Mini-projet d'algorithmique avancée

Kévin VYTHELINGUM, Jean-Michel NOKAYA

10 décembre 2013

Table des matières

1	Introduction	2
2	Préliminaires	2
3	Méthodes des essais successifs	2
	3.1 Analyse	2
	3.2 Algorithme	3

1 Introduction

2 Préliminaires

1.

$$d_{max} \Rightarrow c_{min}$$

$$\sum_{i=1}^{k} d_{max} \Rightarrow \sum_{i=1}^{n} c_{min}$$

$$D \Rightarrow C_{opt}$$

2. complexité = k^n (On peut faire un arbre pour le démontrer)

3 Méthodes des essais successifs

3.1 Analyse

Solution : un candidat est un vecteur de taille n où chaque coefficient est une durée choisie parmi l'ensemble $\{1,...,k\}$ (à chaque tâche on associe une durée). On choisit d'enregistrer les choix réalisés dans un tableau T de taille n.

 S_i : l'ensemble des durées possibles de 1 à k

$$satisfaisant(x_i) = \sum_{j=1}^{i} x_j \le D$$

(la somme partielle des durées choisies est inférieure à la durée maximale autorisée)

$$enregistrer(x_i) = T[i] \leftarrow x_i$$

soltrouvee: i = n

$$defaire(x_i) = T[i] \leftarrow 0$$

Pour simplifier les vérifications au niveau de satisfaisant et des conditions d'élagage, on utilisera les variables entières cout et duree initialisée à 0, qui représenteront le cout courant et la durée courante duent à nos choix de durées. Elles seront mises à jour dans enregistrer et dans défaire. En effet, en notant CD le tableau à deux dimensions ayant les coûts en ligne et les durées en colonne, on effectura dans enregistrer:

$$\begin{array}{rcl} \text{coût} & \leftarrow & \text{coût} + CD[i][x_i] \\ \text{dur\'e} & \leftarrow & \text{dur\'e} + x_i \end{array}$$

Ensuite on effectura dans $d\acute{e}faire$:

$$\begin{array}{rcl} \text{coût} & \leftarrow & \text{coût} - CD[i][x_i] \\ \text{dur\'e} & \leftarrow & \text{dur\'e} - x_i \end{array}$$

3.2 Algorithme

Procédure $ordonnancement_simple(enti)$; var ent k, x_i , D; début $S_i = [1..k]$; pour x_i de 1 à k faire si $\sum_{i=1}^{i} x_i <= D$ alors $T[i] < -x_i$; $cout < -cout + cd[i][x_i]$; $duree < -duree + x_i$;

si i = n alors $Affiche_sol()$; sinon $ordonnancement_simple(i+1)$; fsi;

T[i] < 0; $cout < -cout - cd[i][x_i]$; $duree < -duree - x_i$;

fsi; fait; fin;

Appel: $ordonnancement_simple(1)$;