Explication - Résultats similaires avec les 2 méthodes de correction.

On considère le problème de Poisson avec condition de Dirichlet homogène ou non homogène :

$$\begin{cases}
-\Delta u = f & \Omega \\
u = g & \Gamma
\end{cases} \tag{\mathcal{E}_1}$$

On a ainsi une EDP que l'on souhaite résoudre sur un domaine Ω . On note Γ le bord de Ω , c'est-à-dire $\Gamma = \partial \Omega$. Dans notre cas, on souhaite appliquer une correction à la sortie d'un FNO. On considère ici que l'on possède une solution analytique u et qu'après une utilisation du FNO, on obtient une solution du type

$$\tilde{\phi}(x,y) = u_p(x,y) = u(x,y) - \epsilon P(x,y)$$

avec P la perturbation (tel que P = 0 sur Γ) et ϵ petit.

Ce document a pour but de comparer deux méthodes de correction de ce problème :

• Méthode 1 : On souhaite résoudre le problème suivant

$$\begin{cases}
-\Delta(\tilde{\phi}C) = f & \Omega \\
C = 1 & \Gamma
\end{cases}$$
 (C₁)

avec $\tilde{u} = \tilde{\phi}C$.

Dans un autre document, on a présenté l'intérêt de rehausser le problème et de se ramener au problème suivant

$$\begin{cases}
-\Delta(\hat{\phi}C) = f & \Omega \\
\hat{u} = g + m & \Gamma
\end{cases} \tag{$\mathcal{C}_1^{\mathcal{R}}$}$$

avec $\hat{u} = \hat{\phi}C + m$ où $\hat{\phi} = \tilde{\phi} + m$ (m une constante).

• Méthode 2 : On souhaite résoudre le problème suivant

$$\begin{cases}
-\Delta C = \tilde{f} & \Omega \\
C = 0 & \Gamma
\end{cases} \tag{C2}$$

avec $\tilde{u} = \tilde{\phi} + C$ et $\tilde{f} = f + \Delta \tilde{\phi}$.

Remarque. On notera que dans ce cas rehausser le problème n'a aucun intérêt. En effet, la décomposition de C_h sur la base $(\varphi_1, \ldots, \varphi_{N_h})$ de V_h s'écrit pour ce problème

$$C_h = \sum_{i=1}^{N_h} C_i \varphi_i$$

avec $C_i = u(x_i) - \tilde{\phi}(x_i)$. Et donc, on a l'inégalité suivante

$$||(u - \tilde{\phi}) - C_h||_{L^2(\Omega)} \le ch^{k+1}|u - \tilde{\phi}|_{H^{k+1}(\Omega)}$$

Alors

$$|u - \tilde{\phi}|_{H^{k+1}(\Omega)} = ||(u - \tilde{\phi})''||_{L^2(\Omega)} = ||(\tilde{\phi} + \epsilon P - \tilde{\phi})''||_{L^2(\Omega)} = ||P''||_{L^2(\Omega)}$$

Et ainsi, en prenant $\hat{\phi} = \tilde{\phi} + m$ on obtient le même résultat.

Résultats numériques

On prend ici la solution analytique suivante

$$u_{ex}(x,y) = S \times \sin(2\pi f x + p) \times \sin(2\pi f y + p)$$

et P la perturbation définie par

$$P(x,y) = S \times \sin(2\pi f_p x + p_p) \times \sin(2\pi f_p y + p_p)$$

avec $p_p = 0$ pour que P = 0 sur Γ (et donc $u_p = u_{ex}$ sur Γ).

On cherche alors principalement à comparer les erreurs en norme L^2 obtenus avec les problèmes $\mathcal{C}_1^{\mathcal{R}}$ et \mathcal{C}_2 . On prendra S=0.5 et p=0 (c'est-à-dire g=0). On fera varier ϵ , f et f_p . Voici les résultats obtenus :

			FEM	Corr	m=1000	Corr v2
FEM	f=4, fp=2	eps=0.01	0.170794	0.009114	0.000455	0.000455
		eps=0.001	0.170794	0.000911	0.000045	0.000045
	f=6, fp=2	eps=0.01	0.340309	0.009562	0.000455	0.000455
		eps=0.001	0.340309	0.000957	0.000045	0.000045
	f=8, fp=2	eps=0.01	0.511393	0.009871	0.000455	0.000455
		eps=0.001	0.511393	0.000987	0.000045	0.000045
	f=2, fp=4	eps=0.01	0.045487	0.001398	0.001708	0.001708
		eps=0.001	0.045487	0.000140	0.000171	0.000171
	f=2, fp=6	eps=0.01	0.045487	0.002909	0.003403	0.003403
		eps=0.001	0.045487	0.000292	0.000340	0.000340
	f=2, fp=8	eps=0.01	0.045487	0.004749	0.005114	0.005114
		eps=0.001	0.045487	0.000471	0.000511	0.000511

Il semblerait ici que les résultats obtenus pour les problèmes $\mathcal{C}_1^{\mathcal{R}}$ avec m=1000 (avant-dernière colonne) et \mathcal{C}_2 (dernière colonne) soient très proches.

Explication

On cherche ici à comprendre pourquoi on obtient des résultats aussi proches avec les 2 méthodes.

