

#### **Extensions to Policy Gradient**

Reinforcement Learning School of Data Science University of Virginia

Last updated: March 18, 2025

# **Agenda**

- > Recap of REINFORCE
- > Actor-Critic Methods
- > Trust Region Methods
- > Deep Deterministic Policy Gradient (DDPG)

# Recap of REINFORCE

#### REINFORCE

This was our first policy gradient (PG) method

All PG methods are on-policy algorithms

REINFORCE is a Monte Carlo Gradient algorithm (uses full trajectories)

It works by:

- 1) simulating paths
- 2) calculating returns G from each path (evaluate)
- 3) taking update steps based on return and gradient of policy (improve)

#### REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization  $\pi(a|s, \theta), \forall a \in A, s \in S, \theta \in \mathbb{R}^n$ 

Initialize policy weights  $\theta$ 

Repeat forever:

Generate an episode  $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ , following  $\pi(\cdot|\cdot, \boldsymbol{\theta})$ 

For each step of the episode t = 0, ..., T - 1:

 $G_t \leftarrow \text{return from step } t$ 

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G_t \nabla_{\boldsymbol{\theta}} \log \pi(A_t | S_t, \boldsymbol{\theta})$$

### **REINFORCE Intuition**

As we generate sample paths, we calculate return G over the paths.

The update step will increase parameter vector in direction of:

- greater return
- greater increase of probability repeating action  $A_t$  on future visits to state  $S_t$

#### REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization  $\pi(a|s, \theta), \forall a \in A, s \in S, \theta \in \mathbb{R}^n$ 

Initialize policy weights  $\theta$ 

Repeat forever:

Generate an episode  $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ , following  $\pi(\cdot|\cdot, \boldsymbol{\theta})$ 

For each step of the episode t = 0, ..., T-1:

 $G_t \leftarrow \text{return from step } t$ 

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G_t \nabla_{\boldsymbol{\theta}} \log \pi(A_t | S_t, \boldsymbol{\theta})$$

# **REINFORCE Limitations**

REINFORCE can have high variance and converge slowly

From any sampled (s,a) there may be many very different return estimates

We are estimating the gradient of the performance measure  $\nabla J(\theta_t)$ 

Can be noisy due to factors including:

- > Noise in environment
- > Sparse rewards
- > Length of sample trajectories can vary

## **REINFORCE** with Baseline

REINFORCE can have high variance and converge slowly

We want to take positive gradient steps in direction of parameters that lead to high-reward trajectories We want to take negative steps for low-reward trajectories

Rather than working w rewards, we can work with relative rewards



## REINFORCE with Baseline, contd.

Positive gradient steps in direction of parameters that lead to high *relative* reward trajectories Negative steps for low *relative* reward trajectories

Q: What makes sense for relative reward?

One solution: subtract the average trajectory reward

This is actually the state value function V(s)

By subtracting off a baseline, it reduces variance

We will still have an unbiased estimate for gradient



# REINFORCE with Baseline, contd.

Plot showing many simulated paths. A gain can be computed for each path.

The dark curve shows average trajectory values. The gain can be computed and it represents V(s).

This can be treated as baseline.



# REINFORCE with Baseline Algorithm

REINFORCE can have high variance and converge slowly

One solution: subtract baseline, which can be state value function

#### REINFORCE with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_*$

Input: a differentiable policy parameterization  $\pi(a|s, \theta)$ 

Input: a differentiable state-value function parameterization  $\hat{v}(s, \mathbf{w})$ 

Algorithm parameters: step sizes  $\alpha^{\theta} > 0$ ,  $\alpha^{\mathbf{w}} > 0$ 

Initialize policy parameter  $\boldsymbol{\theta} \in \mathbb{R}^{d'}$  and state-value weights  $\mathbf{w} \in \mathbb{R}^d$  (e.g., to 0)

Loop forever (for each episode):

Generate an episode  $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ , following  $\pi(\cdot|\cdot, \boldsymbol{\theta})$ 

Loop for each step of the episode  $t = 0, 1, \dots, T-1$ :

$$G \leftarrow \sum_{k=t+1}^{T} R_k$$

$$\delta \leftarrow G - \hat{v}(S_t, \mathbf{w})$$
Value function as baseline

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \gamma^t \delta \nabla \hat{v}(S_t, \mathbf{w})$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha^{\boldsymbol{\theta}} \gamma^t \delta \nabla \ln \pi(A_t | S_t, \boldsymbol{\theta})$$

# **Actor-Critic Methods**

# Introducing the Critic

The state value function estimate is based on first state of each transition (time *t*)

$$\delta \leftarrow G - \hat{v}(S_t, \mathbf{w})$$

Another option is to use state value estimates from multiple time steps  $\gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})$ 

Given two time steps, we can estimate a one-step return

We can collect many trajectories, calculate the returns, and train a neural network

By using this model, it reduces the variance from the samples

It can be used to evaluate the policy, and is called the critic

# The Actor

The policy network is called the *actor* 

It guides the behavior of the agent

The actor uses a separate set of parameters

### **Actor-Critic**

We now have two different parametrized functions:

- > Policy function (actor)
- > State-value function (*critic*). Evaluates the policy.

For each function the params are updated on each pass

Can use neural networks for the functions, given sufficient training data

# **Actor-Critic Algorithm**

There are two parametrized functions: one for policy (*actor*), one for state value (*critic*) For each function the params are updated on each pass

```
One-step Actor-Critic (episodic)
Input: a differentiable policy parameterization \pi(a|s,\theta)
Input: a differentiable state-value parameterization \hat{v}(s, \mathbf{w})
Parameters: step sizes \alpha^{\theta} > 0, \alpha^{\mathbf{w}} > 0
Initialize policy parameter \theta \in \mathbb{R}^{d'} and state-value weights \mathbf{w} \in \mathbb{R}^{d}
Repeat forever:
    Initialize S (first state of episode)
    I \leftarrow 1
    While S is not terminal:
         A \sim \pi(\cdot|S,\theta)
         Take action A, observe S', R
         \delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})
                                                                    (if S' is terminal, then \hat{v}(S', \mathbf{w}) \doteq 0)
         \mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} I \delta \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})
         \theta \leftarrow \theta + \alpha^{\theta} I \delta \nabla_{\theta} \ln \pi(A|S,\theta)
         I \leftarrow \gamma I
         S \leftarrow S'
```

Estimate of one-step return  $\gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})$ 

# Reappearance of the Advantage Function

Recall the advantage function which measures the benefit of a particular action:

$$A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$$

This appears in the critic term (line 4 circled at right)

The Q-value estimate can be calculated from single step transitions. We have done this with TD learning.

```
While S is not terminal:

A \sim \pi(\cdot|S, \theta)

Take action A, observe S', R

\delta \leftarrow R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})

\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} I \delta \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})

\theta \leftarrow \theta + \alpha^{\theta} I \delta \nabla_{\theta} \ln \pi(A|S, \theta)

I \leftarrow \gamma I

S \leftarrow S'
```

When estimating the advantage this way, the approach is sometimes called *Advantage Actor Critic* or A2C

# Trust Region Methods

#### Trust Region Policy Optimization (TRPO)

Source: OpenAl Spinning Up

TRPO methods have shown a large improvement over Actor Critic methods

TRPO updates policies by taking largest possible step to improve performance However, there is a constraint: new policy must not differ "too much" from old policy

Constraint is formalized using KL-divergence: distance between prob distributions

### K-L Divergence

Given probability distributions P and Q defined on sample space  $\mathcal{X}$ ,

KL-divergence measures log-difference between *P* and *Q*, where expectation is measured relative to *P* 

Discrete case: 
$$D_{ ext{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log \left( rac{P(x)}{Q(x)} 
ight)$$
 ,

Continuous case: 
$$D_{ ext{KL}}(P \parallel Q) = \int_{-\infty}^{\infty} p(x) \log \left(rac{p(x)}{q(x)}
ight) dx$$
,

See here for details and a nice example

#### **TRPO in Practice**

TRPO is relatively hard to implement in practice.

