THE US INFLATION PHENOMENON

It's Oil, silly

AUTHOR | Rand Sobczak Jr. **DATE** | 22 April 2021

Table of contents

01 02 03

Problem Identification

Here you could describe the topic of the section

Generated Deliverables

Here you could describe the topic of the section

Data Pre-Processing

Here you could describe the topic of the section

<u>04 </u>

05

06

Model Description

Here you could describe the topic of the section

Model Findings

Here you could describe the topic of the section

Next Steps

Here you could describe the topic of the section

01

Problem Identification

Developing a model to explain & understand the phenomenon of Inflation

Inflation is important

as stabilizing it is one of three objectives of the Federal Reserve who's decisions move the global financials markets

The purpose & goal of this Data Science project is to

build a model to explain & understand the phenomenon of Inflation

Problem Identification (cont.)

I **shortlisted 19 variables** to determine their influence on Inflation

Items	Reported	API	API Source	Comments
Inflation	Monthly	Quandl	U.S. Bureau of Labor Statistics	The target variable
Wages CPI	Monthly	FRED	U.S. Bureau of Labor Statistics	A component of the target variable
WTI	Daily	Quandl	CME	West Texas Intermediate - One of many commodities
Heating Oil	Daily	Investpy	Investing.com	One of many commodities
Copper	Daily	Investpy	Investing.com	One of many commodities
Sugar	Daily	Investpy	Investing.com	One of many commodities
Natural Gas	Daily	Investpy	Investing.com	One of many commodities
Cattle	Daily	Investpy	Investing.com	One of many commodities
Lean Hogs	Daily	Investpy	Investing.com	One of many commodities
Soybeans	Daily	Investpy	Investing.com	One of many commodities
Lumber	Daily	Investpy	Investing.com	One of many commodities
Capacity Utilization	Monthly	FRED	Board of Governors of the Federal Reserve	The % of resources used by corporations
Corn	Daily	Investpy	Investing.com	One of many commodities
M2 Velocity	Quarterly	FRED	Federal Reserve Bank of St. Louis	Movement of money; state of the economy proxy
GDP	Quarterly	FRED	U.S. Bureau of Economic Analysis	A proxy for the state of the economy
Wheat	Daily	Investpy	Investing.com	One of many commodities
PMI	Monthly	Quandl	Institute of Supply Management	Manufacturing PMI - A proxy for the economy
USD Index	Daily	Quandl	Intercontinental Exchange Inc	(DXY) Proxy for potentially importing inflation
Unemployment Rate	Monthly	Quandl	U.S. Bureau of Labor Statistics	A proxy for the state of the economy
Initial Jobless Claims	Weekly	Quandl	U.S. Employment and Training Administration	A proxy for the state of the economy

02

Generated Deliverables

The power of API's

Generated Deliverables

(cont.)

I **shortlisted 19 variables** to determine their influence on Inflation

Items	Reported	API	API Source	Comments
Inflation	Monthly	Quandl	U.S. Bureau of Labor Statistics	The target variable
Wages CPI	Monthly	FRED	U.S. Bureau of Labor Statistics	A component of the target variable
WTI	Daily	Quandl	CME	West Texas Intermediate - One of many commodities
Heating Oil	Daily	Investpy	Investing.com	One of many commodities
Copper	Daily	Investpy	Investing.com	One of many commodities
Sugar	Daily	Investpy	Investing.com	One of many commodities
Natural Gas	Daily	Investpy	Investing.com	One of many commodities
Cattle	Daily	Investpy	Investing.com	One of many commodities
Lean Hogs	Daily	Investpy	Investing.com	One of many commodities
Soybeans	Daily	Investpy	Investing.com	One of many commodities
Lumber	Daily	Investpy	Investing.com	One of many commodities
Capacity Utilization	Monthly	FRED	Board of Governors of the Federal Reserve	The % of resources used by corporations
Corn	Daily	Investpy	Investing.com	One of many commodities
M2 Velocity	Quarterly	FRED	Federal Reserve Bank of St. Louis	Movement of money; state of the economy proxy
GDP	Quarterly	FRED	U.S. Bureau of Economic Analysis	A proxy for the state of the economy
Wheat	Daily	Investpy	Investing.com	One of many commodities
PMI	Monthly	Quandl	Institute of Supply Management	Manufacturing PMI - A proxy for the economy
USD Index	Daily	Quandl	Intercontinental Exchange Inc	(DXY) Proxy for potentially importing inflation
Unemployment Rate	Monthly	Quandl	U.S. Bureau of Labor Statistics	A proxy for the state of the economy
Initial Jobless Claims	Weekly	Quandl	U.S. Employment and Training Administration	A proxy for the state of the economy

