Exercise 2.1

Question 1:

Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

(i)
$$4x^2 - 3x + 7$$

(ii)
$$y^2 + \sqrt{2}$$

(iii)
$$3\sqrt{t} + t\sqrt{2}$$

(iv)
$$y + \frac{2}{y}$$

(v)
$$y + 2y^{-1}$$

Solution 1:

i)
$$4x^2 - 3x + 7$$

One variable is involved in given polynomial which is 'x' Therefore, it is a polynomial in one variable 'x'.

(ii)
$$y^2 + \sqrt{2}$$

One variable is involved in given polynomial which is 'y' Therefore, it is a polynomial in one variable 'y'.

(iii)
$$3\sqrt{t} + t\sqrt{2}$$

No. It can be observed that the exponent of variable t in term $3\sqrt{t}$ is $\frac{1}{2}$, which is not awhole number. Therefore, this expression is not a polynomial.

(iv)
$$y + \frac{2}{y}$$

= $y + 2y^{-1}$

The power of variable 'y' is -1 which is not a whole number. Therefore, it is not a polynomial in one variable

No. It can be observed that the exponent of variable y in term $\frac{2}{y}$ is -1, which is not a whole number. Therefore, this expression is not a polynomial.

(v)
$$x^{10} + y^3 + t^{50}$$

In the given expression there are 3 variables which are 'x, y, t' involved.

Therefore, it is not a polynomial in one variable.

Question 2:

Write the coefficients of x^2 in each of the following:

- (i) $2 + x^2 + x$
- (ii) $2-x^2+x^3$
- (iii) $\frac{\pi}{2}x^2 + x$
- (iv) $\sqrt{2}x-1$

Solution 2:

- (i) $2 + x^2 + x^3$
- $=2+1(x^2)+x$

The coefficient of x^2 is 1.

- (ii) $2-x^2+x^3$
- $=2-1(x^2)+x$

The coefficient of x^2 is -1.

(iii) $\frac{\pi}{2}x^2 + x$

The coefficient x^2 of is $\frac{\pi}{2}$.

(iv) $\sqrt{2}x - 1 = 0x^2 + \sqrt{2}x - 1$

The coefficient of x^2 is 0.

Question 3:

Give one example each of a binomial of degree 35, and of a monomial of degree 100.

Solution 3:

Binomial of degree 35 means a polynomial is having

- 1. Two terms
- 2. Highest degree is 35

Example:
$$x^{35} + x^{34}$$

Monomial of degree 100 means a polynomial is having

- 1. One term
- 2. Highest degree is 100

Example: x^{100} .

Ouestion 4:

Write the degree of each of the following polynomials:

(i)
$$5x^3 + 4x^2 + 7x$$

(ii)
$$4 - y^2$$

(iii)
$$5t - \sqrt{7}$$

Solution 4:

Degree of a polynomial is the highest power of the variable in the polynomial.

(i)
$$5x^3 + 4x^2 + 7x$$

Highest power of variable 'x' is 3. Therefore, the degree of this polynomial is 3

(ii)
$$4 - y^2$$

Highest power of variable 'y' is 2. Therefore, the degree of this polynomial is 2.

(iii)
$$5t - \sqrt{7}$$

Highest power of variable 't' is 1. Therefore, the degree of this polynomial is 1.

(iv) 3

This is a constant polynomial. Degree of a constant polynomial is always 0.

Question 5: Classify the following as linear, quadratic and cubic polynomial:

(i)
$$x^2 + x$$

(ii)
$$x-x^3$$

(iii)
$$y + y^2 + 4$$

- (iv) 1+x
- (v) 3t
- (vi) r^2
- (vii) $7x^2 7x^3$

Solution 5:

Linear polynomial – whose variable power is '1'

Quadratic polynomial - whose variable highest power is '2' Cubic polynomial- whose variable highest power is '3'

- (i) $x^2 + x$ is a quadratic polynomial as its highest degree is 2.
- (ii) $x-x^3$ is a cubic polynomial as its highest degree is 3.
- (iii) $y + y^2 + 4$ is a quadratic polynomial as its highest degree is 2.
- (iv) 1 + x is a linear polynomial as its degree is 1.
- (v) 3t is a linear polynomial as its degree is 1.
- (vi) r² is a quadratic polynomial as its degree is 2.
- (vii) $7x^2$ $7x^3$ is a cubic polynomial as highest its degree is 3.

