APRENDIZAJE CONCEPTUAL

Índice

- Definición
- Aprendizaje conceptual como búsqueda
- Algoritmo FIND-S
- Algoritmo CANDIDATE-ELIMINATION
- Sesgo Inductivo

Aprendizaje Conceptual:

Inferir un concepto —una función booleana— a partir de un conjunto de entrenamiento.

Ejemplo:

¿Cuándo salva Pedro un examen?

Se define concepto objetivo c:

c: $X \rightarrow \{0,1\}$ en donde X es el conjunto de instancias.

 En el ejemplo, c(x) = 1 implica que Pedro salva el examen para la instancia x ∈ X

 Supongamos que contamos con el siguiente conjunto de entrenamiento:

#Ej	×					
	Dedicación	Dificultad	Horario	Humedad	Humor Doc	Salva
1	Alta	Alta	Nocturno	Media	Bueno	SÍ
2	Baja	Media	Matutino	Alta	Malo	NO
3	Media	Alta	Nocturno	Media	Malo	SÍ
4	Media	Alta	Matutino	Alta	Bueno	NO

Alguien ya eligió por mí los atributos para representar las instancias en este problema.

- Puedo elegir cómo representar al concepto buscado.
- A los posibles candidatos los denominamos hipótesis.
- Para fijar ideas utilizaremos un espacio H con hipótesis de la forma:
 - h:<Dedicación, Dificultad, Horario, Humedad, HumorDoc>
 - h representa una conjunción de restricciones sobre cada atributo
 - Para cada atributo, se tienen los posibles valores:
 - Valor específico: alto, medio,...
 - Todo valor es aceptable: ?
 - Ningún valor es aceptable: Ø

- La hipótesis "Pedro salva un examen

 estudia mucho", se puede representar por: h: <Alta, ?, ?, ?, ?>
- Hipótesis más general, "Pedro salva siempre": <?, ?, ?, ?, ?>
- Hipótesis más específica, "Pedro siempre pierde": <Ø, Ø, Ø, Ø, Ø>,
 pero también <Alta, Ø, Ø, Ø, Ø>, <Ø, ?, Ø, Media, Bueno>, ...
- Estos ejemplos son válidos para el espacio H elegido. ¿Qué sucede si h es una disyunción de restricciones en lugar de una conjunción?

 Con el conjunto de entrenamiento dado... ¿<Alta, ?, ?, ?, ?> es una buena hipótesis para ser el concepto objetivo?

• ¿Esta es una buena elección para representar a las hipótesis si el concepto objetivo es "Pedro salva cuando su dedicación es alta o la dificultad es baja"?

- Dados:
 - Dominio de instancias X
 - Función objetivo:

c:
$$X \to \{0,1\}$$

Espacio de hipótesis H:

$$H=\{h_0, h_1,...\}, h_i: X \rightarrow \{0,1\}$$

Conjunto de Entrenamiento D:

$$D = \{ [x_0, c(x_0)], ..., [x_n, c(x_n)] / x \in X \}$$

Objetivo:

Determinar una hipótesis h \in H tal que h(x)=c(x) para todo x \in X.

- En nuestro ejemplo:
 - X es el conjunto de instancias formadas por los atributos:
 - Dedicación: alta, media, baja.
 - Dificultad: alta, media, baja.
 - Morario: matutino, nocturno.
 - Humedad: alta, media, baja.
 - HumorDoc: bueno, malo.
 - ► c: $X \rightarrow \{0,1\} / c(x)=1 \Leftrightarrow Pedro salva bajo las condiciones x.$
 - ► H = {h / h es la conjunción de restricciones sobre los atributos, tomando un valor específico, cualquier valor o ninguno}
 - D está dado por la tabla de la transparencia 4.

- La única información que tenemos de c son los valores en el conjunto de entrenamiento.
- Nada nos garantiza que el concepto objetivo pertenezca al conjunto H que elegimos.
- Hipótesis de Aprendizaje Inductivo:

Toda hipótesis que aproxime correctamente el concepto objetivo en un conjunto de ejemplos lo suficientemente grande también lo hará sobre las instancias aún no observadas.

Aprendizaje = Búsqueda

- Nuestro problema es encontrar una hipótesis en el espacio elegido
- En nuestro ejemplo, tenemos 2000 [5*5*4*5*4] hipótesis sintácticamente distintas
- ¿Cuántas semánticamente distintas hay?
- Tenemos que desarrollar estrategias para buscar en espacios muy grandes o infinitos.

