Step 5: Performance Evaluation

- Load Test Data
 - Load the original dataset
 - Apply the same preprocessing pipeline used in training.ipynb
 - Extract the 20% test set (the same as used during training)
 - Load Trained Models & Pipeline
- Load the saved classification model
- Load the saved regression model
- Load the preprocessing pipeline

Evaluate Classification Model

- Generate predictions on the test set. Compute:
 - Accuracy
 - Precision, Recall, F1-score
 - Confusion Matrix
 - ROC-AUC Curve

Evaluate Regression Model

- Generate predictions on the test set. Compute:
 - R² (Coefficient of Determination)
 - MAE (Mean Absolute Error)
 - MSE (Mean Squared Error)
 - RMSE (Root Mean Squared Error)

Task 6. After completing all steps above, provide the following:

- Compare models and justify which one is better for each task.
- At least one visualizations per classification tasks (e.g., confusion matrix, ROC curve, precision-recall curves).

```
In [1]: import pandas as pd
import joblib
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_e
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from utility import DataCleaner

df = pd.read_csv('Spotify_Song_Attributes.csv')
```

In [2]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10080 entries, 0 to 10079 Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype				
0	trackName	10080 non-null	object				
1	artistName	10080 non-null	object				
2	msPlayed	10080 non-null	int64				
3	genre	8580 non-null	object				
4	danceability	9530 non-null	float64				
5	energy	9530 non-null	float64				
6	key	9530 non-null	float64				
7	loudness	9530 non-null	float64				
8	mode	9530 non-null	float64				
9	speechiness	9530 non-null	float64				
10	acousticness	9530 non-null	float64				
11	instrumentalness	9530 non-null	float64				
12	liveness	9530 non-null	float64				
13	valence	9530 non-null	float64				
14	tempo	9530 non-null	float64				
15	type	9530 non-null	object				
16	id	9530 non-null	object				
17	uri	9530 non-null	object				
18	track_href	9530 non-null	object				
19	analysis_url	9530 non-null	object				
20	duration_ms	9530 non-null	float64				
21	time_signature	9530 non-null	float64				
dtypes: float64(13), int64(1), object(8)							
momory usaga. 1 7, MP							

memory usage: 1.7+ MB

```
In [3]: data_cleaning_pipeline=joblib.load('cleaning_pipeline.pkl')
```

```
In [4]: df = data_cleaning_pipeline.transform(df)
```

/Users/chaotzuchieh/Documents/GitHub/project-1-TzuChieh_Chao/venv/lib/pyth on3.12/site-packages/sklearn/pipeline.py:62: FutureWarning: This Pipeline instance is not fitted yet. Call 'fit' with appropriate arguments before u sing other methods such as transform, predict, etc. This will raise an err or in 1.8 instead of the current warning. warnings.warn(

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
Index: 4261 entries, 1 to 5039
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	trackName	4261 non-null	object
1	artistName	4261 non-null	object
2	msPlayed	4261 non-null	int64
3	genre	4261 non-null	object
4	danceability	4261 non-null	float64
5	energy	4261 non-null	float64
6	key	4261 non-null	float64
7	loudness	4261 non-null	float64
8	mode	4261 non-null	float64
9	speechiness	4261 non-null	float64
10	acousticness	4261 non-null	float64
11	instrumentalness	4261 non-null	float64
12	liveness	4261 non-null	float64
13	valence	4261 non-null	float64
14	tempo	4261 non-null	float64
15	type	4261 non-null	object
16	id	4261 non-null	object
17	uri	4261 non-null	object
18	track_href	4261 non-null	object
19	analysis_url	4261 non-null	object
20	duration_ms	4261 non-null	float64
21	time_signature	4261 non-null	float64
dtyp	es: float64(13), i	nt64(1), object(8)

memory usage: 765.6+ KB

In [6]: df.head()

Out[6]:

	trackName	artistName	msPlayed	genre	danceability	energy	k
1	"In The Hall Of The Mountain King" from Peer G	London Symphony Orchestra	1806234	british orchestra	0.475	0.130	7
2	#BrooklynBloodPop!	SyKo	145610	glitchcore	0.691	0.814	1
3	\$10	Good Morning	25058	experimental pop	0.624	0.596	4
4	(I Just) Died In Your Arms	Cutting Crew	5504949	album rock	0.625	0.726	11
5	(L)only Child	salem ilese	2237969	alt z	0.645	0.611	8

5 rows × 22 columns

```
In [7]: classification_preprocessing_pipeline= joblib.load('cls_preprocessor.pkl'
regression_preprocessing_pipeline= joblib.load('reg_preprocessor.pkl')
```

```
In [8]: logreg_model = joblib.load('best_logreg_model_danceability.pkl')
    rf_classifer = joblib.load('best_rf_model_danceability.pkl')
```

```
linear_regression_model = joblib.load('linear_regression_model.pkl')
ridge_linear_model = joblib.load('ridge_model.pkl')
lasso_linear_model = joblib.load('lasso_model.pkl')
GridSearch_decision_tree = joblib.load('best_GridSearch_decision_tree_mod
RandomizedSearch_decision_tree = joblib.load('best_RandomizedSearch_decis
```

test

Classification

```
In [9]: cls_x_test = pd.read_csv('df_cls_x_test.csv')
    cls_y_test = pd.read_csv('df_cls_y_test.csv')
```

Logistic regression

Logistic Regression

Accuracy: 0.7456037514654161 Precision: 0.5447154471544715 Recall: 0.29385964912280704 F1 Score: 0.3817663817663818 Confusion Matrix: [[569 56]

[161 67]]

2025/3/10 晚上7:25

test

Random Forest Classifier

```
In [11]: y1_pred_rand_for=rf_classifer.predict(cls_x_test)
         y1_pred_rand_for_proba=rf_classifer.predict_proba(cls_x_test)[:,1]
         print('Random Forest')
         print('Accuracy:',accuracy_score(cls_y_test,y1_pred_rand_for))
         print('Precision:',precision_recall_fscore_support(cls_y_test,y1_pred_ran
         print('Recall:',precision_recall_fscore_support(cls_y_test,y1_pred_rand_f
         print('F1 Score:',precision_recall_fscore_support(cls_y_test,y1_pred_rand
         print('Confusion Matrix:',confusion_matrix(cls_y_test,y1_pred_rand_for))
         cm=confusion_matrix(cls_y_test,y1_pred_rand_for)
         sns.heatmap(cm,annot=True,fmt='d')
         plt.xlabel('predicted')
         plt.ylabel('actual')
         plt.title('confusion matrix')
```

Random Forest

Accuracy: 0.7549824150058617 Precision: 0.5714285714285714 Recall: 0.333333333333333333 F1 Score: 0.42105263157894735 Confusion Matrix: [[568 57] [152 76]]

Out[11]: Text(0.5, 1.0, 'confusion matrix')

Regression

```
In [12]: reg_x_test = pd.read_csv('df_reg_x_test.csv')
    reg_y_test = pd.read_csv('df_reg_y_test.csv')
```

Linear Regression

```
In [13]: y2_pred_lig_reg=linear_regression_model.predict(reg_x_test)
    print('Linear Regression')
    print('R2 Score:',r2_score(reg_y_test,y2_pred_lig_reg))
    print('Mean Absolute Error:',mean_absolute_error(reg_y_test,y2_pred_lig_reg)
    print('Mean Squared Error:',mean_squared_error(reg_y_test,y2_pred_lig_reg)
    print('Root Mean Squared Error:',np.sqrt(mean_squared_error(reg_y_test,y2))
```

Linear Regression

R2 Score: 0.3602056987416682

Mean Absolute Error: 0.15229598307314432 Mean Squared Error: 0.03626068026938245 Root Mean Squared Error: 0.190422373342479

Linear Regression(Ridge)

```
In [14]: y2_pred_lig_reg=ridge_linear_model.predict(reg_x_test)
print('Linear Regression(Ridge)')
print('R2 Score:',r2_score(reg_y_test,y2_pred_lig_reg))
```

```
print('Mean Absolute Error:',mean_absolute_error(reg_y_test,y2_pred_lig_r
print('Mean Squared Error:',mean_squared_error(reg_y_test,y2_pred_lig_reg
print('Root Mean Squared Error:',np.sqrt(mean_squared_error(reg_y_test,y2))
```

Linear Regression(Ridge)
R2 Score: 0.35670687196360706

Mean Absolute Error: 0.15419020882149784 Mean Squared Error: 0.03645897812678397 Root Mean Squared Error: 0.19094234241462518

Linear Regression(Lasso)

```
In [15]: y2_pred_lig_reg=lasso_linear_model.predict(reg_x_test)
    print('Linear Regression(Lasso)')
    print('R2 Score:',r2_score(reg_y_test,y2_pred_lig_reg))
    print('Mean Absolute Error:',mean_absolute_error(reg_y_test,y2_pred_lig_reg)
    print('Mean Squared Error:',mean_squared_error(reg_y_test,y2_pred_lig_reg)
    print('Root Mean Squared Error:',np.sqrt(mean_squared_error(reg_y_test,y2)
```

Linear Regression(Lasso)
R2 Score: 0.35649835874578195

Mean Absolute Error: 0.15423930116020515 Mean Squared Error: 0.03647079572364069 Root Mean Squared Error: 0.19097328536641112

DecisionTreeRegressor(GridSearchCV)

```
In [16]: y2_pred_decision_tree=GridSearch_decision_tree.predict(reg_x_test)
    print('Decision Tree')
    print('R2 Score:',r2_score(reg_y_test,y2_pred_decision_tree))
    print('Mean Absolute Error:',mean_absolute_error(reg_y_test,y2_pred_decision_tree))
    print('Mean Squared Error:',mean_squared_error(reg_y_test,y2_pred_decision_tree))
    print('Root Mean Squared Error:',np.sqrt(mean_squared_error(reg_y_test,y2_pred_decision_tree))
```

Decision Tree

R2 Score: 0.2950428441908042

Mean Absolute Error: 0.16042207583291546 Mean Squared Error: 0.03995381950126051 Root Mean Squared Error: 0.19988451541142577

DecisionTreeRegressor(RandomizedSearchCV)

```
In [17]: y2_pred_decision_tree=RandomizedSearch_decision_tree.predict(reg_x_test)
    print('Decision Tree')
    print('R2 Score:',r2_score(reg_y_test,y2_pred_decision_tree))
    print('Mean Absolute Error:',mean_absolute_error(reg_y_test,y2_pred_decision_tree))
    print('Mean Squared Error:',mean_squared_error(reg_y_test,y2_pred_decision_tree))
    print('Root Mean Squared Error:',np.sqrt(mean_squared_error(reg_y_test,y2_pred_decision_tree))
```

Decision Tree

R2 Score: 0.2509975738287197

Mean Absolute Error: 0.16550395583307478 Mean Squared Error: 0.04245010848482428 Root Mean Squared Error: 0.20603424104945342

Analysis of Models

Classification

The results indicated that the Random Forest classifier outperformed the Logistic Regression model.

Regression

I implemented several machine learning regression models aimed at predicting valence to determine which model exhibited superior performance. However, it is noteworthy that none of the models yielded satisfactory results, with linear regression emerging as the most effective option.