Yuchuan Li San Diego, CA | (571) 277-5056 | yuchuan li@outlook.com

EDUCATION

University of California San Diego

San Diego, CA

Master of Science in Electrical and Computer Engineering | GPA 3.7

Expected 12/2024

• Relevant Courses: Digital System Algorithms and Architecture, Computer Architecture, VLSI Implementation for machine learning, System Design for Deep Learning, VLSI Advanced Topics, Programming for Data Analysis.

The University of Edinburgh

Edinburgh, UK

Bachelor of Engineering in Electrical and Electronic Engineering (Honors) | GPA 3.5

06/2019

TECHNICAL SKILLS

Skills: Logic Synthesis, Static-Timing Analysis (STA), Physical Design (PnR), Verilog Design and Verification, Machine Learning Accelerator, Low Power Implementation, Formal Verification, Functional and Timing ECO.

Programming Language: Tcl, Python, Verilog, System Verilog, UVM, UPF, Shell, Perl.

EDA Tool: Design Compiler, Prime Time, Formality, Innovus, VCLP, Virtuoso.

PROFESSIONAL EXPERIENCE

Hisilicon, HUAWEI

Shanghai, China

Physical Design and Timing Engineer - Kirin SoC Team

03/2020 - 03/2023

Logic Synthesis and Physical Design

- Led floorplanning and physical synthesis for the 5nm SoC subsystems (CPU/Media), focusing on PPA optimization and congestion prediction.
- Conducted data-flow driven floorplanning, macro/pin placement for the media display module, achieving a 6% reduction in Low-Vth cell usage and mitigating congestion risks.
- Reduced the leakage power of CPU little core by 5% by utilizing MCMM synthesis and the Multi-Vth cell strategy.
- Executed partition level PnR flow including floorplanning, placement, CTS, routing, and DRC fixing.
- Led formal verification and ECO implementation for functional, DFT, and timing aspects.

Static-Timing Analysis

- Owned SoC subsystems timing closure and sign-off. Experienced with STA considering PVT corner, timing margins, process variations, signal integrity, and multi power domains.
- Developed timing constraints for clock domain crossing, exception, block I/O timing, and multi-voltage design, achieving timing closure for a complex SoC submodule.
- Recognized as the top contributor for improving EDA workflow efficiency by developing Tcl and Python scripts.
- Developed a performance prediction model across different technology nodes, voltages and Low-Vth cell percentages.

Low Power Implementation and Verification

- Implemented SoC Power Structure, including more than 20 power domains, complicated power-off strategy and multi-voltage design on netlist, proficient in UPF and VCLP low power verification.
- Led full-chip low-power design verification and sign-off check, including critical aspects like power connections for memory, isolation and level shifter cells, physical IP and always-on special signals.

RESEARCH EXPERIENCE

University of California San Diego Graduate Student Researcher – VVIP Lab

San Diego, CA

03/2024 - Present

Deep Learning Accelerator ASIC Tape-Out

- Implemented an AI accelerator tailored for Convolutional Neural Networks (CNNs) and Transformer models.
- Mapped deep learning algorithms to datapath, including systolic array, softmax function, special function unit.
- Developed a novel dataflow ISA for the accelerator, optimizing performance for systolic array based architectures.
- Programmed an FSM micro-controller and asynchronous I/O interface for the AI accelerator to manage control signals and data flow.
- Managed the entire RTL to GDS flow, including RTL design and verification, physical design and timing closure.

RISC-V AI Accelerator for Mamba

- Accelerated Mamba model by RISC-V Accelerator to optimize both linear operation and element-wise operation.
- Implemented PE array, instruction processing unit, nonlinear function unit, normalization unit and on-chip buffer to accelerate matrix operation in Mamba.