МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНЫХ КИБЕРНЕТИЧЕСКИХ СИСТЕМ КАФЕДРА «КОМПЬЮТЕРНЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ» (№12)

ОТЧЕТ

на лабораторную работу №4 по дисциплине

Основы теории и применения цифровой обработки данных

Тема: Получение спектральных характеристик сигналов.

Студент	Мальцев Денис Юрьевич, Вариант 9				C16-501
			ФИО, Вариант		
Руководит	гель	Заева Мар	Г		
_	-		ФИО, степень, звание, должность		
Студент _				Мальцев Д.Ю.	
			подпись	ФИО	
	Рук	уководитель		Заева	M.A.
			подпись		

СОДЕРЖАНИЕ

1 Расчетная часть	. 3
2 Графическое представление спектров	. 4
3 Анализ спектров	. 7
4 Расчет SNR	. 8

1 Расчетная часть

С учетом того, что частота дискретизации равна 100к Γ ц, то амплитудный спектр будет распределен в интервале частоты Найквиста (-50к Γ ц; 50к Γ ц). Если сохранить 10000 отсчетов для алгоритма Б Π Ф, то разница между отсчетами 100000 Γ ц / 10000 = 10 Γ ц.

Если работать с 10000 отсчетами, тогда номер отсчета, соответствующего частоте заданного сигнала:

21972,65625 / 10 = 2197,265625, т.е. 2197-2198 отсчёты. Был задан 2197 отсчёт.

Спектр гармонической функции $s(t) = u \cos(\omega_0 t)$:

$$S(\omega) = \int_{-\infty}^{\infty} u \cos(\omega_0 t) e^{-j\omega t} dt = \int_{-\infty}^{\infty} u \frac{1}{2} \left[e^{j\omega_0 t} + e^{-j\omega_0 t} \right] e^{-j\omega t} dt =$$

$$= \frac{1}{2} U e^{-j\omega t} + \frac{1}{2} U e^{-j\omega_0 t} . (1)$$

Спектр сигнала раздваивается (с коэффициентом $\frac{1}{2}$) и смешается влево и вправо по оси частот на частоты $\pm \omega_{\circ}$.

Для 8192 отсчётов частота будет равна 100000 Гц / 8192 = 12,20703125 Гц. Получается для частоты 21972.656249999996 / 12,20703125 = 1800 отсчёт.

3 Графическое представление спектров

На рисунках 2.1 - 2.2 изображены графические представления амплитудного спектра сигнала для 10000 отсчетов.

Рис. 2.1. Графическое представление амплитудного спектра сигнала

Рис. 2.2. Графическое представление амплитудного спектра сигнала (5%)

На рисунке 2.3 изображено графическое представление амплитудного спектра шума для 10000 отсчетов.

Рис. 2.3. Графическое представление амплитудного спектра шума

На рисунках 2.6 - 2.7 изображены графические представления амплитудного спектра смеси сигнала и шума для 10000 отсчетов.

Рис. 2.4. Графическое представление амплитудного смеси сигнала и шума

Рис. 2.5. Графическое представление амплитудного смеси сигнала и шума(5%)

4 Анализ спектров

Согласно формуле (1) из расчетной части, на амплитудных спектрах мы получили максимум в точке 0 равный амплитуде сигнала. На частотах $\pm \omega$ половину от амплитуды. На спектре смеси сигналов в точке 0 отсутствует сигнал, т. к. была сделана центровка.

Как видно из графиков спектров теоретические значения полностью совпадают с практическими.

Номер отсчета +w: 2197 Номер отсчета -w: 7803

Для 8192 отсчётов на практике получены следующие значения, которые полностью совпадают с теоретическими расчётами.

Номер отсчета +w: 1800 Номер отсчета -w: 6392

4 Pacчет SNR

Для расчёта средней мощности была использована следующая формула:

$$P_{cp} = s(\omega_0)^2$$

После чего была определена общая мощность сигнала и шума:

$$P_{_{\text{сиг+шум}}} = \sum s(\omega_{_{i}})^{2}$$
 , где $i=1$.. 10000

Мощность шума рассчитывается как разность мощности сигнала и шума по всему интервалу.

Тогда отношение средней мощности к мощности шума будет практическим SNR

При значении амплитуды сигнала равного 1 SNR равно:

Практическое отношение SNR: 1.0220102898920593

ЗАКЛЮЧЕНИЕ

В данной работе были в среде Python было реализовано преобразование методом быстрого преобразования Фурье массивов полученных в лабораторных работах 1-3, а именно сигнала, шума и сигнала + шум.

В расчётной части были вычислены длины БПФ и номер отсчёта.

С помощью полученных данных были построены амплитудные спектры для сигнала, шума и сигнала+шум. Также был проведен анализ полученных результатов с теоретическими значениями. Данные значения полностью совпадают с практическими.

Произведен расчёт SNR для амплитуды сигнала 1. Полученные значения совпадают в пределах погрешности.