A More Robust Optimal Adjustment Set

Chase Mathis

December 2023

Goals and New Research

- Similar to how a trek is associated with covariance, can one find a graphical structure or function of one that defines the bias term.
- ► In sparse data situations, should researchers include forbidden terms if sample covariance meet certain constraints.

Previous Causal DAGs

- ► The optimal adjustment set is the unbiased adjustment set that has the *lowest asymptotic variance*.
- ▶ Henckel et al. [?] that for Structural Equation Models (SEMs), an optimal adjustment set for finding the causal effect of $T \rightarrow Y$ is:

$$\textit{O}_{\textit{g}}(\textit{T} \rightarrow \textit{Y}) = \textit{pa}_{\textit{g}}(\textit{cn}_{\textit{g}}(\textit{T} \rightarrow \textit{Y})) \setminus (\textit{cn}_{\textit{g}}(\textit{T} \rightarrow \textit{Y}) \cup \{\textit{T}\}).$$

▶ It was also shown for the non-parametric case [?]

Example

So for instance in the graph below the

- $cn_G(T \to Y) = \{W, M, Y\}$

Graph Example

Consider the Structural Equation Model

▶ In the graph below, the $O_g(T \to Y) = \{A, B, C, D, V, S\}$

In R

In R, this can be seen as

```
T \leftarrow rnorm(n)
V \leftarrow rnorm(n)
S \leftarrow rnorm(n)
A \leftarrow rnorm(n)
B < - rnorm(n)
C \leftarrow rnorm(n)
D <- rnorm(n)
E \leftarrow rnorm(n)
W \leftarrow 5 * T + 2 * V + rnorm(n)
Y < -7 * W + A + B + 4 *S + C + D + rnorm(n)
```

Results

I calculate the MSE of the $\hat{\beta_T} \mid \beta = -35$ over the optimal adjustment set and instead only using the strongly causal nodes V, S, I see the following:

Results 2: Changing Parameters

If I make the variance of A, B, C, D, E small or V, S large, the difference is more pronounced

Forbidden Nodes

I've also been considering Forbidden Nodes and including them in adjustment sets.

Here M is a forbidden node and including it will give a biased estimate for $T \rightarrow Y$

Variable Mediator

If data is sparse and M is quite a bit more variable than the other variables (5x), I found that the MSE of $\hat{\beta_T}$ is smaller when adjusting for M then for not adjusting for M

Adjusting for Two Forbidden Nodes

In the graph shown below, nodes A, B are forbidden as they are descendants of a causal node.

If we adjust for them, however, the bias is a ratio of determinants.

Proof

$$\beta_{ty \cdot ab} = \frac{\sigma_{ty \cdot ab}}{\sigma_{tt \cdot ab}} \tag{1}$$

$$= \frac{\sigma_{ty} - \Sigma_{t,AB} \Sigma_{AB}^{-1} \Sigma_{AB,y}}{|\Sigma_{AB \cdot t}| \sigma_{tt} / |\Sigma_{AB}|}$$
(2)

Focusing on the numerator, $\sigma_{ty} = \beta_{ty} * \sigma_{tt} = \beta_{tm}\beta_{my} * \sigma_{tt}$

$$= \frac{\beta_{tm}\beta_{my}\sigma_{tt} - \Sigma_{t,AB}\Sigma_{AB}^{-1}\Sigma_{AB,y}}{|\Sigma_{AB.t}|\sigma_{tt}/|\Sigma_{AB}|}$$
(3)

Proof Cont.

