Real Analysis

Assignment N_2

Instructor: Dr. Eric Westlund

David Oniani

Luther College

oniada01@luther.edu

December 3, 2020

- 2.2.1 For instance, the sequence $(1,0,1,0,1,0,\dots)$ is vercongent. The sequence verconges at 2 since for $\epsilon = 4, \forall N \in \mathbb{N}, n \geq N$ implies $|x_n-2| \leq 1 < \epsilon$. This vercongent sequence is also a divergent sequence. Thus, divergent vercongent sequences exist. Notice that the sequence verconges at 3 as well since $\forall x \in (1,0,1,0,1,0,\dots), |x_n-3| \leq 1 < \epsilon(\epsilon=4)$. Therefore, the sequence also verconges to two different values. This definition describes **bounded sequences**.
- 2.2.2 (a) Let $N = \lceil \frac{1}{4\epsilon} \rceil$. Then, $\forall n \geq N$ and $\forall \epsilon > 0$, $|\frac{2n+1}{5n+4} \frac{2}{5}| < \frac{1}{5n} < \frac{1}{5N} < \epsilon$. $NOTE: \frac{1}{5N} \leq \frac{4\epsilon}{5} < \epsilon$.

Hence,
$$\lim \frac{2n+1}{5n+4} = \frac{2}{5}$$
.

Г

(b) Let $N = \lceil \frac{3}{\epsilon} \rceil$. Then, $\forall n \geq N$ and $\forall \epsilon > 0$, $\left| \frac{2n^2}{n^3 + 3} - 0 \right| = \frac{2n^2}{n^3 + 3} < \frac{2}{n} < \frac{2}{N} < \epsilon$. NOTE: $\frac{2}{N} \leq \frac{2\epsilon}{3} < \epsilon$.

Hence,
$$\lim \frac{2n^2}{n^3 + 3} = 0$$
.

(c) Let
$$N = \lceil \frac{2}{\epsilon^3} \rceil$$
. Then, $\forall n \ge N$ and $\forall \epsilon > 0$, $|\frac{\sin n^2}{\sqrt[3]{n}} - 0| = \frac{\sin n^2}{\sqrt[3]{n}} \le \frac{1}{\sqrt[3]{n}} < \frac{1}{\sqrt[3]{N}} < \epsilon$.
 $NOTE: \frac{1}{\sqrt[3]{N}} \le \frac{\epsilon}{\sqrt[3]{2}} < \epsilon$.

Hence,
$$\lim \frac{\sin n^2}{\sqrt[3]{n}} = 0$$
.

2.2.7 (a) It is frequently in {1} since it alternates, but it is not eventually in {1}. Let us now prove this statement. We first prove that it is *frequently* in {1} and then prove that it cannot be *eventually* in {1}.

$$\forall N \in \mathbb{N}, \exists n=2N \text{ with } (-1)^{2N}=1 \in \{1\}.$$
 Hence, the sequence is frequently in $\{1\}$

On the other hand, $\forall N \in \mathbb{N}, \exists n = 2N+1 \text{ with } (-1)^{2N+1} = -1 \notin \{1\}$. Hence, the sequence is not eventually in $\{1\}$

Therefore, the sequence $(-1)^n$ is frequently, but not eventually in $\{1\}$.

- (b) Eventually is certainly stronger. Eventually imples frequently. This is true since if $\exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N, a_n \in A$ also implies that $\forall N \in \mathbb{N}, \exists n \geq N \text{ s.t. } a_n \in A$. Put it simply, \forall statement is stronger than \exists statement since it generalizes and applies to all numbers from a certain point while satisfying exists condition only requires finding a single case.
- (c) We need to use *eventually*. Here is an alternate rephrasing of Definition 2.2.3B: "A sequence (a_n) converges to a real number a if $\forall \epsilon > 0$, the sequence is eventually in the ϵ -neighborhood of a."
- (d) It is frequently in (1.9, 2.1). This is the case since $\forall N \in \mathbb{N}, \exists n \geq N \text{ s.t. } a_n \in (1.9, 2.1)$ (as the number of 2s is infinite).

