CS583 May 1, 2023 Homework 4 Lahari Kavuru

Solution 1: Given X= GTATA and Y= GAGT

Generate step-by-step solution for Sequence Alignment problem for following scenarios.

1) penalty of gap mismatch is 4 and letter mismatch is 3.

The formula is $A[i][j] = min(A[i-1][j-1] + letter\ mismatch,\ A[i-1][j] + gap,\ A[i][j-1] + gap)$

Initial values of X and Y with a gap are

		jo 0	$\frac{\mathrm{j}_1}{\mathrm{G}}$	$\begin{array}{c c} j_2 \\ T \end{array}$	ј ₃ А	$\begin{array}{c} j_4 \\ T \end{array}$	$_{ m A}^{ m j_5}$
$\overline{i_0}$	0	0	4	8	12	16	20
i_1	G	4					
i_2	A	8					
i_3	G	12					
i_4	Τ	16					

Let's compute for each value of i,j

$$\begin{split} &i{=}1,\;j{=}1\\ &A[1,1]=\min(A[0][0]+\;\mathrm{mismatch},\;A[0][1]+\;\mathrm{gap},\;A[1][0]+\;\mathrm{gap})\\ &=\min(0{+}0,\;4{+}4,\;4{+}4)\\ &=\min(0{,}8{,}8)\\ &=0 \end{split}$$

		j ₀ 0	$_{ m G}^{ m j_1}$	$\begin{array}{ c c } j_2 \\ T \end{array}$	ј ₃ А	ј ₄ Т	$egin{array}{c} m j_5 \ m A \end{array}$
$\overline{i_0}$	0	0	4	8	12	16	20
i_1	G	4	0				
i_2	A	8					
i_3	G	12					
i_4	Τ	16					

$$\begin{split} &i{=}1,\;j{=}2\\ &A[1,2] = \min(A[0][1] + \; \mathrm{mismatch},\; A[0][2] + \; \mathrm{gap},\; A[1][1] + \; \mathrm{gap})\\ &= \min(4{+}3,\; 8{+}4,\; 0{+}4)\\ &= \min(7{,}12{,}4)\\ &= 4 \end{split}$$

		j ₀ 0	$egin{array}{c} j_1 \ G \end{array}$	$\begin{array}{ c c } j_2 \\ T \end{array}$	ј _з А	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	$egin{array}{c} m j_5 \ m A \end{array}$
i_0	0	0	4	8	12	16	20
i_1	G	4	0	4			
i_2	A	8					
i_3	G	12					
i_4	\mathbf{T}	16					

i=1, j=3

$$A[1,3] = \min(A[0][2] + \text{ mismatch, } A[0][3] + \text{ gap, } A[1][2] + \text{ gap)}$$

$$= \min(8+3, 12+4, 4+4)$$

$$= \min(11,16,8)$$

$$= 8$$

		j ₀ 0	$\frac{\mathrm{j}_1}{\mathrm{G}}$	$\begin{array}{c c} j_2 \\ T \end{array}$	ј ₃ А	$\begin{array}{c c} j_4 \\ T \end{array}$	$egin{array}{c} m j_5 \ m A \end{array}$
$\overline{i_0}$	0	0	4	8	12	16	20
i_1	G	4	0	4	8		
i_2	A	8					
i_3	G	12					
i_4	Τ	16					

i=1, j=4

$$\begin{split} A[1,4] &= \min(A[0][3] + \text{ mismatch, } A[0][4] + \text{ gap, } A[1][3] + \text{ gap}) \\ &= \min(12 + 3, \ 16 + 4, \ 8 + 4) \\ &= \min(15,20,12) \\ &= 12 \end{split}$$

	jo 0	$egin{array}{c} j_1 \ G \end{array}$	$\begin{array}{c c} j_2 \\ T \end{array}$	ј ₃ А	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$
i_0 0	0	4	8	12	16	20
i_1 G	4	0	4	8	12	
i_2 A	8					
i_3 G	12					
i_4 T	16					

i=1, j=5

$$\begin{split} A[1,5] &= \min(A[0][4] + \text{ mismatch, } A[0][5] + \text{ gap, } A[1][4] + \text{ gap}) \\ &= \min(16 + 3, \ 20 + 4, \ 12 + 4) \\ &= \min(19, 24, 16) \\ &= 16 \end{split}$$

