

19

REPÚBLICA FEDERATIVA DO BRASIL
Ministério do Desenvolvimento da Indústria e do Comércio
Instituto Nacional da Propriedade Industrial

11

21

PI 8805485 A43 Data da publicação: **05/06/90** (RPI 1021)51 Int Cl⁴: H02P 8/00

30 Prioridade unionista:

71 Depositante: Empresa Brasileira de Compressores S/A - Embraco (BR/SC)

72 Inventor(es): Marcos Guilherme Schwarz

74 Procurador: Antonio Maurício Pedras Arnaud

22 Data do depósito: 17/10/88

86 Pedido internacional:

87 Publicação internacional:

54 Título:

"Circuito eletrônico de controle para motor de corrente contínua sem escovas."

Círculo eletrônico de controle para motor de corrente contínua sem escovas do tipo que inclui um estator bobinado e um rotor com ímãs permanentes, sendo o círculo composto de um inversor (10) impondo corrente às bobinas (21, 22, 23) do estator, um circuito detector (30) de posição relativa rotor-estator e um controlador central (70) processando informações das correntes impostas pelo inversor (10), da velocidade de referência e de posição relativa rotor-estator, enviando sinais de comando ao inversor (10). O circuito detector (30) comprende filtros passa-baixas (1, 2, 3) ligados aos respectivos terminais (01, 02, 03) de alimentação das bobinas do motor, sendo a saída (F1, F2, F3) de cada filtro passa-baixas ligada à entrada não-inversora de um correspondente comparador de tensão (59, 60, 61) e, através de capacitor (56), à entrada inversora (M1, M2, M3) do comparador de tensão de ordem imediatamente anterior e ainda a um correspondente resistor (54) que integra uma rede de resistores interligados em um ponto comum (M). O circuito detector (30) inclui ainda uma outra rede de resistores (55) ligando o citado ponto (M) a cada uma das entradas inversoras dos comparadores de tensão.

57 Resumo:

...8805485

Relatório Descritivo da Patente de Invenção de "CIRCUITO ELETRÔNICO DE CONTROLE PARA MOTOR DE CORRENTE-CONTÍNUA SEM ESCOVAS".

A presente invenção se refere a um circuito de controle para um motor de corrente contínua sem escovas e, mais especificamente, a um circuito eletrônico para detectar a posição do rotor pelas tensões induzidas.

Motores de corrente contínua sem escovas são de interesse em aplicações que exigem confiabilidade e altos rendimentos como em eletromésticos, bombas e ventiladores.

Estes motores são compostos essencialmente de um estator contendo bobinas, um rotor com ímãs permanentes, um inversor que impõe corrente às bobinas do estator, um sensor de posição que informa o instante e o período que cada conjunto de bobinas deve permanecer energizado e um controle central que processa as informações de corrente, velocidade e posição do rotor, enviando pulsos de comando ao inversor.

Em um circuito de controle para estes motores, o controle da corrente durante o período de energização de cada conjunto de bobinas é obtido pela modulação da tensão em largura de pulso numa frequência superior a da onda fundamental da tensão induzida na bobina pelo rotor em movimento.

A detecção da posição do rotor a partir das tensões induzidas é feita atenuando-se as componentes de alta frequência provenientes da modulação da tensão sobre as bobinas, em seguida, comparando os sinais -

....8805485

2

resultantes entre si ou comparando cada um deles com a média dos mesmos, gerando sinais lógicos correspondentes à posição do rotor.

Esta técnica de detecção da posição do rotor é mencionada nos documentos Japoneses Kokai nº 5280415 e Kokai nº 555035(A), os quais fazem uso de filtros - passivos passa-baixas de primeira ou de segunda ordem do tipo RC para atenuação das componentes de alta - frequência provenientes da modulação de tensão sobre 10 as bobinas.

Apesar de atenuarem satisfatoriamente as componentes de alta frequência, estes filtros apresentam o inconveniente de introduzir defasagens nos sinais filtrados, defasagens estas que variam com a frequência e 15 portanto com a velocidade do rotor.

A defasagem destes sinais filtrados provoca, por sua vez, defasagem dos sinais lógicos correspondentes à posição do rotor em relação à sua posição real, impondo nas bobinas correntes defasadas das tensões in 20 duzidas.

Esta defasagem entre as correntes impostas e as tensões induzidas tem efeito prejudicial sobre o desempenho do motor por tirá-lo de sua condição de máximo rendimento.

Um outro circuito de controle é proposto pelo documento Japones Kokai 51150624.

Este documento apresenta um motor acionado por um cícloconversor tiristorizado no qual o controle do ângulo de imposição de corrente sobre as bobinas é efetuado de forma eficiente em uma ampla faixa de velocidades por meio de um conjunto de circuitos.

Apesar de controlar eficientemente o ângulo de imposição da corrente sobre as bobinas, este circuito apresenta a desvantagem de grande complexidade al 35 to custo devido ao grande número de componentes qu

o integram.

É objetivo desta invenção propor um circuito de controle para um motor de corrente contínua sem escovas, que seja capaz de impor correntes em fase com as tensões induzidas nas bobinas, mantendo assim o melhor desempenho possível do motor ao longo de toda sua faixa útil de velocidade.

É ainda um objetivo mais específico da presente invenção propor um circuito detector de posição do rotor que seja capaz de atenuar as componentes de alta frequência provenientes da modulação de tensão sobre as bobinas do motor sem causar defasagem dos sinais lógicos correspondentes à posição do rotor.

É também um objetivo da presente invenção superar as deficiências técnicas anteriormente descritas, utilizando um circuito eletrônico simples e com reduzido número de componentes.

Estes objetivos são alcançados a partir de um circuito eletrônico de controle para um motor de corrente contínua sem escovas e incluindo um estator bobinado e um rotor com ímãs permanentes, sendo o citado circuito composto de: um inversor que impõe corrente às bobinas do estator; um circuito detector de posição-relativa rotor-estator o qual informa, a partir das tensões induzidas, o instante e o período que cada conjunto de bobinas deve permanecer energizado; e um controle central que processa as informações de corrente impostas pelo inversor às bobinas do estator, de velocidade de referência e de posição do rotor, enviando pulsos de comando ao inversor.

De acordo com a presente invenção, o circuito detector de posição do rotor consiste essencialmente de filtros passa-baixas do tipo RC ligados aos respectivos terminais de alimentação das bobinas do motor.

As saídas dos filtros passa-baixas são ligadas às

2205485

4

tradas não inversoras de correspondentes comparadores de tensão, sendo estes comparadores dotados de histese.

As saídas dos filtros passa-baixas são também liga -
5 das a uma rede de resistores que são interligados em um ponto comum.

Uma outra rede de resistores liga este ponto comum a cada uma das entradas inversoras dos comparadores de tensão.

10 A saída de cada filtro passa-baixas é ainda ligada - através de pelo menos um capacitor à entrada inversora do comparador de ordem imediatamente anterior à do comparador correspondente a cada filtro.

Ao contrário de outros circuitos que utilizam filtros passa-baixas do tipo RC para atenuação das componentes de alta frequência, no circuito assim descrito - os sinais lógicos correspondentes à posição relativa rotor-estator são gerados sempre em fase com a posição real do rotor, permitindo que as correntes impostas às bobinas do motor estejam em fase com as tensões nelas induzidas. Desta forma é possível obter - um controle eficiente do motor ao longo de toda a sua faixa útil de velocidade.

Uma outra vantagem do circuito proposto é a de que -
25 este dispensa quaisquer circuitos adicionais para - compensação dos erros de fase, circuitos estes convencionalmente utilizados para obtenção do melhor desempenho do motor.

O circuito assim descrito apresenta grande simplicidade e reduzido número de componentes.

A invenção será descrita a seguir fazendo-se referência aos desenhos anexos, nos quais:

A figura 1 ilustra diagrama em blocos de um conjunto motor, inversor controlador do tipo proposto na presente invenção;

A figura 2 ilustra um gráfico da tensão em uma fase-

30005485

5

em função do tempo e seu valor médio em relação ao potencial negativo da fonte de alimentação;

A figura 3 apresenta um gráfico que relaciona, no tempo, as tensões induzidas em cada fase, seus respectivos valores filtrados, os sinais lógicos após os comparadores e os períodos de atuação para cada chave do inversor;

A figura 4 apresenta um gráfico da tensão induzida - em uma fase e a corrente na mesma fase, ilustrando o ângulo de defasagem entre as mesmas;

A figura 5 ilustra o circuito detector de posição na sua forma preferida;

A figura 6 apresenta um gráfico da evolução angular dos sinais de tensão no circuito detector de posição em função da frequência fundamental da tensão induzida; e

A figura 7 apresenta um gráfico da evolução do ângulo ψ obtido com o circuito proposto, ao longo de toda faixa de frequência da tensão induzida.

