Smart Hardware Design

Conception de matériel intelligent

Diseño de hardware inteligente

智能硬件设计等一等知能硬件的

第二章 智能硬件的处理单元

Slimme hardwareontwerpen Σχεδίαση έξυπνου υλικοί

大连理工大学-朱明 Progettazione di hardware intelligente

스마트 하드웨어 설계

Smart-Hardware-Design

Проектирование умного оборудования

2.0 思考回顾

●[2.0.0] 智能硬件的软硬件关系图

智能硬件系统 软硬件关系

- ●[2.1.1] 常规信息系统的通用计算部件-处理器
 - CPU(中央处理单元, Central Processing Unit)的主要指标
 - 时钟频率: 以赫兹(Hz)为单位,表示每秒钟能完成的指令周期数
 - 核心数量: 每个核心可以独立执行任务, 提升并行处理能力
 - 线程数量:线程是CPU执行指令的最小单位,多线程技术允许每个核心 同时执行多个线程,从而提高处理效率
 - 缓存:缓存(L1、L2、L3)存储了CPU频繁访问的数据和指令,较大的缓存可以有效减少CPU访问内存的延迟,提升性能
 - 指令集架构: 指令集架构是CPU能够理解和执行的指令集合,常见的指令集架构包括x86、ARM、RISC-V、LoongArch等
 - 热设计功耗(TDP): CPU在满负载运行时产生的最大热功率

台式机和服务器上的CPU普遍以性能为主,使用市电供电,不关心CPU功率

- ●[2.1.1] 常规信息系统的通用计算部件-处理器
 - CPU(中央处理单元, Central Processing Unit)的主要指标

● 国外:

● 国产

LOONGSON 花芯

台式机和服务器上的CPU普遍以性能为主,使用市电供电,不关心CPU功率

自 主 可 控

- ●[2.1.1] 常规信息系统的通用计算部件-处理器
 - GPU(图形处理单元, Graphics Processing Unit)的主要指标
 - 核心数量: CUDA核心(Nvidia显卡)数量是衡量GPU并行处理能力的重要 指标,较高的核心数量意味着GPU可以同时处理更多的任务
 - 显存容量:显存的容量决定了GPU能够存储多少图形数据和中间计算结果。 较大的显存容量对于高分辨率图形和大规模数据计算非常重要
 - 內存带宽:內存带宽表示GPU与显存之间的数据传输速率,带宽越高,GPU在处理图形数据时能够更快速地读取和写入数据
 - 时钟频率: GPU的时钟频率决定了其每秒钟能够完成的计算周期数,较高的时钟频率通常意味着更快的计算速度
 - 热设计功耗(TDP): GPU在满负载运行时产生的最大热功率

图形工作站和服务器上的GPU以性能为主,使用市电供电,不关心GPU功率

- ●[2.1.1] 常规信息系统的通用计算部件-处理器
 - CPU和GPU的共同特点
 - 性能高
 - 多核: CPU一般8核或更高 GPU一般上千核或更高
 - 复杂:丰富的指令集和结构
 - 功耗高:
 - 单处理器功耗: 几十W或更高
 - 体积大:
 - 处理器面积:数百mm²或更高
 - 外围电路复杂:
 - 大容量存储、大功率电源等

Intel NUC12SNKI72 整机体积: 230×180×60 mm³ 电源功率: 330W

GeForce RTX 4090 显卡体积: 337×137×66 mm³ 显卡TDP: 450W 显卡不能独立工作

- ●[2.1.1] 常规信息系统的通用计算部件
 - CPU和GPU的共同特点
 - 性能高
 - 多核:CPU一般8核或更高

GPU一般上千核或更高

- 复杂:丰富的指令集和结构
- 功耗高:
 - 单处理器功耗: 几十W或更高
- 体积大:
 - 处理器面积:数百mm²或更高
- 外围电路复杂:
 - 大容量存储、大功率电源等

优势

为系统提供强大的运算处理性能

无需处理复杂数据 🗀 小电源或电池供电 附着在其他物品上 : ; 结构简单可靠性高 二 系统复杂

性能过剩 功耗过高 体积过大

- ●[2.1.1] 常规信息系统的通用计算部件-处理器
 - CPU和GPU的共同特点
 - 性能高
 - 多核:CPU一般8核或更高

GPU一般上千核或更高

- 复杂:丰富的指令集和结构
- 功耗高:
 - 单处理器功耗: 几十W或更高
- 体积大:
 - 处理器面积:数百mm²或更高
- 外围电路复杂:
 - 大容量存储、大功率电源等

优势

为系统提供强大的运算处理性能

无需处理复杂数据 小电源或电池供电 附着在其他物品上!! 结构简单可靠性高 📙 系统复杂

性能过剩 功耗过高 体积过大

Nvidia Intel **AMD**

CPU/GPU很好, 只是不适合

●[2.1.2] 小型智能硬件的计算需求

常规问题 基本需求(智能锁为例) 处理简单的数据 ①密码数据 ②指纹数据 ③面部图像 4)指令数据 ⑤控制逻辑 性能过剩 功耗过高 有限的供电 ①电池供电

①结构简单

③工作稳定

体积过大 ①体积小巧 系统复杂

具有一定专用性的计算部件

性能略低、结构简单

- ①处理密码、指纹和图像等常规数据
- ②执行用户指令和机构控制功能

较低至超低的运行功耗和待机功耗

体积小、集成度高

- ①体积小巧、外周电路简单
- ②可集成有存储、输出和通信等功能

处

理

器

特

点

附着干门上

简单且可靠

②定制化低

运算能力满足需求,有针对性的应用在不同智能硬件设备

能针对处理任务的需求,工作在较低功耗甚至超低功耗下

芯片体积小、外围电路简单, 有简单的外围电路即可工作

集成有常用的存储功能,以及通信和基本的输入输出部件

前面介绍的 处理器-Processor

本页的缩减小的 处理器如何取名

- ●[2.2.1] 智能硬件常用的计算部件
 - 两类智能硬件常用的计算部件: MCU和SoC
 - MCU(Microcontroller Unit): 一种小型的单片计算机,通常用于嵌入式系统中,集成了处理器核心(CPU)、内存、外设接口以及基本的外设模块
 - MCU用于执行简单的控制和计算任务,适合用于低功耗、低成本和小规模功能的应用
 - SoC(System on Chip): 一种将整个系统的多个功能集成到单个芯片上的技术。SoC不仅包含一个或多个CPU核心,还可以集成图形处理单元(GPU)、通信模块(Wi-Fi、蓝牙、LTE等)、存储单元、音频、视频处理单元,甚至是AI加速器等。
 - SoC适用于需要高性能和多功能的复杂系统,如智能手机、平板电脑、智能电视、智能家居的核心设备等

- ●[2.2.1] 智能硬件常用的计算部件
 - 两类智能硬件常用的计算部件: MCU和SoC外观上就是芯片
 - 芯片: 各种各样的外观和大小, 但是都有相同的外观规律

- ●[2.2.2] 计算部件的性能对比
 - MCU、SoC、CPU概况对比(2024年)(数值区分不绝对)

运行	MCU	<- ->	SOC		<- ->	CPU
频率	100KHz	~ 200MHz		, HA T	~ 2GHz	
核心	MCU	<- ->	SOC		<- ->	CPU
数量	单核	双核	压酒		多核	
缓存	MCU	<- ->	SOC		<- ->	CPU
大小	无	~ 256KB			~ 32MB	
核心	MCU	<- ->	SOC		<- ->	CPU
尺寸	1mm ²	~ 100mm ²			~ 200mm ²	
能耗	MCU	<- ->	SOC		<- ->	CPU
水平	~uW	~1W			~10W	
总线	MCU	<- ->	SOC		<- ->	CPU
位宽	<8位><16位	7><32位>			<64位>	

●[2.2.2] 计算部件的性能对比 SoC与MCU MCU、SoC、CPU概况对比(2025年) 的一种区别观点 内部功能模块(硬件) 速度 较低 4G I2C **12S** CAN SDIO Wi-Fi IGPIOLADC IPWMI SPI USB SATA DIMM DMI PCIE UART MCU SoC CPU

	操作系统	开发/运行语言
MCU	裸机(Bare-metal)、实时操作系统(RTOS)两大类 如FreeRTOS、RT-Thread、uC/OS-II/III、CMSIS RTOS等	汇编语言、C语言、C++等
SoC	Android、Linux、iOS、OpenHarmony、HarmonyOS等	常用语言普遍支持
CPU	Windows、Linux、MacOS等	常用语言普遍支持

*特别注意: I2C和I2S严格写法为I2C和I2S,课程中为展示清晰,不采用上标

■ 一般具备 ■ 部分具备,功能不固定,仅供参考

- ●[2.2.3] 常用的MCU-按照位宽进行分类-[8位]
 - 8位MCU的特点: 8位位宽、KB级别存储, 较少内部功能模块
 - 常见的8位MCU: 主频不超过20MHz, 多周期12T
 - 8051架构: 最经典的8位MCU, 128B RAM、4KB ROM
 - Intel 8051: 最早的8051 MCU
 - AT89系列(ATMEL公司): 8051为基础,提升了集成度和功能
 - PIC系列: Microchip公司(已被收购)
 - PIC16系列(如PIC16F877A), 目前仍在使用
 - AVR系列: ATMEL公司
 - ATmega系列(如ATmega328P),仅存的广泛使用的/\位MCU

传统的8051等8位MCU运行速度低、指令效率低,内部功能模块少,且功耗偏高基本内部功能模块:定时器、串行通信、中断和ISP等,支持标压5V或低压3.3V运行

IB

新

- ●[2.2.3] 常用的MCU-[8位]
 - 国产8051 MCU: STC8051系列: 性能大幅度提升
 - STC89/90系列(举例说明), 多周期6T/12T
 - STC90C516AD: 40MHz, 61KB/6352B, 增加ADC(模数转换)
 - STC10/11/12系列(举例说明), 单周期1T
 - STC11L60XE: 35MHz, 60KB/1280B, ISP等传统功能
 - STC12LE5630AD: 35MHz, 30KB/756B, ADC, PWM(脉宽调制)
 - STC15系列和STC8系列: 略
 - STC32系列(举例说明),单周期1T,32位8051内核
 - STC32G12K128: 36MHz, 128KB/12KB, DMA、CAN、LIN、USB、SPI、I2C、PWM、在线仿真等高级功能

8位MCU一般应用在非智能型的设备控制领域,小家电领域(电磁炉、微波炉等)

●[2.2.4] 常用的MCU-[16位]

- 16位MCU的特点:除性能提升之外,更丰富的外设功能
- 常见的16位MCU: 主频一般不超过100MHz
 - MSP430系列: 最早的16位MCU之一
 - MSP430F149: 8MHz、60KB/2KB、UART、SPI、PWM、ADC等
 - MSP430F5631: 20MHz、192KB/16KB、 UART、SPI、PWM、ADC、USB、I2C等
 - PIC24F系列:
 - PIC24FJ512GL410: 32MHz、512KB/32KB、 UART、SPI、LCD、ADC、 DAC、PWM、I2S、I2C

16位MCU运行速度提升,指令效率大幅提升,广泛使用3.3V工作电压,集成更多功能模块 16位MCU主要应用在一些电池供电设备、有控制算法需求的家电(洗衣机、空调等)

- ●[2.2.5] 常用的MCU-[32位]
 - 32位MCU的特点: 性能强大、外设全面, SoC趋势
 - 主流内核一: ARM Cortex-M内核
 - STM32系列MCU:市场上主流的32位MCU产品,部分内置FPU

型号	主频 MHz	FLASH KB	RAM KB	32位 定时器	16位 定时器	ADC	UART	SPI	I2C	DMA	DAC	CAN	I2S	以太网	USB	看门 狗	RTC
STM32F070RB	48	128	16	\\	8	1		2	2								
STM32F107VC	72	256	64	TE DIL	7	2	2	3	1		2	2	2				
STM32F398VE	72	512	80	1	10	4	2	2	3			1	2				
STM32G4A1VE	170	512	112	1	11	3	2	3	თ		4	2	2				
STM32F779NI	216	2048	512	2	12	3	4	6	4		2	3	3				
STM32H757ZI	480	2048	1024	2	12	3	4	5	4		2	2	3				

● PIC32系列MCU、NXP LPC系列MCU: 略

- ●[2.2.5] 常用的MCU-[32位]
 - 32位MCU的特点: 性能强大、外设全面, SoC趋势
 - 主流内核二: RISC-V内核

● GD32VF103系列MCU: 国产MCU

型号	主频 MHz	FLASH KB	RAM KB		16位 定时器	ADC	UART	SPI	I2C	DMA	DAC	CAN	I2S	以太网	USB	看门 狗	RTC
GD32VF103RB	108	128	32	\\	5	2	5	3	2		2	2	2			2	
GD32VF103R8	108	64	20	是加加	5	2	5	3	2		2	2	2			2	
GD32VF103R6	108	32	10		3	2	2	1	1		2	2				2	
GD32VF103R4	108	16	6		3	2	2	1	1		2	2				2	
GD32VF103VB	108	128	32		5	2	5	3	2		2	2	2			2	
GD32VF103V8	108	64	20		5	2	5	3	2		2	2	2			2	

北易创新(Gigadevice)与芯来科技(Nuclei System Technology) 面向物联网及其它超低功耗场景应用自主联合开发的一款商用RISC-V处理器

- ●[2.2.5] 常用的MCU-[32位]
 - 32位MCU的特点:性能强大、外设全面,SoC趋势
 - 主流内核二: RISC-V内核
 - Hi3065系列MCU: 国产MCU, 內置FPU

型号	主频 MHz	FLASH KB	RAM KB		16位 定时器	ADC	UART	SPI	I2C	DMA	DAC	CAN	I2S	以太 网	USB	看门 狗	RTC
Hi3061M	150	128	32	4	30,50	1	4	2	2		2	1					
Hi3061H	200	152	16	3		2	3		1		1						
Hi3065H	200	152	16	3		3	3	1	1		3	1					

基于海思公司(Hisilicon)自研RISC-V内核的高性能实时控制专用MCU

● 其他RISC-V内核的MCU: CH32Vxxx

CH32V003F4U6	48	16	2	2	1	1	1	1					
CH32V37VCT6	144	256	64	8	2	8	3	2	2	2	2		

- ●[2.2.5] 常用的MCU-[32位]
 - 32位MCU的特点: 性能强大、外设全面, SoC趋势
 - 内核三: Tensilica Xtensa内核
 - ESP32-P4系列MCU: 国产MCU, 内置FPU
 - 双核MCU: HP核400MHz, LP核40MHz
 - 支持外扩RAM: 16/32MB PSRAM

型号	主频 MHz	FLASH KB	RAM KB	32位 定时器	16位 定时器	ADC	UART	SPI	I2C	DMA	DAC	CAN	I2S	以太网	USB	看门 狗	RTC
ESP32-P4NRW16	400 40	128	768 32			2	6	5	3				4				
ESP32-P4NRW32	400 40	152	768 32			2	6	5	3			-	4				

乐鑫公司(Espressif)的产品更多带有Wi-Fi、BT等无线通信功能,课程将其归类为SoC

●[2.2.6] 常用的SoC

● 回顾: SoC与MCU的主要区别是什么?

● SoC的基本分类方法:按照性能进行分类

分类 级别	核心数量	最高主频	内存 (可支持)	GPU	基本外设 (I2C、UART等)	代表处理器
超高性能	10+	2GHz+	16GB+		K 1618	Apple M1/2/3/4,Tesla HW3/4,高通骁龙8cx Gen3等
高性能	8+	1GHz+	4GB+		252	Apple A系列,高通骁龙8系列,华为Kirin系列等
中等性能	4+	1GHz+	1GB+		•	高通骁龙600系列,MediaTek Helio P系列等
弱性能	1或1+	100MHz+	1MB+			海思Hi386×系列、ESP32系列、紫光展锐V5663等

● 超高性能: 个人计算机、数据中心、自动驾驶、复杂机器人控制等

● 高性能:智能手机、平板电脑、边缘计算设备、游戏主机等

● 中等性能:智能电视、平板电脑、边缘计算设备、机顶盒等

● 弱性能:智能家居设备、无线传感器、低功耗物联网等

课程关注点

●[2.2.6] 常用的SoC-[32或64位]

● 弱性能SoC举例: ESP32-S/C/H系列

型号	主频 MHz	FLASH KB	RAM KB	基本外设	无线通信
ESP32-S3	XX 240	384	512	SPI、UART、I2C、I2S、PWM、ADC、 SD/MMC等	2.4GHz Wi-Fi (IEEE 802.11b/g/n)、 Bluetooth 5 (LE)
ESP32-S2	240	128	320	SPI、UART、I2C、I2S、PWM、LCD 接口、 Camera 接口、ADC、DAC、触摸传感器等	2.4GHz Wi-Fi (IEEE 802.11b/g/n)
ESP32-C6	160	320	512	SPI、UART、I2C、I2S、PWM、TWAI等	2.4GHz Wi-Fi 6 (802.11ax)、 Bluetooth 5 (LE)、Zigbee、Thread
ESP32-C5		320	384	202501时还未见公开资料	2.4/5GHz Wi-Fi 6 (802.11ax)、 Bluetooth 5 (LE)、Zigbee、Thread
ESP32-C3	160	384	400	SPI、UART、I2C、I2S、PWM、USB、ADC等	2.4GHz Wi-Fi (IEEE 802.11b/g/n)、
ESP32-C2	120	576	272	SPI、UART、I2C、PWM、ADC等	Bluetooth 5 (LE)
ESP32-H2	96	120	320	SPI、UART、I2C、I2S、PWM、IrDA等	Bluetooth 5 (LE)、IEEE 802.15.4
ESP32-D0WD-V3	XX 240		520	SPI、UART、I2C、I2S、SD/MMC、ADC等	2.4GHz Wi-Fi、Bluetooth、 Bluetooth LE

●[2.2.6] 常用的SoC-[32或64位]

● 弱性能SoC举例: 紫光展锐SoC(结构接近中端, 但性能不足)

型号	主频 MHz	FLASH KB	RAM KB	基本外设	无线通信
UNISOC 5981	160	4096 MAX	8192 MAX	SPI、UART、I2C、I2S、PWM、ADC SD/MMC、USB等	2.4GHz Wi-Fi (IEEE 802.11b/g/n)
UNISOC V5663	442 416	32768 MAX	8192 MAX	SPI、UART、I2C、I2S、PWM、ADC SD/MMC、USB3.0等	2.4/5GHz Wi-Fi (IEEE 802.11b/g/n/ac)、 Bluetooth 5

● SoC举例: 华为海思Hi3861和WS63 SoC

课程平台

型号	主频 MHz	FLASH KB	RAM KB	基本外设	无线通信
Hi3861	160	2048 288	352	SPI、UART、I2C、I2S、PWM、ADC、 SD/MMC等	2.4GHz Wi-Fi (IEEE 802.11b/g/n)
WS63 解决方案	240	4096 300	606	SPI、UART、I2C、I2S、PWM、ADC等	2.4GHz Wi-Fi (IEEE 802.11b/g/n/ax)、 Bluetooth 5.4(LE)、 星闪Sparklink Low Energy(SLE) 1.0

2.3 SoC内部结构

●[2.3.1] 星闪SoC WS63的结构

2.3 SoC内部结构

- ●[2.3.1] 星闪SoC WS63的结构
 - SoC內部的总线结构
 - 总线(Bus)是处理器内部功能模块传输信息的公共通道
 - 传统MCU/SoC(8051/PIC等)总线
 - 数据总线(Data Bus)传输数据,数据总线的宽度(位数)决定了处理器一次可以传输的最大数据量
 - 地址总线(Address Bus)传输地址,
 表达数据源地址或目的地址,地址总线的宽度决定了系统的寻址能力
 - 控制总线(Control Bus)传递控制信号,包括读/写信号、时钟信号、中断信号等

SEC Wi-Fi、RADAR **DMAC** SLE, BLE 子系统 CPU (RISC-V) AHB(Advanced High-Performance Bus) iCache 32KB dCache 4KB JTAG/SWD **QSPI** ROM RAM 606KB 300KB 96MHz

计算机组成原理课程中会详细介绍上述内容

Q: 尝试在WS63内部找到左侧总线?

2.3 SoC內部结构

- ●[2.3.1] 星闪SoC WS63的结构
 - AMBA总线形式-MCU/SoC主流

宣码独加田职产社和杨

AMBA是一种架构

定义多种总线形式

● AMBA(Advanced Microcontroller Bus Architecture)高级微处理器总线架构

AHB(Advanced High-performance Bus)

● AHB可以将微控制器(CPU)、高带宽的片上RAM、高带宽的外部存储器接口、DMA总线控制器,以及各种AHB接口的控制器等连接起来,构成一套独立的完整的SoC系统

● 单通道总线,不能并行读写

● AHB: 高速、高性能

SEC Wi-Fi、RADAR **DMAC** SLE BLE 子系统 CPU (RISC-V) AHB(Advanced High-Performance Bus) iCache 32KB dCache 4KB JTAG/SWD **QSPI** ROM RAM 606KB 300KB 96MHz

计算机组成原理课程中会详细介绍CPU工作原理

A: WS63是基于AMBA架构的总线

2.3 SoC内部结构

- ●[2.3.1] 星闪SoC WS63的结构
 - 是否SoC的所有部件都需要高速总线
 - 低速外设连接高速总线会拉低系统性能
 - 有低速外设的SoC一般都要有低速总线
 - APB(Advanced Peripheral Bus)
 - 低功耗精简接口总线,可以连接多种不同低速外设;主要应用在低带宽的外设上,如GPIO、UART、I2C、WDT等
 - 单通道总线,不能并行读写
 - APB: 低速、性能相对较弱

Q: GPIO等外设如何被CPU访问和控制

2.3 SoC內部结构

- ●[2.3.1] 星闪SoC WS63的结构
 - AHB与APB连接的Bridge
 - AHB: 高速、高性能、复杂协议
 - APB: 低速、低功耗、简单协议
 - Bridge的主要作用: 相互转换
 - 不同速度模块的通信转换: CPU与外设

不能

- 协议的转换:复杂协议与简单协议
- 地址映射: AHB地址与APB地址
- 其他AMBA架构的总线
 - AXI(Advanced eXtensible Interface)
 - ACE(AXI Coherency Extensions)
 - CHI(Coherent Hub Interface)

2.3 SoC内部结构

●[2.3.2] 星闪SoC WS63的外设模块

● 外设模块: SoC的各种硬件功能单元,完成特定的任务。

● 与外部功能直接相关的模块

● 简单信号:● GPIO等

有线通信: ● I2C、SPI等

● 无线通信: ● Wi-Fi等

● 时间控制:● Timer等

● 内部控制: ● WDT等

● 敏感存储: eFUSE

部分模块的用途是可以根据用户设定调整的如GPIO(General Purpose Input/Output)等

- ●[2.3.3] SoC的控制方式
 - 硬件决定性能, 软件定义功能
 - 假定场景
 - U1是可以正常工作的SoC
 - SoC中运行的程序,可检测PD4输 入,也可以控制PB5输出
 - SW1是按键,与PD4的关系如表
 - U2是LED,与PB5的关系如表

标

SoC检测输入 SoC控制输出

LED 点亮

SoC检测输入 SoC控制输出

熄灭

软件与硬件沟通的桥梁是什么?

	100/000	
按键状态	PD4输入电压	PD4 <mark>输入</mark> 逻辑
按键松开	0V	低电平(0)
按键按下	VCC(3.3V)	高电平(1)
PB5输出逻辑	PB5输出电压	LED状态
低电平(0)	0V	点亮
高电平(1)	VCC(3.3V)	熄灭

构建一段代码,来实现这一过程

- ●[2.3.3] SoC的控制方式
 - 按键-SoC-LED控制的代码段

软件与硬件沟通的桥梁是什么?

按键	SoC检测输入	LED
按下	SoC控制输出	点亮

按键	>	SoC检测输入
松开		SoC控制输出

已经结课的C语言的知识

- ●[2.3.3] SoC的控制方式
 - 按键-SoC-LED控制的代码段

#define PD4 (*((volatile unsigned int *)0x40011404)) #define PB5 (*((volatile unsigned int *) 0x40010C08))

按键
按下

SoC检测输入
SoC控制输出

```
int main() {
    while(1) {
        if(PD4 == 1) {
            PB5 = 0;
        } else {
            PB5 = 1;
        }
    }
}
```

volatile: 变量易变化,编译器不要优化,每次都需要重新读取 (unsigned int *): 32位长度无符号型的指针,相当于p

软件与硬件沟通的桥梁是什么?

#define PD4 *p PD4为p指针指向的位置的内容,访问了特定内存地址的数据

	按键按下	VCC(3.3	V) 高电平(1)
Q: 尝试分析功能 ①if(PD4 == 1) { //balabala } ②PB5=1		辑 PB5 <mark>输出</mark> 电	B压 LED状态
		0V	点亮
		VCC(3.3	V) 熄灭

- ●[2.3.3] SoC的控制方式
 - 按键-SoC-LED控制的代码段

对SoC的控制是通过对寄存器的读写实现的

软件与硬件沟通的桥梁是什么?

特定的內存地址通过硬件电路 与外设模块建立关联(不详述)

SoC与硬件有关联功能的特定的內存地址 特殊功能寄存器(Special Function Register)

①在硬件开发领域,特殊功能寄存器(SFR)一般也被简称为寄存器②SFR在Memory Map中只占很小的内存空间但控制了全部外设模块和大部分SoC内部功能③SFR就是内存地址,很重要,需要记住吗?

- ●[2.3.3] SoC的控制方式
 - 寄存器访问 vs API访问
 - 通过PD4、PB5类似的别名定义,对寄存器进行访问的 #define GPIO_CTRL_REG (*(volatile unsigned int *)0x40021000) GPIO_CTRL_REG = 0x01;

第一层封装 无需记住 寄存器地址

问题①:32位SoC的寄存器有32位长度,只控制一个引脚的功能就很浪费问题②:32位寄存器的每一位都会表示不同硬件功能,很难记忆

- 通过上层封装的函数接口,以抽象的方式间接访问寄存器
 - API通常由硬件厂商开发提供,隐藏系统的底层操作细节 HAL_GPIO_WritePin(GPIO_PORT, GPIO_PIN, GPIO_PIN_SET);

无需记住 寄存器名字

只要连接外设模块的名字,需要设置的属性即可,不需要记寄存器和定义

●[2.3.3] SoC的控制方式

● 寄存器访问的优势与劣势

劣势
对寄存器的配置细节要求较高,容易出错
不易移植到其他平台或 SoC,硬件依赖性强
难以维护,代码可读性和可维护性较差
缺少对复杂功能的封装,开发效率较低

● API访问的优势与劣势

优势	劣势	
简化硬件操作, 开发速度快, 易于理解和使用	可能引入额外的开销,性能略低于直接寄存器访问	
代码可移植性高,支持多个硬件平台	封装的复杂度可能限制某些底层硬件的高级功能	
维护和调试简单,适合大规模团队开发	依赖于厂商的库或 API,若不支持则可能受限	
隐藏底层细节,减少开发人员的学习成本	对于实时性要求高的场景可能不够高效	

课程主要以API访问为主,部分时效性的实践案例会采用寄存器访问

- ●[2.3.3] SoC的控制方式
 - 适用场景 寄存器访问
 - 实时性要求高:如驱动定时器、快速响应中断
 - 嵌入式开发入门或特殊需求:需要完全控制硬件的寄存器级配置
 - 资源受限的微控制器:使用寄存器操作可以减少代码大小
 - 无需厂商API支持: 如某些简单或定制化的 oC
 - 适用场景 API访问
 - 快速开发:需要在短时间内完成功能验证或产品开发
 - 跨平台开发: 如基于STM32 HAL库或带有操作系统的项目
 - 团队协作:多人开发项目需要代码易读性和可维护性
 - 复杂外设控制:如 USB、以太网等,API 封装通常更高效和稳定

2.5 本章作业

●[2.5.0] 作业与思考

- 1. 智能硬件系统通过电气连接,为硬件设备之间建立了什么通道
- 2. 为何常规CPU和GPU很难应用在小型智能硬件系统上
- 3. MCU与SoC主要区别是什么
- 4. SoC按照性能进行分类,可以分为哪几类
- 5. 什么是总线(Bus),传统MCU包括那三类内部总线
- 6. 简述现代AMBA架构中,AHB和APB的作用和区别
- 7. 简述API访问硬件和寄存器访问硬件的适用场景
- 8. 思考: SoC如何通过外设与外界进行信息交互(数据传输)

GPIO UART I2C LSADC PWM

Wi-Fi、RADAR、SLE、BLE Timer WDT TCXO