Lecture 25

Name: Harsh Sanjay Roniyar

Roll Number: 22B3942

Principal Component Analysis

Objective:

• Find a way to select top d < D orthogonal directions that explain the maximum possible variance of the data

Outline:

- Mean-center the data
- Loop
 - Find direction of maximum variance (that is orthogonal to all previously found directions)
- Until desired percent of variance is captured or number of dimensions

Algorithm

- Mean centering: $z := x \mu_x$
- Covariance: $NC = Z^TZ$
- Eigen decomposition: $C = U\Lambda U^T$; $\lambda_j u_j = Cu_j$
- Selection: $C_d = U \Lambda_d U^T = U_d \Lambda_d U_d^T, \ d < D$
 - Drop dimensions: Set lower D-d eigenvalues to zero
- Projection: $Y = ZU_d$
- Reconstruction: $Z_d = YU_d^T = ZU_dU_d^T$
- Reconstruction error: $||Z-Z_d||_2^2 \propto ||\Lambda-\Lambda_d||$

Kernel PCA

- Introduces nonlinearity by mapping data to a feature space
- Avoids calculating features directly by using the kernel trick

t-distributed Stochastic Node Embeddings (T-SNE)

Auto-encoder method

Linear Support Vector Regression: Points outside the margin are the support vectors for hard-regression, contrary to classification support vectors only on the boundaries.

Decision Tree: Pruning,