Project 3: Evaluating the Framingham Risk Score Model in a Simulated Population Using NHANES

Mavis

Stratified by SEX						
	1		2		p	test
n	1110		1468			
CVD (mean (SD))	0.32	(0.47)	0.16	(0.37)	<0.001	
TIMECVD (mean (SD))	7226.18	(2402.62)	7952.63	(1830.88)	<0.001	
SEX (mean (SD))	1.00	(0.00)	2.00	(0.00)	<0.001	
TOTCHOL (mean (SD))	226.34	(41.49)	246.22	(45.91)	<0.001	
AGE (mean (SD))	60.08	(8.23)	60.62	(8.41)	0.102	
SYSBP (mean (SD))	138.90	(21.05)	140.02	(23.74)	0.215	
DIABP (mean (SD))	81.88	(11.41)	80.33	(11.08)	0.001	
CURSMOKE (mean (SD))	0.39	(0.49)	0.31	(0.46)	<0.001	
DIABETES (mean (SD))	0.09	(0.28)	0.07	(0.25)	0.049	
BPMEDS (mean (SD))	0.11	(0.32)	0.18	(0.38)	<0.001	
HDLC (mean (SD))	43.58	(13.36)	53.03	(15.69)	<0.001	
BMI (mean (SD))	26.21	(3.49)	25.55	(4.25)	<0.001	

[1] 2578 14

[1] 2539 13

	Stratified by SEX					
	1		2		p	test
n	4557		4697			
SEQN (mean (SD))	98363.83	(2677.38)	98296.19	(2665.73)	0.223	
SYSBP (mean (SD))	122.49	(18.71)	120.20	(21.09)	<0.001	
SEX (mean (SD))	1.00	(0.00)	2.00	(0.00)	<0.001	
AGE (mean (SD))	34.12	(25.75)	34.55	(25.25)	0.419	
BMI (mean (SD))	26.16	(7.63)	26.98	(8.80)	<0.001	

HDLC (mean (SD))	49.57 (13.53)	57.01 (14.94)	<0.001
CURSMOKE (mean (SD))	0.21 (0.41)	0.14 (0.35)	<0.001
BPMEDS (mean (SD))	0.84 (0.37)	0.86 (0.35)	0.334
TOTCHOL (mean (SD))	176.68 (40.38)	182.94 (40.59)	<0.001
DIABETES (mean (SD))	0.11 (0.31)	0.09 (0.29)	0.001

Code Appendix

```
library(riskCommunicator)
library(tidyverse)
library(tableone)
source("C:/Users/xliang34/OneDrive - Brown University/2023/missing_heatmap_function.R")
knitr::opts chunk$set(warning = FALSE, message = FALSE,
                      echo = FALSE, fig.align = "center")
data("framingham")
# The Framingham data has been used to create models for cardiovascular risk.
# The variable selection and model below are designed to mimic the models used
# in the paper General Cardiovascular Risk Profile for Use in Primary Care
# This paper is available (cvd_risk_profile.pdf) on Canvas.
framingham df <- framingham %>% select(c(CVD, TIMECVD, SEX, TOTCHOL, AGE,
                                       SYSBP, DIABP, CURSMOKE, DIABETES, BPMEDS,
                                       HDLC, BMI))
framingham_df <- na.omit(framingham_df)</pre>
CreateTableOne(data=framingham_df, strata = c("SEX"))
# Get blood pressure based on whether or not on BPMEDS
framingham_df$SYSBP_UT <- ifelse(framingham_df$BPMEDS == 0,</pre>
                                  framingham_df$SYSBP, 0)
framingham_df$SYSBP_T <- ifelse(framingham_df$BPMEDS == 1,</pre>
                                 framingham_df$SYSBP, 0)
# Looking at risk within 15 years - remove censored data
dim(framingham_df)
framingham_df <- framingham_df %>%
  filter(!(CVD == 0 & TIMECVD <= 365*15)) %>%
  select(-c(TIMECVD))
dim(framingham_df)
# Filter to each sex
framingham_df_men <- framingham_df %>% filter(SEX == 1)
framingham_df_women <- framingham_df %>% filter(SEX == 2)
# Fit models with log transforms for all continuous variables
mod_men <- glm(CVD~log(HDLC)+log(TOTCHOL)+log(AGE)+log(SYSBP_UT+1)+</pre>
```

```
log(SYSBP_T+1)+CURSMOKE+DIABETES,
      data= framingham_df_men, family= "binomial")
mod_women <- glm(CVD~log(HDLC)+log(TOTCHOL)+log(AGE)+log(SYSBP_UT+1)+</pre>
                   log(SYSBP T+1)+CURSMOKE+DIABETES,
               data= framingham df women, family= "binomial")
# The NHANES data here finds the same covariates among this national survey data
library(nhanesA)
# blood pressure, demographic, bmi, smoking, and hypertension info
bpx_2017 <- nhanes("BPX_J") %>%
  select(SEQN, BPXSY1 ) %>%
  rename(SYSBP = BPXSY1)
demo_2017 <- nhanes("DEMO_J") %>%
  select(SEQN, RIAGENDR, RIDAGEYR) %>%
  rename(SEX = RIAGENDR, AGE = RIDAGEYR)
bmx_2017 <- nhanes("BMX_J") %>%
  select(SEQN, BMXBMI) %>%
  rename(BMI = BMXBMI)
smq_2017 <- nhanes("SMQ_J") %>%
  mutate(CURSMOKE = case_when(SMQ040 %in% c(1,2) ~ 1,
                              SMQ040 == 3 \sim 0,
                              SMQ020 == 2 \sim 0)) \%
  select(SEQN, CURSMOKE)
bpq_2017 <- nhanes("BPQ_J") %>%
  mutate(BPMEDS = ifelse(BPQ050A == 1, 1, 0)) %>%
  select(SEQN, BPMEDS)
tchol_2017 <- nhanes("TCHOL_J") %>%
  select(SEQN, LBXTC) %>%
  rename(TOTCHOL = LBXTC)
hdl_2017 <- nhanes("HDL_J") %>%
  select(SEQN, LBDHDD) %>%
  rename(HDLC = LBDHDD)
diq_2017 <- nhanes("DIQ_J") %>%
  mutate(DIABETES = case_when(DIQ010 == 1 ~ 1,
                              DIQ010 %in% c(2,3) \sim 0,
                              TRUE ~ NA)) %>%
  select(SEQN, DIABETES)
```

```
# Join data from different tables
df_2017 <- bpx_2017 %>%
  full_join(demo_2017, by = "SEQN") %>%
full_join(bmx_2017, by = "SEQN") %>%
full_join(hdl_2017, by = "SEQN") %>%
full_join(smq_2017, by = "SEQN") %>%
full_join(bpq_2017, by = "SEQN") %>%
full_join(tchol_2017, by = "SEQN") %>%
full_join(diq_2017, by = "SEQN") %>%
full_join(diq_2017, by = "SEQN") %>%
```