-23-

What is claimed is:

- 1. An expandable stent comprising a proximal end and a distal end in communication with one another, a tubular wall disposed between the proximal end and the distal end, the tubular wall having a longitudinal axis and a porous surface defined by a plurality of intersecting members comprising a series of longitudinal struts disposed substantially parallel to the longitudinal axis of the stent, each of the longitudinal struts comprising flexure means for substantially complementary extension and compression of a diametrically opposed pair of the longitudinal struts upon flexure of the stent, the stent being expandable from a first, contracted position to a second, expanded position upon the application of a radially outward force on the stent.
- 2. The stent defined in claim 1, wherein the flexure means at least one lateral section disposed in each longitudinal strut.
- 3. The stent defined in claim 2, wherein the at least one lateral section comprises a pointed apex.
- 4. The stent defined in claim 2, wherein the at least one lateral section comprises a rounded apex.
- 5. The stent defined in claim 2, wherein the at least one lateral section comprises a flat apex.
- 6. The stent defined in claim 1, wherein the flexure means at least first lateral section and second lateral section disposed in each longitudinal strut.
- 7. The stent defined in claim 6, wherein the first lateral section and the second lateral section are symmetric.

- 8. The stent defined in claim 6, wherein the first lateral section and the second lateral section are asymmetric.
- 9. The stent defined in claim 8, wherein the first lateral section and the second lateral section have substantially the same shape and differing size.
- 10. The stent defined in claim 8, wherein the first lateral section and the second lateral section have differing shape and size.
- 11. The stent defined in any one of claims 6-10, wherein the first lateral section and the second lateral section have substantially the same shape and differing size.
- 12. The stent defined in any one of claims 1-11, wherein the plurality of intersecting members are arranged to define a first repeating pattern comprised of a polygon having a pair of side walls substantially parallel to the longitudinal axis and the flexure means is disposed in each of the side walls..
- 13. The stent defined in claim 12, wherein the flexure means comprises an S-shaped portion.
- 14. The stent defined in any one of claims 12-13, wherein the S-shaped portion comprises a pair of joined curved sections wherein each curve section has an arc of about 180°.
- 15. The stent defined in any one of claims 12-13, wherein the S-shaped portion comprises a pair of joined curved sections wherein each curved section has an arc of greater than 180°.
- 16. The stent defined in any one of claims 14-15, wherein the curved sections are of substantially the same size.

- 17. The stent defined in any one of claims 14-15, wherein the curved sections are of different size.
- 18. The stent defined in any one of claims 1-17, wherein the series of longitudinal struts comprising the flexure means includes all longitudinal struts in the porous surface.
- 19. The stent defined in any one of claims 1-18, wherein the stent is constructed of stainless steel.
- 20. The stent defined in any one of claims 1-18, wherein the stent is constructed of a self-expanding material.
- 21. The stent defined in claim 20, wherein the self-expanding material is nitinol.
- 22. The stent defined in claim 20, wherein the self-expanding material expands at a temperature of greater than about 30°C.
- 23. The stent defined in claim 20, wherein the self-expanding material expands at a temperature of in the range of from about 30° to about 40°C.