Министерство образования и науки Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

Ю.Е. Гагарин

ПРОЕКТИРОВАНИЕ СИНХРОННЫХ СЧЕТЧИКОВ

Методические указания к выполнению домашней работы по дисциплине «Архитектура ЭВМ»

УДК 621.38 ББК 32.85 Г12

Методические указания к выполнению домашней работы составлены в соответствии с учебным планом КФ МГТУ им. Н.Э. Баумана по направлению подготовки 09.03.04 «Программная инженерия» кафедры «Программного обеспечения ЭВМ, информационных технологий и прикладной математики».

Методические указания рассмотрены и одобрены:

- Кафедрой «Программного обеспечения ЭВМ, информационных технологий и прикладной математики» (ФН1-КФ) протокол № $\underline{\mathcal{G}}$ от « $\underline{\mathcal{H}}$ » $\underline{\mathcal{M}}$ 2018 г.
Зав. кафедрой ФН1-КФ к.т.н., доцент Ю.Е. Гагарин
- Методической комиссией факультета ФНК протокол № <u>4</u> от « <u>ДТ</u> » <u>осереля</u> 2018 г.
Председатель методической комиссии факультета ФНК ———————————————————————————————————
- Методической комиссией КФ МГТУ им.Н.Э. Баумана протокол № <u>//</u> от « <u>e\$</u> » <u></u>
Председатель методической комиссии КФ МГТУ им.Н.Э. Баумана д.э.н., профессор О.Л. Перерва
Рецензент:
Начальник учебного центра
Калужского филиала ОАО «Ростелеком», к.т.н. Е.В. Красавин
Автор
к.т.н., доцент кафедры ФН1-КФ
Аннотация

Методические указания к выполнению домашней работы предназначены для студентов 2-го курса направления подготовки 09.03.04 «Программная инженерия» и содержат цели и задачи домашней работы, основные теоретические сведения, описан порядок выполнения и методические указания, приведены варианты индивидуальных заданий и контрольные вопросы. Выполнение домашней работы позволит студентам получить и закрепить знания, умения и навыки, достижения которых является результатом освоения дисциплины «Архитектура ЭВМ».

ОГЛАВЛЕНИЕ

ОГЛАВЛЕНИЕ	2
ВВЕДЕНИЕ	4
ЦЕЛЬ И ЗАДАЧИ ДОМАШНЕЙ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ЕГО ВЫПОЛНЕНИЯ	5
ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ. ПРОЕКТИРОВАНИЕ СИНХРОННЫХ СЧЕТЧИКОВ	6
ПОРЯДОК ВЫПОЛНЕНИЯ ДОМАШНЕЙ РАБОТЫ	10
МЕТОДИЧЕСКИЕ УКАЗАНИЯ	10
ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ	12
КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ	13
ФОРМА ОТЧЕТА ПО ДОМАШНЕЙ РАБОТЕ	14
ОСНОВНАЯ ЛИТЕРАТУРА	15
ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА	15

ВВЕДЕНИЕ

Настоящие методические указания составлены в соответствии с программой выполнения домашней работы по дисциплине «Архитектура ЭВМ» на кафедре «Программное обеспечение ЭВМ, информационные технологии и прикладная математика» факультета фундаментальных наук Калужского филиала МГТУ им. Н.Э. Баумана.

Методические указания предназначены для студентов 2-го курса направления подготовки 09.03.04 «Программная инженерия» и содержит цели и задачи домашнего задания, основные теоретические сведения, дается описание порядка выполнения, приведены варианты задания для домашней работы и контрольные вопросы.

Выполнение домашнего задания позволит студентам закрепить знания, умения и навыки, полученные при освоении дисциплины «Архитектура ЭВМ».

ЦЕЛЬ И ЗАДАЧИ ДОМАШНЕЙ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ЕГО ВЫПОЛНЕНИЯ

Целью выполнения домашней работы является формирование практических навыков <u>проектирования синхронных счетчиков</u> с прямым направлением и заданным модулем счета, на основе JK-триггеров.

Основными задачами выполнения домашней работы являются:

- 1. построение <u>таблицы состояний счетчика</u> со значениями функции переходов;
- 2. формирование карт Карно для функции переходов;
- 3. формирование карт <u>Карно для входов триггеров</u> каждого разряда;
- 4. получение <u>минимизированных выражений</u> для входов триггеров каждого разряда;
- 5. построение схемы синхронного счетчика циклического типа.

