PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-150990

(43) Date of publication of application: 24.05.2002

(51)Int.CI.

H01J 37/317 GO1N 1/28 G01N 1/32 H01J 37/20 H01J 37/28

(21)Application number: 2000-344226

(71)Applicant: HITACHI LTD

(22)Date of filing:

07.11.2000

(72)Inventor:

TOKUDA MITSUO

FUKUDA MUNEYUKI **MITSUI YASUHIRO KOIKE HIDEMI**

TOMIMATSU SATOSHI SHICHI HIROYASU

(54) WORKING OBSERVATION METHOD FOR TRACE SAMPLE AND APPARATUS

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a trace sample working observation apparatus and a minute sample working observation method where cross-sectional observation and analysis of wafer cross section from horizontal direction up to vertical direction can be performed with high resolution, high precision and high throughput, without having to breaking the wafer which is to become samples.

SOLUTION: This apparatus is equipped with a focused ion beam optical system and electron optical system in the same evacuation device and a manipulator, to separate a trace sample, including a desired region of the sample by a charged particle beam molding work and to pick up the separated trace sample, and a manipulator control device for driving the manipulator, independently of a wafer sample board.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-150990 (P2002-150990A)

(43)公開日 平成14年5月24日(2002.5.24)

/w.)]	ALE contained and		
(51) Int.Cl."	識別配号	FI	テーマコード(参考)
H 0 1 J 37/317		HO1J 37/317	D 5C001
GOIN 1/28		G 0 1 N 1/32	B 50033
1/32		H 0 1 J 37/20	Z 5 C 0 3 4
HO1J 37/20	· .	37/28	В
37/28			Z
	審査論求	未請求 請求項の数12	OL (全 14 頁) 最終更に統令
(21)出職番号	特贏2000-344226(P2000-344226)	(71) 出顧人 000005	108
		株式会	社日立製作所
(22)出願日	平成12年11月7日(2000.11.7)	東京都千代田区神田駿河台四丁目 6 番地	
		(72)発明者 徳田	光離
		灾城県	ひたちなか市大字市毛882番地 株
	. "	式会社	日立製作所計測器グループ内
		(72)発明者 福田	宗行
		東京都	国分寺市東恋ケ海一丁目280番地
		株式会	社日立製作所中央研究所内
		(74)代理人 100075	
			作田 康夫
, ,	•		
		· ·	

最終頁に続く

(54) 【発明の名称】 微小試料加工観察方法及び装置

(57)【要約】

【課題】試料となるウェーハを割ることなしにウェーハ 断面を水平から垂直迄の方角からの断面観察や分析を高 分解能、高精度かつ高スループットで行える微小試料加 工觀察装置および微小試料加工観察方法を実現すること を目的とする。

【解決手段】上記課題を解決するために本発明装置では 同一真空装置に集東イオンピーム光学系と電子光学系を備え、試料の所望の領域を含む微小試料を荷電粒子線成型加工により分離し、分離した該微小試料を摘出するマニピュレータと、該マニピュレータをウェーハ試料台と独立に駆動するマニピュレータ制御装置を備えた。

【特許請求の範囲】

【請求項1】イオン源,イオンビームを集束するレン。 ズ、イオンビーム走査偏向器、を備える集東イオンビー ム光学系と、電子源、電子ビームを集束するレンズ、電 子ピーム走査偏向器、を備える電子ピーム光学系と、前 電粒子を試料に照射して該試料からの二次粒子を検出す る倹出器と、該試料を併せ持つ試料台を備える微小試料 加工観察装置において、集束イオンビームを用いて該試 料から微小試料を分離する機能と、該微小試料を摘出す るためのマニヒュレータを具備し摘出された該碳小試料 10 -を前記電子ビームまたは前記集東イオンビームで観察す。 る機能を有することを特徴とする微小試料加工観察装。 置。

【請求項2】該マニピュレータには該試料から摘出した 該微小試料の位置と姿勢を調節する機能を有することを 特徴とする請求項1記載の微小試料加工観察装置。

【請求項3】請求項3記載の微小試料の位置と姿勢を調 **崩する機能が、 荷電粒子ビームの該倣小試料への照射角** 度可変機能を含むことを特徴とする請求項2記載の微小 試料加工觀察装置。

【請求項4】試料から分離した該微小試料に接続するマ ニピュレータと、該マニピュレータを駆動させるマニピ ュレータ制御装置と、該試料台と独立に駆動して荷電粒 子ピームの該谶小試料への照射角度可変機能を有する第 2の試料台を具備することを特徴とする請求項2記載の 微小試料加工觀察裝置。

【請求項5】導入試料から分離した該敵小試料に接続す るマニピュレータと、該マニピュレータを該試料台と独 立に駆動させるマニピュレータ制御装置とを具備し、該 微小試料を前記マニピュレータで支持した状態で、観察 30 用荷電粒子ビームの該微小試料への照射角度可変機能を 有することを特徴とする請求項2記載の版小試料加工観 察装置。

【請求項6】 荷電粒子ビーム照射時に該微小試料から発 生するX線を検出するX線検出器を備えることを特徴と する請求項1から5記載の微小試料加工観察装置。

【請求項7】集束イオンビーム光学系を具備し、且つ、 試料に対する該光学系の傾斜角度を可変する機構を有す ることを特徴とする請求項1記載の該徽小試料加工観察 装置。

【請求項8】集東イオンビーム光学系を2基具備するこ とを特徴とする請求項1記載の該級小試料加工観察装 置。

【請求項9】前記微小試料を全自動で切出す機能を有す ることを特徴とする請求項1の微小試料加工観察装置。 【請求項10】集東イオンピームを用いて試料から微小 試料を分離し、該微小試料を、マニピュレータで摘出。 し、該版小試料を、電子ビームまたは集東イオンビーム で観察することを特徴とする微小試料加工観察方法。

体であることを特徴とする請求項10記載の微小試料加 工觀察方法。

【請求項12】前記導入試料はバターン無し或いはバタ ーン付きの半導体ウェーハであることを特徴とする請求 項10の微小試料加工観察方法。

【発明の詳細な説明】

[0001]

【発明の肩する技術分野】本発明は、被観察対象物の表 面のみならず表面に近い内部の断面をも観察分析するこ とを必要とする。半導体デバイス、液晶デバイス、磁気 ヘッド、等の電子デバイスやマイクロデバイス等の研究 開発や製造における観察・分析・評価手段として利用さ れる装置システムに関する。

[0002]

【従来の技術】ダイナミックランダムアクセスメモリに 代表される半導体メモリやマイクロブロセッサ、半導体 レーザなど半導体デバイス、および磁気へっドなど電子。 部品の製造においては、製品の品質管理のために製造工 程途中あるいは終了の段階で製品特性が検査される。検 査では、製作寸法の計測や、回路バターンの欠陥検査や 異物分析がなされる。このため、各種の手段が用意され 利用されている。

【0003】特に異常箇所が製品の内部に存在する場合 は、従来、集束イオンビーム(Focused Ion beam : F丁 B)装置と電子顕微鏡を組み合わせた。微細加工觀察装 置が用いられる機会が増している。この装置は特開平1 1-260307号公報に開示されている。

【0004】同種の装置の概略構成を、図16を用いて 説明する。走査電子顕微鏡機能を有する集束イオンビー ム装置は、真空試料室60を有しており、イオン源1. イオンビーム走査偏向器3.およびレンズ2などから構 成される集東イオンビーム光学系31. FIB照射によ って試料から放出する二次電子や二次イオンを倹出する 二次粒子検出器6,半導体ウェーハや半導体チップなど のウェーハ21を載置する試料台24などが配置されて いる。また、電子ビームを放出する電子銃7,電子ビー ムレンズ9、電子ビーム走査偏向器10、などから構成 される走査電子顕微鏡光学系41を設置している。

【0005】次に、本装置の動作について説明する。ま 40 ず、イオン源1から放出したイオンを、レンズ31を通 してウェーハ21に照射する。FIB4は試料上で直径 数ナノメートルから1マイクロメートル程度に細束化さ れる。FIB4をウェーハ21に照射するとスパッタリ ング現象により試料表面の構成原子が真空中に放出され る。したがってイオンビーム走査偏向器3を用いてFL B4を走査させることで、マイクロメートルからサブマ イクロメートルレベルの加工ができることになる。そこ で、図14において試料となるウェーハ21を装置内部 の試料台24に載せ、座標値で指定された観察箇所p1 【論求項11】前記微小試料の形状は四面体または五面 50 を位置出し後、観察箇所にFIB4を照射し満穴を掘

り、図15に示す観察箇所の内部断面s1を創生する。 創生された横穴の外面や内壁面を、電子ビーム照射によ る走査電子顕微鏡機能で観察したり、分析装置5 1 で過 直分析する。尚、ウェーハブロセスで用いられる従来の。 微細加工観察装置は、集東イオンビーム光学系と電子ビ ーム光学系を「試料表面の観察部位で両ピーム軸が交差」 する様に配置されている。

【0006】ところで最近、観察部位を含むミクロンオ ーダーの微小領域を切出した微小試料を加工観察装置の 外部へ取り出し、別途用意した装置に微小試料を移して 10 最適形状に追加工し観察・分析する方法が考案され利用 されている。この方法は、特開平05-52721号公 報に開示されている。

【0007】この方法は図17に示すように、まず、試 料102の表面に対しFIB4が直角に照射するように 試料102の姿勢を保ら、試料上でFIB4を矩形に走 査させ、試料表面に所要の深さの角穴107を形成する (図17(a))。次に、試料102を傾斜させ、底穴 108を形成する。試料102の傾斜角の変更は、試料 台(図示せず)によって行われる(図17(り))。試 20 料102の姿勢を変更し、試料102の表面がFIB4 に対して再び垂直になるように試料102を設置し、切 り欠き満109を形成する(図17(c))。マニピュ レータ(図示せず)を駆動し、マニピュレータ先端のブ ローブ72の先端を、試料102を分離する部分に接触 させる(図17(d))。ガスノズル11()から堆積性ガ ス105を供給し、FLB4をプローブ72の先端部を。 含む領域に局所的に照射し、イオンビームアシストデボ ジション膜(以下、デポ膜104と略す)を形成する。 接触状態にある試料102の分離部分とプローブ72の 30 先端はデポ膜104で接続される(図17(e))。 F 184で残りの部分を切り欠き加工し(図17(f))、試 料102から分離試料である微小試料12を切出す。切 出された分離試料12は、接続されたプローブ72で支 持された状態になる(図17(g))。この微小試料1 2を、F | B 4 で加工し、観察しようとする領域をウォー ール加工するとTEM試料(図示せず)となる。以上が、 ウェーハなどの試料から所望の解析領域を含む微小試料 を、FIB加工と微小試料の搬送手段を駆使して分離す る方法である。この方法で分離した微小試料を本資細加 40 工装置の外に取り出し、各種観察・分折装置に導入する ことで解析することができる。但し、試料を大気に晒す ことを織う場合には利用できない。また、別装置も必要し になるため設備コストや設置スペースの増加するととが 進けられない。

[0008]

【発明が解決しようとする課題】以上述べた従来法には 次のような問題がある。

【0009】問題(1)FIB加工で形成した試料の穴 満断面を観察するには、試料台を傾斜させることにより 50 一方、評価用ウェーハの供給能力不足や価格上昇のため

斜め方向から穴溝内壁断面を観察する。その場合「FI B装置のワーキングディスタンスや、対物レンズの存 在、或るいは試料台の大きさに起因する構造上の制約に より試料台の傾斜角度調整範囲が、制限され、それ以上 の角度に傾斜できない。従って海内壁断面の垂直観察は 不可能である。しかしながら半導体デバイス製造のプロ セス開発等におけるドライエッチング、平坦化、薄膜形 成等の処理特性確認では垂直断面観察が不可欠である が、上記公知例の装置では対応できなかった。

【0010】問題(2)斜め観察による分解能低下が大 きな問題になる。ウェーハ表面に対し斜め上方から電子 ビームを照射し穴溝内壁断面を観察する場合、ウェーハー 表面に垂直方向即ら海穴内壁断面の観察分解能が低下す る。低下率は、およそ30.では約15%、最も多用さ れる45° 近辺では30%にも達する。最近の半導体デ バイスの微細化は極限に達しており、数ナフメータ以下。 の精度での寸法や形状の測定が必要となっている。要求「 される観察分解能は3 n m以下と、走査電子顕微鏡の技 術的服界域に突入している。加えてこの程度の高分解能 下では焦点深度が極めて浅くなり1µmの数10%以下 の範囲しかピントが合わないため、斜め観察時のデバイ ス様方向断面の直正観察範囲は、要求領域の半分にも満 たない場合が頻発する。この問題は垂直観察することに、 より全観察領域で焦点の合った高品位な観察が可能にで ぎる.

【0011】問題(3)観察断面がウェーハ上に形成し た微小な横穴壁面に存在するため、穴から出てくる二次 電子の数密度がウェーハ表面と比較して減少する。従っ で二次電子検出効率が低下することで二次電子像のS/ Nの低下を招き、断面観察の精度低下を余儀なくされ

【0012】しSIバターンの微細化は止まることなく 2~3年毎に30%低減するペースで進んでおり、観察 装置には益々高い分解能が要求されている。更には電子 ビームを照射して励起される原子特性X線の面分布をX 線倹出器で測定して元素分析(EDX分析)を行って も、試料中への電子ビーム侵入によるX線発生領域の拡 大により、電子ビーム径がり.1 μm 以下であっても、 分析の面分解能は約1.4mとなってしまい、微細な構造。 を持つLSI素子断面の分析には不十分であった。 【10013】問題(4)断面垂直観察が不可欠とされる 享例として、ウェーハブロセスにおけるエッチング加 工、潜穴埋め込み、平坦化加工等の出来栄え評価が挙げ、 られる。加工断面の寸法や形状を正確に測定するため に、従来はウェーハから見たい断面を含むチップサイズ の試料を割り出し、汎用の走査電子顕微鏡などで観察し ている。ところがデバイスの微細化進展やウェーハの大 □径化に伴い、素子回路パターンの観察したい位置で正 確に破断する作業が非常に難しいため失敗も出ている。

(4).

評価試料作成の失敗が許されない状況にある。

【10014】問題(5)特開平5~52721号公報に 開示された手法では観察・分析の精度は分解能など十分 な水準を確保できるが、試料を従来装置内で製作し、こ れを装置外部に取りだし、別に用意した観察・分析装置 に導入する必要があるため、微小試料の取り出しから加 工・観察・分析までの所要時間が数時間にも及ぶ問題が あった。加えて、試料を大気に暴露すると酸化や吸湿等。 で劣化するケースでは、その回避が困難であった。半導 体デバイスの断面観察は、最近では半導体製造時の有益 10 な検査手法として重視されつつあり、その場合の処理能 力は現時点で毎時2~3ヶ所以上の観察・分析が望まれ ており、今後さらなる高速処理が要望される動向にあ る。この要望に対して従来法の処理能力は極端に低いと いう問題が解決されていない。

【10115】上述の問題点に鑑み、本願の目的は、対象 試料の内部断面を垂直断面観察できて、高分解能、高精 度、高スループット,大気暴露による劣化無し、失敗無 しに観察・分析できる微小試料加工観察装置および微小。 試料加工観察方法を提供することにある。

[0016]

【課題を解決するための手段】以上に述べたような目的 は、以下のようにすることによって達成される。

【0017】(1)イオン源、イオンピームを集束する レンズ、イオンビーム走査偏向器、を備える集束イオン ビーム光学系と、電子源、電子ビームを集束するレン。 ス、電子ビーム走査偏向器」を備える電子ビーム光学系 と、荷電粒子を試料に照射して該試料からの二次粒子を 検出する検出器と、該試料を併せ持つ試料台を備える微 て該試料から微小試料を分離する機能と、該微小試料を **摘出するためのマニピュレータを具備し摘出された該漁** 小試料を前記電子ビームまたは前記集東イオンビームで 観察する機能を有することを特徴とする版小試料加工観 察装置とする。これにより、対象試料の内部断面を二次 電子の収率を高くして観察できるため高分解能観察がで き、しかも微小試料を装置の外部に取り出すことが無い。 ため短時間で観察・分析できる微小試料加工観察装置を 提供できる。

出した該微小試料の位置と姿勢を調節する機能を有する ことを特徴とする請求項1記載の微小試料加工観察装置 とする。

【0019】とれにより、微小試料を走査電子顕微光学。 系もしくは集東イオンビーム光学系に対し位置を移動で きるため、観察分解能がより高くなる位置に微小試料を 配置することができる。また微小試料の内部断面観察方 向を選択することができる。このため断面を垂直に観察 すれば、二次電子の収率も高いことから、高分解能で観 察できる微小試料加工観察装置を提供できる。

【0020】(3)微小試料の位置と姿勢を調節する機 能が、荷電粒子ビームの該職小試料への照射角度可変機 能を含むことを特徴とする請求項2記載の微小試料加工。 観察装置とする。

【0021】これにより、対象試料の内部断面観察方向 を自由に選択することができる。このため断面を垂直に 観察すれば、エッチングや平坦化の形状寸法や埋め込み 状況、膜厚等を高分解能で観察でき、高精度な計測・評 価ができる微小試料加工観察装置を提供できる。

【0022】(4)試料から分離した該微小試料に接続 するマニピュレータと、該マニピュレータを駆動させる マニビュレータ制御装置と、該試料台と独立に駆動して、 荷電粒子ピームの該微小試料への照射角度可変機能を有 する第2の試料台を具備することを特徴とする請求項2 記載の微小試料加工観察装置とする。これにより、対象 試料の内部断面を高分解能かつ短時間で観察・分析でき る微小試料加工観察装置を提供できる。また、第2の試 料台に固定した歳小試料をマニピュレータから切り離し て、1つのマニピュレータで複数の微小試料を第2の試 20 料台に固定することが可能となることで、断面観察と元 素解析の時間を短縮することができる。またマニピュレ ータから切り離して微小試料を第2の試料台に固定する ことで、導入試料を保持する試料台の防振機構と微小試。 料を固定する第2の試料台の防振機構を共有することが できる。

【0023】(5)導入試料から分離した該微小試料に 接続するマニピュレータと、該マニピュレータを該試料 台と独立に駆動させるマニピュレータ制御装置とを具備 し、該版小試料を前記マニピュレータで支持した状態。 小試料加工観察装置において、集東イオンビームを用い、30 で、観察用荷電粒子ビームの該機小試料への照射角度可 変機能を有することを特徴とする請求項2記載の微小試 料加工観察装置とする。これにより、対象試料の内部断 面を高分解能かつ短時間で観察・分析できる微小試料加 工觀察装置を提供できる。また、該職小試料を固定する 第2の試料台を必要としないために、微小試料断面観察 のための操作が簡単になり、操作時間を短くできる。

【りり24】(6)荷電粒子ビーム照射時に該職小試料 から発生するX線を検出するX線検出器を備えることを 特徴とする請求項1から5記載の微小試料加工観察装置 【りり18】(2)該マニピュレータには該試料から摘 40 とする。これにより、対象試料の内部断面を高分解能か つ短時間で観察・分析できる微小試料加工観察装置を提 供できる。また、荷電粒子線照射時の原子特性X線検出 による元素分析において、微小試料を薄膜化すること で、荷電粒子線の試料への侵入によるX線発生領域拡大 を回避できるので高分解能元素分析が可能となる。

【0025】(7)集東イオンビーム光学系を具備し、 且つ。試料に対する該光学系の傾斜角度を可変する機構 を有することを特徴とする請求項1記載の該機小試料加 工観察装置とする。これにより、対象試料の内部断面を 50 高分解能かつ短時間で観察・分析できる微小試料加工観 (5).

察装置を提供する。特に、該光学系の傾斜角度を可変できるため多様な試料作製方法および試料形状を実現できる。

【0026】(8)集東イオンビーム光学系を2差具備することを特徴とする請求項1記載の該做小試料加工観察装置とする。これにより、対象試料の内部断面を高分解能かつ短時間で観察・分析できる微小試料加工観察装置を提供する。特に、2基の集東イオンビーム光学系を用いるため、短時間の試料作製が可能になる。また、試料台を傾斜しない構造とすれば装置の小型化も可能にな 10 る。

【りり27】(9) 微小試料を全自動で切出す機能を有することを特徴とする微小試料加工観察装置とする。これにより、対象試料の内部断面を高分解能かつ短時間で観察・分析できる微小試料加工観察装置を提供する。特に装置操作の自動化により操作者の負担を軽減できるので、より短時間の観察・分析が可能となる。

【0028】(10) 真空装置内で、業東イオンビームを用いて比較的大形な導入試料の表面から観察対象部位を微小試料として分離し、該微小試料を、マニピュレー 20 夕を駆動して導入試料から摘出し、該微小試料を、真空雰囲気の試料室内に置いたまま、電子ビームまたは集東イオビームで該微小試料の特定部位を観察することを特徴とする微小試料加工観察方法とする。これにより、対象試料の内部断面を二次電子の収率を高くして観察できるため高分解能観察ができ、かつ微小試料を装置の外部に取り出すことが無いため短時間で観察・分析できる微小試料加工観察方法を提供できる。

【0029】(11)前記敞小試料の形状は四面体また は五面体であることを特徴とする微小試料加工観察方法 30 とする。これにより、対象試料の内部断面を高分解能か つ短時間で観察・分析できる微小試料加工観察方法を提 供する。特に、微小試料を分離するのに加工に無駄が少 ないため短時間で微小試料作製ができる。

【0030】(12)前記導入試料はバターン無し或い はバターン付きの半導体ウェーハであることを特徴とす る微小試料加工観察方法とする。これにより、対象試料。 の内部断面を高分解能かつ短時間で観察・分析できる微 小試料加工観察方法を提供する。特に、半導体ウェーハ に適用することにより、半導体製造プロセス検査に活用 40 でき、デバイス不良の早期発見および短時間品質管理に より製造歩留まりの向上に貢献する。

[0031] -

【発明の実施の形態】本発明の実施形態である微小試料 加工観察装置の構成及びその動作を説明する。

(実施例1)第1の実施例の装置構成と動作を図1,図 2および図3を用いて説明する。図1、図2は装置全体 構成を、図3は業東イオビーム光学系、走査電子顕微鏡 光学系および試料台周辺の構成を詳細に示す。なお、本 実施の形態では、本発明の微小試料加工観察装置のうち 50

ウェーハ対応装置を示す。また、図3は、図1の概略解 瞰断面を表しているが、説明の都合上、機器の向きや詳 細には幾分の相違があるが本質的差ではない。図1にお いて、装置システムの中心部には集東イオンビーム光学 系31と電子ビーム光学系41が真空試料室60の上部 に適宜設置されている。真空試料室60の内部には試料。 となるウェーハ21を載置する試料台24が設置されて、 いる。2基の光学系31及び41は各々の中心軸がウェ ーハ21表面付近で一点に交わるように調整されてい。 る。試料台24にはウェーハ21を前後左右に高精度で 移動する機構を内蔵しており、ウェーハ21上の指定菌 所が集東イオンビーム光学系31の真下に来るように制 御される。試料台24は回転、上下、あるいは傾斜する 機能を有する。真空試料室60には図示を省略した排気 装置が接続され着切な圧力に制御されている。尚、光学 系31,41にも図示を省略した排気系を個別に備え適 切な圧力に維持している。真空試料室60内にはウェー ハ導入手段61.ウェーハ搬送手段62を有する。真空 試料室60に隣接してウェーハ移載ロボット82、カセ ット導入手段81が配置されている。真空試料室60の。 左隣には装置全体及び試料加工観察評価の一連の処理を

- 【0032】次に、本実施形態のウェーハ導入操作を概 説する。ウェーハカセット23がカセット導入手段81 のテーブルに置かれ、作業開始指令が操作制御卓100 から発せられると、ウェーハ搬送ロボット82がカセッ 上内の指定されたスロットから試料となるウェーハを引 き出し、図2に示すオリエンテーション調整手段83で ウェーハ21の向きを所定の位置に調整される。次い で、ウェーハ21はウェーハ搬送ロボット82によりウ ェーハ導入手段61上部のハッチ62が開かれた時点で ウェーハを裁置台63に乗せられる。 ハッチ62を閉じ ると、ウェーハ周囲に狭い空間が形成されロードロック 室となり、図示を省略した真空排気手段で排気した後、 載置台63を下降する。次いで、ウェーハ搬送手段61 が載置台63のウェーハ21を取り上げ、真空試料室6 ①中央の試料台24に載置する。尚、試料台24にはウ ェーハ21の反り矯正や振動防止のためウェーハ21を チャックする手段を必要に応じて設ける。ウェーハ21 上の観察分析位置p1の座標値を操作制御部100から 入力して、試料台24を助かしウェーハ21の観察分析。 位置 p 1 を集束イオンビーム光学系31の直下に合わせ て停止する。

制御管理する操作制御部100を配備している。

【0033】次に、図3を用いて試料加工観察評価の過程を説明する。本発明の微小試料加工観察装置では、集東イオビーム光学系31は、イオン源1、イオン源1から放出するイオンビームを集東するレンズ2、イオンビーム走査偏向器3等で構成され、また。電子ビーム光学系41は、電子銃7、前記電子銃7から放出する電子ビーム8を集東する電子レンズ9、電子ビーム走査偏向器

10で構成される。その他に、集東イオンピーム(F十二 B) 4または電子ビーム8をウェーハ21に照射してウ ェーハからの二次粒子を倹出するための二次粒子倹出器 6、ウェーハ21を載せる可動の試料台24,所望の試 料位置を特定するため試料台の位置を制御する試料台制 御装置25,ブローブ72の先端を微小試料の摘出位置。 に移動し、摘出し、集東イオンピーム (FIB) 4また は電子ビーム8を照射して微小試料の特定位置を観察評 価する上で最適な位置や方向を制御するためのマニピュー レータ制御装置15と電子ビーム8の照射時に励起され、10 る原子特性X線後出のためのX線検出器16と、堆積ガ ス供給装置17を備えている。

【0034】次に、本実施形態で、ウェーハ導入後の試 料加工観察評価の過程を概説する。まず、試料台を下げ てプローブ72の先端をウェーハ21から離した状態 で、試料台24に対して水平方向(XY方向)にプロー ブ72を移動し、プローブ72の先端をFIB4の走査 領域に設定する。マニピュレータ制御装置15は位置座 標を保存した後、プローブ72を退避する。

をウェーハ21に照射して、図4に示すように観察分析。 位置p2を構切ってコの字を描くように溝を形成する。 加工領域は、長さ約5μm、幅約1μm,深さ約3μm であり、片方側面でウェーハ21と接続している。その 後、試料台24を傾斜させ、FIB4で三角柱の斜面を 形成するように加工する。ただし、この状態では、微小 試料22とウェーハ21とは支持部で接続されている。

【0036】次に、試料台24傾斜を戻した後、微小試 - 料22に、マニピュレータ10先端のブローブ12を微 小試料22の端部に接触させた後に、FIB4の照射に 30 より堆積性ガスを接触点75に堆積させてプロープ72 を敞小試料22に接合し一体化する。更に、支持部S2 をFIB4で切断して微小試料22を切取る。微小試料 22はプロープ72に支持された状態になり、観察・分 析を目的とする表面及び内部断面が微小試料22の観察 分析面 p 3 として取り出す準備が完了する。

【りり37】次に、図5の(h)に示すように、マニピ ュレータ70を操作して敵小試料22をウェーハ21表 面から浮上する高さまで持ち上げる。尚、必要に応じて 4の照射角をマニピュレータの回転操作で適切に追加工 して所望の観察断面p3を形成する。この追加工の一例 としてFIB4が持つビームのテーバによって斜めに形 成された観察断面p2を真に垂直断面とするための仕上 げ加工がある。これまで行われてきた断面加工/観察で はFIBで掘った穴の側壁を観察面としなければならな かったのに対し、本実施例装置によれば、持ち上げた後 に追加工することが可能であり、観察対象面を適宜移動 させつつ、対加工を行うことができるので、所望の断面。 を適正に形成することが可能になる。

」【0038】次に、微小試料22を回転させて。電子ビ ーム光学系41の電子ビーム8が観察断面p3へ概略垂 直に入射するようにマニビュレータ70を動かして微小 試料22の姿勢を制御した後静止させる。これにより、 二次粒子検出器6での二次電子の検出効率は、試料断面 を観察する場合であっても、ウェーハ最表面を観察する 場合と同程度になり、微小試料22の観察分析面p3の。 観察条件は非常に良好なものになり、従来例で問題であ った分解能の低下を回避でき、しかも観察分析面p2. p3の角度を望ましい角度に調整できるので、より綿密 な観察分析ができるようになる。

10

【10039】また、微小試料22を 装置の外部に取り 出すことなく。真空雰囲気の試料室内に置いたまま、観 察・分析するため、対象試料の内部断面を室内大気暴露 による汚染や異物付着無しに、高分解能、高精度、最適 角度での観察・分析が実現可能となる。しかも1時間当 たり2~3ヶ所以上の高い処理能力での観察・分析が可 能となる。

【0040】更に、本実施例装置では観察断面p3を持 【0035】集東イオンビーム光学系31からFIB4 20 つ敵小試料22を、マニュピュレータ70によって種々 の傾斜や移動を行うことができるので、例えば観察断面 p 2 に孔を設け、試料内部の 3 次元的な断層形成状態を も確認することが可能になる。

> 【1) () 4 1 】なお、図3の例ではFIB4を挟んで対向 して、マニュピュレータ70と電子ビーム光学系41が 形成されているが、マニビュレータ70等の動作数を減 らして加工/観察時間を極力減らすためは、マニピュレ ータ70と電子ピーム光学系41間の相対角度が、FL B4の照射方向に対し垂直な面内で、90°に近い角度。 となるように形成されることが望ましい。なぜならこの ように形成することによって、マニピュレータ70は、 ウェーハ21から微小試料22を持ち上げる動作。電子。 ビーム8に対し観察断面ヶ2が垂直となるようにプロー ブ72を回転させる動作。及びその他の微調動作のみを 行えば良いからである。

【0042】また、上記説明ではウェーハ21からマニ ピュレータ70によって、微小試料22を持ち上げる例 を用いているが、これに限られることはなくウェーハ2 1を降下させることにより、結果的に微小試料22を持 プローブ72に支持された状態で微小試料22にFIB・40 ち上げるようにしても良い。この場合、試料台24には ウェーハ21を2方向(FIB4の光軸方向)に移動さ せる2輪移動機構を設けておく。このような構成によれ は、ウェーハ21内の微小試料22となる個所に、電子。 ビーム光学系41の光輪を位置づけた状態で微小試料2 2の切出しと持ち上げを行うことが可能になる。この場 合、FIB4による微小試料22の切出しから、観察断 面p2の観察に至るまでの工程を電子顕微鏡で確認しつ つ実行でき、かつその間の照射位置の変更をあまり行う。 ことなく実現することが可能になる。

【0043】なお電子ビーム光学系41によって、ウェ

一八21の表面を斜めから見た電子顕微鏡像が得られるが、この電子顕微鏡像に、加工予定断面やFIB4による加工到達位置を重量しモデル表示すれば、FIB4による断面加工状態を容易に確認することができる。加工予定断面を電子顕微鏡像に重量表示するには、設定される加工確さと、倍率から算出される電子顕微鏡像内の寸法に基づいて、断面となる部分を示すアニメーションを電子顕微鏡に重量表示する。

【0044】また、FIBの電流や加速電圧,試料の材質等に基づいてリアルタイムでの加工深さを算出し、電子顕微鏡像に現在の加工深さ表すアニメーションを重量表示するようにすれば、加工の進行状況を確認することが容易になる。本実施例装置の電子ビーム光学系41はヴェーハ21に対し俯瞰的位置に配置されており、電子顕微鏡像は俯瞰像となるため、上記アニメーションも併せて立体的に表示することにより、加工状況をより明確に確認することができる。

【0045】更に、本実施例装置ではウェーハ21に対 UF I Bを走査することにより得られる二次電子に基づ いて形成される走査イオン顕微鏡像(SIM像)上で、 断面加工位置を設定する機能を備えているが、断面位置 と加工深さの入力に基づいて、その他の設定や装置の動 作(試料台の駆動やイオンビームによる加工位置の決 定)を自動的に行うようなシーケンスを設けることもで きる。この場合、まずSIM像上で観察断面p3の上辺 となる部分を指定すると共に、加工深さ (観察断面p3 の深さ方向の寸法)を設定する。この2つの設定に基づ いて、微小試料22の傾斜部の形成角度と観察分析面p 3を自動決定し、この設定によってその後の加工を自動 的に行う。また観察分析面p3(矩形領域)をSIM像 30 上で設定すると共に、加工深さを設定することによっ - 'て」その後の加工を自動的に行うシーケンスを設けるこ とも可能である。

【0046】なお、本実施例装置では、微小試料22を 持ち上げた後、電子ビーム8に対し観察断面p3が適正 に位置づけられるように、プローブ72には微動機構、 (図示せず) が設けられている。例えば図4の例では、 単にプロープ12を回動させると、敵小試料22はプロ ープ72との接着点を中心に回転するので、観察断面p」 3は微小試料22の長手方向を回転軸とする回転だけで 40 はなく、FIB4の照射方向を回転軸とする回転の成分 が含まれることになる。この回転成分を除去するための **微動機構をプローブ72に持たせておき、プローブ72** の回転に併せて、或るいは回転動作とは異なるタイミン グで微動機構を動作させることにより、電子ビーム8光 軸に対する垂直面内に、観察断面 p 3 を正確に位置づけ ることが可能となる。また、FIB4の光軸に対し垂直 な面内において、電子ビーム光学系41に対し、プロー ブ72を901より若干大きな角度となるように配置す ることによっても同等の効果を得ることができる。この 50

場合。プローブ72を電子ビーム光学系41に対し、上記集束イオンビームの照射方向を回転軸とする回転成分+90°に配置することによって、その効果を達成する。

【0047】また、F1B4の照射方向を回転軸とする回転成分が含まれるのは、ブローブ72の回転軸が観察分析面p2や観察断面p3に対して斜めになっていることに起因する。即ち回転軸が、観察分析面p2と観察断面p3に平行となるようにブローブ72を形成すれば、10 上記問題を解決することができる。そのために図3のような鏡体構造を持つ装置の場合、ウェーハ21表面に平行(F1B4の光軸に対して垂直)にブローブ72の回転地を形成すると良い。そしてブローブ72の回転を形成すると良い。そしてブローブ72の回転を持つブローブであっても、微小試料22を支持することが可能になる。更にブローブの回転と平行移動によって電子ビーム8の光軸下に試料を移動できるよう、電子ビーム光学系41に対し垂直となるようにブローブ72の回転軸を形成すると良い。

【0048】またマニピュレータ制御装置15からの駆動助力を、フローブ保持部71とは異なる高さであって且つウェーハ21と平行な回転軸を持つフローブに伝達するような機構を設ければ、微小試料22を大きく振りまわすことなく、電子ビーム8に対する観察断面p3の位置合わせを行うことができる。

【りり49】なお、プロープ72で宙吊り状態となった 微小試料22は振動の影響を受け易いので、高倍率や振 動の多い設置環境下で観察・分析する場合には、微小試 料22を、ウェーハ21上の支険ない位置へ着地させる か、試料台のウェーハ周辺の空き地に設けた微小試料ボートへ着地させることにより微小試料の振動を大幅に抑 えることができ、良質の観察・分析が可能となる。図1 8に示す例はその一例であり、切出した微小試料22を ウェーハ21の上に接地させることで、耐震性を向上さ せた例を示す図である。このような手法を採る場合、微 小試料の接地位置と、電子ビーム8の光軸が一致するよ うに予めシーケンスを組んでおくと良い。

【0050】尚、図4に示す微小試料22の作成では、 微小試料22を五面体となるように加工した。これにより、特に、微小試料を分離するのに加工に無駄が少な く、短時間の微小試料作製が実現する。但し、図示を省 略するが最も加工面が少ないため加工時間を最小化でき る四面体や、これに近い形状にしても、本発明の効果が 得られることは言うまでもない。

【0.051】また、微小試料22の上で電子ビーム8を 走査するEDX分析では、電子ビーム照射による侵入距 離約1μmよりも電子ビーム照射方向に薄く微小試料2 2を製膜すると元素分析精度が向上する。

(実施例2)本発明の第2の実施例である微小試料加工 観察装置の構成およびその動作を、装置全体構成を示す .