Aprendizaje = Búsqueda

- Se necesitan estrategias para buscar en el espacio de hipótesis sin tener que listarlas todas.
- Definiciones:

► Más general o igual: Sean h_i y h_k funciones booleanas sobre X

$$h_j \ge h_k \text{ sii } (\forall x \in X) h_k(x) = 1 \rightarrow h_j(x) = 1$$

Análogamente, definimos más específica o igual:

$$h_i \le h_k$$
 sii $(\forall x \in X)$ $h_i(x) = 1 \rightarrow h_k(x) = 1$ o $h_k(x) = 0 \rightarrow h_i(x) = 0$

Aprendizaje = Búsqueda

se cumple: $h_k \ge h_i$ pero no se cumple: $h_j \ge h_i$ $h_k \ge h_j$ $h_i \ge h_j$

Recordamos el ejemplo

#Ej			c(x)			
	Dedicación	Dificultad	Horario	Humedad	Humor Doc	Salva
1	Alta	Alta	Nocturno	Media	Bueno	SÍ
2	Baja	Media	Matutino	Alta	Malo	NO
3	Media	Alta	Nocturno	Media	Malo	SÍ
4	Media	Alta	Matutino	Alta	Bueno	NO

Find-S

- ¿Cómo realizar la búsqueda de c en H?
- Algoritmo FIND-S: empiezo con la hipótesis más específica y a medida que tengo ejemplos generalizo.
- En nuestro ejemplo:

Esta forma de generalizar es válida para el H del ejemplo, pero no necesariamente para otro.

Find-S

Algoritmo FIND-S:

h ≡ hipótesis más específica de H

Para cada instancia positiva x

Para cada restricción r de h

Si x no satisface r, sustituir r por una restricción más general que satisfaga x.

Devolver h

- ¿Qué sucede con los ejemplos negativos?
- Notar que en el H de nuestro ejemplo siempre tenemos una única hipótesis más específica, pero en principio podrían ser varias.

Find-S

- Llegamos a una hipótesis válida, pero...
 - ¿Llegamos al concepto correcto?
 - ¿Por qué preferir la hipótesis más específica?
 - ¿Qué pasa si hay varias hipótesis más específicas? ¿Por qué quedarnos con sólo una de ellas?
 - ¿Y si en el conjunto de entrenamiento hay ejemplos mal clasificados?

- Definiciones:
 - Una hipótesis h es consistente con un conjunto de entrenamiento:

Consistente(h, D) =
$$\forall$$
[x,c(x)] \in D, h(x)=c(x).

► Espacio de versiones VS_{H,D}

$$VS_{H,D} = \{h \in H / consistente(h,D)\}.$$

- El espacio de versiones representa a todas las hipótesis candidatas a ser el objetivo buscado, dado el conjunto de entrenamiento.
- ¿Cómo calcular el espacio de versiones?

Algoritmo List-Then-Eliminate:

VS = conjunto con TODAS las hipótesis.

Para cada ejemplo [x, c(x)]:

Eliminar todas las h tq. $h(x)\neq c(x)$.

Devolver VS.

- Enumera todo el espacio de hipótesis.
- En espacios H infinitos...

- Representemos el espacio de versiones con las hipótesis consistentes más específicas y más generales.
- Límite general G_{H,D}:

$$G_{H,D} = \{g \in H \mid consistente(g,D) \mid (\neg \exists g' \in H) \mid g' > g \land consistente(g',D)\}$$

Límite específico S_{H,D}:

$$S_{H,D} = \{s \in H \mid consistente(s,D) \mid (\neg \exists s' \in H) \mid s > s' \land consistente(s',D)\}$$

Teorema de la representación del espacio de versiones

$$VS_{H,D} = \{h \in H / (\exists s \in S) (\exists g \in G) g \ge h \ge s\}$$

► En otras palabras, con G_{H,D} y S_{H,D} puedo representar a todo VS_{H,D}.

• En nuestro ejemplo:

<?, Alta, Nocturno, Media, ?>

Aprendizaje Automático - InCo

Algoritmo Candidate-Elimination:

S ≡ conjunto de hipótesis más específicas.

G = conjunto de hipótesis más generales.

Para cada instancia x.

Si x es un ejemplo positivo.

Remover de G cualquier hipótesis inconsistente con x.

Para cada hipótesis s de S, inconsistente con x.

Cambiarla por todas las generalizaciones mínimas de s, consistentes con x, para las cuales haya una hipótesis en G más general que ellas.

