Intercepts of the Quadratic

Case1: △>0 $n_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the n-intercepts of multiplicity 1. h(0) = c computes the single h-intercept.

Given a quadratic $h(n) = a n^2 + b n + c$ compute its discriminant \triangle :

$$n_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 ac}}{2a}$$
 computes the n-intercepts of multiplicity 1.
 $h(0) = c$ computes the single h-intercept.
Example 1.

 $h(n) = 2 n^2 - 14 n - 16$ compute its discriminant \triangle :

 $\triangle = \sqrt{b^2 - 4ac}$

$$\triangle = 324 > 0$$
 $n_{1,2} = -1,8$

$$n_{1,2}=-1.8$$

 $h(0)=-16$ h-intercept.

 $n_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single n-intercept of multiplicity 2.

$h(n) = 3 n^2 + 42 n + 147$ compute its discriminant \triangle :

∆=0

Example 2.

$h(n) = 4 n^2 + 64 n + 320$ compute its discriminant \triangle :

However there is a h-intercept.

no n-intercepts.

Example 3.

 $\triangle = -1024 < 0$