プログラミング言語周りノート

-

2021年2月25日

目次

第1章	Preliminaries	3
1.1	基本的な表記	4
第2章	Basic Calculus	7
2.1	WIP: (Untyped) λ -Calculus	8
2.2	Simply Typed λ -Calculus	9
2.3	WIP: System-T	12
2.4	WIP: PCF	13
2.5	System-F	14
2.6	System-F ω	19
2.7	WIP: $\lambda~\mu\text{-Calculus}$	26
2.8	WIP: Lambda Bar Mu Mu Tilde Calculus	28
2.9	WIP: π -Calculus	29
第3章	Modules and Phase Distinction	31
3.1	F-ing modules	32
第4章	Control Operators	43
第5章	Type Checking and Inference	45
第6章	Static Memory Management and Regions	47
第7章	Dynamic Memory Management and Gabage Collection	49
第8章	I/O Management and Concurrency	51
第9章	Code Generation and Virtual Machines	53
第 10 章	Program Stability and Compatibility	55
第 11 章	Program Separation and Linking	57
第 12 章	Syntax and Parsing	59
第 13 章	Analysis and Optimizations	61
第 14 章	Meta-Programming and Multi-Stage Programming	63
第 15 章	Generic Programming	65
第 16 章	Advanced Calculus	67
参考文献		69

第1章

Preliminaries

第1章 Preliminaries

1.1 基本的な表記

量化子 (quantifier) の束縛をコンマ (,) で続けて書く. 束縛の終わりをピリオド (.) で示す. 例えば,

$$\forall x_1 \in X_1, x_2 \in X_2. \exists y_1 \in Y_1, y_2 \in Y_2. x_1 = y_1 \land x_2 = y_2$$

は,

$$\forall x_1 \in X_1. \ \forall x_2 \in X_2. \ \exists y_1 \in Y_1. \ \exists y_2 \in Y_2. \ x_1 = y_1 \land x_2 = y_2$$

と等しい. また,量化子の束縛において, such that を省略し, コンマ (,)で繋げて書く. 例えば,

$$\forall x \in \{0, 1\}, x \neq 0. x = 1$$

は,

$$\forall x \in \{0,1\}. x \neq 0 \implies x = 1$$

と等しい. また, \Rightarrow , \iff が他の記号と混同する場合, それぞれ implies, iff を使用する.

集合 (set) について、以下の表記を用いる.

- 集合 A について、その**濃度** (cardinality) を |A| と表記する. なお、A が有限集合 (finite set) の時、濃度とは要素の個数のことである.
- 集合 A について、 $a \in A$ を a : A と表記する.
- **自然数** (natural number) の集合を ℕ = {0,1,...} と表記する.
- 自然数 $n \in \mathbb{N}$ について, $\{1, ..., n\}$ を [n] と表記する.
- 集合 A の**冪集合**を $\mathcal{P}(A) = \{X \mid X \subseteq A\}$,有限冪集合を $\mathcal{P}_{fin}(A) = \{X \in \mathcal{P}(X) \mid X \text{ は有限集合} \}$ と表記する.
- 集合 $A_1, ..., A_n$ の直積 (cartesian product) を $A_1 \times \cdots \times A_n = \{(a_1, ..., a_n) \mid a_1 \in A_1, ..., a_n \in A_n\}$ と表記する. 集合 A の n 直積を $A^n = A \times \cdots \times A$ と表記する. 特に, $A^0 = \{\epsilon\}$ である.

n 項

- 集合 $A_1, ..., A_n$ の**直和** $(disjoin\ union)$ を $A_1 \uplus \cdots \uplus A_n = (A_1 \times \{1\}) \cup \cdots (A_n \times \{n\})$ と表記する. なお,文脈から明らかな場合,直和の添字を省略し, $a \in A_i$ に対して, $a \in A_1 \uplus \cdots \uplus A_n$ と表記する.
- 集合 $A \cap B$ との**差集合**を $A \setminus B = \{a \in A \mid a \notin B\}$ と表記する.

集合 Σ について、 $\bigcup_{n\in\mathbb{N}} \Sigma^n$ を Σ^* と表記する.この時, $\alpha \in \Sigma^*$ を Σ による**列** (sequence) と呼ぶ.列について,以下の表記を用いる.

- $(\sigma_1, ..., \sigma_n) \in \Sigma^n$ について, $(\sigma_1, ..., \sigma_n)$ を $\sigma_1 \cdots \sigma_n$ と表記する.
- 列 $\alpha = \sigma_1 \cdots \sigma_n \in \Sigma^*$ について、その長さを $|\alpha| = n$ と表記する.

集合 A,B について、 $R \subseteq A \times B$ を関係 (relation) と呼ぶ. また、

$$A \rightharpoonup B \stackrel{\mathrm{def}}{=} \{R \in \mathcal{P}(A \times B) \mid \forall x \in A, (x, y_1), (x, y_2) \in R. \ y_1 = y_2\}$$

という表記を導入し、関係 $f:A \rightarrow B$ を A から B への部分関数 (partial function) と呼ぶ. さらに、

$$A \to B \stackrel{\mathrm{def}}{=} \{ f : A \rightharpoonup B \mid \forall x \in A. \, \exists y \in B. \, (x,y) \in f \}$$

という表記を導入し、部分関数 $f:A\to B$ を (全) 関数 (function) と呼ぶ. 関係について、以下の表記を用いる.

- 関係 $R \subseteq A \times B$ について, $(a,b) \in R$ を a R b と表記する.
- 関係 R ⊆ A × B について、定義域 (domain) を dom(R) = {a | ∃b.(a,b) ∈ R}, 値域 (range) を cod(R) = {b | ∃a.(a,b) ∈ R} と表記する.
- 部分関数 $f: A \to B$ について, $(a,b) \in f$ を f(a) = b と表記する.

1.1 基本的な表記 5

• 関係 $R_1 \subseteq A \times B$, $R_2 \subseteq B \times C$ について,その合成 (composition) を R_1 ; $R_2 = R_2 \circ R_1 = \{(x, z) \in A \times C \mid \exists y \in B.(x, y) \in R_1, (y, z) \in R_2\}$ と表記する.

- 関係 $R \subseteq A \times B$, 集合 $X \subseteq A$ について, R の X による制限 (restriction) を $R \upharpoonright_X = \{(a,b) \in R \mid a \in X\}$ と表記する. 特に関数 $f: A \to B$ の $X \subseteq A$ による制限は, 関数 $f \upharpoonright_X : X \to B$ になる.
- $a \in A$, $b \in B$ について, その組を $a \mapsto b = (a,b)$, 関数 $f: A \to B$ を $f = x \mapsto f(x)$ と表記する.
- 2 項関係 $R \subseteq A^2$ について,その**推移閉包** (transitive closure),つまり以下を満たす最小の 2 項関係を $R^+ \subseteq A^2$ と表記する.
 - 任意の $(a,b) \in R$ について, $(a,b) \in R^+$.
 - 任意の $(a,b) \in R^+$, $(b,c) \in R^+$ について, $(a,c) \in R^+$.
- 2 項関係 $R \subseteq A^2$ について、その反射推移閉包 (reflexive transitive closure) を $R^* = R^+ \cup \{(a,a) \mid a \in A\}$ と表記する.

集合 I について、その要素で添字付けられた対象の列 $\{a_i\}_{i\in I}$ を I で添字づけられた \mathbf{K} (indexed family) と呼ぶ、族について、以下の表記を用いる.

- 族の集合を $\prod_{i \in I} A_i = \{\{a_i\}_{i \in I} \mid \forall i \in I, a_i \in A_i\}$ と表記する.
- 集合の族 $A = \{A_i\}_{i \in I}$ について、次の条件を満たす時、A は互いに素 $(pairwise\ disjoint)$ であるという.

$$\forall i_1, i_2 \in I, i_1 \neq i_2. A_{i_1} \cap A_{i_2} = \emptyset$$

第2章

Basic Calculus

8 第 2 章 Basic Calculus

2.1 WIP: (Untyped) λ -Calculus

2.2 Simply Typed λ -Calculus

Alias: STLC, λ^{\rightarrow} [GTL89]

2.2.1 Syntax

Convention:

$$\tau_1 \to \tau_2 \to \cdots \to \tau_n \stackrel{\text{def}}{=} \tau_1 \to (\tau_2 \to (\cdots \to \tau_n) \cdots)$$

$$e_1 e_2 \cdots e_n \stackrel{\text{def}}{=} (\cdots (e_1 e_2) \cdots) e_n)$$

Environment Reference:

$$\Gamma(x)=\tau$$

$$\frac{x = x'}{(\Gamma, x' : \tau)(x) = \tau} \qquad \frac{x \neq x' \quad \Gamma(x) = \tau}{(\Gamma, x' : \tau')(x) = \tau}$$

Free Variable:

$$fv(e)=\{\overline{x'}\}$$

$$\frac{fv(e_1) = X_1 \quad fv(e_2) = X_2}{fv(e_1 e_2) = X_1 \cup X_2} \qquad \frac{fv(e) = X}{fv(\lambda x : \tau.e) = X \setminus \{x\}} \qquad \frac{fv(c_A) = \emptyset}{fv(c_A) = \emptyset}$$

Substitution:

部分関数
$$\{x_1 \mapsto e_1, \dots, x_n \mapsto e_n\}$$
 を, $[x_1 \leftarrow e_1, \dots, x_n \leftarrow e_n]$ または $[x_1, \dots, x_n \leftarrow e_1, \dots, e_n]$ と表記する.
$$e[\overline{x' \leftarrow e'}] = e''$$

$$\begin{split} & [\overline{x'} \leftarrow \overline{e'}](x) = e \\ & x[\overline{x'} \leftarrow \overline{e'}] = e \end{split} \qquad x \not\in \operatorname{dom}([\overline{x'} \leftarrow \overline{e'}]) \\ & x[\overline{x'} \leftarrow \overline{e'}] = x \end{split}$$

$$\underbrace{e_1[\overline{x'} \leftarrow \overline{e'}] = e_1'' \quad e_2[\overline{x'} \leftarrow \overline{e'}] = e_2''}_{(e_1 \ e_2)[\overline{x'} \leftarrow \overline{e'}] = e_1'' \ e_2''} \qquad \underbrace{e([\overline{x'} \leftarrow \overline{e'}] \upharpoonright_{\operatorname{dom}([\overline{x'} \leftarrow \overline{e'}]) \backslash \{x\}}) = e''}_{(\lambda x \ : \ \tau . e)[\overline{x'} \leftarrow \overline{e'}] = \lambda x \ : \ \tau . e''} \qquad \underbrace{c_A[\overline{x'} \leftarrow \overline{e'}] = c_A}_{c_A[\overline{x'} \leftarrow \overline{e'}] = c_A} \end{split}$$

 α -Equality:

$$e_1 \equiv_{\alpha} e_2$$

$$\frac{x_1 = x_2}{x_1 \equiv_{\alpha} x_2} \qquad \frac{x' \notin fv(e_1) \cup fv(e_2) \quad e_1[x_1 \leftarrow x'] \equiv_{\alpha} e_2[x_2 \leftarrow x']}{\lambda x_1 : \tau. e_1 \equiv_{\alpha} \lambda x_2 : \tau. e_2} \qquad \frac{e_1 \equiv_{\alpha} e_2 \quad e_1' \equiv_{\alpha} e_2'}{e_1 e_1' \equiv_{\alpha} e_2 e_2'} \qquad \frac{c_A \equiv_{\alpha} c_A}{c_A \equiv_{\alpha} c_A}$$

第2章 Basic Calculus

定理 1 (Correctness of Substitution). 式 e, 置換 $[\overline{x'} \leftarrow \overline{e'}]$ について, $X = \text{dom}([\overline{x'} \leftarrow \overline{e'}])$ とした時,

$$fv(e[\overline{x'} \leftarrow \overline{e'}]) = (fv(e) \setminus X) \cup \bigcup_{x \in fv(e) \cap X} fv([\overline{x'} \leftarrow \overline{e'}](x)).$$

定理 2 (α -Equality Does Not Touch Free Variables). $e_1 \equiv_{\alpha} e_2$ ならば、 $fv(e_1) = fv(e_2)$.

2.2.2 Typing Semantics

 $\Gamma \vdash e : \tau$

$$\begin{split} \frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} & \text{T-Var} \\ \frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x : \tau_1 . e : \tau_1 \to \tau_2} & \text{T-Abs} \\ \frac{\Gamma \vdash e_1 : \tau_2 \to \tau \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 e_2 : \tau} & \text{T-App} \\ \frac{\Gamma \vdash e_1 e_2 : \tau}{\Gamma \vdash e_A : A} & \text{T-Const} \end{split}$$

特に、 $\cdot \vdash e : \tau$ の時、 $e : \tau$ と表記.

2.2.3 Evaluation Semantics (Call-By-Value)

$$v ::= \lambda x : \tau. e$$

$$\mid c_A$$

$$C ::= []$$

$$\mid C e$$

$$\mid v C$$

Small Step:

 $e \Rightarrow e'$

$$(\lambda x : \tau.e) \ v \Rightarrow e[x \leftarrow v]$$

$$\frac{e \Rightarrow e'}{C[e] \Rightarrow C[e']}$$

Big Step:

e ψ υ

$$\frac{e_1 \Downarrow \lambda x : \tau. e_1' \quad e_2 \Downarrow v_2 \quad e_1'[x \leftarrow v_2] \Downarrow v}{e_1 e_2 \Downarrow v}$$

定理 3 (Adequacy of Small Step and Big Step). $e \Rightarrow^* v$ iff $e \Downarrow v$.

定理 4 (Type Soundness). $e:\tau$ の時, $e\Rightarrow^* v$, $e \Downarrow v$ となる $v=nf(\Rightarrow,e)$ が存在し,

- $\tau = \tau_1 \rightarrow \tau_2$ の時, $v \equiv_{\alpha} \lambda x' : \tau_1.e'$ となる $\lambda x' : \tau'.e'$ が存在する.
- $\tau = A$ の時, $v \equiv_{\alpha} c_A$ となる c_A が存在する.

2.2.4 Equational Reasoning

$$\Gamma \vdash e_1 \equiv e_2 : \tau$$

$$\frac{\Gamma,x:\tau\vdash e_1:\tau_2\to\tau\quad\Gamma\vdash e_2:\tau_2}{\Gamma\vdash(\lambda x:\tau.e_1)\,e_2\equiv e_1[x\leftarrow e_2]:\tau}\,\,\mathrm{Eq}\text{-}\beta\text{-}\mathrm{Lam}\qquad \frac{x\not\in fv(e)\quad\Gamma\vdash e:\tau_1\to\tau_2}{\Gamma\vdash(\lambda x:\tau_1.e\,x)\equiv e:\tau_1\to\tau_2}\,\,\mathrm{Eq}\text{-}\eta\text{-}\mathrm{Lam}$$

$$\frac{e_1\equiv_\alpha e_2\quad\Gamma\vdash e_1:\tau\quad\Gamma\vdash e_2:\tau}{\Gamma\vdash e_1\equiv e_2:\tau}\,\,\mathrm{Eq}\text{-}\alpha\text{-}\mathrm{Refl}$$

$$\frac{\Gamma\vdash e_2\equiv e_1:\tau}{\Gamma\vdash e_1\equiv e_2:\tau}\,\,\mathrm{Eq}\text{-}\mathrm{Sym}\qquad \frac{\Gamma\vdash e_1\equiv e_2:\tau\quad\Gamma\vdash e_2\equiv e_3:\tau}{\Gamma\vdash e_1\equiv e_3:\tau}\,\,\mathrm{Eq}\text{-}\mathrm{Trans}$$

$$\frac{\Gamma,x:\tau\vdash e_1\equiv e_2:\tau'}{\Gamma\vdash\lambda x:\tau.e_1\equiv\lambda x:\tau.e_2:\tau\to\tau'}\,\,\mathrm{Eq}\text{-}\mathrm{Cong}\text{-}\mathrm{Abs}\qquad \frac{\Gamma\vdash e_1\equiv e_2:\tau'\to\tau\quad\Gamma\vdash e_1'\equiv e_2':\tau'}{\Gamma\vdash e_1\equiv e_2:\tau'\to\tau}\,\,\mathrm{Eq}\text{-}\mathrm{Cong}\text{-}\mathrm{App}$$

特に、・ $\vdash e_1 \equiv e_2 : \tau$ の時、 $e_1 \equiv e_2 : \tau$ と表記.

定理 5 (Respect Typing).
$$\Gamma \vdash e_1 \equiv e_2 : \tau$$
 ならば、 $\Gamma \vdash e_1 : \tau$ かつ $\Gamma \vdash e_2 : \tau$.

定理 6 (Respect Evaluation).
$$e_1 \equiv e_2 : \tau$$
 の時, $e_1' \Rightarrow^* e_1$, $e_2 \Rightarrow^* e_2'$ ならば $e_1' \equiv e_2' : \tau$.

系 7.
$$e_1 \equiv e_2 : \tau$$
 の時, $e_1 \Rightarrow^* e_1'$, $e_2 \Rightarrow^* e_2'$ ならば $e_1' \equiv e_2' : \tau$.

証明. $e_1 \Rightarrow^* e_1$ より、定理 6 から $e_1 \equiv e_2' : \tau$. よって、T-Sym から $e_2' \equiv e_1 : \tau$ であり、 $e_2' \Rightarrow^* e_2'$ より定理 6 から $e_2' \equiv e_1' : \tau$. 故に、T-Sym から $e_1' \equiv e_2' : \tau$.

第2章 Basic Calculus

2.3 WIP: System-T

2.4 WIP: PCF 13

2.4 WIP: PCF

14 第 2 章 Basic Calculus

2.5 System-F

Alias: F, Second Order Typed Lambda Calculus, $\lambda 2$ [GTL89]

2.5.1 Syntax

Convention:

$$\tau_1 \to \tau_2 \to \cdots \to \tau_n \stackrel{\text{def}}{=} \tau_1 \to (\tau_2 \to (\cdots \to \tau_n) \cdots)$$

$$e_1 e_2 \cdots e_n \stackrel{\text{def}}{=} (\cdots (e_1 e_2) \cdots) e_n)$$

Environment Reference:

$$\Gamma(x) = \tau$$

$$\frac{x = x'}{(\Gamma, x' : \tau)(x) = \tau} \qquad \frac{x \neq x'}{(\Gamma, x' : \tau')(x) = \tau} \qquad \frac{\Gamma(x) = \tau}{(\Gamma, t : \Omega)(x) = \tau}$$

$$\frac{t = t'}{(\Gamma, t' : \Omega)(t) = \Omega} \qquad \frac{t \neq t'}{(\Gamma, t' : \Omega')(t) = \Omega} \qquad \frac{\Gamma(t) = \Omega}{(\Gamma, x : \tau)(t) = \Omega}$$

Free Variable:

$$\int v(e) = \{\overline{x}\}$$

$$\frac{fv(e_1) = X_1 \quad fv(e_2) = X_2}{fv(x) = \{x\}} \qquad \frac{fv(e) = X}{fv(e_1 e_2) = X_1 \cup X_2} \qquad \frac{fv(e) = X}{fv(\lambda x : \tau. e) = X \setminus \{x\}} \qquad \frac{fv(e) = X}{fv(e \tau) = X} \qquad \frac{fv(e) = X}{fv(\Lambda t. e) = X}$$

Substitution:

部分関数
$$\{x_1 \mapsto e_1, \dots, x_n \mapsto e_n\}$$
 を, $[x_1 \leftarrow e_1, \dots, x_n \leftarrow e_n]$ または $[x_1, \dots, x_n \leftarrow e_1, \dots, e_n]$ と表記する. $e[\overline{x' \leftarrow e'}] = e''$

$$\frac{[\overline{x'}\leftarrow\overline{e'}](x)=e}{x[\overline{x'}\leftarrow\overline{e'}]=e} \qquad \frac{x\notin \mathrm{dom}([\overline{x'}\leftarrow\overline{e'}])}{x[\overline{x'}\leftarrow\overline{e'}]=x}$$

$$\frac{e_1[\overline{x'}\leftarrow\overline{e'}]=e_1'' \quad e_2[\overline{x'}\leftarrow\overline{e'}]=e_2''}{(e_1\ e_2)[\overline{x'}\leftarrow\overline{e'}]=e_1''\ e_2''} \qquad \frac{e([\overline{x'}\leftarrow\overline{e'}])\setminus_{\{x\}})=e''}{(\lambda x:\tau.e)[\overline{x'}\leftarrow\overline{e'}]=\lambda x:\tau.e''}$$

2.5 System-F 15

$$\frac{e[\overline{x'} \leftarrow \overline{e'}] = e''}{(e \ \tau)[\overline{x'} \leftarrow \overline{e'}] = e'' \ \tau} \qquad \frac{e[\overline{x'} \leftarrow \overline{e'}] = e''}{(\Lambda t. e)[\overline{x'} \leftarrow \overline{e'}] = \Lambda t. e''}$$

Type Free Variable:

 $tyfv(e)=\{\overline{x}\}$

$$\frac{tyfv(e_1) = T_1 \quad tyfv(e_2) = T_2}{tyfv(e_1) = T_1 \quad tyfv(e_2) = T_2} \qquad \frac{tyfv(\tau) = T_1 \quad tyfv(e) = T_2}{tyfv(\lambda x : \tau.e) = T_1 \cup T_2}$$

$$\frac{tyfv(e) = T_1 \quad tyfv(\tau) = T_2}{tyfv(e \tau) = T_1 \cup T_2} \qquad \frac{tyfv(e) = T}{tyfv(\Lambda t.e) = T \setminus \{t\}}$$

$$\frac{tyfv(\tau_1) = T_1 \quad tyfv(\tau_2) = T_2}{tyfv(\tau_1) = T_1 \quad tyfv(\tau_2) = T_2} \qquad \frac{tyfv(\tau) = T}{tyfv(\forall t.\tau) = T \setminus \{t\}}$$

Type Substitution:

部分関数 $\{t_1 \mapsto \tau_1, \dots, t_n \mapsto \tau_n\}$ を, $[t_1 \leftarrow \tau_1, \dots, t_n \leftarrow \tau_n]$ または $[t_1, \dots, t_n \leftarrow t_1, \dots, t_n]$ と表記する. $\boxed{e[\overline{t \leftarrow \tau}] = e'}$

$$\frac{e_{1}[\overline{t'}\leftarrow\overline{\tau'}]=e_{1}''\quad e_{2}[\overline{t'}\leftarrow\overline{\tau'}]=e_{2}''}{(e_{1}\ e_{2})[\overline{t'}\leftarrow\overline{\tau'}]=e_{1}''\quad e_{2}''} \qquad \frac{\tau[\overline{t'}\leftarrow\overline{\tau'}]=\tau''\quad e[\overline{t'}\leftarrow\overline{\tau'}]=e''}{(\lambda x:\tau.e)[\overline{t'}\leftarrow\overline{\tau'}]=\lambda x:\tau''.e''}$$

$$\frac{e[\overline{t'}\leftarrow\overline{\tau'}]=e''\quad \tau[\overline{t'}\leftarrow\overline{\tau'}]=\tau''}{(e\ \tau)[\overline{t'}\leftarrow\overline{\tau'}]=e''\ \tau''} \qquad \frac{e([\overline{t'}\leftarrow\overline{\tau'}])\setminus\{t\}}{(\Lambda t.e)[\overline{t'}\leftarrow\overline{\tau'}]=\Lambda t.e''}$$

$$\tau[\overline{t'\leftarrow\tau'}]=\tau''$$

$$\frac{[\overline{t'}\leftarrow\overline{t'}](t)=\tau}{t[\overline{t'}\leftarrow\overline{t'}]=\tau} \qquad \frac{t\not\in \mathrm{dom}([\overline{t'}\leftarrow\overline{t'}])}{t[\overline{t'}\leftarrow\overline{t'}]=t} \qquad \frac{\tau_1[\overline{t'}\leftarrow\overline{t'}]=\tau_1''}{(\tau_1\to\tau_2)[\overline{t'}\leftarrow\overline{t'}]=\tau_1''} \qquad \frac{\tau([\overline{t'}\leftarrow\overline{t'}]\upharpoonright_{\mathrm{dom}([\overline{t'}\leftarrow\overline{t'}])\backslash\{t\}})=\tau''}{(\forall t.\,\tau)[\overline{t'}\leftarrow\overline{t'}]=\forall t.\,\tau''}$$

 α -Equality:

 $e_1 \equiv_{\alpha} e_2$

$$\begin{array}{ll} x_1 = x_2 \\ \overline{x_1 \equiv_\alpha x_2} \end{array} & \begin{array}{ll} \underbrace{e_1 \equiv_\alpha e_2 \quad e_1' \equiv_\alpha e_2'}_{e_1 e_1' \equiv_\alpha e_2 e_2'} & \underline{\tau_1 \equiv_\alpha \tau_2 \quad x' \not\in fv(e_1) \cup fv(e_2) \quad e_1[x_1 \leftarrow x'] \equiv_\alpha e_2[x_2 \leftarrow x']}_{\lambda x_1 \ : \ \tau_1. \, e_1 \equiv_\alpha \lambda x_2 \ : \ \tau_2. \, e_2} \\ \underline{e_1 \equiv_\alpha e_2 \quad \tau_1 \equiv_\alpha \tau_2}_{e_1 \ \tau_1 \equiv_\alpha e_2 \ \tau_2} & \underline{t' \not\in tyfv(e_1) \cup tyfv(e_2) \quad e_1[t_1 \leftarrow t'] \equiv_\alpha e_2[t_2 \leftarrow t']}_{\Lambda t_1. \, e_1 \equiv_\alpha \Lambda t_2. \, e_2} \end{array}$$

 $\tau_1 \equiv_{\alpha} \tau_2$

$$\frac{t_1 = t_2}{t_1 \equiv_\alpha t_2} \qquad \frac{\tau_1 \equiv_\alpha \tau_2 \quad \tau_1' \equiv_\alpha \tau_2'}{\tau_1 \to \tau_1' \equiv_\alpha \tau_2 \to \tau_2'} \qquad \frac{t' \not\in tyfv(\tau_1) \cup tyfv(\tau_2) \quad \tau_1[t_1 \leftarrow t'] \equiv_\alpha \tau_2[t_2 \leftarrow t']}{\forall t_1. \tau_1 \equiv_\alpha \forall t_2. \tau_2}$$

定理 8 (Correctness of Substitution). 置換 $[\overline{x'} \leftarrow \overline{e'}]$ について, $X = \text{dom}([\overline{x'} \leftarrow \overline{e'}])$ とした時,

$$fv(e[\overline{x'}\leftarrow \overline{e'}]) = (fv(e)\setminus X) \cup \bigcup_{x\in fv(e)\cap X} fv([\overline{x'}\leftarrow \overline{e'}](x)).$$

定理 9 (Correctness of Type Substitution). 式 e, 型 τ , 型置換 $[\overline{t'} \leftarrow \overline{\tau'}]$ について, $T = \text{dom}([\overline{t'} \leftarrow \overline{\tau'}])$ とした時,

$$tyfv(e[\overline{t'}\leftarrow\overline{\tau'}])=(tyfv(e)\setminus T)\cup\bigcup_{t\in tyfv(e)\cap T}tyfv([\overline{t'}\leftarrow\overline{\tau'}](t))$$

第 2 章 Basic Calculus

$$tyfv(\tau[\overline{t'}\leftarrow\overline{\tau'}])=(tyfv(\tau)\setminus T)\cup\bigcup_{t\in tyfv(\tau)\cap T}tyfv([\overline{t'}\leftarrow\overline{\tau'}](t)).$$

定理 10 (α-Equality Does Not Touch Free Variables).

- $\tau_1 \equiv_{\alpha} \tau_2$ τ_2 τ_3 τ_4 τ_5 τ_5 τ_5 τ_5 τ_5 τ_6 τ_7 τ_7 τ_7 τ_7 τ_7
- $e_1 \equiv_{\alpha} e_2$ ならば、 $fv(e_1) = fv(e_2)$ 、 $tyfv(e_1) = tyfv(e_2)$.

2.5.2 Typing Semantics

 $\Gamma \vdash e : \tau$

$$\frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \text{ T-Var}$$

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x : \tau_1.e : \tau_1 \to \tau_2} \text{ T-Abs}$$

$$\frac{\Gamma \vdash e_1 : \tau_2 \to \tau \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 e_2 : \tau} \text{ T-App}$$

$$\frac{\Gamma, t : \Omega \vdash e : \tau}{\Gamma \vdash \Lambda t.e : \forall t.\tau} \text{ T-UnivAbs}$$

$$\frac{\Gamma \vdash e : \forall t.\tau_1}{\Gamma \vdash e : \tau} \text{ T-UnivApp}$$

$$\frac{\Gamma \vdash e : \tau}{\Gamma \vdash e : \tau} \text{ T-C-Equiv}$$

特に、・ $\vdash e:\tau$ の時、 $e:\tau$ と表記.

2.5.3 Evaluation Semantics (Call-By-Value)

$$v ::= \lambda x : \tau.e$$

$$| \Lambda t.e$$

$$C ::= []$$

$$| C e$$

$$| v C$$

$$| C \tau$$

Small Step:

$$e \Rightarrow e'$$

$$\overline{(\lambda x : \tau. e) \ v \Rightarrow e[x \leftarrow v]}$$

$$\overline{(\Lambda t. e) \ \tau \Rightarrow e[t \leftarrow \tau]}$$

$$\underline{e \Rightarrow e'}$$

$$\overline{C[e] \Rightarrow C[e']}$$

Big Step:

e ↓ v

2.5 System-F 17

$$\frac{e_1 \Downarrow \lambda x : \tau. e_1' \quad e_2 \Downarrow v_2 \quad e_1'[x \leftarrow v_2] \Downarrow v}{e_1 e_2 \Downarrow v}$$

$$\frac{e \Downarrow \Lambda t. e_1' \quad e_1'[t \leftarrow \tau] \Downarrow v}{e \tau \Downarrow v}$$

定理 11 (Adequacy of Small Step and Big Step). $e \Rightarrow^* v$ iff $e \Downarrow v$.

定理 12 (Type Soundness). $e:\tau$ の時, $e \Rightarrow^* v$, $e \Downarrow v$ となる $v = nf(\Rightarrow, e)$ が存在し,

- $\tau = \tau_1 \rightarrow \tau_2$ の時、 $v \equiv_{\alpha} \lambda x' : \tau_1.e'$ となる $\lambda x' : \tau_1.e'$ が存在する.
- $\tau = \forall t. \tau_1$ の時, $v \equiv_{\alpha} \Lambda t. e'$ となる $\Lambda t. e'$ が存在する.

2.5.4 Equational Reasoning

$$\Gamma \vdash e_1 \equiv e_2 : \tau$$

$$\frac{\Gamma, x : \tau_2 \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (\lambda x : \tau_2.e_1) \ e_2 \equiv e_1[x \leftarrow e_2] : \tau} \quad \text{Eq-}\beta\text{-Lam} \qquad \frac{x \not\in fv(e) \quad \Gamma \vdash e : \tau_1 \rightarrow \tau_2}{\Gamma \vdash (\lambda x : \tau_1.e \ x) \equiv e : \tau_1 \rightarrow \tau_2} \quad \text{Eq-}\eta\text{-Lam}$$

$$\frac{\Gamma, t : \Omega \vdash e : \tau}{\Gamma \vdash (\Lambda t.e) \ \tau_2 \equiv e[t \leftarrow \tau_2] : \tau[t \leftarrow \tau_2]} \quad \text{Eq-}\beta\text{-UnivLam} \qquad \frac{t \not\in tyfv(e) \quad \Gamma \vdash e : \forall t'.\tau}{\Gamma \vdash (\Lambda t.e \ t) \equiv e : \forall t'.\tau} \quad \text{Eq-}\eta\text{-UnivLam}$$

$$\frac{e_1 \equiv_{\alpha} e_2 \quad \Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 \equiv e_2 : \tau} \quad \text{Eq-}\alpha\text{-Refl} \qquad \frac{\tau \equiv_{\alpha} \tau' \quad \Gamma \vdash e_1 \equiv e_2 : \tau'}{\Gamma \vdash e_1 \equiv e_2 : \tau} \quad \text{Eq-}\alpha\text{-Type}$$

$$\frac{\Gamma \vdash e_1 \equiv e_2 : \tau}{\Gamma \vdash e_1 \equiv e_2 : \tau} \quad \text{Eq-}Sym \qquad \frac{\Gamma \vdash e_1 \equiv e_2 : \tau \quad \Gamma \vdash e_2 \equiv e_3 : \tau}{\Gamma \vdash e_1 \equiv e_3 : \tau} \quad \text{Eq-}Trans$$

$$\frac{\Gamma, x : \tau \vdash e_1 \equiv e_2 : \tau'}{\Gamma \vdash \lambda x : \tau.e_1 \equiv \lambda x : \tau.e_2 : \tau \rightarrow \tau'} \quad \text{Eq-}Cong-Abs} \qquad \frac{\Gamma \vdash e_1 \equiv e_2 : \tau' \rightarrow \tau \quad \Gamma \vdash e'_1 \equiv e'_2 : \tau'}{\Gamma \vdash e_1 \equiv e_2 : \tau'} \quad \text{Eq-}Cong-App}$$

$$\frac{\Gamma, t : \Omega \vdash e_1 \equiv e_2 : \tau}{\Gamma \vdash \Lambda t.e_1 \equiv \Lambda t.e_2 : \forall (t.\tau)} \quad \text{Eq-}Cong-UnivAbs} \qquad \frac{\Gamma \vdash e_1 \equiv e_2 : \forall t.\tau}{\Gamma \vdash e_1 \tau' \equiv e_2 : \tau' : \tau[t \leftarrow \tau']} \quad \text{Eq-}Cong-UnivApp}$$

特に、・ $\vdash e_1 \equiv e_2 : \tau$ の時、 $e_1 \equiv e_2 : \tau$ と表記.

