Branch-and-bound

Giovanni Righini

Ricerca Operativa

Ottimizzazione discreta

I problemi di ottimizzazione discreta in generale sono molto difficili da risolvere perché:

- il numero di soluzioni cresce esponenzialmente con numero di variabili;
- gli strumenti del calcolo differenziale, come le derivate (utili per caratterizzare i punti di ottimo) non sono disponibili.

A causa della esplosione combinatoria del numero di soluzioni, l'enumerazione esplicita non è praticabile.

Tuttavia esistono tecniche di enumerazione implicita:

- branch-and-bound,
- programmazione dinamica.

Branch-and-bound

In un algoritmo branch-and-bound

un problema difficile P viene ricorsivamente scomposto in più sotto-problemi F₁, F₂,..., F_n più facili.
 La scomposizione (branching, cioè ramificazione) deve rispettare la seguente condizione per assicurare la correttezza dell'algoritmo:

$$\mathcal{X}(\mathcal{P}) = \bigcup_{i=1}^{n} \mathcal{X}(\mathcal{F}_i).$$

 la soluzione ottima di P è determinata confrontando le soluzioni ottime dei sotto-problemi originati da esso.
 In caso di minimizzazione:

$$z^*(\mathcal{P}) = \min_{i=1,\ldots,n} \{z^*(\mathcal{F}_i)\}.$$

Il branch-and-bound tree

La scomposizione ricorsiva di problemi in sotto-problemi genera un'arborescenza (detta anche decision tree o search tree), in cui la radice corrisponde al problema originale \mathcal{P} ed ogni altro nodo corrisponde ad un sotto-problema.

Branching

A scopo di efficienza, la scomposizione solitamente implica una partizione di $\mathcal{X}(\mathcal{P})$ in sottinsiemi disgiunti di modo che nessuna soluzione debba essere (implicitamente) considerata più di una volta:

$$\mathcal{X}(\mathcal{F}_i) \cap \mathcal{X}(\mathcal{F}_j) = \emptyset \quad \forall i \neq j = 1, \ldots, n.$$

Ci sono due modi principali di fare branching:

- fissaggio di variabili;
- inserzione di vincoli.

Ogni sotto-problema è una restrizione del suo predecessore ed un rilassamento dei suoi successori.

Branching binario

Regole di branching comuni sono le seguenti.

- Branching su una variabile binaria.
 Una variabile binaria x viene selezionata.
 Due sotto-problemi vengono generati fissando x = 0 in uno e x = 1 nell'altro.
- Branching su un vincolo intero.
 Vengono scelti un vettore di variabili intere (x₁, x₂,...,x_n), un opportuno vettore di coefficienti interi (a₁, a₂,...,a_n) e un opportuno termine noto intero k.
 Vengono genrati due sotto-problemi inserendo i vincoli (ax) < k in uno e ax > k + 1 nell'altro.

pordo un intervallo di numeri Frazionesi numeri Grazionesi

num up

Branching *n*-ario

Regole di branching *n*-ario sono le seguenti.

- Branching su una variabile intera.
 Viene selezionata una variabile intera x ∈ [1,...,n].
 Vengono generati n sotto-problemi fissando x = 1, x = 2,..., x = n.
- Branching su n variabili binarie.
 Viene scelto un vettore di n variabili binarie (x₁, x₂,...,x_n).
 Vengono generati n + 1 sotto-problemi fissando alcune variabili come segue (una riga per ogni sotto-problema):

