

Tartalomjegyzék

1.	Előszó	5
2.	Általános megjegyzések	7
3.	Adattípusok, adatszerkezetek 3.1. Adattípusok, értékadás 3.2. Adatszerkezetek és indexelés	
4.	Függvények4.1. Függvényhívások	25 25 26
5.	Az R programozása 5.1. Funkcionális programozás	27 27

4 TARTALOMJEGYZÉK

Előszó

Előszó.

6 1. FEJEZET. ELŐSZÓ

Általános megjegyzések

A kommentjel a # (többsoros kommentre nincs külön jel R-ben, RStudio-ban Ctrl+Shift+C használható több sort kijelölve is).

Az R interpretált nyelv (RStudio-ban kényelmesen futtatható egy sor, amiben van a kurzur, vagy kijelölés esetén az egész kijelölt terület).

Az R case sensitive, tehát az a és az A nem ugyanaz, két különböző dolog.

Adattípusok, adatszerkezetek

3.1. Adattípusok, értékadás

Az értékedás jele az R-ben a <-. (Az =-t ne használjuk értékadásra, csak függvényben az argumentum értékének megadására!). Az R-ben a változókat nem kell külön deklarálni, értékadással maguktól létrejönnek, ha korábban még nem léteztek.

Fontos! Ez általában is igaz: az szintaktikailag flexibilis, "megengedi trehányságot" – ami viszont kétélű fegyver!

Az str általában a legjobb leírója egy objektumnak. A typeof az objektum típusát adja meg.

Az R-ben 4 fontos adattípus van (type, mode).

```
Numerikus, alapból double:
```

[1] "double"

```
szam <- 3.1
szam
## [1] 3
SZAM
## Error in eval(expr, envir, enclos): object 'SZAM' not found
Szam
## Error in eval(expr, envir, enclos): object 'Szam' not found
str(szam)
## num 3,1
typeof(szam)
## [1] "double"
Attól mert valami történetesen egész, még double pontosságú lesz:
szam <- 3
str(szam)
## num 3
typeof(szam)
```

[1] FALSE

```
Ha egészet (integer) akarunk, azt külön kell jelölni az L utótaggal:
egesz <- 3L
egesz
## [1] 3
str(egesz)
## int 3
typeof(egesz)
## [1] "integer"
A numeric a mode, a double/integer a type. A többi adattípusnál a kettő egybeesik.
Karakter:
szoveg <- "kiskutya"
szoveg
## [1] "kiskutya"
str(szoveg)
## chr "kiskutya"
typeof(szoveg)
## [1] "character"
Logikai:
logikai <- TRUE # logical
logikai
## [1] TRUE
str(logikai)
## logi TRUE
typeof(logikai)
## [1] "logical"
A TRUE rövidíthető T-nek, a FALSE pedig F-nek.
Adott típus tesztelése az is.<tipus> alakban lehet:
is.integer(szam)
## [1] FALSE
is.integer(egesz)
## [1] TRUE
is.integer(szoveg)
## [1] FALSE
is.integer(logikai)
```

Az is.numeric azt jelenti, hogy is.integer vagy is.double:

```
is.double(szam)
```

[1] TRUE

is.double(egesz)

[1] FALSE

is.numeric(szam)

[1] TRUE

is.numeric(egesz)

[1] TRUE

Elvileg még két adattípus van, a raw és a complex, nem olyan fontosak. Van olyan dolog - például faktor - ami adattípusnak tűnik, de mégsem az (egy másik típus speciális eset).

Adott típussá alakítás as. <tipus> alakban lehet:

```
as.character(szam)
```

[1] "3"

as.numeric(szoveg)

Warning: NAs introduced by coercion

[1] NA

as.numeric(logikai)

[1] 1

Konvertálásnál az "erősorrend": character < double = integer < logical (a T 1-re, a F 0-ra alakul, a többi értelemszerű). Az ezt sértő dolgok NA-t adnak. Sok parancs automatikusan konvertál!

Hiányzó értéket NA jelöli (adott típusú hiányzó adat NA_real_, NA_integer_ és NA_character_ módokon kérhető).

3.2. Adatszerkezetek és indexelés

3.2.1. Vektor

A vektor homogén, 1 dimenziós adatszerkezet.

Legegyszerűbb módon az elemei felsorolásával hozható létre, ehhez a c függvény használható:

```
szamvektor <- c(1, 4, 5, 2, 3, 10)
szamvektor</pre>
```

```
## [1] 1 4 5 2 3 10
```

typeof(szamvektor)

[1] "double"

length(szamvektor)

[1] 6

Skalár nincs az R-ben, ami annak tűnik, az igazából 1 elemű vektor:

[1] NA

```
typeof(szam)
## [1] "double"
length(szam)
## [1] 1
Természetesen nem csak numerikus adatokból képezhető vektor, hanem bármilyenből:
karaktervektor <- c("a", "b", "xyz")</pre>
karaktervektor
## [1] "a"
              "b"
                     "xyz"
typeof(karaktervektor)
## [1] "character"
length(karaktervektor)
## [1] 3
A vektor homogén, az alábbi utasítások csak azért futnak le mégis, mert a háttérben ilyenkor az R a
"leggyengébbre" konvertálja az összeset (hogy kikényszerítse a homogenitást):
c(1, "a")
## [1] "1" "a"
c(2, TRUE)
## [1] 2 1
A indexelés lehet számmal vagy vektorral (ugye igazából ugyanaz!), adott pozició vagy pozíciók kiválasztha-
tóak:
szamvektor[3]
## [1] 5
szamvektor[c(1, 3)]
## [1] 1 5
Egy elem kiválasztható többször is:
szamvektor[c(2, 2)]
## [1] 4 4
Kiválasztható az összes elem is, ekkor lényegében csak a sorrendet módosítjuk:
szamvektor[c(3, 2, 1, 4, 5, 6)]
## [1] 5 4 1 2 3 10
szamvektor[order(szamvektor)]
## [1] 1 2 3 4 5 10
Nemlétező elem indexelése NA-t ad:
szamvektor[10]
```

Lehetséges negatív indexelés is, ez kiválaszt mindent, kivéve amit indexeltünk:

```
szamvektor[-3]
```

```
## [1] 1 4 2 3 10
szamvektor[-c(1, 3)]
```

```
## [1] 4 2 3 10
```

Indexelhetünk logikai tömbbel is, ugyanolyan hosszú kell legyen mint az eredeti, és azokat választja ki, ahol T van:

```
szamvektor[c(T, F, T, T, F, T)]
```

```
## [1] 1 5 2 10
```

Rövidebb tömbbel indexelés csak azért fog működik, mert ilyenkor az R reciklálja az indexelő vektort. (Ez általában is így van: újabb példa a kétélű flexibilitásra.)

