	L#	Search Text	DBs	Time Stamp	Hits
1	L2	713/194.ccls. and "code modules" and (authenticat\$3)		2007/07/23 04:53	8
2	1	709/229.ccls. and "code modules" and (authenticat\$3)		2007/07/23 04:53	31
3	L6	"code module" and (authenticat\$3) and "private memory" and (embed\$5) and "key"	1	2007/07/23 04:55	2

	L #	Search Text	DBs	Time Stamp	Hits
4	L7	"code module" and (authenticat\$3) and "private memory" and (embed\$5) and "key" and (chipset or processor or physical token)	US- PGPUB; USPAT; USOCR; EPO; JPO; DERWEN T; IBM_TD B	2007/07/23 04:55	2
5	L10	"authenticated code module" and "private memory" and (extract\$3) near (signature)	US- PGPUB; USPAT; USOCR; EPO; JPO; DERWEN T; IBM_TD B	2007/07/23 04:56	0.
6	L11	"authenticated code module" and "private memory" and "embedded key"	US- PGPUB; USPAT; USOCR; EPO; JPO; DERWEN T; IBM_TD B	2007/07/23 05:00	1

	L #	Search Text	DBs	Time Stamp	Hits
7	L9	"authenticated code module" and "private memory"	•	2007/07/23 05:00	6
8	L8	"authenticated code module"	US- PGPUB; USPAT; USOCR; EPO; JPO; DERWEN T; IBM_TD B	2007/07/23 05:05	17
9	L4	"code module" and (authenticat\$3) and "private memory"		2007/07/23 05:03	11

	L #	Search Text	DBs	Time Stamp	Hits
10	L1	713/170.ccls. and "code modules" and (authenticat\$3)		2007/07/23 05:04	5
11	L5	(authenticat\$3) and "private memory" and (embed\$5)	1	2007/07/23 05:05	2
12	L12	(authenticat\$3) adj (code module)	US- PGPUB; USPAT; USOCR; EPO; JPO; DERWEN T; IBM_TD B	2007/07/23 05:05	8590

	L #	Search	Text	DBs	Time Stamp	Hits
13	L13	(authenticat\$3) module"	adj "code		2007/07/23 05:05	83
14	L14	(authenticat\$3) module"	same "code		2007/07/23 05:06	257
15	L15	(authenticat\$3) module"	near "code		2007/07/23 05:06	86

	L #	Search Text	DBs	Time Stamp	Hits
16	L16	L13 and "embedded key"		2007/07/23 05:07	5
17	L17	L13 and "chipset"	1	2007/07/23 05:07	16
18	L18	L17 and "token"		2007/07/23 05:07	8

Interference Search

	- 11	Seemeh Mout	DB-	Time Cham	U-+-
	L #		DBs	Time Stamp	Hits
1	L1	authenticated AND code AND modules AND private memory AND key AND embedded.CLM.	US- PGPUB	2007/07/23 07:59	9626
2	L2	authenticated AND code AND modules AND private memory AND key AND embedded AND media AND interface.CLM.		2007/07/23 08:00	12078
3	L3	authenticated AND code AND modules AND private memory AND key AND embedded AND media AND interface AND physical AND token AND chipset AND processor.CLM!	US- PGPUB	2007/07/23 08:00	5625
4	L4	authenticated AND code AND modules AND private memory AND key AND embedded AND media AND interface AND physical AND token AND chipset AND processor AND computing AND device AND signature AND extracting.CLM.	US- PGPUB	2007/07/23 08:00	5588
5	L5	authenticated AND code AND modules AND private memory AND key AND embedded AND media AND interface AND physical AND token AND chipset AND processor AND computing AND device AND signature AND extracting AND hashing AND digest AND compute AND value.CLM.	US- PGPUB	2007/07/23 08:01	5587
6	L6	authenticated AND code AND modules AND private memory AND key AND embedded AND media AND interface AND physical AND token AND chipset AND processor AND computing AND device AND signature AND extracting AND hashing AND digest AND compute AND value AND decrypting AND updating AND events AND bus AND verifying.CLM.	US- PGPUB	2007/07/23 08:01	5587

