

AN INVESTIGATION OF THE SHEAR STRESS
DISTRIBUTION IN A SIMPLY SUPPORTED
I-BEAM WITH A CONCENTRATED LOAD
ACTING NEAR ONE END

CLARENCE CHANDLER WRIGHT
JACK ANTHONY LASPADA

Library
U. S. Naval Postgraduate School
Monterey, California

Library
U. S. Naval Postgraduate School
Monterey, California

Mont 196
2854

COPY FOR HEAD OF POSTGRADUATE SCHOOL

Library
U. S. Naval Postgraduate School
Annapolis, Md.

COPY FOR HEAD OF POSTGRADUATE SCHOOL

Library
U. S. Naval Postgraduate School
Annapolis, Md.

1999-2000-2001-2002-2003

2003-2004-2005-2006-2007

(Inter-Departmental)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge, Mass.

Office of

W. M. Murray
Room 3-257

September 25, 1946.

Captain W. H. Buracker,
Room 5-233

Thesis Work of LCDR C.C. WRIGHT, USN
LCDR J.A. LaSPADA, USN

Dear Captain Buracker:

In response to your request for information on the thesis work carried out by Lt. Comdr. C. C. Wright and Lt. Comdr. J. A. LaSpada it is a pleasure to tell you that I have been very favorably impressed with the work which they have done and that I am hoping to find someone else to carry on where they left off.

These gentlemen selected an interesting and important problem which they attacked in a most thorough and businesslike manner. From the procedure which they adopted I am sure that they have gained valuable experience for themselves and at the same time I feel that they have produced results which will be of considerable value to other people interested in stresses in beams when conditions do not conform to the conditions and limitations of the beam theory.

In my opinion, the work of these two officers was of top notch caliber, and, in addition, it was a great pleasure to be associated with them in the capacity of thesis advisor.

Sincerely yours,

/s/ W. M. Murray

W. M. Murray

Cambriige, Massachusetts
September 16, 1946

Professor J. S. Newell
Secretary of the Faculty
Massachusetts Institute of Technology
Cambridge, Massachusetts

Dear Sir:

In accordance with the requirements
for the degree of Master of Science in Naval Construction
and Engineering, we submit herewith a thesis entitled "An
Investigation of the Shear Stress Distribution in a Simply
Supported I-Beam with a Concentrated Load Acting Near One
End."

AN INVESTIGATION OF THE SHEAR STRESS DISTRIBUTION IN A SIMPLY
SUPPORTED I-BEAM WITH A CONCENTRATED LOAD ACTING NEAR ONE END

By

Clarence C. Bright
Lieutenant Commander, U.S. Navy
B.S., U.S.Naval Academy, 1941

Jack A. LaSpada
Lieutenant Commander, U.S. Navy
B.S., U.S.Naval Academy, 1941

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN NAVAL CONSTRUCTION AND ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

1946

Third
W9

ACKNOWLEDGMENT

The authors wish to express their appreciation and indebtedness to the following persons:

To Professor William M. Murray for his assistance and guidance in helping us select the approach to the problem.

To Mr. W. L. Walsh for his instruction in the use of strain gages, and for the use of his personal strain gage indicator.

To Mr. T. A. Hewach for instructing us in the correct procedure for use and application of Stresscoat, for suggesting the use of his strain rosette nomograph, and for other helpful suggestions on the details of this thesis.

To Mr. E. L. Sinclair and Mr. A. F. Lynch of the Materials Section, Boston Naval Shipyard, for their prompt procurement of the necessary materials.

TABLE OF CONTENTS

	<u>Page</u>
List of Figures	1
List of Tables	2
Table of Symbols	3
Summary	4
I. Introduction	6
II. Procedure	10
III. Results	11
IV. Discussion of Results	12
V. Conclusions and Recommendations	14
VI. Appendix	18
A. Details of Procedure	17
B. Tables of Results	31
C. Sample Calculation	60
D. Observed Data	63
E. Bibliography	92

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	<u>Page</u>
I.	Locations of Strain Gages on Bottom Flange	22
II(a).	Locations of Strain Rosettes on Flange Web and Strain Gages on Upper Flange	23
II(b).	Diagram of Locations of Strain Gages	24
III.	Rectangular Strain Rosette Nomograph	25
IV.	Riehle Universal Testing Machine with Beam in Position	26
V.	General View of Testing Machine, Beam, and Strain Indicator	27
VI.	Typical Stresscoat Crack Pattern	28
VII.	Typical Stresscoat Crack Pattern	29
VIII.	Strain Indicator and Connector Strips for Leads to Strain Gages	30
IX.	Curves of Results	32
X.	Curves of Results	33
XI.	Curves of Results	34
XII.	Curves of Results	35

LIST OF TABLES

<u>Table Numbers</u>	<u>Title</u>	<u>Pages</u>
I - XVI	Calculated Strain Gage Data	36-51
XVII-XXII	Stresscoat Crack Angle Data	52-59
XXIII-XXI	Stresscoat Loading Data	68-73
XXII	Strain Gage heading Numbers vs. Strain Gage Numbers	74
XXVIII	Strain Gage Constants	75
XXXIV-XLI	Observed Strain Gage Data	76-91

TABLE OF SYMBOLS

- A - Distance from load to near support, feet.
- a - Auxiliary page factor (no units).
- B - Distance from load to far support, feet.
- b - Thickness of beam at any position, inches.
- C - Distance of point from neutral axis, inches.
- E - Modulus of Elasticity, pounds per square inch.
- I - Moment of inertia of section, (inches)⁴.
- L - Length of beam span, feet.
- M - Bending moment at section, foot-pounds.
- Q - First moment of area outside of any line about the neutral axis, (inches)³.
- V - Vertical shear, pounds.
- W - Applied Load, pounds.
- X - Horizontal distance from left support to any point, feet.
- ϵ_1' - Strain in micro-inches per inch measured by strain rosette in the vertical direction.
- ϵ_2' - Strain in micro-inches per inch measured by strain rosette in a direction equidistant from ϵ_1' and ϵ_3' .
- ϵ_3' - Strain in micro-inches per inch measured by strain rosette in the horizontal direction.
- ϵ_1 - Corrected value of strain in micro-inches per inch measured in the vertical direction
- ϵ_2 - Corrected values of strain in micro-inches per inch measured equidistant from ϵ_1 and ϵ_3 .
- ϵ_3 - Corrected value of strain in micro-inches per inch measured in the horizontal direction.
- ϕ - The angle measured counterclockwise from ϵ_3 to the direction of T_m degrees.
- σ_1 - Vertical Direct stress, pounds per square inch.

σ_3 - Longitudinal direct stress, pounds per square inch.

τ_m - Maximum shear stresses, pounds per square inch.

τ_{31} - Shear stresses in the 3-1 plane, pounds per square inch.

SUMMARY

I. OBJECT

The object of this thesis investigation is to determine the shear stress distribution in a simply supported I-beam with a concentrated load acting near one end.

II. PROCEDURE

An 8" x 4" x 8.6# aluminum I-beam was tested. This beam was supported 8 inches from one end; and by moving the supports, both length of span and position of load from near support were varied. Vertical static loads in increasing increments were applied in each position. (See Figure V for photograph of the laboratory set up.)

One series of test runs was made to obtain data from Stresscoat crack patterns. A second series of runs was made to provide data from SR-4 strain gage measurements.

III. RESULTS

Plots of values of maximum shear stress at various points on the beam for each of four separate test runs are presented.

Strain gage data for the remainder of the strain gage test runs is included in Tables I to XVI.

Data obtained from each of the Stresscoat test runs, giving loading data and crack angles, are found in Tables XVII to XXXI.

SUMMARY

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The object of the thesis was attained in a practicable manner with good engineering accuracy.

The Stresscoat Method of Stress Analysis does not provide sufficient information to obtain quantitative values of shear stress, but does provide a good qualitative tensile strain picture of a loaded specimen.

RECOMMENDATIONS

This investigation should be continued for the entire series of I-beams in general use.

Further investigation should be made in such manner as to provide a maximum of data readings for each pattern of gages, to allow the graphical results expected to be easily fairied.

I. INTRODUCTION

A. Concept of the Problem.

During World War II most structural investigations not directly related to winning the war were necessarily deferred. Among the investigations postponed by the Bureau of Ships, U.S. Navy, is the problem presented in this thesis: The Investigation of the Shear Stress Distribution in a simply supported I-Beam with a concentrated load acting near one end.

As stated by the Bureau of Ships in a letter to the authors, "The solution of this problem is of interest in the design of gun girders having a full web plate, in the design of many types of foundations for carrying concentrated loads, or flight deck longitudinals, and, in general, in all problems of transfer of load through shear in a beam. Ultimately, it is desired to make design recommendations in order to achieve greater economies when proportioning beams to resist shear."

Arbitrary limitations on this investigation, which is submitted as the first stages of a work which must certainly be continued to include the entire scope of this problem, were designated by the Bureau of Ships as being:

1. The investigation of a flanged section, preferably a built-up or rolled "I" section.
2. The investigation of static conditions, in view of probable limitations imposed by laboratory facilities.
3. The study of the stress field produced under load in a flanged cross-section, rather than an investigation of methods of

reducing stress conditions.

B. Status of the Problem.

Preliminary search for published articles and texts relating to shear stress distribution in I-beam sections has resulted in the opinion by the authors, that no extensive tests to determine shear stress distributions in I-beams loaded other than at the center of the span have been undertaken.

In the preliminary analysis it was decided to limit the loading to values well below the elastic limit of the materials used, both to eliminate permanent deformation of the specimen during each test run and to obtain test conditions which would more nearly realize the loadings normally occurring in service.

The decision of the method of approach followed from examination of laboratory facilities available, which indicated that use of "Stresscoat" (Brittle Lacquer Method for Stress Analysis) would be valuable in searching for the general appearance of the stress field, at least the stress field formed by tensile and compressive stresses due to loading. Further, a transition from these general stress fields to specific quantitative shear stresses could be accomplished by solving for shear stresses from directional strains obtained from SR-4 type electric strain gages. The photo-elastic method of stress analysis was eliminated as an approach to our problem, for the present, on advice from the thesis supervisor, Professor Murray.

One factor which emerged from the preliminary analysis of the problem was the value of selecting a specimen which was a member of

a geometrically similar series; that is, which could be compared to either larger or smaller I-sections by ratios such as the ratio of depth of section to web thickness, or the ratio of depth of section to section modulus, etc. By this selection one of the variables present might be eliminated in the application of results of tests of one particular specimen to general practice. This process of selection was not employed. To reduce the project cost and to utilize surplus material, readily available, a single aluminum section was chosen arbitrarily with the following considerations:

1. The section depth was to be large enough to permit location of more than two rows of strain rosettes.
2. The length of section was to be short enough to provide a span well within the limits of the testing machine, yet great enough to allow the length of span to be introduced as a variable factor in the problem.

Presentation of results by graphical means (see pp **32 to 35**)

appeared to be of value, in that, since a standard U.S. Navy I-section was tested the results could be directly applied to that section. A mathematical formulation of shear stress distribution in a beam of the type investigated (from test data obtained) was deemed too lengthy a problem for the short period allotted by the curriculum to thesis. However, it is hoped that the data obtained in this investigation are extensive enough to allow future transposition into a mathematical solution of the problem.

A comparison of the observed and theoretical value of shear stresses (obtained from simple beam theory formulas) is made to illustrate the divergence of these values.

II. PROCEDURE

The essential steps followed in this investigation were as follows:

1. Selection of test specimen.
2. Selection of method of testing and means of obtaining data.
3. Determination of stress fields by use of Stresscoat, under varied conditions of span length and position of loading.
4. Determination of strains at specific points by means of strain gages, under varied conditions of span length and position of loading.
5. Calculation of value of maximum shear stress at each gage position from observed strain gage data.
6. Calculation of theoretical maximum shear stress at each strain gage location from simple beam formulas.
7. Comparison of observed and theoretical results.

For detailed discussion or description of equipment and method of testing see Appendix A.

٦

III. RESULTS

1. Plots of values of maximum shear stress obtained from strain rosette data and values of maximum shear stress obtained from simple beam formulas and Mohr's circle vs. distance along the beam are shown on pages **32 to 35**

2. Experimental Strain Gage Data are presented on pages **36** to **51**

3. Stresscoat Crack Angle Data are summarized on pages **52** to **59**

4. In the Stresscoat tests made in this investigation it was noted that the axis of vertical cracks in the lower half of the beam was in all cases displaced approximately one inch from the load position toward the center of the beam, irrespective of the beam span.

5. Superposition of the tension and compression Stresscoat crack contours showed that in most cases the intersections of the cracks obtained from the two different types of loading are perpendicular, as was expected.

6. Within the limits of the loads used, the angle of cracking at a given point in the Stresscoat crack pattern is independent of the load.

