

Model Optimization For Edge Devices

Adolf Anthony Dcosta • 24th April 2020

Committee Members

Dr. Carlos E. Otero - Major Advisor

Dr. Veton Kepuska – Committee Member

Dr. William Allen – Committee Member

Thesis Agenda

- What are edge devices ?
- Need of model optimization for edge devices ?
- Proposed Approach
- Pre-processing Technique
- Implementation
- Results
- Future Work

System Overview

Edge Computing –"Edge computing is a distributed computing paradigm which brings computation and data storage closer to the location where it is needed".[2]

Images From https://www.alibabacloud.com/knowledge/what-is-edge-computing

Need for Optimization of Edge Devices

A study by IBM states Edge devices are now growing exponentially, expecting a staggering growth from 15 billion today to 150 billion by 2025^[1].

Images From

https://www.redappletech.com/why-iot-smart-home-automation-is-in-demand https://www.spec-india.com/blog/industrial-iot-iiot

https://www.scnsoft.com/services/iot/medical

https://www.theconvexlens.co/2017/06/12/internet-battlefield-things-iot-war/

Revolutionized Edge Devices

Google Coral

Nvidia Jetson Nano

Android Devices

DiscoveryKit

Images From

 $\underline{https://circuit digest.com/microcontroller-projects/arduino-nano-33-ble-sense-board-review-and-getting-started-guide}$

https://www.hackster.io/news/say-hello-to-google-coral-cdbb49183864

https://www.t-mobile.com/cell-phone/google-pixel-4

https://www.pcworld.com/article/3368942/nvidia-99-jetson-nano-developer-kit.html

https://www.arrow.com/en/reference-designs/stm32f746g-disco-32f746gdiscovery-discovery-kit-with-stm32f746ng-

Goal of this Thesis

Trade-off between Accuracy and Size

Images From

https://www.google.com/imgres?imgurl=https%3A%2F%2Fwikiclipart.com%2Fwp-content%2Fuploads%2F2017%2F03%2FTug-of-war-tug-war-free-download-clip-art-on-clipart.gif&imgrefurl=https%3A%2F%2Fwikiclipart.com% https://backupeverything.co.uk/technical-insight-into-data-compression/

Data Set

Harris Commission	Label	DCASE	ESC-50	Collected	Combined
	Knocking	270	40	88	407
	Laughing	290	40	68	398
	Keyboard Typing	119	40	43	202
	Coughing	243	40	3	286
	Keys Jangling	99	40	7	146
X	Snap	77	40	52	169
	Total	1107	240	261	1608

Images From

David Elliott, Evan Martino, Carlos E Otero, Anthony Smith, Adrian Peter, Benjamin Luchterhand, Eric Lam, and Steven Leung. Cyber-physical analytics: Environmental sound classification at the edge.

Pre-processing

Example taken for visual representation - ESC-50 Knocking (1-81001-A-30.wav)

Visualization Parameters

- Sample Rate 16000
- Window Size 3 Seconds
- Window Hop 1.5 Seconds
- Channel 1 (Mono)

Visual Representation

Window Hop = $(0.5 \times \text{Window Size})^{[3]}$

Pre-processing

Mean calculated by the system (μ)= -0.0008

Standard Deviation calculated by the system $(\sigma) = 0.2161$

Raw Data (x) = 1.08885

Standard Scoring Normalization

$$z=rac{x-\mu}{\sigma}$$

x = Raw data

 $\mu = Mean$

 σ = Standard Deviation

z = Standard Scoring Normalization

Pre-processing

$$z = \frac{x - \mu}{\sigma} = \frac{1.08885 - (-0.0008)}{0.2161} = 5.04258$$

Pre-processing

- Window Size 3 Seconds
- Window Hop 1.5 Seconds

Pre-processing

Padding Window: This is the final window. System pads zero to get fixed length.

LibROSA was python library used for sound processing.

1D to 2D Conversion

Note: Square Root Operation is performed on NumPy array shape

FLORIDA TECH

Actual Parameters Used in Our System for Model Design and Pre- processing

- Sample Rate 30000
- Window Size 1 Seconds
- Window Hop 0.5 Seconds
- Epoch 100
- Pruning Epochs 25
- Batch Size 32 (No. of clips fed to model at once)
- Number of Classes 6
- Channel 1 (Mono)

Number of Classes = 6

Keyboard Typing
Keys Jangling
Coughing
Finger Snapping
Knocking
Laughing

Model Designing

Squeeze Net Strategies

- 1. Replace 3X3 filters with 1x1 Choose 1x1 convolution filters over 3x3 because of 9X fewer parameters.
- 2. Decrease the number of input channels to 3X3 filter Design a layer that holds few parameters. Fewer parameters lead to smaller model size.

