INFERENCIA FILOGENÉTICA

INFERENCIA BAYESIANA

Probabilidad *a priori* de la hipótesis = 0.5

- Mitad monedas normales (50% chance cara o sello)
- Mitad monedas sesgadas (75% chance sello, 25% chance cara)

Hipótesis I: La moneda es normal

Hipótesis 2: La moneda es sesgada

Datos

Verosimilitud

• Normal: 0.5¹⁰

• Sesgada: 0.75¹⁰

Probabilidad posterior de que la moneda está sesgada

Probabilidad posterior de que la moneda está sesgada

INFERENCIA BAYESIANA EN FILOGENÉTICA

INFERENCIA BAYESIANA EN FILOGENÉTICA

¿Como obtener la probabilidad de los datos bajo todas la hipótesis posibles?

Pr(Datos)

Probabilidad a priori de los datos

Cadena de Markov Monte Carlo (MCMC)

Permite estimar la distribución de probailidades posteriores sin importar el punto de inicio en un paisaje de parámetros (topologías, ramas, parámetros de modelos) multidimensional

- I. Comenzamos en un punto arbitrario de parámetros (θ)
- 2. Se hace un movimiento aleatorio hacia θ '
- 3. Se calcula la relación (r) entre θ ' y θ
 - Si r > 1, aceptamos el nuevo estado θ '
 - Si r < I, aceptamos el nuevo estado θ ' con probabilidad r. Si se rechaza, nos quedamos con θ
- 4. Volvemos al paso 2 y repetimos millones de veces (generaciones)
- 5. Guardar árbol y parámetros cada n generaciones

Cadena de Markov Monte Carlo (MCMC)

de generaciones

Complicaciones del MCMC

1. Seleccion a priori de un modelo de sustitución de caracteres

SOLUCIÓN: Salto entre modelos (reverse-jump MCMC)

Complicaciones del MCMC

2. La cadena del MCMC necesita alcanzar estacionalidad

SOLUCIÓN: Burn-in

de generaciones

Complicaciones del MCMC

- 3. Es necesario garantizar que durante el periodo de estacionalidad la cadena haya explorado todo el espacio de parámetros ("mixing").
- Estrategia I: Varias corridas independientes
- Estrategia 2: Modificar la forma en que nuevos puntos de parámetros son propuestos: Cadenas calientes y cadena fría (Metropolis-Coupled)

¿Cómo entender los resultados de MCMC?

En la zona estacionaria hay muchos árboles con longitudes de ramas y topología similares

Opción I: observar todos los árboles

Opción 2: Árbol de máxima credibilidad

¿Cómo entender los resultados de MCMC?

En la zona estacionaria hay muchos árboles con longitudes de ramas y topología similares

Opción 3: Árbol de 50% consenso de mayoría

¿Cómo entender los resultados de MCMC?

3. Probabilidad Posterior de los clados como medida de soporte

