Calculus - ODE summary

Contents

Ordinary Differential Equations (ODEs), order, linearity	2
1.1 Examples of linear/nonlinear ODEs	2
Types of ODEs	3
How to solve Separable ODEs	4
3.1 Separation of variables for Separable ODEs	4
3.2 Example for Separable ODEs	4
How to solve Non-Separable ODEs (1st order linear ODEs)	5
	1.1 Examples of linear/nonlinear ODEs Types of ODEs How to solve Separable ODEs 3.1 Separation of variables for Separable ODEs 3.2 Example for Separable ODEs

1 Ordinary Differential Equations (ODEs), order, linearity

- Ordinary Differential Equations (ODEs) involve derivatives of only one variable ¹
- Order of a differential equation = order of the highest order derivative appearing in it.
- **Linear ODEs** contain derivatives of y of any order, but in a **linear** combination, with coefficients that are functions of *x*:

$$a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_1(x)y'(x) + a_0y(x) = f(x)$$

- * Homogeneous linear ODEs if f(x) = 0
- * Nonhomogeneous linear ODEs if $f(x) \neq 0$
- Do **not** confuse the order of a differential equation with linearity! (see examples below)
- Remember notations for derivatives e.g. $y^{(2)}(x) = d^2y/dx^2$, $y^{(n)}(x) = d^ny/dx^n$ etc

1.1 Examples of linear/nonlinear ODEs

• Example 1:

$$\frac{d^2y}{dx^2} + x^3y = \sin(x)$$

- This is a **second order** ODE because of the second order derivative $\frac{d^2y}{dx^2}$
- It is **linear** because none of the derivatives appear in a power higher than 1.
- Example 2:

$$\frac{d^3y}{dx^3} + 4x\left(\frac{dy}{dx}\right)^2 = \frac{d^2y}{dx^2}$$

- This is a **third order** ODE because of the third order derivative $\frac{d^3y}{dx^3}$.
- It is **non-linear** because of the derivative that appears squared in $\left(\frac{dy}{dx}\right)^2$.
- Example 3:

$$\frac{dy}{dx} + x^2 \left(\frac{dy}{dx}\right)^3 = \left(\frac{dy}{dx}\right)^2$$

- This is a **first order** ODE because only first order derivatives appear $\frac{dy}{dx}$
- It is **non-linear** because the derivative appears cubed in $\left(\frac{dy}{dx}\right)^3$.

¹Partial Differential Equations contain *partial* derivatives with respect to more than one variable (*not part of this class*).

2 Types of ODEs

This is a summary of ODEs you will see in this class. Specific methods for separable and non-separable ODEs follow.

• General form of first order linear ODE:

$$\frac{dy}{dx} = f(x, y)$$

• Simplest form of first order linear ODE has:

$$f(x, y) = f(x)$$

leading to:

$$\frac{dy}{dx} = f(x)$$

Can be solved by simple integration. Its solution is the antiderivative:

$$y = \int f(x) dx$$

• **Separable ODEs** (next simplest to solve):

$$\frac{dy}{dx} = f(x)g(y)$$

• First order linear ODEs (non-separable):

$$\frac{dy}{dx} + p(x)y = q(x)$$

Next pages: HOW TO SOLVE Separable/Non-separable ODEs! (section 7.9, Adams)

3 How to solve Separable ODEs

$$\frac{dy}{dx} = f(x)g(y)$$

3.1 Separation of variables for Separable ODEs

• **Separate** the *separable* ODE with the dependent variable (e.g. *y*) on one side and the independent (e.g. *x*) on the other side:

$$\frac{dy}{g(y)} = f(x)dx$$

- Then **integrate** both sides to solve.
- Note: don't forget the constant *C* in the indefinite integrals! If initial values are given, you can determine *C* based on them.

3.2 Example for Separable ODEs

$$\frac{dy}{dx} = \frac{x}{y}$$

• Separate dependent/independent variables:

$$ydy = xdx$$

• Integrate both sides to solve:

$$\frac{1}{2}y^2 = \frac{1}{2}x^2 + C_1$$

or

$$y^2 - x^2 = C$$
, $C = 2C_1$

where C is an arbitrary constant (it does not matter if it is written as $2C_1$ or C. Its value is determined by Initial Values if/when these are given, otherwise the constant can remain general!)

Next page: HOW TO SOLVE Non-separable ODEs! (section 7.9, Adams)

4 How to solve Non-Separable ODEs (1st order linear ODEs)

$$\frac{dy}{dx} + p(x)y = q(x)$$

4.1 Parameter Variation

- First solve the homogeneous equation with a constant parameter K: $y = Ke^{-\mu(x)}$.
- Then solve the non-homogeneous equation by varying the parameter K as a function of x K(x): $y = K(x)e^{-\mu(x)}$
- Replace $y = K(x)e^{-\mu(x)}$ in the nonhomogeneous ODE. This gives:

$$K'(x) = e^{\mu(x)} q(x)$$

• Integrate the resulting K'(x) to get K(x) and $y = K(x)e^{-\mu(x)}$ See example 7-part II in section 7.9 Adams