Equation 1 Verification Results

Equation:

 $[[p]] = [s \ U : v(s)(p) = true]$ where P =p1n:

This equation defines the semantics of atomic propositions in CTL. Computed $[[p]] = p = \{0, 5, 7\}$

Results:

Р	Q	Computed	Manually Computed	Holds
		{0, 5, 7}	{0, 5, 7}	YES
		{1, 3, 6, 8}	{1, 3, 6, 8}	YES
		{2, 4}	{2, 4}	YES
		{0, 1, 2}	{0, 1, 2}	YES
		{3, 4, 5, 6}	{3, 4, 5, 6}	YES
		{7, 8}	{7, 8}	YES

For more details, see the log file.

Equation 2 Verification Results

Equation:

 $[[\neg P]] = W \setminus [[P]]$ where P = p1n:

This equation defines the semantics of negation in CTL. Computed $[\neg P]$ = not P = {1, 2, 3, 4, 6, 8}

Results:

Р	Q	Computed	Manually Computed	Holds
p1n		{1, 2, 3, 4, 6, 8}	{1, 2, 3, 4, 6, 8}	YES
p1t		{0, 2, 4, 5, 7}	{0, 2, 4, 5, 7}	YES
p1c		{0, 1, 3, 5, 6, 7, 8}	{0, 1, 3, 5, 6, 7, 8}	YES
p2n		{3, 4, 5, 6, 7, 8}	{3, 4, 5, 6, 7, 8}	YES
p2t		{0, 1, 2, 7, 8}	{0, 1, 2, 7, 8}	YES
p2c		{0, 1, 2, 3, 4, 5, 6}	{0, 1, 2, 3, 4, 5, 6}	YES

For more details, see the log file.

Equation 3 Verification Results

Equation:

```
[[P \ \ Q]] = [[P]] \cap [[Q]] where P = p1n, Q = p2n:
```

Results:

P	Q	Computed	Manually Computed	Holds
p1n	p2n	{0}	{0}	YES
p1n	p2t	{5}	{5}	YES
p1n	p2c	{7}	{7}	YES
p1t	p2n	{1}	{1}	YES
p1t	p2t	{3, 6}	{3, 6}	YES
p1t	p2c	{8}	{8}	YES
p1c	p2n	{2}	{2}	YES
p1c	p2t	{4}	{4}	YES
p1c	p2c	{}	{}	YES

For more details, see the log file.

Equation 4 Verification Results

Equation:

```
[[P \[ \] Q]] = [[P]] \[ \[ \[ \] where P = p1n, Q = p2n:
```

This equation defines the semantics of disjunction in CTL. Computed [[P \mathbb{Q} Q]] = P \mathbb{Q} Q = {0, 1, 2, 5, 7}

Р	Q	Computed	Manually Computed	Holds
p1n	p2n	{0, 1, 2, 5, 7}	{0, 1, 2, 5, 7}	YES
p1n	p2t	{0, 3, 4, 5, 6, 7}	{0, 3, 4, 5, 6, 7}	YES
p1n	p2c	{0, 5, 7, 8}	{0, 5, 7, 8}	YES
p1t	p2n	{0, 1, 2, 3, 6, 8}	{0, 1, 2, 3, 6, 8}	YES

p1t	p2t	{1, 3, 4, 5, 6, 8}	{1, 3, 4, 5, 6, 8}	YES
p1t	p2c	{1, 3, 6, 7, 8}	{1, 3, 6, 7, 8}	YES
p1c	p2n	{0, 1, 2, 4}	{0, 1, 2, 4}	YES
p1c	p2t	{2, 3, 4, 5, 6}	{2, 3, 4, 5, 6}	YES
p1c	p2c	{2, 4, 7, 8}	{2, 4, 7, 8}	YES

Equation 5 Verification Results

Equation:

[[EX P]] = $\tau EX([[P]])$ where P = p1n:

This equation defines the semantics of the existential next operator in CTL. $\tau EX(Z) = \{s \ \mathbb{L} \ W : t \ \mathbb{L} \ Z \text{ for some state } t \text{ with } s \text{ y } t\}$

Results:

Р	Q	Computed	Manually Computed	Holds
p1n		{0, 2, 4, 5, 7, 8}	{0, 2, 4, 5, 7, 8}	YES
p1t		{0, 1, 3, 5, 6}	{0, 1, 3, 5, 6}	YES
p1c		{1, 2, 3}	{1, 2, 3}	YES
p2n		{0, 1, 2, 7}	{0, 1, 2, 7}	YES
p2t		{0, 1, 2, 3, 4, 5}	{0, 1, 2, 3, 4, 5}	YES
p2c		{5, 6, 8}	{5, 6, 8}	YES

For more details, see the log file.

Equation 6 Verification Results

Equation:

[[AX P]] = $\tau AX([[P]])$ where P = p1n:

This equation defines the semantics of the universal next operator in CTL. $\tau AX(Z) = \{s \ \mathbb{I} \ W : t \ \mathbb{I} \ Z \text{ for all states } t \text{ with } s \text{ y } t\}$

P	Q	Computed	Manually Computed	Holds
p1n		{4, 7, 8}	{4, 7, 8}	YES

p1t	{6}	{6}	YES
p1c	{}	{}	YES
p2n	{7}	{7}	YES
p2t	{3, 4}	{3, 4}	YES
p2c	{6, 8}	{6, 8}	YES

Equation 7 Verification Results

Equation:

[[EF P]] = $\mu Z.([[P]]$ [$\tau EX(Z)$) where P = p1n:

This equation defines the semantics of the existential finally operator using a least fixpoint. $\mu Z.f(Z)$ denotes the least fixpoint of the operation f(Z).

Results:

P	Q	Computed	Manually Computed	Holds
p1n		{0, 1, 2, 3, 4, 5, 6, 7, 8}	{0, 1, 2, 3, 4, 5, 6, 7, 8}	YES
p1t		{0, 1, 2, 3, 4, 5, 6, 7, 8}	{0, 1, 2, 3, 4, 5, 6, 7, 8}	YES
p1c		{0, 1, 2, 3, 4, 5, 6, 7, 8}	{0, 1, 2, 3, 4, 5, 6, 7, 8}	YES
p2n		{0, 1, 2, 3, 4, 5, 6, 7, 8}	{0, 1, 2, 3, 4, 5, 6, 7, 8}	YES
p2t		{0, 1, 2, 3, 4, 5, 6, 7, 8}	{0, 1, 2, 3, 4, 5, 6, 7, 8}	YES
p2c		{0, 1, 2, 3, 4, 5, 6, 7, 8}	{0, 1, 2, 3, 4, 5, 6, 7, 8}	YES

For more details, see the log file.

Equation 8 Verification Results

Equation:

[[EG P]] = $\nu Z.([[P]] \cap \tau EX(Z))$ where P = p1n:

This equation defines the semantics of the existential globally operator using a greatest fixpoint. vZ.f(Z) denotes the greatest fixpoint of the operation f(Z).

I	Р	Q	Computed	Manually Computed	Holds
	p1n		{0, 5, 7}	{0, 5, 7}	YES

p1t	{}	{}	YES
р1с	{}	{}	YES
p2n	{0, 1, 2}	{0, 1, 2}	YES
p2t	{}	{}	YES
p2c	{}	{}	YES

Equation 9 Verification Results

Equation:

[[AF P]] = μ Z.([[P]] [τ AX(Z)) where P = p1n:

This equation defines the semantics of the always finally operator using a least fixpoint. $\mu Z.f(Z)$ denotes the least fixpoint of the operation f(Z).

Results:

P	Q	Computed	Manually Computed	Holds
p1n		{0, 1, 2, 3, 4, 5, 6, 7, 8}	{0, 1, 2, 3, 4, 5, 6, 7, 8}	YES
p1t		{1, 3, 6, 8}	{1, 3, 6, 8}	YES
p1c		{2, 4}	{2, 4}	YES
p2n		{0, 1, 2, 3, 4, 5, 6, 7, 8}	{0, 1, 2, 3, 4, 5, 6, 7, 8}	YES
p2t		{3, 4, 5, 6}	{3, 4, 5, 6}	YES
p2c		{3, 4, 5, 6, 7, 8}	{3, 4, 5, 6, 7, 8}	YES

For more details, see the log file.

Equation 10 Verification Results

Equation:

[[AG P]] = $\nu Z.([[P]] \cap \tau AX(Z))$ where P = p1n:

This equation defines the semantics of the always globally operator using a greatest fixpoint. $\nu Z.f(Z)$ denotes the greatest fixpoint of the operation f(Z).

P	Q	Computed	Manually Computed	Holds
p1n		{}	{}	YES

p1t	{}	{}	YES
p1c	{}	{}	YES
p2n	{}	{}	YES
p2t	{}	{}	YES
p2c	{}	{}	YES

Equation 11 Verification Results

Equation:

[[EP UQ]] = $\mu Z.([[Q]]$ [([[P]] \cap $\tau EX(Z))) where P = p1n, Q = p2n:$

This equation defines the semantics of the existential until operator using a least fixpoint. $\mu Z.f(Z)$ denotes the least fixpoint of the operation f(Z).

Results:

Р	Q	Computed	Manually Computed	Holds
p1n	p2n	{0, 1, 2, 5, 7}	{0, 1, 2, 5, 7}	YES
p1n	p2t	{0, 3, 4, 5, 6, 7}	{0, 3, 4, 5, 6, 7}	YES
p1n	p2c	{0, 5, 7, 8}	{0, 5, 7, 8}	YES
p1t	p2n	{0, 1, 2}	{0, 1, 2}	YES
p1t	p2t	{1, 3, 4, 5, 6}	{1, 3, 4, 5, 6}	YES
p1t	p2c	{1, 3, 6, 7, 8}	{1, 3, 6, 7, 8}	YES
p1c	p2n	{0, 1, 2}	{0, 1, 2}	YES
p1c	p2t	{2, 3, 4, 5, 6}	{2, 3, 4, 5, 6}	YES
p1c	p2c	{7, 8}	{7, 8}	YES

For more details, see the log file.

Equation 12 Verification Results

Equation:

[[AP UQ]] = $\mu Z.([[Q]]$ [([[P]] \cap $\tau AX(Z))) where P = p1n, Q = p2n:$

This equation defines the semantics of the universal until operator using a least fixpoint. $\mu Z.f(Z)$ denotes the least fixpoint of the operation f(Z).

Results:

Р	Q	Computed	Manually Computed	Holds
p1n	p2n	{0, 5, 7}	{0, 1, 2, 7}	NO
p1n	p2t	{4, 5}	{3, 4, 5, 6}	NO
p1n	p2c	{5, 7, 8}	{7, 8}	NO
p1t	p2n	{1, 3, 6, 8}	{0, 1, 2}	NO
p1t	p2t	{3, 6}	{3, 4, 5, 6}	NO
p1t	p2c	{3, 6, 8}	{6, 7, 8}	NO
p1c	p2n	{2, 4}	{0, 1, 2}	NO
p1c	p2t	{4}	{3, 4, 5, 6}	NO
p1c	p2c	{4}	{7, 8}	NO

For more details, see the log file.