Lecture 11: Dynamic Programming

Weighted Interval Scheduling:

Choose disjunct intervals to maximize the sum of the weight of these chosen intervals $\sum_{i \in C} W_i$, C

is the set of the chosen intervals. For each interval i , it starts at time S_i and ends at time F_i . I is the set of all intervals

An example is shown below in the picture:

Observation:

- Greedy algorithms like "earliest finishing time" and "Highest weight first" don't work well for this problem.
- I_i either in C or not.
- Suppose I_1, I_2, \ldots, I_n rank in finish time $F_i \colon F_1 \le \cdots \le F_i \le \cdots \le F_n$.

Define:

- **Prep(i)**: the maximum j that I_j doesn't overlap with I_n and j < n.
- **OPT[K]**: the optimum subset of $\{I_1, \dots, I_k\}$ which has the greatest sum of weight.
- **W[k]**: the value(sum of weight) of OPT[k].
- Thus: $OPT[n] = \begin{cases} OPT[n-1], & I_n \notin C \\ I_n + OPT[Prep(k)], & I_n \in c \end{cases}$ Still take the picture shown above as example:
- Still take the picture shown above as example: Prep(1) = Prep(2) = Prep(4) = 0, Prep(3) = 1, Prep(5) = Prep(6) = 3

Algorithm:

- 1. Input I_1, \cdots, I_n , for each I_n has: S_i, F_i, W_i
- 2. Pre-processing:
 - Calculate $Prep(k), k \in \{1, 2, \dots, n\}$
 - $\circ \ Prep(k) = max\{j|F_j < S_k\},$
 - $\circ Prep(k) = 0, if \{j|F_i < S_k\} = \emptyset$
- 3. Initiate:
 - $\circ W[k] = NULL, k \in \{1, 2, \cdots, n\}$
 - $\circ \ OPT[k] = NULL, k \in \{1, 2, \cdots, n\}$
 - $\circ W[0] = 0, OPT[0] = \emptyset.$
- 4. Loop or recursive solution:
- Loop:

1. For
$$k = 1, 2, \dots, n$$
:

1. if
$$W_k + W[Prep(k)] > W[k-1]$$
:

1.
$$OPT[k] = \{I_k\} \bigcup OPT[Prep(n)]$$

2. $W[k] = W_k + W[Prep(k)]$

2.
$$W[k] = W_k + W[Prep(k)]$$

2. else:

1.
$$OPT[k] = OPT[k-1]$$

2.
$$W[k] = W[k-1]$$

- 2. End for
- 3. Return W[n], OPT[n]
- Recursive:
 - 1. Optimum(k) =

1. if
$$W_k \neq NULL$$
:

1. return
$$W[k]$$
 and $OPT[k]$

- 2. else:
 - 1. Optimum(k-1)
 - 2. Optimum(Prep(k))

3. if
$$W_k + W[Prep(k)] > W[k-1]$$
:

1.
$$OPT[k] = \{I_k\} \bigcup OPT[Prep(n)]$$

2.
$$W[k] = W_k + W[Prep(k)]$$

4. else:
$$OPT[k] = OPT[k-1], \ W[k] = W[k-1]$$