Image Stitching

 Combine two or more overlapping images to make one larger image

Slide credit: Vaibhav Vaish

How to do it?

- Basic Procedure
 - 1. Take a sequence of images from the same position
 - 1. Rotate the camera about its optical center
 - 2. Compute transformation between second image and first
 - 3. Shift the second image to overlap with the first
 - 4. Blend the two together to create a mosaic
 - 5. If there are more images, repeat

1. Take a sequence of images from the same position

Rotate the camera about its optical center

2. Compute transformation between images

- Extract interest points
- Find Matches
- Compute transformation ?

3. Shift the images to overlap

4. Blend the two together to create a mosaic

5. Repeat for all images

לפני שנלמד על טרנספורמציה בין תמונות

Homogeneous coordinates

מה האינטואיציה מאחורי הקורדינאטות? ההומוגניות?

Homogeneous coordinates

נקודה אשר חותכת את המישור ב (x,y,1)

Homogeneous coordinates

2D Points:

$$p = \begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow p' = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \quad p' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \longrightarrow p = \begin{bmatrix} x'/w' \\ y'/w' \end{bmatrix}$$

Projective plan

The projective plane

Each *point* (x,y) on the plane (at z=1) is represented by a ray (sx,sy,s)

All points on the ray are equivalent:

$$(x, y, 1) \cong (sx, sy, s)$$

נקודות לאורך הישר מקיימות

טרנספורמציה בין תמונות

טרנספורמציה בין תמונות

R

Similarity (trans, rot, scale) transform

- Lengths/Areas
- Angles
- Lines

Affine transform

- Preserves:
 - Parallel Lines
 - Ratio of Areas
 - Lines

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

General projective transform (or Homography)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} \cong \begin{bmatrix} wx' \\ wy' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ y \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Preserves:
 - Lines
 - Also cross ratios (maybe later)

נסכם

Quiz 1

Suppose I told you the transform from image A to image B is a **translation**. How many pairs of corresponding points would you need to know to compute the transformation?

- a) 3
- b) 1
- c) 2
- d) 4

Quiz 1 – answer

Translation: a 1 point transformation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Quiz 2

Suppose I told you the transform from image A to image B is *affine*. How many pairs of corresponding points would you need to know to compute the transformation?

- a) 3
- •b) 1
- c) 2
- •d) 4

Finding the transformation

- Translation = 2 degrees of freedom
- Similarity = 4 degrees of freedom
- Affine = 6 degrees of freedom
- Homography = 8 degrees of freedom
 - How many corresponding points do we need to solve?

Motion models

Translation

Affine

Perspective

2 unknowns

6 unknowns

8 unknowns

? איך נמצא את הטרנספורמציה

Simple case: translations

How do we solve for $(\mathbf{x}_t, \mathbf{y}_t)$?

Simple case: translations

Displacement of match
$$i$$
 = $(\mathbf{x}_i' - \mathbf{x}_i, \mathbf{y}_i' - \mathbf{y}_i)$

$$(\mathbf{x}_t, \mathbf{y}_t) = \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i' - \mathbf{x}_i, \frac{1}{n} \sum_{i=1}^n \mathbf{y}_i' - \mathbf{y}_i\right)$$

Simple case: translations

$$\mathbf{x}_i + \mathbf{x_t} = \mathbf{x}_i'$$
 $\mathbf{y}_i + \mathbf{y_t} = \mathbf{y}_i'$

- Problem: more equations than unknowns
 - "Overdetermined" system of equations
 - We will find the *least squares* solution

Least squares formulation

• For each point $(\mathbf{x}_i, \mathbf{y}_i)$

$$\mathbf{x}_i + \mathbf{x_t} = \mathbf{x}_i'$$
 $\mathbf{y}_i + \mathbf{y_t} = \mathbf{y}_i'$

$$\mathbf{x_t} = \mathbf{x}_i' - \mathbf{x}_i$$
 $\mathbf{y_t} = \mathbf{y}_i' - \mathbf{y}_i$

Solving for translations

Using least squares

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} x'_1 - x_1 \\ y'_1 - y_1 \\ x'_2 - x_2 \\ y'_2 - y_2 \\ \vdots \\ x'_n - x_n \\ y'_n - y_n \end{bmatrix}$$

$$\mathbf{A}_{2n \times 2} \quad \mathbf{t}_{2 \times 1} = \mathbf{b}_{2n \times 1}$$

Least squares

$$At = b$$

• Find t that minimizes

$$||{\bf A}{f t} - {f b}||^2$$

• To solve, form the *normal equations*

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{t} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$
$$\mathbf{t} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Affine transformations

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?

Affine transformations

Residuals:

$$r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i$$

 $r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$

Affine transformations

Matrix form

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ \vdots & & & & & \\ x_n & y_n & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ y'_2 \\ \vdots \\ x'_n \\ y'_n \end{bmatrix}$$

2*n* x 6

Solving for homographies

$$\begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$x_i' = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}$$
$$y_i' = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}$$

$$x'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$$

 $y'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$

Solving for homographies

$$x_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$$

$$y_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$$

$$x_{i}(h_{20}x_{i} + h_{21}y_{i} + h_{22}) = h_{00}x_{i} + h_{01}y_{i} + h_{02}$$

$$y'_{i}(h_{20}x_{i} + h_{21}y_{i} + h_{22}) = h_{10}x_{i} + h_{11}y_{i} + h_{12}$$

$$\begin{bmatrix} x_{i} & y_{i} & 1 & 0 & 0 & 0 & -x'_{i}x_{i} & -x'_{i}y_{i} & -x'_{i} \\ 0 & 0 & 0 & x_{i} & y_{i} & 1 & -y'_{i}x_{i} & -y'_{i}y_{i} & -y'_{i} \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Direct Linear Transforms

