Answers to Math 308 Sample Midterm 2

- 1. (a) The nullspace of A is $\{0\}$.
 - (b) One possible solution is $\left\{ \begin{bmatrix} 1\\3\\9\\1 \end{bmatrix}, \begin{bmatrix} -1\\4\\3\\2 \end{bmatrix}, \begin{bmatrix} 3\\1\\1\\3 \end{bmatrix} \right\}$. Another solution is $\left\{ \begin{bmatrix} 1\\0\\0\\34/43 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\39/43 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\-12/43 \end{bmatrix} \right\}$.
 - (c) The rowspace is \mathbb{R}^3 , so any basis for \mathbb{R}^3 will work. For example, $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$ or $\left\{ \begin{bmatrix} 1\\-1\\3 \end{bmatrix}, \begin{bmatrix} 3\\4\\1 \end{bmatrix}, \begin{bmatrix} 9\\3\\1 \end{bmatrix} \right\}$. (d) 3 (e) 0.
- 2. (a) Your answer should be some vector of the form $\begin{bmatrix} 4/5 2x_2 3x_3 \\ x_2 \\ x_3 \end{bmatrix}$. One possible solution is $\begin{bmatrix} 4/5 \\ 0 \\ 0 \end{bmatrix}$.
 - (b) No matter what answer you put for part (a), $A\mathbf{x}^* = \begin{bmatrix} 4/5 \\ 8/5 \end{bmatrix}$. The range of A should be a line through the origin with slope 2. $A\mathbf{x}^*$ should be on the line, and \mathbf{b} should be off the line, but if you connect \mathbf{b} and $A\mathbf{x}^*$, you should get a line perpendicular to the range of A.
- 3. (a) One possible answer (using Gram-Schmidt with the basis in the given order) is $\left\{ \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -2/3\\1/3\\1\\-1/3 \end{bmatrix} \right\}.$
 - (b) a=3, b=5/3, c=1, assuming your answer to (a) was the same as mine.

- 4. (a) True
 - (b) False. For example \mathbf{x}_{p+1} could be the same as x_p .
 - (c) False. For example $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ and $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ are two bases for \mathbb{R}^2 that don't share any vectors.
 - (d) False. If W is nonzero, it has infinitely many vectors.
 - (e) True. There is always a least squares solution to a system of equations.
 - (f) False. This is only true if the set contains only nonzero vectors, and the set is a spanning set for \mathbb{R}^n .
 - (g) True.
 - (h) True.
 - (i) False.
 - (j) True.
- 5. Let \mathbf{x} and \mathbf{y} be vectors in V and let a be a scalar. Then we check the two conditions of a linear transformation:

$$T(\mathbf{x} + \mathbf{y}) = T_1(\mathbf{x} + \mathbf{y}) + T_2(\mathbf{x} + \mathbf{y})$$

$$= T_1(\mathbf{x}) + T_1(\mathbf{y}) + T_2(\mathbf{x}) + T_2(\mathbf{y})$$

$$= (T_1(\mathbf{x}) + T_2(\mathbf{x})) + (T_1(\mathbf{y}) + T_2(\mathbf{y}))$$

$$= T(\mathbf{x}) + T(\mathbf{y}).$$

$$T(a\mathbf{x}) = T_1(a\mathbf{x}) + T_2(a\mathbf{x})$$

$$= aT_1(\mathbf{x}) + aT_2(\mathbf{x})$$

$$= a(T_1(\mathbf{x}) + T_2(\mathbf{x}))$$

$$= aT(\mathbf{x}).$$

Therefore T is a linear transformation.