FULL TITLE

SHUBH AGARWAL, SAKSHAM CHHIMWAL, ABHIRAM K, AND RISHABH SHARAD

1. RANK NULLITY THEOREM

It is also called then fundamental theorem of Linear Maps because of its importance in linear transformation.

1.1. Stating and Proof.

Theorem 1. Rank-Nullity Theorem: Suppose V is finite-dimensional and $T \in \mathcal{L} : (V, W)$. Then range T is finite-dimensional and

$$Rank(T) + Nullity(T) = dim(V), or$$

 $dim(Range(T)) + dim(Ker(T)) = dim(V)$

Proof. Let $\phi_1, \phi_2, \ldots, \phi_l$ be the minimum vectors will that span Ker(T), where l is the dim(Ker(T)).

And $v_1, v_2, \ldots, v_{n-l}$ be the vectors that will span the remaining vector space V where, n is the dim(V). Their linear transformation must be independent and should span the entire range of T in W, let dim(Range(T)) be k. We will prove this claim later.

Then it becomes quite easy to see why the rank nullity theorem holds.

Claim 1. $w_1, w_2, \ldots, w_{n-l}$ are linearly independent and span the entire Range(T).

Proving Claim. \Box

1.2. **Applications.** We can now prove that some of the mapping can not be surjective or injective.

Theorem 2 (A map to a smaller dimensional space is not injective). Suppose V and W are finite-dimensional vector spaces such that dim(V) and dim(W), then there is no injective linear mapping from V to W.

Date: January 22, 2023.

 $^{2020\} Mathematics\ Subject\ Classification.$ 2023 Mathematics for Data Science, CS-427.

This paper is in final form.

Proof. Let $T \in \mathcal{L}:(V, W)$. Then

$$\begin{array}{rcl} \dim(null\,T) & = & \dim(V) - \dim(Range(T)) \\ & \geq & \dim(V) - \dim(W) \\ & > & 0. \end{array}$$

Proof.

 $Email\ address, Shubh: 210020047@iitdh.ac.in \ URL: https://shubhagarwal-dev.github.io/$

Email address, Saksham: 210010046@iitdh.ac.in

Email address, Abhiram: 210150001@iitdh.ac.in

Email address, Rishabh: 210020036@iitdh.ac.in