Overview of Informatics Curriculum for Beginners at Universities (Plan)

Competency	Areas	Knowledge Area of Computer Science Curricula 2013 (CS2013)	Required Class Hours	Optional Class Hours
Technical understanding of	Architecture and Organization	AR, CN, GV	2	2
computer science /	Discrete Structures	DS	1	7
Familiarity with common themes and principles /	Systems Fundamentals	SF, NC, OS, PL, IM	3	67
Appreciation of the interplay between theory and practice /	Algorithms and Programming	AL, SDF	8	46
System-level perspective / Problem solving skills / Commitment to life-long learning / Commitment to professional responsibility / Awareness of the broad applicability of computing / Appreciation of domain- specific knowledge	Platform-based Development	PBD	-	9
	Graphics and Visualization	GV, CN	-	4
	Data Science and Artificial Intelligence	IM, IS	5	78
	Human-Computer Interaction	HCI	-	6
	Social Issues and Professional Practice	SP, IAS	7	23
Project experience	Software Engineering	SE	2	28
Communication and organizational skills	Social Issues and Professional Practice	SP	2	-
			30	270

^{*}Required class hours: The minimum class hours for a required topic are calculated and considered as 28 class hours for 1st semester (2 hours for 1st semester \times 14 weeks).

*CS2013 Knowledge Area: Algorithms and Complexity(AL), Architecture and Organization(AR), Computational Science(CN), Discrete Structures(DS), Graphics and Visualization(GV), Human-Computer Interaction(HCI), Information Assurance and Security(IAS), Information Management(IM), Intelligent Systems(IS), Networking and Communications(NC), Operating Systems(OS), Platform-based Development(PBD), Parallel and Distributed Computing(PD), Programming Languages(PL), Software Development Fundamentals(SDF), Software Engineering(SE), Systems Fundamentals(SF), Social Issues and Professional Practice(SP)

Informatics Curriculum for Beginners at Universities (Plan)

*Hours: Minimum teaching-learning hours

			erst remaining remaining remaining remaining
Competency	Areas	Required Topics	Optional Topics
Technical understanding of computer science / Familiarity with common themes and principles / Appreciation of the interplay between theory and practice /	Architecture and Organization	O Numerical expressions on computers (0.5 hours) -Bits -Bytes -Binary number -Decimal number -Binary notation -Hexadecimal notation O Data representation (0.5 hours) -Data and metadata -File formats and encoding	Information theory (2 hours) Information quantitation Entropy Entropy encoding
and practice /		-Text/binary files	

^{*}Optional class hours: Minimum class hours for selectively handling advanced knowledge after teaching Required Topics

System-level		-Text: Unicode	
perspective /		-(Digital) Image: RGB, Pixel	
Problem solving		-(Digital) Sound and music: MIDI -Video	
skills /		- v ideo	
Commitment to		Digitalization of analog	
life-long learning		information (1 hour)	
/ Commitment to		-Sampling	
professional		-Compression	
responsibility /		-Quantizing	
Awareness of the		-Encoding	
broad		o Introduction to discrete	Understand basic set theory and
applicability of		structures (1 hour) -Truth tables	set-theoretic notation (1 hour)
computing /		-Logical function	Advanced discrete structures
Appreciation of	D'	-Boolean algebra	-Truth tables (1 hour)
domain-specific	Discrete Structures	-Understand basic probability	-Logical function (1 hour)
knowledge	Structures		-Boolean algebra (1 hour)
			-Understand basic probability (2
			hours)
			○ Graphs (1 hour)
		Introduction to internal	 Graphs (1 hour) Advanced internal structures and
		structures and operations of	operations of computer
		computer (1 hour)	-Von Neumann architecture (1
		-Components of computer	hour)
		systems: hardware and software	-Logic circuit (2 hours)
		(introduction)	-Principles of error correction (2
		-Hardware	hours)
		1. CPU(Architecture) = Processor 2. Memory(=Ram): hard disk, SD	-Computer commands (2 hours) -Input/output device (1 hour)
		card, USB flash memory USB	-input/output device (1 noui)
		3. Storage	
		***************************************	○ Introduction to network (1 hour)
			[Examples]
			-Introduction to the internet
			-Internet connectivity -The web
			-Protocol
			1. Client/server
			2. HTTP
		-	3. Hostname
	Systems		4. DNS
	Fundamentals		5. TCP/IP
			○ Social networking (1 hour)
			-SNS
			Hardware and naming schemes
			(1 hour)
			Operating systems (2 hours)
			-What is OS?
			-Why is OS necessary? -Introduction of features of
			operating systems: process
			management, memory
		-	management, interrupt
			management, and other tasks of
			OS Will all Gill and D
			-What is the file system?
			O Real time OS (1 hour)
			Real-time OS (1 hour)Parallel processing (2 hours)
		_	-Why is parallel processing
			necessary?
	1	<u> </u>	

