`	PUSHKAR KUHAR VERMA - (2022AC 05272)
1.	To test-the what that the new food increases the masson of were week use
	To test—the iclaim that—the new food increases the massos of icucumber, we can perform a hypothesis list—using Z-kel for means.
	Null hypothesis/16). The new plant has no effect.
	Alternative hypothesis (Hs): The new plant- universes the masses of voucember, 474
	Significance level - 5%, which correspond to X = 0.05
	Test Statistic The tist statistic for a. Z- test is isalculated as:
	Z= X-Mo
	Where $\pi = \text{Sample mean} \rightarrow 316gn.$ No - volaimed populatu mea. $310gn.$ To - population silandard der = 22gi
	n - Sample Size (40)

Pushkar Kuniar Verma (2022AC05272) Z= 316-310 22/140 = 6 = 1.7248 Kriticel value for 0,=0.05 is 1.645 Since Z=1.7248 >1.645 Reject - Ho and Accept H1 This means that there is a significant evidence to support the relain that the new plant food increases the masses of recembers.

21

	Pushlar &	Curias \	Seiglen -	2022 ACC (5)	7-42		
2	We wan usuhelher a	se a pai	red tiles	to eva	heate perfernas.		
	Hypothesis.						
	> Null hypotheses Ho! The modern difference between before and after scores is zero (
	between before and after records no effect.						
	Moliff = 0); meaning violence						
-	>Alternative hypothesis (H.): The mean out						
	boureen the before and after scores is						
	bouveen the before and after scores is greater than zero (Maist 70).						
-	Level of significance: Let's use a significance						
	of value 5°/. (0.05)						
-	Valculation & Statistics						
	Before	After	Diff(Aflest	\ HT-m	2 (d-mean)		
	44	53	9	81	16		
	40	38 69	-2	4	49		
	52	57	8	64	9		
	22	40	5	25	0		

	Before	After	Diff(Afles Bef)	Daff of me	2(d-mean)
	44	53	9	81	16
	40	38	-2	4	49
	61	69	8	64	9
	52	57	5	25	0
	32	46	14	196	81
2	447	739	-5	2/5	100
	70	73	3	9	4
	41	48	7	49	4
	67	73	6	36	1
-	72	74	2	4	9
	53	60	7	49	
	72	78	6	36	1
	Tole		5460		278

Puention Kuncar Verma - 2022 Acussigi

$$d = \underbrace{200}_{12} = 60 = 5$$

$$Sd = \sqrt{\frac{278}{m-1}}$$

Sol = 5.0271

> Ett's find t value.

t= 2:2988 3:445

For one tailed. 2120.05, off=n-1=11 degrees of freedom, & value is 1.796

Since valculated t-81298 is greater than the critical t-value of 1.796 we reject the null hypotheses

Vonclusers! Based on this reconclusion calculation, me van vondude that there is enough evidence at 5% level of significance to say that the accounting vourse did emprove performant

	Pushuar Kuni	or Vernue_	(2022ACOS)	172)	
(3)	Shifts	Good	Bard	Total.	
	Day	900	130	1030	
	Evening	700	170	870	
	Night-	400	200	6,00	
	Total	2,000	500	2500	
	Null Hypothesis (Ho)! There is no association				
	between the				
	produced (i.e. variables are endependent)				
	Alternature Hypothesis (Hi). There is an association between shifts and the quality of pouls				
	produced (ier variables are dependent).				
	Value of segnificane: « in set at 0.05				
,	Valculation of expected frequency				
	Especial frequency- Row Told X Column Told Grand Told.				
	1. Day and Good = 1030x2000 = 824				
	2. Day and	Bed = 10	2500	= 206	

Punter Keener James 1202 11000 Evening and Good = 2000 x870 = 696 Evening and Bad = 500 x 870 = 144 Night and Good = 2000 × 600 = 480 Night and Bed = 600 x 500 = 120 Valculation of Mi-Square Chi-square statisties X2 is redculated as X= 50-E) Day and Good= (900-824)2 = 7.0097 Day and Bad = (130 - 206) = 28.03 Evening and Good: (700-696) = 0.022 Evening & Bond = (170-174) = 0.0919 Night and Good = (400-480) - 13:33 NgH- and Bool = (200-120) = \$30 53.33

Richard Brown Commence Sunning there all Logethir = 7.0097 128 03+0.022 \$ 0000119+1203+5232 Value of Xt is approximately 5 991 Since, $\chi^2 = 101.81$ is much greater that 5,991 me reject- the null hypothesis. Conclusion: Since & X is much larger than varilical value, we have evidence at the 5% level of segnificance to reject the mult Typolhesis Therefore, the stift timing down appear to empact - the quality of parte produced

	Pushkar Kungr Verma - (2022ACO5242)						
1)		Hank	Joseph	Susan			
		8	8	10			
		9	9	10			
		ii	8	11			
		10	10	9			
,	Total	48	44	49			
1	Yeen	9-6	8.8	9.8			
\ \	Overall mean = 9.16+8.8+9.2 48+44+49 = 9.4						
Variance wiether group Hank = $(8-9.6)^{2}(10-9.6)^{2}+(9-9.6)^{2}(11-9.6)^{2}+(10-9.6)^{2}$							
= 5.2							
Joseph= $(8-8.8)^{\frac{1}{4}}(9-8.8)^{\frac{1}{4}}(9-8.8)^{\frac{1}{4}}(9-8.8)^{\frac{1}{4}}(9-8.8)^{\frac{1}{4}}$							
$=\frac{2.8}{5}=0.56$							
Susan = $(10-9.8)^2 + (9-9.8)^2 + (0-9.8)^2 + (1-9.8)^2$							
+(9+9.8)2							
= 2.8/5 = 0.56							

Pushuor Kuma: Virmon - (2002 Ac 05272) Sum of Squares for heathered (S. ST) SST = [(9.6-9.4)]+ (8.8-9.4)]+ (9.8-9.4)]]x5 Sum of Square for error. (SSE) SSE_hank = (8-9.6) + (10-9.6) + (9-9.6) + (10-9.6) + (10-9.6) -55E-Joseph = (8-8.8) + (9-8.8) + (9-8.8) + (8-8.8) + (10-8.8)2 55Exusan = (10-9.8) + (9-9.8) + (10-9.8) + (11-9.8) + (9-9.8) ≤ SSE = SSE-hank + SSE-joseph + SSE. Susan = 5.2 + 2.8 + 2.8 Degree of freedom (DF) for treatment- and Error. DF for treatment (DF1)=3-1=2 DF for Enror (DF2) = 15-3

Rushkar Kunar Verme - 2022AC05272