7.2 Spatial-temporal modeling particulate matter concentration

232STG31 이민주

Chap 6. SPDE

Geostatistical Data

- Geostatistical Data의 한계 → 점의 정보이기 때문에 빈 공간의 정보를 알기 힘듦.
- 몇 가지 가정(Isotropic, Stationary)를 활용하여 빈 공간을 채울 때(=Kriging) 도움을 받고자 함

$$\{Z(s) \colon s \in D \subset \mathbb{R}^2\}$$

:주어진 도메인(D, 예: 서울시) 내에 내포된 위치 s에서의 관측값들

 $S_1, ..., S_n$: 위치

 $Z(s_1), ..., Z(s_n)$: 위치 s에서의 <u>무작위 과정(Random Process)</u>

Weak Stationary: $E[Z(s)] = \mu$, $Cov(Z(s_1, s_2)) = K(s_1 - s_2)$, $s_1 - s_2 \neq s_2 - s_1$ 방향 & 거리 동일하면 Covariance 같음.

Weak Isotropic: $Cov(Z(s_1, s_2)) = K(|s_1 - s_2|)$, $s_1 - s_2 = s_2 - s_1$

방향 고려x, 거리만 동일하면 Covariance 같음.

Autocovariance(자기공분산)

 $: s_i$ 에 h(거리)를 더함으로써 covariance를 구할 수 있음

THE FUTURE **WE CREATE**

Matérn Covariance Function

- Matérn Covariance Function: 공간 통계학에서 자주 활용되는 Autocovariance 함수. *장점: 공간적으로 가까운 지점들의 유사성 파악함* SPDE는 Matérn Covariance Function 으로 설명되는 Process 계산 방법으로 활용.
- SPDE(Stochastic Partial Differentials Equation): 유현하고 효율적인 방법으로 geostatistical data 모델링 및 예측하는 방법론. *장점: 연속적인 공간 Process 분포를 얻어 샘플링되지 않은 위치 예측 가능.*

SPDE

Gaussian Spatial White Noise
$$(\kappa^2 - \Delta)^{\frac{\alpha}{2}} (\tau \xi(s)) = \mathcal{W}(s)$$
Stationary GF
(Gaussian Field)

 α : smoothness $\kappa > 0$: scale parameter τ : variance

• Hyperparameter: $\psi = \{\sigma_e^2, \kappa, \sigma^2\}$

• Parameter: $\boldsymbol{\theta} = \{\tilde{\boldsymbol{\xi}}, b_0\}$

Matérn Covariance Function

• $s \in \mathbb{R}^2$ (d(dimension) = 2), (디폴트) $\alpha = 2, \lambda = 1$ 일때,

$$ightarrow$$
 $\begin{cases} r = \frac{\sqrt{8}}{\kappa} \\ \sigma^2 = \frac{1}{4\pi\kappa^2\tau^2} \end{cases}$:공간적 상관성이 있다고 여겨지는 기준(범위)

SPDE

$$(\kappa^2 - \Delta)^{\frac{\alpha}{2}} (\tau \xi(\mathbf{s})) = \mathcal{W}(s)$$

$$\xi(\mathbf{s}) = \sum_{g=1}^G \varphi_g(\mathbf{s}) \widetilde{\xi_g}$$
, g = mesh에서 삼각형 꼭짓점의 개수

 $arphi_g(oldsymbol{s})$: g 꼭짓점에 위치하면 1, 아니면 0.

$$\widetilde{\xi} = \{\widetilde{\xi_1}, ..., \widetilde{\xi_G}\}$$
: Gaussian Weight Vector

Projection Matrix

nrow = n(obs 개수), ncol = G(mesh 삼각형 꼭짓점 개수)

Advanced Operation: inla.stack

: Model Complexity가 증가할수록 SPDE의 에러가 발생할 수 있음 → INLA.stack 활용

Chap 7.2 Spatio-temporal modeling particulate matter concentration

I. Air pollution in Piemonte Dataset

EV/HA, THE FUTURE V/E CREATE

Data Explanation

- Geostatistical Data
- 2005년 10월 ~ 2006년 3월까지 (매일 측정, 총 182일) Piemonte 지역 (북부 이탈리아)의 PM₁₀ 농도 분석
- 총 24개의 관측소(점)을 분석
- nrow: 4368 (24(station) x 182(days)), ncol: 12

ı	Covariates X (M=8): scaled Piemonte Data									Y		Log(Y)	
	Station.ID		A	итмх	UТМY	ws	ТЕМР	нміх	PREC	EMI	PM10	time	logPM10
관측소: i=1,,24		01/10/05	-1.3955833	0.9401862	-0.6364774	0.0776828	2.096996	2.181230	-0.2902373	-0.1752838	28	1	3.332205
	2	01/10/05	-0.7563919	-0.2639052	-1.1771843	0.2319185	2.068951	1.691691	-0.2902373	-0.3453852	22	1	3.091042
	3	01/10/05	-0.0253574	1.4970490	-1.2218365	0.0379940	1.822551	2.527195	-0.2902373	-0.6353254	17	1	2.833213
	4	01/10/05	-0.8881265	0.0996534	-0.6245213	0.4428627	2.060938	1.383675	-0.2902373	-0.0984938	25	1	3.218876
	5	01/10/05	1.4784586	-0.1863740	1.1400961	0.6560668	1.860613	1.371974	-0.2902373	-0.0324079	20	1	2.995732
	6	01/10/05	0.1100881	-1.0203586	0.0547783	0.1536708	2.052925	1.402333	-0.2902373	0.0152950	41	1	3.713572

날짜: 10월 1일 2005년 ~ 3월 31일 2006년 (총 182일) X축, Y축 좌표계 (covariate에 포함됨)

EWHA,
THE FUTURE
WE CREATE

Time(일): t=1,..,182

Spatial-temporal Model

$$y_{it} \sim Normal(\eta_{it}, \sigma_e^2)$$
 $i = 지역(1,...,24), t=년도(1,...,182), m=공변량(1,...,8)$

Linear Prediction

$$\eta_{it} = b_0 + \sum_{m=1}^{M} \beta_m x_{mi} + \omega_{it}$$
 잠재적 spatio-temporal process

$$\omega_{it} = a\omega_{i(t-1)} + \xi_{it}$$
 Zero-mean Gaussian Field

$$Cov(\xi_{it}, \xi_{ju}) = \begin{cases} 0 & \text{if } t \neq u \\ Cov(\xi_i, \xi_j) & \text{if } t = u \end{cases}$$

Matérn Spatial Covariance Function

$$\frac{\text{Cov}(\xi_{i}, \xi_{j})}{\text{Cov}(\xi_{i}, \xi_{j})} = \text{Cov}(Z(\xi_{i}), Z(\xi_{j})) = \frac{1}{\Gamma(\lambda)2^{\lambda-1}} (\kappa ||s_{i} - s_{j}||)^{\lambda} K_{\lambda}(\kappa ||s_{i} - s_{j}||)$$

Spatial-temporal Model

Spatial-temporal Model

R 코드

```
Matern 공분산 함수 설정
Piemonte_spde = inla.spde2.matern(mesh=Piemonte_mesh, alpha=2)
A est = inla.spde.make.A(mesh = Piemonte mesh,
     Projection
                  loc = coordinates.allyear,
                                                 ##obs의 x,y축 좌표
    A matrix 생성
                                                 ##같은 날짜 = 같은 group
                  group = Piemonte data$time,
                                                 ##총 182개의 group 생성
                  n.group=n days)
s_index = inla.spde.make.index(name = "spatial.field",
          Index 생성
                       n.spde = Piemonte spde$n.spde, ##mesh 꼭짓점 개수
                       n.group = n_days
Stack_est <- inla.stack(data = list(logPM10 = Piemonte_data$logPM10),
                 A = list(A est, 1), ##Projection Matrix A
                 effects = list(c(s_index, list(Intercept=1)),
                           list(Piemonte data[,3:10])), tag="est")
```

```
\eta_{it} = b_0 + \sum_{m=1}^{M} \beta_m x_{mi} + \omega_{it}
```

```
A_pred = inla.spde.make.A(mesh = Piemonte_mesh,
loc = as.matrix(Piemonte_grid),
group = i_day, ##122(꼭짓점 개수)
n.group = n_days)
stack_pred = inla.stack(data = list(logPM10 = NA),
A = list(A_pred,1),
effects = list(c(s_index, list(Intercept=1)),
list(covariate_matrix_std)), tag="pred")
stack = inla.stack(stack_est, stack_pred)
```

```
formula = logPM10 ~ -1 + Intercept + A + UTMX + UTMY + WS + TEMP + HMIX + PREC + EMI + f(spatial.field, model=Piemonte_spde, \omega_{it} = a\omega_{i(t-1)} + \xi_{it} group=spatial.field.group, control.group=list(model="ar1")) output = inla(formula, rep(1:182, each=122)

Model Fitting data = inla.stack.data(stack, spde = Piemonte_spde), family="gaussian", control.predictor=list(A=inla.stack.A(stack), compute=TRUE))
```

Spatial-temporal Model Results

Table 7.2 Posterior estimates (mean, standard deviation (SD), and quantiles) for the Piemonte air pollution model.

Parameter	Mean	SD	2.5%	50%	97.5%
b_0	3.696	0.457	2.784	3.698	4.596
β_1 (A)	-0.209	0.052	-0.313	-0.209	-0.107
β_2 (UTMX)	-0.173	0.170	-0.512	-0.172	0.161
β_3 (UTMY)	-0.179	0.155	-0.487	-0.179	0.125
β_4 (WS)	-0.058	0.008	-0.075	-0.058	-0.042
β_5 (TEMP)	-0.121	0.035	-0.190	-0.120	-0.051
β_6 (HMIX)	-0.025	0.013	-0.051	-0.025	0.001
β_7 (PREC)	-0.054	0.009	-0.071	-0.054	-0.037
β_8 (EMI)	0.035	0.015	0.005	0.035	0.064
$\sigma_e^2 \ \sigma^2$	0.032	0.001	0.030	0.032	0.035
σ^2	1.309	0.211	0.956	1.286	1.783
r	269.909	17.034	238.500	269.079	305.408
а	0.960	0.007	0.946	0.960	0.972

$$\eta_{it} = b_0 + \sum_{m=1}^{M} \beta_m x_{mi} + \omega_{it}$$

$$\omega_{it} = a\omega_{i(t-1)} + \xi_{it}$$

PM10가 심한 지역은 중부 쪽에 몰려 있을 거란 예측 가능.

Figure 7.9 Posterior mean of particulate matter concentration for the selected day 30/01/2006. Only locations with an altitude below 1000 m are shown.

Figure 7.10 Posterior probability of exceeding the $50 \,\mu\text{g/m}^3$ limit value for 30/01/2006. Only locations with an altitude below $1000 \,\text{m}$ are shown.

HA, FUTURE CREATE

Chap 7.2 Spatio-temporal modeling particulate matter concentration

II. Change of Support Problem (COSP)

Areal 와 Geostatistical으로 구성된 데이터 (ex. 역학 연구)에서의 공간 불일치를 관리하는 방법론.

Data Explanation

- Geostatistical Data + Areal Data
- 총 12개의 Health District(보건구)가 있으며, 24개의 관측소들이 해당 보건구에 위치함.
- 우리가 예측하고 싶은 new observation (4032개의 좌표) 중 2443개는 보건구 밖에 위치 > 제거

Figure 7.11 Map of the 12 health districts in Piemonte. Black points denote the PM_{10} monitoring stations, while gray diamonds show the 4032 points of the regular grid.

Change of Support Problem (COSP)

Linear Prediction

$$PM_{B_it}^{\text{Area}} = \sum_{j \in B_i} \eta_{jt}^{\text{pred}} K_{ij}$$

- S_i : grid location (j = 1, ..., 24)
- B_i : area (i = 1, ..., 12)
- $K_{ij} = \frac{1}{\#(s_i \in B_i)}$: weight for the prediction

R코드

AL_ind = as.numeric(rownames(match_grid_asl[match_grid_asl\$COD=="AL",])) dim_lp = nrow(inla.stack.A(stack)) +ncol(inla.stack.A(stack))

$$Ic_AL_vec = rep(NA, times=dim_lp)$$

 $Ic_AL_vec[index_pred][AL_ind] = 1/length(AL_ind)$ $K_{ij} : Pred의 weight$
 $Ic_AL = inla.make.lincomb(Predictor = Ic_AL_vec)$ 선형 조합: $\eta_{jt}^{pred}K_{ij}$

▶ 12개의 구역 별로 해당하는 new obs Index 찾기

Change of Support Problem (COSP)

Figure 7.12 Map of the PM_{10} posterior mean at the health district level for 30/01/2006.

: 각 구역별 PM10의 Posterior Mean

→ TO4 보건구의 PM10이 높고, VCO, BI, CN1, CN2는 PM10이 낮을 것으로 예상됨.

Figure 7.9 Posterior mean of particulate matter concentration for the selected day 30/01/2006. Only locations with an altitude below 1000 m are shown.