Brandon Thompson

Due: 3/31/21

Dr. Muhammed Abid

Assignment 5: Chapter 10, 11, 12

PROBLEM #1 (15 POINTS):

Use the pumping lemma to show that this language is nonregular:

$$\{a^nb^na^n\} = \{aba, aabbaa, aaabbbaaa, \ldots\}$$
$$\{a^nba^n\} = \{aba, aabaa, aaabaaa, \ldots\}$$
$$\{a^nb^{2n} = \{abb, aabbb, aaabbbbb, \ldots\}$$

SOLUTION:

1. First we assume that L is regular and n is the number of states.

Let $w = a^n b^n a^n$. Thus |w| = 3n > n.

By pumping lemma, let w = xyz, where $|xy| \le n$.

Let $x = a^p, y = a^q, z = a^r b^n a^n$, where $p + q + r = n, p \neq 0, q \neq 0, r \neq 0$.

Let k=2. Then $xy^2z=a^pa^{2q}a^rb^na^n$.

The number of a's is :(p + 2q + r) + n = (p + q + r) + q + n = 2n + q

Hence, $xy^2z = a^{n+q}b^na^n$. Since $q \neq 0, xy^2z$ is not of the form $a^nb^na^n$.

Thus, xy^2z is not in L making L not regular.

2. First we assume that L is regular and n is the number of states.

Let $w = a^n b a^n$. Thus |w| = 2n + 1 > n.

By pumping lemma, let w = xyz, where $|xy| \le n$.

Let $x = a^p, y = a^q, z = a^r b a^n$, where $p + q + r = n, p \neq 0, q \neq 0, r \neq 0$.

Let k = 2. Then $xy^2z = a^pa^{2q}a^rba^n$.

The number of a's is: (q + 2q + r) + n = (p + q + r) + q + n = 2n + q

Hence, $xy^2z = a^{n+q}ba^n$. Since $q \neq 0, xy^2z$ is not of the form a^nba^n .

Thus xy^2z is not in L making L not regular.

3. First we assume that L is regular and n is the number of states.

Let $w = a^n b^{2n}$. Thus $|w| = 3n \ge n$.

By pumping lemma, let w = xyz, where $|xy| \le n$.

Let $x = a^p, y = a^q, z = a^r b^{2n}$, where $p + q + r = n, p \neq 0, q \neq 0, r \neq 0$.

Let k = 2. Then $xy^2z = a^pa^{2q}a^rb^{2n}$.

The number of *a*'s is: (q + 2q + r) = (p + q + r) + q = n + q

Hence, $xy^2z = a^{n+q}b^{2n}$. Since $q \neq 0, xy^2z$ is not of the form a^nb^{2n} .

Thus xy^2z is not in L making L not regular.

PROBLEM #3 (18 POINTS):

Describe the language generated by the following context free grammar (CFG) in English and regular expressions:

- a) $S \to SS$
 - $S \to ZZZ$
 - $Z \to bZ$
 - $Z \to Zb$
 - $Z \to a$
- b) $S \to aS$
 - $S \to bb$
- c) $S \to XYX$
 - $S \to aX$
 - $S \to bX$
 - $S \to \Lambda$
 - $S \rightarrow bbb$

PROBLEM #4 (15 POINTS):

Find CFG for the following languages over the alphabet $\Sigma = \{a, b\}$:

- a) All words that have different first and last letters.
- b) All words in which the letter b is never tripled.
- c) All words that do not have substring ab.

PROBLEM #5 (10 POINTS):

Show that the CFG below is ambiguous by finding a word with two distinct syntax trees. Show both syntax trees.

a)
$$S \to Sbb$$

 $S \to Sbbb$
 $S \to b$

b)
$$S \to AA$$

 $A \to AAA|a|bA|Ab$