Complessità degli algoritmi

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano

24 aprile 2024

Complessità di un algoritmo

Quanto efficientemente risolviamo un problema?

- Dato un problema, un buon flusso di lavoro è:
 - 1 Concepiamo un algoritmo che lo risolve
 - Ne valutiamo la complessità
 - 3 Se la complessità è soddisfacente, lo implementiamo
- Per la correttezza, non c'è una soluzione in generale
 - ... ma questo non nega a priori la possibilità di dimostrarla per dati casi particolari
- Per valutare la complessità ci serve rappresentare l'algoritmo in una qualche forma

Scelta del linguaggio

Pseudocodice

- Semplice linguaggio di programmazione imperativo
- Tralascia gli aspetti non fondamentali per le nostre analisi
- Facilmente traducibile in C/Java/Python/C++
- Sintassi piuttosto asciutta (simile a Python)
- È possibile effettuare analisi di complessità anche su codice scritto in un qualunque linguaggio di programmazione
 - La tecnica resta la stessa dello pseudocodice

Pseudocodice - Sintassi

Procedure, assegnamenti, costrutti di controllo

- Ogni algoritmo è rappresentato con una procedura (= funzione che modifica i dati in input, non ritorna nulla)
- Operatori: Aritmetica a singola precisione come in C, assegnamento (\leftarrow), e confronti (<, \leq , =, \geq , >, \neq)
- Commenti mono-riga con ▷, blocchi dati dall'indentazione
- Costrutti di controllo disponibili: while, for, if-else
- Tutte le variabili sono locali alla procedura descritta
- Il tipo delle variabili non è esplicito, va inferito dal loro uso

Pseudocodice

Tipi di dato aggregato

- Ci sono gli array, notazione identica al C, indici iniziano da 1
- Sono disponibili anche i sotto-array (slices) come in Fortran, Matlab, Python
 - A[i..j] è la porzione di array che inizia dall'i-esimo elemento e termina al j-esimo
- Sono presenti aggregati eterogenei (= strutture C)
 - L'accesso a un campo è effettuato tramite l'operatore . A. campo1 è il campo di nome campo1 della struttura A
 - Diversamente dal C, una variabile di tipo aggregato è un puntatore alla struttura
 - Un puntatore non riferito ad alcuna struttura ha valore NIL

Attenzione all'aliasing

- 1 $y \leftarrow x$
- 2 $x.f \leftarrow 3$ // dopo questa riga anche y.f vale 3

Pseudocodice - Convenzioni

Passaggio parametri

- Il passaggio di parametri ad una procedura viene effettuato:
 - Nel caso di tipi non aggregati: per copia
 - Nel caso di tipi aggregati: per riferimento
- Comportamento identico al C per tipi non aggregati ed array
- Diverso per le strutture (in C sono passate per copia, uguale a quello di Java)

Modello di esecuzione

- Lo pseudocodice è eseguito dalla macchina RAM
- Assunzione fondamentale: un singolo statement di assegnamento tra tipi base è tradotto in un numero costante k di istruzioni dell'assembly RAM

Criteri per l'analisi

Criterio di costo

- Adottiamo il criterio di costo costante per l'esecuzione dei nostri algoritmi
 - La maggioranza degli algoritmi che vedremo non ha espansioni significative della dimensione dei singoli dati
 - Se c'è grande espansione consideriamo dati a precisione multipla come vettori di cifre
- Ogni statement semplice di pseudocodice è eseguito in $\Theta(k)$
- Focalizzeremo la nostra analisi sulla complessità temporale degli algoritmi
 - È quella che presenta variazioni più "interessanti" a seconda del tipo di soluzione

Una prima analisi

Cancellare un elemento da una collezione di n elementi

Salvata in un vettore

```
\begin{array}{ll} \text{CANCELLAELVETT}(v, len, e) \\ 1 & i \leftarrow 1 \\ 2 & \textbf{while} \ v[i] \neq e \ \textbf{and} \ i < len \\ 3 & i \leftarrow i+1 \\ 4 & \textbf{while} \ i < len-1 \\ 5 & v[i] \leftarrow v[i+1] \\ 6 & i \leftarrow i+1 \\ 7 & \textbf{if} \ i = len \\ 8 & v[i] \leftarrow \bot \end{array}
```

• Sono entrambi $\Theta(n)$ nel caso pessimo

Salvata in una lista

```
Cancella ELLISTA(l, e)
```

9

```
\begin{array}{ll} 1 & p \leftarrow l \\ 2 & \textbf{if } p \neq NIL \ \textbf{and} \ p.value = e \\ 3 & l \leftarrow l.next \\ 4 & \textbf{return} \\ 5 & \textbf{while } p.next \neq NIL \ \textbf{and} \\ 6 & p.next.value \neq e \\ 7 & p \leftarrow p.next \\ 8 & \textbf{if } p.next.value = e \end{array}
```

 $p.next \leftarrow p.next.next$

Un altro esempio

Moltiplicazione di matrici: $dim(A) = \langle n, m \rangle \ dim(B) = \langle m, o \rangle$

```
\begin{array}{lll} \text{MATRIXMULTIPLY}(A,B) \\ 1 & \text{for } i \leftarrow 1 \text{ to } n \\ 2 & \text{for } j \leftarrow 1 \text{ to } o \\ 3 & C[i][j] \leftarrow 0 \\ 4 & \text{for } k \leftarrow 1 \text{ to } m \\ 5 & C[i][j] \leftarrow C[i][j] + A[i][k] \cdot B[k][j] \\ 6 & \text{return } C \end{array}
```

- La riga 3 viene eseguita $n \cdot o$ volte, la riga 5 viene eseguita $n \cdot m \cdot o$ volte $\rightarrow \Theta(n \cdot m \cdot o)$ (sia nel caso pessimo, che in generale)
- Diventa $\Theta(n^3)$ se le matrici sono quadrate

Ricorsione e complessità

Come calcolare la complessità di algoritmi ricorsivi?

- Ci sono algoritmi con complessità non immediatamente esprimibile in forma chiusa
- Il caso tipico sono algoritmi divide et impera:
 - dell'originale, n

Divido il problema in a sottoproblemi con dimensione dell'input pari a una frazione $\frac{1}{h}$

- Quando n è piccolo a sufficienza, risolvo in tempo costante (caso limite n=0)
- Ricombino le soluzioni dei sottoproblemi
- Indichiamo con D(n) il costo del suddividere il problema e con C(n) il costo di combinare le soluzioni
- Esprimiamo il costo totale T(n) con un'equazione di ricorrenza (o ricorrenza):

$$T(n) = \begin{cases} \Theta(1) \text{ se } n < c \\ D(n) + aT(\frac{n}{b}) + C(n) \text{ altrimenti} \end{cases}$$

Ricorsione e complessità

Come risolvere le ricorrenze?

- Sono possibili 3 tecniche principali:
 - Sostituzione
 - Esame dell'albero di ricorsione
 - Teorema dell'esperto (master theorem)
- Usiamo come caso di studio la ricerca binaria:
 - Formuliamo il problema di cercare in un vettore lungo n come quello di cercare nelle sue metà superiori e inferiori
 - Costo di suddivisione (calcolo indici) costante $D(n) = \Theta(1)$
 - Costo di ricombinazione costante: sappiamo che una delle due metà non contiene per certo l'elemento cercato $C(n)=\Theta(1)$
 - Complessità espressa come $T(n) = \Theta(1) + T(\frac{n}{2}) + \Theta(1)$

Metodo di sostituzione

Ipotesi e dimostrazione

- Il metodo di sostituzione si articola in tre fasi:
 - 1 Intuire una possibile soluzione
 - Sostituire la presunta soluzione nella ricorrenza
 - 3 Dimostrare per induzione che la presunta soluzione è tale per l' equazione/diseguazione alle ricorrenze
- Ad esempio, con la complessità della ricerca binaria: $T(n) = \Theta(1) + T(\frac{n}{2}) + \Theta(1)$
 - **1** Intuizione: penso sia $T(n) = \mathcal{O}(\log(n))$ ovvero $T(n) \le c \log(n)$
 - 2 Devo dimostrare: $T(n) = \Theta(1) + T(\frac{n}{2}) + \Theta(1) \le c \cdot \log(n)$
 - 3 Considero vero per ipotesi di induzione $T(\frac{n}{2}) \le c \cdot \log(\frac{n}{2})$ in quanto $\frac{n}{2} < n$ e sostituisco nella (2) ottenendo :

$$T(n) \le c \cdot \log(\frac{n}{2}) + \Theta(k) = c \cdot \log(n) - c \log(2) + \Theta(k) \le c \log(n)$$

