Chapter 8 The Frank-Wolfe Algorithm

- ullet Definition (LMO) linear minimization oracle $\mathrm{LMO}_X(\mathbf{g}) := \operatorname*{argmin}_{\mathbf{z} \in X} \mathbf{g}^{ op} \mathbf{z}.$
 - This exists when *X* is bounded and closed.
- Algo $\mathbf{s} := \mathrm{LMO}_X\left(\nabla f\left(\mathbf{x}_t\right)\right)$ and $\mathbf{x}_{t+1} := (1-\gamma_t)\mathbf{x}_t + \gamma_t\mathbf{s}$ and $\gamma_t \in [0,1]$.
 - Reduce non-linear to linear problem.
- Properties
 - \circ If X convex, then iterates are always feasible, $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_t \in X$.
 - o Projection-free solving a linear program instead of quadratic program
 - \circ sparse representation \mathbf{x}_t is always a convex combination of initial iterate and minimizers used so far.

Cases when LMO is simple to compute

- FW algo is useful when X can be described as a convex hull of a finite or other nise set of atom points A, X := conv(A).
 - $\circ \ \mathbf{s} = \sum_{i=1}^n \lambda_i \mathbf{a}_i$, where $\sum_{i=1}^n \lambda_i = 1$ and all non-negative.
 - \circ Then if **s** minimize $\mathbf{g}^{\mathsf{T}}\mathbf{z}$, then there is also an atomic minimizer.
 - $\circ \mathcal{A} = X$ is the trivial case, we are interested in *extreme points* where $\mathbf{x} \notin \text{conv}(X \setminus \{\mathbf{x}\})$.

LASSO with ℓ_1 -ball

- Problem: $\min_{\mathbf{x} \in \mathbb{R}^d} \|A\mathbf{x} \mathbf{b}\|^2$ s.t. $\|\mathbf{x}\|_1 \leq 1$, we see that $X = \operatorname{conv}\left(\{\pm \mathbf{e}_1, \dots, \pm \mathbf{e}_d\}\right)$.
 - \circ It is easy to show $\mathrm{LMO}_X(\mathbf{g}) = -\operatorname{sgn}{(g_i)}\mathbf{e}_i$ with $i := rgmax |g_i|$. $_{i \in [d]}$

Semidefinite Programming and the Spectahedron

- Problem: $\arg\min_Z G \bullet Z$ s.t. $\operatorname{Tr}(Z) = 1$ and $Z \succeq 0$, where G semetric, and \bullet stands for scalar product.
 - \circ Feasible region X is called Spectahedron
- Since every semetric matrix can be decomposed into $C^ op C = \sum_{i \in [d]} z_i z_i^ op$, natually the atom is $\mathbf{Z}\mathbf{Z}^ op$ where $\mathbf{z} \in \mathbb{R}^d, \|\mathbf{z}\| = 1$.
- Lemma 8.1 Let λ_1 be the smallest eigenvalue of G, and let \mathbf{s}_1 be a corresponding eigenvector of unit length. Then we can choose $\mathrm{LMO}_X(G) = \mathbf{s}_1\mathbf{s}_1^\top$.
 - $\circ \ \operatorname{\mathsf{Proof}} \dot{\min}_{\operatorname{\mathsf{Tr}}(Z)=1,Z\succeq 0} G \bullet Z = \dot{\min}_{\parallel \mathbf{z}\parallel=1} G \bullet \mathbf{z}\mathbf{z}^\top = \dot{\min}_{\parallel \mathbf{z}\parallel=1} \mathbf{z}^\top G\mathbf{z} = \lambda_1$

Matrix completion (Exercise 54)

- ullet Problem: $\min_{Y\in X\subseteq \mathbb{R}^{n imes m}}\sum_{(i,j)\in\Omega}\left(Z_{ij}-Y_{ij}
 ight)^2$ where $X:=\operatorname{conv}(\mathcal{A})$ with
- $\mathcal{A} := \left\{ \mathbf{u}\mathbf{v}^ op \mid \mathbf{u} \in \mathbb{R}^n, \|\mathbf{u}\|_2 = 1, \mathbf{v} \in \mathbb{R}^m, \|\mathbf{v}\|_2 = 1
 ight\}$
- ullet F-W step: $\partial_{Y_{ij}}=Y_{ij}-Z_{ij}$, $\mathrm{LMO}_X=rg\min_X\sum_{ij}(Y_{ij}-Z_{ij})(\mathbf{u}\mathbf{v}^ op)_{i,j}=\mathbf{u}^ op(Y-Z)\mathbf{v}$
 - \circ consider the SVD of Y-Z , $Y-Z=U\Sigma V^{ op}$, where $\Sigma\in\mathbb{R}^{n imes m}$ is diagnal.
 - \circ Then $U^ op u$ and $V^ op v$ also norm-1. This gives solution of $k:=rg\max_{i\in[\min\{n,m\}]}\sigma(\Sigma)_i$, and $u=U\mathbf{e}_k, v=-V\mathbf{e}_k$
 - $\circ \ \mathbf{u}\mathbf{v}^{ op} = -U\mathbf{E}_{kk}V^{ op}$
- PS: Matrix completion has been removed from this course, so I don't know the normal procedure for projection...

