```
In [1]:
```

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import RidgeCV
from sklearn.metrics import max_error
from tabulate import tabulate
%matplotlib inline
```

Load data set

Values converts it into a numpy array

-1 means that calculate the dimension of rows, but have 1 column

```
In [2]:
```

```
data_train = pd.read_csv('Dataset_1_train.csv') # load data set
X_train = data_train.iloc[:, 0].values.reshape(-1, 1) # values converts it into a numpy array
Y_train = data_train.iloc[:, 1].values.reshape(-1, 1) # -1 means that calculate the dimension of r
ows, but have 1 column
```

```
In [3]:
```

```
data_valid = pd.read_csv('Dataset_1_valid.csv') # load data set
X_valid = data_valid.iloc[:, 0].values.reshape(-1, 1) # values converts it into a numpy array
Y_valid = data_valid.iloc[:, 1].values.reshape(-1, 1) # -1 means that calculate the dimension of r
ows, but have 1 column
```

Creating a polynomial regression model for the given degree (0 - 20).

Transforms the existing features to higher degree features.

Fit the transformed features to the model

As we can see from the plot on the curve has flattened on degree 4.

In [4]:

```
mse_train_list = []
for deg in range(21):
    X_transformed = PolynomialFeatures(degree=deg).fit_transform(X_train)
    model = RidgeCV()
    model.fit(X_transformed, Y_train)
    y_pred_train = model.predict(X_transformed)
    print(y_pred_train)
    mse_train = mean_squared_error(Y_train, y_pred_train)
# print(mse_train)
mse_train_list.append(mse_train)

print(mse_train_list)
plt.plot(mse_train_list)
plt.show()
```

[67.67200232257454, 29.503012193066315, 16.715898205749394, 13.602866149748168, 10.268766663715509, 9.775806742026806, 9.428240988342887, 9.338281130136881, 9.241439747904101, 9.243396786228056, 9.538261804540022, 9.52588321563646, 9.43429732344612, 9.434988667437702, 9.390132320711, 9.39391010008722, 9.372869293708726, 9.376618307335507, 9.368240796887141, 9.371199606156136, 9.369608039899388]

In [5]:

```
plt.plot(y_pred_train)
```

Out[5]:

[<matplotlib.lines.Line2D at 0x13959e68>]

As we can see on the curve above has flattened on degree 4

In [6]:

```
mse_valid_list = []
for deg_val in range(21):
    Y_transformed = PolynomialFeatures(degree=deg_val).fit_transform(X_valid)
    model = RidgeCV()
    model.fit(Y_transformed, Y_valid)
    y_pred_valid = model.predict(Y_transformed)
# print(y_pred_valid)
    mse_valid = mean_squared_error(Y_valid, y_pred_valid)
# print(mse_valid)
    mse_valid_list.append(mse_valid)

print(mse_valid_list)

print(mse_valid_list)
```

[92.46259951483601, 27.75494125900102, 19.255377862338253, 10.06798230957992, 8.332943679586915, 8.055757471294404, 7.820981623731559, 7.792631592844156, 7.745191243543575, 7.749552057147573, 7.741017334655956, 7.746004280188696, 7.745497477108961, 7.747437097657477, 7.747734767971576, 7.747827694581975, 7.747838141528136, 7.7473695357420915, 7.747267251518266, 7.746880896168583, 7.746859353853519]

Out[6]:

[<matplotlib.lines.Line2D at 0x139aad48>]

In [7]:

```
plt.plot(y_pred_valid)
```

Out[7]:

[<matplotlib.lines.Line2D at 0x12860f88>]

In [8]:

```
mse_train_list = []
alpha_values = []
for alpha in np.arange(0.001,1,.001):
    X_transformed = PolynomialFeatures(degree=4).fit_transform(X_train)
    model = RidgeCV(alphas=[alpha])
    model.fit(X_transformed, Y_train)
    y_pred_train = model.predict(X_transformed)
# print(y_pred_train)
    mse_train = mean_squared_error(Y_train, y_pred_train)
# print(mse_train)
    alpha_values.append(alpha)
    mse_train_list.append(mse_train)

plt.plot(alpha_values, mse_train_list)
```

Out[8]:

[<matplotlib.lines.Line2D at 0x13a22358>]


```
The lowest value achieved (0.003) by alphas is by degree 4.
```

```
In [9]:
```

```
alphas = []
for elm in np.arange(0.001,1,0.001):
    alphas.append(elm)
X_valid_trans = PolynomialFeatures(degree=4).fit_transform(X_valid) # Y = b * x + a
model_fitted_using_val = RidgeCV(alphas=alphas, normalize=True).fit(X_valid_trans, Y_valid)
model_fitted_using_val.alpha_
```

Out[9]:

0.003

Evaluating the model on training dataset

```
In [10]:
```

```
mr = max_error(Y_train, y_pred_train)
print('Max error for trainiing dataset is:', mr)
```

Max error for training dataset is: 9.966861787508165

```
In [11]:
```

```
mse = mean_squared_error(Y_train, y_pred_train)  # Mse = 1/n sum (y - y^) ** 2
print('Mean squared error for trainiing dataset is: ', mse)
```

Mean squared error for training dataset is: 12.045865105962278

In [12]:

```
r2 = r2_score(Y_train, y_pred_train) # r2 = 1 - (y^ / y)
print('R2 for trainiing dataset is:', r2)
```

R2 for trainiing dataset is: 0.8219963250305078

Evaluating the model on validation dataset

```
In [13]:
```

```
mr_v = max_error(Y_valid, y_pred_valid)
print('Max error for trainiing dataset is:', mr_v)
```

Max error for training dataset is: 7.372274459326019

In [14]:

```
mse_v = mean_squared_error(Y_valid, y_pred_valid)
print('Mean squared error for validation dataset is:', mse_v)
```

Mean squared error for validation dataset is: 7.746859353853519

In [15]:

```
r2_v = r2_score(Y_valid, y_pred_valid)
print('R2 for validation dataset is:', r2_v)
```

R2 for validation dataset is: 0.9162162929173271

Evaluating the model on test dataset

```
In [16]:
```

```
data_test = pd.read_csv('Dataset_1_test.csv')
X_test = data_test.iloc[:, 0].values.reshape(-1, 1)
Y_test = data_test.iloc[:, 1].values.reshape(-1, 1)
```

In [17]:

```
model.fit(X_test, Y_test)
y_pred_test = model.predict(X_test)
```

In [18]:

```
mr_t = max_error(Y_test, y_pred_test)
print('Max error for testing dataset is:', mr_t)
```

Max error for testing dataset is: 16.504038264964258

In [19]:

```
mse_t = mean_squared_error(Y_test, y_pred_test)
print('Mean squared error for testing dataset is:', mse_t)
```

Mean squared error for testing dataset is: 25.754050200333605

In [20]:

```
r2_t = r2_score(Y_test, y_pred_test)
print('R2 for trainiing dataset is:', r2_t)
```

R2 for trainiing dataset is: 0.5773733701533343

Results

In [21]:

Validations	Train dataset	Valid dataset	· ·
Mean squared error:	12.0459	7.74686	
R2:	0.821996	0.916216	0.577373
Max error:	9.96686	7.37227	16.504

Question1:

What do you think is the degree of the polynomial?

- The degree of a polynomial is the degree of the largest monomial in the set. or the highest addition of multiple terms assosiated in the monomial.

For example: $x^4 + 3x^2y^3 - 3y^2$ degree = 5 ($x^2 + y^3$)

- .- -

Question2:

Can it be inferred from the visualization of the previous question?

- Yes it can. Can be observed that the curve is flattened on X axis ($x \sim 4$) of the plots of mse_train_list and mse_valid_list, which is equivalent to the result achived by The lowest value (0.003) by alphas by degree (4)