Baze de date relaţionale / Dependenţe

Nicolae-Cosmin Vârlan

November 3, 2013

- ▶ U mulțime de atribute: $U = \{A_1, A_2, \dots, A_n\}$;
- ▶ $dom(A_i)$ domeniul valorilor atributului A_i ;

Definim uplu peste U ca fiind funcția:

$$\varphi: U \to \bigcup_{1 \le i \le n} dom(A_i)$$
 a.i. $\varphi(A_i) \in dom(A_i), 1 \le i \le n$

Fie valorile v_i astfel încât $v_i = \varphi(A_i)$.

Notăm cu $\{A_1: v_1, A_2: v_2, \ldots, A_n: v_n\}$ asocierea dintre atributele existente în U și valorile acestora. In cazul în care sunt considerate mulțimi ordonate (de forma (A_1, A_2, \ldots, A_n)), notația va fi de forma: (v_1, v_2, \ldots, v_n) .

Consideram mulțimea ordonată $(A_1, A_2, \dots A_n)$. Pentru orice uplu φ , există vectorul $(v_1, v_2, \dots v_n)$ a.i. $\varphi(A_i) = v_i, \ 1 \le i \le n$.

Pentru un vector $(v_1, v_2, \dots v_n)$ cu $v_i \in dom(A_i), \ 1 \leq i \leq n$ există un uplu φ a.i. $\varphi(A_i) = v_i$.

In practică este considerată o anumită ordonare a atributelor.

O mulțime de uple peste U se numește relație și se notează cu r. r poate varia în timp dar nu și în structură.

Exemplu:

$$r = \{(v_{11}, v_{12}, \dots v_{1n}), (v_{21}, v_{22}, \dots v_{2n}), \dots, (v_{m1}, v_{m2}, \dots v_{mn})\}.$$

Structura relației se va nota cu R[U] unde R se numește numele relației iar U este mulțimea de atribute corespunzătoare.

Notații echivalente
$$R(U)$$
, $R(A_1, A_2, \ldots, A_n)$, $R[A_1, A_2, \ldots, A_n]$.

R[U] se mai numește și schemă de relație.

In practică, o relație r poate fi reprezentată printr-o matrice:

unde $(v_{i1},v_{i2},\ldots,v_{in})$ este un uplu din $r,\ 1\leq i\leq m$ și $v_{ij}\in dom(A_j),\ 1\leq j\leq n, 1\leq i\leq m$

Vom nota cu t_i linia cu numarul i din matrice:

$$t_i = (v_{i1}, v_{i2}, \dots, v_{in})$$

O mulțime finită D de scheme de relație se numește *schemă de baze de date*. Formal, $D = \{R_1[U_1], \ldots, R_h[U_h]\}$ unde $R_i[U_i]$ este o schemă de relație, $1 \le i \le h$.

O bază de date peste D este o corespondență ce asociază fiecărei scheme de relație din D o relație.

Exemplu:

$$r_1, r_2, \dots r_h$$
 este o bază de date peste $D = \{R_1[U_1], \dots, R_h[U_h]\}.$

Considerand D ca fiind ordonată $D=(R_1[U_1],\ldots,R_h[U_h])$, putem nota baza de date sub forma $(r_1,r_2,\ldots r_h)$

Operații în cadrul modelului relațional - proiecția

Considerăm:

- ightharpoonup R[U] =schemă de relație;
- $ightharpoonup X \subset U$;
- ▶ $t = \text{uplu peste } R[U] \ (t \in r).$

Se numește *proiecția lui t relativă la X* și notată cu t[X], restricția lui t la mulțimea de atribute X.

