

The Virtual Observatory

Data from all over the world in the cloud

But ... how do you know where everything is ?

Registration metadata includes a description of the data they provide and the technical details of how to connect

Clients query the registry to find services that contain data they are interested in

Back to the main session

The Virtual Observatory

All the data from the cloud available on your desktop

All the data from the cloud to each desktop app

Each application maintains its own connection to the VO

SAMP is a message bus within your local computer
Applications can use SAMP to send messages to each other

table.load.votable http://example.org/.../table.vot image.load.fits http://example.org/.../image.fits coord.pointAt.sky <ra,dec>

Messages can be sent to specific applications

Send to Aladin:

image.load.fits http://example.org/.../image.fits

Or broadcast to all listeners

Send to all:

coord.pointAt.sky <ra,dec>

The Virtual Observatory

If we have done our job right, all the details disappear

All the data from the cloud appears to be one big dataset accessible through your desktop

Back to the main session

Unified Content Descriptors (UCD)

Different data providers have a different table structures

Data provider #1

Data provider #2

column name

RA
Decl
ID
....

column name

objid
....
ra
dec
....

Unified Content Descriptors (UCD)

TAP schema and UCDs enable clients to figure out the mapping

Observation Data Model Core Components

ObsCore adds a standard view to the data in each data provider

Data provider #1

Data provider #2

CREATE VIEW ivoa. ObsCore (....)

CREATE VIEW ivoa. ObsCore (....)

https://www.ivoa.net/documents/ObsCore/

Observation Data Model Core Components

Now the public tables in **both** providers are the same

Observation Data Model Core Components

Now, the same query can be applied to **both** services

Back to the main session

Everyone invited to develop science use cases

Science based interest groups

Scientific use cases

theory

time-series

IVOA working groups e.g. DataAccessLayer, Applications, **Semantics**

Science priorities for the IVOA

Science platforms

Machine learning

Science priorities committee

Multi-messenger astronomy

Scientists from IVOA members and major astronomy projects

Request For Comment (RFC) document

Everyone invited to comment

Anyone can raise issues

Working group email list

New standards being developed

ObjVisSAP ObsLocTAP

TIMESYS Multi-order Coverage (MOC)

Hierarchical Progressive Surveys (HiPS)

IVOA recommendation

Introduction to the VO **IVOA** interop Nov 2021