

42578 Advanced Business Analytics

Text Analytics word embeddings

Date

DTU

itle

Continuous Space Language Models

- Matrix Factorization
 - Latent Semantic Analysis (LSA)
 - Latent Dirichlet Allocation (LDA)
- Neural Networks
 - Word embeddings → real-valued vector representations of words

Word Embeddings – Generation

WikipediA

input text

word embeddings

model

VxD matrix W of embedding vectors

D: dimensionality of the embeddings *V*: number of words in the input vocabulary

Each row is a vector representing a word!

Date

Word Embeddings – Intuition

The Distributional Hypothesis:

"words that occur in the same contexts tend to have similar meanings" (Harris, 1954)

Learning distributional properties of the input words \rightarrow able capture semantic associations

- Similar words have similar vectors
- All words are embedded into the same continuous space
- Formation of meaningful word clusters in the embedding space

Word Embeddings – Visualization

- Embedding vectors are of modest dimensionality (typically spanning from tens to hundreds)
- Visualization in 2-D using dimensionality reduction techniques:

Principal Component Analysis (<u>PCA</u>)

Multidimensional scaling (<u>MDS</u>)

<u>t-Distributed Stochastic Neighbor Embedding (t-SNE)</u>

Semantically close words occupy neighboring positions in the embedding space.

Where do word embeddings come from?

Word embeddings toolkits available today:

- word2vec → introduced by (Mikolov et al., 2013) → popularization of word embeddings!
- GloVe → (by Standford University)
- ELMo
 BERT
 different embeddings for homographs
 = words with the same spelling but different meanings)
- <u>fastText</u> → (by Facebook's Al Research lab) / Better for smaller training sets

.

Ready-to-use *pretrained* word embeddings:

on a variety of text collections

on different languages

ate DTU

word2vec models

How do they work? → What is the model learning to predict?

- Continuous Bag-of-Words (CBOW) model → predicts one word based on context words
 - e.g. Madrid is the capital of Spain. (Fill-in-the-blank logic)
- → more intuitive → faster to train
- 2. Skip-gram model→ predicts all context words given one word
 - e.g. Madrid is the capital of Spain .

word2vec models

Word Embeddings – Similarity between words

The semantic similarity between 2 words w_1 and w_2 can be measured through a similarity metric between their corresponding embedding vectors v_1 and v_2 in the embedding space

$$similarity(w_1, w_2) = cosine \ sim(v_1, v_2) = \frac{v_1 \cdot v_2}{||v_1|| \cdot ||v_2||}$$
 \rightarrow range [-1, 1]

 $cosine\ distance = 1 - cosine\ sim$

• For normalized vectors (||v|| = 1):

$$cosine(v_1, v_2) = v_1 \cdot v_2$$

DTU

Word Embeddings – similarity search

Example: Given a VxD embedding matrix W with normalized vectors v

Find top-n most similar words to "cat"

• Get a vector S_{cat} of cosine similarities between v_{cat} and all the word vectors in W:

$$S_{cat} = \begin{bmatrix} 1 & 0.8 & -0.5 & 0.6 & \dots \end{bmatrix} = W \cdot v_{cat}^T$$

 Get the words corresponding to the highest n similarity values in S_{cat} (ignoring the first word→ cat)

computational tools and packages → fast + efficient

similarity search (even for hundreds of thousands of words)

DTU

$$sorted(S_{cat})[\mathbf{1}:n+\mathbf{1}] = [\begin{array}{cccc} 0.8 & 0.75 & 0.72 & 0.7 \end{array}]$$

Word Embeddings → Compositionality

(image by Pal S.)

Answering analogy questions!

"man is to king as woman is to ..?"

king - man + woman ≈ queen

embedding vector offset ——— words relation

cat – cats
$$\approx$$
 dog – dogs \approx leg – legs \approx \rightarrow (singular/plural)

king – man ≈ queen – woman ≈
$$\rightarrow$$
 (royalty/gender)

king – queen
$$\approx$$
 man – woman \approx → (male/female)

Word Analogies

If
$$w_1 - w_2 \approx w_4 - w_3$$

 $w_1 - w_2 + w_3 \approx w_4$

" w_1 is to w_2 as w_4 is to w_3 "

Word Embeddings – NLP Applications

- Alone (as features) or <u>combined</u> with traditional NLP methods (e.g. <u>with tf-idf_weighting</u>) improved performance in:
 - → document classification
 - → topic modeling
 - → sentiment analysis
- Efficient for a variety of challenging NLP tasks

such as:

- → automatic translations
- → text normalization
- → automatic sentence completion
- → named entity recognition
- → question answering
- → metaphor detection

.

Date DTU

Training your own word embeddings?

FastText GloVe PRETRAINED MODEL Word2vec

Why?

Training your own word embeddings with word2vec

Things to consider:

- (1) **Size of the corpus!!!** → crucial for obtaining high-quality representations
- (2) **Text Preprocessing** → cleaning, tokenization...

word2vec parameters:

- (3) **model**: skip-gram (slower, better for infrequent words) vs CBOW (faster)
- (4) embeddings dimensionality: typical values are in range ~100 to ~300
- (5) **training algorithm**: <u>hierarchical softmax</u> (better for infrequent words)

 <u>vs negative sampling</u> (better for frequent words + low vector dimensions)
- (6) **context window size**: <u>~5</u> (for skip-gram) <u>to ~10 words (for CBOW)</u>

Date DTU

Beyond word embeddings....

DA VINCI TOUR EIFFEL is born on is a friend of Jan 1 1984

Knowledge Graph embeddings

(RESCAL, TransE, ...)

Embeddings for categorical variables (cat2vec, PyTre)

Image embeddings (DeViSE, ...)

Date

DTU

References

Harris, Z. S. (1954). Distributional structure. Word, 10 (2-3), 146-162.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. *arXiv* preprint *arXiv*:1301.3781.

Fang, L., Luo, Y., Feng, K., Zhao, K., & Hu, A. (2019, May). Knowledge-enhanced ensemble learning for word embeddings. In *The World Wide Web Conference* (pp. 427-437).

Pal S. (2019, Jun 22). Implementing Word2Vec in Tensorflow. Analytics Vidhya. Retrieved from: https://medium.com/analytics-vidhya/implementing-word2vec-in-tensorflow-44f93cf2665f . access: 01.02.2021.