1.
$$\frac{1}{1+x^2} = \sum_{k=1}^{\infty} (-1)^{k-1} x^{2(k-1)}, \quad x \in (-1,1).$$

2.
$$\arctan x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}, \qquad x \in (-1,+1).$$

3a.
$$\operatorname{arcctg} x = \frac{\pi}{2} + \sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^{2k+1}}{2k+1}, \quad x \in (-1,+1).$$

3b. arcctg
$$x = \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)x^{2k+1}}, \quad x \in (+1,+\infty).$$

3c. arcctg
$$x = \pi + \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)x^{2k+1}}, \quad x \in (-\infty, -1).$$

4.
$$\operatorname{arcth} x = \sum_{k=1}^{\infty} \frac{1}{(2k-1)x^{2k-1}}, \qquad x \in (-\infty, -1) \cup (1, +\infty).$$

5.
$$\ln(1-x) = -\sum_{k=1}^{\infty} \frac{x^k}{k}, \quad x \in [-1,1).$$

6. arth
$$x = \sum_{k=1}^{\infty} \frac{x^{2k-1}}{2k-1}$$
, $x \in (-1,1)$.

7.
$$\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k}, \qquad x \in (-1,1].$$

8.
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
, $x \in (-\infty, +\infty)$.

9.
$$e^{-x} = \sum_{k=0}^{\infty} (-1)^k \frac{x^k}{k!}, \quad x \in (-\infty, +\infty).$$

10.
$$e^{-x^2} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{k!}, \qquad x \in (-\infty, +\infty).$$

11. ch
$$x = \frac{e^x + e^{-x}}{2} = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}, \qquad x \in (-\infty, +\infty).$$

12.
$$\sinh x = \frac{e^x - e^{-x}}{2} = \sum_{k=1}^{\infty} \frac{x^{2k-1}}{(2k-1)!}, \qquad x \in (-\infty, +\infty).$$

$$1 \sin x = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)!}, \quad x \in (-\infty, +\infty).$$

14.
$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}, \qquad x \in (-\infty, +\infty).$$

15.
$$\frac{\sin x}{x} = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^{2k-2}}{(2k-1)!}, \qquad x \in (-\infty, +\infty), x \neq 0.$$

16.
$$\ln x = \sum_{k=1}^{\infty} \frac{(x-1)^{2k-1}}{(2k-1)(x+1)^{2k-1}}, \qquad x \in (0,+\infty).$$

17.
$$\ln x = \sum_{k=1}^{\infty} \frac{(x-1)^k}{kx^k}, \ x \in (\frac{1}{2}, +\infty)$$

18.
$$\ln x = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{(x-1)^k}{k}, \ x \in (0,2].$$

19.
$$\ln \frac{x+1}{x} = 2\sum_{k=1}^{\infty} \frac{1}{(2k-1)(2x+1)^{2k-1}}, \quad x \in (-\infty, -1) \cup (0, +\infty).$$

20.
$$\ln \frac{x+1}{x-1} = 2\sum_{k=1}^{\infty} \frac{1}{(2k-1)x^{2k-1}}, \quad x \in (-\infty, -1) \cup (1, +\infty).$$

21.
$$\ln \frac{1+x}{1-x} = 2\sum_{k=1}^{\infty} \frac{x^{2k-1}}{2k-1}, \quad x \in (-1,1).$$

22.
$$\frac{1}{\sqrt{1-x^2}} = 1 + \sum_{k=1}^{\infty} \frac{(2k-1)!!}{(2k)!!} x^{2k}, \qquad x \in (-1,1).$$

2
$$\arcsin x = x + \sum_{k=1}^{\infty} \frac{(2k-1)!!}{(2k)!!} \frac{x^{2k+1}}{2k+1}, \quad x \in (-1,1).$$

24.
$$\arccos x = \frac{\pi}{2} - x - \sum_{k=1}^{\infty} \frac{(2k-1)!! x^{2k+1}}{(2k)!! (2k+1)}, \qquad x \in (-1,1).$$

25.
$$\ln\left(\frac{a}{x} + \sqrt{\frac{a^2}{x^2} + 1}\right) = \frac{a}{x} + \sum_{k=1}^{\infty} (-1)^k \frac{(2k-1)!!}{(2k)!!} \frac{a^{2k+1}}{(2k+1)x^{2k+1}},$$
$$x \in (-a,a), \ x \neq 0, \ a > 0.$$

26.
$$\ln\left(\frac{x}{a} + \sqrt{\frac{x^2}{a^2} + 1}\right) = \frac{x}{a} + \sum_{k=1}^{\infty} (-1)^k \frac{(2k-1)!!}{(2k)!!} \frac{x^{2k+1}}{(2k+1)a^{2k+1}},$$
$$x \in (-a,a), \ a > 0.$$

27.
$$(1+x)^R = 1 + \sum_{k=1}^{\infty} \frac{R(R-1)...(R-k+1)}{k!} x^k$$
, $x \in (-1,1)$, R – любое

вещественное число.

28.
$$(1-x)^R = 1 + \sum_{k=1}^{\infty} (-1)^k \frac{R(R-1)...(R-k+1)}{k!} x^k$$
, $x \in (-1,1)$, $R -$

любое вещественное число.

В последующих примерах для вычисления чисел Бернулли B_1 , B_{2k} можно воспользоваться следующими рекуррентными формулами:

 $B_0=1,\ 1+C_k^1B_1+C_k^2B_2^2+...+C_k^{k-1}B_{k-1}=0$, $k=1,\ 2,\ ...;$ и тем, что $B_k=0$ для всех нечетных k>1 .

29.
$$\frac{x}{e^x - 1} = 1 - \frac{x}{2} + \sum_{k=1}^{\infty} (-1)^{k+1} \frac{B_{2k} x^{2k}}{(2k)!}, \ x \in (-2\pi, 2\pi), x \neq 0.$$

30. cth
$$x = \frac{1}{x} + \sum_{k=1}^{\infty} \frac{2^{2k}}{(2k)!} B_{2k} x^{2k-1}, \quad x \in (-\pi, \pi), \ x \neq 0.$$

31. ctg
$$x = \frac{1}{x} \sum_{k=0}^{\infty} (-1)^k \frac{2^{2k} B_{2k}}{(2k)!} x^{2k}$$
, $x \in (-\pi, \pi), x \neq 0$.

32. cosec
$$x = \frac{1}{x} + \sum_{k=1}^{\infty} (-1)^{k-1} \frac{2(2^{2k-1} - 1)}{(2k)!} B_{2k} x^{2k-1}, \quad x \in (-\pi, \pi).$$

3 th
$$x = \sum_{k=1}^{\infty} \frac{2^{2k} (2^{2k} - 1)}{(2k)!} B_{2k} x^{2k-1}, \qquad x \in (-\frac{\pi}{2}, \frac{\pi}{2}).$$

34. tg
$$x = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{2^{2k} (2^{2k} - 1) B_{2k}}{(2k)!} x^{2k-1}, \quad x \in (-\frac{\pi}{2}, \frac{\pi}{2}).$$