1. Die Wahrscheinlichkeit, dass die diskrete Zufallsvariable N den Wert k annimmt, sei gegeben durch

$$P(N = k) = \log_{10}\left(\frac{k+1}{k}\right)$$
 für $k = 1, ..., m \in \mathbb{N}$

Welchen Wert muss *m* haben?

Lösung:

Eine Wahrscheinlichkeitsfunktion f(x) = P(N = k) muss *normiert* sein, das heißt:

$$\sum_{k=1}^{\infty} f(k) = 1$$

Es gilt:

$$\sum_{k=1}^{m} f(k) = 1$$

$$\equiv \sum_{k=1}^{m} P(N = k) = 1$$

$$\equiv \sum_{k=1}^{m} \log_{10} \left(\frac{k+1}{k}\right) = 1$$

$$\equiv \sum_{k=1}^{m} (\log_{10}(k+1) - \log_{10}k) = 1$$

$$\equiv \sum_{k=1}^{m} \log_{10}(k+1) - \sum_{k=1}^{m} \log_{10}k = 1$$

$$\equiv \sum_{k=1}^{m} \log_{10}(k+1) - \left(\sum_{k=1}^{m} \log_{10}(k+1) - \log_{10}(m+1)\right) = 1$$

$$\equiv \log_{10}(m+1) = 1$$

$$\equiv m+1 = 10$$

$$\equiv m = 9$$