ucesos: Sucesos particulares, operaciones con sucesos y relacio Reglas básicas del cálculo de probabilidades.

Cálculo de probabilidades 1. Probabilidad

Segundo Cuatrimestre - Grupo 16

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21

Cálculo de probabilidades 1. Probabilidad

Fenómenos o experimentos aleatorios.

ucesos: Sucesos particulares, operaciones con sucesos y relacion

- Qué resultado se obtiene al lanzar una moneda al aire?
- ② ¿Qué resultado obtendremos al lanzar dos dados al aire?
- 3 ¿Cuánto tiempo durará una bombilla que acabamos de poner?
- Supongamos que elegimos al azar un número natural y nos preguntamos: ¿qué número habrá elegido la persona que está a mi derecha?

ucesos: Sucesos particulares, operaciones con sucesos y relacio Ejemplos de espacios de probabilidad

- Fenómenos o experimentos aleatorios.
- Sucesos: Sucesos particulares, operaciones con sucesos y relaciones entre sucesos.
- Spacio de probabilidad.
- Reglas básicas del cálculo de probabilidades.
- Ejemplos de espacios de probabilidad.
- Probabilidad condicionada.
- Sucesos independientes.

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21 Cálculo de probabilidades 1. Probabilidad

Fenómenos o experimentos aleatorios. Sucesos: Sucesos particulares, operaciones con sucesos y relacior

> Todos estos fenómenos o experimentos que tienen la siguientes características:

- Se conoce el conjunto formado por todos los diferentes resultados que se pueden obtener al realizar una prueba del experimento o una observación del fenómeno. Dicho conjunto se denomina espacio muestral asociado al fenómeno o experimento aleatorio y se denota mediante la letra Ω .
 - Cada elemento del espacio muestral se denomina punto **muestral** y se denota mediante la letra ω .
- 2 En cada prueba del experimento u observación del fenómeno a priori no se conoce el resultado que se va a obtener.

se denominan fenómenos o experimentos aleatorios. Fenómenos o experimentos deterministas.

Sucesos: Sucesos particulares, operaciones con sucesos y relacion Espacio de probabilidad. Reglas básicas del cálculo de probabilidades

¿Qué se entiende por suceso?

Un suceso es un acontecimiento cuya ocurrencia podemos observar si ha sucedido o no tras la realización de una prueba de un experimento aleatorio o una observación de un fenómeno aleatorio.

Ejemplo

 \mathcal{E} : "Lanzamos un dado dos veces al aire"

 $\Omega =$

"En el primer lanzamiento hemos obtenido un 2"

A = "En el primer lanzamiento hemos obtenido un 2"

B = "La suma de los resultados obtenidos es par"

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21

Cálculo de probabilidades 1. Probabilidad

Sucesos: Sucesos particulares, operaciones con sucesos y relacion Reglas básicas del cálculo de probabilidades

Operaciones entre sucesos

1. Complementario de A que se denota mediante A^c o \bar{A} . A^c como subconjunto de Ω está formado por los puntos muestrales que no están en A. Es decir,

$$A^c := \{ \omega \in \Omega : \omega \notin A \}$$

Por tanto. A^c ocurre si ocurre no ocurre A.

Sucesos: Sucesos particulares, operaciones con sucesos y relacione Ejemplos de espacios de probabilidad

- Un suceso es un subconjunto del espacio muestral
- 2 Los sucesos se representan con letras mayúsculas: A, B, ...
- 1 Un suceso, A, se dice que ha ocurrido si como resultado de una prueba de un experimento aleatorio o de una observación de un fenómeno aleatorio hemos obtenido un punto muestral. ω que está en A.

Representación gráfica de los sucesos: Diagramas de Venn

Sucesos particulares

- **1** $\Omega \subset \Omega \Rightarrow \Omega$ se denomina suceso seguro.
- **2** $\emptyset \subset \Omega \Rightarrow \emptyset$ se denomina **suceso imposible**.

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21 Cálculo de probabilidades 1. Probabilidad

Sucesos: Sucesos particulares, operaciones con sucesos y relacione Ejemplos de espacios de probabilidad

> 2. **Unión de** $A \mathbf{v} B$ que se denota mediante $A \cup B$: $A \cup B$ como subconjunto de Ω está formado por los puntos muestrales que están en A o están en B. Es decir.

$$A \cup B := \{\omega \in \Omega : \omega \in A \text{ o } \omega \in B\}$$

Por tanto. $A \cup B$ ocurre si ocurre A o si ocurre B.

3. **Intersección de** $A \lor B$ que se denota mediante $A \cap B$: $A \cap B$ como subconjunto de Ω está formado por los puntos muestrales que están en A y están en B. Es decir,

$$A \cap B := \{ \omega \in \Omega : \omega \in A \vee \omega \in B \}$$

Por tanto, $A \cap B$ ocurre si ocurre A y si ocurre B.

