Correction du devoir surveillé 5.

Exercice 1

Partie 1 : Étude de la fonction f_n

1°) Soit $n \in \mathbb{N}$. f_n est définie et dérivable sur \mathbb{R}_+^* , et pour tout x > 0, $f'_n(x) = 1 - \frac{1}{x} = \frac{x-1}{x}$. Pour x > 0, $f'_n(x)$ est du signe de x - 1, d'où :

Justification de la limite en $+\infty$: $f_n(x) = x \left(1 - \frac{\ln x}{x} - \frac{n}{x}\right)$.

Par croissance comparées, $\lim_{x\to+\infty} \frac{\ln(x)}{x} = 0$ d'où $f_n(x) \xrightarrow[x\to+\infty]{} +\infty$ par somme et produit de limites.

2°) Remarquons d'abord que, pour $x \in \mathbb{R}_+^*$ et tout $n \in \mathbb{N}$, $(E_n) \iff f_n(x) = 0$.

Pour n = 0, on constate que la fonction f_0 a pour minimum 1. Elle ne s'annule donc jamais. Donc (E_0) n'a pas de solution.

Pour n = 1, on constate que f_1 a un minimum égal à 0, atteint uniquement en 1 puisque f_1 est strictement décroissante sur [0, 1] et strictement croissante sur $[1, +\infty[$.

Donc (E_1) a une unique solution sur \mathbb{R}_+^* , qui est 1.

Partie 2 : Étude d'une suite

1°) Soit $n \geq 2$. D'après le tableau de variations de f_n , f_n est strictement décroissante sur]0,1[. De plus, f_n est continue sur]0,1[, et]0,1[est un intervalle.

On peut donc appliquer le théorème de la bijection : f_n réalise une bijection de]0,1[sur $f_n(]0,1[)=]\lim_{x\to 1}f_n(x),\lim_{x\to 0}f_n(x)[=]1-n,+\infty[$. Comme $n\geq 2$, on a 1-n<0, donc $0\in]1-n,+\infty[$. Donc 0 admet un unique antécédent dans

Comme $n \ge 2$, on a 1 - n < 0, donc $0 \in]1 - n, +\infty[$. Donc 0 admet un unique antécédent dans]0,1[par f_n , autrement dit $[(E_n)]$ a une unique solution dans l'intervalle]0,1[.

2°) Soit $n \geq 2$. On sait que x_n est solution de (E_n) , donc $x_n - \ln(x_n) = n$. Calculons :

$$f_{n+1}(x_n) = x_n - \ln(x_n) - (n+1) = n - (n+1) = -1.$$

Ainsi $f_{n+1}(x_n) < 0$. Or $0 = f_{n+1}(x_{n+1})$ donc on a $f_{n+1}(x_n) < f_{n+1}(x_{n+1})$. Comme f_{n+1} est décroissante sur]0,1[et que x_n et x_{n+1} sont dans cet intervalle, on en tire que $x_n > x_{n+1}$. Ainsi, $[(x_n)_{n\geq 2}]$ est décroissante.

3°) Comme pour tout $n \geq 2$, $x_n > 0$, la suite $(x_n)_{n\geq 2}$ est minorée. Elle est de plus décroissante donc, par le théorème de la limite monotone, elle converge.

4°) Comme pour tout $n \ge 2$, $x_n > 0$, par passage à la limite, on a $\ell \ge 0$. Supposons qu'on ait $\ell > 0$.

Comme ln est continue en ℓ , on a $x_n - \ln(x_n) \xrightarrow[n \to +\infty]{} \ell - \ln(\ell)$ qui est un réel.

Par ailleurs, pour tout $n \ge 2$, $x_n - \ln(x_n) = n$, ce qui tend vers $+\infty$. On a une contradiction par unicité de la limite.

On a donc montré par l'absurde que $\ell = 0$.

