1.Performance Summary

Q1 Summary consists of a 3×3 table.

	Mu_T <dbl></dbl>	Sig_T <dbl></dbl>	SR_T <dbl></dbl>	
Min	-1.24007798	0.09057667	-1.7884057	
Mean	0.08582597	0.28297726	0.4968323	
Max	1.19018268	1.01529441	3.8749416	

Q2: Plot the asset mean returns against their volatilities

Q3(a): Report the relative performance measures in a 5×3 summary table

	Alpha	Beta	Tracking Error	Information Ratio	Treynor Ratio
Minimum	-0.0002000000	0.5205000	0.1825000	-0.28830000	-0.03490000
Meu	0.0001074074	0.9375519	0.2465667	-0.01945185	0.04856667
Maximum	0.0008000000	1.4540000	0.3669000	0.40860000	0.17430000

Q3(b): Best & Worst Stocks

Best: NKE relative high Treynor Ratio with low Tracking Error

Worst: CSCO, the stock has the lowest negative A negative ratio Treynor Ratio, indicates that the investment has performed worse than a risk free instrument.

Q4(a): Plot the mean return of each asset against its beta.

Q4(b):Plot JPM, GS, and AXP

2 Back-Testing

Q1

[1] "SPY"

the range of in-sample is 501

the range of out-of-sample is 440

Q2

the 2-year cumulative return of portfolio 1 is 0.1175789 ## the 2-year cumulative return of portfolio 2 is 0.2184694 ## the 2-year cumulative return of portfolio 2 is 0.1173892

weight1_percentage <fctr></fctr>	weight2_percentage <fctr></fctr>	weight3_percentage <fctr></fctr>
2.45054041472494%	7.46419991674283%	3.7037037037037%
3.2369676844427%	5.42822130699952%	3.7037037037037%
3.71471609723677%	4.65673520289233%	3.7037037037037%
2.14613891430803%	18.7642997770272%	3.7037037037037%
1.86925594309663%	8.42023379619387%	3.7037037037037%
2.92617772514037%	7.80690503826973%	3.7037037037037%
3.52302976475353%	-1.62702566543796%	3.7037037037037%
4.13440264818881%	0.621470468173537%	3.7037037037037%
2.63489967206207%	-8.67533607200302%	3.7037037037037%
4.05769518692003%	4.66787082169104%	3.7037037037037%
1-10 of 27 rows		Previous 1 2 3 Next

Q3.2

portfolio <fctr></fctr>	beta <fctr></fctr>	alpha <fctr></fctr>	SR <fctr></fctr>
portfolio1	0.979822688501692	-0.0924436090781786	3.98967722299554
portfolio2	1.12420177904119	-0.0583139690860298	6.29792561726823
portfolio3	1.01756812460256	-0.0409413400844204	3.85197803484115
3 rows			

the 2-year cumulative return of portfolio 1 is 0.1175789 ## the 2-year cumulative return of portfolio 2 is 0.2184694 ## the 2-year cumulative return of portfolio 2 is 0.1173892

Q3.3

Portofolio 2 should be pick, since it has the largest cumulative return while the sharpe rate is big enough Since each of three portfolio fails to "beat the market", the EMH has been buttressed by this example 2

Another possible explanation is that since the Dow&Jones is constituted by large company, according to the 'the small company e ect' In the behaviour finance, the return of Dow&Jones fails to beat the overall stock market which includes some small company

3 Random Numbers and Monte Carlo Simulation

Q1. Game 2 Phase 2:

The maximum amount I am willing to pay is 0.059, with 10⁵ simulation times.

```
\[ \text{In} \]
\[ N = 10^5 \]
\( \section \text{seq1} <- \text{numeric}() \)
\( \text{for (n in 1:N) } \)
\( \text{c1 } <- \text{sample(1:6,6,TRUE)} \)
\( \text{c2 } <- \text{(max(c1)-min(c1))} < 3 \)
\( \section \text{seq1} <- \text{c(seq1,c2)} \)
\( \text{round(mean(seq1),4)} \)
\( \text{[1] 0.059} \)
```

Q2. Breaking Even:

The K value makes this game break-even is 0.2499388(is near 0.25), with 10⁵ simulation times.

```
seq3 <- numeric()
for (i in 1:10^5){
    seq2 <- numeric()
    while(sum(seq2)<2){
        seq2 <- c(seq2,sample(0:1,1))
    }
    time <- length(seq2)
        seq3 <- c(seq3,time)
}

100000/sum(seq3)</pre>

[1] 0.2499388
```

Q3. Pi

The idea to calculate pi value is based on the formula for calculating the area of circle: when the radius of A is 1, the area of circle A is pi; therefore, the probability that one point (a,b), a,b are range from -1 to 1, located in the circle A, is equal to pi value.

```
f <- function(n){
    seq4 <- numeric()
    a <- runif(n,-1,1)
    b <- runif(n,-1,1)
    distance <- sqrt(a^2+b^2)
    I <- distance1
    p <- 4*mean(I)

library(ggplot2)
    f=seq(0,2*pi,0.001)
    x=sin(f)
    y=cos(f)
    plot(x,y,type='l',xlim=c(-1,1),ylim=c(-1,1),asp=1,col="black",lwd = 4)
    par(new=TRUE)
    plot(a,b,xlim=c(-1,1),ylim=c(-1,1),asp=1,col="orange",lwd=1)
    return (p)
}
f(8000)</pre>
```

The pi value is 3.146 with 8000 simulation times.

This chat is circle A, whose radius is 1, and 8000 simulation plots.

Q4

(a)

```
$$ E[Y_k] = E[X^k] = \int_0^1 x^k dx = \int_0^1 x^k dx = \frac{x^{k+1}}{k+1} |_0^1 = \frac{1}{k+1} |_0^1 = \frac{1}{k+
```

(b)

Because E[Yk] and V[Yk] are finite, $k \neq 1/2$ and k > -1, and because V[Yk]>0, $k \neq 0$.

(c)

SE", "SV", "CE", "CV" stand for simulate mean, simulate variance, calculated mean and calculated variance respectively. Get the following table and chart:

	SE <dbl></dbl>	SV <dbl></dbl>	CE <dbl></dbl>	CV <dbl></dbl>	K_value <int></int>
-10	2.908000e+44	8.456424e+93	Inf	NaN	-10
-9	1.211319e+53	1.467294e+111	Inf	NaN	-9
-8	3.032499e+33	3.566222e+71	Inf	NaN	-8
-7	1.198433e+28	9.267226e+60	Inf	NaN	-7
-6	6.638596e+22	4.388001e+50	Inf	NaN	-6
-5	1.014769e+23	1.029644e+51	Inf	NaN	-5
-4	9.810555e+12	3.617821e+30	Inf	NaN	-4
-3	6.691123e+10	4.014237e+26	Inf	NaN	-3
-2	1.119744e+05	1.884359e+14	Inf	NaN	-2
-1	1.151884e+01	1.810231e+05	NaN	NaN	-1

Since when K is range from -10 to -1, the calculated mean and calculated variance is infinite or NaN value, the lines in the chart are irregular.

(d)

Based on the restrictions of K value in (b), K is larger than -1 and not equal to 0, I draw a new chart:

From the above chat we can see that p1(simulate mean value) and p3(calculated mean value) overlap, p3(simulate variance value) and p4(calculated variance value) overlap, which means simulated values are nearly equal to calculated values.

Bonus:

First Let's look at simple case, if the required head number is 1 instead of 2:

Assume that we need to use expected n times to finish the simple game: then according to the first roll result, it satisfies the equation:

$$nk=\frac{1}{2}*k+\frac{1}{2}(n+1)k$$

then, we have n = 2, which is the expected game times in simple the case.

Let's see the complex case when required head number is 2:

Again, assume that we need to use expected m times to finish the complex game: then according to the first roll result, if we success, we will enter the simple game, if we fails, we will return to the begin of complex game, which satisfies the equation:

$$mk = \frac{1}{2} * (1+2)k + \frac{1}{2} * (1+m)k$$

then, the expected value of m is 4: then because mk=1, k=1/4

Notice here, k is not equal to E[1/X], k = 1/E[X], for example, if we play 100000 times game, the expected roll time is 400000, to make this total game fair, the expected value of k should be 1/4. Making every game fair and calculating average is a wrong method.

