Spannungsteiler / Ersatzspannungsquelle

zahlenpresse.de

12. Dezember 2012

1 Unbelasteter Spannungsteiler

Die Gesammtspannung U_{ges} fällt gemäß der Maschenregel über den beiden Widerständen R_1 und R_2 ab. Es gilt also $U_{ges}=U_1+U_2$. Es soll nun die über R_2 abfallende Spannung U_2 in Abhängigkeit der Dimensionierung von R_1 und R_2 betrachtet werden.

$$U_{ges} = I_{ges} \cdot R_{ges} = I_{ges} \cdot (R_1 + R_2)$$

Da durch R_1 und R_2 der gleiche Strom I_{ges} fließt, kann I_{ges} hier noch wahlweise durch $I_{ges}=\frac{U_1}{R_1}$ oder $I_{ges}=\frac{U_2}{R_2}$ ersetzt werden. Da wir die Spannung U_2 bestimmen wollen kommt nur letztere Substitution in Frage.

$$U_{ges} = \frac{U_2}{R_2} \cdot (R_1 + R_2) \qquad \Leftrightarrow \qquad U_2 = U_{ges} \cdot \frac{R_2}{R_1 + R_2}$$

2 Belasteter Spannungsteiler

$$U_{ges} = I_{ges} \cdot R_{ges} = (I_2 + I_L) \cdot (R_1 + R_2 || R_L)$$

Der Widerstand aus der Parallelschaltung $R_2||R_L$ soll später berechnet werden. Hier werden erstmal $I_2=\frac{U_2}{R_2}$ und $I_L=\frac{U_L}{R_L}$ eingesetzt. Beachtet werden sollte dabei, dass aufgrund der Parallelität von R_2 und R_L über beiden Widerständen die gleiche Spannung abfällt und es gilt: $U_2=U_L$.

$$\begin{split} U_{ges} &= (\frac{U_2}{R_2} + \frac{U_L}{R_L}) \cdot (R_1 + R_2 || R_L) \\ & \Leftrightarrow \qquad U_{ges} = (\frac{U_L}{R_2} + \frac{U_L}{R_L}) \cdot (R_1 + R_2 || R_L) \\ & U_{ges} = U_L \cdot (\frac{1}{R_2} + \frac{1}{R_L}) \cdot (R_1 + R_2 || R_L) \end{split}$$

Nach dem Erweitern der Brüche und Umformen nach \mathcal{U}_L ergibt sich dann:

$$\begin{split} U_{ges} &= U_L \cdot \big(\frac{R_L}{R_2 \cdot R_L} + \frac{R_2}{R_2 \cdot R_L}\big) \cdot \big(R_1 + R_2 || R_L\big) \\ \\ U_{ges} &= U_L \cdot \frac{R_2 + R_L}{R_2 \cdot R_L} \cdot \big(R_1 + R_2 || R_L\big) \qquad \Leftrightarrow \qquad U_L = \frac{U_{ges} \cdot R_2 \cdot R_L}{(R_2 + R_L) \cdot (R_1 + R_2 || R_L)} \end{split}$$

Jetzt soll der Widerstand $R_{2L} = R_2 || R_L$ aus den parallel liegenden Widerständen errechnet werden und in letztere Gleichung eingesetzt werden:

$$\frac{1}{R_{2L}} = \frac{1}{R_2} + \frac{1}{R_L} \quad \Leftrightarrow \quad \frac{1}{R_{2L}} = \frac{R_L}{R_2 \cdot R_L} + \frac{R_2}{R_2 \cdot R_L}$$

$$\frac{1}{R_{2L}} = \frac{R_2 + R_L}{R_2 \cdot R_L} \quad \Leftrightarrow \quad R_{2L} = \frac{R_2 \cdot R_L}{R_2 + R_L} = (R_2 || R_L)$$

$$U_L = U_{ges} \cdot \frac{R_2 \cdot R_L}{(R_2 + R_L) \cdot (R_1 + \frac{R_2 \cdot R_L}{R_2 + R_L})}$$

$$U_L = U_{ges} \cdot \frac{R_2 \cdot R_L \cdot (R_2 + R_L)}{(R_2 + R_L) \cdot (R_1 \cdot (R_2 + R_L) + R_2 \cdot R_L)}$$

$$U_L = U_{ges} \cdot \frac{R_2 \cdot R_L}{R_1 \cdot R_2 + R_1 \cdot R_L + R_2 \cdot R_L}$$

3 Ersatzspannungsquelle

Ziel der Ersatzspannungsquelle ist es, ausgehend vom unbelasteten Spannungsteiler eine neue Spannungsquelle U_i mit bekanntem Innenwiderstand R_i zu definieren. Vergleichsweise kann hier eine Batterie herangezogen werden von der zunächst auch einmal nur die Klemmenspannung bekannt ist. Der Innenwiderstand kann zwar nachgemessen werden, wie dieser sich aber zusammensetzt ist für den äußeren Betrachter nicht erfassbar. Erst an diese neue Spannungsquelle wird in Analogie zum belasteten Spannungsteiler die Last R_L gemäß der folgenden Schaltung angeschlossen:

Für die Konstruktion der ESQ wird der Spannungsteiler im Leerlauf betrachtet. Dafür wurde bereits der folgende formale Zusammenhang aufgestellt:

$$U_i = U_2 = U_{ges} \cdot \frac{R_2}{R_1 + R_2}$$

Im nächsten Schritt muss der Innenwiderstand R_i ermittelt werden. Dieser ergibt sich aus dem Widerstand an den Klemmen des unbelasteten Spannungsteilers, wobei die Spannungsquelle U_{ges} kurzgeschlossen wird. Der Innenwiderstand kommt dann aus den parallel liegenden Widerständen R_1 und R_2 zu stande.

$$R_i = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Damit sind bereits alle Größen bekannt. Möchte man jetzt den Spannungsabfall über R_L bestimmen, so hat man einen neuen Spannungsteiler bestehend aus R_i und R_L zu berechnen.

$$U_L = U_i \cdot \frac{R_L}{R_i + R_L}$$

Um die Richtigkeit dieser Gleichung zu proben genügt es U_i und R_i , wie oben aufgeschreiben einzusetzen. Damit finden wir die gleiche Formel, wie beim belasteten Spannungsteiler:

$$U_L = U_{ges} \cdot \frac{R_2 \cdot R_L}{R_1 \cdot R_2 + R_1 \cdot R_L + R_2 \cdot R_L}$$

Das Modell der Ersatzspannungsquelle ist gerade bei der Berechnung von größeren Netzwerken sehr hilfreich.