

Departamento de Matemática, Universidade de Aveiro

Cálculo II-Agrupamento 3 — Exame Final (Época Normal)(V1)

19 de junho de 2023 Duração: **2h45**

		,	
N.º Mec.:	Nome:		

(Declaro que desisto:)	N. folhas suplementares:

Questão	1	2	3	4	5a	5b	6	7	8a	8b	9a	9b	Classificação
[Cotação]	[60pts]	[15pts]	[15pts]	[10pts]	[13pts]	[07pts]	[20pts]	[20pts]	[8pts]	[12pts]	[07pts]	[13pts]	(valores)

- Nas questões 2 a 9 justifique todas as respostas e indique os cálculos efetuados -

- [60pts] 1. Nas alíneas seguintes assinale com uma cruz a opção correta. A cotação a atribuir a cada resposta é a seguinte:
 - (i) resposta correta: 10 pontos;
 - (ii) resposta errada: -3 pontos;
 - (iii) ausência de resposta ou resposta nula: 0 pontos.
 - (a) Sabendo que $\frac{1}{4+x} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{4^{n+1}} x^n$, -4 < x < 4, qual das seguintes séries é a série de MacLaurin da função $f(x) = \ln(4+x)$?

(b) O polinómio de Taylor de ordem 4 de uma função f no ponto c=3 é dado por:

$$T_3^4(f(x)) = \frac{1}{3} - \frac{1}{9}(x-3) + \frac{1}{27}(x-3)^2 - \frac{1}{81}(x-3)^3.$$

O valor de f'''(3) é igual a:

podemos afirmar que:

	(d) Seja $f(x,y) = 2 + x^2 - y^2$. Uma equação	do plano tangente ao grafico da função f no ponto
	P = (1, -1, 2) e:	
	P = (1, -1, 2) é:	
	(e) Considere a função $f(x,y) = 1 + x^2$, definida	
		$ < x \le 2 \land -3 < y < 3 $.
	Podemos afirmar que:	
	a função admite mínimo global mas não r	_
	a função admite máximo global mas não a função não admite máximo ou mínimo g	
	a função admite máximo ou minimo g	
		ação $y' - 3y = e^{3x}$ e que $y_2 = -\frac{3}{10}\cos x + \frac{1}{10}\sin x$
	é uma solução de $y' - 3y = \cos x$, então a sol	ução geral da EDO $y' - 3y = e^{3x} + \cos x$ é:
	$y = Ce^{3x} + xe^{3x} + \frac{3}{10}\cos x - \frac{1}{10}\sin x,$	$C \in \mathbb{R}$.
	$y = Ce^{3x} + xe^{3x} - \frac{3}{10}\cos x + \frac{1}{10}\sin x,$	$C \in \mathbb{R}$.
	$y = Ce^{-3x} + xe^{3x} - \frac{3}{10}\cos x + \frac{1}{10}\sin x$	$C \in \mathbb{R}$.
	$y = Ce^{-3x} + xe^{3x} + \frac{3}{10}\cos x - \frac{1}{10}\sin x$	
	2. Consider a solution of $\frac{+\infty}{2}$	$-x\rangle^n$
15pts]	2. Considere a série de potências $\sum_{n=0}^{+\infty} (n+4) \left(\frac{2}{n+2}\right)^{n+2}$	$\overline{3}$) . Indique o maior intervalo onde a serie e
Г	absolutamente convergente.	

3. Considere a função f dada por $f(x) = \cos(2x)$. Usando a fórmula MacLaurin de ordem 3 da [15pts] função f, calcule um valor aproximado de $\cos(\frac{1}{5})$ e mostre que o erro absoluto cometido nessa aproximação é inferior a $\frac{2}{3} \cdot 10^{-4}$.

Continua na folha suplementar Nº

4. Considere a série de potências $S(x)=\sum_{n=0}^{+\infty}\frac{(x-1)^{n+1}}{(n+1)2^n}.$ Calcule, justificando, $S'(\frac{1}{2}).$ [10pts]

[13pts]	(a)	Justifique que a série de Fourier associada a f é uma série da forma
		$\frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos(nx), a_n \in \mathbb{R}$
		e determine o valor de a_0 .
		Continua na folha suplementar N°
[07pts]	(b)	Esboce o gráfico da função soma da série da alínea anterior no intervalo $[-3\pi, 3\pi]$.

