

Mathematical Foundations for Data Science (Probability)

Problem Set 01

Karthik P. N.

Assistant Professor, Department of Al

Email: pnkarthik@ai.iith.ac.in

24 August 2024

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• Suppose $A,B\in\mathscr{F}$ are such that $\mathbb{P}(A)=\frac{3}{4}$ and $\mathbb{P}(B)=\frac{1}{3}.$ Show that

$$\frac{1}{12} \leq \mathbb{P}(A \cap B) \leq \frac{3}{4}.$$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• Suppose $A_1,A_2,\ldots\in\mathscr{F}$ are such that $\mathbb{P}(A_i)=1$ for all $i\in\mathbb{N}.$ Show that

$$\mathbb{P}\left(\bigcap_{i=1}^{\infty}A_{i}
ight)=1.$$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• Let $\Omega = \{1, 2, \dots, p\}$, where p is a prime number. Let $\mathscr{F} = 2^{\Omega}$, let

$$\mathbb{P}(A) = \frac{|A|}{p}, \qquad A \in \mathscr{F}.$$

Produce an example of two events *A* and *B* which are independent of each other.

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• Suppose X is a discrete random variable defined with respect to $\mathscr F$ and having the PMF

$$p_X(100) = 0.65, \qquad p_X(-10) = 0.35.$$

Let $Y = \max\{X, 0\}$.

- 1. Show that Y is a discrete random variable with respect to \mathscr{F} .
- 2. Sketch the CDFs of *X* and *Y*.

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• Let X be a random variable with CDF F_X as follows:

$$F_X(x) = egin{cases} 0, & x < 0, \ 0.5, & 0 \leq x < 1, \ rac{x}{2}, & 1 \leq x < 2, \ 1, & x \geq 2. \end{cases}$$

Sketch the above CDF, and compute $\mathbb{P}(\{X \leq 0.8\})$, $\mathbb{P}(\{X \geq 0.25\})$, $\mathbb{P}(\{X = 0\})$, $\mathbb{P}(\{X \in (1,3)\})$.