NASA CONTRACTOR REPORT

NASA CR-61184

NASA CR-61184

GPO PRICE \$								
CFSTI PRICE(S) \$								
Hard copy (HC) _	\$3.00							
Microfiche (MF)_	.65							
ff 653 July 65								

ON THE DISTRIBUTION OF THE SUM OF INDEPENDENT DOUBLY TRUNCATED GAMMA VARIABLES

Prepared under Contract No. NAS 8-11175 by D. Earl Lavender UNIVERSITY OF GEORGIA

For

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER
Huntsville, Alabama
November 1967

ON THE DISTRIBUTION OF THE SUM OF INDEPENDENT DOUBLY TRUNCATED GAMMA VARIABLES

 $\mathbf{B}\mathbf{y}$

D. Earl Lavender

Prepared under Contract No. NAS 8-11175 by UNIVERSITY OF GEORGIA Athens, Georgia

For

Aero-Astrodynamics Laboratory

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

ON THE DISTRIBUTION OF THE SUM OF INDEPENDENT DOUBLY TRUNCATED GAMMA VARIABLES 1

By

D. Earl Lavender

George C. Marshall Space Flight Center Huntsville, Alabama

ABSTRACT

The density and distribution functions of the sum of N independent doubly truncated Gamma variables is derived for the case where the parameter α is one and N is any positive integer and for the cases where N = 2 or N = 3 and α is any positive integer.

Tables of critical values for these distributions are given as functions of the truncation points, and a comparison is made between these critical values and the estimated critical values given by Pearson's $m{\beta}_1$ and $m{\beta}_2$ tables.

The research reported in this paper was submitted as a Ph.D. dissertation directed by Dr. A. C. Cohen at the University of Georgia, Athens, Georgia. This research was performed under NASA Contract NAS8-11175 with the Aerospace Environment Office, Aero-Astrodynamics Laboratory, Marshall Space Flight Center, Huntsville, Alabama.

FOREWORD

This report presents results of an investigation performed by the Department of Statistics, University of Georgia, Athens, Georgia, as a part of NASA Contract NAS8-11175 with the Aerospace Environment Office, Aero-Astrodynamics Laboratory, NASA-George C. Marshall Space Flight Center, Huntsville, Alabama. This research was performed by Mr. D. Earl Lavender under the supervision of Dr. A. C. Cohen, Jr., the contract principal investigator, and was submitted in August 1966, as a PH.D. dissertation, in Mathematics. The NASA contract monitors are Mr. O. E. Smith and Mr. L. W. Falls.

TABLE OF CONTENTS

	Page
SUMMARY	1
I. INTRODUCTION	2
II. DENSITY AND DISTRIBUTION FUNCTIONS	3
III. THE EXPONENTIAL CASE	5
IV. THE DISTRIBUTION FOR $N = 2 \dots$	10
V. THE DISTRIBUTION FOR $N = 3 \dots$	18
VI. COMPARISON OF CRITICAL VALUES	31
APPENDIX	33
REFERENCES	51

ON THE DISTRIBUTION OF THE SUM OF INDEPENDENT DOUBLY TRUNCATED GAMMA VARIABLES

SUMMARY

When performing tests of hypotheses, the experimenter usually assumes that the possible range of the measurements applied to his observations is unlimited. Actually this is seldom the case due to physical limitations of measuring devices, or physical restrictions on the elements of a population.

To make allowance for these restrictions, we may assume sampling from a population with a truncated distribution.

In many cases, the test statistic used in a test of hypothesis is some function of the sum of the measurements obtained in a random sample.

The probability density function for the sum of N independent variables, each having a Gamma density function with parameter α is known to be a Gamma density function with parameter α , Cramer [11]. This, however, is not the case if each of the variables has a truncated Gamma density function.

In this paper, the density and distribution functions of the sum of n independent variables, each having a truncated Gamma density function, is derived for the case where the parameter \boldsymbol{q} is one and n is any positive integer and for the cases where n = 2 or n = 3 and \boldsymbol{q} is any positive integer.

T. INTRODUCTION

The Gamma distribution serves as a model for describing many of the random variables which concern aerospace scientists. In particular, wind velocities and measurements of various physical characteristics of space vehicle components conform to this distribution.

Quite often, restrictions which apply to the observation of sample data from these distributions, in effect produce a truncation which must be taken into account in estimating parameters and in testing hypotheses based on such samples.

Estimation in the truncated Gamma distribution and in special cases of the Gamma distribution has been dealt with by various authors including Cohen [4, 5, 6, 7, 8, 9, 10], Des Raj [16], Iyer [13], Epstein [12], and Sarhan and Greenberg [17].

Aggarwal and Guttman [1, 2], and Williams [18] have examined the loss of power when using tests based on the assumption that the variable being sampled has a complete normal distribution when, in fact, the distribution was a truncated normal distribution.

In this paper we are concerned with hypothesis testing and in particular with the distribution of sums of sample observations from a doubly truncated Gamma distribution.

The distribution of the sum of N independent Gamma variables with parameter α is known to be a Gamma distribution with parameter N α , Cramer [11]. However, if the variables have a truncated, rather than a complete, Gamma distribution this is not the case.

In this paper the distribution of the sum of independent doubly truncated Gamma variables is derived for the case where the parameter is one and the sample is of any size N, and for the cases where the sample is of size N=2 or N=3 and the parameter α is any positive integer.

Tables of critical values for these distributions are given as functions of the truncation points, a and b, which were selected so that approximatly 1%, 2%, 3%, and 4% was truncated from the left and right tails respectively.

Tables of the mean $oldsymbol{\omega}$, the standard derivation $oldsymbol{\sigma}$, and

Pearson's \mathcal{B}_1 and \mathcal{B}_2 values, Kendall [14], are also given for selected values of N and $\boldsymbol{\sphericalangle}$.

When the estimated critical values given by $\boldsymbol{\beta}$ and tables, Beyer [3], were compared with the actual critical values for the distributions which are derived in this paper, the agreement was found to be quite close. After rounding to one decimal place, none differed by more than one-tenth.

Hence for larger values of N it is felt that the estimated critical values given by ${\cal A}_1$ and ${\cal A}_2$ can be used confidently.

II. DENSITY AND DISTRIBUTION FUNCTIONS

The distribution function and density function of the Gamma distribution are defined by

2.1
$$G(x; \mathbf{q}) = \frac{1}{\Gamma(\mathbf{q})} \int_{0}^{x} t^{\mathbf{q}-1} e^{-t} dt$$
 where $\mathbf{q} > 0$, and

2.2
$$g(x; \alpha) = G'(x; \alpha) = \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x}, \quad 0 < x < \infty,$$
 respectively, where $\Gamma(p) = \int_{0}^{\infty} x^{p-1} e^{-x} dx$.

More generally the Gamma distribution is sometimes defined by

$$G(x; \boldsymbol{\alpha}', \boldsymbol{\beta}') = \frac{1}{\boldsymbol{\beta}^{\boldsymbol{\alpha}} \boldsymbol{\Gamma}(\boldsymbol{\alpha}')} \int_{0}^{x} t^{\boldsymbol{\alpha}'-1} e^{-t/\boldsymbol{\beta}} dt$$
. However, if we make the substitution $z = x/\boldsymbol{\beta}$, then $G(z; \boldsymbol{\alpha}')$ is as defined by 2.1.

Tables for the Gamma distribution function as defined by 2.1 have been provided by Pearson [15].

When the distribution is truncated on the left at a and on the right at b, the density function and distribution functions are defined by

2.3
$$f_T(x; \mathbf{q}) = \begin{cases} \frac{1}{\Gamma(\mathbf{q})} x^{\mathbf{q}-1} e^{-x}, & a \leq x \leq b \text{ and otherwise} \end{cases}$$

2.4
$$F_T(x; \boldsymbol{\alpha}) = \frac{1}{I \Gamma(\boldsymbol{\alpha})} \int_0^x t^{\boldsymbol{\alpha} - 1} e^{-t} dt$$
, where
$$I = \frac{1}{\Gamma(\boldsymbol{\alpha})} \int_0^b x^{\boldsymbol{\alpha} - 1} e^{-x} dx = G(b; \boldsymbol{\alpha}) - G(a; \boldsymbol{\alpha}).$$

We will now consider some special cases of the Gamma distribution.

The density function for the Pearson Type III distribution is defined by

2.5
$$g(x) = \frac{c}{\sigma} \left[1 + \frac{3}{2} (\frac{x-u}{\sigma}) \right]^{4/\sigma} \left(\frac{2}{3} - 1 \right) e^{-2/\sigma} \left(\frac{x-u}{\sigma} \right), \quad u - \frac{2\sigma}{\sigma (3)} \left(\frac{x-u}{\sigma} \right), \quad$$

If we make the substitution $\mathbf{z} = \frac{4}{2}$ and $\mathbf{z} = \mathbf{z} \cdot (\frac{\mathbf{x} - \mathbf{u}}{\mathbf{v} \cdot \mathbf{z}} + 1)$, then $\mathbf{g}(\mathbf{z}) = \frac{1}{\mathbf{r}(\mathbf{z})} \mathbf{z}^{\mathbf{z} - 1} \mathbf{e}^{-\mathbf{z}}$, $0 < \mathbf{z} < \boldsymbol{\omega}$.

The density function for the Chi-Square distribution is defined by

2.6
$$g(x^2) = \frac{1}{2^{r/2} \Gamma(\frac{r}{2})} (x^2)^{r/2} - 1 e^{-x^2/2}, r > 0, 0 < x^2 < \omega$$
.

If we make the substitutions $z=\frac{x^2}{2}$ and $c=\frac{r}{2}$, then $g(z)=\frac{1}{\digamma(c)}z^{c-1}e^{-z}$, 0< z< c.

The density function for the standard normal distribution is defined by

2.7
$$f(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}, -\infty < y < \infty$$
.

If we make the substitutions $x = \frac{1}{2}$ and $x = \frac{y^2}{2}$, then 2.2 becomes $g(y) = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}$, $-\infty < y < \infty$.

For the case $\ll = 1$ we have $g(x; 1) = e^{-x}$, $0 < x < \omega$. This distribution is known as the exponential distribution and is usually defined by

2.8
$$f(x) = \frac{1}{\theta} e^{-x/\theta}, \quad 0 < x < 0, \quad \theta > 0.$$

III. THE EXPONENTIAL CASE

Suppose we wish to purchase electron tubes for an electronic system. We want tubes which will last an average of at least \mathbf{A} hours. A manufacturer claims that his tubes will meet this specification. To test his claim we install n tubes furnished by the manufacturer and observe their life spans. We wish to test the null hypothesis $\mathbf{H}: n = n = n = \mathbf{A}$ against the alternative hypothesis $\mathbf{H}: n = n = n = \mathbf{A}$ against the alternative hypothesis $\mathbf{H}: n = n = n = \mathbf{A}$ with a probability of Type I error of size .05. To perform this test we assume that the lifetime of the electron tubes obeys an exponential distribution given by $\mathbf{f}(\mathbf{x}) = \frac{1}{\mathbf{a}_0} \mathbf{e}^{-\mathbf{x}/\mathbf{a}_0}$, $\mathbf{0} < \mathbf{x} < \mathbf{o}$. We make the substitution $\mathbf{z} = \frac{\mathbf{x}}{\mathbf{a}_0}$ which gives $\mathbf{f}(\mathbf{z}) = \mathbf{e}^{-\mathbf{z}}$ and choose as a test statistic $\mathbf{t} = \mathbf{\Sigma} \mathbf{z}_1$. To determine the critical region $\mathbf{z} = \mathbf{a}_0$ such that $\mathbf{G}(\mathbf{z}_0; \mathbf{n}) = .05$ since the sum of n independent z variables will have a Gamma distribution with parameter n. We would then reject \mathbf{H}_0 if $\mathbf{t} < \mathbf{z}_0$.

For this test, however, we are assuming that the lifetime of the tubes lies between 0 and infinity hours. It would seem more realistic to assume the lifetime of the tubes lies in some finite interval from a_1 to b_1 hours. Then the distribution would be given by

$$\begin{split} &f_T(x) = \frac{1}{I u_0} \, e^{-x/u_0}, \quad a_1 \leq x \leq b_1 \quad \text{and after the substitution} \\ &by \quad f_T(z) = \begin{cases} \frac{e^{-z}}{I} \, , & a \leq x \leq b \quad \text{where} \quad a = \frac{a_1}{u_0}, \quad b = \frac{b_1}{u_0}, \quad \text{and} \\ &0 \quad \text{otherwise} \end{cases} \\ &I = \int_a^b \, f_T(z) \, dz. \quad \text{Now in order to determine the critical} \end{split}$$

region for the test we must find z_0 such that $F_T(z_0; n) = .05$ where $F_T(z; n)$ is the distribution function for the sum of n independent variables each having the truncated exponential distribution given by $f_T(z)$ above.

It is this distribution function which we derive in this chapter.

The characteristic function of a random variable x with probability density function f is defined by

$$\mathbf{Q}(t) = \int_{-\infty}^{\infty} e^{itx} f(x) dx.$$

We note that

3.1
$$\mathbf{U}(t + i) = \int_{-\infty}^{\infty} e^{i(t+i\alpha t)x} f(x) dx = \int_{-\infty}^{\infty} e^{itx} [e^{-\alpha t} f(x)] dx.$$

Hence, if $\mathbf{Q}(t)$ is the characteristic function of f(x), then $\mathbf{Q}(t+i\alpha)$ is the characteristic function of $e^{-\mathbf{q} \cdot \mathbf{x}} f(x)$.

For the rectangular distribution, defined by

3.2
$$f(x) = \frac{1}{b-a}$$
 $a < x < b$,
0 otherwise

the characteristic function is

3.3 (4) =
$$\frac{e^{itb} - e^{ita}}{(b-a)it}$$

It is a well known fact that the characteristic function of the distribution for the sum of n independent variables, each having the same characteristic function $\mathbf{Q}(t)$, is given by $[\mathbf{Q}(t)]^n$. Kendall [14].

Hence the characteristic function of the distribution of the sum of n independent variables, each having the density function 3.2 is given by

3.4 **(t)** =
$$\frac{(e^{itb} - e^{ita})^n}{(b-a)^n (it)^n}$$
.

If x is a truncated exponential variables, then the density function for x is defined by

3.5
$$f_{T}(x) = \begin{cases} \frac{1}{e^{-a}e^{-b}} e^{-x} & a < x < b. \\ 0 & \text{otherwise} \end{cases}$$

The characteristic function of x is defined by

3.6 **Q** (t) =
$$\frac{1}{e^{-a}-e^{-b}}$$
 $\int_{a}^{b} e^{itx}e^{-x}dx =$

$$\frac{1}{e^{-a}-e^{-b}} \int_{a}^{b} e^{x(it-1)}dx = \frac{e^{(it-1)b}-e^{(it-1)a}}{(e^{-a}-e^{-b})(it-1)}.$$

Hence the characteristic function for the sum of n independent truncated exponential variables is given by

3.7 **u** (t) =
$$\frac{(e^{(it-1)b}-e^{(it-1)a})^n}{(e^{-a}-e^{-b})^n(it-1)^n}.$$

If S is the sum of n independent variables, each with density function 3.2, then

3.8 g(S) =
$$(b - a)^{-n} \sum_{k=0}^{m} (-1)^{k} {n \choose k} \frac{[S - na - k(b - a)]^{n-1}}{(n-1)!}$$

for na + m(b - a) < S < na + (m + 1)(b - a) and $m = 0, 1, \dots, n - 1$. Cramer [11].

Since it -1 = i(t + i) we have by 3.1 that S, the sum of n independent truncated exponential variables, each having density function 3.3, is defined by

3.9
$$f_{\mathbf{T}}(S) = \frac{(b-a)^{n}}{(e^{-a}-e^{-b})^{n}} g(S) e^{-S} = \frac{1}{(e^{-a}-e^{-b})^{n}} \sum_{k=0}^{m} (1)^{k} {n \choose k} \frac{\left[s-na-k(b-a)\right]^{n-1}}{(n-1)!} e^{-S}$$

for na + m(b - a) < S < na + (m + 1)(b - a), and $m = 0, 1, \dots, n-1$.

If F_T is the distribution function for S, then to find $F_T(x)$ we must first find m_O such that $na+m_O(b-a) < x < na+(m_O+1)(b-a)$. This inequality reduces to $m_O < \frac{x-na}{b-a} < m_O+1$.

Hence we choose m_O as the largest integer less than or equal to $\frac{x-na}{b-a}$. Now we must integrate $f_T(s)$ for m=0 from na to na + (b - a), for m=1 from na + (b - a) to na + 2(b - a), and finally for $m=m_O$ from na + $m_O(b-a)$ to x. Since $f_T(s)$ is a sum of m_O+1 terms, the first term, that for k=0, will occur in all segments, and hence must be integrated from na to x. The second term occurs from k=1 to $k=m_O$ and hence must be integrated from na + (b - a) to x. Finally the last term occurs for $k=m_O$ only, and hence must be integrated from na + $m_O(b-a)$ to x.

Hence the distribution function $\mathbf{F}_{\mathbf{T}}$ is defined by

3.10
$$F_T(x) = \frac{1}{(e^{-a}-e^{-b})^n} \sum_{k=0}^{m_0} (-1)^k {n \choose k} \int_{na+k}^{x} \frac{[s-na-k(b-a)]^{n-1}}{(n-1)!} e^{-s} ds.$$

If we let y = S - na - k(b - a) this becomes

3.11
$$F_{\mathbf{T}}(x) = \frac{e^{-na}}{(e^{-a} - e^{-b})^n} \int_{k=0}^{m_0} (-1)^k (k)^n e^{-k(b-a)} \frac{1}{(n)} \int_{0}^{x-na-k(b-a)} y^{n-1} e^{-y} dy$$

Now let
$$a_0 = \frac{e^{na} \cdot e^{-na}}{(e^{-a})^n (e^{-a} - e^{-b})^n} = \frac{1}{(1 - e^{a-b})^n}$$

and for
$$k = 1, 2, \dots, m$$
, let $a_k = (-1)^k \binom{n}{k} [e^{a-b}]^k a_0$.

Next let
$$z_k = x - na - k(b - a)$$
 for $k = 0, \dots, m_0$.

Then $3.12 F_T(x) = \sum_{k=0}^{\infty} a_k G(z_k; n) where G(x; n) is defined by 2.1.$

Below we compare the graphs for the distribution of the sum of 5 independent truncated exponential variables with truncation at a = 1 and b = 3 with the Gamma distribution with parameter $\mathbf{q} = 5$ which would be the distribution for the sum of 5 independent untruncated exponential variables.

Now, returning to the example at the beginning of the chapter, suppose we have a=.11, b=.91 and n=5. From table I we find F(1.47; 5)=.05 and hence the critical region is given by t<1.47.

If we had conducted the test assuming a complete distribution, when in fact it was truncated as above, the critical region would have been t < 1.97 and the size of the critical region would have been .25 = F(1.97; 5).

IV. THE DISTRIBUTION FOR N = 2

A manufacturer of electronic equipment receives a shipment of parts for an electronic component. Since the weight of the component must not exceed a specific maximum weight, he wishes to test whether the mean weight of the parts exceed a specific weight k. From past experience it is known that the weights of these parts obeys a gamma distribution given by $g(x; \alpha_0) = \frac{1}{\Gamma(\alpha_0)\beta^{\alpha_0}} x^{\alpha_0 - 1} e^{-x/\beta},$ where β is known

where \mathbf{q}_{o} is known.

The mean of a complete Gamma distribution is $\beta \alpha_0$ and the maximum likelihood estimate for $\beta \alpha_0$ is $\sum_{i=1}^{n} x^i/n$.

For a sample of size n we wish to test the null hypothesis H_0 : n $\mathcal{B} <_0$ = nk against the alternative hypothesis H_0 : n $\mathcal{B} <_0$ > nk. As a test statistic we would use $t = \sum x_i$. However, to use available tables we first i=1 make the substitution $z_i = \frac{\mathbf{A}_0}{k} x_i$ and use as a test statistic $t = \sum_{i=1}^{n} z_i$ since the distribution of $\sum_{i=1}^{n} z_i$ will be a Gamma distribution with parameter \mathbf{A}_0 . To determine the critical region we therefore would need \mathbf{A}_0 such that \mathbf{A}_0 = .95 if we wished to have a critical region of size .05. We would then reject \mathbf{A}_0 if $t > \mathbf{A}_0$.

This test, however, is conducted assuming that the weights of the parts obeys a complete Gamma distribution with parameters α and $\beta = \frac{k}{\alpha}$, when it would seem more realistic to assume that the weights of the parts fell in

some finite interval a_1 to b_1 , and hence obeyed a truncated Gamma distribution which, after the substitution $z = \frac{\blacktriangleleft o}{k} x$, would be given by

$$f_T(z; \alpha_0) = \frac{1}{I \Gamma(\alpha_0)} z^{\alpha_0-1} e^{-z}, a \le z \le b$$
 where

$$a = \frac{\alpha \cdot a_1}{k} , \quad b = \frac{\alpha \cdot a_1}{k} , \quad \text{and} \quad I = \frac{1}{\Gamma(\alpha_0)} \int_a^b t^{\alpha_0 - 1} e^{-t} dt.$$

Now in order to determine a critical region of size .05, we would need to find z_o such that $F_T(z_o; n) = .95$ where $F_T(z; n)$ is the distribution function for the sum of n independent truncated variables each with the density function given by $f_T(z; \boldsymbol{\alpha}_o)$ above.

For n = 2, this distribution is derived in this chapter and in the following chapter the distribution is derived for n = 3.

Let \mathbf{x}_1 and \mathbf{x}_2 be independent variables, each having the truncated Gamma density function defined by

4.1
$$f_{\mathbf{T}}(x) = Cx^{\mathbf{c}-1} e^{-x}$$
, $a \le x \le b$ where

$$C = \frac{1}{\int_a^b t^{\mathbf{q}-1} e^{-t} dt}.$$

The joint probability density function of x_1 and x_2 is given by $f_T(x_1, x_2) = f_T(x_1) \cdot f_T(x_2) = c^2 x_1^{-1} x_2^{-1} e^{-(x_1+x_2)}$.

Let
$$s = x_1 + x_2$$
. Then $dx_1 = ds$ and hence $f_T(s, x_2) = c^2(s - x_2)^{s(-1)} e^{-s} x_2^{s(-1)}$

In order to find $f_T(s)$ we must integrate $f_T(s, x_2)$ with respect to x_2 over the proper limits.

The following diagram is helpful in determining the limits of integration.

From the diagram we see that for $2a \le s \le a+b$, x_2 goes from a to s-a, and for $a+b \le s \le 2b$, x_2 goes from s-b to b.

Hence $f_T(s)$ is given by

$$f_{T}(s) = \begin{cases} c^{2}e^{-s} & \int_{a}^{s-a} x_{2}^{d-1}(s - x_{2})^{d-1} dx_{2} & \text{for } 2a \leq s \leq a + b \\ c^{2}e^{-s} & \int_{s-b}^{b} x_{2}^{d-1}(s - x_{2})^{d-1} dx_{2} & \text{for } a + b \leq s \leq 2b. \end{cases}$$

Let $x_2 = sz$. Then $dx_2 = sdz$ and we have

$$f_{\mathbf{T}}(s) = \begin{cases} c^{2}e^{-s} & \int_{a/s}^{1-a/s} (sz)^{\alpha-1} (s-sz)^{\alpha-1} s dz & \text{for } 2a \le s \le a+b \\ c^{2}e^{-s} & \int_{1-b/s}^{b/s} (sz)^{\alpha-1} (s-sz)^{\alpha-1} s dz & \text{for } a+b \le s \le 2b. \end{cases}$$

Factoring s out of the integrals above gives the following definition for $f_{\mathbf{T}}(s)$:

$$4.2 \quad f_{T}(s) = \begin{cases} c^{2}e^{-s}s^{2\mathbf{q}-1} & \int_{a/s}^{1-a/s} z^{\mathbf{q}-1}(1-z)^{\mathbf{q}-1}dz & \text{for} \\ \\ c^{2}e^{-s}s^{2\mathbf{q}-1} & \int_{1-b/s}^{b/s} z^{\mathbf{q}-1}(1-z)^{\mathbf{q}-1} dz & \text{for} \end{cases}$$

$$a+b \le s \le 2b.$$

If we introduce a negative sign in the second integral defining $f_T(s)$, then the limits of both integrals are of the form k to 1-k, where $k=\frac{a}{s}$ or $k=\frac{b}{s}$. Hence each integral can be represented by

$$I = K \int_{k}^{1-k} z^{d-1} (1-z)^{d-1} dz$$
 where $K = c^2 e^{-s} s^{2d-1}$.

Let $v = \frac{z^2}{\alpha}$ and $u = (1-z)^{\alpha-1}$. Then $dv = z^{\alpha-1} dz$ and $du = -(\alpha-1)(1-z)^{\alpha-2} dz$, and hence

$$I = K \left[\frac{z^{\alpha(1-z)^{\alpha(-1)}}}{\alpha} \right]_{k}^{1-k} + \frac{\alpha-1}{\alpha} \int_{k}^{1-k} z^{\alpha(1-z)^{\alpha(-2)}} dz \right].$$

Repeated integration by parts gives

$$I = K \left[\frac{z^{\alpha}(1-z)^{\alpha-1}}{\alpha!} + \frac{(\alpha!-1)}{\alpha!(\alpha!+1)} z^{\alpha!+1} (1-z)^{\alpha!-2} + \frac{(\alpha!-1)(\alpha!-2)}{\alpha!(\alpha!+1)(\alpha!+2)} z^{\alpha!+2} (1-z)^{\alpha!-3} + \dots + \frac{(\alpha!-1)(\alpha!-2)\dots 2}{\alpha!(\alpha!+1)(\alpha!+2)\dots (2\alpha!-2)} \right]$$

$$z^{2\mathbf{q}(-2)}(1-z) \int_{k}^{1-k} + \frac{(\mathbf{q}(-1))(\mathbf{q}(-2)) \cdot \cdot \cdot 2}{\mathbf{q}(\mathbf{q}(+1))(\mathbf{q}(+2)) \cdot \cdot \cdot (2\mathbf{q}(-2))} \int_{k}^{1-k} z^{2\mathbf{q}(-2)} dz$$

Now
$$\int_{k}^{1-k} z^{2\alpha - 2} dz = \frac{z^{2\alpha - 1}}{2\alpha - 1} \int_{k}^{1-k}$$
 and, if we assume α is

an integer,

$$\frac{(\alpha-1)!(\alpha-1)!}{(2\alpha-1)!} {\binom{2\alpha-1}{4-j}} = \frac{(\alpha-1)(\alpha-2) \dots (\alpha-j)}{(2\alpha-j-1)!} \quad \text{for} \quad$$

j = 1, 2, ... < -1. Hence

$$I = K \frac{(\alpha(-1)!(\alpha(-1)!)!}{(2\alpha(-1)!)!} \left[(1-k)^{2\alpha(-1)} + (2\alpha(-1))(1-k)^{2\alpha(-2)} k + \dots + (2\alpha(-1))(1-k)^{\alpha(-1)} k^{\alpha(-2)} + (2\alpha(-1))(1-k)^{\alpha(-2)} k^{2\alpha(-2)} - k^{2\alpha(-1)} - (2\alpha(-1))(1-k)^{\alpha(-2)} k^{2\alpha(-2)} - k^{2\alpha(-1)} k^{2\alpha(-2)} - k^{2\alpha(-1)} k^{2\alpha(-2)} - k^{2\alpha(-1)} k^{2\alpha(-2)} k^{2\alpha(-2)} - k^{2\alpha(-2)} k^{2\alpha($$

Substituting $\frac{a}{s}$ and $\frac{b}{s}$ for k and taking e^{-s} and $s^{2\alpha-1}$ inside the summation gives

$$f_{T}(s) = \begin{cases} \frac{c^{2}(\alpha-1)!(\alpha-1)!}{(2\alpha-1)!} \int_{j=0}^{\alpha-1} e^{-s} (\frac{2\alpha-1}{j}) [(s-a)^{2\alpha-j-1} a^{j} - (s-a)^{j} a^{2\alpha-j-1}] & \text{for } 2a \leq s \leq a+b \text{ or } \\ \frac{c^{2}(\alpha-1)!(\alpha-1)!}{(2\alpha-1)!} \int_{j=0}^{\alpha-1} e^{-s} (\frac{2\alpha-1}{j}) [(s-b)^{j} b^{2\alpha-j-1} - (s-b)^{2\alpha-j-1} b^{j}] & \text{for } a+b \leq s \leq 2b. \end{cases}$$

The distribution function $\mathbf{F}_{\mathbf{T}}$ is defined by

$$F_T(x) = \int_{2a}^x f_T(s) ds$$
 for $2a \le x \le a+b$ or

$$\begin{split} &F_T(x) = \int_{2a}^{a+b} f_T(s) \; ds \; + \; \int_{a+b}^x f_T(s) \; ds \quad \text{for} \quad a+b \leq x \leq 2b. \\ &\text{Therefore, for} \quad 2a \leq x \leq a+b, \quad F_T(x) = \\ &c^2 \frac{(\mathbf{q}-1)! \cdot (\mathbf{q}-1)!}{(2\mathbf{q}-1)!} \cdot \int_{j=0}^{\mathbf{q}-1} \left(2^{\mathbf{q}-1}_{j}\right) [a^j \int_{2a}^x (s-a)^{2\mathbf{q}-j-1} e^{-s} \; ds \; - \\ &a^{2\mathbf{q}-j-1} \int_{2a}^x (s-a)^j e^{-s} \; ds]. \quad \text{Let} \quad z = s-a. \quad \text{Then} \quad dz = ds, \\ &e^{-s} = e^{-a} e^{-z}, \quad \text{and hence} \quad F_T(x) = c^2 \frac{(\mathbf{q}-1)! \cdot (\mathbf{q}-1)!}{(2\mathbf{q}-1)!} \cdot \int_{j=0}^{\mathbf{q}-1} \left(2^{\mathbf{q}-1}_{j-1}\right) [a^j e^{-a} \int_a^{x-a} z^{2\mathbf{q}-j-1} e^{-z} \; dz \; - a^{2\mathbf{q}-j-1} e^{-a} \int_a^{x-a} z^j e^{-z} dz] = \\ &c^2 \frac{(\mathbf{q}-1)! \cdot (\mathbf{q}-1)!}{(2\mathbf{q}-1)!} \cdot \int_{j=0}^{\mathbf{q}-1} (2^{\mathbf{q}-j}_{j-1}) e^{-a} \left[\left[a^j \Gamma(2\mathbf{q}-j) [G(x-a; \; 2\mathbf{q}-j) \; - G(a; \; 2\mathbf{q}-j) \; - G(a; \; 2\mathbf{q}-j) \right] \right] \\ &\text{where} \quad G(x; \mathbf{q}) \quad \text{is defined by 2.1. Similarly for} \\ &a+b \leq x \leq 2b, \quad F_T(x) = F_T(a+b) \; + \; c^2 \frac{(\mathbf{q}-1)! \cdot (\mathbf{q}-1)!}{(2\mathbf{q}-1)!} \cdot \int_{j=0}^{\mathbf{q}-1} \left(2^{\mathbf{q}-1}_{j-1}\right) \left[b^{2\mathbf{q}-j-1} \int_{a+b}^{x} (s-b)^j \; e^{-s} \; ds \; - \; b^j \int_{a+b}^{x} (s-b)^{2\mathbf{q}-j-1} e^{-s} ds \right]. \\ &\text{Let} \quad z = s \; - \; b. \quad \text{Then} \quad dz \; = ds, \; e^{-s} = e^{-b} e^{-z}, \quad \text{and} \\ &F_T(x) = F_T(a+b) \; + \; c^2 \frac{(\mathbf{q}-1)! \cdot (\mathbf{q}-1)!}{(2\mathbf{q}-1)!} \cdot \int_{j=0}^{\mathbf{q}-1} (2^{\mathbf{q}-j}_{j-1}) e^{-b} \\ &[b^{2\mathbf{q}-j-1} \int_a^{x-b} z^j e^{-z} \; dz \; - \; b^j \int_a^{x-b} z^{2\mathbf{q}-j-1} e^{-z} \; dz \right] = \\ &F_T(a+b) \; + \; c^2 \frac{(\mathbf{q}-1)! \cdot (\mathbf{q}-1)!}{(2\mathbf{q}-1)!} \cdot \int_{j=0}^{\mathbf{q}-1} \left[b^{2\mathbf{q}-j-1} \Gamma(j+1) \right] \\ &f_{j=0}^{x-j-1} \left[b^{2\mathbf{q}-j-1} \Gamma(j+1) \right] \cdot \int_{j=0}^{\mathbf{q}-1} \left[b^{2\mathbf{q}-j-1} \Gamma(j+1) \right] \\ &f_{j=0}^{x-j-1} \left[b^{2\mathbf{q}-j-1} \Gamma(j+1) \right] \cdot \int_{j=0}^{\mathbf{q}-1} \left[b^{2\mathbf{q}-j-1} \Gamma(j+1) \right] \\ &f_{j=0}^{x-j-1} \left[b^{2\mathbf{q}-j-1} \Gamma(j+1) \right] \cdot \int_{j=0}^{\mathbf{q}-1} \left[b^{2\mathbf{q}-j-1} \Gamma(j+1) \right] \\ &f_{j=0}^{x-j-1} \left[b^{2\mathbf{q}-j-1} \Gamma(j+1) \right] \cdot \int_{j=0}^{\mathbf{q}-1} \left[b^{2\mathbf{q}-j-1} \Gamma(j+1) \right] \\ &f_{j=0}^{x-j-1} \left[b^{2\mathbf{q}-j-1} \Gamma(j+1) \right] \cdot \int_{j=0}^{\mathbf{q}-1} \left[b^{2\mathbf{q}-j-1} \Gamma(j+1) \right] \\ &f_{j=0}^{x-j-1} \left[b^{2\mathbf{q}-j-1} \Gamma(j+1) \right] \cdot \int_{j=0}^{\mathbf{q}-1} \left[b^{2\mathbf{q}-j-1} \Gamma(j+1) \right] \\ &f_{j=0}^{x-j-1} \left[b^{2\mathbf{q}-j-1}$$

 $[G(x-b; j+1) - G(a; j+1)] - b^{j} \Gamma(2^{q}-j)[G(x-b; 2^{q}-j) - G(a; 2^{q}-j)]$ where G(x; q) is defined by 2.1.

By repeated integration by parts it is possible to show that

$$\frac{1}{(\mathbf{d-1})!} \int_{a}^{\mathbf{v}} \mathbf{x}^{\mathbf{q}-1} e^{-\mathbf{x}} d\mathbf{x} = e^{-a} - e^{-\mathbf{v}} + \frac{(ae^{-a} - ve^{-\mathbf{v}})}{1!} + \frac{a^{2}e^{-a} - v^{2}e^{-\mathbf{v}}}{2!} + \frac{a^{2}e^{-a} - v^{2}e^{-a}}{2!} + \frac{a^{2}e^{-a}}{2!} + \frac{a^{2}e^{-a} - v^{2}e^{-a}}{2!} + \frac{a^{2}e^{-a}}{2!} + \frac{a^{2}e^{$$

$$\cdots + \frac{(a^{\alpha-1}e^{-a}-v^{\alpha-1}e^{-v})}{(\alpha(-1)!}$$
.

Hence $\frac{1}{(\alpha - 1)!} \int_{a}^{v} x^{\alpha - 1} e^{-x} dx = \frac{1}{(\alpha - 2)!} \int_{a}^{v} x^{\alpha - 2} e^{-x} dx +$

$$\frac{(a^{-1}e^{-a}-v^{-1}e^{-v})}{(\alpha-1)!}.$$

for $2a \le x \le a + b$,

Let
$$AN(\lambda) = \frac{1}{(\lambda-1)!} \int_a^b x^{\lambda-1} e^{-x} dx$$
,

$$BN(\lambda) = \frac{1}{(\lambda-1)!} \int_a^{x-a} x^{\lambda-1} e^{-x} dx$$
, and
$$CN(\lambda) = \frac{1}{(\lambda-1)!} \int_a^{x-b} x^{\lambda-1} e^{-x} dx$$
. Let

$$G = [C \cdot (\alpha - 1)!]^2 = \left[\frac{(\alpha - 1)!}{\sum_{a=1}^{b} x^{a(-1)} e^{-x} dx} \right]^2 = \left[\frac{1}{AN(a())} \right]^2.$$

Substituting these expressions and making all possible cancellations gives the following definition for $\mathbf{F}_{\mathbf{T}}(\mathbf{x})$, the distribution function for the sum of two independent truncated Gamma variables with truncation at a and b:

$$F_{T}(x) = e^{-a}G \int_{J=1}^{\infty} \left[\frac{a^{J-1}BN(2 - J+1)}{(J-1)!} - \frac{a^{2\alpha - J}BN(J)}{(2\alpha - J)!} \right]$$

or for $a + b < x \le 2b$,

$$F_{T}(x) = e^{-b}G \sum_{J=1}^{d} \frac{b^{2 - d} - J_{CN(J)}}{(2 - d - J)!} - \frac{b^{J-1}CN(2 - d - J+1)}{(J-1)!}$$

Below we compare the graph of the sum of two independent truncated Gamma variables with parameter < = 2 and truncation at a = 1.5 and b = 3.5 with the graph of the Gamma distribution with parameter of = 4 which would be the distribution for the sum of two independent Gamma variables with parameter < = 2.

Returning to the example at the beginning of the chapter, suppose we have $\alpha_0 = 4$, a = 2.3, b = 5.6, and n = 2. Then from table II we find that $F_T(9.76; 2) = .95$ and hence the critical region is given by t > 9.76.

If we had conducted the test assuming a complete distribution, when in fact it was truncated as above, the critical region would have been $\ t>13.15$, and since this is greater than $\ 2b$, the size of the critical region would have been zero.

V. THE DISTRIBUTION FOR N = 3

Let x_1 , x_2 , and x_3 be independent variables, each having the truncated Gamma distribution with density function given by 4.1. Let $y = x_1 + x_2$ and $S = y + x_3$.

Then y has the probability density function defined by 4.2, and the joint probability density function of y and \mathbf{x}_3 is given by

$$\begin{split} &f_{T}(y, x_{3}) = f_{T}(x_{3}) \cdot f_{T}(y) = [cx_{3}^{-1}e^{-x_{3}}] \cdot [c^{2}e^{-y}y^{2q-1}]^{1-a/y} z^{-1}(1-z)^{-1}dz \\ &\text{for } 2a \leq y \leq a+b, \text{ or } f_{T}(x_{3}) \cdot f_{T}(y) = [cx_{3}^{-1}e^{-x}] \cdot [c^{2}e^{-y}y^{2q-1}]^{-1} \\ &b^{/y} z^{-1}(1-z)^{-1}dz] \text{ for } a+b \leq y \leq 2b. \text{ Hence} \\ &f_{T}(s,x_{3}) = c^{3}x_{3}^{-1}e^{-x_{3}} e^{-(s-x_{3})}(s-x_{3})^{2q-1} \int_{a/s-x_{3}}^{1-a/s-x_{3}} z^{-1}(1-z)^{q-1}dz \end{split}$$

for $a+b \le S-x_3 \le 2b$.

To find $f_T(s)$ we must integrate $f_T(s, x_3)$ with respect to x_3 over the proper limits.

The following diagram is helpful in determining the limits of x_3 .

From the diagram we see that for $3a \le s \le 2a+b$, x_3 goes from a to s-2a. For $2a+b \le s \le a+2b$, x_3 goes from a to s-a-b and from s-a-b to b. Finally, from $a+2b \le s \le 3b$, x_3 goes from s-2b to b. Hence

$$\int_{a}^{s-2a} f_{T}(s,x_3) dx_3 \text{ for } 3a \leq s \leq 2a + b$$

$$f_{T}(s) = \int_{a}^{s-a-b} f_{T}(s,x_{3}) dx_{3} + \int_{s-a-b}^{b} f_{T}(s,x_{3}) dx_{3}$$
 for $2a + b \le s \le a + b$

$$\int_{s-2b}^{b} f_{T}(s,x_{3}) dx_{3} \text{ for a + 2b } \leq s \leq 3b.$$

Substituting the formulas for
$$f_{T}(s,x_{3})$$
 this becomes
$$c^{3}e^{-s} \int_{a}^{s-2a} x_{3}^{-1}(s-x_{3})^{2a-1} \int_{a/s-x_{3}}^{1-a/x-x_{3}} z^{a-1}(1-z)^{a-1}$$

$$dz \ dx_{3} \ for \ 3a \le s \le 2a+b$$

$$c^{3}e^{-s} \int_{a}^{s-a-b} x_{3}^{a-1}(s-x_{3})^{2a-1} \int_{1-b/s-x_{3}}^{b/s-x_{3}} z^{a-1}(1-z)^{a-1} dz dx_{3}^{-1}$$

$$5.1 \ f_{T}(s) = \begin{cases} \int_{a-a-b}^{b} x_{3}^{a-1}(s-x_{3})^{2a-1} \int_{a/s-x_{3}}^{1-a/s-x_{3}} z^{a-1}(1-z)^{a-1} dz dx_{3}^{-1} \\ \int_{a-a-b}^{b} x_{3}^{a-1}(s-x_{3})^{2a-1} \int_{a/s-x_{3}}^{1-a/s-x_{3}} z^{a-1}(1-z)^{a-1} dz dx_{3}^{-1} \\ \int_{a-b/s-x_{3}}^{b} z^{a-1}(s-x_{3})^{2a-1} \int_{a-b/s-x_{3}}^{b/s-x_{3}} z^{a-1}(1-z)^{a-1} dz dx_{3}^{-1} \end{cases}$$

for
$$a + 2b \le s \le 3b$$

Let
$$w = (s - x_3)z$$
. Then $z = w/s - x_3$, $dz = \frac{dw}{s - x_3}$, $1 - z = \frac{s - w - x_3}{s - x_3}$, and $z = \frac{w(s - x_3)(s - x_3)}{(s - x_3)^{2(s - x_3)}}$ dw.

Substituting these results into 5.1 gives the following definition for $f_{\tau}(s)$:

$$c^{3}e^{-S}\int_{a}^{S-2a}x_{3}^{d-1} \int_{a}^{S-3}x_{3}^{3-a}x_{4}^{d-1}(s_{-w-x_{3}})^{d-1}dw \ dx_{3}$$

$$for \ 3a \le s \le 2a + b$$

$$c^{3}e^{-S}\int_{a}^{S-a-b}x_{3}^{d-1}\int_{s-x_{3}-b}^{b}x_{4}^{d-1}(s_{-w-x_{3}})^{d-1}dw \ dx_{3} +$$

$$\int_{s-a-b}^{b}x_{3}^{d-1}\int_{a}^{S-x_{3}-a}x_{4}^{d-1}(s_{-w-x_{3}})^{d-1}dw \ dx_{3} +$$

$$\int_{s-a-b}^{b}x_{3}^{d-1}\int_{a}^{S-x_{3}-a}x_{4}^{d-1}(s_{-w-x_{3}})^{d-1}dw \ dx_{3} +$$

$$for \ 2a + b \le s \le a+2b$$

$$c^{3}e^{-S}\int_{s-2b}^{s}x_{3}^{d-1}\int_{s-x_{3}-b}^{s}x_{4}^{d-1}(s_{-w-x_{3}})^{d-1}dw \ dx_{3} +$$

$$for \ a+2b \le s \le 3b$$

$$\int_{s-a-b}^{b}x_{3}^{d-1}\int_{s-x_{3}-b}^{b}x_{4}^{d-1}\int_{s-a-b}^{s-a-1}x_{4}^{d-1}x_{4}^{d-1}\int_{s-a-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{d-1}\int_{s-a-b-b}^{s-1}x_{4}^{$$

If we interchange the limits for both integrals in the second and fourth lines of 5.3, then each of the inner integrals will have limits of the form k to l-u-k where k = a/s or k = b/s.

Hence each of the inner integrals may be represented by

$$I = \int_{k}^{1-u-k} v^{\alpha-1} (1-u-v)^{\alpha-1} dv.$$

Let z = v/1-u. Then v = (1-u)z, dv = (1-u)dz, and $I = (1-u)^{2\alpha-1} \int_{k/1-u}^{1-k/1-u} z^{\alpha-1} (1-z)^{\alpha-1} dz$.

Let $v' = z^{\alpha}/\alpha$ and $u' = (1-z)^{\alpha-1}$. Then $dv' = z^{\alpha-1}dz$, $du' = -(\alpha-1)(1-z)^{\alpha-2}dz$, and

$$I = (1-u)^{2\alpha-1} \left[\left(\frac{z^{\alpha}(1-z)^{\alpha-1}}{\alpha} \right) \int_{k/1-u}^{1-k/1-u} + \frac{\alpha-1}{\alpha} \int_{k/1-u}^{1-k/1-u} (1-z)^{\alpha-2} dz \right].$$

After repeated integration by parts we find

$$I = (1-u)^{2\alpha-1} \left[\left(\frac{z^{\alpha(1-z)^{\alpha(-1)}}}{\alpha} + \frac{\alpha - 1}{\alpha(\alpha(+1))} \right) z^{\alpha(+1)} + (1-z)^{\alpha(-2)} + \cdots + z^{\alpha(+2)} \right]$$

$$(1-z)^{\alpha(-3)} + \cdots + \frac{(\alpha(-1))(\alpha(-2) + \cdots + 2)}{\alpha(\alpha(+1))(\alpha(+2) + \cdots + 2)} z^{2\alpha(-2)} (1-z) \right]_{k/1-u}^{1-k/1-u} +$$

$$\begin{array}{c|c} \frac{(\mathbf{q}'-1)\,(\mathbf{q}-2)\,\cdots\,1}{(\mathbf{q}')\,(\mathbf{q}+1)\,(\mathbf{q}+2)\,\cdots\,(2\mathbf{q}-2)} & \int_{k/1-u}^{1-k/1-u} 2\mathbf{q} - 2\,\mathrm{d}z \\ \text{an integer, then } \frac{(\mathbf{q}-1)\,!\,\,(\mathbf{q}-1)\,!\,\,}{(2\mathbf{q}-1)\,!\,\,} & \underbrace{(2\mathbf{q}-1)\,(\mathbf{q}-2)\,\cdots\,(\mathbf{q}'-j)}_{(2\mathbf{q}-j-1)\,!} \end{array}$$

for $j = 1, \dots, \alpha - 1$, and I can be expressed as

$$\begin{split} I &= \frac{(\mathbf{q}'-1) \, ! \, (\mathbf{q}'-1) \, !}{(2\,\mathbf{q}'-1) \, !} \, (1-u)^{2\mathbf{q}'-1} \left[z^{2\mathbf{q}'-1} + ({}^{2\mathbf{q}'-1}) \, z^{2\mathbf{q}'-2} (1-z) \right. + \\ & \cdot \cdot \cdot + \, ({}^{2\mathbf{q}'-1}) \, z^{\mathbf{q}'} \, (1-z)^{\mathbf{q}'-1} \, \int_{k/1-u}^{1-k/1-u} \, = \frac{(\mathbf{q}'-1) \, ! \, (\mathbf{q}'-1) \, !}{(2\,\mathbf{q}'-1) \, !} \left[(1-u-k)^{2\mathbf{q}'-1} + ({}^{2\mathbf{q}'-1}) \, (1-u-k)^{2\mathbf{q}'-2} + \cdots + ({}^{2\mathbf{q}'-1}) \, (1-u-k)^{\mathbf{q}'} \, k^{\mathbf{q}'-1} - k^{2\mathbf{q}'-1} \right] \\ & ({}^{2\mathbf{q}'-1} - ({}^{2\mathbf{q}'-1}) \, k^{2\mathbf{q}'-2} (1-u-k) - \cdots - ({}^{2\mathbf{q}'-1}) \, k^{\mathbf{q}'} \, (1-u-k)^{\mathbf{q}'-1} \right] \end{split}$$

Hence 5.4
$$\int_{\mathbf{r}}^{t} u^{\mathbf{q}-1} \int_{\mathbf{k}}^{1-u-k} v^{\mathbf{q}-1} (1-u-v)^{\mathbf{q}-1} du \ dv = \frac{(\mathbf{q}-1)!(\mathbf{q}-1)!}{(2\mathbf{q}-1)!}$$

$$\int_{j=0}^{k-1} {2^{\frac{k}{2}} - 1 \choose j} k^{j} \int_{r}^{t} u^{\frac{k}{2} - 1} (1 - k - u)^{2\frac{k}{2} - j - 1} du - \sum_{j=0}^{k} {2^{\frac{k}{2}} - 1 \choose j} k^{2\frac{k}{2} - j - 1} \int_{r}^{t} u^{\frac{k}{2} - 1} (1 - k - u)^{\frac{k}{2}} du$$

By repeating the same steps which were required to reduce

$$\int_{k}^{1-u-k} v^{\alpha-1} (1-u-v)^{\alpha-1} dv \qquad \text{for } \int_{\mathbf{r}}^{t} u^{\alpha-1} (1-k-u)^{\mathbf{j}} du \text{ and }$$

$$\int_{r}^{t} u^{-1} (1-k-u)^{2-j-1} du, \text{ we find 5.5 } \int_{r}^{t} u^{-1} (1-k-u)^{j} du =$$

$$\frac{1}{\mathbf{d} \begin{pmatrix} \mathbf{d} + \mathbf{j} \\ \mathbf{d} \end{pmatrix}} \begin{bmatrix} \mathbf{j} \\ \mathbf{r} \\ \mathbf{i} = \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{d} + \mathbf{j} \\ \mathbf{i} = \mathbf{0} \end{pmatrix} \mathbf{t}^{\mathbf{d} + \mathbf{j} - \mathbf{i}} (1 - \mathbf{k} - \mathbf{t})^{\mathbf{i}} - \sum_{i=0}^{J} \begin{pmatrix} \mathbf{d} + \mathbf{j} \\ \mathbf{i} \end{pmatrix} \mathbf{r}^{\mathbf{d} + \mathbf{j} - \mathbf{i}} (1 - \mathbf{k} - \mathbf{r})^{\mathbf{i}} \end{bmatrix} \quad \text{and}$$

5.6
$$\int_{\mathbf{r}}^{t} u^{\alpha - 1} (1 - k - u)^{2\alpha - j - 1} du = \frac{1}{\alpha (3\alpha - j - 1)} \begin{bmatrix} 2\alpha - j - 1 \\ \sum_{i=0}^{\infty} (3\alpha - j - 1)_{t} 3\alpha - j - i - 1 \end{bmatrix}$$

$$(1-k-t)^{i} - \sum_{i=0}^{2\alpha-j-1} {3\alpha - j-1 \choose i} r^{3\alpha - j-i-1} (1-k-r)^{i}$$
.

Combining 5.5 and 5.6 with 5.4 we get

$$f_{T}(s) = c^{3}e^{-s}s^{3\mathbf{q}-1} \frac{(\mathbf{q}-1)!}{(2\mathbf{q}-1)!} \begin{bmatrix} \mathbf{q}-1 & \frac{(2\mathbf{q}-1)}{3} & \frac{2\mathbf{q}-j-1}{3} \\ \sum_{j=0}^{\infty} \frac{(3\mathbf{q}-j-1)}{\mathbf{q}(3\mathbf{q}-j-1)} & k^{j} & \sum_{i=0}^{\infty} \frac{(3\mathbf{q}-j-1)}{3\mathbf{q}-j-1} & k^{j} & \sum_{i=0}^{\infty}$$

$$(^{3\mathbf{q}_{-j-1}})$$
 [$t^{3\mathbf{q}_{-j-i-1}}(1-k-t)^{i}-r^{3\mathbf{q}_{-j-i-1}}(1-k-r)^{i}$] -

$$\sum_{\substack{j=0 \ \text{d}}}^{\mathbf{q}-1} \frac{\binom{2\mathbf{q}-1}{j}}{\mathbf{q}\binom{\mathbf{q}+j}{\mathbf{q}}} k^{2\mathbf{q}-j-1} \sum_{\substack{j=0 \ \text{i}=0}}^{j} \binom{\mathbf{q}+j}{i} \left[t^{\mathbf{q}+j-i} (1-k-t)^{i} - r^{\mathbf{q}+j-i} (1-k-s)^{i} \right]$$

for r = a/s, t = 1 - 2a/s, k = a/s, and $3a \le s \le 2a+b$, or

$$\begin{split} f_{T}(s) &= c^{3}e^{-s}s^{3\mathbf{q}-1} \frac{(\mathbf{q}-1)!}{(2\mathbf{q}-1)!} \begin{bmatrix} \mathbf{q}-1 & \frac{2\mathbf{q}-1}{j} \\ \sum\limits_{j=0}^{\infty} \frac{2^{2\mathbf{q}-j-1}}{\mathbf{q}(3^{2\mathbf{q}-j-1})} & k^{j} & \sum\limits_{i=0}^{2\mathbf{q}-j-1} \\ (3^{\mathbf{q}-j-1})[t^{3\mathbf{q}-j-i-1}(1-k-t)^{i}-r^{3\mathbf{q}-j-i-1}(1-k-r)^{i}] & -\sum\limits_{j=0}^{\infty} \frac{(2^{\mathbf{q}-1})}{\mathbf{q}(\mathbf{q}+j)} \\ k^{2\mathbf{q}-j-1} & \sum\limits_{i=0}^{j} \frac{(\mathbf{q}+j)}{i}[t^{\mathbf{q}+j-i}(1-k-t)^{i}-r^{\mathbf{q}+j-i}(1-k-s)^{i}] & +\sum\limits_{j=0}^{\infty} \frac{(2^{\mathbf{q}-1})}{j=0} \\ & \frac{(2^{\mathbf{q}-1})}{\mathbf{q}(3^{\mathbf{q}-j-1})} & k^{j} & \sum\limits_{i=0}^{2\mathbf{q}-j-1} \frac{(3^{\mathbf{q}-j-1})}{i}[t^{3\mathbf{q}-j-i-1}(1-k-t)^{i}-s^{3\mathbf{q}-j-i-1}(1-k-r)^{i}] - \\ & \frac{(2^{\mathbf{q}-1})}{\mathbf{q}(3^{\mathbf{q}-j-1})} & k^{j} & \sum\limits_{i=0}^{2\mathbf{q}-j-1} \frac{(3^{\mathbf{q}-j-1})}{i}[t^{3\mathbf{q}-j-i-1}(1-k-t)^{i}-r^{\mathbf{q}+j-i}(1-k-r)^{i}] \end{bmatrix} \end{split}$$

for r = 1 - a/s - b/s, t = a/s and k = b/s in the first two sums and r = 1 - a/s - b/s, t = b/s, and k = a/s in the second two sums, and 2a + b < s < a+2b, or

$$f_{T}(s) = c^{3}c^{-s}s^{3\mathbf{N}-1} \frac{(\mathbf{N}-1)!}{(2\mathbf{N}-1)!} \begin{bmatrix} \mathbf{N}-1 & (\frac{2\mathbf{N}-1}{i}) \\ \sum & (\frac{3\mathbf{N}-1}{i}) \\ j=0 & \mathbf{N} & \mathbf{N} \end{bmatrix} k^{j} \sum_{i=0}^{2\mathbf{N}-j-1} k^{j} \sum_{i=0}^{2$$

$$\binom{3q-i-1}{i} [t^{3q-j-i-1}(1-k-t)^{i}-r^{3q-j-i-1}(1-k-r)^{i}]$$

$$\sum_{j=0}^{\alpha-1} \frac{\binom{2\alpha-1}{j}}{\alpha \binom{\alpha+j}{\gamma}} k^{2\alpha-j-1} \sum_{i=0}^{j} \binom{\alpha+j}{i} \left[t^{\alpha+j-i} (1-k-t)^{i} - s^{\alpha+j-i} (1-k-s)^{i}\right]$$

for r = b/s, t = 1 - 2b/s, k = b/s, and $a + 2b \le s \le 3b$.

Substituting the values for k, r, and t, and taking $s^{3\mathbf{q}-1}e^{-s}$ inside the summation gives the following definition for the probability denisty function of the sum of three independent truncated Gamma variables with truncation points a and b:

$$\begin{split} &f_{T}(s) = c^{3} \frac{(\alpha-1)!}{(2\alpha-1)!} \sum_{j=0}^{\alpha-1} \frac{(2^{\alpha}-1)}{\alpha'(3^{\alpha}-j-1)} \sum_{i=0}^{2\alpha-j-1} (3^{\alpha}-j-1) \\ & \left[a^{j+i} (s-2a)^{3\alpha-j-i-1} e^{-s} - a^{3\alpha-j-1} (s-2a)^{i} e^{-s} \right] - \\ & \alpha-1 \left[\frac{(2^{\alpha}-1)}{\alpha'(\alpha')} \right] \sum_{j=0}^{\infty} \binom{\alpha+j}{\alpha'(\alpha')} \left[a^{2\alpha+i-j-1} (s-2a)^{\alpha+j-i} e^{-s} - a^{3\alpha-i-1} \right] \\ & (s-2a)^{i} e^{-s} \right] \qquad \text{for } 3a \leq s \leq a+2b, \text{ or} \\ & f_{T}(s) = c^{3} \frac{(\alpha-1)!}{(2\alpha-1)!} \frac{(\alpha-1)!}{(2\alpha-1)!} \left[\sum_{j=0}^{\alpha-1} \frac{(2^{\alpha-1})}{\alpha'(3^{\alpha-j-1})} \sum_{i=0}^{2\alpha-j-1} \binom{3^{\alpha}-j-1}{i} \right] \\ & \left[(b^{j}a^{3\alpha-j-i-1} + a^{j}b^{3\alpha-j-i-1}) ((s-b-a)^{i}e^{-s}) - (a^{j}b^{i} + a^{i}b^{j}) ((s-a-b)^{3\alpha-j-i-1}e^{-s}) \right] - \sum_{j=0}^{\alpha-1} \frac{(2^{\alpha-1})}{\alpha'(\alpha^{i+j})} \sum_{i=0}^{j} \binom{\alpha+j}{i} \left[(b^{2\alpha-j-1}a^{\alpha+j-i} + a^{2\alpha-j-1}b^{\alpha+j-i}) ((s-a-b)^{i}e^{-s}) - (a^{i}b^{2\alpha-j-1} + b^{i}a^{2\alpha-j-1}) \right] \\ & \left((s-a-b)^{\alpha'+j-i} e^{-s} \right) \right] \qquad \text{for } 2a+b \leq s \leq a+2b, \text{ or} \\ & f_{T}(s) = c^{3} \frac{(\alpha-1)!}{(2\alpha-1)!} \frac{(\alpha-1)!}{(2\alpha-1)!} \sum_{j=0}^{\alpha-1} \frac{(2^{\alpha-1}-1)}{\alpha'(3^{\alpha-j-1}-1)} \sum_{i=0}^{2\alpha-j-1} \binom{3^{\alpha-j-1}-1}{i} \\ & \left[b^{j+i} (s-2b)^{3\alpha-j-i-1}e^{-s} - b^{3\alpha-i-1} (s-2b)^{i}e^{-s} \right] - \sum_{j=0}^{\alpha-1} \frac{(2^{\alpha-1}-1)}{\alpha'(\alpha')} \\ & \frac{j}{1} (\alpha'+j) \left[b^{2\alpha+i-j-1} (s-2b)^{\alpha'+j-i}e^{-s} - b^{3\alpha-i-1} (s-2b)^{i}e^{-s} \right] \qquad \text{for} \end{aligned}$$

The distribution function
$$F_T(x) = \int_{3a}^x f_T(s) ds$$
 is defined by

$$F_{T}(x) = c^{3} \frac{(\alpha-1)! (\alpha-1)!}{(2\alpha-1)!} \begin{bmatrix} \alpha-1 & \frac{2\alpha-1}{j} & \frac{2\alpha-j-1}{j} \\ \sum_{j=0}^{\infty} \frac{(3\alpha-j-1)}{\alpha(\alpha-j)} & \sum_{j=0}^{\infty} \frac{(3\alpha-j-1)}{\alpha(\alpha-j)} \end{bmatrix}$$

$$[a^{j+i} \int_{3a}^{x} (s-2a)^{3q-j-i-1}e^{-s}ds - a^{3q-i-1} \int_{3a}^{x} (s-2a)^{i}e^{-s}ds] -$$

$$a^{3\mathbf{q}-j-1} \int_{3a}^{x} (s-2a)^{i} e^{-s} ds]$$
 for $3a \le x \le 2a+b$, or

$$F_{T}(x) = F_{T}(2a+b) + c^{3} \frac{(\alpha-1)! (\alpha-1)!}{(2\alpha-1)!} \int_{j=0}^{\alpha-1} \frac{\binom{2\alpha-1}{j}}{\alpha \binom{3\alpha-j-1}{\alpha}} \frac{2\alpha-j-1}{i=0}$$

$$\binom{3^{\mathbf{q}}-j-1}{i}$$
 [$(b^{j}a^{3\mathbf{q}-j-i-1} + a^{j}b^{3\mathbf{q}-j-i-1})$ $\int_{2a+b}^{x} (s-b-a)^{i}e^{-s}ds - \frac{1}{2a+b}$

$$(a^{j}b^{i} + a^{i}b^{j}) \int_{2a+b}^{x} (s-a-b)^{3\mathbf{q}-j-i-1} e^{-s} ds \left[-\sum_{j=0}^{\mathbf{q}-1} \frac{\binom{2\mathbf{q}-1}{j}}{\mathbf{q}\binom{\mathbf{q}+j}{\mathbf{q}}} \right] \sum_{i=0}^{i} \binom{\mathbf{q}+j}{i}$$

$$\left(\left(b^{2\mathbf{q}-j-1}a^{\mathbf{q}+j-i} + a^{2\mathbf{q}-j-1}b^{\mathbf{q}+j-i} \right) \int_{a+b}^{x} (s-a-b)^{i}e^{-s}ds - \frac{1}{2a+b} \left(s-a-b \right)^{i}e^{-s}ds \right)$$

$$(a^{i}b^{2\mathbf{q}-j-1}+b^{i}a^{2\mathbf{q}-j-1})$$
 $\int_{2a+b}^{x}(s-a-b)^{\mathbf{q}+j-i}e^{-s}ds]$ for $2a+b\leq x\leq a+2b$,

 \mathbf{or}

$$F_{T}(x) = F_{T}(a+2b)c^{3} \frac{(d-1)!(d-1)!}{(2a-1)!} \sum_{j=0}^{d-1} \frac{\binom{2^{d}-1}{j}}{\alpha \binom{3d-j-1}{\alpha}} \sum_{i=0}^{2d-j-1} \binom{3d-j-1}{i} [b^{j+i}]$$

$$\int_{a+2b}^{x} (s-2b)^{3\mathbf{q}-j-i-1} e^{-s} ds - b^{3\mathbf{q}-i-1} \int_{a+2b}^{x} (s-2b)^{i} e^{-s} ds] -$$

$$\sum_{j=0}^{\alpha-1} \frac{\binom{2^{\alpha}-1}{j}}{\alpha \binom{\alpha+j}{\alpha}} \sum_{i=0}^{j} \binom{\alpha+j}{i} \left[b^{2^{\alpha}+i-j-1} \int_{a+2b}^{x} (s-2b)^{\alpha+j-i} e^{-s} ds - \frac{a+j-i}{2} e^{-s} ds \right]$$

$$b^{3\mathbf{d}-j-i} \int_{a+2b}^{x} (s-2b)^{i} e^{-s} ds \Big]$$
 for $a+2b \le x \le 3b$.

Let z = s - 2a. Then dz = ds, $e^{-s} = e^{-2a} e^{-z}$, and for $3a \le x \le a + b$

$$F_{T}(x) = c^{3} \frac{(\alpha - 1)! (\alpha - 1)!}{(2\alpha - 1)!} \begin{bmatrix} \alpha - 1 & \frac{(2\alpha - 1)}{3} & \frac{2\alpha - j - 1}{5} & \frac{3\alpha - j - 1}{i} \\ j = 0 & \alpha \cdot \frac{(3\alpha - j - 1)}{4} & i = 0 \end{bmatrix} (3\alpha - j - 1)$$

$$[e^{-2a} a^{j+i} \int_{0}^{x-2a} z^{3\alpha - j - i - 1} e^{-z} dz - e^{-2a} a^{3\alpha - i - 1} \int_{0}^{x-2a} z^{i} e^{-z} dz] - \frac{1}{2} c^{2a} dz$$

$$e^{-2a}a^{3\mathbf{q}-i-1}$$

$$\int_{a}^{x-2a}z^{i}e^{-z}dz$$
 = $c^{3}e^{-2a}\frac{(\mathbf{q}-1)!}{(2\mathbf{q}-1)!}$

$$\begin{bmatrix} a_{i}-1 & \frac{2a_{i}-1}{j} & 2a_{i}-j-1 \\ \sum_{j=0}^{\infty} \frac{(3a_{i}-j-1)}{a_{i}(3a_{i}-j-1)} & \sum_{j=0}^{\infty} \frac{(3a_{i}-j-1)}{j} \begin{bmatrix} a_{i}+i & (3a_{i}-j-i) & (3a_{$$

$$3q-j-i) - G(a; 3q-j-i)) - a^{3q-i-1} \Gamma(i+1) (G(x-2a; i+1) -$$

$$G(a; i+1)) - \sum_{j=0}^{q-1} \frac{\binom{2^{q}-1}{j}}{\alpha \binom{q+j}{q}} \sum_{i=0}^{j} \binom{q+j}{i} [a^{2q+i-j-1} \Gamma(q+j-i+1)]$$

$$(G(x-2a; q+j-i+1) - G(a; q+j-i+1)) - a^{3q-i-1} \Gamma(i+1)$$

$$(G(x-2a; i+1)-G(a; i+1))$$
 where $G(x; \mathbf{q})$ is defined by 2.1.
Similarly, if we let $z = s-b-a$, then for $2a+b \le x \le a+2b$,

$$\begin{split} &F_T(x) = F_T(2a+b) + e^{-b-a} \ c^3 \ \frac{(\alpha-1)! \ (\alpha-1)!}{(2\alpha-1)!} \int_{j=o}^{\alpha-1} \frac{(2\alpha-1)}{\alpha(3\alpha-j-1)} \\ &\sum_{i=o}^{2\alpha-j-1} (3\alpha-j-1)[(b^j a^{3\alpha-j-i-1} + a^j b^{3\alpha-j-i-1}) \Gamma(i+1) \\ &\sum_{i=o}^{\alpha-1} (3\alpha-j-1)[(b^j a^{3\alpha-j-i-1} + a^j b^{3\alpha-j-i-1}) \Gamma(i+1) \\ &(G(x-a-b; i+1) - G(a; i+1)) - (a^j b^i + a^i b^j) \Gamma(3\alpha-j-i) \\ &(G(x-a-b; 3\alpha-j-i) - G(a; 3\alpha-j-i))] - \sum_{j=o}^{\alpha-1} \frac{(2\alpha-1)}{\alpha(\alpha-j)} \sum_{i=o}^{j} \binom{\alpha+j}{i} \\ &(b^{2\alpha-j-1} a^{\alpha+j-i} + a^{2\alpha-j-1} b^{\alpha+j-i}) \Gamma(i+1) (G(x-a-b; i+1) - G(a; i+1)) = (a^i b^{2\alpha-j-1} + b^i a^{2\alpha-j-1}) \Gamma(\alpha+j-i+1) \\ &(G(x-a-b; \alpha+j-i+1) - G(a; \alpha+j-j+1))] \\ ∧ \ if \ we \ let \\ &z = s - 2b, \ then \ for \ a+2b \le x \le 3b, \\ &F_T(x) = F_T(a+2b) + e^{-b} c^3 \frac{(\alpha-1)! \ (\alpha-1)!}{(2\alpha-1)!} \int_{j=o}^{\alpha-1} \frac{(2\alpha-1)}{\alpha(\alpha-j-1)} \\ &\sum_{i=o}^{2\alpha-j-1} (3\alpha-j-1) \left[b^{j+i} \Gamma(3\alpha-j-i) (G(x-2b; 3\alpha-j-i) - G(a; 3\alpha-j-i)) - b^{3\alpha-i-1} \Gamma(i+1) (G(x-2b; i+1) - G(a; i+1)) \right] - \sum_{j=o}^{\alpha-1} \frac{(2\alpha-1)}{\alpha(\alpha-j-1)} \\ &\sum_{i=o}^{\beta-1} \binom{\alpha+j}{i} \left[b^{2\alpha-i-j-1} \Gamma(\alpha+j-i+1) (G(x-2b; \alpha+j-i+1) - G(a; i+1)) \right] \\ &As \ in \ chapter \ IV, \ let \ AN(A) = \frac{1}{(A-1)!} \int_{a}^{b} x^{A-1} e^{-x} dx, \\ &BN(A) = \frac{1}{(A-1)!} \int_{a}^{x-2a} x^{A-1} e^{-x} dx, \ CN(A) = \frac{1}{(A-1)!} \int_{a}^{x-b-a} x^{A-1} e^{-x} dx, \\ &\sum_{i=o}^{b-a} x^{A-1} e^{-x} dx, \ CN(A) = \frac{1}{(A-1)!} \int_{a}^{x-b-a} x^{A-1} e^{-x} dx, \\ &\sum_{i=o}^{b-a} x^{A-1} e^{-x} dx, \ CN(A) = \frac{1}{(A-1)!} \int_{a}^{x-b-a} x^{A-1} e^{-x} dx, \\ &\sum_{i=o}^{b-a} x^{A-1} e^{-x} dx, \ CN(A) = \frac{1}{(A-1)!} \int_{a}^{x-b-a} x^{A-1} e^{-x} dx, \\ &\sum_{i=o}^{b-a} x^{A-1} e^{-x} dx, \ CN(A) = \frac{1}{(A-1)!} \int_{a}^{x-b-a} x^{A-1} e^{-x} dx, \\ &\sum_{i=o}^{b-a} x^{A-1} e^{-x} dx, \ CN(A) = \frac{1}{(A-1)!} \int_{a}^{x-b-a} x^{A-1} e^{-x} dx, \\ &\sum_{i=o}^{b-a} x^{A-1} e^{-x} dx, \ CN(A) = \frac{1}{(A-1)!} \int_{a}^{x-b-a} x^{A-1} e^{-x} dx, \\ &\sum_{i=o}^{b-a} x^{A-1} e^{-x} dx, \ CN(A) = \frac{1}{(A-1)!} \int_{a}^{x-b} x^{A-1} e^{-x} dx, \\ &\sum_{i=o}^{a} x^{A-1} e^{-x} dx, \ CN(A) = \frac{1}{(A-1)!} \int_{a}^{x-1} x^{A-1} e^{-x} dx. \end{aligned}$$

and
$$DN(\lambda) = \frac{1}{(\lambda-1)!} \int_a^{x-2b} x^{\lambda-1} e^{-x} dx$$
.

Substituting these expressions and making all possible cancellations gives the following definition for $\mathbf{F}_{\mathbf{T}}(\mathbf{x})$, the distribution function of the sum of three independent truncated Gamma variables with truncation at a and b:

$$\begin{split} F_T^-(x) &= Ge^{-2a} \begin{bmatrix} \alpha & 2\mathbf{q} - J + 1 \\ \Sigma & \Sigma \\ J = 1 & I = 1 \end{bmatrix} \begin{bmatrix} \underline{a}^{J+I-2} & BN(3\mathbf{q} - J - I + 2) \\ (J-1)! & (I-1)! \end{bmatrix} - \underbrace{\frac{a}{\Sigma}}_{J=1}^{2} \underbrace{\frac{a}{\Sigma}}_{I=1}^{2\mathbf{q} + I - J - 1} \underbrace{BN(\mathbf{q} + J - I + 1)}_{(2\mathbf{q} - J)! & (I-1)!} - \underbrace{\frac{a^{3\mathbf{q} - I}}{(J-1)!} \underbrace{BN(I)}_{(2\mathbf{q} - J)! & (\mathbf{q} + J - I)!} \end{bmatrix} \\ &= \underbrace{\frac{a^{3\mathbf{q} - I}}{(J-1)!} \underbrace{BN(I)}_{(2\mathbf{q} - J)! & (\mathbf{q} + J - I)!} \end{bmatrix} \\ &= for \quad 3a \le x \le 2a + b, \text{ or} \\ F_T^-(x) &= F_T^-(2a + b) + G e^{-a - b} \underbrace{\begin{bmatrix} \alpha & 2\mathbf{q} - J + 1 \\ \Sigma & \Sigma \\ J = 1 & I = 1 \end{bmatrix}}_{J=1} \\ &= \underbrace{\begin{bmatrix} (b^{J-1}a^{3\mathbf{q} - J - I + 1} + a^{J-1}b^{3\mathbf{q} - J - I + 1})CN(I) \\ (J-1)! & (3\mathbf{q} - J - I + 1)! \end{bmatrix}}_{J=1} - \underbrace{\begin{bmatrix} \alpha & J \\ \Sigma & \Sigma \\ J = 1 & I = 1 \end{bmatrix}}_{J=1} \\ &= \underbrace{\begin{bmatrix} (b^{J-1}b^{I-1} + a^{I-1}b^{J-1})CN(3\mathbf{q} - J - I + 2) \\ (J-1)! & (I-1)! \end{bmatrix}}_{J=1} - \underbrace{\begin{bmatrix} \alpha & J \\ \Sigma & \Sigma \\ J = 1 & I = 1 \end{bmatrix}}_{J=1} \\ &= \underbrace{\begin{bmatrix} (b^{2\mathbf{q} - J}a^{\mathbf{q} + J - I} + a^{2\mathbf{q} - J}b^{\mathbf{q} + J - I})CN(I)}_{J=1} - \underbrace{\begin{bmatrix} (a^{I-1}b^{2\mathbf{q} - J} + a^{2\mathbf{q} - J}b^{I-1})CN(\mathbf{q} + J - I + 1)}_{J=1} \end{bmatrix}}_{J=1} \\ &= \underbrace{\begin{bmatrix} (b^{2\mathbf{q} - J}a^{\mathbf{q} + J - I} + a^{2\mathbf{q} - J}b^{\mathbf{q} + J - I})CN(I)}_{J=1} - \underbrace{\begin{bmatrix} (a^{I-1}b^{2\mathbf{q} - J} + a^{2\mathbf{q} - J}b^{I-1})CN(\mathbf{q} + J - I + 1)}_{J=1} \end{bmatrix}}_{J=1} \\ &= \underbrace{\begin{bmatrix} (b^{J-1}a^{J-1}b^{J-1} + a^{J-1}b^{J-1})CN(I)}_{J=1} - \underbrace{\begin{bmatrix} (a^{I-1}b^{J-1}b^{J-1} + a^{J-1}b^{J-1})CN(\mathbf{q} + J - I + 1)}_{J=1} \end{bmatrix}}_{J=1} \\ &= \underbrace{\begin{bmatrix} (a^{J-1}b^{J-1} + a^{J-1}b^{J-1})CN(I)}_{J=1} - \underbrace{\begin{bmatrix} (a^{I-1}b^{J-1}b^{J-1} + a^{J-1}b^{J-1})CN(\mathbf{q} + J - I + 1)}_{J=1} \end{bmatrix}}_{J=1} \\ &= \underbrace{\begin{bmatrix} (a^{J-1}b^{J-1} + a^{J-1}b^{J-1})CN(I)}_{J=1} - \underbrace{\begin{bmatrix} (a^{I-1}b^{J-1}b^{J-1} + a^{J-1}b^{J-1}b^{J-1})CN(I)}_{J=1} - \underbrace{\begin{bmatrix} (a^{I-1}b^{J-1}b^{J-1} + a^{J-1}b^{J-1}b^{J-1})CN(I)}_{J=1}$$

for $2a+b \le x \le a+2b$, or

$$F_{T}(x) = F_{T}(a+2b) + e^{-2b}G \begin{bmatrix} a & 2d-J+1 \\ \Sigma & \Sigma \\ J=1 & I=1 \end{bmatrix} \begin{bmatrix} b^{J+I-2}DN(3d-J-I+2) \\ (J-1)! & (I-1)! \end{bmatrix}$$

$$\frac{b^{3\mathbf{Q}-1}DN(I)}{(J-1)!(3\mathbf{Q}-J-I+1)!} - \underbrace{\sum_{D=1}^{\mathbf{Q}} \sum_{D=1}^{\mathbf{Q}} \underbrace{\sum_{D=1}^{\mathbf{Q}} \underbrace{\sum_{D=1}^{\mathbf$$

Below we compare the graphs of the sum of three independent truncated Gamma variables with parameter $\mathbf{q} = 2$ and truncation at a = 1.5 and b = 3.5 with the graph of the Gamma distribution with parameter $\mathbf{q} = 6$ which would be the distribution for the sum of three independent Gamma variables with parameter $\mathbf{q} = 2$.

Returning to the example at the beginning of chapter 4, suppose we have $\alpha_0 = 4$, a = 2.3, b = 5.6, and n = 3. Then from table III we find that $F_T(13.98; 3) = .95$ and hence the critical region for the test would be given by t > 13.98.

If we had conducted the test assuming a complete distribution, when in fact it was truncated as above, the critical region would have been t>18.20 and since this is greater than 3b, the size of the critical region would have been zero.

VI. COMPARISON OF CRITICAL VALUES

In the following table the parameters which determine the distributions, a, b, α , and n, are given with the .05 and .95 critical values from the tables obtained from the actual distributions and with the critical values taken from the β_1 and β_2 tables, which are denoted by λ_{05}^* and $\lambda_{.95}^*$.

0.5							
a	b	⋖	n	X.05	x* _{.05}	X.95	X [*] .95
. 54	2.06	2	2	1.55	1.55	3.56	3.54
. 54	2.06	2	3	2.59	2.60	5.04	5.03
1.10	2.06	2	2	2.47	2.48	3.77	3.76
1.10	2.06	2	3	3.88	3.88	5.46	5.45
1.07	3.12	3	2	2.85	2.86	5.54	5.52
1.07	3.12	3	3	4.65	4.66	7.93	7.92
2.30	5.60	4	2	5.49	5.45	9.76	9.74
2.30	5.60	4	3	8.78	8.81	13.98	13.97
2.46	5.29	5	2	5.96	5.99	9.67	9.65
2.46	5.29	5	3	9.47	9.49	13.98	13.98
6.36	9.25	8	2	13.58	13.57	17.45	17.41
4.67	9.25	8	3	17.41	17.45	24.60	24.57
1.91	3.64	3	3	6.75	6.77	9.56	9.56
5.25	7.88	6	2	11.18	11.20	14.68	14.65
3.18	9.31	6	3	13.12	13.14	22.17	22.16
5.42	10.58	7	2	12.64	12.08	18.49	18.47
7.20	10.29	9	2	15.33	15.32	19.47	19.42
.11	1.60	5	1	1.94	1.95	4.95	4.95
.37	.91	5	1	2.52	2.52	3.66	3.65
.51	1.20	10	1	7.15	7.14	9.20	9.19
.11	1.60	10	1	4.70	4.71	8.95	8.96
.37	1.60	3	1	1.65	1.67	3.61	3.61
.37	1.60	2	1	.98	1.00	2.58	2.57
.51	2.40	2	1	1.32	1.31	3.62	3.63

In the following table the parameters which determine the distributions, a, b, α , and n, are given with the .01 and .99 critical values from the tables obtained from the actual distributions and with the critical values taken from the β_1 and β_2 tables, which are denoted by $X_{:01}^*$ and $X_{:99}^*$

a	b	م	n	X.01	X*.01	X.99	X*.99
.11 .11 .22 .37	.91 1.60 2.40 1.20	1 1 1	2 3 5 10	.30 .66 2.20 5.62	.28 .64 2.19 5.63	1.66 3.77 7.88 9.04	1.64 3.74 7.86 9.02
1.40	2.45	2	2	2.92	2.92	4.71	4.71
1.10	3.96	2	3	3.97	3.97	9.76	9.74
1.56	4.33	3	2	3.44	2.40	8.04	8.03
1.91	3.12	3	3	6.17	6.15	8.83	8.80
2.80	4.80	4	2	5.85	5.85	9.25	9.27 17.20 11.34 17.97
2.30	6.80	4	3	8.18	8.20	17.26	
3.62	5.86	5	2	7.53	7.56	11.33	
2.46	6.71	5	3	9.10	9.13	17.96	
4.53	9.31 7.03 9.05 10.58	6	2	9.55	9.58	17.30	17.29
5.20		6	3	16.38	16.35	20.28	20.25
5.42		7	2	11.29	11.28	17.38	17.36
4.76		7	3	16.11	16.06	27.95	27.97
5.60 4.67 5.40 6.42	11.88 10.21 10.29 11.40	8 8 9	2 3 2 3	11.94 16.43 11.72 21.12	11.90 16.40 11.67 21.08	22.04 27.95 19.82 31.68	22.00 27.93 19.84 31.66
8.13	11.38	10	2	16.70	16.65	22.22 36.06 34.98 46.21	22.18
8.96	12.65	10	3	28.08	28.09		36.00
10.46	18.20	15	2	22.31	22.27		34.99
17.44	23.70	20	2	35.70	35.69		46.18

TABLE I Critical Values for the Truncated Distributions as Functions of the Truncation Points a and b for $\ll 1$ and N = 2, 3, 5, and 10

	N = 2							
a	b	.01	.02	.95	.99			
.11 .11 .11	.91 1.20 1.60 2.40	.3000 .3169 .3338 .3528	.4051 .4462 .4875 .5853	1.4751 1.8774 2.3803 3.2043	1.6560 2.1439 2.7786 3.8851			
.22 .22 .22 .22	.91 1.20 1.60 2.40	.5122 .5311 .5498 .5710	.6066 .6519 .6977 .7507	1.5346 1.9485 2.4682 3.3247	1.6857 2.1813 2.8289 3.9671			
.37 .37 .37 .37	.91 1.20 1.60 2.40	.8022 .8220 .8436 .8682	.8781 .9299 .9824 1.0436	1.6091 2.0381 2.5804 3.4822	1.7220 2.2274 2.8915 4.0715			
.51 .51 .51 .51	.91 1.20 1.60 2.40	1.0674 1.0922 1.1169 1.1451	1.1281 1.1866 1.2462 1.3159	1.6720 2.1146 2.6774 3.6218	1.7520 2.2657 2.9439 4.1612			
			N = 3					
.11 .11 .11	.91 1.20 1.60 2.40	.5582 .6085 .6590 .7172	.7378 .8331 .9313 1.0474	2.0413 2.5817 3.2567 4.3654	2.2996 2.9455 3.7672 5.1609			
.22 .22 .22 .22	.91 1.20 1.60 2.40	.8654 .9209 .9770 1.0416	1.0253 1.1296 1.2376 1.3661	2.1550 2.7118 3.4091 4.5620	2.3744 3.0353 3.8794 5.3186			
.37 .37 .51	1.60 2.40 1.20 2.40	1.4083 1.4830 1.7354 1.8937	1.6514 1.7986 1.8953 2.2000	3.6071 4.8204 3.0250 5.0514	4.0224 5.5240 3.2444 5.7053			
			N = 5					
.11 .11 .11	.91 1.20 1.60 2.40	1.1843 1.3335 1.4876 1.6705	$egin{array}{c} 1.4665 \ 1.6967 \ 1.9422 \ 2.2453 \end{array}$	3.1434 3.9505 4.9464 6.5473	3.4865 4.4267 5.6082 7.5704			

Table I continued.

