PATENT ABSTRACTS OF JAPAN

(ii) Publication number :

06-313870

(43) Date of publication of application: 08.11.1994

(51) Int. CI.

G02F 1/13

(21) Application number: 05-102203

(71) Applicant: HITACHI LTD

HITACHI TECHNO ENG CO LTD

(22)Date of filing:

28. 04. 1993

(72) Inventor: YONEDA FUKUO

ISHIDA SHIGERU SANKAI HARUO

KONDO KATSUMI

(54) SUBSTRATE ASSEMBLY DEVICE

(57) Abstract:

PURPOSE: To enable two substrates to be pasted to each other with a sealant without catching dust during an assembly work, and also enable a gap between the two substrates to be maintained at an accurate size. CONSTITUTION: A table 4 travelling between a sealant pattern drawing station S1 and a substrate pasting station S2 is provided, and a substrate 13 is placed on a stage 5 travelling above the table 4 in an orthogona! direction. While a sealant is being discharged from a delivery machine at the station S1 with a nozzle end directed down, the stage 5 is caused to move in an orthogonal direction, thereby drawing a sealant pattern. Then, the sealant is temporarily dried between the stations S1 and S2, and the second substrate 14 is horizontally suspended from an adsorption table 15 at the station S2. Furthermore, the table 4 is made to move to the station S2, and the first substrate is laid under the second substrate 14. Then, a facing gap between the first substrate and the second substrate 14 is narrowed and both substrates are pasted to each other.

(19)日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-313870

(43)公開日 平成6年(1994)11月8日

(51) Int.Cl.5			
~ ^ ^ T	1/10		

識別記号 庁内整理番号 PΙ

技術表示箇所

G02F 1/13

101 8707 - 2K

審査請求 未請求 請求項の数3 〇L (全 7 頁)

(21	١	出願番号	

特願平5-102203

(22)出願日

平成5年(1993)4月28日

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(71)出願人 000233077

日立テクノエンジニアリング株式会社

東京都千代田区神田駿河台4丁目3番地

(72)発明者 米田 福男

茨城県竜ヶ崎市向陽台五丁目2番 日立テ クノエンジニアリング 株式会社開発研究

所内

(74)代理人 弁理士 秋本 正実

最終頁に続く

(54) 【発明の名称】 基板組立装置

(57)【要約】

【目的】 組立作業中に塵埃を取り込まずに基板同士を シール剤で貼り合わせることができ、かつ、その2枚の 基板の間隔を正確な寸法に保つこと。

[構成] シール剤描画ステーションS1と基板貼り合 わせステーションS2間を移動するテーブル4を設け、 その上で直交方向に移動するステージ5に基板13を搭 載し、S1でノズル先端を下方に向けて設けた吐出機1 2からシール剤を吐出させつつステージを直交方向に移 動させてバターン描画し、S1とS2との間でシール剤を 仮乾燥し、S2で吸着テーブル15に第2基板14を水 平吊下げ、テーブル4をS2に移動させて第1基板を第 2基板の下方に配置し、両基板の対向間隔を狭めて貼り 合わせる。

[図1]

【特許請求の範囲】

【請求項1】 シール剤描画ステーションと基板貼り合 わせステーションとの間を移動可能なテーブルと、上記 シール剤描画ステーションに設けられシール剤を吐出す る先端が下方を向いたノズルと、上記テーブル上に設け られ第1の基板を搭載する少なくとも直交方向に移動可 能なステージと、上記ノズルからシール剤を吐出させつ つ上記ステージを直交方向に移動させることにより上記 第1の基板にシール剤を所望のパターンで描画させる手 ステーションとの間に設けた第1の基板上に描画された シール剤を仮乾燥する手段と、上記テーブルが上記基板 貼り合わせステーションに移動されたときに第2の基板 を上記ステージに搭載された上記第1の基板と平行でそ の上方になるように支持する手段と、平行に配置された 上記第1と第2の両基板の対向間隔を狭めることにより 両基板をシール剤で貼り合わせる手段とを備えたことを 特徴とする基板組立装置。

【請求項2】 シール剤描画ステーションと基板貼り合 わせステーションとの間を移動可能なテーブルと、上記 20 シール剤描画ステーションに設けられシール剤を吐出す る先端が下方を向いたノズルと、上記テープル上に設け られ第1の基板を搭載する少なくとも直交方向に移動可 能なステージと、上記ノズルからシール剤を吐出させつ つ上記ステージを直交方向に移動させることにより上記 第1の基板にシール剤を所望のパターンで描画させる手 段と、上記シール剤描画ステーションと基板貼り合わせ ステーションとの間に設けた第1の基板上に描画された シール剤を高粘度化する手段と、上記テーブルが上記基 板を上記ステージに搭載された上記第1の基板と平行で その上方になるように支持する手段と、平行に配置され た上記第1と第2の両基板の対向間隔を狭めることによ り両基板をシール剤で貼り合わせる手段とを備えたこと を特徴とする基板組立装置。

【請求項3】 請求項1または2に記載の基板組立装置 において、上記シール剤描画ステーションと基板を貼り 合わせステーションとの間に、さらに上記第1の基板上 にスペーサを散布する手段を設けたことを特徴とする基 板組立装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は基板組立装置に係り、特 に液晶表示パネルのように2枚の基板を極めて接近させ 且つ組立作業中に塵埃を取り込まずに貼り合わすことが できる基板組立装置に関する。

[0002]

【従来の技術】従来の液晶表示バネルは透明電極や薄膜 トランジスタアレイを付けた2枚のガラス基板を数μm 程度の極めて接近した間隔をもってシール剤で貼り合わ 50 ためにスペーサの全面均一散布が要求される。しかしな

せ、それによって形成される密閉空間に液晶を封止した ものである。この液晶表示パネルのシール剤をガラス基 板に設ける手段として、ノズルから基板上に抵抗ペース トを吐出させつつ基板を移動させることにより所定のパ ターンを描画させて抵抗パターンを設ける技術を利用す ることができ、このような従来技術として特開平2-5 2742号公報に記載のものがある。また従来の液晶表 示パネルの基板の組立にあたっては、シール剤を設けた ガラス基板を搬送手段で貼り合わせ作業台に移し、そこ 段と、上記シール剤描画ステーションと基板貼り合わせ 10 で手作業で2枚のガラス基板の面方向の位置合わせを行 ってから、スペーサとなる粒子等をシール剤に含ませて おくことによって数μm程度の極めて接近した間隔に2 枚のガラス基板を貼り合わせていた。

[0003]

【発明が解決しようとする課題】上記従来技術の液晶表 示パネルは、微細な透明電極や薄膜トランジスタアレイ がガラス基板に設けられており、それによって構成され る画素は極めて小さいものである。したがって組立作業 中にガラス基板上に塵埃が積もって密閉空間に塵埃が取 り込まれると、その塵埃の存在する箇所は画素欠陥とな り、モノクロ表示パネルでは欠陥部が黒点となり、また カラー表示パネルでは欠陥部が赤・緑・青のいずれかの 色となって、画面に表示される映像が見にくいものとな る。この液晶表示パネルのシール剤をガラス基板に設け る手段として、上記特開平2-52742号公報に記載 のものを利用すると、そこでは基板とノズルが非接触の 状態で抵抗ペーストを吐出させ、基板を移動させて所定 の抵抗パターンを描画させており、ノズルを固定してい ることによって基板上に塵埃が積りにくいものとなって 板貼り合わせステーションに移動されたときに第2の基 30 いる。しかしながら、ここでは抵抗パターン描画後の基 板の取扱いについては格別言及されていない。また従来 の液晶表示パネルの上記基板の組立にあたっては、シー ル剤を設けたガラス基板を搬送手段で貼り合わせ作業台 に移し、手作業で2枚のガラス基板の位置合わせを行っ てから貼り合わせているため、その組立作業中にガラス 基板上に塵埃が積もって、密閉空間に塵埃が取り込まれ る度合いが非常に高いという問題があった。

> 【0004】ここで、シール剤およびスペーサについて 簡単に説明する。

【0005】シール剤としては、熱硬化形や紫外線硬化 形の接着性を有する合成樹脂が用いられるが、シール剤 の粘度が低いと、シール剤がガラス基板貼り合わせ時の 加圧力で逃げてしまい、基板間隔が所定の間隔より狭く なるばかりでなく、予定していない部分までシール剤が **拡がって画面に表示される映像がみにくいものとなる。**

【0006】スペーサは、2枚の基板間隔を規制し、適 当な液晶層の厚さを維持するために必要なもので、液晶 パネルが大きくなればなる程必要性が増加する。また、 表示面積が大きくなればなる程均一な液晶層を確保する

がら、従来スペーサの全面均一散布技術は紹介されてい ない。

【0007】本発明の目的は、上記従来技術の問題点を 解決し、液晶表示パネルのように基板にシール剤、スペ 一サを設けたのち2枚の基板を極めて接近させて貼り合 わせる組立作業中に塵埃を取り込まずに貼り合わすこと ができ、かつ、2枚の基板の間隔を所望とする正確な寸 法に保って貼り合わせることができる基板組立装置を提 供することにある。

[0008]

【課題を解決するための手段】上記目的を達成するため に、本発明の基板組立装置は、シール剤描画ステーショ ンと基板貼り合わせステーションとの間を移動可能なテ ープルと、上記シール剤描画ステーションに設けられシ ール剤を吐出する先端が下方を向いたノズルと、上記テ ープル上に設けられ第1の基板を搭載する少なくとも直 交方向に移動可能なステージと、上記ノズルからシール 剤を吐出させつつ上記ステージを直交方向に移動させる ことにより上記第1の基板にシール剤を所望のパターン で描画させる手段と、上記シール剤描画ステーションと 20 基板貼り合わせステーションの間に設けた上記第1の基 板上に描画されたシール剤を仮乾燥ないし高粘度する手 段と、上記デーブルが上記基板貼り合わせステーション に移動されたときに第2の基板を上記ステージに搭載さ れた上記第1の基板と平行でその上方になるように支持 する手段と、平行に配置された上記第1と第2の両基板 の対向間隔を狭めることにより両基板をシール剤で貼り 合わせる手段とを備えるようにしたものである。

【0009]さらに、上記目的を達成するため、本発明 は、上記シール剤描画ステーションと基板貼り合わせス 30 テーションの間に、上記第1の基板上にスペーサを散布 する手段を設けるものである。

[0010]

【作用】上記基板組立装置は、シール剤描画ステーショ ンで上記ノズルからシール剤を吐出させつつ上記ステー ジを直交方向に移動させつつ第1の基板にシール剤パタ ーンを描画する工程で第1の基板の上部に動くものが存 在しないため第1の基板上に塵埃が落下しないし、また シール剤描画後に第1の基板がステージごと基板貼り合 わせステーションに移動して第2の基板の下方に配置さ 40 れるため、別の搬送手段が介在されないことと第1の基 板の上部で動くものが存在しないこととによって第1の 基板の移動する工程でも第1の基板上に塵埃が落下しな いし、さらに両基板の貼り合わせ工程では上下で平行に 配置された両基板の対向間隔を狭めることにより両基板 が貼り合わされるため両基板の間に動くものが存在しな いことによって第1の基板上に塵埃が落下しない。この ように組立作業の如何なる工程でも第1の基板上に塵埃 が落下しないため両基板のシール剤による貼り合わせで 形成される空間内に塵埃が取り込まれることがなく、姜 50 ズルを持つシール剤吐出機 1.2 とが取付けられており、

置の構成も簡単にできる。

【0011】また、シール剤描画ステーションと基板貼 り合わせステーションとの間に仮乾燥手段あるいは高粘 度手段があるので、シール剤は高粘度化して整形される ので、シール剤形状が基板貼り合わせ時に乱れることは たい。

.【0012】なお、シール剤は、例えば熱硬化形シール 剤の場合には熱線や赤外線を照射し、紫外線硬化形シー ル剤の場合には紫外線を照射して仮乾燥させる。

【0013】スペーサとしては、耐熱性、耐薬品性に優 れ、広い温度範囲で弾性体として挙動する真球形のプラ スチック微粒子や、無アルカリガラスを紡糸して所望の 長さに切断した繊維状のものがある。眞球状のものは、 その直径が両基板の貼り合わせ間隙に近いものが用いら れ、繊維状のものの場合は、散布した時に繊維同志が交 差して重なることもあるが、両基板の貼り合せ時に押圧 すると、加圧力が交差部に集中し、繊維が滑って交差が 解けることが多いので、断面直径が基板貼り合わせ間隙 に近いものが用いられる。

