Analysis of Algorithms

Homework 4

Abraham Murciano

December 21, 2020

1 Dijkstra's Algorithm with negative weights

Part A

Figure 1 shows a graph with negative weights such that if we apply Dijkstra's algorithm to find the shortest path between vertices S and D, it will return the wrong path.

Figure 1: Graph for which Dijkstra doesn't work

Starting off, we assign the unvisited vertices v_1 and v_2 with the distances 4 and 8 respectively, marking S as visited. Then we take the unvisited vertex with the smallest distance, v_1 , and check its neighbours, namely D. We assign it the distance 6 and mark v_1 as visited. Now that our destination vertex is the unvisited vertex with the shortest distance, the algorithm would claim that it has finished, with the shortest path going through v_1 with a distance of 6.

However, in reality the shortest path goes through v_2 and has a total distance of 8-4=4. This path was not considered by the algorithm because the path to the intermediate vertex v_2 has a larger distance than the path it found first.

Part B

If we take the example graph in figure 1 and modify it so that the edges are directed (away from S or towards D), then that would form a directed acyclic

graph for which Dijkstra's algorithm would not work for a similar reason to that of part A.

2 Floyd-Warshall with Negative Cycles

We are to add pseudocode to the Floyd-Warshall algorithm which checks for negative cycles. First, let us take a look at the algorithm.

```
function FloydWarshallNegativeCycles(V, E)
for (u, v) \in V \times V do
                                             ▶ Initialise all distances to infinity
    D_{u,v} := \infty
for (u, v) \in E do
                                                 ▶ Apply distances of each edge
    D_{u,v} := Weight(u,v)
for v \in V do
                                                  ▷ Set distance to itself to zero
    D_{v,v} := 0
for k \in V do
                      \triangleright k is a possible intermediate vertex between all (u, v)
    for u \in V do
        for v \in V do
            D_{u,v} := \operatorname{Min}(D_{u,k} + D_{k,v}, D_{u,v})
                                                       \triangleright Seek shorter path via k
```