ETR0354-003

700mA High Speed LDO Regulator with Reverse Current Protection

■GENERAL DESCRIPTION

The XC6227 series is a highly accurate, low noise, high ripple rejection, low dropout, and low power consumption high speed voltage regulator.

The series consists of a voltage reference, an error amplifier, a driver transistor, a current limiter, a thermal protection circuit, a reverse current protection circuit and a phase compensation circuit.

The CE function enables the entire circuit to be placed in a stand-by state by inputting a low level signal to the CE pin. Over-current protection and thermal protection circuits are integrated. The protection circuit starts to operate when either output current reaches the current limit level or junction temperature reaches the temperature limit. With the reverse current protection function of a driver transistor, the reverse current flow is prohibited when V_{OUT} voltage is higher than V_{IN} voltage. For an example, when a battery is connected to the V_{OUT} pin, battery current will not flow back to the XC6227.

APPLICATIONS

- USB products and HDMI equipments
- Electronic dictionaries
- Mobile phones
- Portable game consoles
- Camera modules

■FEATURES

Maximum Output Current : 700mA

Dropout Voltage : 120mV @I_{OUT}=300mA(V_{OUT}=3.0V)

Operating Voltage Range : 1.7V ~ 6.0V

Output Voltages : 0.8V~5.0V (0.05V increments)

Accuracy : $\pm 1\% (V_{OUT} > 2.0V)$

±0.02V (Vout≤2.0V)

Low Power Consumption : 100μ A **Chip Enable(CE)** : Active High

Standby Current below 0.1 μ A

High Ripple Rejection : 65dB @ 1kHz
Operating Ambient Temperature : -40°C~+85°C
Low ESR Capacitor : Ceramic capacitor

Packages : USP-6C, SOT-25, SOT-89-5 Environmentally Friendly : EU RoHS Compliant, Pb Free

VOUT Sink Current VS. Input Voltage

■TYPICAL APPLICATION CIRCUIT ■ TYPICAL PERFORMANCE CHARACTERISTICS

■PIN CONFIGURATION

^{*}The dissipation pad for the USP-6C package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the VSS (No. 5) pin.

■PIN ASSIGNMENT

PIN NUMBER			PIN NAME	FUNCTIONS
USP-6C	SOT-25	SOT-89-5	PIN NAIVIE	FUNCTIONS
1	1	4	VIN	Power Input
3	5	5	VOUT	Output
2,4	4	3	NC	No connection
5	2	2	VSS	Ground
6	3	1	CE	ON/OFF Control

■PRODUCT CLASSIFICATION

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
1	Type of CE ^(*2)	С	with CE Active High, with CE Pull-down resistor
23	Output Voltage	08~50	e.g. 2.8V → ②=2, ③=8
4	Output Voltage (the 2 nd decimal place)	1	Output voltage {x.x0V} e.g. 2.80V → ②=2, ③=8, ④=1
4)		В	Output voltage {x.x5V} e.g. 2.85V → ②=2, ③=8, ④=B
		MR-G	SOT-25 (3,000/Reel)
56-7 (*1)	Packages (Order Unit)	PR-G	SOT-89-5 (1,000/Reel)
		ER-G	USP-6C (3,000/Reel)

^(*1) The "-G" suffix denotes Halogen and Antimony free as well as being fully RoHS compliant.

^(*2) For without CE Pull-down, please contact your local Torex sales office or representative.

