Exploratory analysis

Jeff Leek

@jtleek

www.jtleek.com

Key ideas Visualization Summarization Showing the data Not being misled

Why explore data?

- To understand data properties
- To find patterns in data
- To suggest modeling strategies
- To "debug" analyses
- To communicate results

Background Perceptual tasks

Figure 4. Graphs from position-length experiment.

Figure 3. Graphs from position-angle experiment.

Background Graphs reveal structure summaries don't

https://en.wikipedia.org/wiki/Anscombe% 27s quartet

$$\hat{\beta}_0 = 3.0$$
, $\hat{\beta}_1 = 0.5$, p-value (slope) = 0.002, $R^2 = 0.67$.

10 -

Basic principles Avoid ridiculograms

Ridiculogram: meaningless albeit visually impressive image of a network

Basic principles Show the data

Basic principles Be careful with scale

Basic principles Compare things directly

Basic principles Use common scales Start at zero

Further resources

- Karl Broman's guide to displaying data
 - https://www.biostat.wisc.
 edu/~kbroman/presentations/lowaState2
 013/graphs_combined.pdf
- Data visualization at Nature
 - http://blogs.nature.
 com/methagora/2013/07/data visualization-points-of-view.html