虚拟化基础架构介绍

虚拟化类比

餐饮业经营管理	服务器管理			
临街单独门面火锅店	传统服务器管理模型			
电力,空调,排烟,水,冷柜	CPU,内存,磁盘			
火锅行业标准	X86架构			
厨房各种设备	操作系统 (用于实现各种功能)			
厨师	应用程序 (按照智能区分)			
装修风格,座位布局,汤锅	用户界面			
原料	原始数据			
菜肴	最终数据报表			
端菜的服务员	网络			
美食城	服务器虚拟化模型			
美食城里一家火锅店	虚拟机			
整体无损伤搬家公司	P2V (物理到虚拟转换)			
美食城管理处	(虚拟化管理点) Vcenter			
中央空调送风管,大效率配电盘	虚拟层			
标准厨房故障时,厨师转移到另外一间继续炒菜	(双机) HA			
美食城公共冷库	存储			

服务器虚拟化的基础概念

什么是服务器虚拟化?就是将物理服务器、操作系统、及其应用程序"打包"为一个档案-可移动的虚拟机

虚拟化的关键特征

分区

在单一物理服务器上同时运行多个 虚拟机 隔离

每一个虚拟机都与同在一个服务器 上的其他虚拟机相隔离

封装

虚拟机将整个系统,包括硬件配置、操作系以及应用等封装在文件里

硬件独立

可以在其他服务器上不加修改的 运行虚拟机

高可用(HA)

经济有效的适用于所有应用的高可用解决方案

▶功能

■ 当服务器故障时,自动重新启动虚拟机

此批势

- 经济有效的适用于所有应用的高可用
- 不需要独占的stand-by 硬件
- 没有集群软件的成本和复杂性

分布式资源调度(DRS: Distributed Resource Scheduler): 按需自动资源调配

动态负载均衡和连续智能优化,保证所有应用需要的的资源

功能

- 跨资源池动态调整计算资源
- 基于预定义的规则智能分配资源

此代势

- 使IT和业务优先级对应
- ■动态提高系统管理效率
- 自动化的硬件维护

围绕业务进行组织和规划...而不是您的硬件!

DRS发生时的情形演示

通过DRS动态获得硬件资源

动态添加硬件

- > 负载分配规则设定一次, 永远有效,自动执行
- ▶易于添加更多的资源
- >避免业务繁忙时段的过 载

虚拟架构解决方案

虚拟架构解决方案

服务器整合

Server
Consolidation
&
Containment

开发测试环境

Testing & Development

业务连续

Business Continuity

服务器整合

通过虚拟架构整合服务器,控制x86服务器的蔓延 整合

- · 在一台服务器上运行多个操作系统和应用
- 使新的硬件支持老的应用
- 数据中心撤退旧的硬件

抑制

- 用虚拟架构预备新的项目
- 推迟购买新的物理硬件

对现有大量的x86服务器进行整合

服务器整合的效果

整合前	整合后
•3-10天的硬件采购 •20-40小时,为一台服务器安装操作系统和应用程序 •硬件上架安装 •安装操作系统及补丁 •配置安全策略,域和用户权限 •配置网络(IP,DNS) •配置存储(DAS,SAN,NAS) •安装必要的系统管理代理,备份代理和其它的必要的系统软件 •安装配置应用软件 •测试应用 •安排宕机时间,数据迁移	•15-30分钟,用模板和自动部署向导或拷贝虚拟机,启动即可 •把虚拟机拷贝然后重新启动 [工 具已经安装] [应用已经安装,配 置]

降低TCO(降低服务器投资成本)

¥200000

¥400,000

整合前

其它

总计

应用	服务器台数	成本
A系统	1	¥40000
B系统	1	¥40000
C系统	1	¥40000
D系统	1	¥40000
E系统	1	¥40000

5

10

整合后

应用	服务器台数	成本		
A系统				
B系统				
C系统	E	¥200,000		
D系统	5			
E系统				
其它				
福 件:	少冷 →	¥200,000		

减少50% •将不同应用负载虚拟化使得用户可以大大 减少服务器的数量

•典型的平均整合比率在8:1到15:1

节能降耗 (降低服务器服务器电源开销)

整合前

整合后

应用	服务器台数	功耗		应用	服务器台	汝	成本
A系统	1	0.6kW/h		A系统			
B系统	1	0.6kW/h		B系统	E		3kW/h
C系统	1	0.6kW/h		C系统			
D系统	1	0.6kW/h	THE S	D系统	5		
E系统	1	0.6kW/h	1 (E) 200	E系统			
其它	5	3kW/h		其它			
一年总计	10	52560kW		由量	冶耗	→	26280kW
				冰小	200/		

^{•□}电力消耗是按照服务器平稳运行状态下进行计算的。但是还有其它节省:变压设备、不间断电源(UPS)、电源线、风扇、空调、加湿器、照明等等。 •以2U服务器为单位计算。

节能降耗 (制冷系统)

制冷系统需要按照空气流动要求进行配置

- 计算中的交流电消耗被完全转化为热量。因此,1千瓦电力消耗= 1千瓦热量的产生。从耗电量计算如下:□
 - 在采用VMware之前所消耗的电量= 6千瓦
 - 在采用VMware之后所消耗的电量= 3千瓦
- •其它重要假设
 - •冷却设备每处理1瓦的热量自身需要消耗0.8瓦电力(HP实验室的经验值)
 - 通常需要25%冗余空气流动能力
 - •额外增加25%冷却系统开销,如维持湿度等
- •服务器整合前:十台服务器以及网络、存储设备需要在机房中配置4匹空调
- •服务器整合后:五台服务器以及网络、存储设备只需要在机房中配置2匹空调

每年机房可减少空调耗电量: 2*0.735kW*24*365=12877.2kW

提高了系统的可用性

物理主机被虚拟化后,计算资源均被池化。当资源池里一个 节点发生故障时,运行在其上的虚拟机将自动迁移到健康的 物理主机上。

服务器虚拟化实现方法

虚拟化如何实现

服务器虚拟化将硬件、操作系统和应用程序一同装入 一个可迁移的虚拟机档案文件中

虚拟化前

虚拟化后

- 软件必须与硬件相结合
- 每台机器上只有单一的操作系统镜像
- 每个操作系统只有一个应用程序负载
- 每台机器上有多个负载
- 软件相对于硬件独立

成功案例:某政府机构的服务器整合案例

业务连续性解决方案

业务连续性的挑战

- 成本
- 复杂性
- 可靠性

虚拟架构能解决的问题

- 减少非计划的宕机时间
- 减少有计划的宕机时间
- 降低成本和复杂性
- 改善灾难恢复,提高可靠性

虚拟架构使业务连续性更简单、更有效

降低计划外宕机的解决方案

内置硬件冗余功能

- 支持冗余的网络和存储连接
- 用虚拟机冗余系统非常容易

集群

- 支持第三方冗余软件
- 支持在同一个物理机或跨物理机的虚拟机 集群

用 VMotion减少计划内宕机时间

VMotion技术让您能够把正在运行中的虚拟机从一台物理机器上搬 移到另一台, 而服务不中断

- 可以零宕机的进行有计划的服务器维护和升级
- 提前迁移应用远离失效的硬件
- 迁移工作负载,资源利用率最大化

开发/测试环境虚拟化架构

难题	虚拟化架构的优点	
降低成本	▶合并测试环境▶降低系统管理成本	
提高效率	▶快速准备和迁移虚拟机▶简化开发者和测试者的协作	
提高质量	▶用虚拟机库增加覆盖范围▶容易模拟复杂和多变的测试环境	

虚拟服务架构

新一代数据中心架构

Exchange
Operating System

VPN
Operating System

如何延长老的业务系统的生命周期?

▶目标客户的困惑:

•支撑老业务系统的硬件老化亟需系统升级,由于软件升级成本高、周期长,而且当前软件系统完全能够满足业务需求,如果能够仅仅升级硬件是最好不过的,但是,新的硬件已经不再兼容业务系统。

•企业必须使用一些业务系统(如政府部门规定使用的系统),而这些系统和当前主流的硬件平台不兼容。

▶解决方案:

- •概述:将当前业务系统迁移至虚拟化平台之上。在"虚拟化平台"中,迁移后业务系统运行于虚拟层之上,独立于硬件平台,与硬件的兼容性问题也就迎刃而解。
- •迁移过程:利用虚拟化的转换工具,将原来的操作系统以及应用程序完整的转换成虚拟机,并在虚拟化平台上运行虚拟机,从此,此虚拟机将可以完全替代原有系统。整个迁移过程可以保证迁移前后系统完全一致。

- •□延长业务系统的生命周期
- •□降低硬件风险
- •□保护投资

如何让机房更加节能高效?

▶目标客户的困惑:

随着业务的增长,服务器的数量也快速增长,服务器增长带来一系列问题:

- •服务器周边设施(如网络设备、KVM、UPS等)相应增加。
- 电力消耗也急剧增长。电力消耗来自于两方面:设备供电和制冷
- 机架空间膨胀。

而另一方面,服务器的利用率却普遍徘徊在8%的水平线上下。降低能源消耗、提高服务器利用水平是IT面临的普遍问题。

▶解决方案:

服务器虚拟化整合。利用当前的虚拟化技术将多台服务器整合到一个物理主机当中,并进行统一管理。本方案可实现高密度(1:20以上)整合。

- 能源消耗下降。(实施前20台主机耗电: 140160KW/年。实施后2台主机耗电: 14016KW/年)
- 机房空间节省。
- •服务器管理更方便,维护成本下降。

如何让关键业务实现更好的延续性?

▶目标客户的困惑:

如何确保业务运作无间断是当今企业面临的重大挑战之一。而对IT部门而言这个挑战就是:如何确保各信息系统能不间断运行或者尽量减少业务间断时间。传统的解决方法很多,但是成本高昂,而且实施技术复杂。

▶解决方案:

- •Live motion(vMotion): 当服务器需要停机进行维护时,该主机上运行的虚拟机可以动态地迁移到其他主机,迁移过程对业务的中断极短(数秒内)甚至感觉不到业务中断。
- High Availability(HA): 当服务器宕机后,15秒后,该服务器上运行的虚拟主机将在另一台主机上启动,这样服务器硬件故障对业务影响可以控制在10分钟之内。
- Failure Tolerance(FT):应用了FT技术的虚拟机在另外的主机 上有一个完全一致的拷贝,当该该虚拟机宕机时,另外一台可以 立刻上线,整个过程是透明的,业务中断时间为0。

- 度身定做适合本企业的业务延续性方案,实现更大的弹性。
- 业务延续性轻松确保
- 实施成本、管理成本降低

如何让业务从不可预知的灾难中恢复?

▶目标客户的困惑:

当面对不可抗拒的因素所造成的灾难时(如自然灾害等),信息系统如何尽快从灾难中恢复?

答案是: 异地容灾。众多的异地容灾方案中那种可以让您以最低的成本实现? 那种可以让您更轻 松部署和管理?

▶解决方案:

结合VMware的站点恢复和HP的存储容灾方案可以帮你在从容应对异地容灾难题。

- Site Recovery Manager: 集成于虚拟化管理环境。自动侦测灾难发生,简化操作恢复步骤,自动化恢复过程以满足恢复目标。
- HP Storageworks Continuous Access: 控制存储底层的数据同步。

- 结合虚拟化环境灾难恢复管理大为简化,自动化过程加速了恢复
- 在不间断业务的状况下进行灾难恢复测试
- 部署成本降低

1.服务器硬件保修服务到期,其上运行业务不能与新款机器相兼容

描述:

有几台服务器已经购买不到原厂的金牌服务,但业务仍然在继续使用。一旦硬件出现故障,修复将变得异常困难。

推荐方案: 打包方案一

- 1.IT日常维护的工作繁琐量大,付出辛勤劳动换来的稳定服务品质,经常被领导忽视。但只要一出现故障责难,批评之声不断。与其故障之后焦头烂额的去应付,还不如把工作做在前面,计划性进行老化更新,开始预防性维护。
- 2.虚拟化方案降低了迁移的难度与风险。相比传统服务器硬件升级的方法,(重新安装OS,应用,有可能还会修改应用)已经轻松很多。

2.老业务系统无维护支持。

描述:

老业务系统仍在使用,已经找不到原有开发人员的支持。如果出现结构性破坏,将很难修复。

推荐方案: 打包方案一

- 1.IT日常维护的工作繁琐量大,付出辛勤劳动换来的稳定服务品质,经常被领导忽视。但只要一出现故障责难,批评之声不断。与其故障之后焦头烂额的去应付,还不如把工作做在前面,计划性进行老化更新,开始预防性维护。
- 2.虚拟化方案降低了迁移的难度与风险。相比传统服务器硬件升级的方法,(重新安装OS,应用,有可能还会修改应用)已经轻松很多。

3.关键业务系统(生产系统)可用性有待提升

要点:

- 1.担心系统故障导致业务的中断
- 2.以前发生过此类故障,而且影响很大
- 3.关键业务系统的应用与数据没有做节点级别的冗余备份。

推荐方案: 打包方案三实现高可用

- 1.VMware的HA,FT将极大的降低系统灾难故障导致的影响
- 2.以往在高端小型机上才有的一些高可用特性,现在已经开始在 x86架构服务器上以较低成本在普及。
- 3.VMware技术成熟。国内电信,移动,银行,保险业都有使用。 在华外企,西门子,佳能,大众也是VMware客户。
- 4.实现成本低。如果赶上硬件老化更新,则更能体现优势。

4.服务器数量众多,利用率低下,而且能耗高。

要点:

- 1.企业服务器30台以上,机房机柜4台以上
- 2.过半服务器已经使用3年以上,陆续进入淘汰老化更新期
- **3**.很多服务器只是在一天中的某个时段会有,使用高峰出现。其他时候使用率不过**10%**,而有些服务器则会出现资源不足。

推荐方案: 打包方案二,做出生产8:1,非生产15:1的整合。

- 1.整合可以把所有计算资源池化,在各个应用中动态调配。
- 2.降低整体拥有成本。无需为用不到的计算资源买单。资源使用率在80%以上。
- 3.提升应用高可用。(降低节点故障影响)
- 4.节能减排。
- 5.降低管理成本。

5.服务器现在备份不完全,系统灾备做不到。

要点:

- 1.企业已经用磁带机做些文件级备份了。
- 2.对系统的整体镜像级备份未实施
- 3.发生过 感染病毒, OS崩溃等灾难故障

推荐方案: 打包方案一, 用虚拟机做冷备。

- 1.可以以应用不停的情况下实施。
- 2.成本不高(一台主机,VMware,备份软件)。
- 3.恢复速度快(在VMware里把处于冷备状态的虚拟机打开)
- 4.对现有系统影响不大。

6.企业对数据安全性十分敏感。

要点:

- 1.有脱机磁带备份,磁带是异地存放。
- 2.企业对生产系统十分依赖。

推荐方案: 打包方案四, 容灾。

- **1**.灾难发生时,可以短时间内把备份数据中心起动,为生产提供服务。
- 2.可以在应用不停的情况下,进行灾难演习。

8.拒绝中挖掘机会一预算紧张,近期没有新项目。

描述:

企业费用都花在维护性开销上, (维护现有服务水平所付出的费用),新技术项目得不到审批。

推荐方案: 打包方案一, 先用一台机器部分实施虚拟化。

- 1.沉闷的工作环境会抹杀人的工作积极性。特别对IT工程师,时常有新技术项目导入实施,会大大刺激其学习兴趣与工作积极性。
- 2.虚拟化方案是成熟技术,也是趋势。可以借项目机会早日进行知识储备。在将来面对业务环境变化时,可以多一条解决方案思路。
- 3.日常工作只是维持现有服务水平,是处于被动地位。应该主动出击,通过新技术提升服务水平,降低企业IT成本。
- 4.单机实施的成本不大,可以把两台服务器老化更新的成本与节省的金牌服务费用,挪用到虚拟化项目。

谢谢