Es ist zu empfehlen dieses Übungsblatt nach Ihrem Durcharbeiten mit Kollegen auszutauschen, zu vergleichen und zu korrigieren.

1. Text->VHDL->FPGA

- -Schreiben Sie VHDL-Code für ein Modul mit folgende Funktion:
- -Das Modul soll eine LED im Sekundentakt ein und ausschalten
- -Zunächst(nach dem start-up) soll die LED eingeschalten sein und dann nach einer Sekunde ausgeschalten werden und nach einer Sekunde wieder eingeschalten werden usw.
- -Verwenden Sie einen Zähler der die 100MHz Systemtakte zählt, und ein Steuersignal mit dem Namen ticksek kurz für einen Takt auf ,1' setzt, wenn die Taktanzahl für 1s abgelaufen ist
- -Benutzen Sie dieses Steuersignal für Ihre LED-Ansteuerung
- -Verwenden Sie die tut_vhdlsync02_given.zip (ex01) und fügen Sie Ihren Code in module.vhd innerhalb der gekennzeichneten Bereiche ##INSERT YOUR CODE HERE und ##INSERT YOUR CODE HERE END ein.

a) Simulation

- --Überlegen Sie welche Werte Ihr Modul bei dem gegebenen Testbench liefern sollte und Simulieren Sie Ihr Modul
- --Achtung!!! Wegen der ansonsten sehr langen Simulationszeit stellen Sie die Zählbedingung anstelle der Menge von 100MHz Takten für 1s auf 3 Takte

F: Welchen Wert hat Ihre Simulation für das Ausgangssignal LED bei 90ns(+1ps)?	
у предотования в пред	
b) Synthetisieren und Laden in den FPGA	
-Wenn die Simulation des Moduls in Ordnung ist, können Sie nun Ihren Entwurf auf dem FPGA-board testen	
Achtung!!! Stellen Sie nun die Zählbedingung anstelle von 3 wieder zurück auf die Menge von 100MHz Takten für 1s	
-Erstellen Sie nun ein Vivadoprojekt zum Erzeugen des FPGA-Bitstreams, den Sie auf den FPGA laden (vgl. tooling_xilinx_vivado.pdf Beispiel simplebsp)	
Legen Sie das Projekt mit dem Namen led unter ex01/vivado an	
Fügen Sie die Dateien unter dem Verzeichnis ex01/hdl sowie ex01/impl dem Projekt hinzu	
Achten Sie darauf, wenn Sie den Testbench überhaupt hinzufügen, dass der Testbench nur als "Simulation" und nicht als "Implementation" gekennzeichnet sind	
Erzeugen Sie nun den FPGA-Bitsteam	
Laden Sie den Bitstream auf den FPGA	
F: Welche LED auf dem Board blinkt nun im Sekundentakt?	

2. Text->State chart->VHDL->FPGA

- -Schreiben Sie VHDL-Code für ein Modul mit folgender Funktion:
- -Das Modul soll eine LED-Laufband bzw. LED Welle mit 4 LEDs (LED0 bis LED3) erstellen
- -D.h. beginnend mit LED0 soll die LED eingeschaltet werden eine Sekunde gewartet werden und die LED wieder ausgeschaltet werden und die nächste LED angeschaltet werden usw ---Wenn das Ende erreicht ist (LED3), soll rückwärts (zu LED2) gegangen werden bis wieder LED0

erreicht wird und dann wieder von vorne begonnen werden -Zunächst(nach dem start-up) soll die LEDO eingeschalten sein -Verwenden Sie einen Zähler der die 100MHz Systemtakte zählt, und ein Steuersignal mit dem Namen ticksek kurz für einen Takt auf ,1' setzt, wenn die Taktanzahl für 1s abgelaufen ist -Benutzen Sie dieses Steuersignal für Ihre LED-Ansteuerung
a) State chart Setzen Sie die LED-Steuerung mit einer MOORE-FSM um. Zeichen Sie den state chart.
Setzen sie die Led-stederding mit einer MOOKE-FSM din. Zeichen sie den state chart.
b) Simulation -Verwenden Sie die tut_vhdlsync02_given.zip (ex02) und fügen Sie Ihren Code in module.vhd innerhalb der gekennzeichneten Bereiche ##INSERT YOUR CODE HERE und ##INSERT
YOUR CODE HERE END ein.
-Schreiben Sie den VHDL Code nach der 2-Process-Darstellung und nutzen Sie default valuesÜberlegen Sie welche Werte Ihr Modul bei dem gegebenen Testbench liefern sollte und Simulieren
Sie Ihr ModulAchtung!!! Wegen der ansonsten sehr langen Simulationszeit stellen Sie die Zählbedingung anstelle der Menge von 100MHz Takten für 1s auf 1 Takt.
F: Welchen Wert hat Ihre Simulation für das Ausgangssignal LED3 bei 90ns(+1ps)?

