Chapitre 1 : Dénombrement (fiche 2)

Cadre:

L'univers Ω est fini, muni de la probabilité uniforme. Pour tout événement A, on a :

$$\mathbb{P}(A) = \frac{\operatorname{Card}(A)}{\operatorname{Card}(\Omega)}$$

où Card(A) désigne le cardinal (nombre d'éléments) de l'ensemble A.

Quelques calculs de cardinaux:

1. Cardinal d'un produit cartésien : A_1, \ldots, A_p ensembles finis. On note $A_1 \times \ldots \times A_p = \{(x_1, \ldots x_p), x_i \in A_i\}$. Alors,

$$\operatorname{Card}(A_1 \times ... \times A_p) = \operatorname{Card}(A_1) ... \operatorname{Card}(A_p).$$

- 2. Tirer p objets distincts parmi n objects $(p \le n)$
 - a) avec ordre:

 $A_n^p = \frac{n!}{(n-p)!}$ est le nombre de p-uplets d'éléments distincts choisis parmi n éléments distincts.

b) sans ordre:

 $\binom{n}{p} = \frac{n!}{(n-p)!p!}$ est le nombre de sous ensembles à p éléments distincts choisis parmi n éléments distincts.

3. Permutations:

p! est le nombre de façons de ranger p éléments distincts.

4. Tirer sans remise n boules dans une urne de N boules de 2 couleurs, $0 \le n \le N$.

Il y a N_1 boules de couleur rouge et N_2 boules de couleur blanche avec $N_1 + N_2 = N$. On note A_{n_1,n_2} l'événement "tirer n_1 boules rouges et n_2 boules blanches" $(n = n_1 + n_2)$. Alors

$$\mathbb{P}(A_{n_1,n_2}) = \frac{\binom{N_1}{n_1} \binom{N_2}{n_2}}{\binom{N}{n}} = \frac{\binom{N_1}{n_1} \binom{N-N_1}{n-n_1}}{\binom{N}{n}}.$$

Il s'agit de la loi hypergéométrique.