

SOLUCIONARIO PRÁCTICA DIRIGIDA 1

Microeconomía Financiera Semestre 2024-2

Profesor: José D. Gallardo Kú

jgallardo@pucp.edu.pe

Jefes de práctica: Marcelo M. Gallardo Burga y Karen Montoya

marcelo.gallardo@pucp.edu.pe a20212185@pucp.edu.pe https://marcelogallardob.github.io/

1 Economías de intercambio puro

Ejercicio 1.1. Supongamos que en una economía 2×2 el consumidor i tiene preferencias Cobb-Douglas $u_i(x_{1i}, x_{2i}) = x_{1i}^{\alpha} x_{2i}^{1-\alpha}$. Además, suponga que las dotaciones son $\omega_1 = (1, 2)$ y $\omega_2 = (2, 1)$. Encuentre las asignaciones de Pareto óptimas y el (un)¹ equilibrio de Walras.

Solución: para encontrar las asignaciones P.O., dado que las funciones de utilidad de ambos consumidores son diferenciables y monótonas, resolvemos

$$\max_{x_1, x_2} u_1(x_{11}, x_{21})$$
s.a. $u_2(x_{12}, x_{22}) \ge \overline{u}$

$$x_{11} + x_{12} \le \omega_1$$

$$x_{21} + x_{22} \le_2$$

$$x_1, x_2 \ge 0.$$

Note que $x_i = (x_{1i}, x_{2i})$. Reemplazando con las especificaciones del problema:

$$\max_{x_1, x_2} x_{11}^{\alpha} x_{21}^{1-\alpha}$$
s.a.
$$x_{12}^{\alpha} x_{22}^{1-\alpha} \ge \overline{u}$$

$$x_{11} + x_{12} \le 3$$

$$x_{21} + x_{22} \le 3$$

$$x_1, x_2 \ge 0.$$

¹¡No sabemos si es único o no! Sin embargo, bajo algunas condiciones sobre las preferencias, que se cumplen en este ejercicio, se garantiza la existencia.

Debido a la monotonía de las preferencias, las 3 primeras restricciones son con igualdad. Además, para $\overline{u} > 0$ (descartamos por ahora los casos degenerados donde unos de los consumidores consume 0 de un bien), la solución es interior y las condiciones de no negatividad son inactivas. Más aún, podemos escribir $x_{12} = 3 - x_{11}$ y $x_{22} = 3 - x_{21}$. Por ende,

$$L(x_{11}, x_{21}, \lambda) = x_{11}^{\alpha} x_{21}^{1-\alpha} + \lambda ((3 - x_{11})^{\alpha} (3 - x_{21})^{1-\alpha} - \overline{u}).$$

Las CPO proveen (verifique que es equivalente a $TMS_1 = TMS_2$)

$$\alpha x_{11}^{\alpha - 1} x_{21}^{1 - \alpha} - \lambda \alpha (3 - x_{11})^{\alpha - 1} (3 - x_{21})^{1 - \alpha} = 0$$
$$(1 - \alpha) x_{11}^{\alpha} x_{21}^{-\alpha} - (1 - \alpha) \lambda (3 - x_{11})^{\alpha} (3 - x_{21})^{-\alpha} = 0.$$

Como hemos descartado la posibilidad de que $x_{i\ell} = 0$ i.e. $x_{-i,\ell} \neq \omega_{\ell}$, podemos dividir las expresiones y queda

$$\lambda = \frac{x_{11}^{\alpha - 1} x_{21}^{1 - \alpha}}{(3 - x_{11})^{\alpha - 1} (3 - x_{21})^{1 - \alpha}} = \frac{x_{11}^{\alpha} x_{21}^{-\alpha}}{(3 - x_{11})^{\alpha} (3 - x_{21})^{-\alpha}}.$$

De este modo,

$$\frac{x_{21}}{x_{11}} = \frac{3 - x_{21}}{3 - x_{11}}.$$

O sea, $x_{21} = x_{11}$ definen las asignaciones P.O. Mediante un análisis gráfico, determinamos que las esquinas también son P.O. Se pudo llegar a la misma conclusión por un análisis más directo. Las TMS de ambos individuos son las mismas y la caja de Edgeworth en este caso e cuadrada. Las tangencias serán en la diagonal.

Ahora, resolvemos los problemas de maximización de la utilidad de cada consumidor. Esto es,

$$\max u_i(x_i) = x_{1i}^{\alpha} x_{2i}^{1-\alpha}$$

s. a. $p_1 x_{1i} + p_2 x_{2i} \le p_1 \omega_{1i} + p_2 \omega_{2i}$
 $x_i \ge 0.$

La solución es

$$x_{1i}^* = \frac{\alpha(p_1\omega_{1i} + p_2\omega_{2i})}{p_1}, \ x_{2i}^* = \frac{(1-\alpha)(p_1\omega_{1i} + p_2\omega_{2i})}{p_2}.$$

Aplicando la Ley de Walras (Ejercicio 1.3), para encontrar el ratio de precios de equilibrio basta resolver

$$x_{11}^* + x_{12}^* = \frac{\alpha(p_1 + 2p_2)}{p_1} + \frac{\alpha(2p_1 + p_2)}{p_1} = 3.$$

Simplificando,

$$3\alpha + 3\alpha(p_2/p_1) = 3$$

Eso conlleva a

$$p_2^*/p_1^* = (1 - \alpha)/\alpha.$$

Finalmente, se reemplaza en $x_{\ell i}^*$ el ratio para obtener el E.W.

Ejercicio 1.2. En cada uno de los siguientes casos, dibuje la caja de Edgeworth, algunas curvas de indiferencia para cada consumidor, el conjunto de Pareto y el núcleo (curva de contrato). Finalmente, encuentre el (un) equilibrio Walrasiano en cada caso.

- a) $u_1(x_{11}, x_{21}) = 2x_{11}^2 x_{21}, u_2(x_{12}, x_{22}) = x_{12}x_{22}^3, \omega_1 = (2, 3) \text{ y } \omega_2 = (1, 2).$
- b) $u_1(x_{11}, x_{21}) = x_{11} + x_{21}, u_2(x_{12}, x_{22}) = \min\{x_{12}, x_{22}\}, \omega_1 = (1, 2) \text{ y } \omega_2 = (3, 4).$
- c) $u_1(x_{11}, x_{21}) = x_{11} + \ln x_{21}, \ u_2(x_{12}, x_{22}) = x_{12} + 2\ln x_{22}, \ \omega_1 = (2, 3) \ y \ \omega_2 = (1, 2).$
- d) $u_1(x_{11}, x_{21}) = x_{11}x_{21}, u_2(x_{12}, x_{22}) = \min\{x_{12}, x_{22}\}, \omega_1 = (2, 6) \text{ y } \omega_2 = (4, 1).$
- e) $u_1(x_{11}, x_{21}) = \min\{2x_{11}, x_{21}\}, \ u_2(x_{12}, x_{22}) = \min\{x_{12}, 2x_{22}\}, \ \omega_1 = (1, 2) \ y \ \omega_2 = (3, 4).$

Identifique siempre que sea posible el tipo (Cobb-Douglas, CES, Leontief, lineal...) de la función de utilidad.

Solución: (a). Usamos $x_{11} = x_1, x_{21} = y_1, x_{12} = x_2$ y $x_{22} = y_2$. Graficamos a continuación las dotaciones iniciales $\{(2,3),(1,2)\}$, algunas curvas de indiferencia:

$$y_1 = \frac{\overline{U}_1}{2x_1^2}, \ \overline{U}_1 \in \mathbb{R}_+$$
$$y_2 = \sqrt[3]{\frac{\overline{U}_2}{x_2}}, \ \overline{U}_2 \in \mathbb{R}_+$$

la curva Γ de óptimos de Pareto (puntos de tangencia entre las tasas marginales de sustitución: $y_1 = \frac{5x_1}{18-5x_1}$) el núcleo (la intersección de Γ con la zona de beneficio mutuo), los consumos en equilibrio y la recta presupuestal correspondiente (ver pregunta 2 para los valores numéricos del ratio y las demandas):

Figure 1: Situación completa.