Duality gap, A certificate for optimization quality

- Definition (Duality gap) Given $\mathbf{x} \in X$ the duality gap (Hearn gap) is $g(\mathbf{x}) := \nabla f(\mathbf{x})^{\top} (\mathbf{x} \mathbf{s})$ where $\mathbf{s} := \mathrm{LMO}_X(\nabla f(\mathbf{x}))$.
- Lemma 8.2 Suppose there is a minimizer for F-W algo, \mathbf{x}^* , f-convex. Let $\mathbf{x} \in X$. Then $g(\mathbf{x}) \geq f(\mathbf{x}) f(\mathbf{x}^*)$.
 - $\circ \ \operatorname{\mathsf{Proof}} g(\mathbf{x}) =
 abla f(\mathbf{x})^{ op}(\mathbf{x} \mathbf{s}) \geq
 abla f(\mathbf{x})^{ op}(\mathbf{x} \mathbf{x}^{\star}) \geq f(\mathbf{x}) f(\mathbf{x}^{\star}) \geq 0$
 - $g(\mathbf{x}^\star) = 0$ since $\nabla f(\mathbf{x}^\star)^\top (\mathbf{x} \mathbf{x}^\star) \geq 0$, $\forall \mathbf{x} \in X$ and this means $g(\mathbf{x}^\star) \leq 0$.
 - Note that $g(\mathbf{x}) \leq \|\nabla f(\mathbf{x})\|_{a*} \|\mathbf{x} \mathbf{s}\|_a$.

Convegence in $\mathcal{O}(1/arepsilon)$ Steps

• Interestingly, step size can be set to be unrelated to smooth constant.

Case for $\gamma_t = 2/(t+2)$

- Lemma 8.4 (Descent Lemma) For a step $\mathbf{x}_{t+1} := \mathbf{x}_t + \gamma_t (\mathbf{s} \mathbf{x}_t)$ with $\gamma_t \in [0,1]$, we have $f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) \gamma_t g(\mathbf{x}_t) + \gamma_t^2 \frac{L}{2} \|\mathbf{s} \mathbf{x}_t\|^2$, where $\mathbf{s} = \mathrm{LMO}_X(\nabla f(\mathbf{x}_t))$.

 Proof
 - $\qquad \text{Smoothness } f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) + \gamma_t \nabla f(\mathbf{x}_t)^\top \left(\mathbf{s} \mathbf{x}_t\right) + \frac{L}{2} \gamma_t^2 \|\mathbf{s} \mathbf{x}_t\|_a^2 = f(\mathbf{x}_t) \gamma_t g(\mathbf{x}_t) + \frac{L}{2} \gamma_t^2 \|\mathbf{s} \mathbf{x}_t\|_a^2$
- Theorem 8.3 If f convex and L-smooth, X convex and bounded. With any start $\mathbf{x}_0 \in X$ and stepsize $\gamma_t = 2/(t+2)$ F-W algo gives $f(\mathbf{x}_T) f(\mathbf{x}^\star) \leq \frac{2L \operatorname{diam}(X)^2}{T+1}$ where $\operatorname{diam}(X) := \max_{\mathbf{x}, \mathbf{y} \in X} \|\mathbf{x} \mathbf{y}\|$.
 - o Proof
 - ullet By certificate property, $g(\mathbf{x}_t) \geq f(\mathbf{x}_t) f(\mathbf{x}^\star)$, so $\Delta f(\mathbf{x}_{t+1}) \leq (1 \gamma_t) \Delta f(\mathbf{x}_t) + \gamma_t^2 C$, where $C := \frac{L}{2} \|\mathbf{s} \mathbf{x}_t\|^2$.
 - We assme $\Delta f(\mathbf{x}_t) \leq \frac{4C}{t+1}$, this is true for t=0, since by smoothness $f(\mathbf{x}_0) \leq f(\mathbf{x}^\star) + \frac{L}{2} \|\mathbf{x}^\star \mathbf{x}_0\|_a^2$
 - By spritis of induction, we assmue this holds for t and smaller, then for t+1 we have $\Delta f(\mathbf{x}_{t+1}) \leq (1-\frac{2}{t+2})\frac{4C}{t+1} + \frac{4}{(t+2)^2}C = \frac{4C}{t+2}\frac{t(t+2)+(t+1)}{(t+2)(t+1)} = \frac{4C}{t+2}\frac{t^2+3t+1}{t^2+3t+2} \leq \frac{4C}{t+2}$

Other step size

- Line search $\gamma_t := \operatorname*{argmin}_{\gamma \in [0,1]} f((1-\gamma)\mathbf{x}_t + \gamma \mathbf{s})$. This can be guranteed to be faster than previous step size.
- Gap-based $\gamma_t := \min\left(\frac{g(\mathbf{x}_t)}{L\|\mathbf{s}-\mathbf{x}_t\|^2}, 1\right)$, this is the quadratic function minimizer for $\gamma_t \in [0,1]$, so definitely, it is better than 2/(t+2) $\circ \ h\left(\mathbf{x}_t\right) \left(1-\frac{\gamma_t}{2}\right), \quad \gamma_t < 1 \\ h\left(\mathbf{x}_t\right), \qquad \gamma_t = 1.$ (This can be proved easily)

Affine invariance

- The upper bound seems to depends on the coordinate and changes under affine transform, but in reality, the algorithm objective $\nabla f'(\mathbf{x}')^{\top} \mathbf{z}'$ is unchanged under affine transform.
- This contradiction can be solved by defining a new *curvature constant* $C_{(f,X)} := \sup_{\mathbf{x},\mathbf{s} \in X, \gamma \in (0,1]} \frac{1}{\gamma^2} \left(f(\mathbf{y}) f(\mathbf{x}) \nabla f(\mathbf{x})^\top (\mathbf{y} \mathbf{x}) \right) \text{ which is affine invariant. (PS: this is similar to Bregman div)} \\ \mathbf{y} = (1-\gamma)\mathbf{x} + \gamma\mathbf{s}$
 - \circ By this definition, we have $f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t)
 abla f(\mathbf{x}_t)^ op \gamma_t (\mathbf{x}_t \mathbf{s}) + \gamma_t^2 C_{(f,X)}$
- Theorem 8.5 (proof is similar) $f(\mathbf{x}_T) f(\mathbf{x}^\star) \leq \frac{4C_{(f,X)}}{T+1}$
 - no smoothness assumed.
- Lemma 8.6 (Exercise 52) Let f convex and L-smooth, then $C_{(f,X)}$ is a tighter constant, $C_{(f,X)} \leq \frac{L}{2} \mathrm{diam}(X)^2$.
 - $egin{array}{c} \circ \ \operatorname{Proof} f(\mathbf{x} + \gamma(\mathbf{s} \mathbf{x})) \leq f(\mathbf{x}) + \gamma
 abla f(\mathbf{x})^{ op}(\mathbf{s} \mathbf{x}) + rac{\gamma^2 L}{2} \|\mathbf{s} \mathbf{x}\|_a^2 \end{array}$
- All of the stepsize holds the following inequality $f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) \nabla f(\mathbf{x}_t)^{ op} \mu_t \left(\mathbf{x}_t \mathbf{s}\right) + \mu_t^2 C_{(f,X)}$ where $\mu_t := 2/(t+2)$

Convergence of duality gap

- Theorem 8.7 f convex and L-smooth, then choosing any of stepsize in 2/(t+2), line search or gap-based stepsize, F-W algo gives duality gap minimum such that $\exists t \in [1:T]$ s.t. $g(\mathbf{x}_t) \leq \frac{27/2 \cdot C_{(f,X)}}{T+1}$.
 - Proof See Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Appendix B for detail.
 - Looser Proof:
 - ullet By descent lemma $\mu_t g(x_t) \leq f(\mathbf{x}_t) f(\mathbf{x}_{t+1}) + \mu_t^2 C_{(f,X)}$
 - $\text{sum over } t \in [\lfloor T/2 \rfloor:T] \text{, by the fact of } 2(\ln(t+2)-\ln(t+3)) \leq \mu_t = \frac{2}{t+2} \leq (\ln(t+1)-\ln(t+2))$ $\text{ } \sum_{t=\lfloor T/2 \rfloor}^T \mu_t \geq 2 \ln \frac{T+2}{\lfloor T/2 \rfloor+3}$
 - lacksquare And the fact of $\mu_t^2 \leq rac{4}{(t+2)(t+1)} = rac{4}{t+1} rac{4}{t+2}$, so that $\sum_{t=\lfloor T/2
 floor}^T \mu_t^2 \leq rac{4}{T+1} rac{4}{|T/2|+2}$
 - $\qquad \text{Also } f\left(\mathbf{x}_{\lfloor T/2 \rfloor}\right) f\left(\mathbf{x}_T\right) \leq f\left(\mathbf{x}_{\lfloor T/2 \rfloor}\right) f\left(\mathbf{x}^{\star}\right) \leq 4C_{(f,X)}/(\lfloor T/2 \rfloor + 1)$
 - $\bullet \ \text{ we have } \min_{t \in [\lfloor T/2 \rfloor, T]} g(x_t) \leq \ldots \leq \frac{2C_{(f, X)}}{\ln \frac{T+2}{\lfloor T/2 \rfloor + 3}} \Big(\frac{1}{\lfloor T/2 \rfloor + 1} + \frac{1}{T+1} \frac{1}{\lfloor T/2 \rfloor + 2} \Big) = \frac{2C_{(f, X)}}{T+1} \frac{1 + \frac{T+1}{(\lfloor T/2 \rfloor + 1)(\lfloor T/2 \rfloor + 2)}}{\ln \frac{T+2}{\lfloor T/2 \rfloor + 3}}$
 - We get a similar conclusion, but loser, the constant is about, when T>3, coefficient ≤ 15 .