Результатами работы являются:

- Таблица состояний счетчика со значениями функции переходов.
- Карты Карно для функции переходов.
- Карты <u>Карно для *J* и *K* входов триггеров</u> каждого разряда.
- Минимизированные выражения для входов триггеров каждого разряда.
- <u>Логическая схема</u> спроектированного счетчика.
- Подготовленный отчет.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ. ПРОЕКТИРОВАНИЕ СИНХРОННЫХ СЧЕТЧИКОВ

Проектирование счетчиков

Рассмотрим пример структурного проектирования счетчиков. Выполним синтез структуры суммирующего синхронного (параллельного) счетчика по модулю 10 на JK-триггерах. Следует отметить, что синхронные счетчики обычно строятся на базе RS, JK, D-триггеров, синхронизируемых фронтом.

Для реализации счетчика требуется не менее 4 триггеров, поскольку трех триггеров недостаточно $2^3 < 10$. Чтобы получить структуру с минимальным числом триггеров, примем m = 4 (четырехразрядный счетчик). При этом $2^m - M = 2^4 - 10 = 6$ состояний счетчика будут нештатными. Рассмотрим таблицу состояний счетчика (таблица 1), в которой в последних четырех столбцах показана функция переходов F для каждого разряда.

Десятичные		Исходное			Следующее			Функции				
числа		состо	янис		состояние			переходов				
	D^{n}	C^{n}	B^{n}	A^n L	n+1 C'	1+1	B^{n+1}	A^{n+1}	$F_{\scriptscriptstyle D}$	F_{C}	$F_{\scriptscriptstyle B}$	$F_{\scriptscriptstyle A}$
0	0	0	0	0	0	0	0	1	0	0	0	Δ
1	0	0	0	1	0	0	1	0	0	0	Δ	∇
2	0	0	1	0	0	0	1	1	0	0	1	Δ
3	0	0	1	1	0	1	0	0	0	Δ	∇	∇
4	0	1	0	0	0	1	0	1	0	1	0	Δ
5	0	1	0	1	0	1	1	0	0	1	Δ	∇
6	0	1	1	0	0	1	1	1	0	1	1	Δ
7	0	1	1	1	1	0	0	0	Δ	∇	∇	∇
8	1	0	0	0	1	0	0	1	1	0	0	Δ
9	1	0	0	1	0	0	0	0	∇	0	0	∇

Таблица 1 – Таблица состояний счетчика

Функция переходов показывает изменения (или сохранения) состояния разряда в зависимости от значений управляющих сигналов. Эта функция принимает следующие значения

$$F_0 = \Delta$$
 переход из состояния $Q^n = 0$ в $Q^{n+1} = 1$,

$$F_{\mathcal{Q}} = \nabla$$
 переход из состояния $\mathcal{Q}^n = 1$ в $\mathcal{Q}^{n+1} = 0$, $F_{\mathcal{Q}} = 0$ сохранение состояния $\mathcal{Q}^n = \mathcal{Q}^{n+1} = 0$, $F_{\mathcal{Q}} = 1$ сохранение состояния $\mathcal{Q}^n = \mathcal{Q}^{n+1} = 1$.

Используя таблицу состояний счетчика (таблица 1) для каждого разряда представляем функцию переходов в виде карты Карно (рис. 1).

Рис.1 – Карты Карно для функции переходов

В клетках карты указываются значения функции переходов. Знаком «Х» обозначаются безразличные наборы, которые соответствуют нештатным состояниям счетчика.

Определив для каждого из значений $F_{\mathcal{Q}}$ соответствующие ему значения входных переменных J и K, получим словарь переходов JK-триггера (таблица 2).

F_{α}

	J	K
0	0	X
1	X	0
Δ	1	X
∇	X	1

Таблица 2 – Словарь переходов ЈК-триггера

Используя словарь переходов JK-триггера получаем карты Карно для функций входов J и K триггеров каждого разряда (рис. 2).

Рис. 2 — Карты Карно для входов J и K триггеров

На основании карт Карно произведем минимизацию функции входов. В результате объединения клеток, показанных на рис. 2, получим простые выражения для функции входов

$$J_1 = 1, J_2 = A\overline{D}, J_3 = AB, J_4 = ABC,$$

 $K_1 = 1, K_2 = A, K_3 = AB, K_4 = A$

Рассмотрим более подробно минимизацию функции J_4 . Эта функция имеет восемь безразличных наборов, обозначенных «Х» на рис. 2. Доопределим функцию таким образом, чтобы она имела значения $J_4=1$ при ABCD=1111, выполним объединение клеток (рис. 2) и получим минимально дизъюнктивную нормальную форму (МДНФ) в виде $J_4=ABC$.

В соответствие с полученными выражениями для функции входов построим декадный счетчик (рис. 3).

Рис.3 – Схема декадного счетчика

Из рис. 3 видно, что схема декадного счетчика реализована на четырех триггерах и трех логических элементах U, два из которых имеют два входа и один имеет три входа. Счетчик, изображенный на рис. 3 является параллельным, т.к. все триггеры переключаются одновременно (синхронно).

