Tema 3

El cuerpo (\mathbb{Z}_p , +, .) (p número primo)

3.1 El grupo multiplicativo \mathbb{Z}_m^*

En el tema anterior se vio que (\mathbb{Z}_m , +, .) es un anillo conmutativo con elementos identidad. No preguntamos ahora para qué elementos existe inverso. A los elementos que poseen inverso se les denomina identidades.

Proposición 3.1 El conjunto de las unidades del anillo $(\mathbf{Z}_m, +, .)$ forman un grupo conmutativo, a dicho conjunto lo desinaremos por \mathbb{Z}_m^* . (En todo anillo conmutativo y con identidad el conjunto de las unidades forman un grupo conmutativo).

Demostración.

$$\mathbb{Z}_m^* = \{ \ \bar{a} \in \mathbb{Z}_m | \exists \bar{x} \in \mathbb{Z}_m \ verificando \ \bar{a}. \ \bar{x} = \bar{1} \ \}$$

Veamos que la operación multiplicación heredada de \mathbb{Z}_m es interna: Sean $\bar{a}, \bar{b} \in \mathbb{Z}_m^*$, esto es, existen \bar{x} e $\bar{y} \in \mathbb{Z}_m$ tales que $\bar{a}.\bar{x} = \bar{1}$ y $\bar{b}.\bar{y} = \bar{1}$. Al ser la operación multiplicación asociativa y conmutativa se verifica que $\bar{1} = (\bar{a}.\bar{x}).(\bar{b}.\bar{y}) = \bar{1}$

 $(\bar{a}.\bar{b}).(\bar{x}.\bar{y}) = (\bar{a}\bar{b}).(\bar{x}\bar{y})$. Por tanto $(\bar{a}\bar{b}) \in \mathbb{Z}_m^*$.

- La operación es asociativa y conmutativa por serlo en \mathbf{Z}_m .
- La identidad $\bar{1} \in \mathbb{Z}_m^*$.
- Todo $\bar{a} \in \mathbb{Z}_m^*$ tiene inverso.

Proposición 3.2 Un elemento $a \in \mathbb{Z}_m$ es unidad si, y sólo si, mcd(a, m) = 1, es decir, $\mathbb{Z}_m^* = \{\bar{a} \in \mathbb{Z}_m | mcd(a, m) = 1\}$

Demostración. $\bar{a} \in \mathbf{Z}_m$ es unidad si, y sólo si, existe $\bar{x} \in \mathbf{Z}_m$ tal que $\bar{a}\bar{x} \equiv 1 \pmod{m}$, es decir, si y sólo si, ax + my = 1 para algún entero y. Esto es, si y sólo si, la ecuación diofántica ax + my = 1 tiene solución. Y esto es equivalente a mcd(a, m) = 1.

Definición 3.3 *Un conjunto K dotado de dos operaciones internas,* +, ., verificando:

- (K, +, .) es anillo conmutativo con elemento identidad.
- Todo elemento de K distinto del 0 (0 es elemento neutro respecto de la suma) tiene inverso respecto de la multiplicación (Ello significa que, K-{0}, .) es grupo conmutativo)

se dice que tiene estructura de cuerpo.

Como consecuencia de la proposición anterior se verifica la siguiente proposición:

Proposición 3.4 (\mathbb{Z}_m^* , .) tiene estructura de grupo.

Teorema 3.5 El anillo \mathbb{Z}_m es cuerpo si, y sólo si, m es primo.

Demostración.

Si m es primo, todo entero que no es múltiplo de m es coprimo con m. En consecuencia, $\mathbb{Z}_m^* = \mathbb{Z}_m - \{\overline{0}\}$. Por tanto \mathbb{Z}_m es cuerpo.

Recíprocamente, si \mathbf{Z}_m es cuerpo, $\mathbb{Z}_m^* = \{ \overline{a} \in \mathbb{Z}_m | mcd(a,m) = 1 \} = \mathbb{Z}_m - \{ \overline{0} \}$. Si m no fuese primo tendría un divisor a distinto de 1 y de m. Se tendría que mcd(a,m) = a, $a \neq 1$, $a \neq 0$ y $\overline{a} \notin \mathbb{Z}_m^*$. Lo que contradice que , $\mathbb{Z}_m^* = \mathbb{Z}_m - \{ \overline{0} \}$. Por tanto m es primo.

3.2 Función de Euler

Definición 3.6 Para un número positivo m, se define la función $\varphi(m)$ como el número de enteros entre 0 y m que son primos con m. Esta función se dice **Función de Euler**.

$$\varphi(m) = |\mathbb{Z}_m^*|$$
 (esto es, el cardinal del conjunto \mathbb{Z}_m^*)

En lo que sigue se va a encontrar una fórmula que nos de el valor de la Función de Euler. Recordando el teorema fundamental de la aritmética: Todo entero positivo puede expresarse como producto de potencias no triviales de números primos; se va a proceder a calcular $\varphi(m)$ para todo entero positivo m.

Lema 3.7 Si p es un número primo, se verifica $\varphi(p) = p - 1$.

Demostración. Si p es un número primo todos los números enteros positivos menores que p son coprimos con p: 1, 2, 3, ..., p-1. Por tanto $\varphi(p) = p-1$.

Lema 3.8 Sea q un número positivo potencia de un número primo, esto es, con $q = p^{\alpha}$, con p primo.

$$\varphi(p^{\alpha}) = q\left(1 - \frac{1}{p}\right)$$

Demostración.

Los enteros positivos menores que $q = p^{\alpha}$ coprimos con él son los no son divisibles por p.

Los enteros positivos menores que p^{α} divisibles por p son: p, 2p, 3p, 4p,, $p^{\alpha} = p^{\alpha-1}p$, hay $p^{\alpha-1}$. Los coprimos con él son todos los números positivos menores o iguales a p^{α} (hay a p^{α}) excepto esos $p^{\alpha-1}$. Por tanto

$$\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1} = p^{\alpha} \left(1 - \frac{1}{p}\right) = q\left(1 - \frac{1}{p}\right) \quad (p \text{ primo})$$

Lema 3.9 Si $mcd(m_1, m_2) = 1$, la función φ verifica: $\varphi(m_1 m_2) = \varphi(m_1) \cdot \varphi(m_2)$,

Demostración.

 $mcd(a, m_1) = 1 \text{ y } mcd(a, m_2) = 1 \Leftrightarrow mcd(a, m_1m_2) = 1$

En el tema anterior se vio que existía una aplicación biyectiva:

$$\Psi: \mathbb{Z}_{m_1m_2}^* \rightarrow \mathbb{Z}_{m_1}^* \mathbb{Z}_{m_2}^*$$

Por tanto,
$$\varphi(m_1, m_2) = |\mathbb{Z}_{m_1, m_2}^*| = |\mathbb{Z}_{m_1}^*| |\mathbb{Z}_{m_2}^*| = \varphi(m_1) \cdot \varphi(m_2)$$

Teorema 3.10 Sea $m = \prod_{k=1}^{n} p_k^{\alpha_k}$ la factorización en potencias de primos de m, se verifica

$$\varphi(m) = m \prod_{k=1}^{n} \left(1 - \frac{1}{p_k} \right)$$

Demostración. Teniendo en cuenta los resultados anteriores y $mcd(p_i^{\alpha_i}, p_j^{\alpha_j}) = 1$, si $i \neq j$, se verifica

$$\varphi(m) = \prod_{k=1}^{n} \varphi(p_k^{\alpha_k}) = \prod_{k=1}^{n} p_k^{\alpha_k} \left(1 - \frac{1}{p_k} \right) = m \prod_{k=1}^{n} \left(1 - \frac{1}{p_k} \right)$$

Teorema 3.11 (Euler-Fermat) Si a y m son coprimos, se verifica $a^{\varphi(m)} \equiv 1 \pmod{m}$.

Demostración. Sean $k = \varphi(m)$ y $n_1, n_2, ..., n_k$ todos los enteros positivos menores que m y primos con m. No son congruentes entre ellos módulo m.

Consideremos ahora $an_1, an_2, ..., an_k$. Al ser a primo con m y cada n_i primo con m, se verifica que todos ellos son primos con m.

Además, no son congruentes entre ellos módulo m. En efecto, si $an_i \equiv an_j \pmod{m}$, m dividiría a $a(n_i - n_j)$. Al ser n primo con a tendría que dividir a $(n_i - n_j)$, esto es, $n_i \equiv n_j \pmod{m}$, que contradice el hecho de que entre ellos no sean congruentes módulo n. En consecuencia, en $\{\overline{an_1}, \ldots, \overline{an_k}\}$ hay k elementos distintos de \mathbb{Z}_n que son coprimos con n. En consecuencia, se verifica

$$\{\overline{n_1},\ldots,\overline{n_k}\}=\{\overline{an_1},\ldots,\overline{an_k}\}\ \mathrm{y}\ a^kn_1\ldots n_k\equiv n_1\ldots n_k\ (mod\ m)$$

Por hipótesis todos los \overline{ni} son inversibles módulo n en \mathbb{Z}_m , por lo que, $a^k \equiv 1 \pmod{m}$

El teorema anterior es útil si tratamos con potencias de números enteros.

Ejemplo 3.12 Calcular el resto de la división euclídea de 2^{1010} por 23. Como 23 es primo, es $\varphi(23) = 22$, y como 1010 = 45.22 + 20, se tiene: $2^{1010} \equiv (2^{22})^{45} 2^{20} \equiv 2^{20} \equiv (32)^4 \equiv (9)^4 \equiv (9^2)^2 \equiv (81)^2 \equiv (12)^2 \equiv 144 \equiv 6 \pmod{23}$

Corolario 3.13 (Pequeño Teorema de Fermat) Si p es primo,

$$a^p \equiv a \pmod{p}$$

Demostración. Basta recordar que si p es primo $\varphi(p) = p - 1$.

Algoritmo 3.14 (Algoritmo para el cálculo de potencias)

Supongamos que necesitamos calcular la potencia trigésimo séptima de un entero *a*. La manera más ingenua de hacerlo es calcular las potencias sucesivas,

$$a, a^2, a^3, \dots, a^{36}, a^{37},$$

lo que implica realizar 36 productos.

Sin embargo,

$$a^{37} = a \cdot a^{36} = a \cdot (a^2)^{18} = a \cdot (a^4)^9 = a \cdot a^4 \cdot (a^4)^8 = a \cdot a^4 \cdot a^{32}$$

¿Cuántos productos necesito si actúo de esta manera? En primer lugar, 5 productos para calcular a^4 y a^{32} haciendo (cada flecha significa elevar al cuadrado):

$$a \rightarrow a^2 \rightarrow a^4 \rightarrow a^8 \rightarrow a^{16} \rightarrow a^{32}$$
:

 $a \rightarrow a^2 \rightarrow a^4 \rightarrow a^8 \rightarrow a^{16} \rightarrow a^{32}$: Con otros dos productos más, calculo a^{37} . En total, 7 productos frente a los 36 por el método ingenuo.

En realidad, hemos calcular la representación binaria del exponente, en este caso, 37 = 1 $+2^{2}+2^{5}$ (37 = (100101)₂). Este razonamiento es fácilmente extensible a cualquier otro exponente: si quiero calcular a^{α} siendo $\alpha =$

$$2^{k} + \alpha_{k-1} \cdot 2^{2k-1} + \dots + \alpha_{2} \cdot 2^{2} + \alpha_{1} \cdot 2 + \alpha_{0}$$
, se tendrá que:
 $\alpha^{\alpha} = \alpha^{\alpha_{0}} \cdot \alpha^{\alpha_{1} 2} \cdot \alpha^{\alpha_{2} 2^{2}} \cdot \dots \cdot \alpha^{\alpha_{k-1} 2^{k-1}} \alpha^{2^{k}}$

Ejemplo 3.15 *Calcular el resto de la división euclídea de* 2¹⁰¹⁰ *por* 23.

Como 23 es primo, es $\varphi(23) = 22$, y como 1010 = 45.22 + 20, se tiene:

Por otra parte, $20 = 2^4 + 2^2$ es la representación binaria de 20

$$2^{1010} \equiv 2^{20} \equiv 2^{16}2^4$$
, $2^2 \equiv 4 \pmod{23}$, $2^4 \equiv 16 \pmod{23}$

$$2^8 \equiv 64 \pmod{23} \equiv 3 \pmod{23}, \ 2^{16} \equiv 9 \pmod{23},$$

$$2^{1010} \equiv 2^{20} \equiv 2^{16}2^4 \equiv 144 \equiv 6 \pmod{23}$$

3.3 El grupo multiplicativo $\mathbb{Z}_{\mathbf{p}}^*$ (con p número primo).

3.3.1 Polinomios con coeficientes en \mathbb{Z}_p

Lema 3.16 Sea $f(x) = x^d + a_{d-1}x^{d-1} + ... + a_1x + a_0$ un polinomio con coeficientes enteros y a un número entero. Existe un polinomio g(x) con grado d-1 y coeficientes enteros *verificando* f(x) = (x - a) g(x) + f(a).

Demostración.

Basta recordar la formula
$$(x^n - y^n) = (x - y)(x^{n-1} + x^{n-2}y + ... + xy^{n-2} + y^{n-1})$$

 $f(x) - f(a) = x^d + a_{d-1}x^{d-1} + ... + a_1x + a_0 - (a^d + a_{d-1}a^{d-1} + ... + a_1a + a_0)$
 $= (x^d - a^d) + a_{d-1}(x^{d-1} - a^{d-1}) + ... + a_1(x - a)$

Aplicando la fórmula indicada todos los sumandos son múltiplos de (x - a), con lo que se puede sacar factor común. Además, el exponente mayor de x corresponde a la expresión $(x^d - a^d) = (x - a)(x^{d-1} + x^{d-2}a + ... + x^da^{d-2} + a^{d-1})$

Por tanto, se tiene f(x) - f(a) = (x - a)g(x) con grado d -1. Esto es,

$$f(x) = (x - a) g(x) + f(a)$$
 para todo entero a y para todo entero x .

Lema 3.17 Sea $f(x) = x^d + a_{d-1}x^{d-1} + ... + a_1x + a_0$ un polinomio con coeficientes enteros y p un número entero primo. Entonces, la ecuación $f(x) \equiv 0 \pmod{p}$ tiene, a lo más, d soluciones en \mathbb{Z}_p .(Esto significa que el número de raíces de la ecuación en \mathbb{Z}_p no excede al grado)

Demostración.

Aplicando al resultado anterior congruencias p. Se verifica que:

$$f(x) = (x - a) g(x) + f(a) \pmod{p}$$
 para todo entero x.

Veamos las tesis por inducción sobre el grado d.

- Para d = 1: Si $f(x) = x + a_0 \pmod{p}$, es cierto, pues existe exactamente 1 solución $x \equiv (p-a_0) \pmod{p}$.
- Supongamos cierto para d 1 y veamos que es cierto para d. Sea $f(x) = x^d + a_{d-1}x^{d-1} + ... + a_1x + a_0$.

Si no existiesen raíces sería cierto, el número de raíces es 0 que es menor o igual que

Su pongamos que existe al menos una, sea a, $f(a) \equiv 0 \pmod{p}$.

Se verifica $f(x) = (x - a) g(x) + f(a) \pmod{p} \equiv (x - a) g(x) \pmod{p}$, siendo g(x) un polinomio con grado d - 1. Con lo cual,

$$f(x) = (x - a) g(x) \equiv 0 \pmod{p}$$

Por lo que, las raíces de f(x) distintas de a serían raíces de g(x). Además, g(x) es un polinomio de grado d-1. Por hipótesis de inducción, a lo más, tiene d-1 raíces en \mathbb{Z}_p . En consecuencia, f(x) tiene, a lo más, d raíces en \mathbb{Z}_p .

Lema 3.18 Sea p un número entero primo, la congruencia $x^{p-1} \equiv 1 \pmod{p}$ tiene, exactamente, p - 1 raíces en \mathbb{Z}_p .

Demostración.

Por el Pequeño Teorema de Fermat se sabe $a^{p-1} \equiv 1 \pmod{p}$, para todo a entero. Esto significa que que 1, 2, 3, ..., p -1 son soluciones de la ecuación dada. Por otra parte, el lema anterior dice que a lo más tiene p -1 raíces. En consecuencia la ecuación dada tiene exactamente p raíces en \mathbb{Z}_p .

Lema 3.19 Si $d \mid p-1$, la congruencia $x^d \equiv 1 \pmod{p}$ y tiene, exactamente, d soluciones en \mathbf{Z}_{p} .

Demostración. Por el lema 3.15 sabemos que la congruencia tiene, a lo más, d soluciones.

Al ser $d \mid p-1$, existe k el cociente exacto de dividir p-1 entre d, esto es, kd = p-1.

Por otra parte, se verifica la identidad $x^k - 1 = (x - 1)(x^{k-1} + \dots + x + 1)$.

Sustituyendo en dicha identidad x por x^d , se tiene:

$$x^{dk} - 1 = (x^d - 1)(x^{d(k-1)} + x^{d(k-2)} + \dots + x^d + 1)$$
, esto es,
 $x^{p-1} - 1 = (x^d - 1)(x^{p-d-1} + x^{p-d-2} + \dots + x^d + 1)$,

Como $x^{p-d-1} + x^{p-d-2} + \dots + x^d + 1 \equiv 0 \pmod{p}$ tiene, a lo más, p - d - 1 soluciones, si $x^d \equiv 1$ $(mod \ p)$ tuviese menos de d soluciones, entonces $x^{p-1} \equiv 1 \pmod{p}$ no tendría p-1soluciones, esto sería contradictorio.

3.3.2 Orden de un elemento en el anillo (\mathbb{Z}_{m}^{*} , +, .)

Definición 3.20 Si a es un elemento de \mathbb{Z}_m^* , se llama orden de a en \mathbb{Z}_m^* y se escribe $ord_m(a)$, al menor entero positivo d que verifica $a^d \equiv 1 \pmod{m}$.

El teorema de Fermat justifica la existencia de enteros que verifican la condición: Si a es un elemento de \mathbb{Z}_m^* , se verifica $a^{\varphi(m)} \equiv 1 \pmod{m}$. En particular, $ord_m(a) \leq \varphi(n)$.

Ejemplo 3.21 Consideremos el grupo multiplicativo \mathbb{Z}_7^* , analicemos las potencias de 3

$$3^1 = 3$$
, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$ y $3^6 = 1$, En \mathbb{Z}_7^* , ord(3) = 6.

Lema 3.22 Si $a^n \equiv 1 \pmod{m}$, entonces $ord_m(a)$ divide a n.

Demostración. Sea n con $a^n \equiv 1 \pmod{m}$ y llamemos d a $ord_m(a)$. Es $d \le n$, pues d es el menor entero positivo que cumple la condición. Consideremos la división euclídea de n por d: n = q.d + r con $0 \le r < d$, observar que al ser $d \le n$ es $q \ge 1$.

$$1 = a^n = a^{qd+r} = (a^d)^q$$
. $a^r = a^r$,

Por definición de orden, r = 0.

Lema 3.23 Sea a un entero con mcd(a, m) = 1. Si $a^e \equiv a^f \equiv 1 \pmod{m}$, entonces $a^d \equiv 1 \pmod{m}$, donde d = mcd(e, f).

Demostración.

Si d = mcd(e, f) existen números enteros x e y tales que d = ex + fy. En cuyo caso, se tiene $a^d \equiv a^{ex + fy} \equiv (a^e)^x$. $(a^f)^y \equiv 1 \pmod{m}$.

Lema 3.24 Sean a y b enteros con $ord_p(a) = r$ y $ord_p(b) = s$ en \mathbb{Z}_p^* . Si r y s son coprimos, el orden de ab en \mathbb{Z}_p^* es igual a r.s.

Demostración. Llamemos d al orden de ab.

Se verifica que $(ab)^{rs} \equiv (a^r)^s$ $(b^s)^r \equiv 1 \pmod{p}$. Por el lema anterior d divide a rs. Supongamos que $d \neq rs$, existe $k \neq 1$ tal que dk = rs, es más existe un número primo q que divide a k (cualquier número primo de la descomposición en factores de k), rs = dk = dqt, esto es $\frac{rs}{q} = dt$ es múltiplo de d. En consecuencia, $(ab)^{rs/q} \equiv 1 \pmod{p}$.

Puesto que mcd(r, s) = 1 y q es divisor de rs, q dividirá uno de ellos, pero no a los dos a la vez. Supongamos que divide a r (sería análogo si dividiese a s) y no divide a s.