Focusing on $\Sigma_{t,AB}\Sigma_{AB}^{-1}\Sigma_{AB,y}$, we get the following:

$$\Sigma_{t,AB} \Sigma_{AB}^{-1} \Sigma_{AB,y} = tr(\Sigma_{t,AB} \Sigma_{AB}^{-1} \Sigma_{AB,y})$$
 (4)

$$= tr(\Sigma_{t,AB}^T \Sigma_{AB,y} \Sigma_{AB}^{-1}) \tag{5}$$

$$= tr(\begin{bmatrix} \sigma_{ta} & \sigma_{tb} \end{bmatrix} \begin{bmatrix} \sigma_{ay} \\ \sigma_{by} \end{bmatrix} \Sigma_{AB}^{-1})$$
 (6)

We can use the trek rule to find that $\sigma_{ay}=\sigma_{mm}\beta_{ma}\beta_{my}$ and $\sigma_{by}=\sigma_{mm}\beta_{mb}\beta_{my}$

$$= \sigma_{mm} \beta_{my} tr(\begin{bmatrix} \sigma_{ta} & \sigma_{tb} \end{bmatrix} \begin{bmatrix} \beta_{ma} \\ \beta_{mb} \end{bmatrix} \Sigma_{AB}^{-1})$$
 (7)

$$\sigma_{ta} = \beta_{ta}\sigma_{tt}, \sigma_{tb} = \beta_{tb}\sigma_{tt}$$

Proof Cont.

$$= \sigma_{mm} \sigma_{tt} \beta_{my} tr(\begin{bmatrix} \beta_{ta} & \beta_{tb} \end{bmatrix} \begin{bmatrix} \beta_{ma} \\ \beta_{mb} \end{bmatrix} \Sigma_{AB}^{-1})$$
 (8)

(9)

Further, $\beta_{ta} = \beta_{tm}\beta_{ma}$, $\beta_{tb} = \beta_{tm}\beta_{mb}$

$$= \sigma_{mm} \sigma_{tt} \beta_{my} \beta_{tm} tr(\begin{bmatrix} \beta_{ma} & \beta_{mb} \end{bmatrix} \begin{bmatrix} \beta_{ma} \\ \beta_{mb} \end{bmatrix} \Sigma_{AB}^{-1})$$
 (10)

$$= \sigma_{mm}\sigma_{tt}\beta_{my}\beta_{tm}(\beta_{ma}^2 + \beta_{mb}^2)tr(\Sigma_{AB}^{-1})$$
(11)

$$= \sigma_{tt} \beta_{my} \beta_{tm} (\sigma_{ma}^2 + \sigma_{mb}^2) tr(\Sigma_{AB}^{-1}) / \sigma_{mm}$$
 (12)

$$= \sigma_{tt} \beta_{my} \beta_{tm} (\sigma_{ma}^2 + \sigma_{mb}^2) (\frac{1}{\sigma_{aa \cdot b}} + \frac{1}{\sigma_{bb \cdot a}}) / \sigma_{mm}$$
 (13)

(14)

Proof Cont.

Returning to the original equation

$$= \frac{\beta_{tm}\beta_{my}\sigma_{tt} - \sigma_{tt}\beta_{my}\beta_{tm}(\sigma_{ma}^2 + \sigma_{mb}^2)(\frac{1}{\sigma_{aa\cdot b}} + \frac{1}{\sigma_{bb\cdot a}})/\sigma_{mm}}{|\Sigma_{AB\cdot t}|\sigma_{tt}/|\Sigma_{AB}|}$$
(15)

$$= \frac{\beta_{tm}\beta_{my}|\Sigma_{AB}|\left(1 - (\sigma_{ma}^2 + \sigma_{mb}^2)(\frac{1}{\sigma_{aa\cdot b}} + \frac{1}{\sigma_{bb\cdot a}})/\sigma_{mm}\right)}{|\Sigma_{AB\cdot t}|}$$
(16)

$$= \frac{\beta_{tm}\beta_{my}|\Sigma_{AB}|\frac{1}{\sigma_{mm}}\left(\sigma_{mm} - (\sigma_{ma}^2 + \sigma_{mb}^2)(\frac{1}{\sigma_{aa \cdot b}} + \frac{1}{\sigma_{bb \cdot a}})\right)}{|\Sigma_{AB \cdot t}|}$$
(17)

