clusterAl ciencia de datos en ingeniería industrial UTN BA curso I5521

clase_03: Clasificación

AI & Art

Borges and AI

Léon Bottou † and Bernhard Schölkopf ‡

† FAIR, Meta, New York, NY, USA ‡ Max Planck Institute for Intelligent Systems, Tübingen, Germany

Abstract

Many believe that Large Language Models (LLMs) open the era of Artificial Intelligence (AI). Some see opportunities while others see dangers. Yet both proponents and opponents grasp AI through the imagery popularised by science fiction. Will the machine become sentient and rebel against its creators? Will we experience a paperclip apocalypse? Before answering such questions, we should first ask whether this mental imagery provides a good description of the phenomenon at hand. Understanding weather patterns through the moods of the gods only goes so far. The present paper instead advocates understanding LLMs and their connection to AI through the imagery of Jorge Luis Borges, a master of 20th century literature, forerunner of magical realism, and precursor to postmodern literature. This exercise leads to a new perspective that illuminates the relation between language modelling and artificial intelligence.

agenda clase03: aprendizaje supervisado

- Aprendizaje Supervisado
- Clasificación, binary class, multiclass
- Train, validation, test
- Cross validation
- Performance metrics (Sens, Spec, ROC)
- Learning curve
- Clasificadores: Logistic Regression

Lectura sugerida

Introduction to Statistical Learning (with applications in Python)

https://www.statlearning.com/

https://hastie.su.domains/ISLP/ISLP_website.pdf.download.html

- Capitulo 1 -> completo
- Capitulo 2 -> página 15 a 34 (Introducción a Clasificación)
- Capítulo 4 -> página 135 a 144 (Regresión Logística)

Lectura sugerida

Probabilistic Machine Learning: An Introduction

https://probml.github.io/pml-book/book1.html

- Capítulo 1 Introducción
 - 1.1: What is machine learning?
 - 1.2: Supervised Learning
- Capítulo 11 -> Logistic Regression

Learning Approaches

Particularmente en este curso vamos a poner foco en el aprendizaje **supervisado** y el aprendizaje **no-supervisado**. Estos dos enfoques suelen ser los más populares y prácticos para la mayoría de los problemas.

Se compone de un conjunto de entrenamiento \mathcal{A} y un conjunto de testeo disjunto \mathcal{T} de pares de entrada-objetivo $(x_0, y_0), (x_1, y_1), ..., (x_N, y_N),$ donde $x_i \in \mathcal{X}$ e $y_i \in \mathcal{Y}$ se denominan espacio de entrada y espacio de destino, con $1 \leq i \leq N$, dado N el numero de elementos en los conjuntos.

Se supone que los pares de muestra de \mathcal{A} y \mathcal{T} se generan independientemente a partir de la misma distribucion de entrada-objetivo $\mathcal{D}_{\mathcal{X}\times\mathcal{Y}}$. En ocasiones, se asigna un conjunto de validacion adicional del conjunto de entrenamiento para validar el rendimiento del algoritmo de aprendizaje durante el entrenamiento y se utiliza tipicamente para decidir cuando detener el entrenamiento y evitar el sobreajuste.

Las tareas de aprendizaje supervisado se dividen en clasificación y regresion cuando el espacio objetivo \mathcal{Y} es un conjunto discreto de K clases y cuando el espacio objetivo \mathcal{Y} es un subconjunto de numeros reales, respectivamente. Es decir, en tareas de clasificación y regresion, los modelos ML aprenden una función de mapeo $f: \mathbb{R}^d \to \{1, ..., K\}, K \subset \mathbb{N} \text{ y } f: \mathbb{R}^d \to \mathbb{R}$, respectivamente, donde $\dim(\mathcal{A}, \mathcal{T}) = d$.

El objetivo del aprendizaje supervisado es minimizar una medida de pérdida específica de la tarea \mathcal{L} , denominada loss function. Idealmente, se desearía minimizar \mathcal{L} en todo el $\mathcal{D}_{\mathcal{X}\times\mathcal{Y}}$. Sin embargo, esto requeriría conocer la forma analítica de la distribución o, en la práctica, tener acceso a un número infinito de pares de muestras. En su lugar, se utiliza el conjunto finito \mathcal{A} para minimizar la llamada training loss $\mathcal{L}_{\mathcal{A}}$:

$$\mathcal{L}_{\mathcal{A}} = \frac{1}{|\mathcal{A}|} \sum_{i \in \mathcal{A}} \mathcal{L}(f(x_i, \theta_t), y_i)$$
 (1)

donde f y θ se refieren a la función de mapeo $f: X \to Y$ que el modelo ML debe aprender, y a sus parámetros, respectivamente.

Una vez finalizado el entrenamiento, el conjunto \mathcal{A} se reemplaza por \mathcal{T} en 1, lo que produce una medida \mathcal{L} denominada test loss. La minimización de $\mathcal{L}_{\mathcal{T}}$ es, en la práctica, el verdadero objetivo del aprendizaje supervisado, ya que se busca un buen rendimiento en pares de muestras nunca antes vistos.

La capacidad de transferir el conocimiento aprendido del conjunto \mathcal{A} al conjunto \mathcal{T} se denomina generalización y se basa en el supuesto de que $\mathcal{D}_{\mathcal{X}\times\mathcal{Y}}$ existe y $\mathcal{A}\cap\mathcal{T}=\emptyset$.

En particular, para tareas de clasificación, los modelos ML pueden diferenciarse en discriminantes o probabilísticos. Los enfoques discriminantes, como SVM, devuelven directamente la clase objetivo estimada para cada x_i después de que el modelo ML defina los límites entre las clases. Por el contrario, los enfoques probabilísticos primero determinan para cada muestra x_i las probabilidades condicionales $Pr(y_i = K|x_i, \theta)$ de las K clases, y luego se selecciona la clase más probable como la estimación \hat{y}_i :

$$\hat{y}_i = z(x_i, \theta) = \arg\max_K \Pr(y_i = K | x_i, \theta)$$
(2)

Y is a real number

$$y \subseteq \mathbb{R}$$

Classification

Y is categorical

$$y \in \{-1, 1\}$$

Samples and Features

Para que los modelos de machine learning puedan aprender es necesario exponerlos a un conjunto de instancias/samples muestreados de una distribución de probabilidad compleja desconocida. Cada instancia/sample/muestra está caracterizada por un conjunto de features/variables/dimensiones.

Cada sample puede verse como un vector de dimensión d.

Aprendizaje supervisado: dataset

$$S = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$$

$$\mathcal{X} \in \mathbb{R}^d \qquad y \in \{-1, 1\} \qquad f(x) = y$$

El enfoque de aprendizaje supervisado se basa en disponer datos ordenados en un dataset S en pares de instancias y etiquetas (samples 'x' & labels 'y'). Las instancias/muestras son vectores d-dimensionales de variables aleatorias i.i.d. (independientes e idénticamente distribuidos). Las etiquetas se suponen variables dependientes que pueden tomar valores discretos (clases) o continuos a partir de distintos valores de x mediante una función f(x) llamada 'ground truth' o función objetivo tal que f(x) = y. Es decir que f(x) explica la relación entre 'x' (input) e 'y' (output) Como la realidad es compleja generalmente no conocemos la verdadera f(x), por lo que trataremos de aproximarla o **aprenderla**.

Aprendizaje supervisado: fundamentos

$$S = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$$

$$\mathcal{X} \in \mathbb{R}^d$$
 $y \in \{-1, 1\}$ $f(x) = y$

Hipotesis

Para aproximarnos a la verdadera f(x) vamos a buscar alguna función f(.) dentro de un espacio de hipótesis que contiene muchas funciones f(.) . De todas las funciones disponibles dentro del espacio de hipótesis H vamos a tratar de encontrar alguna que explique lo mejor posible la relación entre el input 'x' y el output 'y'. La función que vayamos a buscar estará caracterizada por **parámetros (w)** que pueden tomar distintos valores. Entonces existirá una combinación de parámetros que determinen una f'(.) que se aproxime a la verdadera f(.) mas que otras f'(.) .

$$\hat{f}(x) = y \qquad \hat{f}(x) = \hat{y} \qquad L(y, \hat{y})$$

$$\min_{\boldsymbol{w}} \; L(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \min_{\boldsymbol{w}} \; L(\boldsymbol{y}, \hat{f}(\boldsymbol{x}))$$

Suponiendo que tanto el dataset de sample-features y las etiquetas están disponibles s=(x,y) vamos a **aprender los parámetros w que definen** una función f'(x) que explique lo mejor posible la relación (x -> y). Es decir que aprenderemos una función que tomando como input las variables aleatorias "x" genere un output y' lo más similar a las etiquetas "y" dadas. Para poder medir cuán similares son las etiquetas generadas por la función aprendida f'(x) utilizaremos una función L(y,y') de Costo o Pérdida (Loss function) que tomará valores altos cuando y sea muy distinto de y'. Por el contrario cuando y sea muy parecido a y' la función de costo tomará valores bajos. Por esta razón buscamos **minimizar** la función de costo. En otras palabras, el aprendizaje supervisado puede plantearse como un problema de optimización llamado **Empirical Risk Minimization**.

