PCP - Huji Course, Ex 2.

David Ponarovsky

July 26, 2023

1 Ex 1. Sumchecking with coefficients.

We would like to verify that a given polynomial box P satisfies that $\sum_{x \in [d]^m} \varphi(x) f_P(x) = 0$ by accessing to at most O(md) variables. For any function $\varphi: [d]^m \to \mathbb{F}_q$. Denote by $\varphi': \mathbb{F}_q^m \to \mathbb{F}_q$ the extension of φ into a polynomial over \mathbb{F}_q^m . We saw in that lectures (and also in the previews assignment) that there is such a uinq extension.

We are going to split the section into three, first we are going to show how to verify that $\sum_{x\in[d]^m} f_P(x) = 0$. When the polynomial is a function into \mathbb{F}_q . (I think, but not sure, that in the lecture we saw only the case when q=2). Then in the second part we will show how can one redact the coefficients case into the non-coefficients case. Finally, in the last part, we combine all together to show that the construction achieve the requirements.

1.1 Over non binary field.

Let's define a series of polynomial boxes f_i such that:

$$f_0 = f$$

$$f_{i+1}(x_1, ..., x_{m-i}) = \sum_{y \in [d]} f_i(x_1, ..., x_{m-i}, x_{m-i+1} = y)$$

Our verifier will ask for a proof which is a list of $f_0, f_1, f_2..., f_m$. Now, notice that if f is an honest assignment then f_m is just the summation of f over the cube $[d]^m$. So it sufficient to show the existences of verifier that reject with heigh probability any string far from been encoded by the previews structure.

- 1 Sample uniformly random $i \sim [m]$ and check that f_i is a codeword of the polynomial code in m variables at degree at most $m \cdot d$.
- **2** $r_1, r_2..., r_m \leftarrow \text{sample uniformly } m \text{ points of } [d]$
- з for $i \in [1, m]$ do
- 4 Check if $f_{i+1}(r_1,...,r_{m-i-1},x_{m-i}) \sum_{y \in [d]} f_i(r_1,r_2,...,r_{m-i-1},x_{m-i},y)$ is the zero polynomial by a random test that uses at most single query. (Here $x_{m-i} \in [d]$ is the only variable)
- 6 If not then reject.
- 7 end

5

8 Accept if $f_0 = 0$

Proof. For convenient let's denote by $g_i(x_{m-i})$ the difference that been queried in line number 3.

- 1. Correctness. Easy. If the assignment is honest then by definition $g_i = 0$ for any $i \in [m]$ and therefore for any x_{m-i} we will have that $g_i(x_{m-i}) = 0$. So, in that case iteration will pass. And whole proof will be aspected with probability 1.
- 2. Soundness. Assume that there is any $\deg f_{i+1} \leq \deg f_i$, Thus asking

1.2 Coefficients \mapsto non-coefficients.

Now as we proved in the classes $\deg f \cdot g \leq \deg f + \deg g$. Therefore we can redact the problem of verifying whether the weight summation is zero by considering the summation of the polynomial $\varphi' \cdot f$ over the cube $[d]^m$.

- 1 Sample uniformly random $x \sim [d]^m$ and check that $\varphi'(x) = \varphi(x)$
- **2** Check that φ is a polynomial at degree at most $d \cdot m$.
- **3** If both of the checks passed, accept.

Proof.

1.3 Combine all.

- 1 Use the first tester to check the validity of the pair (φ', φ) .
- **2** Check that the degree of ξ is at most 2md
- **3** Check that the polynomial $f \cdot \varphi' \xi$ is the zero polynomial.
- 4 Using the first verifier, accept if the summation of ξ overt the cube $[d]^m$ is zero.

Proof.

2 Ex 2.

The question concerns with the following test: [COMMENT] rewrite again.

- 1 Choose $x, y \in \{\pm 1\}^k$ independently.
- **2** Choose $\mu \in \{\pm\}$.
- **3** Choose a random noise $z \in \{\pm\}^k$ such that z_i gets +1 with probability 1ε .
- 4 Accept if $\mu f(\mu x) \cdot g(y) = f(z \cdot xc^{-1}(y))$

2.1 2.a.

Let $f = \chi_{\{i\}}, g = \chi_{\{j\}}$ and j = c(i). In that case it holds that:

$$\mu f(\mu x) \cdot g(y) = \mu \chi_{\{i\}}(\mu x) \chi_{\{j\}}(y) = \mu^2 x_i y_j = x_i y_j$$
$$f(z \cdot x c^{-1}(y)) = \chi_{\{i\}}(z x c^{-1}(y)) = z_i x_i y_j$$

Thus, the test pass only if $z_i = 1$ and it given that this event happens with probability $1 - \varepsilon$.

2.2 2.b.

Denote by $\alpha_I \in \mathbb{R}$ and $\beta_I \in \mathbb{R}$ the coefficients of f, g over the character $\chi_{\{I\}}$.

$$\begin{split} &\mathbf{E}\left[\mu f\left(\mu x\right)\cdot g\left(y\right) f\left(z\cdot xc^{-1}\left(y\right)\right)\right] \\ &= \sum_{I,J,K} \alpha_{I}\alpha_{K}\beta_{J}\mathbf{E}\left[\mu\chi_{\left\{I\right\}}\left(\mu x\right)\chi_{\left\{J\right\}}\left(y\right)\chi_{\left\{K\right\}}\left(zxc^{-1}(y)\right)\right] \\ &= \sum_{I,J,K} \alpha_{I}\alpha_{K}\beta_{J}\mathbf{E}\left[\mathbf{E}\left[\mu\chi_{\left\{I\right\}}\left(\mu x\right)\chi_{\left\{J\right\}}\left(y\right)\chi_{\left\{K\right\}}\left(zxc^{-1}(y)\right)|\mu\right]\right] \\ &= \sum_{I,J,K} \alpha_{I}\alpha_{K}\beta_{J}\frac{1}{2}\left((-1)^{|I|+1}+1\right)\mathbf{E}\left[\chi_{\left\{I\right\}}\left(x\right)\chi_{\left\{J\right\}}\left(y\right)\chi_{\left\{K\right\}}\left(zxc^{-1}(y)\right)\right] \end{split}$$

Thus, all the elements in which |I| is even contribute zero for the exception. Now, let's apply the conditional expectation formula again conditioning over I, J, K, x, y:

$$\begin{split} &= \sum_{I,J,K,|I| \text{is odd}} \alpha_{I} \alpha_{K} \beta_{J} \mathbf{E} \left[\mathbf{E} \left[\chi_{\{I\}} \left(x \right) \chi_{\{J\}} \left(y \right) \chi_{\{K\}} \left(zxc^{-1}(y) \right) | I,J,K \right] \right] \\ &= \sum_{I,J,K,|I| \text{is odd}} \alpha_{I} \alpha_{K} \beta_{J} \mathbf{E} \left[\sum_{\xi=0}^{|K|} \binom{|K|}{\xi} \left(-\varepsilon \right)^{\xi} \left(1-\varepsilon \right)^{|K|-\xi} \chi_{\{I\}} \left(x \right) \chi_{\{J\}} \left(y \right) \chi_{\{K\}} \left(xc^{-1}(y) \right) \right] \\ &= \sum_{I,J,K,|I| \text{is odd}} \alpha_{I} \alpha_{K} \beta_{J} \mathbf{E} \left[\left(1-2\varepsilon \right)^{|K|} \chi_{\{I\}} \left(x \right) \chi_{\{J\}} \left(y \right) \chi_{\{K\}} \left(xc^{-1}(y) \right) \right] \end{split}$$

Let us denote by $C^{-1}(K)$ the indices $C^{-1}(K) = \{j : \exists i \in K, c(i) = j\}$. Then we get that:

$$\chi_{\{K\}} \left(xc^{-1}(y) \right) = \prod_{i \in K} x_i y_{c_i} = \chi_{\{K\}} \left(K \right) \chi_{\{C^{-1}(K)\}} \left(y \right)$$

Recall that for any $I, J \subset [n]$ it holds that:

$$\mathbf{E}\left[\chi_{\{I\}}(x)\chi_{\{J\}}(x)\right] = \mathbf{E}\left[\chi_{\{I\Delta J\}}(x)\right] = \mathbf{1}_{I=J}$$

And therefore the above can be simplified into:

$$\sum_{|I| \text{is odd}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon \right)^{|I|}$$

2.3 2.c

First let's bound from below the exception by the given that f and g pass the test with probability at least $\frac{1}{2} + \delta$:

$$\mathbf{E}\left[\mu f\left(\mu x\right)\cdot g\left(y\right) f\left(z\cdot xc^{-1}\left(y\right)\right)\right]$$

$$=\mathbf{Pr}\left[\mu f\left(\mu x\right)\cdot g\left(y\right) = f\left(z\cdot xc^{-1}\left(y\right)\right)\right] - \mathbf{Pr}\left[\mu f\left(\mu x\right)\cdot g\left(y\right) \neq f\left(z\cdot xc^{-1}\left(y\right)\right)\right]$$

$$\geq \frac{1}{2} + \delta - \left(\frac{1}{2} - \delta\right) = 2\delta$$

Thus in total the inequality of the above section become:

$$\sum_{|I| \text{is odd}} \alpha_I^2 \beta_{C^{-1}(I)} (1 - 2\varepsilon)^{|I|} \ge 2\delta$$

Using Cauchy-Schwartz to bound from above, we obtain?

$$\left(\sum_{|I| \text{is odd}} \alpha_I^2 \beta_{C^{-1}(I)} (1 - 2\varepsilon)^{|I|}\right)^2$$

$$\leq \sum_{|I| \text{is odd}} \alpha_I^2 \cdot \sum_{|I| \text{is odd}} \alpha_I^2 \beta_{C^{-1}(I)}^2 (1 - 2\varepsilon)^{2|I|}$$

$$\sum_{|I| \text{is odd}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} + \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} \geq \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \sum_{|I| \text{is odd}, (1 - 2\varepsilon)^{|I|} < \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon\right)^{|I|} \leq \frac{1}{4} \alpha_I^2 \beta_{C^{-1}(I)} \left(1 - 2\varepsilon$$

Observes that for any subset $S \subset [n]$ it holds that:

$$\sum_{|I| \in S} \alpha_I^2 \beta_{C^{-1}(I)} \le \sum_{|I| \subset [n]} \alpha_I^2 \beta_{C^{-1}(I)} \le \frac{1}{2} \left(\sum_{|I| \subset [n]} \alpha_I^4 + \sum_{|I| \subset [n]} \beta_I^2 \right) = \frac{1}{2} \left(|f|_4^4 + |g|_2^2 \right) = 1$$

In addition:

$$\sum_{|I| \text{ is odd}, (1-2\varepsilon)^{|I|} \ge \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} (1-2\varepsilon)^{|I|}$$

$$\leq \sum_{|I| \text{ is odd}, (1-2\varepsilon)^{|I|} \ge \frac{1}{4}, \beta_{C^{-1}(I)} \ge 0} \alpha_I^2 \beta_{C^{-1}(I)} (1-2\varepsilon)^{|I|}$$

$$\leq \sum_{|I| \text{ is odd}, (1-2\varepsilon)^{|I|} \ge \frac{1}{4}, \beta_{C^{-1}(I)} \ge 0} \frac{1}{4} \left(|\alpha_I|^2 + \beta_{C^{-1}(I)}^2 |\alpha_I|^2 (1-2\varepsilon)^{2|I|} \right)$$

$$\leq \frac{1}{4} \left(1 + \max \beta_{C^{-1}(I)} |\alpha_I| (1-2\varepsilon)^{2|I|} \cdot \sum_{J} a_J \beta_{C^{-1}(J)} \right)$$

$$\leq \frac{1}{4} \left(1 + \max \beta_{C^{-1}(I)} |\alpha_I| (1-2\varepsilon)^{2|I|} \right)$$