		$ \begin{array}{c c} j_0 \\ 0 \end{array} $	$\begin{array}{c} j_1 \\ G \end{array}$	$\begin{array}{c} j_2 \\ T \end{array}$	$egin{array}{c} \mathbf{j}_3 \ \mathbf{A} \end{array}$	$\begin{array}{c c} j_4 \\ T \end{array}$	j ₅ A
$-i_0$	0	0	4	8	12	16	20
i_1	G	4	0	4	8	12	16
i_2	A	8					
i_3	G	12					
i_4	${ m T}$	16					
				•			

$$i=2, j=1$$

$$A[2,1] = \min(A[1][0] + \text{mismatch}, A[1][1] + \text{gap}, A[2][0] + \text{gap})$$

= $\min(4+3, 0+4, 8+4)$
= $\min(7,4,12)$
= 4

$$i=2, j=2$$

$$A[2,2] = min(A[1][1] + mismatch, A[1][2] + gap, A[2][1] + gap)$$

= $min(0+3, 4+4, 4+4)$
= $min(3,8,8)$
= 3

i=2, j=3

$$A[2,3] = \min(A[1][2] + \text{ mismatch, } A[1][3] + \text{ gap, } A[2][2] + \text{ gap)}$$

$$= \min(4+0, 8+4, 3+4)$$

$$= \min(4,12,7)$$

$$= 4$$

i=2, j=4

$$A[2,4] = min(A[1][3] + mismatch, A[1][4] + gap, A[2][3] + gap)$$

= $min(8+3, 12+4, 4+4)$
= $min(11,16,8)$
= 8

$$i=2, j=5$$

$$A[2,5] = \min(A[1][4] + \text{ mismatch, } A[1][5] + \text{ gap, } A[2][4] + \text{ gap)}$$

$$= \min(12+0, 16+4, 8+4)$$

$$= \min(12,20,12)$$

$$= 12$$

	jo 0	$egin{array}{c} j_1 \ G \end{array}$	$egin{array}{c} j_2 \ T \end{array}$	ј ₃ А	$egin{array}{c} m j_4 \ m T \end{array}$	$egin{array}{c} m j_5 \ m A \end{array}$
i_0 0	0	4	8	12	16	20
i_1 G	4	0	4	8	12	16
i_2 A	8	4	3	4	8	12
i_3 G	12					
i_4 T	16					

$$\begin{aligned} &i=3,\,j=1\\ &A[3,1] = \min(A[2][0] + \operatorname{mismatch}, \,A[2][1] + \operatorname{gap}, \,A[3][0] + \operatorname{gap})\\ &= \min(8+0,\,4+4,\,12+4)\\ &= \min(8,8,16)\\ &= 8\\ &i=3,\,j=2\\ &A[3,2] = \min(A[2][1] + \operatorname{mismatch}, \,A[2][2] + \operatorname{gap}, \,A[3][1] + \operatorname{gap})\\ &= \min(4+3,\,3+4,\,8+4)\\ &= \min(7,7,12)\\ &= 7\\ &i=3,\,j=3\\ &A[3,3] = \min(A[2][2] + \operatorname{mismatch}, \,A[2][3] + \operatorname{gap}, \,A[3][2] + \operatorname{gap})\\ &= \min(3+3,\,4+4,\,7+4)\\ &= \min(6,8,11)\\ &= 6\\ &i=3,\,j=4\\ &A[3,4] = \min(A[2][3] + \operatorname{mismatch}, \,A[2][4] + \operatorname{gap}, \,A[3][3] + \operatorname{gap})\\ &= \min(4+3,\,8+4,\,6+4)\\ &= \min(7,12,10)\\ &= 7\\ &i=3,\,j=5\\ &A[3,5] = \min(A[2][4] + \operatorname{mismatch}, \,A[2][5] + \operatorname{gap}, \,A[3][4] + \operatorname{gap})\\ &= \min(1,16,11)\\ &= 11\\ &\frac{|j_0|}{|j_1|} \frac{|j_2|}{|j_3|} \frac{|j_3|}{|j_4|} \frac{|j_5|}{|j_5|}\\ &= \min(1,1,16,11)\\ &= 11\\ &\frac{|j_0|}{|j_1|} \frac{|j_2|}{|j_3|} \frac{|j_3|}{|j_4|} \frac{|j_5|}{|j_5|}\\ &= \min(1,16,11)\\ &= 11\\ &\frac{|j_0|}{|j_1|} \frac{|j_2|}{|j_3|} \frac{|j_4|}{|j_5|} \frac{|j_5|}{|j_5|}\\ &= 1\\ &\frac{|j_0|}{|j_1|} \frac{|j_2|}{|j_3|} \frac{|j_4|}{|j_5|}\\ &= 1\\ &\frac{|j_0|}{|j_1|} \frac{|j_2|}{|j_3|} \frac{|j_3|}{|j_4|} \frac{|j_5|}{|j_5|}\\ &= 1\\ &\frac{|j_1|}{|j_5|} \frac{|j_5|}{|j_5|} \frac{|j_5|}{|j_5|}\\ &\frac{|j_5|}{|j_5|} \frac{|j_5|}{|j_5|} \frac{|j_5|}{|j_5|}\\ &\frac{|j_5|}{|j_5|} \frac{|j_5|}{|j_5|}\\ &\frac{|j_5|}{|j_5|} \frac{|j_5|}{|j_5|}\\ &\frac$$

