DMDR: R Package for "Distributed Mean Dimension Reduction Through Semi-parametric Approaches"

Xie, Zhongming

Nov 26, 2024

Available at https://github.com/Chia202/DMDR

Content

- Distributed Learning
- Mean Dimension Reduction
- Algorithm 1 (Dense Solution)
- Algorithm 2 (Sparse Solution)
- Experiments
- Conclusion

Distributed Learning

(a) An illustration of a distributed learning network. (b) An illustration of distributed protocol.

Credit: Cai and Wei (2020)

Examples of Distributed Learning

Estimating population mean

$$\hat{\mu} = \frac{1}{n} \sum_{j=1}^{m} \bar{X}_{j}$$

Estimating linear regression coefficients

$$\hat{\beta} = \left(X_1^T X_1 + \dots + X_m^T X_m\right)^{-1} \left(X_1^T Y_1 + \dots + X_m^T Y_m\right)$$

Stochastic gradient descent

$$\beta_{t+1} = \beta_t - \eta \frac{1}{m} \nabla f_i(\beta_t)$$

Mean Dimension Reduction

We assume that for covariates $\mathbf{x} \in \mathbb{R}^p$ and response $Y \in \mathbb{R}$, there exists $\beta \in \mathbb{R}^{p \times d}$ (usually d < p) such that

$$\mathbb{E}\left(Y|\mathbf{x}\right) = \mathbb{E}\left(Y|\beta^T\mathbf{x}\right)$$

It is equivalent that for some unknown function $m(\cdot)$,

$$Y = m(\beta^T \mathbf{x}) + \varepsilon, \quad \mathbb{E}(\varepsilon | \mathbf{x}) = 0$$

Our goal is to estimate the column space of β denoted by $S_{\mathbb{E}(Y|\mathbf{x})}$. We may assume that the upper $d \times d$ submatrix of β is identity matrix and the rest $(p-d) \times d$ elements are free.

Mean Dimension Reduction

Define the inverse variance function as $w(\mathbf{x}) = (\mathbb{E}(\epsilon^2|\mathbf{x}))^{-1}$ and the gradient of m as $\mathbf{m}_1(\beta^T\mathbf{x}) = \partial m(\beta^T\mathbf{x})/\partial(\beta^T\mathbf{x})$.

Ma and Zhu (2014) showed that $\boldsymbol{\beta}$ satisfies

$$\mathbb{E}\left(\mathbf{S}\{\mathbf{x},Y,\alpha,w(\mathbf{x})\}\right) \stackrel{\text{def}}{=} \mathbb{E}\left(\left\{Y-m\left(\mathbf{x}^{T}\alpha\right)\right\}w(\mathbf{x})\widetilde{\mathbf{x}}(\alpha)\right) = 0$$

where

$$\widetilde{\mathbf{x}}(\alpha) \overset{\text{def}}{=} \operatorname{vecl} \left\{ \left(\mathbf{x} - \frac{\mathbb{E} \left\{ \mathbf{x} w(\mathbf{x}) \mid \mathbf{x}^T \alpha \right\}}{\mathbb{E} \left\{ w(\mathbf{x}) \mid \mathbf{x}^T \alpha \right\}} \right) \mathbf{m}_1^T \left(\mathbf{x}^T \alpha \right) \right\} \in \, \mathbb{R}^{(p-d)d \times 1}.$$

We call $\mathbf{S}(\mathbf{x}, Y, \alpha, w(\mathbf{x}))$ the score function. Solving the sample version of the above equation gives us the estimate of β .

Newton-Raphson Method

The gradient of \mathbb{E} (**S**{**x**, *Y*, α , w(**x**)}) with respect to α is

$$-\mathbf{H}(\alpha) \stackrel{\mathsf{def}}{=} -\mathbb{E}\left(w(\mathbf{x})\{\widetilde{\mathbf{x}}(\alpha)\}\{\widetilde{\mathbf{x}}(\alpha)\}^T\right).$$

Starting with an initial value $\beta^{(0)}$, the Newton-Raphson iteration proceeds as

$$\operatorname{vecl}\left(\boldsymbol{\beta}^{(t+1)}\right) \overset{\text{def}}{=} \operatorname{vecl}\left(\boldsymbol{\beta}^{(t)}\right) + \left\{\mathbf{H}\left(\boldsymbol{\beta}^{(t)}\right)\right\}^{-1} E\left(\mathbf{S}\left\{\mathbf{x}, Y, \boldsymbol{\beta}^{(t)}, w(\mathbf{x})\right\}\right).$$

To recast the above iteration in a least-squares framework, define

$$\widetilde{Y}(\alpha) \stackrel{\text{def}}{=} {\{\widetilde{\mathbf{x}}(\alpha)\}}^T \operatorname{vecl}(\alpha) + {\{Y - m(\mathbf{x}^T \alpha)\}}.$$

Newton-Raphson iteration can equivalently be written as

$$\operatorname{vecl}\left(\beta^{(t+1)}\right) = \left\{\mathbf{H}\left(\beta^{(t)}\right)\right\}^{-1} E\left(w(\mathbf{x})\widetilde{\mathbf{x}}\left(\beta^{(t)}\right)\widetilde{Y}\left(\beta^{(t)}\right)\right),$$

which minimizes the following weighted least squares loss:

$$\operatorname{vecl}\left(\boldsymbol{\beta}^{(t+1)}\right) = \arg\min_{\boldsymbol{\alpha}} E\left(\left\{\widetilde{\boldsymbol{Y}}\left(\boldsymbol{\beta}^{(t)}\right) - \widetilde{\boldsymbol{x}}\left(\boldsymbol{\beta}^{(t)}\right)^T \operatorname{vecl}(\boldsymbol{\alpha})\right\}^2 w(\boldsymbol{x})\right).$$

Distributed Mean Dimension Reduction

Assume we have m machines with n observations each, denote by

$$\{(\mathbf{x}_{i,j}, Y_{i,j}), i = 1, \ldots, n, j = 1, \ldots, m\}.$$

The idea is to

- Estimate score function at each machine.
- Average the score function across all machines.
- On the first machine, compute Hessian matrix $\mathbf{H}_1(\beta)$.
- Update $\boldsymbol{\beta}$ using the average score function and Hessian matrix.

Estimate the following quantities at each j-th machine:

1.
$$\hat{m}_j(\mathbf{x}_{kj}^T\alpha), \hat{\mathbf{m}}_{1j}(\mathbf{x}_{kj}^T\alpha) =$$

$$\arg\min_{b_{kj}, \mathbf{b}_{kj}} \sum_{i=1, i \neq k}^{n} \left\{ Y_{ij} - b_{kj} - \left(\mathbf{x}_{ij}^{T} \alpha - \mathbf{x}_{kj}^{T} \alpha \right) \mathbf{b}_{kj} \right\}^{2} K_{h_{1}} \left(\mathbf{x}_{ij}^{T} \alpha - \mathbf{x}_{kj}^{T} \alpha \right)$$

2. Inverse variance function $\hat{w}_i(\mathbf{x}_{ki}) =$

$$\sum_{i=1,i\neq k}^{n} K_{h}\left(\mathbf{x}_{ij}^{\mathsf{T}} - \mathbf{x}_{kj}^{\mathsf{T}}\right) / \sum_{i=1,i\neq k}^{n} K_{h}\left(\mathbf{x}_{ij}^{\mathsf{T}} - \mathbf{x}_{kj}^{\mathsf{T}}\right) \left(Y_{ij} - \hat{m}_{j}\left(\mathbf{x}_{ij}^{\mathsf{T}}\alpha\right)\right)^{2}$$