So the inequality become:

$$\leq \frac{1}{4} + \sum_{|I| \text{is odd}, (1-2\varepsilon)^{|I|} \geq \frac{1}{4}} \alpha_I^2 \beta_{C^{-1}(I)} (1-2\varepsilon)^{|I|}$$

$$\leq \frac{1}{4} + \max_I \alpha_I^2 \beta_{C^{-1}(I)} \sum_{|I| \text{is odd}, (1-2\varepsilon)^{|I|} \geq \frac{1}{4}} |\alpha_I| (1-2\varepsilon)^{|I|}$$

$$\leq \frac{1}{4} +$$

So it left to compute the expectation $\mathbf{E}\left[\chi_{\{I\}}\left(x\right)\chi_{\{J\}}\left(y\right)\chi_{\{K\}}\left(xc^{-1}(y)\right)\right]$ and observes that if $c^{-1}(y)$ has no intersection with K. Define by C(K) all the indices i such that there exist $k \in K$ for which $y_{c_k} = y_i$.

$$\mathbf{E}\left[\prod_{i\in I}x_i\prod_{j\in J}y_j\prod_{k\in K}x_k\cdot y_{c_k}\right] = \mathbf{E}\left[\prod_{i\in I\Delta K}x_i\prod_{j\in J\Delta C(K)}y_j\right]$$

Proof.

2.4 Ex 3. The label cover problem.

The reduction. Let $\langle G=(V,E),\{c_e\}\rangle$ be a given instance of the Label cover problem. For each edge $e=\{v,u\}\in E$ define the test $T_\varepsilon(c_e)$ as defined above, Thus in total we define a |E| tests, denote them by T. Consider the language L such that a test collection T is in L if there exists function $f\times V$ such that the probability:

$$\mathbf{Pr}\left[T_{\varepsilon}(c_{\{v,u\}}) \text{ accepts on } f_v, f_u\right] \geq \frac{1}{2} + \delta$$

For every $\{v, u\} \in E$. A probabilistic verifier takes a candidate $f \times V : \pm \times V \to \pm$, picks a random edge $e \in E$ and then check $T_{\varepsilon}(c_e)$ over the functions f_v, f_u .

Compeletnce. Suppose that $\langle G = (V, E), \{c_e\} \rangle \in (\mu, 1)$ -Label Cover then either there exists a labeling A such that $c_{vu}(A(v)) = A_u$ for any $\{v, u\} \in E$ or that any labeling satisfies at most μ constraints. For compeletnce, let's assume the first case, and denote by A the satisfying labeling. Consider the function $f \times V : \pm \times V \to \pm$ defined as follow: $f_v = \chi_{\{A(v)\}}$, So by the first section of part 2 we have that any of the test accepts with probability $1 - \varepsilon$. That it, as we pick a test uniformly random, the existences of satisfying labeling for the label cover problem give a function that pass the test with probability $1 - \varepsilon$.

Soundness. [COMMENT] Wrong proof. Now, assume the second case, namely that any labeling satisfies at most μ constraints. Also assume through contridiction that there exists an assignment that satisfies more than $\frac{3}{4} + \delta$ equations. Therefore on more than $\frac{1}{4}$ of the tests f pass with probablility at least: $\frac{1}{4} \cdot 1 + \frac{3/4}{p} \geq \frac{3}{4} + \delta \Rightarrow p \geq \frac{2}{3} + \frac{4}{3}\delta$. ([COMMENT] Wrong argument) So ..