T	
	-Instruction level parallelism -SIMD parallelism -Multicore parallelism
	• Distributed processing (2 hours)
	-Web service -Internet
	-Domain name
Introduction to web	-Scalability O Advanced programming
programming language (2 hours) -Why do programming languages	language (3 hours) -Various programming models
exist? -Why do we have many	-CPUs and machine language -Language processors
programming languages? -Roles of programming languages	-Program efficiency -Compiler
-Roles of programming languages	1
	 Program development (3 hours) Object-oriented design
	-Top-down design
	Object-oriented programming(OOP) (2 hours)
	-Objects -Class
	-Subclasses
	-Inheritance -Overriding
	o Data types
	-Primitive data types (e.g., number, bool) (6 hours)
	-Composite data types (e.g., record, union, array, list, function,
	reference) (6 hours)
	Functional programming Lambda calculus (4 hours)
	-Higher-order functions (4 hours)
	 Advanced programming structures (2 hours)
	-String manipulation
	-Assertions
	Logic programming (2 hours)Various examples of information
	systems (2 hours) -Planning information systems
	-Types and uses of information systems
	-Understanding future IT
	Databases (3 hours) Information system bandware and
-	-Information system hardware and data processing
	-Development history and roles of databases
	-Characteristics of operational databases
	-Social functions of operational systems
	-Introduction of multidimensional analytical database
	anaryticar database

		-Understanding multidimensional OLAP analysis
		-Characteristics of data warehouse
		-Why are databases necessary? -Understanding data quality
		-Onderstanding data quanty
		O Data modeling (2 hours)
		-Network models -Hierarchical model
		-Introduction to relational
		databases
		o Database system (2 hours)
		-SQL and relationship algebra
		-NoSQL -Normal form and consistency
		-Trouble recovery
		○ SQL (8 hours)
		-Understanding database language
		SQL -Relational databases: SQL, Tables
		-Creating a database
		-Querying using SQL
		-Advanced Querying using SQL -SQL with Python
		Algorithm complexity -Criteria for good algorithms (e.g.,
		What is Arthur Benjamin's
		multiplication algorithm? How
		does it compare to algorithms you know for long multiplication?) (1
		hour)
		-Asymptotic notation (Big O) (1 hour)
		-Algorithmic complexity (1 hour)
		(Efficiency of algorithms,
		computational complexity (time complexity, space complexity))
		-Limits of computation (1 hour):
	-	Incomputability
		o Sorting algorithm (3 hours)
Algorit	ame	-Selection sort -Bubble sort
Algoriti and		-Bubble soft -Merge sort
Program	ming	Secreting election (2 hours)
		Searching algorithm (2 hours)-Linear search
		-Binary search
		○ Kinds of algorithm (6 hours)
		-Greedy algorithm
		-Divide-and-conquer -Dynamic programming
		-Backtracking
	Computational Thinking(Algorithmic Thinking) (1 hour)	[For courses focused on programming] (31 hours)
	1. Decomposition	 Advanced programming concept
	2. Abstractions3. Testing	I (4 hours) -Basic syntax
	4. Debugging	-Basic syntax -Variables
		-Data types (e.g., number,
	 Introduction to algorithm and 	character string)
	programming (1 hour)	-I/O

	-What is computation? 1. What is an algorithm? 2. What is computer program? 3. What is programming? O Data structures (2 hours) [Examples] -Arrays: Arrays of objects, Builtin array functions -Characters -Strings -Numbers -Lists; Linked lists -Queues -Stacks -Dictionary -Tuple -Sets -Trees -Hash table -Sequences (lists, strings, tuple) -Container type (dictionary, tuple, set) -Abstract data structure (FIFO, LIFO, dictionary) -Aliasing O Introduction to programming concept I (2 hours) -Basic syntax -Variables -Data types (e.g., number, character string) -I/O	 Advanced programming concept II (4 hours) Control structures (control flow statements) 1. Sequential processing 2. Conditional branch 3. Iteration Conditional statements (2 hours) (conditionals/branching/ selection statements decision) 1. If-statements 2. Switch -Iteration (2 hours) (loops/loop statements) 1. While loop 2. For loop -Operator (2 hours) 1. Arithmetic operator 2. Comparison operator 3. Logical operator -Functions (4 hours) 1. Function definition 2. Function call 3. Argument 4. parameter 5. Local variable 6. Global variable -Recursion (2 hours) -Module (4 hours) -Exceptions (4 hours) O Programming development method -Programming style (1 hour)
Platform-based Development	-Control structures (Control flow statements) 1. Sequential processing 2. Conditional branch 3. Iteration -	Overview of platform-based development (1 hour) [Examples] -An overview of architectural styles across multiple platforms including web, mobile, apps, industrial, game, robotics, etcIntegration of transaction backend system and front-end web technology in web architecture Front-end web technology (HTML/CSS/JavaScript) -Introduction to HTML (1 hour) [Examples] Version of HTML HTML document structure Body elements About "tags" Building your own web page HTML -Introduction to CSS (1 hour) [Examples] Roles of CSS

		2. Forms of CSS
		3. Properties of CSS
		4. Other methods of creating
		websites -JavaScript (2 hours)
		1. JavaScript: basics
		2. JavaScript: decisions
		3. JavaScript: iteration and arrays
		4. JavaScript: functions and events
		F
		Web design
		-Webpage layout (2 hours)
		1. Webpage layout
		2. Layout example: New York
		Times
		3. Layout: Washington Post -Responsive web design (2 hours)
		1. What is responsive web?
		2. Using HTML5
		3. Using CSS3
		4. Forms
		○ Computer graphics (1 hour)
		[Examples]
		-How to compute 'Shading'
		-What existing 'Umwelt'
	_	extensions do humans already
		enjoy? -Does 'Visualization' qualify as an
		Umwelt extension?
		-Why is good picture-making an
		'Optimization' process?
		• Examples of modeling (3 hours)
		[Examples]
		1. Environmental and social
		phenomena
		-Modeling environmental and
		social phenomena -Predicting market development
Graphics and		2. Chemical and physical
Visualization		phenomena
		-Modeling chemical and physical
		phenomena
		-Solving differential equations
	-	using Excel
		-Controlling heat transfer by
		balancing heating and cooling
		-Predicting intimate heat transfer 3. World of atoms
		-Modeling the world of atoms
		-Molecular dynamics predicting 1
		picosecond in the future by solving
		the world of atoms and molecules
		-Becoming professionals who
		visualize solid, liquid, and gas
		states and 'visualize and fascinate'
	Overview of data science (1	analysis results
	hour)	[For courses focused on data analysis] (26 hours)
	-Data science in a nutshell: what	• Data mining
Data Science	and why data science;	-What is data analytics? (2 hours)
and Artificial	fundamental principles guiding	-Data analysis using programming
Intelligence	data science; impact of data	languages (Excel, Python, Map-
_	science across fields	Reduce, R)
		1. Data preprocessing (2 hours)
		1) Descriptive statistics of data

-Introduction and review of recent developments and application of data sciences

- 2) Data correlation
- 3) Data processing: cleaning, counting
- 2. Data similarity (2 hours)
- 3. Data clustering (2 hours)
- 4. Association rule discovery (2 hours)
- 5. Network analysis (2 hours)
- 6. Text mining (2 hours)
- -Data analytics applications (Google Analytics, Scientific Data Sets, Open Data, Web Data Services, Data Integration) (2 hours)
- -Understanding big data processing and analysis technologies (2 hours)
- Web crawling (4 hours)
- Data visualization (4 hours)[Examples]
- -Basic charts and plots,
- multivariate data visualization, text rendering
- -Applications and case studies of and data visualizations
- -Reporting
- -Data visualization software:
- Plotting data in Python: the use of
- library matplotlib
- -Principles of visual design, perception and color theory
- -Examples of effective
- visualization for diverse types of datasets, e.g. matrices, graphs, trees, scalar fields, vector fields,
- high-dimensional data, etc.
 -Annotation in data visualization
- -Annotation in data visualization -One of professional software for data visualization: Tableau, QlikView, Power BI, d3.js, Gephi,
- Weka, etc.
- Overview of artificial intelligence (1 hour)
- [Examples]
 -Concept of AI
- -History of AI
- -Strong AI, weak AI
- -Turing test
- -Chinese room
- -Examples of successful recent AI applications (e.g., IBM Watson, Google self-driving cars)
- -What makes something
- intelligent?
- -Limits of AI
- -Algorithms used in AI (e.g., pattern recognition)
- Introduction to machine learning (1 hour)[Examples]
- -What is learning?
- -Why have machines learn?

[For courses focused on data analysis] (52 hours)

- Al principal areas (1 hour)
- -Reasoning
- -Knowledge representation
- Advanced machine learning (5 hours)
- [Examples]
- -Kinds of machine learning: regression, supervised learning, unsupervised learning, reinforcement learning (1 hour)
- -Writing machine learning programs using Python (2 hours)
- MIL (Multiple instance learning) technique (2 hours)
- Neural networks (30 hours)[Examples]
- -Overview of neural networks (2 hours)

-Kinds of machine learning: -Neutral network problem (2 regression, supervised learning, hours) -Perceptron (2 hours) unsupervised learning, reinforcement learning -MLP (Multi-layer perceptron) (2 hours) • Practice of AI services available -Backpropagation (2 hours) -Convolutional neural network (2 hours) [Examples] (CNN) (3 hours) -AI creative services (e.g., Google -Classification (3 hours) Doodle, Living Archive, Deep -Data augmentation (3 hours) Dream Generator) -Various CNN localizations -AI recognizing pictures (e.g., (CAM) (3 hours) AutoDraw, Quick, draw!) -Segmentation (FCN) (3 hours) -AI translation services (e.g., -GAN (Generative adversarial Google Translate, NAVER network) (3 hours) Papago) -Intelligent search (2 hours) -AI search service (e.g., Google Lens, Naver Smart • Deep learning (2 hours) Lens) -Introduction to deep learning -Technologies related to deep learning -Deep learning problem -MNIST classification • Computer vision (2 hours) -How can we program a computers to 'see' in 3D? -How good is 3D capture? -Is 2D any simpler? Why? -Traditional CV vs. deep neural nets/learning -Introduction of computer vision application areas -Introduction of various computer vision applications • Other AI theories (5 hours) [Examples] -Sampling and randomness (1 hour) -Evolutionary algorithms (1 hour) -Natural language understanding: Chatbot (1 hour) -Expert system (1 hour) -Game theory and auctions (1 hour) o Robotics (7 hours) -Overview of robotics (1 hour) -Sensor, actuator, module, input/output, communication (2 hours) -Automatic driving: latest trend, basic information processing, and social tasks of introducing automatic driving of vehicles (2 hours) -Robots: latest trend of robot research applied to industrial plants and everyday lives, information technologies used in robots, and social tasks of introducing robots (2 hours) Human-• User interface (1 hour) -Definition and functions of Computer Interaction interfaces

		-Graphical user interface (GUI)
		o Interaction (2 hours)
		[Examples]
		-Gulf of execution -Gulf of evaluation
		-Affordances, signifiers - gulf of
		execution
		-Perception, cognition and the gulf of evaluation
		-Perceived causality and the gulf
		of evaluation
		○ HCI methods (2 hours)
		[Examples]
		-User-centered design -Design process: maximizing good
		ideas
		-Rapid prototyping -Visual design elements (layout,
		color, font, labeling)
		• Future of HCI (1 hour)
		[Examples] -Bret Victor's brief rant: what's
		wrong with this picture?
		-Michael Nielson's vision: primitives for thinking
		-Fei-Fei Li on human-centered AI
	o Information society and IT	• AI algorithmic bias (4 hours)
	(change/evolution) (2 hours) [Examples]	-The basic methodology of machine learning
	-Computer development history	1. Features and labels
	(various computers)	2. Training procedures and
	-Systems and networks	evaluation
	 The expanding network And much of the growth is 	3. The problem of interpretability -Sources of bias in algorithmic
	mobile	decision-making
	3. What's wrong with mobile?	1. Bias in features and labels
	4. For better access	2. Bias in training procedures
	5. Internet connectivity -Social problems and how	3. Implications for discrimination law
	information technologies can	ia.v
	solve them: Case study	o Introduction to information
Social Issues	-Computing and education	security (3 hours)
and	-Contact points between SNS, GPS, big data and society	-Computer security: examples and mechanisms of security, defense
Professional Practice	-Merits and demerits of the	measures, threats, attacks, and
Tractice	internet (will it accelerate	system vulnerabilities (2 hours)
	democracy, is the internet a public space or a community?)	-Using IT services in a secure manner (1 hour)
	space of a community:)	[Examples]
	o Introduction to modern	1. Passwords
	information technologies (1 hour)	2. Using virtual private network (VPN)
	[Examples] -Sharing economy	3. Secure browsing
	-Sharing model:	4. Securing Wi-Fi connection
	B2C(Business-to-customer),	5. Using security suite software
	P2P(Peer-to-Peer)	6. Configuring personal firewall
	-E-commerce -Digital marketing	7. Junk mail filtering and sorting 8. Email, private mode
	-Location-based services	5. Ziliali, pilvate mode
	-Evolving computers (e.g.,	
	supercomputers, wearable	

