COT 6405 ANLYSIS OF ALGORITHMS

Dynamic Programming

Computer & Electrical Engineering and Computer Science Dept. Florida Atlantic University

Spring 2017

Outline

- DP introduction
- Weighted Interval Scheduling (KT chapter 6.1)
- Principles of DP (KT chapter 6.2)
- Change-making problem (BB chapter 8.2)
- 0-1 knapsack problem (BB chapter 8.4)
- Sequence alignment problem (KT chapter 6.6 & 6.7)

KT book - *Algorithm Design* by J. Kleinberg and Eva Tardos BB book - *Fundamentals of Algorithms* by Gilles Brassard and Paul Bratley

Dynamic Programming (DP)

- is a technique, not a specific algorithm (like divide-and-conquer)
- applied to optimization problems (maximization or minimization)
- applicable when subproblems are not independent, that is subproblems share subsubproblems. Then DP solves each subproblem only once, stores the result in a table, and reuses it later

Problem definition:

We are given **1 resource** and a number of **n requests** labeled 1,2,...,n. Each request i has a starting time s_i , a finishing time f_i , and a *value* (or *weight*) $v_i > 0$.

Find a *compatible* subset S of requests (intervals) of *maximum total* value $\Sigma_{i \in S} v_i$.

- two requests i and j are compatible if the requests do not overlap
 - request i is earlier than j, $f_i \le s_i$
 - request j is earlier than i, $f_i \le s_i$
- a subset of requests is compatible if all pairs i, j (i ≠ j) are compatible

Example

- can be solved using greedy when all requests have the same value (equal to 1)
 - greedy choice: choose the compatible request with the earliest finishing time
- when the requests have different values, greedy does not work

for different request values, DP produces an optimal solution

A recursive algorithm

- suppose that the requests are sorted in nondecreasing finishing time $f_1 \le f_2 \le \ldots \le f_n$
- we say that request i comes before j if i < j
- define p(j) of an interval j the largest index i < j s.t. i and j are disjoint
 - rightmost interval i that ends before j begins

- optimal solution O: either n belongs to O or it doesn't
 - if n ∈ O, then in addition O contains an optimal solution to the problem with requests {1,...,p(n)}
 - if n ∉ O, then O is an *optimal* solution to the problem with requests {1,2,...,n-1}
- let O_i optimal solution for the problem w/ requests {1,2,...,j}
 - OPT(j) value of this solution
- objective: find O_n and OPT(n)

Writing a recursion

$$OPT(j) = max(v_j + OPT(p(j)), OPT(j-1))$$

- request j belongs to an optimal solution on the set $\{1,2,\ldots,j\}$ iff v_j + OPT(p(j)) \geq OPT(j-1)
- characteristic of DP: write a recurrence equation that expresses the optimal solution (or its value) in terms of optimal solutions to smaller subproblems

Recursive algorithm

```
\begin{aligned} & \underline{\textbf{Compute-Opt(j)}} \\ & \text{if } j == 0 \text{ then} \\ & \text{return } 0 \\ & \text{else} \\ & \text{return } \max(v_j + \text{Compute-Opt(p(j)), Compute-Opt(j-1))} \\ & \text{endif} \end{aligned}
```

drawback: RT is exponential in n

Example

Memoizing the Recursion

- Key observations:
 - Compute-Opt(n) is only solving n+1 different subproblems:
 Compute-Opt(0), Compute-Opt(1),...,Compute-Opt(n)
 - exponential time is due to the redundancy in the number of times the same call is made
- Memoization technique: solve each subproblem only once and store its value in a table. All future calls use the precomputed value.

Memoizing the Recursion

- array M[0..n]
 - M[j] initially empty, then store Compute-Opt(j) value
- to determine OPT(n), call M-Compute-Opt(n)

```
M-Compute-Opt(j)
if j == 0 then
  return 0
else if M[j] is not empty then
  return M[j]
else
  M[j] = max(v<sub>j</sub> + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
  return M[j]
endif
```

Analyzing the Memoized Version

- Assuming that the input intervals are sorted by their finish time and that the p() values are already computed, the RT to compute M-Compute-Opt(n) is O(n).
 - Proof: since M has n+1 entries, there are at most O(n) calls to M-Compute-Opt, and hence the RT is O(n)

A second solution: iterative approach

Iterative-Compute-Opt

$$M[0] = 0$$

for $j = 1,2,...,n$
 $M[j] = max(v_j + M[p(j)], M[j-1])$
endfor

$$RT = O(n)$$

Example

Computing a solution in addition to its value

Find the subset of requests of maximum value

```
\begin{split} & \frac{\text{Find-Solution(j)}}{\text{if } j == 0 \text{ then}} \\ & \text{return } \varnothing \\ & \text{else} \\ & \text{if } v_j + M[p(j)] \geq M[j-1] \text{ then}} \\ & \text{output Find-Solution(p(j))} \cup j \\ & \text{else} \\ & \text{output the result of Find-Solution(j-1)} \\ & \text{endif} \\ & \text{endif} \end{split}
```

- initial call: Find-Solution(n)
- RT = O(n), calls recursively on smaller instances and takes constant time per call

Principles of Dynamic Programming

- write solution to a problem recursively, based on solutions to subproblems
- memoization or iteration over subproblems?
 - iteratively building up subproblems is simpler
- properties of DP:
 - there is only a polynomial number of subproblems
 - the solution to the original problem can be easily computed from the solutions to the subproblems
 - there is a natural ordering of subproblems from smallest to largest

Change-making problem

- Unfortunately, even though greedy algorithm is very efficient, it works only in a limited number of instances
- Dynamic programming works for all systems of coins
- Suppose that the currency has available coins of n different denominations
 - a coin of denomination i, $1 \le i \le n$ has value $d_i > 0$ units
- Suppose that we have an unlimited supply of coins of each denomination
- Goal: give the customer coins worth N units, using as few coins as possible

DP approach

- table c[1..n, 0..N] one row for each denomination and one column for each amount from 0 units to N units
- c[i,j] minimum number of coins required to pay an amount j, with $0 \le j \le N$, using only coins of denominations 1 to i, $1 \le i \le n$
- the solution to the original problem is given by c[n, N]

Filling up the table

- c[i,0] = 0 for all i
- then the table can be filled row by row, left to right, or column by column, top to bottom
- to compute c[i,j], two choices:
 - do not use any coins of denomination i, then c[i,j] = c[i-1,j]
 - use at least one coin of denomination i, then c[i,j] = 1 + c[i,j d_i]
- therefore:

$$c[i,j] = min(c[i-1,j], 1+c[i,j-d_i])$$

• if i = 1 and j < d_1 , then set $c[i,j] = \infty$

DP algorithm

```
function coins(N) {Gives the minimum number of coins needed to make change for N units. Array d[1..n] specifies the coinage: in the example there are coins for 1, 4 and 6 units.} array d[1..n] = [1,4,6] array c[1..n,0..N] for i-1 to n do c[i,0]-0 for i-1 to n do c[i,0]-0 for i-1 to n do c[i,j]-i if i=1 and j< d[i] then +\infty else if i=1 then 1+c[1,j-d[1]] else if j< d[i] then c[i-1,j] else \min(c[i-1,j],1+c[i,j-d[i]]) return c[n,N]
```

 $RT = \Theta(nN)$

DP algorithm comments

- if an unlimited supply of coins of value 1 is available, then we can always find a solution to our problem
- if no coin with value 1, then there may be values of N for which no solution is possible
 - algorithm returns ∞

Finding how many coins of each denominations are used

$\begin{aligned} & \underline{\textbf{PrintCoins}(\textbf{c},\textbf{i},\textbf{j})} \\ & \text{if } \textbf{c}[\textbf{i},\textbf{j}] = \infty \\ & \text{then return no change possible} \\ & \text{if } \textbf{j} == \textbf{0}, \text{ then return} \\ & \text{if } \textbf{c}[\textbf{i},\textbf{j}] == \textbf{c}[\textbf{i}-\textbf{1},\textbf{j}] \\ & \text{then PrintCoins}(\textbf{c},\textbf{i}-\textbf{1},\textbf{j}) \\ & \text{else if } \textbf{c}[\textbf{i},\textbf{j}] == \textbf{1} + \textbf{c}[\textbf{i},\textbf{j}-\textbf{d}_{\textbf{i}}] \\ & \text{then PrintCoins}(\textbf{c},\textbf{i},\textbf{j}-\textbf{d}_{\textbf{i}}) \\ & \text{print } \textbf{d}_{\textbf{i}} \end{aligned}$

