Poisson Probability Discussion

Source Code: https://github.com/kevinbird61/stochastic-calculus-and-probability-model/tree/master/poisson distribution

Before starting to read this article, please install chrome extension: Github with MathJax, to ensure the correctness of formula format.

- Poisson Probability Discussion
 - Improvement
 - Discuss two network model
 - Example 2.37 (Merge)
 - Mathematic Model
 - Simulation Model
 - Implementation Detail
 - Result
 - Different Case
 - Example 3.23 (Split)
 - Mathematic Model
 - Simulation Model
 - Result
 - Different Case
 - Reference
 - Author

Improvement

After example 2.5, 3.31, the program has been refactor a lot, make code reusable.

Consider simulation need to be tested with several different input, to accelerate the arguments
parsing process, I construct parse_arg class to deal with this problem. See more about
parse_arg.

Discuss two network model

Example 2.37 (Merge)

It will be implemented in part_a.cc

Example 2.37

Mathematic Model

• Because N1,N2 is independent, so we know N1=>

$$N_1|N=n\sim Binomial(n,p)$$

, which N2:

$$N_2|N=n\sim Binomial(n,1-p)$$

, Both N1,N2 is a sum of n independent Bernoulli(p) random variables, with Binomial(N,P), N and P represent Number and Probability.

· We have:

$$\begin{array}{lll} P_{N_{1}}(k) & = & \sum_{n=0}^{\infty} P(N_{1}=k|N=n) \cdot P_{N_{1}}(n) \\ \\ & = & \sum_{n=k}^{\infty} C_{k}^{n} \cdot p^{k} (1-p)^{n-k} \cdot e^{-\lambda} \frac{\lambda^{n}}{n!} \\ \\ & = & \sum_{n=k}^{\infty} \frac{p^{k} (1-p)^{n-k} \lambda^{n}}{k! (n-k)!} \\ \\ & = & \frac{e^{-\lambda} \cdot (\lambda p)^{k}}{k!} \sum_{n=k}^{\infty} \frac{(\lambda (1-p)^{n-k})}{(n-k)!} \\ \\ & = & \frac{e^{-\lambda} \cdot (\lambda p)^{k}}{k!} \cdot e^{\lambda (1-p)} \\ \\ & = & \frac{e^{-\lambda p} \cdot (\lambda p)^{k}}{k!} \cdot for \ k = 0, 1, 2, \dots \end{array}$$

· So that we conclude that

$$N_1 \sim Poisson(\lambda \cdot p) \ N_2 \sim Poisson(\lambda \cdot (1-p))$$

 $egin{aligned} which \ N_1 \ and \ N_2 \ are \ independent, \ so \ P_{N_1+N_2} \ will \ be \ : \ P_{N_1+N_2}(n,m) = P_{N_1}(n) \cdot P_{N_2}(m) \end{aligned}$

Consider the formula:

$$P(X+Y=n) = \sum_{k=0}^{n} P(X=k,Y=n-k)$$
 $= \sum_{k=0}^{n} P(X=k) \cdot P(Y=n-k)$

So that Merging Poisson Process can be:

• **Directly** calculate the *S*=*X*+*Y* with:

$$P(X+Y=n)=rac{e^{-(\lambda_1+\lambda_2)}}{n!}\cdot(\lambda_1+\lambda_2)^n$$

• **Separately** calculate *X* and *Y* with:

$$P(X=k) = \frac{e^{-(\lambda_1)}}{n!} \cdot (\lambda_1)^n,$$

$$P(Y=n-k) = rac{e^{-(\lambda_2)}}{(n-k)!} \cdot (\lambda_2)^{n-k}$$

, and need to consider the summation, from k=0~n:

$$\sum_{k=0}^{n} \dots$$

Simulation Model

• We can use exponential distribution:

$$f(x) = \lambda \cdot e^{-\lambda \cdot x}$$

, which let x be a random number to get a **random variable** from exponential distribution.

• In my implementation, I use C++ STL (standard library) - <random> to do this.

Implementation Detail

- **Step 1**, I using self-defined class event_list as my event queue. See more about event_list.
- **Step 2**, scheduling 2 individual event: x , y into event queue for initialization, then we can start our simulation. End condition is the number you can set in arguments before starting program by -s .
- **Step 3**, pop out the element from event_list, and depend on its type (e.g. is x or y?) to schedule next event with **exponential random variable** as timestamp and push back into event_list. And the old event will be record into this event_list object (treat like a event history, sort by its timestamp.). Do this routine until reaching the number we set by specifying -s.

