PSE605A (Photonics Lab Techniques)

Lab Report: Experiment 4

POLARIZATION

Submitted by
Md Sk Sahidulla
Roll Number: 231160005
M.Tech,2023

Submitted to Dr. Pratik Sen Ms. Bhaswati Singha Deo (TA)

Center for Lasers and Photonics IIT KANPUR Academic Year 2023-2024 Date: 15/01/2024

Contents

1	Stu	dies on polarization	2
	1.1	Objectives	2
	1.2	Equipments	2
	1.3	Observations and Calculations	2
		1.3.1 Objective 1: To check the polarisation of laser source	3
		1.3.2 Objective 2: To verify Malus law	3
		1.3.3 Objective 3: To characterize the functionality of HWP .	4
		1.3.4 Objective 4: Generate circular and elliptical polarized	
		light using QWP	6
	1.4	Error Analysis	7
		1.4.1 For Objective 2	7
		1.4.2 For Objective 3	7
	1.5	Discussions and Conclusions	7
	1.6	Source of Error	8
	1.7	Appendices	9
2	\mathbf{Sim}	ulation study of Polarization Experiment using Fred soft-	
	war		13
	2.1	Objectives	13
	2.2	Observations	13
		2.2.1 Verification Of Malus law	13
		2.2.2 Functionality of HWP	13
		2.2.3 Circular Polarisation	13
		2.2.4 Elliptical polarisation	13
	2.3	Computional Observations	14
		2.3.1 Verification Of Malus law	14
		2.3.2 Functionality of HWP	15
		2.3.3 Circular Polarisation	16
		2.3.4 Elliptical Polarisation	16
	2.4	Appendices	18
	2.5		20
	2.6	References	21
	2.0	Total Control	
L	ist	of Tables	
	1	Polarisation of Laser source	9
	2	Verification of Malus law	10
	3	Functionality of HWP	11
	4	Circular and Elliptical Polarisation	12
	5	Verification Of Malus law	18
	6	Functionality of HWP	19
	7	Circular Polarisation	20

Studies on polarization 1

Objectives 1.1

- To check the polarisation of laser source
- To verify Malus law
- To characterize the functionality of HWP
- Generate circular and elliptical polarized light using QWP

1.2 **Equipments**

He-Ne Laser (632.8nm), Linear polarizers, Half wave plate, Quarter wave plate, Photo diode, Biasing circuit and multi-meter.

1.3 **Observations and Calculations**

Suppose, the output voltage is v.

Then, the current is

$$I = \left(\frac{v}{R}\right)$$

where R is the resistance.

We know, optical power,

$$P = \left(\frac{I}{R_p}\right)$$

where R_p is the responsivity of the detector.

$$P = \left(\frac{v}{R_p R}\right)$$

Here R=1 kW and the responsivity of the detector is 0.43 A/W.

Then,

$$P = \left(\frac{v}{430}\right)$$

1.3.1 Objective 1: To check the polarisation of laser source

Figure 1: Polarisation of laser source

1.3.2 Objective 2: To verify Malus law

Maximum optical power of direct beam,

$$P_1 = 2.226/430 = 0.00517674 W$$

Maximum Optical power after keeping polariser,

$$P_2 = 1.78/430 == 0.00413953 W$$

Maximum Optical power after keeping analyser,

$$P_3 = 1.436/430 == 0.003339535 W$$

So, polariser loss= 0.00517674 - 0.00413953 = 0.00103687~WAnalyser loss= 0.00413953 - 0.00339535 = 0.00074418~WTotal loss= 0.00103687 + 0.00074418 = 0.00178105~W

