

(11) EP 3 159 416 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

06.10.2021 Bulletin 2021/40

(21) Application number: 15809623.0

(22) Date of filing: 18.06.2015

(51) Int Cl.:

C12Q 1/68 (2018.01)
C12N 15/09 (2006.01)
G01N 33/574 (2006.01)
G01N 37/00 (2006.01)
G01N 37/00 (2006.01)

(86) International application number: **PCT/JP2015/067533**

(87) International publication number: WO 2015/194610 (23.12.2015 Gazette 2015/51)

(54) KIT OR DEVICE FOR DETECTING LUNG CANCER, AND LUNG CANCER DETECTION METHOD

KIT ODER VORRICHTUNG FÜR DEN NACHWEIS VON LUNGENKREBS SOWIE LUNGENKREBSNACHWEISVERFAHREN

KIT OU UN DISPOSITIF POUR LA DÉTECTION D'UN CANCER DU POUMON, ET PROCÉDÉ DE DÉTECTION D'UN CANCER DU POUMON

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

- (30) Priority: 18.06.2014 JP 2014125561
- (43) Date of publication of application: **26.04.2017 Bulletin 2017/17**
- (60) Divisional application:

21188330.1 21188334.3

- (73) Proprietors:
 - Toray Industries, Inc. Tokyo 103-8666 (JP)
 - National Cancer Center Tokyo 104-0045 (JP)
- (72) Inventors:
 - SUDO, Hiroko Kamakura-shi Kanagawa 248-8555 (JP)
 - NOBUMASA, Hitoshi Kamakura-shi Kanagawa 248-8555 (JP)
 - KOZONO, Satoko Kamakura-shi Kanagawa 248-8555 (JP)

- KONDOU, Satoshi Kamakura-shi Kanagawa 248-8555 (JP)
- KAWAUCHI, Junpei Kamakura-shi Kanagawa 248-8555 (JP)
- OCHIAI, Atsushi Kashiwa-shi Chiba 277-8577 (JP)
- KOJIMA, Motohiro Kashiwa-shi Chiba 277-8577 (JP)
- (74) Representative: Mewburn Ellis LLP
 Aurora Building
 Counterslip
 Bristol BS1 6BX (GB)
- (56) References cited:

WO-A1-2010/139810 WO-A1-2011/076144 WO-A1-2014/013258 WO-A1-2015/190542 CN-A- 103 173 448

 YIFENG BAI ET AL: "MiR-296-3p regulates cell growth and multi-drug resistance of human glioblastoma by targeting ether-à-go-go (EAG1)", EUROPEAN JOURNAL OF CANCER, vol. 49, no. 3, 1 February 2013 (2013-02-01), pages 710-724, XP055430547, AMSTERDAM, NL ISSN: 0959-8049, DOI: 10.1016/j.ejca.2012.08.020

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- YANAIHARA NOZOMU ET AL: "Unique microRNA molecular profiles in lung cancer diagnosis and prognosis", CANCER CELL, CELL PRESS, US, vol. 9, no. 3, 1 March 2006 (2006-03-01), pages 189-198, XP002467444, ISSN: 1535-6108, DOI: 10.1016/J.CCR.2006.01.025
- KELLER, A. ET AL.: 'Stable serum miRNA profiles as potential tool for non-invasive lung cancer diagnosis' RNA BIOLOGY vol. 8, no. 3, 01 January 2012, pages 506 - 516, XP055374388 DOI: 10.4161/RNA.8.3.14994
- KOZOMARA, A. ET AL.: 'miRBase: annotating high confidence microRNAs using deep sequencing data' NUCLEIC ACIDS RESEARCH vol. 42, 25 November 2013, ISSN 0305-1048 pages D68 - D73, XP055241062

- SATOKO TAKIZAWA ET AL.: 'DNA Chip 3D-Gene ni yoru Morateki Kesseichu miRNA Kaiseki' BIO CLINICA vol. 29, no. 6, 10 June 2014, pages 588 -589, XP008185444
- None

Description

Technical Field

[0001] The present invention relates to the use of a kit or a device for the detection of lung cancer, comprising a nucleic acid capable of specifically binding to a particular miRNA, which is used for examining the presence or absence of lung cancer in a subject, and a method for detecting lung cancer, comprising measuring an expression level of the miRNA in vitro using the nucleic acid.

10 Background Art

15

20

30

35

40

45

50

55

[0002] The lungs have important functions of supplying oxygen into the body through respiration and eliminating carbon dioxide. Air taken up from the mouth or the nose passes through the trachea and the bronchus, then separately enters the left lung and the right lung, and spreads throughout the lung through the thinner bronchial tubes. Eventually, oxygen is taken up into blood in the alveoli while carbon dioxide is eliminated (Non Patent Literature 1).

[0003] According to the 2012 cancer type-specific statistics in Japan disclosed by the Center for Cancer Control and Information Services, National Cancer Center, the number of individuals affected by lung cancer was 107,241 people. Namely, it is estimated that one out of 10 males and one out of 22 females experience lung cancer. The number of incidences of this cancer among other cancer types takes the 3rd in place. Men are twice as likely as women to develop lung cancer. The number of lung cancer deaths in men and women together climbs to 71,518 people and takes the 1st in place among other cancer types. The estimated number of American individuals affected by lung cancer climbed to 224,210 people in 2014, among which approximately 159,260 people reportedly died (Non Patent Literature 1).

[0004] Lung cancer has multiple histological types. Small-cell lung cancer occupies approximately 15%, while the remaining histological types are called non-small cell lung cancer. The non-small cell lung cancer is further broadly classified into three subtypes; adenocarcinoma, squamous cell carcinoma, and large-cell carcinoma. These histological types differ largely in the site of origin, the manner and rate of progression, symptoms, etc., and therefore differ in treatment methods.

[0005] The stages of lung cancer progression are classified into stages 0 to 4 according to the degrees of tumor spread (T0, Tis, and T1 to T4), lymph node metastasis (N0 to N3), and distant metastasis (M0 and M1). Particularly, as for the tumor spread, T1 denotes tumor of 3 cm or less in greatest diameter; T2 denotes tumor of more than 3 cm but 7 cm or less across; T3 denotes tumor of more than 7 cm across or found to have invaded adjacent sites; and T4 denotes tumor that has invaded adjacent sites more widely regardless of its size.

[0006] The survival rate of lung cancer differs depending on the stages of progression. According to the report of Non Patent Literature 1, the 5-year relative survival rate of non-small cell lung cancer is 45 to 49% for stage 1, 30 to 31% for stage 2, 5 to 14% for stage 3, and 1% for stage 4. Thus, the detection and treatment of lung cancer at an early stage makes a significant contribution to improvement in the survival rate.

[0007] The treatment of lung cancer is mainly performed by surgical resection, radiotherapy, and anticancer drug treatment. Particularly, in early lung cancer, surgery is applicable and the cancer is likely to be completely cured (Non Patent Literature 1). For early lung cancer, there are some therapeutic options, and for example, treatment that places less burden on patients, such as thoracoscopic surgery, stereotactic body radiotherapy (SBRT), photo dynamic therapy, laser treatment, and brachytherapy, which delivers radiation from within the body, can also be applied to such lung cancer (Non Patent Literature 1).

[0008] As described in Non Patent Literature 1, diagnostic tests of lung cancer are medical history check and physical examination as well as chest X-ray examination which is most commonly conducted. When there are findings that suspects lung cancer by the chest X-ray examination, more precise diagnostic imaging such as CT, MRI, or PET is carried out. Alternatively, as tests using samples, sputum cytology, pleural fluid analysis, or pathological examination which involves inserting a needle into a lesion and collecting cells or tissues, which are then examined under a microscope is carried out. Furthermore, CEA and CYFRA21-1 are known as tumor markers for the detection of lung cancer.

[0009] As shown in Patent Literatures 1 and 2, there are reports, albeit at a research stage, on the detection of lung cancer using the expression levels of microRNAs (miRNAs) or combinations of the expression levels of miRNAs and the expression levels of additional protein markers in biological samples including blood.

[0010] Patent Literature 1 discloses a method for detecting lung cancer or other lung diseases using miR-19b (miR-19b-3p) and the like in serum.

[0011] Patent Literature 2 discloses a method for detecting lung cancer using miR-1268 and miR-1228 in serum or plasma.

[0012] Patent Literature 3 discloses a method for detecting lung cancer using miR-1307 and the like in blood cells.

[0013] Patent Literature 4 discloses methods for diagnosing diseases based on the determination of specific miRNAs that have altered expression levels. The miR-6768-5pmarker is not disclosed.

Citation List

Patent Literature

5 [0014]

10

20

30

35

50

Patent Literature 1: JP Patent Publication (Kohyo) No. 2013-502931 A (2013)

Patent Literature 2: International Publication No. WO 2011/146937

Patent Literature 3: U.S. Patent Application Publication No. 13/376281

Patent Literature 4: WO2015/190542

Non Patent Literature

[0015]

Non Patent Literature 1: American Cancer Society, "Lung Cancer (Non-Small Cell)", 2013, p. 2 to 7 and 37 to 56 Non Patent Literature 2: Sobin, L. et al., "TNM Classification of Malignant Tumours, the 7th edition", 2010, p. 129-134 Non Patent Literature 3: Okamura, K. et al, Lung Cancer, 2013, Vol. 80 (1), p. 45-9

Summary of Invention

75 Technical Problem

[0016] An object of the present invention is to find a novel tumor marker for lung cancer and to provide a method that can effectively detect lung cancer using a nucleic acid capable of specifically binding to the marker. Chest X-ray examination is being commonly practiced as a test of lung cancer. Nonetheless, the number of lung cancer deaths is increasing yearly and takes the first place by cancer type. For these reasons, it is not always true that the X-ray examination works as a deterrent for lung cancer. Although CT and MRI are capable of detecting lung cancer with high performance, these tests are not suitable for widespread use as 1st tests because of the necessity of their special apparatuses and expensive examination cost.

[0017] For example, CEA and CYFRA21-1 are known as tumor markers in blood for the detection of lung cancer (Non Patent Literature 3). The usefulness thereof, however, has not yet been established. The lung cancer guidebook provided by the American Cancer Society makes no mention about these markers (Non Patent Literature 1). According to the report of Non Patent Literature 3, these tumor markers in blood have general lung cancer detection sensitivity of 69% (CEA) and 43% (CYFRA21-1). The tumor markers such as CEA and CYFRA21-1 may elevate for reasons other than lung cancer and therefore allegedly fail to determine the presence or absence of lung cancer. The false diagnosis of other cancers as lung cancer wastes appropriate therapeutic opportunity or places unnecessary economical and physical burdens on patients due to the application of wrong medicine.

[0018] As described below, there are reports, albeit at a research stage, on the determination of lung cancer using the expression levels of microRNAs (miRNAs) in biological samples including blood, none of which, however, have yet been brought into practical use.

⁵ [0019] Patent Literature 1 discloses a method for detecting lung cancer or other lung diseases using miR-19b (miR-19b-3p) and the like in serum. However, the number of samples from healthy subjects used as negative controls was as small as a dozen. Therefore, the universality of the marker for the difference among subjects is not insured. Thus, this method has low reliability as a method for detecting lung cancer.

[0020] Patent Literature 2 discloses a method for detecting lung cancer using miR-1268 and miR-1228 in serum or plasma. These markers, however, were validated in only 3 mesothelioma cases as a cancer other than lung cancer. Thus, the possibility that these markers have a high rate of false positives and detect cancers other than lung cancer cannot be excluded.

[0021] Patent Literature 3 discloses a method for detecting lung cancer using miR-1307 and the like in blood cells. However, a marker obtained using one case group was not validated in another independent case group. Thus, this method has low reliability as a method for testing lung cancer.

[0022] As mentioned above, the existing tumor markers exhibit low performance in the detection of lung cancer, or neither performance nor detection methods are specifically shown as to the markers at a research stage. Therefore, use of these markers might lead to carrying out needless extra examination due to the false detection of healthy subjects

as being lung cancer patients, or might waste therapeutic opportunity because of overlooking lung cancer patients. In addition, the measurement of several dozens to several hundreds of miRNAs increases examination cost and is therefore difficult to use in large-scale screening such as medical checkup. Furthermore, the collection of lung tissues for measuring the tumor markers is highly invasive to patients and is not favorable. Hence, there is a demand for a highly accurate lung cancer marker that is detectable from blood, which can be collected with limited invasiveness, and is capable of correctly determining a lung cancer patient as a lung cancer patient and a healthy subject as a healthy subject. Particularly, the early detection of lung cancer can increase the applicability of surgery and drastically improve the survival rates. For early lung cancer, there are multiple therapeutic options. There is a possibility that treatment that places less burden on patients, such as thoracoscopic surgery or stereotactic body radiotherapy, can also be applied to such lung cancer. Therefore, a highly sensitive lung cancer marker that can detect lung cancer even at an early stage of progression is desired.

Solution to Problem

10

30

35

40

45

50

- 15 [0023] The present inventors have conducted diligent studies to attain the object and consequently completed the present invention by finding multiple genes usable as markers for the detection of lung cancer from blood, which can be collected with limited invasiveness, and finding that lung cancer can be significantly detected by using a nucleic acid capable of specifically binding to any of these markers.
- 20 <Summary of Invention>
 - [0024] Specifically, the present invention has the following features:

In a first aspect the invention provides the use of a kit in the *in vitro* diagnosis of lung cancer, the kit comprising a nucleic acid capable of specifically binding to lung cancer marker miR-6768-5p.

⁵ [0025] In a further aspect the invention provides the use of a device in the *in vitro* diagnosis of lung cancer, comprising a nucleic acid capable of specifically binding to a polynucleotide of lung cancer marker miR-6768-5p.

[0026] In a further aspect the invention provides a method for detecting lung cancer, comprising measuring an expression level of a target nucleic acid in a sample from a subject using the kit defined in any one of claims 1 to 5 or the device defined in any one of claims 6 to 12, and evaluating *in vitro* whether or not the subject has lung cancer using both of the measured expression level and a control expression level of in a sample from a healthy subject measured in the same way.

[0027] In a further aspect the invention provides the use of a marker in the *in vitro* diagnosis of lung cancer, the marker comprising polynucleotide miR-6768-5p.

[0028] Further aspects and embodiments of the invention are set out in the accompanying claims and are described in more detail below.

<Definition of Terms>

[0029] The terms used herein are defined as follows.

[0030] Abbreviations or terms such as nucleotide, polynucleotide, DNA, and RNA abide by "Guidelines for the preparation of specification which contain nucleotide and/or amino acid sequences" (edited by Japan Patent Office) and common use in the art.

[0031] The term "polynucleotide" used herein is used for a nucleic acid including any of RNA, DNA, and RNA/DNA (chimera). The DNA includes any of cDNA, genomic DNA, and synthetic DNA. The RNA includes any of total RNA, mRNA, rRNA, miRNA, siRNA, snoRNA, snRNA, non-coding RNA and synthetic RNA. Here the "synthetic DNA" and the "synthetic RNA" refer to DNA and RNA artificially prepared using, for example, an automatic nucleic acid synthesizer, on the basis of predetermined nucleotide sequences (which may be any of natural and non-natural sequences). The "non-natural sequence" is intended to be used in a broad sense and includes, for example, a sequence comprising substitution, deletion, insertion, and/or addition of one or more nucleotide(s) (i.e., a variant sequence) and a sequence comprising one or more modified nucleotide(s) (i.e., a modified sequence), which are different from the natural sequence. Herein, the term "polynucleotide" is used interchangeably with the term "nucleic acid".

[0032] The term "fragment" used herein is a polynucleotide having a nucleotide sequence that consists of a consecutive portion of a polynucleotide and desirably has a length of 15 or more nucleotides, preferably 17 or more nucleotides, more preferably 19 or more nucleotides.

[0033] The term "gene" used herein is intended to include not only RNA and double-stranded DNA but each single-stranded DNA such as a plus strand (or a sense strand) or a complementary strand (or an antisense strand) constituting the duplex. The gene is not particularly limited by its length.

[0034] Thus, the "gene" used herein includes any of double-stranded DNA including human genomic DNA, single-

stranded DNA (plus strand) including cDNA, single-stranded DNA having a sequence complementary to the plus strand (complementary strand), microRNA (miRNA), and their fragments, and transcripts, unless otherwise specified. The "gene" includes not only a "gene" represented by a particular nucleotide sequence (or SEQ ID NO) but "nucleic acids" encoding RNAs having biological functions equivalent to an RNA encoded by the gene, for example, a congener (i.e., a homolog or an ortholog), a variant (e.g., a genetic polymorph), and a derivative. Specific examples of such a "nucleic acid" encoding a congener, a variant, or a derivative can include a "nucleic acid" having a nucleotide sequence hybridizing under stringent conditions described later to a complementary sequence of a nucleotide sequence represented by any of SEQ ID NOs: 1 to 618, or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t. The "gene" is not particularly limited by its functional region and can contain, for example, an expression regulatory region, a coding region, an exon, or an intron. The "gene" may be contained in a cell or may exist alone after being released into the outside of a cell. Alternatively, the "gene" may be in a state enclosed in a vesicle called exosome.

10

30

35

40

45

50

55

[0035] The term "exosome" used herein is a vesicle that is encapsulated by a lipid bilayer and secreted from a cell. The exosome is derived from a multivesicular endosome and may incorporate biomaterials such as a "gene" (e.g., RNA or DNA) or a protein when released into an extracellular environment. The exosome is known to be contained in a body fluid such as blood, serum, plasma, or lymph.

[0036] The term "transcript" used herein refers to an RNA synthesized with the DNA sequence of a gene as a template. RNA polymerase binds to a site called a promoter located upstream of the gene and adds ribonucleotides complementary to the nucleotide sequence of the DNA to the 3' end to synthesize RNA. This RNA contains not only the gene itself but also the whole sequence from a transcription initiation site to the end of a polyA sequence, including an expression regulatory region, a coding region, an exon, or an intron.

[0037] The term "microRNA (miRNA)" used herein is intended to mean a 15- to 25-nucleotide non-coding RNA that is involved in the suppression of translation of mRNA, and that transcribed as an RNA precursor having a hairpin-like structure, cleaved by a dsRNA-cleaving enzyme which has RNase III cleavage activity, and integrated into a protein complex called RISC, unless otherwise specified. The term "miRNA" used herein includes not only a "miRNA" represented by a particular nucleotide sequence (or SEQ ID NO) but a precursor of the "miRNA" (pre-miRNA or pri-miRNA), and miRNAs having biological functions equivalent thereto, for example, a congener (i.e., a homolog or an ortholog), a variant (e.g., a genetic polymorph), and a derivative. Such a precursor, a congener, a variant, or a derivative can be specifically identified using miRBase Release 20 (http://www.mirbase.org/), and examples thereof can include a "miRNA" having a nucleotide sequence hybridizing under stringent conditions described later to a complementary sequence of any particular nucleotide sequence represented by any of SEQ ID NOs: 1 to 618. The term "miRNA" used herein may be a gene product of a miR gene. Such a gene product includes a mature miRNA (e.g., a 15- to 25-nucleotide or 19- to 25-nucleotide non-coding RNA involved in the suppression of translation of mRNA as described above) or a miRNA precursor (e.g., pre-miRNA or pri-miRNA as described above).

[0038] The term "probe" used herein includes a polynucleotide that is used for specifically detecting RNA resulting from the expression of a gene or a polynucleotide derived from the RNA, and/or a polynucleotide complementary thereto. [0039] The term "primer" used herein includes a polynucleotide that specifically recognizes and amplifies RNA resulting from the expression of a gene or a polynucleotide derived from the RNA, and/or a polynucleotide complementary thereto. [0040] In this context, the complementary polynucleotide (complementary strand or reverse strand) means a polynucleotide in a complementary base relationship of A:T (U) and G:C base pairs with the full-length sequence of a polynucleotide consisting of a nucleotide sequence defined by any of SEQ ID NOs: 1 to 618 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, or a partial sequence thereof (here, this full-length or partial sequence is referred to as a plus strand for the sake of convenience). However, such a complementary strand is not limited to a sequence completely complementary to the nucleotide sequence of the target plus strand and may have a complementary relationship to an extent that permits hybridization under stringent conditions to the target plus strand. [0041] The term "stringent conditions" used herein refers to conditions under which a nucleic acid probe hybridizes to its target sequence to a larger extent (e.g., a measurement value equal to or larger than a mean of background measurement values + a standard deviation of the background measurement values × 2) than that for other sequences. The

its target sequence to a larger extent (e.g., a measurement value equal to or larger than a mean of background measurement values + a standard deviation of the background measurement values \times 2) than that for other sequences. The stringent conditions are dependent on a sequence and differ depending on an environment where hybridization is performed. A target sequence that is 100% complementary to the nucleic acid probe can be identified by controlling the stringency of hybridization and/or washing conditions. Specific examples of the "stringent conditions" will be mentioned later.

[0042] The term "Tm value" used herein means a temperature at which the double-stranded moiety of a polynucleotide is denatured into single strands so that the double strands and the single strands exist at a ratio of 1:1.

[0043] The term "variant" used herein means, in the case of a nucleic acid, a natural variant attributed to polymorphism, mutation, or the like; a variant containing the deletion, substitution, addition, or insertion of 1, 2, or 3 or more nucleotides in a nucleotide sequence represented by any of SEQ ID NOs: 1 to 618 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, or a partial sequence thereof; a variant containing the deletion, substitution, addition, or insertion of 1 or 2 or more nucleotides in a nucleotide sequence of a premature miRNA of a

sequence represented by any of SEQ ID NOs: 1 to 618 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, or a partial sequence thereof; a variant that exhibits identity of approximately 90% or higher, approximately 95% or higher, approximately 97% or higher, approximately 98% or higher, approximately 99% or higher to each of these nucleotide sequences or the partial sequence thereof; or a nucleic acid hybridizing under the stringent conditions defined above to a polynucleotide or an oligonucleotide comprising each of these nucleotide sequences or the partial sequence thereof.

[0044] The term "several" used herein means an integer of approximately 10, 9, 8, 7, 6, 5, 4, 3, or 2.

20

30

35

50

55

[0045] The variant used herein can be prepared by use of a well-known technique such as sitedirected mutagenesis or PCR-based mutagenesis.

[0046] The term "identity" used herein can be determined with or without an introduced gap, using a protein or gene search system based on BLAST or FASTA described above (Zheng Zhang et al., 2000, J. Comput. Biol., Vol. 7, p. 203-214; Altschul, S.F. et al., 1990, Journal of Molecular Biology, Vol. 215, p. 403-410; and Pearson, W.R. et al., 1988, Proc. Natl. Acad. Sci. U. S. A., Vol. 85, p. 2444-2448).

[0047] The term "derivative" used herein is meant to include a modified nucleic acid, for example, a derivative labeled with a fluorophore or the like, a derivative containing a modified nucleotide (e.g., a nucleotide containing a group such as halogen, alkyl such as methyl, alkoxy such as methoxy, thio, or carboxymethyl, and a nucleotide that has undergone base rearrangement, double bond saturation, deamination, replacement of an oxygen molecule with a sulfur atom, etc.), PNA (peptide nucleic acid; Nielsen, P.E. et al., 1991, Science, Vol. 254, p. 1497-500), and LNA (locked nucleic acid; Obika, S. et al., 1998, Tetrahedron Lett., Vol. 39, p. 5401-5404) without any limitation.

[0048] As used herein, the "nucleic acid" capable of specifically binding to a polynucleotide selected from the lung cancer marker miRNAs described above is a synthesized or prepared nucleic acid and specifically includes a "nucleic acid probe" or a "primer". The "nucleic acid" is utilized directly or indirectly for detecting the presence or absence of lung cancer in a subject, for diagnosing the presence or absence of lung cancer, the severity of lung cancer, the presence or absence of amelioration or the degree of amelioration of lung cancer, or the sensitivity of lung cancer for treatment, or for screening for a candidate substance useful in the prevention, amelioration, or treatment of lung cancer. The "nucleic acid" includes a nucleotide, an oligonucleotide, and a polynucleotide capable of specifically recognizing and binding to a transcript represented by any of SEQ ID NOs: 1 to 618 or a synthetic cDNA nucleic acid thereof *in vivo*, particularly, in a sample such as a body fluid (e.g., blood or urine), in relation to the development of lung cancer. The nucleotide, the oligonucleotide, and the polynucleotide can be effectively used as probes for detecting the aforementioned gene expressed *in vivo*, in tissues, in cells, or the like on the basis of the properties described above, or as primers for amplifying the aforementioned gene expressed *in vivo*.

[0049] The term "detection" used herein is interchangeable with the term "examination", "measurement", "detection", or "decision support". As used herein, the term "evaluation" is meant to include diagnosing or evaluation-supporting on the basis of examination results or measurement results.

[0050] The term "subject" used herein means a mammal such as a primate including a human and a chimpanzee, a pet animal including a dog and a cat, a livestock animal including cattle, a horse, sheep, and a goat, and a rodent including a mouse and a rat. The term "healthy subject" also means such a mammal without the cancer to be detected.
[0051] The term "P" or "P value" used herein refers to a probability at which a more extreme statistic than that actually calculated from data under null hypothesis is observed in a statistical test. Thus, smaller "P" or "P value" means more significant difference between subjects to be compared.

[0052] The term "sensitivity" used herein means a value of (the number of true positives) / (the number of true positives + the number of false negatives). High sensitivity allows lung cancer to be detected early, leading to the complete resection of cancer sites and reduction in the rate of recurrence.

[0053] The term "specificity" used herein means a value of (the number of true negatives) / (the number of true negatives + the number of false positives). High specificity prevents needless extra examination for healthy subjects misjudged as being lung cancer patients, leading to reduction in burden on patients and reduction in medical expense.

[0054] The term "accuracy" used herein means a value of (the number of true positives + the number of true negatives) / (the total number of cases). The accuracy indicates the ratio of samples that correctly identified in the discriminant results to all samples, and serves as a primary index for evaluating detection performance.

[0055] As used herein, the "sample" that is subject to determination, detection, or diagnosis refers to a tissue and a biological material in which the expression of the gene of the present invention varies as lung cancer develops, lung cancer progresses, and therapeutic effects on lung cancer are exerted. Specifically, the "sample" refers to a lung tissue, a peripulmonary vascular channel, lymph node, and organ, an organ suspected of having metastasis, the skin, a body fluid such as blood, urine, saliva, sweat, or tissue exudates, serum or plasma prepared from blood, feces, hair, and the like. The "sample" further refers to a biological sample extracted therefrom, specifically, a gene such as RNA or miRNA. [0056] The term "hsa-miR-6768-5p gene" or "hsa-miR-6768-5p" used herein includes the hsa-miR-6768-5p gene (miRBase Accession No. MIMAT0027436) described in SEQ ID NO: 1, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6768-5p gene can be obtained by a method described in Ladewig E et al., 2012,

Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6768" (miRBase Accession No. MI0022613, SEQ ID NO: 175) having a hairpin-like structure is known as a precursor of "hsa-miR-6768-5p".

[0057] The term "hsa-miR-6836-3p gene" or "hsa-miR-6836-3p" used herein includes the hsa-miR-6836-3p gene (miRBase Accession No. MIMAT0027575) described in SEQ ID NO: 2, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6836-3p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6836" (miRBase Accession No. MI0022682, SEQ ID NO: 176) having a hairpin-like structure is known as a precursor of "hsa-miR-6836-3p".

[0058] The term "hsa-miR-6782-5p gene" or "hsa-miR-6782-5p" used herein includes the hsa-miR-6782-5p gene (miRBase Accession No. MIMAT0027464) described in SEQ ID NO: 3, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6782-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6782" (miRBase Accession No. MI0022627, SEQ ID NO: 177) having a hairpin-like structure is known as a precursor of "hsa-miR-6782-5p".

[0059] The term "hsa-miR-3663-3p gene" or "hsa-miR-3663-3p" used herein includes the hsa-miR-3663-3p gene (miRBase Accession No. MIMAT0018085) described in SEQ ID NO: 4, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3663-3p gene can be obtained by a method described in Liao JY et al., 2010, PLoS One, Vol. 5, e10563. Also, "hsa-mir-3663" (miRBase Accession No. MI0016064, SEQ ID NO: 178) having a hairpin-like structure is known as a precursor of "hsa-miR-3663-3p".

[0060] The term "hsa-miR-1908-3p gene" or "hsa-miR-1908-3p" used herein includes the hsa-miR-1908-3p gene (miRBase Accession No. MIMAT0026916) described in SEQ ID NO: 5, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1908-3p gene can be obtained by a method described in Bar M et al., 2008, Stem Cells, Vol. 26, p. 2496-2505. Also, "hsa-mir-1908" (miRBase Accession No. MI0008329, SEQ ID NO: 179) having a hairpin-like structure is known as a precursor of "hsa-miR-1908-3p".

[0061] The term "hsa-miR-6726-5p gene" or "hsa-miR-6726-5p" used herein includes the hsa-miR-6726-5p gene (miRBase Accession No. MIMAT0027353) described in SEQ ID NO: 6, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6726-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6726" (miRBase Accession No. MI0022571, SEQ ID NO: 180) having a hairpin-like structure is known as a precursor of "hsa-miR-6726-5p".

[0062] The term "hsa-miR-4258 gene" or "hsa-miR-4258" used herein includes the hsa-miR-4258 gene (miRBase Accession No. MIMAT0016879) described in SEQ ID NO: 7, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4258 gene can be obtained by a method described in Goff LA et al., 2009, PLoS One, Vol. 4, e7192. Also, "hsa-mir-4258" (miRBase Accession No. MI0015857, SEQ ID NO: 181) having a hairpin-like structure is known as a precursor of "hsa-miR-4258".

30

35

50

[0063] The term "hsa-miR-1343-3p gene" or "hsa-miR-1343-3p" used herein includes the hsa-miR-1343-3p gene (miRBase Accession No. MIMAT0019776) described in SEQ ID NO: 8, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1343-3p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-1343" (miRBase Accession No. MI0017320, SEQ ID NO: 182) having a hairpin-like structure is known as a precursor of "hsa-miR-1343-3p".

[0064] The term "hsa-miR-4516 gene" or "hsa-miR-4516" used herein includes the hsa-miR-4516 gene (miRBase Accession No. MIMAT0019053) described in SEQ ID NO: 9, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4516 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4516" (miRBase Accession No. MI0016882, SEQ ID NO: 183) having a hairpin-like structure is known as a precursor of "hsa-miR-4516".

[0065] The term "hsa-miR-6875-5p gene" or "hsa-miR-6875-5p" used herein includes the hsa-miR-6875-5p gene (miRBase Accession No. MIMAT0027650) described in SEQ ID NO: 10, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6875-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6875" (miRBase Accession No. MI0022722, SEQ ID NO: 184) having a hairpin-like structure is known as a precursor of "hsa-miR-6875-5p".

[0066] The term "hsa-miR-4651 gene" or "hsa-miR-4651" used herein includes the hsa-miR-4651 gene (miRBase Accession No. MIMAT0019715) described in SEQ ID NO: 11, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4651 gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4651" (miRBase Accession No. MI0017279, SEQ ID NO: 185) having a hairpin-like structure is known as a precursor of "hsa-miR-4651".

[0067] The term "hsa-miR-6825-5p gene" or "hsa-miR-6825-5p" used herein includes the hsa-miR-6825-5p gene (miRBase Accession No. MIMAT0027550) described in SEQ ID NO: 12, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6825-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6825" (miRBase Accession No. MI0022670, SEQ ID NO: 186) having a hairpin-like structure is known as a precursor of "hsa-miR-6825-5p".

[0068] The term "hsa-miR-6840-3p gene" or "hsa-miR-6840-3p" used herein includes the hsa-miR-6840-3p gene

- (miRBase Accession No. MIMAT0027583) described in SEQ ID NO: 13, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6840-3p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6840" (miRBase Accession No. MI0022686, SEQ ID NO: 187) having a hairpin-like structure is known as a precursor of "hsa-miR-6840-3p".
- ⁵ [0069] The term "hsa-miR-6780b-5p gene" or "hsa-miR-6780b-5p" used herein includes the hsa-miR-6780b-5p gene (miRBase Accession No. MIMAT0027572) described in SEQ ID NO: 14, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6780b-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6780b" (miRBase Accession No. MI0022681, SEQ ID NO: 188) having a hairpin-like structure is known as a precursor of "hsa-miR-6780b-5p".
- [0070] The term "hsa-miR-6749-5p gene" or "hsa-miR-6749-5p" used herein includes the hsa-miR-6749-5p gene (miRBase Accession No. MIMAT0027398) described in SEQ ID NO: 15, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6749-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6749" (miRBase Accession No. MI0022594, SEQ ID NO: 189) having a hairpin-like structure is known as a precursor of "hsa-miR-6749-5p".
- [0071] The term "hsa-miR-8063 gene" or "hsa-miR-8063" used herein includes the hsa-miR-8063 gene (miRBase Accession No. MIMAT0030990) described in SEQ ID NO: 16, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-8063 gene can be obtained by a method described in Wang HJ et al., 2013, Shock, Vol. 39, p. 480-487. Also, "hsa-mir-8063" (miRBase Accession No. MI0025899, SEQ ID NO: 190) having a hairpin-like structure is known as a precursor of "hsa-miR-8063".
- [0072] The term "hsa-miR-6784-5p gene" or "hsa-miR-6784-5p" used herein includes the hsa-miR-6784-5p gene (miRBase Accession No. MIMAT0027468) described in SEQ ID NO: 17, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6784-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6784" (miRBase Accession No. MI0022629, SEQ ID NO: 191) having a hairpin-like structure is known as a precursor of "hsa-miR-6784-5p".
- [0073] The term "hsa-miR-3679-5p gene" or "hsa-miR-3679-5p" used herein includes the hsa-miR-3679-5p gene (miRBase Accession No. MIMAT0018104) described in SEQ ID NO: 18, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3679-5p gene can be obtained by a method described in Creighton CJ et al., 2010, PLoS One, Vol. 5, e9637. Also, "hsa-mir-3679" (miRBase Accession No. MI0016080, SEQ ID NO: 192) having a hairpin-like structure is known as a precursor of "hsa-miR-3679-5p".
- [0074] The term "hsa-miR-3184-5p gene" or "hsa-miR-3184-5p" used herein includes the hsa-miR-3184-5p gene (miRBase Accession No. MIMAT0015064) described in SEQ ID NO: 19, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3184-5p gene can be obtained by a method described in Stark MS et al., 2010, PLoS One, Vol. 5, e9685. Also, "hsa-mir-3184" (miRBase Accession No. MI0014226, SEQ ID NO: 193) having a hairpin-like structure is known as a precursor of "hsa-miR-3184-5p".
- [0075] The term "hsa-miR-663b gene" or "hsa-miR-663b" used herein includes the hsa-miR-663b gene (miRBase Accession No. MIMAT0005867) described in SEQ ID NO: 20, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-663b gene can be obtained by a method described in Takada S et al., 2008, Leukemia, Vol. 22, p. 1274-1278. Also, "hsa-mir-663b" (miRBase Accession No. MI0006336, SEQ ID NO: 194) having a hairpin-like structure is known as a precursor of "hsa-miR-663b".
- [0076] The term "hsa-miR-6880-5p gene" or "hsa-miR-6880-5p" used herein includes the hsa-miR-6880-5p gene (miRBase Accession No. MIMAT0027660) described in SEQ ID NO: 21, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6880-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6880" (miRBase Accession No. MI0022727, SEQ ID NO: 195) having a hairpin-like structure is known as a precursor of "hsa-miR-6880-5p".
- [0077] The term "hsa-miR-1908-5p gene" or "hsa-miR-1908-5p" used herein includes the hsa-miR-1908-5p gene (miRBase Accession No. MIMAT0007881) described in SEQ ID NO: 22, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1908-5p gene can be obtained by a method described in Bar M et al., 2008, Stem Cells, Vol. 26, p. 2496-2505. Also, "hsa-mir-1908" (miRBase Accession No. MI0008329, SEQ ID NO: 179) having a hairpin-like structure is known as a precursor of "hsa-miR-1908-5p".
- [0078] The term "hsa-miR-92a-2-5p gene" or "hsa-miR-92a-2-5p" used herein includes the hsa-miR-92a-2-5p gene (miRBase Accession No. MIMAT0004508) described in SEQ ID NO: 23, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-92a-2-5p gene can be obtained by a method described in Mourelatos Z et al., 2002, Genes Dev, Vol. 16, p. 720-728. Also, "hsa-mir-92a-2" (miRBase Accession No. MI0000094, SEQ ID NO: 196) having a hairpin-like structure is known as a precursor of "hsa-miR-92a-2-5p".
- [0079] The term "hsa-miR-7975 gene" or "hsa-miR-7975" used herein includes the hsa-miR-7975 gene (miRBase Accession No. MIMAT0031178) described in SEQ ID NO: 24, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-7975 gene can be obtained by a method described in Velthut-Meikas A et al., 2013, Mol Endocrinol, online. Also, "hsa-mir-7975" (miRBase Accession No. MI0025751, SEQ ID NO: 197) having a hairpin-like

structure is known as a precursor of "hsa-miR-7975".

30

35

45

50

[0080] The term "hsa-miR-7110-5p gene" or "hsa-miR-7110-5p" used herein includes the hsa-miR-7110-5p gene (miRBase Accession No. MIMAT0028117) described in SEQ ID NO: 25, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-7110-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-7110" (miRBase Accession No. MI0022961, SEQ ID NO: 198) having a hairpin-like structure is known as a precursor of "hsa-miR-7110-5p".

[0081] The term "hsa-miR-6842-5p gene" or "hsa-miR-6842-5p" used herein includes the hsa-miR-6842-5p gene (miRBase Accession No. MIMAT0027586) described in SEQ ID NO: 26, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6842-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6842" (miRBase Accession No. MI0022688, SEQ ID NO: 199) having a hairpin-like structure is known as a precursor of "hsa-miR-6842-5p".

[0082] The term "hsa-miR-6857-5p gene" or "hsa-miR-6857-5p" used herein includes the hsa-miR-6857-5p gene (miRBase Accession No. MIMAT0027614) described in SEQ ID NO: 27, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6857-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6857" (miRBase Accession No. MI0022703, SEQ ID NO: 200) having a hairpin-like structure is known as a precursor of "hsa-miR-6857-5p".

[0083] The term "hsa-miR-5572 gene" or "hsa-miR-5572" used herein includes the hsa-miR-5572 gene (miRBase Accession No. MIMAT0022260) described in SEQ ID NO: 28, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-5572 gene can be obtained by a method described in Tandon M et al., 2012, Oral Dis, Vol. 18, p. 127-131. Also, "hsa-mir-5572" (miRBase Accession No. MI0019117, SEQ ID NO: 201) having a hairpin-like structure is known as a precursor of "hsa-miR-5572".

[0084] The term "hsa-miR-3197 gene" or "hsa-miR-3197" used herein includes the hsa-miR-3197 gene (miRBase Accession No. MIMAT0015082) described in SEQ ID NO: 29, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3197 gene can be obtained by a method described in Stark MS et al., 2010, PLoS One, Vol. 5, e9685. Also, "hsa-mir-3197" (miRBase Accession No. MI0014245, SEQ ID NO: 202) having a hairpin-like structure is known as a precursor of "hsa-miR-3197".

[0085] The term "hsa-miR-6131 gene" or "hsa-miR-6131" used herein includes the hsa-miR-6131 gene (miRBase Accession No. MIMAT0024615) described in SEQ ID NO: 30, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6131 gene can be obtained by a method described in Dannemann M et al., 2012, Genome Biol Evol, Vol. 4, p. 552-564. Also, "hsa-mir-6131" (miRBase Accession No. MI0021276, SEQ ID NO: 203) having a hairpin-like structure is known as a precursor of "hsa-miR-6131".

[0086] The term "hsa-miR-6889-5p gene" or "hsa-miR-6889-5p" used herein includes the hsa-miR-6889-5p gene (miRBase Accession No. MIMAT0027678) described in SEQ ID NO: 31, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6889-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6889" (miRBase Accession No. MI0022736, SEQ ID NO: 204) having a hairpin-like structure is known as a precursor of "hsa-miR-6889-5p".

[0087] The term "hsa-miR-4454 gene" or "hsa-miR-4454" used herein includes the hsa-miR-4454 gene (miRBase Accession No. MIMAT0018976) described in SEQ ID NO: 32, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4454 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4454" (miRBase Accession No. MI0016800, SEQ ID NO: 205) having a hairpin-like structure is known as a precursor of "hsa-miR-4454".

[0088] The term "hsa-miR-1199-Sp gene" or "hsa-miR-1199-Sp" used herein includes the hsa-miR-1199-5p gene (miRBase Accession No. MIMAT0031119) described in SEQ ID NO: 33, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1199-5p gene can be obtained by a method described in Salvi A et al., 2013, Int J Oncol, Vol. 42, p. 391-402. Also, "hsa-mir-1199" (miRBase Accession No. MI0020340, SEQ ID NO: 206) having a hairpin-like structure is known as a precursor of "hsa-miR-1199-Sp".

[0089] The term "hsa-miR-1247-3p gene" or "hsa-miR-1247-3p" used herein includes the hsa-miR-1247-3p gene (miRBase Accession No. MIMAT0022721) described in SEQ ID NO: 34, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1247-3p gene can be obtained by a method described in Morin RD et al., 2008, Genome Res, Vol. 18, p. 610-621. Also, "hsa-mir-1247" (miRBase Accession No. MI0006382, SEQ ID NO: 207) having a hairpin-like structure is known as a precursor of "hsa-miR-1247-3p".

[0090] The term "hsa-miR-6800-5p gene" or "hsa-miR-6800-5p" used herein includes the hsa-miR-6800-5p gene (miRBase Accession No. MIMAT0027500) described in SEQ ID NO: 35, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6800-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6800" (miRBase Accession No. MI0022645, SEQ ID NO: 208) having a hairpin-like structure is known as a precursor of "hsa-miR-6800-5p".

[0091] The term "hsa-miR-6872-3p gene" or "hsa-miR-6872-3p" used herein includes the hsa-miR-6872-3p gene (miRBase Accession No. MIMAT0027645) described in SEQ ID NO: 36, a homolog or an ortholog of a different organism

species, and the like. The hsa-miR-6872-3p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6872" (miRBase Accession No. MI0022719, SEQ ID NO: 209) having a hairpin-like structure is known as a precursor of "hsa-miR-6872-3p".

[0092] The term "hsa-miR-4649-5p gene" or "hsa-miR-4649-5p" used herein includes the hsa-miR-4649-5p gene (miRBase Accession No. MIMAT0019711) described in SEQ ID NO: 37, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4649-5p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4649" (miRBase Accession No. MI0017276, SEQ ID NO: 210) having a hairpin-like structure is known as a precursor of "hsa-miR-4649-5p".

[0093] The term "hsa-miR-6791-5p gene" or "hsa-miR-6791-5p" used herein includes the hsa-miR-6791-5p gene (miRBase Accession No. MIMAT0027482) described in SEQ ID NO: 38, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6791-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6791" (miRBase Accession No. MI0022636, SEQ ID NO: 211) having a hairpin-like structure is known as a precursor of "hsa-miR-6791-5p".

[0094] The term "hsa-miR-4433b-3p gene" or "hsa-miR-4433b-3p" used herein includes the hsa-miR-4433b-3p gene (miRBase Accession No. MIMAT0030414) described in SEQ ID NO: 39, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4433b-3p gene can be obtained by a method described in Ple H et al., 2012, PLoS One, Vol. 7, e50746. Also, "hsa-mir-4433b" (miRBase Accession No. MI0025511, SEQ ID NO: 212) having a hairpin-like structure is known as a precursor of "hsa-miR-4433b-3p".

[0095] The term "hsa-miR-3135b gene" or "hsa-miR-3135b" used herein includes the hsa-miR-3135b gene (miRBase Accession No. MIMAT0018985) described in SEQ ID NO: 40, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3135b gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e1 18-e127. Also, "hsa-mir-3135b" (miRBase Accession No. MI0016809, SEQ ID NO: 213) having a hairpin-like structure is known as a precursor of "hsa-miR-3135b".

[0096] The term "hsa-miR-128-2-5p gene" or "hsa-miR-128-2-5p" used herein includes the hsa-miR-128-2-5p gene (miRBase Accession No. MIMAT0031095) described in SEQ ID NO: 41, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-128-2-5p gene can be obtained by a method described in Lagos-Quintana M et al., 2002, Curr Biol, Vol. 12, p. 735-739. Also, "hsa-mir-128-2" (miRBase Accession No. MI0000727, SEQ ID NO: 214) having a hairpin-like structure is known as a precursor of "hsa-miR-128-2-Sp".

[0097] The term "hsa-miR-4675 gene" or "hsa-miR-4675" used herein includes the hsa-miR-4675 gene (miRBase Accession No. MIMAT0019757) described in SEQ ID NO: 42, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4675 gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4675" (miRBase Accession No. MI0017306, SEQ ID NO: 215) having a hairpin-like structure is known as a precursor of "hsa-miR-4675".

30

35

45

50

55

[0098] The term "hsa-miR-4472 gene" or "hsa-miR-4472" used herein includes the hsa-miR-4472 gene (miRBase Accession No. MIMAT0018999) described in SEQ ID NO: 43, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4472 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4472-1 and hsa-mir-4472-2" (miRBase Accession Nos. MI0016823 and MI0016824, SEQ ID NOs: 216 and 217) having a hairpin-like structure are known as precursors of "hsa-miR-4472".

[0099] The term "hsa-miR-6785-5p gene" or "hsa-miR-6785-5p" used herein includes the hsa-miR-6785-5p gene (miRBase Accession No. MIMAT0027470) described in SEQ ID NO: 44, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6785-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6785" (miRBase Accession No. MI0022630, SEQ ID NO: 218) having a hairpin-like structure is known as a precursor of "hsa-miR-6785-5p".

[0100] The term "hsa-miR-6741-5p gene" or "hsa-miR-6741-5p" used herein includes the hsa-miR-6741-5p gene (miRBase Accession No. MIMAT0027383) described in SEQ ID NO: 45, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6741-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6741" (miRBase Accession No. MI0022586, SEQ ID NO: 219) having a hairpin-like structure is known as a precursor of "hsa-miR-6741-5p".

[0101] The term "hsa-miR-7977 gene" or "hsa-miR-7977" used herein includes the hsa-miR-7977 gene (miRBase Accession No. MIMAT0031180) described in SEQ ID NO: 46, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-7977 gene can be obtained by a method described in Velthut-Meikas A et al., 2013, Mol Endocrinol, online. Also, "hsa-mir-7977" (miRBase Accession No. MI0025753, SEQ ID NO: 220) having a hairpin-like structure is known as a precursor of "hsa-miR-7977".

[0102] The term "hsa-miR-3665 gene" or "hsa-miR-3665" used herein includes the hsa-miR-3665 gene (miRBase Accession No. MIMAT0018087) described in SEQ ID NO: 47, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3665 gene can be obtained by a method described in Xie X et al., 2005, Nature, Vol. 434, p. 338-345. Also, "hsa-mir-3665" (miRBase Accession No. MI0016066, SEQ ID NO: 221) having a hairpin-like structure is known as a precursor of "hsa-miR-3665".

[0103] The term "hsa-miR-128-1-5p gene" or "hsa-miR-128-1-5p" used herein includes the hsa-miR-128-1-5p gene (miRBase Accession No. MIMAT0026477) described in SEQ ID NO: 48, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-128-1-5p gene can be obtained by a method described in Lagos-Quintana M et al., 2002, Curr Biol, Vol. 12, p. 735-739. Also, "hsa-mir-128-1" (miRBase Accession No. MI0000447, SEQ ID NO: 222) having a hairpin-like structure is known as a precursor of "hsa-miR-128-1-5p".

[0104] The term "hsa-miR-4286 gene" or "hsa-miR-4286" used herein includes the hsa-miR-4286 gene (miRBase Accession No. MIMAT0016916) described in SEQ ID NO: 49, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4286 gene can be obtained by a method described in Goff LA et al., 2009, PLoS One, Vol. 4, e7192. Also, "hsa-mir-4286" (miRBase Accession No. MI0015894, SEQ ID NO: 223) having a hairpin-like structure is known as a precursor of "hsa-miR-4286".

[0105] The term "hsa-miR-6765-3p gene" or "hsa-miR-6765-3p" used herein includes the hsa-miR-6765-3p gene (miRBase Accession No. MIMAT0027431) described in SEQ ID NO: 50, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6765-3p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6765" (miRBase Accession No. MI0022610, SEQ ID NO: 224) having a hairpin-like structure is known as a precursor of "hsa-miR-6765-3p".

[0106] The term "hsa-miR-4632-5p gene" or "hsa-miR-4632-5p" used herein includes the hsa-miR-4632-5p gene (miRBase Accession No. MIMAT0022977) described in SEQ ID NO: 51, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4632-5p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4632" (miRBase Accession No. MI0017259, SEQ ID NO: 225) having a hairpin-like structure is known as a precursor of "hsa-miR-4632-5p".

[0107] The term "hsa-miR-365a-5p gene" or "hsa-miR-365a-5p" used herein includes the hsa-miR-365a-5p gene (miRBase Accession No. MIMAT0009199) described in SEQ ID NO: 52, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-365a-5p gene can be obtained by a method described in Xie X et al., 2005, Nature, Vol. 434, p. 338-345. Also, "hsa-mir-365a" (miRBase Accession No. MI0000767, SEQ ID NO: 226) having a hairpin-like structure is known as a precursor of "hsa-miR-365a-5p".

[0108] The term "hsa-miR-6088 gene" or "hsa-miR-6088" used herein includes the hsa-miR-6088 gene (miRBase Accession No. MIMAT0023713) described in SEQ ID NO: 53, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6088 gene can be obtained by a method described in Yoo JK et al., 2012, Stem Cells Dev, Vol. 21, p. 2049-2057. Also, "hsa-mir-6088" (miRBase Accession No. MI0020365, SEQ ID NO: 227) having a hairpin-like structure is known as a precursor of "hsa-miR-6088".

30

35

45

50

[0109] The term "hsa-miR-6816-5p gene" or "hsa-miR-6816-5p" used herein includes the hsa-miR-6816-5p gene (miRBase Accession No. MIMAT0027532) described in SEQ ID NO: 54, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6816-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6816" (miRBase Accession No. MI0022661, SEQ ID NO: 228) having a hairpin-like structure is known as a precursor of "hsa-miR-6816-5p".

[0110] The term "hsa-miR-6885-5p gene" or "hsa-miR-6885-5p" used herein includes the hsa-miR-6885-5p gene (miRBase Accession No. MIMAT0027670) described in SEQ ID NO: 55, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6885-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6885" (miRBase Accession No. MI0022732, SEQ ID NO: 229) having a hairpin-like structure is known as a precursor of "hsa-miR-6885-5p".

[0111] The term "hsa-miR-711 gene" or "hsa-miR-711" used herein includes the hsa-miR-711 gene (miRBase Accession No. MIMAT0012734) described in SEQ ID NO: 56, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-711 gene can be obtained by a method described in Artzi S et al., 2008, BMC Bioinformatics, Vol. 9, p. 39. Also, "hsa-mir-711" (miRBase Accession No. MI0012488, SEQ ID NO: 230) having a hairpin-like structure is known as a precursor of "hsa-miR-711".

[0112] The term "hsa-miR-6765-5p gene" or "hsa-miR-6765-5p" used herein includes the hsa-miR-6765-5p gene (miRBase Accession No. MIMAT0027430) described in SEQ ID NO: 57, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6765-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6765" (miRBase Accession No. MI0022610, SEQ ID NO: 224) having a hairpin-like structure is known as a precursor of "hsa-miR-6765-5p".

[0113] The term "hsa-miR-3180 gene" or "hsa-miR-3180" used herein includes the hsa-miR-3180 gene (miRBase Accession No. MIMAT0018178) described in SEQ ID NO: 58, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3180 gene can be obtained by a method described in Creighton CJ et al., 2010, PLoS One, Vol. 5, e9637. Also, "hsa-mir-3180-4 and hsa-mir-3180-5" (miRBase Accession Nos. MI0016408 and MI0016409, SEQ ID NOs: 231 and 232) having a hairpin-like structure are known as precursors of "hsa-miR-3180".

[0114] The term "hsa-miR-4442 gene" or "hsa-miR-4442" used herein includes the hsa-miR-4442 gene (miRBase Accession No. MIMAT0018960) described in SEQ ID NO: 59, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4442 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116,

e118-e127. Also, "hsa-mir-4442" (miRBase Accession No. MI0016785, SEQ ID NO: 233) having a hairpin-like structure is known as a precursor of "hsa-miR-4442".

[0115] The term "hsa-miR-4792 gene" or "hsa-miR-4792" used herein includes the hsa-miR-4792 gene (miRBase Accession No. MIMAT0019964) described in SEQ ID NO: 60, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4792 gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4792" (miRBase Accession No. MI0017439, SEQ ID NO: 234) having a hairpin-like structure is known as a precursor of "hsa-miR-4792".

[0116] The term "hsa-miR-6721-5p gene" or "hsa-miR-6721-5p" used herein includes the hsa-miR-6721-5p gene (miRBase Accession No. MIMAT0025852) described in SEQ ID NO: 61, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6721-5p gene can be obtained by a method described in Li Y et al., 2012, Gene, Vol. 497, p. 330-335. Also, "hsa-mir-6721" (miRBase Accession No. MI0022556, SEQ ID NO: 235) having a hairpin-like structure is known as a precursor of "hsa-miR-6721-5p".

[0117] The term "hsa-miR-6798-5p gene" or "hsa-miR-6798-5p" used herein includes the hsa-miR-6798-5p gene (miRBase Accession No. MIMAT0027496) described in SEQ ID NO: 62, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6798-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6798" (miRBase Accession No. MI0022643, SEQ ID NO: 236) having a hairpin-like structure is known as a precursor of "hsa-miR-6798-5p".

[0118] The term "hsa-miR-3162-5p gene" or "hsa-miR-3162-5p" used herein includes the hsa-miR-3162-5p gene (miRBase Accession No. MIMAT0015036) described in SEQ ID NO: 63, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3162-5p gene can be obtained by a method described in Stark MS et al., 2010, PLoS One, Vol. 5, e9685. Also, "hsa-mir-3162" (miRBase Accession No. MI0014192, SEQ ID NO: 237) having a hairpin-like structure is known as a precursor of "hsa-miR-3162-5p".

[0119] The term "hsa-miR-6126 gene" or "hsa-miR-6126" used herein includes the hsa-miR-6126 gene (miRBase Accession No. MIMAT0024599) described in SEQ ID NO: 64, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6126 gene can be obtained by a method described in Smith JL et al., 2012, J Virol, Vol. 86, p. 5278-5287. Also, "hsa-mir-6126" (miRBase Accession No. MI0021260, SEQ ID NO: 238) having a hairpin-like structure is known as a precursor of "hsa-miR-6126".

[0120] The term "hsa-miR-4758-5p gene" or "hsa-miR-4758-5p" used herein includes the hsa-miR-4758-5p gene (miRBase Accession No. MIMAT0019903) described in SEQ ID NO: 65, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4758-5p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4758" (miRBase Accession No. MI0017399, SEQ ID NO: 239) having a hairpin-like structure is known as a precursor of "hsa-miR-4758-5p".

30

35

50

[0121] The term "hsa-miR-2392 gene" or "hsa-miR-2392" used herein includes the hsa-miR-2392 gene (miRBase Accession No. MIMAT0019043) described in SEQ ID NO: 66, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-2392 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-2392" (miRBase Accession No. MI0016870, SEQ ID NO: 240) having a hairpin-like structure is known as a precursor of "hsa-miR-2392".

[0122] The term "hsa-miR-486-3p gene" or "hsa-miR-486-3p" used herein includes the hsa-miR-486-3p gene (miR-Base Accession No. MIMAT0004762) described in SEQ ID NO: 67, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-486-3p gene can be obtained by a method described in Fu H et al., 2005, FEBS Lett, Vol. 579, p. 3849-3854. Also, "hsa-mir-486 and hsa-mir-486-2" (miRBase Accession Nos. MI0002470 and MI0023622, SEQ ID NOs: 241 and 242) having a hairpin-like structure are known as precursors of "hsa-miR-486-3p".

[0123] The term "hsa-miR-6727-5p gene" or "hsa-miR-6727-5p" used herein includes the hsa-miR-6727-5p gene

(miRBase Accession No. MIMAT0027355) described in SEQ ID NO: 68, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6727-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6727" (miRBase Accession No. MI0022572, SEQ ID NO: 243) having a hairpin-like structure is known as a precursor of "hsa-miR-6727-5p".

[0124] The term "hsa-miR-4728-5p gene" or "hsa-miR-4728-5p" used herein includes the hsa-miR-4728-5p gene (miRBase Accession No. MIMAT0019849) described in SEQ ID NO: 69, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4728-5p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4728" (miRBase Accession No. MI0017365, SEQ ID NO: 244) having a hairpin-like structure is known as a precursor of "hsa-miR-4728-5p".

[0125] The term "hsa-miR-6746-5p gene" or "hsa-miR-6746-5p" used herein includes the hsa-miR-6746-5p gene (miRBase Accession No. MIMAT0027392) described in SEQ ID NO: 70, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6746-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6746" (miRBase Accession No. MI0022591, SEQ ID NO: 245) having a hairpin-like structure is known as a precursor of "hsa-miR-6746-5p".

[0126] The term "hsa-miR-4270 gene" or "hsa-miR-4270" used herein includes the hsa-miR-4270 gene (miRBase

Accession No. MIMAT0016900) described in SEQ ID NO: 71, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4270 gene can be obtained by a method described in Goff LA et al., 2009, PLoS One, Vol. 4, e7192. Also, "hsa-mir-4270" (miRBase Accession No. MI0015878, SEQ ID NO: 246) having a hairpin-like structure is known as a precursor of "hsa-miR-4270".

- [0127] The term "hsa-miR-3940-5p gene" or "hsa-miR-3940-5p" used herein includes the hsa-miR-3940-5p gene (miRBase Accession No. MIMAT00 19229) described in SEQ ID NO: 72, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3940-5p gene can be obtained by a method described in Liao JY et al., 2010, PLoS One, Vol. 5, e10563. Also, "hsa-mir-3940" (miRBase Accession No. MI0016597, SEQ ID NO: 247) having a hairpin-like structure is known as a precursor of "hsa-miR-3940-5p".
- [0128] The term "hsa-miR-4725-3p gene" or "hsa-miR-4725-3p" used herein includes the hsa-miR-4725-3p gene (miRBase Accession No. MIMAT0019844) described in SEQ ID NO: 73, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4725-3p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4725" (miRBase Accession No. MI0017362, SEQ ID NO: 248) having a hairpin-like structure is known as a precursor of "hsa-miR-4725-3p".
- [0129] The term "hsa-miR-7108-5p gene" or "hsa-miR-7108-5p" used herein includes the hsa-miR-7108-5p gene (miRBase Accession No. MIMAT0028113) described in SEQ ID NO: 74, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-7108-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-7108" (miRBase Accession No. MI0022959, SEQ ID NO: 249) having a hairpin-like structure is known as a precursor of "hsa-miR-7108-5p".
- [0130] The term "hsa-miR-3656 gene" or "hsa-miR-3656" used herein includes the hsa-miR-3656 gene (miRBase Accession No. MIMAT0018076) described in SEQ ID NO: 75, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3656 gene can be obtained by a method described in Meiri E et al., 2010, Nucleic Acids Res, Vol. 38, p. 6234-6246. Also, "hsa-mir-3656" (miRBase Accession No. MI0016056, SEQ ID NO: 250) having a hairpin-like structure is known as a precursor of "hsa-miR-3656".
- [0131] The term "hsa-miR-6879-5p gene" or "hsa-miR-6879-5p" used herein includes the hsa-miR-6879-5p gene (miRBase Accession No. MIMAT0027658) described in SEQ ID NO: 76, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6879-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6879" (miRBase Accession No. MI0022726, SEQ ID NO: 251) having a hairpin-like structure is known as a precursor of "hsa-miR-6879-5p".
- [0132] The term "hsa-miR-6738-5p gene" or "hsa-miR-6738-5p" used herein includes the hsa-miR-6738-5p gene (miRBase Accession No. MIMAT0027377) described in SEQ ID NO: 77, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6738-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6738" (miRBase Accession No. MI0022583, SEQ ID NO: 252) having a hairpin-like structure is known as a precursor of "hsa-miR-6738-5p".
- [0133] The term "hsa-miR-1260a gene" or "hsa-miR-1260a" used herein includes the hsa-miR-1260a gene (miRBase Accession No. MIMAT0005911) described in SEQ ID NO: 78, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1260a gene can be obtained by a method described in Morin RD et al., 2008, Genome Res, Vol. 18, p. 610-621. Also, "hsa-mir-1260a" (miRBase Accession No. MI0006394, SEQ ID NO: 253) having a hairpin-like structure is known as a precursor of "hsa-miR-1260a".
- [0134] The term "hsa-miR-4446-3p gene" or "hsa-miR-4446-3p" used herein includes the hsa-miR-4446-3p gene (miRBase Accession No. MIMAT00 18965) described in SEQ ID NO: 79, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4446-3p gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4446" (miRBase Accession No. MI0016789, SEQ ID NO: 254) having a hairpin-like structure is known as a precursor of "hsa-miR-4446-3p".
- [0135] The term "hsa-miR-3131 gene" or "hsa-miR-3131" used herein includes the hsa-miR-3131 gene (miRBase Accession No. MIMAT0014996) described in SEQ ID NO: 80, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3131 gene can be obtained by a method described in Stark MS et al., 2010, PLoS One, Vol. 5, e9685. Also, "hsa-mir-3131" (miRBase Accession No. MI0014151, SEQ ID NO: 255) having a hairpin-like structure is known as a precursor of "hsa-miR-3131".
- [0136] The term "hsa-miR-4463 gene" or "hsa-miR-4463" used herein includes the hsa-miR-4463 gene (miRBase Accession No. MIMAT0018987) described in SEQ ID NO: 81, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4463 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4463" (miRBase Accession No. MI0016811, SEQ ID NO: 256) having a hairpin-like structure is known as a precursor of "hsa-miR-4463".
- [0137] The term "hsa-miR-3185 gene" or "hsa-miR-3185" used herein includes the hsa-miR-3185 gene (miRBase Accession No. MIMAT0015065) described in SEQ ID NO: 82, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3185 gene can be obtained by a method described in Stark MS et al., 2010, PLoS One, Vol. 5, e9685. Also, "hsa-mir-3185" (miRBase Accession No. MI0014227, SEQ ID NO: 257) having a hairpin-like structure

is known as a precursor of "hsa-miR-3185".

30

35

50

[0138] The term "hsa-miR-6870-5p gene" or "hsa-miR-6870-5p" used herein includes the hsa-miR-6870-5p gene (miRBase Accession No. MIMAT0027640) described in SEQ ID NO: 83, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6870-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6870" (miRBase Accession No. MI0022717, SEQ ID NO: 258) having a hairpin-like structure is known as a precursor of "hsa-miR-6870-5p".

[0139] The term "hsa-miR-6779-5p gene" or "hsa-miR-6779-5p" used herein includes the hsa-miR-6779-5p gene (miRBase Accession No. MIMAT0027458) described in SEQ ID NO: 84, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6779-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6779" (miRBase Accession No. MI0022624, SEQ ID NO: 259) having a hairpin-like structure is known as a precursor of "hsa-miR-6779-5p".

[0140] The term "hsa-miR-1273g-3p gene" or "hsa-miR-1273g-3p" used herein includes the hsa-miR-1273g-3p gene (miRBase Accession No. MIMAT0022742) described in SEQ ID NO: 85, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1273g-3p gene can be obtained by a method described in Reshmi G et al., 2011, Genomics, Vol. 97, p. 333-340. Also, "hsa-mir-1273g" (miRBase Accession No. MI0018003, SEQ ID NO: 260) having a hairpin-like structure is known as a precursor of "hsa-miR-1273g-3p".

[0141] The term "hsa-miR-8059 gene" or "hsa-miR-8059" used herein includes the hsa-miR-8059 gene (miRBase Accession No. MIMAT0030986) described in SEQ ID NO: 86, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-8059 gene can be obtained by a method described in Wang HJ et al., 2013, Shock, Vol. 39, p. 480-487. Also, "hsa-mir-8059" (miRBase Accession No. MI0025895, SEQ ID NO: 261) having a hairpin-like structure is known as a precursor of "hsa-miR-8059".

[0142] The term "hsa-miR-4697-5p gene" or "hsa-miR-4697-5p" used herein includes the hsa-miR-4697-5p gene (miRBase Accession No. MIMAT0019791) described in SEQ ID NO: 87, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4697-5p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4697" (miRBase Accession No. MI0017330, SEQ ID NO: 262) having a hairpin-like structure is known as a precursor of "hsa-miR-4697-5p".

[0143] The term "hsa-miR-4674 gene" or "hsa-miR-4674" used herein includes the hsa-miR-4674 gene (miRBase Accession No. MIMAT0019756) described in SEQ ID NO: 88, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4674 gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4674" (miRBase Accession No. MI0017305, SEQ ID NO: 263) having a hairpin-like structure is known as a precursor of "hsa-miR-4674".

[0144] The term "hsa-miR-4433-3p gene" or "hsa-miR-4433-3p" used herein includes the hsa-miR-4433-3p gene (miRBase Accession No. MIMAT0018949) described in SEQ ID NO: 89, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4433-3p gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4433" (miRBase Accession No. MI0016773, SEQ ID NO: 264) having a hairpin-like structure is known as a precursor of "hsa-miR-4433-3p".

[0145] The term "hsa-miR-4257 gene" or "hsa-miR-4257" used herein includes the hsa-miR-4257 gene (miRBase Accession No. MIMAT0016878) described in SEQ ID NO: 90, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4257 gene can be obtained by a method described in Goff LA et al., 2009, PLoS One, Vol. 4, e7192. Also, "hsa-mir-4257" (miRBase Accession No. MI0015856, SEQ ID NO: 265) having a hairpin-like structure is known as a precursor of "hsa-miR-4257".

[0146] The term "hsa-miR-1915-5p gene" or "hsa-miR-1915-5p" used herein includes the hsa-miR-1915-5p gene (miRBase Accession No. MIMAT0007891) described in SEQ ID NO: 91, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1915-5p gene can be obtained by a method described in Bar M et al., 2008, Stem Cells, Vol. 26, p. 2496-2505. Also, "hsa-mir-1915" (miRBase Accession No. MI0008336, SEQ ID NO: 266) having a hairpin-like structure is known as a precursor of "hsa-miR-1915-5p".

[0147] The term "hsa-miR-4417 gene" or "hsa-miR-4417" used herein includes the hsa-miR-4417 gene (miRBase Accession No. MIMAT0018929) described in SEQ ID NO: 92, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4417 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4417" (miRBase Accession No. MI0016753, SEQ ID NO: 267) having a hairpin-like structure is known as a precursor of "hsa-miR-4417".

[0148] The term "hsa-miR-1343-5p gene" or "hsa-miR-1343-5p" used herein includes the hsa-miR-1343-5p gene (miRBase Accession No. MIMAT0027038) described in SEQ ID NO: 93, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1343-5p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-1343" (miRBase Accession No. MI0017320, SEQ ID NO: 182) having a hairpin-like structure is known as a precursor of "hsa-miR-1343-5p".

[0149] The term "hsa-miR-6781-5p gene" or "hsa-miR-6781-5p" used herein includes the hsa-miR-6781-5p gene (miRBase Accession No. MIMAT0027462) described in SEQ ID NO: 94, a homolog or an ortholog of a different organism

species, and the like. The hsa-miR-6781-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6781" (miRBase Accession No. MI0022626, SEQ ID NO: 268) having a hairpin-like structure is known as a precursor of "hsa-miR-6781-5p".

[0150] The term "hsa-miR-4695-5p gene" or "hsa-miR-4695-5p" used herein includes the hsa-miR-4695-5p gene (miRBase Accession No. MIMAT00 19788) described in SEQ ID NO: 95, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4695-5p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4695" (miRBase Accession No. MI0017328, SEQ ID NO: 269) having a hairpin-like structure is known as a precursor of "hsa-miR-4695-5p".

[0151] The term "hsa-miR-1237-5p gene" or "hsa-miR-1237-5p" used herein includes the hsa-miR-1237-5p gene (miRBase Accession No. MIMAT0022946) described in SEQ ID NO: 96, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1237-5p gene can be obtained by a method described in Berezikov E et al., 2007, Mol Cell, Vol. 28, p. 328-336. Also, "hsa-mir-1237" (miRBase Accession No. MI0006327, SEQ ID NO: 270) having a hairpin-like structure is known as a precursor of "hsa-miR-1237-5p".

[0152] The term "hsa-miR-6775-5p gene" or "hsa-miR-6775-5p" used herein includes the hsa-miR-6775-5p gene (miRBase Accession No. MIMAT0027450) described in SEQ ID NO: 97, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6775-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6775" (miRBase Accession No. MI0022620, SEQ ID NO: 271) having a hairpin-like structure is known as a precursor of "hsa-miR-6775-5p".

[0153] The term "hsa-miR-7845-5p gene" or "hsa-miR-7845-5p" used herein includes the hsa-miR-7845-5p gene (miRBase Accession No. MIMAT0030420) described in SEQ ID NO: 98, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-7845-5p gene can be obtained by a method described in Ple H et al., 2012, PLoS One, Vol. 7, e50746. Also, "hsa-mir-7845" (miRBase Accession No. MI0025515, SEQ ID NO: 272) having a hairpin-like structure is known as a precursor of "hsa-miR-7845-5p".

[0154] The term "hsa-miR-4746-3p gene" or "hsa-miR-4746-3p" used herein includes the hsa-miR-4746-3p gene (miRBase Accession No. MIMAT0019881) described in SEQ ID NO: 99, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4746-3p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4746" (miRBase Accession No. MI0017385, SEQ ID NO: 273) having a hairpin-like structure is known as a precursor of "hsa-miR-4746-3p".

[0155] The term "hsa-miR-7641 gene" or "hsa-miR-7641" used herein includes the hsa-miR-7641 gene (miRBase Accession No. MIMAT0029782) described in SEQ ID NO: 100, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-7641 gene can be obtained by a method described in Yoo JK et al., 2013, Arch Pharm Res, Vol. 36, p. 353-358. Also, "hsa-mir-7641-1 and hsa-mir-7641-2" (miRBase Accession Nos. MI0024975 and MI0024976, SEQ ID NOs: 274 and 275) having a hairpin-like structure are known as precursors of "hsa-miR-7641".

30

35

45

50

55

[0156] The term "hsa-miR-7847-3p gene" or "hsa-miR-7847-3p" used herein includes the hsa-miR-7847-3p gene (miRBase Accession No. MIMAT0030422) described in SEQ ID NO: 101, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-7847-3p gene can be obtained by a method described in Ple H et al., 2012, PLoS One, Vol. 7, e50746. Also, "hsa-mir-7847" (miRBase Accession No. MI0025517, SEQ ID NO: 276) having a hairpin-like structure is known as a precursor of "hsa-miR-7847-3p".

