Example 6.6. Consider the function x shown in Figure 6.5. Let \hat{x} denote the Fourier transform representation of x (i.e., $\hat{x}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$, where X denotes the Fourier transform of x). Determine the values $\hat{x}(-\frac{1}{2})$ and $\hat{x}(\frac{1}{2})$.

Figure 6.5: Function *x*.

At a point of discontinuity, the Fourier transform representation converges to the average of the left and right limits.

1

Solution. We begin by observing that x satisfies the Dirichlet conditions. Consequently, Theorem 6.3 applies. Thus, we have that

$$\hat{x}(-\frac{1}{2}) = \frac{1}{2}\left[x(-\frac{1}{2}^-) + x(-\frac{1}{2}^+)\right]$$
 average of left and right
$$= \frac{1}{2}(0+1)$$

$$= \frac{1}{2} \quad \text{and}$$

$$\hat{x}(\frac{1}{2}) = \frac{1}{2} \left[x(\frac{1}{2}^-) + x(\frac{1}{2}^+) \right]$$

$$= \frac{1}{2} (1+0)$$

$$= \frac{1}{2}.$$