

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer: 0 535 490 A2

⑫

EUROPÄISCHE PATENTANMELDUNG

⑬ Anmeldenummer: 92116096.6

⑮ Int. Cl. 5: C09B 69/10, C08F 20/34,
G02F 1/35

⑯ Anmeldetag: 21.09.92

⑰ Priorität: 01.10.91 DE 4132685

W-6704 Mutterstadt(DE)

Erfinder: Gruettner-Merten, Sabine, Dr.

Neuweg 11

W-6704 Mutterstadt(DE)

Erfinder: Sens, Ruediger, Dr.

Medicusstrasse 12

W-6800 Mannheim 1(DE)

Erfinder: Etzbach, Karl-Heinz, Dr.

Jean-Ganss-Strasse 46

W-6710 Frankenthal(DE)

Erfinder: Kilburg, Heike, Dr.

Schubertstrasse 4

W-6720 Speyer(DE)

⑯ Veröffentlichungstag der Anmeldung:
07.04.93 Patentblatt 93/14

⑰ Benannte Vertragsstaaten:
CH DE FR GB IT LI

⑯ Anmelder: BASF Aktiengesellschaft
Carl-Bosch-Strasse 38
W-6700 Ludwigshafen(DE)

⑯ Erfinder: Wiesenfeldt, Matthias, Dr.
Rosenstrasse 10

⑯ Azofarbstoffe enthaltende Polymerisate.

⑯ Azofarbstoffe enthaltende Polymerisate, die als charakteristische Monomereinheiten Reste der Formeln I, II, III und IV

aufweisen, worin

D den Rest einer heterocyclischen Diazokomponente,
R¹ und R² jeweils Wasserstoff, C₁-C₆-Alkyl oder gegebenenfalls substituiertes C₁-C₆-Alkoxy, oder R² auch C₁-C₄-Alkanoylamino,
R³ Wasserstoff, C₁-C₆-Alkyl, C₅-C₇-Cycloalkyl oder C₃-C₄-Alkenyl,
R⁴ Wasserstoff, Deuterium, Methyl, trideuteriertes Methyl oder Chlor,
R⁵ Wasserstoff oder Deuterium,
Y¹ und Y² jeweils gegebenenfalls substituiertes C₂-C₁₀-Alkylen,
W Wasserstoff, Imino oder C₁-C₄-Alkylimino und
X Hydroxy, gegebenenfalls substituiertes C₁-C₆-Alkoxy, Phenoxy, Amino oder C₁-C₄-Mono- oder Dialkylamino bedeuten,

wobei das mittlere Molekulargewicht des Polymerisats 1.000 bis 100.000 beträgt, deren Verwendung in der nichtlinearen Optik sowie die Verwendung von monomeren Azofarbstoffen zur Herstellung der neuen Polymerivate.

Die vorliegende Erfindung betrifft neue Azofarbstoffe enthaltende Polymeriste, die als charakteristische Monomereinheiten Reste der Formeln I, II, III und IV

25 aufweisen, worin

D den Rest einer Diazokomponente, die sich von einem fünfgliedrigen aromatischen heterocyclischen Amin ableitet, das ein bis drei Heteroatome, ausgewählt aus der Gruppe, bestehend aus Stickstoff, Sauerstoff und Schwefel, im heterocyclischen Ring aufweist und durch einen Benzol-, Thiophen-, Pyridin- oder Pyrimidinring anelliert sein kann,

30 R¹ und R² unabhängig voneinander jeweils Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy, das gegebenenfalls durch Phenyl oder C₁-C₄-Alkoxy substituiert ist, oder R² auch C₁-C₄-Alkanoylamino,

35 R³ Wasserstoff, C₁-C₆-Alkyl, C₅-C₇-Cycloalkyl oder C₃-C₄-Alkenyl,

R⁴ Wasserstoff, Deuterium, Methyl, trideuteriertes Methyl oder Chlor,

R⁵ Wasserstoff oder Deuterium,

Y¹ und Y² unabhängig voneinander jeweils C₂-C₁₀-Alkylen, das gegebenenfalls durch 1 bis 3 Sauerstoffatome in Etherfunktion oder Imino- oder C₁-C₄-Alkyliminogruppen unterbrochen ist,

W Sauerstoff, Imino oder C₁-C₄-Alkylimino und

40 X Hydroxy, C₁-C₆-Alkoxy, trideuteriertes Methoxy, 2,3-Epoxypropoxy, Phenoxy, Amino oder C₁-C₄-Mono- oder Dialkylamino bedeuten,

wobei der Anteil der Monomereinheiten der Formel I 1 bis 100 Mol%, der der Formel II 0 bis 99 Mol%, der der Formel III 0 bis 99 Mol% und der der Formel IV 0 bis 75 Mol%, jeweils bezogen auf das Polymerisat und das mittlere Molekulargewicht des Polymerisats 1.000 bis 100.000 betragen, deren Verwendung in der nichtlinearen Optik sowie die Verwendung von monomeren Azofarbstoffen zur Herstellung der neuen Polymerisate.

