Université Pierre et Marie Curie License LM345 Année 2010-2011 PIMA

Contrôle continu 3

Exercice 1. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées, définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, telles que $\mathbb{E}[X_1] = m$ et $\mathbb{E}[X_1^2] = \theta^2$.

- 1. Que peut on dire de la convergence presque sure de la suite de variables aléatoires $\left(\frac{X_1^2 + \ldots + X_n^2}{n}\right)_{n \ge 1}$?
- 2. Que peut on dire de la convergence presque sure de la suite de variables aléatoires

$$\left(\frac{X_1X_2 + X_2X_3 + \ldots + X_{n-1}X_n}{n}\right)_{n>2}$$
?

On pourra se servir des suites $(X_1X_2 + X_3X_4 + \ldots + X_{n-1}X_n)_{n>2}$ et $(X_2X_3 + X_4X_5 + \ldots + X_{n-2}X_{n-1})_{n>2}$.

On rappelle qu'il est attendu que le candidat prenne grand soin de vérifier les hypothèses des théorèmes utilisés.

Exercice 2. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes définies sur $(\Omega, \mathcal{F}, \mathbb{P})$, toutes de loi de Bernoulli de paramètre $p \in]0,1[$.

1. On définit, pour tout $n \geq 1$ et tout $\omega \in \Omega$,

$$S_n(\omega) = \text{le nombre d'entiers } k \in \{1, \dots, n\} \text{ tels que } X_k(\omega) = 1.$$

Déteminer la loi de S_n . Les variables $(S_n)_{n\geq 1}$ sont-elles indépendantes ?

2. On définit, pour tout $\omega \in \Omega$,

$$T_1(\omega) = \min\{n \ge 1 : X_n(\omega) = 1\},\$$

avec la convention $\min \emptyset = +\infty$. Calculer $\mathbb{P}(T_1 = k)$ pour tout $k \geq 0$, montrer que $\mathbb{P}(T_1 = +\infty) = 0$. Que peut on dire de la loi de T_1 ?

3. On définit maintenant, pour tout $\omega \in \Omega$,

$$T_2(\omega) = \min\{n > T_1(\omega) : X_n(\omega) = 1\}.$$

Déterminer les lois de $T_2 - T_1$. Montrer que T_1 et $T_2 - T_1$ sont indépendantes.