Exemplu:

Dacă
$$U = (A_1, A_2, \ldots, A_n)$$
 atunci $t = (v_1, v_2, \ldots, v_n)$. Considerăm $X = (A_{i_1}, A_{i_2}, \ldots, A_{i_k})$, $1 \le i_1 < i_2 < \ldots < i_k \le n$. atunci $t[X] = (v_{i_1}, v_{i_2}, \ldots, v_{i_k})$;

Operații în cadrul modelului relațional - proiecția

Dacă r este o relație peste R[U] și $X\subseteq U$, atunci *proiecția lui r relativă la X* este $r[X]=\{t[X]\mid t\in r\}$

Exemplu:

Dacă
$$U=(A_1,A_2,\ldots,A_n)$$
 atunci $r=\{(v_{11},v_{12},\ldots v_{1n}),(v_{21},v_{22},\ldots v_{2n}),\ldots,(v_{m1},v_{m2},\ldots v_{mn})\}.$ Considerăm $X=(A_{i_1},A_{i_2},\ldots,A_{i_k}),\ 1\leq i_1< i_2<\ldots< i_k\leq n.$

atunci

$$r[X] = \{(v_{1_{i_1}}, v_{1_{i_2}}, \dots v_{1_{i_k}}), (v_{2_{i_1}}, \dots v_{2_{i_k}}), \dots, (v_{m_{i_1}}, \dots v_{m_{i_k}})\}$$

Operații în cadrul modelului relațional - reuniunea

Reuniunea a două relații r_1 și r_2 peste R[U] este o relație notată cu $r_1 \cup r_2$ definită astfel:

$$r_1 \cup r_2 = \{t \mid t = uplu, \ t \in r_1 \ sau \ t \in r_2\}$$

Operații în cadrul modelului relațional - diferența

Diferența a două relații r_1 si r_2 peste R[U] este o relație notată cu r_1-r_2 definită astfel:

$$r_1 - r_2 = \{t \mid t = uplu, \ t \in r_1 \ si \ t \notin r_2\}$$

Operații în cadrul modelului relațional - produs cartezian

Produsul cartezian a două relații r_1 definită peste $R_1[U_1]$ și r_2 definită peste $R_2[U_2]$ cu $U_1 \cap U_2 = \emptyset$ este o relație notată cu $r_1 \times r_2$ definită astfel:

$$r_1 \times r_2 = \{t \mid t = uplu \ peste \ U_1 \cup U_2, \ t[U_1] \in r_1 \ si \ t[U_2] \in r_2\}$$

Operații în cadrul modelului relațional - join (natural)

Considerăm:

- ▶ r_1 relație peste $R_1[U_1]$;
- ▶ r_2 relație peste $R_2[U_2]$;

Se numește *join* (sau *unire*) a relațiilor r_1 si r_2 , relația r_1*r_2 peste $U_1\cup U_2$ definită prin:

$$r_1 * r_2 = \{t \mid t \text{ uplu peste } U_1 \cup U_2, \ t[U_i] \in r_i, \ i = 1, 2\}$$

Dacă R este un nume pentru relația peste $U_1 \cup U_2$ atunci $r_1 * r_2$ este definită peste $R[U_1 \cup U_2]$

Pentru simplitate vom nota $U_1 \cup U_2$ cu U_1U_2 .

Operații în cadrul modelului relațional - join (natural)

Exemplu:

 r_1 :

Fie $R_1[A, B, C, D]$, si $R_2[C, D, E]$ si r_1, r_2 a.i.:

A	B	C	D
0	1	0	0
1	1	0	0
0	0	1	0
1	1	0	1
0	1	0	1
	0 1 0 1	0 1 1 1 0 0 1 1	0 1 0 1 1 0 0 0 1 1 1 0

Atunci:
$$r_1 * r_2$$
:

A	В	C	D	E
0	1	0	0	0
1	1	0	0	0
0	0	1	0	0
0	0	1	0	1

Proprietăți join (natural)

- $r_1 * r_2[U_1] \subseteq r_1$
- $r_1 * r_2[U_2] \subseteq r_2$

Dacă $X = U_1 \cap U_2$ și:

$$r_1' = \{t_1 | t_1 \in r_1, \exists t_2 \in r_2 \text{ a.i. } t_1[X] = t_2[X]\} \text{ si } r_1" = r_1 - r_1', \\ r_2' = \{t_2 | t_2 \in r_2, \exists t_1 \in r_1 \text{ a.i. } t_1[X] = t_2[X]\} \text{ si } r_2" = r_2 - r_2', \\ \text{atunci: } r_1 * r_2 = r_1' * r_1' * r_2[U_1] = r_1' * r_1 * r_2[U_2] = r_1'$$

atunci: $r_1*r_2=r_1'*r_2',\ r_1*r_2[U_1]=r_1',\ r_1*r_2[U_2]=r_2'.$

Dacă $\overline{r_1} \subseteq r_1, \overline{r_2} \subseteq r_2$ și $\overline{r_1} * \overline{r_2} = r_1 * r_2$ atunci $r_1' \subseteq \overline{r_1}$ si $r_2' \subseteq \overline{r_2}$

Dacă $U_1 \cap U_2 = \emptyset$ atunci $r_1 * r_2 = r_1 \times r_2$.

Extindere join (natural)

Fie r_i relație peste $R_i[U_i], i = \overline{1,h}$ atunci:

$$r_1*r_2*...*r_h = \{t|t \text{ uplu peste } U_1,...U_h, \text{ a.i. } t[U_i] \in r_i, i = \overline{1,h}\}$$

Notații echivalente:

- $r_1 * r_2 * \ldots * r_h$
- $ightharpoonup \langle r_i, i=1, h \rangle$
- $\blacktriangleright *\langle r_i, i=1,h\rangle$

Operația join este asociativă.

Operații în cadrul modelului relațional - join (oarecare)

Fie r_i peste $R_i[U_i]$, $i=\overline{1,2}$ cu $A_{\alpha_1},A_{\alpha_2},\ldots A_{\alpha_k}\in U_1$ și $B_{\beta_1},B_{\beta_2},\ldots B_{\beta_k}\in U_2$ și θ_i operator de comparație între elementele lui $dom(A_{\alpha_i})$ și cele ale lui $dom(B_{\beta_i})$

 θ_i este relație binara peste $dom(A_{\alpha i}) \times dom(B_{\beta i})$, $1 \leq i \leq k$. Join-ul oarecare a două relații r_1 și r_2 , notat cu $r_1 \overset{\bowtie}{\theta} r_2$, este definit prin:

$$r_1 \overset{\bowtie}{\theta} r_2 = \{(t_1, t_2) | t_1 \in r_1, t_2 \in r_2, t_1[A_{\alpha_i}]\theta_i t_2[B_{\beta_i}], i = \overline{1, k}\}$$

unde
$$\theta=(A_{\alpha_1}\theta_1B_{\beta_1})\wedge(A_{\alpha_2}\theta_2B_{\beta_2})\wedge\ldots\wedge(A_{\alpha_k}\theta_kB_{\beta_k})$$

Observație: un join oarecare cu condiția TRUE este un produs cartezian.

Dependențe funcționale

Fie $X,Y\subseteq U$. Vom nota o dependență funcțională cu $X\to Y$.

O relație r peste U satisface dependența funcțională $X \to Y$ dacă:

$$(\forall t_1, t_2)(t_1, t_2 \in r)[t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]]$$

$$X=\emptyset$$
 avem $\emptyset \to Y$ dacă $(\forall t_1,t_2)(t_1,t_2 \in r)[t_1[Y]=t_2[Y]]$

 $Y=\emptyset$ atunci orice $\forall r$ peste U avem că $X \to \emptyset$

Dacă r satisface $X \to Y$, atunci există o funcție $\varphi: r[X] \to r[Y]$ definită prin $\varphi(t) = t'[Y]$, unde $t' \in r$ și $t'[X] = t \in r[X]$. Dacă r satisface $X \to Y$ spunem că X determină funcțional pe Y

 \widehat{I} in r.

Proprietăți ale dependențelor funcționale

FD1. (Reflexivitate) Dacă $Y \subseteq X$, atunci r satisface $X \to Y$, $\forall r \in U$.

FD2. (Extensie) Dacă r satisface $X \to Y$ și $Z \subseteq W$, atunci r satisface $XW \to YZ$.

FD3. (Tranzitivitate) Dacă r satisface $X \to Y$ și $Y \to Z$, atunci r satisface $X \to Z$.

FD4. (Pseudotranzitivitate) Dacă r satisface $X \to Y$ și $YW \to Z$, atunci r satisface $XW \to Z$.

Proprietăți ale dependențelor funcționale

FD5. (Uniune) Dacă r satisface $X \to Y$ și $X \to Z$, atunci r satisface $X \to YZ$.

FD6. (Descompunere) Dacă r satisface $X \to YZ$, atunci r satisface $X \to Y$ și $X \to Z$.

FD7. (Proiectabilitate) Dacă r peste U satisface $X \to Y$ și $X \subset Z \subseteq U$, atunci r[Z] satisface $X \to Y \cap Z$

FD8. (Proiectabilitate inversă) Dacă $X \to Y$ este satisfacută de o proiecție a lui r, atunci $X \to Y$ este satisfacută de r.

Dependențe funcționale - consecință și acoperire

Dacă Σ este o mulțime de dependențe funcționale peste U atunci spunem că $X \to Y$ este consecință din Σ dacă orice relație ce satisface toate consecințele din Σ satisface și $X \to Y$.

Notație: $\Sigma \models X \to Y$

Fie $\Sigma^* = \{X \to Y | \Sigma \models X \to Y\}$. Fie $\Sigma_1 =$ mulţime de dependenţe funcţionale. Σ_1 constituie o *acoperire* pentru Σ^* dacă $\Sigma_1^* = \Sigma^*$.

Proprietăți ale dependențelor funcționale

Propoziție

Pentru orice mulțime Σ de dependențe funcționale există o acoperire Σ_1 pentru Σ^* , astfel încat toate dependențele din Σ_1 sunt de forma $X \to A$, A fiind un atribut din U.

Propoziție

 $\Sigma \models X \to Y$ dacă și numai dacă $\Sigma \models X \to B_j$ pentru $j = \overline{1,h}$, unde $Y = B_1 \dots B_h$.

Reguli de deducere

Fie $\mathcal R$ o mulțime de formule de deducere pentru dependențe funcționale și Σ o mulțime de dependențe funcționale. Spunem că $X \to Y$ este o *demonstrație* în Σ utilizând regulile $\mathcal R$ și vom nota $\Sigma \vdash_{\mathcal R} X \to Y$, dacă există șirul $\sigma_1, \sigma_2, \ldots, \sigma_n$, astfel încât:

- \bullet $\sigma_n = X \to Y$ și
- ▶ pentru $\forall i=\overline{1,n}$, $\sigma_i\in\Sigma$ sau există în $\mathcal R$ o regulă de forma $\frac{\sigma_{j_1},\sigma_{j_2},...\sigma_{j_k}}{\sigma_i}$, unde $j_1,j_2,\ldots,j_k< i$.

Reguli de deducere

Conform proprietăților FD1-FD5 putem defini regulile:

FD1f:
$$\frac{Y \subseteq X}{X \to Y}$$

FD4f:
$$\frac{X \rightarrow Y, YW \rightarrow Z}{XW \rightarrow Z}$$

FD2f:
$$\frac{X \rightarrow Y, Z \subseteq W}{XW \rightarrow YZ}$$

FD5f:
$$\frac{X \rightarrow Y, X \rightarrow Z}{X \rightarrow YZ}$$

FD3f:
$$\frac{X \rightarrow Y, Y \rightarrow Z}{X \rightarrow Z}$$

FD6f:
$$\frac{X \rightarrow YZ}{X \rightarrow Y}, \frac{X \rightarrow YZ}{X \rightarrow Z}$$

Propoziție

Regulile FD4f, FD5f, FD6f se exprimă cu ajutorul regulilor FD1f, FD2f, FD3f.

