HW02

1.24 G是简单图, $\delta(G) \geq 2$,则G 中有长至少为 $\delta(G) + 1$ 的圈。

证明:

取最长轨道 $P(v_0,v_m)$, 由习题1.16知 $m\geq \delta(G)$ 。 又因为 $P(v_0,v_m)$ 是最长的轨道, 所以 v_0 的除 v_1 外其它 $\delta(G)-1$ 个邻顶在 $P(v_0,v_m)$ 上, 否则会得到更长的轨道。

由抽屉原理,至少一个邻顶的下标大于等于 $\delta(G)$,不妨设 为max 。则 $C_0=P(v_0,v_{max})\cup v_0v_{max}$ 构成一个长为max+1 的圈。 而 $max+1\geq \delta(G)+1$ 。 得证。

1.26 一个公司在六个城市 c_1,c_2,\ldots,c_6 有分公司,下面的矩阵(i,j)号元素是 c_i 到 c_j 的机票价格,试为该公司制作一张 c_1 到每个城市的路线图,使得每个城市的机票价格都最便宜。

$$\begin{pmatrix} 0 & 50 & \infty & 40 & 25 & 10 \\ 50 & 0 & 15 & 20 & \infty & 25 \\ \infty & 15 & 0 & 10 & 20 & \infty \\ 40 & 20 & 10 & 0 & 10 & 25 \\ 25 & \infty & 20 & 10 & 0 & 55 \\ 10 & 25 & \infty & 25 & 55 & 0 \end{pmatrix}$$

转化为图

以 c_1 为起点 在图二上跑Dijkstra 算法。

迭代次数i	$l(v_2)$	$l(v_3)$	$l(v_4)$	$l(v_5)$	$l(v_6)$	s
0	50	∞	40	25	10	v_1
1	50	∞	50	25	10	v_1,v_6
2	35	45	35	25	10	v_1,v_5,v_6
3	35	45	35	25	10	v_1, v_2, v_5, v_6
4	35	45	35	25	10	v_1, v_2, v_4, v_5, v_6
5	35	45	35	25	10	$v_1, v_2, v_3, v_4, v_5, v_6$

路径的答案不止一种:

- $ullet v_2$: $v_1
 ightarrow v_6
 ightarrow v_2$
- \bullet v_3 :

$$\circ$$
 $v_1
ightarrow v_5
ightarrow v_3$

$$\circ$$
 $v_1
ightarrow v_5
ightarrow v_4
ightarrow v_3$

$$\circ$$
 $v_1
ightarrow v_6
ightarrow v_4
ightarrow v_3$

ullet v_4 :

$$\circ$$
 $v_1
ightarrow v_5
ightarrow v_4$

$$\circ$$
 $v_1
ightarrow v_6
ightarrow v_4$

- v_5 : $v_1 o v_5$
- $ullet v_6:v_1 o v_6$

1.27

设 W: 狼,S: 羊,B: 白菜,M: 船夫 。 初始在A侧, 目标是移到B 侧运送方案如下:

步数	操作	A侧状态	B 侧状态
1	运羊到B	W, B	M,S
2	空船回A	W,B,M	S
3	运狼到B	В	W,M,S
4	运羊到A	B,M,S	W
5	运白菜到B	S	B,M,W
6	空船回A	S, M	B, W
7	运羊到B		S,M,B,W

2.3 证明: 如果一棵树只有两片树叶,则这棵树是一条轨。(反证法)

证明:

假设 $\exists T_0$ 是一棵只有两片树叶的树 , 但 T_0 不是轨。

则存在u 使得 $deg(u) \geq 3$

又因为 T_0 只有两片叶子。 所以,有 $u(T_0)-2$ 个顶点的度数 ≥ 2 。

于是有,
$$\sum_{v_i \in v(T_0)} deg(v_i) \geq 1 + 1 + 3 + 2 * (
u(T_0) - 3) = 2
u(T_0) - 1$$

又由欧拉公式,
$$\sum_{v_i \in v(T_0)} deg(V_i) = 2(
u(T_0) - 1)$$

矛盾。

所以, 如果一棵树只有两片树叶, 则这棵树是一条轨。

2.4 证明: 如果T是树,且 $\Delta(T) \geq n$,则T至少有n片树叶

证明:

定义度数为i的 结点个数为 n_i

由图的性质有 $: \ 2arepsilon(T) = \sum_{i=1}^k i n_i$

由树的性质有: $arepsilon(T)=v(T)-1=\sum_{i=1}^k n_i-1$

上面两个式子联立可得: $n_1 = \sum_{i=2}^k (i-2)n_i + 2$

$$n_1 = \sum_{i=2}^k (i-2) n_i + 2 \geq (\Delta(T)-2)*1 + 2 = \Delta(T) \geq n$$

得证。

2.6 证明: 树有一个中心或两个中心,且有两个中心时,这两个中心相邻.

