

Pathogen Epidemiology Review Group

MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London

Pathogen Epidemiology Review Group

Introduction

- deadly filovirus
- transmitted through close contact and bodily fluids
 - especially during traditional burials and caregiving.
- 38 known outbreaks since its discovery in 1976.
 - Most in Central and Western Africa,
- West African (WA) Ebola epidemic, caused over 11,000 reported deaths between 2013 and 2016 mainly across Guinea, Liberia and Sierra Leone.
- Four species of Ebola Virus are known to affect humans: Zaire, Bundibugyo, Sudan and Taï Forest.
- Reston, is only known to cause disease in non-human primates and Bombali, was identified in samples taken from bats in Sierra Leone.

Search terms

Imperial College London

First search until 8th March 2019. Updated until 7th July 2023.

Ebola AND ((transmissi* OR epidemiolog*) OR (model* NOT imag*) OR (severity OR "case fatality ratio*" OR CFR OR "case fatality rate*" OR "mortality rate*" OR "attack rate*") OR ("infectious period*" OR "serial interval*" OR "incubation period*" OR "generation time*" OR "generation interval*" OR "latent period*" OR latency) OR (heterogeneit* OR superspread* OR "super spread*" OR super- spread* OR overdispersion OR overdispersed OR over-dispersion OR over-dispersed OR "over dispersion" OR "over dispersed") OR (infectivity OR infectiousness OR "growth rate*" OR "reproduction number*" OR "reproductive number*" OR RO OR "reproduction ratio*" OR "reproductive rate*") OR ("pre-existing immunity" OR serological OR serology OR serosurvey*) OR (evolution* OR mutation* OR substitution*) OR (outbreak* OR cluster* OR epidemic*) OR ("risk factor*")).

Inclusion / Exclusion Criteria

Inclusion	Exclusion
Measures/estimates of human: Reproduction numbers	Non-English language publication .
(R, R0, Rt, r, Re), growth rate (r), doubling times, generation time, serial interval, incubation/latent period, case fatality ratio (CFR), attack rate, mutation	Studies of co-infections. (local, regional, national, international).
rate (e.g. from phylogenetic study), overdispersion, risk factors (risk and the measure). Mathematical or statistical model of transmission.	Animal studies.
Measures of seroprevalence and negative seroprevalence in humans.	Qualitative studies, e.g., KAP studies.
Nature letters.	Pathogen not the primary focus of study.
	Duplicates.
	Does not match any of the inclusion criteria.
	In-vitro studies.
	Non-peer reviewed publications, conference proceedings, abstracts, posters, letters to the editor.

PRISMA flow chart

- Data package to host curated and annotated data
- Install from github
- version 1.1.0 releases data from Lassa and Ebola review

Basic Reproduction Number

- DRC
- Guinea
- Guinea, Liberia, Nigeria, Sierra Leone
- Guinea, Liberia, Sierra Leone
- Guinea, Sierra Leone
- Liberia
- Multi-country: Africa, Europe, USA (n = 12)
- Nigeria
- Sierra Leone
- Uganda
- Mean
- Median
- Other/Unspecified

Epidemiological delays

Imperial College London

serial interval

Study	Mean	SD	Total	Weight (common)	•	Mean IV, Fixed + Random, 95% (Mean CI IV, Fixed + Random, 95% CI
Ajelli 2015	13.70	4.50	12	1.87%	14.52%	13.70 [11.15; 16.25]	
Aylward 2014	15.30	9.30	92	3.36%	16.09%	15.30 [13.40; 17.20]	_ <u>+</u>
Chan 2020	15.30	2.30	20	11.96%	17.82%	15.30 [14.29; 16.31]	-
Dowell 1999	17.14	2.93	200	73.91%	18.48%	17.14 [16.74; 17.55]	—
Muoghalu 2017	11.10	5.20	47	5.50%	16.98%	11.10 [9.61; 12.59]	
Pettey 2017	19.40	5.10	28	3.40%	16.11%	19.40 [17.51; 21.29]	_
Total (common effect, 95% CI)	16.54 [16.19; 16.89]	•					
Total (random effect, 95% CI)	15.36 [13.29; 17.42]						
Heterogeneity: Tau ² = 5.9835; Chi ²							
inauh	9 12 15 18						
incub	u L	I(t)I	T = 0	PUO	a		Serial interval (days)

н	L	-	,
ı	Е		9
٠	-	-	•

Α

Study	Mean	SD	Total	Weight (common)	J	Mean IV, Fixed + Random, 95% C	CI	Me IV, Fixed + Ra	an ndom, 95% (CI
Ajelli 2015	9.70	3.70	8	2.19%	5.70%	9.70 [7.14; 12.26]			+	
Althaus 2015	9.31	5.28	20	2.69%	6.58%	9.31 [6.99; 11.63]			-	
Chan 2020	9.30	1.90	20	20.79%	16.07%	9.30 [8.47; 10.13]		1	<u>i</u>	
Dowell 1999	7.28	3.50	27	8.26%	12.12%	7.28 [5.96; 8.61]				
Francesconi 2003	6.58	3.85	24	6.07%	10.57%	6.58 [5.04; 8.12]	_			
Muoghalu 2017	9.50	4.00	76	17.82%	15.51%	9.50 [8.60; 10.40]			_	
Wamala 2010	7.68	3.53	116	34.96%	17.60%	7.68 [7.04; 8.32]		<u> </u>		
Xu 2016	8.60	6.10	31	3.13%	7.27%	8.60 [6.45; 10.75]				
Yan 2015	9.20	6.70	49	4.10%	8.58%	9.20 [7.32; 11.08]		- [•		
Total (common effect, 95% CI)			371	100.00%		8.42 [8.04; 8.80]		*		
Total (random effect, 95% CI)					100.00%	8.48 [7.76; 9.20]		<u></u>		
Heterogeneity: Tau ² = 0.6616; Chi ²	= 25.46,	df = 8	(P < 0.	01); I ² = 69%				1	I	
	,			,,			5	8	11	14
								Incubation p	eriod (davs)	

Epidemiological delays

Imperial College London

time from symptom onset to death

time from symptom onset to recovery

2									/		
				Weight	Weight	Mean			Mean	ı	
Study	Mean	SD	Total	(common)	(random)	IV, Fixed + Random, 95% (CI	IV, Fixed	i + Rand	om, 95%	CI
Kangbai 2021	16.29	8.26	105	28.40%	28.11%	16.29 [14.71; 17.87]			- 1	-	
Nanclares 2016	14.82	9.42	25	5.21%	19.14%	14.82 [11.13; 18.51]		-			_
Roddy 2012	10.47	5.47	15	9.25%	23.08%	10.47 [7.70; 13.24]	-	-			
Wamala 2010	10.82	4.99	77	57.14%	29.67%	10.82 [9.70; 11.93]		-	-		
Total (common effect, 95% CI)			222	100.00%	_	12.55 [11.71; 13.39]			-		
Total (random effect, 95% CI)					100.00%	13.04 [10.46; 15.63]		-	$\stackrel{\cdot}{\Longrightarrow}$		
Heterogeneity: Tau ² = 5.5347; Chi ²	= 34.42.	df = 3	(P < 0.	01); I ² = 91%				1	- 1	- 1	
,			`	,,			7	10	13	16	19
							S	ymptom o	nset to re	ecovery (days)

Ebola species analysis

Imperial College London

Onset to death

Study or Subgroup	Mean	SD	Total	Weight (common)		Mean IV, Fixed + Random, 95% C	Mean I IV, Fixed + Random, 95% CI
Ebola virus species = Zaire							
Ajelli 2015	9.70	3.70	8	0.01%	7.15%	9.70 [7.14; 12.26]	
Althaus 2015	9.31	5.28	20	0.01%	7.59%	9.31 [6.99; 11.63]	
Chan 2020	9.30	1.90	20	0.07%	9.94%	9.30 [8.47; 10.13]	-
Chowell 2004	5.30	0.23	315	76.82%	10.42%	5.30 [5.27; 5.33]	•
Dowell 1999	7.28	3.50	27	0.03%	9.29%	7.28 [5.96; 8.61]	<u> </u>
Muoghalu 2017	9.50	4.00	76	0.06%	9.86%	9.50 [8.60; 10.40]	; -
Xu 2016	8.60	6.10	31	0.01%	7.89%	8.60 [6.45; 10.75]	
Yan 2015	9.20	6.70	49	0.01%	8.37%	9.20 [7.32; 11.08]	÷ —
Total (common effect, 95% CI)			546	77.02%		5.31 [5.28; 5.34]	iı —
Total (random effect, 95% CI)					70.52%	8.36 [7.21; 9.52]	*
Heterogeneity: Tau ² = 2.1488; Chi ² =	= 229.02	2, df =	7 (P < 0	0.01); I ² = 97%			
Ebola virus species = Sudan							
Chowell 2004	3.35	0.49	425	22.84%	10.41%	3.35 [3.30; 3.40]	■
Francesconi 2003	6.58	3.85	24	0.02%	8.94%	6.58 [5.04; 8.12]	i
Total (common effect, 95% CI)			449	22.86%		3.35 [3.31; 3.40]	1
Total (random effect, 95% CI)					19.36%	4.77 [2.57; 6.98]	
Heterogeneity: Tau ² = 2.2591; Chi ² =	= 16.85,	df = 1	(P < 0.	01); I ² = 94%			
Ebola virus species = Bundibu	igyo						
Wamala 2010	7.68	3.53	116	0.12%	10.13%	7.68 [7.04; 8.32]	#
Total (common effect, 95% CI)			1111	100.00%		4.87 [4.84; 4.89]	1
Total (random effect, 95% CI)					100.00%	7.65 [6.43; 8.88]	<u></u>
Heterogeneity: Tau ² = 3.7533; Chi ² =	= 5552.0)3, df =	10 (P	= 0); I ² = 1009	6		
Test for subgroup differences (comm	non effe	ct): Ch	$i^2 = 530$	6.15, df = 2 (F	P = 0)		1 4 7 10 13
Test for subgroup differences (rando	m effec	ts): Ch	i ² = 8.0	2, df = 2 (P =	0.02)		Incubation period (days)

