CSCI 335

Software Design and Analysis III Lecture 17:

Sorting: Insertion sort, Shellsort

Professor Anita Raja 11-03-22

Announcement

- Midterm grades to be released
- HW3 due 11/10.

Agenda

- Leftist heap theorem
- Merge leftist algorithm: recursive, non-recursive
- Skew heap
- Binomial Queue
- Insertion Sort
- Shell Sort
- Midterm discussion

Chapter 7 Sorting

Sorting algorithms

- Several easy algorithms to sort in O(N²)
 - Insertion sort
- Sorting algorithm simple to code, o(N²) and efficient
 - Shell sort
- There are slightly more complicated algorithms
 - O(NlogN)
- Any general purpose sorting algorithm
 - Ω (NlogN) comparisons

Sorting algorithms

- Comparison-based sorting
- Void sort(Iterator begin, Iterator end, Comparator cmp);
- STL versions:
 - 1. sort(v.begin(), v.end());
 - 2. sort(v.begin(), v.begin() + (v.end()-v.begin())/2);
 - 3. sort(v.begin(),v.end(),greater<int>{ });
- Also: stable_sort()
 - Does not swap the positions of two elements with the same comparison key.

Insertion Sort

Pass p=1 through N-1:
 items in positions 0 through p are in sorted order.

Original	34	8	64	51	32	21	Positions Moved
After $p = 1$	8	34	64	51	32	21	1
After $p = 2$	8	34	64	51	32	21	0
After $p = 3$	8	34	51	64	32	21	1
After $p = 4$	8	32	34	51	64	21	3
After $p = 5$	8	21	32	34	51	64	4

General Strategy: In pass p, move the element in position p left until its correct place is found among the first p+1 elements

Insertion Sort

```
template <typename Comparable>
void InsertionSort(vector<Comparable> & a) {
    for (int p = 1; p < a.size(); ++p) {
        Comparable tmp = std::move(a[p]);
        int j;
        for (j = p; j > 0 && tmp < a[j - 1]; --j)
            a[j] = std::move(a[j - 1]);
        a[j] = std::move(tmp);
    }
}</pre>
```

Stl implementation

```
// Two-parameter version calls three-parameter version.
// Uses C++11 decltype.
template <typename Iterator>
void InsertionSort(const Iterator &begin, const Iterator &end) {
   InsertionSort(begin, end, less<decltype(*begin)>{});
}
```

Converting Insert routine to STL Implementation

- Two parameter sort uses pair of iterators (start and endmarker) and assumes items can be ordered.
- 1.Two parameter sort invokes three-parameter sort with less<Object> as third parameter
 - Template type parameters for two-param sort are both Iterator; (generic type but Object is not a generic type parameter
 - C++11 introduces decltype which cleanly expresses the intent.
- 2. Array indexing with use of the iterator and that replaces calls to operator< with calls to the lessThan function object.
- 3. Once the insertSort algorithm is coded,
 - every statement in the original code is replaced with a corresponding statement in new code that makes straightforward use of iterators and the function object,

Stl implementation // Three-parameter version.

```
template <typename Iterator, typename Comparator>
void InsertionSort(const Iterator &begin, const Iterator &end,
Comparator
less than) {
  if (begin == end) return;
  for (Iterator p = begin + 1; p != end; ++p) {
    auto tmp = std::move(*p);
    Iterator j;
    for (j = p; j != begin && less_than(tmp, *(j - 1)); --j)
      *j = std::move(*(j - 1));
    *i = std::move(tmp);
You can call for instance:
InsertionSort(vec.begin(), vec.end()); // vec is of type
vector<string>
```

Insertion Sort Analysis

- Worst case: $\Theta(N^2)$
- Best case (presorted input): O(N)
 - One comparison per item

Lower bound for simple sorting algorithms

Inversion in an array **a** is an ordered pair (i, j), $0 \le i, j \le a$.size():

```
i < j but a[i] > a[j]
```

Example array: 34, 8, 64, 51, 32, 21

```
9 inversions: (34,8), (34,32), (34,21), (64,51), (64,32), (64,21), (51,32),(51,21), (32,21)
```

These are exactly the swaps performed by insertion sort!

- => Swapping two adjacent items that are out of place reduces one inversion
- => Sorted array needs no inversions

Lower bound for simple sorting algorithms

 Average number of inversions in permutation of N integers (assume no duplicates) provides

Average running time for insertion sort and for all algorithms that are based on swapping adjacent elements!

Lower bound for simple sorting algorithms assumptions

- no duplicate elements.
 - can assume that the input is some permutation of the first N integers since only relative ordering is important
- All elements are equally likely.
- Given these assumptions, we have the following theorem:

Lower bound proof for simple sorting algorithms

- **Theorem:** Average number of inversions in an array of n distinct elements is n(n-1)/4
- Proof:

Consider list L of n integers and its reverse Lr.

For every pair of indices (i,j), either (i,j) is an inversion in L or Lr.

Therefore the total number of inversions for both lists is $\binom{n}{2} = \frac{n(n-1)}{2}$

Average number of inversions across all lists $\frac{n!}{2n!} \binom{n}{2} = \frac{n(n-1)}{4}$

• Therefore: Any algorithm that sorts by exchanging adjacent elements is $\Omega(n^2)$ on average.

Result valid for an entire class of algorithms that perform only adjacent exchanges! Insertion, Bubble, Selection

Take-away

- Lower bound shows for a sorting algorithm to run in subquadratic or o(N^2) times:
 - it must do comparisons and in particular exchanges between elements that are far apart.
- Sorting algorithm makes progress by eliminating inversions
 - to run efficiently it must eliminate more than just one inversion per exchange.

Shellsort (by Donald Shell)

- Improves average time by exchanging non-adjacent elements
- Diminishing increment sort
- Uses increment sequence h₁=1, h₂, ..., h_t
 - All sequences work, but some perform better!
- Idea:

```
For k = t down to 1

[all elements spaced h_k apart are sorted]

[\mathbf{a}[i] \le \mathbf{a}[i+h_k] for every i]

[perform insertion sort in h_k subarrays]

--each subarray has size approximately \mathbf{n/h_k}
```

Shellsort

Array index: 0		1	2	3	4	5	6	7	8	9	10	11	12	
Original	81	94	11	96	12	35	17	7	95	28	58	41	75	15
After 5-sort After 3-sort After 1-sort	35 28 11	17 12 12	11 11 15	28) 35) 17	12 (15) 28	41 41 35	75 58 41	3) (15 17 58	96) 94) 75	58 (75) 81	81 81 94	94 96 95	95 95 96

At increment h_k:

for every position $i=h_k$, h_k+1 , h_k+2 , ..., N-1 find its right spot among i, $i-h_k$, $i-2h_k$, $i-3h_k$, ...

Note that at h₁ we have regular insertion sort

Shellsort

Array index: 0		1	2	3	4	5	6	7	9	10	11	12	
Original	81	94	11	96	12	35	17	95	28	58	41	75	15
After 5-sort After 3-sort After 1-sort	35) 28) 11	17 12 12	11 11 15	28) 35) 17	12 15 28	41) 41) 35	75 58 41	15) 17) 58	96) 94) 75	58 (75) 81	81 81 94	94 96 95	95 95 96

For example for
$$h_k = 3$$
:
for $i = 3, 3 + 1, 3 + 2, ..., a.size() -1$
find its right spot among i, $i - 3$, $i - 6$, $i - 9$, ... ($i > = 0$)

5-sort: 5 "subarrays"

0	1	2	3	4	5	6	7	8	9	10	11	12		
	94	11	96	12			95	28	58			15		
81					35					41				
35					41					81				
	94					17					7 5	•		
	17					75					94	l		
						, ,					9 7			
		11					9	5				15		
		11					1	.5				95		
			96					2	28					
			28						96					
				12	2					58				
				12	Ž					58				
35	17	11	28	12) 4	1 7	75 1	15	96	58	21 (95		

3-sort: 3 "subarrays"

0 1	2 3	3 4	5	6 7	8 9	10	11 12
35 17 35 28		8 12 28 35	7			3	94 95 95 95
17		12		15		81	
12		15		17		81	
	11		41		96		94
	11		41		94		96

28 12 11 35 15 41 58 17 94 75 81 96 95

1-sort: 1 "subarray"

- "subarrays" are conceptual (i.e. no need for extra storage)
- Implementation is extremely simple
- Best algorithm for small collections (up to 10000 elements)
- No recursion, good for embedded systems with small stack space.

Shellsort

Original increment sequence:

$$h_t = [N / 2], h_k = [h_{k+1} / 2]$$

Not a good selection though...

--Example for an array **a** of size N = 100

$$h_6 = 50$$
, $h_5 = 25$, $h_4 = 12$, $h_3 = 6$, $h_2 = 3$, $h_1 = 1$.

- Increment sequence
- h_k sorted
- Although this does not affect the implementation, a careful examination of the action of an h_k sort is to performa an insertion sort on h_k independent subarrays!

Shellsort

```
// Shellsort, using Shell's (poor) increments.
template <typename Comparable>
void ShellSort(vector<Comparable> &a) {
   // gap is Shell's increment.
   for (int gap = a.size() / 2; gap > 0; gap /= 2) {
      for (int i = gap; i < a.size(); ++i) {
            // Insertion sort in subarrays.
            Comparable tmp = std::move(a[i]);
            int j = i;
            for (; j >= gap && tmp < a[j - gap]; j -= gap)
            a[j] = std::move(a[j - gap]);
            a[j] = std::move(tmp);
            } // End of second for.
      } // End of first for.
}</pre>
```

Worst Case Analysis

Theorem: Worst case running time using Shell's increments is $\Theta(N^2)$

- Proof:
 - (A) Showing that there exists some input that actually takes $\Omega(N^2)$ to run.
- Provide an example input with behavior $\Omega(N^2)$:
- Consider N is power of 2
- Put the N/2 largest numbers at even positions
- N/2 smallest numbers at odd positions
- <See image of next slide>
 - (B) Upper bound on the worstcase running time
- Prove that the algorithm is O(N²)

Worst case analysis

Positions	1	2	3	4	5	6	7	8 9	1	0	11	12	13	14	15	16
Start	1	9	2	10	3	11	4	12	5	13	6	14	7	15	8	16
After 8-sort	1	9	2	10	3	11	4	12	5	13	6	14	7	15	8	16
After 4-sort	1	9	2	10	3	11	4	12	5	13	6	14	7	15	8	16
After 2-sort	1	9	2	10	3	11	4	12	5	13	6	14	7	15	8	16
After 1-sort	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

To merely place the n/2 smallest elements in the correct place requires at least $\Omega(N^2)$) work.

Input that provides worst behavior. How many inversions after 2 sort in example?

Worst Case Analysis

- Worst case running time using Shell's increments is $\Theta(N^2)$
- **Proof of (B):** The algorithm is $O(N^2)$:
 - At pass h_k : h_k insertion sorts => (since ins. sort is $O(n^2)$) $h_k O((N/h_k)^2) = O(h_k (N/h_k)^2) = O(N^2/h_k)$ per pass.
 - Total cost for all passes:

Worst Case Analysis

- Worst case running time using Shell's increments is $\Theta(N^2)$
- **Proof of (B):** The algorithm is $O(N^2)$:
 - At pass h_k : h_k insertion sorts => (since ins. sort is $O(n^2)$) $h_k O((N/h_k)^2) = O(h_k (N/h_k)^2) = O(N^2/h_k)$ per pass.
 - Total cost for all passes: $O(\sum_{i=1}^{t} N^2 / h_i) = O(N^2 \sum_{i=1}^{t} 1 / h_i)$ $O(N^2 / h_t) + O(N^2 / h_{t-1}) + ... + O(N^2 / h_k) + ... + O(N^2 / h_1) =$ $O(N^2 / h_t + N^2 / h_{t-1} + ... + N^2 / h_k + ... + N^2 / h_1) =$ $O(N^2 (1 / h_t + 1 / h_{t-1} + ... + 1 / h_k + ... + 1 / h_1) =$ $O(N^2)$. $(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... = ?$

Worst Case Analysis of Shell Sort

- Worst case running time using Shell's increments is $\Theta(N^2)$
- Proof of (B): Example for N = 64 (power of 2)

$$h_6 = 32$$
, $h_5 = 16$, $h_4 = 8$, $h_3 = 4$, $h_2 = 2$, $h_1 = 1$.

Total cost for all passes:

$$O(N^2/32) + O(N^2/16) + O(N^2/8) + O(N^2/4) + O(N^2/2) + O(N^2/1) = O(N^2(1/32+1/16+1/8+1/4+1/2+1)) = ?$$

In general

O(
$$N^2$$
 (1 / h_t + 1 / h_{t-1} + ... + 1 / h_k + ... + 1 / h_1) = ?

Problem with Shell's increments

- Pairs of increments are not necessarily prime
- So the smaller increment can have little effect.

Better increments

Improvements over original insertion sort

- 1, 3, 7, ..., 2^k-1 (Hibbard)
 - Consecutive increments have no common factors
 - **Theorem:** Worst case running time is $\Theta(N^{3/2})$
 - Proving average-case is still open.
- 1, 5, 19, 41, ... (Sedgewick)
 - Worst case running time is O(N^{4/3})

Next class

- HeapSort
- MergeSort
- QuickSort