1 Propriedade de Markov

Considere o espaço de probabilidade $(\Omega, \mathcal{F}, \mathcal{P})$, filtração $(\mathcal{F}_s, s \in I = \mathbb{R}^+)$ e o espaço mensurável (\mathcal{S}, Σ) . O processo estocástico $X = (X_t, t \in I)$ nesse espaço mensurável com a filtração \mathcal{F} é dito ter a propriedade de Markov se, para todo $\mathcal{A} \in \Sigma$, vale a igualdade

$$\mathcal{P}(X_t \in \mathcal{A} \mid \mathcal{F}_s) = \mathcal{P}(X_t \in \mathcal{A} \mid X_s)$$

sempre que t > s.

Para um conjunto S discreto e $I = \mathbb{N}$, temos

$$\mathcal{P}(X_n = x_n \mid X_{n-1} = x_{n-1}, ..., X_0 = x_0) = \mathcal{P}(X_n = x_n \mid X_{n-1} = x_{n-1})$$

Em resumo, a propriedade de Markov diz que eventos futuros dependem apenas do evento atual, e não do histórico \mathcal{F}_t ocorrido.

1.1 Contraexemplo: Propriedade de Markov

Em um experimento, temos uma urna com 3 bolas: **A**, **A** e **B**. No experimento, retiramos uma bola "ontem", outra "hoje" e outra "amanhã". Queremos calcular a probabilidade de ocorrer **B** no dia de amanhã, conhecendo-se o ocorrido de hoje e de ontem. Nesse experimento, as bolas retiradas não são repostas.

Table 1: Experimento sem reposição

	Info. dada (ontem)	Info. dada (hoje)	Info. questionada (amanhã)
Bola	A	A	В
Prob.	1	1	1
Bola	?	A	В
Prob.		1	1/2

Veja na terceira coluna, que a observação dos eventos passados (ontem) influenciam nos eventos futuros (amanhã).

1.2 Exemplo: Propriedade de Markov

Considere o mesmo experimento anterior, mas agora com a reposição das bolas.

Table 2: Experimento com reposição

	Info. dada (ontem)	Info. dada (hoje)	Info. questionada (amanhã)
Bola	A	A	В
Prob.	1	1	1/3
Bola	?	A	В
Prob.	_	1	1/3

Veja na terceira coluna, que a observação dos eventos passados (ontem) não influenciam nos eventos futuros (amanhã).

Observação 1 *Um espaço mensurável, denotado por* (A, P)*, é um par em que A é um conjunto e P é um conjunto de conjuntos (uma \sigma-álgebra) sobre A.*

Observação 2 *Uma* σ -álgebra sobre um conjunto A é um conjunto de subconjuntos de A de forma que as operações de união, interseção e complemento sejam fechadas em A de forma contável. Exemplos: denote por P(A) o conjunto das partes de A. Seja $A = \{a, b, c\}$, e $P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Assim, P é uma σ -álgebra sobre o conjunto A, pois as operações de união, interseção e complemento são fechadas em P(A). Outra σ -álgebra para o mesmo conjunto é $Q(A) = \{\emptyset, \{c\}, \{a, b\}, \{a, b, c\}\}$.

Observação 3 Uma operação * é fechada em um conjunto A quando $(a*b \in A) \forall a \in A \ \forall b \in A$. Exemplo: a soma e multiplicação são fechadas em \mathbb{N} , mas a subtração e divisão não. A soma, subtração e multiplicação são fechadas em \mathbb{Z} , mas a divisão não.