《信息光学》(第二次印刷)第3章勘误表

页	行 (式)	原 文	勘正
150	倒 13 行	构成正交函数系	构成标准正交函数系
150	(3.2.18)	$W(\xi) = \int_{-\infty}^{\infty} f(x)\psi^*(x;\xi') dx$	$W(\xi) = \int_{-\infty}^{\infty} f(x) \psi^*(x; \xi) dx$
152	7 行	齐次性	叠加性
153	(3.2.34)	$L\{e^{i2\pi[\xi_{0}(x-x_{0})+\eta_{0}(y-y_{0})]}\}$ $=L\{e^{i2\pi(\xi_{0}x+\eta_{0}x)}e^{-i2\pi(\xi_{0}x_{0}+\eta_{0}y_{0})}\}$ $=e^{-i2\pi(\xi_{0}x_{0}+\eta_{0}y_{0})}L\{e^{i2\pi\xi_{0}x+\eta_{0}x}\}$ $=e^{-i2\pi(\xi_{0}x_{0}+\eta_{0}y_{0})}g(x,y;\xi_{0},\eta_{0})$	$L\{e^{i2\pi[\xi_{0}(x-x_{0})+\eta_{0}(y-y_{0})]}\}$ $=L\{e^{i2\pi(\xi_{0}x+\eta_{0}y)}e^{-i2\pi(\xi_{0}x_{0}+\eta_{0}y_{0})}\}$ $=e^{-i2\pi(\xi_{0}x_{0}+\eta_{0}y_{0})}L\{e^{i2\pi(\xi_{0}x+\eta_{0}y)}\}$ $=e^{-i2\pi(\xi_{0}x_{0}+\eta_{0}y_{0})}g(x,y;\xi_{0},\eta_{0})$
153	(3.2.41)	$\Phi(x - x_0, y - y_0; \xi_0, \eta_0) - \Phi(x, y; \xi_0, \eta_0)$ = $-2\pi(\xi_0 x + \eta_0 y)$	$\Phi(x - x_0, y - y_0; \xi_0, \eta_0) - \Phi(x, y; \xi_0, \eta_0)$ $= -2\pi(\xi_0 x_0 + \eta_0 y_0)$
154	(3.2.44)	$g(x, y; \xi_0, \eta_0) = H(\xi_0, \eta_0) e^{-2\pi(\xi_0 x + \eta_0 y)}$	$g(x, y; \xi_0, \eta_0) = H(\xi_0, \eta_0) e^{i2\pi(\xi_0 x + \eta_0 y)}$
154	(3.2.45)	$g(x, y; \xi_0, \eta_0) = L\{e^{i2\pi(\xi_0 x + \eta_0 y)}\}\$ = $H(\xi_0, \eta_0)e^{-2\pi(\xi_0 x + \eta_0 y)} = H(\xi_0, \eta_0)f(x, y)$	$g(x, y; \xi_0, \eta_0) = L\{e^{i2\pi(\xi_0 x + \eta_0 y)}\}\$ $= H(\xi_0, \eta_0)e^{i2\pi(\xi_0 x + \eta_0 y)} = H(\xi_0, \eta_0)f(x, y)$
157	(3.2.68)	$G(\xi,\eta) = H(\xi,\eta)F(\xi,\eta)$ = $H(\xi,\eta)\delta(\xi - \xi_0, \eta - \eta_0)$ = $H(\xi,\eta)\delta(\xi - \xi_0, \eta - \eta_0)$.	$G(\xi, \eta) = H(\xi, \eta)F(\xi, \eta)$ $= H(\xi, \eta)\delta(\xi - \xi_0, \eta - \eta_0).$
158	(3.2.78)	$G(\xi, \eta) = H(\xi, \eta) F(\xi, \eta)$ $= \frac{1}{2} H(\xi, \eta) [(\xi - \xi_0, \eta - \eta_0) + \delta(\xi + \xi_0, \eta + \eta_0)]$ $= \frac{1}{2} H(\xi, \eta) [\delta(\xi - \xi_0, \eta - \eta_0) + \delta(\xi + \xi_0, \eta + \eta_0)].$	$G(\xi,\eta) = H(\xi,\eta)F(\xi,\eta)$ $= \frac{1}{2}H(\xi,\eta)[\delta(\xi - \xi_0, \eta - \eta_0) + \delta(\xi + \xi_0, \eta + \eta_0)]_{\circ}$
160	(3.3.7)	$ ilde{U}(P)\mathrm{e}^{-\mathrm{i}\phi(P)}\delta(u- u_0)$	$\tilde{U}(P)e^{\mathrm{i}\varphi(P)}\delta(v+v_0)$
163	(3.3.27)	$2\int_0^\infty \tilde{U}(\nu)\mathrm{e}^{\mathrm{i}(2\pi\nu t+\varphi)}\mathrm{d}\nu$	$2\int_0^\infty \tilde{U}(\nu)e^{i[2\pi\nu t + \varphi(\nu)]}d\nu$
170	(3.4.30)	$\varphi(x,y) = e^{-i\frac{k}{ d }(x_0x + y_0y)} e^{i\frac{k}{2 d }(x^2 + y^2)}$ $\approx e^{-i2\pi \left(\frac{\cos\alpha}{\lambda}x + \frac{\cos\beta}{\lambda}y\right)} e^{i\frac{k}{2 d }(x^2 + y^2)}$	$\varphi(x,y) = -i\frac{k}{d}(x_0x + y_0y) + i\frac{k}{2d}(x^2 + y^2)$ $\approx i2\pi \left(\frac{\cos\alpha}{\lambda}x + \frac{\cos\beta}{\lambda}y\right) + i\frac{k}{2d}(x^2 + y^2)$
171	图 3.4.4	β 角的划线	应划到与光波矢那条线相交
		_	