Домашнее задание № 3

Тема: Доверительные интервалы. Общая теория построения статистических тестов.

Крайний срок сдачи: 15 ноября 2020 г. (до конца дня).

1

Т1 (i) (1.5 балла) Пусть даны i.i.d. случайные величины $X_1,...X_n$ с непрерывной функцией распределения F(x) (возможно, зависящей от параметров). Докажите, что

$$-\sum_{i=1}^{n}\log(1-F(X_i))\sim\Gamma(n,1).$$

Пользуясь этим результатом, постройте точный доверительный интервал методом центральной функции для параметра λ из распределения Вейбулла с функцией распределения

$$F(x) = 1 - e^{-(x/\lambda)^{\tau}}, \quad x > 0.$$

Параметр τ предполагается известным.

(ii) (1.5 балла) Для случая $\tau=1$ (экспоненциальное распределение) постройте асимтотические доверительные интервалы для параметра λ , используя асимптотическую нормальность статистик

(iiia)
$$\frac{1}{n} \sum_{i=1}^{n} X_i$$
; (iiib) $\sqrt{\frac{1}{2n} \sum_{i=1}^{n} X_i^2}$.

Выясните, какой из этих двух асимптотических интервалов имеет меньшую длину при больших n (для ответа на этот вопрос можно использовать компьютер).

- (iii) (1 балл) Для этого же интервала постройте непараметрическую оценку параметра λ , используя зависимость медианы распределения от параметра λ .
- N1 (1 балл) Промоделируйте выборку длины n=1000 из экспоненциального распределения с фиксированным параметром λ . Расширяя подвыборку от 50 до 1000 наблюдений, вычислите длины доверительных интервалов, построенных в п. (iii) и (iv) (при этом зафиксируйте $\alpha=0.05$) и постройте графики, выражающие зависимость длины интервала от размера выборки (отдельно для каждого метода). Отобразите зависимость длины интервала от α (для этого зафиксируйте параметр n=1000).

2

- Т2 (1 балл) Проводится опрос общественного мнения с целью понять различия в предпочтениях между жителями городской и сельской местности. Задавался единственный вопрос "Поддерживаете ли Вы действия правительства", возможные ответы да или нет. Было решено опросить равное количество респондентов n человек в городе и n человек в сельской местности. Нужно проводить опрос до тех пор, пока разность между вероятностями поддержки в городе и силе не будет оценена с точностью 0.05. Решение принимается на основе асимптотического доверительного интервала с уровнем доверия 0.95. Определите, какое минимальное количество респондентов 2n нужно опросить.
- ТЗ (1 балл) Количество респондентов для опроса из [Т2] вычисляется исходя тестирования гипотезы "уровни поддержки в городе и селе совпадают" против альтернативы "уровень поддержки в городе превышает уровень поддержки в сельской местности на 3%". По-прежнему в городе и селе опрашивается равное количество респондентов. Исходя из проведённых ранее опросов предполагается, что уровень поддержки в городе примерно равен 14%, а в сельской местности 9%.

Определите, какое минимальное количество респондентов нужно опросить, чтобы допустимая вероятность ошибки первого составила 0.05, а допустимая вероятность ошибки второго рода - 0.04.

Указание. Условие "Исходя из проведённых ранее опросов предполагается, что уровень поддержки в городе примерно равен 14%, а в сельской местности - 9%" следует использовать для оценивания асимптотической дисперсии (метод подстановки параметра).

3

Т4 (1.5 балла) Дана выборка длины n из распределения с функцией плотности

$$p(x,\theta) = \theta(1-x)^{\theta-1}, \qquad x \in [0,1]$$

с неизвестным параметром $\theta>0$. Опишите равномерно наиболее мощный тест для проверки гипотезы $\theta=\theta_0$ против альтернативы $\theta>\theta_0$. Докажите, что мощность этого теста равна

$$W(\theta) = F_{(n,\theta_0)} \left(\frac{\theta}{\theta_0} \cdot q_{(n,\theta_0)}(\alpha) \right),$$

где $F_{(n,\theta_0)}, q_{(n,\theta_0)}(\alpha)$ - это функция распределения и α -квантиль гаммараспределения, имеющего плотность

$$p(x) = \frac{\theta_0^n}{\Gamma(n)} x^{n-1} e^{-\theta_0 x}, \qquad x > 0.$$

Т5 (1.5 балла) Наблюдаемые величины $X_1, ..., X_n$ имеют нормальное распределение с неизвестным средним μ и известной дисперсией σ^2 . Для тестирования гипотезы $H_0: \mu = \mu_0$ против альтернативы $H_1: \mu = \mu_1 > \mu_0$ используются тесты вида $\{\bar{X} \geq c\}$, где $\bar{X} = (X_1 + ... + X_n)/n$. Докажите, что при выборе $c = (\mu_1 + \mu_0)/2$ получается тест, у которого сумма опибок первого и второго рода минимальна среди всех возможных тестов такого вида.

4

T6* (2 балла) Пусть задана выборка $x_1,..,x_n$ из экспоненциального семейства распределений с плотностью

$$p(x,\theta) = g(x)e^{x\theta - d(\theta)}$$

где $g: \mathbb{R} \to \mathbb{R}_+$ и $d: \mathbb{R} \to \mathbb{R}$. Для тестирования гипотезы $H_0: \theta = \theta_0$ против альтернативы $\theta > \theta_0$ используется LR (likelihood ratio) тест вида

$$\left\{ \Lambda(\vec{x}) := \frac{\max_{\theta > \theta_0} L(\vec{x}, \theta)}{L(\vec{x}, \theta_0)} > c_{\alpha} \right\},\tag{1}$$

где $L(\vec{x},\theta) = \prod_{i=1}^n p(x_i,\theta)$ - функция правдоподобия, и пороговый уровень c_{α} подбирается из условия, что уровень значимости теста равен $\alpha \in (0,1)$.

(і) Докажите, что

$$\log(\Lambda(\vec{x})) = \begin{cases} nK(\hat{\theta}, \theta_0), & \text{если } \hat{\theta} > \theta_0, \\ 0, & \text{иначе,} \end{cases}$$

где $\hat{\theta}$ - оценка максимального правдоподобия (вычисленная по выборке $x_1,..,x_n$), а K- расстояние Кульбака-Ляйблера, определяемое как

$$K(\hat{\theta}, \theta_0) = \int \log \left(\frac{p(x, \hat{\theta})}{p(x, \theta_0)}\right) p(x, \theta_0) dx.$$

(ii) Докажите, что LR - тест (1) в данной модели может быть записан в виде

$$\{\hat{\theta} > \theta_0 + \tilde{c}_\alpha\},$$

где $\tilde{c}_{\alpha} > 0$.