

«Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ			
КАФЕДРА	КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ			
	ОТ	ЧЕТ		
	по домашней	работе №2		
Дисциплина: <u>Э</u>	лектроника			
Название: Моле	елирование работы v	силительного каскада	на биполярном	
		бщим эмиттером (Вар		
Студент	<u>ИУ6-42Б</u> (Группа)	12.04.24 (Подпись, дата)	А. П. Плютто (И. О. Фамилия)	
	(r) -7	(-,,,, ,,,)	(
Преподаватель		12.04.24 (Подпись, дата)	В.А. Карпухин (И. О. Фамилия)	

Содержание

1. Цель и задание	3
1.1. Цель работы	3
1.2. Задание	3
1.3. Задание по варианту	3
2. Выполнение работы	
2.1. Задание 1	
2.2. Задание 2	
2.3. Вывод	

1. Цель и задание

1.1. Цель работы

Исследование вольт-амперных характеристик модели биполярного транзистора в программе аналогового и цифрового моделирования электрических и электронных цепей Micro-Cap 12 и расчет номиналов элементов усилительного каскада, работающего в соответствии с заданными техническими условиями.

1.2. Задание

- 1) Построить семейство входных и выходных вольт-амперных характеристик биполярного транзистора (модель выбирается согласно варианту, см. приложенный к заданию файл). На полученных характеристиках отметить запрещенные режимы работы.
- 2) Рассчитать номиналы элементов усилительного каскада на биполярном транзисторе с общим эмиттером, при которых работа усилительного каскада удовлетворяет условиям:
 - амплитуда напряжения выходного сигнала не менее 15 % от напряжения питания;
 - коэффициент усиления усилительного каскада по мощности не менее 20 дБ;
 - коэффициент нелинейных искажений выходного сигнала не более 15 %;
 - (напряжение питания усилительного каскада задано вариантом, в качестве входного сигнала используется гармоническое (однотональное) колебание с частотой, заданной вариантом).

1.3. Задание по варианту

Модель	Напряжение	Частота
транзистора	питания, В	сигнала, кГц
KT3102E	8,2	1800

2. Выполнение работы

2.1. Задание 1

Соберем схему для исследования входных и выходных ВАХ транзистора в схеме с общим эмиттером. Добавим на схему биполярный транзистор KT310E.

Рисунок 1 — *Схема с общим эммиттером* Проведем анализ Dynamic DC.

Рисунок 2 — *Dynamic DC*

Запустим анализ DC. На рисунке показано окно Limits.

Рисунок 3 — *DC Limits*

Получили 11 графиков – выходных ВАХ при разных входных значениях.

Рисунок 4 — *Графики ВАХ*

Не все значения на графиках являются допустимыми для этой модели транзистора. Для того чтобы получить максимально допустимые значения обратимся к документации транзистора.

Предельные эксплуатационные данные

Постоянное напряжение коллектор—база: КТ3102Ж, КТ3102И, КТ3102ЖМ,	
КТ3102ИМ	50 B
KT3102K, KT3102KM	30 B
KT3102F, KT3102E, KT3102FM, KT3102EM	20 B
Постоянное напряжение коллектор—эмиттер: КТ3102Ж, КТ3102И, КТ3102ЖМ,	
КТ3102ИМ	50 B
KT3102K, KT3102KM	30 B
KT3102F, KT3102E, KT3102FM, KT3102EM	20 B
Постоянное напряжение эмиттер—база	5 B
Постоянный ток коллектора	100 MA
Импульсный ток коллектора при $t_{\mu} = 40$ мкс,	
Q = 500	200 MA
Постоянная рассеиваемая мощность коллек-	
тора¹ при <i>T</i> = -40+25 °C	250 мВт
Тепловое сопротивление переход — среда	0,4 °C/mBt
Температура р-л перехода	+125 °C
Температура окружающей среды	−40+85 °C

Рисунок 5 — Документация транзистора

Из этих значений возьмем 3: максимальный ток коллектора ($I_{\rm K\,max}$), максимальное напряжение коллектор — эмиттер ($U_{\rm K\Im\,max}$) и максимальная мощность, рассеиваемая на коллекторе ($P_{\rm K\,max}$)

$I_{ m Kmax}$, м A	$U_{ m K\Immax},{ m B}$	$P_{ m Kmax}$, м $ m Br$
100	20	250

Построим ограничивающие кривые, чтобы определить допустимый диапазон токов и напряжений для работы транзистора. Заштрихуем запрещенный режим работы.

Рисунок 6 — DC Limits с ограничивающими кривыми

Рисунок 7 — Графики ВАХ с ограничивающими кривыми

Рисунок 8 — Графики ВАХ с заштрихованной запрещенной зоной

Построим входные BAX — зависимость тока базы от напряжения коллектор-эмиттер.