Notemos que las curvas de indiferencia son asintóticas a sus respectivos ejes debido a las especificaciones u^i . Por motivos de precisión, permítanos proveer el mismo gráfico usando Python :

Figure 2: Curvas de indiferencia, Γ y $\overline{\omega}$.

Dado que las funciones de utilidad en cuestión son diferenciables y la solución puede ser en la frontera² los óptimos de pareto se caracterizan por las siguientes dos condiciones:

$$\underbrace{\frac{\partial_{x_1} u^1}{\partial_{y_1} u^1} = \frac{\partial_{x_2} u^2}{\partial_{y_2} u^2}}_{\text{condición de tangencia}}$$

$$\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} = \begin{pmatrix} \omega_x \\ \omega_y \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}. \tag{1}$$

En efecto, hay que resolver:

$$\max u_i(x_i, y^i)$$

s.a. $u_{-i}(x^{-i}, y^{-i}) \ge \overline{u}$.

Computamos entonces los ratios de las utilidades marginales:

$$\frac{4x_1y_1}{2x_1} = \frac{y_2^3}{3x_2y_2^2}.$$

Simplificando:

$$\frac{2y_1}{x_1} = \frac{y_2}{3x_2}.$$

Usando (1)

$$\frac{2y_1}{x_1} = \frac{5 - y_1}{3(3 - x_1)}.$$

Despejando y_1 en términos de x_1 obtenemos

$$y_1 = \frac{5x_1}{18 - x_1}. (2)$$

En la Figura 3 graficamos los óptimos de Pareto (Ecuación 2) para (x_1, y_1) en la caja de Edgeworth $\square = [0, 3] \times [0, 5]$.

²Si se evalúa alguna de las funciones de utilidad en un vector con 0 unidades de alguno de los 2 bienes, la utilidad vale 0, lo cuál es menor a $u^i(\omega^i) > 0$.

Figure 3: Óptimos de Pareto.

Ahora bien, para obtener los precios y asignaciones de equilibrio, analizamos el problema desde la perspectiva del mercado, donde cada individuo resuelve:

$$\mathcal{P}_i: \begin{cases} \max & u^i(x_i, y_i) \\ \text{s.a.} & p_x x_i + p_y y_i \leq \underbrace{p_x \omega_1^i + p_y \omega_2^i}_{\text{restricción presupuestaria}} \\ & x_i, y_i \geq 0. \end{cases}$$

Dado que las funciones de utilidad son crecientes en ambos bienes (primeras derivadas parciales positivas), la restricción se cumple con igualdad y $x_i, y_i > 0$. Aplicamos entonces las condiciones de primer orden al Lagrangiano asociado. Para el consumidor 1 tenemos

$$\mathscr{L}(x_1, y_1, \lambda) = \underbrace{2x_1^2 y_1}_{u_1(x_1, y_1)} + \lambda(2p_x + 3p_y - p_x x_1 - p_y y_1).$$

Luego,

$$\frac{\partial \mathcal{L}}{\partial x_1} = 4x_1y_1 - \lambda p_x = 0$$

$$\frac{\partial \mathcal{L}}{\partial y_1} = 2x_1^2 - \lambda p_y = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = 2p_x + 3p_y - p_x x_1 - p_y y_1 = 0.$$

Combinando las dos primeras ecuaciones, obtenemos

$$\frac{2y_1}{x_1} = \frac{p_x}{p_y}.$$

Así,

$$y_1 = \frac{x_1}{2} \frac{p_x}{p_y}.$$

Reemplazando en la restricción presupuestaria:

$$p_x x_1 + p_y \left(\frac{x_1}{2} \frac{p_x}{p_y}\right) = 2p_x + 3p_y$$

y despejando x_1 , obtenemos finalmente las demandas Marshallianas del consumidor 1:

$$x_{1}(p_{x}, p_{y}) = \frac{4}{3} + 2\left(\frac{p_{y}}{p_{x}}\right) = \underbrace{\frac{2}{3}\left[\frac{2p_{x} + 3p_{y}}{p_{x}}\right]}_{\frac{\alpha}{\alpha + \beta}\frac{I}{p_{x}}}$$
$$y_{1}(p_{x}, p_{y}) = 1 + \frac{2}{3}\left(\frac{p_{x}}{p_{y}}\right) = \underbrace{\frac{1}{3}\left[\frac{2p_{x} + 3p_{y}}{p_{y}}\right]}_{=\frac{\beta}{\beta + \beta}\frac{I}{\beta}}.$$

Resolviendo análogamente para el consumidor 2 tenemos:

$$\mathcal{L}(x_1, y_1, \lambda) = \underbrace{x_2 y_2^3}_{u_2(x_2, y_2)} + \lambda (p_x + 2p_y - p_x x_1 - p_y y_1)$$

$$\frac{\partial \mathcal{L}}{\partial x_1} = y_2^3 - \lambda p_x = 0$$

$$\frac{\partial \mathcal{L}}{\partial y_1} = 3x_2 y_2^2 - \lambda p_y = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = p_x + 2p_y - p_x x_2 - p_y y_2 = 0.$$

Usando las 2 primeras ecuaciones:

$$\frac{y_2}{3x_2} = \frac{p_x}{p_y}. (3)$$

Reemplazando en $p_x + 2p_y = p_x x_2 + p_y y_2 = 0$

$$p_x x_2 + p_y \left(\frac{3p_x x_2}{p_y}\right) = p_x + 2p_y.$$

Despejando x_2 y reemplazando en 3

$$x_2(p_x, p_y) = \frac{1}{4} \left[\frac{p_x + 2p_y}{p_x} \right]$$
$$y_2(p_x, p_y) = \frac{3}{4} \left[\frac{p_x + 2p_y}{p_x} \right].$$

Note que, informalmente, identificando coeficientes α, β , dada la estructura Cobb-Douglas: $u(x,y) = Ax^{\alpha}y^{\beta}$, pudimos recuperar directamente las demandas Marshallianas: $\left(\frac{\alpha I}{(\alpha+\beta)p_x}, \frac{\beta I}{(\alpha+\beta)p_y}\right)$. Dichos α y β se obtienen aplicando una transformación monótona $g(\cdot)$ a u^i (por ejemplo $g(t) = t^{1/3}$ o $g(t) = t^{1/4}$).

Para obtener el ratio de precios de equilibrio, debemos imponer la condición de *clearing* market. Esto es:

$$x_1(p) + x_2(p) - \overline{\omega}_x = \frac{2}{3} \left[\frac{2p_x + 3p_y}{p_x} \right] + \frac{1}{4} \left[\frac{p_x + 2p_y}{p_x} \right] - 3$$
$$y_1(p) + y_2(p) - \overline{\omega}_y = \frac{1}{3} \left[\frac{2p_x + 3p_y}{p_y} \right] + \frac{3}{4} \left[\frac{p_x + 2p_y}{p_x} \right] - 5.$$

Aplicando la condición de Walras, basta equilibrar uno de los mercados:

$$\frac{4}{3} + \frac{2p_y}{p_x} + \frac{1}{4} + \frac{p_y}{2p_x} - 3 = 0.$$

Esto provee el ratio: $\frac{p_y}{p_x} = \frac{17}{30}$ (recordemos que en equilibrio general lo que interesa es el ratio y no tanto el valor numérico de cada precio, eventualmente podemos normalizar uno a 1). Reemplazando en las funciones de demanda obtenemos (numéricamente aproximado a la 10^{-2})

$$x_1 \simeq 2.47$$

 $y_1 \simeq 2.18$
 $x_2 \simeq 0.53$
 $y_2 \simeq 2.82$.

