

Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC34C – Sistemas Microcontrolados

Frank Helbert Borsato

- Os Displays de Cristal líquido
 - LCD, que significam "LiquidCristal Display"
 - São interfaces que utilizam uma tecnologia moderna para representar letras, números e símbolos advindos de microprocessadores ou de microcontroladores
 - Estes módulos podem ser gráficos ou a caractere (alfanuméricos)
 - Os LCDs comuns, tipo caractere, são especificados em número de colunas x linhas
 - -16×2
 - » Utilizaremos o modelo 16 x 2 (16 colunas e 2 linhas)
 - -16×1
 - -20×2
 - -20×4
 - -8×2

- · Para 'desenhar' as letras, números e outros símbolos
 - Cada dígito é composto por uma matriz, fabricado tipicamente com 5 colunas e 8 linhas
 - A última é utilizada para o cursor, por este motivo alguns usuários o atribuem o tamanho de 5x7 ao invés de 5x8

Figura 1) matriz 5x8 dos caracteres

A arquitetura interna do LCD – CI controlador HD44780

Figura 3) arquitetura interna hipotética (proposta pelo autor)

LCD real

Tab. B1: Pinagem de um LCD 16 × 2.

Pino	Função	Descrição
1	Alimentação	VSS (GND)
2	Alimentação	VCC
3	VEE	Tensão para ajuste do contraste do LCD
4	RS	Register Select: 1 = dado, 0 = instrução
5	R/W	Read/Write: 1 = leitura, 0 = escrita
6	E	Enable: 1 = habilita, 0 = desabilita
7	DB0	
8	DB1	
9	DB2	Ba waa aa aa ta
10	DB3	Barramento de
11	DB4	dados
12	DB5	
13	DB6	
14	DB7	
15	LED+ (A)	Anodo do LED de iluminação de fundo
16	LED - (K)	Catodo do LED de iluminação de fundo

A arquitetura interna do LCD – CI controlador HD44780

Figura 3) arquitetura interna hipotética (proposta pelo autor)

D0 a D7: Barramento de dados

RS: Register Select (1 = dado, 0 = instrução)

R/W: Read/Write (1 = leitura, 0 = escrita)

E: Enable (1 = habilita, 0 = desabilita)

· A arquitetura interna do LCD – CI controlador HD44780

Figura 3) arquitetura interna hipotética (proposta pelo autor)

- O registrador de instruções (IR Instruction Register)
- O registrador contador de endereço é chamado de AC (Address Counter)
- O registrador de dados, DR (Data Register)

· A arquitetura interna do LCD – CI controlador HD44780

Tab. B1: Pinagem de um LCD 16 × 2.

Pino	Função	Descrição							
1	Alimentação	VSS (GND)							
2	Alimentação	VCC							
3	VEE	Tensão para ajuste do contraste do LCD							
4	RS	Register Select: 1 = dado, 0 = instrução							
5	R/W	Read/Write: 1 = leitura, 0 = escrita							
6	E	Enable: 1 = habilita, 0 = desabilita							
7	DB0								
8	DB1								
9	DB2	Down and a							
10	DB3	Barramento de							
11	DB4	dados							
12	DB5								
13	DB6								
14	DB7								
15	LED+ (A)	Anodo do LED de iluminação de fundo							
16	LED - (K)	Catodo do LED de iluminação de fundo							

- Os controladores de display de cristal líquido possuem um bloco de memória que totaliza 384 bytes efetivos
 - Essa memória se divide em três áreas:
 - Uma somente leitura (CGROM) não volátil
 - Duas de escrita/leitura (DDRAM e CGRAM) volátil

- A CGROM (Character Generator Read Only Memory) não pode ser modificada pelo programador
 - Possui 192 caracteres pré-programados
 - Endereçados de 20h a 7Fh e de A0h a FFh
 - Um código ASCII é enviado para o LCD, através do registrador DR
 - » O controlador utiliza este código como endereço e verifica na memória CGROM o mapa de bits correspondente aquele caractere
 - » O caractere é enviado ao display através da DDRAM
 - » Por este motivo a CGROM é chamada de geradora de caracteres
 - Por exemplo, endereço 41h (65)₁₀ corresponde à letra "A"

	NIBLLE	0_	1_	2_	3_	4_	5_	6_	7_	8_	9_	A_	В_	c_	D_	E_	F_
NIBLL BA	AIXO	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
_0	xxxx 0000	CG RAM (1)			0	0	P	Č	P					9	Ξ	œ	p
_1	xxxx 0001	CG RAM (2)		ļ	1	A	0	a	9				7	Ŧ	4	ä	a
_2	xxxx 0010	RAM (3)		"	2	В	R	b	r			Г	4	ŋ	×	ø	8
_3	xxxx 0011	RAM (4)		#	3	С	S	C	s				ņ	Ť	€	8	00
_4	хххх 0100	RAM (5)		\$	4	D	T	d	t,			٠.	Ι	ŀ	Ť	μ	Ω
_5	xxxx 0101	RAM (6)		Ζ,	5	Е	U	ø	u				7	†	1	Œ	ü
_6	хххх 0110	RAM (7)		8.	6	F	Ų	f	Ų			Ŧ	Ħ			ρ	Ξ
_7	xxxx 0111	RAM (8)		7	7	8	W	9	W			7	ŧ	7	ħ	q	П
_8	xxxx 1000	(1)		Ç	8	Н	Χ	h	×			ď	9	*	Ų	ŗ	X
_9	xxxx 1001	(2))	9	Ι	Υ	i	y			÷	Ť	J	16	-1	ч
_A	хххх 1010	(3)		*	#	J	Z	j	Z			I		ñ	V	i	¥
_B	xxxx 1011	(4)		+	ä	K		k	4			Ħ	#	t		×	Ħ
_c	xxxx 1100	(5)		,	⋖		¥	1	1			†	3	Į	7	\$	M
_D	xxxx 1101	(6)			===	M]	M)			.1	Z	٩	þ	ŧ	÷
_E	xxxx 1110	(7)			>	N	^	n	÷			3	t	1	۰	ñ	
F	xxxx 1111	(8)		/	?	0		O	÷			.,,	y	7	ш	ö	

- O controlador possui uma memória RAM de dados de 80 bytes
- Endereçados de (00h a 67h)
 - Este é o mapa de memória mais comum para os 80 bytes de DDRAM no controlador HD44780

- Como você pode ver, a DDRAM consiste em duas linhas de memória com um intervalo um tanto misterioso no endereçamento quando vai da primeira linha de memória para o segundo
 - A primeira linha tem 40 locais de armazenamento identificados pelos endereços 00h a 27h
 - A segunda linha tem outros 40 locais de armazenamento identificados pelos endereços 40h até 67h.

- Como você pode ver, a DDRAM consiste em duas linhas de memória com um intervalo um tanto misterioso no endereçamento quando vai da primeira linha de memória para o segundo
 - A lacuna misteriosa é devido a considerações resultantes da multiplexação da exibição
 - O endereçamento DDRAM usa endereçamento de sete bits e o bit mais alto significa que linha de memória está envolvida
 - Se você compara os endereços na primeira linha com aqueles logo abaixo na segunda linha você verá que a única diferença é um bit.

DDRAM

- O bit mais significativo do endereçamento da RAM sempre é 1
- Endereçados de (00h a 67h) para (80-E7)

5.2.8. Set display data RAM address

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Code	0	0	1	а	а	а	а	а	а	а	
				,							

It sets Display Data RAM Address (aaaaaaa)₂ to the Address Counter.

