Probabilistic Methods for Kinodynamic Path Planning

Based on Past Student Lectures by:

Paul Elliott, Aisha Walcott,

Nathan Ickes and Stanislav Funiak

Lecturer:

Prof. Brian C. Williams

How do we maneuver or manipulate?

Outline

- Roadmap path planning
- Probabilistic roadmaps
- Planning in the real world
- Planning amidst moving obstacles
- RRT-based planners
- Conclusions

Outline

- Roadmap path planning
- Probabilistic roadmaps
- Planning in the real world
- Planning amidst moving obstacles
- RRT-based planners
- Conclusions

Path Planning through Obstacles

1. Create Configuration Space

Assume: Vehicle

2. Map From Continuous Problem to a Roadmap: Create Visibility Graph

Start position Goal position Brian Williams, Fall 03

2. Map From Continuous Problem to a Roadmap: Create Visibility Graph

Start position

3. Plan Shortest Path

Resulting Solution

A Visibility Graph is One Kind of Roadmap

Start What are some other types of roadmaps?

Roadmaps: Voronoi Diagrams

Roadmaps: Approximate Fixed Cell

Roadmaps: Approximate Fixed Cell

Roadmaps: Exact Cell Decomposition

Potential Functions

Khatib 1986 Latombe 1991 Koditschek 1998

Attractive Potential for goals

Repulsive Potential for obstacles

Combined Potential Field

Move along force: $F(x) = \nabla U_{att}(x) - \nabla U_{rep}(x)$

Brian Williams, Fall 03

Exploring Roadmaps

Shortest path

- Dijkstra's algorithm
- Bellman-Ford algorithm
- Floyd-Warshall algorithm
- Johnson's algorithm

Informed search

- Uniform cost search
- Greedy search
- A* search
- Beam search
- Hill climbing

Robonaut Teamwork: Tele-robotic

- •High dimensional state space
- Controllability and dynamics
- Safety and compliance

Outline

- Roadmap path planning
- Probabilistic roadmaps
- Planning in the real world
- Planning amidst moving obstacles
- RRT-based planners
- Conclusions

Applicability of Lazy Probabilistic Road Maps to Portable Satellite Assistant

By Paul Elliott

Portable Satellite Assistant

Range Finder:

Nævigation, obstacle avoidance, localization support

Motion Detector:

Obstacle avoidance and remote sensing

Thrust Port:

Microthrust duct fan locomotion

Microphone:

Primary Crew audio command interface

courtesy NASA Ames

Speaker: Secondary Crew ootput audio interface

Zvezda Service Module

Idea: Probabilistic Roadmaps

- Search randomly generated roadmap
- Probabilistically complete
- Trim infeasible edges and nodes lazily

Place Start and Goal

Place Nodes Randomly

Select a Set of Neighbors

Check Feasible Nodes

Check Feasible Nodes

Check Feasible Nodes

Check Feasible Edges

Lazy PRM Algorithm

Lazy PRM Algorithm

Lazy PRM Algorithm

Lazy PRM Algorithm

Lazy PRM Algorithm

PRMs Fall Short For Dynamical Systems

- Using PRM
 - 1. Construct roadmap
 - 2. A* finds path in roadmap
 - 3. Must derive control inputs from path
- Cannot always find inputs for an arbitrary path

Outline

- Roadmap path planning
- Probabilistic roadmaps
- Planning in the real world
- Planning amidst moving obstacles
- RRT-based planners
- Conclusions

Path Planning in the Real World

Real World Robots

- Have inertia
- Have limited controllability
- Have limited sensors
- Face a dynamic environment
- Face an unreliable environment

Static planners (e.g. PRM) are not sufficient

Two Approaches to Path Planning

Kinematic: only concerned with motion, without regard to the forces that cause it

- Works well: when position controlled directly.
- Works poorly: for systems with significant inertia.

