Analisi Matematica per Informatici – Esercitazione 2 a.a. 2006-2007

Dott. Simone Zuccher

8 Novembre 2006

Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all'autore (zuccher@sci.univr.it).

1 Funzioni

Definizioni utili per gli esercizi:

- Funzione: legge che associa ad ogni elemento di X un solo elemento di Y. Scriveremo $f: X \to Y$ oppure y = f(x), con $x \in X \land y \in Y$. X si chiama dominio e Y codominio.
- Immagine: siano $f: X \to Y$ e $A \subseteq X$. Si definisce immagine di A mediante f, e si indica con f(A), il sottoinsieme $B \subseteq Y$ definito da $B = f(A) = \{y \in Y : (\exists x \in A : y = f(x))\}$
- Funzione iniettiva: $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ oppure, equivalentemente, $f(x_1) \neq f(x_2) \Rightarrow x_1 \neq x_2$. Quindi $x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$.
- Funzione suriettiva: f(X) = Y, ovvero $\forall y \in Y \ \exists x \in X : y = f(x)$.
- Funzione biiettiva: se è iniettiva e suriettiva.
- Funzione inversa: data una funzione iniettiva y = f(x), esiste una ed una sola applicazione da f(X) in X, e la si indica con f^{-1} , che ad ogni $y \in f(X)$ associa $x \in X : f(x) = y$.
 - Tale definizione si può anche riformulare nel modo seguente (totalmente equivalente): data una funzione biiettiva y = f(x), con $x \in X$ e $y \in Y$, si definisce funzione inversa di f e la si indica con f^{-1} la funzione che associa ad ogni elemento $y \in Y$ il solo elemento $x \in X$: f(x) = y.
- Funzione composta: date $f: X \to Y$ e $g: Y \to Z$, si definisce funzione composta $h: X \to Z$ la funzione h(x) = g(f(x)), ovvero $h = g \circ f$.

1.1 Esercizio

Si dimostri che $f: \mathbb{R} \to \mathbb{R}$ definita da f(x) = x/2 - 1 è biiettiva e si determini la funzione inversa.

1.1.1 Risoluzione

Bisogna dimostrare che f(x) è sia iniettiva che suriettiva.

Iniettiva: $f(x_1) \neq f(x_2) \Rightarrow x_1/2 - 1 \neq x_2/2 - 1 \Leftrightarrow x_1 \neq x_2$.

Suriettiva: y = f(x) può assumere tutti i valori di \mathbb{R} e si può sempre determinare il corrispondente $x \in \mathbb{R}$, ossia $\forall y \in Y \ \exists x \in X : y = f(x)$.

Funzione inversa: x = 2y + 2.

1.2 Esercizio

Si dimostri che $f: \mathbb{N} \to \mathbb{N}$ definita da f(x) = x + 23 è iniettiva ma non suriettiva, mentre $f: \mathbb{Z} \to \mathbb{Z}$ è biiettiva.

1.2.1 Risoluzione

• $f: \mathbb{N} \to \mathbb{N}$.

Iniettiva: $f(x_1) \neq f(x_2) \Rightarrow x_1 + 23 \neq x_2 + 23 \Leftrightarrow x_1 \neq x_2$.

Non suriettiva: da f(x) = x + 23, affinché possa esistere $x \in \mathbb{N}$: f(x) = y, ossia x + 23 = y ammetta una soluzione $x \in \mathbb{N}$ per $y \in \mathbb{N}$ fissata, dovrebbe essere $y \ge 23$. Siccome non vale il $\forall y \in Y$ della definizione, la funzione non è suriettiva.

• $f: \mathbb{Z} \to \mathbb{Z}$.

Iniettiva: come sopra.

Suriettiva: lo è perché $\forall y \in \mathbb{Z} \ \exists x \in \mathbb{Z} : y = f(x)$.

1.3 Esercizio

Si dimostri che $f: \mathbb{N}^+ \to \mathbb{N}^+ (\mathbb{N}^+ = \mathbb{N} \setminus \{0\})$ definita da

$$f(x) = \begin{cases} x+1 & \text{se } x \text{ è dispari} \\ x-1 & \text{se } x \text{ è pari} \end{cases}$$

è biiettiva e si determini la funzione inversa.

1.3.1 Risoluzione

Bisogna dimostrare che f(x) è sia iniettiva che suriettiva.

Iniettiva. Bisogna suddividere in 3 casi: x_1 e x_2 entrambi pari, entrambi dispari e uno pari e uno dispari. Supponiamo x_1 e x_2 pari, $x_1 \neq x_2$. Allora si ha $f(x_1) = x_1 - 1$ e $f(x_2) = x_2 - 1$, pertanto $f(x_1) \neq f(x_2)$. Se x_1 e x_2 sono dispari, e $x_1 \neq x_2$, si ha $f(x_1) = x_1 + 1$ e $f(x_2) = x_2 + 1$, pertanto $f(x_1) \neq f(x_2)$. Infine, considerando x_1 pari e x_2 dispari si ha che $f(x_1)$ è dispari e $f(x_2)$ pari, per cui è ancora $f(x_1) \neq f(x_2)$. La

funzione è quindi iniettiva.

Suriettiva: si verifica che y = f(x) può assumere tutti i valori di \mathbb{N}^+ , ossia si può sempre determinare il corrispondente $x \in \mathbb{N}^+$ tale che y = f(x).

Funzione inversa:

$$f^{-1}(y) = \begin{cases} y+1 & \text{se } y \text{ è dispari} \\ y-1 & \text{se } y \text{ è pari} \end{cases}$$

Si noti che f^{-1} coincide con f.

1.4 Esercizio

Data la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = x^2 + x + 1$, si determini la sua immagine e si verifichi se f è invertibile oppure no. Nel caso non lo sia, esiste un sottoinsieme $D \subseteq \mathbb{R}$ tale che $f_{|D}$ sia invertibile?

1.4.1 Risoluzione

Immagine: l'immagine di f non è nient'altro che Y=f(R), ovvero l'insieme delle $y\in R$ tali per cui l'equazione $x^2+x+1=y$ abbia almeno una soluzione reale $(x\in\mathbb{R})$. A tal fine, si può osservare che la parabola $y=x^2+x+1$ ha concavità verso l'alto e il vertice di coordinate V(-1/2;3/4); quindi si avranno soluzioni reali solo per $y\geq 3/4$ e pertanto $Y=f(X)=[3/4;+\infty[$. Alternativamente si può calcolare il discriminante Δ dell'equazione $x^2+x+1-y=0$ e imporre che sia $\Delta\geq 0$. Così facendo si ottiene $1-4(1-y)\geq 0$, che porta ancora a $y\geq 3/4$, ovvero $Y=f(X)=[3/4;+\infty[$.

Iniettiva: $x_1 \neq x_2$ non implica necessariamente $f(x_1) \neq f(x_2)$ in quanto, fissata $y \in Y \land y \neq 3/4$, i valori di x tali che y = f(x) sono due. Infatti, $f(x_1) \neq f(x_2) \Rightarrow x_1^2 + x_1 + 1 \neq x_2^2 + x_2 + 1 \Leftrightarrow (x_1 - x_2)(x_1 + x_2 + 1) \neq 0 \Rightarrow (x_1 \neq x_2) \land (x_1 \neq -x_2 - 1)$. In altre parole, $x_1 \neq x_2 \neq f(x_1) \neq f(x_2)$ e pertanto f non è iniettiva. Tuttavia, restringendo il dominio di f a $D =]-\infty; -1/2]$ o a $D = [-1/2; +\infty[f_{|D}]$ è iniettiva (si noti che x = -1/2 è l'asse di simmetria della parabola).

1.5 Esercizio

Data la funzione $f: [-1; 0] \to \mathbb{R}$ definita da $f(x) = 1/x^2$, si determini l'immagine Y di f e, nel caso la funzione $f: [-1; 0] \to Y$ sia biiettiva, si determini la funzione inversa.

