

MÉTODOS DE KRYLOV II: MINRES, FOM, GMRES.

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 11) 11.AGOSTO.2021

El método de Arnoldi y el método de Lanczos proporcionan una técnica económica para calcular vectores base ortogonales para el subespacio de Krylov $\mathcal{K}_k(A, \mathbf{r}^{(0)})$.

Vimos que la aproximación $\mathbf{x}^{(k)}$ se escribe como

$$\mathbf{x}^{(k)} = \mathbf{x}^{(0)} + Q_k \mathbf{y}^{(k)},$$

donde $\mathbf{y}^{(k)}$ se determina de forma que o bien se minimiza

$$f(\mathbf{x}^{(k)}) = ||\mathbf{x}^{(k)} - \mathbf{x}||_A^2 = (\mathbf{x}^{(k)} - \mathbf{x})^T A (\mathbf{x}^{(k)} - \mathbf{x}),$$
(1)

respecto de la norma inducida por A (A simétrica y positiva definida) o bien minimizan

$$g(\mathbf{x}^{(k)}) = ||A(\mathbf{x}^{(k)} - \mathbf{x})||_2^2 = \mathbf{r}^{(k)T}\mathbf{r}^{(k)},$$
 (2)

esto es, se minimiza la norma del residuo.

Veremos ahora algunos detalles desde este punto de vista de minimizar residuos.

Si se considera la minimización del error en la A-norma:

$$\mathbf{x}^{(k)} = \mathbf{x}^{(o)} + Q_k \mathbf{y}^{(k)}$$
 $f(\mathbf{x}^{(k)}) = (\mathbf{x}^{(o)} + Q_k \mathbf{y}^{(k)} - \mathbf{x})^T A (\mathbf{x}^{(o)} + Q_k \mathbf{y}^{(k)} - \mathbf{x}).$

Calculando la derivada respecto de $\mathbf{y}^{(k)}$, resulta

$$abla_{\mathbf{y}^{(k)}}f(\mathbf{x}^{(k)}) = 2Q_k^TA(\mathbf{x}^{(0)} + Q_k\mathbf{y}^{(k)} - \mathbf{x}) = \mathbf{0},$$

de modo que $Q_k^T A Q_k \mathbf{y}^{(k)} = Q_k^T A (\mathbf{x} - \mathbf{x}^{(o)}) = Q_k^T A \mathbf{r}^{(o)}$.

Como $Q_k^T A Q_k = H_k$, y $\mathbf{r}^{(0)} = ||\mathbf{r}^{(0)}||\mathbf{q}_1$, se tiene que

$$H_k \mathbf{y}^{(k)} = ||\mathbf{r}^{(0)}||\mathbf{e}_1,$$

donde \mathbf{e}_1 es el primer vector de la base canónica de \mathbb{R}^n .

A partir de lo anterior, se deduce que los residuos son organales a los vectores base $\mathbf{r}^{(k)} = \mathbf{r}^{(0)} - AQ_b\mathbf{v}^{(k)} \implies Q_b^T\mathbf{r}^{(k)} = Q_b^T\mathbf{r}^{(0)} - Q_b^TAQ_b\mathbf{v}^{(k)} = \mathbf{0}.$

Esta condición es equivalente a minimizar $f(\mathbf{x}^{(k)})$ cuando A es simétrica y positiva definida. En este caso se obtiene el llamado **método del gradiente conjugado**.

El gradiente conjugado minimiza la A-norma del error.

Otra forma de construir una aproximación óptima $\mathbf{x}^{(k)}$ es minimizar el residuo (2) $g(\mathbf{x}^{(k)}) = ||A(\mathbf{x}^{(k)} - \mathbf{x})||_2^2 = \mathbf{r}^{(k)T}\mathbf{r}^{(k)},$

sobre todos los
$$\mathbf{x}^{(k)} \in {\{\mathbf{x}^{(0)}\} \cup \mathcal{K}(A, \mathbf{b})}$$
.

Definiendo, como en el método de LANCZOS

$$H_{k} = \begin{pmatrix} \alpha_{1} & \beta_{2} & & \\ \beta_{2} & \alpha_{2} & \ddots & \\ & \ddots & \ddots & \beta_{k} \\ & & \beta_{k} & \alpha_{k} \end{pmatrix}.$$

Tenemos que $AQ_k = Q_{k+1}H_k$.