Cada muestra está asociada a una etiqueta categórica (clase) confirmada por un humano.

Clasificación: Frontera de decision lineal

Hiper-plano separador

$$f(x) = w^T x + b = 0$$

Funcion de decision

$$D(x) = \operatorname{sign}[w^T x + b]$$

Existen muchos tipos de funciones de decisión. La familia de funciones más conocida es la de las funciones lineales. Estas funciones son hiper-planos caracterizados por parámetros **w** (vector w=[w1....wd]) que determinarán cómo se posiciona la frontera de decisión en el hiper-espacio de dimensión d. En la clasificación binaria la función de decisión asignará un valor de **y=1** o **y=-1** según de que lado del hiper-plano se posicionen las muestras **x**.

Funciones de decisión

Una función de decisión toma un vector input X (sample) con "d" features, y le asigna una de las K clases, llamada Ck.

- Cuando Ck = 2 -> binaria
- Cuando Ck > 2 = multiclase

En el ejemplo de la derecha tenemos dos dimensiones y dos clases. La función de decisión es una función lineal que clasifica casi todas las muestras bien menos una sola (dependiendo del lado que se encuentre la muestra respecto al clasificador).

Funciones de Decisión

Para un mismo set de datos etiquetados, distintos modelos pueden generar **distintas** funciones de decisión (decision rules).

Algunos modelos generarán funciones de decisión más **sencillas** y otros aprenderán funciones más **complejas**.

La complejidad de la función a aprender dependerá de la complejidad de la **distribución** de las muestras de entrenamiento.

Funciones de Decisión

Tipos de clasificación

Clasificación Binaria

Clasificación Multiclase

En clasificación binaria aprenderemos una sola función (clasificador) mientras que en multiclase será k o k-1 funciones según el caso.

Ejercicio clasificación

$$\mathbf{x}_{train} = \begin{bmatrix} 1 & 1 \\ 3 & 0.5 \\ 2 & 3 \\ 2.5 & 1.5 \\ 1.5 & 2 \\ 2.5 & 4 \\ 3.5 & 1.5 \\ 4 & 3 \end{bmatrix} \mathbf{y}_{train} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \mathbf{b}$$

$$n = 8 \qquad d = 2 \qquad \mathcal{X} \in \mathbb{R}^2$$

Dado el dataset (x,y) de entrenamiento, calcular cuáles deberían ser los valores de los parámetros **w** y **b** para obtener una función lineal de decisión que clasifique los datos con el menor error. Graficar la solución.

Durante el entrenamiento, el modelo estará expuesto a muchas muestras de "entrenamiento" y sus respectivas etiquetas de manera tal de que aprenda la regla f'(x) que **minimiza el error de clasificación**. Simultáneamente esperamos que luego de entrenar, la regla/función de decisión aprendida en los datos de entrenamiento funcione "bien" para muestras que nunca vió (test). Es decir, que pueda **generalizar** a instancias 'x' nunca vistas clasificándolas correctamente.

En la figura: cuál modelo tiene menor error en el entrenamiento? cual modelo generaliza mejor? Cual es más complejo? Cual es más sencillo?

Dados los mismos datos de entrenamiento del caso anterior, volvemos a entrenar los dos modelos: lineal y no lineal. Esta vez con otras muestras nuevas (test). Los resultados de clasificación son distintos en este caso. Cual de los dos modelos es mejor? Cual es la principal diferencia entre ambos modelos? Cual de los dos debemos mantener para el análisis?

con etiquetas de dos clases.

datos de entrenamiento

ajustamos un modelo

no-lineal y lineal.

Evaluacion: exponemos el modelo ya entrenado con 4 muestras nuevas de validacion/test de cada clase y vemos cómo clasifican con el modelo ya entrenado.

con etiquetas de dos clases.

Funcion de clasificacion: con los datos de entrenamiento ajustamos un modelo no-lineal y lineal.

Evaluacion: exponemos el modelo ya entrenado con 4 muestras nuevas de validacion/test de cada clase y vemos cómo clasifican con el

Aprendizaje supervisado: mediciones de desempeño/performance en clasificación

classification results: confusion matrix

Positive

False Negative

Predicted Label

Accuracy = (TN+TP) / Total Sensitivity (recall) = TP/(TP+FN) Specificity = TN/(TN+FP)

La matriz de confusión es un elemento evaluar los resultados de la clasificación. En cada posición se cuentan los TP, TN, FP, FN. Luego se obtienen los coeficientes de accuracy, Sensitivity, specificity.

classification results: AUC ROC

- El área bajo la curva ROC (AUC) da una idea de cuan bueno es mi clasificador independientemente del accuracy.
- Tomando una sola clase, se analizan distintos umbrales de clasificación y se contempla la relación entre TP y FP.
- Cuanto más cerca de 0.5 sea el AUC, más similar a "arrojar una moneda" sera mi clasificador. Cuanto más cerca de 1 sea el área bajo la curva, mejor mi clasificador.

