Simple Linear

Regression Analysisis used to

Explain the impact of one variable on another independent

the variable you wish to explain

Independent variable:

the variable used to explain the dependent variable

Simple Linear

Regression Analysis is also used to

Duantify linear relationships

The purpose of regression analysis is calculate estimates of the slope and intercept.

Simple Linear

Regression Analysis is also used to

· Quantify linear relationships

The purpose of regression analysis is calculate estimates of the slope and intercept.

Linear Regression Example

Scatterplot

▶ House price model: scatter plot

(I) Describe the relationship...

▶ House price model: scatter plot and regression line

b₀ is the estimated mean value of Y when the value of X is 0

(if X = 0 is in the range of observed X values)

Because the square footage of the house cannot be 0, the Y intercept has no practical application.

Selling Price vs. Square Feet

(2) Model the Data...

Calculate the regression coefficients

- ▶ House price model: scatter plot and regression line
- b₁ measures the mean change in the average value of Y as a result of a one-unit change in X

The mean value of a
house increases by
0.1098(\$1000) =
\$109.80, on average,
for each additional
one square foot of
size

Selling Price vs. Square Feet

(2) Model the Data...

Calculate the regression coefficients

Selling Price vs. Square Feet

58% of the variability in the PRICE of a home is exaplined by using the SIZE of the home.

(3) Evaluate the Model...

Standard Error of Estimate

The standard deviation of the observations around the regression line.

When predicting, this is the stdev of the predictions

iiiate			
	А	В	С
	House Price in	Square Feet	
1	\$1000s		
	-	(V)	
2	(Y)	(X)	
3	245	1400	
4	312	1600	
5	279	1700	
6	308	1875	
7	199	1100	
8	219	1550	
9	405	2350	
10	324	2450	
11	319	1425	
12	255	1700	
13			
14	SLOPE	0.109768	
15	INTERCEPT	98.248330	
16			
17	R ²	0.580817	
18	STEYX	=STEYX(A3:A12,B3:B12)
19		STEYX(known_y's, known_x's)	

(3) Evaluate the Model...

Selling Price vs. Square Feet

(3) Evaluate the Model...

