## Second Order Pseudolikelihood Learning in Relational Domain

Krishna Kumar Tiwari Under the guidance of Dr.V. Vijaya Saradhi

Department of Computer Science Indian Institute Of Technology Guwahati

k.tiwari@iitg.ernet.in

July 7, 2011

- Introduction
- Graphical Models
- Approximation Methods
- Relational Dependency Networks
- **5** Second Order PL in RDN
- 6 Second Order RBC
- Experimental Results
- 8 Conclusion and Future Work

## Traditional Vs. Relational Learning

#### Traditional Domain

- Instances follows i.i.d assumption.
- Homogeneous objects.

# Statistical Relational Learning

- Violates i.i.d assumption.
- Heterogeneous objects and links.

#### Real World Data

- Structured, Semi structured, Unstructured.
- Heterogeneous objects and links.



## Examples

citation database (HEP), Movie database (IMDB), Hypertext classification database (ProxWebKB)

## Relational Learning Opportunities

- **Object Classification** Example, in citation database, predicting the topic of a paper.
- **Object Type Prediction** Predict whether a set of pages belong to conference paper, master's thesis or technical report.
- Link Type Prediction— Predicting a paper is published in journal, conference or workshop.
- Predicting Link Existence— Given two papers are related or not.
- Link Cardinality Estimation— Predicting the number of citations of a paper.
- Group Detection— In movie database, identifying groups of same type of movies.

## Challenges

#### How to model relational data?

- Represent as graphs.
- Represent in multiple tables.
- Represent in terms of fist order logic statements.

#### Individual vs. Collective classification

- Individual classifiers assumes class label of related entities are independent.
- Collection classification uses related entities class label along with other attribute.

## Logical vs. Statistical dependencies

- Logical :  $A \rightarrow B$
- Statistical : Correlation(A, B) = 0.6

Review

Length

## **Graphical Models**

### Directed Models

- Does not allow cyclic dependencies among the attributes.
- Simple parameter estimation and structure learning technique.
- Relational Bayesian Networks.

#### 

edges = direct causal influence

Accepted

## **Graphical Models**

#### Undirected Models

- Represent cyclic dependencies.
- Requires known network structure.
- Parameter estimation requires repeated inference over large values.
- Relational Markov Networks.

# Markov Networks Smoking Cancer Asthma Cough

## Relational Dependency Networks

- Approximate model.
- First model to learn autocorrelation.
- Simple structure learning and parameter estimation.

## Approximation Methods

Assume data contains n samples of m dimensional vectors following *i.i.d*, sampled from a distribution  $p_{\theta_0}$  with  $\theta_0 \in \Theta \subset R^r$ ,

$$D = (X^1, .... X^n), X^i \in R^m,$$

#### Maximum likelihood estimator

MLF is defined as:

$$I_n(\theta; D) = \sum_{i=1}^n p_{\theta}(X^i) \qquad (1)$$

$$\widehat{\theta}_n^{ml} = \underset{\theta_n \in \mathcal{A}}{\operatorname{arg max}} I_n(\theta; D)$$

#### **Pseudolikelihood**

PL is defined as:

$$pl_n(\theta; D) = \sum_{i=1}^{n} \sum_{j=1}^{m} log p_{\theta}(X_j^i | X_{-j}^i).$$
(2)

Where subscript represents dimension and  $X_{-i}^{i} = \{X_{k}^{i} : k \neq j\}$ .

## Approximation Methods

## **Composite Likelihood**

- Composite likelihood is a generalization of pseudolikelihood function.
- Composite likelihood function is defined as :

$$cl_n = \sum_{i=1}^{n} \sum_{j=1}^{k} log p_{\theta}(X_{A_j}^i | X_{B_j}^i).$$
 (3)

 $A \neq \emptyset = A \cap B$ , where A and B represents the dimension set of the instance X.

- If  $|A_i| = 1$  then composite likelihood represents pseudolikelihood.
- Dillon extended composite likelihood by introducing component weight and selection probabilities to make it stochastic composite likelihood.
- Variance of the model is minimum in case of full likelihood and maximum in pseudolikelihood.

## Relational Dependency Networks

**Data Graph**  $G_D = (V_D, E_D)$ .  $V_D$  represents objects in the data graph and  $E_D$  represents relationship between these objects.



Figure: Data Graph

RDN represents a joint distribution over the values of the attributes in the data graph,

$$x = \left\{ \{X_{v_i}^{t_{v_i}} : v_i \in V \text{ s.t. } T(v_i) = t_{v_i}\} \cup \{X_{e_j}^{t_{e_j}} : e_j \in E \text{ s.t. } T(e_j) = t_{e_j}\} \right\}$$

Approximation of p(x) is done by pseudolikelihood to learn the parameters.

$$PL(G_D; \theta) = \prod_{t \in T} \prod_{X_i^t \in X^t} \prod_{v: T(v) = t} p(x_{v_i}^t | pa_{X_{v_i}^t}; \theta) \prod_{e: T(e) = t} p(x_{e_i}^t | pa_{X_{e_i}^t}; \theta)$$
(4)

**Model Graph**  $G_M = (V_M, E_M)$  represents probabilistic relationship between the attributes.



Figure: Model Graph

RDN uses relational learners to learn CPDs.

- Relational Bayesian Classifier (RBC)
- Relational Probability Tree (RPT)

## Relational Bayesian Classifier

- Treats heterogeneous subgraphs as a homogeneous set of attributes multisets.
- Deals with multisets of different sizes. Ex. In case of citation database, considering publication dates of cited papers form multisets of varying size (e.g. {2002,2002,2006,2009}, {2004,2007,2009}).

## Relational data representation



## Homogeneous attribute representation

| published | cited paper<br>year          | Author name               | cited papers<br>journal name | Number of pages |
|-----------|------------------------------|---------------------------|------------------------------|-----------------|
| Yes       | 1988,2002,2004               | Jennifer, David<br>Jenson | JMLR, KDD                    | 10              |
| No        | 2001,2001,2000               | D Koller, B Taskor        | JMLR, JSTOR                  | 6               |
| Yes       | 1986,2000                    | Taskar, Abbele,<br>Dephne | SIGCOM, ICDM,<br>ILP, JMLR   | 11              |
| No        | 1995,2002,2004,<br>2006,2009 | Scuse, David              | JAM, JSTOR                   | 9               |
| Yes       | 2009,2010                    | Stephne, koller           | JMLR, JSTOR                  | 12              |

Independent assumption among the values of set performs best.

## Second Order PL in RDN

#### Motivation

- Choice of different order of likelihood object gives us different ways to approximate joint distribution p(x).
- In highly correlated environment it is better to deal with appropriate combination of attribute.

We define composite likelihood in RDN as:

$$cl(G_D; \theta) = \prod_{t \in T} \prod_{X_{A_i}^t \in X^t}^{\kappa} \prod_{v: T(v) = t} p(X_{v_{A_i}}^t | p_{A_{X_{v_{B_i}}^t}}) \prod_{e: T(e) = t} p(X_{e_{A_i}}^t | p_{A_{X_{e_{B_i}}^t}})$$
(5)

Subject to the constraint:

$$A_i \neq \emptyset = A_i \cap B_i$$

Where  $A_i$  and  $B_i$  represents set of dimensions.

## Second Order PL in RDN

We are denoting second order pseudolikelihood as  $pl_2(G_D; \theta)$ .

$$pl_{2}(G_{D};\theta) = \sum_{t \in T} \sum_{X_{\{p,q\}}^{t} \in X^{t}}^{k} \sum_{v: T(v) = t} p(x_{v_{A_{i}}}^{t} | pa_{x_{v_{B_{i}}}^{t}}) \sum_{e: T(e) = t} p(x_{e_{A_{i}}}^{t} | pa_{x_{e_{B_{i}}}^{t}})$$
 (6)

#### Comparison with PL

- Generalization of PL in the context of RDN.
- Second order PL deals with pair of attributes.

