

Détecteur de flamme



# Liste de diffusion

| Liste de diffusion                 |                                                                                                                                        |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Société / Etablissement            | Destinataire(s)                                                                                                                        |  |
| Polytech Sorbonnes                 | <ul><li>Monsieur Arouna Darga</li><li>Monsieur Francis Bras</li><li>Monsieur Damien Bricault</li></ul>                                 |  |
| Equipe de développement<br>Domokit | <ul> <li>Thomas Broussard</li> <li>Samir Kherchaoui</li> <li>Yanis Boumghar</li> <li>Seldie Mbongo</li> <li>Antoine Choplin</li> </ul> |  |

# Suivi des modifications

| Version N° Date Rédacteur   |          | Rédacteur        | Changements                         |  |
|-----------------------------|----------|------------------|-------------------------------------|--|
| 00 08/01/19 Antoine Choplin |          | Antoine Choplin  | Création du document                |  |
| 01                          | 13/01/19 | Thomas Broussard | Relecture et validation du document |  |











# Table des matières

| 1 | Documents de référence |                                           |          |
|---|------------------------|-------------------------------------------|----------|
| 2 | Prés                   | sentation                                 | 5        |
|   | 2.1                    | Description                               |          |
|   | 2.2                    | Caractéristiques principales              | 5        |
|   | 2.3                    | Principe de fonctionnement                | 5        |
| 3 | Prot                   | otypage                                   | <b>7</b> |
|   | 3.1                    | liste des composants nécessaires          |          |
|   | 3.2                    | Conception logicielle                     | 8        |
|   | 3.3                    | Conception matérielle                     |          |
| Ч | Indu                   | strialisation                             | 10       |
|   | Ч.1                    | liste des composants nécessaires          | 10       |
|   | Ч.2                    |                                           | 11       |
|   |                        | 4.2.1 Evolutions par rapport au prototype |          |
|   | Ч.3                    | Conception matérielle                     | 11       |
|   |                        | 4.3.1 Schéma électrique                   | 11       |
|   |                        | 4.3.2 Schéma typon (PCB)                  | 13       |
|   |                        | 4.3.3 Liste entrées / sorties ESP8266     | 14       |
|   |                        | 4.3.4 Boîtier                             | 15       |











# 1 Documents de référence

| N°  | Titre                                        | Description                                        | Auteur(s)       |
|-----|----------------------------------------------|----------------------------------------------------|-----------------|
| [1] | Code/PlatformIO/src                          | Programme de l'objet industrialisé                 | Antoine Choplin |
| [2] | Boitier/Base.stl et<br>Boitier/Couvercle.stl | Modélisation 3D du Boîtier Thomas E                |                 |
| [3] | PCB/PCB_TOP.pdf                              | Fichier de conception du PCB (TOP)  Antoine Chop   |                 |
| [4] | PCB/PCB_BOTTOM.pdf                           | Fichier de conception du PCB (BOTTOM)  Antoine Cho |                 |











# 2 Présentation

## 2.1 Description

L'objet développé dans ce document sera un détecteur de flamme pilotable à distance. Il propose à l'aide d'un capteur basé sur le fonctionnement d'un KY-026 de prévenir son propriétaire en cas de départ d'incendie. Cette information pourra être disponible sur l'interface utilisateur de DomoKit.

# 2.2 Caractéristiques principales

Cet objet se base sur l'ESP8266 et son module wifi qui va lui permettre d'intégrer notre panel d'objet connecté DomoKit. L'objectif est d'informer à distance l'utilisateur DomoKit d'un départ d'incendie.

- Le produit dispose d'un ESP8266-12F pour fonctionner. Ce module pilote manuellement l'objet grâce à ses GPIO mais est aussi pilotable via son module wifi.
- On retrouve sur l'objet un bouton afin d'activer/arrêter/redémarrer son fonctionnement.
- Par défaut, l'ensemble du système pourra être alimenté par USB mais un utilisateur confirmé pourra ajouter une alimentation par batterie/pile.
- L'objet présente également une sortie d'alimentation par relais qui sera protégée par l'état du capteur de flamme.
- Le boîtier du détecteur pourra être revu si nécessaire, la version standard propose seulement les fonctionnalités basiques (alimentation par USB, détection de flamme, bouton On/Off).
- On retrouve également une LED d'état pour la connexion de cet objet notamment.

## 2.3 Principe de fonctionnement

#### Mise en route

- 1) Une fois le détecteur alimenté, l'objet démarre et cherche à se connecter au wifi. La LED de l'état du wifi est éteinte.
- 2) Si l'objet est connecté au wifi, la LED rouge présentera l'état du détecteur.
  - Allumée : en fonctionnement
  - Eteinte : le détecteur est à l'arrêt

On peut démarrer l'objet manuellement avec le bouton ou à distance via les différentes interfaces DomoKit.











#### Le détecteur est allumé :

- 1) On allume la LED, indiquant que l'objet est ON
- 2) Toutes les secondes, le capteur envoie une tension analogique selon sa sensibilité par la présence ou non d'une flamme. On a défini un seuil dans le code pour lequel une flamme sera détectée.

#### Le détecteur est éteint :

- 1) On éteint la LED, indiquant que l'objet est OFF
- 2) On désactive la mesure réalisée par le capteur de flamme

#### Une flamme est détectée :

- 1) Le capteur a envoyé une valeur inférieure au seuil, une flamme est détectée. L'objet envoie une alerte au serveur.
- 2) On éteint la LED, indiquant que l'objet est OFF
- 3) Une fois l'alerte traitée par l'utilisateur, il peut redémarrer l'objet avec le bouton ou à distance avec l'une des interfaces.











# 3 Prototypage

# 3.1 Liste des composants nécessaires

| Nom du composant      | Quantité requise | Description              |
|-----------------------|------------------|--------------------------|
| Module YG1006         | 1                | Module pour détection de |
|                       |                  | flamme                   |
| LED RGB traversante   | 1                | Etat wifi                |
| LED rouge traversante | 1                | Etat objet on/off        |
| Bouton                | 1                | Bouton on/off            |
| NodeMCU ESP8266       | 1                | Microcontrôleur wifi     |
| Résistances 330 Ohms  | 4                |                          |
| traversantes          | 4                |                          |









# 3.2 Conception logicielle













# 3.3 Conception matérielle

#### Schéma fonctionnel:













# 4 Industrialisation

# 4.1 Liste des composants nécessaires

| Nom du composant              | Quantité requise | Description                  |
|-------------------------------|------------------|------------------------------|
| ESP8266-12F                   | 1                | Microcontrôleur Wifi         |
| LM393DR2G                     | 1                | Comparateur                  |
| LED rouge traversante         | 1                | Etat objet on/off            |
| LED verte traversante         | 2                | Debug                        |
| LED RGB traversante           | 1                | Etat wifi                    |
| Résistances Variable 10 kOhms | 1                | 3362P-1-103                  |
| Résistances CMS 10 kOhms      | 6                | Package : 1206               |
| Résistances CMS 820 kOhms     | 1                | Package : 1206               |
| Résistances CMS 1 kOhms       | 1                | Package : 1206               |
| Résistances CMS 1.8 kOhms     | 1                | Package : 1206               |
| Résistances CMS 390 kOhms     | 1                | Package : 1206               |
| Résistances CMS 270 Ohms      | 6                | Package : 1206               |
| Résistances CMS 0 Ohm         | 5                | Package : 1206               |
| Condensateur CMS 100 nF       | 1                | Package : 1206, céramique    |
| Condensateur CMS 1 μF         | 1                | Package : 1206, céramique    |
| Condensateur CMS 10 μF        | 2                | Package : 1206, céramique    |
| Condensateur chimique 100 μF  | 1                | Package : traversante        |
| Condensateur chimique 10 μF   | 1                | Package : traversante        |
| YG1006                        | 1                | IR Diode – capteur de flamme |
| Bouton 12*12                  | 1                | Bouton on/off                |
| Micro USB Femelle             | 1                | Alimentation                 |
| LM1117IMP-3.3                 | 1                | Régulateur 3V3               |
| Bouton 2 pattes EVQ22705R     | 2                | Flash / Reset                |
| Connecteur 4 pins             | 2                |                              |
| Connecteur 2 pins             | 2                |                              |











# **4.2 Conception logicielle**

### 4.2.1 Evolutions par rapport au prototype

L'organigramme reste semblable. Cependant le code est industrialisé, il respecte les normes misent en place par l'équipe DomoKit pour une homogénéité des codes. On y intègre également la possibilité de l'interaction avec l'interface web et l'application (appairage, contrôle on/off). On ajoute également la possibilité d'appuyer sur le bouton pour éteindre l'objet à tout moment manuellement.

# 4.3 Conception matérielle

## 4.3.1 Schéma électrique





























# 4.3.2 Schéma typon (PCB)

#### → PCB Top



#### → PCB Bottom













# 4.3.3 Liste entrées / sorties ESP8266

| Pin | Fonction        | Sens  | Rôle                                   |
|-----|-----------------|-------|----------------------------------------|
| 1   | Reset           | In    | Reset pour flashage → Bouton           |
| 2   | ADC             | In    | Entrée analogique → Diode IR capteur   |
| 3   | Enable          | In    | Pull-up                                |
| 4   | GPIO16          | -     | Non utilisé                            |
| 5   | GPIO14          | -     | Non utilisé                            |
| 6   | GPIO12          | Out   | LED RGB → Etat Wifi                    |
| 7   | GPIO13          | Out   | LED RGB → Etat Wifi                    |
| 8   | VCC             | Power | 3V3                                    |
| 9   | SPI Chip Select | -     | Non utilisé                            |
| 10  | SPI MISO        | -     | Non utilisé                            |
| 11  | GPIO9           | In    | Sortie comparateur détection de flamme |
| 12  | GPIO10          | -     | Non utilisé                            |
| 13  | SPI MOSI        | -     | Non utilisé                            |
| 14  | SPI CLK         | -     | Non utilisé                            |
| 15  | GND             | Power | Ground                                 |
| 16  | GPIO15          | Out   | LED RGB → Etat Wifi                    |
| 17  | GPIO2           | -     | Non utilisé                            |
| 18  | GPIO0           | In    | Sélection mode Flash + Bouton on/off   |
| 19  | GPIO4           | Out   | Etat objet on/off                      |
| 20  | GPIO5           | Out   | Extension relais                       |
| 21  | Serial RX       | In    | UART Connecteur                        |
| 22  | Serial TX       | Out   | UART Connecteur                        |











# **4.3.4 Boîtier**











# la domotique accessible pour tous

# Serveur ObjetConnecté Userfriendly Domokir Domotique