作者: 张陈成

学号: 023071910029

三角范畴抄书笔记

三角范畴简介

目录

1 预三角范畴 1

2 好三角的可裂性 4

3 三角范畴 5

1 预三角范畴

定义 1 (加法范畴的自等价). 称 $T: \mathcal{C} \to \mathcal{C}$ 为范畴 \mathcal{C} 到自身的范畴等价, 当且仅当

- 1. (全) $T: \operatorname{Hom}_{\mathfrak{C}}(X,Y) \to \operatorname{Hom}_{\mathfrak{C}}(TX,TY)$ 对一切 $X,Y \in \mathsf{Ob}(\mathfrak{C})$ 满.
- 2. (忠实) $T: \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(TX,TY)$ 对一切 $X,Y \in \mathsf{Ob}(\mathcal{C})$ 单.
- 3. (稠密/本质满) 对任意 $X' \in Ob(C)$, 总存在 $X \in Ob(C)$ 使得 $TX \simeq X'$.
- 注 1. 等价地, 存在函子 $S: \mathcal{C} \to \mathcal{C}$ 与函子的自然同构 $TS \simeq \mathrm{id}_{\mathcal{C}} \simeq ST$. 不妨直接假定 $S^{-1} = T^1$.

定义 2 (三角及其间态射). 称 (\mathcal{C},T) 中的三角为六元组 (X,Y,Z,u,v,w), 即如下态射序列

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$
.

三角间的态射对应态射范畴的三角. 即, 使得下图交换的三元组 (f,g,h).

定义 3 (三角同构). 若三角间的某态射有左逆及右逆 (从而左右逆相等), 则称两三角同构.

例 1. 三角 (X,Y,Z,u,v,w) 与 $(X,Y,Z,\varepsilon_1u,\varepsilon_2v,\varepsilon_3w)$ 同构. 其中 $\varepsilon_i \in \{\pm 1\}, \varepsilon_1\varepsilon_2\varepsilon_3 = 1$.

定义 4 (预三角范畴). 给定范畴 C, 范畴自同构函子 $T:C\to C$, 以及某些三角组成的类 E. 称 (C,T,E) 为预三角范畴, 若满足以下命题.

1. 8 中存在形如以下的三角.

¹待补充???

- (a) $X \xrightarrow{\mathrm{id}_X} X \xrightarrow{0} 0 \xrightarrow{0} TX$ 为三角.
- (b) 任意 $X \xrightarrow{f} Y$ 可嵌入形如 $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h'} TX$ 的三角.
- (c) 对任意 $(X,Y,Z,u,v,w) \in \mathcal{E}$, 若 \mathcal{C} 中存在同构的三角 $(X,Y,Z,u,v,w) \simeq (X',Y',Z',u',v',w')$, 则后者也在 \mathcal{E} 中.
- 2. 8 中三角的顺时针旋转也在 8 中. 此处顺时针旋转是指

$$\left[X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \stackrel{w}{\longrightarrow} TX \right] \Longrightarrow \left[Y \stackrel{v}{\longrightarrow} Z \stackrel{w}{\longrightarrow} TX \stackrel{-Tu}{\longrightarrow} TY \right] \; .$$

 $X \xrightarrow{u} Y$ 3. 态射范畴的态射也可补全作三角. 换言之, 交换图 $\int\limits_{f} \int\limits_{u'} \int\limits_{u'} f$ 总能被补全作交换图 $\int\limits_{u'} \int\limits_{u'} f$

$$\begin{array}{cccc} X & \xrightarrow{u} & Y & \xrightarrow{v} & Z & \xrightarrow{w} & TX \\ f \downarrow & & \downarrow g & & \downarrow h & & \downarrow Tf \\ X' & \xrightarrow{u'} & Y' & \xrightarrow{w} & Z' & \xrightarrow{w'} & TX' \end{array}$$

称 & 中的三角为 "好三角", 也可想象之为 "正合列".

- 注 2. 以上定义中条件可改进如下
 - 1. 1-(b) 中嵌入位置是任意的,
 - 2. 1-(b) 中嵌入的三角在同构意义下唯一.
 - 3. 2 是充要的, 可定义"顺时针旋转"的逆变换为"逆时针旋转".
 - 4. 3 中 {f,g,h} 中任意两者的存在性推出第三者的存在性 (不必唯一) 2 .

