Enoncés

Anneaux

Diviseurs de zéro

Exercice 1 [02233] [Correction]

Montrer qu'un anneau $(A, +, \times)$ n'a pas de diviseurs de zéro si, et seulement si, tous ses éléments non nuls sont réguliers

Exercice 2 [02236] [Correction]

Soient a,b deux éléments d'un anneau $(A,+,\times)$ tels que ab soit inversible et b non diviseur de 0.

Montrer que a et b sont inversibles.

Sous-anneaux

Exercice 3 [02237] [Correction]

Soit $d \in \mathbb{N}$, on note

$$\mathbb{Z}\left[\sqrt{d}\right] = \left\{a + b\sqrt{d} \mid (a, b) \in \mathbb{Z}^2\right\}.$$

Montrer que $\mathbb{Z}\left[\sqrt{d}\right]$ est un sous-anneau de $(\mathbb{R},+,\times)$.

Exercice 4 [02239] [Correction]

(Anneau des entiers de Gauss 1777-1855) On note

$$\mathbb{Z}[\mathbf{i}] = \{ a + \mathbf{i}b \mid (a, b) \in \mathbb{Z}^2 \}.$$

- (a) Montrer que $\mathbb{Z}[i]$ est un anneau commutatif pour l'addition et la multiplication des nombres complexes.
- (b) Pour $z \in \mathbb{Z}[i]$, on pose $N(z) = |z|^2$. Vérifier

$$\forall (z, z') \in \mathbb{Z}[i]^2, \ N(zz') = N(z)N(z') \text{ et } N(z) \in \mathbb{N}.$$

(c) Déterminer les éléments inversibles de l'anneau \mathbb{Z} [i].

Exercice 5 [02240] [Correction]

Soit

$$A = \left\{ \frac{m}{n} \mid m \in \mathbb{Z} \text{ et } n \in \mathbb{N}^*, \text{ impair} \right\}.$$

- (a) Montrer que A est un sous anneau de $(\mathbb{Q}, +, \times)$.
- (b) Quels en sont les éléments inversibles?

Exercice 6 [02241] [Correction]

Soit

$$A = \left\{ \frac{m}{2^n} \mid m \in \mathbb{Z} \text{ et } n \in \mathbb{N} \right\}.$$

- (a) Montrer que A est un sous anneau de $(\mathbb{Q}, +, \times)$.
- (b) Quels en sont les éléments inversibles?

Exercice 7 [03376] [Correction]

Un anneau A est dit régulier si

$$\forall x \in A, \exists y \in A, xyx = x.$$

On considère un tel anneau A et l'on introduit

$$Z = \{ x \in A \mid \forall a \in A, ax = xa \}.$$

- (a) Montrer que Z est un sous-anneau de A.
- (b) Vérifier que Z est régulier.

Morphismes d'anneaux

Exercice 8 [00126] [Correction]

Soit $f \colon \mathbb{C} \to \mathbb{C}$ un morphisme d'anneaux tel que

$$\forall x \in \mathbb{R}, f(x) = x.$$

Montrer que f est l'identité ou la conjugaison complexe.

Exercice 9 [00127] [Correction]

Soit a un élément d'un ensemble X.

Montrer l'application $E_a: \mathcal{F}(X,\mathbb{R}) \to \mathbb{R}$ définie par $E_a(f) = f(a)$ est un morphisme d'anneaux.

Théorème chinois

Exercice 10 [00143] [Correction]

Résoudre les systèmes suivants :

(a)
$$\begin{cases} x \equiv 1 \ [6] \\ x \equiv 2 \ [7] \end{cases}$$

(b)
$$\begin{cases} 3x \equiv 2 \ [5] \\ 5x \equiv 1 \ [6] \end{cases}$$

Exercice 11 [01216] [Correction]

Résoudre le système :

$$\begin{cases} x \equiv 2 \ [10] \\ x \equiv 5 \ [13] \ . \end{cases}$$

Exercice 12 [01217] [Correction]

Soient $a, b, a', b' \in \mathbb{Z}$ avec b et b' premiers entre eux.

Montrer que le système

$$\begin{cases} x \equiv a \ [b] \\ x \equiv a' \ [b'] \end{cases}$$

possède des solutions et que celles-ci sont congrues entres elles modulo bb'.

Exercice 13 [01218] [Correction]

Une bande de 17 pirates dispose d'un butin composé de N pièces d'or d'égale valeur. Ils décident de se le partager également et de donner le reste au cuisinier (non pirate). Celui ci reçoit 3 pièces. Mais une rixe éclate et 6 pirates sont tués. Tout le butin est reconstitué et partagé entre les survivants comme précédemment; le cuisinier reçoit alors 4 pièces. Dans un naufrage ultérieur, seul le butin, 6 pirates et le cuisinier sont sauvés. Le butin est à nouveau partagé de la même manière et le cuisinier reçoit 5 pièces. Quelle est alors la fortune minimale que peut espérer le cuisinier lorsqu'il décide d'empoisonner le reste des pirates?

Corps

Exercice 14 [02245] [Correction]

Soit A un anneau commutatif fini non nul.

Montrer que A ne possède pas de diviseurs de zéro si, et seulement si, A est un corps.

Exercice 15 [00130] [Correction]

Soit K un corps fini ¹. Calculer

$$\prod_{x \in \mathbb{K} \setminus \{0\}} x.$$

Exercice 16 [00132] [Correction]

Soient K, L deux corps et f un morphisme d'anneaux entre K et L.

- (a) Montrer que f(x) est inversible pour tout $x \in K$ non nul et déterminer $f(x)^{-1}$.
- (b) En déduire que tout morphisme de corps est injectif.

Exercice 17 [02662] [Correction]

Soit $K = \mathbb{Q} + \sqrt{2}\mathbb{Q} + \sqrt{3}\mathbb{Q} + \sqrt{6}\mathbb{Q}$.

- (a) Montrer que $(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$ est une \mathbb{Q} -base du \mathbb{Q} -espace vectoriel K.
- (b) Montrer que K est un sous-corps de \mathbb{R} .

Exercice 18 [02677] [Correction]

Soit \mathbb{K} un corps, E un espace vectoriel de dimension finie n sur \mathbb{K} et \mathbb{L} un sous-corps de \mathbb{K} tel que \mathbb{K} est un espace vectoriel de dimension finie p sur \mathbb{L} . Montrer que E est un espace vectoriel de dimension finie q sur \mathbb{L} . Relier n, p, q.

Indicatrice d'Euler

Exercice 19 [02655] [Correction]

Combien y a-t-il d'éléments inversibles dans $\mathbb{Z}/78\mathbb{Z}$?

Exercice 20 [00151] [Correction]

Pour $n \in \mathbb{N}^*$, on note $\varphi(n)$ le nombre d'éléments inversibles dans $(\mathbb{Z}/n\mathbb{Z}, \times)$.

- (a) Calculer $\varphi(p)$ et $\varphi(p^{\alpha})$ pour p premier et $\alpha \in \mathbb{N}^*$.
- (b) Soient m et n premiers entre eux.

On considère l'application $f: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ définie par $f(\overline{x}) = (\hat{x}, \tilde{x})$.

Montrer que f est bien définie et réalise un isomorphisme d'anneaux.

- (c) En déduire que $\varphi(mn) = \varphi(m)\varphi(n)$.
- (d) Exprimer $\varphi(n)$ selon la décomposition primaire de n.

Exercice 21 [00257] [Correction]

Établir

$$\forall n \ge 3, \varphi(n) \ge \frac{n \ln 2}{\ln n + \ln 2}.$$

^{1.} $\mathbb{Z}/p\mathbb{Z}$ avec p premier est un exemple de tel corps.

Exercice 22 [00152] [Correction]

Pour $n \in \mathbb{N}^*$, on note $\varphi(n)$ le nombre d'éléments inversibles dans $(\mathbb{Z}/n\mathbb{Z}, \times)$. Établir

$$\forall a \in (\mathbb{Z}/n\mathbb{Z})^*, a^{\varphi(n)} = 1.$$

(où $(\mathbb{Z}/n\mathbb{Z})^*$ désigne l'ensemble des inversibles de l'annean $\mathbb{Z}/n\mathbb{Z}$

Exercice 23 [00153] [Correction]

Pour $n \in \mathbb{N}^*$, on note $\varphi(n)$ le nombre de générateurs de $(\mathbb{Z}/n\mathbb{Z}, +)$.