3 Part 3.

Label cover when the aleph-bet depends on the vertex. Instead of showing reduction into the general label cover we will show a reduction to a similar problem in which vertices can have an additional restriction on the valid charters that one can sets on. In formal, we will say that $\langle G, \{\Sigma_v : v \in V\}, \{c_e : e \in E\} \rangle$ instance of Generalized-Label-Cover if there is an labeling $A : V \to \Sigma$ such that for any $\{v, u\} \in E$ it holds that $c_e A(v) = A(u)$ and in addition for any $v \in V$ we have that $A(v) \in \Sigma_v \subset \Sigma$.

The reduction. Define the Bipartite graph G=(L,R,E). Associate the left vertices with the variables and the right with the closures. Define $\{u,v\}$ to be an edge if the literal which associate with the vertex u is in the closure associate with vertex v. For the alphabet take $\Sigma=\mathbb{Z}_2^3$. For any right vertex $v\in R$ define Σ_v be all the assignments for which the v-closures is satisfied and for any left vertex u define $\Sigma_u=\{(1,0,0),(0,0,0)\}$. Finally define c_e for $e=\{v\in R,u\in L\}$ to be the projection of $\sigma\in\Sigma$, setted on v, to the coordinate corresponding with u. For example, assume that v associate with $x\vee y\vee z$ and let u be the vertex associate with x, And assume that A(v)=(1,0,1), then $c_eA_v=(1,0,0)$.

Compeletnce. Suppose that $\varphi \in \text{E3-CNF-SAT}$ and let $x \in \mathbb{F}_2^*$ be the assignment that satisfies φ . That it, $\varphi(x) = \text{True}$. Let A be the labeling that sets for any vertex on the left the bit matched to that literal by x follows by zeros padding. And for any right vertex the triple of the bits corresponding to literals involving in the associated closure. By the fact that x satisfies φ any closure in φ is satisfied by x and therefore each of the right vertices (closures) see on his local view a character of Σ_v . In addition by the definition of the construction any pair of connected vertices satisfies the edge restriction.

Soundness. Suppose that $\varphi \in \text{E3-CNF-SAT}$ but not satisfiable and $\langle G, \{\Sigma_v : v \in V\}, \{c_e : e \in E\} \rangle$ is an instance obtained by the reduction above. Assume throawds contradiction that there exists labeling A such that more than $\mu' = 6\mu$ of the restriction $\{c_e\}$ are satisfied.

Define by α_i to be the number of right vertices which satisfy exactly i edges, that it,

$$\alpha_i = |\{|\{c_e A(v) = A(u) : u \in L\}| = i : v \in R\}|$$

Claim 1. For any labeling A such that $\alpha_3 \geq \mu$ there exists an assignment $x \in \mathbb{F}_2^*$ satisfies at least μ portion of the restrictions.

Proof. The proof is trivial.

Claim 2. For any labeling A that satisfy ξ constraints, there exists labeling A' such that any constraint that satisfied by A also satisfied by A' and in addition $\alpha_0 = \alpha_1 = 0$. Put it differently, we can assume that $\alpha_0 = \alpha_1 = 0$.

Proof. Let $v \in R$ be a vertex that satisfies less than two edges. Recall that Σ_v contains all the triple that satisfy the closure associated with v. By the fact that for any 3-CNF closure there is exactly one assignment which does not satisfy it, It follows that $|\Sigma_v| = 2^3 - 1 = 7 \ge 2^2$. Therefore, we can replace A(v) by a triple that agree with the first two vertices connected to it.

Using the above claim we can infer that $\alpha_2+\alpha_3=|R|$ and in addition $2\cdot\alpha_2+3\cdot\alpha_3\geq\mu'\cdot 3|R|$. Thus, $\alpha_3\geq (3\mu'-2)\,|R|$. Particularly if $\mu'\geq\frac{\mu+2}{3}$ then $\alpha_3\geq\mu|R|$, Combining the claim above we get a contradiction to the fact that $\varphi\in(\mu,1)$ gap-3E-CNF-SAT and not satisfiable.