Силы трения

15.04.2017

- 1. Тело массой m лежит на наклонной плоскости с углом наклона α , коэффициент трения между телом и плоскостью μ .
- а) При каком минимальном α_0 тело начнет движение?
- б) Найдите ускорение тела при $\alpha > \alpha_0$.

Пусть теперь тело тянут вверх вдоль наклонной плоскости с постоянной силой.

- в) Какой минимальной силы F_1 достаточно, чтобы не давать телу соскальзывать вниз?
- Γ) Какова минимальная сила F_2 , при которой тело начинает двигаться вверх?

Пусть теперь можно прикладывать силу под произвольным углом β к горизонту. Необходимо добиться того, чтобы тело двигалось вверх вдоль плоскости.

д) Чему равна минимальная необходимая сила F_0 и под каким углом β_0 она должна быть направлена?

- 2. Цилиндр скользит по желобу, имеющему вид двугранного угла с раствором α (рис). Ребро двугранного угла наклонено под углом β к горизонту. Плоскости двугранного угла образуют одинаковые углы с горизонтом. Коэффициент трения между цилиндром и поверхностью желоба μ . Определите ускорение цилиндра.
- 3. Нить, перекинутая через блок с неподвижной осью, пропущена через щель (рис). На концах нити подвешены грузы, масса которых m_1 и $m_2 > m_1$. Определите ускорения грузов, если при движении нити на нее сос тороны щели действует постоянная сила трения F.
- 4. Человек массы m_1 , оставаясь на месте, тянет за веревку груз массы m_2 (рис). Коэффициент трения человека и груза о горизонтальную поверхность равен μ . При какой наименьшей силе натяжения веревки груз стронется с места? Под каким углом должна быть направлена веревка?
- 5. Сани массой M движутся по ровной горизонтальной поверхности со скоростью v_0 . На сани вертикально падает тело массой m, брошенное с высоты h. Коэффициент трения между санями и поверхностью μ . Найдите скорость саней непосредственно после падения тела, а также путь, который сани проедут до остановки. С какой высоты необходимо уронить тело, чтобы сани остановились сразу после его падения?
- 6. Сани массой M стоят неподвижно на ровной горизонтальной поверхности с коэффициентом трения μ . На сани сзади запрыгивает собака массы m со скоростью v_0 , направленной вниз под углом α к горизонту.
- а) Каким должен быть максимальный угол α_0 , чтобы сани тронулись после падения собаки?
- б) Найдите путь, который проедут сани до остановки, если $\alpha < \alpha_0$.

7. Монета лежит неподвижно на наклонной плоскости с углом наклона α , коэффициент трения между монетой и плоскостью $\mu = \tan \alpha$. Монете придали горизонтальную скорость v. Найдите установившуюся скорость монеты.

- 8. Горизонтальную ось радиуса R, вращающуюся с угловой скоростью ω , обжимает втулка с противовесом (см. рис, противовес нужен для того, чтобы втулка не вращалась). Максимальная сила трения втулки об ось F_0 . Определите установившуюся скорость втулки под действием силы $F < F_0$, направленной вдоль оси.
- 9. Однородная кольцевая цепочка массы m надета на горизонтальный диск радиуса R. Сила натяжения цепочки T, коэффициент трения между цепочкой и диском μ . Найдите, при какой минимальной угловой скорости диска цепочка спадет с него.
- 10. Тело с установленными в его вырезах клиньями расположено между двумя его параллельными стенками так, как показано на рисунке. Найдите предельный угол при вершине клиньев, при котором тело может двигаться вправо и не может двигаться влево. Коэффициенты трения клиньев о стенки и тело равны μ_1 и μ_2 соответственно.

- 11. Быстро вращающийся шар налетает на стену со скоростью $v_0=5$ м/с под углом $\alpha=45^\circ$ и отскакивает от нее под углом β (см. рисунок). Какова скорость v шара после удара, если коэффициент трения между шаром и стеной $\mu=0.3$? Рассмотрите 2 случая: $\beta=60^\circ$ и $\beta=30^\circ$.
- 12. Быстро вращающаяся шайба скользит вдоль бортика хоккейной площадки (рис). Коэффициент трения шайбы о бортик $\mu=0.3$, трение о лед пренебрежимо мало. Во сколько раз уменьшится скорость шайбы после прохождения угла?
- 13. За один конец легкой веревки, охватывающей столб по дуге с углом θ , тянут с силой F_0 . Какую минимальную силу нужно приложить ко второму концу веревки, чтобы его удержать, если коэффициент трения веревки о столб равен μ ?
- 14. Через неподвижное горизонтально закрепленное бревно переброшена веревка. Чтобы удерживать груз массы m=18 кг, подвешенный на этой веревке, необходимо тянуть второй конец веревки с минимальной силой $F_1=120$ Н. С какой минимальной силой F_2 надо тянуть веревку, чтобы груз начал подниматься?