Функциональный анализ

Полные метрические пространства

Опр: (X, ρ) — метрическое пространство, если X — множество, $\rho: X \times X \to \mathbb{R}$ — метрика, и выполняются следующие условия:

- $\rho(x,y) \ge 0$, $\forall x,y \in X$
- $\rho(x,y) = 0 \Leftrightarrow x = y, \quad \forall x, y \in X$
- $\rho(x,y) = \rho(y,x), \quad \forall x,y \in X$
- $\rho(x,y) \le \rho(x,z) + \rho(z,y), \quad \forall x,y,z \in X$

Опр: $\{B_r(x)\}_{r>0}$ — *база топологии* (т.е. семейство открытых подмножеств, через которые любой элемент представим в виде их объединения), где $B_r(x) = \{y \in X : \rho(x,y) < r\}$ — *открытый шар*, r > 0, $x \in X$

Опр: $U-\mathit{открытоe}$ множество, если $\forall x \in U \ \exists r > 0 : B_r(x) \subset U$

Опр: $\{B_{r_n}(x)\}_{r_n\in\mathbb{Q}}-c$ чётная база в X

Опр: $A \subset X$, $A - замкнутое \Leftrightarrow X \setminus A$ — открытое (или $\forall \{x_n\}_{n=1}^{\infty} : x_n \in A \ \exists \lim_{n \to \infty} x_n = x_0 \Rightarrow x_0 \in A$)

Опр: $D_r(x) = \{y \in X : \rho(x,y) \le r\}$ — замкнутый круг

$$\lim_{n \to \infty} x_n = x_0 \iff \lim_{n \to \infty} \rho(x_n, x_0) = 0$$

Опр: $\{x_n\}_{n=1}^{\infty} - \phi$ ундаментальная последовательность в X, если $\forall \epsilon > 0 \ \exists N \in \mathbb{N} : n, m > N \Rightarrow \rho(x_n, x_m) < \epsilon$

Свойство: (x, ρ) — метрическое пр-во, $\{x_n\}_{n=1}^{\infty}$, $x_n \in X$ $\exists \lim_{n \to \infty} x_n = a \Rightarrow \{x_n\}_{n=1}^{\infty}$ — фундаментальная последовательность

Опр: (X,ρ) — метр. пр-во, X — *полное*, если $\forall \{x_n\}$ — фунд. $\Rightarrow \exists \lim_{n\to\infty} x_n = a \in X$

Опр: $A \in X, (X, \rho), A$ — ограниченное, если $\exists x_0 \in X, R > 0 : A \subset B_R(x_0)$

Теорема (св-ва фунд. посл-ти):

 (X, ρ) — метрическое пр-во, $\{x_n\}_{n=1}^{\infty}$ — фунд. пос-ть \Rightarrow

- 1. $\{x_n\}_{n=1}^{\infty}$ ограниченная, т. е. $\exists a \in X, R > 0 : x_n \in B_R(a) \ \forall n \in \mathbb{N}$ 2. $\exists \{x_{n_k}\}_{k=1}^{\infty}$ подп-ть $\{x_n\}_{n=1}^{\infty} : \exists \lim_{k \to \infty} x_{n_k} = a \Rightarrow \lim_{n \to \infty} x_n = a$ 3. $\{\epsilon_k\}_{k=0}^{\infty}, \epsilon > 0 \Rightarrow \exists$ подпос-ть $\{x_{n_k}\} : \forall j > k \in \mathbb{N} \ \rho(x_{n_k}, x_{n_j}) < \epsilon$