- Initial call: PrintCoins(c,n,N)
- RT = O(N + n)
- Example

0-1 knapsack problem

- Given:
 - n objects and a knapsack
 - for i = 1,..,n, object i has a positive weight w_i and a positive value v_i
 - objects may not be broken into smaller pieces, either take the whole object or leave it behind
 - the knapsack can carry a weight ≤ W
- Objective: fill the knapsack s.t. to maximize the value of the included objects, while respecting the capacity constraints

DP approach

- table V[1..n,0..W] one row for each available object and column for each weight from 0 to W
- V[i,j] maximum value of the objects we can transport if the weight limit is j, 0 ≤ j ≤ W, and if we only include objects numbered from 1 to i, 1 ≤ i ≤ n
- The solution to the original problem is given by V[n,W]

Filling up the table

- V[i,0] = 0, for all i
- then the table can be filled row by row, left to right, or column by column, top to bottom
- to compute V[i,j], two choices:
 - not adding object i to the knapsack, V[i,j] = V[i-1, j]
 - adding object i to the knapsack, V[i,j] = v_i + V[i-1, j-w_i]
- therefore:

$$V[i,j] = max(V[i-1,j], v_i + V[i-1,j-w_i])$$

• for the out-of-bounds-entries, we define:

$$V[0,j] = 0$$
 when $j \ge 0$
 $V[i,j] = -\infty$ for all i when $j < 0$

Sequence Alignment – First example

- dictionaries on the Web and spell checkers
 - if you type "ocurrance", it may ask: "Perhaps you mean occurrence?"
 - the dictionary will search its entries for the word most "similar" to the one typed
- how should we define similarity between two words or strings?

Modeling "similarity"

 model similarity between two strings by the number of gaps and mismatches that occur when lining up the two sequences

o-currance occurrence

- one gap
- one mismatch

o-curr-ance occurre-nce

- three gaps
- no mismatch

which one is better?

Application – computational biology

- An organism's *genome*:
 - divided into linear DNA molecules, chromosomes, which serve as an onedimensional chemical storage device
 - string over the alphabet {A,C,G,T} that determines the properties of the organism
 - · adenine, cytosine, guanine, thymine
 - the string encodes instructions for building protein molecules
 - using a chemical mechanism to read portions of the chromosomes, a cell can construct proteins that control its metabolism

Application – computational biology

- let X and Y be two strains of bacteria, closely related evolutionary
- assume a certain substring in the DNA of X codes for a certain toxin
- if this substring is found in Y, we may hypothesize that this portion codes for a similar kind of toxin

Sequence Alignment Problem

- let $X = x_1x_2...x_m$ and $Y = y_1y_2...y_n$
- {1,2,...,m} and {1,2,...,n} represent different positions in strings X and Y
- matching: set of ordered pairs s.t. each item occurs in at most one pair
- a matching M of these two sets is an alignment if there are no crossing pairs: if (i,j), (i',j') ∈ M and i < i' then j < j'
 - an alignment provides a way to line up the two strings

• alignment: {(2,1),(3,2),(4,3)}

Sequence Alignment Problem

Suppose M is a given alignment between X and Y

- gap penalty: each gap incurs a cost $\delta > 0$
- mismatch cost: for each pair of letters p,q in the alphabet, there is a mismatch cost α_{pq} for lining up p with q
 - usually $\alpha_{pp} = 0$
- the cost of M is the sum of gap and mismatch costs

Objective: find an **optimal alignment**, that means an alignment of minimum cost.

