Package 'airutilities'

May 21, 2024

Title Support routines for fractional airline decomposition routines in the rjd3highfreq package **Version** 3.1

Description Utilities that support the use of the fractional airline decomposition routines from Demetra version 3 from the rjd3highfreq package, including routines to generate outlier and holiday regressors, assign outlier and calendar regression based factors to different components (as in X-13ARIMA-SEATS), summarize estimated model coefficients, and generate factor plots and boxplots by week. Note that for some routines, series are assumed to be formatted by the tis package, and were developed for use with weekly time series. Plotting routines for weekly series are included, with a high density plotting function for components. Routines have been added that use xts time series objects.

```
License MIT + file LICENSE
Encoding UTF-8
LazyData TRUE
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1
Imports lubridate,
     timeDate,
     tis,
     xts,
     zoo,
Suggests checkmate,
     RCurl.
     RProtoBuf,
     mathjaxr,
     rJava,
     rjd3filters,
     rjd3highfreq,
     rjd3sts,
     rjd3toolkit,
     rjd3x11plus
Depends R (>= 2.10)
Contents
```

 2 Contents

c_sa_tc_log		4
c_sa_tc_nolog		4
c_week_xts		5
c_year_xts		5
en_air_components		6
en_air_model_matrix		7
en_air_projected_factors		8
en_hybrid_sa_xts		9
en_level_outlier_matrix	1	10
en_likelihood_stats	1	11
en_movereg_holiday		12
en movereg holiday xts	1	13
en_outlier_matrix	1	15
en_tc_outlier_matrix		16
c_day		17
c_default_matrix		17
c_end		18
c_holiday_matrix		19
c holiday matrix fest		19
c_month		20
c_obs		21
c outlier		21
c_outlier_auto	_	21
c_outlier_auto_ljung		22
c_outlier_tc		22
c sf		23
c_sf_auto		23
c_sf_auto_ljung		23 24
c sf tc		24 24
		24 25
c_start		25 25
c_week		
c_week_xts		26
c_xts		26
c_xts_dates		27
c_year		27
c_year_xts		28
acobian_trans_adj		28
natch_date	2	29
natch_month_day		29
natch_month_day_xts		30
natch_week		30
natch_week_xts		31
lot_boxplot_single		31
llot_boxplot_weekly		32
llot_sf_mean		33
llot_sf_weekly		35
olot_sf_weekly_single		36
et_critical_value		37
_values_air	3	38
veekly_high_density_plot	3	39
vithin_month_regressors	. 4	10

42

Index

cc_day_xts 3

cc_day_xts	Day vector for Continued Unemployment Claims, weekly (cc), as an xts time series object

Description

A xts time series object containing the day for every observation of the weekly continued unemployment claims released by the Department of Labor

Usage

```
cc_day_xts
```

Format

An xts time series object for CC from January 31, 2004 to January 29, 2022

Source

```
https://www.dol.gov/ui/data.pdf
```

cc_month_xts	Month vector for Continued Unemployment Claims, weekly (cc), as an
	xts time series object

Description

A xts time series object containing the month number for every observation of the weekly continued unemployment claims released by the Department of Labor

Usage

```
cc_month_xts
```

Format

An xts time series object for CC from January 31, 2004 to January 29, 2022

Source

```
https://www.dol.gov/ui/data.pdf
```

4 cc_sa_tc_nolog

weekty (ашотанс ошнег наеппрсаноп, 1C ошнег specipea, tog)	cc_sa_tc_log	Seasonally Adjusted Series for Continued Unemployment Claims, weekly (automatic outlier identification, TC outlier specified, log)
--	--------------	--

Description

A time series object with seasonal adjustment generated for weekly continued unemployment claims from a model fit to the logged series that includes automatically identified outliers with a temporary change outlier (TC) specified for the 13th week of 2020

Usage

```
cc_sa_tc_log
```

Format

An xts time series object for seasonally adjusted CC from January 31, 2004 to January 29, 2022

cc_sa_tc_nolog	Seasonally Adjusted Series for Continued Unemployment Claims, weekly (automatic outlier identification, TC outlier specified, no log)

Description

A time series object with seasonal adjustment generated for weekly continued unemployment claims from a model fit to the original series that includes automatically identified outliers with a temporary change outlier (TC) specified for the 13th week of 2020

Usage

```
cc_sa_tc_nolog
```

Format

An xts time series object for seasonally adjusted CC from January 31, 2004 to January 29, 2022

cc_week_xts 5

cc_week_xts	Week vector for Continued Unemployment Claims, weekly (cc), as an xts time series object
	nis une series object

Description

A xts time series object containing the week number for every observation of the weekly continued unemployment claims released by the Department of Labor

Usage

```
cc_week_xts
```

Format

An xts time series object for CC from January 31, 2004 to January 29, 2022

Source

```
https://www.dol.gov/ui/data.pdf
```

cc_year_xts	Year vector for Continued Unemployment Claims, weekly (cc), as an
	xts time series object

Description

A xts time series object containing the year for every observation of the weekly continued unemployment claims released by the Department of Labor

Usage

```
cc_year_xts
```

Format

An xts time series object for CC from January 31, 2004 to January 29, 2022

Source

```
https://www.dol.gov/ui/data.pdf
```

gen_air_components

gen_air_components	Generate signal extraction components	

Description

Generates components from the decomposition of the fractional airline model R routines, partioning regression effects to different components as in X-13ARIMA-SEATS

Usage

```
gen_air_components(
  this_est = NULL,
  this_decomp = NULL,
  this_xtype = NULL,
  this_x = NULL,
  this_log = TRUE,
  this_stde = FALSE,
  tc2trend = FALSE,
  remove_user = FALSE
)
```

Arguments

this_est	A list object generated by the estimation procedure of the fractional airline model This is a required entry.
this_decomp	A list object generated by the decomposition procedure of the fractional airline model This is a required entry.
this_xtype	Character vector; Type of regressor used for including regression effects into components ('hol' for holiday, 'ao' for point outliers, 'ls' for level change outliers). This is a required entry.
this_x	$Character\ vector; regression\ matrix.\ Default:\ use\ the\ regression\ matrix\ in\ this_est\$model\$xreg.$
this_log	Logical scalar; set to TRUE if the log transformation is used in the decomposition, FALSE otherwise. Default: TRUE
this_stde	Logical scalar; component standard error included in this_decomp. Default: FALSE.
tc2trend	Logical scalar; TC outliers included in trend component if TRUE. Default: FALSE, TC outliers included in irregular.
remove_user	Logical scalar; remove user-defined regression factors from seasonally adjusted series if TRUE. Default: FALSE, user defined regression factors included in seasonally adjusted series.