 $= \min(15,12,20)$

Case Analysis:

Case 1:

X and Y matched in last column

G T A T A

- GAGT

Here we have one gap and three mismatches. Therefore according to the given penalty, 4+3+3+3=13

Case 2:

X and Y not matched in last column

G T A T A

GAGT-

Here we have one gap and 2 mismatches. Therefore according to the given penalty, 4+3+3=10 So, we considered case 2.

2) penalty of gap mismatch is 5 and letter mismatch is 3.

The formula is A[i][j] = min(A[i-1][j-1] + letter mismatch, A[i-1][j] + gap, A[i][j-1] + gap)

Initial values of X and Y with a gap are

		$_{ m j_0}$	j_1	j_2	j_3	j_4	j_5
		0	G	T	A	T	Α
i_0	0	0	5	10	15	20	25
i_1	G	5					
i_2	A	10					
i_3	G	15					
i_4	${ m T}$	20					

Let's compute for each value of i,j

$$\begin{split} & = 1, j = 1 \\ & A[1,1] = \min(A[0][0] + \text{mismatch, A}[0][1] + \text{gap, A}[1][0] + \text{gap}) \\ & = \min(0 + 0, 5 + 5, 5 + 5) \\ & = \min(0,10,10) \\ & = 0 \\ & = 1, j = 2 \\ & A[1,2] = \min(A[0][1] + \text{mismatch, A}[0][2] + \text{gap, A}[1][1] + \text{gap}) \\ & = \min(5 + 3, 10 + 5, 0 + 5) \\ & = \min(8,15,5) \\ & = 5 \\ & = 1, j = 3 \\ & A[1,3] = \min(A[0][2] + \text{mismatch, A}[0][3] + \text{gap, A}[1][2] + \text{gap}) \\ & = \min(10 + 3, 15 + 5, 5 + 5) \\ & = \min(10 + 3, 15 + 5, 5 + 5) \\ & = \min(13,20,10) \\ & = 10 \\ & = 1, j = 4 \\ & A[1,4] = \min(A[0][3] + \text{mismatch, A}[0][4] + \text{gap, A}[1][3] + \text{gap}) \\ & = \min(15 + 3, 20 + 5, 10 + 5) \\ & = \min(18,25,15) \\ & = 15 \\ \end{split}$$

$$= 15$$

		j ₀ 0	$egin{array}{c} j_1 \ G \end{array}$	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	јз А	${f j_4} \ {f T}$	$egin{array}{c} ext{j}_5 \ ext{A} \end{array}$
i_0	0	0	5	10	15	20	25
i_1	G	5	0	5	10	15	20
i_2	A	10	5	3	5	10	15
i_3	G	15					
i_4	\mathbf{T}	20					

$$i=3, j=1$$

$$A[3,1] = min(A[2][0] + mismatch, A[2][1] + gap, A[3][0] + gap)$$

= $min(10+0, 5+5, 15+5)$
= $min(10,10,20)$
= 10

$$i=3, j=2$$

$$A[3,2] = min(A[2][1] + mismatch, A[2][2] + gap, A[3][1] + gap)$$

= $min(5+3, 3+5, 10+5)$
= $min(8,8,15)$
= 8

i=3, j=3

$$A[3,3] = \min(A[2][2] + \text{ mismatch, } A[2][3] + \text{ gap, } A[3][2] + \text{ gap)}$$

$$= \min(3+3, 5+5, 8+5)$$

$$= \min(6,10,13)$$

$$= 6$$

$$i=3, j=4$$

$$A[3,4] = min(A[2][3] + mismatch, A[2][4] + gap, A[3][3] + gap)$$

= $min(5+3, 10+5, 6+5)$
= $min(8,15,11)$
= 8

$$i=3, j=5$$

$$A[3,5] = min(A[2][4] + mismatch, A[2][5] + gap, A[3][4] + gap)$$

= $min(10+3, 15+5, 8+5)$
= $min(13,20,13)$
= 13

		$ \begin{vmatrix} j_0 \\ 0 \end{vmatrix} $	$egin{array}{c} j_1 \ G \end{array}$	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	ј ₃ А	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	j ₅
$-i_0$	0	0	5	10	$\frac{A}{15}$	20	$\frac{A}{25}$
i_1	G	5	0	5	10	15	20
i_2	Α	10	5	3	5 6	10	15
i_3	G	15 20	10	8	6	8	13
i_4	\mathbf{T}	20					
			•				

