Métodos Numéricos - LCC 2023

Docentes: Alejandro G. Marchetti, Juan Manuel Rabasedas, Brian Luporini

Práctica 3: Resolución de ecuaciones no lineales

1) Determine gráficamente valores aproximados de todas las raíces positivas de las funciones

- a) $f_1(x) = \cos(x)\cosh(x) + 1$,
- d) $f_4(x) = \log x x + 1$,

- b) $f_2(x) = 2\sin x x^2$,
- c) $f_3(x) = e^{-x} x^4$,

e) $f_5(x) = \frac{x^2}{4} - \sin x$.

Recordar que $\cosh(x) = (e^x + e^{-x})/2$.

- 2) De ser posible, hallar todas las raíces de las funciones del ítem anterior utilizando el métodos de la bisección y la secante, ambos con una precisión de 10^{-6} . Comparar la cantidad de iteraciones obtenidas en cada método.
- 3) ¿Qué se obtiene al aplicar reiteradamente a un valor cualquiera la función coseno? Formalizar lo que sucede.
- **4)** Consideramos la iteración $x_{k+1} = 2^{x_k-1}$ para resolver la ecuación $2x = 2^x$. Determinar para que valores iniciales x_0 la iteración converge y en ese caso cual es el límite.
- **5)** Convertir la ecuación $x^2-5=0$ en el problema de punto fijo $x=x+c(x^2-5):=g(x)$, con c constante positiva. Elegir un valor adecuado de c que asegure la convergencia de $x_{n+1} = x_n + c(x_n^2 - 5)$ a
- **6)** Se quiere calcular la solución de la ecuación $e^x = 3x$, usando la iteración simple de punto fijo con diferentes funciones de iteración:

 - i) $g_1(x) = \frac{e^x}{3}$ ii) $g_2(x) = \frac{e^x x}{2}$ iii) $g_3(x) = \log(3x)$ iv) $g_4(x) = e^x 2x$

¿Cuáles son útiles para calcular la solución de la ecuación?

7) Efectuar cinco iteraciones del método de Newton para el siguiente sistema:

$$0 = 1 + x^2 - y^2 + e^x \cos y$$

$$0 = 2xy + e^x \sin y$$

utilizando como valor inicial $x_0 = -1$ y $y_0 = 4$.

8) Resolver el sistema

$$0 = x^2 + xy^3 - 9$$

$$0 = 3x^2y - 4 - y^3$$

usando el método de Newton para cada uno de los siguientes valores iniciales:

- a) (1.2, 2.5)
- b) (-2, 2.5)
- c) (-1.2, -2.5)
- $\frac{d}{}$ (2, -2.5).
- 9) La presión requerida para sumergir un objeto grande y pesado en un terreno suave y homógeneo que se encuentra sobre una base dura, puede predecirse a partir de la presión requerida para sumergir objetos más pequeños en el mismo suelo.

En particular la presión p necesaria para sumergir una lámina circular de radio r una distancia den un terreno suave, donde la base dura yace a una distancia D > d, puede aproximarse por una ecuación de la forma

$$p = k_1 e^{k_2 r} + k_3 r,$$

donde k_i , i = 1, 2, 3 dependen de d, pero no de r.

Recordar que la presión se obtiene de dividir la fuerza aplicada y el área correspondiente.

1

- a) Encontrar los valores de k_i , i=1,2,3, si se supone que una lámina circular de radio 1 pulgada requiere una presión de 10 libras/pulgada², para sumergirse 1 pie en un terreno suave, una lámina de radio 2 pulgadas requiere una presión de 12 libras/pulgada² para sumergirse 1 pie, y una lámina de 3 pulgadas de radio requiere 15 libras/pulgada² de presión para sumergirse esa distancia.
- b) Usando los cálculos realizados en a), predecir el radio mínimo de una lámina circular que deberá sostener una carga de 500 libras de fuerza sumergiéndose menos de 1 pie.
- 10) Dada la profundidad h y el período T de una ola, su longitud de onda l surge de la relación de dispersión $w^2 = gd \tanh(hd)$, donde $w = \frac{2\pi}{T}$ es una pulsación, g es la aceleración de la gravedad, y $d = \frac{2\pi}{l}$ es el número de onda. Conociendo $g = 9.8 \frac{m}{s^2}$ y h = 4 m, se desea calcular cuál es la longitud de onda correspondiente a una ola con T = 5 s. Construir un algoritmo en Scilab que efectúe los siguientes cálculos:
 - a) Utilizar un método de punto fijo para calcular la solución con un dígito de precisión, partiendo de d=1.
 - b) Utilizar el método de Newton para calcular la solución con 4 dígitos de precisión, partiendo del resultado obtenido en a).