Aus J. Polymer Sci., Part A, Polymer Chem., Band 28, Seiten 1 bis 13, 1990 sind Polymerisate bekannt, die in den Seitenketten Azofarbstoffe als Chromophore enthalten. Die Azofarbstoffe stammen dabei aus der Azobenzolreihe. Es hat sich jedoch gezeigt, daß solche Polymerisate bei ihrer Anwendung in nichtlinear optischen Systemen noch Mängel aufweisen.

Aufgabe der vorliegenden Erfindung war es daher, neue Polymerisate bereitzustellen, die ebenfalls über donor-akzeptorsubstituierte Azofarbstoffe als Chromophor in der Seitenkette verfügen und die vorteilhaft zur Anwendung in nichtlinear optischen Systemen geeignet sein sollten.

Demgemäß wurden die oben näher bezeichneten Azofarbstoffe enthaltenden Polymerisate gefunden.

55 Geeignete Reste D in Formel I leiten sich z.B. von einem heterocyclischen Amin aus der Pyrrol-, Furan-, Thiophen-, Pyrazol-, Imidazol-, Oxazol-, Isooxazol-, Thiazol-, Isothiazol-, Triazol-, Oxdiazol-, Thiadiazol-, Benzofuran-, Benzthiophen-, Benzimidazol-, Benzoxazol-, Benzthiazol-, Benzisothiazol-, Pyridothiophen-, Pyrimidothiophen-, Thienothiophen- oder Thienothiazolreihe ab.

Besonders zu nennen sind solche Reste D, die von einem heterocyclischen Amin aus der Pyrrol-, Thiophen-, Pyrazol-, Thiazol-, Isothiazol-, Triazol-, Thiadiazol-, Benzthiophen-, Benzthiazol, Benzisothiazol-, Pyridothiophen-, Pyrimidothiophen-, Thienothiophen- oder Thienothiazolreihe stammen.

Hervorzuheben sind Reste D, die von Aminoheterocyclen der Formeln

40 stammen, worin

L¹ Nitro, Cyano, C₁-C₆-Alkanoyl, Benzoyl, C₁-C₆-Alkylsulfonyl, gegebenenfalls substituiertes Phenylsulfonyl oder einen Rest der Formel -CH=T, worin T für den Rest einer CH-aciden Verbindung steht,

45 L² Wasserstoff, C₁-C₆-Alkyl, Halogen, Hydroxy, Mercapto, gegebenenfalls durch Phenyl oder C₁-C₄-Alkoxy substituiertes C₁-C₆-Alkoxy, gegebenenfalls substituiertes Phenoxy, gegebenenfalls durch Phenyl substituiertes C₁-C₆-Alkylthio, gegebenenfalls substituiertes Phenylthio, C₁-C₆-Alkylsulfonyl oder gegebenenfalls substituiertes Phenylsulfonyl,

L³ Cyano, C₁-C₄-Alkoxy carbonyl oder Nitro,

L⁴ Wasserstoff, C₁-C₆-Alkyl oder Phenyl,

50 L⁵ C₁-C₆-Alkyl oder Phenyl,

L⁶ Cyano, C₁-C₄-Alkoxy carbonyl, C₁-C₆-Alkanoyl oder Halogen,

L⁷ Nitro, Cyano, C₁-C₆-Alkanoyl, Benzoyl, C₁-C₆-Alkylsulfonyl, gegebenenfalls substituiertes Phenylsulfonyl oder einen Rest der Formel -CH=T, worin T die obengenannte Bedeutung besitzt,

55 L⁸ Wasserstoff, C₁-C₆-Alkyl, Halogen, gegebenenfalls durch Phenyl oder C₁-C₄-Alkoxy, substituiertes C₁-C₆-Alkoxy, gegebenenfalls durch Phenyl substituiertes C₁-C₆-Alkylthio, gegebenenfalls substituiertes Phenylthio, C₁-C₆-Alkylsulfonyl, gegebenenfalls substituiertes Phenylsulfonyl oder C₁-C₄-Alkoxy carbonyl,

L⁹ Cyano, gegebenenfalls durch Phenyl substituiertes C₁-C₆-Alkyl, gegebenenfalls durch Phenyl

substituiertes C₁-C₆-Alkylthio, gegebenenfalls substituiertes Phenyl, Thienyl, C₁-C₄-Alkylthienyl, Pyridyl oder C₁-C₄-Alkylpyridyl.

L¹⁰ Phenyl oder Pyridyl,

L¹¹ Trifluormethyl, Nitro, C₁-C₆-Alkyl, Phenyl, gegebenenfalls durch Phenyl substituiertes C₁-C₆-Alkylthio oder C₁-C₄-Dialkylamino,

L¹² C₁-C₆-Alkyl, Phenyl, 2-Cyanoethylthio oder 2-(C₁-C₄-Alkoxy carbonyl)ethylthio,

L¹³ Wasserstoff, Nitro oder Halogen und

L¹⁴ Wasserstoff, Cyano, Nitro oder Halogen bedeuten.

