CLAIMS:

	,
1	1. A method for detecting modifications to code placed in memory by the Power
2.	On Self Test (POST) Basic Input/Output System (BIOS) comprising the steps of:
3	initiating said POST operation;
4	retrieving code from a flash memory;
5	measuring said retrieved code to generate a first measurement;
6	storing said first measurement in a secure area;
7	storing said retrieved code in a memory located in a non-secure area;
_8	measuring said retrieved code stored in said memory located in said non-
9	secure area after receiving an awakening event to generate a second measurement;
10	and
11	indicating said retrieved code stored in said memory was modified if said first
12.	measurement is not equal with said second measurement.

- 1 2. The method as recited in claim 1 further comprising the step of:
- 2 awakening a system if said first measurement is equal with said second 3 measurement.
- 1 3. The method as recited in claim 1, wherein said indication comprises an error message.
- The method as recited in claim 1 further comprising the step of:
 rebooting a system thereby restoring said retrieved code to its proper values.
- 5. The method as recited in claim 1, wherein said retrieved code comprises one or more of the following: legacy BIOS code and code used to support said legacy BIOS code.
- 1 6. The method as recited in claim 5, wherein said code used to support said
- legacy BIOS code comprises one or more of the following: Universal Serial Bus
- 3 (USB) interface support code and code for power management routines.

- 7. The method as recited in claim 1, wherein said secure area is located within a trusted building block of a system.
- 1 8. The method as recited in claim 1, wherein said secure area comprises a
- 2 lockable Electrically Erasable Programmable Read Only Memory (EEPROM)
- 3 module.
- 1 9. A computer program product embodied in a machine readable medium for
- detecting modifications to code placed in memory by the Power On Self Test (POST)
- Basic Input/Output System (BIOS) comprising the programming steps of:
- 4 initiating said POST operation;
- 5 retrieving code from a flash memory;
- 6 measuring said retrieved code to generate a first measurement;
- 7 storing said first measurement in a secure area;
- 8 storing said retrieved code in a memory located in a non-secure area;
- 9 measuring said retrieved code stored in said memory located in said non-
- secure area after receiving an awakening event to generate a second measurement;
- 11 and
- indicating said retrieved code stored in said memory was modified if said first
- measurement is not equal with said second measurement.
- 1 10. The computer program product as recited in claim 9 further comprising the
- 2 programming step of:
- 3 awakening a system if said first measurement is equal with said second
- 4 measurement.
- 1 11. The computer program product as recited in claim 9, wherein said indication
- 2 comprises an error message.
- 1 12. The computer program product as recited in claim 9 further comprising the
- 2 programming step of:
- 3 rebooting a system thereby restoring said retrieved code to its proper values.

- 1 13. The computer program product as recited in claim 9, wherein said retrieved
- 2 code comprises one or more of the following: legacy BIOS code and code used to
- 3 support said legacy BIOS code.
- 1 14. The computer program product as recited in claim 13, wherein said code used
- 2 to support said legacy BIOS code comprises one or more of the following: Universal
- 3 Serial Bus (USB) interface support code and code for power management routines.
- 1. The computer program product as recited in claim 9, wherein said secure area
- 2 is located within a trusted building block of a system.
- 1 16. The method as recited in claim 9, wherein said secure area comprises a
- lockable Electrically Erasable Programmable Read Only Memory (EEPROM)
- 3 module.

1	17. A system, comprising:
2	a memory;
3	a processor coupled to said memory;
4	a first portion of a flash memory coupled to said processor, wherein said first
5	portion of said flash memory comprises a Power On Self Test (POST) Basic
6	Input/Output System (BIOS) code; and
7	a Trusted Building Block (TBB) coupled to said processor, wherein said TBB
8	is configured to ensure integrity of said system, wherein said TBB comprises:
9	a second portion of said flash memory, wherein said second portion of
10	said flash memory in said TBB comprises:
11	a boot block code, wherein said boot block code comprises
12	code to reset said system; and
13	code to be moved from said second portion of said flash
14	memory to said memory by said POST BIOS code during a POST operation;
15	wherein said processor, responsive to said POST BIOS code, comprises:
16	circuitry operable for retrieving said code from said second portion of
17	said flash memory during said POST operation;
18	circuitry operable for measuring said retrieved code to generate a first
19	measurement;
20	circuitry operable for storing said first measurement in a secure area;
21	and
22	circuitry operable for storing said retrieved code in said memory; and
23	wherein said processor, responsive to said boot block code, comprises:
24	circuitry operable for measuring said retrieved code stored in said
25	memory after receiving an awakening event to generate a second measurement; and
26	circuitry operable for indicating said retrieved code stored in said
27	memory was modified if said first measurement is not equal with said second
28	measurement.

- 1 18. The system as recited in claim 17, wherein said processor, responsive to said 2 boot block code, further comprises:
- circuitry operable for awakening said system if said first measurement is equal
 with said second measurement.
- 1 19. The system as recited in claim 17, wherein said indication comprises an error 2 message.
- 1 20. The system as recited in claim 17, wherein said processor, responsive to said boot block code, comprises:
- circuitry operable for rebooting said system thereby restoring said retrieved code to its proper values if said first measurement is not equal with said second measurement.
- The system as recited in claim 17, wherein said retrieved code comprises one or more of the following: legacy BIOS code and code used to support said legacy
- 3 BIOS code.
- 1 22. The system as recited in claim 21, wherein said code used to support said
- legacy BIOS code comprises one or more of the following: Universal Serial Bus
- 3 (USB) interface support code and code for power management routines.
- 1 23. The system as recited in claim 17, wherein said secure area is located within 2 said TBB.
- 1 24. The system as recited in claim 17 further comprising:
- a lockable Electrically Erasable Programmable Read Only Memory
- 3 (EEPROM) module coupled to said processor, wherein said secure area comprises
- 4 said lockable EEPROM module.