

### @Had**Nuc**AtUB





# El model de gota líquida

### **Dr Arnau Rios Huguet**

Grup de Física Hadrònica, Nuclear i Atòmica

Institute of Cosmos Sciences
Universitat de Barcelona
&
Department of Physics





University of Surrey







### Com córrer les activitats?

#### 1. Navegueu aquí:

https://github.com/arnaurios/Divulgacio\_Outreach/tree/main/Catala

### 2. Busqueu la icona de Binder:

Enllaç al Binder de l'Activitat 1 - Model de Gota Líquida Troba els Paràmetres:



3. Espereu que carregui Binder. Cliqueu a Kernel > Restart & Run all



4. Seguiu les instructions i ompliu el formulari final,

https://forms.office.com/r/rDDD2RRTik







# Oxigen 14 140



$$Mc^2 = 8m_pc^2 + 6m_nc^2 = 13144 \text{ MeV}$$



$$M_{14}c^2 = 13046 \text{ MeV}$$

$$BE = 8m_pc^2 + 6m_nc^2 - M_{14}c^2 = 98 \text{ MeV}$$







### Formula de Bethe-Weizsäcker

**Hans Bethe** 

(1906-2005) Nobel 1967



### C. F. von Weizsäcker

(1912-2007)



$$\frac{BE}{A} = a_V - \frac{a_S}{A^{1/3}} - a_C \frac{Z^2}{A^{4/3}} - a_A \frac{(N-Z)^2}{A^2} + a_P \frac{\delta_{N,Z}}{A}$$





# Model de gota líquida

$$\frac{BE}{A} = a_V - \frac{a_S}{A^{1/3}} - a_C \frac{Z^2}{A^{4/3}} - a_A \frac{(N-Z)^2}{A^2} + a_P \frac{\delta_{N,Z}}{A}$$

# Volum





### Model de gota líquida

$$\frac{BE}{A} = a_V - \frac{a_S}{A^{1/3}} - a_C \frac{Z^2}{A^{4/3}} - a_A \frac{(N-Z)^2}{A^2} + a_P \frac{\delta_{N,Z}}{A}$$

# Superfície





$$\frac{BE}{A} = a_V - \frac{a_S}{A^{1/3}} - a_C \frac{Z^2}{A^{4/3}} - a_A \frac{(N-Z)^2}{A^2} + a_P \frac{\delta_{N,Z}}{A}$$





### Model de gota líquida

$$\frac{BE}{A} = a_V - \frac{a_S}{A^{1/3}} - a_C \frac{Z^2}{A^{4/3}} - a_A \frac{(N-Z)^2}{A^2} + a_P \frac{\delta_{N,Z}}{A}$$

# **Asimetria**





$$\frac{BE}{A} = a_V - \frac{a_S}{A^{1/3}} - a_C \frac{Z^2}{A^{4/3}} - a_A \frac{(N-Z)^2}{A^2} + a_P \frac{\delta_{N,Z}}{A}$$





$$\frac{BE}{A} = a_V - \frac{a_S}{A^{1/3}} - a_C \frac{Z^2}{A^{4/3}} - a_A \frac{(N-Z)^2}{A^2} + a_P \frac{\delta_{N,Z}}{A}$$

|       | [MeV] |
|-------|-------|
| $a_V$ | 15,8  |
| as    | 18,3  |
| $a_C$ | 0,714 |
| $a_A$ | 23,2  |
| $a_P$ | 12,0  |





# Estrelles de neutrons

### N neutrons:

$$\frac{BE}{A} = a_{V} - \frac{aBE}{A^{\frac{1}{N}}} = 2C_{W4/3}^{2} - a_{A}^{\frac{1}{N}} = 2C_{W4/3}^{2} - a_{A}^{\frac{1}{N}}$$





### Massa màxima?

### Compactesa

$$C = \frac{R_{\rm Sch}}{R} = \frac{2GM}{Rc^2}$$

|                   | Compactesa |
|-------------------|------------|
| Terra             | 1×10-9     |
| Sol               | 4×10-6     |
| Estrella neutrons | 0.5        |
| Forat negre       | >1         |

