

BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO PROJETO E ANÁLISE DE ALGORITMOS

TRABALHO FINAL DATA: 16/12/2021

Resolução do Problema MAX-3SAT com Metaheurísticas

Objetivo: implementar uma metaheurística para resolver o problema MAX-3SAT e comparar os resultados obtidos para cada instância de teste.

Descrição do problema MAX-3SAT:

Na teoria da complexidade computacional, o problema de máxima satisfatibilidade (MAX-SAT) é o problema de determinar o número máximo de cláusulas, de uma dada fórmula booleana na forma normal conjuntiva, que pode ser tornada verdadeira por uma atribuição de valores verdade às variáveis da fórmula. É uma generalização do problema de satisfatibilidade booleana, que pergunta se existe uma atribuição de verdade que torna todas as cláusulas verdadeiras.

Exemplo:

A fórmula da forma normal conjuntiva

$$(x_0 \lor x_1) \land (x_0 \lor \neg x_1) \land (\neg x_0 \lor x_1) \land (\neg x_0 \lor \neg x_1)$$

não é satisfatória. Não importa quais valores verdade são atribuídos a suas duas variáveis, pelo menos uma de suas quatro cláusulas será falsa. No entanto, é possível atribuir valores verdade de forma a tornar verdadeiras três das quatro cláusulas. Portanto, se esta fórmula é dada como uma instância do problema MAX-SAT, a solução para o problema é o número três.

Casos especiais

MAX-SAT é uma das extensões de otimização do problema de satisfatibilidade booleana, que é o problema de determinar se as variáveis de uma dada fórmula booleana podem ser atribuídas de forma a fazer com que a fórmula seja avaliada como TRUE. Se as cláusulas são restritas a ter no máximo 3 literais por cláusula, como em 3-satisfatibilidade, teremos o problema MAX-3SAT.

Sobre as instâncias de teste:

- 03 arquivos (SAT1.txt, SAT2.txt e SAT3.txt);
- Estrutura dos arquivos: *n* variáveis e *m* cláusulas, além da lista de cláusulas;
- Fórmulas em 3-CNF (3 variáveis por cláusula).

Apresentação dos resultados obtidos:

- Implementar a metaheurística, definindo o valor da solução inicial, e testar para cada uma das três instâncias. Em seguida, obter o tempo e o valor da melhor solução.
- Calcular o GAP entre a melhor solução obtida (S) e a solução ótima (S*).
- Apresentar a seguinte tabela com os resultados:

Instâncias Comparativas			Solução	Solução Obtida		Aproximação		
N^{o}	Referência	n	m	Ótima (S*)	Inicial	tempo(s)	Melhor (S)	Gap (S/S*)
1	SAT1	50	275	275				0,????
2	SAT2	100	500	499				0,????
3	SAT3	100	1500	1497				0,????
Média das aproximações com resultados conhecidos →						0,????		

Entregas:

- Relatório do trabalho (tópicos sugeridos a seguir), via classroom;
- Código-fonte comentado da metaheurística, via classroom;
- Apresentação dos resultados obtidos (15min de apresentação por equipe).

Equipes:

Equipe*	Componentes da equipe	Metaheurística	Data da Apresentação
1	Victor Wilker Vinicius Eduardo	Hill Climbing	
2	Joao Bruno Freitas Vasconcelos Matheus Vieira de Araujo Beatriz Bianca Moreira Vasconcelos	MH Tabu Search (TS)	11/01/2022
3	Erick Santos do Nascimento, José Elton de Souza Ramos, Sara Melo Frederico	MH Simulated Annealing (SA)	
4	Michael Silva, Diego Gomes Arnaldo da Costa	MH Simulated Annealing (SA)	
5	Vinicius Amaro Sampaio Kaio Rodrigues	MH Genetic Algorithm (GA)	

	Davi Montesuma		13/01/2022
6	Adiel de Azevedo Felipe Augusto	MH Grasp (GR)	
7	Ivo Aguiar Pimenta Edson Rodrigo Pinheiro Moreira Xênia Beatriz Rodrigues Marques	MH Grasp (GR)	

Sugestão da estrutura do Relatório:

- Capa
- Introdução
- Metodologia
 - Metaheurística: conceito, características, etc.;
 - o Definição e atribuição dos valores dos parâmetros;
 - o Pseudocódigo e complexidade do algoritmo.
- Resultados
 - o Breve descrição das instâncias de teste;
 - o Tabela com resultados obtidos (conforme modelo apresentado acima);
 - o Ilustração gráfica da evolução do algoritmo.
- Conclusão
 - o Comentários;
 - Dificuldades/desafios;
 - Sugestão de trabalhos futuros.

Cronograma final da disciplina:

DATA	ATIVIDADE
16/12/2021 a 10/01/2022	Período para realização do trabalho final
10/01/2022	Entrega do Relatório e Código-fonte no classroom*
11/01/2022 e 13/01/2022	Apresentações das equipes
18/01/2022	Prova final

^{*} Entregas em atraso serão penalizadas.