Value

List of components from the fractional airline decomposition, partioning regression effects to different components as in X-13ARIMA-SEATS

gen_air_model_matrix 7

Examples

gen_air_model_matrix Fractional airline model summary

Description

Generates a matrix with coefficient estimates from the fractional airline model, generated by the JDemtetra+ high dimension modeling R routines

Usage

```
gen_air_model_matrix(
  this_est = NULL,
  xreg_names = NULL,
  this_week = NULL,
  this_year = NULL
)
```

Arguments

this_est	A list object generated by the estimation procedure of the fractional airline model This is a required entry.
xreg_names	Character vector; Names of the user-defined regression variables.
this_week	Numeric vector; Week of each observation. Default: NULL
this_year	Numeric vector; Year of each observation. Default: NULL

Value

Generate matrix of model parameters estimated for the fractional airline model

Examples

```
gen_air_projected_factors
```

Generate projected seasonal (and holiday) adjustment factors

Description

Generates projected adjustment factors from the decomposition of the fractional airline model R routines

Usage

```
gen_air_projected_factors(
  this_est = NULL,
  this_decomp = NULL,
  this_xtype = NULL,
  this_x = NULL,
  this_log = TRUE,
  nfcasts = 104,
  return_series = "combined",
  return_xts = FALSE
)
```

Arguments

this_est

this_decomp A list object generated by the decomposition procedure of the fractional airline	
model; the nfcasts option should have been specified. This is a required entry.	
this_xtype Character vector; Type of regressor used for including regression effects into components ('hol' for holiday, 'ao' for point outliers, 'ls' for level change outliers). This is a required entry.	
this_x Character vector; regression matrix. Default: use the regression matrix in this_est\$model\$xre	ζ.
this_log Logical scalar; set to TRUE if the log transformation is used in the decomposition, FALSE otherwise. Default: TRUE	
nfcasts Integer scalar; number of projected adjustment factors; should match the nfcasts argument used to generate the decomposition.	
return_series Character scalar; component returned by the routine. Default is "combined"; other possible choices are "seasonal" and "holiday".	
return_xts Logical scalar; return projected factors of type return_series as an xts time	

series object. Default is FALSE. If TRUE, this_x must be an xts time series

A list object generated by the estimation procedure of the fractional airline model; the regression matrix should not be extended with forecasts. This is

Value

Array of projected adjustment factors from the fractional airline decomposition

object.

gen_hybrid_sa_xts 9

Examples

gen_hybrid_sa_xts

Generate a hybrid seasonal adjustment of an xts time series object

Description

Generates a "hybrid" seasonal adjustment by replacing a span of a multiplicative seasonal adjustment with an additive adjustment

Usage

```
gen_hybrid_sa_xts(
   this_mult_sa = NULL,
   this_add_sa = NULL,
   this_start_hybrid = NULL,
   this_end_hybrid = NULL,
   this_week_xts = NULL,
   this_year_xts = NULL
)
```

Arguments

this_mult_sa xts time series object of a multiplicative seasonal adjustment This is a required entry.

this_add_sa xts time series object of an additive seasonal adjustment This is a required entry. this_start_hybrid

integer vector of length 2, start of the span where additive adjustments replace multiplicative adjustment, defined as c(year, week) This is a required entry.

this_end_hybrid

integer vector of length 2, end of the span where additive adjustments replace multiplicative adjustment, defined as c(year, week) This is a required entry.

this_week_xts Numeric vector; Week of the year for each observation, stored as an xts time series object. This is a required entry.

this_year_xts Numeric vector; Year of each observation, stored as an xts time series object. This is a required entry.

Value

xts series object with hybrid seasonal adjustment

Examples

```
gen_level_outlier_matrix
```

Generate level change regression matrix

Description

Generates a regression matrix of LS (level change) outliers to be included in weekly modeling routines

Usage

```
gen_level_outlier_matrix(
  outlier_dates = NULL,
  this_week = NULL,
  this_year = NULL,
  forecast = 0,
  air_name = TRUE,
  x13type = TRUE,
  return_xts = FALSE
)
```

Arguments

outlier_dates	Integer matrix - matrix of dates for LS outliers This is a required entry.
this_week	Numeric vector; Week of the year for each observation. This is a required entry.
this_year	Numeric vector; Year of each observation. This is a required entry.
forecast	Numeric scalar; Number of forecasts. Default: 0.
air_name	Logical scalar; If TRUE, names are formatted as they are in the fractional airline routine; otherwise format them as in movereg. Default: TRUE
x13type	Logical scalar; Indicates if level change outlier is defined as in X-13ARIMA-SEATS. Default: TRUE.
return_xts	Logical scalar; return matrix as an xts time series object. Default is FALSE. If TRUE, this_week and this_year should be xts time series objects.

Value

Generate matrix of level change outlier regressors, with column names that describe the individual regressors

gen_likelihood_stats 11

Examples

gen_likelihood_stats Generate likelihood statistics (AIC, AICC, BIC, etc.)

Description

Generate likelihood statistics that include the Jacobian adjustment for transformations as done in the X-13ARIMA-SEATS program

Usage

```
gen_likelihood_stats(
   Y = NULL,
   Lnlkhd = NULL,
   Nintvl = 2,
   Np = 2,
   Adj = NULL,
   Logit = FALSE,
   Trans = TRUE,
   Lam = 0,
   Eick = NULL
)
```

Arguments

Υ	numeric vector, original time series. This is a required entry.
Lnlkhd	numeric scalar, maximized log likelihood of model. This is a required entry.
Nintvl	Integer scalar, Number of differences in model used. Default is 2.
Np	Integer scalar, Number of parameters in model used. Default is 2.
Adj	numeric vector, prior adjustment factor time series. Default is NULL, which indicates there is no prior adjustment.
Logit	logical scalar, if TRUE the logit transformation is used. Default is FALSE.
Trans	logical scalar, if TRUE a Box-Cox transform is used. Default is TRUE
Lam	numeric scalar, Box-Cox transformation parameter. Default is 0 (Log transform).
Eick	numeric scalar, weighting paramter for Empiracle Information Criterion. Default is NULL (EIC not computed).

