

R1.07 - Outils fondamentaux

TD 3 - Interprétation en algèbre linéaire

A. Ridard

Exercice 1.

On considère (e_1, e_2) la base canonique de \mathbb{R}^2 , $e_3 = e_1 + e_2$, et s la symétrie orthogonale par rapport à $Vect(e_3)$.

- 1. Déterminer la matrice A de s dans la base canonique.
- 2. Calculer la matrice $B = \frac{1}{2}(A + I_2)$. De quelle transformation géométrique s'agit-il (faire un dessin)?

Exercice 2.

On considère les matrices suivantes :

$$A = \begin{pmatrix} 2 & -6 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} -1 & -3 & -1 \\ 1 & 0 & 4 \\ 2 & 7 & 1 \end{pmatrix}$$

On note f (resp. g) l'application linéaire canoniquement associée à A (resp. B).

- 1. (a) Déterminer f(x, y, z) pour tout $(x, y, z) \in \mathbb{R}^3$.
 - (b) Montrer, à l'aide de det(A), que f est bijective.
 - (c) Déterminer f^{-1} .
- 2. (a) Montrer, à l'aide de det(B), que g n'est pas bijective.
 - (b) Déterminer $g^{-1}(\{(0,0,0)\})$ sous la forme d'un sous-espace vectoriel engendré (Vect).
- 3. Déterminer $f \circ g$ et $g \circ f$.

Exercice 3 (hors programme).

On considère f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 associée à $A = \begin{pmatrix} 9 & -6 & 10 \\ -5 & 2 & -5 \\ -12 & 6 & -13 \end{pmatrix}$ et les vecteurs $u, v, w \in \mathbb{R}^3$ définis par :

$$u=(2,-1,-2),\ v=(1,0,-1),\ w=(-2,1,3)$$

1. Montrer que la famille (u, v, w) est une base de \mathbb{R}^3 .

On notera \mathcal{B} la base canonique de \mathbb{R}^3 et $\mathcal{B}' = (u, v, w)$.

- 2. Déterminer P la matrice de passage de \mathcal{B} à \mathcal{B}' (attention à l'ordre), puis la matrice de passage de \mathcal{B}' à \mathcal{B} .
- 3. En déduire les coordonnées de (1,2,3) dans la base \mathcal{B}' .
- 4. A partir du diagramme de décomposition de f, déterminer $D = \mathcal{M}(f, \mathcal{B}')$.

Exercice 4 (Noyau d'une application linéaire).

Soit E, F deux ev et $f: E \to F$ une application linéaire. Le noyau de f est l'image réciproque de $\{0_F\}$ par f:

$$Ker(f) = f^{-1}(\left\{0_F\right\}) = \left\{u \in E \mid f(u) = 0_F\right\}$$

- 1. Montrer que Ker(f) est un sev de E.
- 2. Montrer que f est injective si et seulement si $Ker(f) = \{0_E\}$