Определение моментов инерции твердых тел с помощью трифилярного подвеса. (1.2.3)

Моргулёв Илья

Ноябрь 2023

1 Введение

Цели работы: измерение момента инерции тел и сравнение результатов с расчетми по теоретиеским формулам; проверка аддитивноски моментов инерции и справедливости формулы Гюйгенса-Штейнера.

Оборудование: трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить (диск, стержень, полный цилиндр и другие).

2 Экспериментальная установка

Рис. 1: Физический маятник

Для наших целей удобно использовать устройство, показанное на Рис. 1 и называемое трифилярным подвесом. Оно состоит из укрепленной на некоторой высоте неподвижной платформы P и подвешенной к ней на трех симметрично расположеных нитях AA', BB' и CC', вращающейся платформы P'.

Чтобы не вызывать дополнительных раскачиваний, лучше поворачивать верхнюю платформу, укрепленную на неподвижной оси. После поворота верхняя платформа остается неподвижной в течение всего процесса колебний. После того, как нижняя платформа P' оказывается повернутой на угол φ относительно верхней платформы P, вощникает момент сил, стремящийся вернуть нижнюю платформу в положение равновесия, при котором относительный поворот платформ отсутствует. В результате платформа совершает крутильные колебания.

3 Теоретические сведения

Инерционность при вращении тела относительно оси определяется моментом инерции тела относительно этой оси. Момент инерции твердого тела относительно неподвижной оси вращения вычисляется по формуле:

$$I = \int r^2 dm$$

Здесь r — расстояние элемента массы тела dm от оси вращения. Интегрирование проводится по всей массе тела m.

Если пренебречь потерями энергии на трение о воздух и крепление нитей, то уравнение сохранения энергии при коебаниях можно записать следующим образом:

$$\frac{I\dot{\varphi}^2}{2} + mg(z_0 - z) = E \tag{1}$$

Здесь I — момент инерции платформы вместе с исследуемым телом, m — масса платформы с телом, φ — угол поворота платформы от положения равновесия системы, z_0 — координата по вертикали центра нижней платформы O' при равновесии ($\varphi=0$), z — координата той же точки при некотором угле поворота φ . Превый член в левой части уравнения — кинетическач энергия вращения, второй член — потенциальная энергия в поле тяжести, E — полная энергия системы (платформы с телом).

Воспользуемся системой координат x,y,z, связанной с верхней платформой, как показано на Рис. 1. Координаты верхнего конца одной из нитей подвеса точки C в этой системе – (r,0,0). Нижний конец данной нити C', находящийся на нижней платформе, при равновесии имеет координаты $(R,0,z_0)$, а при повороте платформы на угол φ эта точка переходит в C'' с координатами $(R\cos\varphi,R\sin\varphi,z)$. расстояние между точками C и C'' равно длине нити, поэтому, после некоторых преобразований, получаем:

$$(R\cos\phi - r)^2 + R^2\sin^2\phi + z^2 = L^2$$

$$z^2 = L^2 - R^2 - r^2 + 2Rr\cos\phi \approx z_0^2 - 2Rr(1 - \cos\phi) \approx z_0^2 - Rr\phi^2$$

$$z = \sqrt{z_0^2 - Rr\phi^2} \approx z_0 - \frac{Rr\phi^2}{2z_0}$$

Подставляя z в уравнение (1), получаем:

$$\frac{1}{2}I\dot{\varphi^2} + mg\frac{Rr}{2z_0}\varphi^2 = E$$

Дифференцируя по времени и сокращая на $\dot{\varphi}$, находим уравнение крутильных колебаний системы:

$$I\ddot{\varphi}^2 + mg\frac{Rr}{2z_0}\varphi^2 = 0$$

Производная по времени от E равна нулю, так как потерями на трение, как уже было сказано выше, пренебрегаем.