Kinodynamic: incorporates dynamic constraints

Plans velocity as well as position

Representing Static State

- Configuration space represents the position and orientation of a robot
- Sufficient for static planners like PRM

Example: Steerable car Configuration space (x, y, θ)

Representing Dynamic State

- State space incorporates robot dynamic state
- Allows expression of dynamic constraints
- Doubles dimensionality

Example: Steerable car

State space

$$X = (x, y, \theta, \dot{x}, \dot{y}, \dot{\theta})$$

Constraints

- •max velocity, min turn
- •car dynamics

Incorporating Dynamic Constraints

- For some states, collision is unavoidable
 - Robot actuators can apply limited force

Path planner should avoid these states

Regions in State Space

- Collision regions: X_{coll}
 - Clearly illegal
- Region of Imminent Collision: X_{ric}
 - Where robot's actuators cannot prevent a collision
- Free Space: $X_{free} = X (X_{coll} + X_{ric})$

$$X$$
free \longrightarrow X ric X coll

• Collision-free planning involves finding paths that lie entirely in X_{free}

Constraints on Maneuvering

- Nonholonomic: Fewer controllable degrees of freedom then total degrees of freedom
- Example: steerable car

- 3 dof (x, y, θ) , but only
- 1 controllable dof (steering angle)
- Equation of Motion: G(s,s) = 0
 - Constraint is a function of state and time derivative of state

Outline

- Roadmap path planning
- Probabilistic roadmaps
- Planning in the real world
- Planning amidst moving obstacles
- RRT-based planners
- Conclusions

Problem

- Kinodynamic motion planning amidst moving obstacles with known trajectories
- Example: Asteroid avoidance problem
- Moving Obstacle Planner (MOP)
 - Extension to PRM

MOP Overview

Similar to PRM, except

- Does not pre-compute the roadmap
- Incrementally constructs the roadmap by extending it from existing nodes
- Roadmap is a directed tree rooted at initial state × time point and oriented along time axis

Building the Roadmap

- 1. Randomly choose an existing node
- 2. Randomly select control input *u*
- 3. Randomly select integration time interval $\delta \in [0, \delta_{max}]$
- 4. Integrate equations of motion

Select control input u at random tegration δ_{max} of Randomly choose existing node δ_{max} δ_{max

Integrate equations of motion from an existing node with respect to u for some time interval δ

Building the Roadmap (cont.)

- 5. **If** edge is collision-free **then**
- 6. Store control input with new edge
- 7. Add new node to roadmap

Result: Any trajectory along tree satisfies motion constraints and is collision-free!

Solution Trajectory

- 1. **If** goal is reached **then**
- 2. Proceed backwards from the goal to the start

Start state and time
(S_{start}, t_{start})

MOP details: Inputs and Outputs

Planning Query:

- Let (s_{start}, t_{start}) denote the robot's start point in the state \times time space, and (s_{goal}, t_{goal}) denote the goal
- $t_{goal} \in I_{goal}$, where I_{goal} is some time interval in which the goal should be reached

Solution Trajectory:

- Finite sequence of fixed control inputs applied over a specified duration of time
 - Avoids moving obstacles by indexing each state with the time when it is attained
 - Obeys the dynamic constraints

MOP details: Roadmap Construction

- Objective: obtain new node (s', t')
 - s' = the new state in the robot's state space
 - $t' = t + \delta$, current time plus the integration time

Each iteration:

- 1. Select an existing node (s, t) in the roadmap at random
- 2. Select control input *u* at random
- 3. Select integration time δ at random from $[0, \delta_{max}]$

MOP details: Roadmap Construction

- 3. Integrate control inputs over time interval
- 4. Edge between (s, t) and (s', t') is checked for collision with static obstacles and moving obstacles
- 5. If collision-free, store control input *u* with the new edge
- 6. (s', t') is accepted as new node

MOP details: Uniform Distribution

Modify to Ensure Uniform Distribution of Space:

- Why? If existing roadmap nodes were selected uniformly, the planner would pick a node in an already densely sampled region
- Avoid oversampling of any region by dividing the state×time space into bins

- 1. Equally divide space
- 2. Denote each section as a bin; number each bin

Space

bin 1	bin 2	bin 3	bin 4	bin 5	bin 6	bin 7
bin 8	bin 9	bin 10	bin 11	bin 12	bin 13	bin 14
		•			• • •	
•						
•						
•						

