Software Testing and Validation A.A. 2022/2023

Corso di Laurea in Informatica

Logics in Model Checking

Igor Melatti

Università degli Studi dell'Aquila

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica

Beyond Invariants

- Invariants represent a huge share of properties to be verified on a system
- For many systems, one may be happy with invariants only
 - "nothing bad happens", that's all folks
- However, it is not always sufficient: a non-running system of course satisfies invariants
 - no starting states, thus no reachable states...

Safety vs. Liveness

- Safety properties: something bad must never happen
 - example: in the Peterson's protocol, it must not happen that both processes are accessing the resource (L3 in the Murphi model)
- Invariants are a special case of safety properties
 - there are some safety properties which are not invariants
 - however, they can be expressed with invariants by adding variables to the Kripke Structure
 - in the following, we will consider "invariants" and "safety properties" as synonyms
- Liveness properties: something good will eventually happen
 - example: in the Peterson's protocol, both processes will eventually access the resource
 - not at the same time!
 - cannot be expressed with invariants

Safety vs. Liveness

- ullet Notation: let ${\cal S}$ be a KS and ${oldsymbol{arphi}}$ be a formula in any logic
- $\mathcal{S} \models \varphi$ is true iff φ is true in \mathcal{S}
 - what this means depends on the logic, as we will see
- For most properties φ , if $\mathcal{S} \not\models \varphi$ then there exists a path $\pi \in \operatorname{Path}(\mathcal{S})$ which is a *counterexample*
- For safety properties, $|\pi| < \infty$
 - ullet S arrives to an *unsafe* state and that's it
- For liveness properties, $|\pi| = \infty$
 - since ${\mathcal S}$ is finite, this implies that π contains a loop (*lasso*) in its final part

Safety vs. Liveness

- Equivalent definition for a safety formula: given a finite counterexample, every extension still contains the error
- There is one formula which is both safety and liveness: the true invariant
 - it cannot have a counterexample...
- There are formulas which are neither safety nor liveness
 - their counterexample is not a path
- For typically used formulas, they are either safety or liveness properties

Safety vs. Liveness: Mathematical Definition

- Let a model σ be an infinite sequence of truth assignments to all $p \in AP$
 - $\sigma \in (2^{AP})^{\omega}$
 - could also be seen as a sequence of sets $P \subseteq AP$
 - given a path π of a KS S, we can always obtain a model from π by replacing each $\pi(i)$ with $L(\pi(i))$
- It is possible to define if $\sigma \models \varphi$, for a given formula φ
- φ is a safety property if, for all σ, σ' s.t. $\sigma \not\models \varphi$ and $\exists j: \ \sigma|_j = \sigma'|_j, \ \sigma' \not\models \varphi$
- φ is a liveness property if, for each prefix $w_0 \dots w_i$, there exists σ s.t. $\sigma|_i = w_0 \dots w_i$ and $\sigma \models \varphi$

Safety vs. Liveness: Mathematical Definition

If we identify a property by the set of its models $(\varphi = \{\sigma \mid \sigma \models \varphi\})$

Model Checking Logics: Preliminaries

- ullet Model Checking logics are based on the concept of execution of a Kripke structure ${\cal S}$
 - thus, on $\pi \in \mathrm{Path}$
- Often, paths are directly viewed as a sequence of atomic propositions, rather than states
 - from $\pi = s_1, s_2, ...$ to $AP(\pi) = L(s_1), L(s_2), ...$
- Focusing on executions allows to model time
 - property on paths, especially useful for liveness properties
- Trade-off between
 - logics expressiveness: interesting properties can be written
 - logics efficiency: there is an efficient model checking algorithm to compute if $\mathcal{S} \models \varphi$

