物理实验预习报告

实验名称:			
实验日期:	学生姓名:	学号	1
	一、实验	佥目的	
1			
2			
	二、实验		
仪器名称	规格/型号	数量	备注
\	\	\	\
	三、注意	事项	
1			
2			
3			
4.			

四、原始数据记录表格

表 3-19-1 测量 I-f 谐振曲线数据表

项目	L = 0.100	H, $r_L = $	Ω , $C=0.0500 \mu F$, $U=0.900 V$			
数值	$R_0 = 1$		$R_0' = 2R_0 + r_L = \underline{\qquad} \Omega$			
f (kHz)	U_{R0} (mV)	$I = \frac{U_{R0}}{R_0} \text{ (mA)}$	<i>U_{R6}</i> (mV)	$I' = \frac{U_{Rb}}{R'_0} \text{ (mA)}$		
1. 4000						
1.5000						
1.6000						
1. 7000						
1.8000						
1. 9000						

续表

L = 0.100) H, r _{l.} =	Ω , $C = 0.0500 \mu$ F	F, U=0.900 V	
$R_0 = 100.0 \Omega$		$R_0' = 2R_0 + r_L = \underline{\qquad} \Omega$		
U_{R0} (mV)	$I = \frac{U_{Ro}}{R_o} \text{ (mA)}$	U _{Rb} (mV)	$I' = \frac{U_{Rb}}{R_0'} \text{ (mA)}$	
	$R_0 = 1$ U_{R0} (mV)	U_{R0} (mV) $I = \frac{U_{R0}}{R_0}$ (mA)	$R_0 = 100.0 \Omega$ $R'_0 = 2R_0 + U_{R0}$ (mV) $I = \frac{U_{R0}}{R_0}$ (mA) U_{R0} (mV)	

表 3-19-2 观察谐振现象记录表

数值 电路	项目	f _L (kHz)	f _C (kHz)	f ₀ (kHz)	<i>U</i> _{L0} (V)	<i>U</i> _{€0} (V)
$L = 0.100 \text{ H}$ $r_L = \underline{\qquad} \Omega$	$R_0 = 100.0 \Omega$					
$C = 0.0500 \mu F$ U = 0.900 V	$R_0' = \underline{\hspace{1cm}} \Omega$					

表 3-19-3 谐振电路的通频带宽度 Δf 、谐振频率 f_0 、品质因数 Q 值

项目		通频带宽度 △ƒ			谐振频率 f。			品质因数 Q 值		
数值 电路		f 1 (kHz)	f 2 (kHz)	測量值 $\Delta f = f_2 - f_1$ (kHz)	理论值 $\Delta f = \frac{R}{2\pi L}$ (kHz)	曲线 峰点 ∫。 (kHz)	測量值 $f_0 = \sqrt{f_1 f_2}$ (kHz)	理论值 $f_0 = \frac{1}{2\pi \sqrt{LC}}$ (kHz)	测量值 $Q = \frac{\sqrt{f_1 f_2}}{f_2 - f_1}$	理论值 $Q=\frac{1}{R}\sqrt{\frac{L}{C}}$
$L = 0.100 \text{ H}$ $C = 0.0500 \mu\text{F}$ $r_L = \{\Omega} \Omega$	$R = (R_0 + r_L)$ $= \underline{\Omega}$ $R' = 2(R_0 + r_L)$ $= \underline{\Omega}$									