[0157] The term "hsa-miR-6806-5p gene" or "hsa-miR-6806-5p" used herein includes the hsa-miR-6806-5p gene (miRBase Accession No. MIMAT0027512) described in SEQ ID NO: 102, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6806-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6806" (miRBase Accession No. MI0022651, SEQ ID NO: 277) having a hairpin-like structure is known as a precursor of "hsa-miR-6806-5p".

[0158] The term "hsa-miR-4467 gene" or "hsa-miR-4467" used herein includes the hsa-miR-4467 gene (miRBase Accession No. MIMAT0018994) described in SEQ ID NO: 103, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4467 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4467" (miRBase Accession No. MI0016818, SEQ ID NO: 278) having a hairpin-like structure is known as a precursor of "hsa-miR-4467".

[0159] The term "hsa-miR-4726-5p gene" or "hsa-miR-4726-5p" used herein includes the hsa-miR-4726-5p gene (miRBase Accession No. MIMAT0019845) described in SEQ ID NO: 104, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4726-5p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4726" (miRBase Accession No. MI0017363, SEQ ID NO: 279) having a hairpin-like structure is known as a precursor of "hsa-miR-4726-5p".

[0160] The term "hsa-miR-4648 gene" or "hsa-miR-4648" used herein includes the hsa-miR-4648 gene (miRBase Accession No. MIMAT0019710) described in SEQ ID NO: 105, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4648 gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4648" (miRBase Accession No. MI0017275, SEQ ID NO: 280) having a hairpin-like structure is known as a precursor of "hsa-miR-4648".

[0161] The term "hsa-miR-6089 gene" or "hsa-miR-6089" used herein includes the hsa-miR-6089 gene (miRBase Accession No. MIMAT0023714) described in SEQ ID NO: 106, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6089 gene can be obtained by a method described in Yoo JK et al., 2012, Stem Cells Dev, Vol. 21, p. 2049-2057. Also, "hsa-mir-6089-1 and hsa-mir-6089-2" (miRBase Accession Nos. MI0020366 and MI0023563, SEQ ID NOs: 281 and 282) having a hairpin-like structure are known as precursors of "hsa-miR-6089".

[0162] The term "hsa-miR-1260b gene" or "hsa-miR-1260b" used herein includes the hsa-miR-1260b gene (miRBase Accession No. MIMAT0015041) described in SEQ ID NO: 107, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1260b gene can be obtained by a method described in Stark MS et al., 2010, PLoS One, Vol. 5, e9685. Also, "hsa-mir-1260b" (miRBase Accession No. MI0014197, SEQ ID NO: 283) having a hairpin-like structure is known as a precursor of "hsa-miR-1260b".

[0163] The term "hsa-miR-4532 gene" or "hsa-miR-4532" used herein includes the hsa-miR-4532 gene (miRBase Accession No. MIMAT0019071) described in SEQ ID NO: 108, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4532 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4532" (miRBase Accession No. MI0016899, SEQ ID NO: 284) having a hairpin-like structure is known as a precursor of "hsa-miR-4532".

[0164] The term "hsa-miR-5195-3p gene" or "hsa-miR-5195-3p" used herein includes the hsa-miR-5195-3p gene (miRBase Accession No. MIMAT0021127) described in SEQ ID NO: 109, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-5195-3p gene can be obtained by a method described in Schotte D et al., 2011, Leukemia, Vol. 25, p. 1389-1399. Also, "hsa-mir-5195" (miRBase Accession No. MI0018174, SEQ ID NO: 285) having a hairpin-like structure is known as a precursor of "hsa-miR-5195-3p".

[0165] The term "hsa-miR-3188 gene" or "hsa-miR-3188" used herein includes the hsa-miR-3188 gene (miRBase Accession No. MIMAT0015070) described in SEQ ID NO: 110, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3188 gene can be obtained by a method described in Stark MS et al., 2010, PLoS One, Vol. 5, e9685. Also, "hsa-mir-3188" (miRBase Accession No. MI0014232, SEQ ID NO: 286) having a hairpin-like structure is known as a precursor of "hsa-miR-3188".

[0166] The term "hsa-miR-6848-5p gene" or "hsa-miR-6848-5p" used herein includes the hsa-miR-6848-5p gene (miRBase Accession No. MIMAT0027596) described in SEQ ID NO: 111, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6848-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6848" (miRBase Accession No. MI0022694, SEQ ID NO: 287) having a hairpin-like structure is known as a precursor of "hsa-miR-6848-5p".

30

35

45

50

[0167] The term "hsa-miR-1233-5p gene" or "hsa-miR-1233-5p" used herein includes the hsa-miR-1233-5p gene (miRBase Accession No. MIMAT0022943) described in SEQ ID NO: 112, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1233-5p gene can be obtained by a method described in Berezikov E et al., 2007, Mol Cell, Vol. 28, p. 328-336. Also, "hsa-mir-1233-1 and hsa-mir-1233-2" (miRBase Accession Nos. MI0006323 and MI0015973, SEQ ID NOs: 288 and 289) having a hairpin-like structure are known as precursors of "hsa-miR-1233-5p". [0168] The term "hsa-miR-6717-5p gene" or "hsa-miR-6717-5p" used herein includes the hsa-miR-6717-5p gene (miRBase Accession No. MIMAT0025846) described in SEQ ID NO: 113, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6717-5p gene can be obtained by a method described in Li Y et al., 2012, Gene, Vol. 497, p. 330-335. Also, "hsa-mir-6717" (miRBase Accession No. MI0022551, SEQ ID NO: 290) having a hairpin-like structure is known as a precursor of "hsa-miR-6717-5p".

[0169] The term "hsa-miR-3195 gene" or "hsa-miR-3195" used herein includes the hsa-miR-3195 gene (miRBase Accession No. MIMAT0015079) described in SEQ ID NO: 114, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3195 gene can be obtained by a method described in Stark MS et al., 2010, PLoS One, Vol. 5, e9685. Also, "hsa-mir-3195" (miRBase Accession No. MI0014240, SEQ ID NO: 291) having a hairpin-like structure is known as a precursor of "hsa-miR-3195".

[0170] The term "hsa-miR-6757-5p gene" or "hsa-miR-6757-5p" used herein includes the hsa-miR-6757-5p gene (miRBase Accession No. MIMAT0027414) described in SEQ ID NO: 115, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6757-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6757" (miRBase Accession No. MI0022602, SEQ ID NO: 292) having a hairpin-like structure is known as a precursor of "hsa-miR-6757-5p".

[0171] The term "hsa-miR-8072 gene" or "hsa-miR-8072" used herein includes the hsa-miR-8072 gene (miRBase Accession No. MIMAT0030999) described in SEQ ID NO: 116, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-8072 gene can be obtained by a method described in Wang HJ et al., 2013, Shock, Vol. 39, p. 480-487. Also, "hsa-mir-8072" (miRBase Accession No. MI0025908, SEQ ID NO: 293) having a hairpin-like structure is known as a precursor of "hsa-miR-8072".

[0172] The term "hsa-miR-4745-5p gene" or "hsa-miR-4745-5p" used herein includes the hsa-miR-4745-5p gene (miRBase Accession No. MIMAT0019878) described in SEQ ID NO: 117, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4745-5p gene can be obtained by a method described in Persson H et al., 2011,

Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4745" (miRBase Accession No. MI0017384, SEQ ID NO: 294) having a hairpin-like structure is known as a precursor of "hsa-miR-4745-5p".

[0173] The term "hsa-miR-6511a-5p gene" or "hsa-miR-651 1a-5p" used herein includes the hsa-miR-6511a-5p gene (miRBase Accession No. MIMAT0025478) described in SEQ ID NO: 118, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6511 a-5p gene can be obtained by a method described in Joyce CE et al., 2011, Hum Mol Genet, Vol. 20, p. 4025-4040. Also, "hsa-mir-6511a-1, hsa-mir-6511a-2, hsa-mir-6511a-3, and hsa-mir-6511a-4" (miRBase Accession Nos. MI0022223, MI0023564, MI0023565, and MI0023566, SEQ ID NOs: 295,296,297, and 298) having a hairpin-like structure are known as precursors of "hsa-miR-6511a-5p".

[0174] The term "hsa-miR-6776-5p gene" or "hsa-miR-6776-5p" used herein includes the hsa-miR-6776-5p gene (miRBase Accession No. MIMAT0027452) described in SEQ ID NO: 119, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6776-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6776" (miRBase Accession No. MI0022621, SEQ ID NO: 299) having a hairpin-like structure is known as a precursor of "hsa-miR-6776-5p".

[0175] The term "hsa-miR-371a-5p gene" or "hsa-miR-371a-5p" used herein includes the hsa-miR-371a-5p gene (miRBase Accession No. MIMAT0004687) described in SEQ ID NO: 120, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-371a-5p gene can be obtained by a method described in Suh MR et al., 2004, Dev Biol, Vol. 270, p. 488-498. Also, "hsa-mir-371a" (miRBase Accession No. MI0000779, SEQ ID NO: 300) having a hairpin-like structure is known as a precursor of "hsa-miR-371a-5p".

[0176] The term "hsa-miR-1227-5p gene" or "hsa-miR-1227-Sp" used herein includes the hsa-miR-1227-5p gene (miRBase Accession No. MIMAT0022941) described in SEQ ID NO: 121, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1227-5p gene can be obtained by a method described in Berezikov E et al., 2007, Mol Cell, Vol. 28, p. 328-336. Also, "hsa-mir-1227" (miRBase Accession No. MI0006316, SEQ ID NO: 301) having a hairpin-like structure is known as a precursor of "hsa-miR-1227-5p".

[0177] The term "hsa-miR-7150 gene" or "hsa-miR-7150" used herein includes the hsa-miR-7150 gene (miRBase Accession No. MIMAT0028211) described in SEQ ID NO: 122, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-7150 gene can be obtained by a method described in Oulas A et al., 2009, Nucleic Acids Res, Vol. 37, p. 3276-3287. Also, "hsa-mir-7150" (miRBase Accession No. MI0023610, SEQ ID NO: 302) having a hairpin-like structure is known as a precursor of "hsa-miR-7150".

[0178] The term "hsa-miR-1915-3p gene" or "hsa-miR-1915-3p" used herein includes the hsa-miR-1915-3p gene (miRBase Accession No. MIMAT0007892) described in SEQ ID NO: 123, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1915-3p gene can be obtained by a method described in Bar M et al., 2008, Stem Cells, Vol. 26, p. 2496-2505. Also, "hsa-mir-1915" (miRBase Accession No. MI0008336, SEQ ID NO: 266) having a hairpin-like structure is known as a precursor of "hsa-miR-1915-3p".

30

35

50

[0179] The term "hsa-miR-187-5p gene" or "hsa-miR-187-5p" used herein includes the hsa-miR-187-5p gene (miR-Base Accession No. MIMAT0004561) described in SEQ ID NO: 124, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-187-5p gene can be obtained by a method described in Lim LP et al., 2003, Science, Vol. 299, p. 1540. Also, "hsa-mir-187" (miRBase Accession No. MI0000274, SEQ ID NO: 303) having a hairpin-like structure is known as a precursor of "hsa-miR-187-5p".

[0180] The term "hsa-miR-614 gene" or "hsa-miR-614" used herein includes the hsa-miR-614 gene (miRBase Accession No. MIMAT0003282) described in SEQ ID NO: 125, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-614 gene can be obtained by a method described in Cummins JM et al., 2006, Proc Natl Acad Sci U S A, Vol. 103, p. 3687-3692. Also, "hsa-mir-614" (miRBase Accession No. MI0003627, SEQ ID NO: 304) having a hairpin-like structure is known as a precursor of "hsa-miR-614".

[0181] The term "hsa-miR-19b-3p gene" or "hsa-miR-19b-3p" used herein includes the hsa-miR-19b-3p gene (miR-Base Accession No. MIMAT0000074) described in SEQ ID NO: 126, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-19b-3p gene can be obtained by a method described in Lagos-Quintana M et al., 2001, Science, Vol. 294, p. 853-858. Also, "hsa-mir-19b-1 and hsa-mir-19b-2" (miRBase Accession Nos. MI0000074 and MI0000075, SEQ ID NOs: 305 and 306) having a hairpin-like structure are known as precursors of "hsa-miR-19b-3p".

[0182] The term "hsa-miR-1225-5p gene" or "hsa-miR-1225-5p" used herein includes the hsa-miR-1225-5p gene (miRBase Accession No. MIMAT0005572) described in SEQ ID NO: 127, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1225-5p gene can be obtained by a method described in Berezikov E et al., 2007, Mol Cell, Vol. 28, p. 328-336. Also, "hsa-mir-1225" (miRBase Accession No. MI0006311, SEQ ID NO: 307) having a hairpin-like structure is known as a precursor of "hsa-miR-1225-5p".

[0183] The term "hsa-miR-451a gene" or "hsa-miR-451a" used herein includes the hsa-miR-451a gene (miRBase Accession No. MIMAT0001631) described in SEQ ID NO: 128, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-451a gene can be obtained by a method described in Altuvia Yet al., 2005, Nucleic Acids Res, Vol. 33, p. 2697-2706. Also, "hsa-mir-451a" (miRBase Accession No. MI0001729, SEQ ID NO: 308) having a hairpin-like structure is known as a precursor of "hsa-miR-451a".

[0184] The term "hsa-miR-939-5p gene" or "hsa-miR-939-5p" used herein includes the hsa-miR-939-5p gene (miR-Base Accession No. MIMAT0004982) described in SEQ ID NO: 129, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-939-5p gene can be obtained by a method described in Lui WO et al., 2007, Cancer Res, Vol. 67, p. 6031-6043. Also, "hsa-mir-939" (miRBase Accession No. MI0005761, SEQ ID NO: 309) having a hairpin-like structure is known as a precursor of "hsa-miR-939-5p".

[0185] The term "hsa-miR-223-3p gene" or "hsa-miR-223-3p" used herein includes the hsa-miR-223-3p gene (miR-Base Accession No. MIMAT0000280) described in SEQ ID NO: 130, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-223-3p gene can be obtained by a method described in Lim LP et al., 2003, Science, Vol. 299, p. 1540. Also, "hsa-mir-223" (miRBase Accession No. MI0000300, SEQ ID NO: 310) having a hairpin-like structure is known as a precursor of "hsa-miR-223-3p".

[0186] The term "hsa-miR-1228-Sp gene" or "hsa-miR-1228-Sp" used herein includes the hsa-miR-1228-Sp gene (miRBase Accession No. MIMAT0005582) described in SEQ ID NO: 131, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1228-5p gene can be obtained by a method described in Berezikov E et al., 2007, Mol Cell, Vol. 28, p. 328-336. Also, "hsa-mir-1228" (miRBase Accession No. MI0006318, SEQ ID NO: 311) having a hairpin-like structure is known as a precursor of "hsa-miR-1228-5p".

[0187] The term "hsa-miR-125a-3p gene" or "hsa-miR-125a-3p" used herein includes the hsa-miR-125a-3p gene (miRBase Accession No. MIMAT0004602) described in SEQ ID NO: 132, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-125a-3p gene can be obtained by a method described in Lagos-Quintana M et al., 2002, Curr Biol, Vol. 12, p. 735-739. Also, "hsa-mir-125a" (miRBase Accession No. MI0000469, SEQ ID NO: 312) having a hairpin-like structure is known as a precursor of "hsa-miR-125a-3p".

[0188] The term "hsa-miR-92b-5p gene" or "hsa-miR-92b-5p" used herein includes the hsa-miR-92b-5p gene (miR-Base Accession No. MIMAT0004792) described in SEQ ID NO: 133, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-92b-5p gene can be obtained by a method described in Cummins JM et al., 2006, Proc Natl Acad Sci U S A, Vol. 103, p. 3687-3692. Also, "hsa-mir-92b" (miRBase Accession No. MI0003560, SEQ ID NO: 313) having a hairpin-like structure is known as a precursor of "hsa-miR-92b-5p".

[0189] The term "hsa-miR-22-3p gene" or "hsa-miR-22-3p" used herein includes the hsa-miR-22-3p gene (miRBase Accession No. MIMAT0000077) described in SEQ ID NO: 134, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-22-3p gene can be obtained by a method described in Lagos-Quintana M et al., 2001, Science, Vol. 294, p. 853-858. Also, "hsa-mir-22" (miRBase Accession No. MI0000078, SEQ ID NO: 314) having a hairpin-like structure is known as a precursor of "hsa-miR-22-3p".

30

35

50

[0190] The term "hsa-miR-4271 gene" or "hsa-miR-4271" used herein includes the hsa-miR-4271 gene (miRBase Accession No. MIMAT0016901) described in SEQ ID NO: 135, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4271 gene can be obtained by a method described in Goff LA et al., 2009, PLoS One, Vol. 4, e7192. Also, "hsa-mir-4271" (miRBase Accession No. MI0015879, SEQ ID NO: 315) having a hairpin-like structure is known as a precursor of "hsa-miR-4271".

[0191] The term "hsa-miR-642b-3p gene" or "hsa-miR-642b-3p" used herein includes the hsa-miR-642b-3p gene (miRBase Accession No. MIMAT0018444) described in SEQ ID NO: 136, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-642b-3p gene can be obtained by a method described in Witten D et al., 2010, BMC Biol, Vol. 8, p. 58. Also, "hsa-mir-642b" (miRBase Accession No. MI0016685, SEQ ID NO: 316) having a hairpin-like structure is known as a precursor of "hsa-miR-642b-3p".

[0192] The term "hsa-miR-6075 gene" or "hsa-miR-6075" used herein includes the hsa-miR-6075 gene (miRBase Accession No. MIMAT0023700) described in SEQ ID NO: 137, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6075 gene can be obtained by a method described in Voellenkle C et al., 2012, RNA, Vol. 18, p. 472-484. Also, "hsa-mir-6075" (miRBase Accession No. MI0020352, SEQ ID NO: 317) having a hairpin-like structure is known as a precursor of "hsa-miR-6075".

[0193] The term "hsa-miR-6125 gene" or "hsa-miR-6125" used herein includes the hsa-miR-6125 gene (miRBase Accession No. MIMAT0024598) described in SEQ ID NO: 138, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6125 gene can be obtained by a method described in Smith JL et al., 2012, J Virol, Vol. 86, p. 5278-5287. Also, "hsa-mir-6125" (miRBase Accession No. MI0021259, SEQ ID NO: 318) having a hairpin-like structure is known as a precursor of "hsa-miR-6125".

[0194] The term "hsa-miR-887-3p gene" or "hsa-miR-887-3p" used herein includes the hsa-miR-887-3p gene (miR-Base Accession No. MIMAT0004951) described in SEQ ID NO: 139, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-887-3p gene can be obtained by a method described in Berezikov E et al., 2006, Genome Res, Vol. 16, p. 1289-1298. Also, "hsa-mir-887" (miRBase Accession No. MI0005562, SEQ ID NO: 319) having a hairpin-like structure is known as a precursor of "hsa-miR-887-3p".

[0195] The term "hsa-miR-6851-5p gene" or "hsa-miR-6851-5p" used herein includes the hsa-miR-6851-5p gene (miRBase Accession No. MIMAT0027602) described in SEQ ID NO: 140, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6851-5p gene can be obtained by a method described in Ladewig E et al., 2012,

Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6851" (miRBase Accession No. MI0022697, SEQ ID NO: 320) having a hairpin-like structure is known as a precursor of "hsa-miR-6851-5p".

[0196] The term "hsa-miR-6763-5p gene" or "hsa-miR-6763-5p" used herein includes the hsa-miR-6763-5p gene (miRBase Accession No. MIMAT0027426) described in SEQ ID NO: 141, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6763-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6763" (miRBase Accession No. MI0022608, SEQ ID NO: 321) having a hairpin-like structure is known as a precursor of "hsa-miR-6763-5p".

[0197] The term "hsa-miR-3928-3p gene" or "hsa-miR-3928-3p" used herein includes the hsa-miR-3928-3p gene (miRBase Accession No. MIMAT0018205) described in SEQ ID NO: 142, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3928-3p gene can be obtained by a method described in Creighton CJ et al., 2010, PLoS One, Vol. 5, e9637. Also, "hsa-mir-3928" (miRBase Accession No. MI0016438, SEQ ID NO: 322) having a hairpin-like structure is known as a precursor of "hsa-miR-3928-3p".

[0198] The term "hsa-miR-4443 gene" or "hsa-miR-4443" used herein includes the hsa-miR-4443 gene (miRBase Accession No. MIMAT0018961) described in SEQ ID NO: 143, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4443 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4443" (miRBase Accession No. MI0016786, SEQ ID NO: 323) having a hairpin-like structure is known as a precursor of "hsa-miR-4443".

[0199] The term "hsa-miR-3648 gene" or "hsa-miR-3648" used herein includes the hsa-miR-3648 gene (miRBase Accession No. MIMAT0018068) described in SEQ ID NO: 144, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3648 gene can be obtained by a method described in Meiri E et al., 2010, Nucleic Acids Res, Vol. 38, p. 6234-6246. Also, "hsa-mir-3648" (miRBase Accession No. MI0016048, SEQ ID NO: 324) having a hairpin-like structure is known as a precursor of "hsa-miR-3648".

[0200] The term "hsa-miR-149-3p gene" or "hsa-miR-149-3p" used herein includes the hsa-miR-149-3p gene (miR-Base Accession No. MIMAT0004609) described in SEQ ID NO: 145, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-149-3p gene can be obtained by a method described in Lagos-Quintana M et al., 2002, Curr Biol, Vol. 12, p. 735-739. Also, "hsa-mir-149" (miRBase Accession No. MI0000478, SEQ ID NO: 325) having a hairpin-like structure is known as a precursor of "hsa-miR-149-3p".

[0201] The term "hsa-miR-4689 gene" or "hsa-miR-4689" used herein includes the hsa-miR-4689 gene (miRBase Accession No. MIMAT0019778) described in SEQ ID NO: 146, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4689 gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4689" (miRBase Accession No. MI0017322, SEQ ID NO: 326) having a hairpin-like structure is known as a precursor of "hsa-miR-4689".

30

35

50

[0202] The term "hsa-miR-4763-3p gene" or "hsa-miR-4763-3p" used herein includes the hsa-miR-4763-3p gene (miRBase Accession No. MIMAT0019913) described in SEQ ID NO: 147, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4763-3p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4763" (miRBase Accession No. MI0017404, SEQ ID NO: 327) having a hairpin-like structure is known as a precursor of "hsa-miR-4763-3p".

[0203] The term "hsa-miR-6729-5p gene" or "hsa-miR-6729-5p" used herein includes the hsa-miR-6729-5p gene (miRBase Accession No. MIMAT0027359) described in SEQ ID NO: 148, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6729-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6729" (miRBase Accession No. MI0022574, SEQ ID NO: 328) having a hairpin-like structure is known as a precursor of "hsa-miR-6729-5p".

[0204] The term "hsa-miR-3196 gene" or "hsa-miR-3196" used herein includes the hsa-miR-3196 gene (miRBase Accession No. MIMAT0015080) described in SEQ ID NO: 149, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3196 gene can be obtained by a method described in Stark MS et al., 2010, PLoS One, Vol. 5, e9685. Also, "hsa-mir-3196" (miRBase Accession No. MI0014241, SEQ ID NO: 329) having a hairpin-like structure is known as a precursor of "hsa-miR-3196".

[0205] The term "hsa-miR-8069 gene" or "hsa-miR-8069" used herein includes the hsa-miR-8069 gene (miRBase Accession No. MIMAT0030996) described in SEQ ID NO: 150, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-8069 gene can be obtained by a method described in Wang HJ et al., 2013, Shock, Vol. 39, p. 480-487. Also, "hsa-mir-8069" (miRBase Accession No. MI0025905, SEQ ID NO: 330) having a hairpin-like structure is known as a precursor of "hsa-miR-8069".

[0206] The term "hsa-miR-1268a gene" or "hsa-miR-1268a" used herein includes the hsa-miR-1268a gene (miRBase Accession No. MIMAT0005922) described in SEQ ID NO: 151, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1268a gene can be obtained by a method described in Morin RD et al., 2008, Genome Res, Vol. 18, p. 610-621. Also, "hsa-mir-1268a" (miRBase Accession No. MI0006405, SEQ ID NO: 331) having a hairpin-like structure is known as a precursor of "hsa-miR-1268a".

[0207] The term "hsa-miR-4739 gene" or "hsa-miR-4739" used herein includes the hsa-miR-4739 gene (miRBase

Accession No. MIMAT0019868) described in SEQ ID NO: 152, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4739 gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4739" (miRBase Accession No. MI0017377, SEQ ID NO: 332) having a hairpin-like structure is known as a precursor of "hsa-miR-4739".

- [0208] The term "hsa-miR-1268b gene" or "hsa-miR-1268b" used herein includes the hsa-miR-1268b gene (miRBase Accession No. MIMAT0018925) described in SEQ ID NO: 153, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1268b gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-1268b" (miRBase Accession No. MI0016748, SEQ ID NO: 333) having a hairpin-like structure is known as a precursor of "hsa-miR-1268b".
- [0209] The term "hsa-miR-5698 gene" or "hsa-miR-5698" used herein includes the hsa-miR-5698 gene (miRBase Accession No. MIMAT0022491) described in SEQ ID NO: 154, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-5698 gene can be obtained by a method described in Watahiki A et al., 2011, PLoS One, Vol. 6, e24950. Also, "hsa-mir-5698" (miRBase Accession No. MI0019305, SEQ ID NO: 334) having a hairpin-like structure is known as a precursor of "hsa-miR-5698".
- [0210] The term "hsa-miR-6752-5p gene" or "hsa-miR-6752-5p" used herein includes the hsa-miR-6752-5p gene (miRBase Accession No. MIMAT0027404) described in SEQ ID NO: 155, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6752-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6752" (miRBase Accession No. MI0022597, SEQ ID NO: 335) having a hairpin-like structure is known as a precursor of "hsa-miR-6752-5p".
- [0211] The term "hsa-miR-4507 gene" or "hsa-miR-4507" used herein includes the hsa-miR-4507 gene (miRBase Accession No. MIMAT0019044) described in SEQ ID NO: 156, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4507 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4507" (miRBase Accession No. MI0016871, SEQ ID NO: 336) having a hairpin-like structure is known as a precursor of "hsa-miR-4507".
- [0212] The term "hsa-miR-564 gene" or "hsa-miR-564" used herein includes the hsa-miR-564 gene (miRBase Accession No. MIMAT0003228) described in SEQ ID NO: 157, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-564 gene can be obtained by a method described in Cummins JM et al., 2006, Proc Natl Acad Sci U S A, Vol. 103, p. 3687-3692. Also, "hsa-mir-564" (miRBase Accession No. MI0003570, SEQ ID NO: 337) having a hairpin-like structure is known as a precursor of "hsa-miR-564".
- [0213] The term "hsa-miR-4497 gene" or "hsa-miR-4497" used herein includes the hsa-miR-4497 gene (miRBase Accession No. MIMAT0019032) described in SEQ ID NO: 158, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4497 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4497" (miRBase Accession No. MI0016859, SEQ ID NO: 338) having a hairpin-like structure is known as a precursor of "hsa-miR-4497".
- [0214] The term "hsa-miR-6877-5p gene" or "hsa-miR-6877-5p" used herein includes the hsa-miR-6877-5p gene (miRBase Accession No. MIMAT0027654) described in SEQ ID NO: 159, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6877-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6877" (miRBase Accession No. MI0022724, SEQ ID NO: 339) having a hairpin-like structure is known as a precursor of "hsa-miR-6877-5p".
- [0215] The term "hsa-miR-6087 gene" or "hsa-miR-6087" used herein includes the hsa-miR-6087 gene (miRBase Accession No. MIMAT0023712) described in SEQ ID NO: 160, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6087 gene can be obtained by a method described in Yoo JK et al., 2012, Stem Cells Dev, Vol. 21, p. 2049-2057. Also, "hsa-mir-6087" (miRBase Accession No. MI0020364, SEQ ID NO: 340) having a hairpin-like structure is known as a precursor of "hsa-miR-6087".
- [0216] The term "hsa-miR-4731-5p gene" or "hsa-miR-4731-5p" used herein includes the hsa-miR-4731-5p gene (miRBase Accession No. MIMAT0019853) described in SEQ ID NO: 161, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4731-5p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4731" (miRBase Accession No. MI0017368, SEQ ID NO: 341) having a hairpin-like structure is known as a precursor of "hsa-miR-4731-5p".
- [0217] The term "hsa-miR-615-5p gene" or "hsa-miR-615-5p" used herein includes the hsa-miR-615-5p gene (miR-Base Accession No. MIMAT0004804) described in SEQ ID NO: 162, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-615-5p gene can be obtained by a method described in Cummins JM et al., 2006, Proc Natl Acad Sci U S A, Vol. 103, p. 3687-3692. Also, "hsa-mir-615" (miRBase Accession No. MI0003628, SEQ ID NO: 342) having a hairpin-like structure is known as a precursor of "hsa-miR-615-5p".
- [0218] The term "hsa-miR-760 gene" or "hsa-miR-760" used herein includes the hsa-miR-760 gene (miRBase Accession No. MIMAT0004957) described in SEQ ID NO: 163, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-760 gene can be obtained by a method described in Berezikov E et al., 2006, Genome Res, Vol. 16, p. 1289-1298. Also, "hsa-mir-760" (miRBase Accession No. MI0005567, SEQ ID NO: 343) having a hairpin-like

structure is known as a precursor of "hsa-miR-760".

10

30

35

50

[0219] The term "hsa-miR-6891-5p gene" or "hsa-miR-6891-5p" used herein includes the hsa-miR-6891-5p gene (miRBase Accession No. MIMAT0027682) described in SEQ ID NO: 164, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6891-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6891" (miRBase Accession No. MI0022738, SEQ ID NO: 344) having a hairpin-like structure is known as a precursor of "hsa-miR-6891-5p".

[0220] The term "hsa-miR-6887-5p gene" or "hsa-miR-6887-5p" used herein includes the hsa-miR-6887-5p gene (miRBase Accession No. MIMAT0027674) described in SEQ ID NO: 165, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6887-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6887" (miRBase Accession No. MI0022734, SEQ ID NO: 345) having a hairpin-like structure is known as a precursor of "hsa-miR-6887-5p".

[0221] The term "hsa-miR-4525 gene" or "hsa-miR-4525" used herein includes the hsa-miR-4525 gene (miRBase Accession No. MIMAT0019064) described in SEQ ID NO: 166, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4525 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4525" (miRBase Accession No. MI0016892, SEQ ID NO: 346) having a hairpin-like structure is known as a precursor of "hsa-miR-4525".

[0222] The term "hsa-miR-1914-3p gene" or "hsa-miR-1914-3p" used herein includes the hsa-miR-1914-3p gene (miRBase Accession No. MIMAT0007890) described in SEQ ID NO: 167, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1914-3p gene can be obtained by a method described in Bar M et al., 2008, Stem Cells, Vol. 26, p. 2496-2505. Also, "hsa-mir-1914" (miRBase Accession No. MI0008335, SEQ ID NO: 347) having a hairpin-like structure is known as a precursor of "hsa-miR-1914-3p".

[0223] The term "hsa-miR-619-5p gene" or "hsa-miR-619-5p" used herein includes the hsa-miR-619-5p gene (miR-Base Accession No. MIMAT0026622) described in SEQ ID NO: 168, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-619-5p gene can be obtained by a method described in Cummins JM et al., 2006, Proc Natl Acad Sci U S A, Vol. 103, p. 3687-3692. Also, "hsa-mir-619" (miRBase Accession No. MI0003633, SEQ ID NO: 348) having a hairpin-like structure is known as a precursor of "hsa-miR-619-5p".

[0224] The term "hsa-miR-5001-5p gene" or "hsa-miR-5001-5p" used herein includes the hsa-miR-5001-5p gene (miRBase Accession No. MIMAT0021021) described in SEQ ID NO: 169, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-5001-5p gene can be obtained by a method described in Hansen TB et al., 2011, RNA Biol, Vol. 8, p. 378-383. Also, "hsa-mir-5001" (miRBase Accession No. MI0017867, SEQ ID NO: 349) having a hairpin-like structure is known as a precursor of "hsa-miR-5001-5p".

[0225] The term "hsa-miR-6722-3p gene" or "hsa-miR-6722-3p" used herein includes the hsa-miR-6722-3p gene (miRBase Accession No. MIMAT0025854) described in SEQ ID NO: 170, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6722-3p gene can be obtained by a method described in Li Y et al., 2012, Gene, Vol. 497, p. 330-335. Also, "hsa-mir-6722" (miRBase Accession No. MI0022557, SEQ ID NO: 350) having a hairpin-like structure is known as a precursor of "hsa-miR-6722-3p".

[0226] The term "hsa-miR-3621 gene" or "hsa-miR-3621" used herein includes the hsa-miR-3621 gene (miRBase Accession No. MIMAT0018002) described in SEQ ID NO: 171, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-3621 gene can be obtained by a method described in Witten D et al., 2010, BMC Biol, Vol. 8, p. 58. Also, "hsa-mir-3621" (miRBase Accession No. MI0016012, SEQ ID NO: 351) having a hairpin-like structure is known as a precursor of "hsa-miR-3621".

[0227] The term "hsa-miR-4298 gene" or "hsa-miR-4298" used herein includes the hsa-miR-4298 gene (miRBase Accession No. MIMAT0016852) described in SEQ ID NO: 172, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4298 gene can be obtained by a method described in Goff LA et al., 2009, PLoS One, Vol. 4, e7192. Also, "hsa-mir-4298" (miRBase Accession No. MI0015830, SEQ ID NO: 352) having a hairpin-like structure is known as a precursor of "hsa-miR-4298".

[0228] The term "hsa-miR-675-5p gene" or "hsa-miR-675-5p" used herein includes the hsa-miR-675-5p gene (miR-Base Accession No. MIMAT0004284) described in SEQ ID NO: 173, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-675-5p gene can be obtained by a method described in Cai X et al., 2007, RNA, Vol. 13, p. 313-316. Also, "hsa-mir-675" (miRBase Accession No. MI0005416, SEQ ID NO: 353) having a hairpin-like structure is known as a precursor of "hsa-miR-675-5p".

[0229] The term "hsa-miR-4655-5p gene" or "hsa-miR-4655-5p" used herein includes the hsa-miR-4655-5p gene (miRBase Accession No. MIMAT0019721) described in SEQ ID NO: 174, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4655-5p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4655" (miRBase Accession No. MI0017283, SEQ ID NO: 354) having a hairpin-like structure is known as a precursor of "hsa-miR-4655-5p".

[0230] The term "hsa-miR-6073 gene" or "hsa-miR-6073" used herein includes the hsa-miR-6073 gene (miRBase Accession No. MIMAT0023698) described in SEQ ID NO: 561, a homolog or an ortholog of a different organism species,

and the like. The hsa-miR-6073 gene can be obtained by a method described in Voellenkle C et al., 2012, RNA, Vol. 18, p. 472-484. Also, "hsa-mir-6073" (miRBase Accession No. MI0020350, SEQ ID NO: 580) having a hairpin-like structure is known as a precursor of "hsa-miR-6073".

[0231] The term "hsa-miR-6845-5p gene" or "hsa-miR-6845-5p" used herein includes the hsa-miR-6845-5p gene (miRBase Accession No. MIMAT0027590) described in SEQ ID NO: 562, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6845-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6845" (miRBase Accession No. MI0022691, SEQ ID NO: 581) having a hairpin-like structure is known as a precursor of "hsa-miR-6845-5p".

[0232] The term "hsa-miR-6769b-5p gene" or "hsa-miR-6769b-5p" used herein includes the hsa-miR-6769b-5p gene (miRBase Accession No. MIMAT0027620) described in SEQ ID NO: 563, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-6769b-5p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-6769b" (miRBase Accession No. MI0022706, SEQ ID NO: 582) having a hairpin-like structure is known as a precursor of "hsa-miR-6769b-5p".

[0233] The term "hsa-miR-4665-3p gene" or "hsa-miR-4665-3p" used herein includes the hsa-miR-4665-3p gene (miRBase Accession No. MIMAT0019740) described in SEQ ID NO: 564, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4665-3p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4665" (miRBase Accession No. MI0017295, SEQ ID NO: 583) having a hairpin-like structure is known as a precursor of "hsa-miR-4665-3p".

[0234] The term "hsa-miR-1913 gene" or "hsa-miR-1913" used herein includes the hsa-miR-1913 gene (miRBase Accession No. MIMAT0007888) described in SEQ ID NO: 565, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1913 gene can be obtained by a method described in Bar M et al., 2008, Stem Cells, Vol. 26, p. 2496-2505. Also, "hsa-mir-1913" (miRBase Accession No. MI0008334, SEQ ID NO: 584) having a hairpin-like structure is known as a precursor of "hsa-miR-1913".

[0235] The term "hsa-miR-1228-3p gene" or "hsa-miR-1228-3p" used herein includes the hsa-miR-1228-3p gene (miRBase Accession No. MIMAT0005583) described in SEQ ID NO: 566, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1228-3p gene can be obtained by a method described in Berezikov E et al., 2007, Mol Cell, Vol. 28, p. 328-336. Also, "hsa-mir-1228" (miRBase Accession No. MI0006318, SEQ ID NO: 311) having a hairpin-like structure is known as a precursor of "hsa-miR-1228-3p".

[0236] The term "hsa-miR-940 gene" or "hsa-miR-940" used herein includes the hsa-miR-940 gene (miRBase Accession No. MIMAT0004983) described in SEQ ID NO: 567, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-940 gene can be obtained by a method described in Lui WO et al., 2007, Cancer Res, Vol. 67, p. 6031-6043. Also, "hsa-mir-940" (miRBase Accession No. MI0005762, SEQ ID NO: 585) having a hairpin-like structure is known as a precursor of "hsa-miR-940".

30

35

50

55

[0237] The term "hsa-miR-296-3p gene" or "hsa-miR-296-3p" used herein includes the hsa-miR-296-3p gene (miR-Base Accession No. MIMAT0004679) described in SEQ ID NO: 568, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-296-3p gene can be obtained by a method described in Houbaviy HB et al., 2003, Dev Cell, Vol. 5, p. 351-358. Also, "hsa-mir-296" (miRBase Accession No. MI0000747, SEQ ID NO: 586) having a hairpin-like structure is known as a precursor of "hsa-miR-296-3p".

[0238] The term "hsa-miR-4690-5p gene" or "hsa-miR-4690-5p" used herein includes the hsa-miR-4690-5p gene (miRBase Accession No. MIMAT0019779) described in SEQ ID NO: 569, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4690-5p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4690" (miRBase Accession No. MI0017323, SEQ ID NO: 587) having a hairpin-like structure is known as a precursor of "hsa-miR-4690-5p".

[0239] The term "hsa-miR-548q gene" or "hsa-miR-548q" used herein includes the hsa-miR-548q gene (miRBase Accession No. MIMAT0011163) described in SEQ ID NO: 570, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-548q gene can be obtained by a method described in Wyman SK et al., 2009, PLoS One., Vol. 4, e5311. Also, "hsa-mir-548q" (miRBase Accession No. MI0010637, SEQ ID NO: 588) having a hairpin-like structure is known as a precursor of "hsa-miR-548q".

[0240] The term "hsa-miR-663a gene" or "hsa-miR-663a" used herein includes the hsa-miR-663a gene (miRBase Accession No. MIMAT0003326) described in SEQ ID NO: 571, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-663a gene can be obtained by a method described in Cummins JM et al., 2006, Proc Natl Acad Sci USA, Vol. 103, p. 3687-3692. Also, "hsa-mir-663a" (miRBase Accession No. MI0003672, SEQ ID NO: 589) having a hairpin-like structure is known as a precursor of "hsa-miR-663a".

[0241] The term "hsa-miR-1249 gene" or "hsa-miR-1249" used herein includes the hsa-miR-1249 gene (miRBase Accession No. MIMAT0005901) described in SEQ ID NO: 572, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1249 gene can be obtained by a method described in Morin RD et al., 2008, Genome Res, Vol. 18, p. 610-621. Also, "hsa-mir-1249" (miRBase Accession No. MI0006384, SEQ ID NO: 590) having a hairpin-like structure is known as a precursor of "hsa-miR-1249".

[0242] The term "hsa-miR-1202 gene" or "hsa-miR-1202" used herein includes the hsa-miR-1202 gene (miRBase Accession No. MIMAT0005865) described in SEQ ID NO: 573, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1202 gene can be obtained by a method described in Marton S et al., 2008, Leukemia, Vol. 22, p. 330-338. Also, "hsa-mir-1202" (miRBase Accession No. MI0006334, SEQ ID NO: 591) having a hairpin-like structure is known as a precursor of "hsa-miR-1202".

[0243] The term "hsa-miR-7113-3p gene" or "hsa-miR-7113-3p" used herein includes the hsa-miR-7113-3p gene (miRBase Accession No. MIMAT0028124) described in SEQ ID NO: 574, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-7113-3p gene can be obtained by a method described in Ladewig E et al., 2012, Genome Res, Vol. 22, p. 1634-1645. Also, "hsa-mir-7113" (miRBase Accession No. MI0022964, SEQ ID NO: 592) having a hairpin-like structure is known as a precursor of "hsa-miR-7113-3p".

[0244] The term "hsa-miR-1225-3p gene" or "hsa-miR-1225-3p" used herein includes the hsa-miR-1225-3p gene (miRBase Accession No. MIMAT0005573) described in SEQ ID NO: 575, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1225-3p gene can be obtained by a method described in Berezikov E et al., 2007, Mol Cell, Vol. 28, p. 328-336. Also, "hsa-mir-1225" (miRBase Accession No. MI0006311, SEQ ID NO: 307) having a hairpin-like structure is known as a precursor of "hsa-miR-1225-3p".

[0245] The term "hsa-miR-4783-3p gene" or "hsa-miR-4783-3p" used herein includes the hsa-miR-4783-3p gene (miRBase Accession No. MIMAT0019947) described in SEQ ID NO: 576, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4783-3p gene can be obtained by a method described in Persson H et al., 2011, Cancer Res, Vol. 71, p. 78-86. Also, "hsa-mir-4783" (miRBase Accession No. MI0017428, SEQ ID NO: 593) having a hairpin-like structure is known as a precursor of "hsa-miR-4783-3p".

[0246] The term "hsa-miR-4448 gene" or "hsa-miR-4448" used herein includes the hsa-miR-4448 gene (miRBase Accession No. MIMAT0018967) described in SEQ ID NO: 577, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4448 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4448" (miRBase Accession No. MI0016791, SEQ ID NO: 594) having a hairpin-like structure is known as a precursor of "hsa-miR-4448".

[0247] The term "hsa-miR-4534 gene" or "hsa-miR-4534" used herein includes the hsa-miR-4534 gene (miRBase Accession No. MIMAT0019073) described in SEQ ID NO: 578, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-4534 gene can be obtained by a method described in Jima DD et al., 2010, Blood, Vol. 116, e118-e127. Also, "hsa-mir-4534" (miRBase Accession No. MI0016901, SEQ ID NO: 595) having a hairpin-like structure is known as a precursor of "hsa-miR-4534".

30

35

50

[0248] The term "hsa-miR-1307-3p gene" or "hsa-miR-1307-3p" used herein includes the hsa-miR-1307-3p gene (miRBase Accession No. MIMAT0005951) described in SEQ ID NO: 579, a homolog or an ortholog of a different organism species, and the like. The hsa-miR-1307-3p gene can be obtained by a method described in Morin RD et al., 2008, Genome Res, Vol. 18, p. 610-621. Also, "hsa-mir-1307" (miRBase Accession No. MI0006444, SEQ ID NO: 596) having a hairpin-like structure is known as a precursor of "hsa-miR-1307-3p".

[0249] A mature miRNA may become a variant due to the sequence cleaved shorter or longer by one to several upstream or downstream nucleotides or nucleotide substitution when cut out as the mature miRNA from its RNA precursor having a hairpin-like structure. This variant is called isomiR (Morin RD. et al., 2008, Genome Res., Vol. 18, p. 610-621). The miRBase Release 20 shows the nucleotide sequences represented by SEQ ID NOs: 1 to 174 and 561 to 579 as well as a large number of the nucleotide sequence variants and fragments represented by SEQ ID NOs: 355 to 560 and 597 to 618, called isomiRs. These variants can also be obtained as miRNAs having a nucleotide sequence represented by any of SEQ ID NOs: 1 to 174 and 561 to 579. Specifically, among the variants of polynucleotides consisting of the nucleotide sequence represented by any of SEQ ID NOs: 5, 8, 9, 11, 18, 20, 22, 23, 24, 28, 29, 30, 32, 34, 37, 40, 41, 47, 48, 49, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 69, 72, 73, 75, 78, 79, 80, 81, 82, 85, 88, 89, 91, 92, 95, 96, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 117, 118, 120, 123, 124, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 142, 143, 144, 145, 146, 147, 149, 151, 152, 153, 154, 156, 157, 158, 160, 161, 162, 163, 166, 167, 168, 169, 172, 173, 174, 565, 566, 567, 568, 569, 571, 572, 573, 576, 577, 579, or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t in the nucleotide sequence, examples of the longest variants registered in the miRBase Release 20 include polynucleotides represented by SEQ ID NOs: 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, 377, 379, 381, 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405, 407, 409, 411, 413, 415, 417, 419, 421, 423, 425, 427, 429, 431, 433, 435, 437, 439, 441, 443, 445, 447, 449, 451, 453, 455, 457, 459, 461, 463, 465, 467, 469, 471, 473, 475, 477, 479, 481, 483, 485, 487, 489, 491, 493, 495, 497, 499, 501, 503, 505, 507, 509, 511, 513, 515, 517, 519, 521, 523, 525, 527, 529, 531, 533, 535, 537, 539, 541, 543, 545, 547, 549, 551, 553, 555, 557, 559, 597, 599, 601, 603, 605, 607, 609, 611, 613, 615 and 617, respectively.

[0250] Also, among the variants of polynucleotides consisting of a nucleotide sequence represented by any of SEQ ID NOs: 5, 8, 9, 11, 18, 20, 22, 23, 24, 28, 29, 30, 32, 34, 37, 40, 41, 47, 48, 49, 51, 52, 53, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 69, 72, 73, 75, 78, 79, 80, 81, 82, 85, 88, 89, 91, 92, 95, 96, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 117, 118, 120, 123, 124, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 138, 139, 142, 143, 144, 145,

146, 147, 149, 151, 152, 153, 154, 156, 157, 158, 160, 161, 162, 163, 166, 167, 168, 169, 172, 173, 174, 565, 566, 567, 568, 569, 571, 572, 573, 576, 577, 579 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t in the nucleotide sequence, examples of the shortest variants registered in the miRBase Release 20 include polynucleotides having sequences represented by SEQ ID NOs: 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, 378, 380, 382, 384, 386, 388, 390, 392, 394, 396, 398, 400, 402, 404, 406, 408, 410, 412, 414, 416, 418, 420, 422, 424, 426, 428, 430, 432, 434, 436, 438, 440, 442, 444, 446, 448, 450, 452, 454, 456, 458, 460, 462, 464, 466, 468, 470, 472, 474, 476, 478, 480, 482, 484, 486, 488, 490, 492, 494, 496, 498, 500, 502, 504, 506, 508, 510, 512, 514, 516, 518, 520, 522, 524, 526, 528, 530, 532, 534, 536, 538, 540, 542, 544, 546, 548, 550, 552, 554, 556, 558, 560, 598, 600, 602, 604, 606, 608, 610, 612, 614, 616 and 618, respectively.

[0251] In addition to these variants and fragments, examples thereof include a large number of isomiR polynucleotides of SEQ ID NOs: 1 to 174 and 561 to 579 registered in miRBase.

[0252] Examples of the polynucleotide comprising a nucleotide sequence represented by any of SEQ ID NOs: 1 to 174 and 561 to 579 include a polynucleotide represented by any of SEQ ID NOs: 175 to 354 and 579 to 596, which are their respective precursors.

[0253] The names and miRBase Accession Nos. (registration numbers) of the genes represented by SEQ ID NOs: 1 to 618 are shown in Table 1.

[0254] As used herein, the term "capable of specifically binding" means that the nucleic acid probe or the primer used in the present invention binds to a particular target nucleic acid and cannot substantially bind to other nucleic acids.

20 [Table 1]

5

15

25

30

35

40

45

50

[Table 1]			
SEQIDNO:	Gene name	miRBase registration No.	
1	hsa-miR-6768-5p	MIMAT0027436	
2	hsa-miR-6836-3p	MIMAT0027575	
3	hsa-miR-6782-5p	MIMAT0027464	
4	hsa-miR-3663-3p	MIMAT0018085	
5	hsa-miR-1908-3p	MIMA T0026916	
6	hsa-miR-6726-5p	MIMAT0027353	
7	hsa-miR-4258	MIMAT0016879	
8	hsa-miR-1343-3p	MIMAT0019776	
9	hsa-miR-4516	MIMAT0019053	
10	hsa-miR-6875-5p	MIMAT0027650	
11	hsa-miR-4651	MIMAT0019715	
12	hsa-miR-6825-5p	MIMAT0027550	
13	hsa-miR-6840-3p	MIMAT0027583	
14	hsa-miR-6780b-5p	MIMAT0027572	
15	hsa-miR-6749-5p	MIMAT0027398	
16	hsa-miR-8063	MIMAT0030990	
17	hsa-miR-6784-5p	MIMAT0027468	
18	hsa-miR-3679-5p	MIMAT0018104	
19	hsa-miR-3184-5p	MIMAT0015064	
20	hsa-miR-663b	MIMAT0005867	
21	hsa-miR-6880-5p	MIMAT0027660	
22	hsa-miR-1908-5p	MIMAT0007881	
23	hsa-miR-92a-2-5p	MIMAT0004508	
24	hsa-miR-7975	MIMAT0031178	
25	hsa-miR-7110-5p	MIMAT0028117	

(continued)

SE	EQ ID NO:	Gene name	miRBase registration No.
	26	hsa-miR-6842-5p	MIMAT0027586
	27	hsa-miR-6857-5p	MIMAT0027614
	28	hsa-miR-5572	MIMA T0022260
	29	hsa-miR-3197	MIMAT0015082
	30	hsa-miR-6131	MIMAT0024615
	31	hsa-miR-6889-5p	MIMAT0027678
	32	hsa-miR-4454	MIMAT0018976
	33	hsa-miR-1199-5p	MIMAT0031119
	34	hsa-miR-1247-3p	MIMAT0022721
	35	hsa-miR-6800-5p	MIMAT0027500
	36	hsa-miR-6872-3p	MIMAT0027645
	37	hsa-miR-4649-5p	MIMAT0019711
	38	hsa-miR-6791-5p	MIMAT0027482
	39	hsa-miR-4433b-3p	MIMA T0030414
	40	hsa-miR-3135b	MIMAT0018985
	41	hsa-miR-128-2-5p	MIMAT0031095
	42	hsa-miR-4675	MIMAT0019757
	43	hsa-miR-4472	MIMAT0018999
	44	hsa-miR-6785-5p	MIMAT0027470
	45	hsa-miR-6741-5p	MIMAT0027383
	46	hsa-miR-7977	MIMA T0031180
	47	hsa-miR-3665	MIMAT0018087
	48	hsa-miR-128-1-5p	MIMAT0026477
	49	hsa-miR-4286	MIMAT0016916
	50	hsa-miR-6765-3p	MIMAT0027431
	51	hsa-miR-4632-5p	MIMAT0022977
	52	hsa-miR-365a-5p	MIMA T0009199
	53	hsa-miR-6088	MIMAT0023713
	54	hsa-miR-6816-5p	MIMAT0027532
	55	hsa-miR-6885-5p	MIMAT0027670
	56	hsa-miR-711	MIMAT0012734
	57	hsa-miR-6765-5p	MIMAT0027430
	58	hsa-miR-3180	MIMAT0018178
	59	hsa-miR-4442	MIMAT0018960
	60	hsa-miR-4792	MIMAT0019964
	61	hsa-miR-6721-5p	MIMAT0025852
	62	hsa-miR-6798-5p	MIMAT0027496
	63	hsa-miR-3162-5p	MIMAT0015036

(continued)

SEQIDNO:	Gene name	miRBase registration No
64	hsa-miR-6126	MIMAT0024599
-		
65	hsa-miR-4758-5p	MIMAT0019903
66	hsa-miR-2392	MIMAT0019043
67	hsa-miR-486-3p	MIMAT0004762
68	hsa-miR-6727-5p	MIMAT0027355
69	hsa-miR-4728-5p	MIMAT0019849
70	hsa-miR-6746-5p	MIMAT0027392
71	hsa-miR-4270	MIMAT0016900
72	hsa-miR-3 940-5p	MIMAT0019229
73	hsa-miR-4725-3p	MIMAT0019844
74	hsa-miR-7108-5p	MIMAT0028113
75	hsa-miR-3656	MIMAT0018076
76	hsa-miR-6879-5p	MIMAT0027658
77	hsa-miR-6738-5p	MIMAT0027377
78	hsa-miR-1260a	MIMAT0005911
79	hsa-miR-4446-3p	MIMAT0018965
80	hsa-miR-3131	MIMAT0014996
81	hsa-miR-4463	MIMAT0018987
82	hsa-miR-3185	MIMAT0015065
83	hsa-miR-6870-5p	MIMAT0027640
84	hsa-miR-6779-5p	MIMAT0027458
85	hsa-miR-1273g-3p	MIMAT0022742
86	hsa-miR-8059	MIMAT0030986
87	hsa-miR-4697-5p	MIMAT0019791
88	hsa-miR-4674	MIMAT0019756
89	hsa-miR-4433-3p	MIMAT0018949
90	hsa-miR-4257	MIMAT0016878
91	hsa-miR-1915-5p	MIMAT0007891
92	hsa-miR-4417	MIMAT0018929
93	hsa-miR- 1343-5p	MIMAT0027038
94	hsa-miR-6781-5p	MIMAT0027462
95	hsa-miR-4695-5p	MIMAT0019788
96	hsa-miR-1237-5p	MIMAT0022946
97	hsa-miR-6775-5p	MIMAT0027450
98	hsa-miR-7845-5p	MIMAT0030420
99	hsa-miR-4746-3p	MIMAT0019881
100	hsa-miR-7641	MIMAT0029782
101	hsa-miR-7847-3p	MIMAT0030422

(continued)

SEQIDNO:	Gene name	miRBase registration No.
102	hsa-miR-6806-5p	MIMAT0027512
103	hsa-miR-4467	MIMAT0018994
104	hsa-miR-4726-5p	MIMAT0019845
105	hsa-miR-4648	MIMAT0019710
106	hsa-miR-6089	MIMAT0023714
107	hsa-miR-1260b	MIMAT0015041
108	hsa-miR-4532	MIMAT0019071
109	hsa-miR-5195-3p	MIMAT0021127
110	hsa-miR-3188	MIMAT0015070
111	hsa-miR-6848-5p	MIMAT0027596
112	hsa-miR-1233-5p	MIMAT0022943
113	hsa-miR-6717-5p	MIMAT0025846
114	hsa-miR-3195	MIMAT0015079
115	hsa-miR-6757-5p	MIMAT0027414
116	hsa-miR-8072	MIMAT0030999
117	hsa-miR-4745-5p	MIMAT0019878
118	hsa-miR-6511a-5p	MIMAT0025478
119	hsa-miR-6776-5p	MIMAT0027452
120	hsa-miR-371a-5p	MIMAT0004687
121	hsa-miR-1227-5p	MIMAT0022941
122	hsa-miR-7150	MIMAT0028211
123	hsa-miR-1915-3p	MIMAT0007892
124	hsa-miR-187-5p	MIMAT0004561
125	hsa-miR-614	MIMAT0003282
126	hsa-miR-19b-3p	MIMAT0000074
127	hsa-miR-1225-5p	MIMAT0005572
128	hsa-miR-451a	MIMAT0001631
129	hsa-miR-939-5p	MIMAT0004982
130	hsa-miR-223-3p	MIMAT0000280
131	hsa-miR-1228-5p	MIMAT0005582
132	hsa-miR-125a-3p	MIMAT0004602
133	hsa-miR-92b-5p	MIMAT0004792
134	hsa-miR-22-3p	MIMAT0000077
135	hsa-miR-4271	MIMAT0016901
136	hsa-miR-642b-3p	MIMAT0018444
137	hsa-miR-6075	MIMAT0023700
138	hsa-miR-6125	MIMAT0024598
139	hsa-miR-887-3p	MIMAT0004951

(continued)

SEQIDNO:	Gene name	miRBase registration No.
140	hsa-miR-6851-5p	MIMAT0027602
141	hsa-miR-6763-5p	MIMAT0027426
142	hsa-miR-3928-3p	MIMAT0018205
143	hsa-miR-4443	MIMAT0018961
144	hsa-miR-3648	MIMAT0018068
145	hsa-miR-149-3p	MIMAT0004609
146	hsa-miR-4689	MIMAT0019778
147	hsa-miR-4763-3p	MIMAT0019913
148	hsa-miR-6729-5p	MIMAT0027359
149	hsa-miR-3196	MIMAT0015080
150	hsa-miR-8069	MIMAT0030996
151	hsa-miR-1268a	MIMAT0005922
152	hsa-miR-4739	MIMAT0019868
153	hsa-miR-1268b	MIMAT0018925
154	hsa-miR-5698	MIMAT0022491
155	hsa-miR-6752-5p	MIMAT0027404
156	hsa-miR-4507	MIMAT0019044
157	hsa-miR-564	MIMAT0003228
158	hsa-miR-4497	MIMAT0019032
159	hsa-miR-6877-5p	MIMAT0027654
160	hsa-miR-6087	MIMAT0023712
161	hsa-miR-4731-5p	MIMAT0019853
162	hsa-miR-615-5p	MIMAT0004804
163	hsa-miR-760	MIMAT0004957
164	hsa-miR-6891-5p	MIMAT0027682
165	hsa-miR-6887-5p	MIMAT0027674
166	hsa-miR-4525	MIMAT0019064
167	hsa-miR-1914-3p	MIMAT0007890
168	hsa-miR-619-5p	MIMAT0026622
169	hsa-miR-5001-5p	MIMAT0021021
170	hsa-miR-6722-3p	MIMAT0025854
171	hsa-miR-3621	MIMAT0018002
172	hsa-miR-4298	MIMAT0016852
173	hsa-miR-675-5p	MIMAT0004284
174	hsa-miR-4655-5p	MIMAT0019721
175	hsa-mir-6768	MI0022613
176	hsa-mir-6836	MI0022682
177	hsa-mir-6782	MI0022627
	-	

(continued)

SEQIDNO:	Gene name	miRBase registration No.
178	hsa-mir-3663	M10016064
179	hsa-mir-1908	MI0008329
180	hsa-mir-6726	MI0022571
181	hsa-mir-4258	MI0015857
182	hsa-mir-1343	MI0017320
183	hsa-mir-4516	MI0016882
184	hsa-mir-6875	MI0022722
185	hsa-mir-4651	MI0017279
186	hsa-mir-6825	MI0022670
187	hsa-mir-6840	MI0022686
188	hsa-mir-6780b	MI0022681
189	hsa-mir-6749	MI0022594
190	hsa-mir-8063	MI0025899
191	hsa-mir-6784	MI0022629
192	hsa-mir-3679	MI0016080
193	hsa-mir-3184	MI0014226
194	hsa-mir-663b	MI0006336
195	hsa-mir-6880	MI0022727
196	hsa-mir-92a-2	MI0000094
197	hsa-mir-7975	MI0025751
198	hsa-mir-7110	MI0022961
199	hsa-mir-6842	MI0022688
200	hsa-mir-6857	MI0022703
201	hsa-mir-5572	MI0019117
202	hsa-mir-3197	MI0014245
203	hsa-mir-6131	MI0021276
204	hsa-mir-6889	MI0022736
205	hsa-mir-4454	MI0016800
206	hsa-mir-1199	MI0020340
207	hsa-mir-1247	MI0006382
208	hsa-mir-6800	MI0022645
209	hsa-mir-6872	MI0022719
210	hsa-mir-4649	MI0017276
211	hsa-mir-6791	MI0022636
212	hsa-mir-4433b	MI0025511
213	hsa-mir-3135b	MI0016809
214	hsa-mir-128-2	MI0000727
215	hsa-mir-4675	MI0017306

(continued)

		1 .==
SEQIDNO:	Gene name	miRBase registration No
216	hsa-mir-4472-1	MI0016823
217	hsa-mir-4472-2	MI0016824
218	hsa-mir-6785	MI0022630
219	hsa-mir-6741	MI0022586
220	hsa-mir-7977	MI0025753
221	hsa-mir-3665	MI0016066
222	hsa-mir-128-1	MI0000447
223	hsa-mir-4286	MI0015894
224	hsa-mir-6765	MI0022610
225	hsa-mir-4632	M10017259
226	hsa-mir-365a	MI0000767
227	hsa-mir-6088	MI0020365
228	hsa-mir-6816	MI0022661
229	hsa-mir-6885	MI0022732
230	hsa-mir-711	MI0012488
231	hsa-mir-3180-4	MI0016408
232	hsa-mir-3180-5	MI0016409
233	hsa-mir-4442	MI0016785
234	hsa-mir-4792	MI0017439
235	hsa-mir-6721	MI0022556
236	hsa-mir-6798	MI0022643
237	hsa-mir-3162	MI0014192
238	hsa-mir-6126	MI0021260
239	hsa-mir-4758	MI0017399
240	hsa-mir-2392	MI0016870
241	hsa-mir-486	MI0002470
242	hsa-mir-486-2	MI0023622
243	hsa-mir-6727	MI0022572
244	hsa-mir-4728	MI0017365
245	hsa-mir-6746	MI0022591
246	hsa-mir-4270	MI0015878
247	hsa-mir-3940	MI0016597
248	hsa-mir-4725	MI0017362
249	hsa-mir-7108	MI0022959
250	hsa-mir-3656	MI0016056
251	hsa-mir-6879	MI0022726
252	hsa-mir-6738	MI0022583
253	hsa-mir-1260a	MI0006394

(continued)

SEQIDNO:	Gene name	miRBase registration N
254	hsa-mir-4446	MI0016789
255	hsa-mir-3131	MI0014151
256	hsa-mir-4463	MI0016811
257	hsa-mir-3185	MI0014227
258	hsa-mir-6870	MI0022717
259	hsa-mir-6779	MI0022624
260	hsa-mir-1273g	MI0018003
261	hsa-mir-8059	MI0025895
262	hsa-mir-4697	MI0017330
263	hsa-mir-4674	MI0017305
264	hsa-mir-4433	MI0016773
265	hsa-mir-4257	MI0015856
266	hsa-mir-1915	MI0008336
267	hsa-mir-4417	MI0016753
268	hsa-mir-6781	MI0022626
269	hsa-mir-4695	MI0017328
270	hsa-mir-1237	MI0006327
271	hsa-mir-6775	MI0022620
272	hsa-mir-7845	MI0025515
273	hsa-mir-4746	MI0017385
274	hsa-mir-7641-1	MI0024975
275	hsa-mir-7641-2	MI0024976
276	hsa-mir-7847	MI0025517
277	hsa-mir-6806	MI0022651
278	hsa-mir-4467	MI0016818
279	hsa-mir-4726	MI0017363
280	hsa-mir-4648	MI0017275
281	hsa-mir-6089-1	MI0020366
282	hsa-mir-6089-2	MI0023563
283	hsa-mir-1260b	MI0014197
284	hsa-mir-4532	MI0016899
285	hsa-mir-5195	MI0018174
286	hsa-mir-3188	MI0014232
287	hsa-mir-6848	MI0022694
288	hsa-mir-1233-1	MI0006323
289	hsa-mir-1233-2	MI0015973
290	hsa-mir-6717	MI0022551
291	hsa-mir-3195	MI0014240

(continued)

SEQIDNO:	Gene name	miRBase registration N
292	hsa-mir-6757	M10022602
293	hsa-mir-8072	MI0025908
294	hsa-mir-4745	MI0017384
295	hsa-mir-6511a-1	MI0022223
296	hsa-mir-6511a-2	MI0023564
297	hsa-mir-6511a-3	MI0023565
298	hsa-mir-6511a-4	MI0023566
299	hsa-mir-6776	MI0022621
300	hsa-mir-371a	MI0000779
301	hsa-mir-1227	MI0006316
302	hsa-mir-7150	MI0023610
303	hsa-mir-187	MI0000274
304	hsa-mir-614	MI0003627
305	hsa-mir-19b-1	MI0000074
306	hsa-mir-19b-2	MI0000075
307	hsa-mir-1225	MI0006311
308	hsa-mir-451a	MI0001729
309	hsa-mir-939	MI0005761
310	hsa-mir-223	MI0000300
311	hsa-mir-1228	MI0006318
312	hsa-mir-125a	MI0000469
313	hsa-mir-92b	MI0003560
314	hsa-mir-22	MI0000078
315	hsa-mir-4271	MI0015879
316	hsa-mir-642b	MI0016685
317	hsa-mir-6075	MI0020352
318	hsa-mir-6125	MI0021259
319	hsa-mir-887	MI0005562
320	hsa-mir-6851	MI0022697
321	hsa-mir-6763	MI0022608
322	hsa-mir-3928	MI0016438
323	hsa-mir-4443	MI0016786
324	hsa-mir-3648	MI0016048
325	hsa-mir-149	MI0000478
326	hsa-mir-4689	MI0017322
327	hsa-mir-4763	MI0017404
328	hsa-mir-6729	MI0022574
329	hsa-mir-3196	MI0014241

(continued)

SEQIDNO:	Gene name	miRBase registration No.
330	hsa-mir-8069	MI0025905
331	hsa-mir-1268a	MI0006405
332	hsa-mir-4739	MI0017377
333	hsa-mir-1268b	MI0016748
334	hsa-mir-5698	MI0019305
335	hsa-mir-6752	MI0022597
336	hsa-mir-4507	MI0016871
337	hsa-mir-564	MI0003570
338	hsa-mir-4497	MI0016859
339	hsa-mir-6877	MI0022724
340	hsa-mir-6087	MI0020364
341	hsa-mir-4731	MI0017368
342	hsa-mir-615	MI0003628
343	hsa-mir-760	MI0005567
344	hsa-mir-6891	MI0022738
345	hsa-mir-6887	MI0022734
346	hsa-mir-4525	MI0016892
347	hsa-mir-1914	MI0008335
348	hsa-mir-619	MI0003633
349	hsa-mir-5001	MI0017867
350	hsa-mir-6722	MI0022557
351	hsa-mir-3621	MI0016012
352	hsa-mir-4298	MI0015830
353	hsa-mir-675	MI0005416
354	hsa-mir-4655	MI0017283
355	isomiR example 1 of SEQ ID NO: 5	-
356	isomiR example 2 of SEQ ID NO: 5	-
357	isomiR example 1 of SEQ ID NO: 8	-
358	isomiR example 2 of SEQ ID NO: 8	-
359	isomiR example 1 of SEQ ID NO: 9	-
360	isomiR example 2 of SEQ ID NO: 9	-
361	isomiR example 1 of SEQ ID NO: 11	-
362	isomiR example 2 of SEQ ID NO: 11	-
363	isomiR example 1 of SEQ ID NO: 18	-
364	isomiR example 2 of SEQ ID NO: 18	-
365	isomiR example 1 of SEQ ID NO: 20	-
366	isomiR example 2 of SEQ ID NO: 20	-
367	isomiR example 1 of SEQ ID NO: 22	-

(continued)

	SEQIDNO:	Gene name	miRBase registration No.
5	368	isomiR example 2 of SEQ ID NO: 22	-
	369	isomiR example 1 of SEQ ID NO: 23	-
	370	isomiR example 2 of SEQ ID NO: 23	-
	371	isomiR example 1 of SEQ ID NO: 24	-
10	372	isomiR example 2 of SEQ ID NO: 24	-
	373	isomiR example 1 of SEQ ID NO: 28	-
	374	isomiR example 2 of SEQ ID NO: 28	-
15	375	isomiR example 1 of SEQ ID NO: 29	-
70	376	isomiR example 2 of SEQ ID NO: 29	-
	377	isomiR example 1 of SEQ ID NO: 30	-
	378	isomiR example 2 of SEQ ID NO: 30	-
20	379	isomiR example 1 of SEQ ID NO: 32	-
	380	isomiR example 2 of SEQ ID NO: 32	-
	381	isomiR example 1 of SEQ ID NO: 34	-
25	382	isomiR example 2 of SEQ ID NO: 34	-
	383	isomiR example 1 of SEQ ID NO: 37	-
	384	isomiR example 2 of SEQ ID NO: 37	-
	385	isomiR example 1 of SEQ ID NO: 40	-
30	386	isomiR example 2 of SEQ ID NO: 40	-
	387	isomiR example 1 of SEQ ID NO: 41	-
	388	isomiR example 2 of SEQ ID NO: 41	-
35	389	isomiR example 1 of SEQ ID NO: 47	-
	390	isomiR example 2 of SEQ ID NO: 47	-
	391	isomiR example 1 of SEQ ID NO: 48	-
	392	isomiR example 2 of SEQ ID NO: 48	-
40	393	isomiR example 1 of SEQ ID NO: 49	-
	394	isomiR example 2 of SEQ ID NO: 49	-
	395	isomiR example 1 of SEQ ID NO: 51	-
45	396	isomiR example 2 of SEQ ID NO: 51	-
	397	isomiR example 1 of SEQ ID NO: 52	-
	398	isomiR example 2 of SEQ ID NO: 52	-
	399	isomiR example 1 of SEQ ID NO: 53	-
50	400	isomiR example 2 of SEQ ID NO: 53	-
	401	isomiR example 1 of SEQ ID NO: 56	-
	402	isomiR example 2 of SEQ ID NO: 56	-
55	403	isomiR example 1 of SEQ ID NO: 58	-
	404	isomiR example 2 of SEQ ID NO: 58	-
	405	isomiR example 1 of SEQ ID NO: 59	-

(continued)

