2. Gün1. Ders:SIR modeli

Bulaşıcı hastalık dinamiklerinin R'de modellenmesi üzerine kısa kurs

Ankara, Türkiye, Eylül 2025

Dr Juan F Vesga

Oturumun amaçları

- SIR modelinde bulaşma sürecinin ne olduğunu öğrenmek
- SIR modelinin varsayımlarını anlamak
- Enfeksiyon kuvvetini ve bileşenlerini tanımlamak

SIR modeli

- Bir kohort modelinde doğrusal geçişleri inceledik I -> R
- Bulaşma sürecini ne başlatır?

Enfeksiyon Kuvveti (FOI)

- FOI'deki bir artış herhangi bir S'nin enfekte bir insanla karşılaşma ihtimalindeki artışı yansıtmalıdır
- Bunu nasıl yaparız?

$$\lambda =$$

SIR modelindeki geçişler

I'dan R'ye doğrusal geçiş: $I\gamma$

S'den I'ya doğrusal olmayan geçiş:

$$S\lambda = S\beta \frac{I}{N}$$

Bu, bulaşma modelinin motorudur!!

SIR için diferansiyel denklemler

SIR modelinden öğrenilen dersler

- 1) $\lambda = pc \frac{I}{N}$ ise c 'nin daha büyük olduğu bir popülasyonda aynı enfeksiyon daha yüksek bir enfeksiyon kuvveti ile sonuçlanacaktır
- 2) Benzer şekilde, p 'yi etkileyen patojenin biyolojik faktörleri farklı enfeksiyonların aynı popülasyonda farklı FOI'lara sahip olacağı anlamına gelir

SIR modelindeki varsayımlar

- Sλ geçişi enfeksiyon riskinde homojenlik olduğunu varsayar. (nedenini düşünün!)
- 2) $\lambda = pc \frac{I}{N}$ ise bir kişinin her gün karşılaşabileceği enfekte kişi oranının prevalansa eşit olduğu anlamına gelir (iyi karışmış popülasyon).
 - a) Enfekte (hasta insan) oranının izole edilmesini veya daha az temas içinde olmasını beklemeliyiz
 - b) Bu, temasta homojenlik varsayımıdır.
- 3) p çok daha ayrıntılı düzeyde tahmin edilebilir (nedenini düşünün!)

Şimdiye kadar bilmemiz gerekenler

- SIR modelinin ne olduğu
- Enfeksiyon kuvvetinin ne olduğu
- Enfeksiyon kuvvetinin bileşenleri
- SIR modelinin arkasındaki temel varsayımlar