# Probabilités

## Table des matières

|      | dre général de la théorie des probabilités                                                                                                                         | 2  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | Espace probabilisé général                                                                                                                                         | 2  |
| 1.2. | Exemples d'espace probabilisés · · · · · · · · · · · · · · · · · ·                                                                                                 | 4  |
|      | 1.2.1. Univers $\Omega = \mathbb{N} \cdot \cdot$             | 4  |
|      | 1.2.2. Univers $\Omega = \mathbb{R} \cdot \cdot$             | 4  |
|      | 1.2.3. Univers $\Omega = \mathbb{R}^d \cdot \cdots \cdot $ | 5  |
| 1.3. | . Classe monotone · · · · · · · · · · · · · · · · · · ·                                                                                                            | 5  |
| 1.4. | Variables et vecteurs aléatoires · · · · · · · · · · · · · · · · · · ·                                                                                             | 7  |
|      | 1.4.1. Loi d'un vecteur aléatoire · · · · · · · · · · · · · · · · · · ·                                                                                            | 7  |
| 1.5. | Fonction de répartition · · · · · · · · · · · · · · · · · · ·                                                                                                      | 8  |
|      | 1.5.1. Reconnaître une densité de probabilité · · · · · · · · · · · · · · · · · · ·                                                                                | 8  |
|      | 1.5.2. Reconnaitre une loi discrète                                                                                                                                | 9  |
|      | 2. Espérance                                                                                                                                                       |    |
| 2.1. | Calculs de l'espérance · · · · · · · · · · · · · · · · · · ·                                                                                                       | 10 |
|      | 2.1.1. Définition et formule de transfert · · · · · · · · · · · · · · · · · · ·                                                                                    | 10 |
|      | 2.1.2. Variance                                                                                                                                                    | 10 |
|      | 2.1.3. Covariance • • • • • • • • • • • • • • • • • • •                                                                                                            | 10 |
|      | 2.1.4. Concentration · · · · · · · · · · · · · · · · · · ·                                                                                                         | 11 |
| 2.2. | Application au calcul de lois                                                                                                                                      | 12 |
|      | 2.2.1. Méthode de la fonction muette · · · · · · · · · · · · · · · · · ·                                                                                           | 12 |
|      | dépendance                                                                                                                                                         | 13 |
| 3.1. | Vecteurs aléatoires indépendants · · · · · · · · · · · · · · · · · · ·                                                                                             | 13 |
|      | 3.1.1. Critère d'indépendance pour des vecteurs discrets · · · · · · · · · · · · · · · · · · ·                                                                     | 14 |
|      | 3.1.2. Critère d'indépendance pour des vecteurs à densité · · · · · · · · · · · · · · · · · · ·                                                                    | 15 |
| 3.2. | Somme de variables aléatoires indépendantes · · · · · · · · · · · · · · · · · · ·                                                                                  | 15 |
|      | 3.2.1. Cas de variables aléatoires discrètes · · · · · · · · · · · · · · · · · · ·                                                                                 | 15 |
|      | 3.2.2. Cas de variables aléatoires à densité · · · · · · · · · · · · · · · · · · ·                                                                                 | 16 |

## 1. Cadre général de la théorie des probabilités

## 1.1. Espace probabilisé général

**Définition 1.1.** Soit  $\Omega$  un ensemble. On appelle *tribu* sur  $\Omega$  une famille  $\mathcal{F}$  de parties de  $\Omega$  vérifiant :

- (1)  $\mathcal{F}$  est non-vide :  $\emptyset \in \mathcal{F}$ ,
- (2) la stabilité par passage au complémentaire :  $\forall A \in \mathcal{F}, A^c \in \mathcal{F},$
- (3) la stabilité par union dénombrable :  $\forall (A_n)_{n \in \mathbb{N}} \in \mathcal{F}^{\mathbb{N}}, \bigcup_{n \geq 1} A_n \in \mathcal{F}.$

**Définition 1.2.** Soit  $\Omega$  un ensemble et  $\mathcal{F}$  une tribu sur  $\Omega$ . On appelle *mesure de probabilité* une mesure  $\mathbb{P}: \mathcal{F} \to \mathbb{R}_+$  vérifiant  $\mathbb{P}(\Omega) = 1$ .

**Définition 1.3.** Soit  $\Omega$  un ensemble,  $\mathcal{F}$  une tribu sur  $\Omega$  et  $\mathbb{P}$  une mesure de probabilité sur  $(\Omega, \mathcal{F})$ . On appelle *espace probabilisé* le triplet  $(\Omega, \mathcal{F}, \mathbb{P})$ , on dit que  $\Omega$  est l'univers et que  $\mathcal{F}$  sont les événements.

**Remarque 1.4.** Dans le cadre discret, on avait souvent  $\mathcal{F} := \mathcal{P}(\Omega)$ . Dans le cadre général, on aura souvent  $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ .

**Définition 1.5.** Soit  $(A_n)_{n\in\mathbb{N}}$  une suite d'événements sur  $(\Omega, \mathcal{F}, \mathbb{P})$ . On dit que  $(A_n)_{n\in\mathbb{N}}$  est un *système complet* si elle vérifie :

- (1) les  $A_n$  sont disjoints deux à deux,
- (2) la probabilité de l'union des  $A_n$  est 1.

**Proposition 1.6.** Soit  $(A_n)_{n\in\mathbb{N}}$  un système complet sur  $(\Omega, \mathcal{F}, \mathbb{P})$ . Alors on a

$$\forall B \in \mathcal{F}, \mathbb{P}(B) = \sum_{n=1}^{+\infty} \mathbb{P}(B \cap A_n).$$

*Démonstration.* On pose  $C := \bigcup_{n \ge 1} A_n$ , puisque  $\mathbb{P}(C) = 1$ , on a  $\mathbb{P}(C^c) = 0$  d'où  $\mathbb{P}(B \cap C^c) = 0$ . Soit  $B \in \mathcal{F}$ , on en déduit

$$\mathbb{P}(B) = \mathbb{P}(B \cap C) + \underbrace{\mathbb{P}(B \cap C^c)}_{=0} = \mathbb{P}\left(\bigcup_{n \ge 1} B \cap A_n\right) = \sum_{n=1}^{+\infty} \mathbb{P}(B \cap A_n).$$

**Corollaire 1.7.** Soit  $(A_n)_{n\in\mathbb{N}}$  un système complet sur  $(\Omega,\mathcal{F},\mathbb{P})$ . Alors pour tout  $B\in\mathcal{F}$  on a

(1) 
$$\mathbb{P}(B) = \sum_{n=1}^{+\infty} \mathbb{P}(A_n) P(B|A_n),$$

(2) 
$$\forall i \geq 1, \mathbb{P}(A_i|B) = \frac{\mathbb{P}(A_i)\mathbb{P}(B|A_i)}{\sum_{n=1}^{+\infty} \mathbb{P}(A_n)\mathbb{P}(B|A_n)}.$$

**Théorème 1.8.** (Continuité de la mesure de probabilité) Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisé.

(1) Soit  $(A_n)_{n\in\mathbb{N}}$  une suite croissante d'événements. Alors on a

$$\lim_{n \to +\infty} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcup_{n \ge 1} A_n\right).$$

(2) Soit  $(A_n)_{n\in\mathbb{N}}$  une suite décroissante d'événements. Alors on a

$$\lim_{n \to +\infty} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcap_{n \ge 1} A_n\right).$$

Démonstration.

