PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE20MA101

FEBRUARY 2021: IN SEMESTER ASSESSMENT B Tech 1 SEMESTER TEST - 1

UE20MA101: Engineering Mathematics - I

Time: 2 Hrs Answer All Questions Max Marks: 60							
	Time, 2 his Aliswel Ali Questions Iwax Warks. Co						
1	a)	Test the convergence of the series whose nth term is given by $\sqrt{n^4 + 1} - \sqrt{n^4 - 1}$.	4 M				
	b)	Discuss the convergence of the series $1 + \frac{\alpha.\beta}{1.\gamma}x + \frac{\alpha.(1+\alpha).\beta.(1+\beta)}{1.2.\gamma(1+\gamma)}x^2 + \frac{\alpha.(1+\alpha).(2+\alpha).\beta.(1+\beta).(2+\beta)}{1.2.3.\gamma.(1+\gamma).(2+\gamma)}x^3 + \cdots \infty$	6 M				
2	a)	Discuss the convergence of the series $\left(\frac{3}{4}\right)x + \left(\frac{4}{5}\right)^2x^2 + \left(\frac{5}{6}\right)^3x^3 + \cdots + \infty$, $x > 0$	4 M				
	b)	Apply Cauchy integral test to discuss the nature of the series $\sum_{n=2}^{\infty} \frac{1}{n (\log n)^p}$	6 M				
3	a)	If $\theta = t^n e^{\frac{-r^2}{4t}}$ what value of n will make $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$?	4 M				
	b)	If $u = x^3 sin^{-1} \left(\frac{y}{x}\right) + x^4 tan^{-1} \left(\frac{y}{x}\right)$ find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + y^2 \frac{\partial^2 u}{\partial y^2}$	6 M				
		$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ at $x = 1$, $y = 1$.					
4	a)	Find Taylor's expansion of $f(x, y) = \cot^{-1}(xy)$ in powers of $(x + 0.5)$ and $(y - 2)$ up to second degree terms. Hence compute $f(-0.4, 2.2)$ approximately.	6 M				
	b)	A scope probe in the shape of ellipsoid $4x^2 + y^2 + 4z^2 = 16$ enters the earth atmosphere and its surface begins to heat. After one hour the temperature at the point (x, y, z) on the surface is $T(x, y, z) = 8x^2 + 4yz - 16z + 600$. Find the hottest point on the probe surface.	4 M				
5	a)	Solve $y - \cos x \frac{dy}{dx} = y^2 (1 - \sin x) \cos x$.	6 M				
	b)	Prove that the system of confocal and coaxial parabolas $y^2 = 4a(x + a)$ is self-orthogonal. Here 'a' is the parameter.	4 M				
6	a)	Solve $2px + tan^{-1}(xp^2) - y = 0$.	6 M				
	b)	Water at temperature $10^{\circ}c$ takes 5 minutes to warm up to $20^{\circ}c$ in a room at temperature $40^{\circ}c$.	4 M				
		i) Find the temperature after 20 minutes.					
		ii) When will the temperature be 25°c?					

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE20MA101

MARCH 2021: IN SEMESTER ASSESSMENT B Tech 1 SEMESTER (Chemistry Cycle)

