Expectation Maximization Chapter 5 k-means

T.L. Grobler

Supervised versus Unsupervised

- Supervised Learning:
 - Chapter 4
 - Class label comes with observations
- Unsupervised Learning:
 - Chapter 5
 - Class label inferred from observations

General Expectation Maximization

- Expectation:
 - Chapter 5
 - Current estimate of parameters
 - Estimate class labels
- Maximization (MLE):
 - Chapter 4
 - Current estimate of class labels
 - Estimate parameters
- Alternate E and M step till convergence

Preamble

- Assume we have *N*-observations
- They belong to one of k-clusters
- The value of *k* is known

Intuitive Description

- Step 1: Choose initial cluster means
 - Choose *k* random observations
- Step 2: Assign class labels
 - Assign observations to cluster mean closest to it
- Step 3: Update cluster means
 - Compute cluster means using assigned observations
- Repeat steps until convergence

Objective Function

$$J = \sum_{n=1}^{N} \sum_{j=1}^{k} t_{nj}^{\prime} \|\mathbf{x}_n - \mathbf{u}_j\|^2$$

1-of-*k* coding

$$\mathbf{t}_n = [t_{n1} \ \cdots \ t_{nk}]^T$$

Obs

Cluster Mean (initialized)

$$t_{nj} = \begin{cases} 1 & \text{if } \mathbf{x}_n \in C_j \\ 0 & \text{otherwise} \end{cases}$$

Min J:
 alternate between fixing and solving for \mathbf{t}_n and \mathbf{u}_j

Alternating Estimation Steps

- Determine t_{nj} :
 - $-\mathbf{x}_n$ assigned to nearest cluster
 - i.e. $||\mathbf{x}_n \mathbf{u}_j||^2$ smallest
- Determine **u**_i:
 - set to mean of newly formed clusters

$$\frac{\partial J}{\partial \mathbf{u}_j} = 0 \implies \mathbf{u}_j = \frac{\sum_{n=1}^{N} t_{nj} \mathbf{x}_n}{\sum_{n=1}^{N} t_{nj}}$$

Expectation Maximization

Expectation Step:

- class labels hidden
- t_n are latent variables
- given class means
- calc expected values of t_n

Maximization Step:

- use t
- compute ~ likelihood
- maximize likelihoood
- determine \mathbf{u}_{i}

Example

Another Example

Autor: 01.04

Objective Function Plot

Normalization

- Whitening data
- Normalized data
- Warning
 - Rescales distances
 - Indicative of between cluster seperation

Hard versus Soft

- Hard
 - Ambiguity ignored
 - Current strategy
- Soft
 - Reflects uncertainty

Local Minima

- *J* allows multiple locl minima
 - Initialization critical
 - Find good local minima

Binary Split

- Two random cluster means
- k-means (two cluster means)
- Compute scatter of clusters
- Two cluster means from cluster with largest scatter
- *k*-means (three cluster means)
- Continue until clusters match desired number