- values δ and $\{\alpha_{\text{pq}}\}$ are given parameters
- the lower the cost, the more similar X and Y are
- going back to the first example *ocurrance* and *occurrence*, the first alignment is better if and only if δ + α_{ae} < 3δ

Designing the DP algorithm

- in the optimal alignment M:
 - either $(m,n) \in M$ or $(m,n) \notin M$
- in any alignment M:
 - if (m,n) ∉ M, then either the mth position of X or the nth position of Y are not matched in M

```
proof: assume by contradiction (i,n),(m,j) \in M for some i,j.
```

Then i < m and j < n \Rightarrow crossing pairs \Rightarrow contradiction

Property: in any alignment M, one of the following is true:

- (i) $(m,n) \in M$, or
- (ii) the mth position of X is not matched, or
- (iii) the nth position of Y is not matched

Designing the DP algorithm

- let OPT(i,j) minimum cost of an alignment between x₁x₂...x_i and y₁y₂...y_j
- recursively define OPT(m,n):

case (*i*):

□ pay $\alpha_{x_my_n}$, then optimally align $x_1x_2...x_{m-1}$ and $y_1y_2...y_{n-1}$ OPT(m,n) = $\alpha_{x_my_n}$ + OPT(m-1,n-1)

case (*ii*):

□ pay gap cost δ, then optimally align $x_1x_2...x_{m-1}$ and $y_1y_2...y_n$ OPT(m,n) = δ + OPT(m-1,n)

case (iii):

□ pay gap cost δ , then optimally align $x_1x_2...x_m$ and $y_1y_2...y_{n-1}$ OPT(m,n) = δ + OPT(m,n-1)

Designing the DP algorithm

Property: The minimum alignment costs satisfy the following recurrence, for $i \ge 1$, $j \ge 1$:

```
\mathsf{OPT}(\mathsf{i},\mathsf{j}) = \mathsf{min}\{\alpha_{\mathsf{x}_\mathsf{i}\mathsf{y}_\mathsf{j}} + \mathsf{OPT}(\mathsf{i}\text{-}1,\mathsf{j}\text{-}1), \, \delta + \mathsf{OPT}(\mathsf{i}\text{-}1,\mathsf{j}), \, \delta + \mathsf{OPT}(\mathsf{i},\mathsf{j}\text{-}1)\}
```

Moreover, (i,j) is in an optimal alignment iff the minimum is achieved by the first of these values.

Alignment (X,Y)

```
array A[0..m,0..n] initialize array A[i,0] = i\delta for each i initialize array A[0,j] = j\delta for each j for j = 1 to n for i = 1to m A[i,j] = min {\alpha_{x_iy_j} + A[i-1,j-1], \delta + A[i-1,j], \delta + A[i,j-1]} return A[m,n]
```

 $RT = \Theta (mn)$

Graph – based picture of sequence alignment

- Cost of the edges:
 - horizontal & vertical edges have cost δ
 - diagonal edge (i-1,j-1) to (i,j) has cost $\alpha_{x_iy_i}$
- Value of an optimal alignment is the minimum-cost of a path from (0,0) to (m,n)

Graph – based picture of sequence alignment

Let f(i,j) denote the minimum cost of a path from (0,0) to (i,j) in G_{XY} . Then for all i,j, we have f(i,j) = OPT(i,j).

Sequence Alignment in Linear Space via Divide and Conquer

- Finding the optimal alignment is equivalent to constructing the graph G_{XY} with (m+1)(n+1) nodes laid out in a grid and looking for the cheapest path between opposite corners
- RT for this approach is O(mn) and space O(mn)
- This is too large for biological applications where strings are very long
 - if the two strings have ~ 100,000 symbols each, then RT ~ 10 billion primitive operations and space is ~10 billion array
- Objective: enhancement of the sequence alignment algorithm that has RT = O(mn) and space O(m+n)
 - uses divide-and-conquer

Designing the Algorithm

- First, we'll show that if we care only about the *value* of an optimal alignment, then it's easy to have linear space
- Key observation: to fill out the array A, we only need information on the current column of A and the previous column of A
- Instead of using array A of size (m+1)×(n+1), use array B of size (m+1)×2
- As the algorithm iterates through values of j, entries B[i,0] will hold the previous column's value A[i,j-1] and entries of the form B[i,1] will hold the current column's values A[i,j]

Designing the Algorithm

Space-Efficient-Alignment (X,Y) array B[0..m,0..1] initialize B[i,0] = i δ for each i (just as in column 0 of A) for j = 1,...,n $B[0,j] = j\delta$ (since this corresponds to entry A[0,j]) for i = 1,...,mB[i,1] = min[$\alpha_{x_iy_i}$ + B[i-1,0], δ + B[i-1,1], δ + B[i,0]}] endfor // move col 1 of B to col 0 to make room for the next iteration update B[i,0] = B[i,1] for each i endfor

