Применение Python для моделирования рискменеджмента портфеля финансовых активов с использованием Monte Carlo **Simulation**

Серкибаев Аким, Василенко Егор | Э-2209

Введение

Цель работы — исследовать эффективность применения метода Monte Carlo Simulation для оценки рисков портфеля финансовых активов.

Для достижения цели предполагается решение следующих задач:

- 1. Сбор и подготовка данных о доходности финансовых активов;
- 2. Построение модели портфеля с учетом ковариации и весов активов;
- 3. Реализация метода Monte Carlo Simulation для прогнозирования доходности портфеля;
- 4. Оценка риска портфеля с использованием метрик VaR и CVaR;
- 5. Анализ влияния диверсификации на снижение риска портфеля.

Основные понятия

Риск-менеджмент портфеля 01 Волатильность Доходность Корреляция Метод Монте-Карло 05

Источники данных и их обработка

БИБЛИОТЕКИ

- Yfinance
- Pandas
- matplotlib.pyplot
- Numpy
- Seaborn
- IPython.display import display, HTML

ИСТОЧНИКИ

- Yahoo Finance
- Alpha Vantage
- Quandl

ТИПЫ АКТИВОВ

- Акции
- Облигации
- ETF
- Золото
- Криптовалюта

Рассматриваемый период: 2018-2023 гг.

	Тикер	Название
0	AAPL	Apple Inc.
1	MSFT	Microsoft Corporation
2	GOOGL	Alphabet Inc.
3	TSLA	Tesla, Inc.
4	NVDA	NVIDIA Corporation
5	AMZN	Amazon.com, Inc.
6	WMT	Walmart Inc.
7	JPM	JPMorgan Chase & Co.
8	BAC	Bank of America Corporation
9	TLT	Долгосрочные казначейские облигации США (ETF)
10	IEF	Среднесрочные казначейские облигации США (ЕТF)
11	LQD	Корпоративные облигации инвестиционного уровня
12	SPY	Индекс S&P 500 (ETF)
13	QQQ	NASDAQ 100 (ETF)
14	EFA	Международные рынки развитых стран (ETF)
15	EEM	Развивающиеся рынки (ETF)
16	GLD	Золото (ЕТF)
17	USO	Нефть (ЕТF)
18	BTC-USD	Биткоин
19	ETH-USD	Эфириум

Рассматриваемые тикеры

Визуализация

Построение модели портфеля

```
[23]: # Средняя годовая доходность
       annual returns = log returns.mean() * 252
       # Ковариационная матрица годовых доходностей
      cov matrix = log returns.cov() * 252
[24]: annual returns df = pd.DataFrame({
           "Название": [ticker_names[ticker] for ticker in tickers],
           "Среднегодовая доходность": annual returns
       annual returns df
                                                        Название Среднегодовая доходность
         Ticker
          ΔΔΡΙ
                                                         Apple Inc.
                                                                                     0.223306
         AMZN
                                              Microsoft Corporation
                                                                                     0.066853
           BAC
                                                      Alphabet Inc.
                                                                                     0.040912
       BTC-USD
                                                         Tesla, Inc.
                                                                                     0.019863
           EEM
                                                NVIDIA Corporation
                                                                                     -0.024663
           EFA
                                                  Amazon.com. Inc.
                                                                                     0.013412
       ETH-USD
                                                      Walmart Inc.
                                                                                     0.058886
           GLD
                                              JPMorgan Chase & Co.
                                                                                     0.058826
                                        Bank of America Corporation
        GOOGL
                                                                                     0.096172
```

Расчёт среднегодовой доходности

Построение модели портфеля

Построение тепловой карты ковариации

Имитация Монте-Карло и выбор оптимального портфеля

10000000

Генерация случайных портфелей

2.3. Реализация Monte Carlo Simulation

```
[31]: # Количество случайных портфелей
      num portfolios = 10000000
       # Массивы для хранения результатов
      results = np.zeros((3, num portfolios))
      weights_record = []
      for i in range(num portfolios):
           # Генерация случайных весов
           weights = np.random.random(len(tickers))
           weights /= np.sum(weights)
           # Запись весов
           weights record.append(weights)
           # Расчет характеристик
           portfolio_return = np.dot(weights, annual_returns)
           portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
           sharpe ratio = portfolio return / portfolio volatility
           # Сохранение результатов
           results[0, i] = portfolio_return
          results[1, i] = portfolio volatility
           results[2, i] = sharpe_ratio
       # Преобразование в DataFrame
       results_df = pd.DataFrame({
           "Доходность": results[0],
           "Риск (волатильность)": results[1],
           "Коэффициент Шарпа": results[2]
```