Sucesos: Sucesos particulares, operaciones con sucesos y relacion Espacio de probabilidad. Reglas básicas del cálculo de probabilidades Ejemplos de espacios de probabilidad

> 4. **Diferencia de** $A \mathbf{y} B$ que se denota mediante A - B: A-B como subconjunto de Ω está formado por los puntos muestrales que están en A y no están en B. Es decir,

$$A - B := \{ \omega \in \Omega : \omega \in A \ \mathsf{y} \ \omega \notin B \}$$

Por tanto, A - B ocurre si ocurre A v no ocurre B. Es decir.

$$A - B = A \cap B^c$$
.

5. **Diferencia simétrica entre** A y B que se denota mediante $A\Delta B$:

 $A\Delta B$ como subconjunto de Ω está formado por los puntos muestrales que están en A y no están en B o están en B y no están en A. Es decir.

$$A\Delta B:=\{\omega\in\Omega:\omega\in A\;\mathsf{y}\;\omega\notin B\}\cup\{\omega\in\Omega:\omega\in B\;\mathsf{y}\;\omega\notin A\}$$

$$A\Delta B = (A - B) \cup (B - A)$$

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21 Cálculo de probabilidades 1. Probabilidad

Sucesos: Sucesos particulares, operaciones con sucesos y relacione Reglas básicas del cálculo de probabilidades Ejemplos de espacios de probabilidad

Operaciones en familias numerables de sucesos sucesos

Dada una sucesión de sucesos $\{A_i : i \in \{1, 2, ...\}\}$:

1 La unión de todos ellos se denota como: $\bigcup_{i=1}^{\infty} A_i$

$$\bigcup_{i=1}^{\infty} A_i := \{ \omega \in \Omega : \omega \in A_i \text{, para algún } i \in \{1, 2, \ldots \} \}$$

Por tanto $\bigcup_{i=1}^{\infty} A_i$ ocurre cuando ocurre A_i para algún $i \geq 1$.

2 La intersección de todos ellos se denota como: $\bigcap_{i=1}^{\infty} A_i$

$$\bigcap_{i=1}^{\infty} A_i := \{ \omega \in \Omega : \omega \in A_i, \text{ para todo } i \in \{1, 2, \ldots \} \}$$

Por tanto $\bigcap_{i=1}^{\infty} A_i$ ocurre cuando ocurre A_i para todo $i \geq 1$.

Eiemplo:

Lanzamientos sucesivos de una moneda al aire.

Obtener cara en algún lanzamiento par.

Obtener cara en todos los lanzamientos pares.

Sucesos: Sucesos particulares, operaciones con sucesos y relacione Espacio de probabilidad. Reglas básicas del cálculo de probabilidade Ejemplos de espacios de probabilidad

Algunas propiedades

Conmutativa:

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Asociativa:

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Distributiva:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

Leves de De Morgan (Madurai, 1806-Londres, 1871):

$$(A \cup B)^c = A^c \cap B^c$$
 y, $(A \cap B)^c = A^c \cup B^c$

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21 Cálculo de probabilidades 1. Probabilidad

Sucesos: Sucesos particulares, operaciones con sucesos y relacione Ejemplos de espacios de probabilidad

Relaciones entre sucesos

- **1** Dados $A \vee B$ dos sucesos $(A, B \subset \Omega)$ si: $\forall \omega \in A \Rightarrow \omega \in B$, diremos que A implica B y lo denotaremos $A \subset B$.
- ② Dados A v B dos sucesos $(A, B \subset \Omega)$ si $A \cap B = \emptyset$, diremos que A y B son incompatibles o mutuamente excluyentes.

Notación: A + B o $A \dot{\cup} B$ representa la unión de dos sucesos incompatibles.

ucesos: Sucesos particulares, operaciones con sucesos y relacio Espacio de probabilidad. Reglas básicas del cálculo de probabilidades

> **Definición:** Sea Ω un conjunto y \mathcal{F} una colección de subconjuntos de Ω , $\mathcal{F} \subset \mathcal{P}(\Omega)$. Entonces se dice que \mathcal{F} es una **tribu o** σ -álgebra si satisface las siguientes condiciones:

- $\Omega \in \mathcal{F}$.
- \circ \mathcal{F} es cerrada para complementación. Es decir:

$$\forall A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$$
.

 \odot \mathcal{F} es cerrada para uniones numerables. Es decir:

$$\forall A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$$

Ejemplo:

- \bullet $\mathcal{P}(\Omega)$ es una tribu.
- \bigcirc $\{\emptyset, \Omega\}$ es una tribu.

Definición: Al par (Ω, \mathcal{F}) donde Ω es un conjunto y \mathcal{F} es una tribu sobre Ω se le denomina espacio medible.

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21 Cálculo de probabilidades 1. Probabilidad

Sucesos: Sucesos particulares, operaciones con sucesos y relacio Espacio de probabilidad.

Tribu generada por una familia de subconjuntos Definición:

Sea Ω un conjunto y $\mathcal{C} \subset \mathcal{P}(\Omega)$. Entonces la tribu generada por \mathcal{C} es la mínima tribu que contiene a \mathcal{C} y se denota como $\sigma(\mathcal{C})$.

Teorema:

Sea Ω un conjunto. Entonces para cualquier familia $\mathcal C$ de subconjuntos de Ω existe la tribu generada por \mathcal{C} .

Caso particular imporante de tribu generada Definición:

Sea el espacio topológico (\mathbb{R}, τ_{μ}) (la recta real con la topología usual). Entonces la tribu generada por todos los abiertos, $\sigma(\tau_u)$ se denomina tribu boreliana y a sus elementos se les denomina borelianos.

Notación: $\sigma(\tau_{\mu}) = \beta$

ucesos: Sucesos particulares, operaciones con sucesos y relaci Espacio de probabilidad. Reglas básicas del cálculo de probabilidades

Tribus: Propiedades

Proposición:

Sea Ω un conjunto y $\mathcal{F} \subset \mathcal{P}(\Omega)$ una tribu. Entonces se satisfacen las siguientes propiedades:

- $\mathbf{0} \ \emptyset \in \mathcal{F}.$
- \bigcirc \mathcal{F} es cerrada para intersecciones numerables. $\forall A_1, A_2, \ldots \in \mathcal{F} \Rightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}.$
- \odot \mathcal{F} es cerrada para uniones finitas. $\forall A_1, A_2, \ldots, A_n \in \mathcal{F} \Rightarrow \bigcup_{i=1}^n A_i \in \mathcal{F}.$
- \bullet \mathcal{F} es cerrada para intersecciones finitas. $\forall A_1, A_2, \ldots, A_n \in \mathcal{F} \Rightarrow \bigcap_{i=1}^n A_i \in \mathcal{F}.$
- \circ \mathcal{F} es cerrada para diferencias. $\forall A. B \in \mathcal{F} \Rightarrow A - B \lor A \triangle B \in \mathcal{F}.$

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21 Cálculo de probabilidades 1. Probabilidad

Sucesos: Sucesos particulares, operaciones con sucesos y relaci Espacio de probabilidad.

Proposición: Los siguientes subconjuntos de \mathbb{R} son borelianos.

- **1** Un abierto de \mathbb{R} . En particular (a, b), $(-\infty, a)$ y (a, ∞) son borelianos.
- **2** Un cerrado de \mathbb{R} . En particular: $\{a\}$, [a, b], $[a, \infty)$, $(-\infty, a]$ son borelianos.
- **1** Un subconjunto finito o infinito numerable. En particualar \mathbb{Q} es un boreliano.
- ① Los intervalos (a, b] y [a, b) son borelianos.

Definición:

Sea (Ω, \mathcal{F}) un espacio medible. Entonces una probabilidad, P, sobre (Ω, \mathcal{F}) es una función:

$$P: \mathcal{F} \rightarrow [0,1]$$
 $A \rightarrow P(A)$

que satisface las siguientes condiciones:

- Aditividad numerable.

$$\forall A_1, A_2, \ldots \in \mathcal{F} : A_i \cap A_j = \emptyset, \forall i, j \in \{1, 2, \ldots\}, i \neq j :$$

$$P\left(\sum_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i).$$

Definición: Un espacio de probabilidad es una terna (Ω, \mathcal{F}, P) tal que P es una probabilidad sobre el espacio medible (Ω, \mathcal{F}) .

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21 Cálculo de probabilidades 1. Probabilidad

Reglas básicas del cálculo de probabilidades.

4. Sean $A \vee B \in \mathcal{F}$. Entonces:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Si
$$A_1, A_2, ..., A_n \in \mathcal{F}$$
,
 $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j) + \sum_{1 \le i < j \le k} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n-1} P(A_1 \cap \dots \cap A_n)$.

5. Sean $A \vee B \in \mathcal{F}$. Entonces: $P(A \cup B) < P(A) + P(B)$. Es decir. P es una función finitamente subaditiva. Si $A_1, A_2, \ldots, A_n \in \mathcal{F}$,

$$P\left(\bigcup_{i=1}^n A_i\right) \leq \sum_{i=1}^n P(A_i).$$

Reglas básicas del cálculo de probabilidades

Sea (Ω, \mathcal{F}, P) un espacio de probabilidad. Entonces:

- 1. $P(\emptyset) = 0$.
- 2. P es finitamente aditiva.

