Predicting Primary Sub-Categories of Statistics arXiv Papers

Eugene Han

Department of Statistics Yale University e.han@yale.edu

Ali Aldous

Department of Statistics Yale University ali.aldous@yale.edu

Elder Veliz

Department of Statistics Yale University elder.veliz@yale.edu

Abstract

We investigate the application of natural language processing techniques for automatic classification and category moderation within the arXiv repository, specifically for classifying statistics papers by primary sub-category using their titles and abstracts. Previous work has demonstrated the efficacy of fine-tuning BERT-based models for classifying arXiv papers but only on balanced datasets with broad categories such as biology and physics or distinct sub-categories under subjects other than statistics. Using a dataset of 60,648 arXiv papers within the statistics category, we experiment with TF-IDF embeddings combined with a Linear Support Vector Classifier, SPECTER2 embeddings combined with Logistic Regression, and RoBERTa models, extending past research to include imbalanced sub-categories with significant content overlap. Our results show that while fine-tuning RoBERTa substantially increases performance on unseen paper titles and abstracts, it underperforms compared to other baselines which may highlight potential shortcomings with this approach. Comprehensive details on the source code are available in the GitHub repository ehan03/arxiv-stat-nlp. Instructions for setup are provided to facilitate replication and verification by other researchers.

1 Introduction

The arXiv is a free repository for pre-prints of academic papers spanning various disciplines including mathematics, quantitative biology, and economics. To date, it hosts approximately 2.4 million papers. Publication on arXiv requires authors to be "endorsed" for subject categories, which has been subject to criticism. Moreover, human moderators must ensure that submitted content aligns with the appropriate categories. As such, natural language processing techniques present a unique opportunity to automate category moderation without the need for an endorsement system and serve as a tool for authors to select the most relevant labels before submission.

Notably, there exists a gap in research focusing on fine-grained classification within specific disciplines like statistics. Here, sub-categories such as applied statistics (stat.AP) and computational statistics (stat.CO) can have considerable overlap in topics and content. Our research focuses on using paper titles and abstracts to predict primary sub-categories (since papers can be listed under multiple) in the statistics discipline, which will be one of Applications (stat.AP), Computation (stat.CO), Machine Learning (stat.ML), Methodology (stat.ME), and Statistics Theory (stat.TH).

2 Related Work

Prior research in automatic paper classification has predominantly concentrated on predicting broad discipline-level categories and distinct sub-categories outside of statistics of academic papers based on their titles and abstracts.

Adhikari et al.(1) adapted a base BERT model and a large BERT model for document classification by introducing a fully connected layer over the final hidden state corresponding to the classification token and optimizing the model from end-to-end during fine-tuning. They distill knowledge from the large BERT model to small bidirectional LSTMs to reduce computational expense associated with BERT inference and reach parity with the base BERT model using this method. During fine-tuning, the cross-entropy and binary cross-entropy loss for single-label and multi-label tasks, respectively, were minimized using the target labels. They used four datasets to evaluate coarse label document classification performance: Reuters-21578, ArXiv Academic Paper dataset, IMDB reviews, and Yelp 2014 reviews. The BERT implementations were compared to the default Logistic Regression and Support Vector Machine implementations from Scikit-Learn, trained on the tf-idf vectors of the documents. The large BERT implementation achieved state-of-the-art results on all four datasets, with the base BERT model following behind.

Farhangi et al.(3) proposed the Protoformer as an improvement over a traditional transformer framework to efficiently extract and utilize prototypes from noisy data by selecting and leveraging multiple embeddings to allow the Tranformer to classify noisy data with anomalies. The optimization is based on the cross-entropy loss function. They evaluated the Protoformer framework on data such as historical tweets from X (formerly, Twitter), IMBD movie reviews, and the ArXiv-10 dataset, a balanced dataset of 100,000 papers across 10 broad categories such as "physics" and "computer science." The baseline methods for comparison included SVM, DocBERT, and RoBERTa, with the Protoformer performing comparatively with the baseline methods on the less noisy arXiv dataset.

Bohara et al.(2) fine-tuned a RoBERTa model over larger sets of arXiv sub-categories. Document classification was performed by combining the title and abstracts of the arXiv papers. The model was evaluated using fivefold cross-validation. The paper found that the RoBERTa model outperformed BERT on the AAPD (ArXiv Academic Paper Dataset) and Reuters dataset. The model was trained and tested for differing paper frequencies, with the accuracy and F-1 scores increasing when the number of papers in each category increased. However, the sub-categories used include very few sub-categories within the statistics field or none at all and tend to be fairly distinct. Furthermore, this study used balanced datasets for each class, which is not reflective of actual submission frequencies, limiting the applicability of this study.