theoretical power = experimental power + $loss * cos^2 \theta$

Figure 2: Verification of Malus law

1.3.3 Objective 3: To characterize the functionality of HWP

After putting HWP, maximum optical power after analyser is

$$P_4 = 0.98/430 = 0.00227907 W$$

So, HWP loss=
$$P_2 - P_4 - analyserloss$$

$$= 0.00413953 - 0.00227907 - 0.00074418 = 0.00111628 \ W$$

total loss=

$$0.00103687 + 0.00074418 + 0.00111628 = 0.00289733 \ W$$

theoretical power = experimental power + $loss*sin^2\theta$

Figure 3: Functionality of HWP

Figure 4: Comparison between with and without HWP

1.3.4 Objective 4: Generate circular and elliptical polarized light using QWP

Figure 5: Circular and Polarised light

1.4 Error Analysis

1.4.1 For Objective 2

Suppose, for 0° rotation, experimental optical power = 0.003340 WTheoretical optical power = 0.005177 WThen the maximum percentile error,

$$\left(\frac{\delta P}{P}\right) * 100\% = \left(\frac{(0.005177 - 0.003340)}{0.005177}\right) * 100\%$$
$$= 35.48\%$$

So, the maximum percentile error in calculating optical power is 35.48%.

1.4.2 For Objective 3

Suppose, for 90° rotation, experimental optical power = 0.002279 W Theoretical optical power = 0.005177 W Then the maximum percentile error,

$$\left(\frac{\delta P}{P}\right) * 100\% = \left(\frac{(0.005177 - 0.002279)}{0.005177}\right) * 100\%$$

$$= 55.98\%$$

So, the maximum percentile error in calculating optical power is 55.98%.

1.5 Discussions and Conclusions

- Polarisation of laser source: For without QWP, we can see the optical power is varying with the rotation of polariser. At two points, there are very low optical power but not complete extinction. So, this is not a linear polarised light. after putting QWP, we can see the same situation but with relatively low power. From that it can be concluded that the source is a mixture of unpolarised and linear polarised light or a mixture of unpolarised and elliptical polarised light.
- Verification of Malus law: After putting analyser, we can see at 0° and 180° , optical power is maximum. And at 90° , the optical power is zero. With the change in rotation of analyser, the optical power is changing in $\cos^2\theta$ manner. So, it verified malus law.
- Functionality of HWP: We can see from the table, at 0° and 180° , optical power is zero. And at 90° , the optical power is maximum. It looks like, HWP just adds $\pi/2$ phase difference. We can see from the comparison plot that after putting an HWP between polariser and analyser, it looks like the mirror image of the previous case. So, HWP does not change the polarisation type.

- Generation of circular polarisation: After replacing the HWP with the QWP, we put the QWP in the middle of the maximum and minimum positions. We tried to keep the optic axis of the QWP at 45° with pass axis of polariser. From the output, we can see that the optical power is almost the same for all the angle of rotations. From it, we can say it is a circular polarised light.
- Generation of elliptical polarisation: To get an elliptical polarised light, we just rotate the QWP 6°. And we get a continuous variation in optical power looking like a sinusoidal curve. From it, we can see that it is an elliptical polarised light.

1.6 Source of Error

- There is an error of perpendicularity. it comes from taking readings of rotation in polariser or analyser.
- Always there is fluctuation in output voltage. We tried to take the average of the readings. it is also a source of error.
- The room was not fully dark. So, always there is a noise in the output.