3. Compute the conditional expectation of $w(\mathbf{x})$ and $\mathbf{x}w(\mathbf{x})$:

$$\begin{split} \hat{\mathbb{E}}_{j}\left(\hat{w}(\mathbf{x}_{kj})|\mathbf{x}_{kj}^{T}\alpha\right) &= \frac{\sum_{i=1,i\neq k}^{n} K_{h_{2}}\left(\mathbf{x}_{ij}^{T}\alpha - \mathbf{x}_{kj}^{T}\alpha\right)\hat{w}_{j}(\mathbf{x}_{ij})}{\sum_{i=1,i\neq k}^{n} K_{h_{2}}\left(\mathbf{x}_{ij}^{T}\alpha - \mathbf{x}_{kj}^{T}\alpha\right)} \\ \hat{\mathbb{E}}_{j}\left(\mathbf{x}_{kj}\hat{w}_{j}(\mathbf{x}_{kj})|\mathbf{x}_{kj}^{T}\alpha\right) &= \frac{\sum_{i=1,i\neq k}^{n} K_{h_{3}}\left(\mathbf{x}_{ij}^{T}\alpha - \mathbf{x}_{kj}^{T}\alpha\right)\left\{\mathbf{x}_{ij}\hat{w}_{j}(\mathbf{x}_{ij})\right\}}{\sum_{i=1,i\neq k}^{n} K_{h_{3}}\left(\mathbf{x}_{ij}^{T}\alpha - \mathbf{x}_{kj}^{T}\alpha\right)} \end{split}$$

4. Accordingly, compute

$$\hat{\tilde{\mathbf{x}}}_{j}(\alpha) = \text{vecl}\left\{\left[\mathbf{x}_{kj} - \frac{\hat{\mathbb{E}}_{j}\left(\mathbf{x}_{kj}\hat{w}_{j}(\mathbf{x}_{kj})|\mathbf{x}_{kj}^{T}\alpha\right)}{\hat{\mathbb{E}}_{j}\left(\hat{w}(\mathbf{x}_{kj})|\mathbf{x}_{kj}^{T}\alpha\right)}\right]\hat{\mathbf{m}}_{1j}^{T}(\mathbf{x}_{kj}^{T}\alpha)\right\}$$

5. Compute score function locally, and average across all machines:

$$\begin{split} \hat{\mathbf{S}}_{j} \left\{ \mathbf{x}_{kj}, Y_{kj}, \alpha, \hat{w}_{j}(\mathbf{x}_{kj}) \right\} &= \left\{ Y_{kj} - \hat{m}_{j} \left(\mathbf{x}_{kj}^{T} \alpha \right) \right\} \hat{w}_{j}(\mathbf{x}_{kj}) \hat{\widetilde{\mathbf{x}}}_{j}(\alpha) \\ \hat{\mathbb{E}}_{j} \left[\mathbf{S} \left\{ \mathbf{x}, Y, \alpha, w(\mathbf{x}) \right\} \right] &= \frac{1}{n} \sum_{k=1}^{n} \hat{\mathbf{S}}_{j} \left\{ \mathbf{x}_{kj}, Y_{kj}, \alpha, \hat{w}_{j}(\mathbf{x}_{kj}) \right\} \end{split}$$

6. Compute the Hessian matrix at the first machine:

$$\hat{\mathbf{H}}_{1}(\alpha) = \frac{1}{n} \sum_{i=1}^{n} \hat{w}_{j}(\mathbf{x}_{kj}) \hat{\widetilde{\mathbf{x}}}_{j}(\alpha) \hat{\widetilde{\mathbf{x}}}_{j}(\alpha)^{T}$$

7. Upate β using the following formula:

$$\beta^{(t+1)} = \beta^{(t)} + \left(\hat{\mathbf{H}}_{1}\left(\beta^{(t)}\right)\right)^{-1} \frac{1}{m} \sum_{i=1}^{m} \hat{\mathbb{E}}_{j} \left[\mathbf{S}\left\{\mathbf{x}, Y, \beta^{(t)}, w(\mathbf{x})\right\}\right]$$

Using the Adam optimizer to mitigate the gradient explosion. The update rule is

$$m^{(t+1)} = \beta_1 m^{(t)} + (1 - \beta_1) \nabla f(\beta^{(t)})$$

$$v^{(t+1)} = \beta_2 v^{(t)} + (1 - \beta_2) \left(\nabla f(\beta^{(t)}) \right)^2$$

$$\beta^{(t+1)} = \beta^{(t)} + \eta \frac{m^{(t+1)}}{\sqrt{v^{(t+1)} + \epsilon}}$$

Implementation of Algorithm 1

```
mat dmdrDense(data) {
  // Whiten data
  // Iterate machines
#pragma omp parallel for
for (machine in machines) {
  // Call estimateScore();
  // Collect scores;
  // Adam optimizer
  grad=H^{(-1)}mean(scores);
  m=b1*m+(1-b1)*grad;
  v=b2*v+(1-b2)*grad^2;
  beta=beta+m/sqrt(v);
  return beta;
```

```
estimateScore(Local data) {
    // Estimate m, m1;
    // Estimate w;
    // Estimate E(w|x), E(xw|x);
    // Estimate tilde X;
    // Estimate score;
    return score;
}
```

Algorithm 2: Sparse Solution

Recall that algorithm 1 has a equivalent least squares formulation.

$$\mathcal{L}_{N}(\alpha) = \frac{1}{2N} \sum_{i=1}^{n} \sum_{k=1}^{m} \left\{ \widehat{Y}_{i,k} \left(\beta^{(t)} \right) - \widehat{\tilde{\mathbf{x}}}_{i,k} \left(\beta^{(t)} \right)^{T} \operatorname{vecl}(\alpha) \right\}^{2} \widetilde{w} \left(\mathbf{x}_{i,k} \right)$$

$$\equiv \frac{1}{2} \operatorname{vecl}(\alpha - \beta^{(t)})^{T} \widehat{\mathbf{H}} \operatorname{vecl}(\alpha - \beta^{(t)}) + \operatorname{vecl}(\alpha - \beta^{(t)})^{T} (\widehat{\mathbf{H}} \operatorname{vecl}(\beta^{(t)}) - \mathbf{z}_{N})$$

$$= \frac{1}{2} \operatorname{vecl}(\alpha - \beta^{(t)})^{T} \widehat{\mathbf{H}}_{1} \operatorname{vecl}(\alpha - \beta^{(t)}) + \operatorname{vecl}(\alpha - \beta^{(t)})^{T} (\widehat{\mathbf{H}} \operatorname{vecl}(\beta^{(t)}) - \mathbf{z}_{N})$$

$$+ \frac{1}{2} \operatorname{vecl}(\alpha - \beta^{(t)})^{T} (\widehat{\mathbf{H}} - \widehat{\mathbf{H}}_{1}) \operatorname{vecl}(\alpha - \beta^{(t)})$$

$$\approx \frac{1}{2} \operatorname{vecl}(\alpha - \beta^{(t)})^{T} \widehat{\mathbf{H}}_{1} \operatorname{vecl}(\alpha - \beta^{(t)}) + \operatorname{vecl}(\alpha - \beta^{(t)})^{T} (\widehat{\mathbf{H}} \operatorname{vecl}(\beta^{(t)}) - \mathbf{z}_{N})$$

$$\equiv \frac{1}{2} \operatorname{vecl}(\alpha)^{T} (\widehat{\mathbf{H}}_{1}) \operatorname{vecl}(\alpha) + \operatorname{vecl}(\alpha)^{T} \left((\widehat{\mathbf{H}} - \widehat{\mathbf{H}}_{1}) \operatorname{vecl}(\beta^{(t)}) - \mathbf{z}_{N} \right)$$

where $\mathbf{z}_N = \frac{1}{m} \sum_{k=1}^m z_k = \frac{1}{m} \sum_{k=1}^m \frac{1}{n} \sum_{i=1}^n \hat{w}_k(\mathbf{x}_{ik}) \hat{\widetilde{\mathbf{x}}}_{ik}(\boldsymbol{\beta}^{(t)}) \hat{Y}_{ik}(\boldsymbol{\beta}^{(t)}).$