*bins store roadmap nodes that lie in their region

Demonstration of MOP

•Point—mass robot moving in a plane

•State
$$s = (x, y, x, y)$$

Demonstration of MOP

Summary

- MOP algorithm incrementally builds a roadmap in the state×time space
- The roadmap is a directed tree oriented along the time axis
- By including time the planner is able to generate a solution trajectory that
 - avoids moving and static obstacles
 - obeys the dynamic constraints
- Bin technique to ensure that the space is explored somewhat uniformly

Outline

- Roadmap path planning
- Probabilistic roadmaps
- Planning in the real world
- Planning amidst moving obstacles
- RRT-based planners
- Conclusions

Planning with RRTs

- RRTs: Rapidly-exploring Random Trees
- Similar to MOP
 - Incrementally builds the roadmap tree
 - Integrates the control inputs to ensure that the kinodynamic constraints are satisfied
- Informed exploration strategy from MOP
- Extends to more advanced planning techniques

How it Works

- Build RRT in state space (X), starting at s_{start}
- Stop when tree gets sufficiently close to s_{goal}

Building an RRT

- To extend an RRT:
 - Pick a random point a in X
 - Find b, the node of the tree closest to a
 - Find control inputs u to
 steer the robot from b
 to a

Building an RRT

- To extend an RRT (cont.)
 - Apply control inputs u for time δ , so robot reaches c
 - If no collisions occur in getting from a to c, add c to RRT and record u with new edge

Executing the Path

Once the RRT reaches s_{goal}

- **Backtrack along tree** to identify edges that lead from s_{start} to s_{goal}
- Drive robot using control inputs stored along edges in the tree

Principle Advantage

- RRT quickly explores the state space:
 - Nodes most likely to be expanded are those with largest Voronoi regions

Advanced RRT Algorithms

1. Single RRT biased towards the goal

2. Bidirectional planners

3. RRT planning in dynamic environments

Example: Simple RRT Planner

- Problem: ordinary RRT explores X uniformly
 - → slow convergence
- Solution: bias distribution towards the goal

Goal-biased RRT

```
BUILD_RRT(x_{init})

1 \mathcal{T}.init(x_{init});

2 for k = 1 to K do

3 x_{rand} \leftarrow \frac{RANDOM\_STATE()}{4};

4 EXTEND(\mathcal{T}, x_{rand});

5 Return \mathcal{T}
```

```
BIASED_RANDOM_STATE()

1  toss ← COIN_TOSS()

2  if toss = heads then

3  Return s<sub>goal</sub>

4  else

5  Return RANDOM STATE()
```

Goal-biased RRT

The world is full of...

local minima

 If too much bias, the planner may get trapped in a local minimum

A different strategy:

- Pick RRT point near s_{goal}
- Based on distance from goal to the nearest v in G
- Gradual bias towards s_{goal}

Rather slow convergence

Bidirectional Planners

Build two RRTs, from start and goal state

- Complication: need to connect two RRTs
 - local planner will not work (dynamic constraints)
 - bias the distribution, so that the trees meet

Bidirectional Planner Algorithm

```
RRT_BIDIRECTIONAL(x_{init}, x_{goal})

1 \mathcal{T}_a.init(x_{init}); \mathcal{T}_b.init(x_{goal});

2 for k = 1 to K do

3 x_{rand} \leftarrow RANDOM\_STATE();

4 if not (EXTEND(\mathcal{T}_a, x_{rand}) = Trapped) then

5 if (EXTEND(\mathcal{T}_b, x_{new}) = Reached) then

6 Return PATH(\mathcal{T}_a, \mathcal{T}_b);

7 SWAP(\mathcal{T}_a, \mathcal{T}_b);

8 Return Failure
```

Bidirectional Planner Example

Bidirectional Planner Example

Conclusions

- Path planners for real-world robots must account for dynamic constraints
- Building the roadmap tree incrementally
 - ensures that the kinodynamic constraints are satisfied
 - avoids the need to reconstruct control inputs from the path
 - allows extensions to moving obstacles problem

Conclusions

- MOP and RRT planners are similar
- Well-suited for single-query problems
- RRTs benefit from the ability to steer a robot toward a point
 - RRTs explore the state more uniformly
 - RRTs can be biased towards a goal or to grow into another RRT