Table 4. Probability and Statistics Formulas (Continued)

Confidence Intervals

Parameter	Assumptions	100(1 - α)% Confidence Interval
μ	n large, σ^2 known, or normality, σ^2 known	$\overline{z} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
μ	n large, σ^2 unknown	$\vec{z} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$
μ	normality, n small, σ^2 unknown	$\overline{x} \pm t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}$
p	binomial experiment, n large	$\hat{p} \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}\hat{q}}{n}}$
σ^2	normality	$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}},\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}\right)$
$\mu_1 - \mu_2$	n_1 , n_2 large, independence, σ_1^2 , σ_2^2 known, or normality, independence, σ_1^2 , σ_2^2 known	$(\overline{x}_1 - \overline{x}_2) \pm z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
$\mu_1 - \mu_2$	n_1 , n_2 large, independence, σ_1^2 , σ_2^2 unknown	$(\overline{z}_1 - \overline{z}_2) \pm z_{\alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
$\mu_1 - \mu_2$	normality, independence, σ_1^2 , σ_2^2 unknown but equal,	$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2, n_1 + n_2 - 2} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
	n ₁ , n ₂ small	$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$
$\mu_1 - \mu_2$	normality, independence, σ_1^2 , σ_2^2 unknown, unequal,	$(\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2,\nu} \cdot \sqrt{\frac{\epsilon_1^2}{n_1} + \frac{\epsilon_2^2}{n_2}}$
	n ₁ , n ₂ small	$\nu = \frac{\left(\frac{a_1^2}{n_1} + \frac{a_2^2}{n_2}\right)^2}{\frac{(a_1^2/n_1)^2}{n_1 - 1} + \frac{(a_2^2/n_2)^2}{n_2 - 1}} \sigma \kappa \forall = M, \forall (n_1 - 1, n_2 - 1)$
$\mu_D = \mu_1 - \mu_2$	normality, n pairs, n small, dependence	$\overline{d} \pm t_{\alpha/2,n-1} \cdot \frac{s_D}{\sqrt{n}}$
p ₁ - p ₂	binomial experiments, n ₁ , n ₂ large, independence	$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$
$\frac{\sigma_1^2}{\sigma_2^2}$	normality, independence	$\left(\frac{s_1^2}{s_2^2} \cdot \frac{1}{F_{\frac{n}{2},n_1-1,n_2-1}}, \frac{s_1^2}{s_2^2} \cdot \frac{1}{F_{1-\frac{n}{2},n_1-1,n_2-1}}\right)$

Table 4. Probability and Statistics Formulas (Continued)

Hypothesis Tests (One-Sample)

Null Hypothesis	Assumptions	Alternative Hypothesis	Test Statistic	Rejection Region
$\mu = \mu_0$	n large, σ^2 known, or normality, σ^2 known	μ > μ ₀ μ < μ ₀ μ ≠ μ ₀	$Z = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$	$Z \ge z_{\alpha}$ $Z \le -z_{\alpha}$ $ Z \ge z_{\alpha/2}$
$\mu = \mu_0$	n large, σ ² unknown	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$Z = \frac{\overline{X} - \mu_0}{s/\sqrt{n}}$	$Z \ge z_{\alpha}$ $Z \le -z_{\alpha}$ $ Z \ge z_{\alpha/2}$
μ = μ ₀	normality, n small, σ^2 unknown	μ > μ ₀ μ ≠ μ ₀	$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$	$T \ge t_{\alpha,n-1}$ $T \le -t_{\alpha,n+1}$ $ T \ge t_{\alpha/2,n-1}$
$p = p_0$	binomial experiment, n large	$p > p_0$ $p < p_0$ $p \neq p_0$	$Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$	$Z \ge z_{\alpha}$ $Z \le -z_{\alpha}$ $ Z \ge z_{\alpha/2}$
$\sigma^2 = \sigma_0^2$	normality	$\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$ $\sigma^2 \neq \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$x^{2} \ge x_{\alpha,n-1}^{2}$ $x^{2} \le x_{1-\alpha,n-1}^{2}$ $x^{2} \le x_{1-\alpha/2,n-1}^{2} \text{ or }$ $x^{2} \ge x_{\alpha/2,n-1}^{2}$

Table 4. Probability and Statistics Formulas (Continued)

Hypothesis Tests (Two-Samples)

Null Hypothesis	Assumptions	Alternative Hypothesis	Test Statistic	Rejection Region
$\mu_1 - \mu_2 = \Delta_0$	n_1 , n_2 large, independence, σ_1^2 , σ_2^2 known, or normality, independence, σ_1^2 , σ_2^2 known	$\mu_1 - \mu_2 > \Delta_0$ $\mu_1 - \mu_2 < \Delta_0$ $\mu_1 - \mu_2 \neq \Delta_0$	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$Z \ge z_{\alpha}$ $Z \le -z_{\alpha}$ $ Z \ge z_{\alpha/2}$
$\mu_1-\mu_2=\Delta_0$	n_1 , n_2 large, independence, σ_1^2 , σ_2^2 unknown	$\mu_{1} - \mu_{2} > \Delta_{0}$ $\mu_{1} - \mu_{2} < \Delta_{0}$ $\mu_{1} - \mu_{2} \neq \Delta_{0}$	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - \Delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_1^2}{n_2}}}$	$Z \ge z_{\alpha}$ $Z \le -z_{\alpha}$ $ Z \ge z_{\alpha/2}$
$\mu_1 - \mu_2 = \Delta_0$	normality, independence, σ_1^2 , σ_2^2 unknown, $\sigma_1^2 = \sigma_2^2$ n_1 , n_2 small	$\mu_1 - \mu_2 > \Delta_0$ $\mu_1 - \mu_2 < \Delta_0$ $\mu_1 - \mu_2 \neq \Delta_0$	$T = \frac{(\overline{X}_1 - \overline{X}_2) - \Delta_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$T \ge t_{\alpha,n_1+n_2-2}$ $T \le -t_{\alpha,n_1+n_2-2}$ $ T \ge t_{\alpha/2,n_1+n_2-2}$
$\mu_1 - \mu_2 = \Delta_0$	normality, independence, σ_1^2 , σ_2^2 unknown, $\sigma_1^2 \neq \sigma_2^2$ n_1 , n_2 small	$\mu_1 - \mu_2 > \Delta_0$ $\mu_1 - \mu_2 < \Delta_0$ $\mu_1 - \mu_2 \neq \Delta_0$	$\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} = \left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2$	$T' \geq t_{\alpha/2,\nu}$ $T' \leq -t_{\alpha/2,\nu}$ $ T' \geq t_{\alpha/2,\nu}$ $ T' \geq t_{\alpha/2,\nu}$
$\mu_D = \Delta_0$	normality, n pairs, n small, dependence	$\mu_D > \Delta_0$ $\mu_D < \Delta_0$ $\mu_D \neq \Delta_0$	$T = \frac{\overline{D} - \Delta_0}{S_D/\sqrt{n}}$	$T \ge t_{\alpha,n-1}$ $T \le -t_{\alpha,n-1}$ $ T \ge t_{\alpha/2,n-1}$
$p_1-p_2=0$	binomial exps., n ₁ , n ₂ large, independence	$p_1 - p_2 > 0$ $p_1 - p_2 < 0$ $p_1 - p_2 \neq 0$	$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}\hat{q}(1/n_1 + 1/n_2)}}$ $\hat{p} = \frac{X_1 + X_2}{n_1 + n_2}$	$Z \ge z_{\alpha}$ $Z \le -z_{\alpha}$ $ Z \ge z_{\alpha/2}$
$p_1-p_2=\Delta_0$	binomial exps., n ₁ , n ₂ large, independence	$p_1 - p_2 > \Delta_0$ $p_1 - p_2 < \Delta_0$ $p_1 - p_2 \neq \Delta_0$	$Z = \frac{(\hat{p}_1 - \hat{p}_2) - \Delta_0}{\sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_1}{n_2}}}$	$Z \ge z_{\alpha}$ $Z \le -z_{\alpha}$ $ Z \ge z_{\alpha/2}$
$\sigma_1^2 = \sigma_2^2$	normality, independence	$\sigma_1^2 > \sigma_2^2$ $\sigma_1^2 < \sigma_2^2$ $\sigma_1^2 \neq \sigma_2^2$	$F = S_1^2/S_2^2$	$F \ge F_{\alpha,n_1-1,n_2-1}$ $F \le F_{1-\alpha,n_1-1,n_2-1}$ $F \le F_{1-\frac{\alpha}{2},n_1-1,n_2-1}$ or $F \ge F_{\frac{\alpha}{2},n_1-1,n_2-1}$