

$$\lambda = rac{T_{on}}{T_{on} + T_{off}} = rac{T_{on}}{T}$$
 $\lambda : ext{Doluluk oranı } 0 < \lambda < 1$
(Duty cycle)

- DC-DC Düşürücü Dönüştürücü (Buck Converter) (Step Down)
- Anahtarlamalı Mod Güç Kaynağı (Switching Mode Power Supply) (SMPS)
 - PWM
- Anahtarlama elemanı (MOSFET)

• DC-DC BUCK CONVERTER DEVRESI

$$V_{c} = \lambda V_{g}$$
 $L = \lambda (1 - \lambda) \frac{V_{g}}{f_{p} \Delta I_{L}}$ $C = \frac{\Delta I_{L}}{8 f_{p} \Delta V_{C}}$

- Kondansatör $\Delta V_{C}/V_{C}$ (%)
- Endüktans $\Delta I_L/I_L$ (%)

• CCM / BCM / DCM MODLARINDA ÇALIŞMA

• Sürekli İletim Modu (CCM)

(Continuous Conduction Mode)

Sınırda İletim Modu (BCM)

(Boundary Conduction Mode)

Kesintili İletim Modu (DCM)

(Discontinuous Conduction Mode)

$$L > \frac{\lambda(1-\lambda)V_g}{2f_pI_c}$$

• DEVRE TASARIMI

KABULLER:

- Devre elemanları ideal olma
- Devre CCM modunda çalışma
- Kalıcı hale gelme

• Verilenler:

•
$$\Delta V_C/V_C = \%2$$

•
$$\Delta I_{L}/I_{L} = \%25$$

V = 2V	$I - \frac{V_g}{I}$	$C - \Delta I_L$	V - I R
$v_{c} - \lambda v_{g}$	$L = \frac{v_g}{4f_p \Delta I_L}$	$C = \frac{\Delta I_L}{8 f_p \Delta V_C}$	$v_{\varsigma} - I_{\varsigma} K$

Vç(V)	lamda	R(Ω)	∆IL(A)	∆Vc(V)	L(uH)	C(uF)
5	0.417	2.5	0.5	0.1	120	12.5
3.3	0.275	1.65	0.5	0.066	120	18.939
1.8	0.15	0.9	0.5	0.036	120	34.722

• GERİ BESLEMELİ KONTROL (PİD)

•
$$V_{\rm C} = 5V$$

•
$$V_{c} = 3.3V$$

•
$$V_{\zeta} = 1.8V$$

•
$$V_{\zeta} = 5V$$

• $I_{\zeta} = 2A$

•
$$I_{C} = 2A$$

•
$$I_{\zeta} = 2A$$

- KAYNAKÇA

- [1] Academy Walid Issa Towards a Creative and Productive Engineering Generation [أكاديمية وليد عيسى نحو جيل هندسي مبدع]. [Walid Issa Academy]. Retrieved from https://walidissancademy.com/
- [2] Maleri, T. (1988). A DC/DC converter system for maximum power point tracking in small photovoltaic systems [Master's thesis, Orta Doğu Teknik Üniversitesi]. Retrieved from https://acikbilim.yok.gov.tr/handle/20.500.12812/276255
- [3] Sevim, D., & Bozkurt, N. (2021). DA-DA Düşürücü Dönüştürücünün Sistem Tanımlaması ve Kontrolü. Avrupa Bilim ve Teknoloji Dergisi, 31(Ek Sayı 1), 881-889. doi:10.31590/ejosat.1019650
- [4] Bodur, H. (2017). Güç Elektroniği (Güncellenmiş 2017 Baskısı)
- [5] Bakan, A. F., Altintaş, N., & Aksoy, I. (2012). An improved PSFB PWM DC–DC converter for high-power and frequency applications. IEEE Transactions on Power Electronics, 28(1), 64-74. IEEE
- [6] Sevim, D., & Bozkurt, N. (2021). DA-DA Düşürücü Dönüştürücünün Sistem Tanımlaması ve Kontrolü. Avrupa Bilim ve Teknoloji Dergisi, 31(Ek Sayı 1), 881-889. doi:10.31590/ejosat.1019650

DİNLEDİĞİNİZ İÇİN TEŞEKKÜRLER

MUHAMMED ŞEYHOĞLU

170221997