1. compute weighted sum

weighted sum = bias + (weight 1 x feature 1) + (weight 2 x feature 2) + ...

$$\theta_0$$
 θ_1
 χ_1
 θ_2
 χ_2

2. apply sigmoid function

 (α)

weighted sum =
$$(-6)$$
 + (0.05×40) + (1×3.5)
= -0.5
probability = $[1 + e^{-(-0.5)}]$
= 0.3775
= 37.75%

probability 15 37. 75%

(b)

tind weighted sum:

$$0.5 = | \div | [| + e^{-(\text{neighted sum})}]$$

$$0.5 [| + e^{-(\text{neighted sum})} | = |$$

$$0.5 e^{-(\text{neighted sum})} = 0.5$$

$$e^{-(\text{neighted sum})} = |$$

$$e^{-(\text{neighted sum})} = |$$

$$e^{-(\text{neighted sum})} = |$$

$$e^{-(\text{neighted sum})} = |$$

find no. of hours using weighted sum formula $0 = -6 + (0.05 \times hours) + (1 \times 3.5)$ $hours = \frac{2.5}{0.05}$ = 50 //Student requires 50 hours