

2-3 Trees

- The 2-3 Tree is a special type of BST invented by John Hopcroft in 1970
- It automatically maintains balance as it grows!
- It does this by using a clever variation of the node that can

contain multiple values

2-3 Trees

- 2-Nodes contain 1 values and two children: left and right
- 3-Nodes contains 2 values and three children: left, middle and right
- Both are easily to code and traversal logic is straight forward

Searching a 2-3 tree

- Searching a 2-3 Tree is very similar to a Binary Search Tree, but with a minor difference
- 2-nodes are treated the same as they are in BSTs:
 - if less than, go left
 - if greater than, go right

Searching a 2-3 tree

- 3-nodes are a bit different
- Since they have 2 values, a and b, we do the following:
 - if less than a, go left
 - if between a and b, go middle
 - if greater than b, go right

The Types of Splits

- This will change a parent from a 2-Node to 3-Node
- ... or from 3-Node to 4-Node
 - then, the parent will split
 - it continues to bubble up possibly all the way to the root
 - this is O(log n)

10/25/201

acramento State - Summer 2019

The Six Splits

- Parent is 2-Node:
 - node is the left child of the parent (1)
 - node is the right child of the parent (2)
- Parent is 3-Node:
 - node is the left child of the parent (3)
 - node is the middle child of the parent (4)
 - node is the right child of the parent (5)
- Node is the root (6)

0/25/2019

Sacramento State - Summer 2019 - CSc 130 - Cook

2-Node Parent, Left Child BD BD ABC Sacramento State - Summer 2019 - Clor 130 - Cook 20

AVL Trees

- So, searching is always optimized
- However, adding nodes requires considerable work and, ultimately, hurts efficiency

10/25/2019

AVL Trees

- Each subtree has a "height" property
 - it is the maximum between the height of the left and right subtree + 1
 - · leafs have a height of zero
- If the right and left branches only differ by
 - 1, the AVL Tree is sufficiently balanced
- If not, they are balanced by rotating

10/25/2011

Inserting Nodes

- Unless values are inserted in a very specific order, the tree will, naturally, become unbalanced
- Imbalance falls into two distinct categories
 - 1. Left-Left (or Right-Right) imbalance
 - 2. Left-Right (or Right-Left) imbalance

10/25/2019

Sacramento State - Summer 2019 - CSc 130 - Cook

- When a node is inserted... only nodes on the path from insertion point to the root have possibly changed in height
- So after the Insert...
 - start balancing starting at the lowest node
 - recurse back up to the root rotating as needed

10.05.0010

Sacramento State - Summer 2019 - CSc 130 - Cook

After the rotation, B and C now have the same height A's is one less than B and C But the difference is now 1 – the tree is balanced

Black-height of a node is the number of Black nodes on any path to a null We don't count red nodes since they are represent part of a 3-Node Typically, the root isn't counted Every path from any node to a null contains the same number of Black nodes

The Black-Height

