Algebraic Effects and Handlers

Andrej Bauer University of Ljubljana

July 20, 2018

1 Review

- Signature $\Sigma = \{ op_i : P_i \Rightarrow A_i \}_{i \in I}$ Note: \Rightarrow does not mean function.
- Trees/Terms $\mathsf{Tree}_{\Sigma}(V)$:
 - return v with $v \in V$
 - $\operatorname{op}_i(p,\kappa)$ with $p \in P_i, \kappa: A_i \to \operatorname{Tree}_\Sigma(X)$
- Interpretation/Model M:
 - carrier |M|
 - $\llbracket \mathsf{op}_i \rrbracket_M : P_i \times |M|^{A_i} \to |M|$
- $\operatorname{Free}_T(V) = \operatorname{Tree}_{\Sigma_T}(V) / \approx_T \operatorname{computations}$

2 Transformation of Computations

What does this mean:

$$|\mathtt{Free}_T(V)| \to |\mathtt{Free}_{T'}(V')|$$
?

Homomorphism, but from where? From the domain. T-Homomorphism.

$$\mathtt{Free}_T(V) \to \mathop{M}_{\mathtt{T-Model}} \text{ where } |M| = |\mathtt{Free}_{T'}(V')|$$

and for $op_i: P_i \to A_i$ we need:

$$\llbracket \mathsf{op}_i
Vert_M : P_i imes \lvert \mathsf{Free}_{T'}(V')
Vert^{A_i} o \lvert \mathsf{Free}_{T'}(V')
Vert$$

such that \mathcal{E}_T are satisfied by M.

2.1 Definition: Handler

A handler H given by:

- the maps $[op_i]_M$ as above
- a map $r: V \to |\mathtt{Free}_{T'}(V')|$ I.e.: $H([\mathtt{return}\ v]) = r(v)$ and $H([\mathtt{op}_i(p,\kappa)]) = [\![\mathtt{op}_i]\!]_M(p,H\circ\kappa)$

2.1.1 Notation

handler{return $x \mapsto r(x), op_i(x, \kappa) \mapsto [op_i]_M(x, \kappa) = C_i(x, \kappa)$ }

2.1.2 Notation

for H(c) where $c \in |Free_T(V)|$: with H handle c

2.1.3 Rewrite with New Notation (Code)

```
with H handle return v = r(v)
with H handle op(p,\kappa) = C_i(p,\lambda x. with H handle \kappa x)
```

2.2 Comodels

A T-comodel in a category \mathbb{C} is a T-model in \mathbb{C}^{op} In $\mathbb{C} = \text{Set}$ we get

- \bullet A T-cointerpretation W is
 - carrier set |W|
 - for each op_i: $P_i \to A_i$ a cooperation $[\![\operatorname{op}_i]\!]^W: P_i \times |W| \to A_i \times |W|$ Why? $P_i \times |M|^{A_i} \to |M| \operatorname{carry} |M|^{A_i} \to |M|^{P_i}$ dualize $P_i \times |M| \to A_i \times |M|$ extend to interpret trees \Longrightarrow T-comodel W a cointerpretation that validates the equations

2.2.1 Examples

```
\begin{array}{l} \text{print: String} \to 1 \\ \llbracket \texttt{print} \rrbracket^W : \texttt{String} \times |W| \to 1 \times |W| \\ \text{read: } 1 \to \texttt{String} \\ \llbracket \texttt{read} \rrbracket^W : 1 \times |W| \to \texttt{String} \times |W| \\ \text{rnd: } 1 \to \texttt{Bool} \end{array}
```

2.3 Model M and Comodel W

Tensor
$$M \otimes W = M \times W / \sim_T$$
 where $(\llbracket \mathsf{op}_i \rrbracket_M(p,\kappa), w) \sim_T (\kappa(a), w')$ $\llbracket \mathsf{op}_i \rrbracket^W(p,w) = (a,w')$

3 Combining Theories

Consider two theories T and T'

- 1. Coproduct $T \oplus T'$ $\Sigma_{T \oplus T'} = \Sigma_T + \Sigma_{T'}$ $\mathcal{E}_{T \oplus T'} = \mathcal{E}_T + \mathcal{E}_{T'}$
- 2. Tensor $T \otimes T'$ $\Sigma_{T \otimes T'} = \Sigma_T + \Sigma_{T'}$ $\mathcal{E}_{T \otimes T'} = \mathcal{E}_T + \mathcal{E}_{T'} + \text{distributive laws}$

Distributive Law:

$$\begin{aligned} & \text{op} \left(\text{p.} \lambda \text{x.op'} \left(\text{p'}, \lambda \text{y.} \kappa(\text{x}, \text{y}) \right) \right) \! = \! \text{op'} \left(\text{p'.} \lambda \text{y.op} \left(\text{p,} \lambda \text{x.} \kappa(\text{x}, \text{y}) \right) \right) \\ & \text{where op} \in \Sigma_T \text{ and op'} \in \Sigma_{T'} \end{aligned}$$

4 Designing a Programming Language

- 1. Change math terminology to program terminology (familiar)
- 2. Reuse existing concepts
- 3. Add missing features (recursion, etc) and make pretty (reorganize)
- 4. Provide operational semantics
- 5. Provide typing rules

4.1 Terminology

- Free Σ v to computations
- v from generators to values
- sets of generators to value types
- free models to computation types

4.2 Syntax

```
\begin{array}{llll} v & ::= & x & | & false & | & true & | & h & (handler) & | & \lambda x.\,c & (function) \\ h & ::= & handler & \{ \textbf{return} & x \mapsto c\_ret \;,\; op_i(x\,,k) \; to \; c\_i \; \} \\ c & ::= & \textbf{return} & v \\ & | & \textbf{if} \; v \; \textbf{then} \; c1 \; \textbf{else} \; c2 \\ & | & v1 \; v2 \\ & | & with \; v \; handle \; c \\ & | & \textbf{do} \; x \leftarrow c1 \; \textbf{in} \; c2 \\ & | & op(v\,,\; \lambda x.\,c) \; (op \; v) \\ & | & fix \; x.\,c \end{array}
```

The rest should be online.