Value

List of likelihood diagnostics and related estimates (II = log likelihood, jacadj = jacobian transformation adjustment, lladj = adjusted likelihood, nobs = number of observations, neffective = effective number of observations, nparams = number of parameters, df = Nspobs - Nintvl - Np, aic = AIC, aicc = AICC, hannanquinn = Hannan Quinn, bic = BIC, bic2 = BIC2, EIC = Empiracle Information Criterion)

Examples

gen_movereg_holiday

Generate Movreg holiday regression matrix

Description

Generates a matrix with holiday regressors as defined within the BLS weekly adjustment program Movereg

Usage

```
gen_movereg_holiday(
  hol_n = NULL,
  hol_index = NULL,
  hol_wt = NULL,
  hol_type = NULL,
  this_week = NULL,
  this_year = NULL
)
```

Arguments

hol_n	Numeric scalar; number of weights for this particular holiday This is a required entry.
hol_index	Numeric scalar; position of holiday within the weight vector This is a required entry.
hol_wt	Numeric vector; weight vector for holiday effect This is a required entry.
hol_type	Character scalar; Type of holiday ('newyear' for New Years Day, 'mlk' for MLK Observance, 'president' for President's Day, 'easter' for Easter, 'memorial' for Memorial Day, 'july4' for Independence Day, 'labor' for Labor Day, 'columbus' for Columbus Day, 'veteran' for Veterans Day, 'thanks' for Thanksgiving). This is a required entry.
this_week	Numeric vector; Week of the year for each observation. This is a required entry.
this_year	Numeric vector; Year of each observation. This is a required entry.

Value

Generate matrix of holiday regressors as defined within the BLS weekly adjustment program Movereg

Examples

```
ic_easter <-
  gen_movereg_holiday(hol_n = 8,
                       hol_index = 8,
                       hol_wt = c(1, 0, 0, 0, 0, 0, 0, 0),
                       hol_type = 'easter',
                       this_week = ic_week,
                       this_year = ic_year)
ic_labor <-
  gen_movereg_holiday(hol_n = 2,
                       hol_index = 2,
                       hol_wt = c(0, 1),
                       hol_type = 'labor',
                       this_week = ic_week,
                       this_year = ic_year)
ic_thanksgiving <-</pre>
  gen_movereg_holiday(hol_n = 1,
                       hol_index = 1,
                       hol_wt = array(1, dim=1),
                       hol_type = 'thanksgiving',
                       this_week = ic_week,
                       this_year = ic_year)
ic_holiday_matrix_reduced <- cbind(ic_easter, ic_labor, ic_thanksgiving)</pre>
colnames(ic_holiday_matrix_reduced) <- c('easter', 'labor', 'thanksgiving')</pre>
```

```
gen_movereg_holiday_xts
```

Generate Movreg holiday regression matrix, using xts series as input

Description

Generates a matrix with holiday regressors as defined within the BLS weekly adjustment program Movereg

```
gen_movereg_holiday_xts(
  hol_n = NULL,
  hol_index = NULL,
  hol_wt = NULL,
  hol_type = NULL,
  this_week = NULL,
  this_year = NULL,
  return_xts = FALSE
)
```

Arguments

hol_n	Numeric scalar; number of weights for this particular holiday This is a required entry.
hol_index	Numeric scalar; position of holiday within the weight vector This is a required entry.
hol_wt	Numeric vector; weight vector for holiday effect This is a required entry.
hol_type	Character scalar; Type of holiday ('newyear' for New Years Day, 'mlk' for MLK Observance, 'president' for President's Day, 'easter' for Easter, 'memorial' for Memorial Day, 'july4' for Independence Day, 'labor' for Labor Day, 'columbus' for Columbus Day, 'veteran' for Veterans Day, 'thanks' for Thanksgiving). This is a required entry.
this_week	Numeric vector; Week of the year for each observation. This is a required entry.
this_year	Numeric vector; Year of each observation. This is a required entry.
return_xts	Logical scalar; return matrix as an xts time series object. Default is FALSE.

Value

Generate matrix of holiday regressors as defined within the BLS weekly adjustment program Movereg

Examples

```
ic_easter_xts <-
  gen_movereg_holiday_xts(hol_n = 8,
                           hol_index = 8,
                           hol_wt = c(1, 0, 0, 0, 0, 0, 0, 0),
                           hol_type = 'easter',
                           this_week = ic_week_xts,
                           this_year = ic_year_xts)
ic_labor_xts <-
  gen_movereg_holiday_xts(hol_n = 2,
                           hol_index = 2,
                           hol_wt = c(0, 1),
                           hol_type = 'labor',
                           this_week = ic_week_xts,
                           this_year = ic_year_xts)
ic_thanksgiving_xts <-</pre>
  gen_movereg_holiday_xts(hol_n = 1,
                           hol_index = 1,
                           hol_wt = array(1, dim=1),
                           hol_type = 'thanksgiving',
                           this_week = ic_week_xts,
                           this_year = ic_year_xts)
ic_holiday_matrix_reduced_xts <-</pre>
   cbind(ic_easter_xts, ic_labor_xts, ic_thanksgiving_xts)
colnames(ic_holiday_matrix_reduced_xts) <- c('easter', 'labor', 'thanksgiving')</pre>
```

gen_outlier_matrix 15

gen_outlier_matrix

Generate point outlier regression matrix

Description

Generates a regression matrix of AO (point) outliers to be included in weekly modeling routines

Usage

```
gen_outlier_matrix(
  outlier_dates = NULL,
  this_week = NULL,
  this_year = NULL,
  forecast = 0,
  air_name = TRUE,
  return_xts = FALSE
)
```

Arguments

outlier_dates	Integer matrix - matrix of dates for LS outliers This is a required entry.
this_week	Numeric vector; Week of the year for each observation. This is a required entry.
this_year	Numeric vector; Year of each observation. This is a required entry.
forecast	Numeric scalar; Number of forecasts. Default: 0.
air_name	Logical scalar; If TRUE, names are formatted as they are in the fractional airline routine; otherwise format them as in movereg. Default: TRUE
return_xts	Logical scalar; return matrix as an xts time series object. Default is FALSE. If TRUE, this_week and this_year should be xts time series objects.