Algorithm 2: Sparse Solution

- Estimate \hat{H}_k vecl($\beta^{(t)}$) and \mathbf{z}_k at each machine.
- Average \hat{H}_k vecl($\beta^{(t)}$)s and \mathbf{z}_k s at the first machine.
- Update β by solving

$$\begin{split} \boldsymbol{\beta}^{(t+1)} &= \arg\min_{\boldsymbol{\alpha}} \left(\frac{1}{2} \operatorname{vecl}(\boldsymbol{\alpha})^T \hat{\mathbf{H}}_1 \operatorname{vecl}(\boldsymbol{\alpha}) \right. \\ &+ \operatorname{vecl}(\boldsymbol{\alpha})^T \Big[\left(\hat{\mathbf{H}} - \hat{\mathbf{H}}_1 \right) \operatorname{vecl}(\boldsymbol{\beta}^{(t)}) - \mathbf{z}_N \Big] + \lambda \|\boldsymbol{\alpha}\|_1 \right). \end{split}$$

Implementation of Algorithm 2

```
mat dmdrSparse(data) {
                                  List estimateSparse(Local data)
  // Whiten data
                                    // Estimate m, m1;
  // Iterate machines
                                    // Estimate w;
#pragma omp parallel for
                                    // Estimate E(w|x), E(xw|x);
for (machine in machines) {
                                    // Estimate tilde X;
  // Call estimateSparse();
                                    // Estimate Hessian H;
  // Collect H * beta and z;
                                    // Estimate z;
                                    return List(H * beta, z);
// Call Lasso solver;
beta = LassoSolver(H1, (H - H1)
     * beta + z);
                                  mat LassoSolver(H, coef) {
                                    // Coordinate descent;
return beta;
```

Experiments

We set p = 16, d = 2, and $\beta = (\beta_1, \beta_2)$, where:

$$\beta_1 = (1, 0, 0, 1, \underbrace{0, \dots, 0}_{p-4})^T$$
 and $\beta_2 = (0, 1, 1, -1, \underbrace{0, \dots, 0}_{p-4})^T$.

Example 1: Generate $\mathbf{x} \sim N_p(0, \Sigma)$, where $\Sigma_{ij} = 0.5^{|i-j|}$, and

$$Y = \mathbf{x}^T \beta_1 + \mathbf{x}^T \beta_2 + \varepsilon$$
, $\varepsilon \sim N(0, 2^2)$

Example 2: Generate $\mathbf{x} \sim U[-2, 2]$ and

$$Y = \frac{\mathbf{x}^T \beta_1}{0.5 + (1.5 + \mathbf{x}^T \beta_2)^2} + \varepsilon, \quad \varepsilon \sim N(0, e^{\mathbf{x}_1})$$

Use trace correlation to evaluate the estimator: $r = \text{trace}(P_{\beta}P_{\hat{\beta}})/d \in [0, 1]$.

Simulation Results

Results of algorithms for different (m, n) configurations.

Example	Algorithm	(m,n) = (5,500)		(m,n) = (25,100)	
		Mean	Std. Dev.	Mean	Std. Dev.
1	Dense	0.4491	0.0060	0.4578	0.0049
	Sparse	0.5775	0.0002	0.6236	0.0040
2	Dense	0.4009	0.0048	0.3770	0.0025
	Sparse	0.4292	0.0005	0.6306	0.0039

Parallelization vs. Serial Execution

Performance: Repeating Algorithm 2 thirty times with ten machines.

Example	Algorithm 2	Min	Mean	Median	Max
1	Serial	62.3605	78.4520	78.8680	81.2772
	Parallel	9.8350	10.3798	10.3288	11.6317
2	Serial	65.6747	78.6136	78.6649	82.9928
	Parallel	20.5469	21.3434	21.1136	22.8305

Conclusion

- We implement two algorithms for distributed mean dimension reduction.
- The first algorithm based on Newton-Raphson method yields dense solution.
- The second algorithm based on least squares and LASSO yields sparse solution.
- Using Adam optimizer to matigate gradient explosion.
- Using OpenMP to parallelize the computation.

Thank you!