

Step 1: determine the entering basic variable by selecting the variable (automatically a nonbasic variable) with the most negative value (in case of maximization) or with the most positive (in case of minimization) in the last row (Z-row). Put a box around the column below this variable, and call it the "pivot column"

Optimization Techniquez WHICH VARIABLES AND WHEN?										
Particulars	Slack Variable	Surplus Variable	Artificial Variable							
Mean	Unused resources of the idle resources.	Excess amount of resources utilized.	No physical or economic meaning. It is Fictitious.							
When used?	With ≤ Constraints	With > Constraints	With <u>></u> And = constraints							
Coefficient	+1	-1	+1							
Co-efficient in the Z - objective function	0	0	-M for Maximization and +M for minimization							
As initial Program variable	Used as starting point.	Can't be used since unit matrix condition is not satisfied	It is initially used but later on eliminated.							
in Optimal Table	Used to help for interpreting idle & key resources.	-	It indicates the Infeasible Solution							

EXAMPLE: MINIMIZE Z= 600X1+500X2 SUBJECT TO CONSTRAINTS, 2X₁+ X₂ >OR= 80 X1+2X2 > OR = 60 AND X1, X2 > OR = 0 STEP1: CONVERT THE LP PROBLEM INTO A SYSTEM OF LINEAR EQUATIONS. WE DO THIS BY REWRITING THE CONSTRAINT INEQUALITIES AS EQUATIONS BY SUBTRACTING NEW "SURPLUS & ARTIFICIAL VARIABLES" AND ASSIGNING THEM ZERO & +M COEFFICIENTSRESPECTIVELY IN THE **OBJECTIVE FUNCTION AS SHOWN BELOW.** SO THE OBJECTIVE FUNCTION WOULD BE: Z=600X1+500X2+0.S1+0.S2+MA1+MA2 SUBJECT TO CONSTRAINTS, $2X_1 + X_2 - S_1 + A_1 = 80$ $X_1 + 2X_2 - S_2 + A_2 = 60$ X1, X2, S1, S2, A1, A2 > OR = 0

	Optimization Techniques TABLEAU										
Basics	X1	$ X_2 $	S_1	S_2	A1	A2	RHS	Ratio			
X1	1	1/3	0	0	1/3	0	1	1÷1/3=3			
A2	0	5/3	-1	0	-4/3	1	2	2 ÷5/3=1.2 (Min)			
S2	0	5/3	0	1	-1/3	0	3	3/5 ÷ 3=1.8			
f	0	1/3	0	0	4/3	0	4				
F			-1		-7/3		2				
		1									
Still there is one positive coefficient so we need to make further tableau											