3 Approach

Given the previous works' success of fine-tuning and adapting BERT-based models on other arXiv paper classification tasks, we aimed to explore if similarly superior results can be achieved for our task by fine-tuning a RoBERTa model. Due to the unexplored nature of our task, we investigated several other baseline approaches to compare with our fine-tuning approach.

3.1 Baselines

3.1.1 TF-IDF Embeddings with Linear Support Vector Classifier (SVC)

For our first baseline, we fit a Linear SVC on TF-IDF embeddings (7), offering a simple and computationally inexpensive baseline to compare with the other transformer-based approaches.

3.1.2 SPECTER2 Embeddings with Logistic Regression

Allen AI's SPECTER2 (5) uses a framework based on BERT that is pre-trained on scientific documents for citation prediction using contrastive learning, allowing it to generate high-quality embeddings for scientific texts. We specifically used the SPECTER2 classification adapter, which adds a linear module whose weights are trained on downstream classification tasks, and took the values in the last layer as our embeddings to be fed into a logistic regression model. This baseline therefore serves as a comparison between using embeddings from domain-specific training and the more general-purpose embeddings from RoBERTa.

3.1.3 RoBERTa Baseline

To examine the impact of our fine-tuning approach, we also trained a baseline model to use RoBERTa's pre-trained embeddings, i.e. without fine-tuning, as input. We achieved this by using Hugging

Face's RobertaForSequenceClassification, which consists of a RoBERTa transformer model followed by a classification head consisting of a dropout layer, a linear layer, tanh activation, a second dropout layer, and a final linear layer. We froze the RoBERTa model's parameters and trained only the classification head.

3.2 Main Approach

Our main approach was to fine-tune a RobertaForSequenceClassification model on our classification task, with all model parameters being trainable. We expected this to be an improvement over the baseline RoBERTa model due to the nature of the data on which it was pre-trained.

In the original RoBERTa paper, Liu et al.(4) pre-train BERT on the BOOKCORPUS + WIKIPEDIA, CC-NEWS, OPENWEBTEXT, and STORIES corpora. Although corpora such as WIKIPEDIA likely include text highly relevant to the statistical topics discussed in the papers in our dataset, most of this pre-training data is concerned with the broader English language. By fine-tuning RoBERTa on titles and abstracts (as in Bohara et al.(2)) belonging to statistics arXiv papers for sub-category classification, we hope to emphasize what the base RoBERTa model has learned regarding statistical language in pre-training while exploiting its powerful embedding capabilities for general language, which may be especially helpful for papers with applied contexts.

4 Experiments

4.1 Data

We sourced our dataset from the arXiv repository (10), specifically papers categorized within the Statistics discipline. Using the arXiv API with a Python wrapper available here, we retrieved metadata for 60,648 papers, including paper abstracts, titles, publish dates, and primary sub-categories. Since arXiv's API preserves the original formatting of the abstracts as they appear on the website, the raw text contains line breaks in the middle of sentences. We addressed this by splitting the abstracts on whitespace and rejoining the words, separated by spaces, to form one contiguous text. The cleaned dataset was shuffled and split into train and test sets with a 70/30 ratio. The publish dates were only used to sort the raw data for organizational purposes and were omitted from the train and test sets.

4.2 Evaluation Method

The performance of our approach was quantitatively assessed on a held-out set of papers, the test dataset. For evaluation metrics, we focused primarily on per-category and macro-averaged F1 scores. Additionally, confusion matrices were generated to visually assess and analyze model performance across different categories, aiding in identifying any weaknesses in category-specific performance.

4.3 Experimental Details

We defined a custom ArXivDataset class to ensure data compatibility with PyTorch models. For the SPECTER2 embeddings, a custom Scikit-learn column transformer was defined for feature extraction. PyTorch Lightning modules were defined for both the baseline and fine-tuned RoBERTa models to manage and streamline the training process.

4.3.1 TF-IDF and Linear SVC:

We used Scikit-learn's implementations of TF-IDF vectorization and Linear SVC. The input text was a concatenation of the title and abstract for each paper. The optimal hyperparameters for the SVC were determined through a grid search to maximize the macro-averaged F1 score over a stratified 5-fold cross-validation scheme. The optimal hyperparameters were a regularization of C=0.25 and the inclusion of stop words.

4.3.2 SPECTER2 and Logistic Regression:

We integrated SPECTER2 embeddings with a logistic regression classifier through our custom column transformer defined earlier. This configuration was encapsulated within a Scikit-learn Pipeline object.