定理 13 (Respect Typing).
$$\Gamma \vdash e_1 \equiv e_2 : \tau$$
 ならば, $\Gamma \vdash e_1 : \tau$ かつ $\Gamma \vdash e_2 : \tau$.

定理 14 (Respect Evaluation).
$$e_1 \equiv e_2 : \tau$$
 の時, $e_1' \Rightarrow^* e_1$, $e_2 \Rightarrow^* e_2'$ ならば $e_1' \equiv e_2' : \tau$.

系 15.
$$e_1 \equiv e_2 : \tau$$
 の時, $e_1 \Rightarrow^* e_1'$, $e_2 \Rightarrow^* e_2'$ ならば $e_1' \equiv e_2' : \tau$.

証明. $e_1 \Rightarrow^* e_1$ より、定理 14 から $e_1 \equiv e_2' : \tau$. よって、T-Sym から $e_2' \equiv e_1 : \tau$ であり、 $e_2' \Rightarrow^* e_2'$ より定理 14 から $e_2' \equiv e_1' : \tau$. 故に、T-Sym から $e_1' \equiv e_2' : \tau$.

2.5.5 Definability

Product

Product of τ_1 and τ_2 :

$$\tau_1 \times \tau_2 \stackrel{\text{def}}{=} \forall t. (\tau_1 \to \tau_2 \to t) \to t$$
$$\langle e_1, e_2 \rangle \stackrel{\text{def}}{=} \Lambda t. \lambda x : \tau_1 \to \tau_2 \to t. x e_1 e_2$$

18 第 2 章 Basic Calculus

$$\pi_1 e \stackrel{\text{def}}{=} e \tau_1 \lambda x_1 . \lambda x_2 . x_1$$

$$\pi_2 e \stackrel{\text{def}}{=} e \tau_2 \lambda x_1 . \lambda x_2 . x_2$$

Admissible typing rule:

 $\Gamma \vdash e : \tau$

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \langle e_1, e_2 \rangle : \tau_1 \times \tau_2} \text{ T-Product } \qquad \frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \pi_1 e : \tau_1} \text{ T-Proj-1} \qquad \frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \pi_2 e : \tau_2} \text{ T-Proj-2}$$

Admissible equality:

$$\Gamma \vdash e_1 \equiv e_2 : \tau$$

$$\begin{split} \frac{\Gamma \vdash e_1 \,:\, \tau_1 \quad \Gamma \vdash e_2 \,:\, \tau_2}{\Gamma \vdash \pi_1 \langle e_1, e_2 \rangle \equiv e_1 \,:\, \tau_1} \quad & \text{Eq-β-Product-1} \\ \frac{\Gamma \vdash e_1 \,:\, \tau_1 \quad \Gamma \vdash e_2 \,:\, \tau_2}{\Gamma \vdash \pi_2 \langle e_1, e_2 \rangle \equiv e_2 \,:\, \tau_2} \quad & \text{Eq-β-Product-2} \\ \frac{\Gamma \vdash e \,:\, \tau_1 \times \tau_2}{\Gamma \vdash \langle \pi_1 e, \pi_2 e \rangle \equiv e \,:\, \tau_1 \times \tau_2} \quad & \text{Eq-η-Product} \end{split}$$

Existential Type

Existence of $\exists t. \tau$:

$$\exists t. \tau \stackrel{\text{def}}{=} \forall t'. (\forall t. \tau \to t') \to t'$$

$$\operatorname{pack} \langle \tau_t, e \rangle \stackrel{\text{def}}{=} \Lambda t'. \lambda x : (\forall t. \tau \to t'). x \tau_t e$$

$$\operatorname{unpack} \langle t, x \rangle = e_1. \tau_2. e_2 \stackrel{\text{def}}{=} e_1 \tau_2 (\Lambda t. \lambda x : \tau. e_2)$$

Admissible typing rule:

 $\Gamma \vdash e : \tau$

$$\frac{\Gamma \vdash e : \tau[t \leftarrow \tau_t]}{\Gamma \vdash \mathsf{pack}\langle \tau_t, e \rangle : \exists t. \tau} \text{ T-Pack} \qquad \frac{\Gamma \vdash e_1 : \exists t. \tau \quad \Gamma, t : \Omega, x : \tau \vdash e_2 : \tau_2 \quad t \not\in tyfv(\tau_2)}{\Gamma \vdash \mathsf{unpack}\langle t, x \rangle = e_1. \tau_2. e_2 : \tau_2} \text{ T-Unpack}$$

Admissible equality:

$$\Gamma \vdash e_1 \equiv e_2 : \tau$$

$$\begin{split} \frac{\Gamma \vdash e_1 \,:\, \tau_1[t \leftarrow \tau_t] \quad \Gamma, t \,:\, \Omega, x \,:\, \tau_1 \vdash e_2 \,:\, \tau_2 \quad t \not\in tyfv(\tau_2)}{\Gamma \vdash \text{unpack}\langle t, x \rangle = \text{pack}\langle \tau_t, e_1 \rangle.\, \tau_2.\, e_2 \equiv e_2[t \leftarrow \tau_t][x \leftarrow e_1] \,:\, \tau_2} \quad \text{Eq-β-Exist} \\ \frac{\Gamma \vdash e \,:\, \exists t'.\, \tau \quad \tau' \equiv_{\alpha} \exists t'.\, \tau}{\Gamma \vdash \text{unpack}\langle t, x \rangle = e.\, \tau'.\, \text{pack}\langle t, x \rangle \equiv e \,:\, \exists t'.\, \tau} \quad \text{Eq-η-Exist} \end{split}$$

2.6 System-F ω 19

2.6 System-F ω

Alias: F ω , $\lambda \omega$ [RRD14]

2.6.1 Syntax

Convention:

$$\tau_1 \to \tau_2 \to \cdots \to \tau_n \stackrel{\text{def}}{=} \tau_1 \to (\tau_2 \to (\cdots \to \tau_n) \cdots)$$

$$e_1 e_2 \cdots e_n \stackrel{\text{def}}{=} (\cdots (e_1 e_2) \cdots) e_n)$$

Environment Reference:

$$\Gamma(x) = \tau$$

$$\frac{x = x'}{(\Gamma, x' : \tau)(x) = \tau} \qquad \frac{x \neq x'}{(\Gamma, x' : \tau')(x) = \tau} \qquad \frac{\Gamma(x) = \tau}{(\Gamma, t : \kappa)(x) = \tau}$$

$$\frac{t = t'}{(\Gamma, t' : \kappa)(t) = \kappa} \qquad \frac{t \neq t'}{(\Gamma, t' : \kappa')(t) = \kappa} \qquad \frac{\Gamma(t) = \kappa}{(\Gamma, x : \tau)(t) = \kappa}$$

Free Variable:

$$fv(e) = \{\overline{x}\}$$

$$\frac{fv(e) = X}{fv(x) = \{x\}} \qquad \frac{fv(e) = X}{fv(\lambda x : \tau.e) = X \setminus \{x\}} \qquad \frac{fv(e_1) = X_1 \quad fv(e_2) = X_2}{fv(e_1 e_2) = X_1 \cup X_2} \qquad \frac{fv(e) = X}{fv(\Lambda t : \kappa.e) = X} \qquad \frac{fv(e) = X}{fv(e \tau) = X}$$

Substitution:

部分関数
$$\{x_1 \mapsto e_1, \dots, x_n \mapsto e_n\}$$
 を, $[x_1 \leftarrow e_1, \dots, x_n \leftarrow e_n]$ または $[x_1, \dots, x_n \leftarrow e_1, \dots, e_n]$ と表記する.
$$\boxed{e[\overline{x'} \leftarrow e'] = e''}$$

$$\frac{[\overline{x'} \leftarrow \overline{e'}](x) = e}{x[\overline{x'} \leftarrow \overline{e'}] = e} \qquad \frac{x \notin \text{dom}([\overline{x'} \leftarrow \overline{e'}])}{x[\overline{x'} \leftarrow \overline{e'}] = x}$$

20 第 2 章 Basic Calculus

$$\begin{split} \frac{e([\overline{x'}\leftarrow\overline{e'}]\upharpoonright_{\mathrm{dom}([\overline{x'}\leftarrow\overline{e'}])\backslash\{x\}}) = e''}{(\lambda x : \tau.e)[\overline{x'}\leftarrow\overline{e'}] = \lambda x : \tau.e''} & \frac{e_1[\overline{x'}\leftarrow\overline{e'}] = e_1'' \quad e_2[\overline{x'}\leftarrow\overline{e'}] = e_2''}{(e_1 \ e_2)[\overline{x'}\leftarrow\overline{e'}] = e_1'' \ e_2''} \\ \frac{e[\overline{x'}\leftarrow\overline{e'}] = e''}{(\Lambda t : \kappa.e)[\overline{x'}\leftarrow\overline{e'}] = \Lambda t : \kappa.e''} & \frac{e[\overline{x'}\leftarrow\overline{e'}] = e''}{(e\ \tau)[\overline{x'}\leftarrow\overline{e'}] = e''\ \tau} \end{split}$$

Type Free Variable:

 $tyfv(e)=\{\bar{t}\}$

$$\begin{split} \frac{tyfv(\tau) = T_1 & tyfv(e) = T_2}{tyfv(\lambda x) = \emptyset} & \frac{tyfv(\tau) = T_1 & tyfv(e) = T_2}{tyfv(\lambda x: \tau.e) = T_1 \cup T_2} & \frac{tyfv(e_1) = T_1 & tyfv(e_2) = T_2}{tyfv(e_1 e_2) = T_1 \cup T_2} \\ & \frac{tyfv(e) = T}{tyfv(\Lambda t: \kappa.e) = T \setminus \{t\}} & \frac{tyfv(e) = T_1 & tyfv(\tau) = T_2}{tyfv(e \tau) = T_1 \cup T_2} \end{split}$$

 $tyfv(\tau) = \{\overline{t}\}$

$$\begin{split} \frac{tyfv(\tau_1) = T_1 \quad tyfv(\tau_2) = T_2}{tyfv(t) = \{t\}} \quad & \frac{tyfv(\tau_1) = T_1 \quad tyfv(\tau_2) = T_2}{tyfv(\tau_1 \to \tau_2) = T_1 \cup T_2} \quad & \frac{tyfv(\forall t : \kappa.\tau) = T \setminus \{t\}}{tyfv(\forall t : \kappa.\tau) = T \setminus \{t\}} \\ \frac{tyfv(\lambda t : \kappa.\tau) = T \setminus \{t\}}{tyfv(\lambda t : \kappa.\tau) = T \setminus \{t\}} \quad & \frac{tyfv(\tau_1) = T_1 \quad tyfv(\tau_2) = T_2}{tyfv(\tau_1 \tau_2) = T_1 \cup T_2} \end{split}$$

Type Substitution:

部分関数
$$\{t_1 \mapsto \tau_1, \dots, t_n \mapsto \tau_n\}$$
 を, $[t_1 \leftarrow \tau_1, \dots, t_n \leftarrow \tau_n]$ または $[t_1, \dots, t_n \leftarrow t_1, \dots, t_n]$ と表記する.
$$\boxed{e[\overline{t' \leftarrow \tau'}] = e'}$$

$$\frac{e_{1}[\overline{t'}\leftarrow\overline{\tau'}]=e_{1}''\quad e_{2}[\overline{t'}\leftarrow\overline{\tau'}]=e_{2}''}{(e_{1}\ e_{2})[\overline{t'}\leftarrow\overline{\tau'}]=e_{1}''\quad e_{2}''} \qquad \frac{\tau[\overline{t'}\leftarrow\overline{\tau'}]=\tau''\quad e[\overline{t'}\leftarrow\overline{\tau'}]=e''}{(\lambda x:\tau.e)[\overline{t'}\leftarrow\overline{\tau'}]=\lambda x:\tau''.e''}$$

$$\frac{e[\overline{t'}\leftarrow\overline{\tau'}]=e''\quad \tau[\overline{t'}\leftarrow\overline{\tau'}]=\tau''}{(e\ \tau)[\overline{t'}\leftarrow\overline{\tau'}]=e''\ \tau''} \qquad \frac{e([\overline{t'}\leftarrow\overline{\tau'}])\setminus\{t\}}{(\Lambda t:\kappa.e)[\overline{t'}\leftarrow\overline{\tau'}]=\Lambda t:\kappa.e''}$$

$$\tau[\overline{t'\leftarrow\tau'}]=\tau''$$

$$\begin{split} \frac{[\overline{t'}\leftarrow\overline{\tau'}](t)=\tau}{t[\overline{t'}\leftarrow\overline{\tau'}]=\tau} & \quad \frac{t\not\in \mathrm{dom}([\overline{t'}\leftarrow\overline{\tau'}])}{t[\overline{t'}\leftarrow\overline{\tau'}]=t} \\ \frac{\tau_1[\overline{t'}\leftarrow\overline{\tau'}]=\tau_1'' \quad \tau_2[\overline{t'}\leftarrow\overline{\tau'}]=\tau_2''}{(\tau_1\to\tau_2)[\overline{t'}\leftarrow\overline{\tau'}]=\tau_1''\to\tau_2''} & \quad \frac{\tau([\overline{t'}\leftarrow\overline{\tau'}])\setminus_{\{t\}})=\tau''}{(\forall t:\kappa.\tau)[\overline{t'}\leftarrow\overline{\tau'}]=\forall t:\kappa.\tau''} \\ \frac{\tau([\overline{t'}\leftarrow\overline{\tau'}]\upharpoonright_{\mathrm{dom}([\overline{t'}\leftarrow\overline{\tau'}])\setminus_{\{t\}}})=\tau''}{(\lambda t:\kappa.\tau)[\overline{t'}\leftarrow\overline{\tau'}]=\lambda t:\kappa.\tau''} & \quad \tau_1[\overline{t'}\leftarrow\overline{\tau'}]=\tau_1'' \quad \tau_2[\overline{t'}\leftarrow\overline{\tau'}]=\tau_2''}{(\tau_1\tau_2)[\overline{t'}\leftarrow\overline{\tau'}]=\tau_1''\tau_2''} \end{split}$$

 α -Equality:

 $e_1 \equiv_{\alpha} e_2$

$$\begin{array}{ll} x_1 = x_2 \\ \overline{x_1 \equiv_{\alpha} x_2} \end{array} & \begin{array}{ll} \underbrace{e_1 \equiv_{\alpha} e_2 \quad e_1' \equiv_{\alpha} e_2'}_{e_1 e_1' \equiv_{\alpha} e_2 e_2'} \end{array} & \begin{array}{ll} \underline{\tau_1 \equiv_{\alpha} \tau_2 \quad x' \not\in fv(e_1) \cup fv(e_2) \quad e_1[x_1 \leftarrow x'] \equiv_{\alpha} e_2[x_2 \leftarrow x']}_{\lambda x_1 \ \colon \tau_1. e_1 \equiv_{\alpha} \lambda x_2 \ \colon \tau_2. e_2} \\ \\ \underline{e_1 \equiv_{\alpha} e_2 \quad \tau_1 \equiv_{\alpha} \tau_2}_{e_1 \tau_1 \equiv_{\alpha} e_2 \tau_2} \end{array} & \begin{array}{ll} \underline{t' \not\in tyfv(e_1) \cup tyfv(e_2) \quad e_1[t_1 \leftarrow t'] \equiv_{\alpha} e_2[t_2 \leftarrow t']}_{\lambda t_1 \ \colon \kappa. e_1 \equiv_{\alpha} \lambda t_2 \ \colon \kappa. e_2} \end{array} \end{array}$$

2.6 System-F ω

$$\begin{array}{ll} t_1 = t_2 \\ t_1 \equiv_{\alpha} t_2 \end{array} & \begin{array}{ll} \tau_1 \equiv_{\alpha} \tau_2 & \tau_1' \equiv_{\alpha} \tau_2' \\ \tau_1 \rightarrow \tau_1' \equiv_{\alpha} \tau_2 \rightarrow \tau_2' \end{array} & \begin{array}{ll} t' \not\in tyfv(\tau_1) \cup tyfv(\tau_2) & \tau_1[t_1 \leftarrow t'] \equiv_{\alpha} \tau_2[t_2 \leftarrow t'] \\ \hline \forall t_1 : \kappa. \tau_1 \equiv_{\alpha} \forall t_2 : \kappa. \tau_2 \end{array} \\ \\ \frac{t' \not\in tyfv(\tau_1) \cup tyfv(\tau_2) & \tau_1[t_1 \leftarrow t'] \equiv_{\alpha} \tau_2[t_2 \leftarrow t']}{\lambda t_1 : \kappa. \tau_1 \equiv_{\alpha} \lambda t_2 : \kappa. \tau_2} & \begin{array}{ll} \tau_1 \equiv_{\alpha} \tau_2 & \tau_1' \equiv_{\alpha} \tau_2' \\ \hline \tau_1 & \tau_1' \equiv_{\alpha} \tau_2 & \tau_2' \end{array} \end{array}$$

定理 16 (Correctness of Substitution). 置換 $[\overline{x'} \leftarrow \overline{e'}]$ について, $X = \text{dom}([\overline{x'} \leftarrow \overline{e'}])$ とした時,

$$fv(e[\overline{x'}\leftarrow \overline{e'}]) = (fv(e)\setminus X) \cup \bigcup_{x\in fv(e)\cap X} fv([\overline{x'}\leftarrow \overline{e'}](x)).$$

定理 17 (Correctness of Type Substitution). 式 e, 型 τ , 型置換 $[\overline{t'} \leftarrow \overline{\tau'}]$ について, $T = \text{dom}([\overline{t'} \leftarrow \overline{\tau'}])$ とした時、

$$\begin{split} tyfv(e[\overline{t'}\leftarrow\overline{\tau'}]) &= (tyfv(e)\setminus T) \cup \bigcup_{t\in tyfv(e)\cap T} tyfv([\overline{t'}\leftarrow\overline{\tau'}](t)) \\ tyfv(\tau[\overline{t'}\leftarrow\overline{\tau'}]) &= (tyfv(\tau)\setminus T) \cup \bigcup_{t\in tyfv(\tau)\cap T} tyfv([\overline{t'}\leftarrow\overline{\tau'}](t)). \end{split}$$

定理 18 (α-Equality Does Not Touch Free Variables).

- $\tau_1 \equiv_{\alpha} \tau_2$ τ_2 τ_3 τ_4 τ_5 τ_5 τ_5 τ_5 τ_5 τ_6 τ_7 τ_7 τ_7 τ_7
- $e_1 \equiv_{\alpha} e_2$ $this identifies find <math>this e_1 = f(e_1) = f(e_2)$, $this e_2 = this e_2$ $this e_3 = this e_4$

2.6.2 Typing Semantics

Kinding:

$$\Gamma \vdash \tau : \kappa$$

$$\frac{\Gamma(t) = \kappa}{\Gamma \vdash t : \kappa} \text{ K-Var}$$

$$\frac{\Gamma \vdash \tau_1 : \Omega \quad \Gamma \vdash \tau_2 : \Omega}{\Gamma \vdash \tau_1 \to \tau_2 : \Omega} \text{ K-Arrow}$$

$$\frac{\Gamma, t : \kappa \vdash \tau : \Omega}{\Gamma \vdash \forall t : \kappa . \tau : \Omega} \text{ K-Forall}$$

$$\frac{\Gamma, t : \kappa_1 \vdash \tau : \kappa_2}{\Gamma \vdash \lambda t : \kappa_1 . \tau : \kappa_1 \to \kappa_2} \text{ K-Abs}$$

$$\frac{\Gamma \vdash \tau_1 : \kappa_2 \to \kappa \quad \Gamma \vdash \tau_2 : \kappa_2}{\Gamma \vdash \tau_1 \tau_2 : \kappa} \text{ K-App}$$

Type equivalence:

$$\Gamma \vdash \tau_1 \equiv \tau_2 : \kappa$$

$$\frac{\Gamma,t:\kappa_2\vdash\tau_1:\kappa\quad\Gamma\vdash\tau_2:\kappa_2}{\Gamma\vdash(\lambda t:\kappa_2.\tau_1)\;\tau_2\equiv\tau_1[t\leftarrow\tau_2]:\kappa}\;\text{T-Eq-β-Lam}\qquad \frac{t\not\in tyf\upsilon(\tau)\quad\Gamma\vdash\tau:\kappa_1\to\kappa_2}{\Gamma\vdash(\lambda t:\kappa_1.\tau\;t)\equiv\tau:\kappa_1\to\kappa_2}\;\text{T-Eq-η-Lam}\\ \frac{\tau_1\equiv_\alpha\tau_2\quad\Gamma\vdash\tau_1:\kappa\quad\Gamma\vdash\tau_2:\kappa}{\Gamma\vdash\tau_1\equiv\tau_2:\kappa}\;\text{T-Eq-α-Refl}$$

第2章 Basic Calculus

$$\frac{\Gamma \vdash \tau_2 \equiv \tau_1 : \kappa}{\Gamma \vdash \tau_1 \equiv \tau_2 : \kappa} \text{ T-Eq-Sym} \qquad \frac{\Gamma \vdash \tau_1 \equiv \tau_2 : \kappa \quad \Gamma \vdash \tau_2 \equiv \tau_3 : \kappa}{\Gamma \vdash \tau_1 \equiv \tau_3 : \kappa} \text{ T-Eq-Trans}$$

$$\frac{\Gamma \vdash \tau_1 \equiv \tau_2 : \Omega \quad \Gamma \vdash \tau_1' \equiv \tau_2' : \Omega}{\Gamma \vdash \tau_1 \to \tau_1' \equiv \tau_2 \to \tau_2' : \Omega} \text{ T-Eq-Cong-Arrow} \qquad \frac{\Gamma, t : \kappa \vdash \tau_1 \equiv \tau_2 : \Omega}{\Gamma \vdash \forall t : \kappa, \tau_1 \equiv \forall t : \kappa, \tau_2 : \Omega} \text{ Eq-Cong-Forall}$$

$$\frac{\Gamma, t : \kappa \vdash \tau_1 \equiv \tau_2 : \kappa'}{\Gamma \vdash \lambda t : \kappa, \tau_1 \equiv \lambda t : \kappa, \tau_2 : \kappa \to \kappa'} \text{ T-Eq-Cong-Abs} \qquad \frac{\Gamma \vdash \tau_1 \equiv \tau_2 : \kappa' \to \kappa \quad \Gamma \vdash \tau_1' \equiv \tau_2' : \kappa'}{\Gamma \vdash \tau_1 \tau_1' \equiv \tau_2 : \tau_2' : \kappa'} \text{ Eq-Cong-App}$$

定理 19 (Respect Kinding). $\Gamma \vdash \tau_1 \equiv \tau_2 : \kappa$ ならば、 $\Gamma \vdash \tau_1 : \kappa$ かつ $\Gamma \vdash \tau_2 : \kappa$.

Typing:

 $\Gamma \vdash e : \tau$

$$\frac{\Gamma \vdash \tau : \Omega \quad \Gamma(x) = \tau}{\Gamma \vdash x : \tau} \quad \text{T-Var}$$

$$\frac{\Gamma \vdash \tau_1 : \Omega \quad \Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x : \tau_1 . e : \tau_1 \rightarrow \tau_2} \quad \text{T-Abs}$$

$$\frac{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 e_2 : \tau} \quad \text{T-App}$$

$$\frac{\Gamma, t : \kappa \vdash e : \tau}{\Gamma \vdash \Lambda t : \kappa . e : \forall t : \kappa . \tau} \quad \text{T-UnivAbs}$$

$$\frac{\Gamma \vdash e : \forall t : \kappa . \tau_1 \quad \Gamma \vdash \tau_2 : \kappa}{\Gamma \vdash e : \tau_2} \quad \text{T-UnivApp}$$

$$\frac{\Gamma \vdash e : \tau_2 : \tau_1[t \leftarrow \tau_2]}{\Gamma \vdash e : \tau} \quad \text{T-Equiv}$$

特に、・ $\vdash e:\tau$ の時、 $e:\tau$ と表記.

定理 20 (Respect Type Kind). $\Gamma \vdash e : \tau$ ならば、 $\Gamma \vdash \tau : \Omega$.

2.6.3 Evaluation Semantics (Call-By-Value)

$$v ::= \lambda x : \tau.e$$

$$| \Lambda t : \kappa.e$$

$$C ::= []$$

$$| C e$$

$$| v C$$

$$| C \tau$$

Small Step:

$$e \Rightarrow e'$$

$$\overline{(\lambda x : \tau.e) \ v \Rightarrow e[x \leftarrow v]}$$

$$\overline{(\Lambda t : \kappa.e) \ \tau \Rightarrow e[t \leftarrow \tau]}$$

$$\underline{e \Rightarrow e'}$$

$$\overline{(C[e] \Rightarrow C[e']}$$

Big Step:

 $e \Downarrow v$

$$\frac{e_1 \Downarrow \lambda x : \tau. e_1' \quad e_2 \Downarrow v_2 \quad e_1'[x \leftarrow v_2] \Downarrow v}{e_1 e_2 \Downarrow v}$$

2.6 System-F ω 23

$$\frac{e \Downarrow \Lambda t : \kappa. e_1' \quad e_1'[t \leftarrow \tau] \Downarrow v}{e \; \tau \Downarrow v}$$

定理 21 (Adequacy of Small Step and Big Step). $e \Rightarrow^* v$ iff $e \Downarrow v$.

定理 22 (Type Soundness). $e:\tau$ の時, $e\Rightarrow^* v$, $e\Downarrow v$ となる $v=\mathrm{nf}(\Rightarrow,e)$ が存在し,

- $\tau = \tau_1 \rightarrow \tau_2$ の時, $v \equiv_{\alpha} \lambda x' : \tau_1.e'$ となる $\lambda x' : \tau_1.e'$ が存在する.
- $\tau = \forall t : \kappa.\tau_1$ の時, $v \equiv_{\alpha} \Lambda t : \kappa.e'$ となる $\Lambda t : \kappa.e'$ が存在する.

2.6.4 Equational Reasoning

 $\Gamma \vdash e_1 \equiv e_2 \, : \, \tau$

$$\frac{\Gamma,x:\tau_2\vdash e_1:\tau\quad\Gamma\vdash e_2:\tau_2}{\Gamma\vdash(\lambda x:\tau_2.e_1)\,e_2\equiv e_1[x\leftarrow e_2]:\tau} \ \ \text{Eq-β-Lam} \qquad \frac{x\not\in fv(e)\quad\Gamma\vdash e:\tau_1\to\tau_2}{\Gamma\vdash(\lambda x:\tau_1.e_1x)\equiv e:\tau_1\to\tau_2} \ \ \text{Eq-β-Lam}$$

$$\frac{\Gamma,t:\kappa\vdash e:\tau}{\Gamma\vdash(\Lambda t:\kappa.e)\,\tau_2\equiv e[t\leftarrow\tau_2]:\tau[t\leftarrow\tau_2]} \ \ \text{Eq-β-UnivLam} \qquad \frac{t\not\in tyfv(e)\quad\Gamma\vdash e:\forall t:\kappa.\tau}{\Gamma\vdash(\Lambda t:\kappa.e\,t)\equiv e:\forall t:\kappa.\tau} \ \ \text{Eq-η-UnivLam}$$

$$\frac{e_1\equiv_{\alpha}e_2\quad\Gamma\vdash e_1:\tau\quad\Gamma\vdash e_2:\tau}{\Gamma\vdash e_1\equiv e_2:\tau} \ \ \text{Eq-α-Refl} \qquad \frac{\tau\equiv_{\alpha}\tau'\quad\Gamma\vdash e_1\equiv e_2:\tau'}{\Gamma\vdash e_1\equiv e_2:\tau} \ \ \text{Eq-α-Type}$$

$$\frac{\Gamma\vdash e_1\equiv e_2:\tau}{\Gamma\vdash e_1\equiv e_2:\tau} \ \ \text{Eq-α-Sym} \qquad \frac{\Gamma\vdash e_1\equiv e_2:\tau}{\Gamma\vdash e_1\equiv e_3:\tau} \ \ \text{Eq-$Trans}$$

$$\frac{\Gamma,x:\tau\vdash e_1\equiv e_2:\tau'}{\Gamma\vdash \lambda x:\tau.e_1\equiv \lambda x:\tau.e_2:\tau\to\tau'} \ \ \text{Eq-$Cong-Abs} \qquad \frac{\Gamma\vdash e_1\equiv e_2:\tau'\to\tau\quad\Gamma\vdash e_1'\equiv e_2':\tau'}{\Gamma\vdash e_1\equiv e_2:\tau} \ \ \text{Eq-$Cong-App}$$

$$\frac{\Gamma,t:\kappa\vdash e_1\equiv e_2:\tau}{\Gamma\vdash \Lambda t:\kappa.e_1\equiv \Lambda t:\kappa.e_2:(\forall t:\kappa.\tau)} \ \ \text{Eq-$Cong-UnivAbs}$$

$$\frac{\Gamma\vdash e_1\equiv e_2:\forall t:\kappa.\tau\quad\Gamma\vdash \tau_1\equiv \tau_2:\kappa}{\Gamma\vdash e_1\equiv e_2:\tau\colon\tau} \ \ \text{Eq-$Cong-UnivApp}$$

特に、・ $\vdash e_1 \equiv e_2 : \tau$ の時、 $e_1 \equiv e_2 : \tau$ と表記.

定理 23 (Respect Typing).
$$\Gamma \vdash e_1 \equiv e_2 : \tau$$
 ならば, $\Gamma \vdash e_1 : \tau$ かつ $\Gamma \vdash e_2 : \tau$.

定理 24 (Respect Evaluation).
$$e_1 \equiv e_2 : \tau$$
 の時, $e_1' \Rightarrow^* e_1$, $e_2 \Rightarrow^* e_2'$ ならば $e_1' \equiv e_2' : \tau$.

系 25.
$$e_1 \equiv e_2 : \tau$$
 の時, $e_1 \Rightarrow^* e_1'$, $e_2 \Rightarrow^* e_2'$ ならば $e_1' \equiv e_2' : \tau$.

証明. $e_1 \Rightarrow^* e_1$ より,定理 14 から $e_1 \equiv e_2' : \tau$. よって,T-Sym から $e_2' \equiv e_1 : \tau$ であり, $e_2' \Rightarrow^* e_2'$ より定理 14 から $e_2' \equiv e_1' : \tau$. 故に,T-Sym から $e_1' \equiv e_2' : \tau$.

2.6.5 Definability

Product

Product of τ_1 and τ_2 :

$$\begin{split} &\tau_1 \times \tau_2 \stackrel{\text{def}}{=} \forall t \, : \, \Omega. \, (\tau_1 \to \tau_2 \to t) \to t \\ &\langle e_1, e_2 \rangle \stackrel{\text{def}}{=} \Lambda t \, : \, \Omega. \, \lambda x \, : \, \tau_1 \to \tau_2 \to t. \, x \, e_1 \, e_2 \\ &\pi_1 e \stackrel{\text{def}}{=} e \, \tau_1 \, \lambda x_1. \, \lambda x_2. \, x_1 \\ &\pi_2 e \stackrel{\text{def}}{=} e \, \tau_2 \, \lambda x_1. \, \lambda x_2. \, x_2 \end{split}$$

Admissible kinding:

$$\Gamma \vdash \tau : \kappa$$

$$\frac{\Gamma \vdash \tau_1 : \Omega \quad \Gamma \vdash \tau_2 : \Omega}{\Gamma \vdash \tau_1 \times \tau_2 : \Omega} \text{ T-Product}$$

Admissible type equality:

$$\Gamma \vdash \tau_1 \equiv \tau_2 : \kappa$$

$$\frac{\Gamma \vdash \tau_1 \equiv \tau_2 : \Omega \quad \Gamma \vdash \tau_1' \equiv \tau_2' : \Omega}{\Gamma \vdash \tau_1 \times \tau_1' \equiv \tau_2 \times \tau_2' : \Omega} \text{ T-Eq-Product}$$

Admissible typing:

$$\Gamma \vdash e : \tau$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash \langle e_1, e_2 \rangle : \tau_1 \times \tau_2} \text{ T-Product } \qquad \frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \pi_1 e : \tau_1} \text{ T-Proj-1} \qquad \frac{\Gamma \vdash e : \tau_1 \times \tau_2}{\Gamma \vdash \pi_2 e : \tau_2} \text{ T-Proj-2}$$

Admissible equality:

$$\Gamma \vdash e_1 \equiv e_2 : \tau$$

$$\begin{split} \frac{\Gamma \vdash e_1 \,:\, \tau_1 \quad \Gamma \vdash e_2 \,:\, \tau_2}{\Gamma \vdash \pi_1 \langle e_1, e_2 \rangle \equiv e_1 \,:\, \tau_1} \quad & \text{Eq-β-Product-1} \\ \frac{\Gamma \vdash e_1 \,:\, \tau_1 \quad \Gamma \vdash e_2 \,:\, \tau_2}{\Gamma \vdash \pi_2 \langle e_1, e_2 \rangle \equiv e_2 \,:\, \tau_2} \quad & \text{Eq-β-Product-2} \\ \frac{\Gamma \vdash e \,:\, \tau_1 \times \tau_2}{\Gamma \vdash \langle \pi_1 e, \pi_2 e \rangle \equiv e \,:\, \tau_1 \times \tau_2} \quad & \text{Eq-η-Product} \end{split}$$

