Sztuczna Inteligencja i Inżynieria Wiedzy

Algorytmy Genetyczne - sprawozdanie

Krzysztof Ruczkowski

$22~\mathrm{marca}~2021$

Spis treści

dania wpływu parametrów										
Rozmiar populacji				 						
Cel badania				 						
Wyniki i wykresy				 						
Wnioski				 						
Liczba pokoleń				 						
Cel badania				 						
Wyniki i wykresy				 						
Wnioski										
Rozmiar turnieju				 						
Cel badania				 						
Wyniki i wykresy				 						
Wnioski				 						
Operatory selekcji										
Cel badania				 						
Wyniki i wykresy				 						
Wnioski				 						
Prawdopodobieństwo krzyżowania				 						
Cel badania										
Wyniki i wykresy										
Wnioski										
Prawdopodobieństwo mutacji				 						
Cel badania										
Wyniki i wykresy										
Wnioski										

Badania wpływu parametrów

Każde badanie jest uruchamiane 5 razy.

Rozmiar populacji

Cel badania

Celem badania jest wybranie rozmiaru populacji, dla którego algorytm genetyczny daje najlepsze wyniki.

Problem	Rozmiar populacji	best	worst	avg	std
zad1	10	-328	-1034	-613,60	333,62
zad1	100	-328	-1039	-745,20	335,94
zad1	500	-342	-1031	-888,80	273,44
zad1	1000	-349	-1027	-883,80	267,54
zad1	2000	-343	-1028	-750,40	331,11
zad1	5000	-319	-1021	-873,60	277,34
zad1	10000	-319	-1027	-613,80	331,19
zad2	10	-424	-430	-425,20	2,40
zad2	100	-424	-430	-427,00	2,53
zad2	500	-424	-1036	$-548,\!20$	243,92
zad2	1000	-424	-430	$-425,\!20$	2,40
zad2	2000	-424	-450	-429,20	10,40
zad2	5000	-424	-1036	-546,40	244,80
zad2	10000	-424	-1036	-546,40	244,80
zad3	10	-2071	-3517	-2882,00	526,57
zad3	100	-2097	-4252	-2794,80	785,06
zad3	500	-1436	-3464	-2527,80	678,10
zad3	1000	-2114	-3553	-2975,00	530,80
zad3	2000	-2042	-3530	-2779,80	$476,\!21$
zad3	5000	-1492	-3588	-2838,60	761,07
zad3	10000	-2100	-2819	-2392,60	307,51

Tabela 1: Badanie rozmiaru populacji

Rysunek 1: Badanie rozmiaru populacji - problem 1

Rysunek 2: Badanie rozmiaru populacji - problem 2

Rysunek 3: Badanie rozmiaru populacji - problem 3

Zmiana rozmiaru populacji ma niewielki wpływ na problemy 1 i 2. Wybrany zostaje rozmiar populacji "500", ponieważ zwraca on najlepsze wyniki dla problemu 3.

Liczba pokoleń

Cel badania

Celem badania jest wybranie liczby pokoleń, po której algorytm genetyczny przestaje zwracać lepsze wyniki (lub robi to znacząco wolniej).

Rysunek 4: Badanie liczby pokoleń - problem 1

Rysunek 5: Badanie liczby pokoleń - problem 2

Rysunek 6: Badanie liczby pokoleń - problem 3

Rozwiązania dosyć szybko zbiegają do minimum. Wybrana zostaje liczba pokoleń "1500", ponieważ uznałem to za dobry kompromis pomiędzy czasem trwania badań a drobnymi korzyściami wyników dla problemu 3.

Rozmiar turnieju

Cel badania

Celem badania jest wybranie rozmiaru turnieju, dla którego algorytm genetyczny daje najlepsze wyniki.

 ${\bf Rysunek}$ 7: Badanie rozmiaru turnieju - problem 1

 ${\bf Rysunek~8:~}$ Badanie rozmiaru turnieju - problem2

Rysunek 9: Badanie rozmiaru turnieju - problem 3

Wybrany zostaje rozmiar turnieju "3", ponieważ zwraca on najlepsze wyniki dla wszystkich problemów.

Operatory selekcji

Cel badania

Celem badania jest wybranie operatora selekcji, dla którego algorytm genetyczny daje najlepsze wyniki.

 ${\bf Rysunek~10:}$ Badanie operatorów selekcji - problem 1

Rysunek 11: Badanie operatorów selekcji - problem 2

Rysunek 12: Badanie operatorów selekcji - problem 3

Wybór operatora nie ma znaczenia dla dwóch pierwszych problemów. Wybrany zostaje operator turnieju, ponieważ zwraca on najlepsze wyniki dla problemu 3.

Prawdopodobieństwo krzyżowania

Cel badania

Celem badania jest wybranie prawdopodobieństwa krzyżowania, dla którego algorytm genetyczny daje najlepsze wyniki.

Rysunek 13: Badanie prawdopodobieństwa krzyżowania - problem 1

 ${\bf Rysunek}$ 14: Badanie prawdopodobieństwa krzyżowania - problem 2

Rysunek 15: Badanie prawdopodobieństwa krzyżowania - problem 3

Wybór prawdopodobieństwa krzyżowania nie ma znaczenia dla dwóch pierwszych problemów. Wybrane zostaje prawdopodobieństwo krzyżowania "0.2", ponieważ zwraca ono najlepsze wyniki dla problemu 3.

Prawdopodobieństwo mutacji Cel badania

Celem badania jest wybranie prawdopodobieństwa mutacji, dla którego algorytm genetyczny daje najlepsze wyniki.

Rysunek 16: Badanie prawdopodobieństwa mutacji - problem 1

Rysunek 17: Badanie prawdopodobieństwa mutacji - problem 2

Rysunek 18: Badanie prawdopodobieństwa mutacji - problem 3

Wybrane zostaje prawdopodobieństwo mutacji "0.9", ponieważ zwraca ono najlepsze wyniki dla wszystkich problemów.

Porównanie algorytmu genetycznego z metodami "naiwnymi"

Rysunek 19: Porównanie algorytmów - problem 1

Rysunek 20: Porównanie algorytmów - problem 2

Rysunek 21: Porównanie algorytmów - problem 3

Podsumowanie

Algorytm genetyczny pozwala na znaczące poprawy wyników dla danego problemu.

Rysunek 22: Najlepsze znalezione rozwiązanie do problemu 1

Rysunek 23: Najlepsze znalezione rozwiązanie do problemu 2

Rysunek 24: Najlepsze znalezione rozwiązanie do problemu