STA261: Problems 8

Alex Stringer

August, 2018

This assignment is not for credit. Complete the questions as preparation for the quiz in tutorial 8 on August 1st. The questions on the quiz will be very similar to the questions on the assignment.

- 1. Suppose $X_i \sim N(\mu, \sigma^2)$ is an IID sample from a normal distribution with mean parameter μ and known variance σ^2 . We are interested in developing a likelihood ratio procedure for seeing whether the observed data supports a candidate value $\mu = \mu_0$.
 - (a) State the full parameter space Ω and its dimension.
 - (b) State the restricted parameter space Ω_0 and its dimension.
 - (c) Show that the likelihood ratio as defined in lecture can be written

$$-2\log\Lambda = \sum_{i=1}^{n} \left(\frac{X_i - \mu_0}{\sigma}\right)^2 - \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma}\right)^2$$

(d) We proved in class that Λ has an approximate χ_1^2 distribution when defined this way. Show that in this example, $-2 \log \Lambda$ has an exact χ_1^2 distribution:

$$-2\log\Lambda\sim\chi_1^2$$

Remember the proof from a few lectures back that $\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$? This is similar.

(e) Show that the likelihood ratio simplifies to

$$-2\log\Lambda = \left(\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}\right)^2$$

- 2. Consider the previous question, but now the variance is unknown.
 - (a) Show that the likelihood ratio simplifies to

$$-2\log\Lambda = \log\hat{\sigma}_0^2 - \log\hat{\sigma}^2$$

(b) Show that it simplifies even further to

$$-2\log\Lambda = n\log\left(1 + \frac{t^2}{n-1}\right)$$

where
$$t^2 = \frac{(\bar{X} - \mu_0)^2}{s^2/n}$$
.

- 3. Show that if $X_i \stackrel{IID}{\sim} N(\mu, 1)$, the distribution of $-2 \log \Lambda(\mathbf{x})$ is exact, not approximate. You already showed this in question 1 but just computing it and its distribution; now we do it using Taylor series like with the CLT for the MLE.
 - (a) Write down the likelihood and the log-likelihood for μ .
 - (b) Write $-2 \log \Lambda(\mathbf{x}) = 2(\ell(\hat{\mu}) \ell(\mu_0))$. Take a second order Taylor expansion of $\ell(\mu_0)$ about the point $\mu = \hat{\mu}$.
 - (c) What is the remainder term equal to and why?
 - (d) Explain why this completes the proof.
- 4. Suppose now that we have K random samples from normal distributions, all mutually independent, with different means and the same known variance. That is, we have

$$X_{ij} \sim N(\mu_i, \sigma^2)$$
$$i = 1 \dots K$$
$$j = 1 \dots n$$

We wish to develop a likelihood ratio for seeing whether the observed data supports all the means being equal to each other, $\mu_i = \mu_0$ for $i = 1 \dots K$. We do not specify what μ_0 is- we estimate it from the data.

1

- (a) State the full parameter space Ω .
- (b) State the restricted parameter space Ω_0 . What type of geometrical object is this?
- (c) Show that the numerator of the likelihood ratio

$$L_0(\mu_0|\mathbf{x}) = c \times \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^K \sum_{j=1}^n (x_{ij} - \mu_0)^2\right)$$

where c is some constant that does not depend on μ (you don't need to say what it is).

(d) Show that the (restricted) MLE of μ_0 under the assumption that $\mu_i = \mu_0$ is

$$\hat{\mu_0} = \frac{1}{nK} \sum_{i=1}^{K} \sum_{j=1}^{n} x_{ij} \equiv \bar{x}...$$

(e) Show that the denominator of the likelihood ratio is

$$L_1(\mu_1, \dots, \mu_K | \mathbf{x}) = c \times \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^K \sum_{j=1}^n \left(x_{ij} - \mu_i\right)^2\right)$$

where c is some constant that does not depend on μ_0 (you don't need to say what it is).

(f) Show that the (unrestricted) MLEs of $\mu_1 \dots \mu_K$ are

$$\hat{\mu_i} = \frac{1}{n} \sum_{i=1}^n x_{ij} \equiv \bar{x}_i$$

(g) Show that the likelihood ratio in this problem can be written

$$-2\log \Lambda = \frac{1}{\sigma^2} \left(\sum_{i=1}^K \sum_{j=1}^n (x_{ij} - \bar{x}_{..})^2 - \sum_{i=1}^K \sum_{j=1}^n (x_{ij} - \bar{x}_i)^2 \right)$$

(h) What is the distribution of $-2 \log \Lambda$, including the relevant degrees of freedom, if $\mu_i = \mu_0$?