$\acute{\mathbf{U}}$ kol 1 Hodnoty, naměřené přímou metodou měření odporu pomocí zapojení 1a, jsou uvedeny v tabulce 1. Závislost nekorigovaného odporu na proudu je vynesena v grafu 1, závislost korigovaného odporu na proudu v grafu 2.

$ \begin{array}{c} U_a \\ [V] \end{array} $	σ_{U_a} [V]	I_a [mA]	σ_{I_a} [mA]	R_a $[\Omega]$	σ_{R_a} $[\Omega]$	$R_{a_{kor}}$ $[\Omega]$	$\sigma_{R_{a_{kor}}}$ $[\Omega]$
0.15	0.003	1.11	0.003	135.1	2.7	24.9	3.0
0.35	0.003	4.45	0.015	78.7	0.7	38.9	1.0
0.51	0.003	6.30	0.015	81.0	0.5	41.2	0.9
0.70	0.003	9.10	0.030	76.9	0.4	55.8	0.7
0.85	0.003	10.0	0.030	85.0	0.4	63.9	0.7
1.09	0.003	11.0	0.030	99.1	0.4	78.0	0.7
1.64	0.006	12.7	0.030	129.1	0.6	108.0	0.8
2.56	0.006	15.0	0.060	170.7	0.8	159.8	0.9
2.90	0.006	15.8	0.060	183.5	0.8	172.6	0.9
4.10	0.015	18.4	0.060	222.8	1.1	211.9	1.2
5.00	0.015	20.4	0.060	245.1	1.0	234.2	1.1
6.25	0.015	23.4	0.060	267.1	0.9	256.2	1.1
7.50	0.015	25.8	0.060	290.7	0.9	279.8	1.0
8.90	0.030	28.6	0.060	311.2	1.2	300.3	1.3
11.4	0.030	33.0	0.150	345.5	1.8	341.4	1.8
13.2	0.030	35.5	0.150	371.8	1.8	367.7	1.8
15.0	0.030	38.5	0.150	389.6	1.7	385.5	1.7
19.1	0.060	44.0	0.150	434.1	2.0	430.0	2.0
22.0	0.060	47.5	0.150	463.2	1.9	459.1	1.9

Tabulka 1: Hodnoty naměřené a vypočtené s použitím zapojení a

Obrázek 1: Graf závislosti nekorigovaného odporu na proudu pomocí zapojení \boldsymbol{a}

Obrázek 2: Graf závislosti korigovaného odporu na proudu pomocí zapojení \boldsymbol{a}

Hodnoty, naměřené přímou metodou měření odporu pomocí zapojení 1b jsou uvedeny v tabulce 2. Závislost nekorigovaného odporu na proudu je vynesena v grafu 3, závislost korigovaného odporu na proudu v grafu 4.

U_b [V]	σ_{U_b} [V]	I_b [mA]	σ_{I_b} [mA]	$I_{b_{kor}}$ [mA]	$\begin{array}{c} \sigma_{I_{b_{kor}}} \\ [\text{mA}] \end{array}$	R_b $[\Omega]$	σ_{R_b} $[\Omega]$	$R_{b_{kor}}$ $[\Omega]$	$\sigma_{R_{b_{kor}}}$ $[\Omega]$
0.15	0.003	2.41	0.006	2.60	0.01	62.2	1.3	67.7	1.5
0.18	0.003	6.10	0.015	6.46	0.01	45.9	0.5	48.8	0.6
0.39	0.003	7.90	0.030	8.40	0.03	49.4	0.4	52.7	0.5
0.50	0.003	9.40	0.030	10.0	0.03	53.2	0.4	57.1	0.4
0.70	0.003	11.2	0.030	12.1	0.03	62.5	0.3	68.0	0.4
0.90	0.003	12.4	0.030	13.5	0.03	72.6	0.3	80.1	0.4
1.10	0.003	13.4	0.030	14.8	0.03	82.1	0.3	91.9	0.4
2.00	0.006	15.2	0.060	16.5	0.07	131.6	0.7	144.2	0.8
3.00	0.006	18.4	0.060	20.4	0.07	163.0	0.6	182.9	0.9
4.00	0.015	19.8	0.060	20.8	0.06	202.0	1.0	213.5	1.1
5.00	0.015	22.4	0.060	23.7	0.06	223.2	0.9	237.3	1.0
6.00	0.015	25.0	0.060	26.6	0.06	240.0	0.8	256.4	1.0
7.20	0.015	27.6	0.060	29.5	0.07	260.9	0.8	280.4	0.9
8.60	0.030	29.8	0.060	30.9	0.06	288.6	1.2	300.2	1.3
13.0	0.030	37.5	0.150	39.2	0.15	346.7	1.6	363.5	1.8
14.8	0.030	40.5	0.150	42.4	0.15	365.4	1.5	384.2	1.7
19.0	0.060	45.5	0.150	46.7	0.15	417.6	1.9	429.6	2.0
21.8	0.060	49.0	0.150	50.4	0.15	444.9	1.8	458.5	1.9

Tabulka 2: Hodnoty naměřené a vypočtené s použitím zapojení \boldsymbol{b}

Obrázek 3: Graf závislosti nekorigovaného odporu na proudu pomocí zapojení b

Obrázek 4: Graf závislosti korigovaného odporu na proudu pomocí zapojení b

Úkol 2

Vnitřní odpor ampérmetru substituční metodou byl měřen pro rozsah 75 mA. Jako srovnávací proud jsem použil hodnotu $(18,0\pm0,5)$ mA. Pomocí odporové dekády byla určena hodnota vnitřního odporu ampérmetru $(4,10\pm0,04)$ Ω .

Vnitřní odpor voltmetru substituční metodou jsem určil pro rozsah 30 V. Použil jsem srovnávací proud $(1,80\pm0,05)$ mA. Opět pomocí odporové dekády byla určena hodnota vnitřního odporu voltmetru $(15,0\pm0,2)$ k Ω .

Odpory zbylých rozsahů jsem měřil digitálním multimetrem. Rozsahu, vhodnému k měření všech hodnot odporů voltmetru, odpovídá chyba 0.8% z naměřené hodnoty ± 2 digity, pro hodnoty odporů ampérmetru taktéž 0.8% z naměřené hodnoty ± 4 digity.

rozsah [mA]	$\begin{array}{c} \text{odpor} \\ [\Omega] \end{array}$	chyba $[\Omega]$
1,5	110,2	1,3
3	82,9	1,1
7,5	$39,\!8$	0,7
15	21,1	0,6
30	10,9	0,5
75	$4,\!5$	0,4

rozsah	odpor	chyba
[V]	[Ω]	[Ω]
1,5	770	8
3	$1500 \\ 3750$	32
7,5 15	5750 7480	50 80
30	14970	140

Tabulka 3: Odpory ampérmetru měřené digitálním multimetrem

Tabulka 4: Odpory voltmetru měřené digitálním multimetrem

Úkol 3

Následující tabulka obsahuje hodnoty proudu a odporu měřené substituční metodou.

I	σ_I	R	σ_R
[mA]	[mA]	$[\Omega]$	$[\Omega]$
0,9800	0,0030	42,40	0,04
1,980	0,006	$42,\!40$	0,04
2,800	0,006	43,40	0,04
4,100	0,015	45,00	0,04
4,950	0,015	46,20	0,05
6,900	0,015	50,10	0,05
9,100	0,030	59,00	0,06
10,900	0,030	76,00	0,08
13,100	0,030	121,00	0,12
15,000	0,030	158,00	0,16
20,00	0,06	230,00	0,23
$25,\!00$	0,06	275,00	0,28
30,00	0,06	317,00	0,32
$35,\!00$	$0,\!15$	361,0	0,4
40,00	$0,\!15$	403,0	0,4
$45,\!00$	$0,\!15$	437,0	0,4
50,00	0,15	473,0	0,5

Tabulka 5: Závislost odporu na proudu měřená substituční metodou

 ${\bf V}$ grafu 5 je znázorněna závislost odporu vlákna žárovky na procházejícím proudu. Data jsou opět proložena kvadratickým a lineárním fitem.

Obrázek 5: Graf závislosti odporu na proudu měřené substituční metodou

$\acute{\mathrm{U}}\mathrm{kol}\ 5$

Závislost podle rovnice (??) je vyobrazena v grafu 6. Bylo použito prvních 6 hodnot z úkolu 3. Pomocí lineární regrese byla určena hodnota odporu žárovky při pokojové teplotě $(42,35\pm0,09)\,\Omega$.

Obrázek 6: Lineární závislost prvních šesti hodnot příkonu a odporu