Devoir à la maison n° 13 : corrigé

SOLUTION 1.

1. a. L'application f^{n-1} n'étant pas constamment nulle, il existe $x \in E$ tel que $f^{n-1}(x) \neq 0$.

b. Soit
$$(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$$
 tel que

$$\sum_{i=1}^{n} \lambda_i f^{n-i}(x) = 0$$

En composant par f^{n-1} , on obtient $\lambda_n f^{n-1}(x) = 0$. Comme $f^{n-1}(x) \neq 0$, $\lambda_n = 0$. En composant par f^{n-2} , on obtient ensuite $\lambda_{n-1} = 0$ et ainsi de suite. On prouve donc que

$$\lambda_0=\lambda_1=\dots=\lambda_{n-1}=0$$

Par conséquent, la famille $(f^{n-1}(x), f^{n-2}(x), \dots, f(x), x)$ est libre. Comme elle est de cardinal $n = \dim E$, c'est une base de E.

2. a. La famille $(f^{n-1}(x), f^{n-2}(x), \ldots, f^{n-k}(x))$ est une sous-famille de la famille libre $(f^{n-1}(x), f^{n-2}(x), \ldots, f(x), x)$. Elle est donc également libre. On en déduit dim $F_k = k$.

c. On a $F_k = \operatorname{Im} f_{n-k}$ d'après la question précédente. Donc $f(F_k) = \operatorname{Im} f^{n-k+1} \subset \operatorname{Im} f^{n-k} = F_k$. F_k est donc stable par f.

3. a. On considère $A = \{k \in \mathbb{N}^* \mid \tilde{f}^k = \tilde{\mathbf{0}}\}$. A est une partie non vide de \mathbb{N}^* puisque $n \in A$. Elle admet donc un plus petit élément $p \geqslant 1$. Si p = 1, alors p - 1 = 0 mais $\tilde{f}^{p-1} = \operatorname{Id}_F \neq \tilde{\mathbf{0}}$ car $F \neq \{0_E\}$. Si $p \geqslant 2$, alors $p - 1 \in \mathbb{N}^*$ et on ne peut avoir $\tilde{f}^{p-1} = \tilde{\mathbf{0}}$ sinon $p - 1 \in A$, ce qui contredit la minimalité de p. On a donc dans tous les cas $\tilde{f}^{p-1} \neq \tilde{\mathbf{0}}$ et $\tilde{f}^p = \tilde{\mathbf{0}}$.

b. On prouve comme à la question **1.b** que la famille $(y, \tilde{f}(y), \dots, \tilde{f}^{p-1}(y))$ est libre. Comme $k = \dim F$ et que la famille précédente est de cardinal p, on en déduit $p \leq k$. Ainsi $\tilde{f}^k = \tilde{\mathbf{0}}$.

c. La question précédente prouve que $F \subset \operatorname{Ker} f^k$. Or on a vu à la question **2.b** que dim $\operatorname{Ker} f^k = k$. Comme $\dim F = k$, on a donc $F = \operatorname{Ker} f^k$.

d. On vient de voir que tous les sous-espaces stables de dimension k avec $1 \le k \le n-1$ était de la forme $\operatorname{Ker} f^k$. Réciproquement, on a vu à la question 2 que les sous-espaces $\operatorname{Ker} f^k$ avec $1 \le k \le n-1$ étaient stables par f. Il reste à remarquer que le seul sous-espace de dimension 0 i.e. le sous-espace nul et que le seul sous-espace de dimension n i.e. E tout entier sont évidemment stables par f. Enfin, comme $f^0 = \operatorname{Id}_E$ et $f^n = 0$, on a $\{0\} = \operatorname{Ker} f^0$ et $E = \operatorname{Ker} f^n$.

Les sous-espaces stables par f sont donc exactement les sous-espaces $\operatorname{Ker} f^k$ avec $0 \leqslant k \leqslant n$.

