UNIVERSITY OF ABERDEEN

SOLUTION SEPARATION SYSTEMS ASSESSMENT

Configuration Selection

First arrangement: lower heat requirements more stable, single phase flow

Production Data

Oil production : 89,000 bpd = 590 m3/hr Water production : 60,000 bpd = 397m3/hr Watercut : 397/(590+397) = 0.4 = 40%

Feed temperature : 50 °C

Oil specification

TVP = 0.82 bar at 37.8 °C BS&W = 0.5% v/v

Use the following guidelines and information:-

- Typical L/D ratios for oil water separator is approx. 3
- Normal liquid level in separators is 50%
- Arrival temperature of fluids is 50°C
- Arrival pressure is 10 bara
- Gas oil ratio in first stage is 60 sm³/m³ of oil and gas mol wt is 20
- Gas oil ratio in second stage is $10 \text{ sm}^3/\text{m}^3$ of oil and gas mol wt is 35
- 2nd stage separator operating pressure is to be determined to produce required oil TVP.

1st stage (HP) separator

The aim of the first HP separation is to reduce the watercut to approximately 20%, which is a typical number for real systems.

Note 4.6m diameter is largest for UK road transport.

L/D : 3

Design pressure HP separator :11 bara (operating + 10%)

Allowable stress (S) : 155 N/mm²

Joint efficiency (E) : 1

Normal Liquid Level (NLL) : 50%

The residence time for the oil is determined from the bottle tests.

$$Watercut = \frac{100 * .\phi_{v,water}}{\left(\phi_{v,oil} + \phi_{v,water}\right)}$$

$$\phi_{v,water} = \frac{Watercut \cdot \phi_{v,oil}}{(100 - Watercut)} = \frac{20 * 590}{(100 - 20)} = 148 \ m^3 / hr$$

The inlet water rate is $397 \text{ m}^3/\text{hr}$, therefore the amount of water retained in the outgoing oil is 100 * 148/397 = 37%.

Consider the bottle test graph for 50° C and 40% watercut. In order to retain 37% of the water in the outlet oil the separation time, i.e. oil residence time ($t_{res,oil}$), should be in the region of 7.5 minutes.

$$V_{oil} = \phi_{v,oil} * t_{res,oil} = 590/60*7.5 = 73.8 \text{ m}^3$$

$$V_{water} = \varphi_{v,water} * t_{res,water} = 397/60*7.5 = 46.4 \text{ m}^3$$

The total liquid volume in the separator is $V_{oil} + V_{water} = 120.2 \text{ m}^3$

The normal liquid level (NLL) in the separator is 50%. Therefore the separator volume will be $120.2 / 0.5 = 240.4 \text{ m}^3$.

The volume of a vessel with 2:1 ellipsoidal dished ends is given by:

$$V = \frac{1}{12} \cdot \pi \cdot D^3 + \frac{1}{4} \cdot \pi \cdot D^2 \cdot L = \frac{1}{12} \cdot \pi \cdot D^3 + \frac{1}{4} \cdot \pi \cdot D^3 \cdot \left(\frac{L}{D}\right)$$

Rewriting equation yields:

$$D = \sqrt[3]{\frac{V}{\frac{1}{12} \cdot \pi + \frac{1}{4} \cdot \pi \cdot \left(\frac{L}{D}\right)}} = \sqrt[3]{\frac{240.4}{\frac{1}{12} \cdot \pi + \frac{1}{4} \cdot \pi \cdot (3)}} = 4.5 m$$

$$L = 3*D = 3 \times 4.5 = 13.5 \text{ m}$$

The wall thickness (Wt) of the vessel is calculated with:

$$Wt = \frac{P_{design} \cdot D}{\left(20 \cdot \left(S \cdot E - 0.06 \cdot P_{design}\right)\right)}$$

$$Wt = \frac{11*4.5}{(20*(155\cdot1 - 0.06*11))} = 0.016 m = 16 mm$$

Add corrosion allowance of 3mm

Wt = 19mm

The surface area of the vessel is calculated with:

$$A = \pi \cdot D \cdot L + 0.8 \cdot \pi \cdot D^2$$

$$A = \pi * 4.5 * 13.5 + 0.8 * \pi * 4.5^2 = 222.5m^2$$

The weight of the vessel is calculated with:

$$W = 8000 * A * Wt$$

$$W = 8000 * 222.5 * 0.019 = 33820 \ kg$$

Add 20% for internals, nozzles, saddles;

$$W = 40600 \, kg$$

Operating weight = $40600 + 120.2 \times 1000 = 160800 \text{ kg}$

Entrainment check

Gas rate =
$$590 \times 60/3600 = 9.83 \text{ sm}^3/\text{s}$$

Actual gas rate =
$$9.83 *1/11 * (273+50)/(273+15) = 0.86 \text{m}^3/\text{s}$$

Gas CSA =
$$3.14 * 4.5^2/8 = 7.95 \text{m}^2$$

Gas velocity =
$$0.86/7.95 = 0.108 \text{ m/s}$$

Limiting gas velocity

$$v_s = k \cdot \left(\frac{\rho_l - \rho_g}{\rho_g}\right)^{0.5} \times \left(\frac{L}{6}\right)^{0.58}$$

Gas Density =
$$20/22.4 * 11/1 * 273/323 = 8.3 \text{ kg/m}^3$$

Oil density, 22 API, sg = $141.5/(\text{API} + 131.5) = 0.92$

$$V_S = 2.23 \text{ m/s}$$

No entrainment potential

2nd stage separator

The calculation of weight and footprint of the 2nd stage separator is analogous to the 1st stage separator.

