PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-021597

(43)Date of publication of application: 29.01.1993

(51)Int.CI.

H01L 21/78

(21)Application number: 03-173788

(71)Applicant : OKI ELECTRIC IND CO LTD

(22)Date of filing:

15.07.1991

(72)Inventor: TOMINAGA YUKIHIRO

(54) MANUFACTURE OF SEMICONDUCTOR ELEMENT

(57)Abstract:

PURPOSE: To unnecessitate a wafer grinding process and improve the strength of a wafer and a chip by forming a protective film on the wafer surface, performing scribing deep into the laminate material with a dicing blade, and dividing a chip by etching the laminate material.

CONSTITUTION: An element forming surface 2 is made a surface, and the rear 3 and a reinforcing surface 5 are laminated by using lamination material 6, e.g. a BPSG film easy to be etched. By using a substrate 7 formed in the above manner, an element forming treatment is performed, and the whole part of the element forming surface 2 is coated with an acid resistant protecting film 8, e.g. polyimide. Scribing depth takes a value larger than the thickness of the laminate material 8, which is etched and eliminated in etching liquid, e.g. HF liquid. Thereby a chip is divided into 11(a), 11(b), 11(c)..., and the chip rear also can be a structure free from a crushed layer caused by grinding.

LEGAL STATUS

[Date of request for examination]

02.02.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3212110

[Date of registration]

19.07.2001

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision

of rejection]

[Date of extinction of right]

Copyright (C): 1998,2000 Japan Patent Office

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

05021597

PUBLICATION DATE

: 29-01-93

APPLICATION DATE

15-07-91

APPLICATION NUMBER

03173788

APPLICANT :

OKI ELECTRIC IND CO LTD;

INVENTOR :

TOMINAGA YUKIHIRO;

INT.CL.

H01L 21/78

TITLE

MANUFACTURE OF

SEMICONDUCTOR ELEMENT

ABSTRACT :

PURPOSE: To unnecessitate a wafer grinding process and improve the strength of a wafer and a chip by forming a protective film on the wafer surface, performing scribing deep into the laminate material with a dicing blade, and dividing a chip by etching the laminate material.

CONSTITUTION: An element forming surface 2 is made a surface, and the rear 3 and a reinforcing surface 5 are laminated by using lamination material 6, e.g. a BFSG film easy to be etched. By using a substrate 7 formed in the above manner, an element forming treatment is performed, and the whole part of the element forming surface 2 is coated with an acid resistant protecting film 8, e.g. polyimide. Scribing depth takes a value larger than the thickness of the laminate material 8, which is etched and eliminated in etching liquid, e.g. HF liquid. Thereby a chip is divided into 11(a), 11(b), 11(c)..., and the chip rear also can be a structure free from a crushed layer caused by grinding.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本医特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-21597

(43)公開日 平成5年(1993)1月29日

(51) Int.CL⁵

識別記号

庁内整理番号

技術表示箇所

H 0 1 L 21.78

L 8617 - 4M

S 8617-4M

審査請求 未請求 請求項の数3(全 6 頁)

(21)出願番号

特願平3-173788

(71)出願人 000000295

冲電気工業株式会社

東京都港区虎ノ門1丁目7番12号

(22) 出願日

平成3年(1991)7月15日

(72)発明者 富永 之廣

東京都港区虎ノ門1丁目7番12号 神電気

工業株式会社内

(74)代理人 弁理士 鈴木 敏明

(54)【発明の名称】 半導体素子の製造方法

(57) 【要約】

【目的】 本発明は、半導体ウェハの薄形化や大口径化 にともない相対的にウェハ強度が低下するとともに、研 削工程により破砕層が発生し、ウェハー搬送時等におい て発生するウェハー割れや、スクライブ工程におけるチ ップ欠け、さらにチップ強度が低いという問題点を、ウ ェハ研削工程を無くすことにより、ウェハーおよびチッ プ強度を向上させるものである。

【構成】 前述の目的のためこの発明は、半導体素子の 製造方法において、半導体ウェハを容易にエッチングで きる森材を用いて貼り合せた後、半導体素子形成工程を 処理するとともに、ダイススクライブ工程においては、 ウェハ表面に保護膜を形成したのち、ダイシングブレー ドで貼り合せ材までスクライブし、その後、貼り合せ材 をエッチングすることにより、チップ分割出来るように したものである.

