IUV-5G 实验 建安市部分数据配置说明

刘旭康 2024年10月17日星期四

目录

1	建安市 B 站点机房设备配置(ITBBU)	3
	1.1 5G 基带处理板	
	1.2 5G 虚拟交换板	
2	Option 3X 建安市核心网机房数据配置	3
	2.1 MME 数据配置	
	2.2 SGW 数据配置	
	2.3 PGW 数据配置	5
	2.4 HSS 数据配置	5
	2.5 交换机 SWITCH 1 配置(实验模式下,不需要配置也能跑通)	6
3	无线网-建安市 B 站点无线机房	
	3.1 AAU 1~6	7
	3.2 ITBBU 数据配置	7
	3.2.1 NR 网元管理	7
	3.2.2 5G 物理参数	8
	3.2.3 DU-DU 对接配置	8
	3.2.4 DU-DU 功能配置	
	3.2.5 DU-物理信道配置	12
	3.2.6 DU-测量与定时器开关: 为网络优化部分,只需填写,不需要计算	13
	3.2.7 CU-gNBCUCP 功能	14
	3.2.8 CU-gNBCUUP 功能	15
	3.3 BBU 数据配置	16
	3.3.1 网元管理:	16
	3.3.2 4G 物理参数:这里使用网口进行连接	
	3.3.3 IP 配置	16
	3.3.4 对接配置	16
	3.3.5 无线参数	
4	承载网-建安市 B 站点机房	18
	4.1 物理接口配置	18
	4.2 逻辑接口配置-配置子接口	18
5	错误排查	19
	5.1 DU 小区不可用(不是 3 个小区都不可用)	19
∏4 =	 ⊒.	21

IUV-5G 建安市数据配置

参考视频: IUV 5G 全网建设仿真实验开通 (OPTION3X) 实验模式+承载模式省流速通版

1建安市 B站点机房设备配置(ITBBU)

1.1 5G 基带处理板

该处理板负责**处理基带信号**。基带信号指的是通过无线电波传输之前或接收到之后的数字信号。其主要职责包括:信号调制与解调、信道编码与解码、物理层的处理以及多路复用和分解。

使用 BP5G 的 25GE 接口接入 AAU1~AAU3, 这三个 AAU 是 5G 低频模块, 因此与 ITBBU 相连接。

1.2 5G 虚拟交换板

5G 虚拟交换板主要承担**数据交换和传输**的任务。它的作用更偏向网络侧,负责在基带处理后的数据在不同网络节点之间的转发和交换,功能类似于传统的交换机或路由器,但在 5G 网络中进行了虚拟化处理。

本实验中使用"成对 LC-LC 光纤", ITBBU 中在 sw5G 中选择 25GE 接口与 SPN 对应的 25GE 接口相连。

2 Option 3X 建安市核心网机房数据配置

因为本实验采用 5G NSA OPTION 3X 组网架构。因此,除了路由配置之外,其余部分基本与 IUV-4G 部分相同

图 1 NSA Option 3X 网络架构图

图片来源: Option3X 5G 全网部署(基于 IUV_5G 软件)

2.1 MME 数据配置

(1) 全局移动参数

- (2) MME 控制面地址: MME 的 S10 GTP-C 接口
- (3) 与 eNodeB 对接配置:本端偶联 IP 为 S1-MME 的地址,对端偶联 IP 为 BBU 的地址。 TA 解析即为定义 TAC

- (4) 与 HSS 对接: 偶联本端 IP 为 MME 的 S6A 地址, 对端 IP 为 HSS 的 S6A 地址。Diameter 中定义端口号均为 1, 分析号码: 46009。
- (5) 与 SGW 对接配置: 即为 MME 的 S11 GTP-C 的地址。
- (6) 基本会话业务配置:
- **APN 地址解析:** test.apn.epc.mnc009.mcc460.3gppnetwork.org,解析地址为PGW的S5/S8 控制面地址。

• **EPC 地址解析:** 解析地址为 SGW 的 S11 GTP-C 地址。 tac-lbXX.tac-hbYY.tac.epc.mnc009.mcc460.3gppnetwork.org