7	6	5	4	3	2	1	0			
1	0	0	0	0	0	0	0			
	8	3		0						
7	6	5	4	3	2	1	0			
1	1	0	0	0 0 0 0						
	(O					

7	6	5	4	3	2	1	0					
1	0	0	0	0	0	0	0					
	()		0								
7	6	5	4	3	2	1	0					
1	1	0	0	0	0	0	0					
	2	1			0							

- O bit mais significativo do endereçamento da RAM sempre é 1
- Endereçados de (00h a 67h) para (80-E7)

Posiciona cursor no início (sem apagar DDRAM) 0 0 0 0 0 1 x 02- Desloca cursor para esquerda após escrever caractere 0	Modo (Rs=0 e R/W=0)									IR
Desloca cursor para esquerda após escrever caractere 0	Limpa o display (DDRAM) e posiciona o cursor no inicio	0	0	0	0	0	0	0	1	01
Desloca mensagem para esquerda após escrever caractere 0 0 0 0 1 0 1 0 Desloca cursor para direita após escrever caractere 0 0 0 0 0 1 1 0 0 Desloca mensagem para esquerda após escrever caractere 0 0 0 0 0 1 1 0 0 Desliga display e cursor, mantendo os dados na DDRAM 0 0 0 0 1 0	Posiciona cursor no início (sem apagar DDRAM)	0	0	0	0	0	0	1	Χ	02-03
Desloca cursor para direita após escrever caractere 0 0 0 0 1 1 0 0 Desloca mensagem para esquerda após escrever caractere 0 0 0 0 1 1 1 0 Desliga display e cursor, mantendo os dados na DDRAM 0 0 0 0 1 0	Desloca cursor para esquerda após escrever caractere	0	0	0	0	0	1	0	0	04
Desloca mensagem para esquerda após escrever caractere 0 0 0 0 1 1 1 0 Desliga display e cursor, mantendo os dados na DDRAM 0 0 0 0 1 0	Desloca mensagem para esquerda após escrever caractere	0	0	0	0	0	1	0	1	05
Desliga display e cursor, mantendo os dados na DDRAM 0 0 0 1 0 0 0 Desliga display, dados pemanecem na DDRAM, cursor pisca 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 <td< td=""><td>Desloca cursor para direita após escrever caractere</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>0</td><td>06</td></td<>	Desloca cursor para direita após escrever caractere	0	0	0	0	0	1	1	0	06
Desliga display, dados pemanecem na DDRAM, cursor pisca 0 0 0 1 0 0 1 0 0 1 0 0 1 0	Desloca mensagem para esquerda após escrever caractere	0	0	0	0	0	1	1	1	07
Desliga display e liga cursor fixo 0 0 0 0 1 0 1 0 0 Desliga display e liga cursor fixo 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0	Desliga display e cursor, mantendo os dados na DDRAM	0	0	0	0	1	0	0	0	08
Desliga display, mantendo os dados na DDRAM, liga cursor 0 0 0 1 0 1 1 0 Liga o display e esconde o cursor piscante 0 0 0 0 1 1 0 0 0 Liga o display e o cursor fica piscando 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1	Desliga display, dados pemanecem na DDRAM, cursor pisca	0	0	0	0	1	0	0	1	09
Liga o display e esconde o cursor piscante 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0<	Desliga display e liga cursor fixo	0	0	0	0	1	0	1	0	0A
Liga o display e o cursor fica piscando 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 <td>Desliga display, mantendo os dados na DDRAM, liga cursor</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0B</td>	Desliga display, mantendo os dados na DDRAM, liga cursor	0	0	0	0	1	0	1	1	0B
Liga o display e o cursor fica fixo 0 0 0 0 1 1 1 0 0 Liga o display e o cursor fica alternante 0 0 0 0 1 1 1 0 0 Desloca cursor para esquerda e decrementa AC 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Liga o display e esconde o cursor piscante	0	0	0	0	1	1	0	0	0C
Liga o display e o cursor fica alternante 0 0 0 0 1 1 1 0 Desloca cursor para esquerda e decrementa AC 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0	Liga o display e o cursor fica piscando	0	0	0	0	1	1	0	1	0D
Desloca cursor para esquerda e decrementa AC 0 0 1 0 0 x x 10- Desloca cursor para direita e incrementa AC 0 0 0 1 0 1 x 14- Desloca mensagem para esquerda e cursor acompanha 0 0 1 1 0 x 18- Desloca mensagem para direita e cursor acompanha 0 0 1 1 1 x 18- Interface 4 bits, display de 1 linha e matriz 5x8 0 0 1 0	Liga o display e o cursor fica fixo	0	0	0	0	1	1	1	0	0E
Desloca cursor para direita e incrementa AC 0 0 0 1 0 1 x x 14- Desloca mensagem para esquerda e cursor acompanha 0 0 0 1 1 0 x x 18- Desloca mensagem para direita e cursor acompanha 0 0 0 1 1 0 x x 18- Interface 4 bits, display de 1 linha e matriz 5x8 0 0 1 0 0 x x 20- Interface 4 bits, display de 2 linha e matriz 5x8 0 0 1 0 0 1 0 x x 28- Interface 8 bits, display de 1 linha e matriz 5x8 0 0 1 0 0 x x 20- Interface 8 bits, display de 1 linha e matriz 5x8 0 0 1 1 0 0 x x 30- Interface 8 bits, display de 1 linha e matriz 5x11 0 0 1 1 0 0 x x 30- <td>Liga o display e o cursor fica alternante</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0F</td>	Liga o display e o cursor fica alternante	0	0	0	0	1	1	1	1	0F
Desloca mensagem para esquerda e cursor acompanha 0 0 1 1 0 x x 18- Desloca mensagem para direita e cursor acompanha 0 0 0 1 1 1 x x 10- Interface 4 bits, display de 1 linha e matriz 5x8 0 0 1 0 0 1 0 0 1 x x 20- Interface 4 bits, display de 2 linha e matriz 5x8 0 0 1 0 0 1 0 x x 28- Interface 4 bits, display de 2 linha e matriz 5x8 0 0 1 0 0 1 1 x x 2C- Interface 8 bits, display de 1 linha e matriz 5x8 0 0 1 1 0 0 x x 30- Interface 8 bits, display de 1 linha e matriz 5x11 0 0 1 1 0 0 x x 30-	Desloca cursor para esquerda e decrementa AC	0	0	0	1	0	0	Χ	Х	10-13
Desloca mensagem para direita e cursor acompanha 0 0 1 1 1 X X 1C- Interface 4 bits, display de 1 linha e matriz 5x8 0 0 1 0	Desloca cursor para direita e incrementa AC	0	0	0	1	0	1	Χ	Х	14-17
Interface 4 bits, display de 1 linha e matriz 5x8 0 0 1 0	Desloca mensagem para esquerda e cursor acompanha	0	0	0	1	1	0	Χ	Х	18-1B
Interface 4 bits, display de 1 linha e matriz 5x11 0 0 1 0 0 1 x x 24- Interface 4 bits, display de 2 linha e matriz 5x8 0 0 1 0 1 0 x x 28- Interface 4 bits, display de 2 linha e matriz 5x11 0 0 1 0 1 1 x x 2C- Interface 8 bits, display de 1 linha e matriz 5x8 0 0 1 1 0 0 x x 30- Interface 8 bits, display de 1 linha e matriz 5x11 0 0 1 1 0 1 x x 34-	Desloca mensagem para direita e cursor acompanha	0	0	0	1	1	1	Χ	Х	1C-1F
Interface 4 bits, display de 2 linha e matriz 5x8 0 0 1 0 1 0 x x 28- Interface 4 bits, display de 2 linha e matriz 5x11 0 0 1 0 1 1 x x 2C- Interface 8 bits, display de 1 linha e matriz 5x8 0 0 1 1 0 0 x x 30- Interface 8 bits, display de 1 linha e matriz 5x11 0 0 1 1 0 1 x x 34-	Interface 4 bits, display de 1 linha e matriz 5x8	0	0	1	0	0	0	Χ	Х	20-23
Interface 4 bits, display de 2 linha e matriz 5x11 0 0 1 0 1 1 x x 2C- Interface 8 bits, display de 1 linha e matriz 5x8 0 0 1 1 0 0 x x 30- Interface 8 bits, display de 1 linha e matriz 5x11 0 0 1 1 0 1 x x 34-	Interface 4 bits, display de 1 linha e matriz 5x11	0	0	1	0	0	1	Χ	Х	24-27
Interface 8 bits, display de 1 linha e matriz 5x8 0 0 1 1 0 0 x x 30- Interface 8 bits, display de 1 linha e matriz 5x11 0 0 1 1 0 1 x x 34-	Interface 4 bits, display de 2 linha e matriz 5x8	0	0	1	0	1	0	Χ	Х	28-2B
Interface 8 bits, display de 1 linha e matriz 5x11 0 0 1 1 0 1 x x 34-	Interface 4 bits, display de 2 linha e matriz 5x11	0	0	1	0	1	1	Χ	Х	2C-2F
	Interface 8 bits, display de 1 linha e matriz 5x8	0	0	1	1	0	0	Χ	Х	30-33
Interface 8 bits display de 2 lipha e matriz 5x8 0 0 1 1 1 0 x x 38-	Interface 8 bits, display de 1 linha e matriz 5x11	0	0	1	1	0	1	Χ	Х	34-37
interrade e bite, diopidy de 2 inina e matriz exe	Interface 8 bits, display de 2 linha e matriz 5x8	0	0	1	1	1	0	Χ	Х	38-3B
Interface 8 bits, display de 2 linha e matriz 5x11 0 0 1 1 1 1 x x 3C-	Interface 8 bits, display de 2 linha e matriz 5x11	0	0	1	1	1	1	Χ	Х	3C-3F
Endereços para escrever na CGRAM 0 1 AC5 AC4 AC3 AC2 AC1 AC0 40-	Endereços para escrever na CGRAM	0	1	AC5	AC4	AC3	AC2	AC1	AC0	40-7F
Endereços para escrever/ler na DDRAM 1 AC6 AC5 AC4 AC3 AC2 AC1 AC0 80-	Endereços para escrever/ler na DDRAM	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	80-FF