- c) Synthetisieren und Laden in den FPGA
- -Wenn die Simulation des Moduls in Ordnung ist, können Sie nun Ihren Entwurf auf dem FPGA-board testen
- --Achtung!!! Stellen Sie nun die Zählbedingung anstelle von 1 wieder zurück auf die Menge von 100MHt Takten für 1s
- -Erstellen Sie nun Vivadoprojekt zum Erzeugen des FPGA-Bitstreams, den Sie auf den FPGA laden (vgl. tooling_xilinx_vivado.pdf Beispiel simplebsp)
- --Legen Sie das Projekt mit dem Namen ledwave unter ex02/vivado an
- --Fügen Sie die Dateien unter dem Verzeichnis ex02/hdl sowie ex02/impl dem Projekt hinzu
- ---Achten Sie darauf, wenn Sie den Testbench überhaupt hinzufügen, dass der Testbench nur als
- "Simulation" und nicht als "Implementation" gekennzeichnet sind
- --Erzeugen Sie nun den FPGA-Bitsteam
- --Laden Sie den Bitstream auf den FPGA

F	: Welche LEDs blinken in welche Reihenfolge nach auf dem Board im Sekundentakt auf?
L	

3. Text->State chart->VHDL->FPGA

- -Schreiben Sie VHDL-Code für ein Modul mit folgender Funktion:
- -Das Modul soll auf dem Siebensegmentdisplay die Zahlen 0 bis 9 jeder Sekunde einen neuen Wert ausgeben.
- --Wenn das Ende erreicht ist soll wieder von vorne begonnen werden
- -Verwenden Sie einen Zähler der die 100MHz Systemtakte zählt, und ein Steuersignal mit dem Namen ticksek kurz für einen Takt auf ,1' setzt, wenn die Taktanzahl für 1s abgelaufen ist
- -Verwenden Sie einen weiteren Zähler mit diesem Steuersignal zur Ansteuerung des Siebensegment-Decoders
- -Sie dürfen gerne Ihren Siebensegment-Dekoder von tut_vhdlcom02 ex04 (sevenseg.vhd) hier verwenden und als component einbinden.

a) Simulation

- -Verwenden Sie die tut_vhdlsync02_given.zip (ex03) und fügen Sie Ihren Code in module.vhd innerhalb der gekennzeichneten Bereiche ##INSERT YOUR CODE HERE und ##INSERT YOUR CODE HERE END ein.
- --Überlegen Sie welche Werte Ihr Modul bei dem gegebenen Testbench liefern sollte und Simulieren Sie Ihr Modul.
- --Achtung!!! Wegen der ansonsten sehr langen Simulationszeit stellen Sie die Zählbedingung anstelle der Menge von 100MHz Takten für 1s auf 1 Takt.

F: Welchen Wert hat Ihre Simulation für das Ausgangssignal segments bei 210ns(+1ps)?	
b) Synthetisieren und Laden in den FPGA	
-Wenn die Simulation des Moduls in Ordnung ist, können Sie nun Ihren Entwurf auf dem FPGA-board	
testen.	
Achtung!!! Stellen Sie nun die Zählbedingung anstelle von 1 wieder zurück auf die Menge von	
100MHt Takten für 1s	
-Erstellen Sie nun Vivadoprojekt zum Erzeugen des FPGA-Bitstreams, den Sie auf den FPGA laden (vgl. tooling_xilinx_vivado.pdf Beispiel simplebsp)	
Legen Sie das Projekt mit dem Namen sevensegcnt unter ex03/vivado an	
Fügen Sie die Dateien unter dem Verzeichnis ex03/hdl sowie ex03/impl dem Projekt hinzu	
Achten Sie darauf, wenn Sie den Testbench überhaupt hinzufügen, dass der Testbench nur als	
"Simulation" und nicht als "Implementation" gekennzeichnet sind	
Erzeugen Sie nun den FPGA-Bitsteam	
Laden Sie den Bitstream auf den FPGA	
F: Welche Werte sehen Sie auf der Siebensegmentanzeige?	