

MAPAS DE KARNAUGH

MAURICE KARNAUGH

Nace en Nueva York el 4 de octubre de 1924.

Estudió matemáticas y física en el City College de Nueva York (1944-1948), luego en la Universidad de Yale donde hizo su licenciatura (1949), M.Sc. (1950) y Ph.D. en Física con una tesis sobre La teoría de la resonancia magnética y grecas duplicación de Óxido Nítrico (1952).

Ha trabajo como:

- Investigador en los Laboratorios Bell desde 1952 hasta 1966
- En el centro de investigación de IBM de 1966 a 1993
- Profesor de informática en el Politécnico de Nueva York de 1980 a 1999
- Miembro del IEEE desde 1975 (Instituto de Ingenieros Eléctricos y Electrónicos Institute of Electrical and Electronics Engineers)
- Actualmente gobernador emérito del ICCC (Consejo Internacional para las Comunicaciones Computacionales – International Council for Computer Communication)

En 1950 creó el método llamado mapa de Karnaugh o de Veitch, cuya función es minimizar o simplificar las funciones algebraicas booleanas.

Un mapa de Karnaugh consiste de una serie de cuadrados y cada uno de ellos representa una línea o combinación de la tabla de verdad. La tabla de verdad de una función de N variables posee 2^N filas o combinaciones, el mapa K correspondiente debe poseer también 2^N cuadrados y cada cuadrado alberga un '0' o un '1'; depende si la solución es por minterm (Σ) o por maxterm (π).

Los mapas de Karnaugh se utilizan en funciones hasta de 6 variables.

PASOS A SEGUIR

- 1. Obtener una expresión booleana en forma de minterm o maxterm.
- 2. Colocar "1" o "0" en el mapa de Karnaugh de acuerdo a la expresión.
- 3. Agrupar los conjuntos adyacentes de dos, cuatro u ocho unos o ceros.
 - a) Se encierran los "1" o "0" que no sean adyacentes con otros (islas).
 - b) Se encierran los "1" o "0" que formen grupos de dos pero que no formen grupos de cuatro "1" o "0".
 - c) Se encierran los "1" o "0" que formen grupos de cuatro pero que no formen grupos de ocho "1" o "0".
 - d) Así sucesivamente hasta cuando todos los "1" o "0" del mapa sean cubiertos.
- 4. Eliminar las variables que aparezcan con sus complementos y guardar las restantes (se tienen en cuenta las que no cambian).

5. Enlazar con operadores OR los grupos obtenidos para formar la expresión simplificada en forma de minterm y con operadores AND en forma de maxterm.

DOS VARIABLES

В

Α

Implementación por medio de minterm con dos variables.

F

TRES VARIABLES

Implementación por medio de minterm con tres variables.

Elimina B

С	В	A	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

 $F = (A \times B \times C) + (\overline{A} \times \overline{B} \times C) + (A \times B \times \overline{C}) + (A \times \overline{B} \times C) + (\overline{A} \times B \times C) + (\overline{A} \times \overline{B} \times \overline{C})$ Función sin simplificar implementada con Minterm.

La función simplificada es: $F = (\overline{A} \times \overline{B}) + (A \times B) + C$

Ver archivo Mapas K1.ckt

Implementación por medio de minterm con tres variables.

С	В	Α	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

 $F = \left(A \times \overline{B} \times \overline{C}\right) + \left(A \times B \times \overline{C}\right) + \left(\overline{A} \times \overline{B} \times C\right) + \left(\overline{A} \times \overline{B} \times C\right) + \left(\overline{A} \times B \times C\right) \quad \text{Función sin simplificar}$ implementada con Minterm.

La función simplificada es: $F = (\overline{A} \times C) + (\overline{B} \times C) + (A \times \overline{C})$

 $F = (A + B + C) \times (A + \overline{B} + C) \times (\overline{A} + \overline{B} + \overline{C})$ Ahora, Función simplificar sin implementada con Maxterm.

B+0	C ₀₊₀	0+1	1+1	1+0	a
A }	0			0	
1			0		

La función simplificada es: $F = (A + C) \times (\overline{A} + \overline{B} + \overline{C})$

Implementación por medio de maxterm con tres variables.

С	В	Α	F	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

$$(\overline{A} + B + C)$$
$$(\overline{A} + \overline{B} + C)$$

 $F = (A + B + C) \times (\overline{A} + B + C) \times (\overline{A} + \overline{B} + C)$ Función sin simplificar implementada con Maxterm.

La función simplificada es: $F = (B+C) \times (\overline{A}+C)$

Ahora, $F = (\overline{A} \times B \times \overline{C}) + (\overline{A} \times \overline{B} \times C) + (A \times \overline{B} \times C) + (\overline{A} \times B \times C) + (A \times B \times C)$ Función sin simplificar implementada con Minterm.

BC	00	01	11	10
0		1	1	1
1		1	1)	

La función simplificada es: $F = C + (\overline{A} \times B)$

CUATRO VARIABLES

Implementación por medio de minterm con cuatro variables.

D	С	В	Α	F
0	0	0	0	0
0	0	0	1	0
0		1	0	0
0	0	1 0	1	0
0	1	0		0
0	1	0	1	0
0	1	1	0	1
0	1	1 1 0	1	0
1	0		0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Función sin simplificar implementada con Minterm.

$$F = \left(\overline{A} \times B \times C \times \overline{D}\right) + \left(\overline{A} \times \overline{B} \times \overline{C} \times D\right) + \left(A \times \overline{B} \times \overline{C} \times D\right) + \left(\overline{A} \times B \times \overline{C} \times D\right) +$$

$$(A \times B \times \overline{C} \times D) + (\overline{A} \times \overline{B} \times C \times D) + (A \times \overline{B} \times C \times D) + (\overline{A} \times B \times C \times D) + (A \times B \times C \times D)$$

 $F = D + (\overline{A} \times B \times C)$ Función simplificada.

Ahora, función sin simplificar implementada con Maxterm.

$$F = (A + B + C + D) \times (\overline{A} + B + C + D) \times (A + \overline{B} + C + D) \times (\overline{A} + \overline{B}$$

$$(A+B+\overline{C}+D)\times(\overline{A}+B+\overline{C}+D)\times(\overline{A}+\overline{B}+\overline{C}+D)$$

$$0+0 \quad 0+1 \quad 1+1 \quad 1+0$$

$$A+B \quad C+D \quad C+\overline{D} \quad \overline{C}+\overline{D} \quad \overline{C}+D$$

$$0+0 \quad 0+1 \quad 0$$

$$A+B \quad 0$$

$$0+1 \quad A+\overline{B} \quad 0$$

$$1+1 \quad \overline{A}+\overline{B} \quad 0$$

$$1+0 \quad \overline{A}+B \quad 0$$

 $F = (C+D)\times(B+D)\times(\overline{A}+D), F = D+(\overline{A}\times B\times C)$ Función simplificada.

D	С	В	Α	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

C+E A+B	0+0 C+D	$0+1$ $C+\overline{D}$	$\frac{1+1}{C+\overline{D}}$	$\frac{1+0}{C+D}$
0+0 A+B		0		0
0+1 <i>A</i> + \overline{B}				
$\frac{1+1}{\overline{A}+\overline{B}}$				
1+0 Ā+B	0			0

Función sin simplificar implementada con Maxterm.

$$F = (A + B + C + D) \times (A + B + C + \overline{D}) \times (A + B + \overline{C} + D) \times (\overline{A} + B + C + D) \times (\overline{A} + B + \overline{C} + D)$$

$$(\overline{A} + B + \overline{C} + D)$$

Ver archivo Mapas K2.ckt

Función sin simplificar implementada con Minterm.

$$F = (\overline{A} \times B \times \overline{C} \times \overline{D}) + (A \times B \times \overline{C} \times \overline{D}) + (\overline{A} \times B \times C \times \overline{D}) + (A \times B \times C \times \overline{D}) + (A \times \overline{B} \times \overline{C} \times D) + (A \times \overline{B} \times \overline{C} \times D) + (\overline{A} \times B \times \overline{C} \times D) + (\overline{A} \times B \times C \times D)$$

$$(A \times B \times C \times D)$$

Función simplificada.

$$F = B + (C \times D) + (A \times D)$$

CINCO VARIABLES

Se realiza un mapa tridimensional, con un mapa E y otro \overline{E} . Es una replica de los mapas de 4 variables y su procedimiento es similar.

Ejercicio Resuelto

Se tiene la siguiente tabla de verdad y se desea simplificar por medio de los mapas de Karnaugh:

	ENTRADAS							ENTRADAS					SALIDAS
No.	Е	D	С	В	Α	Υ	No.	Е	D	С	В	Α	Y
0	0	0	0	0	0	0	16	1	0	0	0	0	0
1	0	0	0	0	1	1	17	1	0	0	0	1	1
2	0	0	0	1	0	0	18	1	0	0	1	0	0
3	0	0	0	1	1	0	19	1	0	0	1	1	0
4	0	0	1	0	0	0	20	1	0	1	0	0	0
5	0	0	1	0	1	0	21	1	0	1	0	1	0
6	0	0	1	1	0	0	22	1	0	1	1	0	0
7	0	0	1	1	1	0	23	1	0	1	1	1	0
8	0	1	0	0	0	1	24	1	1	0	0	0	1
9	0	1	0	0	1	0	25	1	1	0	0	1	0
10	0	1	0	1	0	1	26	1	1	0	1	0	1
11	0	1	0	1	1	0	27	1	1	0	1	1	0
12	0	1	1	0	0	0	28	1	1	1	0	0	0
13	0	1	1	0	1	1	29	1	1	1	0	1	0
14	0	1	1	1	0	0	30	1	1	1	1	0	0
15	0	1	1	1	1	0	31	1	1	1	1	1	0

La función simplificada por Karnaugh

$$Y = (\overline{A} \times \overline{C} \times D) + (A \times \overline{B} \times \overline{C} \times \overline{D}) + (A \times \overline{B} \times C \times D \times \overline{E})$$

Los números en los que se activa la salida son: 1 – 8 – 10 – 13 – 17 – 24 – 26.

Ver archivo Mapas K5.dsn

Ejercicio Propuesto

Se tiene la siguiente tabla de verdad y se desea simplificar por medio de los mapas de Karnaugh:

ENTRADAS					SALIDAS		ENTRADAS					SALIDAS	
No.	Е	D	С	В	Α	F	No.	Е	D	С	В	Α	F
0	0	0	0	0	0	0	16	1	0	0	0	0	0
1	0	0	0	0	1	0	17	1	0	0	0	1	0
2	0	0	0	1	0	0	18	1	0	0	1	0	0
3	0	0	0	1	1	0	19	1	0	0	1	1	0
4	0	0	1	0	0	0	20	1	0	1	0	0	0
5	0	0	1	0	1	1	21	1	0	1	0	1	1
6	0	0	1	1	0	0	22	1	0	1	1	0	0
7	0	0	1	1	1	0	23	1	0	1	1	1	0
8	0	1	0	0	0	0	24	1	1	0	0	0	1
9	0	1	0	0	1	0	25	1	1	0	0	1	0
10	0	1	0	1	0	0	26	1	1	0	1	0	1
11	0	1	0	1	1	0	27	1	1	0	1	1	0
12	0	1	1	0	0	0	28	1	1	1	0	0	1
13	0	1	1	0	1	1	29	1	1	1	0	1	1
14	0	1	1	1	0	0	30	1	1	1	1	0	1
15	0	1	1	1	1	0	31	1	1	1	1	1	0

 \checkmark Respuesta: $F = (A \times \overline{B} \times C) + (\overline{A} \times D \times E)$

Ejercicio Resuelto

Se tiene la siguiente tabla de verdad y se desea simplificar por medio de los mapas de Karnaugh utilizando las salidas activas:

ENTRADAS						SALIDAS		E	NTR	ADAS	S		SALIDAS
No.	Е	D	С	В	Α	Y	No.	Е	D	С	В	Α	Υ
0	0	0	0	0	0	1	16	1	0	0	0	0	1
1	0	0	0	0	1	1	17	1	0	0	0	1	1
2	0	0	0	1	0	1	18	1	0	0	1	0	1
3	0	0	0	1	1	1	19	1	0	0	1	1	1
4	0	0	1	0	0	1	20	1	0	1	0	0	1
5	0	0	1	0	1	1	21	1	0	1	0	1	1
6	0	0	1	1	0	1	22	1	0	1	1	0	1
7	0	0	1	1	1	1	23	1	0	1	1	1	1
8	0	1	0	0	0	0	24	1	1	0	0	0	0
9	0	1	0	0	1	0	25	1	1	0	0	1	0
10	0	1	0	1	0	0	26	1	1	0	1	0	0
11	0	1	0	1	1	1	27	1	1	0	1	1	0
12	0	1	1	0	0	0	28	1	1	1	0	0	0
13	0	1	1	0	1	0	29	1	1	1	0	1	0
14	0	1	1	1	0	0	30	1	1	1	1	0	1
15	0	1	1	1	1	0	31	1	1	1	1	1	0

Los números en los que se activa la salida son: 0 - 1 - 2 - 3 - 3 - 5 - 6 - 7 - 11 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 30.

La función simplificada por Karnaugh es:

$$Y = \overline{D} + (A \times B \times \overline{C} \times \overline{E}) + (\overline{A} \times B \times C \times E)$$

Ahora, se invierten las salidas de la tabla:

Se desea simplificar por medio de los mapas de Karnaugh utilizando las salidas inactivas:

ENTRADAS						SALIDAS	ENTRADAS						SALIDAS
No.	Е	D	С	В	Α	Y	No.	Е	D	С	В	Α	Υ
0	0	0	0	0	0	0	16	1	0	0	0	0	0
1	0	0	0	0	1	0	17	1	0	0	0	1	0
2	0	0	0	1	0	0	18	1	0	0	1	0	0
3	0	0	0	1	1	0	19	1	0	0	1	1	0
4	0	0	1	0	0	0	20	1	0	1	0	0	0
5	0	0	1	0	1	0	21	1	0	1	0	1	0
6	0	0	1	1	0	0	22	1	0	1	1	0	0
7	0	0	1	1	1	0	23	1	0	1	1	1	0
8	0	1	0	0	0	1	24	1	1	0	0	0	1
9	0	1	0	0	1	1	25	1	1	0	0	1	1
10	0	1	0	1	0	1	26	1	1	0	1	0	1
11	0	1	0	1	1	0	27	1	1	0	1	1	1
12	0	1	1	0	0	1	28	1	1	1	0	0	1
13	0	1	1	0	1	1	29	1	1	1	0	1	1
14	0	1	1	1	0	1	30	1	1	1	1	0	0
15	0	1	1	1	1	1	31	1	1	1	1	1	1

Los números en los que se desactiva la salida son: 0 - 1 - 2 - 3 - 3 - 5 - 6 - 7 - 11 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 30.

La función simplificada por Karnaugh es:

$$Y = (D) \times (\overline{A} + \overline{B} + C + E) \times (A + \overline{B} + \overline{C} + \overline{E})$$