1 Zahlenmengen

Natürliche Zahlen $\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, ...\}$ Ganze Zahlen $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ Rationale Zahlen $\mathbb{Q} = \left\{ \frac{1}{2}, \frac{2}{3}, \frac{5}{4}, -\frac{3}{7}, 0, 1, -2, \ldots \right\}$ Reele Zahlen $\mathbb{R} = \{-2, 0, 1.5, \sqrt{2}, \pi, e, ...\}$

2 Zahlensysteme

Prädikate

Es sei n eine natürliche Zahl. Ein Ausdruck, in dem n viele (verschiedene) Variablen frei vorkommen und der bei Belegung (= Ersetzen) aller freien Varia- Beispiel: Menge aller Geraden Zahlen: blen in eine Aussage übergeht, nennen wir ein n-stelliges Prädikat.

- x > 3 ist ein 1-stelliges Prädikat.
- x + y = z ist ein 3-stelliges Prädi-
- stelliges Prädikat.

3.1 Aussagen

Aussagen sind 0-stellige Prädikate. Sie sind entweder wahr oder falsch.

3.2 Quantoren

 $\forall A \text{ (Allquantor)}$ $\exists A \text{ (Existenzquantor)}$

3.3 Junktoren

 $A \neg B$ (Negation) $A \wedge B$ (Konjunktion) $A \vee B$ (Disjunktion) $A \Rightarrow B$ (Implikation) A ⇔ B (Äquivalenz)

4 Gesetze und Umfor- 7.2 Kontraposition mungen

Distributiv $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$

$$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$$

Assotiativ $A \wedge (B \wedge C) \Leftrightarrow (A \wedge B) \wedge C$ $A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C$ de Morgan $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$

Aussonderung

Ist A eine Menge und ist E (x) eine Eigenschaft (ein Prädikat), dann bezeichnen wir mit dem Term:

$$x \in A|E(x)$$

$$\{x\in\mathbb{N}|\exists y\in\mathbb{N}(x=2y)\}$$

Ersetzung

• x ist eine natürliche Zahl 1- Ist A eine Menge und t(x) ein Ausdruck in x, dann schreiben wir

$$t(A) = \{t(x) | x \in A\}$$

für die Menge, die als Elemente alle Objekte von der Form t(x) mit $x \in A$ enthält.

Beispiel: Menge aller Quadratzahlen

$$\{x^2|x\in\mathbb{N}\}$$

Lemmas

7.1 Transitivität der Implikation

Für alle Prädikate mit A,B und C mit $A \Rightarrow B \text{ und } B \Rightarrow C \text{ gilt } A \Rightarrow C.$

Für alle Prädikate mit A und B gilt $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$. Beweis. Wir wenden die Junktorenregeln an:

$$A\Rightarrow B$$
 $\Leftrightarrow \neg A \lor B$ Definition von $A\to B$
 $\Leftrightarrow B \lor \neg A$ Kommutativität
 $\Leftrightarrow \neg \neg B \lor \neg A$ Doppelte Negation
 $\Leftrightarrow \neg B \Rightarrow \neg A$ Definition von $\neg B \to \neg A$

7.3 Symetrie und Antisymetrie schliessen sich nicht gegenseitig aus

Es sei A eine beliegende Menge und R eine beliebige Relation. auf A. Die folgenden Aussagen sind äquivalent:

- Die Relation R ist in der gleichheitsrelation auf A enthalten: $G \subseteq$ $\{(x,x)|x\in A\}$
- Die Relation R ist symetrisch und antisymetrisch.

Mengenoperationen

Relationen