OPTIMALIZACE – GENETICKÉ ALGORITMY

Kurz: Datové struktury a algoritmy

Lektor: Doc. Ing. Radim Burget, Ph.D.

Autor: Doc. Ing. Radim Burget, Ph.D.

Motivace

 Poskládejte 50 polygonů tak, aby se co nejvíce obraz podobal předloze

- Lze měnit:
 - Tvar
 - Barvu
 - Pozici
 - Průhlednost

Cíl

- Úvod do optimalizace
- II. Genetické algoritmy
- III. Paralelizace GA
- IV. Typické příklady GA

Obecná definice optimalizačního problému

- Hledáme hodnoty pro vybranou množinu proměnných: $X = (x_1, \dots, x_n)$, které maximalizují (nebo minimalizují) hodnotu účelové funkce: $x_0 = f(x_1, \dots, x_n)$, přičemž mohou být zadány omezující podmínky, které musí optimalizační úloha respektovat.
- Omezující podmínky mohou být zadány např. ve tvaru (ne)rovnic:

$$\begin{cases} g_1(x_1, \dots, x_n) & (> = <) & b_1 \\ g_2(x_1, \dots, x_n) & (> = <) & b_2 \\ & \vdots \\ g_m(x_1, \dots, x_n) & (> = <) & b_m \end{cases}$$

Příklad optimalizačního problému

•Úkol:

Najít nejvyšší bod v krajině

•Řešení:

```
X = (x<sub>1</sub>,...,x<sub>n</sub>), (souřadnice na mapě)
x<sub>0</sub> = f(x<sub>1</sub>,...,x<sub>n</sub>), (nadmořská výška)
Maximalizační úloha (najdi nejvyšší bod)
Prohledávacím prostorem je "krajina" (kopce, údolí, roviny, plošiny...)
```

Vždy je dobré si pro názornost problém vizualizovat, což lze jednoduše provést, když se *n* rovná nízkým číslům, avšak v praxi se *n* často rovná číslům v řádu deseti tisíců a vizualizaci je třeba zjednodušovat

Vizualizace obecného problému

Vizualizace konkrétního problému

Plastická mapa krajiny

3D graf krajiny

Další definice a základní pojmy

- Každý vektor X splňující omezující podmínky se nazývá možné řešení.
- Možných řešení může být velmi mnoho, ale jedno řešení maximalizující nebo minimalizující zadanou funkci, se nazývá optimální řešení.

- Pozn.:
 - · Častým problémem je, že nelze jednoduše vytvořit model problému
 - Počet možných řešení exponenciálně roste s velikostí řešeného problému
 - Nakonec, i optimálních řešení může být více, rozdíl může být pouze v konfiguraci každého jedince – závisí na podstatě řešeného problému

Příklad: Optimalizační problém

- Kolik vrstev?
- Kolik neuronů v každé vrstvě?
- Jaké aktivační funkce?

Vybrané metody optimalizace

- Hrubá síla (všechny možnosti vždy nejlepší výsledky
- Náhodné hledání (Random Search) neefektivní
- Horolezecká metoda (Hill climbing)
 - V okolí nejlepšího bodu se hledá další lepší řešení
- Mřížkové hledání (Grid Search)
 - Kombinace s každý s každým (kolik neuronů ve vrstvách)
- Metoda gradientního sestupu (např. moderní neuronové sítě)
- Evoluční algoritmy
 - Genetické algoritmy
 - Genetické programování

Gradientní sestup (Gradient Descent, GD) (myšlenka)

Gradientní sestup (Gradient Descent, GD) (myšlenka)

Gradientní sestup (Gradient Descent, GD)

 $\lambda = 0.01 \dots$ rychlost učení

Náhodně inicializujeme w a b

for e = 0, počet epoch do

Spočteme: dL(w,b)/dw and dL(w,b)/db

Aktualizujeme: $w = w - \lambda dL(w, b)/dw$

Aktualizujeme: $b = b - \lambda dL(w, b)/db$

end

Rychlost učení

(mini-dávkový) Stochastický Gradientní Sestup (SGD)

```
\lambda = 0.01
                                                  l(w,b) = \sum_{i \in R} -\log f_{i,label}(w,b)
Initializujeme w a b náhodně
for e = 0, počet epoch do
    for b = 0, počet dávek do
        Spočteme: dl(w,b)/dw and dl(w,b)/db
      Aktualizujeme: w = w - \lambda \, dl(w, b)/dw
       Aktualizujeme: b = b - \lambda \, dl(w, b)/db
     end
end
```

Aktualizace hybnosti

Namísto

$$w = w - \lambda \frac{dl(w, b)}{dw}$$

Použijeme:

$$v = \rho v + \lambda \frac{dl(w, b)}{dw}$$

 ρ (ró) tipicky 0.8-0.9

$$w = w - v$$

v = mx + b

Ukázka implementace

```
/* # of iterations and alpha = learning rate */
int iterations = 140000;
float alpha = 0.07f;
for (int i = 0; i < iterations; i++) {
    float h0 = 0.0f; ]); // sum of errors for theta0
    float h1 = 0.0f; // sum of errors for theta1
    for (int j = 0; j < numOfSamples; j++) {</pre>
        h0 = h0 + ((theta0 + x[j] * theta1) - y[j]); // error1
        h1 = h1 + ((theta0 + x[j] * theta1) - y[j]) * x[j]; // error2
    // update theta (using temp values)
    float tempTheta0 = theta0 - (alpha * h0) / (float) numOfSamples;
    float tempTheta1 = theta1 - (alpha * h1) / (float) numOfSamples;
    theta0 = tempTheta0;
    theta1 = tempTheta1;
```

Evoluční algoritmy (EA)

- zastřešují řadů přístupů využívajících tyto modely biologické evoluce:
 - přirozený výběr (silnější jedinci, podle hodnoty fitness funkce)
 - náhodný genetický drift (mutace, decimace jedince s vysokou fitness)
 - reprodukční proces (křížení jedinců výměna genetické informace)

Motivace – "závody ve zbrojení"

- netopýři mají sonar, kterým hledají můry, sonar je sám o sobě komplikovaný
- můry vyvinuly měkké pokrytí těla, které absorbuje netopýří vysílání
- netopýři přešli na nové frekvence
- můry přišly s novým pokrytím a s "rušičkou" (vlastní signál interferuje s netopýřím)
- netopýři přišli s novými leteckými manévry a naučily se vypínat sonar (čímž dělají rušení méně efektivním)

V čem je problém?

Téměř každý problém lze popsat parametry

Záležitostí optimalizace je potom nalezení takových

parametrů, pro které dává celý systém ve výsledku

nejlepší výsledky

Zdroj: Amnesia-The Dark Descent

Evoluční algoritmy (EA) – obecný algoritmus

```
begin
         t := 0:
         inicializujPopulaci P(t);
         ohodnoť P(t);
         while neníKonec do
                   t := t + 1:
                   P' := vyberJedince P(t);
                   křižJedince P'(t);
                   mutujJedince P'(t);
                   ohodnoť P'(t);
                   P := vytvořNovouPopulaci P,P'(t);
         od
```


end

Techniky prohledávání

- Úvod do optimalizace
- II. Genetické algoritmy
- III. Paralelizace GA
- IV. Typické příklady GA

GA – Pohled do historie

- GA založeny na Darwinově myšlence "přežití nejsilnějších"
- GA v 70tých letech 20tého stolení je formuloval R. Holland
- GA v základu používaly dva genetické operátory: křížení a inverzi
- Poprvé použity jako prohledávací mechanismus pro adaptivní systémy UI

 Kniha "Genetic Algorithms in Search, Optimization, and Machine Learning" napsána D. Goldbergem v roce 1989 (studentem R. Hollanda) se zasloužila o největší rozmach problematiky genetických algoritmů

