## **Novel Virus Discovery Pipeline**

Pipeline : a set of data processing elements connected in series

output of one element is the input of the next one

- Wikipedia

Virus Discovery Pipeline : pipeline that is for identifying known or unknown virus using deep sequencing data

Several pipelines are available online

| Name        | Author              | Development organization, Nation              | No. of citation |
|-------------|---------------------|-----------------------------------------------|-----------------|
| VirFind     | Thien Ho, et al.    | University of Arkansas System, USA            | 51              |
| VirusSeeker | Guoyan Zhao, et al. | Washington University School of Medicine, USA | 9               |
| VirusDetect | Yi Zheng, et al.    | Boyce Thompson Institute, USA                 | 13              |
| VIP         | Yang Li, et al.     | China CDC, China                              | 14              |

#### But, There are some drawbacks

- 1) Hard to Use: Need to install many of prerequisite programs and understand decades of options
- 2) Complex to modify: Having complicated dependency structure, too complex to modify and optimize



# Need to develop handy and simple Virus discovery pipeline

Input raw sequence reads

5. Screening

# Novel Virus Discovery Pipeline (adapted from USAMRIID pipeline)

1. Adapter Clipping

4. *De novo* Assembly of reads

3. Quality Filter

2. Host Removal

## 1. Adapter Clipping

Objective | Removing adapter sequences which are used for NGS process

Program | Trimmomatic (2014)

"There are slight differences between trimming programs"

- An Extensive Evaluation of Read Trimming Effects on Illumina NGS Data Analysis (2013)

AND

Good quality NGS data



in Truseq preparation kit

 $\circ$ 

Aggressive and Speedy trimmer

## 2. Host removal

Objective | Removing host genome sequences

Program | Bowtie2 (2012)



| Organism  | Source | Note                              |
|-----------|--------|-----------------------------------|
| PhiX      | NCBI   | PhiX174                           |
| Human     | NCBI   | GRCh38                            |
| Mouse_Rat | URSDB  | Mus musculus<br>Rattus Norvegicus |
| Sorex     | URSDB  | Sorex araneus                     |
| Cro       | URSDB  | Crocidura attenuate               |
| Penguin   | URSDB  | Pteria penguin                    |
| Bat       | URSDB  | Rhinolophus<br>ferrumequinum      |
| Tick      | URSDB  | Haemaphysalis<br>Iongicornis      |



<sup>-</sup> Host Subtraction, Filtering and Assembly Validations for Novel Viral Discovery Using Next Generation Sequencing Data (2015)

## 3. Quality Filter

Objective | Removing sequencing reads with imperfect quality

Program | FaQCs (2014)



## 4. *De novo* Assembly

Objective | Concatenating refined reads into contigs

Program | SPAdes (2012)





#### Difference in capabilities of *de novo* assembler



## 5. Screening

Objective | Screening assembled contigs against reference sequences database

Program | BLAST+ (1990) – megablast, discontiguous megablast, blastn, tblastx

Reference DB | NCBI RefSeq Viral sequences

| algorithms                 | sequence<br>type | similarity | sensitivity | note                                        |
|----------------------------|------------------|------------|-------------|---------------------------------------------|
| megablast                  | DNA              | High       | Low         | more than 95% identity                      |
| discontiguous<br>megablast | DNA              | Somewhat   | High        | ignoring 3 <sup>rd</sup> base<br>mismatches |
| blastn                     | DNA              | Somewhat   | Somewhat    | allow least similarity                      |
| tblastx                    | Amino acid       |            |             | Bottleneck stage                            |

#### **Reference Database** NCBI RefSeq Viral sequences + Lab' s own reference sequences

NCBI RefSeq: non-redundant set of reference sequences database provided by NCBI

- Updates in odd number months (January, March, May, July, September, November)
- 7546 species included (Latest version)

Lab's own reference sequences: reference sequences which are not included in RefSeq

- 29 Sequences
- Seeweis virus, Imjin virus, Muju virus, Seoul virus, Soochong virus, etc.

## **Final product** BLAST result comes out as file (viewed and modified in Microsoft Excel)

| 1                | 2           | 3                        |         |          | 4          | 5                               | 6        | 7        | 8     | 9     |
|------------------|-------------|--------------------------|---------|----------|------------|---------------------------------|----------|----------|-------|-------|
| <b>Contig No</b> | Contig Len. | <b>Subject Accession</b> | E-Value | Bitscore | Align Len. | Subject Title                   | Status   | Identity | Start | End   |
| NODE_9           | 2458        | NC_025352                | 0       | 1618     | 2272       | Mojiang virus isolate Tongguan1 | complete | 76.012   | 13750 | 11482 |
| NODE_1           | 2185        | NC_025352                | 0       | 1741     | 2113       | Mojiang virus isolate Tongguan1 | complete | 78.325   | 16965 | 14855 |
| NODE_28          | 1638        | NC_025352                | 0       | 1229     | 1564       | Mojiang virus isolate Tongguan1 | complete | 77.621   | 10617 | 9059  |

