Examen 1 Session 1

Mercredi 13 novembre 2019 - 2h

Documents et calculatrices interdits, hormis une feuille A4 Recto-Verso manuscrite.

N.B.: La rédaction sera prise en compte dans la notation. Les exercices sont indépendants et peuvent être traités dans n'importe quel ordre. Il est toutefois préférable de conserver l'ordre proposé (difficulté croissante)

Exercice 1

- 1. Montrer que la fonction $f(x) = xe^{-x}$ est Lebesgue-intégrable sur \mathbb{R}^+ et calculer son intégrale.
- 2. Pour quelles valeurs de α la fonction $x \to \frac{1}{x^{\alpha}}$ est-elle Lebesgue-intégrable sur [0,1]? Calculer son intégrale dans ce cas.
- 3. Pour quelles valeurs de α la fonction $x \to \frac{1}{x^{\alpha}}$ est-elle Lebesgue-intégrable sur $[1, +\infty[?$ Calculer son intégrale dans ce cas.
- 4. Enoncer le théorème de convergence monotone pour une suite de fonctions (f_n) . Application: pour $n \ge 0$ soit la suite $f_n(x) = x^{1/n} \cos(\frac{\pi}{2}x)$. Calculer $\lim_{n \to +\infty} \int_0^1 f_n(x) dx$.

Exercice 2

Déterminer, si elle existe, la limite :

$$\lim_{n \to +\infty} \int_0^1 \left(\cos \left(\frac{1}{x} \right) \right)^n dx$$

Exercice 3

Montrer que la fonction $S:[1,+\infty[\to\mathbb{R} \text{ définie par }:$

$$S(x) = \sum_{n=1}^{+\infty} ne^{-nx}$$

est Lebesgue-intégrable sur $[1, +\infty[$ et calculer son intégrale.

Exercice 4

Soit $f(x,y)=2e^{-2xy}-e^{-xy}$ pour $(x,y)\in\mathbb{R}^+\times[0,1].$ Démontrer que :

$$\int_{0}^{1} \int_{0}^{+\infty} f(x,y) \ dxdy \neq \int_{0}^{+\infty} \int_{0}^{1} f(x,y) \ dydx.$$

Que peut-on en déduire?

Exercice 5

On pose, pour $x \in \mathbb{R}$:

$$F(x) = \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$$

1. Montrer que F est définie et continue sur \mathbb{R} .

- 2. Montrer que F est \mathcal{C}^1 sur \mathbb{R} et donner une expression de F'(x) pour tout $x \in \mathbb{R}$.
- 3. Calculer F'(x).
- 4. En déduire une expression simplifiée de F(x).
- 5. Déduire de la question précédente la valeur de

$$\int_0^{+\infty} \frac{\sin t}{t} e^{-\lambda t} dt$$

pour $\lambda > 0$.

Exercices facultatifs. NB: ces exercices sont plus difficiles et il n'est pas conseillé de commencer par ceux-ci.

Exercice 6

Le but de l'exercice est de calculer la valeur de l'intégrale de Gauss $I = \int_0^{+\infty} e^{-t^2} dt$. On définit deux fonctions f, g sur \mathbb{R} par les formules

$$f(x) = \int_0^x e^{-t^2} dt, \qquad g(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{t^2+1} dt$$

- 1. Montrer que g est dérivable sur \mathbb{R} et calculer sa dérivée.
- 2. Prouver que pour tout $x \in \mathbb{R}$, $g(x) + f^2(x) = \frac{\pi}{4}$.
- 3. En déduire la valeur de I.

Exercice 7

Une réciproque partielle du théorème de convergence dominée de Lebesgue s'énonce ainsi :

Théorème 1

Soient f_n , f intégrables sur \mathbb{R} telles que $\lim_{n\to+\infty}\int_{\mathbb{R}}|f_n(x)-f(x)|dx=0$. Alors il existe une sous-suite (f_{n_k}) de (f_n) et une fonction intégrable g telles que :

- (i) $|f_{n_k}| \leq g \ p.p. \ sur \ \mathbb{R}$.
- (ii) $\lim_{n\to+\infty} f_{n_k}(x) = f(x)$ p. p. sur \mathbb{R} .

Le but de l'exercice est de montrer que le résultat précédent est faux en général sans considérer une sous-suite. Pour cela on considère l'exemple suivant, emprunté à P. Mironescu (Univ. Lyon 1). A chaque $n \in \mathbb{N}^*$, on associe $m \in \mathbb{N}$ tel que $m^2 < n \le (m+1)^2$, et on pose

$$A_n = \left[\frac{n-m^2}{2m+1}, \frac{n+1-m^2}{2m+1}\right[.$$

Puis on définit la suite de fonctions $f_n = \chi_{A_n} + \frac{1}{n+1}\chi_{[n+1,n+2]}$, où χ_A est la fonction indicatrice (0 ou 1) de l'ensemble A.

- 1. Montrer que $\lim_{n \to +\infty} ||f_n||_1 = 0$.
- 2. Il n'existe pas de fonction $g \in L^1(\mathbb{R})$ telle que $|f_n| \leq g$ p.p. sur \mathbb{R} .
- 3. Pour tout $x \in [0,1]$, $f_n(x)$ ne tend pas vers 0.

En déduire qu'en général il faut passer à une sous-suite afin d'avoir (i) et (ii).