Probabilités

Chapitre 7 : Convergence de variables aléatoires

Lucie Le Briquer

23 novembre 2017

Définition 1 (modes de convergence d'une v.a.) -

 $(X_n)_{n\in\mathbb{N}}$ suite de v.a. et X une v.a., toutes à valeurs dans $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$.

- On dit que la suite X_n tend presque sûrement vers X et on le note $X_n \xrightarrow[n \to +\infty]{p.s.} X$ si $X_n \xrightarrow[n \to +\infty]{} X$ p.s. $(\mathbb{P}(X_n \to X) = 1)$
- Si $p \ge 1$, on dit que X_n tend dans L^p vers X et on le note $X_n \xrightarrow[n \to +\infty]{L^p}$ si les X_n et X sont dans $L^p(\mathbb{R}^d)$ et $\mathbb{E}[\|X_n X\|^p] \xrightarrow[n \to +\infty]{} 0$.
- On dit que X_n tend en probabilité verx X et on le note $X_n \xrightarrow[n \to +\infty]{\mathbb{P}} X$ si :

$$\forall \varepsilon > 0, \quad \mathbb{P}(\|X_n - X\| > \varepsilon) \xrightarrow[n \to +\infty]{} 0$$

• (convergence très différente) On dit que X_n tend en loi vers X et on le note $X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} X$ si

$$\forall f \colon \mathbb{R}^d \to \mathbb{R}$$
 continue bornée $\mathbb{E}[f(X_n)] \xrightarrow[n \to +\infty]{} \mathbb{E}[f(X)]$

Remarque. Les 2 plus importantes sont la convergence p.s. et la convergence en loi.

Remarque. On peut définir ces convergences sur des espaces plus exotiques.

- $\xrightarrow{\text{p.s.}}$ peut être définie pour des v.a. à valeurs dans (E,ξ) quelconque.
- $\bullet \xrightarrow{L^p}$ peut être définie sur n'importe quel espace normé
- ullet peut être définie sur n'importe quel espace métrique, on remplace par :

$$\mathbb{P}(d(X_n, X)\varepsilon) \xrightarrow[n \to +\infty]{} 0$$

• $\xrightarrow{(\mathcal{L})}$ est définie sur n'importe quel espace topologique X,

$$\forall f \colon X \to \mathbb{R}$$
 continue bornée $\mathbb{E}[f(X_n)] \xrightarrow[n \to +\infty]{} \mathbb{E}[f(X)]$

Remarque. Attention à la convergence en loi $X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} X$ ne dit pas que X_n est proche de X mais seulement que μ_{X_n} proche de μ_X . En effet :

$$\mathbb{E}[f(X_n)] \xrightarrow[n \to +\infty]{} \mathbb{E}[f(X)] \quad \Leftrightarrow \quad \int f(x) d\mu_{X_n} \xrightarrow[n \to +\infty]{} \int f(x) d\mu_X$$

ne dépend de la v.a. qu'à travers sa loi.

Exemple. Soit $X \sim \mathcal{B}\left(\frac{1}{2}\right)$ alors $1 - X \sim \mathcal{B}\left(\frac{1}{2}\right)$. Si on pose $X_n = X$ alors,

$$\mathbb{E}[f(X_n)] = \frac{f(0) + f(1)}{2} = \int f d\mu_{\mathcal{B}(1/2)} = \mathbb{E}[f(X)] = \mathbb{E}[f(1 - X)]$$

Donc $X = X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} 1 - X$ mais $|X_n - (1 - X)| = 1$ p.s. (les variables aléatoires ne s'approchent pas). On a aussi $X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} X$. Donc on a pas non plus unicité de la limite.

Remarque. Les propriétés usuelles échouent.

- $X_n \xrightarrow[n \to +\infty]{*} X$ et $Y_n \xrightarrow[n \to +\infty]{*} Y \Rightarrow X_n + Y_n \xrightarrow[n \to +\infty]{*} X + Y$ vrai pour L^p , \mathbb{P} , p.s.
- $X_n \xrightarrow[n \to +\infty]{*} X$ et $Y_n \xrightarrow[n \to +\infty]{*} Y \Rightarrow X_n Y_n \xrightarrow[n \to +\infty]{*} XY$ vrai pour \mathbb{P} et p.s. Faux pour $\mathcal{L}: X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} 1 - X$ et $X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} X \not\Rightarrow 2X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} 1$
- $X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} X$ et $Y_n \xrightarrow[n \to +\infty]{(\mathcal{L})} Y \not\Rightarrow (X_n, Y_n) \xrightarrow[n \to +\infty]{(\mathcal{L})} (X, Y)$

Preuve.

1. q > p, soit r tel que $\frac{1}{q/p} + \frac{1}{r} = 1 \Rightarrow r = \frac{q}{q-p}$:

$$\mathbb{E}[\|X_n - X\|^p] = \mathbb{E}[\|X_n - X\|^p \times 1] \underset{\text{H\"older}}{=} \mathbb{E}\left[\|X_n - X\|^{pq/p}\right]^{p/q} \mathbb{E}[1^r]^{1/r} = \mathbb{E}\left[\|X_n - X\|^q\right]^{p/q} \xrightarrow[n \to +\infty]{} 0$$

Remarques.

- $q>p:x\to |x|^{p/q}$ convexe, par Jensen $\mathbb{E}[\|X_n-X\|^p]\leqslant \mathbb{E}[\|X_n-X\|^q]^{p/q}$
- La réciproque est fausse. Soit $Y_n \sim \mathcal{B}(1/n)$. $X_n = n^{\alpha}Y_n$. Alors $\mathbb{E}[|X_n|^p] = n^{\alpha p 1}$ donc $X_n \xrightarrow[n \to +\infty]{\mathcal{L}^p} 0 \iff \alpha < \frac{1}{p} \text{ pour } \frac{1}{q} < \alpha < \frac{1}{p}$. $X_n \xrightarrow[n \to +\infty]{\mathcal{L}^p} 0 \text{ mais } X_n \xrightarrow[n \to +\infty]{L^q} 0$.
- $\xrightarrow{L^1}$ est la plus faible des convergences L^p .
- 2. Montrons que $X_n \xrightarrow{L^1} \Rightarrow X_n \xrightarrow[n \to +\infty]{\mathbb{P}} X$.

$$\mathbb{P}(\|X_n - X\| > \varepsilon) \leqslant \frac{E[\|X_n - X\|]}{\varepsilon} \xrightarrow[n \to +\infty]{} 0$$

3. $X_n \xrightarrow[n \to +\infty]{\text{p.s.}} X \text{ alors}$:

$$\mathbb{P}(\|X_n - X\| > \varepsilon) = \mathbb{E}\left[\underbrace{\mathbb{1}_{\|X_n - X\| > \varepsilon}}_{\substack{\text{p.s.} \\ n \to +\infty}}\right] \xrightarrow[n \to +\infty]{\text{TCD}} 0$$

La réciproque est fausse.

Contre-exemple 1. Soit (X_n) une suite de v.a. indépendantes $X_n \sim \mathcal{B}(1/n)$

$$\mathbb{P}(|X_n| > \varepsilon) \leqslant \mathbb{P}(X_n = 1) = \frac{1}{n} \xrightarrow[n \to +\infty]{} 0$$

donc $X_n \xrightarrow[n \to +\infty]{\mathbb{P}} 0$. Mais:

$$\sum_{n\geqslant 1} \mathbb{P}(X_n = 1) = \sum_{n\geqslant 1} \frac{1}{n} = +\infty$$

Donc par le Lemme de Borel-Cantelli $\overline{\lim}\{X_n=1\}$ p.s. Donc $X_n \not\xrightarrow[n \to +\infty]{\text{p.s.}} 0$.

Ceci implique que X_n n'a pas de limite p.s. puisque si $X_n \xrightarrow[n \to +\infty]{\text{p.s.}} Z$ alors $X_n \xrightarrow[n \to +\infty]{\mathbb{P}} Z$ et par unicité des limites $\xrightarrow[n \to +\infty]{\mathbb{P}}$ on aurait Z = 0 p.s.

Contre-exemple 2. Soit $U \sim \mathcal{U}([0,1])$ et:

$$X_{2^n+k} = \mathbb{1}_{\frac{k}{2^n}} \leqslant U < \frac{k+1}{2^n}$$

pour $0 \leqslant k \leqslant 2^n - 1$ $n \geqslant 0$. Pour tout $i \geqslant 1$, $\exists ! (n_i, k_i)$ to $i = 2^{n_i} + k_i \leqslant 2 \times 2^{n_i}$ donc $n_i \xrightarrow[n \to +\infty]{} +\infty$. Ainsi :

$$\mathbb{P}(|X_i| > \varepsilon) \leqslant \mathbb{P}(X_i = 1) = \frac{1}{2^{n_i}} \xrightarrow[n \to +\infty]{} 0$$

 $\forall x \in [0,1[, \forall n \geqslant 1, \exists k \text{ tel que } x \in \left[\frac{k}{2^n}; \frac{k+1}{2^n}\right] = I_{n,k}. \ \forall \omega, \ \forall n \geqslant 1, \ \exists b \text{ tel que } X_{2^n+k} = 1 \ (n \text{ et } b \text{ tels que } U(\omega) \in I_{n,k}). \ \text{Donc}:$

$$(X_i = 1 \text{ une infinité de fois}) \text{ p.s.} \quad \text{donc} \quad (X_i \not\xrightarrow[n \to +\infty]{\text{p.s.}} 0)$$

On peut remonter un peu : $X_n \xrightarrow[n \to +\infty]{\mathbb{P}} X$ alors $\exists n_k$ suite extrate telle que $x_{n_k} \xrightarrow[n \to +\infty]{\text{p.s.}} X$. En effet :

$$\forall k, \exists n_k, \forall n \geqslant n_k \quad \mathbb{P}\left(\|X_n - X\| > \frac{1}{k}\right) \leqslant \frac{1}{k^2}$$

 $(\operatorname{car} \mathbb{P}(|X_n - X|) > 1/k \xrightarrow[n \to +\infty]{} 0). \text{ Alors,}$

$$\sum_{n\geq 1} \mathbb{P}\left(\|X_n - X\|\right) < +\infty$$

Donc par le lemme de Borel-Cantelli on a (pour k assez grand $||X_{n_k} - X|| \leq \frac{1}{k}$) p.s. donc $(\overline{\lim} ||X_{n_k} - X|| = 0)$ p.s. Ainsi $X_{n_k} \xrightarrow[n \to +\infty]{\text{p.s.}} X$

Applications

1.
$$X_n \xrightarrow[n \to +\infty]{\mathbb{P}} X$$
 et $C = \sup_n \mathbb{E}[\|X_n\|^p] < +\infty \Rightarrow X \in L^p$ et $\mathbb{E}[\|X\|] \leqslant X$.

Preuve.

 $\exists n_k \ X_{n_k} \xrightarrow[k \to +\infty]{\text{p.s.}} X \text{ et alors}$

$$\mathbb{E}[\|X\|^p] = \mathbb{E}[\liminf \|X_n\|^p] \underset{\text{Fatou}}{\leqslant} \liminf \mathbb{E}[\|X_{n_k}\|^p] \leqslant C < +\infty$$

2.

$$\mathcal{F} = \{f \colon [0,1] \to [0,1] \mid \text{mesurable}\} \setminus_{f=g \text{ si } f(x) = g(x) \text{Lebp.p.}}$$

alors $\not\exists d$ métrique sur \mathcal{F} tel que :

$$f_n \xrightarrow{\mathbf{p}.\mathbf{p}} \Leftrightarrow d(f_n, f) \xrightarrow[n \to +\infty]{} 0$$

Preuve.

Soit $(X_n)_{n\geqslant 1}$ une suite de v.a. de $([0,1],\mathcal{B}([0,1]),\text{Leb})$ dans [0,1] telles que $X_n\xrightarrow[n\to+\infty]{\mathbb{P}}X$ mais $X_n\xrightarrow[n\to+\infty]{\text{p.s.}}X$. Donc $d(X_n,X)\xrightarrow[n\to+\infty]{}0$ donc $\exists \varepsilon>0,\ \exists n_k$ suite d'entiers strictement croissants tel que $\forall k,\ d(X_{n_k},X)>\varepsilon\ X_{n_k}$ extrait de $X_n\xrightarrow[n\to+\infty]{\mathbb{P}}X$ donc $X_{n_k}\xrightarrow[k\to+\infty]{\mathbb{P}}X$ donc il exists k(r) une suite d'entiers strictement croissants tels que $X_{n_{k(r)}}\xrightarrow[r\to+\infty]{\mathbb{P}}X$ alors $\varepsilon< d(X_{n_{k(r)}},X)\xrightarrow[r\to+\infty]{\mathbb{P}}0$. Absurde donc d n'existe pas.

Remarque. Pareil pour l'ensemble des fonctions à valeurs dans \mathbb{R} . L'obstruction vient même si on ne demande pas à d de vérifier l'inégalité triangulaire.

