Amendments to the Claims

1. (Previously Presented) A compound of formula

$$(R^{5})_{q} \xrightarrow{X} A \xrightarrow{R^{4}} H$$

$$Z \xrightarrow{N} H$$

$$(CHR^{6})_{n} \xrightarrow{K} R^{1}$$

$$I$$

wherein

q is 0, 1, or 2;

W, X, Y and Z are each independently CH, C, N, S, or O with appropriate single or double bonds and/or hydrogen atoms to complete valency requirements;

Ring A is a five or six member ring wherein one of W, X, Y and Z may be absent; provided that ring A is not phenyl;

K is a bond, C=O, or S(O)_p; p is 0, 1 or 2; n is 0, 1, or 2;

when n is 0, K is C=O or $S(O)_p$ and R^1 is selected from a group consisting of $-OC_1$ -C₆ alkyl, -O-aryl, $-OC_2$ -C₆ alkenyl, $-OC_1$ -C₆ haloalkyl, $-OC_1$ -C₆ alkylheterocyclic, $-OC_3$ -C₈ cycloalkyl, $-OC_1$ -C₆ alkylcycloalkyl, $-NR^7R^8$, $-OC_1$ -C₆ alkylaryl, -O-heterocyclic, $-OC_1$ -C₆ alkylCO₂ R^{11} , $-OC_2$ -C₆ alkylalcohol, $-OC_1$ -C₆ alkylNR⁷ R^8 , $-OC_2$ -C₆ alkylcyano, $CONR^{11}R^{12}$, $NR^{11}SO_2R^{12}$, $NR^{11}COR^{12}$, C_2 -C₃ alkylNR¹¹ R^{12} , C_1 -C₃ alkylCOR¹¹, C_0 -C₆ alkylCOOR¹¹ and wherein each cycloalkyl, aryl and heterocyclic group is optionally substituted with 1 to 3 groups independently selected from oxo, hydroxy, halo, C_1 -C₆ alkyl, C_2 -C₆ alkenyl, C_2 -C₆ alkynyl, C_1 -C₆ alkoxy, C_1 -C₆ haloalkyl, $-C_1$ -C₆ alkylalcohol, C_2 -C₆ alkylalcohol, C_1 -C₆ haloalkoxy, C_1 -C₆ haloalkyl, $-C_1$ -C₆ alkylalcohol, $-C_1$ -C₆ alkylalcohol, $-C_1$ -C₆ alkylcyloolkyl, phenyl, $-C_1$ -C₆ alkylcyloolkyl, $-C_1$ -C₆ alkylcyloolkyl, phenyl, $-C_1$ -C₆ alkylcyloolkyl, $-C_1$ -C₆ alkylaryl, $-C_1$ -C₇

when n is 1 or 2, K is a bondand R^1 is selected from a group consisting of hydroxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylheterocyclic, C_3 - C_8 cycloalkyl, C_1 - C_6 alkylaryl, aryl, heterocyclyl, C_1 - C_6 alkylalcohol, C_1 - C_6 alkyl NR^7R^8 , wherein each cycloalkyl, aryl and heterocyclic is optionally substituted with 1 or 2 groups

independently selected from the groups consisting of oxo, hydroxy, halo, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl, $-C_1$ - C_6 alkylalcohol, OC_2 - C_6 alkylalcohol, C_1 - C_6 haloalkoxy, $CONR^{11}R^{12}$, $NR^{11}SO_2R^{12}$, $NR^{11}COR^{12}$, C_0 - C_3 alkyl $NR^{11}R^{12}$, C_1 - C_3 alkyl COR^{11} , C_0 - C_6 alkylaryl, C_1 - C_6 alkyl COR^{11} , C_0 - C_6 alkylaryl, C_1 - C_6 alkylaryl, C_1 - C_6 alkylaryl;

R² is each independently selected from the group consisting of hydrogen, halo, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, OC₁-C₆ alkyl, C₀-C₆ alkylNR⁷R⁸, heteroaryl, heterocyclyl, C₃-C₈ cycloalkyl, C₁-C₆ alkylcycloalkyl C₁-C₆ alkylheterocyclyl, and substituted C₀-C₆ alkylaryl; wherein the aryl group is substituted and each cycloalkyl or heterocyclic is optionally substituted with 1 to 3 groups independently selected from oxo, hydroxy, halo, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alcohol, C₁-C₆ alkoxy, C₁-C₆ haloalkyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, CONR¹¹R¹², NR¹¹SO₂R¹², NR¹¹COR¹², C₀-C₃ alkylNR¹¹R¹², C₁-C₃ alkylCOR¹¹, C₀-C₆ alkylCOOR¹¹, cyano, and phenyl;

