

数据挖掘

第9章回归方法

2024年10月

• 买房问题

房屋价格销售表

假设有一个房屋销售的数据如下:

面积(m²)	销售价钱 (万元)
123	250
150	320
87	160
102	220
•••	•••

一般想法:

画图看看到底两者是什么关系,或者像是什么关系,总之就是期望能够找到两者之间的映射关系

一般想法:

我们可以用一条直线去尽量准的拟合这些数据,从而找到面积与房价之间的因果关系:直线的斜率就是每平的均价

房屋销售记录表

房屋面积

房屋销售价

拟合的函数

(假设或者模型)

训练集(training set)或 者训练数据(training data)。一条训练数据 是由一对输入数据和输 出数据组成的 输入数据,一般称为x

输出数据,一般称为y

一般写做 y = **h**(x)

01 线性回归

02 优化求解

03 逻辑回归

03 决策树回归

回归问题

- 回归分析
 - 如果把其中的一些因素(房屋面积)作为自变量,而另一些随自变量的变化而变化的变量作为因变量(房价),研究他们之间的非确定映射关系,这种分析就称为回归分析(regression)。
 - 回归分析是研究一个或多个自变量与一个因变量之间是否存在某种 线性关系或非线性关系的一种统计学方法。

回归问题的起源

• 回归问题的来源

英国著名的统计学家F. Galton研究了1078对夫妇及其一个成年儿子的身高关系。他们以儿子身高作为纵坐标、夫妇平均身高为横坐标作散点图,结果发现二者的关系近似于一条直线。经计算得到了如下方程:

y=0.8567+0.516x

Francis Galton 英国19世纪统计学家

Galton引进"回归" (regression) 一词来表达这种方程关系

线性回归

- 线性回归假设特征和响应满足线性关系
- 一元线性回归问题函数关系可表示

$$y = a + bx$$

- 根据上式,在确定a、b的情况下,给定一个x值,我们就能够得到一个确定的y值,然而根据上式得到的y值与实际的y值存在一个误差
- a、b为参数(parameters)、或称回归系数(regression coefficients)
- 采用什么样的线性关系误差刻画更好呢?

模型刻画

用什么样的方法刻画点与直线的距离会方便有效?

设直线方程为y=a+bx,样本点 $A(x_i, y_i)$

方法一: 点到直线的距离公式

$$d = \frac{\left| bx_i - y_i + a \right|}{\sqrt{b^2 + 1}}$$

方法二:

$$\left[y_i - \left(a + bx_i\right)\right]^2$$

显然方法二能有效地表示点A与直线y=a+bx的距离,而且比方法一更方便计算,所以我们用它来表示二者之间的接近程度

最小二乘法

- 基本思想
 - 保证直线与所有点接近
- 详细做法
 - 若有n个样本点: (x_1, y_1) ,…, (x_n, y_n) , 可以用下面的表达式来刻画这些点与直线y=a+bx的接近程度:

$$[y_1 - (a+bx_1)]^2 + ... + [y_n - (a+bx_n)]^2$$

- 使上式达到最小值的直线y=a+bx就是所求的直线,这种方法称为最小二乘法。
 - 求a和b的偏导数,可得

如果用
$$\overline{x}$$
表示 $\frac{x_1+x_2+\ldots+x_n}{n}$,用 \overline{y} 表示 $\frac{y_1+y_2+\ldots+y_n}{n}$ 则可得到
$$b=\frac{x_1y_1+\ldots+x_ny_n-n\overline{xy}}{x_1^2+\ldots+x_n^2-n\overline{x}^2}$$
, $a=\overline{y}-b\overline{x}$

最小二乘法

例题1 从某大学中随机选出8名女大学生,其身高和体重数据如下表:

编号	1	2	3	4	5	6	7	8
身高	165	165	157	170	175	165	155	170
体重	48	57	50	54	64	61	43	59

求根据一名女大学生的身高预报她的体重的回归方程,并 预报一名身高为172 c m的女大学生的体重。

填空题

$$b = \frac{x_1y_1 + \ldots + x_ny_n - n\overline{xy}}{x_1^2 + \ldots + x_n^2 - n\overline{x}^2}, a = \overline{y} - b\overline{x}$$

编号	1	2	3	4	5	6	7	8
身高	165	165	157	170	175	165	155	170
体重	48	57	50	54	64	61	43	59

分析:

