Abstract Algebra

- A Journey from Concretization to Abstraction -

Ji, Yong-Hyeon

A document presented for the Abstract Algebra

Department of Information Security, Cryptology, and Mathematics College of Science and Technology Kookmin University

August 12, 2024

Contents

1	Visual Group Theory	3
	A Mapping $\mathbb{C}[x] \to \mathbb{C}$	10 20
	Localization	

Chapter 1

Visual Group Theory

Mathematical Definitions and Examples

1. Normal Subgroup

Definition:

A subgroup N of a group G is called a *normal subgroup* if it is invariant under conjugation, that is, for every element $g \in G$ and $n \in N$, the element $g n g^{-1} \in N$.

Symbolically:

$$N \triangleleft G \iff \forall g \in G, \forall n \in N, \ gng^{-1} \in N.$$

Examples:

1. In the group of integers $(\mathbb{Z}, +)$, the subgroup $2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\}$ is a normal subgroup since \mathbb{Z} is abelian.

$$2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\} \triangleleft \mathbb{Z}$$

2. In the symmetric group S_3 , the subgroup $A_3 = \{(1), (123), (132)\}$ (the alternating group) is a normal subgroup.

$$A_3 = \{(1), (123), (132)\} \triangleleft S_3$$

2. Quotient Group (Factor Group)

Definition:

Given a group G and a normal subgroup N of G, the quotient group (or factor group) G/N is the set of left cosets of N in G with the group operation defined by:

$$(gN) \cdot (hN) = (gh)N$$

Examples:

1. For $(\mathbb{Z}, +)$ and $N = 2\mathbb{Z}$, the quotient group $\mathbb{Z}/2\mathbb{Z}$ consists of two cosets: $0 + 2\mathbb{Z}$ and $1 + 2\mathbb{Z}$.

$$\mathbb{Z}/2\mathbb{Z} = \{0 + 2\mathbb{Z}, 1 + 2\mathbb{Z}\}$$

2. In S_3 , the quotient group S_3/A_3 is isomorphic to \mathbb{Z}_2 .

$$S_3/A_3\cong \mathbb{Z}_2$$

3. Ring

Definition:

A *ring* is a set R equipped with two binary operations + and \cdot (addition and multiplication) such that:

- 1. (R, +) is an abelian group.
- 2. (R, \cdot) is a monoid.
- 3. Multiplication is distributive over addition: for all a, b, $c \in R$, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$.

Examples:

1. The set of integers \mathbb{Z} with usual addition and multiplication.

 \mathbb{Z} is a ring

2. The set of 2×2 matrices over \mathbb{R} , $M_2(\mathbb{R})$, with matrix addition and multiplication.

 $M_2(\mathbb{R})$ is a ring

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right) + \left(\begin{array}{cc} 5 & 6 \\ 7 & 8 \end{array}\right) = \left(\begin{array}{cc} 6 & 8 \\ 10 & 12 \end{array}\right)$$

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right) \qquad \cdot \qquad \left(\begin{array}{cc} 5 & 6 \\ 7 & 8 \end{array}\right) \qquad = \qquad \left(\begin{array}{cc} 19 & 22 \\ 43 & 50 \end{array}\right)$$

4. Ideal

Definition:

An *ideal I* of a ring *R* is a subset of *R* such that:

- 1. *I* is an additive subgroup of *R*.
- 2. For every $r \in R$ and $i \in I$, both ri and ir are in I.

Examples:

1. In \mathbb{Z} , the set $2\mathbb{Z}$ (all even integers) is an ideal.

$$2\mathbb{Z} = \{2k \mid k \in \mathbb{Z}\}$$
 is an ideal of \mathbb{Z}

of polynomials divisible by x, denoted by (x), is an ideal.

$$(x) = \{x \cdot f(x) \mid f(x) \in \mathbb{R}[x]\}$$
 is an ideal of $\mathbb{R}[x]$

5. Prime Ideal

Definition:

An ideal *P* in a ring *R* is a *prime ideal* if $P \neq R$ and whenever $a \cdot b \in P$ for $a, b \in R$, then $a \in P$ or $b \in P$.

