NormJam: Controls

Why normalize?

With no norm, good clusters with false structures.

B-cells

B-cells show artificial trajectory

Enrichment using MSigDB

Gene Set Name [# Genes (K)]	Description	# Genes in Overlap (k)	k/K	p-value 🖸	FDR q-value 🖸
GO_COTRANSLATIONAL_PROTEIN_TARGETING_T G_TO_MEMBRANE [104]	The targeting of proteins to a membrane that occurs during translation. The transport of most secretory proteins, particularly those with more than 100 amino acids, into the endoplasmic reticulum lumen occurs in this manner, as does the import of some proteins into mitochondria. [ISBN:0716731363, PMID:10512867, PMID:16896215]	9		5.71 e ⁻¹⁷	5.39 e ⁻¹³
GO_CYTOSOLIC_RIBOSOME [113]	A ribosome located in the cytosol. [GOC:mtg_sensu]	9		1.24 e ⁻¹⁶	5.39 e ⁻¹³
GO_ESTABLISHMENT_OF_PROTEIN_LOCALIZATI ATION_TO_ENDOPLASMIC_RETICULUM [117]	The directed movement of a protein to a specific location in the endoplasmic reticulum. [GOC:mah]	9		1.71 e ⁻¹⁶	5.39 e ⁻¹³
GO_NUCLEAR_TRANSCRIBED_MRNA_CATABOLIC_ IC_PROCESS_NONSENSE_MEDIATED_DECAY [120]	The nonsense-mediated decay pathway for nuclear-transcribed mRNAs degrades mRNAs in which an amino-acid codon has changed to a nonsense codon; this prevents the translation of such mRNAs into truncated, and potentially harmful, proteins. [GOC:Krc, GOC:ma, PMID:10025395]	9		2.16 e ⁻¹⁶	5.39 e ⁻¹³
GO_PROTEIN_LOCALIZATION_TO_ENDOPLASMIC MIC_RETICULUM [142]	A process in which a protein is transported to, or maintained in, a location within the endoplasmic reticulum. [GOC:mah]	9		1.02 e ⁻¹⁵	2.04 e ⁻¹²
GO_STRUCTURAL_CONSTITUENT_OF_RIBOSOME [185	The action of a molecule	9		1.15 e ⁻¹⁴	1.87 e ⁻¹¹

Gene Set Name [# Genes (K)]	Description	# Genes in Overlap (k)	k/K	p-value 🖸	FDR q-value 🖸
GO_MHC_PROTEIN_COMPLEX [25]	A transmembrane protein complex composed of an MHC alpha chain and, in most cases, either an MHC class II beta chain or an invariant beta2-microglobin chain, and with or without a bound peptide, lipid, or polysaccharide antigen. [GOC:add, GOC:Jl, ISBN:0781735149, PMID:15928678, PMID:16153240]	6		3.11 e ⁻¹⁵	3.11 e ⁻¹¹
GO_CYTOKINE_MEDIATED_SIGNALING_PATHWAY [787]	A series of molecular signals initiated by the binding of a cytokine to a receptor on the surface of a cell, and ending with regulation of a downstream cellular process, e.g. transcription. [GOC:mah, GOC:signaling, PMID:19295629]	11		1.58 e ⁻¹³	7.92 e ⁻¹⁰
GO_RESPONSE_TO_CYTOKINE [1192]	Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a cytokine stimulus. [GOC:sl]	12		4.09 e ⁻¹³	1.36 e ⁻⁹
GO_ER_TO_GOLGI_TRANSPORT_VESICLE_MEMBR MBRANE [62]	The lipid bilayer surrounding a vesicle transporting substances from the endoplasmic reticulum to the Golgi. [GOC:ai, GOC:ascb_2009,	6		1.07 e ⁻¹²	2.66 e ⁻⁹

Un-normalized tSNE embedding

Normalized tSNE embedding

Mean-Variance relationship

Mean-Variance Relationship

Negative controls show a linear mean-var relationship when conditioned on library size.

Biological data often shows an excess beyond Poisson, even in relatively pure populations.

Control Library size

Nowotschin, S., Setty, M., Kuo, Y. Y., Liu, V., Garg, V., Sharma, R., ... & Church, D. M. (2019). The emergent landscape of the mouse guendoderm at single-cell resolution. Nature, 569(7756), 361.

Dispersion persists after controlling for library size

Mean variance relation within same sequencing depth Liver cells

 $Var = mean + 37 * mean^2$

Gene Mean

Dispersion persists after controlling for library size

Liver cells Var = mean + 37 * mean^2

Heterogeneous cells Var = mean + 29 * mean^2

Gene Mean

Genes on the low-variance envelope

Genes with low variance in mouse across Tabula Muris Senis

SCTransform: Identifying low-variance genes

60

Residual variance

- Human datasets: Pancreas, brain (sNuc), bone marrow, PBMC, cord blood
- Identify 1000 genes that consistently exhibit low-variance in the data

						0.001	0.01	0.1	1	10	
[1]	"RPL36AL"	"RPL28"	"RPS9"	"SLC25A6"	"LRRC16B"	"RPL27A"	"UBE2D3"	"EDC4"	"FKBP8"	"EIF3K"	"RPS15"
[12]	"ATP5J2"	"POLR2J"	"UBE2I"	"PPDPF"	"DDT"	"CHAF1B"	"AURKAIP1"	"SRSF5"	"ARF1"	"RPL6"	"MELK"
[23]	"PFDN5"	"RPS28"	"GNB2"	"TRAPPC1"	"KLHL23"	"RPLP2"	"RPL26"	"B4GALT2"	"HNRNPK"	"ESPN"	"NACA"

MGI Mammalian Phenotype Level 4 2019

Click the bars to sort. Now sorted by p-value ranking.

MP:0011100_preweaning_lethality,_complete_penetrance

MP:0013292_embryonic_lethality_prior_to_organogenesis

MP:0011096_embryonic_lethality_between_implantation_and_som

MP:0011094_embryonic_lethality_before_implantation,_complete_

GO Cellular Component 2018

entries per page

Hover each row to see the overlapping genes.

Index	Name	P- value				
1	cytosolic ribosome (GO:0022626)	5.693e- 26				
2	cytosolic large ribosomal subunit (GO:0022625)	4.944e- 21				
3	mitochondrial inner membrane (GO:0005743)	2.044e- 34				
	lihit (CO-0045034)	2.157e-				

large ribosomal subunit (GO:0015934)

GO Molecular Function 2018

≜ entries ner nage

Bar Graph

Hover each row to see the overlapping genes.

10	entities per page				
Index	Name				
1	RNA binding (GO:0003723)				
2	NADH dehydrogenase (ubiquinone) activity (GO:0008137)				

	Index	Name	P-value
	1	RNA binding (GO:0003723)	1.495e-53
	2	NADH dehydrogenase (ubiquinone) activity (GO:0008137)	6.918e-14
	3	NADH dehydrogenase (quinone) activity (GO:0050136)	6.918e-14
	4	oxidoreductase activity, acting on diphenols and related substances as donors, cytochrome as acceptor (GO:0016681)	0.00001527
	5	ubiquinol-cytochrome-c reductase activity (GO:0008121)	0.00001527

Bar Graph

Using Tabula Muris Senis FACS(smartseq2)

reading data in: adata = Tabula Muris Senis FACS

remove non-annotated cells: adata = adata[adata.obs['cell_ontology_class']!='nan']

 $n_{obs} \times n_{vars} = 110824 \times 22966$

Raw data & Normalization: sc.pp.normalize_per_cell(adata, counts_per_cell_after=1e4)

Zeisel et al dataset (astrocytes, oligos, microglia)

Separate analysis per group:

- scran normalisation
- Mean vs CV2 trend (log-scale)
- Residual CV2 wrt linear trend
- Genes ranked by residual CV2

Overlap in top 250, 500 and 1000 genes:

- Molecular function: RNA binding
- Mammalian phenotye: embryonic lethality

Tabula Muris / Zeisel overlap / Human datasets

• Gene enrichment are replicated across datasets / methods

Overlap in genes: Rpls, Atps