Learning Curve

Podemos evaluar el funcionamiento del clasificador con distintas cantidades de muestras de entrenamiento, de menos a más.

La curva de aprendizaje es aquella que se forma al computar el accuracy en train y test en función de la cantidad de muestras de train. Idealmente debería converger a un valor determinado.

Aprendizaje supervisado y Fuente del error: Variance vs Bias

Variance vs Bias

$$\mathcal{L}(y, \hat{y}) = \operatorname{Var}(\hat{f}(x)) + [\operatorname{Bias}(\hat{f}(x))]^2$$

Cuando la etiqueta real y es distinta a la etiqueta asignada por el clasificador y' la función de pérdida-costo (Loss) L se incrementará. La causa de que un modelo supervisado tenga error en muestras nuevas se puede causar por su sesgo o por su varianza.

Un modelo tiene alta varianza cuando su predicción varía mucho si lo exponemos a muestras distintas provenientes de la misma población. En general la varianza se observa en modelos complejos (polinomios de alto grado), y está asociada al 'sobre-ajuste' (overfitting).

Los modelos con alto sesgo son aquellos que frente a distintos datos provenientes de la misma población no modifican mucho su predicción aunque en general ese valor de predicción no suele ser aceptable. El sesgo está asociado a 'sub-ajuste' (underfitting) y se suele observar en modelos muy sencillos (por ejemplo modelos lineales).

Variance vs Bias

Learning curve: high variance

Alta varianza puede estar relacionada a alta complejidad del modelo.

Learning curve: high bias

Alto sesgo puede estar relacionado a una falta de complejidad del modelo.

Momento del meme

Aprendizaje supervisado: modelos de clasificación

Clasificadores

Vamos a estudiar dos modelos de clasificación

- Support Vector Machines
- Logistic Regression (esta clase)

Cada uno tendrá ventajas y debilidades respecto a los otros. Hay decenas de clasificadores que por razones de tiempo no incluimos en este curso.

Aprendizaje supervisado: Logistic Regression

- Logistic regression es un clasificador lineal.
- Es una regresión lineal precedida de una función de activación "sigmoid", lo que genera que el output sea binario y no continuo como una regresión normal.
- A cada muestra clasificada, le asigna una probabilidad de pertenecer a cada clase existente en el problema. Si la probabilidad es mayor a cierto threshold (0.5) entonces pertenece a una clase y viceversa.

El regresor logístico debe aprender un parámetro interno (no es hiper-parámetro) por cada dimensión del vector de entrada (vector W). Para eso calculará el gradiente del error de clasificación y tratará de minimizarlo.

Probabilidad de la clase **Y** i dado un vector de entrada x.

$$p(y_i|\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$$

La suma de las probabilidades de pertenecer a cada clase debe sumar 1.

$$p(y_1|x) = 1 - p(y_2|x)$$

Función Sigmoid

$$\sigma(\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{x})}$$

Lo que "aprende" logistic regression es el vector de "pesos" **W** de cada variable. Queremos que ese vector tenga "poder de generalización" para que clasifique bien nuevas muestras independientes una vez entrenado.

Logistic Regression: Optimizacion de funcion de costo

$$L_{\text{CE}}(\hat{y}, y) = -[y \log \hat{y} + (1 - y) \log(1 - \hat{y})]$$

$$L_{\text{CE}}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log(1 - \sigma(w \cdot x + b))]$$

$$\hat{w} = \underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} L_{CE} \left(f\left(x^{(i)}; w\right), y^{(i)} \right)$$

Para aprender la frontera de decisión con logistic regression se buscará encontrar los pesos w de la función lineal dentro de la función logística que minimicen el Loss Cross Entropy entre las etiquetas reales vs las etiquetas estimadas. La funcion de costo es no lineal y no convexa por lo que deberá utilizarse un optimizador de gradiente descendiente.

Logistic Regression Loss Function: Cross-Entropy

$$L_{\text{CE}}(\hat{y}, y) = -[y \log \hat{y} + (1 - y) \log(1 - \hat{y})]$$

Logistic Regression: frontera de decision

La regresión logística es un método de clasificación lineal: busca separar las clases de forma tal de minimizar la función de costo (Cross Entropy). En el ejemplo hay 2 features/variables y 2 clases, sin embargo el método puede utilizarse en contextos de alta dimensión y múltiples clases.

