20 Array

Content

	117 700)W W!		awmn	whe	1061CC
natziz	C					
20w	with	max	no. o	15		
	natzij	natrix	natzix	natrix		

— Spiral Matrix— Sum of all submatrices sum

Am	reshwar
AN	UBHAV RAMNANI
anι	ırag jain
Aru	nava Basak
Bha	avesh Pandey
Cha	andra Shekhar Bhatt
Dee	epshikha Arora
Dha	asthagiri Reddy
Dhi	·uv
Har	rikrishnan A
Hai	rshad Sanjay Marathe
Ind	uja
jeev	vanantham
Kar	ıhu
M S	Haseeb Khan
Mal	hesh Baswaraj
Mai	nohar A N
МО	HAMMAD ALI
Nik	hil D
Pal	lavi V Rao
Piyı	ısh
Pra	njul Kesharwani
Pra	veen Kumar
Priy	ank Varshney
Sha	ambhavi
Shi	vam Shiv
Shi	vanand Patil
Sim	nin Shaikh
Sou	ıban
Sur	abhi Kumari
Udo	deepta Saikia

Ved Verma

lwes		
1>	$Q \longrightarrow$	QT
2>	$A \longrightarrow$	PC
3>	Alwayn	be active

Q> Given a now wise and col wise sorted matrix.

Find out whether K is present or not.

$$k = -1$$
 take

Bruteforce — Sterate over all the cells of the matrix

Best case — K is first cell. TC: OC+)

Worst case — K is not present. TC: OCR*C)

for
$$k \longrightarrow 0$$
 to $k-1$ of for $c \longrightarrow 0$ to $c-1$ by if $(ATATC) == k$ return true

return false

$$k = -1$$

lest

```
Pseudo code
```

$$C = 10.00$$
 colu

Il stort from top right cell H = 0 C = C - L

while
$$(K \times K \times K \times K \times K)$$
 of if $(A(X)(C)) = = K)$ return two if $(A(X)(C)) \times K$ of $K + = 1$ if $K + = 3$ is return false.

k = - 4

-5	-2	1	13
7) (ო) 7
-3	η	0	18

K=6

-5	ا ک	1	13
-4	0	m	7
-3	Ŋ	0	18

TC: O(R+C)

sc: oci)

all now are sorted

- NOTE If two rows have the max no. of I, retwen lower index
 - · Assume each now to be sorted by values.

output : 0

output: 3

```
Bywteforce \longrightarrow For every xow \longrightarrow cnt #15

Return the xow with max #15

for x \longrightarrow 0 to R-1 of

xot = 0

for xot = 0

xot = 0
```

If
$$(A(x)T(c) == 1)$$
 \leftarrow left

else

 $\int down$

Pseudocode

T(: 0(R+C)

sc: 0(1)

Print Boundary Flement *****

Given a matrix of N*N, Print boundary elements in clockwise direction.

Output: | 2 3 4 5 10 15 20 25 24 23 22 21 16 11 6

1	2	3	3	5
6	7	%	9	9
11	12	13	٦	15
16	17	18	19	20
21	22	23	24	25

Pseudocode

void print Boundary (N,
$$\mu$$
, C) {
$$\frac{R=0}{C=0}$$

// N-1 value in top row
for $\hat{c} \longrightarrow 1$ to N-1 of // N-1 Herasian

```
print (ATX) [C])
      C++
11 N-1 values in right col
for l \longrightarrow 1 to N-1 of // N-1 sterasion
     perint (ATRITICO)
       14+
 // N-1 value in bottom row
 for \stackrel{\circ}{\iota} \longrightarrow 1 to N-1 of // N-1 sterasion
      print (ATXI TCI)
 11 N-1 value in left col
 for l \longrightarrow 1 to N-1 of // N-1 steration
      perint (ATXI TCI)
 11 edge case
if (N = = 1) of
| print (ATX) (C)
                          16 17 18 19
                                       20
   TC: O(N)
   (1)0 : 22
```

Spiral Matrix ***

Given a matrix of N*N.

Print elements in spiral order in clockwise direction.

