NUS-ISSIntelligent Sensing and Sense Making

Introduction to signals

by Dr. Tan Jen Hong

© 2019 National University of Singapore. All Rights Reserved.

Source: http://911research.wtc7.net/mirrors/guardian2/wtc/seismic/WTC_PENT_KIM.htm

What is signal?

Source: https://volcanoes.usgs.gov/vhp/seismic_signals.html

A set/series of data

 Any kind of physical variable subjected to variations represents a signal

 Independent variable, physical variable can be either scalar or vector

 Independent variable: time (t), position (x,y,z)

Example: ECG

Example: EEG

Normal (right, FP2-T4)

Depression (left, FP1-T3)

1000

1500

Sample

500

Depression (right, FP2-T4)

Example:

Source: https://www.nucleics.com/peaktrace/peaktracebox-overview.html

Example: 4 walking strides from an elderly

Source: doi:10.3390/s150306419

Example: Movement prediction in rowing

based on stroke detection

Source: DOI: 10.1109/ISSNIP.2014.6827684

Example: Ultrasound image

Source: https://www.cliniciansbrief.com/article/liver-ultrasound-guided-fine-needle-aspiration

Signal as function

Real - Real

 Continuous function of real indepedent variables

•1 dimensional: z = f(x)

•2 dimensional: z = f(x, y)

$$z, x, y \in R$$

Source: "The scientist and engineer's guide to digital signal processing", by Steven W. Smith

Signal as function

Real - Discrete

 Continuous function of real indepedent variables

•1 dimensional: z = f[i]

•2 dimensional: z = f[i, j]

$$z \in R$$
 $i, j \in Z^+$

Source: "The scientist and engineer's guide to digital signal processing", by Steven W. Smith

Signal as function

Discrete - Discrete

 Continuous function of real indepedent variables

•1 dimensional: z = f[i]

•2 dimensional: z = f[i, j]

$$z \in Z$$
 $i, j \in Z^+$

Source: "The scientist and engineer's guide to digital signal processing", by Steven W. Smith

Sampling

Source: "The scientist and engineer's guide to digital signal processing", by Steven W. Smith

issm/m1.1/v1.0

Nyquist-Shannon theorem

- •Suppose the highest frequency component, in hertz, for a given analog signal is f_{max}.
- •According to the Nyquist-Shannon theorem, the sampling rate must be at least $2f_{max}$, or twice the highest analog frequency component.
- •If the sampling rate is less than $2f_{max}$, some of the *highest frequency components* in the analog input signal will not be correctly represented in the digitized output

Source: http://www.writeopinions.com/nyquist-ndash-shannon-sampling-theorem

Source: https://whatis.techtarget.com/definition/Nyquist-Theorem

Sampling

Example

- Wheel of a forward-moving car is seemed rotating backward when by right it should rotate forward
- •Can be explained by undersampling. If movie is filmed at 24 frames per second, but wheel rotates more than 12 times per second, under-sampling likely creates the impression of backward rotation

Source: https://www.howitworksdaily.com/question-of-the-day-why-do-car-wheels-look-like-they-are-spinning-backwards-at-high-speed/

issm/m1.1/v1.0

Question

 A telephone company digitize voice by assuming a maximum frequency of 4000 Hz

•What should be the sampling rate?

Question

- •A complex signal has a bandwidth of 200 kHz.
- •What is the minimum sampling rate for this signal?

Signal types

Periodic | Aperiodic

• A signal is periodic if there exists a positive constant T_0 such that

$$f(t + T_0) = f(t) \qquad \forall t$$

Source: http://pilot.cnxproject.org/content/collection/col10064/latest/module/m10057/latest

Signal types

Even | Odd

19 of 21

 Even signals can be easily spotted as they are symmetric around vertical axis

$$f(t) = f(-t)$$

$$f(t) = -f(-t)$$

Source: https://www.slideshare.net/mihirkjain/ch1-46505880

Superposition, decomposition

Source: "The scientist and engineer's guide to digital signal processing", by Steven W. Smith

issm/m1.1/v1.0

Superposition, decomposition

- When dealing with linear systems, signals can only be combined by scaling and adding, no signalsignal multiplication
- Synthesis: The process of combining signals through scaling and addition
- •The beauty of superposition: Instead of trying to understand how complicated signals behave as a whole, we study the individual components, which are simpler signals

Source: "The scientist and engineer's guide to digital signal processing", by Steven W. Smith

issm/m1.1/v1.0