

A Rich Morphological Tagger for English: Exploring the Cross-Linguistic Tradeoff Between Morphology and Syntax

Christo Kirov, John Sylak-Glassman, Rebecca Knowles, Ryan Cotterell, Matt Post

Introduction

- ▶ Are all human languages equally expressive?
 - Czech makes many semantic distinctions using overt morphology
 - English makes same distinctions using syntactic structure and contextual cues
- ▶ We train an English tagger to supply Czech distinctions

Why This Matters

- ▶ Confirm equal expressivity assumption
- Machine Translation into morphologically rich languages:
 - Tagging the source (e.g., English) makes it more like the target (e.g., Czech)
 - -Similar to intuition for 'de-compounding' German prior to MT into English (e.g., Niessen & Ney 2000)

Hand-Made Heuristics

- ▶ Drábek & Yarowsky (2005) and Avramidis & Koehn (2008) previously developed methods to provide rich morphological tags for English.
 - Manually-developed heuristics convert combinations of syntactic structures to morphological features.

- ▶ Conceptual problem: Morphological feature assignment based on analysts' intuitions.
- ▶Our Solution: Learn correspondence of parse features to morphological features directly from projection across parallel text.

Projecting Morphological Features

- ▶ Prague Czech-English Dependency Treebank (PCEDT)
 - Corresponds to Wall Street Journal portion of Penn Treebank (PTB)
 - Native tagging converted to UniMorph Schema (Sylak-Glassman et al. 2015, Kirov et al. 2016, unimorph.org)
- Automatically aligned to English text using GIZA+

Projecting Morphological Features

- ▶ For each English word:
 - If aligned to single Czech word, take tag.
 - If aligned to multiple Czech words:
 - Take intersecting alignment point.
 - Take leftmost aligned word.
 - If not aligned, leave unannotated.

Tags, Subtags, and Values

Czech PCEDT tag UniMorph tag = English PTB tag je VB-S---3P-AA--- V;ACT;POS;PRS;3;SG is VBZ

Subtag	Values
Number	SG, DU, PL
CASE	NOM, GEN, DAT, ACC, VOC, ESS, INS
PERSON	1, 2, 3
TENSE	FUT, PRS, PST
GRADE	CMPR, SPRL
NEGATION	POS, NEG
VOICE	ACT, PASS

Validating Projections

▶ Do Czech features match English in the few cases where English expresses them?

PTB	Expected UM	Match %
NN	SG	87.8
NNP	SG	73.9
NNS	PL	83.3
NNPS	PL	65.1
JJR	CMPR	89.0
JJS	SPRL	79.3
RBR	CMPR	76.3
RBS	SPRL	68.7
VBZ	SG	91.3
VBZ	3	90.7
VBZ	PRS	89.4
VBG	PRS	55.9
VBP	PRS	87.2
VBD	PST	93.9
VBN	PST	78.7
Aver	80.7	

English Features

- ▶ Contextual:
 - WORD: the English token in context
 - **NEIGHBORS**: left and right adjacent words
 - **NEIGHBOR POS**: POS of left and right adjacent words

English Features

- ▶ Dependency-based:
 - **HEAD**: the word's head word
 - **HEAD CHAIN POS**: the chain of POS tags up the dependency graph
 - **HEAD CHAIN LABELS**: the chain of dependency labels up the graph
 - CHILD: any child word with det or prep arc label

English Features

- ▶ Constituent (CFG)-based:
 - **POS**: the POS of the word, parent, and grandparent
 - **NODE CHAIN**: chain of tree nodes on path to root up to length 5 (NN.NP.S)
 - **ROOT DISTANCE**: distance from root

Neural Model

Word features jointly encoded and sent to individual subtag classifiers.

Experiment Setup

- ▶ All data from WSJ portion of PTB
 - -Training Set: §02-§21
 - Dev Set: §00
 - -Test Set: §22
- ▶39,832 training sentences (726,262 words)

Baseline Results

Other companies are introducing related products PL, NOM PL, NOM ACT, 3, PRS, PL ACT, 3, PRS, PL PL, ACC PL, ACC

- ▶ Baseline 1: Most frequent value of subtag in Czech
- ▶ Baseline 2: English PTB -> UniMorph, then compare to projected subtag value from Czech; penalize non-matching and missing values in English UniMorph
- ▶ Baseline 3: Baseline 2, but penalize only non-matching values, not missing

source	case	tense	per	num	neg	grade	voice	all
Baseline 1	35.0	86.7	94.2	45.6	68.8	99.0	86.7	14.1
Baseline 2	0.7	61.5	29.3	46.0		62.6		4.3
Baseline 3	46.4	89.1	99.8	86.3		99.5		8.6
PCEDT	69.1	93.3	96.5	78.3	89.4	99.5	93.7	54.7

Feature Ablation Study

▶ Which syntactic features capture the most morphological information?

features	case	tense	person	num.	neg.	grade	voice
POS	46.4	91.2	95.3	68.7	84.2	99.3	91.8
Word	56.2	91.5	95.5	72.4	85.9	99.4	91.9
Word, POS	58.6	92.1	95.9	74.4	88.3	99.4	92.6
Word, POS, POS ctxt	63.8	92.7	96.1	77.5	89.1	99.5	93.2
CFG	65.0	92.7	96.2	77.5	88.8	99.4	93.1
dep	67.0	92.9	96.3	77.9	89.3	99.5	93.2
dep, CFG	69.1	92.9	96.4	78.0	89.2	99.5	93.2
dep, CFG, lex. ctxt	69.0	93.2	96.6	79.1	89.8	99.5	93.7

Bold = highest accuracy value for subtag

Conclusion

- ▶ Built ML Tagger to learn correlations between morphological and syntactic features derived from projection between parallel text
 - Avoids labor and pitfalls of manual heuristics
- ► We find empirical evidence for equal expressivity of languages, with a tradeoff between morphology and syntax
- ▶ Planned extension: Tagging in context

Thank You!

References

Paper URL: http://aclweb.org/anthology/E17-2018

- Eleftherios Avramidis and Philipp Koehn. 2008. "Enriching Morphologically Poor Languages for Statistical Machine Translation." In Proceedings of ACL-2008: HLT, 763-770. ACL: Columbus, OH.
- Elliott Franco Drábek and David Yarowsky. 2005. "Induction of Fine-grained Part-ofspeech Taggers via Classifier Combination and Crosslingual Projection." Proceedings of the ACL Workshop on Building and Using Parallel Texts, 49-56. ACL: Ann Arbor, MI.
- Christo Kirov, John Sylak-Glassman, Roger Que, and David Yarowsky. 2016. "Very-large Scale Parsing and Normalization of Wiktionary Morphological Paradigms."
 Proceedings of LREC 2016, 3121-3126. ELRA: Portorož, Slovenia.
- · John Sylak-Glassman, Christo Kirov, David Yarowsky, and Roger Que. 2015. "A Language-Independent Feature Schema for Inflectional Morphology." In Proceedings of the ACL 53 IJCNLP 7, Volume 2: Short Papers, 674-680. ACL: Beijing.

Acknowledgements

Paper URL: http://aclweb.org/anthology/E17-2018

- ▶ DARPA LORELEI
- **▶**NSF GRF
- **▶** DAAD
- **▶**NDSEG
- ▶ Amazon AARA

Christo Kirov

John Sylak-Glassman

Rebecca Knowles

Ryan Cotterell

Matt Post

ckirov@gmail.com
jcsg@jhu.edu
rknowles@jhu.edu
ryan.cotterell@jhu.edu
post@cs.jhu.edu