Αλγεβρική Τοπολογία

Ασκήσεις

ΚΩΝΣΤΑΝΤΙΝΟΣ ΜΠΙΖΑΝΟΣ

Αθήνα, 7 Ιουνίου 2023

Περιεχόμενα

1	Χώροι Πηλίκο	5
2	Ομοτοπία και Θεμελιώδης Ομάδα	11
3	Θεώρημα Σταθερού Σημείου	17
4	Θεώρημα Seifert - Van Kampen	2 1
5	Χώροι Επικάλυψης	27
6	Ομολογία	33

4 IIEPIEXOMENA

Κεφάλαιο 1

Χώροι Πηλίχο

Ορισμός 1. Έστω $\pi: X \to Y$ απεικόνιση πηλίκο και A ένα υποσύνολο του X. Ο κορεσμός (saturation) του A είναι η ένωση όλων των νημάτων που τέμνουν το A, δηλαδή είναι το σύνολο

$$\pi^{-1}\pi(A) = \bigcup_{y \in \pi(A)} \pi^{-1}(y).$$

Το A λέγεται κορεσμένο (saturated) αν και μόνο αν $A = \pi^{-1}\pi(A)$.

1. Έστω $\pi: X \to Y$ απεικόνιση πηλίκο και A ένα υποσύνολο του X. Αποδείξτε ότι η π έίναι ανοικτή (κλειστή) αν και μόνο αν ο κορεσμός κάθε ανοικτού (κλειστού) υποσυνόλου A του X είναι ανοικτό (κλειστό) υποσύνολο του X.

 Υ πόδειξη. Η π είναι ανοικτή αν και μόνο αν $\pi(U)$ είναι ανοικτό για κάθε $U\subseteq X$ ανοικτό αν και μόνο αν $(\pi$ είναι απεικόνιση πηλίκο) $\pi^{-1}\pi(U)$ είναι ανοικτό για κάθε $U\subseteq X$ ανοικτό.

2. Δ είξτε ότι ο περιορισμός μιας απεικόνισης πηλίκο σε ένα κορεσμένο ανοικτό ή κλειστό υποσύνολο είναι απεικόνιση πηλίκο.

Υπόδειξη. Έστω $\pi: X \to Y$ απεικόνιση πηλίκο και A ένα ανοικτό κορεσμένο υποσύνολο του X. Θα δείξουμε ότι $\pi \mid : A \to \pi(A)$ είναι απεικόνιση πηλίκο. Δηλαδή αρκεί να δείξουμε ότι η σχετική τοπολογία του $\pi(A)$ ταυτίζεται με την επαγόμενη τοπολογία της $\pi|A$. Έστω $U \cap \pi(A)$, όπου $U \subseteq Y$ ανοικτό. Συνεπώς, $\pi|^{-1}(U \cap \pi(A)) = \pi^{-1}(U) \cap A$, όποτ $\pi^{-1}(U)$ είναι ένα ανοικτό υποσύνολο του X.

Αντίστροφα, έστω $U \subseteq \pi(A)$ τέτοιο ώστε $\pi|^{-1}(U) = \pi^{-1}(U) \cap A$ να είναι ανοικτό υποσύνολο του A. Όμως, A είναι ανοικτό, άρα $\pi^{-1}(U)$ είναι ένα ανοικτό υποσύνολο του X, δηλαδή U είναι ανοικτό υποσύνολο του Y.

Ορισμός 2. Ένας τοπολογικός χώρος X του οποίου τα μονοσύνολα είναι κλειστά, λέγεται κανονικός (regular) αν για κάθε σημείο $x \in X$ και κάθε κλειστό υποσύνολο B του X που δεν περιέχει το x, υπάρχουν ανοικτά και ξένα υποσύνολα του X που περιέχουν το x και το B, αντίστοιχα.

- 3. (α) Δ είξτε ότι αν X είναι κανονικός και το A κλειστό υποσύνολό του, τότε ο χώρος πηλίκο X/A είναι Hausdorff.
- (β) Αν επιπροσθέτως ο X είναι φυσιολογικός, τότε και ο X/A είναι φυσιολογικός.

Υπόδειξη. (α) Έστω $[x], [y] \in X/A$ με $[x] \neq [y]$. Διαχρίνουμε περιπτώσεις :

- Αν $x,y \notin A$, τότε αφού $x \neq y$, υπάρχουν ανοικτά $U,V \subseteq X$ τέτοια ώστε $x \in U, y \in V$ και $U \cap V = U \cap A = V \cap A$ (Αν $U \cap A \neq \emptyset$, τότε παίρνουμε το $U \setminus A$ το οποίο είναι ανοικτό). Τότε παρατηρήστε ότι $\pi(U), \pi(V)$ είναι ανοικτά και ξένα υποσύνολα του X/A όπου $[x] \in \pi(U)$ και $[y] \in \pi(V)$.
- Έστω ότι $y \in A$ (και προφανώς $x \notin A$). Τότε, υπάρχουν U, V ανοικτά και ξένα, τέτοια ώστε $x \in U$ και $A \subseteq V$. Τότε $\pi(U), \pi(V)$ ανοικτά και ξένα υποσύνολα του X/A (το $\pi(U)$ ανοικτό όπως πριν και αφού $G = G \setminus A \cup A$, τότε $\pi(G) = \pi(G \setminus A) \cup \{[y]\}$ επομένως $\pi^{-1}\pi(G) = G$ ανοικτό) με $[x] \in \pi(U)$ και $[y] \in \pi(V)$.

(β)

- **4.** Έστω X και Y τοπολογικοί χώροι και $f{:}X \to Y, \ g{:}Y \to X$ συνεχείς απεικονίσεις έτσι ώστε $f \circ g = \mathrm{id}_Y.$
 - (α) Αποδείξτε ότι η απεικόνιση f είναι απεικόνιση πηλίκο.
 - (β) Αν επιπλεόν, ο X είναι Hausdorff, τότε και ο Y είναι Hausdorff.

- Υπόδειξη. (α) Η f είναι επί, αφού έχει δεξιά αντίστροφο. Αρχεί να δείξουμε ότι η f είναι ανοιχτή. Έστω $U\subseteq Y$ τέτοιο ώστε $f^{-1}(U)\subseteq X$ ανοιχτό. Τότε, $g^{-1}\left(f^{-1}(U)\right)=(f\circ g)^{-1}(U)=U\subseteq Y$ ανοιχτό.
 - (β) Έστω $x \neq y$ στον Y. Η g είναι 1-1 επομένως, $g(x) \neq g(y)$ στον X. Επομένως, υπάρχουν $U, V \subseteq X$ ανοικτά και ξένα τέτοια ώστε $g(x) \in U$ και $g(y) \in V$. Τότε, $g^{-1}(U), g^{-1}(V)$ ανοικτά και ξένα υποσύνολα του Y και $x \in g^{-1}(U), y \in g^{-1}(V)$.
- **5.** (α) Αποδείξτε ότι $\mathbb{RP}^1 \cong S^1$.
 - (β) Αποδείξτε ότι ο χώρος \mathbb{RP}^n είναι Hausdorff.
- Υπόδειξη. (α) Θεωρούμε την φυσική προβολή $\pi:\mathbb{R}^2 \smallsetminus \{0\} \to \mathbb{RP}^1$, όπου ο περιορισμός της $\pi:\mathbb{S}^1 \to \mathbb{RP}^1$ (καταχρηστικός συμβολισμός) είναι συνεχής, επί και ανοικτή. Για να δείξουμε ότι π είναι ανοικτή, αρκεί να παρατηρήσουμε ότι αν $U\subseteq \mathbb{S}^1$ ανοικτό, τότε $\pi^{-1}\pi(U)=U\cup (-U)$, το οποίο είναι ανοικτό, επομένως $\pi(U)\subseteq \mathbb{RP}^1$ είναι ανοικτό $\pi(U)$ άρα, ο περιορισμός π είναι απεικόνιση πηλίκο τέτοια ώστε $\pi(u)=\pi(u)\Leftrightarrow x\sim y\ (\sim \eta$ σχέση ισοδυναμίας $\pi(u)=\pi(u)$. Έτσι έχουμε ότι $\pi(u)=\pi(u)$ 0 έτσι αρκεί να δείξουμε ότι $\pi(u)=\pi(u)$ 1. Αυτό προκύπτει μέσω της απεικόνισης $\pi(u)$ 3 $\pi(u)$ 4 είναι αραπάνω).
- 6. Στο \mathbb{R}^2 ορίζουμε σχέση ισοδυναμίας ~ ως εξής: (x_0,y_0) ~ (x_1,y_1) αν και μόνο αν τα σημεία (x_0,y_0) και (x_1,y_1) ανήκουν σε κάποιο κύκλο με κέντρο την αρχή των αξόνων. Να περιγραφεί ο αντίστοιχος χώρος πηλίκο.

Υπόδειξη. Κάθε σημείο (x,y) ανήχει στο χύχλο με χέντρο την αρχή των αξόνων χαι αχτίνα $r=\|(x,y)\|$, δηλαδή [(x,y)]=[(0,r)]. Θα δείξουμε ότι $[0,\infty)\cong\mathbb{R}^2/\sim$. Είναι σαφές ότι $[0,\infty)\cong\{0\}\times[0,\infty)$. Αν $\pi:\mathbb{R}^2\to\mathbb{R}^2/\sim$ η απειχόνιση πηλίχο, τότε ο περιορισμός της στο $\{0\}\times[0,\infty)$ είναι ομοιομορφισμός.

7. Έστω ~ η σχέση ισοδυναμίας που ορίζεται στον χώρο $\mathbb{R}^n \setminus \{0\}$, ως εξής: $x \sim y$ αν και μόνο αν $x = \lambda y$ για κάποιο $\lambda \in \mathbb{R}_{>0}$. Ποιός είναι ο αντίστοιχος χώρος πηλίκο ;

 $^{^1\}Gamma$ ια κάθε $\mathbb R$ - διανυσματικό τοπολογικό χώρο X το $U\subseteq X$ είναι ανοικτό αν και μόνο αν λU είναι ανοικτό, για κάθε $\lambda\in\mathbb R$.

Υπόδειξη. Θεωρούμε την απεικόνιση πηλίκο $\pi: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}/\sim$. Ο περιορισμός της π στην \mathbb{S}^n είναι ομοιομορφισμός.

8. Αποδείξτε ότι ο χώρος πηλίχο $D^n/\partial D^n$ είναι ομοιομορφικός με την σφαίρα \mathbb{S}^n .

Ορισμός 3. Έστω $\mathbb{S}^n \subseteq \mathbb{R}^{n+1}$ η n - διάστατη σφαίρα. Αν $N = (0,0,\ldots,1)$ ο βόρειος πόλος, ορίζεται απεικόνιση

$$\sigma: \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n, \quad \sigma\left(x^1, \dots, x^{n+1}\right) = \frac{\left(x^1, \dots, x^n\right)}{1 - x^{n+1}}.$$

Πρακτικά, αν $\sigma(x) = u$, το σημείο (u,0) είναι η τομή της ευθείας που ορίζουν τα N,x με τον γραμμικό υπόχωρο, όπου $x^{n+1} = 0$. Η απεικόνιση σ καλείται στερεογραφική προβολή από το βόρειο πόλο. Ομοίως ορίζεται και η στερεογραφική προβολή από το νότιο πόλο $S = (0, \ldots, -1)$. Δείξτε ότι $\sigma^{-1}: \mathbb{R}^n \to \mathbb{S}^n \setminus \{N\}$ με

$$\sigma^{-1}\left(u^{1},\ldots,u^{n}\right) = \frac{\left(2u^{1},\ldots,2u^{n},|u|^{2}-1\right)}{1+|u|^{2}}$$

δηλαδή σ είναι ομοιομορφισμός. 2

Υπόδειξη. Έχουμε ότι $\mathrm{Int}(D^n)\cong\mathbb{R}^n\cong\mathbb{S}^n\smallsetminus\{N\}$ (μέσω της στερεογραφική προβολής). Επομένως, υπάρχει ομοιομορφισμός $f:\mathrm{Int}(D^n)\to\mathbb{S}^n\smallsetminus\{N\}$. Από το λήμμα της συγκόλλησης η απεικόνιση $\varphi\colon D^n\to\mathbb{S}^n$ με

$$\varphi(x) = \begin{cases} f(x), & x \in \text{Int}(D^n) \\ N, & x \in \partial D^n \end{cases}$$

είναι συνεχής. Επίσης είναι επί και κλειστή $(D^n$ είναι συμπαγής και \mathbb{S}^n είναι Hausdorff). Συνεπώς, η φ είναι απεικόνιση πηλίκο που $\varphi(x) = \varphi(y)$ αν και μόνο αν $x \sim y$, όπου \sim η σχέση ισοδυναμίας που επάγεται από την διαμέριση ∂D^n , $\{x\}$ με $x \notin \partial D^n$. Έτσι είναι σαφές ότι $D^n/\partial D^n \cong \mathbb{S}^n$.

9. Έστω $X=\mathbb{S}^1\times I$ και $A=\mathbb{S}^1\times\{1\}$. Να δειχθεί ότι $X/A\cong D^2$.

 $^{^2}$ Για περισσότερες πληροφορίες σχετικά με τη στερεογραφική προβολή παραπέμπουμε στο βιβλίο του John M. Lee "Introduction to Smooth Manifold" σελ. 31.

Υπόδειξη. Έστω $Y = \{(x,y) \in \mathbb{R}^2 \mid \frac{1}{2} \le ||x|| \le 1\}$. Θεωρούμε απεικόνιση :

$$\varphi: X \to Y, \quad \varphi(x, y, t) = \frac{2 - t}{2}(x, y)$$

Η φ είναι ομοιομορφισμός, αφού

$$\varphi^{-1}(a,b) = \left(\frac{a}{\|a,b\|}, \frac{b}{\|a,b\|}, 2-2\|a,b\|\right)$$

είναι συνεχής. Τώρα, ορίζουμε απεικόνιση

$$f: Y \to D^2$$
, $f(x) = 2\left(\|x\| - \frac{1}{2}\right)x$.

Η f είναι συνεχής. Η f είναι επί. Πράγματι, αναζητούμε αν $y \in D^2$ αναζητούμε $x \in Y$ ώστε f(x) = y, δηλαδή $\|y\| = 2(\|x\| - \frac{1}{2})\|x\|$. Επιλύοντας την επαγόμενη 2οβαθμια. έχουμε ότι $\|x\| = \frac{1+\sqrt{1+8\|y\|^2}}{4}$, οπότε αν $\lambda = 2\left(\frac{1+\sqrt{1+8\|y\|^2}}{4} - \frac{1}{2}\right)$ έχουμε ότι για $x = \frac{1}{\lambda}y$ έχουμε ότι f(x) = y. Τώρα, η απεικόνιση $\psi = f \circ \varphi$ είναι συνεχής, επί και κλειστή, επομένως ψ είναι απεικόνιση πηλίκο, για την οποία ισχύει $\psi(x) = \psi(y)$ αν και μόνο αν $x \sim y$, όπου \sim η σχέση ισοδυναμίας που επάγεται από την διαμέριση $A, \{x\}$ με $x \notin A$.

Ορισμός 4. Έστω X και Y ξένοι τοπολογικοί χώροι (δηλαδή $X \cup Y = X \cup Y$)), A κλειστό υποσύνολο του X, $f: A \to Y$ συνεχής. Συμβολίζουμε με $Z_f = X \cup_f Y$ τον χώρο που προκύπτει από τον Y με την επισύναψη του X κατά μήκος του A μέσω της f (ορίζεται σχέση στον $X \cup Y$ μέσω της διαμέρισης $\{x\}$, $x \in X \setminus A$ και $\{y \cup f^{-1}(y)\}_{y \in Y}$). Έστω $\pi: X \cup Y \to X \cup_f Y$ η αντίστοιχη απεικόνιση πηλίκο.

- 10. (α) Αποδείξτε ότι η π ορίζει ένα ομοιομορφισμό από τον Y σε ένα κλειστό υπόχωρο του Z_f .
 - (β) Η π απειχονίζει ομοιομορφικά το $X \setminus A$ σε ένα ανοιχτό υποσύνολο του Zf.
- Υπόδειξη. (α) Είναι σαφές ότι ο περιορισμός της π στον Y επάγει μια απεικόνιση $\pi|:Y\to\pi(Y)$ 1-1,επί και συνεχή. Για να δείξουμε ότι π είναι ομοιομορφισμός, αρκεί να δείξουμε ότι είναι κλειστή, και από την Άσκηση 1 αρκεί να δείξουμε ότι κάθε κορεσμός κλειστού είναι κλειστό. Έστω $\Gamma\subseteq Y$ κλειστό. Τότε, $\pi^{-1}\pi(\Gamma)=\Gamma\cup f^{-1}(\Gamma)$, επομένως $\pi|^{-1}\pi|(\Gamma)=\Gamma$, το οποίο είναι κλειστό.

(β) Όμοια με το (α)

11. Αν ο K είναι συμπαγής τοπολογικός υπόχωρος ενός συμπλέγματος κελιών X, τότε $K \subseteq X^n$, για κάποιο n', όπου με X^n συμβολίζουμε τον n - σκελετό του X.

Υπόδειξη. Αν X είναι πεπερασμένης διάστασης το ζητούμενο είναι άμεσο. Αρχεί να δείξουμε ότι K περιέχεται σε ένωση από πεπερασμένο το πλήθος χελιά. Έστω, προς άτοπο, ότι $K \cap e_a^n \neq \emptyset$, για άπειρα το πλήθος χελιά e_a^n . Έστω $x_a \in K \cap e_a^n$, για χάθε χελί e_a^n που η τομή είναι μη χενή χαι Y το σύνολο όλων αυτών των x_a . Θα δείξουμε τα αχόλουθα:

- 1. Υ είναι κλειστό υποσύνολο του Κ.
- 2. Υ είναι διαχριτό, δηλαδή κάθε υποσύνολό του είναι κλειστό.

Τότε, οι οιχογένεια $\{K \smallsetminus Y\} \cup \{x_a\}\}_{x_a \in Y}$ είναι ανοιχτό χάλυμμα του K (αφού το $Y \smallsetminus \{x_a\}$ είναι χλειστό υποσύνολο του Y, άρα χλειστό υποσύνολο του X) χαι χαταλήγουμε σε άτοπο από την συμπάγεια του K.

Κεφάλαιο 2

Ομοτοπία και Θεμελιώδης Ομάδα

Ορισμός 5 (τοπολογική ομάδα). Μια τοπολογική ομάδα είναι μια ομάδα G εφοδιασμένη με μια τοπολογία ώστε η απεικονίσεις του πολλαπλασιασμού $\mu: G \times G \to G$ και της αντιστροφής $i: G \to G$ που δίνονται από $\mu(g_1, g_2) = g_1g_2$ και $i(g) = g^{-1}$, αντίστοιχα να είναι συνεχείς.

12. Έστω G μια τοπολογική ομάδα και x_0 το ουδέτερο στοιχείο της ομάδος. Αν $f, g \in \pi_1(G, x_0)$, ορίζουμε $f \circ g \in \pi_1(G, x_0)$ ως εξής :

$$f \circ g(s) = f(s)g(s) = \mu(f(s), g(s)).$$

- (α) Δείξτε ότι η πράξη ο επάγει πράξη ομάδας στο $\pi_1(G,x_0)$, η οποία ταυτίζεται με τον συνήθη πολλαπλασιασμό της θεμελιώδους ομάδας.
- (β) Δείξτε ότι η ομάδα $\pi_1(G,x_0)$ είναι αβελιανή.

Υπόδειξη. (α) Ορίζουμε πράξη στο $\pi_1(G, x_0)$ ως εξής $[f] * [g] \coloneqq [f \circ g]$.

- Αρχικά θα δείξουμε ότι η * είναι καλά ορισμένη. Έστω $f \sim^F \tilde{f}$ και $g \sim^G \tilde{g}$ θηλειές στο x_0 . Ορίζουμε $H(s,t) = \mu(F(s,t),G(s,t)),$ η οποία είναι ομοτοπία από την $f \circ g$ στην $\tilde{f} \circ \tilde{g}$, έτσι είναι σαφές ότι $[f \circ g] = [\tilde{f} \circ \tilde{g}].$
- Από την προσεταιριστικότητα της μ είναι άμεσο ότι * είναι προσεταιριστική.
- Έστω f θηλεία στο x_0 . Τότε, έχουμε ότι $f \circ c_{x_0}(s) = \mu(f(s), x_0) = f(s)$. Έτσι είναι σαφές ότι $[f] * [c_{x_0}] = [f]$ και ομοίως δείχνουμε ότι $[c_{x_0}] * [f] = [f]$. Έτσι $[c_{x_0}]$ είναι ουδέτερο στοιχείο ως προς *.

