第一章 质点力学

1.1 运动的描述方法

1.1.1 参照系与坐标系

参照系 为了确定物体的**位置**和描述其**运动**而选作标准的另一物体(默认地球)

坐标系 为了定量地表示物体相对于**参照系**的位置而选定的变数(**坐标**)的组合。

常见有: 直角坐标系、平面极坐标、自然坐标系、柱坐标、球坐标

笛卡尔坐标系(仿射坐标系)大部分为直角坐标,也有斜角坐标系用于晶格计算中。

直角坐标系 遵照**右手螺旋** (四指由x指向y, 大拇即指z, 即 $x \times y = z$)

极坐标系 由极轴与极点构造,表述为 $P(r,\theta)$

柱坐标系 与极坐标系高度相似、表述为 $P(r, \varphi, z)$

球坐标系 $P(r,\theta,\varphi)$ θ 为天顶角 计算中运用的并不多, 计算十分复杂

例如南京北纬32, 东经119, 海拔30m, (r+30,58,119)

自然坐标系 沿质点运动轨迹建立的坐标系:设定原点与路程,点即唯一确定。

变量:切向 \bar{t} 、法向 \bar{n}

运动方程 确定点的<mark>位置随时间的变化</mark>规律的数学表达式。

轨道 质点在**空间**所描绘的**连续曲线**(或称为路径),与时间无关,由运动方程消去*t*得到。

描述方法: 矢量表示法、坐标表示法、自然表示法

矢量表示 也称为**几何表示**,动点位置由**位矢** \hat{r} 表示。 \hat{r} 以坐标原点 \hat{o} 为始点,以动点 \hat{p} 为终点。

运动方程: $\vec{r} = \vec{r}(t)$ 称其为P点相对于原点O的位矢,当 \vec{r} 变动时,其端点描绘的曲线便是轨道。

坐标表示 也称为**投影表示**,可以用各类坐标系表示。

直角系 位矢: $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ 运动方程: $\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$ 轨道: F(x,y,z) = 0

极坐标 位矢: $\vec{r} = r\hat{e}_r$ 运动方程: $\begin{cases} r = r(t) \\ \theta = \theta(t) \end{cases}$

自然表示 也称为**内禀表示**,用这种表示方法时,<mark>轨道应为已知</mark>。假定s表示质点沿轨道运动在t内所经<mark>弧长运动方程</mark>:s = s(t)表示为路程与时间的关系。由该方程无法直接得到轨道方程。

例题 1. 一质点作匀速圆周运动,半径为 α ,角速度为 ω ,运动方程为?

- ① 选取直角坐标系0 xy即得: $\begin{cases} x = a \cos \omega t \\ y = a \sin \omega t \end{cases} \Rightarrow x^2 + y^2 = a$ 得到轨道
- ② 极坐标: $\begin{cases} r = a \\ \theta = \omega t \end{cases} \Rightarrow r = a$
- ③ 自然表示: 以o'点为弧长起点, 逆时针方向为正: $s = a\omega t$

注意 运动方程中若有变量与时间无关,则轨道方程中该变量<mark>不一定</mark>不存在,

例如: $\begin{cases} x = 1 \\ y = \cos \omega t_{\text{有边界限制}} \end{cases} = \begin{cases} x = 1 \\ y = 2t \\ z = 3t \end{cases} \Rightarrow \begin{cases} 3y = 2z \\ x = 1 \end{cases}$

1.1.3 位移、速度和加速度

位移 质点在一段时间内位置的改变,即从始位置指向末位置的**有向线段**

位移只取决于始末位置, 与通过路程无关

速率 $v = |\vec{v}| = \left| \frac{d\vec{r}}{dt} \right| = \frac{ds}{dt} = \dot{s}$ 路程的时间变化率

加速度 $\vec{a} = \lim_{\Lambda t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \dot{\vec{v}} = \ddot{\vec{r}}$ 速度的时间变化率

1.2 速度与加速度的分量表达式

1.2.1 直角坐标系

位矢 $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$

速度 $\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k} = \dot{x}\vec{i} + \dot{y}\vec{j} + \dot{z}\vec{k}$ 速率 $v = |\vec{v}| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}$

加速度 $\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt}\vec{i} + \frac{dv_y}{dt}\vec{j} + \frac{dv_z}{dt}\vec{k} = \ddot{x}\vec{i} + \ddot{y}\vec{j} + \ddot{z}\vec{k}$ $a = |\vec{a}| = \sqrt{\ddot{x}^2 + \ddot{y}^2 + \ddot{z}^2}$

例题 1. 求椭圆规尺上M点的轨道方程、速度和加速度,已知B以匀速c运动设有 $MA=a,MB=b,\angle OBA=\theta$

③ M点速度分量: $\begin{cases} \dot{x} = b\cos\theta \ \dot{\theta} \\ \dot{y} = -a\sin\theta \ \dot{\theta} \end{cases}$ 又有初始条件: $\begin{cases} x_B = 0 \\ \dot{x_B} = 0 \end{cases} \begin{cases} y_B = (a+b)\cos\theta \\ \dot{y_B} = -(a+b)\sin\theta \ \dot{\theta} = -c \end{cases}$

④ 可解得: $\dot{\theta} = \frac{c}{(a+b)\sin\theta}$ 回代得**速度** $\dot{x} = \frac{bc\cos\theta}{(a+b)\sin\theta} = \frac{bc}{(a+b)}\cot\theta$, $\dot{y} = -\frac{ac\sin\theta}{(a+b)\sin\theta} = -\frac{ac}{(a+b)}$ $\nu_M = \sqrt{\dot{x}^2 + \dot{y}^2} = \frac{c}{a+b}\sqrt{a^2 + b^2\cot^2\theta}$ 理论力学中求出分量即可,无需求解方向,该步可略

⑤ 加速度 $\begin{cases} \ddot{x} = -\frac{bc}{(a+b)}\csc^2\theta \ \dot{\theta} = -\frac{bc}{(a+b)}\csc^2\theta \ \frac{c}{(a+b)\sin\theta} = -\frac{bc^2}{(a+b)^2}\frac{1}{\sin^2\theta} \\ \ddot{y} = 0 \quad 与题干强迫条件相关 \end{cases} a_M = \sqrt{\ddot{x}^2 + \dot{y}^2} = \frac{b^4c^2}{(a+b)^2}\frac{1}{x^3}$

1.2.2 平面极坐标系

位矢 $\vec{r} = r \hat{e}_r$

加速度

速度 $\vec{v} = \frac{\mathrm{d}}{\mathrm{d}t}(r\hat{e}_r) = \dot{r}\hat{e}_r + r\frac{\mathrm{d}\hat{e}_r}{\mathrm{d}t} = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_{\theta} \quad \text{即} \begin{cases} \mathbf{\hat{C}oixe} \ v_r = \dot{r} \\ \mathbf{\hat{d}oixe} \ v_{\theta} = r\dot{\theta} \end{cases}$

