Representing Data with Bases

- Introduce bases as building blocks for subspaces
- Introduce example uses of bases

- Define orthonormal bases

A subspace can be described as the span of a set of vectors.

$$S = \begin{cases} x : x = \sum_{i=1}^{m} y_i w_i, w_i \in \mathbb{R}, i=1,2,...M \end{cases}$$

= Span $\begin{cases} y_i \end{cases}$

- 1) Vi arbitrary hard computing if linear dep.
- 2) Vi linearly independent

 Basis

 3) Vi orthonormal easiest computing
 - unique relationship between x and wi in 2), 3)

Or tho normal: vi are or thogaal to each other and unit length

Vi Vi = 1, Vi Vj = 0 Vi + j

$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \underline{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \overline{V}_{S} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

basis for 2-y plane 2-D subspace in R's

$$\begin{array}{ccc}
V_1^T \underline{V}_1 &= & \underline{V}_2^T \underline{V}_2 &= \\
\underline{V}_1^T \underline{V}_1 &= & \underline{O}
\end{array}$$

for x-y plane

$$V_3 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$V_1^T V_2 = 0$$
 $V_1^T V_3 = 0$
 $V_1^T V_3 = 0$
 $V_2^T V_3 = 0$
orthonorma

Example: Modeling Depreciation

value initially

Example: Movie Ratings

Star Trek
When Harny met Solly
Ground Hoy Day

scifi carrie fisher
Tom com

Taste profiles

[1] (boses)

ti=
[-1]

tiz=
[-1]

Sfrs. rc

100 people x 4 dimensions ct vs v

of-re linked with ef-nef

Open Issues

- Choosing a good/useful basis
- Choosing dimension
- Finding basis coefficients given bases
- Finding orthonormal bases

Copyright 2019 Barry Van Veen