solutions.txt Mon Oct 10 15:51:18 2011

factorial 34 = 2.9523282E+38 factorial 35 = Infinity occurs at term 18 NOTE compiler clever and reworks math in loop to avoid REAL limitation here HOWEVER Not as clever as our melau2.f90 code |** Loop through starting with the second term $(-x^3/3!)$ ans stopping 6: !** Program to calculate SIN(x) to 'n' terms of the Mclaurin Series !** Program to calculate SIN(x) to 'n' terms of the Mclaurin Series | ** $\sin(x) = x-x^3/3 + x^5/5 = x^3/7 + x^6/9 = x^$ PRINT*,'Calculating Term',(i-1)/2+1
fact=fact*i*(i-1)
sinx=sinx+sign*x**i/fact ! *** Calculate the new approximation
sign=-sign
! *** update the sign parameter !** Version that does not suffer from factoral calculation limits
!** \mathtt{READ}^\star, x $\mathtt{PRINT}^\star, \mathsf{'Enter}$ the number of terms you require: ' Limit is at 10**38 for REAL type that is \mathtt{READ}^\star, x $\mathtt{PRINT}^\star, '\mathtt{Enter}$ the number of terms you require: PRINT*, 'The approximation is for x=',x
PRINT*, Number of terms in the approximation =
PRINT*, 'The approximation = ',sinx
PRINT*, 'The true value is = ',SIN(x) PRINT*,'Enter the value of x you require: ' PRINT*,'Enter the value of x you require: ' **************** ******************* ****************** !** loops up to 2*n-1 for the last term. PRINT*,'Calculating Term',1 INTEGER :: i, sign=-1,n INTEGER :: i, sign=-1,n REAL :: sinx,x,fact=1 ./exercise4/mclau2.f90 REAL :: sinx,x,dummy ./exercise4/mclau.f90 END PROGRAM mclau DO i=3,2*n-1,2IMPLICIT NONE 5: PROGRAM mclau !** NOTE

i** Loop through starting with the second term $(-x^4/3/3!)$ ans stopping i** loops up to $2^{t}n-1$ for the last term. PRINT*, (-1s)/3/3 and stopping print*, (-1s)/3/3/3 dummy-dummy/(1s(1-1))/3/3/3/3 i *** Calculate to rquired dummyorial sinx+sign*dummy (i **: *** Calculate the new approximation in **** Calculate the new approximation in **** Calculate the new approximation is **** Calculate the new approximation in *** Calculate the new approximation in **** Calculate the new approximation in *** Calculate the new app check= .NOT. a==0 !** Set check to .TRUE. if a valid quadratic ! *** update the sign parameter !** Calculate the sqrt of discriminant as a complex number sqdiscrim=SQRT(CMPLX(b**2 - 4.0*a*c)) READ*,a,b,c !*** Read in coefficients from keyboard root1=(-b + sqdiscrim)/(2.0*a) !** Calculate root1
root2=(-b - sqdiscrim)/(2.0*a) !** Calculate root2 !*** Program to calculate the roots of a quadratic !*** usingthe more general COMPLEX data type PRINT*, "Root1 : ", "Real Part=", REAL(root1), & PRINT*, "Root2 : ", "Real Part=", REAL(root2), & ď : Imaginary part=", AIMAG(root2) : Imaginary part=", AIMAG(root1) ***************** ************ PRINT*, "This is not a valid quadratic" ! ** Enter the coefficients a,b,c
PRINT*,"Enter A, b, and c of the &
&polynomial ax**2 + bx + c:" Mon Oct 10 15:51:18 2011 'The approximation =', sinx 'The true value is =', SIN(x) REAL :: a,b,c
COMPLEX :: root1,root2,sqdiscrim PRINT*,'Calculating Term',1 ./exercise2/quad_complex.f90 PRINT*,'The roots are:' 132: ENDIF 133: 134: END PROGRAM quad_complex PROGRAM quad_complex END PROGRAM mclau2 IF (check) THEN DO i=3,2*n-1,2 IMPLICIT NONE sign=-sign READ*,n LOGICAL dummy=x PRINT*, PRINT*, sinx=x ELSE solutions.txt 744... 775... 775... 801... 881... 882... 883... 885... 885... : 68 : 66 : 06 100: 101: 104: 105: 106: .09: 112 1143::: 116:: 120:: 120:: 120:: 130:: 140:: 140:: 150:: 160:: 170:: 28 : 29 : 30 : .03: 07: