CLAIMS

What is claimed is:

l	1.	A method for increasing the hardness of silica/rubber mixtures comprising blending	
2	with sa	aid mixture at least one silane and a hardness-increasing amount of at least one member	
3	selecte	selected from the group consisting of thixotropic fumed silica; precipitated silica; an MQ	
4	resin w	resin wherein Q is $SiO_{4/2}$, M is $R^1R^2R^3SiO_{1/2}$, and R^1 , R^2 , and R^3 are the same or different	
5	functional or non-functional organic groups; carbon black; a thermoplastic resin; and a		
5	thermosetting resin.		
1	2.	The method of claim 1 wherein the silane is an organofunctional silane comprising at	
2	least o	ne alkoxy group per silicon atom.	
1	3.	The method of claim 2 wherein the organofunctional moiety of the organofunctional	
2	silane	is selected from the group consisting of mercapto, sulfide, disulfide, polysulfide, vinyl,	
3	acetyle	ene, ureido, carboxyl, carbonyl, amino, epoxy, and halide.	
l	4.	The method of claim 2 wherein the organofunctional silane is defined by the formula:	
2		$YRSi(R')_a(OR'')_{3-a}$	
3	wherei	n	
4		R is a divalent alkylene, arylene, or aralkylene group of 1 to 20 carbon atoms, a vinyl	
5	group,	or acetylenyl;	
5		R' is a monovalent alkyl, aryl, or aralkyl group of 1 to 10 carbon atoms;	
l		R" is a monovalent alkyl, aryl, or aralkyl group of 1 to 12 carbon atoms, wherein one	
2	or mor	e of the carbon atoms can be replaced with a heteroatom:	

Y is an organofunctional group selected from the group consisting of mercapto,
sulfides, and polysulfides of the structure $R'''-S_x$ - where R''' is a monovalent alkyl, aryl, or
aralkyl group of 1 to 20 carbon atoms or the radical -RSiR' $_a$ (OR") $_{3-a}$, and x is 1 to 9, which
resulting molecule must contain at least one alkoxysilane bond; other bis, tris, and higher
silanes with sulfur or other heteroatom linkages in the groups between the alkoxy silane
groups; vinyl; acetylenyl; carbonyl; amino; alkyl, aralkyl, or aryl substituted amino; ureido;
thiocyanate; thiourea; epoxy; and hydrogen; and a is an integer and is 0, 1, or 2.

5. The method of claim 2 wherein the organofunctional silane is defined by the formula:

 $A[Si(R^1)_{3-a}(OR^2)_a]_r$

wherein

A is a group of valence r, r being an integer greater than or equal to 1, selected from the group consisting of linear, branched, or cyclic hydrocarbon groups, an oxygen atom, or a linear, branched, or cyclic siloxane or polysiloxane group, each of which, save an oxygen atom, may contain substituents with oxygen, nitrogen, sulfur, or halogen heteroatoms;

R¹ is selected from the group consisting of hydrocarbyl, hydrogen, and chain-substituted hydrocarbyl;

 $\ensuremath{R^2}$ is selected from the group consisting of hydrocarbyl and chain-substituted hydrocarbyl; and

12 a is 0, 1, 2, or 3.

6. The method of claim 1 wherein the silane is 3-octanoylthio-l-propyltriethoxysilane.

1	7.	The method of claim 1 wherein the silica/rubber mixture further comprises an	
2	inorga	inorganic filler.	
1	8.	The method of claim 7 wherein the inorganic filler is selected from the group	
2	consis	sting of titanium dioxide, aluminosilicate, alumina, calcium carbonate, carbon fibers,	
3	glass	glass fibers, kaolin clay, mica, talc, wollastonite alumina, calcium carbonate, carbon fibers,	
4	glass	fibers, kaolin clay, mica, talc, wollastonite	
1	9.	The method of claim 1 wherein the member is thixotropic- (hydrophilic and	
2	hydro	phobic) fumed (pyrogenic) silica.	
I	10.	The method of claim 9 wherein the silane is an organofunctional silane comprising at	
2	least o	one alkoxy group per silicon atom.	
1	11.	The method of claim 10 wherein the organofunctional moiety of the organofunctional	
2	silane	is selected from the group consisting of mercapto, sulfide, disulfide, polysulfide, vinyl	
3	acetyl	ene, ureido, carboxyl, carbonyl, amino, epoxy, and halide.	
1	12.	The method of claim 10 wherein the organofunctional silane is defined by the	
2	formu	ıla:	
3		$YRSi(R')_a(OR'')_{3-a}$	
4	where	zin	
1		R is a divalent alkylene, arylene, or aralkylene group of 1 to 20 carbon atoms, a viny	
2	group	, or acetylenyl;	
		92	

R' is a monovalent alkyl, a	yl, or aralkyl group	p of 1 to 10 carbon atoms;
-----------------------------	----------------------	----------------------------

R" is a monovalent alkyl, aryl, or aralkyl group of 1 to 12 carbon atoms, wherein one or more of the carbon atoms can be replaced with a heteroatom;

Y is an organofunctional group selected from the group consisting of mercapto, sulfides, and polysulfides of the structure R'"-S_x- where R'" is a monovalent alkyl, aryl, or aralkyl group of 1 to 20 carbon atoms or the radical -RSiR'_a (OR")_{3-a}, and x is 1 to 9, which resulting molecule must contain at least one alkoxysilane bond; other bis, tris, and higher silanes with sulfur or other heteroatom linkages in the groups between the alkoxy silane groups; vinyl; acetylenyl; carbonyl; amino; alkyl, aralkyl, or aryl substituted amino; ureido; thiocyanate; thiourea; epoxy; and hydrogen; and a is an integer and is 0, 1, or 2.