Méthode 1

On cherche à résoudre le problème

$$\begin{cases}
-\Delta(\hat{\phi}C) = f & \Omega \\
\hat{u} = g + m & \Gamma
\end{cases} \tag{C1^R}$$

avec $\hat{u} = \hat{\phi}C + m$ où $\hat{\phi} = \tilde{\phi} + m$ (m une constante). La décomposition de \hat{u}_h sur la base $(\varphi_1, \dots, \varphi_{N_h})$ de V_h s'écrit pour ce problème

$$\hat{u}_h = C_h \hat{\phi} = \left(\sum_{i=1}^{N_h} C_i \varphi_i\right) \hat{\phi}(x) \tag{1}$$

Or

$$C_i = \frac{u(x_i) + m}{\hat{\phi}(x_i)} = \frac{u(x_i) + m}{\tilde{\phi}(x_i) + m}$$

$$\tag{2}$$

avec

$$u(x_i) = \tilde{\phi}(x_i) + \epsilon P(x_i) \tag{3}$$

et

$$\tilde{\phi}(x) = \tilde{\phi}(x_i) + (x - x_i)\tilde{\phi}'(x_i) \tag{4}$$

De plus

$$\sum_{i=1}^{N_h} \varphi_i = 1 \tag{5}$$

Avec les 4 relations précédentes, on peut développer 1 :

$$\begin{split} \hat{u_h} &= \left(\sum_{i=1}^{N_h} C_i \varphi_i\right) \hat{\phi}(x) \\ &= \left(\sum_{i=1}^{N_h} \frac{u(x_i) + m}{\tilde{\phi}(x_i) + m} \varphi_i\right) \hat{\phi}(x) \quad \text{par 2} \\ &= \left(\sum_{i=1}^{N_h} \frac{\tilde{\phi}(x_i) + m + \epsilon P(x_i)}{\tilde{\phi}(x_i) + m} \varphi_i\right) \hat{\phi}(x) \quad \text{par 3} \end{split}$$

$$\begin{split} &= \sum_{i=1}^{N_h} \left(1 + \epsilon \frac{P(x_i)}{\tilde{\phi}(x_i) + m} \right) \varphi_i \hat{\phi}(x) \\ &= \left(\sum_{i=1}^{N_h} \varphi_i \right) \hat{\phi}(x) + \epsilon \sum_{i=1}^{N_h} P(x_i) \frac{\hat{\phi}(x)}{\tilde{\phi}(x_i) + m} \varphi_i \\ &= \hat{\phi}(x) + \epsilon \sum_{i=1}^{N_h} P(x_i) \frac{\tilde{\phi}(x_i) + m + (x - x_i) \tilde{\phi}'(x_i)}{\tilde{\phi}(x_i) + m} \varphi_i \quad \text{par 4 et 5} \\ &= \hat{\phi}(x) + \epsilon \sum_{i=1}^{N_h} P(x_i) \left(1 + \frac{(x - x_i) \tilde{\phi}'(x_i)}{\tilde{\phi}(x_i) + m} \right) \varphi_i \\ &= \tilde{\phi}(x) + m + \epsilon \sum_{i=1}^{N_h} P(x_i) \left(1 + \frac{(x - x_i) \tilde{\phi}'(x_i)}{\tilde{\phi}(x_i) + m} \right) \varphi_i \end{split}$$

Ainsi

$$u_h = \hat{u}_h - m = \tilde{\phi}(x) + \epsilon \sum_{i=1}^{N_h} P(x_i) \left(1 + \frac{(x - x_i)\tilde{\phi}'(x_i)}{\tilde{\phi}(x_i) + m} \right) \varphi_i$$

et finalement

$$u_h \xrightarrow[m \to \infty]{} \tilde{\phi}(x) + \epsilon \sum_{i=1}^{N_h} P(x_i) \varphi_i$$
 (6)

Méthode 2

On cherche à résoudre le problème

$$\begin{cases}
-\Delta C = \tilde{f} & \Omega \\
C = 0 & \Gamma
\end{cases} \tag{C2}$$

avec $\tilde{u} = \tilde{\phi} + C$ et $\tilde{f} = f + \Delta \tilde{\phi}$.

La décomposition de u_h sur la base $(\varphi_1,\ldots,\varphi_{N_h})$ de V_h s'écrit pour ce problème

$$u_h = C_h + \tilde{\phi} = \left(\sum_{i=1}^{N_h} C_i \varphi_i\right) + \tilde{\phi}(x) \tag{7}$$

Or

$$C_i = u(x_i) - \tilde{\phi}(x_i) \tag{8}$$

avec

$$u(x_i) = \tilde{\phi}(x_i) + \epsilon P(x_i) \tag{9}$$

Avec les 2 relations précédentes, on peut développer 7 :

$$u_{h} = \tilde{\phi}(x) + \sum_{i=1}^{N_{h}} C_{i} \varphi_{i}$$

$$= \tilde{\phi}(x) + \sum_{i=1}^{N_{h}} (u(x_{i}) - \tilde{\phi}(x_{i})) \varphi_{i} \quad \text{par 8}$$

$$= \tilde{\phi}(x) + \sum_{i=1}^{N_{h}} (\tilde{\phi}(x_{i}) + \epsilon P(x_{i}) - \tilde{\phi}(x_{i})) \varphi_{i} \quad \text{par 9}$$

$$u_{h} = \tilde{\phi}(x) + \epsilon \sum_{i=1}^{N_{h}} P(x_{i}) \varphi_{i}$$

$$(10)$$

Ainsi par 6 et 10, il semblerait que pour le problème \mathcal{E}_1 , les 2 méthodes proposées soit équivalentes (en prenant m grand).