■BLOCK DIAGRAM

XC6227Cseries

■ ABSOLUTE MAXIMUM RATINGS

PARAME [*]	TER	SYMBOL	RATINGS	UNITS
Input Volta	Input Voltage V _{IN}		V _{SS} -0.3∼+6.5	V
Output Current I _{OUT}		I _{OUT}	1400 ^(*1)	mA
Output Vol	ltage	V_{OUT}	V _{SS} -0.3∼+6.5	V
CE Input Vo	oltage	V_{CE}	V _{SS} -0.3~+6.5	V
	USP-6C ation SOT-25 Pd		120	
			1000 (PCB mounted) (*2)	
Power Dissipation		Pd	250	mW
Power Dissipation	501-25	Pu	600 (PCB mounted) (*2)	IIIVV
	SOT-89-5		500	
	301-09-0		1300 (PCB mounted) (*2)	
Operating Ambient Temperature T		Topr	-40 ~ +85	°C
Storage Temp	erature	Tstg	-55 ∼ +125	°C

^{(*1):} Please use within the range of Pd > $\{(V_{IN}-V_{OUT}) \times I_{OUT}\}$

^{*} Diodes inside the circuits are ESD protection diodes and parasitic diodes.

⁽ * 2): This is a reference data taken by using the test board. Please refer to page 21 to 23 for details.

■ELECTRICAL CHARACTERISTICS

●XC6227 Series Ta=25°C

	DADAMETER CVMPOL CONDITIONS				NAAN	LINUTO	Ia=25 C
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Conon vollage voltage		$V_{OUT(T)}$ >2.0V, V_{CE} = V_{IN} , I_{OUT} =10mA	×0.99 ^(*3)	$V_{\text{OUT(T)}}$	×1.01 (*3)	V	1
		$V_{OUT(T)} \leq 2.0V$, $V_{CE} = V_{IN}$, $I_{OUT} = 10$ mA	-0.02 ^(*3)	(7)	+0.02 (*3)		-
		$V_{CE}=V_{IN}, V_{IN}=V_{OUT(T)}+1.0V$					
Output Current	I _{OUTMAX}	V _{OUT(T)} >1.5V	700	-	_	mA	1)
'	33	V _{CE} =V _{IN} , V _{IN} =2.5V					
		V _{OUT(T)} ≦1.5V					
Load Regulation	ΔV _{OUT}	V _{CE} =V _{IN} , 0.1mA≦I _{OUT} ≦300mA		E-1		mV	1
Dropout Voltage1 (*5)	V _{dif}	I _{OUT} =300mA, V _{CE} =V _{IN}		E-2		mV	1
Dropout Voltage2 (*5)	V _{dif2}	I _{OUT} =0mA, V _{CE} =V _{IN}		E-3	1	mV	1
Supply Current	I _{SS}	$V_{IN}=V_{CE}=V_{OUT(T)}+1.0V$, $I_{OUT}=0$ mA	-	100	220	μΑ	2
Stand-by Current	I _{STBY}	V _{IN} =6.0V, V _{CE} =V _{SS}	-	0.01	0.1	μΑ	2
		$V_{OUT(T)}$ +0.5 $V \le V_{IN} \le 6.0V$					
		:V _{OUT(T)} ≧1.0V					
Line Regulation	ΔV_{OUT} /	V _{CE} =V _{IN} , I _{OUT} =30mA	_	0.01	0.1	%/V	1
	(ΔV _{IN} •V _{OUT})	1.5V≦V _{IN} ≦6.0V				,	
		:V _{OUT(T)} ≦0.95V					1
		V _{CE} =V _{IN} , I _{OUT} =30mA					
Input Voltage	V _{IN}		1.7	-	6.0	V	1
Output Voltage	ΔV_{OUT} /	V _{CE} =V _{IN} , I _{OUT} =30mA		. 400	-	ppm	•
Temperature	(ΔTa •V _{OUT})	-40°C≦Ta≦85°C	-	±100		/°C	1
Characteristics	(33.7						
	ply	V _{OUT(T)} ≧4.8V,				dB	
		V _{IN} =5.75V _{DC} +0.5Vp-p _{AC}					
		V _{CE} =V _{IN} , I _{OUT} =30mA, f=1kHz					
Power Supply		1.0V≦V _{OUT(T)} <4.8V		0.5	5 -		
Rejection Ratio	PSRR	$V_{IN} = \{V_{OUT(T)} + 1.0\} V_{DC} + 0.5 V_{P} - p_{AC}$	-	65			3
		V _{CE} =V _{IN} , I _{OUT} =30mA, f=1kHz					
		V _{OUT(T)} <1.0V,					
		V _{IN} =2.0V _{DC} +0.5Vp-p _{AC}					
		V _{CE} =V _{IN} , I _{OUT} =30mA, f=1kHz			1		
		$V_{CE}=V_{IN}, V_{IN}=V_{OUT(T)}+1.0V$			1		
Limit Current	I _{lim}	V _{OUT(T)} >1.5V	720	950	-	mA	1
		$V_{CE}=V_{IN}, V_{IN}=2.5V$			1		
Chart Course	1	$V_{OUT(T)} \le 1.5V$		E.F.	1	m ^	<u> </u>
Short Current	I _{short}	V _{CE} =V _{IN} , Short V _{OUT} to V _{SS} level	-	55	-	mA	1
CE High Level Voltage	V _{CEH}		1.2	-	6.0	V	1
CE Low Level Voltage	V_{CEL}		-	-	0.3	V	1
CE High Level Current	I _{CEH}	V _{CE} =V _{IN} =6.0V, XC6227C Series	17.7	24	36.9	μΑ	1
CE Low Level Current	I _{CEL}	V _{CE} =V _{SS}	-0.1	-	0.1	μΑ	1
Reverse Current (*8)	I _{REV}	V _{IN} =0V, V _{OUT} = 6.0V (*10)	-	0.01	1.5	μΑ	1
V _{OUT} Pin Sink Current (*9)	I _{REVS}	V _{IN} =5.0V, V _{OUT} =6.0V (*10)	-	2.8	5.3	μΑ	1
Thermal Shutdown				150		°C	<u> </u>
Detect Temperature	T_TSD	Junction Temperature	-	150		°C	1
Thermal Shutdown		lunction Tomporations		105		°C	<u> </u>
Release Temperature	T_{TSR}	Junction Temperature	-	125	-	°C	1
•		•			,1	1	

