

Data Sheet April 1999 File Number 3403.3

Dual/Quad, Low Power CMOS Operational Amplifiers

The ICL761X/762X/764X series is a family of monolithic CMOS operational amplifiers. These devices provide the designer with high performance operation at low supply voltages and selectable quiescent currents. They are an ideal design tool when ultra low input current and low power dissipation are desired.

The basic amplifier will operate at supply voltages ranging from $\pm 1V$ to $\pm 8V$, and may be operated from a single Lithium cell. The output swing ranges to within a few millivolts of the supply voltages.

The quiescent supply current of these amplifiers is set to 3 different ranges at the factory. Both amps of the dual ICL7621 are set to an I_Q of $100\mu A,$ while each amplifier of the quad ICL7641 and ICL7642 are set to an I_Q of 1mA and $10\mu A$ respectively. This results in power consumption as low as $20\mu W$ per amplifier.

Of particular significance is the extremely low (1pA) input current, input noise current of $0.01 pA/\sqrt{Hz}$, and $10^{12}\Omega$ input impedance. These features optimize performance in very high source impedance applications.

The inputs are internally protected. Outputs are fully protected against short circuits to ground or to either supply.

AC performance is excellent, with a slew rate of $1.6V/\mu s$, and unity gain bandwidth of 1MHz at $I_Q = 1mA$.

Because of the low power dissipation, junction temperature rise and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG.
ICL7621ACPA	0 to 70	8 Ld PDIP - A Grade - I _Q = 100μA	E8.3
ICL7621BCPA	0 to 70	8 Ld PDIP - B Grade - I _Q = 100μA	E8.3
ICL7621DCPA	0 to 70	8 Ld PDIP - D Grade - I _Q = 100μA	E8.3
ICL7621AMTV	-55 to 125	8 Pin Metal Can - A Grade - I _Q = 100μA	T8.C
ICL7621DCBA	0 to 70	8 Ld SOIC - D Grade - I _Q = 100μA	M8.15
ICL7621DCBA-T	0 to 70	8 Ld SOIC - D Grade - Tape and Reel - I _Q = 100μA	M8.15
ICL7641ECPD	0 to 70	14 Ld PDIP - E Grade - I _Q = 1mA	E14.3
ICL7642ECPD	0 to 70	14 Ld PDIP - E Grade - I _Q = 10μA	E14.3

Features

•	Wide Operating Voltage Range	⊆1V to ±8V
•	High Input Impedance	\dots 10 ¹² Ω
•	Input Current Lower Than BIFETs	1pA (Typ)
•	Output Voltage Swing	V+ and V-
•	Available as Duals and Quads (Refer to ICL7611 f	or Singles)

• Low Power Replacement for Many Standard Op Amps

Applications

- Portable Instruments
- Telephone Headsets
- · Hearing Aid/Microphone Amplifiers
- · Meter Amplifiers
- · Medical Instruments
- · High Impedance Buffers

Pinouts

ICL7621 (PDIP, SOIC) TOP VIEW

ICL7621 (METAL CAN) TOP VIEW

ICL7641 (PDIP), ICL7642 (PDIP) TOP VIEW

Absolute Maximum Ratings

Supply Voltage V+ to V	18V
Input Voltage	V0.3 to V+ +0.3V
Differential Input Voltage (Note 1)	[(V++0.3) - (V0.3)]V
Duration of Output Short Circuit (Note 2)	Unlimited

Operating Conditions

Temperature Ran		
ICL76XXM	 	-55°C to 125°C
ICL76XXC	 	0°C to 70°C

Thermal Information

Thermal Resistance (Typical, Note 3)	θ _{JA} (^o C/W)	θ _{JC} (°C/W)
SOIC Package	160	N/A
Metal Can Package	160	75
8 Lead PDIP Package	120	N/A
14 Lead PDIP Package	80	N/A
Maximum Junction Temperature (Hermetic I	Packages)	175°C
Maximum Junction Temperature (Plastic P	ackage)	150 ^o C
Maximum Storage Temperature Range	65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 10	0s)	300°C
(SOIC - Lead Tips Only)		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. Long term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.
- 2. The outputs may be shorted to ground or to either supply, for V_{SUPPLY} ≤10V. Care must be taken to insure that the dissipation rating is not exceeded.
- 3. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

 $V_{SUPPLY} = \pm 5V$, Unless Otherwise Specified

		TEST	TEMP.	ICL7621A		ICL7621B			ICL7621D				
PARAMETER	SYMBOL	CONDITIONS	(°C)	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	$R_S \le 100k\Omega$	25	-	-	2	-	-	5	-	-	15	mV
			Full	-	-	3	-	-	7	-	-	20	mV
Temperature Coefficient of V _{OS}	ΔV _{OS} /ΔT	$R_S \le 100k\Omega$	-	-	10	-	-	15	-	-	25	-	μV/ ^o C
Input Offset Current	los		25	-	0.5	30	-	0.5	30	-	0.5	30	pА
			0 to 70	-	-	300	-	-	300	-	-	300	pА
			-55 to 125	-	-	800	-		800	-		800	pА
Input Bias Current	I _{BIAS}		25	-	1.0	50	-	1.0	50	-	1.0	50	pА
			0 to 70	-	-	400	-	-	400	-	-	400	pА
			-55 to 125	-	-	4000	-	-	4000	-	-	4000	pА
Common Mode Voltage Range	V _{CMR}	I _Q = 100μA	25	±4.2	-	-	±4.2	-	-	±4.2	-	-	V
Output Voltage Swing	V _{OUT}	$I_Q = 100\mu A,$ $R_L = 100k\Omega$	25	±4.9	-	-	±4.9	-	-	±4.9	-	-	V
			0 to 70	±4.8	-	-	±4.8	-	-	±4.8	-	-	V
			-55 to 125	±4.5	-	-	±4.5	-	-	±4.5	-	-	V
Large Signal	A _{VOL}	$V_{O} = \pm 4.0V$,	25	86	102	-	80	102	-	80	102	-	dB
Voltage Gain		$R_L = 100k\Omega$, $I_Q = 100\mu A$	0 to 70	80	-	-	75	-	-	75	-	-	dB
			-55 to 125	74	-	-	68	-	-	68	-	-	dB
Unity Gain Bandwidth	GBW	I _Q = 100μA	25	-	0.48	-	-	0.48	-	-	0.48	-	MHz
Input Resistance	R _{IN}		25	-	10 ¹²	-	-	10 ¹²	-	-	10 ¹²	-	Ω
Common Mode Rejection Ratio	CMRR	$R_S \le 100k\Omega$, $I_Q = 100\mu A$	25	76	91	-	70	91	-	70	91	-	dB
Power Supply Rejection Ratio (V _{SUPPLY} = ±8V to ±2V)	PSRR	$R_S \le 100k\Omega$, $I_Q = 100\mu A$	25	80	86	-	80	86	-	80	86	-	dB
Input Referred Noise Voltage	e _N	$R_S = 100\Omega$, f = 1kHz	25	-	100	-	-	100	-	-	100	-	nV/√Hz
Input Referred Noise Current	i _N	$R_S = 100\Omega$, f = 1kHz	25	-	0.01	-	-	0.01	-	-	0.01	-	pA/√Hz
Supply Current (Per Amplifier)	ISUPPLY	No Signal, No Load, I _Q = 100μA	25	-	0.1	0.25	-	0.1	0.25	-	0.1	0.25	mA

ICL7621, ICL7641, ICL7642

Electrical Specifications $V_{SUPPLY} = \pm 5V$, Unless Otherwise Specified (Continued)

		TEST	TEMP.	IC	ICL7621A		ICL7621B			ICL7621D			
PARAMETER	SYMBOL	CONDITIONS	(°C)	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Channel Separation	V _{O1} /V _{O2}	A _V = 100	25	-	120	-	-	120	-	-	120	-	dB
Slew Rate	SR	$A_V = 1, C_L = 100 pF,$ $V_{IN} = 8 V_{P-P},$ $I_Q = 100 \mu A,$ $R_L = 100 k \Omega$	25	-	0.16	-	-	0.16	-	-	0.16	-	V/µs
Rise Time	t _R	$\begin{split} V_{IN} &= 50 mV, \\ C_L &= 100 pF, \\ I_Q &= 100 \mu A, \\ R_L &= 100 k \Omega \end{split}$	25	-	2	-	-	2	-	-	2	-	μs
Overshoot Factor	OS	$\begin{split} V_{IN} &= 50 mV, \\ C_L &= 100 pF, \\ I_Q &= 100 \mu A, \\ R_L &= 100 k \Omega \end{split}$	25	-	10	-	-	10	-	-	10	-	%