GA – Základní pojmy

- Rozdíl mezi individuem (fenotyp) a jeho reprezentací (genotyp)
 - V biologii, každá buňka nese určitý počet informaci (chromozomů)
 - V informatice je individuum (jedinec) charakterizován jedním chromozomem
 - Lze tedy zavést zjednodušení, Genotyp = Chromozom
 - Chromozom se dále dělí na geny (uspořádány lineárně)
 - Gen na i-té pozici reprezentuje stejnou charakteristiku v každém jedinci
 - Alela je hodnota, které může nabývat gen (např. 0 nebo 1)

Příklad

- Biologie výrazně složitější
- EA, GA matematická metoda, která se inspiruje biologií, pomocí parametrů kóduje podobu

			Pokrytí	
ı	Velikost	Rychlost	Pokrytí Pokrytí těla	Barva
	1	4	2	4

Lokální vs. globální; velká výzva

This an important challenge!

Genetické algoritmy

GA – Etapy návrhu algoritmu

1	Reprezentace problému	
2	Vytvoření počáteční populace	
3	Vytvoření fitness funkce	
4	Operátory selekce	
5	Genetické operátory	
6	Obnova populace	
7	 Ukončení algoritmu 	
8	Kontrola běhu algoritmu	

Reprezentace problému (kódování chromozomu)

- Zvolíme relevantní geny, které bude chromozom obsahovat
 - Příklad: Máme problém, kdy je třeba nalézt obličej pachatele, potřebujeme tedy zakódovat jeho podobu, geny tedy např. budou: délka vlasů, barva vlasů, barva očí, tvar obličeje, tvar nosu, atd.
- Zvolíme či bude délka chromozomu statická či variabilní
 - Příklad: V případě zmiňovaného příkladu bude délka statická, každý obličej budeme kódovat stejnými parametry
- Zvolíme jakých hodnot budou moci geny nabývat
 - **Příklad**: Je třeba si předem definovat množiny (číselníky), ze kterých budeme doplňovat hodnoty do jednotlivých genů, např. pro barvu očí to bude množina: hnědá, černá, modrá, zelená...

Reprezentace problému (kódování chromozomu)

- Možné typy kódování
 - Binární kódování, nejčastěji se používá Grayův kód (změna jednoho bitu)
 - **Příklad**: 0000 | 0001 | 0011 | ...
 - Reálné kódování
 - **Příklad**: 1,3 | 2,54 | 3,14 | ...
 - Znakové kódování
 - **Příklad**: A | M | K | ...
 - Objektové kódování
 - Příklad: ObjA | ObjB | ObjC | ...
 - Atd.

Vytvoření počáteční populace

- Zpravidla náhodný proces
- Musí být pokryta co největší část stavového prostoru
- Pomocí teorie schémat lze generovat jedince "blíže" optimálnímu řešení

Vytvoření počáteční populace

- Uniformně náhodné
- Založené na heuristice
- Založené na znalosti
- Genotyp z předchozí evoluce (pokračování)

Vytvoření počáteční populace

- Lze použít i informovanou metodu
 - Musí být postavena na znalosti stavového prostoru
 - Může vést k nalezení lepších řešení a zkrátit čas výpočtu
 - Může způsobit nevratné nasměrování algoritmu k sub-optimálnímu řešení

Vytvoření fitness funkce

Kvantitativně vyjadřuje kvalitu každého řešení

- Obvykle reálné číslo, vyšší značí kvalitnější řešení
- Nejjednodušeji může být fitness funkce vyjádřena jako:
 - dosažení požadované přesnosti algoritmu
 - množství času potřebné pro výpočet algoritmu
 - množství chyb mezi skutečným a požadovaným výstupem algoritmu

Vytvoření fitness funkce

Hrubá fitness (raw fitness)

- Odchylka mezi dosaženou a předpokládanou hodnotou
- Často transformována na referenční hodnotu (další typy fitness, viz dále)

$$r(i,t) = \sum_{i=1}^{N_e} |S(i,j) - C(j)|$$

t je číslo generace

S(i,j) je výsledek vyhodnocení jedince i pro j-tý prvek trénovací množiny

 N_e celkový počet prvků trénovací množiny

C(j) je očekávané hodnota pro vstup odpovídající j-tému prvku trén. množ.

