

Segurança da Informação

Curvas Elípticas Emparelhamentos Bilineares

Grupos

- Criptossistemas baseados no PLD operam numa estrutura algébrica de grupo.
- Um grupo (abeliano) G é um conjunto com uma operação de composição:
 - P + O = P (elemento neutro)
 - P + (-P) = O (elemento inverso)
 - P + (Q + R) = (P + Q) + R (associatividade)
 - \blacksquare P + Q = Q + P (comutatividade)

Grupos

- Multiplicação por escalar:
 - $n \cdot P = P + ... + P (n \text{ vezes}),$
 - $0 \cdot P = 0$,
 - $\bullet (-n) \cdot \mathsf{P} = n \cdot (-\mathsf{P}).$
- Propriedades de espaço vetorial:
 - $(m+n) \cdot P = m \cdot P + n \cdot P,$
 - $m \cdot (n \cdot P) = n \cdot (m \cdot P) = (mn) \cdot P$.

Grupos

- Ordem de P: menor r > 0 tal que $r \cdot P = 0$.
- Subgrupo gerado por P:
 - $\langle P \rangle = \{ m \cdot P \mid m = 0, ..., r-1 \} = \{ 0, P, 2 \cdot P, ..., (r-1) \cdot P \}.$
- Logaritmo (ou índice) discreto de Y ∈ ⟨P⟩:
 - $\log_{P} Y = m \Leftrightarrow m \cdot P = Y$.
- Notação multiplicativa:
 - a·1 = a (elemento neutro)
 - $a \cdot a^{-1} = 1$ (elemento inverso)
 - a·(b·c) = (a·b)·c (associatividade)
 - a·b = b·a (comutatividade)
 - $a^n = a \cdot ... \cdot a \ (n \text{ vezes}), \ a^0 = 1, \ a^{-n} = (a^{-1})^n$.

Exemplos de grupos

- Inteiros mod $p(\mathbb{Z}_p)$, operação de adição.
- Inteiros não nulos mod p (\mathbb{Z}_p^*), operação de multiplicação.
- Curvas elípticas: conjuntos de pontos no plano (x, y) que satisfazem uma equação da forma $y^2 = x^3 + ax + b$, com um ponto adicional O (ponto no infinito).

- Dados dois pontos (x_1, y_1) e (x_2, y_2) de uma curva elíptica, em geral o ponto $(x_1 + x_2, y_2 + y_2)$ **não** está sobre a curva.
- É possível definir uma operação de soma de pontos através de uma construção geométrica (secantes e tangentes).
- Fórmulas derivadas dessa construção calculam diretamente as coordenadas do ponto $(x_3, y_3) = (x_1, y_1) + (x_2, y_2)$.

- $P = (x_1, y_1), -P = (x_1, -y_1).$
- NB: se $y_1 = 0$, P = -P.
- Ponto no infinito:
 - O = (0, 0) se $b \neq 0$
 - O = (0, 1) se b = 0.
- NB: estes pontos não satisfazem a equação da curva!
 - Artifícios convencionais para representar o ponto O.

• $P = (x_1, y_1), Q = (x_2, y_2)$:

$$\lambda \leftarrow \frac{y_2 - y_1}{x_2 - x_1}$$

$$x_3 \leftarrow \lambda^2 - (x_1 + x_2)$$

$$y_3 \leftarrow \lambda(x_1 - x_3) - y_1$$

• Se $x_1 = x_2$, usa-se a fórmula de duplicação.

• $P = (x_1, y_1), 2P = (x_3, y_3)$:

$$\lambda \leftarrow \frac{3x_1^2 + a}{2y_1}$$

$$x_3 \leftarrow \lambda^2 - 2x_1$$

$$y_3 \leftarrow \lambda(x_1 - x_3) - y_1$$

• Se $y_1 = 0$, P = -P e portanto 2P = 0.

Algoritmo de "exponenciação"

```
// x = (x_m x_{m-1} ... x_1 x_0)_2, x_m = 1.
Y \leftarrow P
for i = m-1, ..., 0 {
     Y \leftarrow 2Y
     if X_i = 1  {
         Y \leftarrow Y + P
return Y
                           // Y = x \cdot P
```


Problema do Logaritmo Discreto

- Dado um escalar x e um elemento P ∈
 G, é "fácil" calcular Y = x·P.
- Dados P e Y, é "difícil" calcular x.
- Com inteiros de k bits, para calcular Y a partir de x e P são necessários O(k³) passos (esforço polinomial).
- Em certos grupos, para calcular x a partir de Y e P são necessários O(2^k) passos (esforço exponencial).

