Jupyter Notebook Assignment Report

Student: Nishal Sukumar Assignment: Nishal $Sukumar_Assignment_1$ Date: 2025-04-11 19:29

Cell 1 (code)

```
\textbackslash{}# Import libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import fetch\textbackslash{}_california\textbackslash{}
    _housing
from sklearn.model\textbackslash{}_selection import train\textbackslash{}_test\
        textbackslash{}_split
from sklearn.linear\textbackslash{}_model import LinearRegression
from sklearn.metrics import mean\textbackslash{}_squared\textbackslash{}_error, r2
    \textbackslash{}_score
```

Cell 2 (code)

```
\textbackslash{}# Load California housing dataset
california = fetch\textbackslash{}_california\textbackslash{}_housing()
df = pd.DataFrame(california.data, columns=california.feature\textbackslash{}
    _names)
df['Target'] = california.target
```

Cell 3 (markdown)

```
\ —- EDA —-
```

Cell 4 (code)

1 8.3014

2 7.2574

21.0 6.238137

52.0 8.288136

```
\textbackslash{}# Basic Info
print("Shape of dataset:", df.shape)
print("\textbackslash{}nFirst 5 rows:\textbackslash{}n", df.head())
print("\textbackslash{}nSummary statistics:\textbackslash{}n", df.describe())

stdout: Shape of dataset: (20640, 9)

First 5 rows:
    MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \
0 8.3252    41.0 6.984127   1.023810    322.0 2.555556    37.88
```

2401.0 2.109842

496.0 2.802260

37.86

37.85

0.971880

1.073446

```
3 5.6431
             52.0 5.817352
                             1.073059
                                           558.0 2.547945
                                                              37.85
4 3.8462
             52.0 6.281853
                            1.081081
                                           565.0 2.181467
                                                              37.85
  Longitude Target
    -122.23
             4.526
0
    -122.22
1
             3.585
2
    -122.24
            3.521
    -122.25
             3.413
3
4
    -122.25 3.422
```

Summary statistics:

	J					
	MedInc	${\tt HouseAge}$	AveRooms	AveBedrms	Population	\
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	
mean	3.870671	28.639486	5.429000	1.096675	1425.476744	
std	1.899822	12.585558	2.474173	0.473911	1132.462122	
min	0.499900	1.000000	0.846154	0.333333	3.000000	
25%	2.563400	18.000000	4.440716	1.006079	787.000000	
50%	3.534800	29.000000	5.229129	1.048780	1166.000000	
75%	4.743250	37.000000	6.052381	1.099526	1725.000000	
max	15.000100	52.000000	141.909091	34.066667	35682.000000	
	AveOccup	Latitude	Longitude	Target		
count	20640.000000	20640.000000	20640.000000	20640.000000		
mean	3.070655	35.631861	-119.569704	2.068558		
std	10.386050	2.135952	2.003532	1.153956		
min	0.692308	32.540000	-124.350000	0.149990		
25%	2.429741	33.930000	-121.800000	1.196000		
50%	2.818116	34.260000	-118.490000	1.797000		
75%	3.282261	37.710000	-118.010000	2.647250		
max	1243.333333	41.950000	-114.310000	5.000010		

Cell 5 (code)

```
\textbackslash{}# Check for missing values
print("\textbackslash{}nMissing values:\textbackslash{}n", df.isnull().sum())
```

stdout:

```
Missing values:
MedInc
                0
HouseAge
               0
AveRooms
               0
AveBedrms
               0
{\tt Population}
               0
               0
AveOccup
Latitude
               0
Longitude
               0
Target
               0
dtype: int64
```

Cell 6 (code)

```
\textbackslash{}# Correlation heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
```

<Figure size 1000x800 with 2 Axes>

```
images/image_1.png
```

Figure 1: Output Image 1 $\,$

Cell 7 (code)

```
\textbackslash{}# Distribution of the target variable
sns.histplot(df['Target'], kde=True)
plt.title("Distribution of Target (Median House Value)")
plt.show()
```

<Figure size 640x480 with 1 Axes>

Generated: April 11, 2025

Figure 2: Output Image 2