Module PRB1 : Probabilités de base.

Examen 2^e session : durée trois heures.

Documents autorisés : polycopié et notes personnelles de cours.

Jeudi 2 septembre 2004.

Exercice 1. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles. On pose $Y=\sup_{n\geq 1}X_n$ et on désigne par A l'événement $A=\{Y=+\infty\}$.

- 1. On pose, pour tout $p \ge 1$, $Y_p = \sup_{n>p} X_n$.
 - (a) Montrer que, pour $p \ge 1$, $A = \{Y_p = +\infty\}$.
 - (b) L'événement A est-il un événement asymptotique de la suite $(X_n)_{n\geq 1}$?
- 2. On suppose qu'il existe $c \in \mathbb{R}$ telle que $\sum_{n \geq 1} \mathbb{P}(X_n > c) < +\infty$. Calculer $\mathbb{P}(A)$.
- 3. On suppose désormais les variables aléatoires $(X_n)_{n\geq 1}$ indépendantes.
 - (a) Quelles valeurs peut prendre $\mathbb{P}(A)$?
- (b) Montrer que s'il existe un réel c tel que $\sum_{n\geq 1} \mathbb{P}(X_n>c)=+\infty$ alors $Y\geq c$ presque sûrement.
 - (c) Donner une condition nécessaire et suffisante pour que $\mathbb{P}(A) = 1$.

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles, indépendantes et identiquement distribuées, de carré intégrable, telle que $\mathbb{E}[X_1] = 0$ et $\mathbb{E}[X_1^2] = 1$.

Pour $n \ge 1$, on pose

$$S_n = X_1 + \ldots + X_n, \qquad R_n = \frac{|S_n|}{\sqrt{n}}.$$

1. Montrer que $(R_n)_{n\geq 1}$ converge en loi vers une variable aléatoire Z dont on déterminera la densité. Vérifier que $\mathbb{E}[Z] = \sqrt{2}/\sqrt{\pi}$.

Pour $l \geq 1$, on pose $\varphi_l(x) = \min(x, l) \mathbf{1}_{\mathbb{R}_+}(x)$.

- 2. (a) Justifier que, pour tout $l \geq 1$, $\lim_{n \to +\infty} \mathbb{E}[\varphi_l(R_n)] = \mathbb{E}[\varphi_l(Z)]$.
 - (b) Établir, pour $l \ge 1$ et $n \ge 1$, les quatre relations suivantes

$$\left| \mathbb{E}[R_n] - \mathbb{E}[\varphi_l(R_n)] \right| \le \mathbb{E}\left[R_n \, \mathbf{1}_{\{R_n \ge l\}} \right] \le \frac{1}{l} \, \mathbb{E}\left[R_n^2 \right] = \frac{1}{l}.$$

3. (a) Prouver que, pour tout $l \geq 1$,

$$\limsup_{n \to +\infty} \left| \mathbb{E}[R_n] - \sqrt{\frac{2}{\pi}} \right| \le \frac{1}{l} + (\mathbb{E}[Z] - \mathbb{E}[\varphi_l(Z)]).$$

1

(b) Conclure.

Exercice 3. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires à valeurs dans $\{-1,1\}$ indépendantes et identiquement distribuées suivant la loi $\mathbb{P}(X_1=1)=\mathbb{P}(X_1=-1)=1/2$.

On pose $S_0 = 0$ et, pour tout $n \ge 1$, $S_n = X_1 + \ldots + X_n$. Soit α un réel strictement positif; on considère

$$M_0 = 1,$$
 $M_n = (\operatorname{ch} \alpha)^{-n} e^{\alpha S_n}, \quad n \ge 1.$

- 1. (a) Pour tout $n \geq 1$, calculer $\mathbb{E}[M_n]$.
 - (b) Montrer que $(M_n)_{n\geq 1}$ converge presque sûrement vers 0.

Indication : on pourra écrire $M_n = \exp(\alpha S_n - n \ln \cosh \alpha)$.

- (c) La convergence a-t-elle lieu dans L¹?
- 2. On pose $T = \inf\{n \ge 1 : S_n = 1\}$.
 - (a) Vérifier que $\{\limsup_{n\to+\infty} S_n = +\infty\} \subset \{T < +\infty\}.$
 - (b) Quelles valeurs peut prendre $\mathbb{P}\left(\limsup_{n\to+\infty} S_n = +\infty\right)$?
 - (c) Soit a > 0. Établir les inégalités

$$\mathbb{P}\left(\limsup_{n\to+\infty} S_n = +\infty\right) \ge \mathbb{P}\left(\limsup_{n\to+\infty} \left\{S_n \ge a\sqrt{n}\right\}\right) \ge \limsup_{n\to+\infty} \mathbb{P}\left(S_n \ge a\sqrt{n}\right) = 1 - \Phi(a),$$

où Φ désigne la fonction de répartition de la loi gaussienne $\mathcal{N}(0,1)$.

- (d) En déduire que, presque sûrement, $\limsup_{n\to+\infty} S_n = +\infty$ et que T est fini presque sûrement
- 3. On pose, pour tout $n \geq 1$, $Z_n = M_{n \wedge T}$ c'est à dire

$$\forall \omega \in \Omega, \qquad Z_n(\omega) = M_{\min(n, T(\omega))}(\omega).$$

- (a) Montrer que si $T(\omega) < +\infty$ $(Z_n(\omega))_{n\geq 1}$ converge vers $e^{\alpha}(\operatorname{ch} \alpha)^{-T(\omega)}$.
- (b) Établir l'inégalité $\sup_{n\geq 1}|Z_n|\leq e^{\alpha}$ et en déduire que la convergence précédente a lieu également dans L¹.
- 4. (a) Montrer que, pour tout $k \geq 1$, les variables aléatoires $\mathbf{1}_{\{k \leq T\}} M_{k-1}$ et M_k/M_{k-1} sont indépendantes.
 - (b) Vérifier que

$$Z_n = M_0 + \sum_{k=1}^{n} \mathbf{1}_{\{k \le T\}} M_{k-1} \left(M_k / M_{k-1} - 1 \right)$$

puis montrer que, pour tout $n \geq 1$, $\mathbb{E}[Z_n] = 1$.

- (c) En déduire que $\mathbb{E}\left[(\operatorname{ch}\alpha)^{-T}\right] = e^{-\alpha}$.
- 5. Déterminer la fonction génératrice de T.

Module PRB1 : Correction de l'examen.

Exercice 1.

Exercice 2.

Exercice 3.