S. Christensen

P. Le Borne, B. Schroeter, B. Schultz

Sheet MF01

Mathematical Finance: MF

Exercises (for discussion on Monday, 06.11.2023)

Exercise 1. Consider a market with two securities, 1 and 2. The prices are $S_0^1 = 6$, $S_0^2 = 11$. Both securities have a term of one year and make a single payout at the end of the year (at t = 1), but the payout is random.

- 1. In this model, there are two outcomes $\Omega = \{\omega_1, \omega_2\}$. Security 1 pays $S_1^1(\omega_1) = 7$ or $S_1^1(\omega_2) = 5$ and security 2 pays $S_1^2(\omega_1) = 14$ or $S_1^2(\omega_2) = 10$.
- 2. In another model, $\Omega = \{\omega_3, \omega_4\}$. Security 1 pays $S_1^1(\omega_3) = 7$ or $S_1^1(\omega_4) = 5$ and security 2 pays $S_1^2(\omega_3) = 14$ or $S_1^2(\omega_4) = 8$.

For both models determine if there is an arbitrage strategy. If there is one state it explicitly.

Exercise 2. Many banks offer reverse convertible bonds. These are characterized by the maturity T, the underlying asset with prices S_0^1, S_T^1 , the nominal amount N, the strike K and the assured interest rate r.

At the beginning the buyer pays the nominal amount. At the end the seller either pays back the nominal amount – in the case $S_T^1 > K$ – or gives $n = \frac{N}{K}$ assets – in the case $S_T^1 \le K$. In both cases the seller pays the assured interest on the nominal value. This means for the holder the value of S^2 at maturity T is

$$S_T^2 := \begin{cases} Ne^{rT} & \text{if } S_T^1 > K \\ \frac{N}{K}S_T^1 + N(e^{rT} - 1) & \text{if } S_T^1 \le K. \end{cases}$$

Find a combination of the bond and a call or put option with the same payoff as the reverse convertible bond.

Exercise 3. Let $\lambda, \mu > 0$, let X be a $\exp(\lambda)$ and Y be a $\exp(\mu)$ distributed random variable.

- (a) Calculate E(X + Y).
- (b) Find the density of X + Y in case, X and Y are independent.
- (c) Point out where the assumption of independence comes into play.

Exercise 4. Let (Ω, \mathcal{A}, P) be a probability space, $X : \Omega \to \mathbb{R}$ a random variable with $E(X^2) < \infty$ and $(B_i)_{i \in \mathbb{N}}$ a partition of Ω . Further let $\mathcal{F} := \sigma(\{B_i : i \in \mathbb{N}\})$ be the sigma algebra generated by $(B_i)_{i \in \mathbb{N}}$. Please show:

$$||X - \sum_{i \in \mathbb{N}, P(B_i) > 0} c_i 1_{B_i}||_2$$

is minimal, if for all $i \in \mathbb{N}$ mit $P(B_i) > 0$ the equation $c_i = E(X|B_i) := \frac{E(1_{B_i}X)}{P(B_i)}$ holds.