Binary search

No. of elements =
$$n$$
 $1evel = n$
 $1evel = \frac{\log n}{\log 2}$
 $1evel = \frac{\log n}{\log 2}$

Best case - If key is found at first - O()

fen middle position

And case - if key is found at middle

level (level)

Worst case - if key is found at last

fen middle positions

Recursion

- calling same function within function itself
- when we can define mathematical formula/process in terms of itself
- you should have some terminating condition

$$n! = n*(n-1)!$$

$$1!0*0! = 1$$

$$120$$

$$1n+ recfact(in+n) \ge (recfact(s) \Rightarrow s*recfact(u) \le (recfact(u) \Rightarrow u*recfact(s) \le (recfact(s) \Rightarrow s*recfact(s) \ge (recfact(s) \Rightarrow s*r$$

int main () ?

int n=5;

rectart(n);

return 0;

Algorithm Implementation

Iterative approch

loops are used

int fact (int n) ? int fact = 1) for(i=1;i <= n;i+t) fact *= i; return fact;

Recursive approch recursion

int rectact (int n) ?

if (n == 1)

return n & rectact (n-1);

return n & rectact (n-1);

Binary Search

binary Search (arr, 0, 8, 66) m=4 binary Search (arr, 5, 8, 66) m=6 binary Search (arr, 5, 5, 66) m=5

Selection Sort

n =6 1=0,1,2,3,4 izo; i< n-1; j++ ジーはりょうくのうりゃ

No. of passes = n-1

 $40.06 \text{ company} \sin (n-1) + (n-2) + (n-3) - + 2 + 1$

= n(n+1)

n'+n~moshematiccel polynomial Hundren

degree -> highest power / of variable

1 Time & n27n

10000 00)

degree = 2

 $T(n) = O(n^2)$

base = base + base index == 1

Cobase

power (base, indere) {
if cindun==1)
veturn base; **Power Using Recursion** return beset power (base, index-1); wer(2,3)

if (3==1)x

return 2†power(2,1)

return 2†power(2,1) (3,2) Print in Binary using Recursion

printbinary (n) &

(if (n = = = 0)

return;

printbinary (n/2);

sysout (n=1,2);