4 Value at Risk and Stress Testing

Task 1

Portfolio 1 -- GMV portfolio; Portfolio 2 -- Sharpe-ratio portfolio; Portfolio 3 -- naive portfolio

We refer to PerformanceAnalytics package by (Peterson and Carl 2018) to visualize the performance of the three portfolios.

chart.CumReturns(R p, main = "Cumulative Return", legend.loc = "topleft")

Descriptive summary

	Portfolio_1	Portfolio_2	Portfolio_3
mean	0.1082536	0.2362662	0.1023947
std	0.1937506	0.2028444	0.2109120
SR	0.5587267	1.1647660	0.4854856

Question 1

To get started with the backtesting, we split the portfolio return into two periods in-sample (IN) and out-of-sample (OUT). Then estimate μ_i and σ_i using the IN to construct Portfolio 1, 2 and 3. After that, estimate the corresponding parameters from the OUT to demonstrate the sensitivity of each over time.

It appears that σ s exhibit a lower sensitivity than μ s, making the mean returns are more susceptible to model risk.

Take a look on how the portfolio strategy performs

Mean and Standard deviation for p=1,2,3 using the daily returns in the OUT period:

Portfolio_1 Portfolio_2 Portfolio_3
miu 0.0003058959 0.002083584 0.0002077179
sigma 0.0155675296 0.017153771 0.0173447471

Question 2
Simulated path of Geometric Brownian Motion

Portfolio 1 is a Global Minimum Variance portfolio which focuses on controlling the risk to the lowest, therefore which do have the lowest volatility but lack considerable rewards similar to portfolio 3 that simply equally distribute the funds. While Sharpe-ratio portfolio (p2) has a consideration on the risk-adjusted return of stocks allowing investors to have a bias on reward(highest mean) within undertaking a higher risk(highest variance).

Question 3

The expected value one year from now on is

Question 4

With 95% level of confidence, the Value-at-Risk is

Task 2

Referring to the SPY ETF as the markets, directly, we use the table.CAPM from the PerformanceAnalytics package to attain a number of statistics.

$$SPY <- get(getSymbols("SPY", from = "2017-01-01", to = "2020-09-30"))[, 6] \\ R_m <- na.omit(log(SPY / lag(SPY))) \\ names(R_m) <- "SPY" \\ table.CAPM(R_p_out, R_m)$$

VaR(0.05) for each portfolio is

5 Mean-Variance Efficient Frontier

Q1. Plot the MVEF

Q2. Highlight SR & GMV points

Q3. Highlight EF & the economic rationale of theta

If theta>1, it means that we will short the SR portfolio and long the low risk portfolio. In other words, I will sell the SR portfolio despite not having the SR portfolio to get the money, and use the money and the principle to buy the low risk portfolio.

Appendix

library(quantmod)	P10 <- MCD\$'MCD.Adjusted'	```{r}
library(lubridate)	P11 <- PG\$'PG.Adjusted'	R <- na.omit(log(Price/lag(Price)))
install.packages('PerformanceAnaly tics')	P12 <- WMT\$'WMT.Adjusted'	$m \leq - Return.annualized(R)$
install.packages('matrixStats')	P13 <- AXP\$'AXP.Adjusted'	$std \leftarrow colSds(R)$
library(matrixStats)	P14 <- DIS\$'DIS.Adjusted'	dt <- 1/252
library(PerformanceAnalytics)	P15 <- INTC\$'INTC.Adjusted'	sig <- (1/sqrt(dt))*std
##Part 1	P16 <- MMM\$'MMM.Adjusted'	***
v <-	P17 <- TRV\$'TRV.Adjusted'	## Q1(a): Daily return in annual terms & summary for each measure
c('AAPL','CSCO','HON',"KO","NK E",'WBA',"AMGN","CVX",	P18 <- BA\$'BA.Adjusted'	```{r}
	P19 <- GS\$'GS.Adjusted'	choose_years <- 1999:2020
"IBM","MCD",'PG','WMT',"AXP", "DIS","INTC","MMM",	P20 <- JNJ\$'JNJ.Adjusted'	R_sub <- R[year(R) %in%
	P21 <- MRK\$'MRK.Adjusted'	choose_years,]
"TRV","BA","GS","JNJ","MRK"," UNH","CAT",	P22 <- UNH\$'UNH.Adjusted'	R_sub <- R["1999-01-01/",]
'HD','JPM',"MSFT","VZ")	P23 <- CAT\$'CAT.Adjusted'	Mu_T <- 252*apply.yearly(R_sub,mean)
	P23 <- CAT\$'CAT.Adjusted' P24 <- HD\$'HD.Adjusted'	252*apply.yearly(R_sub,mean)
'HD','JPM',"MSFT","VZ") P <- get(getSymbols(v,from="1999-05-0 1", to="2020-09-30"))	•	252*apply.yearly(R_sub,mean) Sig_T <- cbind(sqrt(252)*apply.yearly(R_sub
P <- get(getSymbols(v,from="1999-05-0	P24 <- HD\$'HD.Adjusted'	252*apply.yearly(R_sub,mean) Sig_T <-
P <- get(getSymbols(v,from="1999-05-0 1", to="2020-09-30"))	P24 <- HD\$'HD.Adjusted' P25 <- JPM\$'JPM.Adjusted'	252*apply.yearly(R_sub,mean) Sig_T <- cbind(sqrt(252)*apply.yearly(R_sub [,1],sd), sqrt(252)*apply.yearly(R_sub[,2],sd), sqrt(252)*apply.yearly(R_sub[,3],sd),
P <- get(getSymbols(v,from="1999-05-0 1", to="2020-09-30")) P1 <- AAPL\$'AAPL.Adjusted'	P24 <- HD\$'HD.Adjusted' P25 <- JPM\$'JPM.Adjusted' P26 <- MSFT\$'MSFT.Adjusted'	252*apply.yearly(R_sub,mean) Sig_T <- cbind(sqrt(252)*apply.yearly(R_sub [,1],sd), sqrt(252)*apply.yearly(R_sub[,2],sd), sqrt(252)*apply.yearly(R_sub[,3],sd), sqrt(252)*apply.yearly(R_sub[,4],sd),
P <- get(getSymbols(v,from="1999-05-0 1", to="2020-09-30")) P1 <- AAPL\$'AAPL.Adjusted' P2 <- CSCO\$'CSCO.Adjusted'	P24 <- HD\$'HD.Adjusted' P25 <- JPM\$'JPM.Adjusted' P26 <- MSFT\$'MSFT.Adjusted' P27 <- VZ\$'VZ.Adjusted' Price <- cbind(P1,P2,P3,P4,P5,P6,P7,P8,	252*apply.yearly(R_sub,mean) Sig_T <- cbind(sqrt(252)*apply.yearly(R_sub [,1],sd), sqrt(252)*apply.yearly(R_sub[,2],sd), sqrt(252)*apply.yearly(R_sub[,3],sd), sqrt(252)*apply.yearly(R_sub[,4],sd), sqrt(252)*apply.yearly(R_sub[,5],sd),
P <- get(getSymbols(v,from="1999-05-0 1", to="2020-09-30")) P1 <- AAPL\$'AAPL.Adjusted' P2 <- CSCO\$'CSCO.Adjusted' P3 <- HON\$'HON.Adjusted'	P24 <- HD\$'HD.Adjusted' P25 <- JPM\$'JPM.Adjusted' P26 <- MSFT\$'MSFT.Adjusted' P27 <- VZ\$'VZ.Adjusted' Price <-	252*apply.yearly(R_sub,mean) Sig_T <- cbind(sqrt(252)*apply.yearly(R_sub [,1],sd), sqrt(252)*apply.yearly(R_sub[,2],sd), sqrt(252)*apply.yearly(R_sub[,3],sd), sqrt(252)*apply.yearly(R_sub[,4],sd), sqrt(252)*apply.yearly(R_sub[,5],sd), sqrt(252)*apply.yearly(R_sub[,6],sd),
P <- get(getSymbols(v,from="1999-05-0 1", to="2020-09-30")) P1 <- AAPL\$'AAPL.Adjusted' P2 <- CSCO\$'CSCO.Adjusted' P3 <- HON\$'HON.Adjusted' P4 <- KO\$'KO.Adjusted'	P24 <- HD\$'HD.Adjusted' P25 <- JPM\$'JPM.Adjusted' P26 <- MSFT\$'MSFT.Adjusted' P27 <- VZ\$'VZ.Adjusted' Price <- cbind(P1,P2,P3,P4,P5,P6,P7,P8,	252*apply.yearly(R_sub,mean) Sig_T <- cbind(sqrt(252)*apply.yearly(R_sub [,1],sd), sqrt(252)*apply.yearly(R_sub[,2],sd), sqrt(252)*apply.yearly(R_sub[,3],sd), sqrt(252)*apply.yearly(R_sub[,4],sd), sqrt(252)*apply.yearly(R_sub[,5],sd), sqrt(252)*apply.yearly(R_sub[,6],sd), sqrt(252)*apply.yearly(R_sub[,6],sd), sqrt(252)*apply.yearly(R_sub[,7],sd),
P <- get(getSymbols(v,from="1999-05-0 1", to="2020-09-30")) P1 <- AAPL\$'AAPL.Adjusted' P2 <- CSCO\$'CSCO.Adjusted' P3 <- HON\$'HON.Adjusted' P4 <- KO\$'KO.Adjusted' P5 <- NKE\$'NKE.Adjusted'	P24 <- HD\$'HD.Adjusted' P25 <- JPM\$'JPM.Adjusted' P26 <- MSFT\$'MSFT.Adjusted' P27 <- VZ\$'VZ.Adjusted' Price <- cbind(P1,P2,P3,P4,P5,P6,P7,P8, P9,P10,P11,P12,P13,P14,P15,	252*apply.yearly(R_sub,mean) Sig_T <- cbind(sqrt(252)*apply.yearly(R_sub [,1],sd), sqrt(252)*apply.yearly(R_sub[,2],sd), sqrt(252)*apply.yearly(R_sub[,3],sd), sqrt(252)*apply.yearly(R_sub[,4],sd), sqrt(252)*apply.yearly(R_sub[,5],sd), sqrt(252)*apply.yearly(R_sub[,6],sd), sqrt(252)*apply.yearly(R_sub[,7],sd), sqrt(252)*apply.yearly(R_sub[,7],sd), sqrt(252)*apply.yearly(R_sub[,8],sd),
P <- get(getSymbols(v,from="1999-05-0 1", to="2020-09-30")) P1 <- AAPL\$'AAPL.Adjusted' P2 <- CSCO\$'CSCO.Adjusted' P3 <- HON\$'HON.Adjusted' P4 <- KO\$'KO.Adjusted' P5 <- NKE\$'NKE.Adjusted' P6 <- WBA\$'WBA.Adjusted'	P24 <- HD\$'HD.Adjusted' P25 <- JPM\$'JPM.Adjusted' P26 <- MSFT\$'MSFT.Adjusted' P27 <- VZ\$'VZ.Adjusted' Price <- cbind(P1,P2,P3,P4,P5,P6,P7,P8, P9,P10,P11,P12,P13,P14,P15, P16,P17,P18,P19,P20,P21,P22,	252*apply.yearly(R_sub,mean) Sig_T <- cbind(sqrt(252)*apply.yearly(R_sub [,1],sd), sqrt(252)*apply.yearly(R_sub[,2],sd), sqrt(252)*apply.yearly(R_sub[,3],sd), sqrt(252)*apply.yearly(R_sub[,4],sd), sqrt(252)*apply.yearly(R_sub[,5],sd), sqrt(252)*apply.yearly(R_sub[,6],sd), sqrt(252)*apply.yearly(R_sub[,7],sd), sqrt(252)*apply.yearly(R_sub[,7],sd), sqrt(252)*apply.yearly(R_sub[,8],sd), sqrt(252)*apply.yearly(R_sub[,9],sd),
P <- get(getSymbols(v,from="1999-05-0 1", to="2020-09-30")) P1 <- AAPL\$'AAPL.Adjusted' P2 <- CSCO\$'CSCO.Adjusted' P3 <- HON\$'HON.Adjusted' P4 <- KO\$'KO.Adjusted' P5 <- NKE\$'NKE.Adjusted' P6 <- WBA\$'WBA.Adjusted' P7 <- AMGN\$'AMGN.Adjusted'	P24 <- HD\$'HD.Adjusted' P25 <- JPM\$'JPM.Adjusted' P26 <- MSFT\$'MSFT.Adjusted' P27 <- VZ\$'VZ.Adjusted' Price <- cbind(P1,P2,P3,P4,P5,P6,P7,P8, P9,P10,P11,P12,P13,P14,P15, P16,P17,P18,P19,P20,P21,P22, P23,P24,P25,P26,P27)	252*apply.yearly(R_sub,mean) Sig_T <- cbind(sqrt(252)*apply.yearly(R_sub [,1],sd), sqrt(252)*apply.yearly(R_sub[,2],sd), sqrt(252)*apply.yearly(R_sub[,3],sd), sqrt(252)*apply.yearly(R_sub[,4],sd), sqrt(252)*apply.yearly(R_sub[,5],sd), sqrt(252)*apply.yearly(R_sub[,6],sd), sqrt(252)*apply.yearly(R_sub[,7],sd), sqrt(252)*apply.yearly(R_sub[,7],sd), sqrt(252)*apply.yearly(R_sub[,8],sd), sqrt(252)*apply.yearly(R_sub[,8],sd),