Exercise 2.2

Question 1:

Find the value of the polynomial at $5x-4x^2+3$ at

- (i) x = 0
- (ii) x = -1
- (iii) x = 2

Solution 1:

(i)
$$p(x) = 5x - 4x^2 + 3$$

$$p(0) = 5(0) - 4(0)^2 + 3 = 3$$

(ii)
$$p(x) = 5x - 4x^2 + 3$$

$$p(-1) = 5(-1) - 4(-1)^{2} + 3$$
$$= -5 - 4(1) + 3 = -6$$

(iii)
$$p(x) = 5x - 4x^2 + 3$$

 $p(2) = 5(2) - 4(2)^2 + 3 = 10 - 16 + 3 = -3$

Question 2:

Find p(0), p(1) and p(2) for each of the following polynomials:

(i)
$$p(y) = y^2 - y + 1$$

(ii)
$$p(t) = 2 + t + 2t^2 - t3$$

(iii)
$$p(x) = x^3$$

(iv)
$$p(x) = (x-1)(x+1)$$

Solution 2:

(i)
$$p(y) = y^2 - y + 1$$

•
$$p(0) = (0)^2 - (0) + 1 = 1$$

•
$$p(1) = (1)^2 - (1) + 1 = 1 - 1 + 1 = 1$$

•
$$p(2) = (2)^2 - (2) + 1 = 4 - 2 + 1 = 3$$

(ii)
$$p(t) = 2 + t + 2t^2 - t^3$$

•
$$p(0) = 2 + 0 + 2(0)^2 - (0)^3 = 2$$

•
$$p(1) = 2 + (1) + 2(1)^2 - (1)^3 = 2 + 1 + 2 - 1 = 4$$

•
$$p(2) = 2 + 2 + 2(2)^2 - (2)^3$$

= $2 + 2 + 8 - 8 = 4$

(iii)
$$p(x) = x^3$$

•
$$p(0) = (0)^3 = 0$$

•
$$p(1) = (1)^3 = 1$$

•
$$p(2) = (2)^3 = 8$$

(v)
$$p(x) = (x-1)(x+1)$$

•
$$p(0) = (0-1)(0+1) = (-1)(1) = -1$$

•
$$p(1) = (1-1)(1+1) = 0(2) = 0$$

•
$$p(2) = (2-1)(2+1) = 1(3) = 3$$

Ouestion 3:

Verify whether the following are zeroes of the polynomial, indicated against them.

(i)
$$p(x) = 3x + 1, x = -\frac{1}{3}$$

(ii)
$$p(x) = 5x - \pi, x = \frac{4}{5}$$

(iii)
$$p(x) = x^2 - 1, x = 1, -1$$

(iv)
$$p(x) = (x+1)(x-2), x = -1, 2$$

(v)
$$p(x) = x^2, x = 0$$

(vi)
$$p(x) = lm + m, x = -\frac{m}{l}$$

(vii)
$$p(x) = 3x^2 - 1, x = -\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$$

(viii)
$$p(x) = 2x + 1, x = \frac{1}{2}$$

Solution 3:

(i) If
$$x = -\frac{1}{3}$$
 is a zero of given polynomial $p(x) = 3x + 1$, then $p\left(-\frac{1}{3}\right)$ should be 0.

Here,
$$p\left(-\frac{1}{3}\right) = 3\left(-\frac{1}{3}\right) + 1 = -1 + 1 = 0$$

Therefore, is a zero of the given polynomial.

(ii) If
$$x = \frac{4}{5}$$
 is a zero of polynomial $p(x) = 5x - \pi$, then $p(\frac{4}{5})$ should be 0.

Here,
$$p\binom{4}{5} = 5\binom{4}{5} - \pi = 4 - \pi$$

As
$$p\left(\frac{4}{5}\right) \neq 0$$

Therefore, $x = \frac{4}{5}$ is not a zero of the given polynomial.