 R^3 is each independently selected from hydrogen, C_1 - C_6 alkyl, aryl, C_2 - C_6 alkenyl, C_2 - C_6 alkylnyl, C_1 - C_6 alkylaryl, C_1 - C_6 alkylheterocyclic, C_3 - C_8 cycloalkyl, or C_1 - C_6 alkylcycloalkyl;

 R^4 is a group represented by the formula -NR $^9R^{10}$;

 R^5 is selected from the group consisting of hydrogen, halogen, hydroxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkylcycloalkyl, C_1 - C_6 alkylaryl, C_1 - C_6 alkylheterocyclic, aryl, C_1 - C_6 alkylaryl, heteroaryl, aryloxy, $-OC_2$ - C_6 alkenyl, $-OC_1$ - C_6 haloalkyl, $-NR^7R^8$, and $-OC_1$ - C_6 alkylaryl; and wherein when q is 1, 2 or 3, two adjacent R^5 groups may combine to form a fused 5 or 6 member optionally substituted carbocyclic or heterocyclic ring with ring A;

 R^6 is independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, hydroxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_1 - C_6 alkoxy, aryloxy, -OC₂- C_6 alkenyl, -OC₁- C_6 haloalkyl, C_1 - C_6 alkylNR 7 R 8 , C_3 - C_8 cycloalkyl, and C_1 - C_6 alkylcycloalkyl;

 R^7 and R^8 are independently selected from the group consisting of hydrogen, C_1 - C_6 alkylcycloalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkylheterocyclic, C_1 - C_6 haloalkyl, $NR^{11}R^{12}$, hydroxy, oxo, COOH, $C(O)OC_1$ - C_4 alkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkylaryl, C_1 - C_6 alkylaryl, C_2 - C_6 alkenylaryl, C_2 - C_6 alkynylaryl, C_1 - C_6 alkylaryl, C_1 - C_6 alkyl $CONR^7R^8$, C_1 - C_6 alkyl NR^7R^8 , C_1 - C_6 alkyl $NR^{11}COR^{12}$, and aryl, wherein each cycloalkyl or aryl group is optionally substituted with halo, hydroxy, oxo, amino, COOH, $C(O)OC_1$ - C_4 alkyl,

 C_1 - C_6 haloalkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkylalcohol, and C_1 - C_6 alkylalmine;

or R^7 and R^8 combine to form a nitrogen containing heterocyclic ring which may have 0, 1, or 2 additional hetero-atoms selected from oxygen, nitrogen or sulfur and may be optionally substituted with oxo, or C_1 - C_6 alkyl;

 R^9 is the group C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkylcycloalkyl, aryl, heterocyclic, C_1 - C_6 alkylheterocyclic, COR^7 , CO_2R^7 , C_0 - C_3 alkyl $CONR^7R^8$, C_0 - C_3 alkyl $S(O)_pNR^7R^8$, or C_0 - C_3 alkyl $S(O)_pR^7$ wherein R^7 is as defined above, and wherein each alkyl, cycloalkyl, aryl, and heterocyclic is optionally substituted with one to two groups independently selected from halo, hydroxy, oxo, COOH, $C(O)OC_1$ - C_4 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylaryl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylacohol, C_1 - C_6 alkylamine, C_1 - C_6 alkylaryl, C_2 - C_6 alkenylaryl, C_2 - C_6 alkynylaryl, C_1 - C_6 alkylaryl, C_1 - C_6 alkylaryl, C

 R^{10} is selected from the group consisting of aryl, C_1 - C_6 alkylaryl, C_2 - C_6 alkenylaryl, C_1 - C_6 alkynylaryl, C_1 - C_6 haloalkylaryl, C_1 - C_6 alkylheterocyclic, C_2 - C_6 alkenylheterocyclic, C_1 - C_6 alkylcycloalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkyl-O- C_1 - C_6 alkylaryl, and wherein each cycloalkyl, aryl, or heterocyclic group is optionally substituted with 1-3 groups independently selected from the group consisting of hydroxy, oxo, -SC₁- C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkenyl, C_1 - C_6 alkenyl, C_1 - C_6 alkenyl, halogen, C_1 - C_6 alkoxy, aryloxy, C_1 - C_6 alkenyloxy, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkylalcohol, and C_1 - C_6 alkylalcohol;

