

Filière SVI Semestre 2

Module M9:

Biologie des Organismes Végétaux

TD₁

25/02/2018

25/02/2018

Pr. Nadiya Amkraz

A.U: 2017/2018

Donc on peut dire que la systématique est:

"La science qui se préoccupe à la fois de la diversité des êtres vivants et des relations qui existent entre eux".

Elle procède par deux étapes:

1/ Etape analytique, descriptive 2/ Etape synthétique

La systématique des végétaux

* Rappel:

- La systématique est la Science de classification des êtres vivants.
- ❖ On utilise également le terme Taxonomie mais ce dernier correspond plutôt à la science des lois de classification.
- **❖** Cependant, on peut admettre la synonymie suivante:

SYSTEMATIQUE = TAXONOMIE = FLORISTIQUE et FAUNISTIQUE.

25/02/2018 2

1/ Etape analytique, descriptive:

Dans cette étape on constate et on étudie la variation:

- · En premier, on réalise une description des êtres vivants.
- · Ensuite on les nomme; C'est à dire on donne à chaque être vivant un noms spécifique, en respectant des règles précises qui sont fixées par

le <u>Code International de Nomenclature</u> (CIN).

2/ Etape synthétique:

- A ce niveau on interprète la variation constatée dans l'étape précédente. Cette interprétation est réalisée en terme d'affinités et de relations éventuelles de type ancêtre / descendant.
- En effet, les êtres vivants vont être classés selon leurs degrés de ressemblance dans un système hiérarchique en essayant d'intégrer les relations de parentés, même très éloignées.

Les relations de type ancêtre / descendant constituent ce qu'on appelle la PHYLOGENIE (Mode de formation des espèces c'est-à-dire le développement des espèces au cours de l'évolution).

25/02/2018

3/ Unités systématiques :

Dans les sciences du vivant, **l'espèce** (du latin *species*, « type » ou « apparence ») est **le taxon de base** de la systématique. Il existe plus d'une vingtaine de définitions de l'espèce dans la littérature scientifique.

La définition la plus communément admise est celle du concept biologique de l'espèce énoncé par Ernst Mayr en 1942: «Une espèce: une population ou un ensemble de populations dont les individus peuvent effectivement ou potentiellement se reproduire entre eux et engendrer une descendance viable et féconde: dans des conditions naturelles ».

Ainsi, l'espèce est la plus grande unité de population au sein de laquelle le flux génétique est possible, et les individus d'une même espèce sont donc génétiquement isolés d'autres ensembles équivalents du point de vue reproductif.

25/02/2018 9

La nomenclature binomiale

- Les espèces sont nommées en latin, c'est la nomenclature binomiale proposée par Linné en 1753 qui est toujours utilisée.
- Cette dernière correspond à un binôme dont le premier terme est le nom du GENRE, le deuxième terme est le nom de l'ESPECE.
- A ce binôme on associe le nom de l'auteur qui a décrit l'espèce. Généralement, il est représenté par une ou plusieurs lettres.

25/02/2018 10

Exemples:

1) L'oignon, l'ail et le poireau sont trois espèces différentes, mais appartiennent au même genre: *Allium*.

Elles ont été décrites par Linné qui sera représenté par L.

- ❖ L'oignon...... Allium cepa L.
- ❖ L'ail......Allium sativum L.
- ❖ Le poireau.....Allium porrum L.
- 2) Quercus L. (1753).

Quercus suber L. (1753),

Quercus pyrenaica Willd. (1805),

25/0 Quercus faginea Lamk. (1783), . . . etc.

Dans cet exemple, le chiffre entre parenthèse correspond à l'année où la description a été publiée.

Les unités systématiques

Unités	Terminaison	Equivalent en français	
REGNUM		Règne	
DIVISIO	phyta	Embranchement	
Subdivisio	phytina	Sous-embranchement	
CLASSIS	phyceae/psida	Classe	
Subclassis	phycidae	Sous-classe	
Superordo		Super-ordre	
ORDO	ales	Ordre	
Subordo	ineae	Sous-ordre	
FAMILIA	aceae	F amille	
Subfamilia	oideae	Sous-famille	
Tribus	eae	Tribu	
Subtribus	inae	Sous-tribu	
GENUS		Genre	
SPECIES 25/02/2018		Espèce 13	

4-1/ Opposition Eucaryotes / Procaryotes:

	Procaryotes	Eucaryotes
Organismes représentés	Bactéries Cyanophycée	Protistes, Champignons Végétaux, Animaux
Taille des cellules	Petite 1 à 10 u	Grande 10 à 100 u
Métabolisme	Anaérobie et aérobie	Aérobie
Motilité	Non mobile ou avec des flagelles en protéines	Mobiles, cils ou flagelle à microtubules
Organites	Pas d'organites limités par une membrane	Organites différenciés: Mitochondrie, plastes
Organisation génétique	Boucle d'ADN dans le cytoplasme	ADN organisé en chromososme renfermé dans le NOYAU
Reproduction	Asexuée: Scissiparité	Mitose et Méiose

25/02/2018

4/ Diversité et principes de la classification des plantes

- 1- Opposition Eucaryote / Procaryotes
- 2- Opposition Thallophytes / Cormophytes
- 3 Opposition Cryptogames / Phanérogames
- 4 Opposition Gymnospermes / Angiospermes

25/02/2018 14

4-2/ Opposition Cormophytes / Thallophytes

4-2-1 Appareil végétatif:

L'appareil végétatif des **Thallophytes** est **le thalle** tandis que celui des **Cormophytes** est le **cormus**. Les différences importantes entre ces deux types d'appareils végétatifs peuvent se résumer dans le niveau de différenciation (tissus, organes et fonctions) et le mode de croissance.

Le cormus correspond à un niveau de différenciation plus important que celui du thalle. En effet, il possède des organes spécialisés (<u>Tige, feuille et racine</u>) remplissant des fonctions déterminées.

25/02/2018

,

4-2-2 Appareil reproducteur:

- * Les organes reproducteurs chez les Cormophytes sont protégés par une enveloppe tissullulaire qui constitue la paroi des SPORANGES et des GAMETANGES.
- ❖ Alors que, chez les Thallophytes les SPOROCYSTES et les GAMETOCYSTES sont entourés uniquement par la paroi de la cellule mère.

25/02/2018 17

4-2-3 Significations adaptatives:

Milieu aérien de faible densité / au milieu aquatique: D'où, le développement des tissus de soutien pour garantir le maintien et le port des plantes (chez les cormophytes).

Un milieu aérien sec: Ce qui implique la nécessité de maintenir l'hydratation des tissus et de réguler les pertes en eau par évapotranspiration. C'est la fonction de l'épiderme stomatifère.

Distribution hétérogène des éléments nutritifs: due à la spécialisation des organes aérien dans la fonction d'assimilation et des organes souterrains dans celle de l'absorption. L'adaptation s'exprime par l'apparaition des tissus conducteurs: XYLEME et PHLOEME. 19

- l'Algue
- Toutes les parties de la plante (l'algue) sont en contact direct avec l'eau et les minéraux du milieu
- La quantité réduite de lumière du jour diminue souvent le rythme de la photosynthèse

- Le milieu (eau) soutient la plante: Le milieu (air) ne soutient pas la plante
 - Les parties aériennes de la plante ne sont pas en contact direct avec l'eau et les minéraux; elles perdent de l'eau par transpiration.
- La photosynthèse a lieu dans la plupart La photosynthèse a lieu seulement dans les parties aériennes de la plante
 - La quantité réduite de lumière du jour limite rarement la photosynthèse

Entre les deux systèmes, des **tissus conducteurs** assurent le lien

- Xylème : transporte la sève brute (eau et minéraux puisés par les racines au niveau du sol)
- Phloème: transporte la sève élaborée (sucres et autres matières organiques élaborées par les feuilles) vers les parties qui ne font pas de photosynthèse

Ces tissus permettent aussi de soutenir les parties aériennes, de les élever audessus du sol (et des autres plantes).

25/02/2018

CO₂

VAISSEAUX
CONDUCTEURS

MINÉRAUX
EAU

22

4-3 Opposition Cryptogames / Phanérogames

Les CORMOPHYTES se divisent en deux groupes:

Cryptogames: Bryophytes et Pteridophytes

Phanérogames: Gymnospermes et Angiospermes

	Cryptogames	Phanérogames
1- Organes reproducteurs	Cachés, peu distincts	Bien apparents
2- Gamétophyte	Prothalle libre, important	Réduit, fixé sur le sporophyte
3- Fécondation	Type aquatique, gamète mobile	Autres
4- Gamétange femelle	Nu, pas d'ovule	Ovule et graine

