Lecture 3

Deeper into Generalized Linear Models

Project FAQs

- Should we use a classification or regression dataset?
 - The project should look at the dataset from multiple angles
 - In the context of statistical distributions, the difference is not as defined
- What if our data doesn't follow one of the distributions / doesn't have linear relationships
 - Try it and demonstrate that it doesn't work, discuss why
 - We will cover non-linear regressions in lecture 4+
 - We will cover non-parametric methods in lectures 5+

Review of GLMs

 Generalized Linear Models (GLMs) predict a distribution in response to independent variables

- A GLM has three properties
 - A value y (dependent variable) is generated from a distribution
 - The mean of the distribution depends on some independent variables X
 - The link between X and the mean μ is called a **link function**

Example

Awards	Program	Math score
6	Vocational	69
2	Academic	61
4	Vocational	71
3	General	62
0	Academic	70
1	General	50
2	Academic	58
2	Vocational	60
0	Academic	64
0	General	57
1	Vocational	65
2	Academic	57
0	General	64
1	Academic	73

I want to predict the number of awards a student will win over their academic career.

I have two data points

- 1. Their academic program, either "academic", "general", or "vocational"
 - 2. Their most recent score in a math class

How can I determine if each of these features is helpful in my predictive model?

Deviance

• Deviance is a model for the lack of fit. It is defined by the formula

$$D = 2(l(\theta) - l(\hat{\theta}))$$

- D is the deviance
- $l(\theta)$ is the log-likelihood of the fitted model
- $l(\hat{\theta})$ is the log-likelihood of the saturated model

 Notice that this looks a lot like the formula for the likelihood ratio test in lecture 1!

Scaled, Residual, and Null Deviance

- Scaled deviance is the deviance divided by the degrees of freedom
 - When introducing new features, both deviance and degrees of freedom go down
 - If scaled deviance goes down, the model is probably getting better!

• **Null deviance** is the deviance of a model with no predictors (i.e. only an intercept)

Residual deviance is the deviance of a fitted model

Analysis of Deviance using Chi-Square

- We can compare our residual deviance against a chi-square distribution for some distributions.
 - Notable exception: logistic regression
- The expected value of a $\chi 2$ random variable is equal to its degrees of freedom, a basic model check consists of comparing the residual deviance to its degrees of freedom

Fitting our example data

Bootstrapping

 Bootstrapping is the process of taking many samples from a dataset and generating a model on each sample

 Repeating this process a high number of times can give a distribution of each parameter value

 Analyzing these distributions can give a better understanding of the model results

Example

Bootstrapping Results

Another Example

I am a data scientist working in a (cookie) manufacturing environment. The factory has a piece of equipment that has frequent stops and I am tasked with predicting when these stops will occur.

Stops are broken down in minor (a few seconds), short (a few minutes), and major (a few hours).

I am concerned with predicting time until the next major downtime. I want to know if some shifts or products are having more breakdowns than others.

startTime	downtimeType
8/24/2023 15:57	Minor
8/24/2023 15:58	Short
8/24/2023 16:02	Short
8/24/2023 16:13	Minor
8/24/2023 16:57	Minor
8/24/2023 17:05	Minor
8/24/2023 17:23	Minor
8/24/2023 17:25	Minor
8/24/2023 17:26	Short
8/24/2023 17:29	Minor
8/24/2023 17:34	Short
8/24/2023 17:41	Short
8/24/2023 17:47	Minor
8/24/2023 18:26	Short
8/24/2023 18:29	Minor
8/24/2023 18:42	Minor
8/24/2023 18:43	Short
8/24/2023 18:47	Minor
8/24/2023 18:54	Major

Example – Data Processing

```
# df is the original data
reason = 'Major Downtime'
downtime_df = df.loc[df['reasonLvl1']==reason]
time_between_failures = downtime_df['startDT'].diff().iloc[1:].dt.seconds / 3600

shift_values = downtime_df['shift'].iloc[1:]
product_keys = downtime_df['productCode'].iloc[1:]

print(pd.concat([shift_values, product_keys, time_between_failures], axis=1))
```

Shift	Product	Time Between Failures
1	KT5	16.2731
1	KT5	1.39139
1	KT5	0.31306
1	KT5	1.14111
1	KT5	0.7375

Example – Data Exploration

Example – Fitting GLM

```
from statsmodels.genmod.families.links import Identity
endog = pd.concat([pd.get_dummies(shift_values),
                      pd.get_dummies(product_keys)],
                      axis=1)
exog = time_between_failures
model = sm.GLM(exog, endog, family=sm.families.Gamma(link=Identity()))
result = model.fit()
result.summary()
```

GLM Results – First Attempt

Generalized Linear Model Regression Results							
De	p. Variable	2:	sta	artDT	No. Obse	ervations:	823
	Mode	l:		GLM	Df F	Residuals:	797
Мо	del Family	r:	Gar	mma	C	of Model:	25
Lin	k Function	n:	lde	ntity		Scale:	1.8311
	Method	i:		IRLS	Log-Lil	kelihood:	-1634.0
	Date	e: Mon,	12 Feb 2	2024	Ι	Deviance:	982.91
	Time	20	11:1	15:09	Pear	son chi2:	1.45e+03
No.	. Iterations	5:		100	Pseudo R-	squ. (CS):	0.04799
	coef	std err	z	P> z	[0.025	0.975]	
1.0	2.9149	0.489	5.956	0.000	1.956	3.874	
2.0	2.8772	0.497	5.787	0.000	1.903	3.852	
3.0	2.9600	0.483	6.122	0.000	2.012	3.908	
6L4	3.5166	2.918	1.205	0.228	-2.203	9.236	
E1L	-0.5144	0.571	-0.901	0.368	-1.634	0.605	
G5A	-1.4648	0.789	-1.856	0.064	-3.012	0.082	
G7P	-0.8927	0.734	-1.216	0.224	-2.331	0.546	
GRJ	-1.1441	0.533	-2.146	0.032	-2.189	-0.099	
GTK	-1.0653	0.574	-1.857	0.063	-2.190	0.059	
KJ8	0.2789	1.002	0.278	0.781	-1.684	2.242	
KPR	0.1295	0.959	0.135	0.893	-1.750	2.009	

Deviance = 983 Null deviance = 1057

GLM Results – Second Attempt

Generalized Linear Model Regression Results							
p. Varial	ble:	st	artDT	No. Ol	oservation	ns:	823
Mod	del:		GLM	D	f Residua	ıls:	820
del Fam	nily:	Ga	amma		Df Mod	el:	2
k Functi	on:	ld	entity		Sca	le:	2.0645
Meth	od:		IRLS	Log-	-Likelihoo	d:	-1683.5
Da	ate: Mo	n, 12 Feb	2024		Deviand	ce:	1055.0
Tir	me:	11	:20:19	Pe	arson ch	i2:	1.69e+03
Iteratio	ns:		4	Pseudo	R-squ. (C	S):	0.001178
ance Ty	pe:	nonr	obust				
coef	std err	z	P> z	[0.025	0.975]		
2.4069	0.200	12.035	0.000	2.015	2.799		
2.5590	0.242	10.578	0.000	2.085	3.033		
2.7039	0.227	11.913	0.000	2.259	3.149		
	Davide Davide Time The Control of th	o. Variable: Model: del Family: c Function: Method: Date: Mo Time: Iterations: ance Type: coef std err 2.4069 0.200	o. Variable: st Model: del Family: Ga k Function: Id Method: Date: Mon, 12 Feb Time: 11: Iterations: ance Type: nonr coef std err z 2.4069 0.200 12.035	Do. Variable: startDT Model: GLM del Family: Gamma k Function: Identity Method: IRLS Date: Mon, 12 Feb 2024 Time: 11:20:19 Iterations: 4 ance Type: nonrobust coef std err z P> z 2.4069 0.200 12.035 0.000 2.5590 0.242 10.578 0.000	Do. Variable: startDT No. Ob Model: GLM D del Family: Gamma k Function: Identity Method: IRLS Log- Date: Mon, 12 Feb 2024 Time: 11:20:19 Pe Iterations: 4 Pseudo I ance Type: nonrobust coef std err z P> z [0.025 2.4069 0.200 12.035 0.000 2.015 2.5590 0.242 10.578 0.000 2.085	Do. Variable: startDT No. Observation Model: GLM Df Residual del Family: Gamma Df Mode K Function: Identity Scale Method: IRLS Log-Likelihood Date: Mon, 12 Feb 2024 Deviand Time: 11:20:19 Pearson character Iterations: 4 Pseudo R-squ. (Coance Type: ance Type: nonrobust coef std err z P> z [0.025 0.975] 2.4069 0.200 12.035 0.000 2.015 2.799 2.5590 0.242 10.578 0.000 2.085 3.033	Do. Variable: startDT No. Observations: Model: GLM Df Residuals: del Family: Gamma Df Model: detail: Description: Identity Scale: Method: IRLS Log-Likelihood: Date: Mon, 12 Feb 2024 Deviance: Time: 11:20:19 Pearson chi2: Iterations: 4 Pseudo R-squ. (CS): ance Type: nonrobust coef std err z P> z [0.025 0.975] 2.4069 0.200 12.035 0.000 2.015 2.799 2.5590 0.242 10.578 0.000 2.085 3.033

Deviance = 1055

Null deviance = 1057

Example Takeaways

• The time between errors follows a Gamma distribution with a rate parameter of ~2.5

Neither shift nor product type has much impact on the error rate

Collinearity

• Collinearity occurs when two or more variables are closely related

Related measurements

Speed (m/s)	Time (s)
6.22	1.61
5.33	1.88
3.64	2.74
4.99	2.01
6.22	1.61
6.61	1.51
5.17	1.93
3.33	3.01
4.75	2.11
4.66	2.15
3.43	2.92

Linear relationships

Lap 1 Time (s)	Lap 2 Time (s)	Lap 3 Time (s)	Total Time (s)
29.30	29.22	33.05	91.57
29.40	32.06	32.95	94.41
32.09	28.06	27.38	87.54
32.20	29.87	30.84	92.92
32.80	27.96	28.38	89.14
29.66	31.33	31.37	92.36
28.47	28.09	28.83	85.39
30.26	29.17	34.32	93.75
26.08	29.69	29.13	84.89
29.55	29.86	31.04	90.45
26.32	29.79	28.36	84.46

Detecting Collinearity

 We can detect collinearity by fitting a linear regression model of one exogenous variable to the others

$$X_1 = \beta_0 + \beta_2 X_2 + \beta_3 X_3 \dots$$

 Using this model's coefficient of determination (R^2) we can calculate the variance inflation factor

$$VIF = \frac{1}{1 - R_i^2}$$

Detecting Collinearity

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
X15 = np.random.normal(10,2,size=100).reshape(20,5)
X6 = np.sum(X15,axis=1) + np.random.uniform(-2,2,20)
lr = LinearRegression()
lr.fit(X15, X6)
r2 = r2_score(X6, lr.predict(X15))
print(1/(1-r2))
>>> 11.83
from statsmodels.stats.outliers influence import variance inflation factor
X = np.hstack([X15,X6.reshape(-1,1)])
X = sm.add constant(X)
variance_inflation_factor(X, 6)
>> 11.83
```

Non-Independent Data

 So far we have looked at models where each observation is independent

- What about the case when our observations share some characteristic?
 - Multiple observations of the same item (e.g. growth measurements of individuals)
 - Data with natural clusters (e.g. students within schools)

Sample use case

My cookie factory is branching out and starting to make bread.

I want to measure how fast my dough rises so that I know how long I have to let it rest.

I made some test batches and observed their growth.

Linear Mixed Effects Model

- A linear mixed effects model has both fixed effects and random effects
 - A fixed effects something that has a constant effect not matter which group the observation is in
 - A random effect has a different effect for each group of observations.
 - Random effects are normally distributed with a mean of 0
- Linear mixed models have the form:

$$y = X\beta + Z\gamma + \epsilon$$

Linear Mixed Effects Model

```
data = pd.read_excel("lecture3_figures.xlsx", sheet_name="bread growth")
data = pd.melt(data, id_vars='Time')

endog = data["value"]
exog = data[["Time"]]
exog = sm.add_constant(exog)
md = sm.MixedLM(endog, exog, groups=data['variable'])
mdf = md.fit()
print(mdf.summary())
```

```
Mixed Linear Model Regression Results
Model:
            MixedLM Dependent Variable: value
No. Observations: 55
                    Method:
                                     REML
              5 Scale:
No. Groups:
                                     0.2176
Min. group size: 11 Log-Likelihood: -52.5400
Max. group size: 11
                    Converged:
                                     Yes
Mean group size: 11.0
          Coef. Std.Err. z P>|z| [0.025 0.975]
const
          7.588 0.984 7.714 0.000 5.660 9.516
Time
          0.169
                0.004 42.554 0.000 0.162 0.177
          4.769
                 7.546
Group Var
______
```