ВМСиС

Лекция 6 Хранение данных в ЭВМ

Хранение и передача информации

С древних времен перед человечеством стояла задача хранить и передавать знания и данные

- Учет имущества
- Астрономические наблюдения
- Долги и доходы
- История
- многое другое

Инка и его главный бухгалтер — кипукамайок.

Рисунок из хроники Мартина де Муруа. 1590 год

Один из крупнейших накопителей информации древней Южной Америки

Расписка об обмене рабов на масло.

Запись о сборе рыбного оброка.

`[Люди] Василя Софонтьева [послали] Овдокиму: Онтан послал два леща да щуку; из Василевой рыбы леща послал; леща Степан — четвертого'

- Копирование традиционных носителей информации не бесплатно
- Копирование может приводить к потерям
- Для хранения требуются очень много пространства
- Легко уничтожается

Хранение данных

- Мир аналоговый
- Компьютер цифровой

Данные нужно "оцифровать"

Однако, все цифровые данные в реальном мире так или иначе хранятся в аналоговом виде

Аналоговые и цифровые данные

Способы представления цифровых данных в аналоговых носителях

• Электричество

- Определенные уровни напряжения, например, 0 В '0', 3 В '1'
- Определенные значения протекающего тока

• Магнетизм

Ориентация вектора намагниченности для кодирования '0' и '1'

• Другое

- Отверстия в перфокартах
- Поглощающие и отражающие свет области на лазерных дисках

Оперативная память VS Постоянная память

- Произвольный доступ (random access)
- Скорость доступа сравнима со скоростью вычислений
- Времена чтения и записи равны или сравнимы

- Возможность сохранить большие объемы данных
- Сохранение информации при обесточивании ЭВМ
- Возможность изменения не обязательна

Триггеры на электронных лампах

Триггеры на лампах

Один триггер состоял из 2 триодов и сохранял
 1 бит информации

 Для сохранения 1 кб данных требовалось более 8000 ламп

Ферритовые сердечники

Ферритовые сердечники

Принцип работы

Х, У — провода возбуждения,

S — считывания,

Z — запрета

Современный мир

	Static RAM	Dynamic RAM
Применение	CPU Cache	Main RAM
Скорость	Очень высокая	Высокая
Стоимость	Высокая	Дешевле SRAM
Плотность данных	Низкая	Высокая

Принцип работы DRAM (1 транзистор)

 Группы ячеек DRAM объединены в т.н. СЛОВА (8, 16, 32 бита)

 Данные из DRAM читаются/пишутся пословно путем активации транзисторов ячеек памяти

 При записи данных в ячейки подается ток заряжающий конденсатор через линию битов

• При чтении данных из конденсатора "вычитывается" заряд

 Так как конденсаторы подвержены саморазряду, требуется их периодический перезаряд, отсюда - Dynamic RAM

DRAM Cell

Адресация DRAM

```
UV. COLUMN COLUM
```

Информация о модуле:

- 2 стороны
- 8 банков
- Каждый банк состоит из 2^16 рядов (65536 рядов)
- Каждый ряд содержит 2^10 колонок по 64 бита каждая
 2^10 * 64 = 65536 бит = 8 кб
- Итоговая емкость модуля
 2 * 8 * 2^16 * 2^10 * 64 = 68'719'476'736 бит = 8'589'934'592 байт = 8 гб

Адресация DRAM

- Для адресации памяти в современных СРU используется 64 битная адресация, что позволяет адресовать до 2^64 байт (16 экзабайт)
- В адресе кодируется:
 - Номер модуля памяти
 - Сторона модуля
 - Номер банка памяти
 - Ряд в банке памяти
 - о Строка в банке памяти
- При запросе данных по определенному адресу контроллер памяти активирует линии адреса в соответствии с определенными битами адреса

Адресация DRAM

Column Address Lines

Чтение данных из DRAM

• После активации ячейки памяти напряжение заряд конденсатора устанавливает высокое напряжение на выходе ячейки

Выход ячейки подключается к усилителю сигнала
 Выход усилителей сигнала ячеек подключается к шине данных модуля памяти и далее данные передаются в СРU
 Конденсатор

Sense Amplifier
Word Line
Capacitor

перезаряжается для возможности повторного считывания

Запись данных в DRAM

 На линии битов подаются данные для записи

• Активируется линия слова

• Происходит заряд конденсаторов ячеек

Принцип работы SRAM (6 транзисторов)

Эквивалентная схема ячейки SRAM

- Для хранения бита данных используется пара закольцованных инверторов
- Нет необходимости в перезарядке конденсаторов
- Использование инверсного входа\выхода повышает скорость чтения\записи