The titles and abstracts were concatenated, with a SEP token between them, and then tokenized with a max length of 512.

4.3.3 RoBERTa Models:

We trained both the baseline and fine-tuned models using these parameters: 10 epochs, a batch size of 16, and optimization with AdamW alongside a linear learning rate schedule without warmup steps. The titles and abstracts were concatenated using a SEP token in between, and then tokenized with a max length of 256, significantly decreasing training times while achieving the same or greater performance on the test set. After monitoring the training durations and stability, we chose learning rates of 1e-3 and 5e-4 for the baseline and full fine-tuning, respectively. We chose a lower learning rate of 5e-4 for the fine-tuned model to ensure more stable updates given the larger number of trainable parameters. Both models were trained to minimize the cross-entropy loss function, which is in line with previous research and suitable for multi-class classification problems like ours.

4.4 Reproducibility

To ensure the reproducibility of our experiments, we controlled the experimental setup as follows:

- Computational Environment: The experiments were conducted on Yale's HPC clusters, which operate on Linux systems and are equipped with NVIDIA Quadro RTX 5000 GPUs. Specific random seeds were set for Python, NumPy, and PyTorch to ensure consistent results across runs. All language models used were non-quantized and used the standard float32 data type.
- **Version Control:** All experimental code, including data scraping, model training, and evaluation scripts, was managed in a version-controlled Jupyter Notebook environment. Comprehensive details on the source code, dependencies, and their versions are available in the GitHub repository ehan03/arxiv-stat-nlp. Instructions for setup are provided to facilitate replication and verification by other researchers.

5 Results

Table 1: F1-Scores by Model

	TF-IDF + Linear SVC (Baseline)	SPECTER2 + Logistic Regression (Baseline)	RoBERTa (Baseline)	RoBERTa (Fine-Tuned)	Support
stat.AP	0.6230	0.6456	0.6151	0.6337	2576
stat.CO	0.5000	0.5137	0.4242	0.4966	1007
stat.ME	0.6660	0.6629	0.6278	0.6532	5540
stat.ML	0.7910	0.7874	0.7466	0.7887	4824
stat.TH	0.7229	0.7190	0.6950	0.7055	4248
Macro Average	0.6606	0.6657	0.6217	0.6555	18195

TF-IDF with Linear SVC performed well in categories with unique keywords and terminologies such as "stat.ML", "stat.TH", and "stat.ME"—achieving the highest F1-scores of all our models for these sub-categories. This suggests that TF-IDF with Linear SVC is adept at classifying subdomains with distinct terminology; however, this success may also be due to these sub-categories being the most prevalent in our dataset.

SPECTER2 embeddings with Logistic Regression showed promising results, attaining the highest F1 scores for "stat.AP" and "stat.CO", likely due to the pre-training on academic papers, allowing it to distinguish between these topics with higher overlapping terms more effectively. Notably, both "stat.AP" and "stat.CO" have much smaller support compared to the other categories. Moreover, the approach nearly matched the TF-IDF with Linear SVC baseline in F1 scores for the other three sub-categories, ultimately resulting in the highest macro-averaged F1 score overall.

As expected, our baseline RoBERTa model lagged behind the other two baseline approaches, with per-class F1 scores dropping by 0.01 to 0.08 and macro-averaged F1 scores by 0.04. On the other

Figure 1: Comparison of confusion matrices (raw counts) on the test dataset

hand, the fine-tuned RoBERTa model showed improved performance across all categories, achieving somewhat similar per-class and macro-averaged F1 scores as the TF-IDF with Linear SVC and SPECTER2 with Logistic Regression baselines. Despite these gains, our main approach did not outperform the other two baselines—not achieving the highest F1 scores in any sub-category and trailing the SPECTER2 with Logistic Regression baseline by 0.01 in macro-averaged F1 score.

All models showed strength in classifying "stat.ML" and "stat.TH" papers, with high F1-scores produced by every model. This suggests machine learning and theory topics are more distinctly characterized in their abstracts and titles compared to other statistics fields. In contrast, all models struggled with "stat.CO" classifications. This likely stems from computational statistics' overlapping topics with other statistical disciplines like applications ("stat.AP") and machine learning ("stat.ML"), and its lower representation in the dataset, comprising only about 5.5%.

To further analyze our fine-tuned RoBERTa model's performance and understand its comparative underperformance, we discuss the confusion matrices in Figure 1. The confusion matrices reveal specific strengths and weaknesses of the fine-tuned RoBERTa compared to other models. Notably, it classifies "stat.CO" with greater accuracy than the others, correctly identifying 472 out of 1,007 papers, making it the best performer in this category under this metric. This suggests that RoBERTa, when fine-tuned, can effectively discern nuances in categories that typically have overlapping terms with others.