- Έστω f θηλεία στο x_0 . Τότε, $g = i \circ f$ είναι θηλεία στο x_0 και μάλιστα $[f] * [g] = [g] * [f] = [c_{x_0}].$
- Θα δείξουμε ότι $[f] * [g] = [f] \circ [g]$, δηλαδή $f \circ g \sim f \cdot g$. Παρατηρούμε ότι $(f \cdot c_{x_0}) \circ (c_{x_0} \cdot g) = f \cdot g$, επομένως ισχύει ότι

$$[f] \cdot [g] = [f \cdot g] = [f \cdot c_{x_0}] * [c_{x_0} \cdot g] = [f] * [g]$$

(β) Παρατηρήστε ότι

$$[f] \cdot [g] = [f] * [g] = [c_{x_0} \cdot f] * [g \cdot c_{x_0}] = [g] \cdot [f].$$

- **13.** Έστω X τοπολογικός χώρος. Τα ακόλουθα είναι ισοδύναμα :
 - (α) Ο χώρος Χ είναι ομοτοπικά ισοδύναμος με σημείο.
 - (β) Η ταυτοτική απεικόνιση $id_X: X \to X$ είναι ομοτοπική με μια σταθερή απεικόνιση.
 - (γ) Κάθε απεικόνιση $f: X \to Y$, για αυθαίρετο χώρο Y, είναι ομοτοπική με σταθερή απεικόνιση.
 - (δ) Κάθε απεικόνιση $g:Y\to X$, για αυθαίρετο χώρο Y, είναι ομοτοπική με σταθερή απεικόνιση.

 Υ πόδειξη. Είναι άμεσο ότι (α) \leftrightarrow (β) και ότι (γ) \rightarrow (β).

- (β) \rightarrow (γ) : Έστω Y τοπολογικός χώρος και $f: X \rightarrow Y$ συνεχής απεικόνιση. Αφού $\mathrm{id}_X \sim^H c$, όπου $c: X \rightarrow X$ σταθερή, τότε $f \sim^{f \circ H} f \circ c$.
- (β) \rightarrow (δ) Έστω Έστω Y τοπολογικός χώρος και $g:Y\rightarrow X$ συνεχής απεικόνιση. Αφού Αφού $\mathrm{id}_X\sim^H c$, όπου $c:X\rightarrow X$ σταθερή, τότε ορίζουμε

$$\tilde{H}: Y \times I \to X, \quad \tilde{H}(y,t) = H(g(y),t)$$

η οποία είναι μια ομοτοπία από την g σε μια σταθερή απεικόνιση.

• $(\delta) \rightarrow (\beta)$ 'Amego.

- **14.** Έστω $f:\mathbb{S}^n \to Y$ μια (συνεχής) απεικόνιση σε έναν χώρο Y. Τα ακόλουθα είναι ισοδύναμα :
 - (α) Η f είναι ομοτοπική με μια σταθερή απεικόνιση.
 - (β) Η f μπορεί να επεκταθεί σε συνεχή απεικόνιση $\tilde{f}: D^{n+1} \to Y$.
- Υπόδειξη. (β) \rightarrow (α) Έστω ότι υπάρχει \tilde{f} : $D^{n+1} \rightarrow Y$ συνεχής επέκταση της f. Ορίζουμε φ : $\mathbb{S}^n \times I \rightarrow D^{n+1}$ με $\varphi(x,t) = (1-t)x$. Τότε, η απεικόνιση $H \coloneqq \tilde{f} \circ \varphi$ είναι μια ομοτοπία από την f σε μια σταθερή απεικόνιση.
 - (α) \rightarrow (β) Έστω ομοτοπία $H:\mathbb{S}^n\times I\to Y$ με H(x,0)=f(x) και H(x,1)=c σταθερό, για κάθε $x\in\mathbb{S}^n$. Θεωρούμε απεικόνιση $\varphi\colon D^{n+1}\smallsetminus\{0\}\to\mathbb{S}^n\times I$ με $\varphi(x)=\left(\frac{x}{\|x\|},1-\|x\|\right)$. Θεωρούμε απεικόνιση $\tilde{f}\colon D^{n+1}\to Y$ με

$$\tilde{f} = \begin{cases} H \circ \varphi(x), & x \in D^{n+1} \setminus \{0\} \\ c, & x = 0 \end{cases}.$$

Η \tilde{f} είναι επέκταση της f και μένει να δείξουμε ότι είναι συνεχής. Έστω $U \subseteq Y$ ανοικτό. Διακρίνουμε περιπτώσεις :

- 1. Αν $c \notin U$, τότε $\tilde{f}^{-1}(U) = (H \circ \varphi)^{-1}(U)$ είναι ανοικτό, αφού $H \circ \varphi$ είναι συνεχής.
- 2. Αν $c \in U$, τότε $\tilde{f}^{-1}(U) = (H \circ \varphi)^{-1}(U) \cup \{0\}$. Αφού $H \circ \varphi$ είναι συνεχής, τότε $(H \circ \varphi)^{-1}(U)$ είναι ένα ανοικτό υποσύνολο του $D^{n+1} \setminus \{0\}$, δηλαδή υπάρχει ανοικτό υποσύνολο V του D^{n+1} , τέτοιο ώστε $(H \circ \varphi)^{-1}(U) = V \cap D^{n+1} \setminus \{0\} = V \setminus \{0\}$. Άρα, έχουμε ότι $\tilde{f}^{-1}(U) = V \setminus \{0\} \cup \{0\} = V$ και έχουμε το ζητούμενο.

15. Έστω $A \subseteq \mathbb{R}^n$, Y τοπολογικός χώρος και $\varphi: (A, a_0) \to (Y, y_0)$ συνεχής. Αν υπάρχει συνεχής επέκταση $\tilde{\varphi}: \mathbb{R}^n \to Y$ της φ , τότε η φ επάγει τον τετριμμένο ομομορφισμό στις αντίστοιχες θεμελιώδεις ομάδες.

Υπόδειξη. Παρατηρήστε ότι ο \mathbb{R}^n είναι συμπτύξιμος και $\varphi = \tilde{\varphi} \circ i$ η οποία επάγει την σχέση $\varphi_* = \tilde{\varphi}_* \circ i_*$.

Ορισμός 6. Έστω X και Y τοπολογικοί χώροι και $f: X \to Y$ συνεχής. Ο **κύλινδρος** M_f της f είναι ο χώρος πηλίκο $(X \times I) \sqcup Y/\sim$, όπου $(x,0) \sim f(x)$, για κάθε $x \in X$.

- 16. (α) Δ είξτε ότι ο περιορισμός της αντίστοιχης απεικόνισης πηλίκο π σε κάθε ένα από τα $X \times 1$ και Y είναι ομοιομορφισμός.
- (β) Δείξτε ότι υπάρχει συστέλλουσα παραμόρφωση (deformation retraction) $r: M_f \to \pi(Y)$.
- (γ) Κάθε απεικόνιση μεταξύ δύο τοπολογικών χώρων παραγοντοποιείται ως μια εμφύτευση ακολουθούμενη από μια ομοτοπική ισοδυναμία.

Υπόδειξη. (α) Άμεσο.

- (β) Αρχεί να βρούμε ομοτοπία $H: M_f \times I \to M_f$ τέτοια ώστε :
 - H(m,0) = m, για κάθε $m \in M_f$,
 - H([y],t) = [y], για κάθε $y \in Y$
 - $H(m,1) \in \pi(Y)$, για κάθε $m \in M_f$.

Ορίζουμε $H: M_f \times I \to M_f$ ως εξής :

$$H([x,t],s) = [x,(1-t)s], (x,t) \in X \times I, s \in I \text{ and } H([y],s) = [y], y \in Y.$$

Τότε, αυτή είναι συνεχής και ικανοποιεί τις ζητούμενες ιδιότητες. Προφανώς, η ζητούμενη r ορίζεται ως r(m) = H(m,1).

(γ) Θεωρούμε την εμφύτευση $i: X \hookrightarrow M_f$ (λόγω του (α)) . Τότε, αν $\varphi = (\pi|_Y)^{-1} \circ r: M_f \to Y$, παρατηρούμε ότι $f = \varphi \circ i$. Θα δείξουμε ότι φ είναι ομοτοπική ισοδυναμία. Αν $j: \pi_Y \hookrightarrow M_f$, τότε παρατηρούμε ότι

$$j \circ r \sim \mathrm{id}_{M_f} \Rightarrow (j \circ \pi_Y) \circ \varphi \sim \mathrm{id}_{M_f}$$

και $\varphi \circ (j \circ \pi_Y) = \mathrm{id}_Y$. Επομένως, έχουμε ότι φ είναι ομοτοπική ισοδυναμία.

Ορισμός 7. Έστω X τοπολογικός χώρος. Ο κώνος επί του X, CX είναι ο χώρος πηλίκο $X \times I/\sim$, όπου $(x,y)\sim (y,s)$ αν και μόνο αν (x,t)=(y,s) ή t=s=1.

17. Έστω X τοπολογικός χώρος. Αποδείξτε ότι ο CX είναι συμπτύξιμος.

Υπόδειξη. Θεωρήστε την ομοτοπία $H: CX \times I \to CX$ με H([x,s],t) = [x,(1-t)s].

18. Έστω X τοπολογικός χώρος και CX ο κώνος του X. Ταυτίζουμε τον X με τον υπόχωρο $X \times \{0\}$ του κώνου μέσω της εμφύτευσης $X \ni x \mapsto [(x,0)]$. Εστω $f: X \to Y$ συνεχής απεικόνιση. Αποδείξτε ότι η f είναι ομοτοπική με σταθερή απεικόνιση αν και μόνο αν υπάρχει συνεχής επέκταση $g: CX \to Y$ της f.

Υπόδειξη. Υποθέτουμε αρχικά ότι η f είναι ομοτοπική με σταθερή απεικόνιση, δηλαδή υπάρχει ομοτοπία $H: X \times I \to X$ με H(x,0) = x και H(x,1) = c σταθερό, για κάθε $x \in X$. Αν $\pi: X \times I \to CX$ η συνήθης απεικόνιση πηλίκο, παρατηρούμε ότι η f παραμένει σταθερή στα νήματα της π , επομένως επάγεται επέκταση $g: CX \to Y$ που ορίζεται ως εξής : g([x,t]) = f(H(x,t)).

Αντίστροφα, έστω ότι υπάρχει $g:CX\to Y$ συνεχής επέχταση της f. Ορίζουμε $H:X\times I\to Y$ ως εξής $H(x,t)=g\circ\pi(x,t)=g([x,t]),$ η οποία είναι μια ομοτοπία από την f σε μια σταθερή απειχόνιση.

19. Αποδείξτε ότι $\mathbb{CS}^n \cong \mathbb{D}^{n+1}$.