(1) Pour tout  $n \ge 1$ , on pose  $B_n := A_n \setminus A_{n-1}$  avec  $A_0 = \emptyset$ , tel que les  $(B_n)_{n \in \mathbb{N}}$  forme un système complet sur  $\bigcup_{n \ge 1} A_n$ , on en déduit alors

$$\mathbb{P}\left(\bigcup_{n>1} A_n\right) = \mathbb{P}\left(\bigcup_{n>1} B_n\right) = \sum_{n=1}^{+\infty} \mathbb{P}(B_n) = \sum_{n=1}^{+\infty} \mathbb{P}(A_n) - \mathbb{P}(A_{n-1})$$

on reconnait une somme téléscopique et on a donc

$$\mathbb{P}\left(\bigcup_{n>1} A_n\right) = \lim_{n \to +\infty} \mathbb{P}(A_n) - \mathbb{P}(A_0) = \lim_{n \to +\infty} \mathbb{P}(A_n).$$

П

(2) On obtient directement le résultat par passage au complémentaire.

**Définition 1.9.** Soit  $(A_n)_{n\in\mathbb{N}}$  une suite d'événements de  $(\Omega, \mathcal{F}, \mathbb{P})$ .

• On appelle *limite supérieure* de la suite  $(A_n)_{n\in\mathbb{N}}$  la valeur

$$\limsup_{n \to +\infty} A_n := \bigcap_{n \ge 1} \bigcup_{k \ge n} A_k$$

intuitivement on considère les éléments qui appartiennent à une infinité d'événements.

- On appelle limite inférieure de la suite  $(A_n)_{n\in\mathbb{N}}$  la valeur

$$\limsup_{n \to +\infty} A_n := \bigcup_{n \ge 1} \bigcap_{k \ge n} A_k.$$

**Corollaire 1.10.** Soit  $(A_n)_{n\in\mathbb{N}}$  une suite d'événements de  $(\Omega,\mathcal{F},\mathbb{P})$ . Alors on a

$$\mathbb{P}\left(\limsup_{n\to+\infty}A_n\right) = \lim_{m\to+\infty}\lim_{n\to+\infty}\mathbb{P}\left(\bigcup_{k=m}^nA_k\right)$$

$$\mathbb{P}\left(\liminf_{n\to+\infty} A_n\right) = \lim_{m\to+\infty} \lim_{n\to+\infty} \mathbb{P}\left(\bigcap_{k=m}^n A_k\right)$$

**Proposition 1.11.** Soit  $(A_n)_{n\in\mathbb{N}}$  une suite d'événements de  $(\Omega, \mathcal{F}, \mathbb{P})$ . Alors on a

$$\mathbb{P}\left(\bigcup_{n\geq 1} A_n\right) \leq \sum_{n=1}^{+\infty} A_n.$$

*Démonstration*. On sait que le résultat est vérifié pour un nombre fini d'événements. Par passage à la limite et par continuité de la mesure  $\mathbb P$  on a

$$\mathbb{P}\bigg(\bigcup_{n\geq 1}A_n\bigg)=\lim_{m\to +\infty}\mathbb{P}\bigg(\bigcup_{n=1}^mA_n\bigg)\leq \lim_{m\to +\infty}\sum_{n=1}^m\mathbb{P}(A_n)=\sum_{n=1}^{+\infty}\mathbb{P}(A_n).$$

**Définition 1.12.** Soit *A* un événement de  $(\Omega, \mathcal{F}, \mathbb{P})$ .

- On dit que *A* est *négligeable* si  $\mathbb{P}(A) = 0$ .
- On dit que A est presque-sûr si  $\mathbb{P}(A) = 1$ .

**Corollaire 1.13.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisé. Alors

- L'union dénombrable d'événements négligeables est négligeable.
- L'intersection dénombrable d'événements presque-sûrs est presque-sûre.

**Proposition 1.14.** Soit  $\mathcal{A}$  une famille d'événements de  $(\Omega, \mathcal{F}, \mathbb{P})$ . Alors il existe une unique tribu  $\sigma(\mathcal{A})$  telle que  $\sigma(\mathcal{A})$  soit la plus petite tribu contenant  $\mathcal{A}$ .

*Démonstration*. Il existe au moins une tribu contenant  $\mathcal{A}$ , à savoir  $\mathcal{P}(\Omega)$ . Alors l'intersection de toutes les tribus contenant  $\mathcal{A}$  est une tribu et convient.

**Définition 1.15.** Soit  $\mathcal{A}$  une famille d'événements de  $(\Omega, \mathcal{F}, \mathbb{P})$ . On appelle *tribu engendrée* par  $\mathcal{A}$ , notée  $\sigma(\mathcal{A})$ , la tribu de la Proposition 1.14.

**Exemple 1.16.** Soit *A* un événement de  $(\Omega, \mathcal{F}, \mathbb{P})$ . Alors  $\sigma(\{A\}) = \{\emptyset, A, A^c, \Omega\}$ .

## 1.2. Exemples d'espace probabilisés

**Définition 1.17.** Soit  $(E, \mathcal{O})$  un espace topologique. On appelle *tribu borélienne* sur E, notée  $\mathcal{B}(E)$ , la tribu engendrée par les intervalles ouverts de E, c'est-à-dire  $\mathcal{B}(E) := \sigma(\mathcal{O})$ .

**Lemme 1.18.** Soit  $(\mu_n)_{n\in\mathbb{N}}$  une suite de mesures de probabilité sur  $(\Omega, \mathcal{F})$  et  $(\lambda_n)_{n\in\mathbb{N}}$  une suite de nombres réels positifs telle que  $\sum_{n=1}^{+\infty} \lambda_n = 1$ . Alors  $\mu = \sum_{n=1}^{+\infty} \lambda_n \mu_n$  est une mesure de probabilité sur  $(\Omega, \mathcal{F})$ .

#### **1.2.1.** Univers $\Omega = \mathbb{N}$

Se référer au cours de Probabilités de deuxième année.

#### **1.2.2.** Univers $\Omega = \mathbb{R}$

**Exemple 1.19.** (Mesure de Dirac) Soit  $x \in \mathbb{R}$ , l'application  $\delta_x : \mathcal{B}(\mathbb{R}) \to \mathbb{R}_+$  définie par

$$\forall A \in \mathcal{B}(\mathbb{R}), \delta_{x}(A) = \begin{cases} 0 \text{ si } x \notin A \\ 1 \text{ si } x \in A \end{cases}$$

est une mesure de probabilité sur  $\mathbb{R}$ .

**Exemple 1.20.** (Mesure uniforme sur  $\{1, ..., n\}$ ) L'application  $\mu = \frac{1}{n} \sum_{k=1}^{n} \delta_k$  est une mesure uniforme sur  $\mathbb{R}$ .

**Exemple 1.21.** (Mesure de Poisson) Soit  $\lambda > 0$ , l'application  $\mu = \sum_{n=1}^{+\infty} e^{-\lambda} \frac{\lambda^n}{n!} \delta_n$  est une mesure de Poisson sur  $\mathbb{R}$ .

**Définition 1.22.** Soit  $f: \mathbb{R} \to \mathbb{R}$  une fonction borélienne. On dit que f est une *densité de probabilité* sur  $\mathbb{R}$  si elle vérifie :

- (1) pour  $\lambda$ -presque tout  $x \in \mathbb{R}$ ,  $f(x) \ge 0$ ,
- (2)  $\int_{\mathbb{R}} f(x) d\lambda(x) = 1$ .

**Lemme 1.23.** Soit f une densité de probabilité sur  $\mathbb{R}$ . Alors l'application  $\mu_f : \mathcal{B}(\mathbb{R}) \to \mathbb{R}_+$  définie par  $\forall A \in \mathcal{B}(\mathbb{R}), \mu_f(A) = \int_A f(x) \, \mathrm{d}\lambda(x)$  est une mesure de probabilité sur  $\mathbb{R}$ .

Démonstration. On a bien  $\forall A \in \mathcal{B}(\mathbb{R}), \mu_f(A) \geq 0$ . De plus  $\mu_f(\mathbb{R}) = 1$ . Soit  $(A_n)_{n \in \mathbb{N}}$  une suite d'éléments de  $\mathcal{B}(\mathbb{R})$  deux à deux disjoints. On pose  $A := \bigcup_{n \geq 1} A_n$ , alors  $\mathbb{I}_A = \sum_{n=1}^{+\infty} \mathbb{I}_{A_n}$  et

$$\mu_f(A) = \int_A f(x) \, \mathrm{d}\lambda(x) = \int_{\mathbb{R}} \mathbb{1}_A(x) f(x) \, \mathrm{d}\lambda(x) = \int_{\mathbb{R}} \sum_{n=1}^{+\infty} \mathbb{1}_{A_n}(x) f(x) \, \mathrm{d}\lambda(x)$$

d'après le théorème de convergence monotone on a

$$\mu_f(A) = \lim_{m \to +\infty} \int_{\mathbb{R}} \sum_{n=1}^m \mathbb{1}_{A_n} f(x) \, \mathrm{d}\lambda(x) = \lim_{m \to +\infty} \sum_{n=1}^m \mu_f(A_n) = \sum_{n=1}^{+\infty} \mu_f(A_n).$$

Donc  $\mu_f$  est bien une mesure de probabilité sur  $\mathbb{R}$ .

**Remarque 1.24.** On dit que  $\mu_f$  est la mesure de densité f.

**Proposition 1.25.** Soit f et g deux densités de probabilités sur  $\mathbb{R}$ . Alors les mesures de densité  $\mu_f$  et  $\mu_g$  sont égales si et seulement si f et g sont égales presque partout.

Démonstration.

 $\Rightarrow$ : Supposons que  $\mu_f = \mu_g$ . On pose

$$A_+ := \{ x \in \mathbb{R} \mid f(x) > g(x) \}$$

$$A_{-} \coloneqq \{x \in \mathbb{R} \mid f(x) < g(x)\}$$

ces deux ensembles sont boréliens car f et g sont boréliennes. Par construction

$$\int_{A_{+}} f - g \, d\lambda = \mu_{f}(A_{+}) - \mu_{g}(A_{+}) = 0 = \int_{A_{-}} f - g \, d\lambda$$

de plus  $A := \{x \in \mathbb{R} \mid |f(x) - g(x)| > 0\} = A_+ \cup A_-$ , on en déduit

$$\int_{A} |f - g| \,\mathrm{d}\lambda = \int_{A} (f - g) \mathbb{I}_{A_{+}} + (g - f) \mathbb{I}_{A_{-}} \,\mathrm{d}\lambda = 0$$

donc f - g = 0 presque partout et f = g presque partout.

 $\Leftarrow$ : Si f = g presque partout, alors il est évident que  $\mu_f = \mu_g$ .

**Exemple 1.26.** (Loi uniforme) Soit  $c, d \in \mathbb{R}$  avec c < d. Alors la fonction  $f : \mathbb{R} \to \mathbb{R}; x \mapsto \frac{\mathbb{I}_{[c,d]}(x)}{d-c}$  est une densité de probabilité. En particulier, pour tout  $[a,b] \subset [c,d]$ 

$$\mu_f([a,b]) = \int_{[a,b]} f(x) \, \mathrm{d}\lambda(x) = \frac{b-a}{d-c}.$$

On note la probabilité associée  $\mathcal{U}([c,d])$ .

**Exemple 1.27.** (Loi exponentielle) Soit  $\lambda > 0$ . Alors la fonction  $f : \mathbb{R} \to \mathbb{R}$ ;  $x \mapsto \lambda e^{-\lambda x} \mathbb{1}_{\mathbb{R}_+}(x)$  est une densité de probabilité. On note la probabilité associée  $\mathcal{E}(\lambda)$ .

**Exemple 1.28.** (Loi normale) La fonction  $f: \mathbb{R} \to \mathbb{R}; x \mapsto \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$  est une densité de probabilité. On note la probabilité associée  $\mathcal{N}(0,1)$ .

## **1.2.3.** Univers $\Omega = \mathbb{R}^d$

On peut étendre les exemples de  $\mathbb{R}$ , ainsi que les définitions de densité et de mesures de probabilité associée.

#### 1.3. Classe monotone

**Définition 1.29.** Soit  $\mathcal C$  une famille de parties d'un ensemble  $\Omega$ . On dit que  $\mathcal C$  est une *classe monotone* si elle vérifie :

- (1)  $\Omega \in \mathcal{C}$ ,
- (2)  $\forall A, B \in \mathcal{C}, A \subset B \Rightarrow B \setminus A \in \mathcal{C},$
- (3)  $\forall (A_n)_{n\in\mathbb{N}} \in \mathcal{C}^{\mathbb{N}}$  croissante,  $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{C}$ .

Remarque 1.30. Une tribu est une classe monotone, la réciproque est fausse.

**Lemme 1.31.** Soit  $\mathcal C$  une classe monotone. Alors  $\mathcal C$  est une tribu si et seulement si elle est stable par intersection finie, c'est-à-dire :

$$\forall A_1, ..., A_n \in \mathcal{C}, \bigcap_{k=1}^n A_n \in \mathcal{C}.$$

Démonstration.

 $\Rightarrow$ : Si  $\mathcal C$  est une tribu elle est stable par intersection finie.

 $\Leftarrow$ : Supposons que  $\mathcal{C}$  est stable par intersection finie. Soit  $(A_n)_{n\in\mathbb{N}}$  une suite d'éléments de  $\mathcal{C}$ . Puisque  $\mathcal{C}$  est stable par passage au complémentaire,  $\mathcal{C}$  est aussi stable par union finie, en effet

$$A, B, \in \mathcal{C} \Rightarrow A^c, B^c \in \mathcal{C} \Rightarrow A^c \cap B^c \in \mathcal{C} \Rightarrow A \cup B = (A^c \cap B^c)^c \in \mathcal{C}$$

on a donc pour tout  $N \in \mathbb{N}$ ,  $\bigcup_{n=0}^{N} A_n \in \mathcal{C}$ , et par union croissante

$$\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{N\in\mathbb{N}} \bigcup_{n=0}^N A_n \in \mathcal{C}$$

donc  $\mathcal{C}$  est bien une tribu.

**Définition 1.32.** Soit  $\mathcal{A}$  une famille de parties d'un ensemble  $\Omega$ . On appelle *classe monotone engendrée* par  $\mathcal{A}$ , notée  $\mathcal{C}(\mathcal{A})$ , l'intersection de toutes les classes monotones contenant  $\mathcal{A}$ .

**Théorème 1.33.** (Théorème de la classe monotone) Soit  $\mathcal{A}$  une famille de partie d'un ensemble  $\Omega$ . Si  $\mathcal{A}$  est stable par intersection finie, alors  $\mathcal{C}(\mathcal{A}) = \sigma(\mathcal{A})$ .

 $D\acute{e}monstration$ . Soit  $A \in \mathcal{C}(\mathcal{A})$ , on pose  $\mathcal{C}_A \coloneqq \{B \in \mathcal{C}(\mathcal{A}) \mid A \cap B \in \mathcal{C}(\mathcal{A})\}$ . Puisque  $\mathcal{C}_A$  est une classe monotone contenant A, on a  $\mathcal{C}_A = \mathcal{C}(\mathcal{A})$ . Donc  $\mathcal{C}(\mathcal{A})$  est stable par intersection finie. D'après le Lemme 1.31  $\mathcal{C}(\mathcal{A})$  est une tribu.

**Corollaire 1.34.** Soit  $\mu$  et  $\nu$  deux mesures de probabilités sur  $(\Omega, \mathcal{F})$ . S'il existe une familles equence: (ind: « n ») de parties  $\mathcal{A}$  stable par intersection finie sur laquelle  $\mu$  et  $\nu$  coïncident, alors elles coïncident sur  $\sigma(\mathcal{A})$ .

## 1.4. Variables et vecteurs aléatoires

**Définition 1.35.** Soit  $(\Omega, \mathcal{F})$  un espace probabilisable. On appelle *vecteur aléatoire* une application borélienne  $X : (\Omega, \mathcal{F}) \to (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ . Dans le cas d = 1, on dit que X est une *variable aléatoire*.

**Proposition 1.36.** Soit  $(\Omega, \mathcal{F})$  un espace probabilisable.

(1) Une application  $X: \Omega \to \mathbb{R}$  est une variable aléatoire si et seulement si

$$\forall t \in \mathbb{R}, X^{-1}(]-\infty, t]) \in \mathcal{F}$$

- (2) Une application  $X = (X_1, ..., X_d) : \Omega \to \mathbb{R}^d$  est un vecteur aléatoire si et seulement si  $X_1, ..., X_d$  sont des variables aléatoires.
- (3) Soit  $X: \Omega \to \mathbb{R}^d$  un vecteur aléatoire et  $\varphi: \mathbb{R}^d \to \mathbb{R}^n$  une application borélienne. Alors  $\varphi \circ X$  est un vecteur aléatoire.

#### Démonstration.

(1)  $\Rightarrow$  : Si X est une variable aléatoire, alors X est mesurable et le résultat est évident.  $\Leftarrow$  : Si pour tout  $t \in \mathbb{R}$  on a  $X^{-1}(]-\infty,t]) \in \mathcal{F}$ . Alors puisque la famille  $\{]-\infty,t] \mid t \in \mathbb{R}\}$  engendre  $\mathcal{B}(\mathbb{R}), X$  est mesurable. Donc X est une variable aléatoire.

- (2) On obtient le résultat par projection en appliquant (1) à  $X_1, ..., X_n$ .
- (3) On obtient le résultat par composition de fonctions boréliennes.

**Proposition 1.37.** Soit  $(X_n)_{n\in\mathbb{N}}$  une suite de variables aléatoires sur  $(\Omega, \mathcal{F})$ .

- (1) Si les applications  $S := \sup_{n \in \mathbb{N}} X_n$  et  $I := \inf_{n \in \mathbb{N}} X_n$  sont finies, alors S et I sont des variables aléatoires.
- (2) Si  $(X_n)_{n\in\mathbb{N}}$  converge simplement vers une limite finie X, alors X est une variable aléatoire.

#### Démonstration.

- (1) On remarque que pour tout  $t \in \mathbb{R}$  on a  $S^{-1}(]-\infty,t]) = \bigcap_{n \in \mathbb{N}} X^{-1}(]-\infty,t]$ ) et que l'on peut écrire de la même manière pour I.
- (2) On remarque que  $X = \lim_{n \to +\infty} X_n = \lim \sup_{n \to +\infty} X_n = \inf_{m \to +\infty} \left(\sup_{n \ge m} X_n\right)$ .

#### 1.4.1. Loi d'un vecteur aléatoire

**Proposition 1.38.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisé et  $X : \Omega \to \mathbb{R}^d$  un vecteur aléatoire. Alors l'application  $\mathbb{P}_X : \mathcal{B}(\mathbb{R}^d) \to \mathbb{R}_+; A \mapsto \mathbb{P}(X^{-1}(A))$  est une mesure de probabilité sur  $\mathbb{R}^d$ .

**Définition 1.39.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisé et  $X : \Omega \to \mathbb{R}^d$  un vecteur aléatoire. On appelle *loi de X*, notée  $\mathbb{P}_X$ , la mesure de probabilité de la Proposition 1.38. On dit aussi que X suit la loi  $\mathbb{P}_X$ .

