Building a Twitter Scraper and a Prototype Dictionary-based Sentiment Analyzer

Prof: Dr. Egbert

Class: ENG 678

Presenter: Rui Hu (Sherman)

In this presentation I will:

- 1. Introduce the topic
- 2. Mention the research questions
- 3. Talk about the methods
- 4. Address data and analysis
- 5. Point out challenges and limitations
- 6. Conclude the presentation

Introduction

- Sentiment analysis
 - "study of people's opinions, sentiments, emotion, and attitudes." (Liu, 2020)
- Two types of sentiment analysis
 - Dictionary-based sentiment analysis
 - Machine-learning-based sentiment analysis
- Machine-learning-based model make texts lose their linguistic underpinnings
- The purpose of the project was to create a prototype dictionary-based sentiment analyzer and investigate the texts from the perspective of corpus linguistics...

Research questions

RQ1:

What is the distribution of the ratings of the collected Tweets produced by dictionary-based and pre-trained machine-learning-based sentiment analyzer? - I will investigate the distribution of ratings

RQ2:

To what extent do the above-mentioned ratings correlate with each other? - I will investigate the correlation between the ratings

Methods

3 Python programs (~530 lines of code):

twitter_scraper.py & sentiment_analyzer.py &

main.py (provides friendly interface and customization options)

2 Ratings (from -1 to 1):

Produced by sentiment_analyzer.py

Sentiment: subjectivity and polarity. I will focus on polarity: positive (rating = 1), negative (-1), neutral (0)

1 Correlation:

Between two ratings

Methods - Twitter Scraper

Table 1

Function Name Argument(s)

Set_tweets()

User screen name, tweet count

Clean_tweets()

User screen name

CSV file to prepare for sentiment analysis

- I used 3200 Tweets collected from @abc (ABC News)

Methods - Sentiment Analyzer

Both analyzers produce ratings ranging from -1 to 1 (both inclusive)

Table 2Three main functions of the Sentiment Analyzer

Function Name	Argument(s)	Feature
analyze_sentiment _pretrained()	user screen name	analyze the sentiment using the pre-trained machine learning model from a Python model called <i>TextBlob</i>
analyze_sentiment _dict_based()	user screen name	analyze the sentiment using the dictionary-based analyzer
sentiment_model_ correlation()	user screen name	write out two ratings datasets to a new CSV file; create a new csv file to store the correlation data

opinion lexicons (positive words and negative words, totaling 6800 words) - also cited in ref: http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar

Data and Analysis

Table 3Summary of the Tweets collected by the Twitter Scraper (sorted by month)

	March	April	Total
Count of Tweets	611	2,589	3,200
Favorite Count	179,509	846,867	1,026,376
Average Favorite Count	294	327	321
Retweet Count	46,553	247,417	293,970
Average Retweet Count	76	96	92
Text Length	82,349	342,900	425,249
Average Text Length	135	132	133

Data and Analysis - RQ1

Data and Analysis - RQ1

Data and Analysis - RQ1

Table 5 Frequency table of neutral sentiment rating (rating = 0) (N = 3200)

 it is safe to rudimentarily summarize that the dictionary-based sentiment analyzer has reasonable accuracy in distinguishing neutral sentiment

Data and Analysis - RQ2 - Produced by Python

Note: CI stands for confidence interval; * p-value shows statistical significance, p < .001

Challenges and limitations

- Scraping the Twitter corpus; max Tweet limit (200 -> 3200 by using cursor and pagination)
- 2. More factors should be considered:
 - a. Negation words (negative influence on rating)
 - b. Punctuations
 - c. Emoticons
 - d. Emojis
- 3. Other News Twitter accounts (Fox, CNN, CBC, CNBC) and other registers (personal Tweets by famous people)

Conclusion (brief)

Built a Twitter scraper and a prototype dictionary-based sentiment analyzer; applied the model pre-trained machine-learning-based sentiment analyzer

I would not declare the dictionary-based sentiment analyzer flawless -> r = .357

Shed some light on future corpus linguistics research and sentiment dictionary building

"You can do hard things!"

Dr. Jesse Egbert

Thank you! Any questions?

Python Modules (8+ main modules)

- 1) tweepy Twitter scraper
- 2) pandas (pd) enhanced dataframe
- 3) os (operating system) for folder and file
- 4) datetime current date and time
- 5) textblob (TextBlob) pretrained machine learning sentiment analyzer
- 6) numpy (np) enhanced scientific calculation
- 7) sklearn 'MaxAbsScaler' from 'sklearn.preprocessing' used to scale/normalize the data
- 8) pingouin (pg) contains many statistic models (in this program we use this to count Pearson's r)

. . . .

References

- Biber, D., Egbert, J., & Davies, M. (2015). Exploring the composition of the searchable web: A corpus-based taxonomy of web registers. Corpora, 10(1), 11-45. https://doi.org/10.3366/cor.2015.0065
- Bravo-Marquez, F., Mendoza, M., & Poblete, B. (2013). Combining strengths, emotions and polarities for boosting Twitter sentiment analysis. Paper presented at the Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining, Chicago, Illinois. https://doi.org/10.1145/2502069.2502071
- Everitt, B., & Skrondal, A. (2010). *The Cambridge dictionary of statistics*. Cambridge, UK: Cambridge University Press.
- Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... Oliphant, T. E. (2020). Array programming with NumPy. *Nature*, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
- Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. Paper presented at the Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, Seattle, WA, USA. https://doi.org/10.1145/1014052.1014073

- IBM Corp. (2020). IBM SPSS Statistics (Version 27.0) [Computer software]. Retrieved from https://www.ibm.com/products/spss-statistics
- Liu, B., & Cambridge University Press. (2020). Sentiment analysis: Mining opinions, sentiments, and emotions (Second Edition). New York: Cambridge University Press.
- Loria, S. (2018). TextBlob Documentation. Release 0.15, 2.
- O'Brien, S. F., & Yi, Q. L. (2016). How do I interpret a confidence interval?. *Transfusion*, 56(7), 1680–1683.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research*, 12, 2825–2830.
- Roesslein, J. (2020). Tweepy: Twitter for Python. https://github.com/tweepy/tweepy.
- The Pandas Development Team. (2020, February). pandas-dev/pandas: Pandas. https://doi.org/10.5281/zenodo.3509134
- Vallat, R. (2018). Pingouin: statistics in Python. Journal of Open Source Software, 3(31), 1026, https://doi.org/10.21105/joss.01026

Supplementary Slides

(on Demand)

Rating of my prototype sentiment analyzer

Sentiment rating = Positive score + Negative score

(future improvement: by adding more factors/variables)

one positive word equals 1 point;

one negative word equals -1 point.

Range: infinite \rightarrow [-1, 1]

Normalize: Maximum Absolute Value Method (Pedregosa et al., 2011)

Normalized sentiment rating = $\frac{Sentiment\ rating}{Absolute\ value\ of\ the\ maximum\ in\ the\ column}$

Table 4Descriptive statistics of the ratings produced by sentiment analyzers (N = 3200)

	Sentiment Analyzer Model			
Statistics	Dictionary-based Model (rating_db)	Pre-trained Machine Learning Model (rating_pt)		
N	3200	3200		
Mean	059	.030		
Median	.000	.000		
Mode	.000	.000		
Min	-1.000	-1.000		
Max	.800	1.000		
Midpoint	100	.000		
Range	1.800	2.000		
Std. Deviation	.213	.220		
Variance	.045	.048		
Skewness	242	.139		
Kurtosis	.933	4.551		