Лабораторная работа N 2.1.6

Александр Романов Б01 107

29 апреля 2022 г.

1 Введение

К **Цель работы:** 1) определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) вычисление по результатам опытов коэффициентов Ван дер Ваальса «а» и «b».

Используемое оборудование: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

2 Работа:

Проводим измерения измерения температуры при заданной разнице давлений. При $T=296~{
m K:}$

При $T = 296K$						
$\Delta P, Pa$	4	3.5	3.2	2.7	2.1	
$\Delta T, K$	5.291	4.558	3.826	3.053	2.035	

Полученная линейная (вида y=ax+b) зависимость: y=1.735x-1.624 $\sigma_a=0.537$, $\sigma_b=0.352$

При этой температуре получаем значение коэффициента Джоуля-Томпсона:

$$\frac{\delta T}{\delta P} = 1.735 K/Pa$$

При T = 303 K:

При $T = 303K$						
$\Delta P, Pa$ 4.0 3.5 3.3 2.7 2.2						
$\Delta T, K$	5.088	4.192	3.866	2.768	1.994	

Полученная линейная (вида y=ax+b) зависимость: y=1.73x-1.85 $\sigma_a=0.506$, $\sigma_b=0.318$

При этой температуре получаем значение коэффициента Джоуля-Томпсона:

$$\frac{\delta T}{\delta P} = 1.73 K/Pa$$

При T = 313 **K:**

	При $T = 313K$					
$\Delta P, Pa \mid 4.1 \mid 3.5 \mid 3.2 \mid 2.7 \mid 2.2$						2.2
Ì	$\Delta T, K$	4.95	3.952	3.411	2.87	1.955

Полученная линейная (вида y=ax+b) зависимость: y=1.538x-1.4 $\sigma_a=0.485$, $\sigma_b=0.317$

При этой температуре получаем значение коэффициента Джоуля Томпсона:

$$\frac{\delta T}{\delta P} = 1.54 K/Pa$$

При T = 323 K:

ſ	При $T = 323K$						
$\Delta P, Pa \mid 4.1 \mid 3.5 \mid 3.2 \mid 2.7 \mid$						2.2	
ſ	$\Delta T, K$	4.8	3.825	3.442	2.72	1.955	

Полученная линейная (вида y=ax+b) зависимость: y=1.482x-1.304 $\sigma_a=0.474$, $\sigma_b=0.31$

При этой температуре получаем значение коэффициента Джоуля Томпсона:

$$\frac{\delta T}{\delta P} = 1.482 K/Pa$$

Построим график μ от $\frac{1}{T}$:

$\frac{1}{T}$, $10^3 K^1$	0.0034	0.003.7	0.0032	0.0031
$\mu, K/Pa$	1.735	1.73	1.54	1.482

Полученная линейная (вида y=ax+b) зависимость: y=949x-1.462 $\sigma_a=0.006K^2/Pa$, $\sigma_b=6.6\ 10^{-7}\ {\rm K/Pa}$

По коэффициентам прямой прямой определим коэффициенты a и b для углекислого газа.

Согласно формуле:

$$\mu = \frac{2}{RTC_p} \cdot a - \frac{b}{C_p}$$

Из этой зависимости мы можем вычислить значения a и b:

$$a = 1.46 \frac{\text{H} \cdot \text{M}^4}{mole^2}, b = 54.24 \frac{cm^3}{mole}$$

Коэффициент b достаточно точно совпадает с табличным: $b=42, 8\frac{cm^3}{mole}$ Коэффициент a отличается от табличного $a=0.36\frac{\text{H}\cdot\text{M}^4}{mole^2}$ в несколько раз.

По пересечению графиком $\mu\left(\frac{1}{T}\right)$ оси абсцисс находим значение температуры инверсии для углекислого газа:

$$T_{inv} = 649K$$

Порядок этого значения совпадает с табличным T=2053K

3 Краткие выводы:

- 1. В ходе работы были экспериментально получены коэффициенты a и b уравнения реального газа для углекислого газа. Как сказано выше, коэффициент b достаточно точно совпал с табличным в то время как a отличается от табличного в несколько раз.
- 2. Была также оценена величина T_{inv} инвариантной температуры углекислого газа, которая отличается от табличной на порядок.