Docker Containers

Docker

- a system for building and running containers
- containers look a little like virtual machines, virtual environments

Very useful for work in DL/ML:

- create complex software installs independent of host (including Windows and MacOS)
- solve problems with driver/version incompatibilites for CUDA
- · assure reproducibility
- basis for reliable distributed computation using Kubernetes

Docker Implementation

- · containers actually share a kernel
- sophisticated version of chroot
- just manipulate name spaces
- provide isolation and (theoretically) security (BSD jails)
- multiple namespaces in Linux
 - file system
 - users
 - IPC
 - networking

---> c2e40f3e6618

Successfully built c2e40f3e6618 Successfully tagged myimage:latest

Creating Docker Containers

- Docker containers are created with the docker build command
- this packages software into a container
- it's a cross between "linking an executable" and "installing a machine"

In [2]:

```
cat <<"E0F" |
FROM nvcr.io/nvidia/pytorch:19.11-py3
ENV DEBIAN FRONTEND noninteractive
RUN apt-get update
RUN apt-get install -qqy daemon expect tmux dnsutils iputils-ping graphicsmagick
RUN python3 -m pip install git+git://github.com/tmbdev/webdataset
RUN python3 -m pip install git+git://github.com/tmbdev/torchmore
RUN python3 -m pip install git+git://github.com/tmbdev/tarproc
RUN python3 -m pip install git+git://github.com/NVlabs/tensorcom
RUN sed -i '3,29d;34,35s/.*/true/;43,44s/.*/true/;72,74s/.*/true/;98,101s/.*/true/;s/echo *$/true/'
/usr/local/bin/nvidia entrypoint.sh
F0F
docker build -t myimage - > log
tail log
---> Using cache
---> e821490671e2
Step 8/9 : RUN python3 -m pip install git+git://github.com/NVlabs/tensorcom
 ---> Using cache
 ---> e4ec4e7ba81a
Step 9/9 : RUN sed -i '3,29d;34,35s/.*/true/;43,44s/.*/true/;72,74s/.*/true/;98,101s/.*/true/;s/echo
*$/true/' /usr/local/bin/nvidia entrypoint.sh
---> Using cache
```

Docker Containers Consist of Layers

In [3]:

IMAGE	CREATED	CREATED BY	SIZE
COMMENT			
c2e40f3e6618	5 hours ago	/bin/sh -c sed -i '3,29d;34,35s/.*/true/;43,	68.1kB
e4ec4e7ba81a	5 hours ago	/bin/sh -c python3 -m pip install git+git://	124kB
e821490671e2	6 hours ago	/bin/sh -c python3 -m pip install git+git://	140kB
6eba85d1740a	6 hours ago	/bin/sh -c python3 -m pip install git+git://	136kB
lc957b3afb1c	6 hours ago	/bin/sh -c python3 -m pip install git+git://…	9.95MB
43c2cc98b0c7	6 hours ago	/bin/sh -c apt-get install -qqy daemon expec	114MB
91148ad8e25a	6 hours ago	/bin/sh -c apt-get update	27.7MB
66dca9e4af22	6 hours ago	/bin/sh -c #(nop) ENV DEBIAN_FRONTEND=nonin	0B
c97490b12436	3 weeks ago	2 NVIDIA BUILD REF=b16656a96f38aa26442503e8	0B

Running Docker Containers

You run Docker containers with the docker run command. To get GPU support, you need to use the nvidia runtime.

Docker containers generally behave mostly like executables, scripts, and/or commands.

In [4]:

```
docker run --runtime=nvidia myimage nvidia-smi -L

GPU 0: TITAN X (Pascal) (UUID: GPU-a964bb9a-cb1a-5036-e1d8-1217c1faa8e7)
GPU 1: TITAN X (Pascal) (UUID: GPU-a16b9686-b668-e8d5-ff5f-f85aea86d034)
```

Interactive Usage

You can run Docker containers interactively as well.

In [5]:

```
# INTERACTIVE USAGE:
# docker run --runtime=nvidia -t -i myimage
# docker ps
# docker exec ... -t -i /bin/bash
```

Environment

By default, code inside a container executes as root, in a private namespace and directory only visible within the container.

In [6]:

```
docker run myimage bash -c 'id; pwd; ls'

uid=0(root) gid=0(root) groups=0(root)
/workspace
README.md
docker-examples
examples
tutorials
```

Sharing with Host

Most containers need to share something with their host. Here we share:

- networking namespace
- IPC namespace (shared memory etc.)
- the current directory
- the user and group ids and the corresponding passwd/group files

In [10]:

```
docker run -t -i \
    --network host \
    --ipc host \
   -v `pwd`:`pwd`
-w `pwd` \
    -v /etc/passwd:/etc/passwd \
    -v /etc/group:/etc/group \
    -u `id -u`:`id -g`
    myimage \
    bash -c 'id; pwd; ls|sed 3q'
```

uid=1000(tmb) gid=1000(tmb) groups=1000(tmb)/home/tmb/exp/bigdata19 000-data-prep.ipynb 010-introduction.md 020-image-classifier.md

Convenience Script

In [11]:

```
cat > myimage <<'EOF'
#!/bin/bash
exec docker run -t -i \
    --runtime=nvidia \
    --network host \
    --ipc host \
    -v /etc/passwd:/etc/passwd \
    -v /etc/group:/etc/group \
       `pwd`:`pwd` -w `pwd` -u `id -u`:`id -g` myimage "$@"
E0F
chmod 755 myimage
```

Using the Convenience Script

In [12]:

```
./myimage bash -c 'id; pwd; ls|sed 3q'
uid=1000(tmb) gid=1000(tmb) groups=1000(tmb)
/home/tmb/exp/bigdata19
000-data-prep.ipynb
010-introduction.md
020-image-classifier.md
```

Training with the Convenience Script

This uses the python3 executable from within the container to run the script training.py in the current directory.

In [13]:

```
./myimage python3 training.py -m resnet18
/opt/conda/lib/python3.6/site-packages/torchvision/io/ video opt.py:17: UserWarning: video reader ba
sed on ffmpeg c++ ops not available
 warnings.warn("video reader based on ffmpeq c++ ops not available")
Tue Dec 10 04:17:06 UTC 2019; bragi; tmb; /home/tmb/exp/bigdata19; GPU 0: TITAN X (Pascal) (UUID: GP
U-a964bb9a-cb1a-5036-e1d8-1217c1faa8e7); GPU 1: TITAN X (Pascal) (UUID: GPU-a16b9686-b668-e8d5-ff5f-
f85aea86d034);
creating resnet18
        0 bs
               128 per sample loss 5.49e-02 loading 1.16e-02 training 3.51e-02
     2560 bs
               128 per sample loss 5.51e-02 loading 3.60e-03 training 4.81e-03
               128 per sample loss 5.48e-02 loading 2.47e-03 training 1.07e-03
     5248 bs
     7552 bs
               128 per sample loss 5.47e-02 loading 2.85e-03 training 6.92e-04
     9856 bs
               128 per sample loss 5.47e-02 loading 2.68e-03 training 6.21e-04
```

Running Jupyter

```
# change to home directory so that Jupyter picks up config
cd
# generate a configuration if you don't have one already
jupyter notebook --generate-config
# set a password so you can connect easily
jupyter notebook password
# run the actual server
./myimage jupyter lab
```