Решение этого уравнения имеет вид:

$$\varphi = \varphi_0 sin\left(\sqrt{\frac{mgRr}{Iz_0}}t + \theta\right)$$

Здесь амплитуда φ_0 и фаза θ колебаний определяются начальными условиями. Период кртуильных полебаний нашей системы равен:

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}}$$

Из формулы для периода получаем:

$$I = \frac{mgRrT^2}{4\pi^2 z_0} = kmT^2 \tag{2}$$

где $k=\frac{gRr}{4\pi^2z_0}$ — величина, постоянная для данной установки.

4 Задание

4.1 Проверка установки

При возбуждении крутильных колебаний маятникообразных движений платформы не наблюдается – устройство функционирует нормально.

При выводе формул мы предполагали, что потери энергии, связанные с трением, малы, то есть мало затухание колебаний. Это значит, что теоретические вычисления будут верны, если выполняется условие:

$$\tau \gg T$$

Проверим данное условие. При отклонении на угол $\alpha \approx 5^\circ$ время, закоторое амплитуда уменьшится в 2 раза, $\tau \approx 300$ с, а $T \approx 3.5$ с. Соотношение выполняется – установка пригодна для проведение эксперимента. Начальное отклоненеи было выбрано $\alpha \approx 5^\circ$.

4.2 Параметры установки и коэффицент k

Работа выполнялась на установке №6, ее параметры указаны в Таблице (1)

m , Γ	R, mm	r, MM	L, cm	z_0 , cm
983,2	114,6	30,5	215,2	215
σ_m , Γ	σ_R , MM	σ_r , mm	σ_L , cm	σ_{z_0} , cm

Таблица 1: Парметры установки

где $\sigma_m,\,\sigma_R,\,\sigma_r,\,\sigma_L,\,\sigma_{z_0}$ – погрешности соответсвующих величин.

По полученным данным вычислим постоянную для конструкции №6:

$$k = \frac{gRr}{4\pi^2 z_0} \approx 4.12 \cdot 10^{-4} \frac{M^2}{c^2}$$

Погрешность же k будет равна:

$$\sigma_k = k \cdot \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{z_0}}{z_0}\right)^2} \approx 0.044 \cdot 10^{-4} \frac{M^2}{c^2}$$

4.3 Момент инерции платформы

Определить момент инерции платформы можно по формуле (2). Для этого нам необходимо определить период колебаний ненагруженной платформы. Измеряем преиод, получаем:

No	Количество полных колебаний	Время колебаний – t_n , с	Период колебаний – T с
1		87,245	4,3623
2	20	87,244	4,3622
3		87,251	4,3626

Тогда, средний период колебания платформы будет: $T_{\rm cp} \approx 4{,}3624~{\rm c}$ Давайте здесь же и определим погрешность времени:

$$\sigma_T^{\text{сист}} = 0.015 \text{ c}$$

$$\sigma_T^{\text{случ}} = \sigma_{\text{случ}} = \sqrt{\frac{1}{N_{\text{изм}} \left(N_{\text{изм}} - 1\right)} \sum_{i=1}^{N_{\text{изм}}} \left(T_{\text{ср}} - T_i\right)^2} \approx 1.2 \cdot 10^{-4}, \text{ c}$$

$$\sigma_T = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{сист}}^2} \approx 0.015 \text{ c}$$

Значит $T_{\rm cp} = (4{,}396 \pm 0{,}015)\,$ с. Теперь мы можем определить момент инерции платформы:

$$I_{\text{пл}} = kmT^2 \approx 7.71 \text{ кг} \cdot \text{м}^2 \cdot 10^{-3}$$

Найдем погрешность найденного нами момента инерции платформы:

$$\varepsilon_I = \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_m}{m}\right)^2 + \left(2\frac{\sigma_T}{T}\right)^2} \approx 0.012$$
$$\sigma_{I_{\text{ILT}}} = \varepsilon_I \cdot I_{\text{ILT}} \approx 0.098 \text{ Kg} \cdot \text{M}^2 \cdot 10^{-3}$$

Получаем, что с помощью данной конструкции мы можем определять момент инерции тела с погрешностью 1%, и $I_{\rm пл}=(7.71\pm0.098)$, кг \cdot м $^2\cdot10^{-3}$

