E1: 0/10

E2: 0,5/10 MO

Universidad de Oviedo. Escuela Politécnica de Ingeniería de Gijón Tecnología Electrónica de Computadores – 2º Curso. Grado en Ingeniería Informática en Tecnologías de la Información

APELLIDOS Y NOMBRE

Mier Mentolo, Juan Francisco

DNI

GRUPO PA1 MODELO D

Elercicio 1.

En el circuito de la figura, se pide calcular el equivalente Thevenin entre A y B

Datos: V1=6 V; V2=12 V; R1=18 k Ω ; R2=3 k Ω ; R3=18 k Ω ; R4=15 k Ω

Solución:

EQUIVALENTE THEVENIN ENTRE A y	<i>r</i> В
V _{TH-AB}	MAL
R _{TH-AB}	MAL

GRUPO PA1 MODELO D

Ejercicio 2.

En el circuito de la figura, se deja evolucionar el circuito hasta alcanzar el régimen permanente con el interruptor I cerrado.

Datos: V1=18 V; V2=9 V; R1=2,5 k Ω ; R2=5 k Ω ; C=300 nF

En el instante t=0 se abre el interruptor I.

Se pide, considerando los sentidos de tensiones y corrientes que se muestran en la figura, indicar:

- a) Valor inicial de la tensión en el condensador: uc(0)
- b) Valor final de la tensión en el condensador (en el nuevo régimen permanente): uc(∞)
- c) Valor inicial de la corriente por el condensador: ic(0)
- d) Valor final de la corriente por el condensador (nuevo réglmen permanente): ic(∞)
- e) Constante de tiempo del circuito (τ)

u _c (0)	VAXV2=18+9	=27MAL	i _c (0)	OmA	MAL
u _C (∞)	VA= LW	BIEN	ic(∞)	Car = 36 15 mA	MAL
τ	2,5.10-4	MAL			

- f) Representar la evolución de la tensión y la corriente en el condensador, indicando los valores más notables MAL. En la Varrastra el error: 0,5/1,25
- g) Calcular la tensión uc(t) para t=t₁= 50 μs
- h) Calcular el tiempo t2 necesario para alcanzar una tensión uc(t2)= 10 V

Electrónica, de Computadores y Sistemas

ASIGNATURA

APELLIDOS Y NOMRE

MIOS Maltola / Juan Francisca

FECHA

3019121

CENTRO / TITULACION

CALIFICACION

T=RC _= cons el intercupio se altre en el instante t=0, $t=2,5\cdot 10^3\cdot 10^2\cdot 10^{-9}=2,5\cdot 10^5\cdot 10^5=2,5\cdot 10^4$ 36 mA 7 9) v(E)=vc(x)+[vc(x)-vc(0)]e= Ue(t)=18-1-9e 250 9 (e(t)=18+9e 25.04 G) Uc(En)=19+9e 25:104 = 19+9 25:10-8 = 18+9 = 18+9 10-18+9 10 10 prique al pento de partida en 17 y luggo re suma más tentión $\int \int i_{c}(t) = i_{c}(\infty) - (i_{c}(\infty) - 3)e^{-\frac{t}{2}}$ $i_{c}(t) = 36[5 - (36/5) - 2)e^{-\frac{t}{2}(5-5)}$ $i_{c}(t) = 36[5 - (36/5) - 2](5-5)e^{-\frac{t}{2}(5-5)}$

