关于极限、连续性和可微三个章节的总结提纲

说明:

- 1、本提纲不是划定考试范围(也不会给大家划定范围)。本提纲中没有提到的 地方并不表示考试不会涉及。
 - 2、所举例题不一定具有代表性,更不是考试的模拟试题。
- 3、希望同学们学会总结,在总结中提高。充分理解书中内容的背景和含义,关注不同内容的关联性,掌握分析、证明、推导和计算,通过定理、性质的证明以及例题和习题的训练加深对内容的进一步理解。

第一章:极限

一、定义与性质:

1、定义: 对" $\varepsilon - N$ " 与 " $\varepsilon - \delta$ " 语言的理解,以及在一些证明、推导或叙述过程中的作用。这是基础,往往当没有外力可借,或很难说清楚问题的时候,回到原始的定义会看得更清楚。

注意当 $x \to \infty$ 时函数极限的表述。注意函数极限中左右极限的的概念。

2、性质:

唯一性。(数列和函数)极限的唯一性,保证定义的合理性。

局部性:

数列:收敛性只与充分大以后的项有关(即改变有限项不影响收敛性)

函数:收敛性只与 x_0 附近的函数值有关。

注意这里的"充分大"含义是, $\exists N$,对 n > N。

"附近"是指: $\exists \delta > 0$ 对 $0 < |x - x_0| < \delta$

有界性:收敛必有界(对函数极限来说是在 x_0 附近有界)

相容性: 极限运算与四则运算和函数复合的相容性。特别是复合函数的极限

$$\lim_{y \to y_0} f(y) = a, \lim_{x \to x_0} \phi(x) = y_0, \Longrightarrow \lim_{x \to x_0} f(\phi(x)) = a$$

"保序性":例如:

 $a_n \to a$, $a > 0 \Longrightarrow a_n > 0$ 对充分大的 n 成立。反之 $a_n > 0 \Longrightarrow a \ge 0$

 $f(x) \to a, (x \to x_0), \ a > 0 \Longrightarrow 在 x_0 附近有 f(x) > 0. 反之在 x_0 附近有 f(x) > 0 \Longrightarrow a \ge 0.$ (注意正反之间些微的差别!)

二、理论:

1、确界原理: 确界的表述(特别是类似" $\varepsilon - \delta$ " 语言的表述)和存在性;确界原理 \Longrightarrow 单调有界必收敛, \Longrightarrow 区间套定理。

2、列紧性: 有界数列必有收敛子列(注意证明方法)。

一个直接应用是判别极限不存在。例如,如果有两个子列极限不一致,或者一个子列发散,则数列发散(类似函数极限中利用左右极限是否相等的判别方法)。

- **3、Cauchy 收敛准则**:数列收敛以及函数或在一点或在无穷有极限的收敛准则。
 - 4、函数极限与数列极限的关系:

$$\lim_{x \to x_0} f(x) = a \Longrightarrow \forall x_n \to x_0, \lim_{n \to \infty} f(x_n) = a$$

这里 a 可以是有限数也可以是无穷。或判别极限不存在:若存在两个数列 x_n 和 y_n 使 得 $f(x_n)$ 和 $f(y_n)$ 的极限不相等(或有一个发散),则极限不存在。

例: 设 f(x) 在(a,b) 上连续,且 $\lim_{x\to b^-} f(x) = \infty$,证明 f(x) 在 (a,b) 上不一致连续。

证明: (反证)如果一致连续,则对 $\forall \varepsilon > 0$,一定 $\exists \delta > 0$ 当任何两点 x, x' 满足 $|x - x'| < \delta$ 时,就有 $|f(x) - f(x')| < \varepsilon$.

