La existencia del conjunto potencia

La noción de subconjunto es fundamental en la teoría de conjuntos

La noción de subconjunto es fundamental en la teoría de conjuntos

 $A \subseteq B$ si cada elemento de A es un elemento de B

La noción de subconjunto es fundamental en la teoría de conjuntos

 $A \subseteq B$ si cada elemento de A es un elemento de B

▶ Por ejemplo, $\{1,2\} \subseteq \{1,2,3\}$ y $\{1,2\} \not\subseteq \{2,3,4\}$

La noción de subconjunto es fundamental en la teoría de conjuntos

 $A \subseteq B$ si cada elemento de A es un elemento de B

▶ Por ejemplo, $\{1,2\} \subseteq \{1,2,3\}$ y $\{1,2\} \not\subseteq \{2,3,4\}$

 $A \subseteq B$ es definido por la siguiente fórmula:

$$\forall x (x \in A \rightarrow x \in B)$$

El conjunto potencia

Dado un conjunto A, el conjunto potencia $\mathcal{P}(A)$ de A se define como el conjunto formado por los subconjuntos de A.

El conjunto potencia

Dado un conjunto A, el conjunto potencia $\mathcal{P}(A)$ de A se define como el conjunto formado por los subconjuntos de A.

Ejemplo

Si
$$A = \{1, 2, 3\}$$
, entonces

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

El conjunto potencia

Dado un conjunto A, el conjunto potencia $\mathcal{P}(A)$ de A se define como el conjunto formado por los subconjuntos de A.

Ejemplo

Si
$$A = \{1, 2, 3\}$$
, entonces

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

Si un conjunto A tiene n elementos, ¿cuántos elementos tiene $\mathcal{P}(A)$?

El axioma del conjunto potencia

Si un conjunto está bien definido, necesitamos un axioma que nos diga que su conjunto potencia también está bien definido.

El axioma del conjunto potencia

Si un conjunto está bien definido, necesitamos un axioma que nos diga que su conjunto potencia también está bien definido.

El axioma del conjunto potencia φ_{Pot} se define como:

$$\forall A \exists B \forall x (x \in B \leftrightarrow x \subseteq A)$$

El axioma del conjunto potencia

Si un conjunto está bien definido, necesitamos un axioma que nos diga que su conjunto potencia también está bien definido.

El axioma del conjunto potencia φ_{Pot} se define como:

$$\forall A \exists B \forall x (x \in B \leftrightarrow x \subseteq A)$$

 $A \subseteq B$ es sólo una abreviación de la fórmula $\forall x (x \in A \rightarrow x \in B)$, por lo que φ_{Pot} es el siguiente axioma:

$$\forall A \exists B \forall x (x \in B \leftrightarrow \forall y (y \in x \rightarrow y \in A))$$

La existencia de un conjunto infinito

¿Cómo se definen los números naturales?

¿Cómo se definen los números naturales?

Dado un número n, defina su sucesor s(n) como n+1

¿Cómo se definen los números naturales?

Dado un número n, defina su sucesor s(n) como n+1

Y diga que un conjunto A es inductivo si:

¿Cómo se definen los números naturales?

Dado un número n, defina su sucesor s(n) como n+1

Y diga que un conjunto A es inductivo si:

$$\triangleright$$
 $O \in A$

¿Cómo se definen los números naturales?

Dado un número n, defina su sucesor s(n) como n+1

Y diga que un conjunto A es inductivo si:

- $ightharpoonup O \in A$
- ▶ Si $n \in A$, entonces $s(n) \in A$

El conjunto $\mathbb N$ de los números naturales es inductivo

El conjunto $\mathbb N$ de los números naturales es inductivo

¿Hay otros conjuntos inductivos?

El conjunto N de los números naturales es inductivo

¿Hay otros conjuntos inductivos?

ightharpoonup Hay muchos conjuntos inductivos: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , ...

El conjunto N de los números naturales es inductivo

¿Hay otros conjuntos inductivos?

ightharpoonup Hay muchos conjuntos inductivos: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , ...

¿Qué distingue a los números naturales entre los conjuntos inductivos?

Los números naturales son el menor conjunto inductivo.

Los números naturales son el menor conjunto inductivo.

▶ De hecho, N se define como la intersección de todos los conjuntos inductivos.

Los números naturales son el menor conjunto inductivo.

▶ De hecho, N se define como la intersección de todos los conjuntos inductivos.

Queremos formalizar estas ideas en la teoría de conjuntos.

Los números naturales son el menor conjunto inductivo.

▶ De hecho, N se define como la intersección de todos los conjuntos inductivos.

Queremos formalizar estas ideas en la teoría de conjuntos.

Para esto necesitamos decir que existe un conjunto infinito