Special applications: Face recognition & Neural style transfer Quiz, 10 questions

1 point	
	rification requires comparing a new picture against one person's face, whereas face ition requires comparing a new picture against K person's faces.
	True
	False
1 point	
2. Why do	we learn a function $d(img1,img2)$ for face verification? (Select all that apply.)
	This allows us to learn to recognize a new person given just a single image of that person.
	Given how few images we have per person, we need to apply transfer learning.
	This allows us to learn to predict a person's identity using a softmax output unit, where the number of classes equals the number of persons in the database plus 1 (for the final "not in database" class).
	We need to solve a one-shot learning problem.
1 point	
3. In orde	r to train the parameters of a face recognition system, it would be reasonable to use a
	g set comprising 100,000 pictures of 100,000 different persons.
	True
	False

Special applications: Face recognition & Neural style transfer

Quiz, 10 questions

point

4.

Which of the following is a correct definition of the triplet loss? Consider that $\alpha>0$. (We encourage you to figure out the answer from first principles, rather than just refer to the lecture.)

- $max(||f(A)-f(N)||^2-||f(A)-f(P)||^2-lpha,0)$
- $\bigcap max(||f(A)-f(N)||^2-||f(A)-f(P)||^2+lpha,0)$
- $max(||f(A)-f(P)||^2-||f(A)-f(N)||^2-lpha,0)$
- $\bigcap max(||f(A)-f(P)||^2-||f(A)-f(N)||^2+lpha,0)$

1 point

5

Consider the following Siamese network architecture:

The upper and lower neural networks have different input images, but have exactly the same parameters.

- True
- False

1 point

Specialap	a ConvNet on a dataset with 100 different classes. You wonder if you can find a hidden plications ig by acocame of the majority are cat pictures.) You are more likely to find
_	n layer 4 of the network than in layer 1.
O Tr	rue
Fa	alse
1 point	
-	vile transfer is trained as a supervised learning task in which the goal is to input two), and train a network to output a new, synthesized image ($m{y}$).
O Tr	rue
C Fa	alse
style matr layer $m{l}$ var	eper layers of a ConvNet, each channel corresponds to a different feature detector. The ${ m rix}~G^{[l]}$ measures the degree to which the activations of different feature detectors in ${ m ry}$ (or correlate) together with each other.
	alse
1 point	
	style transfer, what is updated in each iteration of the optimization algorithm?
O Th	ne pixel values of the generated image ${\cal G}$
○ Th	ne regularization parameters
○ Th	ne pixel values of the content image ${\cal C}$

1 poin	t .
0.	
2x32>	e working with 3D data. You are building a network layer whose input volume has size x32x16 (this volume has 16 channels), and applies convolutions with 32 filters of dimension (no padding, stride 1). What is the resulting output volume?
	30x30x30x16
	30x30x30x32
	Undefined: This convolution step is impossible and cannot be performed because the dimensions specified don't match up.
	Quan Luu, understand that submitting work that isn't my own may result in permanent ilure of this course or deactivation of my Coursera account.
	earn more about Coursera's Honor Code

5 P