1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

1. Data type of columns in a table

custo	mers	Q QUERY •	* ! S	НА
SCHEMA	DETAILS	PREVIE	EW L	INE
∓ Filte	er Enter propert	y name or valu	ıe	
	Field name		Туре	
	customer_id		STRING	
	customer_uniqu	e_id	STRING	
	customer_zip_co	de_prefix	INTEGER	
	customer_city		STRING	
	customer_state		STRING	

⊞	geolo	cation	Q QUERY •	+ ⊈ SH₁
s	СНЕМА	DETAILS	PREVIEW	LINE
	∓ Filte	er Enter property	name or value	
		Field name		Туре
		geolocation_zip_c	ode_prefix	INTEGER
		geolocation_lat		FLOAT
		geolocation_lng		FLOAT
		geolocation_city		STRING
		geolocation_state	!	STRING

⊞ orde	r_items	QUERY 🕶
SCHEMA	DETAILS	PREVIEW
∓ Fil	ter Enter property nam	ne or value
	Field name	Туре
	order_id	STRING
	order_item_id	INTEGER
	product_id	STRING
	seller_id	STRING
	shipping_limit_date	TIMESTAMP
	price	FLOAT
	freight_value	FLOAT

■ order	_reviews	Q QUERY	+		
SCHEMA	DETAILS	PREVIEW	LINE		
Filter Enter property name or value					
	Field name	T	уре		
	review_id	S	TRING		
	order_id	S	TRING		
	review_score		NTEGER		
	review_comment_tit	l <u>e</u> S	TRING		
	review_creation_date	<u>e</u> T	IMESTAMP		
	review_answer_time	stamp T	IMESTAMP		

▦	orders	Q QUE	RY 🕶	+≗ SI	HARE	(
,	SCHEMA	DETAILS	PREV	IEW	LINE	AGE
	∓ Filter	r Enter property na	ame or va	lue		
	F	rield name			Туре	
		order_id			STRING	
		customer_id			STRING	
		order_status			STRING	
		order_purchase_tim	estamp		TIMESTA	MP
		order_approved_at			TIMESTA	MP
	<u> </u>	order_delivered_carrier_date			TIMESTA	MP
	<u> </u>	order_delivered_cus	tomer_da	<u>te</u>	TIMESTA	MP
		order_estimated_de	livery_dat	<u>e</u>	TIMESTA	MP

⊞ pay	ments	Q qu	IERY ▼	+2
SCHEM	A DETA	AILS	PREVIEW	
=	Filter Enter pr	operty nam	e or value	
	Field name		Type	
	order_id		STRIN	lG
	payment_s	equential	INTEG	BER
	payment_ty	ре	STRIN	IG.
	payment_in	stallments	INTEG	BER
	payment_va	alue	FLOA	Т

produ	ucts Q qu	JERY ▼	+⊈ SHAR
SCHEMA	DETAILS	PREVIEW	LIN
∓ Filt	er Enter property nar	me or value	
	Field name	Т	уре
	product_id	S	STRING
	product_category	S	STRING
	product_name_length	<u>ı</u> II	NTEGER
	product_description_	length II	NTEGER
	product_photos_qty	II	NTEGER
	product_weight_g	II	NTEGER
	product_length_cm	II	NTEGER
	product_height_cm	II	NTEGER
	product_width_cm	II	NTEGER

■	selle	ers Q query	▼ +2 SH/
	SCHEMA	DETAILS	PREVIEW
	∓ Fi	Iter Enter property nam	e or value
		Field name	Туре
		seller_id	STRING
		seller_zip_code_prefix	INTEGER
		seller_city	STRING
		seller_state	STRING

2. Time period for which the data is given

Query:

Result:

Row	first_order //	last_order
1	2016-09-04 21:15:19 UTC	2018-10-17 17:30:18 UTC

The Time period for which the data is given is between **2016-09-04 21:15:19 UTC** and **2018-10-17 17:30:18 UTC**

3. Cities and States of customers ordered during the given period

Query:

Result:

Row	geolocation_city	geolocation_state
1	aracaju	SE
2	riachuelo	SE
3	nossa senhora do socorro	SE
4	barra dos coqueiros	SE
5	itaporanga d'ajuda	SE
6	sao cristovao	SE
7	são cristóvão	SE
8	santo amaro das brotas	SE
9	pirambu	SE
10	umbauba	SE

2. In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Query:

Result:

Row	Year	//	No_of_orders
1		2016	329
2		2017	45101
3		2018	54011

Chart:

As you can see the sales for each year are increasing, so it is apparent that there is a growing trend in e-commerce in Brazil.