Quandl

Quandl is a marketplace for financial, economic and alternative data

Generated Deliverables

Investing.com

A financial platform & news website; one of the top 3 financial websites in the world

FRED

Federal Reserve Economic Data (FRED) a database maintained by the Research division of the Federal Reserve Bank of St. Louis

Source Code

This can be found at my GitHub account referenced at the end

Generated Deliverables (cont.)

Research Report

Also can be found at my GitHub account referenced at the end

Presentation Report

This one...

03

A Data Pre-Processing

Split it up...

Data Cleaning

Data Frames should talk to each other

 After pulling the data frame was composed of variables with different lengths

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 14166 entries, 1946-01-01 to 2021-04-20
Data columns (total 19 columns):

	cordinis (cordr is cordin	, .		
#	Column	Non-Null Count	Dtype	
0	Wages CPI	14157 non-null	float64	
1	WTI	11952 non-null	float64	
2	Copper	10304 non-null	float64	
3	Soybeans	9863 non-null	float64	
4	Natural Gas	9779 non-null	float64	
5	Heating Oil	12951 non-null	float64	
6	Corn	12950 non-null	float64	
7	Wheat	9865 non-null	float64	
8	Cattle	12948 non-null	float64	
9	Lean Hogs	12953 non-null	float64	
10	Sugar	12951 non-null	float64	
11	Lumber	12953 non-null	float64	
12	Capacity Utilization	13897 non-null	float64	
13	GDP	14159 non-null	float64	
14	M2 Velocity	14015 non-null	float64	
15	PMI	14145 non-null	float64	
16	USD Index	11137 non-null	float64	
17	Initial Jobless Claims	13894 non-null	float64	
18	Unemployment Rate	14145 non-null	float64	
dtypes: float64(19)				

dtypes: float64(19) memory usage: 2.2 MB

Data Pre-Processing Data Cleaning (cont.)

Data Frames should talk to each other (cont.)

memory usage: 1.5 MB

- Different lengths
- Cut the data to 18 April 1991

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 9616 entries, 1991-04-18 to 2021-04-20
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype	
0	Wages CPI	9616 non-null	float64	
1	WTI	9616 non-null	float64	
2	Copper	9616 non-null	float64	
3	Soybeans	9616 non-null	float64	
4	Natural Gas	9616 non-null	float64	
5	Heating Oil	9616 non-null	float64	
6	Corn	9616 non-null	float64	
7	Wheat	9616 non-null	float64	
8	Cattle	9616 non-null	float64	
9	Lean Hogs	9616 non-null	float64	
10	Sugar	9616 non-null	float64	
11	Lumber	9616 non-null	float64	
12	Capacity Utilization	9616 non-null	float64	
13	GDP	9616 non-null	float64	
14	M2 Velocity	9616 non-null	float64	
15	PMI	9616 non-null	float64	
16	USD Index	9616 non-null	float64	
17	Initial Jobless Claims	9616 non-null	float64	
18	Unemployment Rate	9616 non-null	float64	
dtypes: float64(19)				

Data Pre-Processing Data Cleaning (cont.)

Data Frames should talk to each other (cont.)

- Different lengths
- Cut the Data
- Concatenated with Inflation
 - Only 317 observations

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 317 entries, 1991-04-30 to 2021-03-31
Data columns (total 20 columns):

Non Null Count Dtune

#	Column	Non-Null Count	Dtype		
0	Inflation	317 non-null	float64		
1	Wages CPI	317 non-null	float64		
2	WTI	317 non-null	float64		
3	Copper	317 non-null	float64		
4	Soybeans	317 non-null	float64		
5	Natural Gas	317 non-null	float64		
6	Heating Oil	317 non-null	float64		
7	Corn	317 non-null	float64		
8	Wheat	317 non-null	float64		
9	Cattle	317 non-null	float64		
10	Lean Hogs	317 non-null	float64		
11	Sugar	317 non-null	float64		
12	Lumber	317 non-null	float64		
13	Capacity Utilization	317 non-null	float64		
14	GDP	317 non-null	float64		
15	M2 Velocity	317 non-null	float64		
16	PMI	317 non-null	float64		
17	USD Index	317 non-null	float64		
18	Initial Jobless Claims	317 non-null	float64		
19	Unemployment Rate	317 non-null	float64		
dtypes: float64(20)					

memory usage: 52.0 KB

Exploratory Data Analysis

Investigating the Time Relationships

- Quarter on Quarter (for all)
 - Compared a quarterly change on Variables against Inflation
- Month on Month (for all)
- Quarter on Quarter for Variables (past) & Inflation (forwards)
- Quarter on Quarter w/ Rolling Averages

Exploratory Data Analysis (cont.)

Investigating the Time Relationships (cont.)

- Quarter on Quarter (for all)
- Month on Month (for all)
 - The same as the previous but looked at monthly change
- Quarter on Quarter for Variables (past) & Inflation (forwards)
- Quarter on Quarter w/ Rolling Averages

Exploratory Data Analysis (cont.)

Investigating the Time Relationships (cont.)

- Quarter on Quarter (for all)
- Month on Month (for all)
- Q on Q for Variables (past) & Inflation (forwards)
 - Looked at a previous 1 quarter change from variables to a 1 quarter future change in Inflation
- Quarter on Quarter w/ Rolling Averages

Exploratory Data Analysis (cont.)

Investigating the Time Relationships (cont.)

- Quarter on Quarter (for all)
- Month on Month (for all)
- Q on Q for Variables (past) & Inflation (forwards)

Quarter on Quarter w/ Rolling Averages

 Similar to # 1 albeit used a rolling average for those that were reported more often than once a Quarter as a Variable "may have had" a bad week or day when the Quarter ended

- 0.8

- 0.6

- 0.4

- 0.2

- -0.4

- -0.6

Data

Pre-Processing

Exploratory Data Analysis

Quarter on Quarter (for all)

Feature Correlation Heat Maps with the Pearson correlation coefficients

- 0.2

Data

Pre-Processing

Exploratory Data Analysis

Month on Month (for al

Month on Month (for all)
relation Heat Maps with the

Feature Correlation Heat Maps with the Pearson correlation coefficients (cont.)

- 0.4

Data

Pre-Processing

Exploratory Data Analysis

Q on Q for Variables (past) & Inflation (forwards)

Feature Correlation Heat Maps with the Pearson correlation coefficients (cont.)

Wages CPI - 0.57 WTI - 0.53 0.71 Copper - 0.36 0.52 0.57 "The Best" Soybeans - 0.19 0.26 0.28 0.25 Natural Gas - 0.31 0.4 0.34 0.16 0.095 Heating Oil - 0.53 0.73 0.91 0.54 0.25 0.46 Corn - 0.26 0.22 0.14 0.15 0.73 0.11 0.13 Wheat - 0.12 0.15 0.045 0.15 0.46 0.035 0.064 0.57 Cattle - 0.16 0.26 0.17 0.11 0.053 0.14 0.22 0.066 0.054 0.2 0.24 0.087 0.17 0.22 -0.093 0.14 0.3 0.16 0.23 0.27 0.1 0.09 0.1 -0.13 0.2 0.33 0.24 0.23 -0.065 0.22 0.15 0.047 0.26 0.25 0.043 0.46 0.24 0.067 0.14 0.38 0.084 0.052 0.25 0.13 0.085 0.31 0.71 0.42 0.26 0.054 0.14 0.39 0.082 0.076 0.26 0.12 0.13 0.2 PMI - 0.23 0.34 0.49 0.46 0.15 0.048 0.38 0.02 0.038 0.18 0.17 0.13 0.49 0.41 0.32 0.31 -0.26 -0.23 0.19 0.098 0.13 0.33 0.1 0.036 0.26 0.09 0.12 0.32 0.65 0.85 0.77 0.28 0.11 -0.16 -0.11 -0.17 -0.13 -0.28 -0.82 -0.71 -0.22 0.058 0.64

