L'art de rechercher et de comparer des séquences biologiques

Luca Freschi

The contenders.

Blast	
Usearch	
Last	
Diamond	

Age: 26 (born: 1990) — last release: 2015

Father(s)/Mother(s): Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ

Team: NCBI

Home: http://blast.ncbi.nlm.nih.gov

Usearch

Age: 6 (born: 2010) — last release: 2015

Father(s)/Mother(s): Robert C. Edgar

Team: himself — independent researcher

Home: http://drive5.com/usearch/

BIOINFORMATICS APPLICATIONS NOTE

Vol. 26 no. 19 2010, pages 2460–2461 doi:10.1093/bioinformatics/btq461

Sequence analysis

Advance Access publication August 12, 2010

Search and clustering orders of magnitude faster than BLAST

Robert C. Edgar
Tiburon, CA 94920, USA
Associate Editor: Alex Bateman

Age: 5 (born: 2011) — last release: 2016

Father(s)/Mother(s): Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC

Team: University of Tokyo

Home: http://last.cbrc.jp/

Resource-

Adaptive seeds tame genomic sequence comparison

Szymon M. Kiełbasa, ¹ Raymond Wan, ² Kengo Sato, ³ Paul Horton, ² and Martin C. Frith ^{2,4}

¹Department of Computational Biology, Max Planck Institute for Molecular Genetics, Berlin D-14195, Germany; ²Computational Biology Research Center, Tokyo 135-0064, Japan; ³Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8561, Japan

Diamond

Age: 1 (born: 2015) — last release: 2016

Father(s)/Mother(s): Buchfink B, Xie C. & Huson Daniel H

Team: University of Tübingen

Home: https://github.com/bbuchfink/diamond

Fast and sensitive protein alignment using DIAMOND

Benjamin Buchfink¹, Chao Xie^{2,3} & Daniel H Huson^{1,2}

General steps required to perform a sequence search

General steps required to perform a sequence search

The blast tabular output

qseqid	sseqid	pident	length	mismatch	gapopen	qstart	qend	sstart	send	evalue	bitscore
ipcd241 seq1	000006765.1 seq5525	99.58	237	1	0	1	237	182	418	6e-173	484
ipcd241_seq1	000006765.1_seq2497	88.09	235	28	0	1	235	182	416	4e-145	414
ipcd241_seq1	000006765.1_seq4697	78.30	235	51	0	1	235	181	415	8e-137	392
ipcd241_seq1	000006765.1_seq2447	46.88	32	15	2	41	71	256	286	1.7	26.9
ipcd241_seq1	000006765.1_seq4359	31.11	45	31	0	23	67	278	322	2.8	26.6
ipcd241_seq1	000006765.1_seq1583	33.75	80	38	3	149	228	148	212	3.1	26.2
ipcd241_seq1	000006765.1_seq4908	50.00	28	12	1	40	67	282	307	6.7	25.4
ipcd241_seq1	000006765.1_seq832	26.56	64	41	2	9	69	190	250	8.6	25.0

BLAST

Build a database

makeblastdb -in <faa_file> -dbtype prot

Search the sequence

blastp -query <fasta_query> -db <db_name> -out <out_file> -outfmt 6

The BLAST output

qseqid	sseqid	pident	length	mismatch	gapopen	qstart	qend	sstart	send	evalue	bitscore
ipcd241 seq1	000006765.1 seq5525	99.58	237	1	0	1	237	182	418	6e-173	484
ipcd241 seq1	000006765.1 seq2497	88.09	235	28	0	1	235	182	416	4e-145	414
ipcd241_seq1	000006765.1_seq4697	78.30	235	51	0	1	235	181	415	8e-137	392
ipcd241_seq1	000006765.1_seq2447	46.88	32	15	2	41	71	256	286	1.7	26.9
ipcd241_seq1	000006765.1_seq4359	31.11	45	31	0	23	67	278	322	2.8	26.6
ipcd241_seq1	000006765.1_seq1583	33.75	80	38	3	149	228	148	212	3.1	26.2
ipcd241_seq1	000006765.1_seq4908	50.00	28	12	1	40	67	282	307	6.7	25.4
ipcd241_seq1	000006765.1_seq832	26.56	64	41	2	9	69	190	250	8.6	25.0

Usearch

Build a database

usearch8 -makeudb_usearch <faa_file> -output <db_name>

Search the sequence

usearch8 -usearch_local <faa_file> -db <db_name> -id <identity> -blast6out <file_out>

The Usearch output

qseqid	sseqid	pident	length	mismatch	gapopen d	qstart	qend	sstart	send	evalue	bitscore
ipcd241 seq1	000006765.1 seq5525	99.6	236	1	0	1	236	182	417	3.4e-133	468.8

Let's increase the accepted sequences

usearch8 -usearch_local <faa_file> -db <id> -id <identity> -maxaccepts <num_accpt_seq> -blast6out <file_out>

qseqid	sseqid	pident	length	mismatch	gapopen	qstart	qend	sstart	send	evalue	bitscore
ipcd241_seq1	000006765.1_seq5525	99.6	236	1	0	1	236	182	417	3.4e-133	468.8
ipcd241_seq1	000006765.1_seq2497	88.1	235	28	0	1	235	182	416	5.8e-117	414.8
ipcd241 seq1	000006765.1 seq4697	78.3	235	51	0	1	235	181	415	1.6e-106	380.2

Last

lastal -f <format> <db_name> <faa_file>><out_file>

The Last output

qseqid	sseqid	pident	length	mismatch	gapopen	qstart	qend	sstart	send	evalue	bitscore
ipcd241 seq1	000006765.1 seq5525	99.58	237	1	0	1	237	182	418	4.5e-174	536
ipcd241 seq1	000006765.1 seq2497	88.09	235	28	0	1	235	182	416	2.3e-152	473
ipcd241 seq1	000006765.1 seq4697	78.30	235	51	0	1	235	181	415	2.7e-138	434

Diamond

Build a database

diamond makedb —in <faa_file> -d <db_name>

Search the sequence

diamond blastp -d <db> -q <faa_file> -p <threads> -a <out_file> -t <tmp_dir>

Convert the daa file to something more human readable diamond view -a <daa_file> -f <format> -o <out_file>

The Diamond output

qseqid	sseqid	pident	length	mismatch	gapopen	qstart	qend	sstart	send	evalue	bitscore
ipcd241_seq1	000006765.1_seq5525	99.6	237	1	0	1	237	182	418	2.6e-133	469.2
ipcd241_seq1	000006765.1_seq2497	88.1	235	28	0	1	235	182	416	5.8e-117	414.8
ipcd241_seq1	000006765.1_seq4697	78.3	235	51	0	1	235	181	415	1.6e-106	380.2

Contenders:

- Blast (R)
- Usearch
- Last
- Diamond

Challenge:

query (18)

db (1)

Contenders:	Indexing:	Searches:
Blast (R)	00:00:10	03:25:34
Usearch		
Last		
Diamond		

Contenders:	Indexing:	Searches:
Blast (R)	00:00:10	03:25:34
Usearch		
Last		
Diamond	00:00:06	00:08:54

Contenders:	Indexing:	Searches:	
	00.00.10	Ω	
Blast (R)	00:00:10	03:25:34	
Usearch	00:00:27	00:00:48	
Last			
Diamond	00:00:06	00:08:54	

Contenders:	Indexing:	Searches:	
Blast (R)	00:00:10	03:25:34	
Diasi (11)	00.00.10	03.23.34	
Usearch	00:00:27	00:00:48	
Last	00:00:06		
Diamond	00:00:06	00:08:54	

Contenders:	Indexing:	Searches:
Blast (R)	00:00:10	03:25:34
Usearch	00:00:27	00:00:48
Last	00:00:06	00:01:41
Diamond	00:00:06	00:08:54

Lets push last at his limit!

-k option: By default lastal looks for initial matches starting at every position in the query sequence(s), but -k2 makes it check every 2nd position, -k3 every 3rd position, etc. Compared to the other sparsity options, this **increases speed** the most while **reducing sensitivity** the least.

Lets push last at his limit!

Contenders:	Indexing:	Searches:
Blast (R)	00:00:10	03:25:34
Usearch	00:00:27	00:00:48
Last	00:00:06	00:01:41
Diamond	00:00:06	00:08:54
Last -k 10	00:00:07	00:00:34

Estimating the overlap between the searches

		Overlap with BLAST
blast: usearch: last: diamond:	120801 links 111349 links 112941 links 112435 links	100.0% 91.1% 92.4% 91.6%
last_k-10:	112092 links	91.6%