Az indexelés és az értékadás kombinálható is:

```
szamvektor[3] <- 99 # az indexelés és az értékeadás kombinálható is
szamvektor
```

```
## [1] 1 4 99 2 3 10
szamvektor[10]
```

```
## [1] NA
```

Ha nemlétezőnek adunk értéket, automatikusan kiterjeszti a vektort, a többi helyre pedig NA kerül:

```
szamvektor[10] <- 999 # ha
szamvektor
```

```
## [1] 1 4 99 2 3 10 NA NA NA 999
```

A vektor elemei el is nevezhetőek; a nevek később a names-zel lekérhetőek, és át is állíthatóak:

```
szamvektor <- c(elso = 4, masodik = 1, harmadik = 7) # az elemek el is nevezhetőek szamvektor
```

```
## elso masodik harmadik
## 4 1 7
```

names(szamvektor)

```
## elso masodik utolso
## 4 1 7
```

Ha vannak elnevezések, akkor azok használhatóak indexelésre is:

```
szamvektor["masodik"]
## masodik
```

```
## masodik
## 1
szamvektor[c("masodik", "utolso")]
```

```
## masodik utolso
```

1 7

3.2.2. Mátrix

A mátrix homogén, kétdimenziós adatszerkezet.

Legegyszerűbben úgy tölthető fel, ha egy vektort áttördelünk, a matrix függvény használatával (az nc argumentummal az oszlopok, az nr argumentummal a sorok számát állíthatjuk be, értelemszerűen elég a kettőből egyet megadni):

```
szammatrix <- matrix(szamvektor, nc = 2)
## Warning in matrix(szamvektor, nc = 2): data length [3] is not a sub-
## multiple or multiple of the number of rows [2]</pre>
```

szammatrix

```
## [,1] [,2]
## [1,] 4 7
## [2,] 1 4
```

Alapból oszlopok szerint tölt, de a byrow argumentummal ezt átállíthatjuk:

```
matrix(szamvektor, nc = 2, byrow = TRUE)
```

```
## Warning in matrix(szamvektor, nc = 2, byrow = TRUE): data length [3] is not
## a sub-multiple or multiple of the number of rows [2]
## [,1] [,2]
## [1,] 4 1
## [2,] 7 4
```

A dimenzió, illetve külön a sorok és oszlopok száma könnyen lekérhető:

```
dim(szammatrix)
```

```
## [1] 2 2
```

nrow(szammatrix)

[1] 2

ncol(szammatrix)

[1] 2

Indexelés ugyanúgy végezhető, csak épp mindkét dimenzióra mondanunk kell valamit; a kettő vesszővel választandó el:

szammatrix

```
## [,1] [,2]
## [1,] 4 7
## [2,] 1 4
[c(2,3),2]
```

Mindkét dimenzió tetszőleges korábban látott módon indexelhető, tehát a különböző módok keverhetőek is: szammatrix[c(1, 2), c(T, F)]

```
## [1] 4 1
```

Ha egy dimenziót nem indexelünk, akkor az R úgy érti, hogy onnan minden elem (de a vessző ekkor sem hagyható el!):

```
szammatrix[2, ]
```

[1] 1 4

3.2.3. Tömb (array)

A tömb (array) homogén, n-dimenziós adatszerkezet (nem foglalkozunk vele részletesebben, ritkán használatos).

3.2.4. Data frame

A data frame (adatkeret) heterogén, kétdimenziós, rektanguláris adatszerkeszet. Lényegében - nem feltétlenül ugyanolyan típusú - vektorok összefogva; a rektanguláris azt jelenti, hogy minden vektor ugyanolyan hosszú kell legyen.

Ez a legtipikusabb adatszerkezet orvosi adatok tárolására: sorokban a megfigyelési egységek, oszlopokban a változók.

A data paranccsal egy kiegészítő csomagban található kész adat tölthető be:

```
data(birthwt, package = "MASS")
birthwt
```

##		low	age	lwt	race	smoke	ptl	ht	ui	ftv	bwt
##	85	0	19	182	2	0	0	0	1	0	2523
##	86	0	33	155	3	0	0	0	0	3	2551
##	87	0	20	105	1	1	0	0	0	1	2557
##	88	0	21	108	1	1	0	0	1	2	2594
##	89	0	18	107	1	1	0	0	1	0	2600
##	91	0	21	124	3	0	0	0	0	0	2622
##	92	0	22	118	1	0	0	0	0	1	2637
##	93	0	17	103	3	0	0	0	0	1	2637
##	94	0	29	123	1	1	0	0	0	1	2663
##	95	0	26	113	1	1	0	0	0	0	2665
##	96	0	19	95	3	0	0	0	0	0	2722
##	97	0	19	150	3	0	0	0	0	1	2733
##	98	0	22	95	3	0	0	1	0	0	2751
##	99	0	30	107	3	0	1	0	1	2	2750
##	100	0	18	100	1	1	0	0	0	0	2769
##	101	0	18	100	1	1	0	0	0	0	2769
##	102	0	15	98	2	0	0	0	0	0	2778
##	103	0	25	118	1	1	0	0	0	3	2782
##	104	0	20	120	3	0	0	0	1	0	2807
##	105	0	28	120	1	1	0	0	0	1	2821
##	106	0	32	121	3	0	0	0	0	2	2835
##	107	0	31	100	1	0	0	0	1	3	2835
##	108	0	36	202	1	0	0	0	0	1	2836
##	109	0	28	120	3	0	0	0	0	0	2863
##	111	0	25	120	3	0	0	0	1	2	2877
##	112	0	28	167	1	0	0	0	0	0	2877
##	113	0	17	122	1	1	0	0	0	0	2906
##	114	0	29	150	1	0	0	0	0	2	2920
##	115	0	26	168	2	1	0	0	0	0	2920
##	116	0	17	113	2	0	0	0	0	1	2920
##	117	0	17	113	2	0	0	0	0	1	2920
##	118	0	24	90	1	1	1	0	0	1	2948

