

Sintaxis de Wolfram

1. Asignación de Variables

En Wolfram Mathematica, las variables se asignan usando el operador .

x = 5

Esto asigna el valor 5 a la variable \bar{x} .

Notas importantes:

- Para comprobar la igualdad se utiliza == (doble igual), mientras que = (simple) se usa para asignar.
- Las variables se pueden redefinir en cualquier momento.

2. Estructura Condicional: If

La forma general de la sintaxis de 🔰 es:

If[condición, expresiónSiVerdadero, expresiónSiFalso]

- condición es una expresión lógica que evalúa a True o False.
- expresiónSiVerdadero es lo que se evalúa y devuelve si la condición es verdadera.
- expresiónSiFalso es lo que se evalúa y devuelve si la condición es falsa. (Puede omitirse si no se necesita un caso falso.)

Ejemplo

```
x = 10;
If[x > 0,
    Print["x es positivo"],
    Print["x es negativo o cero"]
];
```

En este ejemplo, se imprime $[x \in S]$ porque [x] vale 10, que es mayor que 0.

Si no necesitas la parte falsa, podrías usar:

```
If[x > 0,
    Print["x es positivo"]
];
```

En este caso, no pasaría nada si la condición resulta falsa.

3. Definición de Funciones

Para definir funciones en Wolfram Mathematica, se utilizan patrones. La forma más simple es:

```
nombreFuncion[argumento_] := cuerpo
```

- argumento_ denota un patrón que coincide con cualquier valor que se le pase a la función.
- := (SetDelayed) define la función de manera que el cuerpo se evalúa cada vez que se llama.

Ejemplo

```
f[x_] := x^2 + 3x + 1
```

Aquí, f es una función que, dado x, retorna $x^2 + 3x + 1$.

Puedes llamarla así:

```
f[2] (* Devuelve 2^2 + 3*2 + 1 = 4 + 6 + 1 = 11 *)
```

4. Bucle For

La forma general de un bucle For en Mathematica es:

For[inicio, prueba, incremento, cuerpo]

- inicio: inicializa variables.
- prueba: condición que se evalúa en cada iteración (mientras sea True, el bucle sigue).
- <u>incremento</u>: especifica la actualización de la variable de control.
- cuerpo: la(s) acción(es) que se ejecutan en cada iteración.

Ejemplo

```
For[i = 1, i <= 5, i++,
Print["El valor de i es ", i];
]
```

Este bucle:

- 1. Empieza con i=1.
- 2. Comprueba si <= 5. Si es verdad, ejecuta el cuerpo.
- 3. Finalmente hace i++ (incremento de i en 1).
- 4. Se repite hasta que la prueba <a>[<=5] sea falsa.

5. Bucle While

La estructura de While es:

```
While[condición, cuerpo]
```

• El cuerpo se sigue ejecutando mientras condición sea True.

Ejemplo

```
x = 0;
While[x < 3,
    Print["x vale ", x];
    x++;
]</pre>
```

Mientras \overline{x} sea menor que 3, se imprime el valor de \overline{x} y luego se incrementa en 1.

6. Uso de Table

Table genera una lista (o arreglo multidimensional) repitiendo una expresión para diferentes valores de variables de iteración.

La forma más simple es:

```
Table[expresión, {i, n}]
```

• Genera una lista evaluando expresión para i desde 1 hasta n.

También puede especificarse un rango y paso:

```
Table[expresión, {i, inicio, fin}]
Table[expresión, {i, inicio, fin, paso}]
```

Ejemplos

1. Crear una lista de cuadrados de 1 a 5:

```
Table[i^2, {i, 5}]
(* Devuelve: {1, 4, 9, 16, 25} *)
```

2. Crear una tabla de valores de una función en un rango específico:

```
Table[x^2 - 1, {x, -2, 2}]
(* Devuelve: {3, 0, -1, 0, 3} *)
```

3. Especificar un paso:

```
Table[x, {x, 0, 1, 0.25}]
(* Devuelve: {0, 0.25, 0.5, 0.75, 1.0} *)
```

4. Tabla bidimensional (en este caso, una matriz con las sumas i+j):

```
Table[i + j, {i, 3}, {j, 3}]

(* Devuelve:

{
    {2, 3, 4},
    {3, 4, 5},
    {4, 5, 6}
}

*)
```

7. Uso de Print

El comando Print permite mostrar en pantalla texto, números u otras expresiones durante la evaluación de un bloque de código. Acepta múltiples argumentos separados por comas, y los concatena automáticamente.

Ejemplo básico de Print:

```
Print["Hola, el resultado es: ", 5 + 3]
(* Salida: Hola, el resultado es: 8 *)
```

Concatenar Strings

En Mathematica, el operador \Leftrightarrow se usa para concatenar cadenas de texto (strings). Es el equivalente a + para números, pero aplicado a textos.

Cuando usas on en combinación con print, permite unir texto, números u otros elementos en una sola cadena que luego se muestra.

Ejemplo básico:

```
Print["Hola" <> " Mundo"]
(* Salida: Hola Mundo *)
```

Concatenación de texto y números:

Si deseas combinar texto con números u otras expresiones, necesitas convertir esos números a texto usando ToString.

```
x = 42;
Print["El valor de x es: " <> ToString[x]]
(* Salida: El valor de x es: 42 *)
```

Sin ToString, Mathematica mostrará un error, ya que <>> solo concatena cadenas, no directamente números.

Ejemplo complejo:

```
a = 5; b = 10;
Print["El valor de a + b es: " <> ToString[a + b]]
(* Salida: El valor de a + b es: 15 *)
```

El operador 🕟 es ideal cuando necesitas generar salidas más legibles o personalizadas combinando texto y resultados de cálculos.

8. Uso de Module

Module permite definir variables locales dentro de un bloque de código para que no interfieran con variables globales. Es muy útil para encapsular funciones o cálculos.

Sintaxis básica:

```
Module[{var1, var2, ...}, expr]
```

- {var1, var2, ...}: Variables locales.
- expr: Expresión que utiliza las variables locales.

Ejemplo simple:

```
Module[{x = 5, y = 10}, x + y]
(* Salida: 15 *)
```

Ejemplo con Print y Module:

```
Module[{a = 3, b = 4},
Print["La suma de a y b es: ", a + b];
```

```
a * b
]
(* Salida: La suma de a y b es: 7 *)
(* Retorna: 12 *)
```

Consejos Generales

- En Mathematica, las mayúsculas importan. Las funciones internas comienzan con mayúscula (p. ej., If, Table, For, While).
- Usa ; para separar expresiones en la misma línea o para suprimir la salida de una expresión.
- Cuando quieras imprimir algo en medio de tus cálculos, puedes usar Print[].
- Para definir variables locales y evitar conflictos, se usan Module O Block. Un ejemplo simple:

Esto asegura que la $\overline{\mathbf{x}}$ de dentro no afecte a la $\overline{\mathbf{x}}$ global (si existiera).