MATH 302

Chapter 7

SECTION 7.2: SERIES SOLUTIONS NEAR AN ORDINARY POINT

Contents

Setup	2
Ordinary and Singular Points	7
Translating to Success!	11
Radius of Convergence	13
Taylor Polynomial	15

CREATED BY: PIERRE-OLIVIER PARISÉ

 $Fall\ 2022$

Main goal:

• Solve a second order ODE

$$A(x)y'' + B(x)y' + C(x)y = 0$$

where A(x), B(x), and C(x) are polynomials.

• Use power series to obtain the solution y(x). Such a solution is called a **power series** solution to the ODE.

Recall from the previous section that

•
$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$
.

•
$$y'(x) = \sum_{n=1}^{\infty} na_n x^{n-1}$$
.

•
$$y''(x) = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$$
.

Remark:

• We denote the left-hand side by

$$L(y) := A(x)y'' + B(x)y' + C(x)y.$$

• The application $y\mapsto L(y)$ is called a **differential operator** in the litterature.

EXAMPLE 1. Find a power series solution to y'' + y = 0.

Page 2

Recurrence Relation:			
Solving ODE with power we encountered:	series involves a lot	of recurrence relations.	In the above problems,

EXAMPLE 2. Find a power series solution to $x^2y'' + y = 0$.

Ordinary and Singular Points

- A number x_0 is called an **ordinary point** if $A(x_0) \neq 0$.
- A number x_0 is called a **singular point** if $A(x_0) = 0$.

We will mainly focus on power series solutions centered at ordinary points.

EXAMPLE 3. For each of the following ODEs, find the singular points.

- (a) $(1-x^2)y'' + y = 0$.
- **(b)** $(1+2x+x^2)y''+y'+(2+x)y=0.$
- (c) $(2x+3x^2+x^3)y''+(x+1)y'+(x^2+1)y=0$.

Remark:

• A power series solution must be centered at an ordinary point, that is, if x_0 is an ordinary point, then the form of the solution is

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

- In Example 2, we see why we can't solve: The power series used was centered at $x_0 = 0$, a singular point.
- In the case of a singular points, we need the Frobenius method. This is covered in a second class in ODE.

Example 4.

(a) Find a power series solution of

$$(x^2 - 4)y'' + 3xy + y = 0.$$

(b) Find the solution to the IVP

$$(x^2 - 4)y'' + 3xy + y = 0$$
, $y(0) = 4$, $y'(0) = 1$.

Translating to Success!

EXAMPLE 5. Find a power series solution to the following IVP:

$$(t^2 - 2t - 3)\frac{d^2y}{dt^2} + 3(t - 1)\frac{dy}{dt} + y = 0, \quad y(1) = 4, \ y'(1) = -1.$$

RADIUS OF CONVERGENCE

It is important to know where our solution is valid.

- The radius of convergence of a power series $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ is the number R such that
 - $-\sum_{n=0}^{\infty} a_n(x-x_0)^n$ converges for any x such that $|x-x_0| < R$.
 - $-\sum_{n=0}^{\infty} a_n (x-x_0)^n$ diverges for all x such that $|x-x_0| > R$.
- If the limit

$$L := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

exists, then the radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$ is $R = \frac{1}{L}$.

EXAMPLE 6. Find the radius of convergence of

- (a) $f(x) = \sum_{n=0}^{\infty} x^n$.
- **(b)** $g(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$.

THEOREM 7. Suppose that x_0 is an ordinary point of the ODE

$$A(x)y'' + B(x)y' + C(x)y = 0.$$

Then the ODE has a general solution of the form

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

The radius of convergence of any such series solution is at least as large as the distance from x_0 to the nearest (real or complex) singular point of the ODE.

EXAMPLE 8. Determine the radius of convergence guaranteed by the last Theorem of a series solution of

$$(x^2 + 9)y'' + xy' + x^2y = 0$$

- (a) in powers of x.
- (b) in powers of x-4.

TAYLOR POLYNOMIAL

When we have a solution

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

of an ODE

$$A(x)y'' + B(x)y' + C(x)y = 0,$$

we can draw an approximation of the solution.

• The Taylor polynomial $T_N(x)$, where $N \geq 0$ is an integer, is given by the expression

$$T_N(x) = \sum_{n=0}^N a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + \dots + a_N (x - x_0)^N.$$

• When the power series of y(x) converges on a given interval I, we have

$$y(x) \approx T_N(x)$$

for a sufficiently large integer N.

Example 9.

- (a) Plot the graph of $T_4(x)$, $T_{10}(x)$, and $T_{20}(X)$ of the power series representation of $f(x) = \cos(x)$.
- (b) Plot the graph of $T_4(x)$, $T_{10}(x)$, $T_{20}(x)$ for the power series solution of Example 5.