	L #	Search Text	DBs	Time Stamp	Hits
7	L7	authenticated AND code AND modules AND private memory AND key AND embedded AND media AND interface AND physical AND token AND chipset AND processor AND computing AND device AND signature AND extracting AND hashing AND digest AND compute AND value AND decrypting AND updating AND events AND bus AND verifying AND execution AND locking AND loading.CLM.		2007/07/23 08:02	5587

embedded key, signature, token, processor, chipset, private memory "authenticated code ... Page 1 of 1

Web Images Video News Maps Gmail more v

Sign in

Google

embedded key, signature, token, processor, cl | Search

Advanced Search

Web Results 1 - 2 of 2 for embedded key, signature, token, processor, chipset, private memory "authentica

Tip: Try removing quotes from your search to get more results.

Initialization of protected system - Patent 20040003321

The system of claim 16, wherein: the processor includes a private memory; physical token 150 includes key 152, which may be an embedded key to be used ... www.freepatentsonline.com/20040003321.html - 45k - Cached - Similar pages

Authenticated code module - Patent 20030126442

In example embodiment, the signature 240 is RSA-encrypted with the private key that corresponds to a public key of the processor key 116, the chipset key ... www.freepatentsonline.com/20030126442.html - 71k - Cached - Similar pages [More results from www.freepatentsonline.com]

In order to show you the most relevant results, we have omitted some entries very similar to the 2 already displayed.

If you like, you can repeat the search with the omitted results included.

Try Google Desktop: search your computer as easily as you search the web.

embedded key, signature, token, prc Search

Search within results | Language Tools | Search Tips | Dissatisfied? Help us improve

©2007 Google - Google Home - Advertising Programs - Business Solutions - About Google

Subscribe (Full Service) Register (Limited Service, Free) Login

Search:

The ACM Digital Library

The Guide +authenticated +module, +embedding +key, +private +memd

到別官	ACM	DIGITAL	LIBRARY	
a we	(A) San	DOWN WE	CIOWWW I	

Feedback Report a problem Satisfaction survey

Terms used:.

authenticated module embedding key private memory token processor chipset

Found 195 of 207,474

Sort results by

relevance

Save results to a Binder

Try an Advanced Search

Try this search in The ACM Guide

Display results

expanded form

Open results in a new

Results 1 - 20 of 195

Result page: **1** <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u>

Relevance scale 🗆 🖵 🚍 🔳

1 Applications and compliance: Virtual monotonic counters and count-limited objects

using a TPM without a trusted OS

Luis F. G. Sarmenta, Marten van Dijk, Charles W. O'Donnell, Jonathan Rhodes, Srinivas

November 2006 Proceedings of the first ACM workshop on Scalable trusted computing STC '06

Publisher: ACM Press

Full text available: Top pdf(447.59 KB) Additional Information: full citation, abstract, references, index terms

A trusted monotonic counter is a valuable primitive that enables a wide variety of highly scalable offline and decentralized applications that would otherwise be prone to replay attacks, including offline payment, e-wallets, virtual trusted storage, and digital rights management (DRM). In this paper, we show how one can implement a very large number of virtual monotonic counters on an untrusted machine with a Trusted Platform Module (TPM) or similar device, without relying on a trusted OS ...

Keywords: certified execution, e-wallet memory integrity checking, key delegation, stored-value, trusted storage

2 Securing wireless applications: ESCORT: a decentralized and localized access

control system for mobile wireless access to secured domains

Jiejun Kong, Shirshanka Das, Edward Tsai, Mario Gerla

September 2003 Proceedings of the 2003 ACM workshop on Wireless security WiSe

Publisher: ACM Press

Full text available: pdf(401.72 KB)

Additional Information: full citation, abstract, references, citings, index terms

In this work we design and implement ESCORT, a backward compatible, efficient, and secure access control system, to facilitate mobile wireless access to secured wireless LANS. In mobile environments, a mobile quest may frequently roam into foreign domains while demanding critical network services. ESCORT provides instant yet secure access to the mobile quest based on the concept of "escort", which refers to a special network object with four distinct properties: (1) T ...

Keywords: decentralized access control, identity privacy, location privacy, mobile privacy, wireless security

3 Cryptography as an operating system service: A case study

Angelos D. Keromytis, Jason L. Wright, Theo De Raadt, Matthew Burnside
February 2006 ACM Transactions on Computer Systems (TOCS), Volume 24 Issue 1

Publisher: ACM Press

Full text available: pdf(669.12 KB) Additional Information: full citation, abstract, references, index terms

Cryptographic transformations are a fundamental building block in many security applications and protocols. To improve performance, several vendors market hardware accelerator cards. However, until now no operating system provided a mechanism that allowed both uniform and efficient use of this new type of resource. We present the OpenBSD Cryptographic Framework (OCF), a service virtualization layer implemented inside the operating system kernel, that provides uniform access to accelerator functio ...

Keywords: Encryption, authentication, cryptographic protocols, digital signatures, hash functions

4 Protecting applications with transient authentication

Mark D. Corner, Brian D. Noble

May 2003 Proceedings of the 1st international conference on Mobile systems, applications and services MobiSys '03

Publisher: ACM Press

Full text available: pdf(294.40 KB) Additional Information: full citation, abstract, references, cited by

How does a machine know who is using it? Current systems authenticate their users infrequently, and assume the user's identity does not change. Such *persistent authentication* is inappropriate for mobile and ubiquitous systems, where associations between people and devices are fluid and unpredictable. We solve this problem with *Transient Authentication*, in which a small hardware token continuously authenticates the user's presence over a short-range, wireless link. We present the fo ...

5 <u>Security as a new dimension in embedded system design: Security as a new</u>

Srivaths Ravi, Paul Kocher, Ruby Lee, Gary McGraw, Anand Raghunathan June 2004 Proceedings of the 41st annual conference on Design automation DAC '04 Publisher: ACM Press

Full text available: pdf(209.10 KB)

Additional Information: full citation, abstract, references, citings, index terms

The growing number of instances of breaches in information security in the last few years has created a compelling case for efforts towards secure electronic systems. Embedded systems, which will be ubiquitously used to capture, store, manipulate, and access data of a sensitive nature, pose several unique and interesting security challenges. Security has been the subject of intensive research in the areas of cryptography, computing, and networking. However, despite these efforts, security is ...

Keywords: PDAs, architectures, battery life, cryptography, design, design methodologies, digital rights management, embedded systems, performance, security, security processing, security protocols, sensors, software attacks, tamper resistance, trusted computing, viruses

6 Computing curricula 2001
September 2001 Journal on Educational Resources in Computing (JERIC)

Publisher: ACM Press

Full text available: pdf(613.63 KB) (2.78 KB)

Additional Information: full citation, references, citings, index terms

Distributed operating systems

Andrew S. Tanenbaum, Robbert Van Renesse

December 1985 ACM Computing Surveys (CSUR), Volume 17 Issue 4

Publisher: ACM Press

Full text available: R pdf(5.49 MB)

Additional Information: full citation, abstract, references, citings, index terms, review

Distributed operating systems have many aspects in common with centralized ones, but they also differ in certain ways. This paper is intended as an introduction to distributed operating systems, and especially to current university research about them. After a discussion of what constitutes a distributed operating system and how it is distinguished from a computer network, various key design issues are discussed. Then several examples of current research projects are examined in some detail ...

8 Fast detection of communication patterns in distributed executions

Thomas Kunz, Michiel F. H. Seuren

November 1997 Proceedings of the 1997 conference of the Centre for Advanced Studies on Collaborative research CASCON '97

Publisher: IBM Press

Full text available: pdf(4.21 MB) Additional Information: full citation, abstract, references, index terms

Understanding distributed applications is a tedious and difficult task. Visualizations based on process-time diagrams are often used to obtain a better understanding of the execution of the application. The visualization tool we use is Poet, an event tracer developed at the University of Waterloo. However, these diagrams are often very complex and do not provide the user with the desired overview of the application. In our experience, such tools display repeated occurrences of non-trivial commun ...

A structural view of the Cedar programming environment

Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach, Robert B. Hagmann August 1986 ACM Transactions on Programming Languages and Systems (TOPLAS),

Volume 8 Issue 4 Publisher: ACM Press

Full text available: pdf(6.32 MB)

Additional Information: full citation, abstract, references, citings, index terms

This paper presents an overview of the Cedar programming environment, focusing on its overall structure—that is, the major components of Cedar and the way they are organized. Cedar supports the development of programs written in a single programming language, also called Cedar. Its primary purpose is to increase the productivity of programmers whose activities include experimental programming and the development of prototype software systems for a high-performance personal computer. T ...

10 Exploiting perception in high-fidelity virtual environments: Exploiting perception in

high-fidelity virtual environments

Additional presentations from the 24th course are available on the citation page

Mashhuda Glencross, Alan G. Chalmers, Ming C. Lin, Miguel A. Otaduy, Diego Gutierrez July 2006 ACM SIGGRAPH 2006 Courses SIGGRAPH '06

Publisher: ACM Press

Full text available: 🔁 pdf(5.07 MB) 🕢 Additional Information: full citation, appendices and supplements.

mov(68:6 MIN)

abstract, references, cited by, index terms

The objective of this course is to provide an introduction to the issues that must be considered when building high-fidelity 3D engaging shared virtual environments. The principles of human perception quide important development of algorithms and techniques in collaboration, graphical, auditory, and haptic rendering. We aim to show how human perception is exploited to achieve realism in high fidelity environments within the constraints of available finite computational resources. In this course w ...

Keywords: collaborative environments, haptics, high-fidelity rendering, human-computer interaction, multi-user, networked applications, perception, virtual reality

11 Integrating security in a large distributed system

M. Satyanarayanan

August 1989 ACM Transactions on Computer Systems (TOCS), Volume 7 Issue 3

Publisher: ACM Press

Full text available: pdf(2.90 MB)

Additional Information: full citation, abstract, references, citings, index terms, review

Andrew is a distributed computing environment that is a synthesis of the personal computing and timesharing paradigms. When mature, it is expected to encompass over 5,000 workstations spanning the Carnegie Mellon University campus. This paper examines the security issues that arise in such an environment and describes the mechanisms that have been developed to address them. These mechanisms include the logical and physical separation of servers and clients, support for secure communication ...

12 Pioneer: verifying code integrity and enforcing untampered code execution on legacy

systems

Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, Pradeep Khosla October 2005 ACM SIGOPS Operating Systems Review , Proceedings of the twentieth ACM symposium on Operating systems principles SOSP '05, Volume 39 Issue

Publisher: ACM Press

Full text available: pdf(264.30 KB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms

We propose a primitive, called Pioneer, as a first step towards verifiable code execution on untrusted legacy hosts. Pioneer does not require any hardware support such as secure co-processors or CPU-architecture extensions. We implement Pioneer on an Intel Pentium IV Xeon processor. Pioneer can be used as a basic building block to build security systems. We demonstrate this by building a kernel rootkit detector.

Keywords: dynamic root of trust, rootkit detection, self-check-summing code, softwarebased code attestation, verifiable code execution

13 A history of Erlang

Joe Arrnstrong

June 2007 Proceedings of the third ACM SIGPLAN conference on History of programming languages HOPL III

Publisher: ACM Press

Full text available: Additional Information: full citation, abstract, references, index terms

Erlang was designed for writing concurrent programs that "run forever." Erlang uses concurrent processes to structure the program. These processes have no shared memory and communicate by asynchronous message passing. Erlang processes are lightweight and belong to the language, not the operating system. Erlang has mechanisms to allow

programs to change code "on the fly" so that programs can evolve and change as they run. These mechanisms simplify the construction of software for implementing ...

