ПЛН31

ΕΝΟΤΗΤΑ 2: ΓΝΩΣΗ

Μάθημα 2.1: Κατηγορηματική Λογική - Εισαγωγή

Δημήτρης Ψούνης

Α. Σκοπός του Μαθήματος

Β.Θεωρία

1. Συντακτικό της Κατηγορηματικής Λογικής

- 1. Σταθερές και Μεταβλητές
- 2. Συναρτήσεις και Κατηγορήματα
- 3. Ατομικές Προτάσεις και Κυριολεκτήματα
- 4. Συνθετικά
- 5. Ποσοδείκτες
- 6. Προτάσεις wff

2. Στρατηγικές Σύνταξης

- 1. Προτεραιότητες τελεστών
- 2. Εμβέλεια Ποσοδεικτών
- 3. Σταθερές
- 4. Κατηγορήματα 1 ορίσματος
- 5. Κατηγορήματα 2 ορισμάτων
- 6. Γενικές Συστάσεις για την Σύνταξη Προτάσεων
- 7. Διπλοί Ποσοδείκτες

Γ.Ασκήσεις

Α. Σκοπός του Μαθήματος

Επίπεδο Α

Άριστη γνώση της μεθοδολογίας γραφής προτάσεων Κατηγορηματικής Λογικής

Επίπεδο Β

Συντακτικό Κατηγορηματικής Λογικής και καλοσχηματισμένες προτάσεις κατηγορηματικής λογικής (wff)

Επίπεδο Γ

> (-)

Β. Θεωρία0. Εισαγωγή

Με τον όρο: ΓΝΩΣΗ ενοποιούμε όλες τις τεχνολογίες που έχουν αναπτυχθεί έτσι ώστε:

- Να αποθηκεύεται με κάποιον τρόπο στον υπολογιστή η γνώση ενός εμπειρογνώμονα
- Να εξάγεται από αυτήν νέα γνώση συνδυάζοντας υφιστάμενη γνώση με κάποια διαδικασία συμπερασμού

Στα πλαίσια της ΠΛΗ31 θα μελετήσουμε:

- Την Κατηγορηματική Λογική (και την γλώσσα Prolog).
- Τους Κανόνες Παραγωγής.
- Τα Πλαίσια.

Η Κατηγορηματική Λογική ως τεχνολογία γνώσης θα μελετηθεί σε 3 στάδια:

- Θα αποτυπώνουμε γνώση με κατηγορηματική λογική (Μάθημα 2.1)
- Θα μετατρέπουμε τις προτάσεις ΚΛ σε Κανονική Συζευκτική Μορφή (Μάθημα 2.2)
- Θα χρησιμοποιούμε την Αναγωγή μέσω Αντίκρουσης Αντίφασης ως κανόνα συμπερασμού (Μάθημα 2.3)

- 1. Συντακτικό της Κατηγορηματικής Λογικής
- 1. Σταθερές και Μεταβλητές
 - > Μία <u>σταθερά</u> απεικονίζει οποιοδήποτε αντικείμενο του πραγματικού κόσμου:
 - > Παραδείγματα: tom, 3.14, ποτάμι, Α κ.λπ.
 - > Αντίθετα μια <u>μεταβλητή</u> μπορεί να πάρει ως τιμή οποιαδήποτε σταθερά
 - Παραδείγματα: x,y,z κ.λπ.
 - Θεωρούμε ότι στον κόσμο, κάθε διακριτό αντικείμενο μπορεί να αποτελέσει και μια τιμή την οποία μπορεί να λάβει μία μεταβλητή

1. Συντακτικό της Κατηγορηματικής Λογικής

2. Συναρτήσεις και Κατηγορήματα

- Μία συνάρτηση παίρνει κάποια ορίσματα και επιστρέφει μία τιμή.
 - > Παραδείγματα: fatherof(tom), abs(x) κ.λπ.
- Αντίθετα ένα κατηγόρημα δέχεται κάποια ορίσματα και επιστρέφει true ή false
 - Παραδείγματα: father(tom,bob), greater(4,5) κ.λπ.
- Θα συμβολίζουμε συχνά π.χ. με father/2 και θα εννοουμε ότι τα ορίσματα του father είναι 2. Το 2 θα λέγεται βαθμός του κατηγορήματος father
- > ΣΥΝΤΑΚΤΙΚΟ: Το ορίσματα μιας συνάρτησης ή ενός κατηγορήματος μπορεί να είναι σταθερές, μεταβλητές ή ακόμη και συναρτήσεις.