Existential Type

Existence of $\exists t : \kappa. \tau$:

$$\exists t : \kappa. \tau \stackrel{\mathrm{def}}{=} \forall t' : \Omega. (\forall t : \kappa. \tau \to t') \to t'$$

$$\mathrm{pack} \langle \tau_t, e \rangle_{\exists t : \kappa. \tau} \stackrel{\mathrm{def}}{=} \Lambda t' : \Omega. \lambda x : (\forall t : \kappa. \tau \to t'). x \tau_t e$$

$$\mathrm{unpack} \langle t : \kappa, x : \tau \rangle = e_1. \tau_2. e_2 \stackrel{\mathrm{def}}{=} e_1 \tau_2 (\Lambda t : \kappa. \lambda x : \tau. e_2)$$

Admissible kinding:

$$\Gamma \vdash \tau : \kappa$$

$$\frac{\Gamma, t : \kappa \vdash \tau : \Omega}{\Gamma \vdash \exists t : \kappa \ \tau : \Omega} \text{ T-Exist}$$

Admissible type equality:

$$\boxed{\Gamma \vdash \tau_1 \equiv \tau_2 : \kappa}$$

$$\frac{\Gamma,t:\kappa\vdash\tau_1\equiv\tau_2:\Omega}{\Gamma\vdash\exists t:\kappa.\tau_1\equiv\exists t:\kappa.\tau_2:\Omega}\text{ T-Eq-Cong-Exist}$$

Admissible typing rule:

$$\Gamma \vdash e : \tau$$

2.6 System-F ω 25

$$\frac{\Gamma,t:\kappa\vdash\tau:\Omega\quad\Gamma\vdash\tau_t:\kappa\quad\Gamma\vdash e:\tau[t\leftarrow\tau_t]}{\Gamma\vdash\operatorname{pack}\langle\tau_t,e\rangle_{\exists t:\kappa.\tau}:\exists t:\kappa.\tau}\text{ T-Pack}$$

$$\frac{\Gamma\vdash e_1:\exists t:\kappa.\tau\quad\Gamma,t:\kappa,x:\tau\vdash e_2:\tau_2\quad t\notin tyfv(\tau_2)}{\Gamma\vdash\operatorname{unpack}\langle t:\kappa,x:\tau\rangle=e_1.\tau_2.e_2:\tau_2}\text{ T-Unpack}$$

Admissible equality:

$$\Gamma \vdash e_1 \equiv e_2 \, : \, \tau$$

$$\begin{split} \frac{\Gamma \vdash \tau_t : \kappa \quad \Gamma \vdash e_1 : \tau_1[t \leftarrow \tau_t] \quad \Gamma, t : \kappa, x : \tau_1 \vdash e_2 : \tau_2 \quad t \not\in tyfv(\tau_2)}{\Gamma \vdash \text{unpack}\langle t : \kappa, x : \tau_1 \rangle = \text{pack}\langle \tau_t, e_1 \rangle_{\exists t : \kappa, \tau_1}. \tau_2. e_2 \equiv e_2[t \leftarrow \tau_t][x \leftarrow e_1] : \tau_2} \quad \text{Eq-β-Exist} \\ \frac{\Gamma \vdash e : (\exists t : \kappa. \tau) \quad \tau' \equiv \exists t : \kappa. \tau}{\Gamma \vdash \text{unpack}\langle t : \kappa, x : \tau \rangle = e. \tau'. \text{pack}\langle t, x \rangle_{\exists t : \kappa. \tau}} \quad \text{Eq-η-Exist} \end{split}$$

第 2 章 Basic Calculus

2.7 WIP: $\lambda \mu$ -Calculus

Alias: $\lambda \mu$

2.7.1 Syntax

$\tau ::= t$	(type variable)
T	(top type)
τ × τ	(product type)
$\tau \to \tau$	(function type)
1	(bottom type)
e ::= x	(variable)
⟨⟩	(top value)
$ \langle e,e\rangle$	(product)
$\mid \pi_1 e$	(left projection)
$\mid \pi_2 e$	(right projection)
$ \lambda x : \tau.e$	(abstraction)
e e	(application)
[α] <i>e</i>	(naming)
μα : A.e	(un-naming)
$\Gamma ::= \cdot$	
$\mid \Gamma, x : \tau$	
Δ ::= ·	
$\mid \alpha : \tau, \Delta$	

Environment Reference:

$$\Gamma(x) = \tau$$

$$\frac{x=x'}{(\Gamma,x'\,:\,\tau)(x)=\tau} \qquad \frac{x\neq x'\quad \Gamma(x)=\tau}{(\Gamma,x'\,:\,\tau')(x)=\tau}$$

 $\Delta(\alpha) = \tau$

$$\frac{\alpha = \alpha'}{(\alpha' : \tau, \Delta)(\alpha) = \tau} \qquad \frac{\alpha \neq \alpha' \quad \Delta(\alpha) = \tau}{(\alpha' : \tau', \Delta)(\alpha) = \tau}$$

2.7.2 Typing Semantics

$$\Gamma \vdash e : \tau \mid \Delta$$

$$\begin{split} \frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau \mid \Delta} & \text{T-Var} \\ \frac{\Gamma \vdash \langle \rangle : \top \mid \Delta}{\Gamma \vdash \langle \rangle : \tau \mid \Delta} & \text{T-Top} \\ \frac{\Gamma \vdash e_1 : \tau_1 \mid \Delta \quad \Gamma \vdash e_2 : \tau_2 \mid \Delta}{\Gamma \vdash \langle e_1, e_2 \rangle : \tau_1 \times \tau_2 \mid \Delta} & \text{T-Product} \\ \frac{\Gamma \vdash e : \tau_1 \times \tau_2 \mid \Delta}{\Gamma \vdash \pi_1 e : \tau_1 \mid \Delta} & \text{T-Proj-1} \end{split}$$

$$\frac{\Gamma \vdash e : \tau_1 \times \tau_2 \mid \Delta}{\Gamma \vdash \pi_2 e : \tau_2 \mid \Delta} \text{ T-Proj-2}$$

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2 \mid \Delta}{\Gamma \vdash \lambda x : \tau_1.e : \tau_1 \rightarrow \tau_2 \mid \Delta} \text{ T-Abs}$$

$$\frac{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau \mid \Delta}{\Gamma \vdash e_1 e_2 : \tau \mid \Delta} \text{ T-App}$$

$$\frac{\Delta(\alpha) = \tau}{\Gamma \vdash [\alpha] e : \bot \mid \Delta} \text{ T-Name}$$

$$\frac{\Gamma \vdash e : \bot \mid \alpha : \tau, \Delta}{\Gamma \vdash \mu \alpha : \tau.e : \tau \mid \Delta} \text{ T-Unname}$$

2.7.3 Evaluation Semantics

Big Step: $e \Downarrow v$

2.7.4 Elaboration (Call-By-Name)

$$\boxed{\Gamma \vdash e : \tau \mid \Delta \leadsto e'}$$

$$\frac{\Gamma \vdash x_0 : \tau \mid \Delta \rightsquigarrow \lambda x_k : K_\tau. x_{x_0} x_k}{\Gamma \vdash \langle \rangle : \top \mid \Delta \rightsquigarrow \lambda x_k : \bot. \operatorname{case} x_k \, \{\} }$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \mid \Delta \rightsquigarrow e_1' \quad \Gamma \vdash e_2 : \tau_2 \mid \Delta \rightsquigarrow e_2'}{\Gamma \vdash \langle e_1, e_2 \rangle : \tau_1 \times \tau_2 \mid \Delta \rightsquigarrow \lambda x_k : K_{\tau_1} + K_{\tau_2}. \operatorname{case} x_k \, \{x_{k_1}. e_1' \, x_{k_1} \mid x_{k_2}. e_2' \, x_{k_2}\} }$$

2.7.5 Elaboration (Call-By-Value)

第2章 Basic Calculus

2.8 WIP: Lambda Bar Mu Mu Tilde Calculus

 $\bar{\lambda}~\mu~\tilde{\bar{\mu}}\text{-}\mathrm{Calculus}$

2.9 WIP: π -Calculus

2.9 WIP: π -Calculus

第3章

Modules and Phase Distinction

3.1 F-ing modules

[RRD14]

3.1.1 Syntax

```
X ::= \cdots
                                                                              (identifier)
K::=\cdots
                                                                                   (kind)
T ::= \cdots \mid P
                                                                                   (type)
E ::= \cdots \mid P
                                                                            (expression)
                                                                                   (path)
 P : := M
M::=X
                                                                              (identifier)
      \mid \{B\}
                                                                              (bindings)
      M.X
                                                                            (projection)
      | \operatorname{fun} X : S \Rightarrow M
                                                                                (functor)
      |XX|
                                                                  (functor application)
      |X:>S
                                                                                (sealing)
B ::= \operatorname{val} X = E
                                                                        (value binding)
      | type X = T
                                                                         (type binding)
      \mid \text{module } X = M
                                                                      (module binding)
      \mid signature X = S
                                                                    (signature binding)
      | include M
                                                                    (module including)
      | ε
                                                                       (empty binding)
      \mid B; B
                                                              (binding concatenation)
 S ::= P
                                                                       (signature path)
      | \{D\}
                                                                          (declarations)
      | (X : S) \rightarrow S
                                                     ((generative) functor signature)
      | S where type \overline{X} = T
                                                                  (bounded signature)
D ::= \operatorname{val} X : T
                                                                    (value declaration)
      | type X = T
                                                                         (type binding)
      | type X : K
                                                                     (type declaration)
      \mid \mathsf{module}\, X : S
                                                                 (module declaration)
      \mid signature X = S
                                                                    (signature binding)
      | include S
                                                                  (signature including)
      \mid \epsilon
                                                                   (empty declaration)
      \mid D; D
                                                          (declaration concatenation)
```

3.1.2 Internal Language

Having same power as System F ω Syntax:

```
\begin{split} \kappa &::= \Omega \mid \kappa \to \kappa \\ \tau &::= t \mid \tau \to \tau \mid \{\overline{l : \tau}\} \mid \forall t : \kappa.\tau \mid \exists t : \kappa.\tau \mid \lambda t : \kappa.\tau \mid \tau \tau \\ e &::= x \mid \lambda x : \tau.e \mid e \mid e \mid \{\overline{l = e}\} \mid e.l \mid \Lambda t : \kappa.e \mid e \mid \tau \mid \operatorname{pack}\langle \tau, e \rangle_{\tau} \mid \operatorname{unpack}\langle t : \kappa, x : \tau \rangle = e \text{ in } e \end{split}
```

3.1 F-ing modules

$$\Gamma ::= \cdot \mid \Gamma, t : \kappa \mid \Gamma, x : \tau$$

Abbreviation:

$$\Sigma.\vec{l} \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} (\Sigma.l).\vec{l'} \quad (\vec{l} = l \, \vec{l'}) \\ \Sigma \quad (\vec{l} = \varepsilon) \end{array} \right.$$

$$\vec{\tau_1} \rightarrow \tau_2 \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} \tau_1 \rightarrow (\vec{\tau_1'} \rightarrow \tau_2) \quad (\vec{\tau_1} = \tau_1 \, \vec{\tau_1'}) \\ \tau_2 \quad (\vec{\tau_1} = \varepsilon) \end{array} \right.$$

$$\lambda \vec{x} : \vec{\tau} . e \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} \lambda x : \tau . \lambda \vec{x'} : \vec{\tau'} . e \quad (\vec{x} : \vec{\tau} = x : \tau \, \vec{x'} : \vec{\tau'}) \\ (\vec{x} : \vec{\tau} = \varepsilon) \end{array} \right.$$

$$e_0 \vec{e_1} \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} e_0 e_1 \vec{e_1'} \quad (\vec{e_1} = e_1 \vec{e_1'}) \\ e_0 \quad (\vec{e_1} = \varepsilon) \end{array} \right.$$

$$\forall \vec{t} : \vec{\kappa} . \vec{\tau} \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} \forall t : \kappa . \forall \vec{t'} : \vec{\kappa'} . \tau \quad (\vec{t} : \vec{\kappa} = t : \kappa \, \vec{t'} : \vec{\kappa'}) \\ \vec{\tau} \quad (\vec{t} : \vec{\kappa} = \varepsilon) \end{array} \right.$$

$$\Delta \vec{l} : \vec{\kappa} . e \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} \Delta t : \kappa . \Delta \vec{l'} : \vec{\kappa'} . e \quad (\vec{t} : \vec{\kappa} = t : \kappa \, \vec{t'} : \vec{\kappa'}) \\ e \quad (\vec{\tau} : \vec{\kappa} = \varepsilon) \end{array} \right.$$

$$e \vec{\tau} \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} e \tau \, \vec{\tau'} \quad (\vec{\tau} = \tau \, \vec{\tau'}) \\ e \quad (\vec{\tau} = \varepsilon) \end{array} \right.$$

$$|et\vec{x} : \vec{\tau} = \vec{e_1} \, \vec{t} : \vec{\kappa} = \vec{\tau} : in \, e_2 \stackrel{\mathrm{def}}{=} (\lambda \vec{x} : \vec{\tau} . \Delta \vec{t} : \vec{\kappa} . e_2) \, \vec{e_1} \, \vec{\tau}$$

$$\exists \vec{t} : \vec{\kappa} . \tau \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} \exists t : \kappa . \exists t' : \vec{\kappa'} . \tau \quad (\vec{t} : \vec{\kappa} = t : \kappa \, \vec{t'} : \vec{\kappa'}) \\ (\vec{t} : \vec{\kappa} = \varepsilon) \end{array} \right.$$

$$|et\vec{x} : \vec{\tau} = \vec{e_1} \, \vec{t} : \vec{\kappa} = \vec{\tau} : in \, e_2 \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} \exists t : \kappa . \exists t' : \vec{\kappa'} . \tau , \sigma \quad (\vec{t} : \vec{\kappa} = t : \kappa \, \vec{t'} : \vec{\kappa'}) \\ \vec{\tau} : \vec{\kappa} : \vec{\tau} :$$

Kinding:

 $\Gamma \vdash \tau : \kappa$

Type equivalence:

$$\Gamma \vdash \tau_1 \equiv \tau_2 : \kappa$$

Typing:

 $\Gamma \vdash e : \tau$

$$\frac{\Gamma \vdash \tau : \Omega \quad \Gamma(x) = \tau}{\Gamma \vdash x : \tau} \qquad \frac{\Gamma \vdash \tau \equiv \tau' : \Omega \quad \Gamma \vdash e : \tau'}{\Gamma \vdash e : \tau}$$

$$\frac{\Gamma \vdash \tau_1 : \Omega \quad \Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x : \tau_1 \cdot e : \tau_1 \to \tau_2} \qquad \frac{\Gamma \vdash e_1 : \tau_2 \to \tau \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 \cdot e_2 : \tau}$$

$$\frac{\bigwedge_l \Gamma \vdash e_l : \tau_l}{\Gamma \vdash \{\overline{l} = e_l\}} : \{\overline{l} = \overline{\tau_l}\} \qquad \frac{\Gamma \vdash e : \{\overline{l'} = \tau_{l'}\}}{\Gamma \vdash e.l : \tau_l}$$

$$\frac{\Gamma, t : \kappa \vdash e : \tau}{\Gamma \vdash \Lambda t : \kappa \cdot e : (\forall t : \kappa \cdot \tau)} \qquad \frac{\Gamma \vdash e : (\forall t : \kappa \cdot \tau_1) \quad \Gamma \vdash \tau_2 : \kappa}{\Gamma \vdash e_1 : (\exists t : \kappa \cdot \tau_1) \quad \Gamma, t : \kappa, x : \tau_1 \vdash e_2 : \tau}$$

$$\frac{\Gamma, t : \kappa \vdash \tau : \Omega \quad \Gamma \vdash \tau_t : \kappa \quad \Gamma \vdash e : \tau[t \leftarrow \tau_t]}{\Gamma \vdash \operatorname{pack}\langle \tau_t, e \rangle_{\exists t : \kappa, \tau}} \qquad \frac{\Gamma \vdash e_1 : (\exists t : \kappa \cdot \tau_1) \quad \Gamma, t : \kappa, x : \tau_1 \vdash e_2 : \tau}{\Gamma \vdash \operatorname{unpack}\langle t : \kappa, x : \tau_1 \rangle = e_1 \text{ in } e_2 : \tau}$$

