MACHINE LEARNING

BY, SANDESH G

CONTENTS

Vs OF BIG DATA **CONCEPT** PROBLEM SOLVING APPROACHES **CLASSIFICATION ALGORITHMS MODEL EVALUATION** DATA SCIENCE METHODOLOGIES

Vs of BIG DATA

VOLUME

VARIETY

VELOCITY

Figure

The LHC collects about 25 million gigabytes of data per year

Source: "Particle Physics Tames Big Data," Leah Hesla, Symmetry, 1 August 2012

CONCEPT

WIKIPEDIA: Machine learning is a field of computer science that gives computer systems the ability to "learn" (i.e. progressively improve performance on a specific task) with data, without being explicitly programmed.

CONCEPT

SIR ISSAC NEWTON - SCIENTIST

DATA SCIENTIST

CONCEPT

PROBLEM SOLVING APPROACHES

TRADITIONAL

PROBLEM SOLVING APPROACHES

MACHINE LEARNING Study the problem Data Collection / **Exploratory** Launch! Analysis Update Can be Understand Feature automated Data better Engineering Train ML model **Evaluate**

CLASSIFICATION

SUPERVISED

UNSUPERVISED

REINFORCED

REGRESSION

CLUSTERING

BRUTE FORCE

CLASSIFICATION

ASSOCIATION RULE MINING

MONTE CARLO METHOD

DIMENSIONALITY REDUCTION

REGRESSION

CLASSIFICATION

CLUSTERING

LINEAR REGRESSION

K NEAREST NEIGHBOURS

K MEANS CLUSTERING

NEURAL NETWORKS

NEURAL NETWORKS

HIERARCHICAL CLUSTERING

DECISION TREE

LOGISTIC REGRESSION

RANDOM FOREST

SUPPORT VECTOR MACHINES

DECISION TREE

RANDOM FOREST

REGRESSION

LINEAR REGRESSION

$$Y = AX + B$$

MEAN

HEIGHT = NUMBER X WEIGHT + BIAS

MEDIAN

CLASSIFICATION

K - NEAREST NEIGHBOURS

3-D Scatterplot of Iris Data

DISTANCE MEASURES

EUCLIDEAN

$$egin{split} \mathrm{d}(\mathbf{p},\mathbf{q}) &= \mathrm{d}(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} \ &= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. \end{split}$$

MANHATTAN

$$d_1(\mathbf{p},\mathbf{q}) = \|\mathbf{p}-\mathbf{q}\|_1 = \sum_{i=1}^n |p_i-q_i|$$

CLUSTERING

K - MEANS

RANDOM INITIALIZATION OF CENTROIDS

CALCULATE DISTANCES TO NEAREST POINTS

CALCULATE MEAN OF DISTANCES

SHIFT TO AVERAGE

BACK TO STEP 2

NEURAL NETWORKS

PERCEPTRON

NEURAL NETWORKS

MULTI LAYER PECEPTRON

MODEL EVALUATION

MODEL EVALUATION

F1 MEASURE =
$$2 \frac{PRECISION \times RECALL}{PRECISION + RECALL}$$

$$\mathsf{ACCURACY} = \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{ALL}}$$

DATA SCIENCE METHODOLOGY

KNOWLEDGE DISCOVERY IN DATABASES

DATA SCIENCE METHODOLOGY

CROSS INDUSTRY STANDARD PROCESS FOR DATA MINING

Q & A

THANK YOU