Computational genomics: hands on course

Predictive modeling with supervised learning

How are machine learning models fit?

- Define a prediction function or method f(X)
- Devise a loss/cost function: such as $\sum (Y-f(X))^2$
- Apply optimization & find best parameters for $\Sigma(Y-f(X))^2$

X-WH

k means cost as TSS) auster

Steps for supervised learning

Use case: Disease subtype from genomics data

Data pre-processing Data transformation

Systematic differences between samples and outliers are a problem for fitting ML models

Gene expression values from glioblastoma samples

Data pre-processing

Data transformation

Data pre-processing

Data filtering

Data pre-processing Dealing with missing values

Choices:

- 1) Remove samples/variables with missing values
- 2) Assign the mean/median value
- 3) Try to predict missing values

knnImpute=preProcess(missing_tgexp,method="knnImpute")

Data split

Holdout test dataset

Data split

cross-validation

Data split

bootstrap resampling

Predicting the subtype with k-nearest neighbors

k-NN in a nutshell: find similar patients and use their labels

Assessing the performance of our model

	Actual CIMP	Actual noCIMP
	Actual CIMP	Actual noclivie
Predicted as CIMP	True Positives (TP)	False Positive (FP) 🗸
Predicted as noCIMP	False Positives (FN)	True negatives (TN)

Precision,
$$TP/(TP+FP)$$
Sensitivity, $TP/(TP+FN)$
Specificity, $TN/(TN+FP)$

Assessing the performance of our model

Receiver Operating Characteristic (ROC) Curves

Model tuning and avoiding overfitting

Model tuning and avoiding overfitting

Trees and forests Decision trees

Trees and forests Decision trees

Trees and forests:

Random Forests

Variable importance for RF

Given a variable:

Permute variable

OOB Test with permuted variable

Measure decrease in accuracy

Calculate decrease in Gini impurity

sum up the decrease across trees

Divide by total number of trees

$$I = G_{parent} - G_{split1} - G_{split2}$$

Variable importance Method agnostic

DALEX package in R implements this strategy

Regression using random forests

Regression using random forests

Supervised learning for Genomics:

Recap

