Lecture Notes in Partial Differential Equations

Ashish Kujur

Last Updated: August 14, 2022

Introduction

This is a set of lecture notes which I took for reviewing stuff that I typed after taking class from *Dr. K.R. Arun*. This course used the textbook *Partial Differential Equations* by L.C. Evans.

Contents

§ 1	Lecture 1 — 11th August, 2022 — Definition, Classifications & Examples of PDEs	2
	§1.1 Notations	2
	§1.2 Definition, Classification & Examples	2
	§1.2.1 Classifications of PDE	2
	§1.2.2 Examples of PDEs	3
	§1.3 Transport Equation	4

§1 Lecture 1 — 11th August, 2022 — Definition, Classifications & Examples of PDEs

§1.1 Notations

- Let \mathbb{N}_0 be defined to be the set $\mathbb{N} \cup \{0\}$. For any $N \in \mathbb{N}$, an element of \mathbb{N}_0^N to be an *multiin-dex*. If $\alpha \in \mathbb{N}_0^N$ then $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N)$ for some $\alpha_i \in \mathbb{N}_0$.
- For any $x \in \mathbb{R}^N$ and $N \in \mathbb{N}$, we define $x^{\alpha} = x_1^{\alpha_1} \cdots x_N^{\alpha_N}$.
- Given any multiindex $\alpha \in \mathbb{N}_0^N$, we define $|\alpha| = \alpha_1 + \alpha_2 + \ldots + \alpha_N$.
- Given any multiindex α , we define

$$D^{\alpha} := \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_N^{\alpha_N}} = \partial x_1^{\alpha_1} \cdots \partial x_N^{\alpha_N}$$

- For any $k \in \mathbb{N}$, denote $D^k = \{D^\alpha : |\alpha| = k\}$
- We will denote $\Omega \subset \mathbb{R}^N$ to be an open subset.

§1.2 Definition, Classification & Examples

Definition §1.2.1 (Partial Differential Equation). Let Ω be an open subset of \mathbb{R}^N . An expression of the form

$$F\left(D^{k}u(x), D^{k-1}u(x), \dots, Du(x), x\right) = 0 \qquad (x \in \Omega)$$

is called a kth order PDE for the unknown function $u:\Omega\to\mathbb{R}$. One may assume $F:\mathbb{R}^{N^k}\times\mathbb{R}^{N^{k-1}}\times \times\mathbb{R}^N\times\Omega\to\mathbb{R}$ is a given smooth function.

§1.2.1 Classifications of PDE

(i) The PDE (1) is called *linear* if it has the form

$$\sum_{0 \le |\alpha| \le k} a_{\alpha}(x) D^{\alpha} u = f$$

for some functions a_{α} , f. The linear PDE is homogeneous if f = 0.

(ii) The PDE (1) is called *semilinear* if it has the form

$$\sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha} u + a_0 \left(D^{k-1} u, \dots, D u, u, x \right) = 0$$

(iii) The PDE (1) is called quasilinear if it has the form

$$\sum_{|\alpha|=k} a_{\alpha}(D^{k-1}u, ..., Du, u, x)D^{\alpha}u + a_{0}(D^{k-1}u, ..., Du, u, x) = 0$$

(iv) The PDE (1) is called *nonlinear* if the PDE has a nonlinear dependence on the highest order derivative.

Definition §1.2.2 (System of PDE). An expression of the form $\mathbf{F}(D^k(\mathbf{u}), D^{k-1}(\mathbf{u})), \dots, D(\mathbf{u}), \mathbf{u}, x) = \mathbf{0}$ is called a kth order system of PDE, where $\mathbf{u}: \Omega \to \mathbb{R}^m$ is the unknown, $\mathbf{u} = (u^1, u^2, \dots, u^n)$ and $\mathbf{F}: \mathbb{R}^{mN^k} \times \mathbb{R}^{mN^{k-1}} \times \dots \times \mathbb{R}^{mN} \times \mathbb{R}^m \times U \to \mathbb{R}^m$ is given.

§1.2.2 Examples of PDEs

1. Linear Equations

Laplace Equation $\Delta u = \sum_{i=1}^{N} \partial_{x_i^2} u = 0$

(linear, second order)

Linear Transport Equation $\partial_t u + \sum_{i=1}^N \partial_{x_i} u = 0$

(linear, first order)

Schrödinger's Equation $i\partial_t u + \Delta u = 0$

(linear, second order)

Linear System: Maxwell's Equations

$$\partial_t E = \text{curl } B$$

 $\partial_t B = -\text{curl } E$
 $\text{div } E = \text{div } B = 0$

2. Nonlinear equations

Inviscid Burgers' equation $\partial_t u + u \partial_x u = 0$

Eikonal equation |Du| = 1

Nonlinear system: Navier-Stokes Equations

$$\partial_t \mathbf{u} + \mathbf{u} \cdot D\mathbf{u} - \Delta \mathbf{u} = -Dp$$
$$\operatorname{div} \mathbf{u} = 0$$

Definition §1.2.3 (Well posed). A PDE is said to be *well posed* if

(Existence) it has at least one solution,

(Uniqueness) it has at most one solution and

(**Stability**) the solution depends continuously on the data given in the problem.

Definition §1.2.4. A *classical solution* of the k-th order PDE is a function $u \in C^k(\Omega)$ which satisfies the equation pointwise

$$F\left(D^k u(x), D^{k-1} u(x), \dots, D u(x), u(x), x\right) = 0$$

for all $x \in \Omega$.

Remark §1.2.5. A classical solution may not always exist. For instance, the inviscid Burgers' equation does not have a solution.

The course is divided into three parts:

- (a) Representation Formulae for solutions
- (b) Linear PDE theory
- (c) Nonlinear PDE theory

§1.3 Transport Equation

The PDE

$$\partial_t u + b \cdot Du = 0$$
 in $\mathbb{R}^n \times (0, \infty)$

where $t \in (0, \infty)$, $x \in \mathbb{R}^n$ are the independent variables, u = u(t, x) is the dependent variable and $b = (b_1, b_2, ..., b_n)$ and $Du = (\partial_{x_1} u, ..., \partial_{x_2} u)$ is the gradient.