Electrical Specifications $V_{SUPPLY} = \pm 5V$, Unless Otherwise Specified

		TEST	TEMP.	ICL:			
PARAMETER	SYMBOL	CONDITIONS	(°C)	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	$R_S \le 100k\Omega$	25	-	-	20	mV
			Full	-	-	25	mV
Temperature Coefficient of VOS	ΔV _{OS} /ΔΤ	$R_S \le 100k\Omega$	-	-	30	-	μV/ ^o C
Input Offset Current	los		25	-	0.5	30	pA
			0 to 70	-	-	300	pA
			-55 to 125	-		800	pA
Input Bias Current	I _{BIAS}		25	-	1.0	50	pA
			0 to 70	-	-	500	pA
			-55 to 125	-	-	4000	pA
Common Mode Voltage Range	V _{CMR}	I _Q = 10μA, ICL7642	25	±4.4	-	-	V
		I _Q = 1mA, ICL7641	25	±3.7	-	-	V
Output Voltage Swing	Vouт	ICL7642, $I_Q = 10\mu A$, $R_L = 1M\Omega$	25	±4.9	-	-	V
			0 to 70	±4.8	-	-	V
			-55 to 125	±4.7	-	-	V
		ICL7641, $I_Q = 1$ mA, $R_L = 10$ kΩ	25	±4.5	-	-	V
			0 to 70	±4.3	-	-	V
			-55 to 125	±4.0	-	-	V
Large Signal Voltage Gain	A _{VOL}	ICL7642, $V_O = \pm 4V$, $R_L = 1M\Omega$,	25	80	104	-	dB
		$I_Q = 10\mu A$	0 to 70	75	-	-	dB
			-55 to 125	68	-	-	dB
		ICL7641, $V_0 = \pm 4V$, $R_L = 10k\Omega$, $I_Q = 1mA$	25	76	98	-	dB
			0 to 70	72	-	-	dB
			-55 to 125	68	-	-	dB
Unity Gain Bandwidth	GBW	ICL 7642, I _Q = 10μA	25	-	0.044	-	MHz
		ICL 7641, I _Q = 1mA	25	-	1.4	-	MHz
Input Resistance	R _{IN}		25	-	10 ¹²	-	Ω
Common Mode Rejection Ratio	CMRR	ICL7642, $R_S \le 100$ kΩ, $I_Q = 10$ μA	25	70	96	-	dB
		ICL7641, $R_S \le 100k\Omega$, $I_Q = 1mA$	25	60	87	-	dB
Power Supply Rejection Ratio	PSRR	ICL7642, $R_S \le 100$ kΩ, $I_Q = 10$ μA	25	80	94	-	dB
$(V_{SUPPLY} = \pm 8V \text{ to } \pm 2V)$		ICL7641, $R_S \le 100k\Omega$, $I_Q = 1mA$	25	70	77	-	dB

Electrical Specifications $V_{SUPPLY} = \pm 5V$, Unless Otherwise Specified (Continued)

		TEST	TEMP.	ICL	7641E, ICL	641E, ICL7642E		
PARAMETER	SYMBOL	CONDITIONS	(°C)	MIN	TYP	MAX	UNITS	
Input Referred Noise Voltage	e _N	$R_S = 100\Omega$, $f = 1kHz$	25	-	100	-	nV/√ Hz	
Input Referred Noise Current	i _N	$R_S = 100\Omega$, $f = 1kHz$	25	-	0.01	-	pA/√ Hz	
Supply Current (Per Amplifier)	I _{SUPPLY}	ICL7642, I _Q = 10μA Low Bias	25	-	0.01	0.03	mA	
(No Signal, No Load)		ICL7641, I _Q = 1mA High Bias	25	-	1.0	2.5	mA	
Channel Separation	V _{O1} /V _{O2}	A _V = 100	25	-	120	-	dB	
Slew Rate ($A_V = 1$, $C_L = 100pF$,	SR	ICL7642, $I_Q = 10\mu A$, $R_L = 1M\Omega$	25	-	0.016	-	V/µs	
$V_{IN} = 8V_{P-P}$		ICL7641, $I_Q = 1 \text{mA}$, $R_L = 10 \text{k}\Omega$	25	-	1.6	-	V/µs	
Rise Time	t _R	ICL7642, $I_Q = 10\mu A$, $R_L = 1M\Omega$	25	-	20	-	μs	
$(V_{IN} = 50 \text{mV}, C_L = 100 \text{pF})$		ICL7641, $I_Q = 1 \text{mA}$, $R_L = 10 \text{k}\Omega$	25	-	0.9	-	μs	
Overshoot Factor	OS	ICL7642, $I_Q = 10\mu A$, $R_L = 1M\Omega$	25	-	5	-	%	
$(V_{IN} = 50 \text{mV}, C_L = 100 \text{pF})$		ICL7641, I_Q = 1mA, R_L = 10kΩ	25	-	40	-	%	

Schematic Diagram

Application Information

Static Protection

All devices are static protected by the use of input diodes. However, strong static fields should be avoided, as it is possible for the strong fields to cause degraded diode junction characteristics, which may result in increased input leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (PNPN) structure. The

4-layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3V beyond the supply rails may be applied to any pin. In general, the op amp supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to 2mA to prevent latchup.

