Problems 1 and 2 require you to have read the lecture notes or watched the lecture, but should be doable. Problem 3 can be attempted before the lecture, but it's alright to skip it.

Problem 4 requires a couple non-trivial ideas, but is interesting both conceptually and algorithmically. Problems 5 and 6 are quite important: make sure you attempt both (especially Problem 6), and read the solutions.

Problem 7 is worth doing if you have time, but not crucial.

Warm-up

Problem 1. Check your understanding: summarise the key differences between a hash table and a Bloom filter, in terms of time and space complexity and guarantees provided.

Problem 2. Prove the claim made in class: the expected time complexities of Insert, Lookup, and Remove with separate chaining are all $O(1 + \alpha)$, where $\alpha = n/m'$ is the load of the hash table. What is their *worst-case* time complexity?

Problem solving

Problem 3. Give an example of a universal hash family \mathcal{H} from a universe \mathcal{X} to a set \mathcal{Y} for which the inequality is not always an equality:

$$\Pr_{h \sim \mathcal{H}} [h(x) = h(x')] \le \frac{1}{|\mathcal{Y}|} \quad \text{for all distinct } x, x' \in \mathcal{X}$$

Problem 4. Given three arrays A, B, and C each containing n positive integers, the task is to decide if there exist $1 \le i, j, k \le n$ such that A[i] + B[j] = C[k]. We aim for an algorithm running in (expected) time $O(n^2)$. (We assume that, given a suitable hash function, we can evaluate it on any given input in constant time.)

- a) As a warm-up, describe an $O(n^3)$ -time deterministic algorithm.
- b) Describe an efficient $O(n^2)$ (expected) time algorithm.
- c) Prove its correctness, and expected time complexity.
- d) Analyze its worst-case time complexity. Can you get $O(n^2)$ here as well?

Problem 5. (Perfect Hashing) Consider the following *two-level hashing* strategy: as in separate chaining, we will use a hash table A of size m' = O(n) to contain our n items, and deal with collisions by having each of the m' buckets handle its hashed elements on its own. But instead of having a linked list for each bucket, we will instead use a secondary *hash table* for each bucket. Here we focus on the case where all n elements are inserted at once at the beginning, and we want to focus on the lookups.

- a) Suppose that bucket k has n_k of the n elements hashed to it. What should be the size of the hash table A_k (the hash table in in bucket k) to guarantee it only has a collision with probability 1/2?
- b) Briefly describe how to do the batch insertion of all *n* elements (initialisation of the data structure).
- c) Analyse the expected time complexity of a lookup to your hash table.
- d) Analyse the expected space complexity of the overall data structure, and show it is O(n).

Problem 6. We will analyse the error probability of the Bloom filter seen in class. We will focus on the error rate, that is, how frequently we would expect LOOKUP to make a mistake, "on average." In what follows, assume we inserted a dataset S of n elements into the Bloom filter. We will make the following (false, but convenient) assumption that we have truly random hash functions: the $(h_i(x))_{i,x}$ are fully independent across elements $x \in \mathcal{X}$ and hash functions $1 \le i \le T$, and $h_i(x)$ is uniformly distributed in $\{1, 2, \ldots, m'\}$ for every i and every x:

$$\forall i, x, y, \quad \Pr[h_i(x) = y] = \frac{1}{m'}$$

- a) Fix any $1 \le i \le m'$. After inserting n elements into our Bloom filter, what is the probability p_i that the i-th bit of our array A is set to 1? Let $B := \frac{m'}{n}$ be the average number of extra bits used per element. Using the approximation $1 + x \approx e^x$ (very accurate for small x), show that $p_i \approx 1 e^{-T/B}$.
- b) *Error rate:* What is the probability that, when calling LOOKUP(x) on a key which was *not* inserted (not part of the n keys from S), the value returned is yes?
- c) Say you have a target per-element storage value B in mind: B = 8 bits. What is the number of hash functions T you should use to minimise the probability of error?
- d) For the setting B = 8, and the choice of T above, what is the error rate you should expect?
- e) Let's use T=6 hash functions and explore the trade-off between space (parameter B) and error rate we could decide to use more space than 8 bits per element. What is the expected error rate if you increase B to 12 bits? 16? 32?

Advanced

Problem 7. Augment the Bloom filter data structure seen in class to add a Remove operation. Analyse the resulting guarantees (performance, error probability, space and time complexities).