【0014】スペーサの散布は、スペーサをそのまま散 布する乾式や、揮発性液体中にスペーサを撹拌させてお いて液体と共に散布する湿式がある。

[0015]

【実施例】以下、本発明の一実施例を図1から図3によ り説明する。

【0016】図1は本発明による基板組立装置の一実施 例を示す液晶表示パネル組立装置のカバーを外した本体 の正面図である。図1において、液晶表示パネル組立芸 置1はシール剤描画ステーションS1と、基板貼り合わ せステーションS2との2部分から構成され、この両ス テーションS1、S2は隣接して並べられている。基台 2の上方に支柱2aで梁持された架台3があり、基台2 の上面には両ステーションS1, S2に亘るレール7を 備えている。このレール7上をステージ移動テーブル4 がステージ駆動モータ6により、図面上で左右に即ち両 ステーションS1、S2間を移動できるようになってい る。テーブル4上にはXYAステージ5およびその上面 で第1のガラス基板13を真空吸着などにより支持する 下側吸着テーブル8が載置されている。ここで $X Y \theta$ ス テージ5について説明するに、第1のガラス基板13が 水平に搭載されているとすると、第1のガラス基板13 を水平にX軸・Y軸方向に移動させるとともに、第1の ガラス基板13を水平に回転すなわち θ 軸移動させるも のであり、もし第1のガラス基板13がXY方向に正確 に配置されるならばθ軸移動は不要である。

【0017】上記レール7と対面するシール剤描画ステ ーションS1部の架台3にはZ軸駆動モータ9によって 上下に移動する2軸移動テーブル10が設けられてい る。このテーブル10には光学式非接触変位計11とノ

問題がない。

そのノズル先端は下方の第1のガラス基板13を向いて いる。一方の上記レール7と対面する基板貼り合わせス テーションS2部の架台3の上部には、さらに支柱2b で梁持された架台18に加圧用駆動機構17が載置さ れ、その下方に延びたボールねじ17aを介して該駆動 機構17で架台3の下側に設けられた加圧吸着テーブル 15を上下に移動するようになっている。

【0018】加圧吸着テーブル15はその下面に第2の ガラス基板14を上記第1のガラス基板13と平行にな するようになっている。またこのテーブル15には2箇 所に孔15a, 15bが穿けられており、このテーブル 15に穿けられた孔15a, 15bに対応する架台3の 部署にはCCD内蔵の画像認識用力メラ16a, 16b が取付けられている。この両カメラ16a, 16bは下 方を向いており、従ってカメラ16a, 16bはテープ ル15の両孔15a, 15bを通して第2のガラス基板 14などの下部に存在する物体を確認することができ る。なおこの液晶表示パネル組立装置には上記した各駆 動部の図示していない制御装置が設けられている。

[0019] 図1において、30はシール剤仮乾燥手 段、40はスペーサ散布手段で、架台にその下側の吸着 テーブル8上の第1のガラス基板13に向けて固定され ている.

【0020】その具体的構成を図2により説明すると、 シール剤仮乾燥手段30は、第1のガラス基板13の幅 方向に伸びた赤外線ランプ31とフード32から構成さ れ、ランプ31のコード33は図示していないスイッチ に接続されている。赤外線ランプ31はシール剤の種類 外線の照射範囲を規定する。フード32の下端は開放さ れているが、ガラスカバーを配設しても良い。

【0021】スペーサ散布手段40は、一例としてプラ スチック真球スペーサ28を散布するもので、貯蔵タン ク41から配給弁42を介して配給パイプ43が基板1 3の幅方向に配設されている。配給パイプ43には複数 の支パイプ44があり、支パイプ44はガラス基板13 の幅方向に並設されている。支バイブ44から放出され るスペーサ28の落下部にスペーサ受け箱45が設けら れている。受け箱45の幅方向の上縁は波形になってい 40

