Offset and CMRR: Random and systematic

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Table of contents

- Random offset and CMRR_r
- Systematic offset and CMRR_s
- CMRR versus frequency
- Design rules
- Comparison MOST and bipolar transistors

Ref: Pelgrom, JSSC Oct.1989, 1433-1439 Croon, JSSC Aug.02, 1056-1064 Croon, Springer, 2005

Definition of offset

Offset voltage vos

Gain error with offset

The gain is 59 instead of 100!

Yield of n-bit flash-ADC with offset

Ref: Pelgrom, IEDM 1998, pp.789.

Random offset: mismatches

$$I_{DS} = K' \frac{W}{L} (V_{GS} - V_{T})^{2}$$

$$\sigma_{\Delta VT} = \frac{A_{VT}}{\sqrt{WL}}$$

$$A_{VT} \sim t_{ox} \sqrt[4]{N_B}$$

Ref: Keyes, JSSC Aug. 1975, 245-247 Shyu, JSSC Dec 1984, 948-955 Lakshmikumar, JSSC Dec 1986, 1057-1066 Pelgrom, JSSC Oct.1989, 1433-1439 Croon, JSSC Aug. 2002, 1056-1064 A_{VT} ≈ 5 mVμm for 0.25 μm nMOST +50 % for pMOST

Threshold voltage sigma $\sigma_{\Delta VT}$

Threshold voltage mismatch A_{VT}

Random offset: mismatches

$$\frac{\Delta K'}{\overline{K'}} = \frac{A_{K'}}{\sqrt{WL}}$$

 $A_{K'} \approx 0.0056 \ \mu m + 50 \%$ for pMOST

$$\frac{\Delta W/L}{\overline{W/L}} = A_{WL} \sqrt{\frac{1}{W^2} + \frac{1}{L^2}} \qquad A_{WL} \approx 0.02 \ \mu m + 50 \% \text{ for pMOST}$$

$$\frac{\Delta \gamma}{\gamma} = \frac{\mathbf{A}_{\gamma}}{\sqrt{\mathbf{WL}}}$$

 $A_{\gamma} \approx 0.016 \ \mu \text{m}$ -25 % for pMOST Negligible if B = S

Ref.: Pelgrom: JSSC Oct.1989, pp.1430-1440

Mismatch coefficients for nMOST

Techno L (μm) t _{ox} (nm)	2.5 50	1.2 25	0.7 15	0.5 11	0.35 8	0.25 6
A _{VT} (mV μm)	30	21	13	7.1	6	□ 0
A_{WL} (% μ m)	2.5	1.8	2.5	1.3	2	1.8
S _{VT} (mV/mm)	0.3	0.3	0.4	0.2		
S _{WL} (%/mm)	0.3		0.2	0.2		

Random offset in differential pair

$$v_{od} = \Delta R_L \frac{I_B}{2}$$

$$v_{os} = \frac{v_{od}}{g_m R_L}$$

$$v_{os} = \frac{\Delta R_L}{R_L} \frac{I_B}{2g_m}$$

$$v_{os} = \frac{\Delta R_L}{R_L} \frac{V_{GS} - V_T}{2}$$

Random offset in differential pair

Random offset in current mirror

More offset in current mirror

Mismatch in drain current

$$\begin{split} I_{DS} &= \frac{\beta}{2} \, (V_{GS} - V_T)^2 \qquad \qquad \beta = \frac{K'}{n} \, \frac{W}{L} \\ \frac{\Delta I_{DS}}{I_{DS}} &= \frac{\Delta \beta}{\beta} - \Delta V_T \, \frac{2}{V_{GS} - V_T} \\ \sigma^2 \, \left(\frac{\Delta I_{DS}}{I_{DS}} \right) &= \sigma^2 \, \left(\frac{\Delta \beta}{\beta} \right) + \, \sigma^2 \, (\Delta V_T) \, \frac{4}{\left(V_{GS} - V_T \right)^2} \\ \frac{1}{(nkT/q)^2} \qquad \text{in wi} \\ \left(\frac{g_m}{I_{DS}} \right)^2 \qquad \text{in general} \end{split}$$

Mismatch in drain current for wi and si

$$\sigma^{2} \left(\frac{\Delta I_{DS}}{I_{DS}} \right) = \sigma^{2} \left(\frac{\Delta \beta}{\beta} \right) + \sigma^{2} (\Delta V_{T}) \quad \frac{4}{(V_{GS} - V_{T})^{2}} \quad \text{or} \quad \frac{1}{(nkT/q)^{2}}$$
in si in wi

Random CMRR in differential pair -1

$$v_{od} = A_{dd} v_{id} + A_{dc} v_{ic}$$

 $v_{oc} = A_{cd} v_{id} + A_{cc} v_{ic}$

$$A_{dd} = \frac{v_{od}}{v_{id}} \bigg|_{v_{ic} = 0} = g_{m} R_{L}$$

$$A_{dc} = \frac{v_{od}}{v_{ic}} \bigg|_{v_{id} = 0} \approx 0$$

$$CMRR = \frac{A_{dd}}{A_{dc}} \approx \infty$$

Random CMRR in differential pair -2

Random CMRR in differential pair -3

Relation random offset and CMRR

$$v_{OSr} = \Delta V_{T} + \frac{V_{GS} - V_{T}}{2} \left(\frac{\Delta R_{L}}{\overline{R_{L}}} + \frac{\Delta K'}{\overline{K'}} + \frac{\Delta W/L}{\overline{W/L}} \right)$$

CMRR_r =
$$\frac{2 g_m R_B}{\frac{2 \Delta V_T}{V_{GS} - V_T} + \frac{\Delta R_L}{R_L} + \frac{\Delta K'}{K'} + \frac{\Delta W/L}{W/L}}$$

$$v_{OSr} CMRR_r = \frac{V_{GS} - V_T}{2} 2 g_m R_B = I_B R_B = V_E L_B = 5 ... 15 V$$
 $v_{OSr} CMRR_r = 10 V$

Relation random offset and CMRR

```
v_{OSr} CMRR_r \approx V_E L_B \approx 10 V \quad (\sim L_B)
```

10 mV 60 dB ≈ 10 V as for MOSTs

1 mV 80 dB ≈ 10 V as for Bipolar transistors

10 μ V 120 dB \approx 10 V with trimming : with laser

with Zener zap with fusible links

Low offset = High CMRR

Table of contents

- Random offset and CMRR_r
- Systematic offset and CMRR_s
- CMRR versus frequency
- Design rules
- Comparison MOST and bip.transistors

Systematic offset in current mirror

Systematic CMRR in differential Pair - 1

Systematic CMRR in differential Pair - 2

Systematic CMRR in differential Pair - 3

$$\frac{\dot{I}_{out}}{\dot{V}_{inc}} = \frac{v_{osc}}{v_{inc}} = \frac{A_{dc}}{A_{dd}} = \frac{1}{CMRR_s}$$

$$\frac{\dot{I}_{out}}{v_{osc}}$$

CMRR_s =
$$\frac{1}{2} g_{m1} R_B g_{m3} r_{o1}$$

$$CMRR_s v_{osc} = v_{inc}$$

Total CMRR

$$\frac{1}{\text{CMRR}} = \frac{1}{\text{CMRR}_r} + \frac{1}{\text{CMRR}_s}$$

Offset Miller CMOS OTA

Offset Folded cascode CMOS OTA

Table of contents

- Random offset and CMRR_r
- Systematic offset and CMRR_s
- CMRR versus frequency
- Design rules
- Comparison MOST and bip.transistors

CMRR vs frequency

Table of contents

- Random offset and CMRR_r
- Systematic offset and CMRR_s
- CMRR versus frequency
- Design rules
- Comparison MOST and bipolar transistors

Layout rules for low offset

- 1. Equal nature
- 2. Same temperature
- 3. Increase size
- 4. Minimum distance
- 5. Same orientation
- 6. Same area/perimeter ratio
- 7. Round shape
- 8. Centroide layout
- 9. End dummies
- 10. Bipolar always better!

