Raport z ćwiczenia L9

Wojciech Noskowiak Sierpień 2021

Spis treści

Streszczenie

Zbadałem stężenie dwutlenku azotu w próbkach powietrza pobranych z otoczeń różnych wyładowań elektrycznych w oparciu o metodę SSWO. W tym celu dopasowałem odpowiednie krzywe do uzyskanych eksperymentalnie danych. Większość uzyskanych przez mnie danych okazała się być miarodajna. Część uzyskanych przez mnie wyników okazała się być niezgodna z przewidywaniami teoretycznymi.

Wstęp

Celem ćwiczenia było zbadanie stężenia NO₂ w próbkach powietrza pobranych z otoczeń różnych wyładowań elektrycznych. Do tego celu wykorzystano w ćwiczeniu metodę SSWO. Wartości stężeń uzyskałem poprzez analizę dostarczonych mi wyniki pomiarów eksperymentalnych. Przekazane mi dane przebadałem w oparciu o polecenia z instrukcji ?, materiały dostępne na stronie pracowni ? oraz dokumenty przekazane przez prowadzącego ćwiczenie ?. Przekazane mi dane wpierw przeanalizowałem autorskim programem napisanym przeze mnie w języku python. Następnie otrzymane wartości przepisałem do arkusza kalkulacyjnego przy pomocy którego wyliczyłem stężenia NO₂. Wyliczone stężenia wyraziłem w postaci cząstek na centymetr sześcienny oraz ppb (parts per bilion). Uzyskane wyniki przedstawiłem w tabeli.

1 Wprowadzenie teoretyczne

1.1 Motywacja?

We współczesnej fizyce cząstek elementarnych powszechnie wykorzystywane są detektory gazowe. Dla otrzymania informacji o przechodzących przez taki detektor cząstkach neizbędna jest znajomość prędkości dryfu w wykorzystywanym niego gazie. Układy monitorujące prędkość dryfu stanowią więc integralną część wielu detektorów.

1.2 Pojęcia teoretyczne

1.2.1 Dryf

$$\vec{j} = \sum_{k} e_k n_k \vec{v_k}$$

Gdzie indeks k określa rodzaj cząstki naładowanej, a:

- e_k ładunek danego rodzaju cząstek
- *n_k* koncentracja danego rodzaju cząstek
- v_k prędkość dryfu cząstek danego rodzaju