THE GRASSMANN MANIFOLD.

We just showed

[B, Gn] -> {Rn-bundles over B}

 $f \mapsto f^*(E_n)$ is well defined.

Want to Show it is a bijection. First, let's discuss the topology of Gn & En.

Gn = set of all n-dim subspaces of R... Vn = Stiefel manifold

= space of orthonormal n-frames in R.

Vn has a natural topology as a subspace of S,° and there is a quotient $V_n \longrightarrow G_n$ topology.

Endow Gn with quotient topology.

Define $E_n = \{(l, v) \in G_n \times \mathbb{R}^{\infty} : v \in l\}, \quad p(l, v) = l.$

Lemma. En Gn is a vector bundle.

Pf. Let L& Gn, Me: Roll orthog. proj.

 $U_{\ell} = \{ \ell' \in G_n : \mathcal{N}_{\ell}(\ell') \text{ has dim } n \}.$

Steps: 1 Ul open (check preim in Vn open).

② h: p-1/Ue) → Ue ×l is a local triv. $(l', v) \longrightarrow (l', \Upsilon_{\ell}(v))$

h clearly a bij, lin. iso on each fiber.

Need: h, h-1 continuous (lin alg).

THEOREM. X paracompact. The map $[X,Gn] \longrightarrow Vect^n(X)$, $f \mapsto f^*(E_n)$ is a bijection.

Example. $M \subseteq \mathbb{R}^N$ submanifold. Define $f:M \longrightarrow G_n$ by $X \mapsto T_X M$. Then $TM \cong f^*(E_n)$.

 \overline{Pf} . Key observation: For $E \to X$ an \mathbb{R}^n -bundle, an iso $E \cong f^*(E_n)$ is equivalent to a map $E \to \mathbb{R}^n$ that is a lin inj. on each fiber.

Indeed, given $f: X \to Gn$ and $E \xrightarrow{E} f^*(En)$ have: $E \xrightarrow{F} f^*(En) \to En \to \mathbb{R}^{\infty}$ $X \xrightarrow{f} Gn$

Top row is the desired map.

Conversely, given $g: E \to \mathbb{R}^{\infty}$ lin inj. on each fiber, define $f: X \to G_n$ by $x \mapsto g(p^{-1}(x))$. $f: E \to E_n$ by $v \mapsto g(v)$.

This gives diagram as above, by univ. prop. of pullbacks.

Surjectivity. Let $p: E \rightarrow X$ be an \mathbb{R}^n -bundle (for simplicity, $X = compact \ Hausdorff$)

Choose cover $U_1,...,U_N$ s.t. E trivial over U_1 :

8 partition of unity $\varphi_1,...,\varphi_N$.

Define $g_i: p^{-1}(U_i) \longrightarrow U_i \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ 8 $g: E \longrightarrow \mathbb{R}^n \times ... \times \mathbb{R}^n \subseteq \mathbb{R}^\infty$ $V \longmapsto (\varphi_i g_i(V), ..., \varphi_N g_N(V))$

Qi means

Giop = scalar

sense blc 90,91 are both maps from a fixed space

Eto Ro.

Check g a lin. inj. on each fiber.

Injectivity. Say $E \cong f_o^*(E_n)$, $f_i^*(E_n)$ for $f_o, f_i : X \longrightarrow G_n$. $\longrightarrow g_o, g_i : E \longrightarrow \mathbb{R}^m$ lin inj on each fiber.

To show $g_o \sim g_i$ via maps that are lin inj on each fiber: $\Longrightarrow f_o \sim f_i$ via $f_i(x) = g_i(p^{-1}(x))$.

Use:

N.B. 3 only makes

Go

Straight

odd coords

Straight

even coords

e.g. $g_0 \longrightarrow \text{odd coords via } (x_1, x_2, ...) \longmapsto (1-t)(x_1, x_2, ...) + t(x_1, 0, x_2, ...)$ At each stage, lin. inj. on fibers.

The Thm has an immediate corollary: V.b.'s over paracompact bases have inner products. Pull back obvious one on \mathbb{R}^{∞} .

We now know $[B,G_n] \longleftrightarrow \{\text{vector bundles over }B\}$ so char. classes $\longleftrightarrow H^*(G_n)$

CELL STRUCTURE ON Gn.

First recall cell structure on $G_1 = TRP^{\infty}$ one i-cell ei $\forall i$. ei glued to ei-1 by degree 2 map $e_i \iff \{l \in TRP^{\infty} : l \subseteq TR^{1+1}\}$ Will generalize this.

A Schubert symbol $T = (T_1, ..., T_n)$ is a seq of integers s.t. $1 \le T_1 < T_2 < \cdots < T_n$

Let Pe(V) = {leGn: dim(lnRVi) - dim(lnRVi-1)=1 \forall i}

Prop. The e(σ) are the cells of a CW structure on Gn. dim $e(\sigma) = \sum_{i=1}^{n} (\nabla_i - i)$

Examples. Consider in G2:

$$e(2,3) =$$

Proof of Prop. Let $H_i = \text{hemisphere in } S^{\tau_i-1} \subseteq \mathbb{R}^{\tau_i}$ s.t. τ_i -coord non-neg.

 $e(\sigma) \iff \{(b_1,...,b_n) \in V_n : b_i \in int H_i^*\}$

Let E(0) = { (b1,..., bn) & Vn : bi & Hi}

Main Step: E(0) a closed ball of dim E(0:-i)

n=1 case: $E(\sigma) = H_1 \vee$

n>1 case: Define $\pi: E(\sigma) \longrightarrow H_1$

(b1,..., bn) → b1

 $\rho \colon E(\nabla) \to \pi^{-1}(e_{\sigma_{\bullet}})$

rotate fiber over b, to It '(lesi)

by rotating by to er,

fixing orthog. comp. of < b1, e7,>

Then $\Upsilon \times p : E(\sigma) \longrightarrow H_1 \times \Upsilon^{-1}(e\sigma_1)$

is a contin. bij -> homeo.

(exercise: Hausdorff)

Remains to check $\pi^{-1}(\text{re}_{V_1})$ a ball. Induct on n. $\pi^{-1}(\text{ev}_1) \iff E(V_2-1,...,V_{n-1})$

Span takes int $E(\tau)$ to $e(\tau)$ bijectively. Since Gn has quotient top. from $\forall n \rightarrow homeo$.

Need to check that the CW complex obtained from the $E(\nabla)$ give right topology. Induct on Skeleta.

Other versions: $Vect_{\mathbb{C}}^{n}(X) \iff [X, G_{n}(\mathbb{C})]$

 $Vect_{+}^{n}(X) \leftrightarrow [X, \tilde{G}_{n}]$

Note Vect, (S') trivial $\Rightarrow [S', \tilde{G}_n]$ trivial $\Rightarrow \pi_{L}(\tilde{G}_n) = 1$. $\Rightarrow \tilde{G}_n = \text{univ. cover of } \tilde{G}_n$. For $f: X \rightarrow \tilde{G}_n$, $f^*(E)$ orientable iff f lifts to \tilde{G}_n & in this case, orientations correspond to choices of lifts.

Prop. Gn is a manifold.

Pf. But Gn is homogeneous: I homeo taking any pt to any other pt, ie the one induced by a linear map.