This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

⑩ 公 開 特 許 公 報 (A) 平2-278439

⑤Int. Cl. ⁵

識別記号

庁内整理番号

码公開 平成2年(1990)11月14日

G 06 F 12/00 3/08 G 11 B 27/00 27/10 3 0 1 U 8944-5B F 6711-5B A 8726-5D A 8726-5D

-審査請求 未請求 請求項の数 2 (全7頁)

ᡚ発明の名称 追記型デバイスのデータ管理方式

②特 頭 平1-101128

②出 顧 平1(1989)4月20日

 東京都新宿区西新宿2丁目6番1号 株式会社シーエスケ

イ内

の出 顋 人 株式会社シーエスケイ

東京都新宿区西新宿2丁目6番1号

四代 理 人 弁理士 村田 幹雄

明 細 對

1. 発明の名称

追記型デバイスのデータ管理方式

2 , 特許請求の範囲

(1) データファイルを限定するための冗長データをオペレーティングシステムが管理するファイル名をリリー構造のデータでイースのデータ階層と各データ階層における分類項目と同一分類項目のデータファイルのファイル名によってファイルの分類項目を限定し、その後上記パージョン番号またはデータファイルの検索を行うことを特徴とする追記型デバイスのデータ管理方式。

(2) データファイルを限定するための冗長データをオペレーティングシステムが管理するファイル名としてのみ用い、該ファイル名をツリー構造

のデータベースのデータ階層と各データ階層における分類項目と同一分類項目のデータファイルのバージョン番号とで形成し、データ検索の際、ファイル名に同一分類項目中最大のバージョン番号を有するデータファイルのみを検索することが会立って、上記最大のバージョン番号を相対のには、からないデータファイルを遺伝のには、放大のバージョンではよって投資では、ないで、カージョンでは、カータファイル名を付すことによって投資をでいて、カータの更新を行うことを特徴とする追記型デバイスのデータ管理方式。

3. 発明の詳細な説明

[産業上の利用分野]

本発明は、追記型デバイスのデータファイルシステムを使った、データベース上におけるデータ
・ 管理方式に関する。

[従来の技術]

従来、データベースにおけるデータ管理方式 は、データファイルと該データファイルの検索 キーを記憶した目次ファイルとからなるデータ ファイルシステムを用いていた。これは、磁気 ディスク等の追き換え可能な記憶デバイスに適し たものであった。

従来のデータ管理方式によれば、データ検索を する場合、まず目的のデータファイルの分類項目 を選択する。この選択に応じて目次ファイルの限 定と読み込みが行われる。次に、当該目次ファイ ルにおいて、検索キーを用いた目次検索が行なわ れる。これによって目的のデータファイルが限定 され、読み込まれて出力される。

また、データの更新、削除、追加等を行う場合、目的のデータファイルを選択し、当該データファイルに直接新たなデータの書込み等をすることによって、データファイルの更新、削除、追加

[課題を解決するための手段]

本発明は、上記従来の欠点を解消し、必要に応じて追記型デバイス上におけるデータファイルの 設似的な削除、更新を可能としたものであり、既 存のオペレーティングシステムによる管理を容易 に行えるようにすることを目的とする。

係る目的を達成するため本発明は、データファイルを限定するための冗長データをオペレーティングシステムが管理するファイル名としてのみ用い、 該ファイル名をツリー構造のデータベースのデータ階層と各データ階層における分類項目を分類項目のデータファイルのバージョン番号とで形成し、 上記データファイルのファイル名によってファイルの分類項目を限定し、 その技上記パージョン番号またはデータ内の検索キーによって当該データファイルの検索を行うことを特徴とする。

また、データファイルを設似的に削除、更新す

を行っていた。

一方、記憶デバイスとして、記憶容量等の点で 有利な光ディスク等の追記型デバイスを用いるこ とが行われている。そして、この場合にも磁気 ディスク等の制御管理を行う既存のオペレーティ ングシステムが管理するデータ管理方式を活用す るため、データファイルの分類を行い、データ ファイルの履歴を管理するための目次ファイルを 設けるのが一般的である。

[発明が解決しようとする課題]

