

關係 Relations

第九章

+ Outline

- 關係及其性質 Relations and Their Properties
- 關係的表示 Representing Relations
- 等價關係 Equivalence Relations
- 偏序 Partial Orderings

+ 關係 Relations (9.1)

- ■對於集合 $A \times B$,一個從 A 到 B 的二元關係 (binary relation), R 是 $A \times B$ 的子集。 若 $a \in A, b \in B$, $(a,b) \in R$,記作 aRb,稱 a 與 b 有關係 R (a "is related to" b)。
- 例如:
 - 已知 $A = \{0,1,2\}, B = \{a,b\},$ 則 $R = \{(0,a),(0,b),(1,a),(2,b)\}$ 是一個從 A 到 B 的關係 (relation),其中:
 - 1*Ra*
 - 1/kb

R	a	b
0	×	×
1	\times	
2		×

+範例(三元關係)

■ 己知: $M = \{Allen, Ben, Chad\},$

Woman: $W = \{Leah, May, Nancy\},\$

Kid: $K = \{Rick, Seth, Tiffany\}.$

則 Family:

 $F = \{(Allen, May, Tiffany), (Ben, Nancy, Rick), (Chad, Leah, Seth)\}$

是 $M \times W \times K$ 的子集。

+ 一個集合上的二元關係 Binary Relation on a Set

- 集合 A 上的二元關係是 $A \times A$ 的子集。
 - ■例如:

已知 $A = \{a, b, c\}$, 則 $R = \{(a, a), (a, b), (a, c)\}$ 是一個在集合 A 上的關係 (relation)。

+ 關係的性質 Properties of Relations

■ A relation R on Set A is reflexive(自反的) IFF $\forall a \in A$:

aRa

■ A relation R on Set A is symmetric(對稱的) IFF $\forall a, b \in A$:

$$aRb \rightarrow bRa$$

■ A relation R on Set A is antisymmetric(反對稱的) IFF ∀a, b ∈ A:

$$(aRb) \land (bRa) \rightarrow (a = b)$$

■ A relation R on Set A is transitive(傳遞的) IFF $\forall a, b, c \in A$:

$$(aRb) \land (bRc) \rightarrow (aRc)$$

已知 $A = \{1, 2, 3, 4\}, A$ 上的關係 $R = \{(a, b) | a$ 整除 $b\}$:

- A. 列出 R 的元素。(1,1)(1,2)(1,3)(1,4)(2,2)(2,4)(3,3)(4,4)
- B. 判斷 R 是否:
 - (i) 自反的 (Reflexive) YES
 - (ii) 對稱的(Symmetric) NO
 - (iii) 反對稱的 (Antisymmetric) YES
 - (iv) 傳遞的 (Transitive) YES

A. 判斷下列定義在 N 上的各關係(relation)是否

- (i) 自反的(Reflexive), (ii) 對稱的(Symmetric),
- (iii) 反對稱的(Antisymmetric), (iv) 傳遞的(Transitive):

a)
$$R_1 = \{(a, b) | a = b\}$$

- b) $R_2 = \{(a, b) | a \le b\}$
- c) $R_3 = \{(a,b) | a > b\}$
- d) $R_4 = \{(a,b) | a+b \le 3\}$

B. 承上題,求:

- a) $R_1 \cap R_2$
- $R_1 \cup R_2$
- c) $R_2 R_1$

+ 合成 Composition

- 己知:
 - R₁ 是一個從 A 到 B 的關係.
 - R₂ 是一個從 B 到 C 的關係.
- ■則R₁與R₂的合成(composite of R₁ and R₂)是一個從A到C的關係:
 - 若 $(x,y) \in R_1$, $(y,z) \in R_2$, 則 $(x,z) \in R_2 \circ R_1$.

A. 根據右圖求 $R_2 \circ R_1$ 。

- B. 若 R, S 為某集合上的關係且 $R = \{(1,2),(2,3),(3,4)\}$, $S = \{(2,1),(4,2),(4,3)\}$, 求:
 - a) $R \circ S$
 - $solution S \circ R$

+關係的表示

- 矩陣 (matrix)
- 有何圖(digraph)

+ 用矩陣表示關係 Representing Relations Using Matrices

■ 已知 R 是在集合 A 到 B 上的關係 $A = \{a_1, a_2, ..., a_m\}$, $B = \{b_1, b_2, ..., b_n\}$.

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R, \\ 0 & \text{if } (a_i, b_j) \notin R. \end{cases}$$

以下MR的行和列對應於按增序列出的整數:

A. $A = \{1,2,3\}, B = \{1,2\}.R = \{(a,b)|a > b\}$ 為從A到B 上的關係,找出表示R的矩陣 M_R 。

B. $A = \{1,2,3\}, B = \{1,2,3,4,5\}, 列出以下矩阵所表示的關係 <math>R$ 的元素: $\begin{bmatrix} 0 & 1 & 0 & 0 \\ M_{P} - & 1 & 0 & 1 & 1 \end{bmatrix}$

$$M_R = \left[egin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \ 1 & 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 \end{array}
ight]$$

+表示關係的矩陣性質 Matrices of Relations

- R is reflexive (自反的):
 - For all i, $m_{ii} = 1$

- R is symmetric (對稱的):
 - For all i, j, $m_{ij} = mji$ OR $M_R = (M_R)^T$

(a) Symmetric

(b) Antisymmetric

- R is antisymmetric (反對稱的):
 - For all i, j, $m_{ij} = mji = 1 \rightarrow i = j$

- 以下矩陣所表示為某集合上的關係 R, 問 R 是否:
 - (i) Reflexive (自反的) YES
 - (ii) Symmetric (對稱的) YES
 - (iii) Antisymmetric (反對稱的) NO

	1	1	0
$M_R =$	1	1	1
	0	1	1

+用圖表示關係 Representing Relations Using Digraphs

- 一個有何圖(directed graph)由頂點(vertices)集 V 和邊 (edges)集 E 組成,其中邊集是 V 中元素的有序對的集合。頂點 a 叫做邊 (a,b) 的始點 (initial vertex),頂點b 叫做邊 (a,b) 的終點 (terminal vertex).
 - **■** (*a*, *a*) 叫做環(*loop*).
- 如: 右圖為表示 $R = \{(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)\}$ 的有何圖:

*表示關係的有向圖性質 Directed graph of Relations

■ Reflexive (自反的): 每個頂點都有環

Symmetric (對稱的): 若存在邊 (x, y), 則存在邊 (y, x).

■ Antisymmetric (反對稱的): 兩頂點間不存在兩個方向相反的邊

■ Transitive (傳遞的): 若存在邊 (x, y) 和邊(y, z), 則存在邊 (x, z).

- 以下有向圖(directed graph) 表示關係 R:
- A. 列出 R 的元素;
- B. 判斷 R 是否:
 - (i) Reflexive (自反的) NO
 - (ii) Symmetric (對稱的) YES
 - (iii) Antisymmetric (反對稱的) NO
 - (iv) Transitive (傳遞的) NO

- 以下有向圖所表示為某集合上的關係 R 和 S , 問 R 和 S 是否:
 - (i) Reflexive (自反的)
 - (ii) Symmetric (對稱的)
 - (iii) Antisymmetric (反對稱的)
 - (iv) Transitive (傳遞的)

+ 等價關係 Equivalence Relations (9.5)

- \blacksquare 若 R 為集合 S 上的關係且 R 滿足以下性質:
 - 自反的(Reflexive)、
 - 對稱的(Symmetric)、
 - 傳遞的(Transitive),

則稱 R 為對應集合 S 上的等價關係 (Equivalence relation),

■ 若R 為某集合上的等價關係,且aRb,則稱a 和b 是等價的元素, 記作 $a \sim b$ 。

- 下列關係是否在對應集合 A 上的等價關係(equivalence relation)?
- A. $R_1 = \{(a,b) | a 整除 b\}, A: \mathbf{Z}^+$.
- B. $R_2 = \{(a,b) | a \equiv b \pmod{m} \}$ 其中 $m \in \mathbb{Z}^+, A : \mathbb{Z}$.

+ 等價類 Equivalence Classes

■ 設 R 為在集合A上的等價關係。與 A 中的一個元素 a 有關係的 所有元素的集合叫做a的等價類(equivalence class), 記作[a] $_R$,即

$$\forall b \in A(b \sim a \rightarrow b \in [a]_R)$$

或

$$[a]_R = \{b | (a, b) \in R\}.$$

- 且下列命題同時成立或同時不成立:
 - 1. *aRb*
 - 2. [a] = [b]
 - 3. $[a] \cap [b] \neq \emptyset$

■ 已知 $R = \{(a,b) | a \equiv b \pmod{5}\}$ 其中 $m \in \mathbb{Z}^+$, 為整數 集上的等價關係 (equivalence relation), 求 R 的等價數 類(equivalence class)。

*模m同余類(Congruence classes modulo m)

- $[a]_m$, 即 $[a]_m = \{..., a-2m, a-m, a+2m, a+2m, ...\}$. 如:
 - $[0]_4 = \{..., -8, -4, 0, 4, 8, ...\}$
 - $[1]_4 = \{..., -7, -3, 1, 5, 9, ...\}$
 - $[2]_4 = \{..., -6, -2, 2, 6, 10, ...\}$
 - $[3]_4 = \{..., -5, -1, 3, 7, 11, ...\}$

+集合的划分 Partition of a Set

- 集合 S 的划分 (a partition of a set S) 是 S 的不相交的非空子集構成的集合且其並集為 S, 即:
 - $\blacksquare A_i \neq \emptyset$, $i \in I$,
 - $A_i \cap A_j = \emptyset$ 其中 $i \neq j$,
 - 且 $\bigcup_{i \in I} A_i = S$

A Partition of a Set

+ 等價類與划分 Equivalence Class & Partition

■ (9.5定理2) 設 R 是在集合 S 上的等價關係,則 R 的等價類(equivalence class) 構成 S 的划分(partition); 反過來,若 $\{A_i|i\in I\}$ 為 S 的一個划分,存在一個等價關係 R 以 A_i 作為它的等價類。

+ 偏序 Partial Orderings (9.6)

- 定義在集合 *S* 上的關係 *R* 稱為偏序(partial ordering) 若 *R*:
 - 自反的 (Reflexive),
 - 反對稱的 (Antisymmetric),
 - 傳遞的 (Transitive).
- 集合 S 與定義在其上的偏序 R 一起稱為偏序集 (partially ordered set, poset), 記作 (S, R).

+例10

■ 證明: "大於或等於≥"是在整數集合上的偏序(partial ordering)。

+ 可比 Comparability

■ 偏序集 (S, \leq) 中的元素 a 和 b 稱為可比的(Comparable) ¹ 若 $a \leq b$ 或 $b \leq a$ 。當 $a, b \in S$ 但 $a \leq b$ 和 $b \leq a$ 都不成立,則 a, b 是不可比的(incomparable) °

+例11

■ 在偏序集 (Z+,|)中,3和9可比嗎?5和7可比嗎?

+ 教材對應閱讀章節及練習

- 9.1(~Example 16), 9.3, 9.5(~Example 12),9.6(~Example5, 12-13)
- 對應習題: (可視個人情況定量)
 - 9.1: 1a-1d, 2-30, 36,37
 - **9**.3: 1-10, 18-28
 - 9.5: 1-28
 - **9.6: 1-11**