oefeningen hoofdstuk 8 - tijdsreeksen

TijsMartens 12 april 2019

voorbeelden van in de les.

```
x <- round(rnorm(50, 50, 10))
x

## [1] 45 66 57 38 43 40 35 45 45 51 44 38 44 49 53 44 53 36 50 39 45 65 29
## [24] 46 54 27 59 44 60 33 50 62 50 52 36 58 46 61 62 53 64 51 47 60 36 50
## [47] 52 50 39 36

t <- ts(x, frequency = 5)
t

## Time Series:
## Start = c(1, 1)
## End = c(10, 5)
## Frequency = 5
## [1] 45 66 57 38 43 40 35 45 45 51 44 38 44 49 53 44 53 36 50 39 45 65 29
## [24] 46 54 27 59 44 60 33 50 62 50 52 36 58 46 61 62 53 64 51 47 60 36 50
## [47] 52 50 39 36

plot(t)</pre>
```



```
fit <- HoltWinters(t)
plot(fit)</pre>
```

Holt-Winters filtering


```
fit
## Holt-Winters exponential smoothing with trend and additive seasonal component.
##
## Call:
##
  HoltWinters(x = t)
##
##
   Smoothing parameters:
    alpha: 0.1161002
##
##
    beta: 0.3128107
##
    gamma: 0.5237156
##
##
  Coefficients:
##
           [,1]
     43.652793
##
      -1.172107
## b
      5.418399
## s1
      3.954051
## s2
       2.208674
## s4
       1.803770
## s5 -7.566662
merk op dat alpha heel klein is
fit <- HoltWinters(t,beta = FALSE, gamma =FALSE)</pre>
plot(fit)
```

Holt-Winters filtering


```
fit
## Holt-Winters exponential smoothing without trend and without seasonal component.
##
## Call:
## HoltWinters(x = t, beta = FALSE, gamma = FALSE)
##
## Smoothing parameters:
    alpha: 0.04373445
##
##
    beta : FALSE
##
    gamma: FALSE
##
## Coefficients:
         [,1]
## a 48.11559
merk op dat alpha groter is
```

voorpselling maken

```
library(forecast)
## Warning: package 'forecast' was built under R version 3.5.3
f <- forecast(fit, 5)
f</pre>
```

```
Point Forecast
                           Lo 80
                                    Hi 80
                                             Lo 95
                                                      Hi 95
## 11.00
               48.11559 35.54969 60.68148 28.89771 67.33346
## 11.20
               48.11559 35.53768 60.69349 28.87934 67.35183
               48.11559 35.52568 60.70549 28.86099 67.37018
## 11.40
## 11.60
               48.11559 35.51369 60.71748 28.84265 67.38852
               48.11559 35.50172 60.72946 28.82434 67.40684
## 11.80
plot(f)
```

Forecasts from HoltWinters

voorbeelde met stijgende data

```
sorted <- sort(x)
plot(sorted)</pre>
```


dataset laten veriëren

dataset laten veriëren:

```
eta <- rnorm(50,0,2)
betaTS <- sorted + eta</pre>
```

tijdsreeks maken

```
tB <- ts(betaTS, frequency = 10)
plot(tB)</pre>
```


de grafiek stijgt, dus we moeten beta gerbuiken

```
fitB <- HoltWinters(tB, alpha = TRUE, beta = TRUE, gamma=FALSE)</pre>
## Holt-Winters exponential smoothing with trend and without seasonal component.
##
## Call:
## HoltWinters(x = tB, alpha = TRUE, beta = TRUE, gamma = FALSE)
## Smoothing parameters:
    alpha: TRUE
    beta : TRUE
##
##
    gamma: FALSE
##
## Coefficients:
##
          [,1]
## a 64.133748
## b -2.613645
plot(fitB)
```

Holt-Winters filtering

de eerste drie zijn niet ingevuld, want er zijn minstens drie voorgaande observaties nodig om een voorspelling te kunnne maken.

