Contents

1	Lecture 4	. 2
1.0.1	Example 1	. 4
1.1	Tutorial	15

1. Lecture 4

Definition Scheduling concerns allocating resources over time, to a set of tasks/activities/jobs.

The resources and tasks in an organization can take many different forms.

The resources may be machines, runways at an airport, people, space, and so on. The tasks/jobs may be production,take-offs and landings at an airport, jobs, take-offs and landings at an airport, and so on.

Each task may have a certain priority level, an earliest possible starting time and a due date.

The number of jobs is denoted by n and the number of machines by m. Usually, the subscript j refers to a job while the subscript i refers to a machine.

If a job requires a number of processing steps / operations, then the pair (i, j) refers to the processing step or operation of job j on machine i.

Processing time p_j	p_{ij} represents the processing time of job j on machine i. The subscript i is omitted if the processing time of job j does not depend on the machine or if job j is only to be processed on one given machine.
Due date d_j	The due date d_j of job j represents the date the job is promised to
	the customer.
Release date r_j	r_j is the <u>earliest time</u> at which job j can start its processing.
Completion time c_j	completion time of a job
Weight w _j	The weight w_j of job j is basically a priority factor, denoting the
-	importance of job j relative to the other jobs in the system.

A **scheduling problem** is described by a triplet $\alpha \mid \beta \mid \gamma$.

- The α field describes the machine environment and contains just one entry.
- The β field provides details of **job characteristics** and constraints and may contain no entry at all, a single entry, or multiple entries.
- The γ field describes the **objective** criterion to be minimized/maximized and often contains a single entry.

Example: $1 \mid r_j \mid \sum_i C_j$

- Single machine.
- Jobs have release dates.
- Objective is minimizing the sum of the completion times.

The possible machine environments specified in the α field are:

- \circ **A single machine** ($\alpha = 1$) is the simplest of all possible machine environments and is a special case of all other more complicated machine environments.
- o **Identical machines in parallel** ($\alpha = Pm$), there are m identical machines in parallel. Job j requires a single operation and may be processed on any one of the m machines or on any one that belongs to a given subset. p_j is the process time of job j.
- Machines in parallel with different speeds ($\alpha = Qm$), there are m machines in parallel with different speeds. The speed of machine i is denoted by s_i . The time p_{ij} that job j spends on machine i is equal to p_j/s_i (assuming job j receives all its processing from machine i).
- **Unrelated machines in parallel** ($\alpha = Rm$), there are m different machines in parallel. Machine i can process job j at speed s_{ij} . The time p_{ij} that job j spends on machine i is equal to p_j/v_{ij} (assuming job j receives all its processing from machine i).

The processing restrictions and constraints specified in the β field may include multiple entries, they are:

- \circ **Release dates**, if the symbol r_j appears in the β field, then job j cannot start its processing before its release date. If rj does not appear in the β field, the processing of job j may start at any time.
- \circ **Due date**, the job j should finish before its due date d_i .
- \circ **Preemptions** (prmp), they imply that it is not necessary to keep a job on a machine, once started, until its completion. The scheduler is allowed to interrupt the processing of a job (preempt) at any point in time and put a different job on the machine instead. When preemptions are allowed prmp is included in the β field; when prmp is not included, preemptions are not allowed
- \circ **Precedence constraints** (prec), they may appear in a single machine or in a parallel machine environment, requiring that one or more jobs may have to be completed before another job is allowed to start its processing. If no prec appears in the β field, the jobs are not subject to precedence constraints.
- **Unit processing times** $(p_i = 1)$, each job (operation) has unit processing times.

The objective to be minimized is always a function of the completion times of the jobs, which, of course, depend on the schedule. The completion time of the operation of job j on machine i is denoted by C_{ij} . The time job j exits the system (that is, its completion time on the last machine on which it requires processing) is denoted by C_j . Examples of possible objective functions to be minimized are:

- \circ The **makespan** C_{\max} defined as $\max(C_1,\ldots,C_n)$, is equivalent to the completion time of the last job to leave the system. A minimum makespan usually implies a good utilization of the machine(s).
- \circ The **maximum lateness** L_{\max} is defined as $\max(L_1,\ldots,L_n)$. It measures the worst violation of the due dates.
 - The lateness of job j is defined as $L_j = C_j d_j$ (positive when job j is completed late and negative when it is completed early)

- \circ Total completion time : $\sum_i C_j$
- \circ **Total weighted completion time** $\sum_{j} C_j \cdot w_j$, the sum of the weighted completion times of the n jobs gives an indication of the total holding or inventory costs incurred by the schedule.

1.0.1 Example 1

$$1 |\cdot| \sum_{j} c_{j}$$

jobs	1	2	3
length p _j	7	2	5

 $\Sigma_{j}C_{j}$ 7+9+14 = 30
7+12+14 = 33
2+7+14 = 23
2+9+14 = 25
5+12+14 = 31
5+7+14 = 26

Theorem Shortest Processing Time (SPT) rule is optimal.

Proof. Let the jobs be j_1, \ldots, j_n with processing time (p_1, \ldots, p_n) with $0 \le p_1 \le \cdots \le p_n$

$$\sum_{k=1}^{n} c_k = n \cdot p_1 + (n-1)p_2 + \dots + p_n$$

We want to prove that $n \cdot p_1 + (n-1)p_2 + \cdots + p_n$ is minimum.

Take any other sequence by swapping C_i and C_j with $1 \le i < n$ and $i < j \le n$ Assume our sequence is not minimal. Therefore there are subscripts i and j such that

$$c_1 + \dots + c_i + \dots + c_j + \dots + c_n \ge c_1 + \dots + c_j + \dots + c_{i+j} + \dots + c_n$$

$$c_i + \dots + c_j + \dots + c_n \ge c_j + \dots + c_{j+i} + \dots + c_{j+n}$$

$$-c_{j-i} - \dots - c_i - \dots - c_j \ge 0$$

$$-(c_{j-i} + \dots + c_i + \dots + c_j) \ge 0$$

It's clear that a sum of positive elements cannot be negative therefore we have a contradiction.

Theorem In $1 \mid p_j = 1 \mid \sum_j C_j \cdot w_j$, decreasing order of weights is optimal.

Proof. Let the jobs be j_1, \ldots, j_n with weight (w_1, \ldots, w_n) with $w_n \ge \cdots \ge w_1$

$$\sum_{k=1}^{n} c_k w_k = n \cdot w_1 + \dots + w_n$$

We want to prove that expression is minimal (same proof)

jobs j	1	2	3
weight w_j	10	5	2
length p_i	7	2	6

Schedule 1	1	1	1	1	1	1	1	2	2	2	2	2	3	3	7*10+ 9*5 + 15*2 = 145
Schedule 2	1	1	1	1	1	1	1	3	3	2	2	2	2	2	7*10+ 13*2 + 15*5 = 171
Schedule 3	2	2	2	2	2	1	1	1	1	1	1	1	3	3	2*5 + 9*10+ 15*2 = 130
Schedule 4	2	2	2	2	2	3	3	1	1	1	1	1	1	1	2*5+8*6 +15*10=208
Schedule 5	3	3	1	1	1	1	1	1	1	2	2	2	2	2	2*6+9*10 +15*2=132
Schedule 6	3	3	2	2	2	2	2	1	1	1	1	1	1	1	2*6+8*5+15*10=202

How to order? By weight? By length? Notice that $\frac{5}{2} > \frac{10}{7} > \frac{2}{6}$ therefore we should order according to the ratio and we find again that (2,1,3) is the best order.

Theorem In $1 \mid \cdot \mid \sum\limits_{j} C_{j} \cdot w_{j}$ Weighted Shortest Processing Time (=Smith's rule) is optimal.