**Définition 1.40.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisé et  $X : \Omega \to \mathbb{R}^d$  un vecteur aléatoire. On appelle *atomes de X*, noté  $\mathcal{V}_X$ , l'ensemble

$$\mathcal{V}_X \coloneqq \big\{ x \in \mathbb{R}^d \mid \mathbb{P}_X(\{x\}) > 0 \big\}.$$

**Exemple 1.41.** (Loi de Bernoulli) On considère  $(\Omega, \mathcal{F}, \mathbb{P})$  avec  $\Omega = \mathbb{R}$ ,  $\mathcal{F} = \mathcal{B}(\mathbb{R})$  et  $\mathbb{P}$  la mesure uniforme sur [0,1]. On prend  $X = \mathbb{I}_{[0,p]}$  avec  $p \in [0,1]$ . Soit  $A \in \mathcal{B}(\mathbb{R})$ , alors

$$\begin{split} \mathbb{P}_X(A) &= \mathbb{P}\big(X^{-1}(A)\big) = \mathbb{P}\big(X^{-1}(A \cap \{0\})\big) + \mathbb{P}\big(X^{-1}(A \cap \{1\})\big) \\ &= \delta_0(A)\mathbb{P}\big(X^{-1}(0)\big) + \delta_1(A)\mathbb{P}\big(X^{-1}(1)\big) = \delta_0(A)(1-p) + \delta_1(A)p \end{split}$$

donc  $\mathbb{P}_X = \delta_0(1-p) + \delta_1 p$ .

**Proposition 1.42.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisé et  $X = (X_1, ..., X_d) : \Omega \to \mathbb{R}^d$  un vecteur aléatoire. Si X admet une densité  $f : \mathbb{R}^d \to \mathbb{R}_+$ , alors les variables aléatoires  $X_1, ..., X_d$  admettent des densités  $f_1, ..., f_d : \mathbb{R} \to \mathbb{R}_+$  avec

$$\forall i \in \{1,...,d\}, f_i(x) \coloneqq \int_{\mathbb{R}^{d-1}} f(x_1,...,x_{i-1},x,x_{i+1},...,x_d) \, \mathrm{d}\lambda(x_1,...,x_{i-1},x_{i+1},...,x_n).$$

Démonstration. Il suffit d'appliquer le théorème de Fubini.

## 1.5. Fonction de répartition

**Définition 1.43.** Soit  $\mu$  une mesure de probabilité sur  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ . On appelle *fonction de répartition*, notée  $F_{\mu}$ , la fonction  $F_{\mu} : \mathbb{R} \to \mathbb{R}_+$ ;  $t \mapsto \mu(] - \infty, t]$ ).

**Définition 1.44.** Soit  $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbb{P})$  un espace probabilisé, et X une variable aléatoire. On appelle *fonction de répartition de X*, notée  $F_X$ , la fonction de répartition liée à  $\mathbb{P}_X$ .

**Proposition 1.45.** Soit  $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbb{P})$  un espace probabilisé, et  $X, Y : \mathbb{R} \to \mathbb{R}$  deux variables aléatoires. Alors X et Y ont la même loi si et seulement si elles ont la même fonction de répartition.

Démonstration.

 $\Rightarrow$ : Supposons que  $\mathbb{P}_X = \mathbb{P}_Y$ . Alors on a

$$\forall t \in \mathbb{R}, F_X(t) = \mathbb{P}_X(]-\infty, t]) = \mathbb{P}_Y(]-\infty, t]) = F_Y(t)$$

donc  $F_X = F_Y$ .

 $\Leftarrow$ : Supposons que  $F_X = F_Y$ . Alors on pose  $\mathcal{A} := \{] - \infty, t] \mid t \in \mathbb{R} \}$  qui est stable par intersection avec  $\sigma(\mathcal{A}) = \mathcal{B}(\mathbb{R})$ , on pose  $\mathcal{C} := \{A \in \mathcal{B}(\mathbb{R}) \mid P_X(A) = P_Y(A)\}$  qui est une classe monotone, alors d'après le théorème de la classe monotone  $\mathcal{C} = \mathcal{B}(\mathbb{R})$ . Donc  $P_X = P_Y$ 

## 1.5.1. Reconnaitre une densité de probabilité

**Proposition 1.46.** Soit  $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbb{P})$  un espace probabilisé et  $X : \mathbb{R} \to \mathbb{R}$  une variable aléatoire. Alors si la fonction de répartition de X est  $C^1$  par morceaux, X admet une densité de probabilité définie par  $f = F_X'$  si  $F_X$  est dérivable et f = 0 sinon.

 $D\acute{e}monstration$ . Puisque  $F_X$  est  $C^k$  par morceaux, il existe une suite croissante  $(a_n)_{n\in\mathbb{Z}}$  telle que

$$\lim_{n \to +\infty} a_n = -\lim_{n \to -\infty} a_k = +\infty$$

et pour tout  $n \in \mathbb{Z}$ ,  $F_X$  soit dérivable sur  $]a_n, a_{n+1}[$ . Soit  $n \in \mathbb{Z}$ , alors

$$\forall s, t \in ]a_n, a_{n+1}[, \int_s^t f(x) dx = F_X(t) - F_X(s)]$$

et par passage à la limite pour  $s \longrightarrow a_n$  et  $t \longrightarrow a_{n+1}$  on a

$$\int_{a_n}^{a_{n+1}} f(x) \, \mathrm{d}x = F_X(a_n) - F_X(a_{n+1}).$$

Soit  $t \in \mathbb{R}$ , alors il existe  $n \in \mathbb{Z}$  tel que  $t \in ]a_n, a_{n+1}[$  et

$$\int_{-\infty}^{t} f(x) dx = \sum_{k=-\infty}^{n} \int_{a_{n}}^{a_{n+1}} f(x) dx + \int_{a_{n}}^{t} f(x) dx$$

on reconnait une somme téléscopique et on a donc

$$\int_{-\infty}^{t} f(x) dx = F_X(t) - \underbrace{\lim_{k \to -\infty} F_X(a_k)}_{=0} = F_X(t) = \mathbb{P}_X(] - \infty, t].$$

#### 1.5.2. Reconnaitre une loi discrète

**Définition 1.47.** Soit  $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbb{P})$  un espace probabilisé et  $X : \mathbb{R} \to \mathbb{R}$  une variable aléatoire. On appelle *saut* de la fonction de répartition de X, noté  $\Delta_X$ , la fonction définie par

$$\forall t \in \mathbb{R}, \Delta_X(t) \coloneqq F_X(t) - \lim_{x \to t^-} F_X(x).$$

**Lemme 1.48.** Soit  $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbb{P})$  un espace probabilisé et  $X : \mathbb{R} \to \mathbb{R}$  une variable aléatoire. Alors l'ensemble des points de discontinuités, noté  $\mathcal{D}_X \coloneqq \{t \in \mathbb{R} \mid \Delta_X(t) > 0\}$ , est dénombrable avec  $\sum_{t \in \mathcal{D}_X} \Delta_X(t) \le 1$  de plus X est discrète si et seulement si  $\sum_{t \in \mathcal{D}_X} \Delta_X(t) = 1$ .

## 2. Espérance

## 2.1. Calculs de l'espérance

## 2.1.1. Définition et formule de transfert

**Définition 2.1.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable et  $X : \Omega \to \mathbb{R}_d$  un vecteur aléatoire. On appelle *espérance* de X, notée  $\mathbb{E}[X]$ , la valeur

$$\mathbb{E}[X] \coloneqq \int_{\Omega} X(\omega) \, \mathrm{d}\mathbb{P}(\omega) = \int_{\mathbb{R}^d} x \, \mathrm{d}\mathbb{P}_X(x).$$

**Remarque 2.2.** Pour que l'intégrale précédente ait du sens dans  $\mathbb{R}$  on a besoin que :

- $X \ge 0$  presque sûrement,
- *X* soit intégrable sur  $(\Omega, \mathcal{F}, \mathbb{P})$ .

**Théorème 2.3.** (Formule de transfert) Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable,  $X : \Omega \to \mathbb{R}_d$  un vecteur aléatoire et  $\varphi : \mathbb{R}^d \to \mathbb{R}_+ \cup \{+\infty\}$  une application mesurable. Alors

$$\mathbb{E}[\varphi(X)] = \int_{\Omega} \varphi(X(\omega)) \, \mathrm{d}\mathbb{P}(\omega) = \int_{\mathbb{R}^d} \varphi(x) \, \mathrm{d}\mathbb{P}_X(x).$$

Remarque 2.4. Pour que l'intégrale précédente ait du sens on a besoin que :

•  $\varphi(X)$  soit intégrable sur  $(\Omega, \mathcal{F}, \mathbb{P})$ , c'est-à-dire que  $\varphi$  soit intégrable sur  $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \mathbb{P}_X)$ .

**Proposition 2.5.** (Cas discret) Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable,  $X : \Omega \to \mathbb{R}_d$  un vecteur aléatoire et  $\varphi : \mathbb{R}^d \to \mathbb{R}_+ \cup \{+\infty\}$  une application mesurable. Alors

$$\mathbb{E}[\varphi(X)] = \sum_{\omega \in \mathcal{V}_{\mathcal{X}}} \varphi(\omega) \mathbb{P}(X = \omega).$$

**Proposition 2.6.** (Cas à densité) Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable,  $X : \Omega \to \mathbb{R}_d$  un vecteur aléatoire à densité  $f : \mathbb{R}^d \to \mathbb{R}_+$  et  $\varphi : \mathbb{R}^d \to \mathbb{R}_+ \cup \{+\infty\}$  une application mesurable. Alors

$$\mathbb{E}[\varphi(X)] = \int_{\mathbb{D}^d} \varphi(x) f(x) \, \mathrm{d}\lambda(x).$$

#### 2.1.2. Variance

**Définition 2.7.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable et  $X : \Omega \to \mathbb{R}_d$  un vecteur aléatoire. On appelle *variance* de X, notée V(X), la valeur

$$V(X) \coloneqq \mathbb{E}[(X - \mathbb{E}[X])^2].$$

**Proposition 2.8.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable et  $X : \Omega \to \mathbb{R}_d$  un vecteur aléatoire. Alors la variance de X vérifie les propriétés suivantes :

- (1) V(X) ne dépend que de X.
- (2)  $V(X) \ge 0$ , avec égalité si et seulement si X est constante.
- (3)  $\forall a, b \in \mathbb{R}, V(aX + b) = a^2V(X)$ .
- (4)  $V(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$ .

#### 2.1.3. Covariance

**Définition 2.9.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable et  $X, Y : \Omega \to \mathbb{R}_d$  deux vecteurs aléatoires. On appelle *covariance* de X et X, notée Cov(X, Y), la valeur

$$Cov(X, Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$$

**Proposition 2.10.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable et  $X, Y : \Omega \to \mathbb{R}_d$  deux vecteurs aléatoires. Alors la covariance vérifie les propriétés suivantes :

- (1) Cov est bilinéaire symetrique.
- (2) Cov(X, X) = V(X).
- (3)  $Cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y].$
- (4)  $Cov(X, Y) \le \sqrt{V(X)V(Y)}$ , avec égalité si et seulement si X et Y sont en relation affine.
- (5)  $V(X + Y) = V(X) + V(Y) + 2 \operatorname{Cov}(X, Y)$ .

#### 2.1.4. Concentration

**Définition 2.11.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable et  $X, Y : \Omega \to \mathbb{R}_d$  deux vecteurs aléatoires. Alors si Cov(X, Y) = 0 on dit que X et Y sont *non correlées*.

**Corollaire 2.12.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable et  $X, Y : \Omega \to \mathbb{R}_d$  deux vecteurs aléatoires. Alors si X et Y sont non-correlées, on a V(X + Y) = V(X) + V(Y).

**Définition 2.13.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable et  $X_1, ..., X_n : \Omega \to \mathbb{R}_d$  des vecteurs aléatoires. On appelle *moyenne empirique* de  $X_1, ..., X_n$ , notée  $\overline{X}_n$ , le vecteur aléatoire

$$\overline{X}_n \coloneqq \frac{1}{n} \sum_{k=1}^n X_k.$$

**Proposition 2.14.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable et  $X_1, ..., X_n : \Omega \to \mathbb{R}_d$  des vecteurs aléatoires. Alors l'espérance de  $\overline{X}_n$  est donnée par

$$\mathbb{E}\big[\overline{X}_n\big] = \frac{1}{n} \sum_{k=1}^n \mathbb{E}[X_k]$$

et sa variance par

$$V(\overline{X}_n) = \frac{1}{n^2} \sum_{k=1}^n V(X_k)$$

**Proposition 2.15.** (Inégalité de Markov et de Bienaymé-Chebychev) Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable et  $X : \Omega \to \mathbb{R}$  une variable aléatoire.

(1) Si  $X \ge 0$  presque sûrement, alors on a

$$\forall \varepsilon > 0, \mathbb{P}(X > \varepsilon) \le \frac{\mathbb{E}[X]}{\varepsilon}.$$

(2) Si *X* est intégrable, alors on a

$$\forall \varepsilon > 0, \mathbb{P}(|X - \mathbb{E}[X]| > \varepsilon) \le \frac{V(X)}{\varepsilon^2}.$$

linebreak()

(1) Soit  $\varepsilon > 0$ , on remarque que l'on a toujours l'inégalité

$$\varepsilon \mathbb{1}_{\{X \ge \varepsilon\}} \le X$$

par passage à l'espérance on trouve

$$\varepsilon \mathbb{E} \big[ \mathbb{1}_{\{X \geq \varepsilon\}} \big] \leq \mathbb{E} [X]$$

ce qui donne bien l'inégalité de Markov.

