Lista 1

Ej 1. Ejercicio 13.

Sea $f:(L,\leq)\longrightarrow (L',\leq')$ un morfismo de lattices. Pruebe que:

- a) f es morfismo de posets.
- b) f es un isomorfosmo de lattices si y sólo si lo es de posets.

Demostración. (a) Sean $x,y \in L$. Probaremos primero que $x \leq y$ si y sólo si $x \wedge y = x$. Si $x \leq y$, entonces $x \leq x \wedge y$, puesto que $x \leq x$ y $x \leq y$. Además, por definición, tenemos que $x \wedge y \leq x$. Así $x = x \wedge y$. Por el contrario, si suponemos que $x = x \wedge y$, entonces observe que $x \leq y$.

La afirmación anterior será útil en el proceso de probar este inciso. En efecto, supongamos que $x \leq y$. Como f es morfismo de lattices, se tiene que $f(x) = f(x \wedge y) = f(x) \wedge f(y)$. $\therefore f(x) \leq' f(y)$.

(b) \Rightarrow) Suponga que f es isomorfismo de lattices. En primer lugar, por el inciso anterior, f es morfismo de posets. Ahora, por hipótesis, existe $g: L' \longrightarrow L$ un morfismo de lattices tal que $f \circ g = Id_{L'}$ y $g \circ f = Id_L$; éste a su vez también es un morfismo de posets. Por tanto, f es un isomorfismo de posets.

 \subseteq Consideremos que f es un isomorfismo de posets. Entonces existe $g:L'\longrightarrow L$ un morfismo de posets tal que $f\circ g=Id_{L'}$ y $g\circ f=Id_L$. Veremos que g es un morfismo de latices. Sean así $r,t\in L'$. Dado que $r\wedge t\leq' r$ y $r\wedge t\leq' t$, se tiene que $g(r\wedge t)\leq g(r)$ y $g(r\wedge t)\leq g(t)$, y por ende $g(r\wedge t)\leq g(r)\wedge g(t)$. Posteriormente, usando el hecho de que f es morfismo de lattices, se deduce que

$$r \wedge t = f(g(r \wedge t))$$

$$\leq' f(g(r) \wedge g(t))$$

$$= f(g(r)) \wedge f(g(t))$$

$$= r \wedge t$$

De este modo,

$$g(r \wedge t) = g(f(g(r) \wedge g(t)))$$
$$= g(r) \wedge g(t)$$

Dado que g es morfismo de lattices, podemos concluir que la afirmación es cierta. $\hfill\Box$

Ej 2. Ejercicio 16.

Sean $M \in {}_{R}Mod$ y $n \leq M$. Consideremos $L_{N}(M) = \{X \in L(M) \mid N \leq X\}$. Pruebe que el epimorfismo canónico de R-módulos a izquierda

$$\pi_N: M \to M/N$$

$$m \mapsto m + N$$

induce el isomorfismo de lattices

$$\widehat{\pi}_N : L_N(M) \to L(M/N)$$

$$X \mapsto X/N$$

cuyo inverso es $\widehat{\pi}_N^{-1}(Z) = \{x \in M \mid x + N \in Z\}.$

Demostración. Sea $K \in L_N(M)$ tal que $\widehat{\pi}_N(K) = 0$. Notemos que, si $k \in K$, entonces k+N=0. Lo cual implica que $k \in N$, y por ello K=N. Esto quiere decir que $\widehat{\pi}_N$ es inyectiva.

Así mismo, dado $T\in L\left(M/N\right)$, se satisface que $\widehat{\pi}_{N}^{-1}\left(T\right)\in L_{N}\left(M\right)$. En efecto, para cada $x\in N$, se cumple que $x+N=N\in T$, y en consecuencia $N\subseteq\widehat{\pi}_{N}^{-1}\left(T\right)$. Adicionalmente, si $x,y\in\widehat{\pi}_{N}^{-1}\left(T\right)$ y $r\in R$, se cumple que $x+y+N\in T$, $rx+N\in T$. En vista de ésto, se sigue que $x+y,rx\in\widehat{\pi}_{N}^{-1}\left(T\right)$, y por tanto $\widehat{\pi}_{N}^{-1}\left(T\right)\in L_{N}\left(M\right)$.

