From Cooking to Advanced Manufacturing ---Controls, Automation, and Beyond

Xu Chen

Department of Mechanical Engineering
University of Washington

From Cooking to Advanced Manufacturing --Controls, Automation, and Beyond

Xu Chen

Department of Mechanical Engineering
University of Washington

Ingredients of Kung Pao Chicken

Marinade

- 1 tablespoon soy sauce
- 2 teaspoons Chinese rice wine or dry sherry
- 1 1/2 teaspoons cornstarch
- 1 pound boneless, skinless, chicken breasts or thighs, cut into 1-inch cubes

Sauce

- 1 tablespoon Chinese black vinegar, or substitute good-quality balsamic vinegar
- 1 teaspoon soy sauce
- 1 teaspoon hoisin sauce
- 1 teaspoon sesame oil
- 2 teaspoons sugar
- 1 teaspoon cornstarch
- 1/2 teaspoon ground Sichuan pepper
- 2 tablespoons peanut or vegetable oil
- 8 to 10 dried red chilies
- 3 scallions, white and green parts separated, thinly sliced
- 2 garlic cloves, minced
- 1 teaspoon minced or grated fresh ginger
- 1/4 cup unsalted dry-roasted peanuts

Courtesy of Diana Kuan

The Cooking Procedure

The Difference of Controls

Courtesy of Diana Kuan

Semiconductor Manufacturing

Semiconductor Manufacturing

The Required Precision

Photolithography

The Required Precision

Photolithography

The Role of Automation and Controls

X. Chen and M. Tomizuka, "Control Methodologies for Precision Positioning Systems," in Proceedings of 2013 American Control Conference, Washington, DC, Jun. 17-19, 2013, pp. 3710-3717.

The Role of Automation and Controls

Why Automatic Control?

Stability/Safety

 Difficult/impossible for humans to control the process or would expose humans to risk

Performance

Cannot be done "as well" by humans

Cost

Humans are more expensive and bored

Sub-10nm position-error tolerance

Read/write head

Voice Coil Motor

>900,000 tracks per inch (in a 2012 HDD)

ten thousand tracks on a human hair!

Importance of Control Systems in HDD

Brendan Gregg from Sun's Fishworks team makes an interesting discovery about inducing disk latency. For more details, see Brendan's blog entry: http://blogs.sun.com/brendan/entry/un...

Importance of Control Systems in HDD

A Loud Sound Just Shut Down a Bank's Data Center for 10 Hours

Dozens of hard drives were knocked down during a fire drill that involved inert gas deployment.

Image: Jeff Kubina/Flickr.

Recap and Outline

Semiconductor manufacturing

Information storage

Manufacturing inspection & automation

GE fuel nozzle

Additive manufacturing (3D printing)

Examples of Control Systems: 3D Printing

- Additive manufacturing (AM) / 3D Printing
 - Annual market recently topped \$6 billion
 - Increased nearly 6-fold over the past 7 years

Background: Powder Bed Fusion (PBF)

Source: UConn

- Versatile: works with a broad range of materials
- *Effective*: high achievable shape complexity and accuracy
- *Functional*: expanding applications from engine components to medical implants

The Control Problem to Meet the Quality Demand

Challenges in Sensing, Controls, and Platforms

ANNEX 1

TRANSFORMATIVE MANUFACTURING TECHNOLOGY:

Manufacturing Technology Area 1 -

Advanced Sensing, Control, and Platforms for Manufacturing

Overview

"One of these high-priority MTAs is the broad area of **Advanced Sensing, Control, and Platforms for Manufacturing (ASCPM)**."

"Without a leadership position in these technologies the U.S. will run the risk of missing this next wave of manufacturing innovation."

Challenges in Sensing, Controls, and Platforms

Important Technology and Measurement Challenges for AM:

Fast In-Situ Measurements Closed Loop Process Control

"Process control: Feedback control systems and metrics are needed to improve the precision and reliability of the manufacturing process and to increase throughput while maintaining consistent quality."

Measurement Science Roadmap for Metal-Based Additive Manufacturing, 2013

Additive Manufacturing: Pursuing the Promise

\$7.5M UCONN-P&W Additive Manufacturing Innovation Center

Selected UConn Research Facilities (X. Chen)

100W laser

270x270x270mm3 build volume

Multi-zone heated chamber and bed

High-precision laser galvoscanner

Coaxial sensing and multi-sensory control

Principle Investigator: Xu Chen, Mechanical Engineering, University of Connecticut

Machine, Automation, and Control Systems Laboratory

Semiconductor manufacturing

Best results: Xu et al. and Airimitoaie and al.

Information storage

2.5 inch (nm error tolerance)

Quality and fast control in a

changing environment, subject

to disturbances and sensing

limitations.

Laser-material interaction

Additive manufacturing

