A1. Solution Summary:

- 1. Opened Distribution Centers (DCs):
 - o Austin
 - Houston
 - Laredo
- 2. Customer Assignments:
 - o **Amarillo** → Assigned to **Austin**
 - o **Austin** → Assigned to **Laredo**
 - o **Dallas** → Assigned to **Austin**
 - o **Houston** → Assigned to **Houston**
 - o **Irving** → Assigned to **Austin**
 - o **Laredo** → Assigned to **Laredo**
 - o **Pasadena** → Assigned to **Laredo**
 - o **San Antonio** → Assigned to **Houston**
- 3. Total Annual Cost: \$89,392,207.81

{Kindly refer to attached python notebook for detailed calculation}

A2.

Modified Formulation of CFLP

Decision Variables:

- x_{ij} : Binary variable, 1 if customer i is assigned to warehouse j, 0 otherwise.
- ullet y_j : Binary variable, 1 if warehouse j is opened, 0 otherwise.
- z_i : Binary variable, 1 if warehouse j's capacity is expanded, 0 otherwise.

Parameters:

- d_i : Demand of customer i (in pallets).
- c_{ij} : Transportation cost per pallet from warehouse j to customer i (includes unit costs a_j).
- f_j : Fixed cost of opening warehouse j.
- β_j : Processing cost per pallet at warehouse j.
- w_{ij} : Fixed shipping cost from warehouse j to customer i, regardless of the quantity.
- p_i: Fixed cost of capacity expansion for warehouse j.
- t_j : Threshold beyond which warehouse j requires capacity expansion.
- s_j : Capacity of warehouse j without expansion.
- s'_i : Additional capacity provided if $z_j = 1$.

Objective Function:

$$egin{aligned} ext{Minimize} & \sum_{j} f_j y_j + \sum_{i,j} c_{ij} d_i x_{ij} + \sum_{j} eta_j \left(\sum_{i} d_i x_{ij}
ight) + \sum_{i,j} w_{ij} x_{ij} + \sum_{j} p_j z_j \end{aligned}$$

Explanation:

- $f_j y_j$: Fixed cost for opening warehouses.
- $c_{ij}d_ix_{ij}$: Transportation costs based on distances and demands.
- $\beta_j \sum_i d_i x_{ij}$: Processing costs at warehouses.
- $w_{ij}x_{ij}$: Fixed shipping costs for customer assignments.
- $p_i z_i$: Capacity expansion costs if required.

Constraints:

1. Customer Assignment:

$$\sum_j x_{ij} = 1 \quad orall i$$

Each customer i must be assigned to exactly one warehouse.

2. Warehouse Capacity:

$$\sum_i d_i x_{ij} \leq s_j y_j + s_j' z_j \quad orall j$$

The total demand served by a warehouse j must not exceed its capacity (including expanded capacity if $z_j=1$).

3. Capacity Expansion:

$$z_j \geq rac{\sum_i d_i x_{ij} - t_j}{s_j'} \quad orall j$$

If demand exceeds threshold t_j , the warehouse must expand its capacity ($z_j=1$).

4. Binary Variables:

$$x_{ij} \in \{0,1\}, \quad y_j \in \{0,1\}, \quad z_j \in \{0,1\}$$

Key Changes:

- (a) Shipping Cost: Added unit costs a_j as part of c_{ij} .
- (b) Processing Cost: Introduced eta_j to account for processing costs at each warehouse.
- (c) Fixed Shipping Cost: Incorporated w_{ij} into the objective to handle a fixed cost for customer assignments.
- (d) Capacity Expansion Cost: Added binary variable z_j and fixed cost p_j for capacity expansion, along with constraints to trigger expansion when demand exceeds t_j .