方法一 (可以使用删除叶子节点的方法,)

引理1. 删除T中所有叶子结点后,新树T'的中心不变。

对于 $\forall v \in V(T)$,如果要使d(u,v)最大,v必然是叶子。那么删除所有 T中叶子结点后,对所有的结点u,必然有: $max_{\forall v \in V(T')}d(u,v) = max_{\forall v_0 \in V(T)}d(u,v_0) - 1$ 。则所有点的离心率减1。所以中心不变。

引理得证。

重复删除所有叶子结点操作,中心一直不变。最后只能得到 K_1 , K_2 这两种情况,即一个顶点或者两个相邻顶点,得证。

2.8 证明: 若 $d_1 \geq d_2 \geq \cdots \geq d_v$ 是正整数序列 ,则此序列是树的度数序列当且仅当 $\sum\limits_{i=1}^v d_i = 2(v-1)$ 。

证明:

充分性:

若 $d_1 > d_2 > \cdots > d_n$ 是正整数序列,且是树T的度数序列。

$$\mathbb{M}\sum_{i=1}^v d_i = \sum_{v_i \in T} deg(v_i) = 2\epsilon = 2(v-1)$$

必要性:

命题: $d_1 \geq d_2 \geq \cdots \geq d_v$ 是正整数序列 , 若 $\sum\limits_{i=1}^v d_i = 2(v-1)$ 则此序列是树的度数序列。

对v讲行归纳。

当v=2时, $d_1=d_2=1$,是树的度数序列。

假设, v = k 时命题成立。

则
$$v=k+1$$
时, 若 $\sum\limits_{i=1}^{k+1}d_i=2(k+1-1)$

必有
$$d_{k+1}=1$$
 ,否则 $\sum\limits_{i=1}^{k+1}d_i\geq (k+1)d_{k+1}\geq 2(k+1)>2(k+1-1)$

必有
$$d_1 \geq 2$$
 ,否则 $\sum\limits_{i=1}^{k+1} d_i \leq (k+1)d_1 \leq (k+1) < 2(k+1-1)$

考虑到序列, d_1-1,d_2,d_3,\cdots,d_k , 共k 个点, 满足归纳假设, 可构成一棵树 。不防设构成树 T_0 。连接 v_0,v_{k+1} 。 构成一棵新树 T_1 。 T_1 的度数序列即为 $d_1,d_2,d_3,\cdots,d_{k+1}$ 。 命题成立。 得证。

2.11 求 $K_{2.3}$ 生成树的个数。

$$K_{2,3} = \tau()$$

$$= \tau() + \tau()$$

$$= \tau() + \tau() + \tau() + \tau()$$

$$= 1 + \tau() + \tau() + \tau() + \tau() + 4$$

$$= 1 + 1 + 2 + 1 + \tau() + 4$$

$$= 12$$

作业反馈,以B组为样本。

- ullet 1.24 很多同学最长轨道起手,但不说明长度 $\geq \delta(G)$, 保证端点的邻边不构成重边。
- 2.8 必要性的证明,有同学用 $\varepsilon(G)=\nu-1$,结合定理2.1证明。这里不能默认 $\{d_i\}$ 构成图,即使因为 $\sum di$ 为偶数,可以构成图,也不能默认可以构成简单图。
- 2.6 考虑到很多同学用最长轨道法。

法二:

取树的最长轨道。

引理一: 中心在最长轨道上。

设最长轨道为 $P(v_0,v_n)=v_0e_1v_1\cdots v_ie_{i+1}\cdots v_n$,则 $l(v_{\lfloor rac{n+1}{2}
floor})=\lfloor rac{n+1}{2}
floor$ 否则存在更长的轨道。

对任意
$$v_i \in P(v_0,v_n), l(v_i) = max\{dist(v_0,v_i), dist(v_i,v_n)\} \geq \lfloor \frac{n+1}{2} \rfloor = l(v_{\lfloor \frac{n+1}{2} \rfloor})$$

对任意 $v'
ot\in P(v_0,v_n)$,存在一点 $v_i \in P(v_0,v_n)$ 使得, $P_0(v',v_i) \cap P(v_0,v_n) = v_i$,有 $l(v') \geq dist(v',v_i) + max\{dist(v_i,v_0), dist(v_i,v_n)\} > l(v_i) \geq l(v_{\lfloor \frac{n+1}{2} \rfloor}) = \lfloor \frac{n+1}{2} \rfloor$

则
$$r(G) = min\{l(v)|v \in V\} = \lfloor rac{n+1}{2}
floor$$

所以只有在最长轨道上的点可能是中心。

引理得证。

若最长轨道长为偶数,则只有一个点 $l(v)=\lfloor \frac{n+1}{2} \rfloor$,则为一个中心。若为奇数,则有中间两个相邻点 满足 $l(v)=\lfloor \frac{n+1}{2} \rfloor$,则为中间两个相邻顶点为中心。