

Этикетка

КСНЛ.431279.008 ЭТ

Микросхема 1564ЛП23У1ЭП

Микросхема интегральная 1564ЛП23У1ЭП

Функциональное назначение:

Четыре элемента мажоритарной логики «2 из 3» с тремя состояниями на выходах

Условное графическое обозначение

Схема расположения выводов Номера выводов показаны условно

Таблица назначения выводов

$N_{\underline{0}}$	Обозначение	Назначение вывода	$N_{\underline{0}}$	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	EZ	Вход управления тре- тьим состоянием выхода	11	Y3	Выход четвертого канала
2	A0	Первый вход данных первого канала	12	Y2	Выход третьего канала
3	В0	Второй вход данных первого канала	13	C3	Третий вход данных четвертого канала
4	C0	Третий вход данных первого канала	14	В3	Второй вход данных четвертого канала
5	A1	Первый вход данных второго канала	15	A3	Первый вход данных четвертого канала
6	B1	Второй вход данных второго канала	16	C2	Третий вход данных третьего канала
7	C1	Третий вход данных второго канала	17	B2	Второй вход данных третьего канала
8	Y0	Выход первого канала	18	A2	Первый вход данных третьего канала
9	Y1	Выход второго канала	19	M	Вход управления
10	0V	Общий	20	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = 25+10 °C)

1.1 Основные электрические пар	раметры (при t = 25 <u>+</u> 10	(1)	
	Буквенное	Hoj	ома
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2,0 \text{ B}, U_{IL}=0,3 \text{ B}, U_{IH}=1,5 \text{ B} I_{O}=20 \text{ MKA}$	$U_{OL\;max}$	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B I_{O} = 20 мкА		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		=	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =6,0 mA		=	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 mA		=	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B} I_{O}=20 \text{ MKA}$	U_{OHmin}	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B I_{O} = 20 MKA		4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 6,0 mA		4,0	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 mA		5,5	-
3. Входной ток низкого уровня, мкА, при:			
U_{CC} = 6,0 B, U_{IL} = 0 B, U_{IH} = U_{CC}	${ m I}_{ m IL}$	=	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	=	0,1
5. Ток потребления, мкА, при		·	
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	8,0
6. Выходной ток низкого уровня в состоянии «Выключено», мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IH} = 4.2 \text{ B}$	I_{OZL}	-	/-0,5/

7. Выходной ток высокого уровня в состоянии «Выключено», мкА, при:	I_{OZH}	-	0,5
$U_{CC} = 6.0 \text{ B}, U_{IH} = 4.2 \text{ B}$			·
8. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B}, \text{ f} = 10 \text{ M}\Gamma\text{u}$	I _{OCC}	-	20,0
9. Время задержки распространения от выводов А _I , В _I , С _I , до вывода Y ₁ , нс,			
М=0 при:	t_{PHL1}		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \Pi\Phi$	t_{PLH1}	-	96
$U_{CC} = 4.5 \text{ B}, C_L = 50 \Pi\Phi$		-	23
$U_{CC} = 6.0 \text{ B}, C_L = 50 \Pi \Phi$		-	20
10. Время задержки распространения от выводов А ₁ , до вывода Y ₁ , нс,			
М=1 при:	t_{PHL2}		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \Pi\Phi$	$t_{\rm PLH2}$	-	96
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$		-	23
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	20
11. Время задержки распространения от вывода М до вывода Y_1 , нс, при:			
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$	$t_{ m PHL}$	-	120
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$	$t_{\rm PLH3}$	-	30
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	25
12. Время задержки распространения сигнала при переходе из состояния	$t_{\rm PLZ}$		
низкого уровня в состояние «Выключено» и из состояния «Выключено» в	t_{PZL}		
состояние низкого уровня, нс, при:			
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ пФ}, R_{L=}1 \text{ кОм}$		-	96
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ пФ}, R_{L=}1 \text{ кОм}$		-	23
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ пФ}, R_{L=}1 \text{ кОм}$		-	20
13. Время задержки распространения сигнала при переходе из состояния			
высокого уровня в состояние «Выключено» и из состояния «Выключено» в	t_{PHZ}		
состояние высокого уровня, нс, при:	t_{PZH}		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ п}\Phi, R_{L=}1 \text{ кOm}$		-	96
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ п}\Phi, R_{L=}1 \text{ кOm}$		-	23
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ п}\Phi, R_{L}=1 \text{ кOm}$		-	20
14. Входная емкость, пФ	C_{I}	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото	Γ
серебро	г

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

2.2 Гамма – процентный срок сохраняемости ($T_{\text{С}\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-31ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛП23У1ЭП соответствуют техническим условиям АЕЯР.431200.424-31ТУ и признаны годными для эксплуатации.

Приняты по		от		_
(извещение, акт и др	o.)	(дата)	
Место для ш	тампа ОТК			Место для штампа ПЗ
Место для ш	тампа « Перепровеј	рка произв	едена	»
Приняты по	(извещение, акт и	др.)	(дата)	_
Место для ш	тампа ОТК			Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