## **Espacios vectoriales**

## 1.1 Espacios vectoriales

Definición Un espacio vectorial (o espacio lineal) consta de lo siguiente:

1.1

- 1. Un cuerpo *F* de escalares;
- 2. un conjunto V de objetos llamados vectores;
- 3. una regla (u operación) llamada adición, que asocia a cada par de vectores  $\alpha$ ,  $\beta$  de V un vector  $\alpha + \beta$  de V, que se llama suma de  $\alpha$  y  $\beta$ , de tal modo que:
  - (a) La adición es conmutativa,  $\alpha + \beta = \beta + \alpha$ ;
  - (b) la adición es asociativa,  $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ ;
  - (c) existe un único vector 0 de V, llamado vector nulo tal que  $\alpha + 0 = \alpha$ , para todo  $\alpha$  de V;
  - (d) para cada vector  $\alpha$  de V existe un vector  $-\alpha$  de V, tal que  $\alpha + (-\alpha) = 0$ ;
- 4. una regla (u operación) llamada multiplicación escalar, que asocia a cada escalar c de F y cada vector  $\alpha$  de V a un vector  $c\alpha$  en V, llamado producto de c y  $\alpha$ , de tal modo que:
  - (a)  $1\alpha = \alpha$  para todo  $\alpha$  de V;
  - (b)  $(c_1c_2)\alpha = c_1(c_2\alpha);$
  - (c)  $c(\alpha + \beta) = c\alpha + c\beta$ ;
  - (d)  $(c_1 + c_2)\alpha = c_1\alpha + c_2\alpha$ .

**Ejemplo** El espacio de n-tuplas,  $F_n$ . Sea F cualquier cuerpo y sea V el conjunto de todos los n-tuples  $\alpha =$  **1.1**  $(x_1, x_2, \ldots, x_n)$  de escalares  $x_i$  de F. Si  $\beta = (y_1, y_2, \ldots, y_n)$  con  $y_i$  de F, la suma de  $\alpha$  y  $\beta$  se define por

$$\alpha + \beta = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n). \tag{1.1}$$

El producto de un escalar c y el vector  $\alpha$  se define por

$$c\alpha = (cx_1, cx_2, \dots, cx_n). \tag{1.2}$$

Que esta adición vectorial y multiplicación escalar cumplen las condiciones (3) y (4) es fácil de verificar, usando las propiedades semejantes de la adición y multiplicación de elementos de F.

**Ejemplo** El **espacio de matrices**  $m \times n$ ,  $F^{m \times n}$ . Sea F cualquier cuerpo y sean m y n enteros positivos. Sea  $F^{m \times n}$  el conjunto de todas las matrices  $m \times n$  sobre el cuerpo F. La suma de dos vectores A y B en  $F^{m \times n}$  se define por

$$(A+B)_{ij} = A_{ij} + B_{ij}. (1.3)$$

El producto de un escalar c y de la matriz A se define por

$$(cA)_{ij} = cA_{ij}. (1.4)$$

Obsérvece que  $F^{i \times n} = F^n$ .

Ejemplo El espacio de funciones de un conjunto en un cuerpo. Sea F cualquier cuerpo y sea S cualquier conjunto no vacío. Sea V el conjunto de todas las funciones de S en F. La suma de dos vectores f y g de V es el vector f+g; es decir, la función de S en F defina por

$$(f+g)(s) = f(s) + g(s).$$
 (1.5)

El producto del escalar c y la función f es la función cf definida por

$$(cf)(s) = cf(s). (1.6)$$

Para este tercer ejemplo se indica cómo se puede verificar que las operaciones definidas satisfacen las condiciones (3) y (4). Para la adición vectorial:

(a) Como la adición en F es conmutativa,

$$f(s) + g(s) = g(s) + f(s)$$

para todo s de S, luego las funciones f + g y g + f son idénticas.

(b) Como la adición en F es asociativa,

$$f(s) + [g(s) + h(s)] = [f(s) + g(s)] + h(s)$$

para todo s, luego f + (g + h) es la misma función que (f + g) + h.

- (c) El único vector nulo es la función cero, que asigna a cada elemento de *S* el escalar 0 de *F*.
- (d) Para todo f de V, (-f) es la función dada por

$$(-f) = -f(s)$$
.

El lector encontrará fácil verificar que la multiplicación escalar satisface las condiciones de (4), razonando como se hizo para la adición vectorial.

**Ejemplo** El **espacio de las funciones polinomios sobre el cuerpo** *F*. Sea *F* un cuerpo y sea *V* el conjunto de todas las funciones *f* de *F* en *F* definidas en la forma

$$f(x) = c_0 + c_1 x + \dots + c_n x^n \tag{1.7}$$

donde  $c_0, c_1, \ldots, c_n$  son escalares fijos de F (independiente de x). Una función de este tipo se llama **función polinomio sobre** F. Sean la adición y la multiplicación escalar definidas sobre en el ejemplo 3. Se debe observar que si f y g son funciones polinomios y c está en F, entonces f + g y cf son también funciones polinomios.

Ejemplo El cuerpo C de los números complejos puede considerarse como un espacio vectorial sobre el cuerpo R de los números reales. En forma más general, sea F el cuerpo de los números reales y sea V el conjunto de los n-tuples  $\alpha = (x_1, \ldots, x_n)$  donde  $x_1, \ldots, x_n$  son números complejos. Se define la adición vectorial y la multiplicación escalar por (2.1) y (2-2), como en el ejemplo 1. De este modo se obtiene un espacio vectorial sobre el cuerpo R que es muy diferente del espacio  $C^n$  y del espacio  $R_n$ .

Hay unos pocos hechos simples que se desprenden, casi inmediatamente, de la definición de espacio vectorial, y procederemos a derivarlos. Si *c* es un escalar y 0 es el vector nulo, entonces por 3(c) y 4(c)

$$c0 = c(0+0) = c0 + c0.$$

Sumando -(c0) y por 3(d), se obtiene

$$c0 = 0. (1.8)$$

Análogamente, para el escalar 0 y cualquier vector  $\alpha$  se tiene que

$$0\alpha = 0. (1.9)$$

Si c es un escalar no nulo y  $\alpha$  un vector tal que  $c\alpha=0$ , entonces por (2-8),  $c^{-1}(c\alpha)=0$ . Pero

$$c^{-1}(c\alpha) = (c^{-1}c)\alpha = 1\alpha = \alpha$$

luego,  $\alpha = 0$ . Así se ve que si c es un escalar y  $\alpha$  un vector tal que  $c\alpha = 0$ , entonces c es el escalar cero o  $\alpha$  es el vector nulo.

Si  $\alpha$  es cualquier vector de V, entonces

$$0 = 0\alpha = (1-1)\alpha = 1\alpha + (-1)\alpha = \alpha + (-1)\alpha$$

de lo que se sigue que

$$(-1)\alpha = -\alpha. \tag{1.10}$$

Finalmente, las propiedades asociativa y conmutativa de la adición vectorial implican que la suma de varios vectores es independiente de cómo se combinen estos vectores y de cómo se asocien. Por ejemplo, si  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ ,  $\alpha_4$  son vectores de V, entonces

$$(\alpha_1, \alpha_2) + (\alpha_3 + \alpha_4) = [\alpha_2 + (\alpha_1 + \alpha_3)] + \alpha_4$$

y tal suma puede ser escrita, sin confusión,

$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$$
.

**Definición** Un vector  $\beta$  de V se dice **combinación lineal** de los vectores  $\alpha_1, \ldots, \alpha_n$  en V, si existen escalares  $c_1, \ldots, c_n$  de F tales que

$$\beta = c_1 \alpha_1 + \ldots + c_n \alpha_n = \sum_{i=1}^n c_i \alpha_i.$$

Otras extensiones de la propiedad asociativa de la adición vectorial y las propiedades distributivas 4(c) y 4(d) de la multiplicación escalar se aplican a las combinaciones lineales:

$$\sum_{i=1}^{n} c_i \alpha_i + \sum_{i=1}^{n} d_i \alpha_i = \sum_{i=1}^{n} (c_i + d_i) \alpha_i$$
$$c \sum_{i=1}^{n} c_i \alpha_i = \sum_{i=1}^{n} (cc_i) \alpha_i.$$

## **Ejercicios**

**1.** Si F es un cuerpo, verificar que  $F^n$  (como se definio en el Ejemplo 1) es un espacio vectorial sobre el cuerpo F.

Respuesta.- Sean  $\alpha = (x_1, x_2, ..., x_n)$ ,  $\beta = (y_1, y_2, ..., y_n)$  y  $\gamma = (z_1, z_2, ..., z_n)$  elementos de  $F^n$ . Como también sean  $c, d, c_1, c_2 \in F$ . Entonces,

(3) (a) Conmutatividad para la adición.

$$\alpha + \beta = (x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) 
= (x_1 + x_2, ..., x_n + y_n) 
= (y_1 + y_2, ..., y_n + x_n) 
= \beta + \alpha.$$

(b) Asociatividad para la adición.

$$\alpha + (\beta + \gamma) = (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) + (z_1, z_2, \dots, z_n)$$

$$= (x_1 + x_2, \dots, x_n + y_n + z_n)$$

$$= (x_1 + x_2 + z_1, \dots, x_n + y_n + z_n)$$

$$= (\alpha + \beta) + \gamma.$$

(c) Existencia del elemento nulo.

$$\alpha + 0 = (x_1, x_2, \dots, x_n) + (0, 0, \dots, 0)$$
  
=  $(x_1 + 0, \dots, x_n + 0)$   
=  $\alpha$ .

(d) Existencia del inverso aditivo.

$$\alpha + (-\alpha) = (x_1, x_2, \dots, x_n) + [-(x_1, x_2, \dots, x_n)]$$

$$= (x_1, x_2, \dots, x_n) + (-x_1, -x_2, \dots, -x_n)$$

$$= (x_1 - x_1, \dots, x_n - x_n)$$

$$= (0, 0, \dots, 0)$$

$$= 0.$$

(4) (a) Existencia del elemento neutro para la multiplicación escalar.

$$1\alpha = 1(x_1, x_2, \dots, x_n)$$
  
=  $(1x_1, 1x_2, \dots, 1x_n)$   
=  $\alpha$ .

(b) Asoaciatividad para la multiplicación escalar.

$$(c_1c_2)\alpha = (c_1c_2)(x_1, x_2, \dots, x_n)$$

$$= (c_1c_2x_1, c_1c_2x_2, \dots, c_1c_2x_n)$$

$$= (c_1(c_2x_1), c_1(c_2x_2), \dots, c_1(c_2x_n))$$

$$= (c_1c_2x_1, c_1c_2x_2, \dots, c_1c_2x_n)$$

$$= c_1(c_2\alpha).$$

(c) Distributividad de la multiplicación escalar sobre la adición.

$$c(\alpha + \beta) = c((x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n))$$

$$= c(x_1 + x_2, ..., x_n + y_n)$$

$$= (cx_1 + cx_2, ..., cx_n + cy_n)$$

$$= (c\alpha + c\beta).$$

(d) Distributividad de la multiplicación sobre la adición de escalares

$$(c+d)\alpha = (c+d)(x_1, x_2, \dots, x_n)$$
  
=  $(cx_1 + dx_1, \dots, cx_n + dx_n)$   
=  $c\alpha + d\alpha$ .

5

**2.** Si V es un espacio vectorial sobre un cuerpo F, verificar que

$$(\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) = [\alpha_2 + (\alpha_3 + \alpha_1)] + \alpha_4$$

para todo los vectores  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ ,  $\alpha_4$  de v.

Respuesta.- Se tiene,

$$\begin{array}{rcl} (\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) & = & (\alpha_2 + \alpha_1) + (\alpha_3 + \alpha_4) \\ & = & \alpha_2 + [\alpha_1 + (\alpha_3 + \alpha_4)] \\ & = & \alpha_2 + [(\alpha_1 + \alpha_3) + \alpha_4] \\ & = & \alpha_2 + [(\alpha_3 + \alpha_1) + \alpha_4] \\ & = & [\alpha_2 + (\alpha_3 + \alpha_1)] + \alpha_4. \end{array}$$

**3.** Si C es el cuerpo de los complejos, ¿qué vectores de  $C^3$  son combinaciones lineales de (1,0,-1), (0,1,1) y (1,1,1)?.

Respuesta.-