4. a. La famille $(x, f(x), ..., f^{n-2}(x), f^{n-1}(x))$ étant une base de E, il existe un unique n-uplet $(\alpha_0, ..., \alpha_{n-1})$ de réels tel que :

$$g(x) = \alpha_0 x + \alpha_1 f(x) + \dots + \alpha_{n-1} f^{n-1}(x)$$

Ce sont les coordonnées de g(x) dan la base $(x, f(x), \dots, f^{n-2}(x), f^{n-1}(x))$.

b. Si g commute avec f, g commute avec f^i pour $0 \le i \le n-1$. Par conséquent,

$$g\left(f^i(x)\right) = f^i(g(x)) = \sum_{k=0}^{n-1} \alpha_k f^{k+i}(x) = \left(\sum_{k=0}^{n-1} \alpha_k f^k\right) \left(f^i(x)\right)$$

On en déduit que les endomorphismes g et $\sum_{k=0}^{n-1} \alpha_k f^k$ coïncident sur la base $(x, f(x), \dots, f^{n-2}(x), f^{n-1}(x))$. Ceci prouve que

$$g = \sum_{k=0}^{n-1} \alpha_k f^k = \alpha_0 \operatorname{Id}_E + \alpha_1 f + \dots + \alpha_{n-1} f^{n-1}$$

c. Notons \mathcal{C} le sous-espace vectoriel de $\mathcal{L}(E)$ engendré par la famille $(\mathrm{Id}_E,f,\ldots,f^{n-1})$ et \mathcal{C}' l'ensemble des endomorphismes commutant avec f. La question précédente montre que $\mathcal{C}'\subset\mathcal{C}$. Mais comme toute puissance de f commute avec f, il est clair que $\mathcal{C}\subset\mathcal{C}'$. Ainsi $\mathcal{C}=\mathcal{C}'$. Comme la famille $(x,f(x),\ldots,f^{n-2}(x),f^{n-1}(x))$ est une famille libre de E, a fortiori la famille $(\mathrm{Id}_E,f,\ldots,f^{n-1})$ est une famille libre de $\mathcal{L}(E)$. On en déduit que $\dim\mathcal{C}=n$.

SOLUTION 2.

- 1. Soit $x \in K_p$. Alors $\mathfrak{u}^p(x) = \mathfrak{0}_E$ et donc $\mathfrak{u}^{p+1}(x) = \mathfrak{u}(\mathfrak{0}_E) = \mathfrak{0}_E$. Donc $x \in K_{p+1}$. On en déduit que $K_p \in K_{p+1}$. Soit $y \in I_{p+1}$. Il existe $x \in E$ tel que $y = \mathfrak{u}^{p+1}(x) = \mathfrak{u}^p(\mathfrak{u}(x))$. Donc $y \in I_p$. On en déduit que $I_{p+1} \in I_p$.
- 2. Comme u est injectif, u^p est également injectif pour tout $p \in \mathbb{N}$. Donc $K_p = \{0\}$ pour tout $p \in \mathbb{N}$. Pour tout $p \in \mathbb{N}$, u^p est un endomorphisme injectif d'un espace vectoriel de dimension finie donc également surjectif. On en déduit $I_p = E$ pour tout $p \in \mathbb{N}$.
- 3. a. Notons $A = \{p \in \mathbb{N} \mid K_p = K_{p+1}\}$. Si on suppose A vide, on a donc $K_p \subsetneq K_{p+1}$ pour tout $p \in \mathbb{N}$.La suite $(\dim K_p)_{p \in \mathbb{N}}$ est donc une suite strictement croissante d'entiers. Mais cette suite est majorée par n. Il y a donc contradiction. A est donc une partie non vide de \mathbb{N} : elle admet un plus petit élément r. De plus, pour p < r, on a $K_p \subsetneq K_{p+1}$ donc $\dim K_p + 1 \leqslant \dim K_{p+1}$. En additionnant ces inégalités pour k variant de 0 à r-1, on obtient : $\dim K_0 + r \leqslant \dim K_r$. Or $\dim K_0 = 0$ et $\dim K_r \leqslant n$ donc $r \leqslant n$.
 - b. Par le théorème du rang on a donc, dim $I_r = \dim I_{r+1}$. Or $I_r \subset I_{r+1}$ donc $I_r = I_{r+1}$. Soit l'hypothèse de récurrence $HR(p): K_r = K_{r+p}$. HR(0) est clairement vérifiée. Supposons HR(p) pour un certain $p \in \mathbb{N}$. Soit $x \in K_{r+p+1}$. Alors $u^{r+p+1}(x) = u^{r+1}(u^p(x)) = 0_E$. Donc $u^p(x) \in \operatorname{Ker} u^{r+1} = \operatorname{Ker} u^r$. Donc $u^r(u^p(x)) = 0_E$. D'où $x \in K_{r+p} = K_r$ d'après HR(p).

