Power to detect a difference in correlations Applications for twin studies

C. Higgs¹

¹Centre for Epidemiology and Biostatistics School of Population and Global Health University of Melbourne

Supervision meeting

Table of Contents

Context: Twin studies

Key terms

$$y \sim N(\mu, \sigma)$$

$$x \sim N(\mu, \sigma)$$

The population correlation, an index of linear change in y as x varies is formed of the (assumed) bivariate normal distribution of the respective variables¹

$$\rho = \frac{\mathrm{Cov}(x, y)}{\sigma_x \sigma_y}$$

and is estimated by r

¹F.N. David. Tables of the ordinates and probability integral of the distribution of the correlation in small samples. London: Biometrika, 1938. URL: https://books.google.com.au/books?id=oCa2AAAAIAAJ.

Key terms

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 (y_i - \bar{y})^2}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

The distribution of r for any n and ρ^2

$$p(r|n,\rho) = \frac{(1-\rho^2)^{\frac{n-1}{2}}}{(\pi(n-3)!)} (1-r^2)^{\frac{n-4}{2}} \frac{d^{n-2}}{d(r\rho)^n(n-2)} \left(\frac{\arccos(-\rho r)}{\sqrt{1-\rho^2 r^2}}\right)$$

which is not so tracactable for statistical inference as,

²F.N. David. Tables of the ordinates and probability integral of the distribution of the correlation in small samples. London: Biometrika, 1938. URL: https://books.google.com.au/books?id=oCa2AAAAIAAJ.

Map r from (-1,+1) to $(-\infty,+\infty)$ as Fisher's z^3

$$z = \operatorname{arctanh}(r) = \frac{1}{2} \log_e \frac{1+r}{1-r}$$

³R. A. Fisher. "Frequency Distribution Of The Values Of The Correlation Coeffients In Samples From An Indefinitely Large Popultion". In: *Biometrika* 10.4 (1915), pp. 507–521. ISSN: 0006-3444. DOI: 10.1093/biomet/10.4.507.

Type 1 and Type 2 error⁴

 α

- expected proportion of null hypotheses to be rejected when true
- type 1 error
- ▶ the classic '0.05' (5%) but 0.1 or any other number may also be chosen
- β : rate of failing to reject the null hypothesis when false (Type 2 error)
 - expected proportion of null hypotheses not rejected when false
 - type 2 error
 - ▶ 0.2 (20%) is a classic choice; gunning for power of $1 \beta = 80$

⁴J. Cohen. Statistical Power Analysis for the Behavioral Sciences. New York: Laurence Erlbaum Associates, 1988. ISBN: 9781134742707.

Hypothesis test for difference in correlations⁵

$$heta=\operatorname{arctanh}(r_1)-\operatorname{arctanh}(r_2)$$
 $se_{ heta}=\sqrt{rac{1}{n_1-3}+rac{1}{n_2-3}}$ $c_{ heta}=q/se_q$ $p(heta)=\Phi_{c_{ heta}/2}^{-1}$

- note: two sided p value; fill in rest here...

⁵J. Cohen. Statistical Power Analysis for the Behavioral Sciences. New York: Laurence Erlbaum Associates, 1988. ISBN: 9781134742707, Christopher L. Aberson. Applied power analysis for the behavioral sciences. New York: Routledge, 2010, xiv, 257 p. URL: https://ebookcentral.proquest.com/lib/unimelb/detail.action?docID=646521%20Connect% 20to%20ebook%20(University%20of%20Melbourne%20only).

Confidence interval for difference in correlations

$$anh\left(\,\mathsf{Cl}_{100(1-lpha)\%}\,
ight) = heta \pm c_0 imes se_ heta$$

Power for difference in correlations⁶

$$heta=\operatorname{arctanh}(r_1)-\operatorname{arctanh}(r_2)$$
 $se_{ heta}=\sqrt{rac{1}{n_1-3}+rac{1}{n_2-3}}$ $c_{ heta}=q/se_q$ $c_0=\Phi_{lpha/2}^{-1}$ $eta=\Phi\left(c_0-c_{ heta}
ight)$

and

$$power(\theta) = 1 - \beta$$

⁶J. Cohen. Statistical Power Analysis for the Behavioral Sciences. New York: Laurence Erlbaum Associates, 1988. ISBN: 9781134742707, Christopher L. Aberson. Applied power analysis for the behavioral sciences. New York: Routledge, 2010, xiv, 257 p. URL: https://ebookcentral.proquest.com/lib/unimelb/detail.action?docID=646521%20Connect% 20to%20ebook%20 (University%20of%20Melbourne%20only).

Power for difference in correlations

power =
$$1 - \Phi \left(\Phi_{\alpha/2}^{-1} - \frac{\operatorname{arctanh}(r_1) - \operatorname{arctanh}(r_2)}{\sqrt{(n_1 - 3)^{-1} + (n_2 - 3)^{-1}}} \right)$$

Bibliography

- F.N. David. Tables of the ordinates and probability integral of the distribution of the correlation in small samples. London:
 - Biometrika, 1938. URL: https://books.google.com.au/books?id=oCa2AAAAIAAJ.
- R. A. Fisher. "Frequency Distribution Of The Values Of The Correlation Coefficients In Samples From An Indefinitely Large Popultion". In: *Biometrika* 10.4 (1915), pp. 507–521. ISSN: 0006-3444. DOI: 10.1093/biomet/10.4.507. URL: http://dx.doi.org/10.1093/biomet/10.4.507.
- J. Cohen. Statistical Power Analysis for the Behavioral Sciences. New York: Laurence Erlbaum Associates, 1988. ISBN: 9781134742707.
- Christopher L. Aberson. Applied power analysis for the behavioral sciences. New York: Routledge, 2010, xiv, 257 p.

https://ebookcentral.proquest.com/lib/unimelb/detail.action?docID=646521%20Connect%20to%