- 1. Συντακτικό της Κατηγορηματικής Λογικής
- 3. Ατομικές Προτάσεις και Κυριολεκτήματα
 - Ατομική πρόταση λέγονται οι σωστά συνταχθείσες προτάσεις που χρησιμοποιούν μόνο ένα κατηγόρημα.
 - Τα παραδείγματα σε κατηγορήματα που είδαμε προηγούμενα είναι ατομικές προτάσεις.
 - > Το NOT στην κατηγορηματική λογική θα το συμβολίζουμε με ~ ή με ¬.
 - Η πρόταση ~φ όπου φ μία ατομική πρόταση θα:
 - Eίναι true αν η πρόταση φ είναι false
 - > Eίναι false αν η πρόταση φ είναι true
 - και θα λέμε ότι είναι άρνηση ατομικής πρότασης
 - Οι ατομικές προτάσεις μαζί με τις μη ατομικές προτάσεις ονομάζονται κυριολεκτήματα.

1. Συντακτικό της Κατηγορηματικής Λογικής

4. Συνδετικά

- Τα συνδετικά είναι οι σύνδεσμοι της προτασιακής λογικής NOT, OR, AND, η συνεπαγωγή και η ισοδυναμία.
- > Συνδέουν προτάσεις προκειμένου να κατασκευάσουν ακόμη πιο περίπλοκες παραστάσεις.
 - Ισχύει ο γνωστός ακόλουθος αληθοπίνακας των συνδέσμων:

φ	ψ	~φ	φνψ	φ∧ψ	φ⇒ψ	φ⇔ψ
T	T	F	T	T	T	T
T	F	F	T	F	F	F
F	T	T	T	F	T	F
F	F	T	F	F	T	T

- 1. Συντακτικό της Κατηγορηματικής Λογικής
- 5. Ποσοδείκτες (ο ποσοδείκτης «για κάθε»)
 - ➤ Ο ποσοδείκτης «για κάθε» συντάσσεται ως εξής:∀x[πρόταση] ή ∀x πρόταση
 - Όπου x είναι μεταβλητή και πρόταση είναι οποιαδήποτε παράσταση κατηγορηματικής λογικής επιστρέφει αληθές ή ψευδές.
 - (Αν δεν υπάρχει αγκύλη εννοείται ότι η προτεραιότητα είναι μέχρι το τέλος της πρότασης)
 - > Μία πρόταση που ξεκινά με το «για κάθε»:
 - > Είναι αληθής αν η πρόταση είναι αληθής για κάθε τιμή που παίρνει το χ
 - Είναι ψευδής αν η πρόταση είναι ψευδής έστω για μία τιμή που μπορεί να πάρει το χ

- 1. Συντακτικό της Κατηγορηματικής Λογικής
- 5. Ποσοδείκτες (ο ποσοδείκτης «υπάρχει»)
 - ➤ Ο ποσοδείκτης «υπάρχει» συντάσσεται ως εξής:∃x[πρόταση] ή ∃x πρόταση
 - Όπου x είναι μεταβλητή και πρόταση είναι οποιαδήποτε παράσταση κατηγορηματικής λογικής επιστρέφει αληθές ή ψευδές.
 - (Αν δεν υπάρχει αγκύλη εννοείται ότι η προτεραιότητα είναι μέχρι το τέλος της πρότασης)
 - Μία πρόταση που ξεκινά με το «υπάρχει»:
 - Είναι αληθής αν η πρόταση είναι αληθής έστω για μία τιμή που μπορεί να πάρει το χ
 - > Είναι ψευδής αν η πρόταση είναι ψευδής για κάθε τιμή που παίρνει το χ

- 1. Συντακτικό της Κατηγορηματικής Λογικής
- 6. Προτάσεις wff
 - Μία πρόταση είναι καλοσχηματισμένη (<u>well formed formula-wff</u>), δηλαδή συντακτικά ορθή αν:
 - > Είναι ατομική πρόταση (δηλαδή σκέτο κατηγόρημα)
 - Είναι της μορφής: ~(φ), ∀x[φ], ∃x[φ] όπου φ είναι wff (χρήση ποσοδεικτών)
 - Είναι της μορφής: φ∧ψ,φ∨ψ,φ⇒ψ, φ⇔ψ όπου φ,ψ είναι wff.