Wenn in den erfundungsgemäßen Azofarbstoffe enthaltenden Polymerisaten substituiertes Phenyl auf-

tritt, so können beispielsweise C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen, dabei insbesondere Chlor oder Brom, als Substituenten in Betracht kommen. Die Phenylringe weisen dabei in der Regel 1 bis 3 Substituenten auf.

Alle in den obengenannten Formeln auftretenden Alkyl-, Alkylen- oder Alkenylgruppen können sowohl geradkettig als auch verzweigt sein.

Reste R¹, R², R³, L², L⁴, L⁵, L⁸, L⁹, L¹¹ und L¹² sind z. B. Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl, Pentyl, Isopentyl, Neopentyl, tert-Pentyl, Hexyl oder 2-Methylpentyl.

Reste R² sind weiterhin z.B. Formylamino, Acetylamino, Propionylamino oder Butyrylamino.

Reste L⁹ sind weiterhin z.B. Benzyl oder 1- oder 2-Phenylethyl.

Reste L², L⁸, L⁹ und L¹¹ sind weiterhin z.B. Methylthio, Ethylthio, Propylthio, Isopropylthio, Butylthio,

Isobutylthio, Pentylthio, Hexylthio, Benzylthio oder 1- oder 2-Phenylethylthio.

Reste L² und L⁸ sind weiterhin z.B. Phenylthio, 2-Methylphenylthio, 2-Methoxyphenylthio oder 2-Chlorphenylthio.

Reste R¹, R², L² und L⁸ sind, wie auch Reste X, weiterhin z.B. Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy, sec-Butoxy, Pentyloxy, Isopentyloxy, Neopentyloxy, tert-Pentyloxy, Hexyloxy oder 2-Methylpentyloxy.

Reste L², L⁸, L¹³ und L¹⁴ sind, wie auch Reste L⁶, weiterhin z.B. Fluor, Chlor oder Brom.

Reste L¹, L² und L⁸ sind, wie auch Reste L⁷, weiterhin z.B. Methylsulfonyl, Ethylsulfonyl, Propylsulfonyl, Isopropylsulfonyl, Butylsulfonyl, Isobutylsulfonyl, sec-Butylsulfonyl, Pentylsulfonyl, Isopentylsulfonyl, Neopentylsulfonyl, Hexylsulfonyl, Phenylsulfonyl, 2-Methylphenylsulfonyl, 2-Methoxyphenylsulfonyl oder 2-Chlorphenylsulfonyl.

Reste L⁶ und L⁸ sind, wie auch Reste L³, weiterhin z.B. Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, Butoxycarbonyl, Isobutoxycarbonyl oder sec-Butoxycarbonyl.

Reste R¹, R², L² und L⁸ sind weiterhin z.B. 2-Methoxyethoxy, 2-Ethoxyethoxy, 2- oder 3-Methoxypropoxy, 2- oder 3-Ethoxypropoxy, 2- oder 4-Methoxybutoxy, 2- oder 4-Ethoxybutoxy, 5-Methoxypentyloxy, 5-Ethoxypentyloxy, 6-Methoxyhexyloxy, 6-Ethoxyhexyloxy, Benzylxyloxy oder 1- oder 2-Phenylethoxy.

Reste X sind weiterhin z.B. Methylamino, Ethylamino, Propylamino, Isopropylamino oder Butylamino.

Reste L¹¹ und X sind weiterhin z.B. Dimethylamino, Diethylamino, Dipropylamino, Diisopropylamino, Dibutylamino oder N-Methyl-N-ethylamino.

Reste L¹² sind weiterhin z.B. 2-Methoxycarbonylethylthio oder 2-Ethoxycarbonylethylthio.

Reste R³ sind weiterhin z.B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Allyl oder Methallyl.

Reste L⁹ sind weiterhin z.B. Phenyl, 2-, 3- oder 4-Methylphenyl, 2,4-Dimethylphenyl, 2-, 3- oder 4-Chlorphenyl, 2-, 3- oder 4-Methoxyphenyl, 2- oder 3-Methylthienyl oder 2-, 3- oder 4-Methylpyridyl.

Reste Y¹ und Y² sind z.B. (CH₂)₂, (CH₂)₃, (CH₂)₄, (CH₂)₅, (CH₂)₆, (CH₂)₇, (CH₂)₈, (CH₂)₉, (CH₂)₁₀, CH-(CH₃)-CH₂, CH(CH₃)-CH(CH₃), C₂H₄-O-C₂H₄, C₂H₄-NH-C₂H₄, C₂H₄-N(CH₃)-C₂H₄, C₂H₄O-C₂H₄-O-C₂H₄,

C₂H₄-NH-C₂H₄-NH-C₂H₄ oder C₂H₄-N(CH₃)-C₂H₄-N(CH₃)-C₂H₄.

