Dataflow programming with mlr3pipelines::CHEAT SHEET

iii mlr

Introduction

Combine ML operations to flexible pipelines and processing graphs, which can be configured trained, resampled, tuned as any regular learner. The main purpose of a Graph is to build combined preprocessing and model fitting pipelines that can be used as a Learner.

Each operation in the above example is a PipeOp which transforms the data in each step. PipeOps are chained with the %>>% operator.

PipeOp

Flow operation with \$train() and \$predict() step.

Construction example: pca = po("pca")

- · \$train(input): Named list
- Spredict(input): Named list
- \$state: Learned parameters
- \$param_set: See hyperparameters

Popular PipeOps

Class	Key	Operation	
${\bf PipeOpRemoveConstants}$	"removeconstants"	Repair Tasks	
PipeOpScale	"scale"	Scale Features	
PipeOpImputeMean	"impute"	Impute NAs	
PipeOpFilter	"filter"	Feature Filter	
PipeOpEncode	"encode"	Factor Encoding	
PipeOpPCA	"pca"	PCA	
PipeOpSelect	"select"	Restrict Columns	
PipeOpCoIApply	"colapply"	Transform Columns	
PipeOpClassBalancing	"classbalancing"	Imbalanced Data	
PipeOpLearner	"learner"	Use Learner	
PipeOpLearnerCV	"learner_cv"	Crossval Learner	
PipeOpMutate	"mutate"	Fearure Engineering	
PipeOpChunk	"chunk"	Split Data	
PipeOpSubsample	"subsample"	Subsample Rows	
PipeOpFeatureUnion	"featureunion"	Combine Features	
PipeOpFixFactors	"fixfactors"	Handle Unknown Leve	
PipeOpNOP	"nop"	Do Nothing	
Full list: as.data.table(mlr pipeops)			

Graph

Connects PipeOps with edges to control data flow during training and prediction. Input is sent to sources (no in-edges), output is read from sinks (no out-edges). Important methods and slots:

- Display: print(gr), gr\$plot(html = TRUE)
- Accessing PipeOps: gr\$pipeops
 Named list of all contained POs.

Graph Construction

The %>>% operator takes either a PipeOp or a Graph on each of its sides and connects all left-hand outputs to the right-hand inputs.

For full control, connect PipeOps explicitly:

```
gr = Graph$new()
gr$add_pipeop(po("pca"))
gr$add_pipeop(lrn("classif.rpart"))
gr$add_edge("pca", "classif.rpart")
```

GraphLearner

GraphLearner behave like Learner and enable all mlr3 features : grl = GraphLearner\$new(gr)\$ See slots \$encapsulate for debugging and \$model for results after training.

Linear Graphs

Concatenate POs with %>>%:

Example

```
task = tak("penguins")
gr = po("scale") %>% po("encode") %>%
po("imputemean") %>% Irn("classif.rpart")
grl = GraphLearnerSnew(gr)
# access the scale pipeop:
grl%graph%pipeops%scale
grl%train(task)
grl%model
grl%predict(task)
rr = resample(task, grl, rsmp("cv", folds = 3))
```

Debugging and Intermediate Results

```
gr$keep_results = TRUE
```

Store intermediate results of PipeOps.

grl\$graph\$pipeops\$encode\$.result

Access encode pipeop output.

grl\$state

Returns state and fitted models.

Hyperparameters

For POs: Exactly as in a Learner.

```
enc = po("encode")
enc$param_set
enc$param_set$values = list(method="one-hot")
po("encode", param_vals = list(method="one-hot"))
```

For Graph / GraphLearner: All HPs are collected in a global ParamSet stored in \$param_set. IDs are prefixed with the respective PipeOp's id.

Tuning

Can jointly tune any Pipeline.

Example

Usage of AutoTuner is identical.

Feature Engineering

 $\label{eq:pipe0pMutate} \mbox{ providing expressions in a list.}$

Example

```
task = tsk("iris")
mutations = list(
    Sepal.Sum = ~ Sepal.Length + Sepal.Width)
mutate = po("mutate", param_vals =
    list(mutation = mutations))
GraphLearner$new(mutate %>>% lrn("classif.rpart"))
```

Logging

```
lg = lgr::get_logger("mlr3pipelines")
lg$set_threshold("<level>")
```

Change log-level only for mlr3pipelines.

Nonlinear Graphs

gunion()arrangesPipeOps orGraph's next to each other in a disjoint graph union.

pipeline_greplicate() creates a new Graph containing n
copies of the input (PipeOp or Graph).

PipeOpFeatureUnion aggregates features from all input tasks into a single Task.

Example

```
# train on orig and pca features
gunion(list(po("nop"), po("pca"))) %>%
po("featureunion") %>% lrn("classif.rpart")
```

Example

```
pr = po("subsample") %>% Irn("classif.rpart")
bagging = ppl("greplicate", pr, n = 18) %>%
po("classifavg", innum = 18)
```

Branching

Controls the path execution. Only one branch can be active. Which one is controlled by a hyperparameter. Unbranching ends the forking.

Example

```
gr = ppl("branch", list(
    pca = po("pca"), scale = po("scale"))
)
# set the "pca" path as the active one:
gr$param_set$values$branch.selection = "pca"
```

Tuning the branching selection enables powerful model selection.