ITIA Information Model Robot Lab Report

Stefan Adelmann (01633044) Hannes Brantner (01614466)

June 28, 2020

The information model of the Robot Station consists of a OPC UA Gateway providing methods that interact with the Robot Controller. The OPC UA Gateway is provided by a Raspberry Pi, that can be accessed via the information given in Table 1.

OPC UA Gateway		
Device:	RaspberryPi 3	
ID:	BCM2835 (a02082)	
MAC:	b8:27:eb:09:db:ca	
IP:	192.168.162.84/25	
Port:	4840	

Table 1: OPC UA Gateway information

The robot controller itself is accessed by the OPC UA gateway via the connection information given in Table 2.

Robot Controller		
Device:	Robot Controller	
ID:	CR750-D	
MAC:	38:e0:8e:9e:89:8d	
IP:	192.168.162.82/25	
PORT:	10003	

Table 2: Robot Controller information

Together these two components form a system in which all aspects needed for the implementation of the Robot Station can be controlled via the OPC UA interface. In order to control aspects like the spring storage or retrieve information of the built in sensors, the $\rm I/O$ mapping presented in the following section has to be used.

	Sensors		
Index	Description		
1	Robot handling module - workpiece alignment		
2	Robot handling module - workpiece in pick-up position		
3	Control panel - Start (make contact)		
4	Control panel - Stop (normally closed)		
5	Control panel - Reset (no contact)		
7	Control panel - COM bridge (I7)		
8	Robot assembly module (spring magazine) - slider retracted		
9	Robot assembly module (spring magazine) - slide extended		
10	Module robot assembly (spring magazine) - spring available		
12	Robot assembly module (lid magazine) - slide retracted		
13	Robot assembly module (lid magazine) - slide extended		
15	Module robot assembly (lid magazine) - lid on tray		
900	Robot module (hand) - part not black		
	Actuators		
Index	Description		
0	Control panel - Start (LED)		
1	Control panel - Reset (LED)		
2	Control panel - Q1 (LED)		
3	Control panel - Q2 (LED)		
4	Control panel - COM bridge (Q4)		
8	Robot assembly module (spring magazine) - slide out		
12	Robot assembly module (lid magazine) - slide out		

Table 3: I/O mapping

1 I/O Mapping

The I/O mapping is divided into the two groups of sensors and actuators. It is to note that the movement of the robot arm as well as the movement of the multi-function gripper is omitted from these tables as they are accessed via proprietary OPC UA methods. This distinction is not only present in the OPC UA model but also in the native programming language of the Robot Controller.

2 OPC UA Methods

Table 4 presents all custom methods that are provided by the OPC UA gateway using the generated information model. They are a collection of direct control elements needed to implement certain robot behavior as well as management elements needed to keep the robot running. The later primarily involves error handling as error states need to be reset in order to operate.

OPC UA Methods					
Method	Description	ObjectId	MethodId		
ReadInput(Index)	Returns the Value of the input at the given Index	ns=4;i=1066	ns=4;i=1067		
WriteOutput(Index, Value)	Sets the output at the given Index to the given Value	ns=4;i=1066	ns=4;i=1111		
GetMostRecentError()	Returns the most recent error that occurred	ns=4;i=1103	ns=4;i=1105		
${\bf GetRecentErrors(NumberOfErrors)}$	Returns the last NumberOfErrors errors that occurred	ns=4;i=1066	ns=4;i=1140		
ResetError()	Resets the error state of the robot controller	ns=4;i=1102	ns=4;i=1108		
OpenGripper()	Opens the multi function gripper	ns=4;i=1130	ns=4;i=1131		
CloseGripper()	Closes the multi function gripper	ns=4;i=1130	ns=4;i=1134		
Move(X,Y,Z,A,B,C)	Translates the robot arm to the position (X,Y,Z) with the rotation (A,B,C)	ns=4;i=1130	ns=4;i=1137		
MoveToSafePosition()	Moves the robot arm into the predefined safety position	ns=4;i=1113	ns=4;i=1115		
RestartServer()	Reboots the OPC UA Gateway device	ns=0;i=2253	ns=4;i=1164		

Table 4: Implemented OPC UA methods

The I/O mapping is needed for the first two methods, ReadInput and WriteOutput where the needed index parameter corresponds to the indices given in Table 3.

The ObjectID and the MethodId can directly be used in the NodeRED interface implementation in this laboratory.

3 OPC UA Objects

The OPC UA methods from Table 4 are encapsulated in the OPC UA objects given in Table 5.

OPC UA Objects			
Object	Description		
MethodSet (Controller)	The MethodSet object, which is a component of the Controller object	ns=4;i=1066	
GetMostRecentError	The GetMostRecentError object, which is a component of the ErrorLog Functions folder	ns=4;i=1103	
ResetError	The ResetError object, which is a component of the ResetError Functions folder	ns=4;i=1102	
MethodSet (MotionDevice)	The MethodSet object, which is a component of the MotionDevice object	ns=4;i=1130	
MoveToSafePosition	The MoveToSafePosition object, which is a component of the MoveToSafeState Functions folder	ns=4;i=1113	
Server	The Server object, which is organized by the Objects folder	ns=0;i=2253	

Table 5: OPC UA objects

4 OPC UA Namespaces

As it can be seen in Table 6, most of the objects and therefore methods are provided by the namespace 4, Mitsubishi Electric Robot Nodeset, with the exception of the restartServer() method in the Server object (ns=0). This method is capsuled from the Robot namespace as it will actually restart the OPC UA gateway Raspberry Pi and therefore acts on the Server directly.

OPC UA Namespaces					
NamespaceIndex	NamespaceUri	Description			
0	http://opcfoundation.org/UA/	Standard Nodeset			
2	http://opcfoundation.org/UA/DI/	Devices Nodeset			
3	http://opcfoundation.org/UA/Robotics/	Robotics Nodeset			
4	http://auto.tuwien.ac.at/UA/MitsubishiElectricRobot/	Mitsubishi Elec- tric Robot Node- set			

Table 6: OPC UA namespaces