Single-Cell Analysis in Python.

API

Import Scanpy as:

```
import scanpy as sc
```

Note

Additional functionality is available in the broader ecosystem, with some tools being wrapped in the scanpy.external module.

Preprocessing: pp

Filtering of highly-variable genes, batch-effect correction, per-cell normalization, preprocessing recipes.

Any transformation of the data matrix that is not a *tool*. Other than *tools*, preprocessing steps usually don't return an easily interpretable annotation, but perform a basic transformation on the data matrix.

Basic Preprocessing

For visual quality control, see highest_expr_genes() and filter_genes_dispersion() in scanpy.pl .

<pre>pp.calculate_qc_metrics (adata, *[,])</pre>	Calculate quality control metrics.
pp.filter_cells (data[, min_counts,])	Filter cell outliers based on counts and numbers of
pp.filter_genes (data[, min_counts,])	Filter genes based on number of cells or counts.
pp.highly_variable_genes (adata[, layer,])	Annotate highly variable genes [Satija15] [Zheng:
pp.log1p (X, *[, base, copy, chunked,])	Logarithmize the data matrix.
pp.pca (data[, n_comps, zero_center,])	Principal component analysis [Pedregosa11].
<pre>pp.normalize_total (adata[, target_sum,])</pre>	Normalize counts per cell.

pp.regress_out (adata, keys[, n_jobs, copy])	Regress out (mostly) unwanted sources of variation
pp.scale (X[, zero_center, max_value, copy,])	Scale data to unit variance and zero mean.
pp.subsample (data[, fraction, n_obs,])	Subsample to a fraction of the number of observa
pp.downsample_counts (adata[,])	Downsample counts from count matrix.

Recipes

pp.recipe_zheng17 (adata[, n_top_genes, log,])	Normalization and filtering as of [Zheng17].
pp.recipe_weinreb17 (adata[, log,])	Normalization and filtering as of [Weinreb17].
pp.recipe_seurat (adata[, log, plot, copy])	Normalization and filtering as of Seurat [Satija15]

Batch effect correction

Also see [Data integration]. Note that a simple batch correction method is available via pp.regress_out(). Checkout scanpy.external for more.

Neighbors

Any transformation of the data matrix that is not *preprocessing*. In contrast to a *preprocessing* function, a *tool* usually adds an easily interpretable annotation to the data matrix, which can then be visualized with a corresponding plotting function.

Embeddings

tl.pca (data[, n_comps, zero_center,])	Principal component analysis [Pedregosa11].
tl.tsne (adata[, n_pcs, use_rep, perplexity,])	t-SNE [Maaten08] [Amir13] [Pedregosa11].
tl.umap (adata[, min_dist, spread,])	Embed the neighborhood graph using UMAP [N
tl.draw_graph (adata[, layout, init_pos,])	Force-directed graph drawing [Islam11] [Jacomy
tl.diffmap (adata[, n_comps, neighbors_key,])	Diffusion Maps [Coifman05] [Haghverdi15] [Wo
4	→

Compute densities on embeddings.

tl.embedding_density (adata[, basis,])	Calculate the density of cells in an embedding (per condit

Clustering and trajectory inference

tl.leiden (adata[, resolution, restrict_to,])	Cluster cells into subgroups [Traag18].
tl.louvain (adata[, resolution,])	Cluster cells into subgroups [Blondel08] [Levine15]
tl.dendrogram (adata, groupby[, n_pcs,])	Computes a hierarchical clustering for the given g
tl.dpt (adata[, n_dcs, n_branchings,])	Infer progression of cells through geodesic distance
tl.paga (adata[, groups, use_rna_velocity,])	Mapping out the coarse-grained connectivity struc

Data integration

	tl.ingest (adata, adata_ref[, obs,])	Map labels and embeddings from reference data to new da
- ◀		•

Marker genes

tl.rank_genes_groups (adata, groupby[,])	Rank genes for characterizing groups.
tl.filter_rank_genes_groups (adata[, key,])	Filters out genes based on log fold change and fraccategories.
tl.marker_gene_overlap (adata,[, key,])	Calculate an overlap score between data-deriven m
4	

Gene scores, Cell cycle

tl.score_genes (adata, gene_list[,])	Score a set of genes [Satija15].
tl.score_genes_cell_cycle (adata, s_genes,)	Score cell cycle genes [Satija15].

Simulations

Plotting: pl

The plotting module <code>scanpy.pl</code> largely parallels the <code>tl.*</code> and a few of the <code>pp.*</code> functions. For most tools and for some preprocessing functions, you'll find a plotting function with the same name.

See → tutorial: plotting/core for an overview of how to use these functions.

See the Settings section for all important plotting configurations.

Generic

pl.scatter (adata[, x, y, color, use_raw,])	Scatter plot along observations or variables axes
pl.heatmap (adata, var_names, groupby[,])	Heatmap of the expression values of genes.
pl.dotplot (adata, var_names, groupby[,])	Makes a dot plot of the expression values of var
pl.tracksplot (adata, var_names, groupby[,])	In this type of plot each var_name is plotted as a
pl.violin (adata, keys[, groupby, log,])	Violin plot.
pl.stacked_violin (adata, var_names, groupby)	Stacked violin plots.
pl.matrixplot (adata, var_names, groupby[,])	Creates a heatmap of the mean expression value
pl.clustermap (adata[, obs_keys, use_raw,])	Hierarchically-clustered heatmap.
pl.ranking (adata, attr, keys[, dictionary,])	Plot rankings.
pl.dendrogram (adata, groupby, *[,])	Plots a dendrogram of the categories defined in
	•

Classes

These classes allow fine tuning of visual parameters.

pl.DotPlot (adata, var_names, groupby[,])	Allows the visualization of two values that are en
pl.MatrixPlot (adata, var_names, groupby[,])	Allows the visualization of values using a color ma
pl.StackedViolin (adata, var_names, groupby)	Stacked violin plots.
4	

Preprocessing

Methods for visualizing quality control and results of preprocessing functions.

pl.highly_variable_genes (adata_or_result[,])	Plot dispersions or normalized variance versus m
pl.filter_genes_dispersion (result[, log,])	Plot dispersions versus means for genes.
pl.highest_expr_genes (adata[, n_top, show,])	Fraction of counts assigned to each gene over all

Tools

Methods that extract and visualize tool-specific annotation in an AnnData object. For any method in module tl, there is a method with the same name in pl.

PCA

pl.pca (adata, *[, color, gene_symbols,])	Scatter plot in PCA coordinates.
pl.pca_loadings (adata[, components,])	Rank genes according to contributions to PCs.
pl.pca_variance_ratio (adata[, n_pcs, log,])	Plot the variance ratio.
pl.pca_overview (adata, **params)	Plot PCA results.

Embeddings

pl.tsne (adata, *[, color, gene_symbols,])	Scatter plot in tSNE basis.
pl.umap (adata, *[, color, gene_symbols,])	Scatter plot in UMAP basis.
pl.diffmap (adata, *[, color, gene_symbols,])	Scatter plot in Diffusion Map basis.
pl.draw_graph (adata, *[, color,])	Scatter plot in graph-drawing basis.
pl.spatial (adata, *[, color, gene_symbols,])	Scatter plot in spatial coordinates.
pl.embedding (adata, basis, *[, color,])	Scatter plot for user specified embedding basis (e.
1	•

Compute densities on embeddings.

<pre>pl.embedding_density (adata[, basis, key,])</pre>	Plot the density of cells in an embedding (per conditi
4	•

Branching trajectories and pseudotime, clustering

Visualize clusters using one of the embedding methods passing color='louvain'.

<pre>pl.dpt_groups_pseudotime (adata[, color_map,])</pre>	Plot groups and pseudotime.
pl.dpt_timeseries (adata[, color_map, show,])	Heatmap of pseudotime series.
pl.paga (adata[, threshold, color, layout,])	Plot the PAGA graph through thresholding low-
pl.paga_path (adata, nodes, keys[, use_raw,])	Gene expression and annotation changes along
pl.paga_compare (adata[, basis, edges,])	Scatter and PAGA graph side-by-side.
4)

Marker genes

pl.rank_genes_groups (adata[, groups,])	Plot ranking of genes.
pl.rank_genes_groups_violin (adata[, groups,])	Plot ranking of genes for all tested comparisons
pl.rank_genes_groups_stacked_violin (adata[,])	Plot ranking of genes using stacked_violin plot (
pl.rank_genes_groups_heatmap (adata[,])	Plot ranking of genes using heatmap plot (see
pl.rank_genes_groups_dotplot (adata[,])	Plot ranking of genes using dotplot plot (see do
pl.rank_genes_groups_matrixplot (adata[,])	Plot ranking of genes using matrixplot plot (see
pl.rank_genes_groups_tracksplot (adata[,])	Plot ranking of genes using heatmap plot (see

Simulations

pl.sim (adata[, tmax_realization,])	Plot results of simulation.
-------------------------------------	-----------------------------

Reading

Note

For reading annotation use pandas.read_... and add it to your annotata.Annotata object. The following read functions are intended for the numeric data in the data matrix x.

Read common file formats using

read (filename[, backed, sheet, ext,])	Read file and return AnnData object.

Read 10x formatted hdf5 files and directories containing .mtx files using

Read 10x-Genomics-formatted hdf5 file.
Read 10x-Genomics-formatted mtx directory.
Read 10x-Genomics-formatted visum dataset.

Read other formats using functions borrowed from anndata

read_h5ad (filename[, backed, as_sparse,])	Read .h5ad-formatted hdf5 file.
read_csv (filename[, delimiter,])	Read .csv file.
read_excel (filename, sheet[, dtype])	Read .xlsx (Excel) file.
read_hdf (filename, key)	Read .h5 (hdf5) file.
read_loom (filename, *[, sparse, cleanup,])	Read .loom-formatted hdf5 file.
read_mtx (filename[, dtype])	Read .mtx file.

read_text (filename[, delimiter,])	Read .txt, .tab, .data (text) file.
read_umi_tools (filename[, dtype])	Read a gzipped condensed count matrix from umi_tc

Get object from AnnData: get

The module sc.get provides convenience functions for getting values back in useful formats.

<pre>get.obs_df (adata[, keys, obsm_keys, layer,])</pre>	Return values for observations in adata.
<pre>get.var_df (adata[, keys, varm_keys, layer])</pre>	Return values for observations in adata.
<pre>get.rank_genes_groups_df (adata, group, *[,])</pre>	scanpy.tl.rank_genes_groups() results in the form of a DataFrame.

Queries

This module provides useful queries for annotation and enrichment.

queries.biomart_annotations (org, attrs, *[,])	Retrieve gene annotations from ensembl biomart.
queries.gene_coordinates (org, gene_name, *)	Retrieve gene coordinates for specific organism th
queries.mitochondrial_genes (org, *[,])	Mitochondrial gene symbols for specific organism
queries.enrich (container, *[, org,])	Get enrichment for DE results.
4	—

Metrics

Collections of useful measurements for evaluating results.

4	
metrics.morans_i (adata, *[, vals,])	Calculate Moran's I Global Autocorrelation Statist
metrics.gearys_c (adata, *[, vals,])	Calculate Geary's C, as used by VISION.
metrics.confusion_matrix (orig, new[, data,])	Given an original and new set of labels, create a la

Experimental

New methods that are in early development which are not (yet) integrated in Scanpy core.

experimental.pp.normalize_pearson_residuals ()	Applies analytic Pearson residual normaliza
experimental.pp.normalize_pearson_residuals_pca ()	Applies analytic Pearson residual normaliza

experimental.pp.highly_variable_genes (adata, *)	Select highly variable genes using analytic I
experimental.pp.recipe_pearson_residuals ()	Full pipeline for HVG selection and normali
Ćlasses	•
AnnData is reexported from anndata.	
Represent data as a neighborhood structure, usually	v a knn graph.

Data represented as graph of nearest neighbors.

Settings

A convenience function for setting some default matplotlib.rcparams and a high-resolution jupyter display backend useful for use in notebooks.

An instance of the **scanpyConfig** is available as scanpy.settings and allows configuring Scanpy.

```
_settings.ScanpyConfig (*[, verbosity, ...]) Config manager for scanpy.
```

Some selected settings are discussed in the following.

Neighbors (adata[, n_dcs, neighbors_key])

Influence the global behavior of plotting functions. In non-interactive scripts, you'd usually want to set settings.autoshow to False.

The default directories for saving figures, caching files and storing datasets.

figdir	Directory for saving figures (default './figures/').	
cachedir	Directory for cache files (default './cache/').	
datasetdir	Directory for example datasets (default './data/').	

The verbosity of logging output, where verbosity levels have the following meaning: 0='error', 1='warning', 2='info', 3='hint', 4=more details, 5=even more details, etc.

verbosity Verbosity level (default warning)

Print versions of packages that might influence numerical results.

logging.print_header (*[, file])	Versions that might influence the numerical results.
logging.print_versions (*[, file])	Print versions of imported packages, OS, and jupyter environme

Datasets

datasets.blobs ([n_variables, n_centers,])	Gaussian Blobs.
datasets.ebi_expression_atlas (accession, *)	Load a dataset from the EBI Single Cell Expression
datasets.krumsiek11 ()	Simulated myeloid progenitors [Krumsiek11].
datasets.moignard15 ()	Hematopoiesis in early mouse embryos [Moignard:
datasets.pbmc3k ()	3k PBMCs from 10x Genomics.
datasets.pbmc3k_processed ()	Processed 3k PBMCs from 10x Genomics.
datasets.pbmc68k_reduced ()	Subsampled and processed 68k PBMCs.
datasets.paul15 ()	Development of Myeloid Progenitors [Paul15].
datasets.toggleswitch ()	Simulated toggleswitch.
datasets.visium_sge ([sample_id,])	Processed Visium Spatial Gene Expression data fro

Deprecated functions %

pp.filter_genes_dispersion (data[, flavor,])	Extract highly variable genes [Satija15] [Zheng17].
pp.normalize_per_cell (data[,])	Normalize total counts per cell.
1	•