##	119	0	35	121	2	1	1	0	0	1	2948
##	120	0	25	155	1	0	0	0	0	1	2977
##	121	0	25	125	2	0	0	0	0	0	2977
##	123	0	29	140	1	1	0	0	0	2	2977
##	124	0	19	138	1	1	0	0	0	2	2977
##	125	0	27	124	1	1	0	0	0	0	2922
##	126	0	31	215	1	1	0	0	0	2	3005
##	127	0	33	109	1	1	0	0	0	1	3033
##	128	0	21	185	2	1	0	0	0	2	3042
##	129	0	19	189	1	0	0	0	0	2	3062
##	130	0	23	130	2	0	0	0	0	1	3062
##	131	0	21	160	1	0	0	0	0	0	3062
##	132	0	18	90	1	1	0	0	1	0	3062
##	133	0	18	90	1	1	0	0	1	0	3062
##	134	0	32	132	1	0	0	0	0	4	3080
##	135	0	19	132	3	0	0	0	0	0	3090
##	136	0	24	115	1	0	0	0	0	2	3090
##	137	0	22	85	3	1	0	0	0	0	3090
##	138	0	22	120	1	0	0	1	0	1	3100
##	139	0	23	128	3	0	0	0	0	0	3104
##	140	0	22	130	1	1	0	0	0	0	3132
##	141	0	30	95	1	1	0	0	0	2	3147
##	142	0	19	115	3	0	0	0	0	0	3175
##	143	0	16	110	3	0	0	0	0	0	3175
##	144	0	21	110	3	1	0	0	1	0	3203
##	145	0	30	153	3	0	0	0	0	0	3203
##	146	0	20	103	3	0	0	0	0	0	3203
##	147	0	17	119	3	0	0	0	0	0	3225
##	148	0	17	119	3	0	0	0	0	0	3225
##	149	0	23	119	3	0	0	0	0	2	3232
##	150	0	24	110	3	0	0	0	0	0	3232
##	151	0	28	140	1	0	0	0	0	0	3234
##	154	0	26	133	3	1	2	0	0	0	3260
##	155	0	20	169	3	0	1	0	1	1	3274
##	156	0	24	115	3	0	0	0	0	2	3274
##	159	0	28	250	3	1	0	0	0	6	3303
##	160	0	20	141	1	0	2	0	1	1	3317
##	161	0	22	158	2	0	1	0	0	2	3317
##	162	0	22	112	1	1	2	0	0	0	3317
##	163	0	31	150	3	1	0	0	0	2	3321
##	164	0	23	115	3	1	0	0	0	1	3331
##	166	0	16	112	2	0	0	0	0	0	3374
##	167	0	16	135	1	1	0	0	0	0	3374
##	168	0	18	229	2	0	0	0	0	0	3402
##	169	0	25	140	1	0	0	0	0	1	3416
##	170	0	32	134	1	1	1	0	0	4	3430
##	172	0	20	121	2	1	0	0	0	0	3444
##	173	0	23	190	1	0	0	0	0	0	3459
##	174	0	22	131	1	0	0	0	0	1	3460
##	175	0	32	170	1	0	0	0	0	0	3473
##	176	0	30	110	3	0	0	0	0	0	3544
##	177	0	20	127	3	0	0	0	0	0	3487
##	179	0	23	123	3	0	0	0	0	0	3544
##	180	0	23 17	120	3	1	0	0	0	0	3572
##	100	U	Ι/	120	S	T	U	U	U	U	3012