TEST - 2

UE20MA101: Engineering Mathematics - I

Time: 90 Minutes		ime: 90 Minutes	Answer All Questions	Max Marks: 40			
1		Solve $\frac{d^4x}{dt^4} = m^4x$.		4 M			
-	b)	Solve $(D^3 - D)y =$	$2x + 1 + 4\cos x + 2e^x.$	6 M			
2	2 a) Solve by the method of variation of parameters 5 N						
-	'	$ v'' - 2v' + 2v = \rho^{x}$	tany	5 M			
	b)	Solve $x^2 \frac{d^2y}{dx^2} + 5x \frac{dy}{dx}$	$+3y = \frac{\log x}{r^2}$.	5 M			
3	a)	Show that $\int_0^\infty \frac{x^4}{1+x^6} dx$	$x \cdot \int_0^2 (8 - x^3)^{-\frac{1}{3}} dx = \frac{2\pi^2}{9\sqrt{3}}.$	6 M			
	b)	Prove that $\int_0^\infty e^{-ax} x^n$	$^{n-1}sinbxdx = \frac{\Gamma(m)}{(a^2+b^2)^{\frac{m}{2}}}sinm$	$\left(tan^{-1}\left(\frac{b}{a}\right)\right)$. 4 M			
4	a)	Evaluate $\int x^3 J_0(x) dx$	x in terms of J_0 and J_1 .	4.24			
	b)	Show that $J_o^2 + 2J_1^2 +$	$-2J_2^2 + 2J_2^2 + \dots = 1$	4 M			
			72 73	6 M			

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE20MA101

APRIL 2021: END SEMESTER ASSESSMENT (ESA) B Tech 1 SEMESTER (Chemistry Cycle) UE20MA101: Engineering Mathematics - I

		Time: 3 Hrs Answer All Questions Max Marks: 100	
1	a)	Prove that the series $1 + \frac{1}{2} \frac{a}{b} + \frac{1.3}{2.4} \frac{a(a+1)}{b(b+1)} + \frac{1.3.5}{2.4.6} \frac{a(a+1)(a+2)}{b(b+1)(b+2)} + \cdots \infty$ is convergent if $a > 0$, $b > 0$ and $b > a + \frac{1}{2}$.	
	b)	Examine the convergence or divergence of the series $1 + \frac{2}{5}x + \frac{6}{9}x^2 + \frac{14}{17}x^3 + \dots + \frac{2^{n+1}-2}{2^{n+1}+1}x^n + \dots \infty (x > 0)$	7 M
	c)	Test the convergence of the series $\sum \frac{[(n+1)x]^n}{n^{n+1}}$.	6 M
2	a)	If $(\sqrt{x} + \sqrt{y})\cot u - x - y = 0$, prove that $4x\frac{\partial u}{\partial x} + 4y\frac{\partial u}{\partial y} + \sin 2u = 0$.	4 M
	b)	If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.	4 M
	c)	Find the Taylor's expansion of $e^{ax}sinby$ about the origin upto third degree terms.	6 M
	d)	A tent of a given volume has a square base of side 2a, has its four-side vertical of length b and is surmounted by a regular pyramid of height h. Find the values of a and b interms of h such that the canvas required for its construction is minimum.	6 M
	_		
3	a)	Solve: $x \sin x \frac{dy}{dx} + y(x \cos x - \sin x) = 2$	7 M
		Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1, \text{where } \lambda \text{ is a parameter.}$	6 M
	c)	Solve: $y = 2px + p^n$.	7 M
4	a)	Solve: $(D^2 - 4D + 1)y = sin^2x + e^x + e^3x$	6 M
4	b)	Solve the differential equation: $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = \frac{x^3}{1+x^2}$	7 M

	c)	A circuit consists of an inductance of 0.5 henrys, resistance of 6 ohms, capacitance of 0.02 farads and an e.m.f of voltage $E=24\sin 10t$. Find the charge and the current at time $t > 0$ given that the circuit carries no charge and no current at time $t=0$.	7 M		
5	a)	Show that for $m, n > 0$ $\int_0^1 x^{m-1} \left(\log \frac{1}{x} \right)^{n-1} dx = \frac{\Gamma(n)}{m^n}.$	5 M		
	b)	Show that for $m, n > 0$, $\int_{-a}^{a} (a+x)^{m-1} (a-x)^{n-1} dx = (2a)^{m+n-1} \beta(m,n)$.	5 M		
	c)	Use Jacobi series to derive the Bessel's integral formula	6 M		
		$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x\sin\theta) d\theta$ where n is a positive integer.			
	d)	Evaluate $\int J_4(x)dx$.	4 M		