Name: Vimal Joshi

Roll No.: 20201430

Course: Bsc. (h) Computer Science

```
GaussJacobi[A0_, b0_, X0_, maxiter_] :=
  Module [A = N[A0], b = N[b0], xk = X0, xk1, i, j, k = 0, n, m,
     OutputDetails},
    size = Dimensions[A];
   n = size[[1]];
   m = size[[2]];
    If [n \neq m]
     Print[
      "Not a square matrix, cannot proceed with gauss jacobi method"];
     Return[]];
    OutputDetails = {xk};
    xk1 = Table[0, {n}];
    While [k < maxiter,
     For [i = 1, i \le n, i++,
      xk1[[i]] = \frac{1}{A[[i, i]]} * \left(b[[i]] - \sum_{j=1}^{i-1} A[[i, j]] * xk1[[j]] - \sum_{j=i+1}^{n} A[[i, j]] * xk[[j]]\right); ;;
     OutputDetails = Append[OutputDetails, xk1];
     xk = xk1;;
    colHeading = Table[X[s], {s, 1, n}];
    Print[NumberForm[TableForm[OutputDetails,
       TableHeadings → {None, colHeading}], 6]];
    Print["No of iterations performed", maxiter];];
A = \{\{2, -1, 0\}, \{-1, 2, -1\}, \{0, -1, 2\}\};
b = \{7, 1, 1\};
X0 = \{0, 0, 0\};
GaussJacobi[A, b, X0, 15]
```

```
X[1]
                      X[3]
           X[2]
3.5
           2.25
                       1.625
4.625
           3.625
                      2.3125
5.3125
           4.3125
                      2.65625
5.65625
           4.65625
                       2.82813
5.82813
           4.82813
                      2.91406
5.91406
           4.91406
                      2.95703
5.95703
          4.95703
                      2.97852
5.97852
           4.97852
                      2.98926
5.98926
          4.98926
                      2.99463
5.99463
          4.99463
                      2.99731
5.99731
           4.99731
                      2.99866
           4.99866
5.99866
                      2.99933
5.99933
           4.99933
                       2.99966
5.99966
           4.99966
                       2.99983
5.99983
           4.99983
                      2.99992
```

No of iterations performed15

```
GaussSiedalwithErr[A0_, b0_, X0_, maxiter_] :=
  Module [A = N[A0], b = N[b0], xk = X0, xk1, i, j, k = 0, n, m,
    OutputDetails},
   size = Dimensions[A];
   n = size[[1]];
   m = size[[2]];
   If [n \neq m]
    Print[
      "Not a square matrix, cannot proceed with gauss jacobi method"];
   OutputDetails = {xk};
   maxNorm = 0.001;
   xk1 = Table[0, {n}];
   While maxNorm
      > error,
    For [i = 1, i \le n, i++,
      xk1[[i]] = \frac{1}{A[[i, i]]} * \left(b[[i]] - \sum_{i=1}^{i-1} A[[i, j]] * xk1[[j]] - \sum_{i=i+1}^{n} A[[i, j]] * xk[[j]]\right); ;
     k++;
    maxNorm = Max[Abs[xk1 - xk]];
    OutputDetails = Append[OutputDetails, xk1];
    xk = xk1;;
   colHeading = Table[X[s], {s, 1, n}];
   Print[NumberForm[TableForm[OutputDetails,
       TableHeadings → {None, colHeading}], 6]];
   Print["No of iterations taken to acheive desired accuracy=", k];
   Print["Max norm at", k, "th iteration=", maxNorm];];
A = \{\{5, 1, 2\}, \{-3, 9, 4\}, \{1, 2, -7\}\};
b = \{10, -14, -33\};
X0 = \{0, 0, 0\};
error = 10^{(-4)};
GaussSiedalwithErr[A, b, X0, error]
```

X[1]	X[2]	X[3]
0	0	0
2.	-0.888889	4.74603
0.279365	-3.57178	3.73369
1.22088	-2.80801	4.08641
0.927039	-3.06272	3.97166
1.02388	-2.97944	4.00929
0.992174	-3.00674	3.99696
1.00256	-2.99779	4.001
0.99916	-3.00072	3.99967
1.00028	-2.99976	4.00011
0.99991	-3.00008	3.99996
1.00003	-2.99997	4.00001
0.99999	-3.00001	4.

No of iterations taken to acheive desired accuracy=12 $\,$

Max norm at12th iteration=0.0000392312