【特許請求の範囲】

【請求項1】 半導体素子形成工程の前に、半導体ウェ ハーに易エッチング材を用いて補強板を貼り合せ、素子 形成工程後のスクライブ工程で、少くとも前記貼り合せ 部分までスクライブし、前記貼り合せ材をエッチング除 夫することにより、チップ分離を行うことを特徴とする 半導体素子の製造方法。

【請求項2】 請求項1記載のスプライブ工程の前に、 素子形成而を耐エッチング材でコーディングすることを 特徴とする請求項1記載の半導体素子の製造方法。

【請求項3】 請求項1記載のスケライブ工程の前に、 素子形成面をレジストでコーティングし、スクライブラ イン部の該レジストを除去しておくことを特徴とする請 求項上記載の半導体素子の製造方法。

【発明の評細な説明】

[0001]

【産業上の利用分野】この発明は、半導体ウェバーをチ ップに分離するまで強度低下を生じさせない方法に関す るもので、特にそのウェハーが薄くても支障なく分離で きる方法を提供するものである。

[0.002]

【従来の技術】図3 (a) ~ (d) は、従来の半導体素 子のウェハプロセス完了後から、チップ分離するまでの 工程を示したものである。図3(a)はウェハプロセス 完了後を示したものであり、31は半導体ウェハで一般 的にも"φウェハでも25μm、8"φウェハで7~5 μmの厚さを有している。

【0003】しかしこのようなウェハ厚は、チップ実装 仕様に不適当であり半導体ウェハー31の裏面は、20 る。この研削工程において、デバイス面32を保護する ため、保護テープ33が接着用糊で接着される。この状 態において図3(b)に示すように、半導体ウェハー3 1は実装仕様の厚さ200~450μmに研削される。 この研削工程は一般的には機械的に研削されるため、半 導体ウェバー31は、研削而である裏面に破砕層34を 発生させてしまう。その後表面保護デーブ33を剥離 し、電気的特性判定が行なわれ、組立工程に搬送され る。そして、図3(c)に示すように、チップ分割を行 なうため、半導体ウェハ31の裏面にダイシングテープ、40、様により任意の厚さ、たとえば $200\sim150$ μ mに設 35を接着させ、スクライブライン36に沿ってダイヤ モンドプレードでスクライブされる。3.7 は、この時の スクライブ溝であり、38 (a), 38 (b)…は分離 されたチップである。図3 (d) は分離された1つのチ ップ38(a)を示したものであるが研削工程における 破砕層3月はそのままの形として残っている。

【発明が解決しようとする課題】しかしながら、実装仕 様において、200~450μmに薄く研削されたウェ

時における破砕層を有しているため、電気特性測定工程 やウェハー搬送工程、さらには、タイシングテープ接着 工程において、ウェハ割れが発生するという問題点があ った。さらに、アクライブ時において、ウェハ裏面の破 **砕層の切り抜き部分では、大きなクラックやチップの欠** けが発生するとともに、チップ分離後においてもチップ 裏面に破砕層を有しているため、チップの強度が弱く、 ICガード用のチップなどにおいては、大きな不良要因 となっていた。

| 10 | 【0005】この発明は以上述べた。ウェハの薄形化や 大口径化にともない、相対的にウェハ強度が低下すると ともに、研削工程により破砕層が発生し、ウェハー搬送 時等において発生するウェハー割れや、スクライブ工程 におけるチップ欠け、さらにチップ強度が低いという問 題点を、ウェハ研削工程を無くすことにより、ウェハ、 およびチップ強度を向上させたものである。

[0006]

【課題を解決するための手段】前述の目的のためこの発 明は、半導体素子の製造方法において、半導体ウェハを 20 容易にエッチングできる素材を用いて貼り合せた後、半 導体素子形成工程を処理するとともに、ダイススクライ プ工程においては、ウェハ表面に保護膜を形成したの ち、ダイシングブレードで貼り合せ材までスクライブ し、その後、貼り台せ材をエッチングすることにより、 チップ分割出来るようにしたものである。

[0007]

【作用】前述のように、この発明によれば、実装仕様で 必要となるチップ厚の設定を、ウェハ貼り合せ技術を用 い、易エッチング材で貼り合せ、スクラ1プ工程でこの $0\sim 4.5.0~\mu$ mの実装仕様に適した厚さに研削されてい。30 貼り合せ材までスクライブし、その後貼り合せ材をエッ チング除去し、チップに分離する方法としたので、裏面 研削による破砕層が半導体ウェハに発生しないし、ま た、スクライブによるチップ分離工程まで補強板をセッ トした状態で搬送できるため、裏面研削工程が除去出来

[0008]

