Financial Instruments Coursework

Sahil Singh

Candidate Number:243655

 $\mathbf{Q}\mathbf{1}$

 \mathbf{a}

Figure 1: Scatter plot of Portfolio Returns against S&P 500

We see that there seems to be a linear relationship between returns of S&P500 and the returns of the portfolio. Also, the alpha of this portfolio seems to be zero as the intercept seems to be 0. The code written to do the calculations can be found in appendix.

b

Table 1: Mean of all Stock Returns

	$ln_ret_DBE_mean$	$ln_ret_JPM_mean$	$ln_ret_MA_mean$	$ln_ret_NFLX_mean$	$ln_ret_SPY_mean$	$ln_ret_WMT_mean$	$portfolio_log_returns_mean$
0	0.000209	0.000648	0.001037	0.001297	0.000622	0.000681	0.000774

Figure 2: Portfolio Returns

Figure 3: S&P 500

Table 2: Covariance Matrix

	ln_ret_DBE	ln_ret_JPM	ln_ret_MA	\ln_{ret}	ln_ret_SPY	\ln_{ret} WMT	portfolio_log_returns
ln_ret_DBE	0.000294	0.000128	0.000115	0.000069	0.000090	0.000030	0.000127
ln_ret_JPM	0.000128	0.000369	0.000224	0.000098	0.000177	0.000073	0.000178
ln_ret_MA	0.000115	0.000224	0.000360	0.000185	0.000187	0.000083	0.000193
ln_ret_NFLX	0.000069	0.000098	0.000185	0.000588	0.000145	0.000089	0.000206
ln_ret_SPY	0.000090	0.000177	0.000187	0.000145	0.000146	0.000080	0.000136
ln_ret_WMT	0.000030	0.000073	0.000083	0.000089	0.000080	0.000191	0.000093
portfolio_log_returns	0.000127	0.000178	0.000193	0.000206	0.000136	0.000093	0.000160

Table 3: Beta Calculated from Covariance Matrix

	${\rm DBE_beta}$	${\rm JPM_beta}$	MA_beta	$NFLX_beta$	SPY_beta	${\rm WMT_beta}$	portfolio_returns_beta
0	0.614786	1.213279	1.278208	0.990475	1.0	0.547793	0.928908

$$\beta_s = \frac{\text{Cov}[R_m, R_s]}{\text{Var}[R_m]}$$

where β_s is Beta of the stock, $\text{Cov}[R_m, R_s]$ is the covariance of the stock and market index, $\text{Var}[R_m]$ is the variance of the market index.

 \mathbf{c}

Table 4: Portfolio Return Info

	portfolio_annual_mean_returns	portfolio_std_returns
0	0.193622	0.19971

$$\mu_{1y} = \mu_{1d} * 250$$

$$\sigma_{1y} = \sigma_{1d} * \sqrt{250}$$

where,

 μ_{1y} and μ_{1d} are annual and daily log-returns respectively and

 σ_{1y} and σ_{1d} are annual and daily standard deviation of log-returns respectively

\mathbf{d}

Given below are the regression results for the stocks and Portfolio,

Table 5: DBE Beta obtained from OLS

Model:	OLS	Adj. R-squared:	0.180
Dependent Variable:	$\%\mathrm{ret}_\mathrm{DBE}$	AIC:	-6571.1406
Date:	2021-12-06 17:57	BIC:	-6560.9722
No. Observations:	1193	Log-Likelihood:	3287.6
Df Model:	1	F-statistic:	262.7
Df Residuals:	1191	Prob (F-statistic):	1.54e-53
R-squared:	0.181	Scale:	0.00023696
Coe	f. Std.Err.	t $P > t $ [0.02]	5 0.975]
const -0.000	1 0.0004 -0.1	760 0.8603 -0.001	0.0008
$%$ ret_SPY 0.600	8 0.0371 16.2	076 0.0000 0.528	1 0.6735
Omnibus:	144.633 Du	rbin-Watson: 2.08	80
Prob(Omnibu	ıs): 0.000 Jar	que-Bera (JB): 873	.041
Skew:	-0.371 Pro	ob(JB): 0.00	00
Kurtosis:	7.125 Con	ndition No.: 83	

