The Central Limit Theorem

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Law of large numbers

If \tilde{x}_1 , \tilde{x}_2 , \tilde{x}_3 , ... are independent random variables with mean μ and variance σ^2

$$\widetilde{m}_n := \frac{1}{n} \sum_{i=1}^n \widetilde{x}_i$$

$$\mathrm{E}\left[\tilde{m}_{n}\right]=\mu$$

$$\operatorname{Var}\left[\tilde{m}_{n}\right] = \frac{\sigma^{2}}{n}$$

$$P(|\tilde{m}_n - \mu| > \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$$

Converges to zero for any $\epsilon!$

Consistency of sample mean

Distribution for fixed n?

Chebyshev bound

$$P(|\tilde{m}_n - \mu_{pop}| > \epsilon) \le \frac{\sigma_{pop}^2}{n\epsilon^2}$$

Is this a good approximation?

No!

Goal

Approximate the distribution of the sample mean

$$\tilde{m}_n := \frac{1}{n} \sum_{i=1}^n \tilde{x}_i$$

Sum of independent discrete random variables

Independent discrete random variables \tilde{a} and \tilde{b} with integer values

The pmf of $\tilde{s} = \tilde{a} + \tilde{b}$ is

$$p_{\tilde{s}}(s) = \sum_{a=-\infty}^{\infty} p_{\tilde{a}}(a) p_{\tilde{b}}(s-a) = p_{\tilde{a}} * p_{\tilde{b}}(s)$$

Independent discrete random variables $\tilde{a}_1, \ \tilde{a}_2, \ \ldots, \ \tilde{a}_n$ with integer values

The pmf of $\tilde{s}_n = \sum_{i=1}^n \tilde{a}_i$ is

$$p_{\tilde{s}_n}(s) = p_{\tilde{a}_1} * p_{\tilde{a}_2} * \cdots * p_{\tilde{a}_n}(s)$$

Soccer league: 1 game

Soccer league: 2 games

Soccer league: 3 games

Soccer league: 4 games

Soccer league: 5 games

Soccer league: 6 games

Soccer league: 7 games

Soccer league: 8 games

Soccer league: 9 games

Gaussian approximation

$$\mathrm{E}\left[\widetilde{s}_{n}\right] = \sum_{i=1}^{n} \mathrm{E}\left[\widetilde{x}_{i}\right] = 1.5n$$

$$\operatorname{Var}\left[\tilde{s}_{n}\right] = \sum_{i=1}^{n} \operatorname{Var}\left[\tilde{x}_{i}\right] = 1.65n$$

Soccer league: 2 games

Soccer league: 3 games

Soccer league: 4 games

Soccer league: 5 games

Soccer league: 6 games

Soccer league: 7 games

Soccer league: 8 games

Soccer league: 9 games

Sum of independent continuous random variables

Independent continuous random variables \tilde{a} and \tilde{b}

The pdf of $\tilde{s} = \tilde{a} + \tilde{b}$ is

$$f_{\tilde{s}}(s) = \int_{a=-\infty}^{\infty} f_{\tilde{a}}(a) f_{\tilde{b}}(s-a) da$$

$$= f_{\tilde{a}} * f_{\tilde{b}}(s)$$

Independent continuous random variables \tilde{a}_1 , \tilde{a}_2 , ..., \tilde{a}_n

The pdf of $\tilde{s}_n = \sum_{i=1}^n \tilde{a}_i$ is

$$f_{\tilde{s}_n}(s) = f_{\tilde{a}_1} * f_{\tilde{a}_2} * \cdots * f_{\tilde{a}_n}(s)$$

Sample mean

Independent continuous random variables \tilde{a}_1 , \tilde{a}_2 , ..., \tilde{a}_n

$$\tilde{m}_{n} := \frac{1}{n} \tilde{s}_{n} = \frac{1}{n} \sum_{i=1}^{n} \tilde{a}_{i}$$

$$f_{\tilde{s}_{n}}(s) = f_{\tilde{a}_{1}} * f_{\tilde{a}_{2}} * \cdots * f_{\tilde{a}_{n}}(s)$$

$$f_{\tilde{m}_{n}}(m) = n f_{\tilde{s}_{n}}(nm)$$

$$= n \left(f_{\tilde{a}_{1}} * f_{\tilde{a}_{2}} * \cdots * f_{\tilde{a}_{n}} \right) (nm)$$

Purchased coffee: 1 supplier

Purchased coffee: 2 suppliers

Purchased coffee: 3 suppliers

Purchased coffee: 4 suppliers

Purchased coffee: 5 suppliers

Purchased coffee: 6 suppliers

Gaussian approximation

$$\mathrm{E}\left[\widetilde{m}_{n}\right] = \frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left[\widetilde{c}_{i}\right] = 0.5$$

$$\operatorname{Var}\left[\widetilde{m}_{n}\right] = \frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[\widetilde{c}_{i}\right] = \frac{1}{12n}$$

Purchased coffee: 2 suppliers

Purchased coffee: 3 suppliers

Purchased coffee: 4 suppliers

Purchased coffee: 5 suppliers

Purchased coffee: 6 suppliers

Central limit theorem

If \tilde{x}_1 , \tilde{x}_2 , ... are independent random variables with mean μ and variance σ^2

$$\tilde{m}_n := \frac{1}{n} \sum_{i=1}^n \tilde{x}_i$$

$$\mathrm{E}\left[\tilde{m}_{n}\right]=\mu$$

$$\operatorname{Var}\left[\tilde{m}_{n}\right] = \frac{\sigma^{2}}{n}$$

As $n \to \infty$ \tilde{m}_n converges in distribution to a Gaussian with mean μ and variance $\frac{\sigma^2}{n}$

Reminder

If \tilde{a} is a Gaussian random variable with mean μ and variance σ^2

$$\tilde{b} := \alpha \tilde{a} + \beta$$

is Gaussian with mean $\alpha\mu + \beta$ and variance $\alpha^2\sigma^2$

More formally

The cdf $F_{s(\widetilde{m}_n)}$ of the standardized sample mean

$$s(\widetilde{m}_n) := \frac{\widetilde{m}_n - \mu}{\frac{\sigma}{\sqrt{n}}}$$

converges to the cdf of a standard Gaussian with mean zero and unit variance as $n \to \infty$

Binomial distribution

The pmf of a binomial random variable \tilde{a} with parameters n and θ is

$$p_{\tilde{a}}(a) = \binom{n}{a} \theta^a (1-\theta)^{(n-a)}$$
 $a = 0, 1, \dots, n$

Can be represented as sum of n independent random variables

$$\tilde{a} = \sum_{i=1}^{n} \tilde{b}_i$$

Approximation for \tilde{a}/n :

Gaussian with mean θ and variance $\theta (1 - \theta)/n$

Approximation for \tilde{a} :

Gaussian with mean $n\theta$ and variance $n\theta(1-\theta)$

Basketball strategy

Goal: Compare two strategies

Strategy 2p: only taking 2-point shots

Strategy 3p: only taking 3-point shots

100 shots modeled as i.i.d. Bernoulli random variables with parameter $\theta_2 := 0.5$ and $\theta_3 := 0.35$

Basketball strategy

Shots made: \tilde{x}_{2p} and \tilde{x}_{3p}

Binomial with parameters n:=100 and $\theta_2:=0.5$ / $\theta_3:=0.35$

Score of Strategy 2p: $\tilde{y}_{2p} := 2\tilde{x}_{2p}$

Score of Strategy 3p: $\tilde{y}_{3p} := 3\tilde{x}_{3p}$

Score difference: $\tilde{d} := \tilde{y}_{3p} - \tilde{y}_{2p}$

Gaussian approximation

ã?

$$\tilde{x}_{2p}$$
: mean 100 θ_2 and variance 100 $\theta_2(1-\theta_2)$

$$ilde{y}_{2p}$$
: mean 200 $heta_2=100$ and variance 400 $heta_2(1- heta_2)=100$

$$ilde{x}_{3p}$$
: mean $100\, heta_3$ and variance $100\, heta_3(1- heta_3)$

$$\tilde{y}_{3p}$$
: mean 300 $\theta_3 = 105$ and variance 900 $\theta_3(1 - \theta_3) = 204.75$

Independent standard Gaussians $ilde{a}$ and $ilde{b}$

If \tilde{a}_1 and \tilde{a}_2 are Gaussian with means μ_1 and μ_2 , and variances σ_1^2 and σ_2^2

$$\tilde{s} = \tilde{a}_1 + \tilde{a}_2$$
 is Gaussian with mean $\mu_1 + \mu_2$ and variance $\sigma_1^2 + \sigma_2^2$

Gaussian approximation

 \tilde{y}_{2p} : mean 100 and variance 100

 \tilde{y}_{3p} : mean 105 and variance 204.75

 \tilde{d} : mean 5 and variance 304.75

Strategy 2p vs Strategy 3p

Score difference

 $P(Strategy 3p wins) \approx 61\%$

Monte Carlo simulation: 60%

Distribution of the sample mean

Population mean: μ_{pop} Population variance: σ^2_{pop}

Random samples selected independently and uniformly at random with replacement: $\tilde{x}_1, \, \tilde{x}_2, \, \ldots, \, \tilde{x}_n$

$$\tilde{m}_n := \frac{1}{n} \sum_{i=1}^n \tilde{x}_i$$

$$\mathrm{E}\left[\tilde{m}_{n}\right]=\mu_{\mathsf{pop}}$$

$$\operatorname{se}\left[\widetilde{m}_{n}\right] = \frac{\sigma_{\mathsf{pop}}}{\sqrt{n}}$$

As $n \to \infty$ \tilde{m}_n converges in distribution to a Gaussian with mean μ_{pop} and standard deviation se $[\tilde{m}_n]$

More formally

The cdf $F_{s(\widetilde{m}_n)}$ of the standardized sample mean

$$s(\widetilde{m}_n) := \frac{\widetilde{m}_n - \mu_{\mathsf{pop}}}{\mathsf{se}\left[\widetilde{m}_n\right]}$$

converges to the cdf of a standard Gaussian with mean zero and unit variance as $n \to \infty$

Height data: n = 20

 $\mu_{\mathrm{pop}} := 175.6 \mathrm{~cm},~\sigma_{\mathrm{pop}} = 6.85 \mathrm{~cm}$

Total population N := 4,082

Height data: n = 100

 $\mu_{
m pop}:=$ 175.6 cm, $\sigma_{
m pop}=$ 6.85 cm

Total population N := 4,082

Height data: n = 1,000

 $\mu_{\mathrm{pop}} := 175.6 \mathrm{~cm},~\sigma_{\mathrm{pop}} = 6.85 \mathrm{~cm}$

Total population N := 4,082

Chebyshev bound

$$P(|\tilde{m}_n - \mu_{pop}| > \epsilon) \le \frac{\sigma_{pop}^2}{n\epsilon^2}$$

Terrible approximation...

Do we get a better approximation from the central limit theorem?

Much better

Sample mean of independent random variables with finite mean and variance converges in distribution to a Gaussian

Gaussian approximation is often very accurate for finite data in practice