【実施例】図1は、この発明の第1の実施例の工程断面 図であって、図1(a)はデバイスを作製する半導体ウ ニハー1を示したものであり、ウェハー厚は、実装の仕 定されており、素子作成面2および裏面3とも、ミラー ポリッシュにより仕上げされている。図I(b)は半導 体ウェハー1を機械的に補強する補強板4であり、半導 体ウェハと同一素材もしくはほぼ同等の熱膨張率と、よ り高い融点を有し、貼り合せ材のエッチング材に対し て、耐性のある素材であり、厚さは、200~1000 μmのウェハ処理工程でも充分に機械的強度を確保でき る厚さに設定するとともに、補強面をはミラーポリッシ ュ仕上げとする。図1 (c) は公知のウェハ貼り合せ技 ハにおいては、厚さ的に強度が低下するとともに、研削 50 術を用いて、貼り合せた状態を示したものであり、素子

卅成面2を表面として、裏面3と補強面5とを易エッチ シグの貼り占せ材 6、たとえばBPSG糠で貼り合せ る。この核にして形成した基板でを用いて、従来と同様 のプロセスで素子形成処理を行ない、電気特性測定のプ ロービング『程まで行なう。その後図I(d)に示すよ うに耐酸性の保護膜 8、例えばボリイミドを素子形成面 2に全面コートする。又9はチップ分離用のスクライブ ディンであり、このスクライブライン 9 に沿って 3 0 ~ $5.0 \mu m幅のダイヤモンドブレードでスクライブした状$ 溝で、スクライブ深さは、貼り合せ材8よりも深い値と する。その後貼り台せ材エッチング液、例えば貼り合せ 村がBPSGの場合、HF液中で、貼り合せ材をエッチ ング除去する。これを示したのが凶ュ (f) であり、チ - いずは、11 (a) ・11 (b) ・11 (c)・…に分 離される。この分離された1つのチップ11 (a) 状態 を示したものが図1. (g) でありチップ裏面12も研 門による破砕層のない構造とすることが出来る。

【0009】第1の実施例においては、表面保護膜をた 上えばボリイミド膜とし、チップスクライブ工程におい。20 てダイヤモンドホイールでポリイミド膜を通して半導体 ウェハを貼り合せ材までスクライブを行なっていた。し かし、この方法においては、ポリイミド膜も同時にスク ライブしているのでダイヤモンドホイールの目詰まりが、 起きやすいという問題点がある。そこで第2の実施例の 工程断面図を図2(a)~(b)に示すが、素子形成面 をレジストでコーティングし、ホトリソグラフィ処理を 行ないスクライブライン部のレジストを除去した後に、 スクライブ処理を行なうようにしたものである。図2 (a) において、7 は基板、8 は貼り合せ材、また素子 30 形成面2は、スクライブラインのパターン9がある。こ の素子形成面2にレジスト12を1~3gmコーティン グレ、スクライブライン部9のレジストをホトリソグラー フィ技術でパターニングしたものである。この状態でス

クライブライン9を貼り合せ材8までスクライブ処理し たものが図2(b)である。その後第1の実施例と同様 に貼り合せ材をエッチング除去することにより各々のチ ップに分離することが出来る。

[0010]

【発明の効果】以上のように、この発明によれば、実装 仕様で必要となるチップ厚の設定を、ウェハ貼り合せ技 術を用い、易エッチング材で貼り合せ、スクライブ工程 でこの貼り台せ材までスクライブし、その後貼り合せ材 旅を示したのが、図1(e)であり、10はスクライブ 10 をエッチング除去し、チップに分離する方法としたので 裏面研削による破砕層が半導体ウェハーに発生せずスク ライブによるチップの欠けや、チップ強度が向上しない という問題点が解決出来るとともに、スクライブによる チップ分離工程まで補強板をセットした状態で搬送でき るため、裏面研削工程が除去出来るとともに、ウェハー の大型化にともなうウェハーの相対的強度低下によるウ ェハーの割れの発生を防止することができる。

【図面の簡単な説明】

- 【図1】 本発明の第1の実施例の工程断面図
- 【図2】本発明の第2の実施例の工程断面図
 - 【図3】従来例の工程断面図

【符号の説明】

- 半導体ウェハー 1
- 素子作成面
- 東面
- 補強权
- 補強面
- 貼り合せ材
- 基板
- 保護膜
- スクライブライン
- 10 スクライブ湾
- チップ 1.1
- 12 レジスト

(4)

特開平5-21597

[図1]

本発明第1の実施例の上程断面図

(5)

特開平5-21597

[図2]

本発明の第2の実施例の工程断面図

(6)

特勝平5-21597

従来例の工程断面図