计算机组成原理

静态存储器 及高速缓冲存储器

2022年秋

本节内容提要

- □动态存储器存储原理
- □静态存储器存储原理
- □高速缓冲存储器(Cache)概述
- **□**Cache的地址映射
 - 直接映射
 - 全相联
 - 多路组相联

动态存储器原理

- 口写
 - 往位线上送数据
 - 选择字线
- 口读
 - 将位线上置高电平
 - 选中字线
 - 感知电容是否放电并放大
 - 写回
- □刷新
 - 定期的批量读操作

动态存储器的特点

- □存储容量高
 - 单位存储单元面积小

- □访问速度慢
 - 电容充放电
 - 刷新
- 口能耗低
- □成本低

Moore定律

- □ 1965年,Intel公司创始人之一Gordon Moore提出
- □ 芯片上集成的晶体管数量每18个月翻一番

D触发器

静态存储器存储单元

6-Transistor SRAM Cell

- □ 写1:
 - 1. 在位线上设置使(bit=1, bit=0)
 - 2. 使字线选通
- □ 读:
 - 1. 使bit 和bit 都充为高电平Vdd
 - 2. 使字线选通
 - 3. 根据触发器的状态,将使其中一条位线电平为低
 - 4. 放大器感知bit 和bit的变化,读出存储的值

静态存储器典型组织方式

SRAM典型时序

静态存储器

- □速度快
- □存储密度低,单位面积存储容量小
- □数据入/出共用管脚
- □能耗高
- □成本高

静态和动态存储器芯片特性

	SRAM	DRAM
存储信息	触发器	电容
破坏性读出	非	是
需要刷新	不要	需要
送行列地址	同时送	分两次送
运行速度	快	慢
集成度	低	高
发热量	大	小
存储成本	高	低

程序运行的局部性原理

- □程序运行时的局部性原理表现在:
- □ 在一小段时间内,最近被访问过的程序和数据很可能再次被访问
- □ 在空间上这些被访问的程序和数据往往集中在一小片存储区
- □在访问顺序上,指令顺序执行比转移执行的可能性 大(大约5:1)

□合理地把程序和数据分配在不同存储介质中

层次存储器系统

- □利用程序的局部性原理:
- □以最低廉的价格提供尽可能大的存储空间
- 口以最快速的技术实现高速存储访问

Speed (ns): 1ns

10ns

50-100ns MB-GB Milliseconds GB

Seconds Terabytes

程序的局部性原理

```
for (i=0; i<1000; i++) {
  for (j=0; j<1000; j++) {
    a[i] = b[i] + c[i];
If err { ......}
  else for (i=0; i<1000; i++) {
    for (j=0; j<1000; j++)
      e[i] = d[i] * a[i];
```

□数据流访问的局 部性

□指令访问的局部 性

□不同的程序段可 能访问不同的内存 空间

程序的局部性原理

- ▶程序在一定的时间段内通常只访问较小的 地址空间
- ▶两种局部性:
 - 时间局部性
 - ▶空间局部性

层次存储器系统

- □使用高速缓冲存储器Cache来提高CPU对存储器的平均访问速度。
- □时间局部性: 最近被访问的信息很可能还要 被访问。
 - 将最近被访问的信息项装入到Cache中。
- □空间局部性: 最近被访问的信息临近的信息 也可能被访问。
 - 将最近被访问的信息项临近的信息一起装入到 Cache中。

高速缓冲存储器Cache

口定义

■ 设置于主存和CPU之间的存储器,用高速的静态存储器实现,缓存了CPU 频繁访问的信息。

□特点

■ 高速: 与CPU的运行速度基本匹配

■透明:完全硬件管理,对程序员透明

Cache的基本运行原理

要解决的问题

- 1. 地址和Cache行之间的映射关系: 如何根据主存地址得到Cache中的数据?
- 2. 数据之间一致性: Cache中的内容是否已经是主存对应地址的内容?
- 3. 数据交换的粒度:
 Cache中的内容与主存内容以多大的粒度交换?
- 4. Cache内容装入和替换策略 如何提高Cache的命中率?

Cache相关概念

- □块(Line):数据交换的最小单位
- □命中(Hit):在较高层次中发现要访问的内容
 - 命中率(Hit Rate): 命中次数/访问次数
 - 命中时间:访问在较高层次中数据的时间
- □缺失(Miss):需要在较低层次中访问块
 - 缺失率(Miss Rate): 1-命中率
 - 缺失损失(Miss Penalty): 替换较高层次数据块的时间 +将该块交付给处理器的时间
- □命中时间<<缺失损失
- □平均访问时间=HR*命中时间+(1-HR)*缺失损失

参数典型数值

- □块大小: 4~128 Bytes
- □命中时间: 1~4周期
- 口失效损失:
 - 访问时间: 6~10个周期
 - 传输时间: 2~22个周期
- □命中率: 80%~99%
- □Cache容量: 1KB~256KB

全相联方式

全相联映射硬件实现举例

主存: 4GB, Cache: 4KB, 块大小: 4B, 全相联标记位数?

全相联方式的地址映射关系

特点

- 1. 主存的字块可以和Cache的任何字块对应,利用率高,方式灵活。
 - 2. 标志位较长,比较电路的成本太高。如果主存空间有2^m块,则标志位要有m位。同时,如果Cache有n行,则需要有n个比较电路。

使用成本太高

直接映射方式

直接映射 Cache:硬件实现

Cache 举例

- □8块 cache
- □每块16字节
- □ "直接映射":内存中的每个单元在Cache中只会有一个唯一的位置和它对应。

直接映射Cache 举例

0-15	128-143	9x 1 128-143
16-31	144-159	1 % XXI 144-159
32-47	160-175	32-47
•••	•••	

- □假定有如下访问操作:
 - Read location 0
 - Read location 16
 - Read location 32
 - Read location 4
 - Read location 8
 - Read location 36
 - Read location 32
 - Read location 128
 - Read location 148
- □ cache中命中和缺失各有多少次?

Cache 举例:续

		□ Cache中命中和缺失次数 ⁶
0-15 128-143	9 × 1 × 128-143	Read location 0: Miss
0 10 120 110		Read location 16: Miss
16-31 144-159	18XX 144-159	■ Read location 32: Miss
32-47 160-175	32-47	■ Read location 4: Hit
32 17 100 173		■ Read location 8: Hit
		■ Read location 36: Hit
		■ Read location 32: Hit
		■ Read location 128: Miss
		■ Read location 148: Miss
		□ 命中率 = 4/9 = 45%
		□ 注意:失效的原因
		■ 启动失效
		■ 冲突失效

直接映射 Cache: 硬件实现

直接映射方式的地址映射

特点

- 1. 主存的字块只可以和固定的Cache 字块对应,方式直接,利用率低。
 - 2. 标志位较短,比较电路的成本低。如果主存空间有2^m块,Cache中字块有2^c块,则标志位只要有m-c位。且仅需要比较一次。

利用率低, 命中率低, 效率较低

小结

- □静态存储器
 - 存储速度快
 - 集成度低,容量小
 - 成本高
- **□**Cache
 - 在CPU和主存储器之间设置
 - 提高访问存储器的速度
 - Cache和主存地址映射方式
 - ■全相联
 - ■直接映射

阅读与思考

- □阅读
- □思考
 - 设置高速缓冲存储器的目的?如何提高性能?
 - 对高速缓冲存储器的地址映射方式进行比较.

谢谢

JK触发器运 算					
J	K	动作	Q	Q _{next}	动作
0	0	保持	X	X	不变
0	1	重置	X	0	重置
1	0	设置	X	1	设置
1	1	反转	1(0)	0(1)	反转

T触发器是在数字电路中,凡在CP时钟脉冲控制下,根据输入信号T取值的不同,具有保持和翻转功能的电路,即当T=0时能保持状态不变,T=1时一定翻转的电路。