



ED25/Thermodynamics&Heat Transfex

# **Heat Flux Sensor Testing**

TFAWS 2001 Conference Huntsville, Al September 13, 2001





ED25/Thermodynamics&Heat Transfer

## **Objectives**

Develop secondary calibration capabilities for MSFC's Hot Gas Facility (HGF), a Mach 4 Aerothermal Wind Tunnel.

- Evaluate ASTM slug/ thinskin calorimeters against current HGF heat flux sensors
- Provide verification of baselined AEDC/ Medtherm gage calibrations
- Address future calibration issues involving NIST certified radiant gages





ED25/Thermodynamics&Heat Transfer

## Why Are NIST Calibration Standards Valuable?

- Shuttle Safety
  - Thermal Protection Systems are developed, characterized, and qualified for flight using NIST radiant calibration standards at HGF
- Shuttle Performance
  - 26% of the Space Shuttle's weight is TPS
  - On the External Tank alone, a 15% reduction in TPS increases Shuttle payload capacity by 600 pounds, representing \$6,000,000 in potential payload cost savings per Shuttle flight





# MATERIALS ENVIRONMENT TEST COMPLEX (METCO)



**Improved Hot Gas Facility** 



**Thermal Acoustics Facility** 



**Hyperthermal Tester** 



**Large Scale Tensile Tester** 





ED25/Thermodynamics&Heat Transfer

# **HGF Layout**







ED25/Thermodynamics&Heat Transfer

## **HGF Facility Description**

- •The Marshall Space Flight Center's Improved Hot Gas Facility (IHGF) is an aerothermodynamic testing facility ideal for Thermal Protection System materials characterization and qualification.
  - •A combustion driven, Mach 4 wind tunnel, with a 16 x 16 inch test section.
  - •Burns a lean mixture of gaseous hydrogen (GH<sub>2</sub>) and missile grade air producing total temperatures of 1440 2400 °F with total pressures of 100 220 psia.
  - •A 300 kW radiant lamp system is available for plume environment simulation.
  - Infrared (IR) thermal imaging/ video capabilities used for collecting real-time surface temperature measurements
- •The IHGF is reasonably small, inexpensive in operation, very flexible and efficient, and is operated with a small, highly experienced crew.
- •Run times up to 300 seconds and up to 10 tests per day.
  - •Variable wedge angle (up to 20 degrees) model insertion system for panels up to 12" x 19".
  - Can accommodate protuberance testing up to 7" x 12".
- •The IHGF provides the opportunities for inexpensive screening, preliminary study, and technique development work.
  - •It continues to provide MSFC and Industry with quick response capability during conceptual design phases as well as during flight vehicle problem resolution.
  - •It is used for development and flight qualification of Space Shuttle External Tank and SRB TPS





ED25/Thermodynamics&Heat Transfet

### **Calorimeter Illustration**

#### **METCO Thin Skin:**





#### Section View of Thin Skin

#### 304 Stainless properties:

Density: 0.29 lbm/in3

Specific Heat: 0.12 Btu/lbm/F

### Slug Calorimeter

#### **Copper properties:**

Density: 0.323 lbm/in3

Specific Heat: 0.092 Btu/lbm/F





ED25/Thermodynamics&Heat Transfer

## Schmidt-Boelter Gage Design







ED25/Thermodynamics&Heat Transfer

## **Slug Assembly Drawing**







ED25/Thermodynamics&Heat Transfer

## **Calibration Plate**



calibrations

D.W. Clark ED25





ED25/Thermodynamics&Heat Transfer

## **Calorimetry Study Test Matrix And Chronology**

| Position ><br>Test | 1  | 2     | 3     | 4     | 5     | Tunnel<br>Condition     |
|--------------------|----|-------|-------|-------|-------|-------------------------|
| 1 2 3              | MT | 0.095 | 3 HF  | 0.065 | SLUG  | 125 psia / 1600°F / 0°  |
| 456                | MT | 0.095 | 3 HF  | 0.065 | SLUG  | 125 psia / 1600°F / 15° |
| 7 8                | MT | 0.065 | SLUG  | 0.095 | 3 HF  | 125 psia / 1600°F / 0°  |
| 9 10               | MT | 0.065 | SLUG  | 0.095 | 3 HF  | 125 psia / 1600°F / 15° |
| 11 12              | MT | 3 HF  | 0.065 | SLUG  | 0.095 | 125 psia / 1600°F / 0°  |
| 13 14              | MT | 3 HF  | 0.065 | SLUG  | 0.095 | 125 psia / 1600°F / 15° |
| 15 16              | MT | SLUG  | 0.095 | 3 HF  | 0.065 | 125 psia / 1600°F / 0°  |
| 17 18              | МТ | SLUG  | 0.095 | 3 HF  | 0.065 | 125 psia / 1600°F / 15° |

| Calorimeter<br>Legend               |  |
|-------------------------------------|--|
| MT = 1/2" Medtherm S/N 107641       |  |
| (Gage "MT" is always in Position 1) |  |
| 0.065 = Thin Thin Skin Gage         |  |
| 0.095 = Thick Thin Skin Gage        |  |
| SLUG = Ames Furnished Slug S/N TBD  |  |
| 3 HF #1 = 1/4" Medtherm S/N 667121  |  |
| 3 HF #2 = 3/16" Medtherm S/N 79455  |  |
| 3 HF #3 = AEDC S/N 2679             |  |

