Do We Need Zero Training Loss After Achieving Zero Training Error?

[Ishida, Takashi, et al., 2020 ICML]

https://arxiv.org/abs/2002.08709

김봉석, 서울과학기술대학교 데이터사이언스학과, bongseokkim@seoultech.ac.kr

Content

- Short review of paper
- Experiment (obtain the same (or similar) results?)
 - to reproduce paper's result
- Improvement
 - Question 1
 - Question 2
- Summary

Main Question: Do We Need Zero Training Loss After Achieving Zero Training Error?

- 1. Overparameterized deep networks have the capacity to memorize training data with zero training error. Even after memorization, the training loss continues to approach zero
- 2. existing regularizers do not directly aim to avoid zero training loss
- 3. propose a direct solution called flooding that intentionally prevents further reduction of the training loss when it reaches a reasonably small value

Even if, model memorized the training data completely with zero error the training loss will decreasing to (near-)zero

Hypothethis: learning until zero training loss is hamful!

 Propose propose a direct solution (called flooding) that intentionally prevents further reduction of the training loss

With flexible models, $\widehat{R}(\boldsymbol{g})$ wrt. a surrogate loss can easily become small if not zero

proposed training objective with flooding

$$\tilde{R}(\boldsymbol{g}) = \left| \hat{R}(\boldsymbol{g}) - \mathbf{b} \right| + \mathbf{b}$$
Denote flood level

If $\widehat{R}(g) > b \rightarrow \widetilde{R}(g) = \widehat{R}(g)$ (Gradient dencet)

Same direction as original

If
$$\widehat{R}(g) < b \rightarrow \widetilde{R}(g) = -\widehat{R}(g) + 2b$$
 (Gradient acent)

Opposite direction

(b) w/ Flooding

In practice, this will be performed with a mini-batch, compatible with any stochastic optimizers

Its implementation is extremely simple (additional one line of code)

$$\tilde{R}(\boldsymbol{g}) = |\hat{R}(\boldsymbol{g}) - \mathbf{b}| + \mathbf{b}$$

In Pytorch

```
outputs = model(inputs)
loss = criterion(outputs, labels)
flood = (loss-b).abs()+b # This is it!
optimizer.zero_grad()
flood.backward()
optimizer.step()
```

Question: How to select flood level b?

- optimal flood level b is data/task dependent
- we can search for the optimal flood level by performing the exhaustive search (hyperparameter)

Synthetic Datasets (Artificial Dataset)

- Two Gaussians
- Spiral
- Sinusoid

Setting

- Model: a five-hidden-layer NN with 500 units in each hidden layer with the ReLU
- Loss : logistic loss
- Optimizer : Adam,
- Epoch : 500
- Learning rate: 0.001
- Flood level : $b \in [0, 0.1 \dots 0.5]$
- Label noise : Low(1%), Middle(5%), High(10%)

(A) Paper

(B) My

Data	Label Noise	Without	With	Chosen	Without	With	Chosen
		Flooding	Flooding	b	Flooding	Flooding	В
Two	Low	90.52%	92.13%	0.17	90.13%	91.69%	0.18
Gaussians	Middle	84.79%	88.03%	0.22	83.56%	86.35%	0.23
	High	78.44%	83.59%	0.32	77.89%	80.62%	0.29

Data	Without	With	Chosen	Without	With	Chosen
	Flooding	Flooding	b	Flooding	Flooding	B
CIFAR-10	90.52%	92.13%	0.17	90.13%	91.69%	0.18

Setting (Two Gaussain)

• Model: a five-hidden-layer NN with 500 units in each hidden layer with the ReLU

Loss: logistic lossOptimizer: Adam,

• Epoch: 500

• Learning rate: 0.001

• Flood level: $b \in [0, 0.01, 0.02, 0.03 \dots 0.5]$, conducted 50 experiment for hyperparmeter searching

• Label noise : Low(1%), Middle(5%), High(10%)

Setting (CIFAR-10)

Model: Resnet 44

Agumentation: random crop, horizontal flip

Optimizer : SGDEpoch : 500

Learning rate: 0.001, learning rate decay (multiply by 0.1 after 250 400 epoch)