Conforme ilustra a figura 1, o inversor 10 fornece - corrente às três fases do motor de corrente contínua sem escovas 20, composto de três enrolamentos estatóricos 21, 22 e 23, representados por indutores L_1 , L_2 , L_3 e fontes de tensão V_1 , V_2 , V_3 as quais representam suas respectivas tensões induzidas pelo rotor em movimento e que têm seu valor de tensão e frequência linearmente dependentes da velocidade do rotor.

As tensões $V_{\phi 1}$, $V_{\phi 2}$ e $V_{\phi 3}$, respectivamente nas fases ϕ_1 , ϕ_2 e ϕ_3 , são enviadas ao bloco detector 30 de posição relativa do rotor por tensões induzidas. O terminal negativo 11 da fonte de alimentação 80 que é o potencial de referência (m) para todos os circuitos também está conectado ao bloco detector 30.

Através dos terminais P_1 , P_2 , P_3 o bloco detector - 30 de posição do rotor fornece três sinais lógicos -

...300054000

6

35, 36 e 37 respectivamente ao controle central 70 - que, em função destas informações e dos valores de corrente I_M e velocidade de referência W_R envia os sinais de comando S_1 a S_6 aos seis transistores T_1 a 5 T_6 do inversor 10.

Fazendo referência à figura 5 a invenção compõe-se em sua forma preferida de três divisores de tensão, cada um dos quais sendo formado pelos resistores 51 e 52, que reduzem as tensões V_{g1} , V_{g2} e V_{g3} de cada 10 fase a níveis adequados ao circuito eletrônico; três 15 filtros passa-baixas 1, 2, 3 de primeira ordem, formados, cada um, por um capacitor 53 e, predominantemente, por par de resistores 51 e 52, calculados para permitir a passagem dos sinais de tensões induzi- das V_1 , V_2 , V_3 e atenuar ao máximo as componentes de alta frequência provenientes da modulação de tensão sobre os indutores L_1 , L_2 e L_3 .

Após esta filtragem, são obtidos os sinais V_{F1} , V_{F2} e V_{F3} nos pontos F_1 , F_2 e F_3 respectivamente (figs.- 20 5 e 3) que são uma recomposição dos sinais das tensões induzidas V_1 , V_2 e V_3 , atrasados de um ângulo - α que é função das características dos filtros - passa-baixas 1, 2, 3 e da frequência fundamental das tensões induzidas V_1 , V_2 , V_3 , conforme ilustra a 25 figura 6.

A partir dos sinais recompostos V_{F1} , V_{F2} e V_{F3} (figs. 3 e 5) obtém-se o valor médio V_M no ponto comum M - dos resistores 54 ligados às saídas F_1 , F_2 e F_3 dos filtros passa-baixas 1, 2 e 3.

30 O valor das resistências 54 influí nas características dos filtros passa-baixas já descritos, devendo ser considerado no projeto.

Este valor médio V_M é aplicado às entradas inversoras dos comparadores 59, 60 e 61 através de resistores 35 55. O valor destes resistores 55 é de ordem de -

ACORDOS

388054-85

7

grandeza superior ao dos resistores 54 de forma que variações de tensão impostas nos pontos M_1 , M_2 e M_3 não alterem significativamente a tensão média V_M .

Os capacitores 56 estão ligados também aos pontos M_1 ,

5 M_2 e M_3 que, em conjunto com os resistores 55, formam três filtros passa-altas que irão impor às entradas inversoras dos comparadores 59, 60 e 61 tensões diferentes do valor médio V_M na proporção do aumento da frequência das tensões induzidas V_1 , V_2 e V_3 .

10 Na figura 3 a referência 38A é o instante em que a tensão induzida V_1 se torna menor que a tensão induzida V_2 .

A referência 38B é o instante em que a tensão induzida V_1 se torna menor que o valor médio entre V_1 , V_2 e 15 V_3 .

A diferença de fase entre 38A e 38B é sempre 30° . A mesma diferença de 30° é observada quando os sinais reconstituídos V_{F1} , V_{F2} e V_{F3} são comparados conforme descrito acima, resultando nos sinais lógicos 35,

20 36 e 37 (fig. 3) defasados de 120° entre si.

