Recent Developments in Multilingual Modeling

Graham Neubig 4/10/2017

Today's Agenda

- What if we want to translate between languages?
- What if we want to embed things in different languages?
- What if we want to use language diversity to help us learn?
- How can we incorporate multi-modal information in multi-lingual tasks?

Note: this is a non-exhaustive survey focusing on recent work. Use it as a starting point.

Translation

Statistical Machine Translation

```
F = kare wa ringo wo tabeta.
```

E = He ate an apple.

Probability model: $P(E|F;\Theta)$

Parameters

Basic Idea: Calculate Probability of Next Word and argmax

F = watashi wa kouen wo shiteimasu

In Other Words, Translation Can be Formulated As:

A Probabilistic Model

$$P(E|F) = \prod_{i=1}^{I+1} P(e_i|F,e_1^{i-1})$$

A Translation Algorithm

```
i = 0

while e_i is not equal to "</s>":

i \leftarrow i+1

e_i \leftarrow \text{argmax}_e P(e_i|F, e_{1,i-1})
```

Big question: How to estimate this probability?

Encoder-Decoder Model [Sutskever+ 14]

- Estimate $P(e_i|F,e_1^{i-1})$ with long short-term memory (LSTM) recurrent neural nets
- Encoder generates vector representation of source
- Decoder predicts probabilities and takes argmax

Attentional Nets [Bahdanau+ 15]

· While translating, decide which word to "focus" on

Exciting Results!

- IWSLT 2015: Best results on de-en
- WMT 2016: Best results on most language pairs
- WAT 2016: Best results on most language pairs
- Commercial deployment in 2016

What Do/Don't We Know in 2017?

Modeling

- Modeling: How do we define P(E|F;Θ)?
- Attentional nets→new standard? [Bahdanau+15, Luong+15]

Character-based, Subword-based Models

Character-based word representations [Ling+2015]

Subword segmentations models [Sennrich+2016]

system	sentence
source	health research institutes
reference	Gesundheitsforschungsinstitute
WDict	Forschungsinstitute
C2-50k	Folrslchlunlgslinlstlitlutliolneln
BPE-60k	Gesundheits forsch ungsinstitu ten
BPE-J90k	Gesundheits forsch ungsin stitute

Purely character-based translation [Chung+2016]

Better Alignment/Representation

Models of coverage, reordering, etc. [Cohn+16]

```
watshi wa kouen wo okonau
OK OK TODO TODO TODO
```

- Better representation
 - Convolutional neural networks [Kalchbrenner+13]
 - Tree-based networks [Eriguchi+16]
 - Multiple time-scale networks [Chung+16,Duong+16]

Incorporating External Knowledge

External translation lexicons [Arthur+16]

Phrase tables [Tang+16]

Learning

- Learning: How do we learn Θ?
- NMT standard → maximum likelihood over a bilingual corpus

Optimizing Evaluation Metrics

Directly optimize BLEU, METEOR, etc.

	<u>eval</u>	<u>gradient</u>
giving a talk	0.4	small negative
NMT talk a do	0.1	large negative
I am giving a talk	1.0	large positive

- Methods
 - Reinforcement learning [Ranzato+15]
 - Minimum risk training [Shen+16]
 - Beam search optimization [Wiseman+16]

Multilingual Learning

 How do we utilize information from all of the languages in the world to create better systems?

Separate Encoder/Decoders [Dong+15, Firat+16]

One encoder or decoder for each language

Shared Encoder/Decoder [Johnson+16,Ha+16]

 Share the encoders and decoders for each, add a symbol for the target language

Hello, how are you? -> ¿Hola como estás?

<es> Hello, how are you? -> ¿Hola como estás?

Shared Semantic Space? [Johnson+ 16]

Or Not...

Transfer Learning [Zoph+16]

Transfer Learning [Zoph+16]

Source	Source	Target	Attention	Target Input	Target Output	Dev	Dev
Embeddings	RNN	RNN	Attention	Embeddings	Embeddings	BLEU ↑	PPL ↓
a	a	a		a	a	0.0	112.6
₽	a	a		a	a	7.7	24.7
₽	₽	a		a	a	11.8	17.0
₽	₽	-		a	a	14.2	14.5
₽	-	-	-	a	a	15.0	13.9
₽	₽	₽	-	-	a	14.7	13.8
₽	₽	₽	-	-	-	13.7	14.4

Cross-lingual Bridging [Tsvetkov+16]

- translating out-of-vocabulary words using cross-lingual bridges
- modeling cross-lingual phonology, morphology, syntax, semantics
- transfer learning for resource-poor languages

Multi-lingual Embedding

Word Embedding

• e.g. skip-gram, CBOW model [Mikolov+13]

Cross-lingual Consistency in Word Embeddings [Mikolov+13]

Bilingual Embeddings: Maximizing Correlation [Faruqui+14]

 Take existing embeddings, try to project them onto a space that matches bilingual dictionary

Translation-invariant Matrix Decomposition [Huang+15]

- Perform matrix decomposition to minimize wordcontext and cross-lingual objectives
- X: a single multilingual cooccurrence matrix (with all the $M_1 + M_2$ words as the rows, and $N_1 + N_2$ contexts as columns). Entries in this matrix specify the cooccurrence between a word in any language and a context in any language.
- \mathbf{D}_1 : a word dictionary matrix (with all the $M_1 + M_2$ English and Spanish words as both rows and columns). Entries in this matrix specify which words are translations of which other words, and is generally block-

- normalized, so that (e.g.) each Spanish word has a probability distribution over English words.
- \mathbf{D}_2 : a context dictionary matrix (with all the N_1+N_2 English and Spanish contexts as both rows and columns). This is similar to \mathbf{D}_1 in its construction.

$$\min_{\mathbf{U}, \mathbf{V}} \|\mathbf{X} - \mathbf{U}\mathbf{V}^T\|_F^2 + \|\mathbf{D}_1\mathbf{X} - \mathbf{U}\mathbf{V}^T\|_F^2 + (1)$$

$$\|\mathbf{X}\mathbf{D}_2^T - \mathbf{U}\mathbf{V}^T\|_F^2 + \|\mathbf{D}_1\mathbf{X}\mathbf{D}_2^T - \mathbf{U}\mathbf{V}^T\|_F^2.$$

Massively Multi-lingual Embedding [Ammar+16]

- Not just 2, but many languages
- MultiCluster: cluster together words in different languages, learn over clusters
- MultiCCA: use English as an anchor language, project all language vectors to English

Benefit of Learning Embeddings Multilingually [Faruqui+14]

Quantitative Results/Applications

	Task	multiCluster	multiCCA	multiSkip	invariance
extrinsic	dependency parsing	61.0 [70.9]	58.7 [69.3]	57.7 [68.9]	59.8 [68.6]
metrics	document classification	92.1 [48.1]	92.1 [62.8]	90.4 [45.7]	91.1 [31.3]
intrinsic metrics	monolingual word similarity	38.0 [57.5]	43.0 [71.0]	33.9 [55.4]	51.0 [23.0]
	multilingual word similarity	58.1 [74.1]	66.6 [78.2]	59.5 [67.5]	58.7 [63.0]
	word translation	43.7 [45.2]	35.7 [53.2]	46.7 [39.5]	63.9 [30.3]
	monolingual QVEC	10.3 [98.6]	10.7 [99.0]	8.4 [98.0]	8.1 [91.7]
	multiQVEC	9.3 [82.0]	8.7 [87.0]	8.7 [87.0]	5.3 [74.7]
	monolingual QVEC-CCA	62.4 [98.6]	63.4 [99.0]	58.9 [98.0]	65.8 [91.7]
	multiQVEC-CCA	43.3 [82.0]	41.5 [87.0]	36.3 [75.6]	46.2 [74.7]

Learning from Multiple Languages for NLP

Polyglot Language Models [Tsvetkov+16]

- multilingual phonetic language models
- multilingual distributed representations of words and phrases

Investigating Language Vectors [Östling+17]

(1-x) Modern English + x Middle English

Multi-lingual POS Tagging [Plank+16]

- Multilingual training with byte and character inputs
- Predict frequency bin as auxiliary loss

Multilingual Named Entity Recognition [Bharadwaj+16]

Use how words sound to map between languages

Multi-lingual Parsing [Ammar+16]

- Train a single parser for many languages
- Use multi-lingual word embeddings

LAS	target language							average
	de	en	es	fr	it	pt	sv	
monolingual	79.3	85.9	83.7	81.7	88.7	85.7	83.5	84.0
MALOPA	70.4	69.3	72.4	71.1	78.0	74.1	65.4	71.5
+lexical	76.7	82.0	82.7	81.2	87.6	82.1	81.2	81.9
+language ID	78.6	84.2	83.4	82.4	89.1	84.2	82.6	83.5
+fine-grained POS	78.9	85.4	84.3	82.4	89.0	86.2	84.5	84.3

Multi-modal Translation Models

Speech Translation

こんにちは、駅はどこですか?

MT

Hello, where is the station?

TTS

Incorporating Uncertainty of Speech [Sperber+17]

Direct Speech-to-text Translation [Weiss+17]

Real-time Simultaneous Translation [Gu+17]

Translating Prosodic Features [Do+17]

Image-augmented Translation [Huang+16]

Multi-modal Pivots [Hitschler+16]

References

References (1)

- W. Ammar, G. Mulcaire, M. Ballesteros, C. Dyer, and N. Smith. Many languages, one parser. Transactions of the Association for Computational Linguistics, 4:431–444, 2016.
- W. Ammar, G. Mulcaire, Y. Tsvetkov, G. Lample, C. Dyer, and N. A. Smith. Massively multilingual word embeddings. arXiv preprint arXiv:1602.01925, 2016.
- P. Arthur, G. Neubig, and S. Nakamura. Incorporating discrete translation lexicons into neural machine translation. In Proc. EMNLP, 2016.
- D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In Proc. ICLR, 2015.
- J. Chung, K. Cho, and Y. Bengio. A character-level decoder without explicit segmentation for neural machine translation. In Proc. ACL, pages 1693–1703, 2016.
- T. Cohn, C. D. V. Hoang, E. Vymolova, K. Yao, C. Dyer, and G. Haffari. Incorporating structural alignment biases into an attentional neural translation model. In Proc. NAACL, pages 876–885, 2016.
- D. Dong, H. Wu, W. He, D. Yu, and H. Wang. Multi-task learning for multiple language translation. In Proc. ACL, pages 1723–1732, 2015.
- L. Duong, A. Anastasopoulos, D. Chiang, S. Bird, and T. Cohn. An attentional model for speech translation without transcription. In Proc. NAACL, pages 959, 2016.
- A. Eriguchi, K. Hashimoto, and Y. Tsuruoka. Tree-to-sequence attentional neural machine translation. In Proc. ACL, pages 823–833, 2016.
- M. Faruqui and C. Dyer. Improving vector space word representations using multilingual correlation. In Proc. EACL, pages 462–471, 2014.
- O. Firat, K. Cho, and Y. Bengio. Multi-way, multilingual neural machine translation with a shared attention mechanism. In Proc. NAACL, pages 866–875, 2016.
- J. Gu, G. Neubig, K. Cho, and V. O. Li. Learning to translate in real-time with neural machine translation. In Proc. EACL, 2017.
- T.-L. Ha, J. Niehues, and A. Waibel. Toward multilingual neural machine translation with universal encoder and decoder. arXiv preprint arXiv:1611.04798, 2016.
- J. Hitschler, S. Schamoni, and S. Riezler. Multimodal pivots for image caption translation. In Proc. ACL, pages 2399–2409, 2016.
- K. Huang, M. Gardner, E. Papalexakis, C. Faloutsos, N. Sidiropoulos, T. Mitchell, P. P. Talukdar, and X. Fu. Translation invariant word embeddings. In EMNLP, pages 1084–1088, 2015.
- P.-Y. Huang, F. Liu, S.-R. Shiang, J. Oh, and C. Dyer. Attention-based multimodal neural machine translation. In Proc. WMT, pages 639–645, 2016.
- M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat, F. Vi egas, M. Wattenberg, G. Corrado, et al. Google's multilingual neural machine translation system: Enabling zero-shot translation. arXiv preprint arXiv:1611.04558, 2016.

References (2)

- N. Kalchbrenner and P. Blunsom. Recurrent continuous translation models. In Proc. EMNLP, pages 1700–1709, 2013.
- T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural machine translation. In Proc. EMNLP, pages 1412–1421, 2015.
- T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
- T. Mikolov, Q. V. Le, and I. Sutskever. Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168, 2013.
- R. O "stlingandJ. Tiedemann. Continuous multilinguality with language vectors. In Proc. EACL, pages 644–649, 2017.
- B. Plank, A. Søgaard, and Y. Goldberg. Multilingual part-of-speech tagging with bidirectional long short-term memory models and auxiliary loss. In Proc. ACL, pages 412–418, 2016.
- M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence level training with recurrent neural networks. Proc. ICLR, 2016.
- S. Shen, Y. Cheng, Z. He, W. He, H. Wu, M. Sun, and Y. Liu. Minimum risk training for neural machine translation. In Proc. ACL, pages 1683–1692, 2016.
- M. Sperber, G. Neubig, J. Niehues, and A. Waibel. Neural lattice-to-sequence models for uncertain inputs. arXiv preprint arXiv:1704.00559, 2017.
- I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Proc. NIPS, pages 3104–3112, 2014.
- Y. Tang, F. Meng, Z. Lu, H. Li, and P. L. H. Yu. Neural machine translation with external phrase memory. CoRR, abs/1606.01792. 2016.
- Y. Tsvetkov and C. Dyer. Cross-lingual bridges with models of lexical borrowing. Journal of Artificial Intelligence Research, 55:63–93, 2016.
- Y. Tsvetkov, S. Sitaram, M. Faruqui, G. Lample, P. Littell, D. Mortensen, A. W. Black, L. Levin, and C. Dyer. Polyglot neural language models: A case study in cross-lingual phonetic representation learning. In Proc. NAACL, pages 1357–1366, 2016.
- R. J. Weiss, J. Chorowski, N. Jaitly, Y. Wu, and Z. Chen. Sequence-to-sequence models can directly transcribe foreign speech. arXiv preprint arXiv:1703.08581, 2017.
- S. Wiseman and A. M. Rush. Sequence-to-sequence learning as beam-search optimization. In Proc. EMNLP, pages 1296–1306, 2016.
- B. Zoph, D. Yuret, J. May, and K. Knight. Transfer learning for low-resource neural machine translation. In Proc. EMNLP, pages 1568–1575, 2016.