• Flood level : $b \in [0, 0.01, 0.02, 0.03 \dots 0.1]$, conducted 50 experiment for hyperparmeter searching

Two Gaussian (Noise Level -High)

(A) Paper

(B) My

Data	Label Noise	Without	With	Chosen	Without	With	Chosen
		Flooding	Flooding	b	Flooding	Flooding	В
Two	Low	90.52%	92.13%	0.17	90.13%	91.69%	0.18
Gaussians	Middle	84.79%	88.03%	0.22	83.56%	86.35%	0.23
	High	78.44%	83.59%	0.32	77.89%	80.62%	0.29

Data	Without	With	Chosen	Without	With	Chosen
	Flooding	Flooding	b	Flooding	Flooding	B
CIFAR-10	90.52%	92.13%	0.17	90.13%	91.69%	0.18

Question: Can we obtain the same (or similar) results?

→ Answer: Yes

But • For double decents, valid only for certain condition.

- Ex) CIFAR-10, agumentation + learning rate decay (0)
- CIFAR-10, agumentation + learning rate decay+ weight decay (x)
- EX) Two Gaussian, <u>label noise must be high</u>

hard to find optimal flood level b

Ex) CIFAR-10, it takes ~= 50 hour to search flood level b

Question 1: Search from inside to Outside loss surface?

- Search from outside to inside(flood level)
 - But never reach inside flood level

- Search from inside(zero tr.error) to outside(flood level)
 - Search inside the flood level at least once

Two Gaussian (Noise Level -High)

Two Gaussian (Noise Level -High)

Flood Try

Data	Label Noise	Without Flooding	With Flooding	Chosen b	Without Flooding	With Flooding	Chosen B
Two Gaussians	High	77.89%	80.62%	0.29	77.89%	79.89%	0.26

- Why worse ?
 - There is a tendency to lower the training acc itself which lead to lower test acc

Motivation

- hard to find optimal flood level b
 - 500 epoch x 50 experiment –
 - It takes too much time and cost

Question 2: how to find find optimal flood level, b smarter way.

Try: hyperparmeter search using Reinforcement learning! using Policy Gradient

Reward = validation accuracy State = [traing loss, traing acc, val_loss, val_acc] Action = flood level, $b \in [0, 0.01, 0.02, 0.03 \dots 0.1]$

Failed ———

- Hard to train RL agent
- It takes too much time.
 - Ex) CIFAR-10, it takes ~= 50 hour

Try: Heuristic search to find flood level

```
while zero traing error do gradient decent
    x' \leftarrow 0
    b \leftarrow 0.0
    while epoch do optimizer step
               criterion = |loss - b| + b
                x' \leftarrow 0
                b \leftarrow 0.0
                if x \geq x' + \lambda then
                    x' \leftarrow x
                    b \leftarrow clip(b+\alpha,0,0.5)
                else
                    if x < x' - \lambda then
                        x' \leftarrow x
                        b \leftarrow clip(b-\alpha,0,0.5)
                    end if
                end if
```

b: flood level

x', x: validation accuracy

 α : hyperparmeter for adjusting flood level

* adjust flood level b *

shrink	same	expand
$x' - \lambda$	\boldsymbol{x}	$x' + \lambda$

* adjust flood level b *

shrink	same	expand
$x' - \lambda$	\boldsymbol{x}	$x' + \lambda$

Data	Without Flooding	With Flooding	Chosen b
Flood	77.89%	80.62%	0.29
Try1:(backward)	77.89%	79.89%	0.29
Try2:(adaptive)	77.89%	79.12%	0.21

- Hureistic `s Final flood level was 0.21 (optimal 0.29)
- It is better than without flooding, but worse than flooding
- But, takes less time

Summary

Try to reproduce Experiment (two gaussian/ CIFAR10)

- obtain similar result
- to observe double decents curve it need certain condition.

Try Improvement -1

- Search from inside(zero tr.error) to outside(flood level)
 - It is better than without flooding, but worse than flooding
 - Why worse? : tendency to lower the training acc -> lead to lower test acc

Try Improvement -2 (hard to find flood level)

- Reinforcement Learning Approach (failed)
- Heuristic search
 - It is better than without flooding, but worse than flooding
 - But, takes less time