Instituto Tecnológico de Buenos Aires

22.05 Análisis de Señales y Sistemas Digitales

Trabajo práctico $N^{\circ}1$

Grupo 3

Mechoulam, Alan	58438
Lambertucci, Guido Enrique	58009
Rodriguez Turco, Martín Sebastian	56629
LONDERO BONAPARTE, Tomás Guillermo	58150

Profesores Jacoby, Daniel Andres Belaustegui Goitia, Carlos F. Iribarren, Rodrigo Iñaki

Presentado: 07/04/20

${\bf \acute{I}ndice}$

1.	Conversores clásicos	2
	I.1. Introducción	2
	1.2. Máxima frecuencia de entrada sin Sample & Hold	2
	1.3. DAC	2

1. Conversores clásicos

[a4paper]article [utf8]inputenc [spanish, es-tabla, es-noshorthands]babel [table,xcdraw]xcolor [a4paper, footnotesep = 1cm, width=20cm, top=2.5cm, height=25cm, textwidth=18cm, textheight=25cm]geometry

tikz amsmath amsfonts amssymb float listings[language=Python] graphicx caption subcaption multicol multirow booktabs mathrsfs,amsmath hyperref

array [american]circuitikz fancyhdr units

1.1. Introducción

1.2. Máxima frecuencia de entrada sin Sample & Hold

De la datasheet del ADC0808, se tiene que si $V_{CC} = V_{REF+} = 5.12V$ y $V_{REF-} = 0V$, la resolución será de $20 \frac{mV}{bit}$. Si se utiliza la frecuencia de clock f_{CLK} típica utilizada en la datasheet de 640kHz, el tiempo de conversión t_C máximo será de $116\mu s$. Esto implica que la entrada no deberá de tener una pendiente mayor a $\frac{20mV}{116\mu s}$ para no introducir error en la cuantización de la señal.

Si la señal de entrada se encuentra en el peor caso, es decir, con una excursión de tensión de $-0.1V + V_{REF-}$ a 5.12V + 0.1V; esta se encuentra montada sobre un nivel de continua igual a (5.22V - (-0.1V))/2 = 2.66V; y esta se puede considerar senoidal gracias a la teoría desarrollada por Fourier; se tiene que la amplitud pico máxima de la senoidal podrá ser 2.66V. Luego, asumiendo el peor caso de la pendiente de la senoidal, para un ángulo igual a cero radianes, lo que permite utilizar la aproximación paraxial, se tiene que

$$\left. \frac{d \left(2.66 V \cdot Sin \left(2 \pi f_{in_{max}} t \right) \right)}{dt} \right|_{t=0} = 2.66 V \cdot 2 \pi f_{in_{max}} = \frac{20 m V}{116 \mu s} \tag{1}$$

Finalmente, se obtiene una frecuencia máxima de $f_{in_{max}} = 10.3 Hz$.

1.3. DAC

Se utilizó el integrad DAC0800, un conversor D/A de 8 bits con salida diferencial de corriente. Para convertir esta corriente en un nivel de tensión se utilizó el circuito propuesto por la hoja de datos que se muestra a continuación:

Figura 1: Configuración saldia DAC.

La salida va de 0 a $V_{fs} = I_{fs}cdotR_L$.