(1)	hole problem:	
F,5Z,0,2,5	Fn+1 + 12	
s.t.	DZ> Ev (Fr-Fn+fn) Xa+ IOK-	$+ \sum_{v \in V} (\lambda_v^{k,+} + \lambda_v^{k,-}) \qquad \forall 1 \in k \in K$
	OK + XXXX UV. X(W,V)	V~ E V
	OK+ XV+>, - E Uv. X(W,V)	V√€ V
	$Z_{ij} = 1$	$\forall (i,j) \in E$
	$Z_{ij} + Z_{ji} \leq 1$	VijeV, icj
	Zij > Zip + Zpj -1	∀ij,ρ∈V, i≠j≠ρ
	fij & min (ric, ric) Zij	$\forall i,j \in V, i \neq j, t \neq n+1, j \neq 0, \forall k$
	$\sum_{j \in V \setminus \{i, 0\}} f_{ij}^{k} = \widetilde{Y}_{i}^{c}$	Vie VIEn+13, VKEK
	$\sum_{i \leq V \setminus \{j, n+1\}} f_{ij}^{k} = \gamma_{j}^{c}$	∀j∈V\{o}, ∀k∈K'
	$f_{ij}^{k} \geq 0$	$\forall i,j \in V, i \neq j, i \neq n+1, j \neq 0, \forall k \in K'$
	Fino	ViE V
	Xa & MZa	∀a∈ E
	Zij E {0,13	Vi,jeV, itj
	$\widetilde{Y}_{i}^{c} = \{ R^{c}, \text{ falls } i=0, \text{n+1} \}$, ∀k∈ K'
(2) the sub	problem:	
	M*+ = max Σ (Fr-Fn+-	tw) xa + 9a+ un - 9a+ un
	5.t. E Xa- Z Xa & dv Vve	
	- E X & + E X a \ d\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
t= {(i,j) & V2 Zij >0	3 E (3++3-) (T	9 (v, w) ? M 3 w + x(v, w) - M
et is accordingly	gat gat & Xa Vat & +	9(v,w, 2, M. 3w + X(v,w) - M
	Ka & M. Za Vac &t	xa, 9a, 9a-7, 0 Vac & t
		3, +, 3, - ∈ {0.13 \ \v \in \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Cut:
$$\Omega = \{ \sum_{(i,j) \in \mathbb{Z}^t} \sum_{(i,j) \in \mathbb{Z}^t}$$

Starting with a (possibly empty) subset $\hat{X} \subseteq \widetilde{X}$ in each iteration, the LP (2) with only constraints corresponding to the nodes from \hat{X} is solved optimally. For the optimal solution F^*, Ω^* , a new vertex x^* is computed by solving (SP2) If the objective is greater than Ω^* , a violated constraint is found and we add x^* to \hat{X} . Else, the solution F^*, Ω^* is optimal.

Algorithm 1 Exact algorithm for the Γ-robust two-stage project scheduling problem **Input:** Graph G = (V, A), uncertainty parameter $\Gamma \in \mathbb{N}_{\leq |V|}$, execution times $(t_v)_{v \in V}$, uncertainties $(u_v)_{v \in V}$, initial vertex set $\hat{X} \subset \tilde{X}$, sufficiently large constant M Output: the finish time

- 1: while true do
- schedule_obj, F^* , Ω^* optimal solution of (4) with constraints only for \tilde{X} 2:
- $subproblem_obj, x^* = optimal solution of (2)$
- 4:

4: if subproblemes
$$\Omega$$
 then
5: $\hat{X} = \hat{X} \cup \{x\}$, $\hat{T} = \hat{T} + \hat{A}$

- else
- break:
- end if
- 9: end while
- 10: return schedule_obj, $(F_v)_{v \in V}$

待解决问题(参照文献1)

- 找到这个模型对应的 McCormick Heuristic 模型及算法
- 模仿文献1 对算法进行评估
 - 2.1 分析本文件中算法1在不同大小下的收敛性
- 2.2比较M=0.25, M=0.5, M=1时的 McCormick Heuristic 与 adaptive McCormick heuristic iterative recovery heuristic