Notăm cu
$$\mathcal{R}_1 = \{ \mathsf{FD1f}, \, \mathsf{FD2f}, \, \mathsf{FD3f} \}$$
, și cu $\mathcal{R}_2 = R_1 \cup \{ \mathsf{FD4f}, \, \mathsf{FD5f}, \, \mathsf{FD6f} \}$

Axiomele lui Armstrong

Armstrong a definit (în *Dependency structures of database relationships* Proc. IFIP 74, Amsterdam, 580-583) următoarele reguli de inferența (numite *Axiomele lui Armstrong*):

A1:
$$\frac{1}{A_1...A_m \to A_i}$$
, $i = \overline{1, n}$

A2:
$$\frac{A_1,...A_m \to B_1,...B_r}{A_1...A_m \to B_j}, j = \overline{1,r}$$

$$\frac{A_1, \dots A_m \to B_j, j = \overline{1,r}}{A_1 \dots A_m \to B_1, \dots B_r}$$

A3:
$$\frac{A_1,...A_m \to B_1,...B_r, B_1,...B_r \to C_1,...C_p}{A_1...A_m \to C_1,...C_p}$$

unde A_i , B_j , C_k sunt atribute. Notăm $\mathcal{R}_A = \{A1, A2, A3\}$. Obs: regula A3 este de fapt FD3f (tranzitivitatea).

Propoziție

Regulile din \mathcal{R}_1 se exprimă prin cele din R_A și invers.

Notatie:

$$\Sigma_{\mathcal{R}}^{+} = \{ X \to Y | \Sigma \vdash_{\mathcal{R}} X \to Y \}$$

Propoziție

Fie \mathcal{R}_1' si \mathcal{R}_2' doua multimi de reguli astfel incat \mathcal{R}_1' se exprima prin \mathcal{R}_2' si invers. Atunci $\Sigma_{\mathcal{R}_1'}^+ = \Sigma_{\mathcal{R}_2'}^+$ pentru orice multime Σ de dependente functionale.

Consecinta: $\Sigma_{\mathcal{R}_1}^+ = \Sigma_{\mathcal{R}_A}^+$

Fie $X\subseteq U$ si $\mathcal R$ o multime de reguli de inferenta. Notam cu

$$X_{\mathcal{R}}^+ = \{A | \Sigma \vdash_{\mathcal{R}} X \to A\}$$

Lema

$$\Sigma \vdash_{\mathcal{R}} X \to Y$$
 daca si numai daca $Y \subseteq X_{\mathcal{R}_1}^+$.

Lema

Fie Σ o multime de dependente functionale si $\sigma: X \to Y$ o dependenta functionala astfel incat $\Sigma \nvdash_{\mathcal{R}_1} X \to Y$. Atunci exista o relatie r_σ ce satisface toate dependentele functionale din Σ si r_σ nu satisface $X \to Y$.

Theorem

Fie Σ o multime de dependente functionale. Atunci exista o relatie r_0 ce satisface exact elementele lui $\Sigma_{\mathcal{R}_1}^+$, adica:

- r_0 satisface τ , $\forall \tau \in \Sigma^+_{\mathcal{R}_1}$ si
- r_0 nu satisface γ , $\forall \gamma \notin \Sigma_{\mathcal{R}_1}^+$

Dependente multivaluate - definitie

Fie $X,Y\subseteq U$. O dependenta multivaluata este notata cu $X\twoheadrightarrow Y$.

Definition

Relatia r peste U satisface dependenta multivaluata X woheadrightarrow Y daca pentru oricare doua tuple $t_1,t_2 \in r$ si $t_1[x] = t_2[x]$, exista relatiile t_3 si t_4 din r, astfel incat:

- $t_3[X] = t_1[X], t_3[Y] = t_1[Y], t_3[Z] = t_2[Z];$
- $t_4[X] = t_2[X], t_4[Y] = t_2[Y], t_4[Z] = t_1[Z]$

unde Z = U - XY.

Exemplu

Intrebare: cum alegem t_3 ", t_4 "?

Decarece atunci cand $t_1[A] = t_2[A]$ avem ca:

$$t_3[A] = t_1[A], t_3[BC] = t_1[BC], t_3[D] = t_2[D]$$
 si $t_4[A] = t_2[A], t_4[BC] = t_2[BC], t_4[D] = t_1[D]$

Definitie echivalenta

Definition

Relatia r peste U satisface dependenta multivaluata X woheadrightarrow Y, daca pentru orice $t_1, t_2 \in r$ cu $t_1[X] = t_2[X]$ avem ca $M_Y(t_1[XZ]) = M_Y(t_2[XZ])$

unde
$$M_Y(t[XZ]) = \{t'[Y]|t' \in r, t'[XZ] = t[XZ]\}$$

Observatii

- ▶ Daca r satisface dependenta functionala $X \to Y$, atunci pentru orice $t \in r$, avem $M_Y(t[XZ]) = \{t[Y]\}$.
- ▶ Daca r satisface dependenta functionala X → Y, atunci r satisface si dependenta multivaluata X → Y.
- ▶ Daca r satisface dependenta multivaluata $X \twoheadrightarrow Y$, atunci putem defini o functie $\psi: r[X] \to \mathcal{P}(r[Y])$, prin $\psi(t[X]) = M_Y(t[XZ]), \forall t \in r$. Cand r satisface $X \to Y$, atunci $\psi: r[X] \to r[Y]$.

Proprietati ale dependentelor multivaluate

MVD0 (Complementariere) Fie $X,Y,Z\subseteq U$, asfel incat XYZ=U si $Y\cap Z\subseteq X$. Daca r satisface $X\twoheadrightarrow Y$, atunci r satisface $X\twoheadrightarrow Z$.

MVD1 (Reflexivitate) Daca $Y \subseteq X$, atunci orice relatie r satisface $X \twoheadrightarrow Y$.

MVD2 (Extensie) Fie $Z\subseteq W$ si r satisface $X \twoheadrightarrow Y$. Atunci r satisface $XW \twoheadrightarrow YZ$

MVD3 (Tranzitivitate) daca r satisface $X \twoheadrightarrow Y$ si $Y \twoheadrightarrow Z$, atunci r satisface $X \twoheadrightarrow Z - Y$

Proprietati ale dependentelor multivaluate

MVD4 (Pseudotranzitivitate) Daca r satisface X woheadrightarrow Y si YW woheadrightarrow Z, atunci r satisface si XW woheadrightarrow Z - YW.

MVD5 (Uniune) Daca r satisface X woheadrightarrow Y si X woheadrightarrow Z atunci r satisface X woheadrightarrow YZ.

MVD6 (Descompunere) Daca r satisface $X \twoheadrightarrow Y$ si $X \twoheadrightarrow Z$, atunci r satisface $X \twoheadrightarrow Y \cap Z$, $X \twoheadrightarrow Y - Z$, $X \twoheadrightarrow Z - Y$

Proprietati mixte ale dependentelor multivaluate

FD-MVD1. Daca r satisface $X \to Y$, atunci r satisface si $X \to Y$.

FD-MVD2. Daca r satisface $X \twoheadrightarrow Z$ si $Y \to Z'$, cu $Z' \subseteq Z$ si $Y \cap Z = \emptyset$, atunci r satisface $X \to Z'$.

