Parametric Tests

Computer Science

Isaac Griffith

CS 6620 Department of Informatics and Computer Science Idaho State University

Hypothesis Testing

- **Objective**: Determine if we can reject a null hypothesis, H_0 , based on a sample
- The null hypothesis should be formulated negatively
 - If not rejected, nothing can be said about the outcome
 - If rejected, H_0 is said to be false with a significance of α
- When a test is carried out
 - we calculate the lowest possible significance value (p-value) with which we can reject \mathcal{H}_0

Hypothesis Testing

- To test H_0
 - A test, t, is defined
 - A critical area, C, is given over which, partly, t varies
- Significance testing is then formulated as:
 - If $t \in C$, reject H_0
 - If $t \notin C$, fail to reject H_0
- Example:
 - H_0 : the observed vehicle is a car
 - t is the number of wheels
 - -C=1,2,3,4,...
 - Test:
 - If $t \leq 3$ and $t \geq 5$, reject H_0
 - If t = 4, fail to reject H_0

Important Probabilities

- $\alpha = P(\text{type-I-error}) = P(\text{reject } H_0 | H_0 \text{ is true})$
- $\beta = P(\text{type-II-error}) = P(\text{not reject } H_0 | H_0 \text{ is false})$
- $Power = 1 \beta = P(\text{reject } H_0 | H_0 \text{ is false})$

- Power is affected by:
 - Test efficacy
 - Sample size (larger sample = higher power)
 - Choice of one- or two-sided H_A (one-sided = higher power)

- Parametric Tests: tests based on a model (set of parameters) involving a specific distribution.
 - Typically assumes that some of the parameters are normally distributed
 - Requires parameters be at least interval scale

 Non-Parametric Tests: Do not make the same assumptions, rather only very general assumptions

Selecting Tests

- Two factors to be considered when selecting between non-parametric and parametric tests:
 - **Applicability**: What are the assumptions to be made by the tests?
 - **Power**: Parametric tests tend to have higher power than non-parametric
 - Thus, require fewer data points, if the assumptions are true.

- It should be noted that several parametric tests are fairly robust to violations of their assumptions
 - Thus, they can be used as long as the deviations are not too large

Parametric Tests

Parametric Tests: Overview

- t-Test: Used to compare two sample means (medians)
- Paired t-Test: t-test for paired comparison designs
- F-Test: Used to compare two sample distributions

 ANOVA: Family of tests used for designs with more than two levels of a factor

t-Test Overview

- Compare to independent samples (one factor with two levels).
- **Input**: samples x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_m
- Hypotheses:
 - H_0 : $\mu_x = \mu_y$
 - Two-Sided H_A : $\mu_x \neq \mu_y$
 - One-Sided H_A : $\mu_x > \mu_y$
- Calculations:

$$-t_0 = \frac{\bar{x} - \bar{y}}{S_p \sqrt{\frac{1}{n} + \frac{1}{n}}}$$

$$- S_p = \sqrt{\frac{(n-1)S_x^2 + (m-1)S_y^2}{n+m-2}}$$

- S_x^2 and S_y^2 are sample variances
- Criterion:
 - Degrees of freedom: df = n + m 2
 - Two-Sided: reject H_0 if $|t_0| > t_{\alpha/2,df}$
 - One-Sided: reject H_0 if $t_0 > t_{\alpha,df}$

t-Test Example

Defect density in different programs have been compared in two projects

- Hypotheses
 - H_0 : defect density is the same in both projects
 - H_A : defect density is not the same
- ullet Data: Defect density results for project x and project y
 - -x = 3.42, 2.71, 2.84, 1.85, 3.22, 3.48, 3.68, 4.30, 2.49, 1.54
 - -y = 3.44, 4.97, 4.76, 4.96, 4.10, 3.05, 4.09, 3.69, 4.21, 4.40, 3.49
- Data Sizes and Means:
 - n = 10 size of x
 - m = 11 size of y
 - $-\bar{x} = 2.853$
 - $-\ \bar{y} = 4.1055$

t-Test Example

• Sample variances:

$$-S_r^2 = 0.6506$$

$$-S_y^2 = 0.4112$$

• Calculations

$$-t_0 = -3.96$$

$$-S_p = 0.7243$$

$$-df = n + m - 2 = 10 + 11 - 2 = 19$$

Statistic

$$-t_{0.025,19} = 2.093$$

- Since
$$|t_0| > t_{0.025,19}$$
 we can reject H_0 with a two tailed test at the 0.05 level.

Paired t-Test Overview

- Compares two samples from repeated measures
- **Input**: Paired samples $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- Hypotheses:
 - $\overline{}$ H_0 : $\mu_d=0$, where $d_i=x_i-y_i$
 - Two-Sided H_A : $\mu_d \neq 0$
 - One-Sided H_A : $\mu_d > 0$
- Calculations:
 - Degrees of freedom: df = n 1
 - $t_0 = \frac{\bar{d}}{S_d/(\sqrt{n})}$
 - $S_d = \sqrt{\frac{\sum_{i=1}^n (d_i \bar{d})^2}{n-1}}$
- Criterion:
 - Two-Sided: reject H_0 if $|t_0| > t_{\alpha/2,df}$
 - One-Sided: reject H_0 if $|t_0| > t_{\alpha df}$

Paired t-Test Example

Ten programs independently developed two different programs. They measured the effort required, as shown in the table

Hypotheses

- H_0 : required effort to develop program 1 is the same as for program 2
- H_A : it is not

Programmer	1	2	3	4	5	6	7	8	9	10
Program 1	105	137	124	111	151	150	168	159	104	102
Program 2	86.1	115	175	94.9	174	120	153	178	71.3	110