	SEQIDNO:	Gene name	miRBase registration No.
5	406	isomiR example 2 of SEQ ID NO: 59	-
	407	isomiR example 1 of SEQ ID NO: 60	-
	408	isomiR example 2 of SEQ ID NO: 60	-
	409	isomiR example 1 of SEQ ID NO: 61	-
10	410	isomiR example 2 of SEQ ID NO: 61	-
	411	isomiR example 1 of SEQ ID NO: 63	-
	412	isomiR example 2 of SEQ ID NO: 63	-
15	413	isomiR example 1 of SEQ ID NO: 64	-
	414	isomiR example 2 of SEQ ID NO: 64	-
	415	isomiR example 1 of SEQ ID NO: 65	-
	416	isomiR example 2 of SEQ ID NO: 65	-
20	417	isomiR example 1 of SEQ ID NO: 66	-
	418	isomiR example 2 of SEQ ID NO: 66	-
	419	isomiR example 1 of SEQ ID NO: 67	-
25	420	isomiR example 2 of SEQ ID NO: 67	-
	421	isomiR example 1 of SEQ ID NO: 69	-
	422	isomiR example 2 of SEQ ID NO: 69	-
	423	isomiR example 1 of SEQ ID NO: 72	-
30	424	isomiR example 2 of SEQ ID NO: 72	-
	425	isomiR example 1 of SEQ ID NO: 73	-
	426	isomiR example 2 of SEQ ID NO: 73	-
35	427	isomiR example 1 of SEQ ID NO: 75	-
	428	isomiR example 2 of SEQ ID NO: 75	-
	429	isomiR example 1 of SEQ ID NO: 78	-
	430	isomiR example 2 of SEQ ID NO: 78	-
40	431	isomiR example 1 of SEQ ID NO: 79	-
	432	isomiR example 2 of SEQ ID NO: 79	-
	433	isomiR example 1 of SEQ ID NO: 80	-
45	434	isomiR example 2 of SEQ ID NO: 80	-
	435	isomiR example 1 of SEQ ID NO: 81	-
	436	isomiR example 2 of SEQ ID NO: 81	-
	437	isomiR example 1 of SEQ ID NO: 82	-
50	438	isomiR example 2 of SEQ ID NO: 82	-
	439	isomiR example 1 of SEQ ID NO: 85	-
	440	isomiR example 2 of SEQ ID NO: 85	-
55	441	isomiR example 1 of SEQ ID NO: 88	-
	442	isomiR example 2 of SEQ ID NO: 88	-
	443	isomiR example 1 of SEQ ID NO: 89	-

(continued)

	SEQIDNO:	Gene name	miRBase registration No.
5	444	isomiR example 2 of SEQ ID NO: 89	-
	445	isomiR example 1 of SEQ ID NO: 91	-
	446	isomiR example 2 of SEQ ID NO: 91	-
	447	isomiR example 1 of SEQ ID NO: 92	-
10	448	isomiR example 2 of SEQ ID NO: 92	-
	449	isomiR example 1 of SEQ ID NO: 95	-
	450	isomiR example 2 of SEQ ID NO: 95	-
15	451	isomiR example 1 of SEQ ID NO: 96	-
	452	isomiR example 2 of SEQ ID NO: 96	-
	453	isomiR example 1 of SEQ ID NO: 103	-
	454	isomiR example 2 of SEQ ID NO: 103	-
20	455	isomiR example 1 of SEQ ID NO: 104	-
	456	isomiR example 2 of SEQ ID NO: 104	-
	457	isomiR example 1 of SEQ ID NO: 105	-
25	458	isomiR example 2 of SEQ ID NO: 105	-
	459	isomiR example 1 of SEQ ID NO: 106	-
	460	isomiR example 2 of SEQ ID NO: 106	-
	461	isomiR example 1 of SEQ ID NO: 107	-
30	462	isomiR example 2 of SEQ ID NO: 107	-
	463	isomiR example 1 of SEQ ID NO: 108	-
	464	isomiR example 2 of SEQ ID NO: 108	-
35	465	isomiR example 1 of SEQ ID NO: 109	-
	466	isomiR example 2 of SEQ ID NO: 109	-
	467	isomiR example 1 of SEQ ID NO: 110	-
	468	isomiR example 2 of SEQ ID NO: 110	-
40	469	isomiR example 1 of SEQ ID NO: 112	-
	470	isomiR example 2 of SEQ ID NO: 112	-
45	471	isomiR example 1 of SEQ ID NO: 113	-
	472	isomiR example 2 of SEQ ID NO: 113	-
	473	isomiR example 1 of SEQ ID NO: 114	-
	474	isomiR example 2 of SEQ ID NO: 114	-
55	475	isomiR example 1 of SEQ ID NO: 117	-
	476	isomiR example 2 of SEQ ID NO: 117	-
	477	isomiR example 1 of SEQ ID NO: 118	-
	478	isomiR example 2 of SEQ ID NO: 118	-
	479	isomiR example 1 of SEQ ID NO: 120	-
	480	isomiR example 2 of SEQ ID NO: 120	
	481	isomiR example 1 of SEQ ID NO: 123	-

(continued)

	SEQIDNO:	Gene name	miRBase registration No.
5	482	isomiR example 2 of SEQ ID NO: 123	-
9	483	isomiR example 1 of SEQ ID NO: 124	-
	484	isomiR example 2 of SEQ ID NO: 124	-
	485	isomiR example 1 of SEQ ID NO: 125	-
10	486	isomiR example 2 of SEQ ID NO: 125	-
	487	isomiR example 1 of SEQ ID NO: 126	-
	488	isomiR example 2 of SEQ ID NO: 126	-
15	489	isomiR example 1 of SEQ ID NO: 128	-
	490	isomiR example 2 of SEQ ID NO: 128	-
	491	isomiR example 1 of SEQ ID NO: 129	-
	492	isomiR example 2 of SEQ ID NO: 129	-
20	493	isomiR example 1 of SEQ ID NO: 130	-
	494	isomiR example 2 of SEQ ID NO: 130	-
	495	isomiR example 1 of SEQ ID NO: 131	-
25	496	isomiR example 2 of SEQ ID NO: 131	-
	497	isomiR example 1 of SEQ ID NO: 132	-
	498	isomiR example 2 of SEQ ID NO: 132	-
	499	isomiR example 1 of SEQ ID NO: 133	-
30	500	isomiR example 2 of SEQ ID NO: 133	-
	501	isomiR example 1 of SEQ ID NO: 134	-
	502	isomiR example 2 of SEQ ID NO: 134	-
35	503	isomiR example 1 of SEQ ID NO: 135	-
	504	isomiR example 2 of SEQ ID NO: 135	-
	505	isomiR example 1 of SEQ ID NO: 136	-
	506	isomiR example 2 of SEQ ID NO: 136	-
40	507	isomiR example 1 of SEQ ID NO: 138	-
	508	isomiR example 2 of SEQ ID NO: 138	-
	509	isomiR example 1 of SEQ ID NO: 139	-
45	510	isomiR example 2 of SEQ ID NO: 139	-
	511	isomiR example 1 of SEQ ID NO: 142	-
	512	isomiR example 2 of SEQ ID NO: 142	-
	513	isomiR example 1 of SEQ ID NO: 143	-
50	514	isomiR example 2 of SEQ ID NO: 143	-
	515	isomiR example 1 of SEQ ID NO: 144	-
	516	isomiR example 2 of SEQ ID NO: 144	-
55	517	isomiR example 1 of SEQ ID NO: 145	-
	518	isomiR example 2 of SEQ ID NO: 145	-
	519	isomiR example 1 of SEQ ID NO: 146	-

(continued)

	SEQIDNO:	Gene name	miRBase registration No.
5	520	isomiR example 2 of SEQ ID NO: 146	-
	521	isomiR example 1 of SEQ ID NO: 147	-
	522	isomiR example 2 of SEQ ID NO: 147	-
	523	isomiR example 1 of SEQ ID NO: 149	-
10	524	isomiR example 2 of SEQ ID NO: 149	-
	525	isomiR example 1 of SEQ ID NO: 151	-
	526	isomiR example 2 of SEQ ID NO: 151	-
15	527	isomiR example 1 of SEQ ID NO: 152	-
	528	isomiR example 2 of SEQ ID NO: 152	-
	529	isomiR example 1 of SEQ ID NO: 153	-
	530	isomiR example 2 of SEQ ID NO: 153	-
20	531	isomiR example 1 of SEQ ID NO: 154	-
	532	isomiR example 2 of SEQ ID NO: 154	-
	533	isomiR example 1 of SEQ ID NO: 156	-
25	534	isomiR example 2 of SEQ ID NO: 156	-
	535	isomiR example 1 of SEQ ID NO: 157	-
	536	isomiR example 2 of SEQ ID NO: 157	-
	537	isomiR example 1 of SEQ ID NO: 158	-
30	538	isomiR example 2 of SEQ ID NO: 158	-
	539	isomiR example 1 of SEQ ID NO: 160	-
	540	isomiR example 2 of SEQ ID NO: 160	-
35	541	isomiR example 1 of SEQ ID NO: 161	-
	542	isomiR example 2 of SEQ ID NO: 161	-
	543	isomiR example 1 of SEQ ID NO: 162	-
	544	isomiR example 2 of SEQ ID NO: 162	-
40	545	isomiR example 1 of SEQ ID NO: 163	-
	546	isomiR example 2 of SEQ ID NO: 163	-
45	547	isomiR example 1 of SEQ ID NO: 166	-
	548	isomiR example 2 of SEQ ID NO: 166	-
	549	isomiR example 1 of SEQ ID NO: 167	-
	550	isomiR example 2 of SEQ ID NO: 167	-
50	551	isomiR example 1 of SEQ ID NO: 168	-
	552	isomiR example 2 of SEQ ID NO: 168	-
	553	isomiR example 1 of SEQ ID NO: 169	-
55	554	isomiR example 2 of SEQ ID NO: 169	-
	555	isomiR example 1 of SEQ ID NO: 172	-
	556	isomiR example 2 of SEQ ID NO: 172	-
	557	isomiR example 1 of SEQ ID NO: 173	-

(continued)

558 isomiR example 2 of SEQ ID NO: 173 -	
559 isomiR example 1 of SEQ ID NO: 174 -	
560 isomiR example 2 of SEQ ID NO: 174 -	
561 hsa-miR-6073 MIMATO	023698
562 hsa-miR-6845-5p MIMATO	027590
563 hsa-miR-6769b-5p MIMATO	027620
564 hsa-miR-4665-3p MIMATO	019740
565 hsa-miR-1913 MIMATO	007888
566 hsa-miR-1228-3p MIMATO	005583
567 hsa-miR-940 MIMATO	004983
568 hsa-miR-296-3p MIMATO	004679
569 hsa-miR-4690-5p MIMATO	019779
570 hsa-miR-548q MIMATO	011163
571 hsa-miR-663a MIMATO	003326
572 hsa-miR-1249 MIMATO	005901
573 hsa-miR-1202 MIMATO	005865
574 hsa-miR-7113-3p MIMATO	028124
575 hsa-miR-1225-3p MIMAT0	005573
576 hsa-miR-4783-3p MIMATO	019947
577 hsa-miR-4448 MIMATO	018967
578 hsa-miR-4534 MIMATO	019073
579 hsa-miR-1307-3p MIMATO	005951
580 hsa-mir-6073 MI002	0350
581 hsa-mir-6845 MI002	2691
582 hsa-mir-6769b MI002	2706
583 hsa-mir-4665 M1001	7295
584 hsa-mir-1913 MI000	8334
585 hsa-mir-940 MI000	5762
586 hsa-mir-296 MI000	0747
587 hsa-mir-4690 MI001	7323
588 hsa-mir-548q MI001	0637
589 hsa-mir-663a MI000	3672
590 hsa-mir-1249 MI000	6384
591 hsa-mir-1202 MI000	6334
592 hsa-mir-7113 MI002	2964
593 hsa-mir-4783 MI001	7428
594 hsa-mir-4448 MI001	6791
595 hsa-mir-4534 MI001	6901

(continued)

SEQIDNO:	Gene name	miRBase registration No.
596	hsa-mir-1307	MI0006444
597	isomiR example 1 of SEQ ID NO: 565	-
598	isomiR example 2 of SEQ ID NO: 565	-
599	isomiR example 1 of SEQ ID NO: 566	-
600	isomiR example 2 of SEQ ID NO: 566	-
601	isomiR example 1 of SEQ ID NO: 567	-
602	isomiR example 2 of SEQ ID NO: 567	-
603	isomiR example 1 of SEQ ID NO: 568	-
604	isomiR example 2 of SEQ ID NO: 568	-
605	isomiR example 1 of SEQ ID NO: 569	-
606	isomiR example 2 of SEQ ID NO: 569	-
607	isomiR example 1 of SEQ ID NO: 571	-
608	isomiR example 2 of SEQ ID NO: 571	-
609	isomiR example 1 of SEQ ID NO: 572	-
610	isomiR example 2 of SEQ ID NO: 572	-
611	isomiR example 1 of SEQ ID NO: 573	-
612	isomiR example 2 of SEQ ID NO: 573	-
613	isomiR example 1 of SEQ ID NO: 576	-
614	isomiR example 2 of SEQ ID NO: 576	-
615	isomiR example 1 of SEQ ID NO: 577	-
616	isomiR example 2 of SEQ ID NO: 577	-
617	isomiR example 1 of SEQ ID NO: 579	-
618	isomiR example 2 of SEQ ID NO: 579	-

[0255] The present application claims priority from Japanese Patent Application No. 2014-125561

Advantageous Effects of Invention

[0256] According to the present invention, lung cancer can be detected easily and in high accuracy.

[0257] For example, the presence or absence of lung cancer in a patient can be easily detected by using, as an index, the expression level measurement values of several miRNAs in blood, serum, and/or plasma of the patient, which can be collected with limited invasiveness.

Brief Description of Drawings

[0258]

5

10

15

20

25

30

35

40

45

50

55

[Figure 1] This figure shows the relationship between the nucleotide sequences of hsa-miR-1908-5p represented by SEQ ID NO: 22 and hsa-miR-1908-3p represented by SEQ ID NO: 5, which are produced from a precursor hsa-mir-1908 represented by SEQ ID NO: 179.

[Figure 2] Left diagram: the expression level measurement values of hsa-miR-6768-5p (SEQ ID NO: 1) in healthy subjects (100 persons) and lung cancer patients (17 persons) selected as a training cohort were each plotted on the ordinate. The horizontal line in the diagram depicts a threshold (10.08) that was optimized by Fisher's discriminant analysis and discriminated between the two groups. Right diagram: the expression level measurement values of

hsa-miR-6768-5p (SEQ ID NO: 1) in healthy subjects (50 persons) and lung cancer patients (8 persons) selected as a validation cohort were each plotted on the ordinate. The horizontal line in the diagram depicts the threshold (10.08) that was set in the training cohort and discriminated between the two groups.

[Figure 3] Left diagram: the expression level measurement values of hsa-miR-6768-5p (SEQ ID NO: 1) in healthy subjects (100 persons, circles) and lung cancer patients (17 persons, triangles) selected as a training cohort were each plotted on the abscissa against their expression level measurement values of hsa-miR-6836-3p (SEQ ID NO: 2) on the ordinate. The line in the diagram depicts a discriminant function (0 = -1.42x + y + 4.7) that was optimized by Fisher's discriminant analysis and discriminated between the two groups. Right diagram: the expression level measurement values of hsa-miR-6768-5p (SEQ ID NO: 1) in healthy subjects (50 persons, circles) and lung cancer patients (8 persons, triangles) selected as a validation cohort were each plotted on the abscissa against their expression level measurement values of hsa-miR-6836-3p (SEQ ID NO: 2) on the ordinate. The line in the diagram depicts the threshold (0 = -1.42x + y + 4.7) that was set in the training cohort and discriminated between the two groups. [Figure 4] Figure 4A: a discriminant (-1.86 x hsa-miR-6768-5p - 0.68 x hsa-miR-19b-3p + 0.43 x hsa-miR-6073 -0.87 x hsa-miR-6717-5p + 25.68) was prepared by use of Fisher's discriminant analysis from the expression level measurement values of hsa-miR-6768-5p (SEQ ID NO: 1), hsa-miR-6717-5p (SEQ ID NO: 113), hsa-miR-19b-3p (SEQ ID NO: 126), and hsa-miR-6073 (SEQ IDNO: 561) in 17 lung cancer patients, 99 healthy subjects, 75 pancreatic cancer patients, 62 biliary tract cancer patients, 32 colorectal cancer patients, 35 stomach cancer patients, 32 esophageal cancer patients, 33 liver cancer patients, and 13 benign pancreaticobiliary disease patients selected as a training cohort, and discriminant scores obtained from the discriminant were plotted on the ordinate against the sample groups on the abscissa. The dotted line in the diagram depicts a discriminant boundary that offered a discriminant score of 0 and discriminated between the two groups. Figure 4B: discriminant scores obtained from the discriminant prepared in the training cohort as to the expression level measurement values of hsa-miR-6768-5p (SEQ ID NO: 1), hsa-miR-6717-5p (SEQ ID NO: 113), hsa-miR-19b-3p (SEQ ID NO: 126), and hsa-miR-6073 (SEQ ID NO: 561) in 8 lung cancer patients, 51 healthy subjects, 23 pancreatic cancer patients, 38 biliary tract cancer patients, 18 colorectal cancer patients, 15 stomach cancer patients, 18 esophageal cancer patients, 19 liver cancer patients, and 8 benign pancreaticobiliary disease patients selected as a validation cohort were plotted on the ordinate against the sample groups on the abscissa. The dotted line in the diagram depicts the discriminant boundary that offered a discriminant score of 0 and discriminated between the two groups.

Description of Embodiments

5

10

15

20

25

30

35

40

45

50

55

[0259] Hereinafter, the present invention will be described further specifically.

1. Target nucleic acid for lung cancer

[0260] A primary target nucleic acid used as a lung cancer marker for detecting the presence and/or absence of lung cancer or lung cancer cells using the nucleic acid probe or the primer for the detection of lung cancer defined above according to the present invention can be hsa-miR-6768-5p, optionally together with one or more miRNA(s) selected from the group consisting of hsa-miR-6836-3p, hsa-miR-6782-5p, hsa-miR-3663-3p, hsa-miR-1908-3p, hsa-miR- $6726-5p,\ hsa-miR-4258,\ hsa-miR-1343-3p,\ hsa-miR-4516,\ hsa-miR-6875-5p,\ hsa-miR-4651,\ hsa-miR-6825-5p,\ hsa-miR-6$ miR-6840-3p, hsa-miR-6780b-5p, hsa-miR-6749-5p, hsa-miR-8063, hsa-miR-6784-5p, hsa-miR-3679-5p, hsa-miR-3184-5p, hsa-miR-663b, hsa-miR-6880-5p, hsa-miR-1908-5p, hsa-miR-92a-2-5p, hsa-miR-7975, hsa-miR-7110-5p, hsa-miR-6842-5p, hsa-miR-6857-5p, hsa-miR-5572, hsa-miR-3197, hsa-miR-6131, hsa-miR-6889-5p, hsa-miR-4454, hsa-miR-1199-5p, hsa-miR-1247-3p, hsa-miR-6800-5p, hsa-miR-6872-3p, hsa-miR-4649-5p, hsa-miR-6791-5p, hsamiR-4433b-3p, hsa-miR-3135b, hsa-miR-128-2-5p, hsa-miR-4675, hsa-miR-4472, hsa-miR-6785-5p, hsa-miR-6741-5p, hsa-miR-7977, hsa-miR-3665, hsa-miR-128-1-5p, hsa-miR-4286, hsa-miR-6765-3p, hsa-miR-4632-5p, hsa-miR-365a-5p, hsa-miR-6088, hsa-miR-6816-5p, hsa-miR-6885-5p, hsa-miR-711, hsa-miR-6765-5p, hsa-miR-3180, hsa-miR-4442, hsa-miR-4792, hsa-miR-6721-5p, hsa-miR-6798-5p, hsa-miR-3162-5p, hsa-miR-6126, hsa-miR-4758-5p, hsa-miR-2392, hsa-miR-486-3p, hsa-miR-6727-5p, hsa-miR-4728-5p, hsa-miR-6746-5p, hsa-miR-4270, hsa-miR-3940-5p, hsamiR-4725-3p, hsa-miR-7108-5p, hsa-miR-3656, hsa-miR-6879-5p, hsa-miR-6738-5p, hsa-miR-1260a, hsa-miR-4446-3p, hsa-miR-3131, hsa-miR-4463, hsa-miR-3185, hsa-miR-6870-5p, hsa-miR-6779-5p, hsa-miR-1273g-3p, hsamiR-8059, hsa-miR-4697-5p, hsa-miR-4674, hsa-miR-4433-3p, hsa-miR-4257, hsa-miR-1915-5p, hsa-miR-4417, hsamiR-1343-5p, hsa-miR-6781-5p, hsa-miR-4695-5p, hsa-miR-1237-5p, hsa-miR-6775-5p, hsa-miR-7845-5p, hsa-miR-4746-3p, hsa-miR-7641, hsa-miR-7847-3p, hsa-miR-6806-5p, hsa-miR-4467, hsa-miR-4726-5p, hsa-miR-4648, hsamiR-6089, hsa-miR-1260b, hsa-miR-4532, hsa-miR-5195-3p, hsa-miR-3188, hsa-miR-6848-5p, hsa-miR-1233-5p, hsa-miR-1233-5p, hsa-miR-1233-5p, hsa-miR-6089, hsamiR-6717-5p, hsa-miR-3195, hsa-miR-6757-5p, hsa-miR-8072, hsa-miR-4745-5p, hsa-miR-6511a-5p, hsa-miR-6776-5p, hsa-miR-371a-5p, hsa-miR-1227-5p, hsa-miR-7150, hsa-miR-1915-3p, hsa-miR-187-5p, hsa-miR-614, hsamiR-1225-5p, hsa-miR-451a, hsa-miR-939-5p, hsa-miR-223-3p, hsa-miR-125a-3p, hsa-miR-92b-5p, hsa-miR-22-3p,

hsa-miR-6073, hsa-miR-6845-5p, hsa-miR-6769b-5p, hsa-miR-4665-3p, hsa-miR-1913, hsa-miR-1228-3p, hsa-miR-940, hsa-miR-296-3p, hsa-miR-4690-5p, hsa-miR-548q, hsa-miR-663a, hsa-miR-1249, hsa-miR-1202, hsa-miR-7113-3p, hsa-miR-1225-3p, hsa-miR-4783-3p, hsa-miR-4448 and hsa-miR-4534. Furthermore, at least one or more miRNA(s) selected from the group consisting of other lung cancer markers that can be combined with these miRNAs, i.e., hsa-miR-19b-3p, hsa-miR-1228-5p, and hsa-miR-1307-3p, can also be preferably used as a target nucleic acid. Moreover, at least one or more miRNA(s) selected from the group consisting of other lung cancer markers that can be combined with these miRNAs, i.e., hsa-miR-4271, hsa-miR-642b-3p, hsa-miR-6075, hsa-miR-6125, hsa-miR-887-3p, hsa-miR-6851-5p, hsa-miR-6763-5p, hsa-miR-3928-3p, hsa-miR-4443, hsa-miR-3648, hsa-miR-149-3p, hsa-miR-4689, hsa-miR-6752-5p, hsa-miR-3196, hsa-miR-8069, hsa-miR-1268a, hsa-miR-4739, hsa-miR-1268b, hsa-miR-698, hsa-miR-6752-5p, hsa-miR-4507, hsa-miR-564, hsa-miR-4497, hsa-miR-6877-5p, hsa-miR-6087, hsa-miR-4731-5p, hsa-miR-615-5p, hsa-miR-760, hsa-miR-6891-5p, hsa-miR-6887-5p, hsa-miR-675-5p and hsa-miR-4655-5p can also be preferably used as a target nucleic acid.

[0261] These miRNAs include, for example, a human gene comprising a nucleotide sequence represented by SEQ ID NO: 1 optionally together with any of SEQ ID NOs 2 to 174 and 561 to 579 (i.e., hsa-miR-6768-5p, hsa-miR-6836-3p, hsa-miR-6782-5p, hsa-miR-3663-3p, hsa-miR-1908-3p, hsa-miR-6726-5p, hsa-miR-4258, hsa-miR-1343-3p, hsa-miR-4516, hsa-miR-6875-5p, hsa-miR-4651, hsa-miR-6825-5p, hsa-miR-6840-3p, hsa-miR-6780b-5p, hsa-miR-6749-5p, hsa-miR-8063, hsa-miR-6784-5p, hsa-miR-3679-5p, hsa-miR-3184-5p, hsa-miR-663b, hsa-miR-6880-5p, hsa-miR-1908-5p, hsa-miR-92a-2-5p, hsa-miR-7975, hsa-miR-7110-5p, hsa-miR-6842-5p, hsa-miR-6857-5p, hsa-miR-5572, hsa-miR-3197, hsa-miR-6131, hsa-miR-6889-5p, hsa-miR-4454, hsa-miR-1199-5p, hsa-miR-1247-3p, hsa-miR-6800-5p, hsa-miR-6872-3p, hsa-miR-4649-5p, hsa-miR-6791-5p, hsa-miR-4433b-3p, hsa-miR-3135b, hsa-miR-128-2-5p, hsa-miR-4675, hsa-miR-4472, hsa-miR-6785-5p, hsa-miR-6741-5p, hsa-miR-7977, hsa-miR-3665, hsa-miR-128-1-5p, hsa-miR-4286, hsa-miR-6765-3p, hsa-miR-4632-5p, hsa-miR-365a-5p, hsa-miR-6088, hsa-miR-6816-5p, hsa-miR-6885-5p, hsa-miR-711, hsa-miR-6765-5p, hsa-miR-3180, hsa-miR-4442, hsa-miR-4792, hsa-miR-6721-5p, hsa-miR-6798-5p, hsa-miR-3162-5p, hsa-miR-6126, hsa-miR-4758-5p, hsa-miR-2392, hsa-miR-486-3p, hsa-miR-6727-5p, hsa-miR-4728-5p, hsa-miR-6746-5p, hsa-miR-4270, hsa-miR-3940-5p, hsa-miR-4725-3p, hsa-miR-7108-5p, hsa-miR-3656, hsa-miR-6879-5p, hsa-miR-6738-5p, hsa-miR-1260a, hsa-miR-4446-3p, hsa-miR-3131, hsa-miR-4463, hsa-miR-3185, hsa-miR-6870-5p, hsa-miR-6779-5p, hsa-miR-1273g-3p, hsa-miR-8059, hsa-miR-4697-5p, hsa-miR-4674, hsa-miR-4433-3p, hsa-miR-4257, hsa-miR-1915-5p, hsa-miR-4417, hsa-miR-1343-5p, hsa-miR-6781-5p, hsamiR-4695-5p, hsa-miR-1237-5p, hsa-miR-6775-5p, hsa-miR-7845-5p, hsa-miR-4746-3p, hsa-miR-7641, hsa-miR-7847-3p, hsa-miR-6806-5p, hsa-miR-4467, hsa-miR-4726-5p, hsa-miR-4648, hsa-miR-6089, hsa-miR-1260b, hsa-miR-4532, hsa-miR-5195-3p, hsa-miR-3188, hsa-miR-6848-5p, hsa-miR-1233-5p, hsa-miR-6717-5p, hsa-miR-3195, hsamiR-6757-5p, hsa-miR-8072, hsa-miR-4745-5p, hsa-miR-6511a-5p, hsa-miR-6776-5p, hsa-miR-371a-5p, hsa-miR-1227-5p, hsa-miR-7150, hsa-miR-1915-3p, hsa-miR-187-5p, hsa-miR-614, hsa-miR-19b-3p, hsa-miR-1225-5p, hsamiR-451a, hsa-miR-939-5p, hsa-miR-223-3p, hsa-miR-1228-5p, hsa-miR-125a-3p, hsa-miR-92b-5p, hsa-miR-22-3p, hsa-miR-6073, hsa-miR-6845-5p, hsa-miR-6769b-5p, hsa-miR-4665-3p, hsa-miR-1913, hsa-miR-1228-3p, hsa-miR-940, hsa-miR-296-3p, hsa-miR-4690-5p, hsa-miR-548q, hsa-miR-663a, hsa-miR-1249, hsa-miR-1202, hsa-miR-7113-3p, hsa-miR-1225-3p, hsa-miR-4783-3p, hsa-miR-4448 and hsa-miR-4534, hsa-miR-1307-3p, hsa-miR-4271, hsa-miR-642b-3p, hsa-miR-6075, hsa-miR-6125, hsa-miR-887-3p, hsa-miR-6851-5p, hsa-miR-6763-5p, hsa-miR-3928-3p, hsa-miR-4443, hsa-miR-3648, hsa-miR-149-3p, hsa-miR-4689, hsa-miR-4763-3p, hsa-miR-6729-5p, hsamiR-3196, hsa-miR-8069, hsa-miR-1268a, hsa-miR-4739, hsa-miR-1268b, hsa-miR-5698, hsa-miR-6752-5p, hsa-miR-4507, hsa-miR-564, hsa-miR-4497, hsa-miR-6877-5p, hsa-miR-6087, hsa-miR-4731-5p, hsa-miR-615-5p, hsa-miR-760, hsa-miR-6891-5p, hsa-miR-6887-5p, hsa-miR-4525, hsa-miR-1914-3p, hsa-miR-619-5p, hsa-miR-5001-5p, hsa-miR-6722-3p, hsa-miR-3621, hsa-miR-4298, hsa-miR-675-5p and hsa-miR-4655-5p, respectively), a congener thereof, a transcript thereof, and a variant or a derivative thereof. In this context, the gene, the congener, the transcript, the variant, and the derivative are as defined above.

30

35

40

45

50

55

[0262] The target nucleic acid is preferably a human gene comprising a nucleotide sequence represented by SEQ ID NOs: 1 optionally together with any of SEQ ID NOs: 2 to 618 or a transcript thereof, more preferably the transcript, i.e., a miRNA or its precursor RNA (pri-miRNA or pre-miRNA).

[0263] The first target gene is the hsa-miR-6768-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0264] The second target gene is the hsa-miR-6836-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0265] The third target gene is the hsa-miR-6782-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

- **[0266]** The fourth target gene is the hsa-miR-3663-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0267]** The fifth target gene is the hsa-miR-1908-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0268]** The sixth target gene is the hsa-miR-6726-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0269] The seventh target gene is the hsa-miR-4258 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0270]** The eighth target gene is the hsa-miR-1343-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0271]** The ninth target gene is the hsa-miR-4516 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0272] The 10th target gene is the hsa-miR-6875-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0273]** The 11th target gene is the hsa-miR-4651 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0274] The 12th target gene is the hsa-miR-6825-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

30

35

- **[0275]** The 13th target gene is the hsa-miR-6840-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0276]** The 14th target gene is the hsa-miR-6780b-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0277]** The 15th target gene is the hsa-miR-6749-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0278]** The 16th target gene is the hsa-miR-8063 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0279] The 17th target gene is the hsa-miR-6784-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0280]** The 18th target gene is the hsa-miR-3679-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0281]** The 19th target gene is the hsa-miR-3184-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0282]** The 20th target gene is the hsa-miR-663b gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0283]** The 21st target gene is the hsa-miR-6880-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0284] The 22nd target gene is the hsa-miR-1908-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - [0285] The 23rd target gene is the hsa-miR-92a-2-5p gene, a congener thereof, a transcript thereof, or a variant or a

derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0286] The 24th target gene is the hsa-miR-7975 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0287] The 25th target gene is the hsa-miR-7110-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0288] The 26th target gene is the hsa-miR-6842-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

10

20

35

50

[0289] The 27th target gene is the hsa-miR-6857-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0290] The 28th target gene is the hsa-miR-5572 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0291] The 29th target gene is the hsa-miR-3197 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0292] The 30th target gene is the hsa-miR-6131 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0293] The 31st target gene is the hsa-miR-6889-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0294] The 32nd target gene is the hsa-miR-4454 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0295] The 33rd target gene is the hsa-miR-1199-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0296] The 34th target gene is the hsa-miR-1247-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0297] The 35th target gene is the hsa-miR-6800-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0298] The 36th target gene is the hsa-miR-6872-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0299] The 37th target gene is the hsa-miR-4649-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0300] The 38th target gene is the hsa-miR-6791-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0301] The 39th target gene is the hsa-miR-4433b-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0302] The 40th target gene is the hsa-miR-3135b gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0303] The 41st target gene is the hsa-miR-128-2-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0304] The 42nd target gene is the hsa-miR-4675 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript

thereof can serve as a marker for lung cancer.

10

15

20

30

35

50

[0305] The 43rd target gene is the hsa-miR-4472 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0306] The 44th target gene is the hsa-miR-6785-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0307] The 45th target gene is the hsa-miR-6741-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0308] The 46th target gene is the hsa-miR-7977 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0309] The 47th target gene is the hsa-miR-3665 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0310] The 48th target gene is the hsa-miR-128-1-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0311] The 49th target gene is the hsa-miR-4286 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0312] The 50th target gene is the hsa-miR-6765-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0313] The 51st target gene is the hsa-miR-4632-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0314] The 52nd target gene is the hsa-miR-365a-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0315] The 53rd target gene is the hsa-miR-6088 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0316] The 54th target gene is the hsa-miR-6816-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0317] The 55th target gene is the hsa-miR-6885-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0318] The 56th target gene is the hsa-miR-711 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0319] The 57th target gene is the hsa-miR-6765-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0320] The 58th target gene is the hsa-miR-3180 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0321] The 59th target gene is the hsa-miR-4442 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0322] The 60th target gene is the hsa-miR-4792 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0323] The 61st target gene is the hsa-miR-6721-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

- **[0324]** The 62nd target gene is the hsa-miR-6798-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0325]** The 63rd target gene is the hsa-miR-3162-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0326]** The 64th target gene is the hsa-miR-6126 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- 10 [0327] The 65th target gene is the hsa-miR-4758-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0328]** The 66th target gene is the hsa-miR-2392 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0329]** The 67th target gene is the hsa-miR-486-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0330] The 68th target gene is the hsa-miR-6727-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0331]** The 69th target gene is the hsa-miR-4728-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0332] The 70th target gene is the hsa-miR-6746-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

30

- **[0333]** The 71st target gene is the hsa-miR-4270 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0334]** The 72nd target gene is the hsa-miR-3940-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0335]** The 73rd target gene is the hsa-miR-4725-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0336]** The 74th target gene is the hsa-miR-7108-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0337] The 75th target gene is the hsa-miR-3656 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0338]** The 76th target gene is the hsa-miR-6879-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0339]** The 77th target gene is the hsa-miR-6738-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0340] The 78th target gene is the hsa-miR-1260a gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0341]** The 79th target gene is the hsa-miR-4446-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- ⁵⁵ **[0342]** The 80th target gene is the hsa-miR-3131 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - [0343] The 81st target gene is the hsa-miR-4463 gene, a congener thereof, a transcript thereof, or a variant or a

derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0344] The 82nd target gene is the hsa-miR-3185 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0345] The 83rd target gene is the hsa-miR-6870-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0346] The 84th target gene is the hsa-miR-6779-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0347] The 85th target gene is the hsa-miR-1273g-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0348] The 86th target gene is the hsa-miR-8059 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0349] The 87th target gene is the hsa-miR-4697-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0350] The 88th target gene is the hsa-miR-4674 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0351] The 89th target gene is the hsa-miR-4433-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0352] The 90th target gene is the hsa-miR-4257 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0353] The 91st target gene is the hsa-miR-1915-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

35

50

[0354] The 92nd target gene is the hsa-miR-4417 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0355] The 93rd target gene is the hsa-miR-1343-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0356] The 94th target gene is the hsa-miR-6781-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0357] The 95th target gene is the hsa-miR-4695-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0358] The 96th target gene is the hsa-miR-1237-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0359] The 97th target gene is the hsa-miR-6775-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0360] The 98th target gene is the hsa-miR-7845-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0361] The 99th target gene is the hsa-miR-4746-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0362] The 100th target gene is the hsa-miR-7641 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript

thereof can serve as a marker for lung cancer.

10

15

20

30

35

50

[0363] The 101st target gene is the hsa-miR-7847-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0364] The 102nd target gene is the hsa-miR-6806-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0365] The 103rd target gene is the hsa-miR-4467 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0366] The 104th target gene is the hsa-miR-4726-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0367] The 105th target gene is the hsa-miR-4648 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0368] The 106th target gene is the hsa-miR-6089 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0369] The 107th target gene is the hsa-miR-1260b gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0370] The 108th target gene is the hsa-miR-4532 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0371] The 109th target gene is the hsa-miR-5195-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0372] The 110th target gene is the hsa-miR-3188 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0373] The 111st target gene is the hsa-miR-6848-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0374] The 112nd target gene is the hsa-miR-1233-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0375] The 113rd target gene is the hsa-miR-6717-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0376] The 114th target gene is the hsa-miR-3195 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0377] The 115th target gene is the hsa-miR-6757-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0378] The 116th target gene is the hsa-miR-8072 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0379] The 117th target gene is the hsa-miR-4745-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0380] The 118th target gene is the hsa-miR-6511a-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0381] The 119th target gene is the hsa-miR-6776-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

- **[0382]** The 120th target gene is the hsa-miR-371a-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0383]** The 121st target gene is the hsa-miR-1227-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0384]** The 122nd target gene is the hsa-miR-7150 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0385] The 123rd target gene is the hsa-miR-1915-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0386]** The 124th target gene is the hsa-miR-187-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0387]** The 125th target gene is the hsa-miR-614 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0388]** The 126th target gene is the hsa-miR-19b-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. The previously known report shows that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer (Patent Literature 1).
 - **[0389]** The 127th target gene is the hsa-miR-1225-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0390] The 128th target gene is the hsa-miR-451a gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

30

35

- **[0391]** The 129th target gene is the hsa-miR-939-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0392]** The 130th target gene is the hsa-miR-223-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0393]** The 131st target gene is the hsa-miR-1228-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. The previously known report shows that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer (Patent Literature 2).
- **[0394]** The 132nd target gene is the hsa-miR-125a-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0395] The 133rd target gene is the hsa-miR-92b-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0396]** The 134th target gene is the hsa-miR-22-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0397]** The 135th target gene is the hsa-miR-4271 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0398]** The 136th target gene is the hsa-miR-642b-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0399]** The 137th target gene is the hsa-miR-6075 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0400] The 138th target gene is the hsa-miR-6125 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - [0401] The 139th target gene is the hsa-miR-887-3p gene, a congener thereof, a transcript thereof, or a variant or a

derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0402] The 140th target gene is the hsa-miR-6851-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0403] The 141st target gene is the hsa-miR-6763-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0404] The 142nd target gene is the hsa-miR-3928-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0405] The 143rd target gene is the hsa-miR-4443 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0406] The 144th target gene is the hsa-miR-3648 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0407] The 145th target gene is the hsa-miR-149-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

20

30

35

50

[0408] The 146th target gene is the hsa-miR-4689 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0409] The 147th target gene is the hsa-miR-4763-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0410] The 148th target gene is the hsa-miR-6729-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0411] The 149th target gene is the hsa-miR-3196 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0412] The 150th target gene is the hsa-miR-8069 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0413] The 151st target gene is the hsa-miR-1268a gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer (Patent Literature 2).

[0414] The 152nd target gene is the hsa-miR-4739 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0415] The 153rd target gene is the hsa-miR-1268b gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0416] The 154th target gene is the hsa-miR-5698 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0417] The 155th target gene is the hsa-miR-6752-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0418] The 156th target gene is the hsa-miR-4507 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0419] The 157th target gene is the hsa-miR-564 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0420] The 158th target gene is the hsa-miR-4497 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript

thereof can serve as a marker for lung cancer.

10

15

30

35

50

[0421] The 159th target gene is the hsa-miR-6877-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0422] The 160th target gene is the hsa-miR-6087 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0423] The 161st target gene is the hsa-miR-4731-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0424] The 162nd target gene is the hsa-miR-615-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0425] The 163rd target gene is the hsa-miR-760 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0426] The 164th target gene is the hsa-miR-6891-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0427] The 165th target gene is the hsa-miR-6887-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0428] The 166th target gene is the hsa-miR-4525 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0429] The 167th target gene is the hsa-miR-1914-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0430] The 168th target gene is the hsa-miR-619-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0431] The 169th target gene is the hsa-miR-5001-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0432] The 170th target gene is the hsa-miR-6722-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0433] The 171st target gene is the hsa-miR-3621 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0434] The 172nd target gene is the hsa-miR-4298 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0435] The 173rd target gene is the hsa-miR-675-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0436] The 174th target gene is the hsa-miR-4655-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0437] The 175th target gene is the hsa-miR-6073 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0438] The 176th target gene is the hsa-miR-6845-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

[0439] The 177th target gene is the hsa-miR-6769b-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.

- **[0440]** The 178th target gene is the hsa-miR-4665-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- **[0441]** The 179th target gene is the hsa-miR-1913 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0442]** The 180th target gene is the hsa-miR-1228-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0443] The 181st target gene is the hsa-miR-940 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0444]** The 182nd target gene is the hsa-miR-296-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0445]** The 183rd target gene is the hsa-miR-4690-5p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0446] The 184th target gene is the hsa-miR-548q gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0447]** The 185th target gene is the hsa-miR-663a gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0448] The 186th target gene is the hsa-miR-1249 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0449]** The 187th target gene is the hsa-miR-1202 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0450]** The 188th target gene is the hsa-miR-7113-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0451]** The 189th target gene is the hsa-miR-1225-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0452]** The 190th target gene is the hsa-miR-4783-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
- [0453] The 191st target gene is the hsa-miR-4448 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0454]** The 192nd target gene is the hsa-miR-4534 gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. None of the previously known reports show that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer.
 - **[0455]** The 193rd target gene is the hsa-miR-1307-3p gene, a congener thereof, a transcript thereof, or a variant or a derivative thereof. The previously known report shows that change in the expression of the gene or the transcript thereof can serve as a marker for lung cancer (Patent Literature 3).
- 2. Nucleic acid probe or primer for detection of lung cancer

30

- **[0456]** In the present invention, a nucleic acid capable of specifically binding to any of the target nucleic acids as the lung cancer markers described above can be used as a nucleic acid, for example, a nucleic acid probe or a primer, for the detection or diagnosis of lung cancer.
- [0457] In the present invention, the nucleic acid probe or the primer that can be used for detecting lung cancer or for diagnosing lung cancer permits qualitative and/or quantitative measurement of the presence, expression level, or abundance of human-derived hsa-miR-6768-5p, optionally in combination with any of hsa-miR-6836-3p, hsa-miR-6782-5p, hsa-miR-3663-3p, hsa-miR-1908-3p, hsa-miR-6726-5p, hsa-miR-4258, hsa-miR-1343-3p, hsa-miR-4516, hsa-miR-

6875-5p, hsa-miR-4651, hsa-miR-6825-5p, hsa-miR-6840-3p, hsa-miR-6780b-5p, hsa-miR-6749-5p, hsa-miR-8063, hsa-miR-6784-5p, hsa-miR-3679-5p, hsa-miR-3184-5p, hsa-miR-663b, hsa-miR-6880-5p, hsa-miR-1908-5p, hsa-miR-92a-2-5p, hsa-miR-7975, hsa-miR-7110-5p, hsa-miR-6842-5p, hsa-miR-6857-5p, hsa-miR-5572, hsa-miR-3197, hsamiR-6131, hsa-miR-6889-5p, hsa-miR-4454, hsa-miR-1199-5p, hsa-miR-1247-3p, hsa-miR-6800-5p, hsa-miR-6872-3p, hsa-miR-4649-5p, hsa-miR-6791-5p, hsa-miR-4433b-3p, hsa-miR-3135b, hsa-miR-128-2-5p, hsa-miR-4675, hsa-miR-4472, hsa-miR-6785-5p, hsa-miR-6741-5p, hsa-miR-7977, hsa-miR-3665, hsa-miR-128-1-5p, hsa-miR-4286, hsa-miR-6765-3p, hsa-miR-4632-5p, hsa-miR-365a-5p, hsa-miR-6088, hsa-miR-6816-5p, hsa-miR-6885-5p, hsa-miR-711, hsamiR-6765-5p, hsa-miR-3180, hsa-miR-4442, hsa-miR-4792, hsa-miR-6721-5p, hsa-miR-6798-5p, hsa-miR-3162-5p, hsa-miR-6126, hsa-miR-4758-5p, hsa-miR-2392, hsa-miR-486-3p, hsa-miR-6727-5p, hsa-miR-4728-5p, hsa-miR-6746-5p, hsa-miR-4270, hsa-miR-3940-5p, hsa-miR-4725-3p, hsa-miR-7108-5p, hsa-miR-3656, hsa-miR-6879-5p, hsa miR-6738-5p, hsa-miR-1260a, hsa-miR-4446-3p, hsa-miR-3131, hsa-miR-4463, hsa-miR-3185, hsa-miR-6870-5p, hsamiR-6779-5p, hsa-miR-1273g-3p, hsa-miR-8059, hsa-miR-4697-5p, hsa-miR-4674, hsa-miR-4433-3p, hsa-miR-4257, hsa-miR-1915-5p, hsa-miR-4417, hsa-miR-1343-5p, hsa-miR-6781-5p, hsa-miR-4695-5p, hsa-miR-1237-5p, hsa-miR-6775-5p, hsa-miR-7845-5p, hsa-miR-4746-3p, hsa-miR-7641, hsa-miR-7847-3p, hsa-miR-6806-5p, hsa-miR-4467, hsamiR-4726-5p, hsa-miR-4648, hsa-miR-6089, hsa-miR-1260b, hsa-miR-4532, hsa-miR-5195-3p, hsa-miR-3188, hsamiR-6848-5p, hsa-miR-1233-5p, hsa-miR-6717-5p, hsa-miR-3195, hsa-miR-6757-5p, hsa-miR-8072, hsa-miR-4745-5p, hsa-miR-6511a-5p, hsa-miR-6776-5p, hsa-miR-371a-5p, hsa-miR-1227-5p, hsa-miR-7150, hsa-miR-1915-3p, hsa-miR-187-5p, hsa-miR-614, hsa-miR-1225-5p, hsa-miR-451a, hsa-miR-939-5p, hsa-miR-223-3p, hsa-miR-125a-3p, hsa-miR-92b-5p, hsa-miR-22-3p, hsa-miR-6073, hsa-miR-6845-5p, hsa-miR-6769b-5p, hsa-miR-4665-3p, hsa-miR-1913, hsamiR-1228-3p, hsa-miR-940, hsa-miR-296-3p, hsa-miR-4690-5p, hsa-miR-548q, hsa-miR-663a, hsa-miR-1249, miR-1202, hsa-miR-7113-3p, hsa-miR-1225-3p, hsa-miR-4783-3p, hsa-miR-4448, and hsa-miR-4534 or a combination thereof, congeners thereof, transcripts thereof, or variants or derivatives thereof, optionally in combination therewith, hsa-miR-19b-3p, hsa-miR-1228-5p, and hsa-miR-1307-3p or a combination thereof, congeners thereof, transcripts thereof, or variants or derivatives thereof, and, optionally in combination therewith, hsa-miR-4271, hsa-miR-642b-3p, hsamiR-6075, hsa-miR-6125, hsa-miR-887-3p, hsa-miR-6851-5p, hsa-miR-6763-5p, hsa-miR-3928-3p, hsa-miR-4443, hsa-miR-3648, hsa-miR-149-3p, hsa-miR-4689, hsa-miR-4763-3p, hsa-miR-6729-5p, hsa-miR-3196, hsa-miR-8069, hsa-miR-1268a, hsa-miR-4739, hsa-miR-1268b, hsa-miR-5698, hsa-miR-6752-5p, hsa-miR-4507, hsa-miR-564, hsamiR-4497, hsa-miR-6877-5p, hsa-miR-6087, hsa-miR-4731-5p, hsa-miR-615-5p, hsa-miR-760, hsa-miR-6891-5p, hsamiR-6887-5p, hsa-miR-4525, hsa-miR-1914-3p, hsa-miR-619-5p, hsa-miR-5001-5p, hsa-miR-6722-3p, hsa-miR-3621, hsa-miR-4298, hsa-miR-675-5p and hsa-miR-4655-5p or a combination thereof, congeners thereof, transcripts thereof, or variants or derivatives thereof.

10

15

20

25

30

35

40

45

50

55

[0458] The expression level of each target nucleic acid described above is increased or decreased (hereinafter, referred to as "increased/decreased") according to the type of the target nucleic acid in a subject who has lung cancer as compared with a healthy subject. Hence, the nucleic acid of the present invention can be effectively used for measuring the expression level of the target nucleic acid in a body fluid derived from a subject (e.g., a human) who is suspected of having lung cancer and a body fluid derived from a healthy subject, and detecting lung cancer by the comparison thereof. [0459] The nucleic acid probe or the primer that can be used in the present invention is a nucleic acid probe capable of specifically binding to a polynucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 1 optionally in combination with at lesat one of SEQ ID NOs 2 to 125, 127 to 130, 132 to 134, and 561 to 578, or a primer for amplifying a polynucleotide consisting of a nucleotide sequence represented by at least one of SEQ ID NOs: 1 to 125, 127 to 130, 132 to 134, and 561 to 578.

[0460] The nucleic acid probe or the primer that can be further used in the present invention can comprise a nucleic acid probe capable of specifically binding to a polynucleotide consisting of a nucleotide sequence represented by at least one of SEQ ID NOs: 126, 131, and 579, or a primer for amplifying a polynucleotide consisting of a nucleotide sequence represented by at least one of SEQ ID NOs: 126, 131, and 579.

[0461] The nucleic acid probe or the primer that can be further used in the present invention can comprise a nucleic acid probe capable of specifically binding to a polynucleotide consisting of a nucleotide sequence represented by at least one of SEQ ID NOs: 135 to 174, or a primer for amplifying a polynucleotide consisting of a nucleotide sequence represented by at least one of SEQ ID NOs: 135 to 174.

[0462] Specifically, these nucleic acid probes or primers comprise a combination of one or more polynucleotides selected from a polynucleotide group comprising nucleotide sequences represented SEQ ID NO: 1 optionally in combination with any of SEQ ID NOs 2 to 618, or nucleotide sequences derived from the nucleotide sequences by the replacement of u with t, and a complementary polynucleotide group thereof, a polynucleotide group respectively hybridizing under stringent conditions (mentioned later) to DNAs consisting of nucleotide sequences complementary to these nucleotide sequences, and a complementary polynucleotide group thereof, and a polynucleotide group comprising 15 or more, preferably 17 or more consecutive nucleotides in the nucleotide sequences of these polynucleotide groups. These polynucleotides can be used as nucleic acid probes and primers for detecting the lung cancer markers as target nucleic acids.

[0463] More specifically, examples of the nucleic acid probe or the primer that can be used in the present invention include one or more polynucleotide(s) selected from the group consisting of the following polynucleotides (a) to (e):

- (a) a polynucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 1 optionally in combination with any of SEQ ID NOs 125, 127 to 130, 132 to 134, and 561 to 578 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (b) a polynucleotide comprising a nucleotide sequence represented by SEQ ID NO: 1 optionally in combination with any of SEQ ID NO 125, 127 to 130, 132 to 134, and 561 to 578,
- (c) a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by SEQ ID NO: 1 optionally in combination with any of SEQ ID NOs 125, 127 to 130, 132 to 134, and 561 to 578 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (d) a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by SEQ ID NO: 1 optionally in combination with any of SEQ ID NOs 125, 127 to 130, 132 to 134, and 561 to 578 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, and
- (e) a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (a) to (d).

5

10

15

20

25

30

35

40

45

50

55

[0464] In addition to at least one or more polynucleotide(s) selected from the polynucleotides (a) to (e), the nucleic acid probe or the primer that can be further used in the present invention can comprise the polynucleotides selected from the group consisting of the following polynucleotides (f) to (j):

- (f) a polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 126, 131, and 579 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (g) a polynucleotide comprising a nucleotide sequence represented by any of SEQ ID NOs: 126, 131, and 579,
- (h) a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 126, 131, and 579 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (i) a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 126, 131, and 579 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, and
- (j) a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (f) to (i).

[0465] In addition to at least one or more polynucleotide(s) selected from the polynucleotides (a) to (j), the nucleic acid probe or the primer that can be further used in the present invention can comprise the polynucleotides selected from the group consisting of the following polynucleotides (k) to (o):

- (k) a polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (I) a polynucleotide comprising a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174,
- (m) a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides, (n) a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by
- (n) a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, and
- (o) a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (k) to (n).

[0466] For these polynucleotides, the "fragment thereof comprising 15 or more consecutive nucleotides" can contain the number of nucleotides in the range from, for example, 15 consecutive nucleotides to less than the total number of nucleotides of the sequence, from 17 consecutive nucleotides to less than the total number of nucleotides of the sequence, or from 19 consecutive nucleotides to less than the total number of nucleotides of the sequence, in the nucleotide sequence of each polynucleotide, though the fragment is not limited thereto.

[0467] These polynucleotides or the fragments thereof used in the present invention may each be DNA or may each be RNA.

[0468] The polynucleotides that can be used in the present invention can each be prepared by use of a general technique such as a DNA recombination technique, PCR, or a method using an automatic DNA/RNA synthesizer.

[0469] The DNA recombination technique and the PCR can employ a technique described in, for example, Ausubel et al., Current Protocols in Molecular Biology, John Willey & Sons, US (1993); and Sambrook et al., Molecular Cloning - A Laboratory Manual, Cold Spring Harbor Laboratory Press, US (1989).

[0470] The human-derived hsa-miR-6768-5p, hsa-miR-6836-3p, hsa-miR-6782-5p, hsa-miR-3663-3p, hsa-miR-1908-3p, hsa-miR-6726-5p, hsa-miR-4258, hsa-miR-1343-3p, hsa-miR-4516, hsa-miR-6875-5p, hsa-miR-4651, hsamiR-6825-5p, hsa-miR-6840-3p, hsa-miR-6780b-5p, hsa-miR-6749-5p, hsa-miR-8063, hsa-miR-6784-5p, hsa-miR-3679-5p, hsa-miR-3184-5p, hsa-miR-663b, hsa-miR-6880-5p, hsa-miR-1908-5p, hsa-miR-92a-2-5p, hsa-miR-7975, hsa-miR-7110-5p, hsa-miR-6842-5p, hsa-miR-6857-5p, hsa-miR-5572, hsa-miR-3197, hsa-miR-6131, hsa-miR-6889-5p, hsa-miR-4454, hsa-miR-1199-5p, hsa-miR-1247-3p, hsa-miR-6800-5p, hsa-miR-6872-3p, hsa-miR-4649-5p, hsa-miR-6791-5p, hsa-miR-4433b-3p, hsa-miR-3135b, hsa-miR-128-2-5p, hsa-miR-4675, hsa-miR-4472, hsa-miR-6785-5p, hsa-miR-6741-5p, hsa-miR-7977, hsa-miR-3665, hsa-miR-128-1-5p, hsa-miR-4286, hsa-miR-6765-3p, hsamiR-4632-5p, hsa-miR-365a-5p, hsa-miR-6088, hsa-miR-6816-5p, hsa-miR-6885-5p, hsa-miR-711, hsa-miR-6765-5p, hsa-miR-3180, hsa-miR-4442, hsa-miR-4792, hsa-miR-6721-5p, hsa-miR-6798-5p, hsa-miR-3162-5p, hsa-miR-6126, hsa-miR-4758-5p, hsa-miR-2392, hsa-miR-486-3p, hsa-miR-6727-5p, hsa-miR-4728-5p, hsa-miR-6746-5p, hsa-miR-4270, hsa-miR-3940-5p, hsa-miR-4725-3p, hsa-miR-7108-5p, hsa-miR-3656, hsa-miR-6879-5p, hsa-miR-6738-5p, hsamiR-1260a, hsa-miR-4446-3p, hsa-miR-3131, hsa-miR-4463, hsa-miR-3185, hsa-miR-6870-5p, hsa-miR-6779-5p, hsamiR-1273g-3p, hsa-miR-8059, hsa-miR-4697-5p, hsa-miR-4674, hsa-miR-4433-3p, hsa-miR-4257, hsa-miR-1915-5p, hsa-miR-4417, hsa-miR-1343-5p, hsa-miR-6781-5p, hsa-miR-4695-5p, hsa-miR-1237-5p, hsa-miR-6775-5p, hsa-miR-7845-5p, hsa-miR-4746-3p, hsa-miR-7641, hsa-miR-7847-3p, hsa-miR-6806-5p, hsa-miR-4467, hsa-miR-4726-5p, hsa-miR-4746-3p, hsa miR-4648, hsa-miR-6089, hsa-miR-1260b, hsa-miR-4532, hsa-miR-5195-3p, hsa-miR-3188, hsa-miR-6848-5p, hsamiR-1233-5p, hsa-miR-6717-5p, hsa-miR-3195, hsa-miR-6757-5p, hsa-miR-8072, hsa-miR-4745-5p, hsa-miR-6511a-5p, hsa-miR-6776-5p, hsa-miR-371a-5p, hsa-miR-1227-5p, hsa-miR-7150, hsa-miR-1915-3p, hsa-miR-187-5p, hsa-miR-1227-5p, hsa-miR-1915-3p, hsa-miR-187-5p, hsa-mi miR-614, hsa-miR-19b-3p, hsa-miR-1225-5p, hsa-miR-451a, hsa-miR-939-5p, hsa-miR-223-3p, hsa-miR-1228-5p, hsa miR-125a-3p, hsa-miR-92b-5p, hsa-miR-22-3p, hsa-miR-6073, hsa-miR-6845-5p, hsa-miR-6769b-5p, hsa-miR-4665-3p, hsa-miR-1913, hsa-miR-1228-3p, hsa-miR-940, hsa-miR-296-3p, hsa-miR-4690-5p, hsa-miR-548q, hsa-miR-663a, hsa-miR-1249, hsa-miR-1202, hsa-miR-7113-3p, hsa-miR-1225-3p, hsa-miR-4783-3p, hsa-miR-4448 and hsamiR-4534, hsa-miR-1307-3p, hsa-miR-4271, hsa-miR-642b-3p, hsa-miR-6075, hsa-miR-6125, hsa-miR-887-3p, hsamiR-6851-5p, hsa-miR-6763-5p, hsa-miR-3928-3p, hsa-miR-4443, hsa-miR-3648, hsa-miR-149-3p, hsa-miR-4689, hsa-miR-4763-3p, hsa-miR-6729-5p, hsa-miR-3196, hsa-miR-8069, hsa-miR-1268a, hsa-miR-4739, hsa-miR-1268b, hsa-miR-5698, hsa-miR-6752-5p, hsa-miR-4507, hsa-miR-564, hsa-miR-4497, hsa-miR-6877-5p, hsa-miR-6087, hsamiR-4731-5p, hsa-miR-615-5p, hsa-miR-760, hsa-miR-6891-5p, hsa-miR-6887-5p, hsa-miR-4525, hsa-miR-1914-3p, hsa-miR-619-5p, hsa-miR-5001-5p, hsa-miR-6722-3p, hsa-miR-3621, hsa-miR-4298, hsa-miR-675-5p and hsa-miR-4655-5p represented by SEQ ID NOs: 1 to 174, and 561 to 579 are known in the art, and their acquisition methods are also known as mentioned above. Therefore, each polynucleotide that can be used as a nucleic acid probe or a primer in the present invention can be prepared by cloning the gene.

[0471] Such a nucleic acid probe or a primer can be chemically synthesized using an automatic DNA synthesis apparatus. In general, a phosphoramidite method is used in this synthesis, and single-stranded DNA up to approximately 100 nucleotides can be automatically synthesized by this method. The automatic DNA synthesis apparatus is commercially available from, for example, Polygen GmbH, ABI, or Applied Biosystems, Inc.

[0472] Alternatively, the polynucleotide of the present invention can also be prepared by a cDNA cloning method. The cDNA cloning technique can employ, for example, microRNA Cloning Kit Wako.

[0473] In this context, the sequences of the nucleic acid probe and the primer for detecting the polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 1 to 174, and 561 to 579 do not exist as miRNAs or precursors thereof *in vivo*. For example, the nucleotide sequences represented by SEQ ID NO: 5 and SEQ ID NO: 5 and SEQ ID NO: 22 are produced from the precursor represented by SEQ ID NO: 179. This precursor has a hairpin-like structure as shown in Figure 1, and the nucleotide sequences represented by SEQ ID NO: 5 and SEQ ID NO: 22 have mismatch sequences with each other. Likewise, a nucleotide sequence completely complementary to the nucleotide sequence represented by SEQ ID NO: 5 or SEQ ID NO: 22 is not naturally produced *in vivo*. Therefore, the nucleic acid probe and the primer for detecting the nucleotide sequence represented by any of SEQ ID NOs: 1 to 174, and 561 to 579 each have an artificial nucleotide sequence that does not exist *in vivo*.

3. Kit or device for detection of lung cancer

10

25

30

35

40

45

50

55

[0474] The present invention also provides the use of a kit or a device for the detection of lung cancer, comprising one or more polynucleotide(s) (which can include a variant, a fragment, and a derivative; hereinafter, also referred to as a polynucleotide for detection) that can be used as a nucleic acid probe or a primer in the present invention for

measuring a target nucleic acid as a lung cancer marker.

10

25

30

35

40

45

50

55

[0475] The target nucleic acid as a lung cancer marker according to the present invention is hsa-miR-6768-5p, optionally in combination with any of the following group hsa-miR-6836-3p, hsa-miR-6782-5p, hsa-miR-3663-3p, hsa-miR-1908-3p, hsa-miR-6726-5p, hsa-miR-4258, hsa-miR-1343-3p, hsa-miR-4516, hsa-miR-6875-5p, hsa-miR-4651, hsa-miR-6825-5p, hsa-miR-6840-3p, hsa-miR-6780b-5p, hsa-miR-6749-5p, hsa-miR-8063, hsa-miR-6784-5p, hsa-miR-3679-5p, hsa-miR-3184-5p, hsa-miR-663b, hsa-miR-6880-5p, hsa-miR-1908-5p, hsa-miR-92a-2-5p, hsa-miR-7975, hsa-miR-7110-5p, hsa-miR-6842-5p, hsa-miR-6857-5p, hsa-miR-5572, hsa-miR-3197, hsa-miR-6131, hsa-miR-6889-5p, hsamiR-4454, hsa-miR-1199-5p, hsa-miR-1247-3p, hsa-miR-6800-5p, hsa-miR-6872-3p, hsa-miR-4649-5p, hsa-miR-6791-5p, hsa-miR-4433b-3p, hsa-miR-3135b, hsa-miR-128-2-5p, hsa-miR-4675, hsa-miR-4472, hsa-miR-6785-5p, hsa-miR-4675, hsa-miR-4472, hsa-miR-6785-5p, hsa-miR-6 miR-6741-5p, hsa-miR-7977, hsa-miR-3665, hsa-miR-128-1-5p, hsa-miR-4286, hsa-miR-6765-3p, hsa-miR-4632-5p, hsa-miR-365a-5p, hsa-miR-6088, hsa-miR-6816-5p, hsa-miR-6885-5p, hsa-miR-711, hsa-miR-6765-5p, hsa-miR-3180, hsa-miR-4442, hsa-miR-4792, hsa-miR-6721-5p, hsa-miR-6798-5p, hsa-miR-3162-5p, hsa-miR-6126, hsa-miR-4758-5p, hsa-miR-2392, hsa-miR-486-3p, hsa-miR-6727-5p, hsa-miR-4728-5p, hsa-miR-6746-5p, hsa-miR-4270, hsa-miR-486-3p, hsa-mi miR-3940-5p, hsa-miR-4725-3p, hsa-miR-7108-5p, hsa-miR-3656, hsa-miR-6879-5p, hsa-miR-6738-5p, hsa-miR-1260a, hsa-miR-4446-3p, hsa-miR-3131, hsa-miR-4463, hsa-miR-3185, hsa-miR-6870-5p, hsa-miR-6779-5p, hsa-miR-1273g-3p, hsa-miR-8059, hsa-miR-4697-5p, hsa-miR-4674, hsa-miR-4433-3p, hsa-miR-4257, hsa-miR-1915-5p, hsamiR-4417, hsa-miR-1343-5p, hsa-miR-6781-5p, hsa-miR-4695-5p, hsa-miR-1237-5p, hsa-miR-6775-5p, hsa-miR-7845-5p, hsa-miR-4746-3p, hsa-miR-7641, hsa-miR-7847-3p, hsa-miR-6806-5p, hsa-miR-4467, hsa-miR-4726-5p, hsamiR-4648, hsa-miR-6089, hsa-miR-1260b, hsa-miR-4532, hsa-miR-5195-3p, hsa-miR-3188, hsa-miR-6848-5p, hsamiR-1233-5p, hsa-miR-6717-5p, hsa-miR-3195, hsa-miR-6757-5p, hsa-miR-8072, hsa-miR-4745-5p, hsa-miR-6511a-5p, hsa-miR-6776-5p, hsa-miR-371a-5p, hsa-miR-1227-5p, hsa-miR-7150, hsa-miR-1915-3p, hsa-miR-187-5p, hsa-miR-1227-5p, hsa-miR-1915-3p, hsa-miR-187-5p, hsa-mi miR-614, hsa-miR-1225-5p, hsa-miR-451a, hsa-miR-939-5p, hsa-miR-223-3p, hsa-miR-125a-3p, hsa-miR-92b-5p, hsa-m miR-22-3p, hsa-miR-6073, hsa-miR-6845-5p, hsa-miR-6769b-5p, hsa-miR-4665-3p, hsa-miR-1913, hsa-miR-1228-3p, hsa-miR-940, hsa-miR-296-3p, hsa-miR-4690-5p, hsa-miR-548q, hsa-miR-663a, hsa-miR-1249, hsa-miR-1202, hsamiR-7113-3p, hsa-miR-1225-3p, hsa-miR-4783-3p, hsa-miR-4448 and hsa-miR-4534.

[0476] An additional target nucleic acid that can be optionally used in the measurement is selected from the following group 2: hsa-miR-19b-3p, hsa-miR-1228-5p and hsa-miR-1307-3p.

[0477] An additional target nucleic acid that can be optionally further used in the measurement is selected from the following group 3: hsa-miR-4271, hsa-miR-642b-3p, hsa-miR-6075, hsa-miR-6125, hsa-miR-887-3p, hsa-miR-6851-5p, hsa-miR-6763-5p, hsa-miR-3928-3p, hsa-miR-4443, hsa-miR-3648, hsa-miR-149-3p, hsa-miR-4689, hsa-miR-4763-3p, hsa-miR-6729-5p, hsa-miR-3196, hsa-miR-8069, hsa-miR-1268a, hsa-miR-4739, hsa-miR-1268b, hsa-miR-5698, hsa-miR-6752-5p, hsa-miR-4507, hsa-miR-564, hsa-miR-4497, hsa-miR-6877-5p, hsa-miR-6087, hsa-miR-4731-5p, hsa-miR-615-5p, hsa-miR-760, hsa-miR-6891-5p, hsa-miR-6887-5p, hsa-miR-4525, hsa-miR-1914-3p, hsa-miR-619-5p, hsa-miR-5001-5p, hsa-miR-6722-3p, hsa-miR-3621, hsa-miR-4298, hsa-miR-675-5p and hsa-miR-4655-5p.

[0478] The kit or the device of the present invention comprises a nucleic acid capable of specifically binding to any of the target nucleic acids as the lung cancer markers described above, preferably one or more polynucleotide(s) selected from the nucleic acid probes or the primers described in the preceding Section 2, specifically, the polynucleotides described in the preceding paragraph 2, or variant(s) thereof.

[0479] Specifically, the kit or the device of the present invention can comprise at least one or more polynucleotide(s) comprising (or consisting of) a nucleotide sequence represented by SEQ ID NO: 1 optionally together with any of SEQ ID NOs 2 to 125, 127 to 130, 132 to 134, and 561 to 578 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, polynucleotide(s) comprising (or consisting of) a complementary sequence thereof, polynucleotide(s) hybridizing under stringent conditions to any of these polynucleotides, or variant(s) or fragment(s) comprising 15 or more consecutive nucleotides of any of these polynucleotide sequences.

[0480] The kit or the device of the present invention can further comprise one or more polynucleotide(s) comprising (or consisting of) a nucleotide sequence represented by any of SEQ ID NOs: 126 and 131 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, polynucleotide(s) comprising (or consisting of) a complementary sequence thereof, polynucleotide(s) hybridizing under stringent conditions to any of these polynucleotides, variant(s) or fragment(s) comprising 15 or more consecutive nucleotides of any of these polynucleotide sequences.

[0481] The kit or the device of the present invention can further comprise one or more polynucleotide(s) comprising (or consisting of) a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, polynucleotide(s) comprising (or consisting of) a complementary sequence thereof, polynucleotide(s) hybridizing under stringent conditions to any of these polynucleotides, variant(s) or fragment(s) comprising 15 or more consecutive nucleotides of any of these polynucleotide sequences.

[0482] The fragment that can be contained in the kit or the device of the present invention is, for example, one or more, preferably two or more polynucleotides selected from the group consisting of the following polynucleotides:

(1) a polynucleotide comprising 15 or more consecutive nucleotides in a nucleotide sequence derived from a nu-

cleotide sequence represented by any of SEQ ID NO: 1 optionally in combination with any of SEQ ID NOs 2 to 125, 127 to 130, 132 to 134, and 561 to 578 by the replacement of u with t, or a complementary sequence thereof; and optionally in combination with

(2) a polynucleotide comprising 15 or more consecutive nucleotides in a nucleotide sequence derived from a nucleotide sequence represented by any of SEQ ID NOs: 126, 131 and 579 by the replacement of u with t, or a complementary sequence thereof; and

5

10

20

30

35

45

50

(3) a polynucleotide comprising 15 or more consecutive nucleotides in a nucleotide sequence derived from a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 by the replacement of u with t, or a complementary sequence thereof.

[0483] The polynucleotide is a polynucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 1 optionally in combination with any of SEQ ID NOs 2 to 125, 127 to 130, 132 to 134, and 561 to 578, or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a polynucleotide consisting of a complementary sequence thereof, a polynucleotide hybridizing under stringent conditions to any of these polynucleotides, or a variant thereof comprising 15 or more, preferably 17 or more, more preferably 19 or more consecutive nucleotides. [0484] In a preferred embodiment, the polynucleotide is a polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 126, 134 and 579 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a polynucleotide consisting of a complementary sequence thereof, a polynucleotide hybridizing under stringent conditions to any of these polynucleotides, or a variant thereof comprising 15 or more, preferably 17 or more, more preferably 19 or more consecutive nucleotides.

[0485] In a preferred embodiment, the polynucleotide is a polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a polynucleotide consisting of a complementary sequence thereof, a polynucleotide hybridizing under stringent conditions to any of these polynucleotides, or a variant thereof comprising 15 or more, preferably 17 or more, more preferably 19 or more consecutive nucleotides.

[0486] In a preferred embodiment, the fragment can be a polynucleotide comprising 15 or more, preferably 17 or more, more preferably 19 or more consecutive nucleotides.

[0487] In the present invention, the size of the polynucleotide fragment is the number of bases in the range from, for example, 15 consecutive nucleotides to less than the total number of bases of the sequence, from 17 consecutive nucleotides to less than the total number of bases of the sequence, or from 19 consecutive nucleotides to less than the total number of nucleotides of the sequence, in the nucleotide sequence of each polynucleotide.

[0488] Specific examples of the aforementioned combination of the polynucleotides constituting the kit or the device of the present invention can include the polynucleotides as to combinations of SEQ ID NOs shown in Table 1 (SEQ ID NOs: 2 to 174, and 561 to 579 corresponding to the miRNA markers in Table 1 in combination with SEQ ID NO: 1.). However, these are given merely for illustrative purposes, and various other possible combinations are included in the present invention.

[0489] The aforementioned combination constituting the kit or the device for discriminating a lung cancer patient from a healthy subject according to the present invention is desirably, for example, a combination of two or more of the aforementioned polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs shown in Table 1. Usually, a combination of two of these polynucleotides can produce adequate performance.