13. The method of claim 10 wherein the organofunctional silane is defined by the formula:

 $A[Si(R^1)_{3-a}(OR^2)_a]_r$

wherein

A is a group of valence r, r being an integer greater than or equal to 1, selected from the group consisting of linear, branched, or cyclic hydrocarbon groups, an oxygen atom, or a linear, branched, or cyclic siloxane or polysiloxane group, each of which, save an oxygen atom, may contain substituents with oxygen, nitrogen, sulfur, or halogen heteroatoms;

R¹ is selected from the group consisting of hydrocarbyl, hydrogen, and chainsubstituted hydrocarbyl;

R² is selected from the group consisting of hydrocarbyl and chain-substituted hydrocarbyl; and

a is 0, 1, 2, or 3.

1	14.	The method of claim 9 wherein the silane is 3-octanoylthio-l-propyltriethoxysilane.
1	15.	The method of claim 9 wherein the silica/rubber mixture further comprises an
2	inorg	anic filler.
1	16.	The method of claim 15 wherein the inorganic filler is selected from the group
2	consi	sting of titanium dioxide, aluminosilicate, alumina, calcium carbonate, carbon fibers,
3	glass	fibers, kaolin clay, mica, talc, wollastonite alumina, calcium carbonate, carbon fibers,
4	glass	fibers, kaolin clay, mica, talc, wollastonite
1	17. 18.	The method of claim 1 wherein the member is precipitated silica. The method of claim 17 wherein the silane is an organofunctional silane comprising
2		st one alkoxy group per silicon atom.
1 2	19.	The method of claim 18 wherein the organofunctional moiety of the organofunctional e is selected from the group consisting of mercapto, sulfide, disulfide, polysulfide, vinyl,
3	acety	lene, ureido, carboxyl, carbonyl, amino, epoxy, and halide.
1	20.	The method of claim 18 wherein the organofunctional silane is defined by the
2	form	ıla:
3		$YRSi(R')_a(OR'')_{3-a}$
4	where	ein

l	R is a divalent alkylene, arylene, or aralkylene group of 1 to 20 carbon atoms, a viny	/1
2	group, or acetylenyl;	

R' is a monovalent alkyl, aryl, or aralkyl group of 1 to 10 carbon atoms;

R" is a monovalent alkyl, aryl, or aralkyl group of 1 to 12 carbon atoms, wherein one or more of the carbon atoms can be replaced with a heteroatom;

Y is an organofunctional group selected from the group consisting of mercapto, sulfides, and polysulfides of the structure R'"-S_x- where R'" is a monovalent alkyl, aryl, or aralkyl group of 1 to 20 carbon atoms or the radical -RSiR'_a (OR")_{3-a}, and x is 1 to 9, which resulting molecule must contain at least one alkoxysilane bond; other bis, tris, and higher silanes with sulfur or other heteroatom linkages in the groups between the alkoxy silane groups; vinyl; acetylenyl; carbonyl; amino; alkyl, aralkyl, or aryl substituted amino; ureido; thiocyanate; thiourea; epoxy; and hydrogen; and a is an integer and is 0, 1, or 2.

21. The method of claim 18 wherein the organofunctional silane is defined by the formula:

 $A[Si(R^1)_{3-a}(OR^2)_a]_r$

wherein

A is a group of valence r, r being an integer greater than or equal to 1, selected from the group consisting of linear, branched, or cyclic hydrocarbon groups, an oxygen atom, or a linear, branched, or cyclic siloxane or polysiloxane group, each of which, save an oxygen atom, may contain substituents with oxygen, nitrogen, sulfur, or halogen heteroatoms;

R¹ is selected from the group consisting of hydrocarbyl, hydrogen, and chainsubstituted hydrocarbyl;

- 11 R² is selected from the group consisting of hydrocarbyl and chain-substituted
- 12 hydrocarbyl; and
- 13 a is 0, 1, 2, or 3.
 - 1 22. The method of claim 17 wherein the silane is 3-octanoylthio-l-propyltriethoxysilane.
- 1 23. The method of claim 17 wherein the silica/rubber mixture further comprises an
- 2 inorganic filler.
- 1 24. The method of claim 23 wherein the inorganic filler is selected from the group
- 2 consisting of titanium dioxide, aluminosilicate, alumina, calcium carbonate, carbon fibers,
- 3 glass fibers, kaolin clay, mica, talc, wollastonite alumina, calcium carbonate, carbon fibers,
- 4 glass fibers, kaolin clay, mica, talc, wollastonite
- 1 25. The method of claim 1 wherein the member is an MQ resin.
- 1 26. The method of claim 25 wherein the silane is an organofunctional silane comprising
- 2 at least one alkoxy group per silicon atom.
- 1 27. The method of claim 26 wherein the organofunctional moiety of the organofunctional
- 2 silane is selected from the group consisting of mercapto, sulfide, disulfide, polysulfide, vinyl,
- acetylene, ureido, carboxyl, carbonyl, amino, epoxy, and halide.