- RT = O(mn)
- space =O(m)

Space-efficient-alignment

- when the alg. terminates, B[i,1] holds the value of OPT(i,n) for i = 0,...m
- issue: how to find the assignment itself?
 - we haven't left enough information to find the alignment
 - B has only the last two columns, so we cannot trace back the optimal alignment (shortest path)
- different approach if we want to recover the optimal alignment

A backward formulation of the DP

- f(i,j) length of the shortest path (0,0) to (i,j) in the graph G_{XY}
 f(i,j) = OPT(i,j)
- define g(i,j) length of the shortest path from (i,j) to (m,n) in G_{XY}
- build g using DP in reverse: start with g(m,n) = 0, and the answer we want is g(0,0)
- for i < m and j < n we have: $g(i,j) = \min [\alpha_{x_{i+1} y_{j+1}} + g(i+1, j+1), \delta + g(i, j+1), \delta + g(i+1, j)]$
- g is built using DP backward from (m,n)
- we can also design the space-efficient version, Backward-Space-Efficient-Alignment(X, Y)
 in space O(m) and RT = O(mn)

Combining the Forward and Backward Formulations

Important properties:

- The length of the shortest corner-to-corner path in G_{XY} that passes through (i,j) is f(i,j) + g(i,j)
- Let k be any number in $\{0,...,n\}$ and let q be an index minimizes the quantity f(q,k) + g(q,k). Then there is a corner-to-corner path of minimum length that passes through the node (q,k).

Designing the algorithm

- divide G_{XY} along the center column and compute f(i,n/2) and g(i,n/2) for each i, using the two space-efficient algorithms
- find the minimum f(i,n/2) + g(i,n/2) for same value i
- then there is a shortest corner-to-corner path that passes through (i,n/2)
- recursively find the shortest-path in G_{XY} between (0,0) and (i,n/2) and in the portion between (i,n/2) and (m,n)
- MAIN IDEA:
 - Apply these recursive calls sequentially and reuse the working space from one call to the next
- then the space usage is O(m+n)

Designing the algorithm

- maintain a globally accessible list P with nodes on the shortest corner-to-corner path as they are discovered
 - initially, P is empty
 - P has at most m+n entries, since any path has at most m+n edges
- notation:

```
X[i:j], for 1 \le i \le j \le m, is the substring x_i x_{i+1} ... x_j similar for Y[i:j]
```

assume for simplicity n is a power of 2

Designing the algorithm

```
Divide-and-Conquer-Alignment(X,Y) m is the number of symbols in X n is the number of symbols in Y if m ≤ 2 or n ≤ 2 then compute optimal alignment using Alignment(X,Y) call Space-Efficient-Alignment(X,Y[1:n/2]) call Backward-Space-Efficient-Alignment(X,Y[n/2+1:n]) let q be the index minimizing f(q,n/2) + g(q,n/2)
```

Divide-and-Conquer-Alignment(X[1:q],Y[1:n/2])

add (q,n/2) to the global list P

Divide-and-Conquer-Alignment(X[q+1:m],Y[n/2+1:n])

return P

[✓] Space used is O(m+n)

Example

RT analysis

The RT of Divide-and-Conquer-Alignment on strings of length m and n is O(mn).

Proof:

```
T(m,n) – running time T(m,n) \leq cmn + T(q,n/2) + T(m-q,n/2) T(m,2) \leq cm T(2,n) \leq cn
```

Particular case: m = n and q is in the middle

$$T(n) \le cn^2 + 2T(n/2)$$

case 3 of the Master Thm $\Rightarrow T(n) = \Theta(n^2)$

RT analysis

General case:

$$T(m,n) \le cmn + T(q,n/2) + T(m-q,n/2)$$

Show by induction that T(m,n) = O(mn), that means $T(m,n) \le kmn$ for some constant k

Base case: $m \le 2$ or $n \le 2$ is true

Inductive step:

```
T(m,n) \le cmn + T(q,n/2) + T(m-q,n/2)

\le cmn + kqn/2 + k(m-q)n/2

= cmn + kqn/2 + kmn/2 - kqn/2

= (c + k/2)mn
```

Inductive step works if c+k/2 = k, that means c = k/2 or k = 2c