$12n_{0580} (K12n_{0580})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -3u^{20} + 14u^{19} + \dots + 2b - 4, \ -u^{20} + 3u^{19} + \dots + 2a + 3, \ u^{21} - 6u^{20} + \dots + 26u - 4 \rangle \\ I_2^u &= \langle -463u^5a^3 - 277u^5a^2 + \dots - 1475a - 789, \ -u^5a^3 - 2u^5a^2 + \dots - 2a + 6, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle \\ I_3^u &= \langle -u^{11} + 2u^9 - u^8 - 5u^7 + u^6 + 5u^5 - 2u^4 - 5u^3 + u^2 + b + u, \\ &- u^{10} + 2u^8 - u^7 - 5u^6 + u^5 + 5u^4 - 2u^3 - 5u^2 + a + u + 1, \\ u^{13} - u^{12} - 2u^{11} + 3u^{10} + 4u^9 - 6u^8 - 4u^7 + 8u^6 + 3u^5 - 7u^4 + 3u^2 - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 58 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -3u^{20} + 14u^{19} + \dots + 2b - 4, -u^{20} + 3u^{19} + \dots + 2a + 3, u^{21} - 6u^{20} + \dots + 26u - 4 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{20} - \frac{3}{2}u^{19} + \dots + 13u - \frac{3}{2} \\ \frac{3}{2}u^{20} - 7u^{19} + \dots - \frac{29}{2}u + 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{4}u^{20} + 3u^{19} + \dots + \frac{79}{4}u - 4 \\ \frac{3}{2}u^{20} - 5u^{19} + \dots + \frac{79}{2}u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{20} - \frac{9}{2}u^{19} + \dots - \frac{19}{2}u + \frac{5}{2} \\ \frac{3}{2}u^{20} - 6u^{19} + \dots - \frac{21}{2}u + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{7}{4}u^{20} - 7u^{19} + \dots - \frac{21}{4}u + 2 \\ \frac{7}{2}u^{20} - 16u^{19} + \dots - \frac{89}{2}u + 7 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{20} - \frac{5}{2}u^{19} + \dots + \frac{25}{2}u - \frac{3}{2} \\ \frac{3}{2}u^{20} - 6u^{19} + \dots - \frac{25}{2}u + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{15}{4}u^{20} - 14u^{19} + \dots + \frac{35}{4}u - 2 \\ \frac{17}{2}u^{20} - 40u^{19} + \dots - \frac{221}{2}u + 17 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -3u^{20} + 15u^{19} - 25u^{18} - 10u^{17} + 97u^{16} - 118u^{15} - 47u^{14} + 243u^{13} - 133u^{12} - 247u^{11} + 362u^{10} + 66u^9 - 512u^8 + 368u^7 + 162u^6 - 389u^5 + 165u^4 + 104u^3 - 120u^2 + 34u + 10$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_{1}, c_{7}	$u^{21} + 8u^{20} + \dots + 188u + 16$
c_2, c_6	$u^{21} - 6u^{20} + \dots + 26u - 4$
<i>c</i> ₃	$u^{21} - 2u^{20} + \dots + 5u - 1$
c_4, c_5, c_9 c_{10}	$u^{21} + 13u^{19} + \dots + u - 1$
c_8, c_{11}	$u^{21} - 16u^{20} + \dots + 480u - 64$
c_{12}	$u^{21} - 3u^{20} + \dots - 11u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{7}	$y^{21} + 12y^{20} + \dots + 9072y - 256$
c_2, c_6	$y^{21} - 8y^{20} + \dots + 188y - 16$
<i>c</i> ₃	$y^{21} - 36y^{20} + \dots + 47y - 1$
c_4, c_5, c_9 c_{10}	$y^{21} + 26y^{20} + \dots - y - 1$
