Gate-Level Minimization

Logic and Digital System Design - CS 303
Sabancı University

Complexity of Digital Circuits

- Directly related to the complexity of the algebraic expression we use to build the circuit.
- Truth table
 - may lead to different implementations
 - Question: which one to use?
- Optimization techniques of algebraic expressions
 - So far, ad hoc.
 - Need more systematic (algorithmic) way
 - Karnaugh (K-) map technique
 - Quine-McCluskey
 - Espresso

Two-Variable K-Map

X

- Two variables: x and y
 - 4 minterms:
 - $m_0 = x'y' \square 00$
 - $m_1 = x'y \square 01$
 - $m_2 = xy' \square 10$
 - $m_3 = xy \square 11$

0 1
0 x'y' x'y
1 xy' xy

Example: Two-Variable K-Map

$$- F = m_0 + m_1 + m_2 = x'y' + x'y + xy'$$

$$- F = x'(y'+y) + xy'$$

$$- F = x' + xy'$$

$$- F = ...$$

$$- F = x' + y'$$

 We can do the same optimization by combining <u>adjacent</u> cells.

Three-Variable K-Map

yz				
X	00	01	11	10
0	m_0	m ₁	m ₃	m ₂
1	m ₄	m ₅	m ₇	m ₆

- Adjacent squares: they differ by only one variable, which
 is primed in one square and not primed in the other
 - $m_2 \leftrightarrow m_6, m_3 \leftrightarrow m_7$
 - $m_2 \leftrightarrow m_0, m_6 \leftrightarrow m_4$

Example: Three-Variable K-Map

• $F_1(x, y, z) = \sum (2, 3, 4, 5)$

- $F_1(x, y, z) = xy' + x'y$
- $F_2(x, y, z) = \sum (3, 4, 6, 7)$

•
$$F_1(x, y, z) = xz' + yz$$

Three Variable Karnaugh Maps

- One square represents one minterm with three literals
- Two adjacent squares represent a term with two literals
- Four adjacent squares represent a term with one literal
- Eight adjacent squares produce a function that is always equal to 1.

Example

• $F_1(x, y, z) = \sum (0, 2, 4, 5, 6)$

$$F_1(x, y, z) = xy' + z'$$

Finding Sum of Minterms

 If a function is not expressed in sum of minterms form, it is possible to get it using K-maps

- Example:
$$F(x, y, z) = x'z + x'y + xy'z + yz$$

$$F(x, y, z) = x'y'z + x'yz + x'yz' + xy'z + xyz$$

 $F(x, y, z) = m1 + m3 + m2 + m5 + m7$

Four-Variable K-Map

- Four variables: x, y, z, t
 - 4 literals
 - 16 minterms

Example: Four-Variable K-Map

- $F(x,y,z,t) = \Sigma (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

zt					
XY	00	01	11	10	
00	1	1	0	1	
01		1	0	1	
11	1	1	0	1	
10	1	1	0	0	

$$- F(x,y,z,t) = z' + x't' + yt'$$

Example: Four-Variable K-Map

• F(x,y,z,t) = x'y'z' + y'zt' + x'yzt' + xy'z'

F(x,y,z,t) = y't' + y'z' + x'zt'

Prime Implicants

- A product term
 - obtained by combining maximum possible number of adjacent squares in the map
- If a minterm is covered by only one prime implicant, that prime implicant is said to be <u>essential</u>.
 - A single 1 on the map represents a prime implicant if it is not adjacent to any other 1's.
 - Two adjacent 1's form a prime implicant, provided that they are not within a group of four adjacent 1's.
 - So on

• $F(x,y,z,t) = \Sigma (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$

zt					
ху	00	01	11	10	
00	1	0	1	1	
01	0	1	1	0	
11	0	1		0	
10	1	1	1	1	

- Prime implicants
 - y't' essential since m₀ is covered only in it
 - yt essential since m₅ is covered only in it
 - They together cover m₀, m₂, m₈, m₁₀, m₅, m₇, m₁₃, m₁₅

- m₃, m₉, m₁₁ are not yet covered.
- How do we cover them?
- There are actually more than one way.

- Both y'z and zt covers m₃ and m₁₁.
- m₉ can be covered in two different prime implicants:
 - xt or xy'
- m₃, m₁₁ \square zt or y'z
- m_q □ xy' or xt

Full Adder

Definition:

Input: 3 1-bit numbers

Output: 2bit number

Х У <u>Z</u> СS

y	Z	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	1
	0 0 1 1 0 0	0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1	0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1

c=yz+xz+xy

Full Adder

Definition:

Input: 3 1-bit numbers

Output: 2bit number

х у <u>z</u> cs

х	у	Z	С	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

	00	01	11	10
0	0	1	0	1
1	1	0	1	0

- F(x, y, z, t) = yt + y't' + zt + xt or
- F(x, y, z, t) = yt + y't' + zt + xy' or
- F(x, y, z, t) = yt + y't' + y'z + xt or
- F(x, y, z, t) = yt + y't' + y'z + xy'
- Therefore, what to do
 - Find out all the essential prime implicants
 - Other prime implicants that covers the minterms not covered by the essential prime implicants
 - Simplified expression is the logical sum of the essential implicants plus the other implicants

Five-Variable Map

• Downside:

- Karnaugh maps with more than four variables are not simple to use anymore.
- 5 variables □ 32 squares, 6 variables □ 64 squares
- Somewhat more practical way for F(x, y, z, t, w)

tw 11 10 00 01 yΖ 00 m_3 m m₁ m, m_4 01 m_{6} m_{5} m_7 11 m_{12} m_{13} m_{15} 10 m₈ m_{11} m

H(x,y,z,t,w)=x'F+xG

tw				
/Z	00	01	11	10
00	m ₁₆	m ₁₇	m ₁₉	m ₁₈
01	m ₂₀	m ₂₁	m ₂₃	m ₂₂
11	m ₂₈	m ₂₉	m ₃₁	m ₃₀
10	m ₂₄	m ₂₅	m ₂₇	m ₂₆

Many-Variable Maps

Adjacency:

- Each square in the x = 0 map is adjacent to the corresponding square in the x = 1 map.
- For example, $m_4 \square m_{20}$ and $m_{15} \square m_{31}$
- Use four 4-variable maps to obtain 64 squares required for six variable optimization
- Alternative way: Use computer programs
 - Quine-McCluskey method
 - Espresso method

Example: Five-Variable Map

• $F(x, y, z, t, w) = \sum (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$

• F(x,y,z,t,w) = x'y'w' + xzw + yt'w

Product of Sums Simplification

So far

- simplified expressions from Karnaugh maps are in <u>sum of</u> <u>products</u> form.
- Simplified <u>product of sums</u> can also be derived from Karnaugh maps.

Method:

- A square with 1 actually represents a "minterm"
- Similarly an empty square (a square with 0) represents a "maxterm".
- Treat the 0's in the same manner as we treat 1's
- The result is a simplified expression in product of sums form.

Example: Product of Sums

- $F(x, y, z, t) = \sum (0, 1, 2, 5, 8, 9, 10)$
 - Simplify this function in
 - a. sum of products
 - b. product of sums

$$F(x, y, z, t) = y't' + y'z' + x'z't$$

Example: Product of Sums

- F'(x,y,z,t) = zt + yt' + xy
- Apply DeMorgan's theorem (use dual theorem)
- F =

zt					
ху	00	01	11	10	
00	1	1	0	1	
01	0	1	0	0	
11	0	0	0	0	
10	1	1	0	1	

$$F(x,y,z,t) = y't' + y'z' + x'z't$$

Example: Product of Sums

F(x,y,z,t) = y't' + y'z' + x'z't: sum of products implementation

F = (y' + t)(x' + y')(z' + t'): product of sums implementation

Product of Maxterms

- If the function is originally expressed in the product of maxterms canonical form, the procedure is also valid
- Example:

$$- F(x, y, z) = \Pi (0, 2, 5, 7)$$

$$F(x, y, z) =$$

 $F(x, y, z) = x'z + xz'$

Product of Sums

- To enter a function F, expressed in product of sums, in the map
 - 1. take its complement, F'
 - 2. Find the squares corresponding to the terms in F',
 - 3. Fill these square with 0's and others with 1's.
- Example:

-
$$F(x, y, z, t) = (x' + y' + z')(y + t)$$

$$- F'(x, y, z, t) = xyz + y't'$$

zt					
ху	00	01	11	10	
00	0			0	
01					
11			0	0	
10	0			0	2

Don't Care Conditions 1/2

- Some functions are not defined for certain input combinations
 - Such function are referred as incompletely specified functions
 - For instance, a circuit defined by the function has never certain input values;
 - therefore, the corresponding output values do not have to be defined
 - This may significantly reduces the circuit complexity

Don't Care Conditions 2/2

• Example: A circuit that takes the 10's complement of decimal digits

Unspecified Minterms

- For unspecified minterms, we do not care what the value the function produces.
- Unspecified minterms of a function are called <u>don't care</u> conditions.
- We use "X" symbol to represent them in Karnaugh map.
- Useful for further simplification
- The symbol X's in the map can be taken 0 or 1 to make the Boolean expression even more simplified

Example: Don't Care Conditions

- $F(x, y, z, t) = \Sigma(1, 3, 7, 11, 15) function$
- $d(x, y, z, t) = \Sigma(0, 2, 5) don't care conditions$

zt				
ху	00	01	11	10
00	X	1	1	X
01	0	X	1	0
11	0	0	1	0
10	0	0	1	0

$$F = zt + x'y't$$

$$F_1 = zt + x'y'$$
 or

$$F_2 = zt + x't$$

Example: Don't Care Conditions

•
$$F_1 = zt + x'y' = \Sigma(0, 1, 2, 3, 7, 11, 15)$$

•
$$F_2 = zt + x't = \Sigma(1, 3, 5, 7, 11, 15)$$

- The two functions are algebraically unequal
 - As far as the function F is concerned both functions are acceptable
- Look at the simplified product of sums expression for the same function F.

$$F' = t' + xz'$$

$$F = t(x'+z)$$

NAND and NOR Gates

NAND and NOR gates are easier to fabricate

Design with NAND or NOR Gates

 It is beneficial to derive conversion rules <u>from</u> Boolean functions given in terms of AND, OR, an NOT gates <u>into</u> equivalent NAND or NOR implementations

New Notation

- Implementing a Boolean function with NAND gates is easy if it is in <u>sum of products form</u>.
- Example: F(x, y, z, t) = xy + zt

$$F(x, y, z, t) = xy + zt$$

$$F(x, y, z, t) = ((xy)')' + ((zt)')'$$

The Conversion Method

• Example: $F(x, y, z) = \Sigma(1, 3, 4, 5, 7)$

Example: Design with NAND Gates

$$F = (z')' + ((xy')')'$$

$$F = z + xy'$$

Summary

- Simplify the function
- 2. Draw a NAND gate for each product term
- 3. Draw a NAND gate for the OR gate in the 2nd level,
- 4. A product term with single literal needs an inverter in the first level. Assume single, complemented literals are available.

Multi-Level NAND Gate Designs

- The standard form results in two-level implementations
- Non-standard forms may raise a difficulty
- Example: F = x(zt + y) + yz'
 - 4-level implementation

Example: Multilevel NAND...

Design with Multi-Level NAND Gates

Rules

- 1. Convert all AND gates to NAND gates
- 2. Convert all OR gates to NAND gates
- 3. Insert an inverter (one-input NAND gate) at the output if the final operation is AND
- 4. Check the bubbles in the diagram. For every bubble along a path from input to output there must be another bubble. If not so,
 - a. complement the input literal

Another (Harder) Example

- Example: F = (xy' + xy)(z + t')
 - (three-level implementation)

Example: Multi-Level NAND Gates

Design with NOR Gates

- NOR is the dual operation of NAND.
 - All rules and procedure we used in the design with NAND gates apply here in a similar way.
 - Function is implemented easily if it is in <u>product of sums</u> form.

