

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Mecánica Automotriz

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
	Celdas de Combustible

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Noveno	311091VE	102

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Proporcionar al estudiante los fundamentos básicos y las características generales de las celdas de combustible utilizadas en autos híbridos y autos completamente eléctricos.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1 Principios básicos de las celdas de combustible
- 1.2 ¿Qué limita la corriente eléctrica?
- 1.3 Conexión de celdas en serie.
- 1.4 Suministro de gas y enfriamiento
- 1.5 Tipos de celdas de combustible
- 1.6 Partes de un sistema de celdas de combustible
- 1.7 Ventajas y aplicaciones en la industria automotriz

2. Celdas de combustible de membrana de intercambio de protones (CCMIP)

- 2.1. Cómo funciona el electrolito de polímero
- 2.2. Electrodos y su estructura
- 2.3. Administración del agua en las CCMIP
- 2.4. Enfriamiento y suministro de aire en las CCMIP
- 2.5. Conexión de las CCMIP- Las placas bipolares
- 2.6. Presiones de operación
- 2.7. Composición de los reactantes
- 2.8. Ejemplos de sistemas

3. Celdas de combustible de metanol directo (CCMD)

- 3.1. Reacciones anódicas y el catalizador
- 3.2. Electrolito y cruce de combustible
- 3.3. Reacciones catódicas y el catalizador
- 3.4. Producción de metanol, almacenamiento y seguridad.
- 3.5. Aplicaciones de las celdas de combustible de metanol directo.

4. Celdas de combustible de temperatura alta y media (CCTAyM)

- 4.1. Características comunes
- 4.2. Celdas de combustible de ácido fosfórico
- 4.3. Celdas de combustible de carbonatos fundidos
- 4.4 Celdas de combustible de óxidos sólidos

5. Entrega de potencia desde una celda de combustible

- 5.1. Regulación de corriente directa y conversión de voltaje
- 5.2. Inversores

- 5.3. Motores eléctricos
- 5.4. Celda de combustible/Batería o Sistema Híbrido Capacitor
- 5.5 Sistemas de energía

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor, en donde presente conceptos y resuelva ejercicios. Revisión bibliográfica del tema en libros y artículos científicos por los alumnos. Discusión de los diferentes temas en seminarios y prácticas de laboratorio.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender los aspectos de teoría y práctica. La evaluación comprenderá, al menos, tres evaluaciones parciales que tendrán una equivalencia del 50% y una evaluación final que corresponderá al 50% restante.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Libro base

Fuel Cell Systems Explained, Second edition James Larminie and Andrew Dicks

Editorial Wiley

Fuel Cells. From Fundamentals to Applications Srinivasan and Supramaniam

Editorial Springer

Fuel Cells: Principles, Design, and Analysis Shripad T. Revankar and Pradip Majumdar

Editorial CRC Press

Libros de consulta

Fuel Cells: and Their Applications Karl V. Kordesch and Günter Simader

Editorial Wiley-VCH

Handbook of Fuel Cells. Fundamentals Technology and Applications (Vol. 1-6)

Wolf Vielstich, Hubert A. Gasteir, Arnold Lamm and Harumi Yokokawa Editorial Wiley

Handbook of Battery Materials Jürgen O. Besenhard Editorial Wiley-VCH

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Química, Ingeniería Química o en Energía.

M.C. VÍCTOR MANUEL CRUZ MARTÍNEZ JEFE DE CARRERA AUTORIZÓ

DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO

JEFATURA DE CARRERA DE INGENIERÍA MECÁNICA AUTOMOTRIZ