Value

Generate matrix of point outlier regressors, with column names that describe the individual regressors

Examples

gen_tc_outlier_matrix

gen_tc_outlier_matrix Generate temporary change outlier regression matrix

Description

Generates a regression matrix of TC (temporary change) outliers to be included in weekly modeling routines

Usage

```
gen_tc_outlier_matrix(
  outlier_dates = NULL,
  this_week = NULL,
  this_year = NULL,
  forecast = 0,
  air_name = TRUE,
  this_freq = NULL,
  tc_alpha = NULL,
  return_xts = FALSE
)
```

Arguments

outlier_dates	Integer matrix - matrix of dates for LS outliers This is a required entry.
this_week	Numeric vector; Week of the year for each observation. This is a required entry.
this_year	Numeric vector; Year of each observation. This is a required entry.
forecast	Numeric scalar; Number of forecasts. Default: 0.
air_name	Logical scalar; If TRUE, names are formatted as they are in the fractional airline routine; otherwise format them as in movereg. Default: TRUE
this_freq	Numeric scalar; frequency of time series. Default: 365.25/7, for a weekly series
tc_alpha	Numeric scalar; Rate of decay for the TC outlier. Default: will be computed as in X-13ARIMA-SEATS for a weekly series
return_xts	Logical scalar; return matrix as an xts time series object. Default is FALSE. If TRUE, this_week and this_year should be xts time series objects.

Value

Generate matrix of temporary change outlier regressors, with column names that describe the individual regressors

ic_day 17

Examples

ic_day

Day vector for Initial Unemployment Claims, weekly (ic)

Description

A tis time series object the day for every observation of the weekly initial unemployment claims released by the Department of Labor

Usage

ic_day

Format

A tis time series object for the day of IC from February 1, 2003 to January 30, 2021

ic_default_matrix

Regression matrix with default outlier and holiday regressors for IC

Description

A matrix object with the default regression matrix used for the default model of IC in the factional airline model fit to the weekly initial unemployment claims data

Usage

```
ic_default_matrix
```

Format

A 940 x 69 matrix with regressors in each column. The first 10 columns are regular holidays:

```
ny New Years Day Holidaymlk MLK Holidaypresident Presidents Day Holidayeaster Easter Holidaymemorial Memorial Day Holiday
```

18 ic_end

july4 July 4th Holidaylabor Labor Day Holidaycolumbus Columbus Day Holiday

veteran's Day Holiday

thanksgiving Thanksgiving Holiday

The next 3 columns are special holidays:

july4_wed July 4th falls on a Wednesday

xmas_w53 Christams falls in the 53rd week

xmas_fri Christmas falls on a Friday

The remaining columns are AO outliers in different weeks. Every week in the pandemic has an AO outlier. The outlier list is given below: AO(week 37, 2005) AO(week 38, 2005) AO(week 39, 2005) AO(week 40, 2005) AO(week 41, 2005) AO(week 1, 2006) AO(week 2, 2007) AO(week 4, 2008) AO(week 45, 2012) AO(week 35, 2017) AO(week 12, 2020) AO(week 13, 2020) AO(week 14, 2020) AO(week 15, 2020) AO(week 16, 2020) AO(week 17, 2020) AO(week 18, 2020) AO(week 19, 2020) AO(week 20, 2020) AO(week 21, 2020) AO(week 22, 2020) AO(week 23, 2020) AO(week 24, 2020) AO(week 25, 2020) AO(week 26, 2020) AO(week 27, 2020) AO(week 28, 2020) AO(week 29, 2020) AO(week 30, 2020) AO(week 31, 2020) AO(week 32, 2020) AO(week 33, 2020) AO(week 34, 2020) AO(week 35, 2020) AO(week 36, 2020) AO(week 37, 2020) AO(week 38, 2020) AO(week 39, 2020) AO(week 40, 2020) AO(week 41, 2020) AO(week 42, 2020) AO(week 43, 2020) AO(week 44, 2020) AO(week 45, 2020) AO(week 46, 2020) AO(week 47, 2020) AO(week 48, 2020) AO(week 49, 2020) AO(week 50, 2020) AO(week 51, 2020) AO(week 52, 2020) AO(week 1, 2021) AO(week 20, 2021) AO(week 30, 2021) AO(week 40, 2021) AO(week 40, 2021) AO(week 50, 2021)

ic_end

Ending date for Initial Unemployment Claims, weekly (ic)

Description

A numeric vector of length 2 with the end date of the weekly initial unemployment claims released by the Department of Labor

Usage

ic_end

Format

A numeric vector of length 2.

first element starting year **second element** starting week

Source

https://www.dol.gov/ui/data.pdf

ic_holiday_matrix 19

ic_holiday_matrix

Regression matrix with default holiday regressors for IC

Description

A matrix object with the default holiday regression matrix used for the default model of IC in the factional airline model fit to the weekly initial unemployment claims data

Usage

```
ic_holiday_matrix
```

Format

A 940 x 13 matrix with regressors in each column. The first 10 columns are regular holidays:

ny New Years Day Holiday

mlk MLK Holiday

president Presidents Day Holiday

easter Easter Holiday

memorial Memorial Day Holiday

july4 July 4th Holiday

labor Labor Day Holiday

columbus Columbus Day Holiday

veteran's Day Holiday

thanksgiving Thanksgiving Holiday

The next 3 columns are special holidays:

july4_wed July 4th falls on a Wednesday

xmas_w53 Christams falls in the 53rd week

xmas_fri Christmas falls on a Friday

 $\verb"ic_holiday_matrix_fcst"$

Regression matrix with default holiday regressors for IC, with forecasts

Description

A matrix object with the default holiday regression matrix used for the default model of IC in the factional airline model fit to the weekly initial unemployment claims data, extended with 104 weeks of forecasts

```
ic_holiday_matrix_fcst
```

20 ic_month

Format

A 1044 x 13 matrix with regressors in each column. The first 10 columns are regular holidays:

ny New Years Day Holiday

mlk MLK Holiday

president Presidents Day Holiday

easter Easter Holiday

memorial Memorial Day Holiday

july4 July 4th Holiday

labor Labor Day Holiday

columbus Columbus Day Holiday

veteran's Day Holiday

thanksgiving Thanksgiving Holiday

The next 3 columns are special holidays:

july4_wed July 4th falls on a Wednesday

xmas_w53 Christams falls in the 53rd week

xmas_fri Christmas falls on a Friday

ic_month

Month vector for Initial Unemployment Claims, weekly (ic)

Description

A tis time series object the month for every observation of the weekly initial unemployment claims released by the Department of Labor

Usage

ic_month

Format

A tis time series object for the month of IC from February 1, 2003 to January 30, 2021

ic_obs 21

ic_obs

Initial Unemployment Claims, weekly (ic)

Description

A time series object with weekly initial unemployment claims released by the Department of Labor

Usage

ic_obs

Format

A tis time series object for IC from February 1, 2003 to January 30, 2021

Source

https://www.dol.gov/ui/data.pdf

ic_outlier

Seasonal Factors for Initial Unemployment Claims, weekly (ic)