Study or Subgroup	Mean	SD	Total	Weight (common)		Mean IV, Fixed + Random, 95% CI	Mean IV, Fixed + Random, 95% CI
Ebola virus species = Zaire Althaus 2015	7.41	3.24	20	1.68%	4.70%	7.41 [5.99; 8.83]	

Onset to recovery

Study or				Weight	Weight	Mean	Mean
Subgroup	Mean	SD	Total	(common)	(random)	IV, Fixed + Random, 95% CI	IV, Fixed + Random, 95% CI
Ebola virus species = Zaire							
Ajelli 2015	9.70	3.70	8	0.01%	7.15%	9.70 [7.14; 12.26]	
Althaus 2015	9.31	5.28	20	0.01%	7.59%	9.31 [6.99; 11.63]	
Chan 2020	9.30	1.90	20	0.07%	9.94%	9.30 [8.47; 10.13]	<u> </u>
Chowell 2004	5.30	0.23	315	76.82%	10.42%	5.30 [5.27; 5.33]	
Dowell 1999	7.28	3.50	27	0.03%	9.29%	7.28 [5.96; 8.61]	i —
Muoghalu 2017	9.50	4.00	76	0.06%	9.86%	9.50 [8.60; 10.40]	-
Xu 2016	8.60	6.10	31	0.01%	7.89%	8.60 [6.45; 10.75]	; - •
Yan 2015	9.20	6.70	49	0.01%	8.37%	9.20 [7.32; 11.08]	· ·
Total (common effect, 95% CI)			546	77.02%		5.31 [5.28; 5.34]	iı .
Total (random effect, 95% CI)					70.52%	8.36 [7.21; 9.52]	; ~
Heterogeneity: Tau ² = 2.1488; Chi ²	= 229.02	2, df =	7 (P < 0	0.01); I ² = 97%			
Ebola virus species = Sudan							
Chowell 2004	3.35	0.49	425	22.84%	10.41%	3.35 [3.30; 3.40]	
Francesconi 2003	6.58	3.85	24	0.02%	8.94%	6.58 [5.04; 8.12]	i
Total (common effect, 95% CI)			449	22.86%		3.35 [3.31; 3.40]	– :
Total (soundary affect 050/ Ol)					40.000/	4 77 [0 57, 6 00]	

Case Fatality Ratio

- We extracted 295 models.
 - 71% compartmental,
 - 6% branching process,
 - 6% agent-based models,
 - 17% other model types or combinations of models.
- Various assumptions were made in the models including homogenous mixing, heterogeneity in transmission rates between groups or over time and the latent period being the same as the incubation period.
- Only 13% of models (n=37) have any publicly available code associated with them, limiting re-usability.

- Much is already known about the Ebola Zaire species; however, our review highlights a critical lack of evidence for other species such as Sudan, Bundibugyo and Taï forest.
- Initial analyses suggest statistically significant differences in key parameters between species such as the incubation period and delays from onset to death or recovery.
- There is high variability across studies, likely driven by differences in epidemic context.

pre-print on medRxiv

