Interval Censoring Background and a review of Zhan and Sun (2010)

Brian Segal

August 29, 2017

Outline

- What is interval censoring?
- Problem with ignoring interval censoring
- 3 Methods for interval-censored data
- 4 Key assumption
- 5 Currently available software

What is interval censoring?

Type II (General)

Event is known to occur between two time points.

Notation

- t = event time (unobserved)
- *L* = left side of interval
- R = right side of interval

Type I (Current status)

Event is known to occur before or after a single time point:

• Left censoring (L = 0)

• Right censoring $(R = \infty)$

What's the problem with ignoring interval censoring?

Survival time is over-estimated

- Suppose time of event $t_i \in (L_i, R_i]$ is interval censored
- Assuming $t_i = R_i$ causes survival time to be over-estimated $(R_i \ge t_i)$

Example for patient i

How much does this bias survival estimates?

It depends

Let $\delta = R_i - t_i$ be the common measurement error and suppose event times follow survival function S. Size of bias depends on:

- ullet Size of measurement error δ
- Change in S between times t_i and R_i

Example: S is Weibull with shape and scale of 3

How much does this bias survival estimates?

It depends

Let $\delta = R_i - t_i$ be the common measurement error and suppose event times follow survival function S. Size of bias depends on:

- ullet Size of measurement error δ
- Change in S between times t_i and R_i

Example: S is Weibull with shape and scale of 3 (see Appendix)

Bias is a problem when

- \bullet δ is large
- Slope of *S* is large

How much does this bias survival estimates?

It depends

Let $\delta = R_i - t_i$ be the common measurement error and suppose event times follow survival function S. Size of bias depends on:

- ullet Size of measurement error δ
- Change in S between times t_i and R_i

Example: S is Weibull with shape and scale of 3 (see Appendix)

Bias is a problem when

- \bullet δ is large
- Slope of S is large

How do we avoid this bias?

Methods for interval-censored data

Use a likelihood proportional to

$$L = \prod_{i=1}^{n} \underbrace{[S(L_i) - S(R_i)]}_{\text{Pr(event between } L_i \text{ and } R_i)}$$

Nonparametric maximum likelihood estimator (NPMLE)

Turnbull estimator of \hat{S} (1976): interval censoring counterpart to Kaplan-Meier

 Partitions timeline by all left and right censoring times, and estimates probability of each partition

Nonparametric maximum likelihood estimator (NPMLE)

Turnbull estimator of \hat{S} (1976): interval censoring counterpart to Kaplan-Meier

- Pros
 - Consistent (with enough data, the estimate is correct)
 - Can incorporate right-censored data by setting $R_i = \infty$
- Cons
 - Statistical convergence is slower than Kaplan-Meier (need more data for a good estimate)
 - No closed form requires iterative fitting algorithm

Nonparametric maximum likelihood estimator (NPMLE)

Side notes

 The Turnbull estimator (1976) is an EM algorithm, though the seminal EM paper was not published until 1977 (Dempster and Waird).

$$p_{j}^{\text{new}} = \overbrace{\frac{1}{n} \sum_{i=1}^{n} \underbrace{\left(\frac{\alpha_{ij} p_{j}^{\text{old}}}{\sum_{l=1}^{m+1} \alpha_{ij} p_{l}^{\text{old}}}\right)}_{\text{E step: } q_{ij} = \mathbb{E}[\Pr(t_{j-1} < T_{i} \leq t_{j})]}$$

Faster algorithms exist

Hypothesis testing with NPMLEs

Comparing survival functions

- Very similar to right-censored data
- Log rank tests with modified calculations of
 - d_j : number of events at time t_j
 - n_j : number at risk at time t_j .
- Note: formulas for d_j and n_j very similar to updates for the Turnbull estimator

Regression

Common models

Similar to right-censored data, we can fit

- Semiparametric
 - Proportional hazards (Cox)
 - Proportional odds
 - Additive hazards
- Parametric
 - Accelerated failure time and generalizations
 - Piecewise exponential

Issues for Cox model

Computational

Baseline hazards do not cancel out of likelihood and must be estimated

Statistical

While baseline hazard converges at $n^{1/3}$ rate, regression coefficients still converge at $n^{1/2}$ rate (Huang and Wellner, 1997)

Key assumption: Non-informative interval censoring

Non-informative interval censoring

Except for the requirement that $L_i < t_i \le R_i$, L_i and R_i contain no additional information about survival time.