Table 6: JPM Beta obtained from OLS

Model:	OLS	Adj. R-squared:	0.577
Dependent Variable:	$% { m ret_JPM}$	AIC:	-7066.2687
Date:	2021-12-06 17:57	BIC:	-7056.1002
No. Observations:	1193	Log-Likelihood:	3535.1
Df Model:	1	F-statistic:	1627.
Df Residuals:	1191	Prob (F-statistic):	5.92e-225
R-squared:	0.577	Scale:	0.00015647
Coe	f. Std.Err.	t $P > t $ [0.02]	25 0.975]
const -0.000	0.0004 -0.0	076 0.9939 -0.000	0.0007
%ret_SPY 1.214	9 0.0301 40.3	329 0.0000 1.155	1.2740
Omnibus:	403.430 Dur	bin-Watson: 1.98	39
Prob(Omnibus	s): 0.000 Jaro	que-Bera (JB): 624	4.410
Skew:	1.131 Pro	b(JB): 0.00	00
Kurtosis:	13.978 Con	adition No.: 83	

Table 7: NFLX Beta obtained from OLS

Model:	OLS	Adj. R-squared:	0.238
Dependent Variable:	$% { m ret_NFLX}$	AIC:	-5803.1402
Date:	2021-12-06 17:57	BIC:	-5792.9717
No. Observations:	1193	Log-Likelihood:	2903.6
Df Model:	1	F-statistic:	373.7
Df Residuals:	1191	Prob (F-statistic):	1.27e-72
R-squared:	0.239	Scale:	0.00045107
Coef	. Std.Err.	t P> t [0.028	5 0.975]
const 0.0009	0.0006 1.46	691 0.1421 -0.000	3 0.0021
$%$ ret_SPY 0.9886	0.0511 19.33	302 0.0000 0.888	3 1.0890
Omnibus:	222.599 Dur	bin-Watson: 2.01	1
Prob(Omnibus	s): 0.000 Jaro	que-Bera (JB): 2179	9.164
Skew:	0.554 Pro	b(JB): 0.00	0
Kurtosis:	9.528 Con	dition No.: 83	

Table 8: WMT Beta obtained from OLS

Model:	OLS	Adj. R-squared:	0.228
Dependent Variable:	$% { m ret_WMT}$	AIC:	-7124.7892
Date:	2021-12-06 17:57	BIC:	-7114.6208
No. Observations:	1193	Log-Likelihood:	3564.4
Df Model:	1	F-statistic:	353.3
Df Residuals:	1191	Prob (F-statistic):	3.21e-69
R-squared:	0.229	Scale:	0.00014898
Coef	Std.Err.	t P> t [0.028	5 0.975]
const 0.000	4 0.0004 1.0	611 0.2889 -0.000	3 0.0011
$%$ ret_SPY 0.5524	0.0294 18.7	950 0.0000 0.4948	8 0.6101
Omnibus:	416.290 Dur	bin-Watson: 2.041	1
Prob(Omnibus): 0.000 Jaro	que-Bera (JB): 1238	8.448
Skew:	0.983 Pro	b(JB): 0.000)
Kurtosis:	18.664 Con	dition No.: 83	

Table 9: MA Beta obtained from OLS

7360.6919
7350.5235
3682.3
2333.
3.19e-283
0.00012225
0.975]
0.0010
1.3382
73
3.

Table 10: portfolio_returns_percentage Beta obtained from OLS $\,$

Model:	OLS	Adj. R-squared:	0.787
Dependent Variable:	portfolio_returns_percentage	AIC:	-8895.2341
Date:	2021-12-06 17:57	BIC:	-8885.0657
No. Observations:	1193	Log-Likelihood:	4449.6
Df Model:	1	F-statistic:	4402.
Df Residuals:	1191	Prob (F-statistic):	0.00
R-squared:	0.787	Scale:	3.3777e-05
Соє	ef. Std.Err. $t P > t $	[0.025 0.975]	
const 0.000	0.0002 1.8203 0.0690	-0.0000 0.0006	
$%$ ret_SPY 0.928	85 0.0140 66.3474 0.0000	0.9011 0.9560	
Omnibus:	69.193 Durbin-Watson:	2.028	
Prob(Omnik	ous): 0.000 Jarque-Bera (JB): 247.699	
Skew:	0.134 Prob(JB):	0.000	
Kurtosis:	5.216 Condition No.:	83	

From the above tables we have, $\beta_{portfolio}=0.9285, \beta_{MA}=1.286, \beta_{WMT}=0.5524, \beta_{NFLX}=0.9886, \beta_{JPM}=1.2149, \beta_{DBE}=0.6008$

This is roughly equivalent to the beta obtained using the covariance matrix.

We see from the standard error and p-value results above that the α is 0 for each of the stocks and the portfolio.

Idiosyncratic Risk is the risk associated with the individual stock or investment which cannot be modelled by CAPM. For eg the risk of a company going bankrupt.