Finalmente, queda únicamente por verificar que estas asignaciones son Pareto óptimas. Esto es consistente con el hecho que las preferencias de los consumidores \leq , representadas por las funciones de utilidad $u(\cdot)$ son crecientes en sus argumentos (preferencias monótonas³ por ende): esta es la única condición necesaria en el Primer Teorema del Bienestar. Verificamos que el equilibrio Walrasiano pertenece a Γ pues:

$$\underbrace{\frac{5 \cdot 2.47}{18 - 5 \cdot 2.47}}_{\Gamma_{x_1^*}} \simeq \underbrace{2.18}_{=y_1^*}.$$

Permítanos terminar la pregunta corroborando usando la librería en Python Edgeworth:

Figure 4: Síntesis caja de Edgeworth: $u_1(x_1,y_1)=2x_1^2y_1$ y $\omega^1=(2,3)$ $u_2(x_2,y_2)=x_2y_2^3$ y $\omega^2=(1,2)$.

(b) Graficamos a continuación las curvas de indiferencia, dotación inicial, curva de contrato y óptimos de Pareto.

³A.k.a. localmente no saciadas.

Figure 5: $\omega_1 = (2,6) \text{ y } \omega = (4,1).$

Para obtener la curva de óptimos de Pareto notar que al no ser las preferencias estrictamente convexas y diferenciables (la función de Leontief) procedemos vía el análisis gráfico. Fijado un nivel de utilidad para el agente 2: $\min\{x_2, y_2\} = \overline{U}$, el consumidor 1 va a optimizar en una curva de indiferencia que pasa por los vértices de las curvas de indiferencia, i.e., $x_2 = y_2$. De este modo, la curva de óptimos de Pareto es $x_2 = y_2$ que es lo mismo que $y_1 = x_1 + 1$.

Luego, para obtener el equilibrio Walrasiano resolvemos primero el problema del consumidor 1:

max
$$x_1y_1$$

s.a. $p_xx_1 + p_yy_1 = 2p_x + 6p_y$
 $x_1, y_1 \ge 0$.

Dado que se trata de una función Cobb-Douglas, identificando $\alpha=\beta=0.5$ e $I=2p_x+6p_y$, las demandas Marshallianas vienen dadas por

$$x_1(p_x, p_y) = \frac{2p_x + 6p_y}{2p_x}$$
$$y_1(p_x, p_y) = \frac{2p_x + 6p_y}{2p_y}.$$

Por otro lado, el consumidor 2 resuelve

max min
$$\{x_2, y_2\}$$

s.a. $p_x x_1 + p_y y_1 = 4p_x + p_y$
 $x_2, y_2 \ge 0$.

La solución al problema se da cuando $x_2 = y_2$. Así,

$$x_2(p_x, p_y) = \frac{4p_x + p_y}{p_x + p_y}$$
$$y_2(p_x, p_y) = \frac{4p_x + p_y}{p_x + p_y}.$$

Normalizando $p_y = 1$, para obtener el ratio de precios de equilibrio debemos limpiar solo uno de los mercados (Ley de Walras), i.e., exceso de demanda igual a cero:

$$x_1(p_1, p_2) + x_2(p_1, p_2) - 6 = \frac{2p_x + 6}{2p_x} + \frac{4p_x + 1}{p_x + 1} - 6 = 0.$$

La solución para p_x es $\frac{\sqrt{13}-1}{2}$. Reemplazando con este valor numérico y $p_y=1$ se obtienen las demandas de equilibrio. Verificamos por ejemplo que

$$x_1\left(\frac{\sqrt{13}-1}{2},1\right)+1=\frac{7+\sqrt{13}}{1}=y_1\left(\frac{\sqrt{13}-1}{2},1\right).$$

Esto es, que el equilibrio Walrasiano es óptimo de Pareto.

Ejercicio 1.3. De Mas-Colell et al. (1995). Considere una economía 2×2 en la cual las preferencias de los consumidores son monótonas. Demuestre que (a continuación $\omega_{\ell} = \omega_{1\ell} + \omega_{2\ell}$)

$$p_1\left(\sum_{i=1}^2 x_{1i}(p_1, p_2) - \omega_1\right) + p_2\left(\sum_{i=1}^2 x_{2i}(p_1, p_2) - \omega_2\right) = 0.$$

Generalice el resultado por L bienes y N consumidores.

