}$
120	1.35100389	64	7.331715	1	prueba
121	1.01628089	361	6.329721	1	prueba
122	1.07534361	529	7.629490	1	${\tt entrenamiento}$
123	1.47896469	9	7.508239	1	prueba
124	1.68948674	169	7.426549	1	${\tt entrenamiento}$
125	2.28859782	64	7.272398	1	${\tt entrenamiento}$
126	-1.82263112	289	8.507143	1	${\tt entrenamiento}$
127	-0.96076518	16	7.069874	1	${\tt entrenamiento}$
128	1.29099417	225	7.003065	1	${\tt entrenamiento}$
129	0.86487114	121	7.323831	1	prueba
130	1.54045212	49	6.802395	1	prueba
131	0.61621213	0	6.984716	1	${\tt entrenamiento}$
132	1.64865863	0	6.173786	1	prueba
133	1.19349813	100	5.662960	1	${\tt entrenamiento}$
134	2.14397621	64	7.536364	1	prueba
135	0.72440356	4	6.445720	1	prueba
136	0.94160753	16	5.455321	1	${\tt entrenamiento}$
137	0.78275937	36	7.377759	1	prueba
138	1.83258152	324	6.866933	1	${\tt entrenamiento}$
139	1.20396280	9	4.787492	1	prueba
140	1.49164486	484	7.613325	1	prueba
141	1.89213264	1089	7.500529	1	${\tt entrenamiento}$
142	2.13089490	784	8.034955	1	prueba

143	1.48060405	529	6.813445	1	prueba
144	0.89433134	729	7.517521	1	${\tt entrenamiento}$
145	0.20253254	121	6.664409	1	${\tt entrenamiento}$
146	0.48550782	36	5.991465	1	entrenamiento
147	1.09861231	121	6.907755	1	prueba
148	1.55326962	196	7.551712	1	prueba
149	0.12159797	289	7.479300	1	${\tt entrenamiento}$
150	2.00180435	289	7.303843	1	${\tt entrenamiento}$
151	1.49503660	196	6.606650	1	prueba
152	0.90522981	121	7.506592	1	prueba
153	0.63254756	49	7.150701	1	${\tt entrenamiento}$
154	1.38629436	64	6.109248	1	${\tt entrenamiento}$
155	2.10291386	36	7.107425	1	prueba
156	1.95964396	64	7.346010	1	prueba
157	0.51084560	16	5.192957	1	prueba
158	1.23692393	625	7.644919	1	prueba
159	1.44331253	576	7.580700	1	${\tt entrenamiento}$
160	1.02165926	121	7.272398	1	prueba
161	0.63615346	361	6.677083	1	prueba
162	1.61645329	81	6.900731	1	${\tt entrenamiento}$
163	0.22314355	361	5.075174	1	prueba
164	1.04980707	196	4.653960	1	prueba
165	1.41505194	484	7.090077	1	prueba
166	0.57537663	36	6.109248	1	prueba
167	2.60668159	529	6.903747	1	prueba
168	1.51791453	225	6.958448	1	${\tt entrenamiento}$
169	0.75504160	36	7.028201	1	${\tt entrenamiento}$
170	1.09497237	121	7.517521	1	prueba
171	0.94211435	4	7.554859	1	${\tt entrenamiento}$
172	1.72494280	484	6.887553	1	prueba
173	1.03154612	100	7.748029	1	prueba
174	0.47436908	196	6.993015	1	prueba
175	0.81093019	144	6.684612	1	prueba
176	0.70926660	81	7.114769	1	${\tt entrenamiento}$
177	1.71054947	169	7.054450	1	prueba
178	0.46026888	324	7.728416	1	${\tt entrenamiento}$
179	1.33181179	64	6.269096	1	prueba
180	1.09861231	121	6.907755	1	${\tt entrenamiento}$
181	2.15799856	81	6.253829	1	prueba
182	1.43758130	81	6.633318	1	prueba
183	1.54489934	196	7.560080	1	prueba
184	1.41059673	81	7.106606	1	${\tt entrenamiento}$
185	3.21887589	4	5.298317	1	prueba

186	0.96816188	144	7.816014	1	entrenamiento
187	1.79175949	225	7.919356	1	${\tt entrenamiento}$
188	1.68872952	121	7.607878	1	prueba
189	-0.40917197	49	7.211557	1	${\tt entrenamiento}$
190	0.22314355	81	4.382027	1	${\tt entrenamiento}$
191	0.82215583	361	7.420579	1	${\tt entrenamiento}$
192	1.24170196	121	6.253829	1	${\tt entrenamiento}$
193	1.42712438	64	5.662960	1	prueba
194	1.49709749	169	7.607878	1	${\tt entrenamiento}$
195	0.55961579	16	6.684612	1	prueba
196	1.30002820	49	7.592870	1	prueba
197	1.88442981	361	7.508239	1	prueba
198	0.95551139	196	7.313220	1	prueba
199	1.58208728	196	7.723562	1	${\tt entrenamiento}$
200	1.75561404	9	7.454720	1	${\tt entrenamiento}$
201	1.51310325	81	7.580700	1	prueba
202	2.25189161	49	7.363914	1	prueba
203	2.36443233	49	7.182352	1	${\tt entrenamiento}$
204	0.10535048	196	7.333023	1	entrenamiento
205	1.39972878	841	7.705262	1	prueba
206	0.98846251	361	7.197435	1	${\tt entrenamiento}$
207	1.09064734	196	6.915723	1	prueba
208	1.15461445	256	7.572503	1	prueba
209	1.26694763	100	7.600902	1	${\tt entrenamiento}$
210	2.88519168	144	5.552960	1	prueba
211	1.22888005	576	7.487174	1	${\tt entrenamiento}$
212	1.20396280	36	6.173786	1	prueba
213	1.35738027	81	6.648985	1	${\tt entrenamiento}$
214	0.83772361	196	6.802395	1	prueba
215	0.53696114	676	7.264030	1	prueba
216	0.74872380	49	5.347108	1	${\tt entrenamiento}$
217	2.29587269	16	5.476464	1	${\tt entrenamiento}$
218	1.10780323	225	7.537963	1	${\tt entrenamiento}$
219	0.62084526	529	5.370638	1	${\tt entrenamiento}$
220	-2.05416369	1	7.757906	1	prueba
221	1.89201200	841	7.580700	1	${\tt entrenamiento}$
222	1.72972453	81	6.276643	1	prueba
223	0.46937841	36	5.976351	1	prueba
224	0.98084170	121	6.514713	1	prueba
225	2.06949234	289	7.323171	1	prueba
226	1.67518818	36	6.937314	1	prueba
227	1.38629436	49	7.130899	1	prueba
228	1.79921496	4	7.054450	1	prueba

229	1.83258152	576	4.718499	1	${\tt entrenamiento}$
230	1.09064734	16	5.817111	1	${\tt entrenamiento}$
231	1.44312358	121	7.592870	1	prueba
232	1.25036013	625	6.573680	1	prueba
233	1.60231256	121	7.251345	1	prueba
234	1.01855850	4	7.170120	1	${\tt entrenamiento}$
235	1.29705322	361	7.402452	1	${\tt entrenamiento}$
236	1.68519449	49	7.091742	1	${\tt entrenamiento}$
237	-0.42098489	4	6.192362	1	prueba
238	1.56209469	400	7.638198	1	prueba
239	2.14652753	100	6.265301	1	prueba
240	2.34746289	361	7.450661	1	entrenamiento
241	0.96983153	289	7.190676	1	entrenamiento
242	1.92414641	144	6.369901	1	prueba
243	1.62672758	121	7.226936	1	entrenamiento
244	-0.03926073	36	6.946976	1	entrenamiento
245	1.46014869	100	6.306275	1	prueba
246	1.95539355	16	2.708050	1	entrenamiento
247	0.92635989	4	7.590852	1	prueba
248	2.06619167	169	7.326466	1	prueba
249	1.42284322	441	7.539027	1	entrenamiento
250	2.10103178	81	7.138867	1	entrenamiento
251	2.26146102	16	6.995766	1	prueba
252	0.70131379	4	7.369601	1	entrenamiento
253	2.03101254	361	5.049856	1	prueba
254	1.16236925	16	7.569928	1	prueba
255	0.47000363	81	7.130899	1	entrenamiento
256	1.41059673	196	6.413459	1	entrenamiento
257	0.39305511	36	5.598422	1	prueba
258	1.29099417	576	6.492240	1	prueba
259	0.0000000	1	6.907755	1	entrenamiento
260	0.95712548	169	7.560080	1	entrenamiento
261	0.55961579	9	5.298317	1	entrenamiento
262	1.56861591	100	7.313220	1	prueba
263	1.71018791	256	6.766192	1	prueba
264	1.41059673	81	7.748460	1	prueba
265	0.22314355	361	7.600902	1	prueba
266	0.51084560	16	4.094345	1	prueba
267	1.33239245	100	7.447168	1	prueba
268	0.86018586	25	6.309918	1	prueba
269	2.32277989	49	7.580700	1	entrenamiento
270	1.91959548	9	3.784190	1	entrenamiento
271	1.97610676	1444	7.560080	1	entrenamiento

272	0.89543474	256	7.839919	1	prueba
273	0.18123759	169	5.049856	1	${\tt entrenamiento}$
274	0.49530584	1	6.659294	1	prueba
275	0.57779241	49	8.045588	1	${\tt entrenamiento}$
276	1.07881773	225	7.620705	1	prueba
277	1.60319853	100	7.383989	1	${\tt entrenamiento}$
278	0.62084526	4	5.370638	1	prueba
279	2.08389401	361	7.021084	1	${\tt entrenamiento}$
280	1.37916911	625	6.740519	1	prueba
281	1.11238372	625	8.078688	1	prueba
282	1.06712162	49	7.226936	1	${\tt entrenamiento}$
283	1.11880696	225	6.887553	1	prueba
284	1.58854103	121	7.516433	1	prueba
285	1.39031124	625	7.309212	1	prueba
286	1.71480644	361	6.109248	1	prueba
287	0.20106153	16	7.588830	1	prueba
288	0.98727101	196	7.606885	1	prueba
289	0.98350066	361	6.329721	1	${\tt entrenamiento}$
290	2.23317075	324	7.447168	1	prueba
291	1.14361751	196	7.555905	1	prueba
292	-0.61138290	121	8.212297	1	prueba
293	2.15305209	16	6.984716	1	prueba
294	1.29983735	841	7.494986	1	entrenamiento
295	0.84092045	441	7.592870	1	entrenamiento
296	1.05848444	576	7.516977	1	entrenamiento
297	1.15265846	361	7.364547	1	entrenamiento
298	1.29357588	961	4.564348	1	prueba
299	1.83258152	784	7.560080	1	prueba
300	2.32718015	225	7.431300	1	prueba
301	1.16614628	729	7.370860	1	entrenamiento
302	2.03499317	169	5.843544	1	prueba
303	0.67925107	16	7.327123	1	prueba
304	1.54713690	100	7.306531	1	entrenamiento
305	0.75301856	64	6.896694	1	entrenamiento
306	0.84728360	16	6.396930	1	prueba
307	0.87112600	324	7.880804	1	prueba
308	0.22825047	9	7.672758	1	prueba
309	0.08965783	121	5.768321	1	prueba
310	1.32175589	64	7.377759	1	prueba
311	1.19610190	100	7.791110	1	entrenamiento
312	1.63611877	1089	7.603399	1	entrenamiento
313	1.89201200	361	7.580700	1	entrenamiento
314	1.51830900	1225	7.671827	1	entrenamiento