$$i=4, j=1$$

$$A[4,1] = min(A[3][0] + mismatch, A[3][1] + gap, A[4][0] + gap)$$

= $min(15+3, 10+5, 20+5)$
= $min(18,15,25)$
= 15

$$i=4, j=2$$

$$A[4,2] = min(A[3][1] + mismatch, A[3][2] + gap, A[4][1] + gap)$$

= $min(10+0, 8+5, 15+5)$
= $min(10,13,20)$
= 10

i=4, j=3

$$A[4,3] = \min(A[3][2] + \text{ mismatch, } A[3][3] + \text{ gap, } A[4][2] + \text{ gap)}$$

$$= \min(8+3, 6+5, 10+5)$$

$$= \min(11,11,15)$$

$$= 11$$

i=4, j=4

$$A[4,4] = min(A[3][3] + mismatch, A[3][4] + gap, A[4][3] + gap)$$

= $min(6+0, 8+5, 11+5)$
= $min(6,13,16)$
= 6

$$i=4, j=5$$

$$A[4,5] = \min(A[3][4] + \text{ mismatch, } A[3][5] + \text{ gap, } A[4][4] + \text{ gap)}$$

$$= \min(8+3, 13+5, 6+5)$$

$$= \min(11,18,11)$$

$$= 11$$

	$\begin{vmatrix} j_0 \\ 0 \end{vmatrix}$	$egin{array}{c} \mathbf{j}_1 \ \mathbf{G} \end{array}$	$\begin{array}{ c c } j_2 \\ T \end{array}$	ј _з А	$egin{array}{c} m j_4 \ m T \end{array}$	$egin{array}{c} \mathbf{j}_5 \ \mathbf{A} \end{array}$
i_0 0	0	5	10	15	20	25
i_1 G	5	0	5	10	15	20
i_2 A	10	5	3	5	10	15
i_3 G	15	10	8	6	8	13
	20	15	10	11	6	11
			!	!	,	,

Case Analysis:

Case 1:

X and Y matched in last column

GTATA

- GAGT

Here we have one gap and three mismatches. Therefore according to the given penalty, 5+3+3+3=14

Case 2:

X and Y not matched in last column

GTATA

GAGT-

Here we have one gap and 2 mismatches. Therefore according to the given penalty, 5 + 3 + 3 = 11 So, we considered case 2.

Yes, the optimal alignment is same for the two parameterizations.

Both the parameters have the same alignment that is

GTATA

GAGT-

But here in the given parameterizations gap penalty is different for both.

In the first one gap penalty is 4 which is little variant than mismatch penalty. In the second one the gap penalty is 5 which is higher than mismatch penalty.

Solution 2: Given a value n with unlimited supply of denominations $d_1, ..., d_k$

Find the minimum no.of coins required to get n.

Before implementing the algorithm, let's look at an example.

Consider n = 18 and you have 1,3,5,10 denomination coins.

Now, to get n=20 we can have many ways like: 1 - 20 coins, 3 - 7 coins, 5 - 4 coins, 10 - 2 coins. Now the least no of coins required to get the value can be 2.

Algorithm:

- 1. Define a class with parameters coin-denominations and the target-val.
- 2. Store the length of coin denominations.
- 3. Initialize all the values to infinity except the 0th which is set to 0.
- 4. For i > 1 to target-val do:
- 5. compute the minimum no. of coins required.
- 6. For j > in target-val do:

- 7. Check if jth values is less than the ith values
- 8. Compute minimum coins as min(ith value, (ith denominant of jth) +1)
- 9. Return the target-val

Proof Let C[d][t] be the minimum no.of coins required to make change for n using denominants d.

We need to show that

$$C[d][t] = min(C[d-1],[t], C[d][t-d]+1$$

We can prove this using proof of contradiction

Assume $C[d][t] \not\in min(C[d-1],[t], C[d][t-d]+1$

$$C[d-1],[t] := min(C[d-1],[t], C[d][t-d]+1$$

$$C[d][t-d]+1 := min(C[d-1],[t], C[d][t-d]+1$$

If we add these two conditions we get

$$C[d-1][t] + C[d][t-d]+1 i^2 * min(C[d-1],[t], C[d][t-d]+1$$

This is a contradiction

Therefore our assumption that there exits $C[d][t]!=\min(C[d-1],[t],C[d][t-d]+1$ is false, so a lemma holds