Chương 3 Tầng liên kết dữ liệu MẠNG MÁY TÍNH NÂNG CAO

Mục tiêu

□Điều khiển truy cập đường truyền

□Điều khiển liên kết

Application

Presentation

Session

Transport

Network

Data link

Physical

Nội dung

- □Giới thiệu
- □Kỹ thuật phát hiện và sửa lỗi
- □Điều khiển truy cập đường truyền
- □ARP
- □Ethernet

3

Giới thiệu - 1

- ☐ Link: "kết nối/liên kết"giữa các nodes kề nhau
 - Wired
 - Wireless
- □ Data link layer: chuyển gói tin (frame) từ một node đến node kề qua 1 link
 - Mỗi link có thể dùng giao thức khác nhau để truyền tải frame

Giới thiệu - 2

□Tai nơi gởi:

- Nhận các packet từ tầng network → đóng gói thành các
- Truy cập đường truyền (nếu dùng đường truyền chung)

□Tai nơi nhân:

- Nhận các frame dữ liệu từ tầng physical
- Kiểm tra lỗi

Application

Presentation

Session

Transport

Network

Data link

Physical

Chuyển cho tầng network

5

Giới thiệu - 3

□LLC (Logical Link Control)

- Điều khiển luồng
- Kiểm tra lỗi
- Báo nhận

■MAC (Media Access Control)

Truy cập đường truyền

Logical Link Control

Media Access Control

6

Nội dung

- □Giới thiệu
- □Kỹ thuật phát hiện và sửa lỗi
- □Điều khiển truy cập đường truyền
- □ARP
- □Ethernet

7

Kỹ thuật phát hiện và sửa lỗi - 1

EDC= Error Detectio D = Data

Kỹ thuật phát hiện và sửa lỗi - 2

□Các phương pháp:

- Parity Check (bit chan le)
- Checksum
- Cylic Redundancy Check (CRC)

9

Parity Check

□Dùng thêm một số bit để đánh dấu tính chẵn lẻ

- Dựa trên số bit 1 trong dữ liệu
- Phân loại:
 - Even Parity: số bit 1 phải là một số chẵn
 - Odd Parity: số bit 1 phải là một số lẻ

□Các phương pháp:

- Parity 1 chiều
- Parity 2 chiều
- Hamming code

Parity 1 chiều - 1

- □Số bit parity: 1 bit
- □Chiều dài của dữ liệu cần gởi đi: d bit
- → DL gởi đi sẽ có (d+1) bit
- □Bên gởi:
 - Thêm 1 bit parity vào dữ liệu cần gởi đi
 - Mô hình chẵn (Even parity)
 - số bit 1 trong d+1 bit là một số chẵn
 - Mô hình lẻ (Odd Parity)
 - <u>" a bits of Parity bits (mô hình ch</u>ăn)
 - o (mô hình lẻ)

11

Parity 1 chiều - 2

- ☐ Bên nhận:
 - Nhận D' có (d+1) bits
 - Đếm số bit 1 trong (d+1) bits = x
 - Mô hình chẵn: nếu x lẻ → error
 - Mô hình lẻ: nếu x chẵn → error
- ☐ Ví dụ: nhận 0111000110101011
 - Parity chẵn: sai
 - Parity lé: đúng
 - Dữ liệu thật: 011100011010101
- □ Đặc điểm:
 - Phát hiện được lỗi khi số bit lỗi trong dữ liệu là số lẻ
 - Không sửa được lỗi

Parity 2 chiều - 1

- □Dữ liệu gởi đi được biểu diễn thành ma trận NxM
- \square Số bit parity: (N + M + 1) bit
- □Đặc điểm:
 - Phát biện và sửa được 1 bit lỗi
- □Bên gởi
 - Biểu diễn dữ liêu cần gởi đi thành ma trân NxM
 - Tính giá trị bit parity của từng dòng, từng cột

13

Parity 2 chiều - 1

Parity 2 chiều - 2

□Ví dụ:

- Dùng parity chẵn
- N = 3, M = 5
- Dữ liệu cần gởi đi: 10101 11110 01110

15

Parity 2 chiều - 1

□Bên nhận:

- Biểu diễn dữ liệu nhận thành ma trận (N+1)x(M+1)
- Kiểm tra tính đúng đắn của từng dòng/cột
- Đánh dấu các dòng/cột dữ liệu bị lỗi
- Bit lỗi: bit tại vị trí giao giữa dòng và cột bị lỗi

Parity 2 chiều - 2

□Ví dụ:

Dùng parity chẵn

Không có lỗi Dữ liệu thật: 10101 11110 01110

Có lỗi Dữ liệu thật: 10101 11110 01110

17

0001

Check sum - 1

■ Bên gởi

- d bits trong DL gởi đi được xem như gồm N số k bits: x₁, x₂, ..., x_N
- Tính tổng $X = x_1 + x_2 + ... + x_N$
- Tính **bù 1** của X → giá trị checksum

```
      □ VD: Dữ liệu cần gởi: 1110 0110 0110 0110, k

      = 4
      1110, 0110, 0110

      • 0101, 0110, 0110
      0110

      • ....
      0100

      • Sum = 0010
      0100

      • Checksum = 1101
      120: 18
```

Check sum - 1

□Bên nhận:

- tính tổng cho tất cả giá trị nhận được (kể cả giá trị checksum).
- Nếu tất cả các bit là 1, thì dữ liệu nhận được là đúng; ngược lại: có lỗi xảy ra

□VD:

- nhân: 1110 0110 0110 0110 1101
 - Sum = 1111
 - → đúng
- Nhân: 1010 0110 0110 0110 1101
 - Sum = 1011
 - → sai

19

Nội dung

- □Giới thiêu
- □Kỹ thuật phát hiện và sửa lỗi
- □Điều khiển truy cập đường truyền
- □ARP
- □Ethernet

Điều khiển truy cập đường truyền -

□Loại liên kết (link)

- Điểm đến điểm (Point-to-point)
 - Dialup
 - Női trực tiếp giữa: host host, host SW
- Chia se (Shared)

21

Điều khiển truy cập đường truyền -

□Trong môi trường chia sẻ

Hạn chế xảy ra collision

- → Giao thức tầng Data link: Quyết định cơ chế để các node sử dụng môi trường chia se
 - khi nào được phép gởi DL xuống đường truyền
 - Làm sao phát hiện xảy ra Collision

Điều khiển truy cập đường truyền - 3

□Các phương pháp:

- Phân chia kênh truyền (Channel partition protocols)
- Tranh chấp (Random access protocols)
- Luân phiên (Taking-turns protocols)

23

Phân chia kênh truyền

- □TDM (Time Division Multiplexing)
- □FDM (Frequency Division Multiplexing)
- □CDMA (Code Division Multiple Access)

TDM

□Ý tưởng:

- Chia kênh truyền thành các khe thời gian
- Mỗi khe thời gian chia thành N khe nhỏ
- Mỗi khe nhỏ dành cho 1 node trong mạng
- → Mỗi node có băng thông: R/N

25

FDM

□Ý tưởng:

- Chia kênh truyền thành N kênh truyền nhỏ
- Mỗi kênh truyền dành cho 1 node
- → Mỗi node có băng thông: R/N

CDMA - 1

□Ý tưởng:

- Mỗi node có 1 code riêng
- Bên gởi: mã hoá dữ liệu trước khi gởi bằng code của mình và bên nhận phải biết code của người gởi
- 1 bit DL được mã hoá thành M bits
- Kênh truyền: chia thành từng các khe thời gian, mỗi bit truyền trong 1 khe

27

CDMA - 2

CDMA - 3

29

Tranh chấp

- □Các node chiếm trọn băng thông khi truyền
- □Lắng nghe đụng độ sau khi truyền
- ☐ Một số phương pháp:
 - ALOHA (Slotted, Pure)
 - CSMA (Carrier Sense Multiple Access)

Pure ALOHA

- ☐Mỗi node có thể bắt đầu truyền dữ liệu bất cứ khi nào node có nhu cầu
- Nếu phát hiện xung đột → chờ 1 khoảng thời gian rồi truyền lại

31

Slotted ALOHA

□Giả thiết:

- Các frame có kích thước tối đa là L bits
- □Kênh truyền: chia thành các khe thời gian có kích thước L/R (s)
- □Khi 1 node có nhu cầu truyền dữ liệu: phải chờ đến thời điểm bắt đầu của 1 khe mới được truyền
 - cần đồng bộ thời gian giữa các node
- ■Nếu đụng độ xảy ra: truyền lại với xác suất là p

CSMA - 1

□Lắng nghe đường truyền trước khi truyền:

- Đường truyền rảnh: truyền dữ liệu
- Đường truyền bận: chờ

□Lắng nghe đường truyền sau khi truyền

- Nếu đung đô xảy ra:
 - dừng truyền
 - đợi 1 khoảng thời gian và truyền lại

33

CSMA - 2

□Đánh giá:

- · Các node có quyền ngang nhau
- Chi phí cao
- Tốc độ: chấp nhận được nếu số lượng node ít
- Không ấn định độ ưu tiên cho thiết bị đặc biệt

□Cải tiến:

- CSMA/CD (Carrier Sense Multiple Access / Collision Detection)
- CSMA/CA (Carrier Sense Multiple Access / Collision Avoidance)

CSMA/CD

□Ý tưởng:

- Thiết bị lắng nghe đường truyền
- Nếu đường truyền rảnh, thiết bị truyền DL của mình lên đường truyền
- Sau khi truyền, lắng nghe đụng độ?
- Nếu có, thiết bị gởi tín hiệu cảnh báo các thiết bị khác
- Tạm dừng 1 khoảng thời gian ngẫu nhiên rồi gởi DL
- Nếu tiếp tục xảy ra đụng độ, tạm dừng khoảng thời gian gấp đôi.

□Dùng trong mạng Ethernet

35

Luân phiên

- □Dùng thẻ bài (Token Passing)
- □Dò chọn (Polling)

Token Passing

□Ý tưởng:

- Dùng 1 thẻ bài (token) di chuyển qua các node
- Thiết bị muốn truyền DL thì phải chiếm được token

□Đánh giá:

- Thích hợp cho các mạng có tải nặng
- Thiết lập được độ ưu tiên cho thiết bị đặc biệt
- Chậm hơn CSMA trong mạng có tải nhẹ
- Thiết bị mạng đắt tiền
- □Dùng trong mang Token Ring

37

Polling

□Ý tưởng:

- Có 1 node đóng vai trò điều phối
- Node điều phối kiểm tra nhu cầu gởi DL của các node thứ cấp và xếp vào hàng đợi theo thứ tự và đô ưu tiên
- Thiết bị truyền DL khi đến lượt

□Đánh giá:

- Có thể thiết lập độ ưu tiên
- Tốn chi phí
- Việc truyền DL của 1 thiết bị tuỳ thuộc vào thiết bị dò chọn

Giao thức ICMP

- □ICMP (Internet Control Message Protocol)
- □Được sử dụng bởi các host và router để trao đổi thông tin ở tầng mạng
 - Báo lỗi:
 - Mạng, host, protocol, port ... không vươn đến được
 - Báo mạng bị tắt nghên
 - Báo timeout
 - Echo request/reply (ping)

39

Gói tin ICMP

o Thông điệp ICMP được đóng gói trong gói tin IP

Cấu trúc thông điệp icmp - 1

41

Cấu trúc thông điệp icmp - 2

ICMP Type	Code	Description	
0	0	echo reply	
3	0	destination network unreachable	
3	1	destination host unreachable	
3	2	destination protocol unreachable	
3	3	destination port unreachable	
3	6	destination network unknown	
3	7	destination host unknown	
4	0	source quench (congestion control)	
8	0	echo request	
9	0	router advertisement	
10	0	router discovery	
11	0	TTL expired	
12	O _{thôn}	g TiP-pariodicina bod unhiên TP	

Cấu trúc thông điệp icmp - 3

□Không đến được đích:

- Nguyên nhân: liên kết mạng bị đứt, đích đến không tìm thấy, ...
- Type = 3
- Code:
 - 0: unreachable network
 - 1: unreachable host
 - 2: unreachable protocol
 - 3: unreachable port
 - 4: không được phép fragment
 - 5:source route bị sai

43

Cấu trúc thông điệp icmp - 4

□Quá hạn:

- Nguyên nhân:
 - TTL = 0 trước khi đến đích
 - · Quá hạn thời gian tái lắp ghép các fragment
- Type = 11
- Code:
 - 0: TTL
 - · 1: hết thời gian tái lắp ghép

Giao thức ICMP

□Các trường hợp GỞI ICMP msg:

- Datagram không đạt đến đích
- Time out
- Error xuất hiện trong header
- Router/host bị tắt nghẽn

□Các trường hợp KHÔNG gởi ICMP msg:

- Bản thân ICMP msg có lỗi
- Broadcast, multicast (gói DL định tuyến)
- Những fragment khác với fragment đầu tiên

45

Nội dung

- □Giới thiêu
- □Kỹ thuật phát hiện và sửa lỗi
- ■Điều khiển truy cập đường truyền
- □ICMP
- □ARP
- □Ethernet

ARP - 1 Src IP, Dst IP Src MAC, Dst MAC 137.196.7.23 137.196.7.23 137.196.7.14 LAN 71-65-F7-2B-08-53 137.196.7.88 OC-C4-11-6F-E3-98

47

ARP - 2

□ARP (Address Resolution Protocol)

- Phân giải từ địa chỉ IP thành địa chỉ MAC
- Chỉ phân giải trong cùng đường mạng
- Sử dung ARP table:
 - IP
 - MAC
 - TTL :thời gian sống của record
 - Lưu trong RAM

ARP – cơ chế hoạt động

49

ARP – minh họa - 1

ARP – minh họa - 2

ARP – minh họa - 4

53

ARP – Request

ARP - Checking

ARP - Reply

ARP - Caching

Nội dung

- □Giới thiệu
- □Kỹ thuật phát hiện và sửa lỗi
- □Điều khiển truy cập đường truyền
- \square ARP
- □Ethernet

Ethernet - 1

□Là 1 kỹ thuật (technology) mạng LAN có dây

- Là 1 kỹ thuật mạng LAN đầu tiên
- Chuẩn 802.3
- Hoạt động tầng Data Link và Physical
- Tốc độ: 10 Mbps 10 Gbps
- Mô hình mang:
 - Bus
 - Star
- Giao thức tầng MAC: CSMA/CD
- Đơn giản và rẻ hơn mạng Token Ring LAN, ATM

59

CSMA/CD – quá trình truyền dữ liệu

Ethernet – cấu trúc frame

Bytes	8	6	6	2	0-1500	0-46	4
(a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum
					,,		
(b)	Preamble S	Destination	Source address	Length	Data	Pad	Check- sum

a) earlier Ethernet frames - b) 802.3 frames

- ☐ Preamble (8 bytes)
 - Đồng bộ đồng hồ bên gởi và bên nhận (10101010)
 - Start of Frame (SOF): báo hiệu bắt đầu frame (10101011)
- ☐ Dest. Addr (6 bytes)
 - địa chỉ MAC của card mạng nhận gói tin tiếp theo
- ☐ Src. Addr (6 bytes)
 - địa chỉ MAC của card mạng gởi gói tin
- ☐ Type (2 bytes)
 - Giao thức sử dụng ở tầng trên
- ☐ CRC: dùng để kiểm tra lỗi

61

Ethernet – trường type

EtherType	Protocol
0x0800	Internet Protocol, Version 4 (IPv4)
0x0806	Address Resolution Protocol (ARP)
0x8035	Reverse Address Resolution Protocol (RARP)
0x809b	AppleTalk (Ethertalk)
0x80f3	AppleTalk Address Resolution Protocol (AARP)
0x8100	IEEE 802.1Q-tagged frame
0x8137	Novell IPX (alt)
0x8138	Novell
0x86DD	Internet Protocol, Version 6 (IPv6)
0x8847	MPLS unicast
0x8848	MPLS multicast

Ethernet – minh hoạ

63

Ethernet – các công nghệ mạng

- □10Base2
- □10Base5
- □10BaseT
- □100BaseTX
- □100BaseFX

Ethernet – chuẩn 10Mbps

Standard	Topology	Medium	Maximum cable length	Transport
10BASE5	Bus	Thick coaxial cable	500m	Half-duplex
10BASE2	Bus	Thin coaxial cable	185m	Half-duplex
10BASE-T	Star	CAT3 UTP	100m	Half or Full- duplex

65

Ethernet – chuẩn 100Mbps

Standard	Medium	Maximum cable length
100BASE-TX	CAT5 UTP	100m
100BASE-FX	Multi-mode fibre (MMF) 62.5/125	412m

Ethernet – chuẩn gigabit

Standard	Medium	Maximum cable length
1000BASE-SX	Fiber optics	550 m
1000BASE-LX	Fiber optics	5000 m
1000BASE-CX	STP	25 m
1000BASE-T	Cat 5 UTP	100 m

67

Tài liệu tham khảo

- □ Kurose and K.W. Ross về Computer Networking: A Top Down Approach
- ☐CCNA, version 3.0, Cisco