

Semantic Segmentation

Computer Vision

Outline

- Semantic Segmentation
- Approaches
- Sliding window, fully convolutional, upSampling
- U-Net
- Depthwise Separable Convolutions
- MobileNet
- Hands-on

Semantic Segmentation

Semantic Segmentation

- Put label on each pixel in the image
- No need to specify the difference between the instances

Example

Background Rose Glass Die Teddy bear Unlabeled

Semantic Segmentation

Semantic segmentation: sliding window

Semantic Segmentation

- Run through a fully convolutional network to get all pixels at once

Smaller output due to pooling

Semantic Segmentation Idea: FCN

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Semantic Segmentation Idea: FCN

Upsampling: Unpooling or strided transpose convolution

Predictions: H x W

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Atrous/Dilated Convolutions

Atrous (or dilated) convolutions are regular convolutions with a factor that allows us to expand the filter's field of view.

Consider a 3x3 convolution filter for instance. When the dilation rate is equal to 1, it behaves like a standard convolution. B ut, if we set the dilation factor to 2, it has the effect of enlarging the convolution kernel.

Semantic Segmentation : UpSampling

Learnable upsampling!

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015

Semantic Segmentation : UpSampling

UpSampling

- Transposed convolution / Deconvolution
- Fractionally strided convolution
- Max-unpooling: Preserves spatial information

In-Network upsampling: "Max Unpooling"

Max Pooling

Remember which element was max!

1	2	6	3
3	5	2	1
1	2	2	1
7	3	4	8

Max Unpooling

Use positions from pooling layer

1	2
3	4

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Input: 4 x 4

Output: 2 x 2

Input: 2 x 2

Output: 4 x 4

Corresponding pairs of downsampling and upsampling layers

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Learnable Upsampling: Transpose Convolution

Learnable Upsampling: 1D Example

Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Need to crop one pixel from output to make output exactly 2x input

Semantic Segmentation: Upsampling

Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

6 days of training on Titan X...

To produce a segmentation map **greatlearning** downsampling is followed by upsampling

Upsampling can also be learned

Downsampling and upsampling reatlearning leads to an hour-glass structure

Let us re-arrange the layers horizontally greatlearning Learning for Life

More layers can be added

Visually rearrange layers in a big U greatlearning Learning for Life

Concatenate previous feature maps for finer spatial context

U-Net

U-Net is based on the ideas described in the previous slides

Source: "U-Net: Convolutional Networks for Biomedical Image Segmentation," Olaf Roppeberger: Philippy Fischer is liable for legal action.

Thomas Brox, 2015

U-Net

Fig. 1, U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

The architecture has -

An Encoder - Downsampling part. It is used to get context in the image. It is just a stack of convolutional and max pooling layers.

A Decoder - Symmetric Upsampling part. It is used for precise localization. Transposed convolution is used for upsampling.

It is a fully convolutional network (FCN). it has Convolutional layers and it does not have any dense layer so it can work for image of any size.

boxes represent copied feature maps. The arrows denote the different operations. This file is meant for personal use by rg.ravigupta91@gmail.com only.

Sharing or publishing the contents in part or full is liable for legal action.

A sample output for nucleus segmentation in pathology

A general representation of fully convolutional networks. The encoder is composed of convolutional and pooling layers for downsampling and the decoder is composed of deconvolutional layers for upsampling. This file is meant for personal use by rg.ravigupta91@gmail.com only.

Sharing or publishing the contents in part or full is liable for legal action.

Dice coefficient

Dice coefficient is defined as follows:

X is the predicted set of pixels and Y is the ground truth.

$$\frac{2*|X\cap Y|}{|X|+|Y|}$$

A higher dice coefficient is better. A dice coefficient of 1 can be achieved when there is perfect overlap between X and Y. Since the denominator is constant, the only way to maximize this metric is to increase overlap between X and Y.

For more info on Dice coefficient: https://www.kaggle.com/c/carvana - image- masking-challenge#evaluation

References

https://arxiv.org/pdf/1803.02758.pdf

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

Paper - U-Net: Convolutional Networks for Biomedical Image Segmentation

Thank you!

Happy Learning:)