Solve. So the problem 1

So to spice which the
$$x_1 = 1$$

(4) $x_1 = 1$
 $x_1 = 0, x_2 = 1$

(2) Fisso to be a verification of $x_1 = x_2 = 0$

(2) $x_1 = x_2 = \dots = x_{n-1} = 0, x_n = 1$

(2) $x_1 = x_2 = \dots = x_n = 0$

(3) $x_1 = x_2 = \dots = x_n = 0$

(4) $x_1 = 1$

(5) $x_1 = x_2 = \dots = x_n = 0$

(6) $x_1 = x_2 = \dots = x_n = 0$

(7) $x_1 = x_2 = \dots = x_n = 0$

(8) $x_1 = x_2 = \dots = x_n = 0$

(9) $x_1 = x_2 = \dots = x_n = 0$

(1) $x_1 = x_2 = \dots = x_n = 0$

(1) $x_1 = x_2 = \dots = x_n = 0$

(1) $x_1 = x_2 = \dots = x_n = 0$

(2) $x_1 = x_2 = \dots = x_n = 0$

(3) $x_1 = x_2 = \dots = x_n = 0$

(4) $x_1 = x_2 = x_1 = 0$

(5) $x_1 = x_2 = x_2 = 0$

(7) $x_1 = x_2 = x_2 = 0$

(8) $x_1 = x_2 = x_2 = 0$

(9) $x_1 = x_2 = x_2 = 0$

(1) $x_1 = x_2 = x_2 = 0$

(1) $x_1 = x_2 = x_2 = 0$

(2) $x_1 = x_2 = x_2 = 0$

(3) $x_1 = x_2 = x_2 = 0$

(4) $x_1 = x_2 = x_2 = 0$

(5) $x_1 = x_2 = x_2 = 0$

(7) $x_1 = x_2 = x_2 = 0$

(8) $x_1 = x_2 = x_2 = 0$

(9) $x_1 = x_2 = x_2 = 0$

(1) $x_1 = x_2 = x_2 = 0$

(1) $x_1 = x_2 = x_2 = 0$

(2) $x_1 = x_2 = x_2 = 0$

(3) $x_1 = x_2 = x_2 = 0$

(4) $x_1 = x_2 = x_2 = 0$

(5) $x_1 = x_2 = x_2 = 0$

(6) $x_1 = x_2 = x_2 = 0$

(7) $x_1 = x_2 = x_2 = 0$

(8) $x_1 = x_2 = x_2 = 0$

(9) $x_1 = x_2 = x_2 = 0$

(1) $x_1 = x_2 = x_2 = 0$

(1) $x_1 = x_2 = x_2 = 0$

(2) $x_1 = x_2 = x_2 = 0$

(3) $x_1 = x_2 = x_2 = 0$

(4) $x_1 = x_2 = x_2 = 0$

(5) $x_1 = x_2 = x_2 = 0$

(7) $x_1 = x_2 = x_2 = 0$

(8) $x_1 = x_2 = x_2 = 0$

(9) $x_1 = x_2 = x_2 = 0$

(1) $x_1 = x_2 = x_2 = 0$

(1) $x_1 = x_2 = x_2 = 0$

(2) $x_1 = x_2 = x_2 = 0$

(3) $x_1 = x_2 = x_2 = 0$

(4) $x_1 = x_2 = x_2 = 0$

(5) $x_1 = x_2 = x_2 = 0$

(6) $x_1 = x_2 = x_2 = 0$

(7) $x_1 = x_2 = x_2 = 0$

(8) $x_1 = x_2 = x_2 = 0$

(9) $x_1 = x_2 = x_2 = 0$

(1) $x_1 = x_2 = x_2 = 0$

(1) $x_1 = x_2 = x_2 = 0$

(2) $x_1 = x_2 = x_2 = 0$

(3) $x_1 = x_2 = x_2 = 0$

(4) $x_1 = x_2 = x_2 = 0$

(5) $x_1 = x_2 = x_2 = 0$

(6) $x_1 = x_2 = x_2 = 0$

(7) $x_1 = x_2 = x_2 = 0$

(8) $x_1 = x_2 = x_2 = 0$

Branching tramite fissaggio di variabili

Branching tramite inserzione di vincoli

Foglie dell'albero

Solitamente un sotto-problema è "risolto" dal branching, cioè è sostituito da altri sotto-problemi.

Tuttavia questa procedura ricorsiva termina quando il sotto-problema corrente...

- è inammissibile;
- è risolto all'ottimo;
- ...può essere rtrascurato.

Tutti e tre i casi possono essere scoperti risolvendo un rilassamento del sotto-problema corrente.