1.7 Appendices

Table 1: Polarisation of Laser source					
Rotation of polariser (deg)	Output Voltage WITHOUT QWP (V)	Output Power WITHOUT QWP (W)	Output Voltage WITH QWP (V)	Output Power WITH QWP (W)	
0	1.780000	0.004140	1.347000	0.003133	
6	1.723000	0.004007	1.320000	0.003070	
12	1.619000	0.003765	1.263000	0.002937	
18	1.501000	0.003491	1.190000	0.002767	
24	1.355000	0.003151	1.055000	0.002453	
30	1.144000	0.002660	0.928000	0.002158	
36	0.975000	0.002267	0.784000	0.001823	
42	0.768000	0.001786	0.649000	0.001509	
48	0.650000	0.001512	0.526000	0.001223	
54	0.443000	0.001030	0.413000	0.000960	
60	0.324000	0.000753	0.267000	0.000621	
66	0.216000	0.000502	0.170000	0.000395	
72	0.115000	0.000267	0.089000	0.000207	
78	0.066000	0.000153	0.053000	0.000123	
84	0.047000	0.000109	0.018000	0.000042	
90	0.015000	0.000035	0.010000	0.000023	
96	0.023000	0.000053	0.022000	0.000051	
102	0.077000	0.000179	0.053000	0.000123	
108	0.135000	0.000314	0.101000	0.000235	
114	0.222000	0.000516	0.160000	0.000372	
120	0.334000	0.000777	0.218000	0.000507	
126	0.447000	0.001040	0.319000	0.000742	
132	0.585000	0.001360	0.414000	0.000963	
138	0.757000	0.001760	0.528000	0.001228	
144	0.957000	0.002226	0.710000	0.001651	
150	1.140000	0.002651	0.849000	0.001974	
156	1.350000	0.003140	1.032000	0.002400	
162	1.474000	0.003428	1.131000	0.002630	
168	1.558000	0.003623	1.202000	0.002795	
174	1.600000	0.003721	1.259000	0.002928	
180	1.647000	0.003830	1.285000	0.002988	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Table 2: Verifica	tion of Malus l	aw
0 1.436000 0.003340 0.005177 6 1.346000 0.003130 0.004947 12 1.283000 0.002984 0.004742 18 1.225000 0.002849 0.004511 24 1.115000 0.002593 0.004126 30 0.996000 0.002316 0.003694 36 0.835000 0.001942 0.003144 42 0.770000 0.001791 0.002805 48 0.538000 0.001251 0.002074 54 0.442000 0.001028 0.001663 60 0.305000 0.000709 0.001169 66 0.203000 0.000472 0.000776 72 0.126000 0.000293 0.000468 78 0.076000 0.000177 0.000256 84 0.070000 0.000156 0.000156 96 0.108000 0.000251 0.000271 102 0.175000 0.000407 0.000486 108 0.263000	analyser		Experimental	
6 1.346000 0.003130 0.004947 12 1.283000 0.002984 0.004742 18 1.225000 0.002849 0.004511 24 1.115000 0.002593 0.004126 30 0.996000 0.002316 0.003694 36 0.835000 0.001942 0.003144 42 0.770000 0.001791 0.002805 48 0.538000 0.001251 0.002074 54 0.442000 0.001028 0.001663 60 0.305000 0.000709 0.001169 66 0.203000 0.000472 0.000776 72 0.126000 0.000177 0.000256 84 0.076000 0.000163 0.000183 90 0.067000 0.000156 0.000156 96 0.108000 0.000251 0.000271 102 0.175000 0.000407 0.000486 108 0.263000 0.000407 0.000486 126 0.626000 <td></td> <td>1 426000</td> <td>1 1</td> <td>` /</td>		1 426000	1 1	` /
12 1.283000 0.002984 0.004742 18 1.225000 0.002849 0.004511 24 1.115000 0.002593 0.004126 30 0.996000 0.002316 0.003694 36 0.835000 0.001942 0.003144 42 0.770000 0.001791 0.002805 48 0.538000 0.001251 0.002074 54 0.442000 0.001028 0.001663 60 0.305000 0.000709 0.001169 66 0.203000 0.000472 0.000776 72 0.126000 0.000293 0.000468 78 0.076000 0.000177 0.000256 84 0.070000 0.000156 0.000156 96 0.108000 0.000251 0.000271 102 0.175000 0.000407 0.000486 108 0.263000 0.000407 0.000486 108 0.263000 0.000407 0.001636 126 0.626000 </td <td>•</td> <td></td> <td>0.0000</td> <td></td>	•		0.0000	