Total parameters = $(Number of Input Channels) \times (Number of Filters) \times (Size of Filter)$

3. Down sampling late into the network so that convolution layers have large activation map

Model Architecture

Quantization Aware Training

- This process introduced fake nodes to the architecture during inference.
- Each floating-point number will be mapped to one low precision fake node.
- Values of the node is updated with high accuracy during the backward pass.
- This help to prevent the loss of accuracy during quantization.

Magnitude Based Weight Pruning

Before pruning

After pruning

- Reduced the model size upto 5 times.
- Eliminates the unnecessary links in the weighted tensor

Images From

https://medium.com/tensorflow/tensorflow-model-optimization-toolkit-pruning-api-42cac9157a6a

Quantization

- This method is applied using TensorFlow Lite
- It converts the 32-Bit Floating-Point Number to 8-Bit Integer
- It convert the entire model to a Flat Buffer
- Amount of accuracy lost at this step is less because of Quantization Aware Training Performed Initially.
- Reduced the Model size approximately 4 times.

Converting to C-Array

- Converting from TensorFlow lite to C-array is essential, and the final step because most microcontrollers do not support native filesystem.
- The easiest way to use a model from your program is to include it as a C array and compile it into your program.
- For this we use a command in Linux "xxd -i "

Log Generator Designed for the System

Confusion Matrix

	KT	403	6	2	7	6	3	
	СО	9	217	2	2	13	49	
Je	FS	3	7	80	2	4	1	
True	KJ	11	6	0	194	7	6	
	KN	18	19	4	9	241	18	
	LA	11	55	3	3	9	510	
		KT	СО	FS Pred	KJ icted	KN	LA	8

TensorFlow Lite

KT: Keyboard Typing

CO: Coughing

FS: Finger Snapping

KJ: Keys Jangling

KN: Knocking LA: Laughing

	KT	405	5	3	7	5	2
(CO	9	218	2	2	11	50
True	FS	2	7	80	2	5	1
Ţ	KJ	12	3	0	192	9	8
ı	KN	19	16	4	9	248	13
	LA	10	57	3	4	7	510
		KT	СО	FS Pred	KJ icted	KN	LA

Original

Accuracy: Out of all the classes, how much we predicted correctly

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Precision: Out of all the positive classes we have predicted correctly, how many are actually positive.

$$Precision = \frac{TP}{TP + FP}$$

Recall: Out of all the positive classes, how much we predicted correctly.

$$Recall = \frac{TP}{TP + FN}$$

F1 score: F-score helps to measure Recall and Precision at the same time.

$$F1 - score = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

Overall Accuracy

$$Overall\ Accuracy = \frac{Correctly\ classified\ Values}{Total\ Number\ of\ Values} \times 100$$

Taking Example as KT: Keyboard Typing

KT : Keyboard Typing

CO: Coughing

FS: Finger Snapping

KJ: Keys Jangling

KN: Knocking LA: Laughing

Labels	Accuracy in %	Precision	Recall	F1 Score
Keyboard Typing	96.08	0.89	0.94	0.91
Coughing	91.34	0.70	0.74	0.72
Finger Snapping	98.56	0.88	0.82	0.85
Keys Jangling	97.27	0.89	0.87	0.88
Knocking	94.48	0.86	0.78	0.82
Laughing	91.8	0.87	0.86	0.87

Overall Model Accuracy = 84.79%

Weight and Biases

Validation Accuracy: Accuracy vs Number of Epochs. Max out at 85%

Validation Loss: Loss vs Number of Epochs.

Weight and Biases

Learning rate: Rate of learning vs epochs

Epochs: Model training 100 epochs and Pruning 25 epochs

Weight and Biases

GPU Utilization : Model was trained for 13hrs graph represents memory utilization vs time

Model Comparison

80% reduction in size with only 4% reduction in accuracy from amplitude model M11.

Future Work

- Design a system that generates a model small enough for microcontrollers that can perform natural language processing.
- Improve on model size and accuracy.
- Reduce the latency of edge devices by inferring simpler preprocessing techniques.

Links

- Code and Results
- Weights and Biases

Reference

- [1] https://www.ibm.com/blogs/industries/rob-high-edge-computing
- [2] https://en.wikipedia.org/wiki/Edge_computing
- [3] David Elliott, Evan Martino, Carlos E Otero, Anthony Smith, Adrian Peter, Benjamin Luchterhand, Eric Lam, and Steven Leung. Cyber-physical analytics: Environmental sound classification at the edge.

Thank you.

Adolf Anthony Dcosta • 24th April 2020