

Naïve Bayes Classification

- Based on Bayes Theorem.
- Combines the impact/probability of each feature on the class label.
- Assumes the independence between the features.
 - » Shape and color of a fruit determining the fruit
 - » Education and salary determining the life style (independence??)

- Given a hypothesis, calculating the probability of correctness of that hypothesis.
- Hypothesis: x_1 , x_2 is a Peach.
 - » Calculate the probability that x_1 , x_2 is a Peach.

 $P(H: x_1, x_2 \text{ is a Peach})$

 $P(H: x_1, x_2 \text{ is an Apricot})$

.

- 1. Calculate each of these probabilities.
- 2. Choose the highest probability.

Bayes Theorem

- P(H|X) Posterior Probability of hypothesis H
 - $X : X_1, X_2, ..., X_n$
 - » Shows the confidence/probability that suppose X, then the hypothesis is true.
 - $-x_1$: shape = round, x_2 : color = orange
 - $-H: x_1, x_2$ is a Peach.
- P(H) Prior Probability of hypothesis H
 - » Probability that regardless of data the hypothesis is true.
 - Regardless of color and shape, it is a Peach.

Bayes Theorem

- P(X|H) Posterior Probability of X conditioned on hypothesis H
 - » Given H is true (X is a Peach), calculate probability that X is round and orange.

- P(X) Prior Probability of X
 - » Probability that sample is round and orange.

Bayes Theorem

Posterior

Probability of X

Prior Probability of class C_i

$$P = (H|X) = \frac{P(X|H)P(H)}{P(X)}$$

Posterior

Probability of class C_i

Prior Probability of X

- Hypothesis H is the class C_i .
- P(X) can be ignored as it is constant for all classes.
- Assuming the independence assumption, $P(X/C_i)$ is:

$$P(X \mid C_i) = \prod_{k=1}^n P(x_k \mid C_i)$$

Thus:

$$P(C_i | X) = P(C_i) \prod_{k=1}^n P(x_k | C_i)$$

• $P(C_i)$ is the ratio of total samples in class C_i to all samples.

For Categorical attribute:

 $P(x_k|C_i)$ is the frequency of samples having value x_k in class C_i .

For Continuous (numeric) attribute:

 $P(x_k|C_i)$ is calculated via a Gaussian density function.

- Having pre-calculated all $P(x_k/C_i)$, to classify an unknown sample X:
 - » Step 1: For all classes calculate $P(C_i/X)$.
 - » Step 2: Assign sample X to the class with the highest $P(C_i/X)$.

Play-tennis example: estimating $P(x_i | C)$ (Example from: Tom Mitchell "Machine Learning")

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

P(p) = 9/14	
P(n) = 5/14	

outlook		
P(sunny p) = 2/9	P(sunny n) = 3/5	
P(overcast p) = 4/9	P(overcast n) = 0	
P(rain p) = 3/9	P(rain n) = 2/5	
temperature		
P(hot p) = 2/9	P(hot n) = 2/5	
P(mild p) = 4/9	P(mild n) = 2/5	
$P(\mathbf{cool} \mathbf{p}) = 3/9$	P(cool n) = 1/5	
humidity		
P(high p) = 3/9	P(high n) = 4/5	
P(normal p) = 6/9	P(normal n) = 1/5	
windy		
P (true p) = 3/9	P(true n) = 3/5	
P(false p) = 6/9	P(false n) = 2/5	0

Play-tennis example: estimating $P(C_i | X)$ (Example from: Tom Mitchell "Machine Learning")

- An incoming sample: $X = \langle sunny, cool, high, true \rangle$
- $P(play|X) = P(X|p) \cdot P(p) =$ $P(p) \cdot P(sunny|p) \cdot P(cool|p) \cdot P(high|p) \cdot P(true|p) =$ $9/14 \cdot 2/9 \cdot 3/9 \cdot 3/9 \cdot 3/9 = .0053$
- P(Don't play $|X\rangle = (X|n) \cdot P(n) =$ P(p) · P(sunny|n) · P(cool|n) · P(high|n) · P(true|n)= $5/14 \cdot 3/5 \cdot 1/5 \cdot 4/5 \cdot 3/5 = .0206$
- Class n (don't play) has higer probability than class p (play) for sample X.