

Pet Feeder

Take care of your bestie when you are out

ELEC3300 Group 7 LIN, Yu-chun LI, Yu-hsi

Table of contents

01 Introduction

Function

What is auto pet feeder?

How our machine works?

01

Introduction

What is included in our auto pet feeder?

Pin Assignment

Main Machine

STMF103C8T6

Pin Assignment

GPS Tracker

STMF103VET6

Main STM32VET103V6:

LoRa, ADC Controller, HX711, HC-SR04, OV7725

Slave STM32F103C8T6:

MPU6050, LED

Additional STM32VET103V6:

NEO-6M, LoRa

After done the meal, take photo and save to PC

Function Mapping

Motor & Weight sensor

Gyro & Ultrasound

Camera & USB

Using VR and ADC to achieved smooth select function

Feed

Control the amount of distribution

Eat

Sense if the bowl is shaking and pet is nearby

Capture

Take a photo and upload to PC

02

Function

Explain how each state works & the mechanism

State 1: User Setting

ADC controller with VR

- The user will adjust the VR and the Menu will update with the user's operation
- 2. External interrupt(K1): For selecting the option.
- 3. Connect to **5V** to increase the range to reduce selection error

State 1: User Setting

RTC alarm interrupt

There are 2 modes:

Manual mode

- User set up their desired weighted to distribute
- Move on to state 3

Timer mode

- User set up the alarm time and desired weighted to distribute
- When the time hit, move on to state 3

State 2: Feed

SG90 + HX711 Weight sensor

Servo motor

Control the output port

HX711 (Weight Sensor)

Control the amount of the food

When the HX711 sense that weight has almost reach the desired weight, the motor will spin back to the original place.

State 3: Pet Eat

MPU6050 + Ultrasound sensor

MPU6050

Control the output port

HC-SR04 (Ultrasound)

Control the amount of the food

When the HX711 sense that weight has almost reach the desired weight, the motor will spin back to the original place.

State 4: Pet Eat

OV7725 camera + USB serial

After the pet done eating...

OV7725

Take a photo to check

USB Serial

Transmit the BW image to computer and do image processing

What if my pet is not at home?

GPS tracking!

NEO-6M GPS module + LoRa Wireless Communication

At the beginning of our process, we use GPS to detect whether the pet is at home or go out to play.

NEO6M

Check the pet current location

LoRa Wireless Transmission

Transmit the location (longitude and latitude) to our main board, check if the pet is at home, if so, then the feeder will activate.

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution

Notes for our project

1. We use additional STM32F103C8T6, due to our main board I2C pins assignment are fully occupied.

