6. Vorlesung - Angewandte Mathematik

Holger Gerhards

DHBW Mannheim, TINF22IT1 holger.gerhards@dhbw-mannheim.de

18. Oktober 2023

Themen dieser Vorlesung

- ▶ Taylorentwicklung im \mathbb{R}^n
 - Tangentialebene
 - Fehlerberechnung
- Integration in h\u00f6heren Dimensionen

Tangentialebene

Ausgangspunkt: Entwicklung einer Funktion in ein Taylorpolynom vom Grade 1

$$\underbrace{T_1 f(x, y; a, b)}_{z} = \underbrace{f(a, b)}_{A} + \underbrace{\frac{\partial f}{\partial x}\Big|_{(a, b)}}_{B} (x - a) + \underbrace{\frac{\partial f}{\partial y}\Big|_{(a, b)}}_{C} (y - b)$$

$$z = A + B(x - a) + C(y - A)$$

Darstellung als Ebenengleichung

$$Bx + Cy - z = \text{konstant} \tag{1}$$

Normalenvektor auf der Ebene:

$$\vec{n} = \begin{pmatrix} B \\ C \\ -1 \end{pmatrix} = \begin{pmatrix} \partial_x f \\ \partial_y f \\ -1 \end{pmatrix}_{(a,b)} \tag{2}$$

Tangentialebene

- Anwendung:
 - Reflektionberechnung an einer Ebene
 - ... bzw. Reflektionberechnung an beliebigen Oberflächen

Themen dieser Vorlesung

- ▶ Taylorentwicklung im \mathbb{R}^n
 - Tangentialebene
 - Fehlerberechnung
- Integration in h\u00f6heren Dimensionen

Fehlerberechnung

- Annahme: Geschwindigkeitsmessung
 - Messung einer Strecke s_m
 - Messung einer Zeit t_m
- Ergebnis: Geschwindigkeit $v_m = \frac{s_m}{t_m}$
- ▶ aber: s_m und t_m haben Messfehler $\triangle s$ und $\triangle t$
- ► Ziel: Berechnung des Fehlers △v
- Ansatz: Bestimmung der Taylorentwicklung von v bzgl. s und t

$$v(s,t) \approx v(s_m,t_m) + \left. \frac{\partial v}{\partial s} \right|_{(s_m,t_m)} (s-s_m) + \left. \frac{\partial v}{\partial t} \right|_{(s_m,t_m)} (t-t_m)$$

Fehlerberechnung

▶ Test an der Stelle: $s = s_m + \triangle s$ und $t = t_m + \triangle t$

$$v(s_m + \triangle s, t_m + \triangle t) \approx v(s_m, t_m) + \frac{\partial v}{\partial s} \Big|_{(s_m, t_m)} \triangle s + \frac{\partial v}{\partial t} \Big|_{(s_m, t_m)} \triangle t$$

Fehler für v ergibt sich zu

$$\triangle v = v(s_m + \triangle s, t_m + \triangle t) - v(s_m, t_m)$$
 (3)

► Interesse aber nur an den größten Abweichungen ⇒ Beträge der ersten Ableitungen

$$\triangle v = \left| \frac{\partial v}{\partial s} \right|_{(s_m, t_m)} \triangle s + \left| \frac{\partial v}{\partial t} \right|_{(s_m, t_m)} \triangle t$$

Fehlerberechnung

- Allgemeines Fehlerfortpflanzungsgesetz Gaußsche Fehlerfortpflanzung
 - Annahme: Ein Wert g bestimmt sich aus x_1, x_2, \ldots, x_n mit den Messfehlern $\triangle x_1, \ldots, \triangle x_n$.
 - ► Fehlerberechnung △g

$$\triangle g = \left| \frac{\partial g}{\partial x_1} \right| \triangle x_1 + \left| \frac{\partial g}{\partial x_2} \right| \triangle x_2 + \dots = \sum_{i=1}^n \left| \frac{\partial g}{\partial x_i} \right| \triangle x_i \quad , \quad (4)$$

wobei die Ableitungen an der Stelle (x_1, \ldots, x_n) ausgewertet werden.

Beispiele für diverse Problemstellungen

- Man befinde sich mitten in einem Rock-Konzert. Ließe sich anhand des Wissens über seine eigene Umgebung und dem Wissen über die Größe des Areals die Anzahl der Konzertbesucher bestimmen?
- Sie sind für ein Waldareal verantwortlich. Wie bestimmen Sie den aktuellen Baumbestand?
- Sie machen einen Ausflug zum Heidelberger Schloss? Wie bestimmen Sie die tatsächlich zurückgelegte Strecke von der alten Brücke bis zum Haupteingang des Schlosses?
- Könnten Sie bzgl. Ihres Ausfluges zum Heidelberger Schloss abschätzen, wievielen Menschen Sie begegnen können?