Description

A time series object with seasonal factors generated for weekly initial unemployment claims released by the Department of Labor

Usage

ic_outlier

Format

A tis time series object from February 1, 2003 to January 30, 2021

ic_outlier_auto

Outlier Factors for Initial Unemployment Claims, weekly (ic, automatic outlier identification)

Description

A time series object with outlier factors generated for weekly initial unemployment claims from a model that includes automatically identified outliers

Usage

ic_outlier_auto

Format

ic_outlier_tc

ic_outlier_auto_ljung Outlier Factors for Initial Unemployment Claims, weekly (ic, automatic outlier identification, ljung)

Description

A time series object with outlier factors generated for weekly initial unemployment claims from a model that includes automatically identified outliers with a critical value determined by an algorithm developed by Greta Ljung

Usage

```
ic_outlier_auto_ljung
```

Format

A tis time series object from February 1, 2003 to January 30, 2021

ic_outlier_tc Outlier Factors for Initial Unemployment Claims, weekly (automatic outlier identification, TC outlier specified)

Description

A time series object with outlier factors generated for weekly initial unemployment claims from a model that includes automatically identified outliers with a temporary change outlier (TC) specified for the 13th week of 2020

Usage

```
ic_outlier_tc
```

Format

ic_sf 23

ic_sf

Seasonal Factors for Initial Unemployment Claims, weekly (ic)

Description

A time series object with seasonal factors generated for weekly initial unemployment claims released by the Department of Labor

Usage

ic_sf

Format

A tis time series object from February 1, 2003 to January 30, 2021

Source

```
https://www.dol.gov/ui/data.pdf
```

ic_sf_auto	Seasonal Factors for Initial Unemployment Claims, weekly (ic, auto-
	matic outlier identification)

Description

A time series object with seasonal factors generated for weekly initial unemployment claims from a model that includes automatically identified outliers

Usage

ic_sf_auto

Format

ic_sf_tc

ic_sf_auto_ljung	Seasonal Factors for Initial Unemployment Claims, weekly (ic, automatic outlier identification, ljung)

Description

A time series object with seasonal factors generated for weekly initial unemployment claims from a model that includes automatically identified outliers with a critical value determined by an algorithm developed by Greta Ljung

Usage

```
ic_sf_auto_ljung
```

Format

A tis time series object from February 1, 2003 to January 30, 2021

ic_sf_tc	Seasonal Factors for Initial Unemployment Claims, weekly (automatic
	outlier identification, TC outlier specified)

Description

A time series object with seasonal factors generated for weekly initial unemployment claims from a model that includes automatically identified outliers with a temporary change outlier (TC) specified for the 13th week of 2020

Usage

```
ic_sf_tc
```

Format

ic_start 25

ic_start

Starting date for Initial Unemployment Claims, weekly (ic)

Description

A numeric vector of length 2 with the start of the weekly initial unemployment claims released by the Department of Labor

Usage

ic_start

Format

A numeric vector of length 2.

first element starting year **second element** starting week

Source

https://www.dol.gov/ui/data.pdf

ic_week

Week vector for Initial Unemployment Claims, weekly (ic)

Description

A tis time series object the week number for every observation of the weekly initial unemployment claims released by the Department of Labor

Usage

ic_week

Format

A tis time series object for IC from February 1, 2003 to January 30, 2021

Source

https://www.dol.gov/ui/data.pdf

26 ic_xts

ic_week_xts	Week vector for Initial Unemployment Claims, weekly (ic), as an xts time series object

Description

A xts time series object the week number for every observation of the weekly initial unemployment claims released by the Department of Labor

Usage

```
ic_week_xts
```

Format

An xts time series object for IC from February 1, 2003 to January 30, 2021

Source

```
https://www.dol.gov/ui/data.pdf
```

ic_xts

Initial Unemployment Claims, weekly (ic) in xts format

Description

An xts time series object with weekly initial unemployment claims released by the Department of Labor

Usage

```
ic_xts
```

Format

An xts time series object for IC from February 1, 2003 to January 30, 2021

Source

```
https://www.dol.gov/ui/data.pdf
```

ic_xts_dates 27

ic_xts_dates	Date Index used in the xts object for Initial Unemployment Claims, weekly (ic)

Description

A vector of dates used as an index for the xts object of weekly initial unemployment claims released by the Department of Labor

Usage

```
ic_xts_dates
```

Format

An vector of weekly dates from February 1, 2003 to January 30, 2021

Source

```
https://www.dol.gov/ui/data.pdf
```

ic_year	Year vector for Initial Unemployment Claims, weekly (ic)

Description

A tis time series object the year for every observation of the weekly initial unemployment claims released by the Department of Labor

Usage

ic_year

Format

A tis time series object for the year of IC from February 1, 2003 to January 30, 2021

28 jacobian_trans_adj

ic_year_xts	Year vector for Initial Unemployment Claims, weekly (ic), as an xts time series object

Description

A xts time series object the year for every observation of the weekly initial unemployment claims released by the Department of Labor

Usage

```
ic_year_xts
```

Format

An xts time series object for IC from February 1, 2003 to January 30, 2021

Source

```
https://www.dol.gov/ui/data.pdf
```

Description

compute the Jacobian adjustment for transformations as done in the X-13ARIMA-SEATS program

Usage

```
jacobian_trans_adj(
   Y = NULL,
   Nspobs = NULL,
   Nintvl = 2,
   Adj = NULL,
   Logit = FALSE,
   Trans = TRUE,
   Lam = 0
)
```

Arguments

Υ	numeric vector, original time series. This is a required entry.
Nspobs	Integer scalar, Length of Y. This is a required entry.
Nintvl	Integer scalar, Number of differences in model used. Default is 2.
Adj	numeric vector, prior adjustment factor time series. Default is NULL, which indicates there is no prior adjustment.
Logit	logical scalar, if TRUE the logit transformation is used. Default is FALSE.
Trans	logical scalar, if TRUE a Box-Cox transform is used. Default is TRUE
Lam	numeric scalar, Box-Cox transformation parameter. Default is 0 (Log transform).

match_date 29

Value

Jacobean adjustment to the likelihood of estimated models to allow AIC and other likelihood statistics to be compared for different transformations.

Examples

```
Nspobs <- length(ic_obs)
ic_jacadj_log <- jacobian_trans_adj(ic_obs, Nspobs, 2, Trans = TRUE, Lam = 0.0)</pre>
```

match_date

Match a specific date

Description

Create an indicator variables for a specific date (year, month, day) for a weekly time series as defined in tis.