IV. DISCUSSION OF RESULTS

The results show that the shear stress distribution in a simply supported I-beam with a concentrated load acting near one end is not exactly that calculated from simple beam formulas and Mohr's Circle.

In general, the shear stress in the upper half of the web is greater than calculated values. In the lower half of the beam web the experimental and calculated shear stresses are in close agreement, except in the vicinity of the support, where an increase in shear stress is observed in all cases. In the upper half of the beam web the maximum value of shear stress does not occur at the position of loading, but the location of this maximum value is displaced towards the center of the span.

Not enough data has been worked up at present to determine accurately the effects of span length and position of load from near support on the ratio of observed maximum shear stress to calculated maximum shear stress.

It is believed that the Stresscoat Crack Angle Data presented above could be combined with calculated values of direct stresses to give a maximum shear stress for comparison with that obtained from strain gage data.

Since for a particular test run the crack contours appeared identical and independent of load, a single loading near, but safely below, the elastic limit, coupled with the increased sensitivity produced by a "cooling" agent, should be sufficient to delineate the direction of principal stresses. In this respect,

too many test runs were made to obtain Stresscon data before the similarity between crack patterns appeared.

It is believed that the curves of result, could have been fairied more easily had a greater number of points been obtained by additional strain gage test runs.

The method of obtaining individual strain gage readings, that of using screw type binding posts to connect the test lead to the gage lead, though increasing the time necessary for each run, appears to give more accurate readings and simplifies the procedure of isolating any individual defective gage found.

In order to reduce one of the possible experimental errors, observed strain gage readings were fairied to obtain values used in calculations. In some cases a greater number of observations would have permitted more accurate fairing. To allow presentation of similar curves for each test run, fairied values corresponding to the same arbitrary loads were used for calculation in all cases.

The effect of reducing strains to even numbers is considered as negligible, since the load scale of the testing machine provided accuracy only to within 5 pounds.

The results are not as extensive as desired by the authors. However, it is believed that the results shown are representative of the shear stress distribution in an I-beam web under the conditions of loading selected for this investigation.

V. CONCLUSION AND SUMMARY

CONCLUSIONS

1. The object of the thesis is considered accomplished.
2. The method used to obtain shear stress is practicable, and the nomograph solution provides engineering accuracy with saving of time.
3. Stresscoat runs revealed the following considerations.
 - a. Use of Stresscoat is advantageous in cases where an overall strain picture is desired. This would be particularly valuable in examinations of a complicated structure which could not be isolated or of which a model could not be built without excessive cost.
 - b. The use of CO_2 as a "cooling" agent is extremely useful, although matching observed and calibrated strains is not practicable under the cooled conditions.
4. A check on the accuracy of Stresscoat contours can be made by super position of the tensile crack pattern and the compression crack pattern.

RECOMMENDATIONS

The authors recommend the following:

1. That this investigation be continued and enlarged to include tests of I-beams other than the 8" x 4" x 0.8" aluminum I-beam already tested, and that the results be coordinated to determine relations between observed test results on one material and anticipated results in another metal and to determine the influence of varying dimensions on shear stress distribution.

2. That in other investigations of this type, where application of Stresscoat tests is contemplated, the greater proportion of available time be spent in quantitative strain gage tests rather than in qualitative Stresscoat testing.

3. That in any continuance of this investigation the beam be tested in such manner as to provide data at shorter intervals than one reading for each six inches of beam length in each row of gages, and where practicable more rows of gages be introduced.

VI - APPENDIX

APPENDIX A

DETAILS OF PROCEDURE

A. DESCRIPTION OF APPARATUS

1. BEAM

The aluminum I-section tested was an 8" x 4" x 6.0# rolled beam eight feet in length. The properties of this material (as determined from Section 16AL03, Navy Department Specifications, are as follows:

Physical:

Tensile Strength 22,000 lbs/sq in. (maximum)

Elongation 18%

Chemical:

Magnesium	0.2 - 1.2%
Silicon	0.4 - 0.8%
Copper	0.15 - 0.4%
Iron	0.7% (maximum)
Chromium	0.15 - 1.35%
Zinc	0.10% (maximum)
Titanium	0.10 (maximum)
Manganese	0.10% (maximum)
Other elements	0.15% (maximum)
Aluminum	Remainder

The test section was reannealed by the following heat treatment:

1. Heat from room temperature to 850°F at rate of 50° per hour.

2. Bake at 850° for 2 hours.
 3. Cool from 850° to room temperature at rate of 25° per hour. This section was selected for the following reasons:
 1. It was dimensionally identical with the 8" x 4" x 18.4# steel I-section that is in general use in the U.S. Navy.
 2. Its relatively light weight provided for ease in handling.
 3. The externally applied loads required to produce reasonable deflections were well within the capacity of any testing apparatus normally used in laboratory examination.
 4. The surface scale formation usually present was easily removed to provide the smooth surface prerequisite to even distribution of Stresscoat lacquer and necessary to establish a close bonding between strain gages and the metal.
- 2. TESTING MACHINE**
- The testing machine used in all test runs was the Riehle Universal Testing Machine, having a maximum capacity of 100,000 pounds. (See Figures IV and V.)
- 3. MEASURING DEVICES**
- 2. STRESSCOAT**
- This material is manufactured by the Stresscoat Division, Magnaflux Corporation. Its application and interpretation followed,

basically, the principles set forth in the Stresscoat "Manual of Operating Instructions".

b. STRAIN GAGES, ETC.

The measuring gages were standard types of SR-4 Bonded Resistance Wire Strain Gages, of types illustrated in Figures I and II, manufactured by Baldwin Southwark Division, Baldwin Locomotive Works. Both single gages of types A-1 and A-5, and rectangular strain rosettes of type AR-1, were used. The single gages were located on the beam flanges where unidirectional stresses were expected. The strain rosettes were bonded to the beam web.

c. NOMOGRAPHS

As a means of reducing time of solution for shear stress from strain rosette data, the nomograph (See Figure III), developed by Mr. T. A. Hewson of the Division of Industrial Cooperation, M.I.T., was a very valuable aid. A comparison of accuracy of nomograph solutions and calculated solutions showed a difference of from 0.4% to 5% in over 100 cases.

B. DESCRIPTION OF TESTS

1. METHOD OF LOADING

The beam was subjected to various static loadings in the testing machine. There were no dynamic load tests due both to preliminary arbitrary limitations placed on the investigation and to lack of available facilities in the Materials Testing Laboratory. The arrangement of movable supports of the testing machine (see Figures IV and V) allowed for variation in length of

beam span and variation in distance between point of application of load and point of support, independent of each other. The supports and loading wedge were faced with one inch diameter half-round, transverse steel bars which provided support and loading, respectively, across the entire width of flange and of a length of not more than $\frac{1}{2}$ of an inch. (See Figure II). It was considered, therefore, that these members were "knife edges", providing line, rigid support.

2. STRESSCOAT TESTS

Stresscoat tests were made for informative reasons, to determine the appearance of the tensile and compressive strain fields under loading. (A typical Stresscoat pattern for a 3" x 2 3/8" x 2.0# aluminum I-beam is illustrated in Figures VI and VII). The load position and length of span were varied in some of these test runs. Since Stresscoat reacts both to tensile loading, and to compressive loading under certain conditions, some runs were made for each of these two types of loads. The compression load strain patterns were compared with the tensile strain patterns. No effort was made to match observed and calibrated strains. In the cases where strain patterns were matched wide divergence of results was noted. It is not known whether this divergence was due to inability of the authors to correctly match strains or to variation in the sensitivity of the beam patterns and those on the calibration strips. To obtain greatly enlarged areas of strain patterns, the beam surfaces were cooled suddenly

by means of blasts of compressed gaseous carbon dioxide expanding against the metal surfaces. This cooling process has great advantage in a qualitative testing. Greatly increased strain sensitivity of Stresscoat at low temperatures allows a much more complete strain picture, providing the aid of the overall pattern of the entire specimen wherever strains are present. In the test runs of this thesis, for instance, cooling the web surfaces provides strain patterns on the compression side of the neutral axis of the beam. No attempt was made to determine the lacquer sensitivity under the "cooled" conditions.

3. STRAIN GAGE TESTS

The method of loading applied to obtain data for computation of shear stress is described in paragraph B (1), above. Readings of each strain gage's resistance were taken by means of the SK-1 Strain Indicator (See Figure VIII) at each load in each test run. That is, for each run a load was applied and the strain readings were taken; the load was increased and readings were again taken; and so on. The readings taken at approximately 500 pounds load were used as check readings since it was found that readings for zero load could not be compared with any accuracy.

FIGURE I. Location of Strain Gages H-1, H-2, H-3 and H-4
on Bottom of Lower Flange. Note Gages D-1 and
D-2 on Under Side of Upper Flange.

FIGURE II. (a) Location of Strain Rosette (Rows E, F, and G) on Flange Web, and Single-Strain Gages (Rows A, B, and C) on Top of Upper Flange.

4
9"
6"
6"
4

TOP OF TOP FLANGE

WEB

BOTTOM OF BOTTOM FLANGE

FIGURE II (B). LOCATIONS OF SR-4 STRAIN GAGES.

RECTANGULAR STRAIN
ROSETTE NOMOGRAPH

Figure III. Sample Nomograph used for solution of Shear Stress from Strain Gage Data.

COPYRIGHT, 1945, THOMAS A. HEWSON

FIGURE IV. Rischle Universal Testing Machine with Loctite Zean in position for Loctite. Arrows Show Locations of Supports and Locating Wedge.

FIGURE V. General View of Test Arrangement.

Load Position
Support 5 feet → Support 2 feet

FIGURE VI. Typical Stresscoot Crack Pattern.
Beam shown is 3" x 2 2/8" Alusinum I-Beam.
Heavy scratch lines indicate extent of crack
pattern for the load noted. Remainder of
crack pattern obtained by use of CO_2 to cool
web surface.

FIGURE VII. 3rd Aluminum. Beaten with typical transverse crease pattern.
This is same been as in FIG. VI, but is greater length
of been, i.e. 12 cm.

FIGURE VIII. Baldwin Southwark SR-4 Strain Indicator used in Bear Tests. Compensating Gage shown in foreground. Hole connector strips beside indicator. Binding posts were used to assure positive connection by crimping lead to indicator terminal lead to individual gages.

APPENDIX BTABLE OF RESULTS

LOAD

MAGNITUDE OF
MAXIMUM SHEAR STRESS

$\text{IN } 8'' \text{ I BEAM}$

RUN # 1

EXPERIMENTAL
Calculated

LOAD

Distance from left end of beam (inches)

0

MAGNITUDE OF
MAXIMUM SHEAR STRESS
IN 8" I-BEAM
RUN #6

— Experimental
— Calculated

SUPPORT

SUPPORT SUPPORT
 $\frac{1}{2}$ ' $2\frac{1}{2}$ '

2600

2400

2200

2000

1800
 T_{MAN}
(psi)

1400

1200

1000

800

600

400

200

Distance from left end of beam (inches)

5 6 7 8 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

TABLE I.
CALCULATED STRAIN GAGE DATA

Run Number: 1

17 August 1946

Beam Span 7 feet Load Position 2 feet from near support

Load 2500 pounds

	ϵ_1	ϵ_2	ϵ_3	ϵ_1	ϵ_2	ϵ_3	T_m	ϕ
E-1	-18	-112	-25	-18	-113	-23	-816	44
E-2	3	-135	-67	4	-137	-67	-1000	36 $\frac{1}{2}$
E-3	1	-152	-73	2	-154	-73	-1080	34 $\frac{1}{2}$
E-4	-17	-212	-187	-13	-212	-187	-1842	26 $\frac{1}{2}$
E-5	175	-21	-176	119	-20	-178	-1350	1 $\frac{1}{2}$
E-6	34	0	-146	67	+2	-147	986	-15 $\frac{1}{2}$
E-7	18	12	-125	21	14	-123	-882	
F-1	-11	-128	-8	-11	-131	-8	1078	45
F-2	-125	1	0	-123	3	-2	810	24 $\frac{1}{2}$
F-3	-28	-138	15	-28	-140	16	-1200	-40 $\frac{1}{2}$
F-4	-142	-98	+21	-142	-97	24	-794	-12 $\frac{1}{2}$
F-5	-29	41	-26	-28	43	-25	620	45 $\frac{1}{2}$
F-6	-16	33	-11	-18	35	-11	446	43 $\frac{1}{2}$
G-1	-12	-159	0	-12	-162	0	-1400	-44
G-2	-27	-81	45	-28	-83	46	904	-34 $\frac{1}{2}$
G-3	-38	-88	65	-39	-91	66	-1034	-32
G-4	-66	-64	115	-68	-66	116	-1156	-22 $\frac{1}{2}$
G-5	-62	86	100	-64	87	101	960	20
G-6	115		-42	116		-44		
G-7	-50	68	92	-52	66	95	760	16 $\frac{1}{2}$

