CV_텀 프로젝트 (구름 탐지)

Hyoungwon Seo

CONTENTS

- 01 │ 문제 설명
- 02 📗 데이터 분석
- 03 │ 학습 방법
- 03 │ 실험 결과
- 03 🏻 프로젝트 후기

• Task: 3종류의 구름 Semantic Segmentation

• 데이터셋

- label: 구름 레이블 정보 (1000x1000)
- rgb: RGB 채널 영상 (1000x1000)
- ngr: NIR+GR 채널 영상 (1000x1000)

- ▼ clouds-segmentation
 - → test
 - ▶ □ ngr
 - ▶ □ rgb
 - → □ train
 - ▶ □ label
 - ▶ 🗀 ngr
 - ▶ □ rgb
 - sample_submission.csv

• Task: 3종류의 구름 Semantic Segmentation

- 레이블
 - 빨간색 (255, 0, 0): 짙은 구름
 - 초록색 (0, 255, 0): 옅은 구름
 - 노란색 (255, 255, 0): 구름 그림자

- clouds-segmentation
 - ▼ □ test
 - ▶ □ ngr
 - ▶ □ rgb
 - → □ train
 - ▶ □ label
 - ▶ 🗀 ngr
 - ▶ □ rgb
 - sample_submission.csv

• 채널에 따른 이미지

• 채널에 따른 레이블 픽셀값

• 채널에 따른 레이블 평균 픽셀 및 비율

Total Pixels per Label

• Segmentation 어려운 이미지

- Segmentation 모델 인코더 탐색
 - SMP (segmentation_models.pytorch)

- **FPN**, patch_size: 224 x 224, stride: 194, NGR, 5 epochs(30 min), batch_size: 32, lr: 0.001, weight: "imagenet"
- 1) efficientnet-b0 [4M]
- 2) resnet18 [11M]
- 3) resnet152 [58M]
- 4) mit_b0 (Mix Vision Transformer) [3M]
- 5) mobilenet_v2 [2M]
- 6) vgg19 [20M]
- 7) Inceptionv4 [41M]
- 8) swin_small [50M]

- Segmentation 모델 구조 탐색
 - SMP (segmentation_models.pytorch)

- **efficientnet-b0**, patch_size: 224 x 224, stride: 194, NGR, 5 epochs(30 min), batch_size: 32, lr: 0.001, weight: "imagenet"
- 1) Unet
- 2) FPN
- 3) PAN
- 4) DeepLabV3Plus

• Input Data Channel 탐색

• FPN, efficientnet-b0, patch_size: 224 x 224, stride: 194, 5 epochs(30 min), batch_size: 32, lr: 0.001

- 1) RGB [weight: "imagenet"]
- 2) NGR [weight: "imagenet"]
- 3) RGBN [weight: None]

```
def custom_preprocessing(image, **kwargs):
# 이미지 정규화 (0-1 범위로 스케일링)
image = image / 255.0

# ImageNet 평균 및 표준편차
"""

각 채널별 정규화된 mean, std 값:
r 채널 - mean: 0.2487, std: 0.1555
g 채널 - mean: 0.2287, std: 0.1561
b 채널 - mean: 0.2287, std: 0.1561
nir 채널 - mean: 0.3163, std: 0.1691
"""

mean = np.array([0.2487, 0.2466, 0.2287, 0.3163]) # 4채널 이미지의 평균값
std = np.array([0.1555, 0.1571, 0.1561, 0.1691]) # 4채널 이미지의 표준편차
# 정규화
image = (image - mean) / std

return image
```


• Input Data Size 탐색

• FPN, efficientnet-b0, NGR, 5 epochs(30 min), batch_size: 32, lr: 0.001

- 1) Patch_size: 224 x 224, Stride: 194
 - 1000 x 1000 → patch 5x5장
- 1) Patch_size: 512 x 512, Stride: 488
 - 1000 x 1000 > patch 2x2장

• Augmentation 탐색

• FPN, efficientnet-b0, patch_size: 224 x 224, stride: 194, NGR, 5 epochs(30 min), batch_size: 32, lr: 0.001, weight: "imagenet"

1) None

2) Baseline Augmentation

- HorizontalFlip(always_apply=False, p=0.5)
- VerticalFlip(always_apply=False, p=0.5)
- ShiftScaleRotate(...)
- RandomBrightnessContrast(...)

3) Spatial-Level Augmentation

- HorizontalFlip(always_apply=False, p=0.5)
- VerticalFlip(always_apply=False, p=0.5)
- RandomRotate90(always_apply=False, p=0.5)

• 학습 경향 확인

• FPN, efficientnet-b0, Augmentation = None, patch_size: 224 x 224, NGR, stride: 194, 30 epochs(3 h), batch_size: 32, lr: 0.001, weight: "imagenet"

• 학습 경향 확인

- FPN, efficientnet-b0, Augmentation = None, patch_size: 224 x 224, NGR, stride: 194, 30 epochs(3 h), batch_size: 32, lr: 0.001, weight: "imagenet"
- 1) 옅은 구름 class에 대한 Score가 상대적으로 낮음
- 2) 수렴이 충분히 되지 않음

- Satellite Cloud Generator (https://github.com/strath-ai/SatelliteCloudGenerator/tree/main)
 - IoU 0.6의 옅은 구름을 제외한 Label은 0.8~0.9 정도의 IoU
 - Cloud Label이 [0, 0, 0](배경), [255, 255, 0](구름 그림자)만 존재하는 Cropped Image에 대해 50% 확률로 인공적인 옅은 구름 생성

- Satellite Cloud Generator (https://github.com/strath-ai/SatelliteCloudGenerator/tree/main)
 - FPN, efficientnet-b0, Augmentation = None, patch_size: 224 x 224, NGR, stride: 194, 30 epochs(3 h), batch_size: 32, lr: 0.001, weight: "imagenet"

Long Train

• FPN, efficientnet-b0, patch_size: 224 x 224, stride: 194, 50 epochs(5 h), batch_size: 32, lr: 0.001, weight: "imagenet"

- 1) RGB, Augmentation = None
- 2) NGR, Augmentation = None
- 3) NGR, Augmentation = Spatial-Level

- Long Train (Thick_cloud Class)
 - FPN, efficientnet-b0, patch_size: 224 x 224, stride: 194, 50 epochs(5 h), batch_size: 32, lr: 0.001, weight: "imagenet"

- 1) RGB, Augmentation = None
- 2) NGR, Augmentation = None
- 3) NGR, Augmentation = Spatial-Level

- 실험 세팅: FPN, efficientnet-b0, patch_size: 224 x 224, stride: 194, 50 epochs(5 h), batch_size: 32, lr: 0.001, weight: "imagenet"
- Test 이미지는 1000 x 1000
 - Patch Size: 224 x 224, Stride: 97로 patch 9x9장의 이미지를 만들어 겹치는 부분은 예측 값의 평균으로 사용

Model	Public Score	Private Score
NGR	0.8187	0.8366
NGR + RGB Ensemble*	0.8075	0.8408
None_Aug + Aug Ensemble	0.8156	0.8473

* NGR base로 두고, RGB로 예측한 짙은 구름 class만 사용

Thank You

Question & Answer