Problem 1

Let $\alpha \in \mathbb{R}$ and x_1, x_2, \ldots be a convergent sequence in the sublevel set $S_{\alpha} = \{x \in \text{dom } f \mid f(x) \leq \alpha\}$, such that $\lim_{i \to \infty} x_i = x$.

The sublevel set is closed if $x \in s_{\alpha}$. To show that, two conditions should be satisfied:

1. $x \in \text{dom} f$

Since dom f is a closed set, the limit point of any convergent sequence in it, is a member of it, i.e., $x \in \text{dom } f$.

 $2. \ f(x) \le \alpha$

Since we showed $x \in \text{dom } f$:

$$\forall x_i \quad f(x_i) \leq \alpha \Rightarrow \lim_{i \to \infty} f(x_i) \leq \lim_{i \to \infty} \alpha \xrightarrow[x \in \text{dom} f]{\text{continuous } f, \\ x \in \text{dom} f}} f(\lim_{i \to \infty} x_i) \leq \alpha \Rightarrow f(x) \leq \alpha$$

as α was chosen arbitrarily, any sublevel set of f is a closed set, so f is a closed function.

Problem 2

f continuous, domf open

$$\Rightarrow$$
 $\{x_i\} \in \text{dom } f, \lim_{i \to \infty} x_i = x \in \text{bd dom } f, \lim_{i \to \infty} f(x_i) = \infty \Rightarrow f \text{ closed}$

Let $\alpha \in \mathbb{R}$ and x_1, x_2, \ldots be a convergent sequence in the sublevel set $S_{\alpha} = \{x \in \text{dom } f \mid f(x) \leq \alpha\}$ such that $\lim_{i \to \infty} x_i = x$. The sublevel set is closed if $x \in S_{\alpha}$. To show that, two conditions should be satisfied:

The limit point of the sequence (x) can exist in only two cases:

- 1. $x \in \operatorname{int} \operatorname{dom} f$ By hypothesis int $\operatorname{dom} f = \operatorname{dom} f$, so $x \in \operatorname{dom} f$. Then by continuity of f we have $\lim_{i \to \infty} f(x_i) \leq \lim_{i \to \infty} \alpha \Rightarrow f(\lim_{i \to \infty} x_i) \leq \alpha \Rightarrow f(x) \leq \alpha$. Therefore f is closed in this case.
- 2. $x \in \operatorname{bd} \operatorname{dom} f$ In this case, if $\lim_{i \to \infty} f(x_i) \neq \infty$, it contradicts with $\operatorname{dom} f$ being open.

Therefore, f is closed, with the hypothesis.

$$f \operatorname{closed} \Rightarrow \{x_i\} \in \operatorname{dom} f, \lim_{i \to \infty} x_i = x \in \operatorname{bd} \operatorname{dom} f, \lim_{i \to \infty} f(x_i) = \infty$$

(proof by contradiction) Suppose $x_1, x_2, ...$ be a convergent sequence in the dom f with the limit point $\lim_{i\to\infty} x_i = x \in \operatorname{bd} \operatorname{dom} f$ such that $\lim_{i\to\infty} f(x_i) = B < \infty$. Then considering the sublevel set $S_B = \{x \in \operatorname{dom} f \mid f(x) \leq B\}$, since the function is closed, $x \in S_B$. By definition of S_B , then, $x \in \operatorname{dom} f$ as well. This is in contradiction with $\operatorname{dom} f$ being an open function since we assumed x to be on the boundary of $\operatorname{dom} f$. Therefore $\lim_{i\to\infty} f(x_i)$ cannot be less than ∞ .

Problem 3 [BV 2.1]

Induction on k:

- 1. Basis step. for k=2 $\theta_1x_1 + \theta_2x_2 \in C$ where $x_1, x_2 \in C$ and $\theta_1, \theta_2 \geq 0$ and $\theta_1 + \theta_2 = 1$.
- 2. **Inductive hypothesis.** assume that it holds also for k-1, *i.e.*, $\theta_1 x_1 + \cdots + \theta_{k-1} x_{k-1} \in C$ where $x_1, \ldots, x_{k-1} \in C$ and $\theta_1, \ldots, \theta_{k-1} \geq 0$ and $\theta_1 + \cdots + \theta_{k-1} = 1$.
- 3. **Inductive step.** Let $x_1, \ldots, x_k \in C$ and $\theta_1, \ldots, \theta_k \geq 0$ and $\theta_1 + \cdots + \theta_k = 1$, and also w.l.o.g. suppose that $\theta_k \neq 1$ (There must exists at least one $\theta_i \neq 1$ $i \in \{1, \ldots, k\}$):

$$\theta_1 x_1 + \dots + \theta_{k-1} x_{k-1} + \theta_k x_k = (1 - \theta_k) (\underbrace{\frac{\theta_1}{1 - \theta_k} x_1 + \dots + \frac{\theta_{k-1}}{1 - \theta_k} x_{k-1}}_{:=x^* \in C \text{ (inductive hypothesis)}}) + \theta_k x_k$$

$$= \underbrace{(1 - \theta_k) x^* + \theta_k x_k}_{\in C \text{ (basis step)}}$$

where the second equality follows from the **inductive hypothesis** and the third follows from **basis step**.

Therefore for any k, $\theta_1 x_1 + \cdots + \theta_k x_k \in C$, given $x_1, \ldots, x_k \in C$ and $\theta_1, \ldots, \theta_k \geq 0$ and $\theta_1 + \cdots + \theta_k = 1$.

Problem 4 [BV 2.2]

(a) $\Rightarrow C \cap L$ is convex for any line $L \Rightarrow C$ is convex

Let distinct points $x, y \in C$ and let the line L pass through points x and y. Since $C \cap L$ is convex then $\theta x + (1 - \theta)y \in C \cap L \quad \forall \theta \in [0, 1]$ and as a result $\theta x + (1 - \theta)y \in C \quad \forall \theta \in [0, 1]$.

 \subset C is convex \Rightarrow $C \cap L$ is convex for any line L

Any line L is a convex set by definition. Intersection of any two convex sets is a convex set (\clubsuit) . Since C is convex, $C \cap L$ will be a convex set.

(b) \implies set $A \cap L$ is affine for any line $L \Rightarrow$ set A is affine

Let distinct points $x, y \in A$ and let the line L pass through points x and y. Since $A \cap L$ is affine then $\theta x + (1 - \theta)y \in A \cap L \quad \forall \theta \in \mathbb{R}$ and as a result $\theta x + (1 - \theta)y \in A \quad \forall \theta \in \mathbb{R}$.

 \Leftarrow set A is affine $\Rightarrow A \cap L$ is affine for any line L

Any line L is an affine set by definition. Intersection of any two affine sets is an affine set (\clubsuit) . Since A is affine, $A \cap L$ will be an affine set.

Remark () Intersection of two convex sets is a convex set.

proof. Suppose C_1 and C_2 be two convex sets. Let $x, y \in C_1 \cap C_2$. Since $x, y \in C_1$, by convexity of C_1 we have $\theta x + (1 - \theta)y \in C_1 \ \forall \theta \in [0, 1]$. Also, since $x, y \in C_2$, by convexity of C_2 we have $\lambda x + (1 - \lambda)y \in C_2 \ \forall \lambda \in [0, 1]$. As a result, $\gamma x + (1 - \gamma)y \in C_1 \cap C_2 \ \forall \gamma \in [0, 1]$. Therefore $C_1 \cap C_2$ is convex.

Remark (♣) Intersection of two affine sets is an affine set. **proof.** Same as proof above, except for affine sets.