Análisis espaciales y multivariantes en R aplicados a estudios de biodiversidad

Modelos Generalizados de Disimilaridad en R

Diego Nieto Lugilde. Profesor Titular de la Universidad de Córdoba (España)

Son muy interesantes para entender y explicar nuestros datos de comunidades

Su capacidad de predecir en puntos no muestreados es muy limitada

Análisis de clasificación jerarquica

Similitud = 1 - Disimilitud

- Betadiversidad (β)
 - Reemplazo (turnover) de especies entre dos sitios
 - Término ecológico
 - Característico para parejas de puntos
- Interpretación
 - β = 1: Sitios completamente diferentes
 - β = 0: Sitios completamente similares
- Similitud = 1 Disimilitud

	P1	P2	P3	P4
P1	0	β ₁₂	β ₁₃	β ₁₄
P2	β ₁₂	0	β_{23}	β_{24}
Р3	β ₁₃	β ₂₃	0	β_{34}
P4	β ₁₄	β_{24}	β_{34}	0

Matriz de similitud del coeficiente de Czekanowski

	1	2	3	4	5	6	7	8	9	10	11	12
1	0.00											
2	0.51	0.00										
3	0.91	0.69	0.00									
4	0.66	0.58	0.87	0.00								
5	0.88	0.67	0.73	0.44	0.00							
6	0.97	0.72	0.75	0.93	0.76	0.00						
7	0.96	0.70	0.60	0.94	0.80	0.69	0.00					
8	0.81	0.75	0.89	0.69	0.80	0.95	0.77	0.00				
9	0.97	0.83	0.86	0.94	0.79	0.83	0.58	0.71	0.00			
10	0.93	0.73	0.79	0.89	0.66	0.79	0.79	0.84	0.60	0.00		
11	0.99	0.66	0.69	0.94	0.76	0.69	0.52	0.87	0.67	0.64	0.00	
12	0.99	0.97	0.97	0.98	0.98	0.96	0.82	0.81	0.69	0.48	0.61	0.00

Cálcular varias matrices de distancias

Correlación entre matrices

La disimilaridad está acotada y no muestra una respuesta lineal

tau=1, N=28, 9999 permutations

Test de Mantel

- Falta de linearidad: no se puede calcular significación de correlación directamente
- Permutación de las filas de las matrices y calculo de nuevos valores
- Significación por permutación

Limitaciones del test de Mantel

- No contempla que la composición puede mantenerse estable a lo largo de grandes gradientes ambientales y luego cambiar bruscamente
- El efecto de la distancia ambiental siempre tiene que ser positivo sobre la distancia biológica (o de composición)
 - Sitios cada vez más alejados geográficamente deben tener siempre mayor distancia biológica
 - Sitios con mayor distancia climática deben tener también mayores distancias biológicas

Modelos generalizados de disimilitud

GDM acomoda la no linearidad

¿Cómo se interpretan las curvas I-spline?

Calibración del modelo se mide con desvianza explicada

NULL Deviance: 651.914

GDM Deviance: 129.025

Percent Deviance Explained: 80.208

Proyectar en el espacio (mapear)

- a) Diferencias principales en la composición predicha
- b) Clasificación de las comunidades basada en (a)
- c) Similitud en la composición predicha con el punto focal resaltado
- d) Reemplazo local: similitud promedio en la composición en un radio de 15 km
- e) Originalidad similitud promedio en relación con toda la región
- f) Sesgos de muestreo: similitud en la composición relativa con las ubicaciones de los muestreos mostrados
- g) Representatividad de las áreas protegidas (AP): similitud relativa con las áreas protegidas
- h) Persistencia esperada de especies: proporción de especies que se encuentran originalmente en cada ubicación y que se espera que persistan en cualquier lugar de la región a largo plazo, dada la pérdida/modificación del hábitat
- i) Ganancia marginal: aumento esperado en la persistencia de las especies si todo el hábitat restante se restaurara a su condición máxima

Proyectar en el tiempo (cambio climático)

- a) Similitud de composición prevista para cada ubicación entre los climas actuales y futuros (más oscuro = más cambios)
- Valores predichos de cada ubicación como refugios en el futuro para la biodiversidad actual dentro de los 15 km circundantes (más oscuro = refugios más grandes)
- c) Ambientes biológicos que están desapareciendo, siendo ubicaciones con baja similitud prevista con cualquier ubicación en el futuro (más oscuro = más desaparición)
- d) Ambientes biológicos novedosos, siendo ubicaciones en el futuro que tienen baja similitud con cualquier ubicación en el presente (más oscuro = más novedoso)

Population genetics of Populus balsamifera

- Todos los SNPs
- SNPs candidates
- GIGANTEA-5 (GI5; gen de reloj circadiano)
- FRIGIDA (FRI; gen de vernalizacion)
- LEAFY (LFY; gen de desarrollo meristemático)

Population genetics of Populus balsamifera

- Predicted spatial variation in populationlevel genetic composition from GF for reference SNPs
- Same but only for GI5 (circadian clock gene)
- Difference between turnover in genetic composition of reference SNPs and GI5

