

Lecture 12 – Neuromorphic device in reality

Self-summary of memory technologies

Group 1: ReRAM

Group 2: PCM

Group 3: STT-MRAM

Group 4: Ferroelectric memory

- How does it work?
- 2. What is the best thing about the technology?
- 3. What is the biggest drawback of the technology?

5 min in subgroups (break-out rooms)
Each group answer questions for one tech → write in padlet

https://padlet.com/fovmester/2rpsy67bp41sibdt

Outline – Lecture 12

- Requirements on synaptic devices
- Impact of variabilities
- Hardware neurons
- Make your own quiz question!

The ideal synapse and reality of devices

Ideal synapse behavior

$$\Delta w = constant$$

$$\Delta w_{0_+} = \Delta w_-$$

$$G_{min}=0$$

$$\frac{G_{max}}{G_{min}} = \infty$$

Device variation = 0

Negative weight

- Need to represent negative numbers in matrix operations!
- Conductance cannot be negative...
- 2 memristive devices + OP amp → synapse with symmetric weight

- Negative weights in neuromorphic?
 - → <u>Inhibitory synapses</u>, but can be realized in other ways

The impact of synapse non-idealities on learning

- Using software NeuroSim
- In software → 96-97% accuracy

5

Islam et al. J Phys. D. 2019 Mattias Borg | EITP25 VT20 – Lecture 12

Weight precision

- Weight updates at most 2% of Gmax
- \rightarrow 1/0.02 = 50 states \rightarrow 6 bit precision needed
- If only for inference 2 bit is enough!
- MRAM and scaled Ferroelectric thus cannot do it
- RRAM (4-6 bit) and PCM (4 bit) are getting close to sufficient

Dynamic range

- R_{off}/R_{on} should be larger than 50 for inferencing
- On-line learning is more adaptable → R_{off}/R_{on} > 10
- One doesn't need extreme ratios!
- MRAM on/off ratio is very limited!
- Important that R_{off} can represent zero level

Islam et al. J Phys. D. 2019 Mattias Borg | EITP25 VT20 – Lecture 12

Nonlinearity and asymmetry

Impact of non-ideal weight change

- Nonlinearity itself is not a problem unless very strong
- Asymmetry very quickly becomes problematic
 - Typical in real devices...

9

Islam et al. J Phys. D. 2019 Mattias Borg | EITP25 VT20 – Lecture 12

Impact of variability?

Which has the most negative impact on learning?

- A. Device-to-device variation
- B. Conductance variation
- C. Cycle-to-cycle variation

Go to PollEv.com/mattiasborg110

A B C

A B C

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

3 options

Conductance variation (6)

- Variation in maximum conductance value $\rightarrow \sigma$
- No negative impact!
- Even remedies negative impact of asymmetry!
- Q: What is the implication of this?

11

Islam et al. J Phys. D. 2019

Mattias Borg | EITP25 VT20 – Lecture 12

Impact of device to device variation (3)

- Variations in nonlinearity between devices is detrimental
- Why?

12

Islam et al. J Phys. D. 2019

Mattias Borg | EITP25 VT20 – Lecture 12

Cycle to cycle variation (noise, 4)

- Small amount of noise in weight update remedies effect of asymmetry
 - Helps to converge weights to optimal pattern
- Too high noise level obviously decreases performance overall.

13

Islam et al. J Phys. D. 2019

Mattias Borg | EITP25 VT20 – Lecture 12

Quiz

What is the most important parameter to control in a memristive synapse device, assuming high precision of states (6 bits)?

A: Dynamic range (G_{on}/G_{off})

B: Asymmetry

C: Device-to-device G_{max}

D: Cycle-to-cycle noise

Go to PollEv.com/mattiasborg110

A B C D

Hardware neurons

How to implement Leaky Integrate & Fire neurons in hardware?

- <u>Integrate</u> input signals
- Fire when "potential" above threshold
- "Leak" potential
- Adaptive threshold
- Refractory period after spike
- Lateral inhibition

voltage threshold

Example: Si CMOS neuron

CMOS Neuron in TrueNorth chip

- Synchronous, event-driven circuit
- Time-multiplexing
 - → one circuit for 256 logical neurons
- Membrane state and synapse connections stored in SRAM when not used
- Implements:
 - Integration
 - Threshold
 - Leak
 - Lateral inhibition
 - ...

But very complex...and big circuit! What is actually needed?

Simple CMOS neuron

- Implements LIF neuron
 - Integration, Leakage
- Needs spike forming network
- Capacitors still needs lots of space, can we avoid them?

Winner-takes-all (lateral inhibition)

- Implemented by "inhibitory" memristor synapses
 - Moves implementation from neuron → synapse
- External switch determine sign of weight

Wang et al. APL 2019

Mattias Borg | EITP25 VT20 – Lecture 12 18

PCM Neuron

- Exponential change of conductance with crystallization pulses → Integrate and Fire
- Non-volatile → No "Leak"
- Requires manual reset pulse after each "spike"

FeFET neuron

- Single FeFET can implement Integrate-Fire Neuron → avoids bulky capacitors!
- Pulse length threshold for switching polarity in nanoscale FeFETs
- Multiple "non-switching" pulses accumulate to cause switching

Mulaosmanovic et al. Nanoscale 2018

Mattias Borg | EITP25 VT20 – Lecture 12

20

FeFET Neuron II

- Implements integrate & fire
- Depolarization field → leakage
- Negative pulse needed for resetting
- Refractoriness implemented by negative pulse
- Would need coupling to CMOS spike generation network

21

Mulaosmanovic et al. Nanoscale 2018

Mattias Borg | EITP25 VT20 – Lecture 12

Summary

- Memristive memory devices (that we have) are not ideal
- Some non-idealities we can live with
 - Device-device variations in range
 - Noise
 - Limited dynamic range
- Some are more important to fix
 - Asymmetric weight update
- Neuron circuits are big and complex
- Possibility to use memristor devices for neurons, but early research

Make your own quiz question!

- Come up with a good quiz question based on the topics of L8-L11
- You have until the end of the lecture/day → Send it to mattias.borg@eit.lth.se
- Quiz will be posted on Canvas for you to practise on..

What is the chance that you win on the lottery?

- 1. Chance? I always win
- 2. 1 in 100 000
- 3. As good as dying in a plane crash
- 4. I will win when pigs can fly

Lecture 8 – ReRAMs

Lecture 9 – Phase change Memory

Lecture 10 – STT-MRAM

Lecture 11 – Ferroelectric Memory