

Universidad de Buenos Aires Facultad de Ingeniería Año 2012 - 1^{er} Cuatrimestre

SISTEMA DE PROGRAMACIÓN NO CONVENCIONAL DE ROBOTS (75.70)

Trabajo Práctico

Integrantes

Apellido, Nombre	Nro. Padrón	E-mail
Bukaczewski, Verónica	86954	vero13@gmail.com
Rivero, Hernán	XXXXXX	riverohernanj@gmail.com

${\bf \acute{I}ndice}$

1.	Objetivo	2
2.	Descripción base de datos seleccionada 2.1. Información relevante	2
3.	Preparando los datos para las corridas	2
4.	Red Neuronal	3
5.	Ejecutando	3
6.	Conclusiones	3

1. Objetivo

El objetivo del presente trabajo práctico es familiarizarnos con la herramienta Joone, utilizada para el estudio de Redes Neuronales. Y finalmente, poder realizar una análisis de los resultados obtenidos.

2. Descripción base de datos seleccionada

Se seleccionó la base de datos del Ta-Te-Ti, extraída de la página UCI (Machine Learning Repository) Esta base de datos codifica el conjunto completo de configuraciones posibles para el final del juegos del TA-TE-TI, donde "x" se supone que juega primero. El concepto objetivo es "ganar para x" (es decir, ocurre cuando "x" tiene una de las 8 posibles maneras de crear un "tres-en-línea").

2.1. Información relevante

- Número de instancias: 958.
- Número de atributos: 10.
- Información de los atributos: (x=player x has taken, o=player o has taken, b=blank)
 - 1. top-left-square: x,o,b
 - 2. top-middle-square: x,o,b
 - 3. top-right-square: x,o,b
 - 4. middle-left-square: x,o,b
 - 5. middle-middle-square: x,o,b
 - 6. middle-right-square: x,o,b
 - 7. bottom-left-square: x,o,b
 - 8. bottom-middle-square: x,o,b
 - 9. bottom-right-square: x,o,b
 - 10. Class: positive, negative
- Falta de valores de atributo: Ninguno.
- Distribución de Clase: 65,3 % son positivos (es decir, gana para "x").

3. Preparando los datos para las corridas

Los valores para los atributos fueron modificados para que el programa Joone pueda ejecutarse correctamente; debido a que sólo trabaja con números reales y enteros. Valores:

1. x = +1

- 2. o = -1
- 3. b = 0
- 4. positive = 1
- 5. negative = 0

4. Red Neuronal

5. Ejecutando

6. Conclusiones

Cuanto lleva armarlo y cuando lleva correrlo