Limiti di funzioni e funzioni continue

1. Siano f(x) e g(x) due funzioni tali che

$$\lim_{x \to c} f(x) = -\infty \quad \lim_{x \to c} g(x) = +\infty.$$

Si calcolino correttamente i seguenti limiti.

(a)
$$\lim_{x \to c} (e^{f(x)} + g(x)) =$$

(b)
$$\lim_{x \to c} \log g(x) =$$

(c)
$$\lim_{x \to c} \frac{f(x)}{e^{f(x)}} = \underline{\hspace{1cm}}$$

(d)
$$\lim_{x \to c} |f(x)| =$$

2. Si completino in modo corretto i seguenti enunciati.

(a) Se
$$\lim_{x \to c} f(x) = 1$$
 e $\lim_{x \to c} g(x) = 3$, allora $\lim_{x \to c} \frac{3f(x) - 5g(x)}{f(x) + g(x)} =$ ______

(b) Se
$$\lim_{x \to c} f(x) = -1$$
 e $\lim_{x \to c} g(x) = 3$, allora $\lim_{x \to c} \frac{f(x)}{(g(x) - 3)^2} =$ ______

(c) Se
$$\lim_{x \to c} f(x) = -\infty$$
 e $\lim_{x \to c} g(x) = 3$, allora $\lim_{x \to c} \frac{f(x)}{(g(x) - 3)^2} =$ ______

(d) Se
$$\lim_{x\to c} f(x) = 0$$
 e $\lim_{x\to c} g(x) = +\infty$, allora $\lim_{x\to c} \frac{f(x)}{f(x) + g(x)} =$ ______

3. Siano f(x) e g(x) due funzioni tali che

$$\lim_{x\to c} f(x) = 0 \quad \lim_{x\to c} g(x) = +\infty.$$

Tra i seguenti enunciati si indichino quelli sicuramente veri.

$$\Box \lim_{x \to c} f(x) \cdot g(x) = +\infty$$

$$\square$$
 Se $h(x) \sim f(x)$ per $x \to c$, allora $\lim_{x \to c} h(x) = 0$.

$$\square$$
 Non esiste $\lim_{x\to c} f(x) \cdot g(x)$

4.	Se f è una funzione definita in $[-1, 3]$, tra i seguenti enunciati si indichino quelli veri.
	\square Se $f(x) = x + 1$, allora f verifica le ipotesi del teorema degli zeri
	\square Se $f(x) = x + 5$, allora f non verifica le ipotesi del teorema degli zeri
	\square Se $f(x) = x - 2$, allora f verifica le ipotesi del teorema degli zeri
	\square Se f è strettamente decrescente e verifica le ipotesi del teorema degli zeri, allora esiste un'unico zero di f .
5.	Se f è una funzione definita in $[-1,1]$, tra i seguenti enunciati si indichino quelli veri.
	\square Se $\lim_{x\to 0^+} f(x)=2$, $\lim_{x\to 0^-} f(x)=2$ allora non è detto che f sia continua in $x=0$
	\square Se $\lim_{x \to 0^+} f(x) = 1$, $\lim_{x \to 0^-} f(x) = 1$ e $f(0) = 1$, allora f non è continua in $x = 0$
	\square Se $\lim_{x \to 0^+} f(x) = 1$, $\lim_{x \to 0^-} f(x) = 1$ allora anche $\lim_{x \to 0} f(x) = 1$
	□ Se
	$f(x) = \begin{cases} \frac{\sin x}{x} & \text{se } x \neq 0 \\ 2 & \text{se } x = 0 \end{cases}$
	allora f è continua in $x = 0$
6.	Considerata l'equazione $x + x^2 + \ln x = 0$, tra i seguenti enunciati si indichino quelli veri.
	\square L'equazione ha un'unica soluzione in $(0,+\infty)$
	\square L'equazione ha una soluzione in $[-2,-1]$
	☐ L'equazione non ammette soluzione
	$\square \ x = 3$ è una soluzione dell'equazione
7.	Se $f:[a,b]\to\mathbb{R}$ è una funzione, si indichino tra i seguenti enunciati quelli sicuramente veri.
	\square Se f è continua in $[a, b]$, allora f ammette massimo.
	\square Se f è continua $[a, b]$, allora f ammette minimo
	\square Se f è continua $[a, b]$, allora f ammette massimo e minimo
	\square Se f è continua (a, b) , allora f ammette massimo e minimo
8.	Se $f:[0,4]\to\mathbb{R}$ è una funzione continua, si indichino tra i seguenti enunciati quelli sicuramente veri.
	\square L'immagine di f è un intervallo
	\square Se $f(0) = 2$ e $f(4) = 10$, f assume il valore 5
	\Box f assume il valore 0
	\square Se $f(0) > 0$ e $f(4) < 0$ allora l'equazione $f(x) = 0$ ha almeno una soluzione

9.	Si indichi quali tra le seguenti funzioni soddisfano le ipotesi del teorema di Weierstrass.
	\Box La funzione $f(x) = \log x$ se $x \in [1, 4]$
	\Box La funzione $f(x) = \operatorname{arctg} x$ nel suo dominio
	\square La funzione esponenziale nell'insieme [0, 4]
	\Box La funzione $f(x) = \log x$ se $x \in (0, 4]$
10.	Se $f:[a,b]\to\mathbb{R}$ è una funzione, si indichino tra i seguenti enunciati quelli sicuramente veri.
	\square Se f è continua, f è invertibile se e solo se f è strettamente monotona
	\square Se f è continua e f è strettamente decrescente, allora f^{-1} è strettamente decrescente e continua
	\square Se f è continua e f è strettamente monotona, allora f^{-1} è continua
	\square Se f è invertibile ma non è continua non è detto che f^{-1} sia monotona