Reduction:

$$v ::= \lambda x : \tau . e \mid \{\overline{l = e}\} \mid \Lambda t : \kappa . e \mid \operatorname{pack}\langle \tau_t, e \rangle_{\exists t : \kappa . \tau}$$

$$C ::= [] \mid C e \mid v \mid C \mid \{\overline{l = v}, l = C, \overline{l = e}\} \mid C . l \mid C \mid \tau \mid \operatorname{pack}\langle \tau, C \rangle_{\tau} \mid \operatorname{unpack}\langle t : \kappa, x : \tau \rangle = C \text{ in } e$$

 $e \Rightarrow e'$

Equivalence:

$$\Gamma \vdash e_1 \equiv e_2 : \tau$$

$$\begin{array}{c} \Gamma, x : \tau_2 \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau_2 \\ \hline \Gamma \vdash (\lambda x : \tau_2.e_1) \ e_2 \equiv e_1[x \leftarrow e_2] : \tau \end{array} & x \notin fv(e) \quad \Gamma \vdash e : \tau_1 \rightarrow \tau_2 \\ \hline \frac{\bigwedge_{l'} \Gamma \vdash e_{l'} : \tau_{l'}}{\Gamma \vdash \{\overline{l'} = e_{l'}\}.l} \equiv e_1 : \tau_l}{\Gamma \vdash \{\overline{l'} = e_{l'}\}.l} \equiv e_1 : \tau_l} & \frac{\Gamma \vdash e : \{\overline{l} : \tau_l\}}{\Gamma \vdash \{\overline{l} = e.l\}} \equiv e : \tau_1 \rightarrow \tau_2} \\ \hline \frac{\bigwedge_{l'} \Gamma \vdash e_{l'} : \tau_{l'}}{\Gamma \vdash \{\overline{l'} = e_{l'}\}.l} \equiv e_1 : \tau_l}{\Gamma \vdash (\Lambda t : \kappa.e) \tau_2 \equiv e[t \leftarrow \tau_2] : \tau[t \leftarrow \tau_2]} & \frac{\Gamma \vdash e : \{\overline{l} : \tau_l\}}{\Gamma \vdash (\Lambda t : \kappa.e \ t)} \equiv e : \forall t : \kappa.\tau} \\ \hline \frac{\Gamma, t : \kappa \vdash \tau_1 \equiv \tau_1' : \Omega}{\Gamma \vdash (\Lambda t : \kappa.e) \tau_2 \equiv e[t \leftarrow \tau_2] : \tau[t \leftarrow \tau_2]} & \frac{t \notin tyfv(e) \quad \Gamma \vdash e : \forall t : \kappa.\tau}{\Gamma \vdash (\Lambda t : \kappa.e \ t)} \equiv e : \forall t : \kappa.\tau} \\ \hline \frac{\Gamma, t : \kappa \vdash \tau_1 \equiv \tau_1' : \Omega}{\Gamma \vdash (\Lambda t : \kappa.e) \tau_2 \equiv e[t \leftarrow \tau_1] : \tau} & \frac{\Gamma \vdash e_1 : \tau_1[t \leftarrow \tau_t]}{\Gamma \vdash e_1 : \tau_1[t \leftarrow \tau_t]} & \frac{\Gamma, t : \kappa, \kappa : \tau_1 \vdash e_2 : \tau}{\Gamma, t : \kappa, \kappa, \kappa : \tau_1 \vdash e_2 : \tau} \\ \hline \Gamma \vdash \text{unpack} \langle t : \kappa, \kappa, \tau : \tau_1' \rangle = \text{pack} \langle \tau_t, e_1 \rangle_{\exists t : \kappa.\tau_1} \text{ in } e_2 \equiv e_2[t \leftarrow \tau_t][x \leftarrow e_1] : \tau} \\ \hline \frac{\Gamma \vdash e_1 \equiv e_2 : \tau}{\Gamma \vdash e_1 \equiv e_2 : \tau} & \frac{\Gamma \vdash \tau_1 \equiv \tau_1' : \tau_1 \vdash \tau_2 = \tau_1'}{\Gamma \vdash e_1 \equiv e_2 : \tau} \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau & \frac{\Gamma \vdash \tau_1 \equiv \tau_1' : \tau_1 \vdash \tau_2 = \tau_1'}{\Gamma \vdash e_1 \equiv e_2 : \tau} \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau & \frac{\Gamma \vdash e_1 \equiv e_2 : \tau}{\Gamma \vdash e_1 \equiv e_2 : \tau} \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau & \frac{\Gamma \vdash e_1 \equiv e_2 : \tau_1'}{\Gamma \vdash e_1 \equiv e_2 : \tau} \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau & \frac{\Gamma \vdash e_1 \equiv e_2 : \tau_1'}{\Gamma \vdash e_1 \equiv e_2 : \tau} \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau & \frac{\Gamma \vdash e_1 \equiv e_2 : \tau_1'}{\Gamma \vdash e_1 \equiv e_2 : \tau} \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau & \frac{\Gamma \vdash e_1 \equiv e_2 : \tau_1'}{\Gamma \vdash e_1 \equiv e_2 : \tau} \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau & \frac{\Gamma \vdash e_1 \equiv e_2 : \tau_1'}{\Gamma \vdash e_1 \equiv e_2 : \tau} \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau & \frac{\Gamma \vdash e_1 \equiv e_2 : \tau_1'}{\Gamma \vdash e_1 \equiv e_2 : \tau} \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau & \Gamma \vdash \tau_1 \equiv \tau_2 : \kappa \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau : \tau[t \leftarrow \tau_1] \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau : \tau[t \leftarrow \tau_1] \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau : \tau[t \leftarrow \tau_1] \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau : \tau[t \leftarrow \tau_1] \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau[\tau] \leftarrow \tau[\tau] \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau[\tau] \vdash \tau[\tau] \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau[\tau] \vdash \tau[\tau] \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau[\tau] \vdash \tau[\tau] \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau[\tau] \vdash \tau[\tau] \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau[\tau] \vdash \tau[\tau] \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau[\tau] \vdash \tau[\tau] \\ \hline \Gamma \vdash e_1 \equiv e_2 : \tau[\tau] \vdash \tau[\tau] \\ \hline \Gamma \vdash e_1 \equiv e_2 :$$

3.1 F-ing modules

$$\begin{split} \frac{\Gamma \vdash \tau_1' \equiv \tau_2' \, : \, \kappa \quad \Gamma \vdash e_1 \equiv e_2 \, : \, \tau_1[t \leftarrow \tau_1'] \quad \Gamma, t \, : \, \kappa, \tau_1 \equiv \tau_2 \, : \, \Omega}{\Gamma \vdash \operatorname{pack}\langle \tau_1', e_1 \rangle_{\exists t : \kappa, \tau_1} \equiv \operatorname{pack}\langle \tau_2', e_2 \rangle_{\exists t : \kappa, \tau_2} \, : \, (\exists t \, : \, \kappa, \tau_1)} \\ \frac{\Gamma, t \, : \, \kappa \vdash \tau_1' \equiv \tau_2' \, : \, \Omega \quad \Gamma \vdash e_1' \equiv e_2' \, : \, (\exists t \, : \, \kappa, \tau_1') \quad \Gamma, t \, : \, \kappa, x \, : \, \tau_1' \vdash e_1 \equiv e_2 \, : \, \tau}{\Gamma \vdash \operatorname{unpack}\langle t \, : \, \kappa, x \, : \, \tau_1' \rangle = e_1' \text{ in } e_1 \equiv \operatorname{unpack}\langle t \, : \, \kappa, x \, : \, \tau_2' \rangle = e_2' \text{ in } e_2 \, : \, \tau} \end{split}$$

3.1.3 Signature

$$\Xi ::= \exists \overline{t} : \kappa. \Sigma$$
 (abstract signature)

$$\Sigma ::= [\tau]$$
 (atomic value declaration)

$$\mid [= \tau : \kappa]$$
 (atomic type declaration)

$$\mid \{\overline{l_X} : \Sigma\}$$
 (atomic signature declaration)

$$\mid \{\overline{l_X} : \Sigma\}$$
 (structure signature)

$$\mid \forall \overline{t} : \kappa. \Sigma \to \Xi$$
 (functor signature)

Atomic Signature:

$$[\tau] \stackrel{\text{def}}{=} \{ \text{val} : \tau \}$$

$$[e] \stackrel{\text{def}}{=} \{ \text{val} = e \}$$

$$[=\tau : \kappa] \stackrel{\text{def}}{=} \{ \text{type} : \forall t : (\kappa \to \Omega). t \ \tau \to t \ \tau \}$$

$$[\tau : \kappa] \stackrel{\text{def}}{=} \{ \text{type} = \Lambda t : (\kappa \to \Omega). \lambda x : (t \ \tau). x \}$$

$$[=\Xi] \stackrel{\text{def}}{=} \{ \text{sig} : \Xi \to \Xi \}$$

$$[\Xi] \stackrel{\text{def}}{=} \{ \text{sig} = \lambda x : \Xi. x \}$$

 $NotAtomic(\Sigma)$

$$\frac{}{\operatorname{NotAtomic}(\{\overline{l_X} : \Sigma\})} \qquad \frac{}{\operatorname{NotAtomic}(\forall \overline{t : \kappa}. \Sigma \to \Xi)}$$

Admissible kinding:

 $\Gamma \vdash \tau : \kappa$

$$\begin{split} &\frac{\Gamma \vdash \tau : \Omega}{\Gamma \vdash [\tau] : \Omega} \text{ K-A-Val} \\ &\frac{\Gamma \vdash \tau : \kappa}{\Gamma \vdash [=\tau : \kappa] : \Omega} \text{ K-A-Typ} \\ &\frac{\Gamma \vdash \Xi : \Omega}{\Gamma \vdash [=\Xi] : \Omega} \text{ K-A-Sig} \end{split}$$

Admissible type equivalence:

$$\boxed{\Gamma \vdash \tau_1 \equiv \tau_2 : \kappa}$$

$$\begin{split} \frac{\Gamma \vdash \tau_1 \equiv \tau_2 : \Omega}{\Gamma \vdash [\tau_1] \equiv [\tau_2] : \Omega} \text{ T-Eq-Cong-A-Val} \\ \frac{\Gamma \vdash \tau_1 \equiv \tau_2 : \kappa}{\Gamma \vdash [=\tau_1 : \kappa] \equiv [=\tau_2 : \kappa] : \Omega} \text{ T-Eq-Cong-A-Typ} \\ \frac{\Gamma \vdash \Xi_1 \equiv \Xi_2 : \Omega}{\Gamma \vdash [=\Xi_1] \equiv [=\Xi_2] : \Omega} \text{ T-Eq-Cong-A-Sig} \end{split}$$

Admissible typing:

 $\Gamma \vdash e : \tau$

$$\begin{split} \frac{\Gamma \vdash e : \tau}{\Gamma \vdash [e] : [\tau]} \text{ T-A-Val} \\ \frac{\Gamma \vdash \tau : \kappa}{\Gamma \vdash [\tau : \kappa] : [= \tau : \kappa]} \text{ T-A-Typ} \\ \frac{\Gamma \vdash \Xi : \Omega}{\Gamma \vdash [\Xi] : [= \Xi]} \text{ T-A-Sig} \end{split}$$

Admissible equivalence:

$$\Gamma \vdash e_1 \equiv e_2 : \tau$$

$$\frac{\Gamma \vdash e : \tau}{\Gamma \vdash [e]. \, \text{val} \equiv e : \tau} \, \text{Eq-}\beta\text{-A-Val} \qquad \frac{\Gamma \vdash e : [\tau]}{\Gamma \vdash [e. \, \text{val}] \equiv e : [\tau]} \, \text{Eq-}\eta\text{-A-Val} \qquad \frac{\Gamma \vdash e_1 \equiv e_2 : \tau}{\Gamma \vdash [e_1] \equiv [e_2] : [\tau]} \, \text{Eq-Cong-A-Val}$$

$$\frac{\Gamma \vdash \tau_1 \equiv \tau_2 : \kappa}{\Gamma \vdash [\tau_1 : \kappa] \equiv [\tau_2 : \kappa] : [= \tau_1 : \kappa]} \, \text{Eq-Cong-A-Typ}$$

$$\frac{\Gamma \vdash \Xi_1 \equiv \Xi_2 : \Omega}{\Gamma \vdash [\Xi_1] \equiv [\Xi_2] : [= \Xi_1]} \, \text{Eq-Cong-A-Sig}$$

3.1.4 (Generative) Elaboration

Signature:

$$\Gamma \vdash S \leadsto \Xi$$

$$\frac{\Gamma \vdash P : [=\Xi] \rightsquigarrow e}{\Gamma \vdash P \rightsquigarrow \Xi} \text{ S-Path}$$

$$\frac{\Gamma \vdash D \rightsquigarrow \Xi}{\Gamma \vdash \{D\} \rightsquigarrow \Xi} \text{ S-Struct}$$

$$\frac{\Gamma \vdash S_1 \rightsquigarrow \exists \overline{t} : \kappa. \Sigma \quad \Gamma, \overline{t} : \kappa, x_X : \Sigma \vdash S_2 \rightsquigarrow \Xi}{\Gamma \vdash (X : S_1) \rightarrow S_2 \rightsquigarrow \forall \overline{t} : \kappa. \Sigma \rightarrow \Xi} \text{ S-Funct}$$

$$\frac{\Gamma \vdash S \rightsquigarrow \exists \overline{t_1} : \kappa_1 \ t : \kappa \ \overline{t_2} : \kappa_2. \Sigma \quad \Sigma. \overline{l_X} = [=t : \kappa] \quad \Gamma \vdash T : \kappa \rightsquigarrow \tau}{\Gamma \vdash S \text{ where type } \overline{X} = T \rightsquigarrow \exists \overline{t_1} : \kappa_1 \ \overline{t_2} : \kappa_2. \Sigma [t \leftarrow \tau]} \text{ S-Where-Typ}$$

Declarations:

$$\Gamma \vdash D \leadsto \Xi$$

$$\frac{\Gamma \vdash T : \Omega \leadsto \tau}{\Gamma \vdash \operatorname{val} X : T \leadsto \{l_X : [\tau]\}} \text{ D-Val}$$

$$\frac{\Gamma \vdash T : \kappa \leadsto \tau}{\Gamma \vdash \operatorname{type} X = T \leadsto \{l_X : [=\tau : \kappa]\}} \text{ D-Typ-Eq}$$

$$\frac{\Gamma \vdash K \leadsto \kappa}{\Gamma \vdash \operatorname{type} X : K \leadsto \exists t : \kappa.\{l_X : [=t : \kappa]\}} \text{ D-Typ}$$

$$\frac{\Gamma \vdash S \leadsto \exists \overline{t : \kappa.\Sigma}}{\Gamma \vdash \operatorname{module} X : S \leadsto \exists \overline{t : \kappa.\{l_X : [= \pm]\}}} \text{ D-Mod}$$

$$\frac{\Gamma \vdash S \leadsto \Xi}{\Gamma \vdash \operatorname{signature} X = S \leadsto \{l_X : [= \Xi]\}} \text{ D-Sig-Eq}$$

$$\frac{\Gamma \vdash S \leadsto \exists \overline{t : \kappa.\{l_X : \Sigma\}}}{\Gamma \vdash \operatorname{include} S \leadsto \exists \overline{t : \kappa.\{l_X : \Sigma\}}} \text{ D-Incl}$$

3.1 F-ing modules 37

$$\frac{\overline{\Gamma \vdash \epsilon \leadsto \{\}} \text{ D-Emt}}{\{\overline{l_{X_1}}\} \cap \{\overline{l_{X_2}}\} = \emptyset \quad \Gamma \vdash D_1 \leadsto \exists \overline{t_1 : \kappa_1}. \{\overline{l_{X_1} : \Sigma_1}\} \quad \Gamma, \overline{t_1 : \kappa_1}, \overline{x_{X_1} : \Sigma_1} \vdash D_2 \leadsto \exists \overline{t_2 : \kappa_2}. \{\overline{l_{X_2} : \Sigma_2}\}} \quad \text{D-Seq}}{\Gamma \vdash D_1; D_2 \leadsto \exists \overline{t_1 : \kappa_1}} \xrightarrow{\overline{t_2 : \kappa_2}. \{\overline{l_{X_1} : \Sigma_1}} \overline{l_{X_2} : \Sigma_2}\}}$$

Matching:

 $\Gamma \vdash \Sigma_1 \leq \exists \overline{t \, : \, \kappa}. \, \Sigma_2 \uparrow \overline{\tau} \rightsquigarrow e$

$$\frac{\Gamma \vdash \Sigma_1 \leq \Sigma_2[\overline{t \leftarrow \tau_t}] \rightsquigarrow e \quad \bigwedge_t \Gamma \vdash \tau_t : \kappa_t}{\Gamma \vdash \Sigma_1 \leq \exists \overline{t} : \kappa_t \cdot \Sigma_2 \uparrow \overline{\tau_t} \leadsto e} \text{ U-Match}$$

Subtyping:

 $\Gamma \vdash \Xi_1 \leq \Xi_2 \rightsquigarrow e$

$$\frac{\Gamma \vdash \tau_{1} \leq \tau_{2} \Rightarrow e}{\Gamma \vdash [\tau_{1}] \leq [\tau_{2}] \Rightarrow \lambda x : [\tau_{1}] . [e (x.val)]} \text{ U-Val}$$

$$\frac{\Gamma \vdash \tau_{1} \equiv \tau_{2} : \kappa}{\Gamma \vdash [=\tau_{1} : \kappa] \leq [=\tau_{2} : \kappa] \Rightarrow \lambda x : [=\tau_{1} : \kappa] . \kappa} \text{ U-Typ}$$

$$\frac{\Gamma \vdash \Xi_{1} \leq \Xi_{2} \Rightarrow e_{1} \quad \Gamma \vdash \Xi_{2} \leq \Xi_{1} \Rightarrow e_{2}}{\Gamma \vdash [=\Xi_{1}] \leq [=\Xi_{2}] \Rightarrow \lambda x : [=\Xi_{1}] . [\Xi_{2}]} \text{ U-Sig}$$

$$\frac{\bigwedge_{l} \Gamma \vdash \Sigma_{l_{1}} \leq \Sigma_{l_{2}} \Rightarrow e_{l}}{\Gamma \vdash \{\overline{l} : \Sigma_{l_{1}}, \overline{l'} : \Sigma'\} \leq \{\overline{l} : \Sigma_{l_{2}}\} \Rightarrow \lambda x : \{\overline{l} : \Sigma_{l_{1}}, \overline{l'} : \Sigma'\} . \{\overline{l} = e_{l} (x.l)\}} \text{ U-Struct}$$

$$\frac{\Gamma, \overline{t_{2}} : \kappa_{2} \vdash \Sigma_{2} \leq \exists \overline{t_{1}} : \kappa_{1}. \Sigma_{1} \uparrow \overline{\tau} \Rightarrow e_{1} \quad \Gamma, \overline{t_{2}} : \kappa_{2} \vdash \Xi_{1}[\overline{t_{1}} \leftarrow \overline{\tau}] \leq \Xi_{2} \Rightarrow e_{2}}{\Gamma \vdash \forall \overline{t_{1}} : \kappa_{1}}. \Sigma_{1} \Rightarrow \Xi_{1} \leq \forall \overline{t_{2}} : \kappa_{2}. \Sigma_{2} \Rightarrow \Xi_{2} \Rightarrow \lambda x_{1} : (\forall \overline{t_{1}} : \kappa_{1}. \Sigma_{1} \Rightarrow \Xi_{1}).$$

$$\lambda x_{2} : \Sigma_{2}. e_{2} (x_{1} \overline{\tau} (e_{1} x_{2}))$$

$$\Gamma, \overline{t_{1}} : \kappa_{1}} \vdash \Sigma_{1} \leq \exists \overline{t_{2}} : \kappa_{2}. \Sigma_{2} \uparrow \overline{\tau} \Rightarrow e$$

$$\Gamma \vdash \exists \overline{t_{1}} : \kappa_{1}. \Sigma_{1} \leq \exists \overline{t_{2}} : \kappa_{2}. \Sigma_{2} \Rightarrow \lambda x_{1} : (\exists \overline{t_{1}} : \kappa_{1}. \Sigma_{1}).$$

$$\text{unpack} \langle \overline{t_{1}} : \kappa_{1}, \kappa_{1}' : \Sigma_{1} \rangle = x_{1} \text{ in pack} \langle \overline{\tau}, e \ x_{1}' \rangle_{\exists \overline{t_{2}} : \kappa_{2}. \Sigma_{2}}$$

Module:

 $\Gamma \vdash M : \Xi \leadsto e$

$$\frac{\Gamma(x_X) = \Sigma}{\Gamma \vdash X : \Sigma \leadsto x_X} \text{ M-Var}$$

$$\frac{\Gamma \vdash B : \Xi \leadsto e}{\Gamma \vdash \{B\} : \Xi \leadsto e} \text{ M-Struct}$$

$$\frac{\Gamma \vdash M : \exists \overline{t : \kappa} . \{l_X : \Sigma, \overline{l_{X'} : \Sigma'}\} \leadsto e}{\Gamma \vdash MX : \exists \overline{t : \kappa} . \Sigma \leadsto \text{unpack} \langle \overline{t : \kappa}, x : \{l_X : \Sigma, \overline{l_{X'} : \Sigma'}\}\rangle = e \text{ in pack} \langle \overline{t}, x. l_X \rangle_{\exists \overline{t : \kappa} . \Sigma}} \text{ M-Dot}$$

$$\frac{\Sigma \vdash S \leadsto \exists \overline{t : \kappa} . \Sigma \quad \Gamma, \overline{t : \kappa}, x_X : \Sigma \vdash M : \Xi \leadsto e}{\Gamma \vdash \text{fun} X : S \Longrightarrow M : \forall \overline{t : \kappa} . \Sigma \to \Xi \leadsto \Lambda \overline{t : \kappa} . \lambda x_X : \Sigma.e} \text{ M-Funct}$$

$$\frac{\Gamma(x_{X_1}) = \forall \overline{t : \kappa} . \Sigma' \to \Xi \quad \Gamma(x_{X_2}) = \Sigma \quad \Gamma \vdash \Sigma \leq \exists \overline{t : \kappa} . \Sigma' \uparrow \overline{\tau} \leadsto e}{\Gamma \vdash X_1 X_2 : \Xi[\overline{t \leftarrow \tau}] \leadsto x_{X_1} \overline{\tau} (e x_{X_2})}$$

$$\frac{\Gamma(x_X) = \Sigma \quad \Gamma \vdash S \leadsto \exists \overline{t : \kappa} . \Sigma' \quad \Gamma \vdash \Sigma \leq \exists \overline{t : \kappa} . \Sigma' \uparrow \overline{\tau} \leadsto e}{\Gamma \vdash X : S : \exists \overline{t : \kappa} . \Sigma' \leadsto \text{pack} \langle \overline{\tau}, e x_X \rangle_{\exists \overline{t : \kappa} . \Sigma'}} \text{ M-Seal}$$

Bindings:

 $\Gamma \vdash B : \Xi \leadsto e$

$$\frac{\Gamma \vdash E : \tau \leadsto e}{\Gamma \vdash \mathrm{val}\, X = E : \{l_X : [\tau]\} \leadsto \{l_X = e\}} \text{ B-Val}$$

$$\frac{\Gamma \vdash T : \kappa \rightsquigarrow \tau}{\Gamma \vdash \text{type} X = T : \{l_X : [=\tau : \kappa]\} \rightsquigarrow \{l_X = [\tau : \kappa]\}} \text{ B-Typ}}{\Gamma \vdash M : \exists \overline{t} : \kappa. \Sigma \rightsquigarrow e \quad \text{NotAtomic}(\Sigma)}$$

$$\Gamma \vdash M : \exists \overline{t} : \kappa. \Sigma \rightsquigarrow e \quad \text{NotAtomic}(\Sigma)$$

$$\Gamma \vdash \text{module} X = M : \exists \overline{t} : \overline{\kappa}. \{l_X : \Sigma\} \rightsquigarrow \text{unpack}\langle \overline{t} : \overline{\kappa}, x : \Sigma \rangle = e \text{ in pack}\langle \overline{t}, \{l_X = x\}\rangle_{\exists \overline{t} : \kappa}, \{l_X : \Sigma\}} \text{ B-Mod}}$$

$$\frac{\Gamma \vdash S \rightsquigarrow \Xi}{\Gamma \vdash \text{signature} X = S : \{l_X : [=\Xi]\} \rightsquigarrow \{l_X = [\Xi]\}} \text{ B-Sig}}{\Gamma \vdash \text{include} M : \exists \overline{t} : \kappa. \{\overline{l_X} : \Sigma\} \rightsquigarrow e} \text{ B-Incl}}$$

$$\frac{\Gamma \vdash M : \exists \overline{t} : \kappa. \{\overline{l_X} : \Sigma\} \rightsquigarrow e}{\Gamma \vdash \text{include} M : \exists \overline{t} : \kappa. \{\overline{l_X} : \Sigma\} \rightsquigarrow e} \text{ B-Emt}}$$

$$\frac{\Gamma \vdash \varepsilon : \{\} \rightsquigarrow \{\}}{\Gamma \vdash \text{include} M : \exists \overline{t} : \kappa. \{\overline{l_X} : \Sigma\} \implies e} \text{ B-Emt}}$$

$$\frac{\Gamma \vdash \varepsilon : \{\} \rightsquigarrow \{\}}{\Gamma \vdash \pi : \pi} \xrightarrow{I_{X_1} : \Sigma_1} \Gamma \vdash B_1 : \exists \overline{t_1} : \kappa_1. \{\overline{l_{X_1}} : \Sigma_1\} \rightsquigarrow e_1}{\Gamma, \overline{t_1} : \kappa_1. \overline{t_{X_1}} : \Sigma_1 \vdash B_2 : \exists \overline{t_2} : \kappa_2. \{\overline{l_{X_2}} : \Sigma_2\} \rightsquigarrow e_2} \text{ B-Seq}}$$

$$\frac{\text{unpack}\langle \overline{t_1} : \kappa_1, x_1 \rangle = e_1 \text{ in}}{\text{unpack}\langle \overline{t_1} : \kappa_1, \overline{t_{X_1}} : \Sigma_1 = x_1. \overline{t_{X_1}} \text{ in } e_2) \text{ in}}{\text{pack}\langle \overline{t_1} : \overline{t_2}, \overline{t_{X_1}} : \overline{t_2}, \overline{t_{X_2}} \rangle \Rightarrow e_1. \overline{t_2} : \kappa_2. \Sigma}$$

Path:

 $\Gamma \vdash P : \Sigma \leadsto e$

$$\frac{\Gamma \vdash P : \exists \overline{t : \kappa}. \Sigma \quad \Gamma \vdash \Sigma : \Omega}{\Gamma \vdash P : \Sigma \Rightarrow \text{unpack} \langle \overline{t : \kappa}, x \rangle = e \text{ in } x} \text{ P-Mod}$$

 $\Gamma \vdash T : \kappa \leadsto \tau$

$$\frac{\Gamma \vdash P : [=\tau : \kappa] \rightsquigarrow e}{\Gamma \vdash P : \kappa \rightsquigarrow \tau} \text{ T-Elab-Path}$$

 $\Gamma \vdash E : \tau \leadsto e$

$$\frac{\Gamma \vdash P : [\tau] \rightsquigarrow e}{\Gamma \vdash P : \tau \rightsquigarrow e. \text{val}} \text{ E-Path}$$

3.1.5 Modules as First-Class Values

 $T ::= \cdots \mid \operatorname{pack} S$ $E ::= \cdots \mid \operatorname{pack} M : S$ $M ::= \cdots \mid \operatorname{unpack} E : S$

Rootedness:

 $t: \kappa \text{ rooted in } \Sigma \text{ at } \overline{\overline{l_X}}$

$$\frac{t = \tau'}{t : \kappa \text{ rooted in } [= \tau : \kappa] \text{ at } \epsilon} \qquad \frac{t : \kappa \text{ rooted in } \{\overline{l_X} : \Sigma\}.l \text{ at } \overline{l'}}{t : \kappa \text{ rooted in } \{\overline{l_X} : \Sigma\} \text{ at } l \, \overline{l'}}$$

Rooted ordering:

$$t_1\,:\,\kappa_1\leq_\Sigma t_2\,:\,\kappa_2\iff \min\{\bar{l}\mid t_1\,:\,\kappa_1\text{ rooted in }\Sigma\text{ at }\bar{l}\}\leq\min\{\bar{l}\mid t_2\,:\,\kappa_2\text{ rooted in }\Sigma\text{ at }\bar{l}\}$$

3.1 F-ing modules

Signature normalization:

$$\frac{\operatorname{norm}_{0}(\tau) = \tau'}{\operatorname{norm}([\tau]) = [\tau']}$$

$$\overline{\operatorname{norm}([=\tau : \kappa]) = [=\tau : \kappa]}$$

$$\frac{\operatorname{norm}(\Xi) = \Xi'}{\operatorname{norm}([=\Xi]) = [=\Xi']}$$

$$\frac{\bigwedge_{X} \operatorname{norm}(\Sigma_{X}) = \Sigma'_{X}}{\operatorname{norm}(\{\overline{l_{X}} : \Sigma_{X}\}) = \{\overline{l_{X}} : \Sigma'_{X}\}}$$

$$\overline{\operatorname{norm}(\forall \overline{t} : \kappa) = \overline{t'} : \kappa'} \quad \operatorname{norm}(\Sigma) = \Sigma' \quad \operatorname{norm}(\Xi) = \Xi'$$

$$\overline{\operatorname{norm}(\forall \overline{t} : \kappa} : \Sigma \to \Xi) = \forall \overline{t'} : \kappa' : \Sigma' \to \Xi'$$

$$\underline{\operatorname{sort}_{\leq_{\Sigma'}}(\overline{t} : \kappa) = \overline{t'} : \kappa'} \quad \operatorname{norm}(\Sigma) = \Sigma'$$

$$\overline{\operatorname{norm}(\exists \overline{t} : \kappa} : \Sigma) = \exists \overline{t'} : \kappa' : \Sigma'}$$

Type:

 $\Gamma \vdash T : \kappa \leadsto \tau$

$$\frac{\Gamma \vdash S \rightsquigarrow \Xi}{\Gamma \vdash \mathsf{pack}\, S \,:\, \Omega \rightsquigarrow \mathsf{norm}(\Xi)} \text{ $\operatorname{T-Pack}$}$$

Expression:

 $\Gamma \vdash E : \tau \leadsto e$

$$\frac{\Gamma \vdash S \leadsto \Xi \quad \Gamma \vdash \Xi' \leq \mathrm{norm}(\Xi) \leadsto e_1 \quad \Gamma \vdash M : \Xi' \leadsto e_2}{\Gamma \vdash (\mathrm{pack}\,M : S) : \mathrm{norm}(\Xi) \leadsto e_1 \ e_2} \text{ E-Pack}$$

Module:

 $\Gamma \vdash M : \Xi \leadsto e$

$$\frac{\Gamma \vdash S \leadsto \Xi \quad \Gamma \vdash E : \operatorname{norm}(\Xi) \leadsto e}{\Gamma \vdash (\operatorname{unpack} E : S) : \operatorname{norm}(\Xi) \leadsto e} \text{ M-Unpack}$$

3.1.6 Elaboration with Applicative Functor

 $S::=\cdots$

$$| (X:S) \Rightarrow S$$
 (applicative functor signature)
$$\varphi ::= I$$
 (impure effect)
$$| P$$
 (pure effect)
$$\Sigma ::= \cdots$$

$$| \{\overline{l_X:\Sigma}\}$$

$$| \forall \overline{t:\kappa}.\Sigma \rightarrow_I \Xi$$
 (generative functor signature)
$$| \forall \overline{t:\kappa}.\Sigma \rightarrow_P \Sigma$$
 (applicative functor signature)

Abbreviation:

$$\begin{split} &\tau_{1} \rightarrow_{\varphi} \tau_{2} \stackrel{\text{def}}{=} \tau_{1} \rightarrow \{l_{\varphi} : \tau_{2}\} \\ &\lambda_{\varphi} x : \tau.e \stackrel{\text{def}}{=} \lambda x : \tau.\{l_{\varphi} = e\} \\ &(e_{1} \, e_{2})_{\varphi} \stackrel{\text{def}}{=} (e_{1} \, e_{2}).l_{\varphi} \\ &\Gamma^{\varphi} \stackrel{\text{def}}{=} \left\{ \begin{array}{c} \cdot \quad (\varphi = I) \\ \Gamma \quad (\varphi = P) \end{array} \right. \\ &tyenv(\Gamma) \stackrel{\text{def}}{=} \left\{ \begin{array}{c} tyenv(\Gamma') \ t : \kappa \quad (\Gamma = \Gamma', t : \kappa) \\ tyenv(\Gamma') \quad (\Gamma = \Gamma', x : \tau) \end{array} \right. \\ &\left. \begin{array}{c} \nabla_{P} \Gamma.\tau_{0} \stackrel{\text{def}}{=} \left\{ \begin{array}{c} \nabla_{P} \Gamma'. \forall t : \kappa.\tau_{0} \quad (\Gamma = \Gamma', t : \kappa) \\ \nabla_{P} \Gamma'.\tau \rightarrow_{P} \tau_{0} \quad (\Gamma = \Gamma', x : \tau) \end{array} \right. \\ &\left. \begin{array}{c} \nabla_{P} \Gamma.\tau_{0} \stackrel{\text{def}}{=} \left\{ \begin{array}{c} \Lambda_{P} \Gamma'. \Lambda t : \kappa.e \quad (\Gamma = \Gamma', t : \kappa) \\ \Lambda_{P} \Gamma.\lambda_{P} x : \tau.e \quad (\Gamma = \Gamma', x : \tau) \end{array} \right. \\ &\left. \begin{array}{c} e \Gamma \end{array} \right. \\ &\left. \begin{array}{c} \det \left(\Gamma \right)_{P} t \quad (\Gamma = \Gamma', t : \kappa) \\ (\ell e \Gamma')_{P} x \right)_{P} \quad (\Gamma = \Gamma', x : \tau) \end{array} \right. \\ &\left. \begin{array}{c} \det \left(\Gamma \right)_{P} \right) \\ \left. \begin{array}{c} \Gamma \right(\Gamma \right)_{P} \left(\Gamma \right)_{P} \left(\Gamma \right)_{P} \end{array} \right. \\ &\left. \begin{array}{c} \Gamma \right(\Gamma \right)_{P} \left(\Gamma \right)_{P} \left(\Gamma \right)_{P} \left(\Gamma \right)_{P} \left(\Gamma \right)_{P} \right) \end{array} \right. \end{aligned} \right. \end{aligned}$$

