## **DOCUMENT of Multi-task FEFF calculation**

# 1. The required files



Config.toml contains the configurations of this calculation.

**Template dir:** the location of feff.inp template

**Scratch:** the location of scratch folder

**CA:** absorbing atom

**Radius:** the size of particle for calculating spectrum. For non-periodic samples(nanoparticles), the value requires to be large enough to cover all atoms of the particle or the distance where is enough to calculate stable spectrum.

**Mode:** the calculation mode, there are 4 different modes: mpi\_seq,mpi\_multi,seq\_seq, and seq\_multi. The \_seq suffix means the program will calculate spectrum for different site or sample one by one. \_multi means the program will calculate the spectrum in a batch, the size of batch is defined by tasks.

**Cores:** the number of cpus for mpirun

Tasks: number of tasks run simultaneously.

**Site:** sites we are trying to calculate (still underdeveloped)

**File\_type:** the input file type, can be \*.xyz,\*.POSCAR, \*.cif **Symmetry:** True means the calculation will find inequivalent sites by point group (only work for molecule—xyz file)

### 2. How to run

## 2.1 use module

cd module directory

module use FEFF10

module load 10

Then, you can run feff by using **feffmpi** 8 #8 cores

Or: feff #seq run

## 2.2 write input files

Go to your folder

The run\_FEFF.py python script has two arguments: -w and -r

If run python run\_FEFF.py -w, the program will write feff input files(if symmetry=True, it will write input files for inequivalent sites) automatically to a new folder called FEFF\_inp.



The writing process is in parallel version, if you want to write 50000 more files, it helps!

| 1000/1000 [04:46<00:00, 3.49it/s]
| 53744/53744 [27:05<00:00, 33.07it/s]

#### 2.3 run FEFF

To run FEFF correctly, first needs to check template.inp, and then check config.toml.

Then run it python run FEFF.py -r

The results will be stored in json file separately in output folder.



#### 2.4 Toolbox

There is a toolbox folder inside the package. You can run by:

bash run tool.sh

This will give you the average spectrum for each particle and store them in a csv file.

Note: change the modules in run\_tool.sh to fit your system.

# 3. A small test on 55-atom Ni particle

For multi-task computing, I used 2 cores for mpi, and the maximum number of tasks can be submitted is 10, but we only have 5 tasks in this case, so it will submit all tasks simutanously.

```
mode = "mpi_multi"
cores = 2
tasks = 10
```

In this case, it takes

```
End in 3.089505743980408 min
```

For single-task computing(one by one)

The value of tasks is not matter.

```
mode = "mpi_seq"
cores = 2
```

It takes 9 minutes for all 5 tasks finished.

```
End in 9.40652873913447 min
```