Spring 2012 / Exercise session ?? / Example Solution

Exercise (Full proof for randomised self-reducibility of DDL). Show that for any \mathbb{B} defined as above there exists an algorithm \mathbb{A} , which has roughly the same running-time as \mathbb{B} and for any three group elements g^a, g^b, g^c , distinguish g^{ab} from g^c with roughly the same advantage as $Adv^{ddh}_{\mathbb{G}}(\mathbb{B})$. More precisely, let the following games

$$\begin{aligned} \mathcal{G}_0^{\mathcal{A}} & \qquad \qquad \mathcal{G}_1^{\mathcal{A}} \\ \begin{bmatrix} c \neq ab & & & \\ \textit{return } \mathcal{A}(g^a, g^b, g^c) & & & \\ \end{bmatrix} & \begin{bmatrix} c \leftarrow ab & & \\ \textit{return } \mathcal{A}(g^a, g^b, g^c) & & \\ \end{bmatrix}$$

model the distinguishing task. Then the corresponding advantage is

$$\mathsf{Adv}^{\mathsf{f-ddh}}_{\mathbb{G},a,b,c}(\mathcal{A}) = \left| \Pr \left[\mathcal{G}_0^{\mathcal{A}} = 1 \right] - \Pr \left[\mathcal{G}_1^{\mathcal{A}} = 1 \right] \right| \ .$$

Show that if q is prime then for any $a, b \in \mathbb{Z}_q$, the advantage $\mathsf{Adv}^{\mathsf{f-ddh}}_{\mathbb{G},a,b}(\mathcal{A})$ can be bounded from below by a multiple of $\mathsf{Adv}^{\mathsf{ddh}}_{\mathbb{G}}(\mathfrak{B})$, while the running-time of \mathcal{A} is linear wrt the running-time of \mathfrak{B} .

Solution. Recall that the weak self-reducibility construction re-randomises only the first two elements g^a and g^b of the Diffie-Hellman tuple. The corresponding correction relies on the equation

$$(a+x)(b+y) = (xy + ay + bx) + ab$$

where the first three terms on the right are correction terms, i.e., the new randomised tuple is

$$g^{a+x}, g^{b+y}, g^{xy} \cdot (g^a)^y \cdot (g^b)^x \cdot g^c$$
 for $x, y \leftarrow \mathbb{Z}_q$.

Note that for fixed $ab \neq c$ the distribution of xy + ay + bx is not guaranteed to be uniform over \mathbb{Z}_q . Hence also the sum xy + ay + bx + c is not guaranteed to be uniform, which itself implies that a re-randomised non-Diffe-Hellman tuple is a uniformly chosen triple and thus \mathcal{B} is not guaranteed to preserve its advantage.

To avoid this pitfall, we use a more complex re-randomisation for the first two tuple elements:

$$g^a \leadsto g^{a+x}, \qquad g^b \leadsto g^{by+z}$$
.

The corresponding correction is based on the equation

$$(a+x)(by+z) = xz + az + bxy + ab \cdot y$$

which leads to the following re-randomisation

$$q^{a+x}, (q^b)^y \cdot q^z, q^{xz} \cdot (q^a)^z \cdot (q^b)^{xy} \cdot (q^c)^y$$
 for $x, y, z \leftarrow \mathbb{Z}_q$.

Again, note that if $ab \neq c$ then the discrete logarithm of the third element is

$$\Delta = xz + az + bxy + c \cdot y = (bx + c)y + (a + x)z.$$

To analyse the distribution of Δ further, we must use the following fact.

Lemma 0.1 Let z be an invertible element of \mathbb{Z}_q . Then the product $x \cdot z$ has uniform distribution over \mathbb{Z}_q whenever x is picked uniformly from \mathbb{Z}_q .

The claim follows from the fact that the equation xz = y has a single solution for any y and thus

$$\Pr\left[x \leftarrow \mathbb{Z}_q : zx = y\right] = \Pr\left[x \leftarrow \mathbb{Z}_q : x = z^{-1}y\right] = \frac{1}{q}.$$

Let us continue the analysis of Δ by fixing the values of x, y. Since $z \leftarrow_u \mathbb{Z}_q$ we know that (a+x)z is uniformly distributed whenever a+x is invertible. As we assumed that the group \mathbb{G} has a prime order q, the term is uniformly distributed for any $a+x\neq 0$. The latter also implies that Δ is uniformly distributed for any fixed $x,y\in\mathbb{Z}_q$ such that $x\neq -a$. If x=-a then $\Delta=(bx+c)y=(c-ab)y$. By same reasoning Δ has a uniform distribution as long as $ab\neq c$, i.e., we do not re-randomise Diffie-Hellman tuples.

As a consequence, we can conclude that the new re-randomisation takes Diffie-Hellman tuple to a random Diffie-Hellman tuple and non-Diffie-Hellman tuple to a random triple of group elements. This leads to the following random self-reduction:

Notice that all parameters thrown to \mathcal{B} can be calculated in a constant time δ . Hence, the \mathcal{A} is $(t + \delta)$ -time algorithm whenever \mathcal{B} is t-time algorithm. By our extensive reasoning

$$\Pr\left[\mathcal{G}_{0}^{\mathcal{A}}=1\right]=\Pr\left[\mathcal{Q}_{0}^{\mathcal{B}}=1\right] \text{ and } \Pr\left[\mathcal{G}_{1}^{\mathcal{A}}=1\right]=\Pr\left[\mathcal{Q}_{1}^{\mathcal{B}}=1\right]$$

where Q_0 and Q_1 denote ordinary DDH games. Hence, $\mathsf{Adv}^\mathsf{f-ddh}_{\mathbb{G},a,b,c}(\mathcal{A}) = \mathsf{Adv}^\mathsf{ddh}_{\mathbb{G}}(\mathfrak{B})$.