.22 .22 .22 .22 .37 .37 .37	.91 1.20 1.60 2.40 .91 1.20 1.60 2.40	1.6679 1.8310 2.0004 2.2027 2.3176 2.5014 2.6935 2.9251	1.9161 2.1650 2.4322 2.7651 2.5168 2.7925 3.0914 3.4688	3.3684 4.2028 5.2360 6.9065 3.6588 4.5302 5.6144 7.3818	3.6620 4.6283 5.8467 7.8814 3.8856 4.8870 6.1555 8.2900
.51	.91	2.9132	3.0639	3.9127	4.0786
.51	1.20	3.1179	3.3661	4.8184	5.1120
.51	1.60	3.3335	3.6967	5.9505	6.4267
.51	2.40	3.5957	4.1196	7.8097	8.6549
			N = 10		
.11 .11 .11	.91 1.20 1.60 2.40	2.9690 3.4470 3.9642 4.6186	3.4067 4.0211 4.7039 5.6089	5.7745 7.2038 8.9475 11.6954	6.2709 7.8853 9.8821 13.1088
.22	.91	3.8622	4.2447	6.2954	6.7217
.22	1.20	4.3767	4.9006	7.7782	8.3895
.22	1.60	4.9369	5.6337	9.5938	10.4593
.22	2.40	5.6552	6.6145	12.4719	13.8226
.37	.91	5.0558	5.3605	6.9728	7.3042
.37	1.20	5.6229	6.0753	8.5289	9.0444
.37	1.60	6.2455	6.8806	10.4438	11.2143
.37	2.40	7.0514	7.9719	13.5041	14.7674
.51	.91	6.1430	6.3731	7.5708	7.8140
.51	1.20	6.7622	7.1447	9.1954	9.6217
.51	1.60	7.4470	8.0211	11.2038	11.8853
.51	2.40	8.3449	9.2232	14.4386	15.6187

TABLE II

Critical Values for the Truncated Distributions as Functions of the Truncation Points a and b for N=2 and $\mathbf{V}=2,3,4,5,6,7,8,9,10,15$, and 20.

 $\alpha = 2$

a	b	.01	.05	.95	.99
.54 .54 .54	2.06 2.45 3.04 3.96	1.2969 1.3346 1.3769 1.4165	1.5478 1.6286 1.7197 1.8058	3.5613 4.1264 4.8955 5.8863	3.8584 4.5268 5.4803 6.7870

Table II continued.

.84 .84	2.06 2.45	1.8550 1.8905	2.0459 2.1259	3.6715 4.2484	3.9116 4.5895
.84 .84	$\begin{array}{c} 3.04 \\ 3.96 \end{array}$	$1.9307 \\ 1.9687$	$2.2172 \\ 2.3045$	$\begin{array}{c} 5.0436 \\ 6.0752 \end{array}$	$5.5620 \\ 6.9076$
$\begin{array}{c} 1.10 \\ 1.10 \end{array}$	2.06 2.45	$2.3199 \\ 2.3560$	2.4703 2.5530	$3.7688 \\ 4.3588$	3.9580 4.6446
1.10 1.10	3.04 3.96	$2.3970 \\ 2.4360$	2.6480 2.7396	5.1775 6.2493	5.6345 7.0167
1.40	2.06	2.8834	2.9885	3.8863	4.0132
$\begin{matrix}1.40\\1.40\end{matrix}$	$\begin{smallmatrix}2.45\\3.04\end{smallmatrix}$	$2.9220 \\ 2.9661$	$3.0774 \\ 3.1806$	4.4933 5.3431	$4.7104 \\ 5.7220$
1.40	3.96	3.0081	3.2808	6.4694	7.1514
			~ = 3		
$\begin{array}{c} 1.07 \\ 1.07 \end{array}$	3.12 3.64	2.4775 2.5394	2.8473 2.9735	5.5443 6.3093	5.9169 6.8158
1.07	4.33 5.37	2.6008 2.6580	3.0988 3.2164	7.2264	7.9401
1.56	3.12	3.3357	3.5958	8.3 7 21 5.6905	9.4368 5.9865
1.56 1.56	$\begin{array}{c} 3.64 \\ 4.33 \end{array}$	3.3897 3.4440	3.7147 3.8347	$6.4720 \\ 7.4167$	6.8972 8.0432
1.56	5.37	3.4954	3.9490	8.6090	9.5842
1.91 1.91	$3.12 \\ 3.64$	$3.9790 \\ 4.0319$	$4.1760 \\ 4.2954$	5.8134 6.6102	6.0444 6.9653
1.91	4.33	4.0854	4.4171	7.5805	8.1305
1.91 2.28	5.37 3.12	4.1362	4.5339 4.8062	8.8169 5.9490	9.7115 6.1076
2.28	3.64	4.7238	4.9306	6.7642	7.0401
$\begin{array}{c} 2.28 \\ 2.28 \end{array}$	$\begin{array}{c} 4.33 \\ 5.37 \end{array}$	$4.7792 \\ 4.8320$	$5.0586 \\ 5.1825$	7.7657 9.0569	8.2273 9.8553
			% = 4		
1.80 1.80	$\begin{array}{c} 4.20 \\ 4.80 \end{array}$	4.0034 4.0797	4.4460 4.6006	7.6074 8.5010	$8.0336 \\ 9.0772$
1.80	5.60	4.1562	4.7560	9.5778	10.3893
1.80	6.80	4,2272	4.9007	10.9101	12.1230
2.30	$\frac{4.20}{4.80}$	4.8742 4.9412	5.2003 5.3455	7.7477 8.6555	8.0998 9.1538
$2.30 \\ 2.30$	$\begin{array}{c} 5.60 \\ 6.80 \end{array}$	$\begin{array}{c} 5.0092 \\ 5.0730 \end{array}$	$\begin{array}{c} 5.4934 \\ 5.6328 \end{array}$	$9.7573 \\ 11.1327$	10.4857 12.2607

Table II continued.

2.80	4.80	5.8518	6.1630	8.8415	9.2449
2.80	5.60	5.9172	6.3109	9.9763	10.6017
2.80	6.80	5.9791	6.4519	11.4095	12.4294
3.33	5.60	6.9083	7.2240	10.2310	10.7337
3.33	6.80	6.9726	7.3743	11.7400	12.6263
			X ≈ 5		
2.46	5.29	5.4198	5.9563	9.6688	10.1594
2.46	5.86	5.4985	6.1130	10.5255	11.1552
2.46	6.71	5.5898	6.2948	11.6926	12.5649
2.46	8.05	5.6803	6.4754	13.2180	14.5323
3.13	5.29	6.5766	6.9518	9.8476	10.2435
3.13	5.86	6.6433	7.0957	10.7183	11.2497
3.13	6.71	6.7218	7.2652	11.9134	12.6815
3.13	8.05	6.8005	7.4361	13.4918	14.6988
3.62	5.86	7.5316	7.8891	10.8910	11.3335
3.62	6.71	7.6066	8.0568	12.1138	12.7859
3.62	8.05	7.6823	8.2276	13.7450	14.8507
4.21	6.71	8.7032	9.0607	12.3802	12.9224
4.21	8.05	8.7804	9.2395	14.0898	15.0536
			d = 6		
3.18	6.50	6.9584	7.5926	11.9302	12.5046
3.18	7.03	7.0329	7.7393	12.7226	13.4275
3.18	7.88	7.1283	7.9273	13.8934	14.8391
3.18	9.31	7.2315	8.1309	15.5381	16.9519
3.91	6.50	8.2237	8.6742	12.1221	12.5953
3.91	7.03	8.2863	8.8082	12.9270	13.5276
3.91	7.88	8.3675	8.9823	14.1239	14.9601
3.91	9.31	8.4565	9.1735	15.8220	17.1229
4.53	7.03	9.3878	9.7887	13.1375	13.6298
4.53	7.88	9.4644	9.9596	14.3643	15.0847
4.53	9.31	9.5488	10.1493	16.1236	17.3024
5.24	7.88	10.8016	11.1821	14.6824	15.2464
5.24	9.31	10.8876	11.3812	16.5332	17.5411
			d = 7		
3.97	7.30	8.5503	9.2010	13.5704	14.1280
3.97	8.18	8.6804	9.4575	14.9058	15.6725
3.97	9.05	8.7801	9.6535	16.1076	17.1193
3.97	10.58	8.8940	9.8777	17.8773	19.3871

Table II continu	uea.
------------------	------

4.75	8.28	10.0273	10.6179	15.2677	15.9504
4.75	9.05	10.1013	10.7758	16.3478	17.2448
4.75	10.58	10.1996	10.9860	18.1721	19.5641
5.42	8.18	11.2050	11.6500	15.3447	15.8863
5.42	9.05	11.2846	11.8271	16.6014	17.3758
5.42	10.58	11.3774	12.0347	18.4893	19.7521
6.21	9.05	12.7489	13.1629	16.9438	17.5496
6.21	10.58	12.8427	13.3794	18.9288	20.0075
			~ = 8		
4 67	0.25	10 0276		15 5011	16 1075
$\begin{array}{c} 4.67 \\ 4.67 \end{array}$	8.35 9.25	10.0376 10.1773	10. 769 5 11.0411	15.5811 16.9519	16.1875 17.7697
4.67	$\frac{9.23}{10.21}$	10.1773	11.2656	18.2834	19.3693
4.67	11.88	10.2931 10.4224	11.5164	20.2099	21.8382
5.60	9.25	11.7379	12.3622	17.1940	17.8877
5.60	10.21	11.8343	12.5671	18.5544	19.5106
5.60	11.88	11.9435	12.7995	20.5434	22.0385
6.36	9.25	13.1052	13.5746	17.4474	18.0101
6.36	10.21	13.1949	13.7738	18.8416	19.6585
6.36	11.88	13.2972	14.0025	20.9039	22.2525
6.95	9.25	14.1951	14.5619	17.6652	18.1142
6.95	10.21	14.2841	14.7631	19.0916	19.7854
6.95	11.88	14.3861	14.9973	21.2248	22.4400
			« = 9		
5.40	9.45	11.5861	12.4000	17.6782	18.3400
5.40	10.29	11.7210	12.6598	18.9606	19.8183
5.40	11.40	11.8601	12.9266	20.5044	21.6700
5.40	12.90	11.9841	13.1647	22.2619	23.9113
6.42	9.45	13.3119	13.8610	17.9165	18,4506
$\begin{array}{c} 6.42 \\ 6.42 \end{array}$	10.29	13.4211	14.0921	19.2154	19.9418
$\begin{array}{c} 6.42 \\ 6.42 \end{array}$	11.40	13.5355	14.3338	20.7918	21.8199
6.42	12.90	13.6390	14.5527	22.6044	24.1129
7.20			15.3271	19.4676	20.0632
$7.20 \\ 7.20$	10.29	14.8190	15.3271	21.0799	21.9686
$7.20 \\ 7.20$	$11.40 \\ 12.90$	$14.9248 \\ 15.0212$	15.7751	22.9536	24.3160
7.20	$12.90 \\ 11.40$	15.0212 16.3627	16.8660	21.4081	22.1354
7.98	12.90	16.4584	17.0851	23.3593	24.5481
	· · · ·	10.1001	1		

Table II continued.

6.33 6.33 6.33 7.27 7.27 7.27	10.56 11.38 12.65 14.23 10.56 11.38 12.65	13.4591 13.5877 13.7431 13.8681 15.0558 15.1633 15.2946	14.2996 14.5504 14.8516 15.0942 15.6538 15.8806 16.1571	19.8302 21.0832 22.8472 24.6787 20.0525 21.3197 23.1166	20.5285 21.9724 24.0891 26.4323 20.6318 22.0869 24.2304
7.27 8.13 8.13 8.13 8.96 8.96	14.23 11.38 12.65 14.23 12.65 14.23	15.4017 16.7026 16.8234 16.9226 18.3525 18.4509	16.3829 17.2389 17.5056 17.7259 18.8929 19.1181	24.9995 21.5947 23.4342 25.3839 23.7854 25.8179	26.6224 22.2190 24.3951 26.8476 24.5746 27.0977
10.46 10.46 10.46	15.39 16.77 18.20	21.8823 22.1184 22.3065	a = 15 22.8924 23.3483 23.7094	29.3502 31.4974 33.5086	30.1308 32.5835 34.9827
10.46 11.70 11.70 11.70	20.14 16.77 18.20 20.14	22.4748 24.1858 24.3424 24.4843	24.0319 25.0854 25.4132 25.7101	35.7964 31.7952 33.8422 36.1931	37.8898 32.7267 35.1555 38.1222
12.78 12.78 12.78 13.68	16.77 18.20 20.14 15.39	25.1130 26.2557 26.3860 27.5981	26.7803 27.0937 27.3813 27.8919	32.1292 34.2214 36.6518 30.2219	32.8864 35.3499 38.3881 30.5284
13.68 13.68 13.68	16.77 18.20 20.14	27.7672 27.9065 28.0343	28.2707 28.5843 28.8744	32.4440 34.5839 37.0990	33.0355 35.5333 38.6437
14.54 14.54 14.54 14.54 16.20 16.20 16.20	21.15 22.05 23.70 25.94 21.15 22.05 23.70	30.4253 30.5828 30.8162 31.0249 33.1795 33.3043 33.4920	d = 20 31.7897 32.0874 32.5268 32.9189 34.0972 34.3578 34.7486	40.3551 41.7392 44.0738 46.7257 40.7141 42.1136 44.4914	41.4083 42.9971 45.7736 49.1355 41.5750 43.1764 45.9886
16.20	25.94	33.6623	35.1029	47.2212	49.4245

Table II Continued.

