7. <u>Circuitos de Corrente Alternada (AC)</u>

- 7.1. Fontes de AC e Fasores
- 7.2. Resistências num Circuito AC
- 7.3. Indutores num Circuito AC
- 7.4. Condensadores num Circuito AC
- 7.5. O Circuito RLC em Série
- 7.6. Ressonância num Circuito RLC em Série

- Análise de circuitos em série simples com resistências (R), condensadores
 (C), e indutores (L), isoladamente ou em combinação, alimentados por uma fonte de voltagem sinusoidal.
- Vamos usar o facto de R, C e L terem respostas lineares: a corrente alternada instantânea (AC) em cada um deles é proporcional à voltagem alternada instantânea no componente.
- Quando a voltagem (V) alternada aplicada for sinusoidal, a corrente em cada componente também será sinusoidal, mas não necessariamente em fase com a voltagem aplicada.
- Quando a corrente numa bobina (indutor) se altera com o tempo, há uma fem (força electro-motriz) induzida na bobina, conforme a Lei de Faraday.

A fem auto-induzida numa bobina define-se pela expressão:

$$\varepsilon = -L \frac{di}{dt}$$
 Onde L é a **indutância** da bobina

• A <u>Indutância</u> é uma medida de oposição dum componente do circuito (neste caso a bobina) à variação da corrente.

Universidade do Minh

SI
$$\rightarrow$$
 henry (H) $1H = 1 \frac{V \cdot s}{A}$

• A indutância de <u>qualquer bobina</u> (solenóide, bobina toroidal) é dada pela expressão

$$L = \frac{N\phi_m}{I}$$

- Onde I é a corrente, ϕ_m é o fluxo magnético através da bobina, e N o número total de espiras.
- A indutância de um componente de um circuito depende da geometria do componente.

Indutor (bobina)

- •Circuito de corrente alternada (AC): uma combinação de componentes (R,L,C) e um gerador que proporciona AC.
- •Pela rotação duma espira num campo magnético com velocidade angular (w) constante, induz-se uma voltagem alternada (fem) sinusoidal na espira.
- •Esta voltagem instantânea é dada por:

$$|\upsilon = V_m sen \omega t|$$

 V_m : voltagem de pico do gerador de AC ou amplitude da voltagem.

•A frequência angular é:
$$\omega = 2\pi f = \frac{2\pi}{T}$$

f: frequência linear da fonte, T: período $(f \rightarrow Hz \text{ (ciclos por segundo)}; \omega \rightarrow$ rad/s)

Em Portugal, na rede eléctrica f=50 Hz

Objectivo primordial do capítulo - exemplo: Suponha que tem um gerador de AC ligado a um circuito com componentes R, L e C em série; se a V_m e a f do gerador forem dadas, e os valores de R, L e C também, achar a corrente resultante, caracterizada pela amplitude e pela fase.

A fim de simplificar esta análise temos que construir graficamente um diagrama de fasores: as grandezas oscilatórias (corrente, voltagem) são representadas por vectores giratórios (no sentido anti-horário) no plano complexo, os fasores.

- •O comprimento do fasor representa a amplitude (valor máximo) da grandeza;
- •A projecção do fasor no eixo real representa o valor instantâneo da grandeza.

• A soma algébrica instantânea da elevação do potencial, e do abaixamento do potencial, na malha do circuito deve ser nula (Lei das malhas de Kirchhoff) ⇒

$$\Sigma v_i = 0 \Leftrightarrow v - v_R = 0 \Rightarrow v = v_R = V_m \cdot \text{sen } \omega t$$
 (1)

queda instantânea de voltagem na resiatência (R).

A corrente instantânea:

$$\left| i_R = \frac{\upsilon}{R} = \frac{V_m}{R} \operatorname{sen} \omega t = I_m \operatorname{sen} \omega t \right|$$

$$I_m = \frac{V_m}{R}$$
 \rightarrow corrente de pico

_Universidade do Minho

 i_R e v_R variam, ambos de uma forma sinusoidal (com *sen \omega t*) e atingem os valores máximos (picos) num mesmo instante \Rightarrow as duas grandezas estão em fase.

Gráfico da voltagem e da corrente em função do tempo

Diagrama de fasores. As projecções de I_m e V_m (fasores) no eixo vertical representam os valores instantâneos de i_R e v_R .

• ! O valor médio da corrente sobre um ciclo é nulo: a corrente mantém-se num sentido (+) durante o mesmo intervalo de tempo que se mantém no sentido oposto (-) ⇒ O sentido da corrente não tem efeito sobre o comportamento do R no circuito.

Efeito térmico

Iniversidade do Minho

- Qualitativamente: as colisões entre os electrões de condução de corrente e os átomos fixos da resistência (R) provocam um aumento da sua temperatura, que depende do valor da corrente, mas é independente da direcção da corrente.
- Quantitativamente: taxa de conversão da energia eléctrica em calor numa R é a sua **potência instantânea** $P = i^2 \cdot R$; *i*: corrente instantânea na R.
- $\mathbf{P} \propto \mathbf{i}^2 \Rightarrow$ não faz diferença se a corrente for contínua (DC) ou alternada (AC), ou seja se o sinal (+) ou (-) for associado a \mathbf{i} .
- ! O efeito térmico provocada por uma corrente alternada com I_m <u>não</u> é o mesmo que o provocado por uma corrente contínua com o mesmo valor, dado que a corrente alternada somente tem o I_{max} durante um pequeno instante de tempo durante um ciclo.

Importante num circuito AC é o valor médio da corrente <u>ou</u> corrente média quadrática (rms).

A corrente média quadrática (ou eficaz) é a raiz quadrada da média dos quadrados da corrente.

O quadrado da corrente varia com $sen^2 \omega t$, e pode-se mostrar que o valor médio de i^2 é $\mathbf{I^2_m/2}$

$$\Rightarrow I_{rms} = \frac{I_m}{\sqrt{2}} = 0,707 I_m$$

$$\Rightarrow I_{rms}^2 = \frac{I_m^2}{2}$$

Exemplo: Uma corrente AC com $I_m = 2$ A libertará o mesmo calor numa R do que uma corrente DC de $0.707 \cdot 2 = 1.414$ A

A potência média dissipada num R com uma corrente AC é:

$$P_{med} = I_{rms}^2 R$$

$$R = \frac{V_{rms}}{I_{rms}}$$

A voltagem média quadrática (ou eficaz):

$$V_{rms} = \frac{V_m}{\sqrt{2}} = 0,707 V_m$$

- ! Quando se fala em medir a voltagem alternada de 220V duma tomada eléctrica, fala-se na realidade duma V_{rms} de 220V \Rightarrow V_{m} = 311,1 V
- ! Usaremos valores *rms* ao discutir as correntes e voltagens alternadas.
- ! Os amperímetros e voltímetros de AC são projectados para ler os valores *rms* Se forem usados os valores *rms*, muitas equações terão a mesma forma que as equações nos circuitos DC

	Voltagem	Corrente
Valor instantâneo	υ	i
Valor máximo (pico)	V _m	I _m
Valor médio quadrático (ou eficaz)	$\mathbf{V}_{\mathrm{rms}}(\mathbf{V}_{ef})$	$\mathbf{I}_{\mathrm{rms}}(\mathbf{I}_{e\!f})$

⇒ Exercício 7.1

v_L: queda instantânea de voltagem no indutor (bobina).

$$\Rightarrow$$
 Lei das malhas: $\Sigma \upsilon_i = 0 \Leftrightarrow \upsilon + \upsilon_L = 0$,

$$-L\frac{di}{dt} + V_m \operatorname{sen} \omega t = 0 \Rightarrow L\frac{di}{dt} = V_m \operatorname{sen} \omega t$$

A integração dá a corrente em função do tempo:

$$i_{L} = \frac{V_{m}}{L} \int sen \, \omega t \, dt = -\frac{V_{m}}{\omega L} \cos \, \omega t$$

dado que:
$$-\cos \omega t = sen\left(\omega t - \frac{\pi}{2}\right) \Rightarrow \left[i_L = \frac{V_m}{\omega L} sen\left(\omega t - \frac{\pi}{2}\right)\right]$$

 v_L atinge V_m (pico) num instante que está um quarto do período de oscilação antes de $i_{\rm L}$ atingir $I_{\rm m}$