14 Design and Implementation of the AEGIS Single-Chip Secure Processor Using

Physical Random Functions

G. Edward Suh, Charles W. O'Donnell, Ishan Sachdev, Srinivas Devadas

May 2005 ACM SIGARCH Computer Architecture News, Proceedings of the 32nd annual international symposium on Computer Architecture ISCA '05, Volume 33 Issue 2

Publisher: IEEE Computer Society, ACM Press

Full text available: 📆 pdf(288.96 KB) Additional Information: full citation, abstract, index terms

Secure processors enable new applications by ensuring private and authentic program execution even in the face of physical attack. In this paper we present the AEGIS secure processor architecture, and evaluate its RTL implementation on FPGAs. By using Physical Random Functions, we propose a new way of reliably protecting and sharing secrets that is more secure than existing solutions based on non-volatile memory. Our architecture gives applications the flexibility of trusting and protecting only ...

15 Techniques for trusted software engineering

Premkumar T. Devanbu, Philip W-L Fong, Stuart G. Stubblebine

April 1998 Proceedings of the 20th international conference on Software engineering **ICSE '98**

Publisher: IEEE Computer Society

Full text available: pdf(1.21 MB) Additional Information: full citation, references, citings, index terms Publisher Site

16 IP Easy-pass: a light-weight network-edge resource access control

Haining Wang, Abhijit Bose, Mohamed El-Gendy, Kang G. Shin

December 2005 IEEE/ACM Transactions on Networking (TON), Volume 13 Issue 6

Publisher: IEEE Press

Full text available: pdf(721.97 KB) Additional Information: full citation, abstract, references, index terms

Providing real-time communication services to multimedia applications and subscriptionbased Internet access often requires that sufficient network resources be reserved for real-time traffic. However, the reserved network resource is susceptible to resource theft and abuse. Without a resource access control mechanism that can efficiently differentiate legitimate real-time traffic from attacking packets, the traffic conditioning and policing enforced at Internet Service Provider (ISP) edge route ...

Keywords: network QoS, resource access control

17 Pen computing: a technology overview and a vision

André Meyer

July 1995 ACM SIGCHI Bulletin, Volume 27 Issue 3

Publisher: ACM Press

Full text available: pdf(5.14 MB) Additional Information: full citation, abstract, citings, index terms

This work gives an overview of a new technology that is attracting growing interest in public as well as in the computer industry itself. The visible difference from other technologies is in the use of a pen or pencil as the primary means of interaction between a user and a machine, picking up the familiar pen and paper interface metaphor. From this follows a set of consequences that will be analyzed and put into context with other

emerging technologies and visions. Starting with a short historic ...

18 An embedded domain-specific language for type-safe server-side web scripting

Peter Thiemann

February 2005 ACM Transactions on Internet Technology (TOIT), Volume 5 Issue 1 Publisher: ACM Press

Full text available: pdf(336.60 KB)

Additional Information: full citation, abstract, references, index terms,

WASH/CGI is an embedded domain-specific language for server-side Web scripting. Due to its reliance on the strongly typed, purely functional programming language Haskell as a host language, it is highly flexible and---at the same time---it provides extensive quarantees due to its pervasive use of type information. WASH/CGI can be structured into a number of sublanguages addressing different aspects of the application. The document sublanguage provides tools for the generation of parameteri ...

