Outline

- Why do we need digital communications?
- Semi-digital representation of analog signals
 - Sampling: digitalization in time domain
 - Analog pulse modulation schemes: PAM, PDM, PPM
- Generation, detection and analysis of PPM
- Digital representation of analog signals
 - Quantization: digitalization in signal scale
 - Quantization noise
 - Digital modulation schemes: PCM, DM

Page 36

Noise Effect in PPM

Detection Error

Ideally, slicer + delay is able to detect the exact position of pulse peak.

How to measure the effect of noise (SNR) in PPM detection?

SNR Before Receiver

Pulse Shape: $g(t) = \frac{A}{2}[1 + \cos(\pi B_T t)] - T \le t \le T, B_T = 1/T$

Modulating Signal: $m(t) = \frac{A_m}{2} sin 2\pi f_m t$

Slicing level = A/2

PPM:

Before receiver: Average Signal Power
$$=\frac{1}{T_s}\int_{-T}^T g^2(t)dt$$
 $=\frac{1}{T_s}\int_{-T}^T \frac{A^2}{4}[1+\cos(\pi B_T t)]^2dt$ $=\frac{3A^2T}{4T_s}=\frac{3A^2}{4T_sB_T}$ Nosie Power $=\mathrm{N}_0~W$ (W is the bandwidth of receiving filter)

Nosie Power = $N_0 W$

Channel SNR = $\frac{3A}{4T_sB_TWN_0}$

Page 38

Noise Perturbation

Assume noise level is much smaller than signal level =>Noise perturbation happens around slicing level

$$V_n = \tau \frac{dg(t)}{dt} \Big|_{t=-\frac{T}{2}} = \tau \frac{\pi B_T A}{2} \Rightarrow \tau = \frac{2V_n}{\pi B_T A}$$

 $k_p m(nT_s) + \tau$ -2T, -1T, 1T, 2T, Area: $h(\frac{T_s}{2} + k_p m(nT_s) + \tau)$ -2T, -1T, OT, 1T, 2T,

$$\frac{Area - \frac{hT_s}{2}}{hk_p} = m(nT_s) + \frac{\tau/k_p}{k_p}$$

Noise Power =
$$E\left[\frac{\tau^2}{k_p^2}\right]$$

= $E\left[\frac{4V_n^2}{\pi^2 B_T^2 A^2 k_p^2}\right]$
= $\frac{4N_0 W}{\pi^2 B_T^2 A^2 k_p^2}$

wherein V_n^2 is the noise power within receiver's bandwidth, hence

$$E[V_n^2] = \frac{N_0}{2} 2W = N_0 W$$

Figure of Merit

After receiver: Signal Power=
$$\frac{\int_{0}^{1/f_{m}} m^{2}(t)dt}{1/f_{m}} = \frac{A_{m}^{2}}{8},$$
Nosie Power= $E\left[\frac{\tau^{2}}{k_{p}^{2}}\right] = \frac{4N_{0}W}{\pi^{2}B_{T}^{2}A^{2}k_{p}^{2}},$

$$SNR = \frac{\pi^{2}B_{T}^{2}A_{m}^{2}A^{2}k_{p}^{2}}{32N_{0}W},$$
Figure of Merit =
$$\frac{SNR\ after\ Rx}{SNR\ before\ Rx} = \frac{\frac{\pi^{2}B_{T}^{2}A_{m}^{2}A^{2}k_{p}^{2}}{32N_{0}W}}{\frac{3A^{2}}{4T_{s}B_{T}WN_{0}}} = \frac{\pi^{2}}{24}B_{T}^{3}T_{s}A_{m}^{2}k_{p}^{2}$$

Figure of merit shows the gain of receiver for PPM signal, where we can observe that

- Larger B_T leads to better receiving gain. This is because the narrower pulse is more robust against noise perturbation. 100 Given A_m , Larger k_p leads to better receiving gain. This is due to larger dynamic range of pulse
- position.

Page 40

False Pulses

PPM receiver will treat this as one information pulse \rightarrow false pulse Slicing level Pulses due to noise

- Due to the randomness of noise, it is possible that the instantaneous noise level is larger than the slicing level, leading to false pulse
- Noise power depends on the bandwidth of s(t), denoted as W
- Threshold effect: when W is large, noise power is large, the probability of false pulse is also large
 - We can increase peak pulse power, and choose larger slicing level

Outline

- Why do we need digital communications?
- Semi-digital representation of analog signals
 - Sampling: digitalization in time domain
 - Analog pulse modulation schemes: PAM, PDM, PPM
- Generation, detection and analysis of PPM
- Digital representation of analog signals
 - Quantization: digitalization in signal scale
 - Quantization noise
 - Digital modulation schemes: PCM, DM

Page 39

Quantization Overview

- PAM, PDM or PPM can never transmit a real-valued sample precisely due to noise (why?)
 - Information of a real number is infinite
- What's the capability of a communication system?
 - Finite: transmit one element from a set with finite cardinality (size)
- Quantization is a procedure to convert a real-valued signal to discrete-valued (and usually finite) signal
 - Discard some information to fit the communication systems
- Plenty of quantization example
 - digital camera, MP3 and etc.

Quantization Formulation

- The dynamic range of signal is divided into finite number of regions
 E.g., R_k: {m_k < m ≤ m_{k+1}}
- Let m and v be the signal scale before and after quantization, then the quantization procedure can be written as v = g(m)
 - $v_k = g(m), \ \forall m \in R_k$
 - g: Quantization Characteristic

Midtread & Midrise

Page 46

Quantization Noise

1. Assume input signal range is $(-m_{max}, m_{max})$

- 3. Signal in this region is quantized to v_k , Center of R_k PDF of signal value before quantization (M) $-m_{max}$ m_{max}
 - 4. Sufficiently large L, PDF in this region can be treated as constant
 - 2. Uniform Quantizer: Uniformly divide into L quantization levels

$$Setp-size\ \Delta=\frac{2m_{max}}{L}$$
 Given $V=v_k$, $M{\sim}unif\left(v_k-\frac{\Delta}{2},v_k+\frac{\Delta}{2}\right)$, therefore $Q=M-v_k{\sim}unif\left(-\frac{\Delta}{2},\frac{\Delta}{2}\right)$ The PDF of quantization error is $f_Q(x)=\{\frac{1}{\Delta},\ -\frac{\Delta}{2}< q\leq \frac{\Delta}{2} \ 0,\ \textit{Otherwise}$

Page 48

• The power of quantization noise power is given by

Noise Power
$$E[Q^2] = \int_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} x^2 f_Q(x) dx = \frac{\Delta^2}{12}$$

 Let P be the average power of input continuous sample, the SNR of uniform quantizer is

$$SNR = \frac{E[M^2]}{E[Q^2]} = \frac{12P}{\Delta^2}$$

• L quantization levels can be represented by $R = \log_2 L$ bits, hence,

$$\Delta = \frac{2m_{max}}{L} = \frac{2m_{max}}{2^R} \quad and \quad SNR = \frac{3P}{m_{max}^2} 2^{2R}$$

SNR increases exponentially with the number of information bits.

Nonuniform Quantization

- Why nonuniform quantization?
 - Low power signal is more sensitive to the noise
- How to use uniform quantizer to achieve non-uniform quantization?

Page 50

Quantization in LTE

- Sampling frequency: 1.92, 3.84, 7.68, 15.36, 23.04, 30.72MHz
- Sampled bits per I or Q: 8~20
- Number of antennas: 4(LTE), 8(LTE-A)
- Calculation: 15 * 2 * 7.68M * 8 = 1.8432Gbps

Outline

- Why do we need digital communications?
- Semi-digital representation of analog signals
 - Sampling: digitalization in time domain
 - Analog pulse modulation schemes: PAM, PDM, PPM
- Generation, detection and analysis of PPM
- Digital representation of analog signals
 - Quantization: digitalization in signal scale
 - Quantization noise
 - Digital modulation schemes: PCM, DM

Page 39

Pulse Code Modulation

Line Code

• Line codes: baseband modulation of binary (digital) signals

Use a number of signal periods to represent one sample of modulating signal

Page 54

PCM Receiver

Receiver

Detection of Line Code

- Integrator + threshold
- How about Manchester Code?
- Optimal detector design will be introduced in the next chapter

Page 56

T1 System

- T1 system: digital communication of voice signal pioneered by Bell System (AT&T)
- Technology
 - Frequency of voice signal 300~3.1kHz
 - Sampling frequency: 8kHz
 - PCM: 255 quantization level (8 bits/sample), approximated μ-law compressor
 - TDM: multiplex 24 voice channels; additional one bit for synchronization
 - Frame size = 24*8+1 = 193bits
 - Data rate = 193 * 8k = 1.544 Mb/s
 - Further TDM: T2 = 4*T1, T3=7*T2
- T1 system was mainly adopted in US, Canada and Japan
- E1 system is the European counterpart of T1
 - 32 voice signals

Delta Modulation

- - Exploit the correlation between samples
 - Sampling frequency should be sufficiently large
- Comparison with PCM
 - Less bits in each sampling
 - Larger sampling frequency
- Voice
 - PCM: 8bits/sample, 8k samples/sec => 64k bits/sec
 - DM: 1bit/sample, 16k~32k samples/sec => 16k~32k bits/sec

Page 58

Quantization Noise

- Two types of quantization error (noise)
- Slope over-load distortion
 - Occurs when the step-size Δ is too small
 - Maximum slope of staircase curve is $\frac{\Delta}{T_c}$
 - Therefore, it is required that $\frac{\Delta}{T_c} \ge \max \left| \frac{dm(t)}{dt} \right|$
- Granular noise
 - Occur when the step-size Δ is too large

Summary

Sampling Freq. > Nyquist Rate

Quantization Noise Incurred

Use pulses to deliver sampled signal Schemes: PAM, PPM, PDM Error is unavoidable due to noise Info(Comm. Sys.) < Info(Real No.)

Schemes: PCM, DM
Different approaches
are used in quantization

Page 60

Homework #D3

D3.1

A compact disc (CD) records audio signals digitally by using PCM. Assume the audio signal bandwidth to be 15kHz.

- (a) What is the Nyquist rate?
- (b) If the Nyquist samples are quantized into L=65,536 levels and then binary coded, determine the number of binary digits per second (bit/s) required to encode the audio signal.
- D3.2

Show that, with a non-uniform quantizer, the average power (mean-square value) of the quantization error is approximately equal to $(1/12)\sum_i {\Delta_i}^2 p_i$ where ${\Delta_i}$ is the i-th step size and p_i is the probability that the input signal amplitude lies within the i-th interval R_i . Assume that the step-size ${\Delta_i}$ is small compared with the range of input signal, such that the signal can be treated as uniformly distribution within each step size.

Hints:

(1) Let Q be the quantization error, the expectation of Q² is given by

$$E[Q^2] = \sum_{i} E[Q^2]$$
 signal is in the $i-th$ step size] Pr [signal is in the $i-th$ step size]

(2) The mean and variance of a uniform distributed random variable within [a,b] are given by $\frac{1}{2}(a+b)$ and $\frac{1}{12}(b-a)^2$, respectively.