- 1.1
- a) Hj

Magnitude

$$|1+j| = \sqrt{1^2+1^2} = \sqrt{2}$$

- b) (1+j)*
 - = 1 j

Magnitude: $\sqrt{1^2+(-1)^2} = \sqrt{2}$

Angle = 0 = ton - (-1) = -
$$\frac{\pi}{4}$$

(c)
$$0.5 + \frac{\sqrt{3}}{2}j$$

Magnitude:
$$\sqrt{(\frac{1}{2})^2 + (\frac{1}{2})^2} = \sqrt{\frac{1}{4} + \frac{3}{4}}$$

Angle:
$$\theta = \tan^{-1}\left(\frac{\sqrt{2}}{\frac{1}{2}}\right)$$

$$=\frac{\pi}{3}$$

$$d) 0.5 - \frac{1}{2};$$

Angle:
$$tan^{-1}\left(\frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}}\right)$$

$$=\tan^{-1}(-5)=-\frac{\pi 0}{3}$$

Magnitude:
$$\sqrt{(-2)^2} = 2$$

Angle:
$$\theta = \tan^{-1}\left(\frac{0}{-2}\right) = \tan^{-1}(0)$$

While these are first hand answer, they holds true by + 2nTU (n is integer).

1.2

B) Given that
$$X(jw) = \pi S(w - 400\pi) + \pi S(w + 400\pi)$$

$$X(t) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} X(jw) e^{jwt} dt$$

$$= \frac{1}{2\pi i} \int_{-\infty}^{\infty} (\pi S(w - 400\pi) + \pi S(w + 400\pi))$$

$$= \frac{1}{2\pi i} (\pi e^{j400\pi i} + \pi e^{-j400\pi i})$$

$$= \frac{1}{2\pi i} (\pi e^{j400\pi i} + \pi e^{-j400\pi i})$$

$$= \frac{1}{2\pi i} (\pi e^{j400\pi i} + \pi e^{-j400\pi i})$$

$$= \frac{1}{2\pi i} (\pi e^{j400\pi i})$$
Thus, $X(t) = \cos(400\pi i)$
Now, to make a \cos function od .

we just have to $\sinh t + \cosh t = \cosh t$

$$= \frac{\pi}{2} = \frac{\pi$$

(c)
$$g(+) = 2e^{j20\pi t}$$

Yes. It is periodic.

g(t+T) = g(t) if One is periodic,

for a eint usually adding and will make it periodic (same)

So Let's try I= 2 (n is integer)

So this is a periodic function with $T=\frac{L}{2}$

b)

Re {9(+) 3 = 2 cos (41/4 + 4)

See Matlab plot

() Im fg(t) 3 = 2. sin(4ret+#)
See Matlab plot

Joseph Joseph Side by 1-d

(1-d)
$$SN = (1+d+d^2+\cdots+d^{N-1})$$

(1-d) $SN = (1+d+d^2+\cdots+d^{N-1})$

Thus $SN = (1-d)$

b) Soo = \(\sum_{n=0}^{10} \alpha^{n} \) Inorder for it to converge, we first would exclude (2) >1, these will Just so larger and larger and just be or Now for = 1 , even -1, we could not determine value, so we exclude this Now Let's see if for all 12/<1 Soo = 1+x+2+23+27+11 So (1-2) =(1+x+2+23+ "") - (2+22+23+···) Since below are infinite getting smaller smaller, we just get 1. (Last term more Soo $(1-\alpha) = 1$ Lisinfinitely thus $S\infty = \frac{1}{1-\alpha}$! Closer to 0)

1.4.	
a) first, according to what we	are
tought in class. DSP is cheaper I	t can be
massively produced and applied to mult	ple devices
It also allows devices to pass signals to	
as a second language tov them. it allows the data to be saved in	memory
and software refine.	/
	4
b) While Ds is better than AS in	price and
usage, it gives up precision. Also, u	hen You
convert real world As to Ds. You wi	Il likely
Wither 11 11 11 11 11 11 11 11 11 11 11 11 11	

has latency in converting it.