R¹¹ and R¹² are independently selected from the group consisting of hydrogen, C₁-C₆ alkyl, C₁-C₆ alkenyl, C₃-C₈ cycloalkyl, heterocyclic, aryl, and C₁-C₆ alkylaryl, wherein each aryl group is optionally substituted with 1-3 groups independently selected from halogen, C₁-C₆ alkylheterocyclic, and C₁-C₆ haloalkyl, or R¹¹ and R¹² combine to form a nitrogen containing heterocyclic ring which may have 0, 1, or 2 additional heteroatoms selected from oxygen, nitrogen or sulfur and is optionally substituted with oxo, or C₁-C₆ alkyl; or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof.

2. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein n is zero, K is C=O and R¹ is selected from a group consisting of -OC₁-C₆ alkyl, O-aryl, -OC₂-C₆ alkenyl, -OC₁-C₆ haloalkyl, -OC₃-C₈ cycloalkyl, -OC₁-C₆ alkylcycloalkyl, -OC₁-C₆ alkylaryl, -O heterocyclic, and -OC₁-C₆alkylCO₂R¹¹, -OC₂-C₆alkylalcohol, -OC₁-C₆ alkylNR⁷R⁸, -OC₂-C₆ alkylcyano -OC₁-C₆ alkylheterocyclic, wherein each cycloalkyl, aryl and heterocyclic group is optionally substituted with 1 to 3 groups independently selected from C₀-C₆ alkylCOOR¹¹, C₀-C₆ alkylalcohol, C₀-C₃ alkylNR¹¹R¹², and C₀-C₆ alkylcyano.

- 3. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein n is 1, K is a bond and R¹ is selected from a group consisting of C₂-C₆ alkenyl, C₂-C₆ haloalkyl, C₃-C₈ cycloalkyl, aryl, and heterocyclic wherein each cycloalkyl, aryl, or heterocyclic is optionally substituted with 1 or 2 groups selected from C₁-C₃ alkylalcohol, C₁-C₃ alkylamine, C₀-C₃ alkylCOOH, C₀-C₃ alkylCONH₂, and C₀-C₃ alkylCOOC₁-C₃ alkyl.
- 4. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein R⁴ is NR⁹R¹⁰ and R⁹ is a heterocyclic group optionally substituted with one to two groups independently selected from OH, halo, amino, C(O)OC₁-C₄ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ alkoxy, C₁-C₆ alkylalcohol, C₁-C₆ alkylamine, C₃-C₈ cycloalkyl, and C₁-C₆ alkylcycloalkyl, C₁-C₆alkylcyano, C₁-C₆alkylCONR⁷R⁸, C₁-C₆alkylCO₂R¹¹.
- 5. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein the A ring is selected from the group consisting of pyridine, pyrazine, thiophene, pyrazole isoxazole, oxazole, and thiazole.
- 6. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein the A ring is pyridine.

7. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein the A ring is thiophene.

8. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein each R³ is hydrogen and R⁹ is selected from the group consisting of:

wherein R is independently H, OH, NR^7R^8 or C_1 - C_3 alkyl wherein C_1 - C_3 alkyl group is optionally substituted with OH, halo, cyano, $CONR^7R^8$, CO_2R^{11} , or NR^7R^8 .

- 9. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein two R⁵ groups combine to form a fused cyclopentane or cyclohexane ring with ring A.
- 10. (Previously Presented) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein R^4 is selected from the group consisting of:

wherein R⁷ is OH, C₁-C₃ alkyl, -OC₁-C₃ alkyl, or C₁-C₃ haloalkyl.

- 11. (Currently Amended) A compound <u>according to Claim 1</u> selected from the group consisting of:
- 4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-7-methyl-3, 4-dihydro-2 H- 1-2-ethyl-7-methyl-3, 4-dihydro-2 H- 1-2-ethyl-3, 4-ethyl-3, 4-ethyl-3, 4-ethyl-3, 4-ethyl-3, 4-ethyl-3, 4-ethyl-3, 4-ethyl-3, 4-ethyl-3, 4-
- [1,8]naphthyridine-1-carboxylic acid isopropyl ester,
- Cis-4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-6-methoxy-3,4-dihydro-2H-benzyl-6-methoxy-3,4-dihydro-2H-benzyl-6-methoxy-6-methoxy-6-methoxy-6-methoxy-6-methoxy-6-methoxy-6-methoxy-6-methoxy-6-methoxy-6-methoxy-6-methoxy-6-methoxy-6-meth
- $[1,\!5] naphthyridine-1-carboxylic\ acid\ isopropyl\ ester\ ,$
- 7-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-5-ethyl-6,7-dihydro-5*H*-thieno[3,2-b]pyridine-4-carboxylic acid isopropyl ester,
- $(+/-)\text{-}cis\text{-}4\text{-}[Acetyl\text{-}(3,5\text{-}bis\text{-}trifluoromethyl\text{-}benzyl)\text{-}amino]\text{-}2\text{-}ethyl\text{-}6\text{-}bromo\text{-}3,}4\text{-}dihydro\text{-}2H$
- [1,5]naphthyridine-1-carboxylic acid isopropyl ester,

(+/-)-cis-4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-6-dimethylamino-3,4-dihydro-2H-[1,5]naphthyridine-1-carboxylic acid isopropyl ester,

- (+/-)-cis-4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-6-methyl-3,4-dihydro-2H-[1,5]naphthyridine-1-carboxylic acid isopropyl ester,
- (+/-)-cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-(2,5-dimethyl-2H-pyrazole-3-carbonyl)-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- (+/-)-cis-4-(3,5-Bis-trifluoromethyl-benzyl)-1-(cyclopentylmethyl-2-ethyl-6-methoxy-1,2,3,4-tetrahydro-[1,5]naphthyridine-4-yl)-acetamide,
- (+/-)-cis-4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-6-methoxy-2-methyl-3,4-dihydro-2*H*-[1,5]naphthyridine-1-carboxylic acid isopropyl ester,
- (+/-)-cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-ethoxycarbonyl-amino]-6-methoxy-2-methyl-3,4-dihydro-2*H*-[1,5]naphthyridine-1-carboxylic acid isopropyl ester,
- (+/-)-cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-(3-fluoro-5-trifluoromethyl-benzoyl)-amino]-6-methoxy-2-methyl-3,4-dihydro-2*H*-[1,5]naphthyridine-1-carboxylic acid isopropyl ester, (+/-)-cis-*N*-(3,5-Bis-trifluoromethyl-benzyl)-*N*-(1-cyclopentyl-6-methoxy-2-methyl-1,2,3,4-tetrahydro-[1,5]napthyridin-4-yl)-acetamide,
- (+/-)-cis-4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2H-[1,5]naphthyridine-1-carboxylic acid isopropyl ester,
- (+/-)-cis-4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2*H*-[1,5]naphthyridine-1-carboxylic acid isopropyl ester,
- 4-[(3,5-Bis-trifluoromethyl-benzyl)-(5,6,7,8-tetrahydro-quinolin-3-yl)-amino]-2,3-dimethyl-3,4,6,7,8,9-hexahydro-2*H*-benzo[b][1,5]napthyridine-1-carboxylic acid isopropyl ester, or a pharmaceutically acceptable salt, enantiomer or diastereomer or mixture thereof.

12. (Canceled)

- 13. (Previously Presented) A method of treating dyslipidemia comprising administering a compound of formula I of claim 1, a pharmaceutically acceptable salt, enantiomer, racemate diastereomer, mixture of diastereomers thereof, to a patient in need thereof.
- 14. (Currently Amended) A method of treating artherosclerosis atherosclerosis comprising administering a compound of formula I of claim 1, a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof to a patient in need thereof.

15-16. (Canceled)

17. (Previously Presented) A method of increasing plasma HDL-cholesterol in a mammal comprising administering a therapeutically effective amount of a compound of formula I of claim 1, a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof to a patient in need thereof.

18. (Canceled)

19. (Previously Presented) A pharmaceutical composition comprising a compound according to Claim 1, a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, and a carrier, diluent and/or excipient.

20. (Canceled)

21. (Previously Presented) A composition of claim 19 comprising one or more cardio protective agents selected from the group consisting of: statins, leptin, and lipid regulating agents.

22. (Canceled)

- 23. (Previously Presented) A method according to claim 14 comprising administering one or more cardio protective agents selected from the group consisting of: statins, leptin, and lipid regulating agents.
- 24. (New) A method according to claim 13 comprising increasing plasma HDL-cholesterol in said patient.
- 25. (New) A method according to claim 13 comprising decreasing plasma LDL-cholesterol in said patient.
- 26. (New) A method according to claim 14 comprising increasing plasma HDL-cholesterol in said patient.

27. (New) A method according to claim 14 comprising decreasing plasma LDL-cholesterol in said patient.