





Impact of Heat on Health of Rickshaw Pullers

Particulate Matter sensor

SO<sub>2</sub> sensor

Accelerometer

Power supply for microcontroller

Power supply for all sensors

NO<sub>2</sub> sensor

LPG sensor



CO<sub>2</sub> sensor

O<sub>3</sub> sensor



Voltage converter 12v to 5 v

CO sensor

Bluetooth module

Temperature and humidity

NO<sub>x</sub> sensor

Environment sensing module



GSR sensor on upper arm

**GSR** ckt

Power supply for GSR

Deployment of heath sensing module



Thermal camera

**Fitbit** 





- 3. Other system components inside a handbag
  - Mounted with lower arm

Deployment of heath sensing module

- GSR sensor on upper arm
  - Rounded by a clinical standard band
- 2. Pulse oximetry on thumb
  - Mounted with masking tape



4. EEG headset- mounted onforehead andearlobe



### Data aquisition



### Health sensing module

- Left hand
  - GSR
  - Pulse oximetry
- Right hand
  - Fitbit

Environment sensing module on back sit of rickshaw

Integration of all system components

# 30 Sept, 2022 - Trip1

- Age = 62
- Weight = 44 kg
- Height = 160 cm
- BMI =  $17.2 \text{ kg/m}^2$

### **Active** sensors:

- 1. All environmental sensors
- 2. GSR





Figure: Change in environmental parameters with time



Figure: Change in health parameters with time

| Environmental |         |          |          | Standard | со       | CO2      | LPG      | Tempera  | Humidity | NO2      | NOx      | SO2      | О3       |
|---------------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| parameters    |         | PM 1.0   | PM 2.5   | PM 10    |          |          |          | ture     |          |          |          |          |          |
| Galvanic Skin | Corr    | -0.06846 | -0.06286 | -0.07809 | -0.12388 | 0.115282 | -0.40851 | -0.56294 | 0.409834 | 0.145573 | -0.06683 | -0.10134 | 0.438906 |
| Response      | p-value | 0.366614 | 0.407208 | 0.302952 | 0.1014   | 0.127615 | 1.82E-08 | 4.22E-16 | 1.62E-08 | 0.053884 | 0.378146 | 0.180791 | 1.11E-09 |



Figure: Correlation between environmental and health parameters

## 06 Oct, 2022 – Trip 1

- Age = 50
- Weight = 68.55 kg
- Height = 170 cm
- BMI = 20.3 kg/m2

#### **Active** sensors:

- 1. All environmental sensors
- Heart rate
- 3. Body temperature
- 4. Thermal camera

### Sampling rate

- Environmental sensors: 9 s per sample
- Health sensors: 11 s per sample





Figure: Change in environmental parameters with time



Figure: Change in health parameters with time





| Enviromental params |                             | Standard<br>PM 1.0 | Standard<br>PM 2.5 | Standard<br>PM 10 | со    | CO2   | LPG   | Temperature | Humidity | NO2   | NOx  | SO2   | О3    |
|---------------------|-----------------------------|--------------------|--------------------|-------------------|-------|-------|-------|-------------|----------|-------|------|-------|-------|
| Health<br>params    | BPM                         | 0.16               | 0.16               | 0.16              | -0.01 | -0.14 | -0.09 | 0.20        | -0.22    | 0.15  | 0.09 | 0.04  | -0.02 |
|                     | Body<br>temperat<br>ure (C) | 0.06               | 0.06               | 0.06              | 0.09  | 0.14  | -0.29 | 0.90        | -0.73    | -0.05 | 0.12 | -0.25 | 0.04  |

Figure: Correlation between environmental and health parameters