Летний коллоквиум по математическому анализу

hse-ami-open-exams

Содержание

1	понятие числового ряда, его частичнои суммы. Сходимость и расходимость числовых рядов. Примеры сходящихся и расходящихся числовых рядов. Необходимый признак		
	сходимости числового ряда.	2	
	1.1 Понятие числового ряда, его частичной суммы.	2	
	1.2 Сходимость и расходимость числовых рядов	2	
	1.3 Примеры сходящихся и расходящихся числовых рядов	2	
	1.4 Необходимый признак сходимости числового ряда	2	
2	Критерий Коши сходимости числового ряда. Доказать расходимость гармонического ряда.	3	
	2.1 Критерий Коши сходимости числового ряда	3	
	2.2 Доказать расходимость гармонического ряда	3	
3	Критерий сходимости ряда с неотрицательными членами через частичные суммы. Тео-		
	рема о сравнении и предельный признак сравнения.	4	
	3.1 Критерий сходимости ряда с неотрицательными членами через частичные суммы	4	
	3.2 Теорема о сравнении и предельный признак сравнения	4	
4	Интегральный признак сходимости числового ряда. Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в зависимости от значений α и β .	=	
	4.1 Интегральный признак сходимости числового ряда	5	
	4.2 Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в зависимости от значений α и β . (TODO)	5	
5	Признак Даламбера в простой и предельной формах. Примеры.	6	
	5.1 Примеры	6	
6	Признак Коши в простой и предельной формах. Примеры.	7	
	6.1 Примеры	7	
7	Абсолютно сходящиеся ряды. Докажите, что абсолютно сходящийся ряд сходится.	8	
8	Определение перестановки членов ряда. Теорема о перестановке членов абсолютно сходящегося ряда.	9	
	8.1 Определение перестановки членов ряда.	9	
9	Теорема о перестановке членов абсолютно сходящегося ряда (без доказательства). Тео-		
		11	
	9.1 Теорема о перестановке членов абсолютно сходящегося ряда (без доказательства)	11	
	9.2 Теорема о произведении двух абсолютно сходящихся рядов	11	
10	Преобразование Абеля. Объясните, почему это преобразование является дискретным		
	аналогом формулы интегрирования по частям	12	

- 1 Понятие числового ряда, его частичной суммы. Сходимость и расходимость числовых рядов. Примеры сходящихся и расходящихся числовых рядов. Необходимый признак сходимости числового ряда.
- 1.1 Понятие числового ряда, его частичной суммы.

Определение 1. Числовая последовательность a_k , рассматриваемая вкупе с последовательностью

$$S_n = \sum_{k=1}^n a_k$$

ее частичных сумм, называется числовым рядом.

1.2 Сходимость и расходимость числовых рядов.

Определение 2. Числовой ряд называется сходящимся, если

$$\exists \lim_{n \to \infty} S_n = S < \infty$$

и расходящимся иначе. Число S называется суммой ряда.

- 1.3 Примеры сходящихся и расходящихся числовых рядов.
 - 1. $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится (гармонический ряд)
 - 2. $\sum_{n=1}^{\infty} \frac{1}{n^2} \text{сходится}$
 - $3. \sum_{n=1}^{\infty} \frac{1}{e^n} \text{сходится}$
 - 4. $\sum_{n=1}^{\infty} n$ расходится

1.4 Необходимый признак сходимости числового ряда.

Теорема 1. Необходимым условием сходимости числового ряда является стремление κ 0 его n-го члена a_n .

Доказательство. Действительно, в противном случае не выполняется критерий Коши для числовой последовательности S_n .

2 Критерий Коши сходимости числового ряда. Доказать расходимость гармонического ряда.

2.1 Критерий Коши сходимости числового ряда.

Теорема 2. Числовой ряд сходится тогда и только тогда, когда он удовлетворяет условию Коши:

$$\forall \varepsilon > 0 \exists N_{\varepsilon} \forall n \geqslant N \forall p \in \mathbb{N} \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon$$

Доказательство. Следует из критерия Коши сходимости числовой последовательности S_n .

2.2 Доказать расходимость гармонического ряда.

Теорема 3. Гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится.

Доказательство. Воспользуемся критерием Коши:

$$\exists \varepsilon > 0 \forall N \exists n \geqslant N \exists p \in \mathbb{N} |S_{n+p} - S_n| \geqslant \varepsilon$$

Пусть p = n. Тогда

$$S_{n+p}-S_n=\frac{1}{n+1}+\ldots+\frac{1}{2n}\geqslant\frac{n}{2n}=\frac{1}{2}=\varepsilon$$

- 3 Критерий сходимости ряда с неотрицательными членами через частичные суммы. Теорема о сравнении и предельный признак сравнения.
- 3.1 Критерий сходимости ряда с неотрицательными членами через частичные суммы.

Теорема 4. Ряд с неотрицательными членами $\sum_{n=1}^{\infty} p_n$ сходится тогда и только тогда, когда последовательность частиных сумм $\{S_n\}$ ограничена.

Доказательство. Необходимость следует из того, что любая сходящаяся последовательность является ограниченной. Поскольку $p_n \geqslant 0$, то $\{S_n\}$ монотонно возрастает, а тогда по теореме Вейерштрасса эта последовательность сходится тогда и только тогда, когда она является ограниченной сверху. Тем самым доказана достаточность.

3.2 Теорема о сравнении и предельный признак сравнения.

Теорема 5 (первый признак сравнения). Если $\forall n \in \mathbb{N} \Rightarrow 0 \leqslant p_n \leqslant q_n, \ mo$

- 1. Из сходимости $\sum q_n$ следует сходимость $\sum p_n$
- 2. Из расходимости $\sum p_n$ следует расходимость $\sum q_n$

Доказательство.

- 1. Напрямую следует из теоремы 4.
- 2. Предположим, что $\sum p_n$ расходится, а $\sum q_n$ сходится. Тогда получаем противоречие с пунктом 1.

Теорема 6 (предельный признак сравнения). Если $p_n > 0, q_n > 0$ и $\exists \lim_{n \to \infty} = l \in (0, +\infty)$, то ряды $\sum p_n$ и $\sum q_n$ сходятся и расходятся одновременно.

Доказательство. По определению предела

$$\forall \varepsilon \exists N_{\varepsilon} \forall n \geqslant N \Rightarrow \left| \frac{p_n}{q_n} - l \right| < \varepsilon \Leftrightarrow l - \varepsilon < \frac{p_n}{q_n} < l + \varepsilon \Leftrightarrow q_n(l - \varepsilon) < p_n < q_n(l + \varepsilon).$$

Осталось лишь воспользоваться теоремой 5.

4 Интегральный признак сходимости числового ряда. Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в зависимости от значений α и β .

4.1 Интегральный признак сходимости числового ряда.

Теорема 7. Пусть при любом $k \in [1, +\infty)$ выполняется $f(k) \ge 0$, причем $f(k) \searrow 0$. Тогда сходимость ряда $\sum_{k=1}^{\infty} f(k)$ эквивалентна сходимости несобственного интеграла $\int\limits_{1}^{\infty} f(x) dx$.

Доказательство. При $x \in [k, k+1]$, в силу $f(x) \searrow$, имеем $f(k+1) \leqslant f(x) \leqslant f(k)$. Возьмем определенный интеграл от всех частей неравенства:

$$\int_{k}^{k+1} f(k+1)dx \leqslant \int_{k}^{k+1} f(x)dx \leqslant \int_{k}^{k+1} f(k)dx$$

$$f(k+1) \leqslant \int_{k}^{k+1} f(x)dx \leqslant f(k)$$

Просуммируем теперь это неравенство по всем k от 1 до n. Получаем

$$\sum_{k=2}^{n+1} f(k) \leqslant \int_{1}^{n+1} f(x) dx \leqslant \sum_{k=1}^{n} f(k)$$

Теперь, если ряд $\sum_{k=1}^{\infty}$ сходится, то из правой части неравенства следует, что сходится интеграл. Если же сходится интеграл, то из левой части неравенства вытекает, что сходится ряд. Аналогично с расходимостью.

4.2 Сходимость ряда $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha} \ln^{\beta} k}$ в зависимости от значений α и β . (TODO)

5 Признак Даламбера в простой и предельной формах. Примеры.

Теорема 8 (признак Даламбера в допредельной форме). *Если* $\forall k \in \mathbb{N}$ *выполнено*

$$\frac{p_{k+1}}{p_k} \leqslant q < 1 \left(\frac{p_{k+1}}{p_k} \geqslant 1 \right),$$

то ряд $\sum p_k$ сходится (расходится).

