VTA Service Analysis

Submitted by
Amy Cherian
Pragati Shrivastava
Lasya Boddapati

Introduction

- GOALS:
 - O Analyze the VTA Ridership Data available on VTA Open Data website.
 - O Evaluate Service Productivity of each Line on Monthly and Weekly basis.
 - O Page rank Analysis of the service
- DATASET FEATURES
 - O 1GB Ridership Data from Jan 2014 to September 2014
 - O Attributes used in the analysis
 - Date
 - Line Number The bus number that services a specific route
 - Service Number The day of the trip(Weekday, Weekend or Holiday)
 - Direction Number Number assigned to the direction the trip is operating
 - On Number of people counted boarding at the stop
 - Off Number of people counted alighting at the stop
 - Trip ID Unique ID number for a given trip
 - Stop name
 - Sequence Number The sequence of the stop along the route in question

Design / Implementation

- Graph Representation of the service:
 - O Stops correspond to Nodes
 - O Edges correspond to the connections between 2 stops
 - O Node weights calculated using the below formula ->

 Node weight = weekday_weight * productivity_on_weekday + weekend_weight *

 productivity_on_weekend

where $weekday_weight = (5/7)$, $weekend_weight = (2/7)$ and productivity = Commuters per stop / Frequency of lines passing through the stop

- Adjacency List to represent the graph using all of the below
 - O 2 Map Reduce steps to compute the average per line frequency
 - Number of unique trip id's in a day per line (for a particular direction and service number) averaged over all days

- O 3 Map Reduce steps to compute average per stop commuters
 - Per each line (or a particular direction and service number), number of commuters that use each stop in a day, averaged over all days

O 3 Map Reduce programs to generate the stops list and stop pairs list (which includes the different connecting them)

- Page Rank Map Reduce implementation
 - O 1 Map Reduce step to convert input adjacency list into the following representation:
 - <STOPNAME> <initial rank, list(Outgoing Neighbours)>

Here the initial rank is assigned by normalizing the stop weights.

• 1 Map Reduce step to compute the new rank (the iterative step)

MONTHLY PER LINE RIDERSHIP

WEEKLY PER LINE RIDERSHIP

MONTHLY PER LINE FREQUENCY

Results

The data analysis paved the path to categorize the findings as follows. The below graphs show the top 5 and least 4 Lines(bus number for a route) for each category.

❖ Per line Monthly Ridership: The number of commuters for a line on a monthly basis

WEEKEND & HOLIDAY SERVICE

❖ Per line Weekly Ridership: The number of commuters for a line on a weekly basis.

❖ Per line Service productivity: The number of commuters per line divided by the frequency of that line

WEEKDAY SERVICE

WEEKEND & HOLIDAY SERVICE

♦ Page Rank Results

Top 5 Stops

- SAN JOSE CALTRAIN STATION
- SANTA CLARA CALTRAIN STATION
- SANTA CLARA & ALMADEN BLVD
- 2ND & SANTA CLARA
- GREAT MALL / MAIN TRANSIT CENTER

Bottom 5 Stops

- HAMILTON STATION (0)
- WINCHESTER STATION (0)
- CAMPBELL STATION (0)
- BASCOM STATION (0)
- RACE STATION (0)

EXPERIMENTS & PERFORMANCE EVALUATIONS

The following experiments were done on the Hadoop ecosystem using mapreduce programs written in python. The cluster size was 24 nodes.

1. Mapreduce time analysis(in secs): The different sets of mapreduce programs were run on the Hadoop ecosystem and also on a single node system and the execution times were compared. The single node systems took significantly longer to complete.

2. Varying the number of reducers for each mapreduce task: As we increased the number of reducers from 10 to 75, the total time for execution was seen to reduce considerably.

RELATED WORK

http://www.vta.org/sfc/servlet.shepherd/version/download/068A000000 1FZVM