O aproveitamento desta propriedade de manter 30° constantes de diferença entre os sinais lógicos resultantes nas duas formas de comparação, mais os efeitos obtidos com a histerese dos comparadores por 25 mite manter constante o resultado final das comparações sem a necessidade de circuitos complexos, valendo-se de poucos componentes passivos e que permitem formar um circuito simples e próprio para produção - em larga escala.

30 Na frequência mínima de funcionamento F_A indicada nas figuras 6 e 7, a tensão nos pontos M_1 , M_2 e M_3 (fig. 5) é substancialmente igual à tensão média V_M , o que significa que a comparação ocorre entre esta média V_M e cada uma das tensões V_{F1} , V_{F2} e 35 V_{F3} , resultando desta comparação os sinais lógicos -

35A, 36A e 37A (fig. 3).

Estes sinais lógicos 35A, 36A e 37A em relação à referência 38B estão atrasados de um ângulo $\alpha A + h_A$. O circuito deve ser projetado para que, na frequência 5 cia F_A (figs. 6 e 7) correspondente à mínima velocidade de funcionamento do motor 20, o atraso $\alpha A + h_A$ dos sinais lógicos 35A, 36A e 37A seja igual a 30° , fazendo coincidir os instantes de transição dos sinais lógicos 35A, 36A e 37A (fig. 3) com a referência 10 cia 38C.

Desta forma, os sinais de comando S_1 a S_6 gerados por combinações lógicas entre os sinais 35A, 36A e 37A irão impor correntes I_1 , I_2 e I_3 (fig. 4) através das bobinas 21, 22 e 23 (fig. 1) em fase com as 15 tensões V_1 , V_2 e V_3 (fig. 4) nelas induzidas, condição em que o ângulo ψ é igual a zero.

A ângulo $\alpha A + h_A$ é a soma do ângulo de atraso αA causado pelos filtros passa-baixas e o ângulo de atraso h_A causado pela histerese nos comparadores de 20 tensão 59, 60 e 61. Esta histerese é função da proporção dos valores dos resistores 57 e 58.

Esta histerese é utilizada para provocar um atraso h (fig. 6) nos sinais lógicos resultantes 35, 36 e 37-das comparações das tensões, atraso este que evolui com a frequência segundo mostra o gráfico da figura 6. A histerese tem ainda a propriedade de tornar os comparadores de tensão 59, 60 e 61 imunes aos ruídos e às ondulações residuais não eliminadas pelos filtros passa-baixas 1, 2 e 3.

Em frequências altas F_B (figs. 6 e 7), as tensões nos pontos M_1 , M_2 e M_3 (fig. 5) são substancialmente iguais às tensões V_{F2} , V_{F3} e V_{F1} respectivamente, devido aos filtros passa-altas formados pelos capacitores 56 e resistor 55. Isto significa que a comparação ocorre entre as tensões V_{F1} , V_{F2} e V_{F3} .

v_{F3} e v_{F1} , resultando destas comparações os sinais lógicos 35B, 36B e 37B respectivamente (fig. 3). Estes sinais lógicos 35B, 36B e 37B na frequência F_B (figs. 6 e 7) estão atrasados de um ângulo $\alpha_B + h_B$ 5 em relação à referência 38A (fig. 3). O circuito deve ser projetado para que, na frequência F_B (figs. 6 e 7), correspondente à máxima velocidade de funcionamento do motor 20, o atraso $\alpha_B + h_B$ dos sinais lógicos 35B, 36B e 37B (fig. 3) seja 10 igual a 60° , fazendo coincidir os instantes de transição dos sinais lógicos 35B, 36B e 37B também com a referência 38C (fig. 3).

Para frequências intermediárias a 28A e 28B (figs. 6 e 7) existe um efeito combinado, mantendo os sinais 15 35, 36 e 37 (fig. 3) sempre em fase com a referência 38C. Desta forma, conforme mostrado na figura 7, o ângulo ψ se mantém igual a zero entre as frequências F_A e F_B que é a faixa útil de velocidade do motor.