Hastings,
"The Art of Analog Layout"
Prentice Hall 2001
R. Soin, .."A-D Asics, .. "
Peregrinus, 1991

Layout rules for low offset

- 1. Equal nature
- 2. Same temperature
- 3. Increase size
- 4. Minimum distance
- 5. Same orientation
- 6. Same area/perimeter ratio
- 7. Round shape
- 8. Centroide layout
- 9. End dummies
- 10. Bipolar always better!

On same isotherm

Solomon, JSSC Dec 74, 314-332

Layout rules for low offset

- 1. Equal nature
- 2. Same temperature
- 3. Increase size
- 4. Minimum distance
- 5. Same orientation
- 6. Same area/perimeter ratio
- 7. Round shape
- 8. Centroide layout
- 9. End dummies
- 10. Bipolar always better!

Layout resistor

Source/drain diffusion resistor in CMOS

Ref.: Laker, Sansen: Design of analog..., MacGrawHill 1994
Table 2-6

Table resistors

Process	Type	$ ho\Box$ Ω/\Box	absolute accuracy percent	temperature coefficient percent/°C	voltage coefficient percent/V	breakdown voltage V
Bipolar	base diffusion	150	10	0.12	2	50
	emitter diffusion	10	20	0.02	0.5	7
	pinch resistance	5 k	40	0.33	5	7
	epi layer	1 k	10	0.3	1	60
	aluminum	50 m	20	0.01	0.02	90
	ion-implantation	2 k	1	0.02	0.2	20
	ion-implantation	200	0.3	0.02	0.05	20
CMOS	S/D diffusion	20-50	20	0.2	0.5	20
	well	2.5 k	10	0.3	1	20
	poly gate	50	20	0.2	0.05	40
	poly resistance	1.5 k	1	0.05	0.02	20
	aluminum	50 m	20	0.01	0.02	90
Thin film	NiCr(Ta)	200	1	0.005	0.005	90
	aluminum	50 m	20	0.01	0.02	90

Mismatch vs size for resistors

Layout capacitors

Table capacitors

Process	Type	C nF/cm ²	absolute accuracy percent	temperature coefficient percent/°C	voltage coefficient percent V	breakdown voltage V
Bipolar	C_{CB}	16	10	0.02	2	50
	C_{EB}	50	10	0.02	1	7
	C_{CS}	8	20	0.01	0.5	60
CMOS	$C_{\rm ox}(50 \text{ nm})$	70	5	0.002	0.005	40
	$C_{m,poly}$	12	10	0.002	0.005	40
	$C_{poly,poly}$	56	2	0.002	0.005	40
	$C_{ m poly,substrate}$	6.5	10	0.01	0.05	20
	$C_{m, \text{substrate}}$	5.2	10	0.01	0.05	20
	$C_{poly,substrate}$	6.5	10	0.01	0.05	20

Ref.: Laker, Sansen: Design of analog ..., MacGrawHill 1994
Table 2-7

Mismatch vs size for capacitors

- 1. Equal nature
- 2. Same temperature
- 3. Increase size
- 4. Minimum distance
- 5. Same orientation
- 6. Same area/perimeter ratio
- 7. Round shape
- 8. Centroide layout
- 9. End dummies
- 10. Bipolar always better!

- 1. Equal nature
- 2. Same temperature
- 3. Increase size
- 4. Minimum distance
- 5. Same orientation
- 6. Same area/perimeter ratio
- 7. Round shape
- 8. Centroide layout
- 9. End dummies
- 10. Bipolar always better!

Matching of transistor pairs

- 1. Equal nature
- 2. Same temperature
- 3. Increase size
- 4. Minimum distance
- 5. Same orientation
- 6. Same area/perimeter ratio
- 7. Round shape
- 8. Centroide layout
- 9. End dummies
- 10. Bipolar always better!

Matching of current mirrors

Current mirror 4:4:2:1:2 with end dummies. Active area Metal Poly Contact $\boxtimes\boxtimes\boxtimes\boxtimes$ $\boxtimes\boxtimes\boxtimes$ dummy dummy

- 1. Equal nature
- 2. Same temperature
- 3. Increase size
- 4. Minimum distance
- 5. Same orientation
- 6. Same area/perimeter ratio
- 7. Round shape
- 8. Centroide layout
- 9. End dummies
- 10. Bipolar always better!

- 1. Equal nature
- 2. Same temperature
- 3. Increase size
- 4. Minimum distance
- 5. Same orientation
- 6. Same area/perimeter ratio
- 7. Round shape
- 8. Centroide layout
- 9. End dummies
- 10. Bipolar always better!

Cross-coupled differential pair

Centroide layout of capacitors

- 1. Equal nature
- 2. Same temperature
- 3. Increase size
- 4. Minimum distance
- 5. Same orientation
- 6. Same area/perimeter ratio
- 7. Round shape
- 8. Centroide layout
- 9. End dummies
- 10. Bipolar always better!

Matching of current mirrors

Layout capacitance ratio

Ratio 7/2 = 3.5

Courtesy Vittoz

- 1. Equal nature
- 2. Same temperature
- 3. Increase size
- 4. Minimum distance
- 5. Same orientation
- 6. Same area/perimeter ratio
- 7. Round shape
- 8. Centroide layout
- 9. End dummies
- 10. Bipolar always better!

Table of contents

- Random offset and CMRR_r
- Systematic offset and CMRR_s
- CMRR versus frequency
- Design rules
- Comparison MOST and bipolar transistors

Offset of MOST and bipolar transistors

MOST:
$$v_{OS} = \Delta V_T + \frac{V_{GS} - V_T}{2} \left(\frac{\Delta R_L}{\overline{R_L}} + \frac{\Delta K'}{\overline{K'}} + \frac{\Delta W/L}{\overline{W/L}} \right)$$

Bipolar:
$$v_{OS} = \frac{kT}{q} \left(\frac{\Delta R_L}{R_L} + \frac{\Delta I_S}{I_S} \right)$$
 is much smaller!!

- 1) no V_T
- 2) $kT/q << (V_{GS}-V_T)/2$
- 3) Drift decreases with v_{OS} : $\frac{\Delta v_{OS}}{\Delta T} = \frac{v_{OS}}{T}$

Bipolar : Base current !

Bias or base currents

Base current compensation

OP07

Common-mode base current compensation

OP27

Tracking base current compensation

Q29 & Q30
provide a
voltage clamp
to track
the input
bias currents
for changes in
CM input voltage.

Ref. Gross, JSSC, Feb. 2004, 404.

OP-97: input current compensation

Low input currents because super- β transistors at the input!

Require low V_{CE}!

 $V_{CE1,2} = V_{BEon} \approx 0.7 \text{ V}$

OP-97: input current compensation

Limits because of device mismatch

$$\frac{1}{(\text{Accuracy})^2} \approx \sigma^2 \left(\frac{\Delta I_{DS}}{I_{DS}}\right) \approx \frac{4 \text{ A}_{VT}^2}{\text{WL } (V_{GS} - V_T)^2}$$
Speed $\approx f_T = \frac{2 \text{ I}_{DS}}{2\pi \text{ WL } 2/3 \text{ C}_{ox} \left(V_{GS} - V_T\right)} \frac{V_{DD}}{2}$

$$\frac{\text{Speed x } (\text{Accuracy})^2}{\text{Power}} = \frac{1}{C_{ox} A_{VT}^2} \sim \frac{1}{t_{ox}}$$

= Technological constant

Limits because of device noise

$$S/N = \frac{V_{pp}^2/2}{4kT R BW}$$

$$S/N = \frac{V_{pp}^2/8}{kT/C}$$

$$P_{min} = \frac{V_{pp}^2}{R}$$

$$P_{min} = V_{DD} BW V_{pp} C$$

$$P_{min} \approx 8kT BW S/N$$

Noise versus mismatch for high DR

Reduced DR in deep submicron CMOS

Table of contents

- Random offset and CMRR_r
- Systematic offset and CMRR_s
- CMRR versus frequency
- Design rules
- Comparison MOST and bipolar transistors

Ref: Pelgrom, JSSC Oct.1989, 1433-1439 Croon, JSSC Aug.02, 1056-1064 Croon, Springer, 2005