$$= \frac{\beta_{tm}\beta_{my}|\Sigma_{AB}|\frac{1}{\sigma_{mm}}\sigma_{mm\cdot AB}}{|\Sigma_{AB\cdot t}|}$$
(18)

$$\sigma_{mm\cdot AB}|\Sigma_{AB}| = |\Sigma_{AB\cdot m}||\sigma_{mm}|$$

$$= \beta_{tm} \beta_{my} \frac{|\Sigma_{AB \cdot m}|}{|\Sigma_{AB \cdot t}|}$$

Adjusting for A Mediator

In the graph shown below, nodes M is a mediator, and the bias term is a ratio of schur complements minus a path from $W \to Y$ through only M.

Future Work

After talking with Dr. Evans, I plan to look into the simple linear scenario to come up with constraints about whether to include M as a confounding factor.

Perhaps, if one is uncertain if M is a mediator or not, one should still include it if it meets a certain criterion.

Linear Case Constraint

We will compare two estimators MSE: a biased $\hat{\beta}_{ty \cdot m}$ and unbiased $\hat{\beta}_{ty}$

 $\dot{MSE}(\hat{\beta}_{ty}) = \sigma^2(X^TX)^{-1}$, where X is the design matrix and σ^2 is the residual variance. Note $X = \mathbf{t}$, so we will not include an intercept and mean center the variables. Therefore

$$MSE(\hat{\beta}_{ty}) = \frac{\sigma_{yy \cdot t}}{\sigma_{tt} * n} \tag{19}$$

The residual variance for $\hat{\beta}_{ty\cdot m}=d_{yy}=\sigma_{yy\cdot tm}$. However $(X^TX)^{-1}$ is now a matrix. We can find the variance still by using schur-complements. $(X^TX)^{-1}[1,1]=(\sigma_{tt\cdot m}*n)^{-1}=(\sigma_{tt}*n)^{-1}=(d_{tt}*n)^{-1}$

Therefore,

$$Var(\hat{\beta}_{ty \cdot m}) = \frac{\sigma_{yy \cdot t, m}}{\sigma_{tt \cdot m} * n}$$
 (20)

Bias for $\hat{\beta}_{ty\cdot m}$

Via the trek rule,

$$\sigma_{tm} = d_{tt}\beta_{tm}$$

and

$$\sigma_{my} = d_{mm}\beta_{my} + d_{tt}\beta_{tm}\beta_{ty} + d_{tt}\beta_{tm}^2\beta_{my}$$

Therefore,

$$\sigma_{my} * \sigma_{tm} = d_{tt}d_{mm}\beta_{my}\beta_{tm} + d_{tt}^2\beta_{tm}^2\beta_{ty} + d_{tt}^2\beta_{tm}^3\beta_{my}$$
 (21)

$$= d_{tt}d_{mm}\beta_{my}\beta_{tm} + d_{tt}^2\beta_{tm}^2(\beta_{tm}\beta_{my} + \beta_{ty}) \qquad (22)$$

$$= d_{tt}d_{mm}\beta_{my}\beta_{tm} + \frac{\sigma_{tt}^2\sigma_{tm}^2}{\sigma_{tt}^2} \left(\beta_{tm}\beta_{my} + \beta_{ty}\right) \qquad (23)$$

$$= d_{tt}d_{mm}\beta_{my}\beta_{tm} + \sigma_{tm}^2\beta_{ty}^T$$
 (24)

Note the true causal effect of T on Y, which I will call β_{ty}^T is $\beta_{tm}\beta_{my} + \beta_{ty}$

Bias for $\hat{\beta}_{ty\cdot m}$ cont.