##	181	0	19	105	3	0	0	0	0	0	3572
##	182	0	23	130	1	0	0	0	0	0	3586
##	183	0	36	175	1	0	0	0	0	0	3600
##	184	0	22	125	1	0	0	0	0	1	3614
##	185	0	24	133	1	0	0	0	0	0	3614
##	186	0	21	134	3	0	0	0	0	2	3629
##	187	0	19	235	1	1	0	1	0	0	3629
##	188	0	25	95	1	1	3	0	1	0	3637
##	189	0	16	135	1	1	0	0	0	0	3643
##	190	0	29	135	1	0	0	0	0	1	3651
##	191	0	29	154	1	0	0	0	0	1	3651
##	192	0	19	147	1	1	0	0	0	0	3651
##	193	0	19	147	1	1	0	0	0	0	3651
##	195	0	30	137	1	0	0	0	0	1	3699
##	196	0	24	110	1	0	0	0	0	1	3728
##	197	0	19	184	1	1	0	1	0	0	3756
##	199	0	24	110	3	0	1	0	0	0	3770
##	200	0	23	110	1	0	0	0	0	1	3770
##	201	0	20	120	3	0	0	0	0	0	3770
##	202	0	25	241	2	0	0	1	0	0	3790
##	203	0	30	112	1	0	0	0	0	1	3799
##	204	0	22	169	1	0	0	0	0	0	3827
##	205	0	18	120	1	1	0	0	0	2	3856
##	206	0	16	170	2	0	0	0	0	4	3860
##	207	0	32	186	1	0	0	0	0	2	3860
##	208	0	18	120	3	0	0	0	0	1	3884
##	209	0	29	130	1	1	0	0	0	2	3884
##	210	0	33	117	1	0	0	0	1	1	3912
##	211	0	20	170	1	1	0	0	0	0	3940
##	212	0	28	134	3	0	0	0	0	1	3941
##	213	0	14	135	1	0	0	0	0	0	3941
##	214	0	28	130	3	0	0	0	0	0	3969
##	215	0	25	120	1	0	0	0	0	2	3983
##	216	0	16	95	3	0	0	0	0	1	3997
##	217	0	20	158	1	0	0	0	0	1	3997
##	218	0	26	160	3	0	0	0	0	0	4054
##	219	0	21	115	1	0	0	0	0	1	4054
##	220	0	22	129	1	0	0	0	0		4111
##	221	0	25	130	1	0	0	0	0	2	4153
##	222	0	31	120	1	0	0	0	0	2	4167
##	223	0	35	170	1	0	1	0	0	1	4174
##	224	0	19	120	1	1	0	0	0	0	4238
##	225	0	24	116	1	0	0	0	0	1	4593
##	226	0	45	123	1	0	0	0	0	1	4990
##	4	1	28	120	3	1	1	0	1	0	709
##	10	1	29	130	1	0	0	0	1	2	1021
##	11	1	34	187	2	1	0	1	0	0	1135
##	13	1	25	105	3	0	1	1	0	0	1330
##	15	1	25	85	3	0	0	0	1	0	1474
##	16	1	27	150	3	0	0	0	0	0	1588
##	17	1	23	97	3	0	0	0	1	1	1588
##	18	1	24	128	2	0	1	0	0	1	1701
##	19	1	24	132	3	0	0	1	0	0	1729
##	20	1	21	165	1	1	0	1	0	1	1790
		_		- 50	-	_	•	-	9	_	1.00

```
## 22
            32 105
                                   0
                                         0
                                              0 1818
         1
                        1
                              1
## 23
            19
                91
                                   2
                                      0
                                              0 1885
         1
                        1
                              1
                                         1
##
   24
            25 115
                                   0
                                              0 1893
         1 16 130
## 25
                        3
                              0
                                   0
                                      0
                                              1 1899
                                         0
##
   26
         1
            25
                 92
                        1
                              1
                                   0
                                      0
                                         0
                                              0 1928
##
  27
         1 20 150
                                   0
                                      0
                                              2 1928
                              1
                                         0
                        1
## 28
         1 21 200
                                   0
                                      0
                                              2 1928
                        2
                              0
                                         1
            24 155
                                              0 1936
## 29
         1
                        1
                              1
                                   1
                                      0
                                         0
##
   30
         1
            21 103
                        3
                              0
                                   0
                                      0
                                         0
                                              0 1970
                                      0
            20 125
                                   0
                                              0 2055
##
   31
         1
                        3
                              0
                                         1
##
   32
         1 25
                89
                        3
                              0
                                   2
                                      0
                                              1 2055
##
   33
            19 102
                              0
                                   0
                                      0
                                              2 2082
         1
                        1
                                         0
##
   34
         1
            19 112
                                   0
                                      0
                                         1
                                              0 2084
                        1
                              1
##
   35
                                              0 2084
            26 117
                                   1
                                      0
                                         0
##
   36
            24 138
                              0
                                   0
                                      0
                                         0
                                              0 2100
         1
                        1
## 37
         1
            17 130
                        3
                              1
                                   1
                                      0
                                         1
                                              0 2125
##
  40
            20 120
                        2
                                   0
                                      0
                                              3 2126
         1
                                         0
                              1
##
   42
         1 22 130
                        1
                              1
                                   1
                                              1 2187
##
  43
         1 27 130
                                   0
                                              0 2187
                        2
                              0
                                      0
                                         1
## 44
            20
                80
                        3
                              1
                                   0
                                      0
                                              0 2211
##
  45
         1
            17 110
                        1
                              1
                                   0
                                      0
                                         0
                                              0 2225
##
  46
            25 105
                        3
                              0
                                   1
                                      0
                                         0
                                              1 2240
## 47
         1 20 109
                                   0
                                              0 2240
                        3
                              0
                                      0
                                         0
## 49
            18 148
                        3
                              0
                                   0
                                      0
                                         0
                                              0 2282
         1
                                              0 2296
## 50
         1 18 110
                        2
                              1
                                   1
                                      0
                                         0
##
  51
         1 20 121
                        1
                              1
                                   1
                                      0
                                         1
                                              0 2296
## 52
            21 100
                              0
                                      0
                                         0
                                              4 2301
         1
                        3
                                   1
   54
            26
                96
                        3
                              0
                                   0
                                      0
                                              0 2325
##
         1
                                         0
## 56
            31 102
                                   1
                                      0
                                         0
                                              1 2353
         1
                        1
                              1
## 57
         1 15 110
                              0
                                   0
                                      0
                                         0
                                              0 2353
                        1
## 59
         1
            23 187
                        2
                              1
                                   0
                                      0
                                         0
                                              1 2367
## 60
         1
            20 122
                        2
                              1
                                   0
                                      0
                                         0
                                              0 2381
                                              0 2381
##
   61
         1 24 105
                              1
                                   0
                                      0
  62
         1 15 115
                                   0
                                      0
                                              0 2381
##
                        3
                              0
                                         1
            23 120
##
   63
         1
                        3
                              0
                                   0
                                      0
                                         0
                                              0 2410
##
  65
         1 30 142
                                      0
                                         0
                                              0 2410
                        1
                              1
                                   1
##
  67
         1 22 130
                              1
                                   0
                                      0
                                              1 2410
## 68
         1 17 120
                                   0
                                      0
                                         0
                                              3 2414
                        1
                              1
## 69
         1
            23 110
                        1
                              1
                                   1
                                      0
                                         0
                                              0 2424
## 71
         1 17 120
                        2
                              0
                                   0
                                      0
                                              2 2438
                                         0
  75
         1 26 154
                        3
                              0
                                   1
                                              1 2442
                                      1
## 76
         1 20 105
                        3
                              0
                                   0
                                      0
                                         0
                                              3 2450
            26 190
                                   0
                                              0 2466
##
   77
         1
                        1
                              1
                                      0
                                         0
##
  78
         1
            14 101
                        3
                                   1
                                      0
                                         0
                                              0 2466
                              1
##
  79
            28
                                   0
                                      0
                                              2 2466
         1
                 95
                        1
                              1
                                         0
                                              2 2495
## 81
            14 100
                        3
                              0
                                   0
                                      0
                                         0
         1
            23
                        3
                                   0
## 82
         1
                94
                              1
                                      0
                                         0
                                              0 2495
                        2
                                   0
## 83
             17 142
                              0
                                      1
                                         0
                                              0 2495
## 84
             21 130
                        1
                              1
                                   0
                                      1
                                         0
                                              3 2495
```

Csak a felső néhány sor a head paranccsal kérhető le (az alsó néhány sor pedig a tail-lel):

head(birthwt)

low age lwt race smoke ptl ht ui ftv bwt

```
## 85
       0 19 182
                    2
                          0
                              0 0 1
                                        0 2523
## 86
       0 33 155
                    3
                          0
                              0 0 0
                                       3 2551
                                       1 2557
## 87
       0 20 105
                                0 0
## 88
       0 21 108
                              0 0 1
                                        2 2594
                    1
                          1
## 89
       0
          18 107
                    1
                          1
                              0 0
                                        0 2600
## 91
       0 21 124
                          0
                              0 0 0
                                        0 2622
                    3
Az oszlopok és a sorok is elnevezhetőek:
str(birthwt)
                   189 obs. of 10 variables:
## 'data.frame':
## $ low : int 0000000000...
## $ age : int 19 33 20 21 18 21 22 17 29 26 ...
## $ lwt : int 182 155 105 108 107 124 118 103 123 113 ...
## $ race : int 2 3 1 1 1 3 1 3 1 1 ...
## $ smoke: int 0 0 1 1 1 0 0 0 1 1 ...
## $ ptl : int 0000000000...
##
   $ ht
          : int
                 0 0 0 0 0 0 0 0 0 0 ...
          : int 1001100000...
## $ ui
## $ ftv : int 0 3 1 2 0 0 1 1 1 0 ...
## $ bwt : int 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 ...
names(birthwt)
## [1] "low"
                               "race" "smoke" "ptl"
                                                       "ht"
                                                               "ui"
               "age"
                       "lwt"
## [9] "ftv"
               "bwt"
colnames(birthwt)
  [1] "low"
               "age"
                       "lwt"
                               "race" "smoke" "ptl"
                                                       "ht"
                                                               "ui"
## [9] "ftv"
               "bwt"
Az adatkeret a mátrixhoz hasonlóan indexelhető:
birthwt[3,]
     low age lwt race smoke ptl ht ui ftv bwt
       0 20 105
                   1
                         1
                             0 0 0
birthwt[3, 4]
## [1] 1
birthwt[3, c(5, 6)]
     smoke ptl
## 87
         1
Sőt, ha vannak elnevezéseink, az is használható. A következő 4 mind egyenértékű:
birthwt[, 10]
    [1] 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 2722 2733 2751 2750
   [15] 2769 2769 2778 2782 2807 2821 2835 2835 2836 2863 2877 2877 2906 2920
##
   [29] 2920 2920 2920 2948 2948 2977 2977 2977 2977 2922 3005 3033 3042 3062
   [43] 3062 3062 3062 3062 3080 3090 3090 3090 3100 3104 3132 3147 3175 3175
   [57] 3203 3203 3203 3225 3225 3232 3232 3234 3260 3274 3274 3303 3317 3317
   [71] 3317 3321 3331 3374 3374 3402 3416 3430 3444 3459 3460 3473 3544 3487
##
  [85] 3544 3572 3572 3586 3600 3614 3614 3629 3629 3637 3643 3651 3651 3651
```

[99] 3651 3699 3728 3756 3770 3770 3770 3790 3799 3827 3856 3860 3860 3884

```
## [113] 3884 3912 3940 3941 3941 3969 3983 3997 3997 4054 4054 4111 4153 4167
## [127] 4174 4238 4593 4990 709 1021 1135 1330 1474 1588 1588 1701 1729 1790
## [141] 1818 1885 1893 1899 1928 1928 1928 1936 1970 2055 2055 2082 2084 2084
## [155] 2100 2125 2126 2187 2187 2211 2225 2240 2240 2282 2296 2296 2301 2325
## [169] 2353 2353 2367 2381 2381 2381 2410 2410 2410 2414 2424 2438 2442 2450
## [183] 2466 2466 2466 2495 2495 2495 2495
birthwt$bwt
     [1] 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 2722 2733 2751 2750
    [15] 2769 2769 2778 2782 2807 2821 2835 2835 2836 2863 2877 2877 2906 2920
    [29] 2920 2920 2920 2948 2948 2977 2977 2977 2977 2922 3005 3033 3042 3062
   [43] 3062 3062 3062 3062 3080 3090 3090 3090 3100 3104 3132 3147 3175 3175
   [57] 3203 3203 3203 3225 3225 3232 3232 3234 3260 3274 3274 3303 3317 3317
   [71] 3317 3321 3331 3374 3374 3402 3416 3430 3444 3459 3460 3473 3544 3487
   [85] 3544 3572 3572 3586 3600 3614 3614 3629 3629 3637 3643 3651 3651 3651
   [99] 3651 3699 3728 3756 3770 3770 3770 3790 3799 3827 3856 3860 3860 3884
## [113] 3884 3912 3940 3941 3941 3969 3983 3997 3997 4054 4054 4111 4153 4167
## [127] 4174 4238 4593 4990 709 1021 1135 1330 1474 1588 1588 1701 1729 1790
## [141] 1818 1885 1893 1899 1928 1928 1928 1936 1970 2055 2055 2082 2084 2084
## [155] 2100 2125 2126 2187 2187 2211 2225 2240 2240 2282 2296 2296 2301 2325
## [169] 2353 2353 2367 2381 2381 2381 2410 2410 2410 2414 2424 2438 2442 2450
## [183] 2466 2466 2466 2495 2495 2495 2495
birthwt[, "bwt"]
     [1] 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 2722 2733 2751 2750
##
    [15] 2769 2769 2778 2782 2807 2821 2835 2835 2836 2863 2877 2877 2906 2920
    [29] 2920 2920 2920 2948 2948 2977 2977 2977 2977 2922 3005 3033 3042 3062
   [43] 3062 3062 3062 3062 3080 3090 3090 3090 3100 3104 3132 3147 3175 3175
   [57] 3203 3203 3203 3225 3225 3232 3232 3234 3260 3274 3274 3303 3317 3317
   [71] 3317 3321 3331 3374 3374 3402 3416 3430 3444 3459 3460 3473 3544 3487
    [85] 3544 3572 3572 3586 3600 3614 3614 3629 3629 3637 3643 3651 3651 3651
   [99] 3651 3699 3728 3756 3770 3770 3770 3790 3799 3827 3856 3860 3860 3884
## [113] 3884 3912 3940 3941 3941 3969 3983 3997 3997 4054 4054 4111 4153 4167
## [127] 4174 4238 4593 4990 709 1021 1135 1330 1474 1588 1588 1701 1729 1790
## [141] 1818 1885 1893 1899 1928 1928 1928 1936 1970 2055 2055 2082 2084 2084
## [155] 2100 2125 2126 2187 2187 2211 2225 2240 2240 2282 2296 2296 2301 2325
## [169] 2353 2353 2367 2381 2381 2381 2410 2410 2410 2414 2424 2438 2442 2450
## [183] 2466 2466 2466 2495 2495 2495 2495
birthwt[["bwt"]]
     [1] 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 2722 2733 2751 2750
    [15] 2769 2769 2778 2782 2807 2821 2835 2835 2836 2863 2877 2877 2906 2920
##
    [29] 2920 2920 2920 2948 2948 2977 2977 2977 2977 2922 3005 3033 3042 3062
    [43] 3062 3062 3062 3062 3080 3090 3090 3090 3100 3104 3132 3147 3175 3175
   [57] 3203 3203 3203 3225 3225 3232 3232 3234 3260 3274 3274 3303 3317 3317
    [71] 3317 3321 3331 3374 3374 3402 3416 3430 3444 3459 3460 3473 3544 3487
   [85] 3544 3572 3572 3586 3600 3614 3614 3629 3629 3637 3643 3651 3651 3651
   [99] 3651 3699 3728 3756 3770 3770 3770 3790 3799 3827 3856 3860 3860 3884
## [113] 3884 3912 3940 3941 3941 3969 3983 3997 3997 4054 4054 4111 4153 4167
## [127] 4174 4238 4593 4990 709 1021 1135 1330 1474 1588 1588 1701 1729 1790
## [141] 1818 1885 1893 1899 1928 1928 1928 1936 1970 2055 2055 2082 2084 2084
## [155] 2100 2125 2126 2187 2187 2211 2225 2240 2240 2282 2296 2296 2301 2325
## [169] 2353 2353 2367 2381 2381 2381 2410 2410 2410 2414 2424 2438 2442 2450
```

```
## [183] 2466 2466 2466 2495 2495 2495 2495
```

