Solutions for Chapter II. Updated November 3, 2016.

Exercise II.1. Let $f \in R$ be a regular element. Show that $f \in U(R)$ if and only if the localization $R[f^{-1}]$ is module-finite over R.

[anton@math] If $f \in U(R)$, then $R[f^{-1}] = R$ is clearly finitely generated as a module over R. On the other hand, if $R[f^{-1}]$ is finitely generated as a module over R, say by $\left\{\frac{r_1}{f^{n_1}}, \ldots, \frac{r_m}{f^{n_m}}\right\}$, then let $N = \max\{n_i\}$. Now we have that $R[f^{-1}] \subseteq \frac{1}{f^N}R$. In particular, $f^{-N-1} = f^{-N}r$ for some $r \in R$, so 1 = fr (in $R[f^{-1}]$). Since f is a regular element, R injects into $R[f^{-1}]$, so the equality 1 = fr holds in R, so $f \in U(R)$.

Exercise II.2. (The Rabinowitch Trick). For $J \triangleleft R$ and $g \in R$, show that $g \in \sqrt{J}$ iff J and 1-tg generate the unit ideal in the polynomial ring R[t]. Use this to show that the Strong Nullstellensatz (4.17) can be deduced from the Weak Nullstellensatz (4.9) by "adding a variable".

[David Brown [brownda@math]] " \Rightarrow " Suppose $g^n \in J$. Then as 1 - tg divides $1 - (tg)^n$, we have $1 = (tg)^n + (1 - (tg)^n)$ is in the ideal generated by J and 1 - tg.

" \Leftarrow " Suppose that J and 1-tg generate the unit ideal. Then modulo J, 1=(1-tg)f(t) for some $f(t)=\sum a_it^i\in R[t]$, say of degree n. Then we get n+1 many equations mod J:

$$\begin{array}{rcl}
a_0 & = & 1 \\
a_1 & = & a_0 g \\
& \cdots \\
a_i & = & a_i g \\
& \cdots \\
a_{n-1} & = & a_{n-2} g \\
a_n g & = & 0
\end{array}$$

and see inductively that $g^n \in J$.

"Weak Nullstellensatz \Rightarrow Strong Nullstellensatz" Suppose $g \in \sqrt{J}$. Then for some $m, g^m \in J$, and so for any $a \in V_{\overline{k}}(J), g^m(a) = g(a)^m = 0$. But k is a field so g(a) = 0. Conversely, suppose that $I := \langle J, 1 - tg \rangle$ is a proper ideal of R[t]. Then by the Weak Nullstellensatz, we can find $a = (a_1, \dots, a_n, b) \in V_{\overline{k}}(I)$. Then 1 - bg(a) = 0, so $g(a_1, \dots, a_n) \neq 0$ (else 0 = 1). Furthermore $f(a) = f(a_1, \dots, a_n) = 0$, so $g \notin V_{\overline{k}}(J)$.

Exercise II.3. For the ideal $J = (xy, yz, zx, (x - y)(x + 1)) \triangleleft k[x, y, z]$, determine the irreducible k-components of the k-algebraic set $V_{\bar{k}}(J)$.

[anton@math] I claim that the decomposition $V_{\bar{k}}(J) = V_{\bar{k}}(x,y) \cup V_{\bar{k}}(x+1,y,z)$ gives the irreducible components of $V_{\bar{k}}(J)$. Since (x,y) and (x+1,y,z) are prime (the quotients rings are clearly domains), the Nullstellensatz tells us that

the sets $V_{\bar{k}}(x,y)$ and $V_{\bar{k}}(x+1,y,z)$ are irreducible, and there is no containment relation between them. Thus, it is enough to verify the equality. It is immediate that $J\subseteq (x,y)$ and $J\subseteq (x+1,y,z)$, so we get the containment \supseteq . For the other containment, assume $(a,b,c)\in \bar{k}^3$ is in $V_{\bar{k}}(J)$. Then ab=bc=ac=0, so two of a,b,c are zero. Moreover, we have that either a=b or a+1=0. If a=b, then they must both be zero, so $(a,b,c)\in V_{\bar{k}}(x,y)$. If a+1=0, then b=c=0, so $(a,b,c)\in V_{\bar{k}}(x+1,y,z)$.

Exercise II.4. Over a field $k = \overline{k}$, let $Y = \{(a^p, a^q) : a \in k\}$, where p, q are fixed positive integers. Show that Y is a k-algebraic set, and determine the ideal $I(Y) \subseteq k[x, y]$.

[Manuel Reyes; mreyes@math] I claim that it is enough to consider the case where p and q are relatively prime. Indeed, let $d = \gcd(p, q)$ and write p = dp', q = dq'. Because k is algebraically closed, every element has a d-th root so that $k^d = k$. Then

$$\begin{split} Y &= \{(a^p, a^q) : a \in k\} \\ &= \left\{ \left(a^{dp'}, a^{dq'} \right) : a \in k \right\} \\ &= \left\{ \left(b^{p'}, b^{q'} \right) : b \in k^d \right\} \\ &= \left\{ \left(b^{p'}, b^{q'} \right) : b \in k \right\}. \end{split}$$

So we may replace p and q by p' and q' if necessary so that (p,q)=1.

Next we show that $Y = V_k(x^q - y^p)$. Clearly $Y \subseteq V_k(x^q - y^p)$; for the other inclusion, assume that $(u, v) \in V_k(x^q - y^p)$. If either u or v is zero then $(u, v) = (0, 0) \in Y$, so we may assume that $u, v \neq 0$. Because k is algebraically closed, there exists $b \in k$ with $b^p = u$. Consider then that

$$(b^q)^p = b^{pq} = u^q = v^p.$$

It follows that $\zeta := \frac{v}{b^q}$ is a p-th root of unity in k. Because (p,q) = 1, \overline{q} is a unit in $\mathbb{Z}/p\mathbb{Z}$. So there exists $m \in \mathbb{Z}$ such that $mq \equiv 1 \pmod{p}$. Then ζ^m is a p-th root of unity with $(\zeta^m)^q = \zeta$. It follows that for $a = \zeta^m b$ we have $a^p = b^p = u$ and $a^q = \zeta b^q = v$. So $(u, v) = (a^p, a^q) \in Y$. This means that $Y = V_k (x^q - y^p)$ is a k-algebraic set.

Now because $k = \overline{k}$ Proposition 1.7 implies that $I(Y) = I(V_k(x^q - y^p)) = \sqrt{(x^q - y^p)}$. I claim that $(x^q - y^p)$ is a prime (hence radical) ideal; this will imply that $I(Y) = (x^q - y^p)$. Consider the k-algebra homomorphism $k[x, y] \to k[z]$ given by $x \mapsto z^p$ and $y \mapsto z^q$. Clearly $(x^q - y^p)$ is contained in the kernel, so this induces a map $\varphi : k[x,y]/(x^q - y^p) \to k[z]$, which we will show is injective. First consider that any element \overline{f} of $A := k[x,y]/(x^q - y^p)$ can be represented by a polynomial of the form $f = \sum_{i=0}^{p-1} f_i(x) y^i$, simply because we have the relation $\overline{y}^p = \overline{x}^q$. Then we have

$$\varphi\left(\overline{f}\right) = \sum_{i=0}^{p-1} f_i\left(z^p\right) z^{qi}.$$

Suppose that for positive integers a and c and integers $0 \le b, d < p$ we have ap + bq = cp + dq. It follows that $bq \equiv dq \pmod{p}$, and because q is a unit modulo p we have $b \equiv d \pmod{p}$. But because |b-d| < p we must have b = d. It is then easy to see that a = c. It follows that for $0 \le i < j < p$ the monomials in the terms $f_i(z^p)z^{qi}$ are distinct from those in $f_j(z^p)z^{qj}$. Then if $\overline{f} \ne 0$, the representative f_i are not all zero, and we must have $\varphi(\overline{f}) \ne 0$. So φ is injective, and A is isomorphic to a subring of the domain k[z]. Hence A is itself an integral domain. So $(x^q - y^p)$ is prime and we are done.

Exercise II.5. Let k be a field that is not algebraically closed. Show that, for any r, there is a polynomial $g(x_1, \dots, x_r) \in k[x_1, \dots, x_r]$ such that $V_k(g) = \{(0, \dots, 0)\} \subset k^r$.

[David Brown, brownda@math.berkeley.edu] Let $f(x) = (x - \alpha_1) \dots (x - \alpha_n) \in k[x]$ (with $\alpha_i \in \bar{k}$) be irreducible. For r = 1, $g(x_1) = x_1$ works. For r = 2, $g(x_1, x_2) = (x_1 - x_2\alpha_1) \dots (x_1 - x_2\alpha_n)$ works, because for any non-zero $a \in k$, g(x, a) has the same splitting field as f(x), and thus g(x, a) is never zero if a is non zero (and if a = 0 then x = 0 is the only solution). For r > 2 suppose we have such a polynomial $h(x_1, \dots, x_{r-1})$ for k - 1. Then $g(x_r, h(x_1, \dots, x_{r-1}))$ works (by the same argument as the r = 2 case).

Exercise II.6. Let k be a field that is not algebraically closed. Use Exercise 5 to show that any k-algebraic set S in k^n can be represented (set-theoretically) as $V_k(f)$ for some $f \in k[x_1, \ldots, x_n]$.

[David Brown, brownda@math.berkeley.edu] Let I(S) be generated by polynomials f_1, \ldots, f_k with each $f_i \in k[x_1, \cdots, x_n]$, and let $g \in k[x_1, \ldots, x_k]$ be a polynomial such that $g(a_1, \ldots, a_k) = 0$ iff each $a_i = 0$ (this exists from problem 5). Then the single polynomial $g(f_1, \ldots, f_r) \in k[x_1, \cdots, x_n]$ also defines S.

Exercise II.7. (A generalization of the Weak Nullstellensatz) Let $J \triangleleft k[x_1, \dots, x_n]$, where k in any field. If $V_k(f) \neq \emptyset$ for every $f \in J$, show that $V_k(J) \neq \emptyset$. Why is this a generalization of the Weak Nullstellensatz?

[David Brown, brownda@math.berkeley.edu] If $k = \overline{k}$, then this is just the Weak Nullstellensatz, so assume $k \neq \overline{k}$. Let f_1, \dots, f_r generate J, and let $g(y_1, \dots, y_r)$ be the polynomial from exercise II.5. Then $h = g(f_1, \dots, f_r) \in J$, so by our hypothesis there is an $a = (a_1, \dots, a_n) \in k^n$ such that h(a) = 0. By exercise II.5, $f_1(a) = \dots = f_n(a) = 0$. This is a generalization of the Weak Nullstellensatz because it works when $k \neq \overline{k}$.

Exercise II.8. Let K/k be a field extension, and let $Y \subseteq K^n$ be a k-algebraic set. For any $a \in Y$, let $\lambda_a : k[Y] \to K$ be "evaluation at a"; that is, $\lambda_a(f) = f(a)$ for any k-polynomial function f on Y. Show that λ_a is a k-algebra homomorphism, and that $a \mapsto \lambda_a$ defines a bijection from Y to $\operatorname{Hom}_{k-alg}(k[Y], K)$ (the set of k-algebra homomorphisms from k[Y] to K).

[anton@math] For the constant polynomial $c \in k[Y]$, we have $\lambda_a(c) = c(a) = c$, so λ_a maps k to k. Moreover, we have $\lambda_a(f \cdot g) = f(a) \cdot g(a) = \lambda_a(f) \cdot \lambda_a(g)$ and $\lambda_a(f+g) = f(a) + g(a) = \lambda_a(f) + \lambda_a(g)$, so λ_a is a k-algebra homomorphism.

If a and a' are two points in $Y \subseteq K^n$, then they differ in some coordinate, say the *i*-th. Let \bar{x}_i be the image of the polynomial x_i in k[Y]. Then $\lambda_a(\bar{x}_i) \neq \lambda_{a'}(\bar{x}_i)$, so $\lambda_a \neq \lambda_{a'}$. We've shown that the map $\lambda_-: Y \to \operatorname{Hom}_{k-\operatorname{alg}}(k[Y], K)$ is injective.

If $f: k[Y] \to K$ is a k-algebra homomorphism, then I claim it is λ_a for $a = (f(\bar{x}_1), \dots, f(\bar{x}_n))$. To see this, note that $\lambda_a(\bar{x}_i) = f(\bar{x}_i)$ for all i. Since the \bar{x}_i generate k[Y] as a k-algebra, this implies that $\lambda_a = f$, proving that λ_- is surjective. By the way, note that $a \in Y$ because $g \in I(Y) \Rightarrow \bar{g} = 0 \in k[Y] \Rightarrow f(g) = 0$, so $g(a) = g(f(\bar{x}_1), \dots, f(\bar{x}_n)) = f(g) = 0$. The last equality follows from the fact that f is a k-algebra homomorphism, so $f(\bar{x}_i) \cdot f(\bar{x}_j) = f(\bar{x}_i \bar{x}_j)$, and so on.

Exercise II.9. True or False: for any field extension K/k, the only closed points in K^n in the Zariski k-topology are the k-points

[anton@math] False. Consider the extension $K = \mathbb{Q}(\sqrt[3]{2})$ of $k = \mathbb{Q}$. Then $V_K(x^3 - 2) = {\sqrt[3]{2}}$ is a closed point which is not a k-point.

[lam@math] Comment. It doesn't pay to add the assumption that K/k is normal either. If $\operatorname{char}(k) = p > 0$ and k is not perfect, we can take an element $\alpha \notin k$ with $\alpha^p = a \in k$. For $K = k(\alpha)$, we have $V_K(x^p - a) = \{\alpha\} \subseteq K^1$, so $\{\alpha\}$ is a closed point in K^1 (w.r.t. the k-topology) that is not a k-point. How about assuming K/k is (finite) Galois?

Exercise II.9'. (This exercise amplifies the former Ex. 9.) Let K/k be fields such that $K \subset \overline{k}$. Show that (1) in the k-topology, any closed poin in K^n is algebraic, and (2) if K/k is a Galois extension, the only closed points in K^n are the k-points.

[David Brown, brownda@math] (1) Let $X = \{(a_1, \dots, a_n)\} \subset K^n$ be algebraic. Let $X_{\text{alg}} = X \cap \overline{k}^n$. By exercise II.21, $\overline{X_{\text{alg}}} = X$. This is only possible if V_{alg} is non-empty (else its closure would be empty), so (a_1, \dots, a_n) is in fact algebraic.

(2) Suppose $P=(a_1,\cdots,a_n)\in K^n$, and assume $X=\{P\}$ is closed, i.e. there exists $J \triangleleft A=k[x_1,\cdots,x_n]$ with $X:=V_K(J)$. Let J be generated by f_1,\cdots,f_r . Then $f_i(P)=0$. Let $\sigma\in \mathrm{Gal}(K/k)$. Then $P^{\sigma}=(a_1^{\sigma},\cdots,a_n^{\sigma})$, and $0=0^{\sigma}=(f_i(P))^{\sigma}=f_i(P^{\sigma})$ (since the coefficients of f_i are in k, hence fixed by σ). Thus, $P^{\sigma}\in V_K(J)=\{P\}$, and we conclude that $P^{\sigma}=P$ for every σ , (thus $P\in k^n$).

Exercise II.10. For a nonempty space X, the following are equivalent:

- 1. X is not the union of two proper closed sets.
- 2. Any two nonempty open sets in X intersect.

