Sample path large deviations for Lévy processes and random walks with regularly varying increments

March 20, 2025

Topics Preview

- f 0 Setting and Overview
 - Centered and scaled Lévy process
 - M-Convergence
- One-sided large deviations
 - Limiting theorems
 - Application 1: Crossing high levels with moderate jumps
- Two-sided large deviations
 - Limiting theorems
 - Application 2: A two-sided barrier crossing problem
 - Application 3: Identifying the optimal number of jumps for sets of the form $A = \{\xi : I \le \xi \le u\}$
 - Limit theorem: Non-unique argument minimums
 - Application 4: Multiple optima
- 4 Implications
- 5 Application to Reinsurance Model
- 6 Application to Rare Event Simulation

Topics Preview

- Setting and Overview
 - Centered and scaled Lévy process
 - M-Convergence
- One-sided large deviations
 - Limiting theorems
 - Application 1: Crossing high levels with moderate jumps
- Two-sided large deviations
 - Limiting theorems
 - Application 2: A two-sided barrier crossing problem
 - Application 3: Identifying the optimal number of jumps for sets of the form $A = \{\xi : I \le \xi \le u\}$
 - Limit theorem: Non-unique argument minimums
 - Application 4: Multiple optima
- 4 Implications
- 5 Application to Reinsurance Model
- 6 Application to Rare Event Simulation

Lévy process

X is a Lévy process with a Lévy measure u with Itô representation

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx)]$$
$$+ \int_{|x| > 1} xN([0, ns] \times dx).$$

Lévy process

X is a Lévy process with a Lévy measure u with Itô representation

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx)]$$

 $+ \int_{|x| > 1} xN([0, ns] \times dx).$

- a: a drift parameter
- B: a Brownian motion
- N: a Poisson random measure with mean measure Leb \times ν on $[0,n] imes (0,\infty)$

Lévy process

X is a Lévy process with a Lévy measure u with Itô representation

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx)]$$
$$+ \int_{|x| > 1} xN([0, ns] \times dx).$$

- a: a drift parameter
- B: a Brownian motion
- N: a Poisson random measure with mean measure Leb \times ν on $[0,n]\times(0,\infty)$
- $\nu[x,\infty)$ regularly varying with index $-\alpha$
- $\nu(-\infty, -x]$ is regularly varying with index $-\beta$

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$
 $\bar{X}_n(s) \triangleq \frac{1}{n} X_n(s) - sa - (\mu_1^+ \nu_1^+ - \mu_1^- \nu_1^-)s, \quad s \in [0, 1].$

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$
 $\bar{X}_n(s) \triangleq \frac{1}{n} X_n(s) - sa - (\mu_1^+ \nu_1^+ - \mu_1^- \nu_1^-)s, \quad s \in [0, 1].$

- $\nu_1^+ \triangleq \nu[1,\infty)$, $\mu_1^+ \triangleq \frac{1}{\nu_1^+} \int_{[1,\infty)} x \nu(dx)$
- $\nu_1^- \triangleq \nu(-\infty, -1]$, $\mu_1^- \triangleq \frac{1}{\nu_1^-} \int_{(-\infty, -1]} x \nu(dx)$

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

$$\bar{X}_n(s) \triangleq \frac{1}{n} X_n(s) - sa - (\mu_1^+ \nu_1^+ - \mu_1^- \nu_1^-)s, \quad s \in [0, 1].$$

- $\nu_1^+ \triangleq \nu[1,\infty)$, $\mu_1^+ \triangleq \frac{1}{\nu_1^+} \int_{[1,\infty)} x \nu(dx)$
- $\nu_1^- \triangleq \nu(-\infty, -1], \ \mu_1^- \triangleq \frac{1}{\nu_1^-} \int_{(-\infty, -1]} x \nu(dx)$

Example: $S_k, k \ge 0$ a mean-zero random walk. $\mathbb{P}(S_1 \ge x) = L_+(x)x^{-\alpha}$, $\mathbb{P}(S_1 \le -x) = L_-(x)x^{-\beta}$. We let

$$X(t) = S_{N(t)}, \quad \bar{X}_n(t) = X(nt)/n \quad t \geq 0$$

$$\begin{split} X_n(s) &= \textit{nsa} + \textit{B}(\textit{ns}) + \int_{|x| \leq 1} \textit{x}[\textit{N}([0, \textit{ns}] \times \textit{dx}) - \textit{ns}\nu(\textit{dx}) + \int_{|x| > 1} \textit{x}\textit{N}([0, \textit{ns}] \times \textit{dx}). \\ \\ \bar{X}_n(s) &\triangleq \frac{1}{n} X_n(s) - \textit{sa} - (\mu_1^+ \nu_1^+ - \mu_1^- \nu_1^-) \textit{s}, \quad \textit{s} \in [0, 1]. \end{split}$$

Questions: For "general" $A \subseteq \mathbb{D}$ (the Skorokhod space). Do we have

- $\epsilon_n \mathbb{P}(\bar{X}_n \in A) \to C(A)$ in some sense, for some $C(\cdot)$ and ϵ_n ?
- LDP for $\mathbb{P}(\bar{X}_n \in A)$ with some rate function $I(\cdot)$ and speed b_n ?
- Full LDP for \bar{X}_n ?

$$\begin{split} X_n(s) &= \textit{nsa} + \textit{B}(\textit{ns}) + \int_{|x| \leq 1} \textit{x}[\textit{N}([0, \textit{ns}] \times \textit{dx}) - \textit{ns}\nu(\textit{dx}) + \int_{|x| > 1} \textit{x}\textit{N}([0, \textit{ns}] \times \textit{dx}). \\ \\ \bar{X}_n(s) &\triangleq \frac{1}{n} X_n(s) - \textit{sa} - (\mu_1^+ \nu_1^+ - \mu_1^- \nu_1^-) \textit{s}, \quad \textit{s} \in [0, 1]. \end{split}$$

Questions: For "general" $A \subseteq \mathbb{D}$ (the Skorokhod space). Do we have

- $\epsilon_n \mathbb{P}(\bar{X}_n \in A) \to C(A)$ in some sense, for some $C(\cdot)$ and ϵ_n ? Yes
- LDP for $\mathbb{P}(\bar{X}_n \in A)$ with some rate function $I(\cdot)$ and speed b_n ? Yes
- Full LDP for \bar{X}_n ? No

$\mathbb{M} ext{-}\mathsf{Convergence}$

Do we have $\epsilon_n \mathbb{P}(\bar{X}_n \in A) \to C(A)$ in some sense? Yes In which sense?

• (\mathbb{S}, d) complete separable metric space, \mathcal{S} the Borel σ -algebra on \mathbb{S} .

M-Convergence

- (\mathbb{S}, d) complete separable metric space, \mathcal{S} the Borel σ -algebra on \mathbb{S} .
- C a closed subset of \mathbb{S} , $\mathcal{S}_{\mathbb{S}\backslash C}$ sub- σ -algebra.

M-Convergence

- (\mathbb{S}, d) complete separable metric space, \mathcal{S} the Borel σ -algebra on \mathbb{S} .
- C a closed subset of \mathbb{S} , $\mathcal{S}_{\mathbb{S}\setminus C}$ sub- σ -algebra.
- $C^r \triangleq \{x \in \mathbb{S} : d(x,C) < r\}$ for r > 0.

- (\mathbb{S}, d) complete separable metric space, \mathcal{S} the Borel σ -algebra on \mathbb{S} .
- C a closed subset of \mathbb{S} , $\mathcal{S}_{\mathbb{S}\setminus C}$ sub- σ -algebra.
- $C^r \triangleq \{x \in \mathbb{S} : d(x,C) < r\}$ for r > 0.
- $\mathbb{M}(\mathbb{S} \setminus C)$ the class of measures on $\mathcal{S}_{\mathbb{S} \setminus C}$ whose restrictions to $\mathbb{S} \setminus C^r$ are finite for all r > 0. The measure space we care.

- (\mathbb{S}, d) complete separable metric space, \mathcal{S} the Borel σ -algebra on \mathbb{S} .
- C a closed subset of \mathbb{S} , $\mathcal{S}_{\mathbb{S}\setminus C}$ sub- σ -algebra.
- $C^r \triangleq \{x \in \mathbb{S} : d(x,C) < r\}$ for r > 0.
- $\mathbb{M}(\mathbb{S} \setminus C)$ the class of measures on $\mathcal{S}_{\mathbb{S} \setminus C}$ whose restrictions to $\mathbb{S} \setminus C^r$ are finite for all r > 0. The measure space we care.
- $C_{\mathbb{S}\setminus C}\subseteq b\mathcal{C}(\mathbb{S}\setminus C,\mathbb{R}_0^+)$ is the set functions f with supp(f) bounded away from C.

- (\mathbb{S}, d) complete separable metric space, \mathcal{S} the Borel σ -algebra on \mathbb{S} .
- C a closed subset of \mathbb{S} , $\mathcal{S}_{\mathbb{S}\setminus C}$ sub- σ -algebra.
- $C^r \triangleq \{x \in \mathbb{S} : d(x,C) < r\}$ for r > 0.
- $\mathbb{M}(\mathbb{S} \setminus C)$ the class of measures on $\mathcal{S}_{\mathbb{S} \setminus C}$ whose restrictions to $\mathbb{S} \setminus C^r$ are finite for all r > 0. The measure space we care.
- $C_{\mathbb{S}\setminus C}\subseteq bC(\mathbb{S}\setminus C,\mathbb{R}_0^+)$ is the set functions f with supp(f) bounded away from C.
- A sequence $\mu_n \in \mathbb{M}(\mathbb{S} \setminus C)$ converges to $\mu \in \mathbb{M}(\mathbb{S} \setminus C)$ if $\mu_n(f) \to \mu(f)$ for each $f \in \mathcal{C}_{\mathbb{S} \setminus C}$. =Weak convergence when $C = \emptyset$.

Topics Preview

- Setting and Overview
 - Centered and scaled Lévy process
 - M-Convergence
- One-sided large deviations
 - Limiting theorems
 - Application 1: Crossing high levels with moderate jumps
- Two-sided large deviations
 - Limiting theorems
 - Application 2: A two-sided barrier crossing problem
 - Application 3: Identifying the optimal number of jumps for sets of the form $A = \{\xi : I \le \xi \le u\}$
 - Limit theorem: Non-unique argument minimums
 - Application 4: Multiple optima
- 4 Implications
- 5 Application to Reinsurance Model
- 6 Application to Rare Event Simulation

$Supp(\nu) \subseteq [0, \infty)$

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

•
$$\bar{X}_n(s) \triangleq \frac{1}{n} X_n(s) - sa - \mu_1^+ \nu_1^+ s, \quad s \in [0, 1].$$

$Supp(\nu) \subseteq [0,\infty)$

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

- $\bar{X}_n(s) \triangleq \frac{1}{n} X_n(s) sa \mu_1^+ \nu_1^+ s, \quad s \in [0, 1].$
- $C_j \in \mathbb{M}(\mathbb{D} \setminus \mathbb{D}_{< j})$, $j \ge 0$, a measure concentrated on \mathbb{D}_j s.t.

$$C_j(\cdot) \triangleq \mathbb{E}\left[\nu_{\alpha}^j\left(y \in (0,\infty)^j : \sum_{i=1}^j y_i \mathbf{1}_{[U_i,1]} \in \cdot\right)\right],$$

- $\nu_{\gamma}(x,\infty) \triangleq x^{-\gamma}, \ \gamma > 1.$
- ν_{γ}^{j} the restriction (to $\mathbb{R}_{+}^{j\downarrow}$) of the *j*-fold product measure of ν_{γ} .
- U_i , $i \geq 1$ i.i.d. Uniform[0,1].

\mathbb{M} -convergence of $(n\nu[n,\infty))^{-j}\mathbb{P}(\bar{X}_n\in\cdot)$

Theorem 3.1. For each $j \ge 0$,

$$(n\nu[n,\infty))^{-j}\mathbb{P}(\bar{X}_n\in\cdot)\to C_j(\cdot), \tag{1}$$

in $\mathbb{M}(\mathbb{D}\setminus\mathbb{D}_{< j})$, as $n\to\infty$.

\mathbb{M} -convergence of $(n\nu[n,\infty))^{-j}\mathbb{P}(\bar{X}_n\in\cdot)$

Theorem 3.1. For each $j \ge 0$,

$$(n\nu[n,\infty))^{-j}\mathbb{P}(\bar{X}_n\in\cdot)\to C_j(\cdot), \tag{1}$$

in $\mathbb{M}(\mathbb{D}\setminus\mathbb{D}_{< j})$, as $n\to\infty$.

