ें स्टेंस्ट्रें

Write a Matlab code to solve the following steady, 2-D heat conduction problem.

30 cm X 30 cm rectangular copper plate.
 The temperature on the top and bottom side is fixed at 200 °C
 & the temperature on the left and right side is fixed at 0 °C.

- Your code must do the following tasks.
 - 1. Stop the iteration when the average relative error becomes less than 10-5
 - 2. Plot 2-d temperature distribution at steady-state.
 - 3. Plot the temperature profile along a horizontal centerline.

Average relative error:
$$\sum_{n=m=1}^{n,m} abs(\left(T_{current}(m,n) - T_{previous}(m,n)\right))/100$$

$$\sum_{n=1}^{n} \frac{m}{m} \frac{|T_{current}(m,n) - T_{precious}(m,n)|}{\sqrt{60}}$$

	λ = t	i = 2	j. =3			بر س-۲	j= m⊣	$\dot{\lambda} = m$	m s
k=1		200	200	. • •		200	200		
k∍ı	0	/טט	100			(৩১ .	/o~	٥	
:	9	100	100			(00)	∕≎ ა	O	
:	Ð							0	
k= n-2	J	(00	<i>7</i> 00			(2V)	60	0	
k=n-ı	0	100	100			100	100	0	
k=n		200	200	200	200	೨00	200		

N語

Assumption: Fixed boundaries temperature, no heat generation, Interior node,
$$n=m$$
, $T_0(m,n)=100^{\circ}$.

Governing Equation: $\frac{\partial T}{\partial t} = \alpha \left(\frac{T_{m+1}, n+T_{m+1}, n+T_{m,m+1}+T_{m,n-1}-4}{\Delta z^2}\right)$
 $\Delta T = \alpha \cdot \frac{dt}{dz^2} \left(\frac{T_{m+1}, n+T_{m+1}, n+T_{m,m+1}+T_{m,n-1}-4}{\Delta z^2}\right)$