Introduction to Statistical Method

Comparing Two Means and Two Variances

Comparing Two Means - A Point Estimator

We have two populations with different means μ_1 and μ_2 , the goal is to estimate the difference $\mu_1 - \mu_2$ by taking a sample from each population in independent way.

Natural point estimator: $\mu_1 - \mu_2 := \hat{\mu_1} - \hat{\mu_2} = \overline{X_1} - \overline{X_2}$

To determine confidence intervals and to test hypothesis we need to know the distribution $\overline{X}_1 - \overline{X}_2$

Theorem

The \overline{X}_1 and \overline{X}_2 be the sample means based on independent random samples of size n_1 and n_2 drawn from normal distributions with mean μ_1 and μ_2 and variance σ_1^2 and σ_2^2 .

The $\overline{X}_1-\overline{X}_2$ is normal with mean $\mu_1-\mu_2$ and variance $\sigma_1^2/n_1+\sigma_2^2/n_2$

$$rac{\overline{X}_1-\overline{X}_2-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}}$$
 is standard normal random variable.

(Central Limit Theorem allows us to apply this result even to non-normal populations if we have really large sample sizes)

OC Curve Application

$$d=rac{|\mu_1-\mu_2|}{\sqrt{\sigma_1^2+\sigma_2^2}}$$
 , if $n=n_1=n_2$, unchanged, else $n=rac{\sigma_1^2+\sigma_2^2}{\sigma_1^2/n_1+\sigma_2^2/n_2}$

If the variances are unknown, we need some more sophisticated methods.

The unknown variances are equal, situation is much easier.

Comparing Two Variances

Consider test types of this:

• $H_0: \sigma_1^2 = \sigma_2^2$, $H_1: \sigma_1^2 > \sigma_2^2$ (right-tailed test) • $H_0: \sigma_1^2 = \sigma_2^2$, $H_1: \sigma_1^2 \neq \sigma_2^2$ (two-tailed test)

we move the σ to one side to consider only about the quotient.

 $(n-1)S^2/\sigma^2$ follows a chi-squared distribution with n-1 degree of freedom.

If the variance is put into quotient, it is easier to handle

F-Distribution

 $X_{\gamma_1}^2$ and $X_{\gamma_2}^2$ are independent chi-squared random variables with γ_1 and γ_2 degrees of freedom.

Random variable $F_{\gamma_1,\gamma_2}=\frac{X_{\gamma_1}^2/\gamma_1}{X_{\gamma_2}^2/\gamma_2}$ is said to follow a F-distribution with γ_1 and γ_2 degree of freedom.

$$P[F_{\gamma_1,\gamma_2} < x] = P[1/F_{\gamma_1,\gamma_2} > 1/x] = 1 - P[F_{\gamma_2,\gamma_1} < 1/x]$$

Then
$$f_{\gamma_1,\gamma_2}(x)=\gamma_1^{\gamma_1/2}\gamma_2^{\gamma_2/2}rac{\Gammaig(rac{\gamma_1+\gamma_2}{2}ig)}{\Gammaig(rac{\gamma_1}{2}ig)\Gammaig(rac{\gamma_2}{2}ig)}rac{x^{\gamma_1/2-1}}{(\gamma_1x+\gamma_2)^{(\gamma_1+\gamma_2)/2}}$$
 for $x\geq 0$

Define
$$f_{lpha,\gamma_1,\gamma_2}$$
 by $P[F_{\gamma_1,\gamma_2}>f_{lpha,\gamma_1,\gamma_2}]=lpha$

Then
$$\begin{aligned} 1-\alpha &= P[F_{\gamma_1,\gamma_2} \geq f_{1-\alpha,\gamma_1,\gamma_2}] \\ &= 1-P[F_{\gamma_1,\gamma_2} < f_{1-\alpha,\gamma_1,\gamma_2}] \\ &= P[F_{\gamma_2,\gamma_1} < 1/f_{1-\alpha,\gamma_1,\gamma_2}] \\ &= 1-P[F_{\gamma_2,\gamma_1} \geq 1/f_{1-\alpha,\gamma_1,\gamma_2}] \end{aligned} \text{ also we can see } \alpha = P[F_{\gamma_2,\gamma_1} \geq f_{\alpha,\gamma_2,\gamma_1}].$$

So $f_{1-\alpha,\gamma_1,\gamma_2}\cdot f_{\alpha,\gamma_2,\gamma_1}=1$.

Remark

Let S_1^2 and S_2^2 be sample variance based on independent random samples of size n_1 and n_2 from normal populations with means μ_1 and μ_2 and variance σ_1^2 and σ_2^2

If $\sigma_1^2=\sigma_2^2$ then the statistic S_1^2/S_2^2 follows F-distribution with n_1-1 and n_2-1 distribution.

Since
$$F_{n_1-1,n_2-1}=rac{[(n_1-1)S_1^2/\sigma_1^2]/(n_1-1)}{[(n_2-1)S_2^2/\sigma_2^2]/(n_2-1)}=rac{\sigma_2^2S_1^2}{\sigma_1^2S_2^2}$$
 , so it is trivial to require $\sigma_1^2=\sigma_2^2$

F-Test

We can derive F-Test from F-distribution that:

$$H_0:\sigma_1=\sigma_2$$
 based on $F_{n_1-1,n_2-1}=rac{S_1^2}{S_2^2}$ is a F-Test

We reject H_0 at significance level lpha

- ullet in favor of $H_1:\sigma_1>\sigma_2$ if $rac{S_1^2}{S_2^2}>f_{lpha,n_1-1,n_2-1}$
- ullet in favor of $H_1:\sigma_1<\sigma_2$ if $rac{S_2^{\overline{2}}}{S_1^2}>f_{lpha,n_2-1,n_1-1}$
- ullet in favor of $H_1:\sigma_1
 eq\sigma_2$ if $rac{\hat{S_1^2}}{\hat{S_2^2}}>f_{lpha/2,n_1-1,n_2-1}$ or $rac{\hat{S_2^2}}{\hat{S_1^2}}>f_{lpha/2,n_2-1,n_1-1}$

When testing to see whether two population variances are equal for the purpose of comparing their means, one hopes to not reject H_0 .

If H_0 is not rejected, one can assume that the variances are in fact equal and continue with the test for equality for means.

In this case, a small Type II error β is more important than α small.

OC Curves for F-Test

For case $n=n_1=n_2$, the OC curves plotting eta against the parameter $\lambda=rac{\sigma_1}{\sigma_2}.$

The curves are for both one- two- sided alternatives.

Comparing Two Means - Equal Variances