Themen dieser Vorlesung

- ▶ Taylorentwicklung im \mathbb{R}^n
 - Tangentialebene
 - Fehlerberechnung
- Integration in höheren Dimensionen

Wiederholung Integration im \mathbb{R}

- Integration gleichbedeutend mit Aufsummierung
 - Beispiel: Fläche unter einer Kurve (Kästchen zählen oder Vierecke aufsummieren)
- Integrationsregeln
 - Integration von Polynomen

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \tag{5}$$

- Integration durch Substitution
- Partielle Integration

$$\int u' \, v \, dx = u \, v - \int u \, v' \, dx \tag{6}$$

Beispiele für Integrale

 Versuchen Sie folgende Funktionen zu integrieren / Bestimmen Sie die Stammfunktion

a)
$$\int \left(3x^2 - 3x^3 + 4\right) dx \tag{7}$$

b)
$$\int x \sin(x) dx$$
 (8)

c)
$$\int \sin(x^2) dx$$
 (9)

Beispiele für Integrale

 Versuchen Sie folgende Funktionen zu integrieren / Bestimmen Sie die Stammfunktion

a)
$$\int (3x^2 - 3x^3 + 4) dx$$

b)
$$\int x \sin(x) dx$$

c)
$$\int \sin(x^2) dx$$

Lösungen

a)
$$= x^3 - \frac{3x^4}{4} + 4x + C$$

b)
$$= -x \cos(x) + \sin(x)$$

c) Keine elementare Stammfunktion vorhanden

Begriff der Dichte

- Oberflächendichte: Entität bezogen auf eine Fläche
- Volumendichte: Entität bezogen auf ein Volumen
- Beispiel: Bildung der Baumdichte
 - ▶ Gehe an einen Punkt P = (x, y) und zähle die Bäume in einem Umkreis R
 - ▶ Ergebnis: Baumanzahl $N_R(x, y)$
 - Baumdichte:

$$n(x,y) = \frac{N_R(x,y)}{\pi R^2} \tag{10}$$

▶ Hinweis: Jede Art von Umgebungsgebiet (z.B. Quadrat) um den Punkt P ginge auch.

Plausibilisierung von Flächenintegralen

- Beispiel: Bestimmung des Baumbestandes
- Schritt 1: Rasterung der Waldfläche
 - ► Kleine Flächenelemente $\triangle A_i = \triangle x_i \triangle y_i$, wobei i für ein Rasterelement steht
- Schritt 2: Bestimmung einer representativen Baumdichte n_i je Rasterelement / Flächenelement
- Schritt 3: Berechnung des Baumbestandes N_{gesamt}

$$N_{\text{gesamt}} = \sum_{i} n_{i} \triangle A_{i} = \sum_{i} n_{i} \triangle x_{i} \triangle y_{i}$$
 (11)

► Kniff für die Analysis \rightarrow Interpretation als Integral (bei Grenzwertbildung $\lim_{\Delta A_i \rightarrow 0}$)

$$N_{\text{gesamt}} = \int_{\Omega} n \, dA = \int_{\Omega} n(x, y) \, dA$$
 (12)

Flächenintegrale

- Gegeben sei eine (Ober-)Flächendichte n_E(x, y) einer Entität E
- ▶ Berechnung der Gesamtanzahl N_E der Entität E auf der Grundfläche $\Omega \subset \mathbb{R}^2$

$$N_{\mathsf{E}} = \int_{\Omega} n_{\mathsf{E}}(x, y) \, dA \tag{13}$$

► Annahme: Rechtwinklige Grundfläche $(x \in [x_1, x_2] \text{ und } y \in [y_1, y_2])$

$$\implies N_{\mathsf{E}} = \int_{y_1}^{y_2} \int_{x_1}^{x_2} n_{\mathsf{E}}(x, y) \, dx \, dy \tag{14}$$

Hinweis: Solche Integrale nennen sich auch Mehrfachintegrale.

Volumenintegrale

- ▶ Gegeben sei eine Volumendichte $n_E(x, y, z)$ einer Entität E
- ▶ Berechnung der Gesamtanzahl N_E der Entität E im Volumen $\Omega \subset \mathbb{R}^3$

$$N_{\mathsf{E}} = \int_{\Omega} n_{\mathsf{E}}(x, y, z) \, dV \tag{15}$$

Annahme: Betrachtungsvolumen sei ein Würfel $(x \in [x_1, x_2], y \in [y_1, y_2] \text{ und } z \in [z_1, z_2])$

$$\implies N_{\mathsf{E}} = \int_{z_1}^{z_2} \int_{y_1}^{y_2} \int_{x_1}^{x_2} n_{\mathsf{E}}(x, y) \, dx \, dy \, dz \qquad (16)$$

Hinweis: Solche Integrale nennen sich auch Mehrfachintegrale.

Beispiele einfacher Mehrfachintegrale

Berechnen Sie folgende Mehrfachintegrale

a)
$$\int_{0}^{2} \int_{0}^{3} xy^{2} dx dy$$
 (17)
b)
$$\int_{0}^{3} \int_{0}^{2} x^{2}y dy dx$$
 (18)

b)
$$\int_0^3 \int_0^2 x^2 y \, dy \, dx$$
 (18)

c)
$$\int_0^2 \int_0^x xy \, dy \, dx \tag{19}$$

Rechenregeln für Mehrfachintegrale

 Annahme 1: Integrationsgrenzen sind unabhängig von einander

$$\int_{x_1}^{x_2} \int_{y_1}^{y_2} f(x, y) \, dy \, dx = \int_{x_1}^{x_2} \left(\int_{y_1}^{y_2} f(x, y) \, dy \right) \, dx \quad (20)$$

Annahme 2: Lineare Unabhängigkeit der Integrationsgrenzen und Separierbarkeit der Funktion (f(x, y) = g(x) h(x))

$$\int_{x_1}^{x_2} \int_{y_1}^{y_2} g(x) h(y) dy dx = \left(\int_{x_1}^{x_2} g(x) dx \right) \left(\int_{y_1}^{y_2} h(y) dy \right)$$
(21)

Hinweise zu Mehrfachintegralen

- Integrationsgrenzen bestimmen das Gebiet, über welches integriert wird
- ▶ Beispiele 1:

$$\int_0^2 \int_0^x f(x, y) \, dy \, dx \tag{22}$$

Beispiele 2:

$$\int_{-r}^{r} \int_{-\sqrt{r^2 - x^2}}^{\sqrt{r^2 - x^2}} f(x, y) \, dy \, dx \tag{23}$$

Hinweise zu Mehrfachintegralen

- Integrationsgrenzen bestimmen das Gebiet, über welches integriert wird
- ▶ Beispiele 1: Dreieck

$$\int_{0}^{2} \int_{0}^{x} f(x, y) \, dy \, dx \tag{22}$$

Beispiele 2: Kreis

$$\int_{-r}^{r} \int_{-\sqrt{r^2 - x^2}}^{\sqrt{r^2 - x^2}} f(x, y) \, dy \, dx \tag{23}$$

Kurvenintegrale - Längenbestimmung

▶ Gegeben sei eine parametrierte Kurve $\gamma(t)$ im \mathbb{R}^2

$$\gamma(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

- ► Ziel: Berechnung der Länge der Kurve von einem Startpunkt s₁ bis zu einem Endpunkt s₂
- Berechnungsvorschrift:

$$L = \sum_{i} \triangle s$$
 Aufsummierung kleiner Längenelemente

$$L = \sum_{i} \sqrt{\triangle x^2 + \triangle y^2} \tag{24}$$

Kurvenintegrale - Längenbestimmung

▶ Gegeben sei eine parametrierte Kurve $\gamma(t)$ im \mathbb{R}^2

$$\gamma(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

- Ziel: Berechnung der Länge der Kurve von einem Startpunkt s₁ bis zu einem Endpunkt s₂
- Berechnungsvorschrift:

$$L = \int_{s_1}^{s_2} ds$$
 Aufsummierung kleiner Längenelemente

$$L = \int_{S_1}^{S_2} \sqrt{dx^2 + dy^2}$$
 (25)

Kurvenintegrale - Längenbestimmung

▶ Gegeben sei eine parametrierte Kurve $\gamma(t)$ im \mathbb{R}^2

$$\gamma(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

- ► Ziel: Berechnung der Länge der Kurve von einem Startpunkt s₁ bis zu einem Endpunkt s₂
- Berechnungsvorschrift:

$$L = \int_{S_1}^{S_2} ds$$
 Aufsummierung kleiner Längenelemente

$$L = \int_{s_1}^{s_2} \sqrt{dx^2 + dy^2} = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \quad (25)$$

Kurvenintegrale - allgemein

Ein Integral der Form

$$\int_{\gamma} h \, ds \tag{26}$$

nennt sich Kurvenintegral.

- $ightharpoonup \gamma$ Integrationsweg
- ▶ h Skalarfeld im \mathbb{R}^n
- ds Wegelement
- Lösungsansatz für Kurven im ℝ² (über Parametrisierung der Kurve),

$$\int_{\gamma} h \, ds = \int_{t_s}^{t_e} h(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt \qquad (27)$$

wobei h(x, y) als Gewichtung jedes Streckenelementes ds verstanden werden kann.

Kurvenintegrale - Anwendungsmöglichkeit

 Bestimmung der durchschnittlichen Höhe h_m eines Wanderweges

$$h_m = \frac{1}{L} \int_{\gamma} h(x, y) \, ds \quad , \tag{28}$$

wobei h(x, y) das Skalarfeld für das Höhenfeld / Gebirge darstellt und L die Länge der Kurve $\int_{\gamma} ds$.

Kurvenintegrale - Rechenbeispiel

ightharpoonup Gegeben sei folgende Funktion / parametrierte Kurve im \mathbb{R}^2

$$\gamma(t) = \binom{t}{2t+1} \tag{29}$$

▶ Berechen Sie die Länge der Kurve von $t_s = 0$ bis $t_e = 2$