Entwurf und Analyse von Algorithmen WS 2006/2007

10. Übungsblatt

Ausgabe: 12.01.2007 **Abgabe:** 19.01.2007, 12 Uhr Die Bearbeitung in Zweiergruppen ist ausdrücklich erwünscht.

Aufgabe 31: Naiver String-Matcher

6 Punkte

Seien das Muster P[1..m] und der Text T[1..n] zufällige Zeichenketten über dem Alphabet $\Sigma = \{0, \ldots, d-1\}$ mit $d \geq 2$. Zeigen Sie, dass die erwartete Anzahl von elementaren Zeichenvergleichen im naiven String-Matching-Algorithmus (Skriptum, Seite 76 unten) insgesamt

$$(n-m+1)\frac{1-d^{-m}}{1-d^{-1}} \le 2(n-m+1)$$

beträgt. Dabei können Sie annehmen, dass der Vergleich in Zeile 3 schon nach der ersten Nicht-Übereinstimmung zweier Zeichen abbricht.

Aufgabe 32: Rabin-Karp-Algorithmus

4 Punkte

Demonstrieren Sie die Funktionsweise des Rabin-Karp-Matchers am Beispiel q=11, P=25 und T=146725843 über dem Alphabet $\Sigma=\{0,\ldots,9\}.$

Aufgabe 33: String-Matching mit Automaten

6 Punkte

Das Stringmatching-Problem soll so erweitert werden, dass das Muster auch sogenannte Wild-cards * und ? enthalten kann. Dabei steht ? für genau ein und * für beliebig viele Zeichen. Hier soll dazu das Muster P = aba*bab über dem Alphabet $\Sigma = \{a, b, c\}$ betrachtet werden.

- (a) Entwerfen Sie einen Automaten \mathcal{A}_P , mit dem der Algorithmus ENDLICHER-AUTOMAT-MATCHER (T, δ, m) zu \mathcal{A}_P ein Vorkommen von P in einem Text T erkennt.
- (b) Erkennt der Algorithmus Endlicher-Automat-Matcher (T, δ, m) zu Ihrem \mathcal{A}_P auch die richtige Anzahl aller Vorkommen von P in einem Text T?

Aufgabe 34: Zyklische Verschiebung

4 Punkte

Entwerfen Sie einen effizienten Algorithmus, der bestimmt, ob ein String $x = x_0 \dots x_{n-1}$ eine zyklische Verschiebung eines Strings $y = y_0 \dots y_{n-1}$ ist, d.h. ob es einen Index s $(1 \le s \le n)$ gibt, so dass $y_i = x_{(s+i) \bmod n}$ für alle $1 \le i \le n$. Welche Laufzeit hat Ihr Algorithmus?