The bottle test graphs show that the best separation is achieved at high temperatures (90 degC).

Look at the bottle test graph for 20% watercut and 90°C. It appears that after 5 minutes the amount of water retained is 20%. The separation does not significantly improve after 5 minutes.

$$V_{oil} = = \phi_{v,oil} * t_{res,oil} = 590/60*5 = 49.1 \text{ m}^3$$

$$V_{water} = \phi_{v,water} * t_{res,water} = 148/60*5 = 12.3 \text{ m}^3$$

The total liquid volume in the separator is $V_{oil} + V_{water} = 61.4 \text{ m}^3$

The normal liquid level (NLL) in the separator is assumed to be 50%. Therefore the separator volume will be $61.4/0.5 = 122.8 \text{ m}^3$.

$$D = \sqrt[3]{\frac{V}{\frac{1}{12} \cdot \pi + \frac{1}{4} \cdot \pi \cdot \left(\frac{L}{D}\right)}} = \sqrt[3]{\frac{1}{12} \cdot \pi + \frac{1}{4} \cdot \pi \cdot (3)} = 3.6 \text{ m}$$

$$L = 3D = 10.8 \text{ m}$$

Operating pressure has to meet TVP

Operating pressure = 3 baraDesign pressure = 3 bar + 1 = 4 bara

The wall thickness (Wt)

$$Wt = \frac{P_{design} \cdot D}{\left(20 \cdot \left(S \cdot E - 0.06 \cdot P_{design}\right)\right)}$$

$$Wt = \frac{4 * 3.6}{(20 * (155 \cdot 1 - 0.06 * 4))} = 0.0046 \ m = 4.6 \ mm$$

Wt = 4.6 mm which is smaller than minimum recommended which is 12 mm

(Coulson and Richardson, Vol6, 13.4.8 – Minimum Practical Wall Thickness)

$$Wt = 12 = 3 = 15$$
mm

The surface area (A)

$$A = \pi * 3.6 * 10.8 + 0.8 * \pi * 3.6^2 = 154.6 m^2$$

The vessel weight (W)

$$W = 8000 * 154.6 * 0.015 = 18600 kg$$

Add 20% for internals, nozzles, saddles;

$$W = 22300 \ kg$$

Operating weight = $22300 + 122.8 \times 1000 = 125100 \text{ kg}$

Gas velocity check – no entrainment isues.

Interstage Heater

In order to improve the oil/water separation, the oil from the 1st stage separator is heated to 90°C.

The heating duty follows from the following basic heat balance:

$$Q_{heater} = \left(\phi_{v,oil} \cdot \rho_{oil} \cdot Cp_{oil} + \phi_{v,water} \cdot \rho_{water} \cdot Cp_{water}\right) \cdot \Delta T$$

Filling in equation 7 yields:

$$Q_{\text{heater}} = (590/3600*922*2.1 + 148/3600*1030*4.2)*(90-50) = 19.8 \text{ MW}$$

Heating medium inlet temperature 150°C, outlet temp 100°C

$$\Delta T_{LM} = ((150 - 90) - (100-50))/Ln(60/50) = 55$$
°C

Typical OHTC, $U = 400 \text{ W/m}^{20}\text{C (C\&R)}$

Hence exchanger area = $19.8 \times 10^6 / (400 \times 55) = 900 \text{ m}^2$

Electrostatic Coalescer

The 90 DegC bottle test is levelling off at 20% water retained. At 20% water cut this represents a product oil of $0.2 \times 0.2 \times 100\% = 4\%$. Above export specification of 0.5%, hence Electrostatic Coalescer required.

Typical residence time 20 minutes based upon oil rate.

EC operates liquid full, hence volume of vessel = $590 \times 20/60 = 196 \text{ m}^3$

As before for L:D = 3, then D = 4.2m, L = 12.6 m

Use same design pressure as LP separator

Wt will be too small so use min plus 3mm corrosion allowance 15mm

Vessel area

$$A = \pi \cdot D \cdot L + 0.8 \cdot \pi \cdot D^2$$

$$A = 210 m^2$$

EC weight, 25200kg

20% for internals etc – 30240kg

Operating weight = 226240 kg

Control System