Usage

```
match_date(x, date_string)
```

Arguments

x Numeric tis object. This is a required entry.

date_string

Character string; Year, month and day of the date (Example - January 1, 1990 is '19900101'). This is a required entry.

Value

An indicator variable where the week contains the date entered = 1, 0 otherwise.

Examples

```
pandemic_start <- match_date(ic_week, '20200317')</pre>
```

match_month_day

Match a specific month and day

Description

Create an indicator variables for a specific month and day.

Usage

```
match_month_day(x = NULL, date_string = NULL)
```

Arguments

x Numeric tis object. This is a required entry.

date_string

Character string; Month and day of the date (Example - January 1 is '0101'). This is a required entry.

30 match_week

Value

An indicator variable where the week that contains the date entered = 1, 0 otherwise.

Examples

```
july4_wed <- match_month_day(ic_week, '0707')</pre>
```

match_month_day_xts

Match a specific month and day

Description

Create an indicator variables for a specific month and day.

Usage

```
match_month_day_xts(x = NULL, date_string = NULL, return_xts = FALSE)
```

Arguments

x Numeric tis object. This is a required entry.

date_string Character string; Month and day of the date (Example - January 1 is '0101').

This is a required entry.

return_xts Logical scalar; return matrix as an xts time series object. Default is FALSE.

Value

An indicator variable where the week that contains the date entered = 1, 0 otherwise.

Examples

```
july4_wed_xts <- match_month_day_xts(ic_week_xts, '0707')</pre>
```

match_week

Match a specific week

Description

Create an indicator variable for a specific week.

Usage

```
match_week(x_week = NULL, week_number = NULL)
```

Arguments

x_week Numeric tis object. This is a required entry.

week_number Numeric scalar; Week of the year to match. This is a required entry.

match_week_xts 31

Value

An indicator variable where the observation that matches the week entered = 1, 0 otherwise.

Examples

```
xmas_w53 <- match_week(ic_week, 53)</pre>
```

match_week_xts

Match a specific week

Description

Create an indicator variable for a specific week.

Usage

```
match_week_xts(x_week = NULL, week_number = NULL, return_xts = FALSE)
```

Arguments

x_week Numeric tis object. This is a required entry.

week_number Numeric scalar; Week of the year to match. This is a required entry.

return_xts Logical scalar; return matrix as an xts time series object. Default is FALSE.

Value

An indicator variable where the observation that matches the week entered = 1, 0 otherwise.

Examples

```
xmas_w53_xts <- match_week_xts(ic_week_xts, 53)</pre>
```

 ${\tt plot_boxplot_single}$

Generate one set of weekly boxplots

Description

Generate a single set of boxplots of factors by week for a range of weeks

```
plot_boxplot_single(
  this_factor = NULL,
  this_week = NULL,
  first_week = NULL,
  last_week = NULL,
  forecast = 0,
  this_range = NULL
```

32 plot_boxplot_weekly

Arguments

this_factor	Numeric vector of factors from weekly seasonal adjustment. This is a required entry.
this_week	Numeric vector; Week of the year to match. This is a required entry.
first_week	Numeric scalar; First week to be included in the plot. This is a required entry.
last_week	Numeric scalar; Last week to be included in the plot. This is a required entry.
forecast	Numeric scalar; Number of forecasts. Default: 0.
this_range	Numeric scalar; Range of the seasonal factors to be plotted. Default: range taken from the observations being plotted.

Value

Generate a plot of seasonal factors by week. User can specify limits for the weeks plotted in order to generate a multi-panel plot.

Examples

```
par(mfrow = c(3, 2), mar = c(3.1, 2.1, 0.5, 0.5), oma = c(0, 0, 3, 0))
sf_range <- range(ic_sf)
plot_boxplot_single(ic_sf, ic_week, 1, 9, this_range = sf_range)
plot_boxplot_single(ic_sf, ic_week, 10, 18, this_range = sf_range)
plot_boxplot_single(ic_sf, ic_week, 19, 27, this_range = sf_range)
plot_boxplot_single(ic_sf, ic_week, 28, 36, this_range = sf_range)
plot_boxplot_single(ic_sf, ic_week, 37, 45, this_range = sf_range)
plot_boxplot_single(ic_sf, ic_week, 46, 53, this_range = sf_range)</pre>
```

```
plot_boxplot_weekly Generate weekly boxplots
```

Description

Generate a multi-panel plot of boxplots by week

```
plot_boxplot_weekly(
   this_factor = NULL,
   this_week = NULL,
   forecast = 0,
   this_range = NULL,
   this_type = "Irregular",
   this_title = NULL
)
```

plot_sf_mean 33

Arguments

this_factor	Numeric vector of factors from weekly seasonal adjustment. This is a required entry.
this_week	Numeric vector; Week of the year to match. This is a required entry.
forecast	Numeric scalar; Number of forecasts. Default: 0.
this_range	Numeric scalar; Range of the seasonal factors to be plotted. Default: range taken from the observations being plotted.
this_type	Character string; type of factor being plotted. Default: 'Irregular'
this_title	Character string; Main title for plot. If not specified, use this_type to generate title.

Value

Generate a mulit-panel plot of boxplots of factors by week. Need to have plot_boxplot_single loaded to run.

Examples

plot_sf_mean

Plot of factor means

Description

Generates a plot of the means of factors

```
plot_sf_mean(
    this_factor = NULL,
    this_period = NULL,
    this_col = "green",
    y_limit = range(this_factor),
    this_freq,
    this_trans = TRUE,
    this_title = "Mean of Seasonal Factors",
    forecast = 0,
    this_type = "Seasonal",
    add_line = FALSE
)
```

34 plot_sf_mean

Arguments

this_factor	tis object of the factors from a weekly seasonal adjustment This is a required entry.
this_period	Integer scalar; vector with period number of the observations. This is a required entry.
this_col	Character scalar; color used for factor plots. Default is green.
y_limit	Numeric vector of length 2; Range of values you wish the plot to be plotted over. Default is range of the seasonal factors.
this_freq	integer scalar; time series frequency.
this_trans	Logical scalar; indicates if the adjustment was done with a log transform. Default is TRUE.
this_title	Character string; main title of plot. Default is 'Mean of Seasonal Factors'.
forecast	Integer scalar; Number of forecasts appended to the factors. Default is 0.
this_type	Character string; type of factors plotted. Default is 'seasonal'.
add_line	Logical scalar; indicates if this line is being added to an existing plot. Default is FALSE.