d),	print('Summary Mu of total')	colnames(SSig_T)<-c('AAPL','CSC
sqrt(252)*apply.yearly(R_sub[,12],s d),	SMu_T	O','HON',"KO","NKE",'WBA',"AM GN","CVX",
sqrt(252)*apply.yearly(R_sub[,13],s d),	print('Summary Sig of total ')	
sqrt(252)*apply.yearly(R_sub[,14],s d),	SSig_T	"IBM","MCD",'PG','WMT',"AXP", "DIS","INTC","MMM",
sqrt(252)*apply.yearly(R_sub[,15],s d),	print('Summary SR of total')	
sqrt(252)*apply.yearly(R_sub[,16],s d),	SSR_T	"TRV","BA","GS","JNJ","MRK"," UNH","CAT",
sqrt(252)*apply.yearly(R_sub[,17],s d),	***	'HD','JPM',"MSFT","VZ")
sqrt(252)*apply.yearly(R_sub[,18],s d),	## Q1(b): Summary consists of a 3	text(m, SSig_T[2,],
sqrt(252)*apply.yearly(R_sub[,19],s d),	× 3 table.	colnames(SSig_T), cex=0.6, pos=4, col="blue")
sqrt(252)*apply.yearly(R_sub[,20],s d),	```{r}	***
sqrt(252)*apply.yearly(R_sub[,21],s d),	Performance1 <- data.frame(c(min(Mu_T),mean(Mu	## Merge the SPY daily returns
sqrt(252)*apply.yearly(R_sub[,22],s d),	_T),max(Mu_T)),	```{r}
sqrt(252)*apply.yearly(R_sub[,23],s d),	c(min(Sig_T),mean(Sig_T),max(Sig	v <- 'SPY'
sqrt(252)*apply.yearly(R_sub[,24],s d),	_T)),	P <-
sqrt(252)*apply.yearly(R_sub[,25],s d),	c(min(SR_T),mean(SR_T),max(SR	get(getSymbols(v,from="1999-05-0 1", to="2020-09-30"))
sqrt(252)*apply.yearly(R_sub[,26],s d),	_T)))	Ps <- P\$'SPY.Adjusted'
sqrt(252)*apply.yearly(R_sub[,27],s d))	colnames(Performance1)<-(c('Mu_ T','Sig_T','SR_T'))	Ps <- na.omit(Ps)
SR_T <- Mu_T/Sig_T	rownames(Performance1)<-(c('Min','Mean','Max'))	Rs < - na.omit(log(Ps/lag(Ps)))
SMu_T<-rbind(colMins(Mu_T),col Means(Mu_T),colMaxs(Mu_T))	Performance1	R_merge <- na.omit(merge(Rs,R,all = FALSE))
SSig_T<-rbind(colMins(Sig_T),col Means(Sig_T),colMaxs(Sig_T))	***	names(R_merge) <- c('SPY','AAPL','CSCO','HON',"KO
SSR_T<-rbind(colMins(SR_T),col	## Q2: Plot the asset mean returns against their volatilities	","NKE",'WBA',"AMGN","CVX",
Means(SR_T),colMaxs(SR_T))	```{r}	"IBM","MCD",'PG','WMT',"AXP",
row.names(SMu_T)<-c('Mins','Mea ns','Maxs')	SSig_T[2,]	"DIS","INTC","MMM",
row.names(SSig_T)<-c('Mins','Mea ns','Maxs')	plot(m,SSig_T[2,])	"TRV","BA","GS","JNJ","MRK"," UNH","CAT",
row.names(SSR_T)<-c('Mins','Mean	#olMeans(Sig_T)	'HD','JPM',"MSFT","VZ")
s','Maxs')		***

