第4次作业对资本资产定价模型的检验

一、CAPM模型

$$E(R_i) - R_f = \beta_i * (E(R_m) - R_f)$$

其中

 $E(R_i)$ 是资产i的预期回报率 R_f 是无风险利率 eta_i 是Beta系数,即资产i的系统性风险 $E(R_m)$ 是市场m的预期市场回报率

 $E(R_m) - R_f$ 是市场风险溢价,即预期市场回报率与无风险回报率之差

二、数据下载与整理

通过SCU library访问CSMAR,分别下载2010-01——2022-05的股票月收益率、市场月收益率、月度无风险收益率数据,选取9支股票,代码位600000、600028、600030、600031、600036、600048、6000050、600104,对数据做描述性统计结果如下

Descriptive Statistics

Variable	Obs	Mean	Std. Dev.	Min	Max
stock1	149	.004	.073	165	.33
stock2	149	0	.071	189	.267
stock3	149	.01	.136	316	.964
stock4	149	.013	.119	269	.524
stock5	149	.012	.082	167	.372
stock6	149	.013	.107	219	.503
stock7	145	0	.102	345	.74
stock8	148	.006	.088	23	.254
stock9	149	.016	.13	227	.851
rf	149	.002	.001	.001	.003
rm	149	.004	.063	251	.177

三、基于每一只股票的历史序列,估计beta系数

将每一支股票的回报率对市场回报率数据进行回归,得到各自的beta系数、平均超额收益以及风险溢价如下图:

stock	beta	平均超额收益	平均风险溢价
1	0.652183	0.002682	0.002295
2	0.658067	-0.00132	0.002295
3	1.554375	0.007983	0.002295
4	1.297741	0.011266	0.002295
5	0.805147	0.009955	0.002295
6	0.952362	0.011156	0.002295
7	0.739225	-0.00139	0.002295
8	0.096205	0.004512	0.002295
9	0.917235	0.01473	0.002295

四、基于该9支股票的模型检验

基于以上数据我们开始对CAPM模型进行检验,本组回归模型设定如下:

$$ear = \beta_0 + \beta_1 * beta + \varepsilon$$
 ear 代表平均超额收益 $beta$ 代表上述九支股票的 $beta$ 系数

故需检验两个结果

(1)
$$\beta_0 = 0$$

(2) $\beta_1 = 0.002295$

回归结果如下图所示:

aer	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
beta	.006	.005	1.34	.221	005	.017	
Constant	.001	.004	0.28	.791	009	.012	
Mean dependent var		0.007	SD depen	dent var		0.006	
R-squared		0.205	Number of obs			9	
F-test		1.806	Prob > F			0.221	
Akaike crit. (AIC)		-66.318	Bayesian	crit. (BIC)		-65.924	

^{***} p<.01, ** p<.05, * p<.1

可以看出,对于常数项 β_0 ,其t值为0.28,不显著,在95%的水平下不能拒绝原假设对于 $\beta_1=0.002295$ 需进一步处理,构造t统计量 =0.82722666672<1.96在95%的置信水平下仍然不能拒绝原假设

五、进一步的组合检验

如teacher所给word文档中所示,我们构造组合资产来对capm模型进行检验,根据院士股票 次序,重新构造了如下图所示的三个投资组合

stock	beta	
3	1.554375	Comb1
4	1.297741	
6	0.952362	
9	0.917235	Comb2
5	0.805147	
7	0.739225	
2	0.658067	Comb3
1	0.652183	
8	0.096205	

分别计算三个投资组合的beta系数和超额收益率

Comb	Beta 系数	平均超额收益率
1	1. 268159	. 010135
2	. 8261243	. 008293
3	. 4702293	. 00193

仍旧按第三、四部分所示对CAPM模型进行检验,回归模型设定如下:

$$ear^* = au_0 + au_1 * beta^* + arepsilon$$
 ear^* 代表平均超额收益 $beta^*$ 代表上述九支股票的 $beta$ 系数

我们需要检验两个结果:

$$\begin{array}{c} (\,1) \ \tau_0 = 0 \\ (\,2) \ \tau_1 = 0.002295 \end{array}$$

以下为stata回归结果:

aer1	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Beta1	.01	.004	2.58	.236	039	.06	
Constant	002	.004	-0.50	.703	047	.044	
Mean dependent var		0.007	SD deper	dent var		0.004	
R-squared		0.869	Number of obs			3	
F-test		6.638	Prob > F			0.236	
Akaike crit. (AIC)		-27.490	Bayesian crit. (BIC)			-29.293	

^{***} p<.01, ** p<.05, * p<.1

可以看出,对于常数项 au_0 ,其t值为-0.5,不显著,在95%的水平下不能拒绝原假设对于 $au_1=0.002295$ 需进一步处理,构造t统计量=1.987632<2.353在95%的置信水平下仍然不能拒绝原假设