Vytvoření fitness funkce

Standardizovaná fitness (standardized fitness)

- Přepočet hrubé fitness na určitou referenční hodnotu
- Optimální řešení je rovno nejvyšší hodnotě

$$s(i,t) = r_{max} - r(i,t)$$

r(i,t) je hodnota hrubé fitness (předchozí slajd) r_{max} je referenční hodnota fitness

Vytvoření fitness funkce

Přizpůsobená fitness (adjusted fitness)

- Hodnota leží vždy v intervalu <0; 1>
- Optimální řešení je rovno 1

$$a(i,t) = \frac{1}{1 + s(i,t)}$$

s(i,t) je hodnota standardizované fitness (předchozí slajd)

Vytvoření fitness funkce

Normalizovaná fitness (normalized/proportional fitness)

- Hodnota leží vždy v intervalu <0; 1>
- Optimální řešení je rovno 1
- Suma normalizovaných fitness v populaci je rovna 1

$$n(i,t) = \frac{a(i,t)}{\sum_{k=1}^{M} a(k,t)}$$

a(i,t) je hodnota přizpůsobené fitness (předchozí slajd) M je velikost populace

Vytvoření fitness funkce

Metody na úpravu fitness funkce, podpora/potlačení elitářství

Ranking

- Přiděluje fitness nikoliv na základě velikosti objektivní funkce, ale podle pořadí daného řešení vzhledem k populaci
- **Příklad:** nejlepší řešení bude mít očekávaný počet kopií 3, druhé nejlepší 2 a ostatní do výběru po 1 a zbytek (nejhorší řešení) 0.

·Linear scaling

 Určuje fitness tak, aby fitness celé populace měla lineární průběh, byl zachován průměr hodnot objektivních funkcí a aby maximální fitness byl v intervalu 1,2-2,0 násobku průměru (voleno uživatelem)

Multi-Objektivní EA (MOEA)

- Rozšiřuje EA, které sledují více než jediný cíl v jediní fitness hodnotě
- Tyto cíle jdou zpravidla proti sobě (např. přesnost vs. složitost)
- Standardní EA, jedinec A se říká, že je lepší než B pokud A má lepší fitness hodnotu nežli B
- Pro MOEA: jedinec A je lepší než jedinec B pokud A dominuje nad B

Definice: Dominanace v MOEA

- Jedinec A dominuje nad jeincem B pokud:
 - A je horší než B ve všech parametrech popřípadě
 - A je lepší alespoň v jednom parametru oproti B

- Selekce většinou koresponduje s fitness hodnotou
- Avšak, je třeba zachovat dostatečnou různorodost populace

Selekční tlak/intenzita

- S vyšší hodnotou, algoritmus rychle konverguje k řešení, ale současně se zvyšuje možnost předčasné konvergence (sub-optimální řešení)
- Problém je řešen zavedením určitého počtu generací, které jsou zapotřebí, aby selekce zaplnila celou populaci jedinců nejlepším chromozomem při neúčasti rekombinačního a mutačního operátoru

$$I = \frac{\overline{M^* - \overline{M}}}{\overline{\sigma}}$$

 \overline{M} průměrná hodnota fitness funkce v populaci před selekcí \overline{M} průměrná hodnota fitness funkce v populaci po selekci $\overline{\sigma}$ rozptyl fitness funkce před selekcí

Ruletový výběr (roulette wheel selection)

- Pravděpodobnost výběru závisí na poměrné kvalitě jedince
- Neboli, velikost výseče na ruletě závisí na velikosti fitness funkce

$$p_i = \frac{f_i}{\sum_{j=1}^{N} f_j}, i \in \{1, \dots, N\}$$

 p_i představuje pravděpodobnost výběru f_i představuje hodnotu fitness funkce *i*-tého jedince $\sum_{j=1}^N f_j$ představuje součet hodnot fitness všech jedinců

Ruletový výběr – vlastnosti

- Pokud bude v populaci jeden jedinec značně převyšovat ostatní, budou další populace tvořeny z převážné většiny jeho geny
- Když se GA blíží nalezení optimální hodnoty, jsou všechny hodnoty jedinců podobné a lepší jedinci nejsou dostatečně zvýhodněni před jinými

Ruletový výběr – příklad

Jedinec	i1	j2	j3	j4	j5	j6
Fitness	30	14	10	4	3	2
рi	0,48	0,22	0,16	0,06	0,05	0,03

•Ruletový výběr – varianta 2 (rank selection)

- · Jedinci jsou seřazení vzestupně podle jejich hodnoty fitness funkce
- Velikost místa na ruletě se vypočítá podle rovnice:

$$p_i = \frac{i_i}{\sum_{i=1}^{N} j} = \frac{2 \cdot i}{N \cdot (N+1)}, i \in \{1, \dots, N\}$$

i ... pořadí jedince v populaci

N ...představuje velikost populace

 $\sum_{j=1}^{N} j$...je součet pořadí všech jedinců

•Ruletový výběr – varianta 2 – vlastnosti

- Tento druh selekce potlačuje roli nadprůměrně dobrých jedinců, kteří by byli schopni negativně ovlivnit vytváření dalších generací
- Zajišťuje také selekční tlak, když se algoritmus blíží k optimálnímu řešení, když už mezi jedinci nejsou velké rozdíly

Ruletový výběr – varianta 2 – příklad

Jedinec	j1	j2	j3	j4	j5	i6
Fitness	20	14	10	4	3	2
Pořadí	1	2	3	4	5	6
p_i	0,29	0,24	0,19	0,14	0,1	0.05

Turnajový výběr (tournament selection)

- Náhodně je vybráno n jedinců, postupným porovnáváním je vybrán nejlepší
- Jde v podstatě o analogii turnaje mezi rivaly před biologickou reprodukcí
- Většinou mezi sebou soupeří dva jedinci (n = 2)
- Experimenty dokazují, že je v převážné většině případů nejvhodnější

Genetické operátory – Elitářství

- Zaručuje monotónní (neklesající) hodnotu fitness nejlepšího jedince
- Vybere se n (n=1) jedinců, kteří jsou zkopírování do nové populace
- Předchází ztrátě nejlepšího řešení, které by mohlo být znehodnoceno

Genetické operátory – Křížení

- Základní operátor, nejobecnějším typem je n-bodové křížení
 - Na příkladu ukažme jednobodové křížení

Genetické operátory – Křížení

- Základní operátor, nejobecnějším typem je n-bodové křížení
 - Na příkladu ukažme dvoubodové křížení

Genetické operátory – Křížení

- Dalším typem je uniformní křížení
 - Příliš rozvrací kód chromozomu
 - Ale lze je dobře použít pro vnesení diverzity do populace
 - Používá křížící masku, která udává, které geny se kříží, maska pro druhého rodiče je inverzní k masce prvního rodiče

Genetické operátory – Mutace

- Aplikuje se s velmi malou pravděpodobností
- Významná zvláště v populacích s málo jedinci
- Pravděpodobnost použití zvyšujeme pro vyšší diverzitu populace

Obnova populace

- Generativní s úplnou obnovou
 - Rodiče jsou kompletně nahrazení potomky
 - Částečná obnova populace
 - Pouze jeden potomek nahradí nejslabšího jedince
 - V praxi se používá kombinace těchto způsobů
 - Techniky obnovy populace:
 - Podle kvality jedince určené fitness funkcí (selekční metoda)
 - Elitářství (nejlepší jedinec je přímo překopírován do nové populace)
 - Faktor přemnožení (potomek nahrazuje rodiče s podobným genotypem)

Ukončení algoritmu

- Počet dosažených generací
- Počet fitness ohodnocení
- Vyčerpaný čas pro výpočet algoritmu
- Nezlepšující se fitness
- Neexistuje odlišnost v populaci
- Dosažená přesnost hledaného řešení / nalezeno řešení
- Kombinace předchozích

Kontrola běhu algoritmu

Velikost populace

Poměr křížení

Poměr mutace

Atd.

