Álgebra Linear e Geometria Analítica

Lista de Exercícios 2

Vetores no \mathbb{R}^2 e no \mathbb{R}^3

Exercícios básicos

1. Dados os vetores $\vec{u} = (5, -2), \vec{v} = (2, -3)$ e $\vec{w} = (-1, -4)$, calcule:

a)
$$\vec{u} + 2\vec{v}$$

b)
$$2\vec{w} - 3\vec{v} + \frac{1}{2}\vec{u}$$

c)
$$\vec{v} - 3(\vec{w} - 2\vec{u})$$

2. Dados os vetores $\vec{u}=(3,-1)$ e $\vec{v}=(-1,2),$ determine o vetor \vec{w} tal que

a)
$$3\vec{w} - (2\vec{v} - \vec{u}) = 2(4\vec{w} - 3\vec{u})$$

b)
$$4(\vec{u} - \vec{v}) + \frac{1}{3}\vec{w} = 2\vec{u} - \vec{w}$$

3. Determine os números k_1 e k_2 tais que $\vec{w} = k_1 \vec{u} + k_2 \vec{v}$, sendo

a)
$$\vec{u} = (2, -4), \vec{v} = (-5, 1), \vec{w} = (-12, 6)$$

b)
$$\vec{u} = (1, 2), \vec{v} = (4, -2), \vec{w} = (-1, 8)$$

- **4.** Dados os pontos A(-1,3), B(0,1) e C(2,-1), determine D tal que $\overrightarrow{DC} = \overrightarrow{BA}$.
- 5. Sendo A(-2,3) e B(6,-3) extremidades de um segmento, determine
 - a) os pontos C, D e E que dividem o segmento AB em quatro partes congruentes
 - b) os pontos F e G que dividem o segmento AB em três partes congruentes
- **6.** Os pontos A(1,-1), B(5,1) e C(6,4) são vértices de um paralelogramo. Determine o quarto vértice de cada um dos três paralelogramos possíveis de serem formados.
- 7. Dados os pontos A(2, -3, 1) e B(4, 5, -2), determine P tal que $\overrightarrow{AP} = \overrightarrow{PB}$.
- 8. Sendo A(2,-5,3) e B(7,3,-1) vértices consecutivos de um paralelogramo ABCD e sendo M(4,-3,3) o ponto de interseção das diagonais, determine os vértices C e D.
- 9. Determine m e n de modo que os vetores \vec{u} e \vec{v} sejam colineares, sendo

a)
$$\vec{u} = (4, 1, -3) e \vec{v} = (6, m, n)$$

b)
$$\vec{u} = (m+1, 3, 1) \in \vec{v} = (4, 2, 2n-1)$$

10. Verifique se são colineares os pontos

a)
$$A(-1, -5, 0), B(2, 1, 3), C(-2, -7, -1)$$

b)
$$A(2,1,-1), B(3,-1,0), C(1,0,4)$$

Exercícios complementares

11. Determine a extremidade do segmento que representa o vetor $\vec{v} = (2, -5)$, sabendo que sua origem é o ponto (-1,3).

12. Sejam os pontos A(-5,1) e B(1,3). Determine o vetor \vec{v} tal que

a) $B = A + 2\vec{v}$

b) $A = B + 3\vec{v}$

13. Dados os pontos A(-1,3), B(2,5), C(3,-1) e O(0,0), calcule:

a) $\overrightarrow{OA} - \overrightarrow{AB}$

b) $\overrightarrow{OC} - \overrightarrow{BC}$

c) $3\overrightarrow{BA} - 4\overrightarrow{CB}$

14. Dados os pontos A(1,1,2), B(2,3,-1) e C(-1,1,4), calcule

a) $\overrightarrow{AB} + 2\overrightarrow{CA}$

b) $2\overrightarrow{BC} - \overrightarrow{AC}$

- **15.** Determine o vetor \vec{v} sabendo que $(3,7,1) + 2\vec{v} = (6,10,4) \vec{v}$.
- **16.** Dados os vetores $\vec{u} = (1, -2, 2)$ e $\vec{v} = (1, 0, -3)$, determine o vetor \vec{w} tal que

a) $\vec{w} - 2\vec{v} - 3\vec{u} = 5\vec{w} - 2\vec{u}$

b) $3(\vec{u} + \vec{v}) - \vec{w} = \frac{1}{2}\vec{u} - \frac{2}{2}\vec{w}$

- 17. Dados os pontos A(-1,2,3) e B(4,-2,0), determine P tal que $\overrightarrow{AP}=3\overrightarrow{AB}$.
- **18.** Calcule $x \in y$ de modo que sejam colineares os pontos A(3,1,-2), B(1,5,1), C(x,y,7)

Respostas

1. a) (9, -8) b) $\left(-\frac{11}{2}, 0\right)$ c) (35, -3) **2.** a) $\vec{w} = \left(\frac{23}{5}, -\frac{11}{5}\right)$ b) $\vec{w} = \left(-\frac{15}{2}, \frac{15}{2}\right)$

3. a) $k_1 = -1, k_2 = 2$ b) $k_1 = 3, k_2 = -1$ **4.** D(3, -3)

5. a) $C(0, \frac{3}{2})$, D(2, 0), $E(4, -\frac{3}{2})$ b) $F(\frac{2}{3}, 1)$, $G(\frac{10}{3}, -1)$

6. $(2,2), (0,-4) \in (10,6)$ **7.** $P(3,1,-\frac{1}{2})$ **8.** $C(6,-1,3) \in D(1,-9,7)$

9. a) $m = \frac{3}{2}$ e $n = -\frac{9}{2}$ b) m = 5 e $n = \frac{5}{6}$ **10.** a) Sim b) Não

(-5, -30)

11. (1,-2) **12.** a) $\vec{v} = (3,1)$ b) $\vec{v} = \left(-2, -\frac{2}{3}\right)$ **13.** a) (-4,1) b) (2,5)

c)

14. a) (5, 2, -7) b) (-4, -4, 8) **15.** $\vec{v} = (1, 1, 1)$

16. a) $\vec{w} = \left(-\frac{3}{4}, \frac{1}{2}, 1\right)$ b) $\vec{w} = (17, -16, -11)$

17. P(14, -10, -6) **18.** x = -3, y = 13