身高y为自变量 体重x为因变量

身高172cm女大学生体重

$$\hat{y} = 0.849 \times 172 - 85.712 = 60.316(kg)$$

01 线性回归

02 优化求解

03 逻辑回归

03 决策树回归

优化求解 —— 梯度下降法

优化求解 —— 梯度下降法

- 基本思想
 - 向着梯度的反方向调整
 - 步长不能太大, 也不能太小

梯度下降法求解例子 优化求解

- 原函数
- $J(\Theta) = \theta_1^2 + \theta_2^2.$
- 函数的微分 $\nabla J(\Theta) = \langle 2\theta_1, 2\theta_2 \rangle$
- 初始条件 $\Theta^0 = (1,3) \ \alpha = 0.1.$
- 调整过程

$$\begin{split} \Theta^0 &= (1,3) \\ \Theta^1 &= \Theta^0 - \alpha \nabla J(\Theta) \\ &= (1,3) - 0.1(2,6) \\ &= (0.8,2.4) \\ \Theta^2 &= (0.8,2.4) - 0.1(1.6,4.8) \\ &= (0.64,1.92) \\ \Theta^3 &= (0.512,1.536) \\ \Theta^4 &= (0.4096,1.2288000000000001) \\ &\vdots \\ \Theta^{10} &= (0.10737418240000003,0.32212254720000005) \\ &\vdots \\ \Theta^{50} &= (1.1417981541647683e^{-05},3.425394462494306e^{-05} \\ &\vdots \\ \end{split}$$

opposite direction

direction of fastest increase

evaluated at Θ^0

 $\Theta^1 = \Theta^0 - \alpha \nabla J(\Theta)$

优化求解-学习速率的影响

学习率过小, 收敛速度太慢。

very small learning rate needs lots of steps

学习率过大, 不会收敛。

too big learning rate: missed the minimum

优化求解 —— 梯度下降法收敛

梯度下降法不能保证一定收敛到全局最优值

优化求解 —— 变种梯度下降法1

自动调整学习率的梯度下降法

优化求解 —— 变种梯度下降法2

- 批处理梯度下降法(一批数据后更新权值)
 - 优点:由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所 在的方向、易并行
 - 缺点: 当样本数目m很大时,每迭代一步都需要对所有样本计算,训练过程会很慢

```
Repeat until convergence { \theta_j := \theta_j + \alpha \sum_{i=1}^m \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}. }
```

- 随机梯度下降法(每一个数据更新1次权值)
 - 优点: 每一轮参数更新快, 计算量小
 - 缺点: 准确度下降、稳定性弱、不易于并行

```
Loop { for i=1 to m, { \theta_j := \theta_j + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every } j\text{)}.} }
```


01 线性回归

02 优化求解

03 逻辑回归

03 决策树回归

逻辑回归 —— 案例引入

• 案例引入

表1 年龄(Age)和冠心病(CD)发病情况

Age	CD
22	0
23	0
24	0
27	0
28	0
30	0
30	0
32	0
33	0
35	1
38	0

Age	CD
40	0
41	1
46	0
47	0
48	0
49	1
49	0
50	1
51	0
51	1
52	0

Age	CD
54	0
55	1
58	1
60	1
60	0
62	1
65	1
67	1
71	1
77	1
81	1

问题

* 比较病人和非病人的平均年龄

■ 非病人: 38.6 岁

■ 病人: 58.7 岁

* 能不能用线形回归?

A 能

B 不能

表2 按年龄组划分的冠心病发病情况

年龄组	人数	冠心病 人数	累积%
20 - 29	5	0	0
30 - 39	6	1	17
40 - 49	7	2	29
50 - 59	7	4	57
60 - 69	5	4	80
70 - 79	2	2	100
80 - 89	1	1	100

表2 按年龄组划分的冠心病发病情况

年龄组	人数	冠心病 人数	累积%
20 - 29	5	0	0
30 - 39	6	1	17
40 - 49	7	2	29
50 - 59	7	4	57
60 - 69	5	4	80
70 - 79	2	2	100
80 - 89	1	1	100

