PCAD Programmazione Concorrente Algoritmi Distribuiti

Arnaud Sangnier

arnaud.sangnier@unige.it

Verifica di sistemi 2

Proprietà regolari

Problem:

 Come descrivere in un modo conciso e manipolabile le proprietà temporali lineari che sono in pratica sotto-insiemi di (2^{PA})^ω

Solution:

- 1) Con degli automi (pratici da un punto di vista algoritmico, ma meno per descrive specifiche)
 - Un automa permette infatti di descrive in un modo finiti degli insiemi infiniti di sequenze
 - Con gli automi di Büchi si possono rappresentare insiemi infiniti di sequenze infinite!
- 2) Con delle formule logiche (pratiche per descrivere specifiche ma meno pratiche da un punto di vista algoritmico)

Automi di Büchi

- Definizione: Un automa di Büchi (BA) A è un tuple (Q, Σ , δ , Q_{in} , F) dove:
 - Q è un insieme finite di stato
 - Σ è l'alfabeto
 - $\delta: Q \times \Sigma \mapsto 2^Q \stackrel{.}{e}$ la funzione di transizione
 - Q_{in} ⊆ Q è l'insieme dei stati iniziali
 - F ⊆ Q è l'insieme dei stati accettanti
- Notazione: Scriveremo q -a \rightarrow q' if q' $\in \delta$ (q,a)

PCAD - 12 3

Linguaggio

- Consideriamo un automa di Büchi A=(Q, Σ , δ , Q_{in}, F)
- Un esecuzione di A su una sequenza (parola) infinita w=w₀ w₁ w₂ ... in Σ^{ω} è una sequenza infinita di stati q₀ q₁ q₂ ... tale che q₀ \in Q_{in} e q_i -wi \rightarrow q_{i+1} per tutti i
- L'esecuzione è detta accettante se esiste un numero infinito di i tale che qie
- I.e. in una esecuzione accettante dei stati di F sono visitati infinitamente spesso
- Denotiamo $L_{\omega}(A)=\{w \text{ in } \Sigma^{\omega} \mid \text{ esiste una esecuzione accettante di A su w}\}$
- $L_{\omega}(A)$ è il linguaggio di A
- Abbiamo $L_{\omega}(A) \subseteq \Sigma^{\omega}$

 Questo automa di Büchi su Σ={a,b} riconosce tutte le parole infinite su l'alfabeto che hanno un numero finito di a

• Questo automa di Büchi su Σ ={a,b,c} riconosce tutte le parole infinite su l'alfabeto che hanno un numero finito di a e un numero infinito di c

Uso degli automi di Büchi

- Usiamo gli automi di Büchi per rapprentare delle proprietà temporali lineari
- L'alfabeto di questi automi sarà dunque $\Sigma=2^{PA}$, i.e. ogni transizione verrà etichettata con un sotto-insieme di PA
- Una proprietà temporale lineare P ⊆ (2^{PA})^ω è detta regolare se esiste un automa di Büchi A tale che P=L_ω(A)
- Importante: non tutte le proprietà temporale lineare sono regolare
- Importante: l'insieme delle proprietà temporale lineare regolare è chiuso per l'operazione di unione, intersezione e complemento (teoria dei linguaggi ωregolari)
 - Se P e P' sono proprietà temporali lineari regolari allora P ∪ P', P ∩ P' e (2^{PA})^ω\P sono proprietà temporali lineari regolari

PCAD - 12 7

- Prendiamo PA={R,G,V} e consideriamo la proprietà temporale lineare P_V
 che dice che si vede V infinitamente spesso
- P_V è regolare

- Prendiamo PA={a,b} e consideriamo la proprietà temporale lineare Pab che dice che ogni volta che vediamo a allora strettamente dopo nel futuro si vede un b
- P_{ab} è regolare

Testare se il linguaggio è vuoto

- Consideriamo un automa di Büchi A=(Q, Σ, δ, Q_{in}, F)
- Le due seguente proposte sono equivalente:
 - 1) $L_{\omega}(A) \neq \emptyset$
 - 2) esiste uno stato $q \in F$ tale che q è raggiungibile in A da un stato in Q_{in} e q appartiene ad un ciclo (non vuoto) in A
- Per testare se $L_{\omega}(A) \neq \emptyset$, basta cercare un stato q che verifica la proprietà 2)

Model-checking di proprietà regolari

- Sia P una proprietà temporale lineare regolare e KS una struttura di Kripke
- Vogliamo verificare se Trace(KS) ⊆ P
- Ragioneremo su $\overline{P} = (2^{PA})^{\omega} \backslash P$
- Ricordiamo che P è anche lei regolare
- Abbiamo Trace(KS) ⊆ P sse Trace(KS) ∩ P= ∅
- Come P è regolare allora esiste un automa de Büchi A tale che L(A)=P
- Quindi infine abbiamo:

$$KS \models P \text{ sse Trace}(KS) \cap L_{\omega}(\overline{A}) = \emptyset$$

Verificare se Trace(KS) \cap L_{\omega}(\overline{A}) = \emptyset

- Costruiamo un prodotto KS ⊗ Ā
- Sia KS=(S, \rightarrow , s_{in}, PA, L) e \overline{A} =(Q, Σ , δ , Q_{in}, F), definiamo una struttura (un grafo con vertici iniziali) tale KS $\otimes \overline{A}$ =(S', \Rightarrow ,I) tale che:
 - S'=S x Q
 - $\Rightarrow \subseteq S' \times S'$ verifica (s,q) (t,p) sse $s \rightarrow t$ (in KS) e q-L(t) $\rightarrow p$ (in \overline{A})
 - I={(s_{in},q) | esiste q_{in} ∈ Q_{in} tale che q_{in}-L(s_{in})→q
- Guardiamo se esiste in KS $\otimes \overline{A}$ un camino da un vertice in I verso un vertice (s,f) con f in F e (s,f) appartiene ad un ciclo in KS $\otimes \overline{A}$
- Se non esiste un tal cammino, abbiamo Trace(KS) \cap L $_{\omega}(\overline{A}) = \emptyset$ e quindi KS \models P, altrimenti KS $\not\models$ P

KS & Ā

P. si vede Vinjinitamente sperso

P: si vede V un nanvao finito di volte

 $\overline{P} = 2\omega(\overline{A}) \quad com \quad \overline{A}$ $\rightarrow q_{in} \xrightarrow{\varphi_{i}(R)} q_{i}$ $q_{in} \xrightarrow{\varphi_{i}(R)} 2v_{i}R_{i}$

(s, ag) è raggiungibile du un stato iniziale ma non appartiene ad un cido! KSEP