# Heart Matters: exploring the science behind cardiovascular health

By: Shreya Jayakumar

### **Outline**

- Introduction
- Research Questions
- Methodology (EDA & Hypothesis Tests)
- Results
- Conclusion

### Introduction

- Heart disease is an umbrella term for various cardiovascular diseases
- Many factors influence occurrence of heart disease
- We analyzed a heart disease dataset with 303 rows, 14 columns to answer
- 9 Categorical and 5 Numerical Variables

|   | age | sex | chest_pain | resting_bp | cholesterol | fasting_blood_sugar | rest_ecg | thalachh | exng | oldpeak | slope | num_major_vessels | thalassem: |
|---|-----|-----|------------|------------|-------------|---------------------|----------|----------|------|---------|-------|-------------------|------------|
| 0 | 63  | 1   | 3          | 145        | 233         | 1                   | 0        | 150      | 0    | 2.3     | 0     | 0                 |            |
| 1 | 37  | 1   | 2          | 130        | 250         | 0                   | 1        | 187      | 0    | 3.5     | 0     | 0                 |            |
| 2 | 41  | 0   | 1          | 130        | 204         | 0                   | 0        | 172      | 0    | 1.4     | 2     | 0                 |            |
| 3 | 56  | 1   | 1          | 120        | 236         | 0                   | 1        | 178      | 0    | 0.8     | 2     | 0                 | 1          |
| 4 | 57  | 0   | 0          | 120        | 354         | 0                   | 1        | 163      | 1    | 0.6     | 2     | 0                 |            |
|   |     |     |            |            |             |                     |          |          |      |         |       |                   |            |

## What are we trying to solve?

We are trying to see whether the following variables in the data set influence the likelihood of having heart disease

#### Variables

- Age
- Sex
- Chest\_pain
- resting\_bp
- cholesterol
- fasting\_blood\_sugar
- rest\_ecg
- Thalach
- exang
- oldpeak
- slope
- Thalassemia
- heart\_disease

# **Exploratory Data Analysis**

- EDA performed to generate hypothesis
- Looked at null values, summary statistics, unique values
- Univariate and bivariate distributions using matplotlib and seaborn

|       | age        | resting_bp | cholesterol | thalachh   | oldpeak    |
|-------|------------|------------|-------------|------------|------------|
| count | 303.000000 | 303.000000 | 303.000000  | 303.000000 | 303.000000 |
| mean  | 54.366337  | 131.623762 | 246.264026  | 149.646865 | 1.039604   |
| std   | 9.082101   | 17.538143  | 51.830751   | 22.905161  | 1.161075   |
| min   | 29.000000  | 94.000000  | 126.000000  | 71.000000  | 0.000000   |
| 25%   | 47.500000  | 120.000000 | 211.000000  | 133.500000 | 0.000000   |
| 50%   | 55.000000  | 130.000000 | 240.000000  | 153.000000 | 0.800000   |
| 75%   | 61.000000  | 140.000000 | 274.500000  | 166.000000 | 1.600000   |
| max   | 77.000000  | 200.000000 | 564.000000  | 202.000000 | 6.200000   |



**Pairplot** 

# **Histograms**







# Hypothesis 1: Is there a relationship between the average Cholesterol level and heart disease?

- Used One-Way ANOVA
- Unequal sample size
- Used scipy, defined functions
- F-statistic = 2.2029, p-value = 0.13879
- Fail to reject the null hypothesis.
- Insufficient evidence to suggest that there is a significant difference between the average cholesterol levels of people with and without heart disease.

#### Distribution of People with and without Heart Disease based on Cholesterol



# Hypothesis 2: Is there a relationship between maximum heart rate and heart disease?

- Used Welch Independent T Test
- Data Visualization- graph
- P-Value: 5e-14
- T-Statistic: -7.95
- Since p-value is very small and < 0.05, we can reject the null hypothesis of Welch's t-test.
- Therefore, we can conclude that there is sufficient evidence to say that that having or not having heart disease lead to different mean maximum heart rate

Distribution of People with and without heart disease based on maximum heart rate



From the graph we can see that data is approximately normally distributed and that each subject belongs to one group. This means that a person can or can't have heart disease based on their maximum heart rate

**Hypothesis 3: Are age and cholesterol** Relationship of Cholestrol and age

level related?

- Used **Pearson Correlation**
- Data Visualization- scatterplot and correlation graph

- Pearson Coefficient = 0.214, P-value = 0.0001786
- Weakly pos relationship
- p value 0.0001786 < a = 0.05
- pearson coefficient is statistically significant gives us strong evidence to reject the null





Pearson correlation coeffient between x and y, r = 0.214

### **Data Visualization**

You can see no useful information about the relationship between the two variables is observable



# Hypothesis 4: Can we predict presence or absence of heart disease based on Chest Pain?

- Cannot perform Correlation
- Chest Pain: 0=typical angina, 1=atypical angina, 2=non-anginal pain, 3= asymptomatic
- Used **Logistic Regression**
- Used sklearn to train, test. Sklearn.metrics accuracy\_score, statsmodels.api
- Chest pain coeff =0.984
   P-value = 1.45e-12
   Accuracy of model= 83.6%
- Chest pain is a significant predictor of heart disease in your logistic regression model.



### **Result Summary**

| Sr.No. | Hypothesis Question                                                                                       | Statistical<br>Test            | Result                                                                                                                                                      |
|--------|-----------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.     | Is there a relationship between average cholesterol level and the presence/absence of heart disease?      | One-Way<br>ANOVA               | F-statistic = 2.20298 , P-value = 0.13879 no significant difference in the mean cholesterol levels between individuals with heart disease and those without |
| 2.     | Is there a relationship between maximum heart rate and heart disease?                                     | Welch<br>Independent<br>T Test | T-Statistic: -7.95 ,P-Value: 5e-14 No significant difference between the average cholesterol levels and having or not having HD                             |
| 3.     | Are age and cholesterol level related?                                                                    | Pearson<br>Correlation         | Pearson Coefficient = 0.214 ,P-value = 0.0001786 Weakly positive relationship                                                                               |
| 4.     | Is there a relationship between different kinds of chest pain and the likelihood of having heart disease? | Logistic<br>Regression         | Chest pain coeff =0.984 ,P-value = 1.45e-12<br>Accuracy of model= 83.6%                                                                                     |
|        |                                                                                                           |                                | chest pain is a significant predictor of heart disease                                                                                                      |

### **Conclusions**

#### Insights and/or decisions you draw from the data analyses

From all the data we analyze through our hypotheses, we can conclude.

- <u>each variable is independent and of no correlation to one another</u>

When looking at the results from each of our tests, even though some had very little correlation, the majority of the data set is completely independent.

For example, when looking at Hypothesis 1, the age did not really affect whether a person has high cholesterol or not, as the data was scattered all over the place. As a whole, our data analysis shows a stable pattern of independence across the variables, with only weak correlations seen in certain tests.

### Future directions and/or areas that can be improved

- Using a bigger dataset on a larger scare
- Using different hypothesis tests to with different CI for better statistical analysis
- Validate our observations for predictions to improve patient outcomes

# Thank You