Four-Cycle Free Graphs and Entropy Minimality

Nishant Chandgotia

University of British Columbia

July, 2014

Outline

- Entropy Minimality and Hom Shifts
- Mixing Conditions and Entropy Minimality
- Rigidity and Flexibility in the Space of 3-Colourings.

Given a finite undirected graph ${\cal H}$ without multiple edges,

Given a finite undirected graph $\mathcal H$ without multiple edges, we can define a shift space $X_{\mathcal H}\subset \mathcal H^{\mathbb Z^d}$

Given a finite undirected graph \mathcal{H} without multiple edges, we can define a shift space $X_{\mathcal{H}} \subset \mathcal{H}^{\mathbb{Z}^d}$ such that symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .

Given a finite undirected graph \mathcal{H} without multiple edges, we can define a shift space $X_{\mathcal{H}} \subset \mathcal{H}^{\mathbb{Z}^d}$ such that symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .

Here every direction has the same constraint.

Given a finite undirected graph \mathcal{H} without multiple edges, we can define a shift space $X_{\mathcal{H}} \subset \mathcal{H}^{\mathbb{Z}^d}$ such that symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .

Here every direction has the same constraint.

Examples:

Given a finite undirected graph \mathcal{H} without multiple edges, we can define a shift space $X_{\mathcal{H}} \subset \mathcal{H}^{\mathbb{Z}^d}$ such that symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .

Here every direction has the same constraint.

Examples:(Hard Square model)

Graph H

A Pattern

Given a finite undirected graph ${\cal H}$ without multiple edges, we can define a shift space $X_{\mathcal{H}} \subset \mathcal{H}^{\mathbb{Z}^d}$ such that symbols on adjacent vertices of \mathbb{Z}^d form an edge in the graph \mathcal{H} .

Here every direction has the same constraint.

Examples:(3-colourings)

A Pattern

The language $\mathcal{B}(X)$ of a shift space is the set of patterns appearing in elements of X.

The language $\mathcal{B}(X)$ of a shift space is the set of patterns appearing in elements of X.

The topological entropy of X is defined as

The language $\mathcal{B}(X)$ of a shift space is the set of patterns appearing in elements of X.

The topological entropy of X is defined as

$$h_{top}(X) := \lim_{n \longrightarrow \infty} \frac{\log |\mathcal{B}(X) \cap \mathfrak{A}^{\{1,2,\dots,n\}^d}|}{n^d}.$$

If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X).$$

If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

A shift space X is said to be entropy minimal if for all shift spaces $Y \subsetneq X$,

If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

A shift space X is said to be entropy minimal if for all shift spaces $Y \subsetneq X$, $h_{top}(Y) < h_{top}(X)$,

If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

A shift space X is said to be entropy minimal if for all shift spaces $Y \subsetneq X$, $h_{top}(Y) < h_{top}(X)$, that is, if we forbid any pattern from the language $\mathcal{B}(X)$ the entropy will drop.

If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

A shift space X is said to be entropy minimal if for all shift spaces $Y \subsetneq X$, $h_{top}(Y) < h_{top}(X)$, that is, if we forbid any pattern from the language $\mathcal{B}(X)$ the entropy will drop.

If $h_{top}(X) = 0$ then X is entropy minimal if and only if it is minimal.

If $Y \subset X$ are shift spaces then

$$h_{top}(Y) \leq h_{top}(X)$$
.

A shift space X is said to be entropy minimal if for all shift spaces $Y \subsetneq X$, $h_{top}(Y) < h_{top}(X)$, that is, if we forbid any pattern from the language $\mathcal{B}(X)$ the entropy will drop.

If $h_{top}(X) = 0$ then X is entropy minimal if and only if it is minimal.

(Quas and Trow '00) Every shift space X contains an entropy minimal shift space $Y \subset X$ such that $h_{top}(X) = h_{top}(Y)$.

Theorem (Chandgotia, Meyerovitch '13)

Let C_n be an n-cycle for some integer $n \neq 4$. Then X_{C_n} is entropy minimal.

Theorem (Chandgotia, Meyerovitch '13)

Let C_n be an n-cycle for some integer $n \neq 4$. Then X_{C_n} is entropy minimal.

Theorem (Chandgotia '14; In preparation)

If \mathcal{H} is a connected graph without 4-cycles then $X_{\mathcal{H}}$ is entropy minimal.

Theorem (Chandgotia, Meyerovitch '13)

Let C_n be an n-cycle for some integer $n \neq 4$. Then X_{C_n} is entropy minimal.

Theorem (Chandgotia '14; In preparation)

If \mathcal{H} is a connected graph without 4-cycles then $X_{\mathcal{H}}$ is entropy minimal.

Remark: We will concentrate on X_{C_3} , the space of all 3-colourings.

(Coven and Smítal '93) If a shift space is entropy minimal then it is topologically transitive.

(Coven and Smítal '93) If a shift space is entropy minimal then it is topologically transitive.

(Boyle, Pavlov and Schraudner '09) There exists a block-gluing shift space which is not entropy minimal.

(Coven and Smítal '93) If a shift space is entropy minimal then it is topologically transitive.

(Boyle, Pavlov and Schraudner '09) There exists a block-gluing shift space which is not entropy minimal.

(Schraudner '09) Every strongly irreducible shift space is entropy minimal.

(Coven and Smítal '93) If a shift space is entropy minimal then it is topologically transitive.

(Boyle, Pavlov and Schraudner '09) There exists a block-gluing shift space which is not entropy minimal.

(Schraudner '09) Every strongly irreducible shift space is entropy minimal.

(Lightwood and Schraudner '12) A shift of finite type is entropy minimal if and only if the set of all 'non-universal' boundary patterns is 'poor'.

Mixing Conditions and Entropy Minimality

A height function is a function $h: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ such that

$$|h(v) - h(w)| = 1$$

for all adjacent vertices v and w.

A height function is a function $h: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ such that

$$|h(v) - h(w)| = 1$$

for all adjacent vertices v and w.

If h is a height function then $h \mod 3$ is an element of X_{C_3} .

A height function is a function $h: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ such that

$$|h(v) - h(w)| = 1$$

for all adjacent vertices v and w.

If h is a height function then $h \mod 3$ is an element of X_{C_3} . This sets up a correspondence between height functions and elements of X_{C_3} .

A height function is a function $h: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ such that

$$|h(v) - h(w)| = 1$$

for all adjacent vertices v and w.

If h is a height function then $h \mod 3$ is an element of X_{C_3} . This sets up a correspondence between height functions and elements of X_{C_3} .

Height Function

A height function is a function $h: \mathbb{Z}^d \longrightarrow \mathbb{Z}$ such that

$$|h(v) - h(w)| = 1$$

for all adjacent vertices v and w.

If h is a height function then $h \mod 3$ is an element of X_{C_3} . This sets up a correspondence between height functions and elements of X_{C_3} .

Height Function

Pattern in X_C

Given a height function h

Given a height function h the slope in the direction e_i is given by

Given a height function h the slope in the direction e_i is given by

$$\lim_{n \to \infty} \frac{h(ne_i) - h(0)}{n}.$$

Given a height function h the slope in the direction e_i is given by

$$\lim_{n \to \infty} \frac{h(ne_i) - h(0)}{n}.$$

The slope is always between -1 and 1 in every direction.

Given a height function h the slope in the direction e_i is given by

$$\lim_{n \to \infty} \frac{h(ne_i) - h(0)}{n}.$$

The slope is always between -1 and 1 in every direction.

Given an ergodic measure μ on X_{C_3} ,

Given a height function h the slope in the direction e_i is given by

$$\lim_{n \to \infty} \frac{h(ne_i) - h(0)}{n}.$$

The slope is always between -1 and 1 in every direction.

Given an ergodic measure μ on X_{C_3} , the slope is a constant μ -almost everywhere in every direction.

Given a height function h the slope in the direction e_i is given by

$$\lim_{n \to \infty} \frac{h(ne_i) - h(0)}{n}.$$

The slope is always between -1 and 1 in every direction.

Given an ergodic measure μ on X_{C_3} , the slope is a constant μ -almost everywhere in every direction.

Note that the slope may be different in different directions.

Given a height function h the slope in the direction e_i is given by

$$\lim_{n \to \infty} \frac{h(ne_i) - h(0)}{n}.$$

The slope is always between -1 and 1 in every direction.

Given an ergodic measure μ on X_{C_3} , the slope is a constant μ -almost everywhere in every direction.

Note that the slope may be different in different directions.

If the slope of a height function is 1 or -1 in some direction

If the slope of a height function is 1 or -1 in some direction then it cannot be changed anywhere to obtain another height function.

If the slope of a height function is 1 or -1 in some direction then it cannot be changed anywhere to obtain another height function.

0	1	2	0	1	2	0	1	2	0	1	2
2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2
2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2
2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2
2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2

If the slope of a height function is 1 or -1 in some direction then it cannot be changed anywhere to obtain another height function.

0	1	2	0	1	2	0	1	2	0	1	2
2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2
2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2
2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2
2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2

Let X_{frozen} be the space of such configurations. Then $h_{top}(X_{frozen}) = 0$.

If the slope of a height function is 1 or -1 in some direction then it cannot be changed anywhere to obtain another height function.

0	1	2	0	1	2	0	1	2	0	1	2
2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2
2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2
2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2
2	0	1	2	0	1	2	0	1	2	0	1
0	1	2	0	1	2	0	1	2	0	1	2

Let X_{frozen} be the space of such configurations. Then $h_{top}(X_{frozen}) = 0$. Thus slope 1 or -1 is 'improbable'.

Given any height function h_1 on a ball D_n in \mathbb{Z}^d

Given any height function h_1 on a ball D_n in \mathbb{Z}^d and a height function h_2 on \mathbb{Z}^d with slope s strictly between 1 and -1 in all directions

Given any height function h_1 on a ball D_n in \mathbb{Z}^d and a height function h_2 on \mathbb{Z}^d with slope s strictly between 1 and -1 in all directions we can choose an $N_n^s \in \mathbb{N}$ and a height function h

Since slopes 1 or -1 are 'improbable', the slope of any measure of maximal entropy is strictly between -1 and 1.

Since slopes 1 or -1 are 'improbable', the slope of any measure of maximal entropy is strictly between -1 and 1. Such measures are fully supported.

Since slopes 1 or -1 are 'improbable', the slope of any measure of maximal entropy is strictly between -1 and 1. Such measures are fully supported. A shift space is entropy minimal if and only if every measure of maximal entropy is fully supported.

Since slopes 1 or -1 are 'improbable', the slope of any measure of maximal entropy is strictly between -1 and 1. Such measures are fully supported. A shift space is entropy minimal if and only if every measure of maximal entropy is fully supported. Therefore X_{C_3} is entropy minimal.

Since slopes 1 or -1 are 'improbable', the slope of any measure of maximal entropy is strictly between -1 and 1. Such measures are fully supported. A shift space is entropy minimal if and only if every measure of maximal entropy is fully supported. Therefore X_{C_3} is entropy minimal.

What if C_3 is replaced by another connected four-cycle free graph \mathcal{H} ?

Since slopes 1 or -1 are 'improbable', the slope of any measure of maximal entropy is strictly between -1 and 1. Such measures are fully supported. A shift space is entropy minimal if and only if every measure of maximal entropy is fully supported. Therefore X_{C_3} is entropy minimal.

What if C_3 is replaced by another connected four-cycle free graph \mathcal{H} ? Notice that we were using the following commutative diagram:

Since slopes 1 or -1 are 'improbable', the slope of any measure of maximal entropy is strictly between -1 and 1. Such measures are fully supported. A shift space is entropy minimal if and only if every measure of maximal entropy is fully supported. Therefore X_{C_3} is entropy minimal.

What if C_3 is replaced by another connected four-cycle free graph \mathcal{H} ? Notice that we were using the following commutative diagram:

Since slopes 1 or -1 are 'improbable', the slope of any measure of maximal entropy is strictly between -1 and 1. Such measures are fully supported. A shift space is entropy minimal if and only if every measure of maximal entropy is fully supported. Therefore X_{C_3} is entropy minimal.

What if C_3 is replaced by another connected four-cycle free graph \mathcal{H} ? Notice that we were using the following commutative diagram:

 \mathbb{Z} is replaced by the universal cover of \mathcal{H} .

Conjecture: If \mathcal{H} is any connected graph then $X_{\mathcal{H}}$ is entropy	ру

minimal.(d=2)

Conjecture: If \mathcal{H} is any connected graph then $X_{\mathcal{H}}$ is entropy

 \mathcal{H} ?

minimal.(d=2)**Question:** What shift spaces are conjugate to $X_{\mathcal{H}}$ for some graph

Thank You!