GA – Základní pojmy – Příklad

- Problém 8mi dam
- Na šachovnici 8x8 rozmístěte 8 dam tak, aby žádná neohrožovala jinou
- Konfigurace dam na šachovnici Fenotyp
- Možná konfigurace chromozomu (čísel 1-8) –
- Genotyp

- Chromozom obsahuje celkem 8 genů (8 dam).
- Gen může nabývat hodnot (alel) 1-8.

Příklad: řešení problému 8 dam pomocí GA

Vytvoření náhodné populace např. velikosti 5:

Rozložení polygonů (ne až tak typické ©)

- Rozmistěte 50 polygonů (pětiúhelníků) tak, aby co nejlépe odpovídaly přeloze obrázku
 - Jak bude vypadat podoba možného chromozomu?
 - Jak bude vypadat fitness funkce?

	POLYGON 1																	F	OLY	SON	2						
×	Σ	X	Y2	×	γ3	X4	γ4	X5	Y5	Color RED	Color GREEN	Color BLUE	Transparency	×	Σ	X	Y2	×	Х3	X4	Y4	X5	Y5	Color RED	Color GREEN	Color BLUE	Transparency
88	12	88	12	139	30	88	12	88	12	139	30	1	40	88	12	88	12	139	30	88	12	88	12	139	30	1	40

Cíl

- Úvod do optimalizace
- II. Genetické algoritmy
- III. Paralelizace GA
- IV. Typické příklady GA

- Paralelizace GA je relativně snadná, existuje několik způsobů
 - Paralelizace operací nad jednou populací (výpočet fitness, selekce)
 - Paralelizace sub-populací
 - Kombinace obou
 - Paralelní GA využívají menších populací (demy)
 - Sub-populace rychle konvergují k lokálnímu optimu
 - Nižší rozmanitost v sub-populacích řeší se migrací jedinců
 - Základní 3 modely paralelizace
 - Migrační model
 - Globální model
 - Difuzní model

Migrační model

Populace rozdělena do více sub-populací vyvíjejících se nezávisle

Po určitém počtu generací dochází k migraci jedinců (výměna

Globální model

- Nerozděluje populace do sub-populací
- Rozděluje průběh výpočtu genetického algoritmu do paralelních procesů
- Řídící proces (master) provádí selekci a přiřazuje ohodnocení všem jedincům, ostatní procesy jako je křížení, mutace a samotný výpočet fitness funkce jsou distribuovány na další procesy (slave)

Difuzní model

- Každý jedinec je řízen zvlášť
- Jedinec vstupuje do křížení jen s jedinci v okolí (4okolí, 8okolí)
- Tmavší místa značí vyšší fitness hodnotu, světlejší nižší

Hybridní GA Paralelizace

Řídká a detailní

Řídká a master slave

Řídká a řídká

Cíl

- Úvod do optimalizace
- II. Genetické algoritmy
- III. Paralelizace GA
- IV. Typické příklady GA

Příklady použití

Příklady použití

 Návrh elektronických obvodů, známé jako "evolvable hardware"[2]

Příklady použití

• Wireless sensor/ad-hoc networks [4].

Problém obchodního cestujícího

- Nalezení nejkratší cestovní trasy pro obchodního cestujícího mezi N městy
- Struktura chromozomu:
 Brno | Ostrava | Praha | Plzeň ...

Nalezení cesty pro robota

- Nalezení cesty pro robota
 v terénu z bodu A do bodu B
 tak, aby se úspěšně vyhnul
 všem překážkám
- Struktura chromozomu:
 Left | Right | Down | Up...