NOTE:

- * 1: Unless otherwise stated, input voltage is $V_{IN}=V_{OUT(T)}+1.0V$.
- * 2: V_{OUT(E)} is effective output voltage (Refer to the voltage chart E-1 and E-2)
 It is defined as output voltages when an amply stabilized V_{OUT(T)}+1.0V is supplied to the VIN pin while maintaining a certain I_{OUT}.
- * 3: The relation between $V_{\text{OUT}(E)}$ and $V_{\text{OUT}(T)}$ is shown in the voltage chart E-1 and E-2.
- * 4: $V_{\text{OUT}(T)}$ is nominal output voltage
- * 5: Vdif (Vdif2)= {V_{IN1}^(*7)-V_{OUT1}^(*6)}
- * 6: $V_{\text{OUT}1}$ equals 98% of the output voltage when amply stabilized $V_{\text{OUT}(T)}$ +1.0V are supplied to the V_{IN} pin.
- * 7: V_{IN1} is the input voltage when V_{OUT1} appears at the V_{OUT} pin while input voltage is gradually decreased.
- * 8: Reverse current (I_{REV}) flows from V_{OUT} to V_{IN} .
- * 9: V_{OUT} pin sink current (I_{REVS}) flows from V_{OUT} to V_{SS} .
- *10: Please note when an external power supply connects to the V_{OUT} pin, please use it with 6.0V or less.