However, the model still shows significant room for improvement. It tends to misclassify papers between "stat.ME" and "stat.TH" as well as between "stat.ME" and "stat.AP". This may be due to RoBERTa's complex architecture which, despite its capability to capture contextual nuances, can overfit to noise within the limited textual data provided by titles and abstracts. Moreover, RoBERTa's tendency to over-classify "stat.ME" papers suggests a possible model bias toward this category, likely influenced by the category's predominance in the training data. This bias is likely the source for the model's overall underperformance in distinguishing related statistical subfields.

Furthermore, RoBERTa's reluctance to assign "stat.TH" as the predicted label, inherently resulting in comparatively fewer misclassifications for this category, contrasts with a higher tendency to misclassify "stat.TH" papers as "stat.ME". These trends suggest areas for further tuning and adjustments in RoBERTa's training process, focusing on improving its discriminative power between closely related categories without relying too heavily on the dominant class features. Such adjustments could improve RoBERTa's generalization capabilities on test data, which could align its performance more closely with the other models that demonstrated higher macro-averaged F1 scores.

6 Discussion

In this investigation, we extended previous research on classifying arXiv papers by considering sub-categories of the statistics discipline, presenting challenges with class imbalance, considerable overlap in content between categories, and generally limited amounts of data. By constructing and testing multiple baselines consisting of different embedding techniques, we present an extensive framework for comparing with and evaluating our main approach of fine-tuning RoBERTa. Our results show that while fine-tuning significantly improves RoBERTa's performance as evidenced by the increase in F1 scores, it failed to surpass the performance of our TF-IDF with Linear SVC and SPECTER2 with Logistic Regression baselines. This highlights how such an approach may have limitations in dataset conditions that deviate from the ideal, in contrast to previous work, and the importance of domain-specific training of embeddings for niche downstream tasks.

Due to time and resource constraints, our investigation was limited in that we were unable to conduct comprehensive experimentation with different hyperparameter configurations when fine-tuning our RoBERTa model, leading to potentially sub-optimal training. Ideally, we would have set up a cross-validation framework and performed a grid search over the number of fine-tuning epochs, learning rate, batch size, warmup steps, and hidden layers to freeze, presenting an opportunity for future work. Further research can also investigate the impact of using imbalance-aware loss functions such as weighted cross entropy and dice loss or doing further pre-training on a separate but related corpus before fine-tuning. Lastly, researchers could explore how increasing the number of samples RoBERTa sees during fine-tuning affects performance by changing the train-test ratio to 80/20 or scraping more recent arXiv submissions, as well as apply our approach to another discipline such as "math", which also has interdependent sub-categories but with many more submissions than "statistics".

References

- [1] Adhikari A. & Ram A. & Tang R. & Lin J. DocBERT: BERT for Document Classification. (2019). https://arxiv.org/pdf/1904.08398.pdf
- [2] Bohara K. & Shakya R. & Pande B. D. Fine-Tuning of RoBERTa for Document Classification of ArXiv Dataset. (2023). *Mobile Computing and Sustainable Informatics*, pp. 243-255. Springer International Publishing.
- [3] Farhangi, A. et al. Protoformer: Embedding Prototypes for Transformers. (2022). *Advances in Knowledge Discovery and Data Mining*, pp. 447-458. Springer International Publishing.
- [4] Liu Y. et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. (2019) https://arxiv.org/pdf/1907.11692.pdf
- [5] Singh, A. & D'Arcy, M. & Cohan, A. & Downey, D. & and Feldman, S. SciRepEval: A Multi-Format Benchmark for Scientific Document Representations., (2022). Conference on Empirical Methods in Natural Language Processing. https://api.semanticscholar.org/CorpusID: 254018137
- [6] Devlin J., Chang M., Lee K., and Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. (2019). *In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1*, pp. 4171–4186.
- [7] Pedregosa F. et al, Scikit-learn: machine learning in Python. (2011). *Journal of Machine Learning Research Volume 12* pp. 12:2825–2830
- [8] Yang P., Sun X., Li W., Ma S., Wu W., and Wang H. SGM: sequence generation model for multi-label classification. (2018). In Proceedings of the 27th International Conference on Computational Linguistics, pp. 3915–3926
- [9] Khan A., Baharudin B., Lee L.H., Khan K. A review of machine learning algorithms for text-documents classification. (2010). *J Adv Inf Technol*, pp. 1(1):4-20
- [10] Cornell University. Arxiv dataset.

Reproducibility Checklist

