AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently amended) A method for improving computation efficiency in
2	solving using a computer system to solve a global optimization problem specified
3	by a function f and a set of equality constraints, the method comprising:
4	receiving a representation of the function f and the set of equality
5	constraints $q_i(\mathbf{x}) = 0$ $(i=1,,r)$ at the computer system, wherein f is a scalar
6	function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n);$
7	storing the representation in a memory within the computer system;
8	performing an interval global optimization process to compute guaranteed
9	bounds on a globally minimum value of the function $f(\mathbf{x})$ subject to the set of
10	equality constraints with improved computation efficiency;
11	wherein performing computations during interval global optimization
12	process involves using a special-purpose interval arithmetic unit for interval
13	computations;
14	wherein performing the interval global optimization process involves,
15	applying term consistency to the set of equality constraints
16	over a subbox X, and
17	excluding portions of the subbox X that can be shown to
18	violate any of the equality constraints;
19	wherein applying term consistency involves:
20	symbolically manipulating an equation within the computer
21	system to solve for a term, $g(x_j)$, thereby producing a modified

22	equation $g(x_j) = h(\mathbf{x})$, wherein the term $g(x_j)$ can be analytically
23	inverted to produce an inverse function $g^{-1}(y)$;
24	substituting the subbox X into the modified equation to
25	produce the equation $g(X'_j) = h(\mathbf{X})$;
26	solving for $X'_{j} = g^{-1}(h(\mathbf{X}))$; and
27	intersecting X'_{j} with the interval X_{j} to produce a new
28	subbox X +;
29	wherein the new subbox X + contains all solutions of the
30	equation within the subbox X, and wherein the size of the new
31	subbox X^+ is less than or equal to the size of the subbox X .
!	
1	2. (Original) The method of claim 1, wherein performing the interval
2	global optimization process involves:
3	preconditioning the set of equality constraints through multiplication by an
4	approximate inverse matrix ${\bf B}$ to produce a set of preconditioned equality
5	constraints;
6	applying term consistency to the set of preconditioned equality constraints
7	over the subbox X ; and
8	excluding portions of the subbox X that can be shown to violate any of the
9	preconditioned equality constraints.
1	3. (Original) The method of claim 1, wherein performing the interval
2	global optimization process involves:
3	keeping track of a least upper bound f_bar of the function $f(x)$;
4	unconditionally removing from consideration any subbox for which
5	$inf(f(\mathbf{x})) > f_bar;$
6	applying term consistency to the inequality $f(\mathbf{x}) # f_bar$ over the subbox \mathbf{X} ;
7	and

8	excluding portions of the subbox X that violate the inequality.
1	4. (Canceled)
1	5. (Original) The method of claim 1, wherein performing the interval
2	global optimization process involves:
3	applying box consistency to the set of equality constraints $q_i(\mathbf{x}) = 0$
4	(i=1,,r) over the subbox X ; and
5	excluding portions of the subbox X that violate the set of equality
6	constraints.
1	6. (Original) The method of claim 1, wherein performing the interval
2	global o+ptimization process involves:
3	evaluating a first termination condition;
4	wherein the first termination condition is TRUE if a function of the width
5	of the subbox X is less than a pre-specified value, ε_X , and the absolute value of the
6	function, f, over the subbox X is less than a pre-specified value, ε_F ; and
7	if the first termination condition is TRUE, terminating further splitting of
8	the subbox X .
1	7. (Original) The method of claim 1, wherein performing the interval
2	global optimization process involves performing an interval Newton step on the
3	John conditions.
1	8. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer system cause the computer system
2	to perform a method for improving computation efficiency in solving using a

4	computer system to solve a global optimization problem specified by a function f
5	and a set of equality constraints, the method comprising:
6	receiving a representation of the function f and the set of equality
7	constraints $q_i(\mathbf{x}) = 0$ ($i=1,,r$) at the computer system, wherein f is a scalar
8	function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n);$
9	storing the representation in a memory within the computer system;
10	performing an interval global optimization process to compute guaranteed
11	bounds on a globally minimum value of the function $f(x)$ subject to the set of
12	equality constraints with improved computation efficiency;
13	wherein performing computations during interval global optimization
14	process involves using a special-purpose interval arithmetic unit for interval
15	computations;
16	wherein performing the interval global optimization process involves,
17	applying term consistency to the set of equality constraints
18	over a subbox X, and
19	excluding portions of the subbox X that can be shown to
20	violate any of the equality constraints;
21	wherein applying term consistency involves:
22	symbolically manipulating an equation within the computer
23	system to solve for a term, $g(x_j)$, thereby producing a modified
24	equation $g(x_j) = h(\mathbf{x})$, wherein the term $g(x_j)$ can be analytically
25	inverted to produce an inverse function $g^{-1}(y)$;
26	substituting the subbox X into the modified equation to
27	produce the equation $g(X'_j) = h(X)$;
28	solving for $X'_{j} = g^{-1}(h(\mathbf{X}))$; and
29	intersecting X'_{j} with the interval X_{j} to produce a new
30	subbox X +;

