Lab3 report

311514037 蔡宇冠

Block Diagram: b1.jpg

Describe operation

How to receive data-in and tap parameters and place into SRAM
 Xn/coef -> reg -> SRAMs, use two FSMs to respectively control the two data flows.

- How to access shiftram and tapRAM to do computation
 Use the FSM with higher priority than another to control the A of two SRAMs, then take the data to do computation.
- How ap_done is generated.
 Y599 computed -> set sm_tlast -> ap_reg becomes 3'b110

Resource usage

Because the BRAMs are declared in testbench, they were not synthesized here in the FIR engine design.

LUT	FF	BRAM	URAM	DSP
285	178	0	0	3

Timing Report

Clock period: 4 ns, Rise time: 0.000 ns, Fall time: 2.000 ns.

Worst negative slack	Worst hold slack	Worst pulse width slack
0.031 ns	0.147 ns	1.500 ns

Simulation Waveform

w1.png:

w2.png:

• Coefficient program, and read back:

w1: the left half is coef program, and the right half is read back.

Data-in stream in:

w2: ss tdata ~ tvalid

• Data-out stream out:

w2: sm tdata ~ tvalid

• Bram access control:

w1: tap RAM, w2: data RAM

• FSM:

w1: tcst, w2: dcst and r0 ~ 2

Supplementary Information