- (a) Montrer que si H est un sous-groupe de $(\mathbb{Z}/n\mathbb{Z}, +)$, il existe a divisant n vérifiant $H = \langle \overline{a} \rangle$.
- (b) Observer que si $d \mid n$ il existe un unique sous-groupe de $(\mathbb{Z}/n\mathbb{Z}, +)$ d'ordre d.
- (c) Justifier que si $d \mid n$ le groupe $(\mathbb{Z}/n\mathbb{Z},+)$ possède exactement $\varphi(d)$ éléments d'ordre d.
- (d) Montrer

$$\forall n \in \mathbb{N}^*, \sum_{d|n} \varphi(d) = n.$$

Exercice 24 [02658] [Correction]

- (a) Pour $(a, n) \in \mathbb{Z} \times \mathbb{N}^*$ avec $a \wedge n = 1$, montrer que $a^{\varphi(n)} = 1$ [n].
- (b) Pour p premier et $k \in \{1, \dots, p-1\}$, montrer que p divise $\binom{p}{k}$
- (c) Soit $(a, n) \in (\mathbb{N}^*)^2$. On suppose que $a^{n-1} = 1$ [n]. On suppose que pour tout x divisant n-1 et différent de n-1, on a $a^x \neq 1$ [n]. Montrer que n est premier.

Idéaux

Exercice 25 [00134] [Correction]

Quels sont les idéaux d'un corps \mathbb{K} ?

Exercice 26 [00135] [Correction]

On note

$$\mathbb{D} = \left\{ \frac{p}{10^n} \mid p \in \mathbb{Z}, n \in \mathbb{N} \right\}$$

l'ensemble des nombres décimaux.

- (a) Montrer que \mathbb{D} est un sous-anneau de $(\mathbb{Q}, +, \times)$.
- (b) Montrer que les idéaux de $\mathbb D$ sont principaux (c'est-à-dire de la forme $a\mathbb D$ avec $a\in\mathbb D$).

Exercice 27 [00136] [Correction]

(Nilradical d'un anneau) On appelle nilradical d'un anneau commutatif $(A, +, \times)$ l'ensemble N formé des éléments nilpotents de A i.e. des $x \in A$ tels qu'il existe $n \in \mathbb{N}^*$ vérifiant $x^n = 0_A$.

Montrer que N est un idéal de A.

Exercice 28 [00137] [Correction]

 $(Radical\ d'un\ idéal)$ Soit I un idéal d'un anneau commutatif A. On note R(I) l'ensemble des éléments x de A pour lesquels il existe un entier n non nul tel que $x^n \in I$.

- (a) Montrer que R(I) est un idéal de A contenant I.
- (b) Montrer que si I et J sont deux idéaux alors

$$R(I \cap J) = R(I) \cap R(J)$$
 et $R(I + J) \supset R(I) + R(J)$.

(c) On suppose que $A = \mathbb{Z}$. Montrer que l'ensemble des entiers n non nuls tels que $R(n\mathbb{Z}) = n\mathbb{Z}$ est exactement l'ensemble des entiers sans facteurs carrés.

Exercice 29 [00138] [Correction]

Soient A un anneau commutatif et e un élément idempotent de A (i.e. $e^2 = e$).

- (a) Montrer que $J = \{x \in A \mid xe = 0\}$ est un idéal de A.
- (b) On note I=Ae l'idéal principal engendré par e. Déterminer I+J et $I\cap J$
- (c) Établir que pour tout idéal K de A :

$$(K \cap I) + (K \cap J) = K.$$

Exercice 30 [00140] [Correction]

(Idéaux premiers) Un idéal I d'un anneau commutatif $(A, +, \times)$ est dit premier si, et seulement si.

$$\forall x, y \in A, xy \in I \implies x \in I \text{ ou } y \in I.$$

- (a) Donner un exemple d'idéal premier dans \mathbb{Z} .
- (b) Soit $P \in \mathbb{K}[X]$ un polynôme irréductible. Montrer que $P.\mathbb{K}[X]$ est premier.

(c) Soient J et K deux idéaux de A et I un idéal premier. Montrer

$$J \cap K = I \implies (J = I \text{ ou } K = I).$$

(d) Soit $(A, +, \times)$ un anneau commutatif dont tout idéal est premier. Établir que A est intègre puis que A est un corps.

Exercice 31 [00141] [Correction]

 $(\mathbb{Z}\ est\ noeth\'erien)$ Montrer que tout suite croissante (pour l'inclusion) d'idéaux de \mathbb{Z} est stationnaire.

Ce résultat se généralise-t-il aux idéaux de $\mathbb{K}[X]$?.

Exercice 32 [02367] [Correction]

Soit A un sous-anneau de \mathbb{Q} .

- (a) Soit p un entier et q un entier strictement positif premier avec p. Montrer que si $p/q \in A$ alors $1/q \in A$.
- (b) Soit I un idéal de A autre que $\{0\}$. Montrer qu'il existe $n \in \mathbb{N}^*$ tel que $I \cap \mathbb{Z} = n\mathbb{Z}$ et qu'alors I = nA.
- (c) Soit p un nombre premier. On pose

$$Z_p = \{ a/b \mid a \in \mathbb{Z}, b \in \mathbb{N}^*, p \land b = 1 \}.$$

Montrer que si $x \in \mathbb{Q}^*$ alors x ou 1/x appartient à Z_p .

(d) On suppose ici que x ou 1/x appartient à A pour tout $x \in \mathbb{Q}^*$. On note I l'ensemble des éléments non inversibles de A.

Montrer que I inclut tous les idéaux stricts de A. En déduire que $A = \mathbb{Q}$ ou $A = \mathbb{Z}_p$ pour un certain nombre premier p.

Exercice 33 [02450] [Correction]

Soit A un sous-anneau d'un corps K. On suppose que pour tout élément x non nul de \mathbb{K} , on a $x \in A$ ou $x^{-1} \in A$. On forme I l'ensemble des éléments de l'anneau A non inversibles.

- (a) Montrer que I est un idéal de A.
- (b) Montrer que tout idéal de A autre que A est inclus dans I.

Exercice 34 [03843] [Correction]

Soit A un anneau intègre. On suppose que l'anneau A ne possède qu'un nombre fini d'idéaux.

Montrer que A est un corps.

Classes de congruence

Exercice 35 [00142] [Correction]

Résoudre les équations suivantes :

- (a) $3x + 5 = 0 \text{ dans } \mathbb{Z}/10\mathbb{Z}$
- (b) $x^2 = 1 \text{ dans } \mathbb{Z}/8\mathbb{Z}$
- (c) $x^2 + 2x + 2 = 0$ dans $\mathbb{Z}/5\mathbb{Z}$

Exercice 36 [03915] [Correction]

Résoudre le système suivant :

$$\begin{cases} x + y \equiv 4 \ [11] \\ xy \equiv 10 \ [11] \ . \end{cases}$$

Exercice 37 [00147] [Correction]

Déterminer les morphismes de groupes entre $(\mathbb{Z}/n\mathbb{Z}, +)$ et $(\mathbb{Z}/m\mathbb{Z}, +)$.

Exercice 38 [03218] [Correction]

Soit p un nombre premier. Calculer dans $\mathbb{Z}/p\mathbb{Z}$

$$\sum_{k=1}^{p} \overline{k} \text{ et } \sum_{k=1}^{p} \overline{k}^{2}.$$

Exercice 39 [03929] [Correction]

- (a) Déterminer l'ensemble des inversibles de l'anneau $\mathbb{Z}/8\mathbb{Z}$. De quelle structure peut-on munir cet ensemble?
- (b) Y a-t-il, à isomorphisme près, d'autres groupes de cardinal 4?

Exercice 40 [02660] [Correction]

Si p est un nombre premier, quel est le nombre de carrés dans $\mathbb{Z}/p\mathbb{Z}$?

Exercice 41 [03780] [Correction]

Donner l'ensemble G des inversibles de l'anneau $\mathbb{Z}/20\mathbb{Z}$. Montrer que (G, \times) est isomorphe à $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}, +)$

Exercice 42 [00144] [Correction]

 $(Petit\ th\'eor\`eme\ de\ Fermat)$ Soit p un nombre premier. Montrer

$$\forall a \in (\mathbb{Z}/p\mathbb{Z})^*, a^{p-1} = 1.$$

Exercice 43 [04202] [Correction]

On se propose d'établir qu'il n'existe pas d'entiers $n \geq 2$ tels que n divise $2^n - 1$. On raisonne par l'absurde et on suppose qu'un tel entier n existe. On introduit p un facteur premier de n.

- (a) Montrer que la classe de 2 est élément du groupe des inversibles de $\mathbb{Z}/p\mathbb{Z}$ et que son ordre divise n et p-1.
- (b) Conclure

Algèbres

Exercice 44 [01265] [Correction]

Soit

$$E = \left\{ M(a, b, c) = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \mid (a, b, c) \in \mathbb{R}^3 \right\}.$$

Montrer que E est une sous-algèbre commutative de $\mathcal{M}_3(\mathbb{R})$ dont on déterminera la dimension.

Exercice 45 [03408] [Correction]

Soit \mathbb{K} une algèbre intègre sur \mathbb{R} de dimension finie $n \geq 2$. On assimile \mathbb{R} à $\mathbb{R}.1$ où 1 est l'élément de \mathbb{K} neutre pour le produit.