17.44	22.05	35.5286	36.3084	42.4895	43.3553
17.44	23.70	35.6985	36.6802	44.9163	46.2054
17.44	25.94	35.8540	37.0214	47.7344	49.7209
18.90	23.70	38.3799	39.1026	45.4983	46.4979
18.90	25.94	38.5319	39.4491	48.4544	50.1298

TABLE III

Critical Values for the Truncated Distributions as Functions of the Truncation Points a and b for N=3 and $\mathbf{Y}=2,3,4,5,6,7,8,9$, and 10

			d = 2	, ,	
a	b	.01	.05	.95	.99
. 54	2.06	2.2023	2.5943	5.0424	5.4841
. 54	2.45	2.3030	2.7668	5.8049	6.3807
. 54	3.04	2.4166	2.9647	6.8418	7.6293
. 54	3.96	2.5238	3.1555	8.1735	9.2869
.85 .85 .85	2.06 2.45 3.04 3.96	2.9784 3.0774 3.1904 3.2981	3.2861 3.4609 3.6639 3.8621	5.2662 6.0439 7.1141 8.5013	5.6219 6.5365 7.8181 9.5333
1.10	2.06	3.6343	3.8792	5.4575	5.7435
1.10	2.45	3.7364	4.0611	6.2582	6.6752
1.10	3.04	3.8536	4.2744	7.3608	7.9882
1.10	3.96	3.9662	4.4846	8.8018	9.7593
1.40	2.45	4.5427	4.7999	6.5218	$6.8438 \\ 8.1979 \\ 10.0441$
1.40	3.04	4.6700	5.0319	7.6685	
1.40	3.96	4.7928	5.2634	9.1821	
			x = 3		
1.07	3.12	4.0939	4.6511	7.9299	8.4943
1.07	3.64	4.2524	4.9119	8.9700	9.7074
1.07	4.33	4.4099	5.1752	10.2067	11.1874
1.07	5.37	4.5577	5.4269	11.7450	13.0944
1.56	3.12	5.2702	5.6816	8.2273	8.6769
1.56	3.64	5.4178	5.9362	9.2899	9.9120
1.56	4.33	5.5668	6.1973	10.5640	11.4294
1.56	5.37	5.7086	6.4506	12.1664	13.4025
1.91	3.12	6.1708	6.4876	8.4773	8.8302
1.91	3.64	6.3184	6.7467	9.5618	10.0854
1.91	4.33	6.4688	7.0154	10.8713	11.6373
1.91	5.37	6.6130	7.2787	12.5331	13.6719

Table III Continued.

2.28	3.12	7.1445	7.3659	8.7544 9.8666 11.2202 12.9553	8.9989
2.28	3.64	7.2981	7.6372		10.2782
2.28	4.33	7.4559	7.9218		11.8714
2.28	5.37	7.6085	8.2042		13.9815
			~ = 4		
1.80	4.20	6.4569	7.1201	10.9634	11.6143
1.80	4.80	6.6513	7.4373	12.1813	13.0281
1.80	5.60	6.8467	7.7608	13.6355	14.7614
1.80	6.80	7.0287	8.0675	15.4244	16.9746
2.30	4.20	7.6454	8.1555	11.2511	11.7894
2.30	4.80	7.8260	8.4628	12.4879	13.2221
2.30	5.60	8. 0 101	8.7805	13.9757	14.9895
2.30	6.80	8.1835	9.0855	15.8241	17.2641
2.80	4.20	8.9195	9.2903	11.5932	11.9976
2.80	4.80	9.0971	9.5999	12.8566	13.4553
2.80	5.60	9.2801	9.9242	14.3898	15.2670
2.80	6.80	9.4543	10.2396	16.3165	17.6227
3.33	4.20	10.3099	10.5415	11.9812	12.2324
3.33	4.80	10.4946	10.8662	13.2805	13.7213
3.33	5.60	10.6869	11.2114	14.8734	15.5888
3.33	6.80	10.8719	11.5521	16.9017	18.0488
			x = 5		
2.46	5.29	8.6768	9.4704	13.9843	14.7370
2.46	5.86	8.8743	9.7879	15.1544	16.0899
2.46	6.71	9.1036	10.1611	16.7341	17.9617
2.46	8.05	9.3314	10.5384	18.7831	20.4842
3.13	5.29	10.2493	10.8338	14.3526	14.9599
3.13	5.86	10.4284	11.1368	15.5409	16.3317
3.13	6.71	10.6395	11.4982	17.1580	18.2417
3.13	8.05	10.8523	11.8690	19.2797	20.8394
3.62	5.29	11.4894	11.9348	14.6788	15.1577
3.62	5.86	11.6642	12.2372	15.8864	16.5480
3.62	6.71	11.8720	12.6017	17.5415	18.4952
3.62	8.05	12.0834	12.9800	19.7348	21.1668
$egin{array}{c} 4.21 \ 4.21 \ 4.21 \ 4.21 \end{array}$	5.29	13.0290	13.3170	15.1028	15.4140
	5.86	13.2076	13.6297	16.3405	16.8308
	6.71	13.4221	14.0117	18.0526	18.8312
	8.05	13.6426	14.4142	20.3515	21.6107

Table III Continued.

			< = 6		
3.18	6.50	11.0839	12.0159	17.2906	18.1692
3.18	7.03	11.2691	12.3116	18.3728	19.4216
3.18	7.88	11.5065	12.6950	19.9588	21.2980
3.18	9.31	11.7639	13.1172	22.1689	24.0123
3.92	6.50	12.7968	13.4952	17.6853	18.4087
3.92	7.03	12.9639	13.7762	18.7835	19.6780
3.92	7.88	13.1809	14.1450	20.4041	21.5901
3.92	9.31	13.4193	14.5568	22.6871	24.3801
4.52	6.50	14.3314	14.8551	18.0872	18.6533
4.52	7.03	14.4930	15.1343	19.2052	19.9416
4.52	7.88	14.7047	15.5046	20.8665	21,8939
4.52	9.31	14.9397	15.9232	23.2326	24.7696
5.25	6.50	16.2093	16.5413	18.6072	18.9686
5.25	7.03	16.3747	16.8309	19.7563	20.2844
5.25	7.88	16.5934	17.2199	21.4797	22.2947
5.25	9.31	16.8388	17.6668	23.9695	25.2962
			d = 7		
3.97	7.30	13.4885	14.4421	19.7555	20.6209
3.97	8.18	13.8123	14.9569	21.5837	22.7259
3.97	9.05	14.0599	15.3554	23.2125	24.6508
3.97	10.58	14.3434	15.8187	25.5912	27.5680
4.76	7.30	15.3254	16,0265	20.1652	20.8658
4.76	8.18	15.6456	16.5626	22.2159	23.2286
4.76	9.05	15.8426	16.8962	23.6782	24.9550
4.76	10.58	16.1048	17.3470	26.1316	27.9499
5.42	7.30	16.9843	17.4932	20.5859	21.1183
5.42	8.18	17.2640	17.9741	22.4653	23.2759
5.42	9.05	17.4836	18.3568	24.1678	25.2754
5.42	10.58	17.7407	18.8131	26.7074	28.3593
6.21	7.30	19.0394	19.3335	21.1383	21.4493
6.21	8.18	19.3232	18.8286	23.0647	23.6487
6.21	9.05	19.5487	20.2289	24.8298	25.7068
6.21	10.58	19.8157	20.7136	27.5006	28.9242
			x = 8		
4.67	8.35	15.8015	16.8642	22.7166	23.6601
4.67	9.25	16.1450	17.4053	24.5953	25.8194
4.67	10.21	16.4293	17.8583	26.4016	27.9502
4.67	11.88	16.7471	18.3729	28.9914	31.1262

Table III Continued.

5.60 5.60 5.60 5.60 6.36	8.35 9.25 10.21 11.88 8.35	17.9420 18.2459 18.5016 18.7918	18.7045 19.2110 19.6421 20.1388 20.3890	23.1836 25.0848 26.9289 29.6040 23.6636	23.9385 26.1228 28.2933 31.5583 24.2261
6.36	$9.25 \\ 10.21 \\ 11.88$	20.1393	20.8873	25.5947	26.4399
6.36		20.3863	21.3172	27.4847	28.6560
6.36		20.6697	21.8191	30.2593	32.0239
6.95	8.35	21.3785	21.7565	24.0714	24.4703
6.95	9.25	21.6692	22.2616	26.0333	26.7120
6 .95	10.21	21.9187	22.7021	27.9687	28.9710
6.95	11.88	22.2072	23.2222	30.8391	32.4368
			$\alpha = 9$		
5.40	9.45 10.29 11.40 12.90	18.2071	19.3815	25.8022	26.8322
5.40		18.5361	19.8960	27.5611	28.8511
5.40		18.8746	20.4316	29.6569	31.3202
5.40		19.1768	20.9170	32.0207	34.2104
6.42	9.45 10.29 11.40 12.90	20.5298	21.3721	26.3002	27.1288
6.42		20.8183	21.8509	28.0788	29.1704
6.42		21.1202	22.3574	30.2169	31.6842
6.42		21.3938	22.8230	32.6555	34.6526
7.20	9.45	22.4754	23.0869	26.7848	27.4191
7.20	10.29	22.7496	23.5560	28.5883	29.4858
7.20	11.40	23.0398	24.0585	30.7751	32.0483
7.20	12.90	23.3054	24.5262	33.2962	35.1021
7.98	9.45	24.4943	24.8910	27.3219	27.7410
7.98	10.29	24.7682	25.3638	29.1601	29.8390
7.98	11.40	25.0609	25.8833	31.4104	32.4618
7.98	12.90	25.3315	26.3706	34.0367	35.6226
			« = 10		
6.33 6.33 6.33	10.56 11.38 12.65 14.23	21.0443 21.3615 21.7428 22.0502	22.2653 22.7643 23.3710 23.8676	28.9920 30.7106 33.1051 35.5677	30.0775 32.0450 34.8719 37.8885
7.27	10.56	23.1955	24.1109	29.4562	30.3543
7.27	11.38	23.4788	24.5800	31.1916	32.3462
7.27	12.65	23.8244	25.1582	33.6289	35.2133
7.27	14.23	24.1067	25.6378	36.1615	38.3033

Table III Continued.

8.13	10.56	25.3357	25.9958	29.9878	30.6730
8.13	11.38	25.6039	26.4542	31.7481	32.6900
8.13	12.65	25.9348	27.0268	34.2428	35.6149
8.13	14.23	26.2081	27.5078	36.8658	38.7987
8.96	10.56	27.4828	27.9141	30.5593	31.0157
8.96	11.38	27.7503	28.3787	32.3533	33.0635
8.96	12.65	28.0837	28.9669	34.9211	36.0578
8.96	14.23	28.3619	29.4679	37.6561	39.3561

TABLE IV

Tables of μ , σ , β_1 , and β_2 for N = 5 and $\alpha = 2,3,4,5,6,7,8,9$, and 10

			N =	: 5		•
a 	b	<u>م</u>	سر	-	$\boldsymbol{\beta}_1$, , , 2
. 54	2.06	2	6.3449	.9532	.0018	2.7733
. 54	2.45	2	7.0982	1.1842	.0062	2.7822
. 54	3.04	2	8.0677	1.5149	.0191	2.8045
. 54	3.96	2	9.1966	1.9681	.0547	2,8622
.85	2.06	2	7.1044	.7690	.0029	2.7691
.85	2.45	2	7.8786	1.0064	.0077	2.7781
.85	3.04	2	8.8848	1.3478	.0212	2.8003
.85	3.96	2	10.0709	1.8196	.0581	2.8583
1.10	2.06	2	7.7657	.6139	.0027	2.7665
1.10	2.45	2	8.5647	.8557	.0074	2.7746
1.10	3.04	2	9.6115	1.2053	.0206	2.7957
1.10	3.96	2	10.8589	1.6930	.0572	2.8522
1.40	2.06	2	8.5747	.4242	.0018	2.7635
1.40	2.45	2	9.4110	.6702	.0058	2.7702
1.40	3.04	2	10.5176	1.0289	.0178	2.7888
1.40	3.96	2	11.8540	1.5360	.0528	2.8420
1.07	3.12	3	10.4816	1.2766	.0000	2.7744
1.07	3.64	3	11.5369	1.5814	.0017	2.7810
1.07	4.33	3	12.7244	1.9641	.0092	2.7972
1.07	5.37	3	14.0721	2.4741	.0340	2.8417
1.56	3.12	3	11.5766	.9904	.0009	2.7677
1.56	3.64	3	12.6484	1.3061	.0042	2.7753
1.56	4.33	3	13.8700	1.7042	.0138	2.7932
1.56	5.37	3	15.2764	2.2389	.0418	2.8404

Table IV Continued.

1.91	3.12	3	12.4578	.7738	.0013	2.7650
1.91	3.64	3	13.5547	1.0960	.0048	2.7723
1.91	4.33	3	14.8168	1.5046	.0148	2.7898
1.91	5.37	3	16.2871	2.0581	.0438	2.8370
2.28	3.12	3	13.4254	.5398	.0011	2.7627
2.28	3.64	3	14.5599	.8676	.0043	2.7689
2.28	4.33	3	15.8788	1.2864	.0139	2.7851
2.28	5.37	3	17.4356	1.8606	.0427	2.8305
*1.80	4.20	4	15.0746	1.4964	.0001	2.7741
1.80	4.80	4	16.3244	1.8483	.0007	2.7797
1.80	5.60	4	17.7386	2.2924	.0065	2.7942
1.80	6.80	4	19.3256	2.8795	.0283	2.8358
2.30	4.20	4	16.1618	1.2043	.0003	2.7678
2.30	4.80	4	17.4213	1.5674	.0026	2.7745
2.30	5.60	4	18.8624	2.0269	.0105	2.7907
		4				2.8355
2.30	6.80	4	20.5004	2.6382	.0357	
2.80	4.20	4	17.3909	.8955	.0009	2.7646
2.80	4.80	4	18.6779	1.2677	.0036	2.7710
2.80	5.60	4	20.1680	1.7419	.0124	2.7873
2.80	6.80	4	21.8865	2.3794	.0396	2.8329
3.33	4.20	4	18.7620	. 5596	.0007	2.7622
3.33	4.80	$\hat{4}$	20.0971	.9393	.0033	2.7674
3.33	5.60	4	21.6632	1.4277	.0119	2.7821
						2.8261
3.33	6.80	4	23.5000	2.0943	.0392	2.0201
*2.46	5.29	5	19.5620	1.7578	.0004	2.7760
2.46	5.86	5	20.7766	2.0908	.0001	2.7798
2.46	6.71	5	22.3394	2.5638	.0033	2.7911
2.46	8.05	5	24.1949	3.2249	.0209	2.8276
					.0002	2.7677
3.13	5.29	5	20.9802	1.3690		
3.13	5.86	5	22.1998	1.7145	.0015	2.7728
3.13	6.71	5	23.7880	2.2070	.0074	2.7863
3.13	8.05	5	25.7021	2.8996	.0296	2.8272
3.62	5.29	5	22.1658	1.0671	.0006	2.7648
3.62	5.86	5	23.4033	1.4202	.0025	2.7698
3.62	6.71	5	25.0302	1.9259	.0093	2.7835
3.62	8.05	5	27.0160	2.6433	.0334	2.8255
		5	23.6749	.6942	.0007	2.7637
4.21	5.29					
4.21	5.86	5	24.9504	1.0545	.0026	2.7668
4.21	6.71	5	26.6474	1.5747	.0095	2.7793
4.21	8.05	5	28.7536	2.3232	.0343	2.8204

^{*} M3 < 0

Table IV Continued.

40 10	0 =0	C	0.4.4400	0.0544	0005	0.7776
*3.18	6.50	6	24.4438	$\begin{smallmatrix}2.0544\\2.3616\end{smallmatrix}$.0005	$\begin{array}{c} 2.7776 \\ 2.7808 \end{array}$
$\frac{3.18}{3.18}$	$\begin{matrix} 7.03 \\ 7.88 \end{matrix}$	6 6	$25.5682 \\ 27.1466$	$\frac{2.3010}{2.8330}$.0021	2.7908
3.18	9.31	6	29.1686	3.5394	.0170	2.8234
						•
3.92	6.50	6	25.9744	1.6304	.0001	2.7688
3.92	7.03	6	27.1014	1.9495	.0012	2.7732
3.92	7.88	6	$38.7000 \\ 30.7775$	$2.4403 \\ 3.1800$.0059	$2.7849 \\ 2.8228$
3.92	9.31	6	30.7773	3.1000	.0256	
4.53	6.50	6	27.4365	1.2570	.0007	2.7652
4.53	7.30	6	28.5807	1.5843	.0023	2.7697
4.53	7.88	6	30.2192	2.0901	.0081	2.7819
4.53	9.31	6	32.3777	2.8594	.0302	2.8213
5.25	6.50	6	29.2801	.8031	.0008	2.7607
5.25	7.30	6	30.4632	1.1379	.0025	2.7660
5.25	7.88	6	32.1776	1.6597	.0084	2.7774
5.25	9.31	6	34.4770	2.4653	.0314	2.8159
*3.97	7.30	7	28.5331	2.0693	.0013	2.7767
*3.97	8.18	7	30.4518	2.5820	.0000	2.7809
3.97	9.05	7	32.0787	3.0641	.0016	2.7895
3.97	10.58	7	34.2674	3.8205	.0152	2.8212
*4.76	7.30	7	30.1601	1.6100	.0000	2.7674
4.76	8.18	7	32.2783	2.2013	.0013	2.7743
4.76	9.05	7	33.7209	2.6438	.0051	2.7841
4.76	10.58	7	35.9646	3.4353	.0235	2.8206
5.42	7.30	7	31.7241	1.2026	.0002	2.7639
5.42	8.18	7	33.6619	1.7479	.0021	2.7699
5.42	9.05	7	35.3445	2.2648	.0073	2.7811
5.42	10.58	7	37.6706	3.0877	.0283	2.8193
6.21	7.30	7	33.7205	.7015	.0003	2.7587
6.21	8.18	7	35.7159	1.2589	.0024	2.7664
6.21	9.05	7	37.4737	1.7924	.0079	2.7767
6.21	10.58	7	39.9474	2.6544	.0300	2.8145
*4.67	8.35	8	33.0319	2.2797	.0020	2.7785
*4.67	9.25	8	35.0159	2.8018	.0001	2.7820
4.67	10.21	8	36.8317	3.3317	.0010	2.7900
4.67	11.88	8	39.2245	4.1509	.0134	2.8211
*5.60	8.35	8	34.9096	1.7425	.0000	2.7673
5.60	9.25	8	36.8851	2.2867	.0007	2.7728
5.60	10.21	8	38.7176	2.8404	.0044	2.7835
5.60	11.88	8	41.1698	3.7011	.0226	2.8203

^{* / 3 &}lt; 0

Table IV Continued.