■OUTPUT VOLTAGE CHART

●Voltage Chart 1

NOMINAL OUTPUT VOLTAGE	OUTPUT	VOLTAGE	LOAD REG	GULATION	DROPOUT	VOLTAGE 1	DROPOUT	VOLTAGE 2	
(V)	(\	V)	E-1	(mV)	E-2	(mV)	E-3 (mV)		
	Vol	JT(E)	ΔV	OUT	V	V_{dif}		V _{dif2}	
V _{OUT(T)}	MIN.	MAX.	TYP.	MAX.	MAX.	TYP.	MAX.	TYP.	
0.80	0.7800	0.8200	25	50	720	880	230	510	
0.85	0.8300	0.8700	25	50	720	880	230	510	
0.90	0.8800	0.9200	25	50	720	880	230	510	
0.95	0.9300	0.9700	25	50	720	880	230	510	
1.00	0.9800	1.0200	25	50	570	740	75	260	
1.05	1.0300	1.0700	30	60	570	740	75	260	
1.10	1.0800	1.1200	30	60	570	740	75	260	
1.15	1.1300	1.1700	30	60	570	740	75	260	
1.20	1.1800	1.2200	30	60	420	570	50	135	
1.25	1.2300	1.2700	30	60	420	570	40	80	
1.30	1.2800	1.3200	30	60	420	570	40	80	
1.35	1.3300	1.3700	30	60	420	570	40	80	
1.40	1.3800	1.4200	30	60	320	470	40	80	
1.45	1.4300	1.4700	30	60	320	470	40	80	
1.50	1.4800	1.5200	30	60	280	410	40	80	
1.55	1.5300	1.5700	30	60	280	410	40	80	
1.60	1.5800	1.6200	30	60	280	410	40	80	
1.65	1.6300	1.6700	30	60	280	410	40	80	
1.70	1.6800	1.7200	30	60	280	410	40	80	
1.75	1.7300	1.7700	30	60	280	410	40	80	
1.80	1.7800	1.8200	30	60	220	350	40	80	
1.85	1.8300	1.8700	30	60	220	350	40	80	
1.90	1.8800	1.9200	30	60	220	350	40	80	
1.95	1.9300	1.9700	30	60	220	350	40	80	
2.00	1.9800	2.0200	30	60	200	320	40	80	
2.05	2.0295	2.0705	35	70	200	320	40	80	
2.10	2.0790	2.1210	35	70	200	320	40	80	
2.15	2.1285	2.1715	35	70	200	320	40	80	
2.20	2.1780	2.2220	35	70	200	320	40	80	
2.25	2.2275	2.2725	35	70	200	320	40	80	
2.30	2.2770	2.3230	35	70	200	320	40	80	
2.35	2.3265	2.3735	35	70	200	320	40	80	
2.40	2.3760	2.4240	35	70	200	320	40	80	
2.45	2.4255	2.4745	35	70	200	320	40	80	
2.50	2.4750	2.5250	35	70	160	260	40	80	
2.55	2.5245	2.5755	35	70	160	260	40	80	
2.60	2.5740	2.6260	35	70	160	260	40	80	
2.65	2.6235	2.6765	35	70	160	260	40	80	
2.70	2.6730	2.7270	35	70	160	260	40	80	
2.75	2.7225	2.7775	35	70	160	260	40	80	
2.80	2.7720	2.8280	35	70	160	260	40	80	
2.85	2.8215	2.8785	35	70	160	260	40	80	
2.90	2.8710	2.9290	35	70	160	260	40	80	
2.95	2.9205	2.9795	35	70	160	260	40	80	
3.00	2.9700	3.0300	43	85	120	200	40	80	

■OUTPUT VOLTAGE CHART (Continued)

●Voltage Chart 2

NOMINAL OUTPUT VOLTAGE	OUTPUT	VOLTAGE	LOAD REG	GULATION	DROPOUT	VOLTAGE 1	DROPOUT	VOLTAGE 2	
(V)	(\	/)	E-1	E-1 (mV)		E-2 (mV)		E-3 (mV)	
.,	Vol	JT(E)	ΔV	OUT	V	dif	V	dif2	
$V_{OUT(T)}$	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP	MAX	
3.05	3.0195	3.0805	43	85	120	200	40	80	
3.10	3.0690	3.1310	43	85	120	200	40	80	
3.15	3.1185	3.1815	43	85	120	200	40	80	
3.20	3.1680	3.2320	43	85	120	200	40	80	
3.25	3.2175	3.2825	43	85	120	200	40	80	
3.30	3.2670	3.3330	43	85	120	200	40	80	
3.35	3.3165	3.3835	43	85	120	200	40	80	
3.40	3.3660	3.4340	43	85	120	200	40	80	
3.45	3.4155	3.4845	43	85	120	200	40	80	
3.50	3.4650	3.5350	43	85	120	200	40	80	
3.55	3.5145	3.5855	43	85	120	200	40	80	
3.60	3.5640	3.6360	43	85	120	200	40	80	
3.65	3.6135	3.6865	43	85	120	200	40	80	
3.70	3.6630	3.7370	43	85	120	200	40	80	
3.75	3.7125	3.7875	43	85	120	200	40	80	
3.80	3.7620	3.8380	43	85	120	200	40	80	
3.85	3.8115	3.8885	43	85	120	200	40	80	
3.90	3.8610	3.9390	43	85	120	200	40	80	
3.95	3.9105	3.9895	43	85	120	200	40	80	
4.00	3.9600	4.0400	43	85	120	200	40	80	
4.05	4.0095	4.0905	50	100	120	200	40	80	
4.10	4.0590	4.1410	50	100	120	200	40	80	
4.15	4.1085	4.1915	50	100	120	200	40	80	
4.20	4.1580	4.2420	50	100	120	200	40	80	
4.25	4.2075	4.2925	50	100	120	200	40	80	
4.30	4.2570	4.3430	50	100	120	200	40	80	
4.35	4.3065	4.3935	50	100	120	200	40	80	
4.40	4.3560	4.4440	50	100	120	200	40	80	
4.45	4.4055	4.4945	50	100	120	200	40	80	
4.50	4.4550	4.5450	50	100	120	200	40	80	
4.55	4.5045	4.5955	50	100	120	200	40	80	
4.60	4.5540	4.6460	50	100	120	200	40	80	
4.65	4.6035	4.6965	50	100	120	200	40	80	
4.70	4.6530	4.7470	50	100	120	200	40	80	
4.75	4.7025	4.7975	50	100	120	200	40	80	
4.80	4.7520	4.8480	50	100	120	200	40	80	
4.85	4.8015	4.8985	50	100	120	200	40	80	
4.90	4.8510	4.9490	50	100	120	200	40	80	
4.95	4.9005	4.9995	50	100	120	200	40	80	
5.00	4.9500	5.0500	50	100	120	200	40	80	

■ OPERATIONAL EXPLANATION

The voltage divided by two resistors R1 and R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET connected to the Vout pin, is then driven by the subsequent output signal. The output voltage at the Vout pin is controlled and stabilized by a system of negative feedback. The current limit and short protection operate in relation to the level of output current. The thermal protection operates in relation to the level of heat generation. The reverse current protection operates when V_{OUT} voltage is higher than V_{IN} voltage. Further, the IC's internal circuitry can be turned off via the CE pin's signal.

XC6227Cseries

<Input and Output Capacitors>

The XC6227 needs an output capacitor C_L for phase compensation. Values required for the phase compensation are shown in the chart below. If a loss of the capacitance happens, stable phase compensation may not be obtained. Please ensure to use a capacitor which does not depend on bias or temperature too much. For a stable power input, please connect an input capacitor C_{IN} of 1.0 μ F between the V_{IN} pin and the V_{SS} pin.