Tabela 4) código das instruções que comandam o LCD

DDRAM

- · Ela é dividida em blocos, que se referem às linhas do display
 - A primeira linha inicia em 80h e vai até A7h
 - A segunda linha inicia em C0h e vai até E7h
 - » Compondo um total de 64 caracteres cada linha (máximo)

Endereços dos seguimentos DDRAM LCD 16 x 2 (Linha 1: 80 a 8F, Linha 2: C0 a CF)

Fig. 5.22 – Endereços para a escrita num LCD 20 × 4.

- CGRAM (Character Generator RAM)
 - Área na qual o programador pode definir caracteres especiais que não constam na tabela ASCII
 - Possui tipicamente 8 matrizes para compor os caracteres customizáveis
 - Cada matriz utiliza 8 bytes totalizando uma memória de 64 bytes acessados através de um conjunto de endereços
 - $> 2^6 = 64$ (utiliza 6 bits de endereçamento)

5.2.7. Set character generator RAM address

	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Code	0	0	0	1	а	а	а	а	а	а	

It sets Character Generator RAM Address (aaaaaa)₂ to the Address Counter.

Modo (Rs=0 e R/W=0)									IR
Limpa o display (DDRAM) e posiciona o cursor no inicio	0	0	0	0	0	0	0	1	01
Posiciona cursor no início (sem apagar DDRAM)	0	0	0	0	0	0	1	Х	02-03
Desloca cursor para esquerda após escrever caractere	0	0	0	0	0	1	0	0	04
Desloca mensagem para esquerda após escrever caractere	0	0	0	0	0	1	0	1	05
Desloca cursor para direita após escrever caractere	0	0	0	0	0	1	1	0	06
Desloca mensagem para esquerda após escrever caractere	0	0	0	0	0	1	1	1	07
Desliga display e cursor, mantendo os dados na DDRAM	0	0	0	0	1	0	0	0	08
Desliga display, dados pemanecem na DDRAM, cursor pisca	0	0	0	0	1	0	0	1	09
Desliga display e liga cursor fixo	0	0	0	0	1	0	1	0	0A
Desliga display, mantendo os dados na DDRAM, liga cursor	0	0	0	0	1	0	1	1	0B
Liga o display e esconde o cursor piscante	0	0	0	0	1	1	0	0	0C
Liga o display e o cursor fica piscando	0	0	0	0	1	1	0	1	0D
Liga o display e o cursor fica fixo	0	0	0	0	1	1	1	0	0E
Liga o display e o cursor fica alternante	0	0	0	0	1	1	1	1	0F
Desloca cursor para esquerda e decrementa AC	0	0	0	1	0	0	Χ	Χ	10-13
Desloca cursor para direita e incrementa AC	0	0	0	1	0	1	Х	Х	14-17
Desloca mensagem para esquerda e cursor acompanha	0	0	0	1	1	0	Χ	Х	18-1B
Desloca mensagem para direita e cursor acompanha	0	0	0	1	1	1	Х	Х	1C-1F
Interface 4 bits, display de 1 linha e matriz 5x8	0	0	1	0	0	0	Χ	Χ	20-23
Interface 4 bits, display de 1 linha e matriz 5x11	0	0	1	0	0	1	Χ	Χ	24-27
Interface 4 bits, display de 2 linha e matriz 5x8	0	0	1	0	1	0	Χ	Χ	28-2B
Interface 4 bits, display de 2 linha e matriz 5x11	0	0	1	0	1	1	Χ	Χ	2C-2F
Interface 8 bits, display de 1 linha e matriz 5x8	0	0	1	1	0	0	Х	Х	30-33
Interface 8 bits, display de 1 linha e matriz 5x11	0	0	1	1	0	1	Х	Х	34-37
Interface 8 bits, display de 2 linha e matriz 5x8	0	0	1	1	1	0	Χ	Х	38-3B
Interface 8 bits, display de 2 linha e matriz 5x11	0	0	1	1	1	1	Χ	Х	3C-3F
Endereços para escrever na CGRAM	0	1	AC5	AC4	AC3	AC2	AC1	AC0	40-7F
Endereços para escrever/ler na DDRAM	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	80-FF

Tabela 4) código das instruções que comandam o LCD

- CGRAM (Caractere Generator RAM)
 - Cada matriz utiliza 8 bytes totalizando uma memória de 64 bytes acessados através de um conjunto de endereços

ASCII	Endereço	CGRAM
	(Hexadecimal)	
0	40 a 47	
1	48 a 4F	
2	50 a 58	
3	58 a 5F	
4	60 a 67	
5	68 a 6F	
6	70 a 77	
7	78 a 7F	

Tabela 3) endereços da CGRAM

- CGRAM (Caractere Generator RAM)
 - Os dados da CGRAM são apresentados em um mapa de bits de 8 bytes
 - Utilizam 7, com 5 bits cada, sendo 1 byte reservado para o cursor

Endereço da CGRAM	Mapa de bits	Dado
0x48		0b00100
0x49		0Ь00100
0x4A		0b01010
0x4B		0b01010
0x4C		0b10001
0x4E		0b11111
0x4F		0ь00000

Fig. 5.24 – Gravação do símbolo Δ na CGRAM, matriz 5×7. Esse caractere será selecionado pelo código 0x01.