Se verifica, $1 \equiv (ab)^{rs/q} \equiv (a)^{rs/q} (b^s)^{r/q} \equiv (a)^{rs/q} \pmod{p}$

Además, al ser $ord_p(a) = r$, se verifica $(a)^r \equiv 1 \pmod{p}$

Como $r = \frac{r}{q}.q$ y $\frac{rs}{q} = \frac{r}{q}.s$ y q no divide a s, se verifica que $mcd\left(\frac{rs}{q},r\right) = mcd\left(\frac{r}{q}s,\frac{r}{q}q\right) = \frac{r}{q}.mcd\left(s,q\right) = \frac{r}{q}$

Se ha obtenido $(a)^r \equiv 1 \pmod{p}$ y $(ab)^{rs/q} \equiv 1 \pmod{p}$ $mcd\left(\frac{rs}{q}, r\right) = \frac{r}{q}$. Por el lema 3.23, se tiene que $(a)^{r/q} \equiv 1 \pmod{p}$, siendo r/q < r, lo que contradice que $ord_p(a) = r$.

Por tanto d = rs.

Teorema 3.25 Si p es primo, existe $a \in \mathbb{Z}_p^*$, tal que

$$\mathbb{Z}_p^* = \{a, a^2, a^3, \dots, a^{p-1}\}$$

Esto significa que \mathbb{Z}_p^* es un grupo **cíclico** y que a se dice que es un **generador** de \mathbb{Z}_p^* .

Demostración. Sea $\prod_{i=1}^n p_i^{e_i}$ la factorización en primos de p-1. $p_i^{e_i}$ y $p_i^{e_i-1}$ son divisores de p-1. Por tanto, se verifica que $x^{p_i^{e_i}} \equiv 1 \pmod{p}$ tiene exactamente $p_i^{e_i}$ soluciones y $x^{p_i^{e_i-1}} \equiv 1 \pmod{p}$ tiene exactamente $p_i^{e_i-1}$ soluciones. Por tanto, existe alguna solución de la primera congruencia que no lo es de la segunda, esto es, existe a_i verificando $a_i^{p_i^{e_i}} \equiv 1 \pmod{p}$, pero $a_i^{p_i^{e_i-1}} \not\equiv 1 \pmod{p}$. En consecuencia, el orden de a_i es divisor de $p_i^{e_i}$, pero no de $p_i^{e_i-1}$, por tanto, el orden de a_i es $p_i^{e_i}$.

Considerando $a = \prod_{i=1}^n a_i$, al ser $p_i^{e_i}$ y $p_j^{e_j}$ coprimos para $i \neq j$, se verifica que $ord_p(a) = ord_p(\prod_{i=1}^n a_i) = \prod_{i=1}^n ord_p(a_i) = \prod_{i=1}^n p_i^{e_i} = p-1$.

Por tanto, se verifica $a^{p-1} \equiv 1 \pmod{p}$, pero $a^i \not\equiv 1 \pmod{p}$ para $1 \le i < p$ -1.

Si existiesen $i, j, 1 \le i < j \le p-1$, verificando $a^i \equiv a^j \pmod{p}$, se tendría $a^{j-i} \equiv 1 \pmod{p}$, siendo j-i < p-1, pero el orden de a en \mathbb{Z}_p es p-1. Por tanto, $a^i \not\equiv a^j \pmod{p}$, para todo $i, j, 1 \le i < j \le p-1$. Todas las potencias $a, a^1, a^2, ..., a^{p-1}$ son distintas, esto es, $\mathbb{Z}_p^* = \{a, a^2, a^3, ..., a^{p-1}\}$.

Corolario 3.26 (Teorema de Wilson)

$$p \ es \ primo \Leftrightarrow (p-1)! \equiv -1 \ (mod \ p)$$

Demostración.

Si p es primo, como la ecuación $x^{p-1} - 1 \equiv 0 \pmod{p}$ tiene como únicas soluciones 1, 2, ..., p-1, se tiene

$$x^{p-1} - 1 \equiv (x-1)(x-2) \dots (x-p+1) \pmod{p}$$
.

Sustituyendo x por 0 se tiene $(-1)^{p-1}(p-1)! \equiv -1 \pmod{p}$.

Si p es primo impar, se sigue $(p - 1)! \equiv -1 \pmod{p}$. El único primo par es p = 2, y se verifica, $1! = 1 \equiv -1 \pmod{2}$.

Recíprocamente, si $(p-1)! \equiv -1 \pmod{p}$, se verifica existe $k \in \mathbb{Z}$ tal que (p-1)! + 1 = kp. Si p tuviese un divisor menor o igual que (p-1), sería divisor de (p-1)!. Al verificarse la igualdad también lo sería de 1, por lo que sería 1. En consecuencia p es primo.