PRACA KONTROLNA nr 4 - POZIOM ROZSZERZONY

- 1. Dzieląc wielomian W(x) przez dwumian x-3 otrzymujemy resztę równą 2, a dzieląc ten wielomian przez x-2 otrzymujemy resztę równą 1. Wyznaczyć resztę z dzielenia W(x) przez (x-2)(x-3). Znaleźć wielomian trzeciego stopnia spełniający powyższe warunki wiedząc, że x=1 jest pierwiastkiem tego wielomianu, a suma wyrazu wolnego i współczynnika przy x^3 jest równa 0.
- 2. Znaleźć najmniejszą i największą wartość funkcji $f(x) = \sin x \frac{1}{2}\cos 2x$ na przedziale $[-\frac{\pi}{2}, \frac{\pi}{2}]$ i rozwiązać nierówność $-\frac{1}{2} \leqslant f(x) \leqslant \frac{1}{4}$. Zadanie rozwiązać bez używania pojęcia pochodnej.
- 3. Rozwiązać nierówność

$$\log_{\frac{1}{\sqrt{2}}} \left(2^{2x+1} - 16^x \right) \geqslant -12x.$$

- 4. W stożek o kącie rozwarcia równym 2α wpisano kulę o promieniu R. Wewnątrz stożka stawiamy na kuli sześcian o maksymalnej objętości i podstawie równoległej do podstawy stożka. Wyznaczyć długość krawędzi tego sześcianu.
- 5. Stosunek długości promienia okręgu wpisanego do długości promienia okręgu opisanego na trójkącie prostokątnym wynosi $\frac{1}{3+2\sqrt{3}}$. Obliczyć sinusy kątów ostrych tego trójkąta.
- 6. Ślimak ma do przejścia taśmę o długości 3 metrów zamocowaną w punkcie startu A. W ciągu każdego dnia udaje mu się przejść 1 metr, a każdej nocy gdy śpi, ktoś ciągnąc za drugi koniec taśmy wydłuża ją równomiernie o 1 metr. Niech d_n oznacza długość taśmy w n-tym dniu, a a_n odległość ślimaka od punktu A przy końcu n-tego dnia.
 - a) Uzasadnić, że ciąg (a_n) zdefiniowany jest następującym wzorem rekurencyjnym: $a_1 = 1$ oraz $a_{n+1} = \frac{3+n}{2+n}a_n + 1$ dla $n \ge 1$.
 - b) Pokazać, że $a_n = (n+2) \left(\frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n+2} \right), n \ge 1.$
 - c) Czy ślimak dojdzie do końca taśmy? Jeżeli tak, to w którym dniu, to znaczy, dla jakich n prawdziwa jest nierówność $a_n > d_n$?