逻辑回归函数

1838年由比利时数学家Verhulst首次提出。1920年美国学者 Bearl & Reed 在研究果蝇的繁殖中发现和使用该函数,并在人口估计和预测中推广使用

logistic函数的值域为 [0,1]

$$f(x) = \frac{e^x}{1 + e^x}$$

用
$$p_i = P(y_i = 1 | x_{i1}, x_{i2}, \dots, x_{ip})$$

作为因变量,得到logistic回归模型

$$p_{i} = \frac{\exp(\alpha + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{p}x_{ip})}{1 + \exp(\alpha + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{p}x_{ip})}$$

$$\ln \frac{p_i}{1 - p_i} = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

逻辑回归特点:线性分类器

逻辑回归特点:线性分类器

$$\ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_m X_m = \log i t P$$

● 优势比*OR*(odds ratio)

流行病学衡量危险因素作用大小的比例指标。

$$OR_j = \frac{P_1/(1-P_1)}{P_0/(1-P_0)}$$
 表示自变量变化以后,
发病概率的变化情况

式中 P_1 和 P_0 分别表示在 X_j 取值为 C_1 及 C_0 时的发病概率, OR_j 称作多变量调整后的优势比,表示扣除了其他自变量影响后危险因素的作用。

$$\ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_m X_m = \log i \, tP$$

● 与 logistic P 的关系:

对比某一危险因素两个不同暴露水平 $x_j=c_1$ 与 $x_j=c_0$ 的发病情

况(假定其它因素的水平相同),其优势比的自然对数为:

$$\ln O R_{j} = \ln \left[\frac{P_{1}/(1 - P_{1})}{P_{0}/(1 - P_{0})} \right] = \operatorname{logit} P_{1} - \operatorname{logit} P_{0}$$

$$= (\beta_{0} + \beta_{j} c_{1} + \sum_{t \neq j}^{m} \beta_{t} X_{t}) - (\beta_{0} + \beta_{j} c_{0} + \sum_{t \neq j}^{m} \beta_{t} X_{t})$$

$$= \beta_{j} (c_{1} - c_{0})$$

例子:在一个具有17个家庭的样本里,共有3家的收入为¥10000,5家的收入为¥11000,9家的收入为¥12000。在收入为¥10000的家庭里,1个主妇不工作,2个主妇工作;在收入为¥11000的家庭里,1个主妇不工作,4个主妇工作;在收入为¥12000的家庭里,1个主妇不工作,8个主妇工作。

主妇工作状态对家庭收入的影响

1 1/ 7 \	主妇工	点 计	
收入	0 (不工作)	1 (工作)	总计
10	1	2	3
11	1	4	5
12	1	8	9
总计	3	14	17

收入	主妇工	工作概率P	
чхл	0 (不工作)	1 (工作)	
10	1	2	2/3
11	1	4	4/5
12	1	8	8/9

$$OR_j = \frac{P_1/(1 - P_1)}{P_0/(1 - P_0)}$$

X分别取10和11时, odd=4/2=2

X分别取12和11时, odd=8/4=2

收入	主妇工	工作概率P	
4X/\	0 (不工作)	1 (工作)	上门下怀一
10	1	2	2/3
11	1	4	4/5
12	1	8	8/9

$$OR_j = \frac{P_1/(1 - P_1)}{P_0/(1 - P_0)}$$

X分别取10和11时, odd=4/2=2 则有 $OR_j = \exp \beta_j$, β_j $\left\{ = 0, OR_j = 1$ 无作用 $> 0, OR_j > 1$ 危险因子 **X分别取12和11时**, odd=8/4=2

- 收入每增加1个单位, 主妇工作的Odds增加到原来的2倍
- 说明收入对工作状态有正关系,收入越高,工作概率越高
- 在疾病检测中,说明一个因素越高,使得疾病概率越高

$$\ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_m X_m = \log i t P$$

模型参数的意

常数项 β_0

表示暴露剂量为0时个体发病与不发病概率之比的自然对数。

回归系数 $\beta_i(j=1,2,\cdots,m)$

表示自变量 X_i 改变一个单位时logitP 的改变量。

logistic回归例子

例1 自变量是二值分类型变量

某医院为了研究导致手术切口感染的原因,收集了295例手术者情况,其中,手术时间小于或等于5小时的有242例,感染者13例;手术时间大于5小时的有53例,感染者7例。试建立手术切口感染(y)关于手术时间(x)的logistic回归模型。

у ж	1 (>5小时)	0(≤ 5小时)
1 (感染)	7	13
0 (未感染)	46	229
总和	53	242

逻辑回归参数估计

记得到一个实际观测值 y_i ($i = 1, 2, \dots, n$) 的概率为

$$P(y_i) = p_i^{y_i} (1 - p_i)^{1 - y_i}$$

$$p(y = 1 | x; w) = \phi(w^T x + b) = \phi(z)$$

$$p(y = 0 | x; w) = 1 - \phi(z)$$

$$P(y | x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1 - y}$$

则似然函数为
$$L = \prod_{i=1}^{n} P(y_i) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i}$$

两边取对数:
$$\ln L = \sum_{i=1}^{n} [y_i \ln p_i + (1-y_i) \ln(1-p_i)] =$$

$$\sum_{i=1}^{n} [y_i \ln \frac{p_i}{1 - p_i} + \ln(1 - p_i)]$$

$$\ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_m X_m = \log it P$$

最后得到:
$$\ln L = \sum_{i=1}^{n} [y_i(\alpha + \beta x_i) - \ln(1 + \exp(\alpha + \beta x_i))]$$

当使得lnL取得最大值时, $-\frac{1}{m}lnL$ 最小时,参数估计值即为所求。

逻辑回归参数估计

• 使用梯度下降方法, 迭代求解参数

参数估计: α=-2.869 (p=0.0001),

$$\beta$$
= 0.986 (p=0.0468).

回归模型:

如何解释系数的实际意义?

$$p(y = 1 | x) = \frac{e^{-2.869 + 0.986 x}}{1 + e^{-2.869 + 0.986 x}}$$

逻辑回归参数解释

例如 手术感染问题

у	1 (>5小时)	0(≤ 5小时)
1 (感染)	7	13
0 (未感染)	46	229
总和	53	242

$$\mathbb{P} OR_j = \exp[\beta_j(c_1 - c_0)]$$

Logistic 回归模型:

$$p(y = 1 | x) = \frac{e^{-2.869 + 0.986 x}}{1 + e^{-2.869 + 0.986 x}}$$

从 β =0.986, 得到 RR \approx OR= e^{β} =2.681。

所以, 手术时间大于5小时的感染率是手术时间小于或等于5小时的感染率的2.681倍, 即感染的可能性增加了186.1%。

Logit(
$$p_i$$
) = $\alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \varepsilon_i$ $w_1 x_1 + w_2 x_2 + w_0 = 0$ 对应于平面的一根直线 下述两个公式描述同一条直线,哪个好? $0.5 x_1 + 0.4 x_2 + 0.3 = 0$ $5 x_1 + 4 x_2 + 3 = 0$ w1,w2

W在数值上越小越好,这样越能抵抗数据的扰动

$$Logit(p_i) = \alpha + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \varepsilon_i$$

$$w_1 x_1 + w_2 x_2 + w_0 = 0$$
 对应于平面的一根直线

正则化表达式

$$L_1 = \sum_{i=0}^m |w_i|$$

$$L_2 = \sum_{i=0}^m w_i^2$$

W在数值上越小越好,这样越能抵抗数据的扰动

平衡训练误差与泛化能力

$$E = \sum_{i=1}^{n} (y_i - \frac{1}{1 + e^{-(w_1 x_{i1} + w_2 x_{i2} + w_0)}})^2 + \lambda L_1$$

$$E = \sum_{i=1}^{n} (y_i - \frac{1}{1 + e^{-(w_1 x_{i1} + w_2 x_{i2} + w_0)}})^2 + \lambda L_2$$

正则化表达式

$$L_1 = \sum_{i=0}^m |w_i|$$

$$L_2 = \sum_{i=0}^{m} w_i^2$$

惩罚项: 若学习到大权值使得误差小,但是再加上正则化式子以后使得上面E值变大。

因此,最小化E值使得求解的权值尽可能相对较小。

(a) ℓ_1 -ball meets quadratic function. ℓ_1 -ball has corners. It's very likely that the meet-point is at one of the corners.

(b) ℓ_2 -ball meets quadratic function. ℓ_2 -ball has no corner. It is very unlikely that the meet-point is on any of axes."

