Introduction to the Modern Theory of Dynamical Systems

ANATOLE KATOK

Pennsylvania State University

BORIS HASSELBLATT

Tufts University

With a supplement by Anatole Katok and Leonardo Mendoza

Contents

	Preface	xiii
0.	Introduction 1. Principal branches of dynamics 2. Flows, vector fields, differential equations 3. Time-one map, section, suspension 4. Linearization and localization	1 6 8 10
Pa	art 1 Examples and fundamental concepts	
1.	FIRST EXAMPLES 1. Maps with stable asymptotic behavior Contracting maps; Stability of contractions; Increasing interval maps 2. Linear maps	15 15 19
	3. Rotations of the circle	26
	4. Translations on the torus	28
	5. Linear flow on the torus and completely integrable systems	32
	6. Gradient flows	35
	7. Expanding maps	39
	8. Hyperbolic toral automorphisms	42
	9. Symbolic dynamical systems Sequence spaces; The shift transformation; Topological Markov chains; The Perron–Frobenius operator for positive matrices	47
2.	EQUIVALENCE, CLASSIFICATION, AND INVARIANTS	57
	 Smooth conjugacy and moduli for maps Equivalence and moduli; Local analytic linearization; Various types of moduli Smooth conjugacy and time change for flows 	57 64
	3. Topological conjugacy, factors, and structural stability	68
	4. Topological classification of expanding maps on a circle	71
	Expanding maps; Conjugacy via coding; The fixed-point method 5. Coding, horseshoes, and Markov partitions Markov partitions; Quadratic maps; Horseshoes; Coding of the toral automorphism	79
	6. Stability of hyperbolic toral automorphisms	87
	7. The fast-converging iteration method (Newton method) for the conjugacy problem Methods for finding conjugacies; Construction of the iteration process	90
	8. The Poincaré-Siegel Theorem	94
	9. Cocycles and cohomological equations	100
3.	Principal classes of asymptotic topological invariants	105
	 Growth of orbits Periodic orbits and the ζ-function; Topological entropy; Volume growth; Topological complexity: Growth in the fundamental group; Homological growth 	105

viii Contents

	2. Examples of calculation of topological entropy Isometries; Gradient flows; Expanding maps; Shifts and topological Markov chains; The hyperbolic toral automorphism; Finiteness of entropy of Lipschitz maps; Expansive maps	119
	3. Recurrence properties	128
4.	STATISTICAL BEHAVIOR OF ORBITS AND INTRODUCTION TO ERGODIC THEORY	133
	1. Asymptotic distribution and statistical behavior of orbits Asymptotic distribution, invariant measures; Existence of invariant measures; The Birkhoff Ergodic Theorem; Existence of asymptotic distribution; Ergodicity and unique ergodicity; Statistical behavior and recurrence; Measure-theoretic isomorphism and factors	133
	2. Examples of ergodicity; mixing Rotations; Extensions of rotations; Expanding maps; Mixing; Hyperbolic toral automorphisms; Symbolic systems	146
	3. Measure-theoretic entropy Entropy and conditional entropy of partitions; Entropy of a measure-preserving transformation; Properties of entropy	161
	4. Examples of calculation of measure-theoretic entropy Rotations and translations; Expanding maps; Bernoulli and Markov measures; Hyperbolic toral automorphisms	173
	5. The Variational Principle	179
5.	SYSTEMS WITH SMOOTH INVARIANT MEASURES AND MORE EXAMPLES	183
	1. Existence of smooth invariant measures The smooth measure class; The Perron-Frobenius operator and divergence; Criteria for existence of smooth invariant measures; Absolutely continuous invariant measures for expanding maps; The Moser Theorem	183
	2. Examples of Newtonian systems The Newton equation; Free particle motion on the torus; The mathematical pendulum; Central forces	196
	3. Lagrangian mechanics Uniqueness in the configuration space; The Lagrange equation; Lagrangian systems; Geodesic flows; The Legendre transform	200
	4. Examples of geodesic flows Manifolds with many symmetries; The sphere and the torus; Isometries of the hyperbolic plane; Geodesics of the hyperbolic plane; Compact factors; The dynamics of the geodesic flow on compact hyperbolic surfaces	205
	5. Hamiltonian systems Symplectic geometry; Cotangent bundles; Hamiltonian vector fields and flows; Poisson brackets; Integrable systems	219
	6. Contact systems Hamiltonian systems preserving a 1-form; Contact forms	229
Pa	art 2 Local analysis and orbit growth	
6.	LOCAL HYPERBOLIC THEORY AND ITS APPLICATIONS	237
	1. Introduction	237
	2. Stable and unstable manifolds Hyperbolic periodic orbits; Exponential splitting; The Hadamard-Perron Theorem; Proof of the Hadamard-Perron Theorem; The Inclination Lemma	239
	3. Local stability of a hyperbolic periodic point	260

Contents ix

	4. Hyperbolic sets Definition and invariant cones; Stable and unstable manifolds; Closing Lemma and periodic orbits; Locally maximal hyperbolic sets	263
	5. Homoclinic points and horseshoes General horseshoes; Homoclinic points; Horseshoes near homoclinic points	273
	6. Local smooth linearization and normal forms Jets, formal power series, and smooth equivalence; General formal analysis; The hyperbolic smooth case	278
7.	Transversality and genericity	287
	1. Generic properties of dynamical systems Residual sets and sets of first category; Hyperbolicity and genericity	287
	2. Genericity of systems with hyperbolic periodic points Transverse fixed points; The Kupka-Smale Theorem	290
	3. Nontransversality and bifurcations Structurally stable bifurcations; Hopf bifurcations	298
	4. The theorem of Artin and Mazur	304
8.	Orbit growth arising from topology	307
	1. Topological and fundamental-group entropies	. 308
	2. A survey of degree theory Motivation; The degree of circle maps; Two definitions of degree for smooth maps; The topological definition of degree	310
	3. Degree and topological entropy	316
	4. Index theory for an isolated fixed point	318
	5. The role of smoothness: The Shub–Sullivan Theorem	323
	6. The Lefschetz Fixed-Point Formula and applications	326
	7. Nielsen theory and periodic points for toral maps	330
9.	Variational aspects of dynamics	335
	1. Critical points of functions, Morse theory, and dynamics	336
	2. The billiard problem	339
	3. Twist maps Definition and examples; The generating function; Extensions; Birkhoff periodic orbits; Global minimality of Birkhoff periodic orbits	349
	4. Variational description of Lagrangian systems	365
	5. Local theory and the exponential map	367
	6. Minimal geodesics	372
	7. Minimal geodesics on compact surfaces	376
Pa	rt 3 Low-dimensional phenomena	
10.	INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS? Motivation; The intermediate value property and conformality; Very low-dimensional and low-dimensional systems; Areas of low-dimensional dynamics	381
11.	HOMEOMORPHISMS OF THE CIRCLE	387
	1. Rotation number	387
	2. The Poincaré classification Rational rotation number; Irrational rotation number; Orbit types and measurable classification	393

x Contents

12.	. Circle diffeomorphisms	401
	1. The Denjoy Theorem	401
	2. The Denjoy example	403
	3. Local analytic conjugacies for Diophantine rotation number	405
	4. Invariant measures and regularity of conjugacies	410
	5. An example with singular conjugacy	412
	 6. Fast-approximation methods Conjugacies of intermediate regularity; Smooth cocycles with wild coboundaries 7. Ergodicity with respect to Lebesgue measure 	415 419
13.	. Twist maps	423
	1. The Regularity Lemma	423
	2. Existence of Aubry-Mather sets and homoclinic orbits Aubry-Mather sets; Invariant circles and regions of instability	425
	3. Action functionals, minimal and ordered orbits Minimal action; Minimal orbits; Average action and minimal measures; Stable sets for Aubry-Mather sets	434
	4. Orbits homoclinic to Aubry–Mather sets	441
	5. Nonexistence of invariant circles and localization of Aubry–Mather sets	447
14	. Flows on surfaces and related dynamical systems	451
	1. Poincaré-Bendixson theory The Poincaré-Bendixson Theorem; Existence of transversals	452
	2. Fixed-point-free flows on the torus Global transversals; Area-preserving flows	457
	3. Minimal sets	46 0
	4. New phenomena The Cherry flow; Linear flow on the octagon	464
	5. Interval exchange transformations Definitions and rigid intervals; Coding; Structure of orbit closures; Invariant measures; Minimal nonuniquely ergodic interval exchanges	470
	6. Application to flows and billiards Classification of orbits; Parallel flows and billiards in polygons	479
	7. Generalizations of rotation number Rotation vectors for flows on the torus; Asymptotic cycles; Fundamental class and smooth classification of area-preserving flows	483
15	. Continuous maps of the interval	489
	1. Markov covers and partitions	489
	2. Entropy, periodic orbits, and horseshoes	493
	3. The Sharkovsky Theorem	500
	4. Maps with zero topological entropy	505
	5. The kneading theory	511
	6. The tent model	514
16	. Smooth maps of the interval	519
	1. The structure of hyperbolic repellers	519

Contents	X1
----------	----

	2. Hy	perbolic sets for smooth maps	520
	3. Co	ntinuity of entropy	525
	4. Ful	ll families of unimodal maps	526
Pai	rt 4	Hyperbolic dynamical systems	
17.	Surv	EY OF EXAMPLES	531
	1. Th	e Smale attractor	532
		e DA (derived from Anosov) map and the Plykin attractor e DA map; The Plykin attractor	537
	3. Ex	panding maps and Anosov automorphisms of nilmanifolds	541
	4. De	finitions and basic properties of hyperbolic sets for flows	544
	5. Ge	odesic flows on surfaces of constant negative curvature	549
		odesic flows on compact Riemannian manifolds with negative tional curvature	551
	7. Ge	odesic flows on rank-one symmetric spaces	555
	8. Hy	perbolic Julia sets in the complex plane	559
18.	Торо	DLOGICAL PROPERTIES OF HYPERBOLIC SETS	565
	1. Sh	adowing of pseudo-orbits	565
	2. Sta	ability of hyperbolic sets and Markov approximation	571
		ectral decomposition and specification ectral decomposition for maps; Spectral decomposition for flows; Specifica-	574
		cal product structure	581
	5. De	nsity and growth of periodic orbits	583
	6. Gl	obal classification of Anosov diffeomorphisms on tori	587
	7. Ma	rkov partitions	591
19.	MET	RIC STRUCTURE OF HYPERBOLIC SETS	597
	The gac	lder structures invariant class of Hölder-continuous functions; Hölder continuity of conjuies; Hölder continuity of orbit equivalence for flows; Hölder continuity and erentiability of the unstable distribution; Hölder continuity of the Jacobian	597
	The phi	homological equations over hyperbolic dynamical systems e Livschitz Theorem; Smooth invariant measures for Anosov diffeomorsms; Time change and orbit equivalence for hyperbolic flows; Equivalence orus extensions	608
20.	Equi	LIBRIUM STATES AND SMOOTH INVARIANT MEASURES	615
	1. Bo	wen measure	615
	2. Pre	essure and the variational principle	623
		iqueness and classification of equilibrium states iqueness of equilibrium states; Classification of equilibrium states	628
	Pro feor	nooth invariant measures operties of smooth invariant measures; Smooth classification of Anosov dif- morphisms on the torus; Smooth classification of contact Anosov flows on nanifolds	637
	5. Ma	argulis measure	643

xii Contents

	6. Multiplicative asymptotic for growth of periodic points Local product flow boxes; The multiplicative asymptotic of orbit growth	651
	Supplement	
S.	Dynamical systems with nonuniformly hyperbolic behavior by Anatole Katok and Leonardo Mendoza	659
	1. Introduction	659
	2. Lyapunov exponents Cocycles over dynamical systems; Examples of cocycles; The Multiplicative Ergodic Theorem; Osedelec-Pesin ε-Reduction Theorem; The Ruelle inequality	660
	3. Regular neighborhoods Existence of regular neighborhoods; Hyperbolic points, admissible manifolds, and the graph transform	672
	4. Hyperbolic measures Preliminaries; The Closing Lemma; The Shadowing Lemma; Pseudo-Markov covers; The Livschitz Theorem	678
	5. Entropy and dynamics of hyperbolic measures Hyperbolic measures and hyperbolic periodic points; Continuous measures and transverse homoclinic points; The Spectral Decomposition Theorem; Entropy, horseshoes, and periodic points for hyperbolic measures	693
	Appendix	
Α.	BACKGROUND MATERIAL	703
	1. Basic topology Topological spaces; Homotopy theory; Metric spaces	703
	2. Functional analysis	711
	3. Differentiable manifolds Differentiable manifolds; Tensor bundles; Exterior calculus; Transversality	715
	4. Differential geometry	727
	5. Topology and geometry of surfaces	730
	6. Measure theory Basic notions; Measure and topology	731
	7. Homology theory	735
	8. Lie groups	738
	Notes	741
	HINTS AND ANSWERS TO THE EXERCISES	765
	References	781
	Index	793