Bacheliers en Sciences Mathématiques et Physiques, bloc 1 MATHF102: Séance 26

- 1. Prouver que dans $M_{n\times n}(\mathbb{R})$, une matrice a commute avec toutes les autres si et seulement si elle commute avec chacun des éléments de la base canonique de l'espace vectoriel réel $M_{n\times n}(\mathbb{R})$, c'est-à-dire les matrices E_{ij} pour $i,j=1,2,\ldots,n$, où E_{ij} a 1 en position (i,j) et 0 ailleurs. En déduire la forme générale de a. L'ensemble des matrice ayant cette propriété est-il un sous-espace de $M_{n\times n}(\mathbb{R})$?
- 2. (i) Si $a \in M_{s \times t}(\mathbb{R})$, la matrice aa^T est-elle toujours symétrique?
 - (ii) Si $a \in M_{n \times n}(\mathbb{R})$ est symétrique, en est-il de même pour a^2 ?
 - (iii) Si $a, b \in M_{n \times n}(\mathbb{R})$ sont symétriques, à quelle condition la matrice ab est-elle symétrique?
 - (iv) Si $a, b \in M_{n \times n}(\mathbb{R})$ sont symétriques, que peut-on dire de ab ba?
- 3. Démontrer que l'ordre d'une permutation dont les cycles ont longueurs k_1, k_2, \ldots, k_s est le plus petit commun multiple de ces nombres.
- 4. Soit $\sigma \in \mathfrak{S}_n$, et soit

$$\sigma = \tau_1 \tau_2 \cdots \tau_r$$

avec τ_i des tranpositions pour tout $i=1,2,\ldots,r$. Démontrer que

$$\sigma^{-1} = \tau_r \tau_{r-1} \cdots \tau_2 \tau_1.$$

5. Étant données les permutations

$$\alpha = (1, 2, 3, 4, 5)(6, 7)(8)(9, 10, 11)$$

 $\beta = (1, 6)(2, 7)(3, 8, 9)(4)(5, 10, 11)$

calculer $\beta \circ \alpha$, $\alpha \circ \beta$, α^{-1} , β^{-1} , α^2 , α^5 , α^{1174} , β^2 , β^6 , β^{27802} .

6. Démontrer que

$$\operatorname{sgn}(\sigma)\operatorname{sgn}(\tau) = \operatorname{sgn}(\sigma\tau)$$
 pour tout $\sigma, \tau \in \mathfrak{S}_n$, et $\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$ pour tout $\sigma \in \mathfrak{S}_n$.

- 7. Montrer que (i,j) avec $1 \le i < j \le n$ est une inversion de $\sigma \in \mathfrak{S}_n$ si et seulement si dans la tresse correspondante à σ les arêtes de i à $\sigma(i)$ et de j à $\sigma(j)$ se croisent.
- 8. Voici les permutations α , β , γ de \mathfrak{S}_7

$$\alpha = (1, 2)(3, 4, 5)(6, 7)$$

$$\beta = (1, 2, 3, 4, 5, 6, 7)$$

$$\gamma = (1, 6, 7)(2)(3, 4)(5).$$

Calculer $inv(\alpha)$, $inv(\beta)$, $inv(\gamma)$, $inv(\gamma \circ \alpha)$ et $inv(\gamma \circ \beta)$.

9. Démontrer que pour tout $\sigma \in \mathfrak{S}_n$ on a

$$\operatorname{sgn}(\sigma) = (-1)^{inv(\sigma)}.$$