図6、図7を用いて説明する。ここで、図7は図6の平面図を表しているが、説明の都台上、機器の向きや詳細には茂分の相違があるが本質的差ではない。本装置では、装置システムの中心部の真空試料室60の上部に、集束イオンビーム光学系31が垂直に設置され、更に第2の集束イオンビーム光学系32が約40、傾斜して設置されている。また、電子ビーム光学系41は約45、傾斜して設置されている。3基の光学系31、32及び41は各々の中心軸がウェーハ21表面付近で一点に交わるように調整されている。また、第1の実施例の装置 10と同様に、真空試料室60の内部には試料となるウェーハ21を載置する試料台24が設置されている。ただし、本実施例の試料台24は水平移動(X-Y)、回転、上下移動する機能は有するが、傾斜機能は必ずしる必要ではない。

【0052】次に、本装置による試料作製動作を、図4 を用いて説明する。まず、集束イオンビーム光学系31 からFIB4をウェーハ21に照射して、図4に示すよ うに観察分析位置p2を横切ってコの字を描くように溝 を形成する。ここまでは、実施の形態1と同様である。 次に、三角柱の斜面を形成するのは、もう一基の集束イ オンビーム光学系32からのFIB4により加工する。 ただし、この状態では、微小試料22とウェーハ21と は支持部で接続されている。この後、再び、集束イオン ビーム光学系31からFIB4を用い、実施の形態1と 同様に微小試料を切取る。すなわら、微小試料22に、 マニビュレータ70のプローブ保持部71先端のプロー ブ72を微小試料22の端部に接触させた後に、FIB 4の照射により堆積性ガスを接触点75に堆積させでプ ロープ72を歳小試料22に接合し一体化し、支持部を 30 FIB4で切断して微小試料22を切取る。この後、微 小試料22の観察・分析等の工程は、実施の形態1と同 様である。

【0053】以上に述べたように、本実施の形態も、第 1の実施例と同様に、高分解能で高速の観察分析ができ る。本実施の形態では、特に、2基の集束イオンビーム 光学系を用いることにより、試料台の傾斜を不要にでき る。試料台の傾斜機構を省略できることにより試料台の 位置決め精度を数倍~10倍以上向上できる。LSLデ バイス製造現場では、近年各種ウェーハ検査評価装置に 40 異物検査や欠陥検査を行い、ウェーハ上の異常個所の特 性並びに座標データを収録し、その座標データをその後 の更なる詳細検査用装置が受け取って指定座標位置を割 り出して観察分析を行うことが慣例になってきた。位置 決め精度が高いことにより試料ウェーハ21の観察個所 の位置割り出し処理を自動化でき、しかもそのアルゴリ ズムを単純化できる。これにより所要時間が大幅に短縮 できるので高いスループットが得られる。更には、傾斜 機備を持たない試料台は小形軽量で高剛性を得やすく信 類性も増すので、より高品質な観察分析ができ、装置の 50

小型化や低コスト化も可能になる。

【0054】尚、集東イオンビーム光学系31にスイン グ機能を待たせて垂直位置と傾斜位置の2ポジションを 適宜往来させることにより、試料台24を傾斜せずに、 第2の実施例と同様の処理が可能になり、本発明の効果 を得ることができる。

14

(実施例3)本発明の第3の実施例である微小試料加工観察装置の構成およびその動作を、装置全体構成を示す図8、図9を用いて説明する。ここで、図9は図8の平10 面図を表しているが、説明の都合上、機器の向きや詳細には幾分の相違があるが本質的差ではない。本実施例の装置では、装置システムの中心部の真空試料室60の上部に、集東イオンビーム光学系33が約45 傾斜して設置されている。また、電子ビーム光学系42も約45 傾斜して設置されている。2基の光学系33、42は各々の中心軸がウェーハ21表面付近で一点に交わるように調整されている。また、第1の実施例の装置と同様に、真空試料室60の内部には試料台24が設置されている。また第2の実施例と同様に、試料台24は傾斜機20 能を持たない。

【0055】次に、本実施形態で、ウェーハ導入後の試料加工観察評価の過程を、図19を交えて説明する。まず、試料台を下げてフローブ72の先端をウェーハ21から離した状態で、試料台24に対して水平方向(XY方向)にフローブ72を移動し、プローブ72の先端をFIB4の走査領域に設定する。マニヒュレータ制御装置15は位置座標を保存した後、プローブ72を退避する。

【0056】集束イオンビーム光学系33の光軸を含む 垂直平面とウェーハ上面の交線が、形成したい試料の観 察断面に重なる方向へ試料台の方角を合わせる。次にF **1B4をウェーハ21に照射し走査して観察に必要な長** さと深さの垂直断面C1を形成する。次に、形成済みの 断面と交差する斜方切断面C2を形成する。この切断面 C2の形成の際、斜面の傾斜角が得られる位置まで試料 台を水平に回転して方向を定める。次いで、垂直切断線 に平行して斜め溝をFIB4で形成する。更に、この満 に直角に一端C3を切断する。加工領域は、長さ約5 x m、幅約1 mm、深さ約3 mmであり、長さ約5 mmの 片持ち梁状態でウェーハ21と接続している。次に、微 小試料22に、マニピュレータ70先端のプロープ72 を敵小試料22の端部に接触させた後に、FIB4の照 射により堆積性ガスを接触点75に堆積させてブローブー 72を微小試料22に接合し―体化する。その後、F I B4で微小試料を支持する他端C4をFIB4で切断し て敵小試料22を切取る。 強小試料22はプローブ72 に支持された状態になり、観察・分析を目的とする表面 及び内部断面が微小試料22の観察分析面p3として取 り出す準備が完了する。以降の処理は、集東イオンビー ム光学系による加工・観察。或いは電子ビーム光学系に

よる観察に最適な方角へ微小試料の向きを設定する際に 試料台24の向きも適宜調整する必要が生じる以外は、 第1の実施例とほぼ同様につき説明を省く。

【りり57】以上に述べたように、本実施の形態も、第 1の実施例と同様に、高分解能で高速の観察分析ができ る。本実施例は、1基の集束イオンビーム光学系を試料 台に対して傾斜させることにより、試料台に傾斜機能を 特たせることなくウェーハから微小試料を切出して摘出 できる特長がある。光学系の周りには多くの機器を併せ 搭載する必要があるのでスペース難となっており、それ 10 ちの機器の台計質量も大きいため取付基板の剛性確保を 含めた設計を難しいものにしている。またメンテナンス 性も気掛かりとなる。本実施例は、試料台の傾斜機構が 不要で、しかも集束イオンビーム光学系が1基で済むた め、構造が単純で軽置小形にできコストも低減できる。 (実施例4)本発明の第4の実施例である微小試料加工 観察装置の概略構成を図10を用いて説明する。本実施 例では、図3に示した微小試料加工観察装置の基本構成 に 第2試料台18と、第2試料台の角度や高さ等を制 御する第2試料台制御装置19を加えたものである。本 20 実施例における梟東イオンビーム光学系31からイオン ビームを試料に照射してウェーハから微小試料を摘出す るまでの過程は第1実施例と同様である。本実施例は、 摘出した微小試料を、マニピュレータで支持した状態で 観察・分析する代わりに、第2試料台に固定し観察・分 析を行うものである。

