P(1×n-×1>2)

* Chebysher's ineq. is usually useful to prove convergence in probability.

Ex' (WLLN) X, , x, x, xid mean, SD o

 $\mathbb{P}\left(|\overline{\chi}_{n}-\mu|>z\right)\stackrel{L}{=}\frac{\sigma^{2}}{n}\longrightarrow 0.$

Proving Chebysher: $P(X-\mu > E) \leq P((X-\mu)^2 > E^2)$ $\leq \pm ((X-\mu)^2) = 0$ ≤ 2

Idea: apply Markov's ineq to (X-M)?

Convergence in disti (MGF)

Q12: If h >770, then P(Xn:1) ~ 2

This suggets that $X_{h} \xrightarrow{\partial} X_{s}$ where

P(X=1) = P(X=-1) = =

 $M_{n}(t) = \left(\frac{1}{2} + \frac{1}{n+1}\right) e^{t} + \left(\frac{1}{2} - \frac{1}{n+1}\right) e^{-t}$ $= e^{t} + e^{-t} + \left(e^{t} - e^{t}\right)$

The general: say
$$Y$$
 is a discrete $P(Y=a_1) = \frac{1}{2}$.

The $P(Y=a_1) = P_1$, $P(Y=a_2) = P_2$,..., $P(Y_n=a_n) = P_n$.

$$P(Y=a_1) = P_1$$
, $P(Y=a_2) = P_2$,..., $P(Y_n=a_n) = P_n$.

We say $X_n \xrightarrow{\partial} X$ if for all $x \in C = \{y : F \text{ is cont. at } y \}$, we have $F_n(x) \to F(x)$.

$$F(y) = P(X \le y) = \begin{cases} 0, & y < -1 \\ \frac{1}{2}, & -1 \le y < 1 \end{cases}$$
 $F_{N}(y) = \begin{cases} 0, & y < -1 \\ \frac{1}{2}, & -1 \le y < 1 \end{cases}$
 $f_{N}(y) = \begin{cases} 0, & y < -1 \\ \frac{1}{2}, & -1 \le y < 1 \end{cases}$

$$P(X_{n}=-1)=\frac{1}{2}-\frac{1}{n+1}$$
 $P(X_{n}=1)=\frac{1}{2}+\frac{1}{n+1}$

$$P(X_n \le -2) = 0$$

 $P(X_n \le -1.06001) = 0$
Whenever $y < -1$, $P(X_n < y) = 0$.
So $F_n(y) = 0$ for $y < -1$.

$$P(X_{n} = -1) = P(X_{n} = -1) = \frac{1}{2} - \frac{1}{n+1}$$

$$P(X_{n} = -0.3) = P(X_{n} = -1) = \frac{1}{2} - \frac{1}{n+1}$$

$$So F(y) = \frac{1}{2} - \frac{1}{n+1}, -1 \le y < 1$$

$$P(X_n \le 20) = 1$$

 $P(X_n \le 1.001) = 1$
 $P(X_n \le 1) = 1$
So $F_n(y) = 1$) for $y > 1$.

BC1: If
$$\frac{2}{3}$$
R(A_n) $< \infty$, then

Plinfinitely many An Lappen = 0.

B(Z: If An's are indep, then if

P(infinitely many An occur) = 1.

(Let A = infinitely many Meon!'s are typed.

Let An = "types "Meow!" on her n-th trip she types meou.

 $P(A_{n}) = \frac{1}{50} \times \frac{1}{50} \times \frac{1}{50} \times \frac{1}{50}$ $= (\frac{1}{50})^{5}$

So ZP(An) = 0, so BC2 tells us that, since An's are indep, Plinfinitely many Ans occur) al.

$$P(B_n) = \left(\frac{1}{s_1 + n}\right)^s$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{s_1 + n}\right)^s < \sum_{n=1}^{\infty} \left(\frac{1}{s_1}\right)^s < \infty.$$

So \$ (infinitely many Bis occur) = 0.

$$\sqrt{2}$$
 $\sqrt{n^2}$ $\sqrt{2}$ $\sqrt{n^2}$ $\sqrt{n^2$

$$m_{\gamma}(t) = \mathbb{E}\left[e^{t\gamma}\right] = \mathbb{E}\left[e^{t(\mu+\sigma Z)}\right]$$

$$= \mathbb{E}\left[e^{t\mu} e^{t\sigma Z}\right]$$

$$= e^{t\mu} \mathbb{E}\left[e^{t\sigma Z}\right]$$

$$= e^{t\mu} m_{z}(t\sigma)$$

$$= e^{t\mu} e^{t^{2}\sigma^{2}/2}$$

$$= e^{t\mu} e^{t\sigma^{2}/2}$$

EX:
$$SRW = \sqrt{9|S_n - S_{n-1}|^2} = 0.8 \text{ , } P(S_n - S_{n-1})^2 = 0.2$$

$$P_0(S_9 = 6) = (9) (0.8)^7 (0.2)^1$$

$$U - J = 6 * 7 u = 7, J = 1$$

$$U + J = 9 \text{ } N$$

$$P_{\delta}(S_{n}=n) = \left(\begin{pmatrix} N & \frac{1}{2}(n+n) & \frac{1}{2}(n-n) & \text{if } n+n \\ \frac{1}{2}(n+n) & \text{p} & \text{is even} \\ & \text{and } n+1 \leq n \end{pmatrix}$$

$$0 \quad 0.w.$$