[0490] The combination of two polynucleotides consisting of the nucleotide sequences or the complementary sequences thereof for specifically discriminating a lung cancer patient from a healthy subject is preferably a combination comprising SEQ ID NO: 1 optionally in combination with any of SEQ ID NOs 2 to 125, 127 to 130, 132 to 174, and 561 to 578, among the combinations constituted by two of the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 174, and 561 to 579.

[0491] The combination of polynucleotides with cancer type specificity capable of discriminating a lung cancer patient not only from a healthy subject but also from other cancer patients is preferably, for example, a combination of multiple polynucleotides comprising at least SEQ ID NO: 1, optionally together with at least one polynucleotide selected from the group consisting of polynucleotides of SEQ ID NOs 2, 3, 4, 5, 7, 9, 10, 11, 19, 21, 26, 29, 31, 52, 53, 63, 65, 69, 72, 87, 90, 113, 124, 125, 126, 128, 130, 143, 148, 160, 162, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578 and 579 (hereinafter, this group is referred to as "cancer type-specific polynucleotide group 1"), with any of the polynucleotides of the other SEQ ID NOs.

[0492] The combination of polynucleotides with cancer type specificity capable of discriminating a lung cancer patient not only from a healthy subject but also from other cancer patients is more preferably a combination of multiple polynucleotides selected from the cancer type-specific polynucleotide group 1.

[0493] The combination of polynucleotides with cancer type specificity capable of discriminating a lung cancer patient not only from a healthy subject but also from other cancer patients is more preferably a combination comprising SEQ ID NO: 1, optionally together with at least one or more polynucleotide(s) selected from the group consisting of polynu-

cleotides of SEQ ID NOs 2, 3, 10, 63, 113, 124, 125, 126, 128, 130, 143, 160, 561, 568, 573 and 578 (hereinafter, this group is referred to as "cancer type-specific polynucleotide group 2") included in the cancer type-specific polynucleotide group 1, among the combinations of multiple polynucleotides selected from the cancer type-specific polynucleotide group

[0494] The number of the polynucleotides with cancer type specificity in the aforementioned combination can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more for the combination and is more preferably 4 or more for the combination. Usually, the combination of 4 of these polynucleotides can produce adequate performance.

[0495] Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 1 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be listed below.

10

15

20

25

30

35

50

55

- (1) a combination of SEQ ID NOs: 1, 53, 113, and 125 (markers: hsa-miR-6768-5p, hsa-miR-6088, hsa-miR-6717-5p, and hsa-miR-614);
- (2) a combination of SEQ ID NOs: 1, 10, 63, and 113 (markers: hsa-miR-6768-5p, hsa-miR-6875-5p, hsa-miR-3162-5p, and hsa-miR-6717-5p);
- (3) a combination of SEQ ID NOs: 1, 19, 113, and 143 (markers: hsa-miR-6768-5p, hsa-miR-3184-5p, hsa-miR-6717-5p, and hsa-miR-4443);
- (4) a combination of SEQ ID NOs: 1, 10, 113, and 126 (markers: hsa-miR-6768-5p, hsa-miR-6875-5p, hsa-miR-6717-5p, and hsa-miR-19b-3p); and
- (5) a combination of SEQ ID NOs: 1, 2, 10, and 113 (markers: hsa-miR-6768-5p, hsa-miR-6836-3p, hsa-miR-6875-5p, and hsa-miR-6717-5p).

[0496] Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 2 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.

- (1) a combination of SEQ ID NOs: 2, 19, 53, and 113 (markers: hsa-miR-6836-3p, hsa-miR-3184-5p, hsa-miR-6088, and hsa-miR-6717-5p);
- (2) a combination of SEQ ID NOs: 2, 72, 113, and 125 (markers: hsa-miR-6836-3p, hsa-miR-3940-5p, hsa-miR-6717-5p, and hsa-miR-614);
- (3) a combination of SEQ ID NOs: 2,19, 72, and 113 (markers: hsa-miR-6836-3p, hsa-miR-3184-5p, hsa-miR-3940-5p, and hsa-miR-6717-5p);
- (4) a combination of SEQ ID NOs: 2, 19, 113, and 579 (markers: hsa-miR-6836-3p, hsa-miR-3184-5p, hsa-miR-6717-5p, and hsa-miR-1307-3p); and
- (5) a combination of SEQ ID NOs: 1, 2, 19, and 113 (markers: hsa-miR-6768-5p, hsa-miR-6836-3p, hsa-miR-3184-5p, and hsa-miR-6717-5p).
- 40 [0497] Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 3 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.
- 45 (1) a combination of SEQ ID NOs: 3, 125, 128, and 568 (markers: hsa-miR-6782-5p, hsa-miR-614, hsa-miR-451a, and hsa-miR-296-3p);
 - (2) a combination of SEQ ID NOs: 1, 3, 10, and 113 (markers: hsa-miR-6768-5p, hsa-miR-6782-5p, hsa-miR-6787-5p);
 - (3) a combination of SEQ ID NOs: 3, 113, 125, and 126 (markers: hsa-miR-6782-5p, hsa-miR-6717-5p, hsa-miR-614, and hsa-miR-19b-3p);
 - (4) a combination of SEQ ID NOs: 1, 3, 126, and 573 (markers: hsa-miR-6768-5p, hsa-miR-6782-5p, hsa-miR-19b-3p, and hsa-miR-1202); and
 - (5) a combination of SEQ ID NOs: 3, 126, 130, and 561 (markers: hsa-miR-6782-5p, hsa-miR-19b-3p, hsa-miR-223-3p, and hsa-miR-6073).

[0498] Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 10 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or

complementary sequences thereof will be further listed below.

5

10

15

20

25

35

40

45

50

55

- (1) a combination of SEQ ID NOs: 1, 10, 113, and 143 (markers: hsa-miR-6768-5p, hsa-miR-6875-5p, hsa-miR-6717-5p, and hsa-miR-4443);
- (2) a combination of SEQ ID NOs: 1, 10, 113, and 569 (markers: hsa-miR-6768-5p, hsa-miR-6875-5p, hsa-miR-6717-5p, and hsa-miR-4690-5p);
- (3) a combination of SEQ ID NOs: 1, 10, 113, and 562 (markers: hsa-miR-6768-5p, hsa-miR-6875-5p, hsa-miR-6717-5p, and hsa-miR-6845-5p);
- (4) a combination of SEQ ID NOs: 1, 10, 113, and 578 (markers: hsa-miR-6768-5p, hsa-miR-6875-5p, hsa-miR-6717-5p, hsa-miR-4534); and
- (5) a combination of SEQ ID NOs: 1, 7, 10, and 113 (markers: hsa-miR-6768-5p, hsa-miR-4258, hsa-miR-6875-5p, and hsa-miR-6717-5p).

[0499] Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 63 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.

- (1) a combination of SEQ ID NOs: 1, 63, 567, and 578 (markers: hsa-miR-6768-5p, hsa-miR-3162-5p, hsa-miR-940, and hsa-miR-4534);
- (2) a combination of SEQ ID NOs: 1, 53, 63, and 578 (markers: hsa-miR-6768-5p, hsa-miR-6088, hsa-miR-3162-5p, and hsa-miR-4534);
- (3) a combination of SEQ ID NOs: 1, 63, 162, and 573 (markers: hsa-miR-6768-5p, hsa-miR-3162-5p, hsa-miR-615-5p, and hsa-miR-1202);
- (4) a combination of SEQ ID NOs: 1, 63, 162, and 578 (markers: hsa-miR-6768-5p, hsa-miR-3162-5p, hsa-miR-615-5p, and hsa-miR-4534); and
- (5) a combination of SEQ ID NOs: 1, 63, 576, and 578 (markers: hsa-miR-6768-5p, hsa-miR-3162-5p, hsa-miR-4783-3p, and hsa-miR-4534).
- [0500] Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 113 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.
 - (1) a combination of SEQ ID NOs: 1, 10, 113, and 567 (markers: hsa-miR-6768-5p, hsa-miR-6875-5p, hsa-miR-6717-5p, and hsa-miR-940);
 - (2) a combination of SEQ ID NOs: 1, 53, 63, and 113 (markers: hsa-miR-6768-5p, hsa-miR-6088, hsa-miR-3162-5p, and hsa-miR-6717-5p);
 - (3) a combination of SEQ ID NOs: 1, 53, 113, and 143 (markers: hsa-miR-6768-5p, hsa-miR-6088, hsa-miR-6717-5p, and hsa-miR-4443);
 - (4) a combination of SEQ ID NOs: 2, 19, 113, and 125 (markers: hsa-miR-6836-3p, hsa-miR-3184-5p, hsa-miR-6717-5p, and hsa-miR-614); and
 - (5) a combination of SEQ ID NOs: 2, 10, 113, and 130 (markers: hsa-miR-6836-3p, hsa-miR-6875-5p, hsa-miR-6717-5p, and hsa-miR-223-3p).

[0501] Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 124 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.

- (1) a combination of SEQ ID NOs: 113, 124, 125, and 126 (markers: hsa-miR-6717-5p, hsa-miR-187-5p, hsa-miR-614, and hsa-miR-19b-3p);
- (2) a combination of SEQ ID NOs: 124, 125, 128, and 568 (markers: hsa-miR-187-5p, hsa-miR-614, hsa-miR-451a, and hsa-miR-296-3p);
- (3) a combination of SEQ ID NOs: 113, 124, 125, and 162 (markers: hsa-miR-6717-5p, hsa-miR-187-5p, hsa-miR-614, and hsa-miR-615-5p);
 - (4) a combination of SEQ ID NOs: 52, 124, 126, and 561 (markers: hsa-miR-365a-5p, hsa-miR-187-5p, hsa-miR-19b-3p, and hsa-miR-6073); and

- (5) a combination of SEQ ID NOs: 19, 113, 124, and 126 (markers: hsa-miR-3184-5p, hsa-miR-6717-5p, hsa-miR-187-5p, and hsa-miR-19b-3p).
- **[0502]** Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 125 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.

10

15

25

30

35

40

45

50

- (1) a combination of SEQ ID NOs: 1, 113, 125, and 160 (markers: hsa-miR-6768-5p, hsa-miR-6717-5p, hsa-miR-614, and hsa-miR-6087);
- (2) a combination of SEQ ID NOs: 31, 113, 125, and 568 (markers: hsa-miR-6889-5p, hsa-miR-6717-5p, hsa-miR-614, and hsa-miR-296-3p);
- (3) a combination of SEQ ID NOs: 2, 53, 113, and 125 (markers: hsa-miR-6836-3p, hsa-miR-6088, hsa-miR-6717-5p, and hsa-miR-614);
- (4) a combination of SEQ ID NOs: 1, 10, 113, and 125 (markers: hsa-miR-6768-5p, hsa-miR-6875-5p, hsa-miR-6717-5p, and hsa-miR-614); and
- (5) a combination of SEQ ID NOs: 1, 113, 125, and 143 (markers: hsa-miR-6768-5p, hsa-miR-6717-5p, hsa-miR-614, and hsa-miR-4443).
- 20 [0503] Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 126 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.
 - (1) a combination of SEQ ID NOs: 1, 126, 561, and 573 (markers: hsa-miR-6768-5p, hsa-miR-19b-3p, hsa-miR-6073, and hsa-miR-1202);
 - (2) a combination of SEQ ID NOs: 113, 125, 126, and 568 (markers: hsa-miR-6717-5p, hsa-miR-614, hsa-miR-19b-3p, and hsa-miR-296-3p);
 - (3) a combination of SEQ ID NO: 113,125, 126, and 561 (markers: hsa-miR-6717-5p, hsa-miR-614, hsa-miR-19b-3p, and hsa-miR-6073);
 - (4) a combination of SEQ ID NOs: 1, 113, 125, and 126 (markers: hsa-miR-6768-5p, hsa-miR-6717-5p, hsa-miR-614, and hsa-miR-19b-3p); and
 - (5) a combination of SEQ ID NOs: 1, 52, 126, and 561 (markers: hsa-miR-6768-5p, hsa-miR-365a-5p, hsa-miR-19b-3p, and hsa-miR-6073).
 - **[0504]** Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 128 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.
 - (1) a combination of SEQ ID NOs: 26, 113, 125, and 128 (markers: hsa-miR-6842-5p, hsa-miR-6717-5p, hsa-miR-614, and hsa-miR-451a);
 - (2) a combination of SEQ ID NOs: 1, 113, 125, and 128 (markers: hsa-miR-6768-5p, hsa-miR-6717-5p, hsa-miR-614, and hsa-miR-451a);
 - (3) a combination of SEQ ID NOs: 1, 10, 113, and 128 (markers: hsa-miR-6768-5p, hsa-miR-6875-5p, hsa-miR-6717-5p, and hsa-miR-451a);
 - (4) a combination of SEQ ID NOs: 31, 113, 125, and 128 (markers: hsa-miR-6889-5p, hsa-miR-6717-5p, hsa-miR-614, and hsa-miR-451a); and
 - (5) a combination of SEQ ID NOs: 2, 19, 113, and 128 (markers: hsa-miR-6836-3p, hsa-miR-3184-5p, hsa-miR-6717-5p, and hsa-miR-451a).
 - **[0505]** Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 130 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.
 - (1) a combination of SEQ ID NOs: 1, 3, 130, and 143 (markers: hsa-miR-6768-5p, hsa-miR-6782-5p, hsa-miR-223-3p, and hsa-miR-4443);

- (2) a combination of SEQ ID NOs: 1, 10, 113, and 130 (markers: hsa-miR-6768-5p, hsa-miR-6875-5p, hsa-miR-6717-5p, and hsa-miR-223-3p);
- (3) a combination of SEQ ID NOs: 1, 63, 130, and 578 (markers: hsa-miR-6768-5p, hsa-miR-3162-5p, hsa-miR-223-3p, and hsa-miR-4534);
- (4) a combination of SEQ ID NOs: 124, 125, 130, and 568 (markers: hsa-miR-187-5p, hsa-miR-614, hsa-miR-223-3p, and hsa-miR-296-3p); and
- (5) a combination of SEQ ID NOs: 2, 19, 113, and 130 (markers: hsa-miR-6836-3p, hsa-miR-3184-5p, hsa-miR-6717-5p, and hsa-miR-223-3p).
- [0506] Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 143 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.

5

15

20

25

30

35

40

45

50

- (1) a combination of SEQ ID NOs: 1, 3, 126, and 43 (markers: hsa-miR-6768-5p, hsa-miR-6782-5p, hsa-miR-19b-3p, and hsa-miR-4443);
- (2) a combination of SEQ ID NOs: 1, 63, 130, and 143 (markers: hsa-miR-6768-5p, hsa-miR-3162-5p, hsa-miR-223-3p, and hsa-miR-4443);
- (3) a combination of SEQ ID NOs: 1, 10, 52, and 143 (markers: hsa-miR-6768-5p, hsa-miR-6875-5p, hsa-miR-365a-5p, and hsa-miR-4443);
- (4) a combination of SEQ ID NOs: 2, 19, 113, and 143 (markers: hsa-miR-6836-3p, hsa-miR-3184-5p, hsa-miR-6717-5p, and hsa-miR-4443); and
- (5) a combination of SEQ ID NOs: 63, 124, 130, and 143 (markers: hsa-miR-3162-5p, hsa-miR-187-5p, hsa-miR-223-3p, and hsa-miR-4443).

[0507] Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 160 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.

- (1) a combination of SEQ ID NOs: 1, 10, 113, and 160 (markers: hsa-miR-6768-5p, hsa-miR-6875-5p, hsa-miR-6717-5p, and hsa-miR-6087);
- (2) a combination of SEQ ID NOs: 7, 113, 125, and 160 (markers: hsa-miR-4258, hsa-miR-6717-5p, hsa-miR-614, and hsa-miR-6087);
- (3) a combination of SEQ ID NOs: 1, 113, 160, and 567 (markers: hsa-miR-6768-5p, hsa-miR-6717-5p, hsa-miR-6087, and hsa-miR-940);
- (4) a combination of SEQ ID NOs: 1, 113, 160, and 578 (markers: hsa-miR-6768-5p, hsa-miR-6717-5p, hsa-miR-6087, and hsa-miR-4534); and
- (5) a combination of SEQ ID NOs: 2, 19, 113, and 160 (markers: hsa-miR-6836-3p, hsa-miR-3184-5p, hsa-miR-6717-5p, and hsa-miR-6087).

[0508] Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 561 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.

- (1) a combination of SEQ ID NOs: 113,125, 130, and 561 (markers: hsa-miR-6717-5p, hsa-miR-614, hsa-miR-223-3p, and hsa-miR-6073);
- (2) a combination of SEQ ID NOs: 7, 126, 143, and 561 (markers: hsa-miR-4258, hsa-miR-19b-3p, hsa-miR-4443, and hsa-miR-6073);
- (3) a combination of SEQ ID NOs: 1, 113, and 126, 561 (markers: hsa-miR-6768-5p, hsa-miR-6717-5p, hsa-miR-19b-3p, and hsa-miR-6073);
- (4) a combination of SEQ ID NOs: 1, 126, 561, and 568 (markers: hsa-miR-6768-5p, hsa-miR-19b-3p, hsa-miR-6073, and hsa-miR-296-3p); and
- (5) a combination of SEQ ID NOs: 7, 113, 126, and 561 (markers: hsa-miR-4258, hsa-miR-6717-5p, hsa-miR-19b-3p, and hsa-miR-6073).

[0509] Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence repre-

sented by SEQ ID NO: 568 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.

(1) a combination of SEQ ID NOs: 7, 125, 126, and 568 (markers: hsa-miR-4258, hsa-miR-614, hsa-miR-19b-3p, and hsa-miR-296-3p);

5

10

15

20

25

30

35

40

50

55

- (2) a combination of SEQ ID NOs: 124, 125, 126, and 568 (markers: hsa-miR-187-5p, hsa-miR-614, hsa-miR-19b-3p, and hsa-miR-296-3p);
- (3) a combination of SEQ ID NOs: 7, 113, 125, and 568 (markers: hsa-miR-4258, hsa-miR-6717-5p, hsa-miR-614, and hsa-miR-296-3p);
- (4) a combination of SEQ ID NOs: 1, 113, 125, and 568 (markers: hsa-miR-6768-5p, hsa-miR-6717-5p, hsa-miR-614, and hsa-miR-296-3p); and
- (5) a combination of SEQ ID NOs: 113,125, 128, and 568 (markers: hsa-miR-6717-5p, hsa-miR-614, hsa-miR-451a, and hsa-miR-296-3p).

[0510] Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 573 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.

- (1) a combination of SEQ ID NOs: 113,125, 126, and 573 (markers: hsa-miR-6717-5p, hsa-miR-614, hsa-miR-19b-3p, and hsa-miR-1202);
- (2) a combination of SEQ ID NOs: 1, 113, 125, and 573 (markers: hsa-miR-6768-5p, hsa-miR-6717-5p, hsa-miR-614, and hsa-miR-1202);
- (3) a combination of SEQ ID NOs: 1, 53, 113, and 573 (markers: hsa-miR-6768-5p, hsa-miR-6088, hsa-miR-6717-5p, and hsa-miR-1202);
 - (4) a combination of SEQ ID NOs: 1, 124, 126, and 573 (markers: hsa-miR-6768-5p, hsa-miR-187-5p, hsa-miR-19b-3p, and hsa-miR-1202); and
 - (5) a combination of SEQ ID NOs: 1, 63, 130, and 573 (markers: hsa-miR-6768-5p, hsa-miR-3162-5p, hsa-miR-223-3p, and hsa-miR-1202).
- **[0511]** Non-limiting examples of the combination of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 578 or a complementary sequence thereof with polynucleotides consisting of nucleotide sequences represented by SEQ ID NOs of five polynucleotides selected from the cancer type-specific polynucleotide group 1 or complementary sequences thereof will be further listed below.
 - (1) a combination of SEQ ID NOs: 1, 126, 567, and 578 (markers: hsa-miR-6768-5p, hsa-miR-19b-3p, hsa-miR-940, and hsa-miR-4534);
 - (2) a combination of SEQ ID NOs: 1, 19, 113, and 578 (markers: hsa-miR-6768-5p, hsa-miR-3184-5p, hsa-miR-6717-5p, and hsa-miR-4534);
 - (3) a combination of SEQ ID NOs: 31, 126, 561, and 578 (markers: hsa-miR-6889-5p, hsa-miR-19b-3p, hsa-miR-6073, and hsa-miR-4534);
 - (4) a combination of SEQ ID NOs: 1, 126, 160, and 578 (markers: hsa-miR-6768-5p, hsa-miR-19b-3p, hsa-miR-6087, and hsa-miR-4534); and
- (5) a combination of SEQ ID NOs: 1, 113, 125, 578 (markers: hsa-miR-6768-5p, hsa-miR-6717-5p, hsa-miR-614, and hsa-miR-4534).
 - **[0512]** The kit or the device of the present invention can also contain a polynucleotide that is already known or that will be found in the future, to enable detection of lung cancer, in addition to the polynucleotide(s) (which can include the variant(s), the fragment(s), and the derivative(s)) according to the present invention described above.
 - **[0513]** The kit of the present invention can also contain an antibody for measuring a marker for lung cancer examination known in the art, such as CEA, or CYFRA21-1, in addition to the polynucleotide(s) according to the present invention described above.
 - **[0514]** These polynucleotides contained in the kit of the present invention can be packaged in different containers either individually or in any combination.
 - **[0515]** The kit of the present invention can contain a kit for extracting a nucleic acid (e.g., total RNA) from body fluids, cells, or tissues, a fluorescent material for labeling, an enzyme and a medium for nucleic acid amplification, an instruction manual, etc.

[0516] The device of the present invention is a device for cancer marker measurement in which nucleic acids such as the polynucleotides according to the present invention described above are bonded or attached to, for example, a solid phase. Examples of the material for the solid phase include plastics, paper, glass, and silicon. The material for the solid phase is preferably a plastic from the viewpoint of easy processability. The solid phase has any shape and is, for example, square, round, reed-shaped, or film-shaped. The device of the present invention includes, for example, a device for measurement by a hybridization technique. Specific examples thereof include blotting devices and nucleic acid arrays (e.g., microarrays, DNA chips, and RNA chips).

[0517] The nucleic acid array technique is a technique which involves bonding or attaching the nucleic acids one by one by use of a method [e.g., a method of spotting the nucleic acids using a high-density dispenser called spotter or arrayer onto the surface of the solid phase surface-treated, if necessary, by coating with L-lysine or the introduction of a functional group such as an amino group or a carboxyl group, a method of spraying the nucleic acids onto the solid phase using an inkjet which injects very small liquid droplets by a piezoelectric element or the like from a nozzle, or a method of sequentially synthesizing nucleotides on the solid phase] to prepare an array such as a chip and measuring a target nucleic acid through the use of hybridization using this array.

[0518] The kit or the device of the present invention comprises nucleic acids capable of specifically binding to the polynucleotides of at least one or more, preferably at least two or more, more preferably at least three or more, most preferably at least five or more to all of the lung cancer marker miRNAs, respectively, of the group 1 described above. The kit or the device of the present invention can optionally further comprise nucleic acids capable of specifically binding to the polynucleotides of at least one or more, preferably at least two or more, more preferably at least three or more, most preferably at least five or more to all of the lung cancer marker miRNAs, respectively, of the group 2 described above. The kit or the device of the present invention can optionally further comprise nucleic acids capable of specifically binding to the polynucleotides of at least one or more, preferably at least two or more, more preferably at least three or more, most preferably at least five or more to all of the lung cancer marker miRNAs, respectively, of the group 3 described above.

[0519] The kit or the device of the present invention can be used for detecting lung cancer as described in Section 4 below.

4. Method for detecting lung cancer

10

25

30

35

40

45

50

55

[0520] The present invention further provides a method for detecting lung cancer, comprising using the kit or the device of the present invention (including the aforementioned nucleic acid(s) that can be used in the present invention) described in Section 3 above to measure an expression level(s) of one or more lung cancer-derived gene(s) represented by an expression level(s) of lung cancer-derived gene(s) selected from hsa-miR-6768-5p, optionally in combination with any from the following group hsa-miR-6836-3p, hsa-miR-6782-5p, hsa-miR-3663-3p, hsa-miR-1908-3p, hsa-miR-6726-5p, hsa-miR-4258, hsa-miR-1343-3p, hsa-miR-4516, hsa-miR-6875-5p, hsa-miR-4651, hsa-miR-6825-5p, hsa-miR-6840-3p, hsa-miR-6780b-5p, hsa-miR-6749-5p, hsa-miR-8063, hsa-miR-6784-5p, hsa-miR-3679-5p, hsa-miR-3184-5p, hsa-miR-663b, hsa-miR-6880-5p, hsa-miR-1908-5p, hsa-miR-92a-2-5p, hsa-miR-7975, hsa-miR-7110-5p, hsa-miR-6842-5p, hsa-miR-6857-5p, hsa-miR-5572, hsa-miR-3197, hsa-miR-6131, hsa-miR-6889-5p, hsa-miR-4454, hsa-miR-1199-5p, hsa-miR-1247-3p, hsa-miR-6800-5p, hsa-miR-6872-3p, hsa-miR-4649-5p, hsa-miR-6791-5p, hsa-miR-4433b-3p, hsa-miR-3135b, hsa-miR-128-2-5p, hsa-miR-4675, hsa-miR-4472, hsa-miR-6785-5p, hsa-miR-6741-5p, hsa-miR-7977, hsa-miR-3665, hsa-miR-128-1-5p, hsa-miR-4286, hsa-miR-6765-3p, hsa-miR-4632-5p, hsa-miR-365a-5p, hsamiR-6088, hsa-miR-6816-5p, hsa-miR-6885-5p, hsa-miR-711, hsa-miR-6765-5p, hsa-miR-3180, hsa-miR-4442, hsamiR-4792, hsa-miR-6721-5p, hsa-miR-6798-5p, hsa-miR-3162-5p, hsa-miR-6126, hsa-miR-4758-5p, hsa-miR-2392, hsa-miR-486-3p, hsa-miR-6727-5p, hsa-miR-4728-5p, hsa-miR-6746-5p, hsa-miR-4270, hsa-miR-3940-5p, hsa-miR-4725-3p, hsa-miR-7108-5p, hsa-miR-3656, hsa-miR-6879-5p, hsa-miR-6738-5p, hsa-miR-1260a, hsa-miR-4446-3p, hsa-miR-3131, hsa-miR-4463, hsa-miR-3185, hsa-miR-6870-5p, hsa-miR-6779-5p, hsa-miR-1273g-3p, hsa-miR-8059, hsa-miR-4697-5p, hsa-miR-4674, hsa-miR-4433-3p, hsa-miR-4257, hsa-miR-1915-5p, hsa-miR-4417, hsa-miR-1343-5p, hsa-miR-6781-5p, hsa-miR-4695-5p, hsa-miR-1237-5p, hsa-miR-6775-5p, hsa-miR-7845-5p, hsa-miR-4746-3p, hsa-miR-7641, hsa-miR-7847-3p, hsa-miR-6806-5p, hsa-miR-4467, hsa-miR-4726-5p, hsa-miR-4648, hsamiR-6089, hsa-miR-1260b, hsa-miR-4532, hsa-miR-5195-3p, hsa-miR-3188, hsa-miR-6848-5p, hsa-miR-1233-5p, hsa-miR-1233-5p, hsa-miR-1233-5p, hsa-miR-6089, hsamiR-6717-5p, hsa-miR-3195, hsa-miR-6757-5p, hsa-miR-8072, hsa-miR-4745-5p, hsa-miR-6511a-5p, hsa-miR-6776-5p, hsa-miR-371a-5p, hsa-miR-1227-5p, hsa-miR-7150, hsa-miR-1915-3p, hsa-miR-187-5p, hsa-miR-614, hsamiR-1225-5p, hsa-miR-451a, hsa-miR-939-5p, hsa-miR-223-3p, hsa-miR-125a-3p, hsa-miR-92b-5p, hsa-miR-22-3p, hsa-miR-6073, hsa-miR-6845-5p, hsa-miR-6769b-5p, hsa-miR-4665-3p, hsa-miR-1913, hsa-miR-1228-3p, hsa-miR-940, hsa-miR-296-3p, hsa-miR-4690-5p, hsa-miR-548q, hsa-miR-663a, hsa-miR-1249, hsa-miR-1202, hsa-miR-7113-3p, hsa-miR-1225-3p, hsa-miR-4783-3p, hsa-miR-4448 and hsa-miR-4534, optionally an expression level of lung cancer-derived gene(s) selected from the following group B: hsa-miR-19b-3p, hsa-miR-1228-5p, and hsa-miR-1307-3p, and optionally an expression level of lung cancer-derived gene(s) selected from the following group C: hsa-miR-4271,

hsa-miR-642b-3p, hsa-miR-6075, hsa-miR-6125, hsa-miR-887-3p, hsa-miR-6851-5p, hsa-miR-6763-5p, hsa-miR-3928-3p, hsa-miR-4443, hsa-miR-3648, hsa-miR-149-3p, hsa-miR-4689, hsa-miR-4763-3p, hsa-miR-6729-5p, hsa-miR-3196, hsa-miR-8069, hsa-miR-1268a, hsa-miR-4739, hsa-miR-1268b, hsa-miR-5698, hsa-miR-6752-5p, hsa-miR-4507, hsa-miR-564, hsa-miR-4497, hsa-miR-6877-5p, hsa-miR-6087, hsa-miR-4731-5p, hsa-miR-615-5p, hsa-miR-760, hsa-miR-6891-5p, hsa-miR-6887-5p, hsa-miR-4525, hsa-miR-1914-3p, hsa-miR-619-5p, hsa-miR-5001-5p, hsa-miR-6722-3p, hsa-miR-3621, hsa-miR-4298, hsa-miR-675-5p and hsa-miR-4655-5p in a sample *in vitro*, further comparing, for example, the expression level(s) of the aforementioned gene(s) in the sample (e.g., blood, serum, or plasma) collected from a subject who is suspected of having lung cancer with a control expression level in the sample collected from a healthy subject (including a non-lung cancer patient), and evaluating the subject as having lung cancer when the expression level(s) of the target nucleic acid(s) is statistically significantly different between the samples.

[0521] This method of the present invention permits limitedly-invasive early diagnosis of cancer with high sensitivity and specificity, and thereby brings about early treatment and improved prognosis. In addition, exacerbation of the disease or the effectiveness of surgical, radiotherapeutic, and chemotherapeutic treatments can be monitored.

10

30

35

40

45

50

55

[0522] The method for extracting the lung cancer-derived gene from the sample such as blood, serum, or plasma according to the present invention is particularly preferably prepared by the addition of a reagent for RNA extraction in 3D-Gene^(™) RNA extraction reagent from liquid sample kit (Toray Industries, Inc.). A general acidic phenol method (acid guanidinium-phenolchloroform (AGPC)) may be used, or Trizol^(™) (Life Technologies Corp.) may be used. The lung cancer-derived gene may be prepared by the addition of a reagent for RNA extraction containing acidic phenol, such as Trizol (Life Technologies Corp.) or Isogen (Nippon Gene Co., Ltd.). Alternatively, a kit such as miRNeasy^(™) Mini Kit (Qiagen N.V.) can be used, though the method is not limited thereto.

[0523] The present invention also provides use of the kit or the device of the present invention for detecting *in vitro* an expression product of a lung cancer-derived miRNA gene in a sample derived from a subject.

[0524] In the method of the present invention, a kit or a device comprising, each alone or in every possible composition, the polynucleotides that can be used in the present invention as described above is used as the kit or the device.

[0525] In the detection or (genetic) diagnosis of lung cancer according to the present invention, each polynucleotide contained in the kit or the device of the present invention can be used as a probe or a primer. In the case of using the polynucleotide as a primer, TaqMan^(TM) MicroRNA Assays from Life Technologies Corp., miScript PCR System from Qiagen N.V., or the like can be used, though the method is not limited thereto.

[0526] The polynucleotide contained in the kit or the device of the present invention can be used as a primer or a probe according to a routine method in a method known in the art for specifically detecting the particular gene, for example, a hybridization technique such as Northern blot, Southern blot, *in situ* hybridization, Northern hybridization, or Southern hybridization, or a quantitative amplification technique such as quantitative RT-PCR. A body fluid such as blood, serum, plasma, or urine from a subject is collected as a sample to be assayed according to the type of the detection method used. Alternatively, total RNA prepared from such a body fluid by the method described above may be used, and various polynucleotides including cDNA prepared on the basis of the RNA may be used.

[0527] The kit or the device of the present invention is useful for the diagnosis of lung cancer or the detection of the presence or absence of lung cancer. Specifically, the detection of lung cancer using the kit or the device can be performed by detecting *in vitro* an expression level of a gene using the nucleic acid probe or the primer contained in the kit or the device in a sample such as blood, serum, plasma, or urine from a subject suspected of having lung cancer. The subject suspected of having lung cancer can be evaluated as having lung cancer when the expression level of a target miRNA marker measured using polynucleotide(s) (including a variant(s), a fragment(s), and a derivative(s) thereof) consisting of a nucleotide sequence represented by SEQ ID NO: 1 optionally in combination with one or more of SEQ ID NOs 2 to 125, 127 to 130, 132 to 134 and 561 to 578 or a complementary sequence thereof, optionally a nucleotide sequence represented by one or more of SEQ ID NOs: 126 and 131 or a complementary sequence thereof, and optionally a nucleotide sequence represented by one or more of SEQ ID NOs: 135 to 174 or a complementary sequence thereof in the sample such as blood, serum, plasma, or urine of the subject is statistically significantly different from the expression level thereof in the sample such as blood, serum, or plasma, or urine of a healthy subject.

[0528] The method of the present invention can be combined with chest X-ray examination as well as a diagnostic imaging method such as CT, MRI, or PET. The method of the present invention is capable of specifically detecting lung cancer and can substantially discriminate lung cancer from the other cancers.

[0529] The method for detecting the absence of an expression product of a lung cancer-derived gene or the presence of the expression product of a lung cancer-derived gene in a sample using the kit or the device of the present invention comprises collecting a body fluid such as blood, serum, plasma, or urine from a subject, and measuring the expression level of the target gene contained therein using one or more polynucleotide(s) (including a variant(s), a fragment(s), and a derivative(s)) selected from the polynucleotide group of the present invention, to evaluate the presence or absence of lung cancer or to detect lung cancer. Using the method for detecting lung cancer according to the present invention, for example, the presence or absence of amelioration of the disease or the degree of amelioration thereof in a lung cancer patient given a therapeutic drug for the amelioration of the disease can be also evaluated or diagnosed.

[0530] The method of the present invention can comprise, for example, the following steps (a), (b), and (c):

5

10

30

35

40

45

50

55

- (a) a step of contacting a sample derived from a subject with a polynucleotide in the kit or the device of the present invention *in vitro*;
- (b) a step of measuring an expression level of the target nucleic acid in the sample using the polynucleotide as a nucleic acid probe or a primer; and
- (c) a step of evaluating the presence or absence of lung cancer (cells) in the subject on the basis of the step (b).

[0531] Specifically, the present invention provides a method for detecting lung cancer, comprising measuring an expression level of a target nucleic acid in a sample of a subject using a nucleic acid capable of specifically binding to at least one or more (preferably at least two or more) polynucleotide(s) selected from miR-6768-5p, optionally in combination with any of the group consisting of miR-6836-3p, miR-6782-5p, miR-3663-3p, miR-1908-3p, miR-6726-5p, miR-4258, miR-1343-3p, miR-4516, miR-6875-5p, miR-4651, miR-6825-5p, miR-6840-3p, miR-6780b-5p, miR-6749-5p, miR-8063, miR-6784-5p, miR-3679-5p, miR-3184-5p, miR-663b, miR-6880-5p, miR-1908-5p, miR-92a-2-5p, miR-7975, miR-7110-5p, miR-6842-5p, miR-6857-5p, miR-5572, miR-3197, miR-6131, miR-6889-5p, miR-4454, miR-1199-5p, miR-1247-3p, miR-6800-5p, miR-6872-3p, miR-4649-5p, miR-6791-5p, miR-4433b-3p, miR-3135b, miR-128-2-5p, miR-4675, miR-4472, miR-6785-5p, miR-6741-5p, miR-7977, miR-3665, miR-128-1-5p, miR-4286, miR-6765-3p, miR-4632-5p, miR-365a-5p, miR-6088, miR-6816-5p, miR-6885-5p, miR-711, miR-6765-5p, miR-3180, miR-4442, miR-4792, miR-6721-5p, miR-6798-5p, miR-3162-5p, miR-6126, miR-4758-5p, miR-2392, miR-486-3p, miR-6727-5p, miR-6727-5p, miR-6728-5p, 4728-5p, miR-6746-5p, miR-4270, miR-3940-5p, miR-4725-3p, miR-7108-5p, miR-3656, miR-6879-5p, miR-6738-5p, miR-1260a, miR-4446-3p, miR-3131, miR-4463, miR-3185, miR-6870-5p, miR-6779-5p, miR-1273g-3p, miR-8059, miR-4697-5p, miR-4674, miR-4433-3p, miR-4257, miR-1915-5p, miR-4417, miR-1343-5p, miR-6781-5p, miR-4695-5p, miR-4 1237-5p, miR-6775-5p, miR-7845-5p, miR-4746-3p, miR-7641, miR-7847-3p, miR-6806-5p, miR-4467, miR-4726-5p, miR-4648, miR-6089, miR-1260b, miR-4532, miR-5195-3p, miR-3188, miR-6848-5p, miR-1233-5p, miR-6717-5p, miR-3195, miR-6757-5p, miR-8072, miR-4745-5p, miR-6511a-5p, miR-6776-5p, miR-371a-5p, miR-1227-5p, miR-7150, miR-1915-3p, miR-187-5p, miR-614, miR-1225-5p, miR-451a, miR-939-5p, miR-223-3p, miR-125a-3p, miR-92b-5p, miR-22-3p, miR-6073, miR-6845-5p, miR-6769b-5p, miR-4665-3p, miR-1913, miR-1228-3p, miR-940, miR-296-3p, miR-4690-5p, miR-548g, miR-663a, miR-1249, miR-1202, miR-7113-3p, miR-1225-3p, miR-4783-3p, miR-4448 and miR-4534, and evaluating in vitro whether or not the subject has lung cancer using the measured expression level and a control expression level of a healthy subject measured in the same way as above.

[0532] As used herein, the term "evaluation" is evaluation support based on results of *in vitro* examination, not physician's judgment.

[0533] As described above, as for the target nucleic acids in a preferred embodiment of the method of the present invention, specifically, miR-6768-5p is hsa-miR-6768-5p, miR-6836-3p is hsa-miR-6836-3p, miR-6782-5p is hsa-miR-6782-5p, miR-3663-3p is hsa-miR-3663-3p, miR-1908-3p is hsa-miR-1908-3p, miR-6726-5p is hsa-miR-6726-5p, miR-4258 is hsa-miR-4258, miR-1343-3p is hsa-miR-1343-3p, miR-4516 is hsa-miR-4516, miR-6875-5p is hsa-miR-6875-5p, miR-4651 is hsa-miR-4651, miR-6825-5p is hsa-miR-6825-5p, miR-6840-3p is hsa-miR-6840-3p, miR-6780b-5p is hsamiR-6780b-5p, miR-6749-5p is hsa-miR-6749-5p, miR-8063 is hsa-miR-8063, miR-6784-5p is hsa-miR-6784-5p, miR-3679-5p is hsa-miR-3679-5p, miR-3184-5p is hsa-miR-3184-5p, miR-663b is hsa-miR-663b, miR-6880-5p is hsa-miR-6880-5p, miR-1908-5p is hsa-miR-1908-5p, miR-92a-2-5p is hsa-miR-92a-2-5p, miR-7975 is hsa-miR-7975, miR-7110-5p is hsa-miR-7110-5p, miR-6842-5p is hsa-miR-6842-5p, miR-6857-5p is hsa-miR-6857-5p, miR-5572 is hsamiR-5572, miR-3197 is hsa-miR-3197, miR-6131 is hsa-miR-6131, miR-6889-5p is hsa-miR-6889-5p, miR-4454 is hsamiR-4454, miR-1199-5p is hsa-miR-1199-5p, miR-1247-3p is hsa-miR-1247-3p, miR-6800-5p is hsa-miR-6800-5p, miR-6872-3p is hsa-miR-6872-3p, miR-4649-5p is hsa-miR-4649-5p, miR-6791-5p is hsa-miR-6791-5p, miR-4433b-3p is hsa-miR-4433b-3p, miR-3135b is hsa-miR-3135b, miR-128-2-5p is hsa-miR-128-2-5p, miR-4675 is hsa-miR-4675, miR-4472 is hsa-miR-4472, miR-6785-5p is hsa-miR-6785-5p, miR-6741-5p is hsa-miR-6741-5p, miR-7977 is hsa-miR-7977, miR-3665 is hsa-miR-3665, miR-128-1-5p is hsa-miR-128-1-5p, miR-4286 is hsa-miR-4286, miR-6765-3p is hsa-miR-6765-3p, miR-4632-5p is hsa-miR-4632-5p, miR-365a-5p is hsa-miR-365a-5p, miR-6088 is hsa-miR-6088, miR-6816-5p is hsa-miR-6816-5p, miR-6885-5p is hsa-miR-6885-5p, miR-711 is hsa-miR-711, miR-6765-5p is hsa-miR-6765-5p, miR-3180 is hsa-miR-3180, miR-4442 is hsa-miR-4442, miR-4792 is hsa-miR-4792, miR-6721-5p is hsa-miR-6721-5p, miR-6798-5p is hsa-miR-6798-5p, miR-3162-5p is hsa-miR-3162-5p, miR-6126 is hsa-miR-6126, miR-4758-5p is hsamiR-4758-5p, miR-2392 is hsa-miR-2392, miR-486-3p is hsa-miR-486-3p, miR-6727-5p is hsa-miR-6727-5p, miR-4728-5p is hsa-miR-4728-5p, miR-6746-5p is hsa-miR-6746-5p, miR-4270 is hsa-miR-4270, miR-3940-5p is hsa-miR-3940-5p, miR-4725-3p is hsa-miR-4725-3p, miR-7108-5p is hsa-miR-7108-5p, miR-3656 is hsa-miR-3656, miR-6879-5p is hsa-miR-6879-5p, miR-6738-5p is hsa-miR-6738-5p, miR-1260a is hsa-miR-1260a, miR-4446-3p is hsa-miR-4446-3p, miR-3131 is hsa-miR-3131, miR-4463 is hsa-miR-4463, miR-3185 is hsa-miR-3185, miR-6870-5p is hsa-miR-6870-5p, miR-6779-5p is hsa-miR-6779-5p, miR-1273g-3p is hsa-miR-1273g-3p, miR-8059 is hsa-miR-8059, miR-4697-5p is hsa-miR-4697-5p, miR-4674 is hsa-miR-4674, miR-4433-3p is hsa-miR-4433-3p, miR-4257 is hsa-miR-4257, miR-

1915-5p is hsa-miR-1915-5p, miR-4417 is hsa-miR-4417, miR-1343-5p is hsa-miR-1343-5p, miR-6781-5p is hsa-miR-6781-5p, miR-4695-5p is hsa-miR-4695-5p, miR-1237-5p is hsa-miR-1237-5p, miR-6775-5p is hsa-miR-6775-5p, miR-7845-5p is hsa-miR-7845-5p, miR-4746-3p is hsa-miR-4746-3p, miR-7641 is hsa-miR-7641, miR-7847-3p is hsa-miR-7847-3p, miR-6806-5p is hsa-miR-6806-5p, miR-4467 is hsa-miR-4467, miR-4726-5p is hsa-miR-4726-5p, miR-4648 is hsa-miR-4648, miR-6089 is hsa-miR-6089, miR-1260b is hsa-miR-1260b, miR-4532 is hsa-miR-4532, miR-5195-3p is hsa-miR-5195-3p, miR-3188 is hsa-miR-3188, miR-6848-5p is hsa-miR-6848-5p, miR-1233-5p is hsa-miR-1233-5p, miR-6717-5p is hsa-miR-6717-5p, miR-3195 is hsa-miR-3195, miR-6757-5p is hsa-miR-6757-5p, miR-8072 is hsa-miR-8072, miR-4745-5p is hsa-miR-4745-5p, miR-6511a-5p is hsa-miR-6511a-5p, miR-6776-5p is hsa-miR-6776-5p, miR-371a-5p is hsa-miR-371a-5p, miR-1227-5p is hsa-miR-1227-5p, miR-7150 is hsa-miR-7150, miR-1915-3p is hsa-miR-1915-3p, miR-187-5p is hsa-miR-187-5p, miR-614 is hsa-miR-614, miR-1225-5p is hsa-miR-1225-5p, miR-451a is hsamiR-451a, miR-939-5p is hsa-miR-939-5p, miR-223-3p is hsa-miR-223-3p, miR-125a-3p is hsa-miR-125a-3p, miR-92b-5p is hsa-miR-92b-5p, miR-22-3p is hsa-miR-22-3p, miR-6073 is hsa-miR-6845-5p is hsa-miR-6845-5p, miR-6769b-5p is hsa-miR-6769b-5p, miR-4665-3p is hsa-miR-4665-3p, miR-1913 is hsa-miR-1913, miR-1228-3p is hsamiR-1228-3p, miR-940 is hsa-miR-940, miR-296-3p is hsa-miR-296-3p, miR-4690-5p is hsa-miR-4690-5p, miR-548q is hsa-miR-548g, miR-663a is hsa-miR-663a, miR-1249 is hsa-miR-1249, miR-1202 is hsa-miR-1202, miR-7113-3p is hsa-miR-7113-3p, miR-1225-3p is hsa-miR-1225-3p, miR-4783-3p is hsa-miR-4783-3p, miR-4448 is hsa-miR-4448, and miR-4534 is hsa-miR-4534.

[0534] In a preferred embodiment of the method of the present invention, specifically, the nucleic acid (specifically, probe or primer) is selected from the group consisting of the following polynucleotides (a) to (e):

- (a) a polynucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 1 optionally in combination with any of SEQ ID NOs 2 to 125, 127 to 130, 132 to 134, and 561 to 578 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (b) a polynucleotide comprising a nucleotide sequence represented by SEQ ID NO: 1 optionally in combination with any of SEQ ID NOs 2 to 125, 127 to 130, 132 to 134, and 561 to 578,
- (c) a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by SEQ ID NO: 1 optionally in combination with any of SEQ ID NOs 2 to 125, 127 to 130, 132 to 134, and 561 to 578 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (d) a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by SEQ ID NO: 1 optionally in combination with any of SEQ ID NOs 2 to 125, 127 to 130, 132 to 134, and 561 to 578 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, and
- (e) a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (a) to (d).

[0535] The method of the present invention can further employ a nucleic acid capable of specifically binding to at least one or more polynucleotide(s) selected from the group consisting of miR-19b-3p, miR-1228-5p, and miR-1307-3p.

[0536] As for such a nucleic acid, specifically, miR-19b-3p is hsa-miR-19b-3p, miR-1228-5p is hsa-miR-1228-5p, and miR-1307-3p is hsa-miR-1307-3p.

[0537] In a preferred embodiment, such a nucleic acid is specifically selected from the group consisting of the following polynucleotides (f) to (j):

- (f) a polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 126, 131, and 579 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (g) a polynucleotide comprising a nucleotide sequence represented by any of SEQ ID NOs: 126, 131, and 579,
- (h) a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 126, 131, and 579 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (i) a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 126, 131, and 579 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, and
- (j) a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (f) to (i).

[0538] The nucleic acid further used in the method of the present invention can comprise a nucleic acid capable of specifically binding to at least one or more polynucleotide(s) selected from the group consisting of miR-4271, miR-642b-3p, miR-6075, miR-6125, miR-887-3p, miR-6851-5p, miR-6763-5p, miR-3928-3p, miR-4443, miR-3648, miR-149-3p,

67

55

10

15

20

25

30

35

40

45

miR-4689, miR-4763-3p, miR-6729-5p, miR-3196, miR-8069, miR-1268a, miR-4739, miR-1268b, miR-5698, miR-6752-5p, miR-4507, miR-564, miR-4497, miR-6877-5p, miR-6087, miR-4731-5p, miR-615-5p, miR-760, miR-6891-5p, miR-6887-5p, miR-4525, miR-1914-3p, miR-619-5p, miR-5001-5p, miR-6722-3p, miR-3621, miR-4298, miR-675-5p and miR-4655-5p.

[0539] As for such a nucleic acid, specifically, miR-4271 is hsa-miR-4271, miR-642b-3p is hsa-miR-642b-3p, miR-6075 is hsa-miR-6075, miR-6125 is hsa-miR-6125, miR-887-3p is hsa-miR-887-3p, miR-6851-5p is hsa-miR-6851-5p, miR-6763-5p is hsa-miR-6763-5p, miR-3928-3p is hsa-miR-3928-3p, miR-4443 is hsa-miR-4443, miR-3648 is hsa-miR-3648, miR-149-3p is hsa-miR-149-3p, miR-4689 is hsa-miR-4689, miR-4763-3p is hsa-miR-4763-3p, miR-6729-5p is hsa-miR-6729-5p, miR-3196 is hsa-miR-3196, miR-8069 is hsa-miR-8069, miR-1268a is hsa-miR-1268a, miR-4739 is hsa-miR-4739, miR-1268b is hsa-miR-1268b, miR-5698 is hsa-miR-5698, miR-6752-5p is hsa-miR-6752-5p, miR-4507 is hsa-miR-4507, miR-564 is hsa-miR-564, miR-4497 is hsa-miR-4497, miR-6877-5p is hsa-miR-6877-5p, miR-6087 is hsa-miR-6087, miR-4731-5p is hsa-miR-4731-5p, miR-615-5p is hsa-miR-615-5p, miR-760 is hsa-miR-760, miR-6891-5p is hsa-miR-6891-5p, miR-6887-5p, miR-6887-5p, miR-4525 is hsa-miR-4525, miR-1914-3p is hsa-miR-1914-3p, miR-619-5p is hsa-miR-619-5p, miR-5001-5p, miR-6752-5p, miR-6722-3p is hsa-miR-6722-3p, miR-3621 is hsa-miR-3621, miR-4298 is hsa-miR-4298, miR-675-5p is hsa-miR-675-5p, and miR-4655-5p is hsa-miR-4655-5p.

10

15

20

25

30

35

40

50

55

[0540] In a preferred embodiment, such a nucleic acid is specifically a polynucleotide selected from the group consisting of the following polynucleotides (k) to (o):

- (k) a polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (I) a polynucleotide comprising a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174,
- (m) a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides, (n) a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, and
- (o) a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (k) to (n).

[0541] Examples of the sample used in the method of the present invention can include samples prepared from a living tissue (preferably a lung tissue) or a body fluid such as blood, serum, plasma, or urine from the subject. Specifically, for example, an RNA-containing sample prepared from the tissue, a polynucleotide-containing sample further prepared therefrom, a body fluid such as blood, serum, plasma, or urine, a portion or the whole of a living tissue collected from the subject by biopsy or the like, or a living tissue excised by surgery can be used, and the sample for measurement can be prepared therefrom.

[0542] As used herein, the subject refers to a mammal, for example, a human, a monkey, a mouse and a rat, without any limitation, and is preferably a human.

[0543] The steps of the method of the present invention can be changed according to the type of the sample to be assayed.

[0544] In the case of using RNA as an analyte, the detection of lung cancer (cells) can comprise, for example, the following steps (a), (b), and (c):

- (a) a step of binding RNA prepared from the sample of the subject or a complementary polynucleotide (cDNA) transcribed therefrom to a polynucleotide in the kit or the device of the present invention;
 - (b) a step of measuring the sample-derived RNA or the cDNA synthesized from the RNA, bound with the polynucleotide by hybridization using the polynucleotide as a nucleic acid probe or by quantitative RT-PCR using the polynucleotide as a primer; and
 - (c) a step of evaluating the presence or absence of lung cancer (or lung cancer-derived gene expression) on the basis of the measurement results of the step (b).

[0545] For example, various hybridization methods can be used for detecting, examining, evaluating, or diagnosing lung cancer (or lung cancer-derived gene expression) *in vitro* according to the present invention. For example, Northern blot, Southern blot, RT-PCR, DNA chip analysis, *in situ* hybridization, Northern hybridization, or Southern hybridization can be used as such a hybridization method.

[0546] In the case of using the Northern blot, the presence or absence of expression of each gene or the expression level thereof in the RNA can be detected or measured by use of the nucleic acid probe that can be used in the present

invention. Specific examples thereof can include a method which involves labeling the nucleic acid probe (or its complementary strand) with a radioisotope (32 P, 35 S, etc.), a fluorescent material, or the like, hybridizing the labeled product with the living tissue-derived RNA from a subject transferred to a nylon membrane or the like according to a routine method, and then detecting and measuring a signal derived from the label (radioisotope or fluorescent material) on the formed DNA/RNA duplex using a radiation detector (examples thereof can include BAS-1800 II (Fujifilm Corp.)) or a fluorescence detector (examples thereof can include STORM 865 (GE Healthcare Japan Corp.)).

[0547] In the case of using the quantitative RT-PCR, the presence or absence of expression of each gene or the expression level thereof in the RNA can be detected or measured by use of the primer that can be used in the present invention. Specific examples thereof can include a method which involves preparing cDNA from the living tissue-derived RNA of a subject according to a routine method, hybridizing a pair of primers (consisting of a plus strand and a reverse strand binding to the cDNA) of the present invention with the cDNA such that the region of each target gene can be amplified with the cDNA as a template, and performing PCR according to a routine method to detect the obtained double-stranded DNA. The method for detecting the double-stranded DNA can include a method of performing the PCR using the primers labeled in advance with a radioisotope or a fluorescent material, a method of electrophoresing the PCR product on an agarose gel and staining the double-stranded DNA with ethidium bromide or the like for detection, and a method of transferring the produced double-stranded DNA to a nylon membrane or the like according to a routine method and hybridizing the double-stranded DNA to a labeled nucleic acid probe for detection.

10

20

30

35

50

55

[0548] In the case of using the nucleic acid array analysis, an RNA chip or a DNA chip in which the nucleic acid probes (single-stranded or double-stranded) of the present invention is attached to a substrate (solid phase) is used. Regions having the attached nucleic acid probes are referred to as probe spots, and regions having no attached nucleic acid probe are referred to as blank spots. A gene group immobilized on a solid-phase substrate is generally called a nucleic acid chip, a nucleic acid array, a microarray, or the like. The DNA or RNA array includes a DNA or RNA macroarray and a DNA or RNA microarray. The term "chip" used herein includes all of them. 3D-Gene(TM) Human miRNA Oligo chip (Toray Industries, Inc.) can be used as the DNA chip, though the DNA chip is not limited thereto.

[0549] Examples of the measurement using the DNA chip can include, but are not limited to, a method of detecting and measuring a signal derived from the label on the nucleic acid probes using an image detector (examples thereof can include Typhoon 9410 (GE Healthcare Japan Corp.) and 3D-Gene^(TM) scanner (Toray Industries, Inc.)).

[0550] The "stringent conditions" used herein are, as mentioned above, conditions under which a nucleic acid probe hybridizes to its target sequence to a larger extent (e.g., a measurement value equal to or larger than a mean of background measurement values + a standard deviation of the background measurement values \times 2) than that for other sequences.

[0551] The stringent conditions are defined by hybridization and subsequent washing conditions. The hybridization conditions are not limited and are conditions involving, for example, 30° C to 60° C for 1 to 24 hours in a solution containing SSC, a surfactant, formamide, dextran sulfate, a blocking agent, etc. In this context, $1 \times SSC$ is an aqueous solution (pH 7.0) containing 150 mM sodium chloride and 15 mM sodium citrate. The surfactant includes, for example, SDS (sodium dodecyl sulfate), Triton, or Tween. The hybridization conditions more preferably involve 3 to $10 \times SSC$ and 0.1 to 1% SDS. Examples of the conditions of the washing, following the hybridization, which is another condition to define the stringent conditions, can include conditions involving continuous washing at 30° C in a solution containing $0.5 \times SSC$ and 0.1% SDS, at 30° C in a solution containing $0.2 \times SSC$ and 0.1% SDS, and at 30° C in a $0.05 \times SSC$ solution. It is desirable that the complementary strand should maintain its hybridized state with a target plus strand even by washing under such conditions. Specifically, examples of such a complementary strand can include a strand consisting of a nucleotide sequence in a completely complementary relationship with the nucleotide sequence of the target plus strand, and a strand consisting of a nucleotide sequence having at least 80%, preferably at least 85%, more preferably at least 90% or at least 95%, for example, at least 98% or at least 99% identity to the strand.

[0552] Other examples of the "stringent conditions" for the hybridization are described in, for example, Sambrook, J. & Russel, D., Molecular Cloning, A LABORATORY MANUAL, Cold Spring Harbor Laboratory Press, published on January 15, 2001, Vol. 1, 7.42 to 7.45 and Vol. 2, 8.9 to 8.17, and can be used in the present invention.

[0553] Examples of the conditions for carrying out PCR using a polynucleotide fragment in the kit of the present invention as a primer include treatment for approximately 15 seconds to 1 minute at 5 to 10° C plus a Tm value calculated from the sequence of the primer, using a PCR buffer with composition such as 10 mM Tris-HCL (pH 8.3), 50 mM KCL, and 1 to 2 mM MgCl₂. Examples of the method for calculating such a Tm value include Tm value = $2 \times$ (the number of adenine residues + the number of thymine residues) + $4 \times$ (the number of guanine residues + the number of cytosine residues).

[0554] In the case of using the quantitative RT-PCR, a commercially available kit for measurement specially designed for quantitatively measuring miRNA, such as TaqMan^(™) MicroRNA Assays (Life Technologies Corp.), LNA^(™)-based MicroRNA PCR (Exiqon), or Ncode^(™) miRNA qRT-PCT kit (Invitrogen Corp.) may be used.

[0555] For the calculation of gene expression levels, statistical treatment described in, for example, Statistical analysis of gene expression microarray data (Speed T., Chapman and Hall/CRC), and A beginner's guide Microarray gene

expression data analysis (Causton H.C. et al., Blackwell publishing) can be used in the present invention, though the calculation method is not limited thereto. For example, twice, preferably 3 times, more preferably 6 times the standard deviation of the measurement values of the blank spots are added to the average measurement value of the blank spots on the DNA chip, and probe spots having a signal value equal to or larger than the resulting value can be regarded as detection spots. Alternatively, the average measurement value of the blank spots is regarded as a background and can be subtracted from the measurement values of the probe spots to determine gene expression levels. A missing value for a gene expression level can be excluded from the analyte, preferably replaced with the smallest value of the gene expression level in each DNA chip, or more preferably replaced with a value obtained by subtracting 0.1 from a logarithmic value of the smallest value of the gene expression level. In order to eliminate low-signal genes, only a gene having a gene expression level of 26, preferably 28, more preferably 210 or larger in 20% or more, preferably 50%, more preferably 80% or more of the number of measurement samples can be selected as the analyte. Examples of the normalization of the gene expression level include, but are not limited to, global normalization and quantile normalization (Bolstad, B. M. et al., 2003, Bioinformatics, Vol. 19, p. 185-193).

[0556] The present invention also provides a method comprising measuring a target gene or gene expression level in a sample derived from a subject using the polynucleotide, the kit, or the device (e.g., chip) for detection of the present invention, or a combination thereof, preparing a discriminant (discriminant function) with gene expression levels in a sample derived from a lung cancer patient and a sample derived from a healthy subject as supervising samples, and determining or evaluating the presence and/or absence of the lung cancer-derived gene in the sample.

[0557] Specifically, the present invention further provides the method comprising: a first step of measuring *in vitro* an expression level of a target gene in multiple samples that were known to be able to determine or evaluate the presence and/or absence of the lung cancer-derived gene in the samples, using the polynucleotide, the kit, or the device (e.g., chip) for detection of the present invention, or a combination thereof; a second step of constructing a discriminant with the measurement values of the expression level of the target gene (target nucleic acids) that was obtained in the first step as supervising samples; a third step of measuring *in vitro* an expression level of the target gene in a sample derived from a subject in the same way as in the first step; and a fourth step of assigning the measurement value of the expression level of the target gene obtained in the third step into the discriminant obtained in the second step, and determining or evaluating the presence and/or absence of the lung cancer-derived gene in the sample on the basis of the results obtained from the discriminant, wherein the target gene can be detected using a polynucleotide for the detection, that was contained in the polynucleotide, the kit or the device (e.g., chip). In this context, the discriminant can be prepared by use of Fisher's discriminant analysis, nonlinear discriminant analysis based on Mahalanobis' distance, neural network, Support Vector Machine (SVM), or the like, though the method is not limited thereto.

[0558] When a clustering boundary is a straight line or a hyperplane, the linear discriminant analysis is a method for determining the association of a cluster using Formula 1 as a discriminant. In Formula 1, x represents an explanatory variable, w represents a coefficient of the explanatory variable, and w0 represents a constant term.

 $f(x) = w_0 + \sum_{i=1}^n w_i x_i$ Formula 1

[0559] Values obtained from the discriminant are referred to as discriminant scores. The measurement values of a newly offered data set can be assigned as explanatory variables to the discriminant to determine clusters by the signs of the discriminant scores.

[0560] The Fisher's discriminant analysis, one type of linear discriminant analysis, is a dimensionality reduction method for selecting a dimension suitable for discriminating classes, and constructs a highly discriminating synthetic variable by focusing on the variance of synthetic variables and minimizing the variance of data having the same label (Venables, W.N. et al., Modern Applied Statistics with S. Fourth edition. Springer., 2002). In the Fisher's linear discriminant analysis, direction w of projection is determined so as to maximize Formula 2. In this Formula, μ represents an average input, ng represents the number of data associate with class g, and μ g represents an average input of the data associated with class g. The numerator and the denominator are the inter-classe variance and the intra-classe variance, respectively, when each data is projected in the direction of the vector w. Discriminant coefficient wi is determined by maximizing this ratio (Takafumi Kanamori et al., "Pattern Recognition", Kyoritsu Shuppan Co., Ltd. (2009); and Richard O. et al., Pattern Classification Second Edition., Wiley-Interscience, 2000).

55

50

10

30

35

$$J(w) = \frac{\sum_{g=1}^{G} n_g (w^T \mu_g - w^T \mu) (w^T \mu_g - w^T \mu)^T}{\sum_{g=1}^{G} \sum_{i: v_i = g} (w^T x_i - w^T \mu_g) (w^T x_i - w^T \mu_g)}$$
 Formula 2

$$\mu = \sum_{i=1}^{n} \frac{x_i}{n} \quad \mu_g = \sum_{i:u_i=g}^{n} \frac{x_i}{n_g}$$
 subject to

5

10

15

20

25

30

35

40

45

50

[0561] The Mahalanobis' distance is calculated according to Formula 3 in consideration of data correlation and can be used as nonlinear discriminant analysis for determining an associated cluster that shows a closer Mahalanobis' distance from each cluster. In this Formula 3, μ represents a central vector of each cluster, and S-1 represents an inverse matrix of the variance-covariance matrix of the cluster. The central vector is calculated from explanatory variable x, and an average vector, a median value vector, or the like can be used.

$$D(x,\mu) = \{(x-\mu)^t S^{-1}(x-\mu)\}^{\frac{1}{2}}$$
 Formula 3

[0562] SVM is a discriminant analysis method devised by V. Vapnik (The Nature of Statistical Leaning Theory, Springer, 1995). Particular data points of a data set having known classes are defined as explanatory variables, and classes are defined as objective variables. A boundary plane called hyperplane for correctly classifying the data set into the known classes is determined, and a discriminant for data classification is determined using the boundary plane. Then, the measurement values of a newly offered data set can be assigned as explanatory variables to the discriminant to determine classes. In this respect, the results of the discriminant analysis may be classes, may be a probability of data to be classified into correct classes, or may be the distance from the hyperplane. In SVM, a method of nonlinearly converting a feature vector to a high dimension and performing linear discriminant in the space is known as a method for tackling nonlinear problems. An expression in which an inner product of two factors in a nonlinearly mapped space is expressed only by inputs in their original spaces is called kernel. Examples of the kernel can include a linear kernel, a RBF (Radial Basis Function) kernel, and a Gaussian kernel. While highly dimensional mapping is performed according to the kernel, the optimum discriminant, i.e., a discriminant, can be actually constructed by mere calculation according to the kernel, which avoids calculating features in the mapped space (e.g., Hideki Aso et al., Frontier of Statistical Science 6 "Statistics of pattern recognition and learning - New concepts and approaches", Iwanami Shoten, Publishers (2004); Nello Cristianini et al., Introduction to SVM, Kyoritsu Shuppan Co., Ltd. (2008)).

[0563] C-support vector classification (C-SVC), one type of SVM, involves preparing a hyperplane by supervising with the explanatory variables of two groups and classifying an unknown data set into either of the groups (C. Cortes et al., 1995, Machine Learning, Vol. 20, p. 273-297).

[0564] Exemplary calculation of the C-SVC discriminant that can be used in the method of the present invention will be given below. First, all subjects are divided into two groups, i.e., a lung cancer patient group and a healthy subject group. For example, lung tissue examination can be used for a reference under which each subject is confirmed either as a lung cancer patient or as a healthy subject.

[0565] Next, a data set consisting of comprehensive gene expression levels of serum-derived samples of the two divided groups (hereinafter, this data set is referred to as a training cohort) is prepared, and a C-SVC discriminant is determined by using genes that were found to differ clearly in their gene expression levels between the two groups as explanatory variables, and using this grouping as objective variables (e.g., -1 and +1). An optimizing objective function is represented by Formula 4 wherein e represents all input vectors, y represents an objective variable, a represents a Lagrange's undetermined multiplier vector, Q represents a positive definite matrix, and C represents a parameter for adjusting constrained conditions.

$$\min_{a} \quad \frac{1}{2} a^{T} Q a - e^{T} a$$
 Formula 4

subject to $y^T a = 0, 0 \le a_i \le C, i = 1,..., I$,

[0566] Formula 5 is a finally obtained discriminant, and an associated group can be determined on the basis of the sign of a value obtained according to the discriminant. In this Formula, x represents a support vector, y represents a

label indicating the association of a group, a represents the corresponding coefficient, b represents a constant term, and K represents a kernel function.

$$f(x) = \operatorname{sgn}\left(\sum_{i=1}^{l} y_i a_i K(x_i, x) + b\right)$$
 Formula 5

5

10

15

20

25

30

35

40

45

50

55

[0567] For example, a RBF kernel defined by Formula 6 can be used as the kernel function. In this Formula, x represents a support vector, and y represents a kernel parameter for adjusting the complexity of the hyperplane.

$$K(x_i, x_j) = \exp(-r||x_i - x_j||^2)$$
 $r < 0$ Formula 6

[0568] In addition, an approach such as neural network, k-nearest neighbor algorithms, decision trees, or logistic regression analysis can be selected as a method for determining or evaluating the presence and/or absence of expression of a lung cancer-derived target gene in a sample derived from a subject, or for evaluating the expression level thereof by comparison with a control derived from a healthy subject.

[0569] The method of the present invention can comprise, for example, the following steps (a), (b), and (c):

- (a) a step of measuring an expression level of a target gene in tissues containing lung cancer-derived genes derived from lung cancer patients and/or samples that are already known to contain no lung cancer-derived gene derived from healthy subjects, using the polynucleotide, the kit, or the device (e.g., DNA chip) for detection according to the present invention;
- (b) a step of preparing the discriminants of Formulas 1 to 3, 5, and 6 described above from the measurement values of the expression level measured in the step (a); and
- (c) a step of measuring an expression level of the target gene in a sample derived from a subject using the polynucleotide, the kit, or the device (e.g., DNA chip) for detection according to the present invention, assigning the obtained measurement value to the discriminants prepared in the step (b), and determining or evaluating the presence and/or absence of expression of the lung cancer-derived target gene in the sample, or evaluating the expression level thereof by comparison with a healthy subject-derived control, on the basis of the obtained results. In this context, in the discriminants of Formulas 1 to 3, 5, and 6, x represents an explanatory variable and includes a value obtained by measuring a polynucleotide selected from the polynucleotides described in Section 2 above, or a fragment thereof, etc. Specifically, the explanatory variable for discriminating a lung cancer patient from a healthy subject according to the present invention is a gene expression level selected from, for example,
 - (1) a gene expression level in the serum of a lung cancer patient or a healthy subject measured by any DNA comprising 15 or more consecutive nucleotides in a nucleotide sequence represented by SEQ ID NO: 1 optionally in combination with any of SEQ ID NOs 2 to 125, 127 to 130, 132 to 134 and 561 to 578 or a complementary sequence thereof,

[0570] As described above, for the method for determining or evaluating the presence and/or absence of a lung cancerderived gene in a sample derived from a subject, the preparation of a discriminant requires a discriminant prepared in a training cohort. For enhancing the discriminant accuracy of the discriminant, it is necessary for the discriminant to use genes that show clear difference between two groups in the training cohort.

[0571] Each gene that is used for an explanatory variable in a discriminant is preferably determined as follows. First, comprehensive gene expression levels of a lung cancer patient group and comprehensive gene expression levels of a healthy subject group in a training cohort are used as a data set, the degree of difference in the expression level of each gene between the two groups is determined through the use of, for example, the P value of t test, which is parametric analysis, or the P value of Mann-Whitney's U test or Wilcoxon test, which is nonparametric analysis.

[0572] The gene can be regarded as being statistically significant when the critical rate (significance level) of the P value obtained by the test is smaller than, for example, 5%, 1%, or 0.01%.

[0573] In order to correct an increased probability of type I error attributed to the repetition of a test, a method known in the art, for example, Bonferroni or Holm method, can be used for the correction (e.g., Yasushi Nagata et al., "Basics of statistical multiple comparison methods", Scientist Press Co., Ltd. (2007)). As an example of the Bonferroni correction, for example, the P value obtained by a test is multiplied by the number of repetitions of the test, i.e., the number of genes used in the analysis, and the obtained value can be compared with a desired significance level to suppress a probability

of causing type I error in the whole test.

10

15

20

30

35

40

45

50

55

[0574] Instead of the statistical test, the absolute value (fold change) of an expression ratio of a median value of each gene expression level between gene expression levels of a lung cancer patient group and gene expression levels of a healthy subject group may be calculated to select a gene that is used for an explanatory variable in a discriminant. Alternatively, ROC curves may be prepared using gene expression levels of a lung cancer patient group and a healthy subject group, and a gene that is used for an explanatory variable in a discriminant can be selected on the basis of an AUROC value.

[0575] Next, a discriminant that can be calculated by various methods described above is prepared using any number of genes having large difference in their gene expression levels determined here. Examples of the method for constructing a discriminant that produces the largest discriminant accuracy include a method of constructing a discriminant in every combination of genes that satisfy the significance level of P value, and a method of repetitively evaluating a discriminant while increasing the number of genes for use one by one in a descending order of difference in gene expression level (Furey TS. et al., 2000, Bioinformatics., Vol. 16, p. 906-14). A gene expression level of another independent lung cancer patient or healthy subject is assigned as an explanatory variable to this discriminant to calculate discriminant results of the group to which this independent lung cancer patient or healthy subject associates. Specifically, the found gene set for diagnosis and the discriminant constructed using the gene set for diagnosis can be evaluated in an independent sample group to find a more universal gene set for diagnosis capable of detecting lung cancer and a more universal method for discriminating lung cancer.

