Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт космических и информационных технологий институт Кафедра «Информатика» кафедра

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

«Синтаксический анализ контекстно-свободных языков» тема

Вариант 1

Преподав	атель		А.С. Кузнецов	
		подпись, дата	инициалы, фамилия	
Студент	КИ18-17/2б		А.С. Ядров	
	номер группы	подпись, дата	инициалы, фамилия	

1 Цель работы

Исследование свойств универсальных алгоритмов синтаксического анализа контекстно-свободных языков.

2 Задание

Для выполнения данной практической работы необходимо выполнить следующие задания:

- ознакомиться с теоретическими сведениями о нормальной форме
 Хомского и универсальных алгоритмах синтаксического анализа;
- получить у преподавателя собственный вариант задания с описанием контекстно-свободного языка, распознаваемого алгоритмом Кока-Янгера-Касами;
- используя изученные механизмы, определите в системе JFLAP согласно постановке задачи соответствующую КСГ. Определенный таким образом язык должен анализироваться алгоритмом Кока-Янгера-Касами. В случае невозможности создания КСГ это должно доказываться формально;
- написать отчет и представить его на проверку вместе с полученными
 JFLAP-моделями.

Для задания был взят следующий вариант:

Вариант 1. Язык оператора присваивания, в правой части которого задано арифметическое выражение. Элементами выражений являются целочисленные константы в двоичной системе счисления, имена переменных из одного символа (от а до f), знаки операций и скобки для изменения порядка вычисления подвыражений. Операции (в сторону уменьшения приоритета): унарный минус, мультипликативные, аддитивные, присваивание.

3 Ход работы

В ходе выполнения лабораторной работы была получена контекстносвободная грамматика следующего вида (рисунок 1, 2).

LHS		
s	\rightarrow	LR
R	\rightarrow	EA
A	\rightarrow	мв
Α	\rightarrow	вн
В	\rightarrow	oz
В	\rightarrow	вЈ
В	\rightarrow	хс
С	\rightarrow	ми
С	\rightarrow	BP
U	\rightarrow	
P	\rightarrow	YJ
P	\rightarrow	YH
P	\rightarrow	JP
J	\rightarrow	DB
н	\rightarrow	λ
В	\rightarrow	LH
z		zz
z	\rightarrow	-
z	\rightarrow	1
z		0
0	\rightarrow	1
1	\rightarrow	0
E	\rightarrow	=
м	\rightarrow	-
х	\rightarrow	
Y	\rightarrow	_
L	\rightarrow	_
L	\rightarrow	
L	\rightarrow	-
L	\rightarrow	-
L	\rightarrow	-
L	\rightarrow	
D	\rightarrow	+
D	\rightarrow	-
D	\rightarrow	1
D	\rightarrow	96
D	\rightarrow	*
A	\rightarrow	TH.

Рисунок 1 – КСГ

LHS			7	1	0
S	\rightarrow	LR	Z	\rightarrow	
R	\rightarrow	EA	0	\rightarrow	1
A		MB	I	\rightarrow	0
A		BH	E	\rightarrow	=
В		OZ	M	\rightarrow	_
В	1		X	\rightarrow	{
		50	Υ	\rightarrow	
В		XC	L	\rightarrow	
С	\rightarrow	MU		-	
С	\rightarrow	BP	L	\rightarrow	b
U	\rightarrow	BP	L	\rightarrow	С
Р	\rightarrow	YJ	L	\rightarrow	d
Р	\rightarrow	YH	L	\rightarrow	е
Р	\rightarrow	JP	L	\rightarrow	2002
J	\rightarrow	DB	D	\rightarrow	+
Н	\rightarrow	λ	D	\rightarrow	-
В	\rightarrow	LH	D	\rightarrow	/
Z	\rightarrow	ZZ	D		%
Z	\rightarrow	λ	D	\rightarrow	1
Z	\rightarrow	I	A	\rightarrow	IH

Рисунок 2 – КСГ в двух частях

После построения КСГ для заданного варианта было произведено некая тестирование конечного продукта, используя алгоритм Кока-Янгера-Касами, результаты которого были положительными (рисунки 3-16).

Рисунок 3 – Строка «a=1» – Accepted

Рисунок 4 — Строка «а=-1+а» — Accepted

Рисунок 5 — Строка «a=a*(-1/(-100))» — Accepted

Рисунок 6 – Строка «b=0» – Accepted

Рисунок 7 — Строка (b=a+c+b+(-100*1)/(-e))» — Accepted

Рисунок 8 — Строка «b=-(-(-(-(-1))))» — Accepted

Рисунок 9 — Строка «b=(a*(101)» - Rejected

Рисунок 10 — Строка «b=-(-a-1-b)% c-(-f)» - Accepted

Рисунок 11 – Строка «b=-(a1)» - Rejected

Рисунок 12 — Строка «b=-(a)b» - Rejected

Рисунок 13 – Строка «b=-(a)% b» - Accepted

Рисунок 14 - Строка «b=01» - Rejected

Рисунок 15 – Строка «b=g» - Rejected

Рисунок 16 – Multiply Run CYK

4 Вывод

В ходе лабораторной работы было проведено исследование свойств универсальных алгоритмов синтаксического анализа контекстно-свободных языков.