Overheads: - Today's Outline

Recap I can't remember when: Enolates:

1) Addition to unsaturated carbonyls:

 $\begin{array}{ccc} \underline{Nu}^{-} & \underline{Reaction \ favored} \\ R\text{-Li} & direct \\ R_2CuLi & conjugate \\ R\text{-MgBr} & conjugate \ favored \ (unless \ sterically \ hindered) \\ enolate & conjugate \ (Michael) \\ & & \text{or other stabilized } C^{-} \\ & & \oplus CN; \ \oplus CH_2CN; \ \oplus CH_2NO_2 \ \ \textit{etc} \\ \end{array}$

2) Aldol:

$$\begin{array}{c} O \\ R - C - CH_2 - R' \\ + O \\ R - C - CH_2 - R' \end{array} \xrightarrow{base} \begin{array}{c} O \\ \parallel \\ R - C - CH_2 - R' \end{array} \xrightarrow{B^+ \text{ or } OH^-, \Delta} \begin{array}{c} O \\ \parallel \\ OH^-, \Delta \end{array} \xrightarrow{R^+ \text{ or } C - CH_2 - R'}$$

Mixed Aldol: using two different carbonyls

$$CH_{3}-C-H + CH_{3}-CH_{2}-C-H - either one can be Nu- and/or E^{+}$$

$$OH^{-} \qquad OH^{-} \qquad OH^{-} \qquad OH^{-}$$

$$CH_{3}-CH_{2}-C-H \qquad CH_{3}-CH-C-H$$

$$CH_{3}-CH_{2}-C-H \qquad OH^{-} \qquad O$$

How to Control?

i) Use one that can't enolize (no α -H)

ii) Pre-make enolate of one compound using LDA

Claisen Condensation: Similar reaction with esters

CH₃O C CH₂-R CH₃O C CH₂-R CH₃O C CH₂-R
$$\stackrel{\bigcirc}{\longrightarrow}$$
 CH₃O C CH₂-R $\stackrel{\bigcirc}{\longrightarrow}$ CH₃O C C CH C CH₂-R $\stackrel{\bigcirc}{\longrightarrow}$ - get β -keto ester - now can do alkylation, hydrolysis, decarboxylation sequence

Examples: intramolecular reactions!

Another Nu that adds to C=O:

Addition to ketone/aldehyde = Wittig reaction

Georg Wittig Nobel Prize 1979

$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3

Advantage of Wittig:

- Unlike E1/E2, double bond location is <u>fixed</u> (between C of C=O and C of ylide)

$$\begin{array}{c} & & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} \text{CH}_2 \\ & \\ \text{- hard to make by E1/E2 (Zaitsev)} \\ & \text{- also get competition from } S_N 1/S_N 2 \end{array}$$

Synthesis of the Ylide:

Overall Reaction:

$$R \xrightarrow{\mathsf{C}} \mathsf{Br} \xrightarrow{1) \mathsf{Ph}_3 \mathsf{P}} \mathsf{R} \xrightarrow{\mathsf{C}} \mathsf{PPh}_3 \xrightarrow{\mathsf{C}} \mathsf{R}' \xrightarrow{\mathsf{R}'} \mathsf{R} \xrightarrow{\mathsf{R}'} \mathsf{R}$$

Stereochemistry of alkene:

- Complicated!
- Depends on R's of ylide
- If R = alkyl, usually Z (or cis) major
- Bulky R's = more Z

e.g.
$$H_3C$$
 $C=O + Bu_3P=C$
 H
 $C=C$
 H
 $C=C$
 H
 $C=C$
 H
 $C=C$
 CH_3
 $C=C$

Why?

- Controlled by sterics of big R groups on P.
- CH₃ groups want to be far away from big groups in transition state