Darstellung natürlicher und ganzer Zahlen vorlesung vom 23.10.2015

Ziffernsysteme:

Axiomatische Charakterisierung der natürlichen Zahlen.

Ziffernsysteme: Definition und Beispiele.

Satz: Die Menge aller Ziffernketten $\mathcal{D}(\mathcal{Z})$ hat abzählbar viele Elemente.

Darstellung natürlicher Zahlen im Rechner.

Positionssysteme:

Definition und Beispiele.

Dezimal- und Dualdarstellung natürlicher Zahlen.

Darstellung natürlicher Zahlen im Rechner.

Ganze Zahlen:

Erweiterung der Zifferndarstellung von \mathbb{N} auf \mathbb{Z} .

Dualdarstellung mit Vorzeichenbit.

Darstellung negativer ganzer Zahlen im Rechner: Zweierkomplement.

Die rationalen Zahlen Q

anschaulich:

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, \ b \neq 0 \right\}$$

Bruchrechenregeln:

$$\frac{a}{b} + \frac{a'}{b'} = \frac{ab' + a'b}{bb'} , \qquad \qquad \frac{a}{b} \cdot \frac{a'}{b'} = \frac{aa'}{bb'} .$$

Die rationalen Zahlen Q

anschaulich:

$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, \ b \neq 0 \right\}$$

Bruchrechenregeln:

$$\frac{a}{b} + \frac{a'}{b'} = \frac{ab' + a'b}{bb'} , \qquad \frac{a}{b} \cdot \frac{a'}{b'} = \frac{aa'}{bb'} .$$

mathematisch präzise:

Konstruktion von $\mathbb Q$ durch Abschluß von $\mathbb Z$ unter Division:

Äquivalenzklassen von Paaren (a,b), $a,b\in\mathbb{Z}$, $b\neq 0$.

Darstellung von Q

Satz:

Jede Zifferndarstellung von $\mathbb N$ induziert eine Zifferndarstellung von $\mathbb Q$.

Ziffernmenge: $\mathcal{Z} \cup \{-\} \cup \{/\}$

Darstellung von Q

Satz:

Jede Zifferndarstellung von $\mathbb N$ induziert eine Zifferndarstellung von $\mathbb Q$.

Ziffernmenge: $\mathcal{Z} \cup \{-\} \cup \{/\}$

Folgerung: \mathbb{Q} ist abzählbar.

Darstellung von Q

Satz:

Jede Zifferndarstellung von $\mathbb N$ induziert eine Zifferndarstellung von $\mathbb Q$.

Ziffernmenge: $\mathcal{Z} \cup \{-\} \cup \{/\}$

Folgerung: Q ist abzählbar.

Beispiele: Dezimalsystem, Dualsystem

q-adische Brüche

$$z_n \cdots z_0, z_{-1} \cdots z_{-m} = \sum_{i=-m}^n z_i q^i, \qquad z_i \in 0, \dots, q-1, \quad n, m \in \mathbb{N}$$

Beispiele:

$$q=10$$
: Dezimalbrüche, $q=2$: Dualbrüche

q-adische Brüche

$$z_n \cdots z_0, z_{-1} \cdots z_{-m} = \sum_{i=-m}^n z_i q^i, \qquad z_i \in 0, \dots, q-1, \quad n, m \in \mathbb{N}$$

Beispiele:

$$q=10$$
: Dezimalbrüche, $q=2$: Dualbrüche

Satz: Jeder Dualbruch ist ein Dezimalbruch, nicht umgekehrt.

q-adische Brüche

$$z_n \cdots z_0, z_{-1} \cdots z_{-m} = \sum_{i=-m}^n z_i q^i, \qquad z_i \in 0, \dots, q-1, \quad n, m \in \mathbb{N}$$

Beispiele:

q=10: Dezimalbrüche, q=2: Dualbrüche

Satz: Jeder Dualbruch ist ein Dezimalbruch, nicht umgekehrt.

Satz: Jeder q-adische Bruch ist eine rationale Zahl, nicht umgekehrt.

periodischer Dezimalbruch (Periodenlänge 3): $0,123123123...=0,\overline{123}$

periodischer Dezimalbruch (Periodenlänge 3): $0,123123123...=0,\overline{123}$

geometrische Reihe: q > 1

$$\sum_{i=0}^{\infty} q^{-i} = \lim_{m \to \infty} \sum_{i=0}^{m} q^{-i} = \lim_{m \to \infty} \frac{1 - q^{-(m+1)}}{1 - q^{-1}} = \frac{1}{1 - q^{-1}}$$

periodischer Dezimalbruch (Periodenlänge 3): $0,123123123...=0,\overline{123}$

geometrische Reihe: q > 1

$$\sum_{i=0}^{\infty} q^{-i} = \lim_{m \to \infty} \sum_{i=0}^{m} q^{-i} = \lim_{m \to \infty} \frac{1 - q^{-(m+1)}}{1 - q^{-1}} = \frac{1}{1 - q^{-1}}$$

