Measure and Random Variable

Definition A *sigma algebra* \mathscr{F} of subsets of Ω :

- $\Omega \in \mathscr{F}$
- close under union and intersection
- close under complement

Definition A set function μ on \mathscr{F} is a *measure* if (Probability measure if $\mu(\Omega) = 1$):

- $\mu(A) \in [0, \infty]$ for all $A \subset \Omega$
- $\mu(\emptyset) = 0$
- close under complement
- $\mu(\bigcup_k^{\infty} A_k) = \sum_k^{\infty} \mu(A_k)$ where $\{A_k\}$ is disjoint sequence in $\mathscr F$ and $\bigcup_k^{\infty} A_k \in \mathscr F$

Definition Outer measure μ^* is function defined on all subsets of Ω :

- $\mu^*(A) \in [0, \infty]$ for all $A \subset \Omega$
- $\mu^*(\emptyset) = 0$
- μ^* is monotone: $\mu^*(A) \leq \mu^*(B)$ if $A \subset B$
- μ^* is countably subadditive: $\mu^*(\bigcup_n A_n) \leq \sum_n \mu^*(A_n)$

Definition Lebesgue measure λ_k on \mathcal{R}^k (Note: R denote euclidean space. \mathcal{R} denotes sigma field on euclidean space.)

- $\lambda_k(\{(x_1, ..., x_k) | a_i < x_i < b_i\}) = \prod_{i=1}^k (b_i a_i)$
- $\lambda_k(A) = \lambda_k(A+x)$ (translation invariance)
- $\lambda_k(TA) = |\det T| \lambda_k(A)$, T is linear and nonsingular.
- λ_k is regular (finite measure to bounded set)

Definition Function T between two measure spaces (Ω, \mathscr{F}) and (Ω', \mathscr{F}') is **measurable** \mathscr{F}/\mathscr{F}' if $\forall A \in \mathscr{F}', T^{-1}A \in \mathscr{F}$. We say T is **measurable** \mathscr{F} if it is measurable $\mathscr{F}/\mathscr{R}^1$.

Definition *Probability Space* is denoted as (Ω, \mathcal{F}, P)

Definition A *random variable* on (Ω, \mathcal{F}, P) is a real-valued function $X = X(\omega)$ measurable \mathcal{F} . A *random vector* is mapping from Ω to R^k that is measurable \mathcal{F} . e.g. $X(\omega) = (X_1(\omega), ..., X_k(\omega))$.

Definition The *distribution (law) of random variable* X is the probability measure $\mu = PX^{-1}$ on (R^1, \mathcal{R}^1) defined by

$$\mu(A) = P[X \in A], \quad A \in \mathcal{R}^1$$

 $(P[X \in A] \text{ means } P[\omega : X(\omega) \in A].$

Definition The distribution function of random variable X is

$$F(x) = \mu(-\infty, x] = P[X \le x]$$

. If F is right-continuous, and non-decreasing, there is a random variable X on some (Ω, \mathscr{F}, P) corresponding to F.

Definition If $X = (X_1, ..., X_k)$,

$$\mu(A) = P[(X_1, ..., X_k) \in A], \quad A \in \mathcal{R}^k$$

 $F(x_1, ..., x_k) = P[X_1 < x_1, ..., X_k < x_k]$

 μ , F are called **joint distribution** and **join distribution function** of X.

Integration

Let f, g be real measurable function on (Ω, \mathcal{F}, P)

Definition The *definite integral* is denoted:

$$\int f d\mu = \int_{\Omega} f(\omega) d\mu(\omega) = \int_{\Omega} f(\omega) \mu(d\omega)$$

is defined by

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$

and

$$\int f^{\pm} d\mu = \sup \sum_{i} \left[\inf_{\omega \in A_{i}} f^{\pm}(\omega) \right] \mu(A_{i})$$

Where $\{A_i\}$ is a finite decomposition of Ω into \mathscr{F} -sets.

Properties General integral:

- Monotonicity
- Linearity
- (Monotone Convergence) if $0 \le f_n \uparrow f$ almost everywhere then $\int f_n d\mu \uparrow \int f d\mu$
- (Fatou's lemma) $\int \liminf_{n} f_n d\mu \le \liminf_{n} \int f_n d\mu, f_n \ge 0.$
- (Dominated Convergence THM) $|f_n| \leq g$ almost everywhere (g integrable), $f_n \to f$ almost everywhere, then f, f_n integrable and $\int f_n d\mu \to \int f d\mu$
- f, g integrable and $\int_A f d\mu = \int_A g d\mu$ for all $Ain\mathscr{F}$, then f = g almost everywhere.

Definition If δ is nonnegative measurable function, define measure v

$$v(A) = \int_A \delta d\mu, A \in \mathscr{F}$$

. Then v is said to have **density** δ wrt to μ .

Properties $\int f dv = \int f \delta d\mu$

Definition Transformatin of Measure: Given measurable mapping T between (Ω, \mathscr{F}) and (Ω', \mathscr{F}') . For a measure μ on \mathscr{F} , define set function μT^{-1} on \mathscr{F}' by

$$\mu T^{-1}(A') = \mu(T^{-1}A'), \forall A' \in \mathscr{F}'$$

Definition Change of variable: Suppose f is real function on Ω' measurable \mathscr{F}' , so fT is real function on Ω measurable \mathscr{F} . f is nonnegative or (integratable wrt $\mu T^{-1} \Leftrightarrow fT$ integrable wrt μ). The following hold:

$$\int_{\Omega} f(T\omega)\mu(d\omega) = \int_{\Omega'} f(\omega')\mu T^{-1}(d\omega')$$
$$\int_{T^{-1}A'} f(T\omega)\mu(d\omega) = \int_{A'} f(\omega')\mu T^{-1}(d\omega')$$

Definition Let $X \sim \mu$ and $Y \sim v$ be independent, *Convolution* of μ and v is defined as:

$$(\mu * v)(H) = P[X + Y \in H]$$

$$= \int_{-\infty}^{\infty} v(H - x)\mu(dx), \quad H \in \mathcal{R}^{1}$$

$$= \int_{-\infty}^{\infty} P[Y \in H - x]\mu(dx)$$

If μ and v are distribution functions F, G. And f, g are densities Then

$$(F * G)(y) = \int_{-\infty}^{\infty} G(y - x) dF(x)$$
$$= (f * g)(y) = \int_{-\infty}^{\infty} g(y - x) f(x) dx$$

Definition *Expected value* of X on (Ω, \mathcal{F}, P) is defined as:

$$E[X] = \int_{\Omega} X dP = \int_{\Omega} X(\omega) P(d\omega)$$

e.g. If $X \sim \mu$ and g is real measurable \mathcal{R} , then

$$\begin{split} E[g(X)] &= \int_{\Omega} g(X) dP \\ &= \int_{\Omega} g(X(\omega)) P(d\omega) \\ &= \int_{R} g(x) PX^{-1}(dx) \quad (chage \ of \ variable, X(\omega) = x) \\ &= \int_{R} g(x) \mu(dx) \quad (PX^{-1} = \mu) \end{split}$$

Differentiaion

Definition Given two measures μ, v, v is said to be **absolutely continuous** with respect to μ , denoted $v \ll \mu$, if $\mu(A) = 0 \Rightarrow v(A) = 0 \ \forall A \in \mathscr{F}$

Definition Radon-Nikodym theorem: Given a measurable space (Ω, \mathcal{F}) , if two σ -finite measures v, μ and $v \ll \mu$, then there is a measurable function $f: X \to [0, \infty)$ such that:

$$v(A) = \int_A f d\mu \quad (\forall A \subset X, \ f = \frac{dv}{d\mu})$$

Probability Basics

Properties (Probability measure)

- $p(A \vee B) = p(A) + p(B) p(A \wedge B)$
- $p(A, B) = p(A \wedge B) = p(A|B)p(B)$
- $p(A) = \sum_{b} p(A, B) = \sum_{b} p(A|B = b)p(B = b)$
- $p(X_{1:D}) = p(X_1)p(X_2|X_1)p(X_3|X_2, X_1)...p(X_D|X_{1:D-1})$
- $p(A|B) = \frac{p(A,B)}{p(B)}$ if p(B) > 0
- $p(X = x | Y = y) = \frac{p(X = x, Y = y)}{p(Y = y)} = \frac{p(X = x)p(Y = y | X = x)}{\sum_{x'} p(X = x')p(Y = y | X = x')}$
- $X \perp Y \iff p(X,Y) = p(X)p(Y)$
- $X \perp Y|Z \iff p(X,Y|Z) = p(X|Z)p(Y|Z)$
- $X \perp Y | Z \iff p(x, y | z) = g(x, z)h(y, z) \ \forall x, y, z \ s.t \ p(z) > 0$
- $F(q) = p(X \le q)$
- $f(x) = \frac{d}{dx}F(x)$
- $P(a < X \le b) = F(b) F(a) = \int_a^b f(x) dx$
- $Unif(x|a,b) = \frac{1}{b-a}I(a \le x \le b)$
- $\bullet \ cov[X,Y] = E[(X-EX)(Y-EY)] = E[XY] E[X][Y]$