Preliminary Data Sheet, V 0.91, January 2008

Sensors

Edition 2008-01
Published by
Infineon Technologies AG
81726 München, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

5352

TLE5010 Preliminary Data Sheet

Revision History:		2008-01	V 0.91				
Previous \	/ersion:	V 0.9					
Page Subjects (major changes since last revision)							
General	Spelling an	d typing errors corrected					
51	Molding Co	mpound removed					
52	Package O	Package Outline Figure modified					
53	Marking ch	anged					

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

sensors@infineon.com

Table of Contents

7	Clock Supply (CLK Timing Definition)	24
6	Signal Processing	23
5.6	Temperature-Dependent Offset Value Offset Correction Amplitude Normalization Non-Orthogonality Correction Resulting Angle GMR Parameters after Calibration	21 21 21 21
5.5 5.5.1 5.5.2	Angle Calculation	20
J. T	GMR Values	19 19
5.3.2 5.3.3 5.4	Amplitude Definition	18 18 19
5 5.1 5.2 5.3 5.3.1	Electrical and Magnetic Parameters Electrical Parameters ESD Protection GMR Parameters Offset and Amplitude Offset Definition	15 16 17 17
4	Operating Range	14
3	Absolute Maximum Ratings	13
2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.4	General Functional Description Block Diagram Internal Power Supply GMR Voltage Regulator VRG (VDDG-Voltage) Analog Voltage Regulator VRA (VDDA-Voltage) Digital Voltage Regulator VRD (VDDD-Voltage) GMR Functionality	10 10 10 10
1 1.1 1.2 1.3 1.4	Overview Features Target Applications Product Description Pin Configuration	. 6 . 7 . 7

8 8.1	Synchronous Serial Communication Interface	26
	SSC Timing Diagram	26 26
8.2 8.3 8.3.1 8.3.2 8.4 8.5	SSC Baud Rate SSC Spike Filter SSC Spike Filter Off SSC Spike Filter On Filter for DATA and CS SSC Data Transfer SSC Command Byte	29 29 30 30 31
9	Register Table Bit Types Reserved Registers (08 _H to 0B _H)	32 33
10 10.1 10.2	Data Communication via SSC CRC Generation Slave Active Byte Generation Example: Update X and Y and set ADC-Test Mode	43 43
11 11.1 11.2 11.3	Test Structures Functional Angle Tests ADC Test Vectors Temperature Measurement Angle Test and Temperature Measurement Timing	45 46 46
12 12.1 12.2 12.3 12.4	Overvoltage Comparators Internal Supply Voltage Comparators V _{DD} Overvoltage Detection GND–Off Comparator V _{DD} –Off Comparator	48 48 49
13 13.1	Typical Application Circuit	
14 14.1	Package Information Package Parameters Package Outline PG-DSO-8 Footprint PG-DSO-8 Packing Marking Processing	51 52 53 53 53

GMR-Based Angular Sensor

TLE5010

1 Overview

1.1 Features

- Giant Magneto Resistance (GMR)-based principle
- Integrated magnetic field sensing for angle measurement
- Full 0 360° angle measurement
- · Highly accurate single bit SD-ADC
- 16 bit representation of sine / cosine values on the interface
- · Bi-directional SSC Interface up to 2 Mbit/s
- 3-pin SSC Interface, SPI compatible with open drain
- ADCs and filters are synchronized with external commands via SSC
- · Test resistors for simulating angle values
- Core supply voltage 2.5 V
- 0.25 μm CMOS technology
- Automotive qualified: -40°C to +150°C (Junction Temperature)
- · Latch up immunity according JEDEC standard
- ESD > 2 kV (HBM)
- · Green package with lead-free (Pb-free) plating

Туре	Marking	Ordering Code	Package
TLE5010	5010-2	TBD	PG-DSO-8

Overview

1.2 Target Applications

The TLE5010 GMR-Based Angular Sensor is designed for angular position sensing in automotive applications, such as:

- · Steering Angle
- Brushless DC Motor Commutation (e.g. EPS)
- · Rotary Switch
- · General Angular Sensing

1.3 Product Description

The TLE5010 is a 360° angle sensor that detects the orientation of a magnetic field. This is achieved by measuring sine and cosine angle components with monolithic integrated Giant Magneto Resistance (GMR) elements.

Data communications are accomplished with a bi-directional SSC Interface that is SPI compatible.

The sine and cosine values can be read out. These signals can be digitally processed to calculate the angle orientation of the magnetic field (magnet). This calculation can be done by using a cordic algorithm.

It is possible to connect more than one TLE5010 to one SSC Interface of a microcontroller for redundancy or any other reasons. If multiple TLE5010 devices are used, the synchronization of the connected TLE5010 is performed by a broadcast command. Each connected TLE5010 can be addressed by a dedicated Chip Select (CS) pin.

Online diagnostic functions are provided to ensure reliable operation.

These diagnostics are

- Angle test (generated via test voltages feeding the ADC).
- Crossed signal paths (switchable for comparison)
- · Inverted signs of bit streams
- Overvoltage and undervoltage detections

Overview

1.4 Pin Configuration

Figure 1 Pin Configuration (top view)

Table 1 Pin Definitions and Functions

Pin No.	Symbol	In/Out	Function
1	CLK	I	Chip Clock
2	SCK	I	SSC Clock
3	\overline{CS}	I	SSC Chip Select
4	DATA	I/O	SSC Data, open drain
5	TST1	I/O	Test Pin 1, must be connected to GND
6	V_{DD}	-	Supply Voltage
7	GND	-	Ground
8	TST2	I/O	Test Pin 2, must be connected to GND

2 General

2.1 Functional Description

The clock for the sensors is provided externally. This ensures a synchronously operation in case of multiple system participants.

The sensor has its own Phase Lock Loop (PLL) to generate the necessary clock frequency for the chip operation.

2.2 Block Diagram

The block diagram shows all switches in the reset position.

Figure 2 Block Diagram

2.3 Internal Power Supply

The internal stages of the TLE5010 are supplied with different voltage regulators.

- GMR Voltage Regulator VRG
- Analog Voltage Regulator VRA
- · Digital Voltage Regulator VRD

Each voltage regulator has its own overvoltage and undervoltage detection circuits.

2.3.1 GMR Voltage Regulator VRG (VDDG-Voltage)

The GMR voltage regulator supplies all GMR parts.

- · GMR Bridges
- Test Voltages for Angle Test
- · ADC Reference Voltage

The voltages are monitored in the VRG overvoltage and undervoltage detectors.

2.3.2 Analog Voltage Regulator VRA (VDDA-Voltage)

The analog voltage regulator supplies the analog parts.

- ADCs
- PLL (analog)
- VDD-Off comparator
- GND-Off comparator
- V_{DD} Overvoltage detection

The voltages are monitored in the VRA overvoltage and undervoltage detectors.

2.3.3 Digital Voltage Regulator VRD (VDDD-Voltage)

The digital voltage regulator supplies all digital parts.

- · Comb filters, FIR filters and Low Pass filter
- PLL (digital)
- · Control FSM with Bitmap
- SSC Interface
- Counters (Reset, FSYNC, FCNT)

The voltages are monitored in the VRD overvoltage and undervoltage detectors.

2.4 GMR Functionality

The GMR sensor is implemented using vertical integration. This means that the GMR active areas are integrated above the logic portion of the TLE5010 device. GMR elements change their resistance depending on the direction of the magnetic field.

Four individual GMR elements are connected to one Wheatstone Sensor Bridge. These GMR elements sense one of two components of the applied magnetic field:

- X component, V_X (cosine) or the
- Y component, V_Y (sine)

The advantage of a full-bridge structure is that the amplitude of the GMR signal is doubled.

Figure 3 Sensitive Bridges of the GMR Sensor

Note: In **Figure 3**, the arrows in the resistor symbols indicate the direction of the Reference Layer.

The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges are orientated orthogonally to each other.

Using the ARCTAN function, the true 360° angle value can be calculated that is represented by the relation of the X and Y signals.

Because only the relative values influence the result, the absolute size of the two signals is of minor importance. Therefore, most influences to the amplitudes are compensated.

Figure 4 Ideal Output of the GMR Sensor

Absolute Maximum Ratings

3 Absolute Maximum Ratings

 Table 2
 Absolute Maximum Rating Parameters

Parameter	Symbol	Limit	Values	Unit	Notes	
		min.	max.			
Voltage on $V_{\rm DD}$ pin respect to ground ($V_{\rm SS}$)	V_{DD}	-0.5	6.5	V	max 40 h / lifetime	
Voltage on any pin respect to ground (V _{SS})	V_{IN}	-0.5	6.5	V	$V_{\rm DD}$ + 0.35 V may not be exceeded	
Junction Temperature	T_{J}	-40	150	°C		
Magnetic Field Induction	В	-	125	mT	max 5 min. @ t _A = 25°C	
		-	[80]		max 5 h @ t _A = 25°C	

Note: Stresses above the max. value listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit..

Operating Range

4 Operating Range

The operating conditions identified in **Table 3** must not be exceeded in order to ensure correct operation of the TLE5010. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Table 3 Operating Range

Parameter	Symbol	Limit Values			Unit	Notes
		min.	typ.	max.		
Supply Voltage	V_{DD}	4.5	-	5.5	V	1)
Output Current	I_{Q}	-	-5	-10	mA	2) 3)
Input Voltage	V_{IN}	-0.3	-	5.5	V	$V_{\rm DD}$ + 0.5 V may not be exceeded
Magnetic Induction	B_{XY}	25	30	45	mT	In X / Y direction ⁴⁾
Angle Range	Ang	0	-	360	0	sine / cosine
Storage Temperature	T_{ST}	-40	-	50	°C	
Overall Lifetime	t_{life}	-	-	15	Years	

¹⁾ Directly blocked with 100 nF ceramic capacitor.

Note: The thermal resistances listed in **Table 20 "Package Parameters" on Page 51** must be used to calculate the corresponding ambient temperature. **Table 3** is valid for - 40° C < $T_{.1}$ < 150° C.

²⁾ Max current to GND over Open Drain Output.

³⁾ The corresponding voltage levels are listed in Table 5 "Electrical Parameters" on Page 16.

⁴⁾ Values refer to an homogenous magnetic field (Bxy) without vertical magnetic induction (Bz = 0 mT). By applying a vertical magnetic induction an additional error has to be considered.

5 Electrical and Magnetic Parameters

5.1 Electrical Parameters

The indicated electrical parameters apply to the full operating range, unless otherwise specified. The typical values correspond to a supply voltage $V_{\rm DD}$ = 5.0 V and 25°C, unless individually specified. All other values correspond to -40°C < $T_{\rm J}$ < 150°C

Table 4 Electrical Parameters

Parameter	Symbol	Limit Values			Unit	Notes	
		min.	typ.	max.			
Supply Current 1)	I_{DD}	-	15	20	mA	$V_{\rm DD}$ = 4.5 to 5.5 V	
		-	-	21		V _{DD} = 6.5 V	
POR Level	V_{POR}	2.0	2.3	2.9	V	Power On Reset	
POR Hysteresis	$V_{\sf PORhy}$	-	30	-	mV		
Power On Time	t_{Pon}	50	100	200	μs	$V_{\rm DD}$ > $V_{\rm DDmin}$ & after first edge on $f_{\rm CLK}$	
PLL Jitter	t _{PLLjit_S}	-	1.3	2.0 ²⁾	ns	short term 3)	
	t _{PLLjit_L}		3.0	3.9		long term 4)	
ADC Noise 5)	N_{ADC}	-	1	2.2	digits	1 σ @ FIR_BYP = 0	
		-	2	4.4 ²⁾		1 σ @ FIR_BYP = 1	
Input Signal Low Level	V_{L}	-0.35	-	0.3 V _{DD}	V	Tested only at DATA pin as structures of	
Input Signal High Level	V_{H}	0.7 V _{DD}	-	V _{DD} +0.35	V	all pins are identical	
Capacitance of SSC Data Pin	C_{LDATA}	-	4	6 ²⁾	pF	Internal	

¹⁾ Without external pull-up resistor for SSC-Interface.

²⁾ Not tested.

³⁾ From pulse to pulse.

⁴⁾ Accumulated over 1 ms.

⁵⁾ ADC noise with respect to the peak ADC value specified in "Signal Processing" on Page 23. Noise tested using 1 σ of 100 sample values from Angle Test "000"

Table 5 Electrical Parameters

Parameter	Symbol	Limit Values			Unit	Notes
		min.	typ.	max.		
Input Hysteresis	V_{HY}	0.07 V _{DD}	-	-	V	
Pull-Up Current	I_{PU}	-10	-	-150	μΑ	CS, DATA
Pull-Down Current	I_{PD}	15	-	225	μΑ	SCK, CLK
		15	-	225		TST1
		10	-	150		TST2
Output Signal	V_{OL}	-	-	0.7	V	$I_{\rm Q}$ = - 10 mA $I_{\rm Q}$ = - 5 mA ¹⁾
Low Level		-	-	0.4		$I_{\rm Q}$ = - 5 mA ¹⁾

¹⁾ The value -5 mA is not tested

Note: Table 5 is valid for 4.5 V < $V_{\rm DD}$ < 5.5 V

5.2 ESD Protection

Table 6 ESD Protection

Parameter	Symbol	Limit Values		Unit	Notes
		min.	max.		
ESD Voltage	V_{HBM}	-	± 2	kV	HBM ¹⁾
	V_{CDM}	-	± 500	V	CDM ²⁾

¹⁾ Human Body Model (HBM) according to: JEDEC EIA/JESD22-A114-B (R = 1.5 k Ω , C = 100 pF, T_A = 25°C)

²⁾ Charge Device Model (CDM) according to: ANSI ESD STM JEDEC JESD 22-C101-A Class III.