Satz:

Jeder periodische Dezimalbruch ist eine rationale Zahl und umgekehrt.

periodischer Dezimalbruch (Periodenlänge 3): $0,123123123...=0,\overline{123}$

geometrische Reihe: q > 1

$$\sum_{i=0}^{\infty} q^{-i} = \lim_{m \to \infty} \sum_{i=0}^{m} q^{-i} = \lim_{m \to \infty} \frac{1 - q^{-(m+1)}}{1 - q^{-1}} = \frac{1}{1 - q^{-1}}$$

Satz:

Jeder periodische Dezimalbruch ist eine rationale Zahl und umgekehrt.

doppelte Darstellung: $1, \overline{0} = 0, \overline{9}$

periodischer Dezimalbruch (Periodenlänge 3): $0,123123123...=0,\overline{123}$

geometrische Reihe: q > 1

$$\sum_{i=0}^{\infty} q^{-i} = \lim_{m \to \infty} \sum_{i=0}^{m} q^{-i} = \lim_{m \to \infty} \frac{1 - q^{-(m+1)}}{1 - q^{-1}} = \frac{1}{1 - q^{-1}}$$

Satz:

Jeder periodische Dezimalbruch ist eine rationale Zahl und umgekehrt.

doppelte Darstellung: $1, \overline{0} = 0, \overline{9}$ Eindeutigkeit: $\overline{0}$ verboten!

Praktische Realisierung im Rechner

Darstellung als Paar von integer-Zahlen:

Länge muß variabel sein.

Aufwand für Rechenoperationen nicht a priori bekannt (Kürzen!)

Keine standardisierte Hardware-Unterstützung

Spezialanwendungen (Schnitterkennung in der Computergraphik)

Symbolik-Programme (MAPLE, MATHEMATICA, REDUCE,...)

Die reellen Zahlen

anschaulich:

unendliche Dezimalbrüche (oder q-adische Brüche):

$$\mathbb{R} = \{ z_n \cdots z_0, z_{-1} z_{-2} \cdots \mid z_i = 0, \dots, 9, \}$$

Die reellen Zahlen

anschaulich:

unendliche Dezimalbrüche (oder q-adische Brüche):

$$\mathbb{R} = \{ z_n \cdots z_0, z_{-1} z_{-2} \cdots \mid z_i = 0, \dots, 9, \}$$

mathematisch präzise: Konstruktion von $\mathbb R$ durch

Vervollständigung von Q: Äquivalenzklassen von Cauchy-Folgen aus Q.

Dedekindsche Schnitte: Menge von Paaren von Teilmengen von $\mathbb Q$

Abzählbarkeit und Zifferndarstellung

Erinnerung: Ein Ziffernsystem $\mathcal{D}(\mathcal{Z})$ hat abzählbar viele Elemente.

Erinnerung: \mathbb{Q} ist abzählbar.

Abzählbarkeit und Zifferndarstellung

Erinnerung: Ein Ziffernsystem $\mathcal{D}(\mathcal{Z})$ hat abzählbar viele Elemente.

Erinnerung: Q ist abzählbar.

Satz: \mathbb{R} ist nicht abzählbar.

Abzählbarkeit und Zifferndarstellung

Erinnerung: Ein Ziffernsystem $\mathcal{D}(\mathcal{Z})$ hat abzählbar viele Elemente.

Erinnerung: Q ist abzählbar.

Satz: \mathbb{R} ist nicht abzählbar.

Es gibt keine Zifferndarstellung von $\mathbb{R}!$

Numerisches Rechnen mit reellen Zahlen ist nicht möglich!

Absoluter und Relativer Fehler

absoluter Fehler: $|x - \tilde{x}|$.

Absoluter und Relativer Fehler

absoluter Fehler: $|x - \tilde{x}|$.

Beispiel: x = 1000, $\tilde{x} = 999$: $|x - \tilde{x}| = 1$

Absoluter und Relativer Fehler

absoluter Fehler:
$$|x - \tilde{x}|$$
.

Beispiel:
$$x = 1000$$
, $\tilde{x} = 999$: $|x - \tilde{x}| = 1$

relativer Fehler:
$$\frac{|x-\tilde{x}|}{|x|}$$
, $x \neq 0$.

Beispiel:
$$x = 1000$$
, $\tilde{x} = 999$: $|x - \tilde{x}|/|x| = 10^{-3}$

$$z_{n-1} z_{n-2} \cdots z_0, z_{-1} \cdots z_{-m} = \sum_{i=-m}^{n-1} z_i q^i, \qquad z_i \in \{0, \dots, q-1\}.$$

 $\ell=m+n$ Stellen verfügbar; $n, m \in \mathbb{N}$ fest gewählt.

$$z_{n-1} z_{n-2} \cdots z_0, z_{-1} \cdots z_{-m} = \sum_{i=-m}^{n-1} z_i q^i, \qquad z_i \in \{0, \dots, q-1\}.$$

 $\ell=m+n$ Stellen verfügbar; $n, m \in \mathbb{N}$ fest gewählt.