Solución: Las restricciones presupuestarias de cada consumidor son

$$p_1 x_{i1}(p_1, p_2) + p_2 x_{i2}(p_1, p_2) \le p_1 \omega_{i1} + p_2 \omega_{i2}.$$

Ahora, supongamos que la desigualdad es estricta para algún i. Es decir,

$$p_1 x_{i1}(p_1, p_2) + p_2 x_{i2}(p_1, p_2) < p_1 \omega_{i1} + p_2 \omega_{i2}.$$

Dado que las preferencias son monótonas, también son localmente no saciables. Por lo tanto, dado un $\epsilon > 0$, podemos encontrar un vector $(z_{i1}, z_{i2}) \in B((x_{i1}(p_1, p_2), x_{i2}(p_1, p_2)), \epsilon)$ tal que

$$(z_{i1}, z_{i2}) \succ_i (x_{i1}(p_1, p_2), x_{i2}(p_1, p_2)).$$

у

$$(p_1, p_2) \cdot (z_{i1}, z_{i2}) < (p_1, p_2) \cdot (\omega_{i1}, \omega_{i2}).$$

Esto es una contradicción, ya que por definición,

$$x_i(p_1, p_2) \succeq_i z_i, \ \forall \ z_i \in B_i(p).$$

Por lo tanto,

$$p_1x_{i1}(p_1, p_2) + p_2x_{i2}(p_1, p_2) = p_1\omega_{i1} + p_2\omega_{i2}.$$

Sumando sobre i,

$$\sum_{i=1}^{2} p_1 x_{i1}(p_1, p_2) + p_2 x_{i2}(p_1, p_2) = \sum_{i=1}^{2} p_1 \omega_{i1} + p_2 \omega_{i2}.$$

Reordenando los términos, concluimos. Finalmente, supongamos, sin pérdida de generalidad, que el primer mercado se limpia:

$$p_1\left(\sum_{i=1}^2 x_{1i}(p_1, p_2) - \omega_1\right) = 0.$$

Entonces,

$$\underbrace{p_1\left(\sum_{i=1}^2 x_{1i}(p_1, p_2) - \omega_1\right)}_{=0} + p_2\left(\sum_{i=1}^2 x_{2i}(p_1, p_2) - \omega_2\right) = 0$$

implica

$$p_2\left(\sum_{i=1}^2 x_{2i}(p_1, p_2) - \omega_2\right) = 0.$$

Esto muestra que cuando las preferencias son localmente no saciables, se cumple la Ley de Walras, y solo es necesario que un mercado se limpie.

Ejercicio 1.4. De Varian (1992). Considere dos individuos en una economía de intercambio puro cuyas utilidades indirectas son

$$v_1(p_1, p_2, w) = \ln w - a \ln p_1 - (1 - a) \ln p_2$$

$$v_2(p_1, p_2, w) = \ln w - b \ln p_1 - (1 - b) \ln p_2$$

Las dotaciones son $\omega_1=(1,1)$ y $\omega_2=(1,1)$. Obtenga los precios que equilibran el mercado, $a,b\in(0,1)$.

Solución: la identidad de Roy provee

$$x_i^*(p) = -\frac{\frac{\partial v}{\partial p_i}}{\frac{\partial v}{\partial w}}.$$

