Multivariable Calculus

(Lecture-15 & 16)

Department of Mathematics Bennett University

4th December, 2018

Learning Outcome of this lecture

In this lecture, we learn

- Positive/Negative orientation of closed curve, Simply connected domains
- Green's Theorem (Tangential Form) for Simply Connected Domains
- Extending Green's Theorem for Multiply Connected Domains

Orientation of a Curve

Definition

(Natural) Orientation of a Curve: Let \mathcal{C} be a curve that is parametrized by R(t) for $t \in [a, b]$. As t increases from a to b, the points R(t) moves continuously from R(a) to R(b) in a specific direction which we indicate by drawing arrows along the curve. This direction is called the orientation(or natural orientation) of the curve induced by the parametrization R(t) for $t \in [a, b]$.

Definition

Opposite Curve: Consider the curve \mathcal{C} having parametrization R(t) for $a \leq t \leq b$. The opposite curve, denoted by $-\mathcal{C}$, traces out the same set of points but in the reverse order, and it has the parametrization

$$R^*(t) = R(-t)$$
 for $-b \le t \le -a$.

Jordan Curve Theorem

Theorem

Jordan Curve Theorem:

The points on any simple close curve (Jordan curve) \mathcal{C} are boundary points of two disjoint open and connected sets,

- one of which is the interior of \mathcal{C} and is bounded,
- the other, which is the exterior of \mathcal{C} is unbounded.

Definition

Let \mathcal{C} be a simple closed (piecewise) smooth curve in \mathbb{R}^2 .

- If \mathcal{C} is parametrized so that the interior bounded domain of \mathcal{C} is kept on the left as R(t) moves around \mathcal{C} , then we say that \mathcal{C} is oriented in the positive(counterclockwise or anticlockwise) direction.
- If \mathcal{C} is parametrized so that the interior bounded domain of \mathcal{C} is kept on the right as R(t) moves around \mathcal{C} , then we say that \mathcal{C} is oriented in the negative(clockwise) direction.

(b) A negatively oriented contour.

Note:

- If a simple closed curve C is positively oriented, then the opposite curve -C is negatively oriented.
- If the orientation (or parametrization) of a simple closed curve \mathcal{C} is not given, then it is understood that the simple closed curve \mathcal{C} is oriented positively.

Examples:

The circle $C: R(t) = 2\cos(t)i + 2\sin(t)j$ for $0 \le t \le 2\pi$ is oriented positively.

The circle $-C: R^*(t) = 2\cos(t)i - 2\sin(t)j$ for $t \in [-2\pi, 0]$ is oriented negatively.

Simply Connected Region

Definition

- A connected set S is said to be a simply connected set if every simple closed (piecewise) smooth curve C lying inside S encloses only points of S.
- A connected set S that is not simply connected is called a multiply connected set.

An open and connected set in \mathbb{R}^2 is called a domain in \mathbb{R}^2 . A domain, together with some, none, or all of its boundary points, is called a region.

Green's Theorem for Simply Connected Regions

Green's Theorem for Simply Connected Regions

Theorem

Green's Theorem (Tangential/Circulation Form):

Let $F(x, y) = M(x, y) \hat{i} + N(x, y) \hat{j}$ be a continuously differentiable vector field on an open set S in \mathbb{R}^2 .

Let \mathcal{C} be a positively oriented, (piecewise) smooth, simple, closed curve in S such that the interior bounded domain D enclosed by \mathcal{C} lies entirely inside S. Set the region $\mathcal{R} = D \cup C$. Note that $\mathcal{R} \subset S$ and \mathcal{R} is simply connected.

$$\int_{\mathcal{C}} F \bullet dR = \int_{\mathcal{C}} F \bullet T ds = \iint_{\mathcal{R}} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

Example: Applying Green's Theorem

Determine the work done by the force field $F(x, y) = (x - xy)\hat{i} + y^2\hat{j}$, in moving a particle one complete round counterclockwise along the rectangle C with vertices (0,0), (4,0), (4,6) and (0,6).

Answer: Here M(x, y) = x - xy, and $N(x, y) = y^2$.

Thus, $\frac{\partial M}{\partial y} = -x$ and $\frac{\partial N}{\partial x} = 0$. By Green's theorem,

$$\int_{\mathcal{C}} F \bullet dR == \iint_{\mathcal{R}} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dy dx$$

$$= \int_{x=0}^{4} \int_{y=0}^{6} x dy dx = \int_{x=0}^{4} 6x dx = 48.$$

Green's Theorem for Multiply Connected Regions

Green's theorem for multiply connected regions

In \mathbb{R}^2 , suppose that

- C is a simple closed piecewise smooth curve positively oriented.
- C_k (k = 1, 2, ..., n) denotes a finite number of simple closed piecewise smooth curves, all positively oriented, that are interior to C and whose interiors have no points in common.

Let \mathcal{D} denotes closed region consisting of all points within and on \mathcal{C} except for the points interior to each \mathcal{C}_k (See:Blue color region). Let $F(x,y) = M(x,y)\hat{i} + N(x,y)\hat{j}$ be a continuously differentiable

vector field on an open set S containing the region \mathcal{D} . Then

$$\int_{\mathcal{C}} F \bullet dR - \sum_{n=1}^{\infty} \int_{\mathcal{C}_{n}} F \bullet dR = \int_{\mathcal{D}_{n}} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy.$$

Example

Let $F(x,y) = \frac{-y\,\hat{i} + x\,\hat{j}}{x^2 + y^2}$ for $(x,y) \in \mathcal{D}^* = \mathbb{R}^2 \setminus \{(0,0)\}$. Let \mathcal{C} be any simple closed, piecewise smooth curve in \mathcal{D}^* which encloses the origin (0,0). Find $\int_{\mathcal{C}} F \bullet dR$. Done in the class.

Answer: 2π .

Same Example, but the curve C does not enclose the origin

Let $F(x,y) = \frac{-y\,\hat{i} + x\,\hat{j}}{x^2 + y^2}$ for $(x,y) \in \mathcal{D}^* = \mathbb{R}^2 \setminus \{(0,0)\}$. Let \mathcal{C} be any simple closed, piecewise smooth curve in \mathcal{D}^* which does NOT enclose the origin (0,0). Find $\int_{\mathcal{C}} F \bullet dR$.

Answer: Here $M(x, y) = -\frac{y}{x^2 + y^2}$ and $N(x, y) = \frac{x}{x^2 + y^2}$.

$$\frac{\partial M}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial N}{\partial x}.$$

Let \mathcal{C} be any simple closed, piecewise smooth curve in \mathcal{D}^* which does NOT enclose the origin (0,0), Then by Green's theorem

$$\int_{\mathcal{C}} F \bullet dR = \iint_{\mathcal{D}} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy = \iint_{\mathcal{D}} 0 dx dy = 0.$$

