OpenTURNS Developer Training Probabilistic uncertainty propagation

Trainer : Régis LEBRUN Airbus regis.lebrun@airbus.com

Developers training

Probabilistic uncertainty propagation

What is uncertainty propagation?

Numerical models: the differential calculus potion

3 A cloud of probabilities in my code, please

Main objective

Probabilistic uncertainty propagation

OpenTURNS = Open Source Treatment of Uncertainty, Risk'N Statistics

- Uncertainty = unknown quantities, lack of exact knowledge, non predictible fluctuations
- Risk = dangerous state, critical conditions and their impact (cost, consequences)
- Statistics = observation and modelling of random quantities, partial knowledge
- Treatment = algorithmic tools to analyse, model and quantify the previous points

Main objective

UQ in a nutshell

Given:

- a function $f: \mathbb{R}^n \to \mathbb{R}^p$ called a model
- a random vector X of known joint distribution \mathcal{L} of dimension n called the sources of uncertainties

Uncertainty quantification is focused on getting information about the push-forward distribution of the random vector Y = f(X):

- Moments $\mathrm{E}\left[h(Y)\right]$ where $h:\mathbb{R}^p \to \mathbb{R}^q$
- Probability of events $\mathbb{P}(Y \in B)$ as a special case $(h(y) = 1_{y \in B})$
- Sensitivity of Y to part of X

Numerical models

Function, gradient, hessian

• Function: the notion of numerical model is a function f maps \mathbb{R}^n to \mathbb{R}^p . A shortcut is to say that:

$$f \in \mathcal{F}(\mathbb{R}^n, \mathbb{R}^p) \tag{1}$$

The integers $n \in \mathbb{N}$, $p \in \mathbb{N}^*$ are the input and output dimensions. The set $\{\underline{x} \in \mathbb{R}^n | f(\underline{x}) \text{ is well defined} \}$ is the domain of definition of f. For all $i \in \{1, \ldots, p\}$, the function $f_i \in \mathcal{F}(\mathbb{R}^n, \mathbb{R})$ defined by $f_i(\underline{x}) = \pi_i(f(\underline{x}))$, where π_i is the projection on the i^{th} coordinate in \mathbb{R}^p , is called the i^{th} component of f.

• Gradient: a function $f \in \mathcal{F}(\mathbb{R}^n, \mathbb{R}^p)$ is said to be differentiable at $\underline{x} \in \mathbb{R}^n$ if one has:

$$\forall \underline{h} \in \mathbb{R}^n, f(\underline{x} + \underline{h}) = f(\underline{x}) + D(f)(\underline{x})(\underline{h}) + o(||\underline{h}||)$$
 (2)

where $D(f)(\underline{x})$ is a (continuous) linear application from \mathbb{R}^n to \mathbb{R}^p : $D(f)(\underline{x}) \in L_c(\mathbb{R}^n, R^p)$. The application D(f) that maps $\underline{x} \in \mathbb{R}^n$ into $L_c(\mathbb{R}^n, R^p)$ is the differential of f. The linear application $D(f)(\underline{x})$ is always continuous in the setting of \mathbb{R}^n and has an associated matrix $\underline{M}(\underline{x}) \in \mathcal{M}_{n,p}(\mathbb{R})$ whith $M_{ij} = \frac{\partial f_i}{\partial x_j}$: it is the jacobian matrix of f at \underline{x} . The application that maps \underline{x} into $M^t(\underline{x}) \in \mathcal{M}_{p,n}(\mathbb{R})$ is the gradient of f at \underline{x} .

Numerical models

Function, gradient, hessian

• Hessian: a function $f \in \mathcal{F}(\mathbb{R}^n, \mathbb{R}^p)$ is said to be twice differentiable at $\underline{x} \in \mathbb{R}^n$ if the application D(f) that maps \mathbb{R}^n into $L_c(\mathbb{R}^n, R^p)$ is differentiable at \underline{x} . It means that:

$$\forall \underline{h} \in \mathbb{R}^n, D(f)(\underline{x} + \underline{h}) = D(f)(\underline{x}) + D^2(f)(\underline{x})(\underline{h}) + o(||\underline{h}||)$$
(3)

where $D^2(f)(\underline{x})$ is a (continuous) linear application from \mathbb{R}^n to $L_c(\mathbb{R}^n, \mathbb{R}^p)$: $D^2(f)(\underline{x}) \in L_c(\mathbb{R}^n, L_c(R^n, R^p))$. The application $D^2(f)$ that maps $\underline{x} \in \mathbb{R}^n$ into $L_c(\mathbb{R}^n, L_c(\mathbb{R}^n, R^p))$ is the second differential of f. The linear application $D^2(f)(\underline{x})$ is always continuous in the setting of \mathbb{R}^n and has a tensor representation $\underline{\underline{T}}(\underline{x}) \in \mathcal{T}_{n,n,p}(\mathbb{R})$ whith $M_{ijk} = \frac{\partial^2 f_i}{\partial x_j \partial x_k}$: it is the second jacobian tensor of f at \underline{x} . The application that maps \underline{x} into $T^t(\underline{x}) \in \mathcal{T}_{p,n,n}(\mathbb{R})$ is the hessian tensor of f at \underline{x} . This tensor is made of sheets $T_{k,...} \in \mathcal{M}_{n,n}(\mathbb{R})$ that are symmetric.

Random vector, distribution

Definition

- A random vector \underline{X} is a measurable function from a probability space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$ into the probability space $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \mu_X)$.
- The associated distribution is the probability measure $\mu_{\underline{X}}$ defined by:

$$\forall B \in \mathcal{B}(\mathbb{R}), \mu_{\underline{X}}(B) = \mathbb{P}(\underline{X}^{-1}(B))$$
(4)

- The main advantage of a random vector is that we are now working on a numeric space \mathbb{R}^n instead of a general set Ω .
- The different values $\forall \omega \in \Omega, \underline{X}(\omega)$ taken by a random vector \underline{X} are called the realizations of the random vector.
- A distribution is completely defined by its cumulative distribution function or CDF F_X which maps \mathbb{R}^n into [0,1] and is defined by:

$$F_{\underline{X}}(\underline{x}) = \mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n)$$
 (5)

Random vector, distribution

Discrete random vectors, continuous random vectors

There are two distinguished classes of random vectors:

• Those that take their values in \mathbb{N}^n and are called discrete integral random vectors. The distribution of this kind of random vectors is equivalently described by the function p_X that maps \mathbb{N}^n into [0,1] such that:

$$\rho_{\underline{X}}(\underline{x}) = \mathbb{P}(\underline{X} = \underline{x}) \tag{6}$$

The function p_X is called its probability distribution function or PDF.

• Those such that there exist a function $p_{\underline{X}}$ that maps \mathbb{R}^n into R^+ such that:

$$F_{\underline{X}}(\underline{x}) = \int_{\mathbb{R}^n} p_{\underline{X}}(\underline{x}) \, d\underline{x} \tag{7}$$

These random vectors are called absolutely continuous random vectors with respect to the Lebesgue measure $d\underline{x}$. The function $p\underline{x}$ is called its probability density function or PDF.

WARNING 1: The PDF acronym is used for two distinct functions, but the context makes it clear which kind of PDF is relevant in practical applications.

WARNING 2: A random vector can be neither discrete nor continuous!

PDF and CDF, 1D case

PDF and CDF, 2D case

Discrete

General

Expectation, mean, covariance

Definition

• The expectation $\mathbb{E}[\underline{X}]$ of a real random vector \underline{X} of dimension n is the deterministic vector of \mathbb{R}^n defined by:

$$\mathbb{E}[\underline{X}]_i = \int_{\mathbb{R}} x_i \, d\mu_{X_i}(x_i) \tag{8}$$

where μ_{X_i} is the distribution of the 1D random vector corresponding to the projection of \underline{X} on its i^{th} coordinate. It is thus a quantity that is defined component by component. For bell shaped distributions, it is an indication of the location of most of the realizations of \underline{X} .

• The covariance $\operatorname{Cov}[X]$ of a real random vector X of dimension n is the deterministic symmetric square matrix of $\mathcal{M}_{n,n}(\mathbb{R})$ defined by:

$$\operatorname{Cov}\left[\underline{X}\right]_{ij} = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])] \tag{9}$$

where X_i and X_j are the i^{th} and j^{th} components of \underline{X} . This matrix is semidefinite positive. For bell shaped distributions, this quantity express the dispersion of the distribution around its mean value.

