Fintech545 Homework 3

qw112 Qiyu Wu

Question 1. Expectation and Standard Deviation about Price

For the problemset 1, we assume that $r_t \sim N(0, \sigma^2)$. We only concern the specific time t and t-1 period. Therefore, for each method, our calculation will be based on a conditional probability density function $f(P_t|P_{t-1})$.

Classical Brownian Motion

$$P_{t} = P_{t-1} + r_{t} \quad r_{t} \sim N(0, \sigma^{2})$$

$$E(P_{t}|P_{t-1}) = E(P_{t-1} + r_{t}|P_{t-1}) = \int (P_{t-1} + r_{t})f(r_{t})dr_{t} = P_{t-1} + \int r_{t}f(r_{t})dr_{t} = P_{t-1}$$

$$Var(P_{t}|P_{t-1}) = Var(P_{t-1} + r_{t}|P_{t-1}) = E_{p_{t-1}}(P_{t-1} + r_{t} - E_{p_{t-1}}(P_{t-1} + r_{t}))^{2} = E(r_{t})^{2} = \sigma^{2}$$

$$Std(P_{t}|P_{t-1}) = \sigma$$

Arithmetic Return System

$$\begin{split} P_t &= P_{t-1}(1+r_t)r_t \sim N(0,\sigma^2) \\ E(P_t|P_{t-1}) &= E(P_{t-1}+P_{t-1}r_t|P_{t-1}) = \int (P_{t-1}(1+r_t))f(r_t)dr_t = P_{t-1}+P_{t-1}\int r_t f(r_t)dr_t = P_{t-1} \\ Var(P_t|P_{t-1}) &= Var(P_{t-1}+P_{t-1}r_t|P_{t-1}) = E_{p_{t-1}}(P_{t-1}+P_{t-1}r_t-P_{t-1})^2 = E_{p_{t-1}}(P_{t-1}r_t)^2 \\ &= P_{t-1}^2 E(r_t)^2 = P_{t-1}^2 \sigma^2 \\ Std(P_t|P_{t-1}) &= P_{t-1}\sigma \end{split}$$

Geometric Brownian Motion

$$\begin{split} P_t &= P_{t-1}e^{rt} \\ E(P_t|P_{t-1}) &= E(P_{t-1}e^{rt}|P_{t-1}) = \int (P_{t-1}e^{rt})f(r_t)dr_t = P_{t-1}\int e^{rt}f(r_t)dr_t = P_{t-1}E(e^{rt}) \\ &= P_{t-1}e^{\frac{\sigma^2}{2}} \\ Var(P_t|P_{t-1}) &= Var(P_{t-1}e^{rt}|P_{t-1}) = E_{p_{t-1}}(P_{t-1}e^{rt} - E_{p_{t-1}}(P_{t-1}e^{rt}))^2 \\ &= P_{t-1}^2E(e^{rt} - e^{\frac{\sigma^2}{2}})^2 = P_{t-1}^2E(e^{2rt} - 2e^{rt}e^{\frac{\sigma^2}{2}} + e^{\sigma^2}) \\ &= P_{t-1}^2(e^{2\sigma^2} - 2e^{\sigma^2} + e^{\sigma^2}) = P_{t-1}^2(e^{2\sigma^2} - e^{\sigma^2}) \\ Std(P_t|P_{t-1}) &= \sqrt{P_{t-1}^2(e^{2\sigma^2} - e^{\sigma^2})} \end{split}$$

Here, the process of applying the moment generating function $[E(e^{tX}) = e^{\mu t + \frac{\sigma^2}{2}t^2}, X \sim N(\mu, \sigma^2)]$ has been simplified.

Simulation Results

For the simulation part, we simulated 90,000,000 times for each price formula. The initial setings are $P_{t-1} = 5$, $\sigma = 2$.

Price Formula	Simulated Mean	Expectation	Simulated Std	Std
Classical Brownian Motion	4.999	5	2.002	2
Arithmetic Return System	4.999	5	10.012	10
Geometric Brownian Motion	36.926	36.945	264.017	270.479

All of Simulation are appraoching to the Calculation.

Question 2. META VaR Simulation

In order to calculate the VaR, we calculate the returns of META and deduct the mean from META. Here is Result Table:

Simulation Method	VaR	
Normal Distribution	0.06546	
Normal Distribution with EW	0.09139	
T Distribution	0.05726	
AR(1) Model	0.03556	
Historic Simulation	0.05125	

The Fitting Result Note:

- AR(1) Model: $y_t = 0.00723 \times y_{t-1} + w_t$ where $w_t \sim N(0, 0.0356)$;
- T Distribution under MLE: $\sigma = 0.026$, df = 3.92

Summary:

- AR(1) model has the lowest value for VaR, it mainly comes from the last time y value. Since it is conditional on the y_{t-1} , the VaR will be affected by it. The y_{t-1} here is -0.03. It is the main reason why the VaR is low under AR(1).
- Normal Distribution with EW has the highest value for VaR, it is because it put higher weights on the near time. According to the graph, we can find that return for META is more flexible, which leads to a higher sigma value for normal simulation. Therefore, it will increase the VaR value. (i.e. The volatility increases).

Question 3. Portfolio VaR Calculation

There, we choose Normal Monte Carlo VaR to calculate Portfolio risk separately and together. Here is the result table:

VaR(\$)	Portfolio A	Portfolio B	Portfolio C	Total
Normal Distribution	6404	4744	4023	14751
T Distribution: $df = 1$	11257	8562	7320	26499
T Distribution: $df = 100$	6404	4773	4087	14853

Summary:

- From the normal distribution simulation, we can find that the Portfolio A is high, compared with B and C. According to the table, generally VaR: A > B > C;
- From the T distribution simulation, we tried different settings degree of freedom settings for the VaR model, we can find that it affects the results seriously:
 - According to the above graph, when degree of freedom is low, it means that we set a high probability in the tails. When the alpha is fixed, then the distance between mean and corresponding points will be higher. Finally, our VaR assessment will be higher.
 - when degree of freedom is high, the result will approach to the result of normal distribution.