## Q3: compute the following measures for each stock:	min(CAPM[3,]),min(CAPM[4,]),mi n(CAPM[5,]))	fin_stock_b <- CAPM_Beta[c('JPM','GS','AXP')]
(a) Jensen's α	Maximum <- c(max(CAPM[1,]),max(CAPM[2,]),	plot(fin_stock_r,fin_stock_b)
(b) Market β	max(CAPM[3,]),max(CAPM[4,]),m ax(CAPM[5,]))	text(x=fin_stock_r, y=fin_stock_b, colnames(fin_stock_b), cex=0.6,
(c) Treynor Ratio (TR)	Meu<-rowMeans(CAPM)	pos=4, col="blue")
(d) Tracking error (ω)	, ,	***
	Performance2 <-	
(e) Information Ratio (IR)	rbind(Minimum,Meu,Maximum)	```{r}
```{r}	Performance2	CAPM_Beta['JPM to SPY']
CAPM TOTAL <-	***	m[,25]
table.CAPM(R merge[,2:28],R me		$\Pi[,23]$
rge[,1])	## Q4(a): Plot the mean return of each asset against its beta.	CAPM_Beta['GS to SPY']
CAPM Alpha <-	č	m[,19]
CAPM TOTAL['Alpha',]	```{r}	
		CAPM_Beta['AXP to SPY']
CAPM_Beta <-	plot(m,CAPM_Beta)	
CAPM_TOTAL['Beta',]		m[,13]
	colnames(CAPM_Beta)<-c('AAPL',	
CAPM_TE <-	'CSCO','HON',"KO","NKE",'WBA',	ax.text(-0.02168128, 1.454, 'JPM',
CAPM_TOTAL['Tracking Error',]	"AMGN","CVX",	fontsize=12, color = "r", style = "italic", weight = "light",
CAPM_IR <-		verticalalignment='center',
CAPM_TOTAL['Information	"IBM","MCD",'PG','WMT',"AXP",	horizontalalignment='right',
Ratio',]	"DIS","INTC","MMM",	rotation=90)
CAPM TR <-		ax.text(-0.01132219, 1.3692, 'GS',
CAPM_TOTAL['Treynor Ratio',]	"TRV","BA","GS","JNJ","MRK","	fontsize=12, color = "r", style =
Crit M_TO Trib[ Treyhor Radio,]	UNH","CAT",	"italic", weight = "light",
CAPM <- rbind(CAPM Alpha,	citi, citi,	verticalalignment='center',
CAPM Beta, CAPM TE,	'HD','JPM',"MSFT","VZ")	horizontalalignment='right',
CAPM_IR, CAPM_TR)	, , , , , ,	rotation=90)
_ / _ /	text(x=m, y=CAPM Beta,	,
***	colnames(CAPM_Beta), cex=0.6,	ax.text(-0.00789982, .3638, 'JPM',
	pos=4, col="blue")	fontsize=12, color = "r", style =
		"italic", weight = "light",
	***	verticalalignment='center',
## Q3(1): Report the relative		horizontalalignment='right',
performance measures in a $5 \times 3$ summary table	## Q4(b): Plot JPM, GS, and AXP	rotation=90)
	```{r}	***
```{r}		
	fin_stock_r <-	
Minimum <-	c(m[,25],m[,19],m[,13])	
c(min(CAPM[1,]),min(CAPM[2,]),		

```
2 Back-Testing ## Q1
 getSymbols("INTC",src="yahoo"
 "\"{R include=FALSE}
 from="2017-01-01",to="2020-
 AAPL Return =
 dailyReturn(AAPL[,4],type='log')
```{r include=FALSE} #preparation
library(quantmod) library(tictoc,
                                          getSymbols("JNJ",src="yahoo",fr
                                                                                    AMGN Return =
quietly = T) library(tidyverse,
                                          om="2017-01-01",to="2020-
                                                                                    dailyReturn(AMGN[,4],type='log ')
quietly = T) ```
                                          09-30")
                                          getSymbols("JPM",src="yahoo",f
                                                                                    AXP Return =
```{r include=FALSE}
 rom="2017-01-01",to="2020-
 dailyReturn(AXP[,4],type = 'log')
 09-30")
#import the data of stocks
 MRK Return =
 getSymbols("KO",src="yahoo",fr
 dailyReturn(MRK[,4],type = 'log')
 om="2017-01-01",to="2020-
tic()
 09-30")
getSymbols("AAPL",src="yahoo"
 dailyReturn(SPY[,4],type = 'log')
,from="2017-01-01",to="2020-
 getSymbols("MCD",src="yahoo"
09-30")
 from="2017-01-01",to="2020-
 MarketReturn =
getSymbols("AMGN",src="yaho
 09-30")
 as.data.frame(MarketReturn[-1,]) ```
o",from="2017-01-
 getSymbols("MMM",src="yahoo
01",to="2020-09-30")
 ",from="2017-01-
 "\" {r echo=FALSE}
getSymbols("AXP",src="yahoo",f
 01",to="2020-09-30")
 getSymbols("MRK",src="yahoo",
rom="2017-01-01".to="2020-
 df return =
 from="2017-01-01",to="2020-
09-30")
 as.data.frame(Return of stocks)
 09-30")
getSymbols("BA",src="yahoo",fr
om="2017-01-01",to="2020-
 getSymbols("MSFT",src="yahoo
 #delete first col
 ",from="2017-01-
getSymbols("CAT",src="yahoo",f
 01",to="2020-09-30")
 df = df return[-1,]
rom="2017-01-01",to="2020-
09-30")
 getSymbols("NKE",src="yahoo",f
 \#in sample start date = 1 end date
 rom="2017-01-01",to="2020-
getSymbols("CSCO",src="yahoo
 09-30")
 getSymbols("PG",src="yahoo",fr
",from="2017-01-
 #out of sample start date 1 = 502
01",to="2020-09-30")
 om="2017-01-01",to="2020-
 end date 1 = 941
getSymbols("CVX",src="yahoo",
 09-30")
from="2017-01-01",to="2020-
 getSymbols("TRV",src="yahoo",f
 df IN = df[start date: end date,]
 rom="2017-01-01",to="2020-
09-30")
 df OUT = df[start date1:
getSymbols("DIS",src="yahoo",fr
 09-30")
 end date1,]
om="2017-01-01",to="2020-
 getSymbols("UNH",src="yahoo"
 from="2017-01-01",to="2020-
09-30")

 getSymbols("VZ",src="yahoo",fr
getSymbols("GS",src="yahoo",fr
om="2017-01-01",to="2020-
 om="2017-01-01",to="2020-
 cat('the range of in-sample is',
09-30")
 09-30")
 nrow(df IN),'\n')
getSymbols("HD",src="yahoo",fr
om="2017-01-01",to="2020-
 getSymbols("WBA",src="yahoo"
 cat('the range of out-of-sample is',
 from="2017-01-01",to="2020-
09-30")
 nrow(df OUT),'\n')
getSymbols("HON",src="yahoo"
 #_____
 09-30")
 getSymbols("WMT",src="yahoo"
from="2017-01-01",to="2020-
 ,from="2017-01-01",to="2020-
09-30")
getSymbols("IBM",src="yahoo",f
 09-30")
rom="2017-01-01",to="2020-
 ## O2
09-30")
 toc() '''
```

