Cálculo II (Grupo 1º A) Relación de Ejercicios nº 5

Ejercicio 5.1: Calcular usando el Teorema de Cauchy para integrales que $\int_0^1 x^p dx = \frac{1}{p+1}, \quad (p \in \mathbb{N} \cup \{0\}).$

Ejercicio 5.2: Demostrar que la función $f(x) = \frac{e^x \sin x}{x}$ es integrable en [0,1] verificándose que $0 \le \int_0^1 f(x) dx \le e - 1$.

Ejercicio 5.3: Justificar las siguientes desigualdades:

- (i) $\frac{1}{2} < \int_0^1 \frac{dx}{1+x} < 1$.
- (ii) $\frac{1}{4\sqrt{2}} < \int_0^1 \frac{x^3 dx}{\sqrt{1+x}} < \frac{1}{4}$.

Ejercicio 5.4: Sea $f:[a,b] \to \mathbb{R}$ una función continua y tal que $f(x) \ge 0$, para cada $x \in [a,b]$. Demostrar que si $\int_a^b f(x) dx = 0$, entonces f = 0.

Ejercicio 5.5: Sea $f:[a,b] \to \mathbb{R}$ una función integrable. Demostrar que si para cada $c,d \in [a,b]$ tales que a < c < d < b existe $x \in]c,d[$ verificando que f(x) = 0, entonces $\int_a^b f(x) dx = 0$.

Ejercicio 5.6: Sea $f:[0,1] \to [0,1]$ una función continua verificando que $\int_0^x f(t)dt = \int_x^1 f(t)dt$, para cada $x \in [0,1]$. Demostrar que f = 0.

Ejercicio 5.7: Sean $f, g: [a, b] \to \mathbb{R}$ funciones continuas tales que

$$\int_a^b f(x)dx = \int_a^b g(x)dx.$$

Demostrar que entonces existe $c \in [a, b]$ tal que f(c) = g(c).

Ejercicio 5.8: Sea $f:[a,b] \to \mathbb{R}$ una función continua y sea $\alpha \in \mathbb{R}$. Demostrar que $\alpha = \int_a^b f(x) dx$ sí, y solo si, para cada partición P de [a,b] existe al menos una suma de Riemann $\sigma(f,P)$ tal que $\alpha = \sigma(f,P)$.

Ejercicio 5.9: Demostrar que la composición de dos funciones integrables puede no ser una función integrable.

Ejercicio 5.10: Sea r > 0 y sea $f: [-r, r] \to \mathbb{R}$ una función continua. Demostrar que:

- i) Si f es par entonces $\int_{-r}^{r} f(x)dx = 2 \int_{0}^{r} f(x)dx$.
- ii) Si f es impar entonces $\int_{-r}^{r} f(x)dx = 0$.

Ejercicio 5.11: Sea $f: [a, b] \to \mathbb{R}$ una función acotada que es integrable. Sea $c \in \mathbb{R}$. Si $g: [a+c,b+c] \to \mathbb{R}$ está dada por g(x) = f(x-c), para $x \in [a+c,b+c]$, demostrar que g es integrable siendo

$$\int_{a}^{b} f(x)dx = \int_{a+c}^{b+c} g(x)dx.$$

Dedúzcase que, para cada $h \in \mathbb{R}$,

$$\int_{a}^{b} f(x)dx = \int_{a-h}^{b-h} f(x+h)dx.$$

Ejercicio 5.12: Demostrar que si $f: \mathbb{R} \to \mathbb{R}$ es una función continua y periódica, de periodo T entonces, para cada $x \in \mathbb{R}$,

$$\int_{x}^{x+T} f(t)dt = \int_{0}^{T} f(t+x)dt.$$

Ejercicio 5.13: Calcular los siguientes límites:

- i) $\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right)$
- ii) $\lim_{n \to \infty} \left[n \left(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 4} + \frac{1}{n^2 + 9} \dots + \frac{1}{2n^2} \right) \right]$
- iii) $\lim_{n\to\infty} \left[\frac{1}{n} \left(\operatorname{sen} \frac{\pi}{n} + \operatorname{sen} \frac{2\pi}{n} + \dots + \operatorname{sen} \frac{n\pi}{n}\right)\right].$

Ejercicio 5.14: Sea $f: \mathbb{R}_0^+ \to \mathbb{R}$ una función positiva y estrictamente decreciente. Demuéstrese que para cada $n, p \in \mathbb{N}$ se verifica que

$$f(n+p) + \int_{n}^{n+p} f(x)dx < f(n) + f(n+1) + \dots + f(n+p) < f(n) + \int_{n}^{n+p} f(x)dx.$$

Como consecuencia demostrar que $1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{p}} > \sqrt{p}$, para $p \ge 2$.

Ejercicio 5.15: Sea $f: \mathbb{R} \to \mathbb{R}$ la función dada por $f(x) = e^{-x^2}$, para cada $x \in \mathbb{R}$. Sea $h: \mathbb{R} \to \mathbb{R}$ la función dada por $h(x) = \int_0^{\sin x} f(t) dt$, para cada $x \in \mathbb{R}$. Demostrar que h es derivable en \mathbb{R} y calcular su derivada.

