# Load-matching renewable plus storage system modeling in NREL SAM (2021.12.2r2)

Southern Company

Will Hobbs, Southern Company

## **Summary**

- NREL SAM can model renewable energy systems with battery energy storage (ES) for load-matching. This can include off-grid systems (microgrids) or 24x7x365 "energy matching" scenarios, e.g., for corporations with sustainability goals beyond simple annual net zero [1, 2].
- SAM and HOMER (v2.68 "Legacy") can get similar results in optimizing PV+ES microgrids.
- There are a few ways to model load-matching PV+ES and PV+Wind+ES systems in SAM, including "hacks" to model PV+Wind+ES with parametric sizing.





# "Off-grid" PV+ES in SAM

Can be modeled two ways with distributed (BTM) energy storage models using either:

- Grid Outage feature (make 100% of load "critical" and all time steps have a grid outage)
- Grid power targets BTM battery dispatch option (with fixed 0 kW grid power target)

Here's an example with 2014 Birmingham AL weather and default SAM residential load:

Parametric analysis can optimize PV and ES size (here using Grid Outage feature):



Grid power target dispatch gives slightly different results: 'e.q

| SAM Grid Target               |     | PV capacity (kW): / |        |       |       |       |       |  |
|-------------------------------|-----|---------------------|--------|-------|-------|-------|-------|--|
| Annual Unmet Load             |     | 5                   | 10     | 15    | 20 ,  | 25    | 30    |  |
| Battery<br>Capacity<br>(kWh): | 20  | 32.56%              | 11.10% | 6.80% | 5.16% | 4.26% | 3.64% |  |
|                               | 40  | 30.41%              | 4.50%  | 0.66% | 0.29% | 0.14% | 0.08% |  |
|                               | 60  | 29.95%              | 3.12%  | 0.12% | 0.02% | 0.00% | 0.00% |  |
|                               | 80  | 29.70%              | 2.50%  | 0.00% | 0.00% | 0.00% | 0.00% |  |
|                               | 100 | 29.48%              | 2.11%  | 0.00% | 0.00% | 0.00% | 0.00% |  |

### PV+ES in SAM vs. HOMER (Legacy)

SAM can give very similar results to the "legacy" version of HOMER (v2.68) for off-grid PV plus battery system sizing.

Copying load and weather (GHI and  $T_{amb}$ ) from SAM, and a custom battery approximating Li-ion:

| HOMER                         |     | PV capacity (kW): |        |       |       |       |       |  |
|-------------------------------|-----|-------------------|--------|-------|-------|-------|-------|--|
| Annual Unmet Load             |     | 5                 | 10     | 15    | 20    | 25    | 30    |  |
| Battery<br>Capacity<br>(kWh): | 20  | 33.79%            | 10.05% | 5.14% | 3.56% | 2.74% | 2.20% |  |
|                               | 40  | 32.35%            | 5.05%  | 0.67% | 0.22% | 0.11% | 0.05% |  |
|                               | 60  | 31.92%            | 3.87%  | 0.09% | 0.00% | 0.00% | 0.00% |  |
|                               | 80  | 31.59%            | 3.27%  | 0.00% | 0.00% | 0.00% | 0.00% |  |
|                               | 100 | 31.25%            | 2.84%  | 0.00% | 0.00% | 0.00% | 0.00% |  |

Unmet load in SAM (Grid Outage) (*left*) and HOMER (*right*) for 15 kW PV, 40 kWh ES:





#### PV+Wind+ES in SAM

SAM doesn't offer PV+Wind+ES models (yet), but there are workarounds:

• Generic-Battery model can import generation profiles from other open cases (e.g., setup a PV case, a second case for wind, and Generic-Battery as the third case that imports the wind and solar profiles) and then dispatch a battery.

#### But what about using the parametric tool for sizing PV and wind?

- Use a Fuel Cell-PV-Battery case, where fuel cell dispatch is an imported wind profile:
  - Create a wind case, model a single "block\*" for the wind project, export hourly System power generated (kW)

    \*capacity amt. by which wind

project size can be increased of decreased e.g. a single turbin

- Create a Fuel Cell case
- Set fuel cell unit nameplate equal to the wind "block" size
- Let the fuel cell run like a wind turbine:
  - remove Fuel Cell degradation, start/stop time limits, and ramp limits; set fuel cost to zero (if running financial analyses)
  - Fuel cell dispatch: use Input dispatch and paste in wind generation
- Battery dispatch: use 0 kW grid power target (Grid Outage feature may not work right [3]).
- Use the parametric tool to vary PV capacity, battery capacity, and Fuel Cell Number of units in stack (the number of wind "blocks")
- Make sure to pick the right weather files for wind and solar: e.g., could be co-located with load or all spread out for a virtual "energy matching" project.

Results for a windy site in North Alabama, default SAM commercial load:

Multiple ways to get to 100%

Cost and land constraints could easily be considered

Input value ranges can be iterated on to "zoom in" on design space

Specific cases can be explored: right click case number, "Create new case", "Simulate", and dive deep...

| SAM Annual             |      | PV Capacity (kWdc) |        |        |        |   |                                |
|------------------------|------|--------------------|--------|--------|--------|---|--------------------------------|
| Unmet Load             |      | 200                | 400    | 600    | 800    |   |                                |
| Battery Capacity (kWh) | 1000 | 56.62%             | 26.29% | 15.71% | 11.86% |   | Number of 250 kW Wind Turbines |
|                        | 2000 | 56.08%             | 21.78% | 9.04%  | 5.05%  | 0 |                                |
|                        | 3000 | 56.02%             | 19.10% | 6.57%  | 3.09%  |   |                                |
|                        | 4000 | 55.97%             | 17.71% | 5.20%  | 2.07%  |   |                                |
|                        | 1000 | 17.29%             | 5.46%  | 2.26%  | 1.25%  | 1 |                                |
|                        | 2000 | 14.07%             | 3.51%  | 0.90%  | 0.29%  |   |                                |
|                        | 3000 | 12.15%             | 2.31%  | 0.37%  | 0.07%  |   |                                |
|                        | 4000 | 10.83%             | 1.55%  | 0.14%  | 0.00%  |   |                                |
|                        | 1000 | 9.71%              | 2.40%  | 0.98%  | 0.52%  |   |                                |
|                        | 2000 | 7.02%              | 1.07%  | 0.28%  | 0.05%  |   |                                |
|                        | 3000 | 5.28%              | 0.53%  | 0.05%  | 0.00%  |   |                                |
|                        | 4000 | 4.03%              | 0.26%  | 0.00%  | 0.00%  |   |                                |
|                        | 1000 | 5.87%              | 1.46%  | 0.56%  | 0.28%  |   |                                |
|                        | 2000 | 3.45%              | 0.51%  | 0.13%  | 0.03%  | 3 |                                |
|                        | 3000 | 2.18%              | 0.12%  | 0.00%  | 0.00%  |   |                                |
|                        | 4000 | 1.35%              | 0.00%  | 0.00%  | 0.00%  |   |                                |



#### References

[1] <a href="https://www.bloomberg.com/press-releases/2022-03-07/constellation-launches-sustainability-partnership-with-microsoft-featuring-24-7-365-real-time-carbon-free-energy-matching">https://www.bloomberg.com/press-releases/2022-03-07/constellation-launches-sustainability-partnership-with-microsoft-featuring-24-7-365-real-time-carbon-free-energy-matching</a>

[2] <a href="https://www.theverge.com/2022/6/9/23160508/corporate-renewable-energy-misleading-rec-power-purchase-climate">https://github.com/NREL/SAM/issues/1130</a>
[3] At least in 2021.12.2 revision 2, see: <a href="https://github.com/NREL/SAM/issues/1130">https://github.com/NREL/SAM/issues/1130</a>

# Files, details, and more screenshots at:

https://github.com/williamhobbs/PVPMC-2022