Quando a v aplicada sinusoidal, i_L segue a v_L com um atraso de 90°

! $v_L \propto di/dt \Rightarrow v_L$ é maior quando i estiver a variar com maior rapidez. i(t) é uma curva sinusoidal \Rightarrow di/dt (declive) é máximo quando a curva i(t) passar pelo zero $\Rightarrow v_{\rm L}$ atinge $V_{\rm m}$ quando $i_{\rm L} = 0$

$$i_{L} = \frac{V_{m}}{\omega L} sen\left(\omega t - \frac{\pi}{2}\right)$$

Da Eq.
$$(2)$$
 \Rightarrow $I_m = \frac{V_m}{\omega L} = \frac{V_m}{X_L}$ (3)

• $X_L = \omega L$ é a impedância indutiva (ou reactância indutiva)

 I_{rms} é dada por uma expressão semelhante à 3 com V_m substituída por V_{rms}

$$I_{rms} = \frac{V_{rms}}{X_L}$$

! O conceito de **impedância** é usado a fim de não ser confundido com o de resistência.

A impedância distingue-se da resistência porque introduz uma diferença de fase entre υ e i.

- •Circuito puramente resistivo $\Rightarrow i$ e υ em fase
- •Circuito puramente indutivo \Rightarrow i segue υ com uma diferença de fase de 90°

$$Com \left(\begin{array}{c} 1 \end{array} \right) e$$

$$3 \Rightarrow$$

Com
$$0$$
 e 0 \Rightarrow $v_L = V_m \cdot sen \omega t = I_m \cdot X_L \cdot sen \omega t$

Pode ser visto como a Lei de Ohm dum circuito indutivo. X_L tem a unidade SI de resistência (impedância) \Rightarrow o Ohm (Ω).

A impedância dum indutor aumenta com a frequência. Nas frequências mais elevadas i varia mais rapidamente, o que provoca um aumento da fem induzida associada a uma certa I_m.

 \Rightarrow Exercício 7.2

Universidade do Minho

• Lei das malhas: $\Sigma v_i = 0 \Leftrightarrow v - v_c = 0$

$$\upsilon = \upsilon_c = V_m \operatorname{sen} \omega t$$

• v_c : queda instantânea de voltagem no condensador.

$$v_c = \frac{Q(t)}{C} \rightarrow Q(t) = CV_m sen \omega t$$
 1

Uma vez que $i = dQ/dt \implies$ a derivação de 1 dá a corrente instantânea

$$i_{C} = \frac{dQ}{dt} = \omega C V_{m} \cos \omega t = \omega C V_{m} \sin \left(\omega t + \frac{\pi}{2} \right)$$

dado que:
$$\cos \omega t = sen\left(\omega t + \frac{\pi}{2}\right)$$

 Vemos que a corrente não está em fase com a voltagem aos terminais do condensador.

$$i_{C} = \omega C V_{m} sen \left(\omega t + \frac{\pi}{2} \right) = \frac{1}{X_{C}} V_{m} sen \left(\omega t + \frac{\pi}{2} \right)$$

 $i_{\rm C}$ está com uma diferença de fase de 90° em antecipação à $v_{\rm C}$.

 \emph{i}_{C} atinge I_{m} (pico) um quarto de ciclo mais cedo que o instante em que a υ_{C} atinge V_{m}

Quando a fem aplicada for sinusoidal, a corrente num condensador está avançada de 90° relativamente à voltagem no C.

$$X_C = \frac{1}{\omega C}$$

7.5. <u>Circuitos RLC em Série</u>

- $i = I_{m}.sen(\omega t \phi); \phi \in o$ ângulo de fase entre a corrente e a voltagem aplicada.
- Objectivo: determinar ϕ e I_m . Teremos que construir e analisar o diagrama de fasores do circuito.
- ! Todos os componentes estão em **série** no circuito \Rightarrow **a corrente alternada** (i) é sempre a mesma (mesma amplitude e mesma fase) em todos os pontos do circuito. ⇒ a voltagem em cada componente terá amplitude e fase diferente.

Voltagem \rightarrow em fase / avanço de 90° / atraso de 90° com a corrente

As quedas instantâneas de voltagem:

$$\upsilon_{R} = I_{m}R \ sen \ (\omega t - \phi) = V_{R} \ sen \ (\omega t - \phi)$$

$$\upsilon_{L} = I_{m}X_{L} \ sen \ (\omega t + \pi/2 - \phi) = V_{L} \cos (\omega t - \phi)$$

$$\upsilon_{C} = I_{m}X_{C} \ sen \ (\omega t - \pi/2 - \phi) = -V_{C} \cos (\omega t - \phi)$$

$$i = I_{m} \ sen \left(\omega t - \phi\right)$$

 $V_R = I_m R$; $V_L = I_m X_{L}$; $V_C = I_m X_C$ são as voltagens de pico (máximos) aos terminais de cada componente.

! A voltagem instantânea v nos três componentes obedece a:

Universidade do Minho

$$\upsilon = \upsilon_{\mathbf{R}} + \upsilon_{\mathbf{L}} + \upsilon_{\mathbf{C}}$$

É mais simples efectuar a soma usando o diagrama de fasores 2A corrente em cada componente é a mesma, $I(t) \Rightarrow$ pela combinação dos três fasores 1:

! A soma vectorial das amplitudes das voltagens $\mathbf{V_R}$, $\mathbf{V_L}$, $\mathbf{V_C}$ é igual a um fasor cujo comprimento é o pico da voltagem aplicada, $\mathbf{V_m}$, e que faz um ângulo ϕ com o fasor da corrente $\mathbf{I_m}$.

Pelo triângulo na Figura:

$$V_{m} = \sqrt{V_{R}^{2} + (V_{L} - V_{C})^{2}} = \sqrt{(I_{m} R)^{2} + (I_{m} X_{L} - I_{m} X_{C})^{2}}$$

$$V_{m} = I_{m} \sqrt{R^{2} + (X_{L} - X_{C})^{2}} ; X_{L} = \omega L; X_{C} = 1/\omega C$$

$$I_{m} = \frac{V_{m}}{\sqrt{R^{2} + (X_{L} - X_{C})^{2}}}$$

A impedância (Z) do circuito RLC é:
$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
 SI: Ohm

$$\Rightarrow$$
 A \rightarrow $V_{m} = I_{m} Z$ \Rightarrow Generalização da Lei de Ohm para AC

• ! A corrente no circuito depende da R, L, C e ω

Se eliminamos o factor comum I_m de cada fasor da Figura (2)

⇒ triângulo de impedância.

$$i = I_m sen(\omega t - \phi)$$

- Quando $X_L > X_C$ (frequências altas) $\Rightarrow \phi > 0$, a *i* segue a υ aplicada.
- Se $X_1 < X_C \Rightarrow \phi < 0$, i precede a υ aplicada.
- Quando $X_1 = X_C \Rightarrow \phi = 0$, Z = R e $I_m = V_m/R$

A frequência a que se verifica esta condição é a frequência de ressonância.

22

Componentes do Circuito	Impedância, Z	Ângulo de Fase, φ
R ◆── \ \\\	R	$0_{\mathbf{o}}$
- C	X_{C}	-90°
L 	X_{L}	+90°
R C •—ww— ——•	$\sqrt{R^2 + X_C^2}$	Negativo, entre –90° e 0°
R L •── ₩ ₩─ ─Û∭	$\sqrt{R^2 + X_L^2}$	Positivo, entre 0° e 90°
R L C •── ₩ ~_ ∭	$\sqrt{R^2 + (X_L - X_C)^2}$	Negativo se $X_C > X_L$ Positivo se $X_C < X_L$

No circuito RLC podemos exprimir a potência instantânea, P, como:

$$P = i \cdot v = I_{m} sen(\omega t - \phi) \cdot V_{m} sen(\omega t)$$

$$= I_{m} V_{m} sen(\omega t) \cdot sen(\omega t - \phi)$$

! Função complicada do tempo sem muita utilidade prática.

Interessa, em geral: a **potência média** em um ou mais ciclos ⇒

$$sen(\omega t - \phi) = sen(\omega t)cos(\phi) - sen(\phi)cos(\omega t) \rightarrow$$

$$P = I_m V_m sen^2(\omega t) \cdot cos(\phi) - I_m V_m sen(\omega t) \cdot cos(\omega t) \cdot sen(\phi)$$

Toma-se a média de P sobre o tempo durante um ou mais ciclos (I_m, V_m, ϕ e ω constantes).

