

CogLab: Communicate

WEEK 12

where are we?

- literature review
- asking questions
- experiment creation [HTML/jsPsych]

design

- R & Rstudio
- describe data
- infer from data

analyze

- pre-registration
- poster
- short report

communicate

where are we?

- literature review
- asking questions
- experiment creation [HTML/jsPsych]

design

- R & Rstudio
- describe data
- infer from data

analyze

- pre-registration
- poster
- short report

communicate

today's agenda

- data collection + analyses check-in
- understanding variation
- poster design principles

what is variation?

- statistical analyses such as t-tests and ANOVAs often tend to emphasize means between conditions
- but variation is fundamental to these tests and often a core part of the underlying machinery
- data = a combination of central tendency and variation
- data = model + error
- variation refers to the spread of data points around the central tendency for any set of data

variation in common statistical tests

- most statistical tests care deeply about the variation in data points (as they should)!
- t-tests
 - standard deviations used to calculate the t statistic
- ANOVAs
 - sums of squared (standard) deviations (SS) differentiate between the signal ($SS_{between}$ or SS_{model}) and noise (SS_{within} or SS_{error})
- regression?
 - fits the line $y = \beta_0 + \beta_1 x$ that minimizes sums of squares
 - Total $SS = SS_{explained} + SS_{residual}$

so how do we visualize variation?

- our analyses do incorporate variation in different ways (based on the statistical test)
- our visualizations, however, sometimes lack in displaying the full spread of the data
- what kinds of plots have we seen so far and which of them show any form of variation?

boxplots

- "five-number summary"
 - the minimum
 - the first quartile (25th percentile)
 - the median
 - the third quartile (75th percentile)
 - the maximum
- implicit measures:
 - IQR: 25th to 75th percentile
 - minimum: Q1 1.5*IQR
 - maximum: Q3 + 1.5*IQR

bar plots

- bar plots often display the means for the relevant conditions in psychological studies
- but what about variability??
- a few different options:
 - error bars that denote some type of variation
 - what could this be?
 - an overlay of original data points in each condition

open your RStudio project

- open the first-jspsych project and your .Rmd file
- load tidyverse and ggthemes
- DON'T run all chunks no need today!

exercise 1: reproduce this plot!

 using the jobsatisfaction dataset from the datarium package, reproduce this plot

exercise 1: reproduce this plot!

 using the jobsatisfaction dataset from the datarium package, reproduce this plot

exercise 2: adding variation

- now, let's try to add some variation to our bars:
 - store the mean scores and standard deviation of scores in a dataframe

exercise 2: adding variation

Total gender male female

- now, let's try to add some variation to our bars:
 - store the mean scores and standard deviation of scores in a dataframe
 - use geom_errorbar to add an error bar to each bar of your plot

ggplot2::geom_errorbar()

- geom_errorbar allows you to add error bars to your lines or bar plots
- it requires:
 - ymin/ymax: where to start and end the bar (we can use mean ∓ standard deviation)
 - width: how wide the error bar should be
 - position: where should the error bar be, need to play around with this usually
- try removing width or position and see what happens!

```
gender

7.5

2.5

0.0

school college university
```

other forms of variation

- standard deviation is often used to describe the variation around the mean of a sample of data points
 - why not use variance?
- standard errors: an estimate of "accuracy" of the mean, i.e., how far the mean is on "average" from all other means
 - SE = sd / sqrt (n)
 - higher n means lower SE, i.e., more confidence in your estimate
- confidence intervals
 - another way to assess the reliability of your sample: indicates how often the true mean is likely to be within a given interval, if repeated samples were drawn of the same size
 - CI = sample mean \mp z * SE
 - can also be "bootstrapped", i.e., does not need to assume normality

best of both worlds: points + bar plot

- sometimes, we can combine
 the power of SE/confidence
 intervals (accuracy/reliability)
 with variation using two
 elements (error bars and points)
- involves:
 - calculating SE (which requires the "n" in each condition)
 - calculating confidence intervals based on underlying distribution

putting it all together...

next time

- before class
 - monitor: data collection on Sona + Prolific
 - work on: project milestone #6b (analyses) and 7 (poster draft)
- during class
 - poster design