www.psounis.gr

- 2. Στρατηγικές Σύνταξης
- 1. Προτεραιότητα Τελεστών
 - Σε μία πρόταση που δεν έχει παρενθετοποιήση ορίζεται ότι:
 - Μεγαλύτερη προτεραιότητα έχει το ~
 - ➤ Αμέσως μετά οι ποσοδείκτες:∃,∀
 - Αμέσως μετά τα συνθετικά ∨,∧
 - ➤ Έπονται τα συνθετικά: ⇒,⇔

- 2. Στρατηγικές Σύνταξης
- 2. Εμβέλεια Ποσοδεικτών
 - Κάθε ποσοδείκτης έχει ένα πεδίο εφαρμογής ή εμβέλεια (δηλαδή προσπαθούμε να εντοπίσουμε σε ποιο μέρος της πρότασης εφαρμόζεται).
 - Αν έχουμε παρενθεση αμέσως μετά τον ποσοδείκτη, τότε το πεδίο εφαρμογής του είναι η παρένθεση
 - Αν δεν έχουμε παρένθεση τότε η εμβέλεια του ποσοδείκτη ξεκινά αμέσως μετά τον ποσοδείκτη και φτάνει μέχρι το τέλος της πρότασης
 - Μία μεταβλητή:
 - Αν είναι στο πεδίο εφαρμογής ενός ποσοδείκτη θα λέμε ότι είναι δεσμευμένη μεταβλητή.
 - Αν δεν είναι στο πεδίο εφαρμογής του ποσοδείκτη θα λέμε ότι είναι ελεύθερη μεταβλητη.
 - > Σημείωση: Θεωρείται καλή πρακτική να μην έχουμε ελεύθερες μεταβλητές

- 2. Στρατηγικές Σύνταξης
- 3. Σταθερές

Μεθοδολογία 1: Σταθερές

- Με σταθερές αναπαριστούμε συνήθως κύρια ονόματα.
- Επίσης αναπαριστούμε ένα συγκεκριμένο αντικείμενο, ή μια έννοια.
- Θα συναντήσουμε τις σταθερές σχεδόν πάντα ως ορίσματα σε κατηγόρημα

- γιατρός(Κώστας)
 - Μετάφραση: Ο Κώστας είναι γιατρός
- δελφίνι(Γουίλι)
 - Μετάφραση: Ο Γουίλι είναι δελφίνι

- 2. Στρατηγικές Σύνταξης
- 4. Κατηγορήματα ενός ορίσματος

Μεθοδολογία 2: Κατηγορήματα ενός ορίσματος

- Απεικονίζουν ιδιότητα ενός αντικειμένου
- Η αποτύπωση: κατηγόρημα(όρισμα)
 - Συνήθως διαβάζεται: «Όρισμα είναι Κατηγόρημα»
- Το κατηγόρημα το γράφουμε πάντα στο 1° ενικό πρόσωπο.

- τροφή(κοτόπουλο)
 - Μετάφραση: Το κοτόπουλο είναι τροφή
- μηχανικός(Γιάννης)
 - Μετάφραση: Ο Γιάννης είναι μηχανικός

- 2. Στρατηγικές Σύνταξης
- 5. Κατηγορήματα δύο ορισμάτων

Μεθοδολογία 3: Κατηγορήματα δύο ορισμάτων

- Απεικονίζουν συσχέτιση δύο αντικειμένων
- Συνήθως αποτυπώνουν ρήματα που έχουν υποκείμενο και αντικείμενο
- Η αποτύπωση: Κατηγόρημα(1° όρισμα, 2° όρισμα)
 - Συνήθως διαβάζεται: «1° όρισμα κατηγόρημα 2° όρισμα»
- Το κατηγόρημα το γράφουμε πάντα στο 1° ενικό πρόσωπο.

- παρακολουθεί (Γεωργία, ΠΛΗ31)
 - Μετάφραση: Η Γεωργία παρακολουθεί την ΠΛΗ31
- συμπαθεί(Μιχάλης, Μαρία)
 - Μετάφραση: Ο Μιχάλης συμπαθεί την Μαρία

- 2. Στρατηγικές Σύνταξης
- 6. Γενικές Συστάσεις για ορθή σύνταξη προτάσεων

Μεθοδολογία 4: Γενικές συστάσεις για ορθή σύνταξη προτάσεων

- Ξεκινάω από τις απλούστερες προτάσεις για να προκύψουν τα απλά κατηγορήματα
- Όταν παίρνουμε μια απόφαση για το πλήθος των ορισμάτων ενός κατηγορήματος,
 την σεβόμαστε σε όλες τις υπόλοιπες προτάσεις.
- Το για κάθε συντάσσεται συνήθως με την συνεπαγωγή και το υπάρχει με το και:

$$\forall x[(...) \rightarrow (...)]$$
$$\exists x[(...) \land (...)]$$

 Αν σε μία πρόταση δεν είμαστε σίγουροι αν θέλει το κάθε ή το υπάρχει, προτιμάμε το για κάθε.

- 2. Στρατηγικές Σύνταξης
- 6. Διπλοί Ποσοδείκτες

Μεθοδολογία 5: Διπλοί ποσοδείκτες

- «Κάθε στοιχείο έχει τη σχέση με τουλάχιστον ένα στοιχείο»: $\forall x[(...) \rightarrow \exists y(...)]$
- «Υπάρχει στοιχείο που έχει τη σχέση με όλα τα στοιχεία»: $\exists x[(...) \land \forall y(...)]$

- Υπάρχει φοιτητής που παρακολουθεί όλα τα μαθήματα
 - $\exists x [\varphi o \iota \tau \eta \tau \eta \varsigma(x) \land \forall y (\mu \alpha \theta \eta \mu \alpha(y) \rightarrow \pi \alpha \rho \alpha \kappa o \lambda o \upsilon \theta \varepsilon \iota(x, y))]$
- Κάθε φοιτητής παρακολουθεί τουλάχιστον ένα μάθημα
 - $\forall x [\varphi o \iota \tau \eta \tau \eta \varsigma(x) \rightarrow \exists y (\mu \alpha \theta \eta \mu \alpha(y) \land \pi \alpha \rho \alpha \kappa o \lambda o \upsilon \theta \varepsilon \iota(x, y))]$


```
Ποιές από τις ακόλουθες εκφράσεις είναι καλώς ορισμένες (wff); (1) \forall x ( Student (x) \rightarrow \exists y (Student (y) \land Loves(x,y))) (2) \forall x ( Student (x) \leftrightarrow \exists y (Student (y) \land \sim (\sim (Loves(x,y)))) (3) \forall x ( Student (x) \rightarrow \exists y (Student (y) \land Loves(x,y))) (4) \forall x (Dodecahedron (d) \rightarrow (Dodecahedron (c) \rightarrow (Small (b) \rightarrow Cube (a)))) (5) (Dodecahedron (d) \rightarrow \sim Dodecahedron (c) \rightarrow (Small (b) \rightarrow Cube(\sim a)))
```


Μετατρέψτε τις ακόλουθες προτάσεις φυσικής γλώσσας σε προτάσεις κατηγορηματικής λογικής:

- (1) Ο Κώστας είναι μηχανικός
- (2) Κάθε ζώο τρώει όλα τα μικρότερα απ' αυτό ζώα
- (3) Κάθε παιδί αγαπά την μητέρα του

Χρησιμοποιήστε τα κατηγορήματα μηχανικός/1, ζώο/1, αγαπα/2, τρώει/2, παιδί/1, μητέρα/2

Δίνονται τα κατηγορήματα: Συνδετήρας (x), Κουτί (x), Μέταλλο (x), Αποθηκεύεται_Σε (x, y), Φτιάχνεται_Από (x, y).

Εκφράστε σε κατηγορηματική λογική τις παρακάτω προτάσεις:

- 1. Μερικοί συνδετήρες αποθηκεύονται σε κουτιά.
- 2. Όλοι οι συνδετήρες φτιάχνονται από μέταλλο.
- 3. Μερικοί συνδετήρες αποθηκεύονται σε μεταλλικά κουτιά.

Δίνονται οι παρακάτω προτάσεις σε φυσική γλώσσα:

 Π_1 : Ο Αχιλλέας είναι κλέφτης

Π₂: Στη Λάρα αρέσει το φαγητό

Π₃: Στη Λάρα αρέσει το κρασί

Π₄: Στον Αχιλλέα αρέσουν τα χρήματα

Π₅: Στον Αχιλλέα αρέσει ο χ αν στον χ αρέσει το κρασί

 Π_6 : Ο χ μπορεί να κλέψει το ψ αν ο χ είναι κλέφτης και στον χ αρέσει το ψ .

Να διατυπωθούν οι παραπάνω προτάσεις φυσικής γλώσσας σε προτάσεις Κατηγορηματικής Λογικής.

Σημείωση: Χρησιμοποιείστε τα κατηγορήματα κλέφτης/1, αρέσει/2 και μπορεί_να_κλέψει/2