{bking2,jmflanig}@ucsc.edu

Abstract

to complete tasks on behalf of users, have been a longstanding challenge within conversational AI.

(DST) (Hu et al., 2022; King and Flanigan, 2023;

icy skeleton' (Zhang et al., 2023).

1977) (§4.5).

call. Fig. 5a in App. A gives an example of our

Direct DST Prompt

Pr(x|y,z,c), following Min et al. (2022).²

DST For the DST sub-task, we again use both 'direct' and 'channel' (prompt, completion) pairs.

$$P(f_{\mathsf{prompt}}(H_t)))$$

user utterances (r_{t-1}, u_t) and our policy's act pre-

$$P(f_{\text{prompt}}(r_{t-1}, u_t, A_t)))$$

PPTOD (Su et al., 2022)		✓	✓	82.6	72.2	18.2	95.6
DiactTOD (Wu et al., 2023)	/	✓	1	89.5	84.2	17.5	104.4
Our (supervised)	✓	✓	1	67.9	61.7	14.6	79.4
SGP-TOD-GPT3.5 (Zhang et al., 2023)	✓	Few (‡)	Х	82.0	72.5	9.22	86.5
LLaMa [†]	1	×	x	-	4	1.61	-
GPT 3.5 Turbo [†]	· 	X	x	44.8	31.2	3.3	41.3
GPT 3.5 Turbo (– gold delex.)	✓	×	x	40.7	26.7	3.7	37.4
Ours (StarCoder 15B - no EM)	✓	×	Х	50.0	19.6	3.2	38
Ours (StarCoder 3B - w/ EM)	✓	×	1	78.1	68.3	13.6	86.8

Table 1: Unsupervised end-to-end results in MultiWOZ 2.2. (†) indicates models from Hudeček and Dusek (2023).

	1
	Į.
IC-DST (StarCoder 15B)	15.66
RefPyDST (StarCoder 15B)	13.88
GPT 3.5 Turbo (Hudeček and Dusek, 2023)	13.05
Ours (StarCoder $15B \rightarrow 3B$)	39.70

.

Ours (zero-shot)	49.0	15.0	3.0	35.0
Ours (Full EM)	80.5	69.0	13.7	88.5

quires annotation expertise. Zhang et al. (2023)

context examples.9

multi-domain setting.

lems using LLMs. Hu et al. (2022) and (King

dialogue state is a latent variable. Liu et al. (2021a)

References ting (Jin et al., 2018; Liu et al., 2023). However,

TODS: Large Language Models for End-to-End Task-Oriented Dialogue Systems. ArXiv:2310.08885 [cs].

Degeneration. ArXiv:1904.09751 [cs].	Oriented Dialog Systems. ArXiv:2109.04314 [cs].
1403–1412. ArXiv:1808.10596 [cs].	
	34(05):8689–8696.

	End-to-End (E2E) Dialogue Metrics We mea-
	vided by Nekvinda and Dušek (2021). ¹⁰
2020. A Probabilistic End-To-End Task-Oriented Di-	
guage Processing (EMNLP), pages 9207–9219, On-	state prediction \hat{y}_t is considered correct only if all
	values, such as the name of a restaurant or hotel,
	0.95. ¹¹
alogue as detailed in \$4.1. Our prompts use muthon	
alogue, as detailed in §4.1. Our prompts use python	
	10 https://github.com/Tomiinek/MultiWOZ_Evaluation 11 https://pypi.org/project/fuzzywuzzy/

