MATH5473/CSIC5011 - Topological and Geometric Data Reduction and Visualization (Homework #2)

Li Yakun 209200531

• 1. Phase transition:

(a) Find λ given SNR > T.

Suppose $t = \alpha u$, $\alpha \sim N(0, \lambda_0)$. And u is a direction s.t. $u^{\top}u = 1$.

$$\epsilon \sim N\left(0, \varsigma^2 I_p\right), x = t + \varepsilon \text{ then } x \sim N(0, \sigma^2 I_p + \lambda u u^\top), \text{ where } \Sigma = \sigma^2 I_p + \lambda u u^\top \text{ is } p \times p.$$

$$x_i \sim N(0, \Sigma) \in \mathbb{R}^p, \quad x = [x_1 | x_2 | \cdots x_n] \in \mathbb{R}^{p \times n}.$$

Assign
$$\frac{\text{signal of doth}}{\text{signal of noise}} = \frac{\lambda_0}{6^2} = SNR, S_n \triangleq \frac{1}{n} \sum_{i=1}^n x_i x_i^{\top} = \frac{1}{n} x x^{\top}.$$

Then, the eigenvalue λ and corresponding eigenvector v satisfies $S_n v = \lambda v$.

Let
$$y_i = \Sigma^{-\frac{1}{2}} x_i$$
, $Y = [y_1 | y_2 | \dots y_n] = \Sigma^{-\frac{1}{2}} X \sim N(0, I_p)$.

$$T_n = \frac{1}{n} \cdot \sum_{i=1}^n y_i y_i^\top = \frac{1}{n} \cdot YY^\top$$
 is a Wishart Matrix.

So the limit distribution of Tn's eigenvalues follow a M_p distribution.

$$T_n = \frac{1}{n} Y Y^{\top} = \frac{1}{n} \left(\Sigma^{-\frac{1}{2}} X \right) \left(\Sigma^{-\frac{1}{2}} X \right)^{\top} = \Sigma^{-\frac{1}{2}} S_n \Sigma^{-\frac{1}{2}}.$$

$$S_n = \sum^{\frac{1}{2}} T_n \sum^{\frac{1}{2}}.$$

$$S_n v = \Sigma^{\frac{1}{2}} T_n \Sigma^{\frac{1}{2}} v = \lambda v, \ \Sigma^{\frac{1}{2}} T_n \left(\Sigma \Sigma^{-\frac{1}{2}} \right) v = \lambda v, \ T_n \Sigma \left(\Sigma^{-\frac{1}{2}} v \right) = \Sigma^{-\frac{1}{2}} \lambda v = \lambda \left(\Sigma^{-\frac{1}{2}} v \right) v$$

So, λ and $\left(\Sigma^{-\frac{1}{2}}v\right)$ is the eigenvalue and comesponding eigenvector of (T_n,Σ) .

Given
$$SNR > \sqrt{\gamma}$$
, $\lambda = (1 + \lambda_0)(1 + \frac{\gamma}{\lambda_0})$.

Actually
$$\lambda_{\max}(S_n) = \begin{cases} (1+\gamma)^2 = \sigma & \sigma x^2 \leqslant \sqrt{r} \\ (1+\sigma x^2) \left(1 + \frac{\gamma}{\sigma x^2}\right) & \sigma x^2 > \sqrt{r} \end{cases}$$

(b) Based on (a), we have the following results.

If $\lambda_{\max}(S_n) = \sigma$ then we know $SNR \ge \sqrt{\gamma}$.

If
$$\lambda_{\max}(S_n) = (1 + \sigma x^2) (1 + \frac{\gamma}{\sigma x^2})$$
 we know $SNR > \sqrt{\gamma}$.

(c)

$$\left|u^{\top}v\right|^{2} = \left(\frac{1}{c}u^{\top}\Sigma^{\frac{1}{2}}v^{*}\right)^{2} = \frac{(1+R)\left(u^{\top}v^{*}\right)^{2}}{R\left(u^{\top}v\right)^{2}+1} = \frac{1+R-\frac{r}{R}-\frac{r}{R^{2}}}{1+R+r+\frac{r}{R}} = \frac{1-\frac{r}{R^{2}}}{1+\frac{r}{R}},$$

here
$$r = \lim_{p \cdot n \to \infty} \frac{p}{n}$$
, and $R = SNR = \frac{\sigma x^2}{\sigma \varepsilon^2} = \frac{\lambda_0}{\sigma^2}$.

(d) By the code in $HW2_T1.py$ attached in the email, all basic conclusions can be verified by the simulation experiments.

• 2. Exploring S&P500 Stock Prices:

Figure 0.1: P-value for eigenvalues.

We have calculated the p-value for all eigenvalues of S and visualized them. The first eigenvalue that has bigger competitor from Sr's is the 63-th and its value is 3.0 with p-value 0.003996003996. Thus, we have evidence to believe PCA can be conducted to this dataset efficiently and effectively.