

Speicherelemente und Flipflops (üb. LAT) Übungen Digitales Design

3 Flipflops

3.1 Aufspürung von Übergängen

Mit Hilfe von einer D-Flipflop und von logischen Gattern, entwerfen Sie eine Schaltung, welche die Übergänge ihres Eingangssignal aufspürt.

3.2 Schieberegister

Die folgende Abbildung zeigt ein Schieberegister.

Erklären Sie die Funktionsweise dieser Schaltung.

3.3 Flipflop, durch ihre charakteristische Gleichung bezeichnet

Eine zu modifizierende Schaltung enthält M-Flipflops, welche durch ihre charakteristische Gleichung bezeichnet sind:

$$q^+ = \bar{s}a + sb$$

Mit Hilfe von einer D-Flipflop und von kombinatorischen Gattern, schlagen Sie eine Ersatzschaltung zur M-Flipflop vor.

3.4 Teiler durch 2

Mit Hilfe von einer T-Flipflop, erstellen Sie einen Frequenzteiler durch 2. Mit Hilfe von dieser Schaltung, erstellen Sie einen Teiler durch 4.

3.5 Ersatz eines Flipflop

Mit Hilfe von einer E-Flipflop und von kombinatorischen Gattern, erstellen Sie eine T- Flipflop.

3.6 Schieberegister

Mit Hilfe von T-Flipflops, erstellen Sie einen 4-Bit Schieberegister.

3.7 Asynchrone Nullsetzung

Mit Hilfe von einem RC-Glied und von logischen Gattern, erstellen Sie einen Schaltkreis zur Initialisierung der Flipflops beim Einschalten der Elektronik.

3.8 Asynchrone Schaltung

Die folgende Abbildung zeigt eine asynchrone Schaltung: die FlipFlops haben verschiedene Taktsignale.

Ergänzen Sie die folgende Abbildung, welche das zeitliche Verhalten der Schaltung angibt. Weisen Sie allen Bausteinen der Schaltung eine identische Gatterverzögerung zu.