Paired t-Test Example

• Calculation:

$$-d = 18.9, 22, -51, 16.1, 23, 30, 15, 19, 32.7, 9$$

$$-S_d = 27.358$$

$$-t_0 = 0.39$$

$$-df = n - 1 = 10 - 1 = 9$$

Statistics

$$-t_{0.025,9} = 2.262$$

• Result:

- Since $t_0 < t_{0.025,9}$ we cannot reject H_0 at the 0.05 level

F-Test Overview

- Compares variances of two **independent** samples
- Input: samples x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_m
- Hypotheses:
 - H_0 : $\sigma_x^2 = \sigma_y^2$
 - Two-Sided: H_A : $\sigma_x^2 \neq \sigma_y^2$
 - One-Sided: H_A : $\sigma_x^2 > \sigma_y^2$
- Calculations:
 - $F_0 = \frac{\max(S_x^2, S_y^2)}{\min(S_x^2, S_y^2)}$
 - S_x^2 and S_y^2 are sample variances
- Criterion
 - Degress of Freedom: $df_1 = n_{min} 1$ and $df_2 = n_{max} 1$
 - Two-Sided: reject H_0 if $F_0 > F_{\alpha/2, df_1, df_2}$
 - One-Sided: reject H_0 if $F_0 > F_{\alpha,df_1,df_2}$ and $S_x^2 > S_y^2$

F-Test Example

Defect density in different programs have been compared in two projects

- Hypotheses
 - H_0 : both project defect densities have the same variance
 - H_A : they do not
- Data: Defect density results for project x and project y
 - -x = 3.42, 2.71, 2.84, 1.85, 3.22, 3.48, 3.68, 4.30, 2.49, 1.54
 - -y = 3.44, 4.97, 4.76, 4.96, 4.10, 3.05, 4.09, 3.69, 4.21, 4.40, 3.49

F-Test Example

- Data Sizes and Means:
 - $n_{min} = 10$ size of x
 - $n_{max} = 11$ size of y
 - $-df_1 = n_{min} 1 = 9$
 - $-df_2 = n_{max} 1 = 10$
- Calculations
 - $-S_x = 0.6506$
 - $-S_{u}=0.4112$
 - $-F_0 = 1.58$
- Statistic
 - $-F_{0.025,9.10} = 3.78$
- Result
 - $-F_0 < F_{0.025,9,10}$, fail to reject H_0 at 0.05 level

ANOVA Overview

- Used to analyze experiments of many different designs.
- Looks at the total variability of the data as well as the variability of different components
- Input: $a \text{ samples: } x_{11}, x_{12}, \dots, x_{1n_1}; x_{21}, x_{22}, \dots, x_{2n_2}; \dots; x_{a1}, x_{a2}, \dots, x_{an_a}$
- Hypotheses:
 - H_0 : $\mu x_1 = \mu_{x_2} = \ldots = \mu_{x_a}$
 - H_A : $\mu x_i \neq \mu_{x_i}$ where $i \neq j$

ANOVA Overview

• Calculations:

$$-SS_T = \sum_{i=1}^{a} \sum_{j=1}^{n_i} x_{ij}^2 - \frac{x_{..}^2}{N}$$

-
$$SS_{Treatment} = \sum_{i=1}^{a} \frac{x_{i}^2}{n_i} - \frac{x_{..}^2}{N}$$

-
$$SS_{Error} = SS_T - SS_{Treatment}$$

-
$$MS_{Treatment} = SS_{Treatment}/(a-1)$$

-
$$MS_{Error} = SS_{Error}/(N-a)$$

-
$$F_0 = MS_{Treatment}/MS_{Error}$$

$$-x_{i\cdot}=\sum_{i}x_{ij}$$

ANOVA Overview

Source of variation	Sum of Squares	DF	Mean Square	F_0
Between Treatments	$SS_{Treatment}$	$df_1 = a - 1$	$MS_{Treatment}$	$F_0 = \frac{MS_{Treatment}}{MS_{Error}}$
Error Total	$SS_{Error} \ SS_{T}$	$df_2 = N - a$ $N - 1$	MS_{Error}	

• Criterion:

- reject H_0 if $F_0 > F_{\alpha,df_1,df_2}$

ANOVA Example

The module size in three different programs have been measured.

- Hypotheses:
 - H_0 : mean module size is the same across programs
 - H_A : at least one program's mean module size is different
- Data:
 - Program 1: 221, 159, 191, 194, 156, 238, 220, 197, 197, 194
 - Program 2: 173, 171, 168, 286, 206, 140, 226, 248, 189, 208, 213
 - Program 3: 234, 188, 181, 207, 266, 153, 190, 195, 181, 238, 191, 260

ANOVA Example

• Calculations:

Source of variation	Sum of Squares	DF	Mean Square	F_0
Between treatments Error Total	579.0515 36,151 36,730	2 30 32	289.5258 1,205	0.24

- Error row also called "Within treatments"
- Statistic:

-
$$df_1 = a - 1 = 3 - 1 = 2$$
 and $df_2 = N - a = 33 - 3 = 30$

$$-F_{0.025,2.30}=4.18$$

- Result
 - Since $F_0 < F_{0.025,2,30}$, fail to reject H_0

Multiple Comparison

- ANOVA: We rejected *H*₀, what's next?
 - Contrasts
 - Multiple Comparison
- Multiple Comparison Procedures
 - Bonferroni's MCP
 - Tukey's HSD
 - Sidak's MCP
 - Fischer's LSD
 - Dunnett's Comparison to Control

Are there any questions?