(2) On applique l'inégalité de Markov à  $(X - \mathbb{E}[X])^2$ .

])( title: « Inégalité de Jensen », [ Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable,  $X : \Omega \to \mathbb{R}$  une variable aléatoire intégrable et  $\varphi : \mathbb{R} \to \mathbb{R}$  une fonction convexe bornée inférieurement. Alors

$$\varphi(\mathbb{E}[X]) \le \mathbb{E}[\varphi(X)].$$

],)

**Théorème 2.16.** (Inégalité de Hoeffding) Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable et  $X_1, ..., X_n : \Omega \to \mathbb{R}$  des variables aléatoires indépendantes de sorte que pour tout  $k \in \{1, ..., n\}$ , il existe  $a_k, b_k \in \mathbb{R}$  tels que  $a_k \le X_k \le b_k$  presque sûrement. Si on note  $S_n := X_1 + ... + X_n$ , alors

$$\forall t>0, \max(\mathbb{P}(S_n-\mathbb{E}[S_n]\geq t), \mathbb{P}(S_n-\mathbb{E}[S_n]< t)) < \exp\Biggl(-\frac{t^2}{\sum_{k=1}^n \left(b_k-a_k\right)^2}\Biggr).$$

## 2.2. Application au calcul de lois

#### 2.2.1. Méthode de la fonction muette

**Proposition 2.17.** (Méthode) Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable et  $X : \Omega \to \mathbb{R}_d$  un vecteur aléatoire de densité  $f : \mathbb{R}^d \to \mathbb{R}_+$ . Alors pour toute fonction borélienne positive

$$\mathbb{E}[h(X)] = \int_{\mathbb{R}^d} h(x) f(x) \, \mathrm{d}\lambda(x)$$

en particulier pour tout  $A \in \mathcal{F}$  en prenant  $h \coloneqq \mathbb{1}_A$  on trouve

$$\mathbb{P}(X \in A) = \mathbb{E}[\mathbb{1}_A(X)] = \int_A f(x) \, \mathrm{d}\lambda(x).$$

ce qui montre que X est de densité f.

## 3. Indépendance

## 3.1. Vecteurs aléatoires indépendants

**Définition 3.1.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable et  $X_1, ..., X_n : \Omega \to \mathbb{R}^{d_i}$  des vecteurs aléatoires. On dit que  $X_1, ..., X_n$  sont *indépendants*, noté  $X_1 \perp \!\!\! \perp ... \mid \!\!\! \perp X_n$ , si

$$\forall A_1, ..., A_n \in \mathcal{B}(\mathbb{R}^{d_1}) \times ... \times \mathcal{B}(\mathbb{R}^{d_n}), \mathbb{P}(X_1 \in A_1, ..., X_n \in A_n) = \prod_{i=1}^n P(X_i \in A_i).$$

**Lemme 3.2.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable, et  $X : \Omega \to \mathbb{R}^p$  et  $Y : \Omega \to \mathbb{R}^q$  deux vecteurs aléatoires. Alors les assertions suivantes sont équivalentes :

- (1) X et Y sont indépendants.
- (2)  $\mathbb{P}_{(X,Y)} = \mathbb{P}_X \otimes \mathbb{P}_Y$ .
- (3) Pour toutes fonctions boréliennes positives g et h,  $\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[h(Y)]$

Démonstration.

 $(1) \Rightarrow (2)$ : Soit  $A \in \mathcal{B}(\mathbb{R}^p)$  et  $B \in \mathcal{B}(\mathbb{R}^q)$ . Puisque X et Y sont indépendants on a

$$\mathbb{P}_{(X,Y)}(A \times B) = \mathbb{P}((X,Y) \in A \times B)$$

$$= \mathbb{P}(X \in A, Y \in B)$$

$$= \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$$

$$= \mathbb{P}_{X}(A)\mathbb{P}_{Y}(B) = (\mathbb{P}_{X} \otimes \mathbb{P}_{Y})(A \times B)$$

par unicité de la mesure produit  $\mathbb{P}_{(X,Y)} = \mathbb{P}_X \otimes \mathbb{P}_Y$ .

 $(2)\Rightarrow (3)$ : Soit g et h deux fonctions boréliennes positives. Alors par la formule de transfert, en posant  $\varphi:\mathbb{R}^p\times\mathbb{R}^q\to\mathbb{R}_+;(x,y)\mapsto g(x)h(y)$ , on a

$$\mathbb{E}[\varphi(X,Y)] = \int_{\mathbb{R}^p \times \mathbb{R}^q} \varphi(x,y) \, d\mathbb{P}_{(X,Y)}(x,y)$$
$$= \int_{\mathbb{R}^p \times \mathbb{R}^q} g(x)h(y) \, d(\mathbb{P}_X \otimes \mathbb{P}_Y)(x,y)$$

en appliquant Fubini, on trouve

$$\begin{split} \mathbb{E}[\varphi(X,Y)] &= \int_{\mathbb{R}^q} \int_{\mathbb{R}^p} g(x)h(y) \, \mathrm{d}\mathbb{P}_X(x) \, \mathrm{d}\mathbb{P}_Y(y) \\ &= \int_{\mathbb{R}^q} h(y) \int_{\mathbb{R}^p} g(x) \, \mathrm{d}\mathbb{P}_X(x) \, \mathrm{d}\mathbb{P}_Y(y) \\ &= \int_{\mathbb{R}^p} g(x) \, \mathrm{d}\mathbb{P}_X(x) \int_{\mathbb{R}^q} h(y) \, \mathrm{d}\mathbb{P}_Y(y) \\ &= \mathbb{E}[g(H)] \mathbb{E}[h(y)]. \end{split}$$

 $(3) \Rightarrow (1)$ : Soit  $A \in \mathcal{B}(\mathbb{R}^p)$  et  $B \in \mathcal{B}(\mathbb{R}^q)$ . Il suffit de prendre  $g \coloneqq \mathbb{I}_A$  et  $h \coloneqq \mathbb{I}_B$  pour obtenir l'indépendance.

**Proposition 3.3.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable.

- (1) Soit  $X : \Omega \to \mathbb{R}^p$  et  $Y : \Omega \to \mathbb{R}^q$  deux vecteurs aléatoires indépendants. Alors pour toutes fonction boréliennes f et g, f(X) et g(Y) sont indépendants.
- (2) Soit  $X_1, ..., X_m : \Omega \to \mathbb{R}^{d_i}$  des vecteurs aléatoires indépendants. Alors pour tout  $1 \le n < m$ ,  $(X_1, ..., X_n)$  et  $(X_{n+1}, ..., X_m)$  sont indépendants.

