質問回答

姫 伯邑考

2017年01月26日

- ③ 円周上に A_1 、 A_2 、 \cdots 、 A_{12} の 12 点を等間隔にとり、円に内接する正十二角形を作る。 これらの 12 点から 3 点を選んで結び三角形を作るとき、 A_1 を頂点とする鋭角三角形は \boxed{r} 個できる。また、 A_1 、 A_3 を頂点とする鋭角三角形は \boxed{r} 個できる。
 - 解)ア)正十二角形が内接する円の中心を O とすると、点 O を通る対角線を 1 辺とする三角形が直角三角形となるので、点 A_1 を頂点として鋭角三角形になるための条件は、

「線分 OA7 と交わる(端点は含まない)対角線を1辺とする」

である。 \mathbf{OA}_7 と交わる対角線の本数は 10 本なので、 \mathbf{A}_1 を頂点とする鋭角三角形は 10 個。 \cdots $\Big(\mathtt{\textit{P}} \Big)$

- イ) A_3 から引ける対角線の中で線分 OA_7 と交わるものは 1 本存在する。故に、 1 個。 \cdots $\left[au \right]$
- ウ) A_6 から引ける対角線の中で線分 OA_7 と交わるものは4本存在する。故に、4個。 \cdots $\left[\dot{\mathcal{D}} \right]$

