MTL103 Minor 1

Viraj Agashe

TOTAL POINTS

19 / 25

QUESTION 1

1 Q1 4.5 / 5

+ 0 pts Incorrect/not attempted

√ + 5 pts Correct

+ 1 pts Some positive approach towards correct solution

+ 2 pts For every point \$\$x\$\$, lies on the line segment between \$\$x*\$\$ and global min, $f(x)\neq f(x\cdot st)$.

+ 1 pts For some x on the line segment between \$\$x*\$\$ and global min, \$\$x\in N_\epsilon $(x\ast)$ \$\$ but no proof.

+ 2 pts For some x on the line segment between \$\$x*\$\$ and global min, \$\$x\in N_\epsilon (x\ast)\$\$ with partially correct proof.

- + 2 pts Correct for \$\$n=1\$\$. that is \$\$R^n=R\$\$
- + **0.5 pts** Some correct approach for \$\$n=1\$\$.
- 0.5 Point adjustment

QUESTION 2

2 Q2 5 / 10

- 0 pts Correct

√ - 10 pts unattempted/incorrect

- 5 pts if/only if part not proven or incomplete
- + 5 Point adjustment

QUESTION 3

3 Q3 4 / 4

✓ - 0 pts Correct

- 1 pts Did not show feasible solution

- 1.5 pts Did not show basic solution

- 1.5 pts Did not show non-degenerate solution

- 4 pts Incorrect

QUESTION 4

4Q43/3

✓ - 0 pts Correct

- 3 pts Wrong graph.

- **0.5 pts** Reason for degeneracy is not given.

- **0.5 pts** Feasible region is not marked.

- 0.5 pts One point is wrong.

- 1 pts Two points are wrong.

- 1.5 pts Three points are wrong.

- 2 pts Four points are wrong.

- 0.5 pts Wrong bfs points are mentioned.

QUESTION 5

5 Q5 2.5 / 3

√ - 0 pts Correct

- 0.5 pts Definition of \$\$x_{ijg}\$\$ where \$\$i \in I,

j \in J, g \in G\$\$, \$\$I,J,G\$\$ are sets of

neighbourhoods, schools and grades

- 0.5 pts Optimization Objective (min Total

distance travelled by students)

- 0.5 pts Non negativity constraints on

\$\$x_{ijg}\$\$

√ - **0.5** pts Integer constraint on \$\$x_{ijg}\$\$

- **0.5 pts** Capacity constraint on school capacity

\$\$C_{jg}\$\$

- **0.5 pts** Assignment constraint on student

population \$\$S_{ig}\$\$

- 3 pts Incorrect/Not attempted

I
7.9
Te
- 3
dents
ch od
<u>~</u> n
;


```
93. P= { N F R N | AN Eb, NZO }
P'= { (M, Z) E R N M | AN + Z = b , NZO , ZZO }
    Given n * in BFS of P
    Note that,
        Ax* + b-Ax* = b. Further, x+ 20 since x + EP
        1/XXX and An* 46 => 6-An* 20.
        : (n*, b-An+) is a feasible solution.
     Suppose A=mxn. Since x* is a non-degenerate BFS,
     it has exactly m non-zero entries in its vector representation.
     Now, consider the solution
                      (x*, b-Ax*).
     X* is a BFS => 3 n L.I. active constraints at x*.
     Notice that since x* has m non-zero entries, ... h-m
     entries are zero => n-m constraints of the form xi zo are
      active.
        .. Remaining in active constraints are from
        : n+ satisfies An+ = b. = b-An+ =0
         .. For the solution (n*, b-An*)
         we have exactly m
           m- han zero entries.
          in Kithy n active constraints from NZO, ZZO,
                 m constraints from An+Z=b
             => m+n active constraints at (n*, An* b-An *)
        Solution: so basic. Since X has m non-zero entries, so does
          (n, b-An*) => (n*, b-An*) is not degenerate.
```

6
Therefore we have proved that
Therefore we have proved that y = (n*, b-An*)
is a basic, feasible, non degenerate solution.
is a basic,

```
gl. f:R"→R, SCR".
 Note that if f is convex over R", it is convex over S.
    Consider any point NES. Then we have that,
               flax ( slas)
           f(\lambda x^* + (1-\lambda)x) \leq \lambda f(x^*) + (1-\lambda)f(x) + \lambda \epsilon(0)
      Now, we know + 6 >0 sit. f(n+) = f(n) + ||n-n+|| = E.
      We want & S.t. X AXX )
       11-27 MXx + (1-27 ml) = E
           (1-A) X
     400
     We claim 7 & s.t.
            | x*- ( xn* + (1-x) x*) | 5 E
        1-X < E
                         11nx-n11
                 =) \(\lambda \geq 1 - \in \in \)
                                11x+-x1)
    - If we pick d = 1 - E for any point n
                          (|x*-x1)
       we will have that ||x*-x11 & E
             =) For this 1,
               f(\lambda x^* + (1-\lambda)x) \geq f(x^*)
```

	9
	So we get, for our choice of A (20)
	$f(n*) \leq f(\lambda n* + (1-\lambda)n) \leq \lambda f(n*) + (1-\lambda)f(n)$
	Since $\lambda \in (011)$, $(-\lambda > 0)$ $=) \qquad (1-\lambda) f(x*) \leq (1-\lambda) f(x)$
	=) f(n*) < f(n) +nes
-	
1	
_	

Q2.	[⇒] Let n be a feasible solution. Min c7d
,	(⇒) Let n be a feasible solution. Min c Td We know for a standard LP, (n
	the optimal solution must be basic mxd
	feasible solution.
	Which : At least mon variables are zero.
	$\therefore K \geq m-n.$
	Consider the problem.
	min CTd
	Ad =0, d: ≥0, iEK.
	m constraints.
	Note that at least m-n constraints of the form di 20
	will be active. Let
	dec= I = {i di ≠0}. then we have,
	$Ad = M/(\sum_{j=1}^{n} A_j d_j)$
	= SAjdj + SAjdi jek je I
	Je x Je z
	= \(\frac{2}{4} \) \(\frac{1}{4} \) \(= 0 \)
	je I
	We know that the columns of A corresponding to the
	indices where di 70 => cols -of A corr. to indices where
	ni # 0 =) Aj's are linearly independent
	⇒ di=0 +ieI.
	d = (0,0,- 0)
	:. CTd =0.

11 [=] Consider the LP problem, Ad=0. di 20, ick. Then we have as earlier, Ajdj = 0. Now consider the indices set I. We have for ic I, xi =0. For the optimal cost If the optimal cost (Td =0 => d=0 .. Aj's are L.I. =) Cols in A are LI. =) n is BFS : for optimed.