Direct Linear Transforms
$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1x_1 & -x'_1y_1 & -x'_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1x_1 & -y'_1y_1 & -y'_1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & 1 & 0 & 0 & 0 & -x'_nx_n & -x'_ny_n & -x'_n \\ 0 & 0 & 0 & x_n & y_n & 1 & -y'_nx_n & -y'_ny_n & -y'_n \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}$$

$$\mathbf{h}$$

$$\mathbf{0}$$

Defines a least squares problem:

minimize
$$\|\mathbf{A}\mathbf{h} - \mathbf{0}\|^2$$

- Since ${f h}$ is only defined up to scale, solve for unit vector $\hat{{f h}}$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T\mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Image Warping

Image Warping

• Given a coordinate transform x' = h(x) and a source image f(x), how do we compute a transformed image g(x') = f(h(x))?

Forward Warping

- Send each pixel f(x) to its corresponding location x' = h(x) in g(x')
 - What if pixel lands "between" two pixels?

Forward Warping

- Send each pixel f(x) to its corresponding location x' = h(x) in g(x')
 - What if pixel lands "between" two pixels?
 - Answer: add "contribution" to several pixels, normalize later (splatting)

Inverse Warping

- Get each pixel g(x') from its corresponding location x' = h(x) in f(x)
 - What if pixel comes from "between" two pixels?

Inverse Warping

- Get each pixel g(x') from its corresponding location x' = h(x) in f(x)
 - What if pixel comes from "between" two pixels?
 - Answer: resample color value from interpolated source image

Interpolation

- Possible interpolation filters:
 - nearest neighbor
 - bilinear
 - bicubic (interpolating)

Bilinear interpolation

$$f(x,y) = (1-a)(1-b) \quad f[i,j]$$

$$+a(1-b) \quad f[i+1,j+1]$$

$$+ab \quad f[i+1,j+1]$$

$$+(1-a)b \quad f[i,j+1]$$

$$(i,j) \quad (i+1,j+1)$$

$$(i,j) \quad (i+1,j)$$

RANSAC

RANSAC for fitting a line

fit y=ax+b (2 numbers a, b) to 2D pairs

- Pick 2 points
- Fit line
- Count inliers

- Pick 2 points
- Fit line
- Count inliers

- Pick 2 points
- Fit line
- Count inliers

- Pick 2 points
- Fit line
- Count inliers

- Use biggest set of inliers
- Do least-square fit

Image Stitching

all together

RANSAC for estimating homography

- RANSAC loop:
- 1. Select four feature pairs (at random)
- 2. Compute homography $m{H}$ (exact)
- 3. Compute inliers where $||p_i||$, $||p_i|| < \epsilon$
- Keep largest set of inliers
- Re-compute least-squares H estimate using all of the inliers

Matching features

RAndom SAmple Consensus

Richard Szeliski 74

RAndom SAmple Consensus

Richard Szeliski 75

Least squares fit

Richard Szeliski 76

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

Quick code

https://www.pyimagesearch.com/2016/01/11/opencv-panorama-stitching/

```
def stitch(self, images, ratio=0.75, reprojThresh=4.0,
    showMatches=False):
   # unpack the images, then detect keypoints and extract
   # local invariant descriptors from them
    (imageB, imageA) = images
    (kpsA, featuresA) = self.detectAndDescribe(imageA)
    (kpsB, featuresB) = self.detectAndDescribe(imageB)
   # match features between the two images
   M = self.matchKeypoints(kpsA, kpsB,
        featuresA, featuresB, ratio, reprojThresh)
   # if the match is None, then there aren't enough matched
   # keypoints to create a panorama
   if M is None:
        return None
   # otherwise, apply a perspective warp to stitch the images
   # together
    (matches, H, status) = M
    result = cv2.warpPerspective(imageA, H,
        (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
    result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
```

```
def detectAndDescribe(self, image):
    # convert the image to grayscale
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
   # check to see if we are using OpenCV 3.X
    if self.isv3:
        # detect and extract features from the image
        descriptor = cv2.xfeatures2d.SIFT_create()
        (kps, features) = descriptor.detectAndCompute(image, None)
   # otherwise, we are using OpenCV 2.4.X
    else:
        # detect keypoints in the image
        detector = cv2.FeatureDetector_create("SIFT")
        kps = detector.detect(gray)
        # extract features from the image
        extractor = cv2.DescriptorExtractor_create("SIFT")
        (kps, features) = extractor.compute(gray, kps)
   # convert the keypoints from KeyPoint objects to NumPy
    # arrays
    kps = np.float32([kp.pt for kp in kps])
    # return a tuple of keypoints and features
    return (kps, features)
```

```
def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB,
    ratio, reprojThresh):
    # compute the raw matches and initialize the list of actual
   # matches
   matcher = cv2.DescriptorMatcher_create("BruteForce")
    rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
   matches = []
   # loop over the raw matches
    for m in rawMatches:
        # ensure the distance is within a certain ratio of each
        # other (i.e. Lowe's ratio test)
        if len(m) == 2 and m[0].distance < m[1].distance * ratio:
            matches.append((m[0].trainIdx, m[0].queryIdx))
    # computing a homography requires at least 4 matches
    if len(matches) > 4:
        # construct the two sets of points
        ptsA = np.float32([kpsA[i] for (_, i) in matches])
         ptsB = np.float32([kpsB[i] for (i, _) in matches])
        # compute the homography between the two sets of points
         (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
             reprojThresh)
        # return the matches along with the homograpy matrix
        # and status of each matched point
         return (matches, H, status)
    # otherwise, no homograpy could be computed
    return None
```