Añadidos Tema 2. ¿Por qué / cómo funciona RSA?

Seguridad en Sistemas Informáticos 4º Grado en Ingeniería Informática – ESEI

Septiembre-2018

Previo: Aritmética modular

Es equivalente:

(1)
$$\mathbf{a} \equiv \mathbf{b} \pmod{\mathbf{n}}$$
 $a y b son \begin{cases} \mathbf{equivalentes} \\ congruentes \end{cases} m \acute{o} dulo n$
(2) $\mathbf{a} \mod \mathbf{n} = \mathbf{b} \mod \mathbf{n}$ $a y b$ tienen el mismo resto $m \acute{o} dulo n$ (operaciones $m \acute{o} dulo n$)
(3) $\exists \mathbf{k} \geq \mathbf{1} \text{ tal que } \mathbf{a} = \mathbf{k} \cdot \mathbf{n} + \mathbf{b}$ $b \text{ es el } \mathbf{resto} \text{ de la división entera de } a \text{ entre } n$
[también: $(a - b) \text{ es } m \acute{o} t$]

Dadas las operaciones + ("suma") y · ("producto") Si $a \equiv b \pmod{n}$ y $c \equiv c \pmod{n}$ se verifica que:

- $a + c \equiv b + d \pmod{n}$
- $a \cdot c \equiv b \cdot d \pmod{n}$

El conjunto de enteros m'odulo n (\mathbb{Z}_n) forma un **anillo conmutativo** algebraico de n elementos (+ y · verifican las propiedades asociativa, conmutativa y distributiva).

 Si n es primo, se tratará además de un cuerpo finito (todos los elementos tienen inverso multiplicativo)

Bases de RSA (I)

Suposición de partida

(1) Supongamos que existiera un "número mágico" \mathbf{x} en \mathbb{Z}_n que verificara

$$M^{x} \equiv M \pmod{n} \quad \forall M \in \mathbb{Z}_{n}$$

(6 $M^{x} \mod{n} = M$)

Nota: $\begin{cases} -\text{ en el caso de los números enteros sólo el 1 verifica esa propiedad} \\ -\text{ en } \mathbb{Z}_n \text{ puede haber muchos elementos que sí la verifiquen} \end{cases}$

- (2) Si además ese x se pudiera descomponer como $\mathbf{x} \equiv \mathbf{e} \cdot \mathbf{d} \pmod{\mathbf{n}}$, por las propiedades de la aritmética modular, tendríamos
 - una operación de cifrado:

$$M^e \mod n = C$$

• una operación de descifrado:

$$C^d \mod n = (M^e \mod n)^d \mod n = M^c \mod n = M^x \mod n = M$$

En RSA, los exponentes e y d, junto con el módulo n, se seleccionan para que cumplan esas dos suposiciones.

Bases de RSA (II)

Teorema de Euler-Fermat

Si ${\bf a}$ y ${\bf n}$ son ${\bf primos}$ relativos (no tienen factores comunes excepto el 1) entonces se verifica

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Ofrece las condiciones teóricas para caracterizar los exponentes e y d y el módulo n empleados en RSA.

 $\varphi(n)$ es la función **totient de Euler**, que se corresponde con el número de enteros positivos menores o iguales que n que son primos relativos con n.

$$\varphi(n) = |\{i \in \mathbb{N} | i \le n \text{ y } mcd(i, n) = 1\}|$$

En el caso de que n sea un número primo, $\varphi(n) = n - 1$.

Bases de RSA (III)

En RSA los exponentes e y d se seleccionan para que sean **inversos multiplicativos** m'odulo $\varphi(n)$.

- Es decir, e y d verifican $e \cdot d \equiv 1 \pmod{\varphi(n)}$
- Por lo tanto, tenemos que $e \cdot d = k \cdot \varphi(n) + 1$.

Esta restricción garantiza que el descifrado "funcionará":

- Partimos del cifrado de M usando la operación $\mathbf{C} = M^e \mod n$.
- La operación de descifrado de C será:

$$C^d \mod n = (M^e \mod n)^d \mod n =$$
 (por las propiedades de la exponenciación)
$$= M^{e \cdot d} \mod n = \text{(aplicando que e y d son inversos multiplicativos)}$$

$$= M^{k \cdot \varphi(n)+1} \mod n = \text{(por las propiedades de la exponenciación)}$$

$$= M^{k \cdot \varphi(n)} \cdot M^1 \mod n = \text{(aplicando el teorema de Euler)}$$

$$= M^{k \cdot \varphi(n)} \cdot M \mod n = M \text{(descifrado)}$$

Tiempos de factorización

Tabla extraída del artículo original: Tiempos estimados (1978) para diversos tamaños de clave expresados en dígitos <u>decimales</u>.

 R. Rivest, A. Shamir, L. Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM, Vol. 21 (2), pp.120–126. 1978.

```
http://people.csail.mit.edu/rivest/Rsapaper.pdf
```

steps (here ln denotes the natural logarithm function). Table 1 gives the number of operations needed to factor n with Schroeppel's method, and the time required if each operation uses one microsecond, for various lengths of the number n (in decimal digits).

Table 1

Digits	Number of operations	Time
50	1.4×10^{10}	3.9 hours
75	9.0×10^{12}	104 days
100	2.3×10^{15}	74 years
200	1.2×10^{23}	$3.8 \times 10^9 \text{ years}$
300	1.5×10^{29}	4.9×10^{15} years
500	1.3×10^{39}	4.2×10^{25} years

Tamaños de clave recomendados

Recomendaciones de 2012 del NIST sobre tamaños de clave (simétricas y asimétricas) y de resúmenes de funciones HASH en función del tiempo de vida de los datos.

Disponible en http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

Keys length recommendations

Date	Minimum of Strength	Symmetric Algorithms	Asymmetric		crete arithm Group	Elliptic Curve	Hash (A)	Hash (B)
2010 (Legacy)	80	2TDEA*	1024	160	1024	160	SHA-1** SHA-224 SHA-256 SHA-384 SHA-512	SHA-1 SHA-224 SHA-256 SHA-384 SHA-512
2011 - 2030	112	3TDEA	2048	224	2048	224	SHA-224 SHA-256 SHA-384 SHA-512	SHA-1 SHA-224 SHA-256 SHA-384 SHA-512
> 2030	128	AES-128	3072	256	3072	256	SHA-256 SHA-384 SHA-512	SHA-1 SHA-224 SHA-256 SHA-384 SHA-512
>> 2030	192	AES-192	7680	384	7680	384	SHA-384 SHA-512	SHA-224 SHA-256 SHA-384 SHA-512
>>> 2030	256	AES-256	15360	512	15360	512	SHA-512	SHA-256 SHA-384 SHA-512

All key sizes are provided in bits. These are the minimal sizes for security.

TDEA (Triple Data Encryption Algorithm) and AES are specified in [10]. Hash (A): Digital signatures and hash-only applications.

Hash (B): HMAC, Key Derivation Functions and Random Number Generation.

Fuente: http://www.keylength.com/

"Fortaleza" claves simétricas vs. claves asimétricas

Fortaleza <u>relativa</u> de claves simétricas y asimétricas (RSA, D-H, curva elíptica) según las estimaciones del informe 2012 del NIST.

Table 2: Comparable strengths

Bits of security	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)	
80	2TDEA ¹⁸	L = 1024 N = 160	k = 1024	f=160-223	
112	3TDEA	L = 2048 $N = 224$	k = 2048	f= 224-255	
128	AES-128	L = 3072 $N = 256$	k = 3072	f=256-383	
192	AES-192	L = 7680 N = 384	k = 7680	f=384-511	
256	AES-256	L = 15360 $N = 512$	k = 15360	f=512+	

Fuente: http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf