[CSE3081(2반)] 알고리즘 설계와 분석

2020학년도 2학기

강의자료

(2020.09.03 목요일)

서강대학교 공과대학 컴퓨터공학과 임 인 성 교수

- 본 강의에서 제작하여 제공하는 PDF 파일, 동영상, 그리고 예제 코드 등의 강의 자료의 저작권은 특별히 명기되어 있지 않은 한 서강대학교에 있습니다.
- 본인의 학습 목적 외에 공개된 장소에 올리거나 타인에게
 배포하는 등의 행위를 금합니다. 협조 부탁합니다.

[주제 1] Introduction to Algorithms and Complexity

Data Structure → Algorithm → Theory of Computation

- 어떻게 하면 주어진 복잡한 문제를 이진수 형태의 낮은 수준의 명령어만 이해하는 '단순한' 컴퓨터 상에서 효율적으로 해결할 수 있을까?
 - 1. [Data Structure] 주어진 추상적인 문제를 어떠한 자료 구조를 사용하여 컴 퓨터의 구조에 최적화된 형태로 표현할 수 있을까?
 - 2. [Algorithm] 주어진 추상적인 문제를 어떠한 알고리즘을 사용하여 컴퓨터를 사용하여 가장 효율적으로 해결할 수 있을까?
 - 3. [Complexity] 과연 컴퓨터가 주어진 문제를 효율적으로 해결할 수 있을까 ?
 - 4. [Computability] 과연 컴퓨터가 세상의 모든 문제를 해결할 수 있을까?
- ✓ 이 과목에서는 [CSE3080 자료구조] 과목에 이어, 1번과 2번을 집중적으로 살펴보고, 3번 문제에 대하여 어느 정도 살펴볼 예정임. 4번 문제는 [CSE3085 자동장치이론] 과목에서 다룸.

Definition of Algorithm

- An algorithm is a finite set of instructions that, if followed, accomplishes a particular task. In addition, all algorithms must satisfy the following criteria:
 - 1) **Input.** Zero or more quantities from the outside.
 - 2) Output. At least one quantity is produced.
 - 3) Definiteness. Each instruction is clear and unambiguous.
 - **4) Finiteness.** If we trace out the instructions of an algorithm, then for all cases, the algorithm terminates after a finite number of steps.
 - 5) **Effectiveness.** Every instruction must be basic enough to be carried out, in principle, by a person using only pencil and paper. It is not enough that each operation be definite as in (3); it also must be feasible.

Thoughts on 4) Finiteness: [Computability]

Input Size

- Problem (Post's correspondence problem)
 - Consider a finite set **P** of ordered pairs of nonempty strings such as $\mathbf{P} = \{(a, ab), (b, ca), (ca, a), (abc, c)\}$.
 - A match of **P** is any string w such that, for some m > 0 and some pairs (u_1, v_1) , (u_2, v_2) , ..., (u_m, v_m) in **P**, $w = u_1 u_2 ... u_m = v_1 v_2 ... v_m$.
 - Design an algorithm that determine, given P, whether P has a match.
- Cheolsu's algorithm

- For
$$i = 1, 2, 3, ... do,$$

- For each permutation of P of length i, do
 - If it is a match, print 'yes' and exit.
 - If not, continue.
- Can this be regarded as an algorithm?

Thoughts on Efficiency: [Complexity]

An algorithm is regarded as efficient or good if there exist a
polynomial P(n) such that the time required for solving any instance
of size n is bounded above by P(n).

NP-Complete problems:

- Nobody has found so far any **good** algorithm for any problem in this class.
- It has been proved that if a good algorithm exists for some algorithm in this class, then a good algorithm exists for all NP-Complete Problem.

Examples

- Suppose a CD-ROM can store up to 720MBytes of data. You have a sequence of n files of sizes s_1 , s_2 , ..., s_n Mbytes, to dump into backup CDs. What is the minimum number of necessary CDs to store all the files?
- Consider n tasks to be executed on CPU. All the tasks must be finished within the time requirement L (seconds). If the i-th task takes s_i seconds, and you can harness multiple processors, what would be the minimum number of processors needed to accomplish this?
- Ex. L = 10, n = 6, and $(s_1, s_2, s_3, s_4, s_5, s_6) = (5, 6, 3, 7, 5, 4)$ $<math>\checkmark$ (5, 5), (6, 4), (7, 3)

Efficient Algorithm Design: Example 1

- Sequential search versus binary search
 - Problem: Determine whether x is in the sorted array S of n keys.
 - Inputs: positive integer n, sorted (nondecreasing order) arrays of keys S indexed from 0 to n 1, a key x.
 - **Outputs**: the location of x in S (-1 if x is not in S).
 - Sequential search: T(n) = O(n)
 - Binary search: $T(n) = O(\log n)$

From Neapolitan

Array Size	Number of Comparisons by Sequential Search	Number of Comparisons by Binary Search
128	128	8
1,024	1,024	11
1,048,576	1,048,576	21
4,294,967,296	4,294,967,296	33

Why is the binary search more efficient?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 17 19 21 25 26 29 32 35 36 39 40 43 48 51 5

Efficient Algorithm Design: Example 2

- The Fibonacci Sequence
 - Problem: Determine the nth term in the Fibonacci sequence.
 - Inputs: a nonnegative integer n.
 - Outputs: the nth term of the Fibonacci sequence.

$$f_0 = 0$$
, $f_1 = 1$, $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$

```
<recursive: divide-and-conquer>
int fib (int n) {
  if (n == 0) return 0;
  else if (n == 1) return 1;
  else return fib(n-1) + fib(n-2);
}
```

- Recursive: $T(n) = O(2^n)$
- Iterative: T(n) = O(n)

```
<iterative: dynamic programming>
int fib(int n) {
  index i;
  int f[0 .. n];

f[0] = 0;
  if (n > 0) {
    f[1] = 1;
    for (i = 2; i <= n; i++)
       f[i] = f[i-1] + f[i-2];
  }
  return f[n];
}</pre>
```


• Why is the iterative version more efficient?

Mathematical induction을 써서 증명해볼 것!

Linear versus exponential

From Neapolitan

			e ella erak seesa e ja	Lower Bound on
			Execution Time	Execution Time
n	n+1	$2^{n/2}$	Using Algorithm 1.7	Using Algorithm 1.6
40	41	1,048,576	41 ns*	$1048~\mu s^{\dagger}$
60	61	1.1×10^{9}	61 ns	1 s
80	81	1.1×10^{12}	81 ns	18 min
100	101	1.1×10^{15}	101 ns	13 days
120	121	1.2×10^{18}	121 ns	36 years
160	161	1.2×10^{24}	161 ns	$3.8 \times 10^7 \text{ years}$
200	201	1.3×10^{30}	201 ns	$4 \times 10^{13} \text{ years}$

Order of Algorithms

Big *O*

For given two functions f(n) and g(n), g(n) = O(f(n)) if and only if there exists some positive real constant c and some nonnegative integer N such that $g(n) \leq c \cdot f(n)$ for all $n \geq N$.

- \triangleright We say that g(n) is big O of f(n).
- Example:

비용:
$$g(n) = c_0 + c_1 n + c_2 n^2$$

o| : $g(n) = s + 6n + 7n^2$

⇒ $g(n) \leq 8 \cdot n^2$ for a) $n \geq 8$

C·f(n)

⇒ $g(n) = O(n^2)$

Time complexity: $c_0 + c_1 n + c_2 n^2 = O(n^2)$

- Note 1: The big O puts an asymptotic upper bound on a function.
 - Asymptotic analysis (from Wikipedia)

If $f(n) = n^2 + 3n$, then as n becomes very large, the term 3n becomes insignificant compared to n^2 . The function f(n) is said to be "asymptotically equivalent to n^2 , as $n \to \infty$ ". This is often written symbolically as $f(n) \sim n^2$, which is read as "f(n) is asymptotic to n^2 ".

계산 비용이 $0.01n^2$ 인 알고리즘과 100n인 알고리즘 중 어떤 것이 더 "효율적"인가?

- (Tight) upper bound
 - $37\log n + 0.1n = O(n)$
 - $n^2 + 10n = O(n^2)$
 - $4(\log n)^2 + n\log n + 100n = O(n\log n)$
 - $n^2 + 10n = O(n^{200})$???
 - ...

Growth Rates of Some Common Complexity Functions