- · O registrador de instruções (IR Instruction Register):
 - Comanda o display de acordo com as operações de configuração e instruções

Figura 3) arquitetura interna hipotética (proposta pelo autor)

Modo (Rs=0 e R/W=0)									IR
Limpa o display (DDRAM) e posiciona o cursor no inicio	0	0	0	0	0	0	0	1	01
Posiciona cursor no início (sem apagar DDRAM)	0	0	0	0	0	0	1	Χ	02-03
Desloca cursor para esquerda após escrever caractere	0	0	0	0	0	1	0	0	04
Desloca mensagem para esquerda após escrever caractere	0	0	0	0	0	1	0	1	05
Desloca cursor para direita após escrever caractere	0	0	0	0	0	1	1	0	06
Desloca mensagem para esquerda após escrever caractere	0	0	0	0	0	1	1	1	07
Desliga display e cursor, mantendo os dados na DDRAM	0	0	0	0	1	0	0	0	08
Desliga display, dados pemanecem na DDRAM, cursor pisca	0	0	0	0	1	0	0	1	09
Desliga display e liga cursor fixo	0	0	0	0	1	0	1	0	0A
Desliga display, mantendo os dados na DDRAM, liga cursor	0	0	0	0	1	0	1	1	0B
Liga o display e esconde o cursor piscante	0	0	0	0	1	1	0	0	0C
Liga o display e o cursor fica piscando	0	0	0	0	1	1	0	1	0D
Liga o display e o cursor fica fixo	0	0	0	0	1	1	1	0	0E
Liga o display e o cursor fica alternante	0	0	0	0	1	1	1	1	0F
Desloca cursor para esquerda e decrementa AC	0	0	0	1	0	0	Χ	Х	10-13
Desloca cursor para direita e incrementa AC	0	0	0	1	0	1	Χ	Х	14-17
Desloca mensagem para esquerda e cursor acompanha	0	0	0	1	1	0	Χ	Х	18-1B
Desloca mensagem para direita e cursor acompanha	0	0	0	1	1	1	Χ	Х	1C-1F
Interface 4 bits, display de 1 linha e matriz 5x8	0	0	1	0	0	0	Χ	Х	20-23
Interface 4 bits, display de 1 linha e matriz 5x11	0	0	1	0	0	1	Х	Х	24-27
Interface 4 bits, display de 2 linha e matriz 5x8	0	0	1	0	1	0	Χ	Х	28-2B
Interface 4 bits, display de 2 linha e matriz 5x11	0	0	1	0	1	1	Χ	Х	2C-2F
Interface 8 bits, display de 1 linha e matriz 5x8	0	0	1	1	0	0	Х	Х	30-33
Interface 8 bits, display de 1 linha e matriz 5x11	0	0	1	1	0	1	Χ	Х	34-37
Interface 8 bits, display de 2 linha e matriz 5x8	0	0	1	1	1	0	Χ	Х	38-3B
Interface 8 bits, display de 2 linha e matriz 5x11	0	0	1	1	1	1	Χ	Х	3C-3F
Endereços para escrever na CGRAM	0	1	AC5	AC4	AC3	AC2	AC1	AC0	40-7F
Endereços para escrever/ler na DDRAM	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	80-FF

Tabela 4) código das instruções que comandam o LCD

INSTRUÇÃO	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Descrição	Execução			
Limpa Display	0	0	0	0	0	0	0	0	0	1	Limpa todo o display e retoma o cursor para a primeira posição da primeira linha.	1,6 ms			
Retorno do cursor	0	0	0	0	0	0	0	0	1		Retorna o cursor para a 1ª coluna da 1ª linha. Retorna a mensagem previamente deslocada a sua posição original.	1,6 ms			
Fixa o modo de Funciona- mento	0	0	0	0	0	0	0	1	x	s	Ajusta o sentido de deslocamento do cursor (X=0 p/ a esquerda, X=1 p/ a direita). Determina se a mensagem deve ou não ser deslocada com a entrada de um novo caractere (S = 1, SIM). Esta instrução tem efeito somente durante a leitura e escrita de dados.	40 μs			
Controle do Display	0	0	0	0	0	0	1	D	С	В	Liga (D=1) ou desliga display (D=0). Liga (C=1) ou desliga cursor (C=0). Cursor piscante (B=1) se C=1.	40 μs			
Desloca cursor ou mensagem	0	0	0	0	0	1	С	R			Desloca o cursor (C=0) ou a mensagem (C=1) para a direita se R=1 ou esquerda se R=0. Desloca sem alterar o conteúdo da DDRAM	40 μs			
Fixa modo de utilização do módulo LCD	0	0	0	0	1	Υ	N	F	-		Comunicação do módulo com 8 bits (Y=1) ou 4 bits (Y=0). Número de linhas: 1 (N=0) e 2 ou mais (N=1). Matriz do caractere: 5×7 (F=0) ou 5×10 (F=1). Esta instrução deve ser empregada na inicialização.	40 µs			
Endereço da CGRAM	0	0	0	1 Endereço da CGRAM			BRAM	1	Fixa o endereço da CGRAM para posterior envio ou leitura de um dado (byte).	40 μs					
Endereço da DDRAM	0	0	1	Endereço da DDRAM			AM		Fixa o endereço da DDRAM para posterior envio ou leitura de um dado (byte).	40 μs					
Leitura do bit de ocupado e do conteúdo de endereços	0	1	B F						Lê o conteúdo do contador de endereços AC e o BF. O bit 7 do BF indica se a última operação foi concluída (BF=0 concluída, BF=1 em execução).	-					
Escreve dado na CGRAM/ DDRAM	1	0		Dado a ser gravado no LCD				o no L	.CD		Grava o byte presente nos pinos de dados no local apontado pelo contador de endereços (posição do cursor).				
Lê dado da CGRAM/ DDRAM	1	1		Dado lido do módulo			Lê o byte do local apontado pelo contador de endereços (posição do cursor).								

Tab. B3: Resumo dos códigos de instruções.

Descrição	Modo	Código Hexa			
Control e do display	Liga (sem cursor)	0x0C			
	Desliga	0x0A/0x08			
Limpa display com retorno do cursor		0x01			
	Liga	0x0E			
	Desliga	0x0C			
0	Desloca p/ a esquerda	0x10			
Controle do cursor	Desloca p/ a direita	0x14			
	Retorno	0x02			
	Cursor piscante	0x0D			
	Cursor com alternância	0x0F			
Sentido de deslocamento do cursor	Para a esquerda	0x04			
na entrada de um caractere	Para a direita	0x06			
Deslocamento da mensagem na	Para a esquerda	0x07			
entrada de um caractere	Para a direita	0x05			
Deslocamento da mensagem	Para a esquerda	0x18			
sem a entrada de caractere	Para a direita	0x1C			
Endereço da primeira posição	Primeira linha	0x80			
do cursor	Segunda linha	0xC0			

- · O registrador de instruções (IR Instruction Register):
 - Endereça a memória com os endereços descritos na Tabela 2 e Tabela 3

Figura 3) arquitetura interna hipotética (proposta pelo autor)

Descrição	Modo	RS	RW	IR
Endereços DDRAM*	Primeira posição da primeira linha	0	0	80
	Primeira posição da segunda linha	0	0	C0

Tabela 2) endereços da DDRAM

ASCII	Endereço	CGRAM
	(Hexadecimal)	
0	40 a 47	
1	48 a 4F	
2	50 a 58	
3	58 a 5F	
4	60 a 67	
5	68 a 6F	
6	70 a 77	
7	78 a 7F	

Tabela 3) endereços da CGRAM

- O registrador de dados, DR (Data Register), serve para armazenar os dados que serão escritos no display
 - Os dados seguem o padrão ASCII e também podem ser programados pelo usuário através da memória CGRAM
 - RS deve conter 1 lógico e R/W 0 lógico (Write)

Figura 3) arquitetura interna hipotética (proposta pelo autor)

- O registrador AC pode ser incrementado automaticamente quando um caractere é escrito ou decrementado quando uma informação é lida da DDRAM
 - O módulo deve estar programado para tal, de acordo com as instruções descritas na Tabela 4.
 - Esse endereço pode poder ser lido nos bits D0 a D6 do barramento quando RS=0 e R/W=1
 - O último bit do barramento, D7 conterá o BF (Busy Flag).