[32]:	results_df.head(5)					
[32]:		Доходность	Риск (волатильность)	Коэффициент Шарпа		
	0	0.059244	0.207603	0.285374		
	1	0.072688	0.184084	0.394861		
	2	0.096674	0.246699	0.391870		
	3	0.084475	0.210401	0.401495		
	4	0.074411	0.205721	0.361707		

Имитация Монте-Карло и выбор оптимального портфеля

Выбор оптимального портфеля

13,1%

Доходность

20,8%

Риск (волатильность)

0,63

Коэффициент Шарпа

Состав портфеля

Тикер	Название	Вес в портфеле
AAPL	Apple Inc.	0.134745
MSFT	Microsoft Corporation	0.005764
GOOGL	Alphabet Inc.	0.012505
TSLA	Tesla, Inc.	0.005855
NVDA	NVIDIA Corporation	0.008292
AMZN	Amazon.com, Inc.	0.007386
WMT	Walmart Inc.	0.006065
JPM	JPMorgan Chase & Co.	0.054254
BAC	Bank of America Corporation	0.049923
TLT	Долгосрочные казначейские облигации США (ETF)	0.023008
IEF	Среднесрочные казначейские облигации США (ЕТF)	0.021906
LQD	Корпоративные облигации инвестиционного уровня (ЕТF)	0.106067
SPY	Индекс S&P 500 (ETF)	0.073475
QQQ	NASDAQ 100 (ETF)	0.082014
EFA	Международные рынки развитых стран (ETF)	0.023589
EEM	Развивающиеся рынки (ETF)	0.038340
GLD	Золото (ЕТF)	0.092310
USO	Нефть (ЕТF)	0.128428
BTC-USD	Биткоин	0.005738
ETH-USD	Эфириум	0.120334

Характеристики портфеля

Доходность 0.131042

Риск (волатильность) 0.207993

Коэффициент Шарпа 0.630030

Равновзвешенный портфель

7,88%

Доходность

21,2%

Риск (волатильность)

0,37

Коэффициент Шарпа

Состав портфеля

Тикер	Название	Вес в портфеле
AAPL	Apple Inc.	0.05
MSFT	Microsoft Corporation	0.05
GOOGL	Alphabet Inc.	0.05
TSLA	Tesla, Inc.	0.05
NVDA	NVIDIA Corporation	0.05
AMZN	Amazon.com, Inc.	0.05
WMT	Walmart Inc.	0.05
JPM	JPMorgan Chase & Co.	0.05
BAC	Bank of America Corporation	0.05
TLT	Долгосрочные казначейские облигации США (ETF)	0.05
IEF	Среднесрочные казначейские облигации США (ЕТF)	0.05
LQD	Корпоративные облигации инвестиционного уровня (ЕТF)	0.05
SPY	Индекс S&P 500 (ETF)	0.05
QQQ	NASDAQ 100 (ETF)	0.05
EFA	Международные рынки развитых стран (ETF)	0.05
EEM	Развивающиеся рынки (ETF)	0.05
GLD	Золото (ЕТF)	0.05
USO	Нефть (ЕТF)	0.05
BTC-USD	Биткоин	0.05
ETH-USD	Эфириум	0.05

Характеристики портфеля

Доходность 0.078809

Риск 0.212199

Коэффициент Шарпа 0.371392

ЗАКЛЮЧЕНИЕ

Преимущества и рекомендации

Библиографический список источников

- 1. Yfinance: библиотека для получения финансовых данных из Yahoo Finance [Электронный ресурс] / Разработчик: Ran Aroussi. Версия 0.2.50. Режим доступа: https://pypi.org/project/yfinance/, свободный. Загл. с экрана. Дата обращения: 01.12.2024.
- 2. Михайлов, Г. А. Статистическое моделирование. Методы Монте-Карло: учебное пособие для вузов / Г. А. Михайлов, А. В. Войтишек. Москва: Издательство Юрайт, 2024. 323 с.
- 3. Ермаков, С. М. Метод Монте-Карло в вычислительной математике: вводный курс / С. М. Ермаков. Москва: БИНОМ ; Санкт-Петербург: Невский диалект, 2009. 192 с.
- 4. Хилпиш, И. Python для финансовых расчётов: искусство работы с финансовыми данными / И. Хилпиш; редактор В. Р. Гинзбург; перевод с английского И. В. Василенко. 2-е изд. Москва-Санкт-Петербург: Диалектика, 2021. 794 с.
- 5. Карасан, А. Машинное обучение для управления финансовыми рисками с помощью Python: алгоритмы моделирования рисков / А. Карасан. Севастополь: O'Reilly Media, 2021. 334 с.

Применение Python для моделирования рискменеджмента портфеля финансовых активов с использованием Monte Carlo **Simulation**

Серкибаев Аким, Василенко Егор | Э-2209