Übungsblatt 1 Sprachen und Grammatiken

HTWG-Konstanz

Gesundheitsinformatik / Angewandte Informatik - WS24/25 Theoretische (Grundlagen der) Informatik

> Prof. Dr. Renato Dambe 16/17.10.2024

Aufgabe 1

Gegeben sind die folgenden Grammatiken

1)
$$A \to Ba|ab$$
 2) $A \to Aa|Bb$ 3) $A \to ABc|Cba$ $B \to bC|b|a$ $B \to Ab|Ba|C$ $B \to aBC|cCa$ $C \to abc|c$ $C \to A|\epsilon$

a) Geben Sie zu jeder Grammatik jeweils (wenn möglich) ein Wort an, das aus 2, 3, 4 und 5 Zeichen besteht.

	Grammatik 1	Grammatik 2	Grammatik 3
2 Zeichen	ab	cb	-
3 Zeichen	-	-	eba
4 Zeichen	bcaa	abcb	-
5 Zeichen	-	abcba	bacac

b) Welche Regeln wurden angewendet, um die folgenden Wörter aus den jeweiligen Grammattiken zu erstellen?

Grammatik 1	bcaa	1. A (Ba), 2. B (bC), 3. C (ca)	
Grammatik 2	abcaba	1. A (Aa), 2. B (Ab), 3. B (Ba), 4. B (C), 5. C (abc)	
Grammatik 3	bacaccac	1. A (ABc), 2. B (cCa), 3. C (e), 4. A (ABc), 5. B (cCa),	6. C (e),
	•	7. A (Cba), 8. C (e)	

c) Überprüfen Sie, ob die folgenden Wörter zur entsprechenden Grammatik gehören.

	Grammatik 1	Grammatik 2	Grammatik 3
abca	Nein	Ja	Nein
bacac	Nein	Nein	Ja
cbbab	Nein	Ja	Nein
abcba	Nein	Ja	Nein

d) Welche der 3 Sprachen, die aus den o.g. Grammatiken enstehen, enthältt / enthalten unendlich viele Elemente?

Aufgabe 2

Wandeln Sie die folgenden Grammatiken aus der Backus-Naur-Form in Syntax-diagramme um. Hinweis: Die Nicht-Terminale wurden in dieser Grammatik aus Platzgründen nicht in spitze Klammern (<,>) geschrieben.

2

a)
$$A ::= bCDe|cDCd$$

 $C ::= abA$
 $D ::= ab[C]$

b)
$$A ::= aB|bC$$

 $B ::= bDb|c$
 $C ::= cA|d[D]$

c)
$$A ::= abC|B|Ab$$

 $B ::= cA|b[C]$
 $C ::= abc|D$

Wandeln Sie das folgende Syntaxdiagramm in eine Grammatik in der Backus-Naur-Form um.

Aufgabe 4

a) Wandeln Sie die aufgeführte Grammatik der Backus-Naur-Form in ein Syntax-diagramm um.

A ::= aB|bC

 $B ::= \{cA\}c$

C ::= [bA]b

b) Prüfen Sie, ob die hier angegebenen Wörter von der Grammatik als richtig erkannt werden.

	Wort	ja	nein
1)	bbbbb	Χ	
3)	bbacbbbb		Х

a) Wandeln Sie das hier aufgeführte Syntaxdiagramm in eine Grammatik in der Backus-Naur-Form um.

b) Prüfen Sie, ob die hier angegebenen Wörter als richtig erkannt werden.

	Wort	ja	nein
1)	ac		Х
2)	acabccc		Χ
3)	abaccabc	Χ	
4)	acbcbc	Χ	

a) Wandeln Sie das hier aufgeführte Syntaxdiagramm in eine Grammatik in der Backus-Naur-Form um.

b) Prüfen Sie, ob die hier angegebenen Wörter als richtig erkannt werden.

	Wort	ja	nein
1)	ccb		Х
2)	acbcb	Χ	
3)	aaccbb		Х
4)	acbbacb		Х

a) Wandeln Sie die aufgeführte Grammatik der Backus-Naur-Form in ein Syntaxdiagramm um.

b) Prüfen Sie, ob die hier angegebenen Wörter von der Grammatik als richtig erkannt werden.

	Wort	ja	nein
1)	bbac		Χ
2)	caccdc	Х	
3)	beabece	Х	
4)	bcbacc	Χ	

Aufgabe 8

Erstellen Sie eine Grammatik in der erweiterten BNF, die Binärzahlen akzeptiert, welche ohne Rest durch 4 teilbar sind.

A ::= 0 | B00

Aufgabe 9 B ::= B0 | B1 | 1 | 0

Überprüfen Sie mit der Grammatik / dem Syntaxdiagramm auf der JSON-Webseite, ob die hier angegebenen Texte gültige JSON-Strings sind.

- a) $\{ \text{"abc"} : \text{"def"} : \text{null }, \text{"ghi"} : -5 \}$ ungültig
- b) { name : 123, wert : true } $\operatorname{\mathsf{g\"{u}ltig}}$
- c) { "liste" : [5, 4, 3, 2, 1] , "aktiv" : false } qültiq
- d) { "liste": ["U", "R", 2, "good", 4.00, "me"] } $\,$ gültig