1	28.	The method of claim 26 wherein the organofunctional silane is defined by the
2	formula:	

 $YRSi(R')_a(OR'')_{3-a}$

4 wherein

5

6

7

8

9

10

11

12

13

14

15

16

1

2

1

2

R is a divalent alkylene, arylene, or aralkylene group of 1 to 20 carbon atoms, a vinyl group, or acetylenyl;

R' is a monovalent alkyl, aryl, or aralkyl group of 1 to 10 carbon atoms;

R" is a monovalent alkyl, aryl, or aralkyl group of 1 to 12 carbon atoms, wherein one or more of the carbon atoms can be replaced with a heteroatom;

Y is an organofunctional group selected from the group consisting of mercapto, sulfides, and polysulfides of the structure R'"- S_x - where R'" is a monovalent alkyl, aryl, or aralkyl group of 1 to 20 carbon atoms or the radical -RSiR'_a (OR")_{3-a}, and x is 1 to 9, which resulting molecule must contain at least one alkoxysilane bond; other bis, tris, and higher silanes with sulfur or other heteroatom linkages in the groups between the alkoxy silane groups; vinyl; acetylenyl; carbonyl; amino; alkyl, aralkyl, or aryl substituted amino; ureido; thiocyanate; thiourea; epoxy; and hydrogen; and a is an integer and is 0, 1, or 2.

29. The method of claim 26 wherein the organofunctional silane is defined by the formula:

 $A[Si(R^1)_{3-a}(OR^2)_a]_r$

4 wherein

A is a group of valence r, r being an integer greater than or equal to 1, selected from the group consisting of linear, branched, or cyclic hydrocarbon groups, an oxygen atom, or a

- 3 linear, branched, or cyclic siloxane or polysiloxane group, each of which, save an oxygen
- 4 atom, may contain substituents with oxygen, nitrogen, sulfur, or halogen heteroatoms;
- 5 R¹ is selected from the group consisting of hydrocarbyl, hydrogen, and chain-
- 6 substituted hydrocarbyl;
- R² is selected from the group consisting of hydrocarbyl and chain-substituted
- 8 hydrocarbyl; and
- 9 a is 0, 1, 2, or 3.
- 1 30. The method of claim 25 wherein the silane is 3-octanoylthio-l-propyltriethoxysilane.
- 1 31. The method of claim 25 wherein the silica/rubber mixture further comprises an
- 2 inorganic filler.
- 1 32. The method of claim 31 wherein the inorganic filler is selected from the group
- 2 consisting of titanium dioxide, aluminosilicate, alumina, calcium carbonate, carbon fibers,
- 3 glass fibers, kaolin clay, mica, talc, wollastonite alumina, calcium carbonate, carbon fibers,
- 4 glass fibers, kaolin clay, mica, talc, wollastonite
- 1 33. The method of claim 1 wherein the member is carbon black.
- 1 34. The method of claim 33 wherein the silane is 3-octanoylthio-l-propyltriethoxysilane.
- 1 35. The method of claim 1 wherein the member is a thermoplastic resin.

- 1 36. The method of claim 35 wherein the thermoplastic resin is selected from the group
- 2 consisting of high-density polyethylene, ultra high molecular weight polyethylene, and low
- 3 density-polyethylene.
- 1 37. The method of claim 35 wherein the silane is 3-octanoylthio-l-propyltriethoxysilane.
- 1 38. The method of claim 1 wherein the member is a thermosetting resin.
- 1 39. The method of claim 1 wherein the resin is a high glass transition resin.
- 1 40. The method of claim 39 wherein the high glass transition resin is selected from the
- 2 group consisting of polyphenylene sulfide, polyamide, polyimide, polyamide-imide,
- 3 polycarbonate, nylons, and polymethylmethacrylate.
- 1 41. The method of claim 39 wherein the silane is 3-octanoylthio-1-propyltriethoxysilane.
- 1 42. An article of manufacture comprising a silica/rubber mixture hardened by blending
- with said mixture at least one silane and a hardness-increasing amount of at least one member
- 3 selected from the group consisting of thixotropic fumed silica; precipitated silica; an MQ
- 4 resin wherein Q is $SiO_{4/2}$, M is $R^1R^2R^3SiO_{1/2}$, and R^1 , R^2 , and R^3 are the same or different
- 5 functional or non-functional organic groups; carbon black; a thermoplastic resin; and a
- 6 thermosetting resin.
- 1 43. The article of claim 42 wherein the silane is 3-octanoylthio-l-propyltriethoxysilane.

- 1 44. The article of claim 42 wherein said article is a tire.
- 1 45. The article of claim 43 wherein said article is a tire.