Доказательство. Положим $p'_k = q^k$. Тогда

$$\frac{p'_{k+1}}{p'_k} = q < 1 \left(\frac{p'_{k+1}}{p'_k} = 1 \right)$$

$$\frac{p_{k+1}}{p_k} \leqslant \frac{p'_{k+1}}{p'_k} \left(\frac{p_{k+1}}{p_k} \geqslant \frac{p'_{k+1}}{p'_k} \right)$$

Но теперь, учитывая тот факт, что ряд $\sum_{k=1}^{\infty} p_k'$ сходится (расходится) и, пользуясь первым признаком сравнения (теорема 5), делаем вывод, что ряд $\sum_{k=1}^{\infty} p_k$ сходится (расходится).

Теорема 9 (признак Даламбера в предельной форме). Пусть существует

$$\lim_{k \to \infty} \frac{p_{k+1}}{p_k} = L$$

Тогда при L < 1 ряд $\sum p_k$ сходится, при L > 1 расходится, а при L = 1 может как сходиться, так и расходиться.

Доказательство. Как мы знаем,

$$\lim_{k \to \infty} \frac{p_{k+1}}{p_k} = L$$

Это означает, что $\forall \varepsilon > 0 \exists N(\varepsilon) \forall k \geqslant N$ выполняется

$$L - \varepsilon < \frac{p_{k+1}}{p_k} < L + \varepsilon$$

Теперь если L>1, то мы можем выбрать такое ϵ , что $L+2\varepsilon=1\Leftrightarrow L+\varepsilon=1-\varepsilon$. Но тогда

$$\frac{p_{k+1}}{p_k} < L + \varepsilon < 1$$

Тем самым получили допредельный вариант теоремы, из которого следует, что ряд $\sum p_k$ сходится. Пусть теперь L>1. Выберем такое ε , что $L-\varepsilon=1$. Получаем

$$\frac{p_{k+1}}{p_k} > L - \epsilon = 1$$

Снова получили допредельный вариант теоремы, из которого следует, что ряд $\sum p_k$ расходится. Наконец, рассмотрим ряды $\sum \frac{1}{k}$ и $\sum \frac{1}{k^2}$. В обоих случаях L=1, но ряд $\sum \frac{1}{k}$ расходится, а ряд $\sum \frac{1}{k^2}$ сходится.

5.1 Примеры.

- 1. $\sum \frac{1}{n!}$ сходится
- 2. $\sum n!$ расходится

6 Признак Коши в простой и предельной формах. Примеры.

Теорема 10 (признак Коши в допредельной форме). *Если* $\forall k \in \mathbb{N}$ *выполнено*

$$\sqrt[k]{p_k} \leqslant q < 1 \left(\sqrt[k]{p_k} \geqslant 1 \right),$$

то ряд $\sum p_k$ сходится (расходится).

Доказательство. Положим $p'_k = q^k$. Тогда

$$\sqrt[k]{p_k'} = q < 1\left(\sqrt[k]{p_k'} = 1\right)$$

$$\sqrt[k]{p_k} \leqslant \sqrt[k]{p_k'} \left(\sqrt[k]{p_k} \geqslant \sqrt[k]{p_k'} \right)$$

Но теперь, учитывая тот факт, что ряд $\sum_{k=1}^{\infty} p_k'$ сходится (расходится) и, пользуясь первым признаком сравнения (теорема 5), делаем вывод, что ряд $\sum_{k=1}^{\infty} p_k$ сходится (расходится).

Теорема 11 (признак Коши в предельной форме). Пусть существует

$$\lim_{k \to \infty} \sqrt[k]{p_k} = L$$

Тогда при L < 1 ряд $\sum p_k$ сходится, при L > 1 расходится, а при L = 1 может как сходиться, так и расходиться.

Доказательство. Как мы знаем,

$$\lim_{k \to \infty} \sqrt[k]{p_k} = L$$

Это означает, что $\forall \varepsilon > 0 \exists N(\varepsilon) \forall k \geqslant N$ выполняется

$$L - \varepsilon < \sqrt[k]{p_k} < L + \varepsilon$$

Теперь если L>1, то мы можем выбрать такое ϵ , что $L+2\varepsilon=1\Leftrightarrow L+\varepsilon=1-\varepsilon$. Но тогда

$$\sqrt[k]{p_k} < L + \varepsilon < 1$$

Тем самым получили допредельный вариант теоремы, из которого следует, что ряд $\sum p_k$ сходится. Пусть теперь L>1. Выберем такое ε , что $L-\varepsilon=1$. Получаем

$$\sqrt[k]{p_k} > L - \epsilon = 1$$

Снова получили допредельный вариант теоремы, из которого следует, что ряд $\sum p_k$ расходится. Наконец, рассмотрим ряды $\sum \frac{1}{k}$ и $\sum \frac{1}{k^2}$. В обоих случаях L=1, но ряд $\sum \frac{1}{k}$ расходится, а ряд $\sum \frac{1}{k^2}$ сходится.

