WEB316 - SOMT Refolding & ÄKTA HIC

Benjamin Weigel

22nd October, 2014

1 Refolding

- refolded 2.5 ml $1\frac{mg}{mL}$ SOMT in 50 mL buffer 12 over night at 4°C
- added 1 Volume (50 mL) of 2 M $(\mathrm{NH_4})_2\mathrm{SO}_4$
- adjusted pH to 7 using 5 M KOH \rightarrow solution turned slightly turbid
- centrifuged to remove precipitate (20.000 x g, 4° C , 30 min)

2 HIC

- equilibrated 1 mL phenyl sepharose column (HiTrap Phenyl FF (lows sub)) with 5 CV water & 5 CV 1 M (NH₄)₂SO₄, 50 mM HEPES pH 7
- applied $50~\mathrm{mL}$ of clarified sample
- eluted stepwise from 1 M (NH₄)₂SO₄ to 20 % EtOH (see WEB309), then 70 % EtOH, 0.1 M NaOH and 0.5 M NaOH, and collected 4 mL fractions
- for SDS-PAGE 0.5 mL of selected fractions were precipitated using TCA and resuspended in 10 μ l PBS and 2 μ l SDS loading dye (heated to 95 °C and applied to gel)

Figure 1: Refolding of SOMT and subsequent HIC (ÄKTA). SDS-PAGE of selected fractions.

Table 1: Setup of the gels for SDS-PAGE analysis

gel	lane	sample	comment
Gel 1 / Fractions	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Marker 2HIC FT A10 B12 B8 B5 C1	applied to column flowthrough 0.6 M AS 0.4 M AS 0.4 M AS 0.2 M AS

3 **Activity Test**

- using fraction B12, B8 and B5 of Run 1 and A8 of Run 2
- control experiment with 20 mM Hepes pH 7 instead of elution fraction
- 6 x MM for each substrate group
 - → **Group 1:** Naringenin, Daidzein, ED
 - Group 2: Genistein, Quercetin, HED
 - Group 3: Apigenin, Hesperetin

Reaction Mix

 $0.1~\mathrm{M}$ HEPES pH 7

 $0.2~\mathrm{mM}$ substrate

 $0.25~\mathrm{mM~SAM}$

in eluate Mastermix Group 1 (6x)

 $60 \mu l$ 1 M HEPES pH 7

 $12~\mu$ l $10~\mathrm{mM}$ Naringenin, Daidzein, ED

 $40.8~\mu l~0.25~\mathrm{mM~SAM}$

 $43.2~\mu l~H_2O$

Mastermix Group 2 (6x)

 $60~\mu l~1~M~HEPES~pH~7$

 $12 \mu l$ 10 mM Genistein, Quercetin, HED

 $40.8~\mu l~0.25~\mathrm{mM~SAM}$

 $43.2~\mu l~{\rm H_2O}$

Universal-Werkzeugkoffer von Famex

Mastermix Group 3 (6x)

 $60~\mu l~1~M~HEPES~pH~7$

 $12 \mu l$ 10 mM Apigenin, Hesperetin

 $40.8~\mu l~0.25~\mathrm{mM~SAM}$

 $55.2~\mu l~H_2O$

Reaction:

 $30 \mu l$ mastermix

 $70 \mu l$ eluate fraction

sample	$\sim {\rm Run/Fraction}$	Substrate group
A	1/B12	1
В	1/B12	2
\mathbf{C}	1/B12	3
D	1/B8	1
\mathbf{E}	1/B8	2
F	1/B8	3
G	1/B5	1
H	1'B5	2
I	1/B5	3
J	$^{\prime}/\mathrm{A8}$	1
K	2/A8	2
${ m L}$	2/A8	3
${ m M}$	buffer	1
N	buffer	2
O	buffer	3