Introduction to Bayesian Optimization

Drew Gjerstad

Bayesian Optimization Series

github.com/drewgjerstad/bayesian-optimization

Copyright © 2025

Drew Gjerstad 1 / 25

Table of Contents

Introduction

Motivation

Optimization Foundations

Bayesian Foundations

The Bayesian Approach

Bayesian Optimization Workflow Surrogate Models Acquisition Functions Acquisition Function Optimizer

References

Drew Gjerstad 2 / 25

Introduction

Bayesian optimization refers to an optimization method that uses Bayesian inference to guide the optimizer make "better" decisions.

- ► This method achieves *unparalleled* sample efficiency.
- ► A statistical model is used to approximate the objective function.
- ► *Uncertainty* is inherent in optimization decisions, and uncertainty can be tackled via a Bayesian approach.

Motivation

Theoretical Motivation

- ▶ Black-box objective functions are functions that we can only interact with via its inputs and outputs meaning typical methods don't work.
- ► Expensive-to-evaluate objective functions are functions that require significant effort to obtain outputs but can be approximated and modeled using the Bayesian approach.
- ► Useful when objectives lack analytical evaluation.
- ▶ Useful when objectives have no efficient (if it exists) gradient.

Applications

The application potential of Bayesian optimization can be seen across several critical domains, especially those attempting to accelerate finding solutions to real-world scientific and engineering problems.

- ► Drug Discovery
- ► Molecule/Protein Discovery
- ► Materials Design
- ► AutoML (hyperparameter tuning)
- Engineering Decisions
- ► Many more...

Application: Drug Discovery

Figure 1: Overview of Drug Synthesis from *Bayesian optimization as a tool for chemical synthesis* by Shields et al. (2021)

Drew Gjerstad Motivation 7 / 25

Application: Molecule/Protein Discovery

Figure 2: Closed Loop for Molecular Discovery from Sequential closed-loop Bayesian optimization as a guide for organic molecular metallophotocatalyst formulation discovery by Li et al. (2024)

Application: Materials Discovery

Figure 3: Material Design Framework from Bayesian Optimization for Materials Design with Mixed Quantitative and Qualitative Variables by Zhang et al. (2020)

Application: AutoML

Figure 4: Framework for AutoML from Achieve Bayesian optimization for tuning hyperparameters by Edward Ortiz on Medium (2020)

Application: Engineering Decisions

Figure 5: Framework for Particle Accelerator Tuning from Reinforcement learning-trained optimisers and Bayesian optimisation for online particle accelerator tuning by Kaiser et al. (2024)

Optimization Foundations

Optimization Foundations

Bayesian Foundations

Bayesian Foundations

The Bayesian Approach

The Bayesian Approach

Workflow

Bayesian Optimization

Bayesian Optimization Workflow

Surrogate Models

Gaussian Processes

Acquisition Functions

Acquisition Function Optimizer

References

References

R Garnett

Bayesian optimization.

Cambridge University Press, Cambridge, United Kingdom; 2023.

P. Liu.

Bayesian optimization: theory and practice using Python. Apress, New York, NY, 2023.

C. E. Rasmussen and C. K. I. Williams.

Gaussian Processes for Machine Learning.

Adaptive Computation and Machine Learning series. The MIT Press. 2019