0

- **Step 4**, after event scheduling process has been done, we now can count the ratio of event arrival in each time scale.
 - For example, between timestamp 0.0~1.0, we get 5 event arrival during this time scale;
 And 1.0~2.0, we get 4 as event arrival.
 - Now, assume 2.0 is the end point of simulation, we now have 2 result: X=5 and X=4, both have 1 occurance.
 - Then we can say: P(X=5)=1/(1+1)=0.5=50%=P(X=4)!
- Step 5, and now we have the history record in object of event_list, which record the type of
 each event, then we can pop it out and get the P(X), P(Y) and P(X+Y), with specified value
 of time scale:

 $time\ scale = 1$

, which

2018/4/10 README $rate\ parameter = \lambda\ , scale\ parameter =\ 1/\lambda = eta$

- Because rate parameter means in this time scale (which indicate as 1 above), how many event will happen. So we can use 1 to measure this simulation is fitting with poisson distribution or not.
- Final, Then we can count the arrival rate in this time scale to finish our simulation!

Result

- So we need to compare simulation and mathematic model:
 - o run with command make && make plot to run the program and plot:

$$k=20,~\lambda_X=1,~\lambda_Y=2$$

, also if you want to adjust, please using ./part_a.out -h to see more.

Mathematic Model

Poisson Distribution - Merge Part

Simulation Model

• We can see, both mathematic and simulation model all have the same curve in P(X+Y) and P(X)*P(Y)

Different Case

• After we have finished the part_a.cc and compile it to get the executable file, we now can use it to run multiple testcase - test_a.sh

case	simulation times	λ_1	λ_2	result
------	---------------------	-------------	-------------	--------

18/4/10				README		
case	simulation times			result		
1	10000	1	2	Poisson Distribution - Merge Part (Simulation) $ \begin{array}{cccccccccccccccccccccccccccccccccc$		
2	10000	1	5	Poisson Distribution - Merge Part (Simulation) $ \begin{array}{cccccccccccccccccccccccccccccccccc$		

18/4/10				README		
case	simulation times			result		
3	10000	1	10	Poisson Distribution - Merge Part (Simulation) $ \begin{array}{cccccccccccccccccccccccccccccccccc$		
4	10000	10	20	Poisson Distribution - Merge Part (Simulation) $0.12 \\ 0.1 \\ 0.08 \\ 0.04 \\ 0.02 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.08 \\ \text{Figure, Simulation time=10000} \\ \lambda_1 = 10, \ \lambda_2 = 20, \ \text{duration slot=1.0000000}$		

case	simulation times			result		
5	100000	10	20	Poisson Distribution - Merge Part (Simulation) $ \begin{array}{cccccccccccccccccccccccccccccccccc$		

- Parameters:
 - simulation times represent the **number** of total event in simulation process.
 - lambda_1 represent the lambda in x.
 - lambda_2 represent the lambda in Y .
- As the result shown above, we can see P(S=X+Y) is almost perfectly match with P(X)*P(Y);
 And we can see in case 4, these 2 curves are quite not matching with each other; But after increase the total event number, then we can see these 2 curves are matching again.

Example 3.23 (Split)

• It will be implemented in part_b.cc

In this part, we can see Part-B is the inverse process of Part-A (e.g. Poisson Process Merge). Part-B is the Poisson Process Split, which separate one arrival queue into 2 different set of queue, with specified probability (p) to transform from original one to these 2 different set.

Mathematic Model

From the formula, we can have the equation:

$$P(X+Y) = P(\lambda \cdot p_x) \cdot P(\lambda \cdot (1-p_x))$$

, which

$$P(X) = P(\lambda \cdot p_x), \; P(Y) = P(\lambda \cdot (1 - p_x))$$

So in mathematic part, we can construct this equation by program. See detail in part b.cc.

Simulation Model

As the same concept in Part-A, we use a event queue to represent the entire simulation.

The **differences** between them are:

- lambda_1 and lambda_2 become lambda * p and lambda * (1-p)
- When each arrival event occur, we need to using a random number (0.0 ~ 1.0) to decide this
 event type (e.g. become " x " or " Y "), and as same as Step 3 in Part-A, assign an
 exponential random variable as timestamp to this event, and then schedule it into event list.

- And we can use the same step of Step 4 in Part-A, to get the probability of each number of
 event occur during specified time scale: 1 (Which represent "in this time slot, how many
 event will occur")
- Most important part, in Part B there have need to create three event queue, N, LX, LY respectively.
 - \circ N = N \sim Poisson (λ), is using to generate the X (derive from N) and Y (derive from N) with probability p and 1-p
 - \circ LX represent the independent Poisson (λ^*p), compare with X (derive from N).
 - LY represent the independent Poisson ($\lambda^*(1-p)$), compare with Y (derive from N).
 - The other calculation are similar with above.
- With all the statistics required, we can count the arrival rate in this time scale to finish our simulation!

Result

• Run make && make plot with statistics:

$$k = 20, \ \lambda = 3, \ p = 0.5$$

, also if you want to adjust, please using ./part_b.out -h to see more.

Mathematic Model

• Simulation Model (with 10000 event)

 \circ X (derive from N) compare with LX (Poisson (λ^*p))

Poisson Distribution - Split Part (Simulation, Part of X)

 \circ Y (derive from N) compare with LY (Poisson ($\lambda^*(1-p)$))

Poisson Distribution - Split Part (Simulation, Part of Y)

 \circ Also, you can compare P(X+Y) with P(X)*P(Y), too. But there are lots of bias between them.

And next part we will adjust the parameter and compare the results.

Different Case

• After we have finished the part_b.cc and compile it to get the executable file, we now can use it to run multiple testcase - test_b.sh

simulation times	λ	P	X , LX	Y, LY
10000	3	0.5	Poisson Distribution - Split Part (Simulation, Part of X) X (derive from N) X (independent poisson)	Poisson Distribution - Split Part (Simulation, Part of Y) 1.7 1.6 1.7 1.7 1.6 1.7 1.7 1.7
10000	6	0.3	Poisson Distribution - Split Part (Simulation, Part of X) (derive from N) X (independent poisson) X (ondependent poisson)	Poisson Distribution - Split Part (Simulation, Part of y) 0.6 Y (derive from N) Y (independent poisson) Y (independent poisson) Figure, Simulation time=10000 \(\lambda = 6.000000, duration slot=1.0000000

simulation times			X , LX	Y, LY
10000	6	0.5	Poisson Distribution - Split Part (Simulation, Part of X) 10.25	Poisson Distribution - Split Part (Simulation, Part of Y) 10.25
10000	6	0.7	Poisson Distribution - Split Part (Simulation, Part of X)	Poisson Distribution - Split Part (Simulation, Part of Y) 10.25
100000	6	0.3	Poisson Distribution - Split Part (Simulation, Part of X) X (derive from N) X (independent poisson) X (ondependent poisson) Figure, Simulation time=100000 \$\lambda = 6.000000, duration slot=1.000000	Poisson Distribution - Split Part (Simulation, Part of Y) V (derive from N) Y (independent poisson) Y (independent poisson) Figure, Simulation time=100000 \(\lambda = 6.000000, \text{ duration slot=1.000000} \)
100000	6	0.5	Poisson Distribution - Split Part (Simulation, Part of X) 0.25 X (derive from N) X (independent poisson) 0.15 0.05 N Figure, Simulation time=100000 \$\lambda = 6.000000, duration slot=1.000000	Poisson Distribution - Split Part (Simulation, Part of Y) V(derive from N) Y (independent poisson) O.15 O.05 Figure, Simulation time=100000 \[\lambda = 6.000000, duration slot=1.000000 \]
100000	6	0.7	Poisson Distribution - Split Part (Simulation, Part of X) 0.2 0.18 0.14 0.14 0.12 0.06 0.04 0.02 0.08 Figure, Simulation time=100000 \$\lambda = 6.000000, duration slot=1.000000	Poisson Distribution - Split Part (Simulation, Part of Y) V(derive from N) Y (independent poisson) V(derive from N) Y (independent poisson) Figure, Simulation time=100000 \$\lambda = 6.000000, duration slot=1.000000

· Parameters:

- simulation times represent the **number** of total event in simulation process.
- P represent the probability of event from N deriving to X.
- \circ X,LX : result compare with X (derive from N) (e.g. using λ directly) and LX (independent Poisson) (e.g. $\lambda \cdot p$)
- \circ Y,LY: result compare with Y (derive from N) (e.g. using λ directly) and LY (independent Poisson) (e.g. $\lambda \cdot (1-p)$)
- As the result above, we can see x, Lx, y, Ly are almost matching respectively!
 - And you can see case of lambda=6, when we increase the simulation times from 10000 to 100000, the result will be more matching.
 - Otherwise, it will have a large oscillation between 2 curves.

Reference

• Basic Concept of Poisson Process

Author

• Kevin Cyu, kevinbird61@gmail.com