Eine Woche, ein Beispiel 8.10 toric variety

Ref:

[2021.04.09] [BP15]: Taras E. Panov and Victor Buchstaber, Toric topology [ACM25]: Omid Amini, Daniel Corey, Leonid Monin. Tropical Abel-Jacobi theory https://arxiv.org/abs/2504.14415

I learned toric variety before, but I forget the notation right after I learn it. Anyhow, next month I need these information to study tropical geometry.

1. affine chart

1. affine chart

Def (affine toric variety Vo) [BP15, p180]

Fix a lattice $N \cong \mathbb{Z}^n$, and a cone $\sigma \subset N_{IR}$, Define

1R >0-module

dual space
$$\sigma' := \{u \in N_{1R}^{*} \mid \langle u, v \rangle \geq 0 \quad \forall v \in N \}$$

lattice pts of $S_{\sigma} := \sigma' \cap N^{*}$
 $= \{u \in N^{*} \mid \langle u, v \rangle \geq 0 \quad \forall v \in N \}$
 $A_{\sigma} := \mathbb{C}[S_{\sigma}]$
 $= \mathbb{C}[\chi^{u} \mid u \in S_{\sigma}]/(\chi^{u}, \chi^{u'} - \chi^{u+u'}, \chi^{\circ} - 1)$
 $= \bigoplus_{u \in S_{\sigma}} \mathbb{C} \cdot \chi^{u}$

affine toric variety $V_{\sigma} = \sup_{u \in S_{\sigma}} \mathbb{C} \cdot \chi^{u}$ $V_{\sigma}(\mathbb{C}) = \operatorname{Hom}_{\operatorname{ring}} (\mathbb{C}[S_{\sigma}], \mathbb{C})$ $= \operatorname{Hom}_{\operatorname{sg}} (S_{\sigma}, \mathbb{C}_{m})$ $\operatorname{sg}: \operatorname{semigroup}_{\mathbb{C}_{m}} = (\mathbb{C}, \cdot)$

E.g. n=2

NIR

$$N_{IR}^*$$

$$A_{\sigma} = \mathbb{C}[\chi^{e,*}, \chi^{e,*}] \triangleq \mathbb{C}[x, x_2]$$

$$V_{\sigma} = \operatorname{Spec} \mathbb{C}[x, x_2] = \mathbb{A}_{\mathbb{C}}^*$$

$$V_{\sigma}(\mathbb{C}) = \operatorname{Homs}_{\mathsf{sg}}(\mathbb{Z}_{\geqslant 0} e_1^* \oplus \mathbb{Z}_{\geqslant 0} e_2^*, \mathbb{C}_m) = \mathbb{C}^2$$

$$A_{\sigma} = \mathbb{C} \left[\chi^{e,*}, (\chi^{e_{2}^{*}})^{\sharp} \right] \triangleq \mathbb{C} \left[\times, \chi^{\sharp l} \right]$$

$$V_{\sigma} = \operatorname{Spec} \mathbb{C} \left[\times, \chi^{\sharp l} \right] = A_{\mathbb{C}} \oplus \mathbb{C}_{m,\mathbb{C}}$$

$$V_{\sigma}(\mathbb{C}) = \operatorname{Hom}_{sg} \left(\mathbb{Z}_{\geqslant 0} \, e_{1}^{*} \oplus \mathbb{Z} e_{2}^{*}, \mathbb{C}_{m} \right) = \mathbb{C} \oplus \mathbb{C}^{\times}$$

NIR

$$\sigma = \{0\}$$

$$\sigma' = R \quad e_1^* \oplus R e_2^*$$

$$S_{\sigma} = Z \quad e_1^* \oplus Z e_1^*$$

$$A_{\sigma} = \mathbb{C}\left[\left(\chi^{e_{1}^{*}}\right)^{\pm 1}, \left(\chi^{e_{2}^{*}}\right)^{\pm 1}\right] \triangleq \mathbb{C}\left[\chi^{\pm 1}, \chi^{\pm 1}\right]$$

$$V_{\sigma} = \operatorname{Spec}\left[\left(\chi^{\pm 1}, \chi^{\pm 1}\right)\right] = \mathbb{C}_{m, \mathbb{C}}^{\oplus 2}$$

$$V_{\sigma}(\mathbb{C}) = \operatorname{Hom}_{sg}\left(\mathbb{Z} e_{1}^{*} \oplus \mathbb{Z} e_{2}^{*}, \mathbb{C}_{m}\right) = (\mathbb{C}^{\times})^{2}$$

$$N_{IR}^*$$

$$\sigma' = R_{>0} e_{*}^{*} \theta R_{>0} (e_{*}^{*} + 2e_{*}^{*})$$

$$\sigma = |R_{\geq 0}| e_2 \oplus |R_{\geq 0}(2e_1 - e_2)$$

$$\sigma' = |R_{\geq 0}| e_1^* \oplus |R_{\geq 0}(e_1^* + 2e_2^*)$$

$$S_{\sigma} = \langle e_1^*, e_1^* + 2e_2^*, e_1^* + e_1^* \rangle_{\mathbb{Z}_{\geq 0}}$$

$$A_{\sigma} = \mathbb{C}[x, xy, xy^{2}] \cong \mathbb{C}[u, v, \omega]/(v^{2} - u\omega)$$

$$V_{\sigma} = \operatorname{Spec} \mathbb{C}[u, v, \omega]/(v^{2} - u\omega)$$

$$x = \chi e^*, y = \chi e^*$$

tropical toric variety [ACM 25, p7-8]

i	U_{τ_i}	$O(\tau_i)$	∞_{τ_i}	J _∞ ^{T;}
0	TOT	{+0} @ {+0}	$(+\infty,+\infty)$	[+00] (+00)
1	TOIR	(too) @ IR	(+∞, 0)	[+0] @ Rz.
2	ROT	R ⊕ [+∞]	$(0,+\infty)$	Rz. @ {+∞}
3	ROR	ROR	(0,0)	Rzo DIRzo

$\frac{\tau_i}{i}$	0	1	2	3	$\mathcal{O}(\tau_i)$	$\sum_{a}^{\tau_{i}}$	
0	[+00] @ [+00]	_	-	~	[+00] @ [+00]	•	_
1	[+00] @ IR>0	[0]@[ou+]	_	_	(+00) @ IR	Î	
2	R≥o O{t∞}	-	[0] @ [+00]	_	IR @ 8+00}	<u> </u>	
3	R>,0 @ 1R>,0	R≥ODS	6} € 1R20	[6] @ Fo}	IR O IR	<u></u> ,	