Output Capacitor (C_L) Table

OUTPUT VOLTAGE (V)	OUTPUT CAPACITOR VALUE
0.8V~2.05V	C _L =6.8 μ F (MIN.)
2.1V~2.45V	C_L =4.7 μ F (MIN.)
2.5V~5.0V	$C_L=2.2 \mu F (MIN.)$

<Reverse Current Protection>

The XC6227 series includes reverse current protection to prevent the damage as a result of current flow from V_{OUT} pin to the V_{IN} pin and V_{SS} pin when the power supply is connected to the V_{OUT} pin. When V_{IN} is smaller than V_{OUT} , the reverse current protection works and suppress the reverse current to 1.5 μ A (MAX.).

When V_{IN} is smaller than V_{OUT} , the V_{OUT} pin sink current flowing from the V_{OUT} pin to the V_{SS} pin is 2.8 μ A (TYP.) as the IC operation current.

Please also note when an external power supply is connected to the V_{OUT} pin, please use it within 6.0V.

< Current Limiter, Short-Circuit Protection>

The XC6227 series integrates an output current limiter and a fold-back short protection for the output pin. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. When the output pin is short-circuited to the Vss pin, the current is decreased to a level of 55mA (TYP.).

<Thermal Shutdown>

When the junction temperature of the built-in driver transistor reaches the temperature limit level (150°C TYP.), the thermal shutdown circuit operates and the driver transistor will be turned OFF. The IC resumes its operation when the thermal shutdown function is released and the IC's operation is automatically restored because the junction temperature drops to the level of 125°C (TYP.) as the thermal shutdown release voltage.

■OPERATIONAL EXPLANATION (Continued)

<CE Pin>

The entire XC6227 circuitry can be turned off via the CE pin signal. In shutdown mode, output at the Vo∪⊤ pin will be pulled down to the Vss level via R1 & R2.

The XC6227C series has a pull-down resistor in order to operate normally even the CE pin is left open (when the CE pin is left open, the IC stops operation), so that the CE pin input current flows.

If the CE pin voltage is set with the specified voltage range, the logic is fixed and the IC will operate normally. However, the supply current may increase as a result of shoot-through current in the IC's internal circuitry when a medium voltage is input to the CE pin.

■NOTES ON USE

- For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current.
 - Please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible.
- 3. Torex places an importance on improving our products and its reliability.

 However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.

■TEST CIRCUITS

●Circuit ①

●Circuit ②

●Circuit ③

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

*CE Voltage condition: unless otherwise stated $V_{\text{CE}} = V_{\text{IN}}$

(1) Output Voltage vs. Output Current (Continued)

(2) Output Voltage vs. Input Voltage

(2) Output Voltage vs. Input Voltage (Continued)

(3) Dropout Voltage vs. Output Current

(3) Dropout Voltage vs. Output Current (Continued)

Output Current: I_{OUT} [mA]

(4) Supply Current vs. Input Voltage

0

(5) Output Voltage vs. Ambient Temperature

(6) CE Pin Threshold Voltage vs. Ambient Temperature

(7) Reverse Current vs. Output Voltage

(8) V_{OUT} Sink Current vs. Output Voltage

XC6227

(9) Input Transient Response

XC6227x151

XC6227x281

XC6227x501

(10) CE Rising Response Time

XC6227x281 Ta = 25°C, V_{IN}=3.8V, I_{OUT}=30mA, V_{CE} = 0 \rightarrow 3.8V, tr = 5 μ s C_{IN} =1.0 μ F (ceramic),C_L=2.2 μ F (ceramic) 6.0 5.0 ≥ 4.0 CE Voltage: V_{CE} [V] CE Input Voltage 2.0 Output Voltage 0.0 3.0 -2.0 2.0 -4.0 1.0 -6.0 0.0 Time [40 μ s/div]

(11) Input Transient Response

(11) Input Transient Response (Continued)

(12) Load Transient Response

(12) Load Transient Response (Continued)

(13) Ripple Rejection Rate

(13) Ripple Rejection Rate (Continued)

(14) Output Noise Density

XC6227x331

XC6227 Series

■PACKAGING INFORMATION

●SOT-25

●SOT-89-5

●USP-6C

●USP-6C Reference Pattern Layout

●USP-6C Reference Metal Mask Design

■ PACKAGING INFORMATION (Continued)

USP-6C Power Dissipation

Power dissipation data for the USP-6C is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

Board Mount (Tj max = 125°C)

2. Power Dissipation vs. Ambient Temperature

	()		
Ambient Temperature (°C)		Power Dissipation Pd (mW)	Thermal Resistance (°C/W)
	25	1000	100.00
	85	400	100.00

■ PACKAGING INFORMATION (Continued)

SOT-25 Power Dissipation

Power dissipation data for the SOT-25 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board Ambient: Natural convection Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

(Board of SOT-26 is used.)

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient Temperature

Board Mount (Tj max = 125°C)

Ambient Temperature (°C)	Power Dissipation Pd(mW)	Thermal Resistance (°C/W)
25	600	166.67
85	240	100.07

■ PACKAGING INFORMATION (Continued)

SOT-89-5 Power Dissipation

Power dissipation data for the SOT-89-5 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free

Board: Dimensions 40 x 40 mm (1600 mm² in one side)

Copper (Cu) traces occupy 50% of the board area

In top and back faces

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 5 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient Temperature

Board Mount (Tj max = 125°C)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance (°C/W)
25	1300	76.92
85	520	10.92

XC6227 Series

■MARKING RULE

●SOT-25 / SOT-89-5 / USP-6C

(*) SOT-25 has a dot mark, which is printed under MARK ① (refer to drawings below).

① represents product series

MARK	PRODUCT SERIES
3	XC6227*****-G

2 represents regulator type, voltage range, and accuracy

MARK	REGULATOR TYPE	OUTPUT VOLTAGE RANGE	ACCURACY	PRODUCT SERIES
Α	Α	0.8~2.9	1	XC6227A081**-G~XC6227A291**-G
В	Α	0.85~2.95	В	XC6227A08B**-G~XC6227A29B**-G
С	Α	3.0~5.0	1	XC6227A301**-G~XC6227A501**-G
D	Α	3.05~4.95	В	XC6227A30B**-G~XC6227A49B**-G
Е	С	0.8~2.9	1	XC6227C081**-G~XC6227C291**-G
F	С	0.85~2.95	В	XC6227C08B**-G~XC6227C29B**-G
Н	С	3.0~5.0	1	XC6227C301**-G~XC6227C501**-G
K	С	3.05~4.95	В	XC6227C30B**-G~XC6227C49B**-G

^{*} Accuracy "1" - 0.1V step, Accuracy "B" - 0.05V step

3 represents output voltage.

Toprocente output voltage.								
MARK	OUTPUT VOLTAGE (V)		MARK	OUTPUT VOLTAGE (V)		MARK	OUTPUT VOLTAGE (V)	
0	-	3.0x	Α	1.0x	4.0x	N	2.0x	5.0x
1	-	3.1x	В	1.1x	4.1x	Р	2.1x	-
2	-	3.2x	С	1.2x	4.2x	R	2.2x	-
3	-	3.3x	D	1.3x	4.3x	S	2.3x	-
4	-	3.4x	Е	1.4x	4.4x	Т	2.4x	-
5	-	3.5x	F	1.5x	4.5x	U	2.5x	-
6	-	3.6x	Н	1.6x	4.6x	V	2.6x	-
7	-	3.7x	K	1.7x	4.7x	X	2.7x	-
8	0.8x	3.8x	L	1.8x	4.8x	Y	2.8x	-
9	0.9x	3.9x	M	1.9x	4.9x	Z	2.9x	-

⁴⁵ represents production lot number

⁰¹ to 09, 0A to 0Z, 11 to 9Z, A1 to A9, AA to Z9, ZA to ZZ repeated. (G, I, J, O, Q, W excluded)

^{*} No character inversion used.

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.