| Wydział        | Imię i nazwisko   | Rok            | Grupa       | Zespół |       |
|----------------|-------------------|----------------|-------------|--------|-------|
| WIEIT          | Rafał Grabiański  |                |             |        |       |
|                | Zbigniew Królikow | 2              | 7           | 7      |       |
| PRACOWNIA      | Temat             | Nr ćwiczenia   |             |        |       |
| FIZYCZNA       | Opracowanie dany  |                |             |        |       |
| WFiIS AGH      |                   | 0              |             |        |       |
| Data wykonania | Data oddania      | Zwrot do popr. | Data oddani | ia     | Ocena |
| 12.10.2014     |                   |                |             |        |       |
|                |                   |                |             |        |       |

## Cel ćwiczenia:

Zaznajomienie się z typowymi metodami opracowania danych pomiarowych przy wykorzystaniu wyników pomiarów dla wahadła prostego.

# Wstęp teoretyczny:

Opracowanie danych pomiarowych wiąże się z podaniem obok wyniku danego doświadczenia niepewności pomiaru, która wynika z niedoskonałości przyrządów pomiarowych i nieprecyzyjności zmysłów obserwatora.

## Układ pomiarowy:

- 1. Zestaw wahadła prostego,
- 2. Sekundomierz (stoper),
- 3. Przymiar milimetrowy (linijka).



## Wyniki pomiarów

- 1. Pomiary okresu dla ustalonej długości wahadła:
  - a) Przy użyciu przymiaru milimetrowego zmierz długość wahadła rozumianą jako odległość od środka ciężarka do punktu zamocowania jego nici,
  - b) Wprowadź wahadło w ruch drgający o amplitudzie kątowej nie przekraczającej trzech stopni. Następnie zmierz czas k = 10 okresów. Ważne jest, by uruchamiać i zatrzymywać sekundomierz w tej samej fazie ruchu (np. maksymalne wychylenie w prawo), bez zatrzymywania wahadła.
  - c) Pomiar ten powtórz dziesięciokrotnie. Liczba okresów k w kolejnych pomiarach może być taka sama, lub zmieniana w podanych wyżej granicach.
- Pomiary zależności okresu drgań od długości wahadła.
   Wykonaj kilkanaście pojedynczych pomiarów okresu zmieniając długość wahadła w zakresie od około 10 cm do długości maksymalnej.

# Wyniki pomiarów:

Na początku dokonaliśmy pomiaru okresu drgań dla stałej, ustalonej długości wahadła.

Długość wahadła: I = 1.00 m

niepewność pomiaru: u(I) = 0.01 m

Tab. 1. Pomiar okresów drgań przy ustalonej długości wahadła

|     |                     |                             | ,                     |            |
|-----|---------------------|-----------------------------|-----------------------|------------|
| Lp. | Liczba<br>okresów k | czas t dla<br>k okresów [s] | okres $T_i = t/k$ [s] | $g[m/s^2]$ |
| 1   | 20                  | 40                          | 2                     | 9.870      |
| 2   | 20                  | 40.3                        | 2.015                 | 9.723      |
| 3   | 20                  | 40.2                        | 2.01                  | 9.772      |
| 4   | 20                  | 40.4                        | 2.02                  | 9.675      |
| 5   | 20                  | 40.3                        | 2.015                 | 9.723      |
| 6   | 20                  | 40.1                        | 2.005                 | 9.820      |
| 7   | 20                  | 40.3                        | 2.015                 | 9.723      |
| 8   | 20                  | 40.4                        | 2.02                  | 9.675      |
| 9   | 20                  | 40.1                        | 2.005                 | 9.820      |
| 10  | 20                  | 40.1                        | 2.005                 | 9.820      |

Następnie sprawdziliśmy jak przy zmianie długości wahadła zmienia się okres jego drgań i czy  $l/T^2$  jest stałą proporcją.