			0	1	2	3	4	5
		O	1	2	3	7	5	6
A	=	1	7	8	9	10	11	12
		2	13	14	15	16	17	18
		3	19	20	21	22	23	24
		ч	25	26	27	28	29	30
		5	31	32	33	34	32	36

	0	1	2	3	4	5
0	1	2	3	7	5	6
1	7	8	9	0	11	12
2	13	IU	5	16	17	18
3	19	2	21	22	23	24
ч	25	26	27	28	29	30
5	31	32	33	34	32	36

Pseudocode

while
$$(N>0)$$
 of $Tc: O(N^2)$

print Boundary (N, \varkappa, c) $Sc: O(1)$

"Update N, \varkappa, c
 $N = N-2$
 $\varkappa + = 1$
 $c+=L$

Breat: 22:50

1	2	3	3	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

what 4 a submatrix?

Given a matrix A[R][C]. Determine the sum of all possible submatrices.

$$M = 0 \quad \begin{array}{c|cccc} & 0 & 1 & 2 \\ & 4 & 9 & 6 \\ & 1 & 5 & -1 & 2 \end{array}$$

All possible submatrices

Brutet orce

```
KICI K2C2
  11 Figure out all possible comb. of TL & BR
for k_1 \longrightarrow 0 to k-1 { } TL

for c_1 \longrightarrow 0 to c-1 d

for c_2 \longrightarrow c_1 to c-1 d

sub = 0

for k \longrightarrow k_1 to k_2 f

for c \longrightarrow c_1 to c_2 d

sub + = A T \times 7 T c T
    any
                                        ary += sub
                                                                       TC: 0 ((1xc)3)
                                                                       SC: 0(1)
                                                       N*N matrix
                                                                        TC: D(N6)
```


of rub matrices containing red dot = 12 * 4 = 48

			0		С		C	L
		0	V	V	ų			
Μ	=	H	١, ٢	<u> </u>	- 00	ý - ·	را	
					· V	~	V	1
		R-1			12	v	U	

of way to reject TL = (r+1)*(C+1)

of submotrices containing (x, c) = #TL* #BR

BR
$$k_2$$
 C_2

(2 to $k-1$)

(2 to $k-1$)

(2 to $k-1$)

(3 to $k-1$)

(4 to $k-1$)

(5 to $k-1$)

(6 to $k-1$)

(7 to $k-1$)

(8 to $k-1$)

(9 to $k-1$)

(9 to $k-1$)

(1 to $k-1$)

(1 to $k-1$)

(2 to $k-1$)

(3 to $k-1$)

(4 to $k-1$)

(5 to $k-1$)

(6 to $k-1$)

(7 to $k-1$)

(8 to $k-1$)

(9 to $k-1$)

(1 to $k-1$)

(1 to $k-1$)

(2 to $k-1$)

(3 to $k-1$)

(4 to $k-1$)

(6 to $k-1$)

(7 to $k-1$)

(8 to $k-1$)

(9 to $k-1$)

(1 to $k-1$)

(1 to $k-1$)

(2 to $k-1$)

(3 to $k-1$)

(4 to $k-1$)

(5 to $k-1$)

(6 to $k-1$)

(7 to $k-1$)

(8 to $k-1$)

(9 to $k-1$)

(1 to $k-1$)

(1 to $k-1$)

(2 to $k-1$)

(3 to $k-1$)

(4 to $k-1$)

(5 to $k-1$)

(6 to $k-1$)

(7 to $k-1$)

(8 to $k-1$)

(9 to $k-1$)

(1 to $k-1$)

(1 to $k-1$)

(2 to $k-1$)

(3 to $k-1$)

(4 to $k-1$)

(5 to $k-1$)

(6 to $k-1$)

Pseudocode

any =0

TC:0(
$$R*C$$
)

SC: O(1)

for $R=0$ to $R-1$ d

for $C=0$ to $C-1$ d

TL = $(R+1)*(C+1)$

BR = $(R-1)*(C-1)$

any += A[R] TC] * TC * BR

Doubt lession

5 末 16