Figura 3) arquitetura interna hipotética (proposta pelo autor)

Modo (Rs=0 e R/W=0)									IR
Limpa o display (DDRAM) e posiciona o cursor no inicio	0	0	0	0	0	0	0	1	01
Posiciona cursor no início (sem apagar DDRAM)	0	0	0	0	0	0	1	Х	02-03
Desloca cursor para esquerda após escrever caractere	0	0	0	0	0	1	0	0	04
Desloca mensagem para esquerda após escrever caractere	0	0	0	0	0	1	0	1	05
Desloca cursor para direita após escrever caractere	0	0	0	0	0	1	1	0	06
Desloca mensagem para esquerda após escrever caractere	0	0	0	0	0	1	1	1	07
Desliga display e cursor, mantendo os dados na DDRAM	0	0	0	0	1	0	0	0	08
Desliga display, dados pemanecem na DDRAM, cursor pisca	0	0	0	0	1	0	0	1	09
Desliga display e liga cursor fixo	0	0	0	0	1	0	1	0	0A
Desliga display, mantendo os dados na DDRAM, liga cursor	0	0	0	0	1	0	1	1	0B
Liga o display e esconde o cursor piscante	0	0	0	0	1	1	0	0	0C
Liga o display e o cursor fica piscando	0	0	0	0	1	1	0	1	0D
Liga o display e o cursor fica fixo	0	0	0	0	1	1	1	0	0E
Liga o display e o cursor fica alternante	0	0	0	0	1	1	1	1	0F
Desloca cursor para esquerda e decrementa AC	0	0	0	1	0	0	Χ	Х	10-13
Desloca cursor para direita e incrementa AC	0	0	0	1	0	1	X	Х	14-17
Desloca mensagem para esquerda e cursor acompanha	0	0	0	1	1	0	X	Х	18-1B
Desloca mensagem para direita e cursor acompanha	0	0	0	1	1	1	Χ	Х	1C-1F
Interface 4 bits, display de 1 linha e matriz 5x8	0	0	1	0	0	0	Χ	Х	20-23
Interface 4 bits, display de 1 linha e matriz 5x11	0	0	1	0	0	1	Х	Х	24-27
Interface 4 bits, display de 2 linha e matriz 5x8	0	0	1	0	1	0	Х	Х	28-2B
Interface 4 bits, display de 2 linha e matriz 5x11	0	0	1	0	1	1	Х	Х	2C-2F
Interface 8 bits, display de 1 linha e matriz 5x8	0	0	1	1	0	0	Х	Х	30-33
Interface 8 bits, display de 1 linha e matriz 5x11	0	0	1	1	0	1	Χ	Х	34-37
Interface 8 bits, display de 2 linha e matriz 5x8	0	0	1	1	1	0	Χ	Х	38-3B
Interface 8 bits, display de 2 linha e matriz 5x11	0	0	1	1	1	1	Χ	Х	3C-3F
Endereços para escrever na CGRAM	0	1	AC5	AC4	AC3	AC2	AC1	AC0	40-7F
Endereços para escrever/ler na DDRAM	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	80-FF

Tabela 4) código das instruções que comandam o LCD

- Existem duas possibilidades de comunicação com o display
 - Empregando 8 vias de dados para a comunicação (D0-D7)
 - Empregando 4 vias de dados (D4-D7)
 - O dado é enviado separadamente em duas partes (2 nibbles)

Fig. 5.16 – Circuito para acionamento de um LCD 16 \times 2 usando 8 vias de dados.

Fig. 5.18 – Circuito para acionamento de um LCD 16 \times 2 com interface de dados de 4 bits.

- Interface de dados de 8 bits
 - Para ler ou escrever no display LCD:
 - 1. Levar o pino R/W para:
 - » 0 lógico para operação de escrita (Write)
 - » 1 lógico para operação de leitura (Read)
 - » Aterra-se (GND) esse pino se não há necessidade de monitorar a resposta do LCD – sempre 0 lógico (Write).
 - 2. Levar o pino RS (Register Select) para:
 - » 0 lógico instrução
 - » 1 lógico caractere

- Interface de dados de 8 bits
 - Para ler ou escrever no display LCD:
 - 3. Transferir os dados para a via de dados (8 bits)
 - 4. Gerar um pulso de habilitação
 - » Levar o pino E (Enable) para 1 lógico e, após um pequeno tempo, para 0 lógico
 - 5. Empregar uma rotina de atraso entre as instruções ou
 - » Fazer a leitura do busy flag (o bit 7 da linha de dados que indica que o display está ocupado) antes do envio da instrução, enviando-a somente quando esse flag for 0 lógico.
 - » Utilizaremos uma rotina de atraso entre as instruções

- Interface de dados de 8 bits
 - Os passos 1, 2 e 3 podem ser efetuados em qualquer sequência
 - O pulso de habilitação é que faz o controlador do LCD ler os dados dos seus pinos
 - É importante respeitar os tempos de resposta do LCD à transição dos sinais enviados ao mesmo
 - O fluxograma de inicialização do LCD conforme especificação da Hitachi
 - Se desejado, o busy flag pode ser lido após o ajuste do modo de utilização do display
 - Os comandos para o LCD são detalhado no apêndice B.

Fig. 5.16 – Circuito para acionamento de um LCD 16 \times 2 usando 8 vias de dados.

```
#define DADOS_LCD PORTD //8 bits de dados do LCD na porta D
#define CONTR_LCD PORTB //os pinos de controle estão no PORTB
#define RS PB1 //pino de instrução ou dado para o LCD
#define E PB0 //pino de enable do LCD
```


