DENEY NO:3 (KIRCHOFF YASASI)

AMAÇ: Kirchoff kurallarının basit devrelere uygulanması.

ÖN BİLGİ

Yük ve enerjinin korunumu yasalarına dayanan Kirchoff kuralları, aşağıdaki gibi açıklanabilir;

1) Herhangi bir düğüm noktasına gelen akımların toplamı, bu düğüm noktasını terk eden akımların toplamına eşit olmalıdır. Düğüm noktası, devredeki akımın kollara ayrıldığı herhangi bir noktadır.

- 2) Herhangi bir kapalı devre boyunca, tüm devre elemanlarının uçları arasındaki potansiyel değişimlerinin cebirsel toplamı, $\sum \Delta V_i = 0$ olmalıdır. Bu kurallar, aşağıdaki şekilde basitçe ifade edilebilir;
 - **a)** Bir direnç akım yönünde geçiliyorsa, direncin uçları arasındaki potansiyel değişimi *-IR'dir*.
- $a \longrightarrow I$ $\Delta V = V_b V_a = -IR$
- **b)** Direnç akıma ters yönde geçiliyorsa direncin uçları arasındaki potansiyel değişimi + IR'dir.
- $a \longrightarrow I$ $AV = V_b V_a = + IR$
- c) İç direnci r = 0 olan bir doğru akım kaynağı, emk yönünde (- uçtan + uca) geçiliyorsa potansiyel değişimi $+\varepsilon$ 'dur.
- d) İç direnci r=0 olan bir doğru akım kaynağı, emk'nin tersi yönünde (+ uçtan uca) geçiliyorsa potansiyel değişimi - ε 'dur.

$$a \longrightarrow + b$$

 $a \bullet \begin{array}{c|c} \varepsilon \\ \hline \\ \Delta V = V_b - V_a = + \varepsilon \end{array}$

Yukarıda verilen kurallar, Şekil 1'deki devre için uygulanırsa;

Doğru akım kaynağının iç dirençleri ihmal edilirse, çevre denklemleri;

$$\varepsilon_1 - I_1 R_1 + I_2 R_2 = 0,$$

$$-\varepsilon_2 - I_2 R_2 - I_3 R_3 = 0$$
(1)

şeklinde yazılabilir. Ayrıca, $I_1 + I_2 = I_3$ olur. Buna göre akım değerleri,

$$I_1 = \frac{(R_2 + R_3)\varepsilon_1 - R_2\varepsilon_2}{R_1R_2 + R_2R_3 + R_1R_3},$$

$$I_2 = \frac{-R_1 \varepsilon_2 - R_3 \varepsilon_1}{R_1 R_2 + R_2 R_3 + R_1 R_3},$$
 (2)

$$I_3 = \frac{-(R_1 + R_2)\varepsilon_2 + R_2\varepsilon_1}{R_1R_2 + R_2R_3 + R_1R_3}$$

ifadelerinden hesaplanabilir.

DENEYİN YAPILIŞI

- 1) $R_1=330~\Omega$, $R_2=220~\Omega$ ve $R_3=120~\Omega$ 'luk dirençleri kullanarak, Şekil 1'deki devreyi kurunuz.
- 2) Her bir koldan geçen akım değerlerini $(I_{1}^{'}, I_{2}^{'}, I_{3}^{'})$ ölçünüz ve Tablo 1'e kaydediniz.
- 3) Denklem 2 ile verilen ifadeleri ve $R_1 = 330 \,\Omega$, $R_2 = 220 \,\Omega$ ve $R_3 = 120 \,\Omega$ 'luk direnç değerlerini kullanarak hesaplayacağınız kuramsal akımın mutlak değerlerini (I_1 , I_2 , I_3) Tablo 1'e kaydediniz.
- 4) Kuramsal akım değerlerini (I_1 , I_2 , I_3) ve multimetre ile ölçülen akım değerlerini ($I_1^{'}$, $I_2^{'}$, $I_3^{'}$) kullanarak, $\frac{|I-I^{'}|}{I} \times \%100$ ifadesinden, bağıl hatayı hesaplayınız.

Tablo 1								
$R_{I}\left(\Omega\right)$	$R_{2}\left(\Omega\right)$	$R_{3}\left(\Omega\right)$	$\varepsilon_{l}\left(V\right)$	$\varepsilon_2(V)$	$I_{kuram}\left(A\right)$	$I_{\ddot{o}larphi\ddot{u}m}\left(A ight)$	Bağıl Hata	
330	220	120	10	8	I_{I} =	$I_1^{'}=$		
					$I_2=$	$I_2^{'}=$		
					$I_3=$	$I_3^{'}=$		

ÖĞRENCİ	SORUMLU ÖĞR. ELEMANI
AD SOYAD:	AD SOYAD:
NO:	NOT:
BÖLÜM:	TARİH:
GRUP NO:	İMZA: