Отчет о выполнении лабораторной работы 2.1.3 Определение C_p/C_v по скорости звука в газе

Фокин Алексей, 922 группа

13 мая 2020 г.

Цель работы: 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются: звуковой генератор ГЗ; электорнный осциллограф ЭО; микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

1 Теоретическая справка

Один из наиболее точных методов измерения показателя адиабаты γ основан на зависимости от него скорости распространения звуковой волны в газе. Последняя в газах определяется формулой $c=\sqrt{\frac{\gamma RT}{\mu}}$, из которой можно выразить показатель адиабаты:

$$\gamma = \frac{\mu}{RT}c^2,\tag{1}$$

где T — температура газа, μ — его молярная масса, а R — газовая постоянная. Скорость c звука связана с его частотой f и длиной волны λ соотношением

$$c = \lambda f. (2)$$

С волнами в трубке удобнее всего работать при резонансе. Условие резонанса выглядит как

$$L = n\frac{\lambda}{2},\tag{3}$$

где L — длина трубки, λ — длина волны, n — целое число.

В данной работе при постоянной длине трубки изменяется частота звуковых колебаний f, а с ней и длина звуковой волны λ . Для последовательных резонансов можно записать:

$$L = n\frac{\lambda_1}{2} = (n+1)\frac{\lambda_2}{2} = \dots = (n+k)\frac{\lambda_{k+1}}{2}$$
 (4)

С учётом (2) имеем

$$f_{t+1} = \frac{c}{\lambda_{t+1}} = f_1 + \frac{c}{2L}t \ (t = 0, 1, ..., k)$$
 (5)

Таким образом, c/2L можно найти как угловой коэффициент графика зависимости частоты от номера резонанса.

Экспериментальная установка

Схема установки, используемой в работе приведена на рис. 1.

Звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном

Рис. 1: Схема установки

М. Мембрана телефона приводится в движение переменным током звуковой частоты. В качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал возникает на экране осциллографа ЭО.

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчетах оба конца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Установка содерджит теплоизолированную трубу постоянной длины. Воздух в трубке нагревается водой из термостата. Температура газа принимается равной температуре омывающей трубу воды.

2 Ход работы

1. Снимаем комнатную температуру и длину используемой трубы:

$$T_{\rm k}=24,5^{\circ}C, L=700~{
m mm}$$

- 2. Включаем в сеть ЭО и ГЗ, даём им прогреться 5 минут. Включаем на осциллографе тумблер «луч» и ручками управления добиваемся прямой линии на экране. Устанавливаем нуль на звуковом генераторе.
- 3. Подбираем напряжение на выходе генератора так, чтобы амплитуда колебаний при резонансе была достаточно велика.
- 4. Снимаем частоты резонансов (отмечая резонансы по резкому возрастанию амплитуды колебаний на ЭО) при разных температурах. Данные приводим в таблицах 1 и 2.
- 5. Изобразим полученные результаты на графике. По оси абсцисс откладываем номер k, а по оси ординат разность между частотой k+1-го резонанса и частотой первого резонанса $f_{k+1} f_1$. (см. рис. 2)
- 6. Получаем коэффициенты наклона, равные с/2L (табл. 3)
- 7. Для каждого значения температуры вычисляем γ по формуле (1). Погрешность также оцениваем из ф-лы (1), она получается равной $\varepsilon = 10^{-4}$.

	${f T}$ емпература, ${}^{\circ}C$						
№ резонанса	24,5	30	30 (обратно)	35,4	35,4 (обратно)	40	40 (обратно
1	256	254	256	258	256	260	265
2	498,7	500	503	506	506	511	508
3	741,4	750	750	754	755	760	765
4	992	1000	1008	1011	1010	1016	1015
5	1240	1249	1251	1257	1263	1265	1265
6	1481	1492	1504	1520			
7	1742						

Таблица 1: Резонансные частоты, Гц (в зависимости от температуры газа)

	$f T$ емпература, ${}^{\circ}C$						
№ резонанса	45,1	45,1 (обратно)	50	50 (обратно)	55	55 (обратно)	
1	262	261	263	265	269	267	
2	514	515	517	520	523	523	
3	764	765	771	770	780	777	
4	1024	1028	1034	1031	1041	1040	
5	1281	1281	1290	1290	1297	1300	
6	1531		1540		1555		

Таблица 2: Резонансные частоты, Гц (в зависимости от температуры газа)

Рис. 2: Зависимость разности k+1-й и первой частот от номера резонанса k

Температура, °С	25	30	35	40	45	50	55
m c/2L	$245,1\pm0,4$	$248,1\pm0,3$	$249,5\pm0,4$	$251,6\pm0,3$	$253,9\pm0,5$	$256,0\pm0,5$	$257,0\pm0$

Таблица 3: Коэффициенты наклона графиков, ${\bf c}^{-1}$ (в зависимости от температуры газа)

Температура, °С	25	30	35	40	45	50	55
γ	1,38118	1,38951	1,38063	1,38334	1,3866	1,3878	1,37735

8. Таким образом, среднее значение показателя адиабаты получаем равным

$$\gamma = 1,3837 \pm 0,0001$$

3 Выводы

- 1. В ходе данной работы была проверена предложенная экспериментальная методика.
- 2. С высокой точностью был измерен показатель адиабаты воздуха.
- 3. Была проверена зависимость скорости звука в газе от температуры.