I. ESPACES MÉTRIQUES. ESPACES TOPOLOGIQUES

Ouverts et fermés de \mathbb{R}^n pour la distance euclidienne (sans la continuité)

1) a) Soit $A = \{(0,0)\} \subseteq \mathbb{R}^2$. Déterminer \mathring{A} .

La partie A de \mathbb{R}^2 est-elle ouverte? fermée?

Indication: l'intérieur d'une partie de \mathbb{R}^2 est l'ensemble des centres de boules ouvertes incluses dans cette partie, et l'adhérence d'une partie de \mathbb{R}^2 est l'ensemble des limites de suites convergentes dans \mathbb{R}^2 de points de cette partie, ce qui donne deux méthodes pour répondre.

- b) Soit $B = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x < 1 \text{ et } 0 < y \le 1\} \subseteq \mathbb{R}^2$. Déterminer \mathring{B} . La partie B de \mathbb{R}^2 est-elle ouverte? fermée?
- 2) a) Quel est l'intérieur dans \mathbb{R} du segment [0,1]?
 - b) Quel est l'intérieur dans \mathbb{R}^2 du segment [0,1] porté par l'axe des abscisses?
- 3) a) Montrer que l'adhérence d'un convexe de \mathbb{R}^n est un convexe de \mathbb{R}^n .
 - b) Ce résultat reste-t-il vrai pour l'intérieur?
- 4) a) Soit $G \neq \{0\}$ un sous-groupe du groupe additif $(\mathbb{R}, +)$. On pose $a = \inf\{x \in G \mid x > 0\}$. Montrer que : si a > 0, $G = a\mathbb{Z}$ et $a\mathbb{Z}$ est fermé dans \mathbb{R} ; si a = 0, G est dense dans \mathbb{R} .
 - b) Soit $\omega = e^{2i\pi\alpha}$ avec $\alpha \in \mathbb{R}$ un nombre complexe de module 1.

On pose $H = \{\omega^n : n \in \mathbb{Z}\}$. Déterminer l'adhérence de H dans \mathbb{C} .

Indication: lorsque $\alpha \notin \mathbb{Q}$, étudier la partie $G := \{x \in \mathbb{R} \mid e^{2i\pi x} \in H\}$ de \mathbb{R} .

Espaces métriques

- 5) On pose : $\|(x_1, x_2)\|_{1/2} = (|x_1|^{1/2} + |x_2|^{1/2})^2$ pour $(x_1, x_2) \in \mathbb{R}^2$ ($\| \|_{1/2}$ n'est pas une « norme »). Existe-t-il une distance $d_{1/2}$ sur \mathbb{R}^2 dont les boules ouvertes sont exactement les parties de la forme $\{x \in \mathbb{R}^2 \mid \|x - a\|_{1/2} < r\}$ avec $a \in \mathbb{R}^2$ et r > 0?
- 6) Les applications d_0 , δ et \tilde{d} suivantes sont-elles des distances?
 - a) Sur un ensemble $E: d_0(x,y) = \begin{cases} 1 & \text{si } x \neq y \\ 0 & \text{si } x = y \end{cases}$ pour $x,y \in E$. b) Sur $\mathbb{R}: \delta(x,y) = |\mathbf{e}^x \mathbf{e}^y|$ pour $x,y \in \mathbb{R}$.

 - c) Sur un ensemble E muni d'une distance $d: \widetilde{d}(x,y) = \min(d(x,y),1)$ pour $x,y \in E$.
- 7) On se place dans un espace métrique (E, d). Soit $A \subseteq E$. Comparer les diamètres de \tilde{A} et de \overline{A} avec celui de A.
- 8) On considère un espace métrique non-vide (E,d), un point Ω de E, et une partie A de E.
 - a) Montrer que A est bornée si et seulement si elle est incluse dans une boule fermée.
 - b) Montrer que A est bornée si et seulement si elle est incluse dans une boule fermée de centre Ω .

9) On note
$$\| \|_2$$
 la norme euclidienne sur \mathbb{R}^2 . Pour $x,y \in \mathbb{R}^2$ on pose :
$$d_S(x,y) = \begin{cases} \|x-y\|_2 & \text{si } x \text{ et } y \text{ sont align\'es avec } 0 \\ \|x\|_2 + \|y\|_2 & \text{sinon} \end{cases}$$

- a) Montrer que d_S définit une distance sur \mathbb{R}^2 (« distance SNCF »).
- b) Décrire géométriquement la boule ouverte B(x,r) pour $x \in \mathbb{R}^2$ et r > 0.

- 10) On munit l'ensemble $E = \{-1\} \cup [0,1]$ de la distance induite par la distance usuelle dans \mathbb{R} .
 - a) Les parties suivantes A, B, C de E sont-elles ouvertes, fermées? $A = \{-1\}, \qquad B = [0, 1], \qquad C = [0, \frac{1}{2}].$

Déterminer leurs intérieurs et adhérences.