- (7) 接口 IP 配置
- (8) 路由配置: 由图 1 可以看出 MME 有 3 条路由, 分别与 HSS,SGW,BBU 进行连接
- MME 与 HSS 连接(通过 S6A 连接): 目的地址为 HSS 的 S6a SIGTRAN 接口地址,下一跳地址为 HSS 的物理地址。
- MME 与 SGW 连接(通过 S11 连接):目的地址为 SGW 的 S11 接口地址,下一跳地址为 SGW 的物理地址。
- **MME 与 BBU 连接**(通过 S1-MME 连接): 目的地址为 BBU 的地址,下一跳地址为交换机网关地址。

2.2 SGW 数据配置

- (1) 与 MME 对接配置: SGW 的 S11 GTP-C 地址
- (2) 与 eNodeB 对接配置: SWG 的 S1-U 地址
- (3) 与 PGW 对接配置: SGW 的 S5/S5 地址
- (4) 接口 IP 配置
- (5) 路由配置: 5条路由,分别到 MME, PGW-C, PGW-U, BBU, CUUP。
- SGW 与 MME 连接: S11 GTP-C 接口地址
- SGW 与 PGW 连接: 分别为 PGW 的 S5/S8 的 GTP-C 和 GTP-U 接口地址
- SGW 与 BBU, CUUP 连接:下一跳地址为与核心网相邻的交换机 SW 的地址。

2.3 PGW 数据配置

PLMN,与 SGW 对接、地址池配置、路由配置均需要填写

(1) 路由配置: 有 2 条路由, 分别到 SGW-C 和 SGW-U

2.4 HSS 数据配置

(1) 与 MME 对接配置: HSS 通过 S6A 接口与 MME 进行对接配置

- (2) 路由配置: 只有 1 条与 MME 对接的路由,通过 S6A 对接,目的地址为 MME 的 S6A 接口地址
- (3) APN 管理:

APN ID 要求与 Profile 管理中 APN ID 保持一致。Qos 识别码为 1;5;8。APN-AMBR-UL 和 APN-AMBR-DL 均为所有用户的接入带宽,值越大越好:99999999 (8 位 9)。

(4) Profile 管理: 前面 "(3)" 中设置的 APN ID 为 1, 因此这里对应 APN ID 为 1。这里定义的 Profile ID 要和下面的"签约用户管理:"中 Profile ID 保持一致。

(5) 签约用户管理:

Profile ID 与上面的 "Profile 管理:前面 "(3)"中设置的 APN ID 为 1,因此这里对应 APN ID 为 1。这里定义的 Profile ID 要和下面的"签约用户管理:"中 Profile ID 保持一致。"中的 ID 保持一致,这里为 1。鉴权管理域自定义: AAAA

IMSI: 460090123456789 MSISDN: 16612345678

KI: 1111222233334444AAAABBBBCCCCDDDD

IMSI	460090123456789
MSISDN	16612345678
Profile ID	1
鉴权管理域	AAAA
KI	1111222233334444AAAABBBBCCCCDDDD

2.5 交换机 SWITCH 1 配置(实验模式下,不需要配置也能跑通)

10GE-1/1 接口连接的是 MME, 40GE-1/7 接口连接的是 SGW, 40GE-1/8 接口连接的是 PGW, 100GE-1/13 连接的是 ODF。

(1) 设置 VLAN: 第一个 VLAN 为核心网元连接到交换机上的接口,设置为 10;第二个 VLAN 为 ODF 连接到交换机上的接口,设置为 99。

	又以人	17/1/117	-1113 H ,	火 且/1//	
10GE-1/1	up	光	access ▼	10	TO MME
10GE-1/2	down	光	access ▼	1	
10GE-1/3	down	光	access ▼		
10GE-1/4	down	光	access ▼		
10GE-1/5	down	光	access ▼		
10GE-1/6	down	光	access ▼		
40GE-1/7	ир	光	access ▼	10	TO SGW
40GE-1/8	up	光	access ▼	10	TO PGW
40GE-1/9	down	光	access ▼	1	
40GE-1/10	down	光	access ▼		
40GE-1/11	down	光	access ▼		
40GE-1/12	down		access ▼	1	
100GE-1/13	ир	光	access ▼	99	TO ODF
10002 17 17	ao	76	a00655 ·		
100GE-1/18	down	光	access ▼		
RJ45-1/19	up	电	access ▼	10	TO HSS
RJ45-1/20	down	电	access ▼	1	
110000	1.170				

