2.16 solveur variationnel quantique (VQE)

On cherche à trouver l'énergie et l'état fondamentale d'un hamiltonien H (n'importe quel problème de minimisation peut s'exprimer de cette façon).

C'est un problème NP complèt : On ne trouveras pas un algorithme qui réussit à tout les coups mais un algorithme heuristique qui réussit on l'espère souvent.

 $\underline{\text{VIE}}$: Algorithme classique utilisant un sous-routine quantique.

${\bf Rappel: Principe\ variationnel}$

D'abord, on a que,

$$\langle \psi | H | \psi \rangle \ge E_0 \forall | \psi \rangle \in \mathcal{H}$$

On choisit $\left|\psi(\vec{\theta})\right\rangle$ avec $\vec{\theta}$ un vecteur de paramètre et on minimise

$$\langle H \rangle_{\vec{\theta}} \equiv \left\langle \psi(\vec{\theta}) \middle| H \middle| \psi(\vec{\theta}) \right\rangle$$

alors

 $\min_{\vec{\theta}} \approx E_0$ si θ nous donne assez de liberté

 Ex :

$$H = \frac{\omega}{2}$$

On pose

$$\left|\psi(\vec{\theta})\right\rangle = \cos\frac{\theta}{2}\left|0\right\rangle + \sin\frac{\theta}{2}\left|1\right\rangle$$

$$\langle H \rangle_{\theta} = \frac{\omega}{2} \left(\cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2} \right)$$

$$\min_{\theta} \left\langle H \right\rangle_{\theta} = -\frac{\omega}{2} \qquad \theta = \pi$$

$$|\psi(\pi)\rangle = |1\rangle$$

sous routine quantique

Prend en entré $\vec{\theta},\,H$ retourne $\langle H\rangle_{\theta}$

puisqu'on ne veut que la valeur moyenne, si notre hamiltonien à la forme

$$H = \sum_{k} H_k$$

, On peut mesurer individuellement la moyenne sur chacun des H_k et faire la somme après.

3 Suprématie quantique

On veut montrer qu'on peut réaliser une calcul quantique trop long à réaliser classiquement.

On cherche un algorithme qui

- 1. Peu être réaliser sur les ordinateur quantique actuels. (n qubits et q portes pas trop grand)
- 2. On doit pouvoir vérifier la réponse.
- 3. On veut un avantage quantique asymptotique (Un forte suspicion suffit)

ex : Factorisation de Shor : 2 et 3, Google 1 et 3

Stratège actuelle : circuit aléatoire

$$U(\vec{\theta})$$
pris aléatoirement

On mesure les qubits en sorties un très grand nombre de fois

Finalement on compare la ditribution avec la distribution idéale

3.1 Calcul adiabatique

Théorème adiabatique

Si un système physique est dans un état propre $|\psi_k\rangle$ de H est au temps t_0 . Il restera dans un état propre de H(t) si H(t) varie lentement.

$$\Delta = min_t(E_1(t) - E_0(t))$$

On doit être plus len que
$$\frac{1}{\Delta} \implies T \gg dfrac1\Delta$$

On choisi H(t) tel que $|E_0\rangle$ encore la réponse voulue. On choisit H(0) avec un état fondamentale comme

$$H(0) = J_j X_j = H_0$$

l'état fondamentale est $|\psi(0)\rangle = |+\rangle^{\otimes n}$

On choisit

$$H(t) = \left(1 - \frac{t}{\tau}\right)H_0 + \frac{t}{T}H_{\text{final}}$$

Exemple : Modèle de Ising

FIGURE 1 – un graphique tout a fait quelconque

$$H = \sum_{i} \lambda X_i + J Z_i Z_{i+1}$$

On suppose qu'on peut contrôler λ, J

$$J(\lambda) = J\frac{t}{T}$$