Основные идеи:

• Тракт данных - это часть центрального процессора, состоящая из АЛУ, его входов и выходов. Тракт данных нашей микроархитектуры:

- Тракт содержит ряд 32-разрядных регистров, которым приписаны символические названия (например, PC, SP, MDR (они обычно содержат значения, соответствующие переменным с аналогичными названиями на уровне архитектуры команд)).
- Содержание большинства регистров передается на шину В.
- Выходной сигнал АЛУ управляет схемой сдвига и далее шиной С.
- Значение с шины С может записываться в один или несколько регистров одновременно.
- Перечеркнутая стрелочка с цифрой 6 указывает на наличие 6 линий управления АЛУ (F₀ и F₁ служат для задания операции, ENA и ENB для разрешения входных сигналов A и B, соответственно, INVA для инверсии левого входа и INC для переноса бита в младший разряд, что эквивалентно прибавлению единицы к результату (однако, не все 64 комбинации значений на линиях управления делают что-то полезное). Некоторые комбинации показаны в ниже приведенной таблице:

	F,	ENA	ENB	INVA	INC	Функция
•	1	1	0	0	0	A
0	1	0	1	0	0	В
0	1	1	0	1	0	Ā
1	0	1	1	0	0	B
1	1	1	1	0	0	A + B
1	1	1	1	0	1	A + B + 1
1	1	1	0′	0	1	A + 1
ĩ -	1	0	1	0	1	B + 1
i	1	1	1	1	1	B – A
1	1	0	1	1	0	B - 1
ī	1	1	0	1	1	-A
0	0	1	1	0	0	АИВ
0	1	1	1	0	0	А ИЛИ В
0	1	0	0	0	0	0
0	1	0	0	0	1	1
0	1	0	0	1	0	-1

- Не все из этих функций нужны для машины IJVM, но многие из них могут пригодиться для полнофункциональной машины (JVM).
- В регистр Н (регистр временного хранения) может поступать функция АЛУ, которая проходит через правый вход (из шины В) к выходу АЛУ.
- Линии SLL8 и SRA1 служат для управления выходом АЛУ (SLL8 сдвигает число влево на 1 байт, заполняя 8 самых младших двоичных разрядов нулями. SRA1 сдвигает число вправо на 1 бит, оставляя самый старший двоичный разряд без изменений).
- Операции чтения и записи регистра могут выполняться за один цикл (процессы чтения и записи происходят в разных частях цикла)
- Ниже представлена временная диаграмма цикла тракта данных, которая показывает как происходит синхронизация:

Где

- 1. Δw устанавливаются сигналы управления
- 2. Δx значения регистров загружаются на шину В
- 3. Δy действуют АЛУ и схемы сдвига
- 4. Δz результаты проходят по шине С обратно к регистрам