# Skin Cancer

## Tarek El-Hajjaoui

### 2023-01-30

### Loading the dataset

file\_path = '/Users/Tarek/Documents/UCI\_MDS\_Coding/Stats210P/R\_Statistical\_Modeling/SkinCancer/skincanc
Skincancer = read.table(file\_path, header=TRUE, sep="", dec=".")

### summary(Skincancer)

| ## | State            | Lat           | Mort          | Ocean         |
|----|------------------|---------------|---------------|---------------|
| ## | Length:49        | Min. :28.00   | Min. : 86.0   | Min. :0.000   |
| ## | Class :character | 1st Qu.:36.00 | 1st Qu.:128.0 | 1st Qu.:0.000 |
| ## | Mode :character  | Median :39.50 | Median :147.0 | Median :0.000 |
| ## |                  | Mean :39.53   | Mean :152.9   | Mean :0.449   |
| ## |                  | 3rd Qu.:43.00 | 3rd Qu.:178.0 | 3rd Qu.:1.000 |
| ## |                  | Max. :47.50   | Max. :229.0   | Max. :1.000   |
| ## | Long             |               |               |               |
| ## | Min. : 69.00     |               |               |               |
| ## | 1st Qu.: 78.50   |               |               |               |
| ## | Median : 89.50   |               |               |               |
| ## | Mean : 90.94     |               |               |               |
| ## | 3rd Qu.:100.00   |               |               |               |
| ## | Max. :121.00     |               |               |               |

Creating a Linear Model where latitude (X) is predictive of mortality rate (Y) due to skin cancer.

```
model <- lm(Mort ~ Lat, data=Skincancer)</pre>
summary(model)
##
## Call:
## lm(formula = Mort ~ Lat, data = Skincancer)
##
## Residuals:
##
      Min
               1Q Median
                               ЗQ
                                      Max
                    0.972 12.006 43.938
## -38.972 -13.185
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 389.1894
                          23.8123
                                    16.34 < 2e-16 ***
                                    -9.99 3.31e-13 ***
## Lat
               -5.9776
                           0.5984
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.12 on 47 degrees of freedom
## Multiple R-squared: 0.6798, Adjusted R-squared: 0.673
## F-statistic: 99.8 on 1 and 47 DF, p-value: 3.309e-13
```

Find and interpret a 99% confidence interval for the mean mortality rate when Lat=40.

```
predict(model, list(Lat=40), level = 0.99, interval= "c")

## fit lwr upr
## 1 150.0839 142.7148 157.453
```

Find and interpret a 99% prediction interval for the individual mortality rate when Lat=40.

```
predict(model, list(Lat=40), level = 0.99, interval= "p")
## fit lwr upr
## 1 150.0839 98.24214 201.9257
```

Plotting 99% confidence and prediction intervals:

```
predictions <- predict(model, level = 0.99, interval="prediction")
new_df <- cbind(Skincancer, predictions)

ggplot(new_df, aes(x=Lat, y=Mort))+
    geom_point() +
    geom_line(aes(y=lwr), color = "red", linetype = "dashed")+
    geom_line(aes(y=upr), color = "red", linetype = "dashed")+
    geom_smooth(method=lm, se=TRUE)</pre>
```

