Supervised and Unsupervised Learning

Type of ML-Algorithms

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Type of ML-Algorithms

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Whales: Fish or Mammals?

ML-based Classifier

Training

Feed in large corpus of data classified correctly

Prediction

Use it to classify new instances which it has not seen before

Training the ML-based Classifier

x Variables

The attributes that the ML algorithm focuses on are called features

Each data point is a list or vector or such features

Thus, the input into an ML algorithm is a feature vector

Feature vectors are usually called the x variables

y Variables

The attributes that the ML algorithm tries to predict are called labels

Types of labels

- Categorical (Classification)
- Continuous (regression)

Labels are usually called the y variables

$$y = f(x)$$

Supervised Machine Learning

Most machine learning algorithms seek to "learn" the function f that links the features and the labels

The "Best" Regression Line

Linear regression involves finding the "best fit" line

Via a training process

$$y = Wx + b$$

$$f(x) = Wx + b$$

Linear regression specific, up-front, that the function f is linear

```
def doSomethingReallyComplicated (x1 , x2 ...) :
    ...
    ...
    return complicatedResult
```

$$f(x) = doSomethingReallyComplicated(x)$$

ML Algorithms such as neural network can "learn" (reverse-engineer) pretty much anything given the right training data

Type of ML-Algorithms

Supervised

Labels associated with the training data is used to correct the algorithm

Unsupervised

The model has to be set up right to learn structure in the data

Unsupervised learning does **not** have:

- y variables
- A labeled corpus

Unsupervised Learning

Only have input data x - no output data

Model the underlying structure to learn more about data

Algorithms self-discover the patterns and structure in the data

Unsupervised ML Algorithms

Clustering

Identify patterns in data items e.g. K-means clustering

Dimensionality Reduction

Identify significant factors that drive data e.g. PCA