SINGMISE AND

BA820 – Mohannad Elhamod

Midterm Review

Start Stop Stop Continue

Please fill this out

https://forms.gle/VuHJUjtzLrrr1TNY8

Text Mining

Most Data is No Longer Structured...

What can we do with this data?

- Text classification
- Text generation
- Text summarization
- Music recommendation
- Image categorization

•

Text Mining

/ Feature

Collecting Unstructured Data

- How can we extract this data?
 - Datasets found publicly (UCI, Kaggle, <u>Common Crawl</u>, <u>Wikimedia Downloads</u>, etc.).
 - Using APIs (e.g., <u>twitter API</u>, <u>News API</u>).
 - Web scrapping (e.g., <u>BeautifulSoup</u>, <u>Selenium</u>)
 - Own private data.

Data Cleaning with Regex

- Just like structured/tabular data, we generally need to clean up the text to make it more useful.
 - Examples: case-sensitivity, punctuation, etc.
- Regex is used for finding string matches and formatting text:
 - Playground: <a href="https://www.w3schools.com/python/py
 - Cheat sheet: https://www.debuggex.com/cheatsheet/regex/python

How to Represent Text?

- Computers do not understand text…
- We need to represent text in a language they understand... numbers!
- Simple proposals (we are just brainstorming here):
 - Each sentence is represented in terms of the words it contains...
 - This is called <u>Tokenization.</u>
 - Each word is represented by a number...
 - This is called <u>Vectorization</u>.

Tokenization: Some Terminology

- **Document:** A body of text (e.g., a tweet, a pdf, an article, etc.).
- A token: The building block of a document.
 - Examples: character-level, word-level, ...
- A separator: Special tokens that split a document into tokens.
 - Examples: punctuation, spaces,
- Demo

Need for Advanced Text Pre-Processing

 Some tokens may occur too frequently in any text without contributing much to its meaning. These are called <u>stop words</u> and are generally removed.

- Other issues:
 - <u>Stemming:</u> big, bigger, biggest
 - <u>Lemmatization:</u> drive drove driven
 - <u>Homonyms:</u> bank (river or money?)
 - Synonym: Yes, sure.
- We will come back to all of this later...

Syntax vs. Semantics

- Notice that:
 - Different tokens might have the same meaning (e.g., like, enjoy)
 - The same token might have different meanings (is like something, to like something)
- So, while tokens represent syntax, we really care about meaning/semantics.
- In many cases, you can only get the meaning through <u>context</u> (i.e., the token's place with respect to other tokens.)
- We will come back to all of this later...

Text Modeling

- Once text data is in the proper representation (i.e., tokenized and vectorized), we can apply the methods we have learned so far:
 - Unsupervised ML (e.g., dimensionality reduction, clustering, etc.).
 - Supervised ML (e.g., classification, translation, etc.).

Text Vectorization

Vectorization: Text as Numbers

Typical pipeline for unsupervised text embedding

How Would You Represent a Document?

- Let's start simple. We could represent a document simply <u>as a collection of</u> tokens.
 - Vectorization by document (not token).
- This approach is called <u>Bag</u> of Words (BoW).

Sentence	hockey	fun	i	like	golf
I like golf!			1	1	1
I like hockey.	1		1	1	
Hockey and golf are fun!	1	1			1

Demo

Bag of Words (BoW)

Cons:

- Disregards word order!
- Number of features can be exhaustive.
- Frequency bias.
 - (e.g., If the word "space" appears in a children's book, it carries more significance than when
 it appears in an article about galaxies.

Pros:

Simple to implement

	1	hate	love	golf	soccer
I hate golf and love soccer	1	1	1	1	1
I hate soccer and love golf	1	1	1	1	1

Document Similarity

- How do we measure if two documents are similar?
 - We need a metric like Euclidean distance.
 - But... What if documents have different lengths?
- We need a metric that is robust to differences in document size...
 - Enter <u>Cosine Similarity</u>.

https://mlops.community

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},$$

Document Similarity

Euclidean distance vs Cosine similarity

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},$$

medium.com

Solving for Frequency Bias: TF-IDF

- Term Frequency Inverse Document Frequency
- Instead of simply counting the <u>absolute</u> number of occurrences, how about we <u>adjust in terms of token presence across</u> <u>documents</u>?

Term x within document y

 $tf_{x,y}$ = frequency of x in y df_x = number of documents containing x N = total number of documents

Solving for Frequency Bias: TF-IDF

- The more commonly a word exists across documents the less important it is!
- What happens when a term (i.e., token) appears in all documents?
- Demo

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

Context Matters...

 We calculated a score for each <u>individual</u> token (e.g., the frequency of the word in BoW).

- Have our methods captured context so far?
 - Context has so far been captured as "the collection of words that appear together in a document", regardless of order.

Can We Do Better?

 Tokens that are immediately next to each other are generally more related to each other.

Can we apply this concept at the tokenization level?

I love cookies and hate chocolate

n-grams

- An *n*-gram is a sequence of n items (i.e., tokens).
- n refers to the <u>context size</u>.
- The larger n is, the more context a token captures.

How Much Context Is Needed?

- How do small and large n values compare?
 - A large n captures more context, but it's more restrictive in terms of finding matches.
 - A small n captures less context. but a token is more likely to be matched in other documents.
- Maybe we can include both? Any draw backs?
- Demo

Meaning: The Husive Gal...

Where Does Meaning Come From?

I went to the branch and deposited some money.

I went to the bank and deposited some money.

I went to the ATM and deposited some money.

Words which frequently appear in similar contexts have similar meaning.

Lena-voita

Representing Meaning as a Vector

- So, why don't we construct vector representations such that words that appear in the same context have similar vectors.
 - embeddings = vector representation = features = latent space.
 - v_1 and v_2 are similar $\Rightarrow ||v_1 v_2|| \approx 0$
- Example from images.

Word Embeddings

- Represent each word as a vector of some pre-defined size/dimensionality.
- You can visualize these embeddings using PCA or t-SNE.
- Some interesting properties will appear:
 - Demo 1 (directionality)
 - Demo 2 (semantics)

How are such embeddings constructed?

- Collect and tokenize some training corpus.
- For each token, start with a randomly initialized vector.
- Construct a table showing which tokens co-occur and which don't.
- For words that co-occur, push the vectors towards each other.
- For words that don't, push them away from each other.
- Examples of word embeddings:
 - Word2 Vec
 - GloVe

Something is still missing...

- Well, now we have word embeddings...
 - But, how do we get sentence embeddings?!
- We need to somehow aggregate the word embeddings.
 - There are many ways to do this...
 - The most basic one is taking the average embedding.
 - Another way is to take the TF-DIF weighted averaging.
 - Or.... Using a neural network. Welcome to Deep Learning!

So, what's the big deal?

Demo (Predict the next word)

Demo