Ainsi HR(p) est vraie pour tout $p \in \mathbb{N}$. On a clairement $I_{r+p} \subset I_r$ pour tout $p \in \mathbb{N}$. Comme $K_r = K_{r+p}$ pour tout $p \in \mathbb{N}$, le théorème du rang nous donne : $\dim I_{r+p} = \dim I_r$ pour tout $p \in \mathbb{N}$. On a donc $I_r = I_{r+p}$ pour tout $p \in \mathbb{N}$.

- c. D'après le théorème du rang, on a dim $E = \dim K_r + \dim I_r$. Il nous suffit de prouver que $I_r \cap K_r = \{0_E\}$. Soit donc $x \in I_r \cap K_r$. On a donc $u^r(x) = 0_E$ et il existe $y \in E$ tel que $x = u^r(y)$. On a alors $u^{2r}(y) = 0_E$. D'où $y \in K_{2r} = K_{r+r} = K_r$ d'après la question **3.b**. Donc $x = u^r(y) = 0_E$.
- $\textbf{4. Consid\'erons et } \mathfrak{u}: \left\{ \begin{array}{cc} \mathbb{K}[X] & \longrightarrow & \mathbb{K}[X] \\ P & \longmapsto & P' \end{array} \right. \text{ On a } K_{\mathfrak{p}} = \mathbb{K}_{\mathfrak{p}-1}[X]. \text{ La suite } (K_{\mathfrak{p}}) \text{ est donc une suite strictement croissante } (\text{pour l'inclusion}) \text{ d'espaces vectoriels.}$

SOLUTION 3.

- 1. Comme φ n'est pas nulle, $\operatorname{rg}(\varphi) > 0$. Or $\operatorname{Im}(\varphi) \subset \mathbb{R}$ donc $\operatorname{rg}(\varphi) \leqslant 1$. Ainsi $\operatorname{rg}(\varphi) = 1$. Le théorème du rang implique $\dim(\operatorname{Ker}(f)) = n \operatorname{rg}(f) = n 1$. Ainsi, $\operatorname{Ker}(\varphi)$ est un hyperplan de E .
- 2. Soit (e_1, \ldots, e_{n-1}) une base de H. On complète cette base en une base de E avec un vecteur e_n . Définissons $\varphi \in E^*$ par $\varphi(e_i) = 0$ pour $i \in [1, n-1]$ et $\varphi(e_n) = 1$. On a immédiatement le résultat demandé.
- 3. Soit (e_1, \ldots, e_{n-1}) une base de $\operatorname{Ker}(\phi) = \operatorname{Ker}(\psi)$. Complétons cette base avec un vecteur e_n . On sait alors que $\phi(e_n) \neq 0$ et $\psi(e_n) \neq 0$. Soit $\xi \in E^*$ défini par $\xi = \psi \lambda \phi$ avec $\lambda = \frac{\psi(e_n)}{\phi(e_n)}$. On a immédiatement, pour tout $i \in [1, n], \ \xi(e_i) = 0$. Donc ξ est identiquement nul et $\psi = \lambda \phi$.
- 4. On a vu qu'il existait $\varphi \in E^*$ tel que $H = \operatorname{Ker} \varphi$. Soit $\lambda \in \mathbb{R}$. On a $\operatorname{Ker}(\lambda \varphi) = H$ si $\lambda \neq 0$ et $\operatorname{Ker}(\lambda \varphi) = E$ si $\lambda = 0$. Dans tous les cas, $H \subset \operatorname{Ker}(\lambda \varphi)$. Ainsi $\operatorname{vect}(\varphi) \subset D(H)$. φ est non nul sinon on aurait $\operatorname{Ker} \varphi = E \neq H$. Soit $\psi \in D(H)$. Si ψ est nul, alors $\psi \in \operatorname{vect}(\varphi)$. Sinon, la question précédente montre qu'on a également $\psi \in \operatorname{vect}(\varphi)$. Ainsi $D(H) \subset \operatorname{vect}(\varphi)$. Par double inclusion, $D(H) = \operatorname{vect}(\varphi)$. Comme φ est non nul, $\dim D(H) = 1$.
- 5. a. $Ker(\varphi)$ est un hyperplan de E donc de dimension $n-1 \ge 1$ puisque $n \ge 2$. Il contient donc un vecteur non nul. On vérifie d'abord que f est un endomorphisme de E. Or, puisque $u \ne 0_E$,

$$x \in \operatorname{Ker}(f - \operatorname{Id}_E) \iff \phi(x)u = 0_E \iff x \in \operatorname{Ker}(\phi)$$

Donc la base de f est $Ker(\varphi - Id_E) = Ker(\varphi)$.

De plus pour tout $x \in E$, $f(x) - x = \phi(x)u \in \text{vect}(u)$. Ainsi $\text{Im}(f - \text{Id}_E) \subset \text{vect}(u)$. Mais d'après le théorème du rang $\text{rg}(f - \text{Id}_E) = 1$ et donc la direction de f est $\text{Im}(f - \text{Id}_E) = \text{vect}(u)$.

b. Par le théorème du rang $\operatorname{rg}(f-\operatorname{Id}_E)=1$ donc il existe un vecteur u non nul de E tel que $\operatorname{Im}(f-\operatorname{Id}_E)=\operatorname{vect}(u)$. Pour tout $x\in E$, $f(x)-x\in \operatorname{Im}(f-\operatorname{Id}_E)=\operatorname{vect}(u)$, il existe donc $\lambda\in\mathbb{R}$ tel que $f(x)-x=\lambda u$. Notons $\lambda=\phi(x)$. Soient $(x,y)\in E^2$ et $(a,b)\in\mathbb{R}^2$. Alors $f(ax+by)-(ax+by)=\phi(ax+by)u$. De plus,

$$f(\alpha x + by) - (\alpha x + by) = \alpha(f(x) - x) + b(f(y) - y) = (\alpha \phi(x) + b\phi(y))u$$

Comme u est non nul, $\phi(\alpha x + by) = \alpha \phi(x) + b\phi(y)$. Ainsi ϕ est une forme linéaire. On a $f(u) = u + \phi(u)u$ donc $\phi(u)u = f(u) - u \in \operatorname{Im}(f - \operatorname{Id}_E) \subset \operatorname{Ker}(f - \operatorname{Id}_E)$. Ainsi $f(\phi(u)u) = \phi(u)u$ et donc $\phi(u)u + \phi(u)^3u = \phi(u)u$. Comme u est non nul, $\phi(u)^3 = 0$ et donc $\phi(u) = 0$ de sorte que $u \in \operatorname{Ker}(\phi)$. Comme précédemment, $\operatorname{Ker}(\phi) = \operatorname{Ker}(f - \operatorname{Id}_E)$ donc $\operatorname{Ker}(\phi)$ est un hyperplan. On ne peut avoir ϕ nulle sinon $\operatorname{Ker}(\phi) = E$ n'est pas un hyperplan.