Proof. Let the jobs be j_1, \ldots, j_n with weight (w_1, \ldots, w_n) and p_1, \ldots, p_n such that $\frac{w_1}{p_1} \ge \cdots \ge \frac{w_n}{p_n}$

$$\sum_{k=1}^{n} c_k w_k = n \cdot w_1 + \dots + w_n$$

We want to prove that expression is minimal (same proof)

jobs j	1	2	3	4
release time r_j	0	3	4	7
length p_j	8	4	1	2

How to order in $1 \mid r_j, prmp \mid \sum_j C_j$?

The optimal way is to process the job with the Smallest Remaining Processing Time at any moment:

Now let's consider SRPT on m parallel machines: At any moment in time, process the m jobs with smallest remaining processing time (or all jobs if there are less than m jobs available at that time).

In tutorial we will show that in $P\mid r_j,pmtn\mid \sum\limits_j c_j$, SRPT is not optimal on parallel machines

Theorem Earliest Due Date is optimal in $1 \mid d_i \mid L_{\text{max}}$

Proof. We assume that there exists an optimal schedule S which does not follow the EDF rule.

We consider the first pair of consecutive tasks k, l processed in this order and such that $d_k > d_l$:

We call S' the schedule obtained by exchanging k and l in S:

In the schedule S, we have $L_k = C_k - d_k$ and $L_l = C_l - d_l = C_k + p_l - d_l$. In the schedule S', we have

$$L'_{l} = C_{l} - p_{l} - d_{l} < C_{l} - d_{l} = L_{l}$$

$$L'_{k} = C_{k} - d_{k} + p_{l} = L_{l} + d_{l} - d_{k} < L_{l}$$

$$L'_{\max} = \max(L'_{k}, L'_{l}) < L_{l} \le \max(L_{k}, L_{k}) = L_{\max}$$

Our assumption that there is a more optimal schedule which does not follow the EDF is wrong therefore EDF is optimal. \Box

We can resume all case via a table:

$1 \cdot \sum_{i} c_{j}$	SPT: Shortest processing time, ordering by increasing length
$1 \mid p_j = 1 \mid \sum_{i} c_j \cdot w_j$	Decreasing ordering of weights
$1 \mid \cdot \mid \sum_{j}^{J} c_{j} \cdot w_{j}$	WSPT: Weighted shortest processing time, ordering by w_j/p_j is optimal
$1 \mid r_j, pmtn \mid \sum_i c_j \cdot w_j$	SRPT: Smallest remaining processing time
$1 \mid d_j \mid L_{\max}$	Earliest due date

An α -approximation algorithm:

- 1. The algorithm runs in polynomial time.
- 2. The algorithm always produces a feasible solution.
- 3. The value is within a factor α of the optimal value

jobs j	1	2
released date r_j	0	4
length p _j	10	1

In 1 r_j $|\sum_i c_j$, this schedule isn't allowed since haven't been preemptions.

Here are some possible schedule:

Let's see a A 2-approximation algorithm:

Step 1 Apply Shortest Remaining Processing Time (SRPT).

Step 2 Label jobs by completion time in SRPT schedule: $C_1 < \cdots < C_n$. For $j = 1, 2, \dots, n$: Schedule job j as early as possible after time C_i

Let's see this through an example:

Proof. Proof of approximation ratio 2:

Let C_j be the completion time of job j in SRPT schedule and C'_j is the completion time of job j in final schedule. We can see that:

- 1. $\sum C_j \leq \text{OPT}$
- 2. $p_1 + \cdots + p_j \le C_j$
- 3. In the final schedule, between time C_j and C'_j there is no idle time 4. In the final schedule, between time C_j and C'_j there are only jobs $k \leq j$. Therefore

$$C_j' \le C_j + (p_1 + \dots + p_j) \le 2C_j$$

By summing over j, we have

$$\sum_{j} C' j \le 2 \sum_{j} C' j \le 2 \cdot \mathsf{OPT}$$

Pipmtni C_{\max}

McNaughton's wrap around rule:

