Checking a Casino

Checking a Casino

Checking a Casino

How could we guess which coin was more likely?

Compute the Probability of the Observed Sequence

Fair coin: Pr(Heads) = 0.5

Biased coin: Pr(Heads) = 0.75

$$x = \uparrow \qquad \uparrow \qquad \downarrow \qquad \downarrow \qquad \uparrow$$

$$Pr(x | Fair) = 0.5 \quad 0.5 \quad 0.5 \quad 0.5 \quad 0.5$$

$$Pr(x \mid Biased) = 0.75 \quad 0.75 \quad 0.25 \quad 0.25 \quad 0.25 \quad 0.75$$

Compute the Probability of the Observed Sequence

Fair coin: Pr(Heads) = 0.5

Biased coin: Pr(Heads) = 0.75

$$x = \uparrow \qquad \uparrow \qquad \downarrow \qquad \downarrow \qquad \uparrow$$

$$Pr(x | Fair) = 0.5 \times 0.5 = 0.5^7 = 0.0078125$$

$$Pr(x \mid Biased) = 0.75 \times 0.75 \times 0.25 \times 0.25 \times 0.25 \times 0.25 \times 0.75 = 0.001647949$$

Compute the Probability of the Observed Sequence

Fair coin: Pr(Heads) = 0.5

Biased coin: Pr(Heads) = 0.75

$$x = \uparrow \qquad \uparrow \qquad \downarrow \qquad \downarrow \qquad \uparrow$$

$$Pr(x | Fair) = 0.5 \times 0.5 = 0.5^7 = 0.0078125$$

$$Pr(x \mid Biased) = 0.75 \times 0.75 \times 0.25 \times 0.25 \times 0.25 \times 0.25 \times 0.75 = 0.001647949$$

The *log-odds* score:

$$\log_2 \frac{\Pr(x \mid Fair)}{\Pr(x \mid Biased)} = \log_2 \frac{0.0078}{0.0016} = 2.245$$
 > 0. Hence "Fair" is a better guess.

What if the casino switches coins?

Fair coin: Pr(Heads) = 0.5

Biased coin: Pr(Heads) = 0.75

Probability of switching coins = 0.1

What if the casino switches coins?

Fair coin: Pr(Heads) = 0.5

Biased coin: Pr(Heads) = 0.75

Probability of switching coins = 0.1

How can we compute the probability of the entire sequence?

What if the casino switches coins?

Fair coin: Pr(Heads) = 0.5

Biased coin: Pr(Heads) = 0.75

Probability of switching coins = 0.1

How can we compute the probability of the entire sequence?

How could we guess which coin was more likely at each position?

Hidden Markov Model (HMM)

Fair coin: Pr(Heads) = 0.5

Biased coin: Pr(Heads) = 0.75

Probability of switching coins = 0.1

Formal Definition of a HMM

 \sum = alphabet of symbols.

Q = set of states.

A = an $|Q| \times |Q|$ matrix where entry (k,l) is the probability of moving from state k to state l.

 $E = a |Q| \times |\Sigma|$ matrix, where entry (k,b) is the probability of emitting b when in state k.

Constraints on A and E

Sum of the # in each row must be 1.

Computing Probabilities Given Path

$$Pr(x_i \mid \pi_i) = 0.5 \ 0.5 \ 0.5 \ 0.75 \ 0.75 \ 0.75 \ 0.25 \ 0.5 \ 0.5$$

$$Pr(\pi_i \to \pi_{i+1}) = 0.1$$
 0.9 0.9 0.1 0.9 0.9 0.9 0.1 0.1

The Decoding Problem

Given x and π , we can compute:

- $Pr(x \mid \pi)$: product of $Pr(x_i \mid \pi_i)$
- $Pr(\pi)$: product of $Pr(\pi_i \to \pi_{i+1})$
- $Pr(x, \pi)$: product of all the $Pr(x_i \mid \pi_i)$ and $Pr(\pi_i \rightarrow \pi_{i+1})$

$$\Pr(x,\pi) = \Pr(\pi_0 \to \pi_1) \prod_{i=1}^n \Pr(x_i \mid \pi_i) \Pr(\pi_i \to \pi_{i+1})$$

But they are "hidden" Markov models because π is unknown.

Decoding Problem: Given a sequence $x_1x_2x_3...x_n$ generated by an HMM (\sum , Q, A, E), find a path π that maximizes $Pr(x, \pi)$.

The Viterbi Algorithm to Find Best Path

A[a, k] := the probability of the **best** path for $x_1...x_k$ that ends at state a.

A[a, k] = the path for $x_1...x_{k-1}$ that goes to some state b times cost of a transition from b to i, and then to output x_k from state a.

Viterbi DP Recurrence

$$A[a,k] = \max_{b \in Q} \left\{ \underbrace{A[b,k-1]} \times \underbrace{\Pr(b \to a)} \times \underbrace{\Pr(x_k \mid \pi_k = a)} \right\}$$

Over all possible previous states.

Best path for $x_1..x_k$ ending in state b

Probability of transitioning from state b to state a

Probability of outputting x_k given that the kth state is a.

Base case:

$$A[a, 1] = \Pr(\pi_1 = a) \times \Pr(x_1 \mid \pi_1 = a)$$

Probability that the first state is *a*

Probability of emitting x_1 given the first state is a.

Which Cells Do We Depend On?

Order to Fill in the Matrix:

Where's the answer?

Graph View of Viterbi

Running Time

• # of subproblems = O(n|Q|), where n is the length of the sequence.

• Time to solve a subproblem = O(|Q|)

• Total running time: $O(n|Q|^2)$

Using Logs

Typically, we take the log of the probabilities to avoid multiplying a lot of terms:

$$\log(A[a, k]) = \max_{b \in Q} \{ \log(A[b, k - 1] \times \Pr(b \to a) \times \Pr(x_k \mid \pi_k = a)) \}$$

$$= \max_{b \in Q} \{ \log(A[b, k - 1]) + \log(\Pr(b \to a)) + \log(\Pr(x_k \mid \pi_k = a)) \}$$

Remember: $\log(ab) = \log(a) + \log(b)$

Why do we want to avoid multiplying lots of terms?

Using Logs

Typically, we take the log of the probabilities to avoid multiplying a lot of terms:

$$\log(A[a, k]) = \max_{b \in Q} \{ \log(A[b, k - 1] \times \Pr(b \to a) \times \Pr(x_k \mid \pi_k = a)) \}$$

$$= \max_{b \in Q} \{ \log(A[b, k - 1]) + \log(\Pr(b \to a)) + \log(\Pr(x_k \mid \pi_k = a)) \}$$

Remember:
$$\log(ab) = \log(a) + \log(b)$$

Why do we want to avoid multiplying lots of terms?

Multiplying leads to very small numbers:

$$0.1 \times 0.1 \times 0.1 \times 0.1 \times 0.1 = 0.00001$$

This can lead to underflow.

Taking logs and adding keeps numbers bigger.

Estimating HMM Parameters

$$(\mathbf{x}^{(1)}, \boldsymbol{\pi}^{(1)}) = \begin{bmatrix} x_1^{(1)} x_2^{(1)} x_3^{(1)} x_4^{(1)} x_5^{(1)} \dots x_n^{(1)} \\ \pi_1^{(1)} \pi_2^{(1)} \pi_3^{(1)} \pi_4^{(1)} \pi_5^{(1)} \dots \pi_n^{(1)} \end{bmatrix}$$

$$(\mathbf{x}^{(2)}, \boldsymbol{\pi}^{(2)}) = \begin{bmatrix} x_1^{(2)} x_2^{(2)} x_3^{(2)} x_4^{(2)} x_5^{(2)} \dots x_n^{(2)} \\ \pi_1^{(2)} \pi_2^{(2)} \pi_3^{(2)} \pi_4^{(2)} \pi_5^{(2)} \dots \pi_n^{(2)} \end{bmatrix}$$

Training examples where outputs and paths are known.

of times transition
$$a \rightarrow b$$
 is observed.
$$\Pr(a \rightarrow b) = \frac{A_{ab}}{\sum_{q \in Q} A_{aq}}$$

$$\Pr(x \mid a) = \frac{E_{xa}}{\sum_{x \in \Sigma} E_{xq}}$$

Pseudocounts

of times x was

 $\begin{array}{c} \text{\# of times transition} \\ a \rightarrow b \text{ is observed.} \end{array} \\ \Pr(a \rightarrow b) = \frac{A_{ab}}{\sum_{q \in Q} A_{aq}} \\ \Pr(x \mid a) = \frac{E_{xa}}{\sum_{x \in \Sigma} E_{xq}} \end{array}$

What if a transition or emission is never observed in the training data? \Rightarrow 0 probability

Meaning that if we observe an example with that transition or emission in the real world, we will give it 0 probability.

But it's unlikely that our training set will be large enough to observe every possible transition.

Hence: we take $A_{ab} = (\#times \ a \rightarrow b \ was \ observed) + I \longleftarrow "pseudocount" Similarly for <math>E_{xa}$.

Viterbi Training

• **Problem**: typically, in the real would we only have examples of the output x, and we don't know the paths π .

Viterbi Training Algorithm:

- 1. Choose a random set of parameters.
- 2. Repeat:
 - I. Find the best paths.
 - 2. Use those paths to estimate new parameters.

This is an local search algorithm.

It's also an example of a "Gibbs sampling" style algorithm.

The Baum-Welch algorithm is similar, but doesn't commit to a single best path for each example.

Some probabilities we are interested in

What is the probability of observing a string x under the assumed HMM?

$$\Pr(x) = \sum_{\pi} \Pr(x, \pi)$$

What is the probability of observing x using a path where the ith state is a?

$$\Pr(x, \pi_i = a) = \sum_{\pi: \pi_i = a} \Pr(x, \pi)$$

What is the probability that the ith state is a?

$$\Pr(\pi_i = a | x) = \frac{\Pr(x, \pi_i = a)}{\Pr(x)}$$