Making Predictions

PREDICTING CUSTOMER CHURN IN PYTHON

Mark Peterson
Senior Data Scientist, Alliance Data

(Supervised) Machine Learning Primer

- Goal: Predict whether or not a customer will churn
- Target Variable: 'Churn'
- Supervised Machine Learning
- Learn from historical (training) data to make new predictions

Model Selection

- Which model to use?
- ... it depends!
- In this course: Experiment with several models
- To learn about their inner workings: Check out other DataCamp courses

Model Selection

- Logistic regression: Good baseline
 - Offers simplicity and interpretability
 - Cannot capture more complex relationships
- Random forests
- Support vector machines

Training your Model

```
from sklearn.svm import SVC
svc = SVC()
svc.fit(telco[features], telco['target'])
```

```
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
```

Making a Prediction

```
prediction = svc.predict(new_customer)
print(prediction)
```

[0]

Let's practice!

PREDICTING CUSTOMER CHURN IN PYTHON

Evaluating Model Performance

PREDICTING CUSTOMER CHURN IN PYTHON

Mark Peterson
Senior Data Scientist, Alliance Data

Accuracy

- One possible metric: Accuracy
 - Total Number of Correct Predictions / Total Number of Data Points
- What data to use?
 - Training data not representative of new data

Training and Test Sets

- Fit your classifier to the training set
- Make predictions using the test set

Training and Test Sets using scikit-learn

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(telco['data'], telco['target'],
                                   test_size=0.2, random_state = 42)
from sklearn.svm import SVC
svc = SVC()
svc.fit(X_train, y_train)
svc.predict(X_test)
```

Computing Accuracy

svc.score(X_test, y_test)

0.857

• 85.7% accuracy: Quite good for a first try!

Improving your model

- Overfitting: Model fits the training data too closely
- Underfitting: Does not capture trends in the training data
- Need to find the right balance between overfitting and underfitting

Let's practice!

PREDICTING CUSTOMER CHURN IN PYTHON

Model Metrics

PREDICTING CUSTOMER CHURN IN PYTHON

Mark Peterson Senior Data Scientist, Alliance Data

Imbalanced classes

```
telco['Churn'].value_counts()
```

```
no 2850
yes 483
Name: Churn, dtype: int64
```

Accuracy not a very useful metric

Actual Class No Churn

Actual Class

Actual Class No Churn **Predicted** Class No Churn

Actual Class

Actual Class No Churn **True Positives Predicted** Class No Churn

Actual Class No Churn **True Positives Predicted** Class No **True Negatives** Churn

Actual Class No Churn **True Positives Predicted** Class No **True Negatives** Churn

Actual Class No Churn **True Positives False Positives Predicted** Class No **True Negatives** Churn

Actual Class No Churn **True Positives False Positives Predicted** Class No **True Negatives** Churn

Actual Class No Churn **True Positives False Positives Predicted** Class No **True Negatives False Negatives** Churn

Actual Class

Precision

Metric	Formula
Precision	True Positives / (True Positives + False Positives)

- A model with high precision indicates:
 - Few false positives ("false alarms")
 - Not many non-churners were classified as churners

Recall

Metric	Formula
Recall/Sensitivit	True Positives / (True Positives + False Negatives)

• A model with high recall indicates that it correctly classified most churners

Precision vs. Recall

Confusion Matrix in scikit-learn

```
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
```

Let's practice!

PREDICTING CUSTOMER CHURN IN PYTHON

Other model metrics

PREDICTING CUSTOMER CHURN IN PYTHON

Mark Peterson
Senior Data Scientist, Alliance Data

Probability thresholds

- Every prediction your classifier makes has an associated probability
- Default probability threshold in scikit-learn: 50%

• What if we vary this threshold?

Generating probabilities in sklearn

```
logreg.predict_proba(X_test)[:,1]
array([[0.80188981, 0.19811019],
       [0.96484075, 0.03515925],
       [0.9182671 , 0.0817329 ],
y_pred_prob = logreg.predict_proba(X_test)[:,1]
```


ROC curve in sklearn

```
from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
```

```
import matplotlib.pyplot as plt
plt.plot(fpr, tpr)
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.plot([0, 1], [0, 1], "k--")
plt.show()
```

Area under the curve

```
from sklearn.metrics import roc_auc_score
auc = roc_auc_score(y_test, y_pred)
```

Let's practice!

PREDICTING CUSTOMER CHURN IN PYTHON

