Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3211	К работе допущен	16.11.2023
Студент	Болорболд А.	Работа выполнена	26.12.2023
Преподаватель	Коробков М.П	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.14

1. Цель работы.

Понаблюдать за поперечными стоячими волнами на тонкой натянутой струне и экспериментально определить зависимости собственных частот поперечных колебаний от номера гармоники и силы натяжения струны

2. Задачи, решаемые при выполнении работы.

- 1. Измерить значения резонансных частот колебаний струны в режиме формирования стоячих волн. Рассчитать, значения скорости волны и погонной плотности струны при известной силе её натяжения
- 2. Провести прямое измерение массы и длины струны, непосредственно определить её погонную плотность. Сравнить, полученные значения погонных плотностей pl.

3. Объект исследования.

Колеблющаяся неэластичная струна с прикреплёнными к её концу грузами

4. Метод экспериментального исследования.

Многократные прямые измерения.

5. Рабочие формулы и исходные данные.

 $m_{
m cтруны} = 2{,}43~{
m r} = 0{,}0024~{
m кr}$ – масса эластичной струны

 $l_{
m crpyны} = 142~{
m cm} = 1,\!42~{
m m} -$ длина эластичной струны

 $g = 9,82 \frac{M}{c^2}$ – ускорение свободного падения

 $u=\sqrt{rac{T}{pl}}$ – скорость распространения поперечной бегущей волны

 $\Delta m \frac{\partial^2 y}{\partial t^2} = T_2 \sin \left(\alpha(x + \Delta x) \right) - T_1 \sin \left(\alpha(x) \right)$ – второй закон Ньютона в проекции на ось Oy

$$\frac{\partial^2 y}{\partial t^2} = \frac{T}{pl} * \frac{\partial^2 y}{\partial x^2}$$
 – волновое уравнение для струны

 $y(x,t)=y_m\cos[2\pi\left(ft\pmrac{x}{\lambda}
ight)+arphi_0]$ — возмущение произвольного профиля в случае гармонических колебаний

y(x,t) = X(x) * T(t) – решение волнового уравнения

$$f_n = \frac{\omega_n}{2\pi} = \frac{k_n u}{2\pi} = \frac{un}{2l}$$
 – резонансные частоты

 $y(x,t)=Asin(\omega t)\sin(kx)=Asin\left(rac{\pi n}{l}x
ight)sin\left(rac{u\pi n}{l}t
ight)$ — форма отклонения струны от равновесного положения

T = mg — сила натяжения струны

$$lpha=rac{4}{l^2pl}$$
 — угловой коэффициент графика
$$pl=rac{4}{lpha l^2}$$
 — линейная плотность струны

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Генератор гармонических частот	Прибор для измерения частоты колебаний	[0, 98,9] Гц	0,0001 Гц
2 e	Электронные весы	Прибор для измерения веса	[0, 4000] e	0,001 кг
3	Железная линейка	Прибор для измерения длины	[0, 35] см	0,1 мм

Рис.4. Элементы лабораторной установки

- 1. Механический вибратор
- 2. Генератор гармонических сигналов
- 3. Рулетка

- 4. Неэластичная струна
- 5. Набор грузов и держателей для них
- 6. Струбцины для крепления вибратора и опорного блока
- 7. Опорный блок
- 8. Стержень для крепления вибратора

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

Таблица 1: Определение линейной плотности струны

Струна № 1				
P.m,rS1CS	f, Гц	f², Гц	T, H	
50	20,4	416,16	0,491	
100	27,9	778,41	0,982	
150	33,9	1149,21	1,473	
200	39,3	1544,49	1,964	
250	44,1	1944,81	2,455	
$pl \pm \Delta pl = 0.0037 \pm 0.00027$				

Таблица 2: Определение скорости волны

	$m_1 = 120 \; \Gamma$	$m_2 = 150 \; \Gamma$	$m_3 = 180 \ \Gamma$	$m_4 = 210 \ \Gamma$	$m_5 = 240 \; \Gamma$	$m_6 = 270 \; \Gamma$
	$T_1 = 1,1784 H$	$T_2 = 1,473 \text{ H}$	$T_3 = 1,7676 H$	$T_4 = 2,0622 H$	$T_5 = 2,3568 \text{ H}$	$T_6 = 2,6514 H$
n	f1, Гц	f ₂ , Гц	fз, Гц	f4, Гц	f ₅ , Гц	f ₆ , Гц
1	7,4	8,5	9,1	9,9	10,9	11,7
2	14,9	17,4	18,4	19,7	21,7	23,4
3	22,3	25,3	27,7	29,9	32,7	35,1
4	29,2	33,7	36,4	39,1	43,5	46,5
5	37,5	42,7	45,2	48,9	54,3	57,9
	$u_1 = 27,5065$	$u_2 = 31,535$	$u_3 = 33,808$	$u_4 = 36,4529$	$u_5 = 40,308$	$u_6 = 43,1504$

9. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*).

Фактическая линейная плотность:

$$pl = \frac{m}{l} = \frac{0,00855}{1,18} = 0,007246 \frac{\text{K}\Gamma}{\text{M}}$$

По методу наименьших квадратов находим угловой коэффициент графика:

$$\alpha = 778,692$$

Экспериментальная линейная плотность:

$$pl = \frac{4}{\alpha l^2} = \frac{4}{778.692 * 1.18^2} = 0.0037 \frac{\text{K}\Gamma}{\text{M}}$$

По методу наименьших квадратов находим угловые коэффициенты для линии тренда из графика 2:

$$k_1 = 7,45$$
; $k_2 = 8,47$; $k_3 = 9,02$; $k_4 = 9,74$; $k_5 = 10,86$; $k_6 = 11,55$

Определим скорость волны струны для каждого столбца таблицы 2:

$$u_1 = \frac{\overline{f_n} * \pi * l}{\overline{n}} = \frac{22,26 * \pi * 1,18}{3} = 27,506 \frac{M}{C}$$

$$u_2 = \frac{\overline{f_n} * \pi * l}{\overline{n}} = \frac{25,52 * \pi * 1,18}{3} = 31,535 \frac{M}{C}$$

$$u_3 = \frac{\overline{f_n} * \pi * l}{\overline{n}} = \frac{27,36 * \pi * 1,18}{3} = 33,809 \frac{M}{C}$$

$$u_4 = \frac{\overline{f_n} * \pi * l}{\overline{n}} = \frac{29.5 * \pi * 1.18}{3} = 36.453 \frac{M}{C}$$

$$u_5 = \frac{\overline{f_n} * \pi * l}{\overline{n}} = \frac{32,62 * \pi * 1,18}{3} = 40,308 \frac{M}{C}$$

$$u_6 = \frac{\overline{f_n} * \pi * l}{\overline{n}} = \frac{34,92 * \pi * 1,18}{3} = 43,150 \frac{M}{C}$$

Найдем угловой коэффициент и свободный коэффициент графика 3 по методу наименьших квадратов получаем:

$$k = 737,413$$

$$b = -127.138$$

Таким образом:

$$u^2 = 737,413 * \bar{T} - 127,138$$

$$u^2 = 737,413 * 1,9149 - 127,138 = 1284,934$$

Определим линейную плотность струны:

$$pl = \frac{T}{u^2} = \frac{1,9149}{1284,934} = 0,00149 \frac{\text{K}\Gamma}{M}$$

10. Расчет погрешностей измерений (*для прямых и косвенных измерений*).

$$\Delta\alpha = \sqrt{\frac{\sum_{i=1}^{5} (T - \overline{T})^2 * \sum_{i=1}^{5} (f^2 - \overline{f^2})^2}{5(5 - 1)}} = 99,604$$

$$\Delta pl = pl \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(2\frac{\Delta l}{l}\right)^2} = 0,00725 \sqrt{\left(\frac{0,00001}{0,0024}\right)^2 + \left(2\frac{0,0001}{1,18}\right)^2} = 0,000099 \frac{\mathrm{K}\Gamma}{\mathrm{M}}$$

$$\Delta pl = pl \sqrt{\left(\frac{\Delta \alpha}{\alpha}\right)^2 + \left(2\frac{\Delta l}{l}\right)^2} = 0,0037 \sqrt{\left(\frac{99,604}{778,692}\right)^2 + \left(2\frac{0,0001}{1,18}\right)^2} = 0,000475 \frac{\mathrm{K}\Gamma}{\mathrm{M}}$$

11. Графики (перечень графиков, которые составляют Приложение 2).

График зависимости резонансной частоты от силы натяжения струны

График зависимость резонансных частот от номера их гармоники

График зависимости квадрата фазовой скорости от силы натяжения

12. Окончательные результаты.

Линейная плотность струны при прямых вычислениях:

$$pl = 0.007246 \frac{\mathrm{K}\Gamma}{\mathrm{M}}$$

Линейная плотность струны, полученная в первой части лабораторной работы:

$$pl = 0.0037 \frac{\mathrm{K}\Gamma}{\mathrm{M}}$$

Линейная плотность струны, полученная во второй части лабораторной работы:

$$pl = 0.00149 \frac{\mathrm{K}\Gamma}{\mathrm{M}}$$

13. Выводы и анализ результатов работы.

В результате данной лабораторной работы мы с помощью графиков определили зависимости собственных частот поперечных колебаний от номера их гармоники и от силы натяжения струны, а также определили фактическую погонную плотность и погонные плотности для 1 и 3 графиков, при их сравнении видно, что все результаты почти совпадают и отличаются на сосем незначительное значение, результатом этого может служить погрешность или то, что у каждой гармоники был свой диапазон значений, который мог быть