Effect combining:

$$\varphi_1 \vee \varphi_2 = \varphi$$

$$\overline{\varphi \vee \varphi = \varphi} \qquad \overline{I \vee P = I} \qquad \overline{P \vee I = I}$$

Subeffects:

$$\varphi_1 \leq \varphi_2$$

$$\overline{\varphi \leq \varphi} \ \text{F-Refl} \qquad \overline{P \leq I} \ \text{F-Sub}$$

Signature:

$$\Gamma \vdash S \leadsto \Xi$$

$$\frac{\Gamma \vdash S_{1} \rightsquigarrow \exists \overline{t_{1}} : \kappa_{1}. \Sigma \quad \Gamma, \overline{t_{1}} : \kappa_{1}, x_{X} : \Sigma \vdash S_{2} \rightsquigarrow \Xi}{\Gamma \vdash (X : S_{1}) \rightarrow S_{2} \rightsquigarrow \forall \overline{t_{1}} : \kappa_{1}. \Sigma \rightarrow_{\mathbf{I}} \Xi} \text{ S-Funct-I}$$

$$\frac{\Gamma \vdash S_{1} \rightsquigarrow \exists \overline{t_{1}} : \kappa_{1}. \Sigma_{1} \quad \Gamma, \overline{t_{1}} : \kappa_{1}, x_{X} : \Sigma_{1} \vdash S_{2} \rightsquigarrow \exists \overline{t_{2}} : \kappa_{2}. \Sigma_{2}}{\Gamma \vdash (X : S_{1}) \Rightarrow S_{2} \rightsquigarrow \exists \overline{t_{2}'} : \overline{\kappa_{1}} \rightarrow \kappa_{2}. \forall \overline{t_{1}} : \kappa_{1}. \Sigma_{1} \rightarrow_{\mathbf{P}} \Sigma_{2}[t_{2} \leftarrow t_{2}' \overline{t_{1}}]} \text{ S-Funct-P}$$

Subtyping:

$$\Gamma \vdash \Xi_1 \leq \Xi_2 \rightsquigarrow e$$

$$\frac{\Gamma, \overline{t_2 : \kappa_2} \vdash \Sigma_2 \leq \exists \overline{t_1 : \kappa_1}. \Sigma_1 \uparrow \overline{\tau} \rightsquigarrow e_1 \quad \Gamma, \overline{t_2 : \kappa_2} \vdash \Xi_1[\overline{t_1} \leftarrow \overline{\tau}] \leq \Xi_2 \rightsquigarrow e_2 \quad \varphi_1 \leq \varphi_2}{\Gamma \vdash (\forall \overline{t_1 : \kappa_1}. \Sigma_1 \rightarrow_{\varphi_1} \Xi_1) \leq (\forall \overline{t_2 : \kappa_2}. \Sigma_2 \rightarrow_{\varphi_2} \Xi_2) \rightsquigarrow \quad \frac{\lambda x_1 : (\forall \overline{t_1} : \kappa_1}{\Lambda \overline{t_2 : \kappa_2}. \lambda_{\varphi_2} x_2 : \Sigma_2. e_2 (x_1 \ \overline{\tau} \ (e_1 \ x_2))_{\varphi_1}} \quad \text{U-Funct}}$$

Module:

$$\Gamma \vdash M :_{\varphi} \Xi \leadsto e$$

3.1 F-ing modules 41

$$\Gamma(x_{X}) = \Sigma$$

$$\Gamma \vdash X :_{P} \Sigma \Rightarrow \Lambda_{P} \Gamma \cdot x_{X} \qquad \text{M-Var}$$

$$\frac{\Gamma \vdash B :_{\varphi} \Xi \Rightarrow e}{\Gamma \vdash \{B\} :_{\varphi} \Xi \Rightarrow e} \qquad \text{M-Struct}$$

$$\Gamma \vdash M :_{\varphi} \exists \overline{t} : \overline{\kappa} \cdot \{l_{X} : \Sigma, \overline{l_{X'}} : \Sigma'\} \Rightarrow e$$

$$\Gamma \vdash M.X :_{\varphi} \exists \overline{t} : \overline{\kappa} \cdot \Sigma \Rightarrow \text{unpack} \langle \overline{t} : \overline{\kappa}, x_{X} \rangle = e \text{ in pack} \langle \overline{t}, \Lambda_{P} \Gamma^{\varphi} \cdot (x \Gamma^{\varphi})_{P} \cdot l_{X} \rangle \qquad \text{M-Dot}$$

$$\frac{\Sigma \vdash S \Rightarrow \exists \overline{t} : \overline{\kappa} \cdot \Sigma}{\Gamma \vdash \text{fun } X : S \Rightarrow M :_{P} \forall \overline{t} : \overline{\kappa} \cdot \Sigma \rightarrow_{I} \Xi \Rightarrow A_{P} \Gamma \cdot \Lambda \overline{t} : \overline{\kappa} \cdot \lambda_{I} x_{X} : \Sigma \cdot e} \qquad \text{M-Funct-I}$$

$$\frac{\Sigma \vdash S \Rightarrow \exists \overline{t} : \overline{\kappa} \cdot \Sigma}{\Gamma \vdash \text{fun } X : S \Rightarrow M :_{P} \forall \overline{t} : \overline{\kappa} \cdot \Sigma \rightarrow_{I} \Xi \Rightarrow \Lambda_{P} \Gamma \cdot \Lambda \overline{t} : \overline{\kappa} \cdot \lambda_{I} x_{X} : \Sigma \cdot e} \qquad \text{M-Funct-P}$$

$$\frac{\Sigma \vdash S \Rightarrow \exists \overline{t} : \overline{\kappa} \cdot \Sigma}{\Gamma \vdash \text{fun } X : S \Rightarrow M :_{P} \exists \overline{t_{2}} : \overline{\kappa_{2}} \cdot \forall \overline{t} : \overline{\kappa} \cdot \Sigma \rightarrow_{P} \Sigma_{2} \Rightarrow e} \qquad \text{M-Funct-P}$$

$$\frac{\Gamma \vdash \text{fun } X : S \Rightarrow M :_{P} \exists \overline{t_{2}} : \overline{\kappa_{2}} \cdot \forall \overline{t} : \overline{\kappa} \cdot \Sigma \rightarrow_{P} \Sigma_{2} \Rightarrow e} \qquad \text{M-App}$$

$$\Gamma \vdash \text{fun } X : S \Rightarrow M :_{P} \exists \overline{t_{2}} : \overline{\kappa_{2}} \cdot \forall \overline{t} : \overline{\kappa} \cdot \Sigma \rightarrow_{P} \Sigma_{2} \Rightarrow e} \qquad \text{M-App}$$

$$\frac{\Gamma \vdash X_{1} X_{2} :_{\varphi} \Xi [\overline{t} \leftarrow \overline{t}] \Rightarrow \Lambda_{P} \Gamma^{\varphi} \cdot (x_{X_{1}} \overline{\tau} (e x_{X_{2}}))_{\varphi}}{\Gamma \vdash X_{1} X_{2} :_{\varphi} \Xi [\overline{t} \leftarrow \overline{t}] \Rightarrow \Lambda_{P} \Gamma^{\varphi} \cdot (x_{X_{1}} \overline{\tau} (e x_{X_{2}}))_{\varphi}} \qquad \text{M-App}$$

$$\frac{\overline{t_{\Gamma}} : \kappa_{\Gamma}}{\Gamma} = tyenv(\Gamma) \qquad \Gamma(x_{X}) = \Sigma \qquad \Gamma \vdash S \Rightarrow \exists \overline{t} : \overline{\kappa} \cdot \Sigma' \qquad \Gamma \vdash \Sigma \leq \exists \overline{t} : \overline{\kappa} \cdot \Sigma' \uparrow \overline{\tau} \Rightarrow e}{\Gamma \vdash \Sigma \Rightarrow \Xi} \qquad \text{M-Seal}$$

$$\Gamma \vdash X :> S :_{P} \exists \overline{t'} : \overline{t_{\Gamma}} : \kappa_{\Gamma} \rightarrow \kappa \cdot \Sigma' [\overline{t} \leftarrow t' \overline{t_{\Gamma}}] \Rightarrow \text{pack} \langle \lambda \overline{t_{\Gamma}} : \kappa_{\Gamma}, \Lambda_{P} \Gamma \cdot e x_{X} \rangle$$

$$\Gamma \vdash S \Rightarrow \Xi \qquad \Gamma \vdash E : \text{norm}(\Xi) \Rightarrow e$$

$$\Gamma \vdash \text{(unpack } E : S) :_{\Gamma} \text{ norm}(\Xi) \Rightarrow e$$

$$\text{M-Unpack}$$

定理 26 (Typing for module elaboration).

Bindings:

$$\Gamma \vdash B :_{\varphi} \Xi \leadsto e$$

$$\frac{\Gamma \vdash E : \tau \leadsto e}{\Gamma \vdash \text{val} X = E :_{\mathfrak{p}} \{l_X : [\tau]\} \leadsto \Lambda_{\mathfrak{p}} \Gamma.\{l_X = e\}} \text{ B-Val}}{\Gamma \vdash \text{type} X = T :_{\mathfrak{p}} \{l_X : [\tau] \upharpoonright \leadsto \Lambda_{\mathfrak{p}} \Gamma.\{l_X = [\tau : \kappa]\}} \text{ B-Typ}}$$

$$\frac{\Gamma \vdash T : \kappa \leadsto \tau}{\Gamma \vdash \text{type} X = T :_{\mathfrak{p}} \{l_X : [\tau : \kappa]\} \leadsto \Lambda_{\mathfrak{p}} \Gamma.\{l_X = [\tau : \kappa]\}} \text{ B-Typ}}{\Gamma \vdash M :_{\varphi} \exists \overline{t} : \kappa. \Sigma \leadsto e \quad \text{NotAtomic}(\Sigma)}$$

$$\overline{\Gamma \vdash \text{module} X = M :_{\varphi} \exists \overline{t} : \kappa. \{l_X : \Sigma\} \leadsto \text{unpack}(\overline{t} : \overline{\kappa}, x) = e \text{ in pack}(\overline{t}, \Lambda_{\mathfrak{p}} \Gamma^{\varphi}.\{l_X = x \Gamma^{\varphi}\})} \text{ B-Mod}}$$

$$\frac{\Gamma \vdash S \leadsto \Xi}{\Gamma \vdash \text{signature} X = S :_{\mathfrak{p}} \{l_X : [\Xi \Xi]\} \leadsto \Lambda_{\mathfrak{p}} \Gamma.\{l_X = [\Xi]\}} \text{ B-Sig}}{\Gamma \vdash \text{include} M :_{\varphi} \exists \overline{t} : \kappa. \{\overline{l_X} : \Sigma\} \leadsto e}$$

$$\frac{\Gamma \vdash M :_{\varphi} \exists \overline{t} : \kappa. \{\overline{l_X} : \Sigma\} \leadsto e}{\Gamma \vdash \text{include} M :_{\varphi} \exists \overline{t} : \kappa. \{\overline{l_X} : \Sigma\} \leadsto e} \text{ B-Incl}}$$

$$\frac{\Gamma \vdash \varepsilon :_{\mathfrak{p}} \{\} \leadsto \Lambda_{\mathfrak{p}} \Gamma.\{\}}{\Gamma \vdash \varepsilon :_{\mathfrak{p}} \{\} \leadsto \Lambda_{\mathfrak{p}} \Gamma.\{\}} \text{ B-Emt}}$$

$$\frac{I'_{X_1} = \overline{I_{X_1}} \setminus \overline{I_{X_2}} \quad \overline{I'_{X_1} : \Sigma'_1} \subseteq \overline{I_{X_1} : \Sigma_1} \quad \Gamma \vdash B_1 :_{\varphi_1} \exists \overline{t_1} : \kappa_1. \{\overline{l_{X_1} : \Sigma_1}\} \leadsto e_1}$$

$$\Sigma = \{\overline{I'_{X_1}} : \Sigma'_1, \overline{I_{X_2}} : \Sigma'_2\} \qquad \Gamma.\{\overline{t_1} : \kappa_1, \overline{t_{X_1}} : \Sigma_1 \vdash B_2 :_{\varphi_2} \exists \overline{t_2} : \kappa_2. \{\overline{l_{X_2} : \Sigma_2}\} \leadsto e_2}$$

$$\Rightarrow \text{unpack}(\overline{t_1} : \kappa_1, x_1) = e_1 \text{ in}$$

$$\text{unpack}(\overline{t_1} : \kappa_1, x_1) = e_1 \text{ in}$$

$$\text{unpack}(\overline{t_1} : \overline{t_2}, \Lambda_{\mathfrak{p}} \Gamma^{\varphi_1 \vee \varphi_2}. \text{let } x_{X_1} = \Lambda_{\mathfrak{p}} \Gamma^{\varphi_1 \vee \varphi_2}. (x_1 \Gamma^{\varphi_1})_{\mathfrak{p}}.I_{X_1} \text{ in } e_2) \text{ in}$$

$$\text{pack}(\overline{t_1} : \overline{t_2}, \Lambda_{\mathfrak{p}} \Gamma^{\varphi_1 \vee \varphi_2}. \text{let } x_{X_1} = (x_1 \Gamma^{\varphi_1})_{\mathfrak{p}}.I_{X_1} \text{ in}}{\{I'_{X_1} = (x_1 \Gamma^{\varphi_1})_{\mathfrak{p}}.I_{X_1} \text{ in}}\}$$

Path:

 $\Gamma \vdash P : \Sigma \leadsto e$

$$\frac{\Gamma \vdash P :_{\varphi} \exists \overline{t : \kappa}. \Sigma \quad \Gamma \vdash \Sigma : \Omega}{\Gamma \vdash P : \Sigma \Rightarrow \operatorname{unpack}\langle \overline{t : \kappa}, x \rangle = e \text{ in } (x \Gamma^{\varphi})_{P}} \text{ P-Mod}$$

Expression:

$$\boxed{\Gamma \vdash E : \tau \leadsto e}$$

$$\frac{\Gamma \vdash S \rightsquigarrow \Xi \quad \Gamma \vdash \exists \overline{t : \kappa}. \Sigma \leq \operatorname{norm}(\Xi) \rightsquigarrow e_1 \quad \Gamma \vdash M :_{\varphi} \exists \overline{t : \kappa}. \Sigma \rightsquigarrow e_2}{\Gamma \vdash (\operatorname{pack} M : S) : \operatorname{norm}(\Xi) \rightsquigarrow e_1 \text{ (unpack}(\overline{t : \kappa}, x) = e_2 \text{ in pack}(\overline{t : \kappa}, (x \Gamma^{\varphi})_{\mathbf{P}}))} \text{ E-Unpack}$$

第4章

Control Operators

第5章

Type Checking and Inference

第6章

Static Memory Management and Regions

第7章

Dynamic Memory Management and Gabage Collection

第8章

I/O Management and Concurrency

第9章

Code Generation and Virtual Machines

第 10 章

Program Stability and Compatibility

第 11 章

Program Separation and Linking

第 12 章

Syntax and Parsing

第 13 章

Analysis and Optimizations

第 14 章

Meta-Programming and Multi-Stage Programming

第 15 章

Generic Programming

第 16 章

Advanced Calculus

参考文献

- [GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont, *Proofs and Types*, Cambridge University Press, apr 1989.
- [RRD14] Andreas Rossberg, Claudio Russo, and Derek Dreyer, *F-ing modules*, Journal of Functional Programming **24** (2014), no. 5, 529–607.