3. Any nonempty open set in X is dense.

[Lars Kindler, lars_k@berkeley.edu]

- 1. \Rightarrow 2. Let $U, V \subset X$ be open, nonempty and assume $U \cap V = \emptyset$. Passing to the complement shows $X \setminus U \cup X \setminus V = X$ which contradicts the irreducibility of X, so $U \cap V \neq \emptyset$.
- 2. \Rightarrow 3. Let $U \subset X$ be open and nonempty. Let $x \in X$ be an arbitrary point, then for every open neighborhood U_x of x we have $U_x \cap U \neq \emptyset$ by assumption, so $x \in \bar{U}$, which proves $\bar{U} = X$.
- 3. \Rightarrow 2. For open nonempty $U,V\subset X$ we have $\bar{U}=X=\bar{V},$ i.e. $\bar{U}\supset V,$ so $V\cap U\neq\varnothing.$
- 2. \Rightarrow 1. Assume that $X = A \cup B$ for $A, B \subsetneq X$ closed, then we have $X \setminus A \cap X \setminus B = \emptyset$, which contradicts the assumption 2.

Exercise II.11. (1) The irreducible closed subsets of Spec (R) are precisely sets of the form $\mathcal{V}(\mathfrak{p})$, where $\mathfrak{p} \in \operatorname{Spec}(R)$. (2) The irreducible components of Spec (R) are precisely sets of the form $\mathcal{V}(\mathfrak{p})$, where $\mathfrak{p} \in \operatorname{Min}(R)$.

[Manuel Reyes; mreyes@math] (1) It is straightforward to verify that a subset of a topological space is irreducible iff, whenever it is contained in the union of two closed subsets, it belongs to one of the two subsets. Let $\mathcal{V}(I) \neq \emptyset$ be an arbitrary closed subset of $\operatorname{Spec}(R)$. We may assume that $I \neq R$ is radical. Then $\mathcal{V}(I)$ is irreducible iff for any ideals $J_1, J_2 \subseteq R$ such that $\mathcal{V}(I) \subseteq \mathcal{V}(J_1) \cup \mathcal{V}(J_2) = \mathcal{V}(J_1J_2)$ we have that $\mathcal{V}(I) \subseteq \mathcal{V}(J_i)$ for some i. Recalling that I is radical, this holds iff $\sqrt{J_1J_2} \subseteq I$ implies that one of the $\sqrt{J_i} \subseteq I$, iff $J_1J_2 \subseteq I$ implies that one of the $J_i \subseteq I$. This is true iff I is prime (see the solution to Exercise II.15).

(2) Consider that for two irreducible closed sets $\mathcal{V}(\mathfrak{p})$, $\mathcal{V}(\mathfrak{q})$, with $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec}(R)$, we have $\mathcal{V}(\mathfrak{p}) \subseteq \mathcal{V}(\mathfrak{q})$ iff $\mathfrak{q} \subseteq \mathfrak{p}$. It follows that

Hence the irreducible components of Spec (R) are the subsets of the form $\mathcal{V}(\mathfrak{p})$ with $\mathfrak{p} \in \text{Min}(R)$.

Exercise II.12. (1) For any $I \triangleleft R$, let $\pi : R \to R/I$ be the projection map. Show that the map $\pi^* : \operatorname{Spec}(R/I) \to \operatorname{Spec}(R)$ induces a homeomorphism from $\operatorname{Spec}(R/I)$ onto $\mathcal{V}(I)$. (In particular, if $I \subseteq \operatorname{Nil}(R)$, π^* is a homeomorphism from $\operatorname{Spec}(R/I)$ onto $\operatorname{Spec}(R)$.

(2) For any multiplicative set $S \subseteq R$, show that the localization map $f: R \to R_S$ induces a homeomorphism f^* from $\operatorname{Spec}(R_S)$ onto the subspace $\{\mathfrak{p} \in \operatorname{Spec}(R) : \mathfrak{p} \cap S = \emptyset\}$ of $\operatorname{Spec}(R)$.

[los@math] (1) The map $K \mapsto \pi^{-1}(K)$ is a bijection from the set of ideals of R/I to the set of ideals of R containing I, and its inverse is given by $J \mapsto J/I$. For any $J \triangleleft R$ containing I, the rings (R/I)/(J/I) and R/J are isomorphic, hence J is prime in R if and only if J/I is prime in R/I. This establishes that π^* is a bijection. The map π^* is also continuous. Therefore, to show it is a homeomorphism, it is enough to show it is closed. Any closed subset of $\operatorname{Spec}(R/I)$ is of the form $\mathcal{V}(J/I)$ for some $J \triangleleft R$ containing I. We have $\pi^*(\mathcal{V}(J/I)) = \mathcal{V}(J)$. The latter set is closed in $\operatorname{Spec}(R)$, thus π^* is a closed map. This proves that π^* is a homeomorphism from $\operatorname{Spec}(R/I)$ onto $\mathcal{V}(I)$. The last statement results from the fact that $\operatorname{Nil}(R)$ is contained in every prime ideal of R.