Keywords: Interactive Web services, Web programming

19 The consensus problem in fault-tolerant computing

Michael Barborak, Anton Dahbura, Minoslaw Malek

June 1993 ACM Computing Surveys (CSUR), Volume 25 Issue 2

Publisher: ACM Press

Full text available: pdf(4.80 MB)

Additional Information: full citation, references, citings, index terms

Keywords: Byzantine agreement, consensus problem, decision theory, processor membership, system diagnosis

20 Bibliography of recent publication in computer networking

July 1989 ACM SIGCOMM Computer Communication Review, Volume 19 Issue 3

Publisher: ACM Press

Full text available: pdf(2.53 MB) Additional Information: full citation, index terms

Result page: 1 2 3 4 5 6 7 8 9 10 next Results 1 - 20 of 195

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2007 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat QuickTime Windows Media Player Real Player

Home | Login | Logout | Access Information | Alerts |

Welcome United States Patent and Trademark Office

..□ Search Results

BROWSE

SEARCH

IEEE XPLORE GUIDE

Results for "((authenticated code modules, embedded key, chipset, token, processor<in>metadata) <and&..." ⊠ e-mail Your search matched 2311 of 1618078 documents.

A maximum of 100 results are displayed, 25 to a page, sorted by Relevance in Descending order.

» Search Options **Modify Search** (authenticated code modules, embedded key, chipset, token, processor<in>metada View Session History Search. New Search Check to search only within this results set » Key IEEE JNL IEEE Journal or view selected items Select All Deselect All View: 1-25 | 26-5 Magazine **IET JNL** IET Journal or Magazine 1. Fingerprinting: bounding soft-error-detection latency and bandwidth Γ. **IEEE CNF** IEEE Conference Smolens, J.C.; Gold, B.T.; Kim, J.; Falsafi, B.; Hoe, J.C.; Nowatryk, A.G.; Proceeding Micro, IEEE **IET CNF IET Conference** Volume 24, Issue 6, Nov-Dec 2004 Page(s):22 - 29 Proceeding Digital Object Identifier 10.1109/MM.2004.72 IEEE STD IEEE Standard AbstractPlus | Full Text: PDF(160 KB) IEEE JNL Rights and Permissions 2. Store-ordered streaming of shared memory Wenisch, T.F.; Somogyi, S.; Hardavellas, N.; Jangwoo Kim; Gniady, C.; Ailama

Parallel Architectures and Compilation Techniques, 2005. PACT 2005. 14th Int Conference on

17-21 Sept. 2005 Page(s):75 - 84

Digital Object Identifier 10.1109/PACT.2005.37

AbstractPlus | Full Text: PDF(328 KB) | IEEE CNF

Rights and Permissions

3. Utilizing page-level join index for optimization in parallel join execution Chiang Lee; Zue-An Chang;

Knowledge and Data Engineering, IEEE Transactions on Volume 7, Issue 6, Dec. 1995 Page(s):900 - 914

Digital Object Identifier 10.1109/69.476496

AbstractPlus | References | Full Text: PDF(1648 KB) | IEEE JNL

Rights and Permissions

4. Architectures for efficient face authentication in embedded systems

Aaraj, N.; Ravi, S.; Raghunathan, S.; Jha, N.K.;

Design, Automation and Test in Europe, 2006. DATE '06. Proceedings

Volume 2, 6-10 March 2006 Page(s):6 pp.

AbstractPlus | Full Text: PDF(1552 KB) IEEE CNF

Rights and Permissions

 \Box

5. Concurrent error detection using watchdog processors-a survey

Mahmood, A.; McCluskey, E.J.;

Transactions on Computers

Volume 37, Issue 2, Feb. 1988 Page(s):160 - 174

Digital Object Identifier 10.1109/12.2145

AbstractPlus | Full Text: PDF(1523 KB) IEEE JNL Rights and Permissions

6. Misleading worm signature generators using deliberate noise injection Г

Perdisci, R.; Dagon, D.; Wenke Lee; Fogla, P.; Sharif, M.;

Security and Privacy, 2006 IEEE Symposium on

21-24 May 2006 Page(s):15 pp.