Metodo di sostituzione

Esempio 2

- Determiniamo un limite superiore per $T(n) = 2T(\frac{n}{2}) + n$
- Intuiamo $\mathcal{O}(n\log(n))$, dimostriamo $T(n) \leq c(n\log(n))$
- Supponiamo vero (hp. induzione) $T(\frac{n}{2}) \le c(\frac{n}{2}\log(\frac{n}{2}))$
- Sostituiamo ottenendo che $T(n) \le 2c(\frac{n}{2}\log(\frac{n}{2})) + n \le cn\log(\frac{n}{2}) + n = cn\log(n) cn\log(2) + n = cn\log(n) + (1-c\log(2))n$
 - Il comportamento asintotico è quello che vorrei
- Riesco a trovare un n_0 opportuno dal quale in poi valga la diseguaglianza, assumendo che T(1) = 1 per definizione?
 - Provo $n_0 = 1$, ottengo $1 \le 0 + 1 c \log(2)$, no.
 - Con $n_0 = 3$ funziona, $T(3) = 2 \cdot 1 + 3 \le 3c \log(3) + (1 c \log(2))3$

Metodo di sostituzione

Esempio 2 - Un limite più stretto

- Determiniamo un limite superiore per $T(n) = 2T(\frac{n}{2}) + 1$
- Tentiamo di provare che è $\mathcal{O}(n)$, ovvero $T(n) \leq cn$
- Supponiamo vero (hp. induzione) $T(\frac{n}{2}) \leq c\frac{n}{2}$
- Sostituiamo ottenendo che $T(n) \leq 2c\frac{n}{2} + 1 = cn + 1$
 - Non possiamo trovare un valore di c che faccia rispettare l'ipotesi che vogliamo: cn+1 è sempre maggiore di cn
- In questo caso, non siamo riusciti a dimostrare il limite tramite sostituzione
- N.B.: questo *non* implica che T(n) non sia $\mathcal{O}(n)$
 - Prendere come ipotesi $T(n) \le cn b$, con b costante, consente di dimostrare che è $\mathcal{O}(n)$

Espandere le chiamate ricorsive

- L'albero di ricorsione fornisce un aiuto per avere una congettura da verificare con il metodo di sostituzione, o un appiglio per calcolare la complessità esatta
- È una rappresentazione delle chiamate ricorsive, con la loro complessità
- Ogni chiamata costituisce un nodo in una sorta di albero genealogico: i chiamati appaiono come figli del chiamante
- Ogni nodo contiene il costo della chiamata, senza contare quello dei discendenti
- Rappresentiamo l'albero di $T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + n$

Espandendo completamente

- L'albero ha la ramificazione a profondità massima posta all'estrema destra del disegno precedente
- Sappiamo che essa ha profondità k che ricaviamo ponendo $\frac{2^k}{3^k}n=1$ (il k-esimo pronipote a dx)

$$0 o 2^k n = 3^k o \log_3(2^k n) = k = \log_3(2^k) + \log_3(n) = \log_3(n) + \frac{\log_2(2^k)}{\log_2(3)}$$
 da cui abbiamo che $(\log_2(3) - 1)k = \log_3(n) o k = c\log_3(n)$

- Il costo pessimo per il contributo di un dato livello è l'n del primo livello
- Congetturiamo che $T(n) = \Theta(n \log(n))$
 - Dimostriamolo mostrando che $T(n) = \mathcal{O}(n\log(n))$ e $T(n) = \Omega(n\log(n))$

$T(n) = \mathcal{O}(n\log(n))$

- Per hp. di induzione abbiamo sia che $T(\frac{n}{3}) \le c_1(\frac{n}{3}\log(\frac{n}{3}))$ sia che $T(\frac{2n}{3}) \le c_2(\frac{2n}{3}\log(\frac{2n}{3}))$ (dato che $\frac{2}{3}n < n$ e $\frac{1}{3}n < n$)
- Sostituendo abbiamo

$$T(n) \leq c_1(\frac{n}{3}\log(\frac{n}{3})) + c_2(\frac{2n}{3}\log(\frac{2n}{3})) + n = c_1(\frac{n}{3}(\log(n) - \log(3)) + c_2(\frac{2n}{3}(\log(n) - \log(3) + \log(2))) + c_3n = c_4n\log(n) - c_5n + c_3n \leq c_4n\log(n) \text{ per una scelta opportuna delle costanti } c_4, c_5, c_6$$

$T(n) = \Omega(n\log(n))$

- Hp ind. $T(\frac{n}{3}) \ge c_1(\frac{n}{3}\log(\frac{n}{3})), T(\frac{2n}{3}) \ge c_2(\frac{2n}{3}\log(\frac{2n}{3}))$
- Sostituendo $T(n) \ge c_4 n \log(n) c_5 n + c_6 n \ge c_4 n \log(n)$

Teorema dell'esperto (Master theorem)

Uno strumento efficace per le ricorsioni

- Il teorema dell'esperto è uno strumento per risolvere buona parte delle equazioni alle ricorrenze.
- Affinchè sia applicabile, la ricorrenza deve avere la seguente forma: $T(n) = aT(\frac{n}{L}) + f(n)$ con a > 1, b > 1
- L'idea di fondo è quella di confrontare $a^{\log_b(n)} = a^{\frac{\log_a(n)}{\log_a(b)}} = n^{\log_b(a)}$ (costo totale delle foglie dell'AdR) con f(n) (il costo della sola radice dell'AdR)
- Le ipotesi del teorema dell'esperto sono le seguenti:
 - a deve essere costante e $a \ge 1$ (almeno 1 sotto-problema per chiamata ricorsiva)
 - f(n) deve essere sommata, non sottratta o altro a $aT(\frac{n}{b})$
 - Il legame tra $n^{log_b(a)}$ e f(n) deve essere polinomiale
- Se queste ipotesi sono valide, è possibile ricavare informazione sulla complessità a seconda del caso in cui ci si trova

Master Theorem

Caso 1

- Nel primo caso $f(n) = \mathcal{O}(n^{\log_b(a) \epsilon})$ per un qualche $\epsilon > 0$
- La complessità risultante è $T(n) = \Theta(n^{log_b(a)})$
- Intuitivamente: il costo della ricorsione "domina" quello della singola chiamata
- Esempio: $T(n) = 9T(\frac{n}{3}) + n$
- Confrontiamo: $n^1 = n^{\log_3(9) \epsilon} \Rightarrow \epsilon = 1$
- Otteniamo che la complessità è: $\Theta(n^{\log_3(9)}) = \Theta(n^2)$

Master Theorem

Caso 2

- Nel secondo caso abbiamo che $f(n) = \Theta(n^{log_b(a)})$
- ullet La complessità risultante della ricorrenza è $T(n) = \Theta(n^{log_b(a)}\log(n))$
- Intuitivamente: il contributo della ricorsione e quello della singola chiamata differiscono per meno di un termine polinomiale
- Esempio: $T(n) = T(\frac{n}{3}) + \Theta(1)$
- Confrontiamo: $\Theta(1) = \Theta(n^{\lfloor log_3(1) \rfloor})$ è vero ?
 - Sì: $\Theta(1) = \Theta(n^0)$
- La complessità risultante è $\Theta(n^{log_3(1)}log(n)) = \Theta(log(n))$

Master Theorem

Caso 3

- In questo caso abbiamo che $f(n) = \Omega(n^{\log_b(a)+\epsilon})$, $\epsilon > 0$
- Cond. Necessaria: vale che: $af(\frac{n}{b}) < cf(n)$ per un qualche valore di c < 1
- Se le ipotesi sono rispettate, abbiamo che $T(n) = \Theta(f(n))$
- Intuitivamente: il costo della singola chiamata è più rilevante della ricorsione
- Esempio: $T(n) = 8T(\frac{n}{3}) + n^3$
- Confrontiamo $n^3 = \Omega(n^{\log_3(8) + \epsilon}) \Rightarrow \epsilon = 3 \log_3(8) > 0$
- Controlliamo se $8f(\frac{n}{3}) = \frac{8}{33}n^3 < cn^3$ per un qualche c < 1?
 - Sì, basta prendere c in $(1-(\frac{8}{33});1)$
- La complessità dell'esempio è: $\Theta(n^3)$

Ordinare una collezione di oggetti

Un problema ricorrente

- Tra i problemi che capita più spesso di dover risolvere, l'ordinamento di una collezione di oggetti è un classico
- Un punto chiave dell'utilità dell'ordinamento è consentire di utilizzare una ricerca binaria sulla collezione ordinata
- Analizziamo soluzioni diverse considerando la loro complessità temporale, spaziale e relative peculiarità
- Proprietà di stabilità: in breve, un algoritmo di ordinamento è stabile se non cambia di ordine elementi duplicati

Insertion Sort

Ordinamento per inserimento di interi (ordine crescente)

```
INSERTIONSORT(A)
```

- 1 for $i \leftarrow 2$ to A.length
- 2 $tmp \leftarrow A[i]$
- $j \leftarrow i-1$ // ho salvato l' elemento in A[j+1]
- 4 while $j \ge 1$ and A[j] > tmp
- 5 $A[j+1] \leftarrow A[j]$ // sposto in avanti l' elemento se più grande di tmp
 - $j \leftarrow j-1$
- 7 $A[i+1] \leftarrow tmp$
 - Raziocinio: seleziono un elemento e lo reinserisco nella porzione di vettore già ordinato, al suo posto
 - T(n): caso ottimo $\Theta(n)$, caso pessimo $\Theta(n^2)$, in gen. $\mathcal{O}(n^2)$. Complessità spaziale $\Theta(1)$. Stabile (usando > non >).

Più veloce di $\mathcal{O}(n^2)$

Limiti inferiori della complessità dell'ordinamento

- Abbiamo visto che nel caso pessimo l'Insertion sort è $\Theta(n^2)$
- E'possibile concepire un algoritmo più veloce? Sì
- Qual è il limite di complessità dell'ordinamento per confronto
 - $\bullet\,$ È facile notare che qualunque procedura di ordinamento per n elementi è $\Omega(n)$
 - Sicuramente l'ordinamento è $\mathcal{O}(n^2)$: abbiamo l'insertion sort
- Astraiamo dalla specifica strategia di ordinamento: contiamo le azioni di confronto e scambio

Più veloce di $\mathcal{O}(n^2)$

Limiti inferiori della complessità dell'ordinamento

ullet Esaminiamo le decisioni per ordinare un vettore $[a\ b\ c]$

Limiti inferiori della complessità dell'ordinamento

Stima del numero di confronti

- L'albero costruito ha tante foglie quante permutazioni del vettore da ordinare
 - Per un vettore lungo n esso ha n! foglie
- Assumiamo che la struttura sia la più compatta possibile
 - non ho confronti ridondanti tra elementi
- La lunghezza del più lungo dei percorsi radice-foglia è il numero max di confronti che devo fare per ordinare un vettore
- L'altezza dell'albero in questo caso è \log_2 del numero delle sue foglie $\to \log(n!) \approx n \log(n) \log(e) n + \mathcal{O}(\log_2(n))$
- La complessità migliore ottenibile è $\mathcal{O}(n\log(n))$

Merge Sort

Un algoritmo $\Theta(n \log(n))$

- Per avere un algoritmo di ordinamento con complessità di caso pessimo ottima, applichiamo una strategia divide et impera
- Suddividiamo il vettore di elementi da ordinare in porzioni più piccole, fin quando non sono ordinabili in $\Theta(1)$, dopodichè ri-assembliamo i risultati ottenuti
 - È importante che ri-assemblare i risultati ottenuti non abbia complessità eccessiva
- Analizziamo quindi la complessità di fondere due array ordinati in un unico array, anch'esso ordinato
 - Consideriamo i due array come slices di un unico array A: A[p..q], A[q+1..r]

Fusione di A[p..q], A[q+1..r] in A[p..r]

```
Merge(A, p, q, r)
 1 len_1 \leftarrow q - p + 1
 2 len_2 \leftarrow r - q
 3 Alloca(L[1..len_1 + 1])
     ALLOCA(R[1..len_2+1])
     for i \leftarrow 1 to len_1 // Copia della prima metà
           L[i] \leftarrow A[p+i-1]
     for i \leftarrow 1 to len_2 // Copia della seconda metà
           R[i] \leftarrow A[q+i]
     L[len_1+1] \leftarrow \infty; R[len_2+1] \leftarrow \infty // sentinelle
10 i \leftarrow 1: i \leftarrow 1:
11
     for k \leftarrow p to r
12
            if L[i] < R[j]
13
                  A[k] \leftarrow L[i]; i \leftarrow i+1
14
            else
15
                  A[k] \leftarrow R[j]; j \leftarrow j+1
```

