Titanic Classification

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```

Data Collection & Processing

```
In [2]:
```

```
# load the data from csv file to Pandas DataFrame
titanic_data = pd.read_csv(r'D:\Data science\Titanic-Classification-main\train.csv')
```

In [3]:

```
# printing the first 5 rows of the dataframe
titanic_data.head()
```

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s

In [4]:

```
# number of rows and Columns
titanic_data.shape
```

Out[4]:

(891, 12)

In [5]:

```
# getting some informations about the data
titanic_data.info()
```

```
Name
                 891 non-null
                                object
   Sex
Age
                                object
                  891 non-null
 5
                 714 non-null float64
   SibSp
 6
                891 non-null int64
   Parch
 7
                891 non-null int64
   Ticket
                891 non-null object
 8
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
In [6]:
# check the number of missing values in each column
titanic data.isnull().sum()
Out[6]:
PassengerId
                 0
Survived
                 0
Pclass
                 0
Name
                0
Sex
               177
Age
SibSp
                0
Parch
                0
Ticket
                 Ω
                0
Fare
               687
Cabin
               2
Embarked
dtype: int64
Handling the Missing values
In [7]:
# drop the "Cabin" column from the dataframe
titanic data = titanic data.drop(columns='Cabin', axis=1)
In [8]:
# replacing the missing values in "Age" column with mean value
titanic data['Age'].fillna(titanic data['Age'].mean(), inplace=True)
In [9]:
# finding the mode value of "Embarked" column
print(titanic data['Embarked'].mode())
Name: Embarked, dtype: object
In [10]:
print(titanic data['Embarked'].mode()[0])
S
In [11]:
# replacing the missing values in "Embarked" column with mode value
titanic data['Embarked'].fillna(titanic data['Embarked'].mode()[0], inplace=True)
In [12]:
# check the number of missing values in each column
titanic data.isnull().sum()
Out[12]:
```

```
PassengerId
Survived
Pclass
Name
              0
Sex
              0
Age
              0
SibSp
              0
Parch
              0
Ticket
              0
Fare
Embarked
dtype: int64
```

Data Analysis

```
In [13]:
```

```
# getting some statistical measures about the data
titanic_data.describe()
```

Out[13]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [14]:

```
# finding the number of people survived and not survived
titanic_data['Survived'].value_counts()
```

Out[14]:

Survived 0 549 1 342

Name: count, dtype: int64

Data Visualization

```
In [15]:
```

```
sns.set()
```

In [16]:

```
# making a count plot for "Survived" column
sns.countplot(x='Survived', data=titanic_data)
```

Out[16]:

<Axes: xlabel='Survived', ylabel='count'>

In [17]:

```
titanic_data['Sex'].value_counts()
```

Out[17]:

Sex

male

577 314 female

Name: count, dtype: int64

In [18]:

```
# making a count plot for "Sex" column
sns.countplot(x='Sex', data=titanic_data)
```

Out[18]:

<Axes: xlabel='Sex', ylabel='count'>

In [19]:

number of survivors Gender wise

```
sns.countplot(x='Sex', hue='Survived', data=titanic_data)
```

Out[19]:

<Axes: xlabel='Sex', ylabel='count'>

In [20]:

making a count plot for "Pclass" column
sns.countplot(x='Pclass', data=titanic_data)

Out[20]:

<Axes: xlabel='Pclass', ylabel='count'>

In [21]:

sns.countplot(x='Pclass', hue='Survived', data=titanic_data)

```
Out[21]:
<Axes: xlabel='Pclass', ylabel='count'>
```


Encoding the Categorical Columns

Passengerld Survived Pclass

```
In [22]:
titanic data['Sex'].value counts()
Out[22]:
Sex
male
        577
         314
female
Name: count, dtype: int64
In [23]:
titanic data['Embarked'].value counts()
Out[23]:
Embarked
S
    646
     168
     77
Q
Name: count, dtype: int64
In [24]:
# converting categorical Columns
titanic data.replace({'Sex':{'male':0,'female':1}, 'Embarked':{'S':0,'C':1,'Q':2}}, inpl
ace=True)
In [25]:
titanic data.head()
Out[25]:
```

Pround Mr Owen Harris

Name Sex Age SibSp Parch

Ticket

A /E 01171

Fare Embarked

7 2500

Pas	sengerld	Survived	Pclass	Braunu, Mr. Owen name Name Cumings, Mrs. John Bradley	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
1	2	1	1	(Florence Briggs Th	1	38.0	1	0	PC 17599	71.2833	1
2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	7.9250	0
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	113803	53.1000	0
4	5	0	3	Allen, Mr. William Henry	0	35.0	0	0	373450	8.0500	0

Separating features & Target

```
In [26]:
```

```
X = titanic_data.drop(columns = ['PassengerId','Name','Ticket','Survived'],axis=1)
Y = titanic_data['Survived']
```

In [27]:

```
print(X)
   Pclass Sex
                   Age SibSp Parch
                                    Fare Embarked
                                  7.2500 0
      3 0 22.000000
                              0
0
                       1
           1 38.000000
                                0 71.2833
1
        1
                           1
                                                1
2
        3
           1 26.000000
                           0
                                0
                                  7.9250
                                                0
3
        1
           1 35.000000
                          1
                                0 53.1000
                                                0
        3
           0 35.000000
                          0
                                0
                                  8.0500
                                                0
                              0 13.0000
0 30.0000
886
       2
          0 27.000000
                         0
                                                0
           1 19.000000
887
        1
                          0
                                                Ω
            1 29.699118
                               2 23.4500
        3
                          1
                                                0
888
                               0 30.0000
           0 26.000000
889
        1
                          0
                                                1
```

[891 rows x 7 columns]

In [28]:

```
print(Y)
0
       0
1
       1
2
       1
3
       1
       0
886
       0
887
       1
888
       0
889
       1
890
       0
Name: Survived, Length: 891, dtype: int64
```

7.7500

Splitting the data into training data & Test data

0 32.000000

```
In [29]:
```

```
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.2, random_state=2)
```

In [30]:

```
print(X.shape, X_train.shape, X_test.shape)
(891, 7) (712, 7) (179, 7)
```

Model Training

```
Logistic Regression
In [31]:
model = LogisticRegression()
In [32]:
# training the Logistic Regression model with training data
model.fit(X train, Y train)
C:\Users\DELL\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\linear mo
del\ logistic.py:460: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
  n_iter_i = _check_optimize_result(
Out[32]:
▼ LogisticRegression
LogisticRegression()
Model Evaluation
Accuracy Score
In [33]:
# accuracy on training data
X train prediction = model.predict(X train)
In [34]:
```

```
print(X_train_prediction)
```

 $[0\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 1$ 0 0 0 1 1 0 0 1 0]

```
In [35]:
```

```
training_data_accuracy = accuracy_score(Y_train, X_train_prediction)
print('Accuracy score of training data: ', training_data_accuracy)
```

Tanina data . 0 007E040C0CC00010

```
Accuracy score or training data: 0.80/3842090029213
In [36]:
# accuracy on test data
X test prediction = model.predict(X test)
In [37]:
print(X test prediction)
[0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 0\ 1\ 0\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1
In [38]:
test_data_accuracy = accuracy_score(Y_test, X_test_prediction)
print('Accuracy score of test data : ', test data accuracy)
Accuracy score of test data: 0.7821229050279329
In [ ]:
```