Prediction using Unsupervised ML

Task-2: From the given 'Iris' dataset, predict the optimum number of clusters and represent it visually.

```
In []:  # Importing the required libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import datasets
```

Loading the Iris Dataset into the notebook

```
In [23]: # Loading the iris dataset
 iris = datasets.load_iris()
 iris_df = pd.DataFrame(iris.data, columns = iris.feature_names)
 iris_df.head() # The first 5 rows
```

Out[23]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

Finding the optimal number of clusters for K-Means and determining the value of K

Plotting the graph onto a line graph to observe the pattern

Creating K-Means Classifier

Visualizing the cluster data

Out[27]: <matplotlib.collections.PathCollection at 0x27b9c31bf88>

Out[28]: <matplotlib.legend.Legend at 0x27b9bfe8488>

Now Combining both the above graphs together

Out[29]: <matplotlib.legend.Legend at 0x27b9c39bd48>