 $egin{pmatrix} m{a_r} = \ddot{r} - r\dot{ heta}^2 & \mathbf{3} \mathbf{7} \mathbf{\hat{n}} \mathbf{\hat{n}} \mathbf{\hat{m}} \mathbf{\hat{m}} \mathbf{\hat{g}}, & \mathbf{1} \mathbf{\hat{n}} \mathbf{\hat{g}} \mathbf{\hat{g}} \mathbf{\hat{g}} \mathbf{\hat{g}} \mathbf{\hat{n}} \mathbf{\hat{n}} \mathbf{\hat{n}} \mathbf{\hat{g}} \\ m{a_{ heta}} = r\ddot{ heta} + \mathbf{2}\dot{r}\dot{ heta} = \frac{1}{r}\frac{d}{dt} (r^2\dot{ heta}) & \mathbf{3} \mathbf{7} \mathbf{\mathbf{A}} \mathbf{\mathbf{g}} \mathbf{\hat{g}} \mathbf{\hat{g}} \mathbf{\hat{g}} \mathbf{\hat{n}} \mathbf{\hat{m}} \mathbf{\hat{g}} \mathbf{\hat{g}} \end{aligned}$

径向运动会影响到横向的加速度

推导
$$\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(\dot{r}\hat{e}_r) + \frac{\mathrm{d}}{\mathrm{d}t}(r\dot{\theta}\hat{e}_\theta) \qquad \frac{\mathrm{d}}{\mathrm{d}t}(\dot{r}\hat{e}_r) = \frac{\mathrm{d}\dot{r}}{\mathrm{d}t}\hat{e}_r + \dot{r}\frac{\mathrm{d}\hat{e}_r}{\mathrm{d}t} = \ddot{r}\hat{e}_r + \dot{r}\dot{\theta}\hat{e}_\theta$$

$$\frac{\mathrm{d}}{\mathrm{d}t} (r\dot{\theta}\,\hat{e}_{\theta}) = \frac{\mathrm{d}r}{\mathrm{d}t}\,\dot{\theta}\,\hat{e}_{\theta} + r\frac{\mathrm{d}\dot{\theta}}{\mathrm{d}t}\,\hat{e}_{\theta} + r\dot{\theta}\,\frac{\mathrm{d}\hat{e}_{\theta}}{\mathrm{d}t} = \dot{r}\dot{\theta}\,\hat{e}_{\theta} + r\ddot{\theta}\,\hat{e}_{\theta} - r\dot{\theta}^{\,2}\hat{e}_{r}$$

例颢 1. 某点运动方程为: $r = e^{ct}$ $\theta = bt$ 试求其速度与加速度

$$r = e^{ct} \qquad \theta = bt$$
① 对r微分: $\dot{r} = ce^{ct} = cr \qquad \dot{\theta} = b$ ② 速度有: $v_r = \dot{r} = cr$ $v_\theta = r\dot{\theta} = rb$

② 速度有:
$$v_r = \dot{r} = cr$$
 $v_\theta = r\dot{\theta} = rb$

③ 加速度有:
$$a_r = \ddot{r} - r\dot{\theta}^2 = c^2e^{ct} - rb^2 = (c^2 - b^2)r$$
 $a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta} = 2bcr$

可以看出,速度和加速度都和矢径r成正比,是个螺旋线

1.2.3 自然坐标系

仅考虑二维空间, 质点沿**平面曲线**运动 条件

径向单位矢 \hat{t} 为沿轨道切线并指向轨道<mark>弧长增加</mark>的方向上的单位矢量 参量定义

> 法向单位矢û 为沿轨道法线并指向曲线<mark>凹侧</mark>的单位矢量

夹角 θ 为轨道前进的切线方向和 x轴正向之间的夹角

曲率半径ρ 轨道曲率半径

速度

$$\vec{v} = \frac{ds}{dt}\hat{\tau} = v\hat{\tau} \qquad v_{\tau} = \dot{s} \qquad v_{n} = 0$$

 $\vec{a} = \frac{d\vec{v}}{dt} = \frac{dv}{dt}\hat{\tau} + \frac{d\hat{\tau}}{d\theta}\frac{d\theta}{ds}\left(\frac{ds}{dt}\right)^2 = \frac{dv}{dt}\hat{\tau} + \frac{v^2}{a}\hat{n} = \ddot{s}\hat{\tau} + \frac{v^2}{a}\hat{n} \qquad (\xi \eta + \hat{\tau})^2 = \hat{\eta} + \hat{\tau}$ 加速度

切向加速度: $a_{\tau} = \frac{dv}{dt}$ 引起速度大小改变 法向加速度: $\frac{v^2}{a}$ 引起速度方向改变

对于**空间曲线**来讲,上述公式仍然适用。由微分几何学:a 恒位于轨道的**密切平面**内。 推广 轨道的密切平面是**轨道的切线**和曲线上**无限接近于切点的另一个点**所确定的极限平面,亦即<mark>轨道上无</mark> 限接近的两点的**两条切线**所确定的极限平面。

对空间曲线上的某点而言, $\left(\frac{\mathrm{d}v}{\mathrm{d}t}\right)$ $\hat{\tau}$ 仍为<mark>切向</mark>加速度(在 $\hat{\tau}$ 方向上), $\frac{v^2}{o}\hat{n}$ 为<mark>在密切</mark>

<mark>平面内</mark>并和切线垂直的加速度分矢量,叫做加速度在<mark>主法线方向</mark>*î*上的分矢量。 至于另一条法线,即所谓副法线方向 \hat{b} 上加速度的分矢量**则为零**。

1. 质点M沿着半径为R的圆弧由A开始运动,M到A的距离AM以匀速率 v_0 增加, 例题 求质点M的加速度,用 v_0, φ 表示

以A点为原点,建立自然坐标系,质点M运动方程: $s=R(\pi-2\varphi)$

质点速率:
$$v = \frac{\mathrm{d}s}{\mathrm{d}t} = -2R\dot{\varphi}$$
 有 $\overline{AM} = 2R\cos\varphi$ 且已知 $v_0 = \frac{\mathrm{d}\overline{AM}}{\mathrm{d}t} = -2R\sin\varphi\dot{\varphi}$

解得:
$$\dot{\varphi} = -\frac{v_0}{2R\sin\varphi}$$
 由此 $v = 2R\frac{v_0}{2R\sin\varphi} = \frac{v_0}{\sin\varphi}$ 则 $a_\tau = \frac{\mathrm{d}v}{\mathrm{d}t} = -v_0\frac{\cos\varphi}{\sin^2\varphi}\dot{\varphi} = v_0^2\frac{\cos\varphi}{2R\sin^3\varphi}$

建立极坐标系,原点取在0点,则r = R为常量, $\theta = 2\varphi$ 也可求解

2. 已知质点运动方程为 $x = R \cos \omega t$, $y = R \sin \omega t$, $z = h\omega t/2\pi$ $(R, \omega, h$ 为常数),求质点的切向、法向 加速度及轨道的曲率半径。

则有速度: $\vec{v} = \dot{x}\hat{i} + \dot{y}\hat{j} + \dot{z}\hat{k} = -R\omega\sin\omega t\hat{i} + R\omega\cos\omega t\hat{j} + \frac{\hbar\omega}{2\pi}\hat{k}$ 直接求导计算:

加速度: $\vec{a} = \ddot{x}\hat{i} + \ddot{y}\hat{j} + \ddot{z}\hat{k} = -R\omega^2\cos\omega\,t\hat{i} - R\omega^2\sin\omega\,t\hat{j}$

速率:
$$v = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} = \omega \sqrt{R^2 + \left(\frac{h^2}{4\pi^2}\right)}$$
 是常数

切向加速度: $a_{\tau} = \frac{\mathrm{d}v}{\mathrm{d}t} = 0$ 法向加速度: $a_n = a = \sqrt{\ddot{x}^2 + \ddot{y}^2 + \ddot{z}^2} = R\omega^2$

曲率半径:
$$\rho = \frac{v^2}{a_n} = \frac{\omega^2 \left[R^2 + \left(\frac{h^2}{4\pi^2}\right)\right]}{R\omega^2} = R + \frac{h^2}{4\pi^2 R}$$
 密切面是一个斜面,投影是椭圆

3. 杆OA绕O点作定轴转动,小环C活套在OA杆和半径为R的固定圆环上,此固定圆环与OA杆在同一平面内且通过O点,已知OA杆与 $\overline{OO'}$ 的夹角 $\theta=\theta(t)$,求小环C在任一时刻的**速度、加速度**的大小。

法一: 建立如左图**直角坐标系** 有运动方程: $\begin{cases} x = R(1 + \cos 2\theta) \\ y = R \sin 2\theta \end{cases}$ $\begin{cases} \dot{x} = -2R\dot{\theta}\sin 2\theta \\ \dot{y} = 2R\dot{\theta}\cos 2\theta \end{cases}$

加速度:
$$\begin{cases} \ddot{x} = -2R\ddot{\theta}\sin 2\theta - 4R\dot{\theta}^2\cos 2\theta \\ \ddot{y} = 2R\ddot{\theta}\cos 2\theta - 4R\dot{\theta}^2\sin 2\theta \end{cases} \qquad \text{则}v = 2R\dot{\theta} \qquad a = 2R\sqrt{\ddot{\theta}^2 + 4\dot{\theta}^4}$$

法二: 建立**极坐标系** (以O为极点, O_x 为极轴, θ 为极角)

运动方程为:
$$\begin{cases} r = \overline{OC} = 2R\cos\theta \\ \theta = \theta(t) \end{cases}$$
 速度为
$$\begin{cases} v_r = \dot{r} = -2R\dot{\theta}\sin\theta \\ v_\theta = r\dot{\theta} = 2R\dot{\theta}\cos\theta \end{cases}$$
 有 $\dot{r} = -2R\ddot{\theta}\sin\theta - 2R\dot{\theta}^2\cos\theta$ 加速度为
$$\begin{cases} a_r = \ddot{r} - r\dot{\theta}^2 = -2R\ddot{\theta}\sin\theta - 4R\dot{\theta}^2\cos\theta \\ a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta} = 2R\ddot{\theta}\cos\theta - 4R\dot{\theta}^2\sin\theta \end{cases}$$
 实际上更简单的建系方法是以 O' 为极点。

法三: 取C点的已知轨道(大圆环)为**自然坐标**, t=0时, C点位置(D点)为弧坐标的原点, 并以 θ 角

正向为弧坐标的正方向,则
$$C$$
点的弧坐标运动方程为: $s=\widehat{DC}=2R\theta\ v=\dot{s}=2R\dot{\theta}$ $a_{\tau}=\ddot{s}=2R\ddot{\theta}$ $a_{n}=v^{2}/R=4R\dot{\theta}^{2}$ 很方便地给出最终结果

1.3 质点运动定律

1.3.1 牛顿运动定律

1.3.1.1 牛顿第一定律(惯性定律)

定律 任何物体如果没有受到其他物体作用,都将保持静止或匀速直线运动状态

注意 1) 定律说明了维持物体的运动不需力的作用,而是靠物体本身的惯性

- ② 定律揭示了其他物体的作用是改变物体运动状态的原因
- ③ 定律所描述的静止和匀速直线运动涉及到对哪种参照系描述(惯性参考系)

1.3.1.2 牛顿第二定律

定律 当一物体受到外力作用时,该物体所获得的加速度和外力成正比,和物体本身的质量成反比,加速度的方向和外力的方向一致。

表达式 $\vec{F} = m\vec{a}$

注意

① 第二定律不是**力的定义**而是运动定律,*mā* 不是力。

- ② 式中**F**应理解为物体所受的合力。
- ③ 第二定律表明F和 \tilde{a} 之间关系的<mark>瞬时性</mark>,即无论物体做直线或曲线运动,无论物体受恒力或变力作用,在任何时刻表达式都成立。
- ④ 第二定律的矢量性,表明在任何时刻物体所受的合力方向和加速度方向一致。
- ⑤ 牛顿定律只适用于宏观物体低速运动(对一些忽略波动性的经典粒子也适用)

1.3.1.3 牛顿第三定律(作用力与反作用力)

定律 当一物体A对另一物体B有一个作用力的同时,另一个物体B同时也对该物体A有一个反作用力,作用力和反作用力大小相等,方向相反,在一条直线上,即 $\vec{F}_{12} = \vec{F}_{21}$

注意

作用力与反作用力施加在两个不同的物体上,它们互以对方的存在为自己存在的前提。它们同时产生,同时消灭,相互依存,形成对立的局面,它们是力学中普遍存在的一种矛盾

1.3.2 相对性原理

惯性参考系 牛顿运动定律能成立的参照系 **非惯性参考系** 牛顿运动定律不能成立的参照系

力学相对性原理 也称为伽利略相对性原理:一切惯性参照系对所有的**力学规律**都是等价的 **爱因斯坦相对性** 即一切惯性参照系**对所有的物理过程(包括电磁的、光学的)**都是等价的

1.4 质点运动微分方程及其求解

1.4.1 运动微分方程的建立

1.4.1.1 自由质点

自由质点 $m\ddot{r} = \vec{F}(\vec{r}, \dot{\vec{r}}, t)$ 也称为动力学方程

 $m\ddot{x} = F_x(x, y, z; \dot{x}, \dot{y}, \dot{z}; t)$

直角坐标系 上式可写为以下三个标量式: $m\ddot{y} = F_y(x,y,z;\dot{x},\dot{y},\dot{z};t)$ 各个坐标可能**耦合存在,称耦合方程** $m\ddot{z} = F_z(x,y,z;\dot{x},\dot{y},\dot{z};t)$

需要提供初始条件(边界条件): t = 0时,质点的 初位置 x_0, y_0, z_0 初速度 u_0, v_0, w_0

1.4.1.2 非自由质点

非自由质点 $m\ddot{r} = \vec{F}(\vec{r}, \dot{\vec{r}}, t) + \vec{R}(\vec{r}, \dot{\vec{r}}, t)$ 如果质点受到某种约束,例如被限制在某曲线或曲面上运动,则叫做非自由质点。该曲线/曲面称为约束,该曲线/曲面方程叫做约束方程。 如压力、支持力等

自然坐标系 运动微分方程为(内禀方程): $\begin{cases} m\frac{\mathrm{d}v}{\mathrm{d}t} = F_{\tau}\\ m\frac{v^2}{\rho} = F_n + R_n\\ 0 = F_b + R_b \end{cases}$

如光滑平面曲线约束的约束方程为f(x),则 $\frac{1}{\rho} = \frac{|y''|}{(1+y'^2)^{3/2}}$

1.4.2 质点运动微分方程的解

概述 理论力学的主要任务,就是根据具体问题进行具体分析后,建立**运动微分方程组**,然后求解这些方程 组。也就是说,在具体分析以后,我们将把力学问题化为数学问题;再根据题给的起始条件来解出这 些方程组;最后,还要对所得的结果加以分析,阐明它们的物理含义

问题① 已知运动规律 ⇒ (微分)求力② 已知力 ⇒ (积分)求运动规律

1.4.2.1 力只是坐标的函数——三维谐振动

模型 原子在晶体点阵中的运动:

在简单情况下,力只是坐标 $x \times y \times z$ 的函数,且可互相分开,不耦合,故其运动微分方程可写为

DQM $\begin{cases} m\ddot{x} = F_x = -k_x x \\ m\ddot{y} = F_y = -k_y y \\ m\ddot{z} = F_z = -k_z z \end{cases} k_x k_y k_z$ 是比例系数,常称为倔强系数,形似弹簧。

求解

只选择x方向研究: $\ddot{x} = -\frac{k_x}{m}x = -\omega_x^2x$

可表示其解为: $x = A_x \cos(\omega_x t + \theta_x)$

$$x = A_x \cos(\omega_x t + \theta_x)$$
, $\omega_x = \sqrt{k_x/m}$ 所以: $y = A_y \cos(\omega_y t + \theta_y)$, $\omega_y = \sqrt{k_y/m}$ $z = A_z \cos(\omega_z t + \theta_z)$, $\omega_z = \sqrt{k_z/m}$

例题

1. 一质点受一**与距离成反比的引力**作用在一直线上运动,质点的质量为m,比例系数为k,若质点从距原点0为a的地方由静止开始运动,求其到达0点所需的时间。

质点受引力为 $F = -\frac{k}{x}$ 其运动微分方程为 $m\ddot{x} = -\frac{k}{x} \rightarrow mv \frac{dv}{dx} = -\frac{k}{x}$ 需要引入x来积分

分离变量积分 $\int_0^v mv dv = -k \int_a^x \frac{dx}{x}$ 得 $\frac{1}{2} mv^2 = k \ln \frac{a}{x} \Rightarrow v = \frac{dx}{dt} = -\sqrt{\frac{2k}{m}} \sqrt{\ln \left(\frac{a}{x}\right)} v$ 与x反向,取负值

 $(\because x \in (0,a) : \ln \frac{\alpha}{x} > 0 \quad x \to 0 \quad \ln \frac{\alpha}{x} \to \infty) \quad \diamondsuit y = \sqrt{\ln \left(\frac{a}{x}\right)} \quad 则 x = ae^{-y^2} \quad dx = -2aye^{-y^2}dy \quad 代入得$

已知结论 $\int_0^\infty e^{-y^2} dy = \frac{\sqrt{\pi}}{2}$ 故到达0点所需的时间为 $t = a\sqrt{\frac{m\pi}{2k}}$

1.4.2.2 力只是时间的函数——自由电子在沿x轴的振荡电场中的运动

模型 设沿x轴的**电场强度**为: $E_x = E_0 \cos(\omega t + \theta)$ 电子**所受的力**则为: $F = -eE_x = -eE_0 \cos(\omega t + \theta)$

DQM 根据牛顿运动定律,电子运动的微分方程为: $m\frac{d^2x}{dt^2} = m\frac{dv}{dt} = -eE_0\cos(\omega t + \theta)$

求解 设起始条件是: 当t=0时, $v=v_0$ 上式积分一次得: $v=v_0+\frac{eE_0}{m\omega}\sin\theta-\frac{eE_0}{m\omega}\sin(\omega t+\theta)$

设当x=0时, $x=x_0$ 上式积分: $x=x_0-\frac{eE_0\cos\theta}{m\omega^2}+\left(\nu_0+\frac{eE_0}{m\omega}\sin\theta\right)t+\frac{eE_0}{m\omega^2}\cos(\omega t+\theta)$ 震荡项

特点 振荡项与电场具有相同的角频率ω,且与初始条件无关。

非振荡项与起始条件有关,对波的传播特性无贡献,只能影响波到达的前沿位置。

1.4.2.3 力只是速度的函数——在具有阻力的媒质中运动的抛射体

模型 设阻力 \vec{R} 只与速度 \vec{v} 的大小的一次方成正比,即 $\vec{R} = -mk\vec{v}$

DQM 取直角坐标系: $\frac{\frac{dx}{dt} = -k\dot{x}}{\frac{d\dot{y}}{dt} = -g - k\dot{y}}$

求解

当t = 0 时, $v_x = v_{x0}$ $v_y = v_{y0}$ x = 0 y = 0 积分一次得: $\dot{x} = v_{x0}e^{-kt}$ $\dot{y} = \left(\frac{g}{k} + v_{y0}\right)e^{-kt} - \frac{g}{k}$

极限情况

- ① 如果阻力很小或距离很短,即: $\frac{kx}{\nu_{x0}} \ll 1$,上式展开为级数后,得: $y = \frac{\nu_{y0}}{\nu_{x0}} x \frac{1}{2} \frac{g}{\nu_{x0}^2} x^2 \frac{1}{3} \frac{kg}{\nu_{x0}^3} x^3 \cdots$
- ② 当x趋向于 ν_{x0}/k 时,y趋向于负无穷大,即轨道在 $x = \nu_{x0}/k$ 处变成竖直直线。
- ③ 当抛射体的速度接近枪弹的速度时,R与v的正比关系已经不再适用。如为低速炮弹,可以认为R
- 与 v^2 成正比; 当速度接近声速时, R与 v^2 正比的关系又不再适用

例题

1. 质量为m的质点, 在有阻力的空气中无初速地自离地面为h的地方**竖直下落**。如阻力与速度成正比, 试研究其运动。

选取直角坐标系,其运动微分方程为: $m\ddot{x} = R - mg$ 考虑到 $\vec{R} = -mk\vec{v}$ 有 $m\ddot{x} = -mk\dot{x} - mg$

则
$$\ddot{x} = -k\dot{x} - g$$
 初始条件: $t = 0, \dot{x}_0 = 0, x_0 = h$ 则积分: $\dot{x} = \frac{g}{k}e^{-kt} - \frac{g}{k} = -\frac{g}{k}(1 - e^{-kt})$

二次积分:
$$x = h + \frac{g}{k^2} (1 - e^{-kt}) - \frac{g}{k}t$$

可见: 速度逐渐接近于**定值极限速度 -g/k**, 运动几乎是匀速直线运动。这是阻力和重力平衡的结果。

2. 在上述例题中,如阻力与速度平方成正比,试研究该质点的运动。

则有阻力
$$R = mk^2g\dot{x}^2$$
 有 $m\ddot{x} = mk^2g\dot{x}^2 - mg$, 则 $\begin{cases} \ddot{x} = -g + k^2g\dot{x}^2 \\ t = 0: \dot{x}_0 = 0 \end{cases}$ $x_0 = h$

积分两次可得:
$$\dot{x} = -\frac{1}{k} \operatorname{th}(kgt)$$
 双曲正切 $x = h - \frac{1}{k^2g} \ln \operatorname{ch}(kgt)$ 双曲正弦

当t → ∞时, th(kgt) → 1, 故物体的速度由零逐渐增大, 但以定值1/k为其极限。极限速度与运动物体 在运动垂直方向的最大截面积有关。

3. 一质量为m质点自光滑的圆滚线尖端无初速下滑,试证在任一点的压力为 $N=2mgcos\theta$ 。

选自然坐标系,微分方程为 $\begin{cases} m\frac{\mathrm{d}v}{\mathrm{d}t} = mg\sin\theta & 1 \\ m\frac{v^2}{a} = N - mg\cos\theta & 2 \end{cases}$ 考虑到 $\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}s}\frac{\mathrm{d}s}{\mathrm{d}t} = v\frac{\mathrm{d}v}{\mathrm{d}s}$ 与 $\sin\theta = -\frac{dy}{ds}$

① 变为 $\nu d\nu = -g dy$, 积分 $\int_0^{\nu} \nu d\nu = \int_0^{y} -g dy$, 得到 $\nu^2 = -2gy \xrightarrow{\text{轨迹代入}} 2ga(1+\cos 2\theta) = 4ga\cos^2\theta$

$$ds = \sqrt{(dx)^2 + (dy)^2} = 4a\cos\theta \ d\theta \quad \rho = \frac{ds}{d\theta} = 4a\cos\theta$$
 ②式有 $m\frac{v^2}{\rho} = N - mg\cos\theta$

②式有
$$m\frac{v^2}{\rho} = N - mg\cos\theta$$

$$N = \frac{4ga\cos^2\theta}{4a\cos\theta} + mg\cos\theta = 2mg\cos\theta$$

$$x = 2ay = a$$
对上式积分得: $v = \sqrt{2ag}$ 由 $x^2 = 4ay$ 求得 $\frac{1}{\rho} = \frac{|y''|}{(1+y'^2)^{3/2}} = \frac{1}{2a}$

$$R = m\frac{v^2}{\rho} + mg\cos\theta = m\frac{2ag}{2a} + mg = 2mg$$

1.5 质点动力学的基本定理与基本守恒定律

1.5.1 动量定理与动量守恒律

1.5.1.1 动量定理

微分形式
$$\vec{F} = \frac{\mathrm{d}}{\mathrm{d}t}(m\vec{v}) = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$$
$$\mathrm{d}\vec{p} = \mathrm{d}(m\vec{v}) = \vec{F}\mathrm{d}$$

$$\vec{F} = \frac{\mathrm{d}}{\mathrm{d}t}(m\vec{v}) = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$$

$$d\vec{p} = \mathrm{d}(m\vec{v}) = \vec{F}\mathrm{d}t$$

$$\vec{p}_2 - \vec{p}_1 = m\vec{v}_2 - m\vec{v}_1 = \int_{t_1}^{t_2} \vec{F}\mathrm{d}t$$

1.5.1.2 动量守恒律

冲量
$$\vec{I} = \int_{t_1}^{t_2} \vec{F} dt$$

动量守恒律 $\vec{F} = \frac{d}{dt}(m\vec{v}) = \frac{d\vec{p}}{dt}$ 质点动量的变化等于外力在这段时间内给予该质点的冲量

$$\vec{F} = 0 \qquad \vec{p} = m\vec{v} = \vec{C} \qquad \begin{cases} p_x = m\dot{x} = C_1 \\ p_y = m\dot{y} = C_2 \\ p_z = m\dot{z} = C_3 \end{cases}$$

有时 $\vec{F} \neq 0$, 但 \vec{F} 在某一坐标轴上的投影为零, 那么动量虽不守恒, 但它在该坐标轴上的投影为一常数。

如质点只在重力作用下运动,如取z轴竖直向上,则 $F_x=0$ $F_y=0$ $F_z=-mg$ 这时动量(或速度)在x及y两轴上的投影为常数,即动量守恒。但质点作直线运动还是作抛物线运动, 则由速度的起始值(初速度)决定。

1.5.2 力矩与角动量(动量矩)

 $\vec{M} = \vec{r}_{4.4.5} \times \vec{F}$ $M = rF \sin \theta$ 力矩

$$\overrightarrow{\mathbf{M}} = \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \widehat{\mathbf{k}} \\ x & y & z \\ F_x & F_y & F_z \end{vmatrix} = (yF_z - zF_y)\hat{\mathbf{i}} + (zF_x - xF_z)\hat{\mathbf{j}} + (xF_y - yF_x)\hat{\mathbf{k}}$$

角动量 动量矩 $\vec{J} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{v}$ $\vec{J} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ x & y & z \\ m\dot{x} & m\dot{y} & m\dot{z} \end{vmatrix}$

角动量分量
$$J_x = m(y\dot{z} - z\dot{y})$$
 $J_y = m(z\dot{x} - x\dot{z})$ $J_z = m(x\dot{y} - y\dot{x})$

1.5.3 角动量定理与动量矩守恒律

1.5.3.1 角动量定理

微分形式 $\frac{d}{dt}(\vec{r} \times m\vec{v}) = \vec{r} \times \vec{F}$ $\frac{d\vec{J}}{dt} = \vec{M}$

分量形式 $\frac{\mathrm{d}}{\mathrm{d}t}[m(y\dot{z}-z\dot{y})] = yF_z - zF_y \qquad \frac{\mathrm{d}}{\mathrm{d}t}[m(z\dot{x}-x\dot{z})] = zF_x - xF_z \qquad \frac{\mathrm{d}}{\mathrm{d}t}[m(x\dot{y}-y\dot{x})] = xF_y - yF_x$

积分形式 $\vec{J}_2 - \vec{J}_1 = \int_{t_1}^{t_2} \vec{M} dt$ 冲量矩 $\int_{t_1}^{t_2} \vec{M} dt$

1.5.3.2 角动量守恒定律

质点**角动量的变化**,等于外力在该时间内给予该质点的**冲量矩**。 定律描述

$$\frac{\mathrm{d}}{\mathrm{d}t}(\vec{r}\times m\vec{v}) = \vec{r}\times \vec{F} \qquad \qquad \vec{M} = \vec{r}\times \vec{F} = 0 \qquad \qquad \vec{J} = \vec{r}\times m\vec{v} = \vec{r}\times \vec{p} = \vec{C}$$

$$J_x = m(y\dot{z} - z\dot{y}) = C_4$$
 $J_y = m(z\dot{x} - x\dot{z}) = C_5$ $J_z = m(x\dot{y} - y\dot{x}) = C_6$

