

UNCERTAINTY AND THE MEDICAL INTERVIEW

TOWARDS SELF-ASSESSMENT IN MACHINE LEARNING MODELS

Jakob D. Havtorn

DTU Compute

Department of Applied Mathematics and Computer Science

Outline of Part

Introduction

Healthcare

Healthcare is the improvement of health via the prevention, diagnosis, treatment, amelioration or cure of disease, illness, injury, and other physical and mental impairments in people.

Medical dialogue

Errors in medical dialogue

- Communication is everywhere in healthcare.
- It is complex, involving multiple participants, different contexts, and different purposes.

Errors in medical dialogue

- Communication is everywhere in healthcare.
- It is complex, involving multiple participants, different contexts, and different purposes.
- Failure of communication is a leading cause of medical error contributing to two out of three adverse events [6].
- A considerable fraction of all hospital admissions had preventable adverse outcomes (9% to 16.6% in AU, NZ, UK, DK) [19].

Corti DTU

Documenting medical encounters

- Documentation is a central part of healthcare.
- E.g. patient records, insurance claims, billing, research, training, legal purposes.

¹Ambulatory care across four specialties in four states and tertiary care at an academic medical center.

²Outpatient visits, Yale-New Haven Hospital.

Documenting medical encounters

- Documentation is a central part of healthcare.
- E.g. patient records, insurance claims, billing, research, training, legal purposes.
- Time: Physicians spend 34-37% of their time on documentation [9, 2, 8]¹.
- Quality: Discharge summaries rarely meet all timeline, transmission, and content criteria. [3]²

¹Ambulatory care across four specialties in four states and tertiary care at an academic medical center.

²Outpatient visits, Yale-New Haven Hospital.

corti

How might machine learning help?

- Assist with documentation.
- Augment communication.
- Improve decision-making.
- Reduce errors.
- Save time.

Reliability of machine learning

- Data: Privacy, quality, quantity, diversity.
- Interpretability: Trust, ethics, regulation.
- Explainability: Transparency, accountability.
- Robustness: Adversarial attacks, distribution shift.
- Bias: Fairness, transparency.
- Complexity: Context, domain, language, culture.

Part I

Unsupervised Out-of-Distribution Detection

Outline of Part

- Out-of-distribution detection
- Latent variable models
- Identifying the issue
- The $\mathcal{L}^{>k}$ likelihood bound
- Likelihood ratio

Defining OOD detection

Out-of-distribution (OOD) detection is about enabling models to distinguish the training data distribution p(x) from any other distribution $\tilde{p}(x)$.

We are concerned with doing this on a per-observation basis, i.e. answering the question:

"Was x sampled from p(x) or not?"

Problem and Contributions

- Deep generative models often fail at OOD detection task when using their likelihood estimate as the score function [13] by, perhaps surprisingly, assigning **higher likelihoods** to the OOD data.
- Contributions:
 - We provide evidence that out-of-distribution detection fails due to learned low-level features that generalize across datasets.
 - We present a fast and fully unsupervised method for OOD detection competitive with the state-of-the-art

corti

In distribution?

corti

Out of distribution?

Hierarchical VAE

We choose the hierarchical VAE as our model [4, 5].

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \int p_{\theta}(\mathbf{x}|\mathbf{z}) p_{\theta}(\mathbf{z}) d\mathbf{z}$$

Specifically we use

• a three-layered hierarchical VAE with bottom-up inference and deterministic skip-connections for both inference and generation.

Generative model:
$$p_{\theta}(\mathbf{x}|\mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z}_1)p_{\theta}(\mathbf{z}_1|\mathbf{z}_2)p(\mathbf{z}_3)$$
,
Inference model: $q_{\phi}(\mathbf{z}|\mathbf{x}) = q_{\phi}(\mathbf{z}_1|\mathbf{x})q_{\phi}(\mathbf{z}_2|\mathbf{z}_1)q_{\phi}(\mathbf{z}_3|\mathbf{z}_2)$.

2 a ten-layered layered Bidirectional-Inference Variational Autoencoder (BIVA) [12].

What is wrong with the ELBO for OOD detection?

We can split the ELBO into two terms

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \right] = \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}|\mathbf{z})]}_{\text{reconstruction likelihood}} - \underbrace{D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))}_{\text{regularization penalty}} . \quad (1)$$

The first term is high if the data is well-explained by **z**.

The second term we can rewrite as,

$$D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\sum_{i=1}^{L-1} \log \frac{p_{\theta}(\mathbf{z}_{i}|\mathbf{z}_{i+1})}{q_{\phi}(\mathbf{z}_{i}|\mathbf{z}_{i-1})} + \log \frac{p_{\theta}(\mathbf{z}_{L})}{q_{\phi}(\mathbf{z}_{L}|\mathbf{z}_{L-1})} \right]. \tag{2}$$

The absolute log-ratios grow with $dim(\mathbf{z}_i)$ since the log probability terms are computed by summing over the dimensionality of \mathbf{z}_i .

What do the lowest latent variables code for?

Absolute Pearson correlations between data representations in all layers of the inference network of a hierarchical VAE trained on FashionMNIST and of another trained on MNIST.

Correlation computed between the representations of the two different models given the same data, FashionMNIST (top) and MNIST (bottom).

An alternative likelihood bound, $\mathcal{L}^{>k}$

An alternative version of the ELBO that only partially uses the approximate posterior can be written as [12]

$$\mathcal{L}^{>k}(\mathbf{x}; \theta, \phi) = \mathbb{E}_{p_{\theta}(\mathbf{z}_{\leq k}|\mathbf{z} > k)q_{\phi}(\mathbf{z}_{>k}|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z}_{>k})}{q_{\phi}(\mathbf{z}_{>k}|\mathbf{x})} \right]$$
(3)

Here, we have replaced the approximate posterior $q_{\varphi}(\mathbf{z}|\mathbf{x})$ with a different proposal distribution that combines part of the approximate posterior with the conditional prior, namely

$$p_{\theta}(\mathbf{z}_{\leq k}|\mathbf{z}_{>k})q_{\phi}(\mathbf{z}_{>k}|\mathbf{x})$$

This bound uses the conditional prior for the lowest latent variables in the hierarchy.

Corti DTU

Likelihood ratios

We can use our new bound to compute the score used in a standard likelihood ratio test [1].

$$LLR^{>k}(x) \equiv \mathcal{L}(x) - \mathcal{L}^{>k}(x). \tag{4}$$

We can inspect what this likelihood-ratio measures by considering the exact form of our bounds.

$$\mathcal{L} = \log p_{\theta}(\mathbf{x}) - D_{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right),$$

$$\mathcal{L}^{>k} = \log p_{\theta}(\mathbf{x}) - D_{KL} \left(p_{\theta}(\mathbf{z}_{\leq}|\mathbf{z}_{>k}) q_{\phi}(\mathbf{z}_{>k}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right).$$
(5)

In the likelihood ratio the reconstruction terms cancel out and only the KL-divergences from the approximate to the true posterior remain.

$$LLR^{>k}(\mathbf{x}) = -D_{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right)$$

$$+ D_{KL} \left(p_{\theta}(\mathbf{z}_{\leq}|\mathbf{z}_{>k}) q_{\phi}(\mathbf{z}_{>k}|\mathbf{x}) || p_{\theta}(\mathbf{z}|\mathbf{x}) \right) .$$
(6)

Importance sampling the ELBO

The well-known importance weighted autoencoder (IWAE) bound is tight with the true likelihood in the limit of infinite samples, $S \rightarrow \infty$ [7],

$$\mathcal{L}_{S} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \left[\log \frac{1}{N} \sum_{s=1}^{S} \frac{p(\mathbf{x}, \mathbf{z}^{(s)})}{q(\mathbf{z}^{(s)}|\mathbf{x})} \right] \leq \log p_{\theta}(\mathbf{x}), \qquad (7)$$

Consequently, by importance sampling the ELBO, the associated KL-divergence associated vanishes and our likelihood ratio reduces to the KL-divergence associated with $\mathcal{L}^{>k}$.

$$LLR_S^{>k}(\mathbf{x}) \to D_{KL}(p(\mathbf{z}_{\leq}|\mathbf{z}_{>k})q(\mathbf{z}_{>k}|\mathbf{x})||p(\mathbf{z}|\mathbf{x})). \tag{8}$$

We can now see that $LLR_S^{>k}(x)$ performs OOD detection based on the top-most latent variables.

Results with $\coprod R^{>k}$

(a) FashionMNIST HVAE evaluated on MNIST

(b) CIFAR10 BIVA evaluated on SVHN

Results with LLR^{>k}

The score has good performance across many datasets.

OOD 1	37	ALIDOCA	AT IDDCA	EDDOOL		
OOD dataset	Metric	AUROC↑	AUPRC↑	FPR80↓		
Trained on CIFAR10						
SVHN	LLR>2	0.811	0.837	0.394		
CIFAR10	LLR>1	0.469	0.479	0.835		
Trained on SVHN						
CIFAR10	LLR ^{>1}	0.939	0.950	0.052		
SVHN	LLR ^{>1}	0.489	0.484	0.799		

OOD dataset	Metric	AUROC↑	AUPRC↑	FPR80↓			
Trained on FashionMNIST							
MNIST	LLR>1	0.986	0.987	0.011			
notMNIST	$LLR^{>1}$	0.998	0.998	0.000			
KMNIST	LLR>1	0.974	0.977	0.017			
Omniglot28x28	LLR>2	1.000	1.000	0.000			
Omniglot28x28Inverted	LLR>1	0.954	0.954	0.050			
SmallNORB28x28	LLR>2	0.999	0.999	0.002			
SmallNORB28x28Inverted	LLR>2	0.941	0.946	0.069			
FashionMNIST	LLR ^{>1}	0.488	0.496	0.811			
Trained on MNIST							
FashionMNIST	LLR>1	0.999	0.999	0.000			
notMNIST	LLR>1	1.000	0.999	0.000			
KMNIST	$LLR^{>1}$	0.999	0.999	0.000			
Omniglot28x28	LLR>1	1.000	1.000	0.000			
Omniglot28x28Inverted	$LLR^{>1}$	0.944	0.953	0.057			
SmallNORB28x28	LLR>1	1.000	1.000	0.000			
SmallNORB28x28Inverted	LLR>1	0.985	0.987	0.000			
MNIST	LLR>2	0.515	0.507	0.792			

PART II

MEDICAL APPLICATIONS

Outline of Part

• A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical Helpline Calls

Stroke

- Stroke is a leading cause of disability and death worldwide [16, 11, 10].
- Effective treatment is very time-sensitive. [15, 14].
- The gateway to ambulance transport and hospital admittance is through prehospital telehealth services.
- In the pre-hospital setting, the use of mobile stroke units has made it possible to deliver advanced treatment faster [17, 18].
- As the mobile stroke unit is only dispatched to patients with a suspected stroke, the impact of mobile stroke unit is directly influenced by accurate call-taker recognition of stroke [17, 18].
- Call-taker ability to rapidly and accurately recognize stroke is crucial in facilitating prompt care in both pre-hospital and in-hospital settings.

Population selection and datasets

A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical Helpline Calls

Population characteristics

Table 1. Population characteristics							
	Training (1-1-2)	Training (MH-1813)	Validation	Test	2021 wio category		
			All calls				
Num. calls	155,696	1,391,301	155,925	344,030	231,009		
Female	74,640 (47.94%)	792,783 (56.59%)	86(959 (55.81%)	190,974 (55.51%)	134,324 (58.14%)		
Male	79,564 (\$1.10%)	596,760 (42.89%)	68,866 (64.19%)	153,050 (44.09%)	96,258 (61.67%)		
65+ years	72,930 (46.88%)	335,166 (24.09%)	30,313 (19.45%)	65,652 (19.08%)	\$1,688 (35.27%)		
Age (mean ± std.) 59.47 ± 21.24		47.12 ± 21.38	44.63 ± 20.08	44.31 ± 20.10	50:36 ± 22:77		
Stroke calls							
Num. calls	3,999	3,471	360	757	679		
Female	1,784 (45.76%)	1,654 (47.65%)	161 (64.72%)	349 (86.10%)	366 (53.90%)		
Male	2,115 (54.24%)	1,815 (52.29%)	199 (55.28%)	408 (53.90%)	313 (46.10%)		
65+ years	2,968 (76.12%)	2,421 (69:25%)	250 (69.44%)	555 (73.32%)	567 (83.51%)		
Age (mean = std.)	72:91 ± 12:77	70.68 ± 13.85	70:99 ± 13.89	71.51 ± 13.41	73.41 ± 14.11		
			Non-stroke calls				
Num. calls	151,797	1,387,830	155,465	343,273	230,330		
Female	72,856 (48.00%)	791,129 (57,00%)	86,798 (55.87%)	190,625 (55.53%)	133,958 (58.16%)		
Male	77,449 (\$1.02%)	594,965 (42.87%)	68,667 (64.17%)	152,642 (64.47%)	95,945 (41.66%)		
65+ years	69,962 (46,09%)	332,725 (23.97%)	20,062 (19,34%)	65,097 (28.96%)	88,921 (35.13%)		
Age (mean ± std.)	59.12 ± 21.30	47.06 ± 21.36	44.57 ± 20.05	44.25 × 20.08	50:29 ± 22:36		

A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical Helpline Calls

Model design

A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical Helpline Calls

Model performance

Abbreviations: NPV, negative predictive value; PPV, positive predictive value; FOR, false omission rate; Cl confidence interval

Model performance

A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical Helpline Calls

18.2.2024

Model performance

		Ground truth labels			
_		Positives Negatives			
Call taker predictions	Positives	True positives 399	False positves 1,938		
	Negatives	False negatives 358	True negatives 341,335		

		Ground truth labels		
		Positives	Negatives	
Model predictions	Positives	True positives	False positves	
	Negatives	False negatives 280	True negatives 341,833	

A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical Helpline Calls

Which features are important?

	3. English translation of cted as stroke and non-str		t positive and negative ran	iking score in calls		
	Positive rank	ring score	Negative ranking score			
	Stroke prediction	ns, D = 1,897	Non-stroke prediction	Non-stroke predictions, D = 342,133		
	Word, w (translated)	Occurrences, D(w)	Word, w (translated)	Occurrences, D(w)		
	Ambulance	1,680	Tetanus	4,378		
	Blood clot	895	Pregnant	8,749		
	Left	1,108	Cut	7,592		
	Right	1,050	Bandage	4,561		
	Double vision	84	Amager (a location)	23,776		
	The words	344	O'clock	94,436		
	Suddenly	783	The emergency room	42,809		
	Arm	709	The police	2,903		
	Side	1,139	Swollen	60,559		
).	Stroke	117	Over the counter (OTC)	4,641		
	Double	113	The neck	30,151		
	Control	134	Fever	112,586		
	Call	39	Prescription	5,450		
	Numb	94	Centimetre	12,026		
	Minutes	763	The knee	8,875		
i.	Difficulties speaking	44	The pharmacy	10,085		
	Haemorrhagic stroke	133	The stomach	42,105		
	Hand	297	Psychiatric	3,688		
١.	The ambulance	521	Pneumonia	7,597		
١.	Slurred speech	58	Stomach pain	10,551		
	Blood clots	224	Stool	19,155		
	Fast	663	The ribs	3,928		
	Express	44	Bleed	10,501		
	Blood thinner	259	Bleeding	24,313		
	Incoherent	15	Ribs	2,941		
	Lopsided	211	Broken	19,415		
	Reduced	528	Inflammation	10,050		
	Hangs	628	Common cold	8,127		
١.	Transient	48	Morning or morrow	78,558		
).	Not making sense	14	Swelling	17.762		

Simulated prospective study

- I. When is the model prediction presented to the call-taker?
 - 1. Notify the call-taker of potential false positive or negative stroke cases after the call ends.
 - 2. Notify the call-taker of potential false positive or negative stroke cases during the call.
- II. How does prediction influence the diagnostic code the call-taker assigns to the call?
 - A. Call-takers change any stroke prediction from negative to positive if the model predicts a positive (call-takers mirror model positives).
 - B. Call-takers change any stroke prediction from positive to negative if the model predicts a negative (call-takers mirror model negatives).

Simulated prospective study

Predictor Call-taker Mode		del	Call-taker supported by the model (simulated)			mulated)	
When	-	After call	During call	After call	During call	After call	During call
Method	-	1.C	2.C	1.A	1.B	2.A	2.B
F1-score [%]↑	25.8	35.7	33.1	28.9	33.3	27.6	32.7
	(23.7-27.9)	(35.0-36.4)	(32.4-33.7)	(28.3-29.5)	(32.5-34.1)	(27.0-28.1)	(31.8-33.5)
Sensitivity [%]↑	52.7	63.0	58.7	72.4	43.4	72.3	39.1
	(49.2-56.4)	(62.0-64.1)	(57.7-59.8)	(71.5-73.3)	(42.3-44.5)	(71.4-73.3)	(38.1-40.1)
PPV [%]↑	17.1	24.9	23.0	18.0	27.0	17.0	28.1
	(15.5-18.6)	(24.3-25.5)	(22.5-23.6)	(17.6-18.4)	(26.3-27.8)	(16.7-17.4)	(27.3-28.9)
FOR [%] ↓ (1 - NPV)	0.105 (0.094-0.116)	0.082 (0.079-0.085)	0.091 (0.088-0.094)	0.061 (0.059-0.064)	0.125 (0.121-0.129)	0.061 (0.059-0.064)	0.134 (0.131-0.138)
FPR [%] ↓	0.565	0.419	0.432	0.726	0.258	0.776 (0.767-0.786)	0.221
(1 - specificity)	(0.539-0.590)	(0.413-0.426)	(0.426-0.439)	(0.717-0.735)	(0.253-0.263)		(0.216-0.226)

Thank you for your attention

Bibliography I

- [1] Adolf Buse. "The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note". In: *The American Statistician* 36 (3a 1982), pp. 153–157.
- [2] Matthew D. Tipping et al. "Where Did the Day Go?—A Time-Motion Study of Hospitalists". In: *Journal of Hospital Medicine* 5.6 (2010), pp. 323–328. ISSN: 1553-5606. DOI: 10.1002/jhm.790. pmid: 20803669.
- [3] Leora I. Horwitz et al. "Comprehensive Quality of Discharge Summaries at an Academic Medical Center". In: Journal of hospital medicine: an official publication of the Society of Hospital Medicine 8.8 (Aug. 2013), pp. 436–443. ISSN: 1553-5592. DOI: 10.1002/jhm.2021. pmid: 23526813. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695055/ (visited on 02/15/2024).

Bibliography II

- [4] Diederik P Kingma and Max Welling. "Auto-Encoding Variational Bayes". In: *Proceedings of the 2nd International Conference on Learning Representations (ICLR)*. International Conference on Learning Representations. Banff, AB, Canada, 2014. arXiv: 1312.6114. URL: http://arxiv.org/abs/1312.6114.
- [5] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. "Stochastic Backpropagation and Approximate Inference in Deep Generative Models". In: *Proceedings of the 31st International Conference on Machine Learning (ICML)*. International Conference on Machine Learning. Vol. 32. Beijing, China: PMLR, Jan. 16, 2014, pp. 1278–1286. URL: http://proceedings.mlr.press/v32/rezende14.pdf (visited on 08/12/2018).
- [6] Amy J Starmer et al. "Changes in Medical Errors after Implementation of a Handoff Program". In: *New England Journal of Medicine* 371.19 (2014), pp. 1803–1812.

Bibliography III

- [7] Yuri Burda, Roger Grosse, and Ruslan R. Salakhutdinov. "Importance Weighted Autoencoders". In: *Proceedings of the 4th International Conference on Learning Representations (ICLR)*. International Conference on Learning Representations. San Juan, Puerto Rico, 2016, p. 8. URL: https://arxiv.org/abs/1509.00519 (visited on 10/04/2017).
- [8] Christine Sinsky et al. "Allocation of Physician Time in Ambulatory Practice: A Time and Motion Study in 4 Specialties". In: *Annals of Internal Medicine* 165.11 (Dec. 6, 2016), pp. 753–760. ISSN: 1539-3704. DOI: 10.7326/M16-0961. pmid: 27595430.

Bibliography IV

- [9] Erik Joukes et al. "Time Spent on Dedicated Patient Care and Documentation Tasks Before and After the Introduction of a Structured and Standardized Electronic Health Record". In: Applied Clinical Informatics 09.01 (Jan. 2018), pp. 046–053. ISSN: 1869-0327. DOI: 10.1055/s-0037-1615747. URL: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0037-1615747 (visited on 02/15/2024).
- [10] Mira Katan and Andreas Luft. "Global Burden of Stroke". In: *Seminars in Neurology*. Vol. 38. 02. Thieme Medical Publishers, 2018, pp. 208–211.
- [11] Hmwe Hmwe Kyu et al. "Global, Regional, and National Disability-Adjusted Life-Years (DALYs) for 359 Diseases and Injuries and Healthy Life Expectancy (HALE) for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017". In: *The Lancet* 392.10159 (2018), pp. 1859–1922.

Bibliography V

- [12] Lars Maaløe et al. "BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling". In: *Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS)*. Conference on Neural Information Processing Systems. Vancouver, Canada, Feb. 6, 2019, pp. 6548–6558. URL: http://arxiv.org/abs/1902.02102 (visited on 03/19/2019).
- [13] Eric Nalisnick et al. "Do Deep Generative Models Know What They Don't Know?" In: *Proceedings of the 7th International Conference on Learning Representations (ICLR)*. International Conference on Learning Representations. New Orleans, LA, USA, 2019. arXiv: 1810.09136. URL: http://arxiv.org/abs/1810.09136 (visited on 10/02/2019).

Bibliography VI

- [14] Guillaume Turc et al. "European Stroke Organisation (ESO)-European Society for Minimally Invasive Neurological Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischemic Stroke". In: *Journal of Neurointerventional Surgery* 11.8 (2019), pp. 535–538.
- [15] Eivind Berge et al. "European Stroke Organisation (ESO) Guidelines on Intravenous Thrombolysis for Acute Ischaemic Stroke". In: European Stroke Journal 6.1 (2021), pp. I–LXII.
- [16] GBD 2019 Stroke Collaborators et al. "Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019". In: *The Lancet Neurology* 20.10 (2021), pp. 795–820. ISSN: 1474-4422. DOI: 10.1016/S1474-4422(21)00252-0.
- [17] Praveen Hariharan et al. "Mobile Stroke Units: Current Evidence and Impact". In: *Current Neurology and Neuroscience Reports* 22.1 (2022), pp. 71–81.

Bibliography VII

- [18] Babak B Navi et al. "Mobile Stroke Units: Evidence, Gaps, and next Steps". In: *Stroke* 53.6 (2022), pp. 2103–2113.
- [19] Niki Carver, Vikas Gupta, and John E. Hipskind. "Medical Errors". In: *StatPearls*. Treasure Island (FL): StatPearls Publishing, 2024. pmid: 28613514. URL: http://www.ncbi.nlm.nih.gov/books/NBK430763/ (visited on 02/13/2024).