(2) Let W_S denote the subspace $\{\mathfrak{p} \in \operatorname{Spec}(R) : \mathfrak{p} \cap S = \emptyset\}$ of $\operatorname{Spec}(R)$. If I (resp. J) is an ideal in R (resp. R_S), write I^e (resp. J^c) for the ideal $IR_S = I_S$ of R_S (resp. the ideal $f^{-1}(J)$ of R). (In particular, for $\mathfrak{q} \in \operatorname{Spec}(R_S)$, we have $f^*(\mathfrak{q}) = \mathfrak{q}^c$ by definition.) Because f is a localization map, we have $J=J^{ce}$ for every ideal J of R_S . First, we show that $f^*(\operatorname{Spec}(R_S))\subseteq W_S$. Let $\mathfrak{q} \in \operatorname{Spec}(R_S)$, and assume there exists $s \in \mathfrak{q}^c \cap S$. Then the invertible element f(s) = s/1 of R_S belongs to $\mathfrak{q}^{ce} = \mathfrak{q}$. This is absurd, since \mathfrak{q} , being prime, cannot be all of R_S . Therefore $\mathfrak{q}^c \cap S = \emptyset$, which shows that $\mathfrak{q}^c \in W_S$. Now we show that f^* is a bijection from $\operatorname{Spec}(R_S)$ onto W_S , with inverse given by $\mathfrak{p} \mapsto \mathfrak{p}^e$. For this it is enough to prove that $\mathfrak{p}^e = \mathfrak{p}_S$ is prime in R_S and $\mathfrak{p}^{ec} = \mathfrak{p}$ whenever $\mathfrak{p} \in W_S$. Let $\pi: R \to R/\mathfrak{p}$ denote the projection. Then we have natural maps $R/\mathfrak{p} \to R_S/\mathfrak{p}^e = R_S/\mathfrak{p}_S \xrightarrow{\sim} (R/\mathfrak{p})_S \xrightarrow{\sim} (R/\mathfrak{p})_{\pi(S)}$ the composite of which is the localization homomorphism g relative to the multiplicative subset $\pi(S)$ of R/\mathfrak{p} . By hypothesis, $\mathfrak{p} \cap S = \emptyset$, hence $\pi(S) \subseteq (R/\mathfrak{p}) \setminus \{0\}$. Furthermore, R/\mathfrak{p} is a domain. Thus $(R/\mathfrak{p})_{\pi(S)}$ is a domain and the localization homomorpism g is injective. In particular, \mathfrak{p}^e is prime and $\mathfrak{p}^{ec}/\mathfrak{p} = \ker(g) = 0$. This shows that f^* is a bijection onto W_S . Finally, we show f^* is a homeomorphism onto its image in $\operatorname{Spec}(R)$. Since f^* is continuous, it is enough to show that every closed subset Z of Spec (R_S) is $(f^*)^{-1}(Z')$ for some closed subset Z' of Spec(R). By definition of the topology on $\operatorname{Spec}(R_S)$, we have $Z = \mathcal{V}(J)$ for some ideal J of R_S . Now for $Z' = \mathcal{V}(J^c) \subseteq \operatorname{Spec}(R)$ we have $(f^*)^{-1}(Z') = \mathcal{V}(J^{ce}) = \mathcal{V}(J) = Z$, which completes the proof.

Exercise II.13. For any ring R, show that the following are equivalent:

- 1. Spec R is a discrete space
- 2. Spec R is finite and discrete
- 3. R is 0-dimensional and semilocal

Show that these conditions are not equivalent to $|\operatorname{Spec} R| < \infty$. If R is a noetherian ring, show that 1.-3. are equivalent to: 4. R is artinian.

[Lars Kindler, lars_k@berkeley.edu]

1. \Leftrightarrow 2. Spec R is discrete iff all points are open, iff Spec R is finite and discrete, since Spec R is compact.

- 2. \Rightarrow 3. It is clear that R is semilocal. Assume there are $\mathfrak{p}_1, \mathfrak{p}_2 \in \operatorname{Spec} R$ such that $\mathfrak{p}_1 \subsetneq \mathfrak{p}_2$. Then every open neighborhood of \mathfrak{p}_2 contains \mathfrak{p}_1 , since if D(f) is a basic open set with $\mathfrak{p}_2 \in D(f)$, then $\mathfrak{p}_1 \in D(f)$. This contradicts the assumption that $\operatorname{Spec} R$ is discrete.
- 3. \Rightarrow 1. Let Spec $R = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$ and let R be 0-dimensional. Then for every $j \neq i$ there is a $x_j \in \mathfrak{p}_j \setminus \mathfrak{p}_i$, so $x := \prod_{j \neq i} x_j \in \mathfrak{p}_k$ for all $k \neq i$, which means $D(x) = \{\mathfrak{p}_i\}$, i.e. Spec R is discrete.

If R is noetherian, then R is 0-dimensional iff R is artinian, i.e. $3. \Leftrightarrow 4$. To see that the above are not equivalent to $|\operatorname{Spec} R| < \infty$, consider $R = \mathbb{F}_2[x,y]/(x^2,y^2)$. R has only finitely many primes since R is a finite ring, but $(x) \subsetneq (x,y)$ is a chain of prime ideals, so R is not 0-dimensional, which proves $|\operatorname{Spec} R| < \infty \not \Leftrightarrow 3$.

Exercise II.14. For $\mathfrak{p}_1 \neq \mathfrak{p}_2$ in Spec R, show that there is no prime $\mathfrak{p} \subset \mathfrak{p}_1 \cap \mathfrak{p}_2$ iff there exist disjoint open sets $X_1, X_2 \subseteq \operatorname{Spec} R$ such that $\mathfrak{p}_i \in X_i$ for i = 1, 2.

[Lars Kindler, lars k@berkeley.edu] First, let $X_1, X_2 \subset \operatorname{Spec} R$ be disjoint open sets with $\mathfrak{p}_i \in X_i$. Then there are $f_1, f_2 \in R$ such that $\mathfrak{p}_i \in D(f_i) \subset X_i$, so if there is a prime $\mathfrak{p} \subset \mathfrak{p}_1 \cap \mathfrak{p}_2$ this implies $f_i \notin \mathfrak{p}$, i = 1, 2, so $\mathfrak{p} \in D(f_1) \cap D(f_2) = \emptyset$, which is absurd.

Conversely, assume that there is no prime $\mathfrak{p} \subset \mathfrak{p}_1 \cap \mathfrak{p}_2$. We want to show that there are $f_1 \in R \setminus \mathfrak{p}_1, f_2 \in R \setminus \mathfrak{p}_2$ with $f_1 f_2 = 0$, since that would give us $D(f_1) \cap D(f_2) = D(f_1 f_2) = \emptyset$ and $\mathfrak{p}_i \in D(f_i)$, i = 1, 2. Assume that there are no such elements f_1, f_2 . Let S and T denote the multiplicative sets $R \setminus \mathfrak{p}_1$ and $R \setminus \mathfrak{p}_2$, then ST is also a multiplicative set because $0 \notin ST$ by assumption. Moreover note that $S \subset ST$ and $T \subset ST$, since $1 \in S \cap T$. Now there is a prime ideal \mathfrak{p} , maximal with respect to being disjoint from ST (Kaplansky's Theorem 1), but this means $\mathfrak{p} \subset R \setminus ST \subset R \setminus S \cap R \setminus T = \mathfrak{p}_1 \cap \mathfrak{p}_2$ which is a contradiction.

Exercise II.15. Show that $\operatorname{Spec}(R)$ is an irreducible space iff $R/\operatorname{Nil}(R)$ is an integral domain. (Conceptually, this is the same as Exercise 21(2) in Ch. I.)

[mreyes@math] As a preliminary we prove the fact that an ideal $\mathfrak{p} \subsetneq R$ is prime iff, for ideals $I,J\subseteq R$, $IJ\subseteq \mathfrak{p}$ implies that one of I or J is contained in \mathfrak{p} . Indeed, if \mathfrak{p} is an ideal with this property, then $ab\in \mathfrak{p}$ implies that $(a)(b)=(ab)\subseteq \mathfrak{p}$. Then, without loss of generality, we have $a\in (a)\subseteq \mathfrak{p}$ and \mathfrak{p} is prime. Now suppose that there exist ideals $I,J\nsubseteq \mathfrak{p}$ with $IJ\subseteq \mathfrak{p}$. Then there exist $a\in I\setminus \mathfrak{p}$ and $b\in J\setminus \mathfrak{p}$, with $ab\in IJ\subseteq \mathfrak{p}$. Hence \mathfrak{p} is not prime.

This means that a prime lies above IJ iff it lies above either I or J, or $\mathcal{V}(IJ) = \mathcal{V}(I) \cup \mathcal{V}(J)$. As another side note, consider that $\mathcal{V}(I) = \operatorname{Spec}(R)$ iff $I \subseteq \operatorname{Nil}(R)$.

We are now ready to solve the problem. The space $\operatorname{Spec}(R)$ is irreducible iff, for any ideals $I, J \subseteq R$ with $\operatorname{Spec}(R) = \mathcal{V}(I) \cup \mathcal{V}(J) = \mathcal{V}(IJ)$, we have that $\operatorname{Spec}(R)$ is equal to one of $\mathcal{V}(I), \mathcal{V}(J)$. But this is true iff $IJ \subseteq \operatorname{Nil}(R)$ implies that one of I or J is contained in $\operatorname{Nil}(R)$. This happens iff $\operatorname{Nil}(R)$ is prime, iff $R/\operatorname{Nil}(R)$ is an integral domain

Exercise II.16. Let $S \subseteq T$ where S is Hilbert and T is ring-finite over S. Show that any maximal ideal in T contracts to a maximal ideal in S.

[Jonah (jblasiak@math)] Let m be maximal in T and let ϕ be the inclusion of S into T. The composition $S \hookrightarrow T \to T/m$ factors through $A := S/\phi^{-1}(m)$, yielding the injection $A \stackrel{\alpha}{\hookrightarrow} T/m$. A is a domain and it follows easily from the definition that A is Hilbert. Now we'll assume that A is not a field and arrive at a contradiction.

Let i be the inclusion of A into its field of fractions Q(A). There exists a unique map β from Q(A) to T/m such that $\beta \circ i = \alpha$, since all elements of A are sent by α to something invertible. The map ϕ being ring-finite easily implies the same for α and β . Q(A) is a field so β is injective and lemma 4.4 implies that β is a finite field extension. We will show below that i is ring-finite. Assuming this, let $\frac{a_1}{b_1}, \frac{a_2}{b_2}, \ldots, \frac{a_k}{b_k}$ be generators for Q(A) as an A-algebra (where the a_i and b_i are in A). Then $\frac{1}{b_1b_2...b_k}$ generates Q(A) as an A-algebra. Since A is a Hilbert domain, we can choose a maximal ideal $m' \subseteq A$ such that $b_1b_2...b_k \notin m'$. Then localizing at m' yields Q(A) since $b_1b_2...b_k$ is inverted, but contains the maximal ideal m' as well as the non-maximal ideal (0), contradiction.

To see that i is ring-finite, let t_1,\ldots,t_r be generators for T/m as an A-algebra. Let v_1,\ldots,v_s be a vector space basis for T/m over Q(A), where $v_1=1$. Now we can write $t_i=\sum_j c_{ij}v_j$, with $c_{ij}\in Q(A)$, and $v_iv_j=\sum_k d_{ijk}v_k$, with $d_{ijk}\in Q(A)$. Any $u\in Q(A)$ can be written as $\sum_{\nu} a_{\nu}\mathbf{t}^{\nu}$ with the $a_{\nu}\in A, \nu\in\mathbb{N}^s$. Since each \mathbf{t}^{ν} can be multiplied out and expressed as a linear combination of the v_i using the above relations, we have $u=\sum_i e_iv_i$, where e_i is a polynomial in the c_{ij} and d_{ijk} with coefficients in A. Then we have $u=\sum_i e_iv_i=e_1v_1=e_1$ because $u\in Q(A)$ and the v_i are a basis. Therefore the c_{ij} and d_{ijk} generate Q(A) as an A-algebra.

Exercise II.17. Let $f: R \to S$ be a ring homomorphism. Then $\mathfrak{p} \in \operatorname{Spec} R$ is in the image of $f^*: \operatorname{Spec} S \to \operatorname{Spec} R$ iff $\mathfrak{p} = \mathfrak{p}^{ec}$.

[Lars Kindler, lars_k@berkeley.edu] First let $\mathfrak{p} \in \text{Im}(f^*)$, which means there is a $\mathfrak{q} \in \text{Spec } S$, such that $\mathfrak{q}^c = f^{-1}(\mathfrak{q}) = \mathfrak{p}$. Then we have $\mathfrak{p}^e = (\mathfrak{q}^c)^e \subset \mathfrak{q}$ and thus $\mathfrak{p} \subset \mathfrak{p}^{ec} \subset \mathfrak{q}^c = \mathfrak{p}$.

Conversely, let $\mathfrak{p} = \mathfrak{p}^{ec} = f^{-1}(f(\mathfrak{p})S)$. Then we have $\mathfrak{p} \subseteq f^{-1}(f(\mathfrak{p})) \subseteq f^{-1}(f(\mathfrak{p})S) = \mathfrak{p}^{ec} = \mathfrak{p}$, and thus $f(\mathfrak{p}) = f(\mathfrak{p})S = \mathfrak{p}^e$, and since \mathfrak{p} is prime this implies \mathfrak{p}^e is prime, hence $\mathfrak{p} \in \text{Im}(f^*)$.

Exercise II.18. Show that a topological space X is noetherian iff all subspaces (respectively, all open subspaces) of X are compact.

[Manuel Reyes; mreyes@math] If all subspaces of X are compact, then all open subspaces of X are certainly compact.

Suppose that all open subspaces of X are compact, and let $U_1 \subseteq U_2 \subseteq \cdots$ be an ascending chain of open subsets of X. Then $U = \bigcup U_i$ is an open subset and thus is compact. This means that the open cover $\{U_i\}$ has a finite subcover.

Then choosing a maximal element U_n of that subcover, it is clear that $U = U_n = U_{n+1} = \cdots$. So X satisfies the ACC on open subsets and thus is noetherian.

Finally suppose that X is noetherian, and let $Y \subseteq X$ be any subspace. To show that Y is compact, let $\{U_i\}$ be any nonempty open cover of Y. Denote by \mathcal{F} the family of finite unions of elements of the cover $\{U_i\}$. Because $\mathcal{F} \neq \emptyset$ it has a maximal element, say $V := U_{i_1} \cup \cdots \cup U_{i_n}$. Assume for contradiction that $Y \subsetneq V$. Then choose some point $x \in Y \setminus V$, and choose some U_j containing x. Then $V \subsetneq V \cup U_j \in \mathcal{F}$, contradicting the maximality of V. So U_{i_1}, \ldots, U_{i_n} is a finite subcover of Y and thus Y is compact.

Exercise II.19. Let M be a f.g. R-module. What are the irreducible components of Supp(M) (as a subspace of Spec(R))? Show that the number of irreducible components is finite if M is a noetherian module. (**Hint.** Let I = ann(M), and use Exercise 12 in conjunction with (I.3.12) and (II.3.12)!)

[los@math] Let $I = \operatorname{ann}(M)$. By (I.3.12), we have $\operatorname{Supp}(M) = \mathcal{V}(I)$. The set $\mathcal{V}(I)$ is homeomorphic to Spec(R/I) by Exercise 12, and for any ideal J of R containing I, the set $\mathcal{V}(J) \subseteq \mathcal{V}(I)$ corresponds to $\mathcal{V}(J/I) \subseteq \operatorname{Spec}(R/I)$ under this identification. By (II.3.12(2)) then, the irreducible components of $\mathcal{V}(I)$ are the the sets $V(\mathfrak{p})$ for each prime \mathfrak{p} of R minimal over I. If R/I is noetherian, then by (I.4.13) applied to the ideal (0) of R/I, there will be only finitely many primes of R minimal over I, and therefore only finitely many irreducible components in Supp(M). Thus in order to prove the last statement, it will be enough to show that if M is a faithful noetherian module over a ring A (which in our case will be R/I), then the ring A is itself noetherian. Assume such an A and M given. Then M is generated by finitely many elements, say m_1, m_2, \ldots, m_n . We define a linear map $\varphi: A \to M^n$ by $\varphi(a) = (am_1, am_2, \dots, am_n)$. Because the elements m_1, m_2, \ldots, m_n generate M we have $\ker(\varphi) \subseteq \operatorname{ann}(M)$. But $\operatorname{ann}(M) = 0$ because M is faithful. Therefore A is isomorphic to an A-submodule of the noetherian A-module M^n , and hence is a noetherian A-module itself. By definition, A is a noetherian ring. This completes the proof.

