Coding Competitions Farewell Rounds - Round A

Rainbow Sort

Problem

Your friend Charles gives you a challenge. He puts ${\bf N}$ cards on a table and arranges them in a line in an order that he chooses. Each card has a single color, and each color can be on one or more cards.

Charles then asks you to write a positive integer on each card without altering his chosen order such that:

- 1. The integers you write appear in non-decreasing order when cards are read from left to right.
- 2. Cards of the same color have the same integer written on them.
- 3. Cards of different colors have different integers written on them.

Finally, Charles wants you to order the colors in increasing order of written integer. For example, if blue cards have a 2, red cards have a 5, and green cards have a 3, the color order would be blue, green, red.

Input

The first line of the input gives the number of test cases, **T**. **T** test cases follow.

Each test case begins with a line containing the integer N. The next line contains N integers, S_1, S_2, \ldots, S_N , where S_i represents the color of the i-th card from the left.

Output

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the set of colors, once each, listed in the requested order. If it is impossible to write integers in the given cards while adhering to all the rules, y must be IMPOSSIBLE instead.

Limits

Time limit: 20 seconds. Memory limit: 2 GB. $1 \le \mathbf{T} \le 100$. $1 \le \mathbf{S_i} \le 10^5$, for all i.

Test Set 1 (Visible Verdict)

1 < N < 10.

Test Set 2 (Visible Verdict)

 $1 \leq \mathbf{N} \leq 10^5$.

Sample

Sample Input 2 4 3 8 8 2 5 3 8 2 2 8

Sample Output

Case #1: 3 8 2

Case #2: IMPOSSIBLE

In Sample Case #1, there are 3 different colors on 4 cards. One possible solution is to write the following integers, in order: 1, 2, 2, and 3. Notice that the same integer (2) is written on both cards of color 8. Then, the order of the colors is 3, 8, 2.

In Sample Case #2, let c_8 and c_2 be the integers written in cards of color 8 and 2, respectively. If $c_2>c_8$ then the rightmost two cards would not have their integers in non-decreasing order. If $c_2< c_8$ that would happen to the second and third card from the left. Finally, $c_8=c_2$ is forbidden by one of the rules. Therefore, there is no valid way of writing the integers in this case.