- 1. Calculate the optimal makespan value $C_{\max}^{OPT} = \max(p, \sum_{j=1}^n p_j/m)$
- 2. Construct a single-machine nonpreemptive schedule (assign n jobs to a single machine in an arbitrary order starting with the longest job)
- 3. Cut this single-machine into m parts of length $C_{\rm max}^{OPT}$

jobs j	1	2	3	4	5	6	7	8	9
length p_i	2	1	5	3	2	3	1	3	1

Here
$$C_{\max}^{OPT} = \max(2/3 + 1/3 + 5/3 + 1 + 2/3 + 1 + 1/3 + 1 + 1/3, 5) = \max(7,5) = 7.$$

$$P \mid \cdot \mid C_{\text{max}}$$

Scheduling jobs on a identical parallel machines:

- 1. Start with a list L containing all jobs in some order.
- 2. Assign the jobs one by one (in the order given by L) to the machines.
- 3. At any step, choose the machine with the smallest load sofar.

Theorem List scheduling is a $(2-\frac{1}{m})$ -approximation algorithm

Proof. Let be L the last job to finish and S_L its starting time.

 C_{\max} corresponds to the completion times of the last job to leave the system:

$$C_{\text{max}} = S_L + p_L$$

The List scheduling algorithm implies that before S_L , all machines were busy. Therefore:

$$S_L \times m \le \sum_{j=1}^n p_j - p_L \iff S_L \le \frac{p_1 + \dots + p_n - p_L}{m}$$

The optimal makespan $C_{\max}^{OPT} = (\max(p_1,\ldots,p_n),\sum_{j=1}^n p_j/m) \geq \sum_{j=1}^n p_j/m$ We can deduce:

$$C_{\max} = S_L + p_L \le \frac{p_1 + \dots + p_n}{m} + p_L (1 - \frac{1}{m}) \le C_{\max}^{OPT} + C_{\max}^{OPT} (1 - \frac{1}{m}) = C_{\max}^{OPT} (2 - \frac{1}{m})$$

By using the fact $\max(p_1, \dots, p_n) \ge p_L$

Theorem In $1 \mid \cdot \mid C_{\text{max}}$ when we apply the list scheduling in the order $p_1 \geq \cdots \geq p_n$, the LPTF (Longest Processing Time first) is a $\frac{4}{3}$ -approximation algorithm.

Proof. We want to proove that the length of the LPT schedule is at most 4/3 times the optimal length. Let be L the last job to finish. Notice that we have $p_1 \ge \cdots \ge p_n$ therefore p_L is the minimum processing time possible.

If $p_L \le C_{\text{max}}^{OPT}/3$, we can reuse the bound from the previous proof:

$$C_{\max} = S_L + p_L \le \frac{p_1 + \dots + p_n}{m} + p_L(1 - \frac{1}{m}) \le C_{\max}^{OPT} + p_L(1 - \frac{1}{m}) \le C_{\max}^{OPT} + \frac{C_{\max}^{OPT}}{3}(1 - \frac{1}{m})$$

And finally we have:

$$C_{\max} \le C_{\max}^{OPT} \left(\frac{4}{3} - \frac{1}{m}\right)$$

Now we have to deal with the case $p_L > C_{\text{max}}^{OPT}/3$.

Since $C_{\max}^{OPT} < 3 \cdot p_L$, $p_L = \min(p_1, \dots, p_n)$ and $\max(p_1, \dots, p_n) \le C_{\max}^{OPT}$ we have:

$$p_{\text{max}} \le C_{\text{max}}^{OPT} < 3p_{\text{min}}$$

That means that at most 2 tasks are processed on each machine. It's just a special case in which LPT is optimal.

 $R \mid \cdot \mid C_{\max}$

p_{ij}	1	2
i = 1	1	2
i=2	2	1

It's clear that put the job 1 on machine 1 and the job 2 in the machine 2 is more optimal than the job 1 on machine 2 and the job 2 in the machine 1.