voorspelling maken

```
fB <- forecast(fitB, 3)
plot(fB)</pre>
```

Forecasts from HoltWinters

werken met een seizoenscomponent

```
x <- seq(1:50)
y <- sin(x)
eta <- rnorm(50,0, 0.5)
y <- y + 4 + eta
ty <- ts(y, frequency = 10)
plot(ty)</pre>
```



```
my <- HoltWinters(ty)

## Warning in HoltWinters(ty): optimization difficulties: ERROR:
## ABNORMAL_TERMINATION_IN_LNSRCH
plot(my)</pre>
```

Holt-Winters filtering


```
my
## Holt-Winters exponential smoothing with trend and additive seasonal component.
##
## Call:
## HoltWinters(x = ty)
##
## Smoothing parameters:
##
    alpha: 0.09116534
    beta: 0.08374552
##
##
    gamma: 0.3788357
##
##
   Coefficients:
##
               [,1]
        3.674928466
## a
## b
       -0.003194177
## s1
        0.190440269
       -0.116127957
##
  s2
##
  s3
        0.117748718
   s4
        0.540807390
##
##
   s5
        0.748145882
##
   s6
        0.173250598
## s7
       -0.021100405
        0.402600026
## s8
## s9
        0.191529020
## s10
        0.276532075
```

```
##voorspelling
fy <- forecast(my, 30)
plot(fy)</pre>
```

Forecasts from HoltWinters

merk op dat de periodes (de dalen en de pieken) worden meegenomen in de voorspelling

voorbeeld blz 120: het voorstellen van een tijdsreeks

```
kings <- scan(file = "C:\\Users\\tijsm\\Google Drive\\HoGent 2018-2019\\2e semester\\Onderzoekstechniek
kings

## [1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69

## [24] 59 48 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56

kingstimeseries <- ts(kings)

plot.ts(kingstimeseries, ylab = "leeftijd", xlab="tijd")
grid(lty = 2, lwd = 1, col = "black")</pre>
```


voorbeeld blz 123 ev.: voorschrijdend gemiddelde

```
data <- c(4 , 16 , 12 , 25 , 13 , 12 , 4 , 8 , 9 , 14, 3 , 14 , 14 , 20 , 7 , 9 , 6 , 11 , 3 , 11, 8 ,

testData <- c(4 , 16 , 12 , 25 , 13 , 12 , 4 , 8 , 9 , 14, 3 , 14 , 14 , 20 , 7 , 9 , 6 , 11 , 3 , 11)

gem <- mean(data[1:20]) # het gemiddelde van de eerste 20 getallen
gem

## [1] 10.75

mean(testData)

## [1] 10.75

gemy <- rnorm(n = length(data), mean = gem, sd = 0)

plot.ts(data, type = "b", col = "blue")
lines(gemy, type = "l", col = "red")</pre>
```


we merken dat x1 = 4 (de eerste waarde) evenveel invloed heeft op het gemiddelde als x20 = 11 het gemiddelde als schatter gebruiken is dus geen goed idee

```
#library(smooth)
#library(Mcomp)

library('forecast')

#sma10 <- SMA(x = data, n=10)
#sma5 <- SMA(x=data, n=5)
#plot.ts(x = data, col = 'blue', type = 'l')
#lines(sma10, col='red', type = 'b')
#lines(sma5, col='purple', type = 'b')

# SMA function is niet gekend</pre>
```

voorbeeld blz 126: enkelvoudige exponentiële afvakking

[12] 32.43 23.26 22.57 23.00 27.88 25.32 25.08 27.76 19.82 24.78 20.12

```
rain <- kings <- scan(file = "C:\\Users\\tijsm\\Google Drive\\HoGent 2018-2019\\2e semester\\Onderzoeks
rain
## [1] 23.56 26.07 21.86 31.24 23.65 23.88 26.41 22.67 31.69 23.86 24.11</pre>
```

```
## [23] 24.34 27.42 19.44 21.63 27.49 19.43 31.13 23.09 25.85 22.65 22.75
## [34] 26.36 17.70 29.81 22.93 19.22 20.63 35.34 25.89 18.65 23.06 22.21
## [45] 22.18 18.77 28.21 32.24 22.27 27.57 21.59 16.93 29.48 31.60 26.25
## [56] 23.40 25.42 21.32 25.02 33.86 22.67 18.82 28.44 26.16 28.17 34.08
   [67] 33.82 30.28 27.92 27.14 24.40 20.35 26.64 27.01 19.21 27.74 23.85
## [78] 21.23 28.15 22.61 19.80 27.94 21.47 23.52 22.86 17.69 22.54 23.28
## [89] 22.17 20.84 38.10 20.65 22.97 24.26 23.01 23.67 26.75 25.36 24.79
## [100] 27.88
rainseries \leftarrow ts(rain, start = c(1813))
rainseries
## Time Series:
## Start = 1813
## End = 1912
## Frequency = 1
     [1] 23.56 26.07 21.86 31.24 23.65 23.88 26.41 22.67 31.69 23.86 24.11
   [12] 32.43 23.26 22.57 23.00 27.88 25.32 25.08 27.76 19.82 24.78 20.12
## [23] 24.34 27.42 19.44 21.63 27.49 19.43 31.13 23.09 25.85 22.65 22.75
   [34] 26.36 17.70 29.81 22.93 19.22 20.63 35.34 25.89 18.65 23.06 22.21
## [45] 22.18 18.77 28.21 32.24 22.27 27.57 21.59 16.93 29.48 31.60 26.25
## [56] 23.40 25.42 21.32 25.02 33.86 22.67 18.82 28.44 26.16 28.17 34.08
## [67] 33.82 30.28 27.92 27.14 24.40 20.35 26.64 27.01 19.21 27.74 23.85
   [78] 21.23 28.15 22.61 19.80 27.94 21.47 23.52 22.86 17.69 22.54 23.28
## [89] 22.17 20.84 38.10 20.65 22.97 24.26 23.01 23.67 26.75 25.36 24.79
## [100] 27.88
plot.ts(rainseries)
```


plot(rain) # van waar komt dit forecast??????

oefening 8.1.

opgave

wat zou volgende tijdsreeks kunnen voorstellen

oplossing

tijdsreeks grafisch voorstellen

```
f <- function (a , b , t ){
    return (a + b * sin ((2 * pi*4) / 4) + b * cos ((2 * pi*4) / 4) + rnorm (1) )
}

t <- seq(from = 1, to = 100, by = 1)

X <- lapply (t , f , a=5,b=5)
plot (x = t , y = X, type = 'l')</pre>
```


oefening 8.2.

budgets <- read.csv("C:\\Users\\tijsm\\Google Drive\\HoGent 2018-2019\\2e semester\\Onderzoekstechniekenders)
budgets</pre>

##		Kwartaal	Omzet	${\tt AdBudget}$	BNP	Kwartaalnummer
##	1	Mar-81	1020.2	659.2	251.8	1
##	2	Jun-81	889.2	589.0	290.9	2
##	3	Sep-81	795.0	512.5	290.8	3
##	4	Dec-81	1003.9	614.1	292.4	4
##	5	Mar-82	1057.7	647.2	279.1	5
##	6	Jun-82	944.4	602.0	254.0	6
##	7	Sep-82	778.5	530.7	295.6	7
##	8	Dec-82	932.5	608.4	271.7	8
##	9	Mar-83	996.5	637.9	259.6	9
##	10	Jun-83	907.7	582.4	280.5	10
##	11	Sep-83	735.1	506.8	287.2	11
##	12	Dec-83	958.1	606.7	278.0	12
##	13	Mar-84	1034.1	658.7	256.8	13
##	14	Jun-84	992.8	614.9	271.0	14
##	15	Sep-84	791.7	489.9	300.9	15
##	16	Dec-84	914.2	586.5	289.8	16
##	17	Mar-85	1106.5	663.0	266.8	17
##	18	Jun-85	985.1	591.7	273.7	18

##	19	Sep-85	823.9	502.2 301.3	19
##	20		1025.1	616.4 285.6	20
##	21	Mar-86	1064.7	647.1 270.6	21
##	22	Jun-86	981.9	615.5 274.6	22
	23	-	828.3		23
	24		940.7	609.1 275.9	24
	25		991.1		25
	26		1021.2		26
	27	Sep-87			27
	28	Dec-87		621.3 271.9	28
	29		1054.2		29
	30		1018.7		30
	31 32	Sep-88	815.6 1010.6	503.2 309.0 617.5 266.7	31 32
	33		1071.5		33
	34	Jun-89		585.6 282.3	34
	35	Sep-89		520.6 289.2	35
	36	Dec-89		608.6 270.7	36
	37		1002.3	645.7 266.5	37
	38	Jun-90		597.4 287.9	38
	39		782.9	499.8 287.6	39
	40	Dec-90		601.8 283.4	40
	41	Mar-91		650.8 266.4	41
	42	Jun-91		588.3 292.3	42
##	43	Sep-91		491.6 330.6	43
	44	Dec-91	954.2	603.3 286.2	44
##	45		1115.5	663.2 259.2	45
##	46	Jun-92	927.1	614.0 263.7	46
##	47	Sep-92	800.7	506.3 288.2	47
##	48	Dec-92	955.7	606.2 274.1	48
##	49		1049.8	639.5 287.1	49
	50	Jun-93	886.0	585.9 285.5	50
	51	Sep-93	786.4	492.2 303.7	51
	52	Dec-93		610.4 275.6	52
	53		1113.9	660.8 249.3	53
	54		924.5	612.2 272.9	54
##	55	Sep-94	771.4	509.2 289.8	55
##		Dec-94	949.8	612.1 269.2	56
	57	Mar-95	990.5	653.2 261.3	57
	58		1071.4	605.3 292.9	58
	59	-	854.1	506.6 304.6	59
##		Dec-95	929.8	597.4 276.3	60
## ##		Mar-96	959.6	635.2 268.2	61
		Jun-96	991.1	611.6 293.5	62 63
## ##		Sep-96 Dec-96		503.8 311.1 609.9 273.7	63 64
##		Mar-97		645.2 267.5	65
	66	Jun-97		609.8 271.9	66
	67	Sep-97		512.1 308.8	67
	68	Dec-97	997.6	603.7 282.9	68
##		Mar-98	1055.0	639.4 268.4	69
	70	Jun-98	925.6	601.6 271.4	70
	71	Sep-98		497.0 292.1	71
	72	_	934.1	602.8 287.6	72
	. –				

```
73
## 73
         Mar-99 1081.7
                          647.3 258.0
## 74
         Jun-99 1062.3
                          612.5 282.9
                                                   74
                          492.2 295.0
## 75
         Sep-99 798.8
                                                   75
         Dec-99 1014.3
                                                   76
## 76
                          610.8 271.2
## 77
         Mar-00 1049.5
                          646.5 275.4
                                                   77
## 78
         Jun-00 961.7
                          603.3 284.0
                                                   78
## 79
         Sep-00 793.4
                          503.8 300.9
                                                   79
         Dec-00 872.3
                          598.3 277.4
## 80
                                                   80
## 81
         Mar-01 1014.2
                          649.4 273.8
                                                   81
## 82
         Jun-01 952.6
                                                   82
                          620.2 288.4
## 83
         Sep-01 792.4
                          497.9 283.4
                                                   83
         Dec-01 922.3
## 84
                          609.2 273.4
                                                   84
## 85
         Mar-02 1055.9
                                                   85
                          665.9 271.5
## 86
         Jun-02 906.2
                          600.4 283.6
                                                   86
## 87
         Sep-02 811.2
                          502.3 290.6
                                                   87
## 88
         Dec-02 1005.8
                          605.6 289.1
                                                   88
## 89
         Mar-03 1013.8
                          647.6 282.2
                                                   89
## 90
         Jun-03 905.6
                          583.5 285.6
                                                   90
## 91
         Sep-03 957.3
                          502.5 304.0
                                                   91
## 92
         Dec-03 1059.5
                          625.9 271.5
                                                   92
## 93
        Mar-04 1090.6
                          648.7 263.9
                                                   93
## 94
         Jun-04 998.9
                          610.7 288.3
                                                   94
                          519.1 290.2
## 95
         Sep-04 866.6
                                                   95
## 96
         Dec-04 1018.7
                          634.9 284.0
                                                   96
## 97
        Mar-05 1112.5
                          663.1 270.9
                                                   97
## 98
         Jun-05 997.4
                          583.3 294.7
                                                   98
## 99
         Sep-05 826.8
                          508.6 292.2
                                                   99
## 100
         Dec-05 992.6
                          634.2 255.1
                                                  100
library(TTR)
## Warning: package 'TTR' was built under R version 3.5.3
library(forecast)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.5.3
1.
omzetsma4 <- SMA(x = budgets $0mzet, n=4)
omzetsma12 <- SMA(x = budgets $0mzet, n=12)
plot.ts(x=budgets$0mzet, col="blue", type = 'l')
lines(omzetsma4, col = "red", type = 'b')
```

lines(omzetsma12, col = "purple", type = 'b')


```
addsBudgetsma4 <- SMA(budgets$AdBudget, n = 4)
addsBudgetsma12 <- SMA(budgets$AdBudget, n = 12)

plot.ts(x = budgets$AdBudget, col='blue', type = 'l')

lines(addsBudgetsma4, col = 'red', type = 'l')
lines(addsBudgetsma12, col = 'purple', type = 'l')</pre>
```



```
bnpsma4 <- SMA(budgets$BNP, n = 4)
bnpsma12 <- SMA(budgets$BNP, n = 12)

plot.ts(budgets$BNP, col = 'blue', type = 'l')
lines(bnpsma4, col = "red", type = 'b')
lines(bnpsma12, col = "purple", type = "b")</pre>
```


adhv lineaire regressie

2.

```
linregOmzet <- lm(budgets$Omzet ~ budgets$Kwartaalnummer)
plot.ts(x = budgets$Omzet, col='blue', type = 'l')
abline(linregOmzet, col = 'green')</pre>
```



```
linregAddsBudget <- lm(budgets$AdBudget ~ budgets$Kwartaalnummer)
plot.ts(x = budgets$AdBudget, col='blue', type = 'l')
abline(linregAddsBudget, col = 'green')</pre>
```



```
linregbnp <- lm(budgets$BNP ~ budgets$Kwartaalnummer)
plot.ts(x = budgets$BNP, col='blue', type = 'l')
abline(linregbnp, col = 'green')</pre>
```


3.

```
voorspellingOmzet4 <- forecast(omzetsma4, h=10)

## Warning in ets(object, lambda = lambda, biasadj = biasadj,
## allow.multiplicative.trend = allow.multiplicative.trend, : Missing values
## encountered. Using longest contiguous portion of time series
plot(voorspellingOmzet4)</pre>
```

Forecasts from ETS(A,N,N)


```
voorspellingOmzet12 <- forecast(omzetsma12, h=10)

## Warning in ets(object, lambda = lambda, biasadj = biasadj,
## allow.multiplicative.trend = allow.multiplicative.trend, : Missing values
## encountered. Using longest contiguous portion of time series
plot(voorspellingOmzet12)</pre>
```

Forecasts from ETS(A,N,N)


```
voorspellingAdBudget4 <- forecast(addsBudgetsma4, h=10)

## Warning in ets(object, lambda = lambda, biasadj = biasadj,
## allow.multiplicative.trend = allow.multiplicative.trend, : Missing values
## encountered. Using longest contiguous portion of time series
plot(voorspellingAdBudget4)</pre>
```

Forecasts from ETS(A,N,N)


```
voorspellingAdBudget12 <- forecast(addsBudgetsma12, h=10)

## Warning in ets(object, lambda = lambda, biasadj = biasadj,
## allow.multiplicative.trend = allow.multiplicative.trend, : Missing values
## encountered. Using longest contiguous portion of time series
plot(voorspellingAdBudget12)</pre>
```

Forecasts from ETS(M,N,N)


```
voorspellingBNP4 <- forecast(bnpsma4, h=10)

## Warning in ets(object, lambda = lambda, biasadj = biasadj,
## allow.multiplicative.trend = allow.multiplicative.trend, : Missing values
## encountered. Using longest contiguous portion of time series
plot(voorspellingBNP4)</pre>
```

Forecasts from ETS(M,N,N)


```
voorspellingBNP12 <- forecast(bnpsma12, h=10)

## Warning in ets(object, lambda = lambda, biasadj = biasadj,
## allow.multiplicative.trend = allow.multiplicative.trend, : Missing values
## encountered. Using longest contiguous portion of time series
plot(voorspellingBNP12)</pre>
```

Forecasts from ETS(M,N,N)

4.

aangezien er 4 kwartalen zijn in een jaar is deze dataset "seasonal". Voor dit soort data set is driedubbele exponentiële smoothing voorzien.

Als er enkel een trend was, zou dubbele exponentiele smoothing volstaan.

5.

```
omzetTs <- ts(budgets$0mzet, frequency = 4)
decomposed0mzet <- decompose(omzetTs)
plot(decomposed0mzet)</pre>
```

Decomposition of additive time series


```
addsBudgetTs <- ts(budgets$AdBudget, frequency = 4)
decomposedAddsTs <- decompose(addsBudgetTs)
plot(decomposedAddsTs)</pre>
```

Decomposition of additive time series


```
bnpTs <- ts(budgets$BNP, frequency = 4)
decomposedBnpTs <- decompose(bnpTs)
plot(decomposedBnpTs)</pre>
```

Decomposition of additive time series

6.

```
s1 <- omzetTs[1]
omzetHoltWinters <- HoltWinters(omzetTs, beta = FALSE, gamma = FALSE, s.start = s1)
omzetVoorspelling <- forecast(omzetHoltWinters, h = 20)
plot(omzetVoorspelling)
lines(omzetHoltWinters$fitted[,1], col= 'red')</pre>
```

Forecasts from HoltWinters


```
s1Adds <- addsBudgetTs[1] # startwaarde
addsHolstWinters <- HoltWinters(addsBudgetTs, beta = FALSE, gamma =FALSE, s.start = s1Adds)
addsBudgetVoorspelling <- forecast(addsHolstWinters, h = 20)
plot(addsBudgetVoorspelling)
lines(addsHolstWinters$fitted[,1], col = 'red')</pre>
```



```
s1bnp <- bnpTs[1]
bnpHoltWinters <- HoltWinters(bnpTs, beta = FALSE, gamma = FALSE, s.start = s1bnp)
bnpVoorspelling <- forecast(bnpHoltWinters, h = 20)
plot(bnpVoorspelling)
lines(bnpHoltWinters$fitted[,1], col='red')</pre>
```


7.

```
s1 <- omzetTs[1]
omzetHoltWinters <- HoltWinters(omzetTs, beta = FALSE, gamma = FALSE, s.start = s1, alpha = 0.1)
omzetVoorspelling <- forecast(omzetHoltWinters, h = 20)
plot(omzetVoorspelling)
lines(omzetHoltWinters$fitted[,1], col= 'red')</pre>
```



```
s1Adds <- addsBudgetTs[1] # startwaarde
addsHoltWinters <- HoltWinters(addsBudgetTs,alpha = 0.1 , beta = FALSE, gamma =FALSE, s.start = s1Adds)
addsBudgetVoorspelling <- forecast(addsHoltWinters, h = 20)
plot(addsBudgetVoorspelling)
lines(addsHoltWinters$fitted[,1], col = 'red')</pre>
```



```
s1bnp <- bnpTs[1]
bnpHoltWinters <- HoltWinters(bnpTs, beta = FALSE, gamma = FALSE, alpha = 0.1, s.start = s1bnp)
bnpVoorspelling <- forecast(bnpHoltWinters, h = 20)
plot(bnpVoorspelling)
lines(bnpHoltWinters$fitted[,1], col='red')</pre>
```