4.4 Определение моментов инерции различных тел. Аддитивность моментов инерции

Измерим периоды колебаний платформы с различными телами таким же образом, как и для ненагруженной платформы, а именно – 3 измерения по 20 колебаний для каждого набора тел, получаем:

Набор тел	t_0 , c	T_0, c	m_0 , Γ	Момент инерции, кг·м $^2 \cdot 10^{-3}$
Платформа	87,244	4,3624	983,2	7,71
Платформа + диск	38,958	3,8958	1573	9,836
Платформа + кольцо	41,444	4,1444	1760,1	12,455
Платформа + кольцо + цилиндр	38,871	3,8871	2349,9	14,628

Таблица 2: Моменты инерции платформы с различными телами

Для подтверждения аддитивности необходимо показать, что выполняются условия:

$$I_{\Pi\Pi+\Pi} = I_{\Pi\Pi} + I_{\Pi} \tag{3}$$

$$I_{\Pi\Pi+K} = I_{\Pi\Pi} + I_{K} \tag{4}$$

$$I_{\mathbf{n}\mathbf{n}+\mathbf{n}+\mathbf{\kappa}} = I_{\mathbf{n}\mathbf{n}} + I_{\mathbf{n}} + I_{\mathbf{\kappa}} \tag{5}$$

Из Таблицы (2) и формул (3), (4) мы можем найти момент инерции диска и кольца: $I_{\rm д}=I_{\rm пл+д}-I_{\rm пл}=(2{,}126\pm0{,}122)~{\rm кг\cdot m^2\cdot 10^{-3}},~{\rm a}~I_{\rm k}=I_{\rm пл+k}-I_{\rm пл}=(4{,}745\pm0{,}161)~{\rm кг\cdot m^2\cdot 10^{-3}}.$

Тогда, для доказательства аддитивности, проверим уравнение (5). Оно выполняется, следовательно моменты инерции аддитивны.

Теперь сравним полученные нами моменты инерциии для тел, и их теоретические значения. Для диска момент инерции вычисляется следующим образом: $I_{\rm д}=\frac{1}{2}m_{\rm д}R_{\rm д}^2$. Радиус данного диска $R_{\rm g}=8,46$ см, тогда $I_{\rm g}=2,111$ кг · м² ·10⁻³, что подтверждает экспериментальное значение.

Для кольца же: $I_{\rm K}=m_{\rm K}R_{\rm K}^2$. Так как данное кольцо не идеально тонко, то $R_{\rm K}=\frac{D_{\rm внут}+h}{2}$, где h=0,32, см, а $D_{\rm внут}=14,29$ см, тогда $R_{\rm K}=7,8$ см. Получаем, что $I_{\rm K}=4,726$ кг · м 2 · 10^{-3} , что тоже совпадает с полученным экспериментально значением.

4.5 Зависимость момента инерции системы тел от их расположения. График зависимости $I(h^2)$

Определим зависимость момента инерции системы двух тел от их взаимного расположения. Для этого располагая грузы, как показано на рис. 2, получим зависимость от расстояния. Затем Используя формулу 2, определим зависимость $I(h^2)$.

Полученные результаты измерений занесем в таблицы (3),(4) соответсвенно. Основывыаясь на результатах таблицы (4), построим график зависимости $I(h^2)$ (Рис. 3).

Рис. 2: Схема расположения грузов на платформе трифилярного подвеса.

№ изм.	Т, с	h, см	№ изм.	Т, с	h, см
1	3,055	0	8	3,336	3,5
2	3,063	0,5	9	3,417	4,0
3	3,078	1,0	10	3,511	5,5
4	3,113	1,5	11	3,607	5,0
5	3,154	2,0	12		
6	3,196	2,5	13		
7	3,267	3,0	14		

Таблица 3: Зависимость Периода колебаний от расстояния

№ изм.	I , kg · M^2 · 10^{-3}	h, cm	№ изм.	$I , K\Gamma \cdot M^2 \cdot 10^{-3}$	h, cm
1	9,327	0	8	11,123	3,5
2	9,377	0,5	9	11,669	4,0
3	9,467	1,0	10	12,320	5,5
4	9,685	1,5	11	13,003	5,0
5	9,942	2,0	12		
6	10,209	2,5	13		
7	10,667	3,0	14		

Таблица 4: Зависимость момента инерции системы от расстояния

По графику понятно, что $I = kh^2 + b$. Тогда b — момент инерции платформы + диска. Для вычисления коэффициентов k и b воспользуемся методом наименьших квадратов:

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} \approx 0.1472 \frac{\text{K} \Gamma \cdot \text{M}^2}{\text{cM}^2} \cdot 10^{-3},$$

$$b = \langle y \rangle - k \langle x \rangle \approx 9{,}3255 \text{ кг} \cdot \text{м}^2 \cdot 10^{-3},$$

где $x = h^2, y = I$.

Случайные погрешности вычисления k и b можно найти по следующим формулам:

$$\sigma_k^{\text{случ}} = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2} \approx 0.0007 \frac{\text{K} \Gamma \cdot \text{M}^2}{\text{cM}^2} \cdot 10^{-3},$$

Рис. 3: График зависимости $I(h^2)$

$$\sigma_b^{\text{случ}} = \sigma_k^{\text{случ}} \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \approx 0.006 \text{ кг} \cdot \text{м}^2 \cdot 10^{-3}.$$

Систематическая погрешность вычисления коэффициентов определяется следующим соотношением:

$$\sigma_b^{\text{сист}} = b\sqrt{\left(\varepsilon_I\right)^2 + \left(\varepsilon_{h^2}\right)^2} \approx b \cdot \varepsilon_I \approx 0.118 \text{ кг} \cdot \text{м}^2 \cdot 10^{-3}.$$

Тогда полную погрешность вычисления коэффициентов подсчитываем по следующей формуле:

$$\sigma_b = \sqrt{(\sigma_b^{\text{случ}})^2 + (\sigma_b^{\text{сист}})^2} \approx 0.118 \text{ kg} \cdot \text{m}^2 \cdot 10^{-3}.$$

Необходимый нам момент инерции можно найти при h=0, тогда $b=I_{\rm пл+д}=I_{\rm пл}+I_{\rm д}=(9,327\pm0,118)$ кг · м² ·10⁻³. Так как момент инерции платформы уже изветсен, и он равняется: $I_{\rm пл}=(7,71\pm0,098)$ кг · м² ·10⁻³, то момент инерции диска $\underline{I_{\rm д}}=(1,617\pm0,141)$ кг · м² ·10⁻³. Зная радиус диска $R_{\rm д}=(0,0473\pm0,0001)$ м, мы можем определить его массу: $m_{\rm д}=2I_{\rm д}/R_{\rm д}^2\approx$

Зная радиус диска $R_{\rm g}=(0.0473\pm0.0001)$ м, мы можем определить его массу: $m_{\rm g}=2I_{\rm g}/R_{\rm g}^2\approx 1.4455$ кг, $\sigma_{m_{\rm g}}=m_{\rm g}\cdot\sqrt{\varepsilon_I^2+(2\varepsilon_R)^2}\approx 0.126$, кг. Значит, что экспериментальная масса диска $m_{\rm g}=(1.4455\pm0.126)$ кг, что совпадает с реальной полной массой диска $m=(1442.6\pm0.1)$ г.

5 Вывод

С помощью трифилярного подвеса можно определять момент инерции с достаточно большой точностью $\varepsilon \approx 1,3\%$. Такая точность обусловлена малой погрешностью измерения времени и условиями, при которых колебания подвеса можно считать слабозатухающими.

Мы экспериментально доказали аддитивность моментов инерции с помощью различных тел и подтвердили действие теоремы Гюйгенса.

Полученная зависимость $I(h^2)$ аппроксимируется линейой зависимостью, что подвтерждает формулу Гюйгенса-Штейнера ($I = I_c + Mh^2$, где I – момент инерции тела, I_c –момент инерции

тела относительно центра, M — масса тела, а h — расстояние между двумя осями, в нашем случае — между осью вращения и половинками диска).