[0576] Split-sample method is preferably used for evaluating the discriminant performance (generality) of the discriminant. Specifically, a data set is divided into a training cohort and a validation cohort, and gene selection by a statistical test and discriminant preparation are performed in the training cohort. Accuracy, sensitivity, and specificity are calculated using results of discriminating a validation cohort according to the discriminant and a true group to which the validation cohort associates, to evaluate the discriminant performance. On the other hand, instead of dividing a data set, gene selection by a statistical test and discriminant preparation may be performed using all of samples, and accuracy, sensitivity, and specificity can be calculated by the discriminant of newly prepared samples according to the discriminant to evaluate the discriminant performance.

[0577] The present invention provides a polynucleotide for detection and for disease diagnosis useful in the diagnosis and treatment of lung cancer, a method for detecting lung cancer using the polynucleotide, and a kit and a device for the detection of lung cancer, comprising the polynucleotide. Particularly, in order to select a gene for diagnosis and prepare a discriminant so as to exhibit accuracy beyond a lung cancer diagnosis method using existing tumor markers CEA, a gene set for diagnosis and a discriminant for the method of the present invention, that exhibit accuracy beyond CEA, can be constructed, for example, by comparing genes expressed in serum derived from a patient confirmed to be negative using CEA but finally found to have lung cancer by detailed examination such as computed tomography using a contrast medium, with genes expressed in serum derived from a patient having no lung cancer.

[0578] For example, the gene set for diagnosis is set to any combination selected from one or two or more of the polynucleotides based on a nucleotide sequence represented by SEQ ID NO: 1 optionally together with any of SEQ ID NOs 2 to 125, 127 to 130, 132 to 134, and 561 to 578, or a complementary sequence thereof as described above, optionally one or two or more of the polynucleotides based on a nucleotide sequence represented by any of SEQ ID NOs: 126, 131 and 579, or a complementary sequence thereof, and optionally one or two or more of the polynucleotides based on a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174, or a complementary sequence thereof. Further, a discriminant is constructed using expression levels of the gene set for diagnosis in samples derived from class I lung cancer patients and samples derived from class II healthy subjects as a result of tissue diagnosis. As a result, the presence or absence of lung cancer-derived genes in an unknown sample can be determined with 100% accuracy at the maximum by measuring expression levels of the gene set for diagnosis in the unknown sample.

Examples

[0579] Hereinafter, the present invention will be described further specifically with reference to Examples below. However, the scope of the present invention is not intended to be limited by these Examples.

[Reference Example 1]

<Collection of samples from lung cancer patients and healthy subjects>

[0580] Serum was collected using VENOJECT II vacuum blood collecting tube VP-AS109K60 (Terumo Corp.) from each of 100 healthy subjects and 17 lung cancer patients (8 lung adenocarcinoma cases involving 6 cases with T2N0M0, 1 case with T2N1M0, and 1 case with T2N2M0; and 8 squamous cell cancer cases involving 5 cases with T2N0M0, 1 case with T4N0M0, 1 case with T4N0M0, and 1 case with T4N2M0) confirmed to have no primary cancer other than

lung cancer after acquisition of informed consent, and used as a training cohort. Likewise, serum was collected using VENOJECT II vacuum blood collecting tube VP-AS109K60 (Terumo Corp.) from each of 50 healthy subjects and 8 lung cancer patients (5 adenocarcinoma cases involving 3 cases with T2N0M0, 1 case with T3N0M0, and 1 case with T4N2M0; and 3 squamous cell cancer cases involving 1 case with T2N0M0, 1 case with T4N0M0, and 1 case with T2N1M0) confirmed to have no primary cancer other than lung cancer after acquisition of informed consent, and used as a validation cohort. The histological types and stages of these lung cancer samples are summarized in Tables 2-1 and 2-2.

<Extraction of total RNA>

- [0581] Total RNA was obtained from 300 μL of the serum sample obtained from each of 175 persons in total of 150 healthy subjects and 25 lung cancer patients included in the training cohort and the validation cohort, using a reagent for RNA extraction in 3D-Gene(TM) RNA extraction reagent from liquid sample kit (Toray Industries, Inc.) according to the protocol provided by the manufacturer.
- 15 <Measurement of gene expression level>

[0582] miRNAs in the total RNA obtained from the serum sample of each of 175 persons in total of 150 healthy subjects and 25 lung cancer patients included in the training cohort and the validation cohort were fluorescently labeled using 3D-Gene(™) miRNA Labeling kit (Toray Industries, Inc.) according to the protocol (ver 2.20) provided by the manufacturer. The oligo DNA chip used was 3D-Gene^(™) Human miRNA Oligo chip (Toray Industries, Inc.) with attached probes having sequences complementary to 2,555 miRNAs among the miRNAs registered in miRBase Release 20. Hybridization between the miRNAs in the total RNA and the probes on the DNA chip under stringent conditions and washing following the hybridization were performed according to the protocol provided by the manufacturer. The DNA chip was scanned using 3D-Gene^(™) scanner (Toray Industries, Inc.) to obtain images. Fluorescence intensity was digitized using 3D-Gene(TM) Extraction (Toray Industries, Inc.). The digitized fluorescence intensity was converted to a logarithmic value having a base of 2 and used as a gene expression level, from which a blank value was subtracted. A missing value was replaced with a value obtained by subtracting 0.1 from a logarithmic value of the smallest value of the gene expression level in each DNA chip. As a result, the comprehensive gene expression levels of the miRNAs in the serum were obtained for the 25 lung cancer patients and the 150 healthy subjects. Calculation and statistical analysis using the digitized gene expression levels of the miRNAs were carried out using R language 3.0.2 (R Development Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, URL http://www.Rproject.org/) and MASS package 7.3-30 (Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0).

35 [Reference Example 2]

<Collection of samples from patients with cancers other than lung cancer>

[0583] Serum was collected using VENOJECT II vacuum blood collecting tube VP-AS109K60 (Terumo Corp.) from each of 75 pancreatic cancer patients, 62 biliary tract cancer patients, 32 colorectal cancer patients, 35 stomach cancer patients, 32 esophageal cancer patients, 33 liver cancer patients, and 13 benign pancreaticobiliary disease patients confirmed to have no cancer in other organs after acquisition of informed consent, and used as a training cohort together with the samples of 17 lung cancer patients and 99 healthy subjects of Reference Example 1. Likewise, serum was collected using VENOJECT II vacuum blood collecting tube VP-AS109K60 (Terumo Corp.) from each of 28 pancreatic cancer patients, 38 biliary tract cancer patients, 18 colorectal cancer patients, 15 stomach cancer patients, 18 esophageal cancer patients, 19 liver cancer patients, and 8 benign pancreaticobiliary disease patients confirmed to have no cancer in other organs after acquisition of informed consent, and used as a validation cohort together with the samples of 8 lung cancer patients confirmed to have no cancer in organs except for lung cancer and 51 healthy subjects of Reference Example 1. Subsequent operations were conducted in the same way as in Reference Example 1.

50

30

40

[Table 2-1]

	-					
Training cohort						
	Sample name	Cancerstage				
	LC01	T2N0M0				
	LC02	T2N0M0				
	LC03	T2N0M0				
	LC05	T2N0M0				
Lung adenocarcinoma	LC07	T2N0M0				
	LC08	T2N2M0				
	LC11	T2N0M0				
	LC12	T2N1M0				
	LC14	T2N0M0				
	LC15	T2N0M0				
	LC18	T2N0M0				
	LC20	T2N0M0				
Cauchaus call concer	LC21	T2N0M0				
Squamous cell cancer	LC22	T4N2M0				
	LC23	T2N1M0				
	LC24	T2N0M0				
	LC25	T4N0M0				

[Table 2-2]

Validation cohort		
	Sample name	Cancerstage
Lung adenocarcinoma	LC04	T2N0M0
	LC06	T2N0M0
	LC09	T3N0M0
	LC10	T4N2M0
	LC13	T2N0M0
	LC16	T2N1M0
Squamous cell cancer	LC17	T2N0M0
	LC19	T4N0M0

[Example 1]

5

10

15

20

25

30

35

40

45

50 <Selection of gene marker using samples in the training cohort, and method for evaluating lung cancer discriminant performance of single gene marker using samples in the validation cohort>

[0584] In this Example, a gene marker for discriminating a lung cancer patient from a healthy subject was selected from the training cohort and studied in samples of the validation cohort independent of the training cohort, for a method for evaluating the lung cancer discriminant performance of each selected gene marker alone.

[0585] Specifically, first, the miRNA expression levels in the training cohort and the validation cohort obtained in the preceding Reference Examples were combined and normalized by quantile normalization.

[0586] Next, genes for diagnosis were selected in the training cohort. Here, in order to acquire diagnostic markers

with higher reliability, only genes having a gene expression level of 2^6 or higher in 50% or more of the samples in either of the lung cancer patient group in the training cohort or the healthy subject group in the training cohort were selected. In order to further acquire statistically significant genes for discriminating a lung cancer patient group from a healthy subject group, the P value obtained by two-sample t-test assuming equal variance as to each gene expression level was corrected by the Bonferroni method, and genes that satisfied p < 0.01 were acquired as gene markers for use in explanatory variables of a discriminant. The result is described in Table 3.

10

20

30

35

45

50

55

[0587] In this way, hsa-miR-6768-5p, hsa-miR-6836-3p, hsa-miR-6782-5p, hsa-miR-3663-3p, hsa-miR-1908-3p, hsamiR-6726-5p, hsa-miR-4258, hsa-miR-1343-3p, hsa-miR-4516, hsa-miR-6875-5p, hsa-miR-4651, hsa-miR-6825-5p, hsa-miR-6840-3p, hsa-miR-6780b-5p, hsa-miR-6749-5p, hsa-miR-8063, hsa-miR-6784-5p, hsa-miR-3679-5p, hsa-miR-3184-5p, hsa-miR-663b, hsa-miR-6880-5p, hsa-miR-1908-5p, hsa-miR-92a-2-5p, hsa-miR-7975, hsa-miR-7110-5p, hsa-miR-6842-5p, hsa-miR-6857-5p, hsa-miR-5572, hsa-miR-3197, hsa-miR-6131, hsa-miR-6889-5p, hsa-miR-4454, hsa-miR-1199-5p, hsa-miR-1247-3p, hsa-miR-6800-5p, hsa-miR-6872-3p, hsa-miR-4649-5p, hsa-miR-6791-5p, hsamiR-4433b-3p, hsa-miR-3135b, hsa-miR-128-2-5p, hsa-miR-4675, hsa-miR-4472, hsa-miR-6785-5p, hsa-miR-6741-5p, hsa-miR-7977, hsa-miR-3665, hsa-miR-128-1-5p, hsa-miR-4286, hsa-miR-6765-3p, hsa-miR-4632-5p, hsa-miR-365a-5p, hsa-miR-6088, hsa-miR-6816-5p, hsa-miR-6885-5p, hsa-miR-711, hsa-miR-6765-5p, hsa-miR-3180, hsa-miR-4442, hsa-miR-4792, hsa-miR-6721-5p, hsa-miR-6798-5p, hsa-miR-3162-5p, hsa-miR-6126, hsa-miR-4758-5p, hsa-miR-2392, hsa-miR-486-3p, hsa-miR-6727-5p, hsa-miR-4728-5p, hsa-miR-6746-5p, hsa-miR-4270, hsa-miR-3940-5p, hsa-miR-4728-5p, hsmiR-4725-3p, hsa-miR-7108-5p, hsa-miR-3656, hsa-miR-6879-5p, hsa-miR-6738-5p, hsa-miR-1260a, hsa-miR-4446-3p, hsa-miR-3131, hsa-miR-4463, hsa-miR-3185, hsa-miR-6870-5p, hsa-miR-6779-5p, hsa-miR-1273g-3p, hsamiR-8059, hsa-miR-4697-5p, hsa-miR-4674, hsa-miR-4433-3p, hsa-miR-4257, hsa-miR-1915-5p, hsa-miR-4417, hsa-miR-4059, hsa-miR-405 miR-1343-5p, hsa-miR-6781-5p, hsa-miR-4695-5p, hsa-miR-1237-5p, hsa-miR-6775-5p, hsa-miR-7845-5p, hsa-miR-4746-3p, hsa-miR-7641, hsa-miR-7847-3p, hsa-miR-6806-5p, hsa-miR-4467, hsa-miR-4726-5p, hsa-miR-4648, hsamiR-6089, hsa-miR-1260b, hsa-miR-4532, hsa-miR-5195-3p, hsa-miR-3188, hsa-miR-6848-5p, hsa-miR-1233-5p, hsa-miR-1233-5p, hsa-miR-1233-5p, hsa-miR-6089, hsamiR-6717-5p, hsa-miR-3195, hsa-miR-6757-5p, hsa-miR-8072, hsa-miR-4745-5p, hsa-miR-6511a-5p, hsa-miR-6776-5p, hsa-miR-371a-5p, hsa-miR-1227-5p, hsa-miR-7150, hsa-miR-1915-3p, hsa-miR-187-5p, hsa-miR-614, hsamiR-19b-3p, hsa-miR-1225-5p, hsa-miR-451a, hsa-miR-939-5p, hsa-miR-223-3p, hsa-miR-1228-5p, hsa-miR-125a-3p, hsa-miR-92b-5p, and hsa-miR-22-3p genes, and polynucleotides consisting of the nucleotide sequences of SEQ ID NOs: 1 to 134 related thereto were found.

[0588] Among them, genes newly found as markers for examining the presence or absence of lung cancer are polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 125, 127 to 130, and 132 to 134. [0589] A discriminant for determining the presence or absence of lung cancer was further prepared by Fisher's discriminant analysis with the expression levels of these genes as an index. Specifically, any newly found polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 1 to 134 in the training cohort was apply for Formula 2 above to construct a discriminant. Calculated accuracy, sensitivity, and specificity are shown in Table 4. In this respect, a discriminant coefficient and a constant term are shown in Table 5.

[0590] Accuracy, sensitivity, and specificity in the validation cohort were calculated using the discriminant thus prepared, and the discriminant performance of the selected polynucleotides was validated using independent samples (Table 4). For example, the expression level measurement value of the nucleotide sequence represented by SEQ ID NO: 1 was compared between the healthy subjects (100 persons) and the lung cancer patients (17 persons) in the training cohort. As a result, the gene expression level measurement values were found to be significantly lower in the lung cancer patient group than in the healthy subject group (see the left diagram of Figure 2). These results were also reproducible for the healthy subjects (50 persons) and the lung cancer patients (8 persons) in the validation cohort (see the right diagram of Figure 2). Likewise, the results obtained about the other polynucleotides shown in SEQ ID NOs: 2 to 134 showed that the gene expression level measurement values were significantly lower (-) or higher (+) in the lung cancer patient group than in the healthy subject group (Table 3). These results were able to be validated in the validation cohort. For example, as for this nucleotide sequence represented by SEQ ID NO: 1, the number of samples that were correctly identified in the detection of lung cancer was calculated using the threshold (10.08) that was set in the training cohort and discriminated between the two groups. As a result, 7 true positives, 50 true negatives, 0 false positives, and 1 false negative were obtained. From these values, 98.3% accuracy, 87.5% sensitivity, and 100% specificity were obtained as detection performance. In this way, the detection performance was calculated as to all of the polynucleotides shown in SEQ ID NOs: 1 to 134, and described in Table 4.

41, 42, 44, 65, 124, 125, and 133 can discriminate, each alone, lung cancer in the validation cohort with sensitivity beyond the existing markers CEA and CYFRA21-1.

[0592] For example, 10 polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 2, 3, 11, 13, 20, 21, 22, 30, 31, and 37 were able to correctly determine lung cancer as to all of 4 samples from lung adenocarcinoma or squamous cell cancer having a tumor size of less than 7 cm and having no lymph node metastasis, contained in the validation cohort. Thus, these polynucleotides can detect even relatively early lung cancer and contributes to the early diagnosis of lung cancer.

5

10		[Table 3]				
	SEQ ID NO:	Gene name	P value after Bonferroni correction	Expression level in lung cancer patient with respect to healthy subject		
15	1	hsa-miR-6768-5p	6.71E-24	+		
	2	hsa-miR-6836-3p	1.44E-20	-		
	3	hsa-miR-6782-5p	2.89E-20	+		
20	4	hsa-miR-3663-3p	2.77E-18	-		
20	5	hsa-miR-1908-3p	3.58E-18	-		
	6	hsa-miR-6726-5p	1.02E-17	-		
	7	hsa-miR-4258	3.38E-17	-		
25	8	hsa-miR-1343-3p	7.45E-17	-		
	9	hsa-miR-4516	7.91E-17	-		
	10	hsa-miR-6875-5p	3.69E-16	+		
30	11	hsa-miR-4651	5.14E-16	-		
30	12	hsa-miR-6825-5p	1.28E-14	+		
	13	hsa-miR-6840-3p	2.69E-14	-		
35	14	hsa-miR-6780b-5p	3.47E-14	+		
	15	hsa-miR-6749-5p	3.82E-14	-		
	16	hsa-miR-8063	3.58E-13	-		
	17	hsa-miR-6784-5p	7.06E-13	+		
40	18	hsa-miR-3679-5p	7.64E-13	+		
40	19	hsa-miR-3184-5p	1.78E-12	+		
	20	hsa-miR-663b	5.72E-12	-		
	21	hsa-miR-6880-5p	9.41E-12	+		
45	22	hsa-miR-1908-5p	1.84E-11	+		
	23	hsa-miR-92a-2-5p	1.85E-11	+		
	24	hsa-miR-7975	2.06E-11	-		
50	25	hsa-miR-7110-5p	2.64E-11	+		
00	26	hsa-miR-6842-5p	2.66E-11	+		
	27	hsa-miR-6857-5p	5.09E-11	+		
	28	hsa-miR-5572	7.39E-11	+		
55	29	hsa-miR-3197	8.45E-11	+		
	30	hsa-miR-6131	1.51E-10	-		

5	SEQ ID NO:	Gene name	P value after Bonferroni correction	Expression level in lung cancer patient with respect to healthy subject
	31 hs	hsa-miR-6889-5p	2.73E-10	+
	32	hsa-miR-4454	2.92E-10	-
10	33	hsa-miR-1199-5p	6.01E-10	-
	34	hsa-miR-1247-3p	7.10E-10	+
	35	hsa-miR-6800-5p	8.76E-10	+
15	36	hsa-miR-6872-3p	1.18E-09	-
	37	hsa-miR-4649-5p	1.37E-09	-
	38	hsa-miR-6791-5p	1.51E-09	+
22	39	hsa-miR-4433b-3p	1.57E-09	+
20	40	hsa-miR-3135b	1.78E-09	-
20	41	hsa-miR-128-2-5p	2.59E-09	-
	42	hsa-miR-4675	2.65E-09	-
	43	hsa-miR-4472	3.21E-09	+
25	44	hsa-miR-6785-5p	3.84E-09	-
	45	hsa-miR-6741-5p	6.85E-09	-
	46	hsa-miR -7977	8.90E-09	-
30	47	hsa-miR-3665	2.49E-08	-
	48	hsa-miR-128-1-5p	3.03E-08	+
	49	hsa-miR-4286	3.07E-08	-
	50	hsa-miR-6765-3p	3.14E-08	-
35	51	hsa-miR-4632-5p	4.02E-08	+
	52	hsa-miR-365a-5p	4.58E-08	+
	53	hsa-miR-6088	7.80E-08	-
40	54	hsa-miR-6816-5p	1.19E-07	+
	55	hsa-miR -6885-5p	1.59E-07	-
	56	hsa-miR-711	1.93E-07	+
	57	hsa-miR-6765-5p	2.99E-07	+
45	58	hsa-miR-3180	3.65E-07	+
	59	hsa-miR-4442	3.89E-07	-
	60	hsa-miR-4792	3.97E-07	+
50	61	hsa-miR-6721-5p	6.66E-07	+
	62	hsa-miR-6798-5p	8.81E-07	+
-	63	hsa-miR-3162-5p	1.07E-06	+
	64	hsa-miR-6126	1.26E-06	+
55	65	hsa-miR-4758-5p	1.35E-06	-
	66	hsa-miR-2392	1.58E-06	+

5	SEQ ID NO:	Gene name	P value after Bonferroni correction	Expression level in lung cancer patient with respect to healthy subject
	67	hsa-miR-486-3p	3.01E-06	-
	68	hsa-miR-6727-5p	3.06E-06	-
10	69	hsa-miR-4728-5p	3.61E-06	-
	70	hsa-miR-6746-5p	5.00E-06	-
	71	hsa-miR-4270	5.64E-06	-
	72	hsa-miR-3940-5p	6.33E-06	+
15 20	73	hsa-miR-4725-3p	6.79E-06	+
	74	hsa-miR-7108-5p	7.35E-06	+
	75	hsa-miR-3656	1.20E-05	+
20	76	hsa-miR-6879-5p	1.22E-05	+
20	77	hsa-miR-6738-5p	1.25E-05	-
	78	hsa-miR-1260a	1.51E-05	-
-	79	hsa-miR-4446-3p	1.67E-05	-
25	80	hsa-miR-3131	1.91E-05	-
-	81	hsa-miR-4463	2.63E-05	+
-	82	hsa-miR-3185	3.31E-05	+
30	83	hsa-miR-6870-5p	3.95E-05	+
	84	hsa-miR-6779-5p	4.61E-05	-
	85	hsa-miR-1273g-3p	4.73E-05	-
	86	hsa-miR-8059	5.08E-05	-
35	87	hsa-miR-4697-5p	5.16E-05	-
	88	hsa-miR-4674	7.31E-05	-
	89	hsa-miR-4433-3p	8.12E-05	+
40	90	hsa-miR-4257	9.79E-05	-
,0	91	hsa-miR-1915-5p	1.18E-04	-
	92	hsa-miR-4417	1.36E-04	+
	93	hsa-miR-1343-5p	1.45E-04	+
45	94	hsa-miR-6781-5p	1.54E-04	+
	95	hsa-miR-4695-5p	1.57E-04	+
	96	hsa-miR-1237-5p	1.80E-04	+
50	97	hsa-miR-6775-5p	2.34E-04	-
	98	hsa-miR-7845-5p	2.40E-04	+
-	99	hsa-miR-4746-3p	2.62E-04	+
	100	hsa-miR-7641	4.57E-04	-
55	101	hsa-miR-7847-3p	5.01E-04	-
	102	hsa-miR-6806-5p	5.86E-04	-

5	SEQ ID NO:	Gene name	P value after Bonferroni correction	Expression level in lung cancer patient with respect to healthy subject
	103	hsa-miR-4467	6.28E-04	+
	104	hsa-miR-4726-5p	6.35E-04	-
10	105	hsa-miR-4648	6.87E-04	+
	106	hsa-miR-6089	8.08E-04	+
	107	hsa-miR-1260b	8.29E-04	-
	108	hsa-miR-4532	8.69E-04	-
15	109	hsa-miR-5195-3p	1.02E-03	-
	110	hsa-miR-3188	1.12E-03	+
	111	hsa-miR-6848-5p	1.36E-03	+
20	112	hsa-miR-1233-5p	1.41E-03	-
20	113	hsa-miR-6717-5p	1.63E-03	+
	114	hsa-miR-3195	1.95E-03	+
25	115	hsa-miR-6757-5p	2.65E-03	-
	116	hsa-miR-8072	3.49E-03	+
	117	hsa-miR-4745-5p	4.17E-03	-
	118	hsa-miR-6511a-5p	4.77E-03	-
30	119	hsa-miR-6776-5p	5.08E-03	+
	120	hsa-miR-371a-5p	6.92E-03	-
	121	hsa-miR-1227-5p	7.47E-03	+
	122	hsa-miR-7150	8.50E-03	+
35	123	hsa-miR-1915-3p	9.50E-03	+
	124	hsa-miR-187-5p	1.56E-18	-
	125	hsa-miR-614	2.22E-14	-
40	126	hsa-miR-19b-3p	1.77E-13	+
	127	hsa-miR-1225-5p	2.30E-08	+
	128	hsa-miR-451a	5.96E-08	+
	129	hsa-miR-939-5p	1.29E-07	+
45	130	hsa-miR-223-3p	4.79E-06	+
	131	hsa-miR-1228-5p	5.66E-06	+
	132	hsa-miR-125a-3p	1.47E-04	-
50	133	hsa-miR-92b-5p	2.51E-04	+
	134	hsa-miR-22-3p	6.49E-04	+

[Example 2]

5

10

20

30

35

45

50

55

<Method for evaluating lung cancer discriminant performance by combination of multiple gene markers using samples in the validation cohort>

[0593] In this Example, a method for evaluating lung cancer discriminant performance by a combination of the gene markers selected in Example 1 was studied. Specifically, Fisher's discriminant analysis was conducted as to 8,910 combinations of two polynucleotides comprising at least one or more of the expression level measurement values of any of the newly found polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 125, 127 to 130, and 132 to 134 among the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 134 selected in Example 1, to construct a discriminant for determining the presence or absence of lung cancer. Next, accuracy, sensitivity, and specificity in the validation cohort were calculated using the discriminant thus prepared, and the discriminant performance of the selected polynucleotides was validated using the independent samples.

[0594] For example, the expression level measurement values of the nucleotide sequences represented by SEQ ID NO: 1 and SEQ ID NO: 2 were compared between the healthy subjects (100 persons) and the lung cancer patients (17 persons) in the training cohort. As a result, a scatter diagram that significantly separated the gene expression level measurement values of the lung cancer patient group from those of the healthy subject group was obtained (see the left diagram of Figure 3). These results were also reproducible for the healthy subjects (50 persons) and the lung cancer patients (8 persons) in the validation cohort (see the right diagram of Figure 3). Likewise, a scatter diagram that significantly separated the gene expression level measurement values of the lung cancer patient group from those of the healthy subject group was also obtained as to the other combinations of two expression level measurement values comprising at least one or more of the expression level measurement values of any of the newly found polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 125, 127 to 130, and 132 to 134 among the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 134. These results were able to be validated in the validation cohort. For example, as for these nucleotide sequences represented by SEQ ID NO: 1 and SEQ ID NO: 2, the number of samples that correctly identified in the detection of lung cancer was calculated using the function (0 = - 1.42x + y + 4.7) that was set in the training cohort and discriminated between the two groups. As a result, 7 true positives, 50 true negatives, 0 false positives, and 1 false negative were obtained. From these values, 98.3% accuracy, 87.5% sensitivity, and 100% specificity were obtained as detection performance. In this way, the detection performance was calculated as to all of the combinations of two expression level measurement values comprising at least one or more of the expression level measurement values of any of the newly found polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 125, 127 to 130, and 132 to 134 among the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 134. Among them, 133 combinations comprising the expression level measurement value of the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 1 and the detection performance thereof were described in Table 6 as an example. For example, all of 9 combinations of the expression level measurement values of the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 and 6, SEQ ID NOs: 1 and 11, SEQ ID NOs: 1 and 19, SEQ ID NOs: 1 and 34, SEQ ID NOs: 1 and 38, SEQ ID NOs: 1 and 52, SEQ ID NOs: 1 and 53, SEQ ID NOs: 1 and 56, and SEQ ID NOs: 1 and 113 exhibited sensitivity of 100% in the validation cohort. Likewise, all of the 133 combinations of two polynucleotides consisting of the nucleotide sequence represented by SEQ ID NO: 1 and a nucleotide sequence represented by any of SEQ ID NOs: 2 to 134 exhibited sensitivity of 75% or higher. These values of sensitivity were higher than the sensitivity of the existing tumor markers CEA (69%) and CYFRA21-1 (43%) in blood (Non Patent Literature 3). Likewise, 5,742 combinations of the measurement values of the polynucleotides having sensitivity beyond the existing markers CEA and CYFRA21-1 were obtained in the validation cohort. All of the nucleotide sequences 1 to 134 described in Table 3 obtained in Example 1 were employed at least once in these combinations. Thus, the combinations of two of the polynucleotides that consist of the nucleotide sequences represented by SEQ ID NOs: 1 to 134 also produced excellent lung cancer detection

[0595] Markers for the detection of lung cancer with better sensitivity are obtained by further combining 3, 4, 5, 6, 7, 8, 9, 10 or more of the expression level measurement values of the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 134. For example, the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 134 selected in Example 1 were measured to obtain their expression levels between the healthy subject group and the lung cancer group in the validation cohort. All of the polynucleotides were ranked in the descending order of their P values based on the Student's t-test which indicates statistical significance of difference between groups (i.e., one having the lowest P value was ranked in the first place), and lung cancer detection sensitivity was evaluated using combinations of one or more polynucleotides to which the polynucleotides were added one by one from the top to the bottom according to the rank. In short, the order in which the polynucleotides were combined in this evaluation is in reverse in terms of SEQ ID NOs from SEQ ID NO: 134 to SEQ ID NOs: 133, 132, ... shown in Table 3. As a result, the sensitivity in the validation cohort was 62.5% for 1 polynucleotide (SEQ ID NO: 134), 75% for 3 polynu-

cleotides (SEQ ID NOs: 132 to 134), 87.5% for 5 polynucleotides (SEQ ID NOs: 130 to 134), 100% for 6 polynucleotides (SEQ ID NOs: 129 to 134), 100% for 10 polynucleotides (SEQ ID NOs: 125 to 134), 100% for 20 polynucleotides (SEQ ID NOs: 115 to 134), 100% for 30 polynucleotides (SEQ ID NOs: 105 to 134), 100% for 50 polynucleotides (SEQ ID NOs: 85 to 134), 100% for 80 polynucleotides (SEQ ID NOs: 55 to 134), 100% for 120 polynucleotides (SEQ ID NOs: 15 to 134), and 100% for 134 polynucleotides (SEQ ID NOs: 1 to 134).

[0596] These results demonstrated that a combination of multiple polynucleotides can produce higher lung cancer discriminant performance than that of each polynucleotide alone or a combination of a fewer number of polynucleotides. In this context, the combinations of multiple polynucleotides are not limited to the combinations of the polynucleotides added in the order of statistically significant difference as described above, and any combination of multiple polynucleotides can be used in the detection of lung cancer.

10

[0597] From these results, it can be concluded that all of the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 134 serve as excellent markers for the detection of lung cancer.

[Table 4]

	[1able 4]						
15			Training cohort			Validation cohort	
	SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
	1	97.4	94.1	98	98.3	87.5	100
20	2	94.9	82.4	97	100	100	100
	3	97.4	82.4	100	96.6	87.5	96
	4	94	70.6	Specificity (%) Accuracy (%) Ser 98 98.3 97 100	62.5	98	
	5	95.7	76.5	99	96.6	75	100
25	6	92.3	64.7	97	93.1	62.5	98
	7	94.9	76.5	98	Validation cohort Accuracy (%) Sensitivity (%) 98.3 87.5 100 100 96.6 100 93.1 62.5 96.6 75 93.1 62.5 94.8 75 94.8 75 94.8 87.5 93.1 87.5 94.8 87.5 98.3 87.5 98.3 87.5 94.8 87.5 93.1 87.5 93.1 87.5 93.1 75 98.3 87.5 93.1 62.5 94.8 87.5 93.1 62.5 94.8 87.5 93.1 62.5 94.8 87.5 93.1 62.5 94.8 87.5 93.1 62.5 94.8 87.5 94.8 87.5 94.8 87.5 94.8 <td>98</td>	98	
	8	94.9	94.1	95	94.8	75	98
30	9	97.4	82.4	100	98.3	87.5	100
30	10	96.6	82.4	99	91.4	87.5	92
	11	94.9	76.5	98	96.6	87.5	98
35	12	96.6	88.2	98	93.1	87.5	94
	13	92.3	64.7	97	94.8	87.5	96
	14	92.3	70.6	96	98.3	.1 87.5 .8 87.5 .3 87.5 .3 87.5	100
	15	95.7	82.4	98	98.3	87.5	100
40	16	91.5	76.5	94	94.8	87.5	96
	17	94	82.4	96	93.1	87.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5 100 75	94
	18	94.9	70.6	99	100	100	100
	19	89.7	64.7	94	93.1	75	96
45	20	93.2	58.8	99	98.3	87.5	100
	21	93.2	64.7	98	93.1	62.5	98
	22	91.5	64.7	96	94.8	87.5	96
50	23	94	70.6	98	87.9	37.5	96
	24	93.2	58.8	99	91.4	50	98
	25	89.7	64.7	94	91.4	62.5	96
	26	93.2	64.7	98	94.8	87.5	96
55	27	93.2	76.5	96	94.8	87.5	96
	28	92.3	82.4	94	93.1	87.5	94
			1			i	i

			Training cohort		Validation cohort		
5	SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
J	29	89.7	52.9	96	96.6	87.5	98
	30	89.7	35.3	99	93.1	62.5	98
	31	90.6	47.1	98	94.8	racy (%) Sensitivity (%) 6.6 87.5 3.1 62.5 4.8 62.5 1.4 50 6.6 87.5 3.1 75 3.1 50 9.7 50 3.1 50 6.6 87.5 4.5 50 1.4 37.5 6.6 75 6.6 75 1.4 50 3.1 75 7.9 37.5 7.9 50 3.1 50	100
10	32	OC Accuracy (%) Sensitivity (%) Specificity (%) 89.7 52.9 96 89.7 35.3 99 90.6 47.1 98 93.2 58.8 99 92.3 64.7 97 89.7 41.2 98 89.7 52.9 96 92.3 64.7 97 88.9 41.2 97 87.2 47.1 94 90.6 58.8 96 91.5 47.1 99 88 47.1 98 90.6 47.1 98 91.5 52.9 98 90.6 47.1 99 88 47.1 95 91.5 47.1 99 88 47.1 97 92.3 52.9 99 88 41.2 96 87.2 41.2 95 88.9 47.1 99	91.4	50	98		
	33	92.3	64.7	97	96.6	Sensitivity (%) 87.5 62.5 62.5 50 87.5 75 50 87.5 50 37.5 75 50 75 50 75 50 75 50 75 50 75 50 75 50 75 50 75 50 75 50 75	98
	34	89.7	41.2	98	93.1	75	96
15	35	89.7	52.9	96	93.1	(%) Sensitivity (%) 87.5 62.5 62.5 50 87.5 75 50 50 87.5 75 50 37.5 75 75 75 50 75 37.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62	100
,0	36	92.3	64.7	97	89.7		96
	37	88.9	41.2	98 99 97 98 96 97 97 97 94 96 99 98 98 99 99 99 95 99 97 99 96 95 99 99 96 99 99 99 99 99	93.1	50	100
	38	87.2	47.1	94	96.6	87.5	98
20	39	90.6	58.8	96	84.5	50	90
	40	91.5	47.1	99	91.4	37.5	100
	41	91.5	52.9	98	96.6	75	100
25	42	90.6	47.1	98	96.6	75	100
	43	94	64.7	99	91.4	50	98
	44	88	47.1	95	93.1	75	96
	45	91.5	47.1	99	87.9	37.5	96
30	46	89.7	47.1	97	87.9	50	94
	47	92.3	52.9	99	93.1	50	100
	48	88	41.2	96	87.9	62.5	92
35	49	87.2	41.2	95	89.7	62.5	94
	50	88.9	47.1	96	87.9	37.5	96
	51	92.3	47.1	100	94.8	62.5	100
	52	91.5	47.1	99	94.8	62.5	100
40	53	91.5	47.1	99	91.4	62.5	96
	54	86.3	41.2	94	94.8	62.5	100
	55	90.6	41.2	99	94.8	62.5	100
45	56	90.6	58.8	96	94.8	62.5	100
	57	91.5	52.9	98	93.1	62.5	98
	58	88.9	35.3	98	93.1	62.5	98
50	59	86.3	41.2	94	87.9	50	94
50	60	89.7	47.1	97	89.7	37.5	98
	61	90.6	52.9	97	86.2	37.5	94
	62	87.2	29.4	97	87.9	62.5	92
55	63	88.9	41.2	97	82.8	0	96
	64	89.7	35.3	99	93.1	50	100
	65	89.7	41.2	98	94.8	75	98

			Training cohort		Validation cohort		
5	SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
J	66	89.7	29.4	100	91.4	37.5	100
	67	90.6	41.2	99	94.8	62.5	100
	68	88	47.1	95	Decificity (%) Accuracy (%) Sensitivity (%) 100 91.4 37.5 99 94.8 62.5	98	
10	69	88	35.3	97	91.4	50	98
	70	87.2	41.2	95	86.2	Sensitivity (%) 37.5 62.5 25 50 25 37.5 12.5 37.5 62.5 62.5 62.5 37.5 50 50 25 12.5 37.5 12.5 37.5 12.5 37.5 12.5 37.5 12.5 50 62.5 12.5 37.5 50 62.5 12.5 62.5	96
	71	88	35.3	97	84.5	25	94
15	72	88	23.5	99	89.7	ccuracy (%) Sensitivity (%) 91.4 37.5 94.8 62.5 87.9 25 91.4 50 86.2 25 84.5 25 89.7 37.5 86.2 12.5 87.9 37.5 93.1 62.5 87.9 37.5 87.9 50 93.1 50 87.9 12.5 87.9 12.5 87.9 12.5 87.9 12.5 86.2 12.5 86.2 12.5 86.2 37.5 91.4 37.5 86.2 25 87.9 50 91.4 37.5 86.2 25 87.9 50 91.4 62.5 84.5 12.5 94.8 62.5 89.7 37.5 81 0 94.8	98
,0	73	88	35.3	97	86.2		98
	74	89.7	35.3	99	87.9	37.5	96
	75	88	41.2	96	93.1	62.5	98
20	76	89.7	35.3	99	94.8	62.5	100
	77	88.9	35.3	98	87.9	37.5	96
	78	88	35.3	97	87.9	50	94
25	79	88.9	29.4	99	93.1	50	100
	80	88.9	29.4	99	87.9	25	98
	81	88	23.5	99	87.9	12.5	100
	82	83.8	11.8	96	87.9	37.5	96
30	83	88.9	23.5	100	87.9	12.5	100
30	84	87.2	23.5	98	87.9	12.5	100
	85	89.7	47.1	97	94.8	62.5	100
35	86	87.2	29.4	97	86.2	12.5	98
	87	88	23.5	99	86.2	37.5	94
	88	85.5	29.4	95	91.4	37.5	100
	89	87.2	29.4	97	86.2	25	96
40	90	88.9	35.3	98	87.9	50	94
	91	89.7	41.2	98	91.4	62.5	96
	92	86.3	23.5	97	84.5	12.5	96
45	93	89.7	41.2	98	94.8	62.5	100
	94	87.2	17.6	99	81	0	94
	95	89.7	41.2	98	94.8	62.5	100
	96	87.2	29.4	97	89.7	37.5	98
50	97	86.3	17.6	98	81	0	94
	98	89.7	35.3	99	87.9	37.5	96
	99	87.2	17.6	99	94.8	62.5	100
55	100	84.5	18.8	95	86.2	25	96
	101	83.8	11.8	96	84.5	0	98
	102	86.3	5.9	100	91.4	37.5	100

(continued)

			Training cohort	Validation cohort		Validation cohort	
5	SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
3	103	83.8	11.8	96	86.2		98
	104	84.6	17.6	96	86.2	25	96
	105	85.5	11.8	98	89.7	25	100
10	106	89.7	41.2	98	89.7	37.5	98
	107	87.2	23.5	98	91.4	50	98
	108	88	23.5	99	91.4	acy (%) Sensitivity (%) 6.2 12.5 6.2 25 9.7 25 9.7 37.5 1.4 50 11.4 37.5 7.9 25 6.2 0 9.7 25 4.5 25 9.7 25 9.7 25 6.2 0 9.7 25 9	100
15	109	87.2	17.6	99	87.9	25	98
	110	86.3	23.5	97	89.7	Sensitivity (%) 12.5 25 25 37.5 50 37.5 25 25 25 25 25 25 25 25 25	100
	111	85.5	11.8	98	86.2	25	96
	112	86.3	17.6	98	86.2	0	100
20	113	84.6	23.5	95	89.7	25	100
	114	86.3	23.5	97	84.5	25	94
	115	82.9	0	97	89.7	25	100
25	116	88	23.5	99	89.7	25	100
	117	88	17.6	100	89.7	25	100
	118	84.6	11.8	97	86.2	0	100
	119	85.5	5.9	99	89.7	86.2 0 89.7 25	100
	120	84.6	0	99	84.5	0	98
	121	88.9	23.5	100	87.9	12.5	100
	122	88	17.6	100	89.7	25	100
	123	84.6	5.9	98	94.8	62.5	100
	124	99.1	94.1	100	96.6	75	100
	125	94	76.5	97	93.1	75	96
	126	95.7	82.4	98	93.1	62.5	98
40	127	89.7	52.9	96	93.1	50	100
	128	93.2	58.8	99	89.7	37.5	98
	129	91.5	58.8	97	86.2	50	92
45	130	94	58.8	100	94.8	62.5	100
.0	131	84.6	17.6	96	87.9	25	98
	132	89.7	35.3	99	89.7	25	100
50	133	89.7	35.3	99	96.6	75	100
50	134	87.2	23.5	98	86.2	12.5	98

[Table 5]

SEQIDNO: Discriminant coefficient Constant term

1 3.665 36.958

	SEQIDNO:	Discriminant coefficient	Constant term
5	2	3.482	28.279
5	3	3.305	21.564
	4	3.967	46.907
	5	2.921	18.418
10	6	3.258	31.351
	7	2.321	19.901
	8	2.482	17.979
15	9	5.340	69.250
10	10	3.780	34.781
	11	6.053	65.389
	12	2.169	14.787
20	13	3.363	28.960
	14	3.278	29.867
	15	4.768	47.106
25	16	2.668	21.511
	17	3.933	49.822
	18	2.781	19.688
	19	2.340	19.400
30	20	3.173	27.138
	21	2.395	19.027
	22	4.481	51.987
35	23	1.923	18.732
	24	2.221	21.483
	25	1.879	15.097
	26	3.449	21.201
40	27	1.940	10.546
	28	2.467	16.896
	29	3.381	32.369
45	30	1.883	19.278
	31	2.995	22.556
	32	2.257	25.609
	33	2.593	16.685
50	34	4.054	25.898
	35	4.316	37.567
	36	2.347	13.660
55	37	2.787	28.233
	38	4.929	45.747
	39	3.956	32.281

	SEQIDNO:	Discriminant coefficient	Constant term
5	40	2.822	21.631
	41	2.892	30.757
	42	3.016	22.359
	43	2.179	11.954
10	44	2.956	26.296
	45	4.228	28.830
	46	2.347	22.562
15	47	7.619	102.957
10	48	2.849	21.598
	49	2.506	18.167
	50	1.885	16.130
20	51	4.534	36.471
	52	3.307	19.440
	53	3.370	33.776
25	54	4.473	45.416
20	55	3.058	33.429
	56	4.044	33.691
	57	4.924	52.340
30	58	4.740	41.821
	59	3.556	33.458
	60	2.051	13.913
35	61	4.118	31.479
	62	2.848	30.006
	63	2.967	23.118
	64	3.094	33.898
40	65	6.747	57.639
	66	3.115	18.546
	67	2.952	23.150
45	68	6.267	79.386
	69	5.244	36.656
	70	3.634	23.502
	71	5.682	45.289
50	72	4.756	58.458
	73	3.941	38.866
	74	4.639	42.673
55	75	4.686	54.180
	76	3.379	28.223
	77	3.897	27.668

	SEQIDNO:	Discriminant coefficient	Constant term
	78	2.497	17.033
5	79	2.622	18.728
	80	2.639	18.344
	81	4.764	52.837
10	82	2.582	18.301
	83	3.517	26.318
	84	6.525	46.333
	85	2.880	21.133
15	86	3.254	24.541
	87	4.996	39.036
	88	3.508	36.118
20	89	3.944	29.161
	90	3.193	21.619
	91	1.406	8.631
25	92	5.754	47.280
25	93	3.850	40.213
	94	5.850	61.192
	95	4.464	33.686
30	96	4.601	58.630
	97	6.817	56.624
	98	3.273	21.990
35	99	2.934	19.283
	100	1.405	10.220
	101	3.974	25.352
	102	3.294	21.365
40	103	2.273	22.405
	104	4.014	26.327
	105	1.371	8.370
45	106	5.947	79.958
	107	2.441	20.646
	108	3.287	38.733
	109	3.026	20.705
50	110	3.417	20.796
	111	5.205	38.779
	112	2.897	32.216
55	113	2.584	17.226
	114	3.934	32.685
	115	3.076	22.309
	-	•	•

(continued)

SEQIDNO: Discriminant coefficient Constant to 116 5.228 64.304 117 2.180 25.963 118 2.566 14.847 119 3.282 19.125 120 3.663 26.980 121 6.563 62.775 122 4.018 31.312 123 4.220 46.687 124 2.174 20.711 125 1.889 11.995 126 1.102 5.734 127 3.626 27.002 128 0.979 9.798 129 2.534 19.444 130 1.051 6.668	
117 2.180 25.963 118 2.566 14.847 119 3.282 19.125 120 3.663 26.980 121 6.563 62.775 122 4.018 31.312 123 4.220 46.687 124 2.174 20.711 125 1.889 11.995 126 1.102 5.734 127 3.626 27.002 128 0.979 9.798 129 2.534 19.444	erm
118 2.566 14.847 119 3.282 19.125 120 3.663 26.980 121 6.563 62.775 122 4.018 31.312 123 4.220 46.687 124 2.174 20.711 125 1.889 11.995 126 1.102 5.734 127 3.626 27.002 128 0.979 9.798 129 2.534 19.444	
119 3.282 19.125 120 3.663 26.980 121 6.563 62.775 122 4.018 31.312 123 4.220 46.687 124 2.174 20.711 125 1.889 11.995 126 1.102 5.734 127 3.626 27.002 128 0.979 9.798 129 2.534 19.444	
120 3.663 26.980 121 6.563 62.775 122 4.018 31.312 123 4.220 46.687 124 2.174 20.711 125 1.889 11.995 126 1.102 5.734 127 3.626 27.002 128 0.979 9.798 129 2.534 19.444	
121 6.563 62.775 122 4.018 31.312 123 4.220 46.687 124 2.174 20.711 125 1.889 11.995 126 1.102 5.734 127 3.626 27.002 128 0.979 9.798 129 2.534 19.444	
122 4.018 31.312 123 4.220 46.687 124 2.174 20.711 125 1.889 11.995 126 1.102 5.734 127 3.626 27.002 128 0.979 9.798 129 2.534 19.444	
123 4.220 46.687 124 2.174 20.711 125 1.889 11.995 126 1.102 5.734 127 3.626 27.002 128 0.979 9.798 129 2.534 19.444	
124 2.174 20.711 125 1.889 11.995 126 1.102 5.734 127 3.626 27.002 128 0.979 9.798 129 2.534 19.444	
125 1.889 11.995 126 1.102 5.734 127 3.626 27.002 128 0.979 9.798 129 2.534 19.444	
126 1.102 5.734 127 3.626 27.002 128 0.979 9.798 129 2.534 19.444	
127 3.626 27.002 128 0.979 9.798 129 2.534 19.444	
128 0.979 9.798 129 2.534 19.444	
129 2.534 19.444	
130 1.051 6.668	
131 3.974 47.286	
132 1.456 9.155	
133 3.272 26.342	
134 1.514 8.925	

[Table 6]

	Training set			Validation set		
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
1_2	98.3	94.1	99	98.3	87.5	100
1_3	100	100	100	98.3	87.5	100
1_4	97.4	88.2	99	98.3	87.5	100
1_5	99.1	100	99	98.3	87.5	100
1_6	99.1	100	99	100	100	100
1_7	99.1	100	99	98.3	87.5	100
1_8	98.3	94.1	99	98.3	87.5	100
1_9	99.1	100	99	98.3	87.5	100
1_10	100	100	100	98.3	87.5	100
1_11	98.3	100	98	100	100	100
1_12	98.3	100	98	98.3	87.5	100
1_13	98.3	100	98	98.3	87.5	100
1_14	100	100	100	98.3	87.5	100
1_15	98.3	100	98	98.3	87.5	100

			Training set			Validation set	
5	SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
3	1_16	99.1	100	99	98.3	87.5	100
	1_17	98.3	100	98	98.3	87.5	100
	1_18	99.1	100	99	98.3	87.5	100
10	1_19	99.1	100	99	100	100	100
	1_20	98.3	94.1	99	98.3	87.5	100
	1_21	98.3	94.1	99	96.6	87.5	98
15	1_22	98.3	100	98	98.3	87.5	100
	1_23	97.4	94.1	98	98.3	87.5	100
	1_24	97.4	94.1	98	98.3	87.5	100
	1_25	98.3	100	98	98.3	87.5	100
20	1_26	99.1	100	99	96.6	87.5	98
	1_27	98.3	100	98	98.3	87.5	100
	1_28	98.3	100	98	98.3	87.5	100
25	1_29	98.3	94.1	99	98.3	87.5	100
	1_30	97.4	94.1	98	98.3	87.5	100
	1_31	98.3	100	98	98.3	87.5	100
	1_32	97.4	94.1	98	96.6	75	100
30	1_33	98.3	94.1	99	98.3	87.5	100
	1_34	99.1	100	99	100	100	100
	1_35	98.3	100	98	98.3	87.5	100
35	1_36	97.4	94.1	98	96.6	75	100
	1_37	98.3	100	98	98.3	87.5	100
	1_38	98.3	100	98	100	100	100
	1_39	97.4	94.1	98	98.3	87.5	100
40	1_40	98.3	100	98	96.6	75	100
	1_41	98.3	100	98	98.3	87.5	100
	1_42	98.3	100	98	98.3	87.5	100
45	1_43	97.4	94.1	98	98.3	87.5	100
	1_44	97.4	94.1	98	98.3	87.5	100
	1_45	97.4	94.1	98	98.3	87.5	100
50	1_46	96.6	88.2	98	96.6	75	100
50	1_47	98.3	100	98	98.3	87.5	100
	1_48	99.1	100	99	98.3	87.5	100
	1_49	97.4	94.1	98	96.6	75	100
55	1_50	97.4	94.1	98	96.6	75	100
	1_51	99.1	100	99	98.3	87.5	100
	1_52	99.1	100	99	100	100	100

			Training set			Validation set	
5	SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
J	1_53	99.1	100	99	100	100	100
	1_54	98.3	100	98	98.3	87.5	100
	1_55	98.3	100	98	98.3	87.5	100
10	1_56	100	100	100	100	100	100
	1_57	98.3	100	98	98.3	87.5	100
	1_58	98.3	100	98	98.3	87.5	100
15	1_59	98.3	100	98	98.3	87.5	100
	1_60	97.4	94.1	98	98.3	87.5	100
	1_61	98.3	100	98	98.3	87.5	100
	1_62	97.4	94.1	98	98.3	87.5	100
20	1_63	98.3	100	98	98.3	87.5	100
	1_64	98.3	100	98	98.3	87.5	100
	1_65	97.4	94.1	98	98.3	87.5	100
25	1_66	98.3	100	98	98.3	87.5	100
	1_67	98.3	100	98	98.3	87.5	100
	1_68	98.3	100	98	98.3	87.5	100
	1_69	97.4	94.1	98	98.3	87.5	100
30	1_70	97.4	94.1	98	98.3	87.5	100
	1_71	97.4	94.1	98	98.3	87.5	100
	1_72	97.4	94.1	98	98.3	87.5	100
35	1_73	98.3	94.1	99	98.3	87.5	100
	1_74	98.3	100	98	98.3	87.5	100
	1_75	97.4	100	97	98.3	87.5	100
	1_76	99.1	94.1	100	98.3	87.5	100
40	1_77	97.4	94.1	98	98.3	87.5	100
	1_78	97.4	94.1	98	98.3	87.5	100
	1_79	97.4	94.1	98	98.3	87.5	100
45	1_80	98.3	94.1	99	98.3	87.5	100
	1_81	97.4	94.1	98	98.3	87.5	100
	1_82	99.1	100	99	98.3	87.5	100
50	1_83	98.3	100	98	98.3	87.5	100
50	1_84	98.3	100	98	98.3	87.5	100
	1_85	97.4	88.2	99	98.3	87.5	100
	1_86	97.4	94.1	98	98.3	87.5	100
55	1_87	98.3	100	98	98.3	87.5	100
	1_88	98.3	100	98	98.3	87.5	100
	1_89	97.4	94.1	98	98.3	87.5	100

			Training set			Validation set	
5	SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
5	1_90	97.4	94.1	98	98.3	87.5	100
	1_91	98.3	94.1	99	98.3	87.5	100
	1_92	97.4	94.1	98	98.3	87.5	100
10	1_93	98.3	100	98	98.3	87.5	100
	1_94	98.3	100	98	98.3	87.5	100
	1_95	98.3	94.1	99	98.3	87.5	100
15	1_96	98.3	100	98	98.3	87.5	100
	1_97	97.4	94.1	98	98.3	87.5	100
	1_98	98.3	94.1	99	98.3	87.5	100
	1_99	98.3	100	98	98.3	87.5	100
20	1_100	99.1	100	99	98.3	87.5	100
	1_101	97.4	94.1	98	98.3	87.5	100
	1_102	97.4	94.1	98	98.3	87.5	100
25	1_103	99.1	100	99	98.3	87.5	100
	1_104	97.4	94.1	98	98.3	87.5	100
	1_105	97.4	94.1	98	98.3	87.5	100
	1_106	98.3	94.1	99	98.3	87.5	100
30	1_107	96.6	88.2	98	96.6	75	100
	1_108	98.3	100	98	98.3	87.5	100
	1_109	99.1	100	99	98.3	87.5	100
35	1_110	97.4	94.1	98	98.3	87.5	100
	1_111	97.4	94.1	98	98.3	87.5	100
	1_112	97.4	94.1	98	98.3	87.5	100
	1_113	99.1	100	99	100	100	100
40	1_114	98.3	100	98	98.3	87.5	100
	1_115	97.4	94.1	98	98.3	87.5	100
	1_116	98.3	100	98	98.3	87.5	100
45	1_117	97.4	94.1	98	98.3	87.5	100
	1_118	97.4	94.1	98	98.3	87.5	100
	1_119	97.4	94.1	98	98.3	87.5	100
50	1_120	98.3	100	98	98.3	87.5	100
50	1_121	98.3	94.1	99	98.3	87.5	100
	1_122	98.3	100	98	98.3	87.5	100
	1_123	98.3	100	98	98.3	87.5	100
55	1_124	98.3	100	98	98.3	87.5	100
	1_125	97.4	94.1	98	98.3	87.5	100
	1_126	99.1	100	99	98.3	87.5	100

(continued)

		Training set			Validation set		
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)	
1_127	98.3	100	98	98.3	87.5	100	
1_128	98.3	100	98	98.3	87.5	100	
1_129	98.3	100	98	98.3	87.5	100	
1_130	98.3	100	98	98.3	87.5	100	
1_131	97.4	94.1	98	98.3	87.5	100	
1_132	98.3	88.2	100	98.3	87.5	100	
1_133	97.4	94.1	98	98.3	87.5	100	
1_134	98.3	100	98	98.3	87.5	100	

[Example 3]

5

10

15

20

25

30

35

40

45

50

55

<Selection of gene marker using all samples and method for evaluating lung cancer discriminant performance of acquired gene marker>

[0598] In this Example, the samples in the training cohort and the validation cohort used in Examples 1 and 2 were integrated, and selection of a gene marker and evaluation of its lung cancer discriminant performance were conducted using all of the samples.

[0599] Specifically, the miRNA expression levels in the serum of the 25 lung cancer patients and the 150 healthy subjects obtained in the preceding Reference Examples were normalized by quantile normalization. In order to acquire diagnostic markers with higher reliability, only genes having a gene expression level of 26 or higher in 50% or more of the samples in either of the lung cancer patient group or the healthy subject group were selected in the gene marker selection. In order to further acquire statistical significance for discriminating a lung cancer patient group from a healthy subject group, the P value obtained by two-sample t-test assuming equal variance as to each gene expression level was corrected by the Bonferroni method, and genes that satisfied p < 0.01 were selected as gene markers for use in explanatory variables of a discriminant. The acquired genes are described in Table 7. In this way, hsa-miR-4271, hsamiR-642b-3p, hsa-miR-6075, hsa-miR-6125, hsa-miR-887-3p, hsa-miR-6851-5p, hsa-miR-6763-5p, hsa-miR-3928-3p, hsa-miR-4443, hsa-miR-3648, hsa-miR-149-3p, hsa-miR-4689, hsa-miR-4763-3p, hsa-miR-6729-5p, hsa-miR-3196, hsa-miR-8069, hsa-miR-1268a, hsa-miR-4739, hsa-miR-1268b, hsa-miR-5698, hsa-miR-6752-5p, hsa-miR-4507, hsa-miR-8069, hsa-miR-1268b, hsa-miR-1 miR-564, hsa-miR-4497, hsa-miR-6877-5p, hsa-miR-6087, hsa-miR-4731-5p, hsa-miR-615-5p, hsa-miR-760, hsa-miR-6891-5p, hsa-miR-6887-5p, hsa-miR-4525, hsa-miR-1914-3p, hsa-miR-619-5p, hsa-miR-5001-5p, hsa-miR-6722-3p, hsa-miR-3621, hsa-miR-4298, hsa-miR-675-5p, and hsa-miR-4655-5p genes, and the nucleotide seguences of SEQ ID NOs: 135 to 174 related thereto were found in addition to the genes described in Table 3. As with the nucleotide sequences of SEQ ID NOs: 1 to 134, the results obtained about the polynucleotides shown in SEQ ID NOs: 135 to 174 also showed that the measurement values were significantly lower (-) or higher (+) in the lung cancer patient group than in the healthy subject group (Table 7). These results were able to be validated in the validation cohort. Thus, the presence or absence of lung cancer in the newly obtained samples can be determined by the methods described in Examples 1 and 2 by using the gene expression level measurement values described in Table 7 either alone or in combination with the gene expression level measurement values described in Table 3.

[Table 7]

SEQ ID NO:	Gene name	P value after Bonferroni correction	Expression level in lung cancer patient with respect to healthy subject
1	hsa-miR-6768-5p	6.12E-37	+
2	hsa-miR-6836-3p	4.68E-36	-
3	hsa-miR-6782-5p	7.67E-29	-
4	hsa-miR-3663-3p	4.91E-29	-

5	SEQ ID NO:	Gene name	P value after Bonferroni correction	Expression level in lung cancer patient with respect to healthy subject
	5	hsa-miR-1908-3p	2.76E-30	-
10	6	hsa-miR-6726-5p	1.23E-26	+
	7	hsa-miR-4258	6.12E-28	-
10	8	hsa-miR-1343-3p	7.70E-26	-
	9	hsa-miR-4516	1.71E-29	-
	10	hsa-miR-6875-5p	1.59E-18	-
15	11	hsa-miR-4651	6.58E-26	+
	12	hsa-miR-6825-5p	2.30E-22	-
	13	hsa-miR-6840-3p	4.47E-24	+
20	14	hsa-miR-6780b-5p	7.12E-26	-
20	15	hsa-miR-6749-5p	3.83E-25	-
	16	hsa-miR-8063	7.83E-21	-
	17	hsa-miR-6784-5p	1.37E-17	+
25	18	hsa-miR-3679-5p	2.70E-25	-
	19	hsa-miR-3184-5p	5.58E-19	+
	20	hsa-miR-663b	2.07E-22	-
30	21	hsa-miR-6880-5p	4.49E-19	+
	22	hsa-miR-1908-5p	7.91E-21	+
	23	hsa-miR-92a-2-5p	6.69E-15	+
	24	hsa-miR-7975	3.32E-17	+
35	25	hsa-miR-7110-5p	2.07E-16	+
	26	hsa-miR-6842-5p	3.25E-19	-
	27	hsa-miR-6857-5p	7.70E-16	+
40	28	hsa-miR-5572	1.14E-17	+
	29	hsa-miR-3197	7.43E-21	+
	30	hsa-miR-6131	8.81E-19	+
	31	hsa-miR-6889-5p	7.76E-18	+
45	32	hsa-miR-4454	6.20E-15	-
	33	hsa-miR-1199-5p	1.10E-16	-
	34	hsa-miR-1247-3p	2.61E-15	-
50	35	hsa-miR-6800-5p	1.65E-14	-
	36	hsa-miR-6872-3p	3.40E-13	+
	37	hsa-miR-4649-5p	2.50E-16	-
	38	hsa-miR-6791-5p	2.29E-18	-
55	39	hsa-miR-4433b-3p	1.12E-12	+
-	40	hsa-miR-3135b	7.14E-09	+

5	SEQ ID NO:	Gene name	P value after Bonferroni correction	Expression level in lung cancer patient with respect to healthy subject
	41	hsa-miR-128-2-5p	3.95E-17	+
	42	hsa-miR-4675	3.41E-17	-
10	43	hsa-miR-4472	1.34E-15	-
10	44	hsa-miR-6785-5p	7.27E-16	+
	45	hsa-miR-6741-5p	1.57E-11	+
	46	hsa-miR-7977	4.98E-13	+
15	47	hsa-miR-3665	1.23E-11	+
	48	hsa-miR-128-1-5p	6.12E-11	+
	49	hsa-miR-4286	8.20E-12	+
20	50	hsa-miR-6765-3p	3.54E-12	+
20	51	hsa-miR-4632-5p	1.23E-14	-
	52	hsa-miR-365a-5p	3.37E-12	-
	53	hsa-miR-6088	2.65E-13	-
25	54	hsa-miR-6816-5p	3.35E-14	+
=	55	hsa-miR-6885-5p	1.83E-13	-
	56	hsa-miR-711	2.81E-14	+
30	57	hsa-miR-6765-5p	1.37E-11	+
00	58	hsa-miR-3180	1.69E-14	+
	59	hsa-miR-4442	2.64E-12	-
	60	hsa-miR-4792	2.35E-11	+
35	61	hsa-miR-6721-5p	1.63E-09	+
	62	hsa-miR-6798-5p	9.64E-11	-
	63	hsa-miR-3162-5p	1.05E-08	-
40	64	hsa-miR-6126	3.64E-14	+
	65	hsa-miR-4758-5p	3.51E-15	-
	66	hsa-miR-2392	2.75E-12	+
	67	hsa-miR-486-3p	2.02E-11	-
45	68	hsa-miR-6727-5p	3.30E-09	+
	69	hsa-miR-4728-5p	9.06E-11	-
	70	hsa-miR-6746-5p	1.45E-08	+
50	71	hsa-miR-4270	1.52E-08	+
50	72	hsa-miR-3940-5p	3.98E-09	+
	73	hsa-miR-4725-3p	2.40E-08	-
	74	hsa-miR-7108-5p	5.64E-10	+
55	75	hsa-miR-3656	6.69E-13	+
	76	hsa-miR-6879-5p	3.97E-13	+

5	SEQ ID NO:	Gene name	P value after Bonferroni correction	Expression level in lung cancer patient with respect to healthy subject
	77	hsa-miR-6738-5p	1.60E-09	+
-	78	hsa-miR-1260a	1.22E-08	+
10	79	hsa-miR-4446-3p	3.23E-10	-
10	80	hsa-miR-3131	2.40E-09	+
	81	hsa-miR-4463	1.54E-08	-
	82	hsa-miR-3185	5.62E-10	-
15	83	hsa-miR-6870-5p	3.81E-08	+
	84	hsa-miR-6779-5p	3.02E-07	+
	85	hsa-miR-1273g-3p	2.06E-09	+
20	86	hsa-miR-8059	2.01E-06	-
	87	hsa-miR-4697-5p	1.86E-08	+
	88	hsa-miR-4674	4.38E-10	-
	89	hsa-miR-4433-3p	2.20E-07	-
25	90	hsa-miR-4257	1.87E-08	+
	91	hsa-miR-1915-5p	4.76E-10	-
	92	hsa-miR-4417	2.14E-07	-
30	93	hsa-miR-1343-5p	1.06E-10	+
	94	hsa-miR-6781-5p	4.10E-05	-
	95	hsa-miR-4695-5p	3.31E-11	-
	96	hsa-miR-1237-5p	3.95E-10	+
35	97	hsa-miR-6775-5p	4.09E-05	+
	98	hsa-miR-7845-5p	2.84E-07	-
	99	hsa-miR-4746-3p	9.11E-11	-
40	100	hsa-miR-7641	1.14E-06	-
	101	hsa-miR-7847-3p	5.71E-05	+
	102	hsa-miR-6806-5p	1.87E-09	-
	103	hsa-miR-4467	2.48E-08	-
45	104	hsa-miR-4726-5p	8.08E-07	+
	105	hsa-miR-4648	1.15E-08	+
	106	hsa-miR-6089	1.19E-07	+
50	107	hsa-miR-1260b	1.62E-05	+
	108	hsa-miR-4532	8.30E-09	+
	109	hsa-miR-5195-3p	2.03E-07	+
	110	hsa-miR-3188	4.84E-08	-
55	111	hsa-miR-6848-5p	6.01E-07	+
	112	hsa-miR-1233-5p	3.76E-06	+

5	SEQ ID NO:	Gene name	P value after Bonferroni correction	Expression level in lung cancer patient with respect to healthy subject
	113	hsa-miR-6717-5p	2.38E-05	+
10	114	hsa-miR-3195	7.67E-06	-
	115	hsa-miR-6757-5p	1.58E-06	-
10	116	hsa-miR-8072	1.17E-05	-
	117	hsa-miR-4745-5p	5.89E-07	+
	119	hsa-miR-6776-5p	1.26E-07	-
15	120	hsa-miR-371a-5p	9.22E-05	+
	121	hsa-miR-1227-5p	9.64E-05	-
	122	hsa-miR-7150	0.000252	-
20	123	hsa-miR-1915-3p	2.18E-09	-
20	124	hsa-miR-187-5p	2.81E-27	-
	125	hsa-miR-614	1.65E-21	-
	126	hsa-miR-19b-3p	1.33E-19	+
25	127	hsa-miR-1225-5p	6.67E-13	-
	128	hsa-miR-451a	2.23E-10	-
	129	hsa-miR-939-5p	1.89E-11	+
30	130	hsa-miR-223-3p	9.32E-11	-
	131	hsa-miR-1228-5p	1.49E-09	+
	132	hsa-miR-125a-3p	1.07E-05	+
	133	hsa-miR-92b-5p	1.09E-11	+
35	134	hsa-miR-22-3p	9.71E-07	+
	135	hsa-miR-4271	5.64E-07	+
	136	hsa-miR-642b-3p	6.99E-06	-
40	137	hsa-miR-6075	1.17E-05	+
	138	hsa-miR-6125	1.63E-05	+
	139	hsa-miR-887-3p	1.68E-05	+
	140	hsa-miR-6851-5p	1.97E-05	-
45	141	hsa-miR-6763-5p	3.54E-05	-
	142	hsa-miR-3928-3p	4.67E-05	-
	143	hsa-miR-4443	5.36E-05	+
50	144	hsa-miR-3648	6.01E-05	+
	145	hsa-miR-149-3p	9.80E-05	-
	146	hsa-miR-4689	1.01E-04	+
	147	hsa-miR-4763-3p	1.20E-04	+
55	148	hsa-miR-6729-5p	1.28E-04	+
	149	hsa-miR-3196	1.31E-04	+

(continued)

5	SEQ ID Gene name P value after Bonferroni correction			Expression level in lung cancer patient with respect to healthy subject
	150	hsa-miR-8069	1.84E-04	+
	151	hsa-miR-1268a	2.58E-04	+
10	152	hsa-miR-4739	2.68E-04	+
10	153	hsa-miR-1268b	3.37E-04	+
	154	hsa-miR-5698	4.34E-04	-
	155	hsa-miR-6752-5p	5.63E-04	+
15	156	hsa-miR-4507	6.34E-04	+
	157	hsa-miR-564	6.68E-04	-
	158	hsa-miR-4497	8.11E-04	-
20	159	hsa-miR-6877-5p	8.21E-04	-
20	160	hsa-miR-6087	8.91E-04	-
	161	hsa-miR-4731-5p	1.15E-03	-
	162	hsa-miR-615-5p	1.25E-03	-
25	163	hsa-miR-760	1.42E-03	-
	164	hsa-miR-6891-5p	1.71E-03	+
	165	hsa-miR-6887-5p	1.82E-03	-
30	166	hsa-miR-4525	2.09E-03	-
	167	hsa-miR-1914-3p	2.11E-03	-
	168	hsa-miR-619-5p	2.61E-03	-
	169	hsa-miR-5001-5p	3.01E-03	-
35	170	hsa-miR-6722-3p	3.88E-03	+
	171	hsa-miR-3621	4.02E-03	-
	172	hsa-miR-4298	7.88E-03	-
40	173	hsa-miR-675-5p	8.33E-03	-
40	174	hsa-miR-4655-5p	9.06E-03	+

[Example 4]

50

55

45 <Method for evaluating lung cancer-specific discriminant performance by combination of multiple gene markers using samples in the validation cohort>

[0600] In this Example, gene markers for diagnosis were selected by comparing gene expression levels of miRNAs in serum of lung cancer patients with that of a control group consisting of healthy subjects, pancreatic cancer patients, biliary tract cancer patients, colorectal cancer patients, stomach cancer patients, liver cancer patients, and benign pancreaticobiliary disease patients, in the same way as the method described in Example 1, using the gene markers selected in Example 1, and targeting the training cohort as the sample group described in Reference Example 2. The polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 561 to 579 thus selected were further combined therewith to study a method for evaluating lung cancer-specific discriminant performance.

[0601] Specifically, first, the miRNA expression levels in the training cohort and the validation cohort obtained in Reference Example 2 mentioned above were combined and normalized by quantile normalization. Next, Fisher's discriminant analysis was conducted as to combinations of 1 to 4 expression level measurement values comprising at least

one or more of the expression level measurement values of the polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1 to 174, and 561 to 579, to construct a discriminant for determining the presence or absence of lung cancer. Next, accuracy, sensitivity, and specificity in the validation cohort were calculated using the discriminant thus prepared, with the lung cancer patient group as a positive sample group and, on the other hand, the healthy subject group, the pancreatic cancer patient group, the biliary tract cancer patient group, the colorectal cancer patient group, the stomach cancer patient group, the liver cancer patient group, and the benign pancreaticobiliary disease patient group as a negative sample group. The discriminant performance of the selected polynucleotides was validated using the independent samples.