315	2.47215915	441	7.095893	1	entrenamiento
316	1.32175589	49	7.600902	1	prueba
317	1.47364104	324	7.138867	1	prueba
318	1.36947882	16	4.499810	1	prueba
319	1.20396280	144	7.495542	1	${\tt entrenamiento}$
320	1.19872916	256	6.350886	1	prueba
321	1.27020991	196	7.509335	1	prueba
322	0.47000363	9	4.317488	1	${\tt entrenamiento}$
323	0.79998165	1	7.206377	1	${\tt entrenamiento}$
324	1.56594563	729	7.539027	1	${\tt entrenamiento}$
325	1.75897801	144	7.122867	1	prueba
326	0.85802585	36	6.742881	1	${\tt entrenamiento}$
327	0.69314718	81	5.010635	1	${\tt entrenamiento}$
328	0.64185387	4	7.600902	1	${\tt entrenamiento}$
329	1.63374019	36	7.576610	1	${\tt entrenamiento}$
330	1.70374763	81	7.283448	1	prueba
331	1.84400403	256	7.461640	1	${\tt entrenamiento}$
332	1.96611881	484	7.244228	1	prueba
333	0.86499745	676	7.600902	1	${\tt entrenamiento}$
334	0.93330520	121	7.467371	1	prueba
335	0.77923316	121	7.003974	1	prueba
336	0.95551139	225	7.600902	1	prueba
337	1.31624734	169	7.537430	1	prueba
338	1.47590649	36	5.075174	1	${\tt entrenamiento}$
339	1.49139726	400	7.542213	1	prueba
340	1.45575047	289	7.276556	1	${\tt entrenamiento}$
341	0.51084560	64	7.313220	1	${\tt entrenamiento}$
342	1.18043804	169	6.756932	1	${\tt entrenamiento}$
343	1.68848944	225	7.521859	1	${\tt entrenamiento}$
344	0.79072750	196	7.425358	1	${\tt entrenamiento}$
345	1.40179861	196	5.075174	1	${\tt entrenamiento}$
346	-0.43355602	36	4.682131	1	${\tt entrenamiento}$
347	1.68317151	576	7.460490	1	${\tt entrenamiento}$
348	-1.76667666	100	7.064759	1	${\tt entrenamiento}$
349	3.15559506	4	2.708050	1	${\tt entrenamiento}$
350	2.25952101	81	7.643962	1	prueba
351	1.30692637	529	7.820038	1	${\tt entrenamiento}$
352	0.79849768	144	4.905275	1	${\tt entrenamiento}$
353	0.55904418	64	7.572503	1	${\tt entrenamiento}$
354	0.14790262	256	6.536692	1	${\tt entrenamiento}$
355	1.94449484	100	6.410175	1	prueba
356	1.37833786	49	4.143135	1	prueba
357	3.06474519	361	5.036953	1	${\tt entrenamiento}$

358	-0.74191731	4	6.040255	1	prueba
359	0.76570040	81	6.478510	1	prueba
360	0.61939299	196	6.514713	1	prueba
361	1.46545208	81	7.416378	1	prueba
362	2.18925953	256	7.426549	1	${\tt entrenamiento}$
363	1.02165926	49	5.192957	1	${\tt entrenamiento}$
364	0.97700948	36	7.365813	1	prueba
365	0.91629076	484	7.090077	1	${\tt entrenamiento}$
366	2.90509605	81	6.109248	1	${\tt entrenamiento}$
367	-0.19967119	81	6.304449	1	${\tt entrenamiento}$
368	0.69314718	196	5.703782	1	${\tt entrenamiento}$
369	2.73339295	289	6.882437	1	prueba
370	1.86833465	144	7.390799	1	${\tt entrenamiento}$
371	2.12025952	169	5.703782	1	${\tt entrenamiento}$
372	1.51519322	64	7.532624	1	${\tt entrenamiento}$
373	0.91460931	100	7.497207	1	${\tt entrenamiento}$
374	1.49955606	256	7.669962	1	prueba
375	0.80307722	1	6.984716	1	entrenamiento
376	0.72803164	36	7.209340	1	entrenamiento
377	0.51640999	16	6.285998	1	prueba
378	1.22644830	64	5.863631	1	entrenamiento
379	0.91629076	16	5.298317	1	prueba
380	1.37647128	225	7.623153	1	prueba
381	1.82897496	49	7.133296	1	entrenamiento
382	1.36828315	196	7.580700	1	entrenamiento
383	1.06471074	256	7.600902	1	entrenamiento
384	1.40648913	225	7.580700	1	prueba
385	1.04731894	529	7.600902	1	entrenamiento
386	1.94809341	361	7.357556	1	entrenamiento
387	1.07800138	16	7.110696	1	prueba
388	0.65393847	144	6.659294	1	prueba
389	1.92789161	144	6.173786	1	prueba
390	1.36102784	625	7.561642	1	${\tt entrenamiento}$
391	0.69314718	196	7.600902	1	entrenamiento
392	1.60468662	196	7.654443	1	prueba
393	0.18390365	121	7.416980	1	prueba
394	3.11351538	49	3.871201	1	entrenamiento
395	1.92682922	324	7.490529	1	prueba
396	1.27012563	16	7.247081	1	entrenamiento
397	0.68269271	1369	7.560080	1	${\tt entrenamiento}$
398	1.68106997	169	7.669028	1	${\tt entrenamiento}$
399	0.55629599	196	7.450080	1	prueba
400	1.62822044	289	8.169903	1	entrenamiento