【0058】図11は、第2試料台18に微小試料22 を固定した状態を示す。本実施例の第2試料台18の微 小試料固定部分には表面を平坦にした部材を用いている が、平坦であるかどうかは問わない。微小試料の底面を 30 第2試料台18に接触して、F | B 4 で堆積性ガスを第 2試料台18と微小試料22の接触点に堆積させて、ア シストデポ膜76で第2試料台18への微小試料22を 固定する。なお、微小試料22作成時や、該堆積性ガス を堆積させた時などに、観察断面の表面への異物吸着や 観察断面の表面が破壊される不都合を予防するために、 FIB4の照射角を微小試料の観察断面に平行になるよ うに第2試料台操作で適切に角度設定した後、FIB4 を照射して所望の観察断面を作成することもできる。 【10059】図12に示す第2試料台を設置することに 40 より複数の微小試料をまとめて扱うこともできる。ウェ ーハ21から微小試料22を摘出し、試料台脇の第2試

【0060】図12において、第2試料台18に微小試料を数個並べて固定し、電子ビーム8に対して微小試料22が適切な角度になるように試料台24の停止方位と

料台18の適所へ固定し、次の微小試料22を摘出する。

操作を繰り返すことにより、ウェーハ21を試料台24

に固定したまま複数個の断面観察と元素分析が可能であり、ウェーハ21全体に亘る断面構造の分布を効率的に

調べることができる。

第2試料台18の角度を併せ調整した状態で試料観察。 分析を行えば、複数個の微小試料を連続的あるいは比較 しながら繰り返し観察分析できるので、ウェーハ21全 体に亘って断面構造や元素分布を詳細かつ能率的に調べ ることができる。また、図13に示す第2試料台18 は、回転可能な柱状の試料台の外周面に微小試料群を配 列できるものであり、図12の場台より更に多数の微小 試料を一度に扱うことができる。

【0061】また、微小試料22を試料回収トレイ内の 指定位置に脱着して回収し、微小試料の識別手段を付し ておくことにより、享後の詳細評価が必要な場合に再び 取りだし観察・分析を実施することも可能である。

【00.62】以上に述べたように、本実施例も、ウェーハ表面を観察する場合と同程度の三次電子検出効率が得られること、観察分析の角度を、垂直観察を含めた望ましい角度に調整できること、真空雰囲気の試料室内に置いたまま観察できること、等により、微小試料22の観察条件は非常に良好になるので、従来問題であった分解能の低下を回避でき、しかも最適、綿密な観察分析を迅速で高効率に行うことができる。結果として高品質な観察分析を高スループットで実行できる。

[0063]

【発明の効果】本発明により、益々微細化が進むしSIデバイス等の内部観察を高分解能で高品質かつ短時間で実施できる微小試料加工観察装置および微小試料加工観察方法が実現できる。さらに薄膜成形加工した微小試料をEDX分析して高精度な元素分析することにより、総合的に断面の観察や分析の効率の良い微小試料加工観察装置を提供できる。

【図面の簡単な説明】

- 【図1】本発明の一実施例の装置全体構成。
- 【図2】本発明の一実施例の装置全体構成で平面図。
- 【図3】本発明の一実施例の装置詳細構成。
- 【図4】本発明の微小試料加工方法の例。
- 【図5】本発明の微小試料觀察方法の例。
- 【図6】本発明の第二実施例の装置全体構成。
- 【図7】本発明の第二実施例の装置全体構成で平面図。
- 【図8】本発明の第三実施例の装置全体構成。
- 【図9】本発明の第三実施例の装置全体構成で平面図。
- 【図10】本発明の第四実施例の装置詳細構成。
- 【図11】本発明の第四実施例の主要部詳細図。
- 【図12】本発明の第四実施例の主要部詳細図。
- 【図13】本発明の第四実施例の主要部詳細図。
- 【図】4】従来の加工方法。
- 【図15】従来の観察方法。
- 【図16】従来の装置の概略構成図。
- 【図17】従来の微小試料作製方法。
- 【図18】本発明の微小試料観察方法の例。
- 【図19】本発明の微小試料観察方法の例。
- 【符号の説明】

1…イオン源、2…レンズ、3…イオンビーム走査偏向 器 4…集東イオンビーム (F J B) 5…中央制御表 示装置、6…二次電子検出器、7…電子銃、8…電子ビ ーム、9…電子レンズ、10…電子ビーム走査偏向器、 14…マニピュレータ、15…マニピュレータ制御装 置、16…X線検出器、17…堆積ガス供給装置、18 …第2試料台、19…第2試料台制御装置、21…ウェ ーハ、22…強小試料、23…カセット、24…試料 台、25…試料台制御装置、31…集東イオンビーム光 学系、32…集東イオンビーム光学系、41…電子ビー*10 察分析面、s1…内部断面 s2…支持部。

* 4 光学系、 5 1 … 分析装置。 6 0 … 真空試料室。 6 1 … ウェーハ趙送手段、62…ハッチ、63…載置台、70 …マニピュレータ、71…ブローブ保持部、72…ブロ ープ、75…アシストデポ膜、81…カセット導入手 段、82…ウェーハ搬送ロボット、83…オリエンデー ション調整手段 90…ガス導入管 100…操作制御 部。101…試料、105…堆積性ガス、107…角 穴 108…底穴, 109…きりかき溝, 110…ガス ノズル、p1…観察箇所、p2…観察分析面、p3…観

18

【図1】

【図2】

[図3]

[図4]

【図6】

(11)

[図5]

[27]

[图8]

[図9]

e n

[212]

図 12

[図13]

13

(12)

特開2002-150990

[図10]

國. 10

[図11]

29 _ 11

【图14】

図 14

[図15]

图 15

[図18]

图 18

[图16]

[図17]

[図19]

フロントページの続き

(51) Int.C].'

識別記号

H 0 1 J 37/28

(72)発明者 三井 康裕 東京都小平市上水本町五丁目20番1号。株 式会社日立製作所半導体グループ内

F J

GOIN

テーマコード(参考)

(72)発明者 小池 英巳

茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器グループ内

(14)

(72)発明者 富依 聡

東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 志知 広康

東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内

Fターム(参考) 5C001 AA08 CC04 5C033 UU02 UU03 UU10 5C034 DD03 DD06