Water Based Agents

- Determine when water based suppression agents are appropriate
- Describe how water based agents suppress fires
- Explain the impact of corrosion

Foam Tetrahedron

Systems

- Fixed
 - Surface application
 - Seal protection for floating roof tanks
 - Containment protection
 - Subsurface injection
- Semifixed Type A
 - Piping in place but not attached to foam source
- Semifixed Type B
 - Foam solution in fixed piping to connections for hand application
 - Similar to standpipe concept
- High Expansion
 - Local application or total flooding

Standards

- NFPA 11 Standard for Low-Medium and High-Expansion Foam Systems
- NFPA 16 Standard for the Installation of Foamwater Sprinkler and Foam-Water Spray Systems
- NFPA 409 Standard on Aircraft Hangars
- NFPA 30 Flammable and Combustible Liquids Code

Uses And Limitations where touse.

- Foams halt the generation of flammable vapors
- Great importance in Aircraft operations
 - Large fuel spills need rapid foam application and this is accomplished by properly designed foam systems
- Warehouses and large storage facilities have a similar need
- Breaks down and vaporizes

Application Criteria

- Burning liquid must be below its boiling point at ambient conditions
- If applied at higher than 212 °F, may produce dangerous frothing and slop over
- Liquid must not be unduly destructive to the foam used
- The liquid must not be water reactive
- The fire must be a horizontal surface fire for low expansion foam

Types Of Foam

- Aqueous Film Forming Foam agents AFFF
 - Provides a film over the solution to prevent the release of vapors
- Protein foaming agents P
 - Produce dense, viscous foams of high stability, high temperature resistance, and good resistance to burn back but they are less resistance to break down than AFFF and FP foams
- Fluoroprotein Foaming Agents FP
 - Similar to protein foam but contain fluorinated service agents for "fuel shedding" properties where the foam becomes coated with fuel
- Film Forming Floral Protein agents FFFP
 - Generate a self healing continuous floating film on hydrocarbon fuel services
- Alcohol type foaming agents AR
 - Involve fuels that our water soluble (e.g. methyl ethel keytone, acetone).
 Produce a floating gel-like mass for foam build up on water-soluable fuels

Types Of Foam

- Medium and high expansion foaming agents
 - Flooding agents for use in a confined spaces
 - Effects on fire
 - Prevent the air necessary for continued combustion from reaching the fire
 - Water in the foam is converted to steam which reduces oxygen concentration and absorbs heat
 - Solution not converted to steam will penetrate class A materials
 - High expansion foam provides an insulating barrier formands
 protection of exposed materials or structures

Guidelines For Foam Fire Protection

- The more gently the foam is applied the more rapid extinguishment
- All foams have a recommended application rates and pressure ranges
- Air foams more stable when generated with water at ambient temperature
- Apply foam to the sides of the fire

Foam Eductors

https://www.youtube.com/watch?v=wYAOHYKBY as

https://www.youtube.com/watch?v=OxLPvNdv2t4

:25

1:50

4:10

Applying Agent

- Multiple nozzle designs allow for
 - Local application
 - Total compartment application
 - Zoned application

Maintenance

- Maintenance considerations
 - Frequently monitor water levels in storage tanks
 - Monitor the water quality for algae growth
 - Valves could be of non-indicating type
 - Key valves are supervised open
 - Valves on systems are electrically activated
 - A manual means of operating the valve must be provided
 - Develop a means of checking the functionality of pneumatic valves
 - Conduct annual trip test
 - Ensure minimum nozzle pressure is sustained

Water Mist Fire Suppression Systems

- Industrial maritime regulatory organizations mandated installation of sprinkler systems on passenger ships
- 1990 The International Maritime Organization required all ships capable of caring more than 36 passengers to be equipped with automatic sprinkler systems by 1997
 - Needed to find a system that could be considered equivalent to sprinklers but would:
 - Discharge less water
 - Use smaller diameter piping having a lower overall weight
- NFPA 750 Standard On Water Mist Fire Protection Systems
 - System design performance-based

Water Mist Fire Suppression Systems

- Additional need to find a replacement for ozone depleting halons
 - Water behavior
 - Gas Behavior
- Nozzles ceiling height for flashover suppression
 - Cooling
 - Radiation shielding
 - Carried by plume
 - Shielded fires
- Mist Generation
 - Impingement
 - Pressure jet
 - Twin fluid

- Machinery spaces
 - Contain diesel fuel and lubricating oil spills
 - Overheated bearings
 - Electrical arcing
 - Large vessels equipped with CO₂ or halon systems

- Turbine enclosures
 - The turbine itself and it's fuel lines
 - Standard equipment in offshore drilling platform
 - Halon 1301 and the CO₂ total flooding systems have been the preferred method
 - Studies have confirmed the ability of a water mist fire suppression system to extinguish fires in a turbine enclosure

- Marine accommodation, public spaces and service areas
- Hotels and galleries
 - Used in remote with minimal water supply
 - Limit water damage
- Electrical equipment rooms, computer rooms
 - Testing has shown that electrical charge does not transmit through atomized spray
 - Consensus on a general design and system performance approach has not been reached
- Tunnels

- Aircraft passenger compartment
 - High cost
 - Not required

Water Hybrid

- Combined nitrogen and water mist
- Self-contained unit
- Displaces oxygen and removes heat
- Minimal water usage

Water Spray Systems

- Typically provided to protect a specific piece of equipment from exposure fires through covering the surface with water
- The discharge from the nozzles differs from the discharge of fix sprinklers
 - The water pattern maybe elliptical or circular to help overcome wind
 - Water spray systems are typically deluge
 - Independent water supply
 - NFPA 15 Standard For Water Spray Fixed Fixed Spray Fixed Spray Fi

- Flammable liquid and gas tanks, associated piping and equipment
- Electrical transformers
- Cable trays and support structures
- Open conveyor systems
- Openings in firewalls

Ultra-High-Speed Water Spray Systems

- Initiation of water discharge within 100 milliseconds
 - Within 36 in
- NFPA 15 Standard For Water Spray Fixed Systems For Fire Protection
- Application
 - Rocket fuel manufacturing
 - Solid propellant manufacturing
 - Ammunition manufacturing
 - Pyrotechnics manufacturing

General Detection

- Optical flame detection for open areas to detect ultraviolet or infrared light
 - Detector must be capable of reacting to the wavelengths expected

General Detection

- Points to consider
 - Survey the hazard area to determine sources of false signals and shield detection device
 - Determine elements that could interfere with detector operation (e.g. dust or ice)
 - Use test data to determine the speed with which detector is required to respond

Corrosion

- Regular corrosion far more common than MIC
 - Oxygen and iron
- Not bad water or bad pipes
 - Galvanized
 - Thin walls

Corrosion

- Accelerated
 - More O_2 = More Corrosion
 - Dry pipe fail faster than wet pipe
 - Galvanized fail much faster than black
 - Level of activity (drain/fill, remodels)
 - System design trapped air/water
 - Quality of the system installation
 - Higher temperatures increase corrosion
 - (every 10 °C increase = 2X corrosion rate)

Mitigation In Affected Systems

- Pipe cleaning is typically an option when corrosion is not excessive (i.e. pitting)
- Severely affected portions should be replaced or cleaned to remove obstructions

Prevention In New Systems

- Specify thicker piping
- Frequency of water flow testing
 - Repeated drainage and refilling can increase biological corrosion
- Chemical injection
 - Points to consider
 - Sprinklers typically located directly over people
 - Systems typically drain into foliage or biologically sensitive drains
 - Must complete a complete toxicity review of the ag