Demonstração por Contradição

r é verdade $\Leftrightarrow \sim r$ é falsa

No caso em que r é uma senteça da forma $p \Rightarrow q$ obtemos então que

 $(a^m)^n = a^{mn}$

https://meet.google.com/maz-hqtd-snn

 $\frac{\text{https://docs.google.com/forms/d/1WSP4GhufBPpN1SmNUiPRFTc5rEoiiAmRlzNVtTT2nWo/edit}{\text{o/edit}}$

$$(2^{4})=5$$
 $(2^{4})=5$
 $(2^{4})=5$

Exemplo 1: Mostre que $\forall x \in \mathbb{R}$

a) Se
$$x > 0$$
, então $x + \frac{1}{x} \ge 2$

b) Se
$$x < 0$$
, então $x + \frac{1}{x} \le -2$

$$\chi_{20} = \chi_{1} + \frac{1}{\chi_{2}}$$

Entago
$$\left(x+1\right) < x.2$$

$$=$$
) $x^{2} + 1 < 2t$

$$=$$
 2 2 2 1 4 0

$$(=)$$
 $x^2 - 2.x.1 + 1^2 < 0$

$$(=) (x-1)^2 < 0$$

x70, mcs que x+1 <2

$$(a-b)^2 = a^2 - 2ab + b^2$$

Exemplo 2: Sejam a,b dois números reais quaisquer diferentes de zero. Mostre que

- a) Se a, b têm mesmo sinal então $\frac{a}{b} + \frac{b}{a} \ge 2$
- b) Se a, b têm sinais opostos então $\frac{a}{b} + \frac{b}{a} \le -2$

Exemplo 3: Mostre que $\sqrt{2}$ é irracional.

Assuma por absordo que $\sqrt{2}$ e racional Então existem interros piq i com $q \neq 0$ tais que

$$\frac{40c}{\sqrt{2}} = \frac{2.3}{9} = \frac{2}{3.3}$$

e podemos super sem perda de generalida de (5. P.G.) que a fração f_q e irredutivel (s.to e | p,q não têm fatores em comum) $\sqrt{2} = p = \sqrt{2} \sqrt{2} \cdot q = p$

$$= \frac{1}{2} (\sqrt{2} + \sqrt{2} = p^2)$$

$$= \frac{1}{2} (\sqrt{2} + \sqrt{2} = p^2$$

Por (*), teremes que

$$2q^{2} = p^{2}$$

$$= (2k)^{3}$$

$$=2^{2} K^{2}$$

$$\Rightarrow \gamma^2 = 2k^2$$

JZ = J2.1 é irracional

a) $\sqrt{6}$ é irracional.

$$\sqrt{6} = \sqrt{2.3}$$
 11

b) $\sqrt{10}$ é irracional.

$$\sqrt{10} = \sqrt{2.5}$$

à) Assumu por absurdo que 56 é faciencl. Enta o existem intervos P14, com 4 = 0 tais que

5PG, pademes assumir que to te irredutivel

アハペト)= キ

Por (*), teremes que $6q^{2} = p^{2}$ $= (2h)^{2}$ $= 2^{2}h^{2}$ $\Rightarrow 6q^{2} = 4h^{2}$ $\Rightarrow 3q^{2} = 2h^{2}$ $\Rightarrow q^{2} \in par\left(par\right) \quad q^{2} \mid mpar\right) \Rightarrow 2h^{2} \in mpar$ $\Rightarrow Absorbed$

=> q é par => piq têm 2 como fator em comum => piq mão é irredutível => Abourdol a) $\sqrt{24}$ é irracional. $\sqrt{24} = \sqrt{4.6} = \sqrt{4.6} = \sqrt{4.6} = 2\sqrt{6} = \sqrt{8}$ Exemplo 5: Use o exercício anterior para mostar que

b) $\sqrt{40}$ é irracional.

Cpais 2 é racional

Q | M2/P | e 56 é i rracional

-vi de exercício hassa do)

256 \neq racional = 256 = $\frac{7}{4}$ | $\frac{7}{9}$ racional = $\frac{7}{24}$ | $\frac{7}{9}$ racional

= Alasur Lo

Exemplo 6: Mostre que

- a) $\sqrt[3]{2}$ é irracional.
- b) $\sqrt[3]{4}$ é irracional.

- a) $\sqrt[3]{6}$ é irracional.
- b) $\sqrt[3]{12}$ é irracional.

Exemplo 8: Use o exercício anterior para mostrar que

- a) $\sqrt[3]{48}$ é irracional.
- b) $\sqrt[3]{96}$ é irracional.