$$\hat{\beta}_{ty \cdot m} = \frac{\sigma_{ty \cdot m}}{\sigma_{tt \cdot m}}$$

$$= \frac{\sigma_{ty} - \sigma_{tm} \sigma_{my} / \sigma_{mm}}{\sigma_{tt} * \sigma_{mm \cdot t} / \sigma_{mm}}$$

$$= \frac{\beta_{ty}^{T} * \sigma_{tt} - \sigma_{tm} \sigma_{my} / \sigma_{mm}}{\sigma_{tt} * \sigma_{mm \cdot t} / \sigma_{mm}}$$

$$= \frac{\beta_{ty}^{T} * \sigma_{mm} - \sigma_{tm} \sigma_{my} / \sigma_{tt}}{\sigma_{mm \cdot t}}$$

$$= \frac{\beta_{ty}^{T} * \sigma_{mm} - \sigma_{tm} \sigma_{my} / \sigma_{tt}}{\sigma_{mm \cdot t}}$$

$$= \frac{\beta_{ty}^{T} * \sigma_{mm} - \left(d_{tt} d_{mm} \beta_{my} \beta_{tm} + \sigma_{tm}^{2} \beta_{ty}^{T}\right) / \sigma_{tt}}{\sigma_{mm \cdot t}}$$

$$= \frac{\beta_{ty}^{T} \left(\sigma_{mm} - \sigma_{tm}^{2} / \sigma_{tt}\right) - d_{tt} d_{mm} \beta_{my} \beta_{tm} / \sigma_{tt}}{\sigma_{mm \cdot t}}$$

$$= \frac{\beta_{ty}^{T} \left(\sigma_{mm} - \sigma_{tm}^{2} / \sigma_{tt}\right) - d_{tt} d_{mm} \beta_{my} \beta_{tm} / \sigma_{tt}}{\sigma_{mm \cdot t}}$$

$$= \frac{\beta_{ty}^{T} \left(\sigma_{mm} - \sigma_{tm}^{2} / \sigma_{tt}\right) - d_{tt} d_{mm} \beta_{my} \beta_{tm} / \sigma_{tt}}{\sigma_{mm \cdot t}}$$

$$= \frac{\beta_{ty}^{T} \left(\sigma_{mm} - \sigma_{tm}^{2} / \sigma_{tt}\right) - d_{tt} d_{mm} \beta_{my} \beta_{tm} / \sigma_{tt}}{\sigma_{mm \cdot t}}$$

$$= \frac{\beta_{ty}^{T} \left(\sigma_{mm} - \sigma_{tm}^{2} / \sigma_{tt}\right) - d_{tt} d_{mm} \beta_{my} \beta_{tm} / \sigma_{tt}}{\sigma_{mm \cdot t}}$$

$$= \frac{\beta_{ty}^{T} \left(\sigma_{mm} - \sigma_{tm}^{2} / \sigma_{tt}\right) - d_{tt} d_{mm} \beta_{my} \beta_{tm} / \sigma_{tt}}{\sigma_{mm \cdot t}}$$

$$= \frac{\beta_{ty}^{T} \left(\sigma_{mm} - \sigma_{tm}^{2} / \sigma_{tt}\right) - d_{tt} d_{mm} \beta_{my} \beta_{tm} / \sigma_{tt}}{\sigma_{tm}}$$

$$= \frac{\beta_{ty}^{T} \left(\sigma_{mm} - \sigma_{tm}^{2} / \sigma_{tt}\right) - d_{tt} d_{mm} \beta_{my} \beta_{tm} / \sigma_{tt}}{\sigma_{mm}}$$

$$= \frac{\beta_{ty}^{T} \left(\sigma_{mm} - \sigma_{tm}^{2} / \sigma_{tt}\right) - d_{tt} d_{mm} \beta_{my} \beta_{tm} / \sigma_{tt}}{\sigma_{tm}}$$

Final simplifications for Bias for $\hat{\beta}_{ty\cdot m}$

$$=\frac{\beta_{ty}^{T}(\sigma_{mm\cdot t}) - d_{mm}\beta_{my}\beta_{tm}/\sigma_{tt}}{\sigma_{mm\cdot t}}$$
(31)

$$= \beta_{ty}^{T} - \frac{d_{mm}\beta_{my}\beta_{tm}}{\sigma_{mm \cdot t}}$$
 (32)

$$= \beta_{ty}^{T} - \beta_{my}\beta_{tm} \tag{33}$$

Thus, bias
$$(\hat{\beta}_{ty \cdot m}) = -\beta_{my}\beta_{tm}$$

Comparing MSE

$$MSE(\hat{\beta}_{ty \cdot m}) = \beta_{my}^2 \beta_{tm}^2 + \frac{d_{yy}}{\sigma_{tt \cdot m} n}$$
(34)

$$MSE(\hat{\beta_{ty}}) = \frac{\sigma_{yy \cdot t}}{d_{tt} n}$$
 (35)

$$\sigma_{yy \cdot tm} = \sigma_{yy \cdot t} - \frac{\sigma_{ym \cdot t}^2}{\sigma_{mm \cdot t}} \tag{36}$$

$$\implies \sigma_{yy \cdot tm} - \sigma_{yy \cdot t} = -\frac{\sigma_{ym \cdot t}^2}{\sigma_{mm \cdot t}} \tag{37}$$

$$=\beta_{my}^2*d_{mm} \tag{38}$$

Subtracting Conditional Variances

$$\frac{d_{yy}}{\sigma_{tt\cdot m}} - \frac{\sigma_{yy\cdot t}}{d_{tt}} \tag{39}$$

$$\sigma_{tt \cdot m} = \sigma_{mm \cdot t} d_{tt} / \sigma_{mm} \tag{40}$$

$$\sigma_{mm} = d_{tt}\beta_{tm}^2 + d_{mm} \tag{41}$$

$$= \frac{d_{yy}\left(\frac{d_{tt}\beta_{tm}^2 + d_{mm}}{d_{mm}}\right)}{dtt} - \frac{\sigma_{yy \cdot t}}{d_{tt}}$$
(42)

$$=\frac{d_{yy}\beta_{tm}^2}{d_{mm}}+\frac{d_{yy}}{d_{tt}}-\frac{\sigma_{yy\cdot t}}{d_{tt}}\tag{43}$$

$$= \frac{d_{yy}\beta_{tm}^2}{d_{mm}} - \frac{d_{mm} * \beta_{my}^2}{d_{tt}} \quad (20)$$

Putting a Constraint on MSE

$$MSE(\hat{\beta}_{ty \cdot m}) - MSE(\hat{\beta}_{ty})$$
 (45)

$$= \beta_{my}^2 \beta_{tm}^2 + \frac{d_{yy}}{\sigma_{tt \cdot m} n} - \frac{\sigma_{yy \cdot t}}{d_{tt} n}$$
 (46)

$$= \beta_{my}^{2} \beta_{tm}^{2} + \frac{d_{yy} \beta_{tm}^{2}}{n * d_{mm}} - \frac{d_{mm} * \beta_{my}^{2}}{d_{tt} * n}$$
(47)

$$\implies \beta_{my}^{2} \beta_{tm}^{2} + \frac{d_{yy} \beta_{tm}^{2}}{n * d_{mm}} - \frac{d_{mm} * \beta_{my}^{2}}{d_{tt} * n} < 0$$
 (48)

$$\implies n * \beta_{my}^2 \beta_{tm}^2 + \frac{d_{yy}\beta_{tm}^2}{d_{mm}} < \frac{d_{mm}\beta_{my}^2}{d_{tt}}$$
 (49)

This equation makes sense. If d_{mm} is large, we should include it. Further if d_{tt} is small, adding in d_{mm} will help estimate $T \to Y$.

Adjusting for the Bias

I ran some simulations below on how we can achieve a better estimate if we correct for the bias we induce.

Mathematically the adjustment estimate is

$$\hat{\beta}_{ty\cdot a} = \hat{\beta}_{ty\cdot m} + \hat{\beta}_{tm} * \hat{\beta}_{my\cdot t}$$
 (50)

I also looked at the R mediator package, which employs a simply total effect regression for their estimate.