Remover de S toda hipótesis más general que otra hipótesis de S.

Algoritmo Candidate-Elimination (cont):

. . .

Si x es un ejemplo negativo.

Remover de S cualquier hipótesis inconsistente con x.

Para cada hipótesis g de G, inconsistente con x.

Cambiarla por todas las especializaciones mínimas de g, consistentes con x, para las cuales haya una hipótesis en S más específica que ellas.

Remover de G toda hipótesis más específica que otra hipótesis de G.

- Observar que:
 - ► El cálculo de S es una generalización de FIND-S.
 - Las operaciones de generalización y especialización dependen del espacio de trabajo H elegido.

Ejemplo Candidate-Elimination

Н

Supongamos

$$\begin{split} G_{H,D} &= \{h_a, \ h_b, \ h_c\} \\ S_{H,D} &= \{h_i, h_j, \ h_k\} \end{split}$$

Llega un ejemplo x, tal que:

- c(x) = False
- $h_i(x) = h_a(x) = h_b(x) = True$
- $h_i(x) = h_k(x) = h_c(x) = False$
- $h_1(x) = h_2(x) = False$
- $h_3(x) = ?$
- 1. ¿Qué hipótesis forman VS_{H,D}?
- 2. ¿Cómo queda VS_{H,D U {<x,False>}}?

Volviendo a Pedro...

#Ej	x					c(x)
	Dedicación	Dificultad	Horario	Humedad	Humor Doc	Salva
1	Alta	Alta	Nocturno	Media	Bueno	SÍ
2	Baja	Media	Matutino	Alta	Malo	NO
3	Media	Alta	Nocturno	Media	Malo	SÍ
4	Media	Alta	Matutino	Alta	Bueno	NO

En nuestro ejemplo:

```
S0=\{\langle\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset\rangle\}
G0={<?,?,?,?,?>}
S1={<Alta,Alta,Nocturno,Media,Bueno>}
G1={<?,?,?,?,?>}
S2={<Alta,Alta,Nocturno,Media,Bueno>}
G2={<Alta,?,?,?,>, <?,Alta,?,?,?>, <?,?,Nocturno,?,?>, <?,?,Media,?>, <?,?,?,Bueno>}
S3={<?,Alta,Nocturno,Media,?>}
G3={<?,Alta,?,?,?>, <?,?,Nocturno,?,?>, <?,?,Media,?>}
S4={<?,Alta,Nocturno,Media,?>}
G4={<?.?.Nocturno.?.?>, <?.?.?.Media.?>}
```

• ¿qué pasa si procesamos los ejemplos en otro orden?

- ¿El algoritmo converge a una hipótesis correcta? La respuesta es afirmativa cuando:
 - Los datos de entrenamiento no contienen ruido (errores).
 - ► Hay una hipótesis en H que describe el concepto objetivo.
- Si tuviésemos un oráculo, ¿cuál ejemplo nos conviene elegir como siguiente a procesar?

- ¿Cuál ejemplo elegiríamos para procesar?
 - ► El mejor ejemplo es aquel que hace que la mitad del espacio diga 'sí', y la otra mitad diga 'no'.
 - Esto reduce el tamaño del espacio de versiones a la mitad.

- Podemos utilizar conocimientos parciales:
 - Si una instancia satisface a toda hipótesis de S, con seguridad debe ser clasificada positiva.
 - Si una instancia no satisface a ninguna de las hipótesis de G, con seguridad debe ser clasificada negativa.

- Por ejemplo, ¿cómo se clasifica a...?
 - [Alta, Alta, Nocturno, Media, Malo]
 - [Alta, Baja, Matutino, Alta, Bueno]
 - [Alta, Baja, Nocturno, Media, Bueno]

Sesgo Inductivo

- ¿Qué sucede si el concepto objetivo no está considerado en H?
- Por ejemplo, este concepto no está en el H del ejemplo:

- Podríamos considerar el espacio con TODOS los conceptos posibles, pero... ¿cómo quedaría VS_{H,D}?
- Si no se hacen suposiciones previas sobre la forma del concepto que se busca.... ¡nada se puede aprender!

Sesgo Inductivo

 Sesgo Inductivo del algoritmo L es el conjunto mínimo de suposiciones B tales que:

$$(\forall x \in X)$$
 [(B \land D \land x) \rightarrow L clasifica correctamente a x]

¿Cuál es el sesgo inductivo de Find-S y Candidate—Elimination?