1

A nem dupla szögletes zárójellel történő indexelés eltérése, hogy nem a kiválasztott vektort, hanem egy csak a kiválasztott vektorból álló data frame-et ad vissza:

```
birthwt[["bwt"]]
     [1] 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 2722 2733 2751 2750
##
    [15] 2769 2769 2778 2782 2807 2821 2835 2835 2836 2863 2877 2877 2906 2920
   [29] 2920 2920 2920 2948 2948 2977 2977 2977 2977 2922 3005 3033 3042 3062
   [43] 3062 3062 3062 3062 3080 3090 3090 3090 3100 3104 3132 3147 3175 3175
    [57] 3203 3203 3203 3225 3225 3232 3232 3234 3260 3274 3274 3303 3317 3317
##
   [71] 3317 3321 3331 3374 3374 3402 3416 3430 3444 3459 3460 3473 3544 3487
  [85] 3544 3572 3572 3586 3600 3614 3614 3629 3629 3637 3643 3651 3651 3651
   [99] 3651 3699 3728 3756 3770 3770 3770 3790 3799 3827 3856 3860 3860 3884
## [113] 3884 3912 3940 3941 3941 3969 3983 3997 3997 4054 4054 4111 4153 4167
## [127] 4174 4238 4593 4990 709 1021 1135 1330 1474 1588 1588 1701 1729 1790
## [141] 1818 1885 1893 1899 1928 1928 1928 1936 1970 2055 2055 2082 2084 2084
## [155] 2100 2125 2126 2187 2187 2211 2225 2240 2240 2282 2296 2296 2301 2325
## [169] 2353 2353 2367 2381 2381 2381 2410 2410 2410 2414 2424 2438 2442 2450
## [183] 2466 2466 2466 2495 2495 2495 2495
str(birthwt[["bwt"]])
## int [1:189] 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 ...
head(birthwt["bwt"])
##
       bwt
## 85 2523
## 86 2551
## 87 2557
## 88 2594
## 89 2600
## 91 2622
str(birthwt["bwt"])
## 'data.frame':
                    189 obs. of 1 variable:
## $ bwt: int 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 ...
Használhatunk különféle módszereket (az alábbiak közül a második a logikai indexelés miatt fog működni):
head(birthwt[, c("lwt", "smoke")])
##
      lwt smoke
## 85 182
## 86 155
## 87 105
              1
## 88 108
              1
## 89 107
              1
## 91 124
head(birthwt[birthwt$smoke == 1, ])
##
       low age lwt race smoke ptl ht ui ftv bwt
## 87
         0 20 105
                                0
                                   0
                                      0
                      1
                            1
                                           1 2557
## 88
         0 21 108
                      1
                            1
                                0
                                   0
                                      1
                                           2 2594
## 89
         0 18 107
                                0
                                           0 2600
                      1
                            1
                                   0
                                      1
         0 29 123
## 94
                            1
                                0
                                   0
                                     0
                                           1 2663
```

\$k ## [1] "a"

##

"b"

