

- 1. Introduction and motivation
- 2. Core Project Tasks
- 3. State of the art
- 4. Requirements of the software system
- 5. Selection of a workflow Engine
- 6. Conceptual 3D Data Processing Pipeline
- 7. Evaluation
- 8. Conclusion and Outlook

Presentation on Research Project Introduction and Motivation - Iftekhar Rahman Rev. 1 17.11.2022

Artifacts generated by a 3D data processing pipeline

[1]

Presentation on Research Project Introduction and Motivation - Iftekhar Rahman Rev. 1 17.11.2022 4

3D Data Processing using Workflow Engine

Presentation on Research Project Introduction and Motivation - Iftekhar Rahman Rev. 1 17.11.2022 5

1. Introduction and motivation

2. Core Project Tasks

- 3. State of the art
- 4. Requirements of the software system
- 5. Selection of a workflow Engine
- 6. Conceptual 3D Data Processing Pipeline
- 7. Evaluation
- 8. Conclusion and Outlook

Core Project Tasks

Presentation on Research Project Core Project Tasks - Iftekhar Rahman Rev. 1 17.11.2022 7

1.	Introduction and motivation
2.	Core Project Tasks
3.	State of the art
3.1	Workflow Engine
3.2	Apache Airflow and Argo Workflow
3.3	Workflow Engines in 3D data Processing
4.	Requirements of the software system
5.	Selection of a workflow Engine
6.	Conceptual 3D Data Processing Pipeline
7.	Evaluation
8.	Conclusion and Outlook

So what is a Workflow Engine?

- Software systems that facilitate the automation of a workflow
- A workflow consists of several processes
- Defines Workflows in DAGs

Presentation on Research Project Workflow Engine - Iftekhar Rahman Rev. 1 17.11.2022 9

[4]

Apache airflow

Argo Workflow

[5] argo namespace

Scalable Processing Of Copernicus Sentinel satellite Images Using Argo Workflows

[6]

DAG Structure

Processing Architecture

Results

Presentation on Research Project Workflow Engines in 3D data Processing - Iftekhar Rahman Rev. 1 17.11.2022 11

1.	Introduction and motivation
2.	Core Project Tasks
3.	State of the art
4.	Requirements of the software system
5.	Selection of a workflow Engine
6.	Conceptual 3D Data Processing Pipeline
7.	Evaluation
8.	Conclusion and Outlook

[7]

Functional Requirements

Non-Functional Requirements

Loading and saving 3D data object

Notification system

Containerization of tasks

Detailed logs of the pipeline execution

Artifact storage system

Version controlled DAG/Task editing

Visual workflow editor

Appropriate error handling

Reusable task template

Appropriate UI usability for non-expert

Deployment in kubernetes

1.	Introduction and motivation
2.	Core Project Tasks
3.	State of the art
4.	Requirements of the software system
5.	Selection of a workflow Engine
5. 6.	Selection of a workflow Engine Conceptual 3D Data Processing Pipeline
6.	

Average Weight-score analysis

	Apache Airflow	Argo Workflow
Functional Requirements	3.4	4.2
Non-Functional Requirements	4.1	4.12

Presentation on Research Project Selection of a Workflow Engine - Iftekhar Rahman Rev. 1 17.11.2022 15

1.	. Int	troduction and motivation
2.	Co	ore Project Tasks
3.	St	ate of the art
4.	Re	equirements of the software system
5.	Se	election of a workflow Engine
6.	Co	onceptual 3D Data Processing Pipeline
6.		onceptual 3D Data Processing Pipeline onceptual Pipeline
6.	.1 Co	<u> </u>
6.	.1 Co	onceptual Pipeline

Presentation on Research Project Conceptual Pipeline - Iftekhar Rahman Rev. 1 17.11.2022 17

Kubernetes Cluster

Fault Handling

Containerization of tasks

Artifact handling/Storage unit (s3)

18

1.	Introduction and motivation
2.	Core Project Tasks
3.	State of the art
4.	Requirements of the software system
5.	Selection of a workflow Engine
6.	Conceptual 3D Data Processing Pipeline
7.	Evaluation
7. 7.1	Evaluation Example 3D data processing pipeline
7.1	Example 3D data processing pipeline
7.1	Example 3D data processing pipeline The automated pipeline Artifacts generated by the pipeline

The automated pipeline

Presentation on Research Project The automated pipeline - Iftekhar Rahman Rev. 1 17.11.2022 21

Input files (Roughly Aligned Point Clouds)

Output files

Presentation on Research Project Artifacts generated by the pipeline - Iftekhar Rahman Rev. 1 17.11.2022

Performance Evaluation

Presentation on Research Project Performance Evaluation - Iftekhar Rahman Rev. 1 17.11.2022 23

8.	Conclusion and Outlook
7.	Evaluation
6.	Conceptual 3D Data Processing Pipeline
5.	Selection of a workflow Engine
4.	Requirements of the software system
3.	State of the art
2.	Core Project Tasks
1.	Introduction and motivation

Level of Automation

Overall Exe Time

Parallel Processing and Error
Handling

More computing power

Visual Workflow Editor [12, 13]

Presentation on Research Project Conclusion and Outlook - Iftekhar Rahman Rev. 1 17.11.2022 25

References

	1/6161611065
[1]	Institut für Flugzeug-Produktionstechnik
[2]	Hapke, Hannes (2020): Building Machine Learning Pipelines: Automating Model Life Cycles with TensorFlow. Automating model life cycles with TensorFlow. 1st edition. Beijing, Boston, Farnham: O'Reilly Media, Incorporated.
[3]	Nick Russell et al. "Workflow Data Patterns: Identification, Representation and Tool Support". In: Springer, Berlin, Heidelberg, 2005, pp. 353–368. DOI: 10.1007/11568322{_}23. URL: https://link.springer.com/chapter/10.1007/11568322_23.
[4]	Bas Harenslak and Julian de Ruiter. Data pipelines with Apache Airflow. Shelter Island, NY: Manning Publications Co, 2021. ISBN: 9781617296901.
[5]	Argo Workflows - The workflow engine for Kubernetes. 5/26/2022. URL: https://argoproj.github.io/argo-workflows/.
[6]	Florian Fichtner, Nico Mandery, Maximilian Schwinger, Jonas Eberle, Michael Nolde, Torsten Riedlinger(2021): Scalable Processing Of Copernicus Sentinel satellite Images Using Argo Workflows. In: Proceedings of the 2021 conference on Big Data from Space, 18-20 May 2021, S. 77–80. DOI: 10.2760/125905.
[7]	Aurum, Aybüke; Wohlin, Claes (2005): Engineering and managing software requirements. Berlin: Springer.
[8]	Kubernetes. Kubernetes Documentation. 5/29/2022. URL: https://kubernetes.io/docs/home/.
[9]	Docker Documentation. Docker overview. 5/26/2022. URL: https://docs.docker.com/get-started/overview/.
[10]	MinIO, Inc. MinIO MinIO for Kubernetes. 5/27/2022. URL: https://min.io/product/kubernetes.
[11]	Apache Airflow Documentation — Airflow Documentation. 5/25/2022. URL: https://airflow.apache.org/docs/apache-airflow/stable/.
[12]	Elyra Documentation — Elyra 3.8.1 documentation. 5/4/2022. URL: https://elyra.readthedocs.io/en/stable/.
[13]	React. "Drag and drop Argo Workflows tool With React.js". In: React.js Examples (2/18/2022). URL: https://reactjsexample.com/drag-and-drop-argo-workflows-tool-with-react-js/.

Presentation on Research Project References - Iftekhar Rahman Rev. 1 17.11.2022 27