Ejercicio 5.16: Sea $f: \mathbb{R} \to \mathbb{R}$ la función dada por $f(x) = e^{-x^2}$, para cada $x \in \mathbb{R}$. Sea $g: \mathbb{R}_0^+ \to \mathbb{R}$ la función dada por $g(x) = \int_0^{\sqrt{x}} f(t) dt$, para cada $x \in \mathbb{R}$. Estudiar la continuidad uniforme de la función g y su derivabilidad.

Ejercicio 5.17: Estudiar la derivabilidad de la función $F: \mathbb{R}_0^+ \to \mathbb{R}$ $F(x) = \int_{\sqrt[3]{x}}^{x^2} \frac{t}{\sqrt{1+t^3}} dt \text{ y calcular } F'(1).$

Ejercicio 5.18: Probar que todas las funciones continuas $f: \mathbb{R}_0^+ \to \mathbb{R}$ que verifican la igualdad $\int_0^x f(t)dt = \frac{x^2}{3}f(x)$ son derivables en \mathbb{R}_0^+ . Determinar el conjunto de dichas funciones.

Ejercicio 5.19: Sea $f: \mathbb{R} \to \mathbb{R}$ la función continua. Justificar que la función H(x) = $\int_{r^2}^{x^3} f(t)dt$ es derivable y calcular su derivada.

Ejercicio 5.20: Calcular la derivada de cada una de las siguientes funciones:

- $F_1(x) = \int_0^x \sin^3 t \ dt,$
- ii) $F_2(x) = \int_x^b \frac{1}{1+t^2+\sin^2 t} dt$, iii) $F_3(x) = \int_a^b \frac{x}{1+t^2+\sin^2 t} dt$.

Ejercicio 5.21: Sea $f: \mathbb{R}^+ \to \mathbb{R}$ la función definida por $f(x) = \int_0^{x^3 - x^2} e^{-t^2} dt$. Estudiar los intervalos de crecimiento y decrecimiento y determinar los extremos relativos de dicha función. Calcular $\lim_{x\to 0} \frac{f(x)}{\operatorname{sen}(x^3-x^2)}$.

Ejercicio 5.22: Sea $f: [1, +\infty[\to \mathbb{R} \text{ la función } f(x) = \int_0^{x-1} (e^{-t^2} - e^{-2t}) dt.$ Calcular su máximo absoluto. Sabiendo que $\lim_{x \to +\infty} f(x) = \frac{1}{2} (\sqrt{\pi} - 1)$, calcular el mínimo absoluto de f.

Ejercicio 5.23: Sea $H:[-1,1] \to \mathbb{R}$ la función dada por $H(x) = \int_0^{\pi x^2} e^{2t} \operatorname{sen} t \ dt$, para cada $x \in [-1,1]$. Estudiar los extremos absolutos y relativos de la función H y determinar su imagen.

Ejercicio 5.24: Probar que la función $f: [1,2] \to \mathbb{R}$ dada por $f(y) = \int_0^1 \frac{dx}{\sqrt{x^4 + y^4}}$, para cada $y \in [1,2]$ es lipschitziana.

Ejercicio 5.25: Dado a > 0, calcular la imagen de la función $G: [-a, a] \to \mathbb{R}$ dada por $G(x) = \int_{-x}^{x} \sqrt{a^2 - t^2} dt$.

Ejercicio 5.26: Sea $f:[a,b] \to \mathbb{R}$ una función continua tal que f(a) = 0 y $\int_a^b f(t)dt = 0$. Definimos la función $F: [a, b] \to \mathbb{R}$ como F(a) = 0 y

$$F(x) = \frac{\int_a^x f(t)dt}{x-a} \text{ si } x \neq a.$$

Probar que F es continua en [a,b] y derivable en]a,b]. Demostrar que si f es derivable en a entonces F es derivable en [a, b] y existe $c \in]a, b[$ tal que F'(c) = 0.

Ejercicio 5.27: Calcular $\lim_{x\to 0} \frac{x \int_0^x \sin t^2 dt}{\sin x^4}$.

Ejercicio 5.28: Calcular $\lim_{x \to +\infty} \frac{\int_1^{(x+1)e^x} \ln(t) \arctan(t) dt}{x^2 e^x}$.

Ejercicio 5.29: Sea $f:[a,b] \to \mathbb{R}$ una función de clase C^1 en el intervalo [a,b]. Para cada $n \in \mathbb{N}$, sean $I_n \coloneqq \int_a^b f(x) \cos nx \, dx$ y $J_n \coloneqq \int_a^b f(x) \sin nx \, dx$. Demostrar que las sucesiones $\{I_n\}$ y $\{J_n\}$ convergen a cero.

Ejercicio 5.30: Demostrar que para cada
$$x \in \left[0, \frac{\pi}{2}\right]$$
 se verifica que
$$\int_0^{\cos^2 x} \arccos \sqrt{t} \, dt + \int_0^{\sin^2 x} \arcsin \sqrt{t} \, dt = \frac{\pi}{4}.$$