Υπόδειξη. Θεωρούμε την εμφύτευση $i:\mathbb{S}^n \to D^{n+1}$, η οποία άμεσα επεχτείνεται συνεχώς στην $\mathrm{id}_{D^{n+1}}$. Από την Άσχηση 14, η i είναι ομοτοπιχή με σταθερή απειχόνιση μέσω της ομοτοπίας H(x,t)=(1-t)x. Από την Άσχηση 18 η i επεχτείνεται σε μια απειχόνιση $g:C\mathbb{S}^n \to D^{n+1}$ με g([x,t])=(1-t)x. Θα δείξουμε ότι η g είναι ομοιομορφισμός. Προφανώς, είναι συνεχής, αφού $g\circ\pi=H$ είναι συνεχής χαι αμφιμονοσήμαντη με αντίστροφη την

$$h: D^{n+1} \to C\mathbb{S}^n, \quad h(x) = \begin{cases} \left[\frac{x}{\|x\|}, 1 - \|x\|\right], & x \neq 0 \\ \left[x_0, 1\right], & x = 0 \end{cases}$$

για κάποιο $x_0 \in \mathbb{S}^n$. Όμοια με την Άσκηση 14, αποδεικνύεται ότι η h είναι συνεχής και έχουμε το ζητούμενο.

20. Έστω X και Y δύο τοπολογικοί χώροι, A κλειστό υποσύνολο του X, $f: A \to Y$ συνεχής και $Z_f = X \cup_f Y$ ο χώρος που προκύπτει από τον Y με την επισύναψη του X κατά μήκος του A μέσω της f. Αν υπάρχει συστέλλουσα παραμόρφωση από τον X στον A, τότε υπάρχει συστέλλουσα παραμόρφωση από τον $X \cup_f Y$ στον Y. (εδώ θεωρούμε τον Y ως υπόχωρο του $X \cup_f Y$, αφού γνωρίζουμε ότι εμφυτεύεται μέσω της αντίστοιχης απεικόνισης πηλίκο).

 Υ πόδ ϵ ιξη.

Κεφάλαιο 3

Θεώρημα Σταθερού Σημείου

- **21.** Αποδείξτε ότι δεν υπάρχουν συστολές $r: X \to A$ στις παραχάτω περιπτώσεις:
 - (a) $X = \mathbb{R}^3$ kai $\mathbb{R}^3 \supseteq A \cong \mathbb{S}^1$.
 - (β) $X = \mathbb{S}^1 \times D^2$, όπου $D^2 = \{x \in \mathbb{R}^2 \mid \|x\| \le 1\}$ και $A = \mathbb{S}^1 \times \mathbb{S}^1$ το σύνορο του X.
- Υπόδειξη. (α) Αν υπήρχε συστολή $r: X \to A$, τότε ο επαγόμενος ομομορφισμός στις θεμελιώδεις ομάδες θα ήταν επιμορφισμός, δηλαδή υπάρχει επιμορφισμός $r_*: \pi_1(\mathbb{R}^3) = \{1\} \to \pi(\mathbb{S}^1) = \mathbb{Z}$, άρα καταλήγουμε σε άτοπο.
 - (β) Αν υπήρχε συστολή $r: X \to A$, τότε ο επαγόμενος ομομορφισμός στις θεμελιώδεις ομάδες θα ήταν επιμορφισμός, δηλαδή υπάρχει επιμορφισμός $r_*: \pi_1(\mathbb{S}^1 \times D^2) = \mathbb{Z} \to \pi(\mathbb{S}^1 \times \mathbb{S}^1) = \mathbb{Z} \times \mathbb{Z}$. Διακρίνουμε περιπτώσεις :
 - Αν $\ker r_* = n\mathbb{Z}$, για n > 0, τότε $\mathbb{Z} \times \mathbb{Z} \cong \mathbb{Z}_n$, άρα καταλήγουμε σε άτοπο.
 - An $\ker r_*=0$, tóte $\mathbb{Z}\cong\mathbb{Z}\times\mathbb{Z}$, άρα καταλήγουμε σε άτοπο, διότι δύο ελεύθερες αβελιανές είναι ισόμορφες αn και μόνο αn έχουν την ίδια τάξη.

Ορισμός 8. Λέμε ότι ο χώρος X έχει την ιδιότητα του σταθερού σημείου αν για κάθε συνεχή $f: X \to X$ υπάρχει $x_0 \in X$ τέτοιο ώστε $f(x_0) = x_0$. σταθερού σημείου, τότε:

- **22.** Αποδείξτε ότι αν ο χώρος X έχει την ιδιότητα του σταθερού σημείου, τότε :
 - (α) Αν A υπόχωρος του X για τον οποίο υπάρχει συστολή $r: X \to A$, τότε ο A έχει την ιδιότητα του σταθερού σημείου.

- (β) Κάθε χώρος Y ομοιομορφικός με τον X έχει την ιδιότητα του σταθερού σημείου.
- Υ πόδειξη. (α) Έστω $r: X \to A$ συστολή και $f: A \to A$ συνεχής. Τότε, η απεικόνισης $i \circ f \circ r: X \to X$ είναι συνεχής, όπου i η συνήθης ένθεση. Συνεπώς, υπάρχει $x_0 \in X$ ώστε $f(r(x_0) = x_0 \in A)$ και αφού r είναι περιστολή, τότε $r(x_0) = x_0 \in A$. Άρα, έχουμε το ζητούμενο.
 - (β) Έστω $f:Y \to X$ ομοιομορφισμός και $g:Y \to Y$ συνεχής. Τότε, η απεικόνιση $h = f \circ g \circ f^{-1}$ είναι συνεχής, επομένως υπάρχει $x_0 \in X$ ώστε $g(f^{-1}(x_0)) = f^{-1}(x_0)$ και έχουμε το ζητούμενο.
- **23.** Έστω \mathbb{B}^2 η ανοιχτή μοναδιαία μπάλα στο \mathbb{R}^2 . Να βρεθεί παράδειγμα συνεχούς απειχονίσεως $f: \mathbb{B}^2 \to \mathbb{B}^2$ χωρίς σταθερά σημεία.

 Υ πόδ ϵ ι ξ η. Αφού \mathbb{B}^2 είναι ομοιομορφιχή με \mathbb{R}^2 (μέσω ενός ομοιομορφισμου arphi), τότε κάθε $f: \mathbb{B}^2 \to \mathbb{B}^2$ έχει σταθερό σημείο αν και μόνο αν κάθε $f: \mathbb{R}^2 \to \mathbb{R}^2$ έχει σταθερό σημείο. Όμως, αν $f:\mathbb{R}^2\to\mathbb{R}^2$ με f(x,y)=(x+1,y+1), τότε f δεν έχει σταθερό σημείο, άρα και η $\varphi \circ f \circ \varphi^{-1} : \mathbb{B}^2 \to \mathbb{B}^2$ δεν έχει σταθερό σημείο.

- (α) Αποδείξτε ότι η αντιποδική απεικόνιση $\alpha: \mathbb{S}^1 \to \mathbb{S}^1, \ \alpha(x) = -x$ είναι ομοτοπική 24.με την ταυτοτική απεικόνιση. Ιδιαιτέρως, $deg(\alpha) = 1$.
 - (β) Κάθε συνεχής $f: \mathbb{S}^1 \to \mathbb{S}^1$ τέτοια ώστε $\deg f \neq 1$ έχει σταθερό σημείο.
- Υπόδειξη. (α) Θεωρήστε την ομοτοπία $H: \mathbb{S}^1 \times I \to \mathbb{S}^1$ με $H\left(e^{2\pi i x}, t\right) = e^{2\pi i (x + t\pi)}$.
 - (β) Έστω, προς άτοπο, ότι η f δεν έχει σταθερό σημείο. Συνεπώς, η απεικόνιση

$$H: \mathbb{S}^1 \times I \to \mathbb{S}^1, \ H(x,t) = \frac{f(x)(1-t) - tx}{\|f(x)(1-t) - tx\|}$$

είναι καλά ορισμένη και ομοτοπία από την f(x) στην αντοποδική α . Από το (α) καταλήγουμε σε άτοπο.

25. Έστω U ανοικτό υποσύνολο του \mathbb{R}^2 και $x \in U$. Αποδείξτε ότι ο χώρος $U \setminus \{x\}$ δεν είναι απλά συνεκτικός.

Υπόδειξη. Αφού U είναι ανοικτό, υπάρχει ένας κύκλος στο εσωτερικό του U με κέντρο το x. Τότε, ο $\mathbb{R}^2 \smallsetminus \{x\}$ είναι ομοτοπικά ισοδύναμος με τον C. Πράγματι, αφού $\mathbb{R}^2 \smallsetminus \{x\}$ είναι ομοιομορφικός με τον $\mathbb{R}^2 \smallsetminus \{0\}$ θεωρήστε την ομοτοπία $H(x,t) = ty + \frac{y}{\|y\|}(1-t)$. Επομένως, αν $i: C \to U \smallsetminus \{x\}$ και $j: U \smallsetminus \{x\} \to \mathbb{R}^2 \smallsetminus \{x\}$ οι συνήθεις ενθέσεις, τότε η $j \circ i: C \to \mathbb{R}^2 \smallsetminus \{x\}$ επάγει μονομορφισμό στις αντίστοιχες θεμελιώδεις ομάδες, δηλαδή $(j \circ i)_*: \mathbb{Z} \to \mathbb{Z}$ είναι μονομορφισμός ομάδων. Από την άλλη, αν υποθέσουμε ότι $U \smallsetminus \{x\}$ είναι απλά συνεκτικός, τότε η i_* είναι τετριμμένη, άρα $(j \circ i)_* = j_* \circ i_*$ είναι τετριμμένη και καταλήγουμε σε άτοπο.

26. Υπολογίστε την θεμελιώδη ομάδα του $\mathbb{R}^4 \setminus \mathbb{R}^2$.

Υπόδειξη. Μπορούμε να θεωρήσουμε το \mathbb{R}^2 ως υπόχωρο του \mathbb{R}^4 ως εξής : $\mathbb{R}^2 = \{(x_1,x_2,0,0) \mid x_1,x_2 \in \mathbb{R}\}$. Τώρα, θεωρούμε $Y = \{(0,0,x_3,x_4) \mid x_3,x_4 \in \mathbb{R}\}$, όπου παρατηρούμε ότι ο $\mathbb{R}^4 \setminus \mathbb{R}^2$ περιστέλλεται στον $Y \setminus \{0\}$ μέσω του τύπου $r: \mathbb{R}^4 \setminus \mathbb{R}^2 \to Y \setminus \{0\}$ με $r(x_1,x_2,x_3,x_4) = (0,0,x_3,x_4)$. Αφού $Y \setminus \{0\} \cong \mathbb{R}^2 \setminus \{0\} \cong S^1$, τότε έχουμε ότι $\pi_1(\mathbb{R}^4 \setminus \mathbb{R}^2) = \mathbb{Z}$.

27. Κάθε 3×3 πίναχας με στοιχεία θετιχούς πραγματιχούς αριθμούς έχει ένα ιδιοδιάνυσμα με θετιχή ιδιοτιμή.