- b) Comparer l'adhérence de la boule ouverte B(0,1) avec la boule fermée B(0,1).
- c) Comparer l'intérieur de la boule fermée $\widetilde{B}(0,1)$ avec la boule ouverte B(0,1).
- 11) Une distance d sur un ensemble E est dite ultram'etrique si elle vérifie :

$$\forall x, y, z \in E \quad d(x, z) \le \max (d(x, y), d(y, z)).$$

- a) Sur l'ensemble $E = \mathbb{C}^{\mathbb{N}}$ des suites de nombres complexes, on définit la valuation v par $v(a) = \min\{n \in \mathbb{N} \mid a_n \neq 0\} \text{ quand } a = (a_n)_{n \in \mathbb{N}} \in E \setminus \{0\}$ Montrer que l'application $d:(a,b)\mapsto 2^{-v(a-b)}$ est une distance ultramétrique sur E.
- b) Montrer que dans un espace muni d'une distance ultramétrique :
 - (i) tout triangle est isocèle (c'est-à-dire il a deux cotés de même longueur);
 - (ii) n'importe quel point d'une boule ouverte ou fermée est centre de cette boule;
 - (iii) deux boules ouvertes sont soit disjointes, soit l'une incluse dans l'autre;
 - (iv) les boules fermées sont des ouverts et les boules ouvertes sont des fermés.

Espaces topologiques

- 12) Soit (X, \mathcal{T}) un espace topologique. On note diag $X^2 = \{(x, x) ; x \in X\}$. Démontrer que X est séparé si et seulement si diag X^2 est fermé dans $X \times X$.
- 13) On note $X = (\mathbb{R} \setminus \{0\}) \cup \{0', 0''\}$ dans \mathbb{R}^2 , où \mathbb{R} est identifié avec (Ox), 0' = (0, 1) et 0'' = (0, -1). On pose^(*): $\mathscr{T} = \{V\}_{V \text{ ouvert de } \mathbb{R}\setminus\{0\}} \cup \{(W\setminus\{0\})\cup F\}_{W \text{ ouvert de } \mathbb{R} \text{ contenant } 0 \text{ et } F\subseteq\{0',0''\}}$. Montrer que \mathscr{T} est une topologie non-séparée sur X (« droite réelle avec origine dédoublée »).
- 14) On considère sur \mathbb{R}^2 les distances « discrète », « euclidienne » et « SNCF » : d_0 de l'exercice 6, d_2 : $(x,y) \mapsto ||x-y||_2$ et la distance d_S de l'exercice 9. Les topologies sur \mathbb{R}^2 associées à d_0 et d_S sont-elles égales à la topologie usuelle associée à d_2 ?
- 15) Soient A et B deux parties d'un espace topologique (X, \mathcal{T}) .
 - a) Comparer $\overline{A \cup B}$ et $\overline{A} \cup \overline{B}$.
 - b) Comparer $\overline{A \cap B}$ et $\overline{A} \cap \overline{B}$. Indication: étudier dans \mathbb{R} les parties \mathbb{Q} et $\mathcal{C}_{\mathbb{R}}\mathbb{Q}$.
- 16) Soit A une partie d'un espace topologique (X, \mathscr{T}) . $\frac{}{\overset{\circ}{a}}$ a) Montrer que : $\mathring{A} = \mathring{A}$ et $\overline{\overline{A}} = \overline{A}$. En déduire que : $\mathring{A} = \overset{\circ}{A}$ et $\overset{\circ}{\overline{A}} = \overset{\circ}{\overline{A}}$.
 - b) Quelles sont les 7 parties de X qu'on obtient en itérant les opérations $^{\circ}$ et $^{-}$ à partir de A?
 - c) Montrer que ces parties sont distinctes quand $X = \mathbb{R}$ et $A = (\mathbb{Q} \cap [0,1]) \cup [2,3[\cup]3,4] \cup \{5\}$.
- 17) On se place dans un espace topologique (X, \mathcal{T}) . Soit $A \subseteq X$. Montrer que ∂A est fermé. Comparer les frontières de \overline{A} et de \overline{A} avec celle de A.
- 18) Soit (X, \mathcal{T}) un espace topologique, Y un sous-ensemble de X.

On munit Y de la topologie induite par celle de X et on note, pour toute partie A de Y:

 \overline{A}^Y l'adhérence de A dans Y; \overline{A}^X l'adhérence de A dans X;

- \mathring{A}^Y l'intérieur de A dans Y ; \mathring{A}^X l'intérieur de A dans X. a) Montrer que $\overline{A}^Y=\overline{A}^X\cap Y.$
- b) Montrer que $\mathring{A}^Y \supset \mathring{A}^X \cap Y$ et donner un exemple où l'inclusion est stricte.
- (*) Il est « clair » (pourquoi?) que les ouverts de $\mathbb{R} \setminus \{0\}$ sont les ouverts de \mathbb{R} qui sont inclus dans $\mathbb{R} \setminus \{0\}$.