A Data-driven Approach to Eliminating Pedestrian Collisions in Toronto

Jason Kim

jason2.kim@ryerson.ca https://github.com/jasonukim/capstone-repo

Context

- Just a few months ago, the City of Toronto approved \$22 million in additional funding for accelerating its Vision Zero Road Safety Plan
- The goal of this plan is to eliminate pedestrian deaths from car collisions by
 2021
- 2018 is one of the worst years for pedestrian and cyclist fatalities, exceeding
 2017's peak year of 162 deaths or major hospitalizations
- Politically sensitive topic due to perceptions:
 - "War against the car"
 - Collisions are caused by irresponsible pedestrians rather than drivers

Previous Work

Toronto High Injury Network

Research Question

 To identify and prioritize zones within Toronto that have a high risk of pedestrian collisions so that safety improvements could be more efficiently implemented by the City

Methodology

- Joined multiple datasets to the collision dataset to increase level of detail about factors that affect collision density
- Used various clustering algorithms in order to identify high collision zones
 - Kernel Density Estimation (KDE)
 - K-means Clustering
 - Density-based Spatial Clustering of Applications with Noise (DBSCAN)
- Used Average Silhouette to test the "goodness of fit" for clusters
- Random Forest to classify unseen collisions into clusters and check Variable Importance

Tools Used

- R
 - o General: Caret, corrplot, sqldf, mlbench, MASS, sp
 - o Mapping: Maptools, ggmap, rgeos
 - <u>Visualization:</u> Ggplot2, knitr
 - <u>Clustering, Silhouette, and Classification:</u> Factoextra, NbClust, dbscan, cluster, RandomForest
 - Parallel Processing: doSNOW
- QGIS
 - For spatial joins on shapefiles (a special kind of dataset containing geo data)

Dataset Details

- Over 10,000 rows of collisions
- 88 attributes from 9 different open data sources
- Geospatial, demographic, economic, health, language, SES, etc.
- Full data dictionary:

https://github.com/jasonukim/capstone-repo/blob/master/Datasets/Data%20Dictionary.md

Exploratory Data Analysis

Reported Collisions in Toronto by Injury Type (2007-2017)

Waterfront Communities-The Island (77)	608	YONGE ST	555
Bay Street Corridor (76)	567	DUNDAS ST W	371
Church-Yonge Corridor (75)	367	BATHURST ST	366
Downsview-Roding-CFB (26)	286	BLOOR ST W	326
Downsview-Roding-CFB (20)	200	EGLINTON AVE E	319
Islington-City Centre West (14)	286		

Street

Collisions

Collisions

Neighbourhood

Road Type	Collisions	Visibility Condition	Collisions
MAJOR ARTERIAL	10318	CLEAR	12311
MINOR ARTERIAL	2645	RAIN	2563
COLLECTOR	1294	SNOW	457
LOCAL	1276	OTHER	72
		FREEZING RAIN	41
Location	Collisions	FOG, MIST, SMOKE, DUST	40
INTERSECTION	12186	DRIFTING SNOW	29
MID-BLOCK	3304		

Clustering by Collision Location Only

K-Means Clustering

Clustering by Normalized Numerical

Variables

K-means

0.75 -

DBSCAN

rf model

Conclusion

- KDE is very useful for clustering densities, but not much else; KDE is the dominant method used in traffic research
- DBSCAN is incredibly strong at clustering collisions with shared characteristics that don't follow a circular pattern
- Although RF identified which variables are important as a whole, not sufficient to tell us about each unique cluster
- Unsupervised learning makes supervised learning even more powerful and vice versa
- The City should adopt a clusters-based approach rather than street or neighbourhood-level due to their size

A Data-driven Approach to Eliminating Pedestrian Collisions in Toronto

Jason Kim

jason2.kim@ryerson.ca https://github.com/jasonukim/capstone-repo