1.5.4 动能定理与机械能守恒律

1.5.4.1 功和功率

恒力作功 $W = \vec{F} \cdot \Delta \vec{r} = F|\Delta \vec{r}|\cos\theta$

变力作功 $W = \int_A^B \vec{F} \cdot d\vec{r}$

直角坐标系 $W = \int_A^B F_x dx + F_y dy + F_z dz$

多个力作功 $W = \int \vec{F} \cdot d\vec{r} = \int (\vec{F}_1 + \vec{F}_2 + \dots + \vec{F}_n) \cdot d\vec{r} = \int \vec{F}_1 \cdot d\vec{r} + \int \vec{F}_2 \cdot d\vec{r} + \dots + \int \vec{F}_n \cdot d\vec{r}$

单位 在国际单位制中,功的单位是焦耳

功率 $P = \frac{\mathrm{d}W}{\mathrm{d}t} = \vec{F} \cdot \vec{v}$ 在国际单位制中,功率的单位是瓦特,即焦耳每秒。

1.5.4.2 能

动能 由于物体有一定的**速度**而具有的能量

势能 物体由于**所处的位置**或**发生形变**而具有的能量 功是能量变化的量度

1.5.4.3 保守力 非保守力

力场 假如力仅为坐标 x,y,z 的单值、有限和可微的函数,则此空间称为**力场**。如稳定场 $\vec{F}(x,y,z)$

则必存在一个单值、有限和可微的函数 $V_{\text{Abb}}(x,y,z)$,满足有:

$$\vec{F} = -\nabla V = -\left(\frac{\partial V}{\partial x}\hat{\imath} + \frac{\partial V}{\partial y}\hat{\jmath} + \frac{\partial V}{\partial z}\hat{k}\right) \qquad \vec{F} = F_x\hat{\imath} + F_y\hat{\jmath} + F_z\hat{k} \qquad \qquad F_x = -\frac{\partial V}{\partial x} \quad F_y = -\frac{\partial V}{\partial y} \quad F_z = -\frac{\partial V}{\partial z}$$

 $\mathrm{d}W = -\left(\frac{\partial V}{\partial x}\mathrm{d}x + \frac{\partial V}{\partial y}\mathrm{d}y + \frac{\partial V}{\partial z}\mathrm{d}z\right)$ 为一恰当微分,其值只由两端点的位置所决定。

对于恰当微分,沿任何闭合路径运行一周时,力所作的功为零。 $W^2=\oint \vec{F}^2\cdot d\vec{r}^2=0$

保守力 力所作的功**与中间路径无关**,或者沿任何闭合路径运行一周时,力所作的功为零。 (万有引力、弹性

力和静电力)

非保守力 力所作的功与中间路径有关(涡旋电磁力)

耗散力 总是作负功而消耗能量 (流体的粘滞力、摩擦力)

1.5.4.4 势能

示例 在重力场中,把质点从高度为 z_1 沿任意路径举到高度为 z_2 时,重力mg对质点所作的功为 $-mg(z_2-z_1)$

即等于标量函数mgz的减少值。

势能 标量函数V(x,y,z)叫做质点在点(x,y,z)处的势能

保守力做功等于势能增量的负值 $W = -(V_B - V_A)$ $\begin{cases} W > 0 & V_B < V_A \end{cases}$ 势能减少 $W < 0 & V_B > V_A \end{cases}$ 势能增加

充要条件 如果 F_x , F_y , F_z 是坐标x, y, z 的单值、有限和可微的函数,则势能存在的**必要条件**是:

$$\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = 0, \ \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = 0, \ \frac{\partial F_x}{\partial y} - \frac{\partial F_y}{\partial x} = 0$$

$$\qquad \qquad \exists \Gamma \nabla \times \overrightarrow{F} = \mathbf{0}$$

反之,如果 $\nabla \times \vec{F} = 0$,那么这力就一定是保守力,而它所作的功就一定和路径无关,因而,也就一定存在着某一标量函数V(x,y,z),它就是质点的势能。

如果 $\nabla \times \vec{F} \neq 0$,则该力就是非保守力,这时它所作的功就与路径有关,因而谈不上什么势能。

注意 ① 保守力做功等于势能增量的负值: $W = -(V_B - V_A)$ 所以,<mark>有意义的是势能的变化</mark>,而不是势能的绝对值,因此势能零点可以任意选取,不影响结果。 通常取无穷远处为零。

② 势能是力场与处于力场中某位置的质点所共有的(如重力势能是物体与地球引力场共有,质点有

质量。 单独立场的称为势, 如电势)

求解方法 ① 选择积分路径为平行于坐标轴的折线 $V = -\int_{x_0}^x F_x dx - \int_{y_0}^y F_y dy - \int_{z_0}^z F_z dz$

② 将 $\vec{F} \cdot d\vec{r}$ 化为全微分,势能为: $V = -\int_{A}^{B} \vec{F} \cdot d\vec{r}$

例题 1. 已知作用于质点上的力为: $\vec{F} = xz\hat{\imath} + yz\hat{\jmath} + \frac{1}{2}(x^2 + y^2)\hat{k}$ 检验此力是否是保守力,若是求出势能。

本问题中
$$\frac{\partial F_y}{\partial z} - \frac{\partial F_z}{\partial y} = y - y = 0$$
 $\frac{\partial F_z}{\partial x} - \frac{\partial F_x}{\partial z} = x - x = 0$ $\frac{\partial F_x}{\partial y} - \frac{\partial F_y}{\partial x} = 0$ 故此力是保守力,下面求势能。

法一 设
$$(x_0, y_0, z_0)$$
 为势能零点,其势能为: $V = -\int_{x_0}^x x z_0 dx - \int_{y_0}^y y z_0 dy - \int_{z_0}^z \frac{1}{2} (x^2 + y^2) dz$
$$= -\frac{1}{2} [z_0(x^2 - x_0^2) + z_0(y^2 - y_0^2) + (x^2 + y^2)(z - z_0)] = -\frac{1}{2} [(x^2 + y^2)z - (x_0^2 + y_0^2)z_0]$$

法二
$$\vec{F} \cdot d\vec{r} = xzdx + yzdy + \frac{1}{2}(x^2 + y^2)dz = d\left[\frac{1}{2}(x^2 + y^2)z\right]$$
 一般奏不出来
 其势能为: $V = -\left[\frac{1}{2}(x^2 + y^2)z + C\right]$ 将 $x = x_0$ $y = y_0$ $z = z_0$ $V(x_0, y_0, z_0) = 0$
 代入上式得: $C = -\frac{1}{2}(x_0^2 + y_0^2)z_0$ $V = -\frac{1}{2}[(x^2 + y^2)z - (x_0^2 + y_0^2)z_0]$

1.5.4.5 动能定理及机械能守恒定律

动能定理
$$\frac{d\left(\frac{1}{2}mv^2\right)}{d\left(\frac{1}{2}mv^2\right)} = \vec{F} \cdot d\vec{r} \qquad \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = \int_{\vec{r}_0}^{\vec{r}} \vec{F} \cdot d\vec{r} = \int_{x_0, y_0, z_0}^{x_0, y_0, z_0} F_x dx + F_y dy + F_z dz$$
 如果 \vec{F} 为保守力 $\vec{F} = -\nabla V \qquad W = -(V_B - V_A)$

机械能守恒
$$\frac{1}{2}mv^2 + V(x, y, z) = E$$
 $T + V = E$

当质点所受的力都是保守力时(或只有保守力作功,其他力不作功或作功为零),质点的动能与势能虽可互相消长,但总机械能的数值恒保持不变。

1.6 质点在有心力作用下的运动

1.6.1 有心力运动的特点

有心力 一般来讲,如果运动质点所受的<mark>力的作用线</mark>始终通过某一个定点,我们就说这个质点所受的力是有心力,而这个定点则叫做力心。 如地面物体受到地心的万有引力。

引力斥力 有心力在大小上,一般是矢径大小(即质点和力心间的距离)的函数,而力的方向则始终沿着质点和力心的联线。凡**力趋向定点的是引力,离开定点的是斥力**。

 $\vec{F} = F(r) \frac{\vec{r}}{r} \quad \begin{cases} F(r) > 0 & \text{斥力} \\ F(r) < 0 & \text{引力} \end{cases}$ 质点始终在**一平面内**运动。可选择极坐标 (r, θ) 来研究它的运动。

性质一 质点受有心力作用,**角动量守恒,做平面运动**。

推导 在极坐标系中,质点的运动微分方程为: $\begin{cases} m(\ddot{r}-r\dot{\theta}^2)=F_r=F(r)\\ m(r\ddot{\theta}+2\dot{r}\dot{\theta})=F_{\theta}=0 \end{cases}$ 二式可写为 $m^{\frac{1}{r}\frac{d}{dt}}(r^2\dot{\theta})=0$

积分得: $\mathbf{r}^2\dot{\boldsymbol{\theta}} = \mathbf{h}$ 角动量守恒 $\vec{r} \times \vec{F} = \vec{r} \times \frac{F(r)}{r} \vec{r} = 0$ $\vec{J} = \vec{r} \times \vec{p} =$ 恒矢量

 $\begin{cases} J_x = m(y\dot{z} - z\dot{y}) = c_4 & (1) \\ J_y = m(z\dot{x} - x\dot{z}) = c_5 & (2) & x \cdot (1) + y \cdot (2) + z \cdot (3), 得 c_4x + c_5y + c_6z = 0$ 质点必**作平面运动** $J_z = m(x\dot{y} - y\dot{x}) = c_6$ (3)

性质二 质点受有心力作用,机械能守恒。 $\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)+V(r)=E$

有心力对质点所作的功,只**取决于起点和终点的矢径**,而与中间所通过的路径无关。

 $W = \int_{r_1}^{r_2} F(r) dr$ 所以,有心力是保守力,一定存在势能 $V = \int_{r_1}^{r_2} F(r) dr = -(V_2 - V_1)$

1.6.2 轨道微分方程——比耐公式

比耐公式 $h^2u^2\left(\frac{d^2u}{d\theta^2}+u\right)=-\frac{F}{m}$

推导 研究有心力问题的基本方程 : $\begin{cases} m(\ddot{r} - r\dot{\theta}^2) = F(r) & \text{①} \\ r^2\dot{\theta} = h & \text{②} \end{cases}$

设 $\mathbf{u} = \frac{1}{r}$ 则 $r^2 \dot{\theta} = h \Rightarrow \dot{\theta} = hu^2$ $\dot{r} = \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}\theta} \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\frac{1}{u}\right) \frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{1}{u^2} \frac{\mathrm{d}u}{\mathrm{d}\theta} \dot{\theta} = -h \frac{\mathrm{d}u}{\mathrm{d}\theta}$

 $\ddot{r} = \frac{\mathrm{d}\dot{r}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(-h \frac{\mathrm{d}u}{\mathrm{d}\theta} \right) = \frac{\mathrm{d}}{\mathrm{d}\theta} \left(-h \frac{\mathrm{d}u}{\mathrm{d}\theta} \right) \dot{\theta} = -h^2 u^2 \frac{\mathrm{d}^2 u}{\mathrm{d}\theta^2}$ 回代①式可得

例题 1. 质点受有心力作双纽线 $r^2=a^2\cos2\theta$ 的运动时(a为常数),试证明有心力的形式为 $F=-rac{3ma^4h^2}{r^7}$ 。

 $u = \frac{1}{r} = \frac{1}{a\sqrt{\cos 2\theta}} \quad \frac{du}{d\theta} = \frac{\sin 2\theta}{a(\cos 2\theta)^{3/2}} \quad \frac{d^2u}{d\theta^2} = \frac{3-\cos^2 2\theta}{a(\cos 2\theta)^{5/2}} \quad \frac{d^2u}{d\theta^2} + u = \frac{3}{a(\cos 2\theta)^{5/2}}$

代入比耐公式 $F = -mh^2u^2\left(\frac{d^2u}{d\theta^2} + u\right)$ $F = -mh^2\frac{1}{a^2\cos 2\theta}\frac{3}{a(\cos 2\theta)^{5/2}} = -\frac{3mh^2a^4}{r^7}$

1.6.3 平方反比引力——行星的运动

1.6.3.1 比耐公式判据

假设 利用比耐公式求质点在与距离平方成反比的引力作用下的轨道方程。

令太阳的质量为M,行星的质量为m,由万有引力定律得: $F=-rac{GMm}{r^2}=-rac{k^2m}{r^2}=-mk^2u^2$

推导 代入比耐公式得: $h^2u^2\left(\frac{d^2u}{d\theta^2}+u\right)=k^2u^2$ $\frac{d^2u}{d\theta^2}+u=\frac{k^2}{h^2}$

换元令:
$$u = \xi + \frac{k^2}{h^2}$$
 则 $\frac{d^2 \xi}{d\theta^2} + \xi = 0$ 其解: $\xi = A \cos(\theta - \theta_0)$

转动极轴,使
$$\theta_0 = 0$$
 $r = \frac{h^2/k^2}{1 + (Ah^2/k^2)\cos\theta}$

化简方程: 令 $\frac{h^2}{k^2} = p$ $A \frac{h^2}{k^2} = Ap = e$ 则 $r = \frac{p}{1 + e \cos \theta}$

所以,轨道是<mark>原点在焦点上的圆锥曲线,力心位于焦点上</mark>。

圆锥曲线,**可依偏心率e的数值**,分为下列三种类型: (1)椭圆e < 1 (2)抛物线 e = 1 (3)双曲线 e > 1

在圆锥曲线中,**离力心最近**的顶点 B 叫**近日点**。 近日点

椭圆 在近日点:
$$r = a - c = a(1 - e)$$
 $\theta = 0$ $a(1 - e) = \frac{p}{1 + e} \Rightarrow p = a(1 - e^2)$

抛物线 在近日点:
$$r = q$$
, $\theta = 0 \Rightarrow p = 2q$

双曲线 在近日点:
$$r = c - 1 = a(e - 1) \Rightarrow p = a(e^2 - 1)$$

1.6.3.2 总能量判据

判据

$$e = \sqrt{1 + \frac{2E}{m} \left(\frac{h}{k^2}\right)^2}$$
 因为 $\frac{2E}{m} \left(\frac{h}{k^2}\right)^2$ 恒为正值,所以有结论:

②
$$E = 0$$
 $e = 1$ 轨道为抛物线

③
$$-\frac{mk^4}{2h^2} < E < 0$$
 0 < $e < 1$ 轨道为椭圆 ④ $E = -\frac{mk^4}{2h^2}$ $e = 0$ 轨道为圆

④
$$E = -\frac{mk^4}{2h^2} e = 0$$
 轨道为圆

有心力是保守力,**机械能守恒,得动能** $\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)-\frac{k^2m}{r}=E$ 利用 $r^2\dot{\theta}=h$ 作变换

$$\dot{r} = \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}\theta} \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{h}{r^2} \frac{\mathrm{d}r}{\mathrm{d}\theta}$$
 代入上式得: $\frac{1}{2}m \left[\frac{h^2}{r^4} \left(\frac{\mathrm{d}r}{\mathrm{d}\theta} \right)^2 + \frac{h^2}{r^2} - \frac{2k^2}{r} \right] = E$ 解出 $\frac{\mathrm{d}r}{\mathrm{d}\theta}$,并分离变量得

$$\frac{h\mathrm{d}r}{r\sqrt{\frac{2E}{m}r^2+2k^2r-h^2}}=\mathrm{d}\theta \qquad 积分得到 \\ r=\frac{h^2/k^2}{1+\sqrt{1+2h^2E/k^4m}\cos\theta} \quad e=\sqrt{1+\frac{2E}{m}\left(\frac{h}{k^2}\right)^2}$$

1. 证明行星绕太阳运动的椭圆轨道长半轴a仅与能量E有关,而与其角动量无关。 例题

$$r=rac{p}{1+e\cos heta}$$
 近日点, $heta=0$ $r_{min}=rac{p}{1+e}$ 远日点, $heta=\pi$ $r_{max}=rac{p}{1-e}$

半长轴:
$$a = \frac{1}{2}(r_{max} + r_{min}) = \frac{p}{1 - e^2}$$
 则 $a = \frac{p}{1 - e^2}$ 因为 $\frac{h^2}{k^2} = p$,得到 $e = \sqrt{1 + \frac{2E}{m} \left(\frac{h}{k^2}\right)^2}$ $k^2 = GM$

最终得到
$$a = -\frac{k^2m}{2E} = -\frac{GMm}{2E}$$

2. 质点在有心力作用下运动。此力的量值为质点到力心距离r的函数,而质点的速率则与此距离成反 比. 即v = a/r. 如果 $a^2 > h^2$,求质点的轨迹方程。

$$\vec{v} = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta \qquad r^2\dot{\theta} = h \quad \overline{0} \ \exists \ \dot{v}^2 = \dot{r}^2 + r^2\dot{\theta}^2 = \dot{r}^2 + \frac{h^2}{r^2} \qquad \dot{r} = \pm \sqrt{v^2 - \frac{h^2}{r^2}} = \pm \sqrt{\frac{a^2 - h^2}{r^2}}$$

换元:
$$\dot{r} = \frac{dr}{dt} = \frac{dr}{d\theta} \frac{d\theta}{dt} = \frac{h}{r^2} \frac{dr}{d\theta}$$
 轨迹微分方程为: $\frac{h}{r^2} \frac{dr}{d\theta} = \pm \sqrt{\frac{a^2 - h^2}{r^2}}$

分离变量并积分:
$$\int_{r_0}^r \frac{\mathrm{d}r}{r} = \int_0^\theta \pm \sqrt{\frac{a^2 - h^2}{h^2}} \, \mathrm{d}\theta \Rightarrow \ln \frac{r}{r_0} = \pm \sqrt{\frac{a^2 - h^2}{h^2}} \, \theta$$
 是对数螺旋线

1.6.4 宇宙速度和宇宙航行

推导 总能量和轨道半长轴之间的关系: 由 $\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2)-\frac{k^2m}{r}=E$ $r^2\dot{\theta}=h$ 出发

两式消去 $\dot{\theta}$ 得: $\frac{1}{2}m\left(\dot{r}^2+\frac{h^2}{r^2}\right)-\frac{k^2m}{r}=E$ 如轨道为椭圆,在近日点r=a(1-e) $\dot{r}=0$

$$\frac{h^2}{k^2} = p \quad p = a(1 - e^2) \qquad E = \frac{mh^2}{2r^2} - \frac{k^2m}{r} = \frac{mk^2a(1 - e^2)}{2a^2(1 - e)^2} - \frac{k^2m}{a(1 - e)} = -\frac{k^2m}{2a}$$

如轨道为抛物线,则在近日点 $\dot{r}=0$, r=q, p=2q $E=\frac{mk^2(2q)}{2q^2}-\frac{k^2m}{r}=0$

如轨道为双曲线,在近日点 $\dot{r}=0$, r=a(e-1), $\frac{h^2}{k^2}=p$, $p=a(e^2-1)$ $E=\frac{mh^2}{2r^2}-\frac{k^2m}{r}=+\frac{k^2m}{2a}$

第一速度 即环绕速度,对于椭圆轨道的星体,能量守恒为: $\frac{1}{2}mv^2 - \frac{k^2m}{r} = -\frac{k^2m}{2a}$

令 a=r= 地球半径, $k^2=GM=gr^2$ 则从地球表面上发射一颗人造地球卫星所需要的最低速度 v_1

$$v_1 = \sqrt{gr} \approx \sqrt{9.8 \times 6400/1000} \approx 7.9 \text{(km/s)}$$

第二速度 即逃逸速度,物体脱离地球引力,但不能脱离太阳引力作用所需的最低速度 v_2

沿用第一式能量守恒, $\frac{1}{2}mv^2 - \frac{k^2m}{r} = -\frac{k^2m}{2a}$ 令 $a = \infty$ $v_2^2 = \frac{2k^2}{r} = 2gr$, 则有

 $v_2 = \sqrt{2gr} = \sqrt{2}v_1 \approx 1.4 \times 7.9 \approx 11.2 \text{(km/s)}$

第三速度 即从地球表面发射,物体能够**脱离太阳系**,应具有的速度 v_3 (在地球绕太阳运行的轨道上发射物体时可以脱离太阳的速度v)

脱离地球的速度 $v_2^2 = \frac{2k^2}{r} = \frac{2GM}{r}$ 脱离太阳的速度 $v^2 = \frac{2GM_{\rm 大阳质量}^\prime}{r_{\rm Hbb+4Q}^\prime}$

所以 $v = v_2 \sqrt{\frac{M'r}{Mr'}} = 11.2 \times \sqrt{333400/23400} \approx 42 (km/s)$

此外, 地球绕太阳公转的速度约为30km/s。如果发射时的速度方向和地球在公转轨道上运行的速度方向一致, 那么只要相对于地球的速度为12千米/秒。在地面发射, 还要同时克服地球的引力, 因此:

$$v_3 = \sqrt{(12)^2 + (11.2)^2} \approx 16.7 (\text{km/s})$$