Value

Generate plot of the means of factors by period, or add a line to an existing plot. If factors not specified, print out error message and return NULL.

Examples

```
ic_sf_range <- range(ic_sf, ic_sf_auto, ic_sf_auto_ljung, ic_sf_tc)</pre>
this_color <- c("#4682B4", "#7846B4", "#B47846", "#82B446")
plot_sf_mean(ic_sf,
             this_period = ic_week,
             this_col = this_color[1],
             y_limit = ic_sf_range,
             this\_freq = 53,
             this_type = 'Combined',
             this_trans = FALSE,
             this_title = 'Initial Claims (Weekly Combined Factors)')
plot_sf_mean(ic_sf_auto,
             this_period = ic_week,
             this_col = this_color[2],
             this_freq = 53,
             this_trans = FALSE,
             add_line = TRUE)
plot_sf_mean(ic_sf_auto_ljung,
             this_period = ic_week,
             this_col = this_color[3],
             this\_freq = 53,
             this_trans = FALSE,
             add_line = TRUE)
plot_sf_mean(ic_sf_tc,
             this_period = ic_week,
             this_col = this_color[4],
             this\_freq = 53,
             this_trans = FALSE,
             add_line = TRUE)
```

plot_sf_weekly 35

```
legend('topright',
    legend=c('ic (default)', 'ic (auto outliers)', 'ic (auto, ljung cv)', 'ic (auto tc)'),
    col=this_color,
    lty=rep(1,4),
    cex=0.75)
```

plot_sf_weekly

Plot factors by week

Description

Generate a multi-panel plot of seasonal factors by week

Usage

```
plot_sf_weekly(
   this_sf = NULL,
   this_week = NULL,
   forecast = 0,
   this_trans = TRUE,
   this_range = NULL,
   this_type = "Seasonal",
   this_title = NULL
)
```

Arguments

this_sf	Numeric vector of seasonal factors. This is a required entry.
this_week	Numeric vector; Week of the year to match. This is a required entry.
forecast	Numeric scalar; Number of forecasts. Default: 0.
this_trans	Logical scalar; set to TRUE if the log transformation is used in the decomposition, FALSE otherwise. Default: TRUE
this_range	Numeric scalar; Range of the seasonal factors to be plotted. Default: range taken from the observations being plotted.
this_type	Character string; type of factor being plotted. Default: 'Seasonal'
this_title	Character string; Main title for plot. If not specified, will use this_type to construct title.

Value

Generate a mulit-panel plot of seasonal factors by week. Need to have plot_sf_weekly_single loaded to run.

Examples

```
this_type = 'Combined',
               this_title = 'Initial Claims (default)')
plot_sf_weekly(ic_sf_auto,
               this_week = ic_week,
               forecast=0,
               this_range = ic_sf_range,
               this_trans = FALSE,
               this_type = 'Combined',
               this_title = 'Initial Claims (auto)')
plot_sf_weekly(ic_sf_auto_ljung,
               this_week = ic_week,
               forecast=0,
               this_range = ic_sf_range,
               this_trans = FALSE,
               this_type = 'Combined',
               this_title = 'Initial Claims (auto, ljung cv)')
plot_sf_weekly(ic_sf_tc,
               this_week = ic_week,
               forecast=0,
               this_range = ic_sf_range,
               this_trans = FALSE,
               this_type = 'Combined',
               this_title = 'Initial Claims (fractional airline)')
```

plot_sf_weekly_single Plot factors by week for a range of weeks

Description

Generate a single plot of seasonal factors by week for a range of weeks

Usage

```
plot_sf_weekly_single(
    this_sf = NULL,
    this_week = NULL,
    first_week = NULL,
    last_week = NULL,
    forecast = 0,
    this_range = NULL,
    this_trans = TRUE
)
```

Arguments

this_sf	Numeric vector of seasonal factors. This is a required entry.
this_week	Numeric vector; Week of the year to match. This is a required entry.
first_week	Numeric scalar; First week to be included in the plot. This is a required entry.
last_week	Numeric scalar; Last week to be included in the plot. This is a required entry.
forecast	Numeric scalar; Number of forecasts. Default: 0.
this_range	Numeric scalar; Range of the seasonal factors to be plotted. Default: range taken from the observations being plotted.

set_critical_value 37

this_trans

Logical scalar; set to TRUE if the log transformation is used in the decomposition, FALSE otherwise. Default: TRUE

Value

Generate a plot of seasonal factors by week. User can specify limits for the weeks plotted in order to generate a multi-panel plot.

Examples

```
par(mfrow = c(3, 2), mar = c(3.1, 2.1, 0.5, 0.5), oma = c(0, 0, 3, 0))
sf_range <- range(ic_sf)</pre>
plot_sf_weekly_single(ic_sf, this_week = ic_week,
                      first_week = 1, last_week = 9,
                      forecast = 0, this_range = sf_range,
                      this_trans = FALSE)
plot_sf_weekly_single(ic_sf, this_week = ic_week,
                      first_week = 10, last_week = 18,
                      forecast = 0, this_range = sf_range,
                      this_trans = FALSE)
plot_sf_weekly_single(ic_sf, this_week = ic_week,
                      first_week = 19, last_week = 27,
                      forecast = 0, this_range = sf_range,
                      this_trans = FALSE)
plot_sf_weekly_single(ic_sf, this_week = ic_week,
                      first_week = 28, last_week = 36,
                      forecast = 0, this_range = sf_range,
                      this_trans = FALSE)
plot_sf_weekly_single(ic_sf, this_week = ic_week,
                      first_week = 37, last_week = 45,
                      forecast = 0, this_range = sf_range,
                      this_trans = FALSE)
plot_sf_weekly_single(ic_sf, this_week = ic_week,
                      first_week = 46, last_week = 53,
                      forecast = 0, this_range = sf_range,
                      this_trans = FALSE)
```

set_critical_value

Set outlier critical value

Description

Set outlier critical value using the Ljung algorithm as given in Ljung, G. M. (1993). On outlier detection in time series. Journal of Royal Statistical Society B 55, 559-567.

Usage

```
set_critical_value(number_observations = NULL, cv_alpha = 0.01)
```

Arguments

```
number_observations
```

number of observations tested for outliers. This is a required entry.

cv_alpha alpha for critical value

38 t_values_air

Value

outlier critical value generated by the algorithm given in Ljung (1993). The critical value in X-13 is different as it is adjusted to allow for smaller values to approximate the normal distribution.