- 5°) Pour tout $n \ge 2$, $x_n \ln(x_n) = n$ donc $x_n n = \ln(x_n)$, d'où $e^{x_n n} = x_n$, soit $x_n = e^{x_n} e^{-n}$. On sait que $x_n \underset{n \to +\infty}{\longrightarrow} 0$, donc par continuité de exp en 0, $e^{x_n} \underset{n \to +\infty}{\longrightarrow} 1$. Donc $e^{x_n} = 1 + o(1)$. D'où $x_n = (1 + o(1)) e^{-n} = e^{-n} + o(e^{-n})$.
- 6°) Reprenons l'égalité $x_n = e^{x_n}e^{-n}$ et injectons le développement asymptotique de la question précédente :

$$x_n = e^{e^{-n} + o(e^{-n})}e^{-n}$$

Posons $u = e^{-n} + o(e^{-n})$. On a $u \xrightarrow[n \to +\infty]{} 0$, et un o(u) est un $o(e^{-n})$.

On sait par ailleurs que $e^u = 1 + u + o(u)$. D'où :

$$x_n = (1 + (e^{-n} + o(e^{-n})) + o(e^{-n})) e^{-n}$$

$$= (1 + e^{-n} + o(e^{-n})) e^{-n}$$

$$= e^{-n} + e^{-2n} + o(e^{-2n})$$

- 7°) a) Pour tout $n \ge 2$, $S_{n+1} S_n = \sum_{k=2}^{n+1} x_k \sum_{k=2}^n x_k = x_{n+1} > 0$. Donc $(S_n)_{n \ge 2}$ est strictement croissante.
 - **b)** Comme $x_n \xrightarrow[n \to +\infty]{} 0$, par continuité de exp en 0, on a $e^{x_n} \xrightarrow[n \to +\infty]{} 1$. Prenons $\varepsilon = \frac{1}{2}$ dans la définition de la limite : il existe un rang N tel que pour tout $n \geq N$,

$$-\frac{1}{2} \le e^{x_n} - 1 \le \frac{1}{2}$$
 i.e. $\frac{1}{2} \le e^{x_n} \le \frac{3}{2}$

Multiplions l'inégalité de droite par e^{-n} , qui est bien positif :

$$\forall\,n\geq N,\ e^{x_n}e^{-n}\leq \frac{3}{2}e^{-n}$$

$$\forall\,n\geq N,\ x_n\leq \frac{3}{2}e^{-n}$$
 d'après l'égalité de la question 5

c) Soit $n \ge N$. Pour tout $k \in \{N, \dots, n\}$, on a $x_k \le \frac{3}{2}e^{-k}$. Sommons ces inégalités :

$$\sum_{k=N}^{n} x_k \le \sum_{k=N}^{n} \frac{3}{2} e^{-k}$$

$$\sum_{k=N}^{n} x_k \le \frac{3}{2} \sum_{k=N}^{n} (e^{-1})^k$$

$$\sum_{k=N}^{n} x_k \le \frac{3}{2} \sum_{k=0}^{n} (e^{-1})^k \text{ car les termes ajoutés sont positifs}$$

$$\sum_{k=N}^{n} x_k \le \frac{3}{2} \frac{1 - (e^{-1})^{n+1}}{1 - e^{-1}} \text{ car } e^{-1} \ne 1$$

$$\sum_{k=N}^{n} x_k \le \frac{3}{2} \frac{1}{1 - e^{-1}} \text{ car } -\frac{(e^{-1})^{n+1}}{1 - e^{-1}} \text{ est négatif}$$

Si N=2, on a donc majoré $(S_n)_{n\geq 2}$ par la constante $C=\frac{3}{2}\frac{1}{1-e^{-1}}$. Si N>2, on peut écrire :

$$S_n = \sum_{k=2}^{N-1} x_k + \sum_{k=N}^n x_k$$

$$S_n \le \sum_{k=2}^{N-1} x_k + C \text{ ce qui est une constante } (N \text{ est fix\'e})$$

Ainsi, dans tous les cas, la suite $(S_n)_{n\geq 2}$ est majorée. Comme elle est croissante, on en déduit qu' elle converge.

Exercice 2

1°)
$$f(x) = -\ln(\cos x) = -\ln\left(1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)\right)$$

On pose : $X = \frac{x^2}{x \to 0} - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$. On a bien $X \to 0$.

De plus, $X \underset{x\to 0}{\sim} -\frac{x^2}{2}$ donc $X^2 \underset{x\to 0}{\sim} \frac{x^4}{4}$ donc un $o(X^2)$ est un $o(x^4)$ en 0.

On sait que $\ln(1+X) = X - \frac{X^2}{2} + o(X^2)$, ainsi :

$$f(x) \underset{x \to 0}{=} -\left(-\frac{x^2}{2} + \frac{x^4}{24} - \frac{1}{2}\left(-\frac{x^2}{2} + \frac{x^4}{24}\right)^2 + o(x^4)\right)$$
$$\underset{x \to 0}{=} \frac{x^2}{2} + x^4\left(-\frac{1}{24} + \frac{1}{8}\right) + o(x^4)$$
$$f(x) \underset{x \to 0}{=} \frac{x^2}{2} + \frac{x^4}{12} + o(x^4)$$

2°) Pour tout
$$x > 0$$
, $f(x) = \sqrt{x^2 \left(1 - \frac{1}{x}\right)} \exp\left(\frac{1}{x\left(1 + \frac{1}{x}\right)}\right) = x\sqrt{1 - \frac{1}{x}} \exp\left(\frac{1}{x}\frac{1}{1 + \frac{1}{x}}\right)$.

Comme $\frac{1}{x} \xrightarrow[x \to +\infty]{} 0$, on a:

$$\sqrt{1 - \frac{1}{x}} = 1 + \frac{1}{2} \left(\frac{-1}{x} \right) - \frac{1}{8} \left(\frac{-1}{x} \right)^2 + o \left(\left(\frac{-1}{x} \right)^2 \right) = 1 - \frac{1}{2x} - \frac{1}{8x^2} + o \left(\frac{1}{x^2} \right).$$

De même,

$$\exp\left(\frac{1}{x}\frac{1}{1+\frac{1}{x}}\right) \underset{x \to +\infty}{=} \exp\left(\frac{1}{x}\left(1-\frac{1}{x}+o\left(\frac{1}{x}\right)\right)\right) \underset{x \to +\infty}{=} \exp\left(\frac{1}{x}-\frac{1}{x^2}+o\left(\frac{1}{x^2}\right)\right)$$

On pose : $X = \frac{1}{x} - \frac{1}{x^2} + o\left(\frac{1}{x^2}\right)$. On a bien : $X \underset{x \to +\infty}{\longrightarrow} 0$.

De plus, $X \underset{x \to +\infty}{\sim} \frac{1}{x}$ donc $X^2 \underset{x \to +\infty}{\sim} \frac{1}{x^2}$ donc un $o(X^2)$ est un $o\left(\frac{1}{x^2}\right)$ en $+\infty$.

On sait que $e^X = 1 + X + \frac{X^2}{2} + o(X^2)$, d'où :

$$\exp\left(\frac{1}{x}\frac{1}{1+\frac{1}{x}}\right) \underset{x \to +\infty}{=} 1 + \frac{1}{x} - \frac{1}{x^2} + \frac{1}{2}\left(\frac{1}{x} - \frac{1}{x^2}\right)^2 + o\left(\frac{1}{x^2}\right) \underset{x \to +\infty}{=} 1 + \frac{1}{x} - \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right).$$

Finalement:

$$f(x) \underset{x \to +\infty}{=} x \left(1 - \frac{1}{2x} - \frac{1}{8x^2} + o\left(\frac{1}{x^2}\right) \right) \left(1 + \frac{1}{x} - \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right) \right)$$

$$\underset{x \to +\infty}{=} x \left(1 + \frac{1}{x} \left(1 - \frac{1}{2} \right) + \frac{1}{x^2} \left(-\frac{1}{2} - \frac{1}{2} - \frac{1}{8} \right) + o\left(\frac{1}{x^2}\right) \right)$$

$$\underset{x \to +\infty}{=} x + \frac{1}{2} - \frac{9}{8x} + o\left(\frac{1}{x}\right)$$

On a donc : $f(x) - \left(x + \frac{1}{2}\right) \underset{x \to +\infty}{=} -\frac{9}{8x} + o\left(\frac{1}{x}\right)$ donc $f(x) - \left(x + \frac{1}{2}\right) \underset{x \to +\infty}{\sim} -\frac{9}{8x}$.

Ainsi:

•
$$f(x) - \left(x + \frac{1}{2}\right) \underset{x \to +\infty}{\longrightarrow} 0 \text{ donc} :$$

la droite \mathcal{D} d'équation $y = x + \frac{1}{2}$ est asymptote à la courbe \mathcal{C} de f en $+\infty$.

• Pour tout x > 0, $-\frac{9}{8x} < 0$, donc au voisinage de $+\infty$, $f(x) - \left(x + \frac{1}{2}\right) < 0$. Ainsi, $[en +\infty, C \text{ est en-dessous de } D.]$

Exercice 3

1°) a)
$$f$$
 est dérivable sur $[0,1]$ et, pour tout $x \in [0,1]$, $f'(x) = \frac{x^2 + x + 1 - x(2x + 1)}{(x^2 + x + 1)^2} = \frac{1 - x^2}{(x^2 + x + 1)^2}$. $x \in [0,1]$ donc $1 - x^2 \ge 0$ et $1 - x^2 = 0 \iff x = 1$.

x	0	1
f'(x)	+	0
f	0	$\frac{1}{3}$

- b) On pose, pour $n \in \mathbb{N}$, $H_n : u_n$ existe et $0 < u_n \le 1$.
 - \star H_0 est vraie.
 - ★ Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie. Ainsi, u_n existe et $0 < u_n \le 1$. Donc, $f(u_n)$ existe et, par stricte croissance de f sur [0,1], $f(0) < f(u_n) \le f(1)$. Donc u_{n+1} existe et $0 < u_{n+1} \le \frac{1}{3}$ donc $0 < u_{n+1} \le 1$. Ainsi, H_{n+1} est vraie.
 - \star On a montré par récurrence que, pour tout $n \in \mathbb{N}$, u_n existe et $0 < u_n \le 1$.
- $\mathbf{2}^{\circ}$) a) Soit $n \in \mathbb{N}^*$.

$$f\left(\frac{1}{n}\right) = \frac{\frac{1}{n}}{\frac{1}{n^2} + \frac{1}{n} + 1} = \frac{n}{1 + n + n^2}.$$

$$f\left(\frac{1}{n}\right) \le \frac{1}{n+1} \iff n(n+1) \le 1 + n + n^2 \qquad \text{car } n+1 > 0$$

$$\iff \underbrace{0 \le 1}_{\text{vrai}}$$

Ainsi,
$$f\left(\frac{1}{n}\right) \le \frac{1}{n+1}$$
.

b) On pose, pour
$$n \in \mathbb{N}$$
, $H_n : u_n \leq \frac{1}{n+1}$.

$$\star u_0 = 1$$
 donc H_0 est vraie.

$$\bigstar$$
 Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie.

Alors
$$u_n \leq \frac{1}{n+1}$$
. De plus, ce sont deux éléments de $[0,1]$ et f est croissante sur $[0,1]$ donc $f(u_n) \leq f\left(\frac{1}{n+1}\right)$.

Ainsi, par 2a,
$$u_{n+1} \leq \frac{1}{n+2}$$
. Donc, H_{n+1} est vraie.

$$\bigstar$$
 On a montré par récurrence que : $\forall n \in \mathbb{N}, u_n \leq \frac{1}{n+1}$.

c) On a donc :
$$\forall n \in \mathbb{N}, 0 \le u_n \le \frac{1}{n+1}$$
.

Comme
$$\frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$$
, par le théorème d'encadrement, la suite (u_n) converge vers 0 .

3°) Soit
$$n \in \mathbb{N}$$
. $u_n + 1 + \frac{1}{u_n} = \frac{u_n^2 + u_n + 1}{u_n} = \frac{1}{f(u_n)}$. Ainsi, $\frac{1}{u_{n+1}} = u_n + 1 + \frac{1}{u_n}$

4°) On pose, pour
$$n \in \mathbb{N}^*$$
, $H_n : \frac{1}{u_n} \le n + 1 + \sum_{k=1}^n \frac{1}{k}$.

★ Pour
$$n = 1 : u_0 = 1$$
. Or $u_1 = f(u_0)$ donc $u_1 = \frac{1}{3}$

On a bien :
$$\frac{1}{u_1} = 3 \le 2 + \frac{1}{1}$$
. Ainsi, H_1 est vraie.

$$\bigstar$$
 Soit $n\in\mathbb{N}^*$ fixé. On suppose que H_n est vraie.

Par 3,
$$\frac{1}{u_{n+1}} = u_n + 1 + \frac{1}{u_n}$$
.

Donc, par
$$H_n$$
, $\frac{1}{u_{n+1}} \le u_n + 1 + n + 1 + \sum_{k=1}^n \frac{1}{k}$

Or, par 2b,
$$u_n \le \frac{1}{n+1}$$
 donc $\frac{1}{u_{n+1}} \le (n+1) + 1 + \sum_{k=1}^{n+1} \frac{1}{k}$.

Ainsi,
$$H_{n+1}$$
 est vraie.

$$\bigstar$$
 On a montré par récurrence que : $\forall n \in \mathbb{N}^*, \frac{1}{u_n} \leq n+1+\sum_{k=1}^n \frac{1}{k}$

5°) Soit un entier
$$k \geq 2$$
.

$$\ln k - \ln(k-1) = -(\ln(k-1) - \ln k) = -\ln\left(\frac{k-1}{k}\right) = -\ln\left(1 - \frac{1}{k}\right).$$

Or, pour tout
$$x > -1$$
, $\ln(1+x) \le x$.

En posant
$$x = -\frac{1}{k}$$
, on a $x > -1$. D'où $\ln\left(1 - \frac{1}{k}\right) \le -\frac{1}{k}$. Donc $\frac{1}{k} \le -\ln\left(1 - \frac{1}{k}\right)$.

Finalement,
$$\frac{1}{k} \le \ln(k) - \ln(k-1)$$
.

6°) Soit
$$n \geq 2$$
.

$$\forall k \geq 2, \frac{1}{k} \leq \ln(k) - \ln(k-1)$$
 donc, en sommant de $k = 2$ à $k = n : \sum_{k=2}^{n} \frac{1}{k} \leq \sum_{k=2}^{n} (\ln(k) - \ln(k-1))$.

Par téléscopage,
$$\sum_{k=2}^{n} (\ln(k) - \ln(k-1)) = \sum_{k=2}^{n} \ln(k) - \sum_{k=2}^{n} \ln(k-1) = \ln n - \ln 1 = \ln n$$
.

Ainsi,
$$\sum_{k=2}^{n} \frac{1}{k} \le \ln n$$
.

Par 4,
$$\frac{1}{u_n} \le n + 1 + \sum_{k=1}^n \frac{1}{k} = n + 2 + \sum_{k=2}^n \frac{1}{k}$$
. Donc, $\frac{1}{u_n} \le n + 2 + \ln n$.

Comme les termes sont strictement positifs, il vient : $\frac{1}{n+2+\ln n} \le u_n$.

D'autre part, par 2b, on sait que : $u_n \leq \frac{1}{n+1}$.

Ainsi, puisque
$$n \ge 0$$
, $\frac{n}{n+2+\ln n} \le nu_n \le \frac{n}{n+1}$

$$\frac{n}{n+1} = \frac{1}{1+\frac{1}{n}} \xrightarrow[n \to +\infty]{} 1.$$

D'autre part,
$$\frac{n}{n+2+\ln n} = \frac{1}{1+\frac{2}{n}+\frac{\ln n}{n}} \xrightarrow{n\to+\infty} 1.$$

Donc, par le théorème d'encadrement, $nu_n \xrightarrow[n \to +\infty]{} 1$

Il vient :
$$nu_n = 1 + o(1) \ i.e. \ u_n = \frac{1}{n} + o(\frac{1}{n})$$

Exercice 4

 $\mathbf{1}^{\circ}$) Soit $x \in \mathbb{R}$,

$$|f(x)| = \left| \frac{i-x}{i+x} \right| = \frac{|i-x|}{|i+x|} = \frac{\sqrt{1+x^2}}{\sqrt{1+x^2}} = 1$$

Ainsi, pour tout $x \in \mathbb{R}$, $f(x) \in \mathbb{U}$

- **2°)** Comme les images par f sont de module 1, on en déduit que 2 par exemple n'a pas d'antécédent par f: f n'est pas surjective.
- **3**°) Soit $\theta \in [-\pi, \pi]$. Résolvons $f(x) = e^{i\theta}$ d'inconnue $x \in \mathbb{R}$.

$$f(x) = e^{i\theta} \iff \frac{i - x}{i + x} = e^{i\theta}$$
$$\iff i - x = e^{i\theta}(i + x)$$
$$\iff x(e^{i\theta} + 1) = i(1 - e^{i\theta})$$

Si $e^{i\theta} = -1$, *i.e.* si $\theta = \pi$, alors $f(x) = e^{i\theta} \iff 0 = 2i$. Exclu.

Si $e^{i\theta} = -1$, l'équation n'a pas de solution.

Supposons $\theta \neq \pi$. Alors,

$$f(x) = e^{i\theta} \iff x = i\frac{1 - e^{i\theta}}{1 + e^{i\theta}} \qquad \text{car } 1 + e^{i\theta} \neq 0$$

$$\iff x = i\frac{e^{i\frac{\theta}{2}}(e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}})}{e^{i\frac{\theta}{2}}(e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}})}$$

$$\iff x = i\frac{-2i\sin(\frac{\theta}{2})}{2\cos(\frac{\theta}{2})}$$

$$\iff x = \tan\left(\frac{\theta}{2}\right)$$

 $\tan\left(\frac{\theta}{2}\right)$ est bien un réel.

Pour $\theta \neq \pi$, l'équation admet une unique solution dans \mathbb{R} : $x = \tan\left(\frac{\theta}{2}\right)$

4°) a) Soit $(x, x') \in \mathbb{R}^2$. Supposons f(x) = f(x'), on a donc :

$$\frac{i-x}{i+x} = \frac{i-x'}{i+x'}$$

$$(i-x)(i+x') = (i-x')(i+x)$$

$$-1 - ix + ix' - xx' = -1 - ix' + ix - xx'$$

$$2i(x'-x) = 0$$

$$\text{d'où } x = x'$$

Ainsi f est injective

- b) Soit $z \in \mathbb{C}$.
 - Si $z \notin \mathbb{U}$ alors l'équation f(x) = z n'a pas de solution dans \mathbb{R} (puisque |f(x)| = 1 pour tout $x \in \mathbb{R}$), autrement dit z n'a pas d'antécédent par f.
 - Si z = -1, z n'a pas d'antécédent dans \mathbb{R} (cas $e^{i\theta} = -1$ dans la question 3).
 - Si $z \in \mathbb{U} \setminus \{-1\}$ alors z admet un unique antécédent dans \mathbb{R} par la question 3.

Ainsi, tout élément de \mathbb{C} admet au plus un antécédent dans \mathbb{R} .

On en déduit que f est injective

- **5**°) Par la question 1, $f(\mathbb{R}) \subset \mathbb{U}$. De plus, -1 n'a pas d'antécédent donc $f(\mathbb{R}) \subset \mathbb{U} \setminus \{-1\}$.
 - Réciproquement, soit $z \in \mathbb{U} \setminus \{-1\}$ alors, par la question 3, z admet un (unique) antécédent dans \mathbb{R} . Donc $z \in f(\mathbb{R})$.

Finalement, $f(\mathbb{R}) = \mathbb{U} \setminus \{-1\}$

 6°) Soit $x \in \mathbb{R}$:

$$x \in f^{-1}(\mathbb{R}) \iff f(x) \in \mathbb{R}$$

 $\iff f(x) = -1 \text{ ou } f(x) = 1 \text{ car d'après la question } 1, |f(x)| = 1$
 $\iff f(x) = 1 \text{ car d'après la question } 3, f(x) = -1 \text{ n'a pas de solution}$
 $\iff f(x) = e^{i0}$
 $\iff x = \tan\left(\frac{0}{2}\right) = 0 \text{ d'après la question } 3$

(Ou bien on re-résout : $f(x) = 1 \iff \frac{i-x}{i+x} = 1 \iff i-x = i+x \iff 2x = 0 \iff x = 0.$) Donc, $f^{-1}(\mathbb{R}) = \{0\}$.

Exercice 5

- 1°) a) i. Posons, pour tout $n \in \mathbb{N}$, $P_n : "u_n \ge 0"$.
 - $u_0 = a \ge 0$ donc P_0 est vraie.
 - Supposons P_n vraie pour un $n \in \mathbb{N}$ fixé. $u_{n+1} = g(u_n) = \frac{u_n}{1 + u_n^2} \ge 0$ car $u_n \ge 0$ et $1 + u_n^2 > 0$. Donc P_{n+1} est vraie.
 - Conclusion : pour tout $n \in \mathbb{N}$, $u_n \ge 0$.

Autre méthode: Soit $x \in \mathbb{R}_+$. Alors $g(x) = \frac{x}{1+x^2} \in \mathbb{R}_+$ puisque $1+x^2 > 0$.

Ainsi, l'intervalle \mathbb{R}_+ est stable par g.

Comme $u_0 = a \in \mathbb{R}_+$, on en tire que pour tout $n \in \mathbb{N}$, $u_n \in \mathbb{R}_+$.

ii. Pour tout
$$n \in \mathbb{N}$$
, $u_{n+1} - u_n = \frac{u_n}{1 + u_n^2} - u_n = \frac{u_n - u_n(1 + u_n^2)}{1 + u_n^2} = -\frac{u_n^3}{1 + u_n^2} \le 0$. Donc (u_n) est décroissante.

iii. Comme pour tout $n \in \mathbb{N}$, $u_n \geq 0$, la suite est minorée. Comme elle est décroissante, elle converge. Notons ℓ sa limite.

Comme, pour tout $n \in \mathbb{N}$, $u_{n+1} = g(u_n)$ et que g est continue sur \mathbb{R} , ℓ est un point fixe de g. On a donc :

$$\ell = \frac{\ell}{1 + \ell^2}$$

$$\ell(1 + \ell^2) = \ell$$

$$\ell + \ell^3 - \ell = 0$$

$$\ell^3 = 0$$

$$\ell = 0$$

Ainsi,
$$u_n \xrightarrow[n \to +\infty]{} 0$$
.

b) On a $v_0 = -a \ge 0$, et pour tout $n \in \mathbb{N}$:

$$v_{n+1} = -u_{n+1} = \frac{-u_n}{1 + u_n^2} = \frac{-u_n}{1 + (-u_n)^2} = g(-u_n) = g(v_n)$$

Ainsi, v est une suite récurrente associée à la fonction g, de premier terme positif. D'après la question précédente, elle converge vers 0. Donc $u_n = -v_n \xrightarrow[n \to +\infty]{} 0$ également.

 $\mathbf{c})$

$$\forall n \in \mathbb{N}, \ \alpha_{n+1} = f(u_{n+1})$$

$$= f\left(\frac{u_n}{1 + u_n^2}\right)$$

$$= f(u_n) \text{ car } f \text{ v\'erifie } (*)$$

$$= \alpha_n$$

Donc la suite (α_n) est constante.

d) On a donc, pour tout $n \in \mathbb{N}$, $f(u_n) = \alpha_n = \alpha_0 = f(u_0) = f(a)$.

On a donc $f(u_n) \underset{n \to +\infty}{\longrightarrow} f(a)$.

Or, comme $u_n \xrightarrow[n \to +\infty]{} 0$ et que f est continue en 0, on a aussi $f(u_n) \xrightarrow[n \to +\infty]{} f(0)$.

Par unicité de la limite, on a donc f(a) = f(0).

Ceci est valable pour n'importe quel réel a; f est donc constante sur \mathbb{R} .

- $\mathbf{2}^{\circ}$) D'après ce qui précède, si f est solution, alors f est constante sur \mathbb{R} .
 - Réciproquement, si f est une fonction constante égale à un réel c sur \mathbb{R} , alors f est continue en 0, et pour tout $x \in \mathbb{R}$,

8

$$f\left(\frac{x}{1+x^2}\right) = c = f(x)$$

Donc f est bien solution.

 Conclusion : les seules solutions sont les fonctions constantes sur $\mathbb R$