(2) 逻辑接口配置-VLAN 三层接口:

3 无线网-建安市 B 站点无线机房

图 2 无线侧机房网络架构

3.1 AAU 1~6

AAU: 有源天线单元(Active Antenna Unit, AAU),是一种集成化的天线系统,包含了射频前端和天线阵列。它能够进行复杂的信号处理,比如波束赋形(Beamforming),以提高天线的传输效率和覆盖范围。

AAU 1~3 连接的是 ITBBU, 为 5G AAU; AAU 4~6 连接的是 BBU, 为 4G AAU。 AAU 收发模式: 指的是 AAU 的收发通道配置,具体反映了天线的发射(T)和接收(R)

能力,例如 **64T64R 表示的是 64 根天线用于发射和接收**。 本实验中,选择<mark>频段范围为 3400MHZ-3800MHZ, AAU 收发模式为 64T64R</mark>。

3.2 ITBBU 数据配置

3.2.1 NR 网元管理

网元类型:本实验中选择 CUDU 合设。

时钟同步模式:由于本实验中 BBU 需要 TD-LTE 模式,该模式只允许时钟同步模式为相位同步,因此为了对应 BBU,这里也选择相位同步。

NSA 共框标识: NSA 模式下 BBU 与 ITBBU 之间同步的标识

频率同步的含义为仅确保基站的时钟频率与全网其他设备一致,这意味着信号的发送频率相同,但每个基站的时间偏移可能不同,这种同步适用于频分复用。相位同步不仅要求频率一致,还要求时钟信号的相位完全同步,即不同基站之间的时间戳是一致的,确保基站之间在同一时间点上发送和接收信号。

网元类型	CUDU合设	▼
基站标识	99	
PLMN	46009	
网络模式	NSA	▼
时钟同步模式	相位同步	▼
NSA共框标识	10	
网络制式	NR TDD	Y

3.2.2 5G 物理参数

ITBBU 与 SPN 连接的端口为光口,因此这里链路端口也选择光口。

3.2.3 DU-DU 对接配置

(1) 以太网接口:

(2) IP 配置: IP 地址为 DU 的 IP 地址, VLAN 设置为 1, VLAN 数据配置如表 2 所示。

(3) SCTP 配置: SCTP 配置的是控制面的链路, DU 通过 F1-C 链路与 CUCP 连接

3.2.4 DU-DU 功能配置

(1) DU 管理

(2) Qos 业务配置

Qos 标识类型: Option 3X 下选择 QCI,用户识别码(QCI,QoS Class Identifier)用于定义不同的数据流在网络中优先级、时延、吞吐量等要求。

Qos 分类标识:本实验中使用 1,5,8。不同的 5QI/QCI 标识对应的包时延、误码率、平均时间窗口、最大数据突发量不同 QCI 有 1-9 个标识,5QI 有 1-85 个标识。

业务承载类型:与 QoS 分类标识相对应 1-4,65-67,75 为 GBR,其他为 Non-GBR。因此本实验中只有 QCI 为 1 时是 GBR,QCI 为 5 和 8 时为 Non-GBR。

业务类型名称:

表 1 Qos 的 9 种业务类型

QCI	业务类型名称
1	VoIP-Voice over IP
2	LsoIP-living streaming over IP
3	BsoIP-Buffered Streaming over IP
4	Non-Conversational Video (Buffered
4	Streaming)
5	IMS signaling-IMS 信令
6	Prior IP Service-优先级高的 IP 业务
7	VIP default bearer- VIP 用户承载
8	NVIP default bearer- 普通用户承载
9	Siganaling bearer-信令承载

(3) 扇区载波:载波配置功率为500,载波实际发射功率为520,只需要改变小区标识为1,2,3

(4) DU 小区配置

需要注意的是,配置时要修改小区禁止接入标识为非禁止,SSB 测量 Bitmap 改为 medium。在配置 DU 小区 2 和 3 时,需要<mark>修改的参数有 DU 小区标识、AAU、物理小区 ID。</mark>物理小区 ID 即为 PCI,是 7,8,9

SSB 测量 BitMap: 根据对应 AAU 的频段范围选择不同的值,对应 AAU 的频 段范围属于 FDD 的,则选择 shortBitmap;对应 AAU 的频段范围属于 TDD 低频段的,则选择 mediumBitmap;对应 AAU 的频段范围属于 TDD 高频段的,则选择 longBitmap。

DU小区标识	1
小区属性	低频 ▼
AAU	1
频段指示	78 ▼
下行中心载频	630000
下行Point A频点	626724
上行Point A频点	626724
物理小区ID	7
跟踪区域码	1601
小区RE参考功率(0.1dbm)	156
小区禁止接入指示	非禁止 ▼
通用场景的子载波间隔	scs15or60 ▼
SSB测量的SMTC周期和	偏移 5ms[sf5] ▼
邻区SSB测量SMTC周期(20ms)的	偏移 1
初次激活的上行BWF	PID 1
初次激活的下行BWI	PID 1
BWP配置	
UE最大发射:	
EPS的TAC 系统带宽(RE	
SSB测量	
SSB测量Bit	
SSBlock时域图谱	
测量子载波	可隔 30kHz ▼
系统子载波间隔 3	l0kHz ▼

(5) 接纳控制配置: 只有 DU 小区标识不同

接纳控制1	×	接纳控制2	Х	接纳控制3	×	+	
				DU小区标识 1			
		小	区用户数	接纳控制门限 655	35		
		基于切片	用户数的	接纳控制开关 打	FF .		▼
		小区用户数	接纳控制	l预留比例(%) 20			

(6) BWPUL 参数: RB 数越大,分配给上行的速率就越高,设置为 200,子载波间隔设置为 30kHz。

BWPUL1 X	BWPUL2	× BWPUL	3 X	+		BWPUL2	× вмриц	.3 X	+	
		DU小区标识	1				DU小区标识	2		
		上行BWP索引	1				上行BWP索引	2		
		上行BWP起始RB位置	1				上行BWP起始RB位置	2		
		上行BWP RB个数	200				上行BWP RB个数	200		
		上行BWP子载波间隔	30kHz		Y		上行BWP子载波间隔	30kHz		٧
	BWPUL1	×	BWPUL2	× BW	PUL3 X	+				
				DU小区标	识 3					
				上行BWP索	号 3					
				上行BWP起始RB位	置 3					
				上行BWP RB个	数 200					
				上行BWP子载波间	陽 30kHz		7			

(7) PWPDL 参数: 理论上下行速率配置应该更大, 因此这里给下行 RB 数为 220。

- 3.2.5 DU-物理信道配置
- (1) PRACH 信道:配置随机接入信道

需要配置三个 DU 小区的 PRACH 信道,<mark>配置 DU 2-3 小区时,需要更改 DU 小区标识和</mark> 起始逻辑跟序列索引。UE 接入和切换可用 preamble 个数小于前导码个数。

DU小区标识	1	DU小区标识	2
msg1子载波间隔	30kHz ▼	msg1子载波间隔	30kHz ▼
竞争解决定时器时长	sf8 ▼	竞争解决定时器时长	sf8
prachRootSequenceIndex	[1839[1839] ▼	prachRootSequenceIndex	I839[I839] ▼
PRACH格式	0	PRACH格式	0
接入限制集配置	unrestrictedSet ▼	接入限制集配置	unrestrictedSet ▼
起始逻辑根序列索引	1	起始逻辑根序列索引	2
UE接入和切换可用preamble个数	60	UE接入和切换可用preamble个数	60
前导码个数	64	前导码个数	64
PRACH功率攀升步长	0dB ▼	PRACH功率攀升步长	0dB ▼
基站期望的前导接收功率	-74	基站期望的前导接收功率	-74
RAR响应窗长	sI1 ▼	RAR响应窗长	sl1 🔻
基于逻辑根序列的循环移位参数(No	s) 1	基于逻辑根序列的循环移位参数(Ncs)	1
PRACH时域资源配置索	引 1	PRACH时域资源配置索引	1
GroupA前导对应的MSG3大	小 b56 ▼	GroupA前导对应的MSG3大小	b56 ▼
GroupB前导传输功率偏	移 OdB ▼	GroupB前导传输功率偏移	OdB •
GroupA的竞争前导码个	数 64	GroupA的竞争前导码个数	64
Msg3与preamble发送时的功率偏	移 1	Msg3与preamble发送时的功率偏移	1

