Co1_So3_函数的极限

第一章 函数与极限 第三节 函数的极限 目录

- 一、函数极限的定义
 - 1. 自变量趋于有限值时函数的极限
 - 。 2. 自变量趋于无穷大时函数的极限
- 二、函数极限的性质
 - 1. 函数极限的唯一性
 - 。 2. 函数极限的局部有界性
 - 。 3. 函数极限的局部保号性
 - 。 4. 函数极限与数列极限的关系*

一、函数极限的定义

1. 自变量趋于有限值时函数的极限

函数 f(x) 当 $x \to x_0$ 时的极限定义:

左极限: $\lim_{x\to x_0^-} f(x) = A$ 或 $f(x_0^-) = A$

右极限: $\lim_{x\to x_0^+} f(x) = A$ 或 $f(x_0^+) = A$

左极限和右极限统称为单侧极限

函数 f(x) 当 $x \to x_0$ 时极限存在的充分必要条件是左极限及右极限各自存在并且相等,即: $f(x_0^-) = f(x_0^+)$

2. 自变量趋于无穷大时函数的极限

函数 f(x) 当 $x \to \infty$ 时的极限定义:

 $\lim_{x\to-\infty} f(x) = A$

 $\lim_{x \to +\infty} f(x) = A$

水平渐近线

二、函数极限的性质

1. 函数极限的唯一性

定理: 如果 $\lim_{x\to x_0} f(x)$ 存在,那么这极限唯一

2. 函数极限的局部有界性

定理: 如果 $\lim_{x\to x_0} f(x) = A$, 那么存在常数 M > 0 和 $\delta > 0$, 使得当 $0 < |x-x_0| < \delta$ 时, 有 $|f(x)| \le M$

3. 函数极限的局部保号性

定理: 如果 $\lim_{x\to x_0} f(x) = A$, 且 A>0 (或 A<0) ,那么存在常数 $\delta>0$,使得当 $0<|x-x_0|<\delta$ 时,有 f(x)>0 (或 f(x)<0)

变异: 如果 $\lim_{x\to x_0} f(x) = A \ (A\neq 0)$,那么就存在着 x_0 的某一去心邻域 $\mathring{U}(x_0)$,当 $x\in \mathring{U}(x_0)$ 时,就有 $|f(x)|>\frac{|A|}{2}$

推论: 如果在 x_0 的某去心邻域内 $f(x) \geq 0$ (或 $f(x) \leq 0$) ,而且 $\lim_{x \to x_0} f(x) = A$,那么 $A \geq 0$ (或 $A \leq 0$)

4. 函数极限与数列极限的关系*

定理: 如果 $\lim_{x\to x_0} f(x)$ 存在, $\{x_n\}$ 为函数 f(x) 的定义域内任一收敛于 x_0 的数列,且满足 $x_n \neq x_0$ $(n \in N_+)$,那么相应的函数值数列 $\{f(x_n)\}$ 必收敛,且 $\lim_{n\to\infty} f(x_n) = \lim_{x\to x_0} f(x)$