

Tarea 4

14 de octubre de 2024

 $2^{\underline{0}}$ semestre 2024 - Profesores P. Bahamondes - D. Bustamante - M. Romero

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59 del 21 de octubre a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template L^AT_FX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas (salvo que utilice su cupón #problemaexcepcional).
- Si tiene alguna duda, el foro de Github (issues) es el lugar oficial para realizarla.

Pregunta 1

(a) (1.5 pts) Recuerde que la diferencia entre dos conjuntos A y B se define como

$$A \setminus B = \{x \mid x \in A \land x \notin B\}.$$

Sean A, B y C conjuntos. ¿Es cierto que $(A \setminus B) \setminus C \subseteq A \setminus (B \setminus C)$? ¿Es cierto que $A \setminus (B \setminus C) \subseteq (A \setminus B) \setminus C$? En cada caso, demuestre o dé un contraejemplo de la propiedad.

- (b) Decimos que una relación R sobre un conjunto A es un preorden si es refleja y transitiva. Sea R un preorden sobre A:
 - (1) (1.5 pts) Demuestre que $R \cap R^{-1}$ es una relación de equivalencia en A.
 - (2) (3.0 pts) Definimos una relación S sobre el conjunto cuociente de A con respecto a $R\cap R^{-1}$ como sigue:

$$(C,D) \in S \iff \text{existe } c \in C \text{ y existe } d \in D \text{ tal que } (c,d) \in R.$$

Demuestre que S es un orden parcial.

Pregunta 2

- (a) (2.0 pts) Sea (A, \preceq) un orden total. Demuestre que para todo subconjunto no vacío $S \subseteq A$ y todo elemento $x \in A$, se cumple que x es un elemento minimal de S si y sólo si x es un mínimo de S.
- (b) Sea \mathcal{F} el conjunto de todas las funciones $f:\mathbb{N}\to\mathbb{N}$. Definimos la relación \preceq sobre \mathcal{F} como sigue:

$$f \preceq g \iff f(n) \leq g(n)$$
 para todo $n \in \mathbb{N}$.

- (1) (2.0 pts) Demuestre que \leq es un orden parcial sobre \mathcal{F} .
- (2) (1.0 pts) ¿Es \leq un orden total? Argumente su respuesta.
- (3) (1.0 pts) ¿Tiene \mathcal{F} un mínimo? Argumente su respuesta.