```{r echo=FALSE}

| Market <- MarketReturn[start_date1 : end_date1,] | == | rom="2017-01-01",to="2020-
09-30") |
|---|--|---|
| _ /3 | = | , |
| sigma <- vector(length = 27) | | MarketReturn = |
| | MSFT Return | |
| for(i in 1:27){ | dailyReturn(MSFT[,4],type 'log') | == |
| $sigma[i] = sd(df_IN[,i])$ | == | = |
| } | NKE_Return dailyReturn(NKE[,4],type='log') | for(j in 1:27){ |
| #portfolio 1 | PG_Return dailyReturn(PG[,4],type
= 'log') TRV_Return = | denominator1 = denominator1 |
| weight1 <- vector(length = 27)
denominator1 <- 0 | dailyReturn(TRV[,4],type='log') UNH Return | $+ (1/(sigma[j])^2)$ } |
| BA Return | dailyReturn(UNH[,4],type = 'log') VZ_Return = | for(k in 1:27){ |
| dailyReturn(BA[,4],type='log') CAT_Return | dailyReturn(VZ[,4],type = 'log') | weight1[k] = |
| dailyReturn(CAT[,4],type='log') | WBA_Return = dailyReturn(WBA[,4],type = 'log') | (1/(sigma[k])^2)/denominator1 } |
| == | WMT_Return = dailyReturn(WMT[,4],type = 'log') | #porfolio 2 denominator2=0 |
| CSCO Return |) (D.D.D.L | weight2 <- vector(length = 27) for(j |
| dailyReturn(CSCO[,4],type | | in 1:27){ |
| | ```{r include=FALSE} | |
| 'log') | Return_of_stocks = | denominator2 = denominator2 + (sum(df_IN[,j])/2*(sigma[j])) |
| CVX_Return | merge(AAPL_Return,AMGN_Ret | |
| dailyReturn(CVX[,4],type='log') | urn,AXP_Return,BA_Return,CAT_ | } |
| DIS_Return = | Return, | |
| dailyReturn(DIS[,4],type='log') | | for (z in 1:27) { |
| GS_Return = | CSCO_Return,CVX_Return,DIS_R | |
| dailyReturn(GS[,4],type = 'log') | eturn,GS_Return,HD_Return, | weight2[z] = |
| HD_Return = | HON Determ IDM Determ INTO | ((10 DIF 1)/0*(: F 1))/1 |
| dailyReturn(HD[,4],type='log') | HON_Return,IBM_Return,INTC_
Return,JNJ_Return,JPM_Return, | (sum(df_IN[,z])/2*(sigma[z]))/de nominator2 |
| HON_Return = | VO Datum MCD Datum MMM | |
| dailyReturn(HON[,4],type='log') IBM_Return = | KO_Return,MCD_Return,MMM_
Return,MRK_Return,MSFT_Retur | } |
| dailyReturn(IBM[,4],type = 'log') | | #portfolio 3 |
| INTC_Return = | n, | #portiono 3 |
| dailyReturn(INTC[,4],type='log') | NKE_Return,PG_Return,TRV_Ret | weight3 = $vector(length = 27)$ |
| JNJ_Return = | urn,UNH_Return,VZ_Return, | weights vector(length 27) |
| dailyReturn(JNJ[,4],type = 'log') | . , | for $(g \text{ in } 1:27) \{ \text{ weight3}[g] = 1/27 \}$ |
| JPM Return = | WBA Return, WMT Return) | 1 (8 1 1) (11 8 1 1 1 1 |
| dailyReturn(JPM[,4],type='log') | | } |
| | *** | • |
| KO_Return = | | *** |
| dailyReturn(KO[,4],type='log') | ```{r echo=FALSE} | |
| MCD_Return = | | ```{r echo=FALSE} |
| dailyReturn(MCD[,4],type = 'log') | #market portfolio | |
| MMM_Return = | getSymbols("SPY",src="yahoo",f | #calculate return |
| dailyReturn(MMM[,4],type='log') | | |

| #p1 | paste(weight2*100, "%", sep=")
weight3 percentage <- | date_number = seq(1,
length(Market_cumulative), 1) |
|--|--|--|
| portfolio1_Return = vector(length = nrow(df_OUT)) | paste(weight3*100, "%", sep=") | date_number = as.vector(date_number) |
| for (x1 in (1:nrow(df_OUT))) { daily_return = | #table of weights (weights_table <-
as.data.frame(cbind(weight1_pe
rcentage,weight2_percentage,w
eight3_percentage))) | cumulative_return <-
cbind(date_number,Market_cu
mulative,portfolio1_cumulative, |
| sum(weight1*df_OUT[x1,]) portfolio1_Return[x1] = | *** | portfolio2_cumulative,portfolio3
_cumulative) |
| daily_return } | ## Q3.1 | <pre>cumulative_return = as.data.frame(cumulative_return)</pre> |
| #p2 | ```{r echo=FALSE} #plot | ggplot(cumulative_return, |
| portfolio2_Return = | Market_cumulative <- vector(length = 440) | aes(x=date_number))
+geom_line(aes(y=Market_cum |
| $vector(length = nrow(df\_OUT))$ | for (a1 in 1:440) (| ulative, color="market")) + |
| for (x2 in (1:nrow(df_OUT))) { daily_return = | for (a1 in 1:440) { Market_cumulative[a1] = | geom_line(aes(y=portfolio1_cu |
| (Low IC OLUTE 2.1) | <pre>sum(Market[1:a1]) }</pre> | mulative, color="p1")) + |
| sum(weight2*df_OUT[x2,]) portfolio2_Return[x2] = | #cumulative return of p1 portfolio1_cumulative <- | geom_line(aes(y=portfolio2_cu
mulative, color="p2")) + |
| daily_return } | vector(length = 440) | |
| #p3 | for (a2 in 1:440) { portfolio1_cumulative[a2] = | geom_line(aes(y=portfolio3_cu
mulative, color="p3")) |
| portfolio3_Return = vector(length = nrow(df_OUT)) | sum(portfolio1_Return[1:a2]) } | |
| for (x3 in (1:nrow(df_OUT))) { | #cumulative return of p2 | ```{r echo=FALSE} |
| daily_return = | portfolio2_cumulative <- | beta1 = |
| sum(weight3*df_OUT[x3,]) | vector(length = 440) | (cov(portfolio1_Return,Market))/
(sd(Market)^2) |
| portfolio3_Return[x3] = | for (a3 in 1:440) { | (Su(Market) 2) |
| | portfolio2_cumulative[a3] = | beta2 = |
| daily_return } | <pre>sum(portfolio2_Return[1:a3]) }</pre> | (cov(portfolio2_Return,Market))/
(sd(Market)^2) |
| #Return of each porfolio cat("the | | |
| 2-year cumulative return of | #cumulative return of p3 | beta3 = |
| portfolio 1 is", | portfolio3_cumulative <- | (cov(portfolio3_Return,Market))/ |
| sum(portfolio1_Return), "\n") cat("the 2-year cumulative return of | vector(length = 440) | (sd(Market)^2) |
| portfolio 2 is", | for (a4 in 1:440) { | *** |
| <pre>sum(portfolio2_Return), "\n") cat("the 2-year cumulative return of</pre> | portfolio3_cumulative[a4] = | ```{r echo=FALSE} |
| portfolio 2 is", | <pre>sum(portfolio3_Return[1:a4]) }</pre> | |
| <pre>sum(portfolio3_Return), "\n")</pre> | *** | alpha1 = |
| weight1_percentage <- | | sum(portfolio1_Return)/1.75-
beta1*sum(Market)/1.75 |
| paste(weight1*100, "%", sep=") | ```{r echo=FALSE} | octar summivial rety/1./3 |
| weight2_percentage <- | () | # "1.75" repersents 1.75 years |

| alpha2 = | Portofolio 2 should be pick, since it | "\"\{r \text{ echo=FALSE}\} f <- |
|--|---|---|
| sum(portfolio2_Return)/1.75-
beta2*sum(Market)/1.75 | has the largest cumulative return while the sharpe rate is big enough | function(n){ |
| | | seq4 <- numeric() |
| alpha3 = | Since each of three portfolio fails to | .00 |
| sum(portfolio2_Return)/1.75-
beta3*sum(Market)/1.75 | "beat the market", the EMH has
been buttressed by this example | a <- runif(n,-1,1) |
| betas · sum(warket)/1./3 | been buttlessed by this example | b <- runif(n,-1,1) |
| *** | Another possible explaination is | o · rumi(n, 1,1) |
| | that since the Dow&Jones is | distance $<$ - sqrt(a $^2+b^2$) I $<$ - |
| ```{r echo=FALSE} | constituted by large company, | distance<1 |
| | accroding to the 'the small company | |
| SR1 = | effect' | p <- 4*mean(I) |
| (sum(portfolio1_Return)/1.75)/(s | | |
| d(portfolio1_Return)) | In the behaviour finance, the return | library(ggplot2) f=seq(0,2*pi,0.001 |
| CD2 — | of Dow&Jones fails to beat the overall stock market which includes | $x=\sin(f)$ |
| SR2 = (sum(portfolio2_Return)/1.75)/(s | some small company | v=aaa(f) mlat(v v tyma=!!! v lim=a(|
| d(portfolio2_Return)) | some sman company | y=cos(f) plot(x,y,type='l',xlim=c(- |
| u(portiono2_return)) | # 3 Random Numbers and Monte | 1,1),ylim=c(- |
| SR3 = | Carlo Simulation | 1,1),asp=1,col="black",lwd =2) |
| (sum(portfolio3_Return)/1.75)/(s | | ,,,,, |
| d(portfolio3_Return)) | ## Q1 Game2 Pharse2 | par(new=TRUE) |
| portfolio <- c("portfolio1", | ```{r echo=FALSE} | plot(a,b,xlim=c(-1,1),ylim=c(- |
| "portfolio2", "portfolio3") | | 1,1),asp=1,col="orange",lwd=1) |
| | N=10^5 | |
| beta <- c(beta1, beta2, beta3) alpha | | return (p) } |
| <- c(alpha1, alpha2, alpha3) | seq1 <- numeric() for(nin1:N){ | ((1000) |
| SR <- c(SR1, SR2, SR3) ``` | I use 10 <sup>5</sup> as the simulate times in | f(1000) |
| 5K \- C(5K1, 5K2, 5K3) | this question. | 333 |
| ## Q3.2 | ins question. | |
| 2012 | ## Q2 Breaking even ```{r | In the chart, I plot a circle, whose |
| ```{r echo=FALSE} | echo=FALSE} seq3 <- numeric() | radius is 1, to stand for pi value. |
| (summary_table <- | for (i in 1:10^5){ | • |
| as.data.frame(cbind(portfolio, beta, | | ##Q4 |
| alpha, SR))) | seq2 <- numeric() | |
| " | while(sum(seq2)<2){ | ### (a) |
| #performance | gag2 < g(gag2 gag=1-(0:1.1))) | ሰ ው |
| cat("the 2-year cumulative return of | seq2 <- c(seq2, sample(0:1,1)) | \$\$ |
| portfolio 1 is", | time <- length(seq2) | $E[Y k] = E[X^k] = \inf 0^1 x^k dx$ |
| sum(portfolio1 Return), "\n") | ume - rengui(seq2) | $E[Y_k] = E[X^k] = \lim_{k \to \infty} 0^k X^k dX$
= $\frac{x^{k+1}}{k+1} = 0^1 =$ |
| cat("the 2-year cumulative return of | $seq3 <- c(seq3,time)$ } | mac(x (x-1)) (x-1) [0 1 - |
| portfolio 2 is", | | c1 <- sample(1:6,6,TRUE) c2 <- |
| sum(portfolio2_Return), "\n") | 100000/sum(seq3) | $(\max(c1)-\min(c1)) < 3 \text{ seq}1 < -$ |
| cat("the 2-year cumulative return of | | c(seq1,c2) |
| portfolio 2 is", | *** | |
| sum(portfolio3 Return), "\n") | | } |
| sum(portionos_Return), \(\mathred{n}\) | 100000 | |
| | 100000 is used as the simulate times | |
| sumportionos_keturn, | in this question. | round(mean(seq1),4) ``` |

