Conditional generation of LHCb calorimeter response

Vladislav Belavin

National Research University Higher School of Economics

July 5, 2019

LHCb experiment

LHCb is a forward arm spectrometer with pseudorapidity range $2<\mu<5$ that was originally designed for the study of b-physics.

Electromagnetic calorimeter

Electromagnetic samples

Dataset

Dataset consists of $[30 \times 30]$ images of calorimeter responses on particles with different initial positions and momenta.

Problem statement

Train conditional generator that models following probability density:

ρ (EnergyDeposit|ParticlePoint, ParticleMomentum, ParticlePDG)

Metric

- Minimum of two PRD scores:
- Over embeddings of images:
- > catches overall proximity of distributions generated and real calorimeter responses
 - Over a set of physical metrics:
- > catches proximity of distributions for handmaded statistics

PRD score (1)

PRD score is a score that disentangles precision(quality of generated samples) from recall(proportion of target distribution that is covered by the generator, richness).

PRD score (2)

Toy example of PRD scores for pairs of Bernoulli distributions $\mathcal P$ and $\mathcal Q.$

PRD score (3)

For example, imagine two generators: one can sample perfectly 6 out of 10 digits and another one can sample all digits but poorly.

SCHOOL OF DATA ANALYSIS

Physical metrics (1)

1.00

Physical metrics (2)

Competition settings

- Data:
- images of ECAL responses
- p_x, p_y, p_z of initial particles
- \rightarrow x, y of initial particles
- \rightarrow Particle type: e^-, γ
- Goal:
- train network to generate realistic LHCb calorimeter responses

Competition deadlines

Coopetition link:

https://codalab.coresearch.club/competitions/74

Start of competition:

05.07.2019

End of competition:

10.07.2019

Submission format

- Submission should be a .zip-file that contains 2 files:
- data_val_prediction.npz
- data_test_prediction.npz
 - Each .npz-file should contain one array of your predictions:
- EnergyDeposit

Let's go to the practice!

Starter-kit:

https://github.com/SchattenGenie/mlhep2019_2_phase