Reste W sind z.B. Methylimino, Ethylimino, Propylimino, Isopropylimino oder Butylimino.

Reste L¹, L⁶ und L⁷ sind weiterhin z.B. Formyl, Acetyl, Propionyl, Butyryl, Pentanoyl oder Hexanoyl.

Wenn L¹ oder L⁷ für den Rest -CH=T stehen, worin T sich von einer CH-aciden Verbindung H₂T ableitet, können als CH-acide Verbindungen H₂T z.B. Verbindungen der Formel

50

55

5

(VIIa)

(VIIb)

(VIIc)

(VIId)

10

(VIIe)

(VIIf)

(VIIg)

15

in Betracht kommen, wobei

20 Z^1 Cyano, Nitro, $\text{C}_1\text{-C}_4$ -Alkanoyl, gegebenenfalls substituiertes Benzoyl, $\text{C}_1\text{-C}_4$ -Alkylsulfonyl, gegebenenfalls substituiertes Phenylsulfonyl, Carboxyl, $\text{C}_1\text{-C}_4$ -Alkoxy carbonyl, $\text{C}_3\text{-C}_4$ -Alkenyloxycarbonyl, Phenoxycarbonyl, Carbamoyl, $\text{C}_1\text{-C}_4$ -Mono- oder Dialkylcarbamoyl, gegebenenfalls substituiertes Phenylcarbamoyl, gegebenenfalls substituiertes Phenyl, Benzthiazol-2-yl, Benzimidazol-2-yl, 5-Phenyl-1,3,4-thiadiazol-2-yl oder 2-Hydroxychinoxalin-3-yl,

25 Z^2 $\text{C}_1\text{-C}_4$ -Alkyl, $\text{C}_1\text{-C}_4$ -Alkoxy oder $\text{C}_3\text{-C}_4$ -Alkenyloxy,

26 Z^3 $\text{C}_1\text{-C}_4$ -Alkoxy carbonyl, $\text{C}_3\text{-C}_4$ -Alkenyloxycarbonyl, Phenylcarbamoyl oder Benzimidazol-2-yl,

27 Z^4 Cyano, $\text{C}_1\text{-C}_4$ -Alkoxy carbonyl oder $\text{C}_3\text{-C}_4$ -Alkenyloxycarbonyl,

28 Z^5 Wasserstoff oder $\text{C}_1\text{-C}_6$ -Alkyl,

29 Z^6 Wasserstoff, $\text{C}_1\text{-C}_4$ -Alkyl oder Phenyl und

30 Z^7 $\text{C}_1\text{-C}_4$ -Alkyl bedeuten.

Dabei ist der Rest der sich von Verbindungen der Formel VIIa, VIIb oder VIIc ableitet, worin Z^1 Cyano, $\text{C}_1\text{-C}_4$ -Alkanoyl, $\text{C}_1\text{-C}_4$ -Alkoxy carbonyl oder $\text{C}_3\text{-C}_4$ -Alkenyloxycarbonyl, Z^2 $\text{C}_1\text{-C}_4$ -Alkyl, $\text{C}_1\text{-C}_4$ -Alkoxy oder $\text{C}_3\text{-C}_4$ -Alkenyloxy, Z^3 $\text{C}_1\text{-C}_4$ -Alkoxy carbonyl oder $\text{C}_3\text{-C}_4$ -Alkenyloxycarbonyl und Z^4 Cyano bedeuten, hervorzuheben.

Besonders hervorzuheben ist dabei der Rest der sich von Verbindungen der Formel VIIa, VIIb oder VIIc ableitet, worin Z^1 Cyano, $\text{C}_1\text{-C}_4$ -Alkoxy carbonyl oder $\text{C}_3\text{-C}_4$ -Alkenyloxycarbonyl, Z^2 $\text{C}_1\text{-C}_4$ -Alkoxy oder $\text{C}_2\text{-C}_4$ -Alkenyloxy, Z^3 $\text{C}_1\text{-C}_4$ -Alkoxy carbonyl oder $\text{C}_3\text{-C}_4$ -Alkenyloxycarbonyl und Z^4 Cyano bedeuten.

Bevorzugt sind Azofarbstoffe enthaltende Polymerisate, die als charakteristische Monomereinheiten Reste der Formel Ia

45

worin D , R^1 , R^2 , R^3 , R^4 , Y und W jeweils die obengenannte Bedeutung besitzen, und der obengenannten Formel II aufweisen.

Bevorzugt sind weiterhin Azofarbstoffe enthaltende Polymerisate, in denen D in Formel I sich von einem Amin der Formel VIa, VIb, VIc, VIId, VIe, VIIf, VIIf, VIIf oder VIIn ableitet.

