Introduction and Overview of Anomaly Detection Methods Research

Purpose

This memo introduces the Machine Learning Algorithm Research team and summarizes our exploration of advanced anomaly detection methods applied to time series data, as part of our ongoing effort to enhance data-driven monitoring and predictive maintenance capabilities.

Overview

During this cycle, the research team focused on evaluating and comparing four machine learning algorithms for anomaly detection in complex time series scenarios, particularly in multivariate sensor data.

Explored Methods

- 1. Z-Score (Statistical Baseline)
- Simple yet effective for univariate data.
- Highlights point anomalies based on standard deviation thresholds.

Isolation Forest

- Tree-based ensemble method that isolates anomalies through recursive partitioning.
- Effective for both univariate and multivariate data without assuming data distribution.

One-Class SVM

- Kernel-based method learning the boundary of normal data.
- Sensitive to parameter tuning and computationally intensive for large datasets.

LSTM (Long Short-Term Memory)

- Recurrent neural network model capturing temporal dependencies.
- Applied both as predictive and autoencoder-based anomaly detector.
- Particularly powerful for detecting complex temporal anomalies and patterns missed by traditional methods.

Next Steps

Building upon the current research, in the future, the team can focus on refining anomaly detection strategies by:

Algorithm Selection:

Selecting the most appropriate anomaly detection method based on specific data characteristics, operational requirements, and system complexity (e.g., using lightweight statistical methods for simple cases, and LSTM or Isolation Forest for complex, multivariate time series).

Sensor-Level Strategy Optimization:

Assessing whether sensors should be monitored individually or jointly, based on their correlations and operational interdependencies. This will ensure that both single-point anomalies and multi-sensor correlated anomalies are effectively detected.

Time Window Optimization:

Incorporating time windowing techniques (e.g., rolling statistics, lag features) to improve the robustness of anomaly detection, enabling the detection of both sudden spikes and gradual drifts in sensor behavior.

These enhancements aim to create a more context-aware, adaptive, and robust anomaly detection framework, capable of supporting scalable deployment across different IoT and industrial monitoring scenarios.

Appendix:

Comparison of Anomaly Detection Methods for Time Series

Method	Type	Strengths	Weaknesses	Best Use Cases	Contributors	Github
Z-Score	Statistical	- Simple to	- Assumes	Quick checks on	ALIREZA MONTAZERI	https://github.com/DataBytes-
		implement	normal	single-sensor	DEVANSHI TYAGI	Organisation/Intelligent-IoT-Data-
		- Fast	distribution	data		Management/tree/feature/zscore-anomaly-
		computation	- Univariate only			detection/algorithms/zscore_anomaly_detection
Isolation	Tree-based	- Handles high-	- Ignores time	Multivariate	LI WAN	https://github.com/DataBytes-
Forest	Ensemble	dimensional data	dependencies	anomaly	ARNAV AHUJA	Organisation/Intelligent-IoT-Data-
		- No distribution	- Sensitive to	detection		Management/tree/feature/isolation-
		assumption	contamination	without		forest/isolation_forest
		- Robust to	parameter	temporal		
		outliers		patterns		
One-Class	Kernel-	- Captures	- High	Anomaly	JOY JAYESH PATEL	https://github.com/DataBytes-
SVM	based	complex data	computational	detection on	MARIAM SULEMANA	Organisation/Intelligent-IoT-Data-
		boundaries	cost on large	small or	BANDA	Management/tree/feature/one-class-svm
		- Can model	datasets	medium-sized		
		nonlinear	- Parameter	structured		
		patterns	tuning sensitive	datasets		
LSTM	Neural	- Captures	- Requires more	Time series data	HAI NAM LE	https://github.com/DataBytes-
	Network	temporal	data	with temporal	GEORGIA QUACH	Organisation/Intelligent-IoT-Data-
	(RNN)	dependencies	- Longer training	dependencies		Management/tree/georgiaquach-feature-
		- Handles	time	and complex		visualization/LSTM
		complex,	- Less	patterns (e.g.,		
		sequential	interpretable	sensor fusion,		

Method	Type	Strengths	Weaknesses	Best Use Cases	Contributors	Github
		patterns		predictive		
		- Suitable for		maintenance)		
		multivariate				
		sequences				

