Kalman filter tuning and consistency – Motion and measurement models

Sensor fusion & nonlinear filtering

Lars Hammarstrand

TUNING MOTION AND MEASUREMENT NOISE COVARIANCES

TUNING MOTION AND MEASUREMENT NOISE COVARIANCES

- A key aspect in tuning is to select the SNR ||Q||/||R||:
 - If SNR is large ⇒ a quickly adapting filter that relies more on new data than predictions.
 - If SNR is low ⇒ the data is noise and we rely more on the predictions, the filter thus adapts slowly to data.
- The sensor noise, **R**, is often described by the manufacturer and/or possible to collect data from which it can be estimated.
- The motion noise, **Q**, is then selected by tuning.
- Unless you know the state sequence, study properties of the innovation to guide the tuning of the filter.

SELF-ASSESSMENT

If we design our filter such that the motion noise $\|\mathbf{Q}\|$ is small and the measurement noise $\|\mathbf{R}\|$ is large we get:

- a filter that adapts quickly to changes.
- a filter that adapts slowly to changes.
- we cannot select $\|\mathbf{Q}\|$ and $\|\mathbf{R}\|$ ourselves since they depend on the real system.

Check all that apply.