On the other hand, it is not necessarily eventually in (1.9, 2.1). A counterexample would be a sequence (2,0,2,0,...). The sequence is frequently in (1.9,2.1) (as will be all sequences with infinite number of 2s, but is not eventually in (1.9,2.1) as 2s and 0s alternate and $\forall N \in \mathbb{N}, \exists n = 2N \text{ with } 0 \neq 2$.

2.3.3 $\forall \epsilon > 0, \exists N_1, N_2 \in \mathbb{N} \text{ s.t. } \forall n_1 \geq N_1 \text{ and } \forall n_2 \geq N_2, |x_{n_1} - l| < \epsilon \text{ and } |z_{n_2} - l| < \epsilon.$ Then, let us define $N = \max{(N_1, N_2)}$. It follows that $\forall n \geq N, |x_n - l| < \epsilon$ and $|z_n - l| < \epsilon$. We get $-\epsilon < x_n - l < \epsilon$ and $-\epsilon < z_n - l < \epsilon$. After adding l to all three sides of the inequalities, we then get $l - \epsilon < x_n < l + \epsilon$ and $l - \epsilon < z_n < l + \epsilon$. Now, since we know that $x_n \leq y_n \leq z_n$, we have $l - \epsilon < x_n \leq y_n$ and $y_n \leq z_n < l + \epsilon$. Therefore, $l - \epsilon < y_n < l + \epsilon$ and it follows that $|y_n - l| < \epsilon$. Hence, $\lim y_n = l$.

П

- 2.3.7 (a) Let $(x_n) = (-1, -1, -1, \dots)$ and $(y_n) = (1, 1, 1, \dots)$. Then both x_n and y_n diverge, but their sum $(x_n + y_n) = (0, 0, 0, \dots)$ converges to 0. Hence, such sequences do exist.
 - (b) Such sequences cannot exist. Suppose, for the sake of contradiction, that $(x_n), (x_n + y_n)$ are convergent and (y_n) is divergent. Then, since $y_n = (x_n + y_n) (x_n)$, it follows by **Algebraic Limit Theorem** that y_n is also convergent and we face a contradiction. Hence, such sequences do not exist.
 - (c) Let $b_n = \frac{1}{n}$. Then b_n converges to 0 with $b_n \neq 0 \forall n \in \mathbb{N}$. However, $1/b_n = 1/(1/n) = n$ which is a divergent sequence (sequence (n) diverges). In other words, since (n) is not bounded, it is divergent by **Theorem 2.3.2**. Hence, such sequence does exist.
 - (d) Such sequences cannot exist. Suppose, for the sake of contradiction, that (a_n) and (b_n) are unbounded and convergent sequences respectively with $(a_n b_n)$ being a bounded sequence. Since b_n is convergent (by **Theorem 2.3.2**, it is also has to be bounded), let its bound be B and let $(a_n b_n)$ be bounded by D. Then it follows that $\forall n \in \mathbb{N}, |a_n| \leq |a_n b_n| \leq |a_n b_n| + |b_n| \leq D + B$. Thus, we got that (a_n) is bounded too and we face the contradiction. Hence, such sequences do not exist.
 - (e) Let $(a_n) = (0, 0, 0, ...)$ and let $(b_n) = (1, -1, 1, ...)$. Then (a_n) and (a_nb_n) both converge to 0, but (b_n) is divergent. Hence, such sequences do exist.

2.3.13 (a) Notice that
$$a_{mn} = \frac{m}{m+n} = \frac{\frac{m}{m}}{\frac{m}{m} + \frac{n}{m}} = \frac{1}{1 + \frac{n}{m}}$$
.

Then we have
$$\lim_{m\to\infty}a_{mn}=1$$
 and $\lim_{n\to\infty}\left(\lim_{m\to\infty}a_{mn}\right)=\lim_{n\to\infty}1=1$.
Similarly, $\lim_{n\to\infty}a_{mn}=0$ and $\lim_{m\to\infty}\left(\lim_{n\to\infty}a_{mn}\right)=\lim_{m\to\infty}0=0$.
Finally, we got that $\lim_{n\to\infty}\left(\lim_{m\to\infty}a_{mn}\right)=1$ and $\lim_{m\to\infty}\left(\lim_{n\to\infty}a_{mn}\right)=0$