c_8, c_{11}	$y^{21} - 6y^{20} + \dots - 7168y - 4096$
c_{12}	$y^{21} + 33y^{20} + \dots + 43y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.935175 + 0.517534I		
a = -1.110460 - 0.861684I	0.24926 - 3.91469I	2.72764 + 7.21725I
b = -0.59252 - 1.38052I		
u = 0.935175 - 0.517534I		
a = -1.110460 + 0.861684I	0.24926 + 3.91469I	2.72764 - 7.21725I
b = -0.59252 + 1.38052I		
u = 0.448329 + 0.989827I		
a = -0.363224 - 1.287660I	-10.43170 + 7.68453I	-0.20664 - 3.05097I
b = 1.11171 - 0.93682I		
u = 0.448329 - 0.989827I		
a = -0.363224 + 1.287660I	-10.43170 - 7.68453I	-0.20664 + 3.05097I
b = 1.11171 + 0.93682I		
u = 0.528861 + 1.017090I		
a = -0.085943 + 1.202340I	-9.86050 - 1.84914I	-0.90690 + 1.69467I
b = -1.268340 + 0.548462I		
u = 0.528861 - 1.017090I		
a = -0.085943 - 1.202340I	-9.86050 + 1.84914I	-0.90690 - 1.69467I
b = -1.268340 - 0.548462I		
u = -0.821760 + 0.209360I		
a = 0.270782 - 0.182803I	-1.40817 + 0.64438I	-3.79274 - 1.22685I
b = -0.184246 + 0.206911I		
u = -0.821760 - 0.209360I		
a = 0.270782 + 0.182803I	-1.40817 - 0.64438I	-3.79274 + 1.22685I
b = -0.184246 - 0.206911I		
u = -0.896473 + 0.746587I		
a = -0.309151 + 0.124372I	4.28731 + 2.84851I	0.39482 - 1.73871I
b = 0.184291 - 0.342305I		
u = -0.896473 - 0.746587I		
a = -0.309151 - 0.124372I	4.28731 - 2.84851I	0.39482 + 1.73871I
b = 0.184291 + 0.342305I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.677418 + 0.397216I		
a = 1.51417 + 0.36850I	1.096940 - 0.102856I	7.06481 + 1.59045I
b = 0.879349 + 0.851081I		
u = 0.677418 - 0.397216I		
a = 1.51417 - 0.36850I	1.096940 + 0.102856I	7.06481 - 1.59045I
b = 0.879349 - 0.851081I		
u = 0.904796 + 0.829662I		
a = 0.401041 - 0.496617I	4.71470 - 3.09578I	-3.27109 + 3.56536I
b = 0.774885 - 0.116608I		
u = 0.904796 - 0.829662I		
a = 0.401041 + 0.496617I	4.71470 + 3.09578I	-3.27109 - 3.56536I
b = 0.774885 + 0.116608I		
u = -1.327590 + 0.030849I		
a = -0.070884 + 0.549935I	-17.1548 - 4.6029I	-4.70163 + 2.09700I
b = 0.077139 - 0.732274I		
u = -1.327590 - 0.030849I		
a = -0.070884 - 0.549935I	-17.1548 + 4.6029I	-4.70163 - 2.09700I
b = 0.077139 + 0.732274I		
u = 1.176180 + 0.678965I		
a = 1.80081 - 0.07045I	-12.7012 - 13.7507I	-1.99835 + 6.85375I
b = 2.16591 + 1.13982I		
u = 1.176180 - 0.678965I		
a = 1.80081 + 0.07045I	-12.7012 + 13.7507I	-1.99835 - 6.85375I
b = 2.16591 - 1.13982I		
u = 1.175240 + 0.726178I		
a = -1.45480 + 0.41477I	-11.89320 - 4.50624I	-2.44659 + 2.53964I
b = -2.01093 - 0.56899I		
u = 1.175240 - 0.726178I		
a = -1.45480 - 0.41477I	-11.89320 + 4.50624I	-2.44659 - 2.53964I
b = -2.01093 + 0.56899I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.399649		
a = 1.81531	0.927006	12.2730
b = 0.725488		

II.
