

BIRZEIT UNIVERSITY

Faculty of Engineering & Technology Electrical & Computer Engineering Department COMMUNICATIONS LAB

ENEE4113

Prelab #4 Experiment 6

Pulse Amplitude Modulation (Sampling)

Prepared by:

Rivan Jaradat 1200081

Partner:

Amani Rabee:1201512

Noor Rahib: 1202853

Instructor: Dr.Alhareth zyoud

TA: Eng. Mohammad Albattat

Section: 5

Date: 29/11/2023

Contents

Table of figure:	3
1.Part1: Time and Frequency Characteristics of pulse train	4
1.1.Block diagram:	4
1.2. Pulse @ D=10%	4
1.2.2.Frequency domain:	5
1.2.Pulse @ D=40% :	5
1.2.1.Time domain:	5
1.2.2.Frequency domain:	6
2.Part 2: Modulating signal (message signal)	6
2.2.Modulated signal @ fm=500Hz & D=50%:	7
2.3.Modulated signal @ fm=500Hz & D=10%	8
2.4.Modulated signal @ fm=500Hz & D=30%	10
2.5.Modulated signal @ fm=1000Hz & D=50%	11
2.6.Modulated signal @ fm=2000Hz & D=50%:	13
3.Sample and Hold (flat topped) Sampling	14
3.2. Modulated signal @ fm=500Hz & D=50%	15
3.3.Modulated signal @ fm=500Hz & D=10%	16
3.4.Modulated signal @ fm=500Hz & D=30%	17
3.5.Modulated signal @ fm=1000Hz & D=50%	18
3.6.Modulated signal @ fm=2000Hz & D=50%	19
4.Part 3:Characteristics of Pulse Amplitude Demodulation	20
4.2.De-Modulated signal Natural @ fm=500 & D=50%	20
4.3.De-Modulated signal Natural @ fm=500 & D=10%	21
4.4.De-Modulated signal Flat-Top @ fm=500 & D=50%:	22
5.Part 4:	23
5.1. Modulated signal @fm=3000 & D=50%	23
5.2.De-Modulated signal @fm=3000 & D=50%	24
5.3.Modulated signal @fm=3000 & D=50%	25
5.4.De-Modulated signal @fm=3000 & D=50%	26
6.General parameters:	27

Table of figure:

Figure 1.part1 at D=10% in time domain	4
Figure 2part1 at D=10% in frequency domain	5
Figure 3.part1 at D=40% in time domain	5
Figure 4.part1 at D=40% in frequency domain	ε
Figure 5block diagram for Modulating signal (message signal)	ε
Figure 6.Modulatem(t)&s(t) @ fm=500Hz & D=50% in time domain	
Figure 7.Modulatem(t)&s(t) @ fm=500Hz & D=50% in frequency domain	
Figure 8pulse train in frequency domain @D=50%	
Figure 9.Modulatem(t)&s(t) @ fm=500Hz & D=10% in time domain	8
Figure 10.Modulatem(t)&s(t) @ fm=500Hz & D=10% in frequency domain	
Figure 11pulse train in frequency domain @D=10%	
Figure 12.Modulatem(t)&s(t) @ fm=500Hz & D=30% in time domain	10
Figure 13.m(t)&s(t) @ fm=500Hz & D=30% in frequency domain	10
Figure 14pulse train in frequency domain @D=30%	11
Figure 15.m(t)&s(t) @ fm=1000Hz & D=50% in time domain	
Figure 16.m(t)&s(t) @ fm=1000Hz & D=50% in frequency domain	12
Figure 17pulse train in frequency domain @D=50%	
Figure 18.m(t)&s(t) @ fm=2000Hz & D=50% in time domain	13
Figure 19.m(t)&s(t) @ fm=2000Hz & D=50% in frequency domain	
Figure 20.pulse train in frequency domain @D=50%	14
Figure 21.m(t)&s(t) @ fm=500Hz & D=50% in time domain	
Figure 22.s(t) ,m(t)@ fm=1000Hz & D=50% in frequency domain	
Figure 23.s(t) ,m(t)@ fm=500Hz & D=10% in time domain	
Figure 24.S(T) in frequency domain	
Figure 25.s(t) ,m(t)@ fm=500Hz & D=30% in time domainFrequency domain:	
Figure 26.s(t) in frequency domain	
Figure 27.s(t) ,m(t)@ fm=1000Hz & D=50% in time domain	
Figure 28.s(t) in frequency domain	
Figure 29.s(t) ,m(t)@ fm=2000Hz & D=50% in time domain	
Figure 30.s(t) in frequency domain	
Figure 31m(t) & demodulated signal in time domain at d=50%	
Figure 32.demodulated signal in frequency domain	
Figure 33.m(t) & demodulated signal in time domain at d=10%	
Figure 34.demodulated signal in frequency domain	
Figure 35.m(t) & demodulated signal in time domain at d=50%	
Figure 36.demodulated signal in frequency domain	
Figure 37.m(t) & Modulated signal @fm=3000 & D=50% in time domain	
Figure 38.modulated signal in frequency domain	
Figure 39.m(t) &deModulated signal @fm=3000 & D=50% in time domain	
Figure 40.demodulated signal in frequency domain	
Figure 41m(t) & Modulated signal @fm=3000 & D=50% in time domain	
Figure 42.modulated signal in frequency domain	
Figure 43.m(t) &de-Modulated signal @fm=3000 & D=50% in time domain	
Figure 44.demodulated signal in frequency domain	
Figure 45 general parameter	28

Software Prelab:

- 1.Part1: Time and Frequency Characteristics of pulse train
- 1.1.Block diagram:

1.2. Pulse @ D=10%

Figure 1.part1 at D=10% in time domain

1.2.2.Frequency domain:

Figure 2..part1 at D=10% in frequency domain

1.2.Pulse @ D=40%:

1.2.1.Time domain:

Figure 3.part1 at D=40% in time domain

1.2.2.Frequency domain:

Figure 4.part1 at D=40% in frequency domain

2.Part 2: Modulating signal (message signal)

2.1.block diagram:

Figure 5block diagram for Modulating signal (message signal)

2.2.Modulated signal @ fm=500Hz & D=50%:

2.2.1Time domain:

Figure 6.Modulatem(t)&s(t) @ fm=500Hz & D=50% in time domain

2.2.2.Frequency domain:

Figure 7.Modulatem(t)&s(t) @ fm=500Hz & D=50% in frequency domain

Figure 8..pulse train in frequency domain @D=50%

2.3.Modulated signal @ fm=500Hz & D=10%

2.3.1.Time domain:

Figure 9.Modulatem(t)&s(t) @ fm=500Hz & D=10% in time domain

2.3.2.Frequency domain:

Figure 10.Modulatem(t)&s(t) @ fm=500Hz & D=10% in frequency domain

Figure 11..pulse train in frequency domain @D=10%

2.4.Modulated signal @ fm=500Hz & D=30%

2.4.1.Time domain:

Figure 12.Modulatem(t)&s(t) @ fm=500Hz & D=30% in time domain

2.4.2.Frequency domain:

Figure 13.m(t)&s(t) @ fm=500Hz & D=30% in frequency domain

Figure 14..pulse train in frequency domain @D=30%

2.5. Modulated signal @ fm=1000Hz & D=50%

2.5.1.Time domain:

Figure 15.m(t)&s(t) @ fm=1000Hz & D=50% in time domain

2.5.2.Frequency domain

Figure 16.m(t)&s(t) @ fm=1000Hz & D=50% in frequency domain

Figure 17..pulse train in frequency domain @D=50%

2.6.Modulated signal @ fm=2000Hz & D=50%:

2.6.1.Time domain:

Figure 18.m(t)&s(t) @ fm=2000Hz & D=50% in time domain

2.6.2.Frequency domain

Figure 19.m(t)&s(t) @ fm=2000Hz & D=50% in frequency domain

Figure 20.pulse train in frequency domain @D=50%

3. Sample and Hold (flat topped) Sampling

Block diagram:

3.2. Modulated signal @ fm=500Hz & D=50%

Time domain:

Figure 21.m(t)&s(t) @ fm=500Hz & D=50% in time domain

Frequency domain:

Figure 22.s(t) ,m(t)@ fm=1000Hz & D=50% in frequency domain

3.3.Modulated signal @ fm=500Hz & D=10%

Time domain:

Figure 23.s(t), m(t)@ fm=500Hz & D=10% in time domain

Frequency domain:

Figure 24.S(T) in frequency domain

3.4.Modulated signal @ fm=500Hz & D=30%

Figure 25.s(t) ,m(t)@ fm=500Hz & D=30% in time domainFrequency domain:

Figure 26.s(t) in frequency domain

3.5.Modulated signal @ fm=1000Hz & D=50%

Time domain:

Figure 27.s(t) ,m(t)@ fm=1000Hz & D=50% in time domain

Frequency domain:

Figure 28.s(t) in frequency domain

3.6. Modulated signal @ fm=2000Hz & D=50%

Time domain:

Figure 29.s(t) ,m(t)@ fm=2000Hz & D=50% in time domain

Frequency domain:

Figure 30.s(t) in frequency domain

4.Part 3:Characteristics of Pulse Amplitude Demodulation

4.2.De-Modulated signal Natural @ fm=500 & D=50% Time domain:

Figure 31m(t) & demodulated signal in time domain at d=50%

Figure 32.demodulated signal in frequency domain

4.3. De-Modulated signal Natural @ fm=500 & D=10%

Figure 33.m(t) & demodulated signal in time domain at d=10%

Figure 34.demodulated signal in frequency domain

4.4. De-Modulated signal Flat-Top @ fm=500 & D=50%:

Figure 35.m(t) & demodulated signal in time domain at d=50%

Figure 36.demodulated signal in frequency domain

5.Part 4:

5.1. Modulated signal @fm=3000 & D=50%

Figure 37.m(t) & Modulated signal @fm=3000 & D=50% in time domain

Figure 38.modulated signal in frequency domain

5.2. De-Modulated signal @fm=3000 & D=50%

Time:

Figure 39.m(t) &deModulated signal @fm=3000 & D=50% in time domain

Frequency:Domain:

Figure 40.demodulated signal in frequency domain

Way 2: flat topped

5.3.Modulated signal @fm=3000 & D=50%

Time:

Figure 41m(t) & Modulated signal @fm=3000 & D=50% in time domain

Figure 42.modulated signal in frequency domain

5.4.De-Modulated signal @fm=3000 & D=50%

Figure 43.m(t) &de-Modulated signal @fm=3000 & D=50% in time domain

Figure 44.demodulated signal in frequency domain

6.General parameters:

Figure 45.general parameter