Quarter on Quarter Comparison (with Rolling Averages on Daily, Weekly & Monthly Data)

- 0.4

- -0.2

- -0.4

- -0 6

Data

Inflation -

Pre-Processing

Exploratory Data Analysis

Quarter on Quarter w/ Rolling Averages

Feature Correlation Heat Maps with the Pearson correlation coefficients (cont.)

Pre-Processing

Splitting & Scaling

- Chosen data frame
 - The Quarter on Quarter w/ Rolling Averages was chosen
- Train, Test Split
- Scaling

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split
 - The data was then split for Training & Testing for the different Scaling Approaches
- Scaling

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)

	Wages CPI_SS	WTI_SS	Wages CPI_MM	WTI_MM	Wages CPI_LG	WTI_LG
count	2.180000e+02	2.180000e+02	218.000000	218.000000	2.180000e+02	2.180000e+02
mean	-4.838128e-18	2.750094e-17	0.694134	0.579751	-2.340126e-16	-1.018553e-17
std	1.002301e+00	1.002301e+00	0.099718	0.153589	1.002301e+00	1.002301e+00
min	-6.977019e+00	-3.783391e+00	0.000000	0.000000	-4.203779e+00	-3.308051e+00
25%	-2.671202e-01	-5.665365e-01	0.667559	0.492937	-3.922100e-01	-6.014282e-01
50%	1.153214e-01	-3.959852e-02	0.705608	0.573683	2.665979e-02	-8.488108e-02
75%	4.280369e-01	6.677299e-01	0.736719	0.682071	3.947888e-01	6.501558e-01
max	3.074376e+00	2.742497e+00	1.000000	1.000000	4.675375e+00	3.071756e+00

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- MM posted poor results; thus removed

$\ensuremath{R^2}$ results for nothing scaled below Test 0.254 (nothing scaled)	MAE results for nothing scaled below Test 0.563 (nothing scaled)	MSE results for nothing scaled below Test 0.7556 (nothing scaled)
R ² results for X & y scaled below SS Train 0.3966	MAE results for X & y scaled below SS Train 0.5376	MSE results for X & y scaled below SS Train 0.6034
R ² results for X only scaled below SS Train 0.4185 Test 0.254 MM Train -0.2444 Test -0.0533 LG Train 0.4142 Test -23.4693	MAE results for X only scaled below SS Train 0.4312	MSE results for X only scaled below SS Train 0.3727 Test 0.571 MM Train 0.7976 Test 0.8061 LG Train 0.3755 Test 18.7277
R ² results for the LG & SS combination below SS Train 0.4067 Test -22.811 R ² averages of LG & SS X only scaled below Av. Train 0.4164 Test -11.6077	MAE results for the LG & SS combination below SS Train 0.4377 Test 1.2751 MAE averages of LG & SS X only scaled below Av. Train 0.4346 Test 0.9263	MSE results for the LG & SS combination below SS Train 0.3803 Test 18.2239 MSE averages of LG & SS X only scaled below Av. Train 0.3741 Test 9.6493

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- SS & LG posted the best results. These went forward & the data frame was divided into where SS & LG would be most appropriate

	MAE results for nothing scaled below	
Test 0.254 (nothing scaled)	Test 0.563 (nothing scaled)	Test 0.7556 (nothing scaled)
R ² results for X & y scaled below	MAE results for X & y scaled below	MSE results for X & y scaled below
SS Train 0.3966 Test 0.2796	SS Train 0.5376 Test 0.684	SS Train 0.6034 Test 0.8602
WH Train 0.0424 Test -0.1005	MM Train 0.0011 Test 0.0943	MM Train 0.0105 Test 0.0146
LG Train 0.4149 Test -23.8319	LG Train 0.5478 Test 1.6306	LG Train 0.5851 Test 30.4687
P3 nocults for V only scaled below	MAT assults for Morely scaled below	MCC needle for V call realed below
R ² results for X only scaled below	MAE results for X only scaled below	MSE results for X only scaled below
SS Train 0.4185 Test 0.254	SS Train 0.4312 Test 0.563	SS Train 0.3727 Test 0.571
111 Train -0.2444 Test -0.0533	HM Train 0.6711 Test 0.6112	MM Train 0.7970 Test 0.8001
LG Train 0.4142 Test -23.4693	LG Train 0.4381 Test 1.2897	LG Train 0.3755 Test 18.7277
R ² results for the LG & SS combination below	MAE results for the LG & SS combination below	MSE results for the LG & SS combination below
SS Train 0.4067 Test -22.811	SS Train 0.4377 Test 1.2751	SS Train 0.3803 Test 18.2239
	22	
R ² averages of LG & SS X only scaled below	MAE averages of LG & SS X only scaled below	MSE averages of LG & SS X only scaled below
Av. Train 0.4164 Test -11.6077		Av. Train 0.3741 Test 9.6493
	Av. Train 0.4346 Test 0.9263	AV. 11'ail 0.3/41 1650 9.0493

Pre-Processing (cont.)

Splitting & Scaling (cont.)

- Chosen data frame
- Train, Test Split

- 3 scaling approaches were tried:
 - Standard Scaling (SS)
 - MinMax Scaling (MM)
 - Log Transformation (LG)
- SS & LG posted the best results & thus the data frame was divided into where SS & LG would be most
 appropriate
- The resulting x5 Data frames went to a Random Forest Model

```
R<sup>2</sup> results for X & y scaled below
SS Train | 0.3966 Test 0.2796
LG Train | 0.4149 Test -23.8319

R<sup>2</sup> results for X only scaled below
SS Train | 0.4185 Test 0.254
LG Train | 0.4142 Test -23.4693

R<sup>2</sup> results for the LG & SS combination below
SS Train | 0.4067 Test -22.811
```

04

Model Description

The Random Forest

The Random Forest Model was then used

with the goal of determining what variables best explain & understand Inflation

05

Model Findings

What's moving Inflation

Where's Inflation coming from?

- The standard process was taken on x5
 - Grid Search
 - Random Forest
 - Hyperparameter search using Grid Search CV

Model Findings

Where's Inflation coming from? (cont.)

- The standard process was taken on x5
- The results
 - Random Forest showed a ubiquitous 1st & 2nd place to Wages CPI & WTI respectively on all; other variables discounted the performance

Model Findings

(cont.)

Where's Inflation coming from? (cont.)

• The standard process was taken on x5

• The results

- Random Forest showed a ubiquitous 1st & 2nd place to Wages CPI & WTI respectively on all; other variables discounted the performance
- In the end, the SS approach on both X & y presented the best results with these two variables

Model Findings

(cont.)

R ² results for X & y scaled below	MAE results for X & y scaled below	MSE results for X & y scaled below
SS Train 0.2924 Test 0.424	SS Train 0.5639 Test 0.5811	SS Train 0.7076 Test 0.6877
LG Train 0.2815 Test 0.3673	LG Train 0.5727 Test 0.598	LG Train 0.7185 Test 0.7763
R ² results for X only scaled below SS Train 0.2924 Test 0.3489 LG Train 0.2778 Test 0.2979	MAE results for X only scaled below SS Train 0.4515 Test 0.6127 LG Train 0.4572 Test 0.6272	MSE results for X only scaled below SS Train 0.4536 Test 0.7774 LG Train 0.4629 Test 0.8615
R ² results for the LG & SS combination SS Train 0.284 Test 0.3761	MAE results for the LG & SS combination SS Train 0.4572 Test 0.6272	MSE results for the LG & SS combination SS Train 0.4629 Test 0.8615

Model Findings

(cont.)

Where's Inflation coming from? (cont.)

• The standard process was taken on x5

The results

- Random Forest showed a ubiquitous 1st & 2nd place to Wages CPI & WTI respectively on all; other variables discounted the performance
- In the end, the SS approach on both X & y presented the best results with these two variables
- & showed that the process presented notable improvement from where we started
 - After rolling averages on the unscaled 19 Variables

A 17.0 bps increase in R2; 66.94 % increase.

A 1.81 bps increase in MAE.

A -6.79 bps decrease in MSE.

Model Findings

(cont.)

Where's Inflation coming from? (cont.)

• The standard process was taken on x5

The results

- Random Forest showed a ubiquitous 1st & 2nd place to Wages CPI & WTI respectively on all; other variables discounted the performance
- In the end, the SS approach on both X & y presented the best results
- & showed that the process presented notable improvement from where we started
 - After rolling averages on the unscaled 19 Variables
 - After rolling averages on the SS X & y scaled 19 Variables

A 14.44 bps increase in R2; 51.64 % increase.

A -10.29 bps decrease in MAE.

A -17.24 bps decrease in MSE.

Model Findings

(cont.)

Where's Inflation coming from? (cont.)

• The standard process was taken on x5

The results

- Random Forest showed a ubiquitous 1st & 2nd place to Wages CPI & WTI respectively on all; other variables discounted the performance
- In the end, the SS approach on both X & y presented the best results
- & showed that the process presented notable improvement from where we started
- So the verdict is that when you use these two variables alone you best position yourself to understand Inflation. While the Wages CPI is a component of Inflation itself, we will borrow the words to explain it on something that moves every day

The wise words of Bill Clintons' advisor to his 1992 political campaign

"It's the economy, stupid"

- James Carville

Play on words...

"It's Oil, silly"

Our Conclusion

06

☼ Next Steps

Keep going

- Steel
 - 2008 was the furthest I could pull
- Gasoline
- Growth in M2
- US Wages Hourly Earnings
- US Dollar Index: Broad, Goods & Services

- Steel
- Gasoline
 - 2005 was the furthest I could pull
- Growth in M2
- US Wages Hourly Earnings
- US Dollar Index: Broad, Goods & Services

- Steel
- Gasoline
- Growth in M2
 - Possible overlap with M2 Velocity
- US Wages Hourly Earnings
- US Dollar Index: Broad, Goods & Services

- Steel
- Gasoline
- Growth in M2
- US Wages Hourly Earnings
 - Limited Data as well
- US Dollar Index: Broad, Goods & Services

- Steel
- Gasoline
- Growth in M2
- US Wages Hourly Earnings
- US Dollar Index: Broad, Goods & Services
 - Only goes until 2006

Next Steps (cont.)

More attention may be applicable to the below:

The SS & LG Divide

- Reassess the Variables which were chosen in the SS & LG divide; discussed in Pre-processing
- Scrape Variables
- Predict Wages CPI Itself
- Build a Better Imported / Exported USD

More attention may be applicable to the below:

- The SS & LG Divide
- Scrape Variables
 - Winsorizing way present better results
- Predict Wages CPI Itself
- Build a Better Imported / Exported USD

Next Steps (cont.)

More attention may be applicable to the below:

- The SS & LG Divide
- Scrape Variables
- Predict Wages CPI Itself
 - Develop a model to remove ourselves from the US gov't's reporting
- Build a Better Imported / Exported USD

Next Steps (cont.)

More attention may be applicable to the below:

- The SS & LG Divide
- Scrape Variables
- Predict Wages CPI Itself
- Build a Better Imported / Exported USD
 - The DXY doesn't correctly address whether the US Imports or Exports Inflation as it's weighting is a weighted geometric mean of the:
 - Eurozone (EUR),
 - Japan (JPY),
 - United Kingdom (GBP),
 - Canada (CAD),
 - Sweden (SEK) &
 - Switzerland (CHF)
 - Doesn't take into account the US's largest trading partner, China

Thanks

By **Rand Sobczak Jr.**rand.sobczak@gmail.com
+1 313 447 8634

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**