Review

Assignment 1 – Task 1 - Clarifications

- ☐ You can use your images with and without glasses
- ☐ You can use images of celebrities as "unknown" (other than you) class.
- ☐ Ensure class ratios in train and test splits (recall stratified split).
- ☐ You should resize all the images to same resolution
 - 32x32 is a good start for now. Why?
 - How many features would be there if the image is grayscale and the resolution is 32x32?
 - How many features would be there for colored image with resolution of 32x32?
- ☐ Implementation tip: You can use .flatten for any numpy array to... flatten it! (aka converting to a vector)

Feature Space: Image Data

 \square Images are nothing but a 2D/3D arrays with values of color intensities, typically ranging 0-255

Do this for all of your images and now each record is a vector!

The label is stored separately for corresponding record.

If label is "Me" and "Not Me", it's classification.

If label is "Age", its regression.

Implementation Tip: Use numpy reshape.

Feature Space: Image Data

- \square The color Image is 3D array ($Width \times Height \times Channels$)
- □Color image has 3 channels while grayscale image has 1 channel.

How would you convert color image to 1D array?

Feature Space: Text Data

□Suppose you are given labeled textual data in excel sheet

	Document#	Text	Class
Training	1	The Best movie best	Pos
	2	The Best best ever	Pos
	3	The Best film	Pos
	4	The Worst cast ever	Neg
Testing	5	The Best best best worst ever	?

the	best	movie	ever	film	worst	cast
1	1	1	0	0	0	0
1	1	0	1	0	0	0
1	1	0	0	1	0	0
1	0	0	1	0	1	1

label
1
1
1
0

These are called "Binary C	Occurrences" features.
----------------------------	------------------------

		· · · · · · · · · · · · · · · · · · ·					
1	1	0	1	0	1	0	

Feature Space: Text Data

□Suppose you are given labeled textual data in excel sheet

the

best

2

movie

1

ever

0

	Document#	Text	Class
Training	1	The Best movie best	Pos
	2	The Best best ever	Pos
	3	The Best film	Pos
	4	The Worst cast ever	Neg
Testing	5	The Best best best worst ever	?

)	•			
1	2	0	1	0		0	0		1	
1	1	0	0	1		0	0		1	
1	0	0	1	0		1	1		0	
These	are called "Te	erm Freque	ncy" featu	res.	A	dvanced TF	IDF featur	es (we'll skip	details)
1	3	0	1	0		1	0		?	

film

worst

cast

label

Supervised Learning

- ☐ Predicting the labels for unseen data based on labelled instances.
- **□**Quick recap!

Path	Label
data/1.jpg	me
data/2.jpg	not me
data/3.jpg	me
data/4.jpg	me
•	•
•	•
•	•

Path	Label
data/1.jpg	me
data/2.jpg	not me
data/3.jpg	my friend
data/4.jpg	me
•	•

Path	Label	Label 2	
data/1.jpg	me	smiling	
data/2.jpg	not me	not smiling	
data/3.jpg	my friend	smiling	
data/4.jpg	me	smiling	
		•	
		•	
	•	•	

Classification or Regression?

Classification. Specifically, binary-class classification.

Classification or Regression?

Classification. Specifically, multi-class classification.

Classification or Regression?

Classification. Specifically, multi-label classification.

Rules vs. Learning

- ■Suppose we are working on classification of emails into "spam" and "ham" (not spam)
- **☐** We can write a complicated set of rules
 - Works well for a while
 - Cannot adapt well to new emails
 - Program could be reverse-engineered and circumvented
- Learn the mapping between an email and its label using past labelled data
 - Can be retrained on new emails
 - Not easy to reverse-engineer and circumvent in all cases
 - Easier to plug the leaks

Formalizing the Setup

$$D = \{ (x^1, y_1), (x^2, y_2), \dots, (x^n, y_n) \subseteq X \times Y$$

Feature vector

$$D = \{(\overrightarrow{x_1}, y_1), (\overrightarrow{x_2}, y_2), \dots, (\overrightarrow{x_n}, y_n) \subseteq X \times Y\}$$

■Where,

- D is the dataset
- X is the d-dimensional feature space (\mathbb{R}^d)
- $\overrightarrow{x_i}$ or x^i is the input vector of the *ith* sample/record/instance
- Y is the label space

The data points are drawn from an **unknown** distribution P

$$(\overrightarrow{x_i}, y_i) \sim P(x, y)$$

If we don't know the distribution, lets approximate that using samples we gathered!

Any categorical attribute can be converted to numerical representation.

We want to learn a function $h \in H$, such that for a new instance $(\vec{x}, y) \sim P$

$$\mathbf{h}(\vec{x}) = \mathbf{y}$$
 with a high probability or at least $\mathbf{h}(\vec{x}) \approx \mathbf{y}$

This also have to be from the same distribution as $\overrightarrow{x_i}$

In plain words, don't train on dogs and ask prediction for cats.

Training and Testing: Formally

Label Space

□Binary (Binary classification)

- Sentiment: positive / negative
- Email: spam / ham
- Online Transactions Fraud: Yes / No
- Tumor: Malignant / Benign
- $y \in \{0,1\}$
- $y ∈ {-1, 1}$

■Multi-class (multi-class classification)

- Sentiment: Positive / Negative / Neutral
- Emotion: Happy / Sad / Surprised / Angry / ...
- Parts of Speech Tag: Noun / Verb / Adjective / Adver / ...
- $y \in \{0,1,2,...\}$

☐ Real-valued (Regression)

■ Temperature, height, age, length, weight, duration, price, ...

Hypothesis Space

 \square The hypothesis h is sampled from a hypothesis space H

$$h \in H$$
 $H \in \{H_D, H_R, H_{SVM}, H_{DL}, \dots\}$

 $\square H$ can be thought of to contain types of hypotheses, which share sets

of assumptions like.

- Support Vector Machines $H_{SVM} \in \{H_1, H_2, ...\}$
- Decision Tree $H_D \in \{H_1, H_2, ...\}$
- Perception $H_P \in \{H_1, H_2, ...\}$
- Neural Networks $H_{NN} \in \{H_1, H_2, ...\}$

Selection done manually.

Selection done automatically.

 $h \in H_D$

- \blacksquare For example: $h \in H$ for H decision trees:
 - Would be instance of decision trees of different height, arity, thresholds etc.

So, how do we choose our *h*?

- **□**Randomly?
- **□**Exhaustively?

How do we evaluate h?

How to choose h?

□Randomly

- May not work well
- Like using a random program to solve your sorting problem!
- May work if H is constrained enough

Exhaustively

- Would be very slow!
- The space H is usually very large (if not infinite)
- $\square H$ is usually chosen by ML Engineers (You!) based on their experience
 - $h \in H$ is estimated efficiently using various optimization techniques (math alert!)

Before moving to finding h, let's first evaluate the labels.

Book Reading

☐ Murphy – Chapter 1