

High Power and Dynamic Wireless Charging ORNL, INL, and NREL

Veda Galigekere (PI)

Email: galigekerevn@ornl.gov

Phone: 865-341-1291

David E. Smith, Group Leader

Vehicle Systems Research

Email: smithde@ornl.gov

Phone: 865-341-1324

Oak Ridge National Laboratory (ORNL)

High Power and Dynamic Wireless EV Charging

Objective: Design develop and validate 200 kW high power dynamic wireless EV charging in real-world conditions

Project partners

Why Dynamic Wireless Charging of EVs?

Dynamic Wireless Charging as a viable solution:

Power level for economic feasibility?

Technical feasibility?

Types of Roadways and Applicability of Dynamic Charging

Total paved roadway miles in USA – 4.2 million

- Primary Interstate and other freeways and expressways
- 2. Secondary Other principal arterial and minor arterial roadways
- 3. Local roadways

Types of roadways in the USA

High Level Cost and Feasibility Study Results

LD Vehicle Assumptions			
Average Speed	65MPH		
Minimum Battery Capacity	37kWh		
DC-XFC Battery Capacity	112kWh, 4C ΔSOC=80%		

Minimum Coverage DWPT Solution				
Power	235kW			
Battery Capacity	59kWh*			
C-Rate	4.0			
Roadway Coverage	8.2%			
Electrified Miles	5,500 Miles			

^{*}Battery charge rate limited to 4C

Total paved miles – 4.2 Million

- 1.6 % of total paved miles or 67,200 miles primary roadways
- 8.2 % of primary roadways or 5,500 miles electrified roadway

Challenges for High Power and Dynamic Wireless Charging **WPT Coupler Control and Communication** Embedding in roadway Optimal control strategy Power density > $400 \frac{kW}{m^2}$ Power oscillations Slow communication Efficiency > 90 % Vehicle interference **Grid Interface Power Vehicle Power Electronics Electronics** Grid impact Power density Augmentation Efficiency > 90 % Renewable integration Cost Security

WPT Coupler Design: Geometry Selection

Analyzed Power Transfer Profile of Multi-Transmitter System

Issue: Square coils have degraded performance in multiple transmitter systems

- Lower effective power due to magnetic coupling interference
- High power ripple
- Control issues (series tuning)

Receiver	Square	DD	
Length	52.2cm	78.7cm	
Width	52.2cm	38.7cm	
Mass	10.2kg	14.5kg	
Effective Power	211kW	208kW	
Specific Power	20.7kW/kg	14.3kW/kg	
Power Ripple	48kW	14kW	
Ripple Frequency	17.5Hz	13.0Hz	
Simulated Energy Transfer Efficiency	87.9	<mark>89.7</mark>	

75MPH

350

Reference pad power profiles assuming a vehicle velocity of 75MPH (33.5m/s)

WPT Coupler: Design Considering Roadway Parameters

Goal: Ensure feasibility of construction and operation of roadway embedded DWPT system

Challenge: Thermal, mechanical, and field emissions constraints limit the ability of embedded transmitters

to push power across a large magnetic airgap

Views of the ground coupler (top left) and vehicle coupler (top right); Side view of the ground coupler showing the surrounding concrete and vehicle coupler ground Clearance

*OAK RIDGE Clearance

WPT Coupler: Design Considering Vehicle Body Effect

Goal: Develop accurate DWPT system models

Challenge: Self-inductances, mutual inductances, and parasitic resistances depend on vehicle position

Transmitter self-inductance depends on vehicle position

Mutual coupling between the transmitters also depends on vehicle position

FEA model used to investigate transmitter coupling, vehicle position dependent system parameters, and vehicle body losses

Dead Time	Ons	600ns	
L _{g1}	1.992µH	2.356µH	
C_{g1}	2.004µF	2.146µF	
C_{g2}	1.034µF	0.917µF	
C_{v1}	174.5nF	177.9nF	

Comparison of tuning parameters for wide load-range, vehicle position independent ZVS for the ideal case (0ns dead-time) and 600ns dead-time

Architecture: To enable Optimized 200 kW+ DWPT System

Goal: Performance, power density, and optimal control

Proposed architecture for 200 kW dynamic wireless EV charging

Primary Side HF inverter

- Input: 680 V 800 V DC
- Frequency: 85 kHz

Increases power density of

- Power electronics
- Filters
- couplers

Primary Side LCC tuning Secondary Side Series Tuning DD Coil architecture

Optimized for

- Controllability
- Minimal power oscillations

Secondary Side DC-DC converter

- 70 kHz
- Four phases in parallel

Optimized for

- Power density
- Fast dynamic response

Control: Architecture to Minimize Impact on EV Battery and Utility

Goal: Provide accurate and wide range EV charging voltage and current control with minimal impact to utility

Issue: High power DWPT leads to pulse-like load profile, which can affect the utility grid stability and EV battery charging process

Charging Data

Control System Architecture

- Central controller: Charging sequence management
- Primary and on-board controller:
 Accurate and fast control loop
- Communication range and latency consideration

Charging Request/

Proposed optimized dual side control architecture with primary side LCC and secondary side series tuning

Control: Proof of Concept Validation

Goal: To develop and validate dynamic models necessary to develop optimal power control strategy to realize 200 kW dynamic charging

Challenges:

- Short power transfer window (~5 ms)
- High power transfer rate (200 kW)

ORNL Dynamic Inducive Charging Emulator

- 8 m/s or ~ 18 mph → 60 feet long
- SOA Data acquisition system
- Integration with Opal RT or Smart charge management

Power Density of Power Electronics and Couplers

Goal: To enable high frequency high power density operation Challenge: High frequency and high current operation require optimized layout and components with minimal parasitic inductances

Switching transition energy loss is function of v(t), i(t), and (dt)

→ Faster Turn-on and Turn-off transition improves efficiency

Fast current transitions lead to voltage overshoot

$$V_{overshoot} = L \frac{di}{dt}$$

- Minimize L (parasitic inductance)
- Analyze and place high performance decoupling capacitors
- Optimize layout and hardware design

Summary of evaluation of power semiconductor modules for 200+ kW 85 kHz operation

	CAB450M12XM3		CAB400M12XM3		CAS325M12HM2	
Modules in						
parallel	1	2	1	2	1	2
Total Loss (kW)	4.144	3.879	2.571	2.025	2.299	1.821
Inverter						
Efficiency	0.983	0.984	0.989	0.991	0.990	0.992

CAS325M12HM2 1200 V, 325 A SiC Module

B58033I9505M001 5 μF,1300 V Capacitor

Components with low parasitic inductance are required Low ESL (4 nH) CeraLink capacitor
Low ESL (5 nH)1200 V 325 A Wolfspeed SiC module

Simulated capacitor current, voltage, and capacitor current harmonics for 250 kW operation

Power Electronics: 200 kW DWPT System Vehicle Side Unit

Optimized secondary side power electronics

- Integrated package for 200+ kW rectifier and DC-DC converter
- Optimized high frequency (70 kHz) 4 phase buck DC-Dc converter
- Nano-crystalline based power dense magnetics
- 649.5 mm x 541 mm x 86.48 mm

4 phase Buck DC-DC converter

- Optimized overall mass and volume
- Improved light load efficiency by load shedding
- 4 times smaller filter capacitor and inductors
- Improved dynamic response

Thank You, Questions?