Monitoreo de Sensores de Calidad del Agua

Nicolás Sánchez y Miguel Duarte Clavijo

Objetivo del proyecto

El objetivo de este proyecto es desarrollar un sistema que simule el monitoreo de la calidad del agua en tiempo real. Para ello, se simularán sensores de pH y temperatura que enviarán sus mediciones a un proceso monitor. Este proceso, a su vez, almacenará los datos y alertará al usuario en caso de anomalías.

Contexto

Contexto

El agua es un recurso vital y su calidad es esencial para diversos usos (agricultura, energía, consumo humano). El monitoreo constante permite detectar cambios y tomar acciones correctivas a tiempo. Parámetros clave de calidad del agua: pH, temperatura, conductividad, oxígeno disuelto y turbidez.

Ø3

Arquitectura del sistema

Arquitectura del sistema

Simulan la medición de pH y temperatura, enviando datos al monitor

Recibe, procesa y almacena los datos

Gestiona la recepción de datos y los distribuye

Hilo H-ph

Procesa y almacena las mediciones de pH

Hilo H-temperatura

Procesa y almacena las mediciones de temperatura

Mecanismos de Comunicación y Sincronización

Mecanismos de sincronización

Comunicación entre Procesos

Se utilizan pipes nominales (FIFO) para la comunicación unidireccional entre sensores y monitor

Comunicación entre Hilos

Se emplea el patrón productor-consumidor con buffers acotados y semáforos para sincronizar el acceso a los datos compartidos

Desarrollo del proyecto

DESCRIPCIÓN DEL SISTEMA A DESARROLLAR

El sistema a desarrollar consiste en una simulación de monitoreo de la calidad del agua mediante la implementación de procesos e hilos que emulan sensores y mecanismos de control. Los componentes principales del sistema son:

- Sensores (simulados por procesos)
- Monitores
- Mecanismos de comunicación y sincronización.

Funcionalidades Principales

Funcionalidades Principales

Sensores (Procesos)

Simulación de mediciones de pH y temperatura a intervalos regulares. Envío de datos al monitor a través de pipes nominales.

Monitor

Recepción y distribución de mediciones.

Almacenamiento de datos en archivos de texto (file-ph.txt, file-temp.txt).

Generación de alertas cuando las mediciones están fuera de rango.

Manejo de errores

Manejo de Errores

Lectura de archivos

Se verifica si los archivos de datos de los sensores existen y se pueden abrir

Mediciones inválidas

Se descartan mediciones negativas o que no cumplan con el formato esperado

Sensores desconectados

El monitor detecta si un sensor no envía datos durante un tiempo determinado y notifica la situación

Resultados

Resultados

Monitor

Sensor

```
~/Proyecto-SO/SensoresPh$ ./monitor -b 10 -t file-temp
.txt -h file-ph.txt -p pipe1
Alerta: el valor de temperatura es: 68
Alerta: el valor de temperatura es: 69
Alerta: el valor de temperatura es: 71
Alerta: el valor de temperatura es: 70
Alerta: el valor de temperatura es: 90
Alerta: el valor de temperatura es: 50
Alerta: el valor de ph es: 6
Error: received negative value from sensor
Alerta: el valor de ph es: 4
Alerta: el valor de ph es: 4
Finished processing measurements
~/Proyecto-SO/SensoresPh$
```

```
~/Proyecto-SO/SensoresPh$ ./sensor -s 1 -t 3 -f datos.txt -
p pipe1
Medicion 1: 68
Medicion 2: 69
Medicion 3: 71
Medicion 4: 70
Medicion 5: 21
Medicion 6: 90
Medicion 7: 50
Medicion 8: 6.0
Medicion 9: 6.5
Medicion 10: -3
Medicion 11: 4.0
Medicion 12: 7.0
Medicion 13: 7.2
Medicion 14: 4.0
~/Proyecto-SO/SensoresPh$
                                                Generate Ctrl 1
```

Resultados Salida de los datos del ph

```
\equiv file-ph.txt \times
SensoresPh > = file-ph.txt
      Medicion de PH 1: 6 || Hora de la medicion: 01:39:24
      Medicion de PH 2: 6.5 || Hora de la medicion: 01:39:27
      Medicion de PH 3: 4 || Hora de la medicion: 01:39:33
      Medicion de PH 4: 7 || Hora de la medicion: 01:39:36
      Medicion de PH 5: 7.2 || Hora de la medicion: 01:39:39
      Medicion de PH 6: 4 || Hora de la medicion: 01:39:42
```


Gracias Por su atencion