Relatório Final – Lab02 Um estudo sobre qualidade em sistemas Java

Pedro Franco Gabriel Pongelupe

Professor: Danilo de Quadros Curso: Engenharia de Software

Disciplina: Laboratório de Experimentação de Software

6º Período

1 Informações do Grupo

• Integrantes: Pedro Franco e Gabriel Pongelupe

• Professor: Danilo de Quadros

• Curso: Engenharia de Software

• Disciplina: Laboratório de Experimentação de Software

Período: 6º

2 Introdução

Este trabalho busca compreender como certas características de repositórios de software — como popularidade, idade, nível de atividade e dimensão — se relacionam com métricas de qualidade em sistemas desenvolvidos em Java. Para isso, foram analisados os 1000 projetos Java mais estrelados do GitHub, e calculadas métricas de código com auxílio da ferramenta CK.

3 Hipóteses

- H1: Projetos mais famosos apresentam classes mais coesas (menores valores de LCOM).
- H2: Softwares mais antigos acumulam maior acoplamento (CBO superior).
- H3: Repositórios ativos tendem a manter a qualidade de forma mais consistente.
- H4: Sistemas grandes (com mais linhas de código) apresentam árvores de herança mais profundas (DIT elevado).

4 Tecnologias e Ferramentas Utilizadas

• Linguagens: Python e Java

• Bibliotecas: os, pandas, subprocess, tempfile, shutil, time, concurrent.futures, datetime, argparse, requests

• Ferramenta de métricas: CK

• API: GitHub REST API

5 Metodologia

5.1 Coleta de Dados

Os dados foram obtidos através da GitHub REST API, selecionando os repositórios mais populares em Java, organizados por número de estrelas.

5.2 Consolidação

As métricas extraídas por classe foram reunidas em arquivos CSV, posteriormente agregados por repositório, formando um conjunto de dados consolidado para análise.

5.3 Análise

Aplicou-se estatística descritiva (médias, medianas e desvios padrão), além de cálculo de correlações entre variáveis. Também foram elaborados gráficos exploratórios para examinar as relações entre popularidade, maturidade, atividade e métricas de qualidade.

6 Questões de Pesquisa

- RQ1: Qual a relação entre a popularidade dos repositórios e as suas características de qualidade?
- RQ2: Qual a relação entre a maturidade dos repositórios e as suas características de qualidade?
- RQ3: Qual a relação entre a atividade dos repositórios e as suas características de qualidade?
- RQ4: Qual a relação entre o tamanho dos repositórios e as suas características de qualidade?

7 Resultados

7.1 Estatísticas Descritivas

Foram coletadas os seguintes dados ao longo da pesquisa:

7.2 Gráficos por Questão de Pesquisa

Figura 1: Relação entre popularidade (estrelas) e LCOM (Lack of Cohesion in Methods).

Figura 2: Relação entre maturidade e CBO (Coupling Between Objects).

Esse resultado complementa os gráficos individuais, funcionando como uma visão consolidada de todas as métricas analisadas e reforçando as conclusões apresentadas.

Figura 3: Relação entre recência de push e LCOM (Lack of Cohesion in Methods).

Figura 4: Relação entre tamanho e profundidade da árvore de herança (DIT).

Figura 5: Mapa de correlação (Spearman) entre métricas de qualidade e características dos repositórios.

7.3 Análise do Mapa de Correlação

O heatmap da Figura 5 apresenta as correlações de Spearman entre todas as métricas coletadas. As principais observações são:

- LOC, CBO, WMC e número de classes apresentam correlação muito forte entre si (valores acima de 0.9), indicando que sistemas maiores tendem a ter mais acoplamento e métodos mais complexos.
- Days since push (recência de push) possui correlação negativa alta com idade e tamanho (-0.8 a -0.9), sugerindo que projetos maiores e mais antigos são também os mais ativos.
- Popularidade (stars) apresenta baixa correlação com métricas internas (valores próximos de zero), reforçando a ideia de que ser popular não implica diretamente em melhor qualidade estrutural.
- DIT (profundidade da herança) mostra baixa correlação com LOC, confirmando que sistemas grandes não necessariamente possuem hierarquias de herança mais profundas.

8 Discussão

As análises sugerem indícios de associação entre algumas características de processo e as métricas de qualidade. De forma geral, as hipóteses foram apenas parcialmente confirmadas:

- H1: Popularidade e LCOM. Os repositórios mais populares apresentaram em geral valores de LCOM mais baixos, sugerindo melhor coesão. Isso confirma parcialmente a hipótese de que popularidade está associada a maior qualidade interna, embora haja outliers com LCOM elevado.
- **H2:** Idade e CBO. Foi observada uma tendência de aumento no CBO conforme a idade do repositório cresce. Isso indica que, com o tempo, os sistemas acumulam mais acoplamento, confirmando a hipótese.
- H3: Atividade (recência de push) e LCOM. Não houve uma relação forte entre a atividade dos repositórios e a coesão do código. A linha de tendência indica uma queda sutil no LCOM ao longo do tempo sem pushes, mas não é conclusiva. Assim, a hipótese não foi confirmada.
- H4: Tamanho (LOC) e DIT. O aumento no tamanho dos projetos (em LOC) não implicou em maior profundidade de herança. O DIT permaneceu praticamente estável, mostrando que o tamanho não influencia diretamente a complexidade hierárquica. Dessa forma, a hipótese foi refutada.

Entre as limitações, destacam-se falhas da ferramenta CK em projetos muito grandes e a alta variabilidade nos dados.

9 Conclusão

O estudo permitiu identificar relações relevantes entre características de processo e métricas de qualidade em repositórios Java open-source. Os resultados mostraram que a popularidade tende a estar associada a melhor coesão interna (LCOM mais baixo), ainda que com exceções. Da mesma forma, repositórios mais antigos apresentaram maior acoplamento (CBO superior), confirmando a hipótese de que a evolução contínua aumenta as dependências internas. Por outro lado, a atividade recente não apresentou impacto significativo na qualidade e o tamanho dos sistemas não esteve fortemente relacionado à profundidade das heranças (DIT), o que refuta parcialmente as hipóteses iniciais.

Esses achados reforçam que popularidade e maturidade possuem algum papel na qualidade estrutural do código, mas também evidenciam que métricas como LCOM, CBO e DIT não são influenciadas de maneira uniforme por todos os fatores analisados. Assim, as hipóteses foram apenas parcialmente confirmadas, o que destaca a complexidade da relação entre processo de desenvolvimento e qualidade de software.

O mapa de correlação consolidou essas observações, mostrando que tamanho (LOC) está fortemente relacionado ao acoplamento (CBO) e complexidade (WMC), enquanto popularidade (stars) não apresenta correlação significativa com métricas internas.

Como trabalhos futuros, propõe-se explorar métricas adicionais (como complexidade ciclomática e test coverage), análises temporais para avaliar a evolução da qualidade ao

longo do tempo, além da aplicação de dashboards interativos para facilitar a interpretação dos resultados.

10 Apêndices

Os scripts utilizados na coleta e análise estão disponíveis no repositório do projeto, assim como os arquivos CSV consolidados com métricas extraídas.