18 1.225000 0.002849 0.004511 24 1.115000 0.002593 0.004126 30 0.996000 0.002316 0.003694 36 0.835000 0.001942 0.003144 42 0.770000 0.001791 0.002805 48 0.538000 0.001251 0.002074 54 0.442000 0.001028 0.001663 60 0.305000 0.000779 0.001169 66 0.203000 0.000293 0.000776 72 0.126000 0.000293 0.000468 78 0.076000 0.000177 0.000256 84 0.070000 0.000156 0.000156 96 0.108000 0.000251 0.000271 102 0.175000 0.000407 0.000486 108 0.263000 0.000407 0.000486 120 0.506000 0.001177 0.001636 126 0.626000 0.001777 0.001636 126 0.626000<		1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
30 0.996000 0.002316 0.003694 36 0.835000 0.001942 0.003144 42 0.770000 0.001791 0.002805 48 0.538000 0.001251 0.002074 54 0.442000 0.001028 0.001663 60 0.305000 0.000709 0.001169 66 0.203000 0.000472 0.000776 72 0.126000 0.000293 0.000468 78 0.076000 0.000177 0.000256 84 0.070000 0.000156 0.000156 96 0.108000 0.000251 0.000271 102 0.175000 0.000407 0.000486 108 0.263000 0.000612 0.000787 114 0.382000 0.000888 0.001192 120 0.506000 0.001177 0.001636 126 0.626000 0.001767 0.002590 132 0.760000 0.001767 0.002590 138 0.90000				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
48 0.538000 0.001251 0.002074 54 0.442000 0.001028 0.001663 60 0.305000 0.000709 0.001169 66 0.203000 0.000272 0.000776 72 0.126000 0.000293 0.000468 78 0.076000 0.000177 0.000256 84 0.070000 0.000163 0.000183 90 0.067000 0.000156 0.000156 96 0.108000 0.000251 0.000271 102 0.175000 0.000407 0.000486 108 0.263000 0.000612 0.000787 114 0.382000 0.000888 0.001192 120 0.506000 0.001177 0.001636 126 0.626000 0.001767 0.002590 132 0.760000 0.001767 0.002590 138 0.900000 0.002033 0.003108 144 1.013000 0.002600 0.003558 150 1.118		0.00000	0.00=0==	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
84 0.070000 0.000163 0.000183 90 0.067000 0.000156 0.000156 96 0.108000 0.000251 0.000271 102 0.175000 0.000407 0.000486 108 0.263000 0.000612 0.000787 114 0.382000 0.001177 0.001636 120 0.506000 0.001177 0.001636 126 0.626000 0.001456 0.002091 132 0.760000 0.001767 0.002590 138 0.900000 0.002093 0.003108 144 1.013000 0.002356 0.003558 150 1.118000 0.002600 0.004396				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78	0.076000	0.000177	0.000256
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	0.070000	0.000163	0.000183
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	0.067000	0.000156	0.000156
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96	0.108000	0.000251	0.000271
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102	0.175000	0.000407	0.000486
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108	0.263000	0.000612	0.000787
126 0.626000 0.001456 0.002091 132 0.760000 0.001767 0.002590 138 0.900000 0.002093 0.003108 144 1.013000 0.002356 0.003558 150 1.118000 0.002600 0.003978 156 1.231000 0.002863 0.004396	114	0.382000	0.000888	0.001192
132 0.760000 0.001767 0.002590 138 0.900000 0.002093 0.003108 144 1.013000 0.002356 0.003558 150 1.118000 0.002600 0.003978 156 1.231000 0.002863 0.004396	120	0.506000	0.001177	0.001636
138 0.900000 0.002093 0.003108 144 1.013000 0.002356 0.003558 150 1.118000 0.002600 0.003978 156 1.231000 0.002863 0.004396	126	0.626000	0.001456	0.002091
138 0.900000 0.002093 0.003108 144 1.013000 0.002356 0.003558 150 1.118000 0.002600 0.003978 156 1.231000 0.002863 0.004396	132	0.760000	0.001767	0.002590
144 1.013000 0.002356 0.003558 150 1.118000 0.002600 0.003978 156 1.231000 0.002863 0.004396	138	0.900000	0.002093	
150 1.118000 0.002600 0.003978 156 1.231000 0.002863 0.004396	144			
156 1.231000 0.002863 0.004396	150			
$oxed{1}$ 162 $oxed{1}$ 1.306000 $oxed{1}$ 0.003037 $oxed{1}$ 0.004699	162	1.306000	0.003037	0.004699
168 1.365000 0.003174 0.004932	-			
174 1.405000 0.003267 0.005085				
180 1.407000 0.003272 0.005109				