"xyz"

```
## 95
        0 26 113
                    1
                          1
                              0 0 0
                                       0 2665
## 100
        0 18 100
                    1
                          1
                              0 0 0
                                       0 2769
head(birthwt[birthwt$smoke == 1 & birthwt$race == 1, ])
##
      low age lwt race smoke ptl ht ui ftv bwt
## 87
        0 20 105
                    1
                          1
                              0
                                0
                                       1 2557
## 88
        0 21 108
                              0 0 1
                          1
                                       2 2594
                    1
## 89
        0 18 107
                    1
                          1
                              0 0 1
                                       0 2600
        0 29 123
## 94
                              0 0 0
                                      1 2663
                    1
                          1
## 95
        0 26 113
                    1
                          1
                              0 0 0
                                      0 2665
## 100
       0 18 100
                    1
                          1 0 0 0
                                       0 2769
Az adatkeret heterogén:
birthwt$nev <- "a"
head(birthwt)
##
     low age lwt race smoke ptl ht ui ftv bwt nev
## 85
       0 19 182
                   2
                         0
                             0
                                0
                                  1
                                      0 2523
## 86
       0 33 155
                   3
                         0
                             0 0 0
                                      3 2551
## 87
      0 20 105
                             0 0 0
                                     1 2557
                 1
                         1
## 88
      0 21 108
                 1
                             0 0 1
                                      2 2594
                         1
       0 18 107
                             0 0 1
                                      0 2600
## 89
                   1
                         1
## 91
       0 21 124
                   3
                         0
                             0 0 0
                                      0 2622
str(birthwt)
## 'data.frame':
                189 obs. of 11 variables:
   $ low : int 0000000000...
##
   $ age : int 19 33 20 21 18 21 22 17 29 26 ...
##
## $ lwt : int 182 155 105 108 107 124 118 103 123 113 ...
## $ race : int 2 3 1 1 1 3 1 3 1 1 ...
## $ smoke: int 0 0 1 1 1 0 0 0 1 1 ...
   $ ptl : int 0000000000...
##
## $ ht
         : int 0000000000...
## $ ui
          : int 1001100000...
## $ ftv : int 0 3 1 2 0 0 1 1 1 0 ...
## $ bwt : int 2523 2551 2557 2594 2600 2622 2637 2637 2663 2665 ...
## $ nev : chr "a" "a" "a" "a" ...
3.2.5. Lista
A lista homogén, egydimenziós adatszerkezet.
Legegyszerűbben elemei felsorolásával hozható létre, a list függvényt használva:
lista <- list(sz = szamvektor, k = karaktervektor, m = szammatrix, df = birthwt[1:5,</pre>
   ])
lista
## $sz
##
     elso masodik utolso
##
        4
                1
```

```
## $m
##
       [,1] [,2]
## [1,]
       4 7
       1 4
## [2,]
## $df
     low age lwt race smoke ptl ht ui ftv bwt nev
      0 19 182 2 0 0 0 1
## 85
                                      0 2523
## 86  0  33  155  3  0  0  0  0  3  2551
## 87  0  20  105  1  1  0  0  0  1  2557
## 88 0 21 108 1 1 0 0 1 2 2594
## 89 0 18 107 1 1 0 0 1 0 2600
str(list)
## function (...)
Számmal és – ha van neki – névvel is indexelhető:
lista[[1]]
##
     elso masodik utolso
##
           1
lista$sz
##
     elso masodik utolso
##
        4
lista[["sz"]]
     elso masodik utolso
##
        4 1
Az egy zárójellel történő indexelés látszólag ugyanaz, de csak látszólag:
lista[1]
## $sz
     elso masodik utolso
##
        4
                1
typeof(lista[[1]])
## [1] "double"
typeof(lista[1])
## [1] "list"
Tartomány is indexelhető:
lista[1:2]
## $sz
## elso masodik utolso
##
      4 1
##
## $k
## [1] "a" "b" "xyz"
```

lista[[1:2]]

[1] 1

Az előbbi dolgok természetesen kombinálhatóak is:

```
idx <- "sz"
lista[[idx]]</pre>
```

```
## elso masodik utolso
## 4 1 7
```

Az adatkeret igazából egy, az oszlopokból - mint vektorokból - összerakott lista (tehát két szűkítés van: az elemek csak vektorok lehetnek és ugyanolyan hosszúaknak kell lenniük).

Függvények

A függvényekről

4.1. Függvényhívások

Függvény úgy hívható, hogy megadjuk a nevét, majd utána zárójelben az argumentumát, vagy argumentumait (lehet, hogy egy sincs, de a zárójelet ekkor is ki kell írni):

```
quantile(birthwt$bwt)
## 0% 25% 50% 75% 100%
## 709 2414 2977 3487 4990
```

Függvényről súgó a kérdőjellel kapható (két kérdőjel az összes ismert függvényt végigkeresi, akár névtöredékre is): ?quantile.

Aminél egyenlőségjellel adva van érték a specifikációban, ott az default-ként viselkedik, nem kötelező megadni, viszont a default-tal nem rendelkezőket muszáj:

```
r quantile()

## Error in is.factor(x): argument "x" is missing, with no default

Ha több argumentumot adunk meg, akkor azok a felsorolás sorrendjében osztódnak ki:

quantile(birthwt$bwt, 0.23)
```

```
## 23%

## 2388

quantile(birthwt$bwt, c(0.23, 0.5, 0.6))

## 23% 50% 60%
```

2388 2977 3169

quantile(birthwt\$bwt, c(0.23, 0.5, 0.6), type = 6)

Argumentumra hivatkozhatunk névvel is, ez esetben nem kell a felsorolás sorrendjével törődnünk:

```
## 23% 50% 60%
## 2381 2977 3175
quantile(probs = c(0.23, 0.5, 0.6), type = 6, x = birthwt$bwt)
```

```
23% 50% 60%
## 2381 2977 3175
```

Az általános gyakorlat az, hogy az első két-három argumentumot adhatjuk meg név nélkül (ezeknél elvárható, hogy fejből is tudja az ember, hogy mit jelent), de a többinél elegánsabb, ha mindenképp adunk nevet (tehát akkor is, ha sorrendben írjuk).

4.2. Saját függény definiálása

Ilyet is lehet.

bwt

nev

Egy függvény hívásánál az argumentumai elkülöníthetőek egy listába, majd ugyanaz a hatása a do.call használatával elérhető (első argumentum a függvény, második az átadandó argumentumok listája):

```
quantile(probs = c(0.23, 0.5, 0.6), type = 6, x = birthwt$bwt)
    23% 50% 60%
## 2381 2977 3175
do.call(quantile, list(probs = c(0.23, 0.5, 0.6), type = 6, x = birthwt$bwt))
    23% 50% 60%
## 2381 2977 3175
Ez akkor jön jól, ha nem tudjuk előre, hogy mik az argumentumok (akár azt sem, hogy hány darab van
belőlük!), pl. mert egy lapply-jal gyártottuk le, lásd később:
rbind(c(1, 2), c(3, 4), c(5, 6))
##
        [,1] [,2]
## [1,]
                 2
           1
           3
## [2,]
                 4
## [3,]
           5
do.call(rbind, lapply(birthwt, function(x) c(mean(x), median(x))))
## Warning in mean.default(x): argument is not numeric or logical: returning
## NA
         [,1]
                                [,2]
##
## low
         "0,312169312169312"
                                "0"
                                "23"
         "23,2380952380952"
## age
## lwt
         "129,814814814815"
                                "121"
         "1,84656084656085"
                                "1"
## race
## smoke "0,391534391534392"
                                "0"
                                "0"
         "0,195767195767196"
## ptl
## ht
         "0,0634920634920635"
## ui
         "0,148148148148148"
                                "0"
         "0,793650793650794"
                                "0"
## ftv
         "2944,5873015873"
                                "2977"
```

"a"

Az R programozása

Programozás.

5.1. Funkcionális programozás

Az R, bár többféle paradigmában is tud dolgozni, érezhető funkcionális nyelv. Ezt elegáns is, célszerű is kihasználni!

Egy példa:

[1] 3130

```
mean(birthwt$bwt[1:100])
## [1] 3130
elsoszazatlag <- function(data) {</pre>
    result <- mean(data[1:100])</pre>
    return(result)
}
elsoszazatlag <- function(data) {</pre>
    result <- mean(data[1:100])</pre>
    result
}
elsoszazatlag <- function(data) {</pre>
    mean(data[1:100])
elsoszazatlag(birthwt$bwt)
## [1] 3130
sd(birthwt$bwt[1:100])
## [1] 324
elsoszazf <- function(data, f = mean) {</pre>
    f(data[1:100])
elsoszazf(birthwt$bwt)
```

returning NA

age lwt race smoke ptl

3e-01 2e+01 1e+02 2e+00 4e-01 2e-01 6e-02 1e-01 8e-01 3e+03

```
elsoszazf(birthwt$bwt, f = sd)
## [1] 324
A lapply az első argumentumban megadott lista minden elemére ráereszti a második argumentumban meg-
adott függvényt, és az eredményt összefűzi egy listává (a sapply csak annyiban tér el, hogy lista helyett
vektort ad vissza, ha lehetséges a listát vektorrá konvertálni):
lapply(c("age", "lwt", "bwt"), nchar)
## [[1]]
## [1] 3
##
## [[2]]
## [1] 3
##
## [[3]]
## [1] 3
sapply(c("age", "lwt", "bwt"), nchar)
## age lwt bwt
##
    3
         3
lapply(c("age", "lwt", "bwt"), function(x) nchar(x))
## [[1]]
## [1] 3
##
## [[2]]
## [1] 3
##
## [[3]]
## [1] 3
lapply(c("age", "lwt", "bwt"), function(x) mean(birthwt[[x]]))
## [[1]]
## [1] 23
##
## [[2]]
## [1] 130
##
## [[3]]
## [1] 2945
sapply(c("age", "lwt", "bwt"), function(x) mean(birthwt[[x]]))
##
    age lwt bwt
   23 130 2945
sapply(birthwt, mean)
## Warning in mean.default(X[[i]], ...): argument is not numeric or logical:
```

ht

ui

nev

NA

```
lapply(birthwt, function(x) c(mean(x), median(x)))
## Warning in mean.default(x): argument is not numeric or logical: returning
## NA
## $low
## [1] 0,3 0,0
##
## $age
## [1] 23 23
##
## $1wt
## [1] 130 121
##
## $race
## [1] 2 1
##
## $smoke
## [1] 0,4 0,0
##
## $ptl
## [1] 0,2 0,0
##
## $ht
## [1] 0,06 0,00
##
## $ui
## [1] 0,1 0,0
##
## $ftv
## [1] 0,8 0,0
##
## $bwt
## [1] 2945 2977
##
## $nev
## [1] NA "a"
```

A harmadik sor példát mutat arra, hogy anonim függvény is használható, az utolsó előtti pedig arra, hogy a data.frame igazából lista, aminek az elemei az oszlopai.

Az apply az első argumentumban megadott mátrix vagy adatkeret minden sorára vagy oszlopára (ezt a második argumentum dönti el) ráereszti a harmadik argumentumban megadott függvényt:

```
apply(birthwt, 2, mean)

## Warning in mean.default(newX[, i], ...): argument is not numeric or
## logical: returning NA

## Warning in mean.default(newX[, i], ...): argument is not numeric or
## logical: returning NA

## Warning in mean.default(newX[, i], ...): argument is not numeric or
## logical: returning NA

## Warning in mean.default(newX[, i], ...): argument is not numeric or
```

```
## logical: returning NA
## Warning in mean.default(newX[, i], ...): argument is not numeric or
## logical: returning NA
## Warning in mean.default(newX[, i], ...): argument is not numeric or
## logical: returning NA
## Warning in mean.default(newX[, i], ...): argument is not numeric or
## logical: returning NA
## Warning in mean.default(newX[, i], ...): argument is not numeric or
## logical: returning NA
## Warning in mean.default(newX[, i], ...): argument is not numeric or
## logical: returning NA
## Warning in mean.default(newX[, i], ...): argument is not numeric or
## logical: returning NA
## Warning in mean.default(newX[, i], ...): argument is not numeric or
## logical: returning NA
                       ptl
   low
       age
           lwt
              race smoke
                            ht
                                ui
                                   ftv
                                       bwt
                                           nev
##
                                            NA
    NA
        NA
           NA
                NA
                    NA
                       NA
                            NA
                                NA
                                    NA
                                        NA
apply(birthwt, 1, function(x) x[1])
    86 87 88 89 91 92 93 94 95 96 97 98 99 100 101 102 103
## 104 105 106 107 108 109 111 112 113 114 115 116 117 118 119 120 121 123
## 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
## 142 143 144 145 146 147 148 149 150 151 154 155 156 159 160 161 162 163
## 164 166 167 168 169 170 172 173 174 175 176 177 179 180 181 182 183 184
## 185 186 187 188 189 190 191 192 193 195 196 197 199 200 201 202 203 204
## 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
 223 224 225 226
             4 10 11 13 15 16 17
                               18 19
                                    20
                                        22 23
  27
       28
          29
            30 31
                  32 33
                       34 35
                            36
                               37
                                  40
                                     42
                                       43
                                          44
                                             45
47 49 50 51 52 54 56 57 59 60 61 62 63 65 67 68 69 71
75 76 77 78 79 81 82 83 84
## "1" "1" "1" "1" "1" "1" "1" "1" "1"
```

A tapply az első argumentumban megadott változó második argumentum szerint képezett csoportjaira ráereszti a harmadik argumentumban megadott függvényt:

```
mean(birthwt$bwt[birthwt$race == 1])
```

```
## [1] 3103
```

```
tapply(birthwt$bwt, birthwt$race, mean)
```

1 2 3 ## 3103 2720 2805