Матан теоремы

Никита Латушкин 18 января 2022 г.

1 Признак Вейерштрасса равномерной сходимости функционального ряда

Положительный ряд $\sum\limits_{k=1}^{\infty}c_k$ называется **мажорантным** для функционального ряда $\sum\limits_{k=1}^{\infty}u_k(z)$ на множестве $E\subset C,$ если $\forall n, \forall z\in E:|u_n(z)|\leq c_n.$

Признак

Пусть $\forall n, \forall z \in E, |u_n(z)| \leq c_n$. Если положительный ряд $\sum_{k=1}^{\infty} c_k$ сходится, то функциональный ряд $\sum_{k=1}^{\infty} u_k(z)$ сходится равномерно на E.

2 Признак Дирихле равномерной сходимости функционального ряда

Функциональная последовательность $\{\phi_n\}_{n=1}^{\infty}$ равномерно ограничена на $E\subset C,$ если $\exists M>0,$ $\forall z\in E \ \forall n\colon |\phi_n(z)|\leq M$

Признак

Пусть функциональная последовательность $\{b_k\}_{k=1}^{\infty}$ равномерно сходится к 0 на E и монотонна по k $\forall x \in E$, частичные суммы $\sum_{k=1}^{n} a_k(x)$ равномерно ограничены, тогда функциональный ряд $\sum_{k=1}^{\infty} a_k(x)b_k(x)$ сходится равномерно на E.

3 Признак Абеля равномерной сходимости функционального ряда

Функциональная последовательность $\{\phi_n\}_{n=1}^\infty$ равномерно ограничена на $E\subset C,$ если $\exists M>0,\, \forall z\in E\,\, \forall n\colon |\phi_n(z)|\leq M$

Признак

Пусть функциональная последовательность $\{b_k\}_{k=1}^{\infty}$ равномерно ограничена на Е и монотонна по k, функциональный ряд $\sum_{k=1}^{\infty} a_k(x)$ сходится равномерно, тогда функциональный ряд $\sum_{k=1}^{\infty} a_k(x)b_k(x)$ сходится равномерно на Е.

4 Свойства степенных рядов

- 1) Сумма степенного ряда непрерывна в круге сходимости
- 2) Степенной ряд $f(x) = \sum_{k=0}^{\infty} c_k x^k$ можно почленно интегрировать на любом отрезке $[0;x] \subset (-R;R)$. При этом радиус сходимости проинтегрированного ряда $\int\limits_0^x f(t)dt = c_0 x + \frac{c_1}{2} x^2 + \cdots + \frac{c_n}{n+1} x^{n+1} + \ldots$ совпадает с исходным
- 3) Степенной ряд $\sum_{k=0}^{\infty} = f(x)$ можно почленно продифференцировать в круге сходимости. Радиус сходимости продифференцированного ряда $f'(x) = \sum_{k=0}^{\infty} k c_k x^{k-1}$ совпадает с исходным.

5 Непрерывность суммы функционального ряда

Пусть $u_k(x) \in C(E)$, функциональный ряд $\sum_{k=1}^{\infty} u_k$ равномерно сходится на Е к функции f. Тогда $f \in C(E)$.

6 Теорема о почленном интегрировании функционального ряда

Пусть $u_k \in \Re[a;b]$, ряд $\sum_{k=1}^{\infty} u_k$ равномерно на [a;b] сходится к функции f. Тогда $f \in \Re[a;b]$ и $\int\limits_a^b f(x)dx = \sum\limits_{k=1}^{\infty} \int\limits_a^b u_k(x)dx$

7 Теорема о почленном дифференцировании функционального ряда

Пусть 1) $u_k \in C^1[a;b]$ 2) $\sum_{k=1}^{\infty} u_k(x)$ сходится в некоторой точке $x_0 \in [a;b]$ 3) $\sum_{k=1}^{\infty} u_k'(x_0)$ сходится равномерно на (a;b) к функции g(x).

Тогда функциональный ряд $\sum\limits_{k=1}^\infty u_k(x)$ сходится равномерно на [a;b] к некоторой функции $f\in C^1(a;b)$ и f'(x)=g(x) на (a;b).

8 Интеграл Дирихле

$$J(\beta) = \int_{0}^{\infty} \frac{e^{-\beta x} \sin x}{x} dx = \frac{\pi}{2} - arctg\beta, \ \beta \ge 0$$

9 Лемма Римана об осцилляции

Пусть $f(x), |f(x)| \in \Re[a;b]$ хотя бы в несобственном смысле, тогда $\lim_{p\to\infty}\int\limits_a^b f(x)\cos px dx = \lim_{p\to\infty}\int\limits_a^b f(x)\sin px dx = 0$

10 Признак локализации

Пусть $f-2\pi$ -периодическая функция, f и |f| интегрируемы на R хотя бы в несобственном смысле. Тогда $\forall \delta \in (0; \pi) \ \forall x \in (-\pi; \pi)$

$$\lim_{n \to \infty} \left(\int_{-\pi}^{-\delta} + \int_{\delta}^{\pi} \right) \frac{f(x-t) + f(x+t)}{2} D_n(t) dt = 0$$

$$D_n(x) = \sum_{k=-n}^n e^{ikx}$$
 – ядро Дирихле

Признак Дини сходимости ряда Фурье 11

Пусть $f - 2\pi$ -периодическая функция, f и |f| интегрируемы на R хотя бы в несобственном смысле, $\exists f(x \pm 0)$.