 $R \mid \cdot \mid C_{\text{max}}$ can be reduced to the linear assignment problem.

If job j is scheduled on machine i on position k then it contributes exactly $k \cdot p_{ij}$ to the sum of completion times.

1.1 Tutorial

Exercise 1 Consider the following instance of the scheduling problem $1 \mid \cdot \mid \sum_{i} C_{j} \cdot w_{j}$:

jobs j	1	2	3	4
weight w_j	6	11	9	5
length p_j	3	5	7	4

Give an optimal schedule and its value

Exercise 2 Consider the following instance of the scheduling problem $1 \mid d_i \mid L_{\text{max}}$:

jobs j	1	2	3	4
p_j	5	4	3	6
d_{j}	3	5	11	12

Give an optimal schedule and its value

Exercise 3 Decision problems Partition and 3-Partition are both NP-complete and are defined as follows:

acili ica as ioliows.	
Partition:	An instance is given by positive numbers A and
	a_1, a_2, \ldots, a_n with $\sum_i a_i = 2A$
	Is there an $S \subset \{1,2,,n\}$ such that $\sum\limits_{i\in P}a_i=A$?
3-PARTITION:	An instance is given by positive numbers B and
	b_1,b_2,\ldots,b_{3m} with $\sum_i b_i = mB$.
	Is there a partition of $\{1, 2,, 3m\}$ into $S_1, S_2,, S_m$ such
	that $\sum b_j = B$? for all $i = 1,, m$?
	$j \in S_i$

- (a) Show that the Partition problem can be reduced to the scheduling problem $P_2||C_{\text{max}}|$
- (b) Show that the 3-Partition problem can be reduced to the scheduling problem $P||C_{\max}|$.

Exercise 4 Consider the scheduling problem $1|r_j|\sum\limits_i Cj$ and the following algorithm (SPT):

When the machine is not processing any job, then start the job that has the smallest processing time pj among the available jobs. (We say that a job is available if it has been released but not started yet). Show by an example that this algorithm does not always lead to an optimal schedule.

Exercise 5 Consider the scheduling problem $P|r_i, pmtn|C_{max}$.

Give a polynomial time algorithm which solves the problem by formulating it as a linear program (LP). Assume for simplicity that $0 = r_1 \le r_2 \le \cdots \le r_n$ where n is the number of jobs.

Hint: Use a variable Z for the length of the schedule. The objective then becomes: minimize Z. Take as variables $x_{tj}(t=1,2,\ldots,n)$ which denote the amount of time spent on job j between time r_t and $r_t+1(t\leq n-1)$ and between r_t and $z_t=n$. Explain how an optimal LP-solution can be translated into a feasible schedule.

Exercise Show by an example that SRPT is not optimal for $P \mid r_j, pmtn \mid \sum\limits_i c_j$

Solution 1

$$\frac{11}{5} > \frac{6}{3} > \frac{9}{7} > \frac{5}{4}$$

The value is $w_1C_1 + w_2C_2 + w_3C_3 + w_4C_4 = 6 \cdot 8 + 11 \cdot 5 + 9 \cdot 15 + 5 \cdot 19 = 333$

Solution 2 Earliest Due Date: (1,2,3,4)

Solution 3 There is an S with $\sum_{i \in S} a_i = A \iff$ There is a schedule of length $\leq A$ There is a 3-Partition \iff There is a schedule of length $\leq A$

 $\frac{1}{p_j}$ $\frac{1}{1}$ $\frac{2}{10}$ If we follow the algorithm, we have the order (2,1) $C_2 + C_1 = \frac{1}{r_i}$ $\frac{1}{1}$ $\frac{1}{0}$

10+11=21 But if do (1,2), we have $C_1+C_2=(1+1)+(2+10)=14$

Solution 5

Solution

Completion time for SPT: 3 + (3+6) + 4 = 16But this scheduling gives :5+3+(2+3)=13

