

ASSIGNMENT

Course Code CSC201A

Course Name Discrete Mathematics -1

Programme B. Tech

Department Computer Science & Engineering

Faculty Faculty of Engineering Technology

Name of the Student SUBHENDU MAJI

Reg. No 18ETCS002121

Semester/Year 3RD / 2019

Course Leader/s Ms Sahana P. Shankar

i

Declaration Sheet				
Student Name	SUBHENDU MAJI			
Reg. No	18ETCS002121			
Programme	B. Tech		Semester/Year	3 rd / 2019
Course Code	CSC201A			
Course Title	Discrete Mathematic	s -1		
Course Date		То		
Course Leader	Ms Sahana P. Shankar			

Declaration

The assignment submitted herewith is a result of my own investigations and that I have conformed to the guidelines against plagiarism as laid out in the Student Handbook. All sections of the text and results, which have been obtained from other sources, are fully referenced. I understand that cheating and plagiarism constitute a breach of University regulations and will be dealt with accordingly.

Signature of the Student			Date	
Submission date stamp (by Examination & Assessment Section)				
Signature of the Cours	e Leader and date	Signature of the	Review	er and date

Declaration Sheet Contents Marking Scheme	iii
Question No. 1	
specified operations	5
1.2 Illustration using Venn diagrams	7
Question No. 2	
2.2 Solution to the example problem	9
Bibliography	10

Engineering and Technology				
Ramaiah University of Applied Sciences				
Department	Computer Science and Engineering	Programme	B. Tech.	
Semester/Batc h	3 rd /2019			
Course Code	CSC201A	Course Title	Discrete Mathematics-1	
Course Leader(s)	Ms Sahana P. Shankar and Ms.Supriya			

SL				Marks	1
Marking Scheme			Max Marks	First Examiner Marks	Moderator
1	1.1	Development of a Python program with comments to create sets and perform the specified operations	5		
	1.2	1.2 Illustration using Venn diagrams			
		Question 1 Max Marks	7		
2	2.1	Justification of the statement with appropriate reasoning	2		
	2.2	Solution to the example problem	1		
		Question 2 Max Marks			
		Total Assignment Marks	10		

Course Marks Tabulation					
Question	First Examiner	Remarks	Moderato r	Remarks	
1					
2					
Marks (Max 10)					

Signature of First Examiner Moderator

Signature of

Solution to Question No. 1:

1.1 Development of a Python program with comments to create sets and perform the specified operations

inputing values of universal set, set A and set B

sets operations using inbuilt commands

```
In [3]: # union
    print("Union set :", A | B)

# intersection
    print("Intersection set :", A & B)

# difference
    print("Difference set:", A - B)

# compliment
    print("Compliment set :", U - A)

Union set : {'a', '1', 'd', '5', '3', '2', 'b', '4', '6', 'c', 'e'}
    Intersection set : {'6', '3', 'c'}
    Difference set: {'a', '1', '4', 'e'}
    Compliment set : {'2', 'd', 'b', '5'}
```

functions for doing set operations from scratch (without using inbuilt commands)

```
In [4]: def union(A,B): #function for doing union of sets A and B
            S=[]
            for x in A:
                s.append(x)
            for x in B:
                s.append(x)
            return set(s)
In [5]: def intersection(A,B): #function for intersection of sets A and B
            S=[]
            for x in A:
                if x in B:
                    s.append(x)
            return set(s)
In [6]: def difference(A,B): #function for doing difference of sets a and b
            for x in A:
                if x not in B:
                    s.append(x)
            return set(s)
In [7]: def compliment(U,A): #function for doing compliment of set a
            return difference(U,A)
```

calling function for performing set operations

```
In [11]: # union
    print("Union set :", union(A,B))

# intersection
    print("Intersection set :", intersection(A,B))

# difference
    print("Difference set:", difference(A,B))

# compliment
    print("Compliment set :", compliment(U,A))

Union set : {'a', '1', 'd', '5', '3', '2', 'b', '4', '6', 'c', 'e'}
    Intersection set : {'6', '3', 'c'}
    Difference set: {'a', '1', '4', 'e'}
    Compliment set : {'2', 'd', 'b', '5'}
```

1.2 Illustration using Venn diagrams

```
In [139]: import matplotlib_venn as vplt
    from matplotlib import pyplot as plt
    v = vplt.venn2([A,B], ('Set A', 'Set B'))

v.get_label_by_id('10').set_text('\n'.join(A-B))
    v.get_label_by_id('11').set_text('\n'.join(A&B))
    v.get_label_by_id('01').set_text('\n'.join((B-A)))
```


Solution to Question No. 2:

2.1 Justification of the statement with appropriate reasoning

"Mathematical Induction can be applied to prove that the cardinality of a power set is 2", where n is the cardinality of the set"

Yes, the statement is True.

To Prove: For any finite set S, if |S| = n, then S has 2n subsets.

Proof:

Let P(n) be the predicate "A set with cardinality n has 2n subsets".

Basis step:

P(0) is true, because the set with cardinality 0 (the empty set) has 1 subset (itself) and $2^0 = 1$. **Inductive step:** To Prove $P(k) \rightarrow P(k+1)$

That is, prove that if a set with k elements has 2k subsets, then a set with k+1 elements has 2k+1 subsets.

Proof

Assume that for an arbitrary k, any set with cardinality k has 2k subsets.

Let T be a set such that |T| = k + 1.

Enumerate the elements of $T: T = \{e_1, e_2, e_3, \dots, e_k, e_{k+1}\}$

Let
$$S = \{e_1, e_2, e_3 \dots e_k\}$$

Then |S| = k, so S has 2^k subsets, according to the inductive hypothesis.

Note that $T = S \cup \{e_{k+1}\}$, so every subset of S is also a subset of T.

Any subset of T either contains the element e_{k+1} , or it doesn't contain e_{k+1} . If a subset of T doesn't contain e_{k+1} , then it is also a subset of S, and there are 2^k of those subsets.

On the other hand, if a subset of T does contain the element e_{k+1} , then that subset is formed by including e_{k+1} in one of the 2^k subsets of S, so T has 2^k subsets containing e_{k+1} .

We have shown that T has 2^k subsets containing e_{k+1} , and another 2^k subsets not containing e_{k+1} , so the total number of subsets of T is $2^k + 2^k = (2)2^k = 2^{k+1}$.

2.2 Solution to the example problem

```
Example. Let S be a set, S = \{1, 2, 3, 4\} Cardinality of S is given by |S|, hence |S|=4 Subsets of S:

Subsets of cardinality 0 = \emptyset
Subsets of cardinality 1 = \{1\}, \{2\}, \{3\}, \{4\}
Subsets of cardinality 2 = \{1,2\}, \{2,3\}, \{3,4\}, \{2,4\}, \{3,1\}, \{4,1\}
Subsets of cardinality 3 = \{1,2,3\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}
Subsets of cardinality 4 = \{1,2,3,4\}
Therefore, the power set will be the set of all subsets i.e. its cardinality is equal to total number of subsets, 16 = 2^4.
```

- https://www.math.fsu.edu/~wooland/mad2104/proof/pf20.pdf
- https://stackoverflow.com/questions/54603761/is-it-possible-to-display-the-venn-diagram-within-a-universal-set

For Python Source Code:

https://github.com/subhendu17620/RUAS/blob/master/sem%2003/DM-1/DM-assignment01.ipynb

https://github.com/subhendu17620