3×3 eigenstuff, representing functions

September 24th, 2024

Tiere are some key facus from sections 1.1	are 1.5.		
 A function is a rule that assigns each element in its range. 	h element x in its domain to $[egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	than one / exactly one / less than one]	
• The a function. It says that an <i>xy</i> -curve is more than once.		hether or not a graph in the xy -plane is \mathbf{ly} if no vertical line intersects the curve	
• A function <i>f</i> is even if	. A function <i>f</i> is odd if	. These must hold for all x .	
• A function <i>f</i> is called <i>increasing</i> on a	on interval I if $f(x_1) < f(x_2)$ when	ever $x_1 < x_2$ in I .	
• A function <i>f</i> is called <i>decreasing</i> on a	n interval <i>I</i> if		
Problem 1: (Stewart & Day 8.8) But first	.two more matrix problems. This t	ime, we'll work with 3×3 ones.	
(a) Let A be the matrix $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$		erminant of A .	
(b) Let B be the matrix $\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$. Find	. Find the eigenvalues of ${\cal B}.$		
(c) Find an eigenvector for each eigenva	alue of B .		
My Attempt:	Solution:		

Problem 2: (Stewart & Day 8.8) Find the eigenvalues of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 7 \\ 0 & 2 & 1 \end{bmatrix}$, and find one eigenvector for each eigenvalue.

My Attempt:

Solution:

Problem 3: (Borcherds '05 Midterm 1) Find the domain of the function $g(u) = \sqrt{u} + \sqrt{2-u}$.

My Attempt:

Solution:

Problem 4: (Stewart 1.1) Recall that a *piecewise function* splits its domain into pieces and is defined by different formulas for each piece. Sketch the graph of the following piecewise function:

$$f(x) = \begin{cases} x+1 & \text{if } x \le -1 \\ x^2 & \text{if } x > -1 \end{cases}.$$

My Attempt:

Solution:

Problem 5: (Stewart 1.1) Determine whether $f(x) = x x $	is even, odd, or neither.
My Attempt:	Solution:
Problem 6 : (Stewart 1.1) Does $x^2 + (y-3)^2 = 5$ define a	function? Explain why or why not.
My Attempt:	Solution:
Problem 7: Consider the function $f(x) = 4 + 3x - x^2$. Even	aluate the difference quotient given by
$rac{f(3+h)}{h}$	
My Attempt:	Solution:
Problem 8 : (Stewart 1.1) Solve $ x - 3 + x + 2 < 11$ math	nematically (don't guess and check values).
My Attempt:	Solution:
Challenge Problem: (Stewart 1.1) Sketch the region in the $ x - y \le 2$.	he plane consisting of all points (x,y) such that $ x-y +$