25/02/2018 23

Evolution des cycles reproducteurs des Bryophytes aux Spermaphytes

Exemple d'une Bryophytes (Mousse)

25/02/2018 25 25/02/2018 26

GAMETOPHYTE

Exemple d'une Ptéridophyte (Polypode)

SPOROPHYTE

Sporage

25/02/2018 29

4-4 Opposition Gymnosperme / Angiosperme (Phanérogames):

4-4-1 Apparaition de nouveaux éléments reproducteurs:

a. Le grain de pollen:

Gamétophyte mâle extrêmement réduit, commençant son développement dans la microspore, disséminé à l'état inclus dans la microspore et achevant son développement sur l'organe femelle par émission d'un tube pollinique qui conduira les gamètes mâles dans l'appareil femelle.

b. Fécondation par siphonogamie ne nécessitant
 pas une phase aquatique.
 25/02/2018

d. Graine:

31

c. L'ovule:

Ptéridophytes, le polypode : cycle de développement

Après fécondation, formation **d'embryon** se développant sur la plante mère et <u>transformation de l'ovule en graine</u> assurant la pérennité et la dissémination de l'espèce.

Macrosporange (nucelle) avec téguments indéhiscents

contenant le gamétophyte femelle

25/02/2018 32

Remarque: Si l'Ovule est:

- Nue (sans organes protecteurs), avec une fécondation simple on parle de: GYMNOSPERMES (Coniferophyta)
- Enveloppés dans un organe protecteur appelé: l'ovaire avec l'avènement de la double fécondation, on parle de: ANGIOSPERMES (Antherophyta)

25/02/2018 33

Paléobotaniques	Années	
Apparition de la photosynthèse (sans production d'oxygène)	- 4,5 à 4 Mds	
Apparition de la photosynthèse (avec production d'oxygène)	- 3,5 à 3 Mds	Procaryote/
Endosymbioses chlorophylliennes	- 600 Ma	Eucaryotes
	CAMBRIEN	Eucaryoles
	- 550 Ma - ÈRE PRIMAIRE	
Premiers eucaryotes chlorophylliens	– 500 Ma	
Sporopollénine, épiderme, vascularisation	ORDOVICIEN	
	- 440 Ma	
Premières plantes terrestres		Thallophytes
	SILURIEN	/Cormophytes
Premiers fossiles végétaux		700miophytes
bryophytes / rhyniophytes	- 420 Ma	
	- 400 Ma	
lycophytes, sphénophytes, filicophytes	DÉVONIEN	
	- 360 Ma	
Apparition de l'ovule - Premiers insectes		
	CARBONIFÈRE	
cycadophytes	- 300 Ma	
Apparition de la graine		
	– 280 Ma	
coniférophytes		
	PERMIEN	
	- 230 Ma - ÈRE SECONDAIRE	
	TRIAS	
	– 200 Ma	
Premiers mammifères		Gymnospermes /
	JURASSIQUE	Angiospermes
	– 140 Ma	, angle sportition
Apparition du carpelle (fruit) - Angiospermes	CRÉTACE	-
25/02/2018	- 65 Ma - ÈRE TERTIAIRE	
Apparition des hominidés	- 2 Ma - ÈRE QUATERNAIRE	36

5- Organisation simplifiée des plantes

Cyanopl	nytes (Algues bleus).	-
✓Organismes e	ucaryotes :	
ôOrganis	mes à thalle, sporocystes et gamètocystes	Thallophytes
2	Thallophytes autotrophes	Algues
£	Thallophytes hétérotrophes	
åOrganis	mes à cormus, sporanges et gamètange	Cormophytes
2	Cormophytes non vasculaires	Bryophytes
£	Cormophytes vasculaires	Trachéophytes
		Ptéridophytes
	A ovule nu	Gymnospermes
	☐A ovule caché dans un Ovaire	Angiospermes

25/02/2018 37

A la séance prochaine

25/02/2018 39

6- Grandes lignes de classification des plantes

supérieures :

Embranchement	Noms courants
Bryophyta	Bryophytes
Psilophyta	Ptéridophytes
Lepidophyta	
Calamophyta	
Filicophyta	-
Pteridospermophyta	Préphanérogames
Cycadophyta	_
Ginkgophyta	
Coniferophyta	Gymnospermes sens strict
Gnetophyta	Chlamydospermes
Antherophyta	Angiospermes

38