(2) SRS 公用参数:这里需要配置 3 个 DU 小区,配置时仅需更改 DU 小区标识。

DU小区标识	1	DU小区标识	2
SRS轮发开关	打开 ▼	SRS轮发开关	打开 ▼
SRS最大疏分数	2 ▼	SRS最大疏分数	2
SRS的slot序号	4	SRS的slot序号	4
SRS符号的起始位置	1	SRS符号的起始位置	1
SRS符号长度	1	SRS符号长度	1
CSRS	1	CSRS	1
BSRS	1	BSRS	1

3.2.6 DU-测量与定时器开关: 为网络优化部分,只需填写,不需要计算这里同样需要配置 3 个 DU 小区。需要更改"帧结构第一个周期的时间"为 2.5;"帧结构第二个周期帧类型是否配置"为否。

3.2.7 CU-gNBCUCP 功能

(1) CU 管理

(2) IP 配置: IP 地址为 CUCP 的地址, VLAN 设置为 2, VLAN 数据配置如表 2 所示

IP地址	1	. 33	. 33	. 16
掩码	255	255	255	. 0
VLAN ID	2			

(3) SCTP 配置

根据图 1 NSA Option 3X 网络架构图,可以看出 CUCP 通过 X2-C 与 BBU 连接,通过 F1-C 与 DU 连接,通过 E1 与 CUUP 连接。

• CUCP与DU连接: F1 偶联

• CUCP 与 BBU 连接: XN 偶联

• CUCP与CUUP连接: E1 偶联

偶联ID	3
本端端口号	3
远端端口号	3
偶联类型	E1偶联 ▼
远端IP地址	1 . 44 . 44 . 16
描述	TO CUUP

(4) CU 小区配置: 这里也需要配置 3 个 CU 小区。

- 3.2.8 CU-gNBCUUP 功能
- (1) IP 配置: IP 地址为 CUUP 的地址, VLAN 设置为 3, VLAN 数据配置如表 2 所示。

(2) SCTP 配置: CUUP 只与 CUCP 通过 E1 连接,走的是控制面。

偶联ID	3			
本端端口号	3			
远端端口号	3			
偶联类型	E1偶联			▼
远端IP地址	1 .	33	33	. 16
描述	TO CUCP			

(3) 静态路由: CUUP 也走用户面,需配置到 SGW(S1-U)和 BBU(X2-U)的数据链路。由于是不同网段,因此需要跳到 CUUP 的网关地址。下图中路由 1 去的是 SGW,路由 2 去的是 BBU。

静态路由编号	1				
目的IP地址	16	3	3	1	
网络掩码	255	255	255	255	
下一跳IP地址	1	44	44	99	
下一班112地址	,	44	44	99	

静态路由编号	2				
目的IP地址	1	11	11	16	
网络掩码	255	255	255	255	1
下一跳IP地址	1	44	44	99	9

3.3 BBU 数据配置

3.3.1 网元管理:

NSA 需要与 ITBBU 那里一致,用于同步

3.3.2 4G 物理参数: 这里使用网口进行连接

3.3.3 IP 配置

IP地址	1	. 11	. 11	. 16
掩码	255	. 255	. 255	. 0
网关	1	. 11	. 11	. 99

3.3.4 对接配置

- (1) SCTP 配置: BBU 去了 MME(S1-MME)和 CUCP(X2-C)
- BBU与 MME 连接: NG 偶联

• BBU与CUCP连接: XN 偶联

3.3.5 无线参数

(1) eNodeB 配置:

网元ID	1
eNodeB标识	99
业务类型001编号	8
双连接承载类型	SCG Split模式 ▼

(2) TDD 小区配置: 相当于配置 4G 小区参数

(3) NR 邻接小区配置: 也是需要配置 3 个 DU 小区,需要改变邻接 DU 小区标识和 PCI, PCI 分别为 7,8,9。

邻接DU标识	99	邻接DU标识	99
邻接DU小区标识	1	邻接DU小区标识	2
PLMN	46009	PLMN	46009
跟踪区码(TAC)	1601	跟踪区码(TAC)	1601
物理小区识别码(PCI)	7	物理小区识别码(PCI)	8
NR邻接小区频段指示	78	NR邻接小区频段指示	78
NR邻接小区的中心载频(MHz)	3450	NR邻接小区的中心载频(MHz)	3450
NR邻接小区的频域带宽	273	NR邻接小区的频域带宽	273
添加NR辅节点事件	B1	添加NR辅节点事件	B1

