დავალებები 1-30-ის პასუხები:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
٥			X										X		х
δ						X	X								
გ					X			X	X						
Q				X						X	X			X	
O O	X	X										X			

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
5				X							X			X	
δ	X					X						X			x
გ		X	X										X		
Q					X				X						
0							X	X		X					

დავალებების 1-30-ის შეფასების სქემა: ყოველი დავალების სწორი პასუხი ფასდება 1 ქულით, ხოლო მცდარი პასუხი - 0 ქულით.

31. (5 ქულა) დახრილ სიბრტყეზე, რომელიც მცირე ცილინდრული ზედაპირით მდორედ გადადის ჰორზონტალურ სიბრტყეში, უსაწყისო სიჩქარით ჩამოსრიალდა ძელაკი. ხახუნი უგულებელყავით. დაადგინეთ შესაბამისობა ძელაკის მახასიათებელ ფიზიკურ სიდიდეებსა და ამ სიდიდეების t დროზე დამოკიდებულების თვისებრივ გრაფიკებს შორის. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი X.

1. სიჩქარის v_x გეგმილი

2. სიჩქარის v_y გეგმილი

3. x კოორდინატა

4. y კოორდინატა

5. კინეტიკური ენერგია

6. აჩქარების მოდული

	1	2	3	4	5	6
5		X				
δ						X
გ	X					
გ დ				X		
O O			X			
3					X	

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია. (მაქს. 5 ქულა)

32. (**5 ქულა**) ჰორიზონტისადმი 30° -ით დახრილ გლუვ სიბრტყეზე უსაწყისო სიჩქარით იწყებს სრიალს m მასის ძელაკი, რომელიც t დროში გადის S მანძილს, იძენს p იმპულსს და E კინეტიკურ ენერგიას. თავისუფალი ვარდნის აჩქარებაა g. დაადგინეთ შესაბამისობა ციფრებით დანომრილ გამოსახულებებსა და ასოებით დანომრილ სიდიდეებს შორის. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი X.

1. $\sqrt{2mE}$	ა. g
2. p^2/m^2S	ბ. E
3. 2E/gS	8∙ P
4. $mg^2t^2/8$	დ. t
5. 2p/mg	ე. S
6. pt/2m	3. m

	1	2	3	4	5	6
ა		X				
δ				X		
გ	X					
Q					X	
გ დ ე						X
3			X			

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია. (მაქს. 5 ქულა)

33. (6 ქულა) დაადგინეთ შესაბამისობა ციფრებით დანომრილ სიდიდეებსა და ასოებით დანომრილ SI სისტემის ძირითადი ერთეულებით გამოსახულ განზომილებებს შორის. პასუხების ფურცელზე ცხრილის სათანადო უჯრებში დასვით ნიშანი \mathbf{X} .

1.	მუშაობა	ა. კგ / წმ²
2.	G გრავიტაციული მუდმივა	ბ. მ²/ წმ²
3.	სიმძლავრე	გ. კგ·მ²/ წმ²
4.	ხახუნის კოეფიციენტი	დ. კგ·მ²/ წმ³
5.	დნობის კუთრი სითბო	ე. $\partial^3/(3 \cdot \% \partial^2)$
6.	მალის მომენტი	ვ. კგ.მ / წმ²
7	lsobolson	

	1	2	3	4	5	6	7
δ							х
ծ					Х		
გ	Х					Х	
დ			Х				
ð		Х					
3							

მიღებული ქულა უდრის სწორი სვეტების რიცხვს მინუს ერთი. სწორი სვეტები ისეთია, როგორიც მოყვანილ ცხრილშია. განსხვავებული სვეტები მცდარია. (მაქს. 6 ქულა)

34. (**5 ქულა**) სითბურ ძრავაში მუშა სხეულია იდეალური ერთატომიანი აირი. ის

ასრულებს 1-2-3-1 ციკლურ პროცესს. V_0 და p_0 მოცემული სიდიდეებია.