Exercise II.20. For any field k, show that any non-maximal prime ideal in A = k[x,y] is principal. [If necessary, you may use the fact (to be proved in Chap. III) that prime chains in A have length ≤ 2 .] Assuming k is algebraically closed, give a 1-minute running commentary on the following picture of Spec(A) in Mumford's "Little Red Book": (picture omitted)

[los@math] We will show that if R is any principal ideal domain, then any non-maximal prime ideal of R[t] is principal. The result of the exercise will follow, taking R = k[x].

Let \mathfrak{p} be any non-maximal prime ideal of R[t]. $\mathfrak{p} \cap R$ is a prime ideal \mathfrak{p}' of R. Assume first \mathfrak{p}' is not zero. Then it is (p) for some irreducible $p \in R$. Since R is a principal ideal domain, R/(p) is a field. Therefore, any nonzero prime ideal of $R[t]/pR[t] \cong (R/(p))[t]$ is maximal. \mathfrak{p} is a prime ideal of R[t] which contains pR[t] and is non-maximal, hence is equal to pR[t]. Assume therefore

that $\mathfrak{p} \cap R = \{0\}$. We may assume $\mathfrak{p} \neq 0$. If Q is any nonzero element of \mathfrak{p} , then we may write Q as a product of irreducible factors, one of which, say P, must belong to \mathfrak{p} . We will show that $\mathfrak{p} = (P)$, completing the proof. Otherwise, we have an ascending chain of three prime ideals $\{0\} \subset (P) \subset \mathfrak{p}$, the ideal (P) being prime because P is irreducible and R[t] is a unique factorization domain. The intersection of each of these prime ideals with the multiplicative subset $S = R \setminus \{0\}$ of R[t] is empty. Let K denote the fraction field of R. By the proof of Exercise 12, the localizations in $S^{-1}R[t] \cong K[t]$ of these ideals form a chain of prime ideals of length 2 in K[t]. But this is absurd, since K[t] is a principal ideal domain.

Thus the prime ideals of A = k[x, y] are of three kinds: $\{0\}$, (f) for some irreducible $f \in A$, and maximal ideals. The last two kinds are mutually exclusive since, by the Nullstellensatz, if \mathfrak{m} were a maximal ideal of A, then A/\mathfrak{m} would be an algebraic field extension of k. However, it is clear that for an irreducible nonzero $f \in A$, the transcendence degree of A/(f) over k is 1. Now assume that k is algebraically closed. The closed points in $\operatorname{Spec}(A)$ correspond bijectively to the points of k^2 . The ideal $\{0\}$ is the generic point of the plane $\operatorname{Spec}(A)$. The remaining prime ideals of A are of the form (f) for some irreducible f, and are the generic points of the curves f(x,y) = 0. Here f is determined up to a nonzero constant in k.

Exercise II.21. Let K be a field containing \overline{k} . For any k-algebraic set $Y \subset K^n$, show that, in the k-topology, Y_{alg} is dense in Y.

[David Brown, brownda@math] Note that $Y_{\text{alg}} = V_{\overline{k}}(J)$. By the Nullstellensatz, $I(V_{\overline{k}}(J)) = \sqrt{J}$. Thus, $\overline{Y_{\text{alg}}} = V_K(I(Y_{\text{alg}})) = V_K(\sqrt{J}) = V_K(J) = Y$.

[lam@math] Comment. Those who dig characteristic p would want to further amend this exercise into the following: " Y_{sep} is dense in Y" (where Y_{sep} denotes the set of $(y_1, \ldots, y_n) \in Y$ with all y_i separably algebraic over k). The proof takes another couple of lines.

Exercise II.22. It was pointed out (after (4.12)) that 0-dimensional rings are Hilbert. Coversely, show that semilocal Hilbert rings are 0-dimensional.

[mreyes@math] Let R be a semilocal Hilbert ring. Then any prime \mathfrak{p} of R is an intersection of finitely many maximal ideals and thus contains the product of these finitely many maximal ideals. Because \mathfrak{p} is prime it must then contain one of these maximal ideals (see the solution to problem II.15), so that \mathfrak{p} itself is maximal. So every prime of R is maximal, and R is 0-dimensional.

Exercise II.23. Show that a 1-dimensional noetherian domain is Hilbert iff it is not semilocal.

[Jonah (jblasiak@math)] Corollary 5.7 states that a ring R is semilocal iff $R/\operatorname{rad}(R)$ is artinian. A 1-dimensional noetherian domain R is Hilbert iff (0) is an intersection of maximal ideals iff $\operatorname{rad}(R) = 0$ iff $R/\operatorname{rad}(R)$ is not artinian. This last iff is because artinian is equivalent to 0-dimensional and neotherian, and R is 1-dimensional. The exercise then follows from the corollary.

Exercise II.24. Discuss the Ping Pong Paddle Picture in more detail in the case where $k = \mathbb{Q}$, $K = \mathbb{R}$, and Y is the real parabola $V_K(y - x^2)$.