Statistical learning and prediction

Tom F. Wilderjans
Leiden University
Faculty of Social and Behavioral Sciences
Institute of Psychology
Methodology and Statistics Unit
Room 3B18
071-5276058
t.f.wilderjans@fsw.leidenuniv.nl

Materials

Materials

• Part of Chapter 6 (not part on PCR and PLS) of ISRL

Model selection and regularization

Linear regression is great (so not immediately go to more complex models)

- easy interpretation (which predictors are most important/related to the outcome)
- often quite ok for prediction (although being a not very flexible method)
 - linear regression performs well when the true relation between outcome and predictors is more or less linear (small bias) and n is much larger than p (i.e., a large number of data points per parameter, which prevents overfitting and leads to a small variance)

Model selection and regularization

Especially when p > n, we can do better in prediction (control the variance) and interpretation (feature selection)

Three methods to improve least squares fitting of the linear regression model

- selection of predictors: subset selection (best or stepwise)
- shrinkage of regression coefficients: regularization/penalisation methods
 - reduce the variance and can perform variable selection
- computing linear combinations of variables and using these as predictors in a regression (see last session)
 - no explicit selection of variables
 - not always easy to interpret the linear combinations

Subset selection

Selection of predictors

- best subset selection: try all possible subsets of predictors
 - within a subset: use training SSE to select best model
 - between subsets: look at test error (different options) and take difference in complexity into account
- problems with best subset selection
 - computational intensive for large p
 - overfitting: "fit the data too hard" (increase in variance)

Subset selection

Selection of predictors

- solution: stepwise methods
 - only explore a restricted set of models: nested models
 - based on training SSE to find best model with a given complexity (i.e., next model in the sequence)
 - based on test SSE to find the final model
 - forward, backward and hybrid forms (not exactly the same as in SPSS)
 - \rightarrow when p > n: only forward subset selection is possible
 - when predictors are correlated, it may not find the best subset in terms of training error as it is a "greedy approach" (but this is not necessarily bad for test error)
- stepwise models (also) depend on peculiarities in the data (i.e., which variable to add/remove)

Subset selection

Choosing the optimal model (step 3 in best subset and stepwise approaches)

- look at the model with lowest test error (i.e., taking differences in complexity into account)
- two approaches
 - indirectly estimate test error: adjust training error (i.e., adjust model for its complexity)
 - \rightarrow Mallow's C_p, AIC, BIC, adjusted R²
 - directly estimate test error
 - → validation approach and cross-validation
 - → perform subset selection on the training data (and not on the full data)
 - → one-standard error rule: look for a more parsimonious model

Regularization

Shrinkage methods (regularization, penalty methods)

- no least squares fit but fit a penalized least squares function
 - penalty parameter λ balances model fit (RSS) and size of the coefficients
 - penalty will shrink the coefficients to 0 (cf. constrained optimization: having a tight budget)
- ullet as λ increases (less flexibility): decrease in variance at the cost of some bias (i.e., underestimation of coefficients)
 - to decrease bias: de-biased lasso

Regularization

Shrinkage methods (regularization, penalty methods)

- two penalties used
 - ridge regression (L2-norm): coefficients never become 0 (no variable selection)
 - lasso (L1-norm): for large enough λ coefficients become zero (variable selection)
 - when the true model is sparse: lasso outperforms ridge regression
 - other options: elastic net, bridge, ...
- use standardized variables in regularization methods and do not shrink the intercept
- ullet cross-validation needed to find optimal λ
 - \rightarrow use same split to fit models for a grid of λ 's

Subset selection and regularization (exercises)

Exercise

```
> student_full$G3bin = student_full$G3>8 # to make a dichotomous outcome
> student_full = read.csv2( "student-mat.csv" )
```

- use the student data but now with all variables. The outcome measure now is the mathematics achievement at moment 3 (G3). Use all other variables as predictors (don't include G1bin).
- ullet fit ridge regression and the lasso and determine the optimal value of λ by means of 10-fold cross-validation
- make a dichotomous variable G3bin

Subset selection and regularization (exercises)

- fit a ridge logistic regression and a lasso penalised logistic regression (predict G3bin and use all other variables as predictors, also G3). Determine the optimal λ for both methods by means of 10-fold cross-validation. Determine (also with CV) the test error for both methods (using the model with optimal complexity). Which method performs best for this data set?
- Which variable is the most important in predicting *G3bin*?