Comparação: ECC vs. RSA

Diffie-Hellman

- Objetivo: negociação de chave através de um canal potencialmente inseguro.
- Parâmetro público:
 - Grupo (P) de ordem r.
- Chave privada:
 - x: número aleatório mod r.
- Chave pública:
 - \bullet Y = $x \cdot P$.

Protocolo Diffie-Hellman

- Alice (A) e Beto (B) desejam estabelecer comunicação segura.
- Possibilidade: usar um algoritmo simétrico para cifrar as mensagens trocadas entre A e B.

 Problema: A e B precisam compartilhar uma chave simétrica.

Protocolo Diffie-Hellman

Pares de chaves:

$$X_{A}$$
, $Y_{A} = X_{A} \cdot P$
 X_{B} , $Y_{B} = X_{B} \cdot P$

- A obtém a chave pública de B e viceversa a partir de uma base de chaves.
 - A calcula $x_A \cdot Y_B$ = $x_A \cdot (x_B P)$ = $(x_A x_B) \cdot P$

• B calcula $x_B \cdot Y_A$ = $x_B \cdot (x_A P)$ = $(x_A x_B) \cdot P$

Curvas Hiperelípticas

 Uma curva hiperelíptica de gênero g é definida por uma equação da forma

$$y^2 + h(x)y = f(x)$$

onde deg $h(x) \le g$ e deg $f(x) = 2g+1$.

- Curvas elípticas são curvas hiperelípticas de gênero g=1.
- Lei de grupo: seqüências de g pontos.

Curvas Hiperelípticas

- Aritmética geralmente implementada com divisores em representação de Mumford (pares de polinômios).
- Segurança diminui com o gênero:
 - g = 1, 2: OK
 - g = 3, 4: aplicações *muito* especiais.
 - g ≥ 5: 😭

Emparelhamentos Bilineares

Corpos Finitos

- Corpo (\mathbb{K} , +, 0, ·, 1): conjunto com duas operações algébricas. Notação: \mathbb{F}_q , GF(q).
 - (K, +, 0) é um grupo abeliano:

$$a+0 = a, a+(-a) = 0, a+(b+c) = (a+b)+c, a+b = b+a.$$

• (K*, ⋅, 1) é um grupo abeliano:

$$\circ$$
 a·1 = a, a·a⁻¹ = 1, a· (b·c) = (a·b) ·c, a·b = b·a.

• $a \cdot (b + c) = a \cdot b + a \cdot c$ (distributividade).

Corpos Finitos

- Propriedade: o número de elementos de um corpo finito, $q = \#\mathbb{K}$, é sempre uma potência de um número primo: $q = p^m$.
- Propriedade (Pequeno Teorema de Fermat): $a^q = a$ (ou $a^{q-1} = 1$).

Exemplos de Corpos Finitos

- \mathbb{F}_p : Inteiros módulo um primo p ($\mathbb{F}_p = \mathbb{Z}_p$).
- \mathbb{F}_{p^m} : Polinômios com m coeficientes em \mathbb{F}_{p^r} módulo um polinômio irredutível de grau m.
- Notação: $\mathbb{F}_{p^m} = \mathbb{F}_p[X]/v(X)$, v(X) polinômio irredutível, $\deg(v) = m$.
- AES utiliza aritmética no corpo finito $GF(2^8) = \mathbb{F}_2[X]/(X^8 + X^4 + X^3 + X + 1)$.

Emparelhamentos

- \mathbb{G}_0 e \mathbb{G}_1 : grupos aditivos, \mathbb{G}_T : grupo multiplicativo, todos de ordem r.
- Um emparelhamento é uma função

$$e: \mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_T$$

satisfazendo as propriedades:

- *e*(P, Q) ≠ 1;
- $e(\alpha P, \beta Q) = e(P,Q)^{\alpha\beta}, \forall \alpha, \beta \in \mathbb{Z};$
- eficientemente computável.

Assinaturas BLS

- Par de chaves: (s, V = sQ).
- Assinatura:
 - calcular $\Sigma = sH(m)$;
 - mensagem assinada: (m, Σ) .
- Verificação:
 - aceitar $(m, \Sigma) \Leftrightarrow e(\Sigma, \mathbb{Q}) = e(H(m), \mathbb{V}).$
- Explicação:
 - $\bullet \ e(\Sigma, \mathbb{Q}) = e(sH(m), \mathbb{Q}) = e(H(m), \mathbb{Q})^{s}.$
 - $e(H(m), V) = e(H(m), sQ) = e(H(m), Q)^{s}$.

Cálculo do emparelhamento

- Só se conhecem emparelhamentos adequados quando \mathbb{G}_0 e \mathbb{G}_1 são curvas elípticas sobre GF(q) e \mathbb{G}_T é um corpo finito $GF(q^k)$.
- Em geral, k é enorme ⇒ curvas especiais são necessárias:
 - Curvas supersingulares;
 - Curvas MNT;
 - Curvas BN.

Cálculo do emparelhamento

- Cálculo através do algoritmo de Miller ou variantes aperfeiçoadas.
- Idéia: operações adicionais intercaladas no algoritmo de exponenciação.
- "Pequeno" problema...

Algoritmo de Miller

```
// r = (r_m r_{m-1} ... r_1 r_0)_2, r_m = 1.
f \leftarrow \text{const}, R \leftarrow \text{random}(E),
Y \leftarrow P
for i = m-1, ..., 0 {
    f \leftarrow f^2 \cdot g_{V,V}(Q+R) \cdot g_{2V,-2V}(R)/g_{2V,-2V}(Q+R) \cdot g_{V,V}(R),
    Y \leftarrow 2Y
    if r_i = 1 \{
         f \leftarrow f \cdot g_{V,P}(Q+R) \cdot g_{V+P,-V-P}(R)/g_{V+P,-V-P}(Q+R) \cdot g_{V,P}(R),
         Y \leftarrow Y + P
z \leftarrow (p^k - 1)/r, f \leftarrow f^z
return // e(P, Q)
```


Algoritmo BKLS/GHS

```
// r = (r_m r_{m-1} ... r_1 r_0)_2, r_m = 1.
f \leftarrow 1,
Y \leftarrow P
for i = m-1, ..., 0 {
    f \leftarrow f^2 \cdot g_{V,V}(Q),
    Y \leftarrow 2Y
    if r_i = 1 {
        f \leftarrow f \cdot g_{V,P}(Q),
        Y \leftarrow Y + P
z \leftarrow (p^k - 1)/r, f \leftarrow f^z
return // e(P, Q)
```


Criptografia baseada em identidades

- Algoritmo Boneh-Franklin (2001): primeira instância prática de um criptossistema baseado em identidades (problema proposto por Shamir em 1984).
- Gerador de chaves privadas (GCP): (s, T = sP).
- Função de hash:

$$H: \{0,1\}^* \rightarrow \langle Q \rangle.$$

• Cifra simétrica:

ε:
$$GF(q^k) \times \{0,1\}^* \rightarrow \{0,1\}^*$$
.

Criptografia baseada em identidades

- Extração de chave:
 - $Q_{id} = H(id)$, $D_{id} = sQ_{id}$.
- Encriptação da mensagem *M*:
 - escolher $u \in \mathbb{Z}^*_r$ aleatório;
 - calcular N = uP, K = e(T, Q_{id}) u , $C = \varepsilon_{K}(M)$.
 - texto cifrado: (N, C).
- Decriptação do criptograma (N, C):
 - calcular K = e(N, D_{id});
 - recuperar $M = \varepsilon^{-1}_{K}(C)$.
- Explicação: $e(T, Q_{id})^u = e(sP, Q_{id})^u = e(uP, sQ_{id}) = e(N, D_{id}).$

Outros esquemas

- Existem inúmeros tipos de assinaturas digitais baseadas em identidade, esquemas para acordo de chaves, cifrassinatura, quotização de segredo, ...
- Há também sistemas convencionais com propriedades exóticas, incluindo assinaturas de vários tipos, sistemas hierárquicos, controle de acesso, PKC sem certificados e auto-certificada,...
- Inúmeros problemas em aberto!

Apêndice

Cifrassinatura McCullagh-Barreto baseada em identidades

Estrutura do esquema

- Composição universal algoritmos separados para assinatura e cifração.
- Propriedade: emparelhamentos *não* são usados para cifrar e assinar.
- Resultado: algoritmo de cifrassinatura (baseado em identidades) mais eficiente conhecido.
- Segurança "demonstrável" em determinadas parametrizações.

Parametrização

 O Gerador de Chaves Privadas (GCP) escolhe três grupos (e respectivos geradores)

$$\mathbb{G}_0 = \langle P \rangle$$
, $\mathbb{G}_1 = \langle Q \rangle$, $\mathbb{G}_T = \langle g \rangle$

de mesma ordem prima *r* que admitam um emparelhamento eficientemente calculável

e:
$$\mathbb{G}_0 \times \mathbb{G}_1 \to \mathbb{G}_T$$

satisfazendo g = e(P, Q), e três oráculos aleatórios

$$H_0: \{0,1\}^* \to \mathbb{Z}_r^*,$$
 $H_1: \mathbb{G}_T \to \{0,1\}^*,$
 $H_2: \{0,1\}^* \times \mathbb{G}_T \to \mathbb{Z}_r^*.$

Setup

O GCP escolhe uma chave privada

$$s \leftarrow \mathbb{Z}_r^*$$

e calcula duas chaves públicas

$$P_{pub} = s \cdot P$$
,

$$Q_{pub} = s \cdot Q.$$

Keygen

 O GCP calcula duas chaves privadas para cada identidade ID:

$$K_{ID} = (H_0(ID) + s)^{-1} \cdot Q,$$

 $S_{ID} = (H_0(ID) + s)^{-1} \cdot P.$

 Duas chaves públicas estão associadas às chaves acima, respectivamente:

$$P_{ID} = H_0(ID) \cdot P + P_{pub},$$

$$Q_{ID} = H_0(ID) \cdot Q + Q_{pub}.$$

Essas chaves públicas podem ser calculadas sob demanda ou pré-calculadas e armazenadas.

Keygen

- Propriedade: $e(P_{ID}, K_{ID}) = e(S_{ID}, Q_{ID}) = g$.
- Obviamente, se $\mathbb{G}_0 = \mathbb{G}_1$ (P = Q) apenas um par de chaves poderia ser calculado e usado:
 - $\bullet P_{pub} = Q_{pub},$
 - $\bullet P_{ID} = S_{ID},$
 - $K_{ID} = Q_{ID}$.
- Isto acontece (único caso conhecido) com o uso de curvas *supersingulares*, que admitem emparelhamentos da forma ê: $\mathbb{G}_0 \times \mathbb{G}_0 \to \mathbb{G}_T$.

Encrypt

- Para cifrar uma mensagem M ∈ {0, 1}*, o remetente:
 - escolhe $x \leftarrow \mathbb{Z}_r^*$ e calcula $z \leftarrow g^x$,
 - calcula $C \leftarrow H_1(z) \oplus M$,
 - obtém P_{ID} e calcula $T \leftarrow x \cdot P_{ID}$.
- O texto cifrado de M é o par (C, T).

Decrypt

- Para decifrar uma mensagem (C, T), o usuário identificado por ID:
 - calcula $z' \leftarrow e(T, K_{ID})$,
 - calcula $M \leftarrow H_1(Z') \oplus C$.

Sign

- Para assinar $M \in \{0, 1\}^*$, o signatário associado à identidade ID:
 - escolhe $x \leftarrow \mathbb{Z}_r^*$ e calcula $z \leftarrow g^x$,
 - calcula $h \leftarrow H_2(M, z)$,
 - calcula $S \leftarrow (x + h) \cdot S_{ID}$.
- A assinatura de M é o par $\sigma = (h, S)$.

Verify

- Para verificar uma mensagem M dotada de uma assinatura $\sigma = (h, S)$ supostamente gerada pelo signatário ID, o destinatário:
 - obtém Q_{ID} e calcula $z' \leftarrow e(S, Q_{ID}) \cdot g^{-h}$,
 - calcula $h' \leftarrow H_2(M, z')$.
- O destinatário aceita a mensagem M se, e somente se, h = h'.

Composição

- Os processos de cifração e assinatura usam nonces aleatórios com a mesma forma:
 - escolhe $x \leftarrow \mathbb{Z}_r^*$ e calcula $z \leftarrow g^x$.
- Esse passo pode ser combinado no processo de geração de cifrassinatura, tornando-o mais eficiente que a mera agregação de algoritmos.
- Assinatura intransferível (verificável somente pelo destinatário legítimo).
- Ordem normal de aplicação: cifrar, assinar (ordem reversa equivalente).

Signcrypt

- Para cifrassinar $M \in \{0, 1\}^*$, o remetente:
 - escolhe $x \leftarrow \mathbb{Z}_r^*$ e calcula $z \leftarrow g^x$.
 - calcula $C \leftarrow H_1(z) \oplus M$,
 - calcula $h \leftarrow H_2(C, z)$,
 - calcula $S \leftarrow (x + h) \cdot S_{ID}$.
 - obtém P_{ID} e calcula $T \leftarrow x \cdot P_{ID}$.
- Texto cifrassinado de M: (C, S, T).

Unsigncrypt

- Para decifrassinar uma tripla (C, S, T) supostamente gerada pelo signatário ID, o destinatário:
 - calcula $z' \leftarrow e(T, K_{ID})$,
 - calcula $h' \leftarrow H_2(C, z')$.
 - obtém Q_{ID} e calcula $z'' \leftarrow e(S, Q_{ID}) \cdot g^{-h'}$,
 - aceita a mensagem se, e somente se, z' = z''.
 - calcula $M \leftarrow H_1(Z') \oplus C$.