【0022】図3は図1の液晶表示パネル組立装置の動 作説明用の概略図である。つぎに図2および図3により 図1の液晶表示パネル経立装置の動作および機能を説明 する。なお図3ではXYθステージ5および下側吸着テ ープル8を貼り合わせステーションS2に移動させた場 合を2点鎖線で示し、その各々に50,80の符号を符

【0.023】図3において、初めに貼り合わせステーシ ョンS2にステージ移動テーブル4が基台2上のレール 50

7上を図1のステージ駆動モータ6により走行される と、XYタステージ50上の下側吸着テーブル80上に アダプタ14aを介して第2のガラス基板14が載置さ れる。このアダプタ14aは第2のガラス基板14の下 面が下側吸着テーブル8φに接触することを阻止するた めのもので、第2のガラス基板14の周縁を支持する額 縁状のものである。ここで両カメラ16a, 16bで第 2のガラス基板14に設けられた図示していない位置合 わせマークを読み取りつつ、第2のガラス基板14が貼 るように真空吸着などにより水平に吊り下げる形に支持 10 り合わせステーションS2の所定位置に置かれるように XYθステージ5φを制御する。次いで図1の加圧用駆 動機構17で加圧吸着テーブル15を下方に移動させ て、第2のガラス基板14を該テープル15で水平に吊 り下げる形に吸着支持し、そのまま駆動機構17で加圧 吸着テーブル15を介して第2のガラス基板14を上方 に移動させて待機させ、そしてアダプタ14 a は除去さ れる。この動作で塵埃が遊離しても塵埃を避ける必要の

ない第2のガラス基板14上面に落下するだけで何等の

【0024】次に下側吸着テーブル8の上に第1のガラ ス基板13を載置し、そして第1のガラス基板13が貼 り合わせステーションS2の所定位置に置かれるように $XY\theta$ ステージ5 ϕ を制御する。ここで第1のガラス基 板13の位置合わせが終わったら、今度はXYθステー $ジ5\phi$ をシール剤描面ステーションS1に移動させる。 次にシール剤描画ステーションS1で、Z軸移動テープ ル10上の光学式非接触変位計11の出力により図1の 2 軸駆動モータ9を制御して、2 軸移動テーブル10上 のシール剤吐出機12のノズル先端と下側吸着テーブル に応じて紫外線ランプであっても良い。フード32は赤 30 8上の第1のガラス基板13上面とのギャップを設定す る。この動作でギャップ設定のためのシール剤吐出機1 2のノズル移動距離はわずかであり、これによる塵埃の 遊離は殆どない。また塵埃の遊離を極度に嫌う場合に は、図3中に1点鎖線で示すようにシール剤吐出機12 の2軸移動テーブル10を含む駆動部を密閉し、その密 閉空間を真空引きすればよい。そして $XY\theta$ ステージ5 を所定の描画パターンに従ってXY方向に移動させつ つ、シール剤吐出機12のノズルからシール剤を吐出さ せて、シール剤の第1のガラス基板13への塗布を行 う。この描きたいシール剤パターンは図示していない。 また図示していない制御装置で所謂パソコン描画パター ンを格納記憶させておくことによって、同じ描画パター ンを何枚もの第1のガラス基板13への墜布を行うこと が可能であり、また格納データの変更で各種の描画パタ ーンを得ることもできる。この動作でシール剤の吐出描 画中に第1のガラス基板13の上部で動くものが存在し ないため、第1のガラス基板13の上面への塵埃の落下

> 【0025】第1ガラス基板13が廻送されてくると、 赤外線ランプ31から赤外線が照射され、ガラス基板1

3上に描画されたシール剤を仮乾燥させて形の乱れを防 ぐ。次に、スペーサ散布手段40の下に至ると、配給弁 42が開かれ、配給パイプ43,各支パイプ44から受 け箱45にスペーサ28が落下される。受け箱45には 波形上縁45 aが設けられており、受け箱45からのス ペーサの落下個所が支パイプ44の数より増加されてい るので、スペーサ28は基板13上に波形上線45aよ り流砂の様にオーパフローして均一に散布される。配給 弁42を各支パイプ44に設けておくと、スペーサの受 け箱45への供給は幅方向で時間差がなくなる。なお、 スペーサは、一例として7μmの直径を持つプラスチッ ク微粒子を約1万個1cm²の割合で散布する。