1.5.1 Risoluzione

Immagine: si noti che, $\forall \epsilon > 0$ si ha $1/x^2 < 1/(x+\epsilon)^2$ se e solo se $x < -\epsilon/2$, ovvero solo per valori negativi della x. In altre parole, $1/x^2$ è una funzione crescente per x < 0 e quindi $f([-1;0]) = [1;+\infty[$.

Iniettiva: $f(x_1) \neq f(x_2)$ con $x_1, x_2 \in [-1; 0[$ equivale a $1/x_1^2 \neq 1/x_2^2 \Leftrightarrow x_1^2 \neq x_2^2 \Rightarrow x_1 \neq \pm x_2$. Essendo $x_1, x_2 \in [-1; 0[$, ossia entrambe negative, l'unica soluzione accettabile è $x_1 \neq x_2$ e pertanto $f: [-1; 0[\rightarrow Y \text{ è iniettiva.}]$

Suriettiva: la funzione $f: [-1; 0[\to Y \text{ è certamente suriettiva in quanto } Y \text{ è l'immagine di } [-1; 0[tramite <math>f$, ossia $\forall y \in Y \ \exists x \in [-1; 0[: y = f(x).$

Funzione inversa: $f^{-1}: [1; +\infty[\to [-1; 0[$ definita da $x=-1/\sqrt{y}.$

1.6 Esercizio

Siano $f(x) = 1/(1+x^4)$ e $g(x) = x^2$. Determinare $f \circ g$ e $g \circ f$.

1.6.1 Risoluzione

$$f \circ g = f(g(x)) = \frac{1}{1 + (x^2)^4} = \frac{1}{1 + x^8}$$
$$g \circ f = g(f(x)) = \left(\frac{1}{1 + x^4}\right)^2 = \frac{1}{(1 + x^4)^2}$$

2 Estremanti

Definizioni utili per gli esercizi:

- Estremo superiore. Se E è un sottoinsieme di \mathbb{R} non vuoto e limitato superiormente, si definisce estremo superiore di E e si indica con sup E o sup x il minore dei maggioranti per E. Ovvero, se $L = \sup E$ valgono le seguenti affermazioni:
 - $\forall x \in E : x < L \ (L \ \text{è un maggiorante per} \ E)$
 - $\forall \epsilon > 0 \ \exists x \in E : L \epsilon < x \ (L \epsilon \text{ non è maggiorante per } E)$
- Massimo. Si noti che l'estremo superiore L può non appartenere ad E. Se $L \in E$, allora si chiama massimo e si indica con max E oppure $\max_{x \in E} x$.
- Estremo inferiore. Se E è un sottoinsieme di \mathbb{R} non vuoto e limitato inferiormente, si definisce estremo inferiore di E e si indica con inf E o $\inf_{x \in E} x$ il maggiore dei minoranti per E. Ovvero, se $l = \inf E$ valgono le seguenti affermazioni:
 - $\forall x \in E : x \ge l \ (l \ \text{è un minorante per} \ E)$
 - $\forall \epsilon > 0 \ \exists x \in E : l + \epsilon > x \ (l + \epsilon \text{ non è minorante per } E)$
- Minimo. Si noti che l'estremo inferiore l può non appartenere ad E. Se $l \in E$, allora si chiama minimo e si indica con min E oppure $\min_{x \in E} x$.

2.1 Esercizio

Calcolare estremo superiore e inferiore ed eventualmente massimo e minimo dell'insieme

$$A = \left\{ \frac{1}{n} : n \in \mathbb{N} \setminus \{0\} \right\}$$

2.1.1 Risoluzione

Si noti che, al crescere di n, 1/n diminuisce poiché 1/(n+1) < 1/n. Pertanto l'estremo superiore è 1 e si ottiene in corrispondenza di n=1, quindi sup $A=\max A=1$ $(1 \in A)$. Siccome 1/(n+1) < 1/n, l'estremo inferiore potrebbe essere 0. Affinché questo sia vero devono essere verificate le due proprietà:

- 1. l = 0 è un minorante. Si noti che $\forall n \in \mathbb{N} \setminus \{0\} : 0 < 1/n$, infatti questo equivale a 0 < 1 che è sempre vero. Quindi l = 0 è un minorante.
- 2. l=0 è il maggiore dei minoranti. Preso $\epsilon>0$ è possibile determinare \bar{n} tale che $0+\epsilon>1/\bar{n}$, infatti basta prendere $\bar{n}>1/\epsilon$ (proprietà di Archimede). In pratica, si è dimostrato che $\forall \epsilon>0$ $\exists x\in A: 0+\epsilon>x=1/\bar{n}$, ovvero che l=0 è il maggiore dei minoranti.

Concludendo, inf A = 0 e $\not\exists \min A$.

2.2 Esercizio

Calcolare estremo superiore e inferiore ed eventualmente massimo e minimo dell'insieme

$$A = \left\{1 - \frac{1}{n} : n \in \mathbb{N} \setminus \{0\}\right\}$$

2.2.1 Risoluzione

inf $A = \min A = 0$, sup A = 1 e $\not\exists \max A$ (si veda l'esempio 4.7 delle dispense del Prof. Squassina).

2.3 Esercizio

Calcolare estremo superiore e inferiore ed eventualmente massimo e minimo dell'insieme

$$A = \left\{ \frac{2n}{n^2 + 1} : n \in \mathbb{Z} \right\}$$

2.3.1 Risoluzione

Si noti che l'insieme è limitato sia superiormente che inferiormente. Infatti, $\forall n \in \mathbb{Z}$: $-1 \le 2n/(n^2+1) \le 1$, come si verifica facilmente osservando che $-1 \le 2n/(n^2+1) \le 1 \Leftrightarrow -(n^2+1) \le 2n \le (n^2+1) \Leftrightarrow -(n^2+2n+1) \le 0 \le (n^2-2n+1) \Leftrightarrow -(n+1)^2 \le 0 \le (n-1)^2$. Quindi eventuali estremanti sono ± 1 . In particolare, per n=1 si ottiene $2n/(n^2+1)=1$ e per n=-1 si ottiene $2n/(n^2+1)=-1$, quindi inf $A=\min A=-1$ e sup $A=\max A=1$.

2.4 Esercizio

Calcolare estremo superiore e inferiore ed eventualmente massimo e minimo dell'insieme

$$A = \left\{ n + \frac{2}{n} : n \in \mathbb{N} \setminus \{0\} \right\}$$

2.4.1 Risoluzione

Si noti che, al crescere di n, 2/n diminuisce ma n aumenta. Pertanto A non è limitato superiormente e quindi sup $A=+\infty$. Per quanto riguarda l'estremo inferiore, si noti che per n=1 e n=2 si ha n+2/n=3, mentre $\forall n\geq 3: n+2/n>n$. Pertanto, l'estremo inferiore è 3, ma siccome appartiene ad A ne è anche il mimimo e quindi inf $A=\min A=3$.

2.5 Esercizio

Calcolare estremo superiore e inferiore ed eventualmente massimo e minimo dell'insieme

$$A = \left\{ a_n = \frac{n-1}{n+1} : n \in \mathbb{N} \right\}$$

2.5.1 Risoluzione

Si noti che $a_n < a_{n+1}$, infatti

$$\frac{n-1}{n+1} < \frac{n+1-1}{n+1+1} \Leftrightarrow \frac{n-1}{n+1} < \frac{n}{n+2} \Leftrightarrow n^2 + 2n - n - 2 < n^2 + n \Leftrightarrow -2 < 0$$

Quindi, l'estremo inferiore si ha in corrispondenza di n = 0 e vale -1. Inoltre, siccome $a_0 \in A$, -1 è anche il minimo e quindi, inf $A = \min A = -1$.

Per quanto riguarda l'estremo superiore, si noti che $a_n < 1$. Infatti,

$$\frac{n-1}{n+1} < 1 \Leftrightarrow n-1 < n+1 \Leftrightarrow -1 < 1,$$

quindi 1 potrebbe essere l'estremo superiore. Per dimostrarlo, come al solito, si deve dimostrare non solo che è un maggiorante (cosa appena fatta) ma che è il minore dei maggioranti. Quindi, bisogna dimostrare che preso arbitrariamente un $\epsilon > 0$ si può determinare un $\bar{n} \in \mathbb{N}$ tale che $1 - \epsilon < a_{\bar{n}} = (\bar{n} - 1)/(\bar{n} + 1)$. Risolvendo si ha

$$1-\epsilon<\frac{\bar{n}-1}{\bar{n}+1}\Leftrightarrow\frac{\bar{n}+1-\bar{n}+1}{\bar{n}+1}<\epsilon\Leftrightarrow\frac{2}{\bar{n}+1}<\epsilon\Leftrightarrow\bar{n}+1>\frac{2}{\epsilon}\Leftrightarrow\bar{n}>\frac{2}{\epsilon}-1.$$

Pertanto, $\sup A = 1 \in \mathbb{Z} \max A$.

2.6 Esercizio

Calcolare estremo superiore e inferiore ed eventualmente massimo e minimo dell'insieme

$$A = \left\{ a_n = \frac{n^2 + (-1)^n n}{n^2} : n \in \mathbb{N} \setminus \{0\} \right\}$$

2.6.1 Risoluzione

Risulta più semplice riscrivere a_n come $a_n = 1 + (-1)^n/n$ e dividere in due casi

$$a_n = \begin{cases} 1 + \frac{1}{n} & \text{per } n \text{ pari} \\ 1 - \frac{1}{n} & \text{per } n \text{ dipari} \end{cases}$$

- n pari. Il ragionamento è analogo a quello degli esercizi precedenti. Si osservi che 1/n decresce al crescere di n e quindi il valore maggiore si ha per il primo numero pari $n=2\Rightarrow 1+1/n=3/2$. Questo non solo è estremo superiore ma anche massimo. L'estremo inferiore è invece 1 (il minimo non esiste). Infatti 1 è un minorante perché $1+1/n>1 \Leftrightarrow 1/n>0 \Leftrightarrow 1>0$ ed è il maggiore dei minoranti perché preso $\epsilon>0$ si può determinare \bar{n} tale che $1+\epsilon>1+1/\bar{n}$. Tale \bar{n} si verifica facilmente essere $\bar{n}>1/\epsilon$.
- n dipari. Questo corrisponde all'esercizio 2.2, però bisogna fare attenzione che gli n accettabili sono solo quelli dispari. L'estremo inferiore, che coincide con il minimo, è 0 e l'estremo superiore è 1 (il massimo non esiste).

In conclusione, siccome $\sup(A \cup B) = \max\{\sup A, \sup B\}$ e $\inf(A \cup B) = \min\{\inf A, \inf B\}$, si ha $\inf A = \min A = 0$ e $\sup A = \max A = 3/2$.

2.7 Esercizio

Calcolare estremo superiore e inferiore ed eventualmente massimo e minimo dell'insieme

$$A = \left\{ x \in \mathbb{R} : 9^x + 3^{x+1} - 4 \ge 0 \right\}$$

2.7.1 Risoluzione

Bisogna risolvere la disequazione esponenziale $9^x + 3^{x+1} - 4 \ge 0$. Osservando che essa si può riscrivere come $3^{2x} + 3 \cdot 3^x - 4 \ge 0$, ponendo $3^x = y$ si risolve facilmente la disequazione di secondo grado $y^2 + 3y - 4 \ge 0 \Rightarrow y \le -4 \lor y \ge 1$, ovvero $3^x \le -4 \Rightarrow \not\exists x \in \mathbb{R}$ e $3^x \ge 1 \Rightarrow x \ge 0$. Quindi, inf $A = \min A = 0$ e sup $A = +\infty$.

2.8 Esercizio

Calcolare estremo superiore e inferiore ed eventualmente massimo e minimo dell'insieme $A = \{x > 0 : \cos(\frac{1}{x}) = 0\}$

2.8.1 Risoluzione

 $\cos(\frac{1}{x}) = 0 \Rightarrow 1/x = \pi/2 + k\pi, k \in \mathbb{N}$ (si noti che se non fosse stato x > 0 si sarebbe avuto $k \in \mathbb{Z}$). Quindi $x = \frac{2}{\pi(1+2k)}, k \in \mathbb{N}$. Siccome, al crescere di k, x diminuisce, l'estremo superiore (che è anche massimo) si ha in corrispondenza di $k = 0 \Rightarrow x = 2/\pi$, mentre

l'estremo inferiore potrebbe essere 0 (che è certamente un minorante). Verifichiamo che 0 è il maggiore dei minoranti. Preso $\epsilon > 0$ si può determinare $\bar{k} \in \mathbb{N}$ tale che $0 + \epsilon > \frac{2}{\pi(1+2\bar{k})}$. Infatti, $\epsilon > \frac{2}{\pi(1+2\bar{k})} \Leftrightarrow 1 + 2\bar{k} > \frac{2}{\pi\epsilon} \Leftrightarrow 2\bar{k} > \frac{2}{\pi\epsilon} - 1 \Leftrightarrow \bar{k} > \frac{1}{\pi\epsilon} - \frac{1}{2}$. Quindi inf A = 0, $\not\exists \min A$, sup $A = \max A = 2/\pi$.

2.9 Esercizio

Calcolare estremo superiore e inferiore ed eventualmente massimo e minimo dell'insieme $A = \{a \in \mathbb{R} : a = 2x - y, x \in \mathbb{R}, y \in \mathbb{R}, -2 \le x < 3, -2 \le y < 3)\}.$

2.9.1 Risoluzione

Si noti che l'insieme A è formato dagli $a \in \mathbb{R}$ tali per cui le rette del fascio improprio a = 2x - y abbiano almeno un punto contenuto nel rettangolo $(x, y) \in [-2; 3[\times [-2; 3[$. Si verifica facilmente (ricorrendo alla geometria analitica) che i valori di a che assicurano tale proprietà sono -7 < a < 8. Quindi inf A = -7, $\not\supseteq \min A$, sup A = 8, e $\not\supseteq \max A$.

2.10 Esercizio

Si dimostri che $A = \{x \in \mathbb{Q} : x^3 < 2\}$ non ammette estremo superiore in \mathbb{Q} .

2.10.1 Risoluzione

Anche se non richiesto dall'esercizio, si noti che A è illimitato inferiormente e quindi inf $A = -\infty$. Per dimostrare quanto richiesto, dimostriamo che se l'estremo superiore M esistesse dovrebbe essere tale per cui $M^3 = 2$ e che $\not \exists M \in \mathbb{Q} : M^3 = 2$.