Model Checking Logics: Preliminaries

- We will focus on the two leading Model Checking logics: LTL and CTL
 - with some hints on CTI*
 - LTL (Linear-time Temporal Logic) established by Pnueli in 1977
 - CTL (Computation Tree Logic) established by Clarke and Emerson in 1981
 - used for IEEE standards:
 - PSL (Property Specification Language, IEEE Standard 1850)
 - SVA (SystemVerilog Assertions, IEEE Standard 1800).
- We will see syntax and semantics of both logics
 - syntax: how a valid formula is written
 - semantics: what a valid formula "means"
 - ullet that is, when $\mathcal{S} \models \varphi$ holds

$$\Phi ::= p \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid (\Phi) \mid \mathbf{X} \Phi \mid \Phi_1 \mathbf{U} \Phi_2$$

- Other derived operators:
 - of course true, false, OR and other propositional logic connectors
 - future (or eventually): $\mathbf{F}\Phi = \text{true } \mathbf{U} \Phi$
 - globally: $\mathbf{G}\Phi = \neg(\text{true }\mathbf{U} \neg \Phi)$
 - release: $\Phi_1 \mathbf{R} \Phi_2 = \neg(\neg \Phi_1 \mathbf{U} \neg \Phi_2)$
 - weak until: $\Phi_1 \mathbf{W} \Phi_2 = (\Phi_1 \mathbf{U} \Phi_2) \vee \mathbf{G} \Phi_1$
- Other notations:
 - next: $\mathbf{X}\Phi = \bigcap \Phi$
 - \bullet $\mathbf{G}\Phi = \Box \Phi$
 - $\mathbf{F}\Phi = \Diamond \Phi$
- We are dropping past operators, thus this is the future LTG

LTL Semantics

- ullet Goal: formally defining when $\mathcal{S} \models \varphi$, being \mathcal{S} a KS and φ an LTL formula
 - we say that ${\mathcal S}$ satisfies φ , or φ holds in ${\mathcal S}$
- This is true when, for all paths π of \mathcal{S} , π satisfies φ
 - i.e., $\forall \pi \in \text{Path}(\mathcal{S}). \ \pi \models \varphi$
 - symbol ⊨ is overloaded...
- For a given π , $\pi \models \varphi$ iff π , $0 \models \varphi$
- Finally, to define when $\pi, i \models \varphi$, a recursive definition over the recursive syntax of LTL is provided
 - $\pi \in \text{Path}(S), i \in \mathbb{N}$

LTL Semantics for $\pi, i \models \varphi$

- $\forall \pi \in \text{Path}(S), i \in \mathbb{N}. \ \pi, i \models \text{true}$
- π , $i \models p$ iff $p \in L(\pi(i))$
- $\pi, i \models \Phi_1 \land \Phi_2 \text{ iff } \pi, i \models \Phi_1 \land \pi, i \models \Phi_2$
- $\pi, i \models \neg \Phi \text{ iff } \pi, i \not\models \Phi$
- $\pi, i \models \mathbf{X}\Phi \text{ iff } \pi, i+1 \models \Phi$
- $\pi, i \models \Phi_1 \cup \Phi_2 \text{ iff } \exists k \geq i : \pi, k \models \Phi_2 \land \forall i \leq j < k. \pi, j \models \Phi_1$

LTL Semantics for Added Operators

- It is easy to prove that:
 - $\pi, i \models \mathbf{G} \Phi \text{ iff } \forall j \geq i. \ \pi, j \models \Phi$
 - $\pi, i \models \mathbf{F}\Phi \text{ iff } \exists j \geq i. \ \pi, j \models \Phi$
 - $\pi, i \models \Phi_1 \mathbf{R} \Phi_2 \text{ iff } \forall j \geq i. \ (\forall k < j. \ \pi, k \models \Phi_1) \rightarrow \pi, j \models \Phi_2$
 - $\pi, i \models \Phi_1 \mathbf{W} \Phi_2$ iff $(\forall j \geq i. \ \pi, j \models \Phi_1) \lor (\exists k \geq i: \ \pi, k \models \Phi_2 \land \forall i \leq j < k. \ \pi, j \models \Phi_1)$
- For many formulas, it is silently required that paths are infinite
- That's why transition relations in KSs must be total

