## Partitioning SS[Tot] in $a \times b$ design (Two-way ANOVA)

Deviations:

total :  $y_{iik} - \overline{y}_{...}$ 

due to level *i* of factor A: \_\_\_\_\_

due to level *j* of factor B: \_\_\_\_\_

due to levels i of factor A and j of factor B after subtracting main effects:

$$\bar{y}_{ij}$$
.  $-\bar{y}$ ...  $-$ 

$$SS[Tot] = \sum_{i} \sum_{j} \sum_{k} (y_{ijk} - y_{ijk})^{2} = \sum_{i} \sum_{j} \sum_{k} (\overline{y}_{ij} - y_{ijk})^{2} + \sum_{i} \sum_{j} \sum_{k} (y_{ijk} - y_{ijk})^{2}$$

$$SS[AB] = \sum_{i} \sum_{j} \sum_{k} (y_{ijk} - y_{ijk})^{2}$$

### ANOVA for two-factor crossed design

$$y_{ijk} = \bar{y}_{...} + (\bar{y}_{i..} - \bar{y}_{...}) + (\bar{y}_{.j.} - \bar{y}_{...}) + (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}) + y_{ijk} - \bar{y}_{ij.}$$

$$y_{ijk} - \bar{y}_{...} = (\bar{y}_{i..} - \bar{y}_{...}) + (\bar{y}_{.j.} - \bar{y}_{...}) + (\bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}) + y_{ijk} - \bar{y}_{ij.}$$
Square both sides, sum over  $i, j, k$ , and the ×-products vanish.

$$SS(Tot) = SS(Trt) + SS($$
  
 $SS(Trt) = SS(A) + +$ 

Analysis of replicated two (or more) factor designs often proceed according to the following steps:

- Check for interaction
  - 1 If no interaction, analyze main effects
  - If interaction, analyze simple effects

#### $a \times b$ example continued

Test for interaction effect in  $2 \times 2$  generalizes to  $a \times b$ :

$$H_0:(lphaeta)_{ij}\equiv 0$$
 vs.  $H_1:(lphaeta)_{ij}
eq 0$  for some  $i,j$  
$$F=rac{MS[AB]}{MS[E]}$$

on (a-1)(b-1) and N-ab numerator, denominator df.

$$SS[AB] = n \sum_{i=1}^{3} \sum_{j=1}^{3} (\bar{y}_{ij} - \bar{y}_{i..} - \bar{y}_{.j} + \bar{y}_{..})^{2} = 0.597$$

$$F = \frac{.597/2}{0.025} = 11.96$$

which is highly significant (p = 0.0014) on 2,12 df.

We could proceed to test for main effects, but we won't.

Q: Why not?

A: Because effect of one factor depends on the level of the other factor, it might not make sense to talk about main effects.

If one insists on main effects, the appropriate F-ratios are

$$F_A = \frac{SS[A]/(a-1)}{MS[E]}$$
 on  $a-1, N-ab$  df

$$F_B = \frac{SS[B]/(b-1)}{MS[E]} \text{ on } b-1, N-ab \text{ } df$$

but the significance of the interaction effect suggests that the effect of one factor, say A, differs across levels of the other factor. A test for the main effect of A is based on the effect of A after averaging over levels of B. (Draw a picture.)

## $a \times b$ designs

Yields on 36 tomato crops from balanced, complete, crossed design with a=3 varieties (A) at b=4 planting densities (B):

| Variety | Density k/hectare |      | Sample |      |  |  |
|---------|-------------------|------|--------|------|--|--|
| 1       | 10                | 7.9  | 9.2    | 10.5 |  |  |
| 2       | 10                | 8.1  | 8.6    | 10.1 |  |  |
| 3       | 10                | 15.3 | 16.1   | 17.5 |  |  |
| 1       | 20                | 11.2 | 12.8   | 13.3 |  |  |
| 2       | 20                | 11.5 | 12.7   | 13.7 |  |  |
| 3       | 20                | 16.6 | 18.5   | 19.2 |  |  |
| 1       | 30                | 12.1 | 12.6   | 14.0 |  |  |
| 2       | 30                | 13.7 | 14.4   | 15.4 |  |  |
| 3       | 30                | 18.0 | 20.8   | 21.0 |  |  |
| 1       | 40                | 9.1  | 10.8   | 12.5 |  |  |
| 2       | 40                | 11.3 | 12.5   | 14.5 |  |  |
| 3       | 40                | 17.2 | 18.4   | 18.9 |  |  |

Statistical model?

$$Y_{iik} =$$

#### ANOVA table

```
The SAS System
                           The GLM Procedure
                                        Values
                 Class
                               Levels
                                        1 2 3
                                         10 20 30 40
                                   Sum of
Source
                                  Squares
                                           Mean Square F Value Pr > F
                         DF
Model
                        11
                            422.3155556
                                            38.3923232
                                                          24.22 < .0001
Error
                         24
                            38.0400000
                                            1.5850000
Corrected Total
                              460.3555556
                                Type I SS
                                           Mean Square F Value Pr > F
Source
                              327.5972222
                                           163.7986111 103.34 <.0001
                               86.6866667
                                                        18.23 <.0001
b
                          3
                                           28.8955556
a*b
                                8.0316667
                                            1.3386111
                                                         0.84 0.5484
```

|          | Level of |    | y          |            |  |
|----------|----------|----|------------|------------|--|
|          | a        | N  | Mean       | Std Dev    |  |
|          | 1        | 12 | 11.3333333 | 1.88309867 |  |
|          | 2        | 12 | 12.2083333 | 2.34887142 |  |
|          | 3        | 12 | 18.1250000 | 1.73369023 |  |
|          |          |    |            |            |  |
|          | Level of | -  | у          |            |  |
|          | b        | N  | Mean       | Std Dev    |  |
|          | 10       | 9  | 11.4777778 | 3.75458978 |  |
|          | 20       | 9  | 14.3888889 | 2.96835158 |  |
|          | 30       | 9  | 15.7777778 | 3.36480972 |  |
|          | 40       | 9  | 13.9111111 | 3.53250777 |  |
| Level of | Level of | уу |            |            |  |
| a        | b        | N  | Mean       | Std Dev    |  |
| 1        | 10       | 3  | 9.2000000  | 1.30000000 |  |
| 1        | 20       | 3  | 12.4333333 | 1.09696551 |  |
| 1        | 30       | 3  | 12.9000000 | 0.98488578 |  |
| 1        | 40       | 3  | 10.8000000 | 1.70000000 |  |
| 2        | 10       | 3  | 8.9333333  | 1.04083300 |  |
| 2        | 20       | 3  | 12.6333333 | 1.10151411 |  |
| 2        | 30       | 3  | 14.5000000 | 0.85440037 |  |
| 2        | 40       | 3  | 12.7666667 | 1.61658075 |  |
| 3        | 10       | 3  | 16.3000000 | 1.11355287 |  |
| 3        | 20       | 3  | 18.1000000 | 1.34536240 |  |
| 3        | 30       | 3  | 19.9333333 | 1.67729942 |  |
| 3        | 40       | 3  | 18.1666667 | 0.87368949 |  |
|          |          |    |            |            |  |



A conventional look at main effects is just to make pairwise comparisons among marginal means, after averaging over other factors. Pairwise comparisons of density means using Tukey's procedure with  $\alpha=0.05$  are given below. (Use means b/tukey; to obtain the output.)

|                                                                                        | The GLM Proced                         | ure    | est for y ise error rate, but it |
|----------------------------------------------------------------------------------------|----------------------------------------|--------|----------------------------------|
| Tukey's Stude                                                                          | ntized Range (                         | HSD) T | est for y                        |
| NOTE: This test controls the generally has a hi                                        |                                        |        |                                  |
| Alpha Error Degrees Error Mean Squ Critical Value Minimum Signif Means with the same 1 | are<br>of Studentize<br>icant Differen | .ce    | 1.6372                           |
| Tukey Grouping                                                                         | Mean                                   | N      | ь                                |
| A<br>A                                                                                 | 15.7778                                | 9      | 30                               |
| B A                                                                                    | 14.3889                                | 9      | 20                               |
| В                                                                                      | 13.9111                                | 9      | 40                               |
| С                                                                                      | 11.4778                                | 9      | 10                               |