10

15

20

30

35

40

45

50

55

[0602] Most of polynucleotides consisting of the nucleotide sequences represented by these SEQ ID NOs (SEQ ID NOs: 1 to 174, and 561 to 579 corresponding to the miRNA markers of Table 1) or complementary sequences thereof mentioned above were able to provide relatively high accuracy, sensitivity, and specificity in the determination of the presence or absence of lung cancer, and furthermore, were able to specifically discriminate lung cancer from the other cancers. For example, among the combinations of multiple polynucleotides selected from the group consisting of polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1, 2, 3, 4, 5,7,9,10,11,19,21,26,29,31,52,53,63,65,69,72,87,90,113,124,125,126,128,130,143,148,160,162,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578 and 579 or complementary sequences thereof (the cancer type-specific polynucleotide group 1) as polynucleotides capable of specifically binding to target markers, combinations comprising at least one or more polynucleotide(s) selected from the group consisting of polynucleotides consisting of the nucleotide sequences represented by SEQ ID NOs: 1, 2, 3, 10, 63, 113, 124, 125, 126, 128, 130, 143, 160, 561, 568, 573 and 578 or complementary sequences thereof (the cancer type-specific polynucleotide group 2) included in the cancer type-specific polynucleotide group 1 were able to specifically discriminate lung cancer from the other cancers with high accuracy.

[0603] The number of the polynucleotides with cancer type specificity in the combination can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more for the combination. The combinations of 4 or more of these polynucleotides were able to exhibit discriminant accuracy of 90% or higher.

[0604] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 1 or a complementary sequence thereof is shown in Table 8-1. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 1 or a complementary sequence thereof exhibited accuracy of 94.2% in the training cohort and accuracy of 91.4% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 1 or a complementary sequence thereof exhibited accuracy of 98.7% in the training cohort and accuracy of 97.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 1 or a complementary sequence thereof exhibited accuracy of 99.2% in the training cohort and accuracy of 98.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 1 or a complementary sequence thereof exhibited accuracy of 99.7% in the training cohort and accuracy of 99.0% in the validation cohort.

[0605] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 2 or a complementary sequence thereof is shown in Table 8-2. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 2 or a complementary sequence thereof exhibited accuracy of 94.0% in the training cohort and accuracy of 92.4% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 2 or a complementary sequence thereof exhibited accuracy of 97.2% in the training cohort and accuracy of 96.0% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 2 or a complementary sequence thereof exhibited accuracy of 99.5% in the training cohort and accuracy of 98.0% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 2 or a complementary sequence thereof exhibited accuracy of 100% in the training cohort and accuracy of 98.0% in the validation cohort.

[0606] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 3 or a complementary sequence thereof is shown in Table 8-3. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 3 or a complementary sequence thereof exhibited accuracy of 85.7% in the training cohort and accuracy of 84.3% in the validation cohort. Also, for example, the measurement using the

combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 3 or a complementary sequence thereof exhibited accuracy of 97.0% in the training cohort and accuracy of 97.0% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 3 or a complementary sequence thereof exhibited accuracy of 99.0% in the training cohort and accuracy of 98.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 3 or a complementary sequence thereof exhibited accuracy of 99.5% in the training cohort and accuracy of 100% in the validation cohort.

10

15

30

35

50

55

[0607] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 10 or a complementary sequence thereof is shown in Table 8-4. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 10 or a complementary sequence thereof exhibited accuracy of 64.0% in the training cohort and accuracy of 61.6% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 10 or a complementary sequence thereof exhibited accuracy of 94.0% in the training cohort and accuracy of 92.4% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 10 or a complementary sequence thereof exhibited accuracy of 99.2% in the training cohort and accuracy of 99.0% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 10 or a complementary sequence thereof exhibited accuracy of 99.2% in the training cohort and accuracy of 99.5% in the validation cohort.

[0608] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 63 or a complementary sequence thereof is shown in Table 8-5. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 63 or a complementary sequence thereof exhibited accuracy of 79.4% in the training cohort and accuracy of 80.8% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 63 or a complementary sequence thereof exhibited accuracy of 95.7% in the training cohort and accuracy of 97.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 63 or a complementary sequence thereof exhibited accuracy of 98.2% in the training cohort and accuracy of 98.0% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 63 or a complementary sequence thereof exhibited accuracy of 99.5% in the training cohort and accuracy of 97.5% in the validation cohort.

[0609] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 113 or a complementary sequence thereof is shown in Table 8-6. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 113 or a complementary sequence thereof exhibited accuracy of 67.8% in the training cohort and accuracy of 69.2% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 113 or a complementary sequence thereof exhibited accuracy of 97.7% in the training cohort and accuracy of 95.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 113 or a complementary sequence thereof exhibited accuracy of 99.5% in the training cohort and accuracy of 99.0% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 113 or a complementary sequence thereof exhibited accuracy of 99.5% in the training cohort and accuracy of 99.0% in the validation cohort.

[0610] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 124 or a complementary sequence thereof is shown in Table 8-7. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 124 or a complementary sequence thereof exhibited accuracy of 79.6% in the training cohort and accuracy of 76.8% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 124 or a complementary sequence thereof exhibited accuracy of 95.0% in the training

cohort and accuracy of 91.4% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 124 or a complementary sequence thereof exhibited accuracy of 98.5% in the training cohort and accuracy of 97.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 124 or a complementary sequence thereof exhibited accuracy of 99.0% in the training cohort and accuracy of 99.0% in the validation cohort.

[0611] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 125 or a complementary sequence thereof is shown in Table 8-8. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 125 or a complementary sequence thereof exhibited accuracy of 77.6% in the training cohort and accuracy of 73.7% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 125 or a complementary sequence thereof exhibited accuracy of 94.7% in the training cohort and accuracy of 93.4% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 125 or a complementary sequence thereof exhibited accuracy of 99.0% in the training cohort and accuracy of 96.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO:125 or a complementary sequence thereof exhibited accuracy of 99.5% in the training cohort and accuracy of 99.0% in the validation cohort.

10

20

30

35

50

55

[0612] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 126 or a complementary sequence thereof is shown in Table 8-9. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 126 or a complementary sequence thereof exhibited accuracy of 90.4% in the training cohort and accuracy of 92.4% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 126 or a complementary sequence thereof exhibited accuracy of 96.7% in the training cohort and accuracy of 95.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 126 or a complementary sequence thereof exhibited accuracy of 99.7% in the training cohort and accuracy of 98.0% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 126 or a complementary sequence thereof exhibited accuracy of 99.7% in the training cohort and accuracy of 99.0% in the validation cohort.

[0613] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 128 or a complementary sequence thereof is shown in Table 8-10. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 128 or a complementary sequence thereof exhibited accuracy of 81.4% in the training cohort and accuracy of 81.3% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 128 or a complementary sequence thereof exhibited accuracy of 96.2% in the training cohort and accuracy of 94.9% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 128 or a complementary sequence thereof exhibited accuracy of 98.7% in the training cohort and accuracy of 97.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 128 or a complementary sequence thereof exhibited accuracy of 99.2% in the training cohort and accuracy of 99.5% in the validation cohort.

[0614] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 130 or a complementary sequence thereof is shown in Table 8-11. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 130 or a complementary sequence thereof exhibited accuracy of 83.4% in the training cohort and accuracy of 87.4% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 130 or a complementary sequence thereof exhibited accuracy of 96.2% in the training cohort and accuracy of 94.4% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by

SEQ ID NO: 130 or a complementary sequence thereof exhibited accuracy of 99.2% in the training cohort and accuracy of 98.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 130 or a complementary sequence thereof exhibited accuracy of 99.5% in the training cohort and accuracy of 99.5% in the validation cohort.

[0615] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 143 or a complementary sequence thereof is shown in Table 8-12. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 143 or a complementary sequence thereof exhibited accuracy of 64.6% in the training cohort and accuracy of 66.2% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 143 or a complementary sequence thereof exhibited accuracy of 96.0% in the training cohort and accuracy of 93.9% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 143 or a complementary sequence thereof exhibited accuracy of 98.7% in the training cohort and accuracy of 98.0% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 143 or a complementary sequence thereof exhibited accuracy of 99.0% in the training cohort and accuracy of 98.0% in the validation cohort.

10

15

20

30

35

50

55

[0616] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 160 or a complementary sequence thereof is shown in Table 8-13. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 160 or a complementary sequence thereof exhibited accuracy of 70.9% in the training cohort and accuracy of 67.2% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 160 or a complementary sequence thereof exhibited accuracy of 96.0% in the training cohort and accuracy of 92.4% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 160 or a complementary sequence thereof exhibited accuracy of 99.2% in the training cohort and accuracy of 98.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 160 or a complementary sequence thereof exhibited accuracy of 99.5% in the training cohort and accuracy of 99.0% in the validation cohort.

[0617] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 561 or a complementary sequence thereof is shown in Table 8-14. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 561 or a complementary sequence thereof exhibited accuracy of 84.9% in the training cohort and accuracy of 81.8% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 561 or a complementary sequence thereof exhibited accuracy of 96.5% in the training cohort and accuracy of 97.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 561 or a complementary sequence thereof exhibited accuracy of 98.7% in the training cohort and accuracy of 98.0% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 561 or a complementary sequence thereof exhibited accuracy of 100% in the training cohort and accuracy of 99.0% in the validation cohort.

[0618] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 568 or a complementary sequence thereof is shown in Table 8-15. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 568 or a complementary sequence thereof exhibited accuracy of 60.2% in the training cohort and accuracy of 67.2% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 568 or a complementary sequence thereof exhibited accuracy of 97.0% in the training cohort and accuracy of 96.0% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 568 or a complementary sequence thereof exhibited accuracy of 99.0% in the training cohort and accuracy of 96.0% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynu-

cleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 568 or a complementary sequence thereof exhibited accuracy of 99.5% in the training cohort and accuracy of 98.5% in the validation cohort.

[0619] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 573 or a complementary sequence thereof is shown in Table 8-16. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 573 or a complementary sequence thereof exhibited accuracy of 53.0% in the training cohort and accuracy of 53.5% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 573 or a complementary sequence thereof exhibited accuracy of 96.5% in the training cohort and accuracy of 95.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 573 or a complementary sequence thereof exhibited accuracy of 98.7% in the training cohort and accuracy of 98.0% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 573 or a complementary sequence thereof exhibited accuracy of 99.2% in the training cohort and accuracy of 98.5% in the validation cohort.

[0620] Specifically, the discriminant accuracy of the measurement using the polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 578 or a complementary sequence thereof is shown in Table 8-17. For example, the measurement using the combination of one polynucleotide comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 578 or a complementary sequence thereof exhibited accuracy of 52.8% in the training cohort and accuracy of 53.5% in the validation cohort. Also, for example, the measurement using the combinations of two polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 578 or a complementary sequence thereof exhibited accuracy of 96.2% in the training cohort and accuracy of 94.9% in the validation cohort. Furthermore, for example, the measurement using the combinations of three polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 578 or a complementary sequence thereof exhibited accuracy of 98.5% in the training cohort and accuracy of 96.5% in the validation cohort. Furthermore, for example, the measurement using the combinations of four polynucleotides comprising at least one polynucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 578 or a complementary sequence thereof exhibited accuracy of 99.2% in the training cohort and accuracy of 99.0% in the validation cohort.

[0621] The measurement values of the nucleotide sequences represented by SEQ ID NOs: 1, 113, 126, and 561 were compared among 17 lung cancer patients, 99 healthy subjects, 75 pancreatic cancer patients, 62 biliary tract cancer patients, 32 colorectal cancer patients, 35 stomach cancer patients, 32 esophageal cancer patients, 33 liver cancer patients, and 13 benign pancreaticobiliary disease patients in the training cohort. As a result, a scatter diagram that significantly separated the discriminant score of the lung cancer patient group from the discriminant scores of the other groups was obtained in the training cohort (see Figure 4A). These results were also reproducible for the validation cohort (see Figure 4B).

40 [Table 8-1]

		Training cohort		Validation cohort		
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
1	94.2	100	94.0	91.4	87.5	91.6
1_113	98.7	100	98.7	97.5	100	97.4
1_52_126	99.2	100	99.2	98.5	100	98.4
1_53_113_125	99.2	100	99.2	98.5	100	98.4
1_10_63_113	99.2	100	99.2	98.5	100	98.4
1_19_113_143	99.2	100	99.2	99.0	100	98.9
1_10_113_126	99.7	100	99.7	99.0	100	98.9
1_2_10_113	99.7	100	99.7	98.5	100	98.4

55

10

20

30

35

45

[Table 8-2]

	Training cohort			Validation cohort		
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
2	94.0	94.1	94.0	92.4	100	92.1
2_126	97.2	100	97.1	96.0	100	95.8
1_2_113	99.5	100	99.5	98.0	100	97.9
2_19_53_113	99.2	100	99.2	97.5	100	97.4
2_72_113_125	99.0	100	99.0	96.5	100	96.3
2_19_72_113	99.0	100	99.0	97.0	100	96.8
2_19_113_579	98.5	100	98.4	96.5	100	96.3
1_2_19_113	100	100	100	98.0	100	97.9

[Table 8-3]

[1000000]								
	Training cohort			Validation cohort				
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)		
3	85.7	94.1	85.3	84.3	100	83.7		
3_126	97.0	94.1	97.1	97.0	100	96.8		
1_3_113	99.0	100	99.0	98.5	100	98.4		
3_125_128_568	98.5	100	98.4	97.0	100	96.8		
1_3_10_113	99.2	100	99.2	99.0	100	98.9		
3_113_125_126	99.5	94.1	99.7	100	100	100		
1_3_126_573	98.5	100	98.4	98.0	100	97.9		
3_126_130_561	98.2	94.1	98.4	98.0	100	97.9		

[Table 8-4]

[1456 6 4]								
		Training cohort		Validation cohort				
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)		
10	64.0	82.4	63.2	61.6	75.0	61.1		
2_10	94.0	100	93.7	92.4	100	92.1		
1_10_113	99.2	100	99.2	99.0	100	98.9		
1_10_113_143	99.0	100	98.9	99.5	100	99.5		
1_10_113_569	99.2	100	99.2	99.0	100	98.9		
1_10_113_562	98.7	100	98.7	99.0	100	98.9		
1_10_113_578	99.2	100	99.2	98.5	100	98.4		
1_7_10_113	99.2	100	99.2	99.0	100	98.9		

[Table 8-5]

	Training cohort			Validation cohort		
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
63	79.4	94.1	78.7	80.8	75.0	81.1
63_126	95.7	94.1	95.8	97.5	100	97.4
1_63_113	98.2	100	98.2	98.0	100	97.9
1_63_567_578	99.5	100	99.5	97.5	100	97.4
1_53_63_578	98.2	100	98.2	98.0	100	97.9
1_63_162_573	98.0	100	97.9	97.5	87.5	97.9
1_63_162_578	98.5	100	98.4	98.0	100	97.9
1_63_576_578	98.7	100	98.7	98.0	100	97.9

[Table 8-6]

	Training cohort			Validation cohort		
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
113	67.8	76.5	67.5	69.2	100	67.9
2_113	97.7	100	97.6	95.5	100	95.3
1_19_113	99.5	100	99.5	99.0	100	98.9
1_10_113_567	99.5	100	99.5	99.0	100	98.9
1_53_63_113	99.0	100	99.0	98.0	100	97.9
1_53_113_143	99.0	100	99.0	98.0	100	97.9
2_19_113_125	99.0	100	99.0	98.0	100	97.9
2_10_113_130	99.2	100	99.2	99.5	100	99.5

[Table 8-7]

	Training cohort			Validation cohort		
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
124	79.6	94.1	79.0	76.8	100	75.8
2_124	95.0	100	94.8	91.4	100	91.1
1_113_124	98.5	100	98.4	97.5	100	97.4
113_124_125_126	99.0	94.1	99.2	99.0	100	98.9
124_125_128_568	98.0	100	97.9	94.9	100	94.7
113_124_125_162	99.0	100	99.0	98.0	100	97.9
52_124_126_561	98.0	94.1	98.2	98.0	100	97.9
19 113 124 126	98.0	94.1	98.2	99.0	100	98.9

[Table 8-8]

		Training cohort		Validation cohort		
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
125	77.6	82.4	77.4	73.7	87.5	73.2
113_125	94.7	100	94.5	93.4	100	93.2
2_113_125	99.0	100	99.0	96.5	100	96.3
1_113_125_160	99.5	100	99.5	98.5	100	98.4
31_113_125_568	99.0	100	98.9	98.0	100	97.9
2_53_113_125	99.2	100	99.2	98.0	100	97.9
1_10_113_125	99.5	100	99.5	99.0	100	98.9
1_113_125_143	99.2	100	99.2	99.0	100	98.9

				[Table 8-9]			
20			Training cohort	Validation cohort			
	SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
	126	90.4	94.1	90.3	92.4	100	92.1
25	1_126	96.7	100	96.6	95.5	100	95.3
25	1_113_126	99.7	100	99.7	98.0	100	97.9
	1_126_561_573	98.5	100	98.4	97.5	100	97.4
	113_125_126_568	98.5	100	98.4	98.5	100	98.4
30	113_125_126_561	99.0	94.1	99.2	98.5	100	98.4
	1_113_125_126	99.7	100	99.7	99.0	100	98.9
	1 52 126 561	99.5	100	99.5	98.0	100	97.9

[Table 8-10]

[Table 6-10]								
	Training cohort			Validation cohort				
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)		
128	81.4	82.4	81.4	81.3	87.5	81.1		
1_128	96.2	100	96.1	94.9	100	94.7		
1_113_128	98.7	100	98.7	97.5	100	97.4		
26_113_125_128	97.7	94.1	97.9	98.5	100	98.4		
1_113_125_128	99.0	100	99.0	99.0	100	98.9		
1_10_113_128	99.2	100	99.2	99.5	100	99.5		
31_113_125_128	97.5	94.1	97.6	99.0	100	98.9		
2_19_113_128	99.0	100	99.0	97.0	100	96.8		

[Table 8-11]

	Training cohort			Validation cohort		
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
130	83.4	88.2	83.2	87.4	100	86.8
1_130	96.2	100	96.1	94.4	100	94.2
1_113_130	99.2	100	99.2	98.5	100	98.4
1_3_130_143	97.7	100	97.6	99.0	100	98.9
1_10_113_130	99.5	100	99.5	99.5	100	99.5
1_63_130_578	98.7	100	98.7	98.5	100	98.4
124_125_130_568	98.5	100	98.4	96.5	100	96.3
2_19_113_130	99.0	100	99.0	98.0	100	97.9

				[Table 8-12]				
20			Training cohort		Validation cohort			
	SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)	
	143	64.6	58.8	64.8	66.2	62.5	66.3	
25	Training cohort Validation SEQ ID NO: Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity 143 64.6 58.8 64.8 66.2 62.5 1_143 96.0 100 95.8 93.9 87.5 1_113_143 98.7 100 98.7 98.0 100 1_3_126_143 99.0 100 98.9 98.0 100 1_63_130_143 97.7 100 97.6 98.0 100	87.5	94.2					
	1_113_143	98.7	100	98.7	98.0	Sensitivity (%) 62.5 87.5 100 100 100 100 100	97.9	
	1_3_126_143	99.0	100	98.9	98.0	100	97.9	
	1_63_130_143	97.7	100	97.6	98.0	100	97.9	
30	1_10_52_143	98.0	100	97.9	100	100	100	
	2_19_113_143	98.5	100	98.4	96.5	100	96.3	
	63_124_130_143	96.2	94.1	96.3	96.0	100	95.8	

[Table 8-13]

[1806-10]							
	Training cohort			Validation cohort			
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)	
160	70.9	70.6	70.9	67.2	37.5	68.4	
2_160	96.0	100	95.8	92.4	100	92.1	
1_113_160	99.2	100	99.2	98.5	100	98.4	
1_10_113_160	99.2	100	99.2	99.0	100	98.9	
7_113_125_160	99.0	100	99.0	97.5	100	97.4	
1_113_160_567	99.5	100	99.5	98.0	100	97.9	
1_113_160_578	98.7	100	98.7	98.0	100	97.9	
2_19_113_160	99.5	100	99.5	98.0	100	97.9	

5

10

15

35

40

45

[Table 8-14]

	Training cohort			Validation cohort		
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
561	84.9	88.2	84.8	81.8	87.5	81.6
126_561	96.5	94.1	96.6	97.5	100	97.4
1_113_561	98.7	100	98.7	98.0	100	97.9
113_125_130_561	97.7	94.1	97.9	99.5	100	99.5
7_126_143_561	98.5	100	98.4	98.5	100	98.4
1_113_126_561	100	100	100	99.0	100	98.9
1_126_561_568	98.7	100	98.7	98.0	100	97.9
7_113_126_561	99.2	94.1	99.5	98.5	100	98.4

[Table 8-15]

	Training cohort			Validation cohort		
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
568	60.2	58.8	60.3	67.2	100	65.8
1_568	97.0	100	96.8	96.0	100	95.8
1_2_568	99.0	100	98.9	96.0	100	95.8
7_125_126_568	99.2	100	99.2	98.0	100	97.9
124_125_126_568	98.5	100	98.4	98.0	100	97.9
7_113_125_568	98.5	100	98.4	98.0	100	97.9
1_113_125_568	99.5	100	99.5	98.0	100	97.9
113_125_128_568	97.5	100	97.4	98.5	100	98.4

[Table 8-16]

	Training cohort			Validation cohort		
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
573	53.0	35.3	53.8	53.5	12.5	55.3
1_573	96.5	100	96.3	95.5	100	95.3
1_113_573	98.7	100	98.7	98.0	100	97.9
113_125_126_573	98.2	94.1	98.4	99.5	100	99.5
1_113_125_573	99.2	100	99.2	98.5	100	98.4
1_53_113_573	98.7	100	98.7	97.5	100	97.4
1_124_126_573	97.7	100	97.6	96.5	100	96.3
1_63_130_573	98.7	100	98.7	98.0	100	97.9

[Table 8-17]

		Training cohort			Validation cohor	t
SEQ ID NO:	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)
578	52.8	52.9	52.8	53.5	50.0	53.7
1_578	96.2	100	96.1	94.9	100	94.7
1_113_578	98.5	100	98.4	96.5	100	96.3
1_126_567_578	98.5	100	98.4	97.5	100	97.4
1_19_113_578	99.2	100	99.2	99.0	100	98.9
31_126_561_578	97.5	94.1	97.6	97.5	100	97.4
1_126_160_578	98.7	100	98.7	97.0	100	96.8
1_113_125_578	98.7	100	98.7	98.5	100	98.4

Industrial Applicability

20 [0622] According to the present invention, lung cancer can be effectively detected by a simple and inexpensive method. This permits early detection, diagnosis and treatment of lung cancer. The method of the present invention can detect lung cancer with limited invasiveness using the blood of a patient and therefore allows lung cancer to be detected conveniently and rapidly.

25 SEQUENCE LISTING

[0623]

5

10

15

30

<110> Toray Industries, Inc. National Cancer Center

<120> Kit and method for detecting lung cancer

<130> PH-6239-PCT

35 <150> JP 2014-125561

<151> 2014-06-18

<160> 618

40 <170> PatentIn version 3.5

<210> 1

<211> 23

<212> RNA

45 <213> Homo sapiens

<400> 1

cacacaggaa aagcggggcc cug 23

50 <210> 2

<211> 21

<212> RNA

<213> Homo sapiens

55 <400> 2

augccucccc cggccccgca g 21

<210> 3

```
<211> 25
         <212> RNA
         <213> Homo sapiens
5
         <400> 3
         uagggguggg ggaauucagg ggugu 25
         <210> 4
         <211> 23
10
         <212> RNA
         <213> Homo sapiens
         <400> 4
         ugagcaccac acaggccggg cgc 23
15
         <210> 5
         <211> 21
         <212> RNA
         <213> Homo sapiens
20
         <400> 5
         ccggccgccg gcuccgcccc g 21
         <210> 6
25
         <211> 21
         <212> RNA
         <213> Homo sapiens
         <400> 6
30
         cgggagcugg ggucugcagg u 21
         <210> 7
         <211> 17
         <212> RNA
35
         <213> Homo sapiens
         <400> 7
         cccgccacc gccuugg 17
40
         <210>8
         <211> 22
         <212> RNA
         <213> Homo sapiens
45
         <400> 8
         cuccuggggc ccgcacucuc gc 22
         <210> 9
         <211> 17
50
         <212> RNA
         <213> Homo sapiens
         <400> 9
         gggagaaggg ucggggc 17
55
         <210> 10
         <211> 21
         <212> RNA
```

	<213> Homo sapiens
5	<400> 10 ugagggaccc aggacaggag a 21
	<210> 11 <211> 20 <212> RNA
10	<213> Homo sapiens
	<400> 11 cggggugggu gaggucgggc 20
15	<210> 12 <211> 22
	<212> RNA <213> Homo sapiens
20	<400> 12 uggggaggug uggagucagc au 22
	<210> 13
	<211> 22 <212> RNA
25	<213> Homo sapiens
	<400> 13 gcccaggacu uugugcgggg ug 22
30	<210> 14 <211> 23
	<211> 23 <212> RNA
	<213> Homo sapiens
35	<400> 14
	uggggaaggc uuggcaggga aga 23
	<210> 15 <211> 22
40	<212> RNA
	<213> Homo sapiens
	<400> 15
45	ucgggccugg gguuggggga gc 22
	<210> 16
	<211> 22
	<212> RNA
50	<213> Homo sapiens
	<400> 16
	ucaaaaucag gagucggggc uu 22
	<210> 17
55	
33	<211> 20
55	<211> 20 <212> RNA <213> Homo sapiens

	<400> 17 gccggggcuu ugggugaggg 20
5	<210> 18 <211> 23 <212> RNA <213> Homo sapiens
10	<400> 18 ugaggauaug gcagggaagg gga 23
15	<210> 19 <211> 24 <212> RNA <213> Homo sapiens
	<400> 19 ugaggggccu cagaccgagc uuuu 24
20	<210> 20 <211> 22 <212> RNA <213> Homo sapiens
25	<400> 20 gguggcccgg ccgugccuga gg 22
30	<210> 21 <211> 22 <212> RNA <213> Homo sapiens
35	<400> 21 ugguggagga agagggcagc uc 22 <210> 22
40	<211> 21 <212> RNA <213> Homo sapiens <400> 22
45	cggcggggac ggcgauuggu c 21 <210> 23 <211> 22 <212> RNA <213> Homo sapiens
50	<400> 23 ggguggggau uuguugcauu ac 22
55	<210> 24 <211> 18 <212> RNA <213> Homo sapiens
	<400> 24

_	<210> 25 <211> 21 <212> RNA <213> Homo sapiens
5	<400> 25 ugggggugug gggagagaga g 21
10	<210> 26 <211> 22 <212> RNA <213> Homo sapiens
15	<400> 26 uggggguggu cucuagccaa gg 22
20	<210> 27 <211> 22 <212> RNA <213> Homo sapiens
	<400> 27 uuggggauug ggucaggcca gu 22
25	<210> 28 <211> 21 <212> RNA <213> Homo sapiens
30	<400> 28 guuggggugc aggggucugc u 21
35	<210> 29 <211> 23 <212> RNA <213> Homo sapiens
40	<400> 29 ggaggcgcag gcucggaaag gcg 23 <210> 30
45	<211> 19 <212> RNA <213> Homo sapiens
	<400> 30 ggcuggucag augggagug 19
50	<210> 31 <211> 23 <212> RNA <213> Homo sapiens
55	<400> 31 ucggggaguc ugggguccgg aau 23
	<210> 32 <211> 20

	<212> RNA <213> Homo sapiens
5	<400> 32 ggauccgagu cacggcacca 20
10	<210> 33 <211> 20 <212> RNA <213> Homo sapiens
	<400> 33 ccugagcccg ggccgcgcag 20
15	<210> 34 <211> 24 <212> RNA <213> Homo sapiens
20	<400> 34 ccccgggaac gucgagacug gagc 24
25	<210> 35 <211> 21 <212> RNA <213> Homo sapiens
30	<400> 35 guaggugaca gucaggggcg g 21 <210> 36
35	<211> 21 <212> RNA <213> Homo sapiens <400> 36
40	<pre><ccaugccuc 21="" <210="" c="" cugccgcggu=""> 37 <211> 24 <212> RNA <213> Homo sapiens</ccaugccuc></pre>
45	<400> 37 ugggcgaggg gugggcucuc agag 24
50	<210> 38 <211> 22 <212> RNA <213> Homo sapiens
	<400> 38 ccccuggggc ugggcaggcg ga 22
55	<210> 39 <211> 21 <212> RNA <213> Homo sapiens

	<400> 39 caggaguggg gggugggacg u 21
5	<210> 40 <211> 22 <212> RNA <213> Homo sapiens
10	<400> 40 ggcuggagcg agugcagugg ug 22
15	<210> 41 <211> 23 <212> RNA <213> Homo sapiens
	<400> 41 gggggccgau acacuguacg aga 23
20	<210> 42 <211> 22 <212> RNA <213> Homo sapiens
25	<400> 42 ggggcuguga uugaccagca gg 22
30	<210> 43 <211> 18 <212> RNA <213> Homo sapiens
35	<400> 43 gguggggggu guuguuuu 18 <210> 44
40	<211> 22 <212> RNA <213> Homo sapiens <400> 44 ugggagggcg uggaugaugg ug 22
45	<210> 45 <211> 22 <212> RNA <213> Homo sapiens
50	<400> 45 gugggugcug gugggagccg ug 22
55	<210> 46 <211> 18 <212> RNA <213> Homo sapiens
	<400> 46 uucccagcca acgcacca 18

```
<210> 47
         <211> 18
         <212> RNA
         <213> Homo sapiens
5
         <400> 47
         agcaggugcg gggcggcg 18
         <210> 48
10
         <211> 23
         <212> RNA
         <213> Homo sapiens
         <400> 48
15
         cggggccgua gcacugucug aga 23
         <210> 49
         <211> 17
         <212> RNA
20
         <213> Homo sapiens
         <400> 49
         accccacucc ugguacc 17
25
         <210> 50
         <211> 21
         <212> RNA
         <213> Homo sapiens
30
         <400> 50
         ucaccuggcu ggcccgccca g 21
         <210> 51
         <211> 23
35
         <212> RNA
         <213> Homo sapiens
         <400> 51
         gagggcagcg uggguguggc gga 23
40
         <210> 52
         <211> 23
         <212> RNA
         <213> Homo sapiens
45
         <400> 52
         agggacuuuu gggggcagau gug 23
         <210> 53
50
         <211> 20
         <212> RNA
         <213> Homo sapiens
         <400> 53
55
         agagaugaag cgggggggcg 20
         <210> 54
         <211> 21
```

	<212> RNA <213> Homo sapiens
5	<400> 54 uggggcgggg caggucccug c 21
	<210> 55 <211> 25 <212> RNA
10	<213> Homo sapiens
	<400> 55 aggggggcac ugcgcaagca aagcc 25
15	<210> 56 <211> 22
	<212> RNA <213> Homo sapiens
20	<400> 56
	gggacccagg gagagacgua ag 22
	<210> 57 <211> 25
25	<212> RNA
	<213> Homo sapiens
	<400> 57 gugaggcggg gccaggaggg ugugu 25
30	
	<210> 58
	<211> 19 <212> RNA
	<213> Homo sapiens
35	·
	<400> 58
	uggggcggag cuuccggag 19
40	<210> 59 <211> 17
	<212> RNA
	<213> Homo sapiens
	<400> 59
45	gccggacaag agggagg 17
	<210> 60
	<211> 18
50	<212> RNA <213> Homo sapiens
	·
	<400> 60 cggugagcgc ucgcuggc 18
55	<210> 61
	<211> 23
	<212> RNA <213> Homo sapiens
	owp.o

	<400> 61 ugggcagggg cuuauuguag gag 23
5	<210> 62 <211> 23 <212> RNA <213> Homo sapiens
10	<400> 62 ccagggggau gggcgagcuu ggg 23
15	<210> 63 <211> 23 <212> RNA <213> Homo sapiens
	<400> 63 uuagggagua gaaggguggg gag 23
20	<210> 64 <211> 18 <212> RNA <213> Homo sapiens
25	<400> 64 gugaaggccc ggcggaga 18
30	<210> 65 <211> 23 <212> RNA <213> Homo sapiens
35	<400> 65 gugaguggga gccggugggg cug 23 <210> 66
40	<211> 20 <212> RNA <213> Homo sapiens <400> 66
45	uaggaugggg gugagaggug 20 <210> 67 <211> 21 <212> RNA <213> Homo sapiens
50	- <400> 67 cggggcagcu caguacagga u 21
55	<210> 68 <211> 23 <212> RNA <213> Homo sapiens
	<400> 68 cucggggcag gcggcuggga gcg 23

```
<210> 69
         <211> 23
         <212> RNA
         <213> Homo sapiens
5
         <400> 69
         ugggaggga gaggcagcaa gca 23
         <210> 70
10
         <211> 22
         <212> RNA
         <213> Homo sapiens
         <400> 70
15
         ccgggagaag gagguggccu gg 22
         <210> 71
         <211> 20
         <212> RNA
20
         <213> Homo sapiens
         <400> 71
         ucagggaguc aggggagggc 20
25
         <210> 72
         <211> 20
         <212> RNA
         <213> Homo sapiens
30
         <400> 72
         guggguuggg gcgggcucug 20
         <210> 73
         <211> 22
35
         <212> RNA
         <213> Homo sapiens
         <400> 73
         uggggaaggc gucagugucg gg 22
40
         <210> 74
         <211> 21
         <212> RNA
         <213> Homo sapiens
45
         <400> 74
         guguggccgg caggcgggug g 21
         <210> 75
50
         <211> 17
         <212> RNA
         <213> Homo sapiens
         <400> 75
55
         ggcgggugcg ggggugg 17
         <210> 76
         <211> 22
```

	<212> RNA <213> Homo sapiens
5	<400> 76 cagggcaggg aaggugggag ag 22
	<210> 77 <211> 23
10	<212> RNA <213> Homo sapiens
	<400> 77 cgagggguag aagagcacag ggg 23
15	<210> 78 <211> 18 <212> RNA
	<213> Homo sapiens
20	<400> 78 aucccaccuc ugccacca 18
	<210> 79 <211> 22
25	<212> RNA <213> Homo sapiens
	<400> 79 cagggcuggc agugacaugg gu 22
30	<210> 80
	<211> 23 <212> RNA
35	<213> Homo sapiens <400> 80
	ucgaggacug guggaagggc cuu 23
40	<210> 81 <211> 17 <212> RNA <213> Homo sapiens
45	<400> 81
45	gagacugggg uggggcc 17
	<210> 82 <211> 23
50	<212> RNA <213> Homo sapiens
	<400> 82 agaagaaggc ggucggucug cgg 23
55	<210> 83 <211> 19 <212> RNA
	<213> Homo sapiens

	<400> 83 ugggggagau ggggguuga 19
	<210> 84
5	<211> 21
	<212> RNA
	<213> Homo sapiens
10	<400> 84
10	cugggagggg cuggguuugg c 21
	<210> 85
	<211> 21 <212> RNA
15	<213> Homo sapiens
	·
	<400> 85
	accacugcac uccagccuga g 21
20	<210> 86
	<211> 22
	<212> RNA
	<213> Homo sapiens
25	<400> 86
	ggggaacugu agaugaaaag gc 22
	<210> 87
30	<211> 22 <212> RNA
30	<213> Homo sapiens
	·
	<400> 87
25	agggggcgca gucacugacg ug 22
35	<210> 88
	<211> 21
	<212> RNA
	<213> Homo sapiens
40	216 Home Supreme
	<400> 88
	cugggcucgg gacgcgcggc u 21
	<210> 89
45	<211> 21
	<212> RNA
	<213> Homo sapiens
	<400> 89
50	acaggagugg gggugggaca u 21
	<210> 90
	<211> 18
	<212> RNA
55	<213> Homo sapiens
	<400> 90
	ccagaggugg ggacugag 18

5	<210> 91 <211> 22 <212> RNA <213> Homo sapiens
J	<400> 91 accuugccuu gcugcccggg cc 22
10	<210> 92 <211> 18 <212> RNA <213> Homo sapiens
15	<400> 92 ggugggcuuc ccggaggg 18
20	<210> 93 <211> 22 <212> RNA <213> Homo sapiens
	<400> 93 uggggagcgg cccccgggug gg 22
25	<210> 94 <211> 21 <212> RNA <213> Homo sapiens
30	<400> 94 cgggccggag gucaagggcg u 21
35	<210> 95 <211> 22 <212> RNA <213> Homo sapiens
40	<400> 95 caggaggcag ugggcgagca gg 22 <210> 96
45	<211> 21 <212> RNA <213> Homo sapiens
	<400> 96 cgggggcggg gccgaagcgc g 21
50	<210> 97 <211> 25 <212> RNA <213> Homo sapiens
55	<400> 97 ucggggcaug ggggagggag gcugg 25
	<210> 98 <211> 21

	<212> RNA <213> Homo sapiens
5	<400> 98 aagggacagg gagggucgug g 21
10	<210> 99 <211> 21 <212> RNA <213> Homo sapiens
	<400> 99 agcggugcuc cugcgggccg a 21
15	<210> 100 <211> 19 <212> RNA <213> Homo sapiens
20	<400> 100 uugaucucgg aagcuaagc 19
25	<210> 101 <211> 21 <212> RNA <213> Homo sapiens
30	<400> 101 cguggaggac gaggaggagg c 21 <210> 102
35	<211> 24 <212> RNA <213> Homo sapiens <400> 102
40	<pre>uguaggcaug aggcagggcc cagg 24 <210> 103 <211> 22 <212> RNA <213> Homo sapiens</pre>
45	<400> 103 uggcggcggu aguuaugggc uu 22
50	<210> 104 <211> 23 <212> RNA <213> Homo sapiens
	<400> 104 agggccagag gagccuggag ugg 23
55	<210> 105 <211> 20 <212> RNA <213> Homo sapiens

	<400> 105 ugugggacug caaaugggag 20
5	<210> 106 <211> 24 <212> RNA <213> Homo sapiens
10	<400> 106 ggaggccggg guggggcggg gcgg 24
15	<210> 107 <211> 19 <212> RNA <213> Homo sapiens
	<400> 107 aucccaccac ugccaccau 19
20	<210> 108 <211> 17 <212> RNA <213> Homo sapiens
25	<400> 108 ccccggggag cccggcg 17
30	<210> 109 <211> 21 <212> RNA <213> Homo sapiens
35	<400> 109 auccaguucu cugagggggc u 21 <210> 110
40	<211> 23 <212> RNA <213> Homo sapiens <400> 110 agaggcuuug ugcggauacg ggg 23
45	<210> 111 <211> 23 <212> RNA <213> Homo sapiens
50	<400> 111 ugggggcugg gaugggccau ggu 23
55	<210> 112 <211> 22 <212> RNA <213> Homo sapiens
	<400> 112 agugggaggc cagggcacgg ca 22

```
<210> 113
         <211> 22
         <212> RNA
         <213> Homo sapiens
5
         <400> 113
         aggcgaugug gggauguaga ga 22
         <210> 114
10
         <211> 17
         <212> RNA
         <213> Homo sapiens
         <400> 114
15
         cgcgccgggc ccggguu 17
         <210> 115
         <211> 22
         <212> RNA
20
         <213> Homo sapiens
         <400> 115
         uagggauggg aggccaggau ga 22
25
         <210> 116
         <211> 20
         <212> RNA
         <213> Homo sapiens
30
         <400> 116
         ggcggcggg agguaggcag 20
         <210> 117
         <211> 23
35
         <212> RNA
         <213> Homo sapiens
         <400> 117
         ugagugggc ucccgggacg gcg 23
40
         <210> 118
         <211> 23
         <212> RNA
         <213> Homo sapiens
45
         <400> 118
         caggcagaag uggggcugac agg 23
         <210> 119
50
         <211> 19
         <212> RNA
         <213> Homo sapiens
         <400> 119
55
         ucugggugca guggggguu 19
         <210> 120
         <211> 20
```

	<212> RNA <213> Homo sapiens
5	<400> 120 acucaaacug ugggggcacu 20
10	<210> 121 <211> 17 <212> RNA <213> Homo sapiens
	<400> 121 guggggccag gcggugg 17
15	<210> 122 <211> 18 <212> RNA <213> Homo sapiens
20	<400> 122 cuggcagggg gagaggua 18
25	<210> 123 <211> 20 <212> RNA <213> Homo sapiens
30	<400> 123 ccccagggcg acgcggcggg 20 <210> 124
35	<211> 22 <212> RNA <213> Homo sapiens
	<400> 124 ggcuacaaca caggacccgg gc 22
40	<210> 125 <211> 23 <212> RNA <213> Homo sapiens
45	<400> 125 gaacgccugu ucuugccagg ugg 23
50	<210> 126 <211> 23 <212> RNA <213> Homo sapiens
	<400> 126 ugugcaaauc caugcaaaac uga 23
55	<210> 127 <211> 22 <212> RNA <213> Homo sapiens

	<400> 127 guggguacgg cccagugggg gg 22
5	<210> 128 <211> 22 <212> RNA <213> Homo sapiens
10	<400> 128 aaaccguuac cauuacugag uu 22
15	<210> 129 <211> 24 <212> RNA <213> Homo sapiens
	<400> 129 uggggagcug aggcucuggg ggug 24
20	<210> 130 <211> 22 <212> RNA <213> Homo sapiens
25	<400> 130 ugucaguuug ucaaauaccc ca 22
30	<210> 131 <211> 21 <212> RNA <213> Homo sapiens
35	<400> 131 gugggcgggg gcaggugugu g 21 <210> 132
40	<211> 22 <212> RNA <213> Homo sapiens
	<400> 132 acaggugagg uucuugggag cc 22
45	<210> 133 <211> 22 <212> RNA <213> Homo sapiens
50	<400> 133 agggacggga cgcggugcag ug 22
55	<210> 134 <211> 22 <212> RNA <213> Homo sapiens
	<400> 134 aaggugggag uugaagaagu gu 22

```
<210> 135
         <211> 19
         <212> RNA
         <213> Homo sapiens
5
         <400> 135
         gggggaagaa aaggugggg 19
         <210> 136
10
         <211> 22
         <212> RNA
         <213> Homo sapiens
         <400> 136
         agacacauuu ggagagggac cc 22
15
         <210> 137
         <211> 21
         <212> RNA
20
         <213> Homo sapiens
         <400> 137
         acggcccagg cggcauuggu g 21
25
         <210> 138
         <211> 20
         <212> RNA
         <213> Homo sapiens
30
         <400> 138
         gcggaaggcg gagcggcgga 20
         <210> 139
         <211> 22
35
         <212> RNA
         <213> Homo sapiens
         <400> 139
         gugaacgggc gccaucccga gg 22
40
         <210> 140
         <211> 23
         <212> RNA
         <213> Homo sapiens
45
         <400> 140
         aggagguggu acuaggggcc age 23
         <210> 141
50
         <211> 19
         <212> RNA
         <213> Homo sapiens
         <400> 141
55
         cuggggagug gcuggggag 19
         <210> 142
         <211> 22
```

	<212> RNA <213> Homo sapiens
5	<400> 142 ggaggaaccu uggagcuucg gc 22
10	<210> 143 <211> 17 <212> RNA <213> Homo sapiens
	<400> 143 uuggaggcgu ggguuuu 17
15	<210> 144 <211> 21 <212> RNA <213> Homo sapiens
20	<400> 144 agccgcgggg aucgccgagg g 21
25	<210> 145 <211> 21 <212> RNA <213> Homo sapiens
30	<400> 145 agggagggac gggggcugug c 21 <210> 146
35	<211> 22 <212> RNA <213> Homo sapiens <400> 146
	uugaggagac augguggggg cc 22 <210> 147
40	<211> 24 <212> RNA <213> Homo sapiens
45	<400> 147 aggcaggggc uggugcuggg cggg 24
50	<210> 148 <211> 22 <212> RNA <213> Homo sapiens
	<400> 148 ugggcgaggg cggcugagcg gc 22
55	<210> 149 <211> 18 <212> RNA <213> Homo sapiens

	<400> 149 cggggcggca ggggccuc 18
5	<210> 150 <211> 23 <212> RNA <213> Homo sapiens
10	<400> 150 ggaugguugg gggcggucgg cgu 23
15	<210> 151 <211> 18 <212> RNA <213> Homo sapiens
	<400> 151 cgggcguggu gguggggg 18
20	<210> 152 <211> 25 <212> RNA <213> Homo sapiens
25	<400> 152 aagggaggag gagcggaggg gcccu 25
30	<210> 153 <211> 20 <212> RNA <213> Homo sapiens
35	<400> 153 cgggcguggu ggugggggug 20 <210> 154
40	<211> 22 <212> RNA <213> Homo sapiens <400> 154
45	ugggggagug cagugauugu gg 22 <210> 155 <211> 22 <212> RNA
	<213> Homo sapiens <400> 155
50	ggggggugug gagccagggg gc 22 <210> 156 <211> 20
55	<212> RNA <213> Homo sapiens
	<400> 156 cuggguuggg cugggcuggg 20

```
<210> 157
         <211> 19
         <212> RNA
         <213> Homo sapiens
5
         <400> 157
         aggcacggug ucagcaggc 19
         <210> 158
10
         <211> 17
         <212> RNA
         <213> Homo sapiens
         <400> 158
15
         cuccgggacg gcugggc 17
         <210> 159
         <211> 22
         <212> RNA
20
         <213> Homo sapiens
         <400> 159
         agggccgaag gguggaagcu gc 22
25
         <210> 160
         <211> 18
         <212> RNA
         <213> Homo sapiens
30
         <400> 160
         ugaggcgggg gggcgagc 18
         <210> 161
         <211> 22
35
         <212> RNA
         <213> Homo sapiens
         <400> 161
         ugcuggggc cacaugagug ug 22
40
         <210> 162
         <211> 22
         <212> RNA
         <213> Homo sapiens
45
         <400> 162
         gggggucccc ggugcucgga uc 22
         <210> 163
50
         <211> 20
         <212> RNA
         <213> Homo sapiens
         <400> 163
55
         cggcucuggg ucugugggga 20
         <210> 164
         <211> 19
```

	<212> RNA <213> Homo sapiens
5	<400> 164 uaaggagggg gaugagggg 19
	<210> 165
	<211> 23
	<212> RNA
10	<213> Homo sapiens
	<400> 165
	uggggggaca gauggagagg aca 23
15	<210> 166
	<211> 21
	<212> RNA
	<213> Homo sapiens
20	<400> 166
	ggggggaugu gcaugcuggu u 21
	<210> 167
0.5	<211> 22
25	<212> RNA
	<213> Homo sapiens
	<400> 167
30	ggaggggucc cgcacuggga gg 22
30	<210> 168
	<211> 22
	<212> RNA
	<213> Homo sapiens
35	100 100
	<400> 168
	gcugggauua caggcaugag cc 22
	<210> 169
40	<211> 24
	<212> RNA <213> Homo sapiens
	·
45	<400> 169
45	agggcuggac ucagcggcgg agcu 24
	<210> 170
	<211> 22
50	<212> RNA
00	<213> Homo sapiens
	<400> 170
	ugcagggguc gggugggcca gg 22
55	<210> 171
	<211> 20
	<212> RNA <213> Homo sapiens
	~2 10/ 1101110 Sapie115

	<400> 171 cgcgggucgg ggucugcagg 20	
5	<210> 172 <211> 22 <212> RNA <213> Homo sapiens	
10	<400> 172 cugggacagg aggaggaggc ag 22	
15	<210> 173 <211> 23 <212> RNA <213> Homo sapiens	
	<400> 173 uggugcggag agggcccaca gug 23	
20	<210> 174 <211> 22 <212> RNA <213> Homo sapiens	
25	<400> 174 caccggggau ggcagagggu cg 22	
30	<210> 175 <211> 72 <212> RNA <213> Homo sapiens	
	<400> 175	
35	ccaggcacac aggaaaagcg gggcccuggg uucggcugcu accccaaagg ccacauucuc	60
	cugugcacac ag	72
40	<210> 176 <211> 63 <212> RNA <213> Homo sapiens	
45	<400> 176	
	ggcuccgcag ggcccuggcg caggcaucca gacagcgggc gaaugccucc cccggccccg	60
50	cag	63
	<210> 177 <211> 69 <212> RNA	
55	<213> Homo sapiens <400> 177	

	ugggguaggg	gugggggaau	ucaggggugu	cgaacucaug	gcugccaccu	uugugucccc	60
	auccugcag						69
5							
	<210> 178						
	<211> 97						
	<212> RNA						
	<213> Homo sap	piens					
10							
	<400> 178						
	cccgggaccu	ugguccaggc	gcuggucugc	guggugcucg	gguggauaag	ucugaucuga	60
15							
	gcaccacaca	ggccgggcgc	cgggaccaag	ggggcuc			97
	<210> 179						
	<211> 80						
20	<212> RNA						
	<213> Homo sap	oiens					
	<400> 179						
25							
	cgggaaugcc	gcggcgggga	cggcgauugg	uccguaugug	uggugccacc	ggccgccggc	60
	uccgccccgg	ccccgccc					80
30	<210> 180						
	<211> 61						
	<212> RNA						
	<213> Homo sap	piens					
35	<400> 180						
	gggggcggga	gcuggggucu	gcagguucgc	acugaugccu	gcucgcccug	ucucccqcua	60
40	g						61
40	,						
	<210> 181						
	<211> 91						
	<212> RNA						
45	<213> Homo sap	piens					
	<400> 181						
50	acgccccccg	ccccgccacc	gccuuggagg	cugaccucuu	acuuucgguc	ggucuucuuc	60
	ccugggcuug	guuugggggc	gggggagugu	С			91
	<210× 100						
55	<210> 182						
55	<211> 84						
	<212> RNA	viona					
	<213> Homo sap	NC112					

<400>	182

	gcuggcgucg	gugcugggga	gcggcccccg	ggugggccuc	ugcucuggcc	ccuccugggg	60
5	cccgcacucu	cgcucugggc	ccgc				84
	<210> 183						
	<211> 86						
10	<212> RNA						
	<213> Homo sap	piens					
	<400> 183						
15							
10	agggagaagg	gucggggcag	ggagggcagg	gcaggcucug	ggguggggg	ucugugaguc	60
		cugcccacgu					86
	agecaeggea	cageceaega	cucccc				00
20	<210> 184						
	<211> 72						
	<212> RNA						
	<213> Homo sap	iens					
25	<400> 184						
	gagucugagg	gacccaggac	aggagaaggc	cuauggugau	uugcauucuu	ccugcccugg	60
	cuccauccuc	aσ					72
30		5					
	<210> 185						
	<211> 73						
	<212> RNA						
35	<213> Homo sap	piens					
	<400> 185						
40	caacaacaac	ggggugggug	aggucgggcc	ccaagacucg	aaauuuacca	ggcgccucag	60
40				y y	9999	3 3 3 3 3 3 3 3 3 3	
	uucaccgcgg	ccg					73
	<210> 186						
45	<211> 66						
	<212> RNA						
	<213> Homo sap	oiens					
	<400> 186						
50							
	gggcaugggg	agguguggag	ucagcauggg	gcuaggaggc	cccgcgcuga	cccgccuucu	60
	ccgcag						66
55							
	<210> 187						
	<211> 71						
	<212> RNA						

	<213> Homo sapi	ens					
	<400> 187						
5	ugaccacccc	cgggcaaaga	ccugcagauc	cccuguuaga	gacgggccca	ggacuuugug	60
	cggggugccc	a					71
10	<210> 188						
	<211> 79						
	<212> RNA						
	<213> Homo sapi	ens					
15	<400> 188						
	cagccugggg	aaggcuuggc	agggaagaca	caugagcagu	gccuccacuu	cacgccucuc	60
20	ccuugucucc	uuucccuag					79
	<210> 189						
	<211> 69						
	<212> RNA						
25	<213> Homo sapi	ens					
	<400> 189						
30	ggcccucggg	ccugggguug	ggggagcucu	guccugucuc	acucauugcu	ccuccccugc	60
00					_	_	69
	cuggcccag						0.
	<210> 190						
35	<211> 81						
	<212> RNA						
	<213> Homo sapi	ens					
	<400> 190						
40							
	uagaggcagu	uucaacagau	guguagacuu	uugauaugag	aaauugguuu	caaaaucagg	60
	agucggggcu	uuacugcuuu	u				81
45							
	<210> 191						
	<211> 67						
	<212> RNA						
	<213> Homo sapi	ens					
50	<400> 191						
	uacaggccgg	ggcuuugggu	gagggacccc	cggagucugu	cacggucuca	ccccaacucu	60
55	gccccag						67
	<210> 192						

	<211> 68						
	<212> RNA						
	<213> Homo sap	iens					
5	<400> 192						
	cguggugagg	g auauggcagg	gaaggggagu	uucccucuau	ucccuucccc	ccaguaaucu	60
10	ucaucaug						68
	<210> 193						
	<211> 75						
	<212> RNA						
15	<213> Homo sap	iens					
	<400> 193						
20	aagcaagacu	gaggggccuc	agaccgagcu	uuuggaaaau	agaaaagucu	cgcucucugc	60
	cccucagccu	aacuu					75
	<210> 194						
25	<211> 115						
	<212> RNA						
	<213> Homo sap	iens					
	<400> 194						
30							
	ggugccgagg	gccguccggc	auccuaggcg	ggucgcugcg	guaccucccu	ccugucugug	60
	gcggugggau	cccguggccg	uguuuuccug	guggcccggc	cgugccugag	guuuc	115
35	<210> 195						
	<211> 62						
	<212> RNA						
	<213> Homo sap	piens					
40	<400> 195						
	gaggguggug	gaggaagagg	gcagcuccca	ugacugccug	accgccuucu	cuccucccc	60
45	ag						62
	<210> 196						
	<211> 75						
	<212> RNA						
50	<213> Homo sap	iens					
	<400> 196						
55	ucaucccugg	guggggauuu	guugcauuac	uuguguucua	uauaaaguau	ugcacuuguc	60
	ccggccugug	gaaga					75

	<210> 197 <211> 68 <212> RNA <213> Homo sapi	ens					
5	<400> 197						
	gugcaaagag	caggaggaca	ggggauuuau	cucccaaggg	agguccccug	auccuaguca	60
10	cggcacca						68
	<210> 198 <211> 86						
15							
15	<212> RNA						
	<213> Homo sapi	ens					
	<400> 198						
20	ggggcugggg	guguggggag	agagagugca	cagccagcuc	agggauuaaa	gcucuuucuc	60
	ucucucucuc						86
			J J				
25	<210> 199						
	<211> 65						
	<212> RNA						
	<213> Homo sapi	ens					
30	<400> 199						
	agcccugggg	guggucucua	gccaaggcuc	uggggucuca	cccuuggcug	gucucugcuc	60
35	cgcag						65
	<210> 200						
	<211> 93						
	<212> RNA						
40	<213> Homo sapi	ens					
	<400> 200						
45	gcuuguuggg	gauuggguca	ggccaguguu	caagggcccc	uccucuagua	cucccuguuu	60
	guguucugcc	acugacugag	cuucucccca	cag			93
	<210> 201						
50	<211> 137						
	<212> RNA						
	<213> Homo sapi	ens					
E E	<400> 201						

	agccagacaa ga	.gggucaug	gggagucacu	gucaacccag	agcaggcacu	gccccugcga	60
	ccagccuggg gc	aucgguug	gggugcaggg	gucugcuggu	gaugcuuucc	aucucuuugc	120
5	uuuguccuga uu	guage					137
	<210> 202						
	<211> 73						
	<212> RNA						
10	<213> Homo sapiens	3					
	<400> 202						
15	ggcgagggga gg	cgcaggcu	cggaaaggcg	cgcgaggcuc	caggcuccuu	cccgauccac	60
	cgcucuccuc gc	111					73
	egeueueeue ge						,,
	<210> 203						
20	<211> 109						
	<212> RNA						
	<213> Homo sapiens	5					
25	<400> 203						
25							
	ucccgcauuc cc	ucugcuuu	ggucaggugg	ugcccuccuu	ccauggguag	agccagagau	60
	gguggguucu gg	cuggucag	augggagugg	acagagaccc	gggguccuc		109
30							
	<210> 204						
	<211> 59						
	<212> RNA						
	<213> Homo sapiens	3					
35							
	<400> 204						
	cugugucggg gagucug	ggg uccggaa	uuc uccagagccu	cugugccccu acu	ucccag 59		
	<210> 205						
40	<211> 55						
	<212> RNA						
	<213> Homo sapiens	5					
	<400> 205						
45	ccggauccga gucacgg	cac caaauuu	cau gcguguccgu	gugaagagac cad	cca 55		
	<210> 206						
	<211> 119						
	<212> RNA						
50	<213> Homo sapiens	3					
	<400> 206						
55	agccugcgcc gg	agccgggg	ccugagcccg	ggccgcgcag	gccgugaacu	cgucgagcug	60
	cgcgugcggc cg	gugcucaa	ccugccgggu	ccuggccccg	cgcucccgcg	cgcccugga	119

	<210> 207						
	<211> 136						
	<212> RNA						
	<213> Homo sap	iens					
5							
	<400> 207						
	207						
							60
	eegeuugeeu	cgcccagcgc	ageceeggee	geugggegea	eeegueeegu	ucguccccgg	60
10	acamacanan	cuaccccggg	2200100202	CHAGSACACA	cassanasaa	Caccinicaca	120
	acguugcucu	cuaccccggg	aacgucgaga	cuggagegee	cyaacugage	Caccuacycy	120
	gaccccgaga	acaaca					136
	guocoogugu	909909					
	<210> 208						
15	<211> 82						
. •	<212> RNA						
	<213> Homo sap	siene					
	~213/1101110 Sap	ile i i s					
	<400> 208						
20	\400 / 200						
20							
	accuquaggu	gacagucagg	gacagagugu	gguggggcug	gggcuggccc	ccuccucaca	60
	3 33	5 5 55		33 3333 3			
0.5	ccucuccugg	caucgccccc	aσ				82
25		-	-				
	.040: 000						
	<210> 209						
	<211> 62						
	<212> RNA						
30	<213> Homo sap	piens					
	<400> 209						
	gugggucucg	caucaggagg	caaggccagg	acccgcugac	ccaugccucc	ugccgcgguc	60
35							
	ag						62
	<210> 210						
	<211> 64						
40	<212> RNA						
	<213> Homo sap	iens					
	<400> 210						
45	ucugggcgag	gggugggcuc	ucagagggc	uggcaguacu	gcucugaggc	cuaccucucc	60
	333 3 3		3 3333	33 3	3 3- 33-	, , , , , , , , , , , , , , , , , , ,	
	ccag						64
	<210> 211						
50	<211> 67						
	<212> RNA						
	<213> Homo sap	iens					
		-					
	<400> 211						
55							
	CCacaccccii	ו ממממכיימיים	20000002222	20011011022	110001101100	uccuuggucu	60
	Jugaceeu	. 9999049990		aggucugaac	. agecaeagee	. accaugguou	80
	ccggcag						67
	- 555						· · ·

	<210> 212						
	<211> 102						
	<212> RNA						
	<213> Homo sapi	ens					
5	•						
	<400> 212						
	uguguucccu	auccuccuua	ugucccaccc	ccacuccugu	uugaauauuu	caccagaaac	60
10							
	aggagugggg	ggugggacgu	aaggaggaug	ggggaaagaa	ca		102
	<210> 213						
	<211> 68						
15	<212> RNA						
	<213> Homo sapi	ens					
	12 10° 1101110 0upi	CITO					
	<400> 213						
	14007 210						
20							
20	ugeceaggeu	ggagcgagug	caguggugca	gucaguccua	gcucacugca	gccucgaacu	60
	GG11GGGG11						C 0
	ccugggcu						68
	2010× 011						
05	<210> 214						
25	<211> 84						
	<212> RNA						
	<213> Homo sapi	ens					
	.100: 011						
00	<400> 214						
30							
	וומוומכפמווממ	gaaggggggc	casiiscaciia	וואכמאמאמוומ	amiagraggii	Cucacacuca	60
	agageagagg	gaagggggc	cgaaacacag	aacgagagag	agaagcagga	cacacagaga	00
	accooucucu	uucccuacug	uguc				84
		-	3				
35							
	<210> 215						
	<211> 77						
	<212> RNA						
	<213> Homo sapi	ens					
40							
	<400> 215						
	caugagaaau	ccugcugguc	aaccauagcc	cuggucagac	ucuccggggc	ugugauugac	60
45							77
	cagcaggacu	ucucaug					77
	<210> 216						
	<211> 80						
50	<212> RNA						
	<213> Homo sapi	ens					
	=10 Homo dapi						
	<400> 216						
	.55 2.0						
55							
-	uggcagaccc	uugcucucuc	acucucccua	auggggcuga	agacagcuca	ggggcagggu	60
	-			_			
	gggggguguu	guuuuuguuu					80

	<210> 217 <211> 67 <212> RNA	
_	<213> Homo sapiens	
5	<400> 217	
10	uggugggggu ggggggguguu guuuuuguuu uugagacaga gucuugcucc gucgcccagg	60
10	ccggagu	67
	<210> 218	
	<211> 81	
15	<212> RNA <213> Homo sapiens	
	<400> 218	
20		
	cucccuggga gggcguggau gaugguggga gaggagcccc acuguggaag ucugaccccc	60
	acaucgecce accuucecca g	81
25	<210> 219	
	<211> 63	
	<212> RNA	
	<213> Homo sapiens	
30	<400> 219	
	aauggguggg ugcugguggg agccgugccc uggccacuca uucggcucuc ucccucaccc	60
35	uag	63
	<210> 220	
	<211> 49	
	<212> RNA	
40	<213> Homo sapiens	
	<400> 220	
	uucccagcca acgcaccaaa aaugauaugg gucuguuguc uggagaaac 49	
45	<210> 221	
	<211> 105 <212> RNA	
	<213> Homo sapiens	
50	<400> 221	
	gcgggcggcg gcggcggcag cagcagcagg ugcggggcgg cggccgcgcu ggccgcucga	60
55	cuccgcagcu gcucguucug cuucuccagc uugcgcacca gcucc	105
	<210> 222	
	<211> 82	

	<212> RNA <213> Homo sap	iens					
5	<400> 222						
	ugagcuguug	gauucggggc	cguagcacug	ucugagaggu	uuacauuucu	cacagugaac	60
10	cggucucuuu	uucagcugcu	uc				82
	<210> 223 <211> 93 <212> RNA <213> Homo sap	iens					
15	<400> 223						
20	uacuuauggc	accccacucc	ugguaccaua	gucauaaguu	aggagauguu	agagcuguga	60
20	guaccaugac	uuaagugugg	uggcuuaaac	aug			93
25	<210> 224 <211> 87 <212> RNA <213> Homo sap	iens					
	<400> 224						
30	gugaggcggg	gccaggaggg	uguguggcgu	gggugcugcg	gggccgucag	ggugccugcg	60
	ggacgcucac	cuggcuggcc	cgcccag				87
35	<210> 225 <211> 61 <212> RNA <213> Homo sap	iens					
40	<400> 225						
	gagggcagcg	uggguguggc	ggaggcaggc	gugaccguuu	gccgcccucu	cgcugcucua	60
45	g						61
50	<210> 226 <211> 87 <212> RNA <213> Homo sap	iens					
	<400> 226						
55	accgcaggga	aaaugaggga	cuuuuggggg	cagauguguu	uccauuccac	uaucauaaug	60
	ccccuaaaaa	uccuuauugc	ucuugca				87

	<210> 227 <211> 51 <212> RNA						
	<213> Homo sap	iens					
5	<400> 227						
	agagaugaag cggg	gggggcg gggucui	ugcu cuauugccu	a cgcugaucuc a s	51		
	<210> 228						
10	<211> 66						
	<212> RNA						
	<213> Homo sap	iens					
	<400> 228						
15							
	ccgagugggg	cggggcaggu	cccugcaggg	acugugacac	ugaaggaccu	gcaccuucgc	60
	ccacag						66
20							
	<210> 229						
	<211> 66						
	<212> RNA						
	<213> Homo sap	iens					
25							
	<400> 229						
	aa	~~~~				aaaaaa	60
	ccuggagggg	ggcacugcgc	aagcaaagcc	agggacccug	agaggcuuug	cuuceugeue	80
30	cccuag						66
	<210> 230						
	<211> 76						
35	<212> RNA	_					
	<213> Homo sap	iens					
	<400> 230						
40	acugacuuug	agucucuccu	cagggugcug	caggcaaagc	uggggaccca	gggagagacg	60
					3333		
	uaagugaggg	gagaug					76
	<210> 231						
45	<211> 153						
	<212> RNA						
	<213> Homo sap	iens					
	<400> 231						
50							
	gcuccgcccc	acgucgcaug	cgccccggga	acgcgugggg	cggagcuucc	ggaggccccg	60
	cucuacuacc	gacccugugg	agcggagggu	gaagccucco	gaugecague	ccucaucgcu	120
					J J - 9	· y	
55	ggccuggucg	cgcuguggcg	aagggggcgg	agc			153
	<210> 232						
	<211> 153						

	<212> RNA <213> Homo sap	piens					
_	<400> 232						
5	gcuccgcccc	acgucgcaug	cgccccggga	acgcgugggg	cggagcuucc	ggaggccccg	60
		gacccugugg					120
10		cgcuguggcg				-	153
		-99-99-9		3 -			
	<210> 233						
	<211> 67						
15	<212> RNA	i					
15	<213> Homo sap	oiens					
	<400> 233						
20	gcgcccuccc	ucucuccccg	gugugcaaau	gugugugugc	gguguuaugc	cggacaagag	60
	ggaggug						67
	<210> 234						
25	<210> 234 <211> 74						
20	<211> 74 <212> RNA						
	<213> Homo sap	iens					
	<400> 234						
30							
	gcagcccggu	gagcgcucgc	uggccuggca	gugcgucgga	agaacagggc	ggguggggcc	60
	gcgcacaucu	cugc					74
35							
30	<210> 235						
	<211> 87						
	<211> 07 <212> RNA						
	<213> Homo sap	iens					
40	1210° 1101110 0up	70110					
	<400> 235						
	cccucaucuc	ugggcagggg	cuuauuguag	gagucucuga	agagagcugu	ggacugaccu	60
45		uuccccaggu					87
	goullaces						•
	<210> 236						
	<211> 67						
50	<212> RNA						
	<213> Homo sap	iens					
	<400> 236						
55	aacsaccsac	gggaugggcg	addinadada	Calliccinnic	Cillacconac	ממממשוומממ	60
		gggaugggcg	ageaugggee	Jaaaccaaac	Judacecuae	Joeddaddo	
	ccuguag						67

	<210> 237 <211> 82 <212> RNA <213> Homo sap	oiens					
5	<400> 237						
10	cugacuuuuu	uagggaguag	aagggugggg	agcaugaaca	auguuucuca	cucccuaccc	60
	cuccacuccc	caaaaaaguc	ag				82
	<210> 238						
	<211> 89						
15	<212> RNA						
	<213> Homo sap	piens					
	<400> 238						
20							60
	ageeuguggg	aaagagaaga	gcagggcagg	gugaaggeee	ggcggagaca	cucugeceae	60
	cccacacccu	gccuaugggc	cacacagcu				89
25	<210> 239						
	<211> 71						
	<212> RNA						
	<213> Homo sap	iens					
30	<400> 239						
	ggugaguggg	agccgguggg	gcuggaguaa	gggcacgccc	ggggcugccc	caccugcuga	60
	ccacccuccc	c					71
35							
	<210> 240						
	<211> 84						
	<212> RNA						
	<213> Homo sap	iens					
40	'						
	<400> 240						
	auggucccuc	ccaauccagc	cauuccucag	accagguggc	ucccgagcca	ccccaggcug	60
45	uaggaugggg	gugagaggug	cuag				84
		5-5-5-55-5					
	<210> 241						
	<211> 68						
50	<212> RNA						
	<213> Homo sap	iens					
	<400> 241						
55							
	gcauccugua	cugagcugcc	ccgaggcccu	ucaugcugcc	cagcucgggg	cagcucagua	60
	caggauac						68

	<210> 242	
	<211> 64	
	<212> RNA	
	<213> Homo sapiens	
5	216- Homo Suprems	
3	1400- 040	
	<400> 242	
	uccuguacug agcugccccg agcugggcag caugaagggc cucggggcag cucaguacag	60
10	gaug	64
	<210> 243	
	<211> 65	
	<212> RNA	
15	<213> Homo sapiens	
	<400> 243	
20	gggugcucgg ggcaggcggc ugggagcggc ccucacauug auggcuccug ccaccuccuc	60
20		
	cgcag	65
	-55	
	<210> 244	
25	<211> 67	
	<212> RNA	
	<213> Homo sapiens	
	12 To Homo Sapiens	
	.400. 044	
	<400> 244	
30		
	gugggagggg agaggcagca agcacacagg gccugggacu agcaugcuga ccucccuccu	60
	gcccag	67
35		
33	1040, 045	
	<210> 245	
	<211> 63	
	<212> RNA	
	<213> Homo sapiens	
40	·	
	<400> 245	
	×100° 210	
	cuugeceggg agaaggaggu ggeeuggaga geugeugueu eeageegeeg eeugueueea	60
	caageeeggg agaaggagga ggeeagaaa ceageegeeg eeagacaeea	
45	929	63
	cag	63
	<210> 246	
	<210> 246	
50	<211> 70	
50	<211> 70 <212> RNA	
50	<211> 70	
50	<211> 70 <212> RNA <213> Homo sapiens	
50	<211> 70 <212> RNA	
50	<211> 70 <212> RNA <213> Homo sapiens	
50	<211> 70 <212> RNA <213> Homo sapiens	
	<211> 70 <212> RNA <213> Homo sapiens	60
	<211> 70 <212> RNA <213> Homo sapiens <400> 246	60 70