5.3 GMR Parameters

All parameters apply over the full operating range, unless otherwise specified.

 Table 7
 Basic GMR Parameters

Parameter	Symbol Limit Values				Unit	Notes	
		min.	typ.	max.			
X, Y Output range	RG_{ADC}	-	-	±23230	digits		
X, Y Amplitude 1)	$A_{X,}A_{Y}$	7402	12337	15781	digits	@ Calibration Conditions	
		3922	-	20620		Operating Range	
X, Y Synchronism ²⁾	k	80	100	120	%	@ Calibration Conditions	
X, Y Offset 3)	O_{X},O_{Y}	-3000	0	3000	digits	@ Calibration Conditions	
X, Y Orthogonality Error	φ	-10.0	0	10.0	0	@ Calibration Conditions	
X,Y without field	X_0, Y_0	-5000	_	5000	digits	without magnet ⁴⁾	

¹⁾ See Figure 4, Page 12

5.3.1 Offset and Amplitude

Figure 5 Offset and Amplitude

²⁾ $k = 100 \times (A_X/A_Y)$.

³⁾ $O_{SIN} = (Y_{MAX} + Y_{MIN}) / 2$; $O_{COS} = (X_{MAX} + X_{MIN}) / 2$

⁴⁾ Not tested.

Offset Definition

The offset of the X and Y signals is defined as the mean value between the signed maximum and minimum values of the idealized sine or cosine wave.

$$O_{\rm X} = \frac{X_{\rm MAX} + X_{\rm MIN}}{2}$$

$$O_{\rm Y} = \frac{Y_{\rm MAX} + Y_{\rm MIN}}{2}$$

Amplitude Definition

The amplitude is defined as half the difference between the signed maximum and minimum values of the idealized sine or cosine wave.

$$A_{\rm X} = \frac{X_{\rm MAX} - X_{\rm MIN}}{2}$$

$$A_{\rm Y} = \frac{Y_{\rm MAX} - Y_{\rm MIN}}{2}$$

5.3.2 Temperature-Dependent Behavior

The temperature offset gradients for both channels depend on the value at 25°C. The gradients can be calculated using the following linear equations:

$$KT_{\text{OX}} = tco_d_x + (tco_k_x \times O_{\text{X25}})$$

$$KT_{OY} = tco_d_y + (tco_k_y \times O_{Y25})$$

 O_{X25} , O_{Y25} : Offset values at 25°C in digits.

Table 8 GMR Temperature Coefficients

Parameter	Symbol	Limit	Values	Unit	Notes	
		min.	typ.	max.		
Offset Temperature Coefficient Base	tco_d_x	-	+0.116296	-	digits_/_K	
	tco_d_y	-	-0.079401	-		
Offset Temperature	tco_k_x	-	-0.0010147	-	1_/_K	
Coefficient Gain	tco_k_y	-	-0.0010121	-		

5.3.3 Orthogonality Definition

The corresponding maximum and zero crossing points of the SIN and COS signals do not occur at the precise distance of 90°. The difference between X and Y phase is called the **Orthogonality Error**.

$$\varphi = \varphi_{X} - \varphi_{Y}$$

jideal = 0°

jX : Phase error of X (= cos) SignaljY : Phase error of Y (= sin) Signal

5.4 Calibration

GMR Values

The end-of-the-line calibration can be accomplished using the following sequence.

- Turn magnetic field left and measure X and Y values
- · Calculation of Amplitude, Offset, Phase correction values of left turn
- Turn further 90° left and 90° back right without measurement
- Turn magnetic field right and measure X and Y values
- · Calculation of Amplitude, Offset, Phase correction values of right turn
- Calculation of mean values of Amplitude, Offset, Phase correction values

The conditions are specified in **Table 9**.

The above gained values must be stored in non-volatile memory. They are used for the correction of the read-out X and Y values before the angular calculation.

The resulting angular deviation is calculated using the above determined parameters.

Temperature Measurement

The signal amplitude T_{25} of the temperature measurement path at the calibration conditions must be measured and stored.

Calibration Conditions

All errors are related to calibration performed using the following conditions:

Table 9 GMR Calibration Conditions

Parameter	Symbol	Limit Values			Unit	Notes
		min.	typ.	max.		
Flux density	B_{CAL}	-	30	-	mT	$B_Z = 0 \text{ mT}$
Temperature	T_{CAL}	-	25	-	°C	

5.5 Angle Calculation

5.5.1 Components of the Output Signals

The X and Y signals at the output can be described by the following equations:

$$X = A_{X} \times \cos(\alpha + \varphi_{X}) + O_{X}$$

$$Y = A_{Y} \times \sin(\alpha + \phi_{Y}) + O_{Y}$$

 A_X : Amplitude of X (= cos) Signal A_Y : Amplitude of Y (= sin) Signal O_X : Offset of X (= cos) Signal O_Y : Offset of Y (= sin) Signal

 φ_X : Phase error of X (= cos) Signal φ_Y : Phase error of Y (= sin) Signal

5.5.2 GMR Error Compensation

Temperature-Dependent Offset Value

To increase accuracy, the temperature-dependent offset drift can be compensated. The temperature of the chip must be read out. The Offset values O_X and O_Y can be described by the following equations.

$$O_{\rm X} = O_{\rm X25} + \frac{KT_{\rm OX}}{S_{\rm T}} \times (T - T_{25})$$

$$O_{\rm Y} = O_{\rm Y25} + \frac{KT_{\rm OY}}{S_{\rm T}} \times (T - T_{25})$$

O_{X25} O_{Y25} : Offset value at 25°C in digits

 T_{25} : Temperature value at 25°C in digits

T: Temperature value in digits

 S_T : Sensitivity of the temperature measurement path, (see "Temperature

Measurement" on Page 46).

