Preprocessing Data for Topic Models and Recommendation Systems

Preprocessing Data

Topics:

- Tokenizing raw text into terms
- Curating a vocabulary
- Thresholding for recommendation systems and social networks

Tokenizing raw text into terms

For clean text, this is pretty easy:

```
doc = doc.lower() # make everything lower case
doc = re.sub(r'-',' ', doc) # turn hyphens into spaces
doc = re.sub(r'[^a-z ]','', doc) # get rid of all punctuation
doc = re.sub(r' +',' ', doc) # turn multiple spaces into only one
words = doc.split() # split by spaces
```

Hyphens are tricky

- Some people include and some don't. It really depends on your corpus.
- What would you want to do for each of these?

logisitic-normal	mother-in-law	post-Aristotelian	obser-vations
x-ray	pre-eminent	pre-1900	hel-met
mean-field	dis-abled	50-year-old	goI will
non-sequitur	re-cover	20-30 people	two-thirds
camera-ready	co-op	two- or threefold	ex-wife
mid-July	wind-proof	semi-invalid	mayor-elect

External options

- If you want to just let someone else do the leg work:
 - Stanford Tokenizer
 - Apache Open NLP
 - NLTK (python; interface to Stanford + others)
- IBM article <u>The Art of Tokenization</u> compares some of these options (and is generally a good resource)

Messier raw text

Beautiful Soup for XML

```
# open the document
xml = open(docfilename, 'r')
soup = BeautifulSoup(xml)
xml.close()

# find all the text
fulltext = soup.find("block", {"class":"full_text"})
paras = fulltext.findAll("p")
doc = ' '.join([p.contents[0] for p in paras])
```

Messier raw text

- Misspellings
 - easiest option is to ignore them
 - fix them using a <u>spelling corrector</u>; this might introduce different kinds of problems
- <u>FTFY</u> for encoding issues

Messier raw text

- Named entities
 - Many permutations of the same name: "Joe Smith," "J.
 Smith," "Joseph Smith," "Joseph F. Smith", just "Smith."
 - <u>fuzzywuzzy</u> to help find fuzzy matches
 - Stanford Named Entity Recognizer (<u>available via NLTK</u>)

```
>>> from nltk.tag import StanfordNERTagger
>>> st = StanfordNERTagger('english.all.3class.distsim.crf.ser.gz')
>>> st.tag('Rami Eid is studying at Stony Brook University in NY'.split())
[('Rami', 'PERSON'), ('Eid', 'PERSON'), ('is', 'O'), ('studying', 'O'),
    ('at', 'O'), ('Stony', 'ORGANIZATION'), ('Brook', 'ORGANIZATION'),
    ('University', 'ORGANIZATION'), ('in', 'O'), ('NY', 'LOCATION')]
```

- exclude short words (generally < ~3 characters)
- minimum # of documents a word must be in
- maximum % of documents a word can be in
- general vocab curation script

- TF-IDF
 - top N words (e.g., 1000), by TF-IDF
 - pick a threshold manually

```
tfidf(w) = (total \# of times \ w occurs) \times \log \frac{total \# of documents}{\# of docs in which \ w occurs}
```

- External stop / common words lists
 - Ranks NL (multiple languages)
 - Word frequency (need to set a threshold)
- Can exclude by part-of-speech (e.g., no adverbs)
 - the NLTK POS tagger is good for this

```
>>> from nltk.tag import pos_tag
>>> from nltk.tokenize import word_tokenize
>>> pos_tag(word_tokenize("John's big idea isn't all that bad."))
[('John', 'NNP'), ("'s", 'POS'), ('big', 'JJ'), ('idea', 'NN'), ('is', 'VBZ'), ("n't", 'RB'), ('all', 'DT'), ('that', 'DT'), ('bad', 'JJ'),
('.', '.')]
```

- Stemming
 - via <u>NLTK</u>
 - faster but less interpretable
- Lemmatization
 - <u>code snippet</u> (uses NLTK/WordNet)
 - slower, more interpretable

original	stem	lemma
arguing	argu	argue
taller	tall	tall
better	bet	good
provision	provide	provide
cement	cem	cement
maximum	maxim	maximum

Recommendation data

General thresholds (e.g., 10 items per user)

 Can't threshold both by items-per-user and by users-per-item without having one soft threshold

Social Networks

A large network can be both noisy and unwieldy, so sometimes we can speed up inference if we cull it.

Social Recommendation

- Run data through a social network filter to cull some of the connections.
 - Given user-item matrix A, we can compute A * A^T, which gives us a user-user matrix ("social network"). We can take the intersection of that and the observed social network, which gives us a smaller, more relevant network.
- Threshold to only include users who share a % of items in common with their friends (soft threshold)

Social Networks

- threshold by degree (indegree/outdegree)
- exponential random graph models (ERGMs) to test for properties of data
 - e.g., density, centrality, or assortativity
 - Ask yourself: what are the properties of the data and do we think it is suitable for our task?
 - We can try this on different cuts of the data to understand it (e.g., for social recommendation: just scifi books, only jazz music)