22005485

REIVINDICAÇÕES

1. "CIRCUITO ELETRÔNICO DE CONTROLE PARA MOTOR DE CORRENTE CONTÍNUA SEM ESCOVAS", do tipo que compre~~ga~~
de um estator bobinado e um rotor com ímãs permanen-
tes, sendo o citado circuito composto de: um inver-
sor (10) impondo corrente (I_1 , I_2 , I_3) às bobinas
(21, 22, 23) do estator; um circuito detector (30) de
posição relativa rotor-estator, informando, a partir
das tensões induzidas (V_1 , V_2 , V_3), o instante e o
período em que cada conjunto de bobinas deve permane-
cer energizado; e um controle central (70) processan-
do as informações (I_M) das correntes (I_1 , I_2 , I_3) im-
postas pelo inversor (10), as informações (w_R) de ve-
locidade de referência e as informações (35A, 36A
15 37A ou 35B, 36B, 37B) de posição relativa rotor-estato-
tor, enviando sinais de comando (S_1 a S_6) ao inver-
sor (10), caracterizado pelo fato de o circuito de
detector (30) compreender:
a) filtros passa-baixas (1,2,3) do tipo RC ligados -
20 aos respectivos terminais (θ_1 , θ_2 , θ_3) de alimenta-
ção das bobinas (21, 22, 23) do motor (20), sendo a
saída (F_1 , F_2 e F_3) de cada filtro passa-baixas (1,2,
3) ligada à entrada não-inversora de um correspon-
dente comparador de tensão (59, 60, 61); a um corres-
pondente resistor (54) que integra uma rede de resis-
tores interligados em um ponto (M) comum; e através-
de pelo menos um capacitor (56), à entrada inversora
(M_1 , M_2 , M_3) do comparador de tensão (59, 60, 61) de
ordem imediata anteira do comparador (59, 60,
30 61) correspondente a cada filtro passa-baixas (1,2,-

200005465

2

3); e

b) uma outra rede de resistores (55) ligando o citado ponto (M) comum a cada uma das entradas inversoras (M_1 , M_2 , M_3) dos comparadores de tensão (59, 60, 5 61).

2. "CIRCUITO ELETRÔNICO DE CONTROLE PARA MOTOR DE CORRENTE CONTÍNUA SEM ESCOVAS", de acordo com a reivindicação 1, caracterizado pelo fato de os comparadores de tensão (59, 60, 61) serem dotados de histerese
10 se.

3. "CIRCUITO ELETRÔNICO DE CONTROLE PARA MOTOR DE CORRENTE CONTÍNUA SEM ESCOVAS", de acordo com a reivindicação 1, caracterizado pelo fato de os resistores (55) ligados às entradas inversoras (M_1 , M_2 , M_3)
15 dos comparadores de tensão (59, 60, 61) terem seus valores de resistência com ordem de grandeza superior a dos resistores (54) que ligam a saída (F_1 , F_2 , F_3) de cada filtro passa-baixas (1,2,3) ao citado ponto-comum (M).

3,000,649.5

20

FIG. 1

FIG. 2

20005485

FIG. 3

33305485

FIG. 4

FIG. 5

388054-05

FIG. 6

FIG. 7

38805425

3.2

79

RESUMO

Patente de Invenção de "CIRCUITO ELETRÔNICO DE CONTROLE PARA MOTOR DE CORRENTE CONTÍNUA SEM ESCOVAS", do tipo que inclui um estator bobinado e um rotor - 5 com ímãs permanentes, sendo o circuito composto de um inversor (10) impondo corrente às bobinas (21, 22, 23) do estator, um circuito detector (30) de posição relativa rotor-estator e um controlador central (70) processando informações das correntes impostas pelo 10 inversor (10), da velocidade de referência e de posição relativa rotor-estator, enviando sinais de comando ao inversor (10). O circuito detector (30) comprende filtros passa-baixas (1, 2, 3) ligados aos respectivos terminais (θ_1 , θ_2 , θ_3) de alimentação das bobinas 15 do motor, sendo a saída (F_1 , F_2 , F_3) de cada filtro passa-baixas ligada à entrada não-inversora de um correspondente comparador de tensão (59, 60, 61) - e, através de capacitor (56), à entrada inversora - (M_1 , M_2 , M_3) do comparador de tensão de ordem imediatamente anterior e ainda a um correspondente resistor (54) que integra uma rede de resistores interligados em um ponto comum (M). O circuito detector (30) inclui ainda uma outra rede de resistores (55) ligando o citado ponto (M) a cada uma das entradas inversoras dos comparadores de tensão.