Υπόδειξη. Έστω $B=\{(v_1,v_2,v_3)\mid v_i\geq 0,\ \|v\|=1\}$. Παρατηρούμε ότι $B\cong D^2$ (μέσω της (v_1,v_2,v_3)). Επομένως, από το θεώρημα σταθερού σημείου του Brouwer, έχουμε ότι κάθε συνεχής $f\colon B\to B$ έχει σταθερό σημείο. Θεωρούμε την $f\colon B\to B$ με $f(v)=\frac{Av}{\|Av\|}$. Από την προηγούμενη παρατήρηση υπάρχει $v\in B$ με $Av=(\|Av\|)v$ με $\|Av\|>0$. Άρα, έχουμε το ζητούμενο.

28. Έστω $p(x) \in \mathbb{C}[x]$ ένα πολυώνυμο το οποίο δεν έχει ρίζες πάνω στον μοναδιαίο κύκλο \mathbb{S}^1 . Δείξτε ότι το πλήθος των ριζών του p(x) στο εσωτερικό του μοναδιαίου δίσκου $(\delta \eta \lambda. |x| < 1)$ ισούται με τον βαθμό της απεικονίσεως $\hat{p}: \mathbb{S}^1 \to \mathbb{S}^1$ με $\hat{p}(x) = \frac{p(x)}{|p(x)|}$.

 Υ πόδ ϵ ιξη.

Κεφάλαιο 4

Θεώρημα Seifert - Van Kampen

Ορισμός 9 (τοπολογική πολλαπλότητα). Ένας τοπολογικός χώρος (X, \mathcal{T}) θα λέγεται (τοπολογική) πολλαπλότητα διάστασης n αν (ως προς την τοπολογία \mathcal{T}) είναι

- Hausdorff
- Δεύτερος αριθμήσιμος
- Τοπικά Ευκλείδειος, δηλαδή για κάθε $x \in X$, υπάρχει $U \subseteq X$ ανοικτή περιοχή του x και ομοιομορφισμός $\varphi_U \colon U \to \varphi(U) \subseteq \mathbb{R}^n$. Μικραίνοντας το U, μπορούμε να υποθέσουμε στον ορισμό ότι U είναι ομοιομορφικό με το \mathbb{R}^n .

Ορισμός 10 (σφήνα). Έστω X και Y πολλαπλότητες (όχι απαραιτήτως ίδιας διάστασης), $x_0 \in X$ και y_0 . Ορίζουμε την σφήνα τους $X \vee Y$ να είναι ο χώρος που λαμβάνεται από την ξένη ένωση των X και Y ταυτοποιώντας το x_0 με το y_0 . Δηλαδή

$$X \vee Y = X \sqcup Y/x_0 \sim y_0.$$

29. Έστω X και Y πολλαπλότητες (όχι απαραιτήτως ίδιας διάστασης), $x_0 \in X$ και y_0 . Δείξτε ότι

$$\pi_1(X \vee Y, [x_0]) = \pi_1(X, x_0) * \pi_1(Y, y_0).$$

Υπόδειξη. Έστω $x_1 \neq x_0$ στον X. Το σύνολο $X \setminus \{x_1\}$ είναι μια ανοικτή υποπολλαπλότητα του X, επομένως υπάρχει U ανοικτή περιοχή του $X \setminus \{x_1\}$ (άρα και ανοικτό στον X) με $U \cong \mathbb{R}^n$, επομένως ο U συμπτύσσεται στο x_0 , δηλαδή ο χώρος $U \sqcup Y$ περιστέλλεται στο $\{x_0\} \sqcup Y$. Συνεπώς, ο χώρος $\pi(U \sqcup Y)$ περιστέλλεται στον $\pi(Y)$

(ο οποίος είναι ομοιομορφικός με τον Y). Όμοια, υπάρχει V ανοικτή περιοχή του y_0 ώστε $\pi(X \sqcup V)$ να περιστέλλεται στον $\pi(X)$ (ο οποίος είναι ομοιομορφικός με τον X). Τώρα, αν $\tilde{U} = \pi(U \sqcup Y)$ και $\tilde{V} = \pi(X \sqcup V)$, αφού $\tilde{U} \cap \tilde{V}$ είναι συμπτύξιμος, από το θεώρημα Seifert - Van Kampen έχουμε το ζητούμενο.

- **30.** Συμβολίζουμε με \mathbb{B}^n την ανοικτή μοναδιαία μπάλα στον \mathbb{R}^n , με \mathbb{B}^n_a την μικρότερη ανοικτή μπάλα ακτίνας 1/2 και με \mathbb{S}^n_a την σφαίρα ακτίνας 1/2, δηλαδή το σύνορο της \mathbb{B}^n_a .
 - (α) Έστω X συνεκτική πολλαπλότητα διαστάσεων $n \ge 3$ και $h: \mathbb{B}^n \to U$ ομοιομορφισμός από την \mathbb{B}^n σε ένα ανοικτό $U \subseteq X$. Να δειχθεί ότι $\pi(X \setminus h(\mathbb{B}^n_a)) = \pi_1(X)$.
 - (β) Έστω X_1 και X_2 συνεκτικές πολλαπλότητες ίδιας διαστάσεως $n \ge 3$ και $h_i : \mathbb{B}^n \to U_i$ ομοιομορφισμός από την \mathbb{B}^n σε ένα ανοικτό $U_i \subseteq X$, για i=1,2. Το συνεκτικό άθροισμα των X_1 και X_2 είναι ο χώρος πηλίκο

$$X_1 \# X_2 = (X_1 \setminus h_1(\mathbb{B}^n_a)) \sqcup (X_1 \setminus h_1(\mathbb{B}^n_a)) / h_1(x) \sim h_2(x),$$
 για κάθε $x \in \mathbb{S}^n_a$.

Αποδείξτε ότι
$$\pi_1(X_1 \# X_2) = \pi_1(X_1) * \pi_1(X_2)$$
.

Υπόδειξη. (α) Θεωρούμε τα ανοικτά $U_1=U$ και $U_2=X\smallsetminus\{h(0)\}$. Παρατηρούμε ότι U_1 είναι συμπτύξιμος και $U_1\cap U_2=U\smallsetminus\{h(0)\}\cong\mathbb{S}^{n-1}$, δηλαδή απλά συνεκτικός χώρος. Τώρα, παρατηρούμε ότι ο χώρος $\overline{\mathbb{B}}^n_a\smallsetminus\{0\}$ περιστέλλεται στην \mathbb{S}^n_a αν για κάθε $x\in\overline{\mathbb{B}}^n_a\smallsetminus\{0\}$ συμβολίσουμε με r(x) το σημείο τομής του ευθύγραμμου τμήματος (0,x] με το σύνορο, η οποία είναι συνεχής. Ορίζουμε ομοτοπία $H\colon U_2\times I\to U_2$ με H(x,t)=x, για κάθε $x\in X\smallsetminus h(\mathbb{B}^n_a)$ και $H(x,t)=h\circ G(x,t)$, όπου G η αντίστοιχη ομοτοπία της παραπάνω περιστολής r. Επομένως, ο U_2 περιστέλλεται στον $X\smallsetminus h(\mathbb{B}^n_a)$ και από το θεώρημα Seifert - Van Kampen έχουμε το ζητούμενο.

- (β) Θεωρούμε τα σύνολα $\overline{A} = (X_1 \setminus h_1(\mathbb{B}^n_a)) \sqcup [U_2 \setminus h_2(\mathbb{B}^n_a)]$ και $\overline{B} = [U_1 \setminus h_1(\mathbb{B}^n_a)] \sqcup (X_2 \setminus h_2(\mathbb{B}^n_a))$ και A, B οι εικόνες τους στο πηλίκο, αντίστοιχα. Παρατηρήστε ότι $A \simeq X_1 \setminus h_1(\mathbb{B}^n_a)$, $B \simeq X_2 \setminus h_2(\mathbb{B}^n_a)$ με απλά συνεκτική τομή, άρα από το θεώρημα Seifert Van Kampen και το (α) έχουμε το ζητούμενο.
- 31. Υπολογίστε την θεμελιώδη ομάδα του χώρου που προχύπτει:
 - (α) Από τον κύλινδρο $\mathbb{S}^1 \times \mathbb{R}$ βγάζοντας ένα σημείο.
 - (β) Από την σπείρα $\mathbb{T}=\mathbb{S}^1\times\mathbb{S}^1$ βγάζοντας δύο σημεία.
 - (γ) από το \mathbb{R}^3 βγάζοντας k ευθείες που διέρχονται από την αρχή των αξόνων.
 - (δ) από τον \mathbb{R}^3 βγάζοντας ένα κύκλο.
- Υπόδειξη. (α) Ισχύει ότι $\mathbb{S}^1 \times \mathbb{R} \cong \mathbb{R}^2 \setminus \{x_1\}$, επομένως έχουμε ότι $\mathbb{S}^1 \times \mathbb{R} \setminus \{z\} \cong \mathbb{R}^2 \setminus \{x_1, x_2\}$. Αρκεί να υπολογίσουμε την $\pi_1(X)$ με $X = \mathbb{R}^2 \setminus \{x_1, x_2\}$. Αφού $x_1 \neq x_2$, χωρίς βλάβη της γενικότητας υποθέτουμε ότι $x_1^1 \neq x_1^1$ και $x_1^2 = x_2^2$. Έστω $x_0 = (x_1^1 + x_2^1)/2$ και διαλέγουμε $\varepsilon > 0$ ώστε

$$x_1^1 < x_0 - \varepsilon < x_0 + \varepsilon < x_2^1.$$

Θεωρούμε $U = (-\infty, x_0 + \varepsilon) \times \mathbb{R} \setminus \{x_1, x_2\} = (-\infty, x_0 + \varepsilon) \times \mathbb{R} \setminus \{x_2\}$ και $V = (x_0 - \varepsilon, \infty) \times \mathbb{R} \setminus \{x_1, x_2\} = (x_0 - \varepsilon, \infty) \times \mathbb{R} \setminus \{x_1\}.$

Τα U,V είναι ανοικτή κάλυψη του X με $U\cap V=(x_0-\varepsilon,x_0+\varepsilon)\times\mathbb{R}$ να είναι συμπτύξιμος χώρος. Τώρα, παρατηρούμε ότι

$$U = (-\infty, x_0 + \varepsilon) \times \mathbb{R} \setminus \{x_2\} \cong \mathbb{R}^2 \setminus \{*\} \sim \mathbb{S}^1.$$

Έτσι έχουμε ότι $\pi_1(U) = \mathbb{Z}$ και όμοια δείχνουμε ότι $\pi_1(V) = \mathbb{Z}$. Από το θεώρημα Seifert - Van Kampen ισχύει ότι $\pi_1(X) = \mathbb{Z} * \mathbb{Z}$. Επαγωγικά και με τον ίδιο τρόπο αποδεικνύεται ότι $\pi_1(\mathbb{R}^2 \setminus \{x_1, \ldots, x_k\}) = F_k$.

(β) Αφαιρούμε κατάλληλα $x_1, x_2 \in \mathbb{T}$ ώστε να έχουμε την ακόλουθη πολυγωνική παράσταση του $\mathbb{T} \smallsetminus \{x_1, x_2\}$

Το "γεμισμένο" αριστέρα τρίγωνο χωρίς το σημείο περιστέλλεται στο σύνορό του και ομοίως το "γεμισμένο" δεξιά τρίγωνο περιστέλλεται στο σύνορό του. Συνδυάζοντας τις δύο περιστολές προκύπτει ότι ο αρχικό χώρος περιστέλλεται στον ακόλουθο:

Αφού μέσω της προηγούμενης περιστολής το σύνορο του τετραγώνου παραμένει σταθερό, περνόντας σε ομοτοπία στο πηλίκο, ο δοσμένος χώρος προκύπτει ότι είναι ομοτοπικά ισοδύναμος με την $S^1 \vee S^1 \vee S^1$, δηλαδή $\pi_1 \left(\mathbb{T} \setminus \{x_1, x_2\} \right) = F_3$.

 $(γ) \ \ \mathrm{Affice} \ \mathbb{R}^3 \smallsetminus \{\ell_1, \dots, \ell_k\} \simeq \mathbb{S}^2 \smallsetminus \{x_1, \dots, x_{2k}\} \ \ \text{arke i na upologisoume thin } \pi_1 \ (\mathbb{S}^2 \smallsetminus \{x_1, \dots, x_n\}).$

Αφού $\mathbb{S}^2 \setminus \{*\} \cong \mathbb{R}^2$, μέσω της στερεογραφικής προβολής, τότε $\mathbb{S}^2 \setminus \{x_1, \dots, x_n\} \cong \mathbb{R}^2 \setminus \{y_1, \dots, y_{n-1}\}$. Έτσι, από το (α) συμπαιρένουμε ότι $\pi_1 (\mathbb{S}^2 \setminus \{x_1, \dots, x_n\}) = F_{n-1}$.

(δ) Θεωρούμε κύκλο $K = \{(x,y,0) \mid x^2+y^2=1\}$ και D τον αντίστοιχο δίσκο με σύνορο το K. Θεωρούμε ανοικτά $U = \mathbb{R}^3 \setminus D$ και $V = \mathrm{Int}(K \times D)$.

Μέσω της συνήθους περιστολής $\mathbb{R}^3 \smallsetminus \{0\}$ σε \mathbb{S}^2 συμπεραίνουμε ότι $\mathbb{R}^3 \smallsetminus D \simeq \mathbb{S}^2$. Επίσης έχουμε ότι V περιστέλλεται σε \mathbb{S}^1 και $U \cap V$ ειναι συμπτύξιμος (πρακτικά είναι το εσωτερικό ενός γεμισμένου κυλίνδρου). Από το θεώρημα Seifert - Van Kampen προκύπτει ότι

$$\pi\left(\mathbb{R}^3 \setminus K\right) = \pi_1\left(\mathbb{S}^2\right) * \pi_1\left(\mathbb{S}^1\right) = \mathbb{Z}.$$

32. Έστω x_1, \ldots, x_k σημεία του \mathbb{R}^n . Αποδείξτε ότι ο χώρος $\mathbb{R}^n \setminus \{x_1, \ldots, x_k\}$ είναι απλά συνεκτικός για $n \geq 3$.

Υπόδειξη. Χωρίς βλάβη της γενικότητας, υποθέτουμε ότι τα σημεία ταυτίζονται από την δεύτερη συντεταγμένη και έπειτα και διαφέρουν στην πρώτη. Θα αποδείξουμε το ζητούμενο με επαγωγή στο k.

• Αρχικά υποθέτουμε ότι $X = \mathbb{R}^n \setminus \{x_1, x_2\}$. Αφού $x_1^1 < x_2^1$ (χ.β.γ.), αν $x_0 = (x_1^1 + x_2^1)/2$, διαλέγουμε $\varepsilon > 0$ ώστε $x_1^1 < x_0 - \varepsilon < x_0 + \varepsilon < x_2^1$ και θεωρούμε ανοικτά $U = (-\infty, x_0 + \varepsilon) \times \mathbb{R}^{n-1} \setminus \{x_1, x_2\} = (-\infty, x_0 + \varepsilon) \times \mathbb{R}^{n-1} \setminus \{x_1\} \cong \mathbb{R}^n \setminus \{*\} \simeq \mathbb{S}^{n-1}$ και

$$V = (-\infty, x_0 + \varepsilon) \times \mathbb{R}^{n-1} \setminus \{x_1, x_2\} = (x_0 - \varepsilon, +\infty) \times \mathbb{R}^{n-1} \setminus \{x_2\} \cong \mathbb{R}^n \setminus \{*\} \simeq \mathbb{S}^{n-1}$$
 Αφού $U \cap V = (x_0 - \varepsilon, x_0 + \varepsilon) \times \mathbb{R}^{n-1} \cong \mathbb{R}^n$, τότε $U, V, U \cap V$ είναι απλά συνεκτικοί, άρα από το θεώρημα Seifert - Van Kampen έχουμε το ζητούμενο.

• Για k>2 εφαρμόστε την μέθοδο της βάσης και εφαρμόστε την επαγωγική υπόθεση.

_

Κεφάλαιο 5

Χώροι Επικάλυψης

- **33.** Έστω $p: \tilde{X} \to X$ μια προβολή επικάλυψης.
 - (α) Αποδείξτε ότι η p είναι τοπικός ομοιομορφισμός (δηλ. κάθε σημείο του \tilde{X} έχει περιοχή U με p(U) ανοικτό και $p|_U:U\to p(U)$ ομοιομορφισμός), ανοικτή απεικόνιση και απεικόνιση πηλίκο. Επιπλέον, αν η p είναι 1-1, τότε είναι ομοιομορφισμός.

Υπόδειξη.

- (α) Αρχικά αν $\tilde{x} \in \tilde{X}$, έστω V η στοιχειώδης περιοχή του $p(\tilde{x})$ και U η αντίστοιχη συνιστώσα που περιέχει το \tilde{x} . Τότε, $p|_{U}: U \to V$ ομοιομορφισμός.
 - Έστω $x=p(\tilde{x}) \in p(U)$, όπου $U \subseteq \tilde{X}$ ανοικτό. Έστω W μια στοιχειώδης περιοχή του x και V η αντίστοιχη συνιστώσα που περιέχει το \tilde{x} . Τότε, $U \cap V \subseteq U, V$, άρα έχουμε ότι $x \in p(U \cap V) \subseteq X$ ανοικτό. Έτσι, είναι άμεσο ότι η p είναι απεικόνιση πηλίκο.
 - Αφού p είναι συνεχής, ανοικτή και αμφιμονοσήμαντη είναι ομοιομορφισμός.
- (β) Αν για κάθε $x \in X$ το νήμα $p^{-1}(x)$ είναι πεπερασμένο (δηλ. το κάλυμμα είναι πεπερασμένο), τότε η p είναι κλειστή απεικόνιση.
- **34.** Έστω $p: \tilde{X} \to X$ προβολή επικάλυψης, A υπόχωρος του X και \tilde{A} . Δείξτε ότι ο περιορισμός $p: \tilde{A} \to A$ είναι επικάλυψη.

Υπόδειξη. Προφανώς $p|_A$ είναι συνεχής και επί. Τώρα, αν $x=p(a)\in p(A)$, τότε υπάρχει p - στοιχειώδης περιοχή U του y με $p^{-1}(U)=\bigsqcup_i V^j$. Συνεπώς, έχουμε ότι

$$(p|_A)^{-1}(U \cap p(A)) = p^{-1}(U \cap p(A)) \cap A = p^{-1}(U) \cap A = \bigsqcup_{j} (V_j \cap A).$$

Συνεπώς, το $U \cap p(A)$ είναι μια στοιχειώδης περιοχή του x.

- **35.** (α) Έστω $p_2: X_2 \to X_1$ και $p_1: X_1 \to X$ απεικονίσεις επικάλυψης. Αν το νήμα $p^{-1}(x)$ είναι πεπερασμένο για κάθε $x \in X$, τότε η σύνθεση $p_1 \circ p_2: X_2 \to X$ είναι απεικόνιση επικάλυψης.
- (β) Έστω $X=\mathbb{S}^1\times\mathbb{S}^1\times\cdots$ ο χώρος γινομένου (όχι πεπερασμένου) πλήθους αντιτύπων του $\mathbb{S}^1,\ \tilde{X}=\mathbb{R}^n\times\mathbb{S}^1\times\mathbb{S}^1\cdots,\ n\geq 1$ και $p_n:\tilde{X}_n\to X$ η προβολή επικάλυψης που ορίζεται ως

$$p_n(x_1,\ldots,x_n,x_{n+1},\ldots) = (e^{2\pi i x_1},e^{2\pi i x_2},\ldots,e^{2\pi i x_n},x_{n+1},x_{n+2},\ldots).$$

Θεωρούμε την ξένη ένωση $\bigsqcup_n \tilde{X}_n$ και τον χώρο γινόμενο $\mathbb{N}_+ \times X$, όπου \mathbb{N}_+ είναι εφοδιασμένο με την διακριτή τοπολογία. Η απεικόνιση $p: \bigsqcup_n \tilde{X}_n \to \mathbb{N}_+ \times X$ που ορίζεται με $p|_{\tilde{X}_n} = (n,p_n): \tilde{X}_n \to \{n\} \times X$ είναι απεικόνιση επικάλυψης, η $q: \mathbb{N}_+ \times X \to X$ με q(m,x) = x είναι επίσης απεικόνιση επικάλυψη, ενώ η σύνθεσή του $q \circ p$ δεν είναι.

Υπόδειξη. (α) Αρχικά θα δείξουμε ότι το κάθε κάλυμμα της p_1 (ως απεικόνιση επικάλυψης) είναι πεπερασμένο. Έστω $x \in X$. Τότε, υπάρχει p_1 - στοιχειώδης περιοχή U_x ώστε $p_1^{-1}(U_x) = \bigsqcup_j V^j$. Τώρα, αφού $|p_1^{-1}(x)| = |J|$ έχουμε ότι $p_1^{-1}(U) = \bigsqcup_{j=1}^n V^{i_j}$. Αν $x_j \in V^{i_j} \cap p^{-1}(x)$, θεωρούμε p_2 - στοιχειώδη περιοχή U_j του x_j που περιέχεται στο V^j . Θα δείξουμε ότι $U = \bigcap_{j=1}^n p_1(U_j)$ είναι $p_1 \circ p_2$ - στοιχειώδης περιοχή του x. Τότε έχουμε ότι

$$p_{1} \circ p_{2})^{-1}(U) = p_{2}^{-1} \left[\bigcap_{j=1}^{n} p_{1}^{-1} \left(p_{1}(U_{j}) \right) \right] = p_{2}^{-1} \left[\bigcup_{j=1}^{n} \left(U_{j} \cap \bigcap_{i \neq j} (p_{1}^{j})^{-1} (U_{i}) \right) \right]$$

$$= \bigcup_{j=1}^{n} p_{2}^{-1} \left[\left(U_{j} \cap \bigcap_{i \neq j} (p_{1}^{j})^{-1} (U_{i}) \right) \right]$$

όπου p_1^j είναι ο περιορισμός $p_1^j=p_1|_{U_j}\colon U_j\to p(U_j)$. Από την τελευταία σχέση και την επιλογή των U_j έχουμε το ζητούμενο.

36. Αποδείξτε ότι αν n>1, κάθε συνεχής απεικόνιση $f:\mathbb{S}^n\to\mathbb{S}^1$ είναι ομοτοπική με σταθερή απεικόνιση.

Υπόδειξη. Θεωρούμε την συνήθη επικάλυψη $p:\mathbb{R}\to\mathbb{S}^1$ Αφού $f_*[\pi_1(\mathbb{S}^n)]=\{1\}=p_*[\pi_1(\mathbb{R})]$ από το κριτήριο ανυψώσεως έχουμε ότι υπάρχει απεικόνιση $\tilde{f}:\mathbb{S}^n\to\mathbb{R}$ ώστε το ακόλουθο διάγραμμα να είναι μεταθετικό

$$\mathbb{R} \xrightarrow{p} \mathbb{S}^1$$

$$\downarrow^f$$

$$\mathbb{S}^n$$

Από την Άσκηση 13 και από την μεταθετικότητα του παραπάνω διαγράμματος.

- **37.** Σκοπός αυτής της άσκησης είναι να αποδείξουμε ότι κάθε περιττή απεικόνιση $f: \mathbb{S}^1 \to \mathbb{S}^1$, δηλαδή f(-z) = -f(z) για κάθε $z \in \mathbb{S}^1$, έχει περιττό βαθμό.
 - (α) Αν $f:\mathbb{S}^1\to\mathbb{S}^1$ περιττή, τότε δείξτε ότι υπάρχει $g:\mathbb{S}^1\to\mathbb{S}^1$ ίδιου βαθμού με την fη οποία να κάνει το παρακάτω διάγραμμα μεταθετικό

$$\begin{array}{ccc}
\mathbb{S}^1 & \xrightarrow{f} & \mathbb{S}^1 \\
p_2 \downarrow & & p_2 \downarrow \\
\mathbb{S}^1 & -\stackrel{g}{\longrightarrow} & \mathbb{S}^1
\end{array}$$

όπου $p_2:\mathbb{S}^1 \to \mathbb{S}^1$ η προβολή επικάλυψης με $p_2(z)=z^2.$

- (β) Αν η f έχει άρτιο βαθμό, δείξτε ότι η g ανυψώνεται μέσω $\tilde{g}:\mathbb{S}^1\to\mathbb{S}^1$, δηλαδή $g=p_2\circ \tilde{g}.$
- (γ) Δείξτε ότι η f και η $\tilde{g} \circ p_2$ είναι ανυψώσεις της $g \circ p_2$ οι οποίες συμφωνούν στο (1,0) ή στο (-1,0) και καταλήξτε σε άτοπο.

 Υ πόδειξη. Αφού η f είναι περιττή, τότε υπάρχει $\tilde{f}:\mathbb{RP}^1\to\mathbb{RP}^1$ που κάνει το ακόλουθο διάγραμμα μεταθετικό :

$$\begin{array}{ccc} \mathbb{S}^1 & \xrightarrow{f} & \mathbb{S}^1 \\ \downarrow^{\pi} & & \downarrow^{\pi} \\ \mathbb{RP}^1 & -\overset{\tilde{f}}{-} \to & \mathbb{RP}^1 \end{array}$$

Χρησιμοποιώντας την Άσκηση 5 και τις αντίστοιχες απεικονίσεις που χρησιμοποιήθηκαν στην άσκηση αυτή προκύπτει η ζητούμενη g. Αφού $\deg(f \circ h) = \deg(f) \cdot \deg(h)$, για κάθε $f,h:\mathbb{S}^1 \to \mathbb{S}^1$ και $\deg(p_2) = 2$, από την μεταθετικότητα του διαγράμματος έχουμε ότι $\deg(f) = \deg(g)$.

(β) Αν $\deg(f)$ είναι άρτιος, τότε $\deg(g)$ είναι άρτιος. Αφού $\deg(g)$ είναι άρτιος παρατηρήστε ότι $g_*(\pi(\mathbb{S}^1,1))\subseteq (p_2)_*(\pi(\mathbb{S}^1,1))$ και από το θεώρημα ύπαρξης ανυψώσεων, υπάρχει $\tilde{g}:\mathbb{S}^1\to\mathbb{S}^1$ που κάνει το ακόλουθο διάγραμμα μεταθετικό

- (γ) Από (α),(β) είναι αμεσο ότι $f, \tilde{g} \circ p_2$ είναι ανυψώσεις της $g \circ p_2$ και αφού f είναι περιττή, τότε συμφωνούν είτε στο (1,0) είτε στο (-1,0). Από το κριτήριο ανυψώσεως προκύπτει ότι $f = g \circ p_2$ και καταλήγουμε σε άτοπο, διότι f είναι περιττή, $g \circ p_2$ είναι άρτια και $f \neq 0$.
- **38.** Κάθε συνεχής απεικόνιση $f: \mathbb{RP}^2 \to \mathbb{S}^1$ είναι ομοτοπική με σταθερή απεικόνιση.

 Υ πόδειξη. Παρατηρήστε ότι $f_*\left[\pi_1\left(\mathbb{RP}^2\right)\right]$ = $\{1\}$ και μιμηθείται την Άσκηση 36.

39. Έστω X ένας κατά τόξα συνεκτικός, τοπικά κατά τόξα συνεκτικός και ημιτοπικά απλά συνεκτικός. Μια επικάλυψη $p: \tilde{X} \to X$, όπου \tilde{X} κατά τόξα συνεκτικός, λέγεται αβελιανή αν είναι κανονική και η αντίστοιχη ομάδα μετασχηματισμών είναι αβελιανή. Αποδείξτε ότι ο X επιδέχεται μια ('καθολική') αβελιανή επικάλυψη η οποία επικαλύπτει κάθε άλλη αβελιανή επικάλυψη του X και είναι μοναδική, ως προς ισομορφισμό επικαλύψεων, με αυτήν την ιδιότητα, δηλαδή να επικαλύπτει κάθε άλλη αβελιανή.

Υπόδειξη. Θέτουμε Έστω $x_0 \in X$ και $G = \pi_1(X, x_0)$. Έστω H η παράγωγος υποομάδα της G (H = G'), τότε υπάρχει χώρος επικάλυψης \tilde{X}_H και προβολή επικάλυψης $p: \tilde{X}_H \to X$ με $H = p_*(\pi_1(\tilde{X}_H, x_0))$. Τότε, αφού $H \triangleleft G$ έχουμε ότι p είναι κανονική και G (\tilde{X}_H) , αφού G $(\tilde{X}_H) \cong G/H = G_{ab}$. Έτσι συμπεραίνουμε ότι p είναι αβελιανή. Αφήνεται να δειχθεί ότι \tilde{X}_H είναι κατά τόξα συνεκτικός χώρος.

Τώρα, έστω $\hat{p}:\hat{X}\to X$ μια άλλη αβελιανή επικάλυψη. Τότε, έχουμε ότι $G(\hat{X})\cong G/\hat{p}_*(\pi_1(\hat{X},\hat{x_0}))$ αβελιανή, άρα έχουμε ότι $H\subseteq\hat{p}_*(\pi_1(\hat{X},\hat{x_0}))$. Από το κριτήριο ανύψωσης, υπάρχει $q:\tilde{X}_H\to\hat{X}$ ώστε το παρακάτω διάγραμμα να είναι μεταθετικό.

Η q είναι ομομορφισμός επικαλύψεων, δηλαδή είναι επικάλυψη. Αφήνεται να δειχθεί η μοναδικότητα του \tilde{X}_H .

40. Έστω H διαχριτή υποομάδα μιας συνεχτιχής και τοπικά κατά τόξα συνεχτιχής τοπολογιχής ομάδας G. Αποδείξτε ότι η δράση της H στην G με πολλαπλασιασμό από δεξιά είναι δράση χώρου επικάλυψης υπό την έννοια ότι για κάθε $x \in G$ υπάρχει περιοχή U του x έτσι ώστε g=1, οποτεδήποτε $U \cap U \cdot g \neq \emptyset$, και ως εχ' τούτου η απεικόνιση πηλίχο $G \to G/H$ ορίζει κανονιχό χώρο επικάλυψης. Αν επιπλέον G απλά συνεχτιχή, τότε $\pi_1(G/H,1) \cong H$.

Τώρα, για τυχόν $x \in G$, παρατηρούμε ότι xU, είναι ανοικτή περιοχή του x και μάλιστα αν $g \in H$ με $(xU)g \cap xU \neq \emptyset$, τότε υπάρχουν $u_1, u_2 \in U$ ώστε $xu_1g = xu_2$, δηλαδή $g = u_1^{-1}u_2 \in V$, άρα από την αρχική υπόθεση g = 1.

41. Έστω φ : $G \to K$ ένας συνεχής επιμορφισμός μεταξύ συνεκτικών και τοπικά κατά τόξα συνεκτικών τοπολογικών ομάδων. Αν η φ είναι ανοικτή (ή κλειστή) και έχει διακριτό πυρήνα, τότε η φ : $G \to K$ είναι η προβολή κανονικού χώρου επικάλυψης.

Υπόδειξη. Έχουμε ότι φ είναι απεικόνιση πηλίκο και από την μοναδικότητα των χώρων πηλίκο, επάγεται $\tilde{\varphi}$: $G/\ker\varphi\to K$ ομοιομορφισμός, ο οποίος κάνει το ακόλουθο διάγραμμα μεταθετικό :

Οι απεικονίσεις $p, \tilde{\varphi}$ είναι προβολές επικάλυψεις (βλέπε Άσκηση 40) και από την Άσκηση 35 η απεικόνιση φ είναι προβολή επικάλυψης. Τώρα, για την κανονικότητα της φ , αρκεί να δείξουμε ότι η ομάδα μετασχηματισμών της p ταυτίζεται με αυτήν της φ και από την κανονικότητα της φ θα έχουμε το ζητούμενο. Πράγματι, αν $\psi \in G(p)$, τότε προκύπτει το ακόλουθο μεταθετικό διάγραμμα και έχουμε το ζητούμενο

Κεφάλαιο 6

Ομολογία

42. Υπολογίστε τις ομάδες ομολογίας $H_n(S^2,A)$ του ζεύγους (S^2,A) , όπου το A αποτελείται από δύο σημεία του \mathbb{S}^2 .