| \$\$ | colnames(table) <- | w |
|---|--|---|
| | c("SE","SV","CE","CV") | |
| According to expression of the expected value of \$Y_k\$: | $table $K_value = c(-10:10)$ | When k <=-1, the calculated mean value and variance are infinate, I |
| | table | draw a new picture, which doesn't |
| \$\$ | | contain missing data. |
| V(V 1-1 - E(V 1-02) E(2(V 1-1 - | ggplot(table, aes(x=K_value)) + | ини(3 У |
| $V[Y_k] = E[Y_k^2]-E^2[Y_k] = E[X^{2k}] - E^2[X^k] =$ | geom_line(aes(y=SE, | ###(d) |
| $\frac{1}{2k+1}$ - | color="p1")) + | ```{r echo=FALSE} |
| $\frac{1}{(k+1)^2}k}$ | geom_line(aes(y=SV, | |
| >-1 | | table2 <- |
| | color="p2")) + | data.frame(t(rbind(sapply(c(1:10 |
| \$\$ | geom_line(aes(y=CE, |),Q),sapply($c(1:10)$,C))),row.nam es = $c(1:10)$) |
| ### (b) | color="p3"))+ geom_line(aes(y=CV, | (-11)) |
| (0) | Fe // Been | colnames(table2) <- |
| Because \$E[Y_k]\$ and \$V[Y_k]\$ | color="p4")) geom line(aes(y=CV, | c("SE","SV","CE","CV") |
| are finite, $k \neq - \frac{1}{2}$ | 1 // 5 = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | $table2\$K\_value = c(1:10)$ |
| and $k > -1$, and because | *** | / |
| \$V[Y k]>0\$, \$k \neq 0\$. | | table2 |
| | SE", "SV", "CE", "CV" stand for | |
| ### (c) | simulate mean, simulate variance, | ggplot(table2, aes(x=K_value)) + |
| | calculated mean and calculated | geom line(aes(y=SE, |
| ```{r echo=FALSE} Q <- function | variance respectively. | |
| (k){ | | color="p1")) + |
| | ```{r echo=FALSE} | geom_line(aes(y=SV, |
| $X < -runif(10^5,0,1)$ | | |
| | #remove 10 rows contain missing | color="p2")) + |
| Y <- X^k | data: | <pre>geom_line(aes(y=CE,</pre> |
| | | |
| result <- c(mean(Y),var(Y)) return | table1 <- | color="p3"))+ |
| (result) | data.frame(t(rbind(sapply(c(0:10 | |
| |),Q),sapply($c(0:10)$,C))),row.nam es | color="p4")) |
| } | = c(0:10)) | |
| | | *** |
| C <- function(k){ | colnames(table1) <- | |
| | c("SE","SV","CE","CV") | Under the condicition $k > -1 \& K$ |
| $M < -(1-0^{(k+1)})/(k+1)$ | $table1$K_value = c(0:10)$ | not eaual to 0 from (b), from the |
| | . 11.1 | above chat we can see that |
| $V < -(1-0^{(2*k+1)})/(2*k+1)$ | table1 | p1(simulate mean value) and |
| (/4.04.01.4)) (0.14)) 40 | | p3(calculated mean value) overlap, |
| $((1-0^{(k+1)})/(k+1))^2$ return | ggplot(table1, aes(x=K_value)) + | p3(simulate variance value) and |
| (c(M,V)) | geom_line(aes(y=SE, | p4(calculated variance value) |
| , | 1 11 1100 | overlap, which means simulated |
| } | color="p1")) + | values are nearly equal to calculated |
| 4-1-1- | geom_line(aes(y=SV, | values. |
| table <- | oolow-!! n2 !!)) | ## Bonus |
| data.frame(t(rbind(sapply(c(- | color="p2")) + | ## DOIIUS |
| 10:10),Q),sapply(c(- | geom_line(aes(y=CE, | First Let's look at simple asso if the |
| 10:10),C))),row.names = c(-10:10)) | color="p3"))+ geom_line(aes(y=CV, | First Let's look at simple case, if the required head number is 1 instead of 2: |
| | color="p4")) | - . |

Assume that we need to use expected n times to finish the simple game: then according to the first roll result, it satisfies the equation:

\$\$

```
nk = \frac{1}{2}*k + \frac{1}{2}(n+1)k
```

\$\$

then, we have n = 2, which is the expected game times in simple case.

Let's see the complex case when required head number is 2:

Again, assume that we need to use expected m times to finsh the complex game: then according to the first roll result, if we success, we will enter the simple game, if we fails, we will return to the begin of complex game, which satisfies the equation:

\$\$

```
mk = \frac{1}{2}*(1+2)k + \frac{1}{2}*(1+m)k
```

\$\$

then, the expected value of m is 4: then because mk=1 λ 0 k=14}\$.

Notice here, $k \neq E[1/X]$, k = 1/E[X], for example, if we play 100000 times game, the expected roll time is 400000, to make this total game fair, the expected value of k should be $farc{1}{4}$. Making every game fair and calculating average is a wrong method.

```
```{r include=FALSE}
library(lubridate)
library(PerformanceAnalytics)
```

```
stocks = c("AAPL", "CSCO", "HON", "KO", "NKE", "WBA",
```

```
"AMGN", "CVX", "IBM", "MCD",
"PG", "WMT", "AXP", "DIS",
"INTC", "MMM", "TRV", "BA",
"GS", "JNJ", "MRK", "UNH",
"CAT", "HD", "JPM", "MSFT",
"VZ"
)

stklist = lapply(stocks, function(x) {

try(get(getSymbols(x, from =
"2017-01-01", to = "2020-09- 30")),
silent = TRUE)
})
```

min.dates = sapply(stklist,

```
\begin{aligned} & \text{function}(x) \ \{ \\ & \text{as.character}(\text{min}(\text{date}(x))) \end{aligned}
```

})

keep.tics = date(min.dates) ==
names(table(min.dates))

```
stklist = stklist[keep.tics]
```

#compute return

```
P_adj = lapply(stklist, function(x){x[, 6]})
```

P = Reduce(merge, P adj)

 $R = \text{na.omit}(\log(P / \log(P)))$ 

```
M_r = apply(R, 2, mean) * 252
```

#volatility

```
S = apply(R, 2, sd) * sqrt(252)
```

df = data.frame(M_r, S) #df\$top=(df\$M>quantile(df\$M_ r,0.75))*1

#downside risk