Safety and Liveness Properties in LTL

- Given an LTL formula φ , φ is a safety formula iff $\forall \mathcal{S}. (\exists \pi \in \operatorname{Path}(\mathcal{S}) : \pi \not\models \varphi) \to \exists k : \pi|_k \not\models \varphi$
- Given an LTL formula φ , φ is a liveness formula iff $\forall \mathcal{S}. (\exists \pi \in \operatorname{Path}(\mathcal{S}) : \pi \not\models \varphi) \rightarrow |\pi| = \infty$
- All LTL formulas are either safety, liveness, or the AND of a safety and a liveness
 - being defined on paths, the counterexample is always a path
- Safety properties are those involving only G, X, true and atomic propositions
- Liveness are all those involving an **F**, or a **U** where the first formula is not the constant true
- Some formulas are both safety and liveness, like true, **G** true and so on

 $\mathcal{S} \models \mathbf{F}p$ since p holds in the first state For full: let $\pi \in \operatorname{Path}(\mathcal{S})$ $\pi, 0 \models \mathbf{F}p$ with j = 0

recall: $\pi, i \models \mathbf{F}\Phi$ if $\exists j \geq i. \ \pi, j \models \Phi$ $\pi, i \models p$ iff $p \in L(\pi(i))$

 $\mathcal{S} \not\models \mathbf{F}a$ since s_6 is not reachable from s_0 counterexample: $\pi = s_0 s_5 s_5 s_5 \ldots$ For full: $\pi, 0 \not\models \mathbf{F}a$ as, for all $j \geq 0$, $a \notin L(\pi(j))$

Counterexample is infinite, thus this is a liveness property Any finite prefix of π is not a counterexample

 $\mathcal{S} \not\models \mathbf{G}p$ since there are many counterexamples, here is one:

 $\pi = s_0 s_5 s_0 s_5 \dots$ For full: $\pi, 0 \not\models \mathbf{G}p$ with j = 1

recall: $\pi, i \models \mathbf{G}\Phi$ if $\forall j \geq i. \ \pi, j \models \Phi$ $\pi, i \models p$ iff $p \in L(\pi(i))$

Safety property, actually $\pi|_2$ is enough Every path having $\pi|_2$ as prefix is a counterexample

 $\mathcal{S} \models \mathbf{G} \neg a$ since s_6 is not reachable from s_0 For full: let $\pi \in \operatorname{Path}(\mathcal{S})$ $\pi, 0 \models \mathbf{G} \neg a$ as the only state s with $a \in L(s)$ is s_6 , which is not reachable from s_0

recall: $\pi \in \operatorname{Path}(\mathcal{S})$ implies $\pi(0) \in I$, thus $\pi(0) = s_0$ here

 $\mathcal{S} \not\models p \ \mathbf{U} \ r$, a counterexample is $\pi = s_0 s_1 (s_2 s_3 s_4)$

Again this is a liveness formula, even if $\pi|_1$ would have been enough

In fact, you have to consider all possible KSs...

 $\mathcal{S} \not\models \neg (p \ \mathbf{U} \ r)$, a counterexample is $\pi = (s_0 s_5)$ In fact, $(s_0 s_5)$, $0 \models p \ \mathbf{U} \ r$ Thus it may happen that $\mathcal{S} \not\models \Phi$ and $\mathcal{S} \not\models \neg (\Phi)$ Instead, it is impossible that $\mathcal{S} \models \Phi$ and $\mathcal{S} \models \neg (\Phi)$

 $S \models \mathbf{GF}p$ All lassos are s_0s_5 or $s_2s_3s_4$ In both such lassos, there are states in which p holds

 $\mathcal{S} \not\models \mathbf{G}(p \ \mathbf{U} \ q)$, a counterexample is $\pi = s_0 s_1(s_2 s_3 s_4)$ ($p \ \mathbf{U} \ q$) must hold at any reachable state Ok in s_0, s_1, s_2 , but not in s_3

