1.Hafta: Giriş

BSM 309 İşletim Sistemleri Yrd.Doç.Dr. Abdullah SEVİN

İçindekiler

- İşletim sistemi nedir? Ne yapar? -What Operating Systems Do-
- Bilgisayar sistemi organizasyonu -Computer-System Organization-
- Bilgisayar sistemi mimarisi -Computer-System Architecture-
- İşletim sistemi yapısı -Operating-System Structure-
- İşletim sistemi işlevleri -Operating-System Operations-
- Proses yönetimi -Process Management-
- Bellek yönetimi -Memory Management-
- Depolama yönetimi -Storage Management-
- Koruma ve güvenlik -Protection and Security-
- Hesaplama ortamları -Computing Environments-

Amaçlar (Purposes)

- Temel bir bilgisayar sisteminin çalışma mantığını kavramak (To describe the basic organization of computer systems)
- İşletim sistemi bileşenlerini tanımak (To describe OS components)
- Hesaplama ortamı tipleri hakkında genel bilgiye sahip olma (To give an overview of the many types of computing environments)

Bir işletim sistemi nedir?

- Bilgisayar kullanıcısı ile bilgisayar donanımı arasında bir aracı gibi hareket eden bir programdır
- (A program that acts as an intermediary between a user of a computer and the computer hardware)
- □ İşletim sistemi hedefleri (Goals):
 - Kullanıcı programlarını çalıştırmak ve kullanıcı problemlerini çözmek,(Solve user prb.)
 - Bilgisayar sisteminin rahatlıkla kullanılabilmesini sağlamak (Use conveniently)
 - Bilgisayarın donanımı verimli bir şekilde kullanmasını sağlamak (Efficiency)

Bilgisayar sistemi yapısı

- Bir bilgisayar sistemi dört ana bileşene bölünebilir (Computer Components)
 - Donanım temel hesap kaynakları (Hardware)
 - MİB, bellek, giriş/çıkış birimleri
 - İşletim sistemi (OS)
 - Çeşitli uygulamalar ve kullanıcı arasında donanımın kullanımını kontrol ve koordine eder.
 - Uygulama programları (App) sistem kaynaklarının kullanıcının isteklerini yerine getirmek için kullanılmasını sağlar
 - Kelime işlemciler, derleyiciler, tarayıcılar, veri tabanı sistemleri, oyunlar, vs.
 - Kullanıcılar (Users)
 - İnsanlar, makinalar, diğer bilgisayarlar

Bir bilgisayar sisteminin bileşenleri

İşletim sistemi ne yapar? What OS do?

- Bakış açısına göre değişir
- Kullanıcıyı kolay kullanım ve iyi performans ilgilendirir (Kaynak kullanımına bakmaz) –Users care ease of use and good performance.
- Paylaşılan bilgisayarlar bütün kullanıcılarını memnun etmeli
- □ Bir göreve tahsis edilmiş bilgisayarların işletim sistemi görevlerine odaklanmalı (Workstation)
- Elle tutulur sistemler (Cep telf., tablet) kaynakları kısıtlıdır, uzun kullanım için optimize edilmişlerdir.
- Bazı bilgisayarların arayüzleri yoktur veya ufaktır (Aygıtlardaki gömülü bilgisayarlar örn: arabalardaki gömülü mini sist.)

İşletim sistemi tanımı

□ İşletim sistemi bir kaynak yöneticisidir.

(OS is a resource allocator)

- Tüm kaynakları organize eder.
- Verimli ve adil bir kaynak kullanımı için kaynaklara yapılan taleplerin çakışmaları durumunda karar verir.
- □ İşletim sistemi bir kontrol programıdır (OS is a control program)
 - Hataları ve bilgisayarın uygun olmayan kullanımını önlemek için programların çalışmasını denetler

İşletim sistemi tanımı (OS Definition)

- Evrensel bir tanımı yok.
- "Bilgisayarda sürekli çalışan bir program" (The one program running at all times on the computer)
- Program geliştirme ve çalıştırma ortamı sunar.
- Donanımın kullanımı zor ve anlaşılamaz detaylarını gizler

Bilgisayar açılışı

- Bilgisayarı açarken veya yeniden başlatırken bir önyükleme programı yüklenir
 - Genellikle ROM veya EPROM içinde tutulur ve donanım yazılımı –firmware olarak adlandırılır
 - Sistemin bütün bileşenlerini kurar
 - İşletim sistemi çekirdeğini yükler ve çalıştırır.

Bilgisayar sistemi organizasyonu

- Bilgisayar sistemi çalışması
 - Bir veya daha fazla işlemci, aygıt yöneticileri ortak bir veri yolu üzerinden belleğe bağlanır
 - İşlemcilerin ve aygıtların eş zamanlı çalışması bellek çevrimleri için yarışma sonucunu doğurur.

Bilgisayar sistemi çalışması

- Giriş/çıkış aygıtları ve işlemci eş zamanlı olarak çalışabilir
- Her aygıta ait bir yönetici bulunur.
- Her aygıt yöneticisi özel bir tampon belleğe sahiptir.
- İşlemci veriyi ana bellekten tampon belleklere veya tersi yönde hareket ettirir.
- Giriş/çıkış, aygıt ile yöneticinin tampon belleği arasında gerçekleşir.
- Aygıt yöneticileri, kesme interrupt sonucu oluşan işlemlerini tamamladıktan sonra işlemciyi haberdar ederler.

Kesmelerdeki genel fonksiyonlar (Common

Functions of Interrupts)

- İşletim sistemi kesme tabanlı çalışır. (An operating system is interrupt driven)
- Tuzak (trap) veya istisna (Exception) yazılımın ürettiği kesmelerdir
- Kesme mimarisi kesilen komutun adresini saklamalıdır.
- Olumsuz durumları önlemek için bir kesme işlenirken diğerleri geldiğinde bekletilir.
- Kesme, kontrolü kesme vektörü (tüm servis rutinlerinin adreslerini barındırır) içinden kesme hizmet rutinine devreder

Kesme kullanımı

- İşletim sistemi kaydediciler ve program sayacı yardımıyla İşlemcinin durumunu saklar
- Ne tür bir kesme meydana geldiğini tanımlar:
 - Seçerek, sorgu yoluyla (Polling)
 - Kesme Vektörü tarafından

Kesme zaman çizelgesi

Giriş/çıkış yapısı

- Giriş / çıkış işlemi başladıktan sonra, işlem tamamlanmadan kontrol kullanıcı programına aktarılır;
 - Bekle komutu bir sonraki kesmeye kadar işlemciyi boşta bekletir
 - Bekleme döngüsü (bellek erişimi için çekişme)
 - Herhangi bir anda en fazla bir giriş/çıkış isteği olur, eş zamanlı giriş/çıkış mümkün değildir. (Bir yoldan erişim olduğu için)
- 2. Giriş / çıkış işlemi başladıktan sonra, işlemin tamamlanmasını beklemeden kontrol kullanıcı programına geçebilir;
 - <u>Sistem çağrısı</u> kullanıcının giriş/çıkış işlemini tamamlamayı beklemesini sağlamak için işletim sistemine yapılan bir istek
 - Aygıt-durum tablosu her bir giriş/çıkış aygıtının tipini, adresini ve durumunu tutar.
 - İşletim sistemi aygıt durumunu belirlemek ve değiştirmek için tabloyu indisler.

İki farklı giriş/çıkış yöntemi

Aygıt-durum tablosu

Depolama yapısı

- Ana bellek –işlemcinin doğrudan erişebildiği tek büyük kayıt ortamıdır.(RAM-geçici)
- İkincil bellek- daha büyük (geçici olmayan) bir kayıt ortamı sağlayan yardımcı bir bellektir.
- Manyetik diskler manyetik kayıt malzemesi ile kaplı katı metal veya cam diskler
- Solid-state disks, SSD

Depolama hiyerarşisi

- Depolama sistemleri aşağıdaki kriterlere göre hiyerarşik bir yapıda organize edilirler:
 - HIZ
 - Maliyet
 - Geçici olma durumuna göre
- Önbellek— bilgiyi daha hızlı bir kayıt ortamına kopyalamak; ana bellek hard disk için son ön bellektir.

