数据库第三次作业

22373386 高铭

P70 1. 试述关系模型的三个组成部分。

关系模型由**关系数据结构、关系操作集合和关系完整性约束**三部分组成。

2. 简述关系数据语言的特点和分类。

关系数据语言可分为3类:

- 关系代数语言: 用对关系的运算来表达查询要求
- 关系演算语言: 用谓词来表达查询要求
 - 。 元组关系演算语言: 谓词变元的基本对象是元组变量(例如ALPHA、QUEL)
 - 。 域关系演算语言: 谓词变元的基本对象是域变量 (例如QBE)
- 具有关系代数和关系演算双重特点的语言:关系数据库的标准语言(例如SQL)

3. 定义并理解下列术语,说明它们之间的联系与区别:

(1) 域,笛卡尔积,关系,元组,属性

- 域 (domain, D): 一组具有相同数据类型的值的集合, 又称为值域。
- 笛卡尔积: $D_1 \times D_2 \times \ldots \times D_n = \{(d_1,d_2,\ldots,d_n) | d_i \in D_i, i=1,2,\ldots,n\}.$
- 关系:笛卡尔积 $D_1 \times D_2 \times \ldots \times D_n$ 的**任一子集**称为定义在域 $D_1, D_2, \ldots D_n$ 上的n元关系 (Relation) ,可用 $R(D_1, D_2, \ldots, D_n)$ 表示。
- **元组 (Tuple)** : 关系中的每个元素 $(d_1, d_2, ..., d_n)$
- 属性:关系对应的二维表中为每列起一名字,称为属性。属性名唯一,属性的取值范围是值域

(2) 主码,候选码,外码

- **候选码** (candidate key) : 若关系中的某一属性组的值能唯一地标识一个元组,而其自己不能,则 称该属性组为候选码。
- 主码 (primary key) : 若一个关系有多个候选码,则选定其中一个为主码。
- **外码** (foreign key) : 设F是基本关系R的一个或一组属性,但不是关系R的码, K_S 是基本关系S的主码。如果F与 K_S 相对应,则称F是R的外码。

(3) 关系模式, 关系, 关系数据库

- **关系模式** (relation schema) : 关系的描述。它可以形式化地表示为R(U,D,DOM,F)。其中R为 关系名,U为组成该关系的属性名集合,D为属性组U中属性所来自的域,DOM为属性向域的映像集合,F为属性间数据的依赖关系集合。
- 关系: 是关系模式在某一时刻的状态或内容。
- **关系数据库**:在一个给定的应用领域中,所有关系的集合构成一个关系数据库。关系数据库的型也称为关系数据库模式,是对关系数据库的描述。关系数据库的值是这些关系模式在某一时刻对应的关系的集合,通常就称为关系数据库。

4. 举例说明关系模式和关系的区别。

关系数据库中, **关系模式**是型; **关系**是值, 是关系模式的**实例**。

例如, 学生(学号, 姓名, 专业)是关系模式, 下表是关系。

<u>学号</u>	姓名	卓 亚
22210001	张三	软件工程
22210002	李四	软件工程
22060001	王五	计算机

5. 试述关系模型的完整性规则。在参照完整性中,什么情况下外码属性的值可以为空值?

关系模型的完整性规则:

- 1. 域完整性 (Domain Integrity)
 - 。 属性值应符合域的取值范围,可以用于增强数据类型,**对属性值能否为空 (NULL) 的检查** 也是域完整性约束的一部分。
- 2. **实体完整性 (Entity Integrity)**
 - 。 每张表要**有主键来约束**,主属性(构成主键的属性)应同时满足:**不能为空、取值唯一**
- 3. 参照完整性 (Referential Integrity)
 - 。 F是基本关系R的外键,它与基本关系S的主键 K_S 相对应,R和S不一定是不同关系,则对于 R中每个元组在F上的值或者取空值,或者等于S中的某个元组的主键值。
- 4. 用户定义的完整性
 - **针对某一具体关系数据库的约束条件**,反映某一具体应用所涉及的数据必须满足的语义要求。

外码属性为空值的例子:

- 学生 (<u>学号</u>, 姓名, **专业号**); 专业 (<u>专业号</u>, 名称)
- 学生关系中,专业号是一个外码,取空值时表示尚未给该学生分配专业。

ER转换关系表作业

- 1. 有一个ER图,包含3个实体集,2个联系,请问该ER图最多可以转换成多少个关系表,最少可以转换成多少个,为什么。
 - 最多转换成5个关系表。此时每个实体集转换为一个关系表,每个联系也转换为一个关系表(3个实体集关系表+2个联系关系表)。当两个联系都是m:n联系时即可实现。
 - 最少转换成3个关系表。此时每个实体集转换为一个关系表,每个关系合并到实体集的关系表中。当两个联系都是1:n或1:1时即可实现。

2. ER**图如下**:

其中各实体的属性如下:

商品(商品编号,名称、类别、单位、单价)

供应商 (供应商编号, 名称, 账号, 地址)

仓库(仓库编号,地址,负责人)

门店(门店编号, 名称, 地址)

采购员 (采购员编号,姓名,业绩)

管理员 (管理员编号, 姓名, 业绩)

营业员(营业员编号,姓名,业绩)

另各个联系的属性如下:

采购(采购单号,数量,日期)

进货 (进货单号,数量,日期)

配送(配送单号,数量,日期)

销售(销售单号,数量,日期)

存储 (库存量,日期,安全库存量)

请将上述ER图转换为关系表,并指出各表的主键、外键。

• 图中,另有两个1:n关系,管理 - 并入管理员;属于 - 并入营业员

商品	商品编号	名称	类别	单位	单价	
供应商	供应商编号	名称	账号	地址		
仓库	仓库编号	地址	负责人			
门店	门店编号	名称	地址			
采购员	采购员编号	姓名	业绩			
管理员	管理员编号	姓名	业绩	仓库编号		
营业员	营业员编号	姓名	业绩	门店编号		
采购	采购员编号	供应商编号	商品编号	采购单号	数量	日期
进货	供应商编号	商品编号	仓库编号	进货单号	数量	日期
配送	商品编号	仓库编号	门店编号	配送单号	数量	日期
销售	商品编号	门店编号	营业员编号	销售单号	数量	日期
存储	商品编号	仓库编号	库存量	日期	安全库存量	

对所有关系,下划线为主键,斜体为外键。对每一行,第一项为关系名,从第二项开始的各列为各关系模式的属性名。

3. 安装一种数据库软件,将上题的各表在数据库中建立起来,并尝试录入数据。

安装Datagrip,建立了各个关系表,设置了主键,连接了外键,最后生成的ER图如下:

