S.-J. Kimmerle

Motivation:

- Periodic signals, image processing (jpeg/mpeg compression)
- Generation of signals by periodic means
- Harmonic oscillations, acoustics
- Periodic orbits
- Revolving motors

Many periodic functions may be approximated by a sum of trigonometric base functions as

$$1, \cos(kx), \sin(kx), k \in \mathbb{N}$$

with suitable coefficients a_0, a_k, b_k .

Frequently, it may make sense to replace the finite sum by a series.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Analysis 2

S.-J. Kimmerle

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Summary -Outlook and Review

A rotational force *f* (due to gas pressure and mass inertia) acts on the crankshaft of a single-cylinder two-stroke engine.

Example: Rotational Force of an Engine I

At the points $t_k = k \cdot \pi/8$, k = 0, 1, ..., 15, the following values of f_k were determined experimentally:

_	f_0	f_1	f_2	f_3	f_4	<i>f</i> ₅	
	-8250	-29430	-2286	5974	-8829	-25408	

f_6	<i>f</i> ₇	f_8	f_9	<i>f</i> ₁₀	
-22681	-28655	-8564	96560	45862	

f ₁₁	f_{12}	f_{13}	f_{14}	<i>f</i> ₁₅	
22092	-9025	-23514	-15127	12880	

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Summary -Outlook and Review

The resulting trigonometric approximation of *f* looks as follows:

Example: Rotational Force of an Engine II

Definition (Periodic function)

A function $f : \mathbb{R} \to \mathbb{C}$ is called T-periodic, if there exists a T > 0 s.t.

$$f(x + T) = f(x)$$
 for all $x \in \mathbb{R}$.

T is called a **period** of f.

Note that a T-periodic function f is completely defined by its values on the interval [0, T). Thus it is enough to consider f only on [0, T).

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Properties of Periodic Functions

Let f and g be T-periodic.

- Then $\alpha f + \beta g$ is T-periodic for any $\alpha, \beta \in \mathbb{C}$.
- Then there holds for all $c \in \mathbb{R}$:

$$\int_{c}^{c+T} f(x) dx = \int_{0}^{T} f(x) dx.$$

• Then the function $\tilde{f}: \mathbb{R} \to \mathbb{C}$, defined by

$$\tilde{f}(x) := f\left(\frac{T}{2\pi}x\right)$$

is 2π -periodic, since:

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Definition (Fourier Series)

The function series

$$F(x) := \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega x) + b_k \sin(k\omega x) \quad \text{with } \omega := \frac{2\pi}{T}$$

is called **Fourier series**. The coefficients a_0, a_1, \ldots and b_1, b_2, \ldots are called **Fourier coefficients**. The representation of a function by its Fourier series is called **Fourier** (or harmonic) **analysis**. The finite sum is called **Fourier sum**:

$$F_n(x) := \frac{a_0}{2} + \sum_{k=1}^n a_k \cos(k\omega x) + b_k \sin(k\omega x).$$

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

S.-J. Kimmerle

Theorem (Fourier)

<u>Assume</u> a T-periodic function f may be represented as a Fourier series

$$F(x) := \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega x) + b_k \sin(k\omega x)$$
 with $\omega := \frac{2\pi}{T}$,

then the Fourier coefficients are given by

$$a_0 = \frac{2}{T} \int_0^T f(x) dx,$$

$$a_k = \frac{2}{T} \int_0^T f(x) \cos(k\omega x) dx,$$

$$b_k = \frac{2}{T} \int_0^T f(x) \sin(k\omega x) dx.$$

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Symmetry & Fourier Coefficients

The following symmetries may be exploited when computing Fourier coefficients, $k \in \mathbb{N}$:

• If f is an odd function, i.e. f(x) = -f(-x) for all $x \in \mathbb{R}$, then

$$b_k = \frac{2}{T} \int_0^T f(x) \sin(k\omega x) dx = \frac{4}{T} \int_0^{T/2} f(x) \sin(k\omega x) dx,$$

$$a_k = \frac{2}{T} \int_0^T f(x) \cos(k\omega x) dx = 0.$$

• If f is an even function, i.e. f(x) = f(-x) for all $x \in \mathbb{R}$, then

$$b_k = \frac{2}{T} \int_0^T f(x) \sin(k\omega x) dx = 0,$$

$$a_k = \frac{2}{T} \int_0^T f(x) \cos(k\omega x) dx = \frac{4}{T} \int_0^{T/2} f(x) \cos(k\omega x) dx.$$

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Warning: In general $f(x) \neq F(x)$ for all $x \in \mathbb{R}$!

Gibbs phenomenon: overshooting & undershooting (up to 18% for large n) at points of discontinuity

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Revision: Trigonometric Functions

Definition (Cosine and sine)

For $x \in \mathbb{R}$ we define:

$$cos(x) := Re(exp(ix))$$

$$sin(x) := Im(exp(ix))$$

We see that the Euler formula holds:

$$\exp(ix) = \cos(x) + i\sin(x), \quad x \in \mathbb{R}$$

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

