Exercise 7.1 Teach san ban

1. (i) The remainder obtained when the polynomial p(x) is divided by

(a)
$$p\left(-\frac{b}{a}\right)$$
 (b) $p\left(\frac{a}{b}\right)$ (c) $p\left(\frac{b}{a}\right)$ (d) $p\left(-\frac{a}{b}\right)$

(b)
$$p\left(\frac{a}{b}\right)$$

(c)
$$p\left(\frac{b}{a}\right)$$

(d)
$$p\left(-\frac{a}{b}\right)$$

[CBSE 2011]

(ii) Let $p(x) = x^3 - 2x^2 + x - 2$. Find the remainder by using division process and also by using remainder theorem, when p(x) is divided by: (a) x - 2

(a)
$$x-2$$

(b)
$$x + 1$$

2. p(x) is the polynomial $4x^3 - 12x^2 + 11x - 2$. Use the remainder theorem to find the remainder, when p(x) is divided by:

(i)
$$x - \frac{1}{2}$$

(ii)
$$x + \frac{1}{9}$$

(i)
$$x - \frac{1}{2}$$
 (ii) $x + \frac{1}{2}$ (iii) $x - \frac{3}{2}$

3. By using remainder theorem, show that g(x) is a factor of f(x), given $f(x) = x^3 - x^2 + 11x + 69, g(x) = x + 3.$

4. When (x^3-2x^2+px-q) is divided by (x^2-2x-3) , the remainder is (x-6). Find the values of p and q.

5. $6x^2 + ax + 7$ when divided by x - 2 gives the remainder 13, find the value

6. (i) If x-3 is a factor of $x^2 + kx + 9$, then find the value of k.

(ii) Find the value of a, if x - a is a factor of $x^5 - a^2x^3 + 2x + a + 1$.

(iii) Prove that $x^2 - 5x + 6$ is a factor of $2x^4 - 17x^3 + 49x^2 - 52x + 12$. [**Hint:** $x^2 - 5x + 6 = (x - 2)(x - 3)$. Now, show both x - 2 and x - 3 are factors of the given polynomial.]

7. Find the remainder when $p(y) = y^2 + 4y + 2$ is divided by y + 2.

8. If $p(x) = x^4 - 3x^2 + 2x + 1$ is divided by x - 1, find the remainder. Also, verify the result by actual division.

9. If $x^3 + x^2 + x + a$ is divisible by x - 1, find the value of a.

10. Find the value of *a* if the division of $ax^3 + 9x^2 + 4x - 10$ by (x + 3) leaves a remainder 5.-

11. Two polynomials $p(x) = ax^3 + 3x^2 - 13$ and $q(x) = 2x^3 - 5x + a$ when divided by x + 2 gives the same remainder. Find the value of a.

12. (i) Let r_1 and r_2 be the remainders when the polynomials $p(x) = x^3 + x^2 - 5kx - 7$ and $q(x) = x^3 + kx^2 - 12x + 6$ are divided by x + 1 and x - 2 respectively.

Find the value of k if $2r_1 - r_2 = 10$.

(ii) If the polynomial $p(x) = 2x^3 + kx^2 - 3x + 5$ and $q(x) = x^3 + 2x^2 - x + k$, when divided by (x-2) leaves the remainder r_1 and r_2 respectively. Find the value of k if $r_1 - r_2 = 0$. [CBSE 2010]

(i) If $(x^{11} + 1)$ is divided by (x + 1), find the remainder. 13.

(ii) If $5x^3 + 5x^2 - 6x + 9$ is divided by (x + 3), find the remainder.

14. The polynomials $kx^3 + 4x^2 + 3x - 4$ and $x^3 - 4x + k$ leave the same remainder when divided by (x-3), find the value of k.

15. When $x^5 - 5x^4 + 9x^3 - 6x^2 - 16x + 13$ is divided by $x^2 - 3x + a$, the quotient and remainder are $x^3 - 2x^2 + x + 1$ and -15x + 11, respectively. Find the value of a.

- 16. If $Ax^3 + 31x^2 Bx 10$ is exactly divisible by $2x^2 + 9x 5$, find the values of A and B.
- 17. Show that x 1 and x + 4 are factors of the polynomial $x^3 + x^2 10x + 8$.
- 18. Determine the value of 'a' such that (x-4) is a factor of the polynomial

$$p(x) = 2x^3 + ax^2 + 27x - 28.$$
 [CBSE 2001 C]

19. If x-1 is a factor of $g(x) = x^2 + kx + 1$, then find k and hence prove that (x-k) is a factor of

$$p(x) = x^3 + 3x^2 + 3x + 2$$
. Teach san ban

- **20.** (i) Find the value of k so that x 2 is a factor of $2x^3 6x^2 + 5x + k$.
 - (ii) If $ax^3 + bx^2 + x 6$ has x + 2 as a factor and leaves remainder 4 when divided by (x-2). Find the values of a and b. $[CBSE\ 2011]$
- **21.** Let $f(x) = x^3 + kx^2 + hx + 6$. Find the value of h and k so that (x + 1) and (x-2) are factors of f(x).
- **22.** (*i*) Show that (x-5) is a factor of the polynomial

$$p(x) = 3x^3 - 16x^2 - 5x + 50.$$
 [CBSE 2001 C]

- (ii) Find k so that $3x^4 + 8x^3 4kx + k$ may be divisible by x 2.
- (iii) If (x + a) is the HCF of $x^2 + px + q$ and $x^2 + 1x + m$, then find the value
- **23.** (i) Use factor theorem to determine if (x-1) is a factor of: $x^6 - x^5 + x^4 - x^3 + x^2 - x + 1$
 - (ii) Given $p(x) = 2x^5 + 3x^2 3x 2$ and q(x) = x 1. Find by actual division whether q(x) is a factor of p(x). Verify your answer by factor theorem.
 - If remainder is same when polynomial $p(x) = x^3 + 8x^2 + 17x + ax$ is divided by (x-2) and (x+1). Find the value of a.
 - (iv) If (x + 5) is a factor of $x^3 + 2x^2 13x + 10$, find the other factors.

1. (i) (c) $p\left(\frac{b}{a}\right)$ (ii) (a) 0 (b) -6 **2.** (i) 1

(iii) 1

(ii) - 11

11. a = 5/9

Answers

12. (i)
$$k = \frac{7}{3}$$
 (ii) $k = -\frac{1}{3}$
13. (i) 0 (ii) -63

14. $k = -1$
15. $a = 2$
16. $A = 6, B = -3$
18. -13

19. (i) $a = 0, b = 2$

4. p = -3, q = -6

9. $\alpha = -3$

16. A = 6, B = -3 **18.** -13 **20.** (i)
$$k = -2$$
 (ii) $a = 0, b = 2$ **21.** $h = 1, k = -4$ **22.** (ii) $k = 16$ (iii) $\frac{q - m}{p - 1}$

21.
$$h = 1, k = -4$$
 22. (ii) $k = 16$ (iii) $\frac{q - m}{p - 1}$ **23.** (i) $x - 1$ is not a factor of the given polynomial. (ii) $x - 1$ is a factor of $p(x)$ (iii) $a = -28$ (iv) $(x - 2)(x - 1)$