- 1. Per dimostrare che se M esistesse allora dovrebbe essere 2 dimostraimo che non può essere nè $M^3 < 2$ nè $M^3 > 2$. Supponiamo che sia $M^3 < 2$ e dimostriamo che M non è il minore dei maggioranti o, in altre parole, che scelto $0 < \epsilon < 1$ è possibile determinare $x = M + \epsilon, x \in \mathbb{R}$ tale che $x \in A$. Affinché x appartenga ad A deve essere verificata la disuguaglianza $x^3 < 2 \Leftrightarrow (M + \epsilon)^3 < 2$. Sviluppando i calcoli si ottiene $(M + \epsilon)^3 < 2 \Leftrightarrow M^3 + 3M^2\epsilon + 3M\epsilon^2 + \epsilon^3$, ma essendo $0 < \epsilon < 1$ si ha $\epsilon^3 \le \epsilon^2 \le \epsilon$ e quindi $M^3 + 3M^2\epsilon + 3M\epsilon^2 + \epsilon^3 \le M^3 + \epsilon(3M^2 + 3M + 1)$. Pertanto, affinché sia $(M + \epsilon)^3 < 2$ basta richiedere $M^3 + \epsilon(3M^2 + 3M + 1) < 2$ e questo è verificato per $\epsilon \le (2 M^3)/(3M^2 + 3M + 1)$ (si noti che si era supposto $M^3 < 2$, per cui ϵ risulta essere positivo). Se si ripete lo stesso ragionamento assumendo $M^3 > 2$, si arriva a determinare un altro valore di ϵ che assicura nuovamente che M non è il minore dei maggioranti.
- 2. Dimostriamo ora che $(M^3=2) \Rightarrow (M \notin \mathbb{Q})$. Supponiamo per assurdo $M \in \mathbb{Q}$. Allora sarebbe M=m/n con $m,n\in \mathbb{N}, n\neq 0$ e m,n primi tra loro, tali che $(m/n)^3=2$. In tal caso $m^3=2n^3$ e quindi m^3 sarebbe pari e conseguentemente anche m. Quindi m si potrebbe riscrivere come $m=2k, k\in \mathbb{N}$, per cui risulterebbe $8k^3=2n^3\Rightarrow n^3=4k^3$ il che implicherebbe n pari. m ed n sarebbero quindi entrambi multipli di n0, che è contrario alle ipotesi in quanto n1 ed n2 sono primi tra loro.

2.11 Esercizio

Si dimostri che $A = \{x \in \mathbb{Q} : x^2 < 2\}$ non ammette estremi in \mathbb{Q} .

2.11.1 Risoluzione

Si proceda come nell'esercizio 2.10, facendo attenzione che scelto M>0: $M^2=2$ si ha $(\pm M)^2=2$.

2.12 Esercizio

Tra tutti i rettangoli di area k^2 determinare quello di perimetro minimo.

2.12.1 Risoluzione

Se x e y sono i due lati, si deve determinare il minimo dell'insieme $A = \{2(x+y) : xy = k^2\}$. A tal fine, ricorriamo alla disuguaglianza

$$\frac{x+y}{2} \ge \sqrt{xy}, \quad x, y > 0$$

in cui l'uguaglianza vale se e solo se x=y. Tale disuguaglianza è facilmente dimostrabile osservando che $(x-y)^2 \geq 0$, dove l'uguaglianza vale se e solo se x=y. Infatti, $(x-y)^2 \geq 0 \Leftrightarrow x^2-2xy+y^2 \geq 0 \Leftrightarrow x^2+y^2 \geq 2xy \Leftrightarrow (x+y)^2-2xy \geq 2xy \Leftrightarrow (x+y)^2 \geq 4xy \Leftrightarrow (x+y) \geq 2\sqrt{xy}$, ove nell'ultimo passaggio si è fatto uso dell'ipotesi x,y>0. Tornando al nostro problema, si ha quindi $2(x+y) \geq 4\sqrt{xy} = 4k$, dove il segno di uguaglianza, che corrisponde al minimo dell'insieme A, vale solo nel caso x=y=k. Pertanto il rettangolo richiesto è il quadrato di lato k.

2.13 Esercizio

Determinare tra le coppie $(x, y) \in \mathbb{R}^2$ che soddisfano la relazione $x^2 + y^2 = 1$ quelle per cui il prodotto xy sia massimo.

2.13.1 Risoluzione

Si noti che $(x-y)^2 \ge 0$, dove il segno di uguaglianza vale solo per x=y. Quindi, $x^2+y^2 \ge 2xy$, ma essendo $x^2+y^2=1$ si ha $xy \le 1/2$. Ricordando che il segno di uguaglianza vale solo nel caso x=y, il massimo del prodotto xy si ha in corrispondenza di $x=y=\sqrt{2}/2$ oppure $x=y=-\sqrt{2}/2$.