$$I_2^u = \langle -463u^5a^3 - 277u^5a^2 + \cdots - 1475a - 789, \ -u^5a^3 - 2u^5a^2 + \cdots - 2a + 6, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.246670a^{3}u^{5} + 0.147576a^{2}u^{5} + \dots + 0.785828a + 0.420352 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.161961a^{3}u^{5} - 0.461907a^{2}u^{5} + \dots + 0.604156a - 1.49920 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.246670a^{3}u^{5} - 0.147576a^{2}u^{5} + \dots + 0.604156a - 1.49920 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.246670a^{3}u^{5} - 0.147576a^{2}u^{5} + \dots + 0.214172a - 0.420352 \\ -0.0223761a^{3}u^{5} - 0.728290a^{2}u^{5} + \dots + 1.28077a + 0.784763 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.247736a^{3}u^{5} - 0.420352a^{2}u^{5} + \dots + 0.465637a + 0.474161 \\ -0.656367a^{3}u^{5} - 0.0298348a^{2}u^{5} + \dots - 0.0974960a - 2.98029 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.134790a^{3}u^{5} + 0.506127a^{2}u^{5} + \dots + 0.189664a + 1.34417 \\ 1.31700a^{3}u^{5} - 0.849227a^{2}u^{5} + \dots + 1.18913a + 5.38253 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.228556a^{3}u^{5} - 0.510389a^{2}u^{5} + \dots + 0.102291a - 3.36494 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{808}{1877}u^5a^3 + \frac{4132}{1877}u^5a^2 + \dots \frac{2988}{1877}a \frac{6350}{1877}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1)^4$
c_2, c_6	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)^4$
c_3	$u^{24} - 3u^{23} + \dots + 54u + 43$
c_4, c_5, c_9 c_{10}	$u^{24} - u^{23} + \dots + 148u + 43$
c_8, c_{11}	$(u^2 + u + 1)^{12}$
c_{12}	$u^{24} + 9u^{23} + \dots + 376u + 229$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^4$
c_2, c_6	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^4$
<i>c</i> ₃	$y^{24} - 33y^{23} + \dots - 52280y + 1849$
c_4, c_5, c_9 c_{10}	$y^{24} + 27y^{23} + \dots + 36576y + 1849$
c_8, c_{11}	$(y^2 + y + 1)^{12}$
c_{12}	$y^{24} + 27y^{23} + \dots + 65640y + 52441$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002190 + 0.295542I		
a = -1.050380 + 0.369608I	-6.82541 - 2.95419I	-5.71672 + 4.25833I
b = -1.20802 - 1.30034I		
u = 1.002190 + 0.295542I		
a = -0.081771 + 0.727533I	-6.82541 + 1.10558I	-5.71672 - 2.66988I
b = 0.40776 + 1.96764I		
u = 1.002190 + 0.295542I		
a = -1.46095 - 0.86667I	-6.82541 - 2.95419I	-5.71672 + 4.25833I
b = -1.161920 + 0.059986I		
u = 1.002190 + 0.295542I		
a = 0.90697 + 1.69587I	-6.82541 + 1.10558I	-5.71672 - 2.66988I
b = -0.296966 + 0.704962I		
u = 1.002190 - 0.295542I		
a = -1.050380 - 0.369608I	-6.82541 + 2.95419I	-5.71672 - 4.25833I
b = -1.20802 + 1.30034I		
u = 1.002190 - 0.295542I		
a = -0.081771 - 0.727533I	-6.82541 - 1.10558I	-5.71672 + 2.66988I
b = 0.40776 - 1.96764I		
u = 1.002190 - 0.295542I		
a = -1.46095 + 0.86667I	-6.82541 + 2.95419I	-5.71672 - 4.25833I
b = -1.161920 - 0.059986I		
u = 1.002190 - 0.295542I		
a = 0.90697 - 1.69587I	-6.82541 - 1.10558I	-5.71672 + 2.66988I
b = -0.296966 - 0.704962I		
u = -0.428243 + 0.664531I		
a = 0.820716 - 0.925536I	-3.04420 - 2.95419I	1.71672 + 4.25833I
b = -0.50645 - 1.55897I		
u = -0.428243 + 0.664531I		
a = 0.481772 - 1.278420I	-3.04420 + 1.10558I	1.71672 - 2.66988I
b = -1.056330 - 0.348684I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.428243 + 0.664531I		
a = 0.353054 + 1.362070I	-3.04420 + 1.10558I	1.71672 - 2.66988I
b = 0.643235 + 0.867628I		
u = -0.428243 + 0.664531I		
a = -1.31057 + 1.60669I	-3.04420 - 2.95419I	1.71672 + 4.25833I
b = 0.263581 + 0.941746I		
u = -0.428243 - 0.664531I		
a = 0.820716 + 0.925536I	-3.04420 + 2.95419I	1.71672 - 4.25833I
b = -0.50645 + 1.55897I		
u = -0.428243 - 0.664531I		
a = 0.481772 + 1.278420I	-3.04420 - 1.10558I	1.71672 + 2.66988I
b = -1.056330 + 0.348684I		
u = -0.428243 - 0.664531I		
a = 0.353054 - 1.362070I	-3.04420 - 1.10558I	1.71672 + 2.66988I
b = 0.643235 - 0.867628I		
u = -0.428243 - 0.664531I		
a = -1.31057 - 1.60669I	-3.04420 + 2.95419I	1.71672 - 4.25833I
b = 0.263581 - 0.941746I		
u = -1.073950 + 0.558752I		
a = -1.35473 - 0.44637I	-4.93480 + 3.66314I	-2.00000 - 2.04647I
b = -1.82694 + 0.82770I		
u = -1.073950 + 0.558752I		
a = 1.65432 + 0.08999I	-4.93480 + 3.66314I	-2.00000 - 2.04647I
b = 1.70432 - 0.27758I		
u = -1.073950 + 0.558752I		
a = 1.65472 - 0.61469I	-4.93480 + 7.72290I	-2.00000 - 8.97467I
b = 1.97136 - 1.75360I		
u = -1.073950 + 0.558752I		
a = -2.11314 + 0.53343I	-4.93480 + 7.72290I	-2.00000 - 8.97467I
b = -1.43363 + 1.58473I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.073950 - 0.558752I		
a = -1.35473 + 0.44637I	-4.93480 - 3.66314I	-2.00000 + 2.04647I
b = -1.82694 - 0.82770I		
u = -1.073950 - 0.558752I		
a = 1.65432 - 0.08999I	-4.93480 - 3.66314I	-2.00000 + 2.04647I
b = 1.70432 + 0.27758I		
u = -1.073950 - 0.558752I		
a = 1.65472 + 0.61469I	-4.93480 - 7.72290I	-2.00000 + 8.97467I
b = 1.97136 + 1.75360I		
u = -1.073950 - 0.558752I		
a = -2.11314 - 0.53343I	-4.93480 - 7.72290I	-2.00000 + 8.97467I
b = -1.43363 - 1.58473I		

$$III. \\ I_3^u = \langle -u^{11} + 2u^9 + \dots + b + u, \ -u^{10} + 2u^8 + \dots + a + 1, \ u^{13} - u^{12} + \dots + 3u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{10} - 2u^{8} + u^{7} + 5u^{6} - u^{5} - 5u^{4} + 2u^{3} + 5u^{2} - u - 1 \\ u^{11} - 2u^{9} + u^{8} + 5u^{7} - u^{6} - 5u^{5} + 2u^{4} + 5u^{3} - u^{2} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{10} - 2u^{8} + u^{7} + 5u^{6} - u^{5} - 5u^{4} + 2u^{3} + 5u^{2} - u - 1 \\ u^{11} - 2u^{9} + u^{8} + 5u^{7} - u^{6} - 5u^{5} + 2u^{4} + 5u^{3} - u^{2} - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2u^{12} + 5u^{10} - u^{9} - 11u^{8} + 2u^{7} + 14u^{6} - 3u^{5} - 13u^{4} + 3u^{3} + 6u^{2} - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{12} - u^{11} - u^{10} + 3u^{9} + 2u^{8} - 5u^{7} + u^{6} + 