```
In [1]: import pandas as pd
    from matplotlib import pyplot as plt
    %matplotlib inline
```

```
In [2]: df=pd.read_csv(r"C:\Users\mouni\Downloads\Income.csv")
    df.head()
```

Out[2]:

	Gender	Age	Income(\$)
0	Male	19	15
1	Male	21	15
2	Female	20	16
3	Female	23	16
4	Female	31	17

```
In [3]: plt.scatter(df["Age"],df["Income($)"])
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[3]: Text(0, 0.5, 'Income(\$)')


```
In [4]: from sklearn.cluster import KMeans
In [5]: km=KMeans()
       km
Out[5]:
        ▼ KMeans
        KMeans()
In [6]: |y_predicted=km.fit_predict(df[["Age","Income($)"]])
       y predicted
       C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
       earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
       ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to
       suppress the warning
         warnings.warn(
Out[6]: array([1, 1, 1, 1, 1, 1, 1, 7, 1, 7, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1,
              7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 5, 7, 5, 7, 5, 5, 5, 7, 5, 7, 5,
              7, 5, 7, 5, 5, 5, 7, 5, 5, 7, 7, 7, 7, 3, 5, 7, 3, 5, 3, 7, 3, 5,
              7, 3, 5, 5, 3, 7, 3, 3, 3, 5, 0, 0, 5, 0, 3, 0, 3, 0, 5, 0, 3, 4,
              0, 0, 3, 4, 0, 0, 4, 4, 0, 4, 0, 4, 0, 3, 4, 0, 4, 3, 0, 3, 3,
              3, 4, 0, 4, 4, 4, 3, 0, 0, 0, 4, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0,
              4, 4, 4, 4, 0, 4, 4, 0, 4, 4, 4, 4, 4, 4, 0, 4, 4, 0, 0, 0, 0, 4,
              0, 4, 4, 4, 4, 4, 0, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
              6, 6])
In [7]: |df["cluster"]=y_predicted
```

df.head()

Out[7]:

	Gender	Age	Income(\$)	cluster
0	Male	19	15	1
1	Male	21	15	1
2	Female	20	16	1
3	Female	23	16	1
4	Female	31	17	1

```
In [8]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="purple")
    plt.scatter(df2["Age"],df2["Income($)"],color="skyblue")
    plt.scatter(df3["Age"],df3["Income($)"],color="violet")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[8]: Text(0, 0.5, 'Income(\$)')


```
In [9]: from sklearn.preprocessing import MinMaxScaler
```

```
In [10]: Scaler=MinMaxScaler()
```

```
In [11]: Scaler.fit(df[["Income($)"]])
         df["Income($)"]=Scaler.transform(df[["Income($)"]])
         df.head()
```

Out[11]:

	Gender	Age	Income(\$)	cluster
0	Male	19	0.000000	1
1	Male	21	0.000000	1
2	Female	20	0.008197	1
3	Female	23	0.008197	1
4	Female	31	0.016393	1

```
In [12]: Scaler.fit(df[["Age"]])
         df["Age"]=Scaler.transform(df[["Age"]])
         df.head()
```

Out[12]:					
out[12].		Gender	Age	Income(\$)	cluster
	0	Male	0.019231	0.000000	1
	1	Male	0.057692	0.000000	1
	2	Female	0.038462	0.008197	1
	3	Female	0.096154	0.008197	1
	4	Female	0.250000	0.016393	1

```
In [13]: km=KMeans()
```

Out[13]:

```
▼ KMeans
KMeans()
```

```
In [14]: y_predicted=km.fit_predict(df[["Age","Income($)"]])
y_predicted
```

C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
earn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` wi
ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
suppress the warning
warnings.warn(

```
In [15]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="hotpink")
    plt.scatter(df2["Age"],df2["Income($)"],color="SpringGreen")
    plt.scatter(df3["Age"],df3["Income($)"],color="plum")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[15]: Text(0, 0.5, 'Income(\$)')


```
In [23]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="royalblue")
    plt.scatter(df2["Age"],df2["Income($)"],color="violet")
    plt.scatter(df3["Age"],df3["Income($)"],color="olive")
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="red",markplt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[23]: Text(0, 0.5, 'Income(\$)')


```
In [24]:
         k rng=range(1,10)
         sse=[]
         for k in k_rng:
          km=KMeans(n clusters=k)
          km.fit(df[["Age","Income($)"]])
          sse.append(km.inertia_)
         sse
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
         C:\Users\mouni\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
         earn\cluster\ kmeans.py:870: FutureWarning: The default value of `n init` wi
         ll change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to
         suppress the warning
           warnings.warn(
```

```
Out[24]: [23.583906150363607,

13.028938428018286,

7.49210786858601,

6.079203145994377,

4.713811834695168,

3.8627002227992824,

3.055986211920202,

2.6569076553350044,

2.3135720353543285]

In [25]: plt.plot(k_rng,sse)

plt.xlabel("k")

plt.ylabel("sum of squared Error")

Out[25]: Text(0, 0.5, 'sum of squared Error')
```



```
In [ ]:
```