Last Time

Last Time

- What are the differences between online and offline solutions?
- Are there solution techniques that are *independent* of the state space size?

Guiding Questions

Guiding Questions

• What tools do we have to solve MDPs with continuous *S* and *A*?

Current Tool-Belt

Continuous S and A

Continuous S and A

e.g. $S\subseteq \mathbb{R}^n$, $A\subseteq \mathbb{R}^m$

Continuous S and A

e.g. $S\subseteq \mathbb{R}^n$, $A\subseteq \mathbb{R}^m$

The old rules still work!

Today: Four Tools

1. Linear Dynamics, Quadratic Reward

 $V_{ heta}(s) = f_{ heta}(s)$ (e.g. neural network)

$$V_{ heta}(s) = f_{ heta}(s)$$
 (e.g. neural network) $V_{ heta}(s) = heta^ op eta(s)$ (linear feature)

$$V_{ heta}(s) = f_{ heta}(s)$$
 (e.g. neural network) $V_{ heta}(s) = heta^ op eta(s)$ (linear feature)

Fitted Value Iteration

$$egin{aligned} heta \leftarrow heta' \ \hat{V}' \leftarrow B_{ ext{approx}}[V_{ heta}] \ heta' \leftarrow ext{fit}(\hat{V}') \end{aligned}$$

$$V_{ heta}(s) = f_{ heta}(s)$$
 (e.g. neural network) $V_{ heta}(s) = heta^ op eta(s)$ (linear feature)

Fitted Value Iteration

$$egin{aligned} heta &\leftarrow heta' \ \hat{V}' &\leftarrow B_{ ext{approx}}[V_{ heta}] \ heta' &\leftarrow ext{fit}(\hat{V}') \end{aligned}$$

$$B_{ ext{MC}(N)}[V_{ heta}](s) = \max_{a} \left(R(s,a) + \gamma \sum_{i=1}^{N} V_{ heta}(G(s,a,w_i))
ight)$$

$$V_{ heta}(s) = f_{ heta}(s)$$
 (e.g. neural network) $V_{ heta}(s) = heta^ op eta(s)$ (linear feature)

Fitted Value Iteration

$$egin{aligned} heta &\leftarrow heta' \ \hat{V}' &\leftarrow B_{ ext{approx}}[V_{ heta}] \ heta' &\leftarrow ext{fit}(\hat{V}') \end{aligned}$$

$$B_{ ext{MC}(N)}[V_{ heta}](s) = \max_{a} \left(R(s,a) + \gamma \sum_{i=1}^{N} V_{ heta}(G(s,a,w_i))
ight)$$

$$V_{ heta}(s) = f_{ heta}(s)$$
 (e.g. neural network)

$$V_{ heta}(s) = heta^ op eta(s)$$
 (linear feature)

Fitted Value Iteration

$$\theta \leftarrow \theta'$$

$$\hat{V}' \leftarrow B_{ ext{approx}}[V_{ heta}]$$

$$heta' \leftarrow \operatorname{fit}(\hat{V}')$$

$$B_{ ext{MC}(N)}[V_{ heta}](s) = \max_{a} \left(R(s,a) + \gamma \sum_{i=1}^{N} V_{ heta}(G(s,a,w_i))
ight)$$

- Global: (e.g. Fourier, neural network)
- Local: (e.g. simplex interpolation)

- Global: (e.g. Fourier, neural network)
- Local: (e.g. simplex interpolation)

Figure 8.9. Two-dimensional linear interpolation over a 3×7 grid.

Figure 8.10. Two-dimensional simplex interpolation over a 3×7 grid.

(Fourier, 17 params)

(Fourier, 17 params)

(Fourier, 17 params)

Break

What will a Monte Carlo Tree Search tree look like if run on a problem with continuous spaces?

add new branch if $C < kN^{\alpha}$ ($\alpha < 1$)

add new branch if $C < kN^{\alpha}$ ($\alpha < 1$)

Online Tree Search Planner

Voronoi Progressive Widening

(Use off-the-shelf optimization software, e.g. lpopt)

(Use off-the-shelf optimization software, e.g. lpopt)

Certainty-Equivalent

$$egin{array}{ll} ext{maximize} & \sum_{t=1}^d \gamma^t R(s_t, a_t) \ ext{subject to} & s_{t+1} = \mathrm{E}[T(s_t, a_t)] & orall t \end{array}$$

(Use off-the-shelf optimization software, e.g. lpopt)

Certainty- Equivalent	$egin{aligned} ext{maximize} \ a_{1:d}, s_{1:d} \ ext{subject to} \end{aligned}$	$egin{aligned} \sum_{t=1}^{\gamma^t} \gamma^t R(s_t, a_t) \ s_{t+1} &= \mathrm{E}[T(s_t, a_t)] orall t \end{aligned}$	
Open-Loop	$egin{array}{c} ext{maximize} \ a_{1:d}, s_{1:d}^{(1:m)} \ ext{subject to} \end{array}$	$egin{aligned} rac{1}{m} \sum_{i=1}^m \sum_{t=1}^d \gamma^t R(s_t^{(i)}, a_t) \ s_{t+1} &= G(s_t^{(i)}, a_t, w_t^{(i)}) \end{aligned}$	orall t, i

(Use off-the-shelf optimization software, e.g. lpopt)

Certainty-Equivalent

$$egin{aligned} & \max_{a_{1:d}, s_{1:d}} & \sum_{t=1}^d \gamma^t R(s_t, a_t) \ & ext{subject to} & s_{t+1} = \mathrm{E}[T(s_t, a_t)] & orall t \end{aligned}$$

Open-Loop

$$egin{array}{ll} ext{maximize} & rac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{d} \gamma^t R(s_t^{(i)}, a_t) \ ext{subject to} & s_{t+1} = G(s_t^{(i)}, a_t, w_t^{(i)}) & orall t, i \end{array}$$

Hindsight Optimization

$$egin{aligned} & \max_{a_{1:d}^{(1:m)}, s_{1:d}^{(1:m)}} & rac{1}{m} \sum_{i=1}^m \sum_{t=1}^d \gamma^t R(s_t^{(i)}, a_t^{(i)}) \ & ext{subject to} & s_{t+1} = G(s_t^{(i)}, a_t^{(i)}, w_t^{(i)}) \quad orall t, i \ & a_1^{(i)} = a_1^{(j)} \quad orall t, j \end{aligned}$$

Guiding Questions

• What tools do we have to solve MDPs with continuous *S* and *A*?