Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat*BAREM DE EVALUARE ȘI DE NOTARE

Test 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_1 + a_3 = 2a_2$	2p
		_
	$a_1 + a_2 + a_3 = 3a_2 = 3 \cdot 2 = 6$	3 p
2.	$f(a) = a^2 \Leftrightarrow a^2 - 4a + 4 = 0$	3 p
	a = 2	2 p
3.	$x^2 - 5x + 7 = (x - 1)^2$	2p
	3x = 6, deci $x = 2$, care convine	3p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 9 numere divizibile cu 10, deci sunt 9 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	1p
5.	$\frac{m}{3} = \frac{5}{3}$	3p
	m=5	2 p
6.	$(\sin x - \cos x)^{2} + (\sin x + \cos x)^{2} = \sin^{2} x - 2\sin x \cos x + \cos^{2} x + \sin^{2} x + 2\sin x \cos x + \cos^{2} x =$	2p
	$= 2(\sin^2 x + \cos^2 x) = 2 \cdot 1 = 2$, pentru orice număr real x	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 4 & -6 \\ 2 & -3 \end{vmatrix} = 4 \cdot (-3) - 2 \cdot (-6) =$	3p
	=-12+12=0	2 p
b)	$M(x)M(y) = (I_2 + xA)(I_2 + yA) = I_2 + xA + yA + xyAA$	3p
	Cum $AA = A$, obținem $M(x)M(y) = I_2 + (x + y + xy)A = M(x + y + xy)$, pentru orice numere reale x și y	2 p
c)	$M(m+n+mn) = M(6) \Leftrightarrow m+n+mn = 6$	2p
	(m+1)(n+1)=7 şi, cum m şi n sunt numere naturale, obţinem perechile $(6,0)$ sau $(0,6)$	3 p
2.a)	$x \circ y = xy - x - y + 1 + 1 =$	2p
	=x(y-1)-(y-1)+1=(x-1)(y-1)+1, pentru orice numere reale x și y	3 p
b)	$x \circ x = (x-1)^2 + 1$, de unde obţinem $(x-1)^2 \le 4$	2p
	$x \in [-1,3]$	3 p
c)	$1 \circ x = 1$, unde x este număr real	2p
	$1^n \circ 2^n \circ 3^n \circ \dots \circ 2020^n = 1 \circ \left(2^n \circ 3^n \circ \dots \circ 2020^n\right) = 1$, pentru orice număr natural nenul n	3 p

SUBIECTUL al III-lea (30 de puncte)

0022	(30 de pune	
1.a)	$f'(x) = x' - e(\ln x)' =$	3 p
	$=1-e\cdot\frac{1}{x}=\frac{x-e}{x},\ x\in(0,+\infty)$	2p
b)	Tangenta la graficul funcției f în punctul $(a, f(a))$ este paralelă cu dreapta de ecuație $y = x \Leftrightarrow f'(a) = 1$	3 p
	$\frac{a-e}{a}=1 \Leftrightarrow a-e=a \Leftrightarrow e=0$, ceea ce este imposibil, deci graficul funcției f nu admite în niciun punct o tangentă paralelă cu dreapta de ecuație $y=x$	2p
c)	$f'(x) < 0$, pentru orice $x \in (0,e) \Rightarrow f$ este strict descrescătoare pe $(0,e)$ și $f'(x) > 0$, pentru orice $x \in (e,+\infty) \Rightarrow f$ este strict crescătoare pe $(e,+\infty)$	2p
	$e^x - x^e = 0 \Leftrightarrow f(x) = 0$ și, cum $f(e) = 0$, ecuația $e^x - x^e = 0$ are exact o soluție în $(0, +\infty)$	3 p
2.a)	$\int_{0}^{3} \frac{f(x)}{e^{x}} dx = \int_{0}^{3} x(x+2) dx = \left(\frac{x^{3}}{3} + x^{2}\right) \Big _{0}^{3} =$	3p
	=9+9-0=18	2p
b)	$\int_{0}^{1} f(x)dx = \int_{0}^{1} (x^{2} + 2x)e^{x} dx = (x^{2} + 2x)e^{x} \Big _{0}^{1} - \int_{0}^{1} (2x + 2)e^{x} dx =$	2p
	$=3e-(2x+2)e^{x}\begin{vmatrix}1&1\\0+\int_{0}^{1}2e^{x}dx=3e-4e+2+2e-2=e\end{vmatrix}$	3 p
c)	$\int_{1}^{n} \frac{(x+1)e^{x}}{f(x)} dx = \int_{1}^{n} \frac{x+1}{x^{2}+2x} dx = \frac{1}{2} \ln\left(x^{2}+2x\right) \Big _{1}^{n} = \frac{1}{2} \ln\frac{n^{2}+2n}{3}$	3 p
	$\frac{1}{2}\ln\frac{n^2+2n}{3} = \frac{3\ln 2}{2} \Rightarrow n^2+2n-24 = 0 \text{ si, cum } n \text{ este număr natural nenul, obținem } n = 4$	2p