HW4 作業說明

郭昱 <u>ivan010517@gmail.com</u> 黃宥翔 <u>chris900623@gmail.com</u> 2024 HDL

Outline

Edge detection

- Sobel Edge Operation
 - Color Space Transformation
 - Convolution with Sobel Filters
- Hardware Implement
 - Read Image(.bmp) File Testbench
 - Zero Padding Testbench
 - RGB to YUV Hardware
 - Line Buffer & Convolution Hardware
 - Write Image(.bmp) File Testbench

Sobel Edge Operation

$$G_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix}$$

Sobel Edge Operation

- Color Space Transformation
- Convolution with Sobel Filters
- Pixel to Binary Transformation by Threshold

Color Space Transformation

- Color Space Transformation
- Convolution with Sobel Filters
- Pixel to Binary Transformation by Threshold

Color Space Transformation

$$\begin{bmatrix} Y \\ C_b \\ C_r \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Color Space Transformation

- Color Space Transformation
- Convolution with Sobel Filters
- Pixel to Binary Transformation by Threshold

$$\begin{bmatrix} Y \\ C_b \\ C_r \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

- Color Space Transformation
- Convolution with Sobel Filters
- Pixel to Binary Transformation by Threshold

$$G_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix},$$

Input image (6 * 6)

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
4		_		4	
1	0	0	0	1	0
0	1	0	0	1	0

Stride = 1

Filter(3 * 3)

1	-1	-1
-1	1	-1
-1	-1	1

Output image (4 * 4)

Input image (6 * 6)

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Stride = 1

Filter(3 * 3)

1	-1	-1
-1	1	1
-1	-1	1

Output image (4 *₁₀4)

Input image (6 * 6)

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Stride = 1

Filter(3 * 3)

1	1	-1
-1	1	-1
-1	-1	1

Output image ($4 *_{1} 4$)

Input image (6 * 6)

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Stride = 1

Filter(3 * 3)

1	-1	-1
-1	1	-1
-1	-1	1

Output image ($4 *_{1} 4$)

Zero Padding

Input image (6 * 6)

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Stride = 1

1	-	Υ-
-1	1	-1
-1	-1	1

Output image ($4 *_{13} 4$)

Zero Padding

Input image (6 * 6)

1	0	0	0	0	1
0	1	O	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Input image (8 * 8)

0	0	0	0	0	0	0	0
0	1	O	0	O	0	1	0
0	О	7	0	O	1	O	0
0	О	О	1	1	0	O	0
0	1	0	0	0	1	O	0
0	0	1	0	0	1	O	0
0	0	0	1	0	1	0	0
0	0	0	0	0	0	0	0

- Color Space Transformation
- Convolution with Sobel Filters
- Pixel to Binary Transformation by Threshold

$$G_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix},$$

$$G_{y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}.$$

Pixel to Binary Transformation by Threshold

- Color Space Transformation
- Convolution with Sobel Filters
- Pixel to Binary Transformation by Threshold

Pixel to Binary Transformation by Threshold

Pixel to Binary Transformation by Threshold

自刮 改二100

Sobel Edge Operation

- Color Space Transformation
- Convolution with Sobel Filters

Pixel to Binary Transformation by Threshold

Outline

- Hardware Implement
 - Read Image(.bmp) File Testbench
 - Zero Padding Testbench
 - RGB to YUV Hardware
 - Line Buffer & Convolution Hardware
 - Write Image(.bmp) File Testbench

Testbench – Read Image

```
Height
                                      RGB
                Width
                                                  Header
                                                 (File Info)
     `define img max size
                             480*360*3+54
                     img data [0: img max size-1];
20
              [7:0]
         reg
         initial begin
60
             img in = $fopen(`path_img in, "rb");
             img out = $fopen(`path img out, "wb");
             $fread(img data, img in);
             img w
                     = {img data[21],img data[20],img data[19],img data[18]};
                     = {img data[25],img data[24],img data[23],img data[22]};
             img h
             offset = {img data[13],img data[12],img data[11],img data[10]};
68
             for(header = 0; header < 54; header = header + 1) begin</pre>
                 $fwrite(img out, "%c", img_data[header]);
             end
         end
```

BMP File Format

Start	Name	Size (Byte)	Content
0x0000	ID	2	"BM"
0x0002	File Size	4	Total file size
0x0004	Reserved	4	Reserved
0x000A	Bitmap Data Offset	4	BMP offset

Start	Name	Size (Byte)	Content
0x0036	Palette	N*4	Palette data

Start	Name	Size (Byte)	Content	
-	Bitmap Data	-	BMP data	

Start	Name	Size (Byte)	Content
0x000E	Bitmap Header Size	4	BIH size
0x0012	Width	4	BMP width (pixel)
0x0016	Height	4	BMP height (pixel)
0x001A	Planes	2	BMP plane counts
0x001C	Bits Per Pixel	2	Pixel size
0x001E	Compression	4	Compression method
0x0022	Bitmap Data Size	4	BMP data size
0x0026	H-Resolution	4	Horizontal Resolution
0x002A	V-Resolution	4	Vertical Resolution
0x002E	Used Colors	4	Palette colors used
0x0032	Important Colors	4	Important color count

```
img_w = {img_data[21],img_data[20],img_data[19],img_data[18]};
img_h = {img_data[25],img_data[24],img_data[23],img_data[22]};
offset = {img_data[13],img_data[12],img_data[11],img_data[10]};
```

BMP File Format

Start	Name	Size (Byte)	Content
0x0000	ID	2	"BM"
0x0002	File Size	4	Total file size
0x0004	Reserved	4	Reserved
0x000A	Bitmap Data Offset	4	BMP offset

	Start	Name	Size (Byte)	Content
	0x000E	Bitmap Header Size	4	BIH size
	0x0012	Width	4	BMP width (pixel)
	0x0016	Height	4	BMP height (pixel)
	0x001A	Planes	2	BMP plane counts
o	or(idx = 0: idx < img h*img w: idx = idx+1) begin			

Start	Name	Size (Byte)	Content
0x0036	Palette	N*4	Palette data

for(idx = 0; idx < img_h*img_w; idx = idx+1) begin	
<pre>R <= img_data[idx*3 + offset + 2];</pre>	
<pre>G <= img_data[idx*3 + offset + 1];</pre>	
<pre>B <= img_data[idx*3 + offset + 0];</pre>	
<pre>#(`period);</pre>	
end	

Start	Name	Size (Byte)	Content
-	Bitmap Data	-	BMP data

0X0026	H-Resolution	4	Horizontal Resolution
0x002A	V-Resolution	4	Vertical Resolution
0x002E	Used Colors	4	Palette colors used
0x0032	Important Colors	4	Important color count

BMP File Format

```
for(idx = 0; idx < img_h*img_w; idx = idx+1) begin
  R <= img_data[idx*3 + offset + 2];
  G <= img_data[idx*3 + offset + 1];
  B <= img_data[idx*3 + offset + 0];
  #(`period);
end</pre>
```


Outline

- Hardware Implement
 - Read Image(.bmp) File Testbench
 - Zero Padding Testbench
 - RGB to YUV Hardware
 - Line Buffer & Convolution Hardware
 - Write Image(.bmp) File Testbench

Testbench – Zero Padding

Bmp Address

(with zero padding)

Hardware – Overall Architecture

RGB to YVB

Outline

- Hardware Implement
 - Read Image(.bmp) File Testbench
 - Zero Padding Testbench
 - RGB to YUV Hardware
 - Line Buffer & Convolution Hardware
 - Write Image(.bmp) File Testbench

Hardware – RGB to Gray Level

$$\begin{bmatrix} Y \\ C_b \\ C_r \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.169 & -0.331 & 0.500 \\ 0.500 & -0.419 & -0.081 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$0.255 \sim = 2^{-2} + 2^{-5}$$
; $0.587 \sim = 2^{-1} + 2^{-4}$; $0.114 \sim = 2^{-3} - 2^{-6}$

$$R * 0.255$$

= $R * 2^{-2} + R * 2^{-5}$
= $R >> 2 + R >> 5$

Outline

- Hardware Implement
 - Read Image(.bmp) File Testbench
 - Zero Padding Testbench
 - RGB to YUV Hardware
 - Line Buffer & Convolution Hardware
 - Write Image(.bmp) File Testbench

Hardware – Line Buffer & Convolution

放射法征memory - 大read 9個 用shift read 4個

Input Cycle (with zero padding)

Input Cycle (with zero padding)

Input Cycle (with zero padding)

Input Cycle (with zero padding)

Input Cycle (with zero padding)

Invalid!

Input Cycle (with zero padding)

Invalid!

Input Cycle (with zero padding)

Input Cycle (with zero padding)

$$G_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix},$$

$$= -r0 + r2 - 2*r3 + 2*r5 - r6 + r8$$

= $-r0 + r2 - r3 - r3 + r5 + r5 - r6 + r8$

$$G_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix},$$

$$G_{y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}.$$

Testbench – Write Image File

繳交檔案

- Cell Base (Design Complier)
 - RTL code
 - Pre/post-syn simulation Testbench
 - Gate level netlist (including sdf file) -> Area optimize
- FPGA(Xilinx Vivado)

研3種

- .xpr.zip
- xdc, wcfg
- PDF Report

PDF Report (Cell Base)

っ か果たね給的, <u>氷 封那後</u>園 統明、自己 **以**ろれ渡 • Figure of overall architecture (架構圖)

- Both RTL and gate-level simulation waveforms, including explanations (RTL波形 & gate-level波形並解釋)
- area information and critical path delay (Area資訊和critical path資訊)
- original input image (of cat), image of horizontal edges and vertical edges (原貓咪圖、水平邊緣圖片、 垂直邊緣圖片)

PDF Report (FPGA)

- Simulation waveforms of both behavior level and post-implementation, including explanations (Behavior波形 & post-implement波形並解釋)
- Snapshots of project summary-overview (Project Summary-Overview截圖)
- Comments (心得)