732A96 Advanced Machine Learning Graphical Models and Hidden Markov Models

Jose M. Peña IDA, Linköping University, Sweden

Lecture 1: Causal Models, Bayesian Networks and Markov Networks

Contents

- Causal Models
- Bayesian Networks
 - Definition
 - Causal Reasoning
 - Probabilistic Reasoning
- Markov Networks
 - Definition
 - Probabilistic Reasoning

Literature

- Main source
 - Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.
 Chapter 8.
- Additional source
 - Koski, T. J. T. and Noble, J. M. A Review of Bayesian Networks and Structure Learning. *Mathematica Applicanda* 40, 51-103, 2012.

Causal Models: Qualitative

Microscopic	Macroscopic	Macroscopic
DAG	DAG	Violates assumption
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ϵ^D C D E	$ \begin{array}{ccc} \epsilon^D & \epsilon^E \\ \downarrow & \downarrow \\ D E \end{array} $

- At the microscopic level, every system is a causal system, assuming Reichenbach's principle of common cause: "No correlation without causation".
- Then, at the microscopic level, every system can be represented by a causal model.
- The structure of the causal model can be represented as a directed and acyclic graph (DAG).
- At the macroscopic level, every system can be represented by a causal model **if no unmodeled variable** is cause of two or more modeled variables. The unmodeled causes of a variable X are aggregated into an error variable ϵ^X .

Causal Models: Quantitative

Microscopic DAG	Macroscopic DAG	Macroscopic DAG	
Functional	Functional	Probabilistic	
$ \begin{array}{cccc} A & B & C \\ D = f(A, B, C) & E = f(C) \end{array} $	$ \begin{array}{ccc} \epsilon^{D} & C \\ \downarrow & & \\ D = f(C, \epsilon^{D}) & E = f(C) \end{array} $	$D \sim q(D C) \qquad E \sim q(E C)$	

- Assuming Laplace's demon, every variable is a deterministic function of its causes at the microscopic level.
- Then, every variable is a probabilistic function of its modeled causes at the macroscopic level.
- Both Reichenbach's principle of common cause and Laplace's demon have been disproven. Human reasoning seem to comply with both of them, though.
- Then, probabilistic DAGs may not be ontological but epistemological models. They also help to identify key questions about reasoning.

Bayesian Networks: Definition

DAG	Parameter values for the conditional probility distributions	
Sprinkler Rain Wet Grass Wet Street	$q(S) = (0.3, 0.7)$ $q(R) = (0.5, 0.5)$ $q(WG n, s_0) = (0.1, 0.9)$ $q(WG r_0, s_1) = (0.7, 0.3)$ $q(WG r_1, s_1) = (0.8, 0.2)$ $q(WG r_1, s_1) = (0.9, 0.1)$ $q(WS r_0) = (0.1, 0.9)$ $q(WS r_1) = (0.7, 0.3)$ $p(S, R, WG, WS) = q(S)q(R)q(WG S, R)q(WS R)$	

- A Bayesian network (BN) over a finite set of discrete random variables $X = X_{1:n} = \{X_1, \dots, X_n\}$ consists of
 - ▶ a DAG G whose nodes are the elements in X, and
 - parameter values θ_G specifying conditional probability distributions $q(X_i|pa_G(X_i))$.
- ▶ The BN represents a causal model of the system.
- ► The BN also represents a probabilistic model of the system, namely $p(X) = \prod_i q(X_i|pa_G(X_i))$.

Bayesian Networks: Definition

- We now show that $p(X) = \prod_i q(X_i | pa_G(X_i))$ is a probability distribution.
- Clearly, $0 \le \prod_i q(X_i | pa_G(X_i)) \le 1$.
- ▶ Assume without loss of generality that $pa_G(X_i) \subseteq X_{1:i-1}$ for all i. Then

$$\sum_{x} \prod_{i} q(x_{i}|pa_{G}(X_{i})) = \sum_{x_{1}} [q(x_{1}) \dots \sum_{x_{n-1}} [q(x_{n-1}|pa_{G}(X_{n-1})) \sum_{x_{n}} q(x_{n}|pa_{G}(X_{n}))] \dots] = 1$$

▶ Moreover, $p(X_i|pa_G(X_i)) = q(X_i|pa_G(X_i))$. To see it, note that

$$p(X_{i}|pa_{G}(X_{i})) = \frac{p(X_{i},pa_{G}(X_{i}))}{p(pa_{G}(X_{i}))} = \frac{\sum_{X \setminus \{X_{i},pa_{G}(X_{i})\}} \prod_{i} q(X_{i}|pa_{G}(X_{i}))}{\sum_{X \setminus pa_{G}(X_{i})} \prod_{i} q(X_{i}|pa_{G}(X_{i}))} = q(X_{i}|pa_{G}(X_{i}))$$

