Grau d'Estadística UB-UPC

Programació Lineal

Laboratori 2:

PROC OPTMODEL i bases de dades

F.-Javier Heredia
http://gnom.upc.edu/heredia

Departament d'Estadística i Investigació Operativa

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

PROC OPTMODEL i bases de dades

- Presentació del problema Trans.
- Resolució amb PROC OPTMODEL

Problema de transport

 La producció setmanal dels tres tallers de laminat de l'empresa Steel ha de ser transportada a set factories d'automòbils per l'empresa de logística Trans, d'acord amb les següents dades:

<i>Trans</i> (costos en €/Tm)		1	Demanda		
		Gary Cleveland		Pittsburg	(Tm)
	Framingham	39	27	24	900
	Detroit	14	9	14	1.200
Fa	Lansing	11	12	17	600
Factories	Windsor	14	9	13	400
	St. Louis	16	26	28	1.700
	Fremont	82	95	99	1.100
	Lafayette	8	17	20	1.000
Producció (Tm)		1.400	2.600	2.900	No. N. State Contraction

Problema de transport: xarxa associada

Formulació del problema

Paràmetres:

- M = {Gary Clev, Pitt}, cjt. tallers (mills)
- $\mathcal{F} = \{Fra, Det, ..., Laf\}$, cjt. factories
- $c = \begin{bmatrix} 39 & 14 & 11 & 14 & 16 & 82 & 8 \\ 27 & 9 & 12 & 9 & 26 & 95 & 17 \\ 24 & 14 & 17 & 13 & 28 & 99 & 20 \end{bmatrix}$, cost unitari transport $\mathcal{M} \to \mathcal{F}$
- $s = [1400\ 2600\ 2900]'$, producció taller.
- d = [900 ... 1000]', demanda factories.

Variables: $x_{ij} \ge 0$, $i \in \mathcal{M}$, $j \in \mathcal{F}$, tones transportades $i \to j$

Model matemàtic:

(costos en €/Tm)		Tal	Dem		
		Gary	Clev	Pitt	anda (Tm)
	Fra	39	27	24	900
	Det	14	9	14	1.200
Fa	Lan	11	12	17	600
Factories	Win	14	9	13	400
	Slo	16	26	28	1.700
	Fre	82	95	99	1.100
	Laf	8	17	20	1.000
Producció (Tm)		1.400	2.600	2.900	500
1 70	4,	To. "91,		137	WOL.

$$\left\{ \begin{aligned} \min z &=& \sum_{i \in \mathcal{M}} \sum_{j \in \mathcal{F}} c_{ij} x_{ij} & \text{es minimitza el cost total} \\ s. \, a. &: & \\ \sum_{j \in \mathcal{F}} x_{ij} &= s_i \text{ , } i \in \mathcal{M} & \text{es lliure tota la producció} \\ \sum_{j \in \mathcal{M}} x_{ij} &= d_i \text{ , } i \in \mathcal{F} & \text{es satisfà tota la demanda} \\ x_{ij} &\geq 0 \text{ , } i \in \mathcal{M}, j \in \mathcal{F} \end{aligned} \right.$$

Dades del prob. de transport: transBD.sas

• Creació de les BD: carreguem el fitxer transBD.sas

Dades del prob. de transport: transbo.sas

Visualització de les BD:

transOPTMODEL.sas (1/3)

• Definició dels paràmetres:

transOPTMODEL.sas (1/2)

Càrrega de paràmetres desde les BD:

transOPTMODEL.sas (1/3)

Definició del model d'optimització:

Resolució del prob. : Output

• Característiques del model d'optimització:

Resolució del prob. : Output

Solució òptima (1/2):

i Investigació Operativa

Resolució del prob. : Output

Solució òptima (2/2):


```
/* Optimize and output */
solve;
print Trans.lb Trans.sol Trans.ub Trans.rc Trans.status;
print Supply_cons.lb Supply_cons.body Supply_cons.ub Supply_cons.dual Supply_cons.status;
print Demand_cons.lb Demand_cons.body Demand_cons.ub Demand_cons.dual Demand_cons.status;
```


Càrrega de la sol òptima a la BD Factories (1)

Es guarda la solució a una BD temporal:

	factory	sup_Gary	sup_Clev	sup_Pitt	рi
1	Det	0	1200	0	-8
2	Fra	0	0	900	4
3	Fre	1100	0	0	74
4	Laf	0	400	600	19
5	Lan	0	600	0	-5
6	SLo	300	0	1400	8
7	Win	0	400	.0	-8

Càrrega de la sol òptima a la BD Factories (2)

S'ordena, es volca la BD temporal i s'elimina:

	factory	to_Gary	tc_Clev	tc_Pitt	demand	sup_Gary	sup_Clev	sup_Pitt	рi
1	Det	14	9	14	1200	0	1200	0	-8
2	Fra	39	27	24	900	0	0	900	4
3	Fre	82	95	99	1100	1100	0	0	74
4	Laf	8	17	20	1000	0	400	600	0
5	Lan	11	12	17	600	0	600	0	-5
6	SLo	16	26	28	1700	300	0	1400	8
7	Win	14	9	13	400	0	400	0	-8