Common violation

Sick patients are seen more often than healthy patients, so if $R_i - L_i$ is small, t_i is probably closer to L_i than R_i (expected survival time is shorter).

Implications

Estimates of baseline hazard might be wrong. How much does this affect estimates of regression coefficients?

Software

R packages

- CRAN survival view
- Anderson-Bergman (Preprint). icenReg: Regression Models for Interval Censored Data in R. Available <u>here</u> (also see the icenReg vignette).
- Gómez, G., Luz Calle, M., Oller, R., Langohr, K. (2009).
 Tutorial on methods for interval-censored data and their implementation in R. Statistical Modeling. 9: 259–297.
 Available here. (Does anyone have access?)

References

- Dempster, A. P., Laird, N. M., Rubin, D. B. (1977).
 Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society: Series B. 39: 1–38.
- Huang, J., Wellner, J. A. (1997). Interval censored survival data: a review of recent progress. In: Lin, D., Fleming, T., editors. Proceedings of the first Seattle symposium in biostatistics: survival analysis. New York: Springer-Verlag.
- Turnbull, B. W. (1976). The empirical distribution with arbitrarily grouped censored and truncated data. *Journal of* the Royal Statistical Society: Series B. 38: 290–295.
- Zhang, Z., Sun, J. (2010). Interval Censoring. *Statistical Methods in Medical Research*. 19: 53–70.

Appendix

Overview

This appendix outlines the details mentioned in earlier slides. I deal with the simple case where the time shift δ is the same for all patients. While not likely to be the case in practice, we I think it still provides some insights.

Notation and assumptions

Let the event times $T \sim F$, where $F(t) = \Pr(T \leq t)$. Let S(t) = 1 - F(t) be the survival function and suppose that \hat{S}_n is a consistent estimator of S for right censored data, such as the Kaplan-Meier estimator. That is, $\hat{S}_n(t) \to S(t)$ as $n \to \infty$. The subscript indexes \hat{S}_n by the number of observations $i = 1, \ldots, n$.

Appendix

Bias from assuming $\delta = 0$

Ignoring interval censoring is equivalent to assuming $\delta=0$. In this case, a patient's survival time is assumed to be R_i even though it is actually $t_i=R_i-\delta$. Consequently $\hat{S}_n(R_i)$ is an estimate of S not at time R_i , but at time $t_i=R_i-\delta$. That is,

$$\hat{S}_n(R_i) = \hat{S}_n(t_i + \delta) \rightarrow S(t_i).$$

Because S is monotone non-increasing and $\delta \geq 0$, we have $S(t_i) \geq S(t_i + \delta)$, which causes our estimate to be biased upward.

Appendix

Approximating the bias

This gives an asymptotic bias of

$$\mathsf{bias}_n(t_i + \delta) = \mathbb{E}[\hat{S}_n(t_i + \delta)] - S(t_i + \delta) \\ \rightarrow S(t_i) - S(t_i + \delta). \tag{1}$$

This shows that bias is a function of both the size of δ and the derivative of S (if S is nearly constant over $(t_i, t_i + \delta)$ then bias is near zero). To make this explicit (and assuming the density $f(t) = -\frac{d}{dt}S(t)dt$ exists at t_i) we can take a first order Taylor expansion of $S(t_i + \delta)$ about t_i to get that for sufficiently large n,

$$bias_n(t_i + \delta) \approx S(t_i) - (S(t_i) - \delta f(t_i))$$

= $\delta f(t_i)$. (2)

We show (1) in earlier slides, though (2) is very similar.