Чтение данных в SRAM

 При активации линии слова прямой и инверсный выходы ячейки попадают на выходной усилитель

За счет использования инверсного выхода скорость установки — стабильного сигнала на усилителе значительно повышается

Запись данных в SRAM

 На прямую и инверсную линии WL битов подаются данные

При активации линии слова происходит одновременная запись данных в каждый из инверторов

Постоянная память

Основные требования к ПЗУ

- Неразрушающее чтение
- Хранение данных в течение долгого времени в выключенном состоянии
- Высокая емкость и плотность записи

Перфокарты и перфоленты

```
//STEP2 EXEC PROC=SLINK, TESTPGM=BADK, ACCT=BADK
```

Перфокарты и перфоленты

Магнитный барабан

Гибкие магнитные диски

Аудиокассеты

Жесткий диск - hard drive disk

Состав HDD

Блок электроники:

- Контроллер шины IDE/SATA
- Сасhе память
- Блок управления

Гермозона:

- Малоинерционный шаговый двигатель
- Считывающие головки
- Блок магнитных дисков

Твердотельные накопители

Принцип работы flash-памяти

Затвор с плавающим зарядом

Принцип работы flash-памяти

Ячейка типа SLC - Single Level Cell

- 2 уровня заряда
- 1 бит информации

Принцип работы flash-памяти

Ячейка типа MLC - Multi Level Cell

- > 2 уровней заряда
- > 1 бита информации

Чтение flash-памяти

Наличие заряда на плавающем затворе приводит к перемещению носителей заряда на управляющем затворе. Это приводит к изменению BAX транзистора.

Чтение flash-памяти

Запись flash-памяти

Необходимо изменить заряд плавающего затвора, но он электрически изолирован.

• Туннельный эффект:

- Для записи положительного заряда, на управляющий затвор подается высокое положительное напряжение и благодаря туннельному эффекту электроны "пробивают" слой изолятора и покидают плавающий затвор
- Для записи отрицательного заряда, на управляющий затвор подается высокое отрицательное напряжение и электроны "пробивая" изолятор заполняют плавающий затвор

• Инжекция горячих носителей

 При протекании тока высокого напряжения между истоком и стоком электроны могут преодолевать изолятор и попадать в плавающий затвор

Каждая запись повреждает слой оксида, что ограничивает количество записей

SLC и MLC память

	SLC	MLC
Плотность записи	Ниже	Выше
Стоимость	Выше	Ниже
Износостойкость	100к записей	10к записей

Организация ячеек flash-памяти

NOR-flash

Организация ячеек flash-памяти

NAND-flash

NOR u NAND

	NOR	NAND
Плотность данных	Ниже	Выше
Скорость чтения	Выше	Ниже
Используется в	Микроконтроллеры	Накопители: SSD, USB flash, SD карты

Чтение массива NOR памяти

- На целевую ячейку подается промежуточное напряжение, открывающее затвор только при наличии заряда на плавающем затворе
- На остальные ячейки подается напряжение отсечки закрывающее транзистор
- Если протекающий через транзистор ток превышает пороговое значение, то ячейка хранит '1', иначе - '0'

Чтение массива NAND памяти

- На целевую ячейку подается промежуточное напряжение, открывающее затвор только при наличии заряда на плавающем затворе
- На остальные ячейки подается высокое напряжение полностью открывающее транзистор
- Целевая ячейка задает ток всей цепи
- Если протекающий ток выше порогового, то ячейка хранит '1'

Запись массива данных

Запись flash памяти осуществляется в два этапа:

- 1. Запись '1' в каждую ячейку
- 2. Обнуление определенных ячеек путем занесения отрицательного заряда в плавающий затвор

Стирание NOR памяти

На управляющий затвор ячеек подается высокое отрицательное напряжение и электроны покидают плавающий затвор

Стирание NOR памяти

На управляющий затвор ячеек подается высокое отрицательное напряжение и электроны покидают плавающий затвор

Запись NOR памяти

- К истоку транзистора прикладывается высокое положительное напряжение
- На затвор целевой ячейки подается напряжение открывающее транзистор
- Благодаря эффекту инжекции горячих носителей электроны пробивают изолятор и попадают на плавающий затвор

Запись NAND памяти

- К истоку транзистора прикладывается высокое положительное напряжение
- На затвор целевой ячейки подается напряжение открывающее транзистор
- Благодаря эффекту инжекции горячих носителей электроны пробивают изолятор и попадают на плавающий затвор