

Resolução de Sistemas de Equações Lineares

• Introdução

• Sistema de N equações lineares a N incógnitas (variáveis)
$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + ... + a_{1N}x_N = b_1 \\ a_{21}x_1 + a_{22}x_2 + ... + a_{2N}x_N = b_2 \end{bmatrix}$$
Ou sob a forma matricial:
$$\begin{bmatrix} a_{11} & a_{12} & ... & a_{1N} \\ a_{21} & a_{22} & ... & a_{2N} \\ ... & ... & ... & ... \\ a_{N1} & a_{N2} & ... & a_{NN} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ ... \\ b_N \end{bmatrix}$$
AA-Ano lectivo 2011/2012
Aula 10 - Resolução de Sistemas de Equações

Resolução de Sistemas de Equações Lineares	
Ou, sob forma matricial compacta:	
Ax = b com:	
$A_{(N\times N)}$: matriz dos coeficientes $b_{(N\times 1)}$: vector dos termos independ	dentes
x _(Nx1) : vector das incógnitas (ou variáveis	
Resolver o sistema de equações consiste em:	
Dados A e b, determinar x que satisfaça todas equações	as
AA-Ano lectivo 2011/2012 Aula 10 - Resolução de Sistemas de Equações	4

- Nº de soluções
 - Três casos podem ocorrer:
 - a) Nenhuma solução, como no exemplo seguinte em que as duas equações são contraditórias:

$$\begin{cases} 2x_1 + 2x_2 = 1 \\ 2x_1 + 2x_2 = 3 \end{cases} \quad \text{ou} \quad \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

AA-Ano lectivo 2011/2012

Aula 10 - Resolução de Sistemas de Equações

Resolução de Sistemas de Equações Lineares

b) Muitas soluções, como no caso seguinte em que as duas equações são equivalentes:

$$\begin{cases} 2x_1 + 2x_2 = 1 \\ 4x_1 + 4x_2 = 2 \end{cases} \quad \text{ou} \quad \begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

De entre as muitas soluções, é fácil chegar às três seguintes:

$$x_1 = 0$$
 $x_1 = 0.5$ $x_1 = 0.25$ $x_2 = 0.25$ $x_2 = 0.25$

AA-Ano lectivo 2011/2012

Aula 10 - Resolução de Sistemas de Equações

6

c) Uma solução única, como no caso seguinte em que essa solução é $(x_1=0.5; x_2=0.5)$:

$$\begin{cases} 2x_1 + 2x_2 = 2 \\ 2x_1 + 4x_2 = 3 \end{cases} \quad \text{ou} \quad \begin{bmatrix} 2 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

 Assumiremos, no que se segue, que o sistema de equações a resolver terá uma solução única

AA-Ano lectivo 2011/2012

Aula 10 - Resolução de Sistemas de Equações

7

Resolução de Sistemas de Equações Lineares

- Operações possíveis em sistemas de equações (sem alterar a solução)
- Trocar a ordem das equações (matricialmente corresponderá a trocar linhas de A e de b)
- ii. Alterar os nomes das variáveis (matricialmente corresponderá a trocar colunas de A e a ordem das variáveis)
- iii. Multiplicar equações por uma constante (matricialmente corresponderá a multiplicar linhas de A e b por uma constante
- iv. Substituir uma equação pela soma dela com uma outra equação (matricialmente corresponderá a substituir uma linha de A e b pela soma dessa linha com uma outra)

AA-Ano lectivo 2011/2012

Aula 10 - Resolução de Sistemas de Equações

• Ilustração das operações (i) e (ii) com o exemplo:

$$\begin{cases}
2x_1 + 3x_2 + 4x_3 = 5 \\
3x_1 + 4x_2 + 5x_3 = 6 \\
4x_1 + 5x_2 + 6x_3 = 7
\end{cases}$$

$$\begin{bmatrix}
2 & 3 & 4 \\
3 & 4 & 5 \\
4 & 5 & 6
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
5 \\
6 \\
7
\end{bmatrix}$$

 Algoritmos correspondentes, para o caso geral, admitindo a seguinte representação computacional para as matrizes:

Resolução de Sistemas de Equações Lineares

- (i) Trocar a ordem das equações
 - No exemplo, trocando a 1^a com a 2^a equação, teremos:

$$\begin{cases}
3x_1 + 4x_2 + 5x_3 = 6 \\
2x_1 + 3x_2 + 4x_3 = 5 \\
4x_1 + 5x_2 + 6x_3 = 7
\end{cases}
\text{ ou }
\begin{bmatrix}
3 & 4 & 5 \\
2 & 3 & 4 \\
4 & 5 & 6
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
6 \\
5 \\
7
\end{bmatrix}$$

 No caso geral (troca das linhas I e J) Procedure TROCAMAT(A,X,N,I,J) $N1 \leftarrow N+1$

DO FOR COL=1 TO N1

TEMP ← A[I,COL]

A[I,COL] ← A[J,COL]

A[J,COL] ← TEMP

AA-Ano lectivo 2011/2012

Aula 10 - Resolução de Sistemas de Equações

Resolução	de Sist	emas	de
Equações I	_ineare	S.	

- (ii) Alterar os nomes das variáveis
 - Para o exemplo apresentado, vamos escrever as equações, considerando a seguinte tabela de conversão:

	Designação Original	Nova Designação	
	x ₁	X 2′	
	X ₂	X ₃	
	X ₃	X ₁	
AA-Ar	no lectivo 2011/2012	esolução de Sistemas de Equações	11

• Teremos então:

Sistema Original

Sistema Original	11010 Sistema
$2x_1 + 3x_2 + 4x_3 = 5$	$4x_3 + 2x_1 + 3x_2 = 5$
$3x_1 + 4x_2 + 5x_3 = 6$	$5x_3 + 3x_1 + 4x_2 = 6$
$4x_1 + 5x_2 + 6x_3 = 7$	$6x_3 + 4x_1 + 5x_2 = 7$
Passará a designar-se p	or X_1' X_2' X_3'

Note-se que, se fosse resolvido o "Novo Sistema", era necessário apresentar a solução segundo as designações originais (por exemplo, o valor de $\mathbf{X_2}'$, nesse "Novo Sistema", deveria ser atribuído à variável original $\mathbf{x_1}$)

AA-Ano lectivo 2011/2012

Aula 10 - Resolução de Sistemas de Equações

Novo Sistema

- Em termos computacionais, procede-se do seguinte modo:
 - ⇒ a tabela de conversão é lida para um array NOVO, através das seguintes instruções:

DO FOR K=1 TO N **READ (ORIGINAL, NOVO [ORIGINAL])**

sendo, para o exemplo: NOVO[1]=2; NOVO[2]=3; NOVO[3]=1

⇒ a tabela inversa, pode ser obtida do seguinte modo(preenchimento do array ORIG):

> DO FOR ORIGINAL=1 TO N $ORIG[NOVO [ORIGINAL]] \leftarrow ORIGINAL$

sendo, para o exemplo: ORIG[1]=3; ORIG[2]=1; ORIG[3]=2

AA-Ano lectivo 2011/2012

Aula 10 - Resolução de Sistemas de Equações

Resolução de Sistemas de **Equações Lineares**

 Vamos admitir que o array A contém a matriz original A, tendo então a seguinte constituição para o exemplo:

	1	2	3 +	Colunas da matriz original A
11	A[1,1]= 2	A[1,2]= 3	1 1 1 1 1	
2	A[2,1]=3	A[2,2]=4	A[2,3]=5	
3	A[3,1]=4	A[3,2]= 5	A[3,3]= 6	

Linhas da matriz original A

 Para processar a nova matriz A, podemos ainda utilizar o mesmo array A.

Para o efeito, bastará recorrer ao array ORIG

AA-Ano lectivo 2011/2012

Aula 10 - Resolução de Sistemas de Equações

RSEq	SLineares - Métodos Directos
• Comp	lexidade do algoritmo:
■ Pa	ra resolver um sistema de N equações:
	São necessários cerca de $\frac{N^3}{3}$ operações
	aritméticas; há 3 ciclos imbricados no algoritmo (pivots; linhas; colunas) fase de triangularização
•	São necessários cerca de $\frac{N^2}{2}$ operações
	aritméticas; há 2 ciclos imbricados no algoritmo (há várias variáveis; cada variável é calculada por um somatório) fase de substituição
	poi uni somatorio) fase de substituição
AA-Ano lecti	vo 2011/2012 Aula 10 - Resolução de Sistemas de Equações

RSEqsLineares - Métodos Iterativos

- Apenas terá algum interesse para sistemas de equações de pequena dimensão (N pequeno)
- Formulação:

$$\begin{bmatrix}
x_1 = (b_1 - a_{12}x_2 - a_{13}x_3 - \dots - a_{1N}x_N) \\
x_2 = (b_2 - a_{21}x_1 - a_{23}x_3 - \dots - a_{2N}x_N) \\
x_i = (b_i - a_{i1}x_1 - a_{i2}x_2 - \dots - a_{ii-1}x_{i-1} - a_{ii+1}x_{i+1} - \dots - a_{iN}x_N) \\
x_N = (b_N - a_{N1}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{N2}x_2 - \dots - a_{NN-1}x_{N-1}) \\
x_N = (a_{NN}x_1 - a_{NN}x_1 - a_{NN}x_$$

AA-Ano lectivo 2011/2012

Aula 10 - Resolução de Sistemas de Equações

RSEqsLineares - Métodos Iterativos

 Estas expressões resultam directamente da forma canónica de um sistema de equações:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1N}x_N = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2N}x_N = b_2 \\ a_{i1}x_1 + a_{i2}x_2 + \dots + a_{ii-1}x_{i-1} + a_{ii}x_i + a_{ii+1}x_{i+1} + \dots + a_{iN}x_N = b_i \\ a_{N1}x_1 + a_{N2}x_2 + a_{N3}x_3 + \dots + a_{NN}x_N = b_N \end{cases}$$

AA-Ano lectivo 2011/2012

Aula 10 - Resolução de Sistemas de Equações

RSEqsLineares - Métodos Iterativos •Algoritmo: 1- Arbitrar solução inicial (Por Ex.: $x_i = 0; \forall_i$) 2- Actualizar $\mathbf{x_1, \mathbf{x_2...x_i...x_N}}$ pelas expressões do slide anterior, entretanto sempre com os valores de $\mathbf{x_i}$ mais actuais (Por Ex.:, na $\mathbf{2^a}$ expressão já entramos com o valor de $\mathbf{x_1}$ calculado pela $\mathbf{1^a}$ expressão) 3- Testar convergência: $\begin{vmatrix} x_i^{actual} - x_i^{anterior} \\ x_i^{actual} \end{vmatrix} < Tolerância; \forall_i$ AA-Ano lectivo 2011/2012 Aula 10 - Resolução de Sistemas de Equações

RSEqsLineares - Métodos Factorização

- Os métodos anteriores falham se o pivot a seleccionar numa dada iteração for zero. Do mesmo modo, pode haver problemas numéricos (erros apreciáveis) se os pivots tiverem valores muito baixos
- Nestes casos sugere-se a utilização de um dos seguintes métodos de selecção de elementos pivot:
 - M1 Procurar na coluna pivot (em todas as linhas que ainda não tenham sido usadas como linhas pivot) o elemento de maior valor absoluto. Trocar a linha que contém este elemento com a linha pivot original

AA-Ano lectivo 2011/2012

Aula 10 - Resolução de Sistemas de Equações

37

RSEqsLineares - Métodos Factorização

- M2 Procurar em todas as linhas e colunas que ainda não tenham sido usadas como pivot; seleccionar o maior dos elementos; trazer este elemento para a posição desejada
- M3 Procurar de entre todos os elementos da diagonal principal aquele que tiver o maior valor; trocar linhas e colunas por forma a trazer este elemento para a posição desejada

M2 é o método que permite obter melhor precisão, sendo, no entanto, aquele que mais tempo consome

AA-Ano lectivo 2011/2012

Aula 10 - Resolução de Sistemas de Equações

