Matrix-chain Multiplication Chapter 15.2

Mei-Chen Yeh

Matrix Multiplication

• **A**: a *p* x *q* matrix

• **B**: a **q** x **r** matrix

•
$$C = AB$$

How many operations do we need to get C from A, B? O(pqr)

$$C[i,j] = \sum_{1 \le k \le q} A[i,k] \cdot B[k,j]$$

Matrix Multiplication

- Yes or No?
- ABC = (AB) C = A(BC) 答案會是一樣的
- Do they have the same number of operations?
- - $-\mathbf{A}$: 10 x 100, \mathbf{B} : 100 x 5, \mathbf{C} : 5 x 50
 - $-(A B) C => 10 \times 100 \times 5 + 10 \times 5 \times 50 = 7,500$
 - $-A(BC) = 100 \times 5 \times 50 + 10 \times 100 \times 50 = 75,000$

Matrix-chain Multiplication Problem

• Given a chain A_1 , A_2 , ..., A_n of n matrices, parenthesize the product $A_1A_2...A_n$ in a way that minimizes the number of operations.

Matrix-chain Multiplication Problem (Revised)

- Given a sequence of positive integers p_0 , p_1 , ..., p_n , where
 - $-p_{i-1}$ is the number of rows of A_i
 - $-p_i$ is the number of columns of A_i

我們是要看總operations的量,不 用知道矩陣裡的內容,我們在乎的 是矩陣的大小,所以給的input會是 一串整數

• Parenthesize the product $A_1A_2...A_n$ in a way that minimizes the number of operations

Example: A_1 : 10 x 100, A_2 : 100 x 5, A_3 : 5 x 50 \rightarrow Given 10, 100, 5, 50 p_0 p_1 p_2 p_3 inp

只是其中一種做法,做法有很多種

Brute Force Approach

- How many possible parenthesizations? P(n) = ?
- Example: **A**₁**A**₂**A**₃**A**₄

$$-(A_1(A_2(A_3A_4)))$$

$$-(A_1((A_2A_3)A_4))$$

$$-((A_1A_2)(A_3A_4))$$

$$-((A_1(A_2A_3))A_4)$$

$$-(((A_1A_2)A_3)A_4)$$

按照順序乘,4個矩陣會有5種方式

$$P(n) = \begin{cases} 1 & \text{if } n=1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$

Exponential in *n*

「operations的次數」跟「矩陣的個數」之間, 會是指數成長的關係,會是常數的n次方

Dynamic Programming (1)

Dynamic Programming 就是在做表格

● m i, i 建立一個表個叫m,把從第 i 個矩陣乘到第 j 個矩陣需要幾個 operations?把它存在 m 裡

- the minimum number of operations required to get the product $A_i A_{i+1} ... A_i$ 把矩陣:跟矩陣; 之間存在的所有矩陣乘起來

Assume the best cut $(A_i ... A_k)$ $(A_{k+1} ... A_i)$ $(A_{k+1} ... A_i)$ (A_k) $m[i, j] = m[i, k] + m[k+1, j] + p_{i-1}p_kp_i$

$$m[i, j] = \begin{cases} 0 & \text{if } i \ge j \\ \min\{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

k 切在哪裡最好,所以每個都切切看(會需要 for loop 來做)

$$m[i,j] = \begin{cases} 0 & \text{if } i \ge j \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \\ i \le k < j \end{cases}$$

切開成兩半邊後,各自會成為一個大矩陣,把兩個大矩陣乘起來,還是會需要 大小pgr的運算

$$m[i,j] = \begin{cases} 0 & \text{if } i \ge j \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j \\ i \le k < j \end{cases}$$

Where is the solution?

Initialization of the table?

	1	2	3	4	5	6	•••	n
1								
2								
3								
4								
5								
6								
:								
n								

$$m[i,j] = \begin{cases} 0 & \text{if } i \ge j \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \\ i \le k < j \end{cases}$$

代表從 第一個矩陣乘 到 第一個矩陣(自己乘自己),只有自己一個矩陣所以沒辦法乘,故為 0

How to fill the table?

答案實在這, 這務學最後喚

右上角這格會是最小的

$$m[i,j] = \begin{cases} 0 & \text{if } i \ge j \\ m[i,j] = \begin{cases} \min\{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \\ i \le k < j \end{cases}$$

從第一個乘到第三個

從第二個乘到第四個

:

所以這個斜排的運算量 都是把三個矩陣乘在一起

			<u> </u>	_					_
	1	2	3	4	5	6	•••	n	
1	0		0						chain len. = <i>n</i>
2		0	1						
3			0						
4				0					
5					0				:
6						0			chain len. = 4
:							0		chain len. = 3
n								0	chain len. = 2
						-		→ <i>i</i>	斜著填

$$m[i,j] = \begin{cases} 0 & \text{if } i \ge j \\ \min_{1 \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

k: 3, 4, 5 (k=3)m[3, 3]m[4, 6](k=4)m[3, 4]m[5, 6](k=5)m[3, 5]m[6, 6]

	1	2	3	4	5	6	•••	n
1	0							
2		0						
3			3	4	5			
4				0		3		
5					0	4		
6						5		
							0	
n								0

要計算粉紅色這格, 會用到我們已經算好 的那六格

Dynamic Programming (cont.)

- *s*[*i*, *j*]
 - the index k that achieves the optimal cost in computing m[i, j]

Example

matrix	A_1	A ₂	A ₃	A_4	A ₅	A_6	
dim.	30x35	35x15	15x5	5x10	10x20	20x25	

要計算上面的測資,最少會需要 15125 的運算量

m	1	2	3	4	5	6
1	0	15750	7875	9375	11875	15125
2		0	2625	4375	7125	10500
3			0	750	2500	5375
4				0	1000	3500
5					0	5000
6						0

S	1	2	3	4	5	6
1	0	1	1	3	3	3
2		0	2	3	3	3
3			0	3	3	3
4				0	4	5
5					0	5
6						0

· 安切在 第五個 矩陣

MATRIX-CHAIN-ORDER(p)

- 1. n = p.length 1
- **2.** for i = 1 to n
- 3. m[i, i] = 0

- Time: $O(n^3)$
- Space: $O(n^2)$
- **4.** for l = 2 to n // chain length
- 5. for i = 1 to n l + 1
- 6. j = i + l 1
- 7. $m[i,j] = \infty$
 - 8. **for** k = i **to** j-1 // find min
 - 9. $q = m[i, k] + m[k+1, j] + p_{i-1}p_kp_i$
 - **10.** if q < m[i, j]
 - 11. m[i,j] = q
 - 12. s[i,j] = k

13. return *m* and *s*

