John Waczak Date: May 25, 2018

Recap

Goal: Free ourselves from \mathbb{R}^3 . So far all of our surfaces were sitting in \mathbb{R}^3 i.e. $S \subseteq \mathbb{R}^3$. We also defined the tangent space for all points $p \in S$ as T_pS . Then we developed the differential geometry around a point p as a study of T_pS .

We have seen that all notions of *intrinsic geometry* such as K the Gaussian curvature, geodesics, intrinsic distance, completeness, etc... were all defined in terms of the first fundamental form \mathbb{I} . The first fundamental form was really just a *choice* of an inner product on each T_pS .

Abstractions

We want to define S surfaces abstractly without any reference to \mathbb{R}^3 such that differentiable sets on S make sense and we can extend the intrinsic geometry to such sets.

This was very, very difficult to develop

Definition. An Abstract Surface (a.k.a differentiable, smooth 2-manifold) is a set S together with a family of injective maps (continuous) $x_{\alpha}: U_{\alpha} \to S$ of open sets $U_{\alpha} \subseteq \mathbb{R}^2$ (i.e. Surface Charts) into S such that

- 1. $\bigcup_{\alpha} x_{\alpha}(U_{\alpha}) = S$
- 2. For each α, β with $x_{\alpha}(U_{\alpha}) \cap x_{\beta}(U_{\beta}) = W \neq \emptyset$. We have that $x_{\alpha}^{-1}(W)$, $x_{\beta}^{-1}(W)$ are open subsets of \mathbb{R}^2 and $x_{\beta}^{-1} \circ x_{\alpha}$, $x_{\alpha}^{-1} \circ x_{\beta}$ are differentiable. $W = x_{\alpha}(u_{\alpha}) \cap x_{\beta}(U_{\beta})$.

Figure 1: Pictorial representation of (2)

 (u_{α}, x_{α}) with $p \in x_{\alpha}(U_{\alpha})$: parameterization or a coordinate chart of S around p. $q = x_{\alpha}(u_{\alpha}, v_{\alpha})$ is how you map the point $(u_{\alpha}, v_{\alpha}) \in \mathbb{R}^2$ to the surface S. I.e. those arguments are the coordinates.

Definition. A differentiable structure for S is a family $\{(U_{\alpha}, x_{\alpha})\}$

From (2) we have that a change of parameters $x_{\beta}^{-1} \circ x_{\alpha} : x_{\alpha}^{-1}(W) \to x_{\beta}^{-1}(W)$ is a diffeomorphism.

NOTE Sometimes it is convenient to have further conditions (differs from book to book).

- 1. Differentiable structure $\{(U_{\alpha}, x_{\alpha})\}$ should be maximal relative to conditions (1) and (2) above. ie.e any of the family satisfy (1) and (2) is already contained in $\{(U_{\alpha}, x_{\alpha})\}$
- 2. We may want Haussdorff, second countable \rightarrow topology.

These are conditions we use to define higher dimensional manifolds.

When we compare this to the old definition, the big difference is that (2) condition.

What is a differentiable map?

Remember: we do not have \mathbb{R}^3 at our fingertips so we need to be precise.

Definition. If we have S_1, S_2 abstract surfaces and $\phi : S_1 \to S_2$ is Differentiable at $p \in S_1$ if given a parametrization $y : V \subset \mathbb{R}^2 \to S_2$ around $\phi(p) \exists$ a parametrization $x : U \subset \mathbb{R}^2 \to S_1$ around p such that $\phi(x(U)) \subset y(V)$ we want the image it land in y. And the map $y^{-1} \circ \phi \circ x : U \to \mathbb{R}^2$ is differentiable at $x^{-1}(p)$. We say ϕ is differentiable on S_1 if ϕ is differentiable for all $p \in S_1$.

NOTE: By condition (2) this does not depend on choice of parametrization. $y^{-1} \circ \phi \circ x$ is the expression of ϕ in the parametrizations x and y.

Example: Real Projective Plane

Let $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ and define

$$A: S^2 \to S^2$$
 antipodal map $(x, y, z) \to (-x, -y, -z)$

Define $\mathbb{R}P^2 = \frac{S^2}{N}$ where $p \cong q$ for $p, q \in S^2$ iff q = A(p). This means we get a map (the natural projection)

$$\pi: S^2 \to \mathbb{R}P^2$$
$$p \mapsto [p] = \{p, A(p)\}$$

Is this an abstract surface?

Cover S^2 with coordinate charts $x_{\alpha}: U_{\alpha} \to S^2$ such that $x_{\alpha}(U_{\alpha}) \cap A \circ x_{\alpha}(U_{\alpha}) = \emptyset$

Now: S^2 is a regular surface, A is a diffeomorphism $\Rightarrow \mathbb{R}P^2$ with $\{U_{\alpha}, \pi \circ x_{\alpha}\}$ is an abstract surface. We need to check that $\pi \circ x_{\alpha}$ is injective.

Injectivity:

$$\pi(x_{\alpha}(x)) = \pi(x_{\alpha}(y))$$

$$\Rightarrow [x_{\alpha}(x)] = [x_{\alpha}(y)]$$

$$\Rightarrow x_{\alpha}(x) = x_{\alpha}(y) \text{ or } A(x_{\alpha}(y))$$

but $A(x_{\alpha}(y))$ is not in $x_{\alpha}(U_{\alpha}) \to x_{\alpha}(x) = x_{\alpha}(y)$ which implies x = y since x_{α} was injective already.

