DSA3102 Tutorial 6

$$2x_1+x_2 \ge | \implies x_1 \ge |-2x_1$$

 $x_1+3x_1 \ge | \implies x_2 \ge \frac{1}{3}(|-x_1|)$
 $x_1, x_2 \ge 0$

a)
$$f_0(x_1, x_2) = x_1 + x_2$$
.

KITXZ=C.

$$c) \quad f_0(x_1, x_2) = x_1$$

d)
$$f_0(x_1,x_2) = \max_{x \in \mathbb{R}} \{x_1, x_2\} = \|\underline{x}\|_{\infty}$$

e)
$$f_0(x_1, x_2) = x_1^2 + 9x_2^2 = C$$

$$\nabla f_{\bullet}(x_{1},x_{2}) | x_{1}^{*} = f_{\bullet}, x_{2}^{*} = f_{\bullet}$$
 is perpendicular to $x_{1} + 3x_{2} = 1$.

4.7 BV

 $\lim_{x \to \infty} \frac{c_{x}x + d}{c_{x}x + d} \qquad \text{S-1.} \qquad \lim_{x \to \infty} \frac{c_{x}x + d}{x + d} \qquad \text{S-1.}$

to, fi, ..., fm: convex

NTS: for = 90(x)

 $S^{\kappa}(\partial^{\circ}) = \{ x : \frac{c_{\varepsilon} \times tq}{f^{\circ}(x)} \in x \}$

= } x : f(x) \le \alpha(c\x + d) }.

 $\geq \{x: f_0(x) - \alpha(c^{\intercal}x+d) \leq 0\}$; convex.

b) Inhoduce t= crxtd > 0. Define y= x crx+d = xt. X= \frac{\frac{1}{2}}{3} Win $\frac{c}{40(x)}$ S.t. 4x = 3.

(1) $A_X = b \Rightarrow A(\frac{y}{\epsilon}) = b \Rightarrow A_y = b \Rightarrow A_y - b = 0$

Define gi(y,t): perspective of fi $g_i(y,t) = tf_i(\frac{y}{t})$ RMK: It fi is convex, so is gi. \Leftrightarrow $g_i(y,t) \leq 0$. $\forall i$ (3) Objective: $\frac{f_0(x)}{c^2x+d} = tf_0(\frac{y}{t}) = g_0(y,t).$ becomes a convex for Hera the opt prob. is convex. $4.9: (D): \underset{\times}{\text{min}} CT_{\chi} \text{ s.t. } A_{\chi} \leq b.$ A: square, non-singular. Make the substitution y= Ax, i.e, x=A'g (LP1): Min cT(A-1y) s.t. y & b. Min (A-Tc) y s.t. y & b. Suppose, A'c €0, i.e., ∃i∈[n] s.t. (A'c); >0.

The take y to be (0,0,0,...,0, L,0,...,0)

$$(A^{-7}C)^{T}y = L(A^{-7}C)$$

Now take $L \rightarrow -\infty$. Then the objective is unbounded below. If $(A^{-7}c) \not\equiv 0$, then the $p^* = -\infty$.

So $A^{-T}c \leq 0$. Under this condition, min $(A^{-T}c)^{T}y \leq 1$. $y \leq b$. The optimum/min is achieved at $y^{*} = b$.

$$p^{*} = \sum_{c} c^{T} A^{-c} b$$
, $A^{-t} c \leq 0$
 $\sum_{c} -\infty$, else.

By 411

a)
$$\min_{x} \left(\|A_{x} - b\|_{\infty} = \max_{x \in \mathbb{N}} |(A_{x} - b)_{i}| \right)$$

Min $C^T \times S \cdot t$. $A \times = b$. $\times \ge 0$ or $G \times \le t$

Epigraph form: Use t20 to upper bound Max (Ax-b);

min to s.t. max (Ax-b); st.

be
$$\mathbb{R}^m$$
 $|(Ax-b)_i| \le t$. $\forall i \in [m]$.
 $-t \le (Ax-b)_i \le t$ $\forall i \in [m]$.

$$A_{x}-b \leq t \cdot 1$$

$$-A_{x}+b \leq -t \cdot 1$$

$$\|y\|_1 = \sum_{i=1}^m |y_i|$$

min E Si XERT, SERM = Si Assuming x is fixed, then The constraints say that

$$\begin{cases} A_{x}-b \leqslant s \\ A_{x}-b \geqslant -s. \end{cases}$$

 $\begin{array}{c|c}
-s_i \leq a_i^T x - b_i \leq s_i \\
\hline
i \in [m] \\
\end{array}$