```
df$VaR = -apply(R, 2, function(x) {
```

```
quantile(x, 0.05) })
```

#sharp-ratio

df\$SR = with(df, M r/S) ```

# 4 Value at Risk and Stress Testing

## Task 1

### 1. Calibrate the price path for each portfolio

Before implementing, we take a brief review on the three portfolio.

The weight allocated to asset i in Portfolio 1 is given by

\$\$ \omega_i^\sigma=\frac {\frac {1} {\sigma_j^2}} {\sum_{j=1}^d\frac {1} {\sigma_j^2}}

\$\$

where \$\sigma_i\$ is the volatility of asset i \$\forall\$i = 1,...,27 and \$\sum_{i=1}^{27}\omega_i^\sigma=1\$. On the other hand, the weight allocated to asset i in

$$\begin{split} & Portfolio\ 2\ is \\ & \$ \omega_i^{SR} = \frac{SR_i}{SR_i} \ \\ & um_{j=1}^dSR_j^{SR_i} \ \end{split}$$

where \$SR_i\$ denotes the SR of stock i \$\forall\$i=1,...,27 and \$\sum_{i=1}^{27}\omega_i^{SR} = 1\$.

Portfolio 3 allocates equal weights to each asset such that \$\$\omega_i^N=\frac{1}{27}\$\$ ```{r echo=FALSE}

#portfolio return W1=(1/(df\$S^2))/sum(1/ (df\$S ^ 2))

W2 = df\$SR / sum(df\$SR)W3=W2/W2*1/27

names(W1) <- names(W2) <- names(W3) <- names(R)

```
R p1 <- as.matrix(R) %*% W1
 sum.i <- apply(R p, 2, my.sum)
 plot(M out \sim M in,
R p2 <- as.matrix(R) \%*\% W2
 rownames(sum.i) <- c("mean",
R p3 <- as.matrix(R) \%*\% W3
 "std", "SR")
 ylab = "Out",
#reformat back to xts and merge
 sum.i
 xlab = "In",
together
 main = "Mean Returns")
R p1 <-
as.xts(data.frame(Portfolio 1 =
 To get started with the backtesting,
 abline(a=0,b=1,lty= "dashed")
R p1), dateFormat = "Date") R p2
 we split the sample into two periods
<- as.xts(data.frame(Portfolio 2 =
 in-sample (IN) and out-of-sample
 plot(S out \sim S in, ylab = "Out",
R p2), dateFormat = "Date") R p3
 (OUT).
<- as.xts(data.frame(Portfolio 3 =
 xlab = "In",
R p3), dateFormat = "Date")
 "\"{r echo=FALSE} # backtesting
 main = "Volatility")
R_p \leftarrow merge(R_p1, R_p2, R_p3)
 abline(a=0,b=1,lty= "dashed")
 #separate
 in index <-1:floor(0.5 * nrow(R))
We refer to PerformanceAnalytics
 R in \leq- R[in index,]
package by (Peterson and Carl
 It appears that σs exhibit a
2018) to visualize the performance
 R \text{ out } < -R[(\max(\text{in index}) +
 lower sensitivity than \mu\s,
of the three portfolio.
 1):nrow(R),]
 making the mean returns are more
 susceptible to model risk. ```{r
"\frecho=FALSE}
 tail(R in,2)
 echo=FALSE} print(mean((M in -
chart.CumReturns(R p, main =
 M out) ^ 2)) print(mean((S in -
"Cumulative Return", legend.loc =
 S out) ^ 2)) ```
 head(R out,2)
"topleft")
 Take a look on how the portfolio
...
 strategy performs on OUT
 Then estimate μi and
```{r echo=FALSE}
                                             $\sigma i$ using the IN to construct
                                                                                          ```{r echo=FALSE}
chart.Drawdown(R p, main =
 Portfolio 1, 2 and 3. After that,
 estimate the corresponding the
 port ret f <- function(W1, W2,
"Drawdown")
 parameters from the OUT to
 W3){
 demonstrate the sensitivity of each
 over time. ```{r echo=FALSE}
 R p1 <- as.matrix(R out) \%*\% W1
Descriptive summary
 R p2 <- as.matrix(R_out) %*% W2
 #compute M and S using the in-
```{r echo=FALSE} my.sum =
                                             sample
function(x)
                                                                                          R p3 <- as.matrix(R_out) %*% W3
                                             M in <- apply(R in, 2, mean) * 250
Mean = mean(x)
                                                                                          (1/(S in^2))/sum(1/(S in^2)) W2 < -
                                             S in \leftarrow apply(R in, 2, sd) *
                                                                                          SR in/sum(SR in)
                                                                                          W3<-W2/W2*1/27 names(W1) <-
Std = sd(x)
                                             sqrt(250)
                                                                                          names(W2) \le names(W3) \le -
SR = sqrt(252) * Mean / Std M <
                                             #compute M and S using the
                                                                                          names(R)
rbind(Mean * 252, Std
                                             out-sample
                                                                                          R p in \leq- port ret f(W1, W2, W3)
* sqrt(252), SR) return(M)
                                             M out <- apply(R out, 2, mean) *
                                             250
                                                                                          chart.CumReturns(R p in, main =
                                                                                          "Realistic Case", legend.loc =
                                             S out \leq- apply(R out, 2, sd) *
                                                                                          "topleft")
# run over each column
                                             sqrt(250)
```

For hypothesis(OUT)	R_t <- rnorm(N, T_end * (mu - 0.5	Simulated path of Geometric
	* sig ^ 2), sig * sqrt(T_end))	Brownian Motion
```{r echo=FALSE}		
#hypothesis	R_p1 as.xts(data.frame(Portfolio_1 R_p1), dateFormat = "Date")	```{r echo=FALSE}
		plot(sim1, type = "l")
SR_out <- M_out / S_out	<- =	
W1<-(1/(S_out^2))/sum(1 / (S_out		lines(sim2, col = 2, lty = 2)
^2))	R_p2 as.xts(data.frame(Portfolio_2 = R_p2), dateFormat = "Date")	lines(sim3, col = 3, lty = 3) $\cdots$
W2 <- SR_out / sum(SR_out)		 br>
W3<-W2/W2*1/27 names(W1) <-	R_p3 <-	
$names(W2) \le names(W3) \le -$		Distrbution plot '``{r
names(R) R_p_out <-	as.xts(data.frame(Portfolio_3	echo=FALSE} boxplot(
port_ret_f(W1, W2, W3)	R_p3), dateFormat = "Date")	
		sim1,
chart.CumReturns(R_p_out, main =	=	
"Hypothetical Case", legend.loc =		sim2,
"topleft")	$R_p \leftarrow merge(R_p1, R_p2, R_p3, all$	
***	= F)	sim3,
***	(7)	
	return(R_p) }	main = "distribution plot", at = $c(1,$
Mean and Standard deviation for	***	2, 3),
p=1,2,3 using the daily returns in		(1) (0.1) (1) (1) (0.1)
the OUT period:	E I' (D)	names = c("portfolio 1", "portfolio
······································	For reality(IN)	2", "portfolio 3"),
```{r echo=FALSE}	''' (n anha—EALCE)	221 - 2(2, 4, 6)
rbind(miu = apply(R_p_out, 2,	```{r echo=FALSE}	col = c(2, 4, 6))
mean),sigma = apply(R_p_out, 2,	#reality	222
sd))	#Ieamy	
54))	SR in <- M in/S in	 br>
***	SK_III < W_III/B_III	V012
	W1 <-	Portfolio 1 is a Global
 br>		
	<-	Minimum Variance portfolio which
### 2. Insights		focus on controling the risk to the
	$S_t < -S * exp(R_t)$	lowest, therefore which do have the
```{r echo=FALSE}		lowest volatility but lack
	return(S_t) }	considerable rewards similar to
#GBM		portfolio 3 that simply equaly
	$sim1 \le gbm_path(N, m[1], s[1], 1,$	distribute the funds. While
m = as.numeric(sum.i[1,])	S)	Sharp-ratio portfolio (p2) has a
		consideration on the risk- adjusted
s = as.numeric(sum.i[2,]) N=1000	$sim2 \le gbm_path(N, m[2], s[2], 1,$	return of stocks allowing investers
	S)	to have a bias on reward(highest
	3)	
S=100	,	mean) within undertaking a higher
	sim3 <- gbm_path(N, m[3], s[3], 1,	
$S=100$ $T_{end} = 252 / 252$	,	mean) within undertaking a higher risk(highest variance).
T_end = 252 / 252	sim3 <- gbm_path(N, m[3], s[3], 1, S)	mean) within undertaking a higher
T_end = 252 / 252 gbm_path <- function(N, mu, sig,	sim3 <- gbm_path(N, m[3], s[3], 1,	mean) within undertaking a higher risk(highest variance).
T_end = 252 / 252	sim3 <- gbm_path(N, m[3], s[3], 1, S)	mean) within undertaking a higher risk(highest variance).  #### 3. Expected value of each
T_end = 252 / 252 gbm_path <- function(N, mu, sig,	sim3 <- gbm_path(N, m[3], s[3], 1, S)	mean) within undertaking a higher risk(highest variance).