<210> 247						
<211> 102						
<212> RNA						
	oiens					
<400> 247						
217						
gcuuaucgag	gaaaagaucg	agguggguug	gggcgggcuc	uggggauuug	gucucacagc	60
ccggauccca	gcccacuuac	cuugguuacu	cuccuuccuu	cu		102
<210> 248						
	niens					
12 10° 1101110 00p	70110					
<400> 248						
100 210						
gugucucucu	ggagacccug	cagccuuccc	acccaccagg	gagcuuucca	ugggcugugg	60
ggaaggcguc	agugucgggu	gagggaacac				90
<210× 240						
<213> Homo sap	piens					
<100> 240						
<400> 249						
guguggccgg	caggcgggug	ggcgggggcg	gccgguggga	accccgcccc	gccccgcgcc	60
aaaa						0.7
egeacucace	egecegueue	cccacag				87
-040× 0E0						
<213> Homo sap	piens					
<400> 250						
cuuucggcca	gcgggacggc	auccgaggug	ggcuaggcuc	gggcccgugg	cgggugcggg	60
ggugggagg						69
<211> 66						
<212> RNA						
<213> Homo sap	piens					
<400> 251						
cagagcaggg	cagggaaggu	gggagagggg	cccagcugac	ccuccuquca	cccqcuccuu	60
			- -	-	<u>-</u>	
gcccag						66
-						
<210> 252						
	<211> 102 <212> RNA <213> Homo sape <400> 247 gcuuaucgag ccggauccca <210> 248 <211> 90 <212> RNA <213> Homo sape <400> 248 gugucucucu ggaaggcguc <210> 249 <211> 87 <212> RNA <213> Homo sape <400> 249 guguggccgg cgcacucacc <210> 249 guguggccgg cgcacucacc <210> 249 <211> 87 <212> RNA <213> Homo sape <400> 249 guguggccgg cgcacucacc <210> 250 <211> 69 <212> RNA <213> Homo sape <400> 250 cuuucggcca ggugggagg <210> 251 <211> 66 <212> RNA <213> Homo sape <400> 251 cagagcaggg gcccag gcccag	<pre><211> 102 <212> RNA <213> Homo sapiens <400> 247 gcuuaucgag gaaaagaucg ccggauccca gcccacuuac <210> 248 <211> 90 <212> RNA <213> Homo sapiens <400> 248 gugucucucu ggagacccug ggaaggcguc agugucgggu <210> 249 <211> 87 <212> RNA <213> Homo sapiens <400> 249 guguggccgg caggcgggug cgcacucacc cgccgucuc <210> 249 guguggccgg caggcggug cgcacucacc cgcccgucuc <210> 250 <211> 69 <212> RNA <213> Homo sapiens <400> 250 cuuucggcca gcgggacgc ggugggagg guguggagg <210> 251 <211> 66 <212> RNA <213> Homo sapiens <400> 251 cagagcaggg cagggaaggu gcccag</pre>	<pre><211> 102 <212> RNA <213> Homo sapiens <400> 247 gcuuaucgag gaaaagaucg agguggguug ccggauccca gcccacuuac cuugguuacu <210> 248 <211> 90 <212> RNA <213> Homo sapiens <400> 248 gugucucucu ggagacccug cagccuuccc ggaaggcguc agugucgggu gagggaacac <210> 249 <211> 87 <212> RNA <213> Homo sapiens <400> 249 guguggccgg caggcggug ggcgggggg cgcacucacc cgccgucuc cccacag <210> 249 <211> 87 <212> RNA <213> Homo sapiens <400> 249 guguggccgg caggcggug ggcggggggg cgcacucacc cgccgucuc cccacag <210> 250 <211> 69 <212> RNA <213> Homo sapiens <400> 250 cuuucggcca gcgggacggc auccgaggug ggugggagg <210> 251 <211> 66 <212> RNA <213> Homo sapiens <400> 251 cagagcaggg cagggaaggu gggagagggg gcccag gcccag</pre>	<pre><211> 102 <212> RNA <213> Homo sapiens <400> 247 gcuuaucgag gaaaagaucg agguggguug gggcgggcuc ccggauccca gcccacuuac cuugguuacu cuccuuccuu <210> 248 <211> 90 <212> RNA <213> Homo sapiens <400> 248 gugucucucu ggagacccug cagccuuccc acccacagg ggaaggcguc agugucgggu gagggaacac <210> 249 <211> 87 <212> RNA <213> Homo sapiens <400> 249 guguggccgg caggcgggug ggcggggggg gccgguggga cgcacucacc cgcccgucuc cccacag <210> 249 <211> 80 <211> 80 <213> Homo sapiens <400> 249 guguggccgg caggcgggug ggcggggggg gccgguggga cgcacucacc cgcccgucuc cccacag <210> 250 <211> 69 <212> RNA <213> Homo sapiens <400> 250 cuuucggcca gcgggacggc auccgaggug ggcuaggcuc ggugggagg <210> 250 <211</pre>	<211> 102 <212> RNA <213> Homo sapiens <400> 247 geuuauegag gaaaagaueg agguggguug gggegggeue uggggauuug eeggauceea geecacuuae euugguuaeu eueeuueeuu eu <210> 248 <211> 90 <212> RNA <213> Homo sapiens <400> 248 gugueueueu ggagaceeug eageeuueee acceaceagg gageuuueea ggaaaggegue aguguegggu gagggaacae <210> 249 <211> 87 <212> RNA <213> Homo sapiens <400> 249 guguggeegg eaggeggug ggeggggeg geegguggga acceegeee egacueace egeeegueue eccacag <210> 250 <211> 69 <212> RNA <213> Homo sapiens <400> 250 cuuueggeea gegggaegge aucegaggug ggeuaggeue gggeeegugg ggugggagg <210> 250 <211> 69 <212> RNA <213> Homo sapiens <400> 250 cuuueggeea gegggaegge aucegaggug ggeuaggeue gggeeegugg ggugggagg <210> 251 <211> 66 <212> RNA <213> Homo sapiens <400> 251 cagageaggg eagggaaggu gggagaggg eccageugae ceueeuguea geeeag <400> 251 cagageaggg eagggaaggu gggagagggg eccageugae ceueeuguea geeeag <210> 251 <211> 66 <212> RNA <213> Homo sapiens <400> 251 cagageaggg eagggaaggu gggagagggg eccageugae ceueeuguea geeeag	211> RNA 212 RNA 213- Homo sapiens 400> 247 gcuuaucgag gaaaagaucg agguggguug ggggggcuc uggggauuug gucucacagc ecggauccca gcccacuuac cuugguuacu cuccuuccuu cu 210> 248 2210> 248 2211> RNA 212> RNA 213- Homo sapiens 400> 248 gugucucucu ggagacccug cagccuuccc acccaccagg gagcuuucca ugggcugugg ggaaggcguc agugucgggu gagggaacac 210> 249 2211> 87 2212> RNA 2213- Homo sapiens 400> 249 guguggccgg caggcgggu ggcgggggggggggggggg

	<211> 64						
	<212> RNA						
	<213> Homo sapiens	3					
5	<400> 252						
	gaaggcgagg gg	uagaagag	cacagggguu	cugauaaacc	cuucugccug	cauucuacuc	60
10	ccag						64
10	<010> 050						
	<210> 253 <211> 73						
	<211> 73 <212> RNA						
	<213> Homo sapiens						
15	2 To Tromo ouplone	,					
	<400> 253						
	accuuuccag cu	caucccac	cucugccacc	aaaacacuca	ucgcgggguc	agagggagug	60
20	ccaaaaaagg ua	a					73
	<210> 254						
	<211> 67						
	<212> RNA						
25	<213> Homo sapiens	3					
	<400> 254						
30	cugguccauu uc	ccugccau	ucccuuggcu	ucaauuuacu	cccagggcug	gcagugacau	60
	gggucaa						67
	333						
	<210> 255						
35	<211> 63						
	<212> RNA						
	<213> Homo sapiens	3					
	<400> 255						
40							
	gagucgagga cu	gguggaag	ggccuuuccc	cucagaccaa	ggcccuggcc	ccagcuucuu	60
	cuc						63
45	<210> 256						
	<211> 67						
	<212> RNA						
	<213> Homo sapiens	3					
50	<400> 256						
	aauagauuau ug	gucaccac	cuccaguuuc	ugaauuugug	agacuggggu	ggggccugag	60
55	aauuugc						67
	<210> 257						
	<211> 68						

	<212> RNA	
	<213> Homo sapiens	
	<400> 257	
5		
	gaauggaaga agaaggcggu cggucugcgg gagccaggcc gcagagccau ccgccuucug	60
	uccauguc	68
10		
	<210> 258	
	<211> 60	
	<212> RNA	
	<213> Homo sapiens	
15		
	<400> 258	
	caaggugggg gagauggggg uugaacuuca uuucucaugc ucauccccau cuccuuucag 60	
	<210> 259	
20	<211> 64	
	<212> RNA	
	<213> Homo sapiens	
	<400> 259	
25		
		60
	gagcucuggg aggggcuggg uuuggcagga caguuuccaa gcccugucuc cucccaucuu	80
	ccag	64
30		
	<210> 260	
	<211> 100	
	<212> RNA	
	<213> Homo sapiens	
35	400, 000	
	<400> 260	
	gaggugggag gauugcuuga gucagggugg uugaggcugc aguaaguugu gaucauacca	60
40		
	cugcacucca gccugaguga cagagcaaga ccuugucuca	100
	<240×264	
	<210> 261 <211> 81	
45	<212> RNA	
	<213> Homo sapiens	
	<400> 261	
50		
	uacaggugca ggggaacugu agaugaaaag gcuuggcacu ugagggaaag ccucaguuca	60
	uucucauuuu gcucaccugu u	81
55	<210> 262	
	<211> 78	
	<212> RNA	
	<213> Homo sapiens	

<40	Λ>	262

	gggcccagaa gggggcgcag ucacugacgu gaagggacca caucccgcuu caugucagug	60
5	acuccugece cuuggucu	78
	<210> 263	
	<211> 87	
10	<212> RNA	
	<213> Homo sapiens	
	<400> 263	
15		
	cccaggcgcc cgcucccgac ccacgccgcg ccgccggguc ccuccucccc ggagaggcug	60
	ggcucgggac gcgcggcuca gcucggg	87
20	<210> 264	
	<211> 81	
	<212> RNA	
	<213> Homo sapiens	
25	<400> 264	
	cauccuccuu acgucccacc ccccacuccu guuucuggug aaauauucaa acaggagugg	60
	gggugggaca uaaggaggau a	81
30	555-5555	-
	<210> 265	
	<211> 86	
	<212> RNA	
35	<213> Homo sapiens	
	<400> 265	
40	ggcuuagaaa cagucccuag guaggauuug gggaggagcu aagaagcccc uacagggccc	60
,,		86
	agaggugggg acugagccuu aguugg	00
	<210> 266	
45	<211> 80	
	<212> RNA	
	<213> Homo sapiens	
	<400> 266	
50		
	ugagaggccg caccuugccu ugcugcccgg gccgugcacc cgugggcccc agggcgacgc	60
	ggcgggggcg gcccuagcga	80
55		
	<210> 267	
	<211> 73	
	<212> RNA	

	<213> Homo sapiens							
	<400> 267							
5	gaaaacaacc	aggugggcuu	cccggagggc	ggaacaccca	gccccagcau	ccagggcuca	60	
	ccuaccacgu	uug					73	
10	<210> 268 <211> 64 <212> RNA <213> Homo sapie	ns						
15	<400> 268							
	aaccccgggc	cggaggucaa	gggcgucgcu	ucucccuaau	guugccucuu	uuccacggcc	60	
	ucag						64	
20								
	<210> 269 <211> 74 <212> RNA <213> Homo sapie	ens						
25	<400> 269							
20	ccugcaggag	gcagugggcg	agcaggcggg	gcagcccaau	gccaugggcc	ugaucucacc	60	
30	gcugccuccu	uccc					74	
35	<210> 270 <211> 102 <212> RNA <213> Homo sapie	ns						
	<400> 270							
40	gugggagggc	ccaggcgcgg	gcaggggugg	ggguggcaga	gcgcuguccc	gggggcgggg	60	
	ccgaagcgcg	gcgaccguaa	cuccuucugc	uccguccccc	ag		102	
45	<210> 271 <211> 69 <212> RNA <213> Homo sapie	ens						
50	<400> 271							
	gaaccucggg (gcauggggga (gggaggcugg a	acaggagagg (gcucacccag (geceugueeu	60	
55	cugccccag						69	
	<210> 272 <211> 99							

	<212> RNA <213> Homo sap	iens					
5	<400> 272						
	gcaagggaca	gggagggucg	uggcgacacu	cgcgccagcu	cccgggacgg	cugggcucgg	60
	gcuggucgcc	gaccuccgac	ccuccacuag	augccuggc			99
10							
	<210> 273						
	<211> 71						
	<212> RNA						
	<213> Homo sap	iens					
15	<400> 273						
00	gugucugugc	cggucccagg	agaaccugca	gaggcaucgg	gucagcggug	cuccugcggg	60
20	ccgacacuca	С					71
25	<210> 274 <211> 61 <212> RNA <213> Homo sap	iens					
	<400> 274						
30	ucucguuuga	ucucggaagc	uaagcagggu	ugggccuggu	uaguacuugg	augggaaacu	60
	u						61
35	<210> 275 <211> 53 <212> RNA <213> Homo sap	iens					
40	<400> 275 guuugaucuc ggaa	agcuaag cagggud	oggg ccugguuagi	u acuuggaugg ga	ng 53		
	<210> 276 <211> 103 <212> RNA			30 000	Ū		
45	<213> Homo sap	iens					
	<400> 276						
50	gugucggcug	uggcgugacu	gucccucugu	gucccccacu	aggcccacug	cucaguggag	60
	cguggaggac	gaggaggagg	ccguccacga	gcaaugccag	cau		103
55	<210> 277 <211> 64 <212> RNA <213> Homo sap	iens					

	Α.	~~~
<40	11>	7//

	ugcucuguag gcaugaggca gggcccaggu uccaugugau gcugaagcuc ugacauuccu	60
5	gcag	64
	<210> 278	
	<211> 63	
10	<212> RNA	
	<213> Homo sapiens	
	<400> 278	
15	ugguggegge gguaguuaug ggeuueueuu ueueaeeage ageeeeuggg eegeegeeue	60
	ccu	63
	<210> 279	
20	<211> 58	
	<212> RNA	
	<213> Homo sapiens	
	<400> 279	
25	agggccagag gagccuggag uggucggguc gacugaaccc agguucccuc uggccgca 58	
	<210> 280	
	<211> 72	
	<212> RNA	
30	<213> Homo sapiens	
	<400> 280	
35	ugugggacug caaaugggag cucagcaccu gccugccacc cacgcagacc agccccugcu	60
	cuguucccac ag	72
40	<210> 281	
40	<211> 64	
	<212> RNA <213> Homo sapiens	
	12 To Homo sapiens	
	<400> 281	
45		
	ccccgggccc ggcguucccu ccccuuccgu gcgccagugg aggccggggu ggggcggggc	60
	aaaa	64
50		
	<210> 282	
	<211> 64	
	<212> RNA	
	<213> Homo sapiens	
55	<400× 202	
	<400> 282	

	eccegggeee ggeguueeeu ecceuueegu gegeeagugg aggeeggggu gg	lddcddddc en
5	aaaa	64
5	<210> 283	
	<211> 89	
	<212> RNA	
	<213> Homo sapiens	
10	4400> 202	
	<400> 283	
	ucuccguuua ucccaccacu gccaccauua uugcuacugu ucagcaggug cu	igcuggugg 60
15		
	ugauggugau agucuggugg gggcggugg	89
	.040. 004	
20	<210> 284 <211> 51	
20	<212> RNA	
	<213> Homo sapiens	
	Z400> 204	
25	<400> 284 acagaccccg gggagcccgg cggugaagcu ccugguaucc ugggugucug a 51	
	<210> 285	
	<211> 115 <212> RNA	
30	<213> Homo sapiens	
	·	
	<400> 285	
35	gagcaaaaac cagagaacaa caugggagcg uuccuaaccc cuaaggcaac ug	gaugggag 60
33		
	accugaccca uccaguucuc ugagggggcu cuuguguguu cuacaagguu gu	iuca 115
	<210> 286	
40	<211> 85	
	<212> RNA	
	<213> Homo sapiens	
	<400> 286	
45		
	ggcgccuccu gcucugcugu gccgccaggg ccuccccuag cgcgccuucu gg	gagaggcuu 60
	ugugeggaua eggggeugga ggeeu	85
50		
-	<210> 287	
	<211> 70	
	<212> RNA	
55	<213> Homo sapiens	
55	<400> 287	
	e e = -	

	gucccugggg	gcugggaugg	gccauggugu	gcucugaucc	cccugugguc	ucuuggcccc	60
	caggaacucc						70
5							
	<210> 288						
	<211> 82						
	<212> RNA						
	<213> Homo sap	oiens					
10	<400× 200						
	<400> 288						
	gugaguggga	ggccagggca	cggcaggggg	agcugcaggg	cuaugggagg	ggccccagcg	60
15	1101102000001	anaanaaaa	3.0				82
	ucugageceu	guccucccgc	ag				02
	0.40						
	<210> 289						
00	<211> 82						
20	<212> RNA						
	<213> Homo sap	oiens					
	<400> 289						
25	ana ana	aaaaaaaaa	aaaaaaaaa	2001002000	an an araa ara	~~~~~~~	60
	gugaguggga	ggccagggca	cggcaggggg	ageugeaggg	cuaugggagg	ggccccagcg	00
	ucugagcccu	guccucccgc	ag				82
30							
	<210> 290						
	<211> 73						
	<212> RNA						
	<213> Homo sap	iens					
35	·						
	<400> 290						
	cuaananna	aggcgaugug	aaaananaaa	gacaaciiiicc	cagucucauu	ווככווכמווככוו	60
10	caggagaaag	aggegaagag	gggaagaaga	gacaacaacc	cagacacaaa	uccucuuccu	00
40	gccaggccac	cau					73
	<210> 291						
	<211> 84						
45	<212> RNA						
	<213> Homo sap	iens					
	<400> 291						
50	ccacaaccac	cgcgccgggc	ccaaaiiiaac	cacilascece	cacaaaaacc	ccaacaacca	60
	ccgcagccgc	cgcgccgggc	ccgggaaggc	cycugucccc	cycygygccc	ccggcggccg	•
	gggcgggggc	gggggcugcc	ccgg				84
55	<210> 292						
	<211> 69						
	<212> RNA						
	<213> Homo sap	iens					

	<400> 292		
	gggcuuaggg augggaggcc aggaugaaga uuaaucccua auccccaaca	a cuggccuugc 6	60
5	uauccccag	•	69
10	<210> 293 <211> 80 <212> RNA		
10	<213> Homo sapiens		
	<400> 293		
15	gcgucaagau ggcggcgggg agguaggcag agcaggacgc cgcugcugcc	geegeeaeeg (60
	ccgccuccgc uccagucgcc	8	30
20	<210> 294 <211> 62 <212> RNA		
	<213> Homo sapiens		
25	<400> 294		
	gugagugggg cuccegggac ggcgcccgcc cuggcccugg cccggcgacg	g ucucacgguc 6	60
	cc	•	62
30	<210> 295 <211> 67 <212> RNA <213> Homo sapiens		
35	<400> 295		
	ccugcaggca gaaguggggc ugacagggca gaggguugcg cccccucaco	c aucccuucug (60
40	ccugcag	•	67
	<210> 296 <211> 67 <212> RNA		

	ccugcaggca gaaguggggc ugacagggca gaggguugcg cccccucacc aucccuucug	60
	ccugcag	67
5	<210> 298	
	<211> 67	
	<212> RNA	
	<213> Homo sapiens	
10	<400> 298	
	ccugcaggca gaaguggggc ugacagggca gaggguugcg cccccucacc aucccuucug	60
	ccugcag	67
15	<210> 299	
	<211> 59	
	<212> RNA	
	<213> Homo sapiens	
20		
	<400> 299	
	cgggcucugg gugcaguggg gguucccacg ccgcggcaac caccacuguc ucuccccag 59	
	<210> 300	
25	<211> 67	
	<212> RNA	
	<213> Homo sapiens	
	<400> 300	
30		
	guggcacuca aacugugggg gcacuuucug cucucuggug aaagugccgc caucuuuuga	60
	guguuac	67
35	<210> 301	
	<211> 88	
	<212> RNA	
	<213> Homo sapiens	
40	<400> 301	
	guggggccag gcgguggugg gcacugcugg ggugggcaca gcagccaugc agagcgggca	60
45	uuugaccccg ugccacccuu uuccccag	88
	<210> 302	
	<211> 94	
	<212> RNA	
50	<213> Homo sapiens	
	<400> 302	
55	cacggugucc ccugguggaa ccuggcaggg ggagagguaa ggucuuucag ccucuccaaa	60
	gcccaugguc agguacucag gugggggagc ccug	94

	<210> 303 <211> 109 <212> RNA <213> Homo sapie	ens					
5	<400> 303						
40	ggucgggcuc	accaugacac	agugugagac	cucgggcuac	aacacaggac	ccgggcgcug	60
10	cucugacccc	ucgugucuug	uguugcagcc	ggagggacgc	agguccgca		109
	<210> 304						
	<211> 90						
15	<212> RNA <213> Homo sapie	ens					
	<400> 304						
20	ucuaagaaac	gcaguggucu	cugaagccug	caggggcagg	ccagcccugc	acugaacgcc	60
	uguucuugcc	agguggcaga	agguugcugc				90
	.040: 005						
0.5	<210> 305						
25	<211> 87						
	<212> RNA <213> Homo sapie	ens					
	<400> 305						
30							
	cacuguucua	ugguuaguuu	ugcagguuug	cauccagcug	ugugauauuc	ugcugugcaa	60
	auccaugcaa	aacugacugu	gguagug				87
35							
	<210> 306						
	<211> 96						
	<212> RNA						
	<213> Homo sapie	ens					
40	<400> 306						
	202111001120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	an 21121101100	60
45		uuacaauuag			gcguauauau	guauaugugg	
	cugugcaaau	ccaugcaaaa	cugauuguga	uaaugu			96
	<210> 307						
	<211> 90						
50	<212> RNA						
	<213> Homo sapie	ens					
	<400> 307						
55	guggguacgg	cccagugggg	gggagaggga	cacgcccugg	gcucugccca	gggugcagcc	60
	ggacugacug	agccccugug	ccgcccccag				90

	<210> 308						
	<211> 72						
	<212> RNA						
	<213> Homo sapie	ens					
5							
	<400> 308						
	V+002 300						
	cuugggaaug	gcaaggaaac	connaccann	acugaguuua	σμααμσσμαα	naannenenn	60
40		33 5	- 3		3		
10	gcuauaccca	σa					72
	•	J					
	<210> 309						
	<211> 82						
15	<212> RNA						
	<213> Homo sapie	ens					
	<400> 309						
20							
	ugugggcagg	gcccugggga	gcugaggcuc	uggggguggc	cggggcugac	ccugggccuc	60
							0.0
	ugeueeecag	ugucugaccg	cg				82
25	<210> 310						
	<211> 110						
	<212> RNA						
	<213> Homo sapie	ens					
30	<400> 310						
	ccuggccucc	ugcagugcca	cgcuccgugu	auuugacaag	cugaguugga	cacuccaugu	60
35	gguagagugu	caguuuguca	aauaccccaa	gugcggcaca	ugcuuaccag		110
33							
	<210> 311						
	<211> 73						
10	<212> RNA						
40	<213> Homo sapie	ens					
	<400> 311						
	anaaaaaaa	gcaggugugu	aanaaanaan	aaaanaaaan	~~~~~~~~~~	anasasana	60
45	gugggcgggg	gcaggagaga	gguggguggu	ggccagcgga	gagcagggcc	cucacaccug	00
	ccucgcccc	cac					73
	ccucycccc	cag					,,
	<210> 312						
50	<211> 86						
	<212> RNA						
	<213> Homo sapie	ens					
	<400> 312						
55							
	ugccagucuc	uaggucccug	agacccuuua	accugugagg	acauccaggg	ucacagguga	60

	gguucuuggg	agccuggcgu	cuggcc				86
5	<210> 313 <211> 96 <212> RNA <213> Homo sapie	ens					
10	<400> 313						
	cgggccccgg	gcgggcggga	gggacgggac	gcggugcagu	guuguuuuuu	cccccgccaa	60
45	uauugcacuc	gucccggccu	ccggcccccc	cggccc			96
15	<210> 314 <211> 85 <212> RNA <213> Homo sapie	ens					
20	<400> 314						
25	ggcugagccg	caguaguucu	ucaguggcaa	gcuuuauguc	cugacccagc	uaaagcugcc	60
25	aguugaagaa	cuguugcccu	cugcc				85
30	<210> 315 <211> 67 <212> RNA <213> Homo sapie	ens					
	<400> 315						
35	aaaucucucu	ccauaucuuu	ccugcagccc	ccaggugggg	gggaagaaaa	gguggggaau	60
	uagauuc						67
40	<210> 316 <211> 77 <212> RNA <213> Homo sapie	ens					
45	<400> 316						
	gaguugggag	guucccucuc	caaauguguc	uugauccccc	accccaagac	acauuuggag	60
50	agggacccuc	ccaacuc					77
55	<210> 317 <211> 95 <212> RNA						
55	<213> Homo sapie	ens					
	<400> 317						

	gacaccacau gcuccuccag gccugccugc ccuccagguc auguuccagu gucccacaga	60
	ugcagcacca cggcccaggc ggcauuggug ucacc	95
5		
	<210> 318	
	<211> 96	
	<212> RNA <213> Homo sapiens	
10	12 132 Homo Sapiens	
	<400> 318	
	gcucuggggc gugccgccgc cgucgcugcc accuccccua ccgcuagugg aagaagaugg	60
15		
	cggaaggcgg agcggcggau cuggacaccc agcggu	96
	<210> 319	
	<211> 79	
20	<212> RNA	
	<213> Homo sapiens	
	<400> 319	
25		60
	gugcagauce uugggageee uguuagaeue uggauuuuae aeuuggagug aaegggegee	60
	aucccgaggc uuugcacag	79
30	<210> 320	
	<211> 67	
	<212> RNA	
	<213> Homo sapiens	
35	<400> 320	
	cagggaggag gugguacuag gggccagcaa ccugauuacc ccucuuuggc ccuuuguacc	60
	conocac	67
40	ccuccag	0,
	<210> 321	
	<211> 65	
	<212> RNA	
45	<213> Homo sapiens	
	<400> 321	
50	uucuccuggg gaguggcugg ggagcagaca gacccaaccu caugcucccc ggccucugcc	60
	cccag	65
	<210> 322	
55	<211> 58	
	<212> RNA	
	<213> Homo sapiens	

	<400> 322 gcugaagcuc uaagguuccg ccugcgggca ggaagcggag gaaccuugga gcuucggc 58	
5	<210> 323 <211> 53 <212> RNA <213> Homo sapiens	
10	<400> 323 gguggggguu ggaggcgugg guuuuagaac cuaucccuuu cuagcccuga gca 53	
15	<210> 324 <211> 180 <212> RNA <213> Homo sapiens	
	<400> 324	
20	cgcgacugcg gcggcggugg uggggggagc cgcgggggauc gccgagggcc ggucggccgc	60
	cccgggugcc gcgcggugcc gccggcggcg gugaggcccc gcgcgugugu cccggcugcg	120
	gucggccgcg cucgaggggu ccccguggcg uccccuuccc cgccggccgc cuuucucgcg	180
25	<210> 325 <211> 89 <212> RNA <213> Homo sapiens	
30	<400> 325	
	geeggegeee gageueugge ueegugueuu caeueeegug euugueegag gagggaggga	60
35	gggacggggg cugugcuggg gcagcugga	89
40	<210> 326 <211> 70 <212> RNA <213> Homo sapiens	
	<400> 326	
45	gguuucuccu ugaggagaca uggugggggc cggucaggca gcccaugcca uguguccuca	60
	uggagaggcc	70
50	<210> 327 <211> 92 <212> RNA <213> Homo sapiens	
55	<400> 327	
55		

	ccugucccuc	cugcccugcg	ccugcccagc	ccuccugcuc	uggugacuga	ggaccgccag	60
	gcaggggcug	gugcugggcg	gggggcggcg	gg			92
5							
	<210> 328						
	<211> 65						
	<212> RNA						
10	<213> Homo sap	iens					
10	<400> 328						
	\400						
							60
	gagggugggc	gagggcggcu	gageggeuee	aucccccggc	cugcucaucc	cccucgcccu	60
15	cucag						65
	5						
	<210> 329						
	<211> 64						
20	<212> RNA						
	<213> Homo sap	iens					
	<400> 329						
25							
25	gggugggggc	ggggcggcag	gggccucccc	cagugccagg	ccccauucug	cuucucuccc	60
	agcu						64
30	<210> 330						
	<211> 86						
	<212> RNA						
	<213> Homo sap	iens					
35	<400> 330						
	cgccugagcg	ugcagcagga	caucuuccug	accugguaau	aauuagguga	gaaggauggu	60
	ugggggcggu	cggcguaacu	caggga				86
40	-040> 004						
	<210> 331 <211> 52						
	<211> 52 <212> RNA						
	<213> Homo sap	iens					
45							
	<400> 331						
	uagccgggcg uggu	ıgguggg ggccugu	ıggu cccagcuacı	ı uuggaggcug ag	52		
	.040. 222						
E 0	<210> 332						
50	<211> 74 <212> RNA						
	<212> KNA <213> Homo sap	iens					
	-210- Hollio 3ap	10110					
	<400> 332						
55							
	gggaggaaga	. agggaggagg	agcggagggg	cccuugucuu	cccagagccu	cucccuuccu	60
	ccccucccc	uccc					74

	<210> 333 <211> 50 <212> RNA <213> Homo sapiens	
5	2 107 Homo Sapiens	
	<400> 333 acccgggcgu gguggugggg gugggugccu guaauuccag cuaguuggga 50	
	<210> 334	
10	<211> 72	
	<212> RNA	
	<213> Homo sapiens	
15	<400> 334	
	cugugcaccu gggggagugc agugauugug gaaugcaaag ucccacaauc acuguacucc	60
	ccaggugcac ag	72
20	<210> 335	
	<211> 71	
	<212> RNA	
	<213> Homo sapiens	
25	<400> 335	
	auggaggggg guguggagcc agggggccca ggucuacagc uucuccccgc ucccugcccc	60
	cauacuccca g	71
30	4040× 000	
	<210> 336 <211> 52	
	<212> RNA	
	<213> Homo sapiens	
35	·	
	<400> 336	
	ucugggcuga gccgagcugg guuaagccga gcuggguugg gcugggcugg	
	<210> 337	
40	<211> 94	
	<212> RNA	
	<213> Homo sapiens	
	<400> 337	
45		
	cgggcagcgg gugccaggca cggugucagc aggcaacaug gccgagaggc cggggccucc	60
	gggeggegee gugueegega eegeguaeee ugae	94
50		
	<210> 338	
	<211> 89	
	<212> RNA	
	<213> Homo sapiens	
55	<400> 338	
	N-1007 000	

	accuccggga	cggcugggcg	ccggcggccg	ggagauccgc	gcuuccugaa	ucccggccgg	60
	cccgcccggc	gcccguccgc	ccgcggguc				89
5							
	<210> 339						
	<211> 64						
	<212> RNA						
	<213> Homo sapie	ns					
10							
	<400> 339						
	aguucagggc	cgaagggugg	aagcugcugg	ugcucaucuc	agccucugcc	cuuggccucc	60
15							
	ccag						64
	<210> 340						
	<211> 49						
20	<212> RNA						
	<213> Homo sapie	ens					
	<400> 340						
	ggugaggcgg ggggg	acdade cendadd	ade nenedennen	ggcgccaag 49			
25	9949499999 99998	jogago ooagagg;	ggo dodogoddod	ggogoodag 10			
	<210> 341						
	<211> 70						
	<212> RNA						
	<213> Homo sapie	ens					
30	4400× 244						
	<400> 341						
	cccugccagu	gcugggggcc	acaugagugu	gcagucaucc	acacacaagu	ggcccccaac	60
35	2010000000						70
	acuggcaggg						70
	<210> 342						
40	<211> 96 <212> RNA						
40	<213> Homo sapie	ns					
	12 TOP THOMIC Supic						
	<400> 342						
45	aaa	~~~~~~~	~~	~~			60
	cucgggaggg	gcgggagggg	ggueeeeggu	geueggaueu	cgagggugcu	uauuguucgg	80
	uccgagccug	ggucucccuc	uuccccccaa	ccccc			96
		- -					
50	<210> 343						
- -	<211> 80						
	<212> RNA						
	<213> Homo sapie	ens					
55	<400> 343						

	ggcgcgucgc	ccccucagu	ccaccagagc	ccggauaccu	cagaaauucg	gcucuggguc	60
	uguggggagc	gaaaugcaac					80
5							
	<210> 344						
	<211> 93						
	<212> RNA						
10	<213> Homo sapie	ens					
70	<400> 344						
	guaaggaggg	ggaugagggg	ucauaucucu	ucucagggaa	agcaggagcc	cuucagcagg	60
15							0.2
	gucagggccc	cucaucuucc	ccuccuuucc	cag			93
	<210> 345						
	<211> 65						
20	<212> RNA						
	<213> Homo sapie	ens					
	<400> 345						
25							
	gagaaugggg	ggacagaugg	agaggacaca	ggcuggcacu	gagguccccu	ccacuuuccu	60
	ccuag						65
20	2040× 040						
30	<210> 346 <211> 75						
	<211> 75 <212> RNA						
	<213> Homo sapie	ens					
35	<400> 346						
	gucagaggg	ggaugugcau	acuaauuaaa	anaaacnacc	uguggaccaa	исаосоцоса	60
	55-5555	333-3	555555	9-9999		5 - 5 -5	
40	cuuccccacc	cugaa					75
	<210> 347						
	<211> 80						
	<212> RNA						
45	<213> Homo sapie	ens					
	<400> 347						
	cananasacc	cgcccugugc	ccaacccacii	ucuacuuccu	cunagegeag	gagggguiccc	60
50			ceggeeeaca	acageaacea	caaagegeag	guggggueee	
	gcacugggag	gggcccucac					80
	<210> 348						
55	<211> 99						
	<212> RNA						
	<213> Homo sapie	ens					

<40	Λ>	348

	cgcccaccuc	agccucccaa	aaugcuggga	uuacaggcau	gagccacugc	ggucgaccau	60
5	gaccuggaca	uguuugugcc	caguacuguc	aguuugcag			99
	<210> 349						
	<211> 100						
10	<212> RNA						
	<213> Homo sapie	ens					
	<400> 349						
15							
	agcucagggc	ggcugcgcag	agggcuggac	ucagcggcgg	agcuggcugc	uggccucagu	60
	ucuaccucua	uccagguccu	ugugacccgc	ccacucuccu			100
				,			
20	<210> 350						
	<211> 78						
	<212> RNA						
	<213> Homo sapie	ens					
25	<400> 350						
	ggccucaggc	aggcgcaccc	gaccacaugc	auggcuggug	gcggcgugca	ggggucgggu	60
30	gggccaggcu	guggggcg					78
	<210> 351						
	<211> 85						
	<212> RNA						
35	<213> Homo sapie	ens					
	<400> 351						
40	gugagcugcu	ggggacgcgg	gucggggucu	gcagggcggu	gcggcagccg	ccaccugacg	60
	ccgcgccuuu	gucugugucc	cacag				85
	<210> 352						
45	<211> 73						
	<212> RNA						
	<213> Homo sapie	ens					
	<400> 352						
50							60
	ggggagguac	cugggacagg	aggaggagge	agccuugccu	cagaaaccaa	acugucaaaa	60
	guguagguuc	cac					73
55	<210> 353						
	<211> 73						
	<212> RNA						
	<213> Homo sapie	ens					

<400> 353

	cccagggucu	ggugcggaga	gggcccacag	uggacuuggu	gacgcuguau	gcccucaccg	60
5							
	cucageceeu ggg 73	3					
	<210> 354						
	<211> 74						
10	<211> 74 <212> RNA						
10							
	<213> Homo sapie	ens					
	<400> 354						
15							
	ccaagggcac	accggggaug	gcagaggguc	gugggaaagu	guugacccuc	gucagguccc	60
	cggggagccc	cugg					74
20	<210> 355						
	<211> 21						
	<212> RNA						
	<213> Homo sapie	ine					
	12 TO Homo sapie	:113					
25	<400> 355						
	ccggccgccg gcuccg	gcccc g 21					
	<210> 356						
	<211> 17						
30	<212> RNA						
	<213> Homo sapie	ens					
	<400> 356						
	ccggccgccg gcuccg	gc 17					
35							
	<210> 357						
	<211> 23						
	<212> RNA						
	<213> Homo sapie	ens					
40							
	<400> 357						
	cuccuggggc ccgca	cucuc gcu 23					
	<210> 358						
45	<211> 18						
	<212> RNA						
	<213> Homo sapie	ens					
	<400> 358						
50	cuccuggggc ccgca	cuc 18					
	<210> 359						
	<211> 23						
	<212> RNA						
55	<213> Homo sapie	ens					
	<400> 359						
	agggucgggg caggg	agggc agg 23					
	333 3333 333						

```
<210> 360
         <211> 15
         <212> RNA
         <213> Homo sapiens
5
         <400> 360
         gggagaaggg ucggg 15
         <210> 361
10
         <211> 23
         <212> RNA
         <213> Homo sapiens
         <400> 361
15
         ggugggugag gucgggcccc aag 23
         <210> 362
         <211> 20
         <212> RNA
20
         <213> Homo sapiens
         <400> 362
         cggggugggu gaggucgggc 20
25
         <210> 363
         <211> 23
         <212> RNA
         <213> Homo sapiens
30
         <400> 363
         ugaggauaug gcagggaagg gga 23
         <210> 364
         <211> 19
35
         <212> RNA
         <213> Homo sapiens
         <400> 364
         ugaggauaug gcagggaag 19
40
         <210> 365
         <211> 23
         <212> RNA
         <213> Homo sapiens
45
         <400> 365
         ggcccggccg ugccugaggu uuc 23
         <210> 366
50
         <211> 15
         <212> RNA
         <213> Homo sapiens
         <400> 366
55
         ggcgguggga ucccg 15
         <210> 367
         <211> 22
```

	<212> RNA <213> Homo sapiens
5	<400> 367 cgcggcgggg acggcgauug gu 22
10	<210> 368 <211> 17 <212> RNA
70	<213> Homo sapiens <400> 368 cggcggggac ggcgauu 17
15	<210> 369 <211> 25 <212> RNA
20	<213> Homo sapiens <400> 369
	ggguggggau uuguugcauu acuug 25
25	<210> 370 <211> 20 <212> RNA <213> Homo sapiens
30	<400> 370 ggguggggau uuguugcauu 20
	<210> 371 <211> 17 <212> RNA <213> Homo sapiens
35	<400> 371 uccuagucac ggcacca 17
40	<210> 372 <211> 17 <212> RNA <213> Homo sapiens
45	<400> 372 uccuagucac ggcacca 17
	<210> 373 <211> 16
50	<212> RNA <213> Homo sapiens
	<400> 373 ugcuggugau gcuuuc 16
55	<210> 374 <211> 16 <212> RNA <213> Homo sapiens

	<400> 374 ugcuggugau gcuuuc 16
5	<210> 375 <211> 23 <212> RNA
	<213> Homo sapiens <400> 375
10	ggaggcgcag gcucggaaag gcg 23
	<210> 376 <211> 15 <212> RNA
15	<213> Homo sapiens
	<400> 376 gcaggcucgg aaagg 15
20	<210> 377 <211> 20
	<212> RNA <213> Homo sapiens
25	<400> 377
	ggcuggucag augggagugg 20
	<210> 378 <211> 20
30	<212> RNA <213> Homo sapiens
	<400> 378 ggcuggucag augggagugg 20
35	<210> 379
	<211> 21 <212> RNA
40	<213> Homo sapiens
	<400> 379 cggauccgag ucacggcacc a 21
45	<210> 380 <211> 15
	<212> RNA <213> Homo sapiens
	<400> 380
50	ggauccgagu cacgg 15 <210> 381
	<211> 22 <212> RNA
55	<213> Homo sapiens
	<400> 381 ccgggaacgu cgagacugga gc 22

F	<210> 382 <211> 15 <212> RNA <213> Homo sapiens
5	<400> 382 cgggaacguc gagac 15
10	<210> 383 <211> 15 <212> RNA <213> Homo sapiens
15	<400> 383 ucugggcgag gggug 15
20	<210> 384 <211> 15 <212> RNA <213> Homo sapiens
	<400> 384 ucugggcgag gggug 15
25	<210> 385 <211> 21 <212> RNA <213> Homo sapiens
30	<400> 385 cccaggcugg agcgagugca g 21
35	<210> 386 <211> 15 <212> RNA <213> Homo sapiens
40	<400> 386 agcucacugc agccu 15 <210> 387
45	<211> 23 <212> RNA <213> Homo sapiens
	<400> 387 gggggccgau acacuguacg aga 23
50	<210> 388 <211> 20 <212> RNA <213> Homo sapiens
55	<400> 388 gggggccgau acacuguacg 20
	<210> 389 <211> 18

	<212> RNA <213> Homo sapiens
5	<400> 389 gcggcggcgg cggcagca 18
10	<210> 390 <211> 15 <212> RNA <213> Homo sapiens
	<400> 390 gcgggcggcg gcggc 15
15	<210> 391 <211> 23 <212> RNA <213> Homo sapiens
20	<400> 391 cggggccgua gcacugucug aga 23
25	<210> 392 <211> 20 <212> RNA <213> Homo sapiens
30	<400> 392 cggggccgua gcacugucug 20 <210> 393
	<210> 393 <211> 22 <212> RNA <213> Homo sapiens
35	<400> 393 accccacucc ugguaccaua gu 22
40	<210> 394 <211> 15 <212> RNA <213> Homo sapiens
45	<400> 394 accccacucc uggua 15
50	<210> 395 <211> 21 <212> RNA
50	<213> Homo sapiens <400> 395 gagggcagcg uggguguggc g 21
55	<210> 396 <211> 21 <212> RNA <213> Homo sapiens

	<400> 396 gagggcagcg uggguguggc g 21
5	<210> 397 <211> 27 <212> RNA <213> Homo sapiens
10	<400> 397 ugagggacuu uugggggcag auguguu 27
15	<210> 398 <211> 17 <212> RNA <213> Homo sapiens
	<400> 398 ggacuuuugg gggcaga 17
20	<210> 399 <211> 15 <212> RNA <213> Homo sapiens
25	<400> 399 ugaagcgggg gggcg 15
30	<210> 400 <211> 15 <212> RNA <213> Homo sapiens
35	<400> 400 ugaagcgggg gggcg 15 <210> 401
40	<211> 16 <212> RNA <213> Homo sapiens
	<400> 401 ggacccaggg agagac 16
45	<210> 402 <211> 16 <212> RNA <213> Homo sapiens
50	<400> 402 ggacccaggg agagac 16
55	<210> 403 <211> 23 <212> RNA <213> Homo sapiens
	<400> 403 uggggcggag cuuccggagg ccc 23

```
<210> 404
         <211> 16
         <212> RNA
         <213> Homo sapiens
5
         <400> 404
         aucgcuggcc uggucg 16
         <210> 405
10
         <211> 20
         <212> RNA
         <213> Homo sapiens
         <400> 405
15
         cucccggug ugcaaaugug 20
         <210> 406
         <211> 15
         <212> RNA
20
         <213> Homo sapiens
         <400> 406
         gugugcggug uuaug 15
25
         <210> 407
         <211> 17
         <212> RNA
         <213> Homo sapiens
30
         <400> 407
         ggugagcgcu cgcuggc 17
         <210> 408
         <211> 15
35
         <212> RNA
         <213> Homo sapiens
         <400> 408
         cggugagcgc ucgcu 15
40
         <210> 409
         <211> 25
         <212> RNA
         <213> Homo sapiens
45
         <400> 409
         ugggcagggg cuuauuguag gaguc 25
         <210> 410
50
         <211> 19
         <212> RNA
         <213> Homo sapiens
         <400> 410
55
         ugggcagggg cuuauugua 19
         <210> 411
         <211> 23
```

	<212> RNA <213> Homo sapiens
5	<400> 411 agggaguaga agggugggga gca 23
10	<210> 412 <211> 16 <212> RNA <213> Homo sapiens
	<400> 412 uagggaguag aagggu 16
15	<210> 413 <211> 16 <212> RNA <213> Homo sapiens
20	<400> 413 gugaaggccc ggcgga 16
25	<210> 414 <211> 15 <212> RNA <213> Homo sapiens
30	<400> 414 gugaaggccc ggcgg 15 <210> 415
	<211> 24 <212> RNA <213> Homo sapiens
35	<400> 415 gugaguggga gccggugggg cugg 24
40	<210> 416 <211> 15 <212> RNA <213> Homo sapiens
45	<400> 416 ggggcuggag uaagg 15
	<210> 417 <211> 20 <212> RNA
50	<213> Homo sapiens <400> 417
55	<pre>vaggaugggg gugagaggug 20 <210> 418 <211> 18 <212> RNA <213> Homo sapiens</pre>

	<400> 418 uaggaugggg gugagagg 18
5	<210> 419 <211> 23 <212> RNA <213> Homo sapiens
10	<400> 419 cggggcagcu caguacagga uac 23
15	<210> 420 <211> 15 <212> RNA <213> Homo sapiens
	<400> 420 agcucaguac aggau 15
20	<210> 421 <211> 22 <212> RNA <213> Homo sapiens
25	<400> 421 ugggagggga gaggcagcaa gc 22
30	<210> 422 <211> 22 <212> RNA <213> Homo sapiens
35	<400> 422 ugggaggga gaggcagcaa gc 22 <210> 423
40	<211> 19 <212> RNA <213> Homo sapiens
	<400> 423 guggguuggg gcgggcucu 19
45	<210> 424 <211> 19 <212> RNA <213> Homo sapiens
50	<400> 424 guggguuggg gcgggcucu 19
55	<210> 425 <211> 23 <212> RNA <213> Homo sapiens
	<400> 425 uggggaaggc gucagugucg ggu 23

```
<210> 426
         <211> 16
         <212> RNA
         <213> Homo sapiens
5
         <400> 426
         uggggaaggc gucagu 16
         <210> 427
10
         <211> 19
         <212> RNA
         <213> Homo sapiens
         <400> 427
15
         uggcgggugc ggggguggg 19
         <210> 428
         <211> 15
         <212> RNA
20
         <213> Homo sapiens
         <400> 428
         uggcgggugc ggggg 15
25
         <210> 429
         <211> 20
         <212> RNA
         <213> Homo sapiens
30
         <400> 429
         aucccaccuc ugccaccaaa 20
         <210> 430
         <211> 15
35
         <212> RNA
         <213> Homo sapiens
         <400> 430
         aucccaccuc ugcca 15
40
         <210> 431
        <211> 23
         <212> RNA
         <213> Homo sapiens
45
         <400> 431
         ccagggcugg cagugacaug ggu 23
         <210> 432
50
         <211> 19
         <212> RNA
         <213> Homo sapiens
         <400> 432
55
         cagggcuggc agugacaug 19
         <210> 433
         <211> 24
```

	<212> RNA <213> Homo sapiens
5	<400> 433 ucgaggacug guggaagggc cuuu 24
10	<210> 434 <211> 16 <212> RNA <213> Homo sapiens
	<400> 434 ucgaggacug guggaa 16
15	<210> 435 <211> 18 <212> RNA <213> Homo sapiens
20	<400> 435 gagacugggg uggggccu 18
25	<210> 436 <211> 16 <212> RNA <213> Homo sapiens
30	<400> 436 agacuggggu ggggcc 16 <210> 437
35	<211> 23 <212> RNA <213> Homo sapiens <400> 437
40	agaagaaggc ggucggucug cgg 23<210> 438<211> 21<212> RNA<213> Homo sapiens
45	<400> 438 aagaaggcgg ucggucugcg g 21
50	<210> 439 <211> 21 <212> RNA <213> Homo sapiens
	<400> 439 cagccugagu gacagagcaa g 21
55	<210> 440 <211> 15 <212> RNA <213> Homo sapiens

	<400> 440 acugcacucc agccu 15
5	<210> 441 <211> 22 <212> RNA <213> Homo sapiens
10	<400> 441 cugggcucgg gacgcgcgc uc 22
15	<210> 442 <211> 19 <212> RNA <213> Homo sapiens
	<400> 442 cugggcucgg gacgcgcgg 19
20	<210> 443 <211> 23 <212> RNA <213> Homo sapiens
25	<400> 443 acaggagugg gggugggaca uaa 23
30	<210> 444 <211> 20 <212> RNA <213> Homo sapiens
35	<400> 444 acaggagugg gggugggaca 20 <210> 445
40	<211> 23 <212> RNA <213> Homo sapiens
	<400> 445 caccuugccu ugcugcccgg gcc 23
45	<210> 446 <211> 22 <212> RNA <213> Homo sapiens
50	<400> 446 caccuugccu ugcugcccgg gc 22
55	<210> 447 <211> 18 <212> RNA <213> Homo sapiens
	<400> 447

	<210> 448 <211> 15 <212> RNA <213> Homo sapiens
5	<400> 448 ggugggcuuc ccgga 15
10	<210> 449 <211> 21 <212> RNA <213> Homo sapiens
15	<400> 449 aggaggcagu gggcgagcag g 21
20	<210> 450 <211> 21 <212> RNA <213> Homo sapiens
	<400> 450 aggaggcagu gggcgagcag g 21
25	<210> 451 <211> 15 <212> RNA <213> Homo sapiens
30	<400> 451 uggcagagcg cuguc 15
35	<210> 452 <211> 15 <212> RNA <213> Homo sapiens
40	<400> 452 uggcagagcg cuguc 15 <210> 453 <211> 25
45	<212> RNA <213> Homo sapiens <400> 453 uggcggcggu aguuaugggc uucuc 25
50	<210> 454 <211> 25 <212> RNA <213> Homo sapiens
55	<400> 454 uggcggcggu aguuaugggc uucuc 25
	<210> 455 <211> 27

	<212> RNA <213> Homo sapiens
5	<400> 455 agggccagag gagccuggag uggucgg 27
	<210> 456 <211> 23
10	<212> RNA <213> Homo sapiens
	<400> 456 agggccagag gagccuggag ugg 23
15	<210> 457 <211> 22
	<212> RNA <213> Homo sapiens
20	<400> 457
	ugugggacug caaaugggag cu 22
	<210> 458
25	<211> 22 <212> RNA
20	<213> Homo sapiens
	<400> 458
30	ugugggacug caaaugggag cu 22
	<210> 459
	<211> 16
	<212> RNA
35	<213> Homo sapiens
55	<400> 459
	cgggcccggc guuccc 16
10	<210> 460
40	<211> 15 <212> RNA
	<213> Homo sapiens
	<400> 460
45	ccgggcccgg cguuc 15
	<210> 461
	<211> 20
50	<212> RNA
50	<213> Homo sapiens
	<400> 461 aucccaccac ugccaccauu 20
55	<210> 462
	<211> 15
	<212> RNA <213> Homo sapiens

	<400> 462
	aucccaccac ugcca 15
	<210> 463
5	<211> 20
	<212> RNA
	<213> Homo sapiens
	<400> 463
10	<400> 463 ccccggggag cccggcggug 20
70	ccccggggag cccggcggug 20
	<210> 464
	<211> 15
	<212> RNA
15	<213> Homo sapiens
	<400> 464
	acccgggga gcccg 15
20	<210> 465
20	<211> 21
	<212> RNA
	<213> Homo sapiens
	•
25	<400> 465
	auccaguucu cugagggggc u 21
	<210> 466
20	<211> 21
30	<212> RNA
	<213> Homo sapiens
	<400> 466
	auccaguucu cugagggggc u 21
35	0 00000
	<210> 467
	<211> 26
	<212> RNA
	<213> Homo sapiens
40	.400: 407
	<400> 467
	ccuucuggag aggcuuugug cggaua 26
	<210> 468
45	<211> 15
	<212> RNA
	<213> Homo sapiens
	<400> 468
50	ccuucuggag aggcu 15
	<210> 469
	<211> 19
	<212> RNA
55	<213> Homo sapiens
	·
	<400> 469
	agugggaggc cagggcacg 19

5	<210> 470 <211> 15 <212> RNA <213> Homo sapiens
5	<400> 470 agggggagcu gcagg 15
10	<210> 471 <211> 21 <212> RNA <213> Homo sapiens
15	<400> 471 gaggcgaugu ggggauguag a 21
20	<210> 472 <211> 20 <212> RNA <213> Homo sapiens
	<400> 472 cccagucuca uuuccucauc 20
25	<210> 473 <211> 17 <212> RNA <213> Homo sapiens
30	<400> 473 ggggcggggg cgggggc 17
35	<210> 474 <211> 15 <212> RNA <213> Homo sapiens
40	<400> 474 cgcgccgggc ccggg 15 <210> 475
45	<211> 20 <212> RNA <213> Homo sapiens
	<400> 475 ugaguggggc ucccgggacg 20
50	<210> 476 <211> 20 <212> RNA <213> Homo sapiens
55	<400> 476 ugaguggggc ucccgggacg 20
	<210> 477 <211> 25

	<212> RNA <213> Homo sapiens
_	<400> 477
5	ugcaggcaga aguggggcug acagg 25
	<210> 478
	<211> 20
10	<212> RNA
10	<213> Homo sapiens
	<400> 478
	cugcaggcag aaguggggcu 20
15	<210> 479
	<211> 22
	<212> RNA
	<213> Homo sapiens
20	<400> 479
	acucaaacug ugggggcacu uu 22
	<210> 480
	<211> 19
25	<212> RNA
	<213> Homo sapiens
	<400> 480
30	acucaaacug ugggggcac 19
30	<210> 481
	<211> 20
	<212> RNA
	<213> Homo sapiens
35	·
	<400> 481
	ccccagggcg acgcggcggg 20
	<210> 482
40	<211> 15
	<212> RNA
	<213> Homo sapiens
	<400> 482
45	cgcggcgggg gcggc 15
	<210> 483
	<211> 23
	<212> RNA
50	<213> Homo sapiens
	<400> 483
	ggcuacaaca caggacccgg gcg 23
55	<210> 484
	<211> 21
	<212> RNA
	<213> Homo sapiens

	<400> 484 ggcuacaaca caggacccgg g 21
5	<210> 485 <211> 17
5	<211> 17 <212> RNA
	<213> Homo sapiens
10	<400> 485
10	ugcaggggca ggccagc 17
	<210> 486 <211> 17
	<212> RNA
15	<213> Homo sapiens
	<400> 486
	ugcaggggca ggccagc 17
20	<210> 487 <211> 24
	<212> RNA
	<213> Homo sapiens
25	<400> 487
	cugugcaaau ccaugcaaaa cuga 24
	<210> 488 <211> 15
30	<212> RNA
	<213> Homo sapiens
	<400> 488
35	ugugcaaauc caugc 15
	<210> 489
	<211> 27
	<212> RNA
40	<213> Homo sapiens
	<400> 489
	aaaccguuac cauuacugag uuuagua 27
45	<210> 490
45	<211> 15 <212> RNA
	<212> RNA <213> Homo sapiens
	12 132 Homo Sapiens
	<400> 490
50	gaaaccguua ccauu 15
	<210> 491 <211> 24
	<212> RNA
55	<213> Homo sapiens
	<400> 491
	uggggagcug aggcucuggg ggug 24

```
<210> 492
         <211> 15
         <212> RNA
         <213> Homo sapiens
5
         <400> 492
         ggcccugggg agcug 15
         <210> 493
10
         <211> 25
         <212> RNA
         <213> Homo sapiens
         <400> 493
15
         ugucaguuug ucaaauaccc caagu 25
         <210> 494
         <211> 15
         <212> RNA
20
         <213> Homo sapiens
         <400> 494
         uccauguggu agagu 15
25
         <210> 495
         <211> 22
         <212> RNA
         <213> Homo sapiens
30
         <400> 495
         gugggcgggg gcaggugugu gg 22
         <210> 496
         <211> 15
35
         <212> RNA
         <213> Homo sapiens
         <400> 496
         cgggggcagg ugugu 15
40
         <210> 497
         <211> 23
         <212> RNA
         <213> Homo sapiens
45
         <400> 497
         cacaggugag guucuuggga gcc 23
         <210> 498
50
         <211> 15
         <212> RNA
         <213> Homo sapiens
         <400> 498
55
         acaggugagg uucuu 15
         <210> 499
         <211> 26
```

	<212> RNA <213> Homo sapiens
5	<400> 499 agggacggga cgcggugcag uguugu 26
	<210> 500
	<211> 15 <212> RNA
10	<213> Homo sapiens
	<400> 500 ggcgggcggg aggga 15
15	<210> 501 <211> 25
	<211> 23 <212> RNA
	<213> Homo sapiens
20	<400> 501
	aagcugccag uugaagaacu guugc 25
	<210> 502
	<211> 15
25	<212> RNA
	<213> Homo sapiens
	<400> 502
30	aagcugccag uugaa 15
	<210> 503
	<211> 16
	<212> RNA
	<213> Homo sapiens
35	1400: 500
	<400> 503
	uggggggaa gaaaag 16
40	<210> 504 <211> 16
70	<212> RNA
	<213> Homo sapiens
	<400> 504
45	ugggggggaa gaaaag 16
	<210> 505
	<211> 20
50	<212> RNA
50	<213> Homo sapiens
	<400> 505 aagacacauu uggagaggga 20
55	<210> 506
	<211> 16
	<212> RNA <213> Homo sapiens
	-2 10/ 1 101110 Sapie115

	<400> 506
	agacacauuu ggagag 16
	<210> 507
5	<211> 23
	<212> RNA
	<213> Homo sapiens
	<400> 507
10	cuaguggaag aagauggcgg aag 23
	<210> 508
	<211> 15
	<212> RNA
15	<213> Homo sapiens
	<400> 508
	uaguggaaga agaug 15
20	<210> 509
	<211> 27
	<212> RNA
	<213> Homo sapiens
25	<400> 509
	gugaacgggc gccaucccga ggcuuug 27
	<210> 510
	<211> 16
30	<212> RNA
	<213> Homo sapiens
	<400> 510
35	gugaacgggc gccauc 16
	<210> 511
	<211> 22
	<212> RNA
	<213> Homo sapiens
40	
	<400> 511
	ggcaggaagc ggaggaaccu ug 22
	<210> 512
45	<211> 17
	<212> RNA
	<213> Homo sapiens
50	<400> 512
50	ggaggaaccu uggagcu 17
	<210> 513
	<211> 21
	<212> RNA
55	<213> Homo sapiens
	<400> 513
	guuggaggcg uggguuuuag a 21

```
<210> 514
         <211> 15
         <212> RNA
         <213> Homo sapiens
5
         <400> 514
         guuggaggcg ugggu 15
         <210> 515
10
         <211> 29
         <212> RNA
         <213> Homo sapiens
         <400> 515
15
         gggagccgcg gggaucgccg agggccggu 29
         <210> 516
         <211> 15
         <212> RNA
20
         <213> Homo sapiens
         <400> 516
         ggcggcggug guggg 15
25
         <210> 517
         <211> 23
         <212> RNA
         <213> Homo sapiens
30
         <400> 517
         gagggaggga cgggggcugu gcu 23
         <210> 518
         <211> 15
35
         <212> RNA
         <213> Homo sapiens
         <400> 518
         gaggagggag ggagg 15
40
         <210> 519
         <211> 21
         <212> RNA
         <213> Homo sapiens
45
         <400> 519
         uugaggagac augguggggg c 21
         <210> 520
50
         <211> 15
         <212> RNA
         <213> Homo sapiens
         <400> 520
55
         uugaggagac auggu 15
         <210> 521
         <211> 24
```

	<212> RNA <213> Homo sapiens
5	<400> 521 aggcaggggc uggugcuggg cggg 24
10	<210> 522 <211> 15 <212> RNA <213> Homo sapiens
	<400> 522 gggcgggggg cggcg 15
15	<210> 523 <211> 17 <212> RNA <213> Homo sapiens
20	<400> 523 gcggggcggc aggggcc 17
25	<210> 524 <211> 15 <212> RNA <213> Homo sapiens
30	<400> 524 gggggcgggg cggca 15 <210> 525
35	<211> 21 <212> RNA <213> Homo sapiens
	<400> 525 gccgggcgug gugguggggg c 21
40	<210> 526 <211> 15 <212> RNA <213> Homo sapiens
45	<400> 526 uagccgggcg uggug 15
50	<210> 527 <211> 23 <212> RNA <213> Homo sapiens
	<400> 527 aagggaggag gagcggaggg gcc 23
55	<210> 528 <211> 15 <212> RNA <213> Homo sapiens

	<400> 528
	gggaggagga gcgga 15
_	<210> 529
5	<211> 24
	<212> RNA
	<213> Homo sapiens
	<400> 529
10	cgggcguggu ggugggggug ggug 24
	-999-94994 9949399949 9949 = 1
	<210> 530
	<211> 15
	<212> RNA
15	<213> Homo sapiens
	4400- 500
	<400> 530
	cgggcguggu ggugg 15
20	<210> 531
	<211> 24
	<212> RNA
	<213> Homo sapiens
25	<400> 531
	ugggggagug cagugauugu ggaa 24
	<210> 532
	<211> 19
30	<212> RNA
	<213> Homo sapiens
	·
	<400> 532
	ugggggagug cagugauug 19
35	0.40
	<210> 533
	<211> 29
	<212> RNA
40	<213> Homo sapiens
	<400> 533
	gcuggguuaa gccgagcugg guugggcug 29
	<210> 534
45	<211> 19
	<212> RNA
	<213> Homo sapiens
	<400> 534
50	cuggguuggg cugggcugg 19
	<210> 535
	<211> 18
	<212> RNA
55	<213> Homo sapiens
	4400- 525
	<400> 535
	cuccgggcgg cgccgugu 18

```
<210> 536
         <211> 18
         <212> RNA
         <213> Homo sapiens
5
        <400> 536
         cuccgggcgg cgccgugu 18
         <210> 537
10
         <211> 17
         <212> RNA
         <213> Homo sapiens
         <400> 537
15
         ccuccgggac ggcuggg 17
         <210> 538
         <211> 15
         <212> RNA
20
         <213> Homo sapiens
         <400> 538
         cuccgggacg gcugg 15
25
         <210> 539
         <211> 26
         <212> RNA
         <213> Homo sapiens
30
         <400> 539
         gaggggcucu cgcuucuggc gccaag 26
         <210> 540
         <211> 15
35
         <212> RNA
         <213> Homo sapiens
         <400> 540
         ggugaggcgg ggggg 15
40
         <210> 541
         <211> 21
         <212> RNA
         <213> Homo sapiens
45
         <400> 541
         ugcuggggc cacaugagug u 21
         <210> 542
50
         <211> 20
         <212> RNA
         <213> Homo sapiens
         <400> 542
55
         gcuggggcc acaugagugu 20
         <210> 543
         <211> 23
```

	<212> RNA <213> Homo sapiens
5	<400> 543 gggggucccc ggugcucgga ucu 23
10	<210> 544 <211> 16 <212> RNA <213> Homo sapiens
	<400> 544 ucgggagggg cgggag 16
15	<210> 545 <211> 23 <212> RNA <213> Homo sapiens
20	<400> 545 ucggcucugg gucugugggg age 23
25	<210> 546 <211> 15 <212> RNA <213> Homo sapiens
30	<400> 546 gcccggauac cucag 15 <210> 547
	<211> 23 <212> RNA <213> Homo sapiens
35	<400> 547 ggggggaugu gcaugcuggu ugg 23
40	<210> 548 <211> 15 <212> RNA <213> Homo sapiens
45	<400> 548 aucagcgugc acuuc 15
50	<210> 549 <211> 23 <212> RNA <213> Homo sapiens
	<400> 549 aggagggguc ccgcacuggg agg 23
55	<210> 550 <211> 15 <212> RNA <213> Homo sapiens

	<400> 550
	ugggaggggc ccuca 15
	<210> 551
5	<211> 24
	<212> RNA
	<213> Homo sapiens
10	<400> 551
10	cccaaaaugc ugggauuaca ggca 24
	<210> 552
	<211> 15
	<212> RNA
15	<213> Homo sapiens
	<400> 552
	gcccaccuca gccuc 15
20	<210> 553
	<211> 26
	<212> RNA
	<213> Homo sapiens
25	<400> 553
	agggcuggac ucagcggcgg agcugg 26
	<210> 554
	<211> 334
30	<212> RNA
50	<213> Homo sapiens
	12 To Homo sapiens
	<400> 554
25	gcggcggagc uggcugc 17
35	<210> 555
	<211> 333
	<211> 13 <212> RNA
	<213> Homo sapiens
40	12 TOP TIOTHO Supletis
	<400> 555
	aggaggagga ggcag 15
	<210> 556
45	<211> 15
70	<211> 13 <212> RNA
	<213> Homo sapiens
	12 To Fromo Supiens
	<400> 556
50	aggaggagga ggcag 15
	<210> 557
	<211> 23
	<212> RNA
55	<213> Homo sapiens
	<400> EE7
	<400> 557
	uggugcggag agggcccaca gug 23

```
<210> 558
         <211> 15
         <212> RNA
         <213> Homo sapiens
5
         <400> 558
         gggucuggug cggag 15
         <210> 559
10
         <211> 22
         <212> RNA
         <213> Homo sapiens
         <400> 559
15
         acaccgggga uggcagaggg uc 22
         <210> 560
         <211> 20
         <212> RNA
20
         <213> Homo sapiens
         <400> 560
         caccggggau ggcagagggu 20
25
         <210> 561
         <211> 20
         <212> RNA
         <213> Homo sapiens
30
         <400> 561
         gguagugagu uaucagcuac 20
         <210> 562
         <211> 19
35
         <212> RNA
         <213> Homo sapiens
         <400> 562
         cggggccaga gcagagagc 19
40
         <210> 563
         <211> 23
         <212> RNA
         <213> Homo sapiens
45
         <400> 563
         uggugggugg ggaggagaag ugc 23
         <210> 564
50
         <211> 26
         <212> RNA
         <213> Homo sapiens
         <400> 564
55
         cucggccgcg gcgcguagcc cccgcc 26
         <210> 565
         <211> 22
```

	<212> RNA <213> Homo sapiens
5	<400> 565 ucugcccccu ccgcugcugc ca 22
	<210> 566 <211> 20
10	<212> RNA <213> Homo sapiens
	<400> 566 ucacaccugc cucgcccccc 20
15	<210> 567 <211> 21 <212> RNA
	<213> Homo sapiens
20	<400> 567 aaggcagggc ccccgcuccc c 21
0.5	<210> 568 <211> 22
25	<212> RNA <213> Homo sapiens
30	<400> 568 gaggguuggg uggaggcucu cc 22
	<210> 569 <211> 22 <212> RNA
35	<213> Homo sapiens <400> 569
	gagcaggcga ggcugggcug aa 22
40	<210> 570 <211> 22 <212> RNA <213> Homo sapiens
45	<400> 570
40	gcuggugcaa aaguaauggc gg 22 <210> 571
	<211> 22
50	<212> RNA <213> Homo sapiens
	<400> 571 aggcggggcg ccgcgggacc gc 22
55	<210> 572 <211> 22
	<212> RNA <213> Homo sapiens

	<400> 572
	acgeceuuce ecceeuueuu ca 22
_	<210> 573
5	<211> 21
	<212> RNA
	<213> Homo sapiens
	<400> 573
10	gugccagcug caguggggga g 21
	<210> 574
	<211> 23
	<212> RNA
15	<213> Homo sapiens
	<400> 574
	ccucccugcc cgccucucug cag 23
20	<210> 575
	<211> 22
	<212> RNA
	<213> Homo sapiens
25	<400> 575
	ugagececug ugeegeeece ag 22
	<210> 576
	<211> 23
30	<212> RNA
	<213> Homo sapiens
	<400> 576
35	ccccgguguu ggggcgcguc ugc 23
	<210> 577
	<211> 20
	<212> RNA
	<213> Homo sapiens
40	
	<400> 577
	ggcuccuugg ucuaggggua 20
	<210> 578
45	<211> 17
	<212> RNA
	<213> Homo sapiens
	<400> 578
50	ggauggagga ggggucu 17
	<210> 579
	<211> 22
	<212> RNA
55	<213> Homo sapiens
	<400> 579
	acucggcgug gcgucggucg ug 22

	<210> 580	
	<211> 89	
	<212> RNA	
	<213> Homo sapiens	
5	'	
	<400> 580	
	100 000	
	uagauguugg uccaaacuga aaguugauga gucacugugc cucucggggu aguga	guuau 60
10		•
10	cagcuacagu gagagagcag uguuuggcc	89
	<210> 581	
	<211> 61	
15	<212> RNA	
	<213> Homo sapiens	
	<400> 581	
20		
	aacugcgggg ccagagcaga gagcccuugc acaccaccag ccucuccucc cugug	cccca 60
	g	61
25	<210> 582	
	<211> 62	
	<212> RNA	
	<213> Homo sapiens	
20	4400× E02	
30	<400> 582	
	cuuccuggug gguggggagg agaagugccg uccucaugag ccccucucug uccca	cccau 60
	ag	62
35		
	<210> 583	
	<211> 79	
	<212> RNA	
	<213> Homo sapiens	
40		
	<400> 583	
	cucgagguge ugggggaege gugagegega geegeuueeu eaeggeuegg eegeg	gcgcg 60
45		
	uagccccgc cacaucggg	79
	<210> 584	
50		
50	<211> 80	
	<212> RNA	
	<213> Homo sapiens	
	<400> 584	
55		

	accucuaccu cccggcagag gaggcugcag aggcuggcuu uccaaaacuc ugcccccucc	60
	gcugcugcca aguggcuggu	80
5		
	<210> 585	
	<211> 94	
	<212> RNA	
	<213> Homo sapiens	
10		
	<400> 585	
	gugaggugug ggcccggccc caggagcggg gccugggcag ccccgugugu ugaggaagga	60
15		
	aggcagggcc cccgcucccc gggccugacc ccac	94
	<210> 586	
	<211> 80	
20	<212> RNA	
	<213> Homo sapiens	
	<400> 586	
25		
25	aggacccuuc cagagggccc ccccucaauc cuguugugcc uaauucagag gguugggugg	60
	aggeueueeu gaagggeueu	80
30	<210> 587	
	<211> 60	
	<212> RNA	
	<213> Homo sapiens	
35	<400> 587	
	gagcaggcga ggcugggcug aacccguggg ugaggagugc agcccagcug aggccucugc 60	
	<210> 588	
	<211> 100	
40	<212> RNA	
	<213> Homo sapiens	
	<400> 588	
45		
43	auauuaggcu ggugcaaaag uaauggcggu uuuugccauu acuuuucauu uuuaccauua	60
	aaaguaaugg caaaaagcau gauuacuuuu ucaccaaccu	100
	040 500	
50	<210> 589	
	<211> 93	
	<212> RNA	
	<213> Homo sapiens	
55	<400> 589	

	ccuuccggcg ucccaggcgg ggcgccgcgg gaccg	cccuc gugucugugg cgguggga	uc 60
	ccgcggccgu guuuuccugg uggcccggcc aug		93
5			
Ü	<210> 590		
	<211> 66		
	<212> RNA		
	<213> Homo sapiens		
10			
	<400> 590		
			60
	gggaggaggg aggagauggg ccaaguuccc ucugg	reugga aegeeeuuee eeeeeuue	uu 60
15	caccug		66
	20405-504		
	<210> 591		
20	<211> 83 <212> RNA		
20	<213> Homo sapiens		
	12 TOP TIOTHO Supicitio		
	<400> 591		
25	ccugcugcag aggugccagc ugcagugggg gaggc	acuae cagageugee cacucuae	uu 60
	tengengeng nggageraga ngengngggg gangge		
	agccagcagg ugccaagaac agg		83
	<210> 592		
30	<211> 59		
	<212> RNA		
	<213> Homo sapiens		
	<400× E00		
35	<400> 592	ace henchaesa 50	
50	cuccagggag acagugugug aggccucuug ccauggccuc ccugcccg	gee dedeageag 59	
	<210> 593		
	<211> 82		
	<212> RNA		
40	<213> Homo sapiens		
	·		
	<400> 593		
	7772227777 27777777		uu 60
45	gggaaagcgg agggcgcgcc cagcucccgg gcuga	dugeg cuaacagugg ceeeggug	uu 80
	ggggcgcguc ugccgcugcc cc		82
	3535-3-5 ngg-ng		
	<210> E04		
50	<210> 594 <211> 86		
50	<211> 86 <212> RNA		
	<213> Homo sapiens		
	2 for Homo supions		
	<400> 594		
55			

	aggagugac	c aaaagacaag	agugcgagcc	uucuauuaug	cccagacagg	gccaccagag	60
	ggcuccuug	g ucuaggggua	augcca				86
5							
Ü	<210> 595						
	<211> 60						
	<212> RNA						
	<213> Homo sap	ione					
10	~213/1101110 Sap	ICIIS					
, ,	<400> 595						
	ugugaaugac cccc	บบบาลด ลดกาลลลล	inc accadddaild (าลดดลดดดดน ดนเม	าตดและแ 60		
	uguguaugac cocc	adocay agocada	ac accayyyauy s	jaggagggga caa	gggaaca oo		
	<210> 596						
15	<211> 149						
	<212> RNA						
	<213> Homo sap	iens					
	<400> 596						
20							
	caucaagaco	c cagcugaguc	acugucacug	ccuaccaauc	ucgaccggac	cucgaccggc	60
	_						
	ucgucugugu	ı ugccaaucga	cucggcgugg	cgucggucgu	gguagauagg	cggucaugca	120
0.5							1.40
25	uacgaauuui	ı cagcucuugu	ucuggugac				149
	<210> 597						
	<211> 22						
	<212> RNA						
30	<213> Homo sap	iens					
	210 1101110 000	10110					
	<400> 597						
	ccggcagagg aggc	cugcaga gg 22					
35	<210> 598						
	<211> 19						
	<212> RNA						
	<213> Homo sap	iens					
40	<400> 598						
	ccggcagagg aggc	cugcag 19					
	<210> 599						
45	<211> 22						
45	<212> RNA	iama					
	<213> Homo sap	iens					
	<400> 599						
		cacce ec 22					
50	ccucacaccu gccu	090000 00 ZZ					
	<210> 600						
	<211> 15						
	<211> 13 <212> RNA						
	<213> Homo sap	iens					
55							
	<400> 600						
	ucacaccuac cuca	c 15					

```
<210> 601
         <211> 25
         <212> RNA
         <213> Homo sapiens
5
         <400> 601
         aaggcagggc ccccgcuccc cgggc 25
         <210> 602
10
         <211> 15
         <212> RNA
         <213> Homo sapiens
         <400> 602
15
         guguguugag gaagg 15
         <210> 603
         <211> 22
         <212> RNA
20
         <213> Homo sapiens
         <400> 603
         gaggguuggg uggaggcucu cc 22
25
         <210> 604
         <211> 15
         <212> RNA
         <213> Homo sapiens
30
         <400> 604
         gaggguuggg uggag 15
         <210> 605
         <211> 19
35
         <212> RNA
         <213> Homo sapiens
         <400> 605
         gcaggcgagg cugggcuga 19
40
         <210> 606
         <211> 16
         <212> RNA
         <213> Homo sapiens
45
         <400> 606
         aggcgaggcu gggcug 16
         <210> 607
50
         <211> 26
         <212> RNA
         <213> Homo sapiens
         <400> 607
55
         cggugggauc ccgcggccgu guuuuc 26
         <210> 608
         <211> 15
```

