B1B02FY2 a B3B02FY2 varianta 415

Otázka 1 (2 body)

Určete molární tepelnou kapacitu materiálu tělesa s látkovým množstvím n=1 mol, které přijalo teplo 100 J a jeho teplota se tím zvýšila o 4 K.

Otázka 2 (2 body)

Ideální plyn vykonal za stálé teploty práci 10 J. Určete teplo, které plyn přijal. Vysvětlete všechny použité symboly.

Otázka 3 (1 bod)

Napište vztah pro ekvipartiční teorém. Vysvětlete všechny použité symboly.

Otázka 4 (2 body)

Určete vnitřní energii pěti molů kyslíku O_2 při teplotě 400 K,

Otázka 5 (2 body)

Soustavě o konstantní teplotě 100 K bylo dodáno teplo 600 J. Určete změnu entropie soustavy.

Otázka 6 (1 bod)

Napište vztah pro x-ovou složku bezčasové Schrödingerovy rovnice. Vysvětlete všechny použité symboly.

Otázka 7 (1 bod)

Napište Einsteinův fotoelektrický zákon (slovně co popisuje, vzorec, význam všech symbolů ve vzorci)

Otázka 8 (2 body)

Anténa k výkonem P = 1 kW vysílá vlny na frekvenci f = 8 MHz. Kolik fotonů vyšle za jednu sekundu?

Otázka 9 (2 body)

Výpočtem rozhodněte, jestli je vlnová funkce $\psi(x) = \frac{\sqrt{21}}{7}(x+1)$ normovaná na intervalu $\langle 0; 1 \rangle$.

Otázka 10 (2 body)

Určete De-Broghlieho vlnovou délku elektronu o hybnosti $p=2,65\cdot 10^{-22}~{\rm kg\cdot m\cdot s^{-1}}.$

Příklad 1 (3 body)

Vypočítejte změnu entropie při ochlazení vzduchu o hmotnosti m=5 g z teploty $t_1=50^o$ C na $t_2=0^o$ C při stálém objemu, molární hmotnost vzduchu je $M_{vz}=28,5$ g · mol $^{-1}$, univerzální plynová konstanta je rovna R=8,3 J · mol $^{-1}$ · K $^{-1}$, $C_v=\frac{5}{2}R$.

Konstanty

Wienova konstanta je $b=2,898\cdot 10^{-3}~{\rm m\cdot K}$, rychlost světla ve vakuu je $c=3\cdot 10^8~{\rm m\cdot s^{-1}}$, Planckova konstanta je $h=6,62607\cdot 10^{-34}~{\rm J\cdot s}$, Boltzmannova konstanta je $k=1,38\cdot 10^{-23}~{\rm J\cdot K^{-1}}$, univerzální plynová konstanta je rovna $R=8,3~{\rm J\cdot mol^{-1}\cdot K^{-1}}$, Stefan-Boltzmanova konstanta je rovna $\sigma=5,67\cdot 10^{-8}~{\rm W\cdot m^{-2}\cdot K^{-4}}$

celkem bodů: 20