$\Delta T_{EX} 2_{\epsilon}$ -Vorlage von Matthias Pospiech

Leibniz Universität Hannover

Matthias Pospiech

July 25, 2011

Erklärung der Selbstständigkeit

Hiermit versichere ich, die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie die Zitate deutlich kenntlich gemacht zu haben.

<Ort einfügen>, den <Datum einfügen>

<Autor einfügen>

Contents

T	Intro	duction
	1.1	Personal motivation
	1.2	Research overview
2	Eval	uation 3
	2.1	Existing solution
	2.2	Assumptions
	2.3	Requirements
3	Hard	dware Design
	3.1	RAM
	3.2	USB Serial Device
	3.3	RFM12B Radio
	3.4	Keyboard
4	Soft	ware Modules 7
	4.1	UART
	4.2	SPI
	4.3	RFM12 Driver
	4.4	Watchdog
	4.5	Clock
	4.6	Shell
5	Soft	ware Algorithms
	5.1	Protothreads
	5.2	Ring Buffers
	5.3	Half-Duplex Radio Access (Petri Net)
6	Netv	vork Stack
	6.1	Layer 2a: MAC Layer
	6.2	Layer 2b: Logical Link Control
	6.3	Layer 3: Batman Routing
	6.4	Laver 7: Application 11

ii	Contents

7	Rese	arch	13
	7.1	Simulations	13
		7.1.1 Shell	13
		7.1.2 Routing	13
		7.1.3 Radio Transmission	13
	7.2	Mesh evaluation	13
	7.3	Results	13
8	Conc	clusion	15
Bil	oliogra	aphy	17
Lis	t of F	igures	19
Lis	t of T	Tables	21

1 Introduction

1.1 Personal motivation

This thesis describes the analysis, enhanced design and implementation of an existing microcontroller based mesh solution [Kor09]. The current solution showed.

1.2 Research overview

2 Evaluation

- 2.1 Existing solution
- 2.2 Assumptions
- 2.3 Requirements

3 Hardware Design

3.1 RAM

- Harvard architecture
- RAM bus
- Latch
- 3.2 USB Serial Device
- 3.3 RFM12B Radio
- 3.4 Keyboard

4 Software Modules

- 4.1 UART
- 4.2 SPI
- 4.3 RFM12 Driver
- 4.4 Watchdog
- 4.5 Clock
- 4.6 Shell

5 Software Algorithms

5.1 Protothreads

Concurrently executing tasks Problem: No operating system

"Traditional" embedded implementations are using state machines. Especially the existing thesis uses state machine based algorithms a lot, although the author does not mention this fact at all.

Alternatives:

- Heavyweight: Real Operating System. Enumarate them and compare ...
- Lightweight: Thread implementations. Problem: Each thread has its own stack which consumes a lot of memory.
- More Lightweight: Protothreads. Best compromise between classical state machines and real threads.

5.2 Ring Buffers

5.3 Half-Duplex Radio Access (Petri Net)

6 Network Stack

6.1 Layer 2a: MAC Layer

6.2 Layer 2b: Logical Link Control

6.3 Layer 3: Batman Routing

6.4 Layer 7: Application

7 Research

- 7.1 Simulations
- 7.1.1 Shell
- 7.1.2 Routing
- 7.1.3 Radio Transmission
- 7.2 Mesh evaluation
- 7.3 Results

8 Conclusion

Bibliography

[Kor09] Korniowski, Marek: Projekt odpornej na awarie sieci komputerowej z transmisją danych w pasmach nielicencjonowanych (2009)

List of Figures

List of Tables

Danksagung