- (a) Montrer que tout élément non nul de K est inversible.
- (b) Soit a un élément de \mathbb{K} non situé dans \mathbb{R} . Montrer que la famille (1, a) est libre tandis que le famille $(1, a, a^2)$ est liée.
- (c) Montrer l'existence de $i \in \mathbb{K}$ tel que $i^2 = -1$.
- (d) Montrer que si \mathbb{K} est commutative alors \mathbb{K} est isomorphe à \mathbb{C} .

Exercice 46 [02390] [Correction]

Soit n un entier ≥ 2 et \mathcal{A} un hyperplan de $\mathcal{M}_n(\mathbb{C})$ stable pour le produit matriciel.

- (a) On suppose que $I_n \notin \mathcal{A}$. Montrer, si $M^2 \in \mathcal{A}$, que $M \in \mathcal{A}$. En déduire que pour tout $i \in \{1, ..., n\}$ que la matrice $E_{i,i}$ est dans \mathcal{A} . En déduire une absurdité.
- (b) On prend n=2. Montrer que $\mathcal A$ est isomorphe à l'algèbre des matrices triangulaires supérieures.

Corrections

Exercice 1 : [énoncé]

Supposons que A n'ait pas de diviseurs de zéro. Soit $x \in A$ avec $x \neq 0$.

$$\forall a, b \in A, xa = xb \implies x(a-b) = 0 \implies a-b = 0$$

 $\operatorname{car} x \neq 0$.

Ainsi x est régulier à gauche. Il en est de même à droite. Supposons que tout élément non nul de A soit régulier.

$$\forall x, y \in A, xy = 0 \implies xy = x.0 \implies x = 0 \text{ ou } y = 0$$

(par régularité de x dans le cas où $x \neq 0$).

Par suite l'anneau A ne possède pas de diviseurs de zéro.

Exercice 2 : [énoncé]

Soit $x = b(ab)^{-1}$. Montrons que x est l'inverse de a. On a $ax = ab(ab)^{-1} = 1$ et $xab = b(ab)^{-1}ab = b$ donc (xa - 1)b = 0 puis xa = 1 car b n'est pas diviseur de 0. Ainsi a est inversible et x est son inverse. De plus $b = a^{-1}(ab)$ l'est aussi par produit d'éléments inversibles.

Exercice 3: [énoncé]

$$\mathbb{Z}\left[\sqrt{d}\right] \subset \mathbb{R}, \ 1 \in \mathbb{Z}\left[\sqrt{d}\right].$$

Soient $x, y \in \mathbb{Z}\left[\sqrt{d}\right]$, on peut écrire $x = a + b\sqrt{d}$ et $y = a' + b'\sqrt{d}$ avec $a, b, a', b' \in \mathbb{Z}$.

 $x - y = (a - a') + (b - b')\sqrt{d} \text{ avec } a - a', b - b' \in \mathbb{Z} \text{ donc } x - y \in \mathbb{Z}\left[\sqrt{d}\right].$ $xy = (aa' + bb'd) + (ab' + a'b)\sqrt{d} \text{ avec } aa' + bb'd, ab' + a'b \in \mathbb{Z} \text{ donc } xy \in \mathbb{Z}\left[\sqrt{d}\right].$

Ainsi $\mathbb{Z}\left[\sqrt{d}\right]$ est un sous-anneau de $(\mathbb{R},+,\times)$.

Exercice 4: [énoncé]

(a) Montrer que $\mathbb{Z}[i]$ est un sous anneau de $(\mathbb{C}, +, \times)$. $\mathbb{Z}[i] \subset \mathbb{C}, 1 \in \mathbb{Z}[i]$. $\forall x, y \in \mathbb{Z}[i]$, on peut écrire x = a + ib et y = a' + ib' avec $a, b, a', b' \in \mathbb{Z}$. x - y = (a - a') + i(b - b') avec $a - a', b - b' \in \mathbb{Z}$ donc $x - y \in \mathbb{Z}[i]$. xy = (aa' - bb') + i(ab' + a'b) avec $aa' - bb', ab' + a'b \in \mathbb{Z}$ donc $xy \in \mathbb{Z}[i]$. Ainsi $\mathbb{Z}[i]$ est un sous-anneau de $(\mathbb{C}, +, \times)$.

- (b) $N(zz') = |zz'|^2 = |z|^2|z'|^2 = N(z)N(z')$ et $N(z) = a^2 + b^2 \in \mathbb{N}$ avec $z = a + \mathrm{i}b$ et $a, b \in \mathbb{Z}$.
- (c) Si z est inversible d'inverse z' alors N(zz') = N(z)N(z') = 1. Or $N(z), N(z') \in \mathbb{N}$ donc N(z) = N(z') = 1. On en déduit z = 1, -1, i ou -i. La réciproque est immédiate.

Exercice 5: [énoncé]

- (a) $A \subset \mathbb{Q}$, $1 \in A$, $\forall x, y \in A$, $x y \in A$ et $xy \in A$: clair. Par suite A est un sous anneau de $(\mathbb{Q}, +, \times)$.
- (b) $x \in A$ est inversible si, et seulement si, il existe $y \in A$ tel que xy = 1. $x = \frac{m}{n}, y = \frac{m'}{n'}$ avec n, n' impairs. $xy = 1 \implies mm' = nn'$ donc m est impair et la réciproque est immédiate. Ainsi

$$U(A) = \left\{ \frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{N}^* \text{ impairs} \right\}.$$

Exercice 6: [énoncé]

- (a) $A \subset \mathbb{Q}$, $1 \in A$, $\forall x, y \in A$, $x y \in A$ et $xy \in A$: facile. Ainsi A est un sous anneau de $(\mathbb{Q}, +, \times)$.
- (b) $x \in A$ est inversible si, et seulement si, il existe $y \in A$ tel que xy = 1. Puisqu'on peut écrire $x = \frac{m}{2^n}, y = \frac{m'}{2^{n'}}$ avec $m, m' \in \mathbb{Z}$ et $n, n' \in \mathbb{N}$,

$$xy = 1 \implies mm' = 2^{n+n'}$$
.

Par suite m est, au signe près, une puissance de 2.

La réciproque est immédiate.

Finalement

$$U(A) = \{ \pm 2^k \mid k \in \mathbb{Z} \}.$$

Exercice 7: [énoncé]

(a) Immédiatement $Z \subset A$ et $1_A \in Z$. Soient $x, y \in Z$. Pour tout $a \in A$

$$a(x-y) = ax - ay = xa - ya = (x-y)a$$

 $_{
m et}$

$$a(xy) = xay = xya$$

donc $x - y \in A$ et $xy \in A$.

Ainsi Z est un sous-anneau de A.

(b) Soit $x \in Z$. Il existe $y \in A$ tel que xyx = x. La difficulté est de voir que l'on peut se ramener au cas où $y \in Z$... Pour cela considérons l'élément $z = xy^2$. On observe

$$xzx = x^3y^2 = xyxyx = xyx = x.$$

Il reste à montrer $z \in Z$. Posons $a \in A$. L'élément x^3 commute avec y^2ay^2 et donc

$$x^3y^2ay^2 = y^2ay^2x^3$$

ce qui donne

$$xay^2 = y^2ax$$

puis az=za. On peut alors que conclure que l'anneau Z est régulier au sens défini.

Exercice 8: [énoncé]

Posons j = f(i). On a $j^2 = f(i)^2 = f(i^2) = f(-1) = -f(1) = -1$ donc $j = \pm i$. Si j = i alors $\forall a, b \in \mathbb{R}$, f(a + ib) = f(a) + f(i)f(b) = a + ib donc $f = \text{Id}_{\mathbb{C}}$. Si j = -i alors $\forall a, b \in \mathbb{R}$, f(a + ib) = f(a) + f(i)f(b) = a - ib donc $f : z \mapsto \overline{z}$.

Exercice 9: [énoncé]

 $E_a(x \mapsto 1) = 1.$

 $\forall f, g \in \mathcal{F}(X, \mathbb{R}), E_a(f+g) = (f+g)(a) = f(a) + g(a) = E_a(f) + E_a(g)$ et $E_a(fg) = (fg)(a) = f(a)g(a) = E_a(f)E_a(g)$ donc E_a est un morphisme d'anneaux.

Exercice 10: [énoncé]

(a) 6 et 7 sont premiers entre eux avec la relation de Bézout $(-1) \times 6 + 7 = 1$. $x_1 = 7$ et $x_2 = -6$ sont solutions des systèmes

$$\begin{cases} x \equiv 1 \ [6] \\ x \equiv 0 \ [7] \end{cases} \text{ et } \begin{cases} x \equiv 0 \ [6] \\ x \equiv 1 \ [7] \end{cases}$$

donc $x=1\times 7+2\times (-6)=-5$ est solution du système étudié dont la solution générale est alors

$$x = 37 + 42k$$
 avec $k \in \mathbb{Z}$.

(b)

$$\begin{cases} 3x \equiv 2 \ [5] \\ 5x \equiv 1 \ [6] \end{cases} \iff \begin{cases} x \equiv 4 \ [5] \\ x \equiv 5 \ [6] \end{cases}$$

on poursuit comme ci-dessus. Les solutions sont 29 + 30k avec $k \in \mathbb{Z}$.

Exercice 11 : [énoncé]

 $10 \land 13 = 1$ avec la relation de Bézout

$$-9 \times 10 + 7 \times 13 = 1.$$

Les nombres $x_1 = 7 \times 13 = 91$ et $x_2 = -9 \times 10 = -90$ sont solutions des systèmes

$$\begin{cases} x \equiv 1 \ [10] \\ x \equiv 0 \ [13] \end{cases} \text{ et } \begin{cases} x \equiv 0 \ [10] \\ x \equiv 1 \ [13] \end{cases}.$$

On en déduit que

$$x = 2 \times 91 - 5 \times 90 = -268$$

est solution du système dont la solution générale est alors

$$x = -268 + 130k = 122 + 130\ell$$
 avec $\ell \in \mathbb{Z}$.

Exercice 12: [énoncé]

Il existe $u, v \in \mathbb{Z}$ tels que bu + b'v = 1.

Soit x = a'bu + ab'v.

On a

$$x = a'bu + a - abu = a [b]$$

 $_{
m et}$

$$x = a' - a'b'v + ab'v = a'[b]'$$

donc x est solution.

Soit x' une autre solution. On a

$$x = x'[b]$$

 $_{
m et}$

$$x = x' [b]'$$

donc b | (x' - x) et b' | (x' - x).

Or $b \wedge b' = 1$ donc $bb' \mid (x' - x)$.

Inversement, soit x' tel que $bb' \mid x' - x$, on a bien

$$x' = x = a [b]$$

et

$$x' = x = a' [b]'.$$

Exercice 13: [énoncé]

Notons $x \in \mathbb{N}$ le montant du trésor. De part les hypothèses

$$\begin{cases} x \equiv 3 \ [17] \\ x \equiv 4 \ [11] \\ x \equiv 5 \ [6] \ . \end{cases}$$

On commence par résoudre le système

$$\begin{cases} x \equiv 3 \ [17] \\ x \equiv 4 \ [11] \end{cases}$$

 $17 \wedge 11 = 1$ avec la relation de Bézout $2 \times 17 - 3 \times 11 = 1.$ On a alors la solution particulière

$$x = 3 \times (-33) + 4 \times 34 = 37$$

et donc

$$\begin{cases} x \equiv 3 \ [17] \\ x \equiv 4 \ [11] \\ x \equiv 5 \ [6] \end{cases} \iff \begin{cases} x \equiv 37 \ [187] \\ x \equiv 5 \ [6] \end{cases}$$

 $187 \wedge 6 = 1$ avec la relation de Bézout $187 - 31 \times 6 = 1.$ On a alors la solution particulière

$$x = 37 \times (-186) + 5 \times (187) = -5947.$$

La solution générale du système est alors

$$x = -5947 + 1122k = 785 + 1122\ell$$
 avec $\ell \in \mathbb{Z}$.

Le cuisinier peut espérer empocher au moins 785 pièces d'or.

Exercice 14: [énoncé]

- ($\ \ \ \ \ \ \ \ \ \ \)$ tout élément non nul d'un corps est symétrisable donc régulier et n'est donc pas diviseurs de zéro.
- (\Longrightarrow) Supposons que A n'ait pas de diviseurs de zéros. Soit $a\in A$ tel que $a\neq 0$. Montrons que a est inversible Considérons l'application $\varphi\colon A\to A$ définie par $\varphi(x)=a.x.$

a n'étant pas diviseur de zéro, on démontre aisément que φ est injective, or A est fini donc φ est bijective. Par conséquent il existe $b \in A$ tel que $\varphi(b) = 1$ i.e. ab = 1. Ainsi a est inversible. Finalement A est un corps.

Exercice 15: [énoncé]

Dans le produit, on regroupe chaque facteur avec son inverse.

Lorsque x est différent de son inverse, les deux facteurs correspondant dans le produit se simplifient. Une fois ces simplifications faites, il ne reste dans le produit que les facteurs égaux à leur inverse :

$$\prod_{x \in \mathbb{K} \setminus \{0\}} x = \prod_{\substack{x \in \mathbb{K} \setminus \{0\} \\ x = x^{-1}}} x.$$

Cependant, la condition $x=x^{-1}$ équivaut à $x^2=1_{\mathbb{K}}$ c'est-à-dire $(x-1_{\mathbb{K}})(x+1_{\mathbb{K}})=0$. Un corps étant intègre, cette équation a pour seules solutions $1_{\mathbb{K}}$ et $-1_{\mathbb{K}}$. Que celles-ci soient ou non distinctes 2 , on obtient

$$\prod_{x \in \mathbb{K}^*} x = -1_{\mathbb{K}}.$$

Exercice 16: [énoncé]

- (a) Pour $x \in K \setminus \{0\}$, $f(x).f(x^{-1}) = f(x.x^{-1}) = f(1_K) = 1_L$ donc f(x) est inversible et $f(x)^{-1} = f(x^{-1})$.
- (b) Si f(x) = f(y) alors $f(x) f(y) = f(x y) = 0_L$. Or 0_L n'est pas inversible donc $x y = 0_K$ i.e. x = y.

 Ainsi f est morphisme injectif.

Exercice 17: [énoncé]

(a) Il est clair que K est un sous-espace vectoriel de $\mathbb R$ et que la famille $(1,\sqrt{2},\sqrt{3},\sqrt{6})$ est $\mathbb Q$ -génératrice.

Montrons qu'elle est libre en raisonnant par l'absurde.

Supposons $a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} = 0$ avec $a, b, c, d \in \mathbb{Q}$ non tous nuls.

Quitte à réduire au même dénominateur, on peut supposer $a,b,c,d\in\mathbb{Z}$ non tous nuls.

Quitte à factoriser, on peut aussi supposer pgcd(a, b, c, d) = 1.

On a
$$(a + b\sqrt{2})^2 = (c\sqrt{3} + d\sqrt{6})^2$$
 donc

$$a^2 + 2ab\sqrt{2} + 2b^2 = 3c^2 + 6cd\sqrt{2} + 6d^2.$$

^{2.} Dans le corps $\mathbb{Z}/2\mathbb{Z}$, les éléments $\overline{1}$ et $-\overline{1}$ sont confondus.

Par l'irrationalité de $\sqrt{2}$ on parvient au système

$$\begin{cases} a^2 + 2b^2 = 3c^2 + 6d^2 \\ ab = 3cd. \end{cases}$$

Par suite $3 \mid ab \text{ et } 3 \mid a^2 + 2b^2 \text{ donc } 3 \mid a \text{ et } 3 \mid b$.

Ceci entraı̂ne $3 \mid cd$ et $3 \mid c^2 + 2d^2$ donc $3 \mid c$ et $3 \mid d$.

Ceci contredit pgcd(a, b, c, d) = 1.

Ainsi la famille $(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$ est \mathbb{Q} -libre et c'est donc une \mathbb{Q} -base de K.

(b) Sans peine, on vérifie que \mathbb{K} est un sous-anneau de \mathbb{R} .

Soit $x = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \in \mathbb{K}$ avec $a, b, c, d \in \mathbb{Q}$ non tous nuls.

$$\frac{1}{x} = \frac{1}{(a+b\sqrt{2}) + (c\sqrt{3} + d\sqrt{6})}$$

$$= \frac{a+b\sqrt{2} - (c\sqrt{3} + d\sqrt{6})}{(a^2 + 2b^2 - 3c^2 - 6d^2) + 2(ab - 3cd)\sqrt{2}}$$

$$= \frac{a+b\sqrt{2} - (c\sqrt{3} + d\sqrt{6})}{\alpha + \beta\sqrt{2}}.$$

puis

$$\frac{1}{x} = \frac{(a + b\sqrt{2} - (c\sqrt{3} + d\sqrt{6}))(\alpha - \beta\sqrt{2})}{\alpha^2 - 2\beta^2} \in K$$

et donc K est un sous-corps de \mathbb{R} .

Notons que les quantités conjuguées par lesquelles on a ci-dessus multiplié ne sont pas nuls car x est non nul et la famille $(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$ est \mathbb{Q} -libre.

Exercice 18: [énoncé]

Il est facile de justifier que E est un \mathbb{L} -espace vectoriel sous réserve de bien connaître la définition des espaces vectoriels et de souligner que qui peut le plus, peut le moins...

Soit $(\vec{e}_1, \dots, \vec{e}_n)$ une base de \mathbb{K} -espace vectoriel E et $(\lambda_1, \dots, \lambda_p)$ une base du \mathbb{L} -espace vectoriel \mathbb{K} .

Considérons la famille des $(\lambda_j \vec{e_i})_{1 \leq i \leq n, 1 \leq j \leq p}$. Il est facile de justifier que celle-ci est une famille libre et génératrice du \mathbb{L} -espace vectoriel E. Par suite E est de dimension finie q = np.

Exercice 19 : [énoncé]

Les inversibles dans $\mathbb{Z}/78\mathbb{Z}$ sont les classes associés aux entiers de $\{1,\ldots,78\}$ qui sont premiers avec $78=2\times3\times13$. Il suffit ensuite de dénombrer les multiples de 2,3,13 compris entre 1 et 78. On conclut qu'il y a 24 éléments inversible dans $\mathbb{Z}/78\mathbb{Z}$. On peut aussi calculer $\varphi(78)=1\times2\times12=24$.

Exercice 20 : [énoncé]

Les éléments inversibles de $(\mathbb{Z}/n\mathbb{Z}, \times)$ sont les éléments représentés par un nombre premier avec n.

- (a) $\varphi(p) = p 1$. Être premier avec p^{α} équivaut à être premier avec p i.e. à ne pas être divisible par p puisque $p \in \mathcal{P}$. Il y a $p^{\alpha-1}$ multiples de p compris entre 1 et p^{α} donc $\varphi(p^{\alpha}) = p^{\alpha} p^{\alpha-1}$.
- (b) Si x=y [mn] alors x=y [n] et x=y [m] donc f est bien définie. $\varphi(\overline{1})=(\hat{1},\tilde{1})$ et si a=x+y/xy [mn] alors a=x+y/xy [n] donc φ est un morphisme d'anneaux.

Si $f(\overline{x}) = f(\overline{y})$ alors x = y [m] et x = y [n] alors $m, n \mid y - x$ et puisque $m \land n = 1$ alors $mn \mid y - x$ donc $\overline{x} = \overline{y}$ [mn].

f est injective puis bijective par l'égalité des cardinaux.

- (c) Les inversibles de $\mathbb{Z}/mn\mathbb{Z}$ correspondent aux couples formés par un inversible de $\mathbb{Z}/n\mathbb{Z}$ et un inversible de $\mathbb{Z}/m\mathbb{Z}$. Par suite $\varphi(mn) = \varphi(m)\varphi(n)$.
- (d) Si $n = \prod_{i=1}^{N} p_i^{\alpha_i}$ alors $\varphi(n) = \prod_{i=1}^{N} p_i^{\alpha_i 1} (p_i 1)$.

Exercice 21 : [énoncé]

Notons p_1, \ldots, p_r les facteurs premiers de n. On sait

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_r}\right).$$

En ordonnant les p_1, p_2, \ldots, p_r , on peut affirmer

$$\forall 1 \le i \le r, p_i \ge 1 + i$$

et donc

$$\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_r}\right) \ge \left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\dots\left(1 - \frac{1}{1+r}\right).$$

Par produit télescopique

$$\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_r}\right) > \frac{1}{2}\frac{2}{3}\dots\frac{r}{r+1} = \frac{1}{r+1}.$$

Or on a aussi

$$n \geq p_1 \dots p_r \geq 2^r$$

et donc

$$r \le \frac{n}{\ln 2}.$$

On en déduit

$$\varphi(n) \ge \frac{n}{\frac{n}{\ln 2} + 1} = \frac{n \ln 2}{n + \ln 2}.$$

Exercice 22: [énoncé]

Soit $f: x \mapsto ax$ de $(\mathbb{Z}/n\mathbb{Z})^*$ vers lui-même.

Cette application est bien définie, injective et finalement bijective par cardinalité. Ainsi

$$\prod_{x \in (\mathbb{Z}/n\mathbb{Z})^*} x = \prod_{x \in (\mathbb{Z}/n\mathbb{Z})^*} ax = a^{\varphi(n)} \prod_{x \in (\mathbb{Z}/n\mathbb{Z})^*} x$$

puis $a^{\varphi(n)} = 1$ car l'élément $\prod_{x \in (\mathbb{Z}/n\mathbb{Z})^*} x$ est inversible.

Exercice 23: [énoncé]

(a) Soit H un sous-groupe de $\mathbb{Z}/n\mathbb{Z}$.

Si $H = \{0\}$ alors H = < n >.

Sinon, on peut introduire $a = \min\{k \in \mathbb{N}^* \mid \overline{k} \in H\}$.

La division euclidienne de n par a donne n=qa+r d'où $\overline{r}\in H$ puis r=0. Ainsi $a\mid n$.

On a $<\overline{a}>\subset H$ et par division euclidienne on montre $H\subset <\overline{a}>$ d'où $\langle a\rangle=H.$

- (b) Si a divise n, on observe que $< \overline{a} >$ est de cardinal 'ordre n/a. Ainsi < n/d > est l'unique sous-groupe d'ordre d de $(\mathbb{Z}/n\mathbb{Z}, +)$.
- (c) Un élément d'ordre d de $\mathbb{Z}/n\mathbb{Z}$ est générateur d'un sous-groupe à d éléments donc générateur de $< \overline{n/d} >$. Inversement, tout générateur de $< \overline{n/d} >$ est élément d'ordre d de $\mathbb{Z}/n\mathbb{Z}$. Or $< \overline{n/d} >$ est cyclique d'ordre d donc isomorphe à $\mathbb{Z}/d\mathbb{Z}$ et possède ainsi $\varphi(d)$ générateurs. On peut donc affirmer que $\mathbb{Z}/n\mathbb{Z}$ possède exactement $\varphi(d)$ élément d'ordre d.
- (d) L'ordre d'un élément de $\mathbb{Z}/n\mathbb{Z}$ est cardinal d'un sous-groupe de $\mathbb{Z}/n\mathbb{Z}$ et donc diviseur de n. En dénombrant $\mathbb{Z}/n\mathbb{Z}$ selon l'ordre de ses éléments, on obtient

$$\sum_{d|n} \varphi(d) = n.$$

Exercice 24: [énoncé]

- (a) L'ensemble des inversibles de $\mathbb{Z}/n\mathbb{Z}$ est un sous-groupe de cardinal $\varphi(n)$.
- (b) $k\binom{p}{k} = p\binom{p-1}{k-1}$ donc $p \mid k\binom{p}{k}$ or $p \wedge k = 1$ donc $p \mid \binom{p}{k}$.
- (c) Posons $d=(n-1)\wedge \varphi(n)$. $d=(n-1)u+\varphi(n)v$ donc $a^d=1$ [n]. Or $d\mid n-1$ donc nécessairement d=n-1. Par suite $n-1\mid \varphi(n)$ puis $\varphi(n)=n-1$ ce qui entraı̂ne que n est premier.

Exercice 25 : [énoncé]

Soit I un idéal d'un corps \mathbb{K} . Si $I \neq \{0\}$ alors I contient un élément x non nul. Puisque $x \in I$ et $x^{-1} \in \mathbb{K}$ on a $1 = xx^{-1} \in I$ puis pour tout $y \in \mathbb{K}$, $y = 1 \times y \in I$ et finalement $I = \mathbb{K}$. Les idéaux de \mathbb{K} sont donc $\{0\}$ et \mathbb{K} .

Exercice 26: [énoncé]

- (a) Il suffit de vérifier les axiomes définissant un sous-anneau...
- (b) Soit I un idéal de \mathbb{D} . L'intersection $I \cap \mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$ donc il existe $a \in \mathbb{Z}$ vérifiant

$$I \cap \mathbb{Z} = a\mathbb{Z}$$
.

Puisque $a \in I$, on a $a\mathbb{D} \subset I$.

Inversement, soit $x \in I$. On peut écrire

$$x = \frac{p}{10^n}$$
 avec $p \in \mathbb{Z}$ et $n \in \mathbb{N}$.

On a alors $10^n x \in I$ par absorption donc $p \in I \cap \mathbb{Z}$. On en déduit $a \mid p$ puis $x \in a\mathbb{D}$.

Finalement, $I = a\mathbb{D}$

Exercice 27: [énoncé]

 $N\subset A,\, 0_A\in N$ donc $N\neq\emptyset.$ Pour $x,y\in N,$ il existe $n,m\in\mathbb{N}^*$ tel que $x^n=y^m=0_A.$

Par la formule du binôme,

$$(x+y)^{n+m-1} = \sum_{k=0}^{n+m-1} {n+m-1 \choose k} x^k y^{n+m-1-k}.$$

Pour $k \ge n$, $x^k = 0_A$ et pour $k \le n-1$, $y^{n+m-1-k} = 0_A$. Dans les deux cas $x^k y^{n+m-1-k} = 0_A$ et donc $(x+y)^{n+m-1} = 0_A$. Par suite $x+y \in N$. Enfin pour $a \in A$ et $x \in N$, $ax \in N$ car $(ax)^n = a^n x^n$.

Exercice 28 : [énoncé]

(a) Par définition $R(I) \subset A$ $0^1 = 0 \in I \text{ donc } 0 \in R(I).$ Soient $x, y \in R(I)$, il existe $n, m \in \mathbb{N}^*$ tels que $x^n, y^m \in I$. On a alors

$$(x+y)^{n+m-1} = \sum_{k=0}^{n-1} \binom{n+m-1}{k} x^k y^{n+m-1-k} + \sum_{k=n}^{n+m-1} \binom{n+m-1}{k} x^k y^{n+m-1-k} \in I$$

car les premiers termes de la somme sont dans I puisque $y^{n+m-1-k} \in I$ et les suivants le sont aussi car $x^k \in I$

donc $x + y \in R(I)$.

Soit de plus $a \in A$. On a $(ax)^n = a^n x^n \in I$ donc $ax \in R(I)$.

Ainsi R(I) est un idéal de A.

Soit $x \in I$, on a $x^1 \in I$ donc $x \in R(I)$.

(b) Si $x \in R(I \cap J)$ alors il existe $n \in \mathbb{N}^*$ tel que $x^n \in I \cap J$. On a alors $x^n \in I$ donc $x \in R(I)$ et de même $x \in R(J)$. Ainsi

$$R(I \cap J) \subset R(I) \cap R(J)$$
.

Soit $x \in R(I) \cap R(J)$. Il existe $n, m \in \mathbb{N}^*$ tel que $x^n \in I$ et $x^m \in J$. Pour $N = \max(m, n)$, on a par absorption $x^N \in I$ et $x^N \in J$ donc $x^N \in I \cap J$. Ainsi $x \in R(I \cap J)$ et on peut affirmer

$$R(I \cap J) \supset R(I) \cap R(J)$$

puis l'égalité.

Puisque $I \subset I + J$, on a clairement $R(I) \subset R(I + J)$. De même $R(J) \subset R(I + J)$.

Enfin R(I+J) étant stable par somme $R(I)+R(J)\subset R(I+J)$.

(c) Si n a un facteur carré d^2 avec d > 2.

Posons $k \in \mathbb{Z}$ tel que $n = d^2k$.

On a $dk \notin n\mathbb{Z}$ et $(dk)^2 = nk \in n\mathbb{Z}$ donc $dk \in R(n\mathbb{Z})$. Ainsi $R(n\mathbb{Z}) \neq n\mathbb{Z}$. Si n n'a pas de facteurs carrés alors n s'écrit $n = p_1 p_2 \dots p_m$ avec p_1, \dots, p_m nombres premiers deux à deux distincts.

Pour tout $x \in R(n\mathbb{Z})$, il existe $k \in \mathbb{N}^*$ tel que $x^k \in n\mathbb{Z}$.

Tous les p_1, \ldots, p_m sont alors facteurs premiers de x^k donc de x et par conséquent n divise x.

Finalement $R(n\mathbb{Z})\subset n\mathbb{Z}$ puis $R(n\mathbb{Z})=n\mathbb{Z}$ car l'autre inclusion est toujours vraie.

Exercice 29: [énoncé]

- (a) sans difficultés.
- (b) Pour tout $x \in A$, x = xe + x(1 e) avec $xe \in I$ et $x xe \in J$. Par suite I + J = A.

Si $xe \in J$ alors $xe = xe^2 = 0$ donc $I \cap J = \{0\}$.

(c) L'inclusion $(K \cap I) + (K \cap J) \subset K$ est immédiate. L'inclusion réciproque provient de l'écriture x = xe + x(1 - e).

Exercice 30: [énoncé]

- (a) Pour $p \in \mathcal{P}$, $p\mathbb{Z}$ est un idéal premier. En effet on sait que $p\mathbb{Z}$ est un idéal et en vertu du lemme d'Euclide : $xy \in p\mathbb{Z} \implies x \in p\mathbb{Z}$ ou $y \in p\mathbb{Z}$.
- (b) Même principe
- (c) Supposons $J \cap K = I$. Si J = I ok.

Sinon il existe $a \in J$ tel que $a \notin I$. Pour tout $b \in K$, $ab \in J \cap K$ d'où $ab \in I$ puis $b \in I$ car $a \notin I$. Ainsi $K \subset I$. D'autre part $I = J \cap K \subset K$ donc I = K.

(d) $I = \{0\}$ est un idéal premier donc

$$xy = 0 \implies x = 0 \text{ ou } y = 0.$$

Soit $x \in A$ tel que $x \neq 0$. x^2A est premier et $x^2 \in x^2A$ donc $x \in x^2A$. Ainsi il existe $y \in A$ tel que $x = x^2y$ et puisque $x \neq 0$, xy = 1. Ainsi A est un corps.

Exercice 31 : [énoncé]

Une suite croissante (I_n) d'idéaux de \mathbb{Z} se détermine par une suite d'entiers naturels (a_n) vérifiant $I_n = a_n \mathbb{Z}$ et $a_{n+1} \mid a_n$. Si pour tout $n \in \mathbb{N}$, $I_n = \{0\}$ alors la suite (I_n) est stationnaire.

Sinon à partir d'un certain rang $I_n \neq \{0\}$ et la relation $a_{n+1} \mid a_n$ entraîne $a_{n+1} \leq a_n$. La suite d'entiers naturels (a_n) est décroissante et donc stationnaire. Il en est de même pour (I_n) .

Ce résultat se généralise à $\mathbb{K}[X]$ en travaillant avec une suite de polynômes unitaires (P_n) vérifiant $P_{n+1} \mid P_n$ ce qui permet d'affirmer en cas de non nullité deg $P_{n+1} \leq \deg P_n$ puis $(\deg P_n)$ stationnaire, puis encore (P_n) stationnaire et enfin (I_n) stationnaire.

Exercice 32: [énoncé]

Notons qu'un sous-anneau de $\mathbb Q$ possédant 1 contient nécessairement $\mathbb Z$.

(a) Par égalité de Bézout, on peut écrire pu+qv=1 avec $u,v\in\mathbb{Z}.$ Si $\frac{p}{q}\in A$ alors

$$\frac{1}{q} = u\frac{p}{q} + v.1 \in A.$$

- (b) $I \cap \mathbb{Z}$ est un sous-groupe de $(\mathbb{Z},+)$ donc il est de la forme $n\mathbb{Z}$ avec $n \in \mathbb{N}$. Puisque $I \neq \{0\}$, il existe $p/q \in I$ non nul et par absorption, $p = q.p/q \in I \cap \mathbb{Z}$ avec $p \neq 0$. Par suite $I \cap \mathbb{Z} \neq \{0\}$ et donc $n \in \mathbb{N}^*$. Puisque $n \in I$, on peut affirmer par absorption que $nA \subset I$. Inversement, pour $p/q \in I$ avec $p \wedge q = 1$ on a $1/q \in A$ et $p \in n\mathbb{Z}$ donc $p/q \in nA$. Ainsi I = nA.
- (c) On peut vérifier que Z_p est un sous-anneau de \mathbb{Q} . Pour $x=a/b\in\mathbb{Q}^*$ avec $a\wedge b=1$. Si $p\not|b$ alors $p\wedge b=1$ et $x\in Z_p$. Sinon $p\mid b$ et donc $p\not|a$ d'où l'on tire $1/x\in Z_p$.
- (d) Soit J un idéal strict de A. J ne contient pas d'éléments inversibles de A car sinon il devrait contenir 1 et donc être égal à A.

Ainsi J est inclus dans I. De plus, on peut montrer que I est un idéal de A. En effet $I \subset A$ et $0 \in I$.

Soient $a \in A$ et $x \in I$.

Cas $a = 0 : ax = 0 \in I$.

Cas $a \neq 0$: Supposons $(ax)^{-1} \in A$ alors $a^{-1}x^{-1} \in A$ et donc

 $x^{-1} = a(a^{-1}x^{-1}) \in A$ ce qui est exclu. Ainsi, $(ax)^{-1} \notin A$ et donc $ax \in I$.

Soient $x, y \in I$. Montrons que $x + y \in I$.

Cas x = 0, y = 0 ou x + y = 0: c'est immédiat.

Cas $x \neq 0, y \neq 0$ et $x + y \neq 0$: On a $(x + y)^{-1}(x + y) = 1$ donc

$$(x+y)^{-1}(1+x^{-1}y) = x^{-1}$$
 et $(x+y)^{-1}(1+xy^{-1}) = y^{-1}$ (*).

Par l'hypothèse de départ, l'un au moins des deux éléments $x^{-1}y$ ou $xy^{-1} = (x^{-1}y)^{-1}$ appartient à A.

Par opérations dans A à l'aide des relations (*), si $(x+y)^{-1} \in A$ alors x^{-1} ou y^{-1} appartient à A ce qui est exclu. Ainsi $(x+y)^{-1} \notin A$ et donc $x+y \in I$. Finalement I est un idéal de A.

Par suite, il existe $n \in \mathbb{N}$, vérifiant I = nA.

Si n = 0 alors $I = \{0\}$ et alors $A = \mathbb{Q}$ car pour tout $x \in \mathbb{Q}^*$, x ou $1/x \in A$ et dans les deux cas $x \in A$ car $I = \{0\}$.

Si n = 1 alors I = A ce qui est absurde car $1 \in A$ est inversible.

Nécessairement $n \geq 2$. Si n = qr avec $2 \leq q, r \leq n-1$ alors puisque $1/n \notin A$, au moins l'un des éléments 1/q et $1/r \notin A$. Quitte à échanger, on peut supposer $1/q \notin A$. qA est alors un idéal strict de A donc $qA \subset I$. Inversement $I \subset qA$ puisque n est multiple de q. Ainsi, si n n'est pas premier alors il existe un facteur non trivial q de n tel que I = nA = qA. Quitte à recommencer, on peut se ramener à un nombre premier p.

Finalement, il existe un nombre premier p vérifiant I = pA.

Montrons qu'alors $A = Z_p$.

Soit $x \in A$. On peut écrire x = a/b avec $a \wedge b = 1$. On sait qu'alors $1/b \in A$ donc si $p \mid b$ alors $1/p \in A$ ce qui est absurde car $p \in I$. Ainsi $p \not\mid b$ et puisque

p est premier, $p \wedge b = 1$. Ainsi $A \subset \mathbb{Z}_p$.

Soit $x \in Z_p$, x = a/b avec $b \land p = 1$. Ŝi $x \notin A$ alors $x \neq 0$ et $1/x = b/a \in A$ puis $b/a \in I \in pA$ ce qui entraîne, après étude arithmétique, $p \mid b$ et est absurde.

Ainsi $Z_p \subset A$ puis finalement $Z_p = A$.

Exercice 33: [énoncé]

(a) I est une partie non vide de A puisque 0_A en est élément. Soient $a\in A$ et $x\in I$

Si a = 0 alors $ax = 0 \in I$.

Pour $a \neq 0$, supposons $(ax)^{-1} \in A$.

On a alors $a^{-1}x^{-1} \in A$ et donc $x^{-1} = a(a^{-1}x^{-1}) \in A$ ce qui est exclu.

Nécessairement $(ax)^{-1} \notin A$ et donc $ax \in I$.

Soient $x, y \in I$. Montrons que $x + y \in I$.

Si x = 0, y = 0 ou x + y = 0, c'est immédiat. Sinon :

On a $(x+y)^{-1}(x+y) = 1$ donc

$$(x+y)^{-1}(1+x^{-1}y) = x^{-1}$$
 et $(x+y)^{-1}(1+xy^{-1}) = y^{-1}$ (*).

Par l'hypothèse de départ, l'un au moins des deux éléments $x^{-1}y$ ou $xy^{-1}=\left(x^{-1}y\right)^{-1}$ appartient à A.

Par opérations dans A à l'aide des relations (*), si $(x+y)^{-1} \in A$ alors x^{-1} ou y^{-1} appartient à A ce qui est exclu. Ainsi, $(x+y)^{-1} \notin A$ et donc $x+y \in I$. Finalement, I est un idéal de A.

(b) Soit J un idéal de A distinct de A.

Pour tout $x \in J$, si $x^{-1} \in A$ alors par absorption $1 = xx^{-1} \in J$ et donc J = A ce qui est exclu.

On en déduit que $x^{-1} \notin A$ et donc $x \in I$. Ainsi, $J \subset I$.

Exercice 34: [énoncé]

Soit $x \in A$ avec $x \neq 0_A$. Il suffit d'établir que x est inversible pour conclure. Pour chaque $n \in \mathbb{N}$, $x^n A$ est un idéal. Puisque l'anneau A ne possède qu'un nombre fini d'idéaux, il existe $p < q \in \mathbb{N}$ tels que $x^p A = x^q A$. En particulier, puisque $x^p \in x^p A$, il existe $a \in A$ tel que

$$x^p = x^q a$$
.

On a alors

$$x^p(1_A - x^{q-p}a) = 0_A$$

L'anneau A étant intègre et sachant $x \neq 0_A$, on a nécessairement

$$x^{q-p}a = 1_A.$$

On en déduit que x est inversible avec

$$x^{-1} = x^{q-p-1}a.$$

Exercice 35: [énoncé]

- (a) $3x + 5 = 0 \iff x + 5 = 0 \iff x = 5$ car l'inverse de 3 dans $\mathbb{Z}/10\mathbb{Z}$ est 7.
- (b) Il suffit de tester les entiers 0, 1, 2, 3, 4. 1 et 3 conviennent. Les solutions sont 1, 3, 5, 7.
- (c) $x^2 + 2x + 2 = 0 \iff x^2 + 2x 3 = 0 \iff (x 1)(x + 3) = 0$ donc les solutions sont 1 et -3.

Exercice 36: [énoncé]

Les solutions du système sont solutions de l'équation

$$z^2 - 4z + 10 = 0$$
 [11].

Or

$$z^{2} - 4z + 10 = z^{2} + 7z + 10 = (z+2)(z+5)$$

donc les solutions sont -2 = 9 et -5 = 6. On obtient comme solutions, les couples (9,6) et (6,9).

Exercice 37: [énoncé]

Notons \overline{x} les éléments de $\mathbb{Z}/n\mathbb{Z}$ et \hat{x} ceux de $\mathbb{Z}/m\mathbb{Z}$.

Posons $d = \operatorname{pgcd}(n, m)$. On peut écrire

$$n = dn'$$
 et $m = dm'$ avec $n' \wedge m' = 1$.

Soit φ un morphisme de $(\mathbb{Z}/n\mathbb{Z},+)$ vers $(\mathbb{Z}/m\mathbb{Z},+)$.

On a

$$n.\varphi(\overline{1}) = \varphi(n.\overline{1}) = \varphi(\overline{n}) = \varphi(\overline{0}) = \hat{0}.$$

Si l'on note $\varphi(\overline{1}) = \hat{k}$, on a donc $m \mid nk$ d'où $m' \mid n'k$ puis $m' \mid k$ car m' et n' sont premiers entre eux.

Ainsi $\varphi(\overline{1}) = \widehat{m'a}$ pour un certain $a \in \mathbb{Z}$ puis alors

$$\forall x \in \mathbb{Z}, \varphi(\overline{x}) = \widehat{m'ax}$$

Inversement, si l'on considère pour $a\in\mathbb{Z}$, l'application $\varphi\colon\mathbb{Z}/n\mathbb{Z}\to\mathbb{Z}/m\mathbb{Z}$ donnée par

$$\forall x \in \mathbb{Z}, \varphi(\overline{x}) = \widehat{m'ax}$$

on vérifie que φ est définie sans ambiguïté car

$$\overline{x} = \overline{y} \implies m = m'd \mid m'(x - y) \implies \widehat{m'ax} = \widehat{m'ay}$$

On observe aussi que φ est bien un morphisme de groupe.

Exercice 38: [énoncé]

On a

$$\sum_{k=1}^{p} \overline{k} = \overline{\sum_{k=1}^{p} k} = \overline{\frac{p(p+1)}{2}}.$$

Si p=2 alors

$$\sum_{k=1}^{p} \overline{k} = \overline{1}.$$

Si $p \ge 3$ alors (p+1)/2 est un entier et donc

$$\sum_{k=1}^{p} \overline{k} = \overline{p} \times \frac{\overline{(p+1)}}{2} = \overline{0}.$$

On a

$$\sum_{k=1}^{p} \overline{k}^2 = \sum_{k=1}^{p} k^2 = \frac{\overline{p(p+1)(2p+1)}}{6}.$$

Si p=2 alors

$$\sum_{k=1}^{p} \overline{k}^2 = \overline{1}.$$

Si p = 3 alors

$$\sum_{k=1}^{p} \overline{k}^2 = \overline{1}^2 + \overline{2}^2 = \overline{2}.$$

Si $p \ge 5$ alors (p+1)(2p+1) est divisible par 6. En effet, p+1 est pair donc (p+1)(2p+1) aussi. De plus, sur les trois nombres consécutifs

$$2p, (2p+1), (2p+2)$$

l'un est divisible par 3. Ce ne peut être 2p et si 2p+2 est divisible par 3 alors p+1 l'est aussi. Par suite (p+1)(2p+1) est divisible par 3. Ainsi

$$\sum_{k=1}^{p} \overline{k}^2 = \overline{p} \times \frac{\overline{(p+1)(2p+1)}}{6} = \overline{0}.$$

Exercice 39: [énoncé]

(a) Les inversibles de $\mathbb{Z}/8\mathbb{Z}$ sont les \overline{k} avec $k \wedge 8 = 1$. Ce sont donc les éléments $\overline{1}, \overline{3}, \overline{5}$ et $\overline{7}$.

L'ensemble des inversibles d'un anneau est un groupe multiplicatif.

(b) Le groupe $(\{\overline{1},\overline{3},\overline{5},\overline{7}\},\times)$ vérifie la propriété $x^2=1$ pour tout x élément de celui-ci. Ce groupe n'est donc pas isomorphe au groupe cyclique $(\mathbb{Z}/4\mathbb{Z},+)$ qui constitue donc un autre exemple de groupe de cardinal 4. En fait le groupe $(\{\overline{1},\overline{3},\overline{5},\overline{7}\},\times)$ est isomorphe à $(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z},+)$.

