```
Question 1:
How long does it take to load 200B bf 16 model
into the systolic array of 32 TPV V4D
  from HBM
```

$$= \frac{2 \times 1 \times 100}{19.2 \times 10^3}$$

$$= 10.4 \times (\bar{6})$$

Question 2: 7PU V5e pod THOW many CPU hosts are there? TPU vSe Pod size = 16 x 16

Every 4x2 contains a CPU $50 = \frac{16}{4} \times \frac{16}{2} = 4 \times 8 = 32$ CPU hosts

2) How many Thu Tensor Cores?

16 × 16 × 1 = 256 TPU use has TPU core per chip

Total FLOPs/sec for the whole pod $1.97 \times 10^{14} \times 16 \times 16 = 504.32 \times 10^{14} = 5.04 \times 10^{16}$

Total HBM = 16 GBx 16 x 16 = 4096 GB = 4TB Question 3: PCIe operational intensity [A = bfloat[D, F] [XActivations = bfloat[B,D]] on DRAMs mul add FLOPs = BF(D+D-1) = BF(2D-1) = 2BDF - BF ~ 2BDF V FLOPs = 2BDF= 2BD.4D = 8BD2 Bytes = 2(DF+BD)+2BF F=4D = $8D^2 + BD$) = $8D^2 + 2BD^2 8D^2$ $= \frac{8BD^2}{5D^2} = B$

$$= \frac{8 \times 9.2 \times 10^4}{1.50} = 49 \times 10^5 61250$$

1. Time = max (bytes (ood/write, FLOPs time)
$$= \max \left(\frac{(6384 \times 4096 + B.4096 + B.16384}{8.1 \times 10^{11}} \right)$$

$$\frac{B \times 16384 \times 2 \times 4.096}{3.94 \times 10^{14}}$$

= max
$$\left(\frac{6.7 \times 10^{7} + 20480B}{8.1 \times 10^{11}} + \frac{1.3 \times 10^{8}B}{3.94 \times 10^{14}}\right)$$

Compute-bound when
$$\frac{1.3 \times 10^8 \text{ B}}{3.94 \times 10^4} > \frac{6.7 \times 10^7 + 2 \times 10^4 \text{ B}}{5.1 \times 10^{11}}$$

(a) $\frac{1.3 \text{ B}}{3.94 \times 10^5} > \frac{6.7 \times 10^3 + 2 \text{ B}}{5.1 \times 10^7}$

(b) $\frac{1.3 \times 8.1 \times 10^7 \text{ B}}{5.1 \times 10^7} > \frac{6.7 \times 10^3 \times 3.94 \times 10^6}{5.1 \times 10^7}$

(c) $10.53 \times 10^7 \text{ B} - 7.88 \times 10^6 \text{ B} > 26.398 \times 10^9$

(d) $10.5.3 \times (0^6 \text{ B} - 7.88 \times 10^6 \text{ B} > 2.6 \times 10^{10})$

(e) $97.42 \times 10^6 \text{ B} > 2.6 \times 10^{10}$

(f) $97.42 \times 10^6 \text{ B} > 2.6 \times 10^{10}$

(g) $97.42 \times 10^6 \text{ B} > 2.6 \times 10^{10}$

(g) $97.42 \times 10^6 \text{ B} > 2.6 \times 10^{10}$

(g) $97.42 \times 10^6 \text{ B} > 2.6 \times 10^{10}$

(g) $97.42 \times 10^6 \text{ B} > 2.6 \times 10^{10}$

Compute-bound when:

$$\frac{1.3 \times 10^{8} \text{B}}{3.94 \times 10^{14}} > \frac{6.7 \times 10^{7} + 2 \times 10^{4} \text{B}}{22 \times 5.1 \times 10^{11} \text{J}}$$

$$\Rightarrow \frac{1.3 \times \text{B}}{3.94 \times 10^{6}} > \frac{6.7 \times 10^{3} + 2 \text{B}}{22 \times 8.1 \times 10^{7}}$$

 \Leftrightarrow 1.3x 22×8.1×10⁷B > 3.94×6.7×10⁹ + 2×3.94 × 106 B \rightleftharpoons 231.66 x 10⁷B > 26.398 x 10⁹ + 7 88x 10 B € 2316.6×10 B - 7.88×10 B > 2.6398×10° $2308.72 \times 10^{6} R > 2.6398 \times 10^{6}$ 2.30872×109137 2.6398×1010 $\beta > \frac{2.6398 \times 10^{10}}{2.30872 \times 10^{9}}$ = 11.43 #

Question S: ICI bandwidth

TPU vSe: 4x4 slice

bfloat [8, 128, 8192]

Question 6:

Matrix A: int&[128x1024,128x1024]

Sharded evenly across TPU v5e 4x4 slice
but they are on hosts DRAM on each chip.

first: We can choose either:
O Copy half of the data through DCN
to host 1's DRAM and then copy
things to HBM from DRAM
or (2) Each host copy its Jata to TPU
chips and then utilize ICI
to copy data
Option (1): DCN throughput is slow, so
use 2
Steps: (will take the max over those numbers)
1. Copy data from DRAM to HBM
2. Transfer data from all chips to TPU {0,03 27 20
TPU {0,0} 27 2(0
3. Compute intf[128x(024,128x1024)] bfloat 16[8,128x1024]
bfloat 16[8, 128x1024]

1.
$$128 \times (024 \times 128 \times (024 = 2)^{34} = 2^{4} \times 68$$

$$= 16 \times 618$$

$$= 1$$

3, Compute time:

$$\frac{2BDF}{1.97 \times 10^{14} \text{ FLOPs/sec}} = \frac{2 \times (8 \times 128 \times 1024 \times 128 \times 1024)}{1.97 \times 10^{14} \text{ FLOPs/sec}} \\
= \frac{2 \times (2^{3} \times 2^{7} \times 2^{10} \times 2^{7} \times 2^{10})}{1.97 \times 10^{14}} \\
= \frac{280 \times (2^{3} \times 2^{7} \times 2^{10} \times 2^{7} \times 2^{10})}{1.97 \times 10^{14}} \\
= \frac{280 \times (2^{3} \times 2^{7} \times 2^{10} \times 2^{7} \times 2^{10})}{1.97 \times 10^{14}} \\
= \frac{280 \times (2^{3} \times 2^{7} \times 2^{10} \times 2^{7} \times 2^{10})}{1.97 \times 10^{14}} \\
= \frac{280 \times (2^{3} \times 2^{7} \times 2^{10} \times 2^{7} \times 2^{10})}{1.97 \times 10^{14}} \\
= \frac{280 \times (2^{3} \times 2^{7} \times 2^{10} \times 2^{7} \times 2^{10})}{1.97 \times 10^{14}} \\
= \frac{280 \times (2^{3} \times 2^{7} \times 2^{10} \times 2^{10} \times 2^{10} \times 2^{10})}{1.97 \times 10^{14}} \\
= \frac{280 \times (2^{3} \times 2^{10} \times 2^{10} \times 2^{10} \times 2^{10} \times 2^{10} \times 2^{10})}{1.97 \times 10^{14}} \\
= \frac{280 \times (2^{3} \times 2^{10} \times 2^{10} \times 2^{10} \times 2^{10} \times 2^{10} \times 2^{10} \times 2^{10})}{1.97 \times 10^{14}} \\
= \frac{280 \times (2^{3} \times 2^{10} \times 2^{1$$

Total= max stage

 $= 178 \, \text{ms}$