LTL Non-Toy Examples

- Recall the Peterson's protocol: checking mutual exclusion is $\mathbf{G}(\neg(p \land q))$, being p = P[1] = L3, q = P[2] = L3
 - all invariants are of the form GP, where P does not contain modal operators X, U or F
- Checking that both processes access to the critical section infinitely often is GF P[1] = L3 ∧ GF P[2] = L3
 - liveness property: no process is infinitely banned to access the critical section
- Even better: **G** $(P[1] = L2 \rightarrow F P[1] = L3)$
 - the same for the other process
 - since it is simmetric, this is actually enough

Equivalence Between LTL Properties

Definition of equivalence between LTL properties:

$$\varphi_1 \equiv \varphi_2 \quad \text{iff} \quad \forall \mathcal{S}. \ \mathcal{S} \models \varphi_1 \Leftrightarrow \mathcal{S} \models \varphi_2$$

- equivalent: $\forall \sigma \dots$
- Idempotency:
 - $FFp \equiv Fp$
 - $GGp \equiv Gp$
 - $p \stackrel{\cdot}{\mathbf{U}} (p \stackrel{\cdot}{\mathbf{U}} q) \equiv (p \stackrel{\cdot}{\mathbf{U}} q) \stackrel{\cdot}{\mathbf{U}} q \equiv p \stackrel{\cdot}{\mathbf{U}} q$
- Absorption:
 - $\mathsf{GFG}p \equiv \mathsf{FG}p$
 - $\mathbf{FGF}p \equiv \mathbf{GF}p$
- Expansion (used by LTL Model Checking algorithms!):
 - $p \mathbf{U} q \equiv q \vee (p \wedge \mathbf{X}(p \mathbf{U} q))$
 - $\mathbf{F}p \equiv p \vee \mathbf{X}\mathbf{F}p$
 - $\mathbf{G}p \equiv p \wedge \mathbf{X}\mathbf{G}p$

CTL Syntax

$$\Phi ::= \rho \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid (\Phi) \mid \textbf{EX}\Phi \mid \textbf{EG}\Phi \mid \textbf{E}\Phi_1 \textbf{ U } \Phi_2$$

- Other derived operators (besides true, false, OR, etc):
 - $\mathbf{EF}\Phi = \mathbf{E}\mathrm{true}\; \mathbf{U}\; \Phi$
 - cannot be defined using $\mathbf{E} \neg \mathbf{G} \neg \Phi$, as this is not a CTL formula
 - actually, it is a CTL* formula (see later)
 - AF $\Phi = \neg EG \neg \Phi$, AG $\Phi = \neg EF \neg \Phi$, AX $\Phi = \neg EX \neg \Phi$
 - $\mathbf{A}\Phi_1 \mathbf{U} \Phi_2 = (\neg \mathbf{E} \neg \Phi_2 \mathbf{U} (\neg \Phi_1 \wedge \neg \Phi_1)) \wedge \neg \mathbf{E} \mathbf{G} \neg \Phi_2$
 - $\bullet \ \, \Phi_1 \textbf{A} \textbf{U} \Phi_2 = \textbf{A} \Phi_1 \textbf{U} \Phi_2, \, \Phi_1 \textbf{E} \textbf{U} \Phi_2 = \textbf{E} \Phi_1 \textbf{U} \Phi_2$

Comparison with LTL Syntax

$$\Phi ::= \operatorname{true} \mid \rho \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid (\Phi) \mid \mathbf{X} \Phi \mid \Phi_1 \mathbf{U} \Phi_2$$

- \bullet Essentially, all temporal operators are preceded by either \boldsymbol{E} or \boldsymbol{G}
 - ullet with some care for ${f U}$

CTL Semantics

- Goal: formally defining when $S \models \varphi$, being S a KS and φ a CTL formula
- This is true when, for all initial states $s \in I$ of S, $s\pi\varphi$
 - thus, CTL is made of state formulas
 - LTL has path formulas
- To define when $s \models \varphi$, a recursive definition over the recursive syntax of CTL is provided
 - no need of an additional integer as for LTL syntax

CTL Semantics for $s, i \models \varphi$

- $\forall s \in S$. $s, i \models \text{true}$
- $s \models p \text{ iff } p \in L(s)$
- $s \models \Phi_1 \land \Phi_2$ iff $s \models \Phi_1 \land s \models \Phi_2$
- $s \models \neg \Phi \text{ iff } s \not\models \Phi$
- $s \models \mathsf{EX}\Phi \text{ iff } \exists \pi \in \mathrm{Path}(\mathcal{S}, s). \ \pi(1) \models \Phi$
- $s \models \mathsf{EG}\Phi \text{ iff } \exists \pi \in \mathrm{Path}(\mathcal{S}, s). \ \forall j. \ \pi(j) \models \Phi$
- $s \models \mathbf{E}\Phi_1 \mathbf{U} \Phi_2$ iff $\exists \pi \in \mathrm{Path}(\mathcal{S}, s) \exists k : \pi(k) \models \Phi_2 \wedge \forall j < k. \pi(j) \models \Phi_1$

CTL Semantics for Added Operators

- It is easy to prove that:
 - $s \models \mathsf{AG}\Phi$ iff $\forall \pi \in \mathrm{Path}(\mathcal{S}, s)$. $\forall j. \ \pi(j) \models \Phi$
 - $s \models \mathsf{AF}\Phi \text{ iff } \forall \pi \in \mathrm{Path}(\mathcal{S}, s). \ \exists j. \ \pi(j) \models \Phi$
 - analogously for AU, AR, AW
 - just replace ∀ with ∃ for EF, ER, EW
- As for CTL, for many formulas, it is silently required that paths are infinite
- So again transition relations in KSs must be total

Safety and Liveness Properties in CTL

- Some CTL formulas may be neither safety nor liveness
 - being defined on states, the counterexample may be an entire computation tree
- Safety properties are those involving only AG, AX, true and atomic propositions
- Some formulas are both safety and liveness, like true, G true and so on
- Liveness are formulas like AF, AFAG, AU
- EF or EG are neither liveness nor safety

 $\mathcal{S} \models \mathbf{AF}p$ since p holds in the first state For full: $s_0 \models \mathbf{F}p$ since $p \in L(s_0)$, thus, for all paths starting in s_0 , p holds in the first state, so it holds eventually

 $\mathcal{S} \models \mathbf{EF}p$ for the same reason as above

If it holds for all paths, then it holds for one path

 $\text{AF}\Phi \to \text{EF}\Phi$

The same holds for the other temporal operators \mathbf{G}, \mathbf{U} etc

 $\mathcal{S} \not\models \mathbf{EF}a$ since s_6 is not reachable

Note that the counterexample cannot be a single path
Since it would not enough to

disprove existence

The full reachable graph must be provided

One could also show the tree of

One could also show the tree of all paths

Neither safety ner liveness

 $\mathcal{S} \not\models \neg \mathbf{E}(p \ \mathbf{U} \ r)$, a counterexample is $\pi = (s_0 s_5)$ In fact, $\mathcal{S} \not\models \Phi$ iff $\mathcal{S} \models \neg(\Phi)$ No hidden quantifier...

 $\mathcal{S} \not\models \mathbf{AFAG}p$, a counterexample is $\pi = s_0s_1(s_2s_3s_4)$ This is a liveness formula

 $\mathcal{S} \not\models \mathbf{EFEG}p$, a counterexample is again a computation tree All lassos are s_0s_5 or $s_2s_3s_4$ In both such lassos, there are states in which p does not hold

 $\mathcal{S} \not\models \mathbf{AFEG}p$, a counterexample is again a computation tree Since $\mathcal{S} \not\models \mathbf{EFEG}p$...

 $\mathcal{S} \not\models \mathbf{EFAG}p$, a counterexample is again a computation tree Since $\mathcal{S} \not\models \mathbf{EFEG}p$...

CTL Non-Toy Examples

- Recall the Peterson's protocol: checking mutual exclusion is $AG(\neg(p \land q))$, being p = P[1] = L3, q = P[2] = L3
 - equivalent to LTL Gp
- It is always possible to restart: **AGEF** $P[1] = L0 \land AGEF$ P[2] = L0

- Recall that $\varphi_1 \equiv \varphi_2$ iff $\forall \mathcal{S}. \ \mathcal{S} \models \varphi_1 \Leftrightarrow \mathcal{S} \models \varphi_2$
 - ullet also holds (w.l.g.) when φ_1 is LTL and φ_2 is CTL
- Of course, some CTL formulas cannot be expressed in LTL
 - it is enough to put an E, since LTL always universally quantifies paths
 - ${\color{red} \bullet}$ so, there is not an LTL φ s.t. $\varphi \equiv {\bf EG} p$
 - no, $\mathbf{F} \neg p$ is not the same, why?
- So, one might think: LTL is contained in CTL
 - simply replace each temporal operator O with AO, that's it
 - ullet let ${\mathcal T}$ be a translator doing this
 - for any LTL formula φ , $\varphi \equiv \mathcal{T}(\varphi)$
 - actually, $\mathbf{G}p \equiv \mathcal{T}(\mathbf{G}p) = \mathbf{AG}p$

- Theorem. Let φ be an LTL formula. Then, either i) $\varphi \equiv \mathcal{T}(\varphi)$ or ii) there does not exist a CTL formula ψ s.t. $\varphi \equiv \psi$
 - idea of proof: replacing with **E** is of course not correct, and temporal operators on paths are the same
- Corollary. There exists an LTL formula φ s.t., for all CTL formulas $\psi,\ \varphi \not\equiv \psi$
- Proof of corollary:
 - by the theorem above and the definitions, we need to find
 - lacktriangledown an LTL formula arphi
 - \bigcirc a KS \mathcal{S}
 - where $\mathcal{S} \models \varphi$ and $\mathcal{S} \not\models \mathcal{T}(\varphi)$
 - viceversa is not possible

- ullet For example, as for the LTL formula, we may take $arphi={f FG} p$
 - note instead that $\mathbf{GF}p \equiv \mathbf{AGAF}p$
- ullet For example, as for the KS \mathcal{S} , we may take

- We have that $S \models \mathbf{FG}p$, but $S \not\models \mathbf{AFAG}p$
- Thus, CTL requires "more" than the corresponding LTL

- $S \not\models \mathbf{AFAG}p$ means that
 - $\neg(\forall \pi \in \operatorname{Path}(\mathcal{S}). \ \exists j : \ \forall \rho \in \operatorname{Path}(\mathcal{S}, \pi(j)). \ \forall k. \ p \in \rho(k))$ $= \exists \pi \in \operatorname{Path}(\mathcal{S}). \ \forall j : \ \exists \rho \in \operatorname{Path}(\mathcal{S}, \pi(j)). \ \exists k. \ p \notin \rho(k)$
 - the path π is a loop on s_0 ...
- $S \models \mathbf{FG}p$ means that $\forall \pi \in \mathrm{Path}(S)$. $\exists j : \forall k \geq j$. $p \in \pi(k)$
- Thus, there is not a CTL formula equivalent to **FG**p
- Furthermore, there is not an LTL formula equivalent to AFAGp

CTL, LTL and CTL*

- CTL* introduced in 1986 (Emerson, Halpern) to include both CTL and LTL
- No restrictions on path quantifiers to be 1-1 with temporal operators, as in CTL
- State formulas: $\Phi ::= \operatorname{true} \mid p \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbf{A} \Psi \mid \mathbf{E} \Psi$
- Path formulas: $\Psi ::= \Phi \mid \Psi_1 \wedge \Psi_2 \mid \neg \Psi \mid \Psi_1 \mathbf{U} \Psi_2 \mid \mathbf{F} \Psi \mid \mathbf{G} \Psi$

CTL, LTL and CTL*

- The intersection between CTL and LTL is both syntactic and "semantic"
- Some formulas are both CTL and LTL in syntax: all those involving only boolean combinations of atomic propositions
- "Semantic" intersection: some LTL formulas may be expressed in CTL and vice versa, using different syntax
 - AGAFp and GFp
 - AGp and Gp
 - etc

