

United International University Department of Computer Science and Engineering

CSE-3313: Computer Architecture Midterm Examination: Spring 2024 Total Marks: 30 Time: 1 hour and 30 minutes

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

Answer all questions. Numbers to the right of the questions denote their marks.

1. Consider the following MIPS code:

```
block:
2
                 add sp, sp, -8
3
                 sw $ra, $zero($sp)
4
                 sw $s0, 4($sp)
5
6
                 addi $v0, 0, 0
7
                 addi $s0, $zero, 1
8
9
            loop:
                 slti $t0, $a0, s0
10
                 bne $t0, $zero, end_loop
                 add $v0, $v0, $s0
12
                 addi $s0, $s0, 1
13
14
                 jump loop
15
16
            end_loop:
17
                 lw $ra, 4($sp)
18
                 lw $s0, 8($sp)
19
                 addi $sp, $sp, 12
20
                 jr $ra
```

[N.B. You should assume the value of a0 = 3]

(a) **Find** the errors and fix them in the above code.

- [4]
- (b) As you get error-free code from 1a, Write the value of \$vo and \$s0 registers after executing the program. [2]
- (c) Consider a CPU with a 4GHz clock rate and CPI in the following table-1. Calculate the CPU time for executing the program 1a. [4]
- (d) Consider program 1a running on another computer that requires 160ns, with 40ns spent executing FP instructions, 90ns executed L/S instructions, and 30ns spent executing branch instructions. What is the improvement factor using Amdahl's law if we only improve the performance of L/S instructions using a better ALU to get the program completion time improved by 2x?

Instruction	CPI
add	2
addi	3
sub	2
lw	4
sw	4
sll	1
srl	1
slt	4
stli	8
beq	4
bne	4
j	8
jr	4
jal	4

Table 1: CPI for each instruction for program 1a

2. Consider the following C function. Compiler will assign a (base address) into \$s0, b(base address) into \$s1, x into \$s2 and i into \$s3.

```
int main() {
2
        int x=1,i=32,a[10],b[10];
3
        do{
             if (a[2*i] == b[2*(i+1)]){
4
5
                 x += a[2*i] - b[2*(i+1)];
6
                 break;
7
             }
             else if(a[2*i] & b[2*(i+1)]){
8
9
                 i = i + x;
10
                 continue;
11
12
             else{
                 i = i - 3;
13
14
             i = i+1;
15
16
        }while(i%4);
17
        return 0;
18
   }
```

- (a) Convert the code to the corresponding MIPS assembly instructions.
- (b) **Convert** the first 8 lines of MIPS assembly instructions to the corresponding machine code after entering the loop body. No need to convert it to binary. [4]
- (c) Assume that the processor has 64 registers. The size of MIPS instruction is 32 bits and 6 bits are reserved for opcode. The structure for addi instruction is given in the table-2. **Find** out the maximum constant value for **addi** instruction in MIPS. Note that, MIPS supports negative constants.

opcode rs rt constant

Table 2: Structure of addi instruction

3. Using the division algorithm, **show** each step of the division of 15 by 4.

Instruction	Opcode	Function Code
add	0	32
sub	0	34
lw	35	-
sw	43	-
and	0	36
or	0	37
nor	0	39
andi	12	-
ori	13	-
sll	0	0
srl	0	2
beq	4	-
bne	5	-
slt	0	42
j	2	-
j jr	0	8
jal	3	-
addi	8	-

(a) MIPS Machine Codes

Name	Register Number
\$zero	0
\$at	1
\$v0-\$v1	2-3
\$a0-\$a3	4-7
\$t0-\$t7	8-15
\$s0-\$s7	16-23
\$t8-\$t9	24-25
\$k0-\$k1	26-27
\$gp	28
\$sp	29
\$fp	30
\$ra	31

[6]

[4]

(b) MIPS Registers