Autômatos Finitos Determinísticos e Autômatos Finitos Não-Determinísticos

Carlos Timóteo, M. Sc. CAPM

Motivação

- Como determinar se uma substring aparece num determinado texto;
- Como determinar se uma expressão foi formada corretamente
 - (5+1) − 8 int main(int argc, char* argv){ return 0; }
- Como procurar por uma substring em arquivos de texto no computador;

- Conjunto: É uma coleção de objetos.
 - $-L1=\{ab,c,d\}$
 - L2={vermelho, azul, vermelho} = {vermelho, azul}
 - $-L3={3,2,1} = {1,3,2}$
- Quantos elementos temos em L4:
 - L4= {azul, 4, {preto, #}}
- Operações entre conjuntos: União, Intersecção e Diferença

- Propriedades dos Conjuntos
 - Idempotência: A U A = A
 - Comutatividade: A U B = B U A
 - Associatividade: (A U B) U C = A U (B U C)
 - Distributividade
 - Absorção
 - Leis de DeMorgan: $A (B \cup C) = (A B) \cup (A C)$

- Conjuntos das Partes:
 - $-2 \{c,d\} = \{\{c,d\},\{c\},\{d\},vazio\}$
- Conjunto de todos os subconjuntos:
 - U{{a,b},{b,c},{c,d}} = {a,b,c,d}
- Partição de um conjunto:
 - $\{\{a,b\},\{c\},\{d\}\} => \{a,b,c,d\}$ válido
 - $\{\{a,b\},\{c\},\{d\}\} => \{\{b,c\},d\}$ inválido
- Relação: Um conjunto com uma restrição unária, binária ou terciária.
- Função: injetora, sobrejetora e bijetora

Grafos dirigidos: composto por arcos e vértices.

$$-G = \{(1,1),(1,2),(1,3),(2,4),(3,2)\}$$

- Relação reflexiva (laços): (n,n)
- Relação simétrica (círculos):
 - (a,b) (b,a)
- Relação anti-simétrica

Relação de Equivalência: Simétrica e reflexiva

- Caminho e comprimento de um caminho:
 - -(a, ..., d) = (a,b,c,d) comp=4
- Conjuntos finitos, infinitos e equinumerosos.

Técnicas de Prova

- Indução Matemática
- Dedução Matemática
- Abdução Matemática

Dada uma **premissa**, uma **conclusão** e uma regra segundo a qual a **premissa** *implica* na **conclusão**.

Técnicas de Prova

Dedução corresponde a determinar a conclusão.
 Utiliza-se da regra e sua premissa para chegar a uma conclusão.

"Quando chove, a grama fica molhada. Choveu hoje. Portanto, a grama está molhada."

 Indução é determinar a regra. É aprender a regra a partir de diversos exemplos de como a conclusão segue da premissa.

"A grama ficou molhada todas as vezes em que choveu. Então, se chover amanhã, a grama ficará molhada."

Técnicas de Prova

Abdução significa determinar a premissa.
 Usa-se a conclusão e a regra para defender que a premissa poderia explicar a conclusão.

"Quando chove, a grama fica molhada. A grama está molhada, então pode ter chovido."

Alfabetos e Linguagens

- Alfabeto é um conjunto de símbolos. É um conjunto finito de qualquer tipo.
- Uma string em um alfabeto é uma sequência finita de símbolos.
 - melancia é uma string do alfabeto grego-romano;
 - 01011100 é uma string do alfabeto binário;
- Propriedades: concatenação, sufixo, prefixo, inverso..

Alfabetos e Linguagens

- Estrela de Kleene: Denotada por L* é o conjunto de todas as strings obtidas pela concatenação de zero ou mais strings de L.
 - Se L={01,0,100}, então 01001100000 pertence a L*
- Linguagem: Conjunto de todas as strings sobre um alfabeto.

Alfabetos e Linguagens

Expressões Regulares

• Expressão regular: Descreve uma linguagem finita ou infinita de elementos exclusivamente por meio de símbolos únicos e *. Todas as linguagens regulares sobre um alfabeto podem ser descritas por expressões regulares.

Tipos de Formalismos

Reconhecedores

 Recebe uma palavra e retorna um valor para dizer se ela é ou não da linguagem

Geradores

 Define um conjunto de regras que podem ser combinadas para gerar palavras

Denotacional

Uma expressão que denota de modo geral as palavras da linguagem

Hierarquia de Chomsky

Autômato Finito Determinístico

- Considere uma máquina capaz de ler símbolo e avançar para o próximo se o símbolo lido for válido.
- Ele tem uma unidade de processamento, recebe como entrada uma cadeia que lhe é fornecida em uma fita de entrada e não produz nenhuma saída real, exceto a indicação de aceitação da entrada.
- Em outras palavras, é um dispositivo de reconhecimento de linguagens.
- Baseada no conceito de máquinas de estados finitos.

