CIS507: Design & Analysis of Algorithms Quiz 6, Spring 2012

Duration: 20 minutes Total weight: 5%

Student Name:							
Student ID:							
Problem	Points Obtained	Points Possible					
1		1					
2		4					
Total		5					

Cheat list:

P: problems for which a polynomial time algorithm exists.

NP: problems which are polynomial time verifiable.

CoNP: problems which are complements of problems in NP.

NP-Hard: problems to which every problem in NP can be reduced in polynomial time.

CoNP-Hard: problems which are complements of NP-Hard problems.

 $NP-Complete=NP\cap NP-Hard$

CoNP-Complete: problems which are complements of NP-Complete problems. Equivalently: problems in CoNP to which every problem in CoNP can be reduced in polynomial time.

1 True/False (1 point)

- 1. (0.5 point) Suppose there exists a coNP complete problem L that is also in NP. Then $coNP \subseteq NP$.
- 2. (0.5 point) Suppose there exists a coNP complete problem L that is also in NP. Then $NP \subseteq coNP$.

2 Multiple Choice (4 points)

1. **(1 point)** 3-SAT is:

For each of the following, circle all (zero or more) correct answer(s). You will be penalized 0.25 points on each wrong choice.

	(a) P (d) NP-Hard	(b) NP (e) coNP-Hard	(c) CoNP (f) NP-Comple	ete		
2.	. (1 point) Consider the problem of determining, for a given boolean formula, whether every assignment to the variables satisfies it. The problem					
	is: (a) EXP (d) NP-Hard	(b) NP (e) coNP-Hard	(c) CoNP (f) CoNP-Com	ıplete		
3.	3. (1 point) Showing a polynomial time reduction from 3-SAT to problem X proves that X is:					
4.	(1 point) If X is N .	o) NP P-Complete, this i o) EXP	(c) NP-Complete mplies that X is: (c) P	(d) NP-Hard (d) NP-Hard		