

Comparison of Different Types of Gradient Descent

Туре	Update Rule	Computational Cost	Convergence Speed	When to Use	Downsides
Batch Gradient Descent (BGD)	$egin{aligned} heta^{(t+1)} &= heta^{(t)} - \ lpha abla J(heta) \end{aligned}$	High (entire dataset per update)	Slow for large datasets	When the dataset is small and you need precise convergence	Computationally expensive for large datasets
Stochastic Gradient Descent (SGD)	$egin{aligned} heta^{(t+1)} &= heta^{(t)} - \ lpha abla J(heta; x^{(i)}) \end{aligned}$	Low (one sample per update)	Fast, but high variance	When the dataset is large and you need faster updates	Noisy updates, doesn't converge smoothly
Mini-Batch Gradient Descent (MBGD)	$egin{aligned} heta^{(t+1)} &= heta^{(t)} - \ lpha abla J(heta; B) \end{aligned}$	Medium (batch size B)	Balanced speed and stability	When you need a trade-off between speed and accuracy	Still has some noise but is computationally better than BGD
Momentum- Based Gradient Descent	$egin{aligned} v^{(t)} &= eta v^{(t-1)} + \ abla J(heta) heta^{(t+1)} &= \ heta^{(t)} - lpha v^{(t)} \end{aligned}$	Medium	Faster than standard SGD	When training is noisy and you want smoother updates	Requires tuning of eta
Nesterov Accelerated Gradient (NAG)	$egin{aligned} v^{(t)} &= eta v^{(t-1)} + \ abla J(heta - eta v^{(t-1)}) \ heta^{(t+1)} &= heta^{(t)} - \ lpha v^{(t)} \end{aligned}$	Medium	Faster than momentum	When you need faster convergence without overshooting	Requires additional computations

Adagrad	$egin{aligned} heta^{(t+1)} &= heta^{(t)} - \ rac{lpha}{\sqrt{G_{ ext{ii}}^{(t)} + \epsilon}} abla J(heta) \end{aligned}$	Medium	Adaptive step size	When features have different learning rates	Learning rate shrinks too fast	
RMSprop	$egin{aligned} G_{ii}^{(t)} &= \ eta G_{ii}^{(t-1)} + (1 - \ eta) (abla J(heta))^2 \ heta^{(t+1)} &= heta^{(t)} - \ rac{lpha}{\sqrt{G_{ii}^{(t)} + \epsilon}} abla J(heta) \end{aligned}$	Medium	Adaptive learning rate	Good for non- stationary problems	Requires tuning eta	
Adam (Adaptive Moment Estimation)	$egin{aligned} m_t &= eta_1 m_{t-1} + \ (1-eta_1) abla J(heta) \ v_t &= eta_2 v_{t-1} + \ (1-eta_2) (abla J(heta))^2 \ heta^{(t+1)} &= heta^{(t)} - \ rac{lpha}{\sqrt{v_t} + \epsilon} m_t \end{aligned}$	Medium	Fastest and most stable	Default choice for deep learning	Slightly more computationally expensive	

1. What is an Epoch in Machine Learning?

An epoch is one complete pass through the entire training dataset during model training.

Intuition:

Imagine you're trying to memorize a book:

- One read-through of the entire book = One epoch.
- If you read it multiple times, you're going through multiple epochs.
- The more epochs, the better you memorize, but too many epochs can lead to overfitting.

Epochs in the Context of Gradient Descent

In batch gradient descent:

 Each epoch means the model has seen every training example once and updated the weights accordingly.

In stochastic gradient descent (SGD):

One epoch means each training example has been used once, but the model updates weights
after each example.

In mini-batch gradient descent:

 One epoch means each training sample has been used once, but the model updates weights batch-by-batch.

1. Batch Gradient Descent (BGD)

Intuition

- Computes the average gradient over all data points before updating parameters.
- Leads to smooth convergence, but is slow for large datasets.

Mathematical Formulation

$$heta^{(t+1)} = heta^{(t)} - lpha
abla J(heta)$$

where:

- $\nabla J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \nabla J(\theta; x_i)$ (gradient over all training samples).
- α = learning rate.

Pseudo Code

plaintext D Copy 2 Edit

- 1. Initialize θ randomly.
- 2. Repeat until convergence:
 - a. Compute gradient: $\nabla J(\theta)$ over entire dataset.
 - b. Update parameters: $\theta = \theta \alpha \nabla J(\theta)$.

```
    □ Copy

                                                                               ₺ Edit
import numpy as np
def batch_gradient_descent(X, y, theta, alpha, epochs):
    m = len(y)
    for _ in range(epochs):
        gradient = (1/m) * X.T @ (X @ theta - y)
        theta -= alpha * gradient
    return theta
```

2. Stochastic Gradient Descent (SGD)

Intuition

- Updates parameters after each individual data point.
- Faster but updates are noisy.

Mathematical Formulation

$$heta^{(t+1)} = heta^{(t)} - lpha
abla J(heta; x^{(i)})$$

where $x^{(i)}$ is one randomly chosen data point.

Pseudo Code

```
plaintext

1. Initialize θ randomly.

2. Repeat until convergence:

a. For each training example (x_i, y_i):

i. Compute gradient: ∇J(θ; x_i).

ii. Update parameters: θ = θ - α ∇J(θ; x_i).
```

```
python

def stochastic_gradient_descent(X, y, theta, alpha, epochs):
    m = len(y)
    for _ in range(epochs):
        for i in range(m):
            gradient = X[i].T @ (X[i] @ theta - y[i])
            theta -= alpha * gradient
    return theta
```

3. Mini-Batch Gradient Descent (MBGD)

Intuition

- Uses a small batch instead of one sample (SGD) or all samples (BGD).
- Provides faster updates with less noise.

Mathematical Formulation

$$heta^{(t+1)} = heta^{(t)} - lpha
abla J(heta; B)$$

where B is a randomly sampled mini-batch.

Pseudo Code

plaintext

1. Initialize θ randomly.

2. Repeat until convergence:
 a. Randomly sample a mini-batch B.
 b. Compute gradient: ∇J(θ; B).
 c. Update parameters: θ = θ − α ∇J(θ; B).

```
们 Copy
                                                                            ₺ Edit
def mini batch gradient descent(X, y, theta, alpha, batch size, epochs):
   m = len(v)
   for _ in range(epochs):
       indices = np.random.permutation(m)
       X shuffled, y shuffled = X[indices], y[indices]
        for i in range(0, m, batch_size):
            X batch = X shuffled[i:i+batch size]
            y_batch = y_shuffled[i:i+batch_size]
            gradient = (1/batch size) * X batch.T @ (X batch @ theta - y batch)
            theta -= alpha * gradient
   return theta
```

4. Momentum-Based Gradient Descent

Intuition

• Introduces a **velocity term** that smooths updates.

Mathematical Formulation

$$v^{(t)} = eta v^{(t-1)} + (1-eta)
abla J(heta)$$
 $heta^{(t+1)} = heta^{(t)} - lpha v^{(t)}$

```
def momentum_gradient_descent(X, y, theta, alpha, beta, epochs):
    m = len(y)
    v = np.zeros_like(theta)
    for _ in range(epochs):
        gradient = (1/m) * X.T @ (X @ theta - y)
        v = beta * v + (1 - beta) * gradient
        theta -= alpha * v
    return theta
```

1. Nesterov Accelerated Gradient (NAG)

Intuition

- Similar to Momentum-based Gradient Descent, but computes the gradient ahead of time.
- Instead of updating θ using the past velocity, it computes the gradient at a future step.
- · Helps prevent overshooting.

Mathematical Formulation

1. Compute a look-ahead step using the velocity:

$$ilde{ heta} = heta^{(t)} - eta v^{(t-1)}$$

2. Compute gradient at this look-ahead position:

$$v^{(t)} = eta v^{(t-1)} + lpha
abla J(ilde{ heta})$$

3. Update parameters:

$$\theta^{(t+1)} = \theta^{(t)} - v^{(t)}$$

Pseudo Code

```
    Initialize θ randomly, v = 0.
    Repeat until convergence:

            Compute look-ahead step: θ_temp = θ - β * v.
            Compute gradient at θ_temp: g = ∇J(θ_temp).
            Update velocity: v = β * v + α * g.
            Update parameters: θ = θ - v.
```

```
python

def nesterov_accelerated_gradient(X, y, theta, alpha, beta, epochs):

m = len(y)

v = np.zeros_like(theta) # Initialize velocity

for _ in range(epochs):

theta_lookahead = theta - beta * v # Compute look-ahead position

gradient = (1/m) * X.T @ (X @ theta_lookahead - y) # Compute gradient at l

v = beta * v + alpha * gradient # Update velocity

theta -= v # Update parameters

return theta
```

2. Adagrad (Adaptive Gradient)

Intuition

- Adapts the learning rate for each parameter based on past gradients.
- Features with rare occurrences get larger updates, while frequent features get smaller updates.
- Issue: The learning rate shrinks too fast.