(2019). "x=y" indicates the act can take on arbitrary key-value arguments, and "x=?" indicates the act takes on one

```
1: procedure INITIALOFFLINELABEL(\mathcal{D}_{train}, \theta_{ret}, \theta)
                                                                                                                                                \quad \textbf{for } t = 0 \textbf{ to } \max_{d \in \mathcal{D}_{train}}
 4:
                                                                                                                                    for all (d_{id}, u_t, r_{t-1}, r_t) in \mathcal{D}_{train} do
  5:
                           \hat{b}_{t-1} \leftarrow \mathcal{B}[d_{id}][t-1] \text{ or } \emptyset
                           \hat{b}_t \leftarrow \text{OFFLINEDST}(\mathcal{P}, \theta_{ret}, \hat{b}_{t-1}, r_{t-1}, u_t)
  7:
                           \hat{A}_t \leftarrow \text{OfflineActTag}(\mathcal{P}, \theta_{ret}, u_t, r_t)
  8:
                           \mathcal{P} \leftarrow \mathcal{P} \cup \{(r_{t-1}, u_t, r_t, \hat{b}_t, \hat{A}_t)\}
 9:

    Add in-context example for future labeling

                    end for
10:
              end for
11:
12: end procedure
      procedure OfflineDST(\mathcal{P}, \theta_{ret}, \hat{b}_{t-1}, r_{t-1}, u_t)
             \mathcal{E}_{k} \leftarrow \theta_{ret}(\hat{b}_{t} \cdot r_{t-1} \cdot u_{t}, \mathcal{P})
\mathcal{C} \leftarrow \Delta b_{t} \sim_{\text{top-p}} P(f_{\text{prompt}}(\mathcal{E}_{k}, \hat{b}_{t-1}, r_{t-1}, u_{t}))
14:
                                                                                                                                          Sample w/ 'direct' prompt
15:
             \Delta \hat{b}_t \leftarrow \operatorname{argmax} P(u_t | f_{\mathsf{prompt}}(\mathcal{E}_k, \hat{b}_{t-1}, r_{t-1}, \Delta b_t)
                                                                                                                                     ▷ Re-rank w/ 'channel' prompt
16:
              return \hat{b}_{t-1} + \Delta \hat{b}_t
17:
20:
             \mathcal{E}_k \leftarrow \theta_{ret}(u_t \cdot r_t, \mathcal{P})
             \mathcal{C} \leftarrow A_t \underset{\text{top-p}}{\sim} (P(f_{\text{prompt}}(\mathcal{E}_k, r_t)))
                                                                                                                                          Sample w/ 'direct' prompt
21:
             return argmax P(\mathcal{E}_k, A_t, r_t)
22:
```

```
<one Entity per service in schema, with informable + requestable slots>
                                                                                                                     class Taxi(Entity):
                                                                                                                           rarameters:

leave_at: (str) leaving time of taxi
destination: (str) destination of taxi
departure: (str) departure location of taxi
arrive_by: (str) arrival time of taxi
type: (str) car type of the taxi
phone: (str) phone number of the taxi
                                                                                                                            Parameters:
             book taxis to travel between places
             rarameters:
    leave_at: (str) leaving time of taxi
    destination: (str) destination of taxi
    departure: (str) departure location of taxi
    arrive_by: (str) arrival time of taxi
"""
             Parameters:
                                                                                                                     < a class for each of the acts supported in our system>
class Inform(Act):
    """Provide information."""
    entity: Entity = None
            pass
if __name__ == '__main__':
    agent = DialogueAgent()
                                                                                                                     class Request(Act):
    """Ask for specific information or action."""
    values: List[str] = None
       \ensuremath{\text{\#}} Provide the call matching the user's intent in this context
       <in-context exemplars from self-predictions may go here>
                                                                                                                     if __name__ == '__main__':
    agent = DialogueAgent()
       response = agent.handle_turn(
    belief_state=BeliefState(attraction=dict(
             \ensuremath{\text{\#}} Provide the dialogue acts matching the observed system response
                                                                                                                           <in-context exemplars from self-predictions may go here>
                                                                                                                           response = agent.handle_turn(
   system_response="0k, where will you be departing from?",
   system_acts=[Request(values=['departure'])]
```

DST and DAT (Act Tagging), best viewed in color. Key-word arguments are used to include variables from the turn

¹²https://github.com/bigcode-

restaurant-	<u> </u>
[SYS_DA]	
[SYS_DA] train-inform-ticket-16.50	