【0026】ランプ31のスイッチは、コード33で基 板13の上以外の個所に設け、また、配給弁42は配給 バイブ43の内部に配設されるので、基板13上に駆動 部材が無く、シール剤仮乾燥手段30,スペーサ散布手 段40が作動しても、基板13上に塵芥が落下しない。

【0027】また、図4に示す様に、受け箱45内に螺 旋状の回転体46を配設し、受け箱45の幅方向端に設 けた電動機46で回転体46を駆動して、受け箱45内 20 ラス基板13, 14をシール剤で貼り合わせる。 でスペーサを移動させ、配給弁42側の支バイプ44と 配給パイプ43の未端側の支パイプ44から受け箱45 に供給されるスペーサの時間遅れを補完しても良い。図 5は、受け箱を省略した形のスペーサ散布手段の変形例 を示す。図5において、図4に示したものと同一ないし 相当物には同一符号を付けて説明を省略する。図5に示 す変形例では、配給パイプ43の支パイプ44との各連 通孔43aにシャッター49が設けられ、アクチュエー タ48で連通孔43aをガラス基板13の廻送に合わせ は未広形にしてあり、個々の支バイプ44から散布する 範囲が広域になる様にしてある。

【0028】図6は受け箱45の変形例を示している。 受け箱45は、ガラス基板13に対して傾斜して配置さ れ、下端部側の上縁部45 aが波形になっている。受け 箱45には、スペーサ28があふれない程度に供給され ている。ガラス基板13が廻送されてくると、受け箱4 5は図示していない震動源より振動が加えられる。する と、スペーサ28は自重で受け箱45内を滑落し、波形 上縁部45 a付近のスペーサは押されてオーパフロー し、ガラス基板13上に均一に散布される。

【0029】図5、図6の例は湿式スペーサ散布手段に も適用することができる。なお、図6の例を湿式スペー サ散布手段に適用する場合には、受け箱を回動させて波 形上端部45aを下降させると、スペーサを含んだ溶液 がオーバーフローする。

[0030] 次にXY θ ステージ 5 は再び貼り合わせス テーションS2に移動されて、初めに第2のガラス基板 14を抱えた加圧吸着テーブル15の真下に位置決めさ れる。この動作でも第1のガラス基板13は $XY\theta$ ステ 50 ステージ5に設け、該Z軸移動テーブルで第2の基板1

ージ5および下側吸着テーブル8ごと第2のガラス基板 14の下方に配置され、別の搬送手段が介在されないこ とと、第1のガラス基板13の上部で動くものが存在し ないことによって、第1のガラス基板13の移動に際し ても第1のガラス基板13の上面に塵埃が落下しない。 さらに別の搬送手段を必要としないので簡単な装置構成 上なっている。

【0031】次に両カメラ16a, 16bの焦点を第1 のガラス基板13の図示していない位置合わせマークに 10 合わせ、両カメラ16a, 16bでマークを読み取りな がらXYθステージ5φを駆動制御して、第1のガラス 基板13と第2のガラス基板14との凡その位置合わせ を行う。そして図1の加圧用駆動機構17で加圧吸着テ ーブル15を下方に徐々に移動させて、両カメラ16 a, 16bで第2のガラス基板14の図示していない位 置合わせマークが読み取れるようになったら、XY8ス テージ5φを駆動制御して第1のガラス基板13と第2 のガラス基板 1 4 との正確な位置合わせを行いつつ、加 圧吸着テーブル15をさらに徐々に下降させて2枚のガ

【0032】この動作で両ガラス基板13,14の貼り 合わせでは、両ガラス基板13、14の間に動くものが 存在しないことによって、第1のガラス基板13の上面 に塵埃が落下しない。

【0033】以上のように組立作業の如何なる工程でも 第1のガラス基板13の上面に塵埃が落下しないため、 両ガラス基板13、14のシール剤による貼り合わせで 形成される空間内に塵埃が取り込まれることがない。ま た以上のシール剤描画工程と、基板貼り合わせ工程と、 て開閉する様にしている。各支バイプ44の端部44a 30 そのシール剤描画と基板貼り合わせの両ステーション間 の移動工程とは簡単なシーケンス制御で処理できるの で、図示していない制御装置により一連の動作をプログ ラム化してパソコンで制御してもよい。

【0034】本発明の基板組立装置は以下の態様で実施

【0035】第1の態様は、図1の2軸移動テープル1 0に代えてZ軸移動テープルを $XY\theta$ ステージ 5に設 け、シール剤描画ステーションS1部の架台3にノズル を持つシール剤吐出機12および光学式非接触変位計1 1を直接固定し、該2軸移動テーブルでシール剤吐出機 12のノズル先端と下側吸着テーブル8上の第1のガラ ス基板13とのギャップを設定するようにしたものであ る。この旅様はシール剤描画ステーションS1では下側 吸着テーブル8に載置される第1の基板13の上方に可 動部が全く存在しないため、第1の基板13への塵埃の 落下が告無である。 第2の態様は、図1の基板貼り合 わせステーションS2における加圧用駆動機構17およ び架台18を省略し、架台3に第2の基板14の吸着テ ープル15を直接固定して、2軸移動テープルを $XY\theta$

4を上昇させて吸着テーブル15に吸着固定し、また3 枚の基板13,14を貼り合わせるようにしたものであ る。この態様は基板貼り合わせステーションS2では吸 着テーブル15の上方に可動部が全く存在せず、塵埃の 第1の基板13への落下が皆無であり、また加圧用駆動 機構17と架台18の省略により装置構成が一層簡略化 できる。

【0036】第3の態様は、基板吸着機能をXYBステ ージ5に設けて、下側吸着テーブル8を省略したもので ある。この飯様はステージ移動テーブル4上に乗せられ 10 図である。 る部材が減少して、軽量化によりステージ移動テーブル 4の走行が軽快になる。

【0037】第4の態様はシール剤仮乾燥手段30をス ペーサ散布手段40の下流側、すなわち基板貼り合わせ ステーションS2 側に配置したものである。このような 配置でも、シール剤の仮乾燥は可能である。

[0038]

【発明の効果】以上説明したように、本発明によれば、 液晶表示パネルのように2枚の基板を接近させてシール 取り込まずに貼り合わすことができ、かつ、2枚の基板 の間隔を所望とする正確な寸法に保って貼り合わすこと ができる効果がある。

图1]

[図1]

【図面の簡単な説明】

【図1】本発明による基板組立装置の一実施例を示す液 晶表示パネル組立装置のカバーを外した本体の正面図で ある。

10

【図2】図1に示した装置のシール剤仮乾燥手段とスペ ーサ散布手段の概略構成を示す図である。

【図3】図1に示した装置の動作説明用の概略図であ る。

【図4】図2に示したスペーサ散布手段の変形例を示す

【図5】図2に示したスペーサ散布手段の他の変形例を 示す図である。

【図6】図2に示したスペーサ散布手段のさらに他の変 形例を示す図である。

【符号の説明】

 $4…ステージ移動テーブル、<math>5…XY\theta$ ステージ、8…下側吸着テーブル、10…2軸移動テーブル、12…シ ール剤吐出機、13…第1のガラス基板、15…加圧吸 着テープル、16a, 16b…画像認識用カメラ、28 剤で貼り合わせる基板組立装置での組立作業中に塵埃を 20 …スペーサ、30…シール剤仮乾燥手段、31…赤外線 ランプ、40…スペーサ散布手段、43…配給パイプ、 48…アクチュエータ、49…シャッタ。

[図2]

[図2]

[図3]

[図3]

[図4]

[🛛 🗸]

[図5]

【図6】

[🛛 6]

フロントページの続き

(72)発明者 石田 茂

茨城県竜ヶ崎市向陽台五丁目2番 日立テ クノエンジニアリング 株式会社開発研究 所内 (72) 発明者 三階 春夫

茨城県竜ヶ崎市向陽台五丁目2番 日立テクノエンジニアリング 株式会社開発研究 所内

(72)発明者 近藤 克己

茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内