	<212> RNA <213> Homo sapiens
5	<400> 608 ggggcgccgc gggac 15
10	<210> 609 <211> 26 <212> RNA <213> Homo sapiens
	<400> 609 aggagggagg agaugggcca aguucc 26
15	<210> 610 <211> 15 <212> RNA <213> Homo sapiens
20	<400> 610 gggaggaggg aggag 15
25	<210> 611 <211> 16 <212> RNA <213> Homo sapiens
30	<400> 611 agcugcagug ggggag 16 <210> 612
35	<211> 15 <212> RNA <213> Homo sapiens
	<400> 612 gcugcagugg gggag 15
40	<210> 613 <211> 22 <212> RNA <213> Homo sapiens
45	<400> 613 ccccgguguu ggggcgcguc ug 22
50	<210> 614 <211> 21 <212> RNA <213> Homo sapiens
	<400> 614 cccgguguug gggcgcgucu g 21
55	<210> 615 <211> 20 <212> RNA <213> Homo sapiens

```
<400> 615
         ggcuccuugg ucuaggggua 20
         <210> 616
5
         <211> 15
         <212> RNA
         <213> Homo sapiens
         <400> 616
10
         cuuggucuag gggua 15
         <210> 617
         <211> 25
         <212> RNA
         <213> Homo sapiens
15
         <400> 617
         acucggcgug gcgucggucg uggua 25
20
         <210> 618
         <211> 15
         <212> RNA
         <213> Homo sapiens
```

Claims

<400> 618

acucggcgug gcguc 15

30

40

45

50

55

- 1. Use of a kit in the *in vitro* diagnosis of lung cancer, the kit comprising a nucleic acid capable of specifically binding to lung cancer marker miR-6768-5p.
- 2. The use according to claim 1, wherein the nucleic acid is a polynucleotide selected from the group consisting of the following polynucleotides (a) to (e):
 - (a) a polynucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
 - (b) a polynucleotide comprising a nucleotide sequence represented by SEQ ID NO: 1,
 - (c) a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides, (d) a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, and
 - (e) a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (a) to (d).
 - 3. The use according to claim 1 or 2, wherein the kit further comprises a nucleic acid capable of specifically binding to at least one or more polynucleotide(s) selected from the group consisting of other lung cancer markers: miR-6836-3p, miR-6782-5p, miR-3663-3p, miR-1908-3p, miR-6726-5p, miR-4258, miR-1343-3p, miR-4516, miR-6875-5p, miR-4651, miR-6825-5p, miR-6840-3p, miR-6780b-5p, miR-6749-5p, miR-8063, miR-6784-5p, miR-3679-5p, miR-3184-5p, miR-663b, miR-6880-5p, miR-1908-5p, miR-92a-2-5p, miR-7975, miR-7110-5p, miR-6842-5p, miR-6857-5p, miR-5572, miR-3197, miR-6131, miR-6889-5p, miR-4454, miR-1199-5p, miR-1247-3p, miR-6800-5p, miR-6872-3p, miR-4649-5p, miR-6791-5p, miR-4433b-3p, miR-3135b, miR-128-2-5p, miR-4675, miR-4472, miR-6785-5p, miR-6741-5p, miR-7977, miR-3665, miR-128-1-5p, miR-4286, miR-6765-3p, miR-4632-5p, miR-365a-5p, miR-6088, miR-6816-5p, miR-6885-5p, miR-711, miR-6765-5p, miR-3180, miR-4442, miR-4792, miR-6721-5p, miR-6798-5p, miR-3162-5p, miR-6126, miR-4758-5p, miR-2392, miR-486-3p, miR-6727-5p, miR-4728-5p,

5

10

15

20

25

30

40

45

50

55

miR-6746-5p, miR-4270, miR-3940-5p, miR-4725-3p, miR-7108-5p, miR-3656, miR-6879-5p, miR-6738-5p, miR-1260a, miR-4446-3p, miR-3131, miR-4463, miR-3185, miR-6870-5p, miR-6779-5p, miR-1273g-3p, miR-8059, miR-4697-5p, miR-4674, miR-4433-3p, miR-4257, miR-1915-5p, miR-4417, miR-1343-5p, miR-6781-5p, miR-4695-5p, miR-1237-5p, miR-6775-5p, miR-7845-5p, miR-4746-3p, miR-7641, miR-7847-3p, miR-6806-5p, miR-4467, miR-4726-5p, miR-4648, miR-6089, miR-1260b, miR-4532, miR-5195-3p, miR-3188, miR-6848-5p, miR-1233-5p, miR-6717-5p, miR-3195, miR-6757-5p, miR-8072, miR-4745-5p, miR-6511a-5p, miR-6776-5p, miR-371a-5p, miR-1227-5p, miR-7150, miR-1915-3p, miR-187-5p, miR-614, miR-1225-5p, miR-451a, miR-939-5p, miR-223-3p, miR-125a-3p, miR-92b-5p, miR-22-3p, miR-6073, miR-6845-5p, miR-6769b-5p, miR-4665-3p, miR-1913, miR-1228-3p, miR-940, miR-296-3p, miR-4690-5p, miR-548q, miR-663a, miR-1249, miR-1202, miR-7113-3p, miR-1225-3p, miR-4783-3p, miR-4448 and miR-4534, and/or; miR-19b-3p, miR-1228-5p, miR-1307-3p, miR-4271, miR-642b-3p, miR-6075, miR-6125, miR-887-3p, miR-6851-5p, miR-6763-5p, miR-3928-3p, miR-4443, miR-3648, miR-149-3p, miR-6891-5p, miR-6752-5p, miR-6875-5p, miR-6887-5p, miR-68891-5p, miR-6887-5p, miR-6888-5p, miR-6888-5p, miR-6888-5p, miR-6888-5p, miR-6888-5p, miR-6888-5p, miR-6888-5p, miR-6888-5p, miR-

- **4.** The use according to claim 3, wherein the nucleic acid is a polynucleotide selected from the group consisting of the following polynucleotides (a') to (e'):
 - (a') a polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 2 to 125, 127 to 130, 132 to 134, and 561 to 578 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
 - (b') a polynucleotide comprising a nucleotide sequence represented by any of SEQ ID NOs: 2 to 125, 127 to 130, 132 to 134, and 561 to 578,
 - (c') a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 2 to 125, 127 to 130, 132 to 134, and 561 to 578 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
 - (d') a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 2 to 125, 127 to 130, 132 to 134, and 561 to 578 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, and
 - (e') a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (a') to (d'), and/or;
- a polynucleotide selected from the group consisting of the following polynucleotides (f) to (o):
 - (f) a polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 126, 131 and 579 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
 - (g) a polynucleotide comprising a nucleotide sequence represented by any of SEQ ID NOs: 126, 131 and 579 (h) a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 126, 131 and 579 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides.
 - (i) a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 126, 131 and 579 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t,
 - (j) a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (f) to (i);
 - (k) a polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
 - (I) a polynucleotide comprising a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174,
 - (m) a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
 - (n) a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the

replacement of u with t, and

5

10

15

20

25

30

35

40

45

50

- (o) a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (k) to (n).
- 5. The use according to any one of claims 1 to 4, wherein the kit comprises at least two or more nucleic acids capable of specifically binding to at least two or more polynucleotides, respectively, selected from all of the lung cancer markers according to claim 1 or 3.
 - **6.** Use of a device in the *in vitro* diagnosis of lung cancer, comprising a nucleic acid capable of specifically binding to a polynucleotide of lung cancer marker miR-6768-5p.
 - 7. The use according to claim 6, wherein the nucleic acid is a polynucleotide selected from the group consisting of the following polynucleotides (a) to (e):
 - (a) a polynucleotide consisting of a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
 - (b) a polynucleotide comprising a nucleotide sequence represented by SEQ ID NO: 1,
 - (c) a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides, (d) a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t and
 - (e) a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (a) to (d).
 - The use according to claim 6 or 7, wherein the device further comprises a nucleic acid capable of specifically binding to at least one or more polynucleotide(s) selected from the group consisting of other lung cancer markers: miR-6836-3p, miR-6782-5p, miR-3663-3p, miR-1908-3p, miR-6726-5p, miR-4258, miR-1343-3p, miR-4516, miR-6875-5p, miR-4651, miR-6825-5p, miR-6840-3p, miR-6780b-5p, miR-6749-5p, miR-8063, miR-6784-5p, miR-3679-5p, miR-3184-5p, miR-663b, miR-6880-5p, miR-1908-5p, miR-92a-2-5p, miR-7975, miR-7110-5p, miR-6842-5p, miR-6857-5p, miR-5572, miR-3197, miR-6131, miR-6889-5p, miR-4454, miR-1199-5p, miR-1247-3p, miR-6800-5p, miR-6872-3p, miR-4649-5p, miR-6791-5p, miR-4433b-3p, miR-3135b, miR-128-2-5p, miR-4675, miR-4472, miR-6785-5p, miR-6741-5p, miR-7977, miR-3665, miR-128-1-5p, miR-4286, miR-6765-3p, miR-4632-5p, miR-365a-5p, miR-6088, miR-6816-5p, miR-6885-5p, miR-711, miR-6765-5p, miR-3180, miR-4442, miR-4792, miR-6721-5p, miR-6798-5p, miR-3162-5p, miR-6126, miR-4758-5p, miR-2392, miR-486-3p, miR-6727-5p, miR-4728-5p, miR-6746-5p, miR-4270, miR-3940-5p, miR-4725-3p, miR-7108-5p, miR-3656, miR-6879-5p, miR-6738-5p, miR-1260a, miR-4446-3p, miR-3131, miR-4463, miR-3185, miR-6870-5p, miR-6779-5p, miR-1273g-3p, miR-8059, miR-4697-5p, miR-4674, miR-4433-3p, miR-4257, miR-1915-5p, miR-4417, miR-1343-5p, miR-6781-5p, miR-4695-5p, miR-1237-5p, miR-6775-5p, miR-7845-5p, miR-4746-3p, miR-7641, miR-7847-3p, miR-6806-5p, miR-4467, miR-4726-5p, miR-4648, miR-6089, miR-1260b, miR-4532, miR-5195-3p, miR-3188, miR-6848-5p, miR-1233-5p, miR-6717-5p, miR-3195, miR-6757-5p, miR-8072, miR-4745-5p, miR-6511a-5p, miR-6776-5p, miR-371a-5p, miR-1227-5p, miR-7150, miR-1915-3p, miR-187-5p, miR-614, miR-1225-5p, miR-451a, miR-939-5p, miR-223-3p, miR-125a-3p, miR-92b-5p, miR-22-3p, miR-6073, miR-6845-5p, miR-6769b-5p, miR-4665-3p, miR-1913, miR-1228-3p, miR-940, miR-296-3p, miR-4690-5p, miR-548q, miR-663a, miR-1249, miR-1202, miR-7113-3p, miR-1225-3p, miR-4783-3p, miR-4448 and miR-4534, and /or; miR-19b-3p, miR-1228-5p, miR-1307-3p, miR-4271, miR-642b-3p, miR-6075, miR-6125, miR-887-3p, miR-6851-5p, miR-6763-5p, miR-3928-3p, miR-4443, miR-3648, miR-149-3p, miR-4689, miR-4763-3p, miR-6729-5p, miR-3196, miR-8069, miR-1268a, miR-4739, miR-1268b, miR-5698, miR-6752-5p, miR-4507, miR-564, miR-4497, miR-6877-5p, miR-6087, miR-4731-5p, miR-615-5p, miR-760, miR-6891-5p, miR-6887-5p, miR-4525, miR-1914-3p, miR-619-5p, miR-5001-5p, miR-6722-3p, miR-3621, miR-4298, miR-675-5p and miR-4655-5p.
 - 9. The use according to claim 8, wherein the nucleic acid is a polynucleotide selected from the group consisting of the following polynucleotides (a') to (e'):
- (a') a polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 2 to 125, 127 to 130, 132 to 134, and 561 to 578 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,

- (b') a polynucleotide comprising a nucleotide sequence represented by any of SEQ ID NOs: 2 to 125, 127 to 130, 132 to 134, and 561 to 578,
- (c') a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 2 to 125, 127 to 130, 132 to 134, and 561 to 578 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (d') a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 2 to 125, 127 to 130, 132 to 134, and 561 to 578 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, and
- (e') a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (a') to (d'), and/or;

a polynucleotide selected from the group consisting of the following polynucleotides (f) to (o):

5

10

15

20

25

30

35

45

- (f) a polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 126, 131 and 579or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (g) a polynucleotide comprising a nucleotide sequence represented by any of SEQ ID NOs: 126, 131 and 579, (h) a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 126, 131 and 579or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (i) a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 126, 131 and 579 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t,
- (j) a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (f) to (i);
- (k) a polynucleotide consisting of a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (I) a polynucleotide comprising a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174,
- (m) a polynucleotide consisting of a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, a variant thereof, a derivative thereof, or a fragment thereof comprising 15 or more consecutive nucleotides,
- (n) a polynucleotide comprising a nucleotide sequence complementary to a nucleotide sequence represented by any of SEQ ID NOs: 135 to 174 or a nucleotide sequence derived from the nucleotide sequence by the replacement of u with t, and
- (o) a polynucleotide hybridizing under stringent conditions to any of the polynucleotides (k) to (n).
- **10.** The use according to any one of claims 6 to 9, wherein the device is a device for measurement by a hybridization technique.
 - **11.** The use according to claim 10, wherein the hybridization technique is a nucleic acid array technique.
 - **12.** The use according to any one of claims 6 to 11, wherein the device comprises at least two or more nucleic acids capable of specifically binding to at least two or more polynucleotides, respectively, selected from all of the lung cancer markers according to claim 6
 - **13.** A method for detecting lung cancer, comprising measuring an expression level of a target nucleic acid in a sample from a subject using the kit as defined in any one of claims 1 to 5 or use of the device as defined in any one of claims 6 to 12, and evaluating *in vitro* whether or not the subject has lung cancer using both of the measured expression level and a control expression level of in a sample from a healthy subject measured in the same way.
 - 14. The method according to claim 13, wherein the subject is a human.
- 55 **15.** The method according to claim 13 or 14, wherein the sample is blood, serum, or plasma.
 - 16. Use of a marker in the in vitro diagnosis of lung cancer, the marker comprising polynucleotide miR-6768-5p.

17. The use according to claim 16, wherein the marker further comprises at least one polynucleotide(s) selected from the group consisting of the following other lung cancer markers: miR-.6836-3p, miR-6782-5p, miR-3663-3p, miR-1908-3p, miR-6726-5p, miR-4258, miR-1343-3p, miR-4516, miR-6875-5p, miR-4651, miR-6825-5p, miR-6840-3p, miR-6780b-5p, miR-6749-5p, miR-8063, miR-6784-5p, miR-3679-5p, miR-3184-5p, miR-663b, miR-6880-5p, miR-1908-5p, miR-92a-2-5p, miR-7975, miR-7110-5p, miR-6842-5p, miR-6857-5p, miR-5572, miR-3197, miR-6131, miR-6889-5p, miR-4454, miR-1199-5p, miR-1247-3p, miR-6800-5p, miR-6872-3p, miR-4649-5p, miR-6791-5p, miR-4433b-3p, miR-3135b, miR-128-2-5p, miR-4675, miR-4472, miR-6785-5p, miR-6741-5p, miR-7977, miR-3665, miR-128-1-5p, miR-4286, miR-6765-3p, miR-4632-5p, miR-365a-5p, miR-6088, miR-6816-5p, miR-6885-5p, miR-711, miR-6765-5p, miR-3180, miR-4442, miR-4792, miR-6721-5p, miR-6798-5p, miR-3162-5p, miR-6126, miR-4758-5p, miR-2392, miR-486-3p, miR-6727-5p, miR-4728-5p, miR-6746-5p, miR-4270, miR-3940-5p, miR-4725-3p, miR-7108-5p, miR-3656, miR-6879-5p, miR-6738-5p, miR-1260a, miR-4446-3p, miR-3131, miR-4463, miR-3185, miR-6870-5p, miR-6779-5p, miR-1273g-3p, miR-8059, miR-4697-5p, miR-4674, miR-4433-3p, miR-4257, miR-1915-5p, miR-4417, miR-1343-5p, miR-6781-5p, miR-4695-5p, miR-1237-5p, miR-6775-5p, miR-7845-5p, miR-4746-3p, miR-7641, miR-7847-3p, miR-6806-5p, miR-4467, miR-4726-5p, miR-4648, miR-6089, miR-1260b, miR-4532, miR-5195-3p, miR-3188, miR-6848-5p, miR-1233-5p, miR-6717-5p, miR-3195, miR-6757-5p, miR-8072, miR-4745-5p, miR-6511a-5p, miR-6776-5p, miR-371a-5p, miR-1227-5p, miR-7150, miR-1915-3p, miR-187-5p, miR-614, miR-1225-5p, miR-451a, miR-939-5p, miR-223-3p, miR-125a-3p, miR-92b-5p, miR-22-3p, miR-6073, miR-6845-5p, miR-6769b-5p, miR-4665-3p, miR-1913, miR-1228-3p, miR-940, miR-296-3p, miR-4690-5p, miR-548q, miR-663a, miR-1249, miR-1202, miR-7113-3p, miR-1225-3p, miR-4783-3p, miR-4448 and miR-4534, and/or; miR-19b-3p, miR-1228-5p, miR-1307-3p, miR-4271, miR-642b-3p, miR-6075, miR-6125, miR-887-3p, miR-6851-5p, miR-6763-5p, miR-3928-3p, miR-4443, miR-3648, miR-149-3p, miR-4689, miR-4763-3p, miR-6729-5p, miR-3196, miR-8069, miR-1268a, miR-4739, miR-1268b, miR-5698, miR-6752-5p, miR-4507, miR-564, miR-4497, miR-6877-5p, miR-6087, miR-4731-5p, miR-615-5p, miR-760, miR-6891-5p, miR-6887-5p, miR-4525, miR-6891-5p, miR 1914-3p, miR-619-5p, miR-5001-5p, miR-6722-3p, miR-3621, miR-4298, miR-675-5p and miR-4655-5p.

Patentansprüche

5

10

15

20

25

35

40

- 1. Verwendung eines Sets bei der In-vitro-Diagnose von Lungenkrebs, wobei das Set eine Nucleinsäure umfasst, die in der Lage ist, spezifisch an den Lungenkrebsmarker miR-6768-5p zu binden.
 - 2. Verwendung nach Anspruch 1, wobei die Nucleinsäure ein Polynucleotid ist, das aus der aus den folgenden Polynucleotiden (a) bis (e) bestehenden Gruppe ausgewählt ist:
 - (a) einem Polynucleotid, das aus einer Nucleotidsequenz, die durch SEQ ID NO: 1 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, besteht, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,
 - (b) einem Polynucleotid, das eine Nucleotidsequenz, die durch SEQ ID NO: 1 dargestellt ist, umfasst,
 - (c) einem Polynucleotid, das aus einer Nucleotidsequenz besteht, die zu einer Nucleotidsequenz, die durch SEQ ID NO: 1 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,
 - (d) einem Polynucleotid, das eine Nucleotidsequenz umfasst, die zu einer Nucleotidsequenz, die durch SEQ ID NO: 1 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist, und
 - (e) einem Polynucleotid, das unter stringenten Konditionen an ein beliebiges der Polynucleotide (a) bis (d) hybridisiert.
- Verwendung nach Anspruch 1 oder 2, wobei das Set ferner eine Nucleinsäure umfasst, die in der Lage ist, an zumindest ein Polynucleotid oder mehrere Polynucleotide spezifisch zu binden, das bzw. die aus der aus folgenden anderen Lungenkrebsmarkern bestehenden Gruppe ausgewählt ist bzw. sind: miR-6836-3p, miR-6782-5p, miR-3663-3p, miR-1908-3p, miR-6726-5p, miR-4258, miR-1343-3p, miR-4516, miR-6875-5p, miR-4651, miR-6825-5p, miR-6840-3p, miR-6780b-5p, miR-6749-5p, miR-8063, miR-6784-5p, miR-3679-5p, miR-3184-5p, miR-663b, miR-6880-5p, miR-1908-5p, miR-92a-2-5p, miR-7975, miR-7110-5p, miR-6842-5p, miR-6857-5p, miR-5572, miR-3197, miR-6131, miR-6889-5p, miR-4454, miR-1199-5p, miR-1247-3p, miR-6800-5p, miR-6872-3p, miR-4649-5p, miR-6791-5p, miR-4433b-3p, miR-3135b, miR-128-2-5p, miR-4675, miR-4472, miR-6785-5p, miR-6741-5p, miR-7977, miR-3665, miR-128-1-5p, miR-4286, miR-6765-3p, miR-4632-5p, miR-365a-5p, miR-6088, miR-6816-5p, miR-6785-7p

6885-5p, miR-711, miR-6765-5p, miR-3180, miR-4442, miR-4792, miR-6721-5p, miR-6798-5p, miR-3162-5p, miR-6126, miR-4758-5p, miR-2392, miR-486-3p, miR-6727-5p, miR-4728-5p, miR-6746-5p, miR-4270, miR-3940-5p, miR-4725-3p, miR-7108-5p, miR-3656, miR-6879-5p, miR-6738-5p, miR-1260a, miR-4446-3p, miR-3131, miR-4463, miR-3185, miR-6870-5p, miR-6779-5p, miR-1273g-3p, miR-8059, miR-4697-5p, miR-4674, miR-4433-3p, miR-4257, miR-1915-5p, miR-4417, miR-1343-5p, miR-6781-5p, miR-4695-5p, miR-1237-5p, miR-6775-5p, miR-7845-5p, miR-4746-3p, miR-7847-3p, miR-6806-5p, miR-4467, miR-4726-5p, miR-4648, miR-6089, miR-1260b, miR-4532, miR-5195-3p, miR-3188, miR-6848-5p, miR-1233-5p, miR-6717-5p, miR-3195, miR-6757-5p, miR-8072, miR-4745-5p, miR-6511 a-Sp, miR-6776-5p, miR-371a-5p, miR-1227-5p, miR-7150, miR-1915-3p, miR-187-5p, miR-614, miR-1225-5p, miR-451a, miR-939-5p, miR-223-3p, miR-125a-3p, miR-92b-5p, miR-22-3p, miR-6073, miR-6845-5p, miR-6769b-5p, miR-4665-3p, miR-1913, miR-1228-3p, miR-940, miR-296-3p, miR-4690-5p, miR-548q, miR-663a, miR-1249, miR-1202, miR-7113-3p, miR-1225-3p, miR-4783-3p, miR-4448 und miR-4534 und/oder

5

10

15

20

25

30

35

40

45

50

55

miR-19b-3p, miR-1228-5p, miR-1307-3p, miR-4271, miR-642b-3p, miR-6075, miR-6125, miR-887-3p, miR-6851-5p, miR-6763-5p, miR-3928-3p, miR-4443, miR-3648, miR-149-3p, miR-4689, miR-4763-3p, miR-6729-5p, miR-4507, miR-564, miR-4497, miR-6877-5p, miR-6087, miR-4731-5p, miR-615-5p, miR-760, miR-6891-5p, miR-6887-5p, miR-4525, miR-1914-3p, miR-619-5p, miR-5001-5p, miR-6722-3p, miR-3621, miR-4298, miR-675-5p und miR-4655-5p.

- **4.** Verwendung nach Anspruch 3, wobei die Nucleinsäure ein Polynucleotid ist, das aus der aus den folgenden Polynucleotiden (a') bis (e') bestehenden Gruppe ausgewählt ist:
 - (a') einem Polynucleotid, das aus einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 2 bis 125, 127 bis 130, 132 bis 134 und 561 bis 578 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, besteht, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,
 - (b') einem Polynucleotid, das eine Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 2 bis 125, 127 bis 130, 132 bis 134 und 561 bis 578 dargestellt ist, umfasst, (c') einem Polynucleotid, das aus einer Nucleotidsequenz besteht, die zu einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 2 bis 125, 127 bis 130, 132 bis 134 und 561 bis 578 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,
 - (d') einem Polynucleotid, das eine Nucleotidsequenz umfasst, die zu einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 2 bis 125, 127 bis 130, 132 bis 134 und 561 bis 578 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist, und
 - (e') einem Polynucleotid, das unter stringenten Bedingungen an ein beliebiges der Polynucleotide (a') bis (d') hybridisiert, und/oder;

ein Polynucleotid, das aus der aus den folgenden Polynucleotiden (f) bis (o) bestehenden Gruppe ausgewählt ist:

- (f) einem Polynucleotid, das aus einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 126, 131 und 579 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, besteht, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,
- (g) einem Polynucleotid, das eine Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 126, 131 und 579 dargestellt ist, umfasst,
- (h) einem Polynucleotid, das aus einer Nucleotidsequenz besteht, die zu einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 126, 131 und 579 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,
- (i) einem Polynucleotid, das eine Nucleotidsequenz umfasst, die zu einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 126, 131 und 579 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist,
- (j) einem Polynucleotid, das unter stringenten Bedingungen an ein beliebiges der Polynucleotide (f) bis (i) hybridisiert;
- (k) einem Polynucleotid, das aus einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 135 bis 174 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, besteht, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,

5

10

15

25

30

35

- (I) einem Polynucleotid, das eine Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 135 bis 174 dargestellt ist, umfasst,
- (m) einem Polynucleotid, das aus einer Nucleotidsequenz besteht, die zu einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 135 bis 174 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,
- (n) einem Polynucleotid, das eine Nucleotidsequenz umfasst, die zu einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 135 bis 174 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist, und
- (o) einem Polynucleotid, das unter stringenten Bedingungen an ein beliebiges der Polynucleotide (k) bis (n) hybridisiert.
- 5. Verwendung nach einem der Ansprüche 1 bis 4, wobei das Set zumindest zwei oder mehr Nucleinsäuren umfasst, die in der Lage sind, jeweils spezifisch an zumindest zwei oder mehr Polynucleotide zu binden, die aus allen Lungenkrebsmarkern nach Anspruch 1 oder 3 ausgewählt sind.
- **6.** Verwendung einer Vorrichtung bei der In-vitro-Diagnose von Lungenkrebs, die eine Nucleinsäure umfasst, die in der Lage ist, spezifisch an ein Polynucleotid des Lungenkrebsmarkers miR-6768-5p zu binden.
- 7. Verwendung nach Anspruch 6, wobei die Nucleinsäure ein Polynucleotid ist, das aus der aus den folgenden Polynucleotiden (a) bis (e) bestehenden Gruppe ausgewählt ist:
 - (a) einem Polynucleotid, das aus einer Nucleotidsequenz, die durch SEQ ID NO: 1 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, besteht, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst.
 - (b) einem Polynucleotid, das eine Nucleotidsequenz, die durch SEQ ID NO: 1 dargestellt ist, umfasst,
 - (c) einem Polynucleotid, das aus einer Nucleotidsequenz besteht, die zu einer Nucleotidsequenz, die durch SEQ ID NO: 1 dargestellt ist, oder einer Nucleotidsequenz, die durch Ersatz von u mit t stammt, komplementär ist, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,
 - (d) einem Polynucleotid, das eine Nucleotidsequenz umfasst, die zu einer Nucleotidsequenz, die durch SEQ ID NO: 1 dargestellt ist, oder einer Nucleotidsequenz, die durch Ersatz von u mit t stammt, komplementär ist, und (e) einem Polynucleotid, das unter stringenten Konditionen an ein beliebiges der Polynucleotide (a) bis (d) hybridisiert.
- 8. Verwendung nach Anspruch 6 oder 7, wobei die Vorrichtung ferner eine Nucleinsäure umfasst, die in der Lage ist, an zumindest ein Polynucleotid oder mehrere Polynucleotide spezifisch zu binden, das bzw. die aus der aus folgenden anderen Lungenkrebsmarkern bestehenden Gruppe ausgewählt ist bzw. sind: miR-6836-3p, miR-6782-5p, 40 miR-3663-3p, miR-1908-3p, miR-6726-5p, miR-4258, miR-1343-3p, miR-4516, miR-6875-5p, miR-4651, miR-6825-5p, miR-6840-3p, miR-6780b-5p, miR-6749-5p, miR-8063, miR-6784-5p, miR-3679-5p, miR-3184-5p, miR-663b, miR-6880-5p, miR-1908-5p, miR-92a-2-5p, miR-7975, miR-7110-5p, miR-6842-5p, miR-6857-5p, miR-5572, miR-3197, miR-6131, miR-6889-5p, miR-4454, miR-1199-5p, miR-1247-3p, miR-6800-5p, miR-6872-3p, miR-4649-5p, miR-6791-5p, miR-4433b-3p, miR-3135b, miR-128-2-5p, miR-4675, miR-4472, miR-6785-5p, miR-45 6741-5p, miR-7977, miR-3665, miR-128-1-5p, miR-4286, miR-6765-3p, miR-4632-5p, miR-365a-5p, miR-6088, miR-6816-5p, miR-6885-5p, miR-711, miR-6765-5p, miR-3180, miR-4442, miR-4792, miR-6721-5p, miR-6798-5p, miR-3162-5p, miR-6126, miR-4758-5p, miR-2392, miR-486-3p, miR-6727-5p, miR-4728-5p, miR-6746-5p, miR-4270, miR-3940-5p, miR-4725-3p, miR-7108-5p, miR-3656, miR-6879-5p, miR-6738-5p, miR-1260a, miR-4446-3p, miR-3131, miR-4463, miR-3185, miR-6870-5p, miR-6779-5p, miR-1273g-3p, miR-8059, miR-4697-5p, miR-4674, 50 miR-4433-3p, miR-4257, miR-1915-5p, miR-4417, miR-1343-5p, miR-6781-5p, miR-4695-5p, miR-1237-5p, miR-6775-5p, miR-7845-5p, miR-4746-3p, miR-7641, miR-7847-3p, miR-6806-5p, miR-4467, miR-4726-5p, miR-4648, miR-6089, miR-1260b, miR-4532, miR-5195-3p, miR-3188, miR-6848-5p, miR-1233-5p, miR-6717-5p, miR-3195, miR-6757-5p, miR-8072, miR-4745-5p, miR-6511 a-Sp, miR-6776-5p, miR-371a-5p, miR-1227-5p, miR-7150, miR-1915-3p, miR-187-5p, miR-614, miR-1225-5p, miR-451a, miR-939-5p, miR-223-3p, miR-125a-3p, miR-92b-5p, miR-55 22-3p, miR-6073, miR-6845-5p, miR-6769b-5p, miR-4665-3p, miR-1913, miR-1228-3p, miR-940, miR-296-3p, miR-4690-5p, miR-548q, miR-663a, miR-1249, miR-1202, miR-7113-3p, miR-1225-3p, miR-4783-3p, miR-4448 und

miR-19b-3p, miR-1228-5p, miR-1307-3p, miR-4271, miR-642b-3p, miR-6075, miR-6125, miR-887-3p, miR-

6851-5p, miR-6763-5p, miR-3928-3p, miR-4443, miR-3648, miR-149-3p, miR-4689, miR-4763-3p, miR-6729-5p, miR-4507, miR-564, miR-4497, miR-6877-5p, miR-6087, miR-4731-5p, miR-615-5p, miR-760, miR-6891-5p, miR-6887-5p, miR-4525, miR-1914-3p, miR-619-5p, miR-5001-5p, miR-6722-3p, miR-3621, miR-4298, miR-675-5p und miR-4655-5p.

5

Verwendung nach Anspruch 8, wobei die Nucleinsäure ein Polynucleotid ist, das aus der aus den folgenden Polynucleotiden (a') bis (e') bestehenden Gruppe ausgewählt ist:

10

(a') einem Polynucleotid, das aus einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 2 bis 125, 127 bis 130, 132 bis 134 und 561 bis 578 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, besteht, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,

15

(b') einem Polynucleotid, das eine Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 2 bis 125, 127 bis 130, 132 bis 134 und 561 bis 578 dargestellt ist, umfasst, (c') einem Polynucleotid, das aus einer Nucleotidsequenz besteht, die zu einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 2 bis 125, 127 bis 130, 132 bis 134 und 561 bis 578 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,

20

(d') einem Polynucleotid, das eine Nucleotidsequenz umfasst, die zu einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 2 bis 125, 127 bis 130, 132 bis 134 und 561 bis 578 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist, und

(e') einem Polynucleotid, das unter stringenten Bedingungen an ein beliebiges der Polynucleotide (a') bis (d')

hybridisiert, und/oder;

25 ein Polynucleotid, das aus der aus den folgenden Polynucleotiden (f) bis (o) bestehenden Gruppe ausgewählt ist:

(f) einem Polynucleotid, das aus einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 126, 131 und 579 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, besteht, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,

30

(g) einem Polynucleotid, das eine Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 126, 131 und 579 dargestellt ist, umfasst,

35

(h) einem Polynucleotid, das aus einer Nucleotidsequenz besteht, die zu einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 126, 131 und 579 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,

(i) einem Polynucleotid, das eine Nucleotidsequenz umfasst, die zu einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 126, 131 und 579 dargestellt ist, oder einer Nucleotidseguenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist,

40

(j) einem Polynucleotid, das unter stringenten Bedingungen an ein beliebiges der Polynucleotide (f) bis (i) hybridisiert;

(k) einem Polynucleotid, das aus einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 135 bis 174 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, besteht, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,

45

(I) einem Polynucleotid, das eine Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 135 bis 174 dargestellt ist, umfasst,

(m) einem Polynucleotid, das aus einer Nucleotidsequenz besteht, die zu einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 135 bis 174 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist, einer Variante davon, einem Derivat davon oder einem Fragment davon, das 15 oder mehr aufeinanderfolgende Nucleotide umfasst,

50

(n) einem Polynucleotid, das eine Nucleotidsequenz umfasst, die zu einer Nucleotidsequenz, die durch eine beliebige der SEQ ID NOs: 135 bis 174 dargestellt ist, oder einer Nucleotidsequenz, die von der Nucleotidsequenz durch Ersatz von u mit t stammt, komplementär ist, und

55

(o) einem Polynucleotid, das unter stringenten Bedingungen an ein beliebiges der Polynucleotide (k) bis (n) hybridisiert.

10. Verwendung nach einem der Ansprüche 6 bis 9, wobei die Vorrichtung eine Vorrichtung zum Messen durch ein

Hybridisierungsverfahren ist.

- 11. Verwendung nach Anspruch 10, wobei das Hybridisierungsverfahren ein Nucleinsäurearrayverfahren ist.
- 12. Verwendung nach einem der Ansprüche 6 bis 11, wobei die Vorrichtung zumindest zwei oder mehr Nucleinsäuren umfasst, die in der Lage sind, jeweils spezifisch an zumindest zwei oder mehr Polynucleotide zu binden, die aus allen Lungenkrebsmarkern nach Anspruch 6 ausgewählt sind.
- 13. Verfahren zum Detektieren von Lungenkrebs, das das Messen eines Expressionsausmaßes einer Zielnucleinsäure in einer Probe aus einem Individuum unter Verwendung eines Sets wie in einem der Ansprüche 1 bis 5 definiert oder Verwendung einer Vorrichtung wie in einem der Ansprüche 6 bis 12 definiert und das In-vitro-Bewerten, ob das Individuum an Lungenkrebs leidet, unter Verwendung sowohl des gemessenen Expressionsausmaßes als auch eines Kontrollexpressionsausmaßes in einer Probe aus einem gesundem Individuum, das auf dieselbe Weise gemessen wurde, umfasst.
 - **14.** Verfahren nach Anspruch 13, wobei das Individuum ein Mensch ist.
 - 15. Verfahren nach Anspruch 13 oder 14, wobei die Probe Blut, Serum oder Plasma ist.
- 20 16. Verwendung eines Markers bei der In-vitro-Diagnostik von Lungenkrebs, wobei der Marker das Polynucleotid miR-6768-5p umfasst.
- 17. Verwendung nach Anspruch 16, wobei der Marker ferner zumindest ein Polynucleotid bzw. Polynucleotide umfasst, das bzw. die aus der aus folgenden anderen Lungenkrebsmarkern bestehenden Gruppe ausgewählt ist bzw. sind: 25 miR-6836-3p, miR-6782-5p, miR-3663-3p, miR-1908-3p, miR-6726-5p, miR-4258, miR-1343-3p, miR-4516, miR-6875-5p, miR-4651, miR-6825-5p, miR-6840-3p, miR-6780b-5p, miR-6749-5p, miR-8063, miR-6784-5p, miR-3679-5p, miR-3184-5p, miR-663b, miR-6880-5p, miR-1908-5p, miR-92a-2-5p, miR-7975, miR-7110-5p, miR-6842-5p, miR-6857-5p, miR-5572, miR-3197, miR-6131, miR-6889-5p, miR-4454, miR-1199-5p, miR-1247-3p, miR-6800-5p, miR-6872-3p, miR-4649-5p, miR-6791-5p, miR-4433b-3p, miR-3135b, miR-128-2-5p, miR-4675, miR-30 4472, miR-6785-5p, miR-6741-5p, miR-7977, miR-3665, miR-128-1-5p, miR-4286, miR-6765-3p, miR-4632-5p, miR-365a-5p, miR-6088, miR-6816-5p, miR-6885-5p, miR-711, miR-6765-5p, miR-3180, miR-4442, miR-4792, miR-6721-5p, miR-6798-5p, miR-3162-5p, miR-6126, miR-4758-5p, miR-2392, miR-486-3p, miR-6727-5p, miR-4728-5p, miR-6746-5p, miR-4270, miR-3940-5p, miR-4725-3p, miR-7108-5p, miR-3656, miR-6879-5p, miR-6738-5p, miR-1260a, miR-4446-3p, miR-3131, miR-4463, miR-3185, miR-6870-5p, miR-6779-5p, miR-1273g-3p, miR-8059, miR- $4697-5p,\ miR-4674,\ miR-4433-3p,\ miR-4257,\ miR-1915-5p,\ miR-4417,\ miR-1343-5p,\ miR-6781-5p,\ miR-4695-5p,\ miR-1915-5p,\ miR-1915-5p,\$ 35 miR-1237-5p, miR-6775-5p, miR-7845-5p, miR-4746-3p, miR-7641, miR-7847-3p, miR-6806-5p, miR-4467, miR-4726-5p, miR-4648, miR-6089, miR-1260b, miR-4532, miR-5195-3p, miR-3188, miR-6848-5p, miR-1233-5p, miR-6717-5p, miR-3195, miR-6757-5p, miR-8072, miR-4745-5p, miR-6511a-Sp, miR-6776-5p, miR-371a-5p, miR-1227-5p, miR-7150, miR-1915-3p, miR-187-5p, miR-614, miR-1225-5p, miR-451a, miR-939-5p, miR-223-3p, miR- $125a-3p, \ miR-92b-5p, \ miR-22-3p, \ miR-6073, \ miR-6845-5p, \ miR-6769b-5p, \ miR-4665-3p, \ miR-1913, \ miR-1228-3p, \ miR-1913, \ m$ 40 miR-940, miR-296-3p, miR-4690-5p, miR-548q, miR-663a, miR-1249, miR-1202, miR-7113-3p, miR-1225-3p, miR-4783-3p, miR-4448 und miR-4534 und/oder miR-19b-3p, miR-1228-5p, miR-1307-3p, miR-4271, miR-642b-3p, miR-6075, miR-6125, miR-887-3p, miR-6851-5p, miR-6763-5p, miR-3928-3p, miR-4443, miR-3648, miR-149-3p, miR-4689, miR-4763-3p, miR-6729-5p, 45 miR-4507, miR-564, miR-4497, miR-6877-5p, miR-6087, miR-4731-5p, miR-615-5p, miR-760, miR-6891-5p, miR-6887-5p, miR-4525, miR-1914-3p, miR-619-5p, miR-5001-5p, miR-6722-3p, miR-3621, miR-4298, miR-675-5p und miR-4655-5p.

50 Revendications

- 1. Utilisation d'un kit dans le diagnostic *in vitro* du cancer du poumon, le kit comprenant un acide nucléique capable de spécifiquement se lier au marqueur du cancer du poumon miR-6768-5p.
- 55 **2.** Utilisation selon la revendication 1, dans laquelle l'acide nucléique est un polynucléotide sélectionné dans le groupe consistant en les polynucléotides (a) à (e) suivants :
 - (a) un polynucléotide consistant en une séquence de nucléotides représentée par SEQIDNO: 1 ou une séquence

de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,

(b) un polynucléotide comprenant une séquence de nucléotides représentée par SEQ ID NO: 1,

5

10

20

30

35

45

50

55

- (c) un polynucléotide consistant en une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par SEQ ID NO: 1 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,
- (d) un polynucléotide comprenant une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par SEQ ID NO: 1 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, et
- (e) un polynucléotide qui s'hybride dans des conditions stringentes à l'un quelconque des polynucléotides (a) à (d).
- 3. Utilisation selon la revendication 1 ou 2, dans laquelle le kit comprend en outre un acide nucléique capable de 15 spécifiquement se lier à au moins un ou plusieurs polynucléotide (s) sélectionné(s) dans le groupe consistant en d'autres marqueurs du cancer du poumon : miR-6836-3p, miR-6782-5p, miR-3663-3p, miR-1908-3p, miR-6726-5p, miR-4258, miR-1343-3p, miR-4516, miR-6875-5p, miR-4651, miR-6825-5p, miR-6840-3p, miR-6780b-5p, miR-6749-5p, miR-8063, miR-6784-5p, miR-3679-5p, miR-3184-5p, miR-663b, miR-6880-5p, miR-1908-5p, miR-92a-2-5p, miR-7975, miR-7110-5p, miR-6842-5p, miR-6857-5p, miR-5572, miR-3197, miR-6131, miR-6889-5p, miR-4454, miR-1199-5p, miR-1247-3p, miR-6800-5p, miR-6872-3p, miR-4649-5p, miR-6791-5p, miR-4433b-3p, miR-3135b, miR-128-2-5p, miR-4675, miR-4472, miR-6785-5p, miR-6741-5p, miR-7977, miR-3665, miR-128-1-5p, miR-4286, miR-6765-3p, miR-4632-5p, miR-365a-5p, miR-6088, miR-6816-5p, miR-6885-5p, miR-711, miR-6765-5p, miR-3180, miR-4442, miR-4792, miR-6721-5p, miR-6798-5p, miR-3162-5p, miR-6126, miR-4758-5p, miR-2392, miR-486-3p, miR-6727-5p, miR-4728-5p, miR-6746-5p, miR-4270, miR-3940-5p, miR-4725-3p, miR-7108-5p, miR-25 3656, miR-6879-5p, miR-6738-5p, miR-1260a, miR-4446-3p, miR-3131, miR-4463, miR-3185, miR-6870-5p, miR-6779-5p, miR-1273g-3p, miR-8059, miR-4697-5p, miR-4674, miR-4433-3p, miR-4257, miR-1915-5p, miR-4417, miR-1343-5p, miR-6781-5p, miR-4695-5p, miR-1237-5p, miR-6775-5p, miR-7845-5p, miR-4746-3p, miR-7641, miR-7847-3p, miR-6806-5p, miR-4467, miR-4726-5p, miR-4648, miR-6089, miR-1260b, miR-4532, miR-5195-3p, miR-3188, miR-6848-5p, miR-1233-5p, miR-6717-5p, miR-3195, miR-6757-5p, miR-8072, miR-4745-5p, miR-6511a-5p, miR-6776-5p, miR-371a-5p, miR-1227-5p, miR-7150, miR-1915-3p, miR-187-5p, miR-614, miR-1225-5p, miR-451a, miR-939-5p, miR-223-3p, miR-125a-3p, miR-92b-5p, miR-22-3p, miR-6073, miR-6845-5p, miR-6769b-5p, miR-4665-3p, miR-1913, miR-1228-3p, miR-940, miR-296-3p, miR-4690-5p, miR-548q, miR-663a, miR-1249, miR-1202, miR-7113-3p, miR-1225-3p, miR-4783-3p, miR-4448 et miR-4534, et/ou; miR-19b-3p, miR-1228-5p, miR-1307-3p, miR-4271, miR-642b-3p, miR-6075, miR-6125, miR-887-3p, miR-6851-5p, miR-6763-5p, miR-3928-3p, miR-4443, miR-3648, miR-149-3p, miR-4689, miR-4763-3p, miR-6729-5p, miR-3196, miR-8069, miR-1268a, miR-4739, miR-1268b, miR-5698, miR-6752-5p, miR-4507, miR-564, miR-4497,
- 40 4. Utilisation selon la revendication 3, dans laquelle l'acide nucléique est un polynucléotide sélectionné dans le groupe consistant en les polynucléotides (a') à (e') suivants :

1914-3p, miR-619-5p, miR-5001-5p, miR-6722-3p, miR-3621, miR-4298, miR-675-5p et miR-4655-5p.

(a') un polynucléotide consistant en une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 2 à 125, 127 à 130, 132 à 134, et 561 à 578 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,

miR-6877-5p, miR-6087, miR-4731-5p, miR-615-5p, miR-760, miR-6891-5p, miR-6887-5p, miR-4525, miR-

- (b') un polynucléotide comprenant une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 2 à 125, 127 à 130, 132 à 134, et 561 à 578,
- (c') un polynucléotide consistant en une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 2 à 125, 127 à 130, 132 à 134, et 561 à 578 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,
- (d') un polynucléotide comprenant une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 2 à 125, 127 à 130, 132 à 134, et 561 à 578 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, et
- (e') un polynucléotide qui s'hybride dans des conditions stringentes à l'un quelconque des polynucléotides (a') à (d'), et/ou;

un polynucléotide sélectionné dans le groupe consistant en les polynucléotides (f) à (o) suivants :

5

10

15

20

25

30

35

45

50

- (f) un polynucléotide consistant en une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 126, 131 et 579 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,
- (g) un polynucléotide comprenant une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 126, 131 et 579
- (h) un polynucléotide consistant en une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 126, 131 et 579 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,
- (i) un polynucléotide comprenant une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 126, 131 et 579 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t,
- (j) un polynucléotide qui s'hybride dans des conditions stringentes à l'un quelconque des polynucléotides (f) à (i) ; (k) un polynucléotide consistant en une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 135 à 174 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,
- (1) un polynucléotide comprenant une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 135 à 174,
- (m) un polynucléotide consistant en une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 135 à 174 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,
- (n) un polynucléotide comprenant une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 135 à 174 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, et
- (o) un polynucléotide qui s'hybride dans des conditions stringentes à l'un quelconque des polynucléotides (k) à (n) .
- **5.** Utilisation selon l'une quelconque des revendications 1 à 4, dans laquelle le kit comprend au moins deux acides nucléiques ou plus capables de spécifiquement se lier à au moins deux polynucléotides ou plus, respectivement, sélectionnés parmi tous les marqueurs du cancer du poumon selon la revendication 1 ou 3.
- **6.** Utilisation d'un dispositif dans le diagnostic *in vitro* du cancer du poumon, comprenant un acide nucléique capable de spécifiquement se lier à un polynucléotide de marqueur du cancer du poumon miR-6768-5p.
- 7. Utilisation selon la revendication 6, dans laquelle l'acide nucléique est un polynucléotide sélectionné dans le groupe consistant en les polynucléotides (a) à (e) suivants :
 - (a) un polynucléotide consistant en une séquence de nucléotides représentée par SEQID NO: 1 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,
 - (b) un polynucléotide comprenant une séquence de nucléotides représentée par SEQ ID NO: 1,
 - (c) un polynucléotide consistant en une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par SEQ ID NO: 1 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,
 - (d) un polynucléotide comprenant une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par SEQ ID NO: 1 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, et
 - (e) un polynucléotide qui s'hybride dans des conditions stringentes à l'un quelconque des polynucléotides (a) à (d) .
 - 8. Utilisation selon la revendication 6 ou 7, dans laquelle le dispositif comprend en outre un acide nucléique capable de spécifiquement se lier à au moins un ou plusieurs polynucléotide(s) sélectionné(s) dans le groupe consistant en

5

10

15

20

30

35

40

45

50

55

 $d'autres\ marqueurs\ du\ cancer\ du\ poumon\ :\ miR-6836-3p,\ miR-6782-5p,\ miR-3663-3p,\ miR-1908-3p,\ miR-6726-5p,\ miR-1908-3p,\ miR-1908$ miR-4258, miR-1343-3p, miR-4516, miR-6875-5p, miR-4651, miR-6825-5p, miR-6840-3p, miR-6780b-5p, miR-6749-5p, miR-8063, miR-6784-5p, miR-3679-5p, miR-3184-5p, miR-663b, miR-6880-5p, miR-1908-5p, miR-92a-2-5p, miR-7975, miR-7110-5p, miR-6842-5p, miR-6857-5p, miR-5572, miR-3197, miR-6131, miR-6889-5p, miR-4454, miR-1199-5p, miR-1247-3p, miR-6800-5p, miR-6872-3p, miR-4649-5p, miR-6791-5p, miR-4433b-3p, miR-3135b, miR-128-2-5p, miR-4675, miR-4472, miR-6785-5p, miR-6741-5p, miR-7977, miR-3665, miR-128-1-5p, miR-4286, miR-6765-3p, miR-4632-5p, miR-365a-5p, miR-6088, miR-6816-5p, miR-6885-5p, miR-711, miR-6765-5p, miR-3180, miR-4442, miR-4792, miR-6721-5p, miR-6798-5p, miR-3162-5p, miR-6126, miR-4758-5p, miR-2392, miR-486-3p, miR-6727-5p, miR-4728-5p, miR-6746-5p, miR-4270, miR-3940-5p, miR-4725-3p, miR-7108-5p, miR-3656, miR-6879-5p, miR-6738-5p, miR-1260a, miR-4446-3p, miR-3131, miR-4463, miR-3185, miR-6870-5p, miR-6779-5p, miR-1273g-3p, miR-8059, miR-4697-5p, miR-4674, miR-4433-3p, miR-4257, miR-1915-5p, miR-4417, miR-1343-5p, miR-6781-5p, miR-4695-5p, miR-1237-5p, miR-6775-5p, miR-7845-5p, miR-4746-3p, miR-7641, miR-7847-3p, miR-6806-5p, miR-4467, miR-4726-5p, miR-4648, miR-6089, miR-1260b, miR-4532, miR-5195-3p, miR-3188, miR-6848-5p, miR-1233-5p, miR-6717-5p, miR-3195, miR-6757-5p, miR-8072, miR-4745-5p, miR-6511a-5p, miR-6776-5p, miR-371a-5p, miR-1227-5p, miR-7150, miR-1915-3p, miR-187-5p, miR-614, miR-1225-5p, miR-451a, miR-939-5p, miR-223-3p, miR-125a-3p, miR-92b-5p, miR-6073, miR-6845-5p, miR-6769b-5p, miR-4665-3p, miR-1913, miR-1228-3p, miR-940, miR-296-3p, miR-4690-5p, miR-548q, miR-663a, miR-1249, miR-1202, miR-7113-3p, miR-1225-3p, miR-4783-3p, miR-4448 et miR-4534, et/ou; miR-19b-3p, miR-1228-5p, miR-1307-3p, miR-4271, miR-642b-3p, miR-6075, miR-6125, miR-887-3p, miR-6851-5p, miR-6763-5p, miR-3928-3p, miR-4443, miR-3648, miR-149-3p, miR-4689, miR-4763-3p, miR-6729-5p, miR-3196, miR-8069, miR-1268a, miR-4739, miR-1268b, miR-5698, miR-6752-5p, miR-4507, miR-564, miR-4497, miR-6877-5p, miR-6087, miR-4731-5p, miR-615-5p, miR-760, miR-6891-5p, miR-6887-5p, miR-4525, miR-6891-5p, miR 1914-3p, miR-619-5p, miR-5001-5p, miR-6722-3p, miR-3621, miR-4298, miR-675-5p et miR-4655-5p.

- 9. Utilisation selon la revendication 8, dans laquelle l'acide nucléique est un polynucléotide sélectionné dans le groupe consistant en les polynucléotides (a') à (e') suivants :
 - (a') un polynucléotide consistant en une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 2 à 125, 127 à 130, 132 à 134, et 561 à 578 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,
 - (b') un polynucléotide comprenant une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 2 à 125, 127 à 130, 132 à 134, et 561 à 578,
 - (c') un polynucléotide consistant en une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 2 à 125, 127 à 130, 132 à 134, et 561 à 578 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,
 - (d') un polynucléotide comprenant une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 2 à 125, 127 à 130, 132 à 134, et 561 à 578 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, et
 - (e') un polynucléotide qui s'hybride dans des conditions stringentes à l'un quelconque des polynucléotides (a') à (d'), et/ou ;

un polynucléotide sélectionné dans le groupe consistant en les polynucléotides (f) à (o) suivants :

- (f) un polynucléotide consistant en une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 126, 131 et 579 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,
- (g) un polynucléotide comprenant une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 126, 131 et 579,
- (h) un polynucléotide consistant en une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 126, 131 et 579 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,
- (i) un polynucléotide comprenant une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 126, 131 et 579 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t,

- (j) un polynucléotide qui s'hybride dans des conditions stringentes à l'un quelconque des polynucléotides (f) à (i) ; (k) un polynucléotide consistant en une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 135 à 174 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus, (1) un polynucléotide comprenant une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 135 à 174,
- (m) un polynucléotide consistant en une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 135 à 174 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, un variant de celle-ci, un dérivé de celle-ci, ou un fragment de celle-ci comprenant 15 nucléotides consécutifs ou plus,
- (n) un polynucléotide comprenant une séquence de nucléotides complémentaire à une séquence de nucléotides représentée par l'une quelconque de SEQ ID NO: 135 à 174 ou une séquence de nucléotides dérivée de la séquence de nucléotides par le remplacement de u par t, et
- (o) un polynucléotide qui s'hybride dans des conditions stringentes à l'un quelconque des polynucléotides (k) à (n) .
- **10.** Utilisation selon l'une quelconque des revendications 6 à 9, dans laquelle le dispositif est un dispositif pour une mesure par une technique d'hybridation.
- 20 11. Utilisation selon la revendication 10, dans laquelle la technique d'hybridation est une technique par réseau d'acide nucléique.
 - **12.** Utilisation selon l'une quelconque des revendications 6 à 11, dans laquelle le dispositif comprend au moins deux acides nucléiques ou plus capables de spécifiquement se lier à au moins deux polynucléotides ou plus, respectivement, sélectionnés parmi tous les marqueurs du cancer de poumon selon la revendication 6.
 - 13. Procédé de détection du cancer du poumon, comprenant la mesure d'un taux d'expression d'un acide nucléique cible dans un échantillon d'un sujet en utilisant le kit tel que défini dans l'une quelconque des revendications 1 à 5 ou en utilisant le dispositif tel que défini dans l'une quelconque des revendications 6 à 12, et l'évaluation *in vitro* du fait que le sujet présente ou non un cancer du poumon en utilisant à la fois le taux d'expression mesuré et un taux d'expression de contrôle dans un échantillon d'un sujet en bonne santé mesuré de la même manière.
 - 14. Procédé selon la revendication 13, dans lequel le sujet est un humain.

5

10

15

25

- 15. Procédé selon la revendication 13 ou 14, dans lequel l'échantillon est du sang, du sérum, ou du plasma.
 - **16.** Utilisation d'un marqueur dans le diagnostic *in vitro* du cancer du poumon, le marqueur comprenant le polynucléotide miR-6768-5p.
- 40 17. Utilisation selon la revendication 16, dans laquelle le marqueur comprend en outre au moins un polynucléotide sélectionné dans le groupe consistant en les autres marqueurs du cancer du poumon suivants : miR-6836-3p, miR-6782-5p, miR-3663-3p, miR-1908-3p, miR-6726-5p, miR-4258, miR-1343-3p, miR-4516, miR-6875-5p, miR-4651, miR-6825-5p, miR-6840-3p, miR-6780b-5p, miR-6749-5p, miR-8063, miR-6784-5p, miR-3679-5p, miR-3184-5p, miR-663b, miR-6880-5p, miR-1908-5p, miR-92a-2-5p, miR-7975, miR-7110-5p, miR-6842-5p, miR-6857-5p, miR-45 5572, miR-3197, miR-6131, miR-6889-5p, miR-4454, miR-1199-5p, miR-1247-3p, miR-6800-5p, miR-6872-3p, miR-4649-5p, miR-6791-5p, miR-4433b-3p, miR-3135b, miR-128-2-5p, miR-4675, miR-4472, miR-6785-5p, miR-6741-5p, miR-7977, miR-3665, miR-128-1-5p, miR-4286, miR-6765-3p, miR-4632-5p, miR-365a-5p, miR-6088, miR-6816-5p, miR-6885-5p, miR-711, miR-6765-5p, miR-3180, miR-4442, miR-4792, miR-6721-5p, miR-6798-5p, miR-3162-5p, miR-6126, miR-4758-5p, miR-2392, miR-486-3p, miR-6727-5p, miR-4728-5p, miR-6746-5p, miR-50 4270, miR-3940-5p, miR-4725-3p, miR-7108-5p, miR-3656, miR-6879-5p, miR-6738-5p, miR-1260a, miR-4446-3p, miR-3131, miR-4463, miR-3185, miR-6870-5p, miR-6779-5p, miR-1273g-3p, miR-8059, miR-4697-5p, miR-4674, miR-4433-3p, miR-4257, miR-1915-5p, miR-4417, miR-1343-5p, miR-6781-5p, miR-4695-5p, miR-1237-5p, miR-6775-5p, miR-7845-5p, miR-4746-3p, miR-7641, miR-7847-3p, miR-6806-5p, miR-4467, miR-4726-5p, miR-4648, miR-6089, miR-1260b, miR-4532, miR-5195-3p, miR-3188, miR-6848-5p, miR-1233-5p, miR-6717-5p, miR-3195, 55 miR-6757-5p, miR-8072, miR-4745-5p, miR-6511a-5p, miR-6776-5p, miR-371a-5p, miR-1227-5p, miR-7150, miR-1915-3p, miR-187-5p, miR-614, miR-1225-5p, miR-451a, miR-939-5p, miR-223-3p, miR-125a-3p, miR-92b-5p, miR-22-3p, miR-6073, miR-6845-5p, miR-6769b-5p, miR-4665-3p, miR-1913, miR-1228-3p, miR-940, miR-296-3p, miR-4690-5p, miR-548q, miR-663a, miR-1249, miR-1202, miR-7113-3p, miR-1225-3p, miR-4783-3p, miR-4448 et miR-

4534, et/ou;

miR-19b-3p, miR-1228-5p, miR-1307-3p, miR-4271, miR-642b-3p, miR-6075, miR-6125, miR-887-3p, miR-6851-5p, miR-6763-5p, miR-3928-3p, miR-4443, miR-3648, miR-149-3p, miR-4689, miR-4763-3p, miR-6729-5p, miR-3196, miR-8069, miR-1268a, miR-4739, miR-1268b, miR-5698, miR-6752-5p, miR-4507, miR-564, miR-4497, miR-6877-5p, miR-6087, miR-4731-5p, miR-615-5p, miR-760, miR-6891-5p, miR-6887-5p, miR-4525, miR-1914-3p, miR-619-5p, miR-5001-5p, miR-6722-3p, miR-3621, miR-4298, miR-675-5p et miR-4655-5p.

Fig. 2

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2013502931 A [0014]
- WO 2011146937 A **[0014]**
- US 376281 [0014]

- WO 2015190542 A [0014]
- JP 2014125561 A [0255] [0623]

Non-patent literature cited in the description

- Lung Cancer (Non-Small Cell). American Cancer Society, 2013, 2-7, 37-56 [0015]
- SOBIN, L. et al. TNM Classification of Malignant Tumours. 2010, 129-134 [0015]
- OKAMURA, K. et al. Lung Cancer, 2013, vol. 80 (1), 45-9 [0015]
- ZHENG ZHANG et al. J. Comput. Biol., 2000, vol. 7, 203-214 [0046]
- ALTSCHUL, S.F. et al. Journal of Molecular Biology, 1990, vol. 215, 403-410 [0046]
- PEARSON, W.R. et al. Proc. Natl. Acad. Sci. U. S. A., 1988, vol. 85, 2444-2448 [0046]
- NIELSEN, P.E. et al. Science, 1991, vol. 254, 1497-500 [0047]
- **OBIKA, S. et al.** *Tetrahedron Lett.,* 1998, vol. 39, 5401-5404 [0047]
- LADEWIG E et al. Genome Res, 2012, vol. 22, 1634-1645 [0056] [0057] [0058] [0061] [0065] [0067] [0068] [0069] [0070] [0072] [0076] [0080] [0081] [0082] [0086] [0090] [0091] [0093] [0099] [0100] [0105] [0109] [0110] [0112] [0117] [0123] [0125] [0129] [0131] [0132] [0138] [0139] [0149] [0152] [0157] [0166] [0170] [0174] [0195] [0196] [0203] [0210] [0214] [0219] [0220] [0231] [0232] [0243]
- LIAO JY et al. PLoS One, 2010, vol. 5, e10563 [0059]
 [0127]
- BAR M et al. Stem Cells, 2008, vol. 26, 2496-2505 [0060] [0077] [0146] [0178] [0222] [0234]
- GOFF LA et al. PLoS One, 2009, vol. 4, e7192 [0062] [0104] [0126] [0145] [0190] [0227]
- PERSSON H et al. Cancer Res, 2011, vol. 71, 78-86
 [0063] [0066] [0092] [0097] [0106] [0115] [0120]
 [0124] [0128] [0142] [0143] [0148] [0150] [0154]
 [0159] [0172] [0201] [0202] [0207] [0216] [0229]
 [0233] [0238] [0245]
- JIMA DD et al. Blood, 2010, vol. 116, e118-e127 [0064] [0087] [0098] [0114] [0121] [0134] [0136] [0144] [0147] [0158] [0163] [0198] [0208] [0211] [0213] [0221] [0246] [0247]
- WANG HJ et al. Shock, 2013, vol. 39, 480-487 [0071] [0141] [0171] [0205]

- CREIGHTON CJ et al. PLoS One, 2010, vol. 5, e9637
 [0073] [0113] [0197]
- STARK MS et al. PLoS One, 2010, vol. 5, e9685
 [0074] [0084] [0118] [0135] [0137] [0162] [0165]
 [0169] [0204]
- TAKADA S et al. Leukemia, 2008, vol. 22, 1274-1278
 [0075]
- MOURELATOS Z et al. Genes Dev, 2002, vol. 16, 720-728 [0078]
- VELTHUT-MEIKAS A et al. Mol Endocrinol, 2013 [0079] [0101]
- TANDON M et al. Oral Dis, 2012, vol. 18, 127-131 [0083]
- DANNEMANN M et al. Genome Biol Evol, 2012, vol. 4, 552-564 [0085]
- SALVI A et al. Int J Oncol, 2013, vol. 42, 391-402
- MORIN RD et al. Genome Res, 2008, vol. 18, 610-621 [0089] [0133] [0206] [0241] [0248]
- PLE H et al. PLoS One, 2012, vol. 7, e50746 [0094]
 [0153] [0156]
- JIMA DD et al. Blood, 2010, vol. 116, e1 18-e127 [0095]
- LAGOS-QUINTANA M et al. Curr Biol, 2002, vol. 12, 735-739 [0096] [0103] [0187] [0200]
- XIE X et al. Nature, 2005, vol. 434, 338-345 [0102]
 [0107]
- YOO JK et al. Stem Cells Dev, 2012, vol. 21, 2049-2057 [0108] [0161] [0215]
- ARTZI S et al. *BMC Bioinformatics*, 2008, vol. 9, 39 [0111]
- LI Y et al. Gene, 2012, vol. 497, 330-335 [0116] [0168] [0225]
- SMITH JL et al. J Virol, 2012, vol. 86, 5278-5287 [0119] [0193]
- FU H et al. FEBS Lett, 2005, vol. 579, 3849-3854 [0122]
- **MEIRI E et al.** *Nucleic Acids Res,* 2010, vol. 38, 6234-6246 [0130] [0199]
- RESHMI G et al. Genomics, 2011, vol. 97, 333-340 [0140]

- BEREZIKOV E et al. Mol Cell, 2007, vol. 28, 328-336
 [0151] [0167] [0176] [0182] [0186] [0235] [0244]
- YOO JK et al. Arch Pharm Res, 2013, vol. 36, 353-358 [0155]
- PERSSON H et al. Cancer Res, vol. 71, 78-86 [0160]
- SCHOTTE D et al. Leukemia, 2011, vol. 25, 1389-1399 [0164]
- JOYCE CE et al. Hum Mol Genet, 2011, vol. 20, 4025-4040 [0173]
- SUH MR et al. Dev Biol, 2004, vol. 270, 488-498 [0175]
- OULAS A et al. Nucleic Acids Res, 2009, vol. 37, 3276-3287 [0177]
- LIM LP et al. Science, 2003, vol. 299, 1540 [0179] [0185]
- CUMMINS JM et al. Proc Natl Acad Sci U S A, 2006,
 vol. 103, 3687-3692 [0180] [0188] [0212] [0217]
 [0223]
- LAGOS-QUINTANA M et al. Science, 2001, vol. 294, 853-858 [0181] [0189]
- ALTUVIA Y et al. Nucleic Acids Res, 2005, vol. 33, 2697-2706 [0183]
- LUI WO et al. Cancer Res, 2007, vol. 67, 6031-6043
 [0184] [0236]
- WITTEN D et al. BMC Biol, 2010, vol. 8, 58 [0191]
 [0226]
- VOELLENKLE C et al. RNA, 2012, vol. 18, 472-484
 [0192] [0230]
- BEREZIKOV E et al. Genome Res, 2006, vol. 16, 1289-1298 [0194] [0218]
- WATAHIKI A et al. PLoS One, 2011, vol. 6, e24950
 [0209]
- HANSEN TB et al. RNA Biol, 2011, vol. 8, 378-383
 [0224]
- CAI X et al. RNA, 2007, vol. 13, 313-316 [0228]
- HOUBAVIY HB et al. Dev Cell, 2003, vol. 5, 351-358
 [0237]
- WYMAN SK et al. PLoS One, 2009, vol. 4, e5311
 [0239]
- CUMMINS JM et al. Proc Natl Acad Sci USA, 2006, vol. 103, 3687-3692 [0240]
- MARTON S et al. Leukemia, 2008, vol. 22, 330-338
 [0242]

- MORIN RD. et al. Genome Res., 2008, vol. 18, 610-621 [0249]
- AUSUBEL et al. Current Protocols in Molecular Biology. John Willey & Sons, 1993 [0469]
- SAMBROOK et al. Molecular Cloning A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1989 [0469]
- SAMBROOK, J.; RUSSEL, D. Molecular Cloning, A LABORATORY MANUAL. Cold Spring Harbor Laboratory Press, 15 January 2001, vol. 1, 7.42-7.45 [0552]
- MOLECULAR CLONING, A LABORATORY MANU-AL. vol. 2, 8.9-8.17 [0552]
- BOLSTAD, B. M. et al. *Bioinformatics*, 2003, vol. 19, 185-193 [0555]
- VENABLES, W.N. et al. Modern Applied Statistics with S. Springer, 2002 [0560]
- TAKAFUMI KANAMORI et al. Pattern Recognition.
 Kyoritsu Shuppan Co., Ltd, 2009 [0560]
- RICHARD O. et al. Pattern Classification. Wiley-Interscience, 2000 [0560]
- Statistics of pattern recognition and learning New concepts and approaches. HIDEKI ASO et al. Frontier of Statistical Science. Iwanami Shoten, Publishers, 2004, vol. 6 [0562]
- NELLO CRISTIANINI et al. Introduction to SVM. Kyoritsu Shuppan Co., Ltd, 2008 [0562]
- **C. CORTES et al.** *Machine Learning,* 1995, vol. 20, 273-297 **[0563]**
- YASUSHI NAGATA et al. Basics of statistical multiple comparison methods. Scientist Press Co., Ltd, 2007 [0573]
- FUREY TS. et al. *Bioinformatics*, 2000, vol. 16, 906-14 [0575]
- R DEVELOPMENT CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2013 [0582]
- VENABLES, W. N.; RIPLEY, B. D. Modern Applied Statistics with S. Springer, 2002 [0582]