Choosing the Proper IQ

Each device in the ICL76XX family has a similar I_Q setup scheme, which allows the amplifier to be set to nominal quiescent currents of $10\mu A$, $100\mu A$ or 1mA. These current settings change only very slightly over the entire supply voltage range. The ICL7611/12 have an external I_Q control terminal, permitting user selection of each amplifiers' quiescent current. The ICL7621 and ICL7641/7642 have fixed I_Q settings:

ICL7621 (Dual) - $I_Q = 100 \mu A$

ICL7641 (Quad) - $I_Q = 1mA$

ICL7642 (Quad) - $I_O = 10\mu A$

NOTE: The output current available is a function of the quiescent current setting. For maximum peak-to-peak output voltage swings into low impedance loads, I_Q of 1mA should be selected.

Output Stage and Load Driving Considerations

Each amplifiers' quiescent current flows primarily in the output stage. This is approximately 70% of the I_Q settings. This allows output swings to almost the supply rails for output loads of $1M\Omega$, $100k\Omega$, and $10k\Omega$, using the output stage in a highly linear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class AB for higher output currents. (See graphs under

FIGURE 1. SIMPLE FOLLOWER

NOTE: Low leakage currents allow integration times up to several hours.

FIGURE 3. PHOTOCURRENT INTEGRATOR

Typical Operating Characteristics). During the transition from Class A to Class B operation, the output transfer characteristic is nonlinear and the voltage gain decreases.

Frequency Compensation

The ICL76XX are internally compensated, and are stable for closed loop gains as low as unity with capacitive loads up to 100pF.

Operation At V_{SUPPLY} = ±1V

Operation at $V_{SUPPLY} = \pm 1V$ is guaranteed for the ICL7642C only.

Output swings to within a few millivolts of the supply rails are achievable for $R_L \ge 1 M \Omega$. Guaranteed input CMVR is $\pm 0.6 \text{V}$ minimum and typically +0.9 V to -0.7 V at $V_{\text{SUPPLY}} = \pm 1 \text{V}$. For applications where greater common mode range is desirable, refer to the ICL7612 data sheet.

Typical Applications

The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup.

Note that in no case is I_Q shown. The value of I_Q must be chosen by the designer with regard to frequency response and power dissipation.

FIGURE 2. LEVEL DETECTOR

NOTE: Since the output range swings exactly from rail to rail, frequency and duty cycle are virtually independent of power supply variations.

FIGURE 4. TRIANGLE/SQUARE WAVE GENERATOR

+8V OUT - V--8V

FIGURE 5. AVERAGING AC TO DC CONVERTER FOR A/D CONVERTERS SUCH AS ICL7106, ICL7107, ICL7109, ICL7116, ICL7117

FIGURE 6. BURN-IN AND LIFE TEST CIRCUIT

NOTES:

- 4. Small capacitors (25 50pF) may be needed for stability in some cases.
- 5. The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff. f_C = 10Hz, AV_{CL} = 4, Passband ripple = 0.1dB.

FIGURE 7. FIFTH ORDER CHEBYCHEV MULTIPLE FEEDBACK LOW PASS FILTER

Typical Performance Curves

FIGURE 9. SUPPLY CURRENT PER AMPLIFIER vs FREE-AIR TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 10. INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 12. LARGE SIGNAL FREQUENCY RESPONSE

FIGURE 14. POWER SUPPLY REJECTION RATIO vs FREE-AIR TEMPERATURE

FIGURE 11. LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN VS FREE-AIR TEMPERATURE

FIGURE 13. COMMON MODE REJECTION RATIO vs FREE-AIR TEMPERATURE

FIGURE 15. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 16. OUTPUT VOLTAGE vs FREQUENCY

FIGURE 18. OUTPUT VOLTAGE vs SUPPLY VOLTAGE

FIGURE 20. OUTPUT SOURCE CURRENT vs SUPPLY VOLTAGE

FIGURE 17. OUTPUT VOLTAGE vs FREQUENCY

FIGURE 19. OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

FIGURE 21. OUTPUT SINK CURRENT vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 22. OUTPUT VOLTAGE vs LOAD RESISTANCE

FIGURE 23. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE ($I_Q = 1 \text{mA}$)

FIGURE 24. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE ($I_Q = 100\mu A$)

FIGURE 25. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE ($I_Q = 10 \mu A$)

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902

TEL: (407) 724-7000 FAX: (407) 724-7240 **EUROPE**

Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium

TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.

7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China

TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.