31	wherein the new subbox X + contains all solutions of the
32	equation within the subbox X, and wherein the size of the new
33	subbox X^+ is less than or equal to the size of the subbox X .
1	9. (Original) The computer-readable storage medium of claim 8, wherein
2	performing the interval global optimization process involves:
3	preconditioning the set of equality constraints through multiplication by an
4	approximate inverse matrix B to produce a set of preconditioned equality
5	constraints;
6	applying term consistency to the set of preconditioned equality constraints
7	over the subbox X; and
8	excluding portions of the subbox X that can be shown to violate any of the
9	preconditioned equality constraints.
1	10. (Original) The computer-readable storage medium of claim 8, wherein
2	performing the interval global optimization process involves:
3	keeping track of a least upper bound f_bar of the function $f(x)$;
4	unconditionally removing from consideration any subbox for which
5	$inf(f(\mathbf{x})) > f_bar;$
6	applying term consistency to the inequality $f(\mathbf{x}) # f_bar$ over the subbox \mathbf{X} ;
7	and
8	excluding portions of the subbox X that violate the inequality.
1	11. (Canceled)
1	12. (Original) The computer-readable storage medium of claim 8, wherein
2	performing the interval global optimization process involves:

3	applying box consistency to the set of equality constraints $q_i(\mathbf{x}) = 0$
4	(i=1,,r) over the subbox X ; and
5	excluding portions of the subbox X that violate the set of equality
6	constraints.
1	13. (Original) The computer-readable storage medium of claim 8, wherein
2	performing the interval global optimization process involves:
3	evaluating a first termination condition;
4	wherein the first termination condition is TRUE if a function of the width
5	of the subbox X is less than a pre-specified value, ε_X , and the absolute value of the
6	function, f, over the subbox X is less than a pre-specified value, ε_F ; and
7	if the first termination condition is TRUE, terminating further splitting of
8	the subbox X .
1	14. (Original) The computer-readable storage medium of claim 8, wherein
2	performing the interval global optimization process involves performing an
3	interval Newton step on the John conditions.
1	15. (Currently amended) An apparatus that improves computation
2	efficiency in solving solves a global optimization problem specified by a function
3	f and a set of equality constraints, the apparatus comprising:
4	a receiving mechanism that is configured to receive a representation of the
5	function f and the set of equality constraints $q_i(\mathbf{x}) = 0$ ($i=1,,r$), wherein f is a
6	scalar function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n);$
7	a memory for storing the representation;
8	an optimizer that is configured to perform an interval global optimization

process to compute guaranteed bounds on a globally minimum value of the

10	function $f(\mathbf{x})$ subject to the set of equality constraints with improved computation
11	efficiency;
12	wherein the optimizer configured to perform computations during interva
13	global optimization process involves using a special-purpose interval arithmetic
14	unit for interval computations;
15	wherein the optimizer is configured to,
16	apply term consistency to the set of equality constraints
17	over a subbox X, and to
18	exclude portions of the subbox X that can be shown to
19	violate any of the equality constraints;
20	wherein while applying term consistency, the optimizer is configured to:
21	symbolically manipulate an equation to solve for a term,
22	$g(x_j)$, thereby producing a modified equation $g(x_j) = h(x)$, wherein
23	the term $g(x_j)$ can be analytically inverted to produce an inverse
24	function $g^{-1}(y)$;
25	substitute the subbox X into the modified equation to
26	produce the equation $g(X'_j) = h(X)$;
27	solve for $X'_{\underline{j}} = g^{-1}(h(\mathbf{X}))$; and to
28	intersect X'_j with the interval X_j to produce a new
29	subbox X +;
30	wherein the new subbox X + contains all solutions of the
31	equation within the subbox X, and wherein the size of the new
32	subbox X^+ is less than or equal to the size of the subbox X .
1	16. (Original) The apparatus of claim 15, wherein the optimizer is
2	configured to:

precondition the set of equality constraints through multiplication by an 3 approximate inverse matrix B to produce a set of preconditioned equality 4 5 constraints; apply term consistency to the set of preconditioned equality constraints 6 over the subbox X; and to 7 exclude portions of the subbox X that can be shown to violate any of the 8 9 preconditioned equality constraints. 17. (Original) The apparatus of claim 15, wherein the optimizer is 1 2 configured to: keep track of a least upper bound f bar of the function $f(\mathbf{x})$; 3 unconditionally remove from consideration any subbox for which 4 5 $inf(f(\mathbf{x})) > f_bar;$ 6 apply term consistency to the inequality $f(\mathbf{x}) # f_bar$ over the subbox \mathbf{X} ; 7 and to 8 exclude portions of the subbox X that violate the inequality. 1 18. (Canceled) 19. (Original) The apparatus of claim 15, wherein the optimizer is 1 2 configured to: 3 apply box consistency to the set of equality constraints $q_i(\mathbf{x}) = 0$ (i=1,...,r)4 over the subbox X; and to 5 exclude portions of the subbox X that violate the set of equality 6 constraints. 1 20. (Original) The apparatus of claim 15, wherein the optimizer is configured to: 2

- 3 evaluate a first termination condition;
- wherein the first termination condition is TRUE if a function of the width
- of the subbox X is less than a pre-specified value, ε_X , and the absolute value of the
- function, f, over the subbox X is less than a pre-specified value, ε_F ; and to
- 7 terminate further splitting of the subbox **X** if the first termination
- 8 condition is TRUE
- 1 21. (Original) The apparatus of claim 15, wherein the optimizer is
- 2 configured to perform an interval Newton step on the John conditions.