401	0.91629076	25	7.600902	1	${\tt entrenamiento}$
402	1.34155846	4	6.684612	1	${\tt entrenamiento}$
403	0.00000000	0	8.006368	1	${\tt entrenamiento}$
404	1.12223125	9	5.680173	1	prueba
405	0.54017079	441	7.534763	1	prueba
406	1.39150572	400	7.629490	1	${\tt entrenamiento}$
407	1.69717395	361	7.513164	1	prueba
408	3.21887589	16	4.787492	1	prueba
409	0.87116778	361	7.397562	1	${\tt entrenamiento}$
410	1.16732955	121	6.656727	1	prueba
411	1.21698773	196	7.592870	1	${\tt entrenamiento}$
412	0.57537663	64	5.416100	1	prueba
413	1.15161574	169	7.580700	1	${\tt entrenamiento}$
414	0.99425125	576	6.095825	1	prueba
415	0.52632493	1	5.950643	1	prueba
416	-1.54318213	1	7.064759	1	${\tt entrenamiento}$
417	1.91204309	9	7.192934	1	${\tt entrenamiento}$
418	0.55428731	16	7.207860	1	${\tt entrenamiento}$
419	0.91629076	441	6.173786	1	prueba
420	1.50093913	100	7.592870	1	${\tt entrenamiento}$
421	0.94468379	169	7.572503	1	prueba
422	1.24126863	81	3.912023	1	${\tt entrenamiento}$
423	1.56498432	196	6.131226	1	${\tt entrenamiento}$
424	0.83802646	4	6.522093	1	prueba
425	1.66885710	441	7.803843	1	prueba
426	1.76942861	484	7.670429	1	${\tt entrenamiento}$
427	1.22644830	196	7.473069	1	prueba
428	1.40648913	49	6.194405	1	prueba
429	NA	4	NA	0	prueba
430	NA	25	NA	0	entrenamiento
431	NA	144	NA	0	${\tt entrenamiento}$
432	NA	1	NA	0	${\tt entrenamiento}$
433	NA	144	NA	0	prueba
434	NA	16	NA	0	prueba
435	NA	81	NA	0	entrenamiento
436	NA	81	NA	0	entrenamiento
437	NA	36	NA	0	entrenamiento
438	NA	25	NA	0	prueba
439	NA	25	NA	0	entrenamiento
440	NA	64	NA	0	entrenamiento
441	NA	4	NA	0	entrenamiento
442	NA	36	NA	0	entrenamiento
443	NA	0	NA	0	prueba
					-

444	NA	9	NA	0	prueba
445	NA	49	NA	0	${\tt entrenamiento}$
446	NA	9	NA	0	prueba
447	NA	100	NA	0	${\tt entrenamiento}$
448	NA	9	NA	0	${\tt entrenamiento}$
449	NA	4	NA	0	${\tt entrenamiento}$
450	NA	144	NA	0	prueba
451	NA	225	NA	0	${\tt entrenamiento}$
452	NA	25	NA	0	prueba
453	NA	16	NA	0	prueba
454	NA	100	NA	0	${\tt entrenamiento}$
455	NA	1	NA	0	${\tt entrenamiento}$
456	NA	64	NA	0	${\tt entrenamiento}$
457	NA	400	NA	0	prueba
458	NA	16	NA	0	prueba
459	NA	49	NA	0	${\tt entrenamiento}$
460	NA	100	NA	0	prueba
461	NA	9	NA	0	prueba
462	NA	25	NA	0	entrenamiento
463	NA	100	NA	0	entrenamiento
464	NA	0	NA	0	prueba
465	NA	9	NA	0	prueba
466	NA	100	NA	0	entrenamiento
467	NA	4	NA	0	prueba
468	NA	100	NA	0	prueba
469	NA	16	NA	0	entrenamiento
470	NA	0	NA	0	entrenamiento
471	NA	100	NA	0	prueba
472	NA	25	NA	0	prueba
473	NA	0	NA	0	prueba
474	NA	0	NA	0	prueba
475	NA	361	NA	0	entrenamiento
476	NA	4	NA	0	prueba
477	NA	144	NA	0	entrenamiento
478	NA	25	NA	0	entrenamiento
479	NA	25	NA	0	entrenamiento
480	NA	25	NA	0	entrenamiento
481	NA	100	NA	0	entrenamiento
482	NA	0	NA	0	prueba
483	NA	16	NA	0	entrenamiento
484	NA	9	NA	0	entrenamiento
485	NA	4	NA	0	prueba
486	NA	1	NA	0	prueba
					-

487	NA	0	NA	0	entrenamiento
488	NA	1	NA	0	entrenamiento
489	NA	1	NA	0	entrenamiento
490	NA	36	NA	0	${\tt entrenamiento}$
491	NA	144	NA	0	prueba
492	NA	36	NA	0	${\tt entrenamiento}$
493	NA	81	NA	0	prueba
494	NA	196	NA	0	prueba
495	NA	169	NA	0	prueba
496	NA	64	NA	0	${\tt entrenamiento}$
497	NA	0	NA	0	prueba
498	NA	1	NA	0	prueba
499	NA	9	NA	0	prueba
500	NA	169	NA	0	entrenamiento
501	NA	9	NA	0	prueba
502	NA	64	NA	0	prueba
503	NA	64	NA	0	prueba
504	NA	324	NA	0	prueba
505	NA	4	NA	0	prueba
506	NA	9	NA	0	prueba
507	NA	25	NA	0	entrenamiento
508	NA	4	NA	0	entrenamiento
509	NA	100	NA	0	entrenamiento
510	NA	900	NA	0	prueba
511	NA	1	NA	0	entrenamiento
512	NA	25	NA	0	prueba
513	NA	64	NA	0	prueba
514	NA	0	NA	0	prueba
515	NA	16	NA	0	prueba
516	NA	4	NA	0	prueba
517	NA	900	NA	0	prueba
518	NA	625	NA	0	entrenamiento
519	NA	9	NA	0	entrenamiento
520	NA	400	NA	0	prueba
521	NA	400	NA	0	entrenamiento
522	NA	0	NA	0	entrenamiento
523	NA	225	NA	0	entrenamiento
524	NA	100	NA	0	prueba
525	NA	16	NA	0	prueba
526	NA	9	NA	0	entrenamiento
527	NA	100	NA	0	entrenamiento
528	NA	81	NA	0	prueba
529	NA	49	NA	0	prueba
		-0		v	prasba

530	NA	144	NA	0	entrenamiento
531	NA	0	NA	0	${\tt entrenamiento}$
532	NA	256	NA	0	${\tt entrenamiento}$
533	NA	16	NA	0	${\tt entrenamiento}$
534	NA	49	NA	0	prueba
535	NA	49	NA	0	${\tt entrenamiento}$
536	NA	196	NA	0	${\tt entrenamiento}$
537	NA	4	NA	0	prueba
538	NA	400	NA	0	prueba
539	NA	25	NA	0	prueba
540	NA	100	NA	0	prueba
541	NA	400	NA	0	prueba
542	NA	100	NA	0	prueba
543	NA	64	NA	0	entrenamiento
544	NA	121	NA	0	entrenamiento
545	NA	9	NA	0	entrenamiento
546	NA	36	NA	0	prueba
547	NA	16	NA	0	entrenamiento
548	NA	16	NA	0	entrenamiento
549	NA	81	NA	0	entrenamiento
550	NA	100	NA	0	prueba
551	NA	9	NA	0	prueba
552	NA	4	NA	0	entrenamiento
553	NA	4	NA	0	prueba
554	NA	0	NA	0	entrenamiento
555	NA	64	NA	0	prueba
556	NA	36	NA	0	entrenamiento
557	NA	225	NA	0	prueba
558	NA	225	NA	0	entrenamiento
559	NA	81	NA	0	prueba
560	NA	64	NA	0	entrenamiento
561	NA	324	NA	0	entrenamiento
562	NA	9	NA	0	prueba
563	NA	100	NA	0	entrenamiento
564	NA	36	NA	0	entrenamiento
565	NA	400	NA	0	entrenamiento
566	NA	64	NA	0	prueba
567	NA	9	NA	0	entrenamiento
568	NA	16	NA	0	entrenamiento
569	NA	169	NA	0	prueba
570	NA	16	NA	0	entrenamiento
571	NA	289	NA	0	entrenamiento
572	NA	16	NA	0	entrenamiento

573	NA	0	NA	0	prueba
574	NA	225	NA	0	${\tt entrenamiento}$
575	NA	121	NA	0	entrenamiento
576	NA	529	NA	0	prueba
577	NA	1	NA	0	${\tt entrenamiento}$
578	NA	25	NA	0	${\tt entrenamiento}$
579	NA	1	NA	0	prueba
580	NA	25	NA	0	${\tt entrenamiento}$
581	NA	9	NA	0	${\tt entrenamiento}$
582	NA	9	NA	0	prueba
583	NA	361	NA	0	${\tt entrenamiento}$
584	NA	400	NA	0	${\tt entrenamiento}$
585	NA	25	NA	0	prueba
586	NA	0	NA	0	${\tt entrenamiento}$
587	NA	9	NA	0	entrenamiento
588	NA	9	NA	0	entrenamiento
589	NA	49	NA	0	prueba
590	NA	49	NA	0	prueba
591	NA	1	NA	0	entrenamiento
592	NA	169	NA	0	entrenamiento
593	NA	0	NA	0	prueba
594	NA	0	NA	0	entrenamiento
595	NA	144	NA	0	prueba
596	NA	0	NA	0	entrenamiento
597	NA	25	NA	0	entrenamiento
598	NA	2025	NA	0	prueba
599	NA	100	NA	0	prueba
600	NA	4	NA	0	prueba
601	NA	9	NA	0	prueba
602	NA	1	NA	0	prueba
603	NA	25	NA	0	prueba
604	NA	100	NA	0	prueba
605	NA	16	NA	0	entrenamiento
606	NA	49	NA		entrenamiento
607	NA	81	NA	0	entrenamiento
608	NA	25	NA	0	prueba
609	NA	16	NA	0	entrenamiento
610	NA	121	NA	0	prueba
611	NA	81	NA	0	entrenamiento
612	NA	16	NA	0	prueba
613	NA	4	NA	0	prueba
614	NA	529	NA	0	prueba
615	NA	9	NA	0	entrenamiento
-10	1411	9	1411	· ·	511 511 511 511 60

616	NA	225	NA	0	prueba
617	NA	64	NA	0	prueba
618	NA	9	NA	0	prueba
619	NA	625	NA	0	prueba
620	NA	4	NA	0	${\tt entrenamiento}$
621	NA	0	NA	0	${\tt entrenamiento}$
622	NA	361	NA	0	prueba
623	NA	9	NA	0	${\tt entrenamiento}$
624	NA	49	NA	0	prueba
625	NA	1	NA	0	${\tt entrenamiento}$
626	NA	81	NA	0	prueba
627	NA	9	NA	0	prueba
628	NA	64	NA	0	${\tt entrenamiento}$
629	NA	0	NA	0	prueba
630	NA	25	NA	0	${\tt entrenamiento}$
631	NA	400	NA	0	${\tt entrenamiento}$
632	NA	9	NA	0	${\tt entrenamiento}$
633	NA	144	NA	0	${\tt entrenamiento}$
634	NA	25	NA	0	prueba
635	NA	1	NA	0	${\tt entrenamiento}$
636	NA	0	NA	0	prueba
637	NA	49	NA	0	prueba
638	NA	169	NA	0	prueba
639	NA	9	NA	0	${\tt entrenamiento}$
640	NA	0	NA	0	${\tt entrenamiento}$
641	NA	4	NA	0	prueba
642	NA	0	NA	0	${\tt entrenamiento}$
643	NA	4	NA	0	prueba
644	NA	1	NA	0	${\tt entrenamiento}$
645	NA	100	NA	0	${\tt entrenamiento}$
646	NA	100	NA	0	${\tt entrenamiento}$
647	NA	1	NA	0	${\tt entrenamiento}$
648	NA	9	NA	0	prueba
649	NA	1024	NA	0	prueba
650	NA	0	NA	0	${\tt entrenamiento}$
651	NA	49	NA	0	${\tt entrenamiento}$
652	NA	25	NA	0	prueba
653	NA	4	NA	0	prueba
654	NA	25	NA	0	${\tt entrenamiento}$
655	NA	9	NA	0	prueba
656	NA	625	NA	0	${\tt entrenamiento}$
657	NA	0	NA	0	prueba
658	NA	9	NA	0	${\tt entrenamiento}$

659	NA	100	NA	0	prueba
660	NA	100	NA	0	${\tt entrenamiento}$
661	NA	49	NA	0	prueba
662	NA	25	NA	0	prueba
663	NA	225	NA	0	prueba
664	NA	1	NA	0	prueba
665	NA	25	NA	0	${\tt entrenamiento}$
666	NA	81	NA	0	${\tt entrenamiento}$
667	NA	324	NA	0	${\tt entrenamiento}$
668	NA	1	NA	0	prueba
669	NA	0	NA	0	prueba
670	NA	36	NA	0	prueba
671	NA	1	NA	0	prueba
672	NA	4	NA	0	prueba
673	NA	225	NA	0	entrenamiento
674	NA	625	NA	0	entrenamiento
675	NA	1	NA	0	entrenamiento
676	NA	0	NA	0	prueba
677	NA	0	NA	0	entrenamiento
678	NA	0	NA	0	prueba
679	NA	64	NA	0	prueba
680	NA	484	NA	0	entrenamiento
681	NA	25	NA	0	prueba
682	NA	100	NA	0	prueba
683	NA	1	NA	0	entrenamiento
684	NA	1	NA	0	entrenamiento
685	NA	36	NA	0	entrenamiento
686	NA	16	NA	0	prueba
687	NA	36	NA	0	prueba
688	NA	0	NA	0	entrenamiento
689	NA	1	NA	0	prueba
690	NA	9	NA	0	prueba
691	NA	225	NA	0	entrenamiento
692	NA	1089	NA	0	entrenamiento
693	NA	4	NA	0	prueba
694	NA	1	NA	0	entrenamiento
695	NA	100	NA	0	prueba
696	NA	0	NA	0	prueba
697	NA	196	NA	0	prueba
698	NA	225	NA	0	prueba
699	NA	225	NA	0	prueba
700	NA	100	NA	0	prueba
701	NA	36	NA	0	entrenamiento
				-	

702	NA	324	NA	0	${\tt entrenamiento}$
703	NA	225	NA	0	${\tt entrenamiento}$
704	NA	900	NA	0	prueba
705	NA	225	NA	0	${\tt entrenamiento}$
706	NA	100	NA	0	prueba
707	NA	0	NA	0	prueba
708	NA	0	NA	0	${\tt entrenamiento}$
709	NA	16	NA	0	prueba
710	NA	0	NA	0	prueba
711	NA	9	NA	0	prueba
712	NA	400	NA	0	${\tt entrenamiento}$
713	NA	9	NA	0	${\tt entrenamiento}$
714	NA	1	NA	0	prueba
715	NA	25	NA	0	prueba
716	NA	49	NA	0	${\tt entrenamiento}$
717	NA	36	NA	0	prueba
718	NA	4	NA	0	${\tt entrenamiento}$
719	NA	0	NA	0	prueba
720	NA	100	NA	0	prueba
721	NA	36	NA	0	prueba
722	NA	16	NA	0	${\tt entrenamiento}$
723	NA	64	NA	0	${\tt entrenamiento}$
724	NA	324	NA	0	prueba
725	NA	49	NA	0	prueba
726	NA	225	NA	0	${\tt entrenamiento}$
727	NA	49	NA	0	prueba
728	NA	64	NA	0	prueba
729	NA	64	NA	0	prueba
730	NA	9	NA	0	prueba
731	NA	100	NA	0	prueba
732	NA	81	NA	0	prueba
733	NA	576	NA	0	prueba
734	NA	144	NA	0	prueba
735	NA	4	NA	0	entrenamiento
736	NA	36	NA	0	prueba
737	NA	324	NA	0	prueba
738	NA	289	NA	0	entrenamiento
739	NA	49	NA	0	prueba
740	NA	36	NA	0	entrenamiento
741	NA	100	NA	0	prueba
742	NA	25	NA	0	prueba
743	NA	49	NA	0	prueba
744	NA	121	NA	0	entrenamiento

prueba	0	NA	196	NA	745
prueba	0	NA	25	NA	746
${\tt entrenamiento}$	0	NA	4	NA	747
prueba	0	NA	16	NA	748
${\tt entrenamiento}$	0	NA	25	NA	749
prueba	0	NA	196	NA	750
${\tt entrenamiento}$	0	NA	16	NA	751
${\tt entrenamiento}$	0	NA	225	NA	752
entrenamiento	0	NA	144	NA	753

Una vez creados los subconjuntos procedemos a crear la función para los modelos de dos partes

Primero los modelos binarios

	Dependent v	Dependent variable:					
	d_ho	urs					
	logistic (1)	probit (2)					
nwifeinc	-0.015 (0.012)	-0.008 (0.007)					

```
(0.061)
                               (0.036)
                   0.176***
                              0.108***
exper
                   (0.050)
                               (0.028)
expersq
                   -0.002
                               -0.001
                   (0.002)
                               (0.001)
                  -0.069***
                               -0.043***
age
                   (0.020)
                               (0.012)
                  -1.367***
                              -0.832***
kidslt6
                   (0.271)
                               (0.158)
kidsge6
                   0.199*
                               0.111*
                   (0.107)
                                (0.063)
Constant
                   -0.649
                            -0.264
                   (1.234)
                               (0.728)
                  368
Observations
                                 368
Log Likelihood -193.555 -193.379
Akaike Inf. Crit. 403.110
                               402.759
_____
                 *p<0.1; **p<0.05; ***p<0.01
Note:
# Parte 2: ajuste de y>0
modelo.MCO<-lm(fm("hours", xvars),</pre>
             mroz,
             subset = (mroz$hours>0 & mroz$sample=="entrenamiento"))
modelo.loghours<-lm(fm("loghours", xvars),</pre>
             subset = (mroz$hours>0 & mroz$sample=="entrenamiento"))
```

0.219*** 0.125***

educ

subset = (mroz\$hours>0 & mroz\$sample=="entrenamiento"),

family = Gamma(link = log))

	Dependent variable:						
	hours OLS	loghours OLS	hours glm: Gamma link = log				
	(1)	(2)	(3)				
nwifeinc	1.517	-0.004	0.001				
	(4.919)	(0.007)	(0.004)				
educ	-33.565	-0.054	-0.025				
	(24.392)	(0.033)	(0.021)				
exper	32.262	0.064**	0.031*				
	(20.821)	(0.028)	(0.018)				
expersq	0.138	-0.001	-0.0001				
	(0.590)	(0.001)	(0.001)				
age	-23.083***	-0.035***	-0.018**				
	(8.645)	(0.012)	(0.007)				
kidslt6	-264.711**	-0.649***	-0.255**				
	(134.212)	(0.180)	(0.115)				
kidsge6	-32.935	-0.037	-0.022				
	(42.712)	(0.057)	(0.037)				
Constant	2,311.710***		7.900***				
	(526.725)	(0.708)	(0.451)				
Observations	211	211	211				
R2	0.155	0.187					

Adjusted R2	0.126	0.159	
Log Likelihood			-1,710.120
Akaike Inf. Crit.			3,436.239
Residual Std. Error (df = 203)	751.978	1.010	
F Statistic (df = 7; 203)	5.332***	6.672***	
			========
Note:	*p<0.1	1; **p<0.05	; ***p<0.01

Usando estos modelos podemos predecir las horas medias de y, dada un conjunto de covariables \mathbf{X} de la siguiente forma:

$$E(y|\mathbf{x}) = Pr(y > 0|\mathbf{x}) \times E(y|y > 0, \mathbf{x})[1]$$

El primer término se puede estimar usando la regresión binomial (logit o probit). El segundo término se estima si el E(y) se modela directamente. Por ejemplo, en un **GLM gamma** con un enlace del registro, modelamos las horas medias trabajas.

$$log(E[y]) = \mathbf{x} [2]$$

Donde β es un vector de coeficientes y hemos suprimidos su dependencia de E[y] en \mathbf{x} . Por lo tanto, podemos obtener la media de horas trabajadas simplemente exponenciando log(E[y]). Sin embargo, con la regresión MCO transformada de forma logarítmica se dificulta un poco más, pues estamos modelando la media de horas trabajas logarítmicas

$$E[log(y)] = \mathbf{x} [3]$$

Y el $E[e^{(log(Y))} \neq e^{(E[log(y)])}$. Sin embargo, podemos estimar las horas medias trabajadas si el termino de error es: $\epsilon = log(y) - \mathbf{x}$, se distribuye de forma normal con varianza constante (**homocedástica**), σ^2 . Luego, usando las propiedades de la distribución lognormal:

$$E(y|y > 0) = e^{(\mathbf{x} + \sigma^2/2)}[4]$$

Con esto en mente, podemos predecir de la siguiente forma

```
type="response")
pred <- data.table(hours=mroz$hours, muestra=mroz$sample)</pre>
pred$MCO<-phat*predict(modelo.MCO,</pre>
                         part=mroz$sample=="prueba")
pred$MCOP<-phatP*predict(modelo.MCO,</pre>
                         mroz,
                         part=mroz$sample=="prueba")
pred$logMCO<-phat*exp(predict(modelo.loghours,</pre>
                         mroz))
pred$logMCOP<-phatP*exp(predict(modelo.loghours,</pre>
                         mroz))
pred$Gamma <- phat*predict(modelo.gamma,</pre>
                         mroz,
                         part=mroz$sample=="prueba",
                         type="response")
pred$GammaP <- phatP*predict(modelo.gamma,</pre>
                         part=mroz$sample=="prueba",
                         type="response")
pred %>%
  print()
```

```
hours
                              MCO
                                       MCOP
                                              logMCO
                                                      logMCOP
                                                                         GammaP
                 muestra
                                                                 Gamma
     <int>
                  <char>
                             <num>
                                      <num>
                                               <num>
                                                        <num>
                                                                 <num>
                                                                           <num>
  1: 1610
                  prueba 842.2832 845.7954 547.2883 549.5704 796.5189 799.8403
     1656 entrenamiento 944.9746 947.5054 734.8612 736.8293 921.3644 923.8320
  3:
     1980
                  prueba 907.1888 895.0672 546.1152 538.8181 863.1135 851.5808
                  prueba 934.9033 926.8364 737.0331 730.6736 924.9062 916.9256
     1568 entrenamiento 573.8992 571.2158 287.1518 285.8092 545.8928 543.3404
  5:
749:
         0 entrenamiento 616.9515 619.1704 382.7195 384.0960 606.3541 608.5349
750:
                  prueba 456.6050 451.2860 190.5000 188.2808 421.1919 416.2853
         0 entrenamiento 415.0050 423.0071 273.9361 279.2181 409.6471 417.5459
751:
752:
         0 entrenamiento 476.2147 481.7379 290.1237 293.4886 475.6698 481.1867
```

Evaluaremos el ajuste del modelo utilizando el error cuadrático medio (RMSE). El RMSE es simplemente la raíz cuadrado del error cuadrado medio (MPE), que tiene una buena interpretación porque puede descomponerse en la suma de la varianza y el sesgo al cuadrado de la predicción

```
MCO Log-MCO Gamma MCOP Log-MCOP GammaP 746.59 767.67 746.78 746.50 767.24 746.70
```

El modelo **logarítmico MCO** funciona peor, debido al problema de la retransformación. Los modelos **MCO** y **Gamma** producen resultados similares y el modelo MCO en realidad funciona mejor. Esto muestra que MCO es un estimador razonable de la expectativa condicional incluso cuando los errores claramente no están distribuidos normalmente.

La principal dificultad con los MCO transformados logarítmicamente es que la retransformación no es válida si los errores no se distribuyen normalmente con una varianza constante. Sin embargo, el supuesto de normalidad, los horas trabajadas esperadas están dadas por:

$$E[y|y>0] = exp(\mathbf{x}) \times E[exp(\epsilon)|\mathbf{x}][5]$$

8.5 Simulación Predictiva

Nos hemos centrado en estimar las horas medias trabajas, por lo que la distribución del término de error no ha sido tan importante. En otros casos, podríamos querer construir intervalos de predicción o simular la distribución completa de las horas trabajadas para una nueva población.

Aquí usaremos la simulación para comparar las predicciones de los modelos con los datos observados. Andrew Gelman y Jennifer Hill se refieren a este tipo de simulación como simulación predictiva.

Consideraremos seis modelos de dos partes para las horas de trabajo femenino: un modelo logístico-normal, un modelo logístico-lognormal y un modelo logístico-gamma, mas los tres para Probit. Para los modelos normal y lognormal supondremos que el término de error es constante entre los individuos. Tanto la distribución lognormal como la gamma tienen la propiedad deseable de que la varianza es proporcional al cuadrado de la media.

Comencemos simulando datos del modelo logístico-normal

Usamos un procedimiento de simulación similar para el modelo logístico-lognormal

Para simular datos de una distribución gamma, es necesario estimar un parámetro de forma, a_i , y un parámetro de tasa, b_i , para cada mujer. Supondremos que el parámetro de forma es constante en todas las observaciones, lo que implica que $E(Y_i) = \mu_i = a/b_i$. R usa métodos de momentos para estimar el parámetro de dispersión, que es el inverso del parámetro de forma, en un GLM gamma. Mediante programación, divide la suma de los residuos de "trabajo" al cuadrado por el número de grados de libertad en el modelo.

```
res <- modelo.gamma$residuals
c(sum(res^2/modelo.gamma$df.residual), summary(modelo.gamma)$dispersion)</pre>
```

[1] 0.4152545 0.4152545

Preferiríamos estimar el parámetro de forma utilizando la máxima verosimilitud. Podemos hacer esto usando la función gamma.shape del paquete MASS. Con el parámetro de forma en la mano, podemos estimar el parámetro de tasa como $\hat{b}_i = \hat{a}/\hat{\mu}_i$ donde $\hat{\mu}_i$ es la media predicha

para la mujer i. Con estas estimaciones de máxima verosimilitud, podemos simular las horas usando el modelo logístico-gamma.

```
library(MASS)
```

```
Adjuntando el paquete: 'MASS'

The following object is masked from 'package:dplyr':
    select

The following object is masked from 'package:wooldridge':
    cement

a<-gamma.shape(modelo.gamma)$alpha

b<-a/pred$Gamma
```

Ahora miremos que tan bien se ajustan nuestros modelos a datos observados

y.gamma<-d*rgamma(n, shape = a, rate = b)</pre>

```
Normal="red",
Lognormal="blue",
Gamma="green"))
```


Como era de esperar el modelo logit-normal funciona cercanamente bien, junto con gamma, pero el modelo que ajusta de forma terribel es lognormal no aparece

También podemos comparar los cuartiles de las distribuciones simuladas con el cuartil de los datos observados

	Porcentaje_Cero	Min	Q30	Q50	Q75	Q90	Q 95	Q98	Max
Observado	43	0	0	2.880000e+02	1516	1984	2094	2500	4950
Normal	43	-1301	0	0.000000e+00	1151	1822	2163	2546	3623
Lognormal	39	0	0	1.085114e+119	Inf	Inf	Inf	Inf	Inf
Gamma	43	0	0	1.590000e+02	724	1622	2259	3121	5062

References

Stock, James H, and Marck M. Watson. 2012. *Introducción a la econometría*. Madrid (España): Pearson. http://www.ebooks7-24.com/?il=3445.

Wooldridge, Jeffrey M. 2009. *Introductory econometrics: a modern approach*. 4th ed. Mason, OH: South Western, Cengage Learning.