Query:

Result:

Row	Year //	Month	No_of_orders
1	2016	9	4
2	2016	10	324
3	2016	12	1
4	2017	1	800
5	2017	2	1780
6	2017	3	2682
7	2017	4	2404
8	2017	5	3700
9	2017	6	3245
10	2017	7	4026

Chart:

Actionable Insights:

As you can see the sales for each year are increasing, so it is apparent that there is a growing trend in e-commerce in Brazil. Sales have increased exponentially during 2016-2017 from 329 to 45101 and sales growth was slow during 2017-2018.

The monthly chart indicates the same, Sales gradually grew and peaked at the end of 2017 (November) and decreased the next month. then again increased by a lot in 2018(January). Seasonality peaks are during the month of November and January. From there the sales were on a downtrend.

The yearly sales number is on an uptrend, but the monthly sales number gradually increased till the end of 2017 and from there Sales are on a steady decline. The sales dropped by a lot on September 2018

Recommendations:

Even though there is a growing trend in e-commerce in Brazil, Sales growth slowed down during 2017-2018 compared to 2016-2017. The monthly sales chart shows the peak seasons trends during the month of November and January and also, during the months when sales are low. We can provide discounts/offers to customers during the non-peak season to attract customers.

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
select
        case when extract(time from o.order_purchase_timestamp) between '05:00:00' and
'05:59:59' then 'Dawn'
       when extract(time from o.order purchase timestamp) between '06:00:00' and
'11:59:59' then 'Morning'
       when extract(time from o.order_purchase_timestamp) between '12:00:00' and
'17:59:59' then 'Afternoon'
       when extract(time from o.order_purchase_timestamp) between '18:00:00' and
'23:59:59' or extract(time from o.order_purchase_timestamp) between '00:00:00' and
'04:59:59' then 'Night' end as time_day,
       count(order id) as No of orders
from `sql_project.customers` c
inner join `sql_project.orders` o
on o.customer id = c.customer id
group by time_day
order by 2 desc
```

Row	time_day ▼	No_of_orders ▼
1	Night	38652
2	Afternoon	38361
3	Morning	22240
4	Dawn	188

Actionable Insights:

Brazilian customers tend to buy more during the **Night** which is between the time period of **18:00:00** to **23:59:59** and also between **00:00:00** to **04:59:59** with **38652** orders. Dawn is when customer purchases are low.

Recommendations:

We can provide offers or discounts to customers who purchase during dawn so that customer purchases increase during dawn too.

3. Evolution of E-commerce orders in the Brazil region:

1. Get month on month orders by states

```
on o.customer_id = c.customer_id
inner join `sql_project.geolocation` g
on c.customer_zip_code_prefix = g.geolocation_zip_code_prefix
group by 1,2,3
order by 1,2,3
```

Row	Year	Month	State //	No_of_orders
1	2016	9	RR	65
2	2016	9	RS	103
3	2016	9	SP	492
4	2016	10	AL	52
5	2016	10	BA	292
6	2016	10	CE	477
7	2016	10	DF	305
8	2016	10	ES	271
9	2016	10	GO	367
10	2016	10	MA	353

2. Distribution of customers across the states in Brazil

Row	geolocation_state	No_of_customer
1	SP	41731
2	RJ	12839
3	MG	11624
4	RS	5473
5	PR	5034
6	SC	3651
7	BA	3371
8	ES	2027
9	GO	2011
10	DF	1974

Chart:

Distribution of customers across the states in Brazil

Actionable Insights:

Sau Paulo(SP) has the highest number of customers, all the other states have less than 13000 customers

Recommendations:

We can offer discounts and incentives for only new customers in the states with fewer customers to attract more customers

4. Impact on Economy: Analyze the money movement by ecommerce by looking at order prices, freight and others.

1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

```
Query:
```

```
SELECT

ROUND(((ty_sales - ly_sales) / ly_sales) * 100) AS Percentage_increase

FROM (

SELECT

SUM(CASE WHEN Year = 2018 AND Month BETWEEN 1 AND 8 THEN payment_value END) AS ty_sales,

SUM(CASE WHEN Year = 2017 AND Month BETWEEN 1 AND 8 THEN payment_value END) AS ly_sales

FROM (

SELECT

EXTRACT(MONTH FROM o.order_purchase_timestamp) AS Month,

EXTRACT(YEAR FROM o.order_purchase_timestamp) AS Year,

p.payment_value

FROM

`sql_project.payments` p

INNER JOIN `sql_project.orders` o ON o.order_id = p.order_id

)

