1	Claims	
2		
3	1.	An apparatus comprising a first chamber and a
4		second chamber and a membrane which divides
5		the first and second chambers; the membrane
6		comprising a support and a catalyst;
7		the membrane being adapted to allow passage of
8		a first reactant from the first chamber to the
9		second chamber through said membrane;
10		wherein the first reactant is imparted with
11		enough energy by the catalyst upon said
12		passage so as to react with the second
13		reactant.
14		
15	2.	Apparatus as claimed in claim 1, wherein the
16		support is adapted to operate at temperatures
17		exceeding 250°C.
18		
19	3.	Apparatus as claimed in claim 2, wherein the
20		support comprises an inorganic support.
21		
22	4.	Apparatus as claimed in any preceding claim,
23		wherein the support comprises pores and there
24		is a graduation in the average pore radii
25		towards one surface of the support.
26		
27	5.	Apparatus as claimed in any preceding claim,
28		wherein the membrane is adapted to activate
29		molecules of the first reactant without
30		forming an ionic species before the reaction
31		with the second reactant.

1	6.	Apparatus as claimed in any preceding claim,
2		wherein the support comprises a layer with a
3		roughened surface which has an increased
4		tortuosity compared to the tortuosity of the
5		rest of the support.
6		
7	7.	Apparatus as claimed in claim 6, wherein the
8		relatively roughened surface is provided on an
9		outer surface of the support.
10		
11		
12	8.	Apparatus as claimed in any preceding claim,
13		wherein a flux control layer is provided on
14		the support.
15		•
16	9.	An apparatus as claimed in any one of claims 6
17		or 7, wherein a flux control layer is provided
18		on a first surface of the support and the
19		layer with a roughened surface is provided on
20		an opposite surface of the support.
21		
22	10.	Apparatus as claimed in claim 8 or 9, wherein
23		the flux control layer comprises an inorganic
24		porous layer which is adapted to hold a
25		portion of the catalyst therein and to control
26		the passage of the first reactant through the
27		membrane.
28		
29	11.	Apparatus as claimed in any one of claims 8 to
30		10, wherein the flux control layer is selected
31		from the group consisting of silica and gamma
32		alumina.

1.	12.	Apparatus as claimed in any preceding claim,
2		wherein the catalyst comprises a metal
3		catalyst.
4		
5	13.	Apparatus as claimed in claim 12, wherein the
6		metal catalyst is selected from the group
7		consisting of rhodium, ruthenium and nickel.
8		
9	14.	Apparatus as claimed in any preceding claim,
10		wherein the membrane is provided in the shape
11		of a cylinder.
12		
13	15.	Apparatus as claimed in any preceding claim,
14		wherein the membrane comprises one or more
15		struts.
16		
17	16.	Apparatus as claimed in any preceding claim,
18		wherein the support comprises alpha alumina.
19		
20	17.	A method of producing hydrogen gas, the method
21		comprising:
22		providing a membrane, the membrane comprising
23		a support and a catalyst;
24		passing a first reactant through the membrane
25		from a first chamber to a second chamber;
26		allowing the first reactant to come into
27		contact with the catalyst upon passage through
28		said membrane;
29		imparting the first reactant with enough
30		energy so as to react with the second
31		reactant;

1		reacting the first reactant with a second
2		reactant to produce hydrogen gas.
3		
4	18.	A method as claimed in claim 17, wherein the
5		energy imparted on the first reactant
6		activates molecules of the first reactant
7		without forming an ionic species before the
8		reaction with the second reactant.
9		
10	19.	A method as claimed in claim 17 or 18, wherein
11		the temperature is over 500°C.
12		
13	20.	A method as claimed in claim 19, wherein the
14	•	temperature is between 700°C and 800°C.
15		
16	21.	A method as claimed in any one of claims 17 to
17		20, wherein the first reactant is one of
18		oxygen and a hydrocarbon, and the second
19		reactant is the other of oxygen and a
20		hydrocarbon.
21		
22	22.	A method as claimed in claim 21, wherein the
23		oxygen and hydrocarbon do not come into
24		contact with each other until the first
25		reactant has passed through said membrane from
26		the first chamber to the second chamber.
27		
28	23.	A method as claimed in claim 21 or 22, wherein
		the hydrocarbon comprises a normally gaseous
29		the hydrocarbon comprises a normatry gaseous

1	24.	A method as claimed in any one of claims 20 to
2		23, wherein the pressure within the first
3		chamber is greater than the pressure within
4		the second chamber.
5		
6	25.	A method as claimed in any one of claims 20 to
7		24, wherein carbon monoxide is formed in
8		addition to the hydrogen.
9		
LO	26.	A method as claimed in claim 25, wherein the
L1		carbon monoxide and hydrogen are further
L2		reacted to produce normally liquid
L3		hydrocarbons in a Fischer-Tropsch type
L 4		reaction.
15		
16	27.	A method as claimed in any one of claims 20 to
L7		25, wherein the hydrogen is recovered for use
18		as a fuel.
19		
20	28.	A method of preparing a membrane, the method
21		comprising:
22		providing a support; and
23		adding a catalyst to the support.
24		
25	29.	A method as claimed in claim 28, wherein the
26		support is an inorganic support.
27		
28	30.	A method as claimed in claim 28 or 29, further
29		including the step of applying a coating to
30		one of the surfaces of the support.
31		

1	31.	A method as claimed in claim 30, wherein the
2		coating produces a roughened surface on the
3		support, said surface having an increased
4		tortuosity compared to the tortuosity of the
5		rest of the support.
6		
7	32.	A method as claimed in claim 30 or claim 31,
8		wherein the coating comprises a metal oxide or
9		metal oxide precursor.
10		
11	33.	A method as claimed in claim 32, wherein the
12		metal oxide or precursor comprises a group IV
13		metal oxide or group IV metal oxide precursor.
14		
15	34.	A method as claimed in claim 33, wherein the
16		group IV metal oxide or precursor comprises
17		TiO ₂ or a TiO ₂ precursor.
18		
19	35.	A method as claimed in claim 30, wherein the
20		coating produces a flux control layer on the
21		membrane.
22		
23	36.	A method as claimed in any one of claims 30 to
24		34, wherein a second coating, the second
25		coating being a flux control layer, is also
26		applied to the support.
27		
28	37.	A method as claimed in claim 35 or 36, wherein
29		the flux control layer is applied to the
30		membrane by exposure to a boemite sol.
31		

WO 2004/098750

1	38.	A method as claimed in any one of claims 28 to
2		36 wherein the coating and/or the second
3		coating is applied by dipping the support into
4		a liquid comprising the coating.
5		
6	39.	A method as claimed in any one claims 28 to
7		38, including the step of applying the
8		catalyst to a surface of the membrane by
9		passing a catalyst precursor solution over a
10		first surface of the support and an osmotic
11		solution over the opposite surface of the
12		support, and allowing the catalyst or a
13		catalyst precursor to be deposited on the
14		support via the process of osmosis.
15		
16	40.	A method as claimed in any one of claims 28 to
17		39, further including the steps of drying the
18		support and heating/firing the support.