Proof Sketch:

- \bar{X}_n is asymptotically equivalent to $\hat{J}_n^{\leq j}$, a process obtained by just keeping its j biggest jumps. (Prop. 5.1 & 5.2.)
- M-convergences of jump times and jump sizes (independent) leads to M-convergence of product measures. (Lem 5.3)
- M-convergence of the push-back measure (path space) is preserved. (Cor 2.2)

Theorem 3.2. If $\mathcal{J}(A) < \infty$, and $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ is bounded away from $\mathbb{D}_{<\mathcal{J}(A)}$ for some $\delta > 0$, then

$$C_{\mathcal{J}(A)}(A^{\circ}) \leq \liminf_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq \limsup_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq C_{\mathcal{J}(A)}(\bar{A}). \quad (2)$$

- $\mathcal{J}(A) = \min \# \text{jumps for step functions in } A \triangleq \inf_{\xi \in \mathbb{D}^{\uparrow}_{+} \cap A} \mathcal{D}_{+}(\xi).$
- $\mathbb{D}_s^{\uparrow} \subseteq \mathbb{D}$ set of non-decreasing step functions vanishing at 0.
- $\mathcal{D}_{+}(\xi)$: # of upward jumps of an element $\xi \in \mathbb{D}$.

Theorem 3.2. If $\mathcal{J}(A) < \infty$, and $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ is bounded away from $\mathbb{D}_{<\mathcal{J}(A)}$ for some $\delta > 0$, then

$$C_{\mathcal{J}(A)}(A^{\circ}) \leq \liminf_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq \limsup_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq C_{\mathcal{J}(A)}(\bar{A}). \quad (2)$$

$$\mathbb{P}(\bar{X}_n \in A) = \Omega\left((n\nu[n,\infty))^{\mathcal{J}(A)}\right) = \Omega\left(n^{(1-\alpha)\mathcal{J}(A)}\right)$$

Theorem 3.2. If $\mathcal{J}(A) < \infty$, and $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ is bounded away from $\mathbb{D}_{<\mathcal{J}(A)}$ for some $\delta > 0$, then

$$C_{\mathcal{J}(A)}(A^{\circ}) \leq \liminf_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq \limsup_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq C_{\mathcal{J}(A)}(\bar{A}). \quad (2)$$

$$\mathbb{P}(\bar{X}_n \in A) = \Omega\left((n\nu[n,\infty))^{\mathcal{J}(A)}\right) = \Omega\left(n^{(1-\alpha)\mathcal{J}(A)}\right)$$

Proof Sketch:

- $\mathcal{J}(A^{\circ}) > \mathcal{J}(A) \Rightarrow A^{\circ} \cap \mathbb{D}_{<\mathcal{J}(A)} = \emptyset$.
- $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ is b.a.f. $\mathbb{D}_{< \mathcal{J}(A)} \Rightarrow \mathcal{J}(A) = \mathcal{J}(\bar{A})$.
- $\mathcal{J}(A^{\circ}) = \mathcal{J}(A) = \mathcal{J}(\bar{A}) = j$:

$$C_{\mathcal{J}(A)}(A^{\circ}) = C_{\mathcal{J}(A^{\circ})}(A^{\circ}) \leq \liminf_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A^{\circ})}{(n\nu[n,\infty])^{\mathcal{J}(A^{\circ})}} \leq \liminf_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty])^{\mathcal{J}(A)}}.$$

Theorem 3.2. If $\mathcal{J}(A) < \infty$, and $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ is bounded away from $\mathbb{D}_{<\mathcal{J}(A)}$ for some $\delta > 0$, then

$$C_{\mathcal{J}(A)}(A^{\circ}) \leq \liminf_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq \limsup_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq C_{\mathcal{J}(A)}(\bar{A}). \quad (2)$$

$$\mathbb{P}(\bar{X}_n \in A) = \Omega\left((n\nu[n,\infty))^{\mathcal{J}(A)}\right) = \Omega\left(n^{(1-\alpha)\mathcal{J}(A)}\right)$$

Proof Sketch:

- $\mathcal{J}(A^{\circ}) > \mathcal{J}(A) \Rightarrow A^{\circ} \cap \mathbb{D}_{\leq \mathcal{J}(A)} = \emptyset$.
- $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ is b.a.f. $\mathbb{D}_{<\mathcal{J}(A)} \Rightarrow \mathcal{J}(A) = \mathcal{J}(\bar{A})$.
- $\mathcal{J}(A^{\circ}) = \mathcal{J}(A) = \mathcal{J}(\bar{A}) = j$:

$$\limsup_{n\to\infty}\frac{\mathbb{P}(\bar{X}_n\in A)}{(n\nu[n,\infty])^{\mathcal{J}(A)}}\leq \limsup_{n\to\infty}\frac{\mathbb{P}(\bar{X}_n\in \bar{A})}{(n\nu[n,\infty])^{\mathcal{J}(\bar{A})}}\leq C_{\mathcal{J}(\bar{A})}(\bar{A})=C_{\mathcal{J}(A)}(\bar{A}).$$

Assumptions:

- a is not a multiple of b, and $j \triangleq \lceil a/b \rceil$.
- \bar{X}_n is spectrally positive.

$$A \triangleq \{\zeta \in \mathbb{D} : \sup_{t \in [0,1]} [\zeta(t) - ct] \ge a; \sup_{t \in [0,1]} [\zeta(t) - \zeta(t-)] \le b\}.$$
 What is $\mathbb{P}(\bar{X}_n \in A)$?

$$A \triangleq \{\zeta \in \mathbb{D} : \sup_{t \in [0,1]} [\zeta(t) - ct] \ge a; \sup_{t \in [0,1]} [\zeta(t) - \zeta(t-)] \le b\}.$$
 What is $\mathbb{P}(\bar{X}_n \in A)$?

Answer: $\mathbb{P}\left(\bar{X}_n \in A\right) \sim C_j(A)(n\nu[n,\infty])^j$, regularly varying with index $-(\alpha-1)\lceil a/b \rceil$.

$$A \triangleq \{\zeta \in \mathbb{D} : \sup_{t \in [0,1]} [\zeta(t) - ct] \ge a; \sup_{t \in [0,1]} [\zeta(t) - \zeta(t-)] \le b\}.$$
 What is $\mathbb{P}(\bar{X}_n \in A)$?

Fact:

- ② $A_{\delta} \cap \mathbb{D}_{j}$ is b.a.f. the closed set $\mathbb{D}_{\leq j-1}$ for some $\delta > 0$.

$$A \triangleq \{\zeta \in \mathbb{D} : \sup_{t \in [0,1]} [\zeta(t) - ct] \ge a; \sup_{t \in [0,1]} [\zeta(t) - \zeta(t-)] \le b\}.$$

What is $\mathbb{P}(\bar{X}_n \in A)$?

With the set

$$S = \{(x, u) \in \hat{S}_j : \sum_{i=1}^j x_i > a + c \max_{i=1,...,j} u_i, \max_{i=1,...,j} x_i < b\},$$

where $\hat{S}_j := \{(x,u) \in \mathbb{R}_+^{j\downarrow} \times [0,1]^j : 0,1,u_1,...,u_j \text{ are all distinct}\}$, we have

$$C_{j}(A) = \mathbb{E}[\nu_{\alpha}^{j}\{(0,\infty)^{j}: \sum_{i=1}^{j} x_{i}\mathbf{1}_{[U_{i},1]} \in A\}] = \int_{S} \prod_{i=1}^{j} [\alpha x_{i}^{-\alpha-1} dx_{i} du_{i}] > 0.$$

$$\Rightarrow \mathbb{P}\left(\bar{X}_n \in A\right) \sim C_j(A)(n\nu[n,\infty])^j. \tag{3}$$

which is regularly varying with index $-(\alpha - 1)\lceil a/b \rceil$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Topics Preview

- Setting and Overview
 - Centered and scaled Lévy process
 - M-Convergence
- One-sided large deviations
 - Limiting theorems
 - Application 1: Crossing high levels with moderate jumps
- Two-sided large deviations
 - Limiting theorems
 - Application 2: A two-sided barrier crossing problem
 - Application 3: Identifying the optimal number of jumps for sets of the form $A=\{\xi: 1\leq \xi\leq u\}$
 - Limit theorem: Non-unique argument minimums
 - Application 4: Multiple optima
- 4 Implications
- 5 Application to Reinsurance Model
- 6 Application to Rare Event Simulation

$Supp(\nu) \subseteq \mathbb{R}$

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

- $\bar{X}_n(s) \triangleq \frac{1}{n} X_n(s) sa (\mu_1^+ \nu_1^+ \mu_1^- \nu_1^-)s, \quad s \in [0, 1].$
- $\mathit{C}_{j,k} \in \mathbb{M}(\mathbb{D} \setminus \mathbb{D}_{< j,k})$, a measure concentrated on $\mathbb{D}_{j,k}$

$$C_{j,k}(\cdot) \triangleq \mathbb{E}\left[\nu_{\alpha}^{j} \times \nu_{\beta}^{k} \left\{ (x,y) \in (0,\infty)^{j} \times (0,\infty)^{k} : \sum_{i=1}^{j} x_{i} \mathbf{1}_{[U_{i},1]} - \sum_{i=1}^{k} y_{i} \mathbf{1}_{[V_{i},1]} \in \cdot \right\} \right],$$

$Supp(\nu) \subseteq \mathbb{R}$

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

- $\bar{X}_n(s) \triangleq \frac{1}{n} X_n(s) sa (\mu_1^+ \nu_1^+ \mu_1^- \nu_1^-) s$, $s \in [0, 1]$.
- $\mathit{C}_{j,k} \in \mathbb{M}(\mathbb{D} \setminus \mathbb{D}_{< j,k})$, a measure concentrated on $\mathbb{D}_{j,k}$

$$C_{j,k}(\cdot) \triangleq \mathbb{E}\left[\nu_{\alpha}^{j} \times \nu_{\beta}^{k} \left\{ (x,y) \in (0,\infty)^{j} \times (0,\infty)^{k} : \sum_{i=1}^{j} x_{i} \mathbf{1}_{[U_{i},1]} - \sum_{i=1}^{k} y_{i} \mathbf{1}_{[V_{i},1]} \in \cdot \right\} \right],$$

- $\nu_{\gamma}(x,\infty) \triangleq x^{-\gamma}, \ \gamma > 1.$
- $\mathbb{D}_{\langle j,k} = \bigcup_{(I,m)\in I_{\langle i,k}} \mathbb{D}_{I,m}$
- $I_{\langle j,k} = \{(I,m) \in \mathbb{Z}_+^2 \setminus \{(j,k)\} : (\alpha-1)I + (\beta-1)m \le (\alpha-1)j + (\beta-1)k\}.$
- $U_i, V_i, i \geq 1$ i.i.d. Uniform[0, 1].

M-convergence of $(n\nu[n,\infty))^{-j}(n\nu(-\infty,-n])^{-k}\mathbb{P}(\bar{X}_n\in\cdot)$

Theorem 3.3. For each $(j, k) \in \mathbb{Z}_+^2$,

$$(n\nu[n,\infty])^{-j}(n\nu(-\infty,-n])^{-k}\mathbb{P}(\bar{X}_n\in\cdot)\to C_{j,k}(\cdot)$$
(4)

in $\mathbb{M}(\mathbb{D}\setminus\mathbb{D}_{< j,k})$ as $n\to\infty$.

M-convergence of $(n\nu[n,\infty))^{-j}(n\nu(-\infty,-n])^{-k}\mathbb{P}(X_n\in\cdot)$

Theorem 3.3. For each $(j, k) \in \mathbb{Z}_+^2$,

$$(n\nu[n,\infty])^{-j}(n\nu(-\infty,-n])^{-k}\mathbb{P}(\bar{X}_n\in\cdot)\to C_{j,k}(\cdot)$$
 (4)

in $\mathbb{M}(\mathbb{D}\setminus\mathbb{D}_{< j,k})$ as $n\to\infty$.

Proof Sketch:

- Decomposition: $\bar{X}_n^{(-)} = \int_{\mathbb{R}^-} x N([0, ns] \times dx), \ \bar{X}_n^{(+)} = \bar{X}_n \bar{X}_n^{(-)}.$
- Thm 5.1: $\frac{\mathbb{P}\{(\bar{X}_n^{(+)},\bar{X}_n^{(-)})\in \cdot\}}{(n\nu[n,\infty])^j(n\nu(-\infty,-n])^k}\to C_j^+\times C_k^-(\cdot) \text{ in } \mathbb{M}(\mathbb{D}^2\setminus \mathbb{D}_{<(j,k)}).$
- Lem 2.6: $h(\xi,\zeta) = \xi \zeta$ continuous at $(\xi,\zeta) \in \mathbb{D}^2$ s.t. $(\xi(t) \xi(t-))(\zeta(t) \zeta(t-)) = 0$. $h^{-1}(A)$ b.a.f. $\mathbb{D}_{<(j,k)} := \bigcup_{(l,m)\in I_{<j,k}} \mathbb{D}_l \times \mathbb{D}_m$ if A b.a.f. $\mathbb{D}_{<j,k}$.
- Lem 2.4: $\frac{\mathbb{P}\{h(\bar{X}_{n}^{(+)}, \bar{X}_{n}^{(-)}) \in \cdot\}}{(n\nu[n,\infty])^{j}(n\nu(-\infty,-n])^{k}} \to (C_{j}^{+} \times C_{k}^{-}) \circ h^{-1}(\cdot) = C_{i,j}(\cdot) \text{ in } \mathbb{M}(\mathbb{D} \setminus \mathbb{D}_{\leq i,k}).$

Let $\mathcal{I}(j,k) \triangleq (\alpha-1)j + (\beta-1)k$, and consider a pair of integers $(\mathcal{J}(A),\mathcal{K}(A))$ such that

$$(\mathcal{J}(A), \mathcal{K}(A)) \in \underset{(j,k) \in \mathbb{Z}_{+}^{2}, \mathbb{D}_{j,k} \cap A \neq \emptyset}{\arg \min} \mathcal{I}(j,k). \tag{5}$$

Theorem 3.4. If the argmin in (5) is nonempty and A is b.a.f. $\mathbb{D}_{<\mathcal{J}(A),\mathcal{K}(A)}$, then the argmin is unique and

$$\liminf_{n\to\infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty])^{\mathcal{J}(A)}(n\nu(-\infty,-n])^{\mathcal{K}(A)}} \ge C_{\mathcal{J}(A),\mathcal{K}(A)}(A^\circ),$$
 (6)

$$\limsup_{n\to\infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty])^{\mathcal{J}(A)}(n\nu(-\infty,-n])^{\mathcal{K}(A)}} \le C_{\mathcal{J}(A),\mathcal{K}(A)}(\bar{A}). \tag{7}$$

Let $\mathcal{I}(j,k) \triangleq (\alpha-1)j + (\beta-1)k$, and consider a pair of integers $(\mathcal{J}(A),\mathcal{K}(A))$ such that

$$(\mathcal{J}(A), \mathcal{K}(A)) \in \underset{(j,k) \in \mathbb{Z}_{+}^{2}, \mathbb{D}_{j,k} \cap A \neq \emptyset}{\arg \min} \mathcal{I}(j,k). \tag{5}$$

Theorem 3.4. If the argmin in (5) is nonempty and A is b.a.f. $\mathbb{D}_{<\mathcal{J}(A),\mathcal{K}(A)}$, then the argmin is unique and

$$\liminf_{n\to\infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty])^{\mathcal{J}(A)}(n\nu(-\infty,-n])^{\mathcal{K}(A)}} \ge C_{\mathcal{J}(A),\mathcal{K}(A)}(A^\circ),$$
 (6)

$$\limsup_{n\to\infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty])^{\mathcal{J}(A)}(n\nu(-\infty,-n])^{\mathcal{K}(A)}} \le C_{\mathcal{J}(A),\mathcal{K}(A)}(\bar{A}). \tag{7}$$

$$\mathbb{P}(\bar{X}_n \in A) = \Omega\left((n\nu[n,\infty))^{\mathcal{J}(A)}(n\nu(-\infty,-n])^{\mathcal{K}(A)}\right)$$
$$= \Omega\left(n^{(1-\alpha)\mathcal{J}(A)(1-\beta)\mathcal{K}(A)}\right)$$

A Two-sided Barrier Crossing Problem

- What's the probability that \bar{X}_n hits below b on [0,1] and ends up above a?
- $A \triangleq \{\xi \in \mathbb{D} : \inf_{0 \le t \le 1} \xi(t) \le b, \xi(1) \ge a\}.$

A Two-sided Barrier Crossing Problem

- What's the probability that \bar{X}_n hits below b on [0,1] and ends up above a?
- $A \triangleq \{\xi \in \mathbb{D} : \inf_{0 \le t \le 1} \xi(t) \le b, \xi(1) \ge a\}.$

A Two-sided Barrier Crossing Problem

- What's the probability that \bar{X}_n hits below b on [0,1] and ends up above a?
- $A \triangleq \{\xi \in \mathbb{D} : \inf_{0 < t < 1} \xi(t) \le b, \xi(1) \ge a\}.$

• $\mathbb{P}(\bar{X}_n \in A) \sim n\nu[n,\infty)n\nu(-\infty,-n]C_{1,1}(A)$, regularly varying with index $2-\alpha-\beta$.

Optimal Number of Jumps with Restrictions

Optimal Number of Jumps with Restrictions

- $A_t \triangleq \{x : I(t) \le x \le u(t)\}, \quad A_{s,t}^* \triangleq \bigcap_{s \le r \le t} A_r.$
- $t_1 \triangleq 1 \land \inf\{t > 0 : 0 \notin A_t\}.$
- $t_{n+1} \triangleq 1 \land \inf\{t > t_n : A_{t_n,t} = \emptyset\}$ for $n \ge 2$.
- $n^* = \inf\{n \geq 1 : t_n = 1\}.$

Properties:

- **1** Either $I(t_1) = 0$ or $u(t_1) = 0$.
- ② For every $n = 1, ..., n^* 2$, $\sup_{t \in [t_n, t_{n+1}]} I(t) = \inf_{t \in [t_n, t_{n+1}]} u(t)$.
- $H_{fin} \triangleq \left[\sup_{t \in [t_{n^*-1}, t_{n^*}]} I(t), \inf_{t \in [t_{n^*-1}, t_{n^*}]} u(t) \right] \neq \emptyset.$

Non-unique argument minimums

The limiting behavior may not be dominated by a single $\mathbb{D}_{l,m}$ (i.e., A is not b.a.f. $\mathbb{D}_{\mathcal{J}(A),\mathcal{K}(A)}$)

Example: $\alpha = \beta$ and $A := \{ \xi \in \mathbb{D} : |\xi(t)| \ge t - \frac{1}{2} \}.$

Non-unique argument minimums

The limiting behavior may not be dominated by a single $\mathbb{D}_{l,m}$ (i.e., A is not b.a.f. $\mathbb{D}_{\mathcal{J}(A),\mathcal{K}(A)}$)

- $\mathbb{I}_{=j,k} \triangleq \{(l,m) : (\alpha-1)l + (\beta-1)m = (\alpha-1)j + (\beta-1)k\}.$ "Contour line" in $\mathbb{Z}^+ \times \mathbb{Z}^+$.
- $\mathbb{I}_{\leq j,k} \triangleq \{(l,m) : (\alpha-1)l + (\beta-1)m < (\alpha-1)j + (\beta-1)k\}.$
- $\mathbb{D}_{=j,k} \triangleq \bigcup_{(l,m) \in \mathbb{I}_{=j,k}} \mathbb{D}_{l,m}, \ \mathbb{D}_{\leq j,k} \triangleq \bigcup_{(l,m) \in \mathbb{I}_{\leq j,k}} \mathbb{D}_{l,m}.$
- $L_{+}(n) = n^{\alpha}\nu[n, \infty), L_{-}(n) = n^{\beta}\nu(-\infty, -n].$

Multiple Dominant Configurations

Theorem 3.5. Let $(\mathcal{J}(A), \mathcal{K}(A))$ contain a pair of integers. If $\exists \delta > 0$, $A_{\delta} \cap \mathbb{D}_{=\mathcal{J}(A), \mathcal{K}(A)}$ is b.a.f. $\mathbb{D}_{\leq \mathcal{J}(A), \mathcal{K}(A)}$, then $\forall \epsilon > 0$, $\exists N$ s.t. $\forall n \geq N$

$$\mathbb{P}(\bar{X}_n \in A) \geq \frac{\sum_{(l,m)} (C_{l,m}(A^\circ) - \epsilon) L_+^l(n) L_-^m(n)}{n^{(\alpha-1)\mathcal{J}(A) + (\beta-1)\mathcal{K}(A)}},$$

$$\mathbb{P}(\bar{X}_n \in A) \leq \frac{\sum_{(l,m)} (C_{l,m}(\bar{A}) + \epsilon) L_+^l(n) L_-^m(n)}{n^{(\alpha-1)\mathcal{J}(A) + (\beta-1)\mathcal{K}(A)}},$$

where the summations are over $(I, m) \in \mathbb{I}_{=\mathcal{J}(A), \mathcal{K}(A)}$.

Multiple Dominant Configurations

Theorem 3.5. Let $(\mathcal{J}(A), \mathcal{K}(A))$ contain a pair of integers. If $\exists \delta > 0$, $A_{\delta} \cap \mathbb{D}_{=\mathcal{J}(A), \mathcal{K}(A)}$ is b.a.f. $\mathbb{D}_{\leq \mathcal{J}(A), \mathcal{K}(A)}$, then $\forall \epsilon > 0$, $\exists N$ s.t. $\forall n \geq N$

$$\mathbb{P}(\bar{X}_n \in A) \geq \frac{\sum_{(l,m)} (C_{l,m}(A^\circ) - \epsilon) L_+^l(n) L_-^m(n)}{n^{(\alpha-1)\mathcal{J}(A) + (\beta-1)\mathcal{K}(A)}},$$

$$\mathbb{P}(\bar{X}_n \in A) \leq \frac{\sum_{(l,m)} (C_{l,m}(\bar{A}) + \epsilon) L_+^l(n) L_-^m(n)}{n^{(\alpha-1)\mathcal{J}(A) + (\beta-1)\mathcal{K}(A)}},$$

where the summations are over $(I, m) \in \mathbb{I}_{=\mathcal{J}(A), \mathcal{K}(A)}$.

Proof Sketch: Do partition s.t. $A \cap (\mathbb{D}_{l,m})_{\rho}$ disjoint and b.a.f. $\mathbb{D}_{\leq l,m}$, then apply Theorem 3.4.

Back to Multiple Optima Example

- $\alpha = \beta$, $A := \{ \xi \in \mathbb{D} : |\xi(t)| \ge t \frac{1}{2} \}$.
- $\operatorname{arg\,min}_{(j,k)\in\mathbb{Z}^2_+,\mathbb{D}_{i,k}\cap A\neq\emptyset}\mathcal{I}(j,k)=\{(1,0),(0,1)\}.$
- $\mathbb{D}_{\leq 1,0} = \mathbb{D}_{\leq 0,1} = \mathbb{D}_{0,0}$.
- $\forall \epsilon > 0$, $\exists N$ s.t. $\forall n \geq N$,

$$\mathbb{P}(\bar{X}_n \in A) \geq \frac{(C_{1,0}(A^\circ \cap \mathbb{D}_{1,0}) - \epsilon)L_+(n) + (C_{0,1}(A^\circ \cap \mathbb{D}_{0,1}) - \epsilon)L_-(n)}{n^{\alpha - 1}},$$

$$\mathbb{P}(\bar{X}_n \in A) \leq \frac{(C_{1,0}(\bar{A} \cap \mathbb{D}_{1,0}) + \epsilon)L_+(n) + (C_{0,1}(\bar{A} \cap \mathbb{D}_{0,1}) + \epsilon)L_-(n)}{n^{\alpha - 1}}.$$

Back to Multiple Optima Example

• $\forall \epsilon > 0$, $\exists N$ s.t. $\forall n \geq N$,

$$\mathbb{P}(\bar{X}_n \in A) \geq \frac{(C_{1,0}(A^\circ \cap \mathbb{D}_{1,0}) - \epsilon)L_+(n) + (C_{0,1}(A^\circ \cap \mathbb{D}_{0,1}) - \epsilon)L_-(n)}{n^{\alpha-1}},$$

$$\mathbb{P}(\bar{X}_n \in A) \leq \frac{(C_{1,0}(\bar{A} \cap \mathbb{D}_{1,0}) + \epsilon)L_+(n) + (C_{0,1}(\bar{A} \cap \mathbb{D}_{0,1}) + \epsilon)L_-(n)}{n^{\alpha - 1}}.$$

- $C_{1,0}(A^{\circ} \cap \mathbb{D}_{1,0}) = C_{1,0}(\bar{A} \cap \mathbb{D}_{1,0}) = (1/2)^{1-\alpha}$.
- $C_{0,1}(A^{\circ} \cap \mathbb{D}_{0,1}) = C_{0,1}(\bar{A} \cap \mathbb{D}_{0,1}) = (1/2)^{1-\alpha}$.

•

$$((1/2)^{1-\alpha} - \epsilon)(L_{+}(n) + L_{-}(n))n^{1-\alpha} \leq \mathbb{P}(\bar{X}_n \in A)$$

$$\leq ((1/2)^{1-\alpha} + \epsilon)(L_{+}(n) + L_{-}(n))n^{1-\alpha}$$

$$\Rightarrow \lim_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(L_{+}(n) + L_{-}(n))n^{1-\alpha}} = \left(\frac{1}{2}\right)^{1-\alpha}.$$

Topics Preview

- Setting and Overview
 - Centered and scaled Lévy process
 - M-Convergence
- One-sided large deviations
 - Limiting theorems
 - Application 1: Crossing high levels with moderate jumps
- Two-sided large deviations
 - Limiting theorems
 - Application 2: A two-sided barrier crossing problem
 - Application 3: Identifying the optimal number of jumps for sets of the form $A = \{\xi : I \le \xi \le u\}$
 - Limit theorem: Non-unique argument minimums
 - Application 4: Multiple optima
- 4 Implications
- 5 Application to Reinsurance Model
- 6 Application to Rare Event Simulation

Random Walks

- $S_k, k \ge 0$ a mean-zero random walk.
- $\bar{S}_n = {\bar{S}_n(t) := S_{[nt]}/n : t \in [0,1]}.$
- $\mathbb{P}(S_1 \ge x) = L_+(x)x^{-\alpha}$, $\mathbb{P}(S_1 \le -x) = L_-(x)x^{-\beta}$.
- $X(t) = S_{N(t)}$, $\bar{X}_n(t) = X(nt)/n$ $t \ge 0$.

Random Walks

- S_k , $k \ge 0$ a mean-zero random walk.
- $\bar{S}_n = {\bar{S}_n(t) := S_{[nt]}/n : t \in [0,1]}.$
- $\mathbb{P}(S_1 \ge x) = L_+(x)x^{-\alpha}$, $\mathbb{P}(S_1 \le -x) = L_-(x)x^{-\beta}$.
- $X(t) = S_{N(t)}, \quad \bar{X}_n(t) = X(nt)/n \quad t \geq 0.$

Theorem 4.1. Let A b.a.f. $\mathbb{D}_{<\mathcal{J}(A),\mathcal{K}(A)}$.

$$\liminf_{n\to\infty} \frac{\mathbb{P}(\bar{S}_n \in A)}{(n\mathbb{P}(S_1 \ge n))^{\mathcal{J}(A)}(n\mathbb{P}(S_1 \le -n))^{\mathcal{K}(A)}} \ge C_{\mathcal{J}(A),\mathcal{K}(A)}(A^\circ), \tag{8}$$

$$\limsup_{n\to\infty} \frac{\mathbb{P}(\bar{S}_n \in A)}{(n\mathbb{P}(S_1 \ge n))^{\mathcal{J}(A)}(n\mathbb{P}(S_1 \le -n))^{\mathcal{K}(A)}} \le C_{\mathcal{J}(A),\mathcal{K}(A)}(\bar{A}). \tag{9}$$

Conditional Limit Theorem

Corollary 4.2. Suppose that $B \subseteq \mathbb{D}$ satisfies the conditions in Theorem 3.4 and that

$$C_{\mathcal{J}(B),\mathcal{K}(B)}(B^{\circ}) = C_{\mathcal{J}(B),\mathcal{K}(B)}(B) = C_{\mathcal{J}(B),\mathcal{K}(B)}(\bar{B}) > 0.$$

Let $\bar{X}_n^{|B}$ have the conditional law of \bar{X}_n given $\bar{X}_n \in B$, then there exists a process $\bar{X}_{\infty}^{|B}$ such that

$$\bar{X}_n^{|B} \Rightarrow \bar{X}_{\infty}^{|B},$$

in \mathbb{D} . Moreover, if $\mathbb{P}^{|B}(\cdot)$ is the law of $\bar{X}_{\infty}^{|B}$, then

$$\mathbb{P}^{|B}(\bar{X}_{\infty}^{|B} \in \cdot) := \frac{C_{\mathcal{J}(B),\mathcal{K}(B)}(\cdot \cap B)}{C_{\mathcal{J}(B),\mathcal{K}(B)}(B)}.$$

Weak Large Deviation Principle

Theorem 4.2. \bar{X}_n satisfies the weak LDP with rate function I and speed log n, that is,

$$-\inf_{x\in G}I(x)\leq \liminf_{n\to\infty}\frac{\log\mathbb{P}(\bar{X}_n\in G)}{\log n},\quad\forall G \text{ open,} \tag{10}$$

$$\limsup_{n\to\infty} \frac{\log \mathbb{P}(\bar{X}_n \in K)}{\log n} \le -\inf_{x\in K} I(x), \quad \forall K \text{ compact.}$$
 (11)

$$I(\xi) \triangleq \begin{cases} (\alpha - 1)\mathcal{D}_{+}(\xi) + (\beta - 1)\mathcal{D}_{-}(\xi) & \text{if } \xi \text{ is a step function} \\ & \text{and } \xi(0) = 0; \\ \infty & \text{otherwise,} \end{cases}$$
 (12)

Weak Large Deviation Principle

Theorem 4.2. \bar{X}_n satisfies the weak LDP with rate function I and speed $\log n$, that is,

$$-\inf_{x\in G}I(x)\leq \liminf_{n\to\infty}\frac{\log\mathbb{P}(X_n\in G)}{\log n},\quad\forall G \text{ open,} \tag{10}$$

$$\limsup_{n \to \infty} \frac{\log \mathbb{P}(\bar{X}_n \in K)}{\log n} \le -\inf_{x \in K} I(x), \quad \forall K \text{ compact.}$$
 (11)

$$I(\xi) \triangleq \begin{cases} (\alpha - 1)\mathcal{D}_{+}(\xi) + (\beta - 1)\mathcal{D}_{-}(\xi) & \text{if } \xi \text{ is a step function} \\ & \text{and } \xi(0) = 0; \\ \infty & \text{otherwise,} \end{cases}$$
 (12)

But the strong LDP does not hold.

Topics Preview

- Setting and Overview
 - Centered and scaled Lévy process
 - M-Convergence
- One-sided large deviations
 - Limiting theorems
 - Application 1: Crossing high levels with moderate jumps
- Two-sided large deviations
 - Limiting theorems
 - Application 2: A two-sided barrier crossing problem
 - Application 3: Identifying the optimal number of jumps for sets of the form $A = \{\xi : I \le \xi \le u\}$
 - Limit theorem: Non-unique argument minimums
 - Application 4: Multiple optima
- 4 Implications
- 5 Application to Reinsurance Model
- 6 Application to Rare Event Simulation

Cramér-Lundberg Model

$$Y(t) = u + p_D t - S_{N_t} + R(t)$$

- u: Initial capital.
- p_D : The premium after reinsurance has been purchased.
- $S_{N_t} = \sum_{i=1}^{N_t} X_i$: The aggregate claim amount at time t.
- N_t : a Poisson process with rate λ .
- R(t): The reinsured amount at time t (depending on the policy).
- X_i : i.i.d. positive claim with a **regularly varying** tail.

Cramér-Lundberg Model

$$Y(t) = u + p_D t - S_{N_t} + R(t)$$

$$Y(nt) \stackrel{u=an}{=} an + p_D nt - (S_{N_{nt}} - \lambda nt \mathbb{E}X) - \lambda nt \mathbb{E}X + R(nt)$$

$$\stackrel{c=p_D-\lambda \mathbb{E}X}{\Rightarrow} \bar{Y}_n(t) \triangleq \frac{1}{n} Y(nt) = a + ct - \bar{S}_n(t) + \frac{1}{n} N(nt).$$

- u: Initial capital.
- p_D : The premium after reinsurance has been purchased.
- $S_{N_t} = \sum_{i=1}^{N_t} X_i$: The aggregate claim amount at time t.
- N_t : a Poisson process with rate λ .
- R(t): The reinsured amount at time t (depending on the policy).
- X_i : i.i.d. positive claim with a **regularly varying** tail.

Cramér-Lundberg Model

$$Y(t) = u + p_D t - S_{N_t} + R(t)$$

$$Y(nt) \stackrel{u=an}{=} an + p_D nt - (S_{N_{nt}} - \lambda nt \mathbb{E}X) - \lambda nt \mathbb{E}X + R(nt)$$

$$\stackrel{c=p_D-\lambda \mathbb{E}X}{\Rightarrow} \bar{Y}_n(t) \triangleq \frac{1}{n} Y(nt) = a + ct - \bar{S}_n(t) + \frac{1}{n} N(nt).$$

Question: Ruin probability before time *n*:

$$\psi(an, n) = \mathbb{P}\left(\inf_{0 \le t \le n} Y(t) \le 0\right)$$

$$= \mathbb{P}\left(\inf_{0 \le t \le 1} \bar{Y}_n(t) \le 0\right)$$

$$= \mathbb{P}\left(\sup_{0 \le t \le 1} \bar{S}_n(t) - ct - \frac{1}{n}R(nt) \ge a\right)$$

A rare event when a + c > 0!

LCR (largest claim reinsurance) contract $(R(\cdot) = L_r(\cdot))$:

• Cover the largest r claims $(r \ge 1)$.

LCR (largest claim reinsurance) contract $(R(\cdot) = L_r(\cdot))$:

- Cover the largest r claims $(r \ge 1)$.
- $\frac{1}{n}R(nt) = \frac{1}{n}L_r(nt) = \max_{\substack{(s_1,\ldots,s_r) \in [0,t]^r \\ s_i \neq s_j, \, \forall i \neq j}} \sum_{i=1}^r (\bar{S}_n(s_i) \bar{S}_n(s_i^-)).$

LCR (largest claim reinsurance) contract $(R(\cdot) = L_r(\cdot))$:

- Cover the largest r claims $(r \ge 1)$.
- $\frac{1}{n}R(nt) = \frac{1}{n}L_r(nt) = \max_{\substack{(s_1,\dots,s_r) \in [0,t]^r \\ s_i \neq s_j, \forall i \neq j}} \sum_{i=1}^r (\bar{S}_n(s_i) \bar{S}_n(s_i^-)).$
- ullet For every $\xi\in\mathbb{D}$ and $m\in\mathbb{N}$, we define, for $t\in(0,1]$,

$$\mathfrak{J}^m_{\xi}(t) = \sup_{\substack{(s_1,\ldots,s_m) \in [0,t]^m \\ s_i
eq s_j, \, orall \, i
eq j}} \sum_{i=1}^m (\xi(s_i) - \xi(s_i^-)) = \max_{\substack{(s_1,\ldots,s_m) \in [0,t]^m \\ s_i
eq s_j, \, orall \, i
eq j}} \sum_{i=1}^m (\xi(s_i) - \xi(s_i^-))$$

LCR (largest claim reinsurance) contract $(R(\cdot) = L_r(\cdot))$:

- Cover the largest r claims $(r \ge 1)$.
- $\frac{1}{n}R(nt) = \frac{1}{n}L_r(nt) = \max_{\substack{(s_1,\ldots,s_r) \in [0,t]^r \\ s_i \neq s_j, \forall i \neq j}} \sum_{i=1}^r (\bar{S}_n(s_i) \bar{S}_n(s_i^-)).$
- ullet For every $\xi \in \mathbb{D}$ and $m \in \mathbb{N}$, we define, for $t \in (0,1]$,

$$\mathfrak{J}_{\xi}^{m}(t) = \sup_{\substack{(s_{1}, \dots, s_{m}) \in [0, t]^{m} \\ s_{i} \neq s_{j}, \forall i \neq j}} \sum_{i=1}^{m} (\xi(s_{i}) - \xi(s_{i}^{-})) = \max_{\substack{(s_{1}, \dots, s_{m}) \in [0, t]^{m} \\ s_{i} \neq s_{j}, \forall i \neq j}} \sum_{i=1}^{m} (\xi(s_{i}) - \xi(s_{i}^{-}))$$

- $\psi(an, n) = \mathbb{P}(\phi_r(\bar{S}_n(t)) \ge a) = \mathbb{P}(\bar{S}_n(t) \in A^r)$
- $A^r := A^r_{c,a} = \phi_r^{-1}([a,\infty)).$

ECOMOR (excédent du coût moyen relatif) contract $(R(\cdot) = E_r(\cdot))$:

ullet Covers the excess of the r largest claims over the (r+1)-th largest claim

ECOMOR (excédent du coût moyen relatif) contract $(R(\cdot) = E_r(\cdot))$:

- ullet Covers the excess of the r largest claims over the (r+1)-th largest claim
- $\frac{1}{n}R(nt) = \frac{1}{n}E_r(nt) = \frac{1}{n}((r+1)L_r(nt) rL_{r+1}(nt))$

ECOMOR (excédent du coût moyen relatif) contract $(R(\cdot) = E_r(\cdot))$:

- ullet Covers the excess of the r largest claims over the (r+1)-th largest claim
- $\frac{1}{n}R(nt) = \frac{1}{n}E_r(nt) = \frac{1}{n}((r+1)L_r(nt) rL_{r+1}(nt))$
- $\psi(an, n) = \mathbb{P}(\varphi_r(\bar{S}_n(t)) \geq a) = \mathbb{P}(\bar{S}_n(t) \in \mathcal{A}^r).$
- $\bullet \ \varphi_r(\xi) = \sup_{t \in [0,1]} \Big\{ \xi(t) ct (r+1)\mathfrak{J}_{\xi}^r(t) + r\mathfrak{J}_{\xi}^{r+1}(t) \Big\}.$
- $\mathcal{A}^r := \mathcal{A}^r_{c,a} = \varphi_r^{-1}([a,\infty)).$

Recall: Spectrally positive Lévy process

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

- $\bar{X}_n(s) \triangleq \frac{1}{n} X_n(s) sa \mu_1^+ \nu_1^+ s, \quad s \in [0, 1].$
- $C_j \in \mathbb{M}(\mathbb{D} \setminus \mathbb{D}_{< j})$, $j \ge 0$, a measure concentrated on \mathbb{D}_j s.t.

$$C_j(\cdot) \triangleq \mathbb{E}\left[\nu_{\alpha}^j\left(y \in (0,\infty)^j : \sum_{i=1}^j y_i \mathbf{1}_{[U_i,1]} \in \cdot\right)\right],$$

- $\nu_{\gamma}(x,\infty) \triangleq x^{-\gamma}, \ \gamma > 1.$
- ν_{γ}^{j} the restriction (to $\mathbb{R}_{+}^{j\downarrow}$) of the *j*-fold product measure of ν_{γ} .
- U_i , $i \geq 1$ i.i.d. Uniform[0, 1].

Recall: Spectrally positive Lévy process

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

- $\bar{X}_n(s) \triangleq \frac{1}{n} X_n(s) sa \mu_1^+ \nu_1^+ s$, $s \in [0, 1]$.
- $C_j \in \mathbb{M}(\mathbb{D} \setminus \mathbb{D}_{< j})$, $j \geq 0$, a measure concentrated on \mathbb{D}_j s.t.

$$C_j(\cdot) \triangleq \mathbb{E}\left[\nu_{\alpha}^j\left(y \in (0,\infty)^j : \sum_{i=1}^j y_i \mathbf{1}_{[U_i,1]} \in \cdot\right)\right],$$

Theorem 3.2. If $\mathcal{J}(A) < \infty$, and $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ is bounded away from $\mathbb{D}_{<\mathcal{J}(A)}$ for some $\delta > 0$, then

$$C_{\mathcal{J}(A)}(A^{\circ}) \leq \liminf_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq \limsup_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq C_{\mathcal{J}(A)}(\bar{A}). \tag{13}$$

Theorem 3.2. If $\mathcal{J}(A) < \infty$, and $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ is bounded away from $\mathbb{D}_{<\mathcal{J}(A)}$ for some $\delta > 0$, then

$$C_{\mathcal{J}(A)}(A^{\circ}) \leq \liminf_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq \limsup_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq C_{\mathcal{J}(A)}(\bar{A}). \tag{14}$$

Checklist:

- **1** $\mathcal{J}(A) = ?$.
- ② Is $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ b.a.f. $\mathbb{D}_{<\mathcal{J}(A)}$ for some δ ?

3 $C_{\mathcal{J}(A)}(\bar{A}) \stackrel{?}{=} C_{\mathcal{J}(A)}(A^{\circ}) = ?$

Theorem 3.2. If $\mathcal{J}(A) < \infty$, and $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ is bounded away from $\mathbb{D}_{<\mathcal{J}(A)}$ for some $\delta > 0$, then

$$C_{\mathcal{J}(A)}(A^{\circ}) \leq \liminf_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq \limsup_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq C_{\mathcal{J}(A)}(\bar{A}). \tag{14}$$

Checklist:

- $\mathcal{J}(A) = ?.$ Lemma 4: $\mathcal{J}(A) = r + 1$ for both.
- ② Is $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ b.a.f. $\mathbb{D}_{<\mathcal{J}(A)}$ for some δ ?

3 $C_{\mathcal{J}(A)}(\bar{A}) \stackrel{?}{=} C_{\mathcal{J}(A)}(A^{\circ}) = ?$

Theorem 3.2. If $\mathcal{J}(A) < \infty$, and $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ is bounded away from $\mathbb{D}_{<\mathcal{J}(A)}$ for some $\delta > 0$, then

$$C_{\mathcal{J}(A)}(A^{\circ}) \leq \liminf_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq \limsup_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq C_{\mathcal{J}(A)}(\bar{A}). \tag{14}$$

Checklist:

- $\mathcal{J}(A) = ?.$ Lemma 4: $\mathcal{J}(A) = r + 1$ for both.
- ② Is $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ b.a.f. $\mathbb{D}_{<\mathcal{J}(A)}$ for some δ ? Lemma 5: Yes for both, which can be proved via Lipschitz continuity of ϕ_r and φ_r (Lemmas 2 & 3).
- $C_{\mathcal{J}(A)}(\bar{A}) \stackrel{?}{=} C_{\mathcal{J}(A)}(A^{\circ}) = ?$

Theorem 3.2. If $\mathcal{J}(A) < \infty$, and $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ is bounded away from $\mathbb{D}_{<\mathcal{J}(A)}$ for some $\delta > 0$, then

$$C_{\mathcal{J}(A)}(A^{\circ}) \leq \liminf_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq \limsup_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{\mathcal{J}(A)}} \leq C_{\mathcal{J}(A)}(\bar{A}). \tag{14}$$

Checklist:

- $\mathcal{J}(A) = ?.$ Lemma 4: $\mathcal{J}(A) = r + 1$ for both.
- ② Is $A_{\delta} \cap \mathbb{D}_{\leq \mathcal{J}(A)}$ b.a.f. $\mathbb{D}_{<\mathcal{J}(A)}$ for some δ ? Lemma 5: Yes for both, which can be proved via Lipschitz continuity of ϕ_r and φ_r (Lemmas 2 & 3).
- $C_{\mathcal{J}(A)}(\bar{A}) \stackrel{?}{=} C_{\mathcal{J}(A)}(A^{\circ}) = ?$ Lemma 6: Yes for both.

Ruin Probability: LCR

$$A^r \cap \mathbb{D}_{j+1} = \{\sum_{i=1}^{j+1} x_i \mathbb{I}_{[u_i,1]} : x_1 \ge ... \ge x_{r+1} \ge a', 0, u_1, ..., u_{r+1}, 1 \text{ distinct} \}$$

- $a' = a + c_{+} \max\{u_{1}, ..., u_{r+1}\} c_{-}$.
- $c_+ = \max\{c, 0\}, c_- = \max\{-c, 0\}.$

Ruin Probability: LCR

$$A^r \cap \mathbb{D}_{j+1} = \{\sum_{i=1}^{j+1} x_i \mathbb{I}_{[u_i,1]} : x_1 \ge ... \ge x_{r+1} \ge a', 0, u_1, ..., u_{r+1}, 1 \text{ distinct} \}$$

- $a' = a + c_{+} \max\{u_{1}, ..., u_{r+1}\} c_{-}$.
- $c_+ = \max\{c, 0\}, c_- = \max\{-c, 0\}.$

$$C_{r+1}^{L} = \frac{1}{(r+1)!} \times \begin{cases} a^{-(r+1)\alpha} \cdot_2 F_1[r+1,(r+1)\alpha;r+2;-c/a], & c > 0, \\ (a+c)^{-(r+1)\alpha}, & c < 0; \end{cases}$$

$$\psi(na,n) \sim \mathcal{C}_{r+1}^L(\lambda L(n))^{r+1} n^{-(r+1)(\alpha-1)}, \quad n \to \infty$$

Ruin Probability: ECOMOR

$$\mathcal{A}^r \cap \mathbb{D}_{j+1} = \{\sum_{i=1}^{j+1} x_i \mathbb{I}_{[u_i,1]} : x_1 \ge ... \ge x_{r+1} \ge a'', 0, u_1, ..., u_{r+1}, 1 \text{ distinct} \}$$

- $a'' = \frac{1}{r+1}(a+c_+ \max\{u_1,...,u_{r+1}\}-c_-).$
- $c_+ = \max\{c, 0\}, c_- = \max\{-c, 0\}.$

$$C_{r+1}^{E} = \frac{(r+1)^{(r+1)\alpha}}{(r+1)!} \times \begin{cases} a^{-(r+1)\alpha} \cdot_2 F_1[r+1,(r+1)\alpha;r+2;-c/a], & c > 0, \\ (a+c)^{-(r+1)\alpha}, & c < 0. \end{cases}$$

$$\psi(\mathsf{na},\mathsf{n}) \sim \mathcal{C}^{\mathsf{E}}_{r+1}(\lambda L(\mathsf{n}))^{r+1} \mathsf{n}^{-(r+1)(\alpha-1)}, \quad \mathsf{n} \to \infty.$$

Topics Preview

- Setting and Overview
 - Centered and scaled Lévy process
 - M-Convergence
- One-sided large deviations
 - Limiting theorems
 - Application 1: Crossing high levels with moderate jumps
- Two-sided large deviations
 - Limiting theorems
 - Application 2: A two-sided barrier crossing problem
 - Application 3: Identifying the optimal number of jumps for sets of the form $A = \{\xi : I \le \xi \le u\}$
 - Limit theorem: Non-unique argument minimums
 - Application 4: Multiple optima
- 4 Implications
- 5 Application to Reinsurance Model
- 6 Application to Rare Event Simulation

Recap: Spectrally positive process

$$X_n(s) = nsa + B(ns) + \int_{|x| \leq 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

•
$$\bar{X}_n(s) \triangleq \frac{1}{n} X_n(s) - sa - \mu_1^+ \nu_1^+ s, \quad s \in [0, 1].$$

Recap: Spectrally positive process

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

- $\bar{X}_n(s) \triangleq \frac{1}{n} X_n(s) sa \mu_1^+ \nu_1^+ s$, $s \in [0, 1]$.
- $C_j \in \mathbb{M}(\mathbb{D} \setminus \mathbb{D}_{< j})$, $j \geq 0$, a measure concentrated on \mathbb{D}_j s.t.

$$C_j(\cdot) \triangleq \mathbb{E}\left[\nu_{\alpha}^j \left(y \in (0,\infty)^j : \sum_{i=1}^j y_i \mathbf{1}_{[U_i,1]} \in \cdot\right)\right].$$

- $\nu_{\gamma}(x,\infty) \triangleq x^{-\gamma}, \ \gamma > 1.$
- ν_{γ}^{j} the restriction (to $\mathbb{R}_{+}^{j\downarrow}$) of the j-fold product measure of ν_{γ} .
- U_i , $i \ge 1$ i.i.d. Uniform[0, 1].

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

$$X_n(s) = \sum_{i=0}^{N_t} W(k) - \lambda t \mathbb{E} W(1).$$

- $\{N(t)\}_{t\geq 0} \sim PP(\lambda)$.
- $\mathbb{P}(W(1) > x)$ is regularly varying of index $-\beta < -1$.
- $\bar{X}_n(t) = \frac{X_n(t)}{n}, \quad t \in [0,1].$

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

$$X_n(s) = \sum_{i=0}^{N_t} W(k) - \lambda t \mathbb{E} W(1).$$

- $\{N(t)\}_{t\geq 0} \sim PP(\lambda)$.
- $\mathbb{P}(W(1) > x)$ is regularly varying of index $-\beta < -1$.
- $\bar{X}_n(t) = \frac{X_n(t)}{n}, \quad t \in [0,1].$

Consider a set $A \subseteq \mathbb{D}$ b.a.f. \mathbb{D}_{I^*} , where $I^* = \min\{I \in \mathbb{N}_+ : \mathbb{D}_I \cap A \neq \emptyset\}$.

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

$$X_n(s) = \sum_{i=0}^{N_t} W(k) - \lambda t \mathbb{E} W(1).$$

- $\{N(t)\}_{t>0} \sim PP(\lambda)$.
- $\mathbb{P}(W(1) > x)$ is regularly varying of index $-\beta < -1$.
- $\bar{X}_n(t) = \frac{X_n(t)}{n}, \quad t \in [0,1].$

Consider a set $A \subseteq \mathbb{D}$ b.a.f. \mathbb{D}_{I^*} , where $I^* = \min\{I \in \mathbb{N}_+ : \mathbb{D}_I \cap A \neq \emptyset\}$.

Theorem 3.2. If $I^* < \infty$, and A is bounded away from \mathbb{D}_{I^*} , then

$$C_{l^*}(A^\circ) \leq \liminf_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{l^*}} \leq \limsup_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{l^*}} \leq C_{l^*}(\bar{A}). \tag{15}$$

$$X_n(s) = nsa + B(ns) + \int_{|x| \le 1} x[N([0, ns] \times dx) - ns\nu(dx) + \int_{|x| > 1} xN([0, ns] \times dx).$$

$$X_n(s) = \sum_{i=0}^{N_t} W(k) - \lambda t \mathbb{E} W(1).$$

- $\{N(t)\}_{t>0} \sim PP(\lambda)$.
- $\mathbb{P}(W(1) > x)$ is regularly varying of index $-\beta < -1$.
- $\bar{X}_n(t) = \frac{X_n(t)}{n}, \quad t \in [0,1].$

Consider a set $A \subseteq \mathbb{D}$ b.a.f. \mathbb{D}_{I^*} , where $I^* = \min\{I \in \mathbb{N}_+ : \mathbb{D}_I \cap A \neq \emptyset\}$.

Theorem 3.2. If $I^* < \infty$, and A is bounded away from \mathbb{D}_{I^*} , then

$$C_{l^*}(A^\circ) \leq \liminf_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{l^*}} \leq \limsup_{n \to \infty} \frac{\mathbb{P}(\bar{X}_n \in A)}{(n\nu[n,\infty))^{l^*}} \leq C_{l^*}(\bar{A}). \tag{15}$$

We want to simulate $\mathbb{P}(\bar{X}_n \in A)$, where A is b.a.f. zero function and $C_{I^*}(A^\circ) > 0$.

1 A set where *A* happens with higher probability: $B_n^{\gamma} \triangleq \{\bar{X}_n \in B^{\gamma}\}: \gamma > 0, B^{\gamma} \triangleq \{\xi \mid \#\{t \mid \xi(t) - \xi(t^-) > \gamma\} \geq I^*\}$

- **1** A set where *A* happens with higher probability: $B_n^{\gamma} \triangleq \{\bar{X}_n \in B^{\gamma}\}: \gamma > 0, B^{\gamma} \triangleq \{\xi \mid \#\{t \mid \xi(t) \xi(t^-) > \gamma\} \geq I^*\}$

$$\mathbb{P}(B_n^{\gamma}) = 1 - \exp\left(-\lambda n \mathbb{P}(W(1) > n\gamma)\right) \sum_{j=0}^{r-1} \frac{(\lambda n)^j}{j!} \mathbb{P}(W(1) > n\gamma)^j.$$

- **1** A set where *A* happens with higher probability: $B_n^{\gamma} \triangleq \{\bar{X}_n \in B^{\gamma}\}: \ \gamma > 0, \ B^{\gamma} \triangleq \{\xi \mid \#\{t \mid \xi(t) \xi(t^-) > \gamma\} \geq I^*\}$
- $extstyle \mathbb{P}(B_n^{\gamma})$ has a closed form.
- **o** Conditional distribution given B_n^{γ} , $\mathbb{Q}_{\gamma}(\cdot) \triangleq \mathbb{P}(\cdot \mid B_n^{\gamma})$:

$$rac{d\mathbb{Q}_{\gamma}}{d\mathbb{P}}=\mathbb{P}(\mathcal{B}_{n}^{\gamma})^{-1}\mathbb{I}_{\mathcal{B}_{n}^{\gamma}}.$$

- **1** A set where *A* happens with higher probability: $B_n^{\gamma} \triangleq \{\bar{X}_n \in B^{\gamma}\}: \ \gamma > 0, \ B^{\gamma} \triangleq \{\xi \mid \#\{t \mid \xi(t) \xi(t^-) > \gamma\} \geq I^*\}$
- **o** Conditional distribution given B_n^{γ} , $\mathbb{Q}_{\gamma}(\cdot) \triangleq \mathbb{P}(\cdot \mid B_n^{\gamma})$:

$$rac{d\mathbb{Q}_{\gamma}}{d\mathbb{P}}=\mathbb{P}(B_n^{\gamma})^{-1}\mathbb{I}_{B_n^{\gamma}}.$$

1 Importance distribution $\mathbb{Q}_{\gamma,w}$:

$$\mathbb{Q}_{\gamma,w}(\cdot) \triangleq w\mathbb{P}(\cdot) + (1-w)\mathbb{Q}_{\gamma}(\cdot).$$

- **1** A set where *A* happens with higher probability: $B_n^{\gamma} \triangleq \{\bar{X}_n \in B^{\gamma}\}: \ \gamma > 0, \ B^{\gamma} \triangleq \{\xi \mid \#\{t \mid \xi(t) \xi(t^-) > \gamma\} \geq I^*\}$
- **3** Conditional distribution given B_n^{γ} , $\mathbb{Q}_{\gamma}(\cdot) \triangleq \mathbb{P}(\cdot \mid B_n^{\gamma})$:

$$rac{d\mathbb{Q}_{\gamma}}{d\mathbb{P}}=\mathbb{P}(B_n^{\gamma})^{-1}\mathbb{I}_{B_n^{\gamma}}.$$

1 Importance distribution $\mathbb{Q}_{\gamma,w}$:

$$\mathbb{Q}_{\gamma,w}(\cdot) \triangleq w\mathbb{P}(\cdot) + (1-w)\mathbb{Q}_{\gamma}(\cdot).$$

5 The estimator for $\mathbb{P}(A_n)$ is:

$$Z_n = \frac{d\mathbb{P}}{d\mathbb{Q}_{\gamma,w}} \mathbb{I}_{A_n} = \frac{\mathbb{I}_{A_n}}{w + \frac{1-w}{\mathbb{P}(B_n^{\gamma})} \mathbb{I}_{B_n^{\gamma}}}.$$

How to sample \bar{X}_n under \mathbb{Q}_{γ} ?

•
$$\mathbb{Q}_{\gamma}(\bar{X}_n \in \cdot) = \sum_{m=l^*}^{\infty} h_m \mathbb{P}(\bar{X}_n \in \cdot \mid B_n^{\gamma}, N(n) = m)$$
, where $h_m = \frac{\mathbb{P}(B_n^{\gamma}, N(n) = m)}{\mathbb{P}(B_n^{\gamma})}$.

How to sample \bar{X}_n under \mathbb{Q}_{γ} ?

•
$$\mathbb{Q}_{\gamma}(\bar{X}_n \in \cdot) = \sum_{m=l^*}^{\infty} h_m \mathbb{P}(\bar{X}_n \in \cdot \mid B_n^{\gamma}, N(n) = m)$$
, where $h_m = \frac{\mathbb{P}(B_n^{\gamma}, N(n) = m)}{\mathbb{P}(B_n^{\gamma})}$.

- When we have some *m*:
 - **1** Sample $\{b_k\}_{k < I^*}$ uniformly from $\mathcal{C}(\{1, ..., m\}, I^*)$;
 - ② Sample each $W(b_k), k \leq I^*$, conditional on $W(b_k) > n\gamma$;
 - **③** Sample W(m'), m' ≤ m, $m' \notin \{b_k\}_{k≤l^*}$, under the nominal measure.

How to sample \bar{X}_n under \mathbb{Q}_{γ} ?

•
$$\mathbb{Q}_{\gamma}(\bar{X}_n \in \cdot) = \sum_{m=l^*}^{\infty} h_m \mathbb{P}(\bar{X}_n \in \cdot \mid B_n^{\gamma}, N(n) = m)$$
, where $h_m = \frac{\mathbb{P}(B_n^{\gamma}, N(n) = m)}{\mathbb{P}(B_n^{\gamma})}$.

- When we have some *m*:
 - **1** Sample $\{b_k\}_{k < I^*}$ uniformly from $\mathcal{C}(\{1, ..., m\}, I^*)$;
 - ② Sample each $W(b_k), k \leq I^*$, conditional on $W(b_k) > n\gamma$;
 - **③** Sample W(m'), m' ≤ m, $m' \notin \{b_k\}_{k < l^*}$, under the nominal measure.

Proposal density $f_{\text{proposal};m}(w_1,\ldots,w_m)$:

$$\frac{1}{\binom{m}{l^*}\mathbb{P}(W(1) > n\gamma)^{l^*}} \prod_{j=1}^m \frac{d}{dw_j} \mathbb{P}(W(j) \leq w_j) \sum_{(b_1, \dots, b_{l^*}) \in C(\{1, \dots, m\}, l^*)} \mathbb{I}_{\{W(b_k) > n\gamma, \forall k \leq l^*\}}.$$

How to sample \bar{X}_n under \mathbb{Q}_{γ} ?

•
$$\mathbb{Q}_{\gamma}(\bar{X}_n \in \cdot) = \sum_{m=l^*}^{\infty} h_m \mathbb{P}(\bar{X}_n \in \cdot \mid B_n^{\gamma}, N(n) = m)$$
, where $h_m = \frac{\mathbb{P}(B_n^{\gamma}, N(n) = m)}{\mathbb{P}(B_n^{\gamma})}$.

- When we have some *m*:
 - **1** Sample $\{b_k\}_{k < l^*}$ uniformly from $\mathcal{C}(\{1, ..., m\}, l^*)$;
 - ② Sample each $W(b_k), k \leq I^*$, conditional on $W(b_k) > n\gamma$;
 - **③** Sample W(m'), m' ≤ m, $m' \notin \{b_k\}_{k < l^*}$, under the nominal measure.

Proposal density $f_{\text{proposal};m}(w_1, \ldots, w_m)$:

$$\frac{1}{\binom{m}{l^*}\mathbb{P}(W(1) > n\gamma)^{l^*}} \prod_{j=1}^m \frac{d}{dw_j} \mathbb{P}(W(j) \leq w_j) \sum_{(b_1, \dots, b_{l^*}) \in \mathcal{C}(\{1, \dots, m\}, l^*)} \mathbb{I}_{\{W(b_k) > n\gamma, \forall k \leq l^*\}}.$$

BUT Target density $f_{\text{target};m}(w_1,\ldots,w_m)$:

$$\frac{1}{\mathbb{P}(\mathcal{B}_n^{\gamma}\mid \mathcal{N}(n)=m)}\prod_{j=1}^m\frac{d}{dw_j}\mathbb{P}(\mathcal{W}(j)\leq w_j)\mathbb{I}_{\mathcal{B}_n^{\gamma}}(w_1,\ldots,w_m).$$

$$\begin{split} \frac{1}{\binom{m}{l^*}\mathbb{P}(W(1)>n\gamma)^{l^*}} \prod_{j=1}^m \frac{d}{dw_j} \mathbb{P}(W(j)\leq w_j) \sum_{(b_1,\ldots,b_{l^*})\in \mathcal{C}(\{1,\ldots,m\},l^*)} \mathbb{I}_{\{W(b_k)>n\gamma,\forall k\leq l^*\}} \cdot \\ \frac{1}{\mathbb{P}(B_n^{\gamma}\mid \mathcal{N}(n)=m)} \prod_{j=1}^m \frac{d}{dw_j} \mathbb{P}(W(j)\leq w_j) \mathbb{I}_{B_n^{\gamma}}(w_1,\ldots,w_m). \end{split}$$

$$\frac{1}{\binom{m}{l^*}\mathbb{P}(W(1) > n\gamma)^{l^*}} \prod_{j=1}^m \frac{d}{dw_j} \mathbb{P}(W(j) \leq w_j) \sum_{\substack{(b_1, \dots, b_{l^*}) \in \mathcal{C}(\{1, \dots, m\}, l^*)}} \mathbb{I}_{\{W(b_k) > n\gamma, \forall k \leq l^*\}}.$$

$$\frac{1}{\mathbb{P}(B_n^{\gamma} \mid N(n) = m)} \prod_{i=1}^m \frac{d}{dw_i} \mathbb{P}(W(j) \leq w_j) \mathbb{I}_{B_n^{\gamma}}(w_1, \ldots, w_m).$$

$$\frac{f_{\mathsf{target};m}(w_1,\ldots,w_m)}{f_{\mathsf{proposal};m}(w_1,\ldots,w_m)} \leq M_m(n) = \binom{m}{l^*} \mathbb{P}(W(1) > n\gamma)^{l^*} \mathbb{P}(B_n^{\gamma} \mid N(n) = m)^{-1}.$$

$$\frac{1}{\binom{m}{l^*}\mathbb{P}(W(1) > n\gamma)^{l^*}} \prod_{j=1}^m \frac{d}{dw_j} \mathbb{P}(W(j) \leq w_j) \sum_{\substack{(b_1, \dots, b_{l^*}) \in \mathcal{C}(\{1, \dots, m\}, l^*)}} \mathbb{I}_{\{W(b_k) > n\gamma, \forall k \leq l^*\}}.$$

$$\frac{1}{\mathbb{P}(B_n^{\gamma} \mid N(n) = m)} \prod_{i=1}^m \frac{d}{dw_i} \mathbb{P}(W(j) \leq w_j) \mathbb{I}_{B_n^{\gamma}}(w_1, \ldots, w_m).$$

$$\frac{\mathit{f}_{\mathsf{target};m}(\mathit{w}_1,...,\mathit{w}_m)}{\mathit{f}_{\mathsf{proposal};m}(\mathit{w}_1,...,\mathit{w}_m)} \leq \mathit{M}_m(\mathit{n}) = \binom{\mathit{m}}{\mathit{l}^*} \mathbb{P}(\mathit{W}(1) > \mathit{n}\gamma)^{\mathit{l}^*} \mathbb{P}(\mathit{B}_\mathit{n}^\gamma \mid \mathit{N}(\mathit{n}) = \mathit{m})^{-1}.$$

Acceptance probability:
$$a(W(1),\ldots,W(m))=\binom{\#\{i|W(i)>n\gamma\}}{I^*}^{-1}$$
.

Importance Sampling III: Algorithm

```
Algorithm 1 (Generating the Sample Path of \bar{X}_n Under \mathbb{Q}_{\nu})
  1: sample m \sim h_m
                                                                                                         \triangleright m = m' with probability h_{m'} = \mathbb{P}(N(n) = m' \mid B_n^{\gamma})
  2: R \leftarrow true
  3: while R = true do
            sample \{b_k\}_{k< l^*} \sim \text{unif}\left(\mathscr{C}(\{1,\ldots,m\},k)\right)
                                                                                                                    \triangleright uniform distribution on \mathscr{C}(\{1,\ldots,m\},k)
  5:
            for i \in \{b_k\}_{k < l^*} do
                 sample W(i) \sim W(1) \mid W(1) > n\gamma
  6:
  7:
           for i \notin \{\bar{b}_k\}_{k < l^*} do
  8:
                 sample W(i) \sim W(1)
           c \leftarrow \#\{\hat{j} \in \{1, ..., m\} \mid W(j) > n\gamma\}; a \leftarrow \binom{c}{r^s}^{-1}; sample u \sim \text{uniform}[0, 1]; R \leftarrow \text{true}
  9:
           if u < a then
10:
11:
               R \leftarrow false
            return \bar{X} ,,
```

Importance Sampling III: Algorithm

```
Algorithm 1 (Generating the Sample Path of \bar{X}_n Under \mathbb{Q}_{\nu})
                                                                                                       \triangleright m = m' with probability h_{m'} = \mathbb{P}(N(n) = m' \mid B_n^{\gamma})
   1: sample m \sim h_m
  2: R \leftarrow true
  3: while R = true do
           sample \{b_k\}_{k < l^*} \sim \text{unif}(\mathcal{C}(\{1, \dots, m\}, k))
                                                                                                                  \triangleright uniform distribution on \mathscr{C}(\{1,\ldots,m\},k)
  5:
           for i \in \{b_k\}_{k < l^*} do
                 sample W(i) \sim W(1) \mid W(1) > n\gamma
  6:
           for i \notin \{\bar{b}_k\}_{k < l^*} do
                 sample W(i) \sim W(1)
  8:
           c \leftarrow \#\{j \in \{1, ..., m\} \mid W(j) > n\gamma\}; a \leftarrow \binom{c}{p}^{-1}; sample u \sim \text{uniform}[0, 1]; R \leftarrow \text{true}
  9:
           if u < a then
 10:
11:
               R \leftarrow false
           return \bar{X} ,,
```

- Importance distribution: $\mathbb{Q}_{\gamma,w}(\cdot) \triangleq w\mathbb{P}(\cdot) + (1-w)\mathbb{Q}_{\gamma}(\cdot)$.
- The estimator for $\mathbb{P}(A_n)$ is: $Z_n = \frac{d\mathbb{P}}{d\mathbb{Q}_{\gamma,w}} \mathbb{I}_{A_n} = \frac{\mathbb{I}_{A_n}}{w + \frac{1-w}{\mathbb{P}(B_{\gamma}^{\gamma})} \mathbb{I}_{B_n^{\gamma}}}$

Importance Sampling III: Algorithm

Algorithm 2 (Efficient Sampling of $\mathbb{P}(\bar{X}_n \in A)$) 1: sample $u \sim \text{uniform}[0,1]$ 2: sample $\bar{X}_n \sim \mathbb{P}(\bar{X}_n \in \cdot | \bar{X}_n \in B^{\gamma})$ 3: if u < w then 4: sample $\bar{X}_n \sim \mathbb{P}(\bar{X}_n \in \cdot)$ 5: if $\bar{X}_n \in A$ then 6: $L \leftarrow [w + (1-w)\mathbb{1}_{B^{\gamma}}/\mathbb{P}(B_n^{\gamma})]^{-1}$

8: $L \leftarrow 0$

7: else

- return L
- Importance distribution: $\mathbb{Q}_{\gamma,w}(\cdot) \triangleq w\mathbb{P}(\cdot) + (1-w)\mathbb{Q}_{\gamma}(\cdot)$.
- The estimator for $\mathbb{P}(A_n)$ is: $Z_n = \frac{d\mathbb{P}}{d\mathbb{Q}_{\gamma,w}} \mathbb{I}_{A_n} = \frac{\mathbb{I}_{A_n}}{w + \frac{1-w}{\mathbb{P}(B_{\gamma}^{\gamma})} \mathbb{I}_{B_n^{\gamma}}}$.

Theoretical Guarantee

Proposition 1. Let $T_{\text{alg1}}(n)$ denote the expected running time of Algorithm 1. If W(1) is regularly varying with index $-\beta < -1$, then $T_{\text{alg1}}(n) = \sum\limits_{m \geq l^*} h_m(n) M_m(n)$ is uniformly bounded as $n \to \infty$.

Proof Sketch:

- **1** $T_{\text{alg1}}(n) = \sum_{l \geq l^*} h_l M_l = \frac{n^{l^*} (\lambda \mathbb{P}(W(1) > n_7))^{l^*}}{\mathbb{P}(B_n^n)}.$
- LDP lower bound:

$$\begin{split} \limsup_{n \to \infty} T_{\mathsf{alg1}}(n) & \leq \limsup_{n \to \infty} n^{l^*} (\lambda \mathbb{P}(W(1) > n\gamma))^{l^*} \mathbb{P}(B_n^{\gamma})^{-1} \\ & \leq C_{l^*} ((B^{\gamma})^{\circ})^{-1} < \infty. \end{split}$$

Theoretical Guarantee

Theorem 1. There exists a $\gamma > 0$ such that the estimator Z_n is strongly efficient for estimating $\mathbb{P}(A_n)$.

Proof Sketch:

$$\begin{split} \mathbb{E}^{Q,w}[Z_n^2] &= \mathbb{E}[Z_n] = \mathbb{E}[Z_n \mathbb{I}_{B_n^{\gamma}}] + \mathbb{E}[Z_n \mathbb{I}_{(B_n^{\gamma})^c}] \\ &\leq \frac{1}{1-w} \mathbb{P}(A_n) \mathbb{P}(B_n^{\gamma}) + \frac{1}{w} \mathbb{P}(A_n \cap (B_n^{\gamma})^c). \end{split}$$

- B^{γ} captures dominant paths contributing to A, ensuring $\mathbb{P}(B^{\gamma}) = \Theta(\mathbb{P}(A))$.
- Residual paths in $A \cap (B^{\gamma})^c$ are rarer and negligible.

Theoretical Guarantee

Theorem 1. There exists a $\gamma > 0$ such that the estimator Z_n is strongly efficient for estimating $\mathbb{P}(A_n)$.

Proof Sketch:

• Both A and B^{γ} are b.a.f. $\mathbb{D}_{< I^*}$. Also from the LDP upper and lower bound,

$$\mathbb{P}(\bar{X}_n \in A) = \Theta\left((n\mathbb{P}(W(1) \ge n))^{I^*}\right),$$

and similarly for B^{γ} . Hence, $\mathbb{P}(B^{\gamma}) = \Theta(\mathbb{P}(A))$.

- By choosing γ small enough, we have $A_n \cap (B_n^{\gamma})^c$ is b.a.f. D_{2l^*+1} , and thus $\mathbb{P}(A_n \cap (B_n^{\gamma})^c) = o(\mathbb{P}^2(A_n)) = o\left((n\mathbb{P}(W(1) \geq n))^{2l^*}\right)$.
 - **1** $d(A, \mathbb{D}_{< I^*}) \ge r \Rightarrow A \in \{\xi : d(\xi, D_{< I^*}) \ge r\}.$
 - $(B_n^{\gamma})^c = \{\xi : \#\{t : \xi(t) \xi(t-) \ge \gamma\} \le I^* 1\}.$

$$\sum_{i=l^*}^{l^*+m} c_i \ge d\left(\sum_{i=1}^{l^*+m} c_i, \sum_{i=1}^{l^*-1} c_i\right) \ge r.$$

4 Let $\gamma < r/(I^* + 1)$.

• Centered random walk $S_k = \sum_{i=1}^j Y_i, \ k \geq 0, \ ar{S}_n(t) = S_{\lfloor nt \rfloor}/n$

- ullet Centered random walk $S_k = \sum_{i=1}^j Y_i, \ k \geq 0, \ ar{S}_n(t) = S_{\lfloor nt \rfloor}/n$
- $\mathbb{P}(Y_1 > x)$ regularly varying $-\beta$.

- Centered random walk $S_k = \sum_{i=1}^j Y_i, \ k \geq 0, \ \bar{S}_n(t) = S_{\lfloor nt \rfloor}/n$
- $\mathbb{P}(Y_1 > x)$ regularly varying $-\beta$.
- $A_n \triangleq \{\max_{0 \le k \le n} S_k \ge nb, \max_{0 \le k \le n} S_k ck \ge na\}, \ a/b \notin \mathbb{Z}, \ c > 0.$

- Centered random walk $S_k = \sum_{i=1}^J Y_i, k \ge 0, \bar{S}_n(t) = S_{\lfloor nt \rfloor}/n$
- $\mathbb{P}(Y_1 > x)$ regularly varying $-\beta$.
- $A_n \triangleq \{ \max_{0 \le k \le n} S_k \ge nb, \max_{0 \le k \le n} S_k ck \ge na \}, \ a/b \notin \mathbb{Z}, \ c > 0.$ $A \triangleq \{ \xi \in \mathbb{D} : \sup_{t \in [0,1]} [\xi(t) ct] \ge a; \sup_{t \in [0,1]} [\xi(t) \xi(t^-)] \le b \}.$

- Centered random walk $S_k = \sum_{i=1}^j Y_i, \ k \geq 0, \ \bar{S}_n(t) = S_{\lfloor nt \rfloor}/n$
- $\mathbb{P}(Y_1 > x)$ regularly varying $-\beta$.
- $A_n \triangleq \{ \max_{0 \le k \le n} S_k \ge nb, \max_{0 \le k \le n} S_k ck \ge na \}, \ a/b \notin \mathbb{Z}, \ c > 0.$
- $A \triangleq \{\xi \in \mathbb{D} : \sup_{t \in [0,1]} [\xi(t) ct] \geq a; \sup_{t \in [0,1]} [\xi(t) \xi(t^-)] \leq b\}.$
- $\mathbb{P}(A_n) = \mathbb{P}(\bar{S}_n \in A)$.

- Centered random walk $S_k = \sum_{i=1}^j Y_i, \ k \geq 0, \ \bar{S}_n(t) = S_{\lfloor nt \rfloor}/n$
- $\mathbb{P}(Y_1 > x)$ regularly varying $-\beta$.
- $A_n \triangleq \{ \max_{0 \le k \le n} S_k \ge nb, \max_{0 \le k \le n} S_k ck \ge na \}, \ a/b \notin \mathbb{Z}, \ c > 0.$
- $A \triangleq \{\xi \in \mathbb{D} : \sup_{t \in [0,1]} [\xi(t) ct] \geq a; \sup_{t \in [0,1]} [\xi(t) \xi(t^-)] \leq b\}.$
- $\mathbb{P}(A_n) = \mathbb{P}(\bar{S}_n \in A)$.
- $I^* = \lceil a/b \rceil$, $\mathbb{P}(A_n) = \Theta(n^{I^*}\mathbb{P}(S_1 \geq n)^{I^*})$.

Example 1: Finite-time Ruin Probability: B^{γ}

- $B^{\gamma} = \{ \xi \in \mathbb{D} \mid \#\{t \mid \xi(t) \xi(t^{-}) > \gamma \} \ge I^* \}.$
- $B_n^{\gamma} = \{\bar{S}_n \in B^{\gamma}\} = \#\{k \in \{1, \dots, n\} \mid Y_k > \gamma\} \ge I^*\}.$

$$\mathbb{P}(B_n^{\gamma}) = \sum_{i=l^*}^n \binom{n}{i} p^i (1-p)^{n-i} = 1 - \sum_{i=0}^{l^*-1} \binom{n}{i} p^i (1-p)^{n-i}.$$

Example 1: Finite-time Ruin Probability: B^{γ}

- $B^{\gamma} = \{ \xi \in \mathbb{D} \mid \#\{t \mid \xi(t) \xi(t^{-}) > \gamma\} \ge I^* \}.$
- $B_n^{\gamma} = \{\bar{S}_n \in B^{\gamma}\} = \#\{k \in \{1, \ldots, n\} \mid Y_k > \gamma\} \ge I^*\}.$

$$\mathbb{P}(B_n^{\gamma}) = \sum_{i=I^*}^n \binom{n}{i} p^i (1-p)^{n-i} = 1 - \sum_{i=0}^{I^*-1} \binom{n}{i} p^i (1-p)^{n-i}.$$

• γ needs to satisfy $\mathbb{P}(A_n \cap (B_n^{\gamma})^c) = o(\mathbb{P}(A_n)^2)$.

Example 1: Finite-time Ruin Probability: B^{γ}

- $B^{\gamma} = \{ \xi \in \mathbb{D} \mid \#\{t \mid \xi(t) \xi(t^{-}) > \gamma\} \ge I^* \}.$
- $B_n^{\gamma} = \{\bar{S}_n \in B^{\gamma}\} = \#\{k \in \{1, \ldots, n\} \mid Y_k > \gamma\} \ge I^*\}.$

$$\mathbb{P}(B_n^{\gamma}) = \sum_{i=I^*}^n \binom{n}{i} p^i (1-p)^{n-i} = 1 - \sum_{i=0}^{I^*-1} \binom{n}{i} p^i (1-p)^{n-i}.$$

- γ needs to satisfy $\mathbb{P}(A_n \cap (B_n^{\gamma})^c) = o(\mathbb{P}(A_n)^2)$.
- Thus $(a-(I^*-1)b)/\gamma \notin \mathbb{Z}_+$ and

$$\left\lceil \frac{a - (I^* - 1)b}{\gamma} \right\rceil > I^* + 1.$$

Example 1: Finite-time Ruin Probability: Numerical Results

- $Y \sim Parteo(1, \beta)$.
- c = 0.05, $\omega = 0.05$.
- level of precision (ratio between the radius of the 95% confidence interval and the estimated value).

EstPr Pr	n = 80		n = 100		n = 200	
	$\beta = 1.5$	$\beta = 2.0$	$\beta = 1.5$	$\beta = 2.0$	$\beta = 1.5$	$\beta = 2.0$
a = 2, b = 1.2	1.171×10^{-3}	3.904×10^{-5}	1.043×10^{-3}	2.361×10^{-5}	6.316×10^{-4}	5.167×10^{-6}
$(l^* = 2)$	2.053×10^{-2}	3.133×10^{-2}	2.057×10^{-2}	3.376×10^{-2}	2.130×10^{-2}	3.975×10^{-2}
a = 4, b = 1.2	5.099×10^{-7}	3.778×10^{-10}	3.860×10^{-7}	1.592×10^{-10}	1.326×10^{-7}	8.911×10^{-12}
$(l^* = 4)$	1.799×10^{-2}	2.278×10^{-2}	1.761×10^{-2}	2.366×10^{-2}	1.717×10^{-2}	2.780×10^{-2}
a = 2, b = 0.3	1.635×10^{-10}	1.147×10^{-12}	1.795×10^{-10}	3.983×10^{-13}	1.202×10^{-10}	6.775×10^{-15}
$(l^* = 7)$	6.441×10^{-2}	1.662×10^{-2}	5.456×10^{-2}	1.635×10^{-2}	3.535×10^{-2}	1.826×10^{-2}

d-Dim Compensated compound Poisson process

$$\bar{X}_n(t) = X(nt)/n, \ t \in [0,1].$$

- $X \triangleq (X^{(1)}, \ldots, X^{(d)}).$
- $X^{(i)}(t) = \sum_{k=1}^{N^{(i)}(t)} W^{(i)}(k) \lambda_i t \mathbb{E} W^{(i)}(1)$.
 - $\{N^{(i)}(t)\} \sim PP(\lambda_i)$.
 - $\mathbb{P}(X^{(i)}(1) > x)$ regularly varying of index $-\beta_i < -1$.
- $\mathbb{P}(\bar{X}_n \in A)$ depend heavily on (I_1^*, \dots, I_d^*) , where

$$(I_1^*, \dots, I_d^*) = \arg \min_{(I_1, \dots, I_d) \in \mathbb{Z}_+^d, \prod_{i=1}^d \mathbb{D}_{I_i} \cap A \neq \emptyset} \mathcal{G}(I_1, \dots, I_d) = \sum_{i=1}^d (\beta_i - 1)I_i.$$

Choice of B^{γ}

Let $\gamma \in \mathbb{R}^d$ with $\gamma_i > 0$ for all $i \in \{1, \dots, d\}$, and define

$$B^{\gamma} \triangleq \bigcup_{(I_1,\ldots,I_d) \in J_{(I_1^*,\ldots,I_d^*)}} B^{\gamma,I},$$

where

$$B^{\gamma,l} \triangleq \{ (\xi^{(1)}, \dots, \xi^{(d)}) \in \mathbb{D}^d \mid \#\{t \mid \xi^{(i)}(t) - \xi^{(i)}(t^-) > \gamma_i \} \geq I_i, \forall i \}.$$

Figure: Example when $I^* = (2,2)$, $(\beta_1 - 1)/(\beta_2 - 1) = 2$.

Algorithm: Sampling under $\mathbb{Q}(\cdot) = \mathbb{P}(\cdot|B_n^{\gamma})$

```
Algorithm 3 (Generating the Sample Path of \bar{X}_{n}^{(1)}, \dots, \bar{X}_{n}^{(d)} Under \mathbb{Q}_{\nu})
   1: sample (m_1, \ldots, m_{d-1}) \sim h_{1; m_1, \ldots, m_{d-1}}
  2: for i = 1 to d do
  3:
              sample q_i \sim h_{2:a_i}; R \leftarrow \mathbf{true}
              while R = \text{true do}
  5:
                  sample \{b_k\}_{k \leq \tilde{l}(m_i;i)} \sim \operatorname{unif}(\mathcal{C}(\{1,\ldots,q_i\},\tilde{l}(m_i;i)))
                  for j \in \{b_k\}_{k < \check{l}(m_i;i)} do
  6:
                        sample W^{(i)}(j) \sim W^{(i)}(1) \mid W^{(i)}(1) > n\gamma.
  7:
  8:
                  for j \notin \{\bar{b}_k\}_{k \leq \check{l}(m_i;i)} do
  9:
                        sample W^{(i)}(j) \sim W^{(i)}(1)
10:
                c \leftarrow \#\{j \in \{1, \ldots, q_i\} \mid W^{(i)}(j) > n\gamma_i\}; a \leftarrow 0
                if c < \hat{l}(m_i; i) then
11:
                       a \leftarrow {\binom{c}{i(m+1)}}^{-1}
12:
13:
                sample u \sim \text{uniform}[0, 1]; R \leftarrow \text{true}
14:
                if u < a then
15:
                        R \leftarrow false
                return \bar{X}_n^{(1)}, \ldots, \bar{X}_n^{(d)}
```

Example 2: Barrier Option Pricing: Setting

- $S_k = \sum_{i=1}^k Y_k, \ k \ge 0$, a centered random walk.
- $\mathbb{P}(Y_1 \leq x)$ regularly varying with index $-\alpha$; $\mathbb{P}(Y_1 \geq x)$ regularly varying with index $-\beta$.
- $A \triangleq \{\xi \in \mathbb{D} : \xi(1) \geq b, \inf_{0 \leq t \leq 1} [\xi(t) + ct] \leq -a\}.$
- $A_n \triangleq \{S_n \geq bn, \min_{0 \leq k \leq n} S_k + ck \leq -an\}.$
- $\mathbb{P}(A_n)$ is caused by two large jumps.

- \bullet $(I_{-}^{*}, I_{+}^{*}) = (1, 1).$
- $J_{1,1} = \{(1,1), (1,0), (0,m)\}$
 - $I = \min\{I' \in \mathbb{Z}_+ \mid (I' 1)(\beta 1) > (\alpha 1)\}.$
 - $m = \min\{m' \in \mathbb{Z}_+ \mid (m'-1)(\alpha-1) > (\beta-1)\}.$

- \bullet $(I_{-}^{*}, I_{+}^{*}) = (1, 1).$
- $J_{1,1} = \{(1,1), (1,0), (0,m)\}$
 - $I = \min\{I' \in \mathbb{Z}_+ \mid (I' 1)(\beta 1) > (\alpha 1)\}.$
 - $m = \min\{m' \in \mathbb{Z}_+ \mid (m'-1)(\alpha-1) > (\beta-1)\}.$
- ullet A is b.a.f. both $\mathbb{D}_{i,0}$ and $\mathbb{D}_{0,i}$

- $(I_{-}^*, I_{+}^*) = (1, 1).$
- $J_{1,1} = \{(1,1), (1,0), (0,m)\}$
 - $I = \min\{I' \in \mathbb{Z}_+ \mid (I' 1)(\beta 1) > (\alpha 1)\}.$
 - $m = \min\{m' \in \mathbb{Z}_+ \mid (m'-1)(\alpha-1) > (\beta-1)\}.$
- A is b.a.f. both $\mathbb{D}_{i,0}$ and $\mathbb{D}_{0,i}$
- It is sufficient to consider $\tilde{J}_{1,1} = \{(1,1)\}.$

- $(I_{-}^*, I_{+}^*) = (1, 1).$
- $J_{1,1} = \{(1,1), (1,0), (0,m)\}$
 - $I = \min\{I' \in \mathbb{Z}_+ \mid (I' 1)(\beta 1) > (\alpha 1)\}.$
 - $m = \min\{m' \in \mathbb{Z}_+ \mid (m'-1)(\alpha-1) > (\beta-1)\}.$
- A is b.a.f. both $\mathbb{D}_{i,0}$ and $\mathbb{D}_{0,i}$
- It is sufficient to consider $\tilde{J}_{1,1} = \{(1,1)\}.$
- Modified

$$B^{\gamma} = \{ \xi \in \mathbb{D} \mid \exists t_1 < t_2 : \xi(t_1^-) - \xi(t_1) > \gamma_-, \xi(t_2) - \xi(t_2^-) > \gamma_+ \}.$$

- $(I_{-}^*, I_{+}^*) = (1, 1).$
- $J_{1,1} = \{(1,1), (1,0), (0,m)\}$
 - $I = \min\{I' \in \mathbb{Z}_+ \mid (I' 1)(\beta 1) > (\alpha 1)\}.$
 - $m = \min\{m' \in \mathbb{Z}_+ \mid (m'-1)(\alpha-1) > (\beta-1)\}.$
- A is b.a.f. both $\mathbb{D}_{i,0}$ and $\mathbb{D}_{0,i}$
- It is sufficient to consider $\tilde{J}_{1,1} = \{(1,1)\}.$
- Modified

$$B^{\gamma} = \{ \xi \in \mathbb{D} \mid \exists t_1 < t_2 : \xi(t_1^-) - \xi(t_1) > \gamma_-, \xi(t_2) - \xi(t_2^-) > \gamma_+ \}.$$

• $B_n^{\gamma} = \{ \exists i < j : Y_i < -\gamma_- n, Y_j > \gamma_+ n \}.$

- $(I_{-}^{*}, I_{+}^{*}) = (1, 1).$
- $J_{1,1} = \{(1,1), (1,0), (0,m)\}$
 - $I = \min\{I' \in \mathbb{Z}_+ \mid (I'-1)(\beta-1) > (\alpha-1)\}.$
 - $m = \min\{m' \in \mathbb{Z}_+ \mid (m'-1)(\alpha-1) > (\beta-1)\}.$
- A is b.a.f. both $\mathbb{D}_{i,0}$ and $\mathbb{D}_{0,i}$
- It is sufficient to consider $\tilde{J}_{1,1} = \{(1,1)\}.$
- Modified

$$B^{\gamma} = \{ \xi \in \mathbb{D} \mid \exists t_1 < t_2 : \xi(t_1^-) - \xi(t_1) > \gamma_-, \xi(t_2) - \xi(t_2^-) > \gamma_+ \}.$$

- $B_n^{\gamma} = \{\exists i < j : Y_i < -\gamma_- n, Y_j > \gamma_+ n\}$. Need that $\mathbb{P}(A_n \cap (B_n^{\gamma})^c) = o(\mathbb{P}(A_n)^2)$: choose γ_- and γ_+ such that

Example 2: Barrier Option Pricing: Numerical Result

•
$$Y_1 = Y_1' - \mathbb{E}Y_1'$$

•
$$f_{Y'} = \frac{1}{3} \left(\frac{1}{y}\right)^{\beta} \mathbb{I}_{(1,\infty)}(y) + \frac{1}{3} \left(-\frac{1}{y}\right)^{\alpha} \mathbb{I}_{(-\infty,-1)}(y) + \frac{1}{6} \mathbb{I}_{[-1,1]}(y).$$

- Estimate $\mathbb{P}(S_n \geq bn, \min_{0 \leq k \leq n} S_k \leq -an), a = 2 \text{ and } b = 1.5.$
- w = 0.05

Table 2. Estimated rare-event probability and level of precision for the application as described in Section 5.

Est Pr	n = 250	n = 500	n = 750	n = 1,000	n = 1,250	n = 1,500
$\alpha=2,\beta=1.5$	3.913×10 ⁻⁷ 0.043	1.370×10 ⁻⁷ 0.043	6.992×10^{-8} 0.044	4.539×10^{-8} 0.044	3.305×10^{-8} 0.044	2.471×10 ⁻⁸ 0.044
$\alpha=1.8, \beta=1.7$	3.322×10^{-7} 0.037	1.154×10^{-7} 0.037	6.040×10^{-8} 0.038	3.840×10^{-8} 0.038	2.870×10^{-8} 0.038	2.225×10^{-8} 0.037
$\alpha=2.3,\beta=2$	1.923×10^{-9} 0.053	4.004×10^{-10} 0.053	$1.491 \times 10^{-10} \\ 0.054$	7.601×10^{-11} 0.054	4.632×10^{-11} 0.054	3.072×10^{-11} 0.054
$\alpha=2.7, \beta=1.8$	$6.838 \times 10^{-10} \\ 0.068$	$1.121 \times 10^{-10} \\ 0.070$	$4.092 \times 10^{-11} \\ 0.070$	$\begin{array}{c} 2.079 \times 10^{-11} \\ 0.069 \end{array}$	$1.105 \times 10^{-11} \\ 0.071$	$6.896 \times 10^{-12} \\ 0.071$