Optimization

Guttag Chapter 14

Goals

Understand Knapsack Problem

- Values
- Weights
- Constraint
- Optimization Objective

Powerset Solution

Greedy Algorithm Solution

Code Example

Understanding the Knapsack

Definition:

- a knapsack has limited room for items inside.
- The packed knapsack can only contain a <u>subset</u> of items
- The problem is finding the optimal subset

Example:

- the knapsack can only contain 15 kg
- which subset of items should fill the sack?

Lime: \$4, 12 kg

Gray: \$2, 1 kg

Blue: \$2, 2 kg

Orange: \$1, 1 kg

Yellow: \$10, 4 kg

Example:

- the knapsack can only contain 15 kg
- which subset of items should fill the sack?

Lime: \$4,12 kg

Gray: \$2, 1 kg

Blue: \$2, 2 kg

Orange: \$1, 1 kg

Yellow: \$10, 4 kg

Each item has a value (\$)

Each item has a **weight** (kg)

The knapsack is **constrained** to have a max weight

Optimization Objective

Definition:

- Choosing the ideal items
- Follow a goal

Example

- choose items to maximize value
- choose items to minimize value (e.g. let's say calories)
- choose items to maximize weight
- choose items to maximize density (e.g. value/weight)

Powerset Solution

Powerset Solution

The objective is to maximize the value in a knapsack that can only hold 15 kg max

Lime: \$4, 12 kg Gray: \$2, 1 kg

Blue: \$2, 2 kg

Orange: \$1, 1 kg Yellow: \$10, 4 kg

Generate the Powerset:

{}, {L}, {G}, {GL}, {B}, {BL}, {BG}, {BGL}, {O}, {OL}, {OG}, {OGL}, {OB}, {OBL}, {OBG}, {OBGL}, {Y}, {YL}, {YG}, {YGL}, {YB}, {YBL}, {YBG}, {YBGL}, {YO}, {YOL}, {YOG}, {YOGL}, {YOB}, {YOBL}, {YOBG}, {YOBGL}

2. Search through the powerset to find the subset that has largest \$ value under 15 kg!

Critical Thinking

1. Generate the Powerset:

```
{}, {L}, {G}, {GL}, {B}, {BL}, {BG}, {BGL}, {O}, {OL}, {OG}, {OGL}, {OB}, {OBL}, {OBG}, {OBGL}, {Y}, {YL}, {YG}, {YGL}, {YB}, {YBL}, {YBG}, {YBGL}, {YO}, {YOL}, {YOG}, {YOGL}, {YOB}, {YOBL}, {YOBG}, {YOBGL}
```

Search through the powerset to find the subset that has largest \$ value under
15 kg

What does the search entail? Be ready to answer out loud

Pseudo Code

- # for each subset
- # set up a value tracker, and weight tracker variable
- # loop through everything in the subset one at a time
- # increment the value and weight as you go
- # if the max weight is exceeded, stop and move on to the Next SUBSET
- # if no weight issue, only save the subset if it has the best value you've seen so far

Greedy Approximation

Greedy

Definition

- take the best thing that fits within the constraint
- best is guided by the objective
- repeat the process until the constraint is hit

Greedy Solution

The objective is to maximize the value in a knapsack that can only hold 15 kg max

Lime: \$4, 12 kg

Gray: \$2, 1 kg

Blue: \$2, 2 kg

Orange: \$1, 1 kg

Yellow: \$10, 4 kg

- Take the best \$ value first → Yellow
- 2. Check that the constraint is not violated (11 kg remain)
- 3. Take the best \$ value again \rightarrow Lime
- 4. Check that the constraint is not violated (-1 kg remain XXXX)
- 5. Discard Lime and continue greedy algorithm

Greedy vs Powerset

The **Global Optimum** will be found with the **powerset**.

But the search is extremely inefficient! O(2ⁿ)

A Local Optimum will be found with the Greedy Algorithm

Greedy is efficient O(n)

Inefficiency of the Solution

Code Example

For the Code Example

Think of 8 foods that you find delicious

- Value will be deliciousness value for you
- Weight will be the \$ cost of the food
- Objective will be getting the most value while not exceeding some calorie constraint

Diago

Burger	VS	Pizza
1 burger	SERVING SIZE	1 slice (1/8 of 12" pizza)
354	CALORIES	285
22g	PROTEIN	12g
27g	CARBOHYDRATES	36g
18g	○ FAT	10g
7g	SATURATED FAT	4g
80mg	CHOLESTEROL	22mg
2.5mg	Fe IRON	2mg
4.2mg	Zn ZINC	n/a
2.4mcg	12 VITAMIN B12	n/a