

3/27/20 < Probability >. Math study of random outcome. ex) experiment. . toss a pair of dice. one die 6. (1,1) (1,2) ---(1,6) $S = \{ (2,1), (2,2), \dots \}$ (2.6) (6,6) out come! E = { the sum of is 4 4 $= \{(1,3), (2,2), (3,1)\}$ $\mathcal{E}_2 = \left\{ \text{ the first is } 1 \right\}$ $= \{(1,0), (1,2), (1,3), (1,4), (1,5), (1,6)\}$ ٤, 1 ٤ = 1 (1, 3) 4 def. (sample space) set of all possible def. (event) a subset of s

satisfying a certain condition.

def. signa field: F.

: collection of events satisfying $D A \in F \Rightarrow A^C \in F$: complement

② A, B e f ⇒ AUB e f : vnim.

3 AieF > VAIEF

De Morgan's rule: ANB = (AUB°)°

* F is closed under c, U. A

ex) F = { all subsets of sy

def. (probability space)

S: sample spare

F; o-field.

P: prob. measure.

O P[2] Zo for any ESF.

2) P[S] = 1.

3) $P[\xi_1 \cup \xi_2] = P[\xi_1] + P[\xi_2]$ if $\xi_1 \cap \xi_2 =$

Note | = P[2 U 2°] = P[2] + P[2°] 2 12°= 0

= [P[E] = 1 - P[E].)

$$P[\xi_1] = \frac{3}{36} = \frac{1}{12}$$

$$P[\xi_2] = \frac{6}{36} = \frac{1}{6}$$

def. conditioned prob.

$$P[\mathcal{E}_1 | \mathcal{E}_2]$$
: prob of \mathcal{E}_1 conditioned on the knowledge that \mathcal{E}_2 has occurred.

$$P\left[\mathcal{E}_{1} \middle| \mathcal{U}_{2}\right] = \frac{\# \text{ of } \mathcal{E}_{1} \cap \mathcal{E}_{2}}{\# \text{ of } \mathcal{E}_{2}}$$

 $P[A|B] = P[B|A] \cdot \frac{P[A]}{P[B]}$

· Bayes tule.

Payes tule.

P[
$$\epsilon_1$$
[ϵ_2] = $\frac{P[\epsilon_1] \cdot P[\epsilon_2]}{P[\epsilon_1]} \times \frac{P[\epsilon_2]}{P[\epsilon_1]} \times \frac{P[\epsilon_2]}{P[\epsilon_2]} \times \frac{P[\epsilon_2]}{P[\epsilon_1]} \times \frac{P[\epsilon_2]}{P[\epsilon_2]} \times \frac{P[\epsilon_2]}{P[\epsilon_1]} \times \frac{P[\epsilon_2]}{P[\epsilon_2]} \times \frac{P[\epsilon$

< Random variable > def. consider (S, F, P), a rv assigns a real number to each outcome. P[2] = 1(1,3) (2,2) (3.1) 4 (1,1), (1,2). --. X = 2 sum of two dice 4 Y = { first die 4

def. distribution func of X. $F_{X}(\alpha) = P[X \leq \alpha]$ prob that $X \le \alpha$: increasing write $F_X[-\infty] = P[X \le -\infty] = 0$, $F_X[1] = P[X \le 1] = P[X \le 1] = 0$. $f_{x}[2] = P[X \le 2] = P[\sqrt{(1,1)}] = \frac{1}{36}$ $F_{x}[2.5] = P[x \le 2.5] = 11 = \frac{7}{36}$ $f_{X}[3] = P[X \le 3] = P[\{(1,1)\}, (1,2), (2,1)\} = \frac{3}{36}$ Fx [0] = P[X < 00] = 1 $P[\alpha_1 < X \leq \alpha_2] \stackrel{?}{=} F_X[\alpha_2] - F_X[\alpha_1]$ $F_X(\alpha_2) = P[X \leq \alpha_2] = P[X \leq \alpha_1 \cup \alpha_1 < X \leq \alpha_2]$ = P[X < d] + P[a, < X < d]

Note. O since Fx is increasing pk)≥0.

$$2\int_{-\infty}^{\infty} p(x)dx = pfacxcoj = 0$$

3) $P_X(\alpha)$ is NOT the probability that $X=\alpha$.

instead. P[x<X \le a+da] = p(a) da.

ex) uniform dist on [a,b]

$$a$$
 b
 b
 b
 b

