The First Fundamental Theorem of Calculus for 1-Forms

Thomas Cohn

Let $f:[a,b]\to\mathbb{R}^n$

Prop: TFAE:

(1) f extends to a function in $C^k(\mathbb{R}, \mathbb{R}^n)$

(2) $f \in C([a,b])$ and $f|_{(a,b)}$ is C^k and $\lim_{t \searrow a} f^{(j)}(t)$, $\lim_{t \nearrow b} f^{(j)}(t)$ exist and are finite for $j = 1, \ldots, k$.

Proof $(1) \Rightarrow (2)$: Trivial

Proof $(2)\Rightarrow(1)$: Use Taylor polynomials to extend

Defn: $f \in C_{pw}^k \stackrel{\text{def}}{\Leftrightarrow} f$ cts on [a, b] and $f|_{[t_{j-1}, t_j]} \in C^k$ for each j (where the t_j 's partition [a, b]). We say that f is piecewise C^k .

Defn: Let ω be a 1-form on $A^{\text{open}} \subseteq \mathbb{R}^n$, $I = [a, b] \subset \mathbb{R}$, and $\alpha \in C^1_{pw}(I, A)$ (a "path in A").

Then
$$\int_{V} \omega \stackrel{\text{def}}{=} \int_{I} \alpha^* \omega = \int_{I} (\omega \circ \alpha) D\alpha$$
.

Rewrite:
$$\int_{V} \sum_{i=1}^{n} \omega_{i} dx_{i} = \int_{I} \sum_{i=1}^{n} \omega_{i}(\alpha(t)) \frac{dx_{i}}{dt}$$

The idea is that \vec{x} is the position at time t given by $\alpha(t)$, i.e., $x_j = \alpha_j(t)$.

From Monday: For $\alpha \in C^1$, we have $\int_{Y_a} df = \triangle_{Y_\alpha} f \stackrel{\text{def}}{=} f(\alpha(b)) - f(\alpha(a))$.

Exercise: show this still works for $\alpha \in C^1_{pw}$.

Thm: Given $A^{\text{conn,open}} \subseteq \mathbb{R}^n$, $f \in C^1(A, \mathbb{R})$. Then df = 0 on A if and only if f is constant.

HW3#4: Choose $\alpha \in C([0,1], A)$ such that $\alpha(0) = a$, and $\alpha(1) = b$.

 $Proof \Leftarrow: trivial$

Proof \Rightarrow : Use $\triangle_{Y_{\alpha}} f = \sum_{j} \triangle_{j^{\text{th piece}}} f = 0$.

Note: for A open, disconnected, $df = 0 \Leftrightarrow f$ is constant on each connected component of A.

Problem: Can we rewrite a 1-form integral $\int_{Y_{\alpha}} \omega$ as a scalar integral $\int_{Y_{\alpha}} g ds$?

Recall:
$$\int_{Y_{\alpha}} g ds = \int_{I} (g \circ \alpha) V(D\alpha) = \int_{I} (g \circ \alpha) \sqrt{\det D\alpha^{T} D\alpha} = \int_{I} (g \circ \alpha) ||D_{\alpha}|| = \int_{I} (g \circ \alpha) ||\alpha'||$$

$$\int_{Y_{\alpha}} \omega = \int_{I} (\omega \circ \alpha) D\alpha = \int_{I} (\omega \circ \alpha) a'.$$

So match if $(g \circ \alpha) ||a'|| = (\omega \circ \alpha)\alpha'$, i.e., if for any point $\vec{p} = \alpha(t) \in Y$, we have $g(\vec{p}) ||\alpha'(t)|| = \omega(\vec{p})\alpha'(t) - \alpha(t)\alpha'(t)$ $g(\vec{p}) = \omega(\vec{p}) \cdot \frac{\alpha'(t)}{||\alpha'(t)||}$

Trouble if $\alpha'(t) = 0$. But if $\alpha \in C^1$, α injective, then $\alpha' \neq 0$.

Set $T: Y \to \mathbb{R}^n$, with $\alpha(t) \mapsto \frac{\alpha'(t)}{||\alpha'(t)||}$. T is the unit tangent vector function.

We get
$$\int_{Y_{\alpha}} (\omega \cdot T) ds = \int_{Y_{\alpha}} \omega$$
. Reverse: $\int g ds = \int g T^{T}$.

Thm: FTC1a for 1-forms

Given ω 1-form on $A^{\text{open,conn}} \subset \mathbb{R}^n$.

Then TFAE:

- (1) $\omega = df$ for some $f \in C^1(A, \mathbb{R}) \stackrel{\text{def}}{\Leftrightarrow} \omega$ is exact on A.
- (2) $\int_{Y_a} \omega = 0$ when $\alpha \in C^1_{pw}([a, b], A)$ with $\alpha(a) = \alpha(b)$.
- (3) $\int_{Y_{\alpha_1}} \omega = \int_{Y_{\alpha_2}} \omega$ when $\alpha_j \in C^1_{pw}([a_j,b_j],A)$ with $\alpha_1(a_1) = \alpha_2(a_2)$ and $\alpha_1(b_1) = \alpha_2(b_2)$. "Path Independence"

Proof (1)
$$\Rightarrow$$
(2): $\int_{Y_{\alpha}} df \stackrel{ptxtFTC2}{=} f(\alpha(b)) - f(\alpha(a)) = 0.$

Proof (2) \Rightarrow (3): Form a single path α from α_1 and the reverse of α_2 .

$$\int\limits_{Y_{\alpha_1}}\omega-\int\limits_{Y_{\alpha_2}}\omega=\int\limits_{Y_{\alpha}}\omega=0.\ \mathrm{So}\int\limits_{Y_{\alpha_1}}\omega=\int\limits_{Y_{\alpha_2}}\omega$$

Proof (3) \Rightarrow (1): We can define $\int_x^y \omega$ for $x, y \in A$ with $\int_x^y \omega + \int_y^z \omega = \int_x^z \omega$. Fix $x_0 \in A$, define $f(x) = \int_{x_0}^x \omega$.

Claim: $df = \omega$, i.e., $\star = \frac{f(x+h) - f(x) - \omega(x) \cdot h}{||h||} \to 0$ as $h \to 0$.

But $f(x+h) - f(x) = \int_x^{x+h} \omega = \int_0^{||f|+1} \omega(x+th) \cdot h$. So $\star = \frac{\int_0^1 (\omega(x+th) - \omega(x)) \cdot h dt}{||h||}$ Thus, $||\star|| \leq \max_{0 \leq t \leq h} ||\omega(x+th) - \omega(x)|| \to 0$ as $h \to 0$.

Exercise: this still works for C_{pw}^1 , C_{pw}^k , and C_{pw}^{∞} .

An alternate approach: Need $D_j f = \omega_j$ (a system of partial differential equations).

Recall: Thm 6.3 gives us $f \in C^2 \Rightarrow D_k D_j f = D_j D_k f$. $D_j f = \omega_j$ and $D_k f = \omega_k$. So $D_k \omega_j = D_j \omega_k$.

So ω is C^1 and exact on A, and thus $D_k\omega_j=D_j\omega_k \stackrel{\text{def}}{\Leftrightarrow} \omega$ is closed on A.

Thm: FTC1b for 1-forms

Given ω C^1 closed 1-form, $\alpha \in C^2$, then $\alpha^* \omega$ closed.

Pf1: Wait for Thm 32.3

Pf2: Read 4-line computation in Lemma J.6