CptS 440/540 – Artificial Intelligence Fall 2020

Exam I

October 1, 2020, 9:10am-10:25am, Pacific time

Note: The Fall 2021 exam will all be administered as a Quiz on Canvas.

- 1. Short answer questions.
 - a. For each task property below, indicate one of the two options that applies to the Wumpus World.

i.	Fully-observable	VS.	Partially-observable
ii.	Single-agent	VS.	Multi-agent
iii.	Deterministic	vs.	Stochastic
iv.	Episodic	vs.	Sequential

- v. Static vs. Dynamic
- vi. Discrete vs. Continuous
- b. What is the branching factor for the search problem corresponding to the Wumpus World?
- c. Describe an admissible heuristic for the search problem corresponding to the Wumpus World?

2.	Mo	ore short answer questions.
	a.	What does it mean for a search algorithm to be complete?
	b.	Describe a search algorithm, and any necessary constraints, such that the search algorithm is both complete and optimal.
	c.	What is the time complexity of breadth-first search for a search problem with branching factor b and optimal solution depth d ?
	d.	Of the four approaches to AI discussed in class, which approach is the one we are pursuing in this course?

3. Consider the following initial and goal states for a 3x3 Wumpus World search problem. The initial state has the agent in (1,2) facing Right, and the goal state is that the agent is in (3,2), co-located with the gold, regardless of orientation. The available actions are GoForward (GF), TurnLeft (TL), and TurnRight (TR), and should be considered in this order.

Initial State

Goal State

a. Draw the search tree showing all nodes generated by the Breadth-First Search algorithm, as described in the lecture notes, to solve this problem. Each node should be drawn as a 3x3 grid like the above initial and goal states.

b. How many total nodes are generated using Iterative-Deepening Search to solve this problem?

4. Consider the same 3x3 Wumpus World search problem described in question 5. The same initial and goal states are copied below.

Initial State

Goal State

Draw the search tree generated by the A* search algorithm, as described in the lecture notes, to solve this problem using the city-block distance for the heuristic h. The city-block distance for a Wumpus World state is the city-block distance between the agent's current location and the agent's goal location. Next to every node, show the values of f, g and h. Each node should be drawn as a 3x3 grid like the above initial and goal states.

5. Game tree search.

a. In the 8 blanks provided below the terminal nodes, enter the last 8 digits of your WSU ID # in **increasing sorted order** from left to right. Perform Minimax-Search on the resulting game tree below. Put the value next to each node. Indicate which action MAX should take: a₁, a₂ or a₃.

b. In the 8 blanks provided below the terminal nodes, enter the last 8 digits of your WSU ID # in <u>decreasing sorted order</u> from left to right. Perform Alpha-Beta-Search on the resulting game tree below. Put an "X" over each node that is pruned, i.e., not evaluated (including all nodes in a pruned subtree). Put the final value next to all other nodes. Indicate which action MAX should take: a₁, a₂ or a₃.