From the above regression, we get R-squared as 0.787 and hence the unsystemic risk of the portfolio is 1-0.787=0.213.

$$Residual_t = ((R_t - R_f) - (\beta * (R_{mt} - R_f) + \alpha))^2$$

where, in this case R_t is portfolio return at time t and R_{mt} is the market index return at time t.

and R_f is the risk free rate.

Figure 4: Idiosyncratic Risk of Portfolio over time

Appendix(Python Code)

All the necessary imports

import pandas as pd
import os
import statsmodels.api as sm

```
import yfinance as yf
import numpy as np
import matplotlib.pyplot as plt
```

Downloading Data

```
# Downloading Data of certain stocks and S&P500 from Yahoo Finance
k = yf.download('SPY DBE JPM MA NFLX WMT', start='2016-12-31', end='2021-09-30')
# Remove all columns except adjusted Close
k=k[[i for i in k.columns if 'Adj Close' in i]]
k=k.set_axis(k.columns.map('_'.join), axis=1, inplace=False)
```

Calculating Returns and Saving Figure

```
for i in k.columns:
    logcolname = f"ln_ret_{i[10:]}"
    ord_ret = f"%ret_{i[10:]}" # Column name for percentage returns
    k[logcolname] = np.log(k[i]/k[i].shift(1)) # Calculating log returns
    k[ord_ret] = np.exp(k[logcolname])-1 # calculating percentage returns from log returns
    print(k)

# Extracting Columns Names of only stocks

"python
    per_ret=[i for i in k.columns if "%ret" in i and 'SPY' not in i]
    log_ret=[i for i in k.columns if "ln_ret" in i and 'SPY' not in i]
    k['portfolio_returns_percentage'] = k[per_ret].mean(axis=1) #Calculating Portfolio Returns
    plt.scatter(k.portfolio_returns_percentage,k['%ret_SPY']) #Plotting Scatter Plot
    plt.xlabel("SPY % Returns")
    plt.ylabel("Portfolio % Returns")
```

Calculating Means

```
return_info1 = pd.DataFrame() # For calculating Mean of all series
for i in cov_mat_cols:
    return_info1[f"{i}_mean"] = [k[i].mean()]
```

Calculating Covariance and Beta

plt.savefig("ScatterPlot.jpg")

Extracting Columns for covariance matrix

```
cov_mat_cols =[i for i in k.columns if 'ln_ret' in i or 'log_returns' in i]
cov_mat = k[cov_mat_cols].cov() # covariance matrix of markets and portfolio
info = pd.DataFrame()
for i in cov_mat.columns[:-1]:
```

```
info[f"{i[7:]}_beta"]=[cov_mat.loc['ln_ret_SPY',i]/cov_mat.loc[
'ln_ret_SPY','ln_ret_SPY']]
```

Computing beta for portfolio returns

```
info[f"portfolio_returns_beta"]=[
    cov_mat.loc[
    'ln_ret_SPY','portfolio_log_returns']/cov_mat.loc['ln_ret_SPY','ln_ret_SPY']]
print(info)
```

Calculating Annualized Mean and Standard Deviation

```
return_info = pd.dataFrame()
return_info['portfolio_annual_mean_returns'] = [k.portfolio_log_returns.mean()*250]
return_info['portfolio_std_returns'] = [k.portfolio_log_returns.std()*250**.5]
```

Calculating Beta using OLS

```
per_ret=[i for i in k.columns if "%ret" in i and 'SPY' not in i]
per_ret1 = per_ret + ['portfolio_returns_percentage']
latexdict = dict()
for i in per_ret1:
    y = k[i].dropna()
    x = k['%ret_SPY'].dropna()
    x = x-0.01/250 # Subtract risk free rate
    x = sm.add_constant(x) # Add constant for intercept
    model = sm.OLS(y-0.01/250,x)
   res = model.fit()
    print(res.summary())
    if i!='portfolio_returns_percentage':
     # Converting to Latex table
     lat = res.summary2(title=f"{i[5:]} Beta obtained from OLS").as_latex()
     lat = res.summary2(title=f"{i} Beta obtained from OLS").as_latex()
    latexdict[i] = lat
lkey = list(latexdict.keys())
```

Calculating and Plotting Idiosyncratic Risk

```
k['residual'] = ((k.portfolio_returns_percentage-0.01/250) -
0.9285*(k['%ret_SPY']-0.01/250))**2
# Only beta is considered above as alpha is 0
plt.clf()
```

```
plt.plot(k.residual)
plt.xlabel("Time")
plt.ylabel("CAPM Residual")
plt.savefig("residualplot.jpg")
plt.show()
```