しかしながら、追記型デバイスはデータの削除 や谐き換えができないため、データファイルの更 新やこれに伴う目次ファイルの更新ができないと いう欠点があった。

また、新しいデータの書き込みが追記としての み行われるため、既存のオペレーティングシステ ムを活用する場合、データファイルの量が増え過 ぎる等の不都合があった。

る手段としてデータ検索の際、ファイル名に同一分類項目中最大のパージョン番号を有するデータファイルのみを検索することによって、上記最大のパージョン番号を有するデータファイル以外のデータファイルを提似的に削除し、新しいデータファイルを出き込む際には、該データファイルが 属する分類項目に現存する最大のパージョン番号 よりも 1 大きいパージョン番号を含むファイル名 を付すことによって 提似的にデータの更新を行うことを特徴とする。

[実施例]

以下、本発明の実施例について図面を参照して説明する。

第1回は、本発明の一実施例に係るデータ管理 方式を示す機能プロック図である。

本実施例において、入力装置1より目的のデータファイルの分類項目が入力され、分類項目選択 部2では入力された分類項目に該当するデータ ファイル群が選択される。最大パージョン番号検 出部3では、選択されたデータファイル群中最大 のパージョン番号が検出される。データファイル 読込部4では、最大パージョン番号検出部3の検 出結果に基づき、光ディスク、光カード等を用い る追記型デバイス10より該当するデータファイ ルを読込み、検究対象として設定する。

また、検索キー照合部5では、検索対象として 設定されたデータファイル中の検索キーを入力し た検索キーと照合する。データ出力部6は、検索 キー照合部5において検索キーが一致した場合 に、当該データファイルを出力する。

新たなデータを書込む際には、分類項目選択部2により目的のデータファイル群を選択した後、入力装置1よりデータを入力すると、データ入力部8によって入力装置1より入力されたデータがデータ追記部9へ送られ、追記型デバイス10に書き込まれる。

分類項目部111の文字は、それぞれデータベースのデータ階層を示し、その文字数が階層数に対応している。従って、本実施例では第10階層まで管理できることとなる。また、各文字内容は、各データ階層における分類項目を示す。バージョン番号部112には、例えばバージョン番号として10進数を用いた場合、データファイルの作成頃に、000°から、999°まで3桁のバージョン番号が占き込まれる。従って、新しいファイルほど大きなバージョン番号が付く。これによって、回一分類項目について最大1000個のデータファイルを管理することができる。

本実施例を第7図に示す構造のデータベースに使用した例を第4図(a)~(c)に示す。第4図(a)は第7図の第2階層のデータファイルIのファイル名、第4図(b)は第3階層のデータファイルIのファイル名、第4図(c)は第10階層のデータファイルIIのファイル名である。な

本実施例の追記型デバイスのデータ管理方式 は、第7回に示すようなツリー構造のデータベー スに適用される。この例では、第10階層からな るツリー構造を形成している。

本実施例に用いるデータファイルは、第2図に 示すように、データファイルを限定するための冗 長データ 1 1 と、データレコード 1 2 とからなる。

上記冗長データ11は、オペレーティングシステムが管理するファイル名として用いられる。ファイル名は、第7図のデータベースにおいてデータ階層と、各データ階層における分類項目と、同一分類項目のデータファイルのバージョン番号とで形成される。

この場合のファイル名の構造を第3図に示す。 図示のように本実施例においては、分類項目部 111の10文字とパージョン番号部112の 3文字の合計13文字でファイル名を管理する。

お、 阿図中 * % * は、オペレーティングシステム がファイル名として認める文字であり、かつ分類 項目及びバージョン番号以外の補完文字である。

上記データレコード12には、目的のデータの 他に、検索キーが書き込まれる。この検索キー は、バージョン番号すなわちデータファイルの作 広順以外の情報による検索の際に用いられる。

次に、本実施例によるデータファイルの検索動作について第5図のフローチャートにより説明する。

まず、アクセスするデータファイルの分類項目 を選択し、当該分類項目を示すファイル名を入力 する(ステップS1~S3)。

ファイル名が入力されると、デバイス上に現存 するデータファイルのうち当該ファイル名に該当 するデータファイル群中最大のバージョン番号が 検出される(ステップS4)。これにより、当該 分類項目に累積するデータファイル数が判別され ころ