Merge

Analisi di complessità

- L'algoritmo alloca due array ausiliari, grossi quanto le parti da fondere, più alcune variabili ausiliarie in numero fissato
 - Complessità spaziale $\Theta(n)$
- Tralasciando le porzioni sequenziali, l'algoritmo è composto da 3 cicli:
 - Due per copiare le parti da fondere: complessità $\Theta(n)$
 - Uno che copia in A gli elementi in ordine: complessità $\Theta(n)$
- In totale abbiamo che MERGE è $\Theta(n)$

MergeSort

Algoritmo

```
MERGESORT(A, p, r)
     if p < r - 1
          q \leftarrow \lfloor \frac{p+r}{2} \rfloor
          MERGESORT(A, p, q)
          MERGESORT(A, q + 1, r)
          MERGE(A, p, q, r)
     else // Caso base della ricorsione: ho solo <2 elementi
           // N.B. se ho 1 elemento non devo fare nulla
           if A[p] > A[r]
                tmp \leftarrow A[r]
10
                A[r] \leftarrow A[p]
                A[p] \leftarrow tmp
11
  • Costo: T(n) = 2T(\frac{n}{2}) + \Theta(n): Caso 2 MT \rightarrow \Theta(n \log(n))
```

Un'alternativa divide-et-impera

- Quicksort ordina senza spazio ausiliario (sul posto, o in place)
- Quicksort applica il divide-et impera ad una slice A[lo..hi]:

Dividi Scegli un elemento A[p] (detto pivot) come punto di suddivisione di A[lo..hi] e sposta gli elementi di A[lo..hi] in modo che tutti quelli di A[lo..p-1] siano minori o uguali al pivot

Impera Ordina A[lo..p-1], A[p+1..hi] con Quicksort

Combina Nulla! L'ordinamento è eseguito in place

```
QUICKSORT(A, lo, hi)
```

- 1 if lo < hi
- 2 $p \leftarrow \text{PARTITION}(A, lo, hi)$
- 3 Quicksort(A, lo, p-1)
- 4 QUICKSORT(A, p + 1, hi)

Schema di partizione di Lomuto

```
PartitionLomuto(A, lo, hi)

1 pivot \leftarrow A[hi]

2 i \leftarrow lo - 1

3 for j \leftarrow lo to hi - 1

4 if A[j] \leq pivot

5 i \leftarrow i + 1

6 Scambia(A[i], A[j])

7 Scambia(A[i+1], A[hi])

8 return i + 1
```

- i indica la posizione dell' ultimo elemento \leq pivot, escluso il pivot stesso
- L' (i+1)-esimo elemento è nella sua posizione definitiva dopo PartitionLomuto, posso escluderlo nelle chiamate ricorsive
- Complessità di PartitionLomuto: $\Theta(n)$

Schema di partizione di Hoare

```
PartitionHoare(A, lo, hi)
 1 pivot \leftarrow A[lo]
 2 \quad i \leftarrow lo - 1; i \leftarrow hi + 1
     while true
           repeat
 5
                i \leftarrow i - 1
 6
           until A[j] < pivot
           repeat
 8
                 i \leftarrow i + 1
 9
           until A[i] \geq pivot
           if i < i
10
11
                 SCAMBIA(A[i], A[j])
12
           else return i
```

- Effettua $\frac{1}{3}$ degli scambi di Lomuto, in media (asint. $\Theta(n)$)
- N.B. la partizione di Hoare restituisce l'indice dell' ultimo elemento $\leq pivot$ (non necessariamente = pivot)
- serve una modifica a QUICKSORT

```
QUICKSORT(A, lo, hi)
```

- 1 if lo < hi
- 2 $p \leftarrow \text{PartitionHoare}(A, lo, hi)$
- 3 Quicksort(A, lo, p)
- 4 QUICKSORT(A, p + 1, hi)

