Joint Analysis of geospatial and "friendship" of Gowalla data

Juan Benjumea

jubenjum@gmail.com

Outline

Data Presentation

Gowalla and Google Places

Data processing

Understanding the data

Prediction methodology

KNN-G cross validation

KNN-G results for Gowalla

Conclusions

Outline

Figure 1. Overview of the steps constituting the KDD process

Figure 1: General pipeline

From: Data iku

https://blog.dataiku.com/2016/07/06/fundamental-steps-data-

project-success

Data Presentation 1/2

keypoints Gowalla-Stanfor data:

- undirected social network graph database [clean]
- selected fields: user, check-in timestamp and position, spot, user friendship links
- ▶ from 02/2009 to 10/2010
- ► ~6 Million check-ins and >100000 single users
- Multiple cities in US and include Paris (turistic)
- ▶ Paris data: 17496 check-ins (1 year data from 09/2009)

Data Presentation 2/2

keypoints Google Places

- Web Service API that returns JSON objects (used only nearbysearch)
- ▶ Not 100% clean
- ▶ Limited to 1000 queries/day: batch and optimization of queries
- more info at http://developers.google.com/plaes/webservice/search

other sources:

OpenstreetMap webservice to get geographical features (JSON objects)

Data processing 1/2

Gowalla

- selected users and check-in positions around 30km Paris
- Data is clean and in csv format
- ▶ 17496 check-ins, 1366 users

Google

- Selected all unique locations (4178) in Gowalla-Paris and requesting around 100m in Google Places
- ▶ Request all types of venues: hotels, monuments, shops, etc
- ▶ 30286 points of interest, 23074 after data cleaning
- extracted: locations, place-ids, names and types
- each *location* contains different *types*, *types* were cleaned and projected from binary feature space with d = 128

Data processing 2/2

Figure 2: Map of selected Gowalla and Google data

Understanding the data 1/2

# Check-ins	Venue	
402	CDG Airport	
198	Louvre	
194	Pont des Arts	
171	Eiffel Tower	
267	BNF/François-Mitterrand	
114	Gare du Nord (local people+Eurostar)	
106	Notre Dame	
100	A place near to BNF	
93	Arc de Triomphe	
91	Montreuil (local people)	

Figure 3: Top 10 Places in Paris from Gowalla/Google data

Understanding the data 2/2

Figure 4: Temporal distribution of Gowalla check-ins in Paris

Feature Engeniering 1/2

Tools

- ▶ Web-fetching and data preprocesing and cleaning, with *nix: bash, wget, awk, seed. +Efficient & -Work for the size of databases (<1G data)</p>
- ▶ Data analysis with python/C++:
 - data management with pandas
 - ML with scikit-learn and FAISS
 - data analysis with scikit and networkx
 - visualization with matplotlib and networkx
- General project versioning with git (https://github.com/jubenjum/dssp5-proj)

Feature Engeniering 2/2

Features

Gowalla data → Google Places types

Figure 5: Spot signature; Eiffel Tower (blue), random user (red), λ -tourist (violet) and me (gray)

Signature ~ people preferences

KNN-G cross validation

Objective: cross validation of FAISS and scikit-learn KNN-graph on CPU using Gowalla-Paris data

_	FAISS	Scikit-learn	
k	5	5	
Average Degree	6.75	6.75	
Are isomorphic.	NO		
Could be isomorphic	NO		
Median #trianges=k	5	5	
Average clustering	0.33	0.33	
#cliques	2223	2227	
transitivity	0.28	0.28	

Figure 6: Summary results from networkx on FAISS and scikit-learn

KNN-G results for Gowalla

► **K=50** friends using L2 similarty metric

Conclusions & Future work

- ▶ It does exist patterns in check-ins in time and location
- ▶ It is possilbe to build a recommendation system that learns from the patterns of check-ins
- It could be interesting to test different hyper-parameter and different metrics (cosine)
- Explore the GPU capabilities of FAISS