Università di Catania Corso di Laurea in Fisica Compito scritto di Fisica Generale I M.G. Grimaldi – A. Insolia

Catania, 17 Febbraio 2021

Per la prova in itinere svolgere i problemi 1, 2, 3 (tempo 2h) per la prova completa svolgere i problemi 1, 3, 4 (tempo 2 h).

Problema n.1

Due corpi puntiformi sono posti su un piano orizzontale ad una distanza iniziale L=140 cm (vedi figura). Il corpo 1 ha massa m_1 =1.00 kg e all'istante t=0 viene lanciato verso destra con una velocità iniziale orizzontale e di modulo v_0 ; il corpo 2, di massa m_2 =3.00 kg, è inizialmente fermo e si trova in corrispondenza dell'inizio di una rampa la cui sommità è ad una quota h rispetto al piano orizzontale. Nel suo moto lungo il piano orizzontale il corpo 1 risente di un attrito dinamico con coefficiente di attrito μ_k =0.500. La rampa invece è perfettamente liscia. Sapendo che l'urto tra i due corpi è perfettamente elastico e che, dopo l'urto, il corpo 1 torna indietro fermandosi esattamente nella sua posizione originaria, determinare:

- a) il modulo v₀ della velocità iniziale del corpo 1;
- b) la velocità del corpo 2 subito dopo l'urto;
- c) il massimo valore di h, h_{max}, sapendo che il corpo 2 riesce a raggiungere la sommità della rampa.

Problema n.2

Un veicolo, avente una massa M=1000 kg (trattarlo come un corpo puntiforme) è inizialmente fermo su un tratto di strada rettilineo e orizzontale; a partire dall'istante t=0 il veicolo si mette in moto e la sua velocità istantanea cresce seguendo la legge oraria $v(t)=At-Bt^2$ con A=6.00 m/s² e B=0.300 m/s³ fino all'istante $t_f=10.0$ s, mentre per $t>t_f$ si mantiene costante e pari $v(t_f)$. Determinare:

- a) la velocità del veicolo all'istante t=t_f;
- b) a che distanza dalla posizione iniziale si trova il veicolo all'istante t=t_f.

Il moto del veicolo (di cui sopra) è determinato dalla spinta del motore che indicheremo con F(t) (dato che dipenderà dal tempo). Sapendo che, oltre a F(t), sul veicolo agisce anche una forza resistente, dovuta alla resistenza dell'aria, opposta al moto avente modulo R(t)= $kv^2(t)$ con k=1.70 N· s^2/m^2 , determinare:

- c) l'espressione di F(t) nell'intervallo di tempo [0, t_f];
- d) il valore della spinta del motore all'istante $t=t_f$ (cioè il valore di $F(t_f)$).

Problema n.3

Un cilindro omogeneo, di massa M=20.0 kg e raggio R=20.0 cm, è poggiato su un piano orizzontale perfettamente liscio. Al suo centro di massa è agganciata una corda ideale al cui altro estremo è appeso (tramite una puleggia ideale) un corpo di massa $m_1=6.00$ kg. Intorno al cilindro è avvolta una seconda corda ideale al cui altro estremo è appeso (tramite una seconda puleggia ideale) un corpo di massa m_2 (si veda la figura). Si noti che, essendo il piano d'appoggio perfettamente liscio, il cilindro scivolerà su di esso e quindi seguirà un moto roto—traslatorio. Nell'ipotesi che la corda avvolta intorno al cilindro non scivoli mai rispetto alla sua superficie, determinare:

- a) la massa che deve avere il corpo 2 affinchè il centro di massa del cilindro rimanga in quiete;
- b) i corrispondenti valori delle accelerazioni lineari a_1 e a_2 dei corpi 1 e 2 e angolare α del cilindro.

Problema n.4

Un recipiente cilindrico con pareti adiabatiche è diviso in due parti da un pistone a tenuta anch'esso adiabatico libero di scorrere lungo l'asse del cilindro stesso. Lo scomparto 1 del recipiente contiene n_1 =1.00 mol di un gas ideale monoatomico; nello scomparto 2 abbiamo n_2 = 2.50 mol di un gas ideale biatomico. Il volume complessivo del recipiente è V=50.0 dm³. Sapendo che inizialmente il sistema è in equilibrio e che in tale condizione i due gas sono alle temperature T_{1i} =250 K e T_{2i} =300 K, si determini:

a) il rapporto V₂/V₁ tra i volumi dei due scomparti e le pressioni dei due gas.

Successivamente, il pistone viene bloccato e (come per magia) reso permeabile al calore. Al raggiungimento del nuovo equilibrio, determinare:

- b) la temperatura e le pressioni dei gas nei due scomparti;
- c) di quanto varia l'entropia del sistema.