¹H NMR Spectroscopy

from chapter	in the recommended tex

A. Introduction

.

B. Chemical Shifts In ¹H Spectra

<u>smaller</u>

 $\frac{high}{low}$ field region from 5 – 6.5 ppm

<u>lower</u> field than HC-Csp³ atoms<u>allylic and benzylic</u><u>higher</u> chemical shifts than HC-Csp³

<u>higher</u>

<u>lower</u>

<u>X</u>.

4 inequivalent H

number of resonances (ppm):

- 0 2 _2_ 2 3 _2_
- 3 4 _0__ 4 7 _0__ 7 9 _0__

inequivalent H

number of resonances (ppm):

- 0 2 <u>2</u> 2 3 <u>1</u>
- 3 4 __0__
- 4 7 __0_ 7 - 9 0

___7__ inequivalent H

number of resonances (ppm):

- 0 2 __1_ 2-3_2_
- 3 4 __0__4 7 __0__ 7 - 9 4

OMe

inequivalent H

number of resonances (ppm):

- 0 2 <u>__1</u> 2 3 <u>__</u>0_ 3 - 4 __1_ 4 - 7 __1_
- 7 9

inequivalent H

number of resonances (ppm):

- 0 2 __1_ 2 3 __0_ 3 4 __2_
- 4 7 __0_ 7 - 9

inequivalent H

number of resonances (ppm):

- 0 2 __3__ 2 - 3 __0_

- 3 4 __0_ 4 7 __0_ 7 9__0_

inequivalent H

number of resonances (ppm):

- 0 2 __8_ 2 - 3 __0_
- 3 4 __0_ 4 7 __0_ 7 9__0_

inequivalent H

number of resonances (ppm):

- 0 2 __0__ 2 - 3 __1__
- 3 4 __0_ 4 - 7 __0_

7 - 9

inequivalent H

number of resonances (ppm):

- 0 2 __0_ 2 - 3 __1_
- 3 4 <u>0</u> 4 7 <u>0</u> 7 - 9___0

inequivalent H

number of resonances (ppm):

- 0 2 __1_ 2 - 3 __1_
- 3 4 __1_ 4 7 __1_ 7 9__0_

inequivalent H

number of resonances (ppm):

- 0 2 __1_ 2 3 __0_ 3 4 __0_ 4 7 __1_ 7 9___0_

___5_

inequivalent H number of resonances (ppm):

- 0 2 _ 3 _ 2 3 _ 0 _ 3 4 _ 0 _ 4 7 _ 2 _

7 - 9

inequivalent H

number of resonances (ppm):

- 0 2 __ _3_ 2 - 3 0
- 3 4 4 7 0___ 7 - 9

inequivalent H

number of resonances (ppm):

- 0 2 __1_ 2 3 __2_ 3 4 __0_ 4 7 __1_
- 7 9

inequivalent H

number of resonances (ppm):

- 0 2 __ 0_ 2 3 __ 1_ 3 4 __ 0_ 4 7 __ 0_

7-9 0

inequivalent H

number of resonances (ppm): 0 - 2 __1__

2 - 3	0_
3 - 4	0
4 - 7	0_
7 - 9	0

number of resonances (ppm):

0 - 2	4
2 - 3	0
3 - 4 _	0
4 - 7	0
7 - 9	0

inequivalent H

number of resonances (ppm):

0 - 2 _	2
2 - 3	1
3 - 4	0
4 - 7	0
7 - 9	3

___5__ inequivalent H

number of resonances (ppm):

0 - 2	2 '
2 - 3	1
3 - 4 _	0
4 - 7	0
7 - 9_	3_

inequivalent H

7 - 9__0_

number of resonances (ppm):

0 - 2	2
2 - 3	_2
3 - 4	_1_
4 - 7	1

OMe MeO

OMe MeO

__5__ inequivalent H

number of

sonances (ppn		
0 - 2	3	
2 - 3	0	
3 - 4	2	
4 - 7	0	

7 - 9 __0

__4_ inequivalent H

number of resonances (ppm):

0 - 2	2
2 - 3	0
3 - 4	2
4 - 7	0
7 0	

inequivalent H

number of resonances (ppm):

0 - 2 _	4
2 - 3	0
3 - 4	0
4 - 7	_3
7 - 9	Ο

number of resonances (ppm):

0 - 2 _	3
2 - 3	0
3 - 4	_1
4 - 7	_1
7 - 9	0

number of

TIGITIDOT OT	
sonanc	es (ppm)
0 - 2	3
2 - 3	0
3 - 4	1
4 - 7	0
7 - 9	0

inequivalent H

number of resonances (ppm):

Jonanic	o (ppi
0 - 2	2
2 - 3	0
3 - 4	0
4 - 7	0
7 - 9	0

inequivalent H

number of resonances (ppm):

01101101	אאן טי
0 - 2	4
2 - 3	1
3 - 4	0
4 - 7	_1
7 - 9	_ 0_

inequivalent H

number of resonances (ppm):

0 - 2	4
2 - 3	0
3 - 4	0
4 - 7	0
7 - 9	_ 0_

___10__ inequivalent H

number of resonances (ppm):

0 - 2	4
2 - 3	0
3 - 4	0
4 - 7	2
7 - 9	4

inequivalent H

number of resonances (ppm):

Jilalices (ppil	
0 - 2 _	_2
2 - 3 _	1
3 - 4	0
4 - 7	1
7 - 9_	0_

C. Coupling In ¹H NMR

two bond couplings

Heteronuclear Coupling To ¹³C Is Unimportant

1.11 are not NMR silent).

hetero-

Homonuclear ¹H Coupling

<u>is not</u> removed

2 and 3 bond homonuclear couplings.

ie 4 bond homonuclear

$$CI \xrightarrow{H^b} Br$$
 $CI \xrightarrow{H^a} H^b$ $3 \text{ bonds and } do$
 $CI \xrightarrow{H^a} Br$ $0 \xrightarrow{A} Br$ $4 \text{ bonds between them and } do \text{ not}$

<u>do not</u> appear to be split. singlets.

molecule 1

molecule 2

molecule 3

Spin Systems

any number >1 NMR

yeeeha!

<u>n + 1</u>

does not

follows Pascal's triangle.

H^a-C-H^b Spin Systems

will not

doublet.

sometimes

<u>will</u>

<u>will</u>

appear as a <u>doublet</u>.

_0___

MeO Ph

H^a-C-C-H^b Spin Systems

smaller than

isolated HaCCHb

molecule 1

molecule 2

will triplet doublet

HaC-CHb2 Spin Systems

isolated HaCCHb2

molecule 1

molecule 2

HaC-CH₃ Spin Systems

<u>will</u>

 $\underline{quartet}$, and H^b appears as a $\underline{doublet}$.

isolated HaCCHb3

molecule 1

molecule 2

H^a₂C-CH^b₃ Spin Systems (Isolated Ethyl Groups)

does not

<u>do not</u>

triplet, and the methylene is a *quartet*.

$(H^a{}_3C)_{\ 2}CH^b$ Spin Systems (Isolated iPr Groups)

<u>heptet</u> with a relative intensity of _1:6:15:20:15:6:1 <u>doublets</u>.

$$H_2N$$

Common Splitting Patterns In Organic Molecules

¹³C NMR

D. Diastereotopic Protons

<u>inequivalent</u>

E. Some Problems Involving Spectral Interpretation

structure

Explain why *two* methyl resonances are seen in each spectrum:

____The resonance structures create different environments around methyl groups

150 100 50

structure

structure