Name:	 Student no.:	
Date:	 Tut Group:	Wednesday

Show all your workings.

- 1. A biased coin with $\mathbb{P}(\{H\}) = p \neq 0.5$ is tossed 100 times. We want to find the probability of observing an even number of heads. Let p_n be the probability that there is an even number of heads after n tosses (zero is an even number).
 - (a) Show that $p_0 = 1$ and $p_n = (1 p)p_{n-1} + (1 p_{n-1})p$ for $n \ge 1$.

 Hint: Use the Law of Total Probability and condition on the outcome of the first toss.
 - (b) Define the function $G:(-1,1)\to\mathbb{R}$ by

$$G(x) := \sum_{n=0}^{\infty} p_n x^n.$$

Use the recurrence derived in (a) above to show that

$$G(x) = 1 + (1 - 2p)xG(x) + \frac{px}{1 - x}. (1)$$

(c) The relation (1) above can further be simplified using partial fractions (do this as homework) to get

$$G(x) = \frac{1}{2} \left(\frac{1}{1-x} + \frac{1}{1-(1-2p)x} \right).$$

By expanding this expression for G using power series and comparing coefficients, show that

$$p_n = \frac{1}{2} (1 + (1 - 2p)^n)$$
 $n = 0, 1, 2, \dots$

Name:	 Student no.:	
Date:	 Tut Group:	Thursday

Show all your workings.

1. Let X be an absolutely continuous random variable with density function given by

$$f_X(x) = \frac{1}{2}I_{[1,2]}(x) + \frac{1}{2}e^x I_{(-\infty,0)}(x), \ x \in \mathbb{R}.$$

- (a) Find and sketch the CDF of X.
- (b) Find and sketch the CDF of $Y := XI_{\{X < 1\}}$.
- (c) Show that Y is neither discrete nor continuous and write F_Y as

$$F_Y = pF_1 + (1 - p)F_2$$

where $0 \le p \le 1$, F_1 is the CDF of a discrete random variable, and F_2 is the CDF of a continuous random variable.

[10]

Name:	 Student no.:	
Date:	 Tut Group:	Friday Morning

Show all your workings.

1. Let X have an exponential distribution with parameter $\lambda = 1$. Define $Y := X - \lfloor X \rfloor$ to be the fractional part of X (for instance, if X = 2.38, then Y = 0.38). We want to find the distribution of Y. Clearly, $0 \le Y < 1$, so $F_Y(y) = 0$ when y < 0 and $F_Y(y) = 1$ when $y \ge 1$. Now let $0 \le y < 1$ and define the events A_n by

$$A_n = \{ \lfloor X \rfloor = n \}, \quad n = 0, 1, 2, \dots$$

- (a) Explain (briefly) why $\{A_0, A_1, A_2, ...\}$ are pairwise mutually exclusive and exhaustive events.
- (b) Explain why the following is true

$$\{Y \le y\} \cap A_n = \{n \le X \le n+y\}.$$

(c) Show that

$$\mathbb{P}(\{Y \le y\} \cap A_n) = e^{-n} - e^{-(n+y)}.$$

(d) Hence show that

$$F_Y(y) = \frac{1 - e^{-y}}{1 - e^{-1}}, \quad 0 \le y < 1.$$

Hint: Total Probability.

(e) Conclude that Y is absolutely continuous and find its density.

Name:	 Student no.:	
Date:	 Tut Group:	Friday Afternoon

Show all your workings.

- 1. Let $X \sim \mathcal{U}(-2,1)$ and define $X^+ := XI_{\{X>0\}}.$
 - (a) Find and sketch the CDF of X.
 - (b) Find and sketch the CDF of X^+ . Is X^+ discrete, continuous or neither?
 - (c) Find a function g such that $Y := g(X) \sim \mathcal{U}(0,1)$ and show that the distribution of Y is indeed this uniform.

[10]