332:494:01/599:02 – Smart Grid – Spring 2021 Homework Assignment – Set 3

General guidelines for homework assignments: Homework should be submitted online (via Canvas)

Question 1:

A three-phase overhead transmission line is designed to deliver 100 MVA at 220 kV line voltage over a distance of 100 km.

If the I^2R losses need to be kept to a maximum of 3% of the rated line MVA, given the resistivity of the conductor material to be $2.84 \times 10^{-8} \Omega \cdot m$, determine the required conductor diameter (in inches or mils) and the conductor size in circular mils.

Remark: neglect any other line losses (other than resistivity)

Question 2:

A 230kV three phase transmission line has a per phase series impedance of $z = 0.05 + j0.45\Omega$ per km and a per phase shunt admittance of $y = j3.4 \times 10^{-6} \ \Omega^{-1}$ per km. The line is 80km long. Using the medium line π model:

(a) Determine the transmission line model: Z and Y/2

- (b) Determine the constants A, B, C, and D for:
- (c) Find the sending end (generating) voltage V_s , current I_s , and generated power S_{source} when the line delivers to a load of:
 - 1. 200 MVA with 0.8 lagging power factor at 220 kV
 - 2. 306 MVA with unity power factor at 220 kV

Question 3:

- a. Given that the external diameter of a cable is 0.84" and the cables are located horizontally such that $D_{ab} = 10ft$, $D_{bc} = 10ft$ and $D_{ca} = 20ft$, what is the shunt capacitor per mile $\frac{Y_C}{T_c} = \frac{[\Omega^{-1} \cdot \text{mile}] \text{ or } [\Omega^{-1} \cdot \text{m}]}{T_c}$
- b. Given that the GMR of a cable is 0.16ft and the cables are located horizontally such that $D_{ab} = 10ft$, $D_{bc} = 10ft$ and $D_{ca} = 20ft$, what is the line inductive reactance per mile per phase $X_L = [\Omega/m]$

Remark: the grid frequency is assumed to be f = 60Hz.

Question 4:

Consider a 3-phase hydropower generator feeding power into the grid bus, which is held at line voltage of 26kV. The internal reactance is 0.8pu for a rated power of 30MVA.

- (a) Choose as base value $S_{b,3\emptyset} = 30MVA$ and $V_{b,LL} = 26kV$ and calculate the per-unit values for the power and grid voltage.
- (b) Assume the generator initially runs overexcited with $|E| = 1.3 \ pu$ and a real power output of $P_e = 0.32 pu$. Compute the reactive power and the apparent power output of the generator as measured at the grid bus.
- (c) For the case in (b) find the power factor
- (d) Assume the steam valve is opened to generate a 50% increase in power P_e , what are the new power angle, the reactive power, and the new power factor?
- (e) What can be done to bring back the power factor to the previous value? Explain.
- (f) Assume that from the original initial state we increase the field current such that the armature voltage amplitude is increased by 15%, what will be the resulting reactive power? What will be the resulting power factor?

332:494/599– HW Set 3