$(10000001)_2$

Gunter Liszewski

ntroduction

Talking about

$(10000001)_2$

©2018 Gunter Liszewski

Belfast, August 2018

Talking about

Introduction

This here Talking about

ntroduction

This here Talking about

This here Talking about

A $(129)_{10}$, $(81)_{16}$, same thing, different looks

This here Talking about

A $(129)_{10}$, $(81)_{16}$, same thing, different looks

B What will be here?

- A $(129)_{10}$, $(81)_{16}$, same thing, different looks
- B What will be here?
- C How?

This here Talking about

- A $(129)_{10}$, $(81)_{16}$, same thing, different looks
- B What will be here?
- C How?
- D Thoughts!

Because of this, there is that

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Then $\sum_{0 \le k \le 2} k^2$ gives 0+1+4=5, and on the other side n=2 and $\frac{n(n+1)(2n+1)}{6}$ sets as $\frac{2(2+1)(2\times 2+1)}{6}$, or in concrete $\frac{2\times 3\times 5}{6}$, or even just 5.

Gunter Liszewski

Introduction

Talking about

Fifteen men on the dead man's chest— Yo-ho-ho, and a bottle of rum!