Natural Language Processing Assignment- 2

TYPE OF QUESTION: MCQ

Number of questions: 10 Total mark: $10 \times 1 = 10$

QUESTION 1:

According to Zipf's law which statement(s) is/are correct?

- (i) A small number of words occur with high frequency.
- (ii) A large number of words occur with low frequency.
- a. Both (i) and (ii) are correct
- b. Only (ii) is correct
- c. Only (i) is correct
- d. Neither (i) nor (ii) is correct

Correct Answer: a

Solution:

QUESTION 2:

Consider the following corpus C_1 of 4 sentences. What is the total count of unique bi-grams for which the likelihood will be estimated? Assume we do not perform any pre-processing.

today is Sneha's birthday she likes ice cream she is also fond of cream cake we will celebrate her birthday with ice cream cake

- a. 24
- b. 28
- c. 27
- d. 23

Correct Answer: a

Detailed Solution:

Unique bi-grams are:				
<s> today</s>	today is	is Sneha's	Sneha's birthday	birthday <\s>
<s> she</s>	she likes	likes ice	ice cream	cream <\s>
She is	is also	also fond	fond of	of cream
cake <\s>		we will	will celebrate	celebrate her
her birthday	birthday with	with ice	cream cake	
QUESTION 3:				
A 3-gram model is a order Markov Model.				
a.	Two			
b.	Five			
	Four			
d.	Three			
Correct Answer: a				
Detailed Solution:				
QUESTION 4:				
Which of these is/are - valid Markov assumption?				
a. The probability of a word depends only on the current word.				
b. The probability of a word depends only on the previous word.				
c. The probability of a word depends only on the next word.				
d. The probability of a word depends only on the current and the previous word.				
Correct Answer: a, c, d				

QUESTION 5:

Solution:

For the string 'mash', identify which of the following set of strings have a Levenshtein distance of 1.

- a. smash, mas, lash, mushy, hash
- b. bash, stash, lush, flash, dash
- c. smash, mas, lash, mush, ash
- d. None of the above

Correct Answer: c

Detailed Solution:

QUESTION 6:

Assume that we modify the costs incurred for operations in calculating Levenshtein distance, such that both the insertion and deletion operations incur a cost of 1 each, while substitution incurs a cost of 2. Now, for the string **'lash'** which of the following set of strings will have an edit distance of 1?

- a. ash, slash, clash, flush
- b. flash, stash, lush, blush,
- c. slash, last, bash, ash
- d. None of the above

Correct Answer: d

Detailed Solution:

QUESTION 7:

Given a corpus C_2 , the Maximum Likelihood Estimation (MLE) for the bigram "dried berries" is 0.4 and the count of occurrence of the word "dried" is 680. for the same corpus C_2 , the likelihood of "dried berries" after applying add-one smoothing is 0.05. What is the vocabulary size of C_2 ?

- a. 4780
- b. 3795
- c. 4955
- d. 3995

Correct Answer: a

Detailed Solution:

 $P_{MLE}(berries | dried) = \frac{C(dried, berries)}{C(dried)}$

$$0.4 = C(dried, berries) / 680$$
 $C(dried, berries) = 680*0.4 = 272$
 $P_{Add-1}(berries | dried) = \frac{C(dried, berries) + 1}{C(dried) + V}$
 $0.05 = (272+1) / (680+V)$
V=4780

For Question 8 to 10, consider the following corpus C₃ of 3 sentences.

there is a big garden children play in a garden they play inside beautiful garden

QUESTION 8:

Calculate **P(they play in a big garden)** assuming a bi-gram language model.

- a. 1/8
- b. 1/12
- c. 1/24
- d. None of the above

Correct Answer: b

Detailed Solution:

```
P(they | <s>) = 1/3

P(play | they) = 1/1

P(in | play) = 1/2

P(a | in) = 1/1

P(big | a) = 1/2

P(garden | big) = 1/1

P(<\s>|garden) = 3/3

P(they play in a big garden) = 1/3
```

P(they play in a big garden) = $1/3 \times 1/1 \times 1/2 \times 1/1 \times 1/2 \times 1/1 \times 3/3 = 1/12$

QUESTION 9:

Considering the same model as in Question 7, calculate the perplexity of **<s> they play in a big** garden **<\s>.**

- a. 2.289
- b. 1.426
- c. 1.574

d. 2.178

Correct Answer: b

Detailed Solution:

```
perplexity = \sqrt[7]{12} = 1.426
```

QUESTION 10:

Assume that you are using a bi-gram language model with add one smoothing. Calculate **P(they play in a beautiful garden).**

- a. 4.472 x 10^-6
- b. 2.236 x 10^-6
- c. 3.135 x 10⁻⁶
- d. None of the above

Correct Answer: b

Detailed Solution:

```
|V|=11 \\ P(\text{they }|<\text{s>}) = (1+1)/(3+11) \\ P(\text{play }|\text{ they}) = (1+1)/(1+11) \\ P(\text{in }|\text{ play}) = (1+1)/(2+11) \\ P(\text{a }|\text{ in}) = (1+1)/(1+11) \\ P(\text{beautiful }|\text{ a}) = (0+1)/(2+11) \\ P(\text{garden }|\text{ beautiful}) = (1+1)/(1+11) \\ P(<\backslash \text{s>}|\text{garden}) = (3+1)/(3+11) \\ P(\text{they play in a beautiful garden}) = 2/14 \times 2/12 \times 2/13 \times 2/12 \times 1/13 \times 2/12 \times 4/14 \\ = 2.236 \times 10^{\circ}-6
```

**********END******