08-S3-Q6 Solution + Discussion

David Puerta

Abstract

In this document we will go through the solution to the 08-S3-Q6 question and provide a discussion of the question at the end. There are also hints on the first page to aid you in finding a solution. There is no single method that results in an answer to a STEP question, there are a multitude of different paths that end up at the same solution. However, some methods are more straight forward and you are encouraged to take the path of least resistance.

Hints

Part (i): Differentiate p implicitly just as you would differentiate y.

Part (ii): Differentiate with respect to x.

Solution

(i) Differentiating with respect to x,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[y = p^2 + 2xp \right]$$

which leaves us with

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(p^2 + 2xp).$$

As p is a function of x we can implicitly differentiate the right hand side of the above equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2p\frac{\mathrm{d}p}{\mathrm{d}x} + 2x\frac{\mathrm{d}p}{\mathrm{d}x} + 2p$$

and noting that $p = \frac{dy}{dx}$ we can rearrange to arrive at

$$\frac{\mathrm{d}x}{\mathrm{d}p} = -2 - \frac{2x}{p}.$$

Notice that we can rearrange the equation to

$$\frac{\mathrm{d}x}{\mathrm{d}p} + \frac{2x}{p} = -2$$

which is a first order differential equation which can be solved with the integrating factor

$$I = \exp\left(\int \frac{2}{p} dp\right) = \exp(2\ln(p)) = p^2.$$

Multiplying the differential equation by I,

$$\frac{\mathrm{d}}{\mathrm{d}p}[xp^2] = -2p^2$$

and after integrating both sides we arrive at our desired

$$x = -\frac{2}{3}p + Ap^{-2}$$

where A is an arbitrary constant.

Using our initial conditions (p = -3 when x = 2) we find that

$$2 = -\frac{2}{3}(-3) + \frac{A}{9} \Rightarrow A = 0$$

and thus

$$x = -\frac{2}{3}p.$$

Replacing p with $\frac{\mathrm{d}y}{\mathrm{d}x}$,

$$x = -\frac{2}{3} \frac{\mathrm{d}y}{\mathrm{d}x}$$

which can be solved to get

$$y(x) = -\frac{3}{4}x^2 + C$$

where C is an arbitrary constant.

Using the initial conditions in the original equation $y = p^2 + 2xp$ we get that y = -3 when x = 2. Hence we have

$$-3 = -\frac{3}{4}(4) + C \Rightarrow C = 0$$

and thus

$$y(x) = -\frac{3}{4}x^2.$$

(ii) Using the same idea as part (i), differentiating with respect to x,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(2xp + p\ln(p)),$$

using the chain and product rule,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2p + 2x\frac{\mathrm{d}p}{\mathrm{d}x} + \frac{\mathrm{d}p}{\mathrm{d}x}\ln(p) + p\frac{1}{p}\frac{\mathrm{d}p}{\mathrm{d}x}$$

and noting that $p = \frac{dy}{dx}$ we can rearrange the equation to

$$\frac{\mathrm{d}x}{\mathrm{d}p} = -\frac{1}{p} - \frac{2x}{p} - \frac{\ln(p)}{p}$$

which can be written as

$$\frac{\mathrm{d}x}{\mathrm{d}p} + \frac{2x}{p} = -\frac{1}{p} - \frac{\ln(p)}{p}.$$

This is again a first order differential equation for x in terms of p that can be solved with the same integrating factor $(I = p^2)$ as before. Multiplying by I,

$$\frac{\mathrm{d}}{\mathrm{d}p}[xp^2] = -p - p\ln(p).$$

Integrating both sides,

$$xp^{2} = \int -p - p \ln(p) dp = -\int p dp - \int p \ln(p) dp$$

$$\Rightarrow xp^{2} = -\frac{p^{2}}{2} - \left[\frac{p^{2}}{2} \ln(p) - \int \frac{1}{p} \cdot \frac{p^{2}}{2} dp \right] = -\frac{p^{2}}{2} \left(\frac{1}{2} + \ln(p) \right) + B$$

where B is an arbitrary constant. Hence we arrive at

$$x = -\frac{1}{2} \left[\frac{1}{2} + \ln(p) \right] + Bp^{-2}.$$

Using our initial conditions $(p=1 \text{ when } x=-\frac{1}{4})$ we see that

$$-\frac{1}{4}=-\frac{1}{4}+B\Rightarrow B=0$$

thus

$$x = -\frac{1}{2}\ln(p) - \frac{1}{4}.$$

Rearranging for p in terms of x and using $p = \frac{\mathrm{d}y}{\mathrm{d}x}$,

$$p = \frac{\mathrm{d}y}{\mathrm{d}x} = e^{-2x - \frac{1}{2}}$$

and integrating both sides,

$$y = -\frac{1}{2}e^{-2x - \frac{1}{2}} + C.$$

From $y=2xp+p\ln(p)$ and our initial conditions $(p=1 \text{ when } x=-\frac{1}{4})$ we have that $y=-\frac{1}{2}$ when $x=-\frac{1}{4}$. Solving for C,

$$-\frac{1}{2} = -\frac{1}{2}e^0 + C \Rightarrow C = 0$$

and hence we have

$$y = -\frac{1}{2}e^{-2x - \frac{1}{2}}.$$

Discussion

As far as STEP question goes this one is pretty straight forward. If you ignore the initial discomfort of having p = dy/dx and the having dx/dp (differentiating x as a function of dy/dx!) then the actual computation is clear-cut. To understand why viewing the differential equations

$$y = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 2x\frac{\mathrm{d}y}{\mathrm{d}x}$$
 and $y = 2x\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{d}y}{\mathrm{d}x}\ln\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)$

using the substitution $p = \frac{dy}{dx}$ works in the first place is to see when it made the question easier.

Starting with

$$y = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 2x\frac{\mathrm{d}y}{\mathrm{d}x}$$

we see that in our solution we arrive at

$$x = -\frac{2}{3}p + Ap^{-2}$$

with A an arbitrary constant. If we remember what we are after (y as a function of x), we see that we would like to find a solution for p in terms of x and integrate the result to find y. Yet this is only (reasonably) possible if we allow for initial conditions such that A=0 - which is what we had in the question. If instead we require that $A\neq 0$ we arrive at a standstill as there is no reasonable way to solve for p. Similarly with

$$y = 2x \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{d}y}{\mathrm{d}x} \ln\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)$$

we see that in our solution we arrive at

$$x = -\frac{1}{4} - \frac{1}{2}\ln(p) + Bp^{-2}$$

with B an arbitrary constant. We see that if $B \neq 0$ we are in the same situation as part (i) - arguably worse as we have $\ln(p)$.

Overall, this question is accessible to all those who can follow instructions, comfortable with integrating factors and smile as everything falls into place.

 $^{^{1}}$ It should be noted that the equation can be written as a cubic in p yet this leads to some ugly integration, try it yourself!