Examples:

1. In \mathbb{Z} , the ideal (p) where p is a prime number (e.g., (5)) is a prime ideal.

$$(5) = \{5k \mid k \in \mathbb{Z}\} \text{ is a prime ideal of } \mathbb{Z}$$

<u>_</u>5

2. In $\mathbb{Z}[x]$, the ideal (x) is a prime ideal.

$$(x) = \{x \cdot f(x) \mid f(x) \in \mathbb{Z}[x]\}$$
 is a prime ideal of $\mathbb{Z}[x]$

6. Maximal Ideal

Definition:

An ideal M in a ring R is a maximal ideal if $M \neq R$ and there are no other ideals I such that $M \subset I \subset R$.

Examples:

1. In \mathbb{Z} , the ideal (p) where p is a prime number (e.g., (3)) is a maximal ideal.

 $(3) = \{3k \mid k \in \mathbb{Z}\}$ is a maximal ideal of \mathbb{Z}

No larger ideal between (3) and \mathbb{Z}

2. In $\mathbb{R}[x]$, the ideal (x - a) where $a \in \mathbb{R}$ is a maximal ideal.

 $(x - a) = \{(x - a) \cdot f(x) \mid f(x) \in \mathbb{R}[x]\}$ is a maximal ideal of $\mathbb{R}[x]$

$\mathbb{R}[x]$

No larger ideal between
$$(x-a)$$
 and $\mathbb{R}[x]$

Maximal Ideal $(x-a)$

$$x^2 - ax + ax^{\frac{1}{2}3} - a^2x + a$$

$$x - a(x-a)$$

$$(x-a)(x^23(x1) + a)$$

$$(x-a) \cdot (x+1)$$

$M_2(F)$

Chapter 2

A Mapping $\mathbb{C}[x] \to \mathbb{C}$

2.1 Observation

Mapping	$\psi_p : \mathbb{Z} \longrightarrow \mathbb{Z}_p$	$\phi_a : \mathbb{C}[x] \longrightarrow \mathbb{C}$	
Mapping	$n \mapsto n \mod p = \psi_p(n)$	$f(x) \longmapsto f(a) = \phi_a(f(x))$	
Additive Homo.	$\psi_p(a+b) := (a+b) \bmod p$	$\phi_a(f+g) := f(a) + g(a)$	
Multiplicative Homo.	$\psi_p(ab) := (ab) \bmod p$	$\phi_a(fg) := f(a)g(a)$	
Kernel	$\ker(\psi_p) = p\mathbb{Z}$	$\ker(\phi_a) = (x - a)\mathbb{C}[x]$	
Image	\mathbb{Z}_p	C	
Ideal	$p\mathbb{Z} = \langle p \rangle$	$(x-a)\mathbb{C}[x] = \langle x-a \rangle$	
Prime Ideal	$\langle p \rangle$ is prime	$\langle x-a \rangle$ is prime	
Maximal Ideal	$\langle p \rangle$ is maximal	$\langle x - a \rangle$ is maximal	
Isomorphism	$\mathbb{Z}_p \simeq \mathbb{Z}/p\mathbb{Z}$	$\mathbb{C} \simeq \mathbb{C}[x]/\langle x - a \rangle$	

Theorem 2.1.1 Every ideal I of ring R is the kernel of some ring homomorphism.

Proof. Let *I* is an ideal in a ring *R*, that is, *I* is a subset of *R* that satisfies:

•

Non-Commutative Rings Without Unity and Prime Ideals

Example 1: The Ring of 2x2 Upper Triangular Matrices Over a Field $\mathbb F$

Consider the ring R of 2x2 upper triangular matrices over a field \mathbb{F} :

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{F} \right\}$$

This ring is non-commutative and does not have a unity element.

Prime Ideal

An ideal P in R can be the set of matrices where the (1,2)-entry is zero:

$$P = \left\{ \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \mid a, c \in \mathbb{F} \right\}$$

To see why P is a prime ideal, consider matrices A and B in R. If the product $AB \in P$, then the (1,2)-entry of AB must be zero. This means either the (1,2)-entry of A is zero or the (1,2)-entry of B is zero, implying $A \in P$ or $B \in P$. Thus, P is a prime ideal.

Example 2: The Ring of Polynomials in Two Non-commuting Variables Over a Field $\mathbb F$

Consider the ring $R = \mathbb{F}\langle x, y \rangle$, the ring of polynomials in two non-commuting variables x and y over a field \mathbb{F} .

Prime Ideal

An ideal *P* in *R* can be generated by the commutator [x, y] = xy - yx:

$$P = (xy - yx)$$

To see why P is a prime ideal, consider two polynomials f and g in R. If $fg \in P$, then fg can be written as a multiple of xy - yx. If xy - yx divides fg, then either xy - yx divides f or xy - yx divides g, meaning $f \in P$ or $g \in P$. Thus, P is a prime ideal.

Proof: Existence of a Basis for Any Vector Space using Zorn's Lemma

Theorem: Every vector space *V* over a field *F* has a basis.

Proof: To prove this, we will use Zorn's Lemma, which states:

If every chain (totally ordered subset) of a partially ordered set *S* has an upper bound in *S*, then *S* contains at least one maximal element.

1. **Set Construction:** Define the set *C* to be the collection of all linearly independent subsets of *V*:

$$C = \{S \subseteq V \mid S \text{ is linearly independent}\}$$

- 2. **Partial Order:** Partially order *C* by inclusion: $S \le T$ if $S \subseteq T$.
- 3. **Chain:** Let \mathcal{A} be a chain in C. This means that every pair of elements in \mathcal{A} is comparable under \subseteq . For each pair $S, T \in \mathcal{A}$, either $S \subseteq T$ or $T \subseteq S$.
- 4. **Upper Bound for Chain:** Define $U = \bigcup_{S \in \mathcal{A}} S$. We claim that $U \in \mathcal{C}$, i.e., U is a linearly independent subset of V.
 - Suppose for contradiction that U is not linearly independent. Then there exists a finite subset $\{u_1, u_2, \ldots, u_n\} \subseteq U$ and scalars $a_1, a_2, \ldots, a_n \in F$, not all zero, such that:

$$a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0$$

- Each u_i belongs to some $S_i \in \mathcal{A}$, and since \mathcal{A} is a chain, there exists an $S \in \mathcal{A}$ such that $u_1, u_2, \dots, u_n \in S$.
- But *S* is linearly independent, so the only solution to this linear combination is $a_1 = a_2 = \cdots = a_n = 0$, a contradiction.

Thus, *U* must be linearly independent, and $U \in C$ is an upper bound for the chain \mathcal{A} .

- 5. **Application of Zorn's Lemma:** By Zorn's Lemma, *C* contains a maximal element *B*.
- 6. **Maximal Linearly Independent Set:** Let *B* be a maximal element in *C*. We claim that *B* is a basis for *V*.
 - *B* is linearly independent by construction.
 - Suppose B is not a basis for V. Then there exists some vector $v \in V \setminus \text{span}(B)$. The set $B \cup \{v\}$ would then be linearly independent (otherwise v would be in the span of B), contradicting the maximality of B.
- 7. **Conclusion:** Therefore, *B* must span *V*, making *B* a basis for *V*.

Proof: Co-Finite Topology is a Topology

Definition: The co-finite topology on a set X is defined as follows: a subset $U \subseteq X$ is open if and only if $U = \emptyset$ or $X \setminus U$ is finite.

Proof: We need to show that the co-finite topology on *X* satisfies the three properties of a topology:

- 1. X and \emptyset are in the topology.
- 2. The topology is closed under arbitrary unions.
- 3. The topology is closed under finite intersections.

1. X and \emptyset are in the topology

- X is open because $X \setminus X = \emptyset$, which is finite.
- Ø is open by definition.

2. Closed under Arbitrary Unions

Let $\{U_i\}_{i\in I}$ be an arbitrary collection of open sets in the co-finite topology. We need to show that $U = \bigcup_{i\in I} U_i$ is open.

- If any $U_i = X$, then U = X, which is open.
- If all $U_i \neq X$, then $X \setminus U_i$ is finite for each i.

Consider $U = \bigcup_{i \in I} U_i$. Then:

$$X \setminus U = X \setminus \left(\bigcup_{i \in I} U_i\right) = \bigcap_{i \in I} (X \setminus U_i).$$

Since each $X \setminus U_i$ is finite, the intersection of any collection of finite sets is finite (or empty). Therefore, $X \setminus U$ is finite, which implies U is open in the co-finite topology.

3. Closed under Finite Intersections

Let U_1, U_2, \ldots, U_n be a finite collection of open sets in the co-finite topology. We need to show that $U = \bigcap_{i=1}^n U_i$ is open.

- If any $U_i = X$, then $U = \bigcap_{i=1}^n U_i = \bigcap_{j \neq i} U_j$, reducing the problem to fewer sets.
- If all $U_i \neq X$, then each $X \setminus U_i$ is finite.

Consider $U = \bigcap_{i=1}^{n} U_i$. Then:

$$X \setminus U = X \setminus \left(\bigcap_{i=1}^{n} U_i\right) = \bigcup_{i=1}^{n} (X \setminus U_i).$$

Since each $X \setminus U_i$ is finite, the union of a finite number of finite sets is finite. Therefore, $X \setminus U$ is finite, which implies U is open in the co-finite topology.

Conclusion: Since the co-finite topology on *X* satisfies the three properties required for a topology, it is indeed a topology.

Proof: Zero Sets of Polynomials Form a Co-Finite Topology

Definition: The zero set of a polynomial $p \in \mathbb{C}[x]$ is $Z(p) = \{z \in \mathbb{C} \mid p(z) = 0\}$.

Proof: We need to show that the collection of zero sets of polynomials in \mathbb{C} forms the closed sets of the co-finite topology on \mathbb{C} .

1. Zero Sets are Closed in the Co-Finite Topology

Let $p(x) \in \mathbb{C}[x]$ be a non-constant polynomial of degree n. By the Fundamental Theorem of Algebra, p(x) has at most n roots in \mathbb{C} . Therefore, Z(p) is finite.

The zero set of the constant polynomial p(x) = 0 is \mathbb{C} , which is the entire set.

2. Co-Finite Topology Closed Sets

The closed sets in the co-finite topology are those whose complements are finite. That is, a set $C \subseteq \mathbb{C}$ is closed if $\mathbb{C} \setminus C$ is finite or $C = \mathbb{C}$.

3. Correspondence of Zero Sets and Closed Sets

- The zero set of a non-constant polynomial is finite, corresponding to finite closed sets in the co-finite topology.
- The zero set of the constant polynomial p(x) = 0 is \mathbb{C} , corresponding to \mathbb{C} itself being a closed set in the co-finite topology.

4. Characterization of Closed Sets

To show that the closed sets in the co-finite topology are precisely the zero sets of polynomials, consider:

• A finite set $\{z_1, z_2, \dots, z_n\}$. This can be written as the zero set of the polynomial

$$p(x) = (x - z_1)(x - z_2) \cdots (x - z_n).$$

• The whole set \mathbb{C} is the zero set of the polynomial p(x) = 0.

Conclusion: The closed sets in the co-finite topology on \mathbb{C} are exactly the zero sets of polynomials in $\mathbb{C}[x]$. Therefore, the collection of zero sets of polynomials forms the closed sets of the co-finite topology, showing that the zero sets of polynomials generate the co-finite topology on \mathbb{C} .

Hence, every vector space *V* over a field *F* has a basis, as guaranteed by Zorn's Lemma.

$$\mathbb{C}[x]/\langle x - \alpha \rangle = \mathbb{C}[x]/(x - \alpha)\mathbb{C}[x] \simeq \mathbb{C}.$$

Let $f, g \in I = \mathbb{C}[x]/(x - \alpha)\mathbb{C}[x]$. Then

$$f(x) = (x - \alpha)q_1(x) + r(x), q(x) = (x - \alpha)q_2(x) + r(x)$$

Then

$$f(x) \equiv g(x) \pmod{(x-\alpha)\mathbb{C}[x]} \iff f(x) - g(x) \in (x-\alpha)\mathbb{C}[x]$$

Commutative Ring: $\mathbb{Q}[x]$

Prime Ideal: $(x^2 - 2)$

Localization: $\mathbb{Q}[x]_{(x^2-2)}$

Field of Fractions: $\mathbb{Q}(X)$ xtension Field: $\mathbb{Q}(x)$ morphic Function: $f(z) = \frac{1}{z}$ where $\sqrt{2}$ satisfies $x^2 - 2 = 0$ on $\mathbb{C} \setminus \{0\}$

$$\mathbb{C}[x] \xrightarrow{f(\alpha) = \text{leading coefficient}} \mathbb{C}$$

$$\alpha(x) = 3x^2 + 2x + 1 \xrightarrow{3x^2 \text{ leading coefficient}} 3$$

$$\mathbb{C}[x] \xrightarrow{f(\alpha) = \text{constant term}} \mathbb{C}$$

$$\alpha(x) = x^2 + 2x + 1 \xrightarrow{\text{constant term}} 1$$

constant term

$$\mathbb{C}[x] \xrightarrow{\qquad f(\alpha) = \sum a_i} \mathbb{C}$$

$$\alpha(x) = x^2 + 2x + 1 \xrightarrow{\text{sum of coefficients}} 4$$

$$1 + 2 + 1 = 4$$

$$\mathbb{C}[x] \xrightarrow{f(\alpha) = \int_{a}^{b} \alpha(x) dx} \mathbb{C}$$

$$x \xrightarrow{\text{integral over } [0, 1]} \frac{1}{2}$$

$$x \xrightarrow{\int_{0}^{1} x dx} dx$$

$$\mathbb{C}[x]$$

$$\alpha(x) = x^2 + 2x + 1 \qquad \beta(x) = 3x^3 + x + 5$$

$$\gamma(x) = 2x^2 - ix + 1 \qquad \delta(x) = 4$$

$$\epsilon(x) = ix^4 - 2x + 3$$

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + \text{General Form}$$

$$\vdots$$

1
$$x$$
 x^2 x^3 ...

Basis of $\mathbb{C}[x]$

Vector Space $\mathbb{C}[x]$

$$\mathbb{C}[x]$$

$$\alpha(x) = x^2 + 2x + 1 \longleftrightarrow \beta(x) = 3x^3 + x + 5$$

$$\gamma(x) = 2x^2 - ix + 1 \longleftrightarrow \delta(x) = 4$$

$$\varepsilon(x) = ix^4 - 2x + 3$$

$$\vdots \qquad \vdots$$

 $\mathbb{C}[x]$

$$\alpha(x) = x^{2} + 2x + 1$$

$$\beta(x) = 3x^{3} + x + 5$$

$$\gamma(x) = 2x^{2} - ix + 1$$

$$\epsilon(x) = ix^{4} - 2x + 3$$

$$\vdots$$

$$f(\alpha(x)) = \alpha(1)$$

 $\mathbb{C}[x]$

Leading Coefficient: 3

Constant Term: 1

Sum of Coefficients: 4

 $\mathbb{C}[x]$

$$P(x) = x^{2} + 2x + 1$$

$$Q(x) = 3x^{3} + x + 5$$

$$R(x) = 2x^{2} - ix + 1$$

$$P(x) + Q(x)$$

$$T(x) = ix^{4} - 2x + 3$$

$$P(x) + Q(x) = x^{2} + 2x + 1 + 3x^{3} + x + 5 c \cdot R(x) = c(2x^{2} - ix + 1)$$
Basis: $\{1, x, x^{2}, x^{3}, ...\}$
Infinite-dimensional vector space over \mathbb{C}

2.2 Zorn's Lemma and Basis

2.2.1 Relations

Let $\mathcal{R} \subseteq A \times A$ be a relation on a set A.

Property Type	Condition	Definition	Example
	Reflexive	$\forall a \in A, (a,a) \in R$	Equality relation on $\mathbb R$
Pofforiro Proportios	Coreflexive	$\forall a, b \in A, (a, b) \in R \Rightarrow a = b$	Identity relation $\{(a, a) : a \in A\}$
Reflexive Properties	Irreflexive (Anti-reflexive)	$\forall a \in A, (a,a) \notin R$	"Is less than" relation on ${\mathbb R}$
	Non-Reflexive	$\exists a \in A, \ (a,a) \notin R$	"Is a friend of" relation
	Symmetric	$\forall a, b \in A, (a, b) \in R \Rightarrow (b, a) \in R$	Equality relation on $\mathbb R$
Common atri a Dram anti an	Asymmetric	$\forall a,b \in A, \ (a,b) \in R \Longrightarrow (b,a) \notin R$	"Is parent of" relation
Symmetric Properties	Anti-Symmetric	$\forall a, b \in A, (a, b) \in R \text{ and } (b, a) \in R \Rightarrow a = b$	"Is less than or equal to" relation on ${\mathbb R}$
	Non-Symmetric	$\exists a, b \in A, (a, b) \in R \text{ and } (b, a) \notin R \text{ or } (a, b) \notin R \text{ and } (b, a) \in R$	"Is sibling of" relation
	Transitive	$\forall a, b, c \in A, (a, b) \in R \text{ and } (b, c) \in R \Rightarrow (a, c) \in R$	Divisibility relation on ℕ
Transitive Properties	Anti-Transitive	$\forall a, b, c \in A, (a, b) \in R \text{ and } (b, c) \in R \Rightarrow (a, c) \notin R$	Hard to find simple example
	Non-Transitive	$\exists a, b, c \in A, (a, b) \in R \text{ and } (b, c) \in R \text{ and } (a, c) \notin R$	"Is a friend of"

Table 2.1: Conditions and Examples for Relation Properties

Figure 2.1: Reflexivity

Figure 2.2: Reflexivity

Chapter 3

Localization

Observation. Consider the ring of integers $(\mathbb{Z}, +, \times)$. For $n \neq 1$, consider the set of integer multiplies $n\mathbb{Z}$. Then $1 \notin n\mathbb{Z}$, but $(n\mathbb{Z}, \times)$ is closed under \times . That is, $n\mathbb{Z}$ is closed under \times but not actually multiplicatively closed.

Multiplicatively Closed Subset of Ring

Definition 3.1. Let $(R, +, \times)$ be a ring with unity 1_S and zero 0_S . Then $S \subseteq R$ is **multiplicatively closed** iff

- $1_R \in S$.
- $x, y \in S \implies x * y \in S$.

Note (From \mathbb{Z} to \mathbb{Q}).

- (Numerator) $R = \mathbb{Z}$ is a ring
- (Denominators) $S = \mathbb{Z} \setminus \{0\}$ is multiplicatively closed and $1 \in S$
- $(\mathbb{Q} \simeq S^{-1}R)$ Every $q \in \mathbb{Q}$ is of the form $s^{-1}r$ for $r \in R$ and $s \in S$.
- (Equivalence Relation)

$$\frac{a}{b} = \frac{c}{d} \iff ad = bc \iff t(ab - bc) = 0 \text{ for } t \in S.$$

- \mathbb{Q} is ring:
 - Q has an addition a/b + c/d = (da + bc)/bd
 - Q has a multiplication $a/b \cdot c/d = ac/bd$
 - Q has a zero 0/1 and a one 1/1.
- \mathbb{Z} is a subring of \mathbb{Q} by $r \mapsto r/1$.

Note (Functions close to 0 - "local functions").

- (Numerator) $R = \mathbb{R}[x] \in \mathbb{R}^{\mathbb{R}}$ is a ring
- (Denominators) $S = \{ s \in R : s(0) \neq 0 \}$ is multiplicatively closed and $1 \in S$
- $(L \simeq S^{-1}R)$ Every local function L is of the form $s^{-1}r$ for $r \in R$ and $s \in S$.

• (Equivalence Relation)

$$\frac{a}{b} = \frac{c}{d} \iff ad = bc \iff t(ab - bc) = 0 \text{ for } t \in S.$$

- Local function is ring:
 - L has an addition a/b + c/d = (da + bc)/bd
 - L has a multiplication $a/b \cdot c/d = ac/bd$
 - *L* has a zero 0/1 and a one 1/1.
- *R* has a map to *L* by $r \mapsto r/1$.

3.1 For completeness: The formal definition/statement

Let *R* be a commutative ring and *S* be a multiplicatively closed set with $1 \in S$.

(a) Equivalence Relation on $R \times S$

$$(a,b) \sim (c,d) \iff \exists t \in S : t(ad-bc) = 0.$$

- (b) [Localization (localize at S)] The set of equivalence classes $S^{-1}R$.
- (c) Addition on $S^{-1}R$

$$(a,b) + (c,d) = (ad + bc,bd)$$

(d) Multiplication on $S^{-1}R$

$$(a,b)\cdot(c,d)=(ab,cd)$$

- (e) (Slogan. Invert elements of *S*)
 - $S^{-1}R$ is a ring with zero (0,1) and one (1,1)
 - There is a ring homomorphism $\phi:R\to S^{-1}R$ given by $r\mapsto (r,1)$, i.e., $r\mapsto r/1$
 - ϕ is injective (R is a subring of $S^{-1}R$) iff S contains no zero divisor

- $X \subset \neq \mathbb{R}^2$ is the vanishing set of (x y)(x + y)
- Model: the ring $R = \mathbb{R}[x, y]/\langle (x y)(x + y)\rangle$
- $\langle x y \rangle : X \to \mathbb{R}$ is locally at a indistinguishable from 0
- $\langle x y \rangle 0 \neq 0$ but $(x + y)\langle x y 0 \rangle = 0$ in R
- So $\langle x y \rangle = 0$ in R localized at $S = \{ s \in R : s(a) = 0 \}$.