AS subquery_alias;
```

Row	Percentage_increase
1	137.0

Actionable Insights:

The % increase in cost of orders from 2017 to 2018 including months between Jan to Aug only is 137%

Recommendations:

By examining the percentage increase in the cost of orders across different product categories, you can identify which categories are driving higher profit margins. Focus on promoting and expanding your offerings within these profitable categories to maximize profitability.

2. Mean & Sum of price and freight value by customer state

Row	customer_state ▼	Mean_price ▼	Sum_price ▼	Mean_freight ▼	Sum_freight ▼
1	AC	173.73	15982.95	40.07	3686.75
2	AL	180.89	80314.81	35.84	15914.59
3	AM	135.5	22356.84	33.21	5478.89
4	AP	164.32	13474.3	34.01	2788.5
5	BA	134.6	511349.99	26.36	100156.68
6	CE	153.76	227254.71	32.71	48351.59
7	DF	125.77	302603.94	21.04	50625.5
8	ES	121.91	275037.31	22.06	49764.6
9	GO	126.27	294591.95	22.77	53114.98
10	MA	145.2	119648.22	38.26	31523.77

5. Analysis on sales, freight and delivery time

1. Calculate days between purchasing, delivering and estimated delivery

Row	order_id ▼	diff_P_D ▼	diff_P_ED ▼	diff_ED_D ▼
1	1950d777989f6a877539f5379	30	17	-12
2	2c45c33d2f9cb8ff8b1c86cc28	30	59	28
3	65d1e226dfaeb8cdc42f66542	35	52	16
4	635c894d068ac37e6e03dc54e	30	32	1
5	3b97562c3aee8bdedcb5c2e45	32	33	0
6	68f47f50f04c4cb6774570cfde	29	31	1
7	276e9ec344d3bf029ff83a161c	43	39	-4
8	54e1a3c2b97fb0809da548a59	40	36	-4
9	fd04fa4105ee8045f6a0139ca5	37	35	-1
10	302bb8109d097a9fc6e9cefc5	33	28	-5

Actionable Insights:

Positive values in difference between estimated delivery and actual delivery (diff_ED_D) denote that the order was delivered before the estimated time. negative value denotes that the order was delivered after the estimated delivery time. If the value is zero it denotes that the order was delivered on the estimated delivery date.

Recommendations:

We can filter out the order_id where diff_ED_D is negative to find the orders where delivery was late and see if there are any supply chain issues and fix it

2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

- time_to_delivery = order_delivered_customer_date-order_purchase_timestamp
- diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

Query:

Result:

Row	order_id ▼	time_to_delivery 🔻	diff_estimated_delivery
1	1950d777989f6a877539f5379	30	-12
2	2c45c33d2f9cb8ff8b1c86cc28	30	28
3	65d1e226dfaeb8cdc42f66542	35	16
4	635c894d068ac37e6e03dc54e	30	1
5	3b97562c3aee8bdedcb5c2e45	32	0
6	68f47f50f04c4cb6774570cfde	29	1
7	276e9ec344d3bf029ff83a161c	43	-4
8	54e1a3c2b97fb0809da548a59	40	-4
9	fd04fa4105ee8045f6a0139ca5	37	-1
10	302bb8109d097a9fc6e9cefc5	33	-5

Actionable Insights:

diff_estimated_delivery indicates if a delivery is made before or after the estimated delivery date. A positive value denotes delivery before the estimated delivery and a negative value denotes delivery after the estimated delivery. If the value is zero it denotes that the order was delivered on the estimated delivery date.

Recommendations:

We can filter out the order_id where diff_estimated_delivery is negative to find the orders where delivery was late and find out what is the problem and fix it.

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

Query:

Result:

				1'00 1' 1 1 1 1'
Row	customer_state ▼	mean_freight_value	mean_time_to_delivery	mean_diff_estimated_delivery
1	AC	40.05	20.33	20.01
2	AL	35.87	23.99	7.98
3	AM	33.31	25.96	18.98
4	AP	34.16	27.75	17.44
5	BA	26.49	18.77	10.12
6	CE	32.73	20.54	10.26
7	DF	21.07	12.5	11.27
8	ES	22.03	15.19	9.77
9	G0	22.56	14.95	11.37
10	MA	38.49	21.2	9.11

Actionable Insights:

For each state in Brazil we have obtained the follows:

mean_freight_value is the average amount paid to a carrier company for the transportation of goods from the point of origin to an agreed location for each state in Brazil

mean_time_to_delivery is the average days taken to deliver an item from the time of the purchase to delivery for each state in Brazil

mean_diff_estimated_delivery is the average date difference from the estimated delivery to the actual delivery date for each state in Brazil

Recommendations:

We can filter out states where mean_freight_value is high and try to reduce the cost so that the profit is increased

We can filter out states where mean_time_to_delivery is high and try to reduce the wait time for the customer. More customers will place orders if delivery is quick.

We can filter out states where mean_diff_estimated_delivery is high and try to reduce it by delivering the orders closer to the estimated delivery date.

4. Sort the data to get the following:

5.Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Highest

Row	customer_state ▼	Top_5_highest_fvalue 🔻
1	RR	42.98
2	PB	42.72
3	RO	41.07
4	AC	40.07
5	PI	39.15

Actionable Insights:

Top 5 states with highest freight value are RR, PB,RO,AC and PI

Recommendations:

We can find out why the average freight value is high for the state and find ways to reduce it which will increase the profit.

Lowest

Row	customer_state ▼	Top_5_lowest_fvalue
1	SP	15.15
2	PR	20.53
3	MG	20.63
4	RJ	20.96
5	DF	21.04

Actionable Insights:

Top 5 states with the lowest freight values are SP, PR, MG, RJ and DF

Recommendations:

We can find ways to reduce the freight value even more if possible as it will help increase the profit.

6. Top 5 states with highest/lowest average time to delivery

Highest

Row	customer_state	· //	Top_5_Avg_time_to_delivery_
1	RR		28.98
2	AP		26.73
3	AM		25.99
4	AL		24.04
5	PA		23.32

Actionable Insights:

Top 5 states with the highest average time to delivery are RR, AP, AM, AL and PA

Recommendations:

We can find ways to deliver orders faster in these states so that customers will make more purchases

Lowest

Row	customer_state ▼	Top_5_lowest_Avg_time_to_delivery
1	SP	8.3
2	PR	11.53
3	MG	11.54
4	DF	12.51
5	SC	14.48

Actionable Insights:

Top 5 lowest average time to delivery are SP, PR, MG, DF and SC

Recommendations:

We can find ways to deliver orders even fasters in these states which will attract customers to make more purchases

7. Top 5 states where delivery is really fast/ not so fast compared to estimated date Top 5 states where delivery is really fast

Row	customer_state	▼	fast_delivery	• //
1	AL			7.98
2	MA			9.11
3	SE			9.17
4	ES			9.77
5	BA		1	0.12

Actionable Insights:

Top 5 states where delivery is fast compared to the estimated delivery are Al, MA, SE, ES and BA

Recommendations:

Delivery is faster in these states so we can leverage this faster delivery in ads to attract more customers

Top 5 states where delivery is not so fast

Row	customer_state ▼	slow_delivery ▼
1	AC	20.01
2	RO	19.08
3	AM	18.98
4	AP	17.44
5	RR	17.43

Actionable Insights:

Top 5 states where delivery is slow compared to estimated delivery are AC, RO, AM, AP and RR

Recommendations:

Delivery is slow in these states, we can find ways to deliver faster in these states which will help retain customers and also bring in new customers

6. Payment type analysis:

1. Month over Month count of orders for different payment types

Row	Year ▼	month ▼	payment_type ▼	No_of_orders ▼
1	2016	9	credit_card	3
2	2016	10	credit_card	254
3	2016	10	UPI	63
4	2016	10	voucher	23
5	2016	10	debit_card	2
6	2016	12	credit_card	1
7	2017	1	credit_card	583
8	2017	1	UPI	197
9	2017	1	voucher	61
10	2017	1	debit_card	9

Actionable Insights:

Over every month the number of orders placed with each payment type such as credit card, debit card, voucher and UPI.

Recommendations:

We can leverage payment information to set up subscribing and membership programs which can provide recurring revenue and improve customer retention, resulting in increased profitability over time. We can also run targeted marketing campaigns for selected payment types to increase. This can improve customer engagement, increase repeat purchases, and drive higher sales volumes.

2. Count of orders based on the no. of payment installments

```
select payment_installments, count(order_id) as No_of_orders
from `sql_project.payments`
group by 1
```

Row	payment_installments	No_of_orders ▼
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644

Actionable Insights:

Total number of orders for each payment instalment. Lot of orders placed with one time payment

Recommendations:

We can promote instalment payment options to customers. They will have the flexibility to spread their payments over multiple instalments, thereby reducing the immediate financial burden. Display instalment pricing prominently on product pages and during the checkout process to encourage customers to choose this payment method.