CS 476 Assignment 4

Jeongseop Yi (Patrick), j22yi

Q5

a)

We have:

$$f(\alpha) = \mathbb{E}(max(L - \alpha, 0))$$

Calculate the expected value using the probability density function p(l). Then we have:

$$egin{split} f(lpha) &= \int_lpha^\infty p(L) \cdot (L-lpha) dL + \int_{-\infty}^lpha p(L) \cdot 0 dL \ &= \int_lpha^\infty p(L) \cdot (L-lpha) dL \end{split}$$

Take derivative on $f(\alpha)$. Then we have the following as α and $p(L)\cdot (L-\alpha)$ continuously differentiable and using the hint where a(x)=x and $g(x,y)=\int_{\alpha}^{\infty}p(x)\cdot (x-y)dx$.

$$egin{aligned} rac{d}{dlpha}f(lpha) &= rac{d}{dlpha}(\int_{lpha}^{\infty}p(L)\cdot(L-lpha)dL) \ &= -p(lpha)\cdot(lpha-lpha)\cdotrac{d}{dlpha}lpha + \int_{lpha}^{\infty}rac{\partial}{\partiallpha}(p(L)\cdot(L-lpha))dL \ &= 0 + \int_{lpha}^{\infty}-p(L)dL \ &= -\int_{lpha}^{\infty}p(L)dL \ &= -\int_{lpha}^{\infty}p(l)dl \end{aligned}$$

Therefore, f(lpha) is continuously differentiable, and $f'(lpha) = -\int_{lpha}^{\infty} p(l) dl.$

b)

From above, we have $f'(lpha) = -\int_lpha^\infty p(l) dl$

As p(l) is a probability distribution function, we have $\int_{-\infty}^{\infty} p(l)dl = 1$. As α increases, then $\int_{\alpha}^{\infty} p(l)dl$ must decreases. As there exist a negative sign on $f'(\alpha)$ to $\int_{\alpha}^{\infty} p(l)dl$, $f'(\alpha)$ is increasing function thus $f''(\alpha)$ is a positive function for all α .

As $f''(\alpha)$ is positive for all α , the function $f(\alpha)$ is convex.

c)

Let the equation inside the optimization problem be $g(\alpha)$. The equation equals the following:

$$g(lpha) = lpha + rac{1}{1-eta} \mathrm{E}(\max(L-lpha,0)) = lpha + rac{1}{1-eta} f(lpha)$$

Differentiating the equation gives us the following:

$$g'(lpha) = rac{d}{dlpha}(lpha + rac{1}{1-eta}f(lpha)) = 1 - rac{1}{1-eta}\int_lpha^\infty p(l)dl$$

From b), we already know that $-\int_{\alpha}^{\infty}p(l)dl$ is an increasing function and 1 is constant, therefore $g'(\alpha)$ is also increasing. Therefore, the optimization problem is also convex.

To find the minimum value of the optimization problem, it suffices to find the solution of $g'(\alpha) = 0$.

$$g'(lpha)=0 \ 1-rac{1}{1-eta}\int_{lpha}^{\infty}p(l)dl=0 \ \int_{lpha}^{\infty}p(l)dl=1-eta$$

As we are working with the loss L with a probability distribution with density function p(L), by the definition of VaR, α^* , the solution of the optimization problem, is the VaR with confidence β .