 Υ πόδ ϵ ιξη. Μέσω της βραχείας ακριβής ακολουθία συμπλεγμάτων

$$0 \to S_*(A) \to S_*(\mathbb{S}^2) \to S_*(\mathbb{S}^2, A) \to 0.$$

επάγεται μακρά ακριβής ακολουθία στην ομολογία

$$\cdots \to H_n(A) \to H_n(\mathbb{S}^2) \to H_n\left(\mathbb{S}^2,A\right) \to H_{n-1}(A) \to \cdots$$

Ο $A = \{x_1, x_2\}$ αποτελείται από δύο συνεχτιχές συνιστώσες $\{x_1\}, \{x_2\},$ επομένως, ισχύει ότι

$$H_n(A) = H_n(x_1) \oplus H_n(x_2) = \begin{cases} \mathbb{Z} \oplus \mathbb{Z}, & n = 0 \\ 0, & n > 0 \end{cases}$$

και

$$H_n\left(\mathbb{S}^2\right) = \begin{cases} \mathbb{Z}, & n = 0, 2\\ 0, & n \neq 0, 2 \end{cases}.$$

Για $n \ge 3$ είναι άμεσο ότι $H_n(\mathbb{S}^2, A) = 0$. Για n = 2, έχουμε ότι $H_2(\mathbb{S}^2, A) = \mathbb{Z}$. Επίσης γνωρίζουμε ότι, αφού \mathbb{S}^2 χ.τ.σ. και $A \ne \emptyset$, τότε $H_0(\mathbb{S}^2, A) = 0$. Για n = 1, έχουμε ότι

$$\cdots \to H_1(\mathbb{S}^2) = 0 \to H_1(\mathbb{S}^2, A) \xrightarrow{\varphi} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\varepsilon} \mathbb{Z} \to 0.$$

Αφού ε είναι επί, τότε έχουμε ότι $\ker \varepsilon = \mathbb{Z} = \operatorname{Im} \varphi$. Έτσι έχουμε ότι $H_1(\mathbb{S}^2, A) = \mathbb{Z}$. Επομένως, προχύπτει ότι

$$H_n\left(\mathbb{S}^2, A\right) = \begin{cases} \mathbb{Z}, & n = 1, 2\\ 0, & n \neq 1, 2 \end{cases}.$$

Ορισμός 11. Η ανάρτηση (suspension) SX ενός τοπολογικού χώρου X είναι ο χώρος πηλίκο που λαμβάνεται από τον $X \times [-1,1]$ θεωρώντας τα υποσύνολα $X \times \{-1\}$ και $X \times \{1\}$ ως μονοσύνολα. Δηλαδή είναι δύο κώνοι του X κολλημένοι μεταξύ τους.

43. Αποδείξτε ότι για κάθε χώρο X για κάθε n υπάρχει ισομορφισμός $\tilde{H}_n(SX)\cong \tilde{H}_{n-1}(X).$

Υπόδειξη. Θεωρούμε τα σύνολα $\overline{A}=X\times[-1,3/4)$ και $\overline{B}=X\times(-3/4,1]$ ανοικτά στον $X\times[-1,1]$ και A,B οι αντίστοιχες εικόνες τους στο πηλίκο. Παρατηρούμε ότι $\overline{A}\simeq X\times\{-1\},\ \overline{B}=X\times\{1\}$ και $\overline{A}\cap\overline{B}=X\times(-3/4,3/4)\simeq X\times\{0\}.$ Περνόντας σε ομοτοπίες στο πηλίκο, έχουμε ότι $A\simeq\ast,\ B\simeq\ast$ και $A\cap B\simeq X.$ Εφαρμόζοντας το θεώρημα Mayer - Vietoris επάγεται μακρά ακριβής ακολουθία στις ομάδες ανηγμένης ομολογίας ως εξής :

$$\cdots \to \tilde{H}_n(X) \to \tilde{H}_n(A) \oplus \tilde{H}_n(B) \to \tilde{H}_n(SX) \to \tilde{H}_{n-1}(X) \to \cdots$$

Αφού A,B είναι συμπτύξιμοι, τότε ισχύει ότι $\tilde{H}_n(A),\tilde{H}_n(B)=0$, για κάθε $n\geq 1$. Συνεπώς, από την παραπάνω σχέση έχουμε το ζητούμενο.

44. Έστω X_1 και X_2 ζεύγος τοπολογικών χώρων και $x_i \in X_i$ σημεία για τα οποία υπάρχουν περιοχές $U_i \subseteq X_i$ οι οποίες περιστέλλονται στα x_i . Αν με $X_1 \vee X_2 = X_1 \sqcup X_2/(x_1 \equiv x_2)$ συμβολίσουμε την σφήνα των X_1 και X_2 που προκύπτει ταυτοποιώντας το x_1 με το x_2 , τότε $\tilde{H}_n(X_1 \vee X_2) \cong \tilde{H}_n(X_1) \oplus \tilde{H}_n(X_2)$, για κάθε $n \ge 0$.

Υπόδειξη. Θεωρούμε τα σύνολα $\overline{A}=X_1\sqcup U_2$ και $\overline{B}=U_1\sqcup X_2$ και A,B τις αντίστοιχες εικόνες των $\overline{A},\overline{B}$ στο πηλίκο. Από την αρχική υπόθεση $\overline{A}\simeq X_1\sqcup \{x_2\},\ \overline{B}\simeq \{x_1\}\sqcup X_2$ και $\overline{A}\cap \overline{B}\simeq \{x_1\}\sqcup \{x_2\},$ όπου περνώντας σε ομοτοπία στο πηλίκο (τα σημεία ταύτισης παραμένουν σταθερά στις αντίστοιχες περιστολές) συμπεραίνουμε ότι $A\simeq X_1,\ B\simeq X_2$ και $A\cap B\simeq *$. Εφαρμόζοντας το θεώρημα Mayer - Vietoris προκύπτει μακρά ακριβής ακολουθία στις ομάδες ανηγμένης ομολογίας :

$$\cdots \to \tilde{H}_n(A \cap B) \to \tilde{H}_n(X_1) \oplus \tilde{H}_n(X_2) \to \tilde{H}_n(X_1 \vee X_2) \to \tilde{H}_{n-1}(A \cap B) \to \cdots$$

Για $n \ge 1$ έχουμε ότι $\tilde{H}_n(A \cap B) = 0$, αφού $A \cap B$ είναι συμπτύξιμος. Άρα, από την παραπάνω αχολουθία είναι άμεσο ότι $\tilde{H}_n(X_1 \vee X_2) \cong \tilde{H}_n(X_1) \oplus \tilde{H}_n(X_2)$, για χάθε $n \ge 0$.

45. Έστω $r: X \to A$ μια συστολή από έναν χώρο X σε ένα υπόχωρο A. Αποδείξτε ότι $H_n(X) \cong H_n(A) \oplus H_n(X,A)$, για κάθε n.

Υπόδειξη. Γνωρίζουμε ότι η βραχεία αχριβής αχολουθία αλυσωτών συμπλεγμάτων

$$0 \to S_*(A) \xrightarrow{i_*} S_*(X) \xrightarrow{\varepsilon_*} S_*(X, A) \to 0$$

επάγει μακρά ακριβή ακολουθία στην ομολογία

$$\cdots \to H_n(A) \xrightarrow{H_n(i)} H_n(X) \xrightarrow{H_n(\epsilon)} H_n(X,A) \xrightarrow{\partial_n} H_{n-1}(A) \xrightarrow{H_{n-1}(i)} \cdots$$

Αφού $r \circ i = \mathrm{id}_A$, όπου i η συνήθης ένθεση $i : A \hookrightarrow X$, τότε επάγεται η σχέση $H_n(r) \circ H_n(i) = \mathrm{id}_{H_n(A)}$, για κάθε $n \in \mathbb{N}$. Η τελευταία σχέση μας λέει ότι $H_n(i)$ είναι μονομορφισμός και μάλιστα ότι η βραχεία ακριβής ακολουθία (γιατί;)

$$0 \longrightarrow H_n(A) \xrightarrow{H_n(i)} H_n(X) \xrightarrow{H_n(\varepsilon)} H_n(X,A) \longrightarrow 0$$

διασπάται, για κάθε n. Συνεπώς, από ισοδύναμο χαρακτηρισμό διασπώμενων β .α.α., ότι $H_n(X) \cong H_n(A) \oplus H_n(X,A)$, για κάθε n.

46. Δείξτε ότι οι χώροι $\mathbb{S}^1 \times \mathbb{S}^1$ και $\mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^2$ έχουν ισόμορφες ομάδες ομολογίας (σε όλες τις διαστάσεις), όμως τα καθολικά του καλύμματα όχι.

Υπόδειξη. Αφήνεται στον αναγνώστη να δείξει ότι $\mathbb{S}^1 \times \mathbb{S}^1$ και $\mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^2$ έχουνε ισόμορφες ομάδες ομολογίας (κάθε διάστασης) και μάλιστα

$$H_n\left(\mathbb{S}^1 \times \mathbb{S}^1\right) = \begin{cases} \mathbb{Z}, & n = 0, 2 \\ \mathbb{Z} \oplus \mathbb{Z}, & n = 1 \\ 0, & \text{αλλιώς} \end{cases}$$

Τώρα, ένα καθολικό κάλυμμα του $\mathbb{S}^1 \times \mathbb{S}^1$ είναι $\mathbb{R} \times \mathbb{R}$, ο οποίος είναι συμπτύξιμος χώρος, άρα έχει ομολογία σημείου. Τώρα, αφού έστω \tilde{X} ένα καθολικό κάλυμμα του $X = \mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^2$. Γνωρίζουμε ότι υπάρχει εμφύτευση $i: \mathbb{S}^2 \to X$ και από το κριτήριο ανυψώσεως υπάρχει $\tilde{i}: \mathbb{S}^2 \to \tilde{X}$ ώστε το ακόλουθο διάγραμμα να είναι μεταθετικό :

Η παραπάνω σχέση επάγει ισότητα την ομολογία $H_2(i) = H_2(p) \circ H_2(\tilde{i})$. Αφού $H_2(i)$ δεν είναι τετριμμένη (γιατί ;), προκύπτει και ότι $H_2(\tilde{i}) \neq 0$, επομένως $H_2(\tilde{X}) \neq 0$, επομένως προφανώς οι $\mathbb{R} \times \mathbb{R}$ και \tilde{X} δεν έχουν (κάθε διάστασης) ισόμορφες ομάδες ομολογίας.