Versuch: Analyse der diskreten Fourierfunktionen nach Hadamardfunktionen

Definitions intervall: $\left[-\frac{m}{2}, +\frac{m}{2} \right]$

Werte der diskreten Fourierfunktion: $f_{j,l} = \exp\left(\frac{2\pi i}{M}jl\right)$

Werte der Hadamardfunktion: $h_{k,l} = (-1)^{k \cdot l}$

Die Operation \circ ist folgendermassen definiert: Ausgehend von der Darstellung von k und l als Binärzahlen

$$k = \sum_{m=0}^{M-1} K_m 2^m$$
 und $l = \sum_{m=0}^{M-1} L_m 2^m$. Die Binärkoeffizienten K_m und L_m werden als

M-dimensionale Vektoren ("Binärvektoren") verstanden

$$\vec{K} = \begin{pmatrix} K_0 \\ K_1 \\ K_2 \\ \dots \\ K_{m-1} \\ K_m \\ K_{m+1} \\ \dots \\ K_{M-3} \\ K_{M-2} \\ K_{M-1} \end{pmatrix} \text{ und } \vec{L} = \begin{pmatrix} L_0 \\ L_1 \\ L_2 \\ \dots \\ L_{m-1} \\ L_{m-1} \\ \dots \\ L_{m+1} \\ \dots \\ L_{M-3} \\ L_{M-2} \\ L_{M-1} \end{pmatrix}.$$

Dann ist $k \circ l$ eine Funktion des Skalarproduktes der Binärvektoren:

$$k \circ l = (\vec{K} \vec{L}) \mod 2$$
.

Die gesuchten Koeffizienten sind

$$\kappa_{j,k} = \sum_{l=0}^{M-1} (-1)^{k \circ l} \cdot e^{\frac{2\pi i}{M} j l}$$

Aufgabe: Einen geschlossene Ausdruck für die $\kappa_{j,k}$ finden.

Ansatzpunkte:

- 1. $(-1)^{k \circ l}$ als Potenzen von $\cos \frac{2\pi}{4}$ auffassen und dann versuchen, die Exponenten zusammenzufassen.
- 2. ?