$$S_f(x) = \frac{f(x-0) + f(x+0)}{2}$$

 $S_f(x)=rac{f(x-0)+f(x+0)}{2}.$ Если для некоторого $\delta\in(0;\pi)$ сходится несобственный интеграл $\int\limits_{0}^{\delta} \frac{|\phi(t)|}{t} dt, \ \phi(t) = \frac{f(x-t)+f(x+t)}{2} - S_f(x),$ то ряд Фурье функции в точке сходится к значению $S_f(x)$.

$$\lim_{n \to \infty} (S_n f)(x) = S_f(x)$$

$$S_n f(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx$$

Равномерная сходимость ряда Фурье 12

Пусть $f - 2\pi$ -периодична, дифференцируема на $[-\pi; \pi]$, f' удовлетворяет условию Дирихле. Тогда $S_n f$ равномерно сходится к f на R.

$$S_n f(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx$$

Говорят, что функция f:[a;b] o R удовлетворяет условиям Ди**рихле**, если существует такое разбиение $a = x_0 < x_1 < \cdots < x_n = b$, что на каждом $(x_k; x_{k+1})$ функция f ограничена, непрерывна и монотонна.

13 Дифференцируемость ИЗОП

Пусть f и $\frac{\partial f}{\partial y}\in C\{[a;b]\times(c;d)\}$, тогда ИЗОП $F(y)=\int\limits_a^b f(x,y)dx$ есть функция, непрерывно дифференцируемая на (c;d) и верна формула Лейбница

$$\frac{d}{dy} \int_{a}^{b} f(x,y) dx = \int_{a}^{b} \frac{\partial}{\partial y} f(x,y) dx$$

14 Интегрируемость ИЗОП

Пусть
$$f(x,y) \in C\{[a;b] \times [c;d]\}$$
, тогда
$$\int_{c}^{d} dy \int_{a}^{b} f(x,y) dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy$$

15 Непрерывность ИЗОП

Пусть $f(x,y) \in C\{[a;b] \times (c;d)\}$, тогда ИЗОП $F(y) = \int\limits_a^b f(x,y) dx$ является непрерывным на (c;d)

16 Признак Вейерштрасса равномерной сходимости НИЗОП

Пусть $|f(x,y)| \leq g(x) \ \forall x \in [a;\omega) \times Y$. Если НИ $\int\limits_a^\omega g(x)dx$ сходится, то НИЗОП $F(y) = \int\limits_a^\omega f(x,y)dx$ сходится равномерно на Y.

17 Признак Дирихле равномерной сходимости НИЗОП

Пусть первообразная $\int\limits_a^x f(t,y)dt$ ограничена на $[a;\omega) \times Y, \ \forall y \in Y \ g(x,y)$ монотонна по х и g(x,y) равномерно сходится к 0 по $y \in Y$, тогда $\int\limits_a^\omega f(x,y)g(x,y)dx$ сходится равномерно на Y.

18 Признак Абеля равномерной сходимости НИЗОП

Пусть НИЗОП $\int\limits_a^\omega f(x,y)dx$ на Y сходится равномерно, $\forall y\in Y\ g(x,y)$ монотонна и равномерно ограничена, тогда НИЗОП $\int\limits_a^\omega f(x,y)g(x,y)dx$ сходится равномерно на Y.

19 Формула Грина

Пусть D – квадрируемая область с кусочно гладким краем ∂D . Функции $P(x,y),Q(x,y),\frac{\partial P}{\partial y}(x,y),\frac{\partial Q}{\partial x}(x,y)$ – непрерывны в $\overline{D}=D\cup\partial D$. Тогда верна формула

$$\int_{\partial D} P(x,y)dx + Q(x,y)dy = \int_{D} \left(\frac{\partial Q}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y)\right)dxdy$$

20 Существование первообразной в области

Теорема 1

 Пусть $G \subset \mathbb{R}^2$ – область, P(x,y), Q(x,y) – непрерывно дифференцируемы. Тогда равносильны следующие условия:

1)
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \ \forall x, y \in G$$

2) Пусть
$$\triangle \subset G$$
 – треугольник, тогда $\int\limits_{\partial \triangle} P dx + Q dy = 0$

3) В G существует локальная первообразная для дифференциала Pdx + Qdy

Теорема 2

Пусть $G \subset \mathbb{R}^2$ — односвязная область. Следующие утверждения равносильны:

- 1) $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y},\ \forall x,y\in G$ 2) Для любой замкнутой кусочно гладкой кривой γ в G $\int Pdx + Qdy = 0$
- $\overset{'}{3})$ Для любой разом
кнутой кусочно гладкой кривой γ в G $\int P dx + Q dy$ не зависит от формы кривой, а зависит от положения её концов
 - 4) $\exists F(x,y)$ глобальная первообразная в области G для Pdx + Qdy