Notizen zum

Repetitorium Lineare Algebra II

Jendrik Stelzner

7. August 2017

1 Diagonalisierbarkeit und Jordan-Normalform

Im Folgenden sei K ein Körper.

1.1 Eigenwerte und Eigenvektoren

Definition 1.1. Es sei V ein K-Vektorraum und $f: V \to V$ ein Endomorphismus. Sind $\lambda \in K$ und $v \in V$ mit $v \neq 0$ und $f(v) = \lambda v$, so ist v ein Eigenvektor von f zum $Eigenvert \lambda$. Für alle $\lambda \in K$ ist der Untervektorraum

$$V_{\lambda}(f) := \{ v \in V \mid f(v) = \lambda f \} = \ker(f - \lambda \operatorname{id}_V)$$

der Eigenraum von f zu λ .

Es sei $n \in \mathbb{N}$ und $A \in M_n(K)$. Sind $\lambda \in K$ und $x \in K^n$ mit $x \neq 0$ und $Ax = \lambda x$, so ist x ein Eigenvektor von A zum Eigenwert λ . Für alle $\lambda \in K$ ist der Untervektorraum

$$(K^n)_{\lambda}(A) := \{x \in K^n \mid Ax = \lambda x\} = \ker(A - \lambda I)$$

der Eigenraum von A zu λ .

Remark 1.2. 1. Ist $A \in M_n(K)$ und $f: K^n \to K^n$, $x \mapsto Ax$ der zu A (bezüglich der Standardbasis) gehörige Endomorphismus, so stimmen die Eigenvektoren, Eigenwerte und Eigenräume von A mit denen von f überein.

Es genügt daher im Folgenden, Definitionen und Aussagen für Endomorphismen zu anzugeben – für Matrizen gelten diese dann ebenfalls.

2. Es sei $f: V \to V$ ein Endomorphismus eines K-Vektorraums $V, \mathcal{B} = (v_1, \dots, v_n)$ eine Basis von V und $A := M_{f,\mathcal{B},\mathcal{B}}$ die entsprechende darstellende Matrix. Bezüglich

des zu $\mathcal B$ zugehörigen Isomorphismus

$$\Phi_{\mathcal{B}} \colon V \to K^n, \quad v = \sum_{i=1}^n x_i v_i \mapsto (x_1, \dots, x_n)^T \eqqcolon [v]_{\mathcal{B}}$$

gilt

$$\Phi_{\mathcal{B}}(V_{\lambda}(f)) = (K^n)_{\lambda}(A).$$

Es ist also $v \in V$ genau dann ein Eigenvektor von f zum Eigenwert $\lambda \in K$, wenn $[v]_{\mathcal{B}}$ ein Eigenvektor von A zum Eigenwert λ ist.

Berechnungen lassen sich deshalb in Matrizenform durchführen.

Für theoretische Aussagen nutzen wir also Endomorphismen, und für konkrete Rechnungen nutzen wir Matrizen.

Lemma 1.3. Es seien $v_1, \ldots, v_n \in V$ Eigenvektoren von $f: V \to V$ zu paarweise verschiedenen Eigenwerten, d.h. es gelte $f(v_i) = \lambda_i v_i$ mit $\lambda_i \neq \lambda_j$ für $i \neq j$. Dann sind v_1, \ldots, v_n linear unabhängig. Inbesondere ist die Summe $\sum_{\lambda \in K} V_{\lambda}(f)$ direkt.

Definition 1.4. Ein Endomorphismus $f: V \to V$ heiß diagonalisierbar falls er die folgenden, äquivalenten Bedingungen erfüllt:

- 1. Es gilt $V = \bigoplus_{\lambda \in K} V_{\lambda}(f)$.
- 2. Es gilt $V = \sum_{\lambda \in K} V_{\lambda}(f)$.
- 3. Es gibt eine Basis von V bestehend aus Eigenvektoren von f.
- 4. Es gibt ein Erzeugendensystem von V bestehend aus Eigenvektoren von f.

1.2 Das charakterische Polynom

Im Rest des Abschnittes sei V ein endlichdimensionaler K-Vektorraum, $f:V\to V$ ein Endomorphismus, \mathcal{B} eine Basis von V und $A:=M_{f,\mathcal{B},\mathcal{B}}$ die entsprechende darstellende Matrix. Dann gilt

 λ ist ein Eigenwert von f $\iff \lambda$ ist ein Eigenwert von A $\iff (K^n)_{\lambda}(A) \neq 0$ $\iff \ker(A - \lambda I) \neq 0$ $\iff A - \lambda I$ ist nicht invertierbar $\iff \det(A - \lambda I) = 0$.

Definition 1.5. Das charakterische Polynom von $A \in M_n(K)$ ist definiert als

$$p_A(t) := \det(A - tI) \in K[t],$$

das charakteristische Polynom von f ist definiert als $p_f(t) = p_A(t)$.

Dass das charakteristische Polynom $p_f(t)$ wohldefiniert ist, also nicht von der Wahl der Basis \mathcal{B} abhängt, folgt aus dem folgenden Lemma:

Lemma 1.6. Ähnliche Matrizen haben das gleiche charakterische Polynom.

Aus unserer anfänglichen Beobachtung erhalten wir den folgenden Zusammenhang zwischen den Eigenwerten und dem charakteristischen Polynom:

Proposition 1.7. Die Eigenwerte von f genau die Nullstellen des charakteristischen Polynoms $p_f(t)$.

1.3 Das Minimalpolynom

Lemma 1.8. Es sei $p \in K[t]$ ein Polynom mit p(f) = 0. Dann ist jeder Eigenwert von f eine Nullstelle von p.

Definition 1.9. Es sei

$$Pol(f) := \{ p \in K[t] \mid p(f) = 0 \}.$$

Das eindeutige normierte, von 0 verschiedene Polynom minimalen Grades aus Pol(f) ist das Minimalpolynom von f, und wird mit $m_f(t) \in K[t]$ notiert.

Remark 1.10. Die Wohldefiniertheit von Pol(f) nutzt die Endlichdimensionalität von V. Hierdurch wird sichergestellt, dass $Pol(f) \neq 0$ gilt.

Die Definition des Minimalpolynoms lässt sich bis auf Normiertheit wie folgt umschreiben:

Lemma 1.11. Es gilt

$$Pol(f) = \{ p \cdot m_f \mid p \in K[t] \}.$$

Für $p \in K[t]$ gilt also genau dann p(f) = 0, wenn $m_f \mid p$. Inbesondere gilt $m_f(f) = 0$.

Satz 1.12 (Cayley–Hamilton). Es gilt
$$p_f(f) = 0$$
, also $m_f \mid p_f$.

Nach dem Satz von Cayley-Hamilton ist jede Nullstelle von $m_f(t)$ auch eine Nullstelle von $p_f(t)$, also ein Eigenwert von f. Andererseits ist jeder Eigenwert von f nach Lemma 1.11 und Lemma 1.8 auch eine Nullstelle von $m_f(t)$. Somit sind die Nullstelle non $m_f(t)$ genau die Eigenwerte von f. Also haben $p_f(t)$ und $m_f(t)$ die gleichen Nullstellen. Ist K algebraisch abgeschlossen, so zerfallen $p_f(t)$ und $m_f(t)$ somit in die gleichen Linearfaktoren, wobei die Vielfachheit im Minimalpolynom nach dem Satz von Cayley-Hamilton jeweils kleiner ist als die Vielfachheit im charakteristischen Polynom.

Proposition 1.13. Der Endomorphismus f ist genau dann diagonalisierbar, falls m_f in paarweise verschiedene Linearfaktoren zerfällt.