Example: Design with NOR Gates

• F = (x+y) (z+t) w

$$F = (x + y) (z + t) w$$

Example: Design with NOR Gates

•
$$F = (xy' + zt) (z + t')$$

Harder Example

• Example: F = x(zt + y) + yz'

Exclusive-OR Function

• The symbol: ⊕

$$- \quad \mathsf{x} \oplus \mathsf{y} = \mathsf{x} \mathsf{y}' + \mathsf{x}' \mathsf{y}$$

$$- (x \oplus y)' = xy + x'y'$$

Properties

1.
$$x \oplus 0 = x$$

2.
$$x \oplus 1 = x'$$

3.
$$x \oplus x = 0$$

4.
$$x \oplus x' = 1$$

5.
$$x \oplus y' = x' \oplus y = (x \oplus y)' - XNOR$$

Commutative & Associative

$$- x \oplus y = y \oplus x$$

$$- (x \oplus y) \oplus z = x \oplus (y \oplus z)$$

Exclusive-OR Function

- XOR gate is not universal
 - Only a limited number of Boolean functions can be expressed in terms of XOR gates
- XOR operation has very important application in arithmetic and error-detection circuits.
- Odd Function

$$- (x \oplus y) \oplus z = (xy' + x'y) \oplus z$$

$$= (xy' + x'y) z' + (xy' + x'y)' z$$

$$= xy'z' + x'yz' + (xy + x'y') z$$

$$= xy'z' + x'yz' + xyz + x'y'z$$

$$= \Sigma (4, 2, 7, 1)$$

Odd Function

- If an odd number of variables are equal to 1, then the function is equal to 1.
- Therefore, multivariable XOR operation is referred as "odd" function.

10

	0	0	1	0	1	Odd function
	1	1	0	1	0	
	yz					
X		00	01	11	10	<u>_</u>
	0	1	0	1	0	Even function
	1	0	1	0	1	

yΖ

X

00

01

Odd & Even Functions

Odd function

•
$$(x \oplus y \oplus z)' = ((x \oplus y) \oplus z)'$$

Adder Circuit for Integers

Addition of two-bit numbers

- Z = X + Y- $X = (x_1 x_0)$ and $Y = (y_1 y_0)$ - $Z = (z_2 z_1 z_0)$
- Bitwise addition
 - 1. $z_0 = x_0 \oplus y_0 \text{ (sum)}$ $c_1 = x_0 y_0 \text{ (carry)}$
 - 2. $z_1 = x_1 \oplus y_1 \oplus c_1$ $c_2 = x_1 y_1 + x_1 c_1 + y_1 c_1$
 - 3. $z_2 = c_2$

Adder Circuit

$$z_2 = c_2$$

$$z_1 = x_1 \oplus y_1 \oplus c_1$$

 $c_2 = x_1 y_1 + x_1 c_1 + y_1 c_1$

$$z_0 = x_0 \oplus y_0$$
$$c_1 = x_0 y_0$$

Comparator Circuit with NAND gates

• F(X>Y)

-
$$X = (x_1 x_0)$$
 and $Y = (y_1 y_0)$

$\mathbf{y_1}\mathbf{y_0}$							
X_1X_0	00	01	11	10			
00	0	0	0	0			
01	1	0	0	0			
11	1	1	0	1			
10	1	1	0	0			

-
$$F(x_1, x_0, y_1, y_0) = x_1y_1' + x_1x_0y_0' + x_0y_0'y_1'$$

Comparator Circuit - Schematic

- $F(x_1, x_0, y_1, y_0) = x_1y_1' + x_1x_0y_0' + x_0y_0'y_1'$

Comparator Circuit - Simulation

