MAT344 Intro to Combinatorics

Lecture 6: The Pigeonhole Principle

Lecturer: Reila Zheng Scribe: Kevin Gao

6.1 The Pigeonhole Principle

Theorem 6.1 (The Pigeonhole Principle). Let X be a set of n objects. Suppose $\{X_1, \ldots, X_k\}$ from a partition of X (i.e. a family of disjoint sets whose union is X). If k < n, then $\exists i \in \{1, \ldots, k\}$ such that $|X_i| \ge 2$.

Proof. Suppose for contradiction that for all $i \in \{1, ..., k\}$, $|X_i| = 1$. Since $\{X_1, ..., X_k\}$ is a partition,

$$n = |X| = \sum_{i=1}^{k} |X_i| = k.$$

But this is contradiction since k < n.

Alternatively, we can state the Pigeonhole Principle in terms of a mapping function.

Theorem 6.2 (The Pigeonhole Principle). Let X be a set of n objects. Let $s: X \to \{1, \ldots, k\}$. If k < n, then s cannot be injective. That is, there exist distinct $x, y \in X$ such that s(x) = s(y).

Proof. For $i \in \{1, ..., k\}$, let $X_i = \{x \in X \mid s(x) = i\}$. Suppose for contradiction that s is injective. Then, it follows that X_i are disjoint and

$$\bigcup_{i=1}^{k} X_i = X.$$

But again, since s is injective $|X_i| \leq 1$ for all $i \in \{1, \dots, k\}$ and this is a contradiction since k < n.

6.2 Applications of the Pigeonhole Principle