Lenguajes de programación - T09: Implementación de la pseudoinversa de Moore-Penrose en el lenguaje Go

Jorge Aurelio Morales Manrique C.C. 1010075711 jomorales@unal.edu.co

Universidad Nacional de Colombia Abril 20 de 2021

5. Manual de usuario

A continuación se lista la serie de pasos necesarios para ejecutar el programa (omitir el paso 1 en caso de tener una versión de Go instalada en su sistema).

- 1. Descargar e instalar Go de la página oficial https://golang.org/dl/
- 2. Descargar la carpeta main ubicada en "Código Fuente"
- 3. Abrir una consola de comandos. En caso de que su sistema operativo sea Windows, en el buscador de programas excribir **cmd** y dar click en el primer resultado. En caso de que su sistema operativo sea Linux realizar la siguiente combinación de teclas (**Ctrl** + **Alt** + **T**).
- 4. Ejecutar el comando **cd path** donde **path** es el directorio donde esta ubicada la carpeta **main**.
- 5. Ejecutar los siguientes comandos en orden:

```
go mod init example.com/main
go get -u gonum.org/v1/gonum/mat
go run .
```

6. Ingresar las dimensiones de la matriz y cada uno de los elementos de la misma. Una vez ingresados los datos el programa imprimirá la pseudoinversa de la matriz ingresada.

6. Manual técnico

La estructura interna del programa se divide en tres partes principales las cuales se describen a continuación:

Lectura de datos

Lee las dimensiones m, n de la matriz A. Posteriormente lee cada uno de sus elementos y los guarda en un arreglo de tamaño $m \times n$ llamado data.

```
// Read matrix, then calculate pseudoinverse
fmt.Println("Moore-Penrose Inverse")

fmt.Print("Ingrese la primera dimensión de la matriz (m): ")
var m int
fmt.Scanln(&m)

fmt.Print("Ingrese la segunda dimensión de la matriz (n): ")
var n int
fmt.Scanln(&n)

fmt.Println("Ingrese los valores de la matriz:")
data := make([]float64, m * n)
for i := 0; i < m * n; i++ {
    fmt.Scan(&data[i])
}</pre>
```

Figura 1: Lectura de datos.

Cálculo de la pseudoinversa

Calcula A^T y luego el producto $A^T \cdot A$. Posteriormente calcula la inversa de la última multiplicación, para finalmente multiplicar por A^T . El último resultado será la pseudoinversa A^+ .

```
A := mat.NewDense(m, n, data)
A_T := A.T()
AA_T := mat.NewDense(n, n, nil)
AA_T.Mul(A_T, A)
AA_T_I := mat.NewDense(n, n, nil)
AA_T_I.Inverse(AA_T)
A_plus := mat.NewDense(n, m, nil)
A_plus.Mul(AA_T_I, A_T)
```

Figura 2: Cálculo de la pseudoinversa.

Impresión del resultado

Imprime en consola la pseudoinversa de la matriz A ingresada al inicio.

```
fmt.Println("\nPseudoinversa A+ es igual a: ")
result := mat.Formatted(A_plus, mat.Prefix(""), mat.Squeeze())
fmt.Printf("%v\n", result)
```

Figura 3: Impresión del resultado.