50 Bevorzugt sind weiterhin Azofarbstoffe enthaltende Polymerisate, in denen der Anteil der Monomereinheiten der Formel I 4 bis 50, insbesondere 8 bis 25 Mol-%, der der Formel II 51 bis 96, insbesondere 75 bis 92 Mol-%, der der Formel III 0 bis 30, insbesondere 0 bis 15 Mol-% und der der Formel IV 0 bis 50, insbesondere 0 bis 20 Mol-%, jeweils bezogen auf das Polymerisat, und das mittlere Molekulargewicht des Polymerisats 1500 bis 50 000, insbesondere 2000 bis 25 000 betragen.

55 Besonders zu nennen sind Azofarbstoffe enthaltende Polymerisate, in denen in Formel I

R^1 Wasserstoff oder $\text{C}_1\text{-C}_4$ -Alkoxy,

R^2 $\text{C}_1\text{-C}_4$ -Alkyl, $\text{C}_1\text{-C}_4$ -Alkoxy oder Acetylarnino,

R^3 $\text{C}_1\text{-C}_4$ -Alkyl,

5 R⁴ Wasserstoff oder Methyl und
Y¹ C₂-C₈-Alkylen und

in Formel II

5 R⁴ Wasserstoff oder Methyl und
X C₁-C₄-Alkoxy bedeuten.

Besonders bevorzugt sind Azofarbstoffe enthaltende Polymerisate, in denen D sich von Aminen aus der Thiophen- oder Thiazolreihe, dabei insbesondere von solchen der Formel VIb oder VIId ableitet.

Insbesondere zu nennen sind Azofarbstoffe enthaltende Polymerisate, in denen D sich von einem Amin der Formel VIb oder VIId ableitet, worin

10 L¹ Nitro, Cyano, C₁-C₄-Alkanoyl oder einen Rest der Formel -CH=T, worin T die obengenannte Bedeutung besitzt,

L² Wasserstoff, C₁-C₄-Alkyl oder Halogen,

L³ Cyano, C₁-C₄-Alkoxycarbonyl oder Nitro,

15 L⁷ Nitro, Cyano, C₁-C₄-Alkanoyl oder einen Rest der Formel -CH=T, worin T die obengenannte Bedeutung besitzt, und

L⁸ Wasserstoff, C₁-C₄-Alkyl oder Halogen bedeuten.

Zur Herstellung der erfindungsgemäßen Polymerisate sind in vorteilhafter Weise Azofarbstoffe der Formel V

(V)

25 geeignet, in der D, R¹, R², R³, R⁴, Y und W jeweils die obengenannte Bedeutung besitzen.

Die Herstellung der neuen Polymerisate kann nach an sich bekannten Methoden, wie sie z.B. in J. Polymer Sci. (loc. cit.) beschrieben sind, erfolgen.

Zweckmäßig setzt man dabei einen Azofarbstoff der Formel V mit einer Acrylverbindung der Formel VIII

(VIII),

35 in der R⁴ und X jeweils die obengenannte Bedeutung besitzen, Styrol und einem Zimtsäureester der Formel IX

(IX),

45 in der Y² und R⁴ jeweils die obengenannte Bedeutung besitzen, im obengenannten Molverhältnis in einem inerten Lösungsmittel (z.B. Toluol oder Xylool) in Gegenwart eines Radikalstarters (z.B. Azo-bis-isobutyronitril) um.

Die Azofarbstoffe der Formel V sind an sich bekannt und z.B. in der EP-A-201 896, DE-A-3 108 077, US-A-4 843 153 oder GB-A-1 546 803 beschrieben oder können nach den dort genannten Methoden erhalten werden.

50 Die erfindungsgemäßen Azofarbstoffe enthaltenden Polymerisate eignen sich in vorteilhafter Weise zur Anwendung in nichtlinear optischen Systemen (siehe z.B. Chemistry and Industry, 1. Oktober 1990, Seiten 600 bis 608).

55 Insbesondere ist hierbei die Eignung der Polymeren in der Nachrichtentechnik, in elektrooptischen Modulatoren (z.B. Mach-Zehnder-Interferometer), in optischen Schaltern, bei der Frequenzmischung oder in Wellenleitern hervorzuheben.

Die Herstellung von Schichten, die die erfindungsgemäßen Polymerisate enthalten, erfolgt dabei in an sich bekannter Weise, z.B. durch Naßbeschichtung (Spincoating) mit einer 5 bis 15 gew.-%igen Lösung des Polymerisats in einem Lösungsmittel (z.B. Tetrachlorethan, Methylenechlorid oder Tetrahydrofuran).

Bei geeignetem Substitutionsmuster (z.B. Epoxystruktur) können die neuen Polymerisate auch photochemisch, thermisch oder durch Einwirkung von Elektronenstrahlen vernetzt werden.

Die neuen Polymerisate zeichnen sich durch gute Verarbeitbarkeit zu dünnen Schichten, hohe Reinheit, enge Molekulargewichtsverteilung, gute Orientierung im elektrischen Feld, gute Langzeitstabilität, hohe 5 Glasstufen sowie einen hohen elektrooptischen Koeffizienten aus.

Die folgenden Beispiele sollen die Erfindung näher erläutern.

1. Herstellung der monomeren Azofarbstoffe

10 Farbstoff 1

a) Herstellung der Kupplungskomponente

421 g (3,05 mol) Kaliumcarbonat wurden mit 40 g (0,12 mol) Kaliumiodid in 240 ml Wasser aufgerührt. Unter ständigem Rühren wurden 169 g (1,2 mol) N-Ethyl-m-toluidin in 240 ml Isobutanol und anschließend 15 260 g (1,8 mol) 6-Chlorhexanol zugesetzt. Dann wurde zum Sieden erhitzt. Nach 12 Stunden Erhitzen unter Rückfluß wurde das Reaktionsgemisch auf Raumtemperatur abgekühlt, mit 400 ml Wasser versetzt und die wäßrige Phase abgetrennt. Nach weiterem dreimaligem Waschen der organischen Phase mit je 400 ml Wasser wurde über Natriumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck entfernt. Das zurückbleibende Öl wurde fraktioniert destilliert (157-158°C bei 1,0 20 mbar). Ausbeute: 231 g (82 %).

47 g (0,2 mol) N-Ethyl-N-(6-hydroxyhexyl)-m-toluidin wurden in 600 ml Dichlormethan gelöst. Dazu gab man 42 ml Triethylamin und 2,4 g Hydrochinon. Nach Abkühlen der Reaktionslösung auf 0 bis 5°C wurden langsam 38 ml (0,4 mol) Methacryloylchlorid in 100 ml Dichlormethan zugetropft. Es wurde 2 25 Stunden bei dieser Temperatur gerührt, anschließend auf Raumtemperatur erwärmt und 50 Stunden nachgerührt. Die Aufarbeitung erfolgte durch Waschen der organischen Phase mit 300 ml gesättigter Natriumhydrogencarbonatlösung und anschließend zweimal mit je 300 ml Kochsalzlösung. Nach Trocknen über Natriumsulfat und Einengen des Lösungsmittels wurde das Rohprodukt säulenchromatographisch an Kieselgel mit Toluol/Methanol (95:5 v/v) als Eluens gereinigt. Ausbeute: 44 g (71 %) des Anilins der Formel 30

35

b) Herstellung des Azofarbstoffes

6,4 g (0,035 Mol) 2-Amino-4-chlor-3,5-dicyanothiophen wurden in 100 ml Eisessig/Propionsäure (17:3 v/v) 40 aufgerührt. Anschließend wurden 14 ml 85 gew.-%ige Schwefelsäure bei Raumtemperatur und 6 ml Nitrosylschwefelsäure bei 0 bis 5°C zugetropft. Nach dreistündigem Rühren bei 0 bis 5°C wurde die entstandene Diazoniumsalzlösung zu 10,9 g (0,036 Mol) der unter a) beschriebenen Kupplungskomponente 45 in 300 g Eiswasser, 20 ml konz. Salzsäure und 1 g Amidosulfonsäure bei einer Temperatur < 5°C und einem pH-Wert von 1 bis 1,5 getropft. Der pH-Wert wurde durch Zutropfen von 20 gew. - %iger Natronlauge bei 1 bis 1,5 gehalten. Nach Rühren über Nacht bei Raumtemperatur wurde der ausgefallene Farbstoff abgesaugt, mit Wasser gewaschen, getrocknet und zweimal an Kieselgel mit Hexan/Aceton (95:5 v/v) als Eluens chromatographiert.

Ausbeute: 10 g (57 %) des Farbstoffs der Formel

55

C ₂₅ H ₂₈ N ₅ SO ₂ Cl (498,0)					
ber.:	C 60,29	H 5,67	N 14,06	S 6,43	O 6,43
gef.:	C 60,31	H 5,75	N 13,99	S 6,40	O 6,43

5

In analoger Weise werden die in der folgenden Tabelle 1 aufgeführten Farbstoffe der Formel

10

15 erhalten.

20

25

30

35

40

45

50

55

5
10
15
20
25
30
35
40
45
50
55

Tabelle 1
Farbstoff
Nr.

	Q ¹	Q ²	Q ³	n
2		H	C ₂ H ₅	2
3		CH ₃	C ₂ H ₅	6
4		H	C ₂ H ₅	2
5		H	C ₂ H ₅	2
6		H	C ₂ H ₅	2
7		H	C ₂ H ₅	2

Tabelle 1 - Forts.

Farbstoff Nr.	D	Q ¹	Q ²	Q ³	n
8		CH ₃	C ₂ H ₅	CH ₃	6
9		H	C ₂ H ₅	CH ₃	2
10		H	C ₂ H ₅	CH ₃	2
11		H	C ₂ H ₅	CH ₃	2
12		CH ₃	C ₂ H ₅	CH ₃	2
13		CH ₃	C ₂ H ₅	CH ₃	6
14		CH ₃	C ₂ H ₅	CH ₃	6

Tabelle 1 - Forts.