OPTIMALIZACE-GENETICKÉ ALGORITMY

Plánování pracovních úloh

	2 2 3 5 6 1 4 3 4 6 1 2 5												
job1	3	1 ~	2	4	_6	5							
job2	2	3	5	6	1	4							
job3	3	4	6	1	2	5							
job4	2	1	3	4	5	6							
job5	3	2	5	6	1	4							
job6	2	4	6	1	5	3							

	2 10 8 5 4 10 10 3 9 1 5 4 7 8 4 5 5 5 3 8 9										
job1	3	6	1	7	6	3					
job2	10	8	5	4	10	10					
job3	9	1	5	4	7	8					
job4	5	5	5	3	8	9					
job5 job6	3	3	9	1	5	4					
job6	10	3	1	3	4	9					

	job1 <job2:< th=""><th>1</th><th>1</th><th>0</th><th>1</th><th>0</th><th>0</th></job2:<>	1	1	0	1	0	0
	job1 <job3:< td=""><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td></job3:<>	0	1	1	0	0	0
_	job1 <job4:< td=""><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0</td></job4:<>	1	1	0	0	1	0
	job1 <job5:< td=""><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td></job5:<>	1	1	1	1	0	0
	job1 <job6:< td=""><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td></job6:<>	1	1	0	0	0	0
	job2 <job3:< td=""><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td></job3:<>	1	0	1	0	0	0
	job2 <job4:< td=""><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td></job4:<>	1	1	1	1	0	0
	job2 <job5:< td=""><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td></job5:<>	1	1	1	1	1	1
	job2 <job6:< td=""><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td></job6:<>	1	1	1	0	0	0
	job3 <job4:< td=""><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td><td>1</td></job4:<>	1	1	1	0	0	1
	job3 <job5:< td=""><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>0</td></job5:<>	1	1	1	1	0	0
	job3 <job6:< td=""><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td></job6:<>	1	1	1	1	0	1
	job4 <job5:< td=""><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td></job5:<>	1	1	0	1	0	0
	job4 <job6:< td=""><td>1</td><td>1</td><td>1</td><td>0</td><td>1</td><td>0</td></job6:<>	1	1	1	0	1	0
	job5 <job6:< td=""><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td></job6:<>	1	0	1	0	0	0

		jo	b sec	quen	се	
machine1	_ 1	4	3	6	2	5
machine2	2	4	6	1	5	3
machine3	3	1	2	5	4	6
machine4	3	6	4	1	2	5
machine5	2	5	3	4	6	1
machine6	3	6	2	5	1	4

Machines: M=6, Jobs: N=6

chromosome 110100 | 011000 | ... | 111010 | 101000 M*N*(N-1)/2 = 90 bits

Hledání podezřelých osob

 Hledání podezřelé osoby v obsáhlé databázi obličejů, svědek popisuje pachatele, aby došlo k jeho přesné identifikaci

Struktura chromozomu:

 skull_shape
 hair_cut
 spectacles
 beard

 0 0 1 0 1
 0 1 1 0 1
 0 1 1 0 0
 1 0 0 0 1
 0 1 0 1 0
 ...
 1 1 0 1 0

 hair_colour
 eye_colour

Výběr příznaků pro umělou inteligenci

- Které příznaky vybrat, pokud je atributů velký počet?
- 10 000 000 ... kombinace bez opakování

Výběr příznaků pro umělou inteligenci

Umělá inteligence

 Jaké jsou optimální nastavení parametrů jednotlivých operátorů?

OPTIMALIZACE – GENETICKÉ ALGORITMY Datové Struktury a Algoritmy

Rozložení polygonů (ne až tak typické ©)

	POLYGON 1																		Р	OLYC	SON:	2					
×	Σ	X	Y2	×	χ.	X 4	γ4	X5	γ2	Color RED	Color GREEN	Color BLUE	Transparency	×	Σ	X	Y2	×	\ 3	X 4x	Y4	X5	Y5	Color RED	Color GREEN	Color BLUE	Transparency
88	12	88	12	139	30	88	12	88	12	139	30	1	40	88	12	88	12	139	30	88	12	88	12	139	30	1	40

Děkuji za pozornost