Notas Curso Topología Algebraica ' Escuela Oaxaqueña de M anel Alvarado 8 de enero de 2025 10° Escuela Oaxaqueña de Matemáticas

Cristo Daniel Alvarado ES Cristo Daniel Alvarado

Índice general

1. Topología Algebraica	2	
El grupo fundamental	2	
Caminos y Homotopías: El grupo fundamental	3	
Funtorialidad	6	
2. Ejercicios y Problemas	8	
Preeliminares: el grupo fundamental	8	

Capítulo 1

Topología Algebraica

§1.1 EL GRUPO FUNDAMENTAL

Observación 1.1.1

De ahora en adelante X y Y serán espacios topológicos.

Definición 1.1.1

Sean X y Y espacios. Dos funciones continuas $f,g:X\to Y$ son **homotópicas** si $\exists H:X\times [0,1]\to Y$ continua (una **homotopía**) tal que:

$$H(x,0) = f(x)$$
 y $H(x,1) = g(x)$, $\forall x \in X$

Escribimos que $f \simeq g$.

Definición 1.1.2

Los espacios X y Y son homotópicamente equivalentes si $\exists f: X \to Y$ y $g: Y \to X$ funciones continuas (llamadas equivalencias homotópicas) tales que:

$$f \circ q \approx \mathbb{1}_X \quad \text{y} \quad q \circ f = \mathbb{1}_Y$$

a lo cual escribimos $X \simeq Y$.

Observación 1.1.2

 \simeq define una relación de equivalencia en la clase de espacios topológicos.

Demostración:

Ejercicio.

Proposición 1.1.1

Si X es homeomorfo a Y, entonces $X \simeq Y$.

Definición 1.1.3

Un espacio X es **contráctil** si $X \simeq \{*\}$.

Observación 1.1.3

Otra equivalencia es que $C_p: X \to X$ $x \mapsto p$ es homotópica a la identidad.

Ejemplo 1.1.1

 $\mathbb{R}^n, I = [0, 1], \mathbb{D}^n$ son contráctilces.

Definición 1.1.4

Un subespacio A de X es un retracto de X si $\exists r: X \to A$ continua tal que $r|_A = \mathbb{1}_A$. En este caso r es llamada una retracción.

Definición 1.1.5

Dos funciones son homotópicas relativas a A si para la función $H: X \times I \to Y$ es tal que:

$$H(a,t) = a, \quad \forall a \in A \forall t \in I$$

Definición 1.1.6

Un retracto A de X se llama **retracto por deformación** si $i \circ x : X \to X$ es homotópica a $\mathbb{1}_X$ relativa a A.

Ejemplo 1.1.2

X es contráctil si y sólo si $\forall p \in X, \{p\} \subseteq X$ es un retracto por deformación.

Ejemplo 1.1.3

 $\mathbb{S}^1 \subseteq \mathbb{C} \setminus 0$ es un retracto por deformación.

Ejemplo 1.1.4

 $\mathbb{S}^1 \vee \mathbb{S}^1 \subseteq \mathbb{C} \setminus \{p,q\}$ es un retracto por deformación (con $p \neq q$). En este caso, $\mathbb{S}^1 \vee \mathbb{S}^1$ es la suma puntuada (o wedge). En este caso:

$$\mathbb{S}^1 \vee \mathbb{S}^1 = \mathbb{S}^1 \sqcup \mathbb{S}^1/x \sim y$$

donde x está en la primer esfera y y en la segunda.

Ejemplo 1.1.5

 $\underbrace{\mathbb{S}^1 \vee \cdots \vee \mathbb{S}^1}_{n-\text{veces}}$ la rosa de n-pétalos es una deformación de retracción de $\mathbb{C} \setminus \{p_1, ..., p_n\}$.

Ejemplo 1.1.6

El círculo central de la banda de Möbius es retracto por deformación de X.

Surge naturalmente la siguiente pregunta:

¿Cuándo dos espacios topológicos X y Y NO son topológicamente equivalentes?

La topología algebraica nos da repuestas para este tipo de preguntas, ya que traducimos el problema a algo algebraico para luego resolverlo a partir de invariantes algebraicos.

§1.2 Caminos y Homotopías: El grupo fundamental

Definición 1.2.1

Sea X espacio topológico. Un **camino de** p **a** q **en** X (con $p, q \in X$) es una función continua $f: [0,1] \to X$ tal que f(0) = p y f(1) = q.

Definición 1.2.2

Dos caminos $\gamma_0, \gamma_1 : [0,1] \to X$ de $p \in X$ a $q \in X$ son **homotópicos** si $\exists H : [0,1] \times [0,1] \to X$ continua tal que:

$$H\big|_{[0,1]\times\{0\}} = \gamma_0, H\big|_{[0,1]\times\{1\}} = \gamma_1$$

y,
$$H\big|_{\{0\}\times[0,1]}=p$$
 y $H\big|_{\{1\}\times[0,1]}=1.$

Observación 1.2.1

En cierto sentido, la familia de caminos:

$$\left\{ \gamma_t = H \big|_{[0,1] \times \{t\}} \middle| t \in [0,1] \right\}$$

deforma al camino γ_0 en γ_1 .

Proposición 1.2.1

 \simeq es una relación de equivalencia en el conjunto de caminos en X de p a q.

Observación 1.2.2

Escribimos $[\gamma]$ para la clase de γ .

Lema 1.2.1

Sea $\gamma:[0,1]\to X$ un camino de p a q y $\varphi:[0,1]\to[0,1]$ continua. Entonces, $\gamma\simeq\gamma\circ\varphi$.

En otras palabras, reparametrizar da caminos homotópicos. Más aún, da básicamnete el mismo recorrido a diferentes velocidades.

Definición 1.2.3 (Concatenación de caminos)

Sean γ un camino de p a q en X y μ un camino de q a r. Definimos el camino $\gamma * \mu : [0,1] \to X$ de p a r como:

$$\gamma * \mu(t) = \begin{cases} \gamma(2t) & \text{si} \quad t \in [0, 1/2] \\ \mu(2t-1) & \text{si} \quad t \in [1/2, 1] \end{cases}$$

Definición 1.2.4

Sea $p \in X$, $e_p : [0,1] \to X$ dado por: $e_p(t) = p$ para todo $t \in [0,1]$ es el **camino constante** de p a p.

4

Lema 1.2.2

Sean $\gamma_0 \simeq \gamma_1$ caminos de p a q y $\mu_0 \simeq \mu_1$ caminos de q a r. Entonces: $\gamma_0 * \mu_0 \simeq \gamma_1 * \mu_1$.

Lema 1.2.3

Sea γ camino de p a q, μ de q a r y τ de r a s. Entonces, $\gamma*(\mu*\tau)\simeq(\gamma*\mu)*\tau$.

Lema 1.2.4

Sea γ camino de p a q. Entonces:

$$\gamma * e_p \simeq \gamma \simeq e_p * \gamma$$

Definición 1.2.5

Sea γ un camino de p a q. El **camio inverso** $\overline{\gamma}:[0,1]\to X$ de q a p está dado por:

$$\overline{\gamma}(t) = \gamma(1-t), \quad \forall t \in [0,1]$$

Lema 1.2.5

$$\gamma * \overline{\gamma} \simeq e_p, \ \overline{\gamma} * \gamma \simeq e_q \ y \ \overline{\overline{\gamma}} = \gamma.$$

Definición 1.2.6

Un camino es **cerrado/lazo** si sus extremos coinciden.

Definición 1.2.7

Decimos que γ es un lazo basado en $x_0 \in X$ si $\gamma(0) = \gamma(1) = x_0$.

Definición 1.2.8

Sea $x_0 \in X$. El grupo fundamental de X con punto base en x_0 es el conjunto $\pi_1(X, x_0)$ dado por:

$$\pi_1(X, x_0) = \left\{ [\gamma] \middle| \gamma : [0, 1] \to X \text{ es un lazo basado en } x_0 \in X \right\}$$

5

con el producto dado por el inducido por la concatenación de caminos.

Observación 1.2.3

* es asociativa, $[e_{x_0}]$ es el elemento neutro y $[\overline{\gamma}]$ es el inverso de $[\gamma]$.

Ejemplo 1.2.1

$$\pi_1(\mathbb{R}^n, x_0) = \{[e_{x_0}]\}.$$

Ejemplo 1.2.2

Si $U \subseteq \mathbb{R}^n$ tiene forma de estrella relativo a $x_0 \in \mathbb{R}^n$, entonces $\pi_1(X, x_0) = \langle e \rangle$.

Observación 1.2.4

Veremos que:

- (a) $\pi_1(\mathbb{S}^1, 1) \cong \mathbb{Z}$.
- (b) $\pi_1(\mathbb{S}^n, x_0) \cong \langle e \rangle$ si $n \geq 2$.
- (c) $\pi_1(\mathbb{C} \setminus \{p,q\}, x_0) \cong F_2$, el grupo libre en dos elementos.

Definición 1.2.9

Si X arco-conexo tal que $\pi(X, x_0) = \langle e \rangle$, X es llamdo **simplemente conexo**.

Lema 1.2.6 (Cambio de punto base)

Sea X espacio topológico y γ un camino de p a q. Definimos $\varphi_{\gamma}: \pi_1(X,p) \to \pi_1(X,q)$ dada por:

$$[\delta] \mapsto [\gamma * \delta * \overline{\gamma}]$$

Entonces, φ_{γ} es un homomorfismo de grupos que solo depende de la clase de homotopía de γ .

Lema 1.2.7

Se tiene que:

$$\varphi_{[\gamma]} \circ \varphi_{[\overline{\gamma}]} = \mathbb{1}_{\pi_1(X,q)}$$
$$\varphi_{[\overline{\gamma}]} \circ \varphi_{[\gamma]} = \mathbb{1}_{\pi_1(X,p)}$$

Corolario 1.2.1

 $\varphi_{[\gamma]}$ es un isomorfismo de grupos.

Lema 1.2.8

Si p, q están en la misma componente arco-conexa, entonces $\pi_1(X, p) = \pi_1(X, q)$.