Convergence

Definition

• A sequence of random vectors $(\underline{X})_{n\in\mathbb{N}}$ defined over the same probability space $(\Omega,\mathcal{B}(\Omega),\mathbb{P})$ is said to converge almost surely to the random vector \underline{X} if and only if:

$$\mathbb{P}[\{\omega \in \Omega \mid \underline{X}_n(\omega) \not\to \underline{X}(\omega) \text{ as } n \to \infty\}] = 0$$
 (10)

• A sequence of random vectors $(\underline{X})_{n\in\mathbb{N}}$ defined over the probability spaces $(\Omega_n,\mathcal{B}(\Omega_n),\mathbb{P}_n)$ is said to converge in law to the random vector \underline{X} defined over the probability space $(\Omega,\mathcal{B}(\Omega),\mathbb{P})$ if and only if:

$$\forall \phi \in \mathcal{C}^b(\mathbb{R}^n, \mathbb{R}), \lim_{n \to \infty} \mathbb{E}[\phi(\underline{X}_n)] = \mathbb{E}[\phi(\underline{X})]$$
 (11)

where $C^b(\mathbb{R}^n,\mathbb{R})$ is the set of bounded continuous functions defined on \mathbb{R}^n and taking value into \mathbb{R} .

Simulation

Strong number law and Central Limit Theorem

- (Strong law of large numbers) For all sequence of random vectors $(\underline{X})_{n\in\mathbb{N}}$ defined over the same probability space $(\Omega,\mathcal{B}(\Omega),\mathbb{P})$, independent and sharing the same distribution $\mu_{\underline{X}}$, for all measurable function $f\in\{(\mathbb{R}^n,\mathbb{R}^p)\text{ such that }\mathbb{E}[f(\underline{X}_1)]$ exists, the sequence of random vectors $(\frac{1}{n}\sum_{k=1}^n f(\underline{X}))_{n\in\mathbb{N}}$ converges almost surely to the constant random vector $\mathbb{E}[f(\underline{X}_1)]$
- (Central Limit Theorem) Moreover, if $\operatorname{Cov}\left[\underline{X}_1\right]$ is well-defined and finite, the sequence of random vectors defined by $\left(\sqrt{n}\left(\frac{1}{n}\sum_{k=1}^n f(\underline{X}) \mathbb{E}[f(\underline{X}_1)]\right)\right)_{n\in\mathbb{N}}$ converges in law to a multivariate Normal distribution with covariance $\operatorname{Cov}\left[\underline{X}_1\right]$

The first theorem gives a mean to compute any quantity related to a random vector \underline{Y} defined as the image of a random vector \underline{X} through a numerical model f, for exemple its CDF: generate many independent realizations of \underline{Y} , take $\phi(\underline{y}) = \mathbf{1}_{\{\underline{\tilde{y}} \in \mathbb{R}^p \mid \underline{\tilde{y}}_i \leq y_i}$ and the quantity $\frac{1}{n} \sum_{k=1}^n \phi(\underline{Y})$ will almost surely converge towards $\mathbb{E}[\phi(\underline{Y})] = \mathbb{P}[Y_1 \leq y_1, \dots, Y_n \leq y_n] = F_{\underline{Y}}(\underline{y})$. It is the so-called Monte Carlo method. The second theorem gives a mean to quantify the ecision of a Monte Carlo approximation for large but finite values of n. As we know the asymptotic behaviour of the fluctuations of $(\frac{1}{n} \sum_{k=1}^n f(\underline{X}))_{n \in \mathbb{N}}$ we can determine a region R for which the needed quantity has a large probability to be, and we see that this region shrinks with a speed proportional to $\frac{1}{\sqrt{n}}$.

Simulation

Monte Carlo algorithm

The end

No more maths!

- The probabilistic approach to uncertainty propagation involves some high level maths,
- The following presentations will show that an OpenTURNS developer must have a basic knowledge of these maths (at least the basic vocabulary) in order to be comfortable with the platform and its objects...
- ... but he/she has not to be an expert in order to be efficient!