- 1) იპოვეთ 2 და 1 მდგომარეობებში აბსოლუტური ტემპერატურების შეფარდება T_2/T_1 .
- 2) იპოვეთ 1-2 პროცესში აირის მიერ მიღებული სითბოს რაოდენობა.
- 3) იპოვეთ ერთი ციკლის განმავლობაში აირის მიერ შესრულებული მუშაობა.
- 4) იპოვეთ ამ ციკლით მომუშავე ძრავის მარგი ქმედების კოეფიციენტი. ამოხსნა:

1)
$$\frac{T_2}{T_1} = \frac{p_2 \cdot V_2}{p_1 \cdot V_1} = \frac{4p_0 \cdot 2V_0}{p_0 \cdot V_0} = 8$$
 (1 ქულა)

2)
$$A_{12} = \frac{p_0 + 4p_0}{2} \cdot V_0 = \frac{5p_0V_0}{2}$$
 (1 ქულა)

$$Q_{12} = U_2 - U_1 + A_{12} = \frac{3}{2}p_2V_2 - \frac{3}{2}p_1V_1 + A_{12} = 13p_0V_0$$
 (1 ქულა)

3)
$$A = \frac{3p_0V_0}{2}$$
 (1 ქულა)

4)
$$\eta = \frac{A}{Q_{12}} \cdot 100\% \approx 11,5\%$$
 (1 ქულა)

- **35.** (**5 ქულა**) L სიგრძის ძაფზე ჩამოკიდებულ m მასის მცირე ზომის ბურთულას მიანიჭეს ისეთი v_0 ჰორიზონტალური სიჩქარე, რომ მან ვერტიკალურ სიბრტყეში წრეწირი შემოწერა. თავისუფალი ვარდნის აჩქარებაა g. ჰაერის წინააღმდეგობის ძალა უგულებელყავით.
- 1) განსაზღვრეთ ბურთულას სიჩქარე ზედა წერტილის გავლის მომენტში;
- 2) განსაზღვრეთ ძაფის დაჭიმულობის ძალა ქვედა წერტილის გავლის მომენტში;
- 3) განსაზღვრეთ ძაფის დაჭიმულობის ძალა ზედა წერტილის გავლის მომენტში;
- 4) განსაზღვრეთ v_0 სიჩქარის მინიმალური მნიშვნელობა, როცა ბურთულა ჯერ კიდევ შემოწერს წრეწირს.

ამოხსნა:

$$1) \frac{mv_0^2}{2} = \frac{mv^2}{2} + 2mgL \implies v = \sqrt{v_0^2 - 4gL}$$
 (1 ქულა)

$$T_1 - mg = \frac{mv_0^2}{L} \implies T_1 = m(g + \frac{v_0^2}{L})$$
 (1 ქულა)

3)
$$T_2 + mg = \frac{mv^2}{L} \implies T_2 = m(\frac{v_0^2}{L} - 5g)$$
 (1 ქულა)

4) მინიმალური სიჩქარით წრეწირის შემოწერისას, ზედა წერტილის გავლისას, მაფის დაჭიმულობის ძალა ნულის ტოლი ხდება. (1 ქულა)

$$T_2 = 0 \implies v_0 = \sqrt{5gL}$$
 (1 ქულა)

ასევე ფასდება იგივე შედეგის მიღება მესამე პუნქტისაგან დამოუკიდებლად.

36. (**5 ქულა**) ნახატზე გამოსახულ სქემაში დენის წყაროს ემ ძალაა $\mathcal{E}=36$ ვ, შიგა წინაღობაა r=1 ომი, ხოლო კონდენსატორის ტევადობაა C=1 მკფ. წრედში დამყარებულია მუდმივი დენი.

- 1) განსაზღვრეთ გარე წრედის წინაღობა;
- 2) განსაზღვრეთ დენის წყაროში გამავალი დენის ძალა;
- 3) განსაზღვრეთ R_1 წინაღობაში გამოყოფილი სიმძლავრე;
- 4) განსაზღვრეთ დენის ძალა R₅ წინაღობაში;
- 5) განსაზღვრეთ კონდენსატორის მუხტი.

ამოხსნა:

$$1)~R'=rac{R_1}{3}=2~$$
 ომი, $~R''=rac{R_5R_6}{R_5+R_6}=4~$ ომი, $~R=R'+R_4+R''=11~$ ომი $~(~\mathbf{1}$ ქულა)

3)
$$I_1=I/3=1$$
 ა $P_1=I_1^2R_1=6$ ვტ (1 ქულა)

4)
$$I_5/I_6=R_6/R_5=2$$
 $I_5+I_6=I=3$ ა \Rightarrow $I_5=2$ ა (1 ქულა)

- **37.** (5 ქულა) ეკრანიდან 90 სმ მანძილზე მოთავსებულია ეკრანის პარალელური სანთელი. 20 სმ ფოკუსური მანძილის მქონე შემკრები ლინზა, რომელიც საწყის მომენტში ეკრანთანაა, მოძრაობს სანთლისაკენ თანაბრად 2 მმ/წმ სიჩქარით. ლინზა ეკრანის პარალელურია. სანთლის ალის სიმაღლეა 2 სმ.
- 1) რისი ტოლია ლინზის ოპტიკური ძალა?
- 2) რა დროის შემდეგ მიიღება პირველად ეკრანზე ალის მკვეთრი გამოსახულება?
- 3) რა სიმაღლის იქნება ალის გამოსახულება ამ მომენტში?
- 4) რა დროის შემდეგ მიიღება მეორედ ეკრანზე ალის მკვეთრი გამოსახულება?
- 5) რა სიმაღლის იქნება ალის გამოსახულება ამ მომენტში?

ამოხსნა:

- 1) D=1/F=1/(0,2 მ)=5 დპტრ **(1 ქულა)**
- 2) d+f=L=90 სმ , $\frac{1}{F}=\frac{1}{d}+\frac{1}{f}$ \Rightarrow $f^2-90f+1800=0$ \Rightarrow $f_1=30$ სმ , $f_2=60$ სმ მაშასადამე, პირველად ალის მკაფიო გამოსახულება მიიღება, როდესაც ლიწზა ეკრანს დაშორდება 30 სმ-ით, ხოლო მეორედ, როცა ლიწზა ეკრანს დაშორდება 60 სმ-ით. $t_1=f_1/v=150$ წმ (1 ქულა)
- 3) $H_1/h=f_1/d_1$ $d_1=L-f_1=60$ სმ \Rightarrow $H_1=1$ სმ (1 ქულა)
- 4) t₂=f₂/v=300 წმ (1 ქულა)
- 5) $H_2/h=f_2/d_2$ $d_2=L-f_2=30$ სმ \Rightarrow $H_2=4$ სმ (1 ქულა)

38. (2 ქულა) X ღერძის დადებით ნახევარზე მოძრავი ნივთიერი წერტილის სიჩქარის გეგმილი მის კოორდინატზე დამოკიდებულია კანონით $v_x = A\sqrt[3]{x}$, სადაც A დადებითი ნიშნის მოცემული მუდმივაა. საწყის მომენტში სხეულის კოორდინატია x_0 . განსაზღვრეთ, რა დროში გახდება კოორდინატი $8x_0$.

ამოხსნა:

$$t = \int_{x_0}^{8x_0} \frac{dx}{v_x}$$
 (1 ქულა)

$$t = \int_{x_0}^{8x_0} \frac{dx}{A\sqrt[3]{x}} = \frac{1}{A} \int_{x_0}^{8x_0} x^{-1/3} dx = \frac{3}{2A} \left((8x_0)^{2/3} - {x_0}^{2/3} \right) = \frac{9\sqrt[3]{x_0^2}}{2A} \tag{1 ქულა}$$

39. (2 ქულა) სხეულის იმპულსი დროის მიხედვით იცვლება კანონით: $p=At^2+B\cos\omega t$, სადაც A, B და ω მოცემული მუდმივებია. განსაზღვრეთ, რა კანონით იცვლება დროის მიხედვით სხეულზე მოქმედი ძალა.

ამოხსნა:

$$F = \frac{dp}{dt} = 2At - \omega B \sin \omega t$$

სწორადაა გაწარმოებული ხარისხოვანი ფუნქცია - 1 ქულა სწორადაა გაწარმოებული ტრიგონომეტრიული ფუნქცია - 1 ქულა მცდარი ფორმულებისათვის აკლდება 1 ქულა