データファイルの作成頃を情報として検索する 場合には、パージョン番号により目的のデータ ファイルを限定し、データを出力することとなる。(ステップS5)。データファイルの作成頃 以外の情報によって検索する場合には、データ ファイルを読み込んでデータレコード12内に記録された検索キーと設定した検索キーとを照合することにより検索が行われる。(ステップS6~ S14)。この場合の手頃は以下のとおりである。

まず、選択されたデータファイル群のうち、最大又は最小のパージョン番号をファイル名に有するデータファイルが検索対象として設定される。 この後、パージョン番号に従ってシーケンシャルに検索キーによる検索が行われ、該当データが出力される(ステップS8~S12)。

何一分類項目のデータファイル群において、設

タファイルを検索しないことによって、当該分類・項目における古いデータファイルを疑似的に削除することができる(ステップS21)。

したがって、この場合バージョン番号による検索はありえず、最大のバージョン番号を有するデータファイルを出力するか、さらに検索キーの 照合による検索が行われる。

また、検索キーに予め削除属性を示すキーを含ませておき、当該検索キーを有するデータファイルを出力しないこととすれば、検索キーの照合による検索においても、特定のデータファイルを疑似的に削除することができる(ステップ S 2 2)。

データファイルの設似的な更新は、以下の手順で行われる。なお、新しいデータファイルの背込みは、データベース上は追記として扱われる(ステップS15~S20)。

まず、新しいデータファイルのファイル名を、

定された検索キーに該当するデータファイルが複数あるときは、引き続き検索が行われる(ステップS13)。この場合、現在出力されているデータファイルの次のバージョン番号を有するデータファイルから検索する(ステップS14)ことによって、検索の高速化を図ることができる。

次に、本実施例によるデータファイルを提似的に削除、更新する動作について第6図のフローチャートにより説明する。なお、図中第5図と同じステップ番号を付している部分は同じ動作を示す。

データファイルを検索する際、まずファイル名によってデータファイルの分類項目が限定される。このとき、デバイス上において阿一分類項目に複数のデータファイルが存在すれば、各データファイルには作成順を示すバージョン番号を有すれている。そこで、最大のバージョン番号を有するデータファイルのみを検索対象とし、他のデー

当該データファイルが含まれる分類項目を示す文字と、当該分類項目に現存するデータファイル中最大のバージョン番号よりも1大きいバージョン番号とによって作成する。そして、データファイルの検索の際、最大のバージョン番号を有するデータファイルのみを検索対象とすれば、当該分類項目におけるデータファイルを提似的に更新することとなる。

[発明の効果]

以上説明したように木発明は、データファイル中の冗長データをファイル名としてのみ用い、該ファイル名をツリー構造のデータベースのデータ階層と各データ階層における分類項目と同一分類項目のデータファイルのパージョン番号とで形成し、このファイル名によってデータ管理を行うことにより、データファイルを疑似的に削除、更新できるという効果を有する。

また、これにより、追記型デバイス上のデータ

特閱平2-278439 (5)

の管理を既存のオペレーティングシステムによっ て管理することが容易となる効果を有する。

4. 図面の簡単な説明

第1図は本発明の一実施例に係るデータ管理方 式を示す機能プロック図、

第2図は本発明の一実施例に係るデータファイ ルのフォーマットを示す構造図、

第3図は第2図のデータファイルのファイル名 を示す構造図、

第4図(a)~(c)はそれぞれ第3図のファイル名を第1図のデータベースに用いた状態を示す図であり、第7図中I、II、IIのファイル名を示す、

第5図は本発明の一実施例に係るデータ管理方 式の動作を示すフローチャート、

第6図は第5図において擬似的にデータファイルを削除、更新する場合の動作を示すフローチャート、

第7図はツリー構造のデータベースを示すブロック図である。

1:入力装置

2:分類項目選択部

3: 股大バージョン番号選択部

4:データファイル読込部

5:検索キー照合部

6:データ出力部

7:出力装置

8:データ入力部

9:データ追記部

10:デバイス

11:冗長データ

12:データレコード

111:分類項目部

112:バージョン番号部

出願人 株式会社 シーエスケイ

代理人弁理士 村田幹雄

% 1 EX

第 2 図

第3図

第 7 図