ПОРЯДОК ВЫПОЛНЕНИЯ ДОМАШНЕЙ РАБОТЫ

Порядок выполнения:

- 1. Изучить краткий теоретический материал.
- 2. Составить таблицу состояний счетчика со значениями функции переходов.
 - 3. Заполнить карты Карно для функции переходов.
- 4. Заполнить карты Карно для J и K входов триггеров каждого разряда.
- 5. Получить минимизированные выражения для входов триггеров каждого разряда.
 - 6. Построить логическую схему счетчика.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Карты Карно функций пяти или шести переменных можно представить как две или четыре рядом размещенные карты для четырех переменных. В пределах каждой половины карты Карно пяти переменных и каждой четверти карты шести переменных клетки объединяются по тем же правилам, как и для функции четырех переменных. Объединение клеток, расположенных в разных половинах и четвертях, выполняется в соответствии со следующим правилом:

объединяются клетки, пары соседних клеток, квадраты, столбцы, ряды, пары соседних столбцов и рядов, расположенные симметрично относительно вертикальной (для функции пяти и шести переменных) или горизонтальной оси (для функции шести переменных) карты Карно. Карта Карно для функции пяти переменных имеет вид:

EDC BA	000	001	011	010	110	111	101	100
00								
01								
11								
10								

Карта Карно для функции шести переменных имеет вид:

		. 13						
EDC	000	001	011	010	110	111	101	100
FBA								
000								
001								
011								
010								
110								
111								

101				
100				

ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

No	Модуль счета
1	40
2	29
3	45
4	26
5	38
6	49
7	42
8	34
9	44
10	25
11	39
12	22
13	41
14	37
15	43
16	23
17	33
18	36

19	24
20	28
21	27
22	35
23	21
24	52
25	47
26	20
27	48
28	18
29	57
30	19

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

- 1. Укажите отличия между синхронными и асинхронными счетчиками.
 - 2. Перечислите режимы работы JK-триггера.
 - 3. Опишите назначение функции переходов.
- 4. Перечислите значения, которые может принимать функция переходов.
- 5. Приведите способы классификации счетчиков, которые используются при выполнении домашней работы.
- 6. Раскройте методику проектирования синхронных счетчиков на примере выполненной домашней работы.
- 7. Объясните алгоритм заполнения карт Карно для функций входов триггеров.
- 8. Определите <u>количество триггеров</u> необходимых для проектирования счетчика с определенным модулем счета.
- 9. Составьте карты Карно для функции переходов при проектировании счетчика с определенным модулем счета.

ФОРМА ОТЧЕТА ПО ДОМАШНЕЙ РАБОТЕ

Номер варианта студенту выдается преподавателем. Отчет на защиту предоставляется в печатном виде.

Структура отчета (на отдельном листе(-ах)):

- титульный лист;
- цели и задачи работы;
- формулировка задания (вариант);
- таблица состояний счетчика со значениями функции переходов;
- карты Карно для функции переходов;
- словарь переходов;
- карты Карно для J и K входов триггеров каждого разряда;
- логические выражения для входов триггеров каждого разряда;
- логическая схема спроектированного счетчика;
- выводы.

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Буза, М.К. Архитектура компьютеров [Электронный ресурс]: учебник / М.К. Буза. Минск : Вышэйшая школа, 2015. 416 с. URL: //biblioclub.ru/index.php?page=book&id=449925.
- 2. Гуров, В.В. Архитектура микропроцессоров [Электронный ресурс] / В.В. Гуров М.: Интернет—Университет Информационных Технологий (ИНТУИТ), 2016.— 115 с.— URL: http://www.iprbookshop.ru/56313.
- Аппаратная конфигурация 3. Колосова, Н.И. компьютера [Электронный ресурс]: пособие по информатике для студентов / Н.И. Колосова. Оренбург: Оренбургская государственная медицинская академия, 2014. 42 c. URL: http://www.iprbookshop.ru/51447.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

- Архитектура ЭВМ и систем [Электронный ресурс] / Ю.Ю. Громов, О.Г. Иванова, М.Ю. Серегин и др. Тамбов: Издательство ФГБОУ ВПО «ТГТУ», 2012. 200 с. URL://biblioclub.ru/index.php?page=book&id=277352.
- 2. Заславская О.Ю. Архитектура компьютера [Электронный ресурс]: лекции, лабораторные работы, комментарии к выполнению. Учебно-методическое пособие/ О.Ю. Заславская. –М.: Московский городской педагогический университет, 2013. 148 с. URL: http://www.iprbookshop.ru/26450.
- 3. Северов, Д.С. Архитектура ЭВМ и язык ассемблера. Лекция 7 [Электронный ресурс] / Д.С. Северов. М. : Национальный Открытый Университет «ИНТУИТ», 2014. 23 с. URL: //biblioclub.ru/index.php?page=book&id=239472.