7

(iii) If x = 1 and x = -1 are zeroes of polynomial $p(x) = x^2 - 1$, then p(1) and p(-1)should be 0.

Here,
$$p(1) = (1)^2 - 1 = 0$$
, and

$$p(-1) = (-1)^2 - 1 = 0$$

Hence, x = 1 and -1 are zeroes of the given polynomial.

(iv) If x = -1 and x = 2 are zeroes of polynomial p(x) = (x + 1)(x - 2), then p(-1) and p(2)should be 0.

Here,
$$p(-1) = (-1 + 1)(-1 - 2) = 0(-3) = 0$$
, and

$$p(2) = (2 + 1)(2 - 2) = 3(0) = 0$$

Therefore, x = -1 and x = 2 are zeroes of the given polynomial.

(v) If x = 0 is a zero of polynomial $p(x) = x^2$, then p(0) should be zero.

Here,
$$p(0) = (0)^2 = 0$$

Hence, x = 0 is a zero of the given polynomial.

(vi) If $p\left(\frac{-m}{l}\right)$ is a zero of polynomial p(x) = lx + m, then $p\left(\frac{-m}{l}\right)$ should be 0.

Here,
$$p\left(\frac{-m}{l}\right) = l\left(\frac{-m}{l}\right) + m = -m + m = 0$$

Therefore, $x = \frac{-m}{l}$ is a zero of the given polynomial.

(vii) If $x = \frac{-1}{\sqrt{3}}$ and $x = \frac{2}{\sqrt{3}}$ are zeroes of polynomial $p(x) = 3x^2 - 1$, then

$$p\left(\frac{-1}{\sqrt{3}}\right)$$
 and $p\left(\frac{2}{\sqrt{3}}\right)$ should be 0.

Here,
$$p\left(\frac{-1}{\sqrt{3}}\right) = 3\left(\frac{-1}{\sqrt{3}}\right)^2 - 1 = 3\left(\frac{1}{3}\right) - 1 = 1 - 1 = 0$$
, and $p\left(\frac{2}{\sqrt{3}}\right) = 3\left(\frac{2}{\sqrt{3}}\right)^2 - 1 = 3\left(\frac{4}{3}\right) - 1 = 4 - 1 = 3$

Hence, $x = \frac{-1}{\sqrt{3}}$ is a zero of the given polynomial.

However, $x = \frac{2}{\sqrt{3}}$ is not a zero of the given polynomial.

(viii) If $x = \frac{1}{2}$ is a zero of polynomial p(x) = 2x + 1, then $p\left(\frac{1}{2}\right)$ should be 0.

Here,
$$p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right) + 1 = 1 + 1 = 2$$

As
$$p\left(\frac{1}{2}\right) \neq 0$$
,

Therefore, $x = \frac{1}{2}$ is not a zero of the given polynomial.

Question 4:

Find the zero of the polynomial in each of the following cases:

(i)
$$p(x) = x + 5$$

(ii)
$$p(x) = x - 5$$

$$(iii)p(x) = 2x + 5$$

$$(iv)p(x) = 3x - 2$$

$$(v) p(x) = 3x$$

$$(vi)p(x) = ax, a \neq 0$$

(vii) p(x) = cx + d, $c \ne 0$, c, d are real numbers.

Solution 4:

Zero of a polynomial is that value of the variable at which the value of the polynomial is obtained as 0.

(i)
$$p(x) = x + 5$$

Let
$$p(x) = 0$$

$$x + 5 = 0$$

$$x = -5$$

Therefore, for x = -5, the value of the polynomial is 0 and hence, x = -5 is a zero of the given polynomial.

(ii)
$$p(x) = x - 5$$

Let
$$p(x) = 0$$

$$x - 5 = 0$$

$$x = 5$$

Therefore, for x = 5, the value of the polynomial is 0 and hence, x = 5 is a zero of the given polynomial.

(iii)
$$p(x) = 2x + 5$$

Let
$$p(x) = 0$$

$$2x + 5 = 0$$

$$2x = -5$$

$$x = -\frac{5}{2}$$

Therefore, for $x = -\frac{5}{2}$, the value of the polynomial is 0 and hence, $x = -\frac{5}{2}$ is a zero of the given polynomial.

(iv)
$$p(x) = 3x - 2$$

$$p(x) = 0$$

$$3x - 2 = 0$$

Therefore, for $x = \frac{2}{3}$, the value of the polynomial is 0 and hence, $x = \frac{2}{3}$ is a zero of the given polynomial.

(v)
$$p(x) = 3x$$

Let
$$p(x) = 0$$

$$3x = 0$$

$$x = 0$$

Therefore, for x = 0, the value of the polynomial is 0 and hence, x = 0 is a zero of the given polynomial.

(vi)
$$p(x) = ax$$

Let
$$p(x) = 0$$

$$ax = 0$$

$$x = 0$$

Therefore, for x = 0, the value of the polynomial is 0 and hence, x = 0 is a zero of the given polynomial.

(vii)
$$p(x) = cx + d$$

Let
$$p(x) = 0$$

$$cx + d = 0$$

$$x = \frac{-d}{c}$$

Therefore, for $x = \frac{-d}{c}$, the value of the polynomial is 0 and hence, $x = \frac{-d}{c}$ is a zero of the given polynomial.

Exercise 2.3

Question 1:

Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by

- (i) x + 1
- (ii) $x \frac{1}{2}$
- (iii) x
- (iv) $x + \pi$
- (v) 5 + 2x

Solution 1:

(i)
$$x^3 + 3x^2 + 3x + 1 \div x + 1$$

By long division, we get

$$\begin{array}{c}
x^2 + 2x + 1 \\
x + 1 \overline{)x^3 + 3x^2 + 3x + 1} \\
x^3 + x^2
\end{array}$$

$$\frac{2x^2 + 3x + 1}{2x^2 + 2x}$$

Therefore, the remainder is 0.

(ii)
$$x^3 + 3x^2 + 3x + 1 \div x - \frac{1}{2}$$

By long division,

$$x - \frac{1}{2} x^{2} + \frac{7}{2}x + \frac{19}{4}$$

$$x^{3} - \frac{x^{2}}{2}$$

$$- + \frac{7}{2}x^{2} + 3x + 1$$

$$\frac{7}{2}x^{2} - \frac{7}{4}x$$

$$- + \frac{19}{4}x + 1$$

$$\frac{19}{4}x - \frac{19}{8}$$

$$- + \frac{27}{8}$$

Therefore, the remainder is $\frac{27}{8}$.

(iii)
$$x^3 + 3x^2 + 3x + 1 \div x$$

By long division,

$$\begin{array}{c}
x^2 + 3x + 3 \\
x \overline{\smash) x^3 + 3x^2 + 3x + 1} \\
x
\end{array}$$

$$3x^2 + 3x + 1$$

$$3x^2$$

$$\begin{array}{c}
3x+1 \\
3x \\
-
\end{array}$$

Therefore, the remainder is 1.

(iv)
$$x^3 + 3x^2 + 3x + 1 \div x + \pi$$

By long division, we get

Therefore, the remainder is $-\pi^3 + 3\pi^2 - 3\pi + 1$.

$$(v) 5 + 2x$$

By long division, we get

Therefore, the remainder is $-\frac{27}{8}$.

Question 2:

Find the remainder when $x^3 - ax^2 + 6x - a$ is divided by x - a.

Solution 2:

$$x^3 - ax^2 + 6x - a \div x - a$$

By long division,

$$x^{2} + 6$$

$$x-a) x^{3} - ax^{2} + 6x - a$$

$$x^{3} - ax^{2}$$

$$- +$$

$$6x - a$$

$$6x - 6a$$

$$- +$$

$$5a$$

Therefore, when $x^3 - ax^2 + 6x - a$ is divided by x - a, the remainder obtained is 5a.

Question 3:

Check whether 7 + 3x is a factor of $3x^3 + 7x$.

Solution 3:

Let us divide $(3x^3 + 7x)$ by (7 + 3x).

By long division, we get

The remainder is not zero,

Therefore, 7 + 3x is not a factor of $3x^3 + 7x$.