Mathematical Cryptography

Group

- a set of elements or "numbers"
- with some operation whose result is also in the set (closure)
- obeys:
 - associative law: (a.b).c = a.(b.c)

 - has inverses a^{-1} : $a \cdot a^{-1} = e$
- if commutative a.b = b.a
 - then forms an abelian group

Cyclic Group

- define exponentiation as repeated application of operator
 - example: $a^3 = a.a.a$
- and let identity be: e=a0
- a group is cyclic if every element is a power of some fixed element
 - $-ie b = a^k$ for some a and every b in group
- a is said to be a generator of the group

Ring

- a set of "numbers" with two operations (addition and multiplication) which are:
- an abelian group with addition operation
- multiplication:
 - has closure
 - is associative
 - distributive over addition: a(b+c) = ab + ac
- if multiplication operation is commutative, it forms a commutative ring
- if multiplication operation has inverses and no zero divisors, it forms an integral domain

Field

- a set of numbers with two operations:
 - abelian group for addition
 - abelian group for multiplication (ignoring 0)
 - ring

Groups, Ring, and Field Figure 4.2

If a and b belong to S, then a + b is also in S a + (b + c) = (a + b) + c for all a, b, c in S There is an element 0 in R such that a + 0 = 0 + a = a for all a in S For each a in S there is an element -a in S such that a + (-a) = (-a) + a = 0a + b = b + a for all a, b in SIf a and b belong to S, then ab is also in S a(bc) = (ab)c for all a, b, c in Sa(b+c) = ab + ac for all a, b, c in S(a + b)c = ac + bc for all a, b, c in S ab = ba for all a, b in SThere is an element 1 in S such that a1 = 1a = a for all a in S If a, b in S and ab = 0, then either a = 0 or b = 0If a belongs to S and a 0, there is an

Modular Arithmetic

- define modulo operator a mod n to be remainder when a is divided by n
- use the term congruence for: a = b mod n
 - when divided by *n*, a & b have same remainder
 - eg. $100 = 34 \mod 11$
- b is called the residue of a mod n
 - since with integers can always write: a = qn + b
- usually have 0 <= b <= n-1
 - $-12 \mod 7 \equiv -5 \mod 7 \equiv 2 \mod 7 \equiv 9 \mod 7$

Modulo 7 Example

```
-21 -20 -19 -18 -17 -16 -15
   -13 -12 -11 -10 -9
                      -8
-7 -6 -5 -4 -3 -2 -1
      2 3 4 5 6
     8
         9
           10
               11
                   12
                      13
14
        16
    15
               18
                      20
           17
                   19
                      27
    22
        23 24
               25
                   26
2.1
    29
               32
28
        30
           31
                   33
                      34
```

• • •

Divisors

- say a non-zero number b divides a if for some m have a=mb (a,b,m all integers)
- that is b divides into a with no remainder
- denote this b | a
- and say that b is a divisor of a
- eg. all of 1,2,3,4,6,8,12,24 divide 24

Modular Arithmetic Operations

- uses a finite number of values, and loops back from either end
- modular arithmetic is when do addition & multiplication and modulo reduce answer
- can do reduction at any point, i.e.
 - $a+b \mod n = [a \mod n + b \mod n] \mod n$

Modular Arithmetic

- can do modular arithmetic with any group of integers: $Z_n = \{0, 1, ..., n-1\}$
- form a commutative ring for addition
- with a multiplicative identity
- note some peculiarities
 - $-if(a+b) \equiv (a+c) \mod n$ then $b \equiv c \mod n$
 - but (ab) ≡ (ac) mod n then b≡c mod n
 only if a is relatively prime to n

Modulo 8 Example

+	O	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

(a) Addition modulo 8

Greatest Common Divisor (GCD)

- a common problem in number theory
- GCD (a,b) of a and b is the largest number that divides evenly into both a and b
 - eg GCD(60,24) = 12
- often want no common factors (except 1) and hence numbers are relatively prime
 - eg GCD(8,15) = 1
 - hence 8 & 15 are relatively prime

Euclid's GCD Algorithm

- an efficient way to find the GCD(a,b)
- uses theorem that:

```
-GCD(a,b) = GCD(b, a mod b)
```

Euclid's Algorithm to compute GCD(a,b):

```
-A=a, B=b
```

- -while B>0
 - \bullet R = A mod B
 - $\bullet A = B, B = R$
- -return A

Example GCD(1970,1066)

```
1970 = 1 \times 1066 + 904
                              gcd(1066, 904)
1066 = 1 \times 904 + 162
                               gcd(904, 162)
                               gcd(162, 94)
904 = 5 \times 162 + 94
162 = 1 \times 94 + 68
                               gcd (94, 68)
                               gcd(68, 26)
94 = 1 \times 68 + 26
68 = 2 \times 26 + 16
                               gcd(26, 16)
26 = 1 \times 16 + 10
                               gcd(16, 10)
16 = 1 \times 10 + 6
                               gcd(10, 6)
10 = 1 \times 6 + 4
                                    gcd(6, 4)
6 = 1 \times 4 + 2
                               gcd(4, 2)
4 = 2 \times 2 + 0
                               gcd(2, 0)
```

Polynomial Arithmetic

can compute using polynomials

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{i=0}^n a_i x^i$$

- several alternatives available
 - ordinary polynomial arithmetic
 - poly arithmetic with coords mod p
 - poly arithmetic with coords mod p and polynomials mod M(x)

Ordinary Polynomial Arithmetic

- add or subtract corresponding coefficients
- multiply all terms by each other
- eg

- let
$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$
 $f(x) + g(x) = x^3 + 2x^2 - x + 3$
 $f(x) - g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$

Polynomial Arithmetic with Modulo Coefficients

- when computing value of each coefficient do calculation modulo some value
- could be modulo any prime
- but we are most interested in mod 2
 - ie all coefficients are 0 or 1

- eg. let
$$f(x) = x^3 + x^2$$
 and $g(x) = x^2 + x + 1$
 $f(x) + g(x) = x^3 + x + 1$

$$f(x) \times g(x) = x^5 + x^2$$

Modular Polynomial Arithmetic

- can write any polynomial in the form:
 - -f(x) = q(x) g(x) + r(x)
 - can interpret r(x) as being a remainder
 - $-r(x) = f(x) \bmod g(x)$
- if have no remainder say g(x) divides f(x)
- if g(x) has no divisors other than itself & 1 say it is irreducible (or prime) polynomial
- arithmetic modulo an irreducible polynomial forms a field

Polynomial GCD

- can find greatest common divisor for polys
 - c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x)
 - can adapt Euclid's Algorithm to find it:
 - EUCLID[a(x), b(x)]
 - 1. A(x) = a(x); B(x) = b(x)
 - **2. 2.** if B(x) = 0 return A(x) = gcd[a(x), b(x)]
 - **3.** $R(x) = A(x) \mod B(x)$
 - **4.** A(x) "B(x)
 - **5.** B(*x*) " R(*x*)
 - **6. goto** 2

Computational Considerations

- since coefficients are 0 or 1, can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift & XOR
 - cf long-hand multiplication
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift & XOR)