(4) 邻接关系表配置:本地小区标识为 4G 小区标识,本实验中无 FDD 和 TDD 邻接小区。 NR 邻接小区使用"DU 标识-DU 小区标识"表示。

4 承载网-建安市 B 站点机房

4.1 物理接口配置

找到 SPN 与 BBU 的连接接口,我这里 BBU 使用的是网口,所以直接在电口里面找接口状态为 up 的就是该接口。找到之后输入 IP 地址为 BBU 的网关地址,子网掩码为 24 位 (255.255.255.0)

4.2 逻辑接口配置-配置子接口

根据之前配置的 VLAN 地址,这里<mark>封装 VLAN 应该对应过去,IP 地址为对应的网关地址</mark>。 根据图 3 SPN 连接示意可知,SPN 中接口"25GE-5/1"连接 ITBBU,接口"100GE-1/1" 连接 ODF,接口"RJ45-10/1"连接 BBU。

封装 VLAN	接口
1	DU
2	CUCP
3	CUUP

表 2 无线接入网侧网元的 VLAN 配置数据

图 3 SPN 连接示意

图 4展示了建安市数据配置中有关 SCTP 对接配置中的对接端口 ID 以及偶联类型。

图 4 SCTP 对接配置数据汇总

5 错误排查

参考文章: IUV-5G 告警问题处理 - 哔哩哔哩 (bilibili.com)

5.1 DU 小区不可用(不是 3 个小区都不可用)

当只有1个或者2个小区无法联网时,应该检查与DU小区配置下,都有哪些地方需要配置3个DU小区,检查这些位置的小区标识是否漏写重写,下面汇总都有哪些步骤需要配置3个DU小区。

表 3 需要配置 3 个 DU 小区的位置汇总

	扇区载波				
	DU 小区配置				
DU 功能配置	接纳控制配置				
	BWPUL 参数				
	BWPDL 参数				
物理信道配置	PRACH 信道配置				
初理信担癿直	SRS 公用参数				
测量与定时器开关	小区业务参数配置				

附录:

表 4 不变参数汇总

参数	取值
APN	test
IMSI	460090123456789
Qos 分类识别码	1;5;8
MSISDN(手机号)	16612345678
KI	1111222233334444AAAABBBBCCCCDDDD

表 5 建安市机房 IP 地址

表 6 无线小区参数配置

	Option3X无线参数规划														
	MCC	MNC	网络模式	AAU频段范围	收发模式	基站标识	DU标识	CU标识	载波配置功率 过计算		B区载波可加 Omhz带宽对			载波实际 (0.1d	发射功率 bm)
	460	09	NSA	3400-3800MHZ	64T64R	99	99	99			500			5	20
5GNR 小	Du小区	小区ID	频段指示	TAC	PCI	中心载频	下行Point A 频点	上行Point A 频点	小区RE参考功 率(0.1dbm)	UE最大发 射功率	系统带宽 (RB数)	SSB测量 频点	测量子载 波间隔	系统子载 波间隔	实际频段
	小区1	1	78	1601	7										
	小区2	2	78	1601	8	630000	626724	626724	156	23	273	630000	30Khz	30Khz	3450Mhz
	小区3	3	78	1601	9										
	MCC	MNC	无线制式	AAU频段范围	收发模式	基站标识									
	460	09	TDD-LTE	3400-3800MHZ	64T64R	99									
LTE小区	TDD小区	小区ID	TAC	PCI	小区参考 信号功率	频段指示	中心载频 (Mhz)	小区的频 域带宽							
	小区1	1	1601	1	23	42	3540	20							
	小区2	2	1601	2	23	42	3540	20							
	小区3	3	1601	3	23	42	3540	20							

表 7 SCTP 对接中偶联类型解释

NG 偶联	MME 与 BBU 的对接
XN 偶联	BBU 与 CUCP 的对接
F1 偶联	DU 与 CUCP 的对接
E1 偶联	CUCP 与 CUUP 的对接