Affinoid algebras

Definition 1. Let \mathbf{k} be a non-archimedean field. A banach \mathbf{k} -algebra A is called a *affinoid* \mathbf{k} -algebra if there exists an admissible surjective homomorphism

$$\varphi: \mathbf{k}\{r_1^{-1}T_1, \dots, r_n^{-1}T_n\} \to A$$

for some $n \in \mathbb{N}$ and $r_1, \dots, r_n \in \mathbb{R}_{>0}$.

If one can choose $r_1 = \cdots = r_n = 1$, then we say that A is a *strict affinoid* \mathbf{k} -algebra.

Definition 2. Let \mathbf{k} be a non-archimedean field. We define the *ring of restricted Laurent series* over \mathbf{k} as

$$\mathbf{K}_r = \left\{ \sum_{n \in \mathbb{Z}} a_n T^n \, : \, a_n \in \mathbf{k}, \lim_{|n| \to \infty} |a_n| r^n = 0 \right\}$$

equipped with the norm

$$\|f\| = \sup_{n \in \mathbb{Z}} |a_n| r^n.$$

1 finite Banach module

Appendix

