Congratulations! You passed!

Grade received 100%

Latest Submission Grade 100% To pass 80% or higher

Go to next item

1/1 point

. What does a neuron compute?	1/1 point
A neuron computes the mean of all features before applying the output to an activation function	
igcap A neuron computes an activation function followed by a linear function $z=Wx+b$	
$\ \ igoldsymbol{eta}$ A neuron computes a linear function $z=Wx+b$ followed by an activation function	
A neuron computes a function g that scales the input x linearly (Wx + b)	
∠ [™] Expand	
♥ Correct Correct, we generally say that the output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU,).	
2. Suppose that $\hat{y}=0.5$ and $y=0$. What is the value of the "Logistic Loss"? Choose the best option. $\bigcirc \ \ 0.5$	1/1 point
0.693	
○ +∞	
⊌ [™] Expand	
$igotimes$ Correct Yes. Given the values of \hat{y} and y we get $\mathcal{L}(0.5,0)=-(0\log 0.5+1\log (0.5))pprox 0.693.$	
3. Suppose img is a $(32,32,3)$ array, representing a $32x32$ image with 3 color channels red, green and blue. How do you reshape this into a column vector x ?	1 / 1 point
x = img.reshape((3.32*32))	
<pre>\$x\$\$ = img.reshape((32*32*3,1))</pre>	
\$\$x\$\$ = img.reshape((1,32*32,3))	
\$\$x\$\$ = imq.reshape((32*32.3)) Loading [Mathlax]/jax/output/CommonHTML/jax.js	
∠ ⁷ Expand	
⊘ Correct	

4. Consider the following random arrays a and b, and c:

 $a = np.random.randn(2,3) \, \text{\#} \, a.shape = (2,3)$

 $b = np.random.randn(2,1) \, {\sharp} \, b.shape = (2,1)$

c = a + b

What will be the shape of c?

- o.shape = (2, 3)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!

∠ ⁷ Expand	
 Correct Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a. 	
Consider the two following random arrays a and b :	1 / 1 poi
a = np.random.randn(4,3) # a.shape = (4,3)	
b = np.random.randn(1,3) *b.shape = (1,3)	
c = a * b	
What will be the shape of c ?	
The computation cannot happen because it is not possible to broadcast more than one dimension.	
The computation cannot happen because the sizes don't match.	
(a) c.shape = (4, 3)	
C.shape = (1, 3)	
∠ [≯] Expand	
Yes. Broadcasting is invoked, so row b is multiplied element-wise with each row of a to create c.	
Suppose our input batch consists of 8 grayscale images, each of dimension 8x8. We reshape these images into eature column vectors \mathbf{x}^j . Remember that $X=[\mathbf{x}^{(1)}\mathbf{x}^{(2)}\cdots\mathbf{x}^{(8)}]$. What is the dimension of X ?	1 / 1 poi
eature column vectors \mathbf{x}^* , remember that $\mathbf{A} = \begin{bmatrix} \mathbf{x}^* \cdot \mathbf{x}^* \cdot \cdots \cdot \mathbf{x}^* \cdot \end{bmatrix}$, what is the dimension of \mathbf{A} :	
(64, 8)	
(8, 64)	
○ (512, 1)	
(8, 8, 8)	
_∠ ^{,7} Expand	
\odot Correct Yes. After converting the 8x8 gray scale images to a column vector we get a vector of size 64 , thus X has dimension $(64,8)$.	
Consider the following arrays	
Consider the following array:	1/1 po
a = np.array([[2, 1], [1, 3]]) What is the result of np def(a, a)?	
What is the result of $np.dot(a,a)$?	
The computation cannot happen because the sizes don't match. It's going to be an	
The computation cannot happen because the sizes don't match. It's going to be an "Error"!	
The computation cannot happen because the sizes don't match. It's going to be an "Error"! \$\$\\$\$ \$\$\begin{pmatrix} 4 & 1 \\ 1 & 9 \end{pmatrix}\$\$	

c.shape = (2, 1)

8.	Consider the	following	code	snippet:

a.shape = (4,3)

 $b.shape=\left(4,1\right)$

for i in range(3):

for j in range(4):

c[i][j] = a[j][i] + b[j]

How do you vectorize this?

- \bigcirc c = a.T + b
- \bigcirc c = a.T + b.T
- \bigcirc c = a + b.T
- C = a + b

⊘ Correct

Yes. a[j][i] being used for a[i][j] indicates we are using a.T, and the element in the row j is used in the column j thus we are using b.T.

9. Consider the following code:

a=np.random.randn(3,3)

b = np.random.randn(3,1)

c=a*b

What will be \emph{c} ? (If you're not sure, feel free to run this in python to find out).

- \bigcirc This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
- This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).
- It will lead to an error since you cannot use "*" to operate on these two matrices. You need
 to instead use np.dot(a,b)

⊘ Correct

 $\textbf{10.} \ \mathsf{Consider} \ \mathsf{the} \ \mathsf{following} \ \mathsf{computation} \ \mathsf{graph}.$

1/1 point

1/1 point

What is the output J?

1/1 point

- $\bigcirc \quad J = (b-1)*(c+a)$
- $\bigcirc \quad J = a*b+b*c+a*c$
- $\bigcirc \quad J = (c-1)*(b+a)$

∠⁷ Expand