Examples

```
this_critical_value <- set_critical_value(12, 0.025)</pre>
```

t_values_air

Generate t-statistics

Description

Generate t-statistics from estimates generated from the fractional airline model

Usage

```
t_values_air(this_beta = NULL, this_cov = NULL)
```

Arguments

this_beta Numeric vector; estimated model parameters from the fractional airline model.

This is a required entry.

this_cov Numeric matrix; estimated covariance matrx from the fractional airline model.

This is a required entry.

Value

Numeric vector of t-values

Examples

```
weekly_high_density_plot
```

High density plots for weekly series

Description

Generates high density plots for weekly time series around a given mean - current supported time series objects are xts and tis

Usage

```
weekly_high_density_plot(
  x = NULL,
  this_start = NULL,
  this_end = NULL,
  this_main = NULL,
  this_range = NULL,
  this_ylab = " ",
  this_col = "grey",
  this_mu = 0,
  this_cex = 0.75
)
```

Arguments

Х	numeric vector, original time series object to be plotted. This is a required entry.
this_start	Integer array of length 2, beginning date for plot. Default is NULL (reset to starting date of series).
this_end	Integer array of length 2, ending date for plot. Default is NULL (reset to ending date of series).
this_main	Character string, Main title of plot. Default is "High Density Plot".
this_range	numeric vector of length 2, range of data displayed in plot. Default is NULL, the range of x will be used.
this_ylab	character string, label for Y-axis on plot. Default is " ", or no label.
this_col	character string, color of lines in plot. Default is "grey".
this_mu	numeric scalar, mean value that the high density plot will be plotted around. Default is 0.0
this_cex	numeric scalar, value for plotting parameter cex which controls the amount by which plotting text and symbols should be scaled relative to the default. Default is 0.75.

Value

High density plot for x

Examples

```
this_color <- c("#4682B4", "#7846B4", "#B47846", "#82B446")
par(mfrow = c(2,2), mar= c(2,4,4.25,1.0), oma=c(0,0,3,0))
ic_outlier_range
   range(ic_outlier, ic_outlier_auto, ic_outlier_auto_ljung, ic_outlier_tc)
weekly_high_density_plot(ic_outlier, this_start = c(2018,1),
                         this_main = "default model",
                         this_range = ic_outlier_range,
                         this_ylab = "IC", this_col = this_color[1])
weekly_high_density_plot(ic_outlier_auto, this_start = c(2018,1),
                         this_main = "auto outlier",
                         this_range = ic_outlier_range,
                         this_ylab = "IC", this_col = this_color[2])
weekly\_high\_density\_plot(ic\_outlier\_auto\_ljung, \ this\_start = c(2018,1),
                         this_main = "auto, ljung cv",
                         this_range = ic_outlier_range,
                         this_ylab = "IC", this_col = this_color[3])
weekly_high_density_plot(ic_outlier_tc, this_start = c(2018,1),
                         this_main = "auto with tc",
                         this_range = ic_outlier_range,
                         this_ylab = "IC", this_col = this_color[4])
mtext("Initial Claims, outlier, from 2018", 3, 1.5, outer=TRUE)
```

within_month_regressors

Generate within-month effect regression matrix

Description

Generates a regression matrix of within month effects from Cleveland and Scott to be included in weekly modeling routines

Usage

```
within_month_regressors(
  this_year = NULL,
  this_month = NULL,
  this_day = NULL,
  1 = 30,
  return_xts = TRUE
)
```

Arguments

this_year	Numeric vector; Year of each observation. This is a required entry.	
this_month	Numeric vector; Month for each observation. This is a required entry.	
this_day	Numeric vector; Day of the month for each observation. This is a required entry.	
1	Numeric scalar; Number of sin-cos terms to generate, with the total number of regressors being $2*1$. Default: 30 .	
return_xts	Logical scalar; return matrix as an xts time series object. Default is FALSE.	

Value

Generate matrix of within month effects regressors, with column names that describe the individual regressors

Examples

Index

* datasets	<pre>gen_movereg_holiday_xts, 13</pre>
cc_day_xts, 3	gen_outlier_matrix, 15
cc_month_xts, 3	<pre>gen_tc_outlier_matrix, 16</pre>
cc_sa_tc_log, 4	
cc_sa_tc_nolog,4	ic_day, 17
cc_week_xts, 5	ic_default_matrix, 17
cc_year_xts, 5	ic_end, 18
ic_day, 17	ic_holiday_matrix, 19
<pre>ic_default_matrix, 17</pre>	<pre>ic_holiday_matrix_fcst, 19</pre>
ic_end, 18	ic_month, 20
ic_holiday_matrix, 19	ic_obs, 21
<pre>ic_holiday_matrix_fcst, 19</pre>	ic_outlier, 21
ic_month, 20	ic_outlier_auto, 21
ic_obs, 21	<pre>ic_outlier_auto_ljung, 22</pre>
ic_outlier, 21	ic_outlier_tc, 22
ic_outlier_auto, 21	ic_sf, 23
<pre>ic_outlier_auto_ljung, 22</pre>	ic_sf_auto, 23
ic_outlier_tc,22	ic_sf_auto_ljung, 24
ic_sf, 23	ic_sf_tc, 24
ic_sf_auto, 23	ic_start, 25
ic_sf_auto_ljung, 24	ic_week, 25
ic_sf_tc, 24	ic_week_xts, 26
ic_start, 25	ic_xts, 26
ic_week, 25	ic_xts_dates, 27
ic_week_xts,26	ic_year, 27
ic_xts, 26	ic_year_xts, 28
ic_xts_dates, 27	
ic_year, 27	jacobian_trans_adj,28
ic_year_xts,28	
	match_date, 29
cc_day_xts, 3	match_month_day, 29
cc_month_xts, 3	match_month_day_xts, 30
cc_sa_tc_log, 4	match_week, 30
cc_sa_tc_nolog, 4	<pre>match_week_xts, 31</pre>
cc_week_xts, 5	
cc_year_xts, 5	plot_boxplot_single, 31
	<pre>plot_boxplot_weekly, 32</pre>
gen_air_components, 6	plot_sf_mean, 33
<pre>gen_air_model_matrix, 7</pre>	plot_sf_weekly, 35
gen_air_projected_factors, 8	plot_sf_weekly_single, 36
gen_hybrid_sa_xts, 9	
gen_level_outlier_matrix, 10	set_critical_value, 37
gen_likelihood_stats, 11	
<pre>gen_movereg_holiday, 12</pre>	t_values_air,38

INDEX 43

 $\begin{tabular}{ll} weekly_high_density_plot, 39\\ within_month_regressors, 40\\ \end{tabular}$