

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/12, C07K 14/47, 14/82, 14/15, C12Q 1/68, G01N 33/53, A61K 38/17, 39/00

(11) International Publication Number:

WO 97/25426

(43) International Publication Date:

17 July 1997 (17.07.97)

(21) International Application Number:

PCT/US97/00485

A3

(22) International Filing Date:

10 January 1997 (10.01.97)

(30) Priority Data:

zi j

08/585.392 08/700,014

11 January 1996 (11.01.96) US

20 August 1996 (20.08.96) US

(71) Applicant: CORIXA CORPORATION [US/US]; Suite 464, 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: FRUDAKIS, Tony, N.; Magnolia Station, 3211 West McGraw, P.O. Box 99232, Seattle, WA 98232-0232 (US). SMITH, John, M.; 208 - 116th Place S.E., Everett, WA 98208 (US). REED, Steven, G.; 2843 - 122nd Place N.E., Bellevue, WA 98005 (US).

(74) Agents: MAKI, David, J. et al.; Seed and Berry L.L.P., 6300 Columbia Center. 701 Fifth Avenue, Seattle, WA 98104-7092 (US).

(81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 30 October 1997 (30.10.97)

(54) Title: COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF BREAST CANCER

GENOMIC CLONE MAP

(57) Abstract

Compositions and methods for the detection and therapy of breast cancer are disclosed. The compounds provided include nucleotide sequences that are preferentially expressed in breast tumor tissue, as well as polypeptides encoded by such nucleotide sequences. Vaccines and pharmaceutical compositions comprising such compounds are also provided and may be used, for example, for the prevention and treatment of breast cancer. The polypeptides may also be used for the production of antibodies, which are useful for diagnosing and monitoring the progression of breast cancer in a patient.

 ⁽Referred to in PCT Gazette No. 51/1997, Section II)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	•	MX	Mexico
			Georgia		
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NI.	Netherlands
BE	Betgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ.	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
Fl	Finland	ML	Mali	us	United States of America
FR	France	MN	Mongolia	UZ.	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

ř.

3

CORRECTED VERSION**

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(51) International Patent Classification ⁶:
C12N 15/12, C07K 14/47, 14/82, 14/15,
C12Q 1/68, G01N 33/53, A61K 38/17,
39/00

(11) International Publication Number:

WO 97/25426

(43) International Publication Date:

17 July 1997 (17.07.97)

(21) International Application Number:

PCT/US97/00485

A3

(22) International Filing Date:

10 January 1997 (10.01.97)

(30) Priority Data:

Ż

08/585,392

11 January 1996 (11.01.96) US

08/700,014

20 August 1996 (20.08.96) US

(71) Applicant: CORIXA CORPORATION [US/US]; Suite 464, 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: FRUDAKIS, Tony, N.; Magnolia Station, 3211 West McGraw, P.O. Box 99232, Seattle, WA 98232-0232 (US). SMITH, John, M.; 208 - 116th Place S.E., Everett, WA 98208 (US). REED, Steven, G.; 2843 - 122nd Place N.E., Bellevue, WA 98005 (US).

(74) Agents: MAKI, David, J. et al.; Seed and Berry L.L.P., 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US). (81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 30 October 1997 (30.10.97)

(54) Title: COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF BREAST CANCER

GENOMIC CLONE MAP

(57) Abstract

Compositions and methods for the detection and therapy of breast cancer are disclosed. The compounds provided include nucleotide sequences that are preferentially expressed in breast tumor tissue, as well as polypeptides encoded by such nucleotide sequences. Vaccines and pharmaceutical compositions comprising such compounds are also provided and may be used, for example, for the prevention and treatment of breast cancer. The polypeptides may also be used for the production of antibodies, which are useful for diagnosing and monitoring the progression of breast cancer in a patient.

^{* (}Referred to in PCT Gazette No. 51/1997, Section II)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	•	-	•				• •
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	T.J	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	· IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Ll	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
ER	Estonia	LR	Liberia	SG	Singapore		

· 中国是一种"

惧

1000

S.

Description

COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF BREAST CANCER

5

10

ŝ

ď,

Technical Field

The present invention relates generally to the detection and therapy of breast cancer. The invention is more specifically related to nucleotide sequences that are preferentially expressed in breast tumor tissue and to polypeptides encoded by such nucleotide sequences. The nucleotide sequences and polypeptides may be used in vaccines and pharmaceutical compositions for the prevention and treatment of breast cancer. The polypeptides may also be used for the production of compounds, such as antibodies, useful for diagnosing and monitoring the progression of breast cancer in a patient.

15

25

Background of the Invention

Breast cancer is a significant health problem for women in the United States and throughout the world. Although advances have been made in detection and treatment of the disease, breast cancer remains the second leading cause of cancer-related deaths in women, affecting more than 180,000 women in the United States each year. For women in North America, the life-time odds of getting breast cancer are now one in eight.

No vaccine or other universally successful method for the prevention or treatment of breast cancer is currently available. Management of the disease currently relies on a combination of early diagnosis (through routine breast screening procedures) and aggressive treatment, which may include one or more of a variety of treatments such as surgery, radiotherapy, chemotherapy and hormone therapy. The course of treatment for a particular breast cancer is often selected based on a variety of prognostic parameters, including an analysis of specific tumor markers. See, e.g., Porter-Jordan and Lippman, Breast Cancer 8:73-100 (1994). However, the use of established markers often leads to a result that is difficult to interpret, and the high mortality

15

20

ž

2)

44

observed in breast cancer patients indicates that improvements are needed in the treatment, diagnosis and prevention of the disease.

Accordingly, there is a need in the art for improved methods for therapy and diagnosis of breast cancer. The present invention fulfills these needs and further provides other related advantages.

Summary of the Invention

Briefly stated, the subject invention provides compositions and methods for the diagnosis and therapy of breast cancer. In one aspect, isolated DNA molecules are provided, comprising (a) a nucleotide sequence preferentially expressed in breast cancer tissue, relative to normal tissue; (b) a variant of such a sequence that contains one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% (preferably no more than 5%) of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide sequence are retained; or (c) a nucleotide sequence encoding an epitope of a polypeptide encoded by at least one of the above sequences. In one embodiment, the isolated DNA molecule comprises a human endogenous retroviral sequence recited in SEQ ID NO:1. In other embodiments, the isolated DNA molecule comprises a nucleotide sequence recited in any one of SEQ ID NO:3 - SEQ ID NO:77 or SEQ ID NOS: 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227.

In related embodiments, the isolated DNA molecule encodes an epitope of a polypeptide, wherein the polypeptide is encoded by a nucleotide sequence that: (a) hybridizes to a sequence recited in any one of SEQ ID NO:1 or SEQ ID NO:3 - SEQ ID NO:77 or SEQ ID NOS: 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227 under stringent conditions; and (b) is at least 80% identical to a sequence recited in any one of SEQ ID NO:1 or SEQ ID NO:3 - SEQ ID NO:77 or SEQ ID NOS: 142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227; and wherein RNA corresponding to said nucleotide sequence is expressed at a greater level in human breast tumor tissue than in normal breast tissue.

3

4:

Ħ

.

In another embodiment, the present invention provides an isolated DNA molecule encoding an epitope of a polypeptide, the polypeptide being encoded by: (a) a nucleotide sequence transcribed from the sequence of SEQ ID NO: 141; or (b) a variant of said nucleotide sequence that contains one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide sequence are retained. Isolated DNA and RNA molecules comprising a nucleotide sequence complementary to a DNA molecule as described above are also provided.

In related aspects, the present invention provides recombinant expression vectors comprising a DNA molecule as described above and host cells transformed or transfected with such expression vectors.

In further aspects, polypeptides, comprising an amino acid sequence encoded by a DNA molecule as described above, and monoclonal antibodies that bind to such polypeptides are provided.

In yet another aspect, methods are provided for determining the presence of breast cancer in a patient. In one embodiment, the method comprises detecting, within a biological sample, a polypeptide as described above. In another embodiment, the method comprises detecting, within a biological sample, an RNA molecule encoding a polypeptide as described above. In yet another embodiment, the method comprises (a) intradermally injecting a patient with a polypeptide as described above; and (b) detecting an immune response on the patient's skin and therefrom detecting the presence of breast cancer in the patient. In further embodiments, the present invention provides methods for determining the presence of breast cancer in a patient as described above wherein the polypeptide is encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO.: 78-86, SEQ ID NOS: 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220 and sequences that hybridize thereto under stringent conditions.

In a related aspect, diagnostic kits useful in the determination of breast cancer are provided. The diagnostic kits generally comprise either one or more monoclonal antibodies as described above, or one or more monoclonal antibodies that

20

10

15

20

25

30

1

-Konny

.

 ${\mathcal T}^{i}$

bind to a polypeptide encoded by a nucleotide sequence selected from the group consisting of sequences provided in SEQ ID NOS: 78-86 and SEQ ID NOS: 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and a detection reagent.

Within a related aspect, the diagnostic kit comprises a first polymerase chain reaction primer and a second polymerase chain reaction primer, the first and second primers each comprising at least about 10 contiguous nucleotides of an RNA molecule as described above, or an RNA molecule encoding a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS: 78-86 and SEQ ID NOS: 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220.

Within another related aspect, the diagnostic kit comprises at least one oligonucleotide probe, the probe comprising at least about 15 contiguous nucleotides of a DNA molecule as described above, or a DNA molecule selected from the group consisting of SEQ ID NOS: 78-86 and SEQ ID NOS: 144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220.

In another related aspect, the present invention provides methods for monitoring the progression of breast cancer in a patient. In one embodiment, the method comprises: (a) detecting an amount, in a biological sample, of a polypeptide as described above at a first point in time; (b) repeating step (a) at a subsequent point in time; and (c) comparing the amounts of polypeptide detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient. In another embodiment, the method comprises (a) detecting an amount, within a biological sample, of an RNA molecule encoding a polypeptide as described above at a first point in time; (b) repeating step (a) at a subsequent point in time; and (c) comparing the amounts of RNA molecules detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient. In yet other embodiments, the present invention provides methods for monitoring the progression of breast cancer in a patient as described above wherein the polypeptide is encoded by a nucleotide sequence selected form the group consisting of SEQ ID NO.: 78-86, SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220 and sequences that hybridize thereto under stringent conditions.

3

ije.

In still other aspects, pharmaceutical compositions, which comprise a polypeptide as described above in combination with a physiologically acceptable carrier, and vaccines, which comprise a polypeptide as described above in combination with an immune response enhancer or adjuvant are provided. In yet other aspects, the present invention provides pharmaceutical compositions and vaccines comprising a polypeptide encoded by a nucleotide sequence selected form the group consisting of SEQ ID NO.: 78-86, SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220 and sequences that hybridize thereto under stringent conditions.

In related aspects, the present invention provides methods for inhibiting
the development of breast cancer in a patient, comprising administering to a patient a
pharmaceutical composition or vaccine as described above.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

Brief Description of the Drawings

Figure 1 shows the differential display PCR products, separated by gel electrophoresis, obtained from cDNA prepared from normal breast tissue (lanes 1 and 2) and from cDNA prepared from breast tumor tissue from the same patient (lanes 3 and 4). The arrow indicates the band corresponding to B18Ag1.

Figure 2 is a northern blot comparing the level of B18Ag1 mRNA in breast tumor tissue (lane 1) with the level in normal breast tissue.

Figure 3 shows the level of B18Ag1 mRNA in breast tumor tissue compared to that in various normal and non-breast tumor tissues as determined by RNase protection assays.

Figure 4 is a genomic clone map showing the location of additional retroviral sequences obtained from ends of XbaI restriction digests (provided in SEQ ID NO:3 - SEQ ID NO:10) relative to B18Ag1.

ij.

Ŧ

Figures 5A and 5B show the sequencing strategy, genomic organization and predicted open reading frame for the retroviral element containing B18Ag1.

Figure 6 shows the nucleotide sequence of the representative breast tumor-specific cDNA B18Ag1.

Figure 7 shows the nucleotide sequence of the representative breast tumor-specific cDNA B17Ag1.

Figure 8 shows the nucleotide sequence of the representative breast tumor-specific cDNA B17Ag2.

Figure 9 shows the nucleotide sequence of the representative breast tumor-specific cDNA B13Ag2a.

Figure 10 shows the nucleotide sequence of the representative breast tumor-specific cDNA B13Ag1b.

Figure 11 shows the nucleotide sequence of the representative breast tumor-specific cDNA B13Ag1a.

Figure 12 shows the nucleotide sequence of the representative breast tumor-specific cDNA B11Ag1.

Figure 13 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA3c.

Figure 14 shows the nucleotide sequence of the representative breast 20 tumor-specific cDNA B9CG1.

Figure 15 shows the nucleotide sequence of the representative breast tumor-specific cDNA B9CG3.

Figure 16 shows the nucleotide sequence of the representative breast tumor-specific cDNA B2CA2.

Figure 17 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA1.

Figure 18 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA2.

Figure 19 shows the nucleotide sequence of the representative breast tumor-specific cDNA B3CA3.

10

15

1.0

Figure 20 shows the nucleotide sequence of the representative breast tumor-specific cDNA B4CA1.

Figure 21A depicts RT-PCR analysis of breast tumor genes in breast tumor tissues (lanes 1-8) and normal breast tissues (lanes 9-13) and H₂O (lane 14).

Figure 21B depicts RT-PCR analysis of breast tumor genes in prostate tumors (lane 1,2), colon tumors (lane 3), lung tumor (lane 4), normal prostate (lane 5), normal colon (lane 6), normal kidney (lane 7), normal liver (lane 8), normal lung (lane 9), normal ovary (lanes 10, 18), normal pancreases (lanes 11, 12), normal skeletal muscle (lane 13), normal skin (lane 14), normal stomach (lane 15), normal testes (lane 16), normal small intestine (lane 17), HBL-100 (lane 19), MCF-12A (lane 20), breast tumors (lanes 21-23), H₂O (lane 24), and colon tumor (lane 25).

Detailed Description of the Invention

As noted above, the present invention is generally directed to compositions and methods for the diagnosis, monitoring and therapy of breast cancer. The compositions described herein include polypeptides, nucleic acid sequences and antibodies. Polypeptides of the present invention generally comprise at least a portion of a protein that is expressed at a greater level in human breast tumor tissue than in normal breast tissue (i.e., the level of RNA encoding the polypeptide is at least 2-fold higher in tumor tissue). Such polypeptides are referred to herein as breast tumorspecific polypeptides, and cDNA molecules encoding such polypeptides are referred to as breast tumor-specific cDNAs. Nucleic acid sequences of the subject invention generally comprise a DNA or RNA sequence that encodes all or a portion of a polypeptide as described above, or that is complementary to such a sequence. Antibodies are generally immune system proteins, or fragments thereof, that are capable of binding to a portion of a polypeptide as described above. Antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies.

Polypeptides within the scope of this invention include, but are not limited to, polypeptides (and epitopes thereof) encoded by a human endogenous

֏

20

25

7

13.6

Ġ

retroviral sequence, such as the sequence designated B18Ag1 (Figure 5 and SEO ID NO:1). Also within the scope of the present invention are polypeptides encoded by other sequences within the retroviral genome containing B18Ag1 (SEQ ID NO: 141). Such sequences include, but are not limited to, the sequences recited in SEQ ID NO:3 -SEQ ID NO:10. B18Ag1 has homology to the gag p30 gene of the endogenous human retroviral element S71, as described in Werner et al., Virology 174:225-238 (1990) and also shows homology to about thirty other retroviral gag genes. As discussed in more detail below, the present invention also includes a number of additional breast tumorspecific polypeptides, such as those encoded by the nucleotide sequences recited in SEQ ID NO:11 - SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins containing the sequences recited herein. A polypeptide comprising an epitope of a protein containing a sequence as described herein may consist entirely of the epitope, or may contain additional sequences. The additional sequences may be derived from the native protein or may be heterologous, and such sequences may (but need not) possess immunogenic or antigenic properties.

An "epitope," as used herein is a portion of a polypeptide that is recognized (i.e., specifically bound) by a B-cell and/or T-cell surface antigen receptor. Epitopes may generally be identified using well known techniques, such as those summarized in Paul, Fundamental Immunology, 3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides derived from the native polypeptide for the ability to react with antigen-specific antisera and/or T-cell lines or clones. An epitope of a polypeptide is a portion that reacts with such antisera and/or T-cells at a level that is similar to the reactivity of the full length polypeptide (e.g., in an ELISA and/or T-cell reactivity assay). Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. B-cell and T-cell epitopes may also be predicted via computer analysis. Polypeptides comprising an epitope of a polypeptide that is

10

15

-1

4

4

Ħ

張海

٠,

preferentially expressed in a tumor tissue (with or without additional amino acid sequence) are within the scope of the present invention.

The compositions and methods of the present invention also encompass variants of the above polypeptides and nucleic acid sequences encoding such polypeptides. A polypeptide "variant," as used herein, is a polypeptide that differs from the native polypeptide in substitutions and/or modifications, such that the antigenic and/or immunogenic properties of the polypeptide are retained. Such variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with antisera and/or T-cells as described above. Nucleic acid variants may contain one or more substitutions, deletions, insertions and/or modifications such that the antigenic and/or immunogenic properties of the encoded polypeptide are retained. One preferred variant of the polypeptides described herein is a variant that contains nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide positions.

Preferably, a variant contains conservative substitutions. A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also (or alternatively) be modified by, for example, the
deletion or addition of amino acids that have minimal influence on the immunogenic or
antigenic properties, secondary structure and hydropathic nature of the polypeptide.
For example, a polypeptide may be conjugated to a signal (or leader) sequence at the Nterminal end of the protein which co-translationally or post-translationally directs
transfer of the protein. The polypeptide may also be conjugated to a linker or other
sequence for ease of synthesis, purification or identification of the polypeptide (e.g.,

15

20

30

3.)

¥.

Signal Control poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

In general, nucleotide sequences encoding all or a portion of the polypeptides described herein may be prepared using any of several techniques. For example, cDNA molecules encoding such polypeptides may be cloned on the basis of the breast tumor-specific expression of the corresponding mRNAs, using differential display PCR. This technique compares the amplified products from RNA template prepared from normal and breast tumor tissue. cDNA may be prepared by reverse transcription of RNA using a (dT)₁₂AG primer. Following amplification of the cDNA using a random primer, a band corresponding to an amplified product specific to the tumor RNA may be cut out from a silver stained gel and subcloned into a suitable vector (e.g., the T-vector, Novagen, Madison, WI). Nucleotide sequences encoding all or a portion of the breast tumor-specific polypeptides disclosed herein may be amplified from cDNA prepared as described above using the random primers shown in SEQ ID NO.:87-125.

Alternatively, a gene encoding a polypeptide as described herein (or a portion thereof) may be amplified from human genomic DNA, or from breast tumor cDNA, via polymerase chain reaction. For this approach, B18Ag1 sequence-specific primers may be designed based on the sequence provided in SEO ID NO:1, and may be purchased or synthesized. One suitable primer pair for amplification from breast tumor cDNA is (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID NO.:126) and (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO.:127). An amplified portion of B18Ag1 may then be used to isolate the full length gene from a human genomic DNA library or from a breast tumor cDNA library, using well known techniques, such as those described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (1989). Other sequences within the retroviral genome of which B18Ag1 is a part may be similarly prepared by screening human genomic libraries using B18Ag1-specific sequences as probes. Nucleotides translated into protein from the retroviral genome shown in SEQ ID NO: 141 may then be determined by cloning the corresponding cDNAs, predicting the open reading frames and cloning the appropriate cDNAs into a vector containing a viral

20

2

Sec. Sec.

4

.4

promoter, such as T7. The resulting constructs can be employed in a translation reaction, using techniques known to those of skill in the art, to identify nucleotide sequences which result in expressed protein. Similarly, primers specific for the remaining breast tumor-specific polypeptides described herein may be designed based on the nucleotide sequences provided in SEQ ID NO:11 - SEQ ID NO:86 and SEQ ID NO:142-SEQ ID NO:226.

Recombinant polypeptides encoded by the DNA sequences described above may be readily prepared from the DNA sequences. For example, supernatants from suitable host/vector systems which secrete recombinant protein or polypeptide into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant polypeptide.

In general, any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line such as COS or CHO.

Such techniques may also be used to prepare polypeptides comprising epitopes or variants of the native polypeptides. For example, variants of a native polypeptide may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis, and sections of the DNA sequence may be removed to permit preparation of truncated polypeptides. Portions and other variants having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may also be generated by synthetic means, using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146 (1963). Equipment

10

15

20

25

30

ţ

1

漬

15

for automated synthesis of polypeptides is commercially available from suppliers such as Applied BioSystems, Inc., Foster City, CA, and may be operated according to the manufacturer's instructions.

In specific embodiments, polypeptides of the present invention encompass amino acid sequences encoded by a DNA molecule having a sequence recited in any one of SEQ ID NO:1 or SEQ ID NO:3 - SEQ ID NO:77 or SEO ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227, variants of such polypeptides that are encoded by DNA molecules containing one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide positions, and epitopes of the above polypeptides. Polypeptides within the scope of the present invention also include polypeptides (and epitopes thereof) encoded by DNA sequences that hybridize to a DNA molecule having a sequence recited in any one of SEQ ID NO:1 or SEO ID NO:3 - SEQ ID NO:77 or SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227 under stringent conditions, wherein the DNA sequences are at least 80% identical in overall sequence to a recited sequence and wherein RNA corresponding to the nucleotide sequence is expressed at a greater level in human breast tumor tissue than in normal breast tissue. As used herein, "stringent conditions" refers to prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65°C, 6X SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1X SSC, 0.1% SDS at 65°C and two washes of 30 minutes each in 1 X SSC, 0.1% SDS at 65°C. DNA molecules according to the present invention include molecules that encode any of the above polypeptides.

In another aspect of the present invention, antibodies are provided. Such antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the

polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519 (1976), and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

20

25

30

Ģ,

Section

15

20

ú

**

Antibodies may be used, for example, in methods for detecting breast cancer in a patient. Such methods involve using an antibody to detect the presence or absence of a breast tumor-specific polypeptide as described herein in a suitable biological sample. As used herein, suitable biological samples include tumor or normal tissue biopsy, mastectomy, blood, lymph node, serum or urine samples, or other tissue, homogenate, or extract thereof obtained from a patient.

There are a variety of assay formats known to those of ordinary skill in the art for using an antibody to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. For example, the assay may be performed in a Western blot format, wherein a protein preparation from the biological sample is submitted to gel electrophoresis, transferred to a suitable membrane and allowed to react with the antibody. The presence of the antibody on the membrane may then be detected using a suitable detection reagent, as described below.

In another embodiment, the assay involves the use of antibody immobilized on a solid support to bind to the polypeptide and remove it from the remainder of the sample. The bound polypeptide may then be detected using a second antibody or reagent that contains a reporter group. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized antibody after incubation of the antibody with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the antibody is indicative of the reactivity of the sample with the immobilized antibody, and as a result, indicative of the concentration of polypeptide in the sample.

The solid support may be any material known to those of ordinary skill in the art to which the antibody may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose filter or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681.

15

20

25

30

The antibody may be immobilized on the solid support using a variety of techniques known to those in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the antibody, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of antibody ranging from about 10 ng to about 1 µg, and preferably about 100-200 ng, is sufficient to immobilize an adequate amount of polypeptide.

Covalent attachment of antibody to a solid support may also generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the antibody. For example, the antibody may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook (1991) at A12-A13).

In certain embodiments, the assay for detection of polypeptide in a sample is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the biological sample, such that the polypeptide within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a second antibody (containing a reporter group) capable of binding to a different site on the polypeptide is added. The amount of second antibody that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically

S

Š

:4

15

20

**

" 一个

Ĭ

3

À

blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20TM (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (i.e., incubation time) is that period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with breast cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of antibody to reporter group may be achieved using standard methods known to those of ordinary skill in the art.

The second antibody is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound second antibody is then removed and bound second antibody is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a

では、

į,

'n,

specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of breast cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value established from non-tumor tissue. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without breast cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value may be considered positive for breast cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, p. 106-7 (Little Brown and Co., 1985). Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for breast cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the antibody is immobilized on a membrane, such as nitrocellulose. In the flow-through test, the polypeptide within the sample bind to the immobilized antibody as the sample passes through the membrane. A second, labeled antibody then binds to the antibody-polypeptide complex as a solution containing the second antibody flows through the membrane. The detection of bound second antibody may then be performed as described above. In the strip test format, one end of the membrane to which antibody is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second antibody

15

20

30

N. Action

*9

.5

W.

3

and to the area of immobilized antibody. Concentration of second antibody at the area of immobilized antibody indicates the presence of breast cancer. Typically, the concentration of second antibody at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of antibody immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1 µg. and more preferably from about 50 ng to about 1 µg. Such tests can typically be performed with a very small amount of biological sample.

The presence or absence of breast cancer in a patient may also be determined by evaluating the level of mRNA encoding a breast tumor-specific polypeptide as described herein within the biological sample (e.g., a biopsy, mastectomy and/or blood sample from a patient) relative to a predetermined cut-off value. Such an evaluation may be achieved using any of a variety of methods known to those of ordinary skill in the art such as, for example, in situ hybridization and amplification by polymerase chain reaction. For example, polymerase chain reaction may be used to amplify sequences from cDNA prepared from RNA that is isolated from one of the above biological samples. Sequence-specific primers for use in such amplification may be designed based on the sequences provided in any one of SEO ID NO:1 or SEQ ID NO:11 - SEQ ID NO:86 and SEQ ID NO:142-SEQ ID NO:226, and may be purchased or synthesized. In the case of B18Ag1, as noted herein, one suitable primer pair is B18Ag1-2 (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID NO.:126) and B18Ag1-3 (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO.:127). The PCR reaction products may then be separated by gel electrophoresis and visualized according to methods well known to those of ordinary skill in the art. Amplification is typically performed on samples obtained from matched pairs of tissue (tumor and non-tumor tissue from the same individual) or from unmatched pairs of tissue (tumor and non-tumor tissue from different individuals). The amplification reaction is preferably performed on several dilutions of cDNA spanning two orders of

15

20

25

30

. 4

The same

લું

4

Section

وتغو

magnitude. A two-fold or greater increase in expression in several dilutions of the tumor sample as compared to the same dilution of the non-tumor sample is considered positive.

Conventional RT-PCR protocols using agarose and ethidium bromide staining while important in defining gene specificity do not lend themselves to diagnostic kit development because of the time and effort required in making them quantitative (i.e., construction of saturation and/or titration curves), and their sample throughput. This problem is overcome by the development of procedures such as real time RT-PCR which allows for assays to be performed in single tubes, and in turn can be modified for use in 96 well plate formats. Instrumentation to perform such methodologies are available from ABI/Perkin Elmer. Alternatively, other high throughput assays using labelled probes (e.g., digoxygenin) in combination with labelled (e.g., enzyme fluorescent, radioactive) antibodies to such probes can also be used in the development of 96 well plate assays.

In yet another method for determining the presence or absence of breast cancer in a patient, one or more of the breast tumor-specific polypeptides described may be used in a skin test. As used herein, a "skin test" is any assay performed directly on a patient in which a delayed-type hypersensitivity (DTH) reaction (such as swelling, reddening or dermatitis) is measured following intradermal injection of one or more polypeptides as described above. Such injection may be achieved using any suitable device sufficient to contact the polypeptide or polypeptides with dermal cells of the patient, such as a tuberculin syringe or 1 mL syringe. Preferably, the reaction is measured at least 48 hours after injection, more preferably 48-72 hours.

The DTH reaction is a cell-mediated immune response, which is greater in patients that have been exposed previously to a test antigen (i.e., an immunogenic portion of a polypeptide employed, or a variant thereof). The response may measured visually, using a ruler. In general, a response that is greater than about 0.5 cm in diameter, preferably greater than about 5.0 cm in diameter, is a positive response, indicative of breast cancer.

The breast tumor-specific polypeptides described herein are preferably formulated, for use in a skin test, as pharmaceutical compositions containing at least

15

20

30

1

**

益

18.

one polypeptide and a physiologically acceptable carrier, such as water, saline, alcohol, or a buffer. Such compositions typically contain one or more of the above polypeptides in an amount ranging from about 1 μ g to 100 μ g, preferably from about 10 μ g to 50 μ g in a volume of 0.1 mL. Preferably, the carrier employed in such pharmaceutical compositions is a saline solution with appropriate preservatives, such as phenol and/or Tween 80TM.

In other aspects of the present invention, the progression and/or response to treatment of a breast cancer may be monitored by performing any of the above assays over a period of time, and evaluating the change in the level of the response (i.e., the amount of polypeptide or mRNA detected or, in the case of a skin test, the extent of the immune response detected). For example, the assays may be performed every month to every other month for a period of 1 to 2 years. In general, breast cancer is progressing in those patients in whom the level of the response increases over time. In contrast, breast cancer is not progressing when the signal detected either remains constant or decreases with time.

In further aspects of the present invention, the compounds described herein may be used for the immunotherapy of breast cancer. In these aspects, the compounds (which may be polypeptides, antibodies or nucleic acid molecules) are preferably incorporated into pharmaceutical compositions or vaccines. Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier. Vaccines may comprise one or more polypeptides and an immune response enhancer, such as an adjuvant or a liposome (into which the compound is incorporated). Pharmaceutical compositions and vaccines may additionally contain a delivery system, such as biodegradable microspheres which are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109. Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, including one or more separate polypeptides.

Alternatively, a vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated *in situ*. In such vaccines, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and

*

The state of

1

À.

٧,

ŝ

viral expression systems. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal). Bacterial delivery systems involve the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in Ulmer et al., *Science 259*:1745-1749 (1993), and reviewed by Cohen, *Science 259*:1691-1692 (1993). The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactate polyglycolate) may also be employed as carriers for the pharmaceutical compositions of this invention.

Any of a variety of adjuvants may be employed in the vaccines of this invention to nonspecifically enhance the immune response. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI), Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ), alum, biodegradable microspheres, monophosphoryl

10

15

20

25

30

N

'n

Selected.

31

lipid A and quil A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.

The above pharmaceutical compositions and vaccines may be used, for example, for the therapy of breast cancer in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may or may not be afflicted with breast cancer. Accordingly, the above pharmaceutical compositions and vaccines may be used to prevent the development of breast cancer or to treat a patient afflicted with breast cancer. To prevent the development of breast cancer, a pharmaceutical composition or vaccine comprising one or more polypeptides as described herein may be administered to a patient. Alternatively, naked DNA or plasmid or viral vector encoding the polypeptide may be administered. For treating a patient with breast cancer, the pharmaceutical composition or vaccine may comprise one or more polypeptides, antibodies or nucleotide sequences complementary to DNA encoding a polypeptide as described herein (e.g., antisense RNA or antisense deoxyribonucleotide oligonucleotides).

Routes and frequency of administration, as well as dosage, will vary from individual to individual. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 10 doses may be administered for a 52-week period. Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti-tumor immune response. Such response can be monitored by measuring the anti-tumor antibodies in a patient or by vaccine-dependent generation of cytolytic effector cells capable of killing the patient's tumor cells in vitro. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (e.g., more frequent remissions, complete or partial or longer disease-free survival) in vaccinated patients as compared to non-vaccinated patients. In general, for pharmaceutical compositions and vaccines comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about $100~\mu g$ to 5 mg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1~mL to about 5~mL.

The following Examples are offered by way of illustration and not by 5 way of limitation.

EXAMPLES

Example 1

Preparation of Breast Tumor-Specific cDNAs Using Differential Display RT-PCR

5

10

20

This Example illustrates the preparation of cDNA molecules encoding breast tumor-specific polypeptides using a differential display screen.

A. Preparation of B18Ag1 cDNA and Characterization of mRNA Expression

Tissue samples were prepared from breast tumor and normal tissue of a patient with breast cancer that was confirmed by pathology after removal from the patient. Normal RNA and tumor RNA was extracted from the samples and mRNA was isolated and converted into cDNA using a (dT)₁₂AG (SEQ ID NO.:130) anchored 3' primer. Differential display PCR was then executed using a randomly chosen primer (CTTCAACCTC) (SEQ ID NO.:103). Amplification conditions were standard buffer containing 1.5 mM MgCl₂, 20 pmol of primer, 500 pmol dNTP, and 1 unit of *Taq* DNA polymerase (Perkin-Elmer, Branchburg, NJ). Forty cycles of amplification were performed using 94°C denaturation for 30 seconds, 42°C annealing for 1 minute, and 72°C extension for 30 seconds. An RNA fingerprint containing 76 amplified products was obtained. Although the RNA fingerprint of breast tumor tissue was over 98% identical to that of the normal breast tissue, a band was repeatedly observed to be specific to the RNA fingerprint pattern of the tumor. This band was cut out of a silver stained gel, subcloned into the T-vector (Novagen, Madison, WI) and sequenced.

The sequence of the cDNA, referred to as B18Ag1, is provided in SEQ ID NO:1. A database search of GENBANK and EMBL revealed that the B18Ag1 fragment initially cloned is 77% identical to the endogenous human retroviral element S71, which is a truncated retroviral element homologous to the Simian Sarcoma Virus (SSV). S71 contains an incomplete gag gene, a portion of the pol gene and an LTR-like structure at the 3' terminus (see Werner et al., Virology 174:225-238 (1990)). B18Ag1 is also 64% identical to SSV in the region corresponding to the P30 (gag) locus. B18Ag1 contains three separate and incomplete reading frames covering a

à

10

15

20

25

Š

"3

靅

Ę.

region which shares considerable homology to a wide variety of gag proteins of retroviruses which infect mammals. In addition, the homology to S71 is not just within the gag gene, but spans several kb of sequence including an LTR.

B18Ag1-specific PCR primers were synthesized using computer analysis guidelines. RT-PCR amplification (94°C, 30 seconds; 60°C \rightarrow 42°C, 30 seconds; 72°C, 30 seconds for 40 cycles) confirmed that B18Ag1 represents an actual mRNA sequence present at relatively high levels in the patient's breast tumor tissue. The primers used in amplification were B18Ag1-1 (CTG CCT GAG CCA CAA ATG) (SEQ ID NO.:128) and B18Ag1-4 (CCG GAG GAG GAA GCT AGA GGA ATA) (SEQ ID NO.:129) at a 3.5 mM magnesium concentration and a pH of 8.5, and B18Ag1-2 (ATG GCT ATT TTC GGG GCC TGA CA) (SEQ ID NO.:126) and B18Ag1-3 (CCG GTA TCT CCT CGT GGT TATT) (SEQ ID NO.:127) at 2 mM magnesium at pH 9.5. The same experiments showed exceedingly low to nonexistent levels of expression in this patient's normal breast tissue (see Figure 1). RT-PCR experiments were then used to show that B18Ag1 mRNA is present in nine other breast tumor samples (from Brazilian and American patients) but absent in, or at exceedingly low levels in, the normal breast tissue corresponding to each cancer patient. RT-PCR analysis has also shown that the B18Ag1 transcript is not present in various normal tissues (including lymph node, myocardium and liver) and present at relatively low levels in PBMC and lung tissue. The presence of B18Ag1 mRNA in breast tumor samples, and its absence from normal breast tissue, has been confirmed by Northern blot analysis, as shown in Figure 2.

The differential expression of B18Ag1 in breast tumor tissue was also confirmed by RNase protection assays. Figure 3 shows the level of B18Ag1 mRNA in various tissue types as determined in four different RNase protection assays. Lanes 1-12 represent various normal breast tissue samples, lanes 13-25 represent various breast tumor samples; lanes 26-27 represent normal prostate samples; lanes 28-29 represent prostate tumor samples; lanes 30-32 represent colon tumor samples; lane 33 represents normal aorta; lane 34 represents normal small intestine; lane 35 represents normal skin, lane 36 represents normal lymph node; lane 37 represents normal ovary; lane 38 represents normal liver; lane 39 represents normal skeletal muscle; lane 40 represents a

15

20

25

30

Ð

÷

ş

記を

first normal stomach sample, lane 41 represents a second normal stomach sample; lane 42 represents a normal lung; lane 43 represents normal kidney; and lane 44 represents normal pancreas. Interexperimental comparison was facilitated by including a positive control RNA of known B-actin message abundance in each assay and normalizing the results of the different assays with respect to this positive control.

RT-PCR and Southern Blot analysis has shown the B18Ag1 locus to be present in human genomic DNA as a single copy endogenous retroviral element. A genomic clone of approximately 12-18 kb was isolated using the initial B18Ag1 sequence as a probe. Four additional subclones were also isolated by XbaI digestion. Additional retroviral sequences obtained from the ends of the XbaI digests of these clones (located as shown in Figure 4) are shown as SEQ ID NO:3 - SEQ ID NO:10, where SEQ ID NO:3 shows the location of the sequence labeled 10 in Figure 4, SEQ ID NO:4 shows the location of the sequence labeled 11-29, SEQ ID NO:5 shows the location of the sequence labeled 3, SEQ ID NO:6 shows the location of the sequence labeled 12, SEQ ID NO:8 shows the location of the sequence labeled 13, SEQ ID NO:9 shows the location of the sequence labeled 11-22.

Subsequent studies demonstrated that the 12-18 kb genomic clone contains a retroviral element of about 7.75 kb, as shown in Figures 5A and 5B. The sequence of this retroviral element is shown in SEQ ID NO: 141. The numbered line at the top of Figure 5A represents the sense strand sequence of the retroviral genomic clone. The box below this line shows the position of selected restriction sites. The arrows depict the different overlapping clones used to sequence the retroviral element. The direction of the arrow shows whether the single-pass subclone sequence corresponded to the sense or anti-sense strand. Figure 5B is a schematic diagram of the retroviral element containing B18Ag1 depicting the organization of viral genes within the element. The open boxes correspond to predicted reading frames, starting with a methionine, found throughout the element. Each of the six likely reading frames is shown, as indicated to the left of the boxes, with frames 1-3 corresponding to those found on the sense strand.

20

25

Standard .

sy)

2

Sept.

•

Using the cDNA of SEQ ID NO:1 as a probe, a longer cDNA was obtained (SEQ ID NO:227) which contains minor nucleotide differences (less than 1%) compared to the genomic sequence shown in SEQ ID NO:141.

5 B. Preparation of cDNA Molecules Encoding Other Breast Tumor-Specific Polypeptides

Normal RNA and tumor RNA was prepared and mRNA was isolated and converted into cDNA using a (dT)₁₂AG anchored 3' primer, as described above. Differential display PCR was then executed using the randomly chosen primers SEQ ID NO.: 87-125. Amplification conditions were as noted above, and bands observed to be specific to the RNA fingerprint pattern of the tumor were cut out of a silver stained gel, subcloned into either the T-vector (Novagen, Madison, WI) or the pCRII vector (Invitrogen, San Diego, CA) and sequenced. The sequences are provided in SEQ ID NO:11 - SEQ ID NO:86. Of the 79 sequences isolated, 67 were found to be novel (SEQ ID NO:11-77) (see also Figures 6-20). Subsequent studies identified an additional 84 sequences (SEQ ID NOS:142-226), of which 72 appeared to be novel (SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227). To the best of the inventors' knowledge none of the previously identified sequences have heretofore been shown to be expressed at a greater level in human breast tumor tissue than in normal breast tissue.

Table I shows the level of representative breast tumor-specific transcripts present in normal breast tissue (columns BNI -BN7), breast tumor samples (columns BTI-BT12) and normal prostate, kidney, liver, lung, skin, small intestine, stomach, myocardium, lymph node, pancreas, skeletal muscle, ovary and aorta, as determined by RT-PCR analysis. A 0-3 grading scale for message abundance is used, with 0 denoting no detectable message and 3 a message level comparable to the control message (glyceraldehyde 3-phosphate dehydrogenase). The lack of data in a given box indicates that the tissue has not been tested for the presence or absence of that specific antigen.

Sameter Car

ŀ.

CHT 445

TABLE 1

_	_											,	,—				_								
BT12		3	7	3	1	2	2	2		3															
BTII							0																3	0	_
BT10					0		0	0															3	-	-
ВТ9														2	3								3	2	-
BT8									0		2	2	0		3	0	2	2	2	2	2	2			-
BT7									0		2	3	3		7	0	2	2	3	3	2	2	3	1	
B T6									0		2	3	3		3	0	0	0	I	1	_	2			
ВТ5									0		7	3	3		3	0	3	3	2	2	2	7	3	0	3
BT4			0	3	0	-	0	0	0	7	2	2	7		3	0	0	7	0	0	0	1	3	-	3
ВТЗ					0		0	0	0		7	1	7		2	0	7	2	1	3	3	2			1
BT2									0		2	7	3		3	0	1	3	1	2	2	2	3	1	
BT1									0		2	1	2		3	0	2	3	-	3	2	2	3	0	2
BN7					0		0	0		0															
BN6		-	-	3	0	_	0	0		0															
BNS									0		2		1		0	0	2	2	2	_	0	1			-
BN4									0		2		0		0	0	2	1	0	2	0	0			
BN3									0		7	0	0		0	0	2	2	0	2	1	1			
BN3									0		2	1	1		0	0	1	1	0	-	0	0			0
BN2									0		2	0	0		0	0	0	1	0	0	0	0			-
BNI															-										
CLONE	B2CA1	B2CA2	B3CA1	B3CA3c	B3CA3	B4CA1	B9CG1	B9CG3	BITAGI	BI3AGIa	BI3AGIb	B13AG2	BISAGI	B17AG1	B18AG1a	B16ACI-3	BI2CAI	B12CA2	B13CA1-36	B13CA1-37	B14CA1	B16CA1	B16GC2a	B22GA2	B34GA1

Reference in

13.

Ž.

_	0 "		_			_		_					-,·	-,											
aorta																,									
ovarv															c	,									
skel. muscle															C)									
pancreas															0										
lymph node					0		0	0					0	0											
myocardium					0		0	0		0			0												
stomach															_								3	0	2
sm. intestine														0	0								3	0	-
skin														0	0								۳,	0	2
lung					0		0	0		0			3		-								3	1	2
liver					0		-	_		0			0		0								3	0	-
kidney															0								3	0	-
prostate										0					0								3	0	
CLONE	B2CAI	B2CA2	B3CA1	B3CA3c	B3CA3	B4CA1	B9CG1	B9CG3	BIIAGI	BI3AGIa	BI3AGIB	B13AG2	BISAGI	B17AG1	B18AG1a	B16AC1-3	BI2CAI	B12CA2	B13CA1-36	B13CA1-37	B14CA1	B16CA1	B16GC2a	B22GA2	B34GA1

: .

٠.:

į

Example 2

Preparation of B18Ag1 DNA from Human Genomic DNA

This Example illustrates the preparation of B18Ag1 DNA by 5 amplification from human genomic DNA.

B18Ag1 DNA may be prepared from 250 ng human genomic DNA using 20 pmol of B18Ag1 specific primers, 500 pmol dNTPS and 1 unit of *Taq* DNA polymerase (Perkin Elmer, Branchburg, NJ) using the following amplification parameters: 94°C for 30 seconds denaturing, 30 seconds 60°C to 42°C touchdown annealing in 2°C increments every two cycles and 72°C extension for 30 seconds. The last increment (a 42°C annealing temperature) should cycle 25 times. Primers were selected using computer analysis. Primers synthesized were B18Ag1-1, B18Ag1-2, B18Ag1-3, and B18Ag1-4. Primer pairs that may be used are 1+3, 1+4, 2+3, and 2+4.

Following gel electrophoresis, the band corresponding to B18Ag1 DNA may be excised and cloned into a suitable vector.

Example 3

Preparation of B18Ag1 DNA from Breast Tumor cDNA

This Example illustrates the preparation of B18Ag1 DNA by amplification from human breast tumor cDNA.

First strand cDNA is synthesized from RNA prepared from human breast tumor tissue in a reaction mixture containing 500 ng poly A+ RNA, 200 pmol of the primer (T)₁₂AG (i.e., TTT TTT TTT TTT AG) (SEQ ID NO: 130), 1X first strand reverse transcriptase buffer, 6.7 mM DTT, 500 mmol dNTPs, and 1 unit AMV or MMLV reverse transcriptase (from any supplier, such as Gibco-BRL (Grand Island, NY)) in a final volume of 30 μl. After first strand synthesis, the cDNA is diluted approximately 25 fold and 1 μl is used for amplification as described in Example 2. While some primer pairs can result in a heterogeneous population of transcripts, the primers B18Ag1-2 (5'ATG GCT ATT TTC GGG GGC TGA CA) (SEQ ID NO: 126)

and B18Ag1-3 (5'CCG GTA TCT CCT CGT GGG TAT T) (SEQ ID NO: 127) yield a single 151 bp amplification product.

Example 4

5

20

25

į,

N. N.

ď

ż

Identification of B-cell and T-cell Epitopes of B18Ag1

This Example illustrates the identification of B18Ag1 epitopes.

The B18Ag1 sequence can be screened using a variety of computer algorithms. To determine B-cell epitopes, the sequence can be screened for hydrophobicity and hydrophilicity values using the method of Hopp, *Prog. Clin. Biol. Res. 172B*:367-77 (1985) or, alternatively, Cease et al., *J. Exp. Med. 164*:1779-84 (1986) or Spouge et al., *J. Immunol. 138*:204-12 (1987). Additional Class II MHC (antibody or B-cell) epitopes can be predicted using programs such as AMPHI (e.g., Margalit et al., *J. Immunol. 138*:2213 (1987)) or the methods of Rothbard and Taylor (e.g., EMBO J. 7:93 (1988)).

Once peptides (15-20 amino acids long) are identified using these techniques, individual peptides can be synthesized using automated peptide synthesis equipment (available from manufacturers such as Applied Biosystems, Inc., Foster City, CA) and techniques such as Merrifield synthesis. Following synthesis, the peptides can used to screen sera harvested from either normal or breast cancer patients to determine whether patients with breast cancer possess antibodies reactive with the peptides. Presence of such antibodies in breast cancer patient would confirm the immunogenicity of the specific B-cell epitope in question. The peptides can also be tested for their ability to generate a serologic or humoral immune in animals (mice, rats, rabbits, chimps etc.) following immunization *in vivo*. Generation of a peptide-specific antiserum following such immunization further confirms the immunogenicity of the specific B-cell epitope in question.

To identify T-cell epitopes, the B18Ag1 sequence can be screened using different computer algorithms which are useful in identifying 8-10 amino acid motifs within the B18Ag1 sequence which are capable of binding to HLA Class I MHC molecules. (see, e.g., Rammensee et al., Immunogenetics 41:178-228 (1995)).

West State

9

 $\mathbf{z}_{i,j}^{(i)}$

Following synthesis such peptides can be tested for their ability to bind to class I MHC using standard binding assays (e.g., Sette et al., J. Immunol. 153:5586-92 (1994)) and more importantly can be tested for their ability to generate antigen reactive cytotoxic T-cells following in vitro stimulation of patient or normal peripheral mononuclear cells using, for example, the methods of Bakker et al., Cancer Res. 55:5330-34 (1995); Visseren et al., J. Immunol. 154:3991-98 (1995); Kawakami et al., J. Immunol. 154:3961-68 (1995); and Kast et al., J. Immunol. 152:3904-12 (1994). Successful in vitro generation of T-cells capable of killing autologous (bearing the same Class I MHC molecules) tumor cells following in vitro peptide stimulation further confirms the immunogenicity of the B18Ag1 antigen. Furthermore, such peptides may be used to generate murine peptide and B18Ag1 reactive cytotoxic T-cells following in vivo immunization in mice rendered transgenic for expression of a particular human MHC Class I haplotype (Vitiello et al., J. Exp. Med. 173:1007-15 (1991).

A representative list of predicted B18Ag1 B-cell and T-cell epitopes,

broken down according to predicted HLA Class I MHC binding antigen, is shown below:

Predicted Th Motifs (B-cell epitopes) (SEQ ID NOS.: 131-133)

SSGGRTFDDFHRYLLVGI

20 QGAAQKPINLSKXIEVVQGHDE SPGVFLEHLQEAYRIYTPFDLSA

Predicted HLA A2.1 Motifs (T-cell epitopes) (SEQ ID NOS.: 134-140)

YLLVGIQGA

25 GAAQKPINL

NLSKXIEVV

EVVQGHDES

HLQEAYRIY

NLAFVAQAA

30 FVAQAAPDS

20

30

想有

ではない。

Example 5

Characterization of Breast Tumor Genes Discovered by Differential Display PCR

The specificity and sensitivity of the breast tumor genes discovered by differential display PCR were determined using RT-PCR. This procedure enabled the rapid evaluation of breast tumor gene mRNA expression semiquantitatively without using large amounts of RNA. Using gene specific primers, mRNA expression levels in a variety of tissues were examined, including 8 breast tumors, 5 normal breasts, 2 prostate tumors, 2 colon tumors, 1 lung tumor, and 14 other normal adult human tissues, including normal prostate, colon, kidney, liver, lung, ovary, pancreas, skeletal muscle, skin, stomach and testes.

To ensure the semiquantitative nature of the RT-PCR, β -actin was used as internal control for each of the tissues examined. Serial dilutions of the first strand cDNAs were prepared and RT-PCR assays performed using β -actin specific primers. A dilution was then selected that enabled the linear range amplification of β -actin template, and which was sensitive enough to reflect the difference in the initial copy number. Using this condition, the β -actin levels were determined for each reverse transcription reaction from each tissue. DNA contamination was minimized by DNase treatment and by assuring a negative result when using first strand cDNA that was prepared without adding reverse transcriptase.

Using gene specific primers, the mRNA expression levels were determined in a variety of tissues. To date 32 genes have been successfully examined by RT-PCR, three of which exhibit good specificity and sensitivity for breast tumors.

Figures 21A and 21B depict the results for these three genes: B15AG-1 (SEQ ID NO:27), B31GA1b (SEQ ID NO:148) and B38GA2a (SEQ ID NO. 157).

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

+*

×

Ň

SEQUENCE LISTING

	(1)	GENERAL	INFORMATION	:
--	-----	---------	-------------	---

- (1) APPLICANT: Corixa Corporation
- (ii) TITLE OF INVENTION: COMPOSITIONS AND METHODS FOR THE TREATMENT AND DIAGNOSIS OF BREAST CANCER
- (iii) NUMBER OF SEQUENCES: 227

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: SEED and BERRY LLP

(B) STREET: 6300 Columbia Center, 701 Fifth Avenue

(C) CITY: Seattle

(D) STATE: Washington

(E) COUNTRY: USA

(F) ZIP: 98104-7092

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk

(B) COMPUTER: IBM PC compatible

(C) OPERATING SYSTEM: PC-DOS/MS-DOS

(D) SOFTWARE: Patentin Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER:

(B) FILING DATE: 10-JAN-1997

(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Maki, David J.

(B) REGISTRATION NUMBER: 31.392

(C) REFERENCE/DOCKET NUMBER: 210121.419PC

VSDOCID: <WO___9725426A3_IB>

(ix)	TELECOMMUNICATION	INFORMATION:
------	-------------------	--------------

(A) TELEPHONE: (206) 622-4900

(B) TELEFAX: (206) 682-6031

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 363 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..363

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TTA GAG ACC CAA TIG GGA CCT AAT TGG GAC CCA AAT TTC TCA AGT GGA 48 Leu Glu Thr Gln Leu Gly Pro Asn Trp Asp Pro Asn Phe Ser Ser Gly 1 5 15

10

GGG AGA ACT TTT GAC GAT TTC CAC CGG TAT CTC CTC GTG GGT ATT CAG 96 Gly Arg Thr Phe Asp Asp Phe His Arg Tyr Leu Leu Val Gly Ile Gln 20 25 30

GGA GCT GCC CAG AAA CCT ATA AAC TTG TCT AAG GCG ATT GAA GTC GTC 144 Gly Ala Ala Gln Lys Pro Ile Asn Leu Ser Lys Ala Ile Glu Val Val 35 40 45

CAG GGG CAT GAT GAG TCA CCA GGA GTG TTT TTA GAG CAC CTC CAG GAG 192 Gln Gly His Asp Glu Ser Pro Gly Val Phe Leu Glu His Leu Gln Glu 50 55

15

GCT TAT CGG ATT TAC ACC CCT TTT GAC CTG GCA GCC CCC GAA AAT AGC 240 Ala lyr Arg Ile Tyr Thr Pro Phe Asp Leu Ala Ala Pro Glu Asn Ser 75 70 65 CAT GCT CTT AAT TTG GCA TTT GTG GCT CAG GCA GCC CCA GAT AGT AAA 288 His Ala Leu Asn Leu Ala Phe Val Ala Gln Ala Ala Pro Asp Ser Lys 85 90 AGG AAA CTC CAA AAA CTA GAG GGA TTT TGC TGG AAT GAA TAC CAG TCA 336 Arg Lys Leu Gln Lys Leu Glu Gly Phe Cys Trp Asn Glu Tyr Gln Ser 110 100 105 363 GCT TIT AGA GAT AGC CTA AAA GGT TTT Ala Phe Arg Asp Ser Leu Lys Gly Phe 120 115

- (2) INFORMATION FOR SEQ ID NO:2:
 - (1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 121 amino acids

(B) TYPE: amino acid(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Leu Glu Thr Gln Leu Gly Pro Asn Trp Asp Pro Asn Phe Ser Ser Gly

1 5 10 15

Gly Arg Thr Phe Asp Asp Phe His Arg Tyr Leu Leu Val Gly Ile Gln
20 25 30

Gly Ala Ala Gln Lys Pro Ile Asn Leu Ser Lys Ala Ile Glu Val Val 35 40 45

ŗ.)

240

300

Gln Gly His 50	Asp Glu Ser Pr 5	o Gly Val Phe 5	Leu Glu Hi 60	s Leu Gln G	lu
Ala Tyr Arg 65	The Tyr Thr Pr	o Phe Asp Leu	Ala Ala Pr 75		- er 30
His Ala Leu A	Asn Leu Ala Phi 85	e Val Ala Gln 90	Ala Ala Pr	o Asp Ser Ly 95	'S
	Gln Lys Leu Glo 100	u Gly Phe Cys 105	Trp Asn Gl	u Tyr Gln Se 110	r
Ala Phe Arg A	Asp Ser Leu Lys	Gly Phe			
(2) INFORMATI	ION FOR SEQ ID	NO:3:			
(A) (B) (C)	JENCE CHARACTER LENGTH: 1101 TYPE: nucleic STRANDEDNESS: TOPOLOGY: line	base pairs acid single			
(xi) SEQUI	ENCE DESCRIPTION	ON: SEQ ID NO	:3:		
TCTTAGAATC TTO	CATACCCC GAACTO	CTTGG GAAAACT	ITA ATCAGTC	ACC TACAGTCT	AC
CACCCATITA GGA	AGGAGCAA AGCTA(CCTCA GCTCCTC	CGG AGCCGTT	TTA AGATCCCC	CA
TCTTCAAAGC CTA	AACAGATC AAGCAG	SCTCT CCGGTGC/	ACA ACCTGCG	CCC AGGTAAAT	GC

CAAAAAAGGT CCTAAACCCA GCCCAGGCCA CCGTCTCCAA GAAAACTCAC CAGGAGAAAA

GTGGGAAATT GACTTTACAG AAGTAAAACC ACACCGGGCT GGGTACAAAT ACCTTCTAGT

360	AAACTGTCAA	ACCAAAAACG	AGCATTTGCT	GATGGACTGA	ACCTTCTCTG	ACTGGTAGAC
420	CTGTTGCCAT	CGTGGGCTGC	CATCCCTCGA	TCAATGAAAT	AAGTTTTTAC	TATGGTAGTT
480	GTAAGGCGTT	TAATCAGTCA	GTCTATAGTT	CCTTCGCCTT	AATGGAACGG	AGGGTCTGAT
540	AGTAGAACGC	GCTCTGGGCA	TCGACCCAGA	ATTGTGCCTA	TGGAAGCTCC	AAACATTCAA
600	GTGTTAATTG	TTAAAAACCG	AAAATTAATC	ACACTCTTAC	СССТАААААА	ATGAACTGCA
660	TGGGCTGGGT	CACCCCTTAC	AGTTAAGGTG	CCCTACTTAG	CTTCCCTTAG	TGTTAGTC1C
720	ACTAAAAAAN	TCTTTNCTTA	GGGCTGCCTA	NTTTNGGAAG	TTGAAATCAT	TCTTTACCTT
780	CAACAGGTAN	TACGTCTCCC	TNTACGTNCC	NCAACTAATT	CAAAAATTTC	GCCCATTTGG
840	AGGCCTGCCN	CCTNAACAAA	CCCATCCATT	AAGGAACCAT	TGCCCTTTTC	AAAAATCTNC
900	CCTGCTGGAA	AAANGAACCN	AATTCCCAAA	TTTTTTTAA	AGTTAACINT	ттсттссссс
960	NCCCCCNCNA	CTTGAATCCC	GGAAGGTTCC	CGGCCNAAGN	CTCCAANCCC	AAACNCCCCC
1020	ATTTGGTAA	TAAAAGNCCN	GGGTNNGGCC	TNGTTCCNGG	ACCNTTAAAN	ANGGCCCGGA
1080	AAACCCTNTT	TTCTTAAACA	NNTTTNNTTT	TAAAAACCAC	TTTTCTTTTN	CCTANAAATT
1101				С	TATTTCCCNC	TNTAGNANCN

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1087 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

A STATE OF THE PARTY OF THE PAR

Ą

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:4:

TCTAGAGCTG CGCCTGGATC CCGCCACAGT GAGGAGCCT GAAGACCAGA GAAAACACAG	60
CAAGTAGGCC CTTTAAACTA CTCACCTGTG TTGTCTTCTA ATTTATTCTG TTTTATTTTG	120
TTTCCATCAT TTTAAGGGGT TAAAATCATC TTGTTCAGAC CTCAGCATAT AAAATGACCC	180
ATCTGTAGAC CTCAGGCTCC AACCATACCC CAAGAGTTGT CTGGTTTTGT TTAAATTACT	240
GCCAGGTTTC AGCTGCAGAT ATCCCTGGAA GGAATATTCC AGATTCCCTG AGTAGTTTCC	300
AGGTTAAAAT CCTATAGGCT TCTTCTGTTT TGAGGAAGAG TTCCTGTCAG AGAAAAACAT	360
GATTITGGAT TITTAACTIT AATGCTTGTG AAACGCTATA AAAAAAATTT TCTACCCCTA	420
GCTTTAAAGT ACTGTTAGTG AGAAATTAAA ATTCCTTCAG GAGGATTAAA CTGCCATTTC	480
AGTTACCCTA ATTCCAAATG TTTTGGTGGT TAGAATCTTC TTTAATGTTC TTGAAGAAGT	540
GTTTTATATT TICCCATCNA GATAAATTCT CTCNCNCCTT NNTTTTNTNI CTNNTTTTT	600
AAAACGGANT CTTGCTCCGT TGTCCANGCT GGGAATTTTN TTTTGGCCAA TCTCCGCTNC	660
CTTGCAANAA TNCTGCNTCC CAAAATTACC NCCTTTTTCC CACCTCCACC CCNNGGAATT	720
ACCTGGAATT ANAGGCCCCC NCCCCCCCCC CGGCTAATTT GTTTTTGTTT TTAGTAAAAA	780
ACGGGTTTCC TGTTTTAGTT AGGATGGCCC ANNTCTGACC CCNTNATCNT CCCCCTCNGC	840
CCTCNAATNT TNGGNNTANG GCTTACCCCC CCCNGNNGTT TTTCCTCCAT TNAAATTTTC	900
INTGGANTET TGAATNNEGG GTTTTEECTT TTAAACENAT TTTTTTTTTN NNNECECCAN	960

 γ^{\prime}

TTTTNCCTCC CCCNTNINTA ANGGGGGTTT CCCAANCCGG GTCCNCCCCC ANGTCCCCAA

1020

TTTTTCTCCC CCCCCCTCTT TTTTCTTTNC CCCAAAANTC CTATCTTTTC CTNNAAATAT 1080

CNANTNT 1087

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1010 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TCTAGACCAA GAAATGGGAG GATTTTAGAG TGACTGATGA TTTCTCTATC ATCTGCAGTT 60 AGTAAACATT CTCCACAGTT TATGCAAAAA GTAACAAAAC CACTGCAGAT GACAAACACT 120 180 AGGTAACACA CATACTATCT CCCAAATACC TACCCACAAG CTCAACAATT TTAAACTGTT AGGATCACTG GCTCIAATCA CCATGACAIG AGGTCACCAC CAAACCATCA AGCGCTAAAC 240 AGACAGAATG TTTCCACTCC TGATCCACTG TGTGGGAAGA AGCACCGAAC TTACCCACTG 300 360 GGGGGCCTGC NTCANAANAA AAGCCCATGC CCCCGGGTNT NCCTTTNAAC CGGAACGAAT NAACCCACCA TCCCCACANC TCCTCTGTTC NTGGGCCCTG CATCTTGTGG CCTCNTNINC 420 TTTNGGGGAN ACNTGGGGAA GGTACCCCAT TTCNTTGACC CCNCNANAAA ACCCCNGTGG 480 CCCTTTGCCC TGATTCNCNT GGGCCTTTTC TCTTTTCCCT TTTGGGTTGT TTAAATTCCC 540 AATGTCCCCN GAACCCTCTC CNTNCTGCCC AAAACCTACC TAAATTNCTC NCTANGNNTT 600 NTATINITGGN CCCNNAAAAA NNNATCNNCC CNAATTGCCC GAATTGGTTN GGTTTTTCCT 720

NCTGGGGGAA ACCCTTTAAA TTTCCCCCTT GGCCGGCCCC CCTTTTTTCC CCCCTTTNGA 780

AGGCAGGNGG TTCTTCCCGA ACTTCCAATT NCAACAGCCN TGCCCATTGN TGAAACCCTT 840

TTCCTAAAAT TAAAAAATAN CCGGTTNNGG NNGGCCTCTT TCCCCTCCNG GNGGGNNGNG 900

AAANTCCTTA CCCCNAAAAA GGTTGCTTAG CCCCCNGTCC CCACTCCCCC NGGAAAAATN 960

AACCTTTTCN AAAAAAGGAA TATAANTTTN CCACTCCTTN GTTCTCTTCC 1010

(2) INFORMATION FOR SEQ ID NO:6:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 950 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TCTAGAGCTC GCGGCCGCA GCTCTAATAC GACTCACTAT AGGGCGTCGA CTCGATCTCA 60

GCTCACTGCA ATCTCTGCCC CCGGGGTCAT GCGATTCTCC TGCCTCAGCC TTCCAAGTAG 120

CTGGGATTAC AGGCGTGCAA CACCACACCC GGCTAATTTT GTATTTTTAA TAGAGATGGG 180

GTTTTCCCTT GTTGGCCANN ATGGTCTCNA ACCCCTGACC TCNNGTGATC CCCCCNCCCN 240

NGANCTCNNA CTGCTGGGGA TNNCCGNNNN NNNCCTCCCN NCNCNNNNNN NCNCNNTCCN 300

TN	NTCCTTNC	TCNNNNNNN	CNNTCNNTCC	NNCTTCTCNC	CNNNTNTTNT	CNNCNNCCNN	360
CN	NNCCNCNT	NCCCNCNNNT	TCNCNTNCNN	TNTCCNNCNN	NNTCNNCNNN	CNNNNCN7 NN	420
CC	NNTACNTC	NTNNNCNNNT	CCNTCTNTNN	CCTCNNCNNT	CNCTNCNCNT	TNTCTCCTCN	480
NT	NNNNNCT	CCNNNNNTCT	CNTCNCNNCN	TNCCTCNNTN	NCCNCNCCCC	NCCTCNCNNC	540
СТ	NNTTTNNN	CNNCNNNTCC	NTNECNTION	NNTCCNNTNN	CNNCNTCNCN	NNCNTTNTTC	600
CC	NCCNNTTC	CTTNCNCNTN	NNNTNTCNNN	CNCNTCNNTC	NTTTNCTCCT	NNNTCCCNNC	660
TC	NNTTCNCC	CNNNTCCNCC	CCCCNCCTNT	CTCTCNCCCN	NNTNNNTNTN	NNNCNTCCNC	720
٦N	TCNCNTTC	NTCNNTNCNT	TNCTNTCNNC	NNCNNTNCNC	TNCCNTNTNT	CTNNNTCNCN	780
TC	NCNTNTCN	CCNTCCNTTN	CTNTCTCCTN	TNTCCTTCCC	CTCNCCTNCT	CNTTCNCCNC	840
CC	NNTNTNTN	TNNCNCCNNT	NCTNNNCNNC	CNTCNTTTCN	TCTCTNCTNN	NNNTNNCCTC	900
NN	CCCNTNCC	CTNNTNCNCT	NCTNNTACCN	TNCTNCTCCN	тсттссттсс		950

(i) SEQUENCE CHARACTERISTICS:

(2) INFORMATION FOR SEQ ID NO:7:

(A) LENGTH: 1086 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

TCTAGAGCTC GCGGCCGCGA GCTCAATTAA CCCTCACTAA AGGGAGTCGA CTCGATCAGA 60

CTGTTACTGT GTCTATGTAG AAAGAAGTAG ACATAAGAGA TTCCATTTTG TTCTGTACTA 120

÷

¢3

Ŕ

AGAAAAATTC TTCTGCCTTG AGATGCTGTT AATCTGTAAC CCTAGCCCCA ACCCTGTGCT 180 CACAGAGACA TGTGCTGTGT TGACTCAAGG TTCAATGGAT TTAGGGCTAT GCTTTGTTAA 240 AAAAGTGCTT GAAGATAATA TGCTTGTTAA AAGTCATCAC CATTCTCTAA TCTCAAGTAC 300 CCAGGGACAC AATACACTGC GGAAGGCCGC AGGGACCTCT GTCTAGGAAA GCCAGGTATT 360 GTCCAAGATT TCTCCCCATG TGATAGCCTG AGATATGGCC TCATGGGAAG GGTAAGACCT 420 GACTGTCCCC CAGCCCGACA TCCCCCAGCC CGACATCCCC CAGCCCGACA CCCGAAAAGG 480 GTCTGTGCTG AGGAAGATTA NTAAAAGAGG AAGGCTCTTT GCATTGAAGT AAGAAGAAGG 540 CTCTGTCTCC TGCTCGTCCC TGGGCAATAA AATGTCTTGG TGTTAAACCC GAATGTATGT 600 TCTACTTACT GAGAATAGGA GAAAACATCC TTAGGGCTGG AGGTGAGACA CCCTGGCGGC 660 ATACTGCTCT TTAATGCACG AGATGTTTGT NTAATTGCCA TCCAGGGCCA NCCCCTTTCC 720 TTAACTTTTT ATGANACAAA AACTTTGTTC NCTTTTCCTG CGAACCTCTC CCCCTATTAN 780 CCTATTGGCC TGCCCATCCC CTCCCCAAAN GGTGAAAANA TGTTCNTAAA TNCGAUUGAA 840 TCCAAAACNT TTTCCCGTTG GTCCCCTTTC CAACCCCGTC CCTGGGCCNN TTTCCTCCCC 900 AACNTGTCCC GGNTCCTTCN TTCCCNCCCC CTTCCCNGAN AAAAAACCCC GTNTGANGGN 960 GCCCCCTCAA ATTATAACCT TTCCNAAACA AANNGGTTCN AAGGTGGTTT GNTTCCGGTG 1020 CGGCTGGCCT TGAGGTCCCC CCTNCACCCC AATTTGGAAN CCNGTTTTTT TTATTGCCCN 1080 NTCCCC 1086

(2) INFORMATION FOR SEQ ID NO:8:

PCT/US97/00485

ķ

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1177 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

NCCNTTTAGA TGTTGACAAN NTAAACAAGC NGCTCAGGCA GCTGAAAAAA GCCACTGATA 60 AAGCATCCIG GAGTATCAGA GTTTACTGTT AGATCAGCCT CATTTGACTT CCCCTCCCAC 120 AFGGTGTTTA AATCCAGCTA CACTACTTCC TGACTCAAAC TCCACTATTC CTGTTCATGA 180 CTGTCAGGAA CTGTTGGAAA CTACTGAAAC TGGCCGACCT GATCTTCAAA ATGTGCCCCT 240 AGGAAAGGTG GATGCCACCG TGTTCACAGA CAGTACCNCC TTCCTCGAGA AGGGACTACG 300 AGGGGCCGGT GCANCTGTTA CCAAGGAGAC TNATGTGTTG TGGGCTCAGG CTTTACCANC 360 AAACACCTCA NCNCNNAAGG CTGAATTGAT CGCCCTCACT CAGGCTCTCG GATGGGGTAA 420 GGGATATTAA CGTTAACACT GACAGCAGGT ACGCCTTTGC TACTGTGCAT GTACGTGGAG 480 CCATCTACCA GGAGCGTGGG CTACTCACTC GGCAGGTGGC TGTNATCCAC TGTAAANGGA 540 CATCAAAAGG AAAACNNGGC TGTTGCCCGT GGTAACCANA AANCTGATCN NCAGCTCNAA 600 GATGCTGTGT TGACTTTCAC TCNCNCCTCT TAAACTTGCT GCCCACANIC TCCTTTCCCA 660 ACCAGATCTG CCTGACAATC CCCATACTCA AAAAAAAAAN AANACTGGCC CCGAACCCNA 720 ACCAATAAAA ACGGGGANGG TNGGTNGANC NNCCTGACCC AAAAATAATG GATCCCCCGG 780

-21

Ž.

GCTGCAGGAA	TTCAATTCAN	CCTTATCNAT	ACCCCCAACN	NGGNGGGGG	GGCCNGTNCC	840
CATTNCCCCT	NTATTNATTC	TTTNNCCCCC	CCCCCGGCNT	CCTTTTTNAA	CTCGTGAAAG	900
GGAAAACCTG	NCTTACCAAN	TTATCNCCTG	GACCNTCCCC	TTCCNCGGTN	GNTTANAAAA	960
AAAAGCCCNC	ANTCCCNTCC	NAAATTTGCA	CNGAAAGGNA	AGGAATTTAA	CCTTTATTT	1020
TTNNTCCTTT	ANTTTGTNNN	CCCCCTTTTA	CCCAGGCGAA	CNGCCATCNT	TTANNAAAA	1080
AAANAGAANG	TTTATTTTTC	CTTNGAACCA	TCCCAATANA	AANCACCCGC	NGGGGAACGG	1140
GGNGGNAGGC	CNCTCACCCC	CTTTNTGTNG	GNGGGNC			1177

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1146 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

60	CTTCAGAGGT	стттссстст	TCTTTGGATA	TTTTGGCCTC	GATGTTCTCT	NCCNNTTNNT
120	TCCAGAGTAC	GGCCAATGTG	ATCCCAGGTG	GTTGACAGTC	AAAAGGAGCT	GAAAAGGGTC
180	TATGGGTTTT	AAGGGAGGAT	CTTTTCAGAG	AAGCCTGGGG	AGTGAGGTCA	AGACTCCATC
240	GTGGAGCACT	CAGGAAGGGG	GGACATAAAC	TAGAAAGAAG	AAGTCAGAAG	CCAATTATAC
300	TCCTCCCACC	AGGGCTACT	GTGGTAGTAG	GCCTCTCTCA	AGGGACTTGT	CATCACCCAG
360	GAGGAGACAT	GGACATANCC	AGCCTACAGG	ATGGGTGATG	CCAAGAGGCA	ACGGTTGCAA

GGGATGACCC TAAGGGAGTA GGCTGGTTTT AAGGCGGTGG GACTGGGTGA GGGAAACTC1 420 CCTCTTCTTC AGAGAGAAGC AGTACAGGGC GAGCTGAACC GGCTGAAGGT CGAGGCGAAA 480 ACACGGTCTG GCTCAGGAAG ACCTTGGAAG TAAAATTATG AATGGTGCA1 GAATGGAGCC 540 ATGGAAGGGG TGCTCCTGAC CAAACTCAGC CATTGATCAA TGTTAGGGAA ACTGATCAGG 600 GAAGCCGGGA ATTTCATTAA CAACCCGCCA CACAGCTTGA ACATTGTGAG GTTCAGTGAC 660 CCTTCAAGGG GCCACTCCAC TCCAACTTTG GCCATTCTAC TTTGCNAAAT TTCCAAAACT 720 TCCTTTTTTA AGGCCGAATC CNTANTCCCT NAAAAACNAA AAAAAATCTG CNCCTATTCT 780 GGAAAAGGCC CANCCCTTAC CAGGCTGGAA GAAATTTTNC CTTTTTTTT TTTTTGAAGG 840 CNTTTNTTAA ATTGAACCTN AATTCNCCCC CCCAAAAAAA AACCCNCCNG GGGGGGGGAT 900 TTCCAAAAAC NAATTCCCTT ACCAAAAAAC AAAAACCCNC CCTTNTTCCC TTCCNCCCTN 960 TICTTTTAAT TAGGGAGAGA TNAAGCCCCC CAATTTCCNG GNCTNGATNN GTTTCCCCCC 1020 CCCCCATTTT CCNAAACTTT TTCCCANCNA GGAANCCNCC CTTTTTTTNG GTCNGATTNA 1080 NCAACCTTCC AAACCATTTT TCCNNAAAAA NTTTGNTNGG NGGGAAAAAN ACCTNNTTTT 1140 **ATAGAN** 1146

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 545 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

94

(xi) SEQUENCE DESCRIPTION: SEQ	ID	NO:10:
--------------------------------	----	--------

CTTCATTGG	G TACGGGCCCC	CTCGAGGTCG	ACGGTATCGA	TAAGCTTGAT	ATCGAATTCC	60
TGCAGCCCG	G GGGATCCACT	AGTTCTAGAG	TCAGGAAGAA	CCACCAACCT	TCCTGATTTT	120
TATTGGCTCT	GAGTTCTGAG	GCCAGTTTTC	ттсттстст	GAGTATGCGG	GATTGTCAGG	180
CAGATCTGGC	TGTGGAAAGG	AGACTGTGGG	CAGCAAGTTT	AGAGGCGTGA	CTGAAAGTCA	240
CACTGCATCT	TGAGCTGCTG	AATCAGCTTT	CTGGTTACCA	CGGGCAACAG	CCGTGTTTTC	300
CTTTTGATGT	CCTTTACAGT	GGATTACAGC	CACCTGCTGA	GGTGAGTAGC	CCACGCTCCT	360
GGTAGATGGC	TCCACGTACA	TGCACAGTAG	CAAAGGCGTA	CCTGCTGTCA	GTGTTAACGT	420
TAATATCCTT	ACCCCATCGG	AGAGCCTGAG	TGAGGGCGAT	CAATTCAGCC	СТТТТСТССТ	480
GAGGTGTTTG	CTGGTTAAGC	CCTGAACCCA	CAACACATCT	GTCTCCATGG	TAACAGCTGC	540
ACCGG						545

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 196 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TCTCCTAGGC TGGGCACAGT GGCTCATACC TGTAATCCTG ACCGTTTCAG AGGCTCAGGT

ŧ,

¥

Ä

GGGGGGATCG CTTGAGCCCA AGATTTCAAG ACTAGTCTGG GTAACATAGT GAGACCCTAT	120
CTCTACGANA AAATAAAAAA ATGAGCCTGG TGTAGTGGCA CACACCAGCT GAGGAGGGAG	180
AATCGAGCCT AGGAGA	196
(2) INFORMATION FOR SEQ ID NO:12:	
(1) SEQUENCE CHARACTERISTICS:(A) LENGTH: 388 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
TCTCCTAGGC TTGGGGGCTC TGACTAGAAA TTCAAGGAAC CTGGGATTCA AGTCCAACTG	60
TGACACCAAC TTACACTGTG GNCTCCAATA AACTGCTTCT TTCCTATTCC CTCTCTATTA	120
AATAAAATAA GGAAAACGAT GICTGTGTAT AGCCAAGTCA GNTATCCTAA AAGGAGATAC	180
TAAGTGACAT TAAATATCAG AATGTAAAAC CTGGGAACCA GGTTCCCAGC CTGGGATTAA	240
ACTGACAGCA AGAAGACTGA ACAGTACTAC TGTGAAAAGC CCGAAGNGGC AATATGTTCA	300
CTCTACCGTT GAAGGATGGC TGGGAGAATG AATGCTCTGT CCCCCAGTCC CAAGCTCACT	360
TACTATACCT CCTTTATAGC CTAGGAGA	388
(2) INFORMATION FOR SEQ ID NO:13:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 337 base pairs

SANCE COMMENSAGES

(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
TAGTAGTTGC CTATAATCAT GTTTCTCATT ATTTTCACAT TTTATTAACC AATTTCTGTT	60
TACCCTGAAA AATATGAGGG AAATATATGA AACAGGGAGG CAATGTTCAG ATAATTGATC	120
ACAACATATO ATTICIACAT CACATOOTOT TTOOTYTOON OTTICITIES THE	
ACAAGATATG ATTTCTACAT CAGATGCTCT TTCCTTTCCT	180
GGTTGTGGGG TCGAATGTAA TAGCTTTGTT TCAAGAGAGA GTTTTGGCAG TTTCTGTAGC	240
COTTOTOGGO TECHNICITAN TAGETITATI TENNAGAGAGA GITTIGGEAG TITETGIAGE	240
TTCTGACACT GCTCATGTCT CCAGGCATCT ATTTGCACTT TAGGAGGTGT CGTGGGAGAC	300
Character determines echadenter Attracher Tadahadian Caradahak	300
TGAGAGGTCT ATTTTTCCA TATTTGGGCA ACTACTA	337
	007
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 571 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
TACTACITCE CATACACTES CTITECATIT ATTIACCCS CACCTOAACC COLTAAACTS	
TAGTAGTIGC CATACAGTGC CTTTCCATTT ATTTAACCCC CACCTGAACG GCATAAACTG	60
AGTGTTCAGC TGGTGTTTTT TACTGTAAAC AATAAGGAGA CTTTGCTCTT CATTTAAACC	100
ASTOTICAGO TOGTOTITI TACTOTAMAC AATAAGGAGA CTITGCTCTT CATTTAAACC	120
AAAATCATAT TTCATATTTT ACGCTCGAGG GTTTTTACCG GTTCCTTTTT ACACTCCTTA	180
The state of the s	100

.5

*

ATTTGCAACC AAGAAAAAAA AATTTTTTIG TTTTATTTGA AACTGGACCG GATAAACGGT GTTTGGAGCG GCTGCTGTAT ATAGTTTTAA ATGGTTTATT GCACCTCCTT AAGTTGCACT TATGTGGGGG GGGGNTTTTG NATAGAAAGT NTTTANTCAC ANAGTCACAG GGACTTTTNT CTTTTGGNNA CTGAGCTAAA AAGGGCTGNT TTTCGGGTGG GGGCAGATGA AGGCTCACAG	240
GTTTGGAGCG GCTGCTGTAT ATAGTTTTAA ATGGTTTATT GCACCTCCTT AAGTTGCACT TATGTGGGGG GGGGNTTTTG NATAGAAAGT NTTTANTCAC ANAGTCACAG GGACTTTTNT CTTTTGGNNA CTGAGCTAAA AAGGGCTGNT TTTCGGGTGG GGGCAGATGA AGGCTCACAG	300
TATGTGGGGG GGGGNTTTTG NATAGAAAGT NTTTANTCAC ANAGTCACAG GGACTTTTNT CTTTTGGNNA CTGAGCTAAA AAGGGCTGNT TTTCGGGTGG GGGCAGATGA AGGCTCACAG GAGGCCTTTC TCTTAGAGGG CCCAAGTNCT A	360
CTTTTGGNNA CTGAGCTAAA AAGGGCTGNT TTTCGGGTGG GGGCAGATGA AGGCTCACAG	420
GAGGCCTTTC TCTTAGAGGG CCCAACTNCT A	480
GAGGCCTTTC TCTTAGAGGG GCCAACTNCT A	540
The state of the s	571

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 548 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

T	ΑΤΑΤΛΤΤΤΑ	ATAACTTAAA	TATATTTTGA	TCACCCACTG	GGGTGATAAG	ACAATAGATA	60
T	NAA AGTATT	TCCAAAAAGC	ATAAAACCAA	AGTATCATAC	CAAACCAAAT	TCATACTGCT	120
T	CCCCACCC	GCACTGAAAC	TTCACCTTCT	AACTGTCTAC	CTAACCAAAT	TCTACCCTTC	180
A/	NGTCTTTGG	TGCGTGCTCA	CTACTCTTT1	TTTTTTTTT	TTTNTTTTGG	AGATGGAGTC	240
T	GCTGTGCA	GCCCAGGGGT	GGAGTACAAT	GGCACAACCT	CAGCTCACTG	NAACCTCCGC	300
CI	CCCAGGTT	CATGAGATTC	TCCTGNTTCA	GCCTTCCCAG	TAGCTGGGAC	TACAGGTGTG	360

CATCACCATG	CCTGGNTAAT	CTTTTTTNGT	TTTNGGGTAG	AGATGGGGGT	TTTACATGTT	420
GGCCAGGNTG	GTNTCGAACT	CCTGACCTCA	AGTGATCCAC	CCACCTCAGG	CTCCCAAAGT	480
GCTAGGATTA	CAGACATGAG	CCACTGNGCC	CAGNCCTGGT	GCATGCTCAC	TTCTCTAGGC	540
AACTACTA						548

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 638 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

TTCCGTTATG	CACATGCAGA	ATATTCTATC	GGTACTTCAG	CTATTACTCA	TTTTGATGGC	60
GCAATCCGAG	CCTATCCTCA	AGATGAGTAT	TTAGAAAGAA	TTGATTTAGC	GATAGACCAA	120
GCTGGTAAGC	ACTCTGACTA	CACGAAATTG	TTCAGATGTG	ATGGATTTAT	GACAGTTGAT	180
CTTTGGAAGA	GATTATTAAG	TGATTATTTT	AAAGGGAATC	CATTAATTCC	AGAATATCTT	240
GGTTTAGCTC	AAGATGATAT	AGAAATAGAA	CAGAAAGAGA	CTACAAATGA	AGATGTATCA	300
CCAACTGATA	TTGAAGAGCC	TATAGTAGAA	AATGAATTAG	CTGCATTTAT	TAGCCTTACA	360
CATAGCGATT	TTCCTGATGA	ATCTTATATT	CAGCCATCGA	CATAGCATTA	CCTGATGGGC	420
AACCTTACGA	ATAATAGAAA	CTGGGTGCGG	GGCTATTGAT	GAATTCATCC	NCAGTAAATT	480

Ç.

Ġ

1. 第二十

x.

TGGATATNAC AAAATATAAC TCGATTGCAT TTGGATGATG GAATACTAAA TCTGGCAAAA	540
GTAACTTIGG AGCTACTAGT AACCTCTCTT TTTGAGATGC AAAATTTTCT TTTAGGGTTT	600
CTTATTCTCT ACTITACGGA TATTGGAGCA TAACGGGA	638
(2) INFORMATION FOR SEQ ID NO:17:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 286 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
ACTGATGGAT GTCGCCGGAG GCGAGGGGCC TTATCTGATG CTCGGCTGCC TGTTCGTGAT	60
GTGCGCGGCG ATTGGGCTGT TTATCTCAAA CACCGCCACG GCGGTGCTGA TGGCGCCTAT	120
TGCCTTAGCG GCGGCGAAGT CAATGGGCGT CTCACCCTAT CCTTTTGCCA TGGTGGTGGC	180
GATGGCGGCT TCGGCGGCGT TTATGACCCC GGTCTCCTCG CCGGTTAACA CCCTGGTGCT	240
TGGCCCTGGC AAGTACTCAT TTAGCGATTT TGTCAAAATA GGCGTG	286

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 262 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

÷

TO SERVICE STATE OF THE PARTY O

30 31

di.

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
TCGGTCATAG CAGCCCCTTC TTCTCAATTT CATCTGTCAC TACCCTGGTG TAGTATCTCA	60
TAGCCTTACA TITITATAGC CTCCTCCCTG GTCTGTCTTT TGATTTTCCT GCCTGTAATC	120
CATATCACAC ATAACTGCAA GTAAACATTI CTAAAGTGTG GTTATGCTCA TGTCACTCCT	180
GTGNCAAGAA ATAGTTTCCA TTACCGTCTT AATAAAATTC GGATTTGTTC TTTNCTATTN	240
TCACTCTTCA CCTATGACCG AA	262
(2) INFORMATION FOR SEQ ID NO:19:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 261 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
TCGGTCATAG CAAAGCCAGT GGTTTGAGCT CTCTACTGTG TAAACTCCTA AACCAAGGCC	60
ATTTATGATA AATGGTGGCA GGATTTTTAT TATAAACATG TACCCATGCA AATTTCCTAT	120
AACTCTGAGA TATATTCTTC TACATTTAAA CAATAAAAAT AATCTATTTT TAAAAGCCTA	180
ATTTGCGTAG TTAGGTAAGA GTGTTTAATG AGAGGGTATA AGGTATAAAT CACCAGTCAA	240
CGTTTCTCTG CCTATGACCG A	261
(2) INFORMATION FOR SEQ ID NO:20:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 294 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
FACAACGAGG CGACGTCGGT AAAATCGGAC ATGAAGCCAC CGCTGGTCTT TTCGTCCGAG	60
CGATAGGCGC CGGCCAGCCA GCGGAACGGT TGCCCGGATG GCGAAGCGAG CCGGAGTTCT	120
TCGGACTGAG TATGAATCTT GTTGTGAAAA TACTCGCCGC CTTCGTTCGA CGACGTCGCG	180
TCGAAATCTT CGANCTCCTT ACGATCGAAG TCTTCGTGGG CGACGATCGC GGTCAGTTCC	240
GCCCCACCGA AATCATGGTT GAGCCGGATG CTGNCCCCGA AGNCCTCGTT TGTN	294
(2) INFORMATION FOR SEQ ID NO:21:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 208 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCF DESCRIPTION: SEQ ID NO:21:	
TTGGTAAAGG GCATGGACGC AGACGCCTGA CGTTTGGCTG AAAATCTTTC ATTGATTCGT	60
ATCAATGAAT AGGAAAATTC CCAAAGAGGG AATGTCCTGT TGCTCGCCAG TTTTTNTGTT	120
GTTCTCAIGG ANAAGGCAAN GAGCTCTTCA GACTATTGGN ATTNTCGTTC GGTCTTCTGC	180

 ${\mathcal F}_{\mathcal F}$

CAACTAGTCG NCTTGCNANG ATCTTCAT

d.

"一场电影"

(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 287 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
NCCNTTGAGC TGAGTGATTG AGATNTGTAA TGGTTGTAAG GGTGATTCAG GCGGATTAGG	60
GTGGCGGGTC ACCCGGCAGT GGGTCTCCCG ACAGGCCAGC AGGATTTGGG GCAGGTACGG	120
NGTGCGCATC GCTCGACTAT ATGCTATGGC AGGCGAGCCG TGGAAGGNGG ATCAGGTCAC	180
GGCGCTGGAG CTTTCCACGG TCCATGNATT GNGATGGCTG TTCTAGGCGG CTGTTGCCAA	240
GCGTGATGGT ACGCTGGCTG GAGCATTGAT TTCTGGTGCC AAGGTGG	287
(2) INFORMATION FOR SEQ ID NO:23:	
(1) SEQUENCE CHARACTERISTICS:(A) LENGTH: 204 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
TTGGGTAAAG GGAGCAAGGA GAAGGCATGG AGAGGCTCAN GCTGGTCCTG GCCTACGACT	60

GGGCCAAGCT GTCGCCGGGG ATGGTGGAGA ACTGAAGCGG GACCTCCTCG AGGTCCTCCG

NCGTTACTTC NCCGTCCAGG AGGAGGGTCT TTCCGTGGTC TNGGAGGAGC GGGGGGAGAA	180
GATNCTCCTC ATGGTCNACA TCCC	204
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 264 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
TGGATTGGTC AGGAGCGGGT AGAGTGGCAC CATTGAGGGG ATATTCAAAA ATATTATTTT	60
GTCCTAAATG ATAGTTGCTG AGTTTTTCTT 1GACCCATGA GTTATATTGG AGTTTATTTT	120
TTAACTITCC AATCGCATGG ACATGTTAGA CTTATTTTCT GTTAATGATT NCTATTTTTA	180
TTAAATIGGA TTTGAGAAAT TGGTTNTTAT TATATCAATT TTTGGTATTT GTTGAGTTTG	240
ACATTATAGC TIAGTATGTG ACCA	264
(2) INFORMATION FOR SEQ ID NO:25:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 376 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:25:

TTACAACGA	AG GGGAAACTCC	GTCTCTACAA	AAATTAAAA	ATTAGCCAGG	TGTGGTGGTG	60
TGCACCCG(CA ATCCCAGCTA	CTTGGGAGGT	TGAGACACAA	GANTCACCTA	NATGTGGGAG	120
GTCAAGGT1	TG CATGAGTCAT	GATTGTGCCA	CTGCACTCCA	GCCTGGGTGA	CAGACCGAGA	180
CCCTGCCTC	CA ANAGANAANG	AATAGGAAGT	TCAGAAATCN	TGGNTGTGGN	GCCCAGCAAT	240
CTGCATCTA	AT NCAACCCCTG	CAGGCAANGC	TGATGCAGCC	TANGTTCAAG	AGCTGCTGTT	300
TCTGGAGGC	CA GCAGTTNGGG	CTTCCATCCA	GTATCACGGC	CACACTCGCA	CNAGCCATCT	360
бтсстссбт	N TGTNAC					376

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 372 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

TTACAACGAG GGGAAACTCC GTCTCTACAA AAATTAAAAA ATTAGCCAGG TGTGGTGGTG 60

TGCACCTGTA ATCCCAGCTA CTTGGGCGGC TGAGACACAA GAACCACCTA AATGTGGGAG 120

GGTCAAGGTT GCATGAGTCA TGATCGCGCC ACTGCACTCC AGCCTGGGTG ACAGACTGAG 180

ACCCTGCCTC AAAAGAAAAA GAATAGGAAG TTCAGAAACC CTGGGTGTGG NGCCCAGCAA 240

TCTGCATTTA AACAATCCCT GCAGGCAATG CTGATGCAGC CTAAGTTCAA GAGCTGCTGT 300

4.

1

TCTGGAGGCA GNAGTAAGGG CTTCCA1CCA GCATCACGGN CAACACTGCA AAAGCACCTG	360
TCCTCGTTGG TA	372
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 477 base pairs	
(B) TYPF: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
TTCTGTCCAC ATCTACAAGT TTTATTTATT TTGTGGGTTT TCAGGGTGAC TAAGTTTTTC	60
CCTACATTGA AAAGAGAAGT TGCTAAAAGG TGCACAGGAA ATCATTTTTT TAAGTGAATA	120
TGATAATATG GGTCCGTGCT TAATACAACT GAGACATATT TGTTCTCTGT TTTTTTAGAG	180
TCACCICTTA AAGTCCAATC CCACAATGGT GAAAAAAAAA TAGAAAGTAT TTGTTCTACC	240
TTTANGGAGA CIGCAGGGAT ICTCCTTGNA AACGGAGTAT GGAATCAATC TTAAATAAAT	300
ATGAAATTGG TTGGTCTTCT GGGATAAGAA ATTCCCAACT CAGTGTGCTG AAATTCACCT	360
GACTITTTIT GGGAAAAAAT AGTCGAAAAT GTCAATTTGG TCCATAAAAT ACATGTTACT	420
ATTAAAAGAT ATTTAAAGAC AAATTCTTTC AGAGCTCTAA GATTGGTGTG GACAGAA	477
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 438 base pairs

(B) TYPE: nucleic acid

ž

	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
	TCTNCAACCT CTTGANTGTC AAAAACCTTN TAGGCTATCT CTAAAAGCTG ACTGGTATTC	60
	ATTCCAGCAA AATCCCTCTA GTTTTTGGAG TTTCCTTTTA CTATCTGGGG CTGCCTGAGC	120
	CACAAATGCC AAATTAAGAG CATGGCTATT TTCGGGGGCT GACAGGTCAA AAGGGGTGTA	180
	AATCCGATAA GCCTCCTGGA GGTGCTCTAA AAACACICCT GGTGACTCAT CATGCCCCTG	240
	GACGACTICA ATCGNCTTAG ACAAGTITAT AGGTTTCTGG GCAGCTCCCT GAATACCCAC	300
	GAGGAGATAC CGGTGGAAAT CGTCAAAAGT TCTCCCTCCA CTTGAGAAAT TTGGGTCCCA	360
	ATTAGGTCCC AATTGGGTCT CTAATCACTA TTCCTCTAGC TTCCTCCTCC GGNCTATTGG	420
	TTGATGTGAG GTTGAAGA	438
	(2) INFORMATION FOR SEQ ID NO:29:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 620 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
·		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	AAGAGGGTAC CAGCCCCAAG CCTTGACAAC TTCCATAGGG TGTCAAGCCT GTGGGTGCAC	60

AGAAGTCAAA AATTGAGTTT TGGGATCCTC AGCCTAGATT TCAGAGGATA TAAAGAAACA

で対対なる

3

ij,

CCTAACACCT AGATATTCAG ACAAAAGTTT ACTACAGGGA TGAAGCTTTC ACGGAAAACC	180		
TCTACTAGGA AAGTACAGAA GAGAAATG1G GGTTTGGAGC CCCCAAACAG AATCCCCTCT	240		
AGAACACTGC CTAATGAAAC TGTGAGAAGA TGGCCACTGT CATCCAGACA CCAGAATGAT	300		
AGACCEACCA AAAACTTATG CCATATTGCC TATAAAACCT ACAGACACTC AATGCCAGCC	360		
CCATGAAAAA AAAACTGAGA AGAAGACTGT NCCCTACAAT GCCACCGGAG CAGAACTGCC	420		
CCAGGCCATG GAAGCACAGC TCTTATATCA ATGTGACCTG GATGTTGAGA CATGGAATCC	480		
NANGAAATCN TTTTAANACT TCCACGGTTN AATGACTGCC CTATTANATT CNGAACTTAN	540		
ATCCNGGCCT GTGACCTCTT TGCTTTGGCC ATTCCCCCTT TTTGGAATGG CTNTTTTTTT	600		
CCCATGCCTG TNCCCTCTTA	620		
(2) INFORMATION FOR SEQ ID NO:30:			
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 100 base pairs(B) TYPF: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:			
TTACAACGAG GGGGTCAATG TCATAAATGT CACAATAAAA CAATCTCTTC TTTTTTTTT			
דוווווווו וווווווווו ווווווווווווווווו	100		
(2) INFORMATION FOR SEQ ID NO:31:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 762 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

TAGTCTATGC GCCGGACAGA GCAGAATTAA ATTGGAAGTT GCCCTCCGGA CTTTCTACCC	60
ACACTCTTCC TGAAAAGAGA AAGAAAAGAG GCAGGAAAGA GGTTAGGATT TCATTTTCAA	120
GAGTCAGCTA ATTAGGAGAG CAGAGTTTAG ACAGCAGTAG GCACCCCATG ATACAAACCA	180
TGGACAAAGT CCCTGTTTAG TAACTGCCAG ACATGATCCT GCTCAGGTTT TGAAATCTCT	240
CTGCCCATAA AAGATGGAGA GCAGGAGTGC CATCCACATC AACACGTGTC CAAGAAAGAG	300
TCTCAGGGAG ACAAGGGTAT CAAAAAACAA GATTCTTAAT GGGAAGGAAA TCAAACCAAA	360
AAATTAGATT TITCTCTACA TATATATAAT ATACAGATAT TTAACACATT ATTCCAGAGG	420
TGGCTCCAGT CCTTGGGGCT TGAGAGATGG TGAAAACTTT TGTTCCACAT TAACTTCTGC	480
TCTCAAATTC TGAAGTATAT CAGAATGGGA CAGGCAATGT TTTGCTCCAC ACTGGGGCAC	540
AGACCCAAAT GGTTCTGTGC CCGAAGAAGA GAAGCCCGAA AGACATGAAG GATGCTTAAG	600
GGGGGTTGGG AAAGCCAAAT TGGTANTATC TTTTCCTCCT GCCTGTGTTC CNGAAGTCTC	660
CNCTGAAGGA ATTCTTAAAA CCCTTTGTGA GGAAATGCCC CCTTACCATG ACAANTGGTC	720
CCATTGCTTT TAGGGNGATG GAAACACCAA GGGTTTTGAT CC	762

10

3

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 276 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
TAGTCTATGC GTGTATTAAC CTCCCCTCCC TCAGTAACAA CCAAAGAGGC AGGAGCTGTT	60
ATTACCAACC CCATTTTACA GATGCATCAA TAATGACAGA GAAGTGAAGT	120
CACAACCAGI AAATTGGCAG AGTCAGATTT GAATCCATGG AGTCTGGTCT GCACTTCAA	180
TCACCGAATA CCCTTTCTAA GAAACGTGTG CTGAATGAGT GCATGGATAA ATCAGTGTCT	240
ACTCAACATC TITGCCTAGA TATCCCGCAT AGACTA	276
(2) INFORMATION FOR SEQ ID NO:33:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 477 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
TAGTAGTTGC CAAATATTTG AAAATTTACC CAGAAGTGAT TGAAAACTTT TTGGAAACAA	60
. AAACAAATAA AGCCAAAAGG TAAAATAAAA ATATCTTTGC ACTCTCGTTA TTACCTATCC	120
ATAACTITTI CACCGTAAGC TCTCCTGCTI GTTAGTGTAG TGTGGTTATA TTAAACTITT	190

TAGTTATTA	TTTTTATTCA	CTTTTCCACT	AGAAAGTCAT	TATTGATTTA	GCACACATGT	240
TGATCTCAT	TCATTTTTC	TTTTTATAGG	CAAAATTTGA	TGCTATGCAA	CAAAAATACT	300
CAAGCCCATI	ATCTTTTTC	CCCCCGAAAT	CTGAAAATTG	CAGGGGACAG	AGGGAAGTTA	360
TCCCATTAAA	AAATTGTAAA	TATGTTCAGT	TTATGTTTAA	AAATGCACAA	AACATAAGAA	420
AATTGTGTTT	ACTTGAGCTG	CTGATTGTAA	GCAGTTTTAT	CTCAGGGGCA	ACTACTA	477
(2) INFORM	ATION FOR SE	Q ID NO:34:				

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 631 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

TAGTAGTTGC CAATTCAGAT GATCAGAAAT GCTGCTTTCC TCAGCATTGT CTTGTTAAAC 60

CGCATGCCAT TTGGAACTTT GGCAGTGAGA AGCCAAAAGG AAGAGGTGAA TGACATATAT 120

ATATATATAT ATTCAATGAA AGTAAAATGT ATATGCTCAT ATACTTTCTA GTTATCAGAA 180

TGAGTTAAGC TTTATGCCAT TGGGCTGCTG CATATTTTAA TCAGAAGATA AAAGAAAATC 240

TGGGCATTTT TAGAATGTGA TACATGTTTT TTTAAAACTG TTAAATATTA TTTCGATATT 300

TGTCTAAGAA CCGGAATGTT CTTAAAATTT ACTAAAACAG TATTGTTTGA GGAAGAGAAA 360

ACTGTACTGT TTGCCATTAT TACAGTCGTA CAAGTGCATG TCAAGTCACC CACTCTCCA 420

PCT/US97/00485

GGCCTGACAT CTGGGAAAGG CTCAGATCCA CCTACTGCTC CITGCTCGTT GATTTGTTTT 540

AAAATATTGT GCCTGGTGTC ACTTTTAAGC CACAGCCCTG CCTAAAAGCC AGCAGAGAAC 600

AGAACCCGCA CCATTCTATA GGCAACTACT A 631

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 578 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEOUFNCE DESCRIPTION: SEQ ID NO:35:

TAGTAGTIGC CATCCCATAT TACAGAAGGC TCTGTATACA TGACTTATTT GGAAGTGATC 60 TGTTTTCTCT CCAAACCCAT TTATCGTAAT TTCACCAGTC TTGGATCAAT CTTGGTTTCC 120 ACTGATACCA TGAAACCTAC TTGGAGCAGA CATTGCACAG TTTTCTGTGG TAAAAACTAA 180 AGGTTTATTT CCTAAGCTGT CATCTTATGC TTAGTATTTT TTTTTTACAG TGGGGAATTG 240 CTGAGATTAC ATTITGTTAT TCATTAGATA CTTTGGGATA ACTTGACACT GTCTTCTTT1 300 360 TTTCGCTTTT AATTGCTATC ATCATGCTTT TGAAACAAGA ACACATTAGT CCTCAAGTAT TACATAAGCT TGCTTGTTAC GCCTGGTGGT TTAAAGGACT ATCTTTGGCC TCAGGTTCAC 420 AAGAATGGGC AAAGTGTTTC CTTATGTTCT GTAGTTCTCA ATAAAAGATT GCCAGGGGCC 480 540 GGGTACTGTG GCTCGCACTG TAATCCCAGC ACTTTGGGAA GCTGAGGCTG GCGGATCATG

10

TTAGGGCAGG TGTTCGAAAC CAGCCTGGGC AACTACIA 578 (2) INFORMATION FOR SEQ ID NO:36: (i) SEQUENCL CHARACTERISTICS: (A) LENGTH: 583 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36: TAGTAGTTGC CTGTAATCCC AGCAACTCAG GAGGCTGGGG CAGGAGAATC AGTTGAACCT 60 GGGAGGCAGA AGTTGTAATT AGCAAAGATC GCACCATTGC ACTTCAGCCT GGGCAACAAG 120 AGTGAGATTC CATCTCAAAA ACAAAAAAA GAAAAAGAAA AGAAAAGGAA AAAACGTATA 180 AACCCAGCCA AAACAAAATG ATCATTCTTT TAATAAGCAA GACTAATTTA ATGTGTTTAT 240 TTANTCAAAG CAGTIGAATC TTCTGAGTTA TTGGTGAAAA TACCCATGTA GTTAATTTAG 300 GGTTCTTACT TGGGTGAACG TTTGATGTTC ACAGGTTATA AAATGGTTAA CAAGGAAAAT 360 GATGCATAAA GAATCTTATA AACTACTAAA AATAAATAAA ATATAAATGG ATAGGTGCTA 420 TGGATGGAGT TTTTGTGTAA TTTAAAATCT TGAAGTCATT TTGGATGCTC ATTGGTTGTC 480 TGGTAATTTC CATTAGGAAA AGGTTATGAT ATGGGGAAAC TGTTTCTGGA AATTGCGGAA 540

(2) INFORMATION FOR SEQ ID NO:37:

TGTTTCTCAT CTGTAAAATG CTAGTATCTC AGGGCAACTA CTA

43

ķ

(i)	SEQUENCE	CHARACTERIST	TCS -
`''	JI. VULITUL	CHANACHINIST	いしい。

(A) LENGTH: 716 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GATCTACTAG TCATNTGGAT TCTAT	CCATG GCAGCTAAGC	CTTTCTGAAT	GGATTCTACT	60
GCTTTCTTGT TCTTTAATCC AGACC	CTTAT ATATGTTTAT	GTTCACAGGC	AGGGCAATGT	120
TTAGTGAAAA CAATTCTAAA TTTTT	TATTI TGCATTITCA	TGCTAATTTC	CGTCACACTC	180
CAGCAGGCTT CCTGGGAGAA TAAGG	agaaa tacagetaaa	GACATTGTCC	CTGCTTACTT	240
ACAGCCTAAT GGTATGCAAA ACCAC	TTCAA TAAAGTAACA	GGAAAAGTAC	TAACCAGGTA	300
GAATGGACCA AAACTGATAT AGAAA	AATCA GAGGAAGAGA	GGAACAAATA	TTTACTGAGT	360
CCTAGAATGT ACAAGGCTTT TTAAT	TACAT ATTTTATGTA	AGGCCTGCAA	AAAACAGGTG	420
AGTAATCAAC ATTTGTCCCA TTTTA	CATAT AAGGAAACIG	AAGCTTAAAT	TGAATAATTT	480
AATGCATAGA TTTTATAGTT AGACC	ATGTT CAGGTCCCTA	TGTTATACTT	ACTAGCTGTA	540
IGAATATGAG AAAATAATTT TGTTA	TTTTC TTGGCATCAG	TATTTTCATC	TGCAAAATAA	600
AGCTAAAGTT ATTTAGCAAA CAGTC	AGCAT AGTGCCTGAT	ACATAGTAGG	TGCTCCAAAC	660
ATGATTACNC TANTATTNGG TATTA	NAAAA ATCCAATATA	GGCNTGGATA	AAACCG	716

(2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:

ę

Š

(A) LENGTH: 688 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

TTCTGTCCAC ATATCATCCC ACTTTAATTG TTAATCAGCA AAACTTTCAA TGAAAAATCA 60 TCCATTITAA CCAGGATCAC ACCAGGAAAC TGAAGGTGTA TITTTTTTTA CCTTAAAAAA 120 AAAAAAAAA ACCAAACAAA CCAAAACAGA TTAACAGCAA AGAGTTCTAA AAAATTTACA 180 TTTCTCTTAC AACTGTCATT CAGAGAACAA TAGTTCTTAA GTCTGTTAAA TCTTGGCATT 240 AACAGAGAAA CTTGATGAAN AGTTGTACTT GGAATATTGT GGATTTTTTT TTTTGTCTAA 300 TCTCCCCCTA TTGTTTTGCC AACAGTAATT TAAGTTTGTG TGGAACATCC CCGTAGTTGA 360 AGTGTAAACA ATGTATAGGA AGGAATATAT GATAAGATGA TGCATCACAT ATGCATTACA 420 TGTAGGGACC TTCACAACTT CATGCACTCA GAAAACATGC TTGAAGAGGA GGAGAGGACG 480 GCCCAGGGTC ACCATCCAGG TGCCTTGAGG ACAGAGAATG CAGAAGTGGC ACTGTTGAAA 540 TITAGAAGAC CATGTGTGAA TGGTTTCAGG CCTGGGATGT TTGCCACCAA GAAGTGCCTC 600 CGAGAAATIT CTTTCCCATT TGGAATACAG GGTGGCTTGA TGGGTACGGT GGGTGACCCA 660 ACGAAGAAAA TGAAATTCTG CCCTTTCC 688

(2) INFORMATION FOR SEQ ID NO:39:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 585 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

TAGTAGTTGC CCCNNACCTA AAANTTGGAA AGCATGATGT CTAGGAAACA TANTAAAATA 60 GGGTATGCCT ATGTGCTACA GAGAGATGTT AGCATTTAAA GTGCATANTT TTATGTATTT 120 TGACAAATGC ATATNCCTCT ATAATCCACA ACTGATTACG AAGCTATTAC AATTAAAAAG 180 TTTGGCCGGG CGTGGTGGGC GGTGGCTGAC GCCTGTAATC CCAGCACTTI GGGAGGCCGA 240 GGCACGCGGA TCACGAGGTC GGGAGTTCAA GACCATCCTG GCTAACACGG TGAAAGTCCA 300 TCTCTACTAA AAATACGAAA AAATTACCCC GGCGTGGTGG CGGGCGCCTG TAGTCCCAGC 360 TACTCCGGAG GC1GAGGCAG GAGAATGGCG TGAACCCAGG ACACGGAGCT TGCAGTGTGC 420 CAACATCACG TCACTGCCCT CCAGCCTGGG GGACAGGAAC AAGANTCCCG TCCTCANAAA 480 AGAAAAATAC TACTNATANT TTCNACTITA TITTAANTTA CACAGAACTN CCTCTTGGTA 540 CCCCCTTACC ATTCATCTCA CCCACCTCCT ATAGGGCACN NCTAA 585

(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 475 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

 ${\bf x}_{2}$

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

TCTGTCCACA CCAATCTTAG AAGCTCTGAA AAGAATTTGT CTTTAAATAT CTTTTAATAG 60 IMACATGTAT TITATGGACC AAATTGACAT ITTCGACTGT TITTTCCAMA AAAGTCAGGT 120 GAATTTCAGC ACACTGAGTT GGGAATTTCT TATCCCAGAA GACCAACCAA TTTCATATTT 180 ATTTAAGATT GATTCCATAC TCCGTTTTCA AGGAGAAICC CTGCAGTCTC CTTAAAGGTA 240 GAACAAATAC TTCCTATTTT TTTTTCACCA TTGTGGGATT GGACTTTAAG AGGTGACTCT 300 AAAAAAACAG AGAACAAATA TGTCTCAGTT GTATTAAGCA CGGACCCATA TTATCATATT 360 CACTTAAAAA AATGATTTCC TGTGCACCTT TTGGCAACTT CTCTTTTCAA TGTAGGGAAA 420 AACTTAGTCA CCCTGAAAAC CCACAAAATA AATAAAACTT GTAGATGTGG ACAGA 475

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 423 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

TAMGAGGGTA CATCGGGTAA GAACGTAGGC ACATCTAGAG CTTAGAGAAG TCTGGGGTAG 60

GAAAAAAATC TAAGTATITA TAAGGGTATA GGTAACATIT AAAAGTAGGG CTAGCTGACA 120

ITATITAGAA AGAACACATA CGGAGAGATA AGGGCAAAGG ACTAAGACCA GAGGAACACT 180

AATATITAGT GATCACTICC ATTCTTGGTA AAAATAGTAA CTTTTAAGTT AGCTTCAAGG 240

¥

CTA						423
ATTGTAGCAT	GTTAAATGTC	ACAATATACT	TACCATTIGT	TGTATATGGC	TGTACCCTCT	420
TTGTTTTAAG	ATCCTTGTTA	GTGCTTTAAT	AAAGTCATGT	TATATCAMAC	GCTCTAAAAC	360
AAGATTTTTG	GCCATGATTA	GTTGTCAAAA	GTTAGTTCTC	TTGGGTTTAT	ATTACTAATT	300

(2) INFORMATION FOR SEQ ID NO:42:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 527 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

TCTCCTAGGC TAATGTGTGT GTTTCTGTAA AAGTAAAAAG TTAAAAATTT TAAAAATAGA	60
AAAAAGCTTA TAGAATAAGA ATATGAAGAA AGAAAATATT TTTGTACATT TGCACAATGA	120
GTTTATGTTT TAAGCTAAGT GTTATTACAA AAGAGCCAAA AAGGTTTTAA AAATTAAAAC	180
GTTTGTAAAG TTACAGTACC CTTATGTTAA TTTATAATTG AAGAAAGAAA AACTTTTTT	240
TATAAATGTA GTGTAGCCTA AGCATACAGT ATTTATAAAG TCTGGCAGTG TTCAATAATG	300
TCCTAGGCCT TCACATTCAC TCACTGACTC ACCCAGAGCA ACTTCCAGTC CTGTAAGCTC	360
CATTCGTGGI AAGTGCCCTA TACAGGTGCA CCATTTATIT TACAGTATIT TTACTGTACC	420
TTCTCTATGT TTCCATATGT TTCGATATAC AAATACCACT GGTTACTATN GCCCNACAGG	480

1.7

A THE STREET

TAATTCCAGT AACACGGCCT GTATACGTCT GGTANCCCTA GNGAAGA	52
(2) INFORMATION FOR SEQ ID NO:43:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 331 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
TCTTCAACCT CGTAGGACAA CTCTCATATG CCTGGGCACT ATTTTTAGGT TACTACCTTG	60
GCTGCCCTTC TTTAAGAAAA AAAAAAGAAG AAAAAAGAAC TTTTCCACAA GTTTCTCTTC	120
CTCTAGTTGG AAAATTAGAG AAATCATGTT TTTAATTTTG TGTTATTTCA GATCACAAAT	180
TCAAACACTT GTAAACATTA AGCTTCTGTT CAATCCCCTG GGAAGAGGAT TCATTCTGAT	240
ATTTACGGTT CAAAAGAAGT TGTAATATTG TGCTTGGAAC ACAGAGAACC AGTTATTAAC	300
TICCTACTAC TATTATATAA TAAATAATAA C	331
(2) INFORMATION FOR SEQ ID NO:44:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 592 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GGCTTAGTAG	TTGCCAGGCA	AAATARCGTT	GATTCTCCTC	AGGAGCCACC	CCCAACACCC	60
CTGTTTGCTT	CTAGACCTAT	ACCTAGACTA	AAGTCCCAGC	AGACCCCTAG	AGGTGAGGTT	120
CAGAGTGACC	CTTGAGGAGA	TGTGCTACAC	TAGAAAAGAA	CTGCTTGAGT	TTTCTAATTT	180
ATATAAGCAG	AAATCTGGAG	AAGAGTCATA	GGAATGGATA	TTAAGGGTGT	GAGATAATGG	240
CGGAAGGAAT	ATAGAGTTGG	ATCAGGCTGG	ACTTATTGAT	TTGAACCCAC	TAAGTAGAGA	300
TTCTGCTTTT	GATGTTGCAG	CTCAGGGAGT	TAAAAAGGT	TTTAATGGTT	CTAATAGTTT	360
ATTTGCTTGG	TTAGCTGAAA	TATGGATAAA	AGATGGCCCA	CTGTGAGCAA	GCTGGAAATG	420
CCTGATCTCT	CTCAGTTTAA	TGTAGAGGAA	GGGATCCAAA	AGTTTAGGGA	GANTTGGATG	480
CTGGRAKTGG	ATTGGTCACT	TTGRGACCTA	CCCWTCCCAG	CTGGGAGGGT	CCAGAAGATA	540
CACCCTTGAC	CAACGCTTTG	CGAAATGGAT	TTGTGATGGC	GGCAACTACT	AA	592
(2) INFORM	ATION FOR S	EQ ID NO:45	:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 567 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

GGCTTAGTAG TTGCCATTGC GAGTGCTTGC TCAACGAGCG TTGAACATGG CGGATTGTCT 60

AGATTCAACG GATTTGAGTT TTACCAGCAA AGCGAACCAA GCGCGGCCCA GAGAATTATG 120

GGTTGGTTGG CTTTGAAAAG ATGGAAATCC TGTAGGCCTA GTCAGAAAAG CCTTCTTGCA 180

PCT/US97/00485

GAACAGT	TGG	TTCTCGGGCG	AACGCTCATC	AAGATGCCCA	TTGGAAAGGC	TAGCGTGTAT	240
TTGGGAGA	AGC	CTGATAGCGT	GTCTTCTGAT	GATGTTTGTG	CTTGGACAGT	GACAAAAGAT	300
ATGCAAA	GCA	AGTCCGAACT	AGACGTCAAG	CTTCGTGAGC	AAATTATTGT	AGACTCCTAC	360
TTATACTO	GTG	AGGAATGATA	GCCAAGGGTG	GGGACTTTAA	GACTAAGGTG	GTTTGTACTT	420
GCGCCGAT	ГGA	TCCCAGGCAG	AAAGAMCTGA	TCGCTAGTTT	TATACGGGCA	ACTACTAAGC	480
CGAA1TC(CAG	CACACTGGCG	GCCGTTACTA	ATTGGATCCG	ANCTCGGTAC	CAGCTTGATG	540
CATASCTT	ΓGA	GTTWTCTATA	NTGTCNC				567

(2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 908 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

GAGCGAAAGA CCGAGGGCAG NGNNTANGNG CGANGAAGCG GAGAGGGCCA AAAAGCAACC 60

GCTTTCCCCG GGGGGTGCCG ATTCATTAAG GCAGGTGGAG GACAGGTTTC CCGATGGAAG 120

GCGGCAGGGG CGCAAGCAAT TAATGTGAGT AGGCCATTCA TTAGCACCCG GGCTTAACAT 180

TTAAGCTTCG GGTTGGTATG TGGTGGGAAT TGTGAGCGGA TAACAATTTC ACACAGGAAA 240

CAGCTATGAC CATGATTACG CCAAGCTATT TAGGTGACAT TATAGAATAA CTCAAGTTAT 300

PCT/US97/00485

GCATCAAGCT	TGGTACCGAG	TTCGGATCCA	CTAGTAACGG	CCGCCAGTGT	GTGGAATTCG	360
GCTTAGTAGT	TGCCGACCAT	GGAGTGCTAC	CTAGGC1AGA	ATACCTGAGY	TCCTCCCTAG	420
CCTCACTCAC	ATTAAATTGT	ATCTTTTCTA	CATTAGATGT	CCTCAGCGCC	TTATTTCTGC	480
TGGACWATCG	ATAAATTAAT	CCTGATAGGA	TGATAGCAGC	AGATTAATTA	CTGAGAGTAT	540
GTTAATGTGT	CATCCCTCCT	ATATAACGTA	TTTGCATTTT	AATGGAGCAA	TTCTGGAGAT	600
AATCCCTGAA	GGCAAAGGAA	TGAATCTTGA	GGGTGAGAAA	GCCAGAATCA	GTGTCCAGCT	660
GCAGTTGTGG	GAGAAGGTGA	TATTATGTAT	GTCTCAGAAG	TGACACCATA	TGGGCAACTA	720
CTAAGCCCGA	ATTCCAGCAC	ACTGGCGGGC	GTTACTAATG	GATCCGAGCT	CGGTACCAAG	780
CTTGATGCAT	AGCTTGAGTA	TCTATAGTGT	CACTAAATAG	CCTGGCGTTA	TCATGGTCAT	840
AGCTGTTTCC	TGTGTGAAAT	TGTTATCCGC	TCCCAATTCC	CCCCACCATA	CGAGCCGGAA	900
CATAAAGT						908

(2) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 480 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

TGCCAACAAG GAAAGTTTTA AATTTCCCCT TGAGGATTCT TGGTGATCAI CAAATTCAGT 60

GGTTTTTAAG GTTGTTTTCT GTCAAATAAC TCTAACTTTA AGCCAAACAG TATATGGAAG 120

į.

.5

CAC	AGATAKA	ATATTACACA	GATAAAAGAG	GAGTTGATCT	AAAGTARAGA	TAGTTGGGG	180
CTT.	TAATTTC	TGGAACCTAG	GTCTCCCCAT	сттсттстст	GCTGAGGAAC	TTCTTGGAAG	240
CGG(GGATTCT	AAAGTTCTTT	GGAAGACAGT	TTGAAAACCA	CCATGTTGTT	CTCAGTACCI	300
TTA	TTTTAA	AAAGTAGGTG	AACATTTTGA	GAGAGAAAAG	GGCTTGGTTG	AGATGAAGTC	360
CCCC	ccccc	СТТТТТТТТ	TTITAGCTGA	AATAGATACC	CTATGTINAA	RGAARGGATT	420
ΛΤΤΑ	ATTTACC	ATGCCAYTAR	SCACATGCTC	TTTGATGGGC	NYCTCCSTAC	CCTCCTTAAG	480

(2) INFORMATION FOR SEQ ID NO:48:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 591 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:48:

AAGAGGGTAC CGAGTGGAAT TTCCGCTTCA CTAGTCTGGT GTGGCTAGTC GGTTTCGTGG 60

TGGCCAACAT TACGAACTTC CAACTCAACC GTTCTTGGAC GTTCAAGCGG GAGTACCGGC 120

GAGGATGGTG GCGTGAATTC TGGCCTTTCT TTGCCGTGGG ATCGGTAGCC GCCATCATCG 180

GTATGTTTAT CAAGATCTTC TTTACTAACC CGACCTCTCC GATTTACCTG CCCGAGCCGT 240

GGTTTAACGA GGGGAGGGGG ATCCAGTCAC GCGAGTACTG GTCCCAGATC TTCGCCATCG 300

TCGTGACAAT GCCTATCAAC TTCGTCGTCA ATAAGTTGTG GACCTTCCGA ACGGTGAAGC 360

ACTO	CGAAAA	CGTCCGGTGG	CTGCTGTGCG	GTGACTCCCA	AAATCTTGAT	AACAACAAGG	420
TAAC	CGAATC	GCGCTAAGGA	ACCCCGGCAT	CTCGGGTACT	CTGCATATGC	GTACCCCTTA	480
AGCC	GAATTC	CAGCACACTG	GCGGCCGTTA	CTAATTGGAT	CCGAACTCCG	TAACCAAGCC	540
TGAT	GCG1AA	CTTGAGTTAT	TCTATAGTGT	CCCT AAAATA	ACCTGGCGTT	А	591
(2)	INFORMA	TION FOR SE	Q ID NO:49:				

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 454 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

AAGAGGGTAC CTGCCTTGAA ATTTAAATGT CTAAGGAA	AR TGGGAGATGA TTAAGAGTTG 60
CTGTGGCYTA GTCACACCAA AATGTATTTA TTACATCC	TG CTCCTTTCIA GTTGACAGGA 120
AAGAAAGCTG CTGTGGGGAA AGGAGGGATA AATACTGA	AG GGATTTACTA AACAAATGTC 180
CATCACAGAG TITTCCTTTT TTTTTTTTT AGACAGAG	TC TTGCTCTGTC ACCCAGGCTG 240
GAATGAAGWG GTATGATCTC AGTTGAATGC AACCTCTA	CC TCCTAGGTTC AAGCGATTCT 300
CATGCCTCAG CCTCCTGAGC AGCTGGGACT ATAGGCGC	AT GCTACCATGC CAGGCTAAT1 360
TITIATATITT TATTAGAGAC GGGGTGTTGC CATGTTGG	CC AGGCAGGTCT CGAACTCCTG 420
GGCCTCAGAT GATCTGCCCC ACCGTACCCT CTTA	454

*

Ė

(2) INFORMATION	FOR	SEQ	ID	NO:50:
-----------------	-----	-----	----	--------

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 463 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: Timear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

AAGAGGGTAC CAAAAAAAAG AAAAAGGAAA AAAAGAAAAA CAACTTGTAT AAGGCTTTCT 60 GCTGCATACA GCTTTTTTT TTTAAATAAA TGGTGCCAAC AAATGTTTTT GCATTCACAC 120 CAATTGCTGG TTTTGAAATC GTACTCTTCA AAGGTATTTG TGCAGATCAA TCCAATAGTG 180 ATGCCCCGTA GGTTTTGTGG ACTGCCCACG TTGTCTACCT TCTCATGTAG GAGCCATTGA 240 GAGACTGTTT GGACATGCCT GTGTTCATGT AGCCGTGATG TCCGGGGGCC GTGTACATCA 300 TGTTACCGTG GGGTGGGGTC TGCATTGGCT GCTGGGCATA TGGCTGGGTG CCCATCATGC 360 CCATCTGCAT CTGCATAGGG TATTGGGGCG TTTGATCCAT ATAGCCATGA TTGCTGTGGT 420 AGCCACTGTT CATCATTGGC TGGGACATGC TGTTACCCTC TTA 463

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 399 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
CTTCAACCTC CCAAAGTGCT GGGATTACAG GACTGAGCCA CCACGCTCAG CCTAAGCCTC	60
TTTTTCACTA CCCTCTAAGC GATCTACCAC AGTGATGAGG GGCTAAAGAG CAGTGCAATT	120
TGATTACAAT AATGGAACTT AGATTTATIA ATTAACAATT TTTCCTTAGC ATGTTGGTTC	180
CATANTTATT AAGAGTATGG ACTTACTTAG AAATGAGCTT TCATTTTAAG AATTTCATCT	240
TIGACCTICI CTATTAGTCT GAGCAGTATG ACACTATACG TATTITATIT AACTAACCTA	300
CCTTGAGCTA TTACTTTTTA AAAGGCTATA TACATGAATG TGTATTGTCA ACTGTAAAGC	360
CCCACAGTAT TTAATTATAT CATGATGTCT TTGAGGTTG	399
(2) INFORMATION FOR SEQ ID NO:52:	
(1) SEQUENCE CHARACTERISTICS:	
(A) LENGIH: 392 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

(D) TOPOLOGY: linear

CTTCAACCTC AATCAACCTT GGTAATTGAT AAAATCATCA CTTAACTTTC TGATATAATG 60

GCAATAATTA TCTGAGAAAA AAAAGTGGTG AAAGATTAAA CTTGCATTTC TCTCAGAATC 120

TTGAAGGATA TTTGAATAAT TCAAAAGCGG AATCAGTAGT ATCAGCCGAA GAAACTCACT 180

TAGCTAGAAC GTTGGACCCA TGGATCTAAG TCCCTGCCCT TCCACTAACC AGCTGATTGG 240

TTTTGTGTAA ACCTCCTACA CGCTTGGGCT TGGTCGCCTC ATTTGTCAAA GTAAAGGCTG 300

Ś

AAATAGGAAG ATAATGAACC GTGTCTTTTT GGTCTCTTTT CCATCCATTA CTCTGATTTT	360
ACANAGAGGC CTGTATTCCC CTGGTGAGGT TG	392
(2) INFORMATION FOR SEQ ID NO:53:	
(1) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 179 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
TTCGGGTGAT GCCTCCTCAG GCTACAGTGA AGACTGGATT ACAGAAAGGT GCCAGCGAGA	60
TTTCAGATTC CTGTAAACCT CTAAAGAAAA GGAGTCGCGC CTCAACTGAT GTAGAAATGA	120
CTAGTTCAGC ATACNGAGAC ACNTCTGACT CCGATTCTAG AGGACTGAGT GACCTGCAN	179
(2) INFORMATION FOR SEQ ID NO:54:	
(1) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 112 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
TTCGGGTGAT GCCTCCTCAG GCTACATCAT NATAGAAGCA AAGTAGAANA ATCNNGTTTG	60
TGCATTITCC CACANACAAA ATTCAAATGA NTGGAAGAAA TTGGGANAGT AT	112

核

Chendral.

1. A.C. III

n,

(2) INFORMATION FOR SEQ ID NO:55:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 225 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
TGAGCTTCCG CTTCTGACAA CTCAATAGAT AATCAAAGGA CAACTTTAAC AGGGATTCAC	60
AAAGGAGTAT ATCCAAATGC CAATAAACAT ATAAAAAGGA ATTCAGCTTC ATCATCATCA	120
GAAGWATGCA AATTAAAACC ATAATGAGAA ACCACTATGT CCCACTAGAA TAGATAAAAT	180
CTTAAAAGAC TGGTAAAACC AAGTGTTGGT AAGGCAAGAG GAGCA	225
(2) INFORMATION FOR SEQ ID NO:56:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 175 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	
GCTCCTCTTG CCTTACCAAC ACATTCTCAA AAACCTGTTA GAGTCCTAAG CATTCTCCTG	60
TTAGTATTGG GATTTTACCC CTGTCCTATA AAGATGTTAT GTACCAAAAA TGAAGTGGAG	120
GGCCATACCC TGAGGGAGGG GAGGGATCTC TAGTGTTGTC AGAAGCGGAA GCTCA	175

	(2) INFORMATION FOR SEQ ID NO:57:	
**	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 223 base pairs	
AND SECTION .	(B) TYPE: nucleic acid	
3575/	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
Ä		
٠.	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:	
	AGCCATTTAC CACCCATGGA TGAATGGATT TTGTAATTCT AGCTGTTGTA TTTTGTGAAT	60
	TIGITAATIT IGTTGTITTI CTGTGAAACA CATACATTGG ATATGGGAGG TAAAGGAGTG	120
\$\$ 7		-20
; 4	TCCCAGTTGC TCCTGGTCAC TCCCTTTATA GCCATTACTG TCTTGTTTCT TGTAACTCAG	180
	GTTAGGTTTT GGTCTCTCTT GCTCCACTGC AAAAAAAAAA	223
	(2) INFORMATION FOR SEQ ID NO:58:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 211 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
Sê.		
.et	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
Sast.		
	GTTCGAAGGT GAACGTGTAG GTAGCGGATC TCACAACTGG GGAACTGTCA AAGACGAATT	60
	AACTGACTTG GATCAATCAA ATGTGACTGA GGAAACACCT GAAGGTGAAG AACATCATCC	120

AGTGGCAGAC ACTGAAAATA AGGAGAATGA AGTTGAAGAG GTAAAAGAGG AGGGTCCAAA

NO 97/25426	PCT/US97/0048

AGAGATGACT TIGGATGGGT GGTAAATGGC T	211
(2) INFORMATION FOR SEQ ID NO:59:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 208 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
GCTCCTCTTG CCTTACCAAC TITGCACCCA TCATCAACCA TGTGGCCAGG TTTGCAGCCC	60
AGGCTGCACA TCAGGGGACT GCCTCGCAAT ACTTCATGCT GTTGCTGCTG ACTGATGGTG	120
CTGTGACGGA TGTGGAAGCC ACACGTGAGG CTGTGGTGCG TGCCTCGAAC CTGCCCATGT	180
CAGTGATCAT TATGGGTGGT AAATGGCT	208
(2) INFORMATION FOR SEQ ID NO:60:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 171 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
AGCCATTTAC CACCCATACT AAATTCTAGT TCAAACTCCA ACTTCTTCCA TAAAACATCT	60
AACCACTGAC ACCAGTTGGC AATAGCTTCT TCCTTCTTTA ACCTCTTAGA GTATTTATGG	120

-5

一流の

эġ

	TCAATGCCAC ACATTTCTGC AACTGAATAA AGTTGGTAAG GCAAGAGGAG C	171
	(2) INFORMATION FOR SEQ ID NO:61:	
	(1) SEQUENCE CHARACTERISTICS:	
	(Λ) LENGTH: 134 base pairs	
***	(B) TYPE: nucleic acid	
÷	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
214		
-	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:	
	CGGGTGATGC CTCCTCAGGC TTTGGTGTGT CCACTCNACT CACTGGCCTC TTCTCCAGCA	60
- A. C. A.		
ું વ	ACTGGTGAAN ATGTCCTCAN GAAAANCNCC ACACGCNGCT CAGGGTGGGG TGGGAANCAT	120
	CANAATCATC NGGC	134
	(2) INFORMATION FOR SEQ ID NO:62:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 145 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
,	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:	
⊕ ,	AGAGGGTACA TATGCAACAG TATATAAAGG AAGAAGTGCA CTGAGAGGAA CTTCATCAAG	60
	CCCATTTAAT CAATAAGTGA TAGAGTCAAG GCTCAACCCA GGTGTGACGG ATTCCAGGTC	120
à	CCAAGCTCCT TACTGGTACC CTCTT	145

Š.

(2) INFORMATION FOR SEQ ID N	NU:03:
------------------------------	--------

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 297 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

TGCACTGAGA GGAATICAAA GGGTTTATGC CAAAGAACAA ACCAGTCCTC TGCAGCCTAA 60

CTCATTTGTT TTTGGGCTGC GAAGCCATGT AGAGGGCGAT CAGGCAGTAG ATGGTCCCTC 120

CCACAGTCAG CGCCATGGTG GTCCGGTAAA GCATTTGGTC AGGCAGGCCT CGTTTCAGGT 180

AGACGGGCAC ACATCAGCTT TCTGGAAAAA CTTTTGTAGC TCTGGAGCTT TGTTTTCCC 240

AGCATAATCA TACACTGTGG AATCGGAGGT CAGTTTAGTT GGTAAGGCAA GAGGAGC 297

(2) INFORMATION FOR SEQ ID NO:64:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 300 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:64:

GCACTGAGAG GAACTTCCAA TACTATGTTG AATAGGAGTG GTGAGAGAGG GCATCCTTGT 60

CTTGTGCCGG TTTTCAAAGG GAATGCTTCC AGCTTTTGCC CATTCAGTAT AATATTAAAG 120

ç.

83	
AATGTTTTAC CATTTTCTGT CTTGCCTGTT TTTCTGTGTT TTTGTTGGTC TCTTCATTCT	180
CCATTITIAG GCCTITACAT GTTAGGAATA TATTITCTTTI AATGATACTI CACCTTTGGT	240
ATCTTTTGTG AGACTCTACT CATAGTGTGA TAAGCACTGG GTTGGTAAGG CAAGAGGAGC	300
(2) INFORMATION FOR SEQ ID NO:65:	
(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 203 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:	
GCTCCTCTTG CCTTACCAAC TCACCCAGTA TGTCAGCAAT TTTATCRGCT TTACCTACGA	60
AACAGCCTGT ATCCAAACAC TTAACACACT CACCTGAAAA GTTCAGGCAA CAATCGCCTT	120
CTCATGGGTC TCTCTGCTCC AGTTCTGAAC CTTTCTCTTT TCCTAGAACA TGCATTTARG	180
TCGATAGAAG TTCCTCTCAG TGC	203
(2) INFORMATION FOR SEQ ID NO:66:	
(1) SEQUENCE CHARACTERISTICS:(A) LENGTH: 344 base pairs(B) TYPE: nucleic acid	
CONTINUE NUCLETO ACTO	

(C) STRANDEDNESS: single(D) TOPOLOGY: linear

S

(xi)	SEQUENCE	DESCRIPTION:	SŁQ	10	NO:66:	

TACGGGGACC	CCTGCATTGA	GAAAGCGAGA	CTCACTCTGA	AGCTGAAATG	CTGTTGCCCT	60
TGCAGTGCTG	GTAGCAGGAG	ттстбтбстт	TGTGGGCTAA	GGCTCCTGGA	TGACCCCTGA	120
CATGGAGAAG	GCAGAGTTGT	GTGCCCCTTC	TCATGGCCTC	GTCAAGGCAT	CATGGACTGC	180
CACACACAAA	ATGCCGTTTT	TATTAACGAC	ATGAAATTGA	AGGAGAGAAC	ACAATTCACT	240
GATGTGGCTC	GTAACCATGG	ATATGGTCAC	ATACAGAGGT	GTGATTATGT	AAAGGTTAAT	300
TCCACCCACC	TCATGTGGAA	ACTAGCCTCA	ATGCAGGGGT	CCCV		344

(2) INFORMATION FOR SEQ ID NO:67:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 157 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

GCACTGAGAG	GAACTTCGTA	GGGAGGTTGA	ACTGGCTGCT	GAGGAGGGG	AACAACAGGG	60
TAACCAGACT	GATAGCCATT	GGATGGATAA	TATGGTGGTT	GAGGAGGAC	ACTACTTATA	120
GCAGAGGGTT	GTGTATAGCC	TGAGGAGGCA	TCACCCG			157

(2) INFORMATION FOR SEQ ID NO:68:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 137 base pairs

(B) TYPE: nucleic acid

Market.

(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
GCACTGAGAG GAACTTCTAG AAAGTGAAAG TCTAGACATA AAATAAAATA	60
ACTCAGGAGA GACAGCCCAG CACGGTGGCT CACGCCTGTA ATCCCAGAAC TTTGGGAGCC	120
TGAGGAGGCA TCACCCG	137
(2) INFORMATION FOR SEQ ID NO:69:	
(1) SEQUENCE CHARACTERISTICS:(A) LENGTH: 137 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:69:	
CGGGTGATGC CTCCTCAGGC TGTATTTTGA AGACTATCGA CTGGACTTCT TATCAACTGA	60
AGAATCCGTT AAAAATACCA GTTGTATTAT TTCTACCTGT CAAAATCCAT TTCAAATGTT	120
GAAGTTCCTC TCAGTGC	137
(2) INFORMATION FOR SEQ ID NO:70:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 220 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	

353

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:70:	
AGCATGTTGA GCCCAGACAC GCAATCTGAA TGAGTGTGCA CCTCAAGTAA ATGTCTACAC	60
GCTGCCTGGT CTGACATGGC ACACCATCNC GTGGAGGGCA CASCTCTGCT CNGCCTACWA	120
CGAGGGCANT CTCATWGACA GGTTCCACCC ACCAAACTGC AAGAGGCTCA NNAAGTACTR	180
CCAGGGTMYA SGGACMASGG TGGGAYTYCA YCACWCATCT	220
(2) INFORMATION FOR SEQ ID NO:71:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 353 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:	
CGTTAGGGTC TCTATCCACT GCTAAACCAT ACACCTGGGT AAACAGGGAC CATTTAACAT	60
TCCCANCTAA ATATGCCAAG TGACTICACA TGTTTATCTT AAAGATGTCC AAAACGCAAC	120
TGATTTTCTC CCCTAAACCT GTGATGGTGG GATGATTAAN CCTGAGTGGT CTACAGCAAG	180
TTAAGTGCAA GGTGCTAAAT GAANGTGACC TGAGATACAG CATCTACAAG GCAGTACCTC	240

TCAACNCAGG GCAACTTTGC TTCTCANAGG GCATTTAGCA GTGTCTGAAG TAATTTCTGT

ATTACAACTC ACGGGGCGGG GGGTGAATAT CTANTGGANA GNAGACCCTA ACG

(2) INFORMATION FOR SEQ ID NO:72:

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 343 base pairs	
•	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	
	GCACTGAGAG GAACTICCAA TACYATKATC AGAGTGAACA RGCARCCYAC AGAACAGGAG	60
	AAAATGTTYG CAATCTCTCC ATCTGACAAA AGGCTAATAT CCAGAWTCTA AWAGGAACTT	120
	AAACAAATTT ATGAGAAAAG AACARACAAC CTCAWCAAAA AGTGGGTGAA GGAWATGCTS	180
	AAARGAAGAC ATYTATTCAG CCAGTAAACA YATGAAAAAA AGGCTCATSA TCACTGAWCA	240
	TTAGAGAAAT GCAAATCAAA ACCACAATGA GATACCATCT YAYRCCAGTT AGAAYGGTGA	300
	TCATTAAAAR STCAGGAAAC AACAGATGCT GGACAAGGTG TCA	343
	(2) INFORMATION FOR SEQ ID NO:73:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 321 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	
	GCACTGAGAG GAACTTCAGA GAGAGAGAGA GAGTTCCACC CTGTACTTGG GGAGAGAAAC	60
	AGAAGGTGAG AAAGTCTTTG GTTCTGAAGC AGCTTCTAAG ATCTTTTCAT TTGCTTCATT	120

- ANT

è

3

.

 $\mathcal{C}_{\mathcal{F}}$

SPACE OF

.3

TCANAGTTCC CATGCTGCCA AAGTGCCATC CTTTGGGGTA CTGTTTTCTG AGCTCCAGTG	180
ATAACTCATT TATACAAGGG AGATACCCAG AAAAAAAGTG AGCAAATCTT AAAAAGGTGG	240
CTTGAGTTCA GCCTTAAATA CCATCTTGAA ATGACACAGA GAAAGAANGA TGTTGGGTGG	300
GAGTGGATAG AGACCCTAAC G	321
(2) INFORMATION FOR SEQ ID NO:74:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 321 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:	
GCACTGAGAG GAACTTCAGA GAGAGAGAGA GAGTTCCACC CTGTACTTGG GGAGAGAAAC	60
AGANGGTGAG AAAGTCTTIG GTTCTGAAGC AGCTTCTAAG ATCTTTTCAT TTGCTTCATT	120
TCAAAGTTCC CATGCTGCCA AAGTGCCATC CTTTGGGGTA CTGTTTTCTG AGCTCCAGTG	180
ATAACTCATT TATACAAGGG AGATACCCAG AAAAAAAGTG AGCAAATCTT AAAAAGGTGG	240
CTTGAGTTCA GYCTTAAATA CCATCTTGAA ATGAMACAGA GAAAGAAGGA TGTTGGGTGG	300
GAGTGGATAG AGACCCTAAC G	321
(2) INFORMATION FOR SEQ ID NO:75:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 317 base pairs

が書きた

Ÿ

£

(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:75:	
GCACTGAGAG GAACTTCCAC ATGCACTGAG AAATGCATGT TCACAAGGAC TGAAGTCTGG	60
AACTCACTTI CTCACTTCCA ATCCTCATTC ACCTCTTTAG CACCTTGAG ACCTCATT	
AACTCAGTTT CTCAGTTCCA ATCCTGATTC AGGTGTTTAC CAGCTACACA ACCTTAAGCA	120
AGTCAGATAA CCTTAGCTTC CTCATATGCA AAATGAGAAT GAAAAGTACT CATCGCTGAA	100
THE THE PROPERTY OF THE PROPER	180
TTGTTTTGAG GATTAGAAAA ACATCTGGCA TGCAGTAGAA ATTCAATTAG TATTCATTTT	240
	2.40
CATTCTTCTA AATTAAACAA ATAGGATTTT TAGTGGTGGA ACTTCAGACA CCAGAAATGG	300
GAGTGGATAG AGACCCT	317
(2) INFORMATION FOR SEQ ID NO:76:	
(i) CENTRUCE CHARACTERISTICS	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 244 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:	
CGTTAGGGTC TCTATCCACT CCCACTACTG ATCAAACTCT ATTTATTTAA TTATTTTAT	60
CATACTITAA GIICIGGGAT ACACGIGCAG CATGCGCAGG TIIGIIGCAT AGGIATACAC	120
TICCCATCCI COLITCCICC ACCOLICACI COLICACI	
TTGCCATGGT GGTTTGCTGC ACCCATCAGT CCATCATCTA CATTAGGTAT TTCTCCTAAT	180

92	
GCTATCCCTC CCCTAGCCCC TTACACCCCC AACAGGCTCT AGTGTGTGAA GTTCCTCTCA	240
GTGC	244
(2) INFORMATION FOR SEQ ID NO:77:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 254 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SFQ ID NO:77:	
CGTTAGGGTC TCTATCCACT GAAATCTGAA GCACAGGAGG AAGAGAAGCA GTYCTAGTGA	60
GATGGCAAGT TCWTTTACCA CACTCTITAA CATTTYGTTT AGTTTTAACC TTTATTTATG	120
GATAATAAAG GTTAATATTA ATAATGATTT ATTTTAAGGC ATTCCCRAAT TTGCATAATT	180
CTCCTTTTGG AGATACCCTT TTATCTCCAG TGCAAGTCTG GATCAAAGTG ATASAMAGAA	240
GTTCCTCTCA GTGC	254
(2) INFORMATION FOR SEQ ID NO:78:	
(1) SEQUENCE CHARACTERISTICS:(A) LENGTH: 355 base pairs(B) TYPL: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:78:

4

34.36

*

- Marrie Marriaght

ė.

TTCGATACAG GCAAACATGA ACTGCAGGAG GGTGGTGACG ATCATGATGT TGCCGATGGT	• 60
CCGGATGGNC ACGAAGACGC ACTGGANCAC GTGCTTACGT CCTTTTGCTC TGTTGATGGC	120
CCTGAGGGGA CGCAGGACCC TTATGACCCT CAGAATCTTC ACAACGGGAG ATGGCACTGG	180
ATTGANTOCC ANTGACACCA GAGACACCCC AACCACCAGN ATATCANTAT ATTGATGTAG	240
TTCCTGTAGA NGGCCCCCTT GTGGAGGAAA GCTCCATNAG 1TGGTCATCT TCAACAGGAT	300
CTCAACAGTT TCCGATGGCT GTGATGGGCA TAGTCATANT TAACCNTGTN TCGAA	355
(2) INFORMATION FOR SEQ ID NO:79:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 406 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

TAAGAGGGTA CCAGCAGAAA GGTTAGTATC ATCAGATAGC ATCTTATACG AGTAATATGC	60
CTGCTATTTG AAGTGTAATT GAGAAGGAAA ATTTTAGCGT GCTCACTGAC CTGCCTGTAG	120
CCCCAGTGAC AGCTAGGATG TGCATTCTCC AGCCATCAAG AGACTGAGTC AAGTTGTTCC	180
TTAAGTCAGA ACAGCAGACT CAGCTCTGAC ATTCTGATTC GAATGACACT GTTCAGGAAT	240
CGGAATCCTG TCGATTAGAC TGGACAGCTT GTGGCAAGTG AATTTGCCTG TAACAAGCCA	300
GATTITITAA AATTTATATT GTAAATAATG TGTGTGTGTG TGTGTGTATA TATATATA	360
TGTACAGTTA TCTAAGTTAA TTTAAAAGTT GTTTGGTACC CTCTTA	406

AND CONTRACTOR OF THE PARTY OF

τ.

(2) INFORMATION FOR SEQ ID NO:80:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 327 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:	
TTTTTTTTT TTTACTCGGC TCAGTCTAAT CCTTTTTGTA GTCACTCATA GGCCAGACTT	60
AGGGCTAGGA TGATGATTAA TAAGAGGGAT GACATAACTA TTAGTGGCAG GTTAGTTGTT	120
TGTAGGGCTC ATGGTAGGGG TAAAAGGAGG GCAATTTCTA GATCAAATAA TAAGAAGGTA	180
ATAGCTACTA AGAAGAATTT TATGGAGAAA GGGACGCGGG CGGGGGATAT AGGGTCGAAG	240
CCGCACTCGT AAGGGGTGGA TITTTCTATG TAGCCGTTGA GTTGTGGTAG TCAAAATGTA	300
ATAATTATTA GTAGTAAGCC TAGGAGA	327
(2) INFORMATION FOR SEQ ID NO:81:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 318 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:	

TAGTCIATGC GGTTGATTCG GCAATCCATT ATTTGCTGGA TTTTGTCATG TGTTTTGCCA

ATTGCATTCA	TAATTTATTA	TGCATTTATG	CTTGTATCTC	CTAAGTCATG	GTATATAATC	120
CATGCTTTTT	ATGTTTTGTC	TGACATAAAC	TCTTATCAGA	GCCCTTTGCA	CACAGGGATT	180
CAATAAATAT	TAACACAGTC	TACATTTATT	TGGTGAATAT	TGCATATCTG	CTGTACTGAA	240
AGCACATTAA	GTAACAAAGG	CAAGTGAGAA	GAATGAAAAG	CACTACTCAC	AACAGTTATC	300
ATGATTGCGC	ATAGACTA					318

(2) INFORMATION FOR SEQ ID NO:82:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 338 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

TCTTCAACCT	CTACTCCCAC	TAATAGCTTT	TTGATGACTT	CTAGCAAGCC	TCGCTAACCT	60
CGCCTTACCC	CCCACTATTA	ACCTACTGGG	AGAACTCTCT	GTGCTAGTAA	CCACGTTCTC	120
CTGATCAAAT	ATCACTCTCC	TACTTACAGG	ACTCAACATA	CTAGTCACAG	CCCTATACTC	180
CCTCTACATA	TTTACCACAA	CACAATGGGG	CTCACTCACC	CACCACATTA	ACAACATAAA	240
ACCCTCATTC	ACACGAGAAA	ACACCCTCAT	GTTCATACAC	CTATCCCCCA	ттстсстсст	300
ATCCCTCAAC	CCCGACATCA	TTACCGGGTT	ттестетт			338

(2) INFORMATION FOR SEQ ID NO:83:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 111 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:	
AGCCATTTAC CACCCATCCA CAAAAAAAAA AAAAAAAAA	60
ATAGACTTIG AACAAAAAGG AACATTTGCT GGCCTGAGGA GGCATCACCC G	111
(2) INFORMATION FOR SEQ ID NO:84:	
(1) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 224 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:	
TCGGGTGATG CCTCCTCAGG CCAAGAAGAT AAAGCTTCAG ACCCCTAACA CATTTCCAAA	60
AAGGAAGAAA GGAGAAAAAA GGGCATCATC CCCGTTCCGA AGGGTCAGGG AGGAGGAAAT	120
TGAGGTGGAT TCACGAGTTG CGGACAACTC CTTTGATGCC AAGCGAGGTG CAGCCGGAGA	180
CTGGGGAGAG CGAGCCAATC AGGTTTTGAA GTTCCTCTCA GTGC	224
(2) INFORMATION FOR SEQ ID NO:85:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 348 base pairs	

(B) TYPF: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:	
GCACTGAGAG GAACTTCGTT GGAAACGGGT TTTTTTCATG TAAGGCTAGA CAGAAGAATT	60
CTCAGTAACT TCCTTGTGTT GTGTGTATTC AACTCACASA GTTGAACGAT CCTTTACACA	120
GAGCAGACTI GTAACACTCT TWTTGTGGAA TTTGCAAGTG GAGATTTCAG SCGCTTTGAA	180
GTSAAAGGTA GAAAAGGAAA TATCTTCCTA TAAAAACTAG ACAGAATGAT TCTCAGAAAC	240
TCCTTTGTGA TGTGTGCGTT CAACTCACAG AGTTTAACCT TTCWTTTCAT AGAAGCAGTT	300
AGGAAACACT CTGTTTGTAA AGTCTGCAAG TGGATAGAGA CCCTAACG	348
(2) INFORMATION FOR SEQ ID NO:86:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 293 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

GCACTGAGAG GAACTTCYTT GTGWTGTKTG YATTCAACTC ACAGAGTTGA ASSWTSMTTT 60 ACABAGWKCA GGCTTKCAAA CACTCTTTTT GTMGAATYTG CAAGWGGAKA TTTSRRCCRC 120 TTTGWGGYCW WYSKTMGAAW MGGRWATATC TTCWYATMRA AMCTAGACAG AAKSATTCTC 180

Ŋ

¥

AKAAWSTYYY YTGTGAWGWS TGCRTTCAAC TCACAGAGKT KAACMWTYCT KYTSATRGAG 240 CAGTTWKGAA ACTCTMTTTC TTTGGATTCT GCAAGTGGAT AGAGACCCTA ACG 293 (2) INFORMATION FOR SEQ ID NO:87: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87: 10 CTCCTAGGCT (2) INFORMATION FOR SEQ ID NO:88: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88: AGTAGTTGCC 10 (2) INFORMATION FOR SEQ ID NO:89: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

WO 97/25426 PCT/US97/00485

99

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:	
TTCCGTTATG C	11
(2) INFORMATION FOR SEQ ID NO:90:	
(1) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 10 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:	
TGGTAAAGGG	10
TGGTAAAGGG (2) INFORMATION FOR SEQ ID NO:91:	10
(2) INFORMATION FOR SEQ ID NO:91:	10
(2) INFORMATION FOR SEQ ID NO:91:	10
(2) INFORMATION FOR SEQ ID NO:91: (i) SEQUENCE CHARACTERISTICS:	10
(2) INFORMATION FOR SEQ ID NO:91: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs	10
(2) INFORMATION FOR SEQ ID NO:91: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid	10
(2) INFORMATION FOR SEQ ID NO:91: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	10
(2) INFORMATION FOR SEQ ID NO:91: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	10
(2) INFORMATION FOR SEQ ID NO:91: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	10

(i) SEQUENCE CHARACTERISTICS:

CACO CONTRACTOR CONTRACTOR

3

(A) LENGTH: 10 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

TACAACGAGG 10

- (2) INFORMATION FOR SEQ ID NO:93:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

TGGATTGGTC 10

- (2) INFORMATION FOR SEQ ID NO:94:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

CTTTCTACCC 10

WO 97/25426 PCT/US97/00485

101

(2) INFORMATION FOR SEQ ID NO:95:

(i) SEQUENCE CHARACTERISTICS:

(Λ) LENGTH: 10 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

TTTTGGCTCC 10

(2) INFORMATION FOR SEQ ID NO:96:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

GGAACCAATC 10

(2) INFORMATION FOR SEQ ID NO:97:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:97:

¥.

102

TCGATACAGG	10
(2) INFORMATION FOR SEQ ID NO:98:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 10 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:98:	
GGTACTAAGG	10
(2) INFORMATION FOR SEQ ID NO:99:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 10 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:	
AGTCTATGCG	10
(2) 1NFORMATION FOR SEQ ID NO:100:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 10 base pairs	

Ġ.

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

CTATCCATGG

10

- (2) INFORMATION FOR SEQ ID NO:101:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

TCTGTCCACA

10

- (2) INFORMATION FOR SEQ ID NO:102:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

AAGAGGGTAC

- (2) INFORMATION FOR SEQ ID NO:103:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 base pairs

	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:	
сттс	CMCCTC	10
(2)	INFORMATION FOR SEQ ID NO:104:	
	(i) SEQUENCE CHARACTERISTICS:	
	(Λ) LENGTH: 20 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:	
GCTC	CCTCTTG CCTTACCAAC	20
(2)	INFORMATION FOR SEQ ID NO:105:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:	
GT A 4	NGTCGAG CAGTGTGATG	20
(2)	INFORMATION FOR SEQ ID NO:106:	

S

を

Ĺ)

PCT/US97/00485

(+) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

GTAAGTCGAG CAGTCTGATG

20

(2) INFORMATION FOR SEQ ID NO:107:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

GACTTAGTGG AAAGAATGTA

20

(2) INFORMATION FOR SEQ ID NO:108:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

¥35

33

106

GTAATTCCGC CAACCGTAGT	20
(2) INFORMATION FOR SEQ ID NO:109:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:	
ATGGTTGATC GATAGTGGAA	20
(2) INFORMATION FOR SEQ ID NO:110:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
、 (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:	
ACGGGGACCC CTGCATTGAG	20
(2) INFORMATION FOR SEQ ID NO:111:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	

(C) STRANDEDNESS: single(D) TOPOLOGY: linear

糖

ď.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:	
TATTCTAGAC CATTCGCTAC	20
(2) INFORMATION FOR SEQ ID NO:112:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: Rinear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:112:	
ACATAACCAC TTTAGCGTTC	20
(2) INFORMATION FOR SEQ ID NO:113:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:	
(A)/ SEQUENCE DESCRIPTION. SEQ TO NOTITS:	
CGGGTGATGC CTCCTCAGGC	20
(2) INFORMATION FOR SEQ ID NO:114:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid

PCT/US97/00485

WO 97/25426

Ye.

"我的我们

3.0

5

で

r's

(C) STRANDEDNESS: single	
(U) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:	
AGCATGTTGA GCCCAGACAC	20
Additional descriptions	
(2) INFORMATION FOR SEQ ID NO:115:	
(2) THI ON ALL TO NO. 110.	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(8) 101 32341. Titled.	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:	
(XI) SEQUENCE DESCRIPTION. SEQ 15 NOTITE.	
GACACCTTGT CCAGCATCTG	20
·	
(2) INFORMATION FOR SEQ ID NO:116:	
(2) THE ONLY HOLD TON SEQ TO NO. 110.	
(i) SEQUENCE CHARACTERISTICS:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPF: nucleic acid	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPF: nucleic acid (C) STRANDEDNESS: single	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPF: nucleic acid	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPF: nucleic acid (C) STRANDEDNESS: single	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPF: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPF: nucleic acid (C) STRANDEDNESS: single	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPF: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:	20
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPF: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	20
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPF: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:	20

(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:	
CGTTAGGGTC TCTATCCACT	20
(2) INFORMATION FOR SEQ ID NO:118:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:	
AGACTGACTC ATGTCCCCTA	20
(2) INFORMATION FOR SEQ ID NO:119:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:	
TCATCGCTCG GTGACTCAAG	20

*

Section 1

15

(2) INFORMATION F	OR SEQ II	D NO:120:
(v) THE ORDER TOW 1	OK SEY II	D NO. 120.

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

CAAGATTCCA TAGGCTGACC

20

(2) INFORMATION FOR SEQ ID NO:121:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

ACGTACIGGT CTTGAAGGTC

20

(2) INFORMATION FOR SEQ ID NO:122:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

VSDOCID: <WO___9725426A3_IB>

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:	
GACGCTTGGC CACTTGACAC	20
(2) INFORMATION FOR SEQ ID NO:123:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:	
GTATCGACGT AGTGGTCTCC	20
(2) INFORMATION FOR SEQ ID NO:124:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:	
TAGTGACATT ACGACGCTGG	20
(2) INFORMATION FOR SEQ ID NO:125:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(3) K

15

-7

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:	
CGGGTGATGC CTCCTCAGGC	20
(2) INFORMATION FOR SEQ 1D NO:126:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 23 base pairs(B) TYPF: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:	
ATGGCTATTT TCGGGGGCTG ACA	23
(2) INFORMATION FOR SEQ 1D NO:127:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:	
CCGGTATCTC CTCGTGGGTA TT	22
(2) INFORMATION FOR SEQ ID NO:128:	

Ŋ

	(A) LENGTH: 18 base pairs	
•	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
•	(D) TOPOLOGY: linear	
-		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:	
	CTGCCTGAGC CACAAATG	18
	(2) INFORMATION FOR SEQ ID NO:129:	
	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 24 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:	
	CCGGAGGAGG AAGCTAGAGG AATA	24
	(2) INFORMATION FOR SEQ ID NO:130:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 14 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
•	(D) TOPOLOGY: linear	
٠	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:	
•	TTTTTTTTT TTAG	14
	CONTRACTOR	17

Υį

(2) INFORMATION FOR SEQ ID NO:131:	:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 amino acid (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	ids	
(xi) SEQUENCE DESCRIPTION: SEQ	Q ID NO:131:	
Ser Ser Gly Gly Arg Thr Phe A	Asp Asp Phe His Arg Tyr Leu Lei 10 15	u Val
Gly lle		
(2) INFORMATION FOR SEQ ID NO:132:		
(i) SEQUENCE CHARACTERISTICS:		
(A) LENGTH: 22 amino acid		
(B) TYPE: amino acid		
(C) STRANDEDNESS: single	!	
(D) TOPOLOGY: linear		
(xi) SEQUENCE DESCRIPTION: SEQ	ID NO:132:	
Gln Gly Ala Ala Gln Lys Pro I	le Asn Leu Ser Lys Xaa Ile Glu	val
1 5	10 15	
Val Gln Gly His Asp Glu 20		

(2) INFORMATION FOR SEQ ID NO:133:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 23 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

Ser Pro Gly Val Phe Leu Glu His Leu Gln Glu Ala Tyr Arg Ile Tyr

1

5

10

15

Thr Pro Phe Asp Leu Ser Ala

20

(2) INFORMATION FOR SEQ ID NO:134:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:134:

Tyr Leu Leu Val Gly Ile Gln Gly Ala

1

5

(2) INFORMATION FOR SEQ ID NO:135:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:135:

Gly Ala Ala Gln Lys Pro Ile Asn Leu 5

(2) INFORMATION FOR SEQ ID NO:136:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

Asn Leu Ser Lys Xaa Ile Glu Val Val

5

(2) INFORMATION FOR SEQ ID NO:137:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

Glu Val Val Gln Gly His Asp Glu Ser

5

(2) INFORMATION FOR SEQ ID NO:138:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPF: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

His Leu Gln Glu Ala Tyr Arg Ile Tyr

(2) INFORMATION FOR SEQ ID NO:139:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

Asn Leu Ala Phe Val Ala Gln Ala Ala

1

(2) INFORMATION FOR SEQ ID NO:140:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

Phe Val Ala Gln Ala Ala Pro Asp Ser

(2) INFORMATION FOR SEQ ID NO:141:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9388 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

GCTCGCGGCC GCGAGCTCAA TTAACCCTCA CTAAAGGGAG TCGACTCGAT CAGACTGTTA 60 CTGTGTCTAT GTAGAAAGAA GTAGACATAA GAGATTCCAT TTTGTTCTGT ACTAAGAAAA 120 ATTCTTCTGC CTTGAGATGC TGTTAATCTG TAACCCTAGC CCCAACCCTG TGCTCACAGA 180 GACATGTGCT GTGTTGACTC AAGGTTCAA1 GGATTTAGGG CTATGCTTTG TTAAAAAAGT 240 GCTTGAAGAT AATATGCTTG TTAAAAGTCA TCACCATTCT CTAATCTCAA GTACCCAGGG 300 ACACAATACA CTGCGGAAGG CCGCAGGGAC CTCTGTCTAG GAAAGCCAGG TATTGTCCAA 360 GATTTCTCCC CATGTGATAG CCTGAGATAT GGCCTCATGG GAAGGGTAAG ACCTGACTGT 420 CCCCCAGCCC GACATCCCCC AGCCCGACAT CCCCCAGCCC GACACCCGAA AAGGGTCTGT 480 GCTGAGGAGG ATTAGTAAAA GAGGAAGGCC TCTTTGCAGT TGAGGTAAGA GGAAGGCATC 540 TGTCTCCTGC TCGTCCCTGG GCAATAGAAT GTCTTGGTGT AAAACCCGAT TGTATGTTCT 600

¥.

ø

ACTTACTGAG	ATAGGAGAAA	ACATCCTTAG	GGCTGGAGGT	GAGACACGCT	GGCGGCAATA	660
CTGCTCTTTA	ATGCACCGAG	ATGTTTGTAT	AAGTGCACAT	CAAGGCACAG	CACCTTTCCT	720
TAAACTTATT	TATGACACAG	AGACCTTTGT	TCACGTTTTC	CTGCTGACCC	TCTCCCCACT	780
ATTACCCTAT	TGGCCTGCCA	CATCCCCCTC	TCCGAGATGG	TAGAGATAAT	GATCAATAAA	840
TACTGAGGGA	ACTCAGAGAC	CAGTGTCCCT	GTAGGTCCTC	CGTGTGCTGA	GCGCCGGTCC	900
CTTGGGCTCA	стттстттс	TCTATACTTT	GTCTCTGTGT	стстттсттт	TCTCAGTCTC	960
TCGTTCCACC	TGACGAGAAA	TACCCACAGG	TGTGGAGGGG	CAGGCCACCC	CTTCAATAAT	1020
TTACTAGCCT	GTTCGCTGAC	AACAAGACTG	GTGGTGCAGA	AGGTTGGGTC	TTGGTGTTCA	1080
CCGGGTGGCA	GGCATGGGCC	AGGTGGGAGG	GTCTCCAGCG	CCTGGTGCAA	ATCTCCAAGA	1140
AAGTGCAGGA	AACAGCACCA	AGGGTGATTG	TAAATTTTGA	TTTGGCGCGG	CAGGTAGCCA	1200
TTCCAGCGCA	AAAATGCGCA	GGAAAGCTTT	TGCTGTGCTT	GTAGGCAGGT	AGGCCCCAAG	1260
CACTTCTTAT	TGGCTAATGT	GGAGGGAACC	TGCACATCCA	TTGGCTGAAA	TCTCCGTCTA	1320
TTTGAGGCTG	ACTGAGCGCG	ттсстттстт	стататтасс	TGGAAACGGA	стстстссст	1380
AGTAACATCT	GATCACGTTT	CCCATTGGCC	GCCGTTTCCG	GAAGCCCGCC	CTCCCATTTC	1440
CGGAAGCCTG	GCGCAAGGTT	GGTCTGCAGG	TGGCCTCCAG	GTGCAAAGTG	GGAAGTGTGA	1500
GTCCTCAGTC	TTGGGCTATT	CGGCCACGTG	CCTGCCGGAC	ATGGGACGCT	GGAGGGTCAG	1560
CAGCGTGGAG	TECTGGEETT	TTGCGTCCAC	GGGTGGGAAA	TTGGCCATTG	CCACGGCGGG	1620
AACTGGGACT	CAGGCTGCCC	CCCGGCCGTT	TCTCATCCGT	CCACCGGACT	CGTGGGCGCT	1680

1

,

CGCACTGGCG	CTGATGTAGT	TTCCTGACCT	CTGACCCGTA	TTGTCTCCAG	ATTAAAGGTA	1740
AAAACGGGGC	TTTTTCAGCC	CACTCGGGTA	AAACGCCTTT	TGATTTCTAG	GCAGGTGTTT	1800
TGTTGCACGC	CTGGGAGGGA	GTGACCCGCA	GGTTGAGGTT	TATTAAAATA	CATTCCTGGT	1860
TTATGTTATG	TTTATAATAA	AGCACCCCAA	CCTTTACAAA	ATCTCACTTT	TTGCCAGTTG	1920
TATTATTTAG	TGGACTGTCT	CTGATAAGGA	CAGCCAGTTA	AAATGGAATT	TTGTTGTTGC	1980
TAATTAAACC	AATTTTTAGT	TTTGGTGTTT	GTCCTAATAG	CAACAACTTC	TCAGGCTTTA	2040
TAAAACCATA	TTTCTTGGGG	GAAATTTCTG	TGTAAGGCAC	AGCGAGTTAG	TTTGGAATTG	2100
TTTTAAAGGA	AGTAAGTTCC	TGGTTTTGAT	ATCTTAGTAG	TGTAATGCCC	AACCTGGTTT	2160
TTACTAACCC	TGTTTTTAGA	стстсссттт	CCTTAAATCA	CCTAGCCTTG	TTTCCACCTG	2220
AATTGACTCT	CCCTTAGCTA	AGAGCGCCAG	ATGGACTCCA	TCTTGGCTCT	TTCACTGGCA	2280
GCCCCTTCCT	CAAGGACTTA	ACTTGTGCAA	GCTGACTCCC	AGCACATCCA	AGAATGCAAT	2340
TAACTGTTAA	GATACTGTGG	CAAGCTATAT	CCGCAGTTCC	GAGGAATTCA	TCCGATTGAT	2400
TATGCCCAAA	AGCCCCGCGT	CTATCACCTT	GTAATAATCT	TAAAGCCCCT	GCACCTGGAA	2460
CTATTAACTT	TCCTGTAACC	ATTTATCCTT	TTAACTTTTT	TGCTTACTTT	ATTTCTGTAA	2520
AATTGTTTTA	ACTAGACCTC	CCCTCCCCTT	TCTAAACCAA	AGTATAAAAG	AAGATCTAGC	2580
CCCTTCTTCA	GAGCGGAGAG	AATTTTGAGC	ATTAGCCATC	TCTTGGCGGC	CAGCTAAATA	2640
AATGGACTTT	TAATTTGTCT	CAAAGTGTGG	ССТТТТСТСТ	AACTCGCTCA	GGTACGACAT	2700
TTGGAGGCCC	CAGCGAGAAA	CGTCACCGGG	AGAAACGTCA	CCGGGCGAGA	GCCGGGCCCG	2760

٠,

*

1.00

CTGTGTGCTC CCCCGGAAGG ACAGCCAGCT TGTAGGGGGG AGTGCCACCT GAAAAAAAAA	2820
TTTCCAGGTC CCCAAAGGGT GACCGTCTTC CGGAGGACAG CGGATCGACT ACCATGCGGG	2880
TGCCCACCAA AATTCCACCT CTGAGTCCTC AACTGCTGAC CCCGGGGTCA GGTAGGTCAG	2940
ATTIGACTIT GGTTCTGGCA GAGGGAAGCG ACCCTGATGA GGGTGTCCCT CTTTTGACTC	3000
TGCCCATTTC TCTAGGATGC TAGAGGGTAG AGCCCTGGTT TTCTGTTAGA CGCCTCTGTG	3060
TCTCTGTCTG GGAGGGAAGT GGCCCTGACA GGGGCCATCC CTTGAGTCAG TCCACATCCC	3120
AGGATGCTGG GGGACTGAGT CCTGGTTTCT GGCAGACTGG TCTCTCTCT TCTCTTTT1C	3180
TATCTCTAAT CTTTCCTTGT TCAGGTTTCT TGGAGAATCT CTGGGAAAGA AAAAAGAAAA	3240
ACTGTTATAA ACTCTGTGTG AATGGTGAAT GAATGGGGGA GGACAAGGGC TTGCGCTTGT	3300
CCTCCAGTTT GTAGCTCCAC GGCGAAAGCT ACGGAGTTCA AGTGGGCCCT CACCTGCGGT	3360
TCCGTGGCGA CCTCATAAGG CTTAAGGCAG CATCCGGCAT AGCTCGATCC GAGCCGGGGG	3420
TTTATACCGG CCTGTCAATG CTAAGAGGAG CCCAAGTCCC CTAAGGGGGA GCGGCCAGGC	3480
GGGCATCTGA CTGATCCCAT CACGGGACCC CCTCCCCTTG TTTGTCTAAA AAAAAAAAAA	3540
GAAGAAACTG TCATAACTGT TTACATGCCC TAGGGTCAAC TGTTTGTTTT ATGTTTATTG	3600
TICTGTTCGG TGTCTATTGT CTTGTTTAGT GGTTGTCAAG GTTTTGCATG TCAGGACGTC	3660
GATATTGCCC AAGACGTCTG GGTAAGAACT TCTGCAAGGT CCTTAGTGCT GATTTTTTGT	3720
CACAGGAGGT TAAATTTCTC ATCAATCATT TAGGCTGGCC ACCACAGTCC TGTCTTTTCT	3780
GCCAGAAGCA AGTCAGGTGT TGTTACGGGA ATGAGTGTAA AAAAACATTC GCCTGATTGG	3840

23 :

ACCOUNT.

37

Section.

تؤنة

GATTTCTGGC	ACCATGATGG	TTGTATTTAG	S ATTGTCATAC	CCCACATCCA	GGTTGATTGG	3900
ACCTCCTCTA	AACTAAACTG	GTGGTGGGTT	CAAAACAGCC	ACCCTGCAGA	TTTCCTTGCT	3960
CACCTCTTIG	GTCATTCTGT	AACTTTTCCT	GTGCCCTTAA	. ATAGCACACT	GTGTAGGGAA	4020
ACCTACCCTC	GTACTGCTTT	ACTTCGTTTA	GATTCTTACT	статтсстст	GTGGCTACTC	4080
ICCCATCTTA	AAAACGATCC	AAGTGGTCCT	тттсстсстс	сствссссст	ACCCCACACA	4140
TCTCGTTTTC	CAGTGCGACA	GCAAGTTCAG	CGTCTCCAGG	ACTTGGCTCT	GCTCTCACTC	4200
CTTGAACCCT	TAAAAGAAAA	AGCTGGGTTT	GAGCTATTTG	CCTTTGAGTC	ATGGAGACAC	4260
AAAAGGTATT	TAGGGTACAG	ATCTAGAAGA	AGAGAGAGAA	CACCTAGATC	CAACTGACCC	4320
AGGAGATCTC	GGGCTGGCCT	CTAGTCCTCC	TCCCTCAATC	TTAAAGCTAC	AGTGATGTGG	4380
CAAGTGGTAT	TTAGCTGTTG	TGGTTTTTCT	GCTCTTTCTG	GICATGTTGA	TTCTGTTCT1	4440
TCGATACTCC	AGCCCCCCAG	GGAGTGAGTT	тстстстстс	TGCTGGGTTT	GATATCTATG	4500
TICAAATCTT	ATTAAATTGC	CTTCAAAAAA	AAAAAAAAA	GGGAAACACT	TCCTCCCAGC	4560
CTTGTAAGGG	TTGGAGCCCT	CTCCAGTATA	TGCTGCAGAA	ттттстстс	GGTTTCTCAG	4620
AGGATTATGG	AGTCCGCCTT	AAAAAAGGCA	AGCTCTGGAC	ACTCTGCAAA	GTAGAATGGC	4680
CAAAGTTTGG	AGTTGAGTGG	CCCCTTGAAG	GGTCACTGAA	CCTCACAATT	GTTCAAGCTG	4740
TGTGGCGGGT	TGTTACTGAA	ACTCCCGGCC	TCCCTGATCA	GTTTCCCTAC	ATTGATCAAT	4800
GGCTGAGTTT	GGTCAGGAGC	ACCCCTTCCA	TGGCTCCACT	CATGCACCAT	TCATAATTTT	4860
ACCTCCAAGG	TCCTCCTGAG	CCAGACCGTG	TTTTCGCCTC	GACCCTCAGC	CGGTTCAGCT	4920

CGCCCTGTAC TGCCTCTCTC TGAAGAAGAG GAGAGTCTCC CTCACCCAGT CCCACCGCCT 4980 TAAAACCAGC CTACTCCCTT AGGGTCATCC CATGTCTCCT CGGCTATGTC CCCTGTAGGC 5040 TCATCACCCA TIGCCTCTTG GTTGCAACCG TGGTGGGAGG AAGTAGCCCC TCTACTACCA 5100 CTGAGAGAGG CACAAGTCCC TCTGGGTGAT GAGTGCTCCA CCCCCTTCCT GGTTTATGTC 5160 CCTTCTTTCT ACTTCTGACT TGTATAATIG GAAAACCCAT AATCCTCCCT TCTCTGAAAA 5220 GCCCCAGGCT TIGACCTCAC TGATGGAGTC TGTACTCTGG ACACATTGGC CCACCTGGGA 5280 TGACTGTCAA CAGCTCCTTT TGACCCTTTT CACCTCTGAA GAGAGGGAAA GTATCCAAAG 5340 AGAGGCCAAA AAGTACAACC TCACATCAAC CAATAGGCCG GAGGAGGAAG CTAGAGGAAT 5400 AGTGATTAGA GACCCAATTG GGACCTAATT GGGACCCAAA TTTCTCAAGT GGAGGGAGAA 5460 CTTTTGACGA TTTCCACCGG TATCTCCTCG TGGGTATTCA GGGAGCTGCT CAGAAACCTA 5520 TAAACTTGTC TAAGGCGACT GAAGTCGTCC AGGGGCATGA TGAGTCACCA GGAGTGTTTT 5580 TAGAGCACCT CCAGGAGGCT TATCGGATTT ACACCCCTTT TGACCTGGCA GCCCCCGAAA 5640 ATAGCCATGC TCTTAATTTG GCATTTGTGG CTCAGGCAGC CCCAGATAGT AAAAGGAAAC 5700 TCCAAAAACT AGAGGGATTT TGCTGGAATG AATACCAGTC AGCTTTTAGA GATAGCCTAA 5760 AAGGTTTTTG ACAGTCAAGA GGTTGAAAAA CAAAAACAAG CAGCTCAGGC AGCTGAAAAA 5820 AGCCACTGAT AAAGCATCCT GGAGTATCAG AGTTTACTGT TAGATCAGCC TCATTTGACT 5880 TCCCCTCCCA CATGGTGTTT AAATCCAGCT ACACTACTTC CTGACTCAAA CTCCACTATT 5940 CCTGTTCATG ACTGTCAGGA ACTGTTGGAA ACTACTGAAA CTGGCCGACC TGATCTTCAA 6000

ě

AATGTGCCCC	TAGGAAAGG1	GGATGCCACC	GTGTTCACAG	ACAGTAGCAG	CTTCCTCGAG	6060
AAGGGACTAC	GAAAGGCCGG	TGCAGCTGTT	ACCATGGAGA	CAGATGTGTT	GTGGGCTCAG	6120
GCTTTACCAG	CAAACACCTC	AGCACAAAAG	GCTGAATTGA	TCGCCCTCAC	TCAGGCTCTC	6180
CGA1GGGGTA	AGGATATTAA	CGTTAACACT	GACAGCAGGT	ACGCCTTTGC	TACTGTGCAT	6240
GTACGTGGAG	CCATCTACCA	GGAGCGTGGG	CTACTCACCT	CAGCAGGTGG	CTGTAATCCA	6300
CTGTAAAGGA	CATCAAAAGG	AMMCACGGC	TGTTGCCCGT	GGTAACCAGA	AAGCTGATTC	6360
AGCAGCTCAA	GATGCAGTGT	GACTTTCAGT	CACGCCTCTA	AACTTGCTGC	CCACAGTCTC	6420
CTTTCCACAG	CCAGATCTGC	CTGACAATCC	CGCATACTCA	ACAGAAGAAG	AAAACTGGCC	6480
TCAGAACTCA	GAGCCAATAA	AAATCAGGAA	GGTTGGTGGA	TTCTTCCTGA	CTCTAGAATC	6540
TTCATACCCC	GAACTCTTGG	GAAAACTTTA	ATCAGTCACC	TACAGTCTAC	CACCCATTTA	6600
GGAGGAGCAA	AGCTACCTCA	GCTCCTCCGG	AGCCGTTTTA	AGATCCCCCA	TCTTCAAAGC	6660
CTAACAGATC	AAGCAGCTCT	CCGGTGCACA	ACCTGCGCCC	AGGTAAATGC	CAAAAAAGGT	6720
CCTAAACCCA	GCCCAGGCCA	CCGTCTCCAA	GAAAACTCAC	CAGGAGAAAA	GTGGGAAATT	6780
GACTTTACAG	AAGTAAAACC	ACACCGGGCT	GGGTACAAAT	ACCTTCTAGT	ACTGGTAGAC	6840
ACCTTCTCTG	GATGGACTGA	AGCATTTGCT	ACCAAAAACG	AAACTGTCAA	TATGGTAGTT	6900
AAGTTTTTAC	TCAATGAAAT	CATCCCTCGA	CGTGGGCTGC	CTGTTGCCAT	AGGGTCTGAT	6960
AATGGACCGG	CCTTCGCCTT	GTCTATAGTT	TAGTCAGTCA	GTAAGGCGTT	AAACATTCAA	7020
TGGAAGCTCC	ATTGTGCCTA	TCGACCCCAG	AGCTCTGGGC	AAGTAGAACG	CATGAACTGC	7080

C)

《新聞歌歌》

ACCCTAAAAA	A ACACTCTTAC	CAAAATTAATO	C TTAGAAACC	G GTGTAAATT(G TGTAAGTCTC	7140
CTTCCTTTAG	G CCCTACTTAG	S AGTAAGGTG0	C ACCCCTTACT	GGGCTGGGT	T CTTACCTTTT	7200
GAAATCATGT	ATGGGAGGG	GCTGCCTATO	C TTGCCTAAGO	CTAAGAGATGO	CCAATTGGCA	7260
AAAATATCAC	AAACTAATTT	ATTACAGTAC	CTACAGTCTC	CCCAACAGG	T ACAAGATATC	7320
ATCCTGCCAC	TTGTTCGAGG	AACCCATCCC	CAATCCAATTC	CTGAACAGAC	AGGGCCCTGC	7380
CATTCATTCC	CGCCAGGTGA	CCTGTTGTTT	GTTAAAAAGT	TCCAGAGAGA	AGGACTCCCT	7440
CCTGCTTGGA	AGAGACCTCA	CACCGTCATC	ACGATGCCAA	CGGCTCTGAA	GGTGGATGGC	7500
ATTCCTGCGT	GGATTCATCA	CTCCCGCATC	AAAAAGGCCA	ACGGAGCCCA	ACTAGAAACA	7560
TGGGTCCCCA	GGGCTGGGTC	AGGCCCCTTA	AAACTGCACC	TAAGTTGGGT	GAAGCCATTA	7620
GATTAATICT	TTTTCTTAAT	TTTGTAAAAC	AATGCATAGC	TTCTGTCAAA	CTTATGTATC	7680
TTAAGACTCA	ATATAACCCC	CTTGTTATAA	CTGAGGAATC	AATGATTTGA	TTCCCCAAAA	7740
ACACAAGTGG	GGAATGTAGT	GTCCAACCTG	GTTTTTACTA	ACCCTGTTTT	TAGACTCTCC	7800
CTTTCCTTTA	ATCACTCAGC	CTTGTTTCCA	CCTGAATTGA	CTCTCCCTTA	GCTAAGAGCG	7860
CCAGATGGAC	TCCATCTTGG	CTCTTTCACT	GGCAGCCGCT	TCCTCAAGGA	CTTAACTTGT	7920
GCAAGCTGAC	TCCCAGCACA	TCCAAGAATG	CAATTAACTG	ATAAGATACT	GTGGCAAGCT	7980
ATATCCGCAG	TTCCCAGGAA	TTCGTCCAAT	TGATTACACC	CAAAAGCCCC	GCGTCTATCA	8040
CCTTGTAATA	ATCTTAAAGC	CCCTGCACCT	GGAACTATTA	ACGTTCCTGT	AACCATTTAT	8100
CCTTTTAACT	TTTTTGCCTA	CTTTATTTCT	GTAAAATTGT	TTTAACTAGA	CCCCCCCTCT	8160

· 大型 | 1

5000

ķ.

CCTTTCTAAA	\ CCAAAGTATA	AAAGCAAAT(TAGCCCCTTC	TTCAGGCCG/	A GAGAATTTCG	8220
AGCGTTAGCC	C GTCTCTTGGC	CACCAGCTAA	A · ATAAACGGA1	TCTTCATGTO	G TCTCAAAGTG	8280
TGGCGTTTTC	CTCTAACTCGC	TCAGGTACGA	CCGTGGTAG1	ATTTTCCCCA	A ACGTCTTATT	8340
TTTAGGGCAC	GTATGTAGAG	TAACTTTAT	GAAAGAAACC	AGTTAAGGAC	G GTTTTGGGAT	8400
TTCCTTTATC	AACTGTAATA	CTGGTTTTGA	TTATTTATTT	ATTTATTTA	TTTTTTTGAG	8460
AAGGAGTTTC	ACTCTTGTTG	CCCAGGCTGG	AGTGCAATGG	TGCGATCTTG	GCTCACTGCA	8520
ACTTCCGCCT	CCCAGGTTCA	AGCGATTCTC	CTGCCTCAGC	CTCGAGAGTA	GCTGGGATTA	8580
TAGGCATGCG	CCACCACACC	CAGCTAATTT	TGTATTTTTA	GTAAAGATGG	GGTTTCTTCA	8640
TGTTGGTCAA	GCTGGTCTGG	AACTCCCCGC	CTCGGGTGAT	СТСССССССТ	CGGCCTCCGA	8700
AAGTGCTGGG	ATTACAGGTG	TGATCCACCA	CACCCAGCCG	ATTTATATGT	ATATAAATCA	8760
CATTCCTCTA	ACCAAAATGT	AGTGTTTCCT	TCCATCTTGA	ATATAGGCTG	TAGACCCCGT	8820
GGGTATGGGA	CATTGTTAAC	AGTGAGACCA	CAGCAGTTTT	TATGTCATCT	GACAGCATCT	8880
CCAAATAGCC	TTCATGGTTG	TCACTGCTTC	CCAAGACAAT	TCCAAATAAC	ACTTCCCAGT	8940
GATGACTTGC	TACTTGCTAT	TGTTACTTAA	TGTGTTAAGG	TGGCTGTTAC	AGACACTATI	9000
AGTATGTCAG	GAATTACACC	AAAATTTAGT	GGCTCAAACA	ATCATTITAT	TATGTATGTG	9060
GATTCTCATG	GTCAGGTCAG	GATTTCAGAC	AGGGCACAAG	GGTAGCCCAC	ттстстстст	9120
CTATGATGTC	TGGCCTCAGC	ACAGGAGACT	CAACAGCTGG	GGTCTGGGAC	CATTTGGAGG	9180
CTTGTTCCCT	CACATCTGAT	ACCTGGCTTG	GGATGTTGGA	AGAGGGGGTG	AGCTGAGACT	9240

SEE STREET

GAGTGCCTAT ATGTAGTGTT TCCATATGGC CTTGACTTCC TTACAGCCTG GCAGCCTCAG	9300
GGTAGTCAGA ATTCTTAGGA GGCACAGGGC TCCAGGGCAG ATGCTGAGGG GTCTTTTATG	9360
AGGTAGCACA GCAAATCCAC CCAGGATC	9388
(2) INFORMATION FOR SEQ ID NO:142:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 419 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:	
TGTAAGTCGA GCAGTGTGAT GGAAGGAATG GTCTTTGGAG AGAGCATATC CATCTCCTCC	60
TCACTGCCTC CTAATGTCAT GAGGTACACT GAGCAGAATT AAACAGGGTA GTCTTAACCA	120
CACTATTTT AGCTACCTTG TCAAGCTAAT GGTTAAAGAA CACTTTTGGT TTACACTTGT	180
TGGGTCATAG AAGTTGCTTT CCGCCATCAC GCAATAAGTT TGTGTGTAAT CAGAAGGAGT	240
TACCTTATGG TITCAGTGTC ATTCTTTAGT TAACTTGGGA GCTGTGTAAT TTAGGCTTTG	300
CGTATTATTT CACTICIGTT CTCCACTTAT GAAGTGATTG TGTGTTCGCG TGTGTGTGCG	360
TGCGCATGTG CTTCCGGCAG TTAACATAAG CAAATACCCA ACATCACACT GCTCGACTT	419
(2) INFORMATION FOR SEQ ID NO:143:	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 402 base pairs
 - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:	
TGTAAGTCGA GCAGTGTGAT GTCCACTGCA GTGTGTTGCT GGGAACAGTT AATGAGCAAA	60
TTGTATACAA TGGCTAGTAC ATTGACCGGG ATTTGTTGAA GCTGGTGAGT GTTATGACTT	120
AGCCTGTTAG ACTAGTCTAT GCACATGGCT CTGGTCAACT ACCGCTCTCT CATTTCTCCA	180
GATAAATCCC CCATGCTTTA TATTCTCTTC CAAACATACT ATCCTCATCA CCACATAGTT	240
CCTTTGTTAA TGCTTTGTTC TAGACTTTCC CTTTTCTGTT TTCTTATTCA AACCTATATC	300
TCTTTGCATA GATTGTAAAT TCAAATGCCC TCAGGGTGCA GGCAGTTCAT GTAAGGGAGG	360
GAGGCTAGCC AGTGAGATCT GCATCACACT GCTCGACTTA CA	402
(2) INFORMATION FOR SEQ 1D NO:144:	
(1) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 224 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:144:	
TCGGGTGATG CCTCCTCAGG CCAAGAAGAT AAAGCTTCAG ACCCCTAACA CATTTCCAAA	60
AAGGAAGAAA GGAGAAAAAA GGGCATCATC CCCGTTCCGA AGGGTCAGGG AGGAGGAAAT	120
TUACOTOCAT TRACCACTTC COCACAACTC CITTCATCCC AAGCGAGGTG CAGCCGAGAA	180

ć

CTGGGGAGAG CGAGCCAATC AGGTTTTGAA GTTCCTCTCA GTGC	224
(2) INFORMATION FOR SEQ ID NO:145:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 111 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:	
AGCCATTTAC CACCCATCCA CAAAAAAAAA AAAAAAAAA	60
ATAGACTTTG AACAAAAAGG AACATTTGCT GGCCTGAGGA GGCATCACCC G	111
(2) INFORMATION FOR SEQ ID NO:146:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 585 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:	
TAGCATGTTG AGCCCAGACA CTTGTAGAGA GAGGAGGACA GTTAGAAGAA GAAGAAAAGT	60
TTTTAAATGC TGAAAGTTAC TATAAGAAAG CTTTGGCTTT GGATGAGACT TTTAAAGATG	120
CAGAGGATGC TTTGCAGAAA CTTCATAAAT ATATGCAGGT GATTCCTTAT TTCCTCCTAG	180
AAATTTAGTG ATATTTGAAA TAATGCCCAA ACTTAATTTT CTCCTGAGGA AAACTATTCT	240

ACATTACTTA	AGTAAGGCAT	TATGAAAAGT	TICTTTTTAG	GTATAGTTTT	TCCTAATTGG	300
GTTTGACATT	GCTTCATAGT	GCCTCTGTTT	TTGTCCATAA	TCGAAAGTAA	AGATAGCTGT	360
GAGAAAACTA	TTACCTAAAT	TTGGTATGTT	GTTTTGAGAA	ATGTCCTTAT	AGGGAGCTCA	420
CCTGGTGGTT	TATTAAATTAT	TGTTGCTACT	ATAATTGAGC	TAATTATAAA	AACCTTTTTG	480
AGACATATTT	TAAATTGTCT	TTTCCTGTAA	TACTGATGAT	GATGTTTTCT	CATGCATTTT	540
CTTCTGAATT	GGGACCATIG	CTGCTGTGTC	TGGGCTCACA	TGCTA		585

(2) INFORMATION FOR SEQ ID NO:147:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 579 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

60	TGCCGAGCCC	CGGCAGCTCC	GGGGTGGCCA	CTGGGCAGCG	AGCCCAGACA	TAGCATGTTG
120	GGGTCAATGT	GGCTAGGGAG	TCACCTGCCA	GACCCTGACG	GTCTGTGAAG	AAGCGTGTTT
180	CTTGGTTTGC	CCAGGTGCAA	TGTGCAGAAG	TTCGCAGGAG	TTCACCGACT	GGAGTGAATG
240	CAACTGTCAT	AATAAAGCAT	CTGCTTTCCA	GATATGCACA	CACCCCTCAA	TTGTGTTCAT
300	CTCAGACACC	TCCCCATCCA	AGCAGGCAGG	TTCTCCAACC	GGAAGACTTT	CTCCAGATGG
360	CACGGTGATG	TCTGCTGGTA	TCCTCCACCT	CAGCACCACG	CCTTCTCGGG	AGCACGTCCA

ATGTCAGCAA	AGCCGTTCTG	CANGACCAGC	TGCCCCGTGT	GCTGTGCCAT	CTCACTGGCC	420
TCCACCGCGT	ACACCGCTCT	AGGCCGCGCA	TANTGTGCAC	AGAANAAATG	ATGATCCAGT	480
CCCACAGCCC	ACGTCCAAGA	NGACTTTATC	CGTCAGGGAT	TCTTTATTCT	GCAGGATGAC	540
CTGTGGTATT	AATTGTTCGT	GTCTGGGCTC	AACATGCTA			579

(2) INFORMATION FOR SEQ ID NO:148:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 249 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

TGACACCTTG	TCCAGCATCT	GCAAGCCAGG .	AAGAGAGTCC	TCACCAAGAT	CCCCACCCCG	60
TTGGCACCAG	GATCTTGGAC	TTCCAATCTC	CAGAACTGTG	AGAAATAAGT	ATTTGTCGCT	120
AAATAAATCT	TIGTGGTTTC	AGATATTTAG	CTATAGCAGA	TCAGGCTGAC	TAAGAGAAAC	180
CCCATAAGAG	TTACATACTC	ATTAATCTCC	GTCTCTATCC	CCAGGTCTCA	GATGCTGGAC	240
AAGGTGTCA						249

(2) INFORMATION FOR SEQ ID NO:149:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 255 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

318

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:	
TGACACCTTG TCCAGCATCT GCTATTTTGT GACTTTTTAA TAATAGCCAT TCTGACTGGT	60
GTGAGATGGT AACTCATTGT GGGTTTGGTC TGCATTTCTC TAATGATCAG TGATATTAAG	120
CTTTTTTTAA ATAIGCTTGT TGACCACATG TATATCATCT TTTGAGAAGT GTCTGTTCA1	180
ATCCTITGCC CACTITITAA TITITTTATC TIGTAAATTT GTTTAATTTC CTTACAGATG	240
CTGGACAAGG TGTCA	255
(2) INFORMATION FOR SEQ ID NO:150:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 318 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:	
TTACGCTGCA ACACTGTGGA GGCCAAGCTG GGATCACTTC TTCATTCTAA CTGGAGAGGA	60
GGGAAGTTCA AGTCCAGCAG AGGGTGGGTG GGTAGACAGT GGCACTCAGA AATGTCAGCT	120
GGACCCCTGT CCCCGCATAG GCAGGACAGC AAGGCTGTGG CTCTCCAGGG CCAGCTGAAG	180
ANCAGGACAC TGTCTCCGCT GCCACAAAGC GTCAGAGACT CCCATCTTTG AAGCACGGCC	240

TTCTTGGTCT TCCTGCACTT CCCTGTTCTG TTAGAGACCT GGTTATAGAC AAGGCTTCTC

CACAGTGTTG CAGCGTAA

	(2) INFORMATION FOR SEQ ID NO:151:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 323 base pairs	
-	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:	
	TNACGCNGCN ACNNTGTAGA GANGGNAAGG CNTTCCCCAC ATTNCCCCTT CATNANAGAA	60
	TTATTCNACC AAGNNTGACC NATGCCNTTT ATGACTTACA TGCNNACTNC NTAATCTGTN	120
	TCNNGCCTTA AAAGCNNNTC CACTACATGC NTCANCACTG TNTGTGTNAC NTCATNAACT	180
	GTCNGNAATA GGGGCNCATA ACTACAGAAA TGCANTTCAT ACTGCTTCCA NTGCCATCNG	240
	CGTGTGGCCT TNCCTACTCT TCTTNTATTC CAAGTAGCAT CTCTGGANTG CTTCCCCACT	300
	CTCCACATTG TTGCAGCNAT AAT	323
	(2) INFORMATION FOR SEQ ID NO:152:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 311 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:	

TCAAGATTCC ATAGGCTGAC CAGTCCAAGG AGAGTTGAAA TCATGAAGGA GAGTCTATCT

GGAGAGAGCT	GTAGTTTTGA	GGGTTGCAAA	GACTTAGGAT	GGAGTTGGTG	GGTGTGGTTA	120
GTCTC l'AAGG	TTGATTTTGT	TCATAAATTT	CATGCCCTGA	ATGCCTTGCT	TGCCTCACCC	180
TGGTCCAAGC	CTTAGTGAAC	ACCTAAAAGT	СТСТСТСТТС	TTGCTCTCCA	AACTTCTCCT	240
GAGGATTTCC	TCAGATTGTC	TACATTCAGA	TCGAAGCCAG	TIGGCAAACA	AGATGCAGTC	300
CAGAGGGTCA (C					311

(2) INFORMATION FOR SEQ ID NO:153:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 332 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ 1D NO:153:

CAAGATTCCA	TAGGCTGACC	AGGAGGCTAT	TCAAGATCTC	TGGCAGTTGA	GGAAGTCTCT	60
TTAAGAAAAT	AGTT AAACA	ATTTGTTAAA	ATTTTTCTGT	CTTACTTCAT	TTCTGTAGCA	120
GTTGATATCT	GGCTGTCCTT	TTTATAATGC	AGAGTGGGAA	CTTTCCCTAC	CATGTTTGAT	180
AAATGTTGTC	CAGGCTCCAT	TGCCAATAAT	GTGTTGTCCA	AAATGCCTGT	TTAGTTTTTA	240
AAGACGGAAC	TCCACCCTTT	GCTTGGTCTT	AAGTATGTAT	GGAATGTTAT	GATAGGACAT	300
AGTAGTAGCG	GTGGTCAGCC	TATGGAATCT	TG			332

(2) INFORMATION FOR SEQ ID NO:154:

Saturday.

	(i) SEQUENCE CHARAC	CTERISTICS:			
-	(A) LENGTH: 34	15 base pairs			
	(B) TYPE: nucl	eic acid			
-	(C) STRANDEDNE	SS: single			
	(D) TOPOLOGY:	linear			
•	,				
	(xi) SEQUENCE DESCRI	PTION: SEQ ID NO:1	54 :		
T(CAAGATTCC ATAGGCTGAC CT	GGACAGAG ATCTCCTGG	G TCTGGCCCAG	GACAGCAGGC	60
1(CAACCTCAG TGGAGAAGGT TT	CCATGACC CTCAGATTC	C CCCAAACCTT	GGATTGGGTG	120
٨٥	CATTOCATO TOCTOACACA CO	CACCACAT CTANCTOTO		0010070071	100
AC	CATTGCATC TCCTCAGAGA GG	BAGGAGAT GTANGICTG	a GCTTCCACAG	GGACCTGGTA	180
TT	FITAGGATC AGGGTACCGC TG	CCTGAGG CTTGGATCA	T TOANAGOOTG	GGGGTGGAAT	240
	TIMOGRAPO MAGATAGGGC TO	dectanda erradiren	i Tenindee id	uquu ruunni	240
GG	SCTGGCAGC CTGTGGCCCC AT	TGAAATAG GCTCTGGGG	ACTOCOTOTG	TTCCTANTTG	300
AA	ACTTGGGTA AGGAACAGGA AT	GTGGTCAN CCTATGGAAT	CTTGA		345
(2) INFORMATION FOR SEQ	ID NO:155:			
	(i) SEQUENCE CHARAC				
	(A) LENGTH: 29	•			
	(B) TYPE: nucl				
	(C) STRANDEDNE	_			
	(D) TOPOLOGY:	linear			
	(xi) SEQUENCE DESCRI	DTION, SEO ID NO.15	e.		
	(XI) SEQUENCE DESCRI	FITON, SEQ TO NO:13	IJ.		
· GA	CGCTTGGC CACTTGACAC AT	TAAACAGI TTTGCATAAT	CACTANCATG	TATTTCTAGE	60
			3.10.1.110.170		00
	GCTGTCTG CTGTGATGCC CT	GCCCTGAT TCTCTGGCGT	TAATGATGGC	AAGCATAATC	120

×

心を記録が

AAACGCTGTT CTGTTAATTC CAAGTTATAA CTGGCATTGA TTAAAGCATT ATCTTTCACA	180
ACTAAACTGT TCTTCATANA ACAGCCCATA TIATTATCAA ATTAAGAGAC AATGTATTCC	240
AATATCCTTT ANGGCCAATA TATTTNATGT CCCTTAATTA AGAGCTACTG TCCGT	295
(2) INFORMATION FOR SEQ ID NO:156:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 406 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:	
GACGCTTGGC CACTTGACAC TGCAGTGGGA AAACCAGCAT GAGCCGCTGC CCCCAAGGAA	60
CCTCGAAGCC CAGGCAGAGG ACCAGCCATC CCAGCCTGCA GGTAAAGTGT GTCACCTGTC	120
AGGTGGGCTT GGGGTGAGTG GGTGGGGGAA GTGTGTGTGC AAAGGGGGGTG TNAATGTNTA	180
TGCGTGTGAG CATGAGTGAT GGCTAGTGTG ACTGCATGTC AGGGAGTGTG AACAAGCGTG	240
CGGGGGTGTG TGTGCAAGTG CGTATGCATA TGAGAATATG TGTCTGTGGA TGAGTGCATT	300
TGAAAGTCTG TGTGTGCG TGTGGTCATG ANGGTAANTT ANTGACTGCG CAGGATGTGT	360
GAGTGTGCAT GGAACACTCA NTGTGTGTGT CAAGTGGCCN ANCGTC	406
(2) INFORMATION FOR SEQ ID NO:157:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH; 208 base pairs(B) TYPE: nucleic acid

47,

×.

VSDOCID: <WO___9725426A3_IB>

	(C) STRANDEDNESS: single	
•	(D) TOPOLOGY: linear	
•		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:	
	TGACGCTTGG CCACTTGACA CACTAAAGGG TGTTACTCAT CACTTTCTTC TCTCCTCGGT	60
	GGCATGTGAG TGCATCTATT CACTTGGCAC TCATTTGTTT GGCAGTGACT GTAANCCANA	120
	TCTGATGCAT ACACCAGCTT GTAAATTGAA TAAATGTCTC TAATACTATG TGCTCACAAT	180
	ANGGTANGGG TGAGGAGAAG GGGAGAGA	208
	(2) INFORMATION FOR SEQ ID NO:158:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 547 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:	
	CTTCAACCTC CTTCAACCTC CTTCAACCTC CTGGATTCAA ACAATCATCC CACCTCAGAC	60
	TCCTTAGTAG CTGAGACTAC AGACTCACGC CACTACATCT GGCTAAATTT TTGTAGAGAT	120
	AGGGTTTCAT CATGTTGCCC TGGCTGGTCT CAAACTCCTG ACCTCAAGCA ATGTGCCCAC	180
,	CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATAAGCCAC CATGCCCAGT CCATNTTTAA	240
	TCTTTCCTAC CACATTCTTA CCACACTTTC TTTTATGTTT AGATACATAA ATGCTTACCA	300
	TTATGATACA ATTGCCCACA GTATTAAGAC AGTAACATGC TGCACAGGTT TGTAGCCTAG	360

\$15°

APPENDED.

'n

Ç.

*

- N

46 663

3

GAACAGTAGG CAATACCACA TAGCTTAGGT GTGTGGTAGA CTATACCATC TAGGTTTGTG	420
TAAGTTACAC TITATGCTGT TTACACAATG ACAAAACCAT CTAATGATGC ATTTCTCAGA	480
ATGTATCCTT GTCAGTAAGC TATGATGTAC AGGGAACACT GCCCAAGGAC ACAGATATTG	540
TACCTGT	547
(2) INFORMATION FOR SEQ ID NO:159:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 203 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:	
GCTCCTCTTG CCTTACCAAC TCACCCAGTA TGTCAGCAAT TTTATCRGCT TTACCTACGA	60
AACAGCCTGT ATCCAAACAC TTAACACACT CACCTGAAAA GTTCAGGCAA CAATCGCCTT	120
CTCATGGGTC TCTCTGCTCC AGTTCTGAAC CTTTCTCTTT TCCTAGAACA TGCATTTARG	180
TCGATAGAAG TTCCTCTCAG TGC	203
(2) INFORMATION FOR SEQ ID NO:160:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 402 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	

193

-	TGTAAGTCGA GCAGTGTGAT GGGTGGAACA GGGTTGTAAG CAGTAATTGC AAACTGTATT	60
The state of the s	TANACAATAA TAATAATATI TAGCATITAT AGAGCACTIT ATATCTICAA AGTACTIGCA	120
ថ្	AACATTAYCT AATTAAATAC CCTCTCTGAT TATAATCIGG ATACAAATGC ACTTAAACTC	180
	AGGACAGGGT CATGAGARAA GTATGCATTT GAAAGTTGGT GCTAGCTATG CTTTAAAAAC	240
•	CTATACAATG ATGGGRAAGT TAGAGTTCAG ATTCTGTTGG ACTGTTTTIG TGCATTTCAG	300
	TTCAGCCTGA TGGCAGAATT AGATCATATC TGCACTCGAT GACTYTGCTT GATAACTTAT	360
	CACTGAAATC TGAGTGTTGA TCATCACACT GCTCGACTTA CA	402
식	(2) INFORMATION FOR SEQ ID NO:161:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 193 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:	
}	AGCATGTTGA GCCCAGACAC TGACCAGGAG AAAAACCAAC CAATAGAAAC ACGCCCAGAC	60
-	ACTGACCAGG AGAAAAACCA ACCAATAAAA ACAGGCCCGG ACATAAGACA AATAATAAAA	120
	TTAGCGGACA AGGACATGAA AACAGCTATT GTAAGAGCGG ATATAGTGGT GTGTGTCTGG	180

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:

GCTCAACATG CTA

i,

(2) INFORMATION FOR SEQ ID NO:162:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 147 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:	
TGTTGAGCCC AGACACTGAC CAGGAGAAAA ACCAACCAAT AAAAACAGGC CCGGACATAA	60
GACAAATAAT AAAATTAGCG GACAAGGACA TGAAAACAGC TATTGTAAGA GCGGATATAG	120
TGGTGTGTGT CTGGGCTCAA CATGCTA	147
(2) INFORMATION FOR SEQ ID NO:163:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 294 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:	
TAGCATGTTG AGCCCAGACA CAAATCTTTC CTTAAGCAAT AAATCATTTC TGCATATGTT	60
TTTAAAACCA CAGCTAAGCC ATGATTATIC AAAAGGACTA TTGTATTGGG TATTTTGATT	120
TGGGTTCTTA TCTCCCTCAC ATTATCTTCA TTTCTATCAT TGACCTCTTA TCCCAGAGAC	180
TOTOMARCIT TIMICITATA CAMATCACAT TOTOTOTOMA AMAMTATOTO ACCOMOTICE	240

- Wedden

1

77

CTTCTGTTTC TGCGTGTGTA TGTGTGTGTG TGTGTGTCTG GGCTCAACAT GCTA	294
(2) INFORMATION FOR SEQ ID NO:164:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 412 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:	
CGGGATTGGC TTTGAGCTGC AGATGCTGCC TGTGACCGCA CCCGGCGTGG AACAGAAAGC	60
CACCTGGCTG CAAGTGCGCC AGAGCCGCCC TGACTACGTG CTGCTGTGGG GCTGGGGCGT	120
GATGAACTCC ACCGCCCTGA AGGAAGCCCA GGCCACCGGA TACCCCCGCG ACAAGATGTA	180
CGGCGTGTGG TGGGCCGGTG CGGAGCCCGA TGTGCGTGAC GTGGGCGAAG GCGCCAAGGG	240
CTACAACGCG CTGGCTCTGA ACGGCTACGG CACGCAGTCC AAGGTGATCC ANGACATCCT	300
GAAACACGTG CACGACAAGG GCCAGGGCAC GGGGCCCAAA GACGAAGTGG GCTCGGTGC1	360
GTACACCCGC GGCGTGATCA TCCAGATGCT GGACAAGGTG TCAATCACTA AT	412
(2) INFORMATION FOR SEQ ID NO:165:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 361 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

TIGACACCTT GTCCAGCATC TGCATCTGAT GAGAGCCTCA GATGGCTACC ACTAATGGCA 60

GAAGGCAAAG GAGAACAGGC ATTGTATGGC AAGAAAGGAA GAAAGAGAGA GGGGAGAAAG 120

GTGCTAGGTT CTTTTCAACA ACCAGTTCTT GATGGAACTG AGAGTAAGAG CTCAAGGCCA 180

GGTGTGGTGA CTCCAACCAG TAATCCCAAC ATTTTAGGAG GCTGAGGCAG GCAGATGTCT 240

TGACCCCCATG AGTTTGTGAC CAGCCTGAAC AACATCATGA GACTCCATCT CTACAATAAT 300

TACAAAAAATT AATCAGGCAT TGTGGTATGC CCTGTAGTCC CAGATGCTGG ACAAGGTGTC 360

A 361

(2) INFORMATION FOR SEQ ID NO:166:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 427 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

 TWGACTGACT CATGTCCCCT ACACCCAACT ATCTTCTCCA GGTGGCCAGG CATGATAGAA
 60

 TCTGATCCTG ACTTAGGGGA ATATTTTCTT TTTACTTCCC ATCTTGATTC CCTGCCGGTG
 120

 AGTTTCCTGG TTCAGGGTAA GAAAGGAGCT CAGGCCAAAG TAATGAACAA ATCCATCCTC
 180

 ACAGACGTAC AGAATAAGAG AACWTGGACW TAGCCAGCAG AACMCAAKTG AAAMCAGAAC
 240

 MCTTAMCTAG GATRACAAMC MCRRARATAR KTGCYCMCMC WTATAATAGA AACCAAACTT
 300

÷

GTATC	TAATT	ΤΛΤΤΤΑΓΑΑΑ	CCACYGTCAG	GGCATTAGTG	GTTTTGATAA	ATACGCTTTG	360
GCTAG	GATTC	CTGAGGTTAG	AATGGAARAA	CAATTGCAMC	GAGGGTAGGG	GACATGAGTC	420
AKTCT	AA						427

(2) INFORMATION FOR SEQ ID NO:167:

(i) SFQUENCE CHARACTERISTICS:

(A) LENGTH: 500 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:

AACGTCGCAT GCTCCCGGCC GCCATGGCCG CGGGATAGAC TGACTCATGT CCCCTAAGAT 60 AGAGGAGACA CCTGCTAGGT GTAAGGAGAA GATGGTTAGG TCTACGGAGG CTCCAGGGTG 120 GGAGTAGTTC CCTGCTAAGG GAGGGTAGAC TGTTCAACCT GTTCCTGCTC CGGCCTCCAC 180 TATAGCAGAT GCGAGCAGGA GTAGGAGAGA GGGAGGTAAG AGTCAGAAGC TTATGTTGTT 240 TATGCGGGGA AACGCCRTAT CGGGGGCAGC CRAGTTATTA GGGGACANTR TAGWYARTCW 300 AGNTAGCATC CAAAGCGNGG GAGTTNTCCC ATATGGTTGG ACCTGCAGGC GGCCGCATTA 360 GTGATTAGCA TGTGAGCCCC AGACACGCAT AGCAACAAGG ACCTAAACTC AGATCCTGTG 420 CTGATTACTT AACATGAATT ATTGTATTTA TITAACAACT TTGAGTTATG AGGCATATTA 480 ***

2%

TTAGGTCCAT ATTACCTGGA	500
(2) INFORMATION FOR SEQ ID NO:168:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 358 base pairs	
(B) FYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:	
TTCATCGCTC GGTGACTCAA GCCTGTAATC CCAGAACTTT GGGAGGCCGA GGGGAGCAGA	60
TCACCTGAGG TTGGGAGTTT GAGACCAGCC TGGCCAACAT GGTGACAACC CGTCTCTGCT	120
AAAAATACAA AAATTAGCCA AGCATGGTGG CATGCACTTG TAATCCCAGC TACTCGGGAG	180
GCTGAGGCAG GAGAATCACT TGAGGCCAGG AGGCAGAGGT TGCAGTGAGG CAGAGGTTGA	240
GATCATGCCA CTGCACTCCA GCCTGGGCAA CAGAGTAAGA CTCCATCTCA AAAAAAAAAA	300
AAAAAAAGAA TGATCAGAGC CACAAATACA GAAAACCTTG AGTCACCGAG CGATGAAA	358
(2) INFORMATION FOR SEQ ID NO:169:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1265 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:

機力

4

18 N

60	C TTTTAATAGT	C TTTAAATAT(A AGAATTTGT	A GAGCTCTGA	ACCAATCTTA	TTCTGTCCAC
120	A AAAAGTCAGG	TTTTCCCAAA	T TTCGACTAT	A AATTGACAT	TTATGGACCA	AACATGTATT
180	G AGCAATTTCA	AGWCGGCACC	C TTATCCCAGA	TGGGAATTT	CACACTGAGT	TGAATTTCAG
240	A GTCTCCTTAA	S AATCCCTGCA	TTTCAAGGA(CATACTCCGT	AGATTGATTO	TATTTATTTA
300	TTAAGAGGTG	GGATTGGACT	CACCATTGTG	ATTTTTTTT	ANTACTTTCT	AGGTAGAACA
360	CCATATTATC	AAGCACGGAC	CAGTTGTATT	AAATATGTCT	AACAGAGAAC	ACTCTAAAAA
420	TTCAATGTAG	AACTTCTCTT	ACCTTTTGGC	TTTCCTGTGC	AAAAAAATGA	ATATTCACTT
480	TGTGGGCAGA	AACTTGTAGA	AAATAAATAA	AAAACCCACA	AGTCACCCTG	GGAAAAACTT
540	AGAAGCTGTT	TGTATCACTG	AATTAAACCC	TATGTGTTTA	GTGGACATTG	ARGTTTGGGG
600	CAGAAGCAAA	TCTTCAAGAG	GCTGTTCACA	ATGCTTAGAA	GAGAAAATGA	GTATGGGTCA
660	ATTTCTTCTG	AAAGTGAATC	TTTTATGCAT	ATTATTTATT	CAGCTATATT	CCACATGTCT
720	TGCATTGACA	TGAAAAACAG	TTAAATGCTT	TACCCTCTAT	CAAAGGGTTT	TATIAATTIC
780	TAATCTGAAG	AAAGCCAAGA	TATAATTATG	AAAAGAAAAA	ATTITTCTTT	ATGGGTTGAT
840	GTTTGTTTCT	ттстттсттт	GTGGTTGATG	TTTATGTTCT	TTTAAAACTT	CCTGTTTTAT
900	CATACTACAT	TTTGGTTTDG	TTIGTTTIGT	TGTTTTTTGT	TTTTTTACTT	ATTTTGTTGG
960	TTTATATGAG	AAGTTGTTAA	AATGTAATTA	CTGTTTGGCT	TAACCAATGT	GCAGTTTCTT
1020	TGGTAATTTT	GTAGAAGTAC	TATTTATTGT	GGTTTCTTAA	CTATGTCAAT	TGCATTTCAA
1080	TTTATAGCAG	TTTTCATGTG	GTTTGATATG	AGAGATAACA	ATATGTTTAA	TTTATTTACA

AAAAA						1265
ΤΛΑΑΤΑΛΛΑ	AGACCTGTTT	GGGATGTAAA	AAAAAAAAA	AAAA AAAA	ΑΑΑΑΑΑΑΑ	1260
ATATTTTGTA	CAGTTAGTGG	ACAGTATTCA	GCAACGCCTG	ATAGCTTCTT	TGGCCTTATG	1200
AAGTTATTTA	TTTCTATGGC	ATTCCAGCGG	ATATTTTGGT	GTTTGCGAGG	CATGCAGTCA	1140

(2) INFORMATION FOR SEQ ID NO:170:

-ti

er;

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 383 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(2) INFORMATION FOR SEQ 1D NO:171:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

TGTAAGTCGA	GCAGTGTGAT	GACGATATTC	TTCTTATTAA	TGTGGTAATT	GAACAAATGA	60
TCTGTGATAC	TGATCCTGAG	CTAGGAGGCG	CTGTTCAGTT	AATGGGACTT	CTTCGTACTC	120
TAATTGATCC	AGAGAACATG	CTGGCTACAA	CTAATAAAAC	CGAAAAAAGT	GAATTTCTAA	180
ATTTTTTCTA	CAACCATTGT	ATGCATGTTC	TCACAGCACC	ACTTTTGACC	AATACTTCAG	240
AAGACAAATG	TGAAAAGGAT	AATATAGTTG	GATCAAACAA	AAACAACACA	ATTTGTCCCG	300
ATAATTATCA	AACAGCACAG	CTACTTGCCT	TAATTTTAGA	GTTACTCACA	TTTTGŢGTGG	360
AACATCACAC	TGCTCGACTT	ACA				383

三等原以政

*

(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 383 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) 10POLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:	
TGGGCACCTT CAATATCGCA AGTTAAAAAT AATGTTGAGT TTATTATACT TTTGACCTGT	60
TTAGCTCAAC AGGGTGAAGG CATGTAAAGA ATGTGGACTT CTGAGGAATT TTCTTTTAAA	120
AAGAACATAA TGAAGTAACA TTTTAATTAC TCAAGGACTA CTTTTGGTTG AAGTTTATAA	180
TCTAGATACC TCTACTTTTT GTTTTTGCTG TTCGACAGTT CACAAAGACC TTCAGCAATT	240
TACAGGGTAA AATCGTTGAA GTAGTGGAGG TGAAACTGAA ATTTAAAATT ATTCTGTAAA	300
TACTATAGGG AAAGAGGCTG AGCTTAGAAT CTTTTGGTTG ITCATGTGTT CTGTGCTCTT	360
ATCATCACAC TGCTCGACTT ACA	383
(2) INFORMATION FOR SEQ ID NO:172:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 699 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:	
. TCGGGTGATG CCTCCTCAGG CTTGTCGTTA GTGTACACAG AGCTGCTCAT GAAGCGACAG	60

PCT/US97/00485

CGGCTGCCCC	TGGCACTTCA	GAACCTCTTC	CTCTACACTT	TTGGTGCGCT	TCTGAATCTA	120
GGTCTGCATG	CTGGCGGCGG	CTCTGGCCCA	GGCCTCCTGG	AAAGTTTCTC	AGGATGGGCA	180
GCACTCGTGG	TGCTGAGCCA	GGCACTAAAT	GGACTGCTCA	TGTCTGCTGT	CATGGAGCAT	240
GGCAGCAGCA	TCACACGCCT	CTTTGTGGTG	TCCTGCTCGC	TGGTGGTCAA	CGCCGTGCTC	300
TCAGCAGTCC	TGCTACGGCT	GCAGCTCACA	GCCGCCTTCT	TCCTGGCCAC	ATTGCTCATT	360
GGCCTGGCCA	TGCGCCTGTA	CTATGGCAGC	CGCTAGTCCC	TGACAACTTC	CACCCTGATT	420
CCGGACCCTG	TAGATTGGGC	GCCACCACCA	GATICCCCCTC	CCAGGCCTTC	СТСССТСТСС	480
CATCAGCGGC	CCTGTAACAA	GIGCCTTGTG	AGAMAGCTG	GAGAAGTGAG	GGCAGCCAGG	540
TTATTCTCTG	GAGGTTGGTG	GATGAAGGGG	1ACCCCTAGG	AGATGTGAAG	TGTGGGTTŢG	600
GTTAAGGAAA	TGCTTACCAT	CCCCCACCCC	CAACCAAGTT	NTTCCAGACT	AAAGAATTAA	660
GGTAACATCA	ATACCTAGGC	CTGAGGAGGC	ATCACCCGA			699

(2) INFORMATION FOR SEQ ID NO:173:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 701 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:

TCGGGTGATG CCTCCTCAGG CCAGATCAAA CTTGGGGTTG AAAACTGTGC AAAGAAATCA 60

ATGTCGGAGA AAGAATTTTG CAAAAGAAAA ATGCCTAATC AGTACTAATT TAATAGGTCA 120

¥

PCT/US97/00485

CATTAGCAGT	GGAAGAAGAA	ATGTTGATAT	TTTATGTCAG	СТАТТТТАТА	ATCACCAGAG	180
TGCTTAGCTT	CATGTAAGCC	ATCTCGTATT	CATTAGAAAT	AAGAACAATT	TTATTCGTCG	240
GAAAGAACTT	TTCAATTTAT	AGCATCTTAA	TTGCTCAGGA	TTTTAAATTT	TGATAAAGAA	300
AGCTCCACTT	TTGGCAGGAG	TAGGGGGCAG	GGAGAGAGGA	GGCTCCATCC	ACAAGGACAG	360
AGACACCAGG	GCCAGTAGGG	TAGCTGGTGG	CTGGATCAGT	CACAACGGAC	TGACTTATGC	420
CATGAGAAGA	AACAACCTCC	AAATCTCAGT	TGCTTAATAC	AACACAAGCT	CATTTCTTGC	480
TCACGTTACA	TGTCCTATGT	AGATCAACAG	CAGGTGACTC	AGGGACCCAG	GCTCCATCTC	540
CATATGAGCT	TCCATAGTCA	CCAGGACACG	GGCTCTGAAA	GTGTCCTCCA	TGCAGGGACA	600
CATGCCTCTT	CCTTTCATTG	GGCAGAGCAA	GTCACTTATG	GCCAGAAGTC	ACACTGCAGG	660
GCAGTGCCAT	CCTGCTGTAT	GCCTGAGGAG	GCATCACCCG	Α		701

(2) INFORMATION FOR SEQ ID NO:174:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 700 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

TCGGGTGATG CCTCCTCANG CCCCTAAATC AGAGTCCAGG GTCAGAGCCA CAGGAGACAG 60

GGAAAGACAT AGATTTTAAC CGGCCCCCTT CAGGAGATTC TGAGGCTCAG TTCACTTTG1 120

.

3

TGCAGTTTGA	ACAGAGGCAG	CAAGGCTAGT	GGTTAGGGGC	ACGGTCTCTA	AAGCTGCACT	180
GCCTGGATCT	GCCTCCCAGC	TCTGCCAGGA	ACCAGCTGCG	TGGCCTTGAG	CTGCTGACAC	240
GCAGAAAGCC	CCCTGTGGAC	CCAGTCTCCT	CGTCTGTAAG	ATGAGGACAG	GACTCTAGGA	300
ACCCTTTCCC	TTGGTTTGGC	CTCACTTTCA	CAGGCTCCCA	TCTTGAACTC	TATCTACTCT	360
TTTCCTGAAA	CCTTGTAAAA	GAAAAAAGTG	CTAGCCTGGG	CAACATGGCA	AAACCCTGTC	420
TCTACAAAAA	ATACAAAAAT	TAGTTGGGTG	TGGTGGCATG	TGCCTGTAGT	CCCAGCCACT	480
TGGGAGGTGC	TGAGGTGGGA	GGATCACTTG	AGCCCGGGAG	GTGGAGGTTG	CAGTGAGCCA	540
AGATCATGCC	ACTGCACTCC	AGCCTGAGTA	ATAGAGTAAG	ACTCTGTCTC	AAAAACAACA	600
ACAACAACAG	TGAGTGTGCC	TCTGTTTCCG	GGTTGGATGG	GGCACCACAT	TTATGCATCT	660
CTCAGATTTG	GACGCTGCAG	CCTGAGGAGG	CATCACCCGA			700

(2) INFORMATION FOR SEQ ID NO:175:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 484 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

TATAGGGCGA ATTGGGCCCG AGTTGCATGN TCCCGGCCGC CATGGCCGCG GGATTCGGGT 60

GATGCCTCCT CAGGCTTGTC TGCCACAAGC TACTTCTCTG AGCTCAGAAA GTGCCCCTTG 120

ATGAGGGAAA ATGTCCTACT GCACTGCGAA TTTCTCAGTT CCATTTTACC TCCCAGTCCT 180

CCGA						484
CTTGTCAGTG	ATGACATACA	CCTTAGCTGC	TTAGCTGGTG	CTGGCCTGAG	GAGGCATCAC	480
CCTATCGGGG	CATAGCCCAG	GGATGCCCCC	AGGCGGCCCA	GGTTAGATGC	GTCCCTTTGG	420
GCCAGCTTTA	TATTTCAACC	ATGGCTGGCC	CATCTGAGAG	CATCTCCCCA	CTCTCGCCAA	360
GGGACTATTC	TCAGGCTGAA	GAAGGTGGGA	GGGGAGGGCG	GAACCTGAGG	AGCCACCTGA	300
CCTTCTAAAC	CAGTTAATAA	ATTCATTCCA	CAAGTATTTA	CTGATTACCT	GCTTGTGCCA	240

(2) INFORMATION FOR SEQ ID NO:176:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 432 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:

TCGGGTGATG CCTCCTCAGG GCTCAAGGGA TGAGAAGTGA CTTCTTTCTG GAGGGACCGT 60

TCATGCCACC CAGGATGAAA ATGGATAGGG ACCCACTTGG AGGACTTGCT GATATGTTTG 120

GACAAATGCC AGGTAGCGGA ATTGGTACTG GTCCAGGAGT TATCCAGGAT AGATTTTCAC 180

CCACCATGGG ACGTCATCGT TCAAATCAAC TCTTCAATGG CCATGGGGGA CACATCATGC 240

CTCCCCACACA ATCGCAGTTT GGAGAGATGG GAGGCAAGTT TATGAAAAGC CAGGGGCTAA 300

GCCAGGTCTA CCATAACCAG AGTCAGGGAC TCTTATCCCA GCTGCAAGGA CAGTCGAAGG 360

ATATGCCACC	TCGGTTTTCT	AAGAAAGGAC	AGCTTAATGC	AGATGAGATT	AGCCTGAGGA	420
GGCATCACCC	GA					432

(2) INFORMATION FOR SEQ ID NO:177:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 788 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

TAGCA	ATGTTG	AGCCCAGACA	CAGTAGCATT	TGTGCCAATT	TCTGGTTGGA	ATGGTGACAA	60
CATGO	CTGGAG	CCAAGTGCTA	ACATGCCTTG	GTTCAAGGGA	TGGAAAGTCA	CCCGTAAGGA	120
TGGCA	A TGCC	AGTGGAACCA	CGCTGCTTGA	GGCTCTGGAC	TGCATCCTAC	CACCAACTCG	180
CCCAA	ACTGAC	AAGCCCTTGC	GCCTGCCTCT	CCAGGATGTC	TACAAAATTG	GTGGTATTGG	240
TACTO	ттсст	GTTGGCCGAG	TGGAGACTGG	TGTTCTCAAA	CCCGGTATGG	TGGTCACCTT	300
TGCTC	CAGTC	AACGTTACAA	CGGAAGTAAA	ATCTGTCGAA	ATGCACCATG	AAGCTTTGAG	360
TGAAG	стстт	CCTGGGGACA	ATGTGGGCTT	CAATGTCAAG	AATGTGTCTG	TCAAGGATGT	420
TCGTC	GTGGC	AACGTTGCTG	GTGACAGCAA	AAATGACCCA	CCAATGGAAG	CAGCTGGCTT	480
CACTO	CTCAG	GTGATTATCC	TGAACCATCC	AGGCCAAATA	AGTGCCGGCT	ATGCCCCTGT	540
ATTGG	SATTGC	CACACGGCTC	ACATTGCATG	CAAGTTTGCT	GAGCTGAAGG	AAAAGATTGA	600
TCGCC	GTTCT	GGTAAAAAGC	TGGAAGATGG	CCCTAAATTC	TTGAAGTCTG	GTGATGCTGC	660

Ş

N. Carlot

CATTGTTGAT	ATGGTTCCTG	GCAAGCCCAT	GTGTGTTGAG	AGCTTCTCAG	ACTATCCACC	720
TTTGGGTCGC	TTTGCTGTTC	GTGATATGAG	ACAGACAGTT	GCGGTGGGTG	TCTGGGCTCA	780
ACATGCTA						788

(2) INFORMATION FOR SEQ ID NO:178:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 786 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEO ID NO:178:

TAGCATGTTG AGCCCAGACA CCTGTGTTTC TGGGAGCTCT GGCAGTGGCG GATTCATAGG 60 CACTTGGGCT GCACTTTGAA TGACACACTT GGCTTTATTA GATTCACTAG TTTTTAAAAA 120 ATTGTTGTTC GTTTCTTTTC ATTAAAGGTT TAATCAGACA GATCAGACAG CATAATTTTG 180 TATTTAATGA CAGAAACGTT GGTACATTTC TTCATGAATG AGCTTGCATT CTGAAGCAAG 240 AGCCTACAAA AGGCACTTGT TATAAATGAA AGTTCTGGCT CTAGAGGCCA GTACTCTGGA 300 GTTTCAGAGC AGCCAGTGAT TGTTCCAGTC AGTGATGCCT AGTTATATAG AGGAGGAGTA 360 CACTGTGCAC TCTTCTAGGT GTAAGGGTAT GCAACTTTGG ATCTTAAAAT TCTGTACACA 420 TACACACTIT ATATATATGT ATGTATGTAT GAAAACATGA AATTAGTTTG TCAAATATGT 480 GTGTGTTTAG TATTTTAGCT TAGTGCAACT ATTTCCACAT TATTTATTAA ATTGATCTAA 540

GACACTTTCT	TGTTGACACC	TTGAATATTA	ATGTTCAAGG	GTGCAATGTG	TATTCCTTTA	600
GATTGTTAAA	GCTTAATTAC	TATGATTTGI	AGTAAATTAA	CTTTTAAAAT	GTATTTGAGC	660
CCTTCTGTAG	TGTCGTAGGG	CTCTTACAGG	GTGGGAAAGA	TTTTAATTTT	CCAGTTGCTA	720
ATTGAACAGT	ATGGCCTCAT	TATATATTT	GATTTATAGG	AGTTTGTGTC	TGGGCTCAAC	780
ATGCTA						786

(2) INFORMATION FOR SEQ ID NO:179:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 796 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

TAGCATGTTG AGCCCAGACA CTGGTTACAA GACCAGACCT GCTTCCTCCA TATGTAAACA 60 GCTTTTAAAA AGCCAGTGAA CCTTTTTAAT ACTTTGGCAA CCTTCTTTCA CAGGCAAAGA 120 180 GGAGTATACT TCTAATTCCT GTTGTCCTGC ACAAGCTGAA TACCGAGCTA CCCACCGCCA 240 CCCAGGCCAG GTTTCCACTC ATTTATTACT TTATGTTTCT GTTCCATTGC TGGTCCACAG 300 AAATAAGTTT TCCTTTGGAG GAATGTGATT ATACCCCTTT AATTTCCTCC TTTTGCTTTT 360 420 TTTTAATATC ATTGGTATGT GTTTGGCCCA GAGGAAACTG AAATTCACCA TCATCTTGAC TGGCAATCCC ATTACCATGC TTTTTTTAAA AAACGTAATT TTTCTTGCCT TACATTGGCA 480

a.C

GAGTAGCCCT	TECTGGCTAC	TGGCTTAATG	TAGTCACTCA	GTTTCTAGGT	GGCATTAGGC	540
ATGAGACCTG	AAGCACAGAC	TGTCTTACCA	CAAAAGGTGA	CAAGATCTCA	AACCTTAGCC	600
AAAGGGCTAT	GTCAGGTTTC	AATGCTATCT	GCTTCTGTTC	CTGCTCACTG	TTCTGGATTT	660
TGTCCTTCTT	CATCCCTAGC	ACCAGAATTT	CCCAGTCTCC	CTCCCTACCT	TCCCTTGTTT	720
TAATTCTAAT	CTATCAGCAA	AATAACTTTI	CAAATGTTTT	AACCGGTATC	TCCATGTGTC	780
TGGGCTCAAC	ATGCTA					796

(2) INFORMATION FOR SEQ ID NO:180:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 488 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

GGATGTGCTG	CAAGGCGATT	AAGTTGGGTA	ACGCCAGGGT	TTTCCCAGTC	ACGACGTTGT	60
AAAACGACGG	CCAGTGAATT	GTAATACGAC	TCACTATAGG	GCGAATTGGG	CCCGACGTCG	120
CATGCTCCCG	GCCGCCATGG	CCGCGGGATA	GCATGTTGAG	CCCAGACACC	TGCAGGTCAT	180
TTGGAGAGAT	TTTTCACGTT	ACCAGCTTGA	TGGTCTTTTT	CAGGAGGAGA	GACACTGAGC	240
ACTCCCAAGG	TGAGGTTGAA	GATTTCCTCT	AGATAGCCGG	ATAAGAAGAC	TAGGAGGGAT	300
GCCTAGAAAA	TGATTAGCAT	GCAAATTTCT	ACCTGCCATT	TCAGAACTGT	GTGTCAGCCC	360

"一位"

43

130	00		
ACATTCAGCI GCTTCTTGTG AACTGAAAAG AGAGAGGTAT TO	GAGACTTTT	CTGATGGCCG	420
CTCTAACATT GTAACACAGT AATCTGTGTG TGTGTGGGTG TG	GTGTGTGTG	TCTGGGCTCA	480
ACATGCTA			488
(2) INFORMATION FOR SEQ ID NO:181:			
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 317 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:			
TAGCATGTTG AGCCCAGACA CGGCGACGGT ACCTGATGAG TO	GGGGTGATG	GCACCTGTGA	60
AAAGGAGGAA CGTCATCCCC CATGATATTG GGGACCCAGA TO	GATGAACCA	TGGCTCCGCG	120
TCAATGCATA TTTAATCCAT GATACTGCTG ATTGGAAGGA CC	CTGAACCTG	AAGTTTGTGC	180
TGCAGGTTTA TCGGGACTAT TACCTCACGG GTGATCAAAA CT	TTCCTGAAG	GACATGTGGC	240
CTGTGTGTCT AGTAAGGGAT GCACATGCAG TGGCCAGTGT GC	CCAGGGGTA	TGGTTGGTGT	300
CTGGGCTCAA CATGCTA			317
(2) INFORMATION FOR SEQ ID NO:182:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 507 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

...

ij,

(xi)	ZEONENCE.	DESCRIPTION.	SEO	11)	-NO+182+

TAGCATGTTG	AGCCCAGACA	CTGGCTGTTA	GCCAAATCCT	CTCTCAGCTG	CTCCCTGTGG	60
TTTGGTGACT	CAGGATTACA	GAGGCATCCT	GTTTCAGGGA	ACAAAAAGAT	TTTAGCTGCC	120
AGCAGAGAGC	ACCACATACA	TTAGAATGGT	AAGGACTGCC	ACCTCCTTCA	AGAACAGGAG	180
TGAGGGTGGT	GGTGAATGGG	AATGGAAGCC	TGCATTCCCT	GATGCATTTG	TGCTCTCTCA	240
AATCCTGTCT	TAGTCTTAGG	AAAGGAAGTA	AAGTTTCAAG	GACGGTTCCG	AACTGCTTTT	300
TGTGTCTGGG	CTCAACATGC	TATCCCGCGG	CCATGGCGGC	CGGGAGCATG	CGACGTCGGG	360
CCCAATTCGC	CCTATAGTGA	GTCGTATTAC	AATTCACTGG	CCGTCGTTTT	ACAACGTCGT	420
GACTGGGAAA	ACCCTGGCGT	TACCCAACTT	AATCGCCTTG	CAGCACATCC	CCCTTTCCCA	480
GCTGGCGTAA	TANCGAAAAG	GCCCGCA				507

(2) INFORMATION FOR SEQ ID NO:183:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 227 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

GATTTACGCT GCAACACTGT GGAGGTAGCC CTGGAGCAAG GCAGGCATGG ATGCTTCTGC 60

AATCCCCAAA TGGAGCCTGG TATTTCAGCC AGGAATCTGA GCAGAGCCCC CTCTAATTGT 120

ï,

AGCAATGATA AGTTATTCTC TTTGTTCTTC AACCTTCCAA TAGCCTTGAG CTTCCAGGGG	180
AGTGTCGTTA ATCATTACAG CCTGGTCTCC ACAGTGTTGC AGCGTAA	227
(2) INFORMATION FOR SEQ ID NO:184:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 225 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) 10POLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:	
TTACGCTGCA ACACTGTGGA GCAGATTAAC ATCAGACTTT TCTATCAACA TGACTGGGGT	60
TACTAAAAAG ACAACAAATC AATGGCTTCA AAAGTCTAAG GAATAATTTC GATACTTCAA	120
CTTTATAAAA CCTGACAAAA CTATCAATCA AGCATAAAGA CAGATGAAGA ACATTTCCAG	180
ATTTTGGCCA ATCAGATATT TTACCTCCAC AGTGTTGCAG CGTAA	225
(2) INFORMATION FOR SEQ ID NO:185:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 597 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:	
GGCCCGACGT CGCATGCTCC CGGCCGCCAT GGCCGCGGGA TTCGTTAGGG TCTCTATCCA	60

Ä

Š

Įį.

Mark S

CTGGGACCCA TAGGCTAGTC AGAGTATTTA GAGTTGAGTT	120
TGAAAGAAAA GGAGTGAGGT GATAGAGCTG AGAGATCAGA TTTGCCTCTG AAGCCTGTTC	180
AAGATGTATG TGCTCAGACC CCACCACTGG GGCCTGTGGG TGAGGTCCTG GGCATCTATT	240
TGAATGAATT GCTGAAGGGG AGCACTATGC CAAGGAAGGG GAACCCATCC TGGCACTGGC	300
ACAGGGGTCA CCTTATCCAG TGCTCAGTGC TTCTTTGCTG CTACCTGGTT TTCTCTCATA	360
TGTGAGGGGC AGGTAAGAAG AAGTGCCCRG TGTTGTGCGA GTTTTAGAAC ATCTACCAG1	420
AAGTGGGGAA GTTTCACAAA GCAGCAGCTT TGTTTTGTGT ATTTTCACCT TCAGTTAGAA	480
GAGGAAGGCT GTGAGATGAA TGTTAGTTGA GTGGAAAAGA CGGGTAAGCT TAGTGGATAG	540
AGACCCTAAC GAATCACTAG TGCGGCCGCC TTGCAGGTCG ACCATATGGG AGAGCTC	597
(2) INFORMATION FOR SEQ ID NO:186:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 597 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

GGCCCGAAGT TGCATGTTCC CGGCCGCCAT GGCCGCGGGA TTCGTTAGGG TCTCTATCCA 60

CTACCTAAAA AATCCCAAAC ATATAACTGA ACTCCTCACA CCCAATTGGA CCAATCCATC 120

ACCCCAGAGG CCTACAGATC CTCCTTTGAT ACATAAGAAA ATTTCCCCAA ACTACCTAAC 180

TATATCATTT	TGCAAGATTT	GTTTTACCAA	ATTTTGATGG	CCTTTCTGAG	CTTGTCAGTG	240
TGAACCACTA	TTACGAACGA	TCGGATATTA	ACTGCCCCTC	ACCGTCCAGG	TGTAGCTGGC	300
MACATCAAGT	GCAGTAAATA	TTCATTAAGT	TTTCACCTAC	TAAGGTGCTT	AAACACCCTA	360
GGGTGCCATG	TCGGTAGCAG	ATCTTTTGAT	TTGTTTTTAT	TICCCATAAG	GGTCCTGTTC	420
AAGGTCAATC	ATACATGTAG	TGTGAGCAGC	TAGTCACTAT	CGCATGACTT	GGAGGGTGAT	480
AATAGAGGCC	TCCTTTGCTG	TT AAAGAACT	CTTGTCCCAG	CCTGTCAAAG	TGGATAGAGA	540
CCCTAACGAA	TCACTAGTGC	GGCCGCCTGC	AGGTCGACCA	TATGGGAGAG	CTCCCAA	597
(2) INFORM	ATION FOR SE	FO ID NO:187	7 :			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 324 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

(2) INFORMATION FOR SEQ ID NO:188:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 178 base pairs(B) TYPE: nucleic acid(C) SIRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:	
GCGCGGGGAT TCGGGGTGAT ACCTCCTCAT GCCAAAATAC AACGTNTAAT TTCACAACTT	60
GCCTTCCAAT TTACGCATTT TCAATTTGCT CTCCCCATTT GTTGAGTCAC AACAAACACC	120
ATTGCCCAGA AACATGTATT ACCTAACATG CACATACTCT TAAAACTACT CATCCCTT	178
(2) INFORMATION FOR SEQ ID NO:189:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 367 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:	
TGACACCTTG TCCAGCATCT GACACAGTCT TGGCTCTTGG AAAATATTGG ATAAATGAAA	60
ATGAATTTCT TTAGCAAGTG GTATAAGCTG AGAATATACG TATCACATAT CCTCATTCTA	120
AGACACATTC AGTGTCCCTG AAATTAGAAT AGGACTTACA ATAAGTGTGT TCACTTTCTC	180

AATAGCTGTT ATTCAATTGA TGGTAGGCCT TAAAAGTCAA AGAAATGAGA GGGCATGTGA

S)

.....

A ...

Å,

AAAAAAGCTC AACATCACTG ATCATTAGAA AACTTCCATT CAAACCCCCA ATGAGATACC	300
ATCTCATACC AGTCAGAATG GCTATTATTA AAAAGTCAAA AAATAACAGA TGCTGGACAA	360
GGTGTCA	367
(2) INFORMATION FOR SEQ ID NO:190:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 369 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:	
GACACCTTGT CCAGCATCTG ACAACGCTAA CAGCCTGAGG AGATCTTTAT TTATTTATTT	60
AGTITITACT CTGGCTAGGC AGATGGTGGC TAAAACATTC ATTTACCCAT TIATTCATTT	120
AATTGTTCCT GCAAGGCCTA TGGATAGAGT ATTGTCCAGC ACTGCTCTGG AAGCTAGGAG	180
CATGGGGATG AACAAGATAG GCTACATCCT GTTCCCACAG AACTTCCACT TTAGTCTGGG	240
AAACAGATGA TATATACAAA TATATAAATG AATTCAGGTA GTTTTAAGTA CGAAAAGAAT	300
AAGAAAGCAG AGTCATGATT TANAATGCTG GAAACAGGGG CTATTGCTTG AGATATTGAA	360
GGTGCCCAA	369
(2) INFORMATION FOR SEQ ID NO:191:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 369 base pairs

K

¥,

(B)	TYPE: nucleic	acid
(C)	STRANDEDNESS:	single
(D)	TOPOLOGY: line	ar

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:191:

TCTACAAAGA ACTTATACAA ATTTACAAGA AAGAAACAA CAAACAACTC CTCAAAAAGT 180

GGGTGAAGGA TGTGAACAGA CACTTCTCAA AAGAAGACAT TTATGGGGCC AACAAACATA 240

TGAAAAAAAAG CTCATCATCA CTGGTCACTA GATAAATGCA AATCAAAACC ACAATGAGAT 300

ACCATCTCAT TCCAGTTAGA ATGGCAATCA TTAAAAAGTC AGGAAACAAC AGATGCTGGA 369

CAAGGTGTC 369

(2) INFORMATION FOR SEQ ID NO:192:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 449 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

TGACGCTTGG CCACTTGACA CTTCATCTTT GCACAGAAAA ACTTCTTTAC AGATTTAATT 60

CAAGACTGGT CTAGTGACAG TCCTCCAGAC ATTTTTTCAT TTGTTCCATA TACGTGGAAT 120

TTTAAAATCA	TGTTTCATCA	GTTTGAAATG	ATTTGGGCTG	CTAATCAACA	CAATTGGATC	180
GACTGTTCTA	CTAAACAACA	GGAAAATGTG	TATCTGGCAG	CCTGTGGAGA	AACACTAAAC	240
ATTGATTTTT	стттвссттт	TACGGACTTT	GTTCCAGCTA	CATGTAATAC	CAAGTTCTCT	300
TTAAGAGGAG	AAGATGTTGA	TCTTCATTTG	TTTCTACCAG	ACTGCCACCC	TAGTAAATAT	360
TCTTTATTTA	TGCTGGTAAA	AAATTGCCAT	CCAAATAAGA	TGATTCATGA	TACTGGTATT	420
CCTGCTGAGT	GTCAAGTGGC	CAAGCGTCA				449

(2) INFORMATION FOR SEQ ID NO:193:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 372 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:

TGACGCTTGG	CCACTTGACA	CCAGGGATGT	AKCAGTTGAA	TATAATCCTG	CAATTGTACA	60
TATTGGCAAT	TTCCCATCAA	ACATTCTAGA	AAGAGACAAC	CAGGATTGCT	AGGCCATAAA	120
AGCTGCAATA	AATAACTGGT	AATTGCAGTA	ATCATTTCAG	GCCAATTCAA	TCCAGTTTGG	180
CTCAGAGGTG	CCTTTGGCTG	AGAGAAGAGG	TGAGATATAA	тстсттст	TGCAACTTC1	240
TGGAAGAATA	ACTCCACAAT	AGTCTGAGGA	CTAGATACAA	ACCTATTTGC	CATTAAAGCA	300
CCAGAGTCTG	TTAATTCCAG	TACTGATAAG	TGTTGGAGAT	TAGACTCCAG	TGTGTCAAGT	360
GGCCAAGCGT	CA					372

(2) INFORMATION FOR SEQ ID NO:194:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 309 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:	
TGACGCTTGG CCACTTGACA CTTATGTAGA ATCCATCGTG GGCTGATGCA AGCCCTTTAT	60
TTAGGCTTAG TGTTGTGGGC ACCTTCAATA TCACACTAGA GACAAACGCC ACAAGATCTG	120
CAGAAACATT CAGTTCTGAN CACTCGAATG GCAGGATAAC TTTTTGTGTT GTAATCCTTC	180
ACATATACAA AAACAAACTC TGCANTCTCA CGTTACAAAA AAACGTACTG CTGTAAAATA	240
TTAAGAAGGG GTAAAGGATA CCATCTATAA CAAAGTAACT TACAACTAGT GTCAAGTGGC	300
CAAGCGTCA	309
(2) INFORMATION FOR SEQ ID NO:195:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 312 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:	60
TGACGCTTGG CCACTTGACA CCCAATCTCG CACTTCATCC TCCCAGCACC TGATGAAGTA	60

(62)

GGACTGCAAC TATCCCCACT TCCCAGATGA GGGGACCAAN GTACACATTA GGACCCGGAT	120
GGGAGCACAG ATTTGTCCGA TCCCAGACTC CAAGCACTCA GCGTCACTCC AGGACAGCGG	180
CTTTCAGATA AGGTCACAAA CATGAATGGC TCCGACAACC GGAGTCAGTC CGTGCTGAGT	240
TAAGGCAATG GTGACACGGA TGCACGTGTN ACCTGTAATG GTTCATCGTA AGTGTCAAGT	300
GGCCAAGCGT CA	312
(2) INFORMATION FOR SEQ ID NO:196:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 288 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:	
TGTATCGACG TAGTGGTCTC CTCAGCCATG CAGAACTGTG ACTCAATTAA ACCTCTTTCC	60
TITATGAATT ACCCAATCTC GGGTAGTGTC TITATAGTAG TGTGAGAATG GACTAATACA	120
AGTACATTIT ACTTAGTAAT AATAATAAAC AAATATATTA CATTTTTGTG TATTTACTAC	180
ACCATATTIT TTATTGTTAT TGTAGTGTAC ACCTTCTACT TATTAAAAGA AATAGGCCCG	240
AGGCGGGCAG ATCACGAGGT CAGGAGATGG AGACCACTAC GTCGATAC	288
(2) INFORMATION FOR SEQ ID NO:197:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 289 base pairs

*

(B)	TYPE: nucleic acid
(C)	STRANDEDNESS: single
(D)	TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:

TTGGGCACCT TCAATATCAT	GACAGGTGAT	GTGATAACCA	AGAAGGCTAC	TAAGTGATTA	60
ATGGGTGGGT AATGTATACA	GAGTAGGTAC	ACTGGACAGA	GGGGTAATTC	ATAGCCAAGG	120
CAGGAGAAGC AGAATGGCAA	AACATTTCAT	CACACTACTC	AGGATAGCAT	GCAGTTTAAA	180
ACCTATANGT AGTTTATTTT	TGGAATTTTC	CACTTAATAT	TTTCAGACTG	CAGGTAACTA	240
AACTGTGGAA CACAAGAACA	TAGATAAGGG	GAGACCACTA	CGTCGATAC		289

(2) INFORMATION FOR SEQ ID NO:198:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 288 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

GTATCGACGT	AGTGGTCTCC	CAAGCAGTGG	GAAGAAAACG	TGAACCAATT	AAAATGTATC	60
AGATACCCCA	AAGAAAGGCG	CTTGAGTAAA	GATTCCAAGT	GGGTCACAAT	CTCAGATCTT	120
AAAATTCAGG	CTGTCAAAGA	GATTTGCTAT	GAGGTTGCTC	TCAATGACTT	CAGGCACAGT	180
CGGCAGGAGA	TTGAAGCCCT	GGCCATTGTC	AAGATGAAGG	AGCTTTGTGC	CATGTATGGC	240

AAGAAAGACC	${\tt CCAATGAGCG}$	GGACTCCTGG	AGACCACTAC	GTCGATAC	288

(2) INFORMATION FOR SEQ ID NO:199:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1027 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

GCTTTTTGGG AAAAACNCAA NT	TGGGGGAAA	GGGGGNTTNN	TNGCAAGGGG	ATAAAGGGGG	60
AANCCCAGGG TTTCCCCATT CA	AGGGAGGTG	TAAAAAGNCG	GCCAGGGGAT	TGTAANAGGA	120
TTCAATAATA GGGGGAATGG GG	CCCNGAAGT	TGCAAGGTTC	CNGCCCGCCA	TGNCCGCGGG	180
ATTTAGTGAC ATTACGACGS TO	GGTAATAAA	GTGGGSCCAA	WAAATATTTG	TGATGTGATT	240
TTTSGACCAG TGAACCCATT G	WACAGGACC	TCATTTCCTY	TGAGATGRTA	GCCATAATCA	300
GATAAAAGRT TAGAAGTYTT TO	CTGCACGTT	AACAGCATCA	TTAAATGGAG	rggcatcacc	360
AATTTCACCC TTTGTTAGCC GA	ATACCTTCC	CCTTGAAGGC	ATTCAATTAA	GTGACCAATC	420
GTCATACGAG AGGGGATGGC A	TGGGGATTG	ATGATGATAT	CAGGGGTGAT	ACCTTCACAG	480
GTGAAAGGCA TATCCTCTTG TO	CTATACTGA	ATACCACAAG	TACCCTTTTG	ACCATGTCGA	540
CTAGCAAATT TGTCTCCAAT C	TGTGTWATC	CCTAACAGAG	CGTACCCTTA	TTTTACAAAA	600
TTTATATCCT TCCTGATTGA G	AGTTACCAT	AACCTGATCC	ACAATGCCCG	TCTCGCTWGT	660
TCTGAGAAAA GTGCTACAGT C	TCTCTTGGT	ATAGCGTCTA	TTGGTGCTCT	CCAATTCATC	720

TTCATTTTTC	AGGCAAGGTG	AACTGTTTTG	CCTATAATAA	CMTCATCTCC	TGATACMCGA	780
AACCCCKGGA	RCTATCAAAC	CATCATCATC	CAGCGTTCKT	WATGTYMCTA	AATCCCTATT	840
GCGGCCGCCT	GCAGGTCAAC	ATATNGGAAA	ACCCCCCACC	CCTTNGGAGC	NTACCTTGAA	900
TTTTCCATAT	GTCCCNTAAA	TTANCTNGNC	TTANCCTGGC	CNTAACCTNT	TCCGGTTTAA	960
ATTGTTTCCG	CCCCCNTTCC	CCNCCTTNNA	ACCGGAAACC	TTAATTTTNA	ACCNGGGGTT	1020
CCTATCC						1027

(2) INFORMATION FOR SEQ ID NO:200:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 207 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:200:

AGTGACATTA CGACGCTGGC CATCTTGAAT CCTAGGGCAT GAAGTTGCCC CAAAGTTCAG 60

CACTTGGTTA AGCCTGATCC CTCTGGTTTA TCACAAAGAA TAGGATGGGA TAAAGAAAGT 120

GGACACTTAA ATAAGCTATA AATTATATGG TCCTTGTCTA GCAGGAGACA ACTGCACAGG 180

TATACTACCA GCGTCGTAAT GTCACTA 207

(2) INFORMATION FOR SEQ ID NO:201:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 209 base pairs

PCT/US97/00485

.

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

TGGGCACCTT CAATATCTAT TAAAAGCACA AATACTGAAG AACACACCAA GACTATCAAT 60

GAGGTTACAT CTGGAGTCCT CGATATATCA GGAAAAAATG AAGTGAACAT TCACAGAGTT 120

TTACTTCTTT GGGAACTCAA ATGCTAGAAA AGAAAAGGGT GCCCTCTTTC TCTGGCTTCC 180

TGGTCCTATC CAGCGTCGTA ATGTCACTA 209

(2) INFORMATION FOR SEQ ID NO:202:

(1) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 349 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:

NTACGCTGCA ACACTGTGGA GCCACTGGTT TTTATTCCCG GCAGGTTATC CAGCAAACAG 60

TCACTGAACA CACCGAAGAC CGTGGTATGG TAACCGTTCA CAGTAATCGT TCCAGTCGTC 120

TGCGGGACCC CGACGAGCGT CACTGGGTAC AGACCAGATT CAGCCGGAAG AGAAAGCGCC 180

GCAGGGAGAG ACTCGAACTC CACTCCGCTG GTGAGCAGCC CCATGTTTTC AACTCGAAGT 240

TCAAACGGCA TTGGGTTATA TACCATCAGC TGAACTTCAC ACACATCTCC TTGAACCCAC 300

TGGAAATCTA TTTTCTTGTT CCGCTCTTCT CCACAGTGTT GCAGCGTAA	349
(2) INFORMATION FOR SEQ ID NO:203:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 241 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:	
TGCTCCTCTT GCCTTACCAA CCCAAAGCCC ACTGTGAAAT ATGAAGTGAA TGACAAAATT	60
CAGTTITCAA CGCAATATAG TATAGTTTAT CTGATTCTIT TGATCTCCAG GACACTTTAA	120
ACAACTGCTA CCACCACCAC CAACCTAGGG ATTTAGGATT CTCCACAGAC CAGAAATTAT	180
TTCTCCTTTG AGTTTCAGGC TCCTCTGGGA CTCCTGTTCA TCAATGGGTG GTAAATGGCT	240
Λ	241
(2) INFORMATION FOR SEQ ID NO:204:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 248 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	,
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:	
TAGCCATTTA CCACCCATCT GCAAACCSWG ACMWWCARGR CYWGWACKYA GGCGATTTGA	60

Ŋ

WO 97/25426 PCT/US97/00485

172

AGTACTGGTA	ATGCTCTGAT	CATGTTAGTT	ACATAAGTGT	GGTCAGTTTA	CAAAAATTCA	120
CAGAACTAAA	TACTCAATGC	TATGTGTTCA	тстстстстт	TATGTGTGTG	TAATGTTTCA	180
ATTAAGTTTT	TTTAAAAAAA	AGAGATGATT	TCCAAA FAAG	AAAGCCGTGT	TGGTAAGGCA	240
AGAGGAGC						248

(2) INFORMATION FOR SEQ ID NO:205:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 505 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:

TACGCTGCAA CACTGTGGAG CCATTCATAC AGGTCCCTAA TTAAGGAACA AGTGATTA	TG 60
CTACCTTTGC ACGGTTAGGG TACCGCGGCC GTTAAACATG TGTCACTGGG CAGGCGGT	GC 120
CTCTAATACT GGTGATGCTA GAGGTGATGT TTTTGGTAAA CAGGCGGGGT AAGATTTG	CC 180
GAGTTCCTTT TACTTTTTTT AACCTTTCCT TATGAGCATG CCTGTGTTGG GTTGACAG	TG 240
GGGGTAATAA TGACTTGTTG GTTGATTGTA GATATTGGGC TGTTAATTGT CAGTTCAG	TG 300
TITTAATCTG ACGCAGGCTT ATGCGGAGGA GAATGTTTTC ATGTTACTTA TACTAACA	TT 360
AGTTCTTCTA TAGGGTGATA GATTGGTCCA ATTGGGTGTG AGGAGTTCAG TTATATGT	TT 420
GGGATTTTTT AGGTAGTGGG IGTTGANCTT GAACGCTTTC TTAATTGGTG GCTGCTTT	TA 480
RGCCTACTAT GGGTGGTAAA TGGCT	505

(2) INFORMATION FOR SEQ ID NO:206:	
. (i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 179 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:206:	
TAGACTGACT CATGTCCCCT ACCAAAGCCC ATGTAAGGAG CTGAGTTCTT AAAGACTGAA	60
GACAGACTAT TCTCTGGAGA AAAATAAAAT GGAAATTGTA CTTTAAAAAA AAAAAAAATC	120
GGCCGGGCAT GGTAGCACAC ACCTGTAATC CCAGCTACTA GGGGACATGA GTCAGTCTA	179
(2) INFORMATION FOR SEQ ID NO:207:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 176 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:	
AGACTGACTC ATGTCCCCTA CCCCACCTTC TGCTGTGCTG	60
AGACTGGTAC TGGTCAGTGG CCTGGGGGTT GGGGACCTCT ATTATATGGG ATACAAATTT	120
AGGAGTTGGA ATTGACACGA TTTAGTGACT GATGGGATAT GGGTGGTAAA TGGCTA	176
(2) INFORMATION FOR SEQ ID NO:208:	

ķ

The state of the s

17.

岩

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 196 base pa	airs			
	(B) TYPE: nucleic acid				
	(C) STRANDEDNESS: sing	le			
	(D) TOPOLOGY: linear				
(xi) S	EQUENCE DESCRIPTION: SE	EQ ID NO:208	8:		٠
AGACTGACTC	ATGTCCCCTA TTTAACAGGG	TCTCTAGTGC	TGTGAAAAAA	AAAAATGCTG	60
AACATTGCAT	ATAACTTATA TTGTAAGAAA	TACTGTACAA	TGACTTTATT	GCATCTGGGT	120
AGCTGTAAGG	CATGAAGGAT GCCAAGAAGT	TTAAGGAATA	TGGGTGGTAA	ATGGCTAGGG	180
GACATGAGTC	AGTCTA				196
(2) INFOR	MATION FOR SEQ 1D NO:20)9 :			
(i) S	EQUENCE CHARACTERISTICS	S :			
	(Λ) LENGTH: 345 base pa	airs			
	(B) TYPE: nucleic acid				
	(C) STRANDEDNESS: singl	le			
	(D) TOPOLOGY: linear				
(xi) S	EQUENCE DESCRIPTION: SE	EQ ID NO:209) :		
GACGCTTGGC	CACTTGACAC CTTTTATTTT	TTAAGGATTC	TTAAGTCATT	TANGTNACTT	60
TGTAAGTTTT	TCCTGTGCCC CCATAAGAAT	GATAGCTTTA	AAAATTATGC	TGGGGTAGCA	120
AAGAAGATAC	TTCTAGCTTT AGAATGTGTA	GGTATAGCCA	GGATTCTTGT	GAGGAGGGGT	180
GATTTAGAGC	AAATTICTIA TICTCCTIGC	CTCATCTGTA	ACATGGGGAT	AATAATAGAA	240

CTGGCTTGAC AAGGTTGGAA TTAGTATTAC ATGGTAAAATA CATGTAAAAT GTTTAGAATG	300
GTGCCAAGTA TCTAGGAAGT ACTTGGGCAT GGGTGGTAAA TGGCT	345
(2) INFORMATION FOR SEQ ID NO:210:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 178 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:210:	
GACGCTTGGC CACTTGACAC TAGAGTAGGG TTTGGCCAAC TTTTTCTATA AAGGACCAGA	60
GAGTAAATAT TICAGGCTTT GTGGGTTGTG CAGTCTCTCT TGCAACTACT CAGCTCTGCC	120
ATTGTAGCAT AGAAATCAGC CATAGACAGG ACAGAAATGA ATGGGTGGTA AATGGCTA	178
(2) INFORMATION FOR SEQ ID NO:211:	
(1) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 454 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:211:	
TGGGCACCTT CAATATCTAT CCAGCGCATC TAAATTCGCT TTTTTCTTGA TIAAAAATTT	60
CACCACTIGC IGITITIGCT CATGITATACC AAGTAGCAGT GGTGTGAGGC CATGCTTGTT	120

A

A52.5

, id

ITTTGATTCG	ATATCAGCAC	CGTATAAGAG	CAGTGCTTTG	GCCATTAATT	TATCTTCATT	180
GTAGACAGCA	TAGTGTAGAG	TGGTATCTCC	ATACTCATCT	GGAATATTTG	GATCAGTGCC	240
ATGTTCCAGC	AACATTAACG	CACATTCATC	TTCCTGGCAT	TGTACGGCCT	TTGTCAGAGC	300
TGTCCTCTTT	TTGTTGTCAA	GGACATTAAG	TTGACATCGT	CTGTCCAGCA	CGAGTTTTAC	360
TACTTCTGAA	TTCCCATTGG	CAGAGGCCAG	ATGTAGAGCA	бтсстстттт	GCTTGTCCCT	420
CTTGTTCACA	TCAGTGTCCC	TGAGCATAAC	GGAA			454

(2) INFORMATION FOR SEQ ID NO:212:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 337 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:

TCCGTTATGC CACCCAGAAA ACCTACTGGA GTTACTTATT AACATCAAGG CTGGAACCTA 60

TTTGCCTCAG TCCTATCTGA TTCATGAGCA CATGGTTATT ACTGATCGCA TTGAAAACAT 120

TGATCACCTG GGTTTCTTTA TTTATCGACT GTGTCATGAC AAGGAAACTT ACAAACTGCA 180

ACGCAGAGAAA ACTATTAAAG GTATTCAGAA ACGTGAAGCC AGCAATTGTT TCGCAATTCG 240

GCATTTTGAA AACAAATTTG CCGTGGAAAC TTTAATTTGT TCTTGAACAG TCAAGAAAAA 300

CATTATTGAG GAAAATTAAT ATCACAGCAT AACGGAA 337

WO 97/25426 PCT/US97/00485

177

(2) INFORMATION FOR SEQ ID NO:213:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 715 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:213:

TCGGGTGATG CCTCCTCAGG CATCTTCCAT CCATCTCTTC AAGATTAGCT GTCCCAAATG 60 TTTTTCCTTC TCTTCTTTAC TGATAAATTT GGACTCCTTC TTGACACTGA TGACAGCTTT 120 AGTATCCTTC TTGTCACCTT GCAGACTTTA AACATAAAAA TACTCATTGG TTTTAAAAGG 180 AAAAAAGTAT ACATTAGCAC TATTAAGCTT GGCCTTGAAA CATTTTCTAT CTTTTATTAA 240 ATGTCGGTTA GCTGAACAGA ATTCATTTTA CAATGCAGAG TGAGAAAAGA AGGGAGCTAT 300 ATGCATTIGA GAATGCAAGC ATTGTCAAAT AAACATTITA AATGCTTTCT TAAAGTGAGC 360 ACATACAGAA ATACATTAAG ATATTAGAAA GTGTTTTTGC TTGTGTACTA CTAATTAGGG 420 AAGCACCTTG TATAGTTCCT CTTCTAAAAT TGAAGTAGAT TTTAAAAACC CATGTAATTT 480 AATTGAGCTC TCAGTTCAGA TTTTAGGAGA ATTTTAACAG GGATTTGGTT TTGTCTAAAT 540 TTTGTCAATT TNTTTAGTTA ATCTGTATAA TTTTATAAAT GTCAAACTGT ATTTAGTCCG 600 TTTTCATGCT GCTATGAAAG AAATACCCAN GACAGGGTTA TTTATAAANG GAAAGANGTT 660 AATTTGACTC CCAGTTCACA GGCCTGAGGA NGNATCNCCC GAAATCCTTA TTGCG 715

(2) INFORMATION FOR SEQ ID NO:214:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 345 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:	
GGTAANGNGC ATACNTCGGT GCTCCGGCCG CCGGAGTCGG GGGATTCGGG TGATGCCTCC	60
TCAGGCCCAC TTGGGCCTGC TTTTCCCAAA TGGCAGCTCC TCTGGACATG CCATTCCTTC	120
T000400700 0704T0770 4747077000 707007077 7770700707 11770070.	
TCCCACCTGC CTGATTCTTC ATATGTTGGG TGTCCCTGTT TTTCTGGTGC TATTTCCTGA	180
CTGCTGTTCA GCTGCCACTG TCCTGCAAAG CCTGCCTTTT TAAATGCCTC ACCATTCCTT	240
CIGCIGITICA GEOGECACIG TECTGEAAAG ECIGECTITI TAAATGEETE ACCATTECTT	240
CATTTGTTTC TTAAATATGG GAAGTGAAAG TGCCACCTGA GGCCGGGCAC AGTGGCTCAC	300
CATTOTTE TEACHER DANGED AND TO THE CALCUTAL DECEMBER AND THE COLOR	300
GCCTGTAATC CCAGCACTTT GGGAGCCTGA GGAGGCATCA CCCGA	345
	0.0
(2) INFORMATION FOR SEQ ID NO:215:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 429 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:	
GGTGATGCCT CCTCAGGCGA AGCTCAGGGA GGACAGAAAC CTCCCGTGGA GCAGAAGGGC	60
AAAAGCTCGC TTGATCTTGA TTTTCAGTAC GAATACAGAC CGTGAAAGCG GGGCCTCACG	120
AAAAGCTCGC TTGATCTTGA TTTTCAGTAC GAATACAGAC CGTGAAAGCG GGGCCTCACG	120

\$

PCT/US97/00485

ATCCTTCTGA	CCTTTTGGGT	TTTAAGCAGG	AGGTGTCAGA	AAAGTTACCA	CAGGGATAAC	180
TGGCTTGTGG	CGGCCAAGCG	TTCATAGCGA	CGTCGCTTTT	TGATCCTTCG	ATGTCGGCTC	240
TTCCTATCAT	TGTGAAGCAG	AATTCACCAA	GCGTTGGATT	GTTCACCCAC	TAATAGGGAA	300
CGTGAGCTGG	GTTTAGACCG	TCGTGAGACA	GGTTAGTTTT	ACCCTACTGA	TGATGTGTKG	360
TTGCCATGGT	AATCCTGCTC	AGTACGAGAG	GAACCGCAGG	TTCASACATT	TGGTGTATGT	420
GCTTGCCTT						429

(2) INFORMATION FOR SEQ ID NO:216:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 593 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:216:

TGACACCTAT GTCCNGCATC TGTTCACAGT TTC	CACAAAT AGCCAGCCTT TGGCCACCTC 60
TCTGTCCTGA GGTATACAAG TATATCAGGA GGT	GTATACC TTCTCTTCTC TTCCCCACCA 120
AAGAGAACAT GCAGGCTCTG GAAGCTGTCT TAG	GAGCCTT TGGGCTCAGA ATTTCAGAGT 180
CTTGGGTACC TTGGATGTGG TCTGGAAGGA GAA	ACATTGG CTCTGGATAA GGAGTACAGC 240
CGGAGGAGGG TCACAGAGCC CTCAGCTCAA GCCC	CCTGTGC CTTAGTCTAA AAGCAGCTTT 300
GGATGAGGAA GCAGGTTAAG TAACATACGT AAG	CGTACAC AGGTAGAAAG TGCTGGGAGT 360

CAGAATTGCA CAGTGTGTAG GAGTAGTACC TCAATCAATG AGGGCAAATC AACTGAAAGA	420
AGAAGACCNA TTAATGAATT GCTTANGGGG AAGGATCAAG GCTATCATGG AGATCTTTCT	480
AGGAAGATTA TTGTTTANAA TTATGAAAGG ANTAGGGCAG GGACAGGGCC AGAAGTANAA	540
GANAACATTG CCTATANCCC TTGTCTTGCA CCCAGATGCT GGACAAGGTG TCA	593
(2) INFORMATION FOR SEQ ID NO:217:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 335 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:217:	
TGACACCTTG TCCAGCATCT GACGTGAAGA TGAGCAGCTC AGAGGAGGTG TCCTGGATTT	60
CCTGGTTCTG TGGGCTCCGT GGCAATGAAT TCTTCTGTGA AGTGGATGAA GACTACATCC	120
AGGACAAATT TAATCTTACT GGACTCAATG AGCAGGTCCC TCACTATCGA CAAGCTCTAG	180
ACATGATCTT GGACCTGGAG CCTGATGAAG AACTGGAAGA CAACCCCAAC CAGAGTGACC	240
TGATTGAGCA GGCAGCCGAG ATGCTTTATG GATTGATCCA CGCCCGCTAC ATCCTTACCA	300
ACCGTGGCAT CGCCCAGATG CTGGACAAGG TGTCA	335
(2) INFORMATION FOR SEQ ID NO:218:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 248 base pairs	

(B) TYPE: nucleic acid

7

¥,

(C)	STRANDEDNE	ESS:	single
(D)	TOPOLOGY:	line	ear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:

TACGTACTGG TCTTGAAGGT CTTAGGTAGA GAAAAAATGT GAATATTTAA TCAAAGACTA 60

TGTATGAAAT GGGACTGTAA GTACAGAGGG AAGGGTGGCC CTTATCGCCA GAAGTTGGTA 120

GATGCGTCCC CGTCATGAAA TGTTGTGTCA CTGCCCGACA TTTGCCGAAT TACTGAAATT 180

CCGTAGAATT AGTGCAAATT CTAACGTTGT TCATCTAAGA TTATGGTTCC ATGTTTCTAG 240

TACTTTTA 248

(2) INFORMATION FOR SEQ ID NO:219:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 530 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:

TGACGCTTGG CCACTTGACA CAAGTAGGGG ATAAGGACAA AGACCCATNA GGTGGCCTGT 60

CAGCCTTTTG TTACTGTTGC TTCCCTGTCA CCACGGCCCC CTCTGTAGGG GTGTGCTGTG 120

CTCTGTGGAC ATTGGTGCAT TTTCACACAT ACCATTCTCT TTCTGCTTCA CAGCAGTCCT 180

GAGGCGGGAG CACACAGGAC TACCTTGTCA GATGANGATA ATGATGTCTG GCCAACTCAC 240

CCCCCCAACCT TCTCACTAGT TATANGAAGA GCCANGCCTA NAACCTTCTA TCCTGNCCCC 300

PCT/US97/00485 WO 97/25426

182

TTGCCCTATG ACCTO	CATCCC TGTTCCATGC	CCTATTCTGA	TTTCTGGTGA	ACTTTGGAGC	360
AGCCTGGTTT NTCCT	FCCTCA CTCCAGCCTC	TCTCCATACC	ATGGTANGGG	GGTGCTGTTC	420
CACNCAAANG GTCAC	GGTGTG TCTGGGGAAT	CCTNANANCT	GCCNGGAGTT	TCCNANGCAT	480
TCTTAAAAAC CTTCT	ITGCCT AATCANATNG	TGTCCAGTGG	CCAACCNTCN		530
(2) INFORMATION	FOR SEO ID NO:220).			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 531 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:

TGACGCTTGG CCACTTGACA CTAAATAGCA TCTTCTAAAG GCCTGATTCA GAGTTGTGGA 60 AAATTCTCCC AGTGTCAGGG ATTGTCAGGA ACAGGGCTGC TCCTGTGCTC ACTTTACCTG 120 CTGTGTTTCT GCTGGAAAAG GAGGGAAGAG GAATGGCTGA TTTTTACCTA ATGTCTCCCA 180 GITTITCATA TICTICITGG ATCCTCTTCT CTGACAACTG ITCCCTTTTG GTCTTCTTCT 240 TCTTGCTCAG AGAGCAGGTC TCTTTAAAAC TGAGAAGGGA GAATGAGCAA ATGATTAAAG 300 AAAACACACT TCTGAGGCCC AGAGATCAAA TATTAGGTAA ATACTAAACC GCTTGCCTGC 360 TGTGGTCACT TTTCTCCTCT TTCACATGCT CTATCCCTCT ATCCCCCACC TATTCATATG 420 GCTTTTATCT GCCAAGTTAT CCGGCCTCTC ATCAACCTTC TCCCCTAGCC TACTGGGGGA 480

.

SANSTANT CONTRACTOR

4

3

TATCCATCTG GGTCTGTCTC TGGTGTATTG GTGTCAAGTG GCCAAGCGTC A	531
(2) INFORMATION FOR SFQ ID NO:221:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 530 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:221:	
ATTGACGCTT GGCCACTTGA CACCCGCCTG CCTGCAATAC TGGGGCAAGG GCCTTCACTG	60
CTTTCCTGCC ACCAGCTGCC ACTGCACACA GAGATCAGAA ATGCTACCAA CCAAGACTGT	120
TGGTCCTCAG CCTCTCTGAG GAGAAAGAGC AGAAGCCTGG AAGTCAGAAG AGAAGCTAGA	180
TCGGCTACGG CCTTGGCAGC CAGCTTCCCC ACCTGTGGCA ATAAAGTCGT GCATGGCTTA	240
ACAATGGGGG CACCTCCTGA GAAACACATT GTTAGGCAAT TCGGCGTGTG TTCATCAGAG	300
CATATTTACA CAAACCTCGA TAGTGCAGCC TACTATCCAC TATTGCTCCT ACGCTGCAAA	360
CCTGAACAGC ATGGGACTGT ACTGAATACT GGAAGCAGCT GGTGATGGTA CTTATTTGTG	420
TATCTAAACA CAGAGAAGGT ACAGTAAGAA TATGGTATCA TAAACTTACA GGGACCGCCA	480
TCCTATATGC AGTCTGTTGT GACCAAAATG TGTCAAGTGG CCAAGCGTCA	530
(2) INFORMATION FOR SEQ ID NO:222:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 578 base pairs

(B) TYPE: nucleic acid

2

¢.

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:	
TGTATCGACG TAGTGGTCTC CGGGCTACTA GGCCGTTGTG TGCTGGTAGT ACCTGGTTCA	60
CTGAAAGGCG CATCTCCCTC CCCGCGTCGC CCTGAAGCAG GGGGAGGACT TCGCCCAGCC	120
AAGGCAGTTG TATGAGTTTT AGCTGCGGCA CTTCGAGACC TCTGAGCCCA CCTCCTTCAG	180
GAGCCTTCCC CGATTAAGGA AGCCAGGGTA AGGATTCCTT CCTCCCCCAG ACACCACGAA	240
CAAACCACCA CCCCCCCTAT TCTGGCAGCC CATATACATC AGAACGAAAC AAAAATAACA	300
AATAAACNAA AACCAAAAAA AAAAGAGAAG GGGAAATGTA TATGTCTGTC CATCCTGTTG	360
CTTTAGCCTG TCAGCTCCTA NAGGGCAGGG ACCGTGTCTT CCGAATGGTC TGTGCAGCGC	420
CGACTGCGGG AAGTATCGGA GGAGGAAGCA GAGTCAGCAG AAGTTGAACG GTGGGCCCGG	480
CGGCTCTTGG GGGCTGGTGT TGTACTTCGA GACCGCTTTC GCTTTTTGTC TTAGATTTAC	540
GTTTGCTCTT TGGAGTGGGA NACCACTACN TCNATACA	578
(2) INFORMATION FOR SEQ ID NO:223:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 578 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ 1D NO:223:	
TGTATCGACG TAGTGGTCTC CTCTTGCAAA GGACTGGCTG GTGAATGGTT TCCCTGAATT	60

240

ATGGACTTAC CCTAAACATA TCTTATCATC ATTACCAGTT GCAAAATATT AGAATGTGTT	120
GTCACTGTTT CATTTGATTC CTAGAAGGTT AGTCTTAGAT ATGTTACTTT AACCTGTATG	180
CTGTAGTGCT TTGAATGCAT TTTTTGTTTG CATTTTTGTT TGCCCAACCT GTCAATTATA	240
GCTGCTTAGG TCTGGACTGT CCTGGATAAA GCTGTTAAAA TATTCACCAG TCCAGCCATC	300
TTACAAGCTA ATTAAGTCAA CTAAATGCTT CCTTGTTTTG CCAGACTTGT TATGTCAATC	360
CTCAATTTCT GGGTTCATTT TGGGTGCCC1 AAATCTTAGG GTGTGACTTT CTTAGCATCC	420
TGTAACATCC ATTCCCAAGC AAGCACAACT TCACATAATA CTTTCCAGAA GTTCATTGCT	480
GAAGCCTTTC CTTCACCCAG CGGAGCAACT TGATTTTCTA CAACTTCCCT CATCAGAGCC	540
ACAAGAGTAT GGGATATGGA GACCACTACG TCGATACA	578
(2) INFORMATION FOR SEQ ID NO:224:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 345 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:224:	
TGTATCGACG TANTGGTCTC CCAAGGTGCT GGGATTGCAG GCATGAGCCA CCACTCCCAG	60
GTGGATCTTT TTCTTTATAC TTACTTCATT AGGTTTCTGT TATTCAAGAA GTGTAGTGGT	120

AAAAGTCTTT TCAATCTACA TGGTTAAATA ATGATAGCCT GGGAAATAAA TAGAAATTTT

TTCTTTCATC TTTAGGTTGA ATAAAGAAAC AGAAAAAATA GAACATACTG AAAATAATCT

THE PERSON NAMED IN

AAGTTCCAAC CATAGAAGAA CTGCAGAAGA AATGAAGAAA GTGATGATGA TTTAGATTTT	300
GATATTGATT TAGAAGACAC AGGAGGAGAC CACTACGTCG ATACA	345
(2) INFORMATION FOR SEQ ID NO:225:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 347 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:225:	
TGTATCGACG TAGTGGTCTC CAAACTGAGG TATGTGTGCC ACTAGCACAC AAAGCCTTCC	60
AACAGGGACG CAGGCACAGG CAGTTTAAAG GGAATCTGTT TCTAAATTAA TTTCCACCTT	120
CTCTAAGTAT TCTTTCCTAA AACTGATCAA GGTGTGAAGC CTGTGCTCTT TCCCAACTCC	180
CCTTTGACAA CAGCCTTCAA CTAACACAAG AAAAGGCATG TCTGACACTC TTCCTGAGTC	240
TGACTCTGAT ACGTTGTTCT GATGTCTAAA GAGCTCCAGA ACACCAAAGG GACAATTCAG	300
AATGCTGGTG TATAACAGAC TCCAATGGAG ACCACTACGT CGATACA	347
(2) INFORMATION FOR SEQ ID NO:226:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 281 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:226:

₩,

300

360

420

480

AGGNGNGGGA NTGTATCGAC GTAGTGGTCT CCCAACAGTC TGTCATTCAG TCTGCAGGTG	60
TCAGTGTTTT GGACAATGAG GCACCATTGT CACTTATTGA CTCCTCAGCT CTAAATGCTG	120
AAATTANATC TIGTCATGAC AAGTCTGGAA TICCTGATGA GGTTTTACAA AGTATTTTGG	180
ATCAATACTC CAACAAATCA GAAAGCCAGA AAGAGGATCC TTTCAATATT GCAGAACCAC	240
GAGTGGATTT ACACACCTCA GGAGACCACT ACGTCGATAC A	281
(2) INFORMATION FOR SEQ ID NO:227:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 3646 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:	
GGGAAACACT TCCTCCCAGC CTTGTAAGGG TTGGAGCCCT CTCCAGTATA TGCTGCAGAA	60
TTTTTCTCTC GGTTTCTCAG AGGATTATGG AGTCCGCCTT AAAAAAGGCA AGCTCTGGAC	120
ACTCTGCAAA GTAGAATGGC CAAAGTTTGG AGTTGAGTGG CCCCTTGAAG GGTCACTGAA	180

CCTCACAATT GTTCAAGCTG TGTGGCGGGT TGTTACTGAA ACTCCCGGCC TCCCTGATCA

GTTTCCCTAC ATTGATCAAT GGCTGAGTTT GGTCAGGAGC ACCCCTTCCG TGGCTCCACT

CATGCACCAT TCATAATTTT ACCTCCAAGG TCCTCCTGAG CCAGACCGTG TTTTCGCCTC

GACCCTCAGC CGGTTCGGCT CGCCCTGTAC TGCCTCTCTC TGAAGAAGAG GAGAGTCTCC

CTCACCCAGT CCCACCGCCT TAAAACCAGC CTACTCCCTT AGGGTCATCC CATGTCTCCT

ŝi

J.

17

S.

7.4

AND THE PERSON NAMED IN COLUMN

3

а.,

·

骐

CGGCT	FATGTC	CCCTGTAGGC	TCATCACCCA	TTGCCTCTTG	GTTGCAACCG	TGGTGGGAGG	540
AAGT/	AGCCCC	TCTACTACCA	CTGAGAGAGG	CACAAGTCCC	TCT:GGGTGAT	GAGTGCTCCA	600
cccc	сттест	GGTTTATGTC	ссттстттст	ACTTCTGACT	TGTATAATTG	GAAAACCCAT	660
AATCC	тссст	TCTCTGAAAA	GCCCCAGGCT	TTGACCTCAC	TGATGGAGTC	TGTACTCTGG	720
ACAC/	NTTGGC	CCACCTGGGA	TGACTGTCAA	CAGCTCCTTT	TGACCCTTTT	CACCTCTGAA	780
GAGAG	GGAAA	GTATCCAAAG	AGAGGCCAAA	AAGTACAACC	TCACATCAAC	CAATAGGCCG	840
GAGGA	IGGAA G	CTAGAGGAAT	AGTGATTAGA	GACCCAATTG	GGACCTAATT	GGGACCCAAA	900
тттст	CAAGT	GGAGGGAGAA	CTTTTGACGA	TTTCCACCGG	TATCTCCTCG	TGGGTATTCA	960
GGGAG	CTGCT	CAGAAACCTA	TAAACTTGTC	TAAGGCGACT	GAAGTCGTCC	AGGGCATGA	1020
TGAGT	CACCA	GGAGTGTTTT	TAGAGCACCT	CCAGGAGGCT	TATCAGATTT	ACACCCCTTT	1080
TGACC	TGGCA	GCCCCGAAA	ATAGCCATGC	TCTTAATTTG	GCATTTGTGG	CTCAGGCAGC	1140
CCCAG	SATAGT	AAAAGGAAAC	TCCAAAAACT	AGAGGGATTT	TGCTGGAATG	AATACCAGTC	1200
AGCTT	TTAGA	GATAGCCTAA	AAGGTTTTTG	ACAGTCAAGA	GGTTGAAAAA	CAMAAACAAG	1260
CAGCT	CAGGC	AGCTGAAAAA	AGCCACTGAT	AAAGCATCCT	GGAGTATCAG	AGTTTACTGT	1320
TAGAT	CAGCC	TCATTTGACT	TCCCCTCCCA	CATGGTGTTT	AAATCCAGCT	ACACTACTTC	1380
CTGAC	CTCAAA	CTCCACTATT	CCTGTTCATG	ACTGTCAGGA	ACTGTTGGAA	ACTACTGAAA	1440
CTGGC	CCGACC	TGATCTTCAA	AATGTGCCCC	TAGGAAAGGT	GGATGCCACC	ATGTTCACAG	1500
ACAG	TAGCAG	CTTCCTCGAG	AAGGGACTAC	GAAAGGCCGG	TGCAGCTGTT	ACCATGGAGA	1560

Control of

Ţ,

CAGATGTGTT CTGGGCTCAG GCTTTACCAG CAAACACCTC AGCACAAAAG GCTGAATTGA	1620
TCGCCCTCAC TCAGGCTCTC CGATGGGGTA AGGATATTAA CGTTAACACT GACAGCAGGT	1680
ACGCCTTTGC TACTGTGCAT GTACGTGGAG CCATCTACCA GGAGCGTGGG CTACTCACCT	1740
CAGCAGGTGG CTGTAATCCA CTGTAAAGGA CATCAAAAGG AAAACACGGC TGTTGCCCGT	1800
GGTAACCAGA AAGCTGATTC AGCAGCTCAA GATGCAGTGT GACTTTCAGT CACGCCTCTA	1860
AACTTGCTGC CCACAGTCTC CTTTCCACAG CCAGATCTGC CTGACAATCC CGCATACTCA	1920
ACAGAAGAAG AAAACTGGCC TCAGAACTCA GAGCCAATAA AAATCAGGAA GGTTGGTGGA	1980
TTCTTCCTGA CTCTAGAATC TTCATACCCC GAACTCTTGG GAAAACTTTA ATCAGTCACC	2040
TACAGTCTAC CACCCATTTA GGAGGAGCAA AGCTACCTCA GCTCCTCCGG AGCCGTTTTA	2100
AGATCCCCCA TCTTCAAAGC CTAACAGATC AAGCAGCTCT CCGGTGCACA ACCTGCGCCC	2160
AGGTAANTGC CAAAAAAGGT CCTAAACCCA GCCCAGGCCA CCGTCTCCAA GAAAACTCAC	2220
CAGGAGAAAA GTGGGAAATT GACTTTACAG AAGTAAAACC ACACCGGGCT GGGTACAAAT	2280
ACCTTCTAGT ACTGGTAGAC ACCTTCTCTG GATGGACTGA AGCATTTGCT ACCAAAAACG	2340
AAACTGTCAA TATGGTAGTT AAGTTTTTAC TCAATGAAAT CATCCCTCGA CATGGGCTGC	2400
CTGTTTGCCA TAGGGTCTGA TAATGGACCG GCCTTCGCCT TGTCTATAGT TTAGTCAGTC	2460
AGTAAGGCGT TAAACATTCA ATGGAAGCTC CATTGTGCCT ATCGACCCCA GAGCTCTGGG	2520
CAAGTAGAAC GCATGAACTG CACCCTAAAA AACACTCTTA CAAAATTAAT CTTAGAAACC	2580
GGTGTAAATT GTGTAAGTCT CCTTCCTTTA GCCCTACTTA GAGTAAGGTG CACCCCTTAC	2640

distant.

「神の神

ارت. بر

A STATE OF

16

1.00

TGGGCTGGGT	TCTTACCTTT	TGAAATCATG	TATGGGAGGG	TGCTGCCTAT	CTTGCCTAAG	2700
CTAAGAGATG	CCCAATTGGC	AAAAATATCA	CAAACTAATT	TATTACAGTA	CCTACAGTCT	2760
CCCCAACAGG	TACAAGATAT	CATCCTGCCA	CTTGTTCGAG	GAACCCATCC	CAATCCAATT	2820
CCTGAACAGA	CAGGGCCCTG	CCATTCATTC	CCGCCAGGTG	ACCTGTTGTT	TGTTAAAAAG	2880
TTCCAGAGAG	AAGGACTCCC	TCCTGCTTGG	AAGAGACCTC	ACACCGTCAT	CACGATGCCA	2940
ACGGCTCTGA	AGGTGGATGG	CATTCCTGCG	TGGATTCATC	ACTCCCGCAT	CAAAAAGGCC	3000
AACAGAGCCC	AACTAGAAAC	ATGGGTCCCC	AGGGCTGGGT	CAGGCCCCTT	AAAACTGCAC	3060
CTAAGTTGGG	TGAAGCCATT	AGATTAATTC	TTTTTCTTAA	TTTTGTAAAA	CAATGCATAG	3120
CTTCTGTCAA	ACTTATGTAT	CTTAAGACTC	AATATAACCC	CCTTGTTATA	ACTGAGGAAT	3180
CAATGATTTG	ATTCCCCCAA	AAACACAAGT	GGGGAATGTA	GTGTCCAACC	TGGTTTTTAC	3240
TAACCCTGTT	TTTAGACTCT	ссстттсстт	TAATCACTCA	GCTTGTTTCC	ACCTGAATTG	3300
ACTCTCCCTT	AGCTAAGAGC	GCCAGATGGA	CTCCATCTTG	GCTCTTTCAC	TGGCAGCCGC	3360
TTCCTCAAGG	ACTTAACTTG	TGCAAGCTGA	CTCCCAGCAC	ATCCAAGAAT	GCAATTAACT	3420
GATAAGATAC	TGTGGCAAGC	TATATCCGCA	GTTCCCAGGA	ATTCGTCCAA	TTGATCACAG	3480
CCCCTCTACC	CTTCAGCAAC	CACCACCCTG	ATCAGTCAGC	AGCCATCAGC	ACCGAGGCAA	3540
GGCCCTCCAC	CAGCAAAAAG	ATTCTGACTC	ACTGAAGACT	TGGATGATCA	TTAGTATTTT	3600
TAGCAGTAAA	GITITTITT	стттстт	стттттст	CGTGCC		364€

...

STATE OF THE PARTY OF THE PARTY

2

1

4

<u>Claims</u>

- 1. An isolated DNA molecule, comprising:
- (a) a nucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227;
- (b) a variant of said nucleotide sequence that contains one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide sequence are retained; or
- (c) a nucleotide sequence encoding an epitope of a polypeptide encoded by at least one sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227.
- 2. An isolated DNA molecule encoding an epitope of a polypeptide, wherein said polypeptide is encoded by a nucleotide sequence that:
- (a) hybridizes to a sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227 under stringent conditions; and
- (b) is at least 80% identical to a sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227;

and wherein RNA corresponding to said nucleotide sequence is expressed at a greater level in human breast tumor tissue than in normal breast tissue.

3. An isolated DNA molecule encoding an epitope of a polypeptide, wherein said polypeptide is encoded by:

蒙

CHEST OF THE PARTY.

ç.

34

- (a) a nucleotide sequence transcribed from the sequence of SEQ ID NO: 141; or
- (b) a variant of said nucleotide sequence that contains one or more nucleotide substitutions, deletions, insertions and/or modifications at no more than 20% of the nucleotide positions, such that the antigenic and/or immunogenic properties of the polypeptide encoded by the nucleotide sequence are retained.
- 4. An isolated DNA or RNA molecule comprising a nucleotide sequence complementary to a DNA molecule according to any one of claims 1-3.
- 5. A recombinant expression vector comprising a DNA molecule according to any one of claims 1-3.
- 6. A host cell transformed or transfected with an expression vector according to claim 5.
- 7. A polypeptide comprising an amino acid sequence encoded by a DNA molecule according to any one of claims 1-3.
- 8. A polypeptide according to claim 7 wherein said polypeptide comprises an epitope of an amino acid sequence encoded by at least one nucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227.
- 9. A monoclonal antibody that binds to a polypeptide according to claim 7.

i.

- 1

Ą

No. of Street, or

- 10. A method for determining the presence of breast cancer in a patient comprising detecting, within a biological sample, at least one polypeptide according to claim 7, and therefrom determining the presence of breast cancer in the patient.
- 11. A method for determining the presence of breast cancer in a patient comprising detecting within a biological sample, at least one polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions.
- 12. The method of claims 10 or 11 wherein the biological sample is a portion of a breast tumor.
- 13. The method of claim 10 wherein the step of detecting comprises contacting the biological sample with a monoclonal antibody according to claim 9.
- 14. The method of claim 11 wherein the step of detecting comprises contacting the biological sample with a monoclonal antibody that binds to a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions.
- 15. A method for determining the presence of breast cancer in a patient comprising detecting, within a biological sample, an RNA molecule encoding at least one polypeptide according to claim 7, and therefrom determining the presence of breast cancer in the patient.
- 16. A method for determining the presence of breast cancer in a patient comprising detecting, within a biological sample, at least one RNA molecule encoding a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID

NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions; and therefrom determining the presence of breast cancer in the patient.

- 17. The method of claims 15 or 16 wherein the biological sample is a portion of a breast tumor.
 - 18. The method of claim 15 wherein the step of detecting comprises:
- (a) preparing cDNA from RNA molecules within the biological sample; and
- (b) specifically amplifying cDNA molecules that are capable of encoding at least a portion of a polypeptide according to claim 7, and therefrom determining the presence of breast cancer in the patient.
 - 19. The method of claim 16 wherein the step of detecting comprises:
- (a) preparing cDNA from RNA molecules within the biological sample; and
- (b) specifically amplifying cDNA molecules that are capable of encoding at least a portion of a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions; and therefrom determining the presence of breast cancer in the patient.
- 20. A polypeptide according to claim 7 for use within a method for detecting the presence of breast cancer in a patient.
- 21. A polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions, for use within a method for detecting the presence of breast cancer in a patient.

3. A. S.

ě,

100

SALES SALES

1

A.S.A.

- 22. A method for monitoring the progression of breast cancer in a patient, comprising:
- (a) detecting an amount, in a biological sample, of at least one polypeptide according to claim 7 at a first point in time;
 - (b) repeating step (a) at a subsequent point in time; and
- (c) comparing the amounts of polypeptide detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient.
- 23. A method for monitoring the progression of breast cancer in a patient, comprising:
- (a) detecting in a biological sample an amount of at least one polypeptide at a first point in time, the polypeptide being encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions;
 - (b) repeating step (a) at a subsequent point in time; and
- (c) comparing the amounts of polypeptide detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient.
- 24. The method of claims 22 or 23 wherein the biological sample is a portion of a breast tumor.
- 25. The method of claim 22 wherein the step of detecting comprises contacting a portion of the biological sample with a monoclonal antibody according to claim 9.
- 26. The method of claim 23 wherein the step of detecting comprises contacting the biological sample with a monoclonal antibody that binds to a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86

A.

Š

1

and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions.

- 27. The method of either of claims 20 or 22 wherein said polypeptide comprises an epitope of an amino acid sequence encoded by at least one nucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 SEQ ID NO:77 and SEQ ID NOS:142, 143, 146-152, 154-166, 168-176, 178-192, 194-198, 200-204, 206, 207, 209-214, 216, 218, 219, 221-227.
- 28. A method for monitoring the progression of breast cancer in a patient, comprising:
- (a) detecting an amount, within a biological sample, of at least one RNA molecule encoding a polypeptide according to claim 7 at a first point in time;
 - (b) repeating step (a) at a subsequent point in time; and
- (c) comparing the amounts of RNA molecules detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient.
 - 29. The method of claim 28 wherein the step of detecting comprises:
- (a) preparing cDNA from RNA molecules within the biological sample; and
- (b) specifically amplifying cDNA molecules that are capable of encoding at least a portion of a polypeptide according to claim 7.
- 30. A method for monitoring the progression of breast cancer in a patient, comprising:
- (a) detecting an amount, within a biological sample, of at least one RNA molecule at a first point in time, the RNA molecule encoding a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions;

大大

è

14.3

- (b) repeating step (a) at a subsequent point in time; and
- (c) comparing the amounts of RNA molecules detected in steps (a) and (b), and therefrom monitoring the progression of breast cancer in the patient.
- 31. A pharmaceutical composition, comprising a polypeptide according to claim 7 and a physiologically acceptable carrier.
- 32. A pharmaceutical composition for inhibiting the development of breast cancer, comprising a polypeptide and a physiologically acceptable carrier, the polypeptide being encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions.
- 33. A vaccine, comprising a polypeptide according to claim 7 and an immune response enhancer.
- 34. A vaccine, comprising a DNA molecule according to any one of claims 1-3.
- 35. A vaccine, comprising a recombinant expression vector comprising a DNA molecule according to any one of claims 1-3.
- 36. A vaccine for inhibiting the development of breast cancer, comprising a polypeptide and an immune response enhancer, the polypeptide being encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220, and sequences that hybridize thereto under stringent conditions.
 - 37. A diagnostic kit comprising:
 - (a) one or more monoclonal antibodies according to claim 9; and

Carried Section

A 300

-4

 $\hat{p}_{i,k}$

- (b) a detection reagent.
- 38. A diagnostic kit comprising:
- (a) one or more monoclonal antibodies that bind to a polypeptide encoded by a nucleotide sequence selected from the group consisting of sequences provided in SEQ ID 78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220; and
 - (b) a detection reagent.
- 39. The kit of any one of claims 37 or 38 wherein the monoclonal antibody(s) are immobilized on a solid support.
- 40. A diagnostic kit comprising a first polymerase chain reaction primer and a second polymerase chain reaction primer, the first and second primers each comprising at least about 10 contiguous nucleotides of an RNA molecule according to claim 4.
- 41. A diagnostic kit comprising a first polymerase chain reaction primer and a second polymerase chain reaction primer, the first and second primers each comprising at least about 10 contiguous nucleotides of an RNA molecule encoding a polypeptide encoded by a nucleotide sequence selected from the group consisting of SEQ ID NOS:78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220.
- 42. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe containing at least about 15 contiguous nucleotides of a DNA molecule according to claim 4.
- 43. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe comprising at least about 15 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID NOS:78-86 and SEQ ID NOS:144, 145, 153, 167, 177, 193, 199, 205, 208, 215, 217, 220.

TO THE PERSON NAMED IN

4

-1

ŗ,

cDNA prepared from normal broast lissuo from the same patient cDNA prepared from broast tunor

FIG. 1

3°4

92

Normal Beast Tissue mANA

Breast Tumor mRNA

FIG. 2

**

¥

第五次

Fig.~3 Substitute sheet (Rule 26)

AND SHAPE STATE

¥

100 A

Ž,

S

Fig.

. Strainger

ġ

A. 18.

. 4

SUBSTITUTE SHEET (RULE 26)

6/21

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B18Ag1

TTA Leu 1	GAG Glu	ACC Thr	CAA Gln	TTG Leu 5	GGA Gly	CCT Pro	AAT Asn	TGG Trp	GAC Asp 10	CCA Pro	AAT Asn	TTC Phe	TCA Ser	AGT Ser 15	GGA Gly	48
					GAT Asp											96
					CCT Pro											144
					TCA Ser											192
GCT Ala 65	TAT Tyr	CGG Arg	ATT	TAC Tyr	ACC Thr 70	CCT Pro	TTT Phe	GAC Asp	CTG Leu	GCA Ala 75	GCC Ala	CCC Pro	GAA Glu	AAT Asn	AGC Ser 80	240
CAT His	GCT Ala	CTT Leu	AAT Asn	TTG Leu 85	GCA Ala	TTT Phe	GTG Val	GCT Ala	CAG Gln 90	GCA Ala	GCC Ala	CCA Pro	GAT Asp	AGT Ser 95	AAA Lys	588
AGG Arg	AAA Lys	CTC Leu	CAA Gln 100	AAA Lys	CTA Leu	GAG Glu	GGA Gly	TTT Phe 105	TGC Cys	TGG Trp	AAT Asn	GAA Glu	TAC Tyr 110	CAG Gln	TCA Ser	336
					CTA Leu											363

Fig. 6

έĶ

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B17Ag1

GGGCACAGTG	GCTCATACCT	GTAATCCTGA	CCGTTTCAGA	GGCTCAGGTG	GGGGGATCGC	60
TTGAGCCCAA	GATTTCAAGA	CTAGTCTGGG	TAACATAGTG	AGACCCTATC	TCTACGAAAA	120
AATAAAAAA	TGAGCCTGGT	GTAGTGGCAC	ACACCAGCTG	AGGAGGGAGA	ATCG	174

FIG. 7

INSDOCID: <WO___9725426A3_IB>

X

ŽÍ.

8/21

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B17Ag2

TGGGGGCTCT	GACTAGAAAT	TCAAGGAACC	TGGGATTCAA	GTCCAACTGT	GACACCAACT	60
TACACTGTGG	NCTCCAATAA	ACTGCTTCTT	TCCTATTCCC	TCTCTATTAA	ATAAAATAAG	120
GAAAACGATG	TCTGTGTATA	GCCAAGTCAG	NTATCCTAAA	AGGAGATACT	AAGTGACATT	180
AAATATCAGA	ATGTAAAACC	TGGGAACCAG	GTTCCCAGCC	TGGGATTAAA	CTGACAGCAA	240
GAAGACTGAA	CAGTACTACT	GTGAAAAGCC	CGAAGNGGCA	ATATGTTCAC	TCTACCGTTG	300
AAGGATGGCT	GGGAGAATGA	ATGCTCTGTC	CCCCAGTCCC	AAGCTCACTT	ACTATACCTC	360
CTTTAT						366

Fig. 8

¥

9/21

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B13Ag2a

TATAATCATG	TTTCTCATTA	TTTTCACATT	TTATTACCAA	TTTCTGTTTA	CCCTGAAAAA	60
TATGAGGGAA	ATATATGAAA	CAGGGAGGCA	ATGTTCAGAT	AATTGATCAC	AAGATATGAT	120
TTCTACATCA	GATGCTGTTT	CCTTTCCTGT	TTATTTCCTT	TTTATTTCGG	TTGTGGGGTT	180
GAATGTAATA	GCTTTGTTTC	AAGAGAGAGT	TTTGGCAGTT	TCTGTAGCTT	CTGACACTGC	240
TCATGTCTCC	AGGCATCTAT	TTGCACTTTA	GGAGGTGTCG	TGGGAGACTG	AGAGGTCTAT	300
TTTTTCCATA	TTTG					314

Fig. 9

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B13Ag1b

ATACAGT	CGG	TTTCCATTTA	TTTAACCCCC	ACCTGAACGG	CATAAACTGA	GTGTTCAGCT	60
GGTGTTT	TTT	ACTGTAAACA	ATAAGGAGAC	TTTGCTCTTC	ATTTAAACCA	AAATCATATT	120
TCATATT	TTA	CGCTCGAGGG	TTTTTACCGG	TTCCTTTTTA	CACTCCTTAA	AACAGTTTTT	180
AACTCGT	TTG	GAACAAGATA	TTTTTCTTT	CCTGGCAGCT	TTTAACATTA	TAGCAAATTT	240
стстстс	GGG	GACTGCTGGT	CACTGTTTCT	CACAGTTGCA	AATCAAGGCA	TTTGCAACCA	300
AGAAAA	AAA	ATTTTTTGT	TTTATTTGAA	ACTGGACCGG	ATAAACGGTG	TTTGGAGCGG	360
CTGCTGT	ATA	TAGTTTTAAA	TGGTTTATTG	CACCTCCTTA	AGTTGCACTT	ATGT	414

Fig. 10

¥

11/21

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B13Ag1a

TATATATTA	ATAACTTAAA	TATATTTTGA	TCACCCACTG	GGGTGATAAG	ACAATAGATA	60
TAAAAGTATT	TCCAAAAAGC	ATAAAACCAA	AGTATCATAC	CAAACCAAAT	TCATACTGCT	120
TCCCCCACCC	GCACTGAAAC	TTCACCTTCT	AACTGTCTAC	CTAACCAAAT	TCTACCCTTC	180
AAGTCTTTGG	TGCGTGCTCA	CTACTCTTTT	TTTTTTTTT	TITNTTTTGG	AGATGGAGTC	240
TGGCTGTGCA	GCCCAGGGGT	GGAGTACAAT	GGCACAACCT	CAGCTCACTG	NAACCTCCGC	300
CTCCCAGGTT	CATGAGATTC	TCCTGNTTCA	GCCTTCCCAG	TAGCTGGGAC	TACAGGTGTG	360
CATCACCATG	CCTGGNTAAT	CTTTTTTNGT	TTTNGGGTAG	AGATGGGGGT	TTTACATGTT	420
GGCCAGGNTG	GTNTCGAACT	CCTGACCTCA	AGTGATCCAC	CCACCTCAGG	CTCCCAAAGT	480
GCTAGGATTA	CAGACATGAG	CC				502

Fig. 11

Ť

, i

, 1

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B11Ag1

AC#	ATGCAGAA	TATICIATES	GIACTICAGE	TATTACTCAT	TTTGATGGCG	CAATCCGAGC	6
CTA	ATCCTCAA	GATGAGTATT	TAGAAAGAAT	TGATTTAGCG	ATAGACCAAG	CTGGTAAGCA	12
CTO	CTGACTAC	ACGAAATTGT	TCAGATGTGA	TGGATTTATG	ACAGTTGATC	TTTGGAAGAG	18
ATI	TATTAAGT	GATTATTTTA	AAGGGAATCC	ATTAATTCCA	GAATATCTTG	GTTTAGCTCA	24
AG/	ATGATATA	GAAATAGAAC	AGAAAGAGAC	TACAAATGAA	GATGTATCAC	CAACTGATAT	30
TGA	AAGAGCCT	ATAGTAGAAA	ATGAATTAGC	TGCATTTATT	AGCCTTACAC	ATAGCGATTT	361
TCC	CTGATGAA	TCTTATATIC	AGCCATCGAC	ATAGCATTAC	CTGATGGGCA	ACCCTTACGA	420
ATA	AATAGAAA	CTGGGTGCGG	GGCTATTGAT	GAATTCATCC	NCAGTAAATT	TGGATATNAC	480
ΔΔΔ	CATATAAC	TOGATTGOAT					500

Fig. 12

ĸ

ú

3

13/21

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B3CA3c

ACTGATGGAT	GTCGCCGGAG	GCGAGGGGCC	TTATCTGATG	CTCGGCTGCC	TGTTCGTGAT	60
GTGCGCGGCG	ATTGGGCTGT	TTATCTCAAA	CACCGCCACG	GCGGTGCTGA	TGGCGCCTAT	120
TGCCTTAGCG	GCGGCGAAGT	CAATGGGCGT	CTCACCCTAT	CCTTTTGCCA	TGGTGGTGGC	180
GATGGCGGCT	TCGGCGGCGT	TTATGACCCC	GGTCTCCTCG	CCGGTTAACA	CCCTGGTGCT	240
TGGCCCTGGC	AAGTACTCAT	TTAGCGATTT	TGTCAAAATA	GGCGTG		286

Fig. 13

14/21

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B9CG1

CAGCCCCTTC	TTCTCAATTT	CATCTGTCAC	TACCCTGGTG	TAGTATCTCA	TAGCCTTACA	60
TTTTTATAGC	CTCCTCCCTG	GTCTGTCTTT	TGATTTTCCT	GCCTGTAATC	CATATCACAC	120
ATAACTGCAA	GTAAACATTT	CTAAAGTGTG	GTTATGCTCA	TGTCACTCCT	GTGCCAAGAA	180
ATAGTTTCCA	TTACCGTCTT	AATAAAATTC	GGATTTGTTC	TTTCCTATTN	TCACTCTTCA	240
С						241

Fig. 14

Ä

35

4

3

15/21

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B9CG3

CAAAGCCAGT	GGTTTGAGCT	CTCTACTGTG	TAAACTCCTA	AACCAAGGCC	ATTTATGATA	60
AATGGTGGCA	GGATTTTTAT	TATAAACATG	TACCCATGCA	AATTTCCTAT	AACTCTGAGA	120
TATATTCTTC	TACATTTAAA	CAATAAAAAT	AATCTATTTT	TAAAAGCCTA	ATTTGCGTAG	180
TTAGGTAAGA	GTGTTTAATG	AGAGGGTATA	AGGTATAAAT	CACCAGTCAA	CGTTTCTCTG	240
C						241

16/21

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B2CA2

CGACGTCGGT	AAAATCGGAC	ATGAAGCCAC	CGCTGGTCTT	TTCGTCCGAG	CGATAGGCGC	60
CGGCCAGCCA	GCGGAACGGT	TGCCCGGATG	GCGAAGCGAG	CCGGAGTTCT	TCGGACTGAG	120
TATGAATCTT	GTTGTGAAAA	TACTCGCCGC	CTTCGTTCGA	CGACGTCGCG	TCGAAATCTT	180
CGAACTCCTT	ACGATCGAAG	TCTTCGTGGG	CGACGATCGC	GGTCAGTTCC	GCCCCACCGA	240
AATCATGGTT	GAGCCGGATG	CTGCCCCCGA	AGCCCT			276

17/21

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B3CA1

CCI	CAGGTCAA	CCAGGCTGCA	ACACGCAGGT	CCTTGGATTG	GGCACGAAGC	AGCGCTTCGC	60
TG	TTTTCCAG	GATTTTCAAC	CAGTCGGTCT	GGCCGTTCTC	ATGGAGCGAG	AGCGCCTTGC	120
CC	AGCTCATT	TTCCAGCGCC	TCGTATTCGC	TGGAAAAACG	CACATCCTCA	CCCGCAAAGA	180
CA	ICCTTTGA	AATCGGCTGT	TCCGCGAGTT	CCAGATANTG	CGAGGAGAGC	TTGCTCGAAT	240
AG	STCATCCT	AACCCTTCAA	TGCACACCAT	GTGCGCCAAT	GAATATCTTA	ACAATTCAAC	300
TA	STTGGCAT	AANAACCGAA	CGAAAATCCC	AATAGTCTGA	AGAGCTCTTT	TG	352

18/21

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B3CA2

CTGCATGTCC	ACGGCCTGGA	TTTACGGGTG	GTCGGCGTTC	ACCCCTGGCA	GCTGGCGCTC	60
TTCCCGACCA	GGCCCAGCAG	GATGTGTGGG	GCAAGGATAA	CGGCGTGCGC	ATCGCCTCGA	120
CCTATATGCC	TACTGGCAAG	GCCGAGCCCG	TGGAAGGCGG	ATTCAGGTTC	ANCGGTCGCT	180
GGAGCTTTTC	CACCGGCTCC	ATGCATTGTG	ACTGGCTGTT	TCTAGGCGGT	CTGTTGCCCA	240
AGCGTGATGG	TACGTCTGGC	CTGGAGCATG	TGACTTICTG			280

Fig. 18

19/21

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B3CA3

AGCAAGGAGA	AGGCCAAGGA	GAGGCTCAAG	CTGGTCCTGG	CCTACGACTG	GGCCAAGCTG	60
TCGCCGGGGA	TGGTGGAGAA	CCTGAAGCGG	GACCTCCTCG	AGGTCCTCCG	CCGCTACTTC	120
TCCGTCCAGG	AGGAGGGTCT	TTCCGTGGTC	TTGGAGGAGC	GGGGGGAGAA	GATNCTCCTC	180
ATGGTCNACA	TCCCCCTCAN	GTGATGGTCC	TGANGNGNCC	CNTCCTCCTT	GNCTACGATT	240
TCGGNCTGGT	GGCCCTNTTT	CT				262

20/21

NUCLEOTIDE SEQUENCE OF THE REPRESENTATIVE BREAST-TUMOR SPECIFIC cDNA B4CA1

AGGAGCGGGT	AGAGTGGCAC	CATTGAGGGG	ATATTCAAAA	ATATTATTTT	GTCCTAAATG	60
ATAGTTGCTG	AGTTTTTCTT	TGACCCATGA	GTTATATTGG	AGTTTATTTT	TTAACTTTCC	120
AATCGCATGG	ACATGTTAGA	CTTATTTTCT	GTTAATGATT	NCTATTTTTA	TTAAATTGGA	180
TTTGAGAAAT	TGGTTNTTAT	TATATCAATT	TTTGGTATTT	GTTGAGTTTG	ACATTATAGC	240
TTAGTATGT						249

Fig. 20

120,057

÷

Ś

Ħ

d

FIGS. 21.4 - B

INTERNATIONAL SEARCH REPORT

Intern 121 Application No PCT/US 97/00485

				
A. CLASS	SIFICATION OF SUBJECT MATTER C12N15/12 C07K14/47 G01N33/53 A61K38/17	C07K14/82 A61K39/00	C07K14/15	C12Q1/68
				
	to International Patent Classification (IPC) or to both S SEARCHED	national classification	n and IPC	
Minimum	documentation searched (classification system follow	ed by classification sys	mbols)	
IPC 6	C07K C12Q			
Document	ation searched other than minimum documentation to	the extent that such de	ocuments are included in	the fields searched
Electronic	data base consulted during the international search (n	ame of data base and,	where practical, search t	erms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appro-	priate, of the relevant	passages	Relevant to claim No.
Y	WERNER T ET AL: "S71 is phylogenetically distinct	human endo	genous	1-10,15, 20,22,
	retroviral element with s sequence homology to simi (SSV)."	an sarcoma		28,31, 37,40,42
	VIROLOGY, JAN 1990, 174 (UNITED STATES, XP00067032 see the whole document	1) P225-38, 5		
Y	HALTMEIER M ET AL: "Iden S71-related human endogen sequences with full-lengt VIROLOGY, JUN 1 1995, 209 UNITED STATES, XP00203107 see the whole document	h pol genes. (2) P550-60	ral .•	1-9
		-/		
X Furt	her documents are listed in the continuation of box C.	X	Patent family members	are listed in annex.
* Special car	tegories of cited documents:	"T" late	r document published af	ter the international filling date
conside	ent defining the general state of the art which is not cred to be of particular relevance	at	priority date and not in ed to understand the prin vention	conflict with the application but sciple or theory underlying the
ining c		"X" dox	cument of particular rele	vance; the claimed invention or cannot be considered to
which	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	ID/	roive an inventive step w	hen the document is taken alone
O, qocmus	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	ÇAL	anot be considered to inv	vance; the claimed invention tolve an inventive step when the cone or more other such docu-
ounern P'docume	neans ent published prior to the international filing date but an the priority date claimed	me in		ing obvious to a person skilled
	actual completion of the international search	• • • • • • • • • • • • • • • • • • • •	e of mailing of the interr	
27	7 May 1997			' 09 97
Name and n	nating address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Aut	honzed officer	
	NL - 2280 HV Ripwik Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Gurdjian, D	

Form PCT/ISA/218 (second sheet) (July 1992)

2

INTERNATIONAL SEARCH REPORT

Intern. val Application No PCT/US 97/00485

ategory *	cition) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 95 32311 A (CALYPTE INC) 30 November 1995 see abstract; claims 1,15,23,28,32,34,38	10,20, 22,31,37
1	LEIBMOSCH C ET AL: "EVOLUTION AND BIOLOGICAL SIGNIFICANCE OF HUMAN RETROELEMENTS" VIRUS GENES, 1995, 11, 133-145,	15,28, 40,42
4	XP000673508 see the whole document	10,20, 22,31,37
A	GB 2 273 099 A (ASTA MEDICA AG) 8 June 1994 see claims 1,4	10,20, 22,31,37
A	WO 95 19369 A (VANDERBILT UNIVERSITY) 20 July 1995 see page 6, paragraph 2; claims 25-40;	10,20, 22,31, 33,37
_	examples 1-6	10.20
Α	WO 91 02062 A (TRITON BIOSCIENCES INC) 21 February 1991	10,20, 22,31, 33,37
	see page 9, paragraph 2 - paragraph 3 see page 23, paragraph 2; claims 1-64; example 5	
A	WATSON M A ET AL: "ISOLATION OF DIFFERENTIALLY EXPRESSED SEQUENCE TAGS FROM HUMAN BREAST CANCER" CANCER RESEARCH, vol. 54, no. 17, 1 September 1994, pages 4598-4602, XP000576043 see the whole document	15,28, 40,42
A	ZEHAN CHEN ET AL: "DIFFERENTIAL EXPRESSION OF HUMAN TISSUE FACTOR IN NORMAL MAMMARY EPITHELIAL CELLS AND IN CARCINOMAS" MOLECULAR MEDICINE, vol. 1, no. 2, January 1995, pages 153-160, XP000607858 see the whole document	10,20, 22,31, 33,37
A	BYRNE J A ET AL: "A SCREENING METHOD TO IDENTIFY GENE COMMONLY OVEREXPRESSED IN CARCINOMAS AND THE IDENTIFICATION OF A NOVEL COMPLEMENTARY DNA SEQUENCE" CANCER RESEARCH, vol. 55, no. 13, 1 July 1995, pages 2896-2903, XP002025781 see the whole document	15,28, 40,42

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

2

national application No.

INTERNATIONAL SEARCH REPORT

PCT/US 97/00485

Box 1 Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
see continuation-sheet	
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4. X No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Invention 1 (see continuation-sheet)	
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

Form PCT:ISA:210 (continuation of first sheet (1)) (July 1992)

je .

FURTHER INFORMATION CONTINUED FROM PCT/ISA/210

Invention 1:

ř

4

Claim 3, claims 1,2,4-10,12,13,15,17-20,22,24,25,27-29,31,33-35,37,39,40,42 (partially):
nucleic acids of human endogenous retroviral element
encoding breast tumor specific polypeptides
with sequences 1,3-10,103,126-140,141 , polypeptide with amino
acids sequence 2 ,corresponding polypeptides , antibodies, epitopes ,
pharmaceutical composition , vaccines ,their use for determining the
presence , or monitoring the progression of breast cancer and
diagnostic kit .

Inventions 2-142:

Claims 1,2,4-10,1..13,15,17-20,22,24,25,27-29,31,33-35,37,39,40,42 (partially) :
nucleic acids encoding breast tumor specific polypeptides
with sequence 11 ,corresponding polypeptides ,antibodies, epitopes ,
pharmaceutical composition , vaccines ,their use for determining the
presence , or monitoring the progression of breast cancer and
diagnostic kit .

...ibidem for each of sequences 12-77, 142,143,146-152,154-166,168-176, 178-192,194-198,200-204,206, 207,209-214,216,218,219,221-227 separately

Inventions 143-163:

Claims 11,14,16,17,19,21,23,24,26,27,30,32,36,38,39,41,43 (partially): breast tumor specific polypeptides with sequence 78 ,corresponding, antibodies, epitors, pharmaceutical composition and vaccines against breast cancer ,their use for determining the presence, or monitoring the progression of breast cancer and diagnostic kit.

...ibidem for each of sequences 79-86,144,145,153,167,177,193,199,205, 208,215,217,220 separately

VSDOCID: <WO___9725426A3_IB>

INTERNATIONAL SEARCH REPORT

information on patent family members

Inten nal Application No -PCT/US 97/00485

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9532311 A	30-11-95	AU 2690995 A CA 2191099 A EP 0763137 A	18-12-95 30-11-95 19-03-97
GB 2273099 A	08-06-94	WO 9411514 A	26-05-94
WO 9519369 A	20-07-95	AU 1831795 A	01-08-95
WO 9102062 A	21-02-91	AU 645760 B AU 6413590 A CA 2042064 A EP 0444181 A JP 4503012 T	27-01-94 11-03-91 05-02-91 04-09-91 04-06-92

Form PCT/ISA/210 (patent family annex) (July 1992)

¢.

Te.