Proximal Policy Optimization (PPO) is easier to implement

Thus, we see a quick overview of TRPO

#### Relative Policy Performance

Define surrogate advantage which measures relative performance of policies

 $\pi_{ heta}$  New policy

 $\pi_{ heta_k}$  Old policy

 $\mathcal{L}( heta_k, heta)$  Surrogate advantage of new policy over old policy

$$\mathcal{L}(\theta_k, \theta) = \mathop{\mathbf{E}}_{s, a \sim \pi_{\theta_k}} \left[ \frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a) \right]$$

Expectation is taken under new policy
As usual, we estimate expectation by sampling

#### **Taylor Approximation**

$$\mathcal{L}(\theta_k, \theta) = \mathop{\mathbf{E}}_{s, a \sim \pi_{\theta_k}} \left[ \frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a) \right]$$

TRPO uses first-order Taylor expansion for easier solution

#### Recall:

For function f(x) differentiable at point x = a, can consider approximations:

$$P_1(x) = f(a) + f'(a)(x-a)$$
 (First order)

$$P_2(x)=f(a)+f'(a)(x-a)+rac{f''(a)}{2}(x-a)^2$$
. (Second order)

### Taylor Approximation, contd.

$$\mathcal{L}(\theta_k, \theta) = \mathop{\mathbf{E}}_{s, a \sim \pi_{\theta_k}} \left[ \frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a) \right]$$

TRPO uses first-order Taylor expansion for easier solution

Approximation has this form:

$$\mathcal{L}(\theta_k, \theta) \approx g^T(\theta - \theta_k)$$
$$\bar{D}_{KL}(\theta||\theta_k) \approx \frac{1}{2}(\theta - \theta_k)^T H(\theta - \theta_k)$$

where g is gradient and H is Hessian (2<sup>nd</sup> order derivative) of surrogate This can be useful where parameters are sufficiently close

#### Optimization Problem

Framing as an optimization problem we have:

$$\theta_{k+1} = \arg\max_{\theta} g^T(\theta - \theta_k)$$
  
s.t. 
$$\frac{1}{2}(\theta - \theta_k)^T H(\theta - \theta_k) \le \delta.$$

The objective of TRPO is to maximize the gradient of the surrogate advantage function

This is equivalent to policy gradient method, which moves in direction of gradient

### Solving the Optimization Problem

Framing as an optimization problem we have:

$$\theta_{k+1} = \arg\max_{\theta} g^{T}(\theta - \theta_{k})$$
s.t. 
$$\frac{1}{2}(\theta - \theta_{k})^{T}H(\theta - \theta_{k}) \leq \delta.$$

This can be solved with this update rule:

$$\theta_{k+1} = \theta_k + \alpha^j \sqrt{\frac{2\delta}{g^T H^{-1} g}} H^{-1} g,$$

Notice each parameter has different learning rate Hessian *H* needs to be inverted

#### TRPO Challenges

Several challenges make this hard to implement (see Bilgin p249 for list)

#### Includes:

- > Taylor approximation may be violated
- > For policy network with massive number of parameters,
  - Inverting Hessian H may be hard
  - May be hard to store H-1

### **Proximal Policy Optimization (PPO)**

Same approach as TRPO:

- > Take policy improvement steps
- > Limit distance between old and new policy to retain good performance

TRPO used second-order Taylor expansion

PPO uses first-order methods and tricks
Easier to implement, competitive performance

#### **PPO Variants**

PPO-Penality: penalize KL-divergence in objective function

PPO-Clip: No KL-divergence term. Specialized clipping of objective fcn.

OpenAl uses PPO-Clip

Objective function from earlier:

$$\mathcal{L}(\theta_k, \theta) = \mathop{\mathbf{E}}_{s, a \sim \pi_{\theta_k}} \left[ \frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a) \right]$$

We will limit policy changes based on ratio

#### PPO-Clip

Clipped form of objective function *L* has form below:

$$L(s, a, \theta_k, \theta) = \min \left( \frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a), \quad g(\epsilon, A^{\pi_{\theta_k}}(s, a)) \right),$$

This can be computing based on sample trajectories

The min() operator will serve to limit changes based on ratio of new and old policies

### PPO-Clip: Example of Positive Case

If advantage for a state-action pair is positive, the contribution to objective reduces to

$$L(s, a, \theta_k, \theta) = \min\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}, (1+\epsilon)\right) A^{\pi_{\theta_k}}(s, a).$$

Any benefit of changing the policy beyond clipped limit is removed

This acts as a regularizer

#### PPO-Clip Algorithm

- 1: Input: initial policy parameters  $\theta_0$ , initial value function parameters  $\phi_0$
- 2: **for**  $k = 0, 1, 2, \dots$  **do**
- 3: Collect set of trajectories  $\mathcal{D}_k = \{\tau_i\}$  by running policy  $\pi_k = \pi(\theta_k)$  in the environment.
- 4: Compute rewards-to-go  $\hat{R}_t$ .
- 5: Compute advantage estimates,  $\hat{A}_t$  (using any method of advantage estimation) based on the current value function  $V_{\phi_k}$ .
- 6: Update the policy by maximizing the PPO-Clip objective:

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \min\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} A^{\pi_{\theta_k}}(s_t, a_t), \ g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right),$$

typically via stochastic gradient ascent with Adam.

7: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^{T} \left( V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm.

8: end for

# Deep Deterministic Policy Gradient (DDPG)

#### DPG - Motivation

We studied a lot of approaches using Q-function

For discrete / low cardinality action space, this makes sense:  $a^*(s) = \arg\max_a Q^*(s,a)$ 

$$a^*(s) = \arg\max_{a} Q^*(s, a)$$

For continuous / high cardinality action space, the *max* is too costly

Instead, a function approximator is used in DDPG

This is the same idea that we used for state spaces with DQN

#### **DDPG - Parametrization**

The idea is to use:  $\max_a Q(s,a) \approx Q(s,\mu(s))$ 

for policy  $\mu(s)$ 

This assumes the policy function is differentiable wrt action

The policy is now deterministic

#### Uses the same features as DQN:

- Replay buffer for stored experiences
- Target network with soft updates (Polyak averaging):  $\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1-\rho)\phi$

## **DDPG** - Training

The policy is deterministic

If the agent explores on-policy, it may not try enough actions

The trick for better exploration is to add noise to the actions during training

#### DDPG - Algorithm

Add noise for more exploration

#### Algorithm 1 Deep Deterministic Policy Gradient

- 1: Input: initial policy parameters  $\theta$ , Q-function parameters  $\phi$ , empty replay buffer  $\mathcal{D}$
- 2: Set target parameters equal to main parameters  $\theta_{\text{targ}} \leftarrow \theta$ ,  $\phi_{\text{targ}} \leftarrow \phi$
- 3: repea
  - 4: Observe state s and select action  $a = \text{clip}(\mu_{\theta}(s) + \epsilon, a_{Low}, a_{High})$ , where  $\epsilon \sim \mathcal{N}$
- 5: Execute a in the environment
- 6: Observe next state s', reward r, and done signal d to indicate whether s' is terminal
- 7: Store (s, a, r, s', d) in replay buffer  $\mathcal{D}$
- 8: If s' is terminal, reset environment state.
- 9: if it's time to update then
- 10: for however many updates do
- 11: Randomly sample a batch of transitions,  $B = \{(s, a, r, s', d)\}$  from  $\mathcal{D}$
- 12: Compute targets

$$y(r, s', d) = r + \gamma (1 - d) Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s'))$$

13: Update Q-function by one step of gradient descent using

$$\nabla_{\phi} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi}(s,a) - y(r,s',d))^2$$

14: Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s, \mu_{\theta}(s))$$

15: Update target networks with

Soft updates

$$\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho) \phi 
\theta_{\text{targ}} \leftarrow \rho \theta_{\text{targ}} + (1 - \rho) \theta$$

- 16: end for
- 17: end if
- 18: until convergence

Source: https://spinningup.openai.com/en/latest/algorithms/ddpg.html