Offset Correction

After the X and Y values are read out, the temperature corrected offset value must be subtracted.

$$X_1 = X - O_X$$

$$Y_1 = Y - O_Y$$

Amplitude Normalization

Next, the X and Y values are normalized using the peak values determined in the calibration.

$$X_2 = \frac{X_1}{A_X}$$

$$Y_2 = \frac{Y_1}{A_Y}$$

Non-Orthogonality Correction

The influence of the non-orthogonality can be compensated using the following equation, in which only the Y channel must be corrected.

$$Y_3 = \frac{Y_2 - X_2 \times \sin(-\varphi)}{\cos(-\varphi)}$$

Resulting Angle

After correction of all errors, the resulting angle can be calculated using the arctan function¹⁾.

$$\alpha = \arctan\left(\frac{Y_3}{X_2}\right) - \varphi_X$$

 $^{^{1)}}$ Microcontroller function "arctan2(Y $_3$,X $_2$)" to resolve 360°

5.6 GMR Parameters after Calibration

After calibration under the conditions specified in Table 9 "GMR Calibration Conditions" on Page 19, the sensor has a remaining error, as shown in Table 10. The error value refers to $B_Z = 0 \text{ mT}$ and the operating conditions given in Table 3 "Operating Range" on Page 14.

Table 10 GMR Parameter with Temperature-Dependent Offset Compensation

Parameter	Symbol	Limit Values		Unit	Notes	
		min.	typ.	max.		
Overall Error	$lpha_{ m err}$	-	0.7	2,0	0	2) 3)

¹⁾ At 25°C, B=30mT

²⁾ Including hysteresis error

³⁾ At 0h

Signal Processing

6 Signal Processing

Table 11 Signal Processing

Parameter	Symbol	Limit Va	lues		Unit	Notes
		min.	typ. ¹⁾	max.		
Internal Cutoff	$f_{Cut ext{-}Off}$	-	4.9	-	kHz	FIR_BYP=0
Frequency (-3dB) of sin or cos Value			19.6			FIR_BYP=1
Update Time of SIN or COS Value ²⁾	t _{upd}	-	81,9	-	μs	FIR_BYP=0
		-	20,5	-		FIR_BYP=1
Settle Time 3)	t _{settle}	-	163,8	-		FIR_BYP=0
		-	41,0	-		FIR_BYP=1
Peak ADC Output value	ADC_{Pk}	-	-	23230	digits	signed 16-bit integer (2s complement) 4) 5) 6)

¹⁾ For 4 Mhz input frequency

23

Downloaded from Arrow.com.

 $^{^{2)}}$ t_{upd} = 8192 / (25 x f_{CLK}) for FIR_BYP = 0 t_{upd} = 8192 / (100 x f_{CLK}) for FIR_BYP = 1

 $^{^{3)}}$ t_{settle} = 2 x t_{upd} , after change of ADC input source

⁴⁾ Output values are valid up to this limit. Above it, corrupted results may occur due to non-linearity of the ADC.

⁵⁾ One digit represent typically 5.166 μV.

⁶⁾ Correspond to max. GMR output value.

Clock Supply (CLK Timing Definition)

7 Clock Supply (CLK Timing Definition)

The clock signal input "CLK" must fulfill certain requirements, as identified in this section:

- The high or low pulse width must not exceed the specified values, because the PLL needs a minimum pulse width and must be spike filtered.
- The duty cycle factor should be 0.5 but can deviate to the values limited by $t_{\rm CLKh(f_min)}$ and $t_{\rm CLKl(f_min)}$.
- The PLL is triggered at the positive edge of the clock. If more than two edges are missing, a chip reset is generated automatically.

Figure 6 CLK Timing Definition

Table 12 CLK Timing Specification

Parameter	Symbol	Symbol Limit Values			Unit	Notes	
		min.	typ.	max.			
Input Frequency	$f_{\sf CLK}$	3.9	4.00	4.2	MHz		
CLK Duty Cycle 1)	CLK_{DUTY}	30	50	70	%		
CLK Rise Time	t _{CLKr}	_	-	20	ns	from V_{L} to V_{H}	
CLK Fall Time	t_{CLKf}	_	-	20	ns	from V_{H} to V_{L}	
PLL Frequency	f_{PLL}	-	100	-	MHz	f _{CLK} * 25	
Digital Clock	f_{DIG}	_	25	-	MHz	(25 / 4) * f _{CLK}	
Digital Clock Period	t_{DIG}	-	40	-	ns	4 / (25 * f _{CLK})	

Minimum duty cycle factor: $t_{\text{CLKh}(f_min)} / t_{\text{CLK}(f_min)}$ with $t_{\text{CLK}(f_min)} = 1 / f_{\text{CLK}(f_min)}$ Maximum duty cycle factor: $t_{\text{CLKh}(f_max)} / t_{\text{CLK}(f_min)}$ with $t_{\text{CLKh}(f_max)} = t_{\text{CLK}(f_min)} - t_{\text{CLKl}(min)}$

8 Synchronous Serial Communication Interface

The 3-pin Synchronous Serial Communication Interface (SSC) has a bi-directional data line (open drain), a serial clock signal and chip select.

The SSC Interface is designed to communicate with a microcontroller with a bidirectional SSC interface supporting Open Drain. Other microcontrollers may require an external NPN transistor. This allows communication with SPI-compatible devices.

Figure 7 SSC Half-Duplex Configuration—Microcontroller with Open Drain

Figure 8 SSC Half-Duplex Configuration—Microcontroller without Open Drain

8.1 SSC Timing Definition

SSC Timing Diagram

Figure 9 SSC Timing

SSC Inactive Time (CS_{off})

The SSC inactive time defines the delay time after a transfer before the TLE5010 can be selected again. The TLE5010 reacts to only one command after SSC inactive time. Then, the SSC Interface of the TLE5010 is disabled until the next SSC Inactive Time is present.

DATA Write Time (t_{DATW})

During this interval, the TLE5010 changes the data line, thus the data are invalid. The DATA Write Time values are defined without a pull-up resistor.

Pull-up Time Value (t_{PIJ})

The value in Table 13 "SSC Timing Specification" on Page 27 is estimated at 60 ns.

Table 13 SSC Timing Specification

Note: Timings must be calculated according to Table 12 "CLK Timing Specification" on Page 24

Parameter	Symbol	Limit Valu	es		Unit	Notes
		min.	typ.	max.		
SSC Baud Rate	f_{SSC}	-	2.0	2.1 ¹⁾	MBit /	
CS Setup Time	t_{CSs}	3* <i>t</i> _{DIG} +10	-	-	ns	
CS Hold Time	t_{CSh}	5* <i>t</i> _{DIG} +10	-	-	ns	
CS off	t_{CSoff}	10* <i>t</i> _{DIG}	-	-	ns	SSC inactive time
SCK High	$t_{\sf SCKh}$	5* <i>t</i> _{DIG}	-	-	ns	
SCK Low	t_{SCKI}	5* <i>t</i> _{DIG}	-	-	ns	
DATA Read Time	t_{DATr}	6* <i>t</i> _{DIG} -10	-	7* <i>t</i> _{DIG} +10	ns	SSC_FILT = 0
(Data Valid Time)		5* <i>t</i> _{DIG} -10	-	7* <i>t</i> _{DIG} +10		SSC_FILT = 1
DATA Write Time (Data Valid Time)	t_{DATw}	6* <i>t</i> _{DIG} +25	-	7* <i>t</i> _{DIG} +50 + <i>t</i> _{PU}	ns	
DATA Slope	t_{DATs}	-	20	30 ³⁾	ns	Falling edge ⁴⁾

¹⁾ $f_{CLK}/2$, synchronized to f_{CLK} if fCLK = $f_{CLK}(max)$

 $^{^{2)}}$ $t_{\rm PU}$ is the time generated by the pull-up resistor

³⁾ Not tested.

⁴⁾ Internal slope control of falling edge for data bit transition from $V_{\rm H}$ to $V_{\rm L}$.

Figure 10 SSC Interface Timing Details—Worst-Case Specified Timing

Note: The read window includes the sampling of the data bit.

For SSC_FILT = 1, the 2-of-3 selection is already considered.

Only the two last data values need to be equal.

For SSC_FILT = 0, only one sample point is selected.

The margin time shown in **Table 14** is the time between write access to the SSC Data Line and the earliest possible sample read of the TLE5010 itself for read back.

It is useful to have a maximum distance between the WRITE and subsequent READ. This ensures a reliable read back of the written data for the Slave-Active Byte generation.

Table 14 Maximum Pull-up Time Margin with Worst-Case Specified Timing

SSC_FILT	SSC_TIMING	Min. t _{PU} Margin ¹⁾	Unit	Comment
0	don't care	90	ns	
1		50		

¹⁾ Calculation: Margin =t_{SCKI(min)}+t_{DATwMAX}-(t_{PU})-t_{DATrMIN}.For Margin<50 ns no problems can occur.

8.2 SSC Baud Rate

The SSC Baud rate depends on the internal clock frequency.

12 internal digital clock cycles are necessary to ensure reliable operation. Therefore, the maximum SSC baud rate depends on the external CLK.

$$f_{\rm SSC} = \frac{f_{\rm CLK}}{2}$$

8.3 SSC Spike Filter

A SSC Spike Filter for all SSC lines can be selected via the SSC FILT bit.

8.3.1 SSC Spike Filter Off

When the spike filter is disabled, each slope of a rising voltage is used to define a bit. This is independent of the length of the sampled pulse. For example, a positive spike generates a rising and a falling edge.

8.3.2 SSC Spike Filter On

A sliding window with four consecutive sample bits is analyzed.

The sample frequency is:

$$f_{\rm S} = \frac{1}{f_{\rm DIGIT}}$$

Rising Edge Detect for SCK

The following conditions apply:

- After a rising edge (LH combination), at least one of the two following samples must be high. *Valid bit combinations: 0111, 0110, 0101*.
- · A falling condition must be detected before.

Falling Edge Detect for SCK

The following conditions apply:

- After a falling edge (HL combination), at least one of the two following samples must be low. *Valid bit combinations: 1000, 1001, 1010*.
- · A rising condition must be detected before.

Figure 11 SSC Spike Filter

Filter for DATA and CS

The following conditions apply:

- The DATA pin has a '2-of-3' filter.
- The CS input has a '2-of-3' filter, which suppresses only positive spikes.

8.4 SSC Data Transfer

The following transfer bytes are possible:

- Command byte (to access and change operating modes of the TLE5010)
- Data bytes (any data transferred in any direction)
- CRC byte (cyclic redundancy check)
- Slave Active byte (response of all selected slaves)

Figure 12 SSC Data Transfer (Data Read Example)

8.5 SSC Command Byte

The TLE5010 is controlled by a command byte. It is sent first at every data transmission.

Table 15 Structure of the Command Byte

Name	Bits	Description
RW	[7]	Read - Write
		0 = write, 1 = read
ADDR	[63]	Address to be read / written
		015 = register start address (address auto increment)
ND	[20]	Number of data bytes 07 = number of data bytes to be transferred

9 Register Table

This chapter defines the complete address range as well as all registers of the TLE5010. It also defines the read/write access rights of the specific registers. **Table 16** identifies the values with symbols. Access to the registers is accomplished via the SSC Interface.

Table 16 Address Map

Addr.	Name	Bits									
		7	6	5	4	3	2	1	0		
00 _H	CTRL1	-	-	-	-	SSC_ FILT	-	AUTO	UR		
01 _H	XL		•	X _{Low}							
02 _H	XH				X _{Hig}						
03 _H	YL				Y _{Lov}	N					
04 _H	YH				Y _{Hig}						
05 _H	FCNT_ STAT	-	STAT_ VR	GMR_ OFF	UPDATE	FCNT					
06 _H	FSYNC_ INV	FILT_ INV	FSYNC								
07 _H	ANGT	-	ANGT_ EN		ANGT_Y		,	ANGT_X			
08 _H	-			•	reserv	/ed	•				
09 _H	-				reserv	/ed					
0A _H	-				reserv	/ed					
0B _H	-				reserv	/ed					
0C _H	TST	TEMP_ EN	ADCPY	FILT_ PAR	FILT_ CRS	FILT_ BYP	TST_ ADC	TST_ GMR	TST_ CHAN		
$\overline{0D_H}$	ID		DEV_ID REV_ID						1		
0E _H	LOCK		LOCK								
0F _H	CRTL2	VDD_ OV	VDD_ OFF	GND_ OFF	VRG_ OV	VRA_ OV	VRD_ OV	- I S N(I)			

Bit Types

The types of bits used in the registers are listed here:

Abbreviation	Function	Description
L	Locked	Locked register. Locked registers can be written only when the unlock-value is written in the lock register (0E _H). This ensures that these bits cannot be modified unintentionally during normal operation.
U	Update	Update-Buffer for this bit is present. In the case of an Update Command and the Update-Mode bit (UR in CTRL1) is set, the immediate values are stored in this Update-Buffer simultaneously. This enables a snapshot of all necessary system parameters at the same time.
S	Status	Reset only after readout
R	Read	Read-only registers
W	Write	Read and write registers

CTRL1 Addr: 00_H

Reset Value: 01_H

7	6	5	4	3	2	1	0
reserved	reserved	reserved	reserved	SSC_FILT	reserved	AUTO	UR
-	-	-	-	W L	-	W L	WL

Field	Bits	Туре	Description			
reserved	7	-	Reserved, must be set to 0			
reserved	6	-	Reserved, must be set to 0			
reserved	5	-	Reserved, must be set to 0			
reserved	4	-	Reserved, must be set to 0			
SSC_FILT	3	WL	SSC Digital Spike Filter enable for all SSC lines (CS, CLK and DATA) 0: Digital SSC Spike filters off 1: Digital SSC Spike filters on (modified timing)			
reserved	2	-	Reserved, must be set to 0			
AUTO	1	WL	Automatic update at angle tests 0: no automatic update in Angle Test Mode 1: automatic update-command after t_{settle} , counters FSYNC and FCNT are reset to 0. Then, the Angle-Test (ANGT_EN) is automatically disabled and switches back to normal operation. Also, the UPDATE bit is toggled			
UR 0 W L		WL	Update/Run Mode 0: Run Mode (Buffer1 values are immediate values 1: Update Mode (Buffer2 values are stored values)			

The values in Register 01H to 04H represent one byte of two's complement signed 16-bit integer values.

FCNT_STAT Addr: 05_H

Reset Value: 80_H

7	6	5	4	3	2	1	0
reserved	STAT_VR	GMR_OFF	UPDATE		FC	NT	
-	RS	RU	RS		R	U	

Field	Bits	Туре	Description
reserved	7	-	
STAT_VR	6	RS	Voltage Regulator Status This bit is a logical OR combination of Digital, Analog, GMR and VDD _{OV} Comparator and GND _{OFF} , and VDD _{OFF} Comparator outputs. 0: Voltage Supply is OK 1: Voltage Supply is not OK
GMR_OFF	5	RU	ADC Values are not GMR values (e.g.: Temperature measurement is active) This bit indicates whether GMR values or any other values are connected to the ADCs. This value is read back from the multiplexer control signals. 0: X,Y Values are GMR values 1: X,Y Values normally represent temperature measurement or angle test values. In the case of non-functional MUX, this bit is set to 1
UPDATE	4	RU	Update Toggle bit. This bit toggles after every update (update command or automatic update at angle test) The bit is independent of the UR bit in CTRL1
FCNT	3-0	RU	Frame Counter (4- bit unsigned integer value) This counter counts every new X,Y value pair coming out of the data path. (approx. 80 μs) This counter is reset to 0 _H after any write to FSYNC and after every change of the ANGT_EN bit. As <i>t</i> _{settle} time has to be waited for valid X,Y data, this counter must be ≥ 2 _H to indicate valid X,Y values. If it overflows, it resets to 3 _H to show, that values are still valid. Note: If FIR_BYP is activated, this counter counts four times faster!

FSYNC_INV

Addr: 06_H Reset Value: 00_H

Field	Bits	Type	Description
FILT_INV	7	WU	Filter Input Inversion (to check the digital data path during operation) 0: Filter Inputs are not inverted 1: Filter Inputs are inverted
FSYNC	6-0	WU	Frame Synchronization (7bit unsigned integer value) The Filter Update time of approx. 80 µs results from the filter decimation. The phase of this decimation can be set and checked by this counter. If FIR_BYP is activated, this counter overflows at the value 31 _D .

ANGT

Addr: 07_H Reset Value: 00_H

7	6	5	4	3	2	1	0
reserved	ANGT_EN		ANGT_Y		ANGT_X		
-	W		W		•	W	

Field	Bits	Type	Description			
reserved	7	_	reserved, has to be set to 0			
ANGT_EN	6	W	Angle Test Enable 0: Angle Test disable command 1: Angle Test enable command in this case X and Y values represent resistive test values, which can be used to simulate angle values			
ANGT_Y	5-3	W	Angle Test X and Y value			
ANGT_X	2-0	W	See: Table 17 "Functional Angle Test" on Page 45			

Reserved Registers (08_H to 0B_H)

The values in these registers are 8-bit unsigned integer values.

The values in addr.8 and addr.9 must be in reset status.

Reserved Addr: 09_H - 0B_H Reset Value: 00_H

7 6 5 4 3 2 1 0

Reserved

TST

Addr: 0C_H Reset Value: 00_H

7	6	5	4	3	2	1	0
TEMP_EN	ADCPY	FILT_PAR	FILT_CRS	FIR_BYP	TST_ADC	TST_GMR	TST_ CHAN
WL	W L	W L	WL	W L	W L	W L	WL

Field	Bits	Туре	Description			
TEMP_EN	7	WL	Temperature Device Enable 0: Temperature Measurement disabled 1: Temperature Measurement enabled The X value represents the temperature. Automatic update mode enabled, if AUTO='1'			
ADCPY	6	W L	Y Polarity 0: No inversion of Y bit stream 1: Inversion of Y bit stream (rotating direct. changed)			
FILT_PAR	5	WL	Filter switched parallel 0: Filters in normal mode 1: Filters parallel, input selected by TST_CHAN			
FILT_CRS	4	W L	Filter switched across 0: Filters in normal mode 1: Filters crossed, X and Y outputs are exchanged			
FIR_BYP	3	WL	FIR Filter Bypass 0: No FIR Bypass 1: FIR Bypass			
TST_ADC 1)	2	WL	ADC input switch to TST1and TST2 0: No ADC input switch, normal operation 1: ADC input switched to TST1,2, ADC selected by TST_CHAN ²⁾			
TST_GMR 1)	1	W L	GMR switch to TST1and TST2 0: No GMR switch, normal operation 1: GMR switched to TST1,2 2)			
TST_CHAN	0	WL	Test Channel select 0: X channel linked to TST1and TST2 1: Y channel linked to TST1and TST2			

¹⁾ Only for test purposes

²⁾ if TST_ADC and TST_GMR are set to 1 at the same time, TST_GMR is forced to 0. TST_ADC has the higher priority.

ID

Field	Bits	Туре	Description
DEV_ID	7-4	R	Device Identifier 001 _H : TLE5010 productive chip
DEV_REV	3-0	R	Device Revision (current number) 00 _H : TLE5010 productive chip, 1st revision (B11) 01 _H : TLE5010 productive chip, 2nd revision (B21) 02 _H : TLE5010 productive chip, 3rd revision (B31) 03 _H : TLE5010 productive chip, 4th revision (B41) (Refer to Errata Sheets for later versions)

LOCK

Addr: 0E_H Reset Value: 00_H

Field	Bits	Type	Description
LOCK	7-0	W	Lock Byte ≠ 5A _H : Lock registers locked = 5A _H : Lock registers unlocked

CTRL2

Addr: 0F_H Reset Value: 00_H

7	6	5	4	3	2	1	0
VDD_OV	VDD_OFF	GND_OFF	VRG_OV	VRA_OV	VRD_OV	S_NC)
RS	RS	RS	RS	RS	RS	WL	

Field	Bits	Туре	Description
VDD_OV	7	RS	V _{DD} Overvoltage Comparator 0: No V _{DD} Overvoltage occurred 1: V _{DD} Overvoltage occurred
VDD_OFF	6	RS	V_{DD} - Off Comparator 0: No V_{DD} - Off occurred 1: V_{DD} - Off occurred
GND_OFF	5	RS	GND - Off Comparator 0: No GND - Off occurred 1: GND - Off occurred
VRG_OV	4	RS	GMR Voltage Regulator Overvoltage Comparator 0: Voltage ok 1: VRG Overvoltage occurred
VRA_OV	3	RS	Analog Voltage Regulator Overvoltage Comparator 0: Voltage ok 1: VRA Overvoltage occurred
VRD_OV	2	RS	Digital Voltage Regulator Overvoltage Comparator 0: Voltage ok 1: VRD Overvoltage occurred
S_NO	1-0	WL	Slave Number Used in the SSC protocol

Data Communication via SSC

10 Data Communication via SSC

Data communication via the SSC Interface has the following characteristics:

- The data transmission order is "Most Significant Bit (MSB) first".
- Data is put on the data line with the rising edge on SCK and read with the falling edge on SCK.
- The SSC Interface is byte-aligned. All functions are activated after each transmitted byte.
- A "high" condition on the negated Chip Select pin (CS) of the selected TLE5010 interrupts the transfer immediately. The CRC calculator is automatically reset.
- Every access to the TLE5010 with the number of data (ND) ≥ 1 is performed with address auto-increment.
- After an auto-increment overflow, the addresses begin again from 00_H.
- For every data transfer with ND ≥ 1, an 8-bit CRC byte will be appended by the selected TLE5010. No CRC byte is sent in a data transfer with ND = 0 (e.g. Update Command).
- After the CRC byte is sent, the bit represented by S_NO is pulled low by the selected slave in the Slave-Active-Byte (bits [3..0], low nibble). In this way, broadcastmessages also produce individual feedback of every selected slave. This is necessary to differentiate the individual TLE5010 slave responses, because the CRC byte is written by both TLE5010 devices in parallel.
- If the CRC byte on the bus is the same as the internally generated CRC of each TLE5010, each slave pulls the dedicated bit in the Slave-Active-Byte (bits [7..4], high nibble) low. If not, the bit in the high nibble remains 1.
- A write command to address 00_H with ND = 0 will update all values inside the TLE5010, and only in this case can the transfer proceed. Furthermore, this command is added to the CRC-calculation of the following SSC Transfer.
- A command of 0000_0000 is called the **Update Command**.
 This command transfers the present immediate values of each register to the update register. After an Update Command, the CS line does not need to set and reset again.
- The transfer ends after the CRC and Slave-Active byte have been sent.
 The TLE5010 always sends logical 1 and all the following bits sent from the SSC Master are ignored (TLE5010 is in Idle Mode). To enable data transfers again, the Chip Select pin (CS) of the TLE5010 must be deselected for CS_{off} (see Table 13) once.
- If Update Mode is selected (CTRL register, UR = 1), all accesses are performed to update registers where update registers are present. Other registers are accessed directly.

Data Communication via SSC

10.1 CRC Generation

This section identifies the requirements for CRC generation:

- This CRC is defined according to the J1850 Bus-Specification of 15.Feb.1994 for Class B Data Communication.
- Every new transfer resets the CRC generation.
- Every byte of a transfer will be taken into account to generate the CRC (also the sent command(s)).
- Generator Polynomial: X8+X4+X3+X2+1, the fast CRC generation circuit is used for CRC generation. (See Figure 13)
- The remainder of the fast CRC circuit is initially set to 11111111_B.
- The remainder is bit inverted before transmission.

Figure 13 shows the fast CRC Polynomial.

The zero extension for initial CRC calculation is included!

Figure 13 Fast CRC Polynomial Division Circuit

10.2 Slave Active Byte Generation

The position of the 0 in a nibble corresponds to the given slave number.

The slave active byte (cccc nnnn) consists of:

- low nibble (nnnn). One 0 is generated always according to the slave number.
- **high nibble** (cccc). The 0 is only generated, if the readback CRC is correct.

Slave1: S_NO = 0 \Rightarrow bit 0 is pulled low Slave Active Byte: 1110_1110 Slave2: S_NO = 1 \Rightarrow bit 1 is pulled low Slave Active Byte: 1101_1101 Slave3: S_NO = 2 \Rightarrow bit 2 is pulled low Slave Active Byte: 1011_1011 Slace4: S_NO = 3 \Rightarrow bit 3 is pulled low Slave Active Byte: 0111_0111

Example for a communication disturbed by other bus participants:

Slave1: S NO = $0 \Rightarrow bit 0$ is pulled low, but the high nibble remains as 1111.

> Slave Active Byte: 1111_1110

Data Communication via SSC

Example: Update X and Y and set ADC-Test Mode

	Command	Data	CRC (i	nit all	`0')
	00000001	0000010	00000	000	_
xor	11111111				
	=11111110.0 10001110.1			.A	
	01110000.1	.0		.B	
=		 10 .		.C	
XC	or 100011.1 = 10100.0		· ·	.D	
×	xor 10001.1 = 00101.1			.E	
	xor 100.0)11101 .			
	xor 1.0	.1000001.)0011101. 		.F	
	xor.1	1011100.	. 1	.G	
	=	1010010. 1000111.	.10	.Н	
	xc	= 10101. or 10001.	.1100	.I	
		xor 100.	.000100 .011101	.J	
		=	=01100100		der ed Remainder
Comm	nsmitted Se nand Data 00001 00000	CRC	1011		

Test Structures

11 Test Structures

Two different test signal structures are implemented in the TLE5010. These are:

- Functional Angle Test. In this case, well-known signals feed the ADCs.
- Temperature Measurement. This is useful to read out the chip temperature for compensation purposes.

11.1 Functional Angle Tests

It is possible to feed the ADCs with appropriate values to simulate a certain magnet-position and other GMR effects.

The values are generated with resistors on the chip.

The following X / Y ADC values can be programmed:

- 4 points, circle amplitude = 70.7% (0°, 90°, 180°, 270°)
- 8 points, circle amplitude = 100.0% (0°, 45°, 90°, 135°,180°, 225°, 270°, 315°)
- 8 points, circle amplitude = 122.1% (35.3°, 54.7°, 125.3°, 144.7°, 215.3°, 234.7°, 305.3°, 324.7°)
- 4 points, circle amplitude = 141.4% (45°, 135°, 225°, 315°)

Note: The 100% values typically correspond to 21700 digits and a voltage of ~ 110 mV.

Table 17 Functional Angle Test

Register Bits	X / Y Values (decimal)					
	min.	typ.	max.			
000	-400	0	400			
001	14800	15500	16200			
010	20700	21700	22700			
011		3276	7			
100 ¹⁾	-400	0	400			
101	-14800	-15500	-16200			
110	-20700	-21700	-22700			
111		-32768				

¹⁾ Not allowed to use.

Test Structures

ADC Test Vectors

Figure 14 ADC Test Vectors

11.2 Temperature Measurement

An internal bandgap voltage can be used to measure the temperature on the chip. This may be used to compensate for temperature-dependent errors.

The temperature value is sent out instead of the X value.

Table 18 Temperature Measurement

Parameter	Symbol	Limit Va	alues	Unit	Notes	
		min.	typ.	max.		
Value at -40°C	T ₋₄₀	-	-	+22000	digits	
Value at 25°C	T_{25}	+2550	+5775	+9000	digits	
Value at 150°C	T ₁₅₀	-22000	-	-	digits	
Temperature Sensitivity	S_{T}	-	-188.75	-	dig / K	1)

¹⁾ Should be used for temperature compensation of offset errors

Test Structures

11.3 Angle Test and Temperature Measurement Timing

The angle test and the temperature readout is based on the same mechanism.

In Normal Mode, the output path is linked to the angle test or to the temperature measurement unit until the mode is terminated.

Figure 15 Measurement in Normal Mode

In Automatic Mode, the signal is automatically switched back to GMR measurement after the read-out of one value.

Figure 16 Measurement in Automatic Mode

Overvoltage Comparators

12 Overvoltage Comparators

Various comparators monitor the voltage in order to ensure error free operation. The overvoltages must be active for at least $t_{\rm DEL}$ to set the test comparator bits in the SSC Interface registers. This works as digital spike suppression.

Table 19 Test Comparators

Parameter	Symbol	Limit Values			Unit	Notes	
		min.	typ.	max.			
Overvoltage Detection	V_{OVG}	-	2.80	-	V		
	V_{OVA}	-	2.80	-	V		
	V_{OVD}	-	2.80	-	V		
$V_{ m DD}$ Overvoltage	V_{DDOV}	-	6.5	-	V		
GND - Off Voltage	V_{GNDoff}	-	0.54	-	V	$V_{\text{GND_OFF}} = V_{\text{GND}} - V_{\text{TST1}}$	
V_{DD} - Off Voltage	V_{VDDoff}	-	0.48	-	V	$V_{\mathrm{VDD_off}}$ = V_{CLK} - V_{DD} or V_{SCK} - V_{DD}	
Spike Filter Delay	t _{DEL}	-	10	-	μs	The error condition must be longer than this value (min. 256 clocks of $f_{\rm DIG}$)	

12.1 Internal Supply Voltage Comparators

Every voltage regulator has an overvoltage comparator to detect a malfunction. If the nominal output voltage of 2.5 V is larger than $V_{\rm OVG}$, $V_{\rm OVA}$ and $V_{\rm OVD}$, then this overvoltage comparator is activated. It sets the VRx OV bit.

Figure 17 OV Comparator

12.2 V_{DD} Overvoltage Detection

The Overvoltage Detection Comparator monitors the external supply voltage at the $V_{\rm DD}$ pin. It activates the $STAT_VR$ bit. (See Figure 17)

Overvoltage Comparators

12.3 GND-Off Comparator

The GND–Off Comparator is used to detect a voltage difference between the GND pin and TST1 (which must be soldered to GND in the application). It activates the $STAT_VR$ bit. This circuit can detect a disconnection of the Supply GND Pin.

Figure 18 GND-Off Comparator

12.4 V_{DD}–Off Comparator

The V_{DD} – Off Comparator detects a disconnection of the $V_{\underline{DD}}$ pin supply voltage. In this case, the TLE5010 is supplied by the SCK, CLK and CS input pins via the ESD structures. It activates the $STAT\ VR$ bit.

The retriggerable analog monoflop is necessary because of the non-static signal of the CLK and SCK signals.

This comparator is also activated if spikes on CLK or SCK achieve the condition:

$$(V_{\text{CLK}} - V_{\text{DD}}) > V_{\text{VDDoff}}$$
 or $(V_{\text{SCK}} - V_{\text{DD}}) > V_{\text{VDDoff}}$

Figure 19 V_{DD}-Off Comparator

Typical Application Circuit

13 Typical Application Circuit

The application circuit shows the microcontroller version with Open Drain capabilities.

Figure 20 Application Circuit

13.1 Angle Sensor System

A complete system may consist of one TLE5010 and a microcontroller. A second TLE5010 may be used for redundancy to increase system reliability. The microcontroller should contain a CORDIC coprocessor for fast angle calculations and flash memory for the calibration data storage.

Downloaded from Arrow.com.

Package Information

14 Package Information

14.1 Package Parameters

 Table 20
 Package Parameters

Parameter	Symbol	Limit \	Values		Unit	Notes
		min.	typ.	max.		
Thermal Resistance	R_{thJA}	-	150	200	K/W	Junction to Air 1)
	R_{thJC}	-	-	75	K/W	Junction to Case
	R_{thJL}	-	-	85	K/W	Junction to Lead
Soldering Moisture Level			MSL 3		260°C	
Lead frame	Cu194 / OLIN					
Plating		S	n 100%		> 7 µm	

¹⁾ According to Jedec JESD51-7

Package Information

Package Outline PG-DSO-8

Figure 21 Package Outline PG-DSO-8

Package Information

Footprint PG-DSO-8

Figure 22 Footprint PG-DSO-8

Packing

Figure 23 Tape and Reel

Marking

Position	Marking	Description	
1st Line	5010xx	See ordering table on page 6	
2nd Line	xxx	Lot code	
3rnd Line	Gxxxx	G green, 4-digit date code	

Processing

Note: For processing recommendations, please refer Infineon's Notes on Processing

www.infineon.com Published by Infineon Technologies AG

Downloaded from Arrow.com.