§1.3 Funtorialidad

Observación 1.3.1

Podemos ver al grupo fundamental como un funtor:

$$\pi_1: \mathrm{Top}_* \to \mathrm{Grp}$$

tal que $(X, x) \mapsto \pi_1(X, x)$.

Proposición 1.3.1

Sea $f: X \to Y$ una función continua y $\gamma: [0,1] \to X$ un camino de p a q. Definimos $f_*(\gamma) = f \circ \gamma$.

- (a) $f_*(\gamma)$ es un camino de Y que une a f(p) con f(q).
- (b) Si $\gamma \simeq \gamma'$ entonces $f_*(\gamma) \simeq f_*(\gamma')$.
- (c) γ es un camino de p a q implica que $f_*(\gamma * \mu) =$.
- (d) Si $f:X\to Y$ y $g:Y\to Z$ son funciones continuas, entonces:

$$q_* \circ f_* = q_* \circ f_*$$

(e)
$$(\mathbb{1}_X)_* = \mathbb{1}_{\pi_1(X,x_0)}$$
.

Con lo anteroir estamos diciendo que π_1 es un funtor covariante de la categoría de espacios topológicos puntuados en la categoría de grupos.

6

Teorema 1.3.1

 π_1 es un invariante de homeomorfismo, es decir si $X \cong Y$, entonces $\pi_1(X, x_0) \stackrel{f_0}{\cong} \pi_1(Y, f(x_0))$.

Lema 1.3.1

Sean $f, g: X \to Y$ y $x_0 \in X$. Si $f \simeq g$ relativas a x_0 , entonces:

$$f_* = g_* : \pi_1(X, x_0) \to \pi(Y, f(x_0))$$

Teorema 1.3.2

Sea $f: X \to Y$ y $y_0 = f(x_0)$. Si f es una equivalencia de homotopía, entonces $f_*: \pi_1(X, x_0) \to \pi(Y, f(x_0))$ es un isomorfismo, es decir que π_1 es un invariante de homotopía.

Teorema 1.3.3

Si A es un retracto por deformación de X y $x_0 \in A$, entonces el mapeo inclusión $i:A\to X$ induce un homomorfismo:

$$i_*: \pi_1(A, x_0) \to \pi_1(X, x_0)$$

Capítulo 2

Ejercicios y Problemas

§2.1 Preeliminares: el grupo fundamental

Observación 2.1.1

Durante todo el curso todas las funciones son continuas a menos que se diga explícitamente lo contrario.

Ejercicio 2.1.1

Muestre que el homomorfismo de cambio de punto base β_h depende sólo de la clase de homotopía de h.

Demostración:

Ejercicio 2.1.2

Sea $f: X \to Y$ una función continua. Si $\alpha, \beta: I \to X$ son caminos homotópicos muestre que los caminos $f \circ \alpha$ y $f \circ \beta$ son homotópicos.

Demostración:

Ejercicio 2.1.3

Si X_0 es la componente conexa por caminos del espacio X que contiene al punto base x_0 , muestre que la inclusión $i: X_0 \to X$ induce un homomorfismo $i_*: \pi_1(X_0, x_0) \to \pi_1(X, x_0)$ dado por $[\gamma] \mapsto [i \circ \gamma]$.

Note que hay que mostrar que i_* está bien definido, es un homomorfismo y es biyectivo.

Demostración:

Ejercicio 2.1.4

Muestre que no existen retracciones en los siguientes casos:

- (a) $X = \mathbb{R}^3$ con A cualquier subespacio homeomorfo a \mathbb{S}^1 .
- (b) $X = \mathbb{S}^1 \times \mathbb{D}^2$ con A su frontera $\mathbb{S}^1 \times \mathbb{S}^1$.

Ejercicio 2.1.10

Demuestra que $\pi_1(\mathbb{R}^2 - \mathbb{Q}^2)$ no es numerable.

Demostración:

Ejercicio 2.1.11

Sea X el espacio cociente obtenido de \mathbb{S}^2 identificando el polo norte con el polo sur. Calcula $\pi_1(X)$.

Solución:

Ejercicio 2.1.12

El mapping torus T_f de una función $f: X \to X$ es el cociente obtenido de $X \times I$ identificando cada punto (x,0) con (f(x),1). En el caso $X=\mathbb{S}^1\vee\mathbb{S}^1$ con f preservando el punto base, calcule una presentación de $\pi_1(T_f)$ en términos del homomoorfismo inducido $f_*:\pi_1(X)\to\pi_1(X)$.

Solución:

Ejercicio 2.1.13

Demuestre que el subespacio de \mathbb{R}^3 que es la unión de esferas de radio $\frac{1}{n}$ y centro $\left(\frac{1}{n},0,0\right)$ para n = 1, 2, ..., es simplemente conexo.

Demostración:

Ejercicio 2.1.14

Sea X el subespacio de \mathbb{R}^2 que consiste de la unión de los círculos C_n de radio n y centro (n,0)para n = 1, 2, Calcule $\pi_1(X)$.

Solución:

Ejercicio 2.1.15

Calcula el grupo fundamental de cualquier árbol conexo.

Solución:

Es trivial.