FD-MVD3. Daca r satisface $X \twoheadrightarrow Y$ si $XY \twoheadrightarrow Z$, atunci r satisface $X \to Z - Y$.

Reguli de inferenta

MVD0f:
$$\frac{XYZ=U, Y\cap Z\subseteq X, X\twoheadrightarrow Y}{X\twoheadrightarrow Z}$$

MVD1f:
$$\frac{Y \subseteq X}{X \rightarrow Y}$$

MVD2f:
$$\frac{Z \subseteq W, X \rightarrow Y}{XW \rightarrow YZ}$$

MVD3f:
$$\frac{X \rightarrow Y, Y \rightarrow Z}{X \rightarrow Z - Y}$$

MVD4f:
$$\frac{X \rightarrow Y, YW \rightarrow Z}{XW \rightarrow Z - YW}$$

Reguli de inferenta

MVD5f:
$$\frac{X \rightarrow Y, X \rightarrow Z}{X \rightarrow YZ}$$

MVD6f:
$$\frac{X \twoheadrightarrow Y, \ X \twoheadrightarrow Z}{X \twoheadrightarrow Y \cap Z, \ X \twoheadrightarrow Y - Z, \ X \twoheadrightarrow Z - Y}$$

FD-MVD1f:
$$\frac{X \rightarrow Y}{X \rightarrow Y}$$

$$\mathsf{FD\text{-}MVD2f:} \quad \xrightarrow{X \twoheadrightarrow Z, \ Y \to Z', \ Z' \subseteq Z, \ Y \cap Z = \emptyset}$$

FD-MVD3f:
$$\frac{X \rightarrow Y, XY \rightarrow Z}{X \rightarrow Z - Y}$$

Propoziție

Fie \mathcal{R} o multime de reguli valide si γ o regula $\frac{\alpha_1,\alpha_2,...\alpha_k}{\beta}$, astfel incat $\{\alpha_1,\ldots\alpha_k\}\vdash_{\mathcal{R}}\beta$, atunci si regula γ este valida.

Propoziție

Fie
$$\mathcal{R}_{FM} = \{FD1f - FD3f, MVD0f - MVD3f, FD - MVD1f - FD - MVD3f\}.$$
 Avem:

- ▶ FD MVD3f se exprima cu celelalte regulid din \mathcal{R}_{FM} si FD
- ▶ MVD2f se exprima prin celelalte reguli din \mathcal{R}_{FM} .

Propoziție

Regulile MVD4f - MVD6f se exprima cu ajutorul regulilor MVD0f - MVD3f

Theorem

Fie Σ o multime de dependente functionale sau multivaluate si X o submultime de atribute. Atunci exista o partitie a lui U-X notata prin $Y_1 \dots Y_k$, astfel incat pentru $Z \subseteq U-X$ avem $\Sigma \vdash_{\mathcal{R}_{FM}} X \twoheadrightarrow Z$ daca si numai daca Z este reuniunea unui numar de multimi din partitia $\{Y_1, \dots Y_k\}$

Definition

Pentru Σ o multime de dependente functionale sau multivaluate si X o submultime de atribute, numim baza de dependenta pentru X cu privire la Σ partitia $B(\Sigma,X)=\{\{A_1\}\dots\{A_h\},Y_1\dots Y_k\}$, unde $X=A_1,\dots A_h$, iar $Y_1,\dots Y_k$ este partitia construita in teorema precedenta.

Observatii

- ▶ Avem $\Sigma \vdash_{\mathcal{R}_{FM}} X \twoheadrightarrow Z$ daca si numai daca Z este o reuniune de elemente din partitia $B(\Sigma, X)$.
- ▶ Fie $X_{\Sigma}^* = \{A | \Sigma \vdash_{\mathcal{R}_{FM}} X \to A\}$. Atunci pentru orice $A \in X_{\Sigma}^*$ avem $\{A\} \in B(\Sigma, X)$.