取数列 $x_n \in (a,b), x_n \to b^-$,则对于上述 $\delta > 0$,一定存在 N,当 n,m > N时,有 $|x_n - x_m| < \delta$ (Cauchy 收敛准则)

因此
$$|f(x_n) - f(x_m)| < \varepsilon$$

也就是 $f(x_n)$ 满足Cauchy收敛准则,所以 $\{f(x_n)\}$ 收敛。这与 $\lim_{x\to b^-} f(x) = \infty$ 矛盾。

三、计算:

- 1、三明治: 关键是估计不等式,如何收和放,原则是**收放适度,恰到好处**。在估计数列不等式中"算术平均大于几何平均"会经常用到。
 - 2、两个重要极限的应用:以下是两个极限以及其他等价的表现形式

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to \infty} x \sin \frac{1}{x} = 1$$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

- 一些极限的计算最终可归结到上述极限形式。
- **3、单调有界**:首先要证明单调增(或单调减)以及有上界(或有下界)。除了常规的方法外,可借助函数的单调增减给予证明。

例:书上第106页,第25题:设 $a \in (0,1)$, $b_1 = 1 - a$, $b_{n+1} = \frac{b_n}{1 - e^{-b_n}} - a$, 问 b_n 是否收敛?

分析: 欲证其收敛, 最好单调有界, 欲证单调, 借助函数

$$f(x) = \frac{x}{1 - e^{-x}} - a, \ x > 0$$

显然

$$f(x) = -\frac{0-x}{e^{-0} - e^{-x}} - a = e^{\xi} - a > 1 - a > 0$$

$$f'(x) = \frac{1 - (1+x)e^{-x}}{(1 - e^{-x})^2} > 0$$

这里用到了不等式 $e^x > 1 + x$. 因此 f(x) > 1 - a, $f(x) \nearrow$. 因为 $b_1 = 1 - a > 0$, $b_2 = f(b_1) > 1 - a = b_1$. (归纳)如果 $b_1 < b_2 < \cdots b_n$ 则

$$b_{n+1} - b_n = f(b_n) - f(b_{n-1}) = f'(\xi)(b_n - b_{n-1}) > 0$$

所以 $\{b_n\}$ \nearrow

如果 b_n 有上界, 记 $b_n \to b$ 因此 $b_n \leq b$, 则在 $b_{n+1} = f(b_n)$ 两边取极限得 f(b) = b.

因此要证 b_n 有上界, 即要证 f(x) - x = 0 有唯一解。为此设

$$g(x) = f(x) - x = \frac{x}{e^x - 1} - a$$

显然

$$g(0+0) = \lim_{x \to 0^+} g(x) = 1 - a > 0, \lim_{x \to +\infty} g(x) = -a < 0$$

且

$$g'(x) = \frac{(1-x)e^x - 1}{(e^x - 1)^2} < 0$$

这是因为从 $e^x > 1 + x$ 中,令 $x \to -x$ 得 $e^{-x} > 1 - x$, $\Longrightarrow (1 - x)e^x < 1$. 由零点定理以及 $g(x) \searrow$, 推得 g(x) 在 $(0, +\infty)$ 中有唯一解,记为 b.

下面要证明 $b \, \not\equiv b_n$ 的上界,显然 $b = f(b) > 1 - a = b_1$,(归纳)如果 $b > b_n$,利用 $f(x) \nearrow$,则 $b = f(b) > f(b_n) = b_{n+1}$,所以 $b \not\equiv b_n$ 的上界。

这样我们就证明了 b_n 单调增有上界 b,其中 b 是 f(x)-x=0 的唯一的零点。 因此 $b_n\to b$.

4、Stolz 定理和L'Hospital法则:主要解决 $\frac{0}{0}$ 和 $\frac{\infty}{\infty}$ 型的极限问题。只要下列等式右边极限存在,就能得到左边 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 的极限。

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n}, \quad (差商)$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}, \quad (徽商)$$

当然要注意数列和函数情形下的有关条件。除了 $\frac{0}{0}$ 和 $\frac{\infty}{\infty}$ 型的要求外对于数列, $\frac{0}{0}$ 型要求 b_n 严格递减, $\frac{\infty}{\infty}$ 要求数列 b_n 严格递增。对于函数要求 $g'(x) \neq 0$.

