DIM0436

30. Intepretação abstrata 1

2014115

Sumário

- Introdução
- 2 Primeiras abstrações
- 3 Formalização
- 4 Domínios abstratos
- 5 Análise de valor de Frama-C

DIM0436

- 1 Introdução
- 2 Primeiras abstrações
- 3 Formalização
- 4 Domínios abstratos
- 5 Análise de valor de Frama-C

Definições

Definição

A interpretação abstrata (IA) é uma teoria de aproximação correta da semântica.

Definição (Corretude)

Uma aproximação (abstração) é dita correta se o conjunto dos comportamentos do programa fonte original é incluído no conjunto dos comportamentos da abstração.

A base

Princípio de base

- Aproximar a semântica concreta por uma semântica abstrata
- Perda de informação
- Objetivo: achar a melhor aproximação possível, em relação ao objetivo determinado e às restrições existentes (essas aulas não tratam disso)

Fundamentos

Fundamentos teóricos

- Operadores para construir uma semântica abstrata
- Condições sobre as relações entre domínios abstrato e concreto
- Garantia de corretude
- Garantia de completude
- Artigo fundamental [CC77]

Corretude

Definição (Corretude)

Todos os comportamentos da semântica concreta são preservados pela aproximação.

36 2014115

Completude

Definição (Completude)

Todo comportamento da aproximação corresponde a um comportamento da semântica concreta.

Tipos de analisadores estáticos

• incorreto e incompleto . . .

Tipos de analisadores estáticos

- incorreto e incompleto ...
- incorreto e completo: é o princípio dos testes

Tipos de analisadores estáticos

- incorreto e incompleto ...
- incorreto e completo: é o princípio dos testes
- correto e incompleto: é o princípio dos interpretadores abstratos

DIM0436 2014115 9 / 45

Tipos de analisadores estáticos

- incorreto e incompleto ...
- incorreto e completo: é o princípio dos testes
- correto e incompleto: é o princípio dos interpretadores abstratos
- o correto e completo: é impossível automaticamente (teorema de Rice)

Observação

Aqui as noções de corretude e de completude são **invertidas** em relação ao vocabulário dos **testes**.

DIM0436 2014115 9

Consideramos os estudantes presentes nessa sala . . .

• Para determinar a ausência de certas pessoas, pode-se:

Consideramos os estudantes presentes nessa sala . . .

- Para determinar a ausência de certas pessoas, pode-se:
 - ► ter a lista con os nomes e a matrícula (única)

Consideramos os estudantes presentes nessa sala . . .

- Para determinar a ausência de certas pessoas, pode-se:
 - ► ter a lista con os nomes e a matrícula (única)
 - ▶ usar só o nome

Consideramos os estudantes presentes nessa sala . . .

- Para determinar a ausência de certas pessoas, pode-se:
 - ► ter a lista con os nomes e a matrícula (única)
 - ▶ usar só o nome
 - é mais impreciso (a presênça não pode ser demostrada por causa de homônimos)

DIM0436 2014115

Consideramos os estudantes presentes nessa sala . . .

- Para determinar a ausência de certas pessoas, pode-se:
 - ► ter a lista con os nomes e a matrícula (única)
 - ▶ usar só o nome
 - é mais impreciso (a presênça não pode ser demostrada por causa de homônimos)
 - ★ é suficiente para a ausência (é funciona relativamente bem para a presença)

DIM0436 2014115

Consideramos os estudantes presentes nessa sala . . .

- Para determinar a ausência de certas pessoas, pode-se:
 - ► ter a lista con os nomes e a matrícula (única)
 - ▶ usar só o nome
 - é mais impreciso (a presênça não pode ser demostrada por causa de homônimos)
 - ★ é suficiente para a ausência (é funciona relativamente bem para a presença)
- Para responder à pergunta "Tinha alguem com n anos de idade na sala?", pode-se:

DIM0436 2014115

Consideramos os estudantes presentes nessa sala . . .

- Para determinar a ausência de certas pessoas, pode-se:
 - ► ter a lista con os nomes e a matrícula (única)
 - ▶ usar só o nome
 - é mais impreciso (a presênça não pode ser demostrada por causa de homônimos)
 - \star é suficiente para a ausência (é funciona relativamente bem para a presença)
- Para responder à pergunta "Tinha alguem com n anos de idade na sala?", pode-se:
 - ► conservar só o idade dos estudantes (nomes são supérfluos)

DIM0436 2014115 10 / 45

Consideramos os estudantes presentes nessa sala . . .

- Para determinar a ausência de certas pessoas, pode-se:
 - ► ter a lista con os nomes e a matrícula (única)
 - ▶ usar só o nome
 - é mais impreciso (a presênça não pode ser demostrada por causa de homônimos)
 - ★ é suficiente para a ausência (é funciona relativamente bem para a presença)
- Para responder à pergunta "Tinha alguem com n anos de idade na sala?", pode-se:
 - conservar só o idade dos estudantes (nomes são supérfluos)
 - ► conservar só o mínimo *m* e o máximo *M*

DIM0436 2014115 10 / 45

Consideramos os estudantes presentes nessa sala . . .

- Para determinar a ausência de certas pessoas, pode-se:
 - ► ter a lista con os nomes e a matrícula (única)
 - ▶ usar só o nome
 - é mais impreciso (a presênça não pode ser demostrada por causa de homônimos)
 - ★ é suficiente para a ausência (é funciona relativamente bem para a presença)
- Para responder à pergunta "Tinha alguem com n anos de idade na sala?", pode-se:
 - conservar só o idade dos estudantes (nomes são supérfluos)
 - ▶ conservar só o mínimo m e o máximo M
 - \star se uma pessoa tiver mais de M anos, temos a certeza da sua ausência.

DIM0436 2014115

Um exemplo computacional

```
int foo(int a, int b) {
  int k = 1;
  int m, n;
  if (a == 0) {
    ++k;
    m = a;
    n = b;
} else {
    k = 2;
    m = 0;
    n = a + b;
}
return k + m + n;
}
```

CFG

Parâmetros		
а	0	
b	7	

Parâmetros		
а	0	
b	7	

Variáveis		
k	2	
m	0	
n		
return		

Parâmetros		
а	0	
b	7	

Variáveis		
k	2	
m	0	
n	7	
return		

Parâmetros		
а	0	
b	7	

Variáveis		
k	2	
m	0	
n	7	
return	9	

Obsevações

Questão

Pode ser deduzido que k=2 a partir das execuções concretas ?

DIM0436 2014115 14 / 45

Obsevações

Questão

Pode ser deduzido que k=2 a partir das execuções concretas ?

- Sim mas . . .
- Precisa fazer 2⁶⁴ * 2⁶⁴ testes

DIM0436 2014115 14 / 45

Obsevações

Questão

Pode ser deduzido que k=2 a partir das execuções concretas ?

- Sim mas . . .
- Precisa fazer 2⁶⁴ * 2⁶⁴ testes
- Tempo aproximativo: 10^{20} anos si um teste precisa de 10^{-11} segundos.

DIM0436 2014115 14 / 45

Execução abstrata

DIM0436

- 1 Introdução
- 2 Primeiras abstrações
- 3 Formalização
- 4 Domínios abstratos
- 5 Análise de valor de Frama-C

Sintaxe da linguagem While

Categorias sintáticas

- $n, n_i, n' = \text{elementos numéricos (Num)}$
- x = variáveis (Var)
- $a = \exp ressões aritméticas (exp)$
- $b = \text{expressões booleanas } (e^{x}p)$
- S = instruções

BNF

$$a ::= n \mid x \mid a_1 + a_2 \mid a_1 * a_2 \mid a_1 - a_2$$
 $b ::= true \mid false \mid a_1 = a_2 \mid a_1 \le a_2 \mid \neg b \mid b_1 \land b_2$
 $S ::= x := a \mid skip \mid S_1; S_2$
 $\mid if b then S_1 else S_2$
 $\mid while b do S$

DIM0436 2014115 17 / 45

Uma linguagem aritmética

Sintaxe

$$\begin{array}{rcl} exp & ::= & n & \text{número} \\ & exp + exp & \text{adição} \\ & exp * exp & \text{multiplicação} \\ & exp - exp & \text{subtração} \end{array}$$

Imprecisão

Às vezes é difícil determinar com precisão absoulta o sinal duma operação

 Por exemplo a adição de um número positivo e de um número negativo pode ser negativa ou positiva

DIM0436 2014115 18 / 45

Determinar o sinal de uma expressão

Definição (Valores possíveis)

 $Sign = \{ zero, pos, neg, num \}$

Adição (\oplus) e multiplicação (\otimes) abstratas

 \oplus : Sign \times Sign \rightarrow Sign

\oplus	zero	pos	neg	num
zero	zero	pos	neg	num
pos	pos	pos	num	num
neg	neg	neg	num	num
num	num	num	num	num

 \otimes : Sign \times Sign \to Sign

\otimes	zero	pos	neg	num
zero	zero	zero	zero	zero
pos	zero	pos	neg	num
neg	zero	neg	pos	num
num	zero	num	num	num

ullet Determinar a interpretação da subtração abstrata \ominus

Interpretação

Interpretação abstrata

Definimos uma função de interpretação

$$\llbracket \cdot
rbracketatilde{\mathbb{N}}: \mathbb{N} o \mathit{Sign}$$

Definição

• $sign(n) \equiv se \ n > 0$ então pos senão neg.

DIM0436 2014115

20 / 45

Exercício

Assunto

Interpretar o programa While abaixo

```
x := 1 - 2 * 4
if x then y := 3 else y := -4
z := x * y
```

DIM0436 2014115 21 / 45

Propagação de constantes

Usaremos o reticulado abaixo

Contexto de análise

•
$$E = Var \rightarrow C$$

•
$$i = \lambda x. \top$$

•
$$f_{skip}(\sigma^{\sharp}) = \sigma^{\sharp}$$

$$\bullet \ \mathit{f}_{?e}(\sigma^{\sharp}) = \begin{cases} \bot & \textit{se} \ \llbracket e \rrbracket \sigma^{\sharp} = 0 \\ \sigma^{\sharp} & \textit{senão} \end{cases}$$

Propriedades

- Corretude: Se, no fim da análise, $\sigma^{\sharp}_{i}(x) = v$, todo caminho execução passando por i associa v a x.
- Terminação: A análise sempre termina.

nœud	С	X	y
0			
1			
2			
3			
4			
5			
6			
7			

nœud	С	X	У
0	Т	Т	T
1			
2 3 4 5			
3			
4			
5			
6			
7			

nœud	С	X	У
0	T	T	Т
1	Т	1	Т
2			
3			
4			
5			
6			
7			

nœud	С	X	У
0	Т	Т	Т
1	T	1	T
2	Т	1	Т
3			
4			
5			
6			
7			

23 / 45

nœud	С	X	У
0	Т	Т	Т
1	Т	1	T
2	Т	1	T
3	0	1	Т
4			
5			
6			
7			

nœud	С	X	y
0	Т	Т	Т
1	Т	1	Т
2	Т	1	Т
3	0	1	Т
4	Т	- 1	Т
5			
6			
7			

nœud	С	X	y
0	Т	Т	Т
1	Т	1	Т
2	Т	1	Т
3	0	1	T
4	Т	- 1	Т
5	0	1	Т
6			
7			

nœud	С	X	y
0	Т	Т	Т
1	Т	1	Т
2	Т	1	Т
3	0	1	Т
4	Т	- 1	T
5	0	1	Т
6	Т	- 1	Т
7			

nœud	С	X	y
0	Т	Т	Т
1	Т	1	Т
2	Т	1	Т
3	0	1	Т
4	Т	- 1	Т
5	0	1	T
6	Т	Т	Т
7			

nœud	С	X	y
0	Т	Т	Т
1	Т	1	Т
2	Т	1	Т
3	0	1	Т
4	Т	- 1	Т
5	0	1	Т
6	Т	T	Т
7	Τ	Т	Т

Exercício

Assunto

Aplicar a propagação de constantes ao programa abaixo.

```
int foo(int a, int b) {
  int k = 1;
  int m, n;
  if (a == 0) {
    ++k;
    m = a;
    n = b;
  } else {
    k = 2;
    m = 0;
    n = a + b;
  }
  return k + m + n;
}
```

DIM0436 2014115 24 / 45

- 1 Introdução
- 2 Primeiras abstrações
- 3 Formalização
- 4 Domínios abstratos
- 5 Análise de valor de Frama-C

Reticulado

Definição

Um reticulado A é um *poset* tal que todo par $(a, b) \in A$ tem um supremo é um ínfimo.

Vocabulário particular

- A operação join de a e b $(a \land b = sup(\{a,b\}))$ define o supremo de (a,b)
- A operação meet de a e b $(a \lor b = inf(\{a,b\}))$ define o ínfimo de (a,b)

Exemplo

- Seja $A \neq \emptyset$, $(\mathcal{P}(A), \subseteq)$ é um reticulado
 - o supremo é a união dos conjuntos
 - o ínfimo é a interseção
- Qualquer conjunto totalmente ordenado define um reticulado

DIM0436 2014115 2

Axiomas dos reticulados

Seja $a, b, c \in (A, \vee, \wedge)$

$$\bullet$$
 $a \lor b = b \lor a$

•
$$a \wedge b = b \wedge a$$

$$\bullet \ \ a \lor (b \lor c) = (a \lor b) \lor c$$

•
$$a \wedge (b \wedge c) = (a \wedge b) \wedge c$$

•
$$a \lor (a \land b) = a$$

•
$$a \wedge (a \vee b) = a$$

$$\bullet$$
 $a \lor a = a$

$$a \wedge a = a$$

Reticulado completo

Definição

Um reticulado (A, \lor, \land) é **completo** se $\forall B \subseteq A, \bigvee B$ e $\bigwedge B$ existem.

Teorema (Knaster-Tarski)

- Seja (A, \vee, \wedge) um reticulado completo é $f: A \to A$ uma função crescente.
- O conjunto de pontos fixos de f em A não é vazio e é um reticulado completo.
- f tem um menor é um maior ponto fixo em A

Reticulado dos sinais

Abstração e concretização

Abstração

Uma função de **abstração** α é um mapeamento de um objeto concreto o para uma aproximação do domínio de interpretação $\alpha(0)$.

Concretização

Uma função de **concretização** γ é um mapeamento de um objeto abstrato \overline{o} para uma um objeto concreto $\gamma(\overline{o})$.

DIM0436 2014115

Abstração do reticulado dos sinais

Definição

$$\begin{array}{lll} \gamma(\mathsf{zero}) & = & \{0\} \\ \gamma(\mathsf{pos}) & = & \{x \mid x > 0\} \\ \gamma(\mathsf{neg}) & = & \{x \mid x < 0\} \\ \gamma(\mathsf{num}) & = & \mathbb{Z} \end{array}$$

Concretização do reticulado dos sinais

Definição

```
\begin{array}{rcl} \alpha:\mathcal{P}(\mathbb{Z})\backslash\{\emptyset\}\to\mathit{Sign} \\ & \alpha(\{0\}) &=& \mathsf{zero} \\ & \alpha(X) &=& \mathsf{pos} \quad \mathsf{si} \ \forall x\in X>0 \\ & \alpha(X) &=& \mathsf{neg} \quad \mathsf{si} \ \forall x\in X<0 \\ & \alpha(X) &=& \mathsf{num} \quad \mathsf{dans} \ \mathsf{les} \ \mathsf{autres} \ \mathsf{cas} \end{array}
```

Exemplo

$$\alpha(\{2,3,1\}) = \text{pos}$$

 $\alpha(\{-1,-2,-3\}) = \text{neg}$
 $\alpha(\{1,2,-4\}) = \text{num}$

DIM0436 2014115 32 / 45

Teorema

Teorema (Segurança da abstração)

 $\forall e \ \{E_{std}[\![e]\!]\} \subseteq \gamma(E_{ros}[\![e]\!])$

- 1 Introdução
- 2 Primeiras abstrações
- 3 Formalização
- 4 Domínios abstratos
- 5 Análise de valor de Frama-C

Como escolher o seu domínio abstrato?

Na prática, escolher o domínio abstrato é fundamental

- deve ser suficientamente preciso
- em particular, deve permitir expressar a propriedade desejada
- deve ser calculável com o custo tempo/memória razoavel
 - i.e. horas de cálculo, Gb de RAM para casos reais

- **Domínio não relacional**: nenhuma relação entre elemento é conservada. Pouco preciso mas pouco custoso
- Domínio relacional: relações entre elenentos do domínio. Mais préciso mas custa

DIM0436 2014115 35 / 45

Domínio das constantes

- $\circ x = z \ (z \in \mathbb{Z})$
- domínio não relacional
- o se o valor exato não é conhecido, perde a informação inteira

Domínio dos sinais

- xop0, avec op $\{ \geq, >, \leq, <, =, \neq \}$
- domínio não relacional
- conservação dos valores possíveis

DIM0436 2014115

37 / 45

Domínio dos intervalos

*

- $x \in [i_0, i_1]$
- domínio não relacional
- o conservação de um intervalo agrupando todos os valores possíveis

Valores de y

Domínio dos octogonos

- $\bullet \pm x \pm y \le c$
- domínio relacional
- o conservação de relações lineares simples entre elementos

DIM0436 2014115

Domínio dos políedros

- $kx + ly \le c$
- domínio relacional
- relações lineares complexas entre elementos

- 1 Introdução
- 2 Primeiras abstrações
- 3 Formalização
- 4 Domínios abstratos
- 5 Análise de valor de Frama-C

Análise de valor

Descrição

- Análise por interpretação abstrata de programas sequenciais
- Cálculo dos domínios de variação das variáveis do programa
- o Inferência da ausência de error de execução

DIM0436 2014115 4

Resumo

- Introdução
- 2 Primeiras abstrações
- 3 Formalização
- 4 Domínios abstratos
- 5 Análise de valor de Frama-C

Referências

Patrick Cousot and Radhia Cousot, *Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints*, Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (New York, NY, USA), POPL '77, ACM, 1977, pp. 238–252.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin, *Principles of program analysis* (2. corr. print), Springer, 2005.

DIM0436 2014115 44

Perguntas?

http://dimap.ufrn.br/~richard/dim0436

DIM0436 2014115 45 / 4