Bayesian Networks: Separation

- We now show that many of the independencies in p can be read off G without numerical calculations.
- Let ρ be a path between two nodes α and β in G.
- ▶ A node B in ρ is a **collider** when $A \rightarrow B \leftarrow C$ is a subpath of ρ .
- ▶ Moreover, ρ is Z-open with $Z \subseteq X \setminus \{\alpha, \beta\}$ when
 - no non-collider in ρ is in Z, and
 - every collider in ρ is in Z or has a descendant in Z.
- Let U, V and Z be three disjoint subsets of X. Then, U and V are separated given Z in G (i.e. U⊥GV|Z) when there is no Z-open path in G between a node in U and a node in V.
- ▶ The separation criterion is **sound**, i.e. if $U \perp_G V | Z$ then $U \perp_p V | Z$.
- Moreover, it is also **complete**, i.e. p may be such that $U \perp_G V | Z$ if and only if $U \perp_p V | Z$.
- Moreover, p factorizes as $p(X) = \prod_i q(X_i|pa_G(X_i))$ if and only if it satisfies all the independencies identified by the separation criterion.

Bayesian Networks: Separation

- ▶ Exercise. Prove that $A \perp_p B | C$ for the DAGs $A \to C \to B$, $A \leftarrow C \to B$ and $A \leftarrow C \leftarrow B$, i.e. prove that p(A, B | C) = p(A | C) p(B | C).
- ► **Exercise**. Prove that $A \perp_p B | \varnothing$ for the DAG $A \rightarrow C \leftarrow B$, i.e. prove that p(A,B) = p(A)p(B).
- ▶ **Exercise**. Prove that $A \perp_p B | C, D$ for the DAG $A \rightarrow C \rightarrow D \rightarrow B$.
- ▶ **Exercise**. Prove that $A \perp_p B | C, D$ for the DAG $A \rightarrow C \rightarrow D \leftarrow B$.
- Exercise. Find the minimal set of nodes that separates a given node from the rest. This set is called the Markov blanket of the given node.

Bayesian Networks: Causal Reasoning

Original	After do(r ₁)
Sprinkler Rain Wet Grass Wet Street	Sprinkler Wet Grass Wet Street
$\begin{split} q(S) &= (0.3, 0.7) \\ q(R) &= (0.5, 0.5) \\ q(WG r_0, s_0) &= (0.1, 0.9) \\ q(WG r_0, s_1) &= (0.7, 0.3) \\ q(WG r_1, s_0) &= (0.8, 0.2) \\ q(WG r_1, s_1) &= (0.9, 0.1) \\ q(WS r_0) &= (0.1, 0.9) \\ q(WS r_1) &= (0.7, 0.3) \\ \end{split}$ $p(S, R, WG, WS) = q(S)q(R)q(WG S, R)q(WS R)$	$q(S) = (0.3, 0.7)$ $q(WG s_0) = (0.8, 0.2)$ $q(WG s_1) = (0.9, 0.1)$ $q(WS) = (0.7, 0.3)$ $p(S, WG, WS) = q(S)q(WG S)q(WS)$

- What would be the state of the system if a random variable X_j is forced to take the state x_i , i.e. $p(X \setminus X_i | do(x_i))$?
 - Remove X_i and all the edges from and to X_i from G.
 - Remove $q(X_i|pa_G(X_i))$.
 - ▶ If $X_j \in pa_G(X_i)$, then replace $q(X_i|pa_G(X_i))$ with $q(X_i|pa_G(X_i) \setminus X_j, x_j)$
 - Set $p(X \setminus X_i | do(x_i)) = \prod_i q(X_i | pa_G(X_i))$.
- So, the result of do(x) on a BN is a BN.

Bayesian Networks: Probabilistic Reasoning

What is the state of the system if a random variable X_i is observed to be in the state x_i, i.e. p(X \times X_i|x_i) ?

$$p(X \setminus X_i | x_i) = \frac{p(X \setminus X_i, x_i)}{p(x_i)} = \frac{p(X \setminus X_i, x_i)}{\sum_{X \setminus X_i} p(X \setminus X_i, x_i)}$$

$$p(R, WG, WS | s) = \frac{q(s)q(R)q(WG | s, R)q(WS | R)}{\sum_{r, wg, ws} q(s)q(r)q(wg | s, r)q(ws | r)}$$

$$= \frac{q(s)q(R)q(WG | s, R)q(WS | r)}{q(s)\sum_{r} [q(vg | s, r)\sum_{ws} q(ws | r)]}$$

• What is the state of a random variable Y if a random variable X_i is observed to be in the state x_i , i.e. $p(Y|x_i)$?

►
$$p(Y|x_i) = \frac{p(Y,x_i)}{p(x_i)} = \frac{\sum_{X \setminus \{X_i,Y\}} p(X \setminus X_i,x_i)}{\sum_{X \setminus X_i} p(X \setminus X_i,x_i)}$$
► $p(WS|s) = \frac{\sum_{r,wg} q(s)q(r)q(wg|s,r)q(wS|r)}{\sum_{r,wg,ws} q(s)q(r)q(wg|s,r)q(wg|r)}$

$$= \frac{q(s)\sum_r [q(r)q(WS|r)\sum_{wg} q(wg|s,r)]}{q(s)\sum_r [q(r)\sum_{wg} [q(wg|s,r)\sum_{wg} q(ws|r)]}$$

- What is the state of a random variable Y if a random variable X_i is observed to be in the state x_i , after forcing a random variable X_j to take the state x_i , i.e. $p(Y|x_i, do(x_i))$?
- Answering questions like the one above can be computationally hard.
- A BN is an efficient formalism to compute a posterior probability distribution from a prior probability distribution in the light of observations, hence the name.

Markov Networks: Definition

UG	Potentials assuming binary random variables	
A — B /	$\varphi(A, B, C) = (1, 1, 1, 1, 1, 1, 1, 1)$ $\varphi(B, C, D) = (2, 2, 2, 2, 2, 2, 2, 2)$ $p(A, B, C, D) = \varphi(A, B, C)\varphi(B, C, D)/Z \text{ with } Z = \sum_{a,b,c,d} \varphi(a, b, c)\varphi(b, c, d)$	

- A Markov network (MN) over X consists of
 - ightharpoonup an undirected graph (UG) G whose nodes are the elements in X, and
 - a set of non-negative functions $\varphi(K)$ over the cliques Cl(G) of G.
- A clique is a maximal complete set of nodes. The functions are called potentials.
- ► The MN represents a probabilistic model of the system, namely

$$p(X) = \frac{1}{Z} \prod_{K \in Cl(G)} \varphi(K)$$

where Z is a normalization constant, i.e.

$$Z = \sum_{x} \prod_{K \in Cl(G)} \varphi(k)$$

• Clearly, p(X) is a probability distribution.

Markov Networks: Separation

- We now show that many of the independencies in p can be read off G without numerical calculations.
- A path ρ between two nodes α and β in G is Z-open with $Z \subseteq X \setminus \{\alpha, \beta\}$ when no node in ρ is in Z.
- Let U, V and Z be three disjoint subsets of X. Then, U and V are separated given Z in G (i.e. U⊥GV|Z) when there is no Z-open path in G between a node in U and a node in V.
- ▶ The separation criterion is **sound**, i.e. if $U \perp_G V | Z$ then $U \perp_p V | Z$.
- Moreover, it is also **complete**, i.e. p may be such that $U \perp_G V | Z$ if and only if $U \perp_P V | Z$.
- Moreover, p factorizes as $p(X) = \frac{1}{Z} \prod_{K \in Cl(G)} \varphi(K)$ if and only if it satisfies all the independencies identified by the separation criterion.

Markov Networks: Separation

- ► Exercise. Prove that $A \perp_p B | C$ for the UG A C B, i.e. prove that p(A, B | C) = f(A, C)g(B, C) for some functions f and g.
- Exercise. Find the minimal set of nodes that separates a given node from the rest. This set is called the Markov blanket of the given node.

Markov Networks: Factor Graphs

- What if $\varphi(C_i) = \prod_i \phi(C_i^j)$ with $C_i^j \subseteq C_i$?
- A MN may obscure the structure of the potentials. Solution: Factor graphs.
- A factor graph over X consists of an UG G with two types of nodes: The elements in X and a set of potentials $\varphi(K)$ over subsets of X. All the edges in G are between a potential and the elements of X that are in its domain
- ▶ The factor graph represents a probabilistic model of the system, namely

$$p(X) = \frac{1}{Z} \prod_{K} \varphi(K)$$

where Z is a normalization constant, i.e.

$$Z = \sum_{x} \prod_{K} \varphi(k)$$

Factor graphs: Finer-grained parameterization of MNs.

MN	Factor graph	Factor graph
A = B = C	φ(A, B, C)	$A = \varphi(A, C)$ $A = \varphi(B, C) = C$

Markov Networks: Probabilistic Reasoning

In the first example above, what is the state of a random variable A if a random variable B is observed to be in the state b?

$$p(A|b) = \frac{\sum_{c,d} \varphi(A,b,c)\varphi(b,c,d)}{\sum_{a,c,d} \varphi(a,b,c)\varphi(b,c,d)} = \frac{\sum_{c} [\varphi(A,b,c) \sum_{d} \varphi(b,C,d)]}{\sum_{a,c} [\varphi(a,b,c) \sum_{d} \varphi(b,c,d)]}$$

- Answering questions like the one above can be computationally hard.
- ▶ A MN is an efficient formalism to answer such questions.

Intersection of Bayesian Networks and Markov Networks

- ▶ An **unshielded collider** in a DAG is a subgraph of the form $A \rightarrow C \leftarrow B$ such that A and B are not adjacent in the DAG.
- An UG is triangulated if every cycle in it contains a chord, i.e. an edge between two non-consecutive nodes in the cycle.
- Given a DAG G, there is an UG H such that I(G) = I(H) if and only if G has no unshielded colliders.
- Given an UG G, there is an DAG H such that I(G) = I(H) if and only if G is triangulated.