expected value one year from now on is	Referring to the SPY ETF as the markets, directly, we use the table.CAPM from the	VaRr = cbind(p1 = VaR11, p2 = VaR22, p3 = VaR33)
```{r echo=FALSE}	PerformanceAnalytics package to attain a number of statistics. ```{r	VaRr
#expected value	echo=FALSE}	***
exp = cbind(p1 = sim1[length(sim1)],	SPY <-	# 5 Mean-Variance Efficient Frontier
p2 = sim2[length(sim2)],	get(getSymbols("SPY", from = "2017-01-01", to = "2020-09-30"))[, 6]	## Get data
p3 = sim3[length(sim3)]) exp =		```{r include=FALSE}
data.frame(exp, row.names =	R_m <- na.omit(log(SPY /	library(PerformanceAnalytics)
"expected value") exp	lag(SPY)))	library(quantmod)
***	$names(R_m) <- "SPY"$	stocklist <- c(
 	table.CAPM(R_p_out, R_m) table.Stats(R_p_out)	"AAPL","CSCO","HON","KO","N K E","WBA",
### 4. Value at risk		
	***	"AMGN","CVX","IBM","MCD","P
With 95% level of confidence, the		G","WMT",
Value-at-Risk is	 br>	"AXP","DIS","INTC","MMM","TR
```{r echo=FALSE}	VaR(0.05) for each portfolio is ```{r echo=FALSE}	V ",
#VaR	sig $m = apply(R p, 2, sd)$	"BA","GS","JNJ","MRK","UNH",
VaR1 <- mean(sim1) -	5_ FF ( _F) ( = F)	"CAT","HD","JPM","MSFT","VZ"
quantile(sim1, 0.05)	sig = apply(R_p_out, 2, sd) + data.frame(table.CAPM(R p out,	)
VaR2 <- mean(sim2) -	R m))["Beta", ]*sig m * 0.1 sim11	i=1 repeat{
quantile(sim2, 0.05)	= gbm_path(N, m[1],	
VaR3 <- mean(sim3) -	as.numeric(sig[1]), 1, S)	data = getSymbols(stocklist[i], from = "1999-5-1",
quantile(sim3, 0.05) names(VaR1) =	sim22 = gbm path(N, m[2],	1,7,7, 5, 1,
names(VaR2) = names(VaR3) = "VaR"	as.numeric(sig[2]), 1, S)	to = "2020-9-30") i=i+1
vaix	sim33 = gbm path(N, m[3],	if $(i == 28)$ { break
VaR = cbind(p1 = VaR1, p2 =	as.numeric(sig[3]), 1, S)	10 (0 20) (010000
VaR2, p3 = VaR3)		}}
	VaR11 <- mean(sim11) -	, ,
VaR	quantile(sim11, 0.05)	m = merge(dailyReturn(AAPL), dailyReturn(AMGN),
#rbind(exp, VaR)	VaR22 <- mean(sim22) -	2
	quantile(sim22, 0.05)	dailyReturn(AXP),
***		dailyReturn(BA),
	VaR33 <- mean(sim33) -	dailyReturn(CAT),
 br>	quantile(sim33, 0.05)	dailyReturn(CSCO),
	names(VaR11)=names(VaR22)=	dailyReturn(CVX),
## Task 2	names(VaR33)="VaR"	dailyReturn(DIS), dailyReturn(GS), dailyReturn(HD), dailyReturn(HON),

```
dailyReturn(IBM),
 ret <- Return.annualized(m) vol <-
 plot(edge, m range,
dailyReturn(INTC),
 StdDev.annualized(m) cov <-
 type='l',x \lim = c(0,0.7), y \lim
dailyReturn(JNJ),
 cov(m)*252 #sigma cov reverse <-
 =c(0,0.8), xlab='vol', vlab='ret') ```
dailyReturn(JPM),
 solve(cov)
 ## 2. Highlight SR & GMV points
dailyReturn(KO),
dailyReturn(MCD),
 optimal solution <- function(Sigma,
 "\" {r echo=FALSE}
dailyReturn(MMM),
 r, rho){
dailyReturn(MRK),
 plot(vol,ret, xlim=c(0,0.7), ylim
dailyReturn(MSFT),
 I \le matrix(data = 1, nrow = 27, ncol
 =c(0,0.8)
dailyReturn(NKE),
 = 1)
dailyReturn(PG),
 par(new=T)
dailyReturn(TRV),
 a = r \% * \% solve(Sigma) \% * \% t(r) b
dailyReturn(UNH),
 = t(I) \%*\% solve(Sigma) \%*\% t(r)
 plot(edge, m range,
dailyReturn(VZ),
 c = r \% *\% solve(Sigma) \% *\% I
 type='l',x \lim = c(0,0.7), y \lim
dailyReturn(WBA),
 =c(0,0.8), xlab='vol', vlab='ret'
dailyReturn(WMT))
 d = t(I) \%*\% solve(Sigma) \%*\% I
 t = which.max(m range/edge)
 ma = matrix(data = c(c,a,d,b),
 par(new=T)
m <- setNames(m,
 nrow=2,byrow=T)
 plot(edge[t],m range[t],xlim=c(0
c("AAPL","AMGN","AXP","BA","
 0.7, ylim =c(0,0.8), col='red',
C AT", "CSCO",
 xlab='vol',ylab='ret')
 lamb = solve(ma) \%*\% c(rho,1)
"CVX","DIS","GS","HD","HON","
 lambda1 = lamb[1] lambda2 =
 y = which.min(edge) par(new=T)
IBM","INTC",
 lamb[2]
 plot(edge[y],m range[y],xlim=c(
 0,0.7), ylim =c(0,0.8), col='blue',
"JNJ","JPM","KO","MCD","MMM
 xlab='vol',ylab='ret', main
 weights = lambda1*solve(Sigma)
","MRK","MSFT",
 ='efficient frontier')
 %*% I + lambda2*solve(Sigma)
 %*%t(r)
 ...
"NKE","PG","TRV","UNH","VZ","
WBA","WMT")
 min sigma2 = t(weights) \%*\%
 Sigma %*% weights
 ## 3.
)
 ### (a) Highlight the frontier ``` {r
 return(list(weights, min sigma2))
m <- na.omit(m)
 echo=FALSE}
 }
 plot(vol,ret, xlim=c(0,0.7), ylim
 ## plot MVEF
 =c(0,0.8)
1. Plot the MVEF
 m range = seq(0,0.7,0.001) edge =
 par(new=T)
} ```{r echo=FALSE,
 rep(0,length(m range)) i=1
 plot(edge, m range,
 for (mu in m range) {
 type='l',xlim=c(0,0.7), ylim
message=FALSE,
warning=FALSE}
 =c(0,0.8), xlab='vol', ylab='ret')
 edge[i] =
I \le matrix(data = 1, nrow = 27, ncol
 sqrt(optimal solution(cov,ret,mu
 t = which.max(m range/edge)
= 1)
)[[2]])
 par(new=T)
 plot(edge[t],m range[t],xlim=c(0
I trans <- matrix(data = 1 ,nrow =
 i = i + 1
 0.7, ylim =c(0,0.8), col='red',
1, ncol = 27
 xlab='vol',ylab='ret')
 plot(vol,ret, xlim=c(0,0.7), ylim
I1 \le matrix(data = 1, nrow = 27,
 y = which.min(edge) par(new=T)
 =c(0,0.8)
ncol = 27)
 par(new=T)
 plot(edge[y],m range[y],xlim=c(
 0,0.7), ylim =c(0,0.8), col='blue',
```

```
xlab='vol',ylab='ret', main
='efficient frontier')
w0 =
optimal_solution(cov,ret,m_rang
e[y])[[1]]
w_SR =
optimal_solution(cov,ret,m_rang
e[t])[[1]]
vol1 = vector()
ret1= vector()
for (theta in seq(0,1,0.01)){
```

```
w = w0 * theta + w_SR*(1-theta)
vol1 = c(vol1, sqrt(t(w) %*% cov
%*% w))
ret1 = c(ret1, sum(w*t(ret))) }
par(new=T)
plot(vol1, ret1,
type='l', xlim=c(0,0.7), ylim
=c(0,0.8),
xlab='vol', ylab='ret', col='red')
...
```

#### ### (b) Economic rationale

If theta>1, it means that we will short the SR portfolio and long the low risk portfolio. In other words, I will sell the SR portfolio despite not having the SR portfolio to get the money, and use the money and the principle to buy the low risk portfolio.