Министерство образования и науки Российской Федерации

КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

ИНСТИТУТ МЕХАНИКИ И МАТЕМАТИКИ КАФЕДРА АЭРОГИДРОМЕХАНИКИ

Специальность: 010200 — механика

Специализация: 010205 — механика жидкости, газа и плазмы

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

(Магистрская работа)

РЕШЕНИЕ ЗАДАЧИ О ПУЛЬСИРУЮЩЕМ ТЕЧЕНИИ

Работа завершена:	
20 июня 2014 г	(А.Р. Сираев)
Работа допущена к защите:	
Научный руководитель	
доктор технических наук, профессор	
21 июня 2014 г	(Н.И. Михеев)
Заведующий кафедрой	
доктор физмат. наук, профессор	
24 июня 2014 г.	(А.Г. Егоров)

Содержание

У	СЛОВ	ные обозначения и сокращения	4
1	Вве	едение	E.
2	Пос	становка задачи	6
3	Per	пение задачи	7
	3.1	Уравнение нестационарного даминарного движения вязкой	
		жидкости в цилиндрической трубе круглого сечения	7
	3.2	Переход к безразмерной форме	8
	3.3	Точное решение в случае осцилирующего ламинарного течения	(
	3.4	Вычисление среднерасходной скорости	(
4	Пр	имененные методы при решении задачи	10
	4.1	Формулы для вычисления функций Бесселя	10
	4.2	Разностные схемы для уравнения диффузии в цилиндриче-	
		ских координатах	10
	4.3	Сравнение результатов точного и численного решения	10
	4.4	Зависимость сходимости по периоду от численной схемы	10
	4.5	Выбор разностной схемы для проведения анализа решения .	10
5	Вы	бор и обоснование использованных технологий програм-	
	миј	оования.	11
	5.1	Выбор платформы разработки и языка программирования .	11
	5.2	Выбор хранилища данных	11
	5.3	Выбор технологии для отображения данных	11
6	Ана	ализ полученного решения	12
	6.1	Зависимость профиля скорости от варьируемых комплексов	12
	6.2	Крайние случаи	12
	6.3	Анализ среднерасходной скорости	12

7	Заключение	13
8	Список использованной литературы	13

Условные обозначения и сокращения

```
ОКЗА — обратная краевая задача аэрогидродинамики
 ИНЖ – идеальная несжимаемая жидкость
  ЭВМ — электронно-вычислительная машина
 CUDA – Compute Unified Device Architecture
       (вычислительная унифицированная архитектура устройств)
   TPL — Task Parallel Library (библиотека параллельных задач)
   CPU — Central processing unit (центральное процессорное устройство)
  GPU — Graphics processing unit (графическое процессорное устройство)
GPGPU — General-purpose graphics processing units (GPU общего назначения)
   API – Application program interface
       (интерфейс прикладного программирования)
  .NET – .NET Framework (программная платформа от Microsoft)
 PLINQ – Parallel for Language Integrated Query
       (параллельность для интегрированного языка запросов)
     M — исходное количество узлов на профиле
     N — количество узлов на единичной окружности в канонической
       плоскости – искомое число узлов на профиле
```

1 Введение

2 Постановка задачи

Рассматривается нестационарное ламинарное течение вязкой несжимаемой жидкости по цилиндрической трубе круглого сечения радиуса r_0 и длины x_0 с заданным законом изменения перепада давления.

Требуется:

- 1. получить уравнения для пульсирующего ламинарного течения в круглой цилиндрической трубе в безразмерной форме;
- 2. получить численное решение полученных уравнений;
- 3. найти распределение скорости по радиусу трубы;
- 4. вычислить среднерасходную скорость, кинетическую энергию по периоду;
- 5. проанализировать полученные результаты, сделать выводы.

3 Решение задачи

3.1 Уравнение нестационарного ламинарного движения вязкой жидкости в цилиндрической трубе круглого сечения

Исходные уравнения были получены из уравнений Стокса:

$$\begin{cases} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = F_x - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \nabla^2 u, \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = F_y - \frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \nabla^2 v, \\ \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = F_z - \frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \nabla^2 w \\ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0. \end{cases}$$

$$(1)$$

В рамках данной задачи ось трубы совпадает с осью x: v=w=0, объемные силы отсутствуют: $F_x=F_y=F_z=0$. При учете уравнения неразрывности получено, что $\frac{\partial u}{\partial x}=0$. Третье уравнение из системы уравнения Стокса примет вид

$$\frac{\partial u}{\partial t} - \nu \nabla^2 u = -\frac{1}{\rho} \frac{\partial p}{\partial x}.$$
 (2)

Левая часть уравнения зависит только от y, z и t. При этом, из первых двух уравнений (1) следует, что $\frac{\partial p}{\partial y} = \frac{\partial p}{\partial z} = 0$ Таким образом, правая часть

уравнения не зависит от y и z. Это означает, что $\frac{\partial p}{\partial x}$ является функцией зависящей только от времени

$$-\frac{\partial p}{\partial x} = \rho f(t). \tag{3}$$

При переходе в цилиндрическую систему координат и подстановке в уравнение (2) выражения для градиента давления (3) получено уравнение нестационарного ламинарного движения вязкой жидкости в цилиндрической

трубе круглого сечения

$$\frac{\partial u}{\partial t} - \nu \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right) = f(t) \tag{4}$$

3.2 Переход к безразмерной форме

Закон изменения перепада давления задан следующим образом:

$$\frac{\partial p}{\partial x} = \rho \left(A \cos \omega t + \frac{\Delta p}{\rho x_0} \right) \tag{5}$$

Связь между размерными и безразмерными переменными:

$$t = t_0 \bar{t}, \quad u = u_0 \bar{u}, \quad r = r_0 \bar{r}, \quad x = x_0 \bar{x}$$
 (6)

Выбраны следующие масштабы:

$$t_0 = \frac{1}{\omega} , \quad u_0 = \sqrt{\frac{\Delta p}{\rho}} , \quad u' = \sqrt{Ar_0}$$
 (7)

После подстановки (5) и введеных масштабов (7) уравнение (4) примет вид

$$\omega u_0 \frac{\partial \bar{u}}{\partial \bar{t}} - \nu \frac{u_0}{r_0^2} \left(\frac{\partial^2 \bar{u}}{\partial \bar{r}^2} + \frac{1}{\bar{r}} \frac{\partial \bar{u}}{\partial \bar{r}} \right) = \frac{u'^2}{r_0} \cos \bar{t} + \frac{u_0^2}{x_0}$$
 (8)

Обе части уравнения умножены на $\frac{r_0^2}{\nu u_0}$ (черта над безразмерными переменными опущена)

$$\omega \frac{r_0^2 \partial u}{\nu \partial t} - \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r}\right) = \frac{u_0 r_0 u'^2}{\nu u_0^2} \cos t + \frac{u_0 r_0^2}{\nu x_0} \tag{9}$$

После введения безразмерных комплексов

$$s = r_0 \sqrt{\frac{\omega}{\nu}} , Re = \frac{u_0 r_0}{\nu} , \beta = \frac{u'}{u_0} , \varepsilon = \frac{r_0}{x_0}$$

уравнение (9) примет окончательный вид в безразмерной форме:

$$s^{2} \frac{\partial u}{\partial t} - \left(\frac{\partial^{2} u}{\partial r^{2}} + \frac{1}{r} \frac{\partial u}{\partial r} \right) = Re \left(\beta^{2} \cos t + \varepsilon \right). \tag{10}$$

Также, удобным для расчетов будет другой вид уравнения (10), в котором используются комплексы

$$H_1 = s^2$$
 , $H_2 = Re\beta^2$, $H_3 = Re\varepsilon$,

которые полностью определяют решение. Тогда

$$H_1 \frac{\partial u}{\partial t} - \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r}\right) = H_2 \cos t + H_3. \tag{11}$$

3.3 Точное решение в случае осцилирующего ламинарного течения

- 4 Примененные методы при решении задачи
- 4.1 Формулы для вычисления функций Бесселя
- 4.2 Разностные схемы для уравнения диффузии в цилиндрических координатах
- 4.3 Сравнение результатов точного и численного решения
- 4.4 Зависимость сходимости по периоду от численной схемы
- 4.5 Выбор разностной схемы для проведения анализа решения

- 5 Выбор и обоснование использованных технологий программирования.
- 5.1 Выбор платформы разработки и языка программирования
- 5.2 Выбор хранилища данных
- 5.3 Выбор технологии для отображения данных

- 6 Анализ полученного решения
- 6.1 Зависимость профиля скорости от варьируемых комплексов
- 6.2 Крайние случаи
- 6.3 Анализ среднерасходной скорости

- 7 Заключение
- 8 Список использованной литературы