正则化表达式

$$L_1 = \sum_{i=0}^m |w_i|$$

$$L_2 = \sum_{i=0}^m w_i^2$$

一个有趣的结论

 L_1 倾向于使得w要么取1,要么取0稀疏编码

 L_2 倾向于使得w整体偏小岭回归

正则化表达式

$$L_1 = \sum_{i=0}^m |w_i|$$

$$L_2 = \sum_{i=0}^{m} w_i^2$$

适用场景:

 $L_{\rm l}$ 适合挑选特征

 L_2 也称为岭回归,有很强的概率意义

正则化表达式

$$L_1 = \sum_{i=0}^m |w_i|$$

$$L_2 = \sum_{i=0}^m w_i^2$$

逻辑回归训练方法优化

梯度下降法的选择

1. SGD 2. L-BFGS

	数值归一化	正则化	梯度下降法	分类个数	数据选择
LogisticR egression With L-BFGS	需要均值归一 化,算法融入 方差归一化	支持L2	LBFGS (收敛快,考 虑二阶导数)	支持多分类	加载所有数据 都参与训练
LogisticR egression With SGD	不归一化,需 要专门在外面 进行归一化	支持 L1, L2	SGD	不支持多分类	随机从训练集 选取 (支持 MiniBatch Fraction)

01 线性回归

02 优化求解

03 逻辑回归

04 决策树回归

决策树回归

· 决策树是将空间用超平面进行划分的一种方法,每次分割的时候,都将当前的空间一分为二, 这样使得 每一个叶子节点都是在空间中的一个不相交的区域,在进行决策的时候,会根据输入样本每一维feature的 值,一步一步往下,最后使得样本落入N个区域中的一个(假设有N个叶子节点),如下图所示。

- 既然是决策树,那么必然会存在以下两个核心问题:如何选择划分点?如何决定叶节点的输出值?—— 决策树分类选择划分点,使得信息增益最大,叶节点输出即类别
- · 一个回归树对应着输入空间(即特征空间)的一个划分以及在划分单元上的输出值。分类树中采用信息增益等方法,通过计算选择最佳划分点。而在回归树中,采用的是启发式的方法。

决策树分类最佳划分点选择

- 分割区间的策略
 - 从最小值开始建立分割区间,开始计算各自的信息增益,选择信息增益最大的一个分割区间作为最佳划分点

决策树分类最佳划分点选择

- 分割区间的策略
 - 从最小值开始建立分割区间,开始计算各自的信息增益,选择信息增益最大的一个分割区间作为最佳划分点

假如n个特征,每个特征有s_i (i∈(1,n))个取值,则遍历所有特征,尝试该特征所有取值,对空间进行划分,直到取到特征j的取值s,使得损失函数最小,这样就得到了一个划分点。

$$\min_{js} [\min_{c_1} Loss(y_i, c_1) + \min_{c_2} Loss(y_i, c_2)]$$
 其中一个特征损失 函数最小值

• X的取值范围[0.5, 10.5],y的取值范围: [5.0,10.10],用树桩做基函数;

$$x_i$$
 1 2 3 4 5 6 7 8 9 10 y_i 5.56 5.70 5.91 6.40 6.80 7.05 8.90 8.70 9.00 9.05

- 求f1(x)回归树T1(x), $\min_{s} \left[\min_{c_i} \sum_{x_i \in R_i} (y_i c_i)^2 + \min_{c_2} \sum_{x_i \in R_2} (y_i c_2)^2 \right]$
- 求切分点s: $R_1 = \{x \mid x \le s\}$, $R_2 = \{x \mid x > s\}$

• X的取值范围[0.5, 10.5],y的取值范围: [5.0,10.10],用树桩做基函数;

$$x_i$$
 1 2 3 4 5 6 7 8 9 10 y_i 5.56 5.70 5.91 6.40 6.80 7.05 8.90 8.70 9.00 9.05

- 求f1(x)回归树T1(x), $\min_{s} \left[\min_{c_i} \sum_{x_i \in R_i} (y_i c_i)^2 + \min_{c_2} \sum_{x_i \in R_2} (y_i c_2)^2 \right]$
- 求切分点s: $R_1 = \{x \mid x \le s\}$, $R_2 = \{x \mid x > s\}$

• 解题过程: 各切分点:

• X的取值范围[0.5, 10.5],y的取值范围: [5.0,10.10],用树桩做基函数;

$$x_i$$
 1 2 3 4 5 6 7 8 9 10 y_i 5.56 5.70 5.91 6.40 6.80 7.05 8.90 8.70 9.00 9.05

- 求f1(x)回归树T1(x), $\min_{s} \left[\min_{c_i} \sum_{x_i \in R_i} (y_i c_i)^2 + \min_{c_2} \sum_{x_i \in R_2} (y_i c_2)^2 \right]$
- 求切分点s: $R_1 = \{x \mid x \leq s\}$, $R_2 = \{x \mid x > s\}$
- · 求在R1,R2内部使平方损失误差达到最小值的c1,c2:

$$c_1 = \frac{1}{N_1} \sum_{x_i \in R_1} y_i$$
, $c_2 = \frac{1}{N_2} \sum_{x_i \in R_2} y_i$

• 解题过程: 各切分点:

• X的取值范围[0.5, 10.5],y的取值范围: [5.0,10.10],用树桩做基函数;

$$x_i$$
 1 2 3 4 5 6 7 8 9 10 y_i 5.56 5.70 5.91 6.40 6.80 7.05 8.90 8.70 9.00 9.05

- 求f1(x)回归树T1(x), $\min_{c_1} \sum_{x_i \in R_1} (y_i c_1)^2 + \min_{c_2} \sum_{x_i \in R_2} (y_i c_2)^2$
- 求切分点s: $R_1 = \{x \mid x \leq s\}$, $R_2 = \{x \mid x > s\}$
- ・ 求在 R_1 , R_2 内部使平方损失误差达到最小值的 c_1 , c_2 :

$$c_1 = \frac{1}{N_1} \sum_{x_i \in R_1} y_i$$
, $c_2 = \frac{1}{N_2} \sum_{x_i \in R_2} y_i$

• 解题过程: 各切分点:

$$m(s) = \min_{c_1} \sum_{x_i \in R_1} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2} (y_i - c_2)^2$$

当
$$s=1.5$$
 时, $R_1=\{1\}$, $R_2=\{2,3,\cdots,10\}$, $c_1=5.56$, $c_2=7.50$,

$$m(s) = \min_{c_1} \sum_{x_i \in R_1} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2} (y_i - c_2)^2 = 0 + 15.72 = 15.72$$

• 全部:

							_		
S	1.5	2,5	3.5	4.5	5.5	6.5	7.5	8.5	9.5
m(s)	15.72	12.07	8.36	5.78	3.91	1.93	10.8	11.73	15.74

回归树Tı

$$T_1(x) = \begin{cases} 6.24, & x < 6.5 \\ 8.91, & x \ge 6.5 \end{cases} \quad c_1 = \frac{1}{N_1} \sum_{x_i \in R_1} y_i, \quad c_2 = \frac{1}{N_2} \sum_{x_i \in R_2} y_i$$

$$f_1(x) = T_1(x)$$

提升树

全部:

							_		
S	1.5	2,5	3.5	4.5	5.5	6.5	7.5	8.5	9.5
m(s)	15.72	12.07	8.36	5.78	3.91	1.93	8.01	11.73	15.74

回归树Tı

$$T_1(x) = \begin{cases} 6.24, & x < 6.5 \\ 8.91, & x \ge 6.5 \end{cases}$$

$$f_1(x) = T_1(x)$$

$$x_i$$
 1 2 3 4 5 6 7 8 9 10
 y_i 5.56 5.70 5.91 6.40 6.80 7.05 8.90 8.70 9.00 9.05

计算 数据 残差

$$r_{2i} = y_i - f_1(x_i)$$

$$x_i \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$$

$$r_{2i} \quad -0.68 \quad -0.54 \quad -0.33 \quad 0.16 \quad 0.56 \quad 0.81 \quad -0.01 \quad -0.21 \quad 0.09 \quad 0.14$$

∞用fi拟合数据的平方误差:

提升树

全部:

							_		
S	1.5	2,5	3.5	4.5	5.5	6.5	7.5	8.5	9.5
m(s)	15.72	12.07	8.36	5.78	3.91	1.93	8.01	11.73	15.74

回归树Tı

$$T_1(x) = \begin{cases} 6.24, & x < 6.5 \\ 8.91, & x \ge 6.5 \end{cases}$$
$$f_1(x) = T_1(x)$$

$$r_{2i} = y_i - f_1(x_i)$$

$$x_i \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$$

$$r_{2i} \quad -0.68 \quad -0.54 \quad -0.33 \quad 0.16 \quad 0.56 \quad 0.81 \quad -0.01 \quad -0.21 \quad 0.09 \quad 0.14$$

∞用fi拟合数据的平方误差:

$$L(y, f_1(x)) = \sum_{i=1}^{10} (y_i - f_1(x_i))^2 = 1.93$$

影用fi拟合数据的平方误差:
$$L(y, f_1(x)) = \sum_{i=1}^{10} (y_i - f_1(x_i))^2 = 1.93$$

$$\mathfrak{T}_2(x) = \begin{cases} -0.52, & x < 3.5 \\ 0.22, & x \ge 3.5 \end{cases}$$

$$f_2(x) = f_1(x) + T_2(x) = \begin{cases} 5.72, & x < 3.5 \\ 6.46, & 3.5 \le x < 6.5 \\ 9.13, & x \ge 6.5 \end{cases}$$

$$L(y, f_2(x)) = \sum_{i=1}^{10} (y_i - f_2(x_i))^2 = 0.79$$

提升树

全部:

							_		
S	1.5	2,5	3.5	4.5	5.5	6.5	7.5	8.5	9.5
m(s)	15.72	12.07	8.36	5.78	3.91	1.93	8.01	11.73	15.74

回归树Tı

$$T_1(x) = \begin{cases} 6.24, & x < 6.5 \\ 8.91, & x \ge 6.5 \end{cases}$$
$$f_1(x) = T_1(x)$$

 $T_1(x) = \begin{cases} 6.24, & x < 6.5 \\ 8.91, & x \ge 6.5 \end{cases}$ 每一次进行回归树生成时采用的训练数据r 都是上次预测结果fm (x)与训练数据值yi之 间的残差。这个残差会逐渐的减小。

$$r_{2i} = y_i - f_1(x_i)$$

$$x_i \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$$

$$r_{2i} \quad -0.68 \quad -0.54 \quad -0.33 \quad 0.16 \quad 0.56 \quad 0.81 \quad -0.01 \quad -0.21 \quad 0.09 \quad 0.14$$

∞用fi拟合数据的平方误差:

制用 的 平 万 误 差:
$$L(y, f_1(x)) = \sum_{i=1}^{10} (y_i - f_1(x_i))^2 = 1.93$$
第二步: 求 T₂,
$$T_2(x) = \begin{cases} -0.52, & x < 3.5 \\ 0.22, & x \ge 3.5 \end{cases}$$

$$f_2(x) = f_1(x) + T_2(x) = \begin{cases} 5.72, & x < 3.5 \\ 6.46, & 3.5 \le x < 6.5 \\ 9.13, & x \ge 6.5 \end{cases}$$

$$L(y, f_2(x)) = \sum_{i=1}^{10} (y_i - f_2(x_i))^2 = 0.79$$

决策树回归 —— 提升树

则接下来

$$T_{3}(x) = \begin{cases} 0.15, & x < 6.5 \\ -0.22, & x \ge 6.5 \end{cases} \qquad L(y, f_{3}(x)) = 0.47$$

$$T_{4}(x) = \begin{cases} -0.16, & x < 4.5 \\ 0.11, & x \ge 4.5 \end{cases} \qquad L(y, f_{4}(x)) = 0.30$$

$$T_{5}(x) = \begin{cases} 0.07, & x < 6.5 \\ -0.11, & x \ge 6.5 \end{cases} \qquad L(y, f_{5}(x)) = 0.23$$

$$T_{6}(x) = \begin{cases} -0.15, & x < 2.5 \\ 0.04, & x \ge 2.5 \end{cases}$$

$$f_{6}(x) = f_{5}(x) + T_{6}(x) = T_{1}(x) + \dots + T_{5}(x) + T_{6}(x)$$

$$= \begin{cases} 5.63, & x < 2.5 \\ 5.82, & 2.5 \le x < 3.5 \\ 6.56, & 3.5 \le x < 4.5 \\ 6.83, & 4.5 \le x < 6.5 \\ 8.95, & x \ge 6.5 \end{cases}$$

$$L(y, f_{6}(x)) = \sum_{i=1}^{10} (y_{i} - f_{6}(x_{i}))^{2} = 0.17$$

• 此时已满足误差要求,则那么f(x)=f6(x)即为所求提升树。

决策树回归 —— 提升树

• 则接下来

$$T_{3}(x) = \begin{cases} 0.15, & x < 6.5 \\ -0.22, & x \ge 6.5 \end{cases} \qquad L(y, f_{3}(x)) = 0.47$$