Digital Object Identifier 10.1109/SP.2006.26

AbstractPlus | Full Text: PDF(424 KB) | IEEE CNF

Rights and Permissions

7. Hamsa: fast signature generation for zero-day polymorphic worms with p П

Zhichun Li; Manan Sanghi; Yan Chen; Ming-Yang Kao; Chavez, B.;

Security and Privacy, 2006 IEEE Symposium on

21-24 May 2006 Page(s):15 pp.

Digital Object Identifier 10.1109/SP.2006.18

AbstractPlus | Full Text: PDF(600 KB) | IEEE CNF

Rights and Permissions

8. Polygraph: automatically generating signatures for polymorphic worms

Newsome, J.; Karp, B.; Song, D.;

Security and Privacy, 2005 IEEE Symposium on

8-11 May 2005 Page(s):226 - 241

Digital Object Identifier 10.1109/SP.2005.15

AbstractPlus | Full Text: PDF(256 KB) | IEEE CNF |

Rights and Permissions

9. Multicast receiver and sender access control and its applicability to mobi Г environments: a survey

Kellil, M.; Romdhani, I.; Lach, H.; Bouabdallah, A.; Betttahar, H.;

Communications Surveys & Tutorials, IEEE

Volume 7, Issue 2, Second Quarter 2005 Page(s):46 - 70

AbstractPlus | Full Text: PDF(374 KB) | IEEE JNL

Rights and Permissions

10. Differencing worm flows and normal flows for automatic generation of we

Simkhada, K.; Tsunoda, H.; Waizumi, Y.; Nemoto, Y.;

Multimedia, Seventh IEEE International Symposium on

12-14 Dec. 2005 Page(s):6 pp.

Digital Object Identifier 10.1109/ISM.2005.49

AbstractPlus | Full Text: PDF(280 KB) IEEE CNF

Rights and Permissions

11. Recognition of human signatures Г

Pacut, A.; Czajka, A.;

Neural Networks, 2001. Proceedings. IJCNN '01. International Joint Conference

Volume 2, 15-19 July 2001 Page(s):1560 - 1564 vol.2

Digital Object Identifier 10.1109/IJCNN.2001.939597

AbstractPlus | Full Text: PDF(388 KB) IEEE CNF

Rights and Permissions

12. Real-time payments for mobile IP

Tewari, H.; O'Mahony, D.;

Communications Magazine, IEEE

Volume 41, Issue 2, Feb. 2003 Page(s):126 - 136

Digital Object Identifier 10.1109/MCOM.2003.1179561

AbstractPlus | References | Full Text: PDF(825 KB) | IEEE JNL

Rights and Permissions

F	13. Extending the security assertion markup language to support delegation services and grid services Jun Wang; Del Vecchio, D.; Humphrey, M.; Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International Confe 11-15 July 2005 Page(s):67 - 74 vol.1 Digital Object Identifier 10.1109/ICWS.2005.59 AbstractPlus Full Text: PDF(256 KB) IEEE CNF Rights and Permissions
Γ:	14. Hierarchical finite state machines with multiple concurrency models Girault, A.; Bilung Lee; Lee, E.A.; Computer-Aided Design of Integrated Circuits and Systems, IEEE Transaction Volume 18, Issue 6, June 1999 Page(s):742 - 760 Digital Object Identifier 10.1109/43.766725 AbstractPlus References Full Text: PDF(312 KB) IEEE JNL Rights and Permissions
	15. Multiparty micropayments for ad hoc networks Tewari, H.; O'Mahony, D.; Wireless Communications and Networking, 2003. WCNC 2003. 2003 IEEE Volume 3, 16-20 March 2003 Page(s):2033 - 2040 vol.3 Digital Object Identifier 10.1109/WCNC.2003.1200699 AbstractPlus Full Text: PDF(757 KB) IEEE CNF Rights and Permissions
Γ.	16. The role of digital signature cards in electronic voting Kofler, R.; Krimmer, R.; Prosser, A.; Unger, MK.; System Sciences, 2004. Proceedings of the 37th Annual Hawaii International (5-8 Jan. 2004 Page(s):7 pp. Digital Object Identifier 10.1109/HICSS.2004.1265297 AbstractPlus Full Text: PDF(291 KB) IEEE CNF Rights and Permissions
· _	17. Electronic voting: algorithmic and implementation issues Kofler, R.; Krimmer, R.; Prosser, A.; System Sciences, 2003. Proceedings of the 36th Annual Hawaii International (6-9 Jan 2003 Page(s):7 pp. Digital Object Identifier 10.1109/HICSS.2003.1174319 AbstractPlus Full Text: PDF(446 KB) IEEE CNF Rights and Permissions
Ε	18. A weakness in smart card PKI certification Young, A.; Information Assurance Workshop, 2003. IEEE Systems, Man and Cybernetics 18-20 June 2003 Page(s):30 - 34 Digital Object Identifier 10.1109/SMCSIA.2003.1232397 AbstractPlus Full Text: PDF(503 KB) IEEE CNF Rights and Permissions
Г.	19. PayFair: a prepaid internet ensuring customer fairness micropayment sc Yen, SM.; Computers and Digital Techniques, IEE Proceedings- Volume 148, Issue 6, Nov. 2001 Page(s):207 - 213 AbstractPlus Full Text: PDF(865 KB) IET JNL
Γ	20. Cryptographic keys from dynamic hand-signatures with biometric secrec