Beispiel: q = 10, $\ell = 4$, n = 3, m = 1

x=0,123, Runden: $\tilde{x}=0,1$ relativer Fehler: $|x-\tilde{x}|/|x|\approx 0.2$

$$z_{n-1} z_{n-2} \cdots z_0, z_{-1} \cdots z_{-m} = \sum_{i=-m}^{n-1} z_i q^i, \qquad z_i \in \{0, \dots, q-1\}.$$

 $\ell=m+n$ Stellen verfügbar; $n, m \in \mathbb{N}$ fest gewählt.

Beispiel: q = 10, $\ell = 4$, n = 3, m = 1

x=0,123, Runden: $\tilde{x}=0,1$ relativer Fehler: $|x-\tilde{x}|/|x|\approx 0.2$

x=123, exakt darstellbar: $\tilde{x}=123$ relativer Fehler: $|x-\tilde{x}|/|x|=0$

$$z_{n-1} z_{n-2} \cdots z_0, z_{-1} \cdots z_{-m} = \sum_{i=-m}^{n-1} z_i q^i, \qquad z_i \in \{0, \dots, q-1\}.$$

 $\ell=m+n$ Stellen verfügbar; $n, m \in \mathbb{N}$ fest gewählt.

Beispiel: q = 10, $\ell = 4$, n = 3, m = 1

x=0,123, Runden: $\tilde{x}=0,1$ relativer Fehler: $|x-\tilde{x}|/|x|\approx 0.2$

x=123, exakt darstellbar: $\tilde{x}=123$ relativer Fehler: $|x-\tilde{x}|/|x|=0$

Folgerung:

Im Sinne einer optimalen Stellenausnutzung n, m variabel halten!

Gleitkommazahlen $\mathbb{G}(\ell,q)$

Definition: (Gleitkommazahlen) Jede in der Form

$$\tilde{x} = (-1)^s a \cdot q^e \tag{1}$$

mit Vorzeichenbit $s \in \{0,1\}$, Exponent $e \in \mathbb{Z}$ und Mantisse a=0 oder

$$a = 0, a_1 \cdots a_\ell = \sum_{i=1}^{\ell} a_i \ q^{-i} \ , \qquad a_i \in \{0, \dots, q-1\} \ , \ a_1 \neq 0 \ ,$$

darstellbare Zahl \tilde{x} heißt Gleitkommazahl mit Mantissenlänge $\ell \in \mathbb{N}$, $\ell \geq 1$. Die Menge all dieser Zahlen heißt $\mathbb{G}(q,\ell)$.

Die Darstellung (1) heißt normalisierte Gleitkommadarstellung.

Beispiel: q = 10, $\ell = 4$

• x = 0, 123 wird dargestellt als $\tilde{x} = 0, 1230 \cdot 10^0$ relativer Fehler: $|x - \tilde{x}|/|x| = 0$

Beispiel: q = 10, $\ell = 4$

- x = 0, 123 wird dargestellt als $\tilde{x} = 0, 1230 \cdot 10^0$ relativer Fehler: $|x \tilde{x}|/|x| = 0$
- x = 123 wird dargestellt als $\tilde{x} = 0, 1230 \cdot 10^3$ relativer Fehler: $|x \tilde{x}|/|x| = 0$

Beispiel: q = 10, $\ell = 4$

- x = 0, 123 wird dargestellt als $\tilde{x} = 0, 1230 \cdot 10^0$ relativer Fehler: $|x \tilde{x}|/|x| = 0$
- x = 123 wird dargestellt als $\tilde{x} = 0, 1230 \cdot 10^3$ relativer Fehler: $|x \tilde{x}|/|x| = 0$
- x=123,456 wird dargestellt als $\tilde{x}=0,1235\cdot 10^3$ relativer Fehler: $|x-\tilde{x}|/|x|\approx 0,00036$

Beispiel: q = 10, $\ell = 4$

- x = 0, 123 wird dargestellt als $\tilde{x} = 0, 1230 \cdot 10^0$ relativer Fehler: $|x \tilde{x}|/|x| = 0$
- x = 123 wird dargestellt als $\tilde{x} = 0, 1230 \cdot 10^3$ relativer Fehler: $|x \tilde{x}|/|x| = 0$
- x=123,456 wird dargestellt als $\tilde{x}=0,1235\cdot 10^3$ relativer Fehler: $|x-\tilde{x}|/|x|\approx 0,00036$
- x = 0,00123456 wird dargestellt als $\tilde{x} = 0,1235 \cdot 10^{-2}$ relativer Fehler: $|x \tilde{x}|/|x| \approx 0,00036$