18MAB302T – Discrete Mathematics Unit – V: Graph Theory

OBJECTIVE TYPE QUESTIONS

1.	A vertex which	h is not adjace	nt to every other	er vertex is calle	ed vertex			
(a)	Isolated	(b) Pendant	(c) Incident	(d) Simple				
2.	2. A graph in which loops and parallel edges are allowed is called graph							
(a)	Pseudo	(b) Multi	(c) Simple	(d) Null				
3. The degree of each vertex in K_n is								
(a)	n-1	(b) n	(c) n-2	(d) 2n-1				
4.	. A vertex with zero in degree is called							
(a)	Sink (b) Sou	irce (c)	Terminal	(d) Out degree	ee			
5.	The number of	f edges in a cor	mplete graph w	vith 'n' vertices	is			
(a)	$\frac{n(n-1)}{2}$	(b) $\frac{n(n+1)}{2}$	(c) $\frac{n!}{2}$	(d) $\frac{n(n+1)(2)}{2}$	2(n+1)			
6.	A matrix whose is called	se rows are the	rows of unit m	natrix but not ne	ecessarily in the vertical order			
(a)	Square matrix	(b) Combina	ation (c) Pe	rmutation	(d) Binary			
7.			•		lges beginning and ending with preceding and following it			
(a)	Simple path	(b) Cycle	(c) Simple cy	cle (d) Par	th			
8.	3. If the initial and final vertices of a path are same, then it is called							
(a)	walk (b) Pa	th (c) Ci	rcle (d) C	losed circle				
9.	A circuit of a gonce	graph G is calle	ed ci	ircuit if it includ	des each edge of G exactly			
(a)	Hamiltonian	(b) Ko	nisberg	(c) Closed	(d) Eulerian			
10.	A path of a graonce	aph G is called	a	path if it includ	les each vertex of G exactly			
(a)	Hamiltonian	(b) Ko	nisberg	(c) Eulerian	(d) Open			
11.	11. A connected graph without any circuit is called							
(a)	Leaf (b) Flo	wer (c) Tre	ee (d) Lo	oop				
12.	A tree with 'n	vertices has _	ed	ges				
(a)	nC ₂ (b) nF	(c) n	· 1 (d) n!					
13.	Any	graph with r	vertices and n	1 - 1 edges is a	tree			
(a)	Hamiltonian	(b) Ciı	cuitless	(c) Eulerian	(d) Closed			
14.	Every vertex v		ble from a vert	ex v through a	single edge are called			

(a) descendant (b) leaf (c) children (d) root						
15. Every vertex which is reachable from a vertex 'v' is called						
(a) descendant (b) leaf (c) children (d) root						
16. If every internal vertex of a rooted tree has exactly 2 children ,then the tree is called						
(a) Full binary (b) Binary tree (c) Tree (d) Circuit						
17. The number of vertices of a full binary tree is 13, then the number of pendant vertice	s is					
(a) 7 (b) 6 (c) 5 (d) 0						
18. A minimum height of a 11 vertex binary tree is						
(a) 4 (b) 5 (c) 3 (d) 11						
19. A given connected graph G is a Euler graph iff all vertices of G are of						
(a) same degree (b) even degree (c) Odd degree (d) different degrees						
20. A maximum height of a 11 vertex binary tree is						
(a) 4 (b) 5 (c) 3 (d) 6						
21. If a vertex v of a tree has no children it is called						
(a) Pendant vertex (b) Non-terminal vertex (c) Descendant (d) Root						
22. The graph G with no parallel and no loops is graph						
(a) Multi graph (b) Pseudo (c) Simple (d) Tree						
23. In a directed graph the number of edges with v as terminal vertex is called of	v					
(a) Source (b) Sink (c) In degree (d) Out degree						
24 graphs satisfy invariant property						
(a) Homomorphic (b) Isomorphic (c) Hamiltonian (d) Eulerian						
25. If a Graph with all vertices are of same degree then it is called as graph						
(a) Bipartite (b) Completely bipartite (c) Proper subgraph (d) Regular						
26. Number of vertices of ODD degree in a undirected graph is						
(a) even (b) Odd (c) zero (d) one						
27. A graph that has neither self loops nor parallel edges is called as						
(a) Pseudo (b) Multi (c) Simple (d) Null						
28. The sum of the degrees of all the vertices of an undirected graph is						
(a) 2e (b) e (c) zero (d) 1						
29. How many edges are there in a graph with 10 vertices each of degree 6 is						
(a) 40 (b) 50 (c) 30 (d) 60						
30. Which one of the following degree sequence forms a graph						
(a) 4,4,4,3,2 (b) 1,1,1,1,1 (c) 1,1,1,1,3 (d) 2,2,2,2,2						
31. The maximum no of edges in a simple graph with 7 vertices is						
(a) 10 (b) 20 (c) 21 (d) 25						

(a) $\frac{(n-1)(n-2)}{2}$	(b) $\frac{n(n+1)}{2}$	(c) $\frac{n!}{2}$	(d) $\frac{n(n+1)(2n)}{2}$	+1)
33.A simple graph G w G is atleast	vith n vertices has a	Hamiltonian cycl	e if the degree of ev	ery vertex in
(a) n	(b) $n/2$	(c) n-1	(d) $n+1$	
34. Let G be a tree with	n n vertices ,then G-	e is havinge	dges	
(a) n-1	(b) $n/2$	(c) n-2	(d) $n+1$	
35.A tree has				
(a) only one centre(d) either one or two	` ,	centres (c)	three centres	
36. A graph with only of		loes is called as		
(a) Trivial	(b) isolated		ant (d) loop	

32. A simple graph with n vertices must be connected if it has more than edges

Answers

31.(c) 32.(a) 33.(b) 34.(c) 35.(d) 36.(a)

1. (a)	11. (c)	21.(a)
2. (a)	12. (c)	22.(c)
3. (a)	13. (b)	23.(b)
4. (c)	14. (c)	24.(c)
5. (a)	15. (a)	25.(d)
6. (b)	16. (a)	26.(a)
7. (a)	17. (a)	27.(c)
8. (c)	18. (c)	28.(a)
9. (d)	19. (b)	29.(c)
10.(a)	20. (b)	30.(d)