Exercice 40: [énoncé]

Si p=2: il y a deux carrés dans $\mathbb{Z}/2\mathbb{Z}$.

Si $p \geq 3$, considérons l'application $\varphi \colon x \mapsto x^2$ dans $\mathbb{Z}/p\mathbb{Z}$

Dans le corps $\mathbb{Z}/p\mathbb{Z}$: $\varphi(x) = \varphi(y) \iff x = \pm y$.

Dans $\operatorname{Im} \varphi$, seul 0 possède un seul antécédent, les autres éléments possèdent deux antécédents distincts. Par suite $\operatorname{Card} \mathbb{Z}/p\mathbb{Z} = 1 + 2(\operatorname{Card} \operatorname{Im} \varphi - 1)$ donc il y $\frac{p+1}{2}$ carrés dans $\mathbb{Z}/p\mathbb{Z}$.

Exercice 41: [énoncé]

Les inversibles sont obtenus à partir des nombres premiers avec 20

$$G = \{1, 3, 7, 9, 11, 13, 17, 19\}$$

3 est un élément d'ordre 4 dans (G, \times) avec

$$\langle 3 \rangle = \{1, 3, 9, 7\}$$

et 11 est un élément d'ordre 2 n'appartenant pas à $\langle 3 \rangle$. Le morphisme $\varphi \colon \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \to G$ donné par

$$\varphi(k,\ell) = 11^k \times 3^\ell$$

est bien défini et injectif par les arguments qui précèdent. Par cardinalité, c'est un isomorphisme.

Exercice 42: [énoncé]

Pour $a \in (\mathbb{Z}/p\mathbb{Z})^*$, l'application $x \mapsto ax$ est une permutation de $(\mathbb{Z}/p\mathbb{Z})^*$. Le calcul

$$\prod_{x \in (\mathbb{Z}/p\mathbb{Z})^*} x = \prod_{x \in (\mathbb{Z}/p\mathbb{Z})^*} ax = a^{p-1} \prod_{x \in (\mathbb{Z}/p\mathbb{Z})^*} x$$

donne alors $a^{p-1} = 1$ car $\prod_{x \in (\mathbb{Z}/p\mathbb{Z})^*} x \neq 0$.

Exercice 43: [énoncé]

- (a) L'entier p divise n et donc divise 2^n-1 . On en déduit $\overline{2}^n=\overline{1}$ dans $\mathbb{Z}/p\mathbb{Z}$. L'élément $\overline{2}$ est donc inversible dans $\mathbb{Z}/p\mathbb{Z}$ et son ordre divise n. Aussi, le groupe des inversibles du corps $\mathbb{Z}/p\mathbb{Z}$ est de cardinal p-1 et donc $\overline{2}$ est d'ordre divisant p-1.
- (b) Considérons p le plus petit facteur premier de n. Les facteurs premiers de l'ordre de 2 divisant n, ils sont tous au moins égaux à p. Or ils divisent aussi p-1 et ils sont donc aussi strictement inférieurs à p. On en déduit que $\overline{2}$ est d'ordre 1 dans $\mathbb{Z}/p\mathbb{Z}$ ce qui est absurde.

Exercice 44: [énoncé]

On peut écrire

$$M(a, b, c) = aI + bJ + cK$$

avec

$$I = M(1,0,0), J = M(0,1,0)$$
 et $K = M(0,0,1) = J^2$.

Ainsi, $E = \operatorname{Vect}(I, J, K)$ est un sous-espace vectoriel de dimension 3 de $\mathcal{M}_3(\mathbb{R})$ (car (I, J, K) est clairement une famille libre). Aussi

$$M(a,b,c)M(a',b',c') = (aa' + bc' + cb')I + (ab' + a'b + cc')J + (ac' + a'c + bb')K.$$

Donc E est une sous algèbre (visiblement commutative) de $\mathcal{M}_3(\mathbb{R})$.

Exercice 45: [énoncé]

(a) Soit a un élément non nul de \mathbb{K} . L'application $\varphi \colon x \mapsto ax$ est \mathbb{R} -linéaire de \mathbb{K} vers \mathbb{K} et son noyau est réduit à $\{0\}$ car l'algèbre \mathbb{K} est intègre. Puisque \mathbb{K} est un \mathbb{R} -espace vectoriel de dimension finie, l'endomorphisme φ est bijectif et il existe donc $b \in \mathbb{K}$ vérifiant ab = 1. Puisque

$$\varphi(ba) = a(ba) = (ab)a = a = \varphi(1)$$

on a aussi ba = 1 et donc a est inversible d'inverse b.

- (b) Puisque $1 \neq 0$, si la famille (1, a) était liée alors $a \in \mathbb{R}.1 = \mathbb{R}$ ce qui est exclu; on peut donc affirmer que la famille (1, a) est libre. Puisque la \mathbb{R} -algèbre a est de dimension n, on peut affirmer que la famille $(1, a, a^2, \dots, a^n)$ est liée car formée de n+1 vecteurs. Il existe donc un polynôme non nul $P \in \mathbb{R}_n[X]$ tel que P(a) = 0. Or ce polynôme se décompose en un produit de facteurs de degrés 1 ou 2. Puisque les facteurs de degré 1 n'annule pas a et puisque l'algèbre est intègre, il existe un polynôme de degré 2 annulant a. On en déduit que la famille $(1, a, a^2)$ est liée.
- (c) Plus exactement avec ce qui précède, on peut affirmer qu'il existe $\alpha, \beta \in \mathbb{R}$ tel que

$$a^2 + \alpha a + \beta = 0$$
 avec $\Delta = \alpha^2 - 4\beta < 0$.

On a alors

$$\left(a + \frac{\alpha}{2}\right)^2 = \frac{\alpha^2 - 4\beta}{4}$$

et on obtient donc $i^2 = -1$ en prenant

$$i = \frac{2a + \alpha}{\sqrt{4\beta - \alpha^2}}.$$

(d) Par l'absurde, supposons $n = \dim \mathbb{K} > 2$. Il existe $a, b \in \mathbb{K}$ tels que (1, a, b) soit libre.

Comme ci-dessus, on peut alors introduire $i \in Vect(1, a)$ et $j \in Vect(1, b)$ tels que

$$i^2 = -1 = j^2.$$

On a alors par commutativité

$$(i-j)(i+j) = 0$$

et l'intégrité de K entraîne i=j ou i=-j. Dans un cas comme dans l'autre, on obtient

$$1, a, b \in Vect(1, i)$$

ce qui contredit la liberté de la famille (1, a, b).

On en déduit n=2. Il est alors facile d'observer que K est isomorphe à \mathbb{C} .

Exercice 46: [énoncé]

(a) Supposons $M^2 \in \mathcal{A}$. \mathcal{A} et Vect (I_n) étant supplémentaires dans $\mathcal{M}_n(\mathbb{C})$, on peut écrire $M = A + \lambda I_n$ avec $A \in \mathcal{A}$. On a alors $M^2 = A^2 + 2\lambda A I_n + \lambda^2 I_n$ d'où l'on tire $\lambda^2 I_n \in \mathcal{A}$ puis $\lambda = 0$ ce qui donne $M \in \mathcal{A}$. Pour $i \neq j$, $E_{i,j}^2 = 0 \in \mathcal{A}$ donc $E_{i,j} \in \mathcal{A}$ puis $E_{i,i} = E_{i,j} \times E_{j,i} \in \mathcal{A}$. Par suite $I_n = E_{1,1} + \cdots + E_{n,n} \in \mathcal{A}$. Absurde.

(b) Formons une équation de l'hyperplan \mathcal{A} de la forme ax + by + cz + dt = 0 en la matrice inconnue $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ avec $(a, b, c, d) \neq (0, 0, 0, 0)$. Cette équation peut se réécrire $\operatorname{tr}(AM) = 0$ avec $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$.

Puisque $I_2 \in \mathcal{A}$, on a tr A = 0. Soit λ une valeur propre de A.

Si $\lambda \neq 0$ alors $-\lambda$ est aussi valeur propre de A et donc A est diagonalisable via une matrice P.

On observe alors que les matrices M de A sont celles telles que $P^{-1}MP$ a ses coefficients diagonaux égaux.

Mais alors pour $M = P \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} P^{-1}$ et $N = P \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} P^{-1}$ on a $M, N \in \mathcal{A}$ alors que $MN \in \mathcal{A}$.

Si $\lambda = 0$ alors A est trigonalisable en $\begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix}$ avec $\alpha \neq 0$ via une matrice P.

On observe alors que les matrices M de \mathcal{A} sont celles telles que $P^{-1}MP$ est triangulaire supérieure. L'application $M \mapsto P^{-1}MP$ est un isomorphisme comme voulu.