#### **Second Order Relational Learners?**

## Second Order RBC

- Initially we have set of attributes denoted as  $A = \{X_1, X_2, \cdots, X_m\}$ .
- Second order RBC makes all possible pair of attributes and denoted as P.

$$P = \{\{X_1, X_2\}, \{X_1, X_3\}, \cdots, \{X_{m-1}, X_m\}\}$$

 Second order RBC select elements from P which lead to the full likelihood denoted as set S.

#### Definition of set S

$$S = \{s_i : s_i \in P\} \tag{7}$$

Subject to the constraints:

$$\forall s_i, s_i \in S \quad s_i \cap s_i = \emptyset \tag{7.a}$$

$$\bigcup_{i=1}^{|S|} s_i = A \tag{7.b}$$

## Construction of set S



#### **Exhaustive Search**

Choose the subset from P which maximize the likelihood of the class.

$$S \equiv \underset{p \in P}{\operatorname{arg \, max}} \ P(C|p) \tag{8}$$

## Greedy Approach

• Assign score to all elements of set P.

$$score(p_i) = logP(C|p_i \in P) \equiv logP(C|\{X_i, X_i\})$$
 (9)

 Add maximum score elements of P to S by maintaining the constraints of equation (7).

## Second Order PL in RBC

#### Second Order PL in RBC

According to modified second order PL,

$$P(C|\{a_1, a_2, .... a_m\}) \propto P(A|C) * P(C)$$

$$\equiv P(S|C) * P(C) = \prod_{i=1}^{|S|} P(s_i|C) * P(C)$$
(10)

## Complexity Analysis

Second order RBC learning has three major components.

- Assignment of score to all elements of set P, it takes  $O(|P| \times N)$ , where N is number of subgraphs.
- Sorting of the scores, it takes  $O(|P| \times log(|P|))$ .
- Construction of set S takes  $O(|P|^2)$

Overall asymptotic complexity of second order RBC is  $O(|P| \times N)$ .

## **QGraph Query**



## **Accuracy Comparison**



## Likelihood Comparison



## **QGraph Query**



## **Accuracy Comparison**



## Likelihood Comparison



#### Effect of Correlation

## Accuracy vs. Correlation



#### Likelihood vs. Correlation



Our model performs better than existing RBC in highly correlated environment in both likelihood estimation as well as accuracy.

#### Effect of Autocorrelation

## Accuracy vs. Autocorrelation



## Likelihood vs. Autocorrelation



- Performs better in low to moderate autocorrelation and comparable in high autocorrelation environment.
- In high autocorrelation scenarios prediction is biased.

## Effect of Training Size

## Accuracy vs. Training Size



## Likelihood vs. Training Size



- Second order RBC takes more training data to learn the high correlation present in the data.
- Performs better than existing RBC in highly correlated environment in both likelihood estimation as well as accuracy.

## Real World Data Results

#### Experiments on three real world data sets

- HEP Predict the topic of paper given paper attributes, author names and publisher.
- MSN Predict time stamp of mote to mote connections.
- ProxWebKB Predict the category of a web page given it's linked page categories.



## HEP Data Set Result

#### Task

We want to predict the "acceptability" of a paper which is formed using paper citation degree and journal name.

## Accuracy vs. Training Size



## Likelihood vs. Training Size



## Conclusion and Future Work

#### Conclusion

- We demonstrated the use of second order pseudolikelihood in the RDN learning.
- Extended RBC to second order setting.
- Shown improvements in highly correlated data sets both in parameter estimation and classification accuracy.

#### Future Work

- Making score function which will observe characteristic of test subgraphs.
- Selective models for Second order PL.
- Bias-variance analysis of the model.

**ECML PKDD 2011!!** 