Рисунок 9 — DC Limits для входных BAX

Рисунок 10 — Графики входных ВАХ

2.2. Задание 2

Построим усилительный каскад с общим эмиттером и рассчитаем номиналы его элементов: $R_1, R_2, R_{\rm K}$. А так же рассчитаем амплитуду входного сигнала.

Для этого вернемся к семейству выходных BAX и найдем входную силу тока $I_{\rm B}$ для самой верхней ветви, начало линейного участка которой не лежит в запрещенной области.

$$I_{
m B} = I_{
m B\,max} = 0.023$$
м
А * $7 = 161$ мк
А

Далее, по входной ВАХ определим $U_{{\rm E}\ni\,{\rm min}}$ и $U_{{\rm E}\ni\,{\rm max}}$. Для этого выделим на ней линейный участок, то что будет его началом и концом и будет $U_{{\rm E}\ni\,{\rm min}}$ и $U_{{\rm E}\ni\,{\rm max}}$ соответственно.

Рисунок 11 — DC Limits для входной BAX

Рисунок 12 — График входной ВАХ

$$U_{ ext{БЭ}\, ext{min}} = 673.892 ext{мB}; U_{ ext{БЭ}\, ext{max}} = 739.692 ext{мB}$$

Определим среднее из этих двух значений:

$$U_{\mathrm{Б}\ni0} = \frac{U_{\mathrm{Б}\ni\,\mathrm{min}} + U_{\mathrm{Б}\ni\,\mathrm{max}}}{2} = 706.792\mathrm{мB}$$

Из полученных значений определим амплитуду входного сигнала:

$$U_{\rm Ампл} = U_{\rm БЭ0} - U_{\rm БЭ\, min} = 32.9 {\rm мB}$$

Далее определим сопротивление R_k для этого проведем на графиках выходных вах нагрузочную характеристику через точки $U=E_{\rm n}; I=0$ и точку начала линейного участка наибольшей допустимой BAX.

Рисунок 13 — Нагрузочная характеристика

При U=0 получаем, что $I_k=94$ мА. Тогда по закону Ома получаем:

$$R_k = rac{E_{\pi}}{I_k} = rac{8.2}{94*10^{-3}} = 87.23 \; ext{Ом}$$

Теперь определим номиналы R_1 и R_2 . Возьмем, что силы тока на этих резисторах совпадают и равны $I_D(I_{\rm E0}\ll I_D)$. По закону Ома: $E_{\rm II}=I_D(R_1+R_2)$; $U_{\rm E90}=I_DR_2$. Тогда получаем

$$\frac{E_{\pi}}{U_{\rm E20}} = \frac{R_1 + R_2}{R_2}$$

Возьмем, что $R_2=100\,\,{\rm Om}$ и вычислим R_1 :

$$rac{8.2}{706.792*10^{-3}} = rac{R_1 + 100}{100}
ightarrow R_1 = 1060.17 \ {
m Om}$$

Вот какая схема вышла в итоге:

Рисунок 14 — Усилительный каскад с общим эмиттером

Проведем анализ переходных процессов. Для начала рассмотрим входное и выходное напряжение в зависимости от времени.

Рисунок 15 — Transient Limits

Рисунок 16 — Анализ Transient

Рассмотрим входную амплитуду: по заданию она должна быть больше, чем $\frac{E_{\pi}}{100}*15=0.082*115=1.23.$

Рисунок 17 — Анализ Transient

По графику определим максимум и минимум синусоиды и получим:

$$U_{\text{Ампл вых}} = \frac{5.525 - 0.881}{2} = 2.322 > 1.23$$

Построим график нелинейных искажения выходного сигнала.

Рисунок 18 — Transient Limits

Рисунок 19 — График нелинейных искажений

Искажения находятся в приделах красной линии – условие менее 15% искажений выполняется.

Вычислим коэффициент усиления усилительного каскада по мощности.

$$K_p = \frac{P_{\text{bux}}}{P_{\text{bx}}} = \frac{I_{\text{k0}} * U_{\text{k0}}}{I_{\text{E}\ni 0} * U_{\text{E}\ni 0}} = \frac{0.047 * 4.1}{0.00066 * 0.706792} = 415$$

$$K_{
m p~d} = 10*\log_{10}\!\left(k_p
ight) = 10*\log_{10}\!\left(415
ight) = 26.1$$
 Дб > 20 Дб

Все условия выполнены.

2.3. Вывод

При выполнении домашнего задания были применены знания о расчете номиналов элементов усилительного каскада класса «А». Были изучены устройство и работа транзистора, входные и выходные ВАХ транзистора и анализ выходных графиков на запрещенные зоны. Результаты соответствуют условию домашнего задания, следовательно, схема усилительного каскада собрана верно.