$$T_{4}(x) = \begin{cases} -0.16, & x < 4.5 \\ 0.11, & x \ge 4.5 \end{cases} \qquad L(y, f_{4}(x)) = 0.30$$

$$T_{5}(x) = \begin{cases} 0.07, & x < 6.5 \\ -0.11, & x \ge 6.5 \end{cases} \qquad L(y, f_{5}(x)) = 0.23$$

$$T_{6}(x) = \begin{cases} -0.15, & x < 2.5 \\ 0.04, & x \ge 2.5 \end{cases}$$

$$f_{6}(x) = f_{5}(x) + T_{6}(x) = T_{1}(x) + \dots + T_{5}(x) + T_{6}(x)$$

$$= \begin{cases} 5.63, & x < 2.5 \\ 5.82, & 2.5 \le x < 3.5 \\ 6.56, & 3.5 \le x < 4.5 \\ 6.83, & 4.5 \le x < 6.5 \end{cases}$$

$$8.95, & x \ge 6.5$$

$$L(y, f_{6}(x)) = \sum_{i=1}^{10} (y_{i} - f_{6}(x_{i}))^{2} = 0.17$$

• 此时已满足误差要求,则那么f(x)=f6(x)即为所求提升树。

x_i	1	2	3	4	5	6	7	8	9	10
y_i	5.56	5.70	5.91	6.40	6.80	7.05	8.90	8.70	9.00	9.05

对于训练集以为的新数据,可以实现回归预测

决策树回归算法

- 每一次进行回归树生成时采用的训练数据r都是上次预测结果fm-1(x)与训练数据值yi之间的残差。这个残差会逐渐的减小。
- 算法流程:
 - 1. 初始化f0(x) = 0;
 - 2. 对于m=1,2,...,M
 - a.按照 r= yi fm-1(x)计算残 差作为新的训练数据的 y
 - b.拟合残差 r 学习一颗回归树, 得到这一轮的回归树 $T(x_i; \Theta_m)$
 - c.更新

$$f_M(x) = \sum_{m=1}^{M} T(x; \Theta_m)$$

3. 得到回归提升树:

$$r_{2i} = y_i - f_1(x_i)$$

$$x_i \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$$

$$r_{2i} \quad -0.68 \quad -0.54 \quad -0.33 \quad 0.16 \quad 0.56 \quad 0.81 \quad -0.01 \quad -0.21 \quad 0.09 \quad 0.14$$

∞用fi拟合数据的平方误差:

$$L(y, f_1(x)) = \sum_{i=1}^{10} (y_i - f_1(x_i))^2 = 1.93$$
第二步: 求T2,
$$T_2(x) = \begin{cases} -0.52, & x < 3.5 \\ 0.22, & x \ge 3.5 \end{cases}$$

$$f_2(x) = f_1(x) + T_2(x) = \begin{cases} 5.72, & x < 3.5 \\ 6.46, & 3.5 \le x < 6.5 \\ 9.13, & x \ge 6.5 \end{cases}$$

$$L(y, f_2(x)) = \sum_{i=1}^{10} (y_i - f_2(x_i))^2 = 0.79$$

$$T_6(x) = \begin{cases} -0.15, & x < 2.5 \\ 0.04, & x \ge 2.5 \end{cases}$$

均方误差变小

$$f_6(x) = f_5(x) + T_6(x) = T_1(x) + \dots + T_5(x) + T_6(x)$$

$$= \begin{cases} 5.63, & x < 2.5 \\ 5.82, & 2.5 \le x < 3.5 \end{cases}$$

$$= \begin{cases} 6.56, & 3.5 \le x < 4.5 \\ 6.83, & 4.5 \le x < 6.5 \\ 8.95, & x \ge 6.5 \end{cases}$$

$$= \begin{cases} 10 \\ 10 \\ 10 \\ 10 \end{cases}$$

$$f_m(x) = f_{m-1}(x) + T(x; \Theta_m)$$

均方误差变小

小结

- 线性回归
 - 连续型因变量-数值预测
- 逻辑回归
 - 分类型因变量-类别预测
- 决策树回归-数值预测
 - 连续型因变量, 非线性预测