Санкт-Петербургский Национальный Исследовательский Университет ИТМО Факультет Программной Инженерии и Компьютерной Техники

Вариант №70 Лабораторная работа №6 по дисциплине "Информатика"

Выполнил Студент группы Р3117 **Галина Игнатова** Преподаватель: **Ильина Аглая Геннадьевна** Любое перемещение, отображающее треугольник ABC на себя, отображает множество $U = \{A, B, C\}$ вершин треугольника на себя в соответствии с таблицей 2.

В нижней строке даны обозначения отображений множества U на себя, заданных нашей таблицей. Например, функция s_2 , (вспомните: отображение и функция — синонимы!) полностью задается равенствами

$$s_2(A) = C, s_2(B) = B, s_2(C) = A.$$

Область ее определения есть множество U, множество значений — то же множество U. Конечно, ее нельзя путать с отображением S_{OB} , которое отображает плоскость M на себя!

Преобразования $e, s_1, s_2, s_3, r_1, r_2$ образуют группу G_2 преобразований множества U.

3 а д а ч а 4. Запишите таблицу композиций для группы G_a . Укажите для каждого ее элемента обратный элемент.

x	E(x)	$S_{(OA)}(x)$	$S_{(OB)}(x)$	$S_{(OC)}(x)$	$R_O^{120^\circ}(x)$	$R_O^{-120^\circ}(x)$
$A \\ B \\ C$	$A \\ B \\ C$	$egin{array}{c} A \ C \ B \end{array}$	$egin{array}{c} C \\ B \\ A \end{array}$	B A C	C A B	$\begin{bmatrix} B \\ C \\ A \end{bmatrix}$
	e	s_1	s_2	s_3	r_1	r_2

Группа перемещений G, и определенная сейчас группа G_2 в некотором смысле слова «устроены совершенно одинаково». Они «изоморфны». Что это значит на строгом языке математики, вы можете узнать из статьи Π . Садовского и M. Аршинова.

- Задача5. Исследуйте аналогичным образом:
 - а) группу симметрии отрезка AB;
 - б) группу симметрии квадрата ABCD.

Новый взгляд на старую задачу

Задача эта такова. В бассейн проведено две трубы. Через одну бассейн может быть наполнен за 4 часа, а через другую — за 12 часов. За какое время наполнится бассейн, если будут открыты одновременно обе трубы?

Напомним обычное решение этой задачи. За один час первая труба наполняет $^1/_4$, а вторая — $^1/_{12}$ часть всего бассейна. Обе трубы за один час наполнят $^1/_4 + ^1/_{12}$, то есть $^1/_3$ бассейна, поэтому весь бассейн будет наполнен за 3 часа.

А теперь проделаем следующее: из концов произвольного отрезка AB восставим по одну сторону от него два перпендикуляра:

 $|{\rm AA_1}|=4,\ |BB_1|=12$ (см. рисунок). Из точки C_1 , пересечения отрезков A_1B и AB_1 , опустим перпендикуляр C_1C на прямую AB, тогда $|C_1C|=3$, что равно найденному выше значению.

Докажем, что это не случайное совпадение. Рассмотрим общий случай: пусть первая труба наполняет бассейн за х часов, а вторая — за у часов. Обе трубы при совместной работе наполнят бассейн за z часов, причем

$$\frac{1}{z} = \frac{1}{x} + \frac{1}{y}$$

При любых допустимых значениях х и у треугольник СВС₁ подобен треугольнику

 ABA_1 , а треугольник ACC_1 подобен треугольнику ABB_1 , поэтому

$$\frac{z}{x} = \frac{|BC|}{|AB|}, \ \frac{z}{y} = \frac{|AC|}{|AB|},$$

откуда

$$\frac{1}{z} = \frac{1}{x} + \frac{1}{y} \\ \frac{1}{z} = \frac{1}{x} + \frac{1}{y}$$

Аналогично можно найти сопротивление z цепи, составленной из двух сопротивлений величины x и y, включенных параллельно, потому что и в этом случае 1/z=1/x. Последний пример дает возможность решать задачу о бассейнах «нажатием кнопки». Составим цепь из двух параллельно включенных сопротивлений величиной 4 ома и 12 ом и измерим ее сопротивление — получим ответ: 3 (ома).

Ю. Метт