https://www.tinkercad.com/things/19Wb43hH170


```
AVR e Arduino: Técnicas de Projeto, 2a ed. - 2012.
       ACIONANDO UM DISPLAY DE CRISTAL LIQUIDO DE 16x2
               Interface de dados de 8 bits
//define a frequência do microcontrolador - 16MHz
#define F_CPU 16000000UL
                        //definições do componente especificado
#include <avr/io.h>
#include <util/delay.h>
                           //biblioteca para o uso das rotinas de delay
#include <avr/pgmspace.h>
                           //uso de funções para salvar dados na memória de programa
//Definições de macros - empregadas para o trabalho com o bits
#define set_bit(Y,bit_x) (Y|=(1<<bit_x)) //ativa o bit x da variável Y</pre>
#define clr_bit(Y,bit_x) (Y\&=^(1<< bit_x)) //limpa o bit x da variável Y
#define tst_bit(Y,bit_x) (Y&(1<<br/>bit_x)) //testa o bit x da variável Y
#define cpl_bit(Y,bit_x) (Y^=(1<<bit_x)) //troca o estado do bit x da variável Y</pre>
//para uso no LCD
#define pulso_enable() _delay_us(1); set_bit(CONTR_LCD,E); _delay_us(1); clr_bit(CONTR_LCD,E); _delay_us(45)
#define DADOS LCD
                   PORTD //8 bits de dados do LCD na porta D
                PORTB //os pinos de controle estão no PORTB
#define CONTR LCD
                        //pino de instrução ou dado para o LCD
#define RS
                PB1
                         //pino de enable do LCD
#define E
                PB0
//mensagem armazenada na memória flash
const unsigned char msq1[] PROGMEM = "ABCDEFGHIJKLMNOP";
```



```
//Sub-rotina de inicialização do LCD - sequência ditada pelo fabricando do circuito de controle do LCD
void inic_LCD_8bits()
  clr_bit(CONTR_LCD,RS);//o LCD será só escrito então R/W é sempre zero
  _delay_ms(15); /*tempo para estabilizar a tensão do LCD, após VCC ultrapassar
                 4.5 V (pode ser bem maior na prática)*/
  DADOS_LCD = 0x38; //interface 8 bits, 2 linhas, matriz 7x5 pontos
  pulso_enable();
                      //enable respeitando os tempos de resposta do LCD
  _delay_ms(5);
  pulso_enable();
  _delay_us(200);
  pulso_enable();
  pulso_enable();
      cmd_LCD(0x08,0); //desliga LCD
     cmd_LCD(0x01,0); //limpa todo o display
     cmd_LCD(0x0C,0); //mensagem aparente cursor inativo não piscando
     cmd_LCD(0x80,0); //escreve na primeira posição a esquerda - 1ª linha
```



```
INICIALIZAÇÃO LCD
                                                            HD44780 - 8 BITS
                                                           ATRASO > 15 ms
                                                                                          Esperar mais de 15 ms após VCC alcançar 4,5 V
                                                   RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
                                                                                          Interface de 8 bits
                                                   0 0 0 0 1 1 * * * *
                                                            PULSO ENABLE
//Sub-rotina de inicialização do LCD -
                                                           ATRASO > 4.1 ms
void inic_LCD_8bits()
                                                            PULSO ENABLE
   clr_bit(CONTR_LCD,RS);//o LCD será :
                                                           ATRASO > 100 us
   _delay_ms(15); /*tempo para estal
                      4.5 V (pode ser bem r
                                                            PULSO ENABLE
   DADOS LCD = 0x38; //interface 8 bit;
                                                   RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
                                                                                         Ajusta o modo de utilização do display
                                                   0 0 0 0 1 1 N F * *
   pulso_enable();
                             //enable respe:
   _delay_ms(5);
                                                            PULSO ENABLE
   pulso_enable();
   _delay_us(200);
                                                   RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
                                                                                          Desliga o display
   pulso_enable();
                                                     0 0 0 0 0 1 0 0 0
   pulso_enable();
                                                            PULSO ENABLE
       cmd_LCD(0x08,0); //desliga LCD
       cmd_LCD(0x01,0); //limpa todo o
                                                   RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
       cmd_LCD(0x0C,0); //mensagem apai
                                                                                          Limpa o display
                                                   0 0 0 0 0 0 0 0 1
       cmd_LCD(0x80,0); //escreve na pi
                                                            PULSO ENABLE
                                                   RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
                                                                                          Ajusta o modo de funcionamento do cursor
                                                   0 0 0 0 0 0 0 1 I/D S
                                                            PULSO ENABLE
```

```
//Sub-rotina de escrita no LCD
void escreve_LCD(char *c)
   for (; *c!=0;c++) cmd_LCD(*c,1);
//Sub-rotina para enviar caracteres e comandos ao LCD
void cmd_LCD(unsigned char c, char cd) //c é o dado e cd indica se é instrução ou caractere
   DADOS LCD = c;
   if(cd==0)
      clr_bit(CONTR_LCD,RS); //RS = 0
   else
      set_bit(CONTR_LCD,RS); //RS = 1
   pulso_enable();
   //se for instrução de limpeza ou retorno de cursor espera o tempo necessário
   if((cd==0) && (c<4))
      _delay_ms(2);
```

- Interface de dados de 4 bits
 - Para ler ou escrever no display LCD:
 - 1. Levar o pino R/W para:
 - » 0 lógico para operação de escrita (Write)
 - » 1 lógico para operação de leitura (Read)
 - » Aterra-se (GND) esse pino se não há necessidade de monitorar a resposta do LCD – sempre 0 lógico (Write).
 - 2. Levar o pino RS (Register Select) para:
 - » 0 lógico instrução
 - » 1 lógico caractere

- Interface de dados de 4 bits
 - Para ler ou escrever no display LCD:
 - 3. Transferir a parte mais significativa dos dados para a via de dados
 - » 4 bits mais significativos (MSB) nibble maior
 - 4. Gerar um pulso de habilitação
 - » Levar o pino E (Enable) para 1 lógico e, após um pequeno tempo, para 0 lógico
 - 5. Transferir a parte menos significativa dos dados para a via de dados
 - » 4 bits menos significativos (LSB) *nibble* menor
 - 6. Gerar outro pulso de habilitação

Fig. 5.19 - Rotina de inicialização de 4 bits para um LCD com base no CI HD44780.

Fig. 5.18 – Circuito para acionamento de um LCD 16 \times 2 com interface de dados de 4 bits.

https://www.tinkercad.com/things/7zQ8vKiDCjc

def_principais.h

LCD.h

```
#ifndef LCD H
#define LCD H
#include "def_principais.h"
//Definições para facilitar a troca dos pinos do hardware e facilitar a re-programação
#define DADOS LCD
                        PORTD
                                 //4 bits de dados do LCD no PORTD
#define nibble dados 1
                           //0 para via de dados do LCD nos 4 LSBs do PORT empregado (Px0-D4, Px1-D5, Px2-D6, Px3-D7
                        //1 para via de dados do LCD nos 4 MSBs do PORT empregado (Px4-D4, Px5-D5, Px6-D6, Px7-D7)
#define CONTR LCD
                                 //PORT com os pinos de controle do LCD (pino R/W em 0).
                        PORTB
                             //pino de habilitação do LCD (enable)
#define E
                     PB1
#define RS
                             //pino para informar se o dado é uma instrução ou caractere
                     PB0
#define tam_vetor 5 //número de digitos individuais para a conversão por ident_num()
#define conv ascii 48 //48 se ident num() deve retornar um número no formato ASCII (0 para formato normal)
//sinal de habilitação para o LCD
#define pulso_enable() ^_delay_us(1);    set_bit(CONTR_LCD,E);    _delay_us(1);    clr_bit(CONTR_LCD,E);    _delay_us(45)
//protótipo das funções
void cmd_LCD(unsigned char c, char cd);
void inic_LCD_4bits();
void escreve_LCD(char *c);
void escreve_LCD_Flash(const char *c);
void ident_num(unsigned int valor, unsigned char *disp);
#endif
```


LCD_4bits.c

```
AVR e Arduino: Técnicas de Projeto, 2a ed. - 2012.
   ACIONANDO UM DISPLAY DE CRISTAL LIQUIDO DE 16x2
          Interface de dados de 4 bits
#include "def_principais.h" //inclusão do arquivo com as principais definições
#include "LCD.h"
//definiçao para acessar a memória flash
PROGMEM const char mensagem[] = " DADOS DE 4BITS!\0"; //mensagem armazenada na memória flash
int main()
   DDRD = 0xFF; //PORTD como saída
  DDRB = 0xFF:
  escreve_LCD(" INTERFACE DE"); //string armazenada na RAM
  cmd_LCD(0xC0,0); //desloca cursor para a segunda linha
  escreve LCD Flash(mensagem); //string armazenada na flash
  for(;;){}
                    //laço infinito
```

- A função inic_LCD_4bits() deve ser utilizada no início do programa principal para a correta inicialização do LCD
 - Existe uma sequência de comandos que deve ser seguida para que o LCD possa funcionar corretamente

LCD.c

```
//Sub-rotina para inicialização do LCD com via de dados de 4 bits
void inic_LCD_4bits() //sequência ditada pelo fabricando do circuito integrado HD44780
                  //o LCD será só escrito. Então, R/W é sempre zero.
  clr_bit(CONTR_LCD,RS); //RS em zero indicando que o dado para o LCD será uma instrução
  clr_bit(CONTR_LCD,E); //pino de habilitação em zero
                      //tempo para estabilizar a tensão do LCD, após VCC ultrapassar 4.5 V (na prática pode
  _delay_ms(20);
                   //ser maior).
  //interface de 8 bits
  #if (nibble_dados)
     DADOS_LCD = (DADOS_LCD & 0x0F) | 0x30;
  #else
     DADOS_LCD = (DADOS_LCD & 0xF0) | 0x03;
  #endif
  pulso_enable();  //habilitação respeitando os tempos de resposta do LCD
  _delay_ms(5);
  pulso_enable();
  _delay_us(200);
  pulso_enable();
                 /*até aqui ainda é uma interface de 8 bits.
             Muitos programadores desprezam os comandos acima, respeitando apenas o tempo de
             estabilização da tensão (geralmente funciona). Se o LCD não for inicializado primeiro no
             modo de 8 bits, haverá problemas se o microcontrolador for inicializado e o display já o tiver sido.*/
  //interface de 4 bits, deve ser enviado duas vezes (a outra está abaixo)
  #if (nibble dados)
     DADOS LCD = (DADOS LCD & 0x0F) | 0x20;
     DADOS_LCD = (DADOS_LCD & 0xF0) | 0x02;
  #endif
  pulso_enable();
                        //interface de 4 bits 2 linhas (aqui se habilita as 2 linhas)
     cmd_LCD(0x28,0);
                   //são enviados os 2 nibbles (0x2 e 0x8)
                       //desliga o display
     cmd_LCD(0x08,0);
                       //limpa todo o display
     cmd LCD(0x01,0);
                        //inicializa cursor na primeira posição a esquerda - 1a linha
     cmd_LCD(0x80,0);
```

- A função escreve_LCD("frase") recebe uma string, ou seja um conjunto de caracteres
 - Como na programação em C toda string é finalizada com o caractere nulo (0), essa função se vale desse artifício para verificar o final da string
 - Deve-se ter cuidado ao se utilizar essa função, porque a string é armazenada na memória RAM do microcontrolador, o que pode limitar a memória disponível para o programa.
- A função escreve_LCD_Flash(frase), onde a frase, previamente declarada no programa, é armazenada na memória flash

LCD.c

```
//Sub-rotina de escrita no LCD - dados armazenados na RAM
void escreve_LCD(char *c)
  for (; *c!=0;c++) cmd_LCD(*c,1);
//Sub-rotina de escrita no LCD - dados armazenados na FLASH
void escreve_LCD_Flash(const char *c)
   for (;pgm_read_byte(&(*c))!=0;c++) cmd_LCD(pgm_read_byte(&(*c)),1);
//Conversão de um número em seus digitos individuais
void ident_num(unsigned int valor, unsigned char *disp)
  unsigned char n;
   for(n=0; n<tam_vetor; n++)</pre>
     disp[n] = 0 + conv_ascii; //limpa vetor para armazenagem do digitos
   do
      *disp = (valor%10) + conv_ascii; //pega o resto da divisao por 10
     valor /=10;
                             //pega o inteiro da divisão por 10
     disp++;
   }while (valor!=0);
```

- A principal função para o controle do LCD é a cmd_LCD(dado, 0 ou 1)
 - Recebe dois parâmetros:
 - o dado que se deseja enviar ao LCD e
 - o número 0 ou 1
 - » 0 indica que o dado é uma instrução
 - » 1 indica que o dado é um caractere

LCD.c

```
#include "LCD.h"
// Sub-rotina para enviar caracteres e comandos ao LCD com via de dados de 4 bits
void cmd_LCD(unsigned char c, char cd) //c é o dado e cd indica se é instrução ou caractere
   if(cd==0)
     clr bit(CONTR LCD,RS);
   else
     set_bit(CONTR_LCD,RS);
   //primeiro nibble de dados - 4 MSB
  #if (nibble_dados)
                                           //compila código para os pinos de dados do LCD nos 4 MSB do PORT
     DADOS_LCD = (DADOS_LCD & OxOF) | (0xF0 & c);
                                     //compila código para os pinos de dados do LCD nos 4 LSB do PORT
   #else
     DADOS_LCD = (DADOS_LCD & 0xF0)|(c>>4);
   #endif
  pulso_enable();
   //segundo nibble de dados - 4 LSB
                                          //compila código para os pinos de dados do LCD nos 4 MSB do PORT
   #if (nibble dados)
     DADOS_LCD = (DADOS_LCD & 0x0F) | (0xF0 & (c<<4));
                                     //compila código para os pinos de dados do LCD nos 4 LSB do PORT
   #else
     DADOS LCD = (DADOS LCD & 0xF0) | (0x0F & c);
   #endif
  pulso_enable();
  if((cd==0) && (c<4)) //se for instrução de retorno ou limpeza espera LCD estar pronto
     _delay_ms(2);
```

Novos Caracteres

- CGRAM (Caractere Generator RAM)
 - Cada matriz utiliza 8 bytes totalizando uma memória de 64 bytes acessados através de um conjunto de endereços

ASCII	Endereço	CGRAM
	(Hexadecimal)	
0	40 a 47	
1	48 a 4F	
2	50 a 58	
3	58 a 5F	
4	60 a 67	
5	68 a 6F	
6	70 a 77	
7	78 a 7F	

Tabela 3) endereços da CGRAM

Tab. 5.3 – Endereço para criação de caracteres novos e seus códigos de chamada.

Endereço base	0x40	0x48	0x50	0x58	0x60	0x68	0x70	0x78
Código do caractere	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07

Novos Caracteres

- CGRAM (Caractere Generator RAM)
 - Os dados da CGRAM são apresentados em um mapa de bits de 8 bytes
 - Utilizam 7, com 5 bits cada, sendo 1 byte reservado para o cursor

Endereço da CGRAM	Mapa de bits	Dado				
0x48		0b00100				
0x49		0Ь00100				
0x4A		0b01010				
0x4B		0b01010				
0x4C		0b10001				
0x4E		0b11111				
0x4F		0ь00000				

Fig. 5.24 – Gravação do símbolo Δ na CGRAM, matriz 5×7. Esse caractere será selecionado pelo código 0x01.

LCD_4bits_2new_caract.c

```
AVR e Arduino: Técnicas de Projeto, 2a ed. - 2012.
                  CRIANDO CARACTERES PARA O LCD 16x2
                    Via de dados de 4 bits
#include "def_principais.h" //inclusão do arquivo com as principais definições
#include "LCD.h"
//informação para criar caracteres novos armazenada na memória flash
const unsigned char carac1[] PROGMEM = {0b01110,//C
                                        0b10001.
                                        0b10000.
                                        0b10000.
                                        0b10101.
                                        0b01110.
                                        0b10000};
const unsigned char carac2[] PROGMEM = {0b00100,//Delta
                                        0b00100.
                                        0b01010.
                                        0b01010.
                                        0b10001,
                                        0b11111.
                                        0b000001;
```

LCD_4bits_2new_caract.c

```
int main()
   unsigned char k;
                      //PORTD como saída
  DDRD = 0xFF:
                       //PORTB como saída
  DDRB = 0 \times FF:
  inic_LCD_4bits();  //inicializa o LCD
    cmd_LCD(0x40,0); //endereço base para gravar novo segmento 0x40
   for(k=0;k<7;k++)
       cmd_LCD(pqm_read_byte(&carac1[k]),1); //qrava 8 bytes na DDRAM começando no end. 0x40
  cmd LCD(0x00,1);
                        //apaqa última posição do end. da CGRAM para evitar alqum dado espúrio
     cmd LCD(0x48.0):
                      //endereço base para gravar novo segmento 0x48
   for(k=0;k<7;k++)
       cmd_LCD(pqm_read_byte(&carac2[k]),1); //qrava 8 bytes na DDRAM começando no end. 0x48
                           //apaga última posição do end. da CGRAM para evitar algum dado espúrio
     cmd_LCD(0x00,1);
  for(;;); //laço infinito
```

Rotinas Decodificação

- Na programação em C, as variáveis podem ser de 8, 16 ou mais bits
 - Para apresentar em um display o valor de alguma dessas variáveis
 - É necessário decodificar o número representado pela variável em seus dígitos individuais:
 - a) Dividir o número por 10
 - b) Guardar o resto
 - c) Pegar o número inteiro resultante
 - d) E seguir com o processo até que a divisão resulte zero
 - e) Os restos da divisão são os n dígitos individuais do número (base decimal)

LCD.h

```
#ifndef LCD H
#define LCD H
#include "def_principais.h"
//Definicões para facilitar a troca dos pinos do hardware e facilitar a re-programação
#define DADOS LCD
                        PORTD
                                 //4 bits de dados do LCD no PORTD
#define nibble dados 1
                           //0 para via de dados do LCD nos 4 LSBs do PORT empregado (Px0-D4, Px1-D5, Px2-D6, Px3-D7
                        //1 para via de dados do LCD nos 4 MSBs do PORT empregado (Px4-D4, Px5-D5, Px6-D6, Px7-D7)
#define CONTR LCD
                                 //PORT com os pinos de controle do LCD (pino R/W em 0).
                        PORTB
                             //pino de habilitação do LCD (enable)
#define E
                     PB1
#define RS
                             //pino para informar se o dado é uma instrução ou caractere
                     PB0
#define tam_vetor 5 //número de digitos individuais para a conversão por ident_num()
#define conv ascii 48 //48 se ident num() deve retornar um número no formato ASCII (0 para formato normal)
//sinal de habilitação para o LCD
#define pulso_enable() ^_delay_us(1);    set_bit(CONTR_LCD,E);    _delay_us(1);    clr_bit(CONTR_LCD,E);    _delay_us(45)
//protótipo das funções
void cmd_LCD(unsigned char c, char cd);
void inic_LCD_4bits();
void escreve_LCD(char *c);
void escreve_LCD_Flash(const char *c);
void ident_num(unsigned int valor, unsigned char *disp);
#endif
```


LCD.c

```
//Sub-rotina de escrita no LCD - dados armazenados na RAM
void escreve_LCD(char *c)
  for (; *c!=0;c++) cmd_LCD(*c,1);
//Sub-rotina de escrita no LCD - dados armazenados na FLASH
void escreve_LCD_Flash(const char *c)
   for (;pgm_read_byte(&(*c))!=0;c++) cmd_LCD(pgm_read_byte(&(*c)),1);
//Conversão de um número em seus digitos individuais
void ident_num(unsigned int valor, unsigned char *disp)
  unsigned char n;
   for(n=0; n<tam_vetor; n++)</pre>
     disp[n] = 0 + conv_ascii; //limpa vetor para armazenagem do digitos
   do
      *disp = (valor%10) + conv_ascii; //pega o resto da divisao por 10
     valor /=10:
                              //pega o inteiro da divisão por 10
     disp++;
   }while (valor!=0);
```

Rotinas Decodificação

- A função recebe dois parâmetros:
 - Um deles é o valor a ser convertido, limitado ao tamanho da variável declarada, no caso acima, 16 bits (unsigned int);
 - O outro parâmetro é o ponteiro para o vetor (*disp) que conterá os valores individuais dos dígitos da conversão
- No início da função, o vetor é zerado para garantir que valores anteriormente convertidos não prejudiquem a conversão atual
- Esse vetor deve ser declarado no corpo do programa onde será utilizado e seu tamanho é determinado pelo máximo valor que poderá conter

LCD.h

```
#ifndef LCD H
#define LCD H
#include "def_principais.h"
//Definicões para facilitar a troca dos pinos do hardware e facilitar a re-programação
#define DADOS LCD
                        PORTD
                                 //4 bits de dados do LCD no PORTD
#define nibble dados 1
                           //0 para via de dados do LCD nos 4 LSBs do PORT empregado (Px0-D4, Px1-D5, Px2-D6, Px3-D7
                        //1 para via de dados do LCD nos 4 MSBs do PORT empregado (Px4-D4, Px5-D5, Px6-D6, Px7-D7)
#define CONTR LCD
                                 //PORT com os pinos de controle do LCD (pino R/W em 0).
                        PORTB
                             //pino de habilitação do LCD (enable)
#define E
                     PB1
#define RS
                             //pino para informar se o dado é uma instrução ou caractere
                     PB0
#define tam_vetor 5 //número de digitos individuais para a conversão por ident_num()
#define conv ascii 48 //48 se ident num() deve retornar um número no formato ASCII (0 para formato normal)
//sinal de habilitação para o LCD
#define pulso_enable() ^_delay_us(1);    set_bit(CONTR_LCD,E);    _delay_us(1);    clr_bit(CONTR_LCD,E);    _delay_us(45)
//protótipo das funções
void cmd_LCD(unsigned char c, char cd);
void inic_LCD_4bits();
void escreve_LCD(char *c);
void escreve_LCD_Flash(const char *c);
void ident_num(unsigned int valor, unsigned char *disp);
#endif
```


Rotinas Decodificação

Exemplo:

- Um número de base decimal necessita ser somado a 48 (0x30)
- Para apresentar o número 5 em uma posição do LCD, deve ser enviado o número 53

$$0 \times 30 + 0 \times 05 = 0 \times 35$$

	NIBLLE	0_	1_	2_	3_	4_	5_	6_	7_	8_	9_	Α_	В_	c_	D_	E_	F_
NIBLL B	AIXO	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
_0	xxxx 0000	CG RAM (1)			0	0	P	Č	P	1				9	Ξ	œ	p
_1	xxxx 0001	RAM (2)		1	1	A	Q	a	9				7	Ŧ	4	ä	q
_2	xxxx 0010	CG RAM (3)		**	2	В	R	b	۳			ľ	4	ij	×	ø	8
_3	xxxx 0011	RAM (4)		#	3	С	5	C	s				ņ	Ť	€	8	ø
_4	хххх 0100	RAM (5)		\$	4	D	T	d	t,			٠,	I	ŀ	t	μ	Ω
_5	xxxx 0101	RAM (6)		X	5	Ε	U	0	u				7	†	1	Œ	ü
_6	xxxx 0110	RAM (7)		8.	6	F	Ų	f	Ų			Ŧ	Ħ			ρ	Σ
_7	xxxx 0111	RAM (8)		7	7	8	W	9	W			7	ŧ	3	Ŧ	q	Ж
_8	xxxx 1000	(1)		Ç	8	Н	Χ	h	×			4	9	*	Ų	J	×
_9	xxxx 1001	(2))	9	Ι	Υ	i	y			÷	Ť	J	16	-1	Ч
_A	xxxx 1010	(3)		*	#	J	Z	j	Z			I		ñ	V	i	Ŧ
_B	xxxx 1011	(4)		+	;	K		K	4			Ħ	#	t		×	Ħ
_c	xxxx 1100	(5)		,	<	L	¥	1	1			†	3	Į	7	\$	M
_D	xxxx 1101	(6)			===	M]	M	>			.1	Z	^,	٥,	ŧ.	÷
_E	xxxx 1110	(7)			>	N	^	n	÷			3	t	1	*	ñ	
_F	xxxx 1111	(8)			?	0		O	÷				y	7	ш	Ö	

LCD_4bits_ident_num.c

```
------//
    AVR e Arduino: Técnicas de Projeto, 2a ed. - 2012.
ACIONANDO UM DISPLAY DE CRISTAL LIQUIDO DE 16x2
    Uso da função ident_num(...)
#include "def_principais.h" //inclusão do arquivo com as principais definições
#include "LCD.h"
int main()
  unsigned char digitos[tam_vetor]; //declaração da variável para armazenagem dos digitos
   unsigned char cont;
                  //PORTD como saída
  DDRD = 0xFF:
  DDRB = 0xFF:
  inic_LCD_4bits();
                     //inicializa o LCD
  while(1)
    for(cont=0; cont<101; cont++)</pre>
       ident_num(cont, digitos);
       cmd_LCD(0x8D,0); //desloca o cursor para que os 3 digitos figuem a direita do LCI
       cmd LCD(digitos[2],1);
       cmd_LCD(digitos[1],1);
       cmd_LCD(digitos[0],1);
       _delay_ms(200); //tempo para a troca de valor
                                         Linha 1
```

https://www.tinkercad.com/things/e2pd20d7JH5

https://www.tinkercad.com/things/18HseVVcMzj

Referências

- AVR e Arduino Técnicas de Projeto
- Simulador LCD

http://www.dinceraydin.com/djlcdsim/djlcdsim.html

