Language detection using character n-gram profiles Inspiration from Cavnar and Trenkle (1994)

Atreya Shankar Applying for: Scientific Researcher in NLP

July 6, 2021

Overview

- Introduction
- Methodology
- **3** Results
- 4 Discussion
- **5** Conclusions

Motivation

Figure 1: Levels/structures of languages; figure taken from Hickey (2005)

- Morphological profiling probably has lower data and compute requirements
- Makes sense given no external libraries are allowed

Motivation

Figure 1: Levels/structures of languages; figure taken from Hickey (2005)

- Morphological profiling probably has lower data and compute requirements
- Makes sense given no external libraries are allowed

Motivation

Figure 1: Levels/structures of languages; figure taken from Hickey (2005)

- Morphological profiling probably has lower data and compute requirements
- Makes sense given no external libraries are allowed

Methodology

- Character n-gram profiling technique from Cavnar, Trenkle, et al. (1994)
- WiLI-2018 data set for 235 languages with 235,000 paragraphs (Thoma, 2018)
- Training: Data is lower-cased and punctuation/special-tokens are removed
- Two hyperparameters: character n-gram length and ranked n-gram cutoff
- Prediction: Use vector-based difference norm instead of out-of-place distance

N-Gram-Based Text Categorization

William B. Cavnar and John M. Trenkle Environmental Research Institute of Michigan P.O. Box 134001 Ann Arbor MI 48113-4001

Figure 2: Excerpt from Cavnar, Trenkle, et al. (1994)

Figure 3: Flowchart from Cavnar, Trenkle, et al. (1994)

Methodology

- Character n-gram profiling technique from Cavnar, Trenkle, et al. (1994)
- WiLI-2018 data set for 235 languages with 235,000 paragraphs (Thoma, 2018)
- Training: Data is lower-cased and punctuation/special-tokens are removed
- Two hyperparameters: character n-gram length and ranked n-gram cutoff
- Prediction: Use vector-based difference norm instead of out-of-place distance

N-Gram-Based Text Categorization

William B. Cavnar and John M. Trenkle Environmental Research Institute of Michigan P.O. Box 134001 Ann Arbor MI 48113-4001

Figure 2: Excerpt from Cavnar, Trenkle, et al. (1994)

Figure 3: Flowchart from Cavnar, Trenkle, et al. (1994)

Results

N-gram length	N-gram cutoff	Weighted test F ₁	Best performing language	Worst performing language
2	100	0.865	Navajo (0.999)	Konkani (0.110)
2	300	0.893	Navajo (0.999)	Pampanga (0.235)
3	100	0.859	Dhivehi (0.999)	Chavacano (0.247)
3	300	0.898	Navajo (0.999)	Chavacano (0.304)

 $\textbf{Table 1:} \ \textbf{Tabular summary of model performances; MLP from } \ \textbf{Thoma (2018)} \ \textbf{achieved an accuracy of } 0.883$

Language	N_1	N_2	N_3	\mathbb{N}_4	N_5
English	the	and			ent
Deutsch	der				
Italiano			ent		lla

Table 2: Tabular summary of top five character trigrams with highest relative frequency per language

Results

N-gram length	N-gram cutoff	Weighted test F ₁	Best performing language	Worst performing language
2	100		Navajo (0.999)	Konkani (0.110)
2			Navajo (0.999)	Pampanga (0.235)
	100	0.859	Dhivehi (0.999)	Chavacano (0.247)
3	300	0.898	Navajo (0.999)	Chavacano (0.304)

Table 1: Tabular summary of model performances; IVILP from Thoma (2018) achieved an accuracy of 0.883

Language	N_1	N_2	N_3	N_4	N_5
English	the	and	ing	ion	ent
Deutsch	der	sch	die	ein	che
Italiano	del	ell	ent	ion	lla

Table 2: Tabular summary of top five character trigrams with highest relative frequency per language

Discussion

Gold language	Utterance	Predicted language
English	What is this?	Cantonese
Deutsch	Was ist das?	Chavacano
Italiano	Cos'è questo?	Asturian

Table 3: Examples of erroneous language detection for short phrases

Plenty of failing cases:

- Short phrases where language profile cannot converge
- Slang, colloquial or borrowed words
- Transliteration from non-Latin to Latin script

Plenty of workarounds

- Word-level language identification with large-enough vocabulary
- Complex modeling over sequential subwords, for example using neural networks;
 such as in Bartz et al. (2017)

Discussion

	Utterance	Predicted language
English	What is this?	Cantonese
Deutsch	Was ist das?	
Italiano	Cos'è questo?	Asturian

Table 3: Examples of erroneous language detection for short phrases

Plenty of failing cases

- Short phrases where language profile cannot converge
- Slang, colloquial or borrowed words
- Transliteration from non-Latin to Latin script

Plenty of workarounds:

- Word-level language identification with large-enough vocabulary
- Complex modeling over sequential subwords, for example using neural networks; such as in Bartz et al. (2017)

Conclusions

- Portable and lightweight character n-gram profiling technique from Cavnar, Trenkle, et al. (1994)
- Trained and tested on WiLI-2018 (Thoma, 2018)
- Best character trigram model achieved 89.8% weighted F₁ test score
- Works well for medium-long length documents, likely robust to previously unseen words and spelling errors
- Known limitations on short length documents

Conclusions

- Portable and lightweight character n-gram profiling technique from Cavnar, Trenkle, et al. (1994)
- Trained and tested on WiLl-2018 (Thoma, 2018)
- Best character trigram model achieved 89.8% weighted F₁ test score
- Works well for medium-long length documents, likely robust to previously unseen words and spelling errors
- Known limitations on short length documents

Bibliography I

- Bartz, Christian, Tom Herold, Haojin Yang, and Christoph Meinel (2017). "Language Identification Using Deep Convolutional Recurrent Neural Networks". In: CoRR abs/1708.04811. arXiv: 1708.04811. URL: http://arxiv.org/abs/1708.04811.
- Cavnar, William B, John M Trenkle, et al. (1994). "N-gram-based text categorization". In: *Proceedings of SDAIR-94, 3rd annual symposium on document analysis and information retrieval.* Vol. 161175. Citeseer.
- Hickey, Raymond (2005). "Levels of language". In: Universität Duisburg-Essen.
- Thoma, Martin (2018). "The WiLl benchmark dataset for written language identification". In: arXiv preprint arXiv:1801.07779.