- Média de sen²(ωt).cos(φ) $\rightarrow \frac{1}{2}\cos(\phi)$
- Média de sen(ωt).cos(ωt).sen(φ)

$$V_{rms} = \frac{V_m}{\sqrt{2}}; I_{rms} = \frac{I_m}{\sqrt{2}}$$

⇒ A potência média ou potência activa eficaz:

⇒ A queda máxima de voltagem na resistência é: $V_R = V_m \cos \phi = I_m.R \rightarrow$

$$\cos \phi = I_m R/V_m$$

$$P_{m\acute{e}d} = I_{rms} V_{rms} \cos \phi = \left(\frac{I_m}{\sqrt{2}}\right) \left(\frac{V_m}{\sqrt{2}}\right) \frac{I_m R}{V_m} = \frac{1}{2} I_m^2 R$$

$$P_{m\acute{e}d} = I_{rms}^2 R$$

- ! A potência média proporcionada pelo gerador é dissipada como calor na R. (como em DC)
- ! Não há perda de potência num indutor ideal ou num condensador ideal.
- (Ex.: o C é carregado e descarregado duas vezes durante cada ciclo ⇒ há fornecimento de carga ao C durante dois quartos do ciclo, e há o retorno da carga à fonte de voltagem, durante os outros dois quartos. ⇒ A potência média proporcionada pela fonte é nula. Logo um C num circuito de AC não dissipa energia.)
- (Analogamente para o indutor)

A potência que se transmite entre a fonte e o circuito que não é dissipada:

Potência reactiva:

$$P_{\text{react}} = I_{\text{rms}}.V_{\text{rms}}.\text{sen}(\phi)$$

$$P_{m\acute{e}d} = P_{act} = I_{rms} \cdot V_{rms} \cdot cos \phi$$

Puramente resistivo $\Rightarrow \phi = 0$, $\cos \phi = 1$

$$\Rightarrow P_{\text{max}} = I_{\text{rms}}.V_{\text{rms}}$$

Potência máxima (máx. amplitude)

<u>Universidade do Minho</u>

- Um circuito RLC está em **ressonância** quando a corrente tem o seu valor de pico (ver pag. 22).
- Em geral $I_{rms} = \frac{V_{rms}}{Z} = \frac{V_{rms}}{\sqrt{R^2 + (X_L X_C)^2}}$

$$!Z = Z(\omega) \Rightarrow I_{rms} = I_{rms}(\omega)$$

A corrente atinge o seu valor máximo quando $X_L = X_C \Rightarrow Z = R$

A frequência ω_0 a que isso ocorre é a **frequência de ressonância do** circuito:

$$X_L = X_C \iff \omega_0 L = \frac{1}{\omega_0 C}$$
 $\omega_0 = \frac{1}{\sqrt{LC}}$

ω₀ também corresponde à frequência natural de oscilação do circuito LC.

• Nesta frequência a corrente está em fase com a voltagem instantânea aplicada.

$$L = 5 \mu H$$

$$C = 2 nF$$

$$V_{mq} = 5 mV$$

$$\omega_0 = 10^7 \text{ rad/s}$$
 $\forall \mathbf{R}$

Curvas mais estreitas e altas quando R diminui.

$$I_{rms} \rightarrow \infty, R \rightarrow 0 \text{ (teoria!!)}$$

massa-mola. • Actuando na ω_0 , a amplitude das oscilações aumenta com o tempo.

Os sistemas mecânicos também

exibem ressonâncias: sistema

Os circuitos reais têm sempre uma certa resistência que limita o valor da corrente.

$$X_{L} = \omega L$$

$$X_{C} = \frac{1}{\omega C}$$

$$\omega_{0}^{2} = \frac{1}{LC}$$

$$P_{m\acute{e}d} = \frac{V_{rms}^2 R \omega^2}{R^2 \omega^2 + L^2 (\omega^2 - \omega_0^2)^2}$$

Quando $\omega = \omega_0$ a $P_{\text{méd}}$ é máxima,

$$P_{m\acute{e}d} = \frac{V_{rms}^2}{R}$$

A largura da curva é descrita por um factor de qualidade: Q_0

$$Q_0 = \frac{\omega_0}{\Delta \omega}$$

 $\Delta \omega$ é a largura da curva medida entre dois valores de ω para os quais $P_{m\acute{e}d}$ tem metade do valor máximo da P

$$\Delta \omega = \frac{R}{L} \quad \Rightarrow \quad \boxed{Q_0 = \frac{\omega_0 L}{R}} \quad \begin{array}{c} X_L(\omega_0) \\ \rightarrow \text{Grandeza adimensional} \end{array}$$

! Q_{θ} elevado, $\Delta \omega$ estreito; Q_{θ} baixo, corresponde a uma faixa de frequências mais ampla.

! $10 < Q_0 < 100$ (aprox.) nos circuitos electrónicos.

Aplicações: Aparelho de rádio

- $\Delta C \Rightarrow \Delta \omega_0$ (sintonização)
- ω_0 do circuito = onda de rádio recebida \Rightarrow aumenta I no circuito.
- Sinal amplificado alimenta o alto-falante
- Q_0 elevado a fim de serem eliminados os sinais indesejáveis.

Anexo1: Representação Complexa das grandezas AC

- Universidade do Minho
- Uma corrente ou tensão alternadas podem ser representadas por um número complexo.
- Aproveitando a identidade

$$e^{i\theta} = \cos \theta + i \sin \theta$$
; com $i^2 = -1$

• Regra para a representação:

Uma voltagem alternada $V_0.\cos(\omega t + \delta)$ deve ser representada pelo número complexo $V_0.e^{i\delta}.e^{i\omega t}$, isto é, o número cuja parte real é $V_0.\cos(\delta)$ e cuja parte imaginária é $V_0.\sin(\delta)$ que roda no plano complexo com a velocidade angular ω . Portanto, a voltagem em função do tempo é dada pela parte real do produto $V_0.e^{i(\omega t + \delta)}$.

Representação complexa

$$V_0$$
.cos($\omega t + \delta$)

$$V_0.e^{i\delta} = x + iy$$

Multiplique por $e^{i\omega t}$ e tome a parte real

$$V = Re[V_0.e^{i\delta}(e^{i\omega t})] = V_0.cos(\omega t + \delta)$$

$$I_{m} = \frac{V_{m}}{\sqrt{R^{2} + (X_{L} - X_{C})^{2}}}, I_{m} = \frac{V_{m}}{Z}$$

$$|Z| = \sqrt{R^2 + (X_L - X_C)^2}$$

$$\delta = \arctan \frac{X_L - X_C}{R}$$

$$\overline{Z} = |\overline{Z}| e^{i\delta}$$
 ; $Z = R + iX$

$$\overline{Z}_{R} = R$$

$$\overline{Z}_{L} = \omega L e^{i\pi/2} = i\omega L$$

$$\overline{Z}_{C} = \frac{1}{\omega C} e^{i\pi/2} = \frac{-i}{\omega C} = \frac{1}{i\omega C}$$

$$\overline{Z} = \overline{Z}_R + \overline{Z}_L + \overline{Z}_C$$

$$\left| \overline{Z} \right| = \sqrt{\overline{Z}_R^2 + \left(\overline{Z}_L + \overline{Z}_C \right)^2}$$

$$\arctan \left[\frac{I_m \overline{Z}}{\operatorname{Re} \overline{Z}} \right] = \delta$$

Universidade do Minho

$$I = I_C + I_R + I_L = V.(Y_C + Y_R + Y_L)$$

$$I = V.Y_T$$

$$I_C = \frac{V}{Z_C} = VY_C \; ; \; Z_C = \frac{1}{i\omega C} \; ; \; Y_C = i\omega C$$

$$I_R = \frac{V}{R} = VY_R$$
 ; $Z_R = R$; $Y_R = \frac{1}{R}$

$$I_L = \frac{V}{Z_L} = VY_L$$
; $Z_L = i\omega C$; $Y_L = \frac{1}{i\omega C}$

$$Y_T = Y_C + Y_R + Y_L = i \omega C + \frac{1}{i \omega L} + \frac{1}{R} = i \omega C - \frac{i}{\omega L} + \frac{1}{R}$$

ressonância:
$$\omega_R = \frac{1}{\sqrt{IC}}$$
; $Y_T = \frac{1}{R}$

Impedância, Z = 1/Y;

Y, admitância