Rilassamenti

Dato un problema P,

minimize
$$z_{\mathcal{P}}(x)$$

s.t. $x \in \mathcal{X}_{\mathcal{P}}$

un problema \mathcal{R}

minimize
$$z_{\mathcal{R}}(x)$$

s.t. $x \in \mathcal{X}_{\mathcal{R}}$

è un rilassamento di \mathcal{P} se e solo se valgono le due condizioni:

- $\mathcal{X}_{\mathcal{P}} \subseteq \mathcal{X}_{\mathcal{R}}$
- $z_{\mathcal{R}}(x) \leq z_{\mathcal{P}}(x) \ \forall x \in \mathcal{X}_{\mathcal{P}}.$

Il valore ottimo del rilassamento non è mai peggiore del valore ottimo del problema originale:

$$\textbf{\textit{z}}_{\mathcal{R}}^* \leq \textbf{\textit{z}}_{\mathcal{P}}^*.$$

Rilassamenti

Come conseguenza della definizione di rilassamento, valgono questi corollari.

Corollario 1. Se \mathcal{R} è inammissibile, anche \mathcal{P} è inammissibile.

Corollario 2. Se x^* è ottima per \mathcal{R} ed è ammissibile per \mathcal{P} e $z_{\mathcal{R}}(x) = z_{\mathcal{P}}(x)$, allora x^* è ottima anche per \mathcal{P} .

Corollario 3. Se $z_{\mathcal{R}}^* \geq \bar{z}$, allora $z_{\mathcal{P}}^* \geq \bar{z}$.

Il Corollario 3 è sfruttato nell'operazione di bounding.

Il bounding consiste nell'associare un bound duale ad ognisotto-problema \mathcal{F} .

Poiché

$$\mathbf{z}_{\mathcal{R}}^* \leq \mathbf{z}_{\mathcal{P}}^*$$

il valore ottimo di $\mathcal{R}(\mathcal{F})$ (un rilassamento di \mathcal{F}) fornisce un bound duale ogni sotto-problema \mathcal{F} :

$$\mathbf{z}_{\mathcal{R}(\mathcal{F})}^* \leq \mathbf{z}_{\mathcal{F}}^*.$$

Il bound duale è confrontato con un bound primale che corrisponde al valore $z_{\mathcal{P}}(\bar{x})$ di una soluzione ammissibile $\bar{x} \in \mathcal{X}(\mathcal{P})$.

Se il bound duale di ${\cal F}$ risulta essere non-migliore del bound primale, allora ${\cal F}$ può essere scartato.

If
$$z_{\mathcal{R}(F)}^* \geq z_{\mathcal{P}}(\bar{x})$$
 then Fathom \mathcal{F} .

Bounding

La correttezza del bounding è data dalla concatenazione di due disuguaglianze.

 La prima garantisce che nessuna soluzione può esistere in X(F) con un valore migliore di z_{R(F)}*, poiché

$$\mathbf{z}_{\mathcal{F}}^* \geq \mathbf{z}_{\mathcal{R}(\mathcal{F})}^*$$
.

• La seconda è $z_{\mathcal{R}(\mathcal{F})}^* \geq z_{\mathcal{P}}(\bar{x})$.

Concatenandole si conclude che

$$z_{\mathcal{F}}^* \geq z_{\mathcal{R}(\mathcal{F})}^* \geq z_{\mathcal{P}}(\bar{x})$$

che significa che risolvere il problema \mathcal{F} all'ottimo è inutile, perché esso non può fornire alcuna soluzione migliore di quella già nota, \bar{x} .

Scartare sotto-problemi in un algoritmo branch-and-bound è cruciale per risparmiare tempo e memoria.

Esempio

Strategia di visita dell'albero

Ogni volta che due o più sotto-problemi vengono generati, essi vengono appesi ad una lista di nodi aperti, cioè di sotto-problemi da risolvere.

Questo è necessario perché l'algoritmo viene eseguito su una macchina seriale e i sotto-problemi non possono essere esaminati in parallelo.

La politica segujita per decidere quali nodi visitare per primi è detta search strategy.

Il sotto-problema corrente è quello che viene risolto ad un generico istante durante l'esecuzione dell'algoritmo.

Strategia di visita dell'albero

Si possono usare vari criteri per gestire la lista dei nodi aperti:

- FIFO: breadth-first search
- LIFO: depth-first search
- Lista ordinata: best-first search

La Best-first search è solitamente basata sul valore del bound duale: vengono esplorati prima i nodi più promettenti.

Per mantenere la lista ordinata è utile utilizzare uno heap.