2-Algebraic Geometry

Songun Lee

August 9, 2024

Abstract

Clausen-Scholze's analytic stacks rely heavily on D(X). The definition of analytic ring explicitly contains D(R), and every geometric content is given by the 6-functor formalism. These developments parallel the evolution of noncommutative geometry into derived noncommutative geometry. This paper presents speculations about 2-Algebraic Geometry, drawing significant inspiration from Clausen-Scholze's work.

Contents

1	Introduction	2
2	2-Algebra	2
	2.1 2-Additive Space	2
	2.2 2-Ring	3
	2.3	
	2.4 2-Module	4
	2.5 base change	4
	2.5.1 construction of tensor product	4
3	2-Geometry	4
	2-Geometry 3.1 Defining $f_!$	5
	3.2 2-Algebraic Stack	
4	Conclusion	5

1 Introduction

In this paper, we explore the concept of 2-algebraic geometry, a vertical categorification of usual algebraic geometry. Our approach is heavily influenced by the work of Clausen and Scholze.

Our work differs from previous works in following aspects:

- 1. We use (presentable) stable categories instead of abelian categories
- 2. Our geometry is inspired by Clausen-Scholze's recent work on D-topology and !-descent

Throughout this work, we will ignore set-theoretic issues and simply assume existence of Grothendieck universes.

2 2-Algebra

categorical level	(1,0)	$(\infty,0)$	$(\infty,1)$
additive space	abelian group	spectra	stable category
additive map	f(0) = 0 f(a+b) = f(a) + f(b)	(-)	admits right adjoint (cocompleteness)
addition	abelian group	spectra	stable category
		*	0 0
multiplication distributive law	unital commutative distributive law	E_{∞} E_{∞} -algebra	symmetric monoidal internal hom

Speculation 2.1. We need another enlargement of 2-rings, similar to enlarging commutative rings to E_{∞} -ring spectra, before defining 3-rings.

2.1 2-Additive Space

We begin by introducing the notion of a 2-additive space, which is usually called as 2-abelian group in the literature.

Definition 2.2 (2-Additive Space). A 2-additive space is a stable category. A 2-additive space is a presentable stable category.

A 2-additive map $f: R \to S$ is an adjoint pair $f_* \vdash f^*: R \to S$, with both functor being exact.

Remark 2.3. While the direction of morphism might be confusing, it is correct algebraic direction. This will be clearer when we define 2-Ring.

We see that the usual condition of f(0) = 0, f(a) + f(b) = f(a+b) is replaced with admitting a right adjoint, roughly equivalent to being cocomplete.

We have analogues of usual linear algebraic constructions. For example, kernel and cokernel can be defined as follows:

Theorem 2.4 (kernel and cokernel). For any 2-additive map $f: V \to W$, where both V, W is 2-preadditive, we have ker f as the full subcategory of V where $f^*(x) = 0$, and coker f as the full subcategory of W where $f_*(x) = 0$.

Note that conditions of form a=0 do not add any additional homotopy data.

Proof. Without loss of generality, we only prove the kernel case. First, we need to prove that RHS forms stable category. $0 \in \ker(F)$ for any $p: a \to b$, $f^*(\operatorname{cofib}(p)) = 0$ as f^* is left adjoint, $\operatorname{cofib}(p) \in \ker(F)$

Now we show that

We now prove the universal properties.

Theorem 2.5. For any 2-preadditive spaces S and T, hom(S,T) has a natural 2-preadditive space structure, which will be denoted as [S,T]. This is 2-additive whenever T is 2-sadditive.

Theorem 2.6. The category of 2-additive spaces forms a closed monoidal category.

Proof. \Box

2.2 2-Ring

We now extend the notion of a ring to the 2-categorical setting. A 2-ring is a E_{∞} -algebra in the category of 2-additive spaces, which unwinds as:

Definition 2.7 (2-Ring). A 2-ring is a closed symmetric monoidal stable category, with tensor product and internal hom being exact in both parameters.

An algebraic morphism $f: R \to S$ is an adjoint pair $f^* \dashv f_*: S \to R$ such that f^* is symmetric monoidal.

The distributive law becomes cocompleteness of \otimes , which is witnessed by internal hom.

Definition 2.8 (2-field). A 2-field is a 2-ring such that $1 \neq 0$, $a \otimes b = 0$ implies $a = 0 \lor b = 0$, and every object is dualizable.

For example, $D^b(\text{FinVect}_k)$ is a 2-field. Without the earlier conditions, any direct sum of 2-fields will be another 2-field.

Theorem 2.9. For any 2-ring homomorphism $f: R \to S$, S is enriched over R, with $[-,-]_R$ being $f_*([-,-]_S)$.

Note that we haven't restricted ourselves to presentable stable categories. This allows us to consider $D^b(R)$ as a 2-ring, but now our category do not have an initial object.

Theorem 2.10. The initial object among presentable 2-Rings is the category of Spectra.

We now turn our attention where $f: R \to S$ induces fully faithful f_* , namely S is a reflective subcategory of R.

Theorem 2.11.

Proof.
$$[M, f_*f^*N] = [f^*M, f^*N]$$

 $f_*1_S \otimes M == f_*f^*M$

2.3

2.4 2-Module

Definition 2.12. A module over a 2-Ring R is a 2-additive space M, with a monoidal 2-additive map $R \to \text{End}(M)$.

Theorem 2.13. An R-module M is naturally R-enriched.

Proof. $[M,M] \to R$ we need adjoint of $(r,a) \mapsto ra : R \times M \to M$. this is obvious by construction. now we have homset,

Let
$$f: R \to \operatorname{End}(M)$$
, $[a, b]_R = f_*$

Definition 2.14 (quotient ring).

2.5 base change

It is easy to define tensor product with desired categorical properties. It is hard to construct one, as we are working with $(\infty, 1)$ -categories.

Our first goal is to define $A \otimes_R B$ for $f: R \to A$, $g: R \to B$.

We call a map R-linear if it extends to a functor between R-enriched category

Definition 2.15 (tensor product). $A \otimes_R B$ is a object representing R-bilinear functors from $A \otimes B$.

2.5.1 construction of tensor product

recall

$$ra\otimes b = r(a\otimes b) = a\otimes rb, (a_1+a_2)\otimes b = a_1\otimes b + a_2\otimes b, a\otimes (b_1+b_2) = a\otimes b_1 + a\otimes b_2$$

3 2-Geometry

Following Clausen-Scholze, we derive all geometric content, including the correct choice of Grothendieck topology, from the 6-functor formalism.

This section will be a near copy of the work of Clausen-Scholze.

We simply define affine test space Spec S as S in 2 Ring op, and call geometric morphism $f^o p$

3.1 Defining $f_!$

Definition 3.1 (open immersion). A 2-ring homomorphism $f: R \to S$ is an open immersion $f^{\text{op}}: \operatorname{Spec} S \to \operatorname{Spec} R$ when f^* admits further left adjoint $f_!$ satisfying further projection formula.

Remark 3.2 (Scholze). Let $f: X \to S$ be open immersion of usual 1-schemes. $f: \operatorname{Spec} D(X) \to \operatorname{Spec} D(S)$ is not an open immersion in the above sense unless it $f: X \to S$ is also a closed immersion

Thus, the above definition diverges from that of algebraic geometry.

Definition 3.3 (proper). A 2-ring homomorphism $f: R \to S$ is a proper map $f^{\text{op}}: \operatorname{Spec} S \to \operatorname{Spec} R$ when f_* satisfies projection formula and admits further right adjoint $f^!$

Definition 3.4 (!-able map). A f^{op} : Spec $S \to \text{Spec } R$ is a !-able map if it can be written as Spec $S \to \text{Spec } S' \to \text{Spec } R$ where the former is an open immersion and the latter is a proper map.

Theorem 3.5. Three classes of map satisfies 2-out-of-3 property, and stable under base change,

Theorem 3.6 (6-functor formalism of 2-rings).

3.2 2-Algebraic Stack

Definition 3.7 (!-topology). A !-able map $f: R \to S$ is a !-cover if $R = \lim_{n \to \infty} S^{\times_{R} n}$

Definition 3.8 (2-sheaf). A 2-sheaf X satisfies descent condition for every !-hypercovers such that

Definition 3.9 (2-scheme).

4 Conclusion