Aprendizado de Máquina II

Aplicação de Algoritmos de Clusterização em uma Base de Dados de Reservas de Hotéis

Autores: Pedro Alexandre de Araújo Aguiar, Clodomir Joaquim de Santana Junior, Carmelo José Albanez Bastos Filho

Grupo: Anna Luiza Alves e Gustavo Costa

Aplicação de Algoritmos de Clusterização em uma Base de Dados de Reservas de Hotéis

Application of Clustering Algorithms in Hotels Reservation Datasets

Pedro Alexandre de Araújo Aguiar¹ orcid.org/0000-0002-9973-763X
Clodomir Joaquim de Santana Junior¹ orcid.org/0000-0001-7869-7184
Carmelo José Albanez Bastos Filho¹ orcid.org/0000-0002-0924-5341

¹Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, Pernambuco, Brasil.

E-mail do autor principal: paaa@ecomp.poli.br

Resumo

Este artigo faz uma análise da aplicação dos algoritmos de clusterização K-Means e Fuzzy C-Means. O estudo de caso visa identificar perfis de clientes de uma agência de viagens online, com o objetivo de melhorar a eficácia do envio de ofertas através de e-mail marketing, possibilitando o envio de anúncios personalizados para cada perfil. O processo de clusterização foi feito baseado na similaridade entre os usuários, levando em conta 13 características extraídas das vendas dos clientes. O resultado mostra que, apesar de chegaram a grupos parecidos, o K-Means teve desempenho levemente superior ao Fuzzy C-Means, no que diz respeito a avaliação através da métrica de estatística Gap.

Palavras-Chave: Clusterização; K-Means; Fuzzy C-Means;

Introdução e Objetivos do Trabalho

- Introdução sobre clusterização e seu objetivo de segmentar dados com base em similaridades.
- Problema Abordado no Artigo: Custos elevados com campanhas de e-mail marketing sem segmentação para clientes de uma agência de viagens online.
- Propósito do Artigo: Identificar perfis de clientes de uma agência de viagens online para melhorar a eficácia do envio de ofertas.
- Comparativo dos Algoritmos K-Means e Fuzzy C-Means

Base de Dados

- Base de Dados: 2.959 vendas aprovadas de reservas de hotéis de uma agência de viagens online no Brasil, realizadas entre 2016 e 2017.
- Características Utilizadas: 13 características extraídas das vendas dos clientes.

Característica	Descrição
Uf	Estado onde o cliente reside
Idade	Idade do clientes
Total Comprado	Soma total de todas as compras do cliente
Ticket Médio	Valor médio de compra do cliente
Quantidade de Compras	Quantidade de compras do cliente
Tipo de	Forma que o cliente pagou a compra
Pagamento	(Cartão de crédito, boleto)
Quantidade	Quantidade de parcelas que o
de Parcelas	cliente escolheu dividir
Cidade	Cidade do cliente
Valor da venda	Valor da venda específica
Hotel	Hotel comprado pelo cliente
Destino	Cidade de destino da viagem
Mês de estadia	Mês que o cliente escolheu se hospedar
Quantidade de	Total de dias que o cliente irá
diárias	ficar hospedado

Pré-processamento dos Dados

- Utilização da ferramenta Open Refine.
- Idade: Extraída da data de nascimento.
- Cidade: Padronização dos nomes
- Destino: Unificação de destinos que se referiam ao mesmo local (Ex: Ipojuca/PE e Porto de Galinhas unificados para Porto de Galinhas).
- Mês de Estadia: Derivada do dia de entrada no hotel.

Característica	Descrição	
	•	
Uf	Estado onde o cliente reside	
Idade	Idade do clientes	
Total Comprado	Soma total de todas as compras do cliente	
Ticket Médio	Valor médio de compra do cliente	
Quantidade	Quantidade de compras do cliente	
de Compras		
Tipo de	Forma que o cliente pagou a compra	
Pagamento	(Cartão de crédito, boleto)	
Quantidade	Quantidade de parcelas que o	
de Parcelas	cliente escolheu dividir	
Cidade	Cidade do cliente	
Valor da venda	Valor da venda específica	
Hotel	Hotel comprado pelo cliente	
Destino	Cidade de destino da viagem	
Mês de estadia	Mês que o cliente escolheu se hospedar	
Quantidade de	Total de dias que o cliente irá	
diárias	ficar hospedado	
	<u> </u>	

Algoritmos de Clusterização

K-MEANS:

- Algoritmo particional
- Popular por simplicidade e eficiência.
- Medida de similaridade: Distância Euclidiana.
- Atualização dos centroides através da média de cada característica.

Fuzzy C-Means (FCM):

- Extensão do C-Means particional, utilizando lógica fuzzy.
- Permite que um elemento pertença a mais de um cluster, com graus de pertinência.
- Cálculo de centroides, distância euclidiana e atualização da matriz de pertencimento.

Experimentos

Estratégia

- 30 execuções para cada algoritmo e para cada valor de K (número de clusters)
- K variando de 2 a 10 grupos
- Média de 4 métricas calculadas para cada valor de K
 - Estatística GAP, Distância Inter-Cluster, Erro Quantizado e Distância Intra-Cluster

Resultados K-Means

- Distância Intra-Cluster: Diminuiu com o aumento de K, indicando grupos mais compactos.
- Distância Inter-Cluster: Aumentou com o aumento de K, indicando grupos mais separados.
- Métrica Principal (Gap): A Estatística Gap apontou K=3 como a quantidade ideal de grupos.
- **Perfil Identificado:** Os 3 grupos foram definidos principalmente pelo "Mês de Estadia" (início, meio e fim de ano).
- Comportamento Esperado: O algoritmo demonstrou o comportamento esperado nas métricas.

Gráficos K-Means

Métricas como as distâncias intra e inter-cluster, isoladamente, quase sempre indicarão que um número maior de K é melhor, tornando difícil encontrar o "número ideal" de grupos.

Gráfico GAP K-Means

Resultados Fuzzy C-Means

- Comportamento Instável: As métricas de qualidade dos grupos oscilaram bastante.
- Erro Quantizado: A métrica não melhorou de forma consistente e ficou oscilando para cada valor de K.
- **Métrica Principal (Gap):** A Estatística Gap atingiu seu valor máximo em K=3, indicando este como o número ideal.
- **Perfil Identificado:** Assim como no K-Means, os perfis foram criados com base no "Mês da Estadia".

Gráficos Fuzzy C-Means

Mais uma vez, a estatística GAP foi a responsável por definir o número de K ideal.

Resultados Comparativos

- **Número de Clusters:** Ambos os algoritmos, pela métrica Gap, sugeriram K=3 como o número ideal de perfis.
- **Perfis Encontrados:** Os dois métodos criaram grupos muito semelhantes, baseados na época do ano em que os clientes viajam.
- Desempenho Geral: O K-Means teve um desempenho levemente superior.
- **Justificativa:** O valor da Estatística Gap do K-Means foi maior, o que demonstra grupos mais consistentes e bem definidos.

Limitações e Críticas

- **Pré-processamento Questionável:** A transformação de "Destino" e "Hotel" em números por ordem alfabética foi pouco eficaz, algo admitido pelos próprios autores. Isso criou distâncias artificiais pelo pré-processamento equivocado (LabelEncoder).
- Falta de Clareza na Metodologia: Detalhes cruciais do pré-processamento são explicados apenas na seção de discussão, e não na metodologia, não houve verificação de outliers por exemplo ou outras etapas essenciais de pré-processamento.
- Conhecimento óbvio (viagens em sazonalidades diferentes)

Obrigado