Imagen: https://scipython.com/blog/plotting-the-decision-boundary-of-a-logistic-regression-model/

LR: Hiper Parametros

Los hiper-parámetros de Logistic Regression son

- **C** = "**Costo**", es un penalizador que regulariza la solución computando clasificaciones erróneas.
- Penalizador L1 o L2: aplica una penalización bajo la norma L1 o L2 al vector W. De esta manera evita que el modelo quiera "sobre-ajustarse" a los datos de entrenamiento. En otras palabras, evita que existan posiciones de W muy muy altas y otras casi nulas, o viceversa, que solo algunas posiciones de W se activen y el resto no.

LR en Python con Scikit-Learn

```
# Samples and features
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
# Labels (two classes)
y = np.array([1, 1, 2, 2])
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(random_state=0, solver='lbfgs')
lr.fit(X, y)
# predict a new independent sample
y_prediction = lr.predict([[-0.8, -1]])
# print prediction
print(y_prediction)
[0]
```


Aprendizaje supervisado: cross validation & hyperparameter tuning

Hiper-parámetros

 $f_{w,\lambda}(x)$ funcion de decision w parametros λ hiper-parametros

Los modelos están caracterizados por parámetros que son aprendidos (encontrados) durante el entrenamiento al ser expuestos a los datos. Adicionalmente los clasificadores tienen hiper-parámetros que definen la familia de funciones que se pueden aprender. Por ejemplo, un hiper-parámetro podría ser el grado de una función polinomial. Los hiper-parámetros no son aprendidos por un algoritmo, son prefijados por el usuario. Los hiperparametros son útiles para poder determinar la complejidad y flexibilidad del clasificador. Por medio de una técnica llamada validación cruzada (cross validation) + busqueda de grilla (grid search) determinaremos cual la configuración del hiper parámetro que minimiza el error de clasificación.

Train, Validation, Test sets.

El clasificador aprenderá la regla de decisión utilizando el train set (samples + labels). Luego clasificará las muestras de test (sin mirar las labels de test) y se medirá la exactitud de clasificación en testeo.

Cross - Validation en training set

"Cross validation" (CV) se realiza con las muestras de entrenamiento. Consiste en dividir nuestro training set en **K folds** (K porciones) e iterar K veces.

En cada iteración, una porción se utiliza como validación independiente y el resto como train. En cada iteración se entrena un modelo con train y se evaluará el resultado de clasificación con validación. Luego se realizará un promedio de la exactitud de clasificación de las k iteraciones.

Cross validation sirve para poder estimar el error estadísticamente. Además si existen varios hiperparametros a cada uno se estima su error por cross validation y se preserva el hiper parámetro que menor error promedio de cross validation genere.

Cross Validation

Veremos que nuestros modelos clasificadores a entrenar tendrán distintos "hiper-parámetros a elegir", por ejemplo si deseamos que nuestro modelo clasificador sea complejo o no, o si queremos que sea "exigente" con cada error de clasificación o permisivo en mayor o menor grado.

Estos hiper-parámetros son elegidos inicialmente por el usuario. Luego por validación cruzada determinaremos el mejor hiper-parámetro para clasificar.

Cross Validation

El cross validation también nos da una idea de como funciona el modelo propuesto frente a distintas particiones train-valid de mis datos. En general un buen modelo debería "clasificar aceptablemente bien" en todas las particiones.

Es una manera de "sincerar" si el modelo funciona bien en distintos escenarios y no solo depender de la suerte de nuestra partición.

Grid Search

- Los modelos de clasificación que utilizaremos consistirán de hiper-parámetros que el usuario debe seleccionar. Estos determinarán la regla de decisión y por ende la performance del modelo.
- Para saber qué hiper-parámetros seleccionar, lo que haremos es generar una lista de los mismos y probaremos todas las combinaciones posibles de ellos (grid-search)
- La combinación de hiper-parámetros que mayor Train Accuracy promedio genere durante el cross-validation será la que usaremos para testear el modelo.

Pipeline: Train, Validate, Test Model

Dividir Train y Test Cross Validation &
Grid Search con
Train Set (utilizando
Xtrain e Ytrain)

Selección del mejor modelo e hiperparámetros Clasificar muestras de Test (Xtest) sin mostrarle al modelo las Ytest. Evaluar resultados de clasificación en test (comprar Ypred vs Ytest)