Kuan, Y.W.; Goh, A.; Ngo, C.L.D.; Teoh, B.J.A.;

<u>Automatic Identification Advanced Technologies, 2005. Fourth IEEE Workshop</u>
17-18 Oct. 2005 Page(s):27 - 32

Digital Object Identifier 10.1109/AUTOID.2005.17

<u>AbstractPlus</u> | Full Text: <u>PDF</u>(224 KB) IEEE CNF

<u>Rights and Permissions</u>

21. A privacy-friendly loyalty system for electronic marketplaces

Enzmann, M.; Schneider, M.;

e-Technology, e-Commerce and e-Service, 2004. EEE '04, 2004 IEEE Interna on

28-31 March 2004 Page(s):385 - 393

Digital Object Identifier 10.1109/EEE.2004.1287337

AbstractPlus | Full Text: PDF(379 KB) | IEEE CNF

Rights and Permissions

22. A scheme for analyzing electronic payment systems

de Carvalho Ferreira, L.; Dahab, R.;

Computer Security Applications Conference, 1998, Proceedings., 14th Annual 7-11 Dec. 1998 Page(s):137 - 146

Digital Object Identifier 10.1109/CSAC.1998.738600

AbstractPlus | Full Text: PDF(100 KB) | IEEE CNF

Rights and Permissions

23. Scalable trigger processing

Hanson, E.N.; Carnes, C.; Huang, L.; Konyala, M.; Noronha, L.; Parthasarathy Vernon, A.;

<u>Data Engineering, 1999. Proceedings., 15th International Conference on</u> 23-26 March 1999 Page(s):266 - 275

Digital Object Identifier 10.1109/ICDE.1999.754942

AbstractPlus | Full Text: PDF(96 KB) | IEEE CNF

Rights and Permissions

24. CCITT/ISO standards for secure message handling

Mitchell, C.; Walker, M.; Rush, D.;

Selected Areas in Communications, IEEE Journal on

Volume 7, Issue 4, May 1989 Page(s):517 - 524

Digital Object Identifier 10.1109/49.17715

AbstractPlus | Full Text: PDF(834 KB) IEEE JNL

Rights and Permissions

25. Content-aware authentication of motion JPEG2000 stream in lossy network Yongdong Wu; Deng, R.H.;

Consumer Electronics, IEEE Transactions on

Volume 49, Issue 4, Nov. 2003 Page(s):792 - 801

Digital Object Identifier 10.1109/TCE.2003.1261157

AbstractPlus | Full Text: PDF(615 KB) IEEE JNL

Rights and Permissions

View: 1-25 | 26-5

Help Contact Us Privacy &:

© Copyright 2006 IEEE -

Indexed by