Ahora, la minimización se reduce a encontrar $\mathbf{x}^{(k)} = \mathbf{x}^{(0)} + Q_k \mathbf{y}^{(k)}$ tal que $||\mathbf{r}^{(k)}||_2$ sea mínima. Como

$$\mathbf{r}^{(k)} = b - A\mathbf{x}^{(k)} = \mathbf{r}^{(0)} - AQ_k\mathbf{y}^{(k)} = ||\mathbf{r}^{(0)}||\mathbf{q}_1 - AQ_k\mathbf{y}^{(k)},$$

entonces se debe minimizar

$$||\mathbf{r}^{(k)}||_2 = \left|\left|||\mathbf{r}^{(0)}||\mathbf{q}_1 - AQ_k\mathbf{y}^{(k)}|\right| = \left|\left|||\mathbf{r}^{(0)}||Q_{k+1}\mathbf{e}_1 - Q_{k+1}H_k\mathbf{y}^{(k)}|\right| = \left|\left|||\mathbf{r}^{(0)}||\mathbf{e}_1 - H_k\mathbf{y}^{(k)}|\right|.$$

Resolviendo el sistema sobredeterminado $H_k \mathbf{y}^{(k)} = ||\mathbf{r}^{(0)}||\mathbf{e}_1|$ se obtienen las iteraciones $\mathbf{x}^{(k)} = \mathbf{x}^{(0)} + O_k \mathbf{v}^{(k)}$

que minimizan el residuo. El algoritmo resultante se llama **MINRES** (o residuo conjugado).

Algoritmo: (MINRES).

Inputs: $A \in \mathbb{R}^{n \times n}$, simétrica y positiva definida.

Outputs: Secuencia de residuos $\{\mathbf{r}^{(k)}\}$, $H \in \mathbb{R}^{n \times n}$ en la forma de Hessemberg.

Initialize $H = \mathbf{o}$, choose $\mathbf{r}^{o} = \mathbf{b} - A\mathbf{x}^{(o)}$, $\mathbf{p}_{o} = \mathbf{r}^{(o)}$.

For
$$k = 1, 2, \dots$$
:
$$\alpha_k = \frac{(\mathbf{r}^k)^T A \mathbf{r}^k}{(A \mathbf{p}_k)^T (A \mathbf{p}_k)}.$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{p}_k,$$

$$\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k A \mathbf{p}_k,$$

$$\beta_k = \frac{(\mathbf{r}^{(k+1)})^T A \mathbf{r}^{(k+1)}}{(\mathbf{r}^{(k)})^T A \mathbf{r}^{(k)}},$$

$$H_{k+1,k} = ||\mathbf{v}||_2,$$

$$\mathbf{p}_{k+1} = \mathbf{r}^{(k+1)} + \beta_k \mathbf{r}^{(k)},$$

$$A \mathbf{p}_{k+1} = A \mathbf{r}^{(k+1)} + \beta_k A \mathbf{r}^{(k)}.$$

Al igual que el método de Lanczos, el método de Arnoldi nos da una base ortogonal para el subespacio de Krylov $\mathcal{K}(A, \mathbf{r}^{(o)})$, esta vez para A no simétrica.

Al igual que antes, se tiene la aproximación

$$\mathbf{x}^{(k)} = \mathbf{x}^{(0)} + Q_k \mathbf{y}^{(k)},$$

donde $\mathbf{y}^{(k)}$ es tal que se minimiza el error (1)

$$f(\mathbf{x}^{(k)}) = ||\mathbf{x}^{(k)} - \mathbf{x}||_A^2 = (\mathbf{x}^{(k)} - \mathbf{x})^T A (\mathbf{x}^{(k)} - \mathbf{x}),$$

respecto de la norma inducida por A, o bien se minimiza el residuo (2)

$$g(\mathbf{x}^{(k)}) = ||A(\mathbf{x}^{(k)} - \mathbf{x})||_2^2 = \mathbf{r}^{(k)T}\mathbf{r}^{(k)}.$$

Cuando A no es simétrica y positiva definida, la A-norma no está bien definida.

Imponiendo ahora que los residuos sean ortogonales a Q_k , se tiene

$$Q_k^{\dagger}(\mathbf{r}^{(0)} - AQ_k\mathbf{y}^{(k)}) = \mathbf{0} \implies ||\mathbf{r}^{(0)}||\mathbf{e}_1 - H_k\mathbf{y}^{(k)} = \mathbf{0}.$$

Resolviendo el sistema $\mathbf{y}^{(k)} = ||\mathbf{r}^{(0)}||H_k^{-1}\mathbf{e}_1, \mathbf{x}^{(k)} = Q_k\mathbf{y}^{(k)}$, se obtiene el llamado **método FOM** (*Full Orthogonalization Method*).

Observaciones:

- FOM es equivalente al gradiente conjugado si A es simétrica y positiva definida. Pero tiene inconvenientes:
- FOM no trata de forma eficiente la memoria: Q_k se tiene que guardar completa. En cada iteración, un nuevo vector base se tiene que calcular y guardar.
- FOM no tiene una propiedad de optimalidad.
- FOM no es robusto ya que H_k puede ser no singular.

El método FOM para obtener $\mathbf{x}^{(k)}$ es parte de una familia de técnicas para extraer una solución aproximada a partir de un espacio de búsqueda Q_k haciendo que el residuo sea ortogonal a un espacio test W_k , así: Dada $\mathbf{x}^{(k)} = \mathbf{x}^{(0)} + Q_k \mathbf{y}^{(k)}$, se busca $\mathbf{y}^{(k)}$ tal que

$$W_k^{\mathsf{T}}(\mathbf{r}^{(\mathsf{o})} - AQ_k\mathbf{y}^{(k)}) = \mathbf{o}. \tag{3}$$

Estas son las condiciones de Petrov-Galerkin.

GMRES

Un segundo método para obtener un mínimo del residuo es el siguiente. Observe que el problema de minimizar

$$g(\mathbf{x}^{(k)}) = ||A(\mathbf{x}^{(k)} - \mathbf{x})||_2^2 = (\mathbf{r}^{(k)})^T \mathbf{r}^{(k)},$$

está siempre bien definido incluso si A es no simétrica.

El problema es encontrar $\mathbf{x}^{(k)} = \mathbf{x}^{(o)} + Q_k \mathbf{y}^{(k)}$ tal que $||\mathbf{r}^{(k)}||_2^2$ es mínimo. Como $\mathbf{r}^{(k)} = b - A\mathbf{x}^{(k)} = \mathbf{r}^{(o)} - AQ_k \mathbf{y}^{(k)} = ||\mathbf{r}^{(o)}||\mathbf{q}_1 - AQ_k \mathbf{y}^{(k)}$, tenemos $||\mathbf{r}^{(k)}||_2 = ||||\mathbf{r}^{(o)}||\mathbf{q}_1 - AQ_k \mathbf{y}^{(k)}|| = ||||\mathbf{r}^{(o)}||Q_{k+1}\mathbf{e}_1 - Q_{k+1}H_k \mathbf{y}^{(k)}|| = ||||\mathbf{r}^{(o)}||\mathbf{e}_1 - H_k \mathbf{y}^{(k)}||.$

Al resolver el sistema sobredeterminado $H_k \mathbf{y}^{(k)} = ||\mathbf{r}^{(0)}||\mathbf{e}_1$, se obtienen las iteraciones $\mathbf{x}^{(k)} = \mathbf{x}^{(0)} + Q_k \mathbf{y}^{(k)}$

que minimizan el residuo.

El algoritmo resultatnte se llama **GMRES** (*General Minimal Residual Method*). GMRES, es uno de los métodos más populares para resolver sistemas no simétricos.

GMRES minimiza la norma del residuo $||\mathbf{r}^{(n)}||$.

Observaciones:

- El método GMRES es equivalente al MINRES, cuando A es simétrica.
- GMRES no tiene limitada la memoria: Q_k se ha de guardar completamente. En cada iteración se ha de calcular y guardar un nuevo vector de la base. La ortogonalización de un nuevo vector se hace cada vez más cara al aumentar k.
- GMRES minimiza la norma del residuo.
- GMRES es robusto: el sistema $H_k \mathbf{y}^{(k)} = ||\mathbf{r}^{(0)}|| \mathbf{e}_1$ tiene siempre una solución de mínimos cuadrados.

```
Algoritmo: (GMRES)  \begin{aligned} \mathbf{q}_1 &= \mathbf{b}/||\mathbf{b}||, \\ \text{For } k &= 1,2,3,\dots \\ & \text{(step $k$ of Arnoldi iteration)} \\ & \text{Find } \mathbf{y}^{(k)} \text{ to minimize } ||H_k\mathbf{y}^{(k)} - ||\mathbf{b}||\mathbf{e}_1|| = ||\mathbf{r}^{(k)}||, \\ & \mathbf{x}^{(k)} = Q_k\mathbf{y}^{(k)}. \end{aligned}
```

Otros métodos:

- Bi-Lanczos,
- BICG (Bi-graiente conjugado),
- QMR
- Algoritmo GC cuadrado
- Método Bi-CGSTAB