ME 202

BENDING / FLEXURE

Applications: Structures

Machine components Bio-mechanics

L>> c/s dimensions.

BEAM

Q1: Deflected shape?

Q2: What is Mmax, Qmax?
Equilibrium
Global Equilibrium: Applied to entire beam
Local Eqm : Applied piecewise.
Global Egm
QL+M () M
$\Sigma F = 0$ Q
5M = 0 support reactions
Wall prevents rigid body motion. by constraining vert motion & ang displacement.
Local Eqm: Any internal section is in eqm

Local Equilibrium Applied to
$$\Delta z$$
 $M(z+\Delta z)$
 $V(z)$
 $V(z)$

$$\Sigma F_{\chi} = 0 \Rightarrow V(z + \Delta z) - V(z) + q(z) \Delta z = 0$$

Used:
$$\int_{\alpha}^{\alpha+\epsilon} f(x) dx \approx f(\alpha) \epsilon \quad \text{as } \epsilon \neq 0$$

As
$$\Delta z \rightarrow 0$$
, $\frac{dV}{dz} + q = 0$

$$\sum M_{\gamma} = 0 \implies M(z + \Delta z) + V(z + \Delta z) \Delta z$$

$$+ V(z) \Delta z - M(z) = 0$$

$$\frac{dM}{dz} + V(z) = 0 \quad \text{as} \quad \Delta z \rightarrow 0$$

$$\int T_{XZ} da = V, \int T_{YZ} da = 0, \int T_{ZZ} da = 0$$

$$= \underbrace{e_{x}(\gamma \tau_{zz} - z \tau_{zy}) - e_{y}(x \tau_{zz} - z \tau_{zx})}_{+ e_{z}(x \tau_{zy} - y \tau_{zx})}$$