Cues $M^{[X]}/E_k^{[V]}/1$. Fòrmula d'aproximació de Powell 1

Implementa l'aproximació de Powell a (*) per una cua M[X]/Ek[V]/1 (Bulk arrival - Bulk Service) Nota: S'ha efectuat en el full de càlcul una correcció en els coeficients a i f

1. Descripció de magnituds:

- 1. V v.a.discreta. Capacitat disponible del servidor (i.e. número màxim de clients que podrà servir en arribar al S.E.); Se suposa una capacitat màxima K, de forma que $V \le K$; v = E[V]; $C_v = \sigma_v/v$
- 2. S v.a. continua: temps entre dues arribades consecutives d'un servidor (entre dos serveis consecutius). $E[S]=1/\mu,$ $C_s=\mu\sigma_s$
- 3. τ v.a. continua: temps entre dues arribades consecutives de paquets de clients. $E[\tau] = 1/\lambda$
- 4. X v.a. discreta: número de clients en un paquet. x = E[X]; $C_x = \sigma_x/x$.
- 5. Y v.a. discreta: número de clients en un cicle.

Número mig de clients arribats en un cicle: $E[Y] = \frac{\lambda x}{\mu}$

Factor de càrrega de la cua $\rho = \frac{\lambda x}{\mu v}$. Estat estacionari si $\rho < 1$.

Es verifiquen les següents relacions:

$$Var[Y] = (\lambda x)^2 Var[S] + \frac{\lambda}{\mu} (Var[X] + x^2); \quad C_Y^2 = \frac{Var[Y]}{E^2[Y]} = C_s^2 + \frac{\lambda}{\mu} (1 + C_X^2)$$

2. Arribades de clients observades pel servidor

El número total mig \tilde{x} de clients arribats observats per paquet és:

$$\tilde{x} = \frac{(x(1+C_x^2)-1)}{2}$$

El número total mig \tilde{y} de clients arribats observats per cicle és:

$$\tilde{y} = \frac{1}{2} \left(\frac{\lambda x}{\mu} \left(1 + C_S^2 + \frac{\mu}{\lambda} \left(1 + C_x^2 \right) \right) - 1 \right)$$

3. Fòrmula de Powell

3.1. Ocupació màxima en promig

Si Q és el valor mig de la cua màxima que es dona (és a dir, la que hi ha tot just abans de què arribi un servidor)

$$\hat{Q} = \frac{v}{2} \left\{ \frac{1 + C_v^2}{1 - \rho} + \frac{\rho^2 (C_s^2 - 1)}{1 - \rho} \right\} + \frac{x\rho (1 + C_x^2)}{2(1 - \rho)} + \frac{1}{2} - K + \epsilon(v, \rho)$$
 (1)

El terme de correcció $\epsilon(v, \rho)$ esdevé important per valors de ρ baixos; val:

$$\epsilon(v,\rho) = a + (f + b\rho + g\rho^2)v + c(\rho v)^{\frac{1}{2}} + eK + d\check{Y}^{\frac{1}{3}}$$
 (2)

$$a = -0.4358, \quad b = 0.6804, \quad c = -0.8862$$

 $d = 0.4155, \quad e = 0.9925, \quad f = -0.4775, \quad g = -0.1892$ (3)

 $(\breve{Y}$ és el moment tercer del número total de clients arribats per cicle i generalment és desconegut).

¹Powell, W.B. "Approximate, Closed form moment formulas for bulk arrival, bulk service queues." Transportation Science, Vol 20, No 1, 1986

3.2. Ocupació mitjana L i demora W per client

$$L = \hat{Q} + \rho v \left\{ \frac{(1+C_s^2)}{2} - 1 \right\}$$

$$W = \frac{L}{\lambda x} = \frac{1}{\mu} \left\{ \frac{\hat{Q}}{\rho v} - 1 \right\} + \frac{1}{2\mu} \left\{ 1 + C_s^2 \right\}$$

Cal tenir en compte, però que: $\ell i m_{\rho \to 0+} \, \frac{\hat{Q}}{\rho} \, = v$ i, per tant què, per $\rho \approx 0$ és $W \approx \, \frac{1}{2\mu} \, \left\{ 1 + C_s^2 \right\}$

3.3. Cua residual aproximada

Valor mig de la cua mínima (valor mig de les cues que queden immediatament després d'anar-se'n el servidor)

$$R_L = L - \frac{\rho v}{2} \left(1 + {}^{\circ}C_s^2 \right) \tag{4}$$

										IIUX	pax
rho	Q	Q1	Corr	Corr/Q1	L	W	Q/rho	W/W0	RL	mig.pax.	per cicle
0	0,00000	31,75000	-32,50000	1,02362	0,00000	10,00000	41,03574	1,00000	0,00000	0,0000	0,0000
0,1	4,10357	35,27778	-31,17420	0,88368	4,10357	10,00000	41,03574	1,00000	0,00000	0,5000	5,0000
0,2	10,81069	39,68750	-28,87681	0,72760	10,81069	10,81069	54,05345	1,08107	0,81069	1,0000	10,0000
0,3	18,77951	45,35714	-26,57764	0,58596	18,77951	12,51967	62,59835	1,25197	3,77951	1,5000	15,0000
0,4	28,54786	52,91667	-24,36881	0,46051	28,54786	14,27393	71,36965	1,42739	8,54786	2,0000	20,0000
0,5	41,21400	63,50000	-22,28600	0,35096	41,21400	16,48560	82,42800	1,64856	16,21400	2,5000	25,0000
0,6	59,02748	79,37500	-20,34752	0,25635	59,02748	19,67583	98,37914	1,96758	29,02748	3,0000	30,0000
0,7	87,26910	105,83333	-18,56423	0,17541	87,26910	24,93403	124,67015	2,49340	52,26910	3,5000	35,0000
0,8	141,80678	158,75000	-16,94322	0,10673	141,80678	35,45169	177,25847	3,54517	101,80678	4,0000	40,0000
0,9	302,01059	317,50000	-15,48941	0,04879	302,01059	67,11346	335,56732	6,71135	257,01059	4,5000	45,0000
0,95	620,17364	635,00000	-14,82636	0,02335	620,17364	130,56287	652,81436	13,05629	572,67364	4,7500	47,5000
0,975	1255,48903	1270,00000	-14,51097	0,01143	1255,48903	257,53621	1287,68106	25,75362	1206,73903	4,8750	48,7500

flux

nay

