Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and Public reporting burden for this collection of information is estimated to average 1 nour per response, including the limit for retweining instructuris, searching existing data solutions, squareining and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 3. DATES COVERED (From - To) 2. REPORT TYPE 1. REPORT DATE (DD-MM-YYYY) View Graphs 28-02-03 5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE F04611-99-C-0025 **5b. GRANT NUMBER** Fluorinated POSS **5c. PROGRAM ELEMENT NUMBER** 5d. PROJECT NUMBER 6. AUTHOR(S) 4847 5e. TASK NUMBER Joseph M. Mabry, Patrick N. Ruth¹ Rusty L. Blanski, Rene Gonzalez 0249 5f. WORK UNIT NUMBER 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER ²Air Force Research Laboratory (AFMC) ¹ERC, Inc. AFRL/PRSP 10 E. Saturn Blvd. 10 E. Saturn Blvd. Edwards AFB, CA 93524-7680 Edwards AFB, CA 93524-7680 10. SPONSOR/MONITOR'S 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) ACRONYM(S) Air Force Research Laboratory (AFMC) 11. SPONSOR/MONITOR'S AFRL/PRS **NUMBER(S)** 5 Pollux Drive AFRL-PR-ED-VG-2003-049 Edwards AFB CA 93524-7048 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT

20031003 093

15. SUBJECT TERMS	}				
16. SECURITY CLAS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Sheila Benner
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	A		19b. TELEPHONE NUMBER (include area code) (661) 275-5963

FILE

MEMORANDUM FOR PRS (In-House/Contractor Publication)

FROM: PROI (STINFO)

28 Feb 2003

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-VG-2003-049

Joseph M. Mabry (ERC); Rusty L. Blanski; Patrick N. Ruth; Capt. Rene I. Gonzalez, "Fluorinated POSS"

American Chemical Society Conference (New Orleans, LA, 23-27 Mar 2003) (<u>Deadline: 21 Mar 2003</u>) (Statement A)

Fluorinated POSS

Patrick N. Ruth, 1 and Rene I. Gonzalez² Joseph M. Mabry, 1* Rusty L. Blanski, 2

¹ERC Inc., Air Force Research Laboratory Edwards Air Force Base, CA 93524 ²Air Force Research Laboratory

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

POSS Synthesis

RSiX₃ acid or base hydrolysis

Resin

Incompletely condensed

Brown, Feher, AFRL, Hybrid Plastics $_{\mathrm{2}}$

Synthesis

 $R_f = -CH_2CH_2CF_3$, $-CH_2CH_2(CF_2)_5CF_3$, $-CH_2CH_2(CF_2)_7CF_3$ X = -OMe, -OEt

FluorodecylnTn

100% Fluorodecyl $_8$ T $_8$

$$R = -CH_2CH_2(CF_2)_7CF_3$$

$$MW = 3993.54$$

3,3,3-TrifluoropropylnTn

Why Fluorinated POSS?

To make spacecraft coatings resistant to atomic oxygen In creep-resistant fluoropolymer seals and gaskets

In hydrophobic surfaces

POSS Polymer Incorporation

compatibility with polymer matrix Affect Importance of R groups:

50 Wt % POSS Blends in 2 Million MW

R = cyclopentyl

 $\mathsf{Cp}_8\mathsf{T}_8$

Domain Formation

Cp₇T₈Styryl

R = cyclopentyl

Immiscible POSS Crystallites

Complete Compatibility-POSS Nanodispersion/Transparent

Phenethyl₈T₈

Blanski, et al., Polymer Preprints, 2000. 41(1): p. 585.

Space Applications

(Altitudes of 200 to 1500 km)

- Atomic Oxygen
- Formed from photo-dissociation of O_2 in atmosphere.
- Actual flux on spacecraft traveling at 8 to 12 km/s ~10¹⁵ atoms/cm²•s
- collision energy \sim 5eV (C-C \sim 4 eV, C-N \sim 3 eV)
- Low-energy and high energy charged particles.
- Thermal cycling -50 to 150°C
- Solar UV and VUV radiation
- VUV wavelengths in LEO extend below 290nm.
- Bond scission and radical formation can lead to embrittlement.

◆ Goal: Develop Multi-Functional, Space-Survivable Materials

Bond	Dissociation Energy (EV)	λ (nm)	Material
-C ₆ H ₄ -C(=O)-	3.9	320	Kapton®
 N-O	3.2	390	Kapton®
CF ₃ -CF ₃	4.3	290	FEP Teflon®
CF ₂ -F	5.5	230	FEP Teflon®
O-iS	8.3	150	Nanocomposite
Zr-O	8.1	150	Nanocomposite
Al-O	5.3	230	Nanocomposite

Objectives

Satellites & Space Systems

- Increase Space Resistance (AO, particle & VUV radiation, thermal cycling) of Polymeric Materials
- Self-Passivating/Self-Rigidizing/Self-Healing based on nanocomposite incorporation

AO undercutting of LDEF Aluminized-Kapton Multilayer Insulation

13 DeGroh, K.K., Banks, B.A., J. Spacecraft and Rockets, Vol. 31, No. 4, 656-664 (1994)

vacuum system, (b), after a 2-hr (c) 24.6-hr and (d) 63-hr exposure to the hyperthermal AO flux, and (e) XPS survey spectra obtained from a solvent-cleaned, POSS-PDMS film (a) after insertion into the 4.75-hr air exposure following the 63-hr AO exposure.

XPS Survey Spectra from a 60 wt % POSS-PU (a) after insertion into the vacuum system, (b) 2-hr (c) 24-hr and (d) 63-hr exposure to the hyperthermal AO flux, and (e) 3.3-hr air exposure following the 63-hr exposure.

Total AO fluence of 8.47×10^{20} atoms cm⁻² (100,000 pluses) O-Atom Etching Experiment (~10 DAYS IN LEO)

Kapton H Standard

Average etch depth: 25.4 μm

Kapton 10 wt % POSS

10 30 20 0 Average etch depth: **2.2** μ**m** 2 ່ ຄູ່ (ພາໄ) 9 30

Etch Depth

က 2

Significantly improved oxidation resistance due to a rapidly formed ceramic-Scanning Length (mm)

like, passivating and self-healing silica layer preventing further degradation of underlying virgin polymer.

Creep Resistant Seals and Gaskets

- Fluoropolymers are resistant to organic fuels and fluids.
- resulting from cold flow incurred by continual loading. Creep is the change in dimensions of a molded part
- Creep can cause a press-fit to loosen or even fail.
- PTFE has a low tensile strength (2500–3000 psi at break).
- Tensile strength is a very important factor.
- POSS may reduce the amount of creep as well as enhance thermal and mechanical properties.
- POSS can be blended with most fluoropolymers.
- Supercritical methods may allow fluorinated POSS to be incorporated into PTFÉ.

Surface Properties

- Fluorinated polymers are used for non-stick coatings and hydrophobic surfaces.
- Blended POSS may further decrease the surface energy of fluorinated polymers.
- the contact angle of a drop of water on the surface. One way to measure surface energy is to measure
- These low surface energy polymers may lead to anti-icing or non-wetting applications.

AFM Image of Spin-Cast Fluorodecyl, T, Surface

Conatct

Conatct Angle of Water on Mica ~32°

12/12/02

a drop of water on a freshly cleaved mica surface in air and at room temperature.

Contact angle ~ 32 deg.

Fluorodecyl POSS film ~140° Conatct Angle of Water on

12/12/02 a drop of water on a flourinated mica surface in air and at room temperature.

Contact angle ~ 140 deg.

30° Higher than PTFE

Conatct Angle of Mercury on Fluorodecyl POSS film ~145°

12/12/02

A drop of mercury on fluorinated mica surface in air and at room temperature.

Contact angle- 145deg.

Hydrosilylation

Hydrosilylation

$$H_2PtCl_6$$
 (Pt)

$$RuH_2(CO)(PPh_3)_3$$

$$\mathsf{Co}_2(\mathsf{CO})_8$$

Result

Yield based on methylene to vinyl proton ratio in ¹H NMR.

Side Reaction

Problem:

Dehydrogenative silylation product also gives vinyl peaks in 1H NMR spectra

Summary

Fluorinated POSS may be useful to make spacecraft coatings resistant to atomic oxygen by forming a silica-like passivating layer.

seals and gaskets to increase mechanical strength Fluorinated POSS may be useful in fluoropolymer and improve creep characteristics.

Fluorinated POSS may also be useful to decrease surface energy in hydrophobic surfaces.

Acknowledgements

The Polymer Working Group at Edwards Air Force Base is:

Dr. Darrell Marchant Dr. Sandra Tomczak Capt. Rene Gonzalez Mr. Brian Moore Dr. Brent Viers Mr. Pat Ruth

Mrs. Becky Morello Dr. Rusty Blanski Mrs. Sherly Largo Dr. Tim Haddad Dr. Shawn Phillips Dr. Joe Mabry

Air Force Research Laboratory, Propulsion Directorate Air Force Office of Scientific Research Financial \$upport:

Backup Slides

100% FluorodecylgT8

30

3,3,3-TrifluoropropylnTn

Mechanism

바 —RhCl(PPh₃)₃

(RO)₃Si-

Mechanism

Hydrosilylation competes with dehydrogenative silylation.

Mechanism

Rh species produced by \(\beta\)-hydride elimination hydrogenates unreacted alkene.

Surface Energy of Fluorosiloxanes

22.8 13.6 Surface Energy (mJ/m²) Poly(methylheptadecafluorodecylsiloxane) Poly(methylnonafluorohexylsiloxane) Poly(methyltrifluoropropylsiloxane) Poly(tetrafluoroethylene) (PTFE) Poly(dimethylsiloxane) (PDMS) Polymer