Action Recognition

Computer Vision (SJK02)

Universitat Jaume I

Examples (demos)

Pose estimation and action recognition

EPIC-Fusion: Audio-Visual Temporal Binding for Egocentric Action Recognition

Choice #1: CNNs

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset (CVPR 2017)

Large-scale video classification with convolutional neural networks (CVPR 2014)

What about the temporal information?

Shared params

Multiresolution: fovea + context

Issue

Generally, temporal structure is ignored (or not well captured)

Choice #2: CNNs + LSTMs

Benefit & Issue

Can model order and long-range dependencies

May miss (potentially critical) low-level motions

Choice #3: 3D CNNs

2D and 3D convolutions

2D and 3D convolutions

Multiple 3D convolutions for multiple features

Benefit & Issue

Hierarchical representation of spatio-temporal information

Many more parameters than 2D CNNs

Choice #4: Two-stream nets

<u>Two-stream convolutional networks for action recognition in videos</u> (NIPS 2014)

<u>Convolutional Two-Stream Network Fusion for Video Action Recognition</u> (CVPR 2016)

Optic flow (precomputed, dense)

Not "end-to-end" (OF precomputed)

Spatial + Temporal streams

Next version: fusing the streams

Benefit

Although 3D CNNs can capture temporal information, the two-stream architecture improves performance by leveraging on optic flow

Choice #5: Two-stream inflated 3D CNNs

Turn successful 2D CNNs into 3D CNNs

How? By turning NxN filters into NxNxN ones

+ some other modifications

Comparison study

Method	#Params	Tr	raining	Testing		
	#Farailis	# Input Frames	Temporal Footprint	# Input Frames	Temporal Footprint	
ConvNet+LSTM	9M	25 rgb	5s	50 rgb	10s	
3D-ConvNet	79M	16 rgb	0.64s 240 rgb		9.6s	
Two-Stream	12M	1 rgb, 10 flow	0.4s	25 rgb, 250 flow	10s	
3D-Fused	39M	5 rgb, 50 flow	2s	25 rgb, 250 flow	10s	
Two-Stream I3D	25M	64 rgb, 64 flow	2.56s	250 rgb, 250 flow	10s	

	UCF-101			HMDB-51			miniKinetics		
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow
(a) LSTM	81.0	_	_	36.0	_	_	69.9	_	_
(b) 3D-ConvNet	51.6	_	_	24.3	_	_	60.0	_	_
(c) Two-Stream	83.6	85.6	91.2	43.2	56.3	58.3	70.1	58.4	72.9
(d) 3D-Fused	83.2	85.8	89.3	49.2	55.5	56.8	71.4	61.0	74.0
(e) Two-Stream I3D	84.5	90.6	93.4	49.8	61.9	66.4	74.1	69.6	78.7