

Universität Stuttgart Institute für Navigation

Zustandsschätzung in dynamischen Systemen Übung 1

Ausarbeitung im Studiengang Geodäsie und Geoinformatik an der Universität Stuttgart

Ziqing Yu, 3218051

Stuttgart, November 27, 2020

Betreuer: Prof. Dr. techn. Thomas Hobiger

Universität Stuttgart

MSc. Tomke Jantje Lambertus

Universität Stuttgart

Kapitel 1

Ausarbeitung

1.1 Aufgabe 1

Der Zusammenhang zwischen gemessene Länge und gesuchte Länge für jede Epoche lautet:

$$\overline{AB} + \overline{BC} = m_1 \tag{1.1}$$

$$\overline{BC} + \overline{CD} = m_2 \tag{1.2}$$

$$\overline{CD} + \overline{DE} = m_3 \tag{1.3}$$

$$\overline{AB} + \overline{BC} + \overline{CD} = m_4 \tag{1.4}$$

$$\overline{DE} = m_5 \tag{1.5}$$

Die Lösung der ersten Teilgleichung

$$\hat{\boldsymbol{x}}(1) = (\boldsymbol{A}^T \boldsymbol{P} \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{P} \boldsymbol{y}_1 \tag{1.6}$$

$$e = y - Ax(1) \tag{1.7}$$

$$\sigma(1) = \sqrt{\frac{e'Pe}{5-1}} \tag{1.8}$$

$$\Sigma(\hat{\boldsymbol{x}}(1)) = \sigma^2(1)(\boldsymbol{A}^T \boldsymbol{P} \boldsymbol{A})^{-1}$$
(1.9)

wobei:

$$y_{1} = \begin{bmatrix} m_{1}(1) \\ m_{2}(1) \\ m_{3}(1) \\ m_{4}(1) \\ m_{5}(1) \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad x = \begin{bmatrix} \overline{AB} \\ \overline{BC} \\ \overline{CD} \\ \overline{DE} \end{bmatrix} \quad P = \begin{bmatrix} \frac{1}{0,1^{2}} \\ \frac{1}{0,1^{2}} \\ \frac{1}{0,1^{2}} \\ \frac{1}{0,1^{2}} \\ \frac{1}{0,1^{2}} \end{bmatrix}$$

$$(1.10)$$

Wenn man alle 8 Zeitpunkten berücksichtigt:

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_8 \end{bmatrix} \quad A_{sum} = \begin{bmatrix} A \\ A \\ A \\ \vdots \\ A \end{bmatrix} \quad P_{sum} = \begin{bmatrix} P & 0 & \cdots & 0 \\ 0 & P & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P \end{bmatrix}$$
(1.11)

1.1 Aufgabe 1 2

Dann sind die sequentielle Lösung durch folgende Formeln gerechnet. Zu jeder Epoche die Berechnung ist unter Einbeziehung der Messungen aller vorangegangen Epochen. (2 $\leq i \leq$ 8)

$$\hat{x}(i) = \hat{x}(i-1) + \left[\sigma(i-1)^2(\Sigma(\hat{x}(i-1)))^{-1} + A^T P A\right]^{-1} A^T P (y_i - A\hat{x}(i-1))$$
(1.12)

$$\sigma(i) = \sqrt{\frac{1}{r(i)}(r(i-1) + \Delta \hat{x}^T \mathbf{\Sigma}(\hat{x}(i-1))\Delta \hat{x}) + e_i^T \mathbf{P} e_i}$$
(1.13)

$$\Sigma(\hat{\boldsymbol{x}}(i)) = \sigma^2(i)(\sigma^2(i-1)\Sigma(\hat{\boldsymbol{x}}(i-1)) + \boldsymbol{A}^T\boldsymbol{P}\boldsymbol{A})^{-1}$$
(1.14)

$$e_i = y_i - A\hat{x} \tag{1.15}$$

$$r(i) = 4i - 5 (1.16)$$

Die Abstände und Fehler von t_1 bis t_8 sind:

	\overline{AB} m	\overline{BC} m	<i>CD</i> m	\overline{DE} m	σm
t_1	1,76	0,86	2,10	1,49	1,25
t_2	1,75	0,97	2,00	1,61	1,29
<i>t</i> ₃	1,61	1,10	1,91	1,56	1,65
t_4	1,64	1,13	1,85	1,59	1,65
t_5	1,63	1,16	1,84	1,61	1,47
t_6	1,61	1,18	1,84	1,61	1,33
<i>t</i> ₇	1,59	1,20	1,83	1,60	1,24
t_8	1,58	1,20	1,82	1,61	1,16

Tabelle 1.1: Für erste 8 Zeitpunkten

Die Ergebnisse für die andere 8 Epochen:

	\overline{AB} m	\overline{BC} m	<i>CD</i> m	\overline{DE} m	σm
t_1	1,48	1,34	1,78	1,55	0,15
t_2	1,49	1,31	1,78	1,58	0,32
<i>t</i> ₃	1,50	1,32	1,75	1,62	0,48
t_4	1,52	1,29	1,95	1,62	2,88
t_5	1,52	1,30	2,06	1,61	3,19
t_6	1,51	1,30	2,14	1,61	3,17
<i>t</i> ₇	1,51	1,30	2,18	1,63	3,10
t_8	1,52	1,29	2,23	1,63	3,01

Tabelle 1.2: Für zweite 8 Epochen

Bei den erst 8 Messungen sind σ relativ groß aber konstant weil die Leute nicht ruhig bleiben aber sie bewegen sich auch nicht. Bei den zweit Messungen ist σ seit t_4 erhöht, das ist die Zeitpunkt wenn der Person sich bewegt hat.

1.2 Aufgabe 2 3

1.2 Aufgabe 2

1.3 Aufgabe 3

Die Runge-Kutta dient um die Differentialgleichungen zu lösen, hier soll $y' = t^2 + 2t - y + 1$ mit Anfangswert y(0) = 0 an der Stelle t = 0.5 berechnet werden. Die Schrittweite h = 0.1.

Runge-Kutta dritter Ordnung:

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 4k_2 + k_3) \tag{1.17}$$

$$k_1 = f(y_n, t_n) (1.18)$$

$$k_2 = f(y_n + \frac{h}{2}k_1, t_n + \frac{h}{2}) \tag{1.19}$$

$$k_3 = f(y_n - hk_1 + 2hk_2, t_n + h) (1.20)$$

$$mit \quad f(t, y_n) = y_n' \tag{1.21}$$

Die Ergebnisse für jede Schritt:

n	0	1	2	3	4	5
t	0	0,1	0,2	0,3	0,4	0,5
y	0	0,1052	0,2213	0,3492	0,4897	0,6434

Tabelle 1.3: Dritte RK Verfahren

y(0,5) = 0,6434 nach Runge Kutta dritter Ordnung.

analog, Runge-Kutta vierter Ordnung:

$$y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
 (1.22)

$$k_1 = f(y_n, t_n) \tag{1.23}$$

$$k_2 = f(y_n + \frac{h}{2}k_1, t_n + \frac{h}{2})$$
(1.24)

$$k_3 = f(y_n + \frac{h}{2}k_2, t_n + \frac{h}{2}) \tag{1.25}$$

$$k_4 = f(y_n + hk_3, t_n + h) (1.26)$$

n	0	1	2	3	4	5
t	0	0,1	0,2	0,3	0,4	0,5
У	0	0,1052	0,2213	0,3492	0,4897	0,6435

Tabelle 1.4: Vierte RK Verfahren

Die Unterschied zwischen dritte und vierte Ordnung an t = 0.5 ist $-2.14 \cdot 10^{-5}$. Das ist sehr klein und kann in meisten Fälle ignoriert werden.

1.4 Aufgabe 4 4

1.4 Aufgabe 4

Die Differentialgleichung ist von *y* und *c* unabhängig:

$$y' = c \tag{1.27}$$

In dieser Aufgabe ist y_{n+m} zu berücksichtigen. Nach dem Einsatz von 1.27:

$$y_{n+m} = y_{n+m-1} + hc (1.28)$$

$$= y_{n+m-2} + hc + hc ag{1.29}$$

$$\cdots$$
 (1.30)

$$= y_n + mhc \tag{1.31}$$

Weil y_n und c unkorreliert sind, lautet die Fehlerfortpflanzung

$$\frac{\partial y_{n+m}}{\partial y_n} = 1$$

$$\frac{\partial y_{n+m}}{\partial c} = mh$$
(1.32)

$$\frac{\partial y_{n+m}}{\partial c} = mh \tag{1.33}$$

$$\sigma_{y_{m+n}}^2 = \begin{bmatrix} 1 & mh \end{bmatrix} \cdot \begin{bmatrix} \sigma_{y_n}^2 & 0 \\ 0 & \sigma_c^2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ mh \end{bmatrix} = \sigma_{y_n}^2 + (mh)^2 \sigma_c^2$$
(1.34)

$$\sigma_{y_n} = \sqrt{\sigma_{y_n}^2 + (mh)^2 \sigma_c^2} \tag{1.35}$$

wobei σ_{y_n} und σ_c sind die Unsicherheit von y_n und c.