Farbstoff Nr.	D	Q ¹	Q ²	Q ³	n
15		H	C ₂ H ₅	CH ₃	2
16		CH ₃	C ₂ H ₅	CH ₃	6
17		CH ₃	C ₂ H ₅	CH ₃	6
18		CH ₃	C ₂ H ₅	CH ₃	6
19		CH ₃	C ₂ H ₅	CH ₃	6

II) Herstellung des Polymerisats

Allgemeine Polymerisationsvorschrift für die Herstellung von Polyacrylaten folgender Formel:

Tabelle 2

5 Bei- spiel Nr.	l	m	p	q	Q ⁴	Q ⁵	Q ⁶	mittl.		
								Farb- stoff Nr.	Moleku- large- wicht	TG [°C]
10	1	90	10	0	0	CH ₃	CH ₃	H	9	16807 125
	2	90	10	0	0	CH ₃	CH ₃	H	3	22491 120
	3	90	10	0	0	CH ₃	CH ₃	H	5	11594 151
15	4	90	10	0	0	CH ₃	CH ₃	H	10	3770 105
	5	90	10	0	0	CH ₃	CH ₃	H	11	2661 95
	6	80	20	0	0	CH ₃	CH ₃	H	2	13072 150
20	7	80	20	0	0	CH ₃	CH ₃	H	3	11062 155
	8	88	12	0	0	CH ₃	CH ₃	H	3	11489 145
	9	90	10	0	0	CH ₃	CH ₃	H	6	
25	10	90	10	0	0	CH ₃	CH ₃	H	13	14685 86
	11	90	10	0	0	CH ₃	CH ₂ -CH-CH ₂	H	2	13434 125
							O			
30	12	90	10	0	0	CD ₃	CD ₃	D	3	18384 130
	13	80	10	0	10	CH ₃	CH ₃	H	3	
	14	80	10	10	0	CH ₃	CH ₃	H	3	2877
35	15	50	50	0	0	CH ₃	CH ₃	H	3	
	16	0	100	0	0	CH ₃	CH ₃	H	3	
	17	90	10	0	0	CH ₃	CH ₃	H	17	90
40	18	90	10	0	0	CH ₃	CH ₃	H	18	100

40
Patentansprüche

1. Azofarbstoffe enthaltende Polymerisate, die als charakteristische Monomereinheiten Reste der Formeln I, II, III und IV

45

50

55

aufweisen, worin

D den Rest einer Diazokomponente, die sich von einem fünfgliedrigen aromatischen heterocyclischen Amin ableitet, das ein bis drei Heteroatome, ausgewählt aus der Gruppe, bestehend aus Stickstoff, Sauerstoff und Schwefel, im heterocyclischen Ring aufweist und durch einen Benzol-, Thiophen-, Pyridin- oder Pyrimidinring anelliert sein kann,

R¹ und R² unabhängig voneinander jeweils Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy, das gegebenenfalls durch Phenyl oder C₁-C₄-Alkoxy substituiert ist, oder R² auch C₁-C₄-Alkanoylamino,

R³ Wasserstoff, C₁-C₆-Alkyl, C₅-C₇-Cycloalkyl oder C₃-C₄-Alkenyl,

R⁴ Wasserstoff, Deuterium, Methyl, trideuteriertes Methyl oder Chlor,

R⁵ Wasserstoff oder Deuterium,

Y¹ und Y² unabhängig voneinander jeweils C₂-C₁₀-Alkylen, das gegebenenfalls durch 1 bis 3 Sauerstoffatome in Etherfunktion oder Imino- oder C₁-C₄-Alkyliminogruppen unterbrochen ist,

W Sauerstoff, Imino oder C₁-C₄-Alkylimino und

X Hydroxy, C₁-C₆-Alkoxy, trideuteriertes Methoxy, 2,3-Epoxypropoxy, Phenoxy, Amino oder C₁-C₄-Mono- oder Dialkylamino bedeuten,

wobei der Anteil der Monomereinheiten der Formel I 1 bis 100 Mol%, der der Formel II 0 bis 99 Mol%, der der Formel III 0 bis 99 Mol% und der der Formel IV 0 bis 75 Mol%, jeweils bezogen auf das Polymerisat, und das mittlere Molekulargewicht des Polymerisats 1.000 bis 100.000 betragen.

45 2. Azofarbstoffe enthaltende Polymerisate nach Anspruch 1, dadurch gekennzeichnet, daß D sich von einem heterocyclischen Amin aus der Pyrrol-, Furan-, Thiophen-, Pyrazol-, Imidazol-, Oxazol-, Isoxazol-, Thiazol-, Isothiazol-, Triazol-, Oxdiazol-, Thiadiazol-, Benzofuran-, Benzthiophen-, Benzimidazol-, Benzoxazol-, Benzthiazol-, Benzisothiazol-, Pyridothiophen-, Pyrimidothiophen-, Thienothiophen- oder Thienothiazolreihe ableitet.

50 3. Verwendung der Azofarbstoffe enthaltenden Polymerisate gemäß Anspruch 1 in der nichtlinearen Optik.

4. Verwendung von Azofarbstoffen der Formel V

in der D, R¹, R², R³, R⁴, Y und W jeweils die in Anspruch 1 genannte Bedeutung besitzen, zur Herstellung von Azofarbstoffen enthaltenden Polymerisaten gemäß Anspruch 1.

10

15

20

25

30

35

40

45

50

55

Europäisches Patentamt

European Patent Office

Office européen des brevets

Veröffentlichungsnummer: 0 535 490 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 92116096.6

(51) Int. Cl. 5: C09B 69/10, C08F 20/34,
G02F 1/35

(22) Anmeldetag: 21.09.92

(30) Priorität: 01.10.91 DE 4132685

(72) Erfinder: Wiesenfeldt, Matthias, Dr.

(43) Veröffentlichungstag der Anmeldung:
07.04.93 Patentblatt 93/14

Rosenstrasse 10

W-6704 Mutterstadt(DE)

(84) Benannte Vertragsstaaten:
CH DE FR GB IT LI

Erfinder: Gruettner-Merten, Sabine, Dr.

Neuweg 11

W-6704 Mutterstadt(DE)

(88) Veröffentlichungstag des später veröffentlichten
Recherchenberichts: 16.02.94 Patentblatt 94/07

Erfinder: Sens, Ruediger, Dr.

Medicusstrasse 12

W-6800 Mannheim 1(DE)

(71) Anmelder: BASF Aktiengesellschaft
Carl-Bosch-Strasse 38
D-67063 Ludwigshafen(DE)

Erfinder: Etzbach, Karl-Heinz, Dr.

Jean-Ganss-Strasse 46

W-6710 Frankenthal(DE)

Erfinder: Kilburg, Heike, Dr.

Schubertstrasse 4

W-6720 Speyer(DE)

(54) Azofarbstoffe enthaltende Polymerisate.

(57) Azofarbstoffe enthaltende Polymerisate, die als charakteristische Monomereinheiten Reste der Formeln I, II, III und IV

EP 0 535 490 A3

aufweisen, worin

D den Rest einer heterocyclischen Diazokomponente,
R¹ und R² jeweils Wasserstoff, C⁵-C₄¹-Alkyl oder gegebenenfalls substituiertes C⁵-C₄¹-Alkoxy, oder R² auch C⁵-C⁸-Alkanoylamino,
R³ Wasserstoff, C⁵-C₄¹-Alkyl, C₄-C₂¹-Cycloalkyl oder C⁷-C⁸-Alkenyl,
R⁴ Wasserstoff, Deuterium, Methyl, trideuteriertes Methyl oder Chlor,
R⁵ Wasserstoff oder Deuterium,
Y¹ und Y² jeweils gegebenenfalls substituiertes C⁶-C⁵⁴-Alkylen,
W Sauerstoff, Imino oder C⁵-C⁸-Alkylimino und
X Hydroxy, gegebenenfalls substituiertes C⁵-C₄¹-Alkoxy, Phenoxy, Amino oder C⁵-C⁸-Mono- oder Dialkylamino bedeuten,

wobei das mittlere Molekulargewicht des Polymerisats 1.000 bis 100.000 betrifft, deren Verwendung in der nichtlinearen Optik sowie die Verwendung von monomeren Azofarbstoffen zur Herstellung der neuen Polymerisate.

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung
EP 92 11 6096

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrift Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI5)
X	WO-A-91 09842 (ALLIED-SIGNAL INC.) * Seite 9, Zeile 22 - Zeile 25; Beispiele 41-44 *	1-4	C09B69/10 C08F20/34 G02F1/35
X	US-A-3 507 850 (W. V. COHEN ET. AL.) * Beispiel 16 *	1,2,4	
D,A	JOURNAL OF POLYMER SCIENCE, POLYMER CHEMISTRY EDITION Bd. 28, Nr. 1, 15. Januar 1990, NEW YORK US Seiten 1 - 13 D. R. ROBELLO 'Linear Polymers for Nonlinear Optics. I. Polyacrylates Bearing Aminonitro-Stilbene and -Azobenzene Dyes' * Scheme 1 *	1-4	
A	FR-A-1 468 540 (BASF AG) * Seite 2, 5. Formel von oben *	1,2	
A	FR-A-2 378 807 (PRODUITS CHIMIQUES UGINE KUHLMANN) * Ansprüche 1-3; Beispiele 1,10 *	1,2	RECHERCHIERTE SACHGEBiete (Int.CI5)
			C09B G02F C08F
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
1	Recherchesort DEN HAAG	Abschlußdatum der Recherche 14. Dezember 1993	Prüfer Ketterer, M
KATEGORIE DER GENANNTEN DOKUMENTE			
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur			
T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus andern Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument			

