ECUACIONES DE DISEÑO DE MICROTIRAS

		Hammerstad	Wheeler
1	Para	$Z_0 = \frac{60}{\sqrt{\varepsilon_r'}} \cdot \ln\left(\frac{8H}{W} + \frac{W}{4H}\right)$	$Z_0 = \frac{60}{\sqrt{\varepsilon_r'}} \cdot \ln\left(\frac{8H}{W} + \frac{W}{4H}\right)$
2	<i>W/H ≤1</i> ⇒ <i>W ≤ H</i>	$\varepsilon_r' = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \cdot \left[\frac{1}{\sqrt{1 + \frac{12H}{W}}} + 0.04 \cdot \left(1 - \frac{W}{H}\right)^2 \right]$	$\varepsilon_r' = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \cdot \left[\frac{1}{\sqrt{1 + \frac{12H}{W}}} + 0.04 \cdot \left(1 - \frac{W}{H}\right)^2 \right]$
3	Para W/H ≥ I ⇒	$Z_{0} = \frac{\frac{120\pi}{\sqrt{\varepsilon_{r}'}}}{\frac{W}{H} + 1.393 + 0.667 \cdot \ln\left(\frac{W}{H} + 1.444\right)}$	$Z_{0} = \frac{\frac{120\pi}{\sqrt{\varepsilon_{r}'}}}{\frac{W}{H} + 2.46 - 0.49 \frac{H}{W} + \left(1 - \frac{H}{W}\right)^{6}}$
4	<i>W</i> ≥ <i>H</i>	$\varepsilon_r' = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \cdot \frac{1}{\sqrt{1 + \frac{12H}{W}}}$	$\varepsilon_r' = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \cdot \frac{1}{\sqrt{1 + \frac{12H}{W}}}$
5	<i>Para W/H</i> ≤ 2 ⇒ <i>W</i> ≤ 2 <i>H</i>	$\frac{W}{H} = \frac{8 \cdot e^A}{e^{2A} - 2}$	$\frac{W}{H} = \frac{8 \cdot e^A}{e^{2A} - 2}$
6	<i>Para W/H</i> ≥ 2 ⇒ <i>W</i> ≥ 2 <i>H</i>	$\frac{W}{H} = \frac{2}{\pi} \left\{ B - 1 - \ln(2B - 1) + \frac{\varepsilon_r - 1}{2\varepsilon_r} \left[\ln(B - 1) + 0.39 - \frac{0.61}{\varepsilon_r} \right] \right\}$	$\frac{W}{H} = \frac{\varepsilon_r - 1}{\pi \cdot \varepsilon_r} \left[\ln(B - 1) + 0.293 - \frac{0.517}{\varepsilon_r} \right] + \frac{2}{\pi} \left[B - 1 - \ln(2B - 1) \right]$
7	Donde	$A = \frac{Z_0}{60} \sqrt{\frac{\varepsilon_r + 1}{2}} + \frac{\varepsilon_r - 1}{\varepsilon_r + 1} \left(0.23 + \frac{0.11}{\varepsilon_r} \right)$	$A = \frac{Z_0}{60} \sqrt{\frac{\varepsilon_r + 1}{2}} + \frac{\varepsilon_r - 1}{\varepsilon_r + 1} \left(0.226 + \frac{0.121}{\varepsilon_r} \right)$
8	Donde	$B = \frac{377 \cdot \pi}{2 \cdot Z_0 \cdot \sqrt{\varepsilon_r}}$	$B = \frac{377 \cdot \pi}{2 \cdot Z_0 \cdot \sqrt{\varepsilon_r}}$
9	Para $W/H ≤$ $1/2π$ $⇒$ $H ≥$ $2πW$	$W_e = W + \frac{t}{\pi} \cdot \left[1 + \ln\left(\frac{4\pi W}{t}\right) \right]$	$W_e = W + \frac{t}{\pi} \cdot \left[1 + \ln \left(\frac{4\pi \cdot W}{t} \right) \right]$
10	Para $W/H ≥$ $1/2π$ $⇒$ $H ≤$ $2πW$	$W_e = W + \frac{t}{\pi} \cdot \left[1 + \ln\left(\frac{2H}{t}\right) \right]$	$W_e = W + \frac{t}{\pi} \cdot \left[1 + \ln\left(\frac{2H}{t}\right) \right]$