# Problem 5 - Model selection

## Data Splitting and R code

- ightarrow According to the problem , the data is split into into training and validation data sets in 60% and 40% proportions.
- → The validation set has been used to build the model.
- ightharpoonup The following below steps and analysis have been performed using R and some required libraries. The R code has been attached as a file to this folder.

# **Outlier Analysis**

- $\rightarrow$  For outlier analysis the points which exceed the threshold of Leverage, COOK'S Distance DFBETA , DFFITS and covariance ratio are removed.
- $\rightarrow$  **Threshold values:** If p = no.of parameters and n = no.of data points
  - 1. Leverage: should be less than "2 \* (p+1)/n"
  - 2. Cook'S Distance: should be less than 1
  - 3. DFBETA: should be less than 2 / sqrt(n)
  - 4. DFFITS: should be less than (2 \* sqrt(p+1)) / (n-p-1)

### → Plots and figures





# VIF and Ridge trace plot





# **Ridge Trace Plot**



# Residual analysis



# Weighted least square methods



# **Box-Cox Transformation**



# Step - wise model selection

- $\rightarrow$  The following model selection procedures Backward elimination, Forward selection, and stepwise are performed on the data after removal of outliers.
- ightarrow Based on the values of  $R^2$ ,  $R^2_{adj}$ , MS<sub>Res</sub>, AIC, BIC, and Mallow Cp statistics I have chosen the following two models out of many possible models outputted by the stepwise model selection method.
- ightarrow The selection of models is such that our MSE and above statistics values are less than other possible models.

#### → Possible Models

| ols_ste | P_6 | all_ | poss | ible | e(lm2)    |               |             |
|---------|-----|------|------|------|-----------|---------------|-------------|
| Index   | N   | Pre  | dict | ors  | R-Square  | Adj. R-Square | Mallow's Cp |
| 1       | 1   |      |      | x1   | 0.4293832 | 0.3958175     | 106.902347  |
| 2       | 1   |      |      | x4   | 0.3457192 | 0.3072321     | 124.775703  |
| 3       | 1   |      |      | x2   | 0.3069331 | 0.2661645     | 133.061679  |
| 4       | 1   |      |      | x3   | 0.1842703 | 0.1362862     | 159.266446  |
| 5       | 2   |      | ×1   | x4   | 0.8869598 | 0.8728298     | 11.149067   |
| 6       | 2   |      | ×1   | x3   | 0.8411982 | 0.8213480     | 20.925242   |
| 7       | 2   |      | ×1   | x2   | 0.6628254 | 0.6206786     | 59.031483   |
| 8       | 2   |      | x2   | x4   | 0.4583923 | 0.3906913     | 102.705069  |
| 9       | 2   |      | x3   | x4   | 0.3715215 | 0.2929617     | 121.263495  |
| 10      | 2   |      | x2   | x3   | 0.3605062 | 0.2805695     | 123.616715  |
| 11      | 3   | ×    | 1 ×2 | x4   | 0.9279692 | 0.9135630     | 4.388136    |
| 12      | 3   | ×    | 1 ×3 | x4   | 0.8979408 | 0.8775289     | 10.803182   |
| 13      | 3   | ×    | 1 ×2 | x3   | 0.8903672 | 0.8684407     | 12.421132   |
| 14      | 3   | ×    | 2 x3 | x4   | 0.4896109 | 0.3875331     | 98.035748   |
| 15      | 4 : | ×1 × | 2 x3 | x4   | 0.9344669 | 0.9157432     | 5.000000    |

#### → Backward elimination and Forward selection

> ols\_step\_forward\_p(lm2,prem = 0.05)

#### Selection Summary

|      | Variable |          | Adj.     |         |         |        |
|------|----------|----------|----------|---------|---------|--------|
| Step | Entered  | R-Square | R-Square | C(p)    | AIC     | RMSE   |
|      |          |          |          |         |         |        |
| 1    | ×1       | 0.6766   | 0.6595   | 39.5625 | 37.4096 | 0.5374 |
| 2    | x4       | 0.8897   | 0.8774   | 4.2947  | 16.8237 | 0.3225 |
| 3    | x2       | 0.9079   | 0.8916   | 3.1126  | 15.0389 | 0.3032 |

> ols\_step\_backward\_p(lm2,prem = 0.05)

#### Elimination Summary

|      | Variable |          | Adj.     |        |         |        |
|------|----------|----------|----------|--------|---------|--------|
| Step | Removed  | R-Square | R-Square | C(p)   | AIC     | RMSE   |
|      |          |          |          |        |         |        |
| 1    | ×3       | 0.9079   | 0.8916   | 3.1126 | 15.0389 | 0.3032 |
| 2    | x2       | 0.8897   | 0.8774   | 4.2947 | 16.8237 | 0.3225 |

## → Selected Models

## 1. Model-1

### Parameter Estimates

| model      | Beta   | Std. Error | Std. Beta | t       | Sig   | lower  | upper  |
|------------|--------|------------|-----------|---------|-------|--------|--------|
|            |        |            |           |         |       |        |        |
| Intercept) | 92.590 | 0.756      |           | 122.488 | 0.000 | 90.979 | 94.201 |
| x1         | -0.086 | 0.009      | -0.703    | -9.889  | 0.000 | -0.104 | -0.067 |
| x2         | -0.178 | 0.061      | -0.228    | -2.922  | 0.011 | -0.308 | -0.048 |
| x4         | 2.819  | 0.379      | 0.580     | 7.431   | 0.000 | 2.010  | 3.628  |

## 2. Model - 2

## Parameter Estimates

| model      | Beta   | Std. Error | Std. Beta | t       | Sig   | lower  | upper  |
|------------|--------|------------|-----------|---------|-------|--------|--------|
| Intercept) | 92.884 | 1.020      |           | 91.073  | 0.000 | 90.732 | 95.035 |
| x1         | -0.101 | 0.010      | -0.793    | -10.668 | 0.000 | -0.122 | -0.081 |
| x4         | 3.151  | 0.518      | 0.450     | 6.081   | 0.000 | 2.058  | 4.244  |
| x2         | -0.119 | 0.065      | -0.137    | -1.832  | 0.084 | -0.256 | 0.018  |

## Selection Summary

| Variable | AIC    | Sum Sq | RSS   | R-Sq    | Adj. R-Sq |
|----------|--------|--------|-------|---------|-----------|
| x1       | 37.410 | 11.477 | 5.487 | 0.67657 | 0.65955   |
| x4       | 16.824 | 15.093 | 1.872 | 0.88967 | 0.87741   |
| x2       | 15.039 | 15.401 | 1.563 | 0.90787 | 0.89161   |