

EE141-Spring 2010 Digital Integrated Circuits

Lecture 18 Registers

EECS141 Lecture #18

Administrativia

- □ Project Phase 2 now on the web-site.
- □ Hw 6 due today.
- □ New homework to be posted in a week.
- □ Cory Hall closed on Monday (Power Outage)
 - Instructional computers in 353 Cory should come back on line on Tu.
- □ Enjoy Spring Break!

EECS141 Lecture #18 2

Class Material

- □ Last lecture
 - Domino Logic
 - Introduction to registers
- □ Today's lecture
 - Registers
 - Timing
- □ Reading (Ch 7)

EECS141 Lecture #18

Meta-Stability

Gain should be larger than 1 in the transition region

EECS141 Lecture #16 1

Writing into a Static Latch

Use the clock as a decoupling signal, that distinguishes between the transparent and opaque states

Converting into a MUX

Forcing the state (can implement as NMOS-only)

EECS141 Lecture #16 12

Pseudo-Static Latch

EECS141 Lecture #16 13

Mux-Based Latches

Negative latch (transparent when CLK= 0)

$$Q = Clk \cdot Q + \overline{Clk} \cdot In$$

Positive latch (transparent when CLK= 1)

$$Q = \overline{Clk} \cdot Q + Clk \cdot In$$

Lecture #16

EE 51411

14

Why not route the pulse? EECS141 Lecture #16 38

Clock Nonidealities

□ Clock skew

 Spatial variation in temporally equivalent clock edges; deterministic + random, t_{SK}

□ Clock jitter

- Temporal variations in consecutive edges of the clock signal; modulation + random noise
- Cycle-to-cycle (short-term) t_{JS}
- Long term t_{JL}

□ Variation of the pulse width

Important for level sensitive clocking

EECS141 Lecture #16 44

Clock Uncertainties (4) Power Supply (3) Interconnect (6) Capacitive Load (7) Coupling to Adjacent Lines Sources of clock uncertainty

Lecture #16

45

Clock Skew and Jitter

EECS141

- □ Both skew and jitter affect the effective cycle time
- □ Only skew affects the race margin (usually)

EECS141 Lecture #16 46

