CENG 424 - Logic for Computer Science 2023-1

Homework 4

Anıl Eren Göçer e2448397@ceng.metu.edu.tr

December 10, 2023

1. Let's define the followings:

A: "Horse is an animal."
P: "Horse is a plant."
S: "Some stableman groom the horse."

Premises:

1)
$$A \longrightarrow S \equiv \neg A \lor S$$

2)
$$P \longrightarrow \neg S \equiv \neg P \vee \neg S$$

Goal: $A \longrightarrow \neg P \equiv \neg A \vee \neg P$

Negated Goal: $A \wedge P$

$1. \{\neg A, S\}$	Premise
$2. \{\neg P, \neg S\}$	Premise
3. { <i>A</i> }	Negated Goal
4. { <i>P</i> }	Negated Goal
5. { <i>S</i> }	1, 3
6. $\{\neg S\}$	2, 4
7. {}	5, 6

We obtained empty clause for negated goal. Therefore, we have proven the goal.

2. (a) Unit Resolution

1. $\{T\}$

 $2. \ \{\neg S, \neg T, \neg R\}$

3. $\{\neg T, R\}$

 $4. \{S, \neg R\}$

5. $\{R\}$

6. $\{S\}$

7. $\{\neg T, \neg R\}$

8. $\{\neg T\}$

9. {}

Premise

Premise

Premise

i reimse

Premise

1, 3

4, 5

2, 6

5, 7

,

1, 9

(b) Input Resolution

1. $\{T\}$

2. $\{\neg S, \neg T, \neg R\}$

 $3. \{\neg T, R\}$

4. $\{S, \neg R\}$

5. $\{\neg T, \neg R\}$

 $0. \{R\}$

7. $\{\neg R\}$

3. Jn J

 $9. \{ \neg T \}$

10. {}

Premise

Premise

Premise

Premise

2, 4

1, 3

1, 5

4, 6

3, 7

1, 9

(c) Linear Resolution

1. $\{T\}$

 $2. \ \{\neg S, \neg T, \neg R\}$

3. $\{\neg T, R\}$

 $4. \{S, \neg R\}$

5. $\{\neg T, S\}$

6. $\{S\}$

7. $\{\neg T, \neg R\}$

8. $\{\neg T\}$

9. {}

Premise

Premise

Premise

Premise

3, 4

1, 5

2, 6

3, 7

1, 8

3. I will reorder each premise clause as follows:

$$\neg Q \vee R \vee P$$

$$R \vee \neg F$$

$$R \vee \neg P$$
 $\neg Q \vee \neg R$

I impose the order Q > R > P

$\mid 1. < \neg Q, R, P >$	Premise
2. < Q >	Premise
$3. < \neg Q, \neg R >$	Premise
$4. < R, \neg P >$	Premise
$\int 5. < R, P >$	1, 2
$6. < \neg R >$	2, 3
$7. < \neg P >$	4, 6
8. < P >	5, 6
9. <>	7, 8

As you can see above, we obtained <> at step 9, which corresponds to empty clause {}.

Also, you can see that ordering is satisfied in the tree below. I first eliminate Q's in the first depth of the tree, then elimnate R's in the second depth and P's in last depth.