De este modo,

$$x_{11}(p_1, p_2, w) = \frac{aw}{p_1}$$

$$x_{21}(p_1, p_2, w) = \frac{(1-a)w}{p_2}$$

$$x_{12}(p_1, p_2, w) = \frac{bw}{p_1}$$

$$x_{22}(p_1, p_2, w) = \frac{(1-b)w}{p_2}$$

De este modo, dado que el ingreso de 1 es

$$p \cdot \omega_1 = p_1 + p_2$$

y el del segundo es

$$p \cdot \omega_2 = p_1 + p_2.$$

De este modo,

$$x_{11}(p_1, p_2) = \frac{a(p_1 + p_2)}{p_1}$$

$$x_{21}(p_1, p_2, w) = \frac{(1 - a)(p_1 + p_2)}{p_2}$$

$$x_{12}(p_1, p_2, w) = \frac{b(p_1 + p_2)}{p_1}$$

$$x_{22}(p_1, p_2, w) = \frac{(1 - b)(p_1 + p_2)}{p_2}.$$

Aplicando la ley de Walras para despejar el ratio de previos,

$$\frac{a(p_1+p_2)}{p_1} + \frac{b(p_1+p_2)}{p_1} = 2.$$

Así,

Así,

$$\frac{p_2^*}{p_1^*} = \frac{2 - a - b}{a + b}.$$

Reemplazando en las demandas óptimas, concluimos.

Ejercicio 1.5. De Mas-Colell et al. (1995). Considere una economía en una caja de Edgeworth en la cual cada consumidor tiene preferencias Cobb-Douglas

$$u_1(x_{11}, x_{21}) = x_{11}^{\alpha} x_{21}^{1-\alpha}$$

$$u_2(x_{12}, x_{22}) = x_{12}^{\beta} x_{22}^{1-\beta},$$

con $\alpha, \beta \in (0,1)$. Considere dotaciones $(\omega_{1i}, \omega_{2i}) > 0$ para i = 1, 2. Resuelva para la razón de precios de equilibrio y la asignación.

Solución: procedamos paso a paso. Primero, calculamos las demandas dado un vector de precios. Estas son

$$x_1(p_1, p_2) = \left(\frac{\alpha p \cdot \omega_1}{p_1}, \frac{(1 - \alpha)p \cdot \omega_1}{p_2}\right)$$
$$x_2(p_1, p_2) = \left(\frac{\beta p \cdot \omega_2}{p_1}, \frac{(1 - \beta)p \cdot \omega_2}{p_2}\right)$$

donde $p \cdot \omega_1 = p_1 \omega_{11} + p_2 \omega_{21}$ y $p \cdot \omega_2 = p_1 \omega_{12} + p_2 \omega_{22}$. Luego, por la Ley de Walras (las preferencias son monótonas)

$$\frac{(1-\alpha)(p_1\omega_{11}+p_2\omega_{12})}{p_2} + \frac{(1-\beta)p_1\omega_{21}+p_2\omega_{22}}{p_2}$$

$$= \frac{p_1}{p_2} \left[(1-\alpha)\omega_{11} + (1-\beta)\omega_{12} \right] + (1-\alpha)\omega_{21} + (1-\beta)\omega_{22} = \omega_{21} + \omega_{22}.$$

$$\frac{p_1^*}{p_2^*} = \frac{\alpha\omega_{21}+\beta\omega_{22}}{(1-\alpha)\omega_{11}+(1-\beta)\omega_{12}}.$$

Finalmente,

$$\begin{split} x_1^*(p_1^*,p_2^*) &= \left(\omega_{11}\omega_{21} + \beta\omega_{11}\omega_{22} + (1-\beta)\omega_{21}\omega_{12}\right) \left(\frac{\alpha}{\alpha\omega_{21} + \beta\omega_{22}}, \frac{1-\alpha}{(1-\alpha)\omega_{11} + (1-\beta)\omega_{12}}\right) \\ y \\ x_2^*(p_1^*,p_2^*) &= \left(\omega_{12}\omega_{22} + (1-\alpha)\omega_{11}\omega_{22} + \alpha\omega_{21}\omega_{12}\right) \left(\frac{\beta}{\alpha\omega_{21} + \beta\omega_{22}}, \frac{1-\beta}{(1-\alpha)\omega_{11} + (1-\beta)\omega_{12}}\right). \end{split}$$

Lima, 31 de Agosto, 2024.

References

Mas-Colell, A., Whinston, M. D., and Green, J. R. (1995). *Microeconomic Theory*. Oxford University Press, New York.

Varian, H. R. (1992). *Microeconomic Analysis*. W. W. Norton & Company, New York, 3rd edition.