Lsn35

Clark

Admin

In this case, we also note that this implies a distribution of $\hat{\theta}$ of:

Which we can draw as:

Even if H_0 is true, there is a probabilty of α that $P(Z>z_\alpha)$ for any z_α which corresponds to $P(\hat{\theta}>k)=\alpha$, for $k=z_\alpha\sigma_{\hat{\theta}}+\theta_0$. Which we can denote on our picture above.

Similarly, if we have $H_0: \theta = \theta_0$ vs. $H_a: \theta < \theta_0$, for any fixed α we can find k such that $P(\hat{\theta} < k) = \alpha$. In which case we have the drawing:

Similarly a large sample α -level test of hypothesis for $H_0: \theta = \theta_0$ vs $H_a: \theta > \theta_0$ we would reject the null hypothesis if

$$\frac{\hat{\theta} - \theta_0}{\sigma_{\hat{\theta}}} > z_{\alpha}$$

Let's show that this is equivalent to rejecting H_0 if θ_0 is less than the large-sample $100(1-\alpha)\%$ lower confidence bound for θ .

First, using the acceptance region, find, in terms of our parameters above, what values of θ_0 would cause us to accept H_0 (I know. In MA206 they say, never say accept H_0 ... But in practice it really doesn't matter.)

Now. Calculate a one sided lower confidence bound for θ . Remember we need to use a Pivotal quantity. Probably makes sense to use $\frac{\hat{\theta}-\theta}{\sigma_{\hat{\theta}}} \sim N(0,1)$ as our pivotal quantity. Then we need to find z such that $P(\frac{\hat{\theta}-\theta}{\sigma_{\hat{\theta}}} \leq z) = 1 - \alpha$ and isolate θ in the above inequality.