TABLE II.
CALCULATED STRAIN GAGE DATA

Run Number: 1

17 August, 1946

Beam Span 7 feet

Load Position 2 feet from near support

Load 3500 pounds

	ϵ_1'	ϵ_2'	ϵ_3'	ϵ_1	ϵ_2	ϵ_3
E-1	-25	-159	-32	-24	-161	-31
E-2	5	-188	-93	7	-190	-93
E-3	2	-213	-103	4	-215	-103
E-4	-22	-297	-261	-17	-297	-261
E-5	160	-29	-248	165	-28	-251
E-6	51	0	-202	55	3	-203
E-7	25	17	-173	29	20	-174
F-1	-15	-180	-11	-15	-183	-11
F-2	-172	1	0	-172	4	3
F-3	-40	-191	24	-40	-195	25
F-4	-200	-136	+29	-201	-135	53
F-5	-36	59	-56	-37	62	-55
F-6	-25	50	-14	-25	52	-13
G-1	-15	-223	0	-15	-228	0
G-2	-38	-114	63	-39	-117	64
G-3	-56	-121	90	-58	-124	91
G-4	-90	-88	161	-93	-92	163
G-5	-85	120	138	-88	121	140
G-6	160		-60	181		-63
G-7	-69	94	129	-72	95	130

TABLE III.
CALCULATED STRAIN GAGE DATA

Run Number: 1

17 August 1946

Beam Span 7 feet

Load Position 2 feet from near support

Load 4500 pounds

	ϵ_1'	ϵ_2'	ϵ_3'	ϵ_1	ϵ_2	ϵ_3	T_m	ϕ
E-1	-32	-204	-43	-31	-206	-42	1506	-44 $\frac{1}{3}$
E-2	6	-243	-151	8	-246	-121	1850	-35 $\frac{1}{2}$ $\frac{1}{10}$
E-3	3	-273	-133	6	-275	-153	1978	35 $\frac{1}{2}$
E-4	-30	-362	-357	-26	-363	-336	2272	26
E-5	207	-37	-314	214	-36	-318	2376	-1 $\frac{1}{2}$
E-6	64	0	-259	70	4	-260	1786	-15 $\frac{1}{2}$
E-7	31	21	-220	36	25	-221	1504	-31 $\frac{1}{2}$
F-1	-20	-232	-15	-20	-236	-13	1980	-44 $\frac{1}{2}$
F-2	-222	2	0	-222	6	4	1856	23
F-3	-51	-249	29	-52	-254	30	2140	-40 $\frac{1}{2}$
F-4	-258	-176	57	-259	-175	42	1460	-13 $\frac{3}{8}$
F-5	-49	74	-46	-48	77	-45	1100	44 $\frac{1}{2}$
F-6	-32	63	-21	-32	65	-20	814	42 $\frac{5}{8}$
G-1	-23	-286	0	-23	-292	0	2510	-44
G-2	-49	-145	82	-51	-147	83	1588	-74
G-3	-68	-157	117	-66	-156	118	1784	-51 $\frac{1}{2}$
G-4	-118	-115	206	-122	-119	211	2062	-21 $\frac{3}{4}$
G-5	-112	153	179	-116	155	181	1742	19 $\frac{1}{2}$
G-6	205		-73	207		-83		
G-7	-89	116	168	-93	116	168	1384	16

TABLE IV.
CALCULATED STRAIN GAGE DATA

Run Number: 1

17 August 1946

Beam Span 7 feet Load Position 2 feet from near support

	Load(Pounds)		
	2500	3500	4500
A-1	-115	-163	-207
A-2	-396	-533	-604
A-3	-254	-358	-458
B-1	9	12	15
B-2	-25	-35	-47
B-3	19	26	35
B-4	-115	-159	-203
B-5	45	63	80
B-6	-68	-138	-203
B-7	62	88	111
B-8	-203	-284	-368
B-9	218	305	397
B-10	-249	-345	-442
B-11	73	102	132
B-12	-254	-356	-459
B-13	-168	-258	-345
C-1	-36	-50	-65
C-2	-226	-315	-398
C-3	-404	-554	-724
C-4	-173	-241	-308
D-1	-26	-37	-47
D-2	-135	-190	-245
H-1	54	78	101
H-2	91	128	166
H-3	148	207	266
H-4	372	382	491
H-5	295	391	514
H-6	372	382	491
H-7	214	301	385

TABLE V.
CALCULATED STRAIN GAGE DATA

Run Number: 3

19 August 1946

Beam Span 5 feet Load Position 2 feet near support

Load 2500 pounds

	ϵ_1	ϵ_2	ϵ_3	ϵ_1	ϵ_2	ϵ_3	T_m	ϕ
E-1	-57	-134	-50	-56	-132	-49	-770	-40
E-2	-19	-135	-70	-18	-133	-81	-840	35
E-3	0	-133	-81	0	-136	-81	-940	33 $\frac{1}{2}$
E-4	-47	-202	-164	-44	-198	-163	-1006	28 3/4
E-5	-7	-7	-169	-3	-3	-169	1060	-23
E-6	0	-13	-139	3	-10	-139	834	-20
E-7	0	0	-108	2	2	-108	694	-22
F-1	-17	-139	-70	-16	-137	-70	-870	36 3/4
F-2	-149	-30	-29	-148	-26	-26	-700	22 $\frac{1}{2}$
F-3	-29	-136	-60	-26	-134	-59	-838	40 $\frac{1}{2}$
F-4	-131	-90	25	-132	-88	28	-786	-12
F-5	-20	26	-37	-19	27.5	-37	500	-40
F-6	-26	25	-15	-26	26	-14	420	41 $\frac{1}{2}$
G-1	-17	-121	-27	-16	-120	-27	-902	43 $\frac{1}{4}$
G-2	-16	-101	-18	-16	-100	-18	-748	44 $\frac{1}{2}$
G-3	-55	-101	20	-53	-100	21	-832	-52 $\frac{3}{4}$
G-4	-84	-96	68	-85	-96	70	-1016	-25
G-5	-74	50	75	-76	50	77	820	16 $\frac{1}{2}$
G-6	50		-101	52		-102		
G-7	-45	53	20	-45	54	21	854	32

TABLE VI.
CALCULATED STRAIN GAGE DATA

Run Number: 3

19 August 1946

Beam Span 5 feet

Load Position 2 feet from near support

Load 3500 pounds

	ϵ_1	ϵ_2	ϵ_3	ϵ_1	ϵ_2	ϵ_3
E-1	-81	-188	-69	-80	-185	-67
E-2	-32	-217	-129	-29	-214	-128
E-3	-0	-168	-115			
E-4	-67	-284	-251	-62	-278	-230
E-5	-0	-9	-238	-4	-4	-238
E-6	0	-18	-194	4	-14	-194
E-7	0	0	-151	3	3	-151
F-1	-24	-194	-99	-22	-192	-99
F-2	-208	-42	-41	-207	-37	-37
F-3	-42	-188	-85	-40	-185	-84
F-4	-185	-126	35	-186	-123	39
F-5	-20	35	-50	-27	154	-49
F-6	-38	35	-20	-38	36	-19
G-1	-23	-169	-38	-22	-168	-38
G-2	-23	-141	-24	-23	-140	-24
G-3	-75	-144	26	-78	-143	28
G-4	-116	-134	95	-118	-134	97
G-5	-104	66	105	-106	66	107
G-6	70		-142	73		-143
G-7	-65	75	30	-66	74	31

TABLE VII.
CALCULATED STRAIN GAGE DATA

Run Number: 5

19 August 1946

Beam Span 5 feet Load Position 2 feet from near support

Load 4500 pounds

	ϵ_1	ϵ_2	ϵ_3	ϵ_1	ϵ_2	ϵ_3	T_m	ϕ
E-1	-104	-242	-89	-102	-243	-87	-1370	-40
E-2	-38	-279	-130	-56	-281	-129	-1560	35
E-3	0	-240	-148	3	-242	-148	-1640	33 $\frac{1}{2}$
E-4	-83	-366	-297	-77	-365	-295	-1876	29 $\frac{1}{2}$
E-5	-11	-15	-305	-5	-8	-305	1890	-22
E-6	0	-24	-249	5	-19	-249	1466	-20
E-7	0	0	-193	4	4	-193	1274	-22 $\frac{1}{2}$
F-1	-82	-251	-127	-29	-253	-126	-1610	-37
F-2	-270	-55	-53	-269	-50	-48	1386	23 $\frac{1}{2}$
F-3	-55	-239	-110	-53	-241	-109	-1442	40
F-4	-237	-168	43	-238	-162	48	-1420	-12 $\frac{1}{2}$
F-5	-36	46	-67	-35	49	-66	880	-40 $\frac{1}{2}$
F-6	-49	45	-27	-48	48	-26	770	41 $\frac{1}{2}$
G-1	-50	-217	-49	-29	-219	-48	-1600	43 $\frac{1}{2}$
G-2	-30	-182	-50	-29	-184	-29	-1380	45
G-3	-95	-185	34	-96	-187	36	-1526	-53 $\frac{1}{2}$
G-4	-150	-173	122	-153	-175	125	-1816	-25
G-5	-134	86	132	-137	88	135	1454	17
G-6	90		-185	94		-185		
G-7	-80	95	87	-81	98	89	1190	32

TABLE VIII.
CALCULATED STRAIN GAGE DATA

Run Number: 3

19 August 1946

Beam Span 5 feet Load Position 2 feet from near support

	<u>Load (pounds)</u>		
	2500	5500	4500
A-1	-118	-166	-215
A-2	-182	-256	-329
A-3	-250	-322	-414
B-1	-29	-39	-50
B-2	-68	-95	-122
B-3	-25	-35	-45
B-4	-189	-180	-231
B-5	-4	-6	-9
B-6	-169	-235	-304
B-7	11	16	20
B-8	-214	-301	-389
B-9	91	126	164
B-10	-236	-331	-426
B-11	11	16	20
B-12	-287	-319	-410
B-13	-194	-274	-352
C-1	-75	-105	-136
C-2	-215	-290	-364
C-3	-214	-301	-389
C-4	-156	-217	-280
D-1	-72	-102	-151
D-2	-183	-257	-330
H-1	0	0	0
H-2	44	61	79
H-3	82	114	147
H-4	183	257	330
H-5	210	234	380
H-6	144	200	257
H-7	87	121	155

TABLE IX.
CALCULATED STRAIN GAGE DATA

Run Number: 4

23 August 1946

Beam Span 7 feet

Load Position $1\frac{1}{2}$ feet from near support

Load 2500 pounds

	ϵ_1	ϵ_2	ϵ_3	ϵ_1	ϵ_2	ϵ_3	T_m	ϕ
E-1	-55	-117	-27	-54	-116	-26	-780	-43 $\frac{1}{2}$
E-2	-5	-153	-55	-4	-152	-55	-1100	39
E-3	0	-217	-176	4	-213	-176	-1380	27
E-4	14	-62	-185	18	-29	-185	1088	-13 $\frac{1}{2}$
E-5	25	-9	-113	25	-7	-113	702	-13 $\frac{1}{2}$
E-6	22	-2	-94	25	1	-94	612	-15 $\frac{1}{2}$
E-7	10	0	-76	12	1	-76	500	-18 $\frac{1}{2}$
F-1	-10	-134	-19	-10	-153	-19	-1064	43
F-2	-142	0	-14	-142	3	-11	918	26
F-3	-134	-78	-15	-134	-75	-2	-596	-2 $\frac{1}{2}$
F-4	0	20	-32	1	21	-32	360	-32 $\frac{1}{2}$
F-5	-29	21	-28	-28	22	-27	432	45
F-6	-4	7	0	-4	7	0	91	39 $\frac{1}{2}$
G-1	-25	-147	6	-23	-147	6	-1240	-41 $\frac{1}{2}$
G-2	-14	-58	65	-15	-59	63	-822	-52 $\frac{1}{2}$
G-3	-51	-114	62	-52	-114	63	-1176	-32
G-4	-80	45	95	-82	45	97	868	11
G-5	-31	43	69	-32	42	70	500	12
G-6	65		-51	86		-33		
G-7	-21	52	70	-22	51	70	482	15 $\frac{1}{2}$

TABLE X.
CALCULATED STRAIN GAGE DATA

Run Number: 4

23 August 1946

Beam Span 7 feet

Load Position $1\frac{1}{2}$ feet from near support

Load 3500 pounds

	ϵ_1	ϵ_2	ϵ_3	ϵ_1	ϵ_2	ϵ_3
E-1	-52	-169	-40	-51	-167	-39
E-2	-7	-221	-79	-5	-219	-79
E-3	0	-315	-254	5	-310	-254
E-4	20	-47	-269	25	-113	-269
E-5	32	-14	-166	35	-11	-164
E-6	31	-2	-136	34	0	-137
E-7	15	0	-110	17	2	-110
F-1	-18	-193	-27	-15	-195	-27
F-2	-205	0	-18	-205	4	-14
F-3	-194	-114	-22	-194	-110	-18
F-4	0	27	-47	1	28	-47
F-5	-42	30	-40	-41	32	-39
F-6	-5	9	0	-5	9	0
G-1	-35	-214	8	-35	-215	8
G-2	-20	-85	95	-22	-85	95
G-3	-74	-167	89	-76	-167	90
G-4	-115	66	139	-118	66	141
G-5	-44	62	86	-46	62	90
G-6	125		-44	124		-47
G-7	-30	73	100	-32	71	101