6.1 Примеры.

- 1. $\sum \frac{n^n}{e^n}$ расходится
- 2. $\sum \frac{n^2}{e^n}$ сходится

7 Абсолютно сходящиеся ряды. Докажите, что абсолютно сходящийся ряд сходится.

Определение 3. Будем говорить, что ряд $\sum u_k$ сходится абсолютно, если $\sum |u_k|$ сходится.

Теорема 12. Абсолютно сходящийся ряд сходится.

Доказательство. По критерию Коши имеем

$$\forall \varepsilon > 0 \exists N(\varepsilon) \forall n \geqslant N \forall p \in N \sum_{k=n+1}^{n+p} |u_k| < \varepsilon.$$

Осталось лишь воспользоваться неравенством

$$\left|\sum_{k=n+1}^{n+p}u_k\right|\leqslant \sum_{k=n+1}^{n+p}|u_k|<\varepsilon.$$

8 Определение перестановки членов ряда. Теорема о перестановке членов абсолютно сходящегося ряда.

8.1 Определение перестановки членов ряда.

Определение 4. Говорят, что два ряда $\sum a_n$ и $\sum b_n$ получаются друг из друга перестановкой членов, если существует такое взаимо-однозначное отображение φ множества $\mathbb N$ натуральных чисел на себя, что $b_n = a_{\varphi(n)}$.

8.2 Теорема о перестановке членов абсолютно сходящегося ряда.

Теорема 13. Если числовой ряд $\sum u_k$ сходится абсолютно, то любая его перестановка членов сходится κ той же самой сумме.

Доказательство. Пусть $\sum u_k$ абсолютно сходится к S, а $\sum u_k'$ – некоторая перестановка членов исходного ряда. Требуется доказать, что $\sum u_k' = S$ и $\sum u_k'$ сходится абсолютно. Докажем сначала первое утверждение. Для этого достаточно доказать, что

$$\forall \varepsilon > 0 \exists N(\varepsilon) \forall n \geqslant N \left| \sum_{k=1}^{n} u'_k - S \right| < \varepsilon.$$

Зафиксируем произвольное ε . Поскольку ряд $\sum u_k$ сходится абсолютно, то по признаку Коши

$$\exists N_0' \forall p \in \mathbb{N} \sum_{k=N_0'+1}^{N_0'+p} |u_k| < \frac{\varepsilon}{2},$$

а по определению сходимости ряда

$$\exists N_0'' \left| \sum_{k=1}^{N_0''} u_k - S \right| \leqslant \frac{\varepsilon}{2}.$$

Напоминаем, что данные неравенства по определениям выполняются и для $n \ge N_0', N_0''$. Примем $N_0 = \max\{N_0', N_0''\}$, чтобы для этого номера выполнялись оба неравенства. Теперь возьмем такое N, чтобы любая частичная сумма S_n' ряда $\sum u_k'$ при $n \ge N$ содержала все первые N_0 членов ряда $\sum u_k$. Заметим, что такое N всегда можно выбрать, поскольку мы просто переставили некоторые члены исходного ряда. Оценим теперь разность

$$\left| \sum_{k=1}^{n} u_k' - S \right| < \varepsilon.$$

Пусть $n \geqslant N$. Указанную разность можно перезаписать в виде

$$\sum u'_k - S = \left(\sum_{k=1}^n u'_k - \sum_{k=1}^{N_0} u_k\right) + \left(\sum_{k=1}^{N_0} u_k - S\right).$$

Переходя к модулям, получаем

$$\left| \sum u'_k - S \right| \le \left| \sum_{k=1}^n u'_k - \sum_{k=1}^{N_0} u_k \right| + \left| \sum_{k=1}^{N_0} u_k - S \right|.$$

Если воспользоваться неравенством $\left|\sum_{k=1}^{N_0''}u_k-S\right|\leqslant \frac{\varepsilon}{2},$ то достаточно доказать, что

$$\left| \sum_{k=1}^{n} u_k' - \sum_{k=1}^{N_0} u_k \right| < \frac{\varepsilon}{2}.$$

Вспомним теперь, что мы таким образом выбрали N, что при $n\geqslant N$ первая из сумм содержит все N_0 членов второй суммы. Поэтому указанная выше разность представляет собой сумму $n-N_0$ членов ряда $\sum u_k$ с номерами, каждый из которых превосходит N_0 .

