# Women Data Science Hackathon by Bain & Company

Presented by Lavanya M K

# **Exploratory Data Analysis**

- 1. The training data contains sales of 600 courses for 882 days. Following is the distribution:
  - a.506 Courses -> 882 days
  - b.93 Courses -> 698 days
  - c.1 Course -> 881 days
- 2. There are 10 columns excluding target column (Sales) in train data. There are 9 columns in given test data.
- 3. Course type 'Program' and 'Course' has lesser sales than 'Degree' even though the number of courses for 'Degree' is only 2 and courses for types 'Program' and 'Course' are 288 and 310 respectively.
- 4. The average sales for Course\_Type Degree is more in public holiday where as for other course type it is less in public holiday.
- 5. Sales pattern for Business Domain is different from other three domains Software Marketing, Finance & Accounting, Development
- 6. The sales is always highly influenced by User\_Traffic
- 7. Short\_Promotion influenced more for sales across each domain than Long\_Promotion

### Approach

Since the prediction has to be done for next 60 days for each courses, Previous 60 days of Sales, User\_Traffic, Long\_Promotion, Short\_Promotion lag features are formed including current day's columns to predict for 60th day Sales. Lag feature and derived test feature for a single course is shown in the diagram below



# Preprocessing and Feature creation

- 1. Missing values present in Competition\_Metric is imputed with 0 values
- 2. For each course ID, Lag features are created including previous 60 days of Sales, User\_Traffic, Long\_Promotion, Short\_Promotion.
- 3. Next 60th day Sales is considered as target column
- 4. Last 60 rows of each course which corresponds to last 60 days of train data is combined with test data for prediction which acts as lag features for test data
- 5. Holdout set is created to test the model accuracy

# **Model Creation**

LSTM model is used to predict Sales. With leaky Relu as activation layer. Model architecture is described below

| Model: "sequential_1"                                                       |        |       |         |
|-----------------------------------------------------------------------------|--------|-------|---------|
| Layer (type)                                                                | Output | Shape | Param # |
| cu_dnnlstm_1 (CuDNNLSTM)                                                    | (None, | 512)  | 1054720 |
| leaky_re_lu_1 (LeakyReLU)                                                   | (None, | 512)  | 0       |
| dense_1 (Dense)                                                             | (None, | 512)  | 262656  |
| leaky_re_lu_2 (LeakyReLU)                                                   | (None, | 512)  | 0       |
| dense_2 (Dense)                                                             | (None, | 128)  | 65664   |
| leaky_re_lu_3 (LeakyReLU)                                                   | (None, | 128)  | 0       |
| dense_3 (Dense)                                                             | (None, | 32)   | 4128    |
| leaky_re_lu_4 (LeakyReLU)                                                   | (None, | 32)   | 0       |
| dense_4 (Dense)                                                             | (None, | 1)    | 33      |
| Total params: 1,387,201 Trainable params: 1,387,201 Non-trainable params: 0 |        |       |         |

# Thank you