Depolama hiyerarşisi

Önbellek

- Çok önemli bir prensip
- Bilgisayarda pek çok alanda kullanılır (donanım, işletim sistemi, yazılım)
- Daha yavaştan daha hızlı kayıt ortamına veri kopyalanırken kullanılır
- Veri kopyalanmaya başlamadan önce daha hızlı kayıt ortamı (önbellek) kontrol edilir
 - Eğer önbellekte kopyalanacak veri bulunuyorsa, doğrudan hızlı bir şekilde oradan kullanılır.
 - Eğer yoksa, veri önbelleğe kopyalanır ve oradan kullanılır.
- Önbellek önbelleğe alınacak veriden daha küçüktür.
 - Önbellek yönetimi önemli bir tasarım problemidir
 - Önbellek boyutu ve maliyet

Doğrudan bellek erişimi (DMA) yapısı

- Veriyi bellek hızına yakın bir hızda iletebilmek için yüksek hızlı giriş/çıkış aygıtları tarafından kullanılır
- Aygıt yöneticisi veri bloklarını tampondan doğrudan ana belleğe herhangi bir MİB müdahalesi olmaksızın gönderir.
- Kesme, Bayt başına değil blok başına bir adet üretilir.

Modern Bilgisayarlar nasıl çalışır?

A von Neumann architecture

İşletim sistemi yapısı

- Çoklu programlama performans için gereklidir
 - Tek bir kullanıcı İşlemci ve diğer giriş/çıkış aygıtlarını sürekli meşgul edemez.
 - Çoklu programlama işleri (kod ve veri) organize eder ve dolayısıyla işlemci daima bir işe sahiptir (Boş kalmaz)
 - Toplam işlerin bir alt kümesi bellekte tutulur
 - İş çizelgeleyicisi tarafından bir iş seçilir ve çalıştırılır
 - Eğer iş bekleme zorundaysa işletim sistemi bir başka işi işlemciye gönderir.

İşletim sistemi yapısı

- Zaman paylaşımı işlemci işler arasında sürekli değişir, böylece kullanıcı aynı anda birden fazla program kullanabilir.
 - Tepki zamanı 1 sn den küçük olmalıdır
 - Her kullanıcı bellekte en az bir adet çalışan programa sahiptir-proses
 - Eğer aynı zamanda birden fazla iş çalışmaya hazırsa – MİB çizelgeleyici
 - Eğer prosesler belleğe sığmaz ise, takas işlemi çalışma esnasında bellek içine veya dışına prosesi taşır
 - Sanal bellek belleğe sığmayan proseslerin çalışabilmelerine olanak tanır

Çok programlamalı bir sistemin bellek yerleşimi

İşletim sistemi işlemleri

- Kesme tabanlı işlemler (donanımsal veya yazılımsal)
 - Kesme donanım tarafından başlatılır
 - Yazılım kesmesi (yazılım hatası veya istisna)
 - Sıfıra bölme
 - İşletim sistemi servisi için istek
 - Diğer proses problemleri; sonsuz döngüleri vb.
- Çift-modlu işlem işletim sistemine kendisini ve diğer bileşenleri korumasını sağlar
 - Kullanıcı modu ve çekirdek modu
 - Mod biti donanım tarafından sağlanır
 - Sistemin hangi modda çalıştığını belirlemeye yarar
 - İmtiyazlı bazı komutlar sadece çekirdek modunda çalışabilir
 - Sistem çağrısı, modu çekirdeğe çevirir (kullanıcıdaki)

Kullanıcı modundan çekirdek moduna geçme

- Sonsuz döngüler / aç gözlü davranan prosesler Zamanlayıcı ile engellenir
 - Belirli bir zaman periyodundan sonra kesme ayarlanır
 - İşletim sistemi sayacı saydırır
 - Sayaç sıfır olduğunda kesme üretir
 - Proses kontrolü yeniden ele almadan tespit edilir ve tahsis edilmiş zaman aşıldığında sonlandırılır.