其他不定式可转化为上述两种不定式。

第二章:连续性

一、概念:

函数在一点 x_0 连续是函数在一点 x_0 极限的特殊情形。只是极限值等于函数在这点的函数值:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

极限的左右极限对应连续的左右连续以及三类间断点。

极限与四则运算和函数复合的相容性都继承下来,特别对连续函数

$$\lim_{y \to y_0} f(y) = f(y_0), \lim_{x \to x_0} \phi(x) = \phi(x_0) \Longrightarrow \lim_{x \to x_0} f(\phi(x)) = f(\phi(x_0))$$

只要 $y_0 = \phi(x_0)$.

但是要注意以下一点:一般函数只要自变量和因变量——对应,就有反函数。 但连续函数存在反函数充分必要条件是严格单调。

至此,我们得到如下结论:所有初等函数在其定义域中连续。

二、闭区间上连续函数:

介值性; 有界性; 达到最大、最小值; 值域是一个闭区间。

关键:灵活运用。例如上述性质对闭区间中任意两点之间也适用,即对于 $[x_1,x_2] \subset [a,b]$ 也成立。即便不是闭区间,如果可以化为闭区间上的问题,也可类似处理。例如,对于函数(前面例子中出现的函数)

$$g(x) = \frac{x}{e^x - 1} - a, \ x \in (0, +\infty)$$

定义在一个无穷的开区间 $(0, +\infty)$ 并有

$$g(0+0) = \lim_{x \to 0+} g(x) = 1 - a > 0, \lim_{x \to +\infty} g(x) = -a < 0$$

根据极限的性质,一定存在靠近 0 的一点 $x_1 > 0$ 以及充分大的一点 x_2 分别满足 $g(x_1) > 0$, $g(x_2) < 0$ 因此在 $[x_1, x_2]$ 有零点也就是在 $(0, +\infty)$ 内有零点.

三、一致连续:

概念与连续的区别。同时把握如何判断连续但不一致连续的方法。

$$\begin{split} f\Big|_{[a,b]} & \text{ 连续} \Longrightarrow f\Big|_{[a,b]} - \text{ 致连续} \,, \\ f\Big|_{[a,+\infty)} & \text{ 连续} \\ \text{ Lim}_{x\to\infty} f(x) = l \Longrightarrow f\Big|_{[a,+\infty)} - \text{ 致连续} \,. \\ f\Big|_{[a,b)} & \text{ 连续} \\ \text{ Lim}_{x\to b^-} f(x) = \infty \Longrightarrow f\Big|_{[a,b)} \\ \text{ 不一致连续} \,. \end{split}$$

证明: (第二条) $\forall \varepsilon > 0$ 由条件 $\lim_{x \to \infty} f(x) = l$, 并利用Cauchy 收敛准则得 $\exists M > 0$ 对于满足 x, x' > M 的点,有

$$|f(x) - f(x')| < \varepsilon$$

在区间 [a, M+1] 上,函数连续因此一致连续,所以存在 $\delta' > 0$ 使得对于 $x, x' \in [a, M+1]$ 中的两点 x, x', 只要 $|x-x'| < \delta'$, 就有 $|f(x) - f(x')| < \varepsilon$

取 $\delta = \min\{\delta', 1\}$ 则对于任意的 $x, x' \in [a, +\infty)$ 只要 $|x - x'| < \delta$, 要么 $x, x' \in [a, M+1]$ 要么 x, x' > M, 因此都有

$$|f(x) - f(x')| < \varepsilon$$

这里为了防止出现 x < M < x' 时无法判断的问题,做了上述技术处理。一般来说如果考虑有接点的情况,上述处理是常用的,避免出现在跨界处无法说清楚的现象出现。

第三章: 微分

一、导数:

差商 $g(x) = \frac{f(x) - f(x_0)}{x - x_0}, \ x \neq x_0$ 的极限

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

几何意义: 斜率,切线,以及切线方程。直线方程: 过两点 $M_1(x_1,y_1), M_2(x_2,y_2)$ 的直线方程:

 $y = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$, 其中 $\frac{y_2 - y_1}{x_2 - x_1}$ 是斜率。

过一点 $M_0(x_0,y_0)$ 及沿固定方向(由与x 轴正向夹角 α 刻画)的直线方程

 $y = y_0 + \tan \alpha (x - x_0)$

f(x) 的切线方程 $y = f(x_0) + f'(x_0)(x - x_0)$

计算:四则运算、复合函数、反函数的求导规则和微分规则

⇒ 初等函数在其定义域内可导(可微)

高阶导数的计算

隐函数的求导(微分)

参数方程表示函数的求导(微分)(特别注意参数方程表示的高阶导数,要理解这一点首先要理解参数方程表示的导数是怎么来的,对二阶情形要会推导)

二、理论:

1、微分中值定理:这部分由一系列定理组成: Lagrange; Fermat; Rolle; Cauchy。 其中微分中值定理最为重要,因此又称为微分基本定理。这些定理的应用十分广 泛,这里仅举一例。

例:设 $f\Big|_{[a,b]}$ 连续, $f\Big|_{(a,b)}$ 二阶可导。记 $M_1(a,f(a)),\ M_2(b,f(b))$ 若线段 $\overline{M_1M_2}$ 与 $y=f(x),\ x\in[a,b]$ 在 (a,b) 内有交点,则存在 $\xi\in(a,b)$ 使得 $f''(\xi)=0$

证明: 设交点为 $M(c, f(c)), c \in (a, b)$

$$\implies \exists \xi_1 \in (a,c), f'(\xi_1) = \frac{f(c) - f(a)}{c - a}, \ \exists \xi_2 \in (c,b), f'(\xi_2) = \frac{f(b) - f(c)}{b - c}$$

因为 M 在 $\overline{M_1M_2}$ 上, 所以线段 $\overline{M_1M}$ 与线段 $\overline{MM_2}$ 的斜率相等, 所以

$$f'(\xi_1) = f'(\xi_2) \Longrightarrow \exists \xi \in (\xi_1, \xi_2) \subset (a, b)$$
 使得 $f''(\xi) = 0$

例:证明在 (a,b) 上无界的可微函数,其导函数在 (a,b) 上也一定无界。

证明:由于 $f\Big|_{(a,b)}$ 无界,因此对任意的正整数 n,一定存在 $x_n \in (a,b)$ 使得 $|f(x_n)| \ge n$,即 $\lim_{n\to\infty} f(x_n) = \infty$

假如导函数有界: $|f'(x)| \leq M$, $x \in (a,b)$, 则任取 $x_0 \in (a,b)$ 有

 $|f(x_n) - f(x_0)| = |f'(\xi)(x_n - x_0)| \le M(b - a) \Longrightarrow |f(x_n)| \le M(b - a) + |f(x_0)|$ 矛盾。

2、导函数的介值性: (注意不需要假设导函数是连续的)

左右导数与导函数的左右极限之间的关系 $f'_{+}(x_0) = \lim_{x \to x_0^+} f'(x)$. 从而推出导函数的间断点不能够有第一类间断。

介值性: f'(x) 能取到介于 $f'(x_1)$ 和 $f'(x_2)$ 之间的任何值。

我们将在Taylor展开中给出一个导函数介值性定理的应用。

三、应用:

进一步了解函数的性态。

1、确定 f(x) 的单调区间:

2、确定驻点是否是极值点: 设 $f'(x_0) = 0$

若在 x_0 左侧 $f' \ge 0$, 右侧 $f' \le 0 \Longrightarrow f(x_0)$ 是极大值。

若在 x_0 左侧 $f' \le 0$, 右侧 $f' \ge 0 \Longrightarrow f(x_0)$ 是极小值。

 $f''(x_0) < 0 \Longrightarrow f(x_0)$ 极大; $f''(x_0) > 0 \Longrightarrow f(x_0)$ 极小。

3、确定凸凹性和拐点:

 $f'' > 0 \Longrightarrow f$ 凸, $f'' < 0 \Longrightarrow f$ 凹。 $f''(x_0) = 0$ 左右两侧分别凸凹,拐点。

4、凸性: 定义及其等价的不等式。在等价的不等式中

$$\frac{f(x_1) - f(x)}{x_1 - x} \le \frac{f(x) - f(x_2)}{x - x_2}$$

是本质的, 夹在两者之间的是上述结果的推论。

5、曲率: 一是关于 $y=f(x), x\in [a,b]$ 曲率的计算,二是由参数方程表示的曲线 $\begin{cases} x=\varphi(t), \\ t\in [\alpha,\beta] \text{ 曲率的计算}, \\ y=\psi(t), \end{cases}$

在应用中,关键是综合多方面知识灵活掌握。比如求函数的零点问题,既可以用连续函数的介值定理,也可以采取求导分析单调或极大极小值给出。

例: 讨论 e^x 与 x^a , a > 0 在 x > 0 的交点.

解: 所谓交点即求 $e^x - x^a = 0$ 的根,等价于讨论 $f(x) = e^{\frac{x}{a}} - x$ 的零点问题。 显然 f(0) = 1 > 0, $f(+\infty) = \lim_{x \to +\infty} f(x) = +\infty$ (两端大于零)

$$f'(x)=\frac{1}{a}e^{\frac{x}{a}}-1,$$
 驻点 $x_0=a\ln a,\, f(x_0)=a(1-\ln a)$ 因此是极小值(最小值)

 $f''(x) = \left(\frac{1}{a}\right)^2 e^{\frac{x}{a}} > 0$, f(x) 是凸函数 (x > 0) 综上分析

 $f'(x) < 0(x < x_0) \Longrightarrow f(x) \searrow (x < x_0);$

$$f'(x) > 0(x > x_0) \Longrightarrow f(x) \nearrow (x < x_0).$$

结论: 当 a > e 时, $f(x_0) = a(1 - \ln a) < 0$,因此f(x) 分别在 $[0, x_0]$ 和 $[x_0, +\infty)$ 各有一个零点,共两个零点。当 a = e 时, $f(x_0) = 0$ 一个零点。当 0 < a < e 时, $f(x) \geq f(x_0) > 0$ 没有零点。

例: 再补充同学在QQ里提出的题目。设 f(x) 二阶可导, 2f(x) + f''(x) = -xf'(x),证明 f(x) 和 f'(x) 都有界

分析: 这道题看上去有点无从下手的感觉。其实要证明 f(x) 和 f'(x) 都有界最简单的想法是它们的平方和 $f^2(x) + f'^2(x)$ 有界,因此求导 2f(x)f'(x) + 2f'(x)f''(x). 你发现想利用条件还差一点系数,于是考虑

$$g(x) = f^{2}(x) + \frac{1}{2}f^{2}(x)$$

的有界性, 求导得

$$g'(x) = (2f(x) + f''(x))f'(x) = -xf'^{2}(x)$$

因此 g'(0) = 0,

 $x > 0 \Longrightarrow g'(x) \le 0 \Longrightarrow g(x)$ 单调减。

 $x < 0 \Longrightarrow g'(x) \ge 0 \Longrightarrow g(x)$ 单调增。

因此 g(x) 在 x=0 取到最大值,即 $f^2(x)+\frac{1}{2}f'^2(x)\leq f^2(0)+\frac{1}{2}f'^2(0)$,因此 f(x) 和 f'(x) 都有界。

关于第三章综合习题两道题的解法如下。

例: (P142, 第8题)设 f(x) 在 [0,1] 上可导, $f(0)=1, f(1)=\frac{1}{2}$. 求证存在 $\xi \in (0,1)$ 使得

$$f^2(\xi) + f'(\xi) = 0$$

证明

1、若 f(x) 在 [0,1] 上无零点: 令

$$F(x) = x - \frac{1}{f(x)}, \ x \in [0, 1]$$

则 F(x) 满足

$$F(0) = F(1) = -1, \ F'(x) = 1 + \frac{f'(x)}{f^2(x)}$$

根据 Rolle 定理, 推得存在 $\xi \in (0,1)$, 使得 $F'(\xi) = 0$, 也就是

$$f^{2}(\xi) + f'(\xi) = 0.$$

2、若 f(x) 在 [0,1] 上有唯一的一个零点 ξ : 显然 $\xi \in (0,1)$,且是最小值点,所以

$$f(\xi) = 0, \ f'(\xi) = 0$$

结论显然成立。

3、若 f(x) 在 [0,1] 上有超过两个及以上的零点:记

$$E = \{x \mid x \in [0, 1], f(x) = 0\}$$

因为 f(0) = 1, $f(1) = \frac{1}{2}$, 所以 $E \subset (0,1)$. 分别记 $a = \inf E$, $b = \sup E$.

第一步, 证明 a, b 也是零点。这是因为 a 是 E 的下确界, 如果 $f(a) \neq 0$, 那么, 对任意的 $\frac{1}{n}$, $a + \frac{1}{n}$ 不是下确界, 因此存在零点 $x_n \in E$, 使得

$$a < x_n < a + \frac{1}{n}, \ f(x_n) = 0$$

也就是

$$\lim_{n \to \infty} x_n = a, \ f(x_n) = 0$$

由函数的连续性可知

$$f(a) = \lim_{n \to \infty} f(x_n) = 0.$$

同理可证 b 也是 f(x) 的零点。

第二步,要证明在区间 [0,a) 和 (b,1] 上,有 $f'(a) \le 0$, $f'(b) \ge 0$.这是因为在 [0,a) 上 f(x) > 0,在 (b,1] 上 f(x) > 0. 所以

$$f'(a) = f'_{-}(a) = \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^{-}} \frac{f(x)}{x - a} \le 0$$

同理可证 $f'(b) \ge 0$.

如果 $f'(a) \le 0$, $f'(b) \ge 0$ 中有一个等号成立, 那么 $f^2(a) + f'(a) = 0$ 或 $f^2(b) + f'(b) = 0$. 结果自然成立. 否则有 f'(a) < 0, f'(b) > 0.

第三步,因为 f'(a) < 0,由

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^+} \frac{f(x)}{x - a} = f'_+(a) = f'(a) < 0$$

得,存在 $\delta > 0$,使得

$$f(x) < 0, \ a < x < a + \delta$$

记

$$\bar{a} = \inf\{x \mid f(x) = 0, \ a + \delta < x < b\},\$$

那么在 $a < x < \bar{a}$ 中, f(x) < 0 令

$$F(x) = x - \frac{1}{f(x)}, \ x \in (a, \bar{a})$$

那么

$$\lim_{x \to a^+} F(x) = \lim_{x \to \bar{a}^-} F(x) = -\infty$$

所以 F(x) 在 (a,\bar{a}) 中有最大值点 $\xi \in (a,\bar{a})$, 所以

$$F'(\xi) = 0$$
, $\mbox{II} f^2(\xi) + f'(\xi) = 0$.

证毕。

说明 在第二步中,令 $g(x) = f^2(x) + f'(x)$,则 g(a) < 0,g(b) > 0。因为 $f^2(x)$ 连续,所以是某个函数的导函数,不妨设 $F'(x) = f^2(x)$,这样 g(x) = F'(x) + f'(x) = (f(x) + f(x))' 是 F(x) + f(x) 的导函数,利用导函数 g(x) = F'(x) + f'(x) = (f(x) + f(x))'的介值性。直接可以得到存在 $\xi \in (a,b)$,使得 $g(\xi) = 0$.

例: P142 综合习题第19题。

设 a>1, 函数 $f:(0,+\infty)\to(0,+\infty)$ 可微. 求证存在数列 $\{x_n\},\ x_n>0,\ x_n\to+\infty$, 使得

$$f'(x_n) < f(ax_n).$$

证明 采取反证法。假如不存在题目所示的数列,那么存在 $x_0 > 0$, 使得

$$f'(x) \ge f(ax), \ x \ge x_0.$$

推得 f'(x) > 0 $(x \ge x_0)$, 即函数在 $x \ge x_0$ 严格单调增。因为 a > 1, 所以只要取充分大的 $x > \frac{1}{a-1}$, 就有 ax > x+1. 那么利用微分中值公式知存在 $x < \xi < x+1$ 使得

$$f(x+1) - f(x) = f'(\xi) \ge f(ax) > f(x+1),$$

推得 f(x) < 0, 矛盾。

四、Taylor 展开:

1、如何展开: 这里唯一性非常重要。也就是说不管用何种方法得到一个 n 次多项式 $T_n(x)$, 只要它与 f(x) 的误差是 $x \to x_0$ 时的高阶无穷小 $o((x-x_0)^n$. 则这个多项式一定是Taylor 多项式。

2、如何估计余项:

$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, \ \xi = x_0 + \theta(x - x_0), \ 0 < \theta < 1$$

3、如何利用Taylor公式计算极限和计算近似值:

例: 书上第139页,第17题。是给出 $f(x) = x \cos x$ 在 $[0, \frac{\pi}{2}]$ 上尽可能小的上界。 按照常规做法,对 f(x) 求导 $f'(x) = \cos x - x \sin x$, $f''(x) = -(2 \sin x + x \cos x) < 0$, f''(0) = 0。因此在驻点 $f'(x_0) = 0$ 处取到极大。因为 f(x) > 0, $0 < x < \frac{\pi}{2}$, $f(0) = f(\frac{\pi}{2}) = 0$,所以极大值点也是最大值点。函数值就是最小的上界。

但是从 $f'(x) = \cos x - x \sin x = 0$ 难以解出具体极值点,更难以计算极值。为此利用Taylor展开计算近似值。因为二阶导数是负的,所以

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\xi)}{2}(x - x_0)^2 \le f(x_0) + f'(x_0)(x - x_0), \ (x \in [0, \frac{\pi}{2}])$$

为求一个具体的上界,不妨分别选择在 $x_0 = 0$; $\frac{\pi}{4}$; $\frac{\pi}{3}$; $\frac{\pi}{2}$ 处展开.

在 $x_0 = 0$: $f(x) \le 0 + x \le \frac{\pi}{2}$,

在
$$x_0 = \frac{\pi}{4}$$
: $f(x) \le f(\frac{\pi}{4}) + f'(\frac{\pi}{4})(x - \frac{\pi}{4}) = \frac{\sqrt{2}}{2}(\frac{\pi}{4} + (1 - \frac{\pi}{4})(\frac{\pi}{2} - \frac{\pi}{4}))$.

在
$$x_0 = \frac{\pi}{3}$$
: $f(x) \le \frac{\pi}{6} + (\frac{1}{2} - \frac{\pi}{2\sqrt{3}})(x - \frac{\pi}{3}) \le \frac{\pi}{6} + (\frac{\pi}{2\sqrt{3}} - \frac{1}{2})\frac{\pi}{3}$

在
$$x_0 = \frac{\pi}{2}$$
: $f(x) \le -\frac{\pi}{2}(x - \frac{\pi}{2}) \le \frac{\pi^2}{4}$

具体比比看,那个上界最小?

4、作为Lagrange中值公式的推广加以应用:

例: 设f(x) 二阶可导,证明,存在 $\xi \in (a,b)$ 使得

$$f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) = \frac{1}{4}f''(\xi)(b-a)^2$$

证明: 在 $x_0 = \frac{a+b}{2}$ 展开,并在展开式中分别取 x = a, x = b

$$f(a) = f\left(\frac{a+b}{2}\right) + f'\left(\frac{a+b}{2}\right)\left(\frac{a-b}{2}\right) + \frac{1}{2}f''(\xi_1)\left(\frac{a-b}{2}\right)^2$$
$$f(b) = f\left(\frac{a+b}{2}\right) + f'\left(\frac{a+b}{2}\right)\left(\frac{b-a}{2}\right) + \frac{1}{2}f''(\xi_2)\left(\frac{a-b}{2}\right)^2$$

两式相加得

$$f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) = \frac{f''(\xi_1) + f''(\xi_2)}{2} \frac{(b-a)^2}{4}$$

因为 $\frac{f''(\xi_1) + f''(\xi_2)}{2}$ 介于 $f''(\xi_1)$ 和 $f''(\xi_2)$ 之间,由导函数的介值性可知,存在 ξ 介于 ξ_1 和 ξ_2 之间,使得

$$f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) = \frac{f''(\xi_1) + f''(\xi_2)}{2} \frac{(b-a)^2}{4} = f''(\xi) \frac{(b-a)^2}{4}$$