Vivek Bharadwaj

Machine Learning Engineer, Apple Platform Architecture Web: https://vivek-bharadwaj.com o Github: vbharadwaj-bk o ORCID: 0000-0003-0483-9578

EDUCATION

University of California, Berkeley

2020 - 2025

PhD in Computer Science

Advisers: James Demmel and Aydın Buluç

Focus: Geometric Deep Learning, Sparse Tensors, Graph Problems Funding: DOE National Computational Science Graduate Fellowship

California Institute of Technology (Caltech)

2016 - 2020

BS, Computer Science and Mathematics

Cumulative GPA: 3.9/4.3

RESEARCH INTERESTS AND SKILLS

Interests Graph Neural Networks, GPU Kernel Engineering, Randomized Algorithms, Sparsity in

Machine Learning, Tensor Decomposition

Languages C, C++, Python, Java, OCaml

Parallel Computing MPI, CUDA, OpenMP Libraries / Frameworks Pybind11, Pytorch

PUBLICATIONS

Conference Papers

- V. Bharadwaj*, A. Glover*, A. Buluç, J. Demmel. An Efficient Sparse Kernel Generator for O(3)-Equivariant Deep Networks. Proceedings of the SIAM Conference on Applied and Computational Discrete Algorithms (ACDA), July 2025.
- B. Rakhshan*, V. Bharadwaj*, O. A. Malik, G. Rabusseau. Efficient Leverage Score Sampling for Tensor Train Decomposition. *Neural Information Processing Systems (NeurIPS) Main Conference*, December 2024.
- V. Bharadwaj, O. A. Malik, R. Murray, A. Buluç, J. Demmel. Distributed-Memory Randomized Algorithms for Sparse Tensor CP Decomposition. ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), June 2024.
- V. Bharadwaj, O. A. Malik, R. Murray, L. Grigori, A. Buluç, J. Demmel. Fast Exact Leverage Score Sampling from Khatri-Rao Products with Applications to Tensor Decomposition. *Neural Information Processing Systems (NeurIPS) Main Conference*, December 2023.
- V. Bharadwaj, A. Buluç, J. Demmel. Distributed-Memory Sparse Kernels for Machine Learning. *IEEE International Parallel and Distributed Processing Symposium (IPDPS)*, June 2022.

Journal Papers

• P. Ramesh, S.J. Hwang, H.C. Davis, A. Lee-Gosselin, V. Bharadwaj, M. A. English, J. Sheng, V. Iyer, M. G. Shapiro. Ultraparamagnetic Cells Formed Through Intracellular Oxidation and Chelation of Paramagnetic Iron. *Angewandte Chemie (International ed. in English)*, September 2018.

EXPERIENCE

Apple Platform Architecture

September 2025-Present

Machine Learning Engineer

• Working at the intersection of hardware and software.

NVIDIA Math Libraries Team

Summer 2024

Sparse Linear Algebra Intern

- Focus: Rewrote large parts of cuSPARSELt, a library for structured sparse-dense matrix multiplication in machine learning, for new Blackwell generation GPUs.
- Also investigated custom semiring support with JIT linking for sparse matrix-vector multiplication.

Lawrence Berkeley National Laboratory

Summers 2023, 2021, 2020

Graduate Student Researcher

• Focus: High Performance Algorithms for Randomized Sparse Problems

^{*} denotes equal contribution.

Vivek Bharadwaj August 2025

Research was a blend of theoretical and applied work, ranging from development of new randomized algorithms to
optimizing software kernels to achieve high performance.

National Renewable Energy Laboratory

Summer 2022

Visiting Graduate Student Researcher

- Focus: Krylov subspace methods for ill-conditioned linear systems
- Wrote CUDA kernels for randomized butterfly transformations and incomplete LDL preconditioners.

Jane Street Capital

Summer 2019

 $Software\ Engineering\ Intern$

- Wrote protocols to relay market data from exchanges to traders.
- Made improvements to Iron, an in-house fork of the Mercurial version control system.

Anandkumar Lab, Caltech

Summer 2018

Summer Undergraduate Research Fellowship (SURF) Intern

• Focus: tensor decompositions and Gaussian process modeling, mentored by Rose Yu (now UCSD).

Shapiro Lab, Caltech

Summer 2017

Summer Undergraduate Research Fellowship (SURF) Intern

- Focus: GPU-based MRI simulations of diffusing water molecule spins.
- Work published in a journal of the German Chemical Society (code on Github).

SELECTED TALKS

SIAM Computational Science and Engineering (CSE25)

March 4 2025, Fort Worth, TX

Engineering Fast Kernels for Rotation-Equivariant Deep Networks

SIAM Conference on Applied Linear Algebra (LA24)

May 13 2024, Paris, France

Leverage-Based Sampling at Scale for Sparse Tensor CP Decomposition

SIAM Conference on Parallel Processing (PP24)

Mar. 5 2024, Baltimore MD

Distributed and Randomized Sparse Tensor Decomposition

SIAM Computational Science and Engineering (CSE23)

Mar. 1, 2023, Amsterdam, Netherlands

New Leverage-Based Sampling Algorithms for Khatri-Rao Products

AWARDS

Berkeley Teaching Effectiveness Award

2024

Awarded to fifteen selected graduate TAs who identified and fixed a particular teaching problem.

Berkeley Outstanding Graduate Student Instructor

2022

Awarded for teaching work in CS267 (Parallel Computing).

Department of Energy Computational Science Graduate Fellowship

2021

Awarded to 32 selected graduate students nationwide. Fellowship covers full PhD tuition and stipend for four years.

Honorable Mention, National Science Foundation GRFP

2020 2020

Caltech Thomas A. Tisch Prize for Undergraduate Teaching

2019

Awarded for three years of teaching work in Caltech CS38 (Algorithms).

Best Educational Hack, Hacktech Awarded for *Presentr*, a prototype of a blackboard image-to-text decoder.

2017

Ph11 Scholar

Funded summer research position awarded for solving "hurdle" problems at Caltech.

National Merit Scholar

2016

Vivek Bharadwaj August 2025

TEACHING

SLMATH 1064: Mathematics of Big Data and Sketching

Summer 2023

TA for a two-week graduate summer program held by the Simons Laufer Mathematical Institute at IBM Research, Almaden.

CS267: Applications of Parallel Computers

Spring 2022

TA, Berkeley graduate course on parallelism and high-performance computing.

CS38 / 138: Algorithms

Spring 2020, 2019, 2018

TA, Caltech undergraduate / graduate proof-based algorithms class.

CS21: Decidability and Tractability

Winter 2018

TA, Caltech undergraduate complexity theory class.

PROFESSIONAL SERVICE

Peer Review for Journals / Conferences

• ACM Transactions on Mathematical Software	2025
• ACM SPAA Junior PC	2025
Grapl IPDPS Workshop	2025
• Neural Information Processing Systems (NeurIPS)	2024
• Supercomputing (SC) Artifact Evaluation	2024
• Numerical Linear Algebra with Applications, Wiley	2023
• IEEE Signal Processing Letters	2021

Reviewer, Berkeley SURF Research Applications

March 2022

Caltech Board of Control 2019-2020

Served on the student panel adjudicating cases of academic dishonesty.

Student Chair, Caltech CS Student-Faculty Conference

2018

SELECTED COURSEWORK

Graduate Courses

- ${\bf Undergraduate}\ {\bf Courses}$
- CS281A: Statistical Learning Theory
- CS262A: Advanced Topics in Computer Systems
- CS270: Combinatorial Algorithms and Data Structures
- ELENG C227C: Convex Optimization and Approximation
- \bullet Ma109ABC: Introduction to Geometry and Topology
- EE126A: Information Theory
- MA140: Probability
- CS150: Probability and Algorithms
- CS151: Complexity Theory

VOLUNTEERING

Middle / High School Competition Judge

• Alameda County Science Fair

 $2023,\ 2022$

• USA Young Physicists' Tournament

2021 2020

• Blair Middle School Science Fair

Oct-Dec 2021

Presented science talks virtually for students at Washington Elementary, Richmond.

Virtual Be a Scientist Mentor

CRS Science Ambassador

Jan-Mar, 2021

Coached Berkeley students through science projects weekly.

Caltech RISE Tutor

Jan-April, 2020

Volunteer tutor for high school students in need of assistance from Pasadena Unified School District.