IN THE CLAIMS:

1. (Original) A nanocomposite electrolyte membrane for a fuel cell, comprising:

a polymer having cation exchange groups; and

silicate nanoparticles dispersed in the polymer, the silicate nanoparticles having a layered structure, and the silicate nanoparticles being intercalated with the polymer, or layers of the silicate nanoparticles being exfoliated.

- 2. (Original) The nanocomposite electrolyte membrane of claim 1, wherein the silicate is selected from the group consisting of smectite, vermiculite, halloysite, sericite, mica, and a mixture of the forgoing materials.
- 3. (Original) The nanocomposite electrolyte membrane of claim 2, wherein the smectite is selected from the group consisting of montmorillonite, saponite, beidellite, nontronite, hectorite, stevensite, and a mixture of the forgoing materials.
- 4. (Original) The nanocomposite electrolyte membrane of claim 1, wherein the silicate nanoparticles have an average diameter of 1-100 nm.
- 5. (Original) The nanocomposite electrolyte membrane of claim 1, wherein the amount of the silicate nanoparticles is in a range of 1-30% based on the total weight of the nanocomposite electrolyte membrane.

- 6. (Original) The nanocomposite electrolyte membrane of claim 1, wherein the cation exchange groups of the polymer are selected from the group consisting of a sulfonate acid group, a carboxyl group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a hydroxyl group.
- 7. (Original) The nanocomposite electrolyte membrane of claim 1, wherein the polymer with cation exchange groups is a homopolymer or a copolymer of trifluoroethylenes, tetrafluoroethylenes, styrene-divinyl benzenes, α,β,β -trifluorostyrenes, styrenes, imides, sulfones, phosphazenes, etherether ketones, ethylene oxides, polyphenylene sulfides, or aromatic groups, or a derivative of the homopolymers and the copolymers, or a mixture of the forgoing materials.
- 8. (Original) The nanocomposite electrolyte membrane of claim 1, wherein the polymer is a highly fluorinated polymer with sulfonate groups as proton exchange groups at the terminals of side chains and containing fluorine atoms that amount to at least 90% of the total number of fluorine and hydrogen atoms bound to carbon atoms of the backbone and side chains of the polymer.
- 9. (Original) The nanocomposite electrolyte membrane of claim 1, having a thickness of 30-200 μm .
 - (Currently Amended) A fuel cell comprising:
 a cathode where a reduction of an oxidizing agent occurs;

an anode where an oxidation of fuel occurs; and

the nanocomposite electrolyte membrane according to any one of claims 1 through 9 claim 1 interposed between the cathode and the anode.

- 11. (Original) The fuel cell of claim 10, wherein the cathode comprises a catalyst layer containing carbon supported platinum catalyst.
- 12. (Original) The fuel cell of claim 10, wherein the anode comprises a catalyst layer containing carbon supported platinum catalyst.
- 13. (Original) The fuel cell of claim 10, wherein the anode comprises a catalyst layer containing carbon supported platinum-ruthenium catalyst.
- 14. (New) The fuel cell of claim 10, wherein the silicate is selected from the group consisting of smectite, vermiculite, halloysite, sericite, mica, and a mixture of the forgoing materials.
- 15. (New) The fuel cell of claim 14, wherein the smectite is selected from the group consisting of montmorillonite, saponite, beidellite, nontronite, hectorite, stevensite, and a mixture of the forgoing materials.
- 16. (New) The fuel cell of claim 10, wherein the silicate nanoparticles have an average diameter of 1-100 nm.

- 17. (New) The fuel cell of claim 10, wherein the amount of the silicate nanoparticles is in a range of 1-30% based on the total weight of the nanocomposite electrolyte membrane.
- 18. (New) The fuel cell of claim 10, wherein the cation exchange groups of the polymer are selected from the group consisting of a sulfonate acid group, a carboxyl group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group and a hydroxyl group.
- 19. (New) The fuel cell of claim 10, wherein the polymer with cation exchange groups is a homopolymer or a copolymer of trifluoroethylenes, tetrafluoroethylenes, styrene-divinyl benzenes, α, β, β trifluorostyrenes, styrenes, imides, sulfones, phosphazenes, etherether ketones, ethylene oxides, polyphenylene sulfides, or aromatic groups, or a derivative of the homopolymers and the copolymers, or a mixture of the forgoing materials.
- 20. (New) The fuel cell of claim 10, wherein the polymer is a highly fluorinated polymer with sulfonate groups as proton exchange groups at the terminals of side chains and containing fluorine atoms that amount to at least 90% of the total number of fluorine and hydrogen atoms bound to carbon atoms of the backbone and side chains of the polymer.
- 21. (New) The fuel cell of claim 10, wherein the nanocomposite electrolyte membrane has a thickness of 30-200 µm.