CS3331 – Assignment 3 due Nov. 26, 2019, (latest to submit: Nov. 29, 11:55pm)

1. (10pt) Consider the alphabet $\Sigma = \{a, b, c\}$ and define the function $succ : \Sigma^* \to \Sigma^*$, succ(w) is the word immediately following w in lexicographic order. Construct a deterministic Turing machine M that computes the function succ, that is, M starts with the initial configuration $(s, \underline{\square}w)$ and halts with the configuration $(h, \underline{\square}succ(w))$. Describe M in details using a directed graph whose edges are labelled by transitions (such as the one in Example 17.2, p. 268 of textbook).

Solution:

2. (10pt) Construct a deterministic Turing machine M that adds one to its binary input if it is even and subtracts one if it is odd. M starts with the initial configuration $(s, \underline{\square}w)$, where $w \in \{0, 1\}^*$; the binary input w is interpreted as an integer number. Possible leading 0's have to be removed as well. The machine halts in the appropriate configuration $(h, \underline{\square}(w \pm 1)_{(2)})$, where $w_{(2)}$ is the binary representation of w.

Here are some examples of M's behaviour:

$$(s, \underline{\square}) \vdash^* (h, \underline{\square} \mathbf{1})$$

$$(s, \underline{\square}000) \vdash^* (h, \underline{\square}1)$$

$$(s, \square 01) \vdash^* (h, \square 0)$$

$$(s, \Box 111) \vdash^* (h, \Box 110)$$

$$(s, \Box 001100) \vdash^* (h, \Box 1101)$$

Describe M using the macro language (such as the one in Example 17.8, p. 275 of textbook).

Solution:

- 3. (20pt) Construct a Turing Machine M that semidecides, but does not decide, each of the following languages over the alphabet $\Sigma = \{a, b\}$:
 - (a) $L_1 = \{a\},\$
 - (b) $L_2 = \Sigma^*$,
 - (c) $L_3 = \emptyset$.

In each case, describe M using the macro language.

Solution:

(a) The machine accepts a and loops for any other input:

- (b) This is impossible. A machine semideciding Σ^* would accept everything, thus deciding Σ^* .
- (c) The machine always loops, accepting nothing:

4. (20pt) Describe in clear English a Turing machine that semidecides the language

 $L = \{ < M > \mid M \text{ accepts the binary encodings of at least 3 prime numbers} \}$.

Solution:

TM that semidecides L:

- 1. Generate all binary encodings of natural numbers in lexicographical order.
- 2. For each number, check if it is prime and keep the primes only.
- 3. On input $\langle M \rangle$, run M on all primes in dovetailing mode.
- 4. If three computations accept, then accept.
- 5. (20pt) Is the set SD closed under:
 - (a) Intersection?
 - (b) Concatenation?

Prove your answers. Clear English description of any Turing machines is sufficient. (That is, you don't have to effectively build the machine, instead explain how the machine behaves.)

Solution:

(a) SD is closed under intersection. To prove this, assume $L_1, L_2 \in SD$ are arbitrary semidecidable languages and assume they are semidecided by M_1 and M_2 , resp. We construct M_{\cap} that semidecides $L_1 \cap L_2$ as follows:

```
On input w
Run M_1 on w
If M_1 rejects, then reject
If M_1 accepts, then
Run M_2 on w
If M_2 rejects, then reject
If M_2 accepts, then accept
Another solution for M_{\cap}:
```

On input w

Run in parallel M_1 on w and M_2 on wIf both accept, then accept

(b) SD is closed under concatenation. To prove this, assume $L_1, L_2 \in SD$ are arbitrary semidecidable languages and assume they are semidecided by M_1 and M_2 , resp. We construct M_c that semidecides L_1L_2 as follows:

On input w

Run in parallel, in dovetailing mode:

For each $w = w_1 w_2, w_1, w_2 \in \Sigma^*$

Run M_1 on w_1 and M_2 on w_2

If both accepts, then accept

Another solution for M_c :

On input w

Nondeterministically guess a factorization $w = w_1 w_2, w_1, w_2 \in \Sigma^*$

Run in parallel M_1 on w_1 and M_2 on w_2

If both accepts, then accept

- 6. (20pt) Let L_1 and L_2 be two languages that are not decidable.
 - (a) Is it possible that $L_1 L_2$ is regular and $L_1 L_2 \neq \emptyset$? Prove your answer.
 - (b) Is it possible that $L_1 \cup L_2$ is decidable but $L_1 \neq \neg L_2$? Prove your answer.

Solution:

- (a) Yes. Consider TM M_L that always loops. Then $<\!M_L\!> \notin H_{\text{ANY}}$. Choose $L_1 = H_{\text{ANY}} \cup \{<\!M_L\!>\}$, $L_2 = H_{\text{ANY}}$. Since H_{ANY} is not decidable, L_1 and L_2 are also not decidable. But $L_1 L_2 = \{< M_L > \}$ is finite, hence regular; and nonempty.
- (b) Yes. Choose $L_1 = H_{ANY} \cup \{\langle M_L \rangle\}$, $L_2 = \neg H_{ANY}$. Then $L_1 \cup L_2 = \{\langle M \rangle | M \text{ is a TM}\}$ is decidable but $L_1 \neq \neg L_2$.

Note Submit your solution as a (typed) pdf file on owl.uwo.ca.