Тогда выберем такое p, чтобы номер N_0+p превосходил номера всех $n-N_0$ членов только что указанной суммы. Тогда справедливо

$$\left| \sum_{k=1}^{n} u_k' - \sum_{k=1}^{n} u_k \right| \leqslant \sum_{k=N_0+1}^{N_0+p} |u_k|$$

Но теперь, пользуясь неравенством

$$\left| \sum_{k=1}^{N_0''} u_k - S \right| \leqslant \frac{\varepsilon}{2},$$

получаем то, что и требовалось доказать. Таким образом, мы доказали, что ряд $\sum u_k'$ сходится к S. Осталось лишь доказать, что он сходится абсолютно. Для этого достаточно применить приведенное выше доказательство для рядов $\sum |u_k|$ и $\sum |u_k'|$.

- 9 Теорема о перестановке членов абсолютно сходящегося ряда (без доказательства). Теорема о произведении двух абсолютно сходящихся рядов.
- 9.1 Теорема о перестановке членов абсолютно сходящегося ряда (без доказательства).

Теорема 14. Если числовой ряд $\sum u_k$ сходится абсолютно, то любая его перестановка членов сходится κ той же самой сумме.

9.2 Теорема о произведении двух абсолютно сходящихся рядов.

Теорема 15. Если $\sum u_k$ и $\sum v_k$ сходятся абсолютно κ и и v соответственно, то ряд $\sum w_k$, составленный из всевозможных произведений $u_i \cdot v_j$ сходится абсолютно κ и $\cdot v$.

Доказательство. Докажем сначала, что ряд $\sum w_k$ сходится абсолютно. Возьмем произвольное n_0 и рассмотрим $\sum_{k=1}^{n_0} |w_k|$. Эта сумма состоит из членов вида $|u_iv_j|$. Найдем среди этих индексов i и j наибольший индекс m, входящий в исследуемую сумму. Тогда

$$\sum_{k=1}^{n_0} |w_k| \leqslant (|u_1| + \ldots + |u_m|) \cdot (|v_1| + \ldots + |v_m|) \leqslant M_1 M_2$$

Ограничения M_1 и M_2 следуют из абсолютной сходимости рядов $\sum u_k$ и $\sum v_k$. Мы ограничили n_0 -ую частичную сумму исследуемого ряда $\sum |w_k|$, значит этот ряд сходится. Осталось лишь доказать, что он сходится к uv.

Пусть данный ряд сходится к S. Заметим, что в силу теоремы 9.1 мы можем как угодно переставлять члены ряда w_i , не влияя на сходимость. Иными словами, любая последовательность или подпоследовательность частичный сумм будет сходиться к S. Тогда рассмотрим последовательность частичных сумм $\{S_{m^2}\}$, где $S_{m^2}=(u_1+\ldots+u_m)\cdot(v_1+\ldots+v_m)$. Но

$$\lim_{m \to \infty} (u_1 + \dots + u_m) = u$$

$$\lim_{m \to \infty} (v_1 + \dots + v_m) = v$$

$$\Rightarrow S_{m^2} \to uv$$

10 Преобразование Абеля. Объясните, почему это преобразование является дискретным аналогом формулы интегрирования по частям.

Пусть $B_n = \sum_{k=1}^n b_k$ и $B_0 = 0$. Тогда

$$\sum_{k=1}^{n} = a_n B_n - \sum_{k=1}^{n-1} B_k (a_{k+1} - a_k).$$

Преобразование Абеля является дискретным аналогом интегрирования по частям. Для наглядности рассмотрим следующюю таблицу:

f	$\{a_n\}_{n=1}^{\infty}$
f'	$\{a_n - a_{n-1}\}_{n=2}^{\infty}$
$\int_{a}^{b} f(x) dx$	$\sum_{k=1}^{\infty} a_k$
$\left(\int_{a}^{x} f(x) dx\right)_{x}' = f(x)$	$\sum_{k=1}^{n} a_k - \sum_{k=1}^{n-1} a_k = a_n$
$f, g, G = \int_{a}^{x} g(t) dt + C$	${a_k}, {b_k}, {B_k = \sum_{j=1}^k b_j + B_0}$
$\int_{a}^{b} fg dx = \int_{a}^{b} f dG = f \cdot G \Big _{a}^{b} - \int_{a}^{b} Gf' dx$	$\sum_{k=1}^{n} a_k b_k = a_n B_n - a_1 B_0 - \sum_{k=1}^{n-1} (a_k + 1 - a_k) B_k$