|      | First Runs |        | Repeat Runs |        | Tunnel                  |
|------|------------|--------|-------------|--------|-------------------------|
| Test | HGF No.    | Date   | HGF No.     | Date   | Condition               |
| 1    | 337        | 14-Jun | 552         | 30-Jul | 125 psia / 1600°F / 0°  |
| 2    | 338        | 14-Jun | 550         | 30-Jul | 125 psia / 1600°F / 0°  |
| 3    | 341        | 14-Jun | 549         | 30-Jul | 125 psia / 1600°F / 0°  |
| 4    | 342        | 14-Jun | 546         | 30-Jul | 125 psia / 1600°F / 15° |
| 5    | 343        | 14-Jun | 544         | 30-Jul | 125 psia / 1600°F / 15° |
| 6    | 344        | 14-Jun | 543         | 30-Jul | 125 psia / 1600°F / 15° |
| 7    | 345        | 14-Jun | 542         | 26-Jul | 125 psia / 1600°F / 0°  |
| 8    | 346        | 14-Jun | 541         | 26-Jul | 125 psia / 1600°F / 0°  |
| 9    | 348        | 14-Jun | 540         | 26-Jul | 125 psia / 1600°F / 15° |
| 10   | 349        | 14-Jun | 539         | 26-Jul | 125 psia / 1600°F / 15° |
| 11   | 350        | 15-Jun | 449         | 12-Jul | 125 psia / 1600°F / 0°  |
| 12   | 351        | 15-Jun | 450         | 12-Jul | 125 psia / 1600°F / 0°  |
| 13   | 352        | 15-Jun | 451         | 12-Jul | 125 psia / 1600°F / 15° |
| 14   | 353        | 15-Jun | 453         | 12-Jul | 125 psia / 1600°F / 15° |
| 15   | 354        | 15-Jun | 388         | 25-Jun | 125 psia / 1600°F / 0°  |
| 16   | 355        | 15-Jun | 391         | 25-Jun | 125 psia / 1600°F / 0°  |
| 17   | 356        | 15-Jun | 389         | 25-Jun | 125 psia / 1600°F / 15° |
| 18   | 357        | 15-Jun | 390         | 25-Jun | 125 psia / 1600°F / 15° |

| Miscellaneous                                                       |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Notes                                                               |  |  |  |  |  |  |  |  |  |
| Gage "MT" is always in Position 1                                   |  |  |  |  |  |  |  |  |  |
| Tests 1 2 3 and 4 5 6 are intended to check for data repeatability. |  |  |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |  |  |





ED25/Thermodynamics&Heat Transfer

## **Test Conditions**





**Tunnel Performance** 

**Tunnel Environments** 

D.W. Clark ED25





ED25/Thermodynamics&Heat Transfer

### **Data Reduction Timeline**

#### SB Gage Output (BFS)

#### Test Section Static Pressures (psia)



Calorimeter data evaluated when test section reaches steady flow. (~13 sec). Corresponding calorimeter/ gage comparisons made over one second time interval.



Temperature (deg F)

### **TFAWS 2001**



ED25/Thermodynamics&Heat Transfer

## Calorimeter Data

Po, chamber (psia)





Calorimeter Temperatures

**Static Pressures** 

D.W. Clark ED25





ED25/Thermodynamics&Heat Transfet

## **Thin Skin Radial Conduction Errors**

Gage Conduction Errors vs. Radial Distance



Dx, radial distance from centerline (in)





ED25/Thermodynamics&Heat Transfer

## **Thin Skin Temperatures**







ED25/Thermodynamics&Heat Transfer

## **S-B Gage Temperatures**







ED25/Thermodynamics&Heat Transfe

### Calorimeter Heat Transfer

Hot Wall Rates:

$$\dot{q} = \rho C_p l \frac{d T_c}{dt}$$

Compressible Flow:

$$\frac{T}{T_o} = \left(\frac{P}{P_o}\right)^{\left(\frac{\kappa-1}{\kappa}\right)}$$

(temperature ratio)

$$T_r = \mathbf{Pr}^{\frac{1}{3}} (T_o - T) + T$$
 (recovery temperature)

Cold Wall Rates:

$$\dot{q}_{cw} = q \frac{(T_r - 460.)}{(T_r - T_w)}$$





ED25/Thermodynamics&Heat Transfer

## **Measurement Repeatability**













ED25/Thermodynamics&Heat Transfet

## **Measurement Comparisons**





Test Condition: 125psia/ 1600F/ 0 & 15 Deg





ED25/Thermodynamics&Heat Transfer

### **Future Work Planned At MSFC HGF**

- Continue to develop calorimeter database
- Study combined effects of supersonic convection and radiant heating on material response
- Calibrate In-flight measurements of heat fluxes with dissimilar material induced thermal mismatches between gage and surrounding TPS material
- Study radiant heat measurement in the presence of convective cooling