

[2021.11.09]

Bulky mediastinal lymphoma classification with ML-techniques

Activity status n. 2

<u>Matteo Barbetti</u>

University of Florence INFN - Firenze

From previous meetings: objective

Classification of bulky mediastinal lymphoma using **Machine Learning** techniques applied to PET and CT images.

Lymphoma types:

- 1. Hodgkin (HL)
- 2. Gray Zone (GZ)
- 3. Primary Mediastinal Lymphoma (PML)

PLANNED

From low-level data

- Data: PET and CT images
- <u>Technique</u>: Image classification
- Algorithm: Convolutional Neural Nets

IN PROGRESS

From high-level data

- <u>Data:</u> features drawn by <u>LIFEx</u> from images
- Technique: Binary and multiclass classification
- Algorithm: Logistic regression + Random Forest

From previous meetings: learned lessons

- Dataset heavily unbalanced
 - HL-class is over-represented w.r.t. the other two ones
 - o classification suffers from unbalancing
- Binary classification looks promising
 - HL and non-HL classification
 - dataset a bit more balanced
- Multiclass classification fails
 - HL, GZ and PML classification
 - o only HL-class is well-identified by models
- GZ-class is a middle-class
 - classification uncertainty btw HL and PML
 - o only HL and PML are true disjoint classes

From previous meetings: implemented suggestions

- Classifiers performance improvement
 - <u>custom probability threshold</u> to make decisions
 - more robustness against unbalanced datasets
 - ROC AUC score for optimization
- New multiclass classification implementation
 - GZ-class treated as a classification uncertainty
 - binary classifiers promoted to multiclass classifiers

Binary classification

Decision rules: custom probability threshold

A trained classifier induces a 1-D space (represented by the predicted probability) where items belonging to different classes are <u>separated</u> as much as possible: more powerful classifiers result in greater separations.

Classifiers typically adopt the standard threshold of 0.5 in predicted probability to make a decision. <u>Customizing</u> this threshold allows to obtain models **more robust** against unbalanced dataset, and to have **more control** on models performance.

Decision rules: precision/recall tradeoff

Moving the threshold at will, one can obtain any target score desired (recall or precision).

- high recall → low precision
 - $\circ \ \ \text{high TPR} \rightarrow \text{low TNR}$
- high precision → low recall
 - \circ high TNR \rightarrow low TPR

Logistic regression: performance

Random Forest: performance

Gradient BDT: decision regions

Gradient BDT: performance

Model combination: performance

Models comparison

Results on the test-set

Multiclass classification

The Gray Zone class

Binary classifier

- o trained to separate HL-PML classes
- o good performance also on the test-set
- Behaviour with the third class.
 - half of GZ-items are predicted as HL
 - GZ-items have mixed characteristics
 btw HL and PML
 - GZ is a sort of middle-class

Promotion to multiclass classification

- 2 thresholds → 3 decision regions
 - o <u>outer regions</u> for HL and PML predictions
 - o middle region for GZ predictions
- **lower performance** w.r.t. binary classifier
 - <u>promising performance</u> w.r.t. the multiclass classifier trained with HL, GZ and PML as disjoint classes

Custom thresholds can be used to promote trained binary classifiers into multiclass classifiers!

Multiclass classification: performance

Conclusion

- Preliminary studies
- Still need for taking a look at literature
- There is room for improvements
 - increasing the dataset → more performant classifiers
 - \circ **balancing** the dataset \rightarrow more sensitive classifiers
 - o working with low-level data → image classification techniques
- Necessity to define a <u>final pipeline</u> for models optimization
 - Accuracy? Precision? Recall? ROC AUC?
- Necessity to add statistical errors for performance evaluation

Open to any kind of suggestions!

Backup

Logistic regression: AUC optimized version

Random Forest: AUC optimized version

Gradient BDT: AUC optimized version