TABLE XI.
CALCULATED STRAIN GAGE DATA

Run Number: 4

23 August 1946

Beam Span 7 feet

Load Position $1\frac{1}{2}$ feet from near support

Load 4500 pounds

	ϵ_1	ϵ_2	ϵ_3	ϵ_1	ϵ_2	ϵ_3	T_m	ϕ
E-1	-68	-223	-52	-67	-221	-51	-1436	46 $\frac{1}{4}$
E-2	-8	-289	-105	-6	-287	-103	2114	59
E-3	0	-410	-381	7	-403	-331	2572	27 $\frac{1}{2}$
E-4	27	-63	-380	34	-55	-351	-1978	14 $\frac{1}{2}$
E-5	40	-18	-214	45	-13	-215	1538	14 $\frac{1}{2}$
E-6	41	-3	-179	45	0	-180	1196	15 $\frac{1}{2}$
E-7	20	0	-144	23	5	-144	956	18 $\frac{1}{2}$
F-1	-19	-252	-36	-13	-251	-36	2040	45 $\frac{1}{2}$
F-2	-269	0	-25	-268	6	-20	1766	25 $\frac{1}{2}$
F-3	-253	-147	-29	-252	-143	-26	1000	1 $\frac{1}{2}$
F-4	0	38	-60	+1	40	-60	664	-33
F-5	-55	40	-52	-54	42	-51	826	44 $\frac{1}{2}$
F-6	-6	12	0	-6	12	0	1186	58
G-1	-44	-277	9	-44	-276	10	2338	42
G-2	-27	-110	124	-29	-112	125	1630	32 $\frac{1}{2}$
G-3	-95	-216	119	-97	-216	121	2270	32 $\frac{1}{2}$
G-4	-150	89	181	-154	88	184	1650	11 $\frac{1}{2}$
G-5	-58	82	129	-61	80	150	958	12 $\frac{1}{2}$
G-6	162		-55	183		-58		
G-7	-37	98	131	-40	96	152	896	15 $\frac{1}{4}$

TABLE XII.
CALCULATED STRAIN GAGE DATA

Run Number: 4

23 August 1946

Beam Span 7 feet Load Position $1\frac{1}{2}$ feet from near support

	<u>Load (pounds)</u>		
	2500	3500	4500
A-1	-123	-170	-229
A-2	-178	-257	-338
A-3	-184	-265	-347
B-1	-25	-37	-49
B-2	-29	-43	-56
B-3	21	20	38
B-4	-124	-179	-234
B-5	58	55	70
B-6	-153	-228	-301
B-7	120	187	247
B-8	-168	-273	-357
B-9	38	59	80
B-10	-181	-262	-345
B-11	47	65	86
B-12	-173	-249	-329
B-13	-162	-253	-304
C-1	-40	-58	-75
C-2	-151	-219	-286
C-3	-188	-273	-356
C-4	-160	-231	-302
D-1	-36	-53	-70
D-2	-165	-239	-314
H-1	49	72	94
H-2	100	145	190
H-3	186	269	352
H-4	208	300	393
H-5	189	274	358
H-6	155	226	298
H-7	146	212	277

TABLE XIII.
CALCULATED STRAIN GAGE DATA

Run Number: 6

26 August 1948

Beam Span 4 feet

Load Position $1\frac{1}{2}$ feet from near support

Load 2500 pounds

	ϵ_1	ϵ_2	ϵ_3	ϵ_1	ϵ_2	ϵ_3	T_m	Φ
E-1	-18	-97	-11	-18	-98	-11	-750	45 $\frac{1}{2}$
E-2	13	-113	-51	14	-114	-52	900	55 $\frac{1}{2}$
E-3	7	-165	-100	9	-166	-100	1200	32 7/8
E-4	0	23	-102	2	25	-102	-324	27 $\frac{1}{2}$
E-5	18	23	-68	19	27	-68	-592	24 $\frac{1}{2}$
E-6	20	39	-64	21	41	-54	-614	28
E-7	8	44	-27	9	45	-27	-512	35 3/8
F-1	-4	-113	-17	-4	-115	-17	944	42 $\frac{3}{4}$
F-2	-117	1	-18	-117	4	-16	800	61 $\frac{1}{2}$
F-3	-108	-60	39	-100	-60	41	-870	-8 $\frac{1}{2}$
F-4	0	49	-14	0	50	-14	-574	40 $\frac{3}{4}$
F-5	0	57	-4	0	58	-4	-540	43 $\frac{1}{2}$
F-6	0	54	-1	0	55	-1	-498	44 $\frac{1}{2}$
G-1	-23	-125	0	-23	-126	0	-1078	47 $\frac{1}{2}$
G-2	-11	-63	50	-12	-87	50	-902	50 $\frac{1}{2}$
G-3	-42	-70	67	-43	-72	68	-920	61 $\frac{1}{2}$
G-4	-55	67	74	-57	68	75	780	69 $\frac{1}{2}$
G-5	-10	45	53	-17	46	33	399	62 $\frac{1}{2}$
G-6	-12		40	-13		42		
G-7	-16	56	19	-16	57	19	324	53 $\frac{1}{2}$

TABLE XIV.
CALCULATED STRAIN GAGE DATA

Run Number: 6

26 August 1948

Beam Span 4 feet Load Postion $1\frac{1}{2}$ feet from near support

Load 3500 pounds

	ϵ_1	ϵ_2	ϵ_3	ϵ_1	ϵ_2	ϵ_3
E-1	-25	135	-17	-25	139	-17
E-2	18	-158	-71	19	-160	-71
E-3	11	-226	-141	14	-228	-141
E-4	0	41	-140	-3	45	-140
E-5	26	55	-95	28	37	-94
E-6	28	55	-75	30	58	-76
E-7	12	61	-38	13	63	-38
F-1	-6	-158	-23	-6	-161	-23
F-2	-151	2	-26	-150	3	-25
F-3	-152	-85	55	-153	-89	54
F-4	0	68	-21	0	70	-21
F-5	0	79	-6	0	81	-6
F-6	0	77	-2	0	79	-2
G-1	-31	-174	0	-31	-177	1
G-2	-15	-118	+42	-16	-121	42
G-3	-57	-37	94	-59	-101	95
G-4	-74	93	104	-76	95	102
G-5	-22	62	45	-23	62	44
G-6	-18		58	-19		57
G-7	-22	78	27	-22	80	27

TABLE XV.
CALCULATED STRAIN GAGE DATA

Run Number: 6

26 August 1946

Beam Span 4 feet

Load Position $1\frac{1}{2}$ feet from near support

Load 4500 pounds

	ϵ_1	ϵ_2	ϵ_3	ϵ_1	ϵ_2	ϵ_3	T_m	ϕ
E-1	-27	-174	-24	27	-176	-23	-1358	$45\frac{1}{4}$
E-2	23	-203	-92	35	-206	-92	-1638	$55\frac{1}{4}$
E-3	20	-290	-180	24	-293	-180	-2140	$-31\frac{1}{2}$
E-4	0	51	-182	4	56	-182	-1560	$28\frac{1}{2}$
E-5	35	45	-150	38	48	-121	-1076	$23\frac{1}{4}$
E-6	35	70	-87	37	72	-98	-1100	$28\frac{1}{4}$
E-7	15	79	-50	16	82	-50	-902	55
F-1	-7	-193	-26	-6	-201	-31	1610	$46\frac{1}{4}$
F-2	-203	2	-35	-207	7	-29	1370	$62\frac{1}{2}$
F-3	-193	-108	71	-197	-103	75	-1286	$80\frac{1}{2}$
F-4	0	89	-36	1	92	-26	-958	41
F-5	0	101	-9	0	103	-9	-976	$52\frac{1}{4}$
F-6	0	98	-2	0	100	-2	-920	$44\frac{1}{4}$
G-1	-41	-224	1	-41	-227	2	-1800	$47\frac{1}{4}$
G-2	-20	-152	55	-21	-154	55	-1584	51
G-3	-73	-125	122	-75	-129	125	-1646	61
G-4	-93	118	185	-96	119	137	1363	$69\frac{1}{2}$
G-5	-29	81	+58	-28	85	60	728	$61\frac{1}{4}$
G-6	-25		-75	-23		-74		
G-7	-30	101	55	-31	103	34	962	$53\frac{1}{2}$

TABLE XVI.
CALCULATED STRAIN GAGE DATA

Run Number: 6

26 August 1946

Beam Span 4 feet Load Position 1 $\frac{1}{2}$ feet from near support

	<u>Load (pounds)</u>		
	2500	3500	4500
A-1	-88	-125	-108
A-2	-43	-199	-255
A-3	-98	-188	-178
B-1	0	0	0
B-2	-21	-29	-37
B-3	26	54	43
B-4	-87	-126	-100
B-5	37	52	67
B-6	-113	-165	-213
B-7	107	150	182
B-8	-133	-135	-258
B-9	58	48	61
B-10	-125	-177	-203
B-11	26	57	46
B12	-91	-127	-106
B-13	-57	-79	-101
C-1	-18	-26	-16
C-2	-115	-159	-203
C-3	-130	-180	-231
C-4	-47	-66	-85
D-1	-24	-52	-44
D-2	-154	-216	-277
H-1	53	73	95
H-2	80	114	146
H-3	154	216	279
H-4	168	254	302
H-5	123	172	222
H-6	79	112	145
H-7	44	62	80

TABLE XVII.
Effect of Gage Factor on Data

Fan Number: 1

Load Position at Column 5

Vertical Reference Line Spacing 2 inches Set even Liner.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
A	166	157	152	142	140	135	130	125	120	115	110	105	100	95	90	
B	10	8	5	120	130	113	116	137	137	127	120	117	117	117	117	
C	137	140	141	138	136	135	137	137	137	137	137	137	137	137	137	
D	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	
E	75 $\frac{1}{2}$	46 $\frac{1}{2}$	73 $\frac{1}{2}$	116	137	135	135	135 $\frac{1}{2}$								
F	77 $\frac{1}{2}$	74 $\frac{1}{2}$	65 $\frac{1}{2}$	103 $\frac{1}{2}$	113	119	122 $\frac{1}{2}$									
G	82	81	80 $\frac{1}{2}$	80 $\frac{1}{2}$	80 $\frac{1}{2}$	80 $\frac{1}{2}$	80 $\frac{1}{2}$	80 $\frac{1}{2}$	80 $\frac{1}{2}$	80 $\frac{1}{2}$	80 $\frac{1}{2}$	80 $\frac{1}{2}$	80 $\frac{1}{2}$	80 $\frac{1}{2}$	80 $\frac{1}{2}$	
H																
I																
J																
K																
L																
M																

NOTE: Short End 3 $\frac{1}{2}$ beam is to right.

TABLE XVIII.

22

卷之三

TABLE XIX.
STRESSCOAT CRACK ANGLE DATA

Run Number: 3

Total Position at Column 10

Vertical Reference Line Spacing 1 inch Between Lines.

	1	2	3	4	5	6	7	8	9	10	11	12 ¹	13	14	15	16	17
A																	
B																	
C	16	16 ¹	18	19	19												
D																	
E	24 ¹ ₂	23 ¹ ₂	22 ¹ ₂	23 ¹ ₂	26												
F																	
G	41	39	36	38 ¹ ₂	44	51 ¹ ₂	59										
H																	
I	55	54 ¹ ₂	54	58 ¹ ₂	60 ¹ ₂	65 ¹ ₂	72 ¹ ₂	75	88	95 ¹ ₂	98	101	100	99 ¹ ₂	99		
J																	
K	59 ¹ ₂	58 ¹ ₂	62	66	72 ¹ ₂	76	78 ¹ ₂	80	82	91	96 ¹ ₂	99	97 ¹ ₂	97 ¹ ₂	100	101 ¹ ₂	
L																	
M	66 ¹ ₂	70	70	74	78 ¹ ₂	80	80	80	81 ¹ ₂	88	92	95	96 ¹ ₂	98	95 ¹ ₂	95	

TABLE XIX. (cont'd.)
STRENGTH CRACK ANGLE DATA

Run Number: 3

Load Position at Column 12

Vertical Reference Line Spacing 1 inch Between Lines.

	18	19	20	21	22	23	24
A							
B							
C	176	174	175				
D							
E	174	175	172				
F							
G	142	143	144				
H							
I	98	98	99 $\frac{1}{2}$	100	101		
J							
K	98 $\frac{1}{2}$	100	103	26 $\frac{1}{2}$	100	101	
L							
M	94	95	96 $\frac{1}{2}$	95 $\frac{1}{2}$	94	95	98 $\frac{1}{2}$

TABLE XX

INDEX OF CHROMATIC COLOR INDEX DATA

VOCAL FREQUENCIES OF THE SINGING BIRDS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	830	831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	850	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879	870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	890	891	892	893	894	895	896	897	898	899	900	901	902	903	904	905	906	907	908	909	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	950	951	952	953	954	955	956	957	958	959	960	961	962	963	964	965	966	967	968	969	960	961	962	963	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	979	970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	990	991	992	993	994	995	996	997	998	999	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1000	1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025	1026	1027	1028	1029	1020	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055	1056	1057	1058	1059	1050	1051	1052	1053	1054	1055	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134	1135	1136	1137	1138	1139	1130	1131	1132	1133	1134	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144

TABLE XX. (cont'd.)

卷之三

卷之三

卷之三

Technical Reference and Guidance I Each Between Links.

• ۲۷۰ •

TABLE XXI.

Page Number: 8

Long Periodic at Clusters 10

Vertical Interline Distances in Angstrom Units.

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
A	93	99 $\frac{1}{2}$	100	97 $\frac{1}{2}$	101	97	101	111	104	104	107	105	102	103	102	104	104
B	97 $\frac{1}{2}$	105	104	105	100	99	108	110	110	111	112	112	113	113	112	112	112
C	101	105 $\frac{1}{2}$	102 $\frac{1}{2}$	106	105	104	106	114 $\frac{1}{2}$	114	118	121	121	120	120	121	121	121
D	107	108	104 $\frac{1}{2}$	107	107	107	114	114	117	12	37	53	55	56	58	59	59
E	111	105	107 $\frac{1}{2}$	105	105 $\frac{1}{2}$	105	104	104	106	12	53	48	50	51 $\frac{1}{2}$	57	54	56 $\frac{1}{2}$
F	115	114	116 $\frac{1}{2}$	122	122 $\frac{1}{2}$	122 $\frac{1}{2}$	127	127	125	0	9	32	45	46 $\frac{1}{2}$	47	51	53 $\frac{1}{2}$
G	117	120 $\frac{1}{2}$	123 $\frac{1}{2}$	122 $\frac{1}{2}$	123 $\frac{1}{2}$	123 $\frac{1}{2}$	126	126 $\frac{1}{2}$	126 $\frac{1}{2}$	126	0	13	50	39	42	44	50
H	125	129 $\frac{1}{2}$	126	116	132 $\frac{1}{2}$	132 $\frac{1}{2}$	163 $\frac{1}{2}$	163 $\frac{1}{2}$	163 $\frac{1}{2}$	0	21	18	30	30	42 $\frac{1}{2}$	42	45
I	138	136 $\frac{1}{2}$	140 $\frac{1}{2}$	121 $\frac{1}{2}$	121 $\frac{1}{2}$	121 $\frac{1}{2}$	168 $\frac{1}{2}$	168 $\frac{1}{2}$	168 $\frac{1}{2}$	0	11	16	22	22	22 $\frac{1}{2}$	22 $\frac{1}{2}$	
J	137	143	142 $\frac{1}{2}$	157	157	157	154 $\frac{1}{2}$	154 $\frac{1}{2}$	154 $\frac{1}{2}$	0	5	14	25 $\frac{1}{2}$	25 $\frac{1}{2}$	35	35	31 $\frac{1}{2}$
K	155 $\frac{1}{2}$	155 $\frac{1}{2}$	156 $\frac{1}{2}$	160	160	165 $\frac{1}{2}$	165 $\frac{1}{2}$	165 $\frac{1}{2}$	165 $\frac{1}{2}$	0	3	14	13 $\frac{1}{2}$	21 $\frac{1}{2}$	27	35	35
L	156	154	160	170	170	173	173	173	173	0	4	9	16	16 $\frac{1}{2}$	20 $\frac{1}{2}$	25 $\frac{1}{2}$	25 $\frac{1}{2}$
M	162	166 $\frac{1}{2}$	171	171	171	171	172	172	172	0	4	16	16	16	16	16	16

NOTE: short end of beam is to right.

TABLE XXII
STRENGTH CRACK AND DATA

Run Number: 9

Load Position at Column 10.2

Vertical Reference Line Spacing 1 Inch Between Lines.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A					1	15							163 $\frac{1}{2}$	164	162	158	
B				0 $\frac{1}{2}$	0	13	46 $\frac{1}{2}$						160 $\frac{1}{2}$	162	158 $\frac{1}{2}$	155 $\frac{1}{2}$	
C	10 $\frac{1}{2}$	5	3	2	14	30	36						151 $\frac{1}{2}$	152	161	155	154
D	17	13	7	6	24	54	107	122					154	155	149		
E	21	15	10	9	10	16 $\frac{1}{2}$	26 $\frac{1}{2}$	28	73	117 $\frac{1}{2}$	126	142	142	143	143	146	
F	32	27 $\frac{1}{2}$	27	23	21 $\frac{1}{2}$	30	32 $\frac{1}{2}$	53 $\frac{1}{2}$	90	117	123 $\frac{1}{2}$	134 $\frac{1}{2}$	145	141 $\frac{1}{2}$			
G	41	30 $\frac{1}{2}$	34	30	30	32 $\frac{1}{2}$	53 $\frac{1}{2}$	58	70	90	105	117	127	132	132	141 $\frac{1}{2}$	
H	55 $\frac{1}{2}$	50 $\frac{1}{2}$	47 $\frac{1}{2}$	42 $\frac{1}{2}$	42 $\frac{1}{2}$	58	70	70	70	70	101	113	124	125	132		
I	66 $\frac{1}{2}$	66	58	53	65	70 $\frac{1}{2}$	85	101	109	116	118 $\frac{1}{2}$	123					
J	68	66 $\frac{1}{2}$	66	59 $\frac{1}{2}$	74	77	81	85	85	85	85	108	112 $\frac{1}{2}$	116	115		
K	78	76 $\frac{1}{2}$	72 $\frac{1}{2}$	74	74	82	83	85 $\frac{1}{2}$	85 $\frac{1}{2}$	85 $\frac{1}{2}$	85	108	112 $\frac{1}{2}$	116	115		
L	74 $\frac{1}{2}$	77	77 $\frac{1}{2}$	77	80	84	85 $\frac{1}{2}$	85 $\frac{1}{2}$	85 $\frac{1}{2}$	85 $\frac{1}{2}$	85	106	108	113 $\frac{1}{2}$	115		
M	80	80	78	77 $\frac{1}{2}$	80 $\frac{1}{2}$	85 $\frac{1}{2}$	86 $\frac{1}{2}$	85	86	86	89 $\frac{1}{2}$	106 $\frac{1}{2}$	109 $\frac{1}{2}$	113	113	112	

APPENDIX C.AMPLIFICATION

Part I. Computation of Shear Stress from Strain Gage Readings.

Calculation for Run No. 3, 10 August 1940, Gauge P-1

Lod = 2500 pounds/in.

from failed readings:

$$\epsilon_1' = .20$$

$$\epsilon_2' = .16$$

$$\epsilon_3' = -.87$$

$$\begin{aligned} \text{Then: } \epsilon_1 &= \epsilon_1' - \alpha \epsilon_3' \\ \epsilon_2 &= 1.12 - \alpha (\epsilon_1' + \epsilon_3') \\ \epsilon_3 &= \epsilon_3' - \alpha \epsilon_1' \end{aligned}$$

For this gage, $\alpha = .0613$

Therefore,

$$\epsilon_1 = .16 - (.0613)(-.87)$$

$$\epsilon_1 = .36 + .0.73$$

$$\epsilon_1 = .13$$

$$\epsilon_2 = (1.12)(.23) - (.0613)(-.87)$$

$$\epsilon_2 = .26.5 + 1.82$$

$$\epsilon_2 = .28$$

$$\epsilon_3 = -.87 - (.0613)(-.13)$$

$$\epsilon_3 = -.87 + .43$$

$$\epsilon_3 = -.44$$

From Nomograph Solution for Shear Stress

$$\tau_m = -500 \text{ lbs/sq.in}$$

$$\phi = -40^\circ$$

61.

Part II. Computation of Shear Stress from Simple Beam Formulas:

For Run No. 3, 12 August 1916, Position F-5

$$W = 2500 \text{ lbs.}$$

$$A = 2 \text{ ft.}$$

$$B = 3 \text{ ft.}$$

$$L = 5 \text{ ft}$$

$$V = -\frac{WA}{L}$$

$$V = -1000 \text{ lbs.}$$

$Q = 8.04 \text{ in.}^3$ (obtained by integrating tracing of beam cross-section)

$$I = 35.6 \text{ in.}^4$$
 (obtained as above)

$$b = .28 \text{ in.}$$
 (from direct meas.)

$$\begin{aligned}\tau_{31} &= \frac{VQ}{Ib} \\ &= \frac{(-1000)(8.04)}{(35.6)(.28)}\end{aligned}$$

$$\tau_{31} = -516 \text{ lbs./sq.in}$$

$$\begin{aligned}M_x &= \frac{VA}{L}(L-x) \\ &= \frac{(2500)(2)}{5} \quad (5-2.25) \\ &= (2500)(2)(2.75)\end{aligned}$$

$$M = 2750 \text{ ft. lbs.}$$

$$C = 0$$

$$\sigma_3 = 0$$

$$\sigma_1 = 0$$
 (assumed)

$$\begin{aligned}\tau_m &= \pm \sqrt{\frac{(\sigma_3 - \sigma_1)^2}{2} + \tau_{31}^2} \\ &= \pm \sqrt{0 + (516)^2}\end{aligned}$$

$$\tau_m = \pm 516 \text{ lbs./sq.in}$$

b. For Run No. 1, 17 August 1946, Gage Position E-2

$$W = 4500 \text{ lbs.}$$

$$A = 2 \text{ ft}$$

$$B = 5 \text{ ft}$$

$$L = 7 \text{ ft}$$

$$C = 2 \text{ in.}$$

$$b = .28 \text{ in.}$$

By integration of section

$$Q = 7.64 \text{ in.}^3$$

$$V = \frac{WB}{L}$$

$$= \frac{(4500)(5)}{7}$$

$$V = 3210 \text{ ft. / sec. in}$$

$$\tau_s' = \frac{VQ}{Ib}$$

$$= \frac{(3210)(7.64)}{(35.4)(.28)}$$

$$= 1557 \text{ lbs/in.}^2$$

$$M = \frac{WAL}{L}$$

$$= \frac{(4500)(5)(.75)}{7}$$

$$M = 2410 \text{ ft. lbs.}$$

$$\sigma_3 = \frac{Mc}{I}$$

$$= \frac{(2410)(2)(.22)}{55.3}$$

$$\sigma_3 = 1040 \text{ lbs/sq.in}$$

$$\sigma_1 = 0 \text{ (assumed)}$$

$$\tau_m = \pm \sqrt{\frac{(1040)^2 + (1557)^2}{2}}$$

$$\tau_m = \pm 1643 \text{ lbs/sq.in.}$$

APPENDIX D

OBSERVED DATA

DESCRIPTION OF DATA:

STRESSCOAT DATA

This data is presented as loading data and crack angle data. The loading data provides information on type of load, position of load, etc., for each test run. The crack angle data summarizes the angles of the individual Strescoat cracks. These angles were measured from the horizontal in a counter clockwise direction from the right. These data provide information which would enable any person to reconstruct the tensile strain pattern for each load listed. The method of obtaining this crack angle data was as follows:

1. After completion of the test run and application of CO_2 , the beam was removed from the testing machine and a rectangular reference grid system nailed off covering the area of the crack pattern. The reference lines were run parallel to the assumed neutral axis and at right angles to the assumed neutral axis. The columns (numbered 1, 2, 3, etc.) represent lines drawn perpendicular to the neutral axis, and lines (lettered A, B, C, etc.) represent lines parallel to the neutral axis.

2. The angle of cracking was then measured at each intersection of the grid reference lines.

3. Explanation of labelling of reference lines.

- a. Low numbers are to the left, looking towards the beam, in all cases.
 - b. Unless otherwise stated, the short span is to the left.
 - c. Longitudinal reference lines are spaced $\frac{1}{2}$ inch between lines; vertical reference lines are spaced as noted on each data sheet.
4. The position of the beam neutral axis is on reference line G.

STRAIN GAGE DATA

Data is presented for each test load of each run made, in the sequence of loading. From this observed data the observed values were faired, and the faired data used to obtain values of strain for calculation of results. The strain indicator reference position value was omitted from these tables of observed data, since all data under each reading are based on the same reference position. The values given in the columns under each load are expressed in micro-inches per inch.

۲۷۰

5000 - 3.5 7 feet

T. A. Davies

Longevity (or Generation)

سیاست و اقتصاد اسلامی

THE STATE OF SOUTH DAKOTA

مکالمہ میں

卷之三

卷之三

140

4000

50

576 OTTO

卷之三

卷之三

None	None	None	None
(Oral Log Line)	None	None	None

TABLE XXIV

FIRE NUMBER 6

FIRE NUMBER 7

Log Detox:

(Degradation (or tension)

Log Degradation, 10 feet to base support

Date: Jan. 22, 1943

Location:

Number 1200

Cordicity:

P

Locality	Scale Time (sec.)	Effective Load (lbs.)	Time Under Load (sec.)	Cycle Rate (Sec.)	Revolving (From location)
20	5250	3000	61	17.5	None
10	4050	4050	58	9.5	To & From Reciprocating Load
31	5500	5000	65	15.2	No. Interventions
152	6010	3010	101	6.3	Bottom of Ditch - Middle Tension Load
195	6970	6970	115	3.20	Increased Contact Areas

卷之三

Date: 21 SEP 1962

Dokument 7 Wert

卷之二

GEOGRAPHICAL DISTRIBUTION

LOGS, POSITION & LOGS, NO. 1000

Successor Date:
New Date
of Birth
of Death

TABLE XXVI

STANDARD METERS

Date: 1st July 19

Distance A

Base: 500 ft. of feet

Lod. 2000

Cone 1000 (or 1000)

Total elevation 1000 feet from base 1000

Locality	Scale 1 in. (Sec.)	Effective Scale (Sec.)	Time Required		Cyclic Time (Sec.)	(Cyclic Time (Sec.)
			Initial	Final		
35	3040	1000	95	95	1.80	None
70	2080	800	125	125	1.7	None
75	1810	671	140	140	220	None
65	920	4560	150	195	195	None
70	50	5400	75	145	145	None

TABLE XxVII
 STRESS COAT LOADING DATA

Run Number 5

Bear Span 7 feet

Load Date:

Tension Load

Front Position 2 $\frac{1}{2}$ feet from near support

Date: 24 January 1946

Strain-coat Date:

Number 1920

Sensitivity .0003 in./in.

Loading Time (Sec.)	Scale Load (lbs.)	Effective Load (lbs.)	Time Underload (Sec.)	Cycle Time (Sec.)	Remarks (Crack Locations)
77	2970	2970	91	187	None
66	3080	3080	98	171	Top of bottom flange beneath long. Bottom of bottom flange beneath load.
				14	
60	4450	4450	150	217	Increased areas as above
108	5350	5350	214	323	Increased areas as above. Bottom of reb beneath load.
107	5440	5440	213	230	Increased areas as above
168	5320	5320	314	460	Increased areas as above

TABLE X VIII

Run Number 6

Beam Span 7 feet

Load Data:

Concrete slab (or foundation)

Load Position 2 feet from center of gravity

Date: 12 July 1940

Concrete slab thickness:

Width = 14.52

Concrete slab thickness = 1.5 in.

Loadings Time (Sec.)	Scale Load (lbs.)	Deflections Under load (in.)	Time Under load (Sec.)	Cyclic Time (Sec.)	Tested Open, load + 0.05
75	2360	0.1	184	184	None
76	3470	0.2	172	172	None
80	3670	0.2	220	220	Top end bottom of concrete beam in load
85	4345	0.25	170	27	Concrete slab tested 10' above. Bottom of test slab - 0.05 in.
90	4370	0.25	175	30	Concrete slab tested 10' above. Bottom of test slab - 0.05 in.
105	4370	0.30	248	33	Concrete slab tested 10' above. Bottom of test slab - 0.05 in.
110	5410	0.30			

TABLE XXIX
STRATOCAL MANTLE DATA

Table XXIX, Part 7

7000 ft. to 7 feet

2000 ft. to:

Calcareous (or Tertiary)

Top 1000 feet from surface

Date: Feb. 15, 1940

Geologic Age:
Tertiary

Location	Depth Time (Sec.)	Effective Depth (Sec.)	Time Undersea (Sec.)	Cycle Time (Sec.)	Depth (Sec.)	Note
7000 ft.	7000	7000	7000	270	270	
6000 ft.	6000	6000	6000	400	400	Top 400 feet older than surface
5100 ft.	5100	5100	5100	710	710	Top 710 feet older than surface
5000 ft.	5000	5000	5000	650	650	Top 650 feet older than surface

Note: This section from 2000 ft. to surface.

TABLE XXX

卷之三

卷之三

مکالمہ احمدیہ

TABLE XXXI
STRESSCOAT LOADING DATA

Run Number 9

Beam Span 6 feet

Load Data:

Tension Load

Load Position 2 feet from near support

Date: 25 July 1946

Stresscoat Date:

Number

Sensitivity
in/in

Locating Tire (Sec.)	Scale Load (lbs.)	Effective Load (lbs.)	Time Under Load (Sec.)	Cycle Time (Sec.)	Remarks (Crack Locations)
32	3270	3270	105	202	None
35	3370	3370	129	168	None
15	4560	4560	55	75	Top of bottom flange at near support
100	5260	5260	45	155	Increased areas as above
65	5950	5950	65	125	Increased areas as above
90	6410	6410	100	240	Increased areas as above. at web beneath load.

TABLE XXXII
 STRAIN GAGE RADING NUMBERS VS. STRAIN GAGE NUMBERS

Reading Number	Gage Number	Reading Number	Gage Number	Reading Number	Gage Number
1	B-5	31	E-6-3	60	G-5-3
2	B-6	32	E-6-2	67	G-5-2
3	C-2	33	E-6-1	68	G-5-1
4	B-7	34	E-5-3	69	H-5
5	A-2	35	E-5-2	70	G-4-3
6	B-8	36	E-5-1	73	G-4-2
7	B-9	37	E-4-3	74	G-4-1
8	E-10	38	E-4-2	75	H-4
9	C-5	39	E-4-1	76	G-3-3
10	B-11	40	E-3-3	77	G-3-2
11	A-3	41	E-3-2	78	G-3-1
12	B-12	42	E-3-1	79	H-3
13	B-13	43	F-5-1	80	G-2-3
14	C-4	44	F-5-3	81	G-2-2
15	E-2-3	45	F-4-3	82	C-2-1
16	E-2-2	46	F-4-2	83	H-2
17	E-2-1	47	F-4-1	84	G-1-3
18	E-1-3	48	F-3-3	87	G-1-1
19	E-1-2	49	F-3-2	88	G-1-0
20	E-1-1	50	F-3-1	89	H-1
21	D-1	51	F-2-3	90	F-0-1
22	D-2	52	F-2-2	91	F-0-2
23	B-1	53	F-2-1	92	F-0-3
24	B-2	54	F-1-1	93	G-7-1
25	C-1	55	F-0-2	94	G-7-2
26	B-3	56	H-7	95	G-7-3
27	A-1	63	G-6-3	96	E-7-1
28	B-4	64	G-6-1	97	E-7-2
29	F-1-3	65	H-6	98	E-7-3
30	F-1-2				

TABLE XXXII
STRAIN GAGE CONSTANTS

Gage Number	Gage Factor	Auxiliary Factor	Calibrated Res. (ohms)
A-1	2.04		119.6
A-2	2.09		120.0
A-3	2.09		120.0
B-1	2.04		119.6
B-2	2.04		119.6
B-3	2.04		119.6
B-4	2.04		119.6
B-5	2.04		119.6
B-6	2.04		119.6
B-7	2.04		119.6
B-8	2.09		120.0
B-9	2.09		120.0
B-10	2.09		120.0
B-11	2.09		120.0
B-12	2.09		120.0
B-13	2.09		120.0
C-1	2.04		119.6
C-2	2.04		119.6
C-3	2.09		120.0
D-1	2.09		120.0
D-2	2.09		120.0
E-1	2.07	.0200	120.1
E-2	2.07	.0200	120.1
E-3	2.07	.0200	119.9
E-4	2.07	.0200	119.9
E-5	2.07	.0213	120.3
E-6	2.07	.0213	120.1
E-7	2.07	.0213	120.1
F-1	2.07	.0200	120.1
F-2	2.07	.0200	119.9
F-3	2.07	.0200	119.9
F-4	2.07	.0213	120.3
F-5	2.07	.0213	120.3
F-6	2.07	.0213	120.1
G-1	2.07	.0200	120.1
G-2	2.07	.0200	120.1
G-3	2.07	.0200	119.9
G-4	2.07	.0213	120.3
G-5	2.07	.0213	120.3
G-6	2.07	.0213	120.1
G-7	2.07	.0213	120.1
H-1	2.09		120.0
H-2	2.09		120.0
H-3	2.09		120.0
H-4	2.09		120.0
H-5	2.09		120.0
H-6	2.09		120.0
H-7	2.09		120.0

TABLE XXXIV
OBSERVED STRAIN GAGE DATA

Run Number: 1

Date: 17 August 1948

Beam Span 7 feet

Load Position 2 feet from nearer support

Reading Number	Load (pounds)			
	500	2530	3520	4460
1	1006	1050	1060	1085
2	1217	1081	1009	922
3	889	771	682	599
4	1153	1185	1209	1260
5	842	680	545	218
6	1154	972	881	678
7	1172	1366	1420	1552
8	1201	1109	983	679
9	258	115	942	622
10	390	449	480	550
11	520	337	221	018
12	1104	902	760	600
13	1259	1088	989	853
14	890	750	680	590
15	1007	1011	968	900
16	440	330	271	225
17	102	110	110	118
18	822	809	890	788
19	629	538	439	440
20	450	430	420	418
21	285	260	250	231
22	735	629	570	517
23	150	158	158	163
24	519	492	485	481
25	1032	1009	990	980
26	559	559	563	578
27	285	185	141	097
28	1012	921	878	840
29	903	905	900	828
30	804	289	240	193
31	570	450	398	292
32	890	820	890	880
33	290	315	340	379
34	1040	830	778	530
35	599	432	479	423
36	600	631	697	790
37	529	381	502	158
38	720	547	473	348
39	585	582	616	670
40	169	106	988	062
41	948	851	773	720
42	600	621	627	652
43	332	521	532	542
44	677	647	651	639
45	402	422	452	472

TABLE XXXIV (CONT.)
OBSERVED STRAIN GAGE DATA

Run Number: 1

Date: 17 August 1948

Beam Span 7 feet

Load Position 2 feet from near support

Reading Number	Load (pounds)			
	500	2550	5520	4460
46		888	615	771
47		918	300	751
48		899	380	382
49		690	479	427
50		720	702	707
51		800	720	780
52		470	450	470
53		828	716	670
54		139	121	120
55		668	693	722
61		605	770	760
63		295	244	228
64		052	112	175
65		884	1088	1230
66		566	613	609
67		708	753	792
68		1140	1086	1040
69		619	367	1102
70		710	796	888
73		269	200	171
74		979	911	900
75		681	1104	1273
76		1337	1452	1462
77		684	610	570
78		1075	1038	1050
79		871	490	580
80		626	643	667
81		291	200	186
82		700	671	662
83		382	456	491
84		274	297	276
87		743	701	698
88		1459	1340	1274
89		1450	1451	1533
90		810	787	799
91		752	821	834
92		761	765	760
93		920	883	865
94		512	362	587
95		253	323	367
96		922	939	960
97		271	266	272
98		553	453	406

TABLE XXXV
OBSERVATIONAL STAINLESS GAGE DATA

Run Number: 2

Date: 19 August 1946

Beam Span 6 feet

Load Position 2 feet from near support

Reading Number	Load (pounds)				
	500	2518	3436	4480	510
1	1230	1218	1260	1200	1130
2	1391	1251	1193	1138	1376
3	1010	853	800	740	1000
4	1383	1372	1471	1428	1383
5	951	743	750	585	920
6	1380	1170	1115	1010	1340
7	582	669	740	772	570
8	1260	1072	1009	902	1240
9	392	199	140	612	350
10	620	659	708	720	612
11	710	520	445	358	705
12	500	300	245	140	480
13	1390	1221	1170	1028	1372
14	881	710	670	580	878
15	1265	1189	1189	1128	1237
16	620	499	484	411	611
17	1230	1219	1242	1323	1222
18	1015	967	980	969	991
19	792	698	670	623	790
20	610	580	600	581	605
21	479	422	430	410	451
22	1146	1003	955	901	1133
23	1370	1328	1359	1340	1340
24	712	668	695	660	699
25	1181	1129	1139	1110	1151
26	714	710	748	740	698
27	1380	1288	1275	1219	1372
28	1160	1068	1042	1003	1161
29	1152	1124	1140	1122	1159
30	612	480	458	398	598
31	680	542	521	457	642
32	875	360	890	963	961
33	1310	1348	1340	1340	1310
34	969	852	790	700	940
35	520	520	525	501	518
36	842	781	813	815	825
37	1550	1402	1353	1273	1449
38	810	610	547	468	792
39	798	730	739	740	768
40	697	615	585	540	677
41	1160	1002	965	910	1125
42	837	812	880	838	812
43	698	650	654	662	688
44	880	868	821	810	829
45	606	620	641	623	579

TABLE XXXV (CONT.)
OBSERVED STRAIN GAGE DATA

Run Number: 2

Date: 17 August 1948

Beam Span 6 feet

Load Position 2 feet from near support

Reading Number		500	2615	Load (pounds)	5485	4480	510
46		365	890	872	851	351	
47		391	859	820	770	378	
48		726	700	630	660	680	
49		320	730	650	590	788	
50		387	882	886	879	909	
51		1080	1082	1057	1050	1045	
52		706	707	600	660	670	
55		967	928	852	802	880	
54		1278	1220	1305	1260	1288	
55		819	855	870	880	820	
61		960	1140	1183	1243	952	
63		1335	1229	1276	1281	1300	
64		1247	1325	1359	1371	1204	
65		1477	1640	1732	1603	1452	
66		1550	1642	1655	1678	1530	
67		785	819	825	842	772	
68		1200	1172	1120	1097	1180	
69		705	930	1040	1144	718	
70		1017	1168	1177	1216	1024	
73		1308	1387	1317	1301	1372	
74		1066	1073	1031	1000	1000	
75		876	785	852	950	550	
76		693	763	797	770	656	
77		885	846	773	743	653	
78		1273	1270	1221	1212	1250	
79		1704	1352	1902	1970	1600	
80		1718	1768	1773	1737	1711	
81		1443	1406	1385	1308	1424	
82		872	888	900	840	844	
83		1563	1626	1652	1678	1617	
84		1410	1421	1410	1401	1404	
87		943	959	936	900	932	
88		780	827	852	870	750	
89		780	879	842	802	780	
90		826	918	903	910	700	
91		930	988	965	930	850	
92		850	820	795	800	730	
93		1030	1000	983	970	1010	
94		1333	1315	1410	1442	1317	
95		1370	1460	1480	1513	1282	
96		1060	1105	1100	1115	1082	
97		458	442	435	441	402	
98		700	663	583	553	600	

TABLE XXXVI
OBSERVED STRAIN GAGE DATA

Run Number: 3

Date: 10 August 1946

Beam Span 5 feet Load Position 2 feet from near support

Reading Number		Load (pounds)			
		490	2480	3510	4535
		515			
1		1155	1150	1150	1152
2		1349	1200	1128	1060
3		1010	845	749	661
4		374	354	360	362
5		878	891	623	559
6		1549	1151	1055	973
7		523	612	649	676
8		1228	1045	939	841
9		1528	1132	1066	970
10		572	592	585	590
11		660	489	378	230
12		488	295	212	118
13		1566	1206	1131	1052
14		898	739	680	613
15		1221	1138	1038	1064
16		583	431	396	332
17		1212	1160	1150	1141
18		671	910	850	870
19		788	649	595	540
20		588	518	501	480
21		1380	1296	1279	1238
22		1130	988	901	836
23		1358	1262	1214	1239
24		1661	1597	1562	1552
25		1132	1056	1040	1009
26		698	643	641	630
27		405	270	232	180
28		1119	1006	965	909
29		1143	1053	1044	1012
30		1500	1377	1331	1261
31		612	501	440	389
32		972	920	922	912
33		1333	1280	1298	1231
34		905	766	700	680
35		1471	1409	1403	1401
36		870	789	787	785
37		566	394	335	260
38		778	591	509	427
39		778	780	712	693
40		650	549	525	480
41		1145	980	910	860
42		856	779	770	772
43		682	631	613	610
44		869	752	740	723
45		580	539	552	559

TABLE XXXVI (CONT)
OBSERVED STRAIN GAGE DATA

Run Number: 3

Date: 11 August 1946

Beam Span 5 feet

Load position 2 feet from near support

Reading Number		Load (pounds)				
		490	2480	3510	4535	515
46		930	847	811	775	851
47		1002	850	773	720	852
48		659	602	591	580	608
49		732	629	563	532	680
50		910	830	820	802	792
51		1058	923	955	936	822
52		680	605	598	560	563
53		831	831	770	705	802
54		1258	1171	1191	1130	1160
55		830	801	819	820	702
61		922	890	1030	1060	840
63		830	500	570	232	252
64		1212	1205	1222	1246	1000
65		1425	1510	1370	1618	1525
66		612	655	685	712	580
67		812	800	312	838	781
68		1182	1081	1042	1015	1080
69		707	824	912	995	990
70		1018	1030	1058	1032	900
73		1340	1256	1220	1180	1242
74		1072	961	980	892	960
75		532	640	720	762	413
76		640	630	642	648	533
77		653	720	630	632	738
78		1140	1154	1132	1110	1128
79		720	816	812	853	817
80		772	746	758	730	660
81		1400	1290	1234	1194	1202
82		1785	1722	1704	1700	1682
83		1471	1518	1523	1547	1404
84		1336	1326	1304	1295	1270
87		830	800	764	790	770
88		755	874	917	472	320
99		737	749	745	746	600
90		903	855	835	826	810
91		670	892	900	910	832
92		767	767	740	732	723
93		1000	934	900	884	902
94		1318	1330	1338	1363	1233
95		392	410	417	427	322
96		1020	1017	1000	1000	965
97		357	367	357	360	297
98		650	560	520	480	500

TABLE XXXVII

OIL TUBE - TENSILE STRENGTH DATA

Date: 23 August 1946

Run Number: 4

Beam Span 7 feet

Load Position 1 $\frac{1}{2}$ feet from near support

Reading Number	500	2570	3495	4520	525
1	473	426	420	500	438
2	651	526	440	402	154
3	1237	1116	1036	963	1210
4	601	815	932	953	740
5	1205	1037	907	922	1280
6	703	676	460	450	755
7	706	809	326	841	755
8	511	557	230	250	531
9	700	603	508	435	745
10	848	883	822	897	831
11	841	732	712	611	754
12	935	822	720	861	705
13	1013	1173	1634	1320	1080
14	852	684	660	561	810
15	1408	1517	1370	1343	1110
16	862	744	690	627	360
17	548	528	532	535	522
18	1231	1153	1150	1165	1310
19	1047	851	379	626	1027
20	908	860	861	852	803
21	1034	1012	1060	1040	1000
22	1008	1322	1100	1153	1371
23	1582	1520	1521	1545	1551
24	951	830	330	870	921
25	1606	1310	1295	1295	1345
26	990	976	971	998	982
27	651	538	457	400	600
28	1041	1241	1130	1147	1326
29	1419	1400	1357	1340	1582
30	674	706	669	610	829
31	892	780	740	638	854
32	1229	1192	1177	1180	1190
33	830	810	611	630	585
34	1161	1056	1010	970	1142
35	703	745	734	734	747
36	11.8	1180	1170	1187	1149
37	818	673	400	482	681
38	1177	1111	1070	1065	1085
39	1176	1141	1162	1205	1200
40	1131	560	283	815	990
41	1415	1248	1136	1078	1300
42	1015	1153	1135	1100	1212
43	1040	1201	86	935	1021
44	1001	1018	1042	1071	1072
45	640	706	741	731	683

TABLE XXXVII (CONT.)

ONCE-AN-EXHAUSTIVE-CASE DATA

Run Number: 4

Date: 25 August 1948

Beam Span 7 feet Load Position 1₂ feet from near support

Reading Number		500	2530	3475	4520	6250
Load (pounds)						
46		1281	1270	1280	1280	1245
47		1258	1281	1280	1271	1260
48		1028	1015	1022	1015	932
49		1110	1045	980	919	1040
50		1242	1165	1045	980	1162
51		1045	1280	1272	1274	1206
52		1043	995	992	993	1016
53		1250	1098	1040	978	1210
54		1593	1530	1516	1541	1557
55		1129	1113	1119	1130	1085
61		1286	1363	1413	1484	1250
63		627	563	551	541	580
64		543	551	538	634	500
65		907	990	1073	1140	877
66		832	842	873	900	790
67		1078	1080	1020	1106	1036
68		1430	1304	1397	1273	1410
69		1200	1348	1440	1523	1218
70		1230	1300	1362	1403	1240
73		1617	1633	1685	1714	1630
74		1378	1273	1280	1240	1328
75		805	1010	1133	1235	878
76		337	548	1000	1044	910
77		1142	1030	1000	950	1089
78		588	515	512	610	573
79		1087	1207	1307	1450	1120
80		1033	1013	1043	1071	992
81		1686	1565	1540	1514	1682
82		1130	1072	1027	1000	1102
83		1780	1820	1864	1925	1752
84		1657	1507	1517	1612	1617
87		1255	1132	1173	1183	1223
88		1104	749	905	840	1072
89		1075	1097	1133	1170	1078
90		1130	1132	1146	1138	1146
91		1102	1100	1195	1192	1156
92		123	87	80	83	83
93		1247	1187	1120	1180	1211
94		505	614	655	600	563
95		680	709	730	708	652
96		1630	1510	1556	1573	1732
97		815	652	653	662	672
98		970	862	820	792	715

TABLE XXXVIII
ONE IN. D (THIN) TEST DATA.

Run Number: 5

Date: 26 August 1948

Beam Span 3 feet Load Position 1^{1/2} feet from near support

Reading Number	000	2500	5000	4400	5500
1	381	473	407	513	480
2	310	520	460	400	530
3	1178	783	788	652	873
4	712	1112	1105	1302	1122
5	1221	1109	1040	968	1232
6	776	972	610	642	795
7	751	730	818	855	759
8	1427	1360	1260	1202	1455
9	730	660	502	548	702
10	788	938	882	870	808
11	940	682	803	778	758
12	834	900	855	805	1010
13	632	570	531	470	650
14	963	932	860	851	983
15	1430	1398	1372	1380	1448
16	817	898	650	881	802
17	469	459	464	460	460
18	1187	1180	1172	1169	1103
19	783	907	865	815	902
20	840	855	852	848	872
21	640	630	628	629	659
22	1424	1047	976	868	1130
23	1530	1550	1552	1536	1538
24	903	905	882	881	920
25	1328	1336	1321	1293	1350
26	940	963	961	1002	961
27	573	489	448	420	573
28	1312	1243	1200	1161	1323
29	1381	1417	1397	1392	1412
30	818	706	656	695	802
31	341	910	778	750	891
32	1133	1170	1163	1172	1148
33	483	525	530	541	520
34	1141	1112	1060	1078	1172
35	683	725	722	722	717
36	1105	1122	1122	1133	1110
37	1452	992	862	885	1072
38	1040	1017	1015	1017	1017
39	1110	1208	1208	1301	1311
40	1051	1260	1210	1188	1340
41	1365	1302	1220	1230	1341
42	1130	1109	1102	1120	1220
43	973	960	880	937	902
44	1041	1072	1071	1072	1073
45	771	807	750	750	818

TABLE XXXVIII (CONT)
SHEET IV D TRAPEZOIDAL LOAD

Run Number: 5

Date: 20 August 1946

Beam Span 3 feet Load Position 1₁ feet from near support

Reading Number	Load (pounds)				
	500	1000	3500	4400	5300
46	1210	1472	1680	1600	1242
47	1230	1268	1232	1261	1276
48	945	900	915	930	870
49	1027	840	813	578	608
50	1110	821	775	727	923
51	1203	1328	1518	1503	1358
52	978	1032	1030	1034	1047
53	1188	998	949	895	1100
54	870	620	631	642	640
55	1085	1115	1150	1143	1081
61	526	490	430	478	311
63	584	567	560	550	580
64	501	540	573	506	503
65	900	1004	1057	1107	910
66	580	591	593	645	560
67	850	830	837	826	870
68	1395	1379	1372	1332	1402
69	1271	1418	1483	1343	1301
70	1260	1718	1753	1600	1682
73	673	1000	1024	1040	958
74	1317	1163	1183	1140	1254
75	872	1179	1260	1337	1020
76	814	1527	1560	1394	1270
77	1023	900	935	905	1000
78	877	576	584	555	614
79	1140	1193	1272	1350	1094
80	1000	1017	1063	1080	1010
81	713	640	610	580	714
82	1085	1162	1143	1143	1173
83	805	830	930	936	820
84	680	705	707	708	708
87	1207	1208	1209	1237	1242
88	1000	872	850	795	987
89	1007	1210	1232	1262	1178
90	1117	1114	1117	1117	1120
91	1120	1153	1172	1180	1120
92	950	948	947	950	958
93	1154	1170	1167	1160	1180
94	1181	1182	1483	1520	1455
95	641	677	696	715	645
96	1023	1035	1043	1052	1230
97	845	862	875	882	843
98	954	888	837	843	728