8. de breedte van de mogelijke voorspelling wordt sneller groter

9.

```
b1 <- (omzetTs[length(omzetTs)] - omzetTs[1]) / (length(omzetTs) - 1)
omzetHoltWinters <- HoltWinters(omzetTs, alpha = 0.05, beta = 0.2, gamma = FALSE, s.start = s1, b.start
omzetVoorspelling <- forecast(omzetHoltWinters, h=20)
plot(omzetVoorspelling)
lines(omzetHoltWinters$fitted[,1], col='red')</pre>
```



```
b1Adds <- (addsBudgetTs[length(addsBudgetTs)] - addsBudgetTs[1]) / (length(addsBudgetTs) - 1)
addsHoltWinters <- HoltWinters(addsBudgetTs, alpha = 0.05, beta = 0.2, gamma = FALSE, s.start = s1Adds,
addsBudgetVoorspelling <- forecast(addsHoltWinters, h=20)
plot(addsBudgetVoorspelling)
lines(addsHoltWinters*fitted[,1], col='red')</pre>
```



```
b1bnp <- - (bnpTs[length(bnpTs)] - bnpTs[1]) / (length(bnpTs) - 1)
b1bnp

## [1] -0.03333333

bnpHoltWinters <- HoltWinters(bnpTs, alpha = 0.05, beta = 0.2, gamma = FALSE, s.start = s1bnp, b.start = bnpVoorspelling <- forecast(addsHoltWinters, h=20)

plot(bnpVoorspelling)
lines(bnpHoltWinters$fitted[,1], col='red')</pre>
```


${f 10}$ reeds gedaan in puntje 9

11

```
enkel voor omzet:
```

```
b1 <- (omzetTs[length(omzetTs)] - omzetTs[1]) / (length(omzetTs) - 1)
omzetHoltWinters <- HoltWinters(omzetTs, alpha = 0.05, beta = 0.2, gamma = FALSE, s.start = s1, b.start
omzetVoorspelling <- forecast(omzetHoltWinters, h=20)
plot(omzetVoorspelling)
lines(omzetHoltWinters$fitted[,1], col='red')</pre>
```



```
## ------
b1 <- (omzetTs[length(omzetTs)] - omzetTs[1]) / (length(omzetTs) - 1)

omzetHoltWinters <- HoltWinters(omzetTs, alpha = 0.3, beta = 0.2, gamma = FALSE, s.start = s1, b.start = s1, b.s
```



```
## ------
b1 <- (omzetTs[length(omzetTs)] - omzetTs[1]) / (length(omzetTs) - 1)

omzetHoltWinters <- HoltWinters(omzetTs, alpha = 0.10, beta = 0.05, gamma = FALSE, s.start = s1, b.star

omzetVoorspelling <- forecast(omzetHoltWinters, h=20)

plot(omzetVoorspelling)
lines(omzetHoltWinters$fitted[,1], col='red')</pre>
```



```
## ------
b1 <- (omzetTs[length(omzetTs)] - omzetTs[1]) / (length(omzetTs) - 1)

omzetHoltWinters <- HoltWinters(omzetTs, alpha = 0.10, beta = 0.50, gamma = FALSE, s.start = s1, b.star

omzetVoorspelling <- forecast(omzetHoltWinters, h=20)

plot(omzetVoorspelling)
lines(omzetHoltWinters$fitted[,1], col='red')</pre>
```



```
## ------
b1 <- (omzetTs[length(omzetTs)] - omzetTs[1]) / (length(omzetTs) - 1)

omzetHoltWinters <- HoltWinters(omzetTs, alpha = 0.05, beta = 0.05, gamma = FALSE, s.start = s1, b.star

omzetVoorspelling <- forecast(omzetHoltWinters, h=20)

plot(omzetVoorspelling)
lines(omzetHoltWinters$fitted[,1], col='red')</pre>
```



```
## ------
b1 <- (omzetTs[length(omzetTs)] - omzetTs[1]) / (length(omzetTs) - 1)

omzetHoltWinters <- HoltWinters(omzetTs, alpha = 0.30, beta = 0.30, gamma = FALSE, s.start = s1, b.star

omzetVoorspelling <- forecast(omzetHoltWinters, h=20)

plot(omzetVoorspelling)
lines(omzetHoltWinters$fitted[,1], col='red')</pre>
```


12

omzetHoltWinters <- HoltWinters(omzetTs, alpha = 0.05, beta=0, gamma = 0.9)
plot(omzetHoltWinters)</pre>


```
addsHoltWinters <- HoltWinters(addsBudgetTs, alpha = 0.05, beta = 0, gamma = 0.9)
plot(addsHoltWinters)</pre>
```



```
bnpHoltWinters <- HoltWinters(bnpTs, alpha = 0.05, beta = 0, gamma = 0.9)
plot(bnpHoltWinters)</pre>
```


13

omzetVoorspelling <- forecast(omzetHoltWinters, h=20)
plot(omzetVoorspelling)</pre>

addsBudgetVoorspelling <- forecast(addsHoltWinters, h=20)
plot(addsBudgetVoorspelling)</pre>

bnpVoorspelling <- forecast(bnpHoltWinters, h=20)
plot(bnpVoorspelling)</pre>

dit is een betere techniek. we hebben te maken met seizoensgebonden elementen. Deze methode houd daar rekening mee

14

enkel gedaan voor omzet

```
omzetHoltWinters <- HoltWinters(omzetTs, alpha = 0.05, beta=0.05, gamma = 0.05)
omzetVoorspelling <- forecast(omzetHoltWinters, h=20)
plot(omzetVoorspelling)</pre>
```



```
## -----
omzetHoltWinters <- HoltWinters(omzetTs, alpha = 0.3, beta=0.3, gamma = 0.3)
omzetVoorspelling <- forecast(omzetHoltWinters, h=20)
plot(omzetVoorspelling)</pre>
```



```
## -----
omzetHoltWinters <- HoltWinters(omzetTs, alpha = 0.3, beta=0.05, gamma = 0.05)
omzetVoorspelling <- forecast(omzetHoltWinters, h=20)
plot(omzetVoorspelling)</pre>
```



```
## -----
omzetHoltWinters <- HoltWinters(omzetTs, alpha = 0.05, beta=0.5, gamma = 0.9)
omzetVoorspelling <- forecast(omzetHoltWinters, h=20)
plot(omzetVoorspelling)</pre>
```


15

omzetHoltWinters <- HoltWinters(omzetTs, alpha = TRUE, beta = 0, gamma = TRUE)
plot(omzetHoltWinters)</pre>

omzetVoorspelling <- forecast(omzetHoltWinters, h=20)
plot(omzetVoorspelling)</pre>

addsHoltWinters <- HoltWinters(addsBudgetTs, alpha = TRUE, beta = 0, gamma = TRUE)
plot(addsHoltWinters)</pre>

addsBudgetVoorspelling <- forecast(addsHoltWinters, h=20)
plot(addsBudgetVoorspelling)</pre>

bnpHoltWinters <- HoltWinters(bnpTs, alpha = TRUE, beta = 0, gamma = TRUE)
plot(bnpHoltWinters)</pre>

bnpVoorspelling <- forecast(bnpHoltWinters, h=20)
plot(bnpVoorspelling)</pre>

16

```
omzetPredict <- predict(omzetHoltWinters, n.ahead = 20)
plot(omzetPredict)</pre>
```



```
addsBudgetPredict <- predict(addsHoltWinters, n.ahead = 20)
plot(addsBudgetPredict)</pre>
```



```
bnpPredict <- predict(bnpHoltWinters, n.ahead = 20)
plot(bnpPredict)</pre>
```

