Cheatsheet of some Bayesian models

Irving Gómez Méndez

This is an example of a cheatsheet of Bayesian models, the students should complete it and extended with their own comments.

Beta-Bernoulli model

Likelihood	$Y \theta \sim Bernoulli(\theta)$
Conjugate prior	$ heta \sim Beta(lpha,eta)$
Interpretation of	$\alpha - 1$: number of prior successes
hyperparameters	$\beta - 1$: number of prior fails
Noninformative prior	$ heta \sim Beta(1,1)$
from interpretation	
Posterior	$ heta \mathbf{Y} \sim Beta(lpha_n, eta_n)$
	$\alpha_n = \alpha + \sum_{i=1}^n y_i, \ \beta_n = \beta + n - \sum_{i=1}^n y_i$
Posterior predictive	$Z = \sum_{i=1}^{\tilde{n}} \tilde{Y}_i, Z \mathbf{Y} \sim Beta\text{-}Binomial(\tilde{n}, \alpha_n, \beta_n)$
Jeffreys prior	$ heta \sim Beta(1/2, 1/2)$

Gamma-Exponential model

Likelihood	
Conjugate prior	
Interpretation of	
hyperparameters	
Noninformative prior	
from interpretation	
Posterior	
Posterior predictive	
Jeffreys prior	

Gamma-Poisson model

Likelihood	
Conjugate prior	
Interpretation of	
hyperparameters	
Noninformative prior	
from interpretation	
Posterior	
Posterior predictive	
Jeffreys prior	

Normal likelihood with mean unknown and variance known

Likelihood	
Conjugate prior	
Interpretation of	
hyperparameters	
Noninformative prior	
from interpretation	
Posterior	
Posterior predictive	
Jeffreys prior	

$$\mu_n = , \quad \tau_n^2 =$$

Normal likelihood with mean known and variance unknown

Likelihood	
Conjugate prior	
Interpretation of	
hyperparameters	
Noninformative prior	
from interpretation	
Posterior	
Posterior predictive	
Jeffreys prior	

$$\nu_n = , \quad \sigma_n^2 =$$

Normal likelihood with mean and variance unknown

Likelihood	
Conjugate prior	$\mu \sigma^2 \sim$
	$\mu \sigma^2 \sim \sigma^2 \sim$
	$\mu \sim$
	$\mu \sim \sigma^2 \mu \sim$
Interpretation of	
hyperparameters	
Noninformative prior	
from interpretation	
Posterior	$\mu \sigma^2 \sim$
	$\mu \sigma^2 \sim \ \sigma^2 \sim$
	$\mu \sim$
	$\mu \sim \sigma^2 \mu \sim$
Posterior predictive	$Y \mathbf{Y} \sim$ $\mu \sigma^2 \sim$ $\sigma^2 \sim$
Reference prior	$\mu \sigma^2 \sim$
	$\sigma^2 \sim$

$$\mu_n = \kappa_n = \nu_n = \nu_n \sigma_n^2 = \nu_n^2 = \nu_n^2 = \nu_n^2 = \nu_n^2$$