HOMEWORK 6: NORMALITY AND URYSOHN THEOREMS DUE: OCTOBER 26

- 1) Show a closed subspace of a normal space is normal.
- 2) Show that if X_{α} are non-empty topological spaces, and $\prod_{\alpha} X_{\alpha}$ is T2 or T3 or T4, then so is each X_{α} .
- 3) Show that the following 2 conditions are equivalent:
 - 1) Every subspace of X is normal.
 - 2) For all A, B subsets of X such that $\bar{A} \cap B = A \cap \bar{B} = \emptyset$, there exists U, V open disjoint sets separating A and B; $A \subseteq U$ and $B \subseteq V$.

In such a case, X is said to be T5, or completely normal.

- 4) Show that any connected normal space X containing 2 disjoint non-empty closed sets A,B is uncountable.
- 5) We say $Y \subseteq X$ is a \mathbf{G}_{δ} set if Y is an intersection of countably many open sets. Similarly, Y is a \mathbf{F}_{σ} set if it is a countable union of closed sets. Use the techniques of the proof of Urysohn's Lemma to show the following result:

Theorem. If X is normal, then there exists $f: X \to [0,1]$ a continuous function such that $f^{-1}(0) = A$ iff A is a closed G_{δ} set.¹

- 6) X is **T6** or **perfectly normal** if it is T4 and every closed set is a G_{δ} -set. Show every metric space is T6 and that T6 implies T5.²
- 7) Show that if X is a compact Hausdorff space, then X is metrizable if and only if X is second-countable.

¹Urysohn's Lemma holds in a exact sense when A and B are closed G_{δ} -sets.

²Apply the previous problem.