Tab. 2. Pomiar zależności okresu drgań od długości wahadła

|     |        |    |       |         | (T_i)^2 | 1/T^2   |           |
|-----|--------|----|-------|---------|---------|---------|-----------|
| Lp. | 1 [mm] | k  | t [s] | T_i [s] | [s^2]   | [m/s^2] | g [m/s^2] |
| 1   | 900    | 20 | 37.5  | 1.875   | 3.516   | 256.000 | 10.106    |
| 2   | 800    | 20 | 35.5  | 1.775   | 3.151   | 253.918 | 10.024    |
| 3   | 700    | 20 | 33.1  | 1.655   | 2.739   | 255.565 | 10.089    |
| 4   | 600    | 20 | 30.5  | 1.525   | 2.326   | 257.995 | 10.185    |
| 5   | 500    | 20 | 27.9  | 1.395   | 1.946   | 256.934 | 10.143    |
| 6   | 400    | 20 | 24.9  | 1.245   | 1.550   | 258.060 | 10.188    |
| 7   | 300    | 20 | 22    | 1.1     | 1.210   | 247.934 | 9.788     |
| 8   | 200    | 20 | 17.7  | 0.885   | 0.783   | 255.354 | 10.081    |
| 9   | 100    | 20 | 12.4  | 0.62    | 0.384   | 260.146 | 10.270    |

Opracowanie wyników pomiaru:

Ad.1. Wyniki naszych pomiarów nie zawierają błędów grubych. Podczas wykonywania eksperymentu na bieżąco po wykonaniu pomiaru weryfikowaliśmy uzyskany czas z czasami pomiarów poprzednich i podejrzanie wyglądające wyniki od razu odrzucaliśmy. (np. czas 20 wahnięć o jeden okres przekraczający czasy "średnie" był natychmiast odrzucany).

## Ad.2.

Ocena niepewności typu A występuje gdy w naszych obserwacjach występują błędy przypadkowe. Wtedy jako wynik pomiaru uznajemy średnią arytmetyczną z pomiarów nieobarczonych grubym błędem:

$$T_0 = \frac{1}{n} \times \sum T_i$$

$$T_0 = \frac{(2 + 2.015 + 2.01 + ... + 2.005)}{10} = 2.011$$

Natomiast estymator odchylenia standardowego:  $\sqrt{\frac{1}{n-1}\sum_{i=1}^n(x_i-\mu)^2}$  gdzie  $\mu$  - średnia ze wszystkich pomiarów okresu

Korzystając z arkusza kalkulacyjnego otrzymujemy:  $S(T_0)=0.00066 s$ 

Z racji tego, że za wynik pomiaru przyjęliśmy średnią arytmetyczną, to musimy wyliczyć estymator odchylenia standardowego średniej, który stanowić będzie naszą miarę niepewności pomiaru.

$$u(T_0) = 0.00066 \, s / \sqrt{(10)} = 0.0021 \, s$$

## Ocena niepewności typu B:

Niepewność typu B wykorzystujemy gdy mamy do czynienia z błędem systematycznym, czyli takim wynikającym z niedokładności przyrządów i powodującym stałą różnicę między wartością rzeczywistą, a wartością mierzoną.

Jako niepewność w pomiarze długości przyjmujemy 0.01 m. Wynika to z kilku przesłanek. Po pierwsze dokładność miary krawieckiej, którą mierzyliśmy długość wahadła wynosi 1mm i nie jest tu ograniczeniem. Problemem jest natomiast nieregularność zawieszonej masy (choć mała to dokładność położenia środka ciężkości jest obarczona błędem 0.5 cm), również 0.5 cm błędu przypisaliśmy miejscu zaczepienia wahadła, z uwagi na prowizoryczną, domową konstrukcję.

Przy pomiarze czasu niepewności wynikają z czasu reakcji mierzącego wahnięcia. Tutaj warto zwrócić uwagę, że nie wynoszą one tyle ile średnio przyjmuje się dla człowieka, czyli 350 ms. A to dlatego, że obserwator jest w stanie przewidzieć moment osiągnięcia amplitudy i nie

wciska przycisku na stoperze po jej osiągnięciu, ale tuż przed. Dlatego tutaj uznaliśmy, że rozsądne będzie przyjąć błąd 0.2 s.

# Obliczenie przyspieszenia ziemskiego:

Na podstawie uzyskanej wartości czasu średniego i długości wahadła obliczamy:

$$g=4\frac{\pi^2 * l}{T^2}$$

$$g = \frac{4*(3.142)^2*1}{(2.011)^2} = 9.76 \frac{m}{s^2}$$

Obliczenie niepewności złożonej:

Prawo przenoszenia niepewności dotyczy wielkości niemierzonych bezpośrednio, tzn. Takich, których wartości obliczamy za pomocą wzorów zawierających parametry, które mierzymy w bezpośredni sposób. W zadaniu mieliśmy za zadanie obliczyć wartość przyspieszenia ziemskiego, które zależy od dwóch mierzonych zmiennych T i l. Dla funkcji wielu zmiennych

zastosujemy wzór na sumę geometryczną różniczek  $u_c(y) = \sqrt{\left(\sum_k \left[\frac{\partial y}{\partial x_k}u(x_k)\right]^2\right)}$ 

Liczymy pochodne cząstkowe dla zmiennych I i T:

$$\frac{\partial y}{\partial l} = \frac{\partial}{\partial l} \left( 4 \frac{\pi^2 * l}{T^2} \right) = \frac{4 \pi^2}{T^2}$$

$$\frac{\partial y}{\partial T} = \frac{\partial}{\partial T} \left( 4 \frac{\pi^2 * l}{T^2} \right) = \frac{-8 \cdot \pi^2 * l}{T^3}$$

Czyli niepewność złożona wyliczona zgodnie z podanym wzorem przy podstawieniu wyliczonych niepewności typu B wynosi:

$$u_{c}(y) = \sqrt{\sum_{k} \left[\frac{4\pi^{2}}{T^{2}}u_{c}(l)\right]^{2} + \left[\frac{-8\cdot\pi^{2}*l}{T^{3}}u_{c}(T)\right]^{2}}$$

Stosując wzór na niepewność względną mamy bardzo prostą zależność:

$$\frac{u_c(g)}{q} = \sqrt{(\left[\frac{u(l)}{l}\right]^2 + \left[-2\frac{u(T)}{T}\right]^2)}$$

Licząc: 
$$\frac{u(l)}{l} = \frac{5 \cdot 10^{-3} \, m}{1 \, m} = 5 \cdot 10^{-3} = 0.5 \, \%$$
  $\frac{u(T)}{T} = \frac{0.2 \, s}{40.22 \, s} = 4.97 \cdot 10^{-3} = 0.497 \, \%$ 

Tak więc nasza niepewność względna to 1.11%

A niepewność bezwzględna:  $0.108 \, \text{m/s}^2$ 

Obliczenie niepewności rozszerzonej:

Przyjmujemy zgodnie ze standardem niepewność rozszerzoną ze współczynnikiem k=2. Zgodnie z tym szacunkiem nasza niepewność bezwzględna będzie wynosiła 0.216 m/s^2 i

nasz wynik mieści się w przedziale o środku w wartości rzeczywistej. Szczęśliwie mieści się nawet bez uwzględniania rozszerzenia niepewności.





Po wykorzystaniu funkcji w arkuszu kalkulacyjnym, współczynnik nachylenia zlinearyzowanej krzywej dla naszych wyników wyniósł 3.91.

Korzystając z przekształceń mamy 
$$g = \frac{4\pi^2}{a} = 10.1 \frac{m}{s^2}$$

## Wnioski:

Najważniejszym wnioskiem płynącym z doświadczenia jest konieczność dopracowania przyrządów pomiarowych, w szczególności minimalizacji wymiarów odważnika w stosunku do długości sznurka. Musieliśmy przyjąć 0.5 cm niepewności w pomiarze długości sznurka ze względu na podłużyny kształt ciężarka(śrubki). Dodatkowo na naszą niekorzyść działy właściwości nici: rozciągliwość oraz skręcanie się oraz niedokładność pomiaru czasu przez badacza(nawet przy 20 powtórzeniach).

Aby uzyskać lepszy pomiar nalezałoby użyć: lekkiej, bardzo cienkiej zyłki metalowej, ciężkiego odważnika o regularnym kształcie (kuli), oraz elektroniczego lub optycznego pomiaru fazy np. wykorzystania zjawiska przebicia na metalowej kuli, które byłoby rejestrowane na porcie urządzenia elektroniczego; zdjęcia wykonywanego przez kamerę o odpowiedniej szybkości sprężoną z oprogramowaniem na komputerze; czujnikiem na podczerwień. Alternatywą jest wykonywanie tego doświadczenia przy pomocy bardzo długiego sznurka, co byłoby niepraktyczne zarówno w warunkach domowych jak i w laboratorium o niskim suficie.

Biorąc pod uwagę wszystkie te czynniki, doświadczenie, jeśli nie mamy dostępu do dokładnych przyrządow pomiarowych, nie jest zbyt praktyczną metodą do wyznaczania przyśpieszenia ziemskiego, w szególności, w dzisiejszych czasach kiedy oczekiwane są bardzo dokładne wyniki.