Analysis Exercise

Jiamin JIAN

Exercise 1:

Let X and Y be two Banach spaces. C(X,Y) is the set of all continuous mappings $f: X \mapsto Y$. For $f, g \in C(X,Y)$, we define

$$||f - g|| = \sup_{x \in X} ||f(x) - g(x)||.$$

- (i) Prove that C(X,Y) is a Banach space.
- (ii) If X and Y are compact, is C(X,Y) compact?

Solution:

- (i) We need to show that C(X,Y) is a complete normed vector space. Firstly we show that C(X,Y) is a normed space.
 - For any $f \in C(X,Y)$, $||f|| = \sup_{x \in X} ||f(x)|| \ge 0$. And if ||f|| = 0, we have $\sup_{x \in X} ||f|| = 0$, then for any $x \in X$, f(x) = 0, thus $f \equiv 0$.
 - For any $\lambda \in \mathbb{R}$, $\|\lambda f\| = \sup_{x \in X} \|\lambda f(x)\| = |\lambda| \sup_{x \in X} \|f(x)\| = |\lambda| \|f\|$.
 - For any $f, g \in C(X, Y)$, for any $x \in X$, we have $||f(x) + g(x)|| \le ||f(x)|| + ||g(x)||$, and by the definition of the norm in C(X, Y), we have $||f(x) + g(x)|| \le \sup_{x \in X} ||f(x)|| + \sup_{x \in X} ||g(x)|| = ||f|| + ||g||$. By the arbitrary of x, we can get $||f + g|| = \sup_{x \in X} ||f(x) + g(x)|| \le ||f|| + ||g||$.

Next we need to show that C(X,Y) is complete. Suppose $\{f_n\}$ is a Cauchy sequence in C(X,Y), then $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall p > q > N$,

$$\sup_{x \in X} ||f_p(x) - f_q(x)|| < \epsilon.$$

For any $y \in X$, we have

$$||f_p(y) - f_q(y)|| \le \sup_{x \in X} ||f_p(x) - f_q(x)|| < \epsilon,$$

thus $f_n(y)$ is a Cauchy sequence in Y. As Y is a Banach space, Y is complete, then $f_n(y)$ converges to some f(y) in Y. From this we can define a function

$$f: X \mapsto Y$$

Next we show that f is also continuous. Since

$$||f(x) - f(y)|| \le ||f(x) - f_n(x)|| + ||f_n(x) - f_n(y)|| + ||f_n(y) - f(y)||,$$

and $\{f_n\}$ is a continuous function sequence, for the above ϵ , there exists a $N^* \in \mathbb{N}$ and $\delta > 0$, for any $x \in B(y, \delta)$ and $n > N^*$, we have

$$||f(x) - f(y)|| < 3\epsilon.$$

Hence $f \in C(X,Y)$. And for the above ϵ and p > q > N, since $||f_p(y) - f_q(y)|| < \epsilon$, let $p \to \infty$, we have $||f(y) - f_q(y)|| \le \epsilon$. By the arbitrary of $y \in X$, for q > N, we can get

$$\sup_{y \in X} ||f(y) - f_q(y)|| \le \epsilon,$$

which shows that $f_n \to f$ in C(X,Y). Thus C(X,Y) is complete.

(ii) The statement is not true. We can give a counter example as follows. Set X = [0, 1] and Y = [0, 1], and we define a function sequence $f_n : X \mapsto Y$ by

$$f_n(x) = \begin{cases} 0, & x \in [0, \frac{1}{2} - \frac{1}{n}) \\ nx - \frac{n}{2} + 1, & x \in [\frac{1}{2} - \frac{1}{n}, \frac{1}{2}) \\ 1, & x \in [\frac{1}{2}, 1] \end{cases}$$

then we know that X and Y are compact and $\{f_n\}$ is a continuous function sequence from X to Y. And we define

$$f(x) = \begin{cases} 0, & x \in [0, \frac{1}{2}) \\ 1, & x \in [\frac{1}{2}, 1] \end{cases}$$

thus when $n \to \infty$, $f_n(x)$ converges to f(x) almost everywhere. But f(x) is not a continuous function on X, $f(x) \notin C(X,Y)$, thus for any subsequence $\{f_{n_k}\}$ of $\{f_n\}$, we know that $\{f_{n_k}\}$ is not converges in C(X,Y). Hence we know C(X,Y) is not compact.