Problem O. Journey to the Moon

OS Linux

The member states of the UN are planning to send **2** people to the moon. They want them to be from different countries. You will be given a list of pairs of astronaut ID's. Each pair is made of astronauts from the same country. Determine how many pairs of astronauts from different countries they can choose from.

Example

$$n=4 \ astronaut=[1,2],[2,3]$$

There are $\bf 4$ astronauts numbered $\bf 0$ through $\bf 3$. Astronauts grouped by country are [0] and [1,2,3]. There are $\bf 3$ pairs to choose from: [0,1], [0,2] and [0,3].

Function Description

Complete the *journeyToMoon* function in the editor below.

journeyToMoon has the following parameter(s):

- *int n:* the number of astronauts
- int astronaut[p][2]: each element **astronaut**[i] is a 2 element array that represents the ID's of two astronauts from the same country

Returns

- *int*: the number of valid pairs

Input Format

The first line contains two integers n and p, the number of astronauts and the number of pairs.

Each of the next p lines contains 2 space-separated integers denoting astronaut ID's of two who share the same nationality.

Constraints

- $1 \le n \le 10^5$
- $1 \le p \le 10^4$

Input	Output
5 3	6
5 3 0 1	
2 3 0 4	
0 4	

Explanation o

Persons numbered [0,1,4] belong to one country, and those numbered [2,3] belong to another. The UN has $\bf 6$ ways of choosing a pair:

$$[0,2],[0,3],[1,2],[1,3],[4,2],[4,3]\\$$

Input	Output
4 1 0 2	5

Explanation 1

Persons numbered [0,2] belong to the same country, but persons ${\bf 1}$ and ${\bf 3}$ don't share countries with anyone else. The UN has ${\bf 5}$ ways of choosing a pair: