Introduction to course "Efficient Deep Learning"

February 2nd 2022

What is AI?

ΑI

- Intelligence: ability to extract knowledge from observations
- This knowledge is used to solve tasks in different contexts and environments

Memorizing (explicit)

- Memorize algorithms
- 20th century preferred methodology
- Pros: explicit control
- Cons: requires explicit solutions

Not Al

Generalization (implicit)

- Infer process from observations
- Guessing game
- Pros: universally applicable
- Cons: found solution might not be right

Al

What is AI?

ΑI

- Intelligence: ability to extract knowledge from observations
- This knowledge is used to solve tasks in different contexts and environments

Memorizing (explicit)

- Memorize algorithms
- 20th century preferred methodology
- Pros: explicit control
- Cons: requires explicit solutions

Not Al

Generalization (implicit)

- Infer process from observations
- Guessing game
- Pros: universally applicable
- Cons: found solution might not be right

AI

What is Al?

ΑI

- Intelligence: ability to extract knowledge from observations
- This knowledge is used to solve tasks in different contexts and environments

Memorizing (explicit)

- Memorize algorithms
- 20th century preferred methodology
- Pros: explicit control
- Cons: requires explicit solutions

Not Al

Generalization (implicit)

- Infer process from observations
- Guessing game
- Pros: universally applicable
- Cons: found solution might not be right

ΑI

Machine learning

Supervised: Infer a function from inputs/outputs

Difficulties

- Ill-posed problem (infinity of potential solutions)
- Main approach: seek for particular solutions

- Express solutions as assembly of atomic functions called layers
 - Compositional approach
- Tune all atomic functions altogether
 - End-to-end learning
- Optimize using stochastic gradient descent variants
 - Differentiable algorithmic

Machine learning

Supervised: Infer a function from inputs/outputs

Difficulties

- Ill-posed problem (infinity of potential solutions)
- Main approach: seek for particular solutions

- Express solutions as assembly of atomic functions called layers
 Compositional approach
- Tune all atomic functions altogether
 - End-to-end learning
- Optimize using stochastic gradient descent variants
 - Differentiable algorithmic

Machine learning

Supervised: Infer a function from inputs/outputs

Difficulties

- Ill-posed problem (infinity of potential solutions)
- Main approach: seek for particular solutions

- Express solutions as assembly of atomic functions called layers
 - Compositional approach
- Tune all atomic functions altogether
 - End-to-end learning
- Optimize using stochastic gradient descent variants
 - Differentiable algorithmic

Machine learning

Supervised: Infer a function from inputs/outputs

Difficulties

- Ill-posed problem (infinity of potential solutions)
- Main approach: seek for particular solutions

- Express solutions as assembly of atomic functions called layers
 - Compositional approach
- Tune all atomic functions altogether
 - End-to-end learning
- Optimize using stochastic gradient descent variants
 - Differentiable algorithmic

Main results

Your Al pair programmer

With GitHub Copilot, get suggestions for whole lines or entire functions right inside your editor

Example: Image Classification

source: https://paperswithcode.com/sota/image-classification-on-imagenet

Limitation: computations

Deep and steep

Computing power used in training AI systems

Days spent calculating at one petaflop per second*, log scale

By fundamentals

■ Language ■ Speech ■ Vision

GamesOther

Limitation: computations

Deep and steep

Computing power used in training AI systems

Days spent calculating at one petaflop per second*, log scale

The Economist

Number of parameters of Image Classification DL

Source: https://paperswithcode.com/sota/image-classification-on-imagenet

Making deep learning more efficient

Why?

- Al applications on Embedded system / Edge devices
- "Low-tech" AI with limited ressources, no cloud computing

Problems

- Power consumption of training and inference
- Memory requirements
- Computational power requirements
- Latency

How?

- Reduce the number of overall parameters
- Reduce the number of computations needed
- Research on more efficient learning mechanisms

Making deep learning more efficient

Why?

- Al applications on Embedded system / Edge devices
- "Low-tech" AI with limited ressources, no cloud computing

Problems

- Power consumption of training and inference
- Memory requirements
- Computational power requirements
- Latency

How?

- Reduce the number of overall parameters
- Reduce the number of computations needed
- Research on more efficient learning mechanisms

Making deep learning more efficient

Why?

- Al applications on Embedded system / Edge devices
- "Low-tech" AI with limited ressources, no cloud computing

Problems

- Power consumption of training and inference
- Memory requirements
- Computational power requirements
- Latency

How?

- Reduce the number of overall parameters
- Reduce the number of computations needed
- Research on more efficient learning mechanisms

Efficient Deep Learning Challenges

Examples of challenges

- Micronet at NeurIPS 2019
- Low Power Computer Vision (since 2015)
- DCASE Task 1 challenges 2020 and 2021

MicroNet Challenge

Hosted at NeurIPS 2019

Leaderboard

Overview

Scoring & Submission

Announcements

1. Join the MicroNet Challenge Google Group to chat with other competitors (link)!

Overview

Contestants will compete to build the most efficient model that solves the target task to the specified quality level. The competition is focused on efficient inference, and uses a theoretical metric rather than measured inference speed to score entries. We hope that this encourages a mix of submissions that are useful on today's hardware and that will also guide the direction of new hardware development.

Efficient Deep Learning Challenges

Examples of challenges

- Micronet at NeurIPS 2019
- Low Power Computer Vision (since 2015)
- DCASE Task 1 challenges 2020 and 2021

Efficient Deep Learning Challenges

Examples of challenges

- Micronet at NeurIPS 2019
- Low Power Computer Vision (since 2015)
- DCASE Task 1 challenges 2020 and 2021

	Submission information		Evaluation dataset			Acoustic model				System
Rank	Submission label \$	Technical Report	Official system trank ili	Accuracy ili	Logloss ili +	Parameters ils	Non-zero parameters di	Sparsity ili 💠	Size (KB) * als	Complexity management
	Koutini_CPJKU_task1b_2	0	1	96.5 %	0.101	345k	247k	0,284	483.5	pruning float16
	Koutini_CPJKU_task1b_4	0	2	96.2 %	0.105	556k	249k	0,552	487.1	float16 smaller width/depth
	Hu_GT_task1b_3	0	3	96.0 %	0.122	122k	122k	0	490.0	int8 quantization
	McDonnell_USA_task1b_3	0	4	95.9 %	0.117	3M	3M	0	486.7	1-bit quantization
	Hu_GT_task1b_1	0	7	95.8 %	0.357	94k	94k	0	375.0	int8 quantization
	Hu_GT_task1b_4	0	5	95.8 %	0.131	125k	125k	0	499.0	int8 quantization
	McDonnell_USA_task1b_4	0	6	95.8 %	0.119	3M	3M	0	486.7	1-bit quantization
	Koutini_CPJKU_task1b_3	0	8	95.7 %	0.113	242k	242k	0	473.8	float16 smaller width/depth
	Hu_GT_task1b_2	0	10	95.5 %	0.367	122k	122k	0	490.0	int8 quantization
	McDonnell_USA_task1b_2	0	9	95.5 %	0.118	3M	3M	0	486.7	1-bit quantization

IMT-Atlantique

Course organisation

Sessions

- Deep Learning Essentials,
- Quantization,
- Pruning,
- Data Augmentation and Self Supervised Learning,
- 5 Factorization,
- 6 Distillation,
- Embedded Software and Hardware for DL.

Lab Sessions and Challenge

By groups of two, you are given a machine with complete access.

Sessions schedule

Each session has (roughly) the same structure:

- Short written eval about the previous lesson (10 min),
- Short lesson (20 to 40 min),
- Lab Session,
- Project,
- Sessions 2 and 4 include students' presentations before the lesson.