The Newton interpolation formula calculates a polynomial which interpolates a set of coordinates $\{(x_i, y_i)\}$ and is of the form:

$$p_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots$$
$$\dots + a_n \prod_{i=0}^{n-1} (x - x_i)$$

more specifically

$$a_0 = y_0$$
 $a_1 = f[x_0, x_1]$ $a_2 = f[x_0, x_1, x_2]$

Screen clipping taken: 12/12/2024 10:45 am

building of the approach					
No. Nodes	formula				
1	$p_0(x) = a_0$				
2	$p_1(x) = a_0 + a_1(x - x_0)$				
2	p(r) = a + a(r + r) + a(r + r)(r + r)				

Screen clipping taken: 12/12/2024 10:46 am

Screen clipping taken: 12/12/2024 10:46 am

Screen clipping taken: 12/12/2024 10:47 am

Screen clipping taken: 12/12/2024 10:47 am

$$p_{1}(x) = y_{0} + a_{1}(x - x_{0})$$

$$p_{1}(x_{1}) = y_{0} + a_{1}(x_{1} - x_{0}) = y_{1}$$

$$a_{1} = \frac{y_{1} - y_{0}}{x_{1} - x_{0}}$$

$$\frac{y_{1} - y_{0}}{x_{1} - x_{0}} = f[x_{0}, x_{1}]$$

Screen clipping taken: 12/12/2024 10:48 am

Screen clipping taken: 12/12/2024 10:49 am

$$p_{2}(x) = y_{0} + f[x_{0}, x_{1}](x - x_{0}) + a_{2}(x - x_{0})(x - x_{1})$$

$$p_{2}(x_{2}) = y_{0} + f[x_{0}, x_{1}](x_{2} - x_{0}) + a_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$= y_{2}$$

$$y_{2} - y_{0} = f[x_{0}, x_{1}](x_{2} - x_{0}) + a_{2}(x_{2} - x_{0})(x_{2} - x_{1})$$

$$f[x_{0}, x_{1}] + a_{2}(x_{2} - x_{1}) = \frac{y_{2} - y_{0}}{x_{2} - x_{0}} = f[x_{0}, x_{2}]$$

Screen clipping taken: 12/12/2024 10:51 am

$$f[x_0, x_2] = f[x_0, x_1] + a_2(x_2 - x_1)$$

$$a_2 = \frac{f[x_0, x_2] - f[x_0, x_1]}{x_2 - x_1}$$

Screen clipping taken: 12/12/2024 10:51 am

$$a_2 = \frac{f[x_0, x_2] - f[x_0, x_1]}{x_2 - x_1}$$

But in standard form, the second divided difference is

$$a_2 = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = f[x_0, x_1, x_2]$$

Screen clipping taken: 12/12/2024 10:52 am

Screen clipping taken: 12/12/2024 10:54 am

Screen clipping taken: 12/12/2024 10:55 am

Screen clipping taken: 12/12/2024 10:55 am

x	$\sin(x)$	1st order	2 nd order	3 rd order
0	0	0.901		
0.785	0.707		-0.336	-0.475 + 0.336
1.571	1	0.373	-0.475	2.356 – 0
11071		-0.373		
2.356	0.707			

Screen clipping taken: 12/12/2024 10:56 am

Screen clipping taken: 12/12/2024 10:47 am