5. Seja f a função 2π -periódica, definida em $[-\pi,\pi[$ por $f(x)=|2x|-\pi.$

] 6.	. Determine							
						Contin	ua na folha su	plementar
7.	. Resolva a s	eguinte equa	ação diferenc	ial de Bernoi	االد: $xy'-2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferenc	ial de Bernoi	االد: $xy'-2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferenc	ial de Bernoi	االد: $xy'-2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferenc	ial de Bernoi	االد: $xy'-2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferenc	ial de Bernoi	االد: $xy'-2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferenc	ial de Bernoi	االد: $xy'-2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferenc	ial de Bernoi	االد: $xy'-2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferend	ial de Bernoi	االد: $xy'-2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferend	ial de Bernoi	االد: $xy'-2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferenc	ial de Bernoi	االد: $xy'-2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferenc	ial de Bernoi	االد: $xy'-2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferenc	ial de Bernoi	Jili: $xy' - 2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferenc	ial de Bernoi	Jili: $xy' - 2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferend	ial de Bernoi	ااا: $xy' - 2y$			plementar
7.	. Resolva a s	eguinte equa	ação diferenc	ial de Bernoi	Jili: $xy' - 2y$			pleme
	Resolva a s	eguinte equa	ação diferenc	ial de Bernoi	Jili: $xy' - 2y$			plementar

	8. C	Cons	sidere a EDO $y''' + 4y' = \sin x$.
[8pts]		(a)	Resolva a EDO homogénea associada.
[12pts]		(h)	Continua na folha suplementar N°L Sabendo que a EDO completa admite uma solução particular do tipo $y = A \cos x$, deter-
[12pts]		(0)	mine a solução geral da EDO completa.

9	Usando	Transformadas	de	Laplace
<i>-</i> •	Coanac	a.ioioiiiiaaaa	~~	- ap.acc,

[07	pts

(a) determine o valor do integral impróprio $\int_0^{+\infty} t \sin(t) e^{-3t} \, dt.$

[13pts]

(b) resolva a seguinte equação integro-diferencial $y'(t)+\int_0^t y(\tau)\cosh(t-\tau)\,d\tau=0$ com a condição inicial y(0)=1.

Formulário Transformada de Laplace

Função	Transformada	Função	Transformada	Função	Transformada
$t^n \\ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}$ $(s>0)$	e^{at} $(a \in \mathbb{R})$	$\frac{1}{s-a}$ $(s>a)$	$ \begin{array}{c c} \operatorname{sen}(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{a}{s^2 + a^2}$ $(s > 0)$
$ cos(at) (a \in \mathbb{R}) $	$\frac{s}{s^2 + a^2}$ $(s > 0)$	$ \begin{array}{c} \operatorname{senh}(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{a}{s^2 - a^2}$ $(s > a)$	$ \begin{array}{c} \cosh(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{s}{s^2 - a^2}$ $s > a $

$$\mathcal{L}\{f(t)+g(t)\}(s)=F(s)+G(s)\;,\;s>\max\{s_f,s_g\}$$

$$\mathcal{L}\{\alpha f(t)\}(s)=\alpha F(s)\;,\;s>s_f\;\mathrm{e}\;\alpha\in\mathbb{R}$$

$$\mathcal{L}\{e^{\lambda t}f(t)\}(s)=F(s-\lambda)\;,\;s>s_f\;\mathrm{e}\;\alpha\in\mathbb{R}$$

$$\mathcal{L}\{t^nf(t)\}(s)=(-1)^nF^{(n)}(s)\;,\;s>s_f\;\mathrm{e}\;n\in\mathbb{N}$$

$$\mathcal{L}\{H_a(t)\cdot f(t-a)\}(s)=\mathrm{e}^{-as}F(s)\;,\;s>s_f\;\mathrm{e}\;a>0$$

$$\mathcal{L}\{f(at)\}(s)=\frac{1}{a}\;F\left(\frac{s}{a}\right)\;,\;s>a\;s_f\;\mathrm{e}\;a>0$$

$$\mathcal{L}\{f^{(n)}(t)\}(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \ldots - s f^{(n-2)}(0) - f^{(n-1)}(0)$$
$$\cos s > \max\{s_f, s_{f'}, s_{f''}, \ldots, s_{f^{(n-1)}}\}, n \in \mathbb{N}$$

$$\mathcal{L}\{(f*g)(t)\}(s) = F(s) \cdot G(s), \quad \text{onde} \quad (f*g)(t) = \int_0^t f(\tau)g(t-\tau)\,d\tau, \ t \geq 0$$

Formulário de Primitivas

Função	Primitiva	Função	Primitiva	Função	Primitiva				
$u^r u'$ $(r \neq -1)$	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u				
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u$	$\sin u$	$u'\sin u$	$-\cos u$				
$u'\sec^2 u$	$\tan u$	$u'\csc^2 u$	$-\cot u$	$u' \sec u$	$ \ln \sec u + \tan u $				
$u'\csc u$	$-\ln \csc u + \cot u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arcsin u$	$\frac{u'}{1+u^2}$	rctg u ou $-rccotg u$				

Algumas fórmulas trigonométricas

$$sec $x = \frac{1}{\cos x}$

$$sen(x \pm y) = sen x \cos y \pm \cos x \operatorname{sen} y$$

$$cos(x \pm y) = \cos x \cos y \mp \operatorname{sen} x \operatorname{sen} y$$

$$cos^{2} x = \frac{1 + \cos(2x)}{2}$$

$$1 + \tan^{2} x = \sec^{2} x$$

$$sin(2x) = 2 \sin x \cos x$$

$$cos(2x) = \cos^{2} x - \sin^{2} x$$

$$sin^{2} x = \frac{1 - \cos(2x)}{2}$$

$$1 + \cot^{2} x = \csc^{2} x$$$$