Deep learning model compression H/W design

Taking advantage of the Bit_shift operator to perform multiplication obviates the need for expensive digital multipliers.

Development in AI

- 고성능의 프로세서가 필요하다
- 알파고
- 1202개 CPU
- 176개 GPU => 48개 TPU

Computation Speed Up

- 연산과정 많은 전력과 시간 소요

Model Compression

· 전력과 시간 줄이는 방법이 필요

- 4차 산업혁명 시대는 데이터 혁명의 동의어이며 따라서 빅데이터 해석이 중요시 되고 있다.
- ▶ 딥러닝이란 Training Data를 기반으로 예측 및 분류하는 인공신경망과 결합된 알고리즘으로서 빅데이터를 분석하는 핵심 기술이다.

CPU

GPU

NPU(TPU)

Complex Control logic

Low Computation Density

Parallel Computation

Floating Point data type

Parallel MMU (Systolic)

8bit Integer data type

Common: Deep learning 과정중 Convolution연산에서 Dot-Product를 사용한다.

문제제기: Convolution_Matrix Multiplication

$$F(x,y) = I * W$$

Output₀ =
$$i_1w_1 + i_2w_2 + \cdots + i_9w_9$$

- 1. Bit수가 커지면 걸리는 시간은?
- 2. '1'에 따른 곱셈 연산의 시간은?

시장현황 : 시장조사

For Computation Speedup

- 1. 양자화(Quantization)를 통한 Bitshift 곱셈 적용을 위한 Data 표현
- 2. Dot Product가 아닌 BitShift 곱셈 적용한 H/W(MAC) 개발

0	1	0	0	2 << 1
---	---	---	---	--------

0 0 1 0 2

For Efficiently & Flexibility

- 1. 양자화된 Data를 **Indexing**하여 단순한 data
- 2. _Accumulation 된 data 도 Data Range 움직여 적용 가능
- 3. Index를 효율적으로 해석하는 Encoding & Decoding 개발

	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
1-2주차	Activation 및 Weight의 Log 도메인화 및 sign 분리		
3-4주차	Activation 및 Weight의 효율적인 Index화 연구		
1-2주차	Index화의 함수구현을 통한 Encoding 및 연산 수행		
3-4주차	Operation Time 및 각 단계의 Error rate 측정		
1-2주차	Error 분석을 통한 보완 연구		
3-4주차	Verilog를 이용한 H/W 구현		
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			
1-2주차	H/W 합성		
3-4주차	최종적인 연구 점검		

Model Compression and Acceleration: http://ieeexplore.ieee.org/document/8253600/

NVIDIA GPU Architecture : https://goo.gl/XsMbZN

Convolutional Neural Network: https://kr.mathworks.com/discovery/convolutional-neural-network.html

Q&A