Table 3: Functionality of HWP

	Table 3: Functionality of HWP					
Rotation of	Output Voltage	Output Power	Output Power			
analyser	(V)	Experimental	Theoretical			
(deg)	, ,	(W)	(W)			
0	0.035000	0.000081	0.000081			
6	0.047000	0.000109	0.000141			
12	0.078000	0.000181	0.000307			
18	0.130000	0.000302	0.000579			
24	0.194000	0.000451	0.000931			
30	0.279000	0.000649	0.001373			
36	0.367000	0.000853	0.001855			
42	0.467000	0.001086	0.002383			
48	0.559000	0.001300	0.002900			
54	0.650000	0.001512	0.003408			
60	0.741000	0.001723	0.003897			
66	0.818000	0.001902	0.004321			
72	0.885000	0.002058	0.004679			
78	0.930000	0.002163	0.004935			
84	0.969000	0.002253	0.005120			
90	0.980000	0.002279	0.005177			
96	0.968000	0.002251	0.005117			
102	0.938000	0.002181	0.004954			
108	0.895000	0.002081	0.004702			
114	0.826000	0.001921	0.004339			
120	0.753000	0.001751	0.003924			
126	0.683000	0.001588	0.003485			
132	0.606000	0.001409	0.003010			
138	0.486000	0.001130	0.002428			
144	0.393000	0.000914	0.001915			
150	0.301000	0.000700	0.001424			
156	0.218000	0.000507	0.000986			
162	0.152000	0.000353	0.000630			
168	0.097000	0.000226	0.000351			
174	0.040000	0.000093	0.000125			
180	0.029000	0.000067	0.000067			
	1	1				

Table 4: Circular and Elliptical Polarisation

Rotation of	Output Voltage for	Output Power for	Output Voltage for	Output Power for
analyser	circular polarisation	circular polarisation	elliptical polarisation	elliptical polarisation
(deg)	(V)	(W)	(V)	(W)
0	0.506000	0.001177	0.520000	0.001209
6	0.520000	0.001209	0.557000	0.001295
12	0.522000	0.001214	0.583000	0.001356
18	0.532000	0.001237	0.604000	0.001405
24	0.533000	0.001240	0.636000	0.001479
30	0.535000	0.001244	0.667000	0.001551
36	0.538000	0.001251	0.681000	0.001584
42	0.541000	0.001258	0.694000	0.001614
48	0.541000	0.001258	0.707000	0.001644
54	0.535000	0.001244	0.702000	0.001633
60	0.533000	0.001240	0.694000	0.001614
66	0.531000	0.001235	0.683000	0.001588
72	0.529000	0.001230	0.667000	0.001551
78	0.522000	0.001214	0.643000	0.001495
84	0.519000	0.001207	0.620000	0.001442
90	0.522000	0.001214	0.597000	0.001388
96	0.518000	0.001205	0.572000	0.001330
102	0.519000	0.001207	0.550000	0.001279
108	0.523000	0.001216	0.525000	0.001221
114	0.525000	0.001221	0.504000	0.001172
120	0.527000	0.001226	0.481000	0.001119
126	0.529000	0.001230	0.460000	0.001070
132	0.528000	0.001228	0.449000	0.001044
138	0.522000	0.001214	0.442000	0.001028
144	0.518000	0.001205	0.440000	0.001023
150	0.516000	0.001200	0.444000	0.001033
156	0.515000	0.001198	0.456000	0.001060
162	0.520000	0.001209	0.472000	0.001098
168	0.525000	0.001221	0.495000	0.001151
174	0.529000	0.001230	0.515000	0.001198
180	0.533000	0.001240	0.538000	0.001251