Complessità

- Il calcolo di Partition ha complessità temporale $\Theta(n)$, con n la lunghezza del vettore di cui deve operare la partizione
- La complessità dell'intero Quicksort risulta quindi $T(n) = T(\frac{n}{a}) + T(n \frac{n}{a}) + \Theta(n)$, dove il valore a dipende da quanto "bene" PARTITION ha suddiviso il vettore
- Caso pessimo: il vettore è diviso in porzioni lunghe n-1 e 1
 - La ricorrenza diventa $T(n) = T(n-1) + T(1) + \Theta(n)$
 - Si dimostra facilmente che è $\Theta(n^2)$
- Caso ottimo: il vettore è diviso in due porzioni lunghe $\frac{n}{2}$
 - La ricorrenza diventa $T(n) = 2T(\frac{n}{2}) + \Theta(n)$
 - È la stessa del MergeSort, $\Theta(n \log(n))$
- Caso medio: $\Theta(n \log(n))$ e la costante nascosta da Θ è 1,39

Riassumendo

Un confronto tra ordinamenti per confronto

Algoritmo	Stabile?	T(n) (caso pessimo)	T(n) (caso ottimo)	S(n)
Insertion Merge Quick	✓ ✓ ×	$egin{array}{c} \Theta(n^2) \ \Theta(n\log(n)) \ \mathcal{O}(n^2) \end{array}$	$\Theta(n)$ $\Theta(n\log(n))$ $\Omega(n\log(n))$	$O(1) \\ \Theta(n) \\ O(1)$

- Non è possibile essere più veloci usando algoritmi di ordinamento per confronto
- C'è modo di fare meglio ordinando senza confrontare tra elementi?

Algoritmi non comparativi

Ordinare senza confrontare

- Il vincolo che abbiamo sulla complessità minima è legato al fatto che confrontiamo gli elementi da ordinare tra loro
- Nel caso in cui possiamo fare assunzioni sulla distribuzione o sul dominio degli elementi da ordinare, possiamo fare a meno dei confronti!
- Vediamo un esempio di algoritmo di ordinamento senza confronti il counting sort
 - Assunzione: il dominio degli elementi è finito e di dimensioni "ragionevoli" (dovremo rappresentarlo per esteso)
 - Intuizione: ordino calcolando l'istogramma delle frequenze e stampandone gli elementi in ordine

Counting Sort

Versione non stabile, k valore massimo degli el. di A

```
CountingSort(A)
    Ist[0..k] \leftarrow 0 \text{ // Nota: costo } \Theta(k)
   for i \leftarrow 0 to A.length - 1
          Ist[A[i]] \leftarrow Ist[A[i]] + 1
   idxA \leftarrow 0
    for i \leftarrow 0 to k
          while Ist[i] > 0
                 A[idxA] \leftarrow i
                 idxA \leftarrow idxA + 1
                 Ist[i] \leftarrow Ist[i] - 1
```

- La complessità temporale è dominata dal ciclo alle righe 5–8: $\mathcal{O}(n+k)$
- Se $k \gg n$ la complessità in pratica può essere molto alta

Counting Sort, versione stabile

Versione stabile: strategia

- Il counting sort stabile parte con il calcolare il numero delle occorrenze di ogni elemento come quello classico
- A partire dall'istogramma delle frequenze Ist, lo trasforma nel vettore contenente il conteggio degli elementi con valori \leq di quello dell'indice del vettore
- ullet Calcolato ciò, piazza un elemento calcolando la sua posizione come il valore corrente dell'informazione cumulativa contenuta in Ist
- L'informazione cumulativa è decrementata: effettivamente esiste un elemento in meno < all'indice del vettore

Counting Sort

Versione stabile, out-of-place, k valore massimo degli el. di A

```
CountingSort(A)
 1 B[0..A.length-1] \leftarrow 0
 2 Ist[0..k] \leftarrow 0 \text{ // Nota: costo } \Theta(k)
     for i \leftarrow 0 to A.length - 1 // Calcola istogramma
            Ist[A[i]] \leftarrow Ist[A[i]] + 1
     sum \leftarrow 0
     for i \leftarrow 0 to k \not \parallel calcola num. elem. \leq i
            sum \leftarrow sum + Ist[i]
           Ist[i] \leftarrow \mathtt{sum}
      for i \leftarrow A.length - 1 to 0
10
           idx \leftarrow Ist[A[i]]
11 B[idx-1] \leftarrow A[i]
12
     Ist[A[i]] \leftarrow Ist[A[i]] - 1
      return B
```