Por último, observe que

$$\widehat{\pi}_{N}\left(\widehat{\pi}_{N}^{-1}\left(T\right)\right) = \left\{x + N \in M/N \mid x \in \widehat{\pi}_{N}^{-1}\left(T\right)\right\}$$
$$= \left\{x + N \in M/N \mid x \in T\right\}$$
$$- T$$

Más aún, para cualesquiera $T_1, T_2 \in L(M/N)$, se identifican

$$\widehat{\pi}_{N}^{-1}\left(T_{1}\cap T_{2}\right)=\widehat{\pi}_{N}^{-1}\left(T_{1}\right)\cap\widehat{\pi}_{N}^{-1}\left(T_{2}\right)$$

у

$$\widehat{\pi}_{N}^{-1}(T_{1}+T_{2})=\widehat{\pi}_{N}^{-1}(T_{1})+\widehat{\pi}_{N}^{-1}(T_{2})$$

 $\therefore \widehat{\pi}_N$ es un isomorfismo de retículas.

Ej 3. Ejercicio 19.

Pruebe que todo anillo no trivial R admite R-módulos simples a izquierda (y a derecha también).

Demostración. Observe que R es finitamente generado como R-módulo, de hecho $R = \langle 1 \rangle$. Entonces, por el **teorema 1.8.1**, R tiene ideales máximos. Sea I un ideal izquierdo máximo de R. Por el **Ejercicio 16**, R/I es un R-módulo simple. De manera análoga, Mod_R posee R-módulos derechos simples.

Ej 4. Ejercicio 22.

Sea $\varphi: R \longrightarrow S$ un morfismo de anillos. Pruebe que:

- a) La correspondencia de cambio de anillos $F_{\varphi}: Mod(S) \longrightarrow Mod(R)$ es un funtor.
- b) Para cualesquiera $M, N \in Mod(S)$, se tiene que

$$Hom_{S}(M, N) \leq Hom_{R}(F_{\varphi}(M), F_{\varphi}(N))$$

$$= Hom_{\varphi(R)}(F_{\varphi}(M), F_{\varphi}(N))$$

$$\leq Hom_{\mathbb{Z}}(M, N)$$

como grupos abelianos. En particular, F_{φ} es fiel y éste es pleno si $\varphi(R) = S$.

Demostración. (a) Primero, por la propia correspondencia, a todo S-módulo M se le asigna un R-módulo $F_{\varphi}(M) = M$. En vista de lo anterior, bastará probar que $F_{\varphi}(f) = f \in Hom_R(F_{\varphi}(M), F_{\varphi}(N))$, para $f \in Hom_S(M, N)$ y $M, N \in Mod(S)$.

Sea $f:M\longrightarrow N$ un morfismo de S-módulos. Ahora, dados $r\in R$ y $m,n\in M,$ se satisface que

$$\begin{split} F_{\varphi}\left(f\right)\left(r\cdot m+n\right) &= f\left(\varphi\left(r\right)*m+n\right) \\ &= \varphi\left(r\right)*f\left(m\right)+f\left(n\right) \\ &= r\cdot f\left(m\right)+f\left(n\right) \\ &= r\cdot F_{\varphi}\left(f\right)\left(m\right)+F_{\varphi}\left(f\right)\left(n\right) \end{split}$$

Con lo cual, $F_{\varphi}(f)$ es un morfismo de R-módulos. F_{φ} es un funtor.

(b) Note que, por el inciso anterior, todo morfismo de S-módulos es un morfismo de R-módulos. Más aún, como todo R-módulo es un grupo abeliano y como todo morfismo de R-módulos preserva sumas, se tiene que $Hom_S(M,N) \leq Hom_R(F_{\varphi}(M),F_{\varphi}(N)) Hom_{\varphi(R)}(F_{\varphi}(M),F_{\varphi}(N))$ y

que $Hom_{R}\left(F_{\varphi}\left(M\right),F_{\varphi}\left(N\right)\right)\leq Hom_{\mathbb{Z}}\left(M,N\right)$.

Por otra parte, F_{φ} es fiel, toda vez que a cualesquiera 2 morfismos $f \neq g$ se le asignan morfismos $F_{\varphi}(f) = f \neq g = F_{\varphi}(g)$. Por otro lado, suponga que $\varphi(R) = S$. Dado $f \in Hom_R(M,N)$, éste es un morfismo de S-módulos. En efecto, si $s \in S$, entonces $s = \varphi(r)$, para alguna $r \in R$. De esta forma, definimos f(s*m) como f(s*m) = f(rm), e inclusive tenemos $F_{\varphi^{-1}}(f) = f$. $\therefore F_{\varphi}$ es pleno.

Ej 5. Ejercicio 25.

Sean R y S anillos, y $M \in {}_R Mod_S$. Pruebe que:

- a) $\rho:_R M_S \longrightarrow Hom_R(_R R_{R,R} M_S)$, con $\rho(m)(r) = rm$, es un isomorfismo en $_R Mod_S$
- b) $\lambda :_R M_S \longrightarrow Hom_S(_SS_{S,R}\,M_S)$, con $\lambda\left(m\right)(s) = ms$, es un isomorfismo en $_RMod_S$

Demostración. (a) Sea $m \in M$. Probaremos que $\rho(m)$ un morfismo de R-S-bimódulos. Considere $r, t \in R$, en virtud de que M es un R-módulo a izquierda, se tiene que

$$\rho(m)(r+t) = (r+t)m$$
$$= rm + tm$$
$$= \rho(m)(r) + \rho(m)(t)$$

Adicionalmente,

$$\rho(m)(rt) = (rt) m$$

$$= r(tm)$$

$$= r\rho(m)(t)$$

Por tanto, $\rho \in Hom_R({}_RR_R, {}_RM_S)$.

Además, ρ es un morfismo de R-módulos a izquierda. En efecto, si $a,b\in R$ y $x,y\in M,$ entonces

$$\rho(x+y)(a) = a(x+y)$$

$$= ax + ay$$

$$= \rho(x)(a) + \rho(y)(a)$$

También

$$\rho(x) (ab) = (ab) x$$
$$= a (bx)$$
$$= a\rho(bx)$$

Posteriormente, si $m \in Ker(\rho)$, entonces $\rho(m) = 0$. De esta forma, rm = 0, para cualquier $r \in R$. Como M es unitario, el único de sus elementos que es anulado por cada elemento de R es el 0; en este sentido, $Ker(\rho) = 0$. Por consiguiente, ρ es monomorfismo.

Finalmente, sea $g \in Hom_R(R, M)$. Si consideramos g(1), se satisface que $\rho(g(1)) = g$. $\therefore \rho$ es isomorfismo.

(b) De manera análoga al inciso anterior, podemos probar este inciso, por lo cual nos centraremos más en las cuentas. Bajo este contexto, tenemos que:

■ Sean $m \in M$ y $s, u \in S$.

$$\rho(m)(su) = m(su)$$
$$= (ms) u$$
$$= \rho(m)(s) u$$

■ Sean $m, n \in M$ y $s \in S$.

$$\rho(m+n)(s) = (m+n)s$$
$$= ms + ns$$
$$= \rho(m)(s) + \rho(n)(s)$$

■ Sean $m \in M$ y $s, u \in S$

$$\rho(m)(su) = m(su)$$
$$= (ms) u$$
$$= \rho(m)(s) u$$

Así mismo, ρ es isomorfismo. En efecto, si $x \in Ker(\rho)$, entonces $\rho(x) = 0$; de donde x = 0. Más aún, si $g \in Hom_S(S, M)$, entonces $\rho(g(1)) = g$. $\therefore \rho$ es isomorfismo.

Ej 6. Ejercicio 28.

Para un anillo R, pruebe que:

- a) Para $M \in Mod(R)$, se tiene que $M \in Mod(End(_RM))$, via la acción a izquierda, $End(_RM) \times M \longrightarrow M$, $(f,m) \mapsto f \cdot m = f(m)$. Más aún, vale que $M \in _{R-End(_RM)}Mod$.
- b) Para $N \in Mod\left(R^{op}\right)$, se tiene que $N \in Mod\left(End\left(N_{R}\right)\right)$, vía la acción a izquierda, $End\left(N_{R}\right) \times N \longrightarrow N$, $(g,n) \mapsto g \cdot n = g\left(n\right)$. Más aún, vale que $N \in End\left(N_{R}\right) Mod_{R}$.

Demostración. (a) En virtud de que M es un grupo abeliano, bastará probar que la acción a izquierda $(f,m) \mapsto f \cdot m = f(m)$ induce una estructura de $End(_RM)$ -módulo a izquierda. Para dicho fin, se tiene que:

 \bullet Sean $f,g\in End\left(_{R}M\right)$ y $m\in M$

$$(f+g) \cdot m = (f+g)(m)$$
$$= f(m) + g(m)$$
$$= f \cdot m + g \cdot m$$

■ Sean $f \in End(_RM)$ y $m, n \in M$

$$f \cdot (m+n) = f(m+n)$$
$$= f(m) + f(n)$$
$$= f \cdot m + f \cdot n$$

■ Sean $f, g \in End(_RM)$ y $m \in M$

$$(fg) \cdot m = (fg) (m)$$

$$= f (g (m))$$

$$= f (g \cdot m)$$

$$= f \cdot (g \cdot m)$$

 $Id \cdot m = Id(m) = m$

Por ello, $M \in End(_RM)$. Más aún, el hecho de que todo morfismo h preserva productos por escalar garantiza que

$$h \cdot (rx) = h (rx)$$
$$= rh (x)$$
$$= r (h \cdot x)$$

 $M \in R-End(RM)Mod.$

(b) Considere $N \in Mod(R^{op})$. Veremos que bajo la acción a izquierda $(g,n) \mapsto g \cdot n = g(n)$, N es un $End(N_R)Mod_R$ -bimódulo. De tal forma que:

• Sean $\varphi, \psi \in End(N_R), m \in M$

$$(\varphi + \psi) \cdot m = (\varphi + \psi) (m)$$
$$= \varphi (m) + \psi (m)$$
$$= \varphi \cdot m + \psi \cdot m$$

• Sean $\varphi \in End(N_R), m \in M$

$$\varphi \cdot (m+n) = \varphi (m+n)$$
$$= \varphi (m) + \varphi (n)$$
$$= \varphi \cdot m + \varphi \cdot n$$

• Sean $\varphi, \psi \in End(N_R), m \in M$

$$(\varphi\psi) \cdot m = (\varphi\psi) (m)$$
$$= \varphi (\psi (m))$$
$$= \varphi (\psi \cdot m)$$
$$= \varphi \cdot (\psi \cdot m)$$

 $Id \cdot m = Id(m) = m$

De aquí, Nes un $End\left(N_{R}\right) \text{-módulo}.$ Finalmente, apartir de que todo morfismo τ induce

$$\tau \cdot (ts) = \tau (ts)$$
$$= \tau (t) s$$
$$= (\tau \cdot t) s$$

 $\therefore N \in {}_{End(N_R)}Mod_S.$