Markov Chain Monte Carlo

TP 5: Méthode de Monte Carlo

$$\int_{-\infty}^{+\infty} e^{\beta x} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} e^{\beta X_i}$$

$$\int_0^{+\infty} e^{-\beta x} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \frac{1}{\beta \sqrt{2\pi}} e^{-(X_i)^2/2}$$

Théorie

Théorème 3

- Y est la variable aléatoire à valeurs dans R avec la fonction de densité g_Y
- X est la variable aléatoire à valeurs dans R avec la fonction de densité f_X
- Il existe une constante $C(\geq 1)$ satisfaisant

$$f_X(x) \le C \cdot g_Y(x) \quad x \in \mathbb{D}(X) \cap \mathbb{D}(Y)$$

- ullet U une variable aléatoire de loi uniforme sur [0, 1] indépendante de Y .
- Alors la loi de Y sachant $\{U \cdot C \cdot g_Y(Y) < f_X(Y)\}$ est la loi de X.

Idées de Méthode de Rejet

- On sait simuler la v.a. $Y \Rightarrow Y = \{Y_1, Y_2, Y_3, ..., Y_{mc}\}$
- On connaît la fonction de densité $g_Y(y)$ de v.a. Y
- On connaît la fonction de densité $f_X(x)$ de v.a. X
- On utilise quelques réalisations de Y_i pour former X.

Simulation de la loi Beta (α, β)

■ Une variable aléatoire de loi Beta $B(\alpha, \beta)$ (avec $\alpha > 0$ et $\beta > 0$) a pour densité

$$f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} 1_{0 \le x \le 1}$$

- On utilise la méthode de rejet avec Y = U([0,1]) (loi uniforme) dont la fonction de densité est égale $g_Y(x) = 1$.
- La constante de rejet vaut

$$C = \sup_{0 \le x \le 1} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

lacksquare En dérivant la fonction $f_X(x)$ pour trouver le point de max x_0 on montre

$$x_0 = \frac{\alpha - 1}{\alpha + \beta - 2}$$

et

$$C = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x_0^{\alpha - 1} (1 - x_0)^{\beta - 1}.$$

Simulation de la loi Beta (α, β)

lacksquare On forme le vecteur X sans les 'zeros' par l'introduction d'un nouveau indice k.

```
• function[X ]=Rejet_Beta(\alpha, \beta)

• Calculer x_0 = \frac{\alpha - 1}{\alpha + \beta - 2},

• Calculer C=Beta(x_0, \alpha, \beta)

• k = 1;
```

$$\circ \text{ for } n=1:N_{mc}$$

$$\circ$$
 Y =rand();

- \circ Simuler U[0,1] indépendant de Y
- \circ Simuler $f = Beta(Y, \alpha, \beta)$;

$$\circ \text{ if } U \leq \frac{f}{C}$$

$$\circ X(k) = Y; \quad k = k + 1;$$

- o endif
- o endfor
- endfunction

• function[f]=Beta
$$(x, \alpha, \beta)$$

$$f = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\cdot\Gamma(\beta)} \cdot x.^{(\alpha-1)} \cdot (1-x).^{(\beta-1)}$$

endfunction

Calcules des Intégrales I

- Calculer $\int_{-\infty}^{+\infty} e^{\beta x} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx$, $\beta = 2$
 - function $[I_n]$ =IntegraleI(n)
 - o Simuler n fois par l'algorithme de Box-Muller v.a. Normale $X_i \sim \mathcal{N}(0,1)$
 - \circ Calculer $I_n = \frac{1}{n} \sum_{i=1}^n e^{\beta X_i}$
 - endfunction
- ullet On étudie la convergence de I_n
 - function[]=Convergence()
 - \circ for $n=1:N_{mc}$
 - \circ valeurs(n)= IntegraleI(n)
 - o endfor
 - plot(valeurs)
 - endfunction

Calcules des Intégrales II

- Calculer $\int_0^{+\infty} e^{-\beta x} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx = \int_0^{+\infty} \beta e^{-\beta x} \frac{e^{-x^2/2}}{\beta \sqrt{2\pi}} dx, \quad \beta = 2$
 - function $[I_n]$ =Integrale II(n)
 - o Simuler n fois v.a. exponentielle $X_i \sim \mathsf{Exp}(\lambda = 2)$
 - \circ Calculer $I_n = \frac{1}{n} \sum_{i=1}^n \frac{e^{-(X_i)^2/2}}{\beta \sqrt{2\pi}}$
 - endfunction
- ullet On étudie la convergence de I_n
 - function[]=Convergence2()
 - \circ for $n=1:N_{mc}$
 - \circ valeurs(n)= IntegraleII(n)
 - endfor
 - plot(valeurs)
 - endfunction

Simulation 1 de v.a. Cauchy

Simulation d'un échantillon de v.a. Cauchy à l'aide de deux v.a. Normales Y et Y.

```
function[ Z ]=Cauchy( )
```

- \circ for $n=1:N_{mc}$
- [X, Y]= Box_Muller()
- $\circ Z(n) = \frac{X}{Y}$
- o endfor
- endfunction

Travail à faire pour v.a. Cauchy

- Soient $N_{mc} = 10000$
- Tracer les fonctions de repartition de X:

$$[a, b] = [-5, 5], \Delta = 0.1, N_x = 100$$

ullet Tracer les fonctions de densité de X:

$$[a, b] = [-5, 5], \Delta = 0.1, N_x = 100$$