CS204: Discrete Mathematics

Ch 1. The Joundations: Logic and Proofs Predicate Logic-5 Proof Examples

Sungwon Kang

Acknowledgement

- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides

Socrates is a human.

All humans dies.

Socrates dies.

Example 2a: $\exists x \forall y \ P(x,y) \Rightarrow \forall y \exists x \ P(x,y)$

?

Example 2b: $\forall y \exists x \ P(x,y) \Rightarrow \exists x \forall y \ P(x,y)$

Socrates is a human.

All humans dies.

Socrates dies.

human(__): "___ is human" dies(__): " ___ dies"

1 human(Socrates) - premise 2 $\forall x \text{ (human(x)} \rightarrow \text{dies(x))}$ - premise 3 dies(Socrates)

Socrates is a human.

All humans dies.

Socrates dies.

Socrates is a human.

All humans dies.

Socrates dies.

1 2	human(Socrates) $\forall x \text{ (human(x) } \rightarrow \text{dies(x))}$	- premi	
3	human(Socrates) → dies(Socrates)	ocrates)	- ∀-elim, 2 - →-elim, 3,1
-	alco(colates)		/ Cili 11, O, 1

```
1 ∃x∀y P(x,y) - premise
2 3 4 5 5 6 ∀y∃x P(x,y)
```


 $\forall y \exists x \ (x > y)$ does not contain x free

1 $\exists x \forall y \ P(x,y)$ - premise 2 $\forall y \ P(w,y)$ - premise 3 P(w,z) - \forall -elim, 2 4 $\forall y \exists x \ P(x,y)$ 6 $\forall y \exists x \ P(x,y)$ - \exists -elim, 2-5

 $\forall y \exists x P(x,y)$

6

1
$$\exists x \forall y \ P(x,y)$$
 - premise
2 $\forall y \ P(w,y)$ - premise
3 $P(w,z)$ - \forall -elim, 2
4 $\exists x \ P(x,z)$ - \exists -intro, 3
5 $\forall y \exists x \ P(x,y)$

 $\forall y \exists x P(x,y)$

6

1
$$\exists x \forall y \ P(x,y)$$
 - premise
2 $\forall y \ P(w,y)$ - premise
3 $P(w,z)$ - \forall -elim, 2
4 $\exists x \ P(x,z)$ - \exists -intro, 3
5 $\forall y \exists x \ P(x,y)$ - \forall -intro, 4

Example 2a(A concrete example): $\exists x \forall y (x > y) \Rightarrow \forall y \exists x (x > y)$

If w > any number, there is some number (i.e. w) > any number.

Therefore, for any number y, some number (for example, w) will be > y.

Recall that $\exists x \forall y \ P(x,y) \not\equiv \forall y \exists x \ P(x,y)$.

One failed approach Example 2b1: $\forall y \exists x \ P(x,y) \stackrel{?}{\Rightarrow} \ \exists x \forall y \ P(x,y)$

1	∀y ∃x P(x,y)	- premise
2	∃x P(x,b)	- ∀-elim, 1
3		
4		
5	∀y P(x,y)	
6	∃x∀y P(x,y)	- ∃-intro, 5

Example 2b1: $\forall y \exists x \ P(x,y) \stackrel{?}{\Rightarrow} \ \exists x \forall y \ P(x,y)$

1
$$\forall y \exists x P(x,y)$$
 - premise
2 $\exists x P(x,b)$ - \forall -elim, 1
3 $P(x,b)$ - premise
4 $\forall y P(x,y)$ - \forall -intro, 3
5 $\forall y P(x,y)$ - \exists -intro, 5

Example 2b1: $\forall y \exists x \ P(x,y) \stackrel{?}{\Rightarrow} \ \exists x \forall y \ P(x,y)$

1
$$\forall y \exists x P(x,y)$$
 - premise
2 $\exists x P(x,b)$ - \forall -elim, 1
3 $P(x,b)$ - premise
4 $\forall y P(x,y)$ - \forall -intro, 3
5 $\forall y P(x,y)$ - \exists -etim, 3-4
6 $\exists x \forall y P(x,y)$ - \exists -intro, 5

∃-elim Rule

Line 5 cannot be justified by \exists -elim because $\forall y \ P(x,y)$ contains x free. In line 4, x was only a constrained object of the domain.

In line 5, it would mean any object of the domain.

Another failed approach Example 2b2: $\forall y \exists x \ P(x,y) \Rightarrow \exists x \forall y \ P(x,y)$

1	∀y ∃x P(x,y)	- premise
2	∃x P(x,b)	- ∀-elim, 1
3	P(x _b ,b)	- premise
4	∀y P(x _b ,y)	- ∀intro, 3
5	∃x∀y P(x,y)	- ∃-intro, 4
6	∃x∀y P(x,y)	- ∃-elim, 2, 3-5

∃-elim Rule

b in line 2 is arbitrary b.

But x in the premise of line 3 may depend on b.

So it is written x_b in line 3 to syntactically indicate its dependency on b.

Although b in line 3 is arbitrary, we cannot infer line 4 because y in line 4 would be any y that has no dependency on b.

It is too strong an assertion that is not supported by line 3.

Example 2b2(A concrete example): $\forall y \exists x (x > y)$? $\Rightarrow \exists x \forall y (x > y)$ \exists -elim Rule

1
$$\forall y \exists x (x > y)$$
 - premise
2 $\exists x (x > b)$ - \forall -elim, 1
3 $x > b$ - premise
4 $\forall y (x > y)$ - \forall -intro, 3
5 $\exists x \forall y (x > y)$ - \exists -intro, 4
6 $\exists x \forall y (x > y)$ - \exists -elim, 2, 3-5

Let's consider what went wrong in line 4 with a concrete example where P(x,y) represents x > y. $\exists x \forall y \ (x > y)$ does not contain x free. So it is okay to apply \exists -elim at line 6.

But line 3 means, "Let x be > b." Then x > any number (line 4) or existence of such x (line 5) can NOT be asserted as in the previous slide.

17

Soundness and Completeness of the Natural Deduction System

Natural Deduction is a "complete" predicate logic system in the sense that any valid inference can be proved using its 12 inference rules.

Soundness (= Consistency) Theorem

If there is a proof of a conclusion φ from a set of premises Σ using Natural Deduction (i.e. $\Sigma \mid -\varphi$), then φ is true whenever Σ is true (i.e. $\Sigma \mid =\varphi$).

Proof Idea) Each inference rule is valid. (In the case of propositional logic inference rules, we can check their validity with truth tables.) Then a sequence of applications of valid inference rules results in a conclusion that is true whenever the given assumptions are true.

Completeness Theorem [Gödel 1930]

If φ is true whenever a set of premises Σ is true (i.e. $\Sigma \models \varphi$), then there is a proof of a conclusion φ from Σ using Natural Deduction (i.e. $\Sigma \models \varphi$).

Quiz 07-2

Answer with "Yes" or "No".

[1] Does the set of inference rules of Gentzen's Natural Deduction have redundancy in the sense that without some rule of the system it can still be complete?

[2] Is "
$$\forall x \forall y P(x,y) \Rightarrow \forall y \forall x P(x,y)$$
" valid?

[3] Is "
$$\exists x \exists y \ P(x,y) \Rightarrow \exists y \exists x \ P(x,y)$$
" valid?

[4] Is "
$$\exists x \forall y \ P(x,y) \Rightarrow \forall y \exists x \ P(x,y)$$
" valid?

[5] Is "
$$\forall y \exists x \ P(x,y) \Rightarrow \exists x \forall y \ P(x,y)$$
" valid?