Remarque.
$$\xrightarrow[n \to +\infty]{\text{p.s.}} \Rightarrow \xrightarrow[n \to +\infty]{L^1}$$
. En effet soit $U \sim \mathcal{U}([0,1])$ et $X_n = n\mathbbm{1}_{U \leqslant \frac{1}{n}} \xrightarrow[n \to +\infty]{\text{p.s.}} 0$. $\mathbb{E}[|X_n|] = 1 \text{ donc } X_n \not\xrightarrow[n \to +\infty]{L^1} 0$

Propriété 2

Soit $X_n \xrightarrow[n \to +\infty]{\mathbb{P}} X$, r > p > 1 et $\sup_{\mathbb{N}} \mathbb{E}[\|X_n\|^r] < +\infty$ alors :

$$X_n \xrightarrow[n \to +\infty]{\mathcal{L}^p} X$$

Preuve.

Soit $\varepsilon > 0$. On suppose que $X \subset L^p$.

$$\begin{split} \mathbb{E}\left[\|X_n - X\|^p\right] &= \mathbb{E}\left[\|X_n - X\|\|\mathbb{X} - \mathbb{X}\| \leqslant \varepsilon\right] + \mathbb{E}\left[\|X_n - X\|^p \mathbb{1}_{\|X_n - X\| > \varepsilon}\right] \\ &\leqslant \varepsilon^p \underset{\text{H\"older}}{+} \mathbb{E}\left[\|X_n - X\|^{pr/p}\right]^{\frac{p}{r}} \mathbb{E}\left[\mathbb{1}_{\|X_n - X\| > \varepsilon}\right]^{1/\alpha} \\ &\leqslant \varepsilon^p + \left(\underbrace{\mathbb{E}\left[\|X_n - X\|^p\right]}_{\|X_n - X\|_r \leqslant \|X_n\|_r + \|X\|_r \leqslant C}^{\frac{1}{r}}\right)^p \underbrace{\mathbb{P}(\|X_n - X\| > \varepsilon)^{\frac{1}{\alpha}}}_{n \to +\infty} \end{split}$$

$$\frac{1}{r} + \frac{1}{\alpha} = 1. \text{ Donc } \overline{\lim} \mathbb{E}[\|X_n - X\|^p] \leqslant \varepsilon^p \text{ donc } \varepsilon \to 0 \ X_n \xrightarrow[n \to +\infty]{\mathcal{L}^p} X.$$

On cherche un critère pour rendre équivalent $\xrightarrow[n \to +\infty]{\mathbb{P}}$ et $\xrightarrow[n \to +\infty]{\mathcal{L}^1}$ (très utile pour les martingales).

Définition 2 (uniformément intégrable) -

On dit qu'une suite de v.a. réelles L^1 $(X_i)_{i\in I}$ est uniformément intégrable si

$$\lim_{L \to +\infty} \sup_{i \in I} \mathbb{E}\left[|X_i| \mathbb{1}_{|X_i| > L}\right] = 0$$

On notera $(X_i)_{i \in I}$ U.I.

Exemple. Si $X \in L^1$, $\{X\}$ est U.Y. puisque

$$\left\| \mathbb{E} \left[\underbrace{|X| \mathbb{1}_{|X| > L}}_{\text{p.s.} \to 0 \text{ et } |.| \leqslant L^1} \right] \right\| \xrightarrow{\text{TCD}} 0$$

Exemple. Si $\exists Y \in L$ telle que $\forall i, |X_i| \leq Y$ p.s. alors $(X_i)_{i \in I}$ est U.I. car:

$$\mathbb{E}\left[|X_i|\mathbb{1}_{|X_i|>\varepsilon}\right]\leqslant \mathbb{E}\left[|Y|\mathbb{1}_{|Y|>L}\right]$$

Exemple. Si I est fini est les X_i sont L^1 , (X_i) est U.I. (prendre $Y = |X_1| + ... + |X_n|$).

- **Propriété 3** (caractérisation) —

$$(X_i)_{i \in I} \text{ U.I.} \quad \Leftrightarrow \quad \left\{ \begin{array}{l} C = \sup_{i \in I} \mathbb{E}[|X_i|] < +\infty \\ \text{ et } \lim_{\delta \to 0} \sup_{\{A \mid \mathbb{P}(A) \leqslant \delta\}, i \in I} \mathbb{E}[|X_i| \mathbb{1}_A] = 0 \end{array} \right.$$

Preuve.

 \Rightarrow :

• $\sup_{i \in I} \mathbb{E}[[X_i[\mathbbm{1}_{|X_i>L}] \text{ est une fonction décroissante de } L \text{ qui tend ves } 0 \text{ donc } \leqslant 1 \text{ pour un certain } L \text{ et alors } \forall i \in I :$

$$\mathbb{E}[|X_i|] = \mathbb{E}[|X_i|\mathbb{1}_{|X_i| \le L}] + \mathbb{E}[|X_i|\mathbb{1}_{|X_i| > L}] \le L + 1$$

• Si $\mathbb{P}(A) \leqslant \delta$,

$$\mathbb{E}[|X_i|\mathbb{1}_A] = \mathbb{E}[|X_i\mathbb{1}_{|X_i| \le L}\mathbb{1}_A] + \mathbb{E}[|X_i|\mathbb{1}_{|X_i| > L}\mathbb{1}_A]$$

Donc:

$$\sup_{i \in I} \mathbb{E}[|X_i| \mathbb{1}_A] = L\mathbb{P}(A) + \sup_{i \in I} \underbrace{\mathbb{E}[|X_i| \mathbb{1}_{|X_i| > L}]}_{\leqslant \varepsilon \ \forall L \geqslant L_{\varepsilon}}$$

Donc $L = L_{\varepsilon}$ et $\delta = \frac{\varepsilon}{L_{\varepsilon}}$:

$$\sup_{i \in I} \mathbb{E}[|Y_i| \mathbb{1}_A] \leqslant \varepsilon + \varepsilon = 2\varepsilon \quad \text{vrai } \forall A \ \mathbb{P}(A) \leqslant \delta$$

 $\Leftarrow: C = \sup_{i \in I} \mathbb{E}[|X_i|] < +\infty$. On se donne $\varepsilon > 0$, $\exists \delta$ tel que :

$$\mathbb{P}(A) \leqslant \delta \Rightarrow \mathbb{E}[|X_i| \mathbb{1}_A] \leqslant \varepsilon \ \forall i \in I$$

$$\mathbb{P}(|X_i| > L) \leqslant \frac{E[|X_i|]}{L} \leqslant \frac{C}{L}$$

On pose $L_{\varepsilon}=\frac{C}{\delta},$ alors pour $L>L_{\varepsilon},$ $\mathbb{P}(|X_i|>L)\leqslant\delta,$ alors :

$$\mathbb{E}[|X_i|\mathbb{1}_{\underbrace{|X_i| > L}}] \leqslant \varepsilon \quad \forall i \in I$$

Propriété 4

 $(X_n)_{n\geqslant 1}$ suite de v.a. L^1 et X une v.a., on a :

$$X_n \xrightarrow[n \to +\infty]{\mathcal{L}^1} X \quad \Leftrightarrow \quad X_n \xrightarrow[n \to +\infty]{\mathbb{P}} X \text{ et } (X_n)_{n \geqslant 1} \text{ U.I.}$$

Preuve.

$$\Rightarrow: \\ \frac{\mathcal{L}^1}{n \to +\infty} \Rightarrow \frac{\mathbb{P}}{n \to +\infty} \text{ déjà vu}.$$

$$\mathbb{E}[|X_n|] \leqslant \underbrace{\mathbb{E}[|X_n - X|]}_{\longrightarrow 0} + \mathbb{E}[|X|]$$

Donc X_n est bornée dans L^1 et :

$$\mathbb{E}[|X_n|\mathbb{1}_A] \leqslant \mathbb{E}[|X|\mathbb{1}_A] + \mathbb{E}[|X_n - X\mathbb{1}_A|]$$

Soit $\varepsilon > 0$, $\exists n_0$ tel que $\forall n \geqslant n_0$, $\mathbb{E}[|X_n - X|] \leqslant \varepsilon$

$$\{X_1,...,X_{n_0-1}\}$$
 U.I. car famille finie de v.a. L^1

donc $\exists \delta$ tel que pour une v.a. Y de cette famille $\mathbb{P}(A) \leqslant \delta \Rightarrow \mathbb{E}[|Y|\mathbb{1}_A] \leqslant \varepsilon$. Alors, si $\mathbb{P}(A) \leqslant \delta$:

$$\mathbb{E}[|X_n|\mathbbm{1}_A] \leqslant \left\{ \begin{array}{l} \varepsilon \quad \text{si } n \leqslant n_0 - 1 \text{ car c'est une v.a. de cette famille} \\ \underbrace{\mathbb{E}[|X|\mathbbm{1}_A]}_{\leqslant \varepsilon \text{ car } X \text{ dans la famille}} + \underbrace{\mathbb{E}[|X_n - X|]}_{\leqslant \varepsilon} \quad \text{si } n \geqslant n_0 \\ \leqslant \varepsilon \end{array} \right. \leqslant 2\varepsilon$$

 $\Leftarrow: X_n \xrightarrow[n \to +\infty]{\mathbb{P}} X$, X_n borné dans $L^1 \to X \in L^1$. $(X_n)_{n\geqslant 1}$ et $\{X\}$ sot 2 familles UI donc $\forall \varepsilon > 0, \exists \delta$ tel que $\forall \mathbb{P}(A) \leqslant \delta$ on a $\mathbb{E}[[X_n|\mathbb{1}_A] \leqslant \varepsilon \ \forall n$ et $\mathbb{E}[|X|\mathbb{1}_A] \leqslant \varepsilon$. $\exists n_0$ tq pour $n \geqslant n_0$:

$$\mathbb{P}(|X_n - X| > \varepsilon) \leqslant \delta$$

Alors,

$$\begin{split} \mathbb{E}[|X_n - X|] &= \mathbb{E}[|X_n - X|\mathbbm{1}_{|X_n - X| \leqslant \varepsilon}] + \mathbb{E}[|X_n - X|\mathbbm{1}_{|X_n - X| > \varepsilon}] \\ &\leqslant \varepsilon + \mathbb{E}[|X_n|\mathbbm{1}_{\underbrace{|X_n - X| > \varepsilon}]} + \mathbb{E}[|X|\mathbbm{1}_{|X_n - X| > \varepsilon}] \end{split}$$

 $\leq 3\varepsilon$

$$\xrightarrow[n\to+\infty]{\mathbb{P}} \xrightarrow[n\to+\infty]{(\mathcal{L})} \operatorname{Si} X_n \xrightarrow[n\to+\infty]{\mathbb{P}} X:$$

$$\begin{split} |\mathbb{E}[f(X_n)] - \mathbb{E}[f(X)]| &= \left| \mathbb{E}\left[(f(X_n) - f(X)) \mathbb{1}_{\|X_n - X\| > \varepsilon} \right] + \mathbb{E}\left[(f(X_n) - f(X)) \mathbb{1}_{\|X_n - X\| \leqslant \varepsilon} \right] \right| \\ &\leqslant 2 \|f\|_{\infty} \mathbb{P}(\|X_n - X\| > \varepsilon) + \mathbb{E}\left[|f(X_n) - f(X)| \mathbb{1}_{\|X_n - X\| \leqslant \varepsilon} \left(\mathbb{1}_{\|X\| \leqslant A} \mathbb{1}_{\|X\| > A} \right) \right] \\ &\leqslant 2 \|f\|_{\infty} \mathbb{P}(\|X_n - X\| > \varepsilon) + \sup_{x,y: \ \|x\|, \|y\| \leqslant A + 1, \|x - y\| \leqslant \varepsilon} |f(x) - f(y)| \\ &+ 2 \|f\|_{\infty} \mathbb{P}(\|X\| > A) \end{split}$$

D'où:

$$\underbrace{\overline{\lim}_{n} \left| \mathbb{E} \left[f(X_{n}) - f(X) \right] \right|}_{=0 \ \varepsilon \to 0 \text{ puis } A \to 0} \leqslant \sup_{\substack{\|x\|, \|y\| \leqslant A+1, \|x-y\| \leqslant \varepsilon \\ \varepsilon \to 0}} |f(x) - f(y)| + \underbrace{2\|f\|_{\infty} \mathbb{P}(\|X\| > A)}_{A \to +\infty}$$

Contre-exemple.
$$X_n = X \sim \mathcal{B}(1/2), X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} 1 - X \text{ mais } X_n \not\xrightarrow[n \to +\infty]{\mathbb{P}} 1 - X.$$

 $X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} X$ signifie inf $f(x)d\mu_{X_n}(x) \xrightarrow[n \to +\infty]{} \int f(x)d\mu_X(x)$; a encore un sens si les X_n ne sont pas sur le même espace de probabilité.

À l'opposé on peut faire un "couplage" (trouver des v.a. Y_n qui ont les lois des X_n) et pour lesquels cette convergence est plus forte.

Théorème 1

Soit $(X_n)_{n\geqslant 1}$ et X v.a. réelles, n a l'équivalence :

(i)
$$X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} X \Leftrightarrow (ii) \ \forall t$$
 point de continuité de F_X , $F_{X_n}(t) \xrightarrow[n \to +\infty]{} F_X(t)$
 $\Leftrightarrow (iii) \ \exists (Y_n)_{n\geqslant 1} \ \text{et} \ Y \ \text{v.a.} \ \text{réelles telles que } \mu_{Y_n} = \mu_{X_n} \ \forall n, \ \mu_Y = \mu_X$
 $\text{et} \ Y_n \xrightarrow[n \to +\infty]{} Y \ \text{p.s.}$

Remarque. $(Y_n)_{n\geqslant 1}$, Y sont un couplage qui renforce la convergence.

Remarque. $(i) \Leftrightarrow (iii)$ est le théorème de représentation de Skorokhod.

Preuve.

 $(iii) \Rightarrow (i)$: Soit f continue bornée

$$\mathbb{E}[f(X_n)] = \int f(x)d\mu_{X_n}(x) = \int f(x)d\mu_{Y_n}(x)$$

$$\xrightarrow[n \to +\infty]{p.s.} \int f(x)d\mu_{Y}(x) = \int f(x)d\mu_{X}(x) = \mathbb{E}[f(X)]$$

 $(i) \Rightarrow (iii) : Posons,$

$$f_p(x) = \left(1 - p\left(x - \left(t - \frac{1}{p}\right)\right)_+\right)_+$$
$$g_p(x) = \left(1 - p\left(x - t\right)_+\right)_+$$

 f_p et g_p sont continues bornées et $\forall x \ f_p(x) \leqslant \mathbb{1}_{x \leqslant t} \leqslant g_p(x)$.

$$\underbrace{\mathbb{E}[f_p(X_n)]}_{\stackrel{p\to +\infty}{\longrightarrow}} \mathbb{E}[f_p(X)] \leqslant \underbrace{\mathbb{E}[\mathbb{1}_{X_n\leqslant t}]}_{=F_{x_n}(t)} \leqslant \underbrace{\mathbb{E}[g_p(X_n)]}_{\stackrel{p\to +\infty}{\longrightarrow}} \mathbb{E}[g_p(X)]$$

Or $\mathbb{E}[\mathbb{1}_{X \leqslant t-\frac{1}{2}}] \leqslant \mathbb{E}[f_p(X)]$ et $\mathbb{E}[g_p(X)] \leqslant \mathbb{E}[\mathbb{X} \leqslant +\frac{1}{2}]$. Donc :

$$F_X\left(t - \frac{1}{p}\right) \leqslant \underline{\lim} F_{X_n}(t) \leqslant \overline{\lim} F_{X_n}(t) \leqslant F_X\left(t + \frac{1}{p}\right)$$

Donc si t est un point de continuité de F_X , on obtient $F_{X_n}(t) \xrightarrow[n \to +\infty]{} F_X(t)$.

 $(ii) \Rightarrow (iii)$: On sait que $F_{Y_n} \xrightarrow[n \to +\infty]{} F_X$ sur les points de continuité de F_X . On se donne $U \sim \mathcal{U}[0,1]$ et on pose $Y_n = F_{X_n}^{<-1>}(U) \, \forall n$ et $Y = F_X^{<-1>}(U)$. On a vu que $Y_n = X_n$ et Y = Y. On peut espérer:

$$F_{X_n} \xrightarrow[n \to +\infty]{} F_X \quad F_{X_n}^{<-1>} \xrightarrow[n \to +\infty]{} F_X^{<-1>} \quad F_{X_n}(U)^{<-1>} \xrightarrow[n \to +\infty]{} F_X^{<-1>}(U) \quad ? ?$$

Rappel.

$$F^{<-1>}(U) = \inf \underbrace{\{t \mid F(t) \ge u\}}_{[F^{<-1>}(u); +\infty[} \quad \text{pour } 0 < u < 1$$

$$F(t) \geqslant u \Leftrightarrow t \geqslant F^{<-1>}(u)$$
 (contraposée $F(t) < u \Leftrightarrow t < F^{<-1>}(u))$

Remarque. F est une fonction croissante vornée donc il y a un nombre au plus dénombrable de point de discontinuité.

Si
$$A_p = \left\{ t \mid F(t) \geqslant F(t^-) + \frac{1}{p} \right\}$$
, alors

$$\operatorname{Card} A_p \times \frac{1}{p} \leqslant \sum_{t \in A_p} F(t) - F(t^-) = \lim_{t \to \infty} F - \lim_{t \to \infty} F = 1 - 0 = 1$$

Donc A_p est fini et

$$\bigcup_{p\geqslant 1}A_p=\{\text{points de discontinuités}\}$$
 est au plus dénombrable

Donc on peut trouver Γ un ensemble dénombrable de points de continuité dense dans \mathbb{R} . Soit $f \in \Gamma$, regardons l'évènement :

$$\{Y > t\} = \{F_X^{<-1>}(U) > y\} = \{U > \underbrace{F_X(t)}_{=\lim F_{X_n}(t)}\}$$

$$\subseteq \{\text{pour } n \text{ assez grand } U > F_{X_n}(t)\}$$

$$= \{\text{pour } n \text{ assez grand } \underbrace{F_{X_n}^{<-1>}(U)}_{Y_n} > t\}$$

$$\subseteq \{\lim Y_n \geqslant t\}$$

Or,

$$\begin{split} \{ \underline{\lim} Y_n < Y \} &\underset{\Gamma \text{ dense}}{=} \bigcup_{t \in \Gamma} \{ \underline{\lim} Y_n < t < Y \} \\ &= \bigcup_{t \in \Gamma} \{ \underline{\lim} Y_n < t, \underbrace{t < Y}_{\subseteq \{ \underline{\lim} Y_n \geqslant t \}} \} = \emptyset \end{split}$$

Donc $\underline{\lim} Y_n \geqslant Y$ p.s.

Regardons maintenant:

$$\begin{split} \{Y\leqslant t\} &= \{F_X^{<-1>}(U)\leqslant t\} = \{U\leqslant F_X(t)\}\\ &= \{U=F_X(t)\} \cup \{U< F_X(t)\}\\ &= \{U=F_X(t)\} \cup \{\text{pour } n \text{ assez grand } U< F_{X_n}(t)\}\\ &\subseteq \{U=F_X(t)\} \cup \{\text{pour } n \text{ assez grand } \underbrace{U\leqslant F_{X_n}(t)}_{\{F_{X_n}^{<-1>}(U)\leqslant t\} = \{Y_n\leqslant t\}} \\ &\subseteq \{U=F_X(t)\} \cup \{\overline{\lim} Y_n\leqslant t\} \end{split}$$

Regardons,

$$\begin{split} \{\overline{\lim} Y_n > Y\} & \bigcup_{t \in \Gamma} \{\overline{\lim} Y_n > t\} \cap \{t \geqslant T\} \\ & \subseteq \{\overline{\lim} Y_n > t\} \cap \left(\{U = F_X(t)\} \cup \{\overline{\lim} Y_n \leqslant t\}\right) \\ & \subset \underbrace{\{U = F_X(t)\}}_{\text{de proba 0}} \cup \underbrace{\{\overline{\lim} Y_n > t, \overline{\lim} Y_n \leqslant t\}}_{=\emptyset} \end{split}$$

Donc $\{Y \geqslant \overline{\lim} Y_n\}$ p.s. Ainsi :

$$Y \leqslant \lim Y_n \leqslant \overline{\lim} Y_n \leqslant Y$$
 p.s.

Finalement $Y_n \xrightarrow[n \to +\infty]{} Y$ p.s.

Caractérisation de la convergence en loi.

- **Théorème 2** (de Lévy, faible) —

Soit $(X_n)_{n\geqslant 1}$ une suite de v.a., et X une v.a., toutes dans $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$. Alors :

$$X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} X \quad \Leftrightarrow \quad \forall \lambda \in \mathbb{R}^d, \ \phi_{X_n}(\lambda) \xrightarrow[n \to +\infty]{} \phi_X(\lambda)$$

- **Théorème 3** (de Lévy, fort) ———

Soit $(X_n)_{n\geqslant 1}$ une suite de v.a. dans $(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))$. Si $\exists \psi \colon \mathbb{R}^d \longrightarrow \mathbb{C}$ continue en 0 telle que :

$$\forall \lambda, \ \phi_{X_n}(\lambda) \xrightarrow[n \to +\infty]{} \psi(\lambda)$$

Alors $\exists X$ v.a. telle que $\psi = \varphi_X$ et $X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} X$.

Remarque. L'implication dans la version faible est trivial $e^{i\langle\lambda|x\rangle}$ continue bornée.

Outil pour se ramener à un compact

Lemme 1

Soit μ une probabilité sur \mathbb{R} .

$$\mu(\lbrace x \mid |x| > A \rbrace) \leqslant \frac{A}{2} \int_{-\frac{2}{A}}^{\frac{2}{A}} |1 - \phi_{\mu}(t)| dt$$

Preuve.

Soit c > 0.

$$\begin{split} \int_{-c}^{c} (1-\phi_{\mu}(t))dt &= \int_{-c}^{c} \left(1-\int e^{itx} d\mu(x)\right) dt \\ &= \int_{-c\leqslant t\leqslant c, x\in \mathbb{R}} \underbrace{\frac{\left(1-e^{itx}\right)}{|\cdot|\leqslant 2\mathbbm{1}_{-c\leqslant t\leqslant c}}} d\mu(x)dt \\ &\stackrel{\equiv}{=} \int_{x\in \mathbb{R}} \int_{-c}^{c} (1-e^{itx}) dt d\mu(x) \\ &= \int_{x\in \mathbb{R}} \left(2c-\left[\frac{e^{itx}}{ix}\right]_{-c}^{c}\right) \mathbbm{1}_{x\neq 0} d\mu(x) \\ &= \int_{x\in \mathbb{R}} \left(2c-\frac{e^{icx}-e^{-icx}}{ix}\right) \mathbbm{1}_{x\neq 0} d\mu(x) \\ &= \int_{x\in \mathbb{R}} 2c \left(1-\frac{\sin(cx)}{cx}\right) \mathbbm{1}_{x\neq 0} d\mu(x) \\ &= 2c \int_{x\in \mathbb{R}} \left(1-\frac{\sin(cx)}{cx}\right) d\mu(x) \end{split}$$

Ainsi

$$\begin{split} \int_{-c}^{c} |1 - \phi_{\mu}(t)| dt &\geqslant \left| \int_{-c}^{c} (1 - \phi_{\mu}(t)) dt \right| \\ &= 2c \left| \int_{x \in \mathbb{R}} \left(1 - \frac{\sin(cx)}{cx} \right) d\mu(x) \right| \\ &\geqslant 2c \int_{x \in \mathbb{R}} \underbrace{\left(1 - \left| \frac{\sin(cx)}{cx} \right| \right)}_{\geqslant \frac{1}{2} \text{ si } |cx \geqslant 2|} d\mu(x) \\ &\geqslant 2c \int_{\mathbb{R}} \frac{1}{2} \mathbbm{1}_{|cx| \geqslant 2} d\mu(x) \end{split}$$

Donc $\mu(\lbrace x \mid |cx| \geqslant 2\rbrace) \leqslant \frac{1}{c} \int_{-c}^{c} |1 - \phi_{\mu}(t)| dt$. Il reste à appliquer en $c = \frac{2}{A}$.

Preuve. (du théorème de Lévy, faible)

 $\phi_{X_n} \xrightarrow[n \to +\infty]{} \phi_X$ simplement. $X_n = (X_n(1)...X_n(d))^T \in \mathbb{R}^d$. Soit $\varepsilon > 0$.

$$\mathbb{P}(\underbrace{\|X_n\|_{\infty} > A}_{\cup_{i=1}^d |X_n(i)| > A}) \le \sum_{i=1}^d \mathbb{P}(|X_n(i)| > A)$$

$$\le \sum_{i=1}^d \frac{A}{2} \int_{-\frac{2}{A}}^{\frac{2}{A}} |1 - \phi_{X_n(i)}(t)| dt \quad (*) \quad \text{par le lemme}$$

 $\exists A$ tel que $\phi_{X(i)}(t) \geqslant 1 - \varepsilon$ fonction cractéristique par continuité sous $t \ \forall i \ \forall t \in \left[-\frac{2}{A}, \frac{2}{A}\right]$. $\mathbb{E}[e^{itx}]$ est continue en 0 de limite 1. Fixons ce A. Regardons la limite de (*) lorsque $n \to +\infty$. Par TCD :

$$(*) \xrightarrow[n \to +\infty]{} \sum_{i=1}^{d} \frac{A}{2} \int_{-\frac{2}{A}}^{\frac{2}{A}} \underbrace{|1 - \phi_X(t)|}_{\leqslant \varepsilon} dt \leqslant 2d\varepsilon$$

En particulier pour n assez grand $(*) \leq 4d\varepsilon$. Donc pour n assez grand :

$$\mathbb{P}(\|X_n\|_{\infty} > A) \leqslant 4d\varepsilon \quad \text{ et on a } \mathbb{P}(\|X\|_{\infty} > A) \leqslant 2d\varepsilon$$

Soit f une fonction continue bornée, $\exists P_{\varepsilon}$ polynôme trigonométrique 2A-périodique dans toutes les directions (dépendant de A) tel que $\|f - P_{\varepsilon}\|_{\infty}^{[-A,A]} \leqslant \varepsilon$.

$$|\mathbb{E}[f(X_n)] - \mathbb{E}[f(X)]| = \left| \mathbb{E}\left[\underbrace{(f - P_{\varepsilon})(X_n)}_{\leqslant \varepsilon} \mathbb{1}_{\|X_n\| \leqslant A}\right] + \mathbb{E}\left[\underbrace{(f - P_{\varepsilon})}_{\leqslant \|f\|_{\infty} + \|P_{\varepsilon}\|_{\infty} \leqslant 2\|f\|_{\infty} + \varepsilon} + \underbrace{\mathbb{E}[P_{\varepsilon}(X_n)]}_{\sum_{\lambda_i} \phi_{X_n}(\lambda_i)} + \mathbb{E}[P_{\varepsilon}(X)] + \mathbb{E}\left[\underbrace{(P_{\varepsilon} - f)}_{\leqslant 2\|f\|_{\infty} + \varepsilon} (X_n) \mathbb{1}_{\|X\| > A}\right] + \mathbb{E}\left[\underbrace{(P_{\varepsilon} - f)(X)}_{n \to +\infty} \mathbb{1}_{\|X\| \leqslant A}\right] \right|$$

Donc

$$\overline{\lim}_{n} |\mathbb{E}[f(X_{n})] - \mathbb{E}[f(X)]| \leq 2\varepsilon + (2||f||_{\infty} + \varepsilon)(\underbrace{\overline{\lim}\mathbb{P}(||X_{n}||_{\infty} > A)}_{\leq 4d\varepsilon} + \underbrace{\mathbb{P}(||X||_{\infty} > A)}_{\leq 2d\varepsilon}) = O(\varepsilon)$$

Remarque. Pour la version forte il manque un théorème qui dit qu'on peut extraire une soussuite convergente de la suite des μ_{X_n} .

Théorème 4 (Prokhorov) —

Soit μ_n une suite de probabilité sur \mathbb{R}^d .

$$\mu_n$$
 est tendue $\left(\forall \varepsilon, \exists K_\varepsilon \text{ compact } \sup_{\mathbb{N}} \mu_n(\overline{K_\varepsilon}) \leqslant \varepsilon\right)$

⇔ de toute sous-suite on peut extraire une suite convergente pour la topologie faible

Une des applications du théorème de Lévy.

Théorème 5 (Théorème Central Limite, T.C.L.) -

Soient $(X_i)_{i\geqslant 1}$ v.a. réelles indépendantes de même loi L^2 avec $\mathbb{E}[X_i]=m$ et $\mathrm{Var}X_i=\sigma^2$. Alors :

$$\frac{X_1 + \dots + X_n - nm}{\sqrt{n}} \xrightarrow[n \to +\infty]{(\mathcal{L})} Z \sim \mathcal{N}(0, \sigma^2)$$

Preuve.

Si $Y \in L^2$ réelle. $\varphi_Y(t) = \mathbb{E}[\underbrace{e^i Y t}_{\text{2 fois dvb}}]$. Donc on peut dériver 2 fois sous l'espérance. On obtient :

$$\phi_Y'(t) = \mathbb{E}[iYe^{iYt}]$$
 et $\phi_Y''(y) = -\mathbb{E}[Y^2e^{iYt}]$

$$\phi_Y(t) = \phi_Y(0) + t\phi_Y'(t)(0) + \frac{t^2}{2}\phi_Y''(0) + o(t^2)$$
$$= 1 + it\mathbb{E}[Y] - \frac{t^2}{2}\mathbb{E}[Y^2] + o(t^2)$$

Ici:

$$\phi_{\frac{X_1 + \dots + X_n - nm}{\sqrt{n}}}(t) = \mathbb{E}\left[\exp\left(it\frac{(X_1 - m) + \dots + (X_n - m)}{\sqrt{n}}\right)\right]$$

$$= \mathbb{E}\left[\exp\left(it\frac{X_1 - m}{\sqrt{n}}\right)\right] \times \dots \times \mathbb{E}\left[\exp\left(it\frac{X_n - m}{\sqrt{n}}\right)\right]$$

$$= \frac{1}{n + \infty}\left(1 + \frac{it}{\sqrt{n}}\underbrace{\mathbb{E}[X_i - m]}_{0} - \frac{t^2}{2n}\underbrace{\mathbb{E}[(X_1 - m)^2]}_{\sigma^2} + o\left(\frac{1}{n}\right)\right)$$

$$= \exp\left(n\ln\left(1 - \frac{t^2}{2n}\sigma^2 + o\left(\frac{1}{n}\right)\right)\right)$$

$$= e^{-\frac{t^2\sigma^2}{2} + o(1)}$$

$$\xrightarrow{n \to +\infty} e^{-\frac{t^2\sigma^2}{2}} = \phi_{\mathcal{N}(0,\sigma^2)}(t)$$

Par le théorème de Lévy :

$$\frac{X_1 + \dots + X_n - nm}{\sqrt{n}} \xrightarrow[n \to +\infty]{(\mathcal{L})} Z \sim \mathcal{N}(0, \sigma^2)$$

Exemple. (application statistique)

On a une population de N individus. Une proportion p (inconnue, 0) est "Pour", le reste "Contre". Pour estimer <math>p, on interroge n personnes choisies de manière indépendante et uniforme. Et on note :

$$X_i = \left\{ \begin{array}{ll} 1 & \text{si la } i\text{--\`eme personne est "Pour"} \\ 0 & \text{si elle est "Contre"} \end{array} \right.$$

Ce sont de v.a. indépendantes de loi $\mathcal{B}(p)$.

D'après la LFGN $\hat{p}_n := \frac{X_1 + \ldots + X_n}{n} \xrightarrow[n \to +\infty]{} p$ p.s. Quelle taille n d'échantillon choisir pour assurer que on fait un erreur de 3% sur p dans au plus 1 sondage sur 20. On vaut donc n tel que :

$$\mathbb{P}(|\hat{p}_n - p| > 0.03) \leqslant \frac{1}{20}$$

On sait que (rappel : on a $\mathbb{E}[X_i] = p$ et $\operatorname{Var} X_i = p(1-p)$) :

$$\begin{split} \mathbb{P}(|\hat{p}_{n} - p| > 0.03) &= \mathbb{P}\left(\left|\frac{X_{1} + \ldots + X_{n}}{n} - p\right| > 0.03\right) \\ &= \mathbb{P}\left(\frac{X_{1} + \ldots + X_{n} - np}{n} > 0.03\right) \\ &= \mathbb{P}\left(\underbrace{\frac{X_{1} + \ldots + X_{n} - np}{\sqrt{n}}}_{\sim_{\infty} \mathcal{N}(0, p(1-p))} \frac{1}{\sqrt{p(1-p)}} > 0.03 \frac{\sqrt{n}}{\sqrt{p(1-p)}}\right) \quad (*) \\ &\leqslant \mathbb{P}\left(\left|\frac{X_{1} + \ldots + X_{n} - np}{\sqrt{n}\sqrt{p(1-p)}}\right| > \frac{0.03\sqrt{n}}{\sqrt{\frac{1}{4}}}\right) \quad (*_{2}) \end{split}$$

Car $p(1-p) \leqslant \frac{1}{4}$. Donc il suffit d'avoir le second terme $\leqslant 0.05$ pour avoir $(*) \leqslant 0.05$. Notons Y_n la v.a. du terme de gauche. D'après le TCL, $Y_n \xrightarrow[n \to +\infty]{(\mathcal{L})} Z \sim \mathcal{N}(0,1)$.

$$(*_{2}) = \mathbb{P}(|Y_{n}| > 0.06\sqrt{n})$$

$$= 1 - F_{\frac{1}{n}}(0.06\sqrt{n}) + F_{Y_{n}}(-0.06\sqrt{n})$$

$$\underset{n \text{ grand}}{\approx} 1 - F_{Z}(0.06\sqrt{n}) - F_{Z}(-0.06\sqrt{n})$$

$$= \mathbb{P}(|Z| > 0.06\sqrt{n})$$

$$= 2\mathbb{P}(Z > 0.06\sqrt{n})$$

On veut:

$$2(1 - F_{\mathcal{N}(0,1)}(0.06\sqrt{n})) \le 0.05$$

Donc:

$$F_{\mathcal{N}(0,1)}(0.06\sqrt{n}) \le 0.975$$

À lire dans les tables : $0.06\sqrt{n} \ge 1.96$. Ce qui donne $n \ge 1067$.

Remarque. Cela ne dépend pas de la population N. La raison est que $n\hat{p}_n \sim \mathcal{B}(n,p)$, la taille de la population n'intervient déjà pas dans la loi.

Corollaire 1 (TCL dans \mathbb{R}^d) —

Soit $X_1, X_2, ...$ une suite de v.a. indépendantes, L^2 , de même loi dans \mathbb{R}^d . On note :

$$X_i = \begin{pmatrix} X_i(1) \\ \vdots \\ X_i(d) \end{pmatrix} \quad \text{et} \quad m = \mathbb{E}[X_1] = \begin{bmatrix} \mathbb{E}[X_1(1)] \\ \vdots \\ \mathbb{E}[X_1(d)] \end{bmatrix} \in \mathbb{R}^d$$

Soit $\Gamma = \left(\operatorname{Cov}(X_1(i), X_1(j))_{1 \leq i, j \leq n}\right)$. Alors:

$$\frac{X_1 + \dots + X_n - nm}{\sqrt{n}} \xrightarrow[n \to +\infty]{} \mathcal{N}_{\mathbb{R}^d}(0, \Gamma)$$

Preuve.

Soit $\lambda \in \mathbb{R}^d$.

$$\phi_{\frac{X_1 + \dots + X_n - n\mathbb{E}[X_1]}{\sqrt{n}}} \left(\underbrace{\lambda}_{\in \mathbb{R}^d} \right) = \phi_{\left(\lambda, \frac{X_1 + \dots + X_n - n\mathbb{E}[X_i]}{\sqrt{n}}\right)} (1)$$

Or,

$$\langle \lambda, \frac{X_1 + \ldots + X_n - nm}{\sqrt{n}} \rangle = \frac{\langle \lambda, X_1 \rangle + \ldots + \langle \lambda, X_n \rangle - n \mathbb{E}[\langle \lambda, X_i \rangle]}{\sqrt{n}}$$

où $(\langle \lambda, X_i \rangle)_{i \geqslant 1}$ v.a. indépendantes de même loi et L^2 .

D'après le TCL dans \mathbb{R} avec :

$$\mathbb{E}[\langle \lambda, X_i \rangle] = \sum_{k=1}^d \lambda(k) \mathbb{E}[X_i(k)] \quad \text{et} \quad \operatorname{Var}[\langle \lambda, X_i \rangle] = \sum_{k,l=1}^d \lambda(k) \lambda(l) \underbrace{\operatorname{Cov}(X_i(k), X_i(l))}_{\Gamma_{k,l}} = \lambda^T \Gamma \lambda$$

On obtient que:

$$\langle \lambda, \frac{X_1 + \dots + X_n - nm}{\sqrt{n}} \rangle \xrightarrow[n \to +\infty]{(\mathcal{L})} Z_{\lambda} \sim \mathcal{N}(0, \lambda^T \Gamma \lambda)$$

Donc

$$\forall \lambda, \ \phi_{\frac{X_1 + \dots + X_n - nm}{\sqrt{n}}}(\lambda) \xrightarrow[n \to +\infty]{} \phi_{Z_{\lambda}}(1) = e^{-\frac{\lambda^T \Gamma \lambda}{2}} = \phi_{\mathcal{N}(0,\Gamma)}(\lambda)$$

Donc par le théorème de Lévy :

$$\frac{X_1 + \dots + X_n - nm}{\sqrt{n}} \xrightarrow[n \to +\infty]{(\mathcal{L})} Z \sim \mathcal{N}(0, \Gamma)$$

Comportement de marches aléatoires.

Dans \mathbb{R}^d , $(X_i)_{i\geqslant 1}$ indépendantes, de même loi, L^2 . La marche issue de 0 est (S_n) définie par : $S_0=0,\,S_n=X_1+\ldots+X_n$. Quel est le comportement de S_n ?

• si $m \neq 0$, $\frac{S_n}{n} \xrightarrow[n \to +\infty]{} m$ p.s. donc $S_n \sim nm$ p.s. (comportement ballistique) en particulier $||S_n|| \xrightarrow[n \to +\infty]{} +\infty$ p.s.

$$\forall R > 0$$
, Card $\{n \mid ||S_n|| \leq R\} < +\infty$ p.s.

• si
$$m=0, \frac{S_n}{n} \xrightarrow[n \to +\infty]{} 0$$
 p.s. On a $\frac{S_n}{\sqrt{n}} \xrightarrow[n \to +\infty]{} Z \sim \mathcal{N}(0,\Gamma)$. Donc :

$$\left\| \frac{S_n}{\sqrt{n}} \right\| \xrightarrow[n \to +\infty]{(\mathcal{L})} \|Z\| \quad \text{car} \quad \left(X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} X \text{ et } f \text{ continue} \right) \Rightarrow f(X_n) \xrightarrow[n \to +\infty]{(\mathcal{L})} f(X)$$

L'ordre de grandeur de $||S_n||$ est \sqrt{n} mais cela ne signifie pas $||S_n|| \xrightarrow[n \to +\infty]{} +\infty$ p.s.