往后依次证明之.

命题 1. 注 2 中的第三条成立.

证明. 任意三角在 T^{-1} 作用下得到同构的三角, 此处 T^{-2} 的逆变换为六次顺时针旋转. 因此, 好三角的六次逆时针旋转仍为好三角. 验证知逆时针旋转为 T^{-2} 与五次顺时针旋转之/复合. 反之, 若逆时针变换定义, 则定义顺时针变换为 T^2 与五次逆时针旋转之复合.

命题 2. 注 2 中的第一条成立.

证明, 依定义, 存在三角

$$T^{-1}X \xrightarrow{-T^{-1}u} T^{-1}Y \xrightarrow{-T^{-1}v} T^{-1}Z \xrightarrow{-T^{-1}w} X$$
.

考虑顺时针旋转,得

$$T^{-1}Y \xrightarrow{-T^{-1}v} T^{-1}Z \xrightarrow{-T^{-1}w} X \xrightarrow{u} Y .$$

再次顺时针旋转,遂有

$$T^{-1}Z \xrightarrow{-T^{-1}w} X \xrightarrow{u} Y \xrightarrow{v} Z$$
.

²该条结论位置不妥, 往后调整之.

命题 3. "好三角"中相继映射之复合为 0.

证明. 不妨取好三角

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$
.

将原三角补全作以下态射范畴的三角

$$X = X \longrightarrow 0 \longrightarrow TX$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{Tu}.$$

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

从而 vu=0. 考虑一次顺时针旋转, 则 wv=0.

定义 5 (上同调函子). 称预三角范畴 $\mathfrak C$ 到 Abel 范畴 $\mathcal A$ 上的加法函子 $\mathcal H$ 是上同调函子, 当且仅当 $\mathcal H$ 在好三角上的作用导出长正合列

$$\cdots \xrightarrow{H(-T^{-1}v)} H(T^{-1}Z) \xrightarrow{H(-T^{-1}w)} H(X) \xrightarrow{H(u)} H(Y) \xrightarrow{H(v)} H(Z) \xrightarrow{H(w)} H(TX) \xrightarrow{H(-Tu)} \cdots$$

C 到 A 的反变上同调函子等价于 Cop 到 A 的上同调函子.

例 2. 对任意 $M \in \text{Ob}(\mathcal{C})$, 函子 $\text{Hom}_{\mathcal{C}}(M,-)$ 与 $\text{Hom}_{\mathcal{C}}(-,M)$ 均是上同调函子. 对前者, 好三角 $X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \stackrel{w}{\longrightarrow} TX$ 给出链复形 (任意 $d \in \mathbb{Z}$)

$$\operatorname{Hom}_{\operatorname{\mathcal{C}}}(M, T^d X) \xrightarrow{\operatorname{Hom}_{\operatorname{\mathcal{C}}}(M, T^d u)} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(M, T^d Y) \xrightarrow{\operatorname{Hom}_{\operatorname{\mathcal{C}}}(M, T^d v)} \operatorname{Hom}_{\operatorname{\mathcal{C}}}(M, T^d Z)$$
.

下证明 T^dY 处正合性. 对任意 $g \in \ker \operatorname{Hom}_{\mathfrak{C}}(M, T^dv)$, 总存在 f 使得下图交换

$$T^{-d}M \longrightarrow 0 \longrightarrow T^{1-d}M \xrightarrow{\mathrm{id}} T^{1-d}M$$

$$T^{-d}g \downarrow \qquad \qquad \downarrow f \qquad \qquad \downarrow T^{1-d}g \cdot Y \xrightarrow{v} Z \xrightarrow{w} TX \xrightarrow{-Tu} TY$$

此时 $T^{1-d}g = -(Tu)f$. 故 $g = T^{d-1}(-(Tu)f) \in \operatorname{im} \operatorname{Hom}_{\mathfrak{C}}(M, T^d u)$. 同理, $\operatorname{Hom}_{\mathfrak{C}}(-, M)$ 是反变正合的.

命题 4. 若好三角的态射中有两处映射为同构,则第三处亦然. 这也直接证明了注 2 中的第二条.

证明. 考虑三角旋转, 不失一般性地设以下交换图中 f 与 g 是同构.

$$\begin{array}{cccc} X & \xrightarrow{u} & Y & \xrightarrow{v} & Z & \xrightarrow{w} & TX \\ f \downarrow & & \downarrow g & & \downarrow h & & \downarrow Tf \\ X' & \xrightarrow{u'} & Y' & \xrightarrow{v'} & Z' & \xrightarrow{w'} & TX' \end{array}$$

记 $h^M: \mathcal{C} \to \mathrm{Ab}, X \mapsto \mathrm{Hom}_{\mathcal{C}}(M,X)$, 则有正合列间的交换图

$$h_{Z}(X) \xleftarrow{h_{Z}(u)} h_{Z}(Y) \xleftarrow{h^{Z}(v)} h_{Z}(Z) \xleftarrow{h^{Z}(w)} h_{Z}(TX) \xleftarrow{h_{Z}(-Tu)} h_{Z}(TY)$$

$$\downarrow h_{Z}(f) \uparrow \qquad \qquad \uparrow h_{Z}(g) \qquad \qquad \uparrow h_{Z}(h) \qquad \qquad \uparrow h_{Z}(Tf) \qquad \qquad \uparrow h_{Z}(Tg) \cdot h_{Z}(X') \xleftarrow{h_{Z}(u')} h_{Z}(Y') \xleftarrow{h_{Z}(v')} h_{Z}(Z') \xleftarrow{h_{Z}(w')} h_{Z}(TX') \xleftarrow{h_{Z}(-Tu')} h_{Z}(TY')$$

此处 $\{h_Z(f), h_Z(g), h_Z(Tf), h_Z(Tg)\}$ 均为同构. 根据五引理, 中间处 $h_Z(h)$ 为同构. 显然存在 $h' \in \operatorname{Hom}_{\mathfrak{C}}(Z', Z)$ 使得 $h' \circ h = \operatorname{id}_Z \in \operatorname{End}_{\mathfrak{C}}(Z)$. 同理地, 将 h_Z 换作 $h^{Z'}$ 可知 h 有左逆与右逆, 从而 h 与 h' 为互逆的同构. \square

注 3. 仿照以上证明, 有"二推三"推论. 即, 若 $\{f,g,h\}$ 中任意两者为同构, 则第三者亦然.

2 好三角的可裂性

命题 5 (直和保持好三角)**.** 给定预三角范畴 \mathcal{C} ,则好三角的有限直和仍是好三角. 若范畴允许某种无穷直和,则无穷个好三角的该种无穷直和仍是好三角.

证明. 考虑以下交换图

$$\begin{array}{c|c} X & \xrightarrow{u} & Y & \xrightarrow{v} Z & \xrightarrow{w} TX \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \downarrow & & \downarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix} & & \downarrow i & \downarrow T\begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ X \oplus X' & \xrightarrow{u \oplus u'} & Y \oplus Y' & \xrightarrow{g} W & \xrightarrow{h} T(X \oplus X') \\ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \uparrow & & \uparrow T\begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ X' & \xrightarrow{u'} & Y' & \xrightarrow{v'} & Z' & \xrightarrow{w'} & TZ' \end{array}$$

其中, g 与 h 为 $u \oplus u'$ 嵌入的某个好三角中的映射. 连接映射 i 与 j 由好三角间的同态给出. 依照 "二推三" 推论, 只需证明下交换图中 $(T\binom{1}{0}, T\binom{0}{1})$ 为同构:

这是显然的:根据熟知结论,加法范畴间的函子为加法函子当且仅当其保持有限余积.无穷部分证明待补充.

例 3. 对预三角范畴 \mathcal{C} 与任意 $X,Y \in \mathsf{Ob}(\mathcal{C})$, 总有直和 $X \xrightarrow{\binom{1}{0}} X \oplus Y \xrightarrow{(0,1)} Y \xrightarrow{0} TX$.

定义 6 (可裂单/满). 可裂单态射即存在左逆的态射, 可裂满态射即存在右逆的态射.

命题 6. 给定好三角 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$,则 u 可裂单等价于 v 可裂满,亦等价于 w = 0.

证明. w = 0 时有以下交换图 (三角同构)

$$X \xrightarrow{\binom{1}{0}} X \oplus Z \xrightarrow{(0,1)} Z \xrightarrow{0} TX$$

$$\parallel \qquad \qquad \downarrow (\varphi,\psi) \qquad \parallel \qquad \qquad \parallel \qquad .$$

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{v} TX$$

依照交换图, $\varphi = u$, 且 ψ 是 v 的右逆. 反之, 有交换图 (三角同构)

$$\begin{array}{c} X \xrightarrow{\binom{1}{0}} X \oplus Z \xrightarrow{(0,1)} Z \xrightarrow{0} TX \\ \parallel & \stackrel{(u,v_r^{-1})}{\downarrow} & \parallel & \parallel \\ X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX \end{array}.$$

其中 v_r^{-1} 为 v 的右逆, 从而只能有 w=0. 这表明 w=0 与 v 可裂满是等价的. w=0 时亦有如下交换图 (三角同构)

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

$$\parallel \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \qquad \parallel$$

$$X \xrightarrow{\binom{1}{0}} X \oplus Z \xrightarrow{(0,1)} Z \xrightarrow{0} TX$$

显然 $\beta = v$, α 是 u 的左逆. 反之, 有交换图 (三角同构)

$$\begin{array}{c|c} X & \xrightarrow{u} Y & \xrightarrow{v} Z & \xrightarrow{w} TX \\ \parallel & (u_l^{-1}, v) \downarrow & \parallel & \parallel \\ X & \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} X \oplus Z & \xrightarrow{(0,1)} Z & \xrightarrow{0} TX \end{array}$$

从而只能有 w=0. 这表明 w=0 与 u 可裂单是等价的.

注 4. 特别地, 若 $X \stackrel{u}{\longrightarrow} Y$ 是同构, 则有好三角的同构 $(X,Y,Z,u,v,w) \simeq (X,Y,0,u,0,0)$.

3 三角范畴

定义 7 (三角范畴). 称预三角范畴为三角范畴, 若满足以下命题.

• 将 $X \xrightarrow{u} Y \xrightarrow{v} Z$ 中映射 $\{u,v,uv\}$ 分别嵌入三个好三角,则存在虚线处的好三角使得下图交换

定义 8 (三角子范畴). 称三角范畴的子范畴 ℃ ⊂ ℃ 为三角子范畴, 若满足以下命题

- 1. 任取 C 中同构的好三角, 若一者为 C' 中的好三角, 则另一者亦然.
- 2. T 也是范畴 C' 的自同构. 换言之, C' 是 C 的 T-不变子空间.
- 3. 给定 \mathfrak{C} 中好三角 (X,Y,Z,u,v,w), 若 $X,Z \in \mathsf{Ob}(\mathfrak{C})$, 则 $Y \in \mathsf{Ob}(\mathfrak{C})$.

定义 9 (三角函子). 称三角范畴间的加法函子 $F: \mathcal{C} \to \mathcal{C}'$ 为三角函子, 若存在自然同构 $\varphi: FT \simeq T'F$.

- 注 5. 依照范畴等价/同构, 定义三角函子 (或三角范畴间) 的同构/等价为三角同构/三角等价.
- 注 6. 也称好三角为正合列. 相应地, 三角函子也称作正合函子.
- **例 4.** 三角函子的核给出三角子范畴.

命题 7. 三角函子 $F: \mathcal{C} \to \mathcal{C}'$ 对 Ob 保持单, 对 Mor 保持满, 则对 Mor 保持单 (忠实).

证明. 任取 v 使得 Fv = 0, 下证明 v = 0 即可. 考虑如下好三角的交换图

由题设知 Fv=0,故 Fu 可裂满. 由于 F 对 Mor 保持满, 则存在 u' 使得 $(Fu)(Fu')=F(uu')=\mathrm{id}_{FY}$. 此时 考虑如下好三角的同态

$$\begin{array}{cccc} Y \xrightarrow{uu'} & Y & \longrightarrow W & \longrightarrow TY \\ \downarrow & & \downarrow & & \downarrow \\ FY & \xrightarrow{F(uu')} & FY & \longrightarrow 0 & \longrightarrow T'FY \end{array}.$$

由于 F 对 Ob 保持单, 且 FW = 0, 故 W = 0. 此时 uu' 为 Y 的自同构, 遂 v = 0.

命题 8. 对三角范畴间的伴随对,一者为三角函子当且仅当另一者为三角函子.

证明. 待补充.

注 7. 一般地, Abel 范畴间的正合函子仅有"左伴随右正合-右伴随左正合"一对应; 对三角范畴而言, 有"左伴随正合-右伴随正合"一对应.