Lecture#11 Data Structures

Dr. Abu Nowshed Chy

Department of Computer Science and Engineering
University of Chittagong

February 24, 2025

Faculty Profile

- A tree is an undirected graph which is connected and acyclic. It is easy to show that if graph *G*
 - G (V,E) is connected.
 - G (V,E) is acyclic.
 - |E| = |V| 1

FIGURE 11 A Computer File System.

FIGURE 2 Preorder Traversal.

FIGURE 5 Inorder Traversal.

FIGURE 7 Postorder Traversal.

FIGURE 4 The Preorder Traversal of T.

FIGURE 4 The Preorder Traversal of T.

FIGURE 6 The Inorder Traversal of T.

Inorder traversal: Visit leftmost subtree, visit root, visit other subtrees left to right

FIGURE 6 The Inorder Traversal of T.

FIGURE 8 The Postorder Traversal of T.

InOrder traversal: Y C B M S A H L O K

Preorder traversal: HMCYBASOLK

Postorder traversal: YBCSAMLKOH

Tree Traversal (Preorder)

Tree Traversal (Inorder)

Tree Traversal (Postorder)

Inorder Traversal: 794251368

Preorder Traversal: 124795368

Postorder Traversal: 974528631

Preorder: A B D C E G F H I

Inorder: DBAGECHFI

Postorder: D B G E H I F C A

Inorder: 21453

Preorder: 12345

Post order: 2 5 4 3 1

Binary Tree

- Preorder traversal yields:
 A, B, D, G, K, H, L, M, C, E
- Postorder travarsal yields:
 K, G, L, M, H, D, B, E, C, A
- Inorder travarsal yields:
 K, G, D, L, H, M, B, A, E, C

Pre, Post and Inorder Traversing

Minimum Spanning Tree (MST)

- A *spanning tree* is a tree that contains all of the vertices in the graph and enough of its edges to form a tree.
- The *minimum spanning tree* of a network is a spanning tree in which the sum of its edge weights is guaranteed to be minimal.
- It is possible to have more than one minimum spanning tree
 however the weights of the different MSTs will be the same.
- The minimum spanning tree in a weighted graph G(V,E) is one which has the smallest weight among all spanning trees in G(V,E).

Minimum Spanning Tree (MST)

spanning tree cost = 110

spanning tree cost = 129

Applications

- There are many applications for minimum spanning trees, all with the requirement to minimize some aspect of the graph, such as the distance among all the vertices in the graph.
- For example, given a network of computers, we could create a graph that connects all of the computers.
- The MST gives us the shortest length of cable that can be used to connect all of the computers while ensuring that there is a path between any two computers.

Prim's Algorithm for MST

- We can start with any vertex, so we'll just start with A.
- Then, we add the vertex that gives the minimum-weighted edge with A.
- Our options are AB or AC we choose AC because 3 is less than 6

MST

(a) Insert first vertex

- Now, we have vertices A and C in our MST.
- From these 2, we choose the edge with the minimum weight that connects a vertex in our MST to a vertex not already included in our MST.

- Our options are
 - CB, weight = 2
 - CD, weight = 3
 - CE, weight = 4
 - AB, weight = 6
- We choose CB because it has the minimum weight.

- Now we continue with the same process here are our choices:
 - BD, weight = 5
 - CD, weight = 3
 - CE, weight = 4
- We choose CD because it has the minimum weight.

- Now we continue with the same process here are our choices:
 - CE, weight = 4
 - DE, weight = 2
 - DF, weight = 3
- We choose DE because it has the minimum weight.

Prim's Algorithm

- Now we are down to our last node. Our choices are:
 - EF, weight = 5
 - DF, weight = 3
- We choose DF because it has the minimum weight.

Prim's Algorithm

Here is our final MST.

The MST produced by Prim's algorithm may vary depending on which vertex you start at.

Solution

Solution

Solution

Solution

Solution

Kruskal's Algorithm for MST

Kruskal's Algorithm

Kruskal's Algorithm

Kruskal's Algorithm

The cost of the MST is =
$$AB + DE + BC + CD$$

= $1 + 2 + 3 + 4$
= 10