Autômato Finito Determinístico

Máquinas de estados finitos

- Conjunto finito de estados
 - Tem um estado inicial
- Mudança de estados
 - Depende do estado atual e de certa entrada

Tabela de Transição

	NENHUM	FRENTE	RETAGUARDA	AMBOS
FECHADO	FECHADO	ABERTO	ABERTO	ABERTO
ABERTO	FECHADO	ABERTO	ABERTO	ABERTO
ADDICTO	reciado	ADERCIO	ADERCIO	ADDICTO

AFD – Definição Formal

Um Autômato Finito Determinístico (AFD) M é uma 5-upla:

$$M = (Q, \Sigma, \delta, q_0, F)$$
, onde

Q: conjunto finito de estados do autômato;

Σ: alfabeto de símbolos de entrada;

δ: função programa ou função de transição (parcial)
δ: Q × Σ → Q. Significa dizer que permanecendo em um estado e lendo um símbolo do alfabeto faz o autômato passar para outro estado ou mesmo ficar no mesmo

 q_0 : estado inicial $(q_0 \in Q)$

F: conjunto de estados finais ou estados de aceitação (F⊆Q)

AFD – Representação Gráfica

AFD – Representação Gráfica

Um autômato finito M₁: (diagrama de estados)

M₁ tem **3 estados**, q₁, q₂, q₃; M₁ **inicia** no estado q₁; M₁ tem um **estado final**, q₂; Os arcos que vão de um estado p/ outro chamam-se <u>transições</u>.

AFD – Exemplo Funcionamento

Exemplo: entrada 1101

- Inicia no estado q₁.
- Lê 1, segue transição de q₁ p/ q₂.
- 3. Lê 1, segue transição de q₂ p/ q₂.
- 4. Lê 0, segue transição de q₂ p/ q₃.
- 5. Lê 1, segue transição de q_3 p/ q_2 .
- Pára c/ saída <u>reconhece</u>.

AFD - Propriedades

- Um AFD nunca entra em loop infinito
- Novos símbolos da entrada são lidos a cada aplicação da função programa, o processo de reconhecimento de qualquer cadeia pára de duas maneiras: aceitando ou rejeitando uma entrada.

Autômatos Finitos Não-Determinísticos

- Adiciona o não-determinismo aos autômatos finitos.
 - Capacidade de mudar de estado de forma apenas parcialmente determinada pelo estado corrente e pelo símbolo de entrada.
 - Podemos ter zero, uma ou mais transições de estado com o mesmo símbolo de entrada.

AFD vs AFND

- Determinístico
 - Transições bem definidas
 - Função de transição leva a um único estado
 - Sequência de estados é única para cada palavra
- Não-determinístico
 - Transições ambíguas
 - Função de transição leva a vários estados alternativos
 - Várias sequência possíveis

Autômatos Finitos Não Determinísticos

- Um estado pode ter zero, um ou mais arcos "saindo" para cada símbolo do alfabeto;
- zero, um ou mais arcos podem sair de cada estado rotulados com λ.

AFND – Definição Formal

Um Autômato Finito Não-Determinístico (AFND) é uma 5-tupla onde:

- Q é um conjunto finito de estados;
- 2. Σ é um alfabeto finito;
- 3. δ : Q x $\Sigma_{\lambda} \rightarrow P(Q)$ é a função de transição;
- 4. $q_0 \in Q$ é o estado inicial; e
- F ⊆ Q é o conjunto de estados de <u>aceitação</u>.

Uma sequência de entrada a,b,c...d é aceita por um AFND se existe uma sequência de transições, correspondendo a sequencia de entrada, que leva do estado inicial a algum dos estados finais.

Equivalência AFND/AFD

- De um AFD é possível criar um AFND equivalente?
 - Trivial de mostrar
 - Basta criar um AFND cuja função leva a conjuntos unitários
- De um AFND é possível criar um AFD equivalente?
 - Dado M = (T, Q, δ, q₀, F) não-determinístico, construir
 M' determinístico
 - Veremos como fazer...

Próxima Aula

- Expressões Regulares
- Transformações
 - AFD -> AFND
 - AFND -> AFD
 - AFND -> AFD -> ER
 - ER -> AFND -> AFD