Homework 5 for **MATH 561**, Set Theory

Due: Thursday Mar 22

Problem 1 – Reflection in L

Jech, Exercise 13.22 (p. 198)

Problem 2 - The "hereditary" hierarchy, III

Show that if V = L, then $L_{\kappa} = H_{\kappa}$ for all infinite cardinals κ .

Problem 3 – The minimal model

Let \(^ZF\) be the set of all G\(\text{Godel numbers of axioms of ZF}\). Let SM bet the sentence

$$\exists M \ (M \text{ is transitive } \land \forall e \in \ulcorner \mathsf{ZF} \urcorner \mathsf{Sat}(M, e)).$$

We abbreviate the latter by $M \models \lceil \mathsf{ZF} \rceil$. Show that one can prove in $\mathsf{ZF} + \mathsf{SM}$ that there exists a δ such that

$$L_{\delta} \models \lceil \mathsf{ZF} \rceil \quad \land \quad \forall M \ ((M \ \text{transitive} \ \land M \models \lceil \mathsf{ZF} \rceil) \rightarrow L_{\delta} \subseteq M).$$

Further, show that this L_{δ} is a model for ZFC + V = L + \neg SM. Infer that Con(ZF) \rightarrow Con(ZF + \neg SM)

Problem 4 – Definability without parameters**

Suppose $\alpha > \omega$ is a limit ordinal, and suppose that

$$\mathcal{P}(\omega) \cap L_{\alpha+1} \neq \mathcal{P}(\omega) \cap L_{\alpha}$$
.

Then every element of L_{α} is definable in L_{α} without parameters, i.e. for every $a \in L_{\alpha}$ there exists a formula $\varphi(x_0)$ such that for all $b \in L_{\alpha}$, $L_{\alpha} \models \varphi[b]$ if and only if b = a.

Hint: Let X be the set of elements of all elements of L_{α} that are definable without parameters. Argue that X is an elementary substructure. (It is the Skolem hull of a subset of L_{α} under definable Skolem functions for L. Why do these exist?) Apply the Condensation Lemma (to a transitive collapse of X), and argue that for the resulting L_{β} we must have $\beta = \alpha$: The real that is constructed at α is already constructed at β . If $\beta \neq \alpha$, this would lead to a contradiction.