Si $A_1, \ldots, A_n \in \mathcal{F}$ son incompatibles dos a dos, entonces

$$P(\sum_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i).$$

Por tanto, para cada suceso $A \in \mathcal{F}$,

$$P(A^c) = 1 - P(A)$$

3. Si A, $B \in \mathcal{F}$ tales que $A \subset B$, entonces P(B-A) = P(B) - P(A).Por tanto, $P(A) \leq P(B)$. Es decir, P es una función monótona

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21 Cálculo de probabilidades 1. Probabilidad

Reglas básicas del cálculo de probabilidades

6. Continuidad hacia arriba de una probabilidad. Dados $A_1, A_2, \ldots \in \mathcal{F}$, tales que $A_1 \subset A_2 \subset \ldots$,

$$P\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\lim_{n\to\infty}P(A_{n}).$$

7. Continuidad hacia abaio de una probabilidad. Dados $A_1, A_2, \ldots \in \mathcal{F}$, tales que $A_1 \supset A_2 \supset \ldots$

$$P\left(\bigcap_{n=1}^{\infty}A_n\right)=\lim_{n\to\infty}P(A_n).$$

8. Subaditividad numerable. Desigualdad de Boole. Dados $A_1, A_2, \ldots \in \mathcal{F}$, $P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i).$

Sucesos: Sucesos particulares, operaciones con sucesos y relacio Ejemplos de espacios de probabilidad.

Espacio de probabilidad clásico o de Laplace.

Se considera un espacio de probabilidad (Ω, \mathcal{F}, P) tal que:

2
$$P(\{\omega_1\}) = P(\{\omega_2\}) = \ldots = P(\{\omega_n\}).$$

Entonces:

$$P(\{\omega_1\}) = P(\{\omega_2\}) = \ldots = P(\{\omega_n\}) = \frac{1}{n}.$$

Es decir, (Ω, \mathcal{F}, P) es tal que:

②
$$\mathcal{F} = \mathcal{P}(\Omega)$$
.

$$P: \mathcal{P}(\Omega) \rightarrow [0,1]$$
 $A \rightarrow P(A) = \frac{\mathsf{Card}(A)}{\mathsf{Card}(\Omega)}$

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21 Cálculo de probabilidades 1. Probabilidad

Sucesos: Sucesos particulares, operaciones con sucesos y relacion Espacio de probabilidad. Reglas básicas del cálculo de probabilidades. Ejemplos de espacios de probabilidad.

Espacio de probabilidad geométrico.

Se considera un espacio de probabilidad (Ω, \mathcal{F}, P) tal que:

1
$$\Omega \subset \mathbb{R}^n$$
, para algún $n \in \{1, 2, 3\}$.

$$Si n = 1,$$

$$P: \mathcal{F} -$$

$$P: \mathcal{F} \to \begin{bmatrix} 0,1 \end{bmatrix}$$

$$A \to P(A) = \frac{\mathsf{Longitud}(A)}{\mathsf{Longitud}(\Omega)}$$

Si
$$n=2$$
,

Si
$$n = 2$$
,
 $P: \mathcal{F} \rightarrow [0,1]$

$$A \rightarrow P(A) = \frac{\text{Área } (A)}{\text{Área}(\Omega)}$$

Si
$$n = 3$$
,

$$P: \mathcal{F} \rightarrow [0,1]$$

Si
$$n = 3$$
,
 $P: \mathcal{F} \rightarrow [0, 1]$
 $A \rightarrow P(A) = \frac{\text{Volumen } (A)}{\text{Volumen } (\Omega)}$

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21 Cálculo de probabilidades 1. Probabilidad

Sucesos: Sucesos particulares, operaciones con sucesos y relac Reglas básicas del cálculo de probabilidades Ejemplos de espacios de probabilidad

Espacio de probabilidad discreto.

Se considera un espacio de probabilidad (Ω, \mathcal{F}, P) tal que:

- \bullet \bullet es un conjunto finito o infinito numerable.
- $\mathcal{F} = \mathcal{P}(\Omega).$

$$P: \mathcal{P}(\Omega) \rightarrow [0,1]$$
 $A \rightarrow P(A) = \sum_{\omega_i \in \Omega \cap A} p_i$

siendo $\{p_i = P(\{\omega_i\}) : \omega_i \in \Omega\}$. Por tanto:

- **1** $p_i \in [0,1]$.

Ana M. Valle - ZTF-FCT - UPV/EHU - 2020-21 Cálculo de probabilidades 1. Probabilidad