

Sparse 3D data

•			

The Data Challenge

Sparse 3D data

- Three-Plane Readout
 - Light collected from fibers along X, Y, Z axes
 - Produces three independent 2D projections of the event
- Creating a 3D Image
 - Combine 2D views → Sparse 3D event
 - Pinpoints energy deposits with fine resolution
- Challenges:
 - Energy reconstruction from 2D views is not unique
 - Ambiguity Creates "Ghosts"

Event Display

FASERCal

Event Hits

- Each plot point is a reconstructed voxel
- Detector volume is massive, but ~99% of voxels are empty
- Energy patterns: boosted forward, with complex and overlapping particle showers

Goal

 Achieve full event reconstruction → classification and kinematics from this sparse data 3D Hit Visualization

Log(Charge)