Algorytmy arytmetyczne, liczby pierwsze i szybka transformacja Fouriera

wszelkie prawa zastrzeżone zakaz kopiowania, publikowania i przechowywania all rights reserved no copying, publishing or storing

Maciej Hojda

1 Zadanie nr 1 – liczby pierwsze

1.1 Rozkład na czynniki pierwsze

Zaimplementuj funkcję czp(p) która zwróci listę czynników pierwszych zadanej liczby naturalnej n. Zrób to rekurencyjnie sprawdzając podzielność liczby przez kolejne liczby naturalne (aż do \sqrt{n}) – rekurencja pojawia się, gdy liczba jest podzielna – wtedy uruchamiamy algorytm na jej dzielnikach, o ile nie są pierwsze.

1.2 Generacja liczb pierwszych

Zaimplementuj sito Eratostenesa aby wyznaczyć zbiór liczb pierwszych nie większych od zadanego p.

Algorithm 1 Sito Eratostenesa – sera(p)

```
- wejscie: liczba naturalna p>1.

1 niech x \triangleq [x_n]_{n \in \{2,3,\dots,p\}} := [1]_{n \in \{2,3,\dots,p\}}

2 dla n:=2 do \lfloor \sqrt{p} \rfloor

3 jeśli x_n=1, to

4 dla j:=2 do \lfloor \sqrt{p}/n \rfloor

5 niech x_{n \times j}:=0

6 zwróć x

- wyjście: tablica x dla której, jeśli x_j=1, to liczba j jest piewsza.
```

2 Zadanie nr 2 – największy wspólny dzielnik

2.1 Wyszukiwanie

Zaimplementuj funkcję szukającą największego wspólnego dzielnika dwóch liczb. Zrób to na dwa sposoby.

- Z wykorzystaniem rozkładu na czynniki pierwsze aczp(x, y).
- Z wykorzystaniem algorytmu Euklidesa aeuc(x, y).

Algorithm 2 Algorytm Euklidesa – aeuc(x, y)

- wejscie: dwie liczby naturalne x, y.
- 1 jeśli y=0, to zwróć x
- 2 w przeciwnym wypadku zwróć aeuc(y, x mod y)
- wyjście: największy wspólny dzielnik liczb x, y.

2.2 Testy wydajności

Przygotuj procedurę testową do sprawdzenia czasu działania obu algorytmów. Niech $x = \prod_{i \in \{1,2,...,6\}} I_1(i) \times I_2(i)$, gdzie I_1 i I_2 to wektory kolejnych cyfr indeksu dwóch członków grupy. Dla x i dla dla kolejnych liczb naturalnych y uruchamiaj oba algorytmy. Zapamiętaj czas działania każdego algorytmu.

Procedurę uruchom ją dla K kolejnych liczb naturalnych, gdzie K jest największe takie, dla którego czas działania całej procedury testowej nie przekracza 5ciu minut. Uzyskane rezultaty wyświetl na wykresach zależności czasu działania (obu) funkcji od testowanej liczby y.

3 Zadanie nr 3 – probabilistyczne testy piewszości

Zaimplementuj dwa algorytmy probabilistycznego testowania pierwszości

- test Fermata,
- test Millera-Rabina.

Test Fermata dla liczby p polega na wielokrotnym losowaniu liczby q takiej, że $q \in [2, 3, ..., p)$, oraz q, p są względnie pierwsze. Następnie sprawdzamy, czy $q^{p-1} \mod p = 1$. Jeśli nie, to liczba p nie jest pierwsza. Jeśli natomiast test wyjdzie pozytywnie dla wielu q, to liczba p prawdopodobnie jest pierwsza (im więcej testów, tym większe prawdopodobieństwo).

Test Millera-Rabina dla nieparzystej liczby p > 1 zaczyna się od przedstawienia tej liczby w postaci $p = 2^r \times q + 1$ (czyli od znalezienia r, a w konsekwencji q). Następnie wykonujemy:

```
1 losuj a \in [2, p-2]
2 niech x = a^q modn
3 jeśli x \in \{1, p-1\} to wracamy do pkt. 1
4 Powtarzaj r-1 razy
5 x := x^2 \mod p
6 Jeśli x = p-1 to zwróć: prawdopodobnie piewsza 7 zwróć: złożona
```

Przedstawioną procedurę potwarzamy wielokrotnie. Każde powtórzenie, które nie stwierdza, że liczba p jest złożona zwiększa prawdopodobieństwo, że jest ona piewsza.

4 Zadanie nr 4 – szybka transformacja Fouriera

Zaimplementuj poznany algorytm wyznaczania szybkiej transformacji Fouriera. Zademonstruj działanie algorytmu dla zadanego sygnału (ciągu liczbowego) wyświetlając wykres częstotliwości.

Przetestuj procedurę dla sumy kilku sygnałów sinusoidalnych (po dyskretyzacji) o różnych częstotliwościach, np. dla y(t) = 5sin(t) + 3sin(2t) + 5sin(5t).

5 Zadanie nr 5 – filtracja

Wykorzystaj szybką transformatę Fouriera do filtracji zadanego sygnału – tzn. usunięcia wybranych częstotliwości. Wykonaj następujące czynności:

- wczytaj próbki sygnału,
- zastosuj okno czasowe Hanninga (pomnóż transformowane próbki przez $\frac{1}{2}(1-\cos(\frac{2\pi n}{N-1}))$, gdzie N to liczba próbek, a n to numer próbki),
- wykonaj szybką transformację Fouriera,
- usuń wybrane częstotliwości,
- wykonaj odwrotną szybką transformację Fouriera w celu odtworzenia sygnału w dziedzinie czasu.

6 Zadanie nr 6 (opcjonalne) – filtracja sygnałów dźwiękowych

Zastosuj szybką transformację Fouriera do filtracji (odszumiania) plików dźwiękowych. **Uwaga:** podziel sygnał na (fragmentami zachodzące na siebie) części.