6u^{5} - 2u^{4} - 4u^{3} + 5u^{2} - 1 \\ u^{11} - 2u^{9} + u^{8} + 4u^{7} - u^{6} - 4u^{5} + 2u^{4} + 3u^{3} - u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{12} - 3u^{10} + 7u^{8} - 10u^{6} + 11u^{4} + u^{3} - 7u^{2} + 3 \\ u^{12} - u^{11} + \cdots + 2u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{11} + u^{10} + 2u^{9} - 4u^{8} - 4u^{7} + 7u^{6} + 4u^{5} - 10u^{4} - 3u^{3} + 8u^{2} + u - 2 \\ -u^{12} + u^{11} + \cdots - 2u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{12} - 3u^{10} + 7u^{8} - 11u^{6} + 12u^{4} + u^{3} - 8u^{2} + 3 \\ u^{12} - u^{11} + \cdots + 2u + 2 \end{pmatrix}$$

(ii) Obstruction class = 1

$$= -u^{12} - 3u^{11} + 4u^{10} + 4u^9 - 9u^8 - 11u^7 + 15u^6 + 9u^5 - 18u^4 - 6u^3 + 13u^2 - 3u - 5u^4 - 15u^4 - 18u^4 - 18u^$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing	
c_1	$u^{13} - 5u^{12} + \dots + 6u - 1$	
c_2	$u^{13} - u^{12} - 2u^{11} + 3u^{10} + 4u^9 - 6u^8 - 4u^7 + 8u^6 + 3u^5 - 7u^4 + 3u^8 + 3u^8 - 3u^8 + 3u^8 - 3u^8$	$u^2 - 1$
<i>c</i> ₃	$u^{13} + 2u^{12} + \dots + 9u + 3$	
c_4,c_5,c_9	$u^{13} + 8u^{11} + \dots + 5u + 1$	
<i>C</i> ₆	$u^{13} + u^{12} - 2u^{11} - 3u^{10} + 4u^9 + 6u^8 - 4u^7 - 8u^6 + 3u^5 + 7u^4 - 3u^8 + 3u^8$	$u^2 + 1$
C ₇	$u^{13} + 5u^{12} + \dots + 6u + 1$	
<i>C</i> ₈	$u^{13} - 3u^{12} + \dots - 3u + 1$	
c_{10}	$u^{13} + 8u^{11} + \dots + 5u - 1$	
c_{11}	$u^{13} + 3u^{12} + \dots - 3u - 1$	
c_{12}	$u^{13} + 3u^{12} + \dots - 3u - 1$	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_{1}, c_{7}	$y^{13} + 11y^{12} + \dots - 10y - 1$
c_2, c_6	$y^{13} - 5y^{12} + \dots + 6y - 1$
<i>c</i> ₃	$y^{13} - 6y^{12} + \dots + 39y - 9$
c_4, c_5, c_9 c_{10}	$y^{13} + 16y^{12} + \dots + 7y - 1$
c_8, c_{11}	$y^{13} - 7y^{12} + \dots - 3y - 1$
c_{12}	$y^{13} + 3y^{12} + \dots + 7y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.033900 + 0.364048I		
a = 0.445935 - 0.499626I	-6.67636 + 0.41487I	-4.61704 - 2.68258I
b = -0.279166 + 0.678907I		
u = -1.033900 - 0.364048I		
a = 0.445935 + 0.499626I	-6.67636 - 0.41487I	-4.61704 + 2.68258I
b = -0.279166 - 0.678907I		
u = 0.628298 + 0.593066I		
a = 0.21176 + 2.10347I	-4.07671 + 1.23383I	-1.69190 - 0.17539I
b = -1.11445 + 1.44719I		
u = 0.628298 - 0.593066I		
a = 0.21176 - 2.10347I	-4.07671 - 1.23383I	-1.69190 + 0.17539I
b = -1.11445 - 1.44719I		
u = 1.032670 + 0.557375I		
a = -2.14778 + 0.03860I	-5.39322 - 5.84865I	-3.49346 + 5.41334I
b = -2.23946 - 1.15726I		
u = 1.032670 - 0.557375I		
a = -2.14778 - 0.03860I	-5.39322 + 5.84865I	-3.49346 - 5.41334I
b = -2.23946 + 1.15726I		
u = 0.815001		
a = 1.46736	0.406093	-5.99710
b = 1.19590		
u = -0.899575 + 0.799634I		
a = -0.180212 + 0.063376I	5.29164 + 3.00519I	11.80568 - 1.98854I
b = 0.111437 - 0.201115I		
u = -0.899575 - 0.799634I		
a = -0.180212 - 0.063376I	5.29164 - 3.00519I	11.80568 + 1.98854I
b = 0.111437 + 0.201115I		
u = 0.917844 + 0.874021I		
a = 0.756497 - 0.845675I	2.41795 - 3.23180I	-1.51049 + 2.95825I
b = 1.43348 - 0.11500I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.917844 - 0.874021I		
a = 0.756497 + 0.845675I	2.41795 + 3.23180I	-1.51049 - 2.95825I
b = 1.43348 + 0.11500I		
u = -0.552837 + 0.348261I		
a = 0.680116 - 1.051500I	-4.92582 + 2.64511I	0.50575 - 4.47671I
b = -0.009797 + 0.818166I		
u = -0.552837 - 0.348261I		
a = 0.680116 + 1.051500I	-4.92582 - 2.64511I	0.50575 + 4.47671I
b = -0.009797 - 0.818166I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^{6} + 3u^{5} + 5u^{4} + 4u^{3} + 2u^{2} + u + 1)^{4})(u^{13} - 5u^{12} + \dots + 6u - 1)$ $\cdot (u^{21} + 8u^{20} + \dots + 188u + 16)$
c_2	$(u^{6} + u^{5} - u^{4} - 2u^{3} + u + 1)^{4}$ $\cdot (u^{13} - u^{12} - 2u^{11} + 3u^{10} + 4u^{9} - 6u^{8} - 4u^{7} + 8u^{6} + 3u^{5} - 7u^{4} + 3u^{2} - 1)$ $\cdot (u^{21} - 6u^{20} + \dots + 26u - 4)$
c_3	$(u^{13} + 2u^{12} + \dots + 9u + 3)(u^{21} - 2u^{20} + \dots + 5u - 1)$ $\cdot (u^{24} - 3u^{23} + \dots + 54u + 43)$
c_4, c_5, c_9	$(u^{13} + 8u^{11} + \dots + 5u + 1)(u^{21} + 13u^{19} + \dots + u - 1)$ $\cdot (u^{24} - u^{23} + \dots + 148u + 43)$
c_6	$(u^{6} + u^{5} - u^{4} - 2u^{3} + u + 1)^{4}$ $\cdot (u^{13} + u^{12} - 2u^{11} - 3u^{10} + 4u^{9} + 6u^{8} - 4u^{7} - 8u^{6} + 3u^{5} + 7u^{4} - 3u^{2} + 1)$ $\cdot (u^{21} - 6u^{20} + \dots + 26u - 4)$
<i>C</i> 7	$((u^{6} + 3u^{5} + 5u^{4} + 4u^{3} + 2u^{2} + u + 1)^{4})(u^{13} + 5u^{12} + \dots + 6u + 1)$ $\cdot (u^{21} + 8u^{20} + \dots + 188u + 16)$
c_8	$((u^{2} + u + 1)^{12})(u^{13} - 3u^{12} + \dots - 3u + 1)$ $\cdot (u^{21} - 16u^{20} + \dots + 480u - 64)$
c_{10}	$(u^{13} + 8u^{11} + \dots + 5u - 1)(u^{21} + 13u^{19} + \dots + u - 1)$ $\cdot (u^{24} - u^{23} + \dots + 148u + 43)$
c_{11}	$((u^{2} + u + 1)^{12})(u^{13} + 3u^{12} + \dots - 3u - 1)$ $\cdot (u^{21} - 16u^{20} + \dots + 480u - 64)$
c_{12}	$(u^{13} + 3u^{12} + \dots - 3u - 1)(u^{21} - 3u^{20} + \dots - 11u - 1)$ $\cdot (u^{24} + 9u^{23} + \dots + 376u + 229)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1, c_7	$((y^{6} + y^{5} + 5y^{4} + 6y^{2} + 3y + 1)^{4})(y^{13} + 11y^{12} + \dots - 10y - 1)$ $\cdot (y^{21} + 12y^{20} + \dots + 9072y - 256)$	
c_2, c_6	$((y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^4)(y^{13} - 5y^{12} + \dots + 6y - 1)$ $\cdot (y^{21} - 8y^{20} + \dots + 188y - 16)$	
c_3	$(y^{13} - 6y^{12} + \dots + 39y - 9)(y^{21} - 36y^{20} + \dots + 47y - 1)$ $\cdot (y^{24} - 33y^{23} + \dots - 52280y + 1849)$	
c_4, c_5, c_9 c_{10}	$(y^{13} + 16y^{12} + \dots + 7y - 1)(y^{21} + 26y^{20} + \dots - y - 1)$ $\cdot (y^{24} + 27y^{23} + \dots + 36576y + 1849)$	
c_8, c_{11}	$((y^2 + y + 1)^{12})(y^{13} - 7y^{12} + \dots - 3y - 1)$ $\cdot (y^{21} - 6y^{20} + \dots - 7168y - 4096)$	
c_{12}	$(y^{13} + 3y^{12} + \dots + 7y - 1)(y^{21} + 33y^{20} + \dots + 43y - 1)$ $\cdot (y^{24} + 27y^{23} + \dots + 65640y + 52441)$	