ECON 219: Problem Set #2

Due on May 29, 2025

Dr. Sergio Urzua

Alejandro Ouslan

Problem 1

Consider the National Income Model:

$$Y = C + I_0 + G_0$$
$$C = \alpha + \beta(Y - T)$$
$$T = \gamma + \delta Y$$

- 1. Define and interpret each of the components of the model. Identify parameter and variables.
 - (a) $Y = C + I_0 + G_0$ Nations income
 - (b) $C = \alpha + \beta(Y T)$ Consumtion function
 - (c) $T = \gamma + \delta Y$ Tax Function
 - (d) I, G investments and government spending are exogenous
 - (e) α consumption intercept (minimum consumption when there is no income)
 - (f) β Marginal propensity to consume
 - (g) γ minimum taxes
 - (h) δ tax rate on income
- 2. Impose reasonable assumptions on the signs and values of the parameters.
 - (a) $\alpha > 0$ there is at least some consumption even if there is no income
 - (b) $0 < \beta < 1$ hoe sholds consume at least something and not all of their income
 - (c) $\gamma \geq 0$ there is no negitive taxes
 - (d) $I_0 > 0$ There is some investments
 - (e) $G_0 > 0$ There is some government spending
- 3. Solve for the equilibrium income. Start from:

$$Y = C + I_0 + G_0$$

$$= \alpha + \beta(Y - T) + I_0 + G_0$$

$$= \alpha + \beta(Y - \gamma - \delta Y) + I_0 + G_0$$

$$= \alpha + \beta Y - \beta \gamma - \beta \delta Y + I_0 + G_0$$

$$= Y(1 - \beta + \beta \delta) = \alpha - \beta \gamma + I_0 + G_0$$

$$= \frac{\alpha - \beta \gamma + I_0 + G_0}{1 - \beta(1 - \delta)}$$

4. Obtain an discuss the six comparative-static derivatives. Let:

$$Y = \frac{\alpha - \beta \gamma + I_0 + G_0}{1 - \beta (1 - \delta)}$$

Partial derivatives:

$$\frac{\partial Y}{\partial \alpha} = \frac{1}{1 - \beta(1 - \delta)} > 0$$

$$\frac{\partial Y}{\partial \gamma} = \frac{-\beta}{1 - \beta(1 - \delta)} < 0$$

$$\frac{\partial Y}{\partial I_0} = \frac{1}{1 - \beta(1 - \delta)} > 0$$

$$\frac{\partial Y}{\partial G_0} = \frac{1}{1 - \beta(1 - \delta)} > 0$$

$$\frac{\partial Y}{\partial \delta} = \frac{\beta(\alpha - \beta\gamma + I_0 + G_0)}{[1 - \beta(1 - \delta)]^2} > 0 \quad \text{(if numerator positive)}$$

$$\frac{\partial Y}{\partial \beta} = \frac{-\gamma(1 - \beta(1 - \delta)) + (\alpha - \beta\gamma + I_0 + G_0)(1 - \delta)}{[1 - \beta(1 - \delta)]^2} \quad \text{(ambiguous)}$$

Summary of signs:

Parameter	Partial Derivative	Sign
α	$\frac{\partial Y}{\partial \alpha}$	Positive
β	$egin{array}{c} \overline{\partial lpha} \ \underline{\partial Y} \ \overline{\partial eta} \end{array}$	Ambiguous
γ	$\frac{\partial Y}{\partial \gamma}$	Negative
δ	$\frac{\partial \dot{Y}}{\partial \delta}$	Positive (if numerator > 0)
I_0	$rac{\overline{\partial \delta}}{\partial Y} \ rac{\partial Y}{\partial I_0}$	Positive
G_0	$\frac{\partial \widetilde{Y}}{\partial G_0}$	Positive

Problem 2

Consider the market model:

$$Q_s = Q_d$$

$$Q_d = D(P, Y_0)$$

$$Q_s = S(P)$$

- 1. Provide an economic interpretation to each of the equations. In you answers, include the assumptions on the signs of the relevant derivatives.
 - (a) $Q_s = Q_d$ the quantity supplied is equal to the quantity produced $(Q_s, Q_s \in \mathbb{N})$
 - (b) $Q_d = D(P, Y_0)$ the quantity depanded is a function of the price and income $(P, Y_0, D(\cdot)) \in \mathbb{R}^+$
 - (c) $Q_s = S(P)$ the quantity supplied is a function of the price $(P, S(\cdot) \in \mathbb{R}^+)$
- 2. Define the concept of market equilibrium. Provide and explain its mathematical formulation.

Answer: The market equilibruim is when the P^* is picked such that $D(P^*, Y_0) = S(P^*)$. $Q^* = D(P^*, Y_0) = S(P^*)$ is the equilibruim quantity produced

3. Show that:

$$\frac{dP^*}{dY_0} > 0$$

Where P^* is the equilibrium price. Provide an economic interpretation for this result.

4. Show that:

$$\frac{dQ^*}{dY_0} > 0$$

Where Q* is the equilibrium price. Provide an economic interpretation for this result.

$$\frac{dS}{dP} \cdot \frac{dP^*}{dY_0} = \frac{dP^*}{dY_0} > 0$$

Answer: An increase in income leads to higher demand, which pushes up both the price and the equilibrium quantity. Suppliers respond to higher prices by increasing supply, leading to a higher Q^*

5. Answer questions c and d using total derivatives.

$$\begin{split} \frac{dS}{dP} \cdot \frac{dP^*}{dY_0} &= \frac{\partial D}{\partial P} \cdot \frac{dP^*}{dY_0} + \frac{\partial D}{\partial Y_0} \\ &\frac{dP^*}{dY_0} &= \frac{\frac{\partial D}{\partial Y_0}}{\frac{dS}{dP} - \frac{\partial D}{\partial P}} > 0 \\ &\frac{dQ^*}{dY_0} &= \frac{dS}{dP} \cdot \frac{dP^*}{dY_0} > 0 \end{split}$$