- ① Contig Number: ID of screened contig among assembled ones
- ② Contig Length: Length of screened contig
- 3 Accession Number: NCBI accession number of reference sequence
- 4 Alignment Length: Length of aligned sequences between contig and reference sequence
- ⑤ Subject Title: Taxonomy, Strain title of reference sequence
- **6** Status: Normally complete, seldom partial
- 7 Identity: Identical sequences / Alignment length \* 100
- ® Start: Starting sequence of aligned sequences in reference sequence

**Raw score(S)**: degree of homology in a certain alignment

"Unless the scoring system is understood, citing a raw score alone is like citing a distance without specifying feet, meters, or light years"

- BLAST manual

**Bitscore**: normalized raw score to compare between different scoring systems

Bitscore = 
$$\frac{\lambda S - lnK}{ln2}$$

 $\lambda$ , K: statistical factor

Higher is better, but don't adequately represent significance of alignment

**E-value**: number of expected hits of similar quality (score) that could be found just by chance

E-value = 
$$\frac{m \, X \, n}{2Bitscore}$$
 m: query sequence length n: database sequences length

Lower is better. Especially, smaller than  $1 \times e^{-50}$  means very high quality match (empirically)

## Published papers use E-value 1 x e<sup>-6</sup> or 1 x e<sup>-5</sup> as a criterion

Characterizing the virome of Ixodes Ricinus ticks from northern Europe (2017), Scientific Reports

"screened with blastX against a local database with hits with an e-value of  $1 \times 10^{-5}$  or better collated"

Virome analysis for identification of novel mammalian viruses in bats from Southeast China (2017), Scientific Reports

"In all the blast results, optimal results were used as the gene annotation with the parameter of E value < 10e<sup>-5</sup>

Metagenomic Profile of the Viral Communities in Rhipicephalus spp. Ticks from Yunnan, China(2015), PLOS ONE

"Based on the most significant BLASTx similarities (e-value < 10-6)"

## **Comparison with EDGE**

#### Strength

- 1) Easy to install and modify: few efforts to need when changing any program in pipeline
- 2) Easy to update or add database sequences
- 3) Can extract virus-like contigs
- 4) Can choose host whose genome will be subtracted from raw data

#### Weakness

- 1) No support for taxonomic classification
- 2) No support for GUI (Graphic User Interface)
- 3) Low-level pre-assembly filtering (repeat, low complexity, etc) ⇒ Perhaps, reason for too many results

## **Further advancement**

- 1) Taxonomic classification
- 2) More pre-assembly filtering (repeat, low complexity, etc)
- 3) Development for GUI (Graphic User Interface)
- 4) Addition of Bacterial screening step

When mapping query to reference sequence, a certain size of sequences has to exactly match with each other, and the size is **Word size** 



| algorithms                 | similarity | Word size  | sensitivity | note                                        |
|----------------------------|------------|------------|-------------|---------------------------------------------|
| megablast                  | High       | 28 bp      | Low         | more than 95%<br>identity                   |
| discontiguous<br>megablast | Somewhat   | 11 – 12 bp | High        | ignoring 3 <sup>rd</sup> base<br>mismatches |
| blastn                     | Somewhat   | 7 – 11 bp  | Somewhat    | allow least similarity                      |

But in case of discontinuous megablast, 3<sup>rd</sup> base mismatches are ignored when matching so as to consider wobble pairing

#### [Supplementary Slide 2] E-value





2

E-value = 
$$\frac{m \, X \, n}{2^{Bitscore}}$$

m: query sequence length

n: database sequences length

$$\Rightarrow$$
 E-value<sub>1</sub> = 2 \* E-value<sub>2</sub>

#### [Supplementary Slide 3] Duration

Environment | Workstation (CJ 식품안전관), Server (문숙의학관)

Sample contigs

Cl13-1 NGS data (total 98.7 MB for paired files), 7027

## Workstation (CJ 식품안전관)

| Server | (문숙으       | 학과)      |
|--------|------------|----------|
|        | \ <u> </u> | <u>.</u> |

| Step             | <b>Duration (seconds)</b> |
|------------------|---------------------------|
| Adaptor Clipping | 6                         |
| Host Removal     | 126                       |
| Quality Filter   | 162                       |
| De novo Assembly | 237                       |
| blastn           | 113                       |
| megablast        | 2                         |
| dcmegablast      | 85                        |
| blastx           | 8929 (2h 28m)             |

| Step             | Duration (seconds) |
|------------------|--------------------|
| Adaptor Clipping | 6                  |
| Host Removal     | 183                |
| Quality Filter   | 288                |
| De novo Assembly | 256                |
| blastn           | 128                |
| megablast        | 2                  |
| dcmegablast      | 85                 |
| blastx           | 9946 (2h 46m)      |