1.5 Aufgabe 5 5

1.5 Aufgabe 5

1.5.1 a

In dieser Teilaufgabe ist die Koordinaten mit Runge-Kutta Verfahren vierter Ordnung mit Schrittweite $h=100\,\mathrm{s}$ von $t_1=1000\,\mathrm{s}$ nach $t_s=1900\,\mathrm{s}$ berechnet. Die Formeln sind in 1.22 bis 1.26.

1.880289566568e+07
1.661568254689e+07
-4.599055621492e+06
-4.070049594214e+02
-5.159170009037e+02
-3.503303895904e+03

Tabelle 1.5: Position und Geschwindigkeit an 1900s (von 1000s mit Schrittweite 100s)

1.5.2 b

Ähnlich wie 1.5.1, aber von $t_2 = 2800 \,\mathrm{s}$ nach t_s :

<i>x</i> (m)	1.880289473488e+07
<i>y</i> (m)	1.661568259796e+07
z (m)	-4.599055761960e+06
v_x (m/s)	-4.070061798922e+02
$v_y (\text{m/s})$	-5.159183580348e+02
v_z (m/s)	-3.503303232403e+03

Tabelle 1.6: Position und Geschwindigkeit an 1900s (von 2800s mit Schrittweite 100s)

1.5.3 c

1.5.1 und 1.5.2 werden wiederholt mit Schrittweite h = 1 s:

x (m)	1.880289566450e+07
y (m)	1.661568254808e+07
z (m)	-4.599055623060e+06
$v_x (\text{m/s})$	-4.070049591118e+02
$v_y (\text{m/s})$	-5.159170004552e+02
v_z (m/s)	-3.503303895892e+03

Tabelle 1.7: Position und Geschwindigkeit an 1900s (von 1000s mit Schrittweite 1s)

1.5 Aufgabe 5 6

1.880289473654e+07
1.661568259745e+07
-4.599055760315e+06
-4.070061799650e+02
-5.159183586592e+02
-3.503303232411e+03

Tabelle 1.8: Position und Geschwindigkeit an 1900s (von 2800s mit Schrittweite 1s)

1.5.4 d

In dieser Teilaufgabe werden 1.5.1, 1.5.2 und 1.5.3 mit Runge-Kutta zweiter Ordnung statt Runge-Kutta vierter Ordnung wiederholt.

$$y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2)$$

$$k_1 = f(y_n, t_n)$$

$$k_2 = f(y_n + hk_1, t_n + h)$$
(1.36)
(1.37)

$$k_1 = f(y_n, t_n) (1.37)$$

$$k_2 = f(y_n + hk_1, t_n + h) (1.38)$$

Die Ergebnisse:

x (m)	1.880289566568e+07
y (m)	1.661568254689e+07
z (m)	-4.599055621492e+06
$v_x (\text{m/s})$	-4.070049594214e+02
$v_y (\text{m/s})$	-5.159170009037e+02
v_z (m/s)	-3.503303895904e+03

Tabelle 1.9: Position und Geschwindigkeit an 1900s (von 1000s mit Schrittweite 100s)(RK2)

<i>x</i> (m)	1.880289473488e+07
y (m)	1.661568259796e+07
z (m)	-4.599055761960e+06
$v_x (\text{m/s})$	-4.070061798922e+02
$v_y (\text{m/s})$	-5.159183580348e+02
v_z (m/s)	-3.503303232403e+03

Tabelle 1.10: Position und Geschwindigkeit an 1900s (von 2800s mit Schrittweite 100s)(RK2)

1.5 Aufgabe 5 7

1.880289566450e+07
1.661568254808e+07
-4.599055623060e+06
-4.070049591118e+02
-5.159170004552e+02
-3.503303895892e+03

Tabelle 1.11: Position und Geschwindigkeit an 1900s (von 1000s mit Schrittweite 1s)(RK2)

x (m)	1.880289473654e+07
y (m)	1.661568259745e+07
z (m)	-4.599055760315e+06
$v_x (\text{m/s})$	-4.070061799650e+02
$v_y (\text{m/s})$	-5.159183586592e+02
v_z (m/s)	-3.503303232411e+03

Tabelle 1.12: Position und Geschwindigkeit an 1900s (von 2800s mit Schrittweite 1s)(RK2)

1.5.5 e