SÉANCE DE RÉVISION AUTOMNE 2019

Exercice 1. Soient E un ensemble et $f: E \to E$ tel que $f \circ f \circ f = f$. Montrez que f est injective si, et seulement si, f est surjective.

Exercice 2. Soient E un ensemble à n éléments. Soit X une partie de E à p éléments.

- a. Combien y a t-il de parties Y de E disjointes de X?
- b. Combien y a t-il de couples (X,Y) formés de parties disjointes de E?

Exercice 3. Prouvez que le langage $L = \{w \in \{a, b, c\}^* : w = w^R\}$ n'est pas régulier. Rappel : si $w = a_1 a_2 \dots a_n$ alors $w^R = a_n a_{n-1} \dots a_2 a_1$

Exercice 4. Démontrez que le langage $L = \{a^{4i}b^j|i \leq j\} \subseteq \{a,b\}^*$ n'est pas régulier.

Exercice 5. Pour un problème donné, on a une solution directe en $\Theta(n^3)$. On a aussi trouvé deux solutions de type diviser pour règner. Lesquelles choisir?

- a. Découper le problème de taille n en 2 sous-problèmes de taille n/2, et les recombiner en temps $\Theta(n^2)$.
- b. Découper le problème de taille n en 4 sous-problèmes de taille n/3, et les recombiner en temps $\Theta(\sqrt{n})$.

Exercice 6. Deux algorithmes A et B passent respectivement $T_A(n) = c_A.n.log_2(n)$ et $T_B(n) = c_B.n^2$ microsecondes, respectivement, pour résoudre un problème de taille n. Trouvez le meilleur des deux algorithmes pour résoudre un problème de taille $n = 2^{20}$ sachant que A passe 10 microsecondes (μ s) pour n = 1024 et B passe 1μ s pour n = 1024.

Exercice 7. Soit la fonction récursive

$$\begin{cases} F_0 = 2 \\ F_n = F_{n-1} \times F_{n-1} \text{ si } n > 0 \end{cases}$$

- a. Montrez par récurrence que $F_n = 2^{2^n}$.
- b. On s'intéresse au nombre m(n) de multiplications effectuées pour calculer F_n . m(n) est la solution de l'équation de récurrence ci-dessous. Montrez par récurrence que $m(n) = 2^n 1$.

$$\begin{cases} m(n) = 0 \\ m(n) = 1 + 2 \times m(n-1) \text{ si } n > 0 \end{cases}$$

c. Quelle est la complexité de ${\cal F}_n$ si elle s'implémente comme suit :

```
\label{eq:fonction} \begin{split} & \textbf{fonction } F(\textbf{n}:\textbf{entier}):\textbf{entier} \\ & \textbf{si } n = 0 \\ & \textbf{alors} \\ & & \text{retourner}(2) \\ & \textbf{sinon} \\ & & \text{retourner}(F(\textbf{n-1}) \times F(\textbf{n-1})) \end{split} \textbf{fin } \textbf{si}
```

$$(p,q)\mathcal{R}(p',q')$$
 si $p-p'$ est pair et $q-q'$ est divisible par 3

- 1. Donnez le cardinal de $E \times E$.
- 2. Vérifiez que \mathcal{R} est une relation d'équivalence. On désigne par $\overline{(p,q)}$ la classe d'équivalence de (p,q).
- 3. Combien y a-t-il de classes d'équivalence différentes ? Donnez leur liste.
- 4. Calculez le nombre d'éléments des classes suivantes : (1,1), (1,2), (1,3).
- 5. Soit $q \in E$. Montrez que, si $(x,y) \in \overline{(1,q)}$ alors $(x+1,y) \in \overline{(2,q)}$.
- 6. Montrez que, pour tout $q \in E$, l'application f de $\overline{(1,q)}$ dans $\overline{(2,q)}$ définie par f(x,y) = (x+1,y) est une bijection.
- 7. Déterminez le cardinal de chaque classe d'équivalence. Comparez avec la question 1.

Exercice 2. Soient E, F, G trois ensembles, $f: E \to F$ et $g_1, g_2: F \to G$. On suppose f surjective et $g_1 \circ f = g_2 \circ f$. Montrez que $g_1 = g_2$.

Exercice 3. Montrez que pour tout n > 2, $n^2 > n$.

Exercice 4. Le 1er Janvier 2014, une ville A compte 50000 habitants. On admet que chaque année, sa population augmente de 1.5%. On désigne par P_n sa population le 1er Janvier de l'annéee 2014 + n. Ainsi, $P_0 = 50000$.

- 1. Calculez P_1 , P_2 , P_3 .
- 2. Quelle est la nature de la suite $(P_n)n \in \mathbb{N}$?
- 3. Exprimez P_n en fonction de n.
- 4. Déterminez à partir de quelle année la population de la ville aura doublé.

Exercice 5. Déterminisez les quatre automates suivants:

Exercice 6. On donne l'automate dont la table de transition est la suivante :

ĺ		A	В	С	D	Е	F	G	Н	I	J
	0	В	С	D	E	F	G	Н	I	A	G
Ì	1	Ε	F	Н	Н	I	В	В	С	Е	Е

A est l'état initial. C, F, I sont les états finaux.

- 1. Déssinez l'automate.
- 2. Trouvez l'automate minimal équivalents.

Exercice 7. Construisez les automates correspondants aux langages suivants :

- 1. a((a + b)(a + b))*b
- 2. (a + b)*(aa + bb)(a + b)*
- $3. (aaa + aaaaa)^*$

Exercice 8. Soit la grammaire G = (V, T, S, P), avec $V = \{S, B, a, b\}$, $T = \{a, b\}$, $P = \{S \to aS, S \to bB, S \to \epsilon, S \to a, B \to aS, B \to bB, B \to a\}$. Construisez l'automate M tel que L(G) = L(M).

Exercice 9. Donnez les grammaires générées par les langages reconnus par les automates suivants :