Proses yönetimi

- Proses çalışan bir programdır. (A process is a program in execution). Program pasif bir varlık, proses ise aktif bir varlıktır.
- Proses kendi görevini yerine getirmek için kaynaklara ihtiyaç duyar.
 - İşlemci, bellek, giriş/çıkış, dosyalar
 - Başlangıç verisi
- Prosesin sonlanması kullanılan kaynakların iadesini gerektirir.
- Tek akışlı proses bir sonraki çalışacak komutunun yerini gösteren bir program sayacına sahiptir.
 - Proses herhangi bir anda sadece tek bir komutu çalıştırır.
- Birden fazla iş akışına sahip proseslerde her bir iş akışına ait bir program sayacı vardır.
- Tipik olarak sistem, işlemci üzerinde aynı anda çalışan birçok kullanıcı ve işletim sistemi proseslerine sahiptir.

Proses yönetim aktiviteleri

- İşletim sistemi proses yönetimi yaparken aşağıdaki aktivitelerden sorumludur:
- Kullanıcı ve sistem proseslerini oluşturma ve silme
- Prosesleri askıya alma ve kaldığı yerden başlatma
- Proses senkronizasyon mekanizmalarını sağlama
- Proses haberleşme mekanizmalarını sağlama
- Ölümcül kilitlenme yönetimi mekanizmalarını sağlama

Bellek yönetimi

- Proses çalışırken tüm veri ve komutlar bellekte olmalı
- Bellek yönetimi, işlemci kullanımını optimize ederken ve kullanıcıya cevap verirken bellekte neyin ve ne zamanda olması gerektiğini belirler
- Bellek yönetim aktiviteleri
 - Belleğin hangi parçalarının ve kim tarafından kullanılacağını izlemek
 - Hangi proseslerin veri belleğine taşınacağını veya silineceğini belirlemek
 - İstenildiğinde bellek alanını tahsis etme veya alma

Depolama yönetimi

- İşletim Sistemi, depolama bilgisinin mantıksal bir görünümünü sağlar
 - Fiziksel özellikleri mantıksal depolama birimi olan dosya ya dönüştürür
 - Her ortam bir aygıt ile kontrol edilir (Disk sürücüsü, vb.)
 - Erişim hızı, kapasite, veri transfer oranı, erişim metodu gibi çeşitli özellikler
- Dosya sistemi yönetimi
 - Dosyalar genellikle klasörler halinde sınıflandırılır
 - Erişim kontrolü, güvenliği sağlar (Kim nereye erişecek ?)
 - İşletim sistemi aktiviteleri:
 - Dosya ve klasörleri silmek
 - Dosya ve klasörleri kullanmak
 - Dosyaları yardımcı belleğe taşımak
 - Dosyaları yedeklemek

Yığın bellek yönetimi

- Genellikle diskler ana belleğe sığmayan veya kalıcı olarak tutulması gereken veriyi saklamak için kullanılır
- Sağlam bir veri yönetimi çok önemlidir
- Bilgisayarın hızı disk alt sisteminin hızına ve teknolojisine bağlıdır.
- İşletim sistemi aktiviteleri:
 - Boş alan yönetimi
 - Depolama tahsisi
 - Disk çizelgeleme
- Depolama işlemleri hızlı olmalıdır

Çeşitli seviyedeki Depolama ortamlarının performans analizi

Level	1	2	3	4
Name	registers	cache	main memory	disk storage
Typical size	< 1 KB	> 16 MB	> 16 GB	> 100 GB
Implementation technology	custom memory with multiple ports, CMOS	on-chip or off-chip CMOS SRAM	CMOS DRAM	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 – 25	80 – 250	5,000.000
Bandwidth (MB/sec)	20,000 - 100,000	5000 - 10,000	1000 – 5000	20 – 150
Managed by	compiler	hardware	operating system	operating system
Backed by	cache	main memory	disk	CD or tape

Bir A tamsayısının hardiskten kaydediciye hareketi

Hangi kayıt birimi olursa olsun, çoklu-görev (Multi-tasking) alabilen ortamlar en son değeri kullanırken çok dikkatli olmalıdırlar.

- Çok-işlemcili ortam önbellek tutarlılığını sağlamalıdır (son değerler güncellenmeli)
- Dağıtık ortamlar daha karmaşıktır

Giriş/Çıkış alt sistemi

- İşletim sisteminin temel amaç ve işlevlerinden biri de donanım aygıtlarının zorluklarını kullanıcıdan gizlemektir
- □ Giriş / çıkış sistemi sorumlulukları:
 - Giriş/çıkışa ait bellek yönetimi- tamponlama, önbelleğe alma vb.
 - Genel bir aygıt sürücüsü arayüzü
 - Özel donanım aygıtları için sürücüler

Koruma ve Güvenlik

- Koruma proseslerin veya kullanıcıların kaynaklara erişimini kontrol etme mekanizması
- □ Güvenlik harici ve dahili düşmanlara karşı sistemi savunma
 - Hizmeti engelleme saldırılarından, virüsler ve veri hırsızlığına kadar geniş bir alan
- Sistemler genellikle kimin ne yapabileceğini belirlemek ve tespit edebilmek için kullanıcıları sınıflandırır
 - Kullanıcı kimliği kullanıcı ID si her bir kullanıcı için isim ve numara içerir
 - Kullanıcı ID'si daha sonra ilgili kullanıcının tüm proses ve dosyalarıyla iliştirilir- erişim kontrolü
 - Grup belirleyicisi (grup ID) herhangi bir dosya ve proses için imtiyazlı kullanıcı kümeleri oluşturur
 - İmtiyaz yönetimi kullanıcıların erişim haklarını belirlemeyi olanaklı kılar

Hesaplama ortamları-Geleneksel

- Yalnız başına genel amaçlı makineler (Klasik bilgisayar)
- Portallar (Modem vb.) Web erişimi sağlar.
- Ağ bilgisayarları (ufak istemciler)
- Mobil bilgisayarlar (Dizüstü Bilg.)
- Ağa bağlı bilgisayarları internetten gelen tehlikeleri korumak için güvenlik duvarı gibi sist. kullanılır

Hesaplama ortamları (Sunucu-İstemci)

- Sunucu istemci ortamı
 - Az gelişmiş terminaller akıllı ve gelişmiş bilgisayarlar ile yer değiştiriyor
 - Hizmet birimleri istemcilerden gelen isteklere cevap verir
 - Sunucudaki hesaplama hizmeti kullanıcılara istekleri için bir arayüz sağlar (Veritabanı)
 - Sunucudaki dosyalama hizmeti kullanıcılar dosyalarını saklayıp alma altyapısı sağlar (Bulut)

Eşler arası hesaplama (Peer-to-Peer & P2P)

- Bir dağıtık sistem modelidir
- Sunucu ve istemci yoktur
 - Tüm düğümler eş olarak adlandırılır
 - Her biri hem istemci hem de sunucu olarak çalışabilir
 - Düğümler bir P2P ağına katılmalı
 - Naster, Gnutella, Voice over IP (VoIP) ⇒ Skype

Diğer hesaplama ortamları

- Mobil ortam (Cep telefonu tabletler..)
- Dağıtık hesaplama (Ağda birbirine bağlı sistemler)
- Sanallaştırılmış ortamlar (Başka işletim sistemindeki uygulamaları çalıştırmak için)
- Bulut hesaplama (Ağ üzerinden bir uygulamayı çalıştırma, veri saklama veya veri işleme)
- □ Gerçek-zamanlı gömülü sistemler

1. Bölümün sonu

BSM 309 İşletim Sistemleri Yrd.Doç.Dr. Abdullah SEVİN