VIII - Intégration

I - Primitives

Définition 1 - Primitive

Soit f une fonction continue sur un intervalle I. Une primitive de f est une fonction dérivable F sur I telle que, pour tout $x \in [a, b]$, F'(x) = f(x).

Exemple 1

Soit $F(x) = x \ln(x) - x$ définie sur]0,1]. Comme la fonction logarithme népérien est dérivable sur]0,1], alors F est dérivable et pour tout $x \in]0,1]$,

$$F'(x) = \ln(x) + x \cdot \frac{1}{x} - 1 = \ln(x).$$

Ainsi, F est une primitive de ln sur [0,1].

Exercice 1. Déterminer la fonction dont $F(x) = \frac{x^3}{12} + 4x^2 + 1$ est une primitive.

Théorème 1 - Primitives de fonctions continues

Toute fonction continue sur un intervalle I admet des primitives. Si F et G sont des primitives d'une fonction f continue sur I, alors il existe un réel c tel que $\forall x \in I$, F(x) = G(x) + c.

Proposition 1 - Primitives des fonctions usuelles 😋				
	Fonction $f(x)$	Primitive $F(x)$	Intervalle	
	c	cx	$\mathbb R$	
	$x^a, a \neq -1$	$\frac{1}{a+1}x^{a+1}$	\mathbb{R}_+^* ou \mathbb{R}^* ou \mathbb{R}	
	$\frac{1}{x}$	$\ln(x)$	$]0,+\infty[$	
	$e^{ax}, a \neq 0$	$\frac{1}{a} e^{ax}$	$\mathbb R$	

Exercice 2. Déterminer une primitive des fonctions suivantes :

- 1. x^5 .
- 2. $\frac{3}{x}$.

- **3.** e^{3x}
- **4.** $\frac{1}{x^5}$

Proposition 2 - Primitive de fonctions composées $\mathfrak{C}_{\mathbf{k}}^{\mathbf{p}}$

Soit u une fonction dérivable telle que u' soit continue.

Fonction $f(x)$	Primitive $F(x)$
$\lambda u'(x) + \mu v'(x)$	$\lambda u(x) + \mu v(x)$
$u'(x)u^a(x), a \neq -1$	$\frac{1}{a+1}u^{a+1}(x)$
$rac{u'(x)}{u(x)}$	$\ln u(x) $
$u'(x) e^{u(x)}$	$e^{u(x)}$
u'(x)v'(u(x))	v(u(x))

Exercice 3. Déterminer une primitive des fonctions suivantes :

1.
$$\frac{1}{x} \ln(x)$$
.

3.
$$(3x^2+4)e^{x^3+4x}$$
.
4. $\frac{2x+1}{x^2+x}$.

2.
$$\frac{1}{x} \ln^4(x)$$
.

4.
$$\frac{2x+1}{x^2+x}$$
.

II - Intégrale sur un segment

Définition 2 - Intégrale sur un segment

L'intégrale, sur le segment [a,b], d'une fonction f positive, est l'aire, délimitée par les abscisses a et b, et comprise entre la courbe représentative de f et l'axe des abscisses. Cette quantité est notée $\int f(t) dt$.

Proposition 3 - Intégrale d'une fonction continue 🗱

Soit f une fonction continue sur [a,b] et F une primitive de f. L'intégrale de f sur [a, b] est le réel défini par

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

Exemple 2

En utilisant les primitives usuelles,

•
$$\int_1^2 x^4 dx = \left[\frac{x^5}{5}\right]_1^2 = \frac{2^5}{5} - \frac{1}{5}$$
.

•
$$\int_0^1 (3x^2 + 4) e^{x^3 + 4x} dx = \left[e^{x^3 + 4x} \right]_0^1 = e^5 - 1.$$

Exercice 4. Exprimer simplement les intégrales suivantes :

1.
$$\int_0^1 x^3 \, \mathrm{d}x$$

3.
$$\int_{1}^{2} \frac{1}{x} dx$$

1.
$$\int_0^1 x^3 dx$$
. **3.** $\int_1^2 \frac{1}{x} dx$. **4.** $\int_{-2}^{-1} \frac{1}{x^4} dx$.

2.
$$\int_3^4 e^{2x} dx$$
.

Théorème 2 - Intégrale et Primitive

Soit f une fonction continue sur $[a, +\infty[$. On note $F(x) = \int_{-\infty}^{\infty} f(t) dt$. Alors, F est l'unique primitive de f qui s'annule en a. En particulier, pour tout réel x > a, F'(x) = f(x)

Exemple 3

Soit F la fonction définie sur $[0, +\infty[$ par $F(x) = \int_0^x e^t dt$. La fonction F est dérivable et $F'(x) = e^x$. Ainsi, F' est positive et F est croissante.

II.1 - Propriétés de l'intégrale

Définition 3 - Intégrale des fonctions continues par morceaux

Soit f une fonction définie sur un segment $I = \bigcup [a_k, b_k]$. On suppose que f est continue par morceaux sur [a,b], i.e. prolongeable par continuité sur chacun des segments $[a_k, b_k]$. Alors, $\int_a^b f(x) \, \mathrm{d}x = \sum_{k=1}^n \int_{a_k}^{b_k} f(x) \, \mathrm{d}x.$

Proposition 4 - Relation de Chasles

Soit f une fonction continue par morceaux sur un intervalle I et a, b et c des réels de I. Alors,

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Chapitre VIII - Intégration

Exemple 4 - Fonction définie par morceaux

Soit f la fonction définie par f(x) = 0 si $x \le 1$ et f(x) = x - 1 sinon. Alors,

$$\int_{-1}^{2} f(x) dx = \int_{-1}^{1} f(x) dx + \int_{1}^{2} f(x) dx$$
$$= \int_{-1}^{1} 0 dx + \int_{1}^{2} (x - 1) dx$$
$$= 0 + \left[\frac{(x - 1)^{2}}{2} \right]_{1}^{2}$$
$$= 0 + \frac{1}{2} - 0$$
$$= \frac{1}{2}.$$

Proposition 5 - Linéarité de l'intégrale

Soit f et g des fonctions continues sur [a, b] et λ un réel. Alors,

$$\int_a^b f(x) + \lambda g(x) dx = \int_a^b f(x) dx + \lambda \int_a^b g(x) dx.$$

Exemple 5

En utilisant les primitives usuelles.

$$\int_{1}^{2} \frac{12}{x} + 5x^{3} dx = 12 \int_{1}^{2} \frac{1}{x} dx + 5 \int_{1}^{2} x^{3} dx$$

$$= 12 \left[\ln(x)\right]_{1}^{2} + 5 \left[\frac{x^{4}}{4}\right]_{1}^{2}$$

$$= 12 \left(\ln(2) - \ln(1)\right) + 5 \left(\frac{2^{4}}{4} - \frac{1}{4}\right)$$

$$= 12 \ln(2) + \frac{5}{4} \cdot 15.$$

Exercice 5. Calculer $\int_0^1 2 e^x + 3x^2 dx$.

Proposition 6 - Croissance de l'intégrale (I)

Soit f une fonction continue sur [a, b]. Si $a \leq b$ et, pour tout $x \in [a, b], f(x) \geq 0$, alors $\int_a^b f(x) dx \geq 0$.

Exemple 6

Soit
$$F(x) = \int_0^x e^t dt$$
 et $0 \le x \le y$. Alors,

$$F(y) = \int_0^y e^t dt$$

$$= \int_0^x e^t dt + \int_x^y e^t dt, \text{ d'après la relation de Chasles}$$

$$= F(x) + \int_x^y e^t dt$$

Or, $e^t \ge 0$ pour tout $t \in [x, y]$ et $x \le y$, donc $\int_x^y e^t dt \ge 0$. Ainsi, $F(x) \le F(y)$ et F est croissante.

Ce raisonnement reste valable dès que l'intégrande est positif.

Exercice 6. Montrer que $F(x) = \int_3^x x^2 - 2x + 1 \, dx$ est croissante sur $[3, +\infty[$.

Proposition 7 - Croissance de l'intégrale (II)

Soit f et g deux fonctions continues sur [a, b]. Si, pour tout $x \in [a, b]$, $f(x) \leq g(x)$, alors $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.

Chapitre VIII - Intégration D 2

Exemple 7

Pour tout $x \in [0, 1], x^3 \le x^2$. Ainsi, $\int_0^1 \frac{x^3}{1+x} dx \le \int_0^1 \frac{x^2}{1+x} dx$.

Proposition 8 - Inégalité triangulaire

Soit f une fonction continue sur [a, b]. Alors,

$$\left| \int_{a}^{b} f(t) \, \mathrm{d}t \right| \leqslant \int_{a}^{b} |f(t)| \, \mathrm{d}t.$$

Exemple 8

Soit $n \in \mathbb{N}$ et $x \geqslant 0$. Alors,

$$\left| \int_0^x \frac{(-t)^n}{n!} e^t dt \right| \le \int_0^x |(-t)^n| \frac{e^t}{n!} dt \le \frac{e^x}{n!} \int_0^x t^n dt \le \frac{x^{n+1} e^x}{(n+1)!}.$$

Proposition 9 - Positivité de l'intégrale

Soit f une fonction continue sur [a, b]. Si f est à valeurs positives, alors $f \equiv 0$ si et seulement si $\int_a^b f(t) dt = 0$.

Exercice 7. Montrer que ce résultat est faux en général si la fonction est continue par morceaux.

II.2 - Calculs d'intégrales

Théorème 3 - Intégration par parties

Soit u et v deux fonctions dérivables sur [a,b] telles que u' et v' soient continues sur [a,b]. Alors,

$$\int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx.$$

Exemple 9 - 🚓

• Calculons $\int_0^1 x e^{2x} dx$. Posons u(x) = x et $v'(x) = e^{2x}$. Alors, u'(x) = 1 et $v(x) = \frac{e^{2x}}{2}$. Comme u, v sont dérivables et u', v' sont continues sur [0,1], d'après la formule d'intégration par parties,

$$\int_0^1 x e^{2x} dx = \left[x \frac{e^{2x}}{2} \right]_1^2 - \int_1^2 \frac{e^{2x}}{2} dx$$
$$= \frac{2e^4}{2} - \frac{e^2}{2} - \left[\frac{e^{2x}}{4} \right]_1^2$$
$$= e^4 - \frac{e^2}{2} - \frac{e^4}{4} + \frac{e^2}{4}$$
$$= \frac{3e^4}{4} - \frac{e^2}{4}.$$

• Calculons $\int_1^2 \ln(x) dx$. Posons $u(x) = \ln(x)$ et v'(x) = 1. Alors, $u'(x) = \frac{1}{x}$ et v(x) = x. Comme u, v sont dérivables et u', v' sont continues sur [1, 2], d'après la formule d'intégration par parties,

$$\int_{1}^{2} \ln(x) dx = \left[\ln(x)x\right]_{1}^{2} - \int_{1}^{2} \frac{1}{x} \cdot x dx$$

$$= 2\ln(2) - 1\ln(1) - \int_{1}^{2} 1 dx$$

$$= 2\ln(2) - \left[x\right]_{1}^{2}$$

$$= 2\ln(2) - 2 + 1$$

$$= 2\ln(2) - 1.$$

Exercice 8. Calculer $\int_0^1 x e^x dx$.

Chapitre VIII - Intégration

Théorème 4 - Changement de variable

Soit $f \in \mathcal{C}(I, \mathbb{R})$ et φ une fonction de [a, b] dans I de classe \mathcal{C}^1 . Alors,

$$\int_{\varphi(a)}^{\varphi(b)} f(u) du = \int_a^b f(\varphi(t))\varphi'(t) dt.$$

Exemple 10 - 🚓

Calculons $\int_0^1 \frac{dx}{e^x + 1}$ à l'aide du changement de variable $t = \ln(u)$.

La fonction $\varphi: [1,e] \to [0,1], u \mapsto \ln(u)$ est de classe \mathscr{C}^1 . Ainsi,

$$\int_0^1 \frac{dx}{e^x + 1} = \int_1^e \frac{1}{u + 1} \frac{1}{u} du$$

$$= \int_1^e \left[\frac{1}{u} - \frac{1}{1 + u} \right] du$$

$$= \int_1^e \frac{du}{u} - \int_1^e \frac{du}{1 + u}$$

$$= [\ln(u)]_1^e - [\ln(1 + u)]_1^e$$

$$= 1 - \ln(1 + e) + \ln(2).$$

Exercice 9. Calculer $\int_1^2 \frac{\mathrm{d}x}{x+\sqrt{x}}$ à l'aide du changement de variable $u=\sqrt{x}$.

III - Intégrales généralisées

Dans tout ce paragraphe, I désigne un intervalle de $\mathbb R$ d'extrémités a et b, où $-\infty \leq a < b \leq +\infty$.

III.1 - Définition

Définition 4 - Convergence

Soit f une fonction continue par morceaux sur I.

- Si I = [a, b[et f est continue sur [a, b[. L'intégrale généralisée $\int_a^b f(t) dt$ converge si $x \mapsto \int_a^x f(t) dt$ possède une limite finie lorsque x tend vers b.
- Si I =]a, b] et f est continue sur]a, b]. L'intégrale généralisée $\int_a^b f(t) dt$ converge si $x \mapsto \int_x^b f(t) dt$ possède une limite finie lorsque x tend vers a.
- Si I =]a, b[et f est continue sur]a, b[. L'intégrale généralisée $\int_a^b f(t) dt$ converge s'il existe $c \in]a, b[$ tel que $\int_a^c f(t) dt$ et $\int_a^b f(t) dt$ soient convergentes.

Dans tous les cas, si l'intégrale ne converge pas, elle diverge.

Exemple 11

La fonction ln est continue sur]0,1]. De plus, pour tout $\varepsilon > 0$,

$$\int_{\varepsilon}^{1} \ln(t) dt = [t \ln(t) - t]_{\varepsilon}^{1} = -1 - \varepsilon \ln(\varepsilon) + \varepsilon.$$

Ainsi, $\lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} \ln(t) dt = -1$ et $\int_{0}^{1} \ln(t) dt$ converge.

Théorème 5 - Intégrales de référence

(i). Intégrales de Riemann sur $[1, +\infty]$.

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} \text{ converge si et seulement si } \alpha > 1. \text{ Alors,}$$

$$\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}} = \frac{1}{\alpha - 1}.$$

(ii). Intégrales de Riemann sur [0, 1].

$$\int_0^1 \frac{\mathrm{d}t}{t^{\alpha}} \quad \text{converge si et seulement si } \alpha < 1. \text{ Alors,}$$

$$\int_0^1 \frac{\mathrm{d}t}{t^{\alpha}} = \frac{1}{1-\alpha}.$$

(iii). Fonction exponentielle.

$$\int_0^{+\infty} e^{-\alpha t} dt \text{ converge si et seulement si } \alpha > 0. \text{ Alors,}$$

$$\int_0^{+\infty} e^{-\alpha t} dt = \frac{1}{\alpha}.$$

(iv). Fonction logarithme.

$$\int_0^1 \ln(t) dt \text{ converge. De plus, } \int_0^1 \ln(t) dt = -1.$$

III.2 - Propriétés

Proposition 10 - Linéarité

Soit $\lambda \in \mathbb{R}$. Si $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ convergent. Alors, $\int_a^b (f(t) + \lambda g(t)) dt$ converge et

$$\int_a^b (f(t) + \lambda g(t)) dt = \int_a^b f(t) dt + \lambda \int_a^b g(t) dt.$$

Proposition 11 - Relation de Chasles

On suppose que $\int_a^b f(t) dt$ converge et $c \in]a, b[$. Alors, $\int_a^c f(t) dt$ et $\int_a^b f(t) dt$ convergent et

$$\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt.$$

Proposition 12 - Croissance de l'intégrale

On suppose que $\int_a^b f(t) dt$ et $\int_a^b g(t) dt$ convergent.

- (i). Si, pour tout $x \in I$, $f(x) \ge 0$, alors $\int_a^b f(t) dt \ge 0$.
- (ii). Si, pour tout $x \in I$, $f(x) \leqslant g(x)$, alors $\int_a^b f(t) dt \leqslant \int_a^b g(t) dt.$

 D_{2}

Théorème 6 - Inégalité triangulaire

Si $\int_a^b |f(t)| dt$ est absolument convergente, alors $\int_a^b f(t) dt$ converge et

$$\left| \int_a^b f(t) \, \mathrm{d}t \right| \leqslant \int_a^b |f(t)| \, \, \mathrm{d}t.$$

Théorème 7 - Positivité

Soit $f:I\to\mathbb{R}$ une fonction continue telle que $\int_I |f(t)| dt$ converge. Si $\int_I |f(t)| dt = 0$, alors f est nulle sur I.

III.3 - Preuves d'existences

Proposition 13 - Intégrale faussement impropre

Soit f une fonction continue sur le segment [a, b]. Alors, les intégrales de f sur [a, b], [a, b], [a, b] et [a, b] sont égales.

D 2 Chapitre VIII - Intégration

Exemple 12

Montrons que $\int_0^1 t \ln(t) dt$ est convergente. On pose $f: t \mapsto$ $t \ln(t)$.

- La fonction f est continue sur [0,1].
- \bullet D'après les croissances comparées, $\lim_{t\to 0}f(t)=0.$ Ainsi, fest prolongeable par continuité en 0.

Finalement, l'intégrale de f sur [0,1] est bien définie.

Proposition 14 - Fonctions à valeurs positives

Si f est valeurs positives sur [a, b[, alors $\int_{a}^{b} f(t) dt$ converge si et seulement si $x \mapsto \int_{-t}^{x} f(t) dt$ est majorée sur [a, b[.

Théorème 8 - Domination locale

Soient f, g deux fonctions continues de [a, b] dans \mathbb{R}_+ .

- S'il existe un réel c tel que $\forall x \in [c, b], 0 \leq f(x) \leq g(x)$ et $\int_a^b g(t) dt$ converge, alors $\int_a^b f(t) dt$ converge.
- Si $f(x) \sim_b g(x)$, alors $\int_0^b f(x) dx$ converge si et seulement si $\int_{0}^{b} g(x) dx$ converge.

Exemple 13

- Soit $n \in \mathbb{N}^*$. Étudions $\int_0^{+\infty} x^n e^{-x} dx$.
 - $\star x \mapsto x^n e^{-x}$ est continue sur $[0, +\infty[$.
 - \star Comme $\lim_{x\to +\infty} x^{n+2} \, \mathrm{e}^{-x} \, \mathrm{d} x = 0,$ il existe un réel c tel

que, pour tout $x \geqslant c$,

$$x^n e^{-x} \leqslant \frac{1}{x^2}.$$

D'après les intégrales de référence, $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ converge.

Ainsi,
$$\int_{c}^{+\infty} x^{n} e^{-x} dx$$
 converge.

Comme $x \mapsto x^n e^{-x}$ est continue sur [0, c], son intégrale sur ce segment est bien définie.

Finalement, $\int_{0}^{+\infty} x^{n} e^{-x} dx$ converge.

- Étudions $\int_{0}^{1} \frac{\mathrm{d}x}{