2 Simulation study of Polarization Experiment using Fred software

2.1 Objectives

- To verify Malus law
- To characterize the functionality of HWP
- Generate Circular and Elliptical polarized light using QWP

2.2 Observations

2.2.1 Verification Of Malus law

Rotation of analyser (deg)	Irradiance (power/area)
0	3.485
90	0.000
180	3.485

2.2.2 Functionality of HWP

Rotation of analyser (deg)	Irradiance (power/area)
0	0.000
90	3.510
180	0.000

2.2.3 Circular Polarisation

Rotation of analyser (deg)	Irradiance (power/area)
0	1.755
90	1.755
180	1.755

2.2.4 Elliptical polarisation

Rotation of analyser (deg)	Irradiance (power/area)
0	1.550
60	2.340
90	1.965
180	1.550
190	1.750

2.3 Computional Observations

2.3.1 Verification Of Malus law

Figure 8: For 180°

2.3.2 Functionality of HWP

Figure 9: For 0°

Figure 11: For 180°

2.3.3 Circular Polarisation

Figure 12: For 0°

Figure 14: For 180°

2.3.4 Elliptical Polarisation

Figure 15: For 0°

Figure 16: For 60°

Figure 17: For 90°

Figure 18: For 180°

Figure 19: For 190°

2.4 Appendices

Table 5: Verification Of Malus law

Rotation of analyser (deg)	Irradiance range	Average Irradiance (power/area)
0	3.30-3.67	3.48
15	2.56-2.93	2.75
30	1.83-2.20	2.01
45	1.09-1.46	1.28
60	0.72-1.09	0.90
75	0.35 - 0.72	0.53
90	0.00-0.00	0.00
105	0.35 - 0.72	0.53
120	0.72-1.09	0.90
135	1.09-1.46	1.28
150	1.83-2.20	2.01
165	2.56-2.93	2.75
180	3.30-3.67	3.48

Figure 20: Verification of malus law

Table 6: Functionality of HWP

Rotation of analyser (deg)	Irradiance range	Average Irradiance (power/area)
0	0.00-0.00	0.00
15	0.32-0.69	0.51
30	0.69-1.07	0.87
45	1.07-1.45	1.26
60	1.82-2.20	2.01
75	2.57-2.95	2.76
90	3.32-3.70	3.51
105	2.57-2.95	2.76
120	1.82-2.20	2.01
135	1.07-1.45	1.26
150	0.69-1.07	0.87
165	0.32-0.69	0.51
180	0.00-0.00	0.00

Figure 21: Functionality of HWP $\,$

Table 7: Circular Polarisation

Rotation of analyser (deg)	Irradiance range	Average Irradiance (power/area)
0	1.66-1.85	1.75
15	1.66-1.85	1.75
30	1.66-1.85	1.75
45	1.66-1.85	1.75
60	1.66-1.85	1.75
75	1.66-1.85	1.75
90	1.66-1.85	1.75
105	1.66-1.85	1.75
120	1.66-1.85	1.75
135	1.66-1.85	1.75
150	1.66-1.85	1.75
165	1.66-1.85	1.75
180	1.66-1.85	1.75

Figure 22: circular polarisation

2.5 Discussions and Conclusions

- Verification Of Malus law: we can see at 0° and 180° , irradiance is maximum. And at 90° , the irradiance is zero. With the change in rotation of analyser, the irradiance is changing in $\cos^2\theta$ manner. So, it verified malus law.
- Functionality of HWP: We can see from the table, at 0° and 180° , irradiance is zero. And at 90° , the irradiance is maximum. It looks like, HWP just adds $\pi/2$ phase difference. So, HWP does not change the polarisation type.
- Generation of circular polarisation: In this case we can see that the irradiance is the same for all the angles of rotations. From it, we can say it is a circularly polarised light.

2.6 References

- \bullet "Optics" by Ajoy Ghatak, Tata McGraw-Hill, 1st edition (2010)
- \bullet "Optics" by E. Hecht, Pearson Education, 4th edition (2003)