Para interceptar un avión que se desplaza en vuelo rectilíneo y uniforme a 450m/s, se lanza desde 1.500m de distancia, un misil guiado mediante navegación proporcional de a = 3,5 y velocidad constante de 850m/s. Si el ángulo de presentación del combate δ_{To} es de 30°, determínese la <u>capacidad de maniobra requerida</u> para garantizar el impacto, si el ángulo de puntería δ_{Mo} fuera de 20°.

Ángulo de colisión ideal δ_{Mc} = 0,2679 rad = 15,3495°

Error de puntería $\Delta \delta_{M} = 0.0812 \text{ rad} = 4.6505^{\circ}$

Velocidad de aproximación $V_a = 409,0273 \text{ m/s}$

Tiempo de vuelo $t_1 = 3,6672 s$

Aceleración máxima de maniobra $\Gamma_{Mn} = 65,8457 \text{ m/s}^2$

El misil debería tener una capacidad de maniobra de al menos de Γ_{Mn} = 65,8457 m/s² para poder interceptar el avión, es decir, n_M = 6,7g (g = 9,81 m/s²)