Mathematical Formulation

1. Accumulate squared gradients:

$$G_{ii}^{(t)}=G_{ii}^{(t-1)}+\left(
abla J(heta)
ight)^2$$

2. Update parameters using an adaptive step size:

$$heta^{(t+1)} = heta^{(t)} - rac{lpha}{\sqrt{G_{ii}^{(t)} + \epsilon}}
abla J(heta)$$

Pseudo Code

plaintext 🗗 Copy 🤣 Edit

- 1. Initialize θ randomly, G = 0.
- 2. Repeat until convergence:
 - a. Compute gradient $q = \nabla J(\theta)$.
 - b. Update squared gradient sum: $G = G + g^2$.
 - c. Compute adaptive step size: α / sqrt(G + ϵ).
 - d. Update parameters: $\theta = \theta (\alpha / \text{sqrt}(G + \epsilon)) * g$.

```
python
                                                                  一Copy
                                                                           ∜ Edit
def adagrad_optimizer(X, y, theta, alpha, epsilon, epochs):
    m = len(y)
    G = np.zeros like(theta) # Initialize accumulated squared gradients
    for _ in range(epochs):
        gradient = (1/m) * X.T @ (X @ theta - y) # Compute gradient
        G += gradient ** 2 # Accumulate squared gradients
        theta -= (alpha / (np.sqrt(G) + epsilon)) * gradient # Update parameters
    return theta
```

3. RMSprop (Root Mean Square Propagation)

Intuition

- Fixes Adagrad's problem of decaying learning rates too fast.
- Uses an **exponentially moving average** of squared gradients instead of summing them.
- Works well for non-stationary problems (where gradients change over time).

Mathematical Formulation

1. Compute exponential moving average of squared gradients:

$$G_{ii}^{(t)} = eta G_{ii}^{(t-1)} + (1-eta)(
abla J(heta))^2$$

2. Update parameters:

$$heta^{(t+1)} = heta^{(t)} - rac{lpha}{\sqrt{G_{ii}^{(t)} + \epsilon}}
abla J(heta)$$

Pseudo Code

plaintext

1. Initialize θ randomly, G = 0.

- ₺ Edit

- 2. Repeat until convergence:
- a. Compute gradient $g = \nabla J(\theta)$.
 - b. Update exponentially weighted squared gradient sum:

$$G = \beta * G + (1 - \beta) * g^2.$$

- c. Compute adaptive step size: $\alpha / sqrt(G + \epsilon)$.
- d. Update parameters: $\theta = \theta (\alpha / \text{sqrt}(G + \epsilon)) * g$.

```
① Copy
                                                                           ∜ Edit
def rmsprop_optimizer(X, y, theta, alpha, beta, epsilon, epochs):
   m = len(y)
   G = np.zeros_like(theta) # Initialize exponentially weighted squared gradients
   for _ in range(epochs):
       qradient = (1/m) * X.T @ (X @ theta - y) # Compute gradient
       G = beta * G + (1 - beta) * (gradient ** 2) # Update exponentially weighte
       theta -= (alpha / (np.sqrt(G) + epsilon)) * gradient # Update parameters
   return theta
```

5. Adam (Adaptive Moment Estimation)

Intuition

Uses momentum (first moment) and adaptive learning rate (second moment).

Mathematical Formulation

```
def adam_optimizer(X, y, theta, alpha, beta1, beta2, epsilon, epochs):
    m, v = np.zeros_like(theta), np.zeros_like(theta)
    for _ in range(epochs):
        gradient = X.T @ (X @ theta - y)
        m = beta1 * m + (1 - beta1) * gradient
        v = beta2 * v + (1 - beta2) * (gradient ** 2)
        theta -= alpha * m / (np.sqrt(v) + epsilon)
    return theta
```