

On the evolutionary transitions from free-living organisms to obligate symbioses

Linh-Phuong NGUYEN

Minus van Baalen

MMEE – Lyon, July 2019

The diverse world of symbiosis

The diverse world of symbiosis

The diverse world of symbiosis

Transition from facultative to obligate symbiosis is an evolutionary riddle

- I will focus on the evolution of one partner (the SYMBIONT) given the ecological dynamics of the other partner (the HOST)
- I will use INDEPENDENT REPRODUCTION as indication of partner dependency

$$\frac{d}{dt} \begin{pmatrix} \mathcal{F} \\ \mathcal{A} \\ \mathcal{H} \end{pmatrix} = \begin{pmatrix} \rho \ K(\mathcal{F}) - \mu - \beta \mathcal{H} & \tau & 0 \\ \beta H & p \ r - \nu \ N(\mathcal{A}, \mathcal{H}) & 0 \\ -\beta \mathcal{H} & r(1-p) & r - d \ D(\mathcal{H}, \mathcal{A}) \end{pmatrix} \begin{pmatrix} \mathcal{F} \\ \mathcal{A} \\ \mathcal{H} \end{pmatrix}$$

$$\frac{d}{dt} \begin{pmatrix} \mathcal{F} \\ \mathcal{A} \\ \mathcal{H} \end{pmatrix} = \begin{pmatrix} \rho \ K(\mathcal{F}) - \mu - \beta \mathcal{H} & \tau & 0 \\ \beta \mathcal{H} & p \ r - \nu \ N(\mathcal{A}, \mathcal{H}) & 0 \\ -\beta \mathcal{H} & r(1-p) & r - d \ D(\mathcal{H}, \mathcal{A}) \end{pmatrix} \begin{pmatrix} \mathcal{F} \\ \mathcal{A} \\ \mathcal{H} \end{pmatrix}$$

$$\frac{d}{dt} \begin{pmatrix} \mathcal{F} \\ \mathcal{A} \\ \mathcal{H} \end{pmatrix} = \begin{pmatrix} \rho \ K(\mathcal{F}) - \mu - \beta \mathcal{H} & \tau & 0 \\ \beta \mathcal{H} & p \ r - \nu \ N(\mathcal{A}, \mathcal{H}) & 0 \\ -\beta \mathcal{H} & r(1-p) & r - d \ D(\mathcal{H}, \mathcal{A}) \end{pmatrix} \begin{pmatrix} \mathcal{F} \\ \mathcal{A} \\ \mathcal{H} \end{pmatrix}$$

Invasion fitness of a mutant

Trade-off among bound reproduction, independent reproduction and bound mortality rate

$$\tau = \theta - \rho^h + \eta(\nu - \nu_0)^g$$

Adaptation to the symbiotic lifestyle imposes a cost on the independent reproduction

 $\eta > 0$: The adaptation increases host mortality rate (parasitic relationship)

 η < 0: The adaptation reduce host mortality rate (mutualistic relationship via host protection)

Trade-off and invasion fitness can be represented as manifolds

$$\tau = \theta - \rho^{h} + \eta(\nu - \nu_{0})^{g}$$

$$\tau_{m} > \frac{N(\hat{\mathcal{A}}, \hat{\mathcal{H}})\nu_{m} - pr}{\beta\hat{\mathcal{H}}} \left(\beta\hat{\mathcal{H}} + \mu - K(\hat{\mathcal{F}})\rho_{m}\right)$$

Trade-off and invasion fitness can be represented as manifolds

$$\tau = \theta - \rho^{h} + \eta(\nu - \nu_{0})^{g}$$

$$\tau_{m} > \frac{N(\hat{\mathcal{A}}, \hat{\mathcal{H}})\nu_{m} - pr}{\beta\hat{\mathcal{H}}} \left(\beta\hat{\mathcal{H}} + \mu - K(\hat{\mathcal{F}})\rho_{m}\right)$$

Invasion boundary

Trade-off and invasion fitness can be represented as manifolds

$$\tau = \theta - \rho^{h} + \eta(\nu - \nu_{0})^{g}$$

$$\tau_{m} > \frac{N(\hat{\mathcal{A}}, \hat{\mathcal{H}})\nu_{m} - pr}{\beta\hat{\mathcal{H}}} \left(\beta\hat{\mathcal{H}} + \mu - K(\hat{\mathcal{F}})\rho_{m}\right)$$

Invasion boundary

Steepest ascent of tradeoff surface

Steepest ascent of invasion surface

Singular strategy is the tangent point of the two manifolds

Boundary ESS

The steepest ascent of the invasion surface lies on the negative area

Multiple ESSs

Multiple residents with invasion boundaries parallel to one axis

Benefits from adaptation to symbiosis impose a small cost on independent reproduction

Benefits from adaptation to symbiosis impose a small cost on independent reproduction

Benefits from adaptation to symbiosis impose a low cost on independent reproduction

Conclusions

When benefits from the adaptation to the symbiosis impose a low cost on the independent reproduction:

- Obligate mutualism can evolve via small mutations
- Parasitism incapable of inducing high virulence never evolve dependency on the host
- Parasitism capable of inducing high virulence results in various scenarios

Transition from facultative to obligate symbiosis is an evolutionary riddle

- We will focus on the evolution of one partner (the SYMBIONT) given the ecological dynamics of the other partner (the HOST)
- We will use INDEPENDENT REPRODUCTION as indication of partner dependency

Benefits from adaptation imposes a high cost on the independent reproduction

Benefits from adaptation imposes a high cost on the independent reproduction