#### Démonstration.

- (1) Soit f et g deux fonctions boréliennes. Alors il suffit d'appliquer le point (3) du Lemme 3.2 aux compositions de f et g avec des fonctions boréliennes positives pour obtenir l'indépendance de f(X) et g(Y).
- (2) Soit  $1 \le n < m$ . Alors il suffit d'appliquer le point (2) du Lemme 3.2 pour obtenir l'indépendance de  $(X_1, ..., X_n)$  et  $(X_{n+1}, ..., X_m)$ .

## 3.1.1. Critère d'indépendance pour des vecteurs discrets

**Proposition 3.4.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable, et  $X : \Omega \to \mathbb{R}^p$  et  $Y : \Omega \to \mathbb{R}^q$  deux vecteurs aléatoires discrets. Alors s'ils existent des fonctions  $f : \mathcal{V}_X \to \mathbb{R}_+$  et  $g : \mathcal{V}_Y \to \mathbb{R}_+$  telles que

$$\forall (x, y) \in \mathcal{V}_X \times \mathcal{V}_Y, \mathbb{P}(X = x, Y = y) = f(x)g(y)$$

alors X et Y sont indépendants, et il existe c > 0 tel que

$$\mathbb{P}_X(\{x\}) = cf(x) \text{ et } \mathbb{P}_Y(\{y\}) = \frac{1}{c}g(y).$$

*Démonstration.* Soit  $A \in \mathcal{B}(\mathbb{R}^q)$  et  $B \in \mathcal{B}(\mathbb{R}^q)$  alors

$$\begin{split} \mathbb{P}(X \in A, Y \in B) &= \sum_{x \in \mathcal{V}_X \cap A} \sum_{y \in \mathcal{V}_Y \cap B} P(X = x, Y = y) \\ &= \sum_{x \in \mathcal{V}_X \cap A} \sum_{y \in \mathcal{V}_Y \cap B} f(x) g(y) \\ &= \sum_{x \in \mathcal{V}_X \cap A} f(x) \sum_{y \in \mathcal{V}_Y \cap B} g(y) \end{split}$$

en particulier si on pose  $B:=\mathbb{R}^q$  et  $c:=\sum_{y\in\mathcal{V}_Y\cap B} \mathsf{g}(y),$  on trouve

$$\mathbb{P}_X(A) = \mathbb{P}(X \in A, Y \in \mathbb{R}^q) = c \sum_{x \in \mathcal{V}_X \cap A} f(x)$$

d'où pour tout  $x \in \mathcal{V}_X$ ,  $\mathbb{P}_X(\{x\}) = cf(x)$ . On fait la même chose avec  $A \coloneqq \mathbb{R}^p$  et  $d \coloneqq \sum_{x \in \mathcal{V}_X \cap A} f(x)$ . Mais  $\mathbb{P}(X \in \mathbb{R}^p, Y \in \mathbb{R}^q) = c \times d = 1$ , donc  $d = \frac{1}{c}$ . Enfin

$$\mathbb{P}(X \in a, Y \in B) = \sum_{x \in \mathcal{V}_X \cap A} \mathbb{P}(X = x) \sum_{y \in \mathcal{V}_Y \cap B} \mathbb{P}(Y = y)$$
$$= \mathbb{P}(X \in A) \mathbb{P}(X \in B)$$

donc X et Y sont indépendants.

## 3.1.2. Critère d'indépendance pour des vecteurs à densité

**Proposition 3.5.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable, et  $X : \Omega \to \mathbb{R}^p$  et  $Y : \Omega \to \mathbb{R}^q$  deux vecteurs aléatoires à densités respectives  $f_X$  et  $f_Y$ .

(1) Si X et Y sont indépendantes. Alors le vecteur (X, Y) admet une densité f vérifiant :

$$\forall (x, y) \in \mathbb{R}^p \times \mathbb{R}^q, f(x, y) = f_X(x) f_Y(y)$$

(2) Si (X, Y) admet une densité f de la forme :

$$\forall (x, y) \in \mathbb{R}^p \times \mathbb{R}^q, f(x, y) = g(x)h(y)$$

où g et h sont boréliennes. Alors X et Y sont indépendantes et il existe c > 0 tel que

$$f_X = cg$$
 et  $f_Y = ch$ .

Démonstration.

(1) Supposons que X et Y sont indépendantes. Soit  $\varphi : \mathbb{R}^{p+q} \to \mathbb{R}_+$  une fonction borélienne, alors par la formule de transfert

$$\mathbb{E}[\varphi(X,Y)] = \int_{\mathbb{R}^{p+q}} \varphi(x,y) \, d\mathbb{P}_{(X,Y)}(x,y)$$

puisque X et Y sont indépendantes on a

$$\mathbb{E}[\varphi(X,Y)] = \int_{\mathbb{R}^p \times \mathbb{R}^q} \varphi(x,y) \, d\mathbb{P}_X(x) \otimes \mathbb{P}_Y(y)$$
$$= \int_{\mathbb{R}^q} \int_{\mathbb{R}^p} \varphi(x,y) \, d\mathbb{P}_X(x) \, d\mathbb{P}_Y(y)$$

et puisque X et Y admettent des densités

$$\mathbb{E}[\varphi(X,Y)] = \int_{\mathbb{R}^q} \int_{\mathbb{R}^p} \varphi(x,y) f_X(x) \, \mathrm{d}\lambda(x) f_Y(y) \, \mathrm{d}\lambda(y)$$
$$= \int_{\mathbb{R}^{p+q}} \varphi(x,y) f_X(x) f_Y(y) \, \mathrm{d}\lambda(x,y).$$

Donc (X, Y) admet bien une densité  $(x, y) \mapsto f_X(x) f_Y(y)$ .

(2) La réciproque se montre une nouvelle fois en appliquant le théorème de Fubini

## 3.2. Somme de variables aléatoires indépendantes

#### 3.2.1. Cas de variables aléatoires discrètes

**Proposition 3.6.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable, et  $X, Y : \Omega \to \mathbb{N}$  deux variables aléatoires discrètes indépendantes à valeurs entières. On pose S := X + Y. Alors on a

$$\forall n \in \mathbb{N}, \mathbb{P}(S=n) = \sum_{k \in \mathbb{N}} \mathbb{P}(X=k)P(Y=n-k)$$

## 3.2.2. Cas de variables aléatoires à densité

**Proposition 3.7.** Soit  $(\Omega, \mathcal{F}, \mathbb{P})$  un espace probabilisable, et  $X, Y : \Omega \to \mathbb{R}$  deux variables aléatoires à densités respectives  $f_X$  et  $f_Y$ . On pose  $S \coloneqq X + Y$ . Alors la densité de S est donnée par

$$\forall t \in \mathbb{R}, f(t) \coloneqq \int_{\mathbb{R}} f_X(x) f_Y(t-x) \, \mathrm{d}\lambda(x).$$