Finner du matematiske feil, skrivefeil, eller andre typer feil? Dette dokumentet er open-source, alle kan bidra på https://github.com/matematikk/vgs_eksamener.

Del 1 - uten hjelpemidler

Oppgave 1

- a) Vi skal derivere $f(x) = x^4 x + 2$. Vi bruker regelen $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$. Vi får da at $f'(x) = 4x^3 1$.
- b) Her ser vi at funksjonen g er sammensatt av to funksjoner som er multiplisert sammen, nemlig x^3 og ln(x). Vi bruker derfor produktregelen: $f(x) = uv \Rightarrow f'(x) = u'v + uv'$. Vi får da

$$g'(x) = 3x^{2} \cdot ln(x) + x^{3} \cdot \frac{1}{x}$$
$$= 3x^{2}ln(x) + x^{2}$$
$$= x^{2}(3ln(x) + 1)$$

c) Her får vi bruk for kjerneregelen, der vi velger at kjernen vår er $u=2x^2+x$. Vi har at

$$h(x) = e^{u(x)} \Rightarrow h'(x) = (e^{u(x)})' \cdot u'(x)$$

= $e^{u(x)} \cdot (4x + 1)$
= $(4x + 1)e^{2x^2 + x}$

Oppgave 2

a) $\frac{1}{2x-2} + \frac{2}{x-3} - \frac{x-2}{x^2-4x+3}$

Først faktoriserer vi nevnerene for å finne ut hva fellesnevneren til brøkene er. Nevneren i det første leddet faktoriseres slik: 2x - 2 = 2(x - 1). Nevneren i andre legg kan ikke faktoriseres, mens nevneren i det tredje leddet kan vi faktorisere for eksempel ved bruk av abc-formelen. Etter faktoriseringen ser uttrykket ut slik

$$\frac{1}{2(x-1)} + \frac{2}{x-3} - \frac{x-2}{(x-1)(x-3)}$$

Vi ser dermed at fellesnevneren er 2(x-1)(x-3). Vi ganger første ledd med (x-3) i både teller og nevner, andre ledd med 2(x-1) og tredje ledd med 2.

$$\frac{1(x-3)}{2(x-1)(x-3)} + \frac{2 \cdot 2(x-1)}{2(x-1)(x-3)} - \frac{2(x-3)}{2(x-1)(x-3)}$$

$$= \frac{x-3+4x-4-2x+4}{2(x-1)(x-3)}$$

$$= \frac{3x-3}{2(x-1)(x-3)}$$

$$= \frac{3(x-1)}{2(x-1)(x-3)}$$

$$= \frac{3}{2(x-3)}$$

b) Her må vi ta i bruk logaritmesetningene. Disse er: ln(ab) = ln(a) + ln(b), $ln(\frac{a}{b}) = ln(a) - ln(b)$ og $ln(a^x) = x \cdot ln(a)$.

$$\begin{aligned} &2ln(x \cdot y^3) - \frac{1}{2}ln\left(\frac{x^4}{y^2}\right) \\ &= 2(ln(x) + ln(y^3) - \frac{1}{2}(ln(x^4) - ln(y^2)) \\ &= 2(ln(x) + 3ln(y)) - \frac{1}{2}(4ln(x) - 2ln(y)) \\ &= 2ln(x) + 6ln(y) - 2ln(x) + ln(y) \\ &= \underline{7ln(y)} \end{aligned}$$

Oppgave 3

a) Vektoren mellom to punkter (x_1, y_1) og (x_2, y_2) er gitt ved $[x_2 - x_1, y_2 - y_1]$. Vi får da:

$$\vec{AB} = [-1 - (-2), -3 - (-1)] = [1, -2]$$

 $\vec{BC} = [3 - (-1), -1 - (-3)] = [4, 2]$

b) Vi har at de to vektorene står vinkelrett på hverandre dersom $\vec{AB} \cdot \vec{BC} = 0$ $\vec{AB} \cdot \vec{BC} = [1, -2] \cdot [4, 2] = 1 \cdot 4 + (-2) \cdot 2 = 4 + (-4) = 0$

Vektorene står vinkelrett på hverandre.

c) Vektorene \vec{CD} og \vec{AB} er parallelle dersom $\vec{CD} = k \cdot \vec{AB}$ der k er et tall. Vi finner først \vec{CD} på samme måte som vi fant vektorene i oppgave a. $\vec{CD} = [t-3, t^2+2-(-1)] = [t-3, t^2+3]$

$$\vec{CD} = k \cdot \vec{AB}$$

 $[t - 3, t^2 + 3] = k \cdot [1, -2] = [k, -2k]$

For at to vektorer skal være like må x-koordinatene være like hverandre og y-koordinatene være like hverandre i de to vektorene. Vi får altså to likninger med to ukjente:

$$t - 3 = k \lor t^2 + 3 = -2k$$

Likning nr 1 gir oss et uttrykk for k. Dette setter vi inn for k i likning nr 2 og løser for t.

$$t^{2} + 3 = -2(t - 3)$$
$$t^{2} + 3 = -2t + 6$$
$$t^{2} + 2t - 3 = 0$$

vi bruker abc-formelen og får t = 1 eller t = -3

Vi har altså at \vec{CD} og \vec{AB} er parallelle hvis t=1 eller hvis t=-3.

Oppgave 4

a) En divisjon P(x):(x-a), der P(x) er et polynom, går opp dersom P(a)=0. Vi må altså sjekke for hvilke verdier av k som gjør at f(1)=0.

$$f(1) = 1^{3} + k \cdot 1 + 12 = 0$$
$$1 + k + 12 = 0$$
$$k + 13 = 0$$
$$k = -13$$

b) Vi har nå at $f(x) = x^3 - 13x + 12$. Vi vet at f(x) er delelig med (x - 1), derfor gjør vi en polynomdivisjon med dette for å faktorisere f. Vi vil få et andregradspolynom etter polynomdivisjonen som vi kan faktorisere videre ved hjelp av abc-formelen.

$$(\underbrace{x^5 + x^4 + x^3}_{-x^5 + x^4} + x^3 - 13x + 12) : (x - 1) = x^4 + 2x^3 + 3x^2 + 3x - 10 + \frac{2}{x - 1}$$

$$\underbrace{-x^5 + x^4}_{2x^4 + x^3} + x^3 - 2x^4 + 2x^3 - 3x^3 - 3x^3 - 3x^3 - 3x^3 - 3x^2 - 13x - 3x^2 - 13x - 3x^2 - 13x - 10x + 12 - 10x + 12 - 10x - 10 - 2$$

Ved hjelp av abc-formelen får vi at (x^2+x-12) kan faktoriseres til (x+4)(x-3). Når vi nå setter sammen alle de lineære faktorene vi har funnet, har vi at f(x) kan faktoriseres slik: $f(x) = x^3 - 13x + 12 = \underbrace{(x-1)(x+4)(x-3)}$.

c)
$$\frac{x^2+x-12}{x-1}$$