TABLE XXXIX
OSU 1.V. SWING GAGE DATA

Run Number: 6

Date: 26 August 1948

Beam span 4 feet load position 2 feet from near support

Reading Number	Load (pounds)	Load (pounds)			
		2000	3000	4000	5000
1	1377	1445	1484	1500	1440
2	623	640	656	640	641
3	836	832	742	712	766
4	1110	1200	1064	1031	1120
5	1242	1106	1062	1032	1147
6	830	672	641	582	803
7	786	735	730	812	761
8	1436	1361	1315	1260	1465
9	610	719	670	608	803
10	800	828	833	848	801
11	960	872	855	809	907
12	1025	948	912	876	1021
13	668	620	600	576	662
14	1017	978	958	920	1018
15	1450	1404	1387	1362	1448
16	800	719	673	653	810
17	466	473	424	460	470
18	1186	1189	1190	1172	1191
19	926	718	878	842	916
20	560	858	853	841	872
21	602	640	600	622	630
22	1220	1095	1048	999	1110
23	190	190	580	510	289
24	984	98	800	941	950
25	1355	1337	1327	1320	1351
26	361	376	382	346	381
27	1341	1462	1432	1392	1343
28	1630	1204	1221	1187	1527
29	1418	1418	1356	1311	1416
30	737	700	300	614	730
31	872	832	810	787	871
32	1181	1189	1172	1203	1181
33	1481	1502	1400	1391	1481
34	1180	1171	1086	1061	1173
35	720	742	752	761	721
36	1182	1148	1157	1143	1182
37	1001	1000	960	913	1001
38	1027	1035	1068	1077	1036
39	1340	1368	1370	1376	1363
40	1752	1272	1253	1196	1352
41	618	471	450	371	651
42	1251	1260	1162	1267	1172
43	1005	1005	1005	1001	1010
44	1080	1078	1072	1063	1071
45	815	808	800	790	810

TABLE XXXIX (CONT)
OBELISK - MAIN GALE DATA

Run Number: 6

Date: 27 August 1946

Beam Span 1 foot Load Position 1/4 feet from near support

Reading number	500	Load (pounds)			
		2500	3500	4500	400
46	1248	1412	1312	1225	1212
47	1250	1283	1296	1290	1301
48	878	912	929	942	831
49	703	858	831	812	712
50	941	957	912	770	863
51	1310	1327	1617	1310	1340
52	1040	1050	1052	1053	1061
53	1052	1003	971	919	1103
54	823	820	823	825	631
55	1080	1120	1140	1171	1081
61	1250	1227	1300	1316	1243
63	595	582	578	577	539
64	500	583	547	559	409
65	896	967	923	1024	850
66	1552	1575	1500	1610	1547
67	875	913	934	963	878
68	1412	1307	1395	1300	1415
69	1280	1302	1433	1480	1283
70	700	783	792	822	698
73	980	1003	1026	1053	953
74	233	228	210	187	270
75	1005	1142	1207	1273	999
76	1268	1323	1348	1373	1362
77	1000	943	921	897	1005
78	612	678	668	652	616
79	1052	1180	1239	1300	1041
80	1027	1044	1035	1090	1013
81	697	626	557	536	639
82	1117	1128	1170	1123	1140
83	812	878	809	937	810
84	705	704	703	705	705
87	1137	1170	1177	1183	1203
88	653	860	812	762	661
89	1170	1204	1220	1232	1163
90	1131	1120	1151	1130	1132
91	1122	1166	1167	1210	1119
92	963	962	900	963	963
93	1202	1190	1180	1192	1202
94	1423	1474	1497	1522	1420
95	1530	1606	1612	1612	1581
96	1383	1640	1343	1343	1532
97	1503	1628	1645	1663	1588
98	937	912	901	887	935

TABLE XL
ON THE STAINLESS DATA

Run Number 7

Date: 20 August 1

Beam Span 7 feet Local Position $2\frac{1}{2}$ feet from near support

Ranking Number	Load (pounds)				
	473	8105	3555	4480	500
1	1510	1352	1370	1389	1303
2	1510	1320	1315	1255	1483
3	820	639	632	533	729
4	1030	1071	1038	1121	1011
5	117	971	872	790	1132
6	810	654	542	451	720
7	1652	1233	1701	1749	1310
8	1331	1165	1272	825	1130
9	932	800	639	410	781
10	772	953	909	1157	640
11	600	700	581	420	
12	1303	1108	987	433	368
13	1410	1278	1137	810	1221
14	1670	1108	1355	943	1320
15	1320	1339	1310	1237	1377
16	750	635	560	348	731
17	1306	1513	1291	1329	1300
18	1110	1103	1018	1051	1115
19	920	839	799	782	921
20	770	760	759	764	772
21	1226	1502	1490	1480	1521
22	1410	1302	1240	1182	1410
23	1402	1461	1601	1482	1470
24	847	878	816	810	841
25	1200	1340	1250	1221	1255
26	878	807	905	911	672
27	1438	1353	1215	1282	1400
28	1267	1159	1121	1108	1127
29	1360	1749	1544	1338	1383
30	710	629	582	542	720
31	782	569	486	680	830
32	970	871	941	866	980
33	1267	1287	1332	1470	1481
34	1170	951	820	571	840
35	1470	1331	1201	1101	1500
36	900	886	1010	1105	1070
37	1022	835	882	859	1030
38	910	809	752	818	910
39	1270	1252	1269	1178	1212
40	1210	1470	1430	1401	1308
41	1580	1410	1360	1310	1521
42	1187	1183	1102	1201	1160
43	870	780	717	650	832
44	900	1013	1020	1011	1011
45	710	740	720	710	710

TABLE XL (CONT.)

OB REV.D TRAIN WAGON DATA

Run Number 7

Date: 30 August 1946

Beam Span 7 feet Load Position 3¹/₂ feet from near support

Reading Number		Load(pounds)				
		470	2400	3535	4400	505
16		1110	1010	972	942	1130
47		1151	1140	1160	1100	1170
48		867	861	859	865	864
49		671	897	541	500	678
50		571	683	862	860	871
51		1010	1512	1309	1302	1318
52		574	270	371	375	572
53		1020	931	809	849	1021
54		1466	1170	1408	1471	1466
55		281	336	352	792	386
61		1010	1482	1160	1142	1050
63		1415	1362	1365	1186	1304
64		429	540	692	1025	700
65		956	1207	1358	1313	803
66		1073	1157	1181	1285	1114
67		460	442	410	365	423
68		1267	1210	1104	1108	1225
69		675	315	10.0	1367	810
70		617	698	758	783	616
73		830	780	755	716	835
74		1116	1093	1077	1052	1122
75		940	1115	1202	1263	950
76		1220	1275	1300	1303	1223
77		930	873	844	803	937
78		515	492	465	462	510
79		1035	1154	1213	1248	1040
80		946	375	990	982	949
81		1003	1001	1486	1422	1570
82		1018	1003	1002	967	1017
83		740	803	840	847	743
84		633	633	633	610	634
87		1072	1050	1000	1037	1073
88		907	860	822	765	872
89		1148	1183	1197	1110	1153
90		1000	1103	1014	1090	1032
91		935	1031	1050	1077	1021
92		780	767	744	743	784
93		1050	1020	1002	937	1020
94		1222	1302	1355	1410	1280
95		570	607	715	832	700
96		1240	1274	1293	1353	1290
97		547	553	553	512	560
98		856	726	663	483	723

TABLE XLI
OD LEVEL TEST LOAD DATA

Run Number: 5

Date: 21 August 1946

Beam Span 6 feet Load Position 2¹/₂ feet from near support

Reading Number	Load (Pounds)					
	420	1020	3475	1510	5065	510
1	1315	1340	1360	1370	1377	1313
2	1302	1326	1330	1278	1211	1246
3	621	710	660	620	530	613
4	1021	1100	1108	1111	1100	1016
5	1170	571	530	510	550	1110
6	640	661	772	461	511	722
7	661	658	760	720	1110	670
8	1260	1008	671	875	1338	1117
9	620	631	670	470	1060	1131
10	515	1030	1178	1148	1462	1205
11	1411	1205	1110	1005	1348	1296
12	637	700	634	498	1377	1033
13	1252	1016	975	976	273	702
14	1260	1115	1181	1021	820	832
15	1270	1241	1325	1302	1271	1377
16	758	643	605	561	520	732
17	1208	1610	1218	1581	1362	1302
18	1110	1103	1088	1001	1061	1112
19	623	619	812	772	725	621
20	782	760	758	711	700	731
21	1279	1509	1492	1482	1470	1277
22	1280	1362	1280	1218	1177	1111
23	1177	1180	1480	1474	1471	1177
24	641	658	619	610	720	637
25	1284	1240	1251	1218	1202	1172
26	871	860	808	708	915	870
27	1150	1383	1382	1386	1248	1425
28	1281	1162	1180	1095	1043	1285
29	1367	1048	1310	1582	1411	1307
30	782	752	722	105	712	711
31	1239	1185	1088	1090	1205	1242
32	675	880	885	631	830	760
33	1440	1130	1170	1186	1754	1740
34	650	727	681	532	1101	1137
35	1387	1215	1120	1122	457	583
36	1078	1090	1048	1135	1261	1216
37	1035	945	660	632	780	1128
38	215	810	770	720	631	687
39	1289	1212	1200	1273	1289	1231
40	1310	1477	1142	1110	1378	1168
41	1020	1430	1364	1388	1170	1525
42	1108	1181	1189	1108	1200	1103
43	875	742	700	653	461	704
44	680	1012	1029	1010	1080	950
45	742	730	720	711	710	732

TABLE XLI (CONT)

SHEAR STRESS AND DATA

Run Number: 3

Date: 20 August 1948

Beam Span 7 feet Load Position 2 feet from near support

Reading Number	Load (pounds)					
	400	250	175	110	50	10
46	1180	1045	1002	940	601	1120
47	1170	1061	1102	1160	1180	1180
48	1065	960	836	851	816	868
49	680	587	567	516	455	679
50	672	663	561	560	559	570
51	1315	1310	1305	1300	1301	1313
52	1372	1383	1369	1389	971	971
53	1080	980	891	860	803	1022
54	1408	1420	1456	1430	1472	1460
55	1081	851	832	812	720	829
61	1710	1606	1785	1877	1523	1970
63	1607	1253	1230	1202	947	1090
64	778	681	635	637	1738	1437
65	763	1010	1123	1247	944	294
66	1073	1145	1181	1220	1717	1503
67	400	370	355	347	303	378
68	1154	1172	1150	1126	982	1110
69	54	1112	1220	1387	1103	486
70	1150	1232	1269	1702	1747	1555
73	534	760	760	755	707	830
74	1123	1092	1082	1039	1287	1119
75	935	1022	1169	1246	1353	943
76	1217	1267	1190	1310	1332	1220
77	387	877	850	824	720	836
78	1476	1452	1448	1438	1437	1431
79	1070	1110	1130	1240	1307	1035
80	913	870	782	862	1001	943
81	1563	1610	1476	1448	1110	1563
82	1618	918	916	995	1003	1013
83	1336	1745	1774	1800	1937	1687
84	1178	1079	1078	1075	1021	1578
87	1071	1062	1032	1032	1052	1068
88	377	885	825	783	732	970
89	1146	1179	1190	1202	1210	1150
90	1080	1017	1016	1014	1027	1027
91	1013	1065	1067	1110	1133	1080
92	775	735	757	749	720	754
93	1020	939	974	960	900	973
94	835	410	445	483	680	484
95	686	781	820	860	1113	895
96	1285	1313	1327	1312	1443	1530
97	530	847	551	558	562	530
98	728	652	582	529	513	490

APPENDIX E
BIBLIOGRAPHY

<u>Title</u>	<u>Author</u>
1. Philosophical Magazine, Ser. 5, Vol. 32, 1801	Carus Wilson
2. Philosophical Transactions, Royal Society, London Ser. A, Vol. 228, 1929	A.E.H. Love
3. Philosophical Transactions Royal Society, London Ser. A, Vol. 201, 1803, p.63	L.N.G. Filon
4. Stress in Gun Turrets, Memo #75	Wm. Hovgaard
5. Handbuch der Experimental Physik, Vo. 4	Krafts
6. Untersuchen über das Gleichgewicht des Elastischen Stabes	L. Pochhammer
7. Transactions Royal Society Edinburgh, Vol. 45, 1014, p. 805	J. Dougall
8. Theory of Plates and Shells	S. Timoshenko
9. Theory of Elasticity	S. Timoshenko
10. Strength of Materials, Part II	S. Timoshenko
11. Theory of Structures	S. Timoshenko

11667

Thesis Wright
W9 An investigation of the
shear stress distribution
in a simply supported I-
beam with a concentrated
load acting near one end.

11667

Thesis Wright
W9 An investigation of the shear
stress distribution in a simply
supported I-beam with a concen-
trated load acting near one end.

Library
U. S. Naval Postgraduate School
Monterey, California

thesW9
An investigation of the shear stress dis

3 2768 001 90647 2
DUDLEY KNOX LIBRARY