## A three-factor example

In a balanced, complete, crossed design, N=36 shrimp were randomized to abc = 12 treatment combinations from the factors below:

A1: Temperature at 25° C

A2: Temperature at 35° C

B1: Density of shrimp population at 80 shrimp/40/

B2: Density of shrimp population at 160 shrimp/40/

C1: Salinity at 10 units

C2: Salinity at 25 units

C3: Salinity at 40 units

The response variable of interest is weight gain  $Y_{iikl}$  after four weeks.

## Three-way ANOVA Model:

$$Y_{ijkl} = \bigwedge_{i} + \bigvee_{i} + \bigvee_{j} + \bigvee_{k} + ( \swarrow_{i} )_{i,k}^{i} + ( \swarrow_{i} )_{j,k}^{i} +$$

$$E_{ijkl} \stackrel{\text{\tiny "C}}{\sim} N(0, \sigma^2)$$

|                 |    | Sum of      |             |         |         |                      |
|-----------------|----|-------------|-------------|---------|---------|----------------------|
| Source          | DF | Squares     | Mean Square | F Value | Pr > F  |                      |
| Model           | 11 | 467636.3333 | 42512.3939  | 14.64   | < .0001 |                      |
| Error           | 24 | 69690.6667  | 2903.7778   |         |         | sqrt(2MS(E)/3) ~= 44 |
| Corrected Total | 35 | 537327.0000 |             |         |         |                      |
| Source          | DF | Type I SS   | Mean Square | F Value | Pr > F  |                      |
| a.              | 1  | 15376.0000  | 15376.0000  | 5.30    | 0.0304  |                      |
| b               | 1  | 21218.7778  | 21218.7778  | 7.31    | 0.0124  |                      |
| a*b             | 1  | 8711.1111   | 8711.1111   | 3.00    | 0.0961  |                      |
| С               | 2  | 96762.5000  | 48381.2500  | 16.66   | < .0001 |                      |
| a*c             | 2  | 300855.1667 | 150427.5833 | 51.80   | < .0001 |                      |
| b*c             | 2  | 674.3889    | 337.1944    | 0.12    | 0.8909  |                      |
| a*b*c           | 2  | 24038.3889  | 12019.1944  | 4.14    | 0.0285  |                      |



M[L,BC]

|       | Level | of    | Level | of    |    |   | у-         |               |
|-------|-------|-------|-------|-------|----|---|------------|---------------|
|       | a     |       | b     |       | N  |   | Mean       | Std Dev       |
|       | 25    |       | 80    |       | 9  |   | 298.333333 | 185.106051    |
|       | 25    |       | 160   |       | 9  |   | 218.666667 | 128.739077    |
|       | 35    |       | 80    |       | 9  |   | 308.555556 | 85.475305     |
|       | 35    |       | 160   |       | 9  |   | 291.111111 | 57.953525     |
|       |       |       |       |       |    |   |            |               |
|       | Level | of    | Level | of    |    |   | у-         |               |
|       | a     |       | С     |       | N  |   | Mean       | Std Dev       |
|       | 25    |       | 10    |       | 6  |   | 70.500000  | 15.109600     |
|       | 25    |       | 25    |       | 6  |   | 399.333333 | 114.206246    |
|       | 25    |       | 40    |       | 6  |   | 305.666667 | 69.987618     |
|       | 35    |       | 10    |       | 6  |   | 369.500000 | 56.450864     |
|       | 35    |       | 25    |       | 6  |   | 293.166667 | 45.375838     |
|       | 35    |       | 40    |       | 6  |   | 236.833333 | 38.096807     |
|       |       |       |       |       |    |   |            |               |
|       | Level | of    | Level | of    |    |   | у-         |               |
|       | b     |       | c     |       | N  |   | Mean       | Std Dev       |
|       | 80    |       | 10    |       | 6  |   | 239.166667 | 188.065326    |
|       | 80    |       | 25    |       | 6  |   | 370.166667 | 122.218520    |
|       | 80    |       | 40    |       | 6  |   | 301.000000 | 77.415761     |
|       | 160   |       | 10    |       | 6  |   | 200.833333 | 144.240655    |
|       | 160   |       | 25    |       | 6  |   | 322.333333 | 74.529636     |
|       | 160   |       | 40    |       | 6  |   | 241.500000 | 32.788718     |
| Level | of    | Level | of    | Level | of |   |            | у             |
| a     |       | Ъ     |       | С     |    | N | Me         | an Std Dev    |
| 25    |       | 80    |       | 10    |    | 3 | 70.3333    | 33 17.156146  |
| 25    |       | 80    |       | 25    |    | 3 | 465.6666   | 67 87.648921  |
| 25    |       | 80    |       | 40    |    | 3 | 359.0000   | 00 59.858166  |
| 25    |       | 160   |       | 10    |    | 3 | 70.6666    | 67 16.623277  |
| 25    |       | 160   |       | 25    |    | 3 | 333.0000   | 00 108.282039 |
| 25    |       | 160   |       | 40    |    | 3 | 252.3333   | 33 11.372481  |
| 35    |       | 80    |       | 10    |    | 3 | 408.0000   | 00 51.117512  |
| 35    |       | 80    |       | 25    |    | 3 | 274.6666   |               |
| 35    |       | 80    |       | 40    |    | 3 | 243.0000   |               |
| 35    |       | 160   |       | 10    |    | 3 | 331.0000   |               |
| 35    |       | 160   |       | 25    |    | 3 | 311.6666   |               |
| 35    |       | 160   |       | 40    |    | 3 | 230.6666   | 67 46.971623  |

# Interpretation of third order interaction Interpretation of second order interaction

 $1^{st}$  order interaction is between two factors  $2^{nd}$  order interaction is between three factors

Upon inspection of the interaction plot, what do you see?

What is the primary two-factor/first-order interaction?

Consider the means for low temperature (red and blue). Do you see evidence of BC interaction for temperature is low? Characterize it. Yes, No officed of Do you see evidence of BC interaction for temperature is high? When Colors of the whole of BC interaction at one level of A but not the other, this is a

second-order interaction.

Characterization of a three-factor interaction may not be unique. Here we first fixed A, but another analyst might first fix some other factor and characterize factorial effects in a different order.

```
%let d=divisor; *an example of a macro variable;
data one;
  drop i;
                    /* a=temp, b=density, c=salinity */
   input a b c @: * @ hold the line. prevent DATA step from loading :
   do i=1 to 3; * new record when next INPUT encountered;
     input y @; * @ hold the line; *love isn't always on time! (Toto);
     y0=sqrt(y);
     output;
   end:
  cards;
   25 80 10 86 52 73
   25 80 25 544 371 482
   25 80 40 390 290 397
   25 160 10 53 73 86
   25 160 25 393 398 208
   25 160 40 249 265 243
   35 80 10 439 436 349
   35 80 25 249 245 330
  35 80 40 247 277 205
   35 160 10 324 305 364
  35 160 25 352 267 316
  35 160 40 188 223 281
run;
proc glimmix data=one;
  class a b c;
  model y=a|b|c;
  lsmeans a*b*c/slicediff=a*c;
run:
```



|                              | Estimate | es       |    |         |         |
|------------------------------|----------|----------|----|---------|---------|
|                              |          | Standard |    |         |         |
| Label                        | Estimate | Error    | DF | t Value | Pr >  t |
| temp effect at c=1           | 299.00   | 31.1115  | 24 | 9.61    | <.0001  |
| temp effect at c=2           | -106.17  | 31.1115  | 24 | -3.41   | 0.0023  |
| temp effect at c=3           | -68.8333 | 31.1115  | 24 | -2.21   | 0.0367  |
| avg of temp effects at c=2,3 | -87.5000 | 21.9992  | 24 | -3.98   | 0.0006  |
| mu[AC1]5(mu[AC2]+mu[AC3])    | 386.50   | 38.1037  | 24 | 10.14   | <.0001  |

We've characterized the  $A \times C$  interaction. Note SS(AC).