6.36 6.36 6.36 6.36	8.35 9.25 10.21 11.88	8 8 8	36.7024 38.6987 40.5734 43.1193	1.2733 1.8318 2.4036 3.3010	.0002 .0018 .0068 .0280	2.7623 2.7688 2.7802 2.8192
6.95 6. 9 5 6.95 6.95	8.35 9.25 10.21 11.88	8 8 8	38.1824 40.2143 42.1414 44.7921	.8999 1.4673 2.0519 2.9791	.0003 .0021 .0075 .0298	2.7569 2.7658 2.7773 2.8164
*5.40 *5.40 5.40 5.40	9.45 10.29 11.40 12.90	9 9 9	37.7117 39.5771 41.6944 43.9004	2.5016 2.9871 3.5979 4.3386	.0024 .0004 .0007 .0094	2.7806 2.7831 2.7911 2.8151
*6.42 6.42 6.42 6.42	9.45 10.29 11.40 12.90	9 9 9	39.7321 41.5854 43.7175 45.9725	1.9173 2.4244 3.0637 3.8427	.0000 .0004 .0041 .0180	2.7693 2.7732 2.7841 2.8132
7.20 7.20 7.20 7.20	9.45 10.29 11.40 12.90	9 9 9	41.5515 43.4196 45.5937 47.9247	1.4379 1.9582 2.6176 3.4281	.0001 .0014 .0065 .0230	2.7683 2.7702 2.7813 2.8121
7.98 7.98 7.98 7.98	9.45 10.29 11.40 12.90	9 9 9	43.5029 45.4099 47.6568 50.1024	.9449 1.4755 2.1533 2.9964	.0003 .0018 .0074 .0252	2.7863 2.7707 2.7787 2.8090
*6.33 *6.33 6.33	10.56 11.38 12.65 14.23	10 10 10 10	42.7690 44.5889 47.0035 49.2895	2.6204 3.0962 3.7963 4.5721	.0019 .0003 .0010 .0106	2.7784 2.7813 2.7906 2.8161
*7.27 7.27 7.27 7.27	10.56 11.38 12.65 14.23	10 10 10 10	44.6459 46.4558 48.8858 51.2182	2.0798 2.5738 3.3022 4.1133	.0000 .0003 .0042 .0183	2.7679 2.7724 2.7848 2.8148
8.13 8.13 8.13 8.13	10.56 11.38 12.65 14.23	10 10 10 10	46.6439 48.4677 50.9463 53.3607	1.5523 2.0598 2.8125 3.6583	.0002 .0013 .0069 .0239	2.7615 2.7677 2.7815 2.8138
8.96 8.96 8.96 8.96	10.56 11.38 12.65 14.23	10 10 10 10	48.7189 50.5804 53.1420 55.6771	1.0282 1.5459 2.3201 3.2010	.0004 .0018 .0080 .0263	2.7448 2.7617 2.7776 2.8106

TABLE V
Tables of $, \sigma, \beta_1$ and β_2 for N = 10 and $\alpha = 2, 3, 4$, and 5

N = 10

a 	b	a	<i>,</i> ,,		3 1	\$ ₂
. 54	2.06	2	12.6898	1.3480	.0009	2.8867
. 54	2.45	2	14.1965	1.6748	.0031	2.8911
. 54	3.04	2	16.1353	2.1423	.0095	2.9022
. 54	3.96	2	18.3931	2.7834	.0274	2.9311
.85	2.06	2	14.2088	1.0875	.0014	2.8846
.85	2.45	2	15.7572	1.4233	.0039	2.8890
.85	3.04	2	17.7695	1.9060	.0106	2.9002
.85	3.96	2	20.1417	2.5733	.0290	2.9292
1.10	2.06	2	15.5314	.8682	.0014	2.8832
1.10	2.45	2	17.1294	1.2102	.0037	2.8873
1.10	3.04	2	19.2230	1.7045	.0103	2.8979
1.10	3.96	2	21.7177	2.3943	.0286	2.9261
1.40	2.06	2	17.1493	. 5999	.0009	2.8818
1.40	2.45	2	18.8220	.9478	.0029	2.8851
1.40	3.04	2	21.0352	1.4551	.0089	2.8944
1.40	3.96	2	23.7080	2.1723	.0264	2.9210
1.07	3.12	3	20.9632	1.8054	.0000	2.8872
1.07	3.64	3	23.0737	2.2364	.0008	2.8905
1.07	4.33	3	25.4488	2.7776	.0046	2.8986
1.07	5.37	3	28.1441	3.4990	.0170	2.9208
1.56	3.12	3	23.1533	1.4006	.0005	2.8838
1.56	3.64	3	25.2969	1.8472	.0021	2.8877
1.56	4.33	3	27.7400	2.4102	.0069	2.8966
1.56	5.37	3	30.5528	3.1662	.0209	2.9202
1.91	3.12	3	24.9156	1.0943	.0007	2.8825
1.91	3.64	3	27.1094	1.5500	.0024	2.8862
1.91	4.33	3	29.6337	2.1278	.0074	2.8949
1.91	5.37	3	32.5741	2.9107	.0219	2.9185
2.28	3.12	3	26.8508	.7634	.0005	2.8813
2.28	3.64	3	29.1198	1.2270	.0022	2.8845
2.28	4.33	3	31.7577	1.8193	.0070	2.8925
2.28	5.37	3	34.8712	2.6313	.0213	2.9153

Table V Continued.

*1.80 1.80 1.80 1.80	4.20 4.80 5.60 6.80	4 4 4	30.1492 32.6489 35.4771 38.6513	2.1162 2.6139 3.2419 4.0723	.0000 .0004 .0033 .0142	2.8871 2.8898 2.8971 2.9179
2.30 2.30 2.30 2.30	4.20 4.80 5.60 6.80	4 4 4	32.3235 34.8427 37.7247 41.0008	1.7032 2.2166 2.8665 3.7310	.0002 .0013 .0052 .0179	2.8839 2.8872 2.8954 2.9178
2.80 2.80 2.80 2.80	4.20 4.80 5.60 6.80	4 4 4	34.7817 37.3558 40.3360 43.7730	1.2665 1.7928 2.4634 3.3650	.0004 .0018 .0062 .0198	2.8823 2.8855 2.8936 2.9164
3.33	4.20	4	37.5239	.7915	.0004	2.8811
3.33	4.80	4	40.1942	1.3284	.0017	2.8837
3.33	5.60	4	43.3263	2.0191	.0059	2.8911
3.33	6.80	4	47.0000	2.9617	.019 6	2.9131
*2.46	5.29	5	39.1240	2.4859	.0002	2.8880
2.46	5.86	5	41.5532	2.9568	.0000	2.8899
2.46	6.71	5	44.6789	3.6258	.0017	2.8955
2.46	8.05	5	48.3897	4.5607	.0104	2.9138
3.13	5.29	5	41.9605	1.9360	.0001	2.8839
3.13	5.86	5	44.3996	2.4247	.0008	2.8864
3.13	6.71	5	47.5759	3.1212	.0037	2.8931
3.13	8.05	5	51.4043	4.1007	.0148	2.9136
3.62	5.29	5	44.3317	1.5091	.0003	2.8824
3.62	5.86	5	46.8066	2.0084	.0012	2.8849
3.62	6.71	5	50.0604	2.7236	.0046	2.8918
3.62	8.05	5	54.0319	3.7383	.0167	2.9128
4.21	5.29	5	47.3498	.9818	.0003	2.8818
4.21	5.86	5	49.9008	1.4913	.0013	2.8834
4.21	6.71	5	53.2949	2.2270	.0047	2.8897
4.21	8.05	5	57.5071	3.2855	.0172	2.9102

^{* 3 &}lt; 0

TABLE VI

Tables of μ , σ , ρ_1 and ρ_2 for N = 15 and ρ_3 and ρ_4 = 1,2,3,4

a	b	a	μ.	6	,	$\boldsymbol{\beta}_2$
.11	.91 1.20 1.60	1 1 1	6.8584 8.3685 10.1474	.8804 1.1836 1.5787	.0051 .0094 .0174	2.9271 2.9331 2.9443
.22 .22 .22 .22	.91 1.20 1.60 2.40	1 1 1	7.8845 9.4683 11.3418 14.1324	$.7624 \\ 1.0700 \\ 1.4731 \\ 2.1810$.0038 .0076 .0150 .0363	2.9252 2.9306 2.9409 2.9713
.37 .37 .37 .37	.91 1.20 1.60 2.40	1 1 1	9.2373 10.9236 12.9299 15.9462	.5994 .9123 1.3252 2.0594	.0023 .0055 .0119 .0317	2.9232 2.9276 2.9366 2.9646
.51 .51 .51 .51	.91 1.20 1.60 2.40	1 1 1	10.4505 12.2345 14.3685 17.6049	.4454 .7624 1.1836 1.9411	.0013 .0038 .0094 .0276	2.9217 2.9253 2.9331 2.9588
			N =	15		
. 54 . 54 . 54 . 54	2.06 2.45 3.04 3.96	2 2 2 2	19.0348 21.2947 24.2030 27.5897	1.6510 2.0512 2.6238 3.4089	.0006 .0021 .0064 .0182	2.9244 2.9274 2.9348 2.9541
.85 .85 .85	2.06 2.45 3.04 3.96	2 2 2 2	21.3133 23.6359 26.6543 30.2126	1.3320 1.7432 2.3344 3.1517	.0010 .0026 .0071 .0194	2.9230 2.9260 2.9334 2.9528
1.10 1.10 1.10 1.10	2.06 2.45 3.04 3.96	2 2 2 2	23.2971 25.6940 28.8346 32.5766	1.0634 1.4821 2.0876 2.9324	.0009 .0025 .0069 .0191	2.9222 2.9249 2.9319 2.9507
1.40 1.40 1.40 1.40	2.06 2.45 3.04 3.96	2 2 2 2	25.7240 28.2330 31.5527 35.5620	.7374 1.1609 1.7822 2.6605	.0006 .0019 .0059 .0176	2.9212 2.9234 2.9296 2.9473
1.07 1.07 1.07 1.07	3.12 3.64 4.33 5.37	3 3 3 3	31.4448 34.6106 38.1733 42.2162	2.2111 2.7390 3.4018 4.2853	.0000 .0006 .0031 .0118	2.9248 2.9270 2.9324 2.9472

Table VI Continued.

1.56 1.56 1.56 1.56	3.12 3.64 4.33 5.37	3 3 3 3	34.7299 37.9453 41.6099 45.8292	1.7154 2.2623 2.9518 3.8778	.0003 .0014 .0046 .0139	2.9226 2.9251 2.9311 2.9468
1.91 1.91 1.91 1.91	3.12 3.64 4.33 5.37	3 3 3 3	37.3734 40.6641 44.4505 48.8612	1.3403 1.8983 2.6060 3.5648	.0004 .0016 .0049 .0146	2.9217 2.9241 2.9299 2.9457
2.28 2.28 2.28 2.28	3.12 3.64 4.33 5.37	3 3 3 3	40.2762 43.6796 47.6365 52.3068	.9350 1.5027 2.2282 3.2227	.0004 .0014 .0046 .0142	2.9209 2.9230 2.9284 2.9435
*1.80 1.80 1.80 1.80	4.20 4.80 5.60 6.80	4 4 4	45.2239 48.9733 53.2157 57.9769	2.5918 3.2014 3.9705 4.9875	.0000 .0002 .0022 .0094	2.9247 2.9266 2.9314 2.9453
2.30 2.30 2.30 2.30	4.20 4.80 5.60 6.80	4 4 4	48.4853 52.2640 56.5871 61.5011	2.0860 2.7148 3.5107 4.5695	.0001 .0009 .0035 .0119	2.9226 2.9248 2.9302 2.9452
2.80 2.80 2.80 2.80	4.20 4.80 5.60 6.80	4 4 4	52.1726 56.0337 60.5040 65.6595	1.5511 2.1957 3.0170 4.1213	.0003 .0012 .0041 .0132	2.9215 2.9237 2.9291 2.9443
3.33 3.33 3.33 3.33	4.20 4.80 5.60 4.20	4 4 4	56.2859 60.2913 65.9895 70.5000	.9693 1.6269 2.4729 3.6274	.0002 .0011 .0040 .0131	2.9207 2.9225 2.9274 2.9420

^{* 12 &}lt; 0

REFERENCES

- [1] Aggarwal, O. P. and Guttman, I. (1959). Truncation and tests of hypotheses. Annals Math. Stat., 30, 230-38.
- [2] Aggarwal, O. P. and Guttman, I. (1960). Corrections to "Truncation and tests of hypotheses". Annals Math. Stat., 31, 1213.
- [3] Beyer, W. H. (1966). Handbook of tables for Probability and Statistics. The Chemical Rubber Co.
- [4] Cohen, A. C. Jr. (1949). On estimating the mean and standard deviation of truncated normal distributions. Jour. Amer. Stat. Assoc., 44, 518-25.
- [5] Cohen, A. C. Jr. (1950). Estimating the mean and standard deviation of normal populations from double truncated samples. Annals Math. Stat., 21, 310.
- [6] Cohen, A. C. Jr. (1950). Estimating the mean and variance of normal populations from singly truncated and doubly truncated samples. Annals Math. Stat., 21, 557-69.
- [7] Cohen, A. C. Jr. (1950). Estimating parameters of Pearson Type III populations from truncated samples. Jour. Amer. Stat. Assoc., 45, 411-423.
- [8] Cohen, A. C. Jr. (1951). Estimation of parameters in truncated Pearson frequency distributions. Annals Math. Stat., 22, 557-569.
- [9] Cohen, A. C. Jr. (1957). On the solution of estimating equations for truncated and censored samples from normal populations. Biometrica, 44, 225-36.
- [10] Cohen, A. C. Jr. (1959). Simplified estimators for the normal distribution when samples are singly censored as truncated. Technometrics, 1, 217-37.
- [11] Cramer, H. (1946). Mathematical methods of Statistics. Princeton University Press.
- [12] Epstein, Benjamin (1956). Simple estimators of the parameters of exponential distributions where samples are censored. Amer. Inst. Stat. Math. Tokyo, 8, 15-26.

- [13] Iyer, P. V. Krishna (1963). Estimation of the mean and the standard deviation of a Type III population from censored samples. Jour. Indian Stat. Assoc., 1, 161-166.
- [14] Kendall, M. G. (1945). The Advanced Theory of Statistics, Vol. 1, 2nd edition. Charles Griffin and Co. Limited.
- [15] Pearson, Karl (1946). Tables of the Incomplete / Function, 2nd re-issue. Cambridge University Press.
- [16] Raj, Der (1953). Estimation of the parameters of Type III populations from truncated samples. <u>Jour. Amer.</u> Stat. <u>Assoc.</u>, <u>48</u>, 336-349.
- [17] Sarhan, A. E. and Greenberg, B. G. (1957). Tables for best linear estimates by order statistics of the parameters of single exponential distribution from singly and doubly censored samples. <u>Jour. Amer. Stat. Assoc.</u>, 52, 58-87.
- [18] Williams, B. J. III (1965). The effect of truncation on tests of hypotheses for normal populations. Annals Math. Stat., 36, 1504-1510.