Homework 3

Furkan Kerim Yıldırım

28138

Question 1

a) For i = 1 and j = n, L[i, j] would refer to the length of the longest palindromic subsequence in A.

b)
$$L[i,j] = \begin{cases} 0 & \text{if } i > j \\ 1 & \text{if } i = j \\ L[i+1,j-1]+2 & \text{if } i < j, \ a_i = a_j \\ \max(L[i+1,j],L[i,j-1]) & \text{if } i < j, \ a_i \neq a_j \end{cases}$$

c) It would be $O(n^2)$ because this is a dynamic programing problem and when the given input length is n, there would be n * n subproblems.

Question 2

a) For i = n and j = w, P[i,j] would refer to the maximum value that can be packed into our knapsack of capacity W.

$$b) \ P[i,j] = \begin{cases} 0 & \text{ if } i = 0 \\ P[i-1,j] & \text{ if } i > 0, j < w_i \\ \max(P[i-1,j], P[i-1,j-w_i] + v_i) & \text{ if } i > 0, j \geq w_i \end{cases}$$

c) It would be O(n * w) because the parameters are the numbers of items n with capacity w. Also, each operation takes O(1).

Question 3

- a) Objects should be picked based on their value / weight ratio that called v_i/w_i . All objects should be sorted by their v_i/w_i and iterated through each other. Also, a pick list can be used for objects whose weights do not exceed capacity.
- b) To minimize the value that can be packed into remaining capacity, the problem of maximizing is encountered.