CONDITIONAL EXPECTATIONS

1. Introduction

These notes introduce notion of conditional expectation of a random variable and discuss its properties. Aside basic measure-theoretic and probabilistic tools we use here also Radon-Nikodym theorem formulated as in [Monygham, 2018, Theorem 5.3]. Next we define sufficiency in mathematical statistics and prove factorization result of Fisher-Neyman. In the last section we prove Rao-Blackwell theorem in theory of statistical decisions.

2. Existence of conditional expectations

Fix a probability space (Ω, \mathcal{F}, P) .

Theorem 2.1. Let $X : \Omega \to \mathbb{R}$ be an integrable random variable and \mathcal{G} be a σ -subalgebra of \mathcal{F} . Then there exists \mathcal{G} -measurable and integrable function $f : \Omega \to \mathbb{R}$ such that

$$\int_G XdP = \int_G fdP$$

for every G in G. Moreover, the set of all G-measurable functions having the property described by the system of equations above is

$$\{g: \Omega \to \mathbb{R} \mid g \text{ is } G\text{-measurable and } f(\omega) = g(\omega) \text{ almost surely}\}$$

Proof. We define a real measure $\nu : \mathcal{G} \to \mathbb{R}$ by formula

$$\nu(G) = \int_C XdP$$

for $G \in \mathcal{G}$. Since $\nu \ll P_{|\mathcal{G}}$ and by Radon-Nikodym theorem, we derive that there exists a \mathcal{G} -measurable function $f: \Omega \to \mathbb{R}$ such that

$$\nu(G) = \int_G f dP$$

The last statement is clear and is left for the reader as an exercise.

Definition 2.2. Let $X : \Omega \to \mathbb{R}$ be an integrable random variable and \mathcal{G} be a σ -subalgebra of \mathcal{F} . Suppose that $f : \Omega \to \mathbb{R}$ is a \mathcal{G} -measurable and integrable function $f : \Omega \to \mathbb{R}$ such that

$$\int_G XdP = \int_G fdP$$

for every G in G. Then f is called a version of the conditional expectation of X with respect to G.

No we define important special case.

Definition 2.3. Let \mathcal{G} be a σ -subalgebra of \mathcal{F} . Let $f:\Omega\to\mathbb{R}$ be a \mathcal{G} -measurable, integrable and nonnegative function such that

$$P(A \cap G) = \int_G f dP$$

for every $G \in \mathcal{G}$. Then f is called a version of conditional probability of A with respect to \mathcal{G} .

Now that we discuss basic existence and uniqueness results concerning conditional expectation let us introduce some notation. Let (Ω, \mathcal{F}, P) be a probability space, $X : \Omega \to \mathbb{R}$ be an integrable random variable and \mathcal{G} be a σ -subalgebra of \mathcal{F} . We denote any version of the conditional expectation of X with respect to \mathcal{G} by a symbol

$$\mathbb{E}[X|\mathcal{G}]$$

and for every set $A \in \mathcal{F}$ we denote by

$$P[A|\mathcal{G}]$$

any version of conditional probability of A with respect to \mathcal{G} . We also often omit the word version and speak about conditional expectation and conditional probabilities. Nevertheless one should always keep in mind that these are \mathcal{G} -measurable and integrable functions defined up to sets in \mathcal{G} of probability zero.

3. Properties of conditional expectation

Let (Ω, \mathcal{F}, P) be a probability space and \mathcal{G} be a σ -sublagebra of \mathcal{F} .

Theorem 3.1. Let Y, X, $\{X_n\}_{n\in\mathbb{N}}$ be integrable random variables $\Omega \to \mathbb{R}$. Then the following results hold.

- **(1)** If $X \le Y$ almost surely, then $\mathbb{E}[X | \mathcal{G}] \le \mathbb{E}[Y | \mathcal{G}]$.
- **(2)** $\mathbb{E}[a \cdot X + b \cdot Y \mid \mathcal{G}] = a \cdot \mathbb{E}[X \mid \mathcal{G}] + b \cdot \mathbb{E}[Y \mid \mathcal{G}]$ for $a, b \in \mathbb{R}$.
- (3) $|\mathbb{E}[X|\mathcal{G}]| \leq \mathbb{E}[|X||\mathcal{G}]$
- **(4)** If $\{X_n\}_{n\in\mathbb{N}}$ converges almost surely to X and

$$|X_n| \le Y$$
, $|X| \le Y$

almost surely for every $n \in \mathbb{N}$, then $\{\mathbb{E}[X_n | \mathcal{G}]\}_{n \in \mathbb{N}}$ converges almost surely to $\mathbb{E}[X | \mathcal{G}]$.

Proof. For the proof of **(1)**. We have

$$\int_G \mathbb{E}[X \,|\, \mathcal{G}] \, dP = \int_G X \, dP \le \int_G Y \, dP = \int_G \mathbb{E}[Y \,|\, \mathcal{G}] \, dP$$

Since conditional expectations with respect to \mathcal{G} are \mathcal{G} -measurable, we deduce that $\mathbb{E}[X|\mathcal{G}] \leq \mathbb{E}[Y|\mathcal{G}]$.

Next we prove (2). Pick $a, b \in \mathbb{R}$. We have

$$\int_{G} \mathbb{E}[a \cdot X + b \cdot Y | \mathcal{G}] dP = \int_{G} (a \cdot X + b \cdot Y) dP = a \cdot \int_{G} X dP + b \cdot \int_{G} Y dP =$$

$$= a \cdot \int_{G} \mathbb{E}[X | \mathcal{G}] dP + b \cdot \int_{G} \mathbb{E}[Y | \mathcal{G}] dP = \int_{G} (a \cdot \mathbb{E}[X | \mathcal{G}] + b \cdot \mathbb{E}[Y | \mathcal{G}]) dP$$

for every $G \in \mathcal{G}$. Since conditional expectations with respect to \mathcal{G} is \mathcal{G} -measurable, we derive that $\mathbb{E}[a \cdot X + b \cdot Y \mid \mathcal{G}] = a \cdot \mathbb{E}[X \mid \mathcal{G}] + b \cdot \mathbb{E}[Y \mid \mathcal{G}]$.

For (3) write $X = X_+ - X_-$, where X_+ , X_- are nonnegative functions with disjoint supports. We have

$$\left|\mathbb{E}[X|\mathcal{G}]\right| = \left|\mathbb{E}[X_{+}|\mathcal{G}] - \mathbb{E}[X_{-}|\mathcal{G}]\right| \le \left|\mathbb{E}[X_{+}|\mathcal{G}]\right| + \left|\mathbb{E}[X_{-}|\mathcal{G}]\right|$$

Now we use (1) to show that $0 \le \mathbb{E}[Y|\mathcal{G}]$ almost surely for integrable random variable Y that is nonnegative. Thus

$$\left| \mathbb{E}[X_{+} \mid \mathcal{G}] \right| + \left| \mathbb{E}[X_{-} \mid \mathcal{G}] \right| = \mathbb{E}[X_{+} \mid \mathcal{G}] + \mathbb{E}[X_{-} \mid \mathcal{G}] = \mathbb{E}[|X| \mid \mathcal{G}]$$

Thus (3) holds.

Finally we prove that **(4)**. Set $Z_n = \sup_{k \le n} |X_k - X|$. Then Z_n is nonnegative measurable function and $\lim_{n \to +\infty} Z_n = 0$. Moreover, $\{Z_n\}_{n \in \mathbb{N}}$ is pointwise decreasing and dominated by $2 \cdot |Y|$. Thus by dominated convergence theorem

$$\lim_{n\to+\infty}\int Z_n\,dP=0$$

Next $\{\mathbb{E}[Z_n|\mathcal{G}]\}_{n\in\mathbb{N}}$ are measurable, almost surely pointwise decreasing and nonnegative functions. Moreover, we derive that

$$\lim_{n\to +\infty}\int \, \mathbb{E}\big[Z_n\,\big|\,\mathcal{G}\big]\,dP = \lim_{n\to +\infty}\int \, Z_n\,dP = 0$$

and hence

$$\int \left(\lim_{n\to+\infty} \mathbb{E}[Z_n\,|\,\mathcal{G}]\right) dP = 0$$

This implies that $\lim_{n\to+\infty} \mathbb{E}[Z_n | \mathcal{G}] = 0$ almost surely. By (1) and (3) we have

$$\sup_{k \ge n} \left| \mathbb{E}[X_k \mid \mathcal{G}] - \mathbb{E}[X \mid \mathcal{G}] \right| = \sup_{k \ge n} \mathbb{E}[|X_k - X| \mid \mathcal{G}] \le \mathbb{E}[Z_n \mid \mathcal{G}]$$

Therefore

$$\lim_{n\to+\infty} \sup_{k\geq n} \left| \mathbb{E}[X_k | \mathcal{G}] - \mathbb{E}[X | \mathcal{G}] \right| = 0$$

and hence $\lim_{n\to+\infty} \mathbb{E}[X_n | \mathcal{G}] = \mathbb{E}[X | \mathcal{G}].$

Theorem 3.2. Let $X, Y : \Omega \to \mathbb{R}$ be random variables such that $X, Y \cdot X$ are integrable and Y is \mathcal{G} -measurable. Then

$$\mathbb{E}[Y \cdot X | \mathcal{G}] = Y \cdot \mathbb{E}[X | \mathcal{G}]$$

Proof. First note that the result is clear for $Y = \chi_G$ where $G \in \mathcal{G}$ and also for positive linear combination of such functions. Next suppose that $Y : \Omega \to \mathbb{R}$ is nonnegative and integrable \mathcal{G} -measurable function. Then there exists an nondecreasing sequence $\{Y_n\}_{n \in \mathbb{N}}$ of positive combinations of indicator functions of sets in \mathcal{G} that converges to Y. Note that $|Y_n \cdot X| \leq |Y_n| \cdot |X|$ and $|Y_n \cdot \mathbb{E}[X \mid \mathcal{G}]| \leq Y \cdot |\mathbb{E}[X \mid \mathcal{G}]|$ for $n \in \mathbb{N}$. Then by dominated convergence theorem

$$\int_{G} \mathbb{E}[Y \cdot X \mid \mathcal{G}] dP = \int_{G} Y \cdot X dP = \lim_{n \to +\infty} \int_{G} Y_{n} \cdot X dP = \lim_{n \to +\infty} \int_{G} Y_{n} \cdot \mathbb{E}[X \mid \mathcal{G}] dP = \int_{G} Y \cdot \mathbb{E}[X \mid \mathcal{G}] dP$$

for every $G \in \mathcal{G}$. This implies that $\mathbb{E}[Y \cdot X | \mathcal{G}] = Y \cdot \mathbb{E}[X | \mathcal{G}]$. Suppose now that $Y : \Omega \to \mathbb{R}$ is a \mathcal{G} -measurable and integrable random variable. We write $Y_+ = \max\{0, Y\}$ and $Y_- = \min\{0, Y\}$. Then

$$\mathbb{E}[Y \cdot X \mid \mathcal{G}] = \mathbb{E}[Y_{+} \cdot X \mid \mathcal{G}] + \mathbb{E}[Y_{-} \cdot X \mid \mathcal{G}] = Y_{+} \cdot \mathbb{E}[X \mid \mathcal{G}] + Y_{-} \cdot \mathbb{E}[X \mid \mathcal{G}] = Y \cdot \mathbb{E}[X \mid \mathcal{G}]$$

This proves the assertion for integrable and \mathcal{G} -measurable random variable Y. Suppose now that Y is \mathcal{G} -measurable and $Y \cdot X$, X are integrable. Define $W_n = \{\omega \in \Omega \mid Y(\omega) \in [-n,n]\}$ and $Y_n = \chi_{W_n} \cdot Y$. Then $\{Y_n\}_{n \in \mathbb{N}}$ is a sequence of integrable \mathcal{G} -measurable random variables convergent to Y and $Y_n \cdot X \in Y$ for every Y is $Y \cdot X \in Y$. Hence

$$Y \cdot \mathbb{E}[X | \mathcal{G}] = \lim_{n \to +\infty} Y_n \cdot \mathbb{E}[X | \mathcal{G}] = \lim_{n \to +\infty} \mathbb{E}[Y_n \cdot X | \mathcal{G}] = \mathbb{E}[Y \cdot X | \mathcal{G}]$$

and the last equality follow from (4) of Theorem 3.1

Theorem 3.3 (Tower Property). Let $\mathcal{G}_2 \subseteq \mathcal{G}_1 \subseteq \mathcal{F}$ be σ -algebras and $X : \Omega \to \mathbb{R}$ be an integrable random variable. Then

$$\mathbb{E}[\mathbb{E}[X|\mathcal{G}_1]|\mathcal{G}_2] = \mathbb{E}[X|\mathcal{G}_2]$$

Proof. Fix $G \in \mathcal{G}_2$. Then also $G \in \mathcal{G}_1$ and

$$\int_{G} \mathbb{E}[\mathbb{E}[X | \mathcal{G}_{1}] | \mathcal{G}_{2}] dP = \int_{G} \mathbb{E}[X | \mathcal{G}_{1}] dP = \int_{G} X dP = \int_{G} \mathbb{E}[X | \mathcal{G}_{2}] dP$$

Therefore, we derive that $\mathbb{E}[\mathbb{E}[X|\mathcal{G}_1]|\mathcal{G}_2] = \mathbb{E}[X|\mathcal{G}_2]$.

Theorem 3.4. Let \mathcal{G} be a σ -subalgebra of \mathcal{F} , $X : \Omega \to \mathbb{R}$ be an integrable random variable and $\phi : \mathbb{R} \to \mathbb{R}$ be a convex function. Suppose that $\phi(X)$ is integrable. Then

$$\phi(\mathbb{E}[X|\mathcal{G}]) \leq \mathbb{E}[\phi(X)|\mathcal{G}]$$

Proof. Let L_{ϕ} be a set of functions $\mathbb{R} \ni x \mapsto a \cdot x + b \in \mathbb{R}$ for $a, b \in \mathbb{R}$ such that $a \cdot x + b \le \phi(x)$ for every $x \in \mathbb{R}$. Since ϕ is convex, we derive that for every $x \in \mathbb{R}$ we have $\phi(x) = \sup_{l \in L_{\phi}} l(x)$. Hence

$$\phi\left(\mathbb{E}[X\,|\,\mathcal{G}]\right) = \sup_{l \in L_{\phi}} l\left(\mathbb{E}[X\,|\,\mathcal{G}]\right) = \sup_{l \in L_{\phi}} \mathbb{E}[l(X)\,|\,\mathcal{G}] \le \mathbb{E}[\phi(X)\,|\,\mathcal{G}]$$

REFERENCES

 $[Monygham, 2018]\ Monygham\ (2018).\ Radon-nikodym\ theorem,\ hahn-jordan\ decomposition\ and\ lebesgue\ decomposition.\ github\ repository:\ "Monygham/Pedo-mellon-a-minno".$