

The Cancer Genome Atlas

LUAD miRNA-seq
352 tumors
45 tissue normals
MIMATs

Gordon Robertson Andy Chu Ken Lau 14 August 2012

- 1. NMF unsupervised clustering, clinical covariates, survival
- 2. Technical covariates: TSS, BCR batch, sequencing platform
- 3. Discriminatory MIMATs, literature
- 4. Supervised: MIMATs and overall survival
- 5. LUAD (452 T) vs. LUSC (158 T)
- 6. NMF clustering of 45 tumor-normal pairs
- 7. Summary

TSS, BCR batch, mapped reads, sequencing platform

Literature for discriminatory MIMATs

grp	miR	vs. normal	surv	PubMed
5	10a	1		 Upregulated in human cervical cancer, promotes cell growth, migration and invasion in human cervical cancer cells (PMID:22634495). Overexpressed in human pancreatic cancer, involved in Its invasiveness partially via suppression of HOXA1 gene (PMID:22407312). Overexpressed in Nucleophosmin1 mutated acute myeloid leukaemia, its suppression induces cell death (PMID:22348345).
	183	↑	\downarrow	 High expression of tumor and serum miRNAs of the miR-183 family were associated with overall poor survival in patients with lung cancer (PMID:21920043). Down-regulation of miR-183 promotes migration and invasion of osteosarcoma by targeting Ezrin (PMID:22525461). Differentially expressed between normal lung and primary small cell lung cancer (SCLC) tumors (PMID:19895320). Expression level of miR-183 was reversely correlated with the metastatic potential of lung cancer cells (PMID:18840437).
4	143	1		 A complex network of regulation through which the miR-143/145 cluster is able to modulate KRAS signaling in colorectal cancer (PMID:22751122). Hypothesize that loss of miR-143-mediated repression of HK2 can promote glucose metabolism in cancer cells, contributing to the shift towards aerobic glycolysis observed in many tumors (PMID:22691140). MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer (PMID:22533346).
2	375	1	↑	 Review: miR-375 is frequently downregulated and functions as a tumor suppressor that targets several oncogenic genes in cancer cells (PMID:22718022). Inhibits autophagy by reducing expression of ATG7 and impairs viability of HCC cells under hypoxic conditions in culture and in mice (PMID:22504094). Low-level expression of miR-375 correlates with poor outcome and metastasis while altering the invasive properties of HNSCCs (PMID:22234174). Highly expressed and possibly transactivated by achaete-scute complex homolog 1 in small-cell lung cancer cells (PMID:22172490).
1	148a	1		 Involved in DNMT3b-mediated hypermethylation defect in breast cancer cell lines that involves the loss of post-transcriptional regulation of DNMT3b by regulatory miRs (PMID:22664488). Promotes apoptosis by silencing Bcl-2 in colorectal cancer (PMID:21455217). Frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation (PMID:21205300). Sensitized chemotherapy-sensitive oesophageal cancer cell lines to cisplatin (PMID:21246413).
	29b	1		 Involved in DNMT3b-mediated hypermethylation defect in breast cancer cell lines that involves the loss of post-transcriptional regulation of DNMT3b by regulatory miRs (PMID:22664488). Down-regulation of C1QTNF6, SPARC, and COL4A2, targeted by miR-29b, can contribute to the invasion ability of MCF-7 cells (PMID:22864815). miRNAs of the miR-29 family (miR-29a, miR-29b and miR-29c) regulate specific genes associated with tissue invasion and metastasis in lung adenocarcinoma (PMID: 22745231). Suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling (PMID:22402125).
3	21	1		 Induces cell cycle at S phase and modulates cell proliferation by down-regulating hMSH2 in lung cancer (PMID:22806311). Meta-analysis of 14 studies: consistently up-regulated in squamous carcinoma and adenocarcinoma-based subgroup analysis (PMID:22672859). NOS2 enhances KRAS-induced lung carcinogenesis, inflammation and microRNA-21 expression (PMID:22618808). May play an important role in the development and progression of lung cancer through JAK/STAT signal pathway, MAPK signaling pathway, Wnt signaling pathway, cell cycle, PPAR signaling pathway, apoptosis pathway and other pathways (PMID:22244963).

MIMATs and overall survival

Compare 452 LUAD and 158 LUSC tumor samples

45 tumor-tissue normal pairs

45 tumor-tissue normal pairs

0.97

0.99

0.99

1.0

Summary

- 1. Unsupervised consensus clustering for MIMATs for 452 tumor data sets suggests five sample groups.
- 2. While survival appears poor for all groups, 92/452 records are currently incomplete.
- 3. MiRNAs that best discriminate unsupervised groups are: miR-10a, 143, 375, 148a and 21. As a first pass, only miR-375 appears to have an interesting p-value against overall survival.
- 4. For 45 tumor-tissue normal pairs, most pairs were well-separated. Four tumor samples were grouped with the normal samples, and one normal sample with the tumor samples.

LUAD 452T: discriminatory MIMATs

miR	MIMAT	Mn decr acc	Mn decr Gini
miR-148a	MIMAT0000243	14.3889	19.1897
miR-29c*	MIMAT0004673	8.3	8.2264
miR-29b	MIMAT0000100	7.2914	5.7926
miR-21	MIMAT0000076	9.0483	4.5271
miR-26b*	MIMAT0004500	5.4855	4.1831
miR-29b-2*	MIMAT0004515	6.1279	3.6305
miR-126	MIMAT0000445	5.5434	3.323
miR-30e	MIMAT0000692	5.9316	2.5411
let-7g*	MIMAT0004584	4.5681	2.3977
miR-29c	MIMAT0000681	5.459	2.3145
miR-30a	MIMAT0000087	7.2773	2.1811
miR-186	MIMAT0000456	5.5568	1.6871
miR-101	MIMAT0000099	5.621	1.6609
miR-148a*	MIMAT0004549	4.603	1.6024
miR-532	MIMAT0002888	5.9857	1.5849

miR	MIMAT	Mn decr acc	Mn decr Gini
miR-375	MIMAT0000728	17.9766	26.6745
miR-1224	MIMAT0005458	4.2713	1.7627
miR-224	MIMAT0000281	2.2891	1.7046
miR-452	MIMAT0001635	2.2161	1.6271
miR-221	MIMAT0000278	2.4581	1.3263
miR-192	MIMAT0004543	5.8193	0.9896

miR	MIMAT	Mn decr acc	Mn decr Gini
miR-21	MIMAT0000076	18.35	62.8875
miR-143	MIMAT0000435	11.5001	5.6378
miR-21	MIMAT0004494	6.3564	5.3264
hsa.let.7c	MIMAT000064	4.1517	3.7136
miR-200b	MIMAT0000318	3.6637	2.4279
hsa.let.7g	MIMAT0000414	3.0173	1.6955

Mehrian-Shai R et al. PNAS. 2007;104(13):5563-8.

LUAD 452T: discriminatory MIMATs (cont'd)

miR	MIMAT	Mn decr acc	Mn decr Gini
miR-143	MIMAT0000435	17.4783	47.4067
let-7f	MIMAT0000067	9.3655	7.5597
miR-210	MIMAT0000267	6.4134	5.6692
let-7a	MIMAT0000062	7.8004	4.7309
miR-21	MIMAT0000076	9.1148	4.2305
miR-345	MIMAT0000772	5.2374	4.2062

miR	MIMAT	Mn decr acc	Mn decr Gini
miR-10a	MIMAT0000253	13.4526	8.179
miR-183	MIMAT0000261	10.9026	4.7403
miR-182	MIMAT0000259	6.0951	2.2127
miR-25	MIMAT0000081	4.2459	1.6613
miR-205	MIMAT0000266	4.9635	1.6187
miR-149	MIMAT0000450	4.344	1.4644