- computers, VR, AR, 3D printers, deep learning, quantum computers, IoT (Internet of Things))
- -Digital computing (hardware, software, peopleware)
- -Networking and communication systems
- -Data storage technologies
- -Internet and the web (technologies, services, applications)
- -Smart city technologies (e.g., Internet-of-things (IoT), big data/data mining, open data, cloud, mobile apps, egovernment, artificial intelligence, etc.)
- -Smart city applications (e.g., smart energy, environment, waste, government, community, transportation, smart building/smart homes, public health, safety, etc.)
- -Various AI technologies and methods
- (e.g., AI applications in medicine/health, fintech, smart city, lawtech, insurtech, etc.)
- Knowledge required to properly handle information in society (1 hour)
- -Basic information about appropriate expression methods and credibility judgment to deliver proper information to others and not misinterpret information from others
- -Basic knowledge about handling information for adequate decision-making in society
- -Basic methods of analyzing human behavior in society on the information level
- Copyright (1 hour) [Examples]
- -Ethical and cultural problems regarding the use of and handling digital information
- Digital right management (DRM)
- -Digital watermarking
- -Illegal reproductions
- -Boundary between rights and ownership
- -Open source project
- Privacy (1 hour)[Examples]
- -Values served by privacy

- Information system security issues and measures by case studies (2 hours)
- Information security policies and practices (2 hours)
- Encryption technologies and applications (3 hours)
- -How to use encryption while transferring data and using mobile data storage devices
- -How to use password-protection while transferring data and using mobile data storage devices
- -Symmetric-key cryptography -Public-key cryptography (SSL,
- https)
 -Electronic signatures/digital
- signature
- -Encryption of wireless LAN
- -Blockchain
- -PKI (Public key infrastructure)
- -Zero-knowledge
- -Application in secret calculations and anonymous authentication
- History of cryptography (2 hours)
- Network and security (2 hours)
- -Security basics
- -Classification of security threats
- -Internet security
- -Safety of mutual authentication
- Cybersecurity (2 hours)
- [Examples]
- -Cyberspace
- -Cybercrime (computing crime)
- -Cyber law
- -Cyber ethics
- -Cyber policy
- -Cyber defense
- -Cyberattack

		-The Panopticon -Contextual integrity -Psychological dimensions of privacy -Evaluating common fallacies about privacy -Boundary between privacy and security -Differential privacy -Technologies and legal systems protecting privacy 1. Legal grounds for protecting privacy 2. Technical solutions to protect privacy © Ethics in IT (1 hour) [Examples] -Freedom of expression -Relevant ethics in IT legislations -Ethical issues related to big data and technologies -Precautions about emails 1. What should not be done using emails 2. Email etiquette 3. Precautions about spam emails 4. Precautions about viruses	
Project experience	Software Engineering	5. Precautions about phishing frauds -Side effects and etiquette on SNS -Computing crimes Team learning (2 hours) -Debates, role plays, group assignments, etc.	[For courses focused on project activities] (28 hours) O Project activities -Preparation of project overview -Preparation of project plan -Project concept design -Detailed project design -Project execution (checking progress of each step (major changes, expected effects, improvements) -Prototyping -Detailed system design and major
Communication and organizational skills	Social Issues and Professional Practice	Presentations (2 hours) Investigation, analysis, discussion, and presentation of social issues	functions -Project evaluation (activity report, mutual evaluation by team members, progress report, etc.)