ammBoost: State Growth Control for AMMs

Nicolas Michel, Mohamed Najd, Ghada Almashaqbeh

University of Connecticut

TLDR 2024

Smart Contract-enabled Blockchains

Smart Contract-enabled Blockchains

Smart Contract-enabled Blockchains

Automated Market Makers (AMMs)

AMMs are a Huge Industry

Interesting Topics

- Liquidity
- Maximal extractable value (MEV)
- Optimal trading strategies
- Flash loans
- Pricing functions
- Privacy

And a Huge Scalability Problem!

Can we control the on-chain state growth while

- preserving the correct operation of the AMM, and
- 2. preserving the public verifiability, decentralization, transparency, etc., that are expected of a DeFI protocol?

Sharding ⇒ How to shard the AMM?

- Sharding ⇒ How to shard the AMM?
- Zero-knowledge (ZK) rollups ⇒ ZK proofs are expensive!
- Optimistic rollups ⇒ Long contestation periods + incentive compatibility issues!

- Sharding ⇒ How to shard the AMM?
- Zero-knowledge (ZK) rollups ⇒ ZK proofs are expensive!
- Optimistic rollups ⇒ Long contestation periods + incentive compatibility issues!
- Sidechains ⇒ Mainly focused on two-way peg and independent sidechains!

Still, sidechains have potential to solve the problem!

chainBoost—a new dependent sidechain architecture*

ammBoost = AMMs + chainBoost

chainBoost Framework

Service-related traffic ⇒ Sidechain

Mainchain traffic ⇒ Mainchain

chainBoost Framework

Several Challenges

- Unidirectional dependency on its mainchain
- Mainchain miners are not aware of the sidechain
- No actual tokens on the sidechain
- The syncing process needs authentication

Meet ammBoost!

Swaps, mints, burns, collects ⇒ Sidechain

Deposits, payouts, others (e.g., flashes) ⇒ Mainchain

New Techniques

Sidechain miner population

Epoch-based deposits

Snapshot-based and delayed payout trading

Syncing authentication

Workflow

The Syncing Process

- Includes: updated liquidity positions, updated pool balances, and per-user payouts and payins.
- Done by invoking Sync in the TokenBank contract.
- TokenBank deducts payins from deposits, and sends payouts to users.
 - Users can withdraw remaining deposits if any.

The Syncing Process

- Includes: updated liquidity positions, updated pool balances, and per-user payouts and payins.
- Done by invoking Sync in the TokenBank contract.
- TokenBank deducts payins from deposits, and sends payouts to users.
 - Users can withdraw remaining deposits if any.

How to authenticate the Sync call?!

Authentication

Based on threshold signature-based quorum certificates:

- Election of committee e +1 happens during epoch e.
- Committee e +1 generates a verification key vk and shares of the signing key.
 - Sends vk, along with election proofs, to committee e.
- Committee e verifies and records that in a meta-block.
 - Also records vk in TokenBank.
- During epoch e + 1, committee e +1 signs Sync inputs using their shares.
 - TokenBank accepts only if the signature is valid under vk.

Security and Performance

Security:

 Security of sidechain consensus, committee election, BLS threshold signatures, and mechanisms of handling interruptions.

Performance evaluation:

- A Uniswap-inspired use case.
- Preliminary results show ~90% reduction of on-chain state size, and scaling to significantly large workloads.

Conclusion and Future Work

This work

- A secure, sidechain-based framework to control state growth and boost throughput of AMMs.
- Formal treatment.
- Implementation/testing.

Future work

- Look into storage pricing/transaction fees.
- Extend ammBoost utility to support privacy/anonymity, and functionality extensions.

Thank you!

Questions?

Ghada Almashaqbeh: ghada@uconn.edu
https://ghadaalmashaqbeh.github.io/

Paper full version: coming soon!