DoNRS Assignment 1

Milioshin Ilia

September 2024

1 Manipulator

The Stanford manipulator is shown in the figure below.

2 Putting frames

The Stanford manipulator is shown in the figure below.

World frame is corresponding with A-frame initially

3 Direct kinematics

All frames positions and orientations:

- $T_A = R_z(q_1)$
- $\bullet \ T_B = T_A T_z(h_1) R_x(q_2)$
- $T_C = T_B T_u (q_3 + h_2)$
- $T_D = T_C R_u(q_4)$
- $\bullet \ T_E = T_D R_x(q_5)$
- $T_F = T_E R_u(q_6) T_u(h_3)$

Joints D, E, and F form a spherical joint.

Joints
$$D$$
, E , and F form a spherical joint.
$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T_x(d) = \begin{bmatrix} 1 & 0 & 0 & d \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T_y(d) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T_z(d) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

4 Inverse kinematics

In this section we consider R_X as rotation part of T_X and r_X as translation part of T_X

From the structure of the Stanford manipulator we know $r_B = \begin{bmatrix} 0 & 0 & h_1 & 1 \end{bmatrix}^T$ and $r_E = T_F \begin{bmatrix} 0 & -h_3 & 0 & 1 \end{bmatrix}^T$. T_F is given because we solve the inverse kinematics problem.

Thus, $q_1 = \text{atan2}(y_E, x_E) - \pi/2$, $q_2 = \text{atan2}(z_E - h_1, \sqrt{x_E^2 + y_E^2})$, and $q_3 = \frac{\pi}{2}$ $||r_E - r_B|| - h_2$

We can see that $\cos q_5 = \vec{j}_B \cdot \vec{j}_E$, therefore $q_5 = \pm \arccos \vec{j}_B \cdot \vec{j}_E$. In this system B, E, and F form a plane. Hence, \vec{i}_E can take two values, that lead to two possible values of q_4 , q_5 q_6 . Let's find q_4 , and q_6 .

The right-hand rule defines the sign of the angle. The first $q_4 = \text{sign}[(\vec{i}_B \times$ $\begin{array}{l} \vec{i}_E) \cdot \vec{j}_B] \arccos (\vec{i}_B \cdot \vec{i}_E), \text{ the second option is } q_4 = \text{sign}[(-\vec{i}_B \times \vec{i}_E) \cdot \vec{j}_B] \arccos (-\vec{i}_B \times \vec{i}_E). \\ \vec{i}_E). \text{ Values of } q_6 \text{ are sign}[(\vec{i}_E \times \vec{i}_F) \cdot \vec{j}_E] \arccos (\vec{i}_E \cdot \vec{i}_F), \text{ and sign}[(-\vec{i}_E \times \vec{i}_F) \cdot \vec{j}_E] \arccos (-\vec{i}_E \times \vec{i}_F) \\ \vec{j}_E] \arccos (-\vec{i}_E \cdot \vec{i}_F) \text{ respectively. Here, } \vec{i}_B = (\vec{j}_B \times \vec{j}_E)/\|\vec{j}_B \times \vec{j}_E\| \text{ , when } \vec{j}_B, \end{array}$ and \vec{j}_E are co-linear we are free to choose any \vec{i}_B . For reference, see Fig. 1.

Now, we conduct an algorithm, on how the given T_F can find the two sets of generalized coordinates.

5 Some configurations

In this section the placements of frames a little bit changed in such a way that the origins of the frames did not correspond. In samples below, red stands for \vec{i} , green for \vec{j} , and blues for \vec{k}

6 Inverse kinematics examples

Now let's consider from the inverse kinematics solutions for the above configurations

7 Appendix

Backward for q_1 = +0.0000, q_2 = +0.7854, q_3 = +0.0000, q_4 = +0.0000, q_5 = +0.0000, q_6 = +0.0000 left - initial, right - predicted

Backward for q_1 = + 1.5708, q_2 = - 0.5236, q_3 = + 0.1000, q_4 = + 1.5708, q_5 = + 0.7854, q_6 = + 3.1416 above - initial, bottom - predicted

$$q_1 = +1.5708, q_2 = -0.5236, q_3 = +0.1000$$

 $q_4 = +1.5708, q_5 = +0.7854, q_6 = +3.1416$

 $q_1 = +1.5708, q_2 = -0.5236, q_3 = +0.1000$ $q_4 = +1.5708, q_5 = +0.7854, q_6 = +3.1416$ $q_1 = +1.5708, q_2 = -0.5236, q_3 = +0.1000$ $q_4 = -1.5708, q_5 = -0.7854, q_6 = -0.0000$

Backward for q_1 = +1.0472, q_2 = +1.0472, q_3 = +0.2000, q_4 = +3.6652, q_5 = -2.3562, q_6 = +1.5708 above - initial, bottom - predicted

 $q_1 = +1.0472, q_2 = +1.0472, q_3 = +0.2000$ $q_4 = +3.6652, q_5 = -2.3562, q_6 = +1.5708$

 $q_1 = +1.0472, q_2 = +1.0472, q_3 = +0.2000$ $q_4 = +0.5236, q_5 = +2.3562, q_6 = +1.5708$

 $q_1 = +1.0472, q_2 = +1.0472, q_3 = +0.2000$ $q_4 = -2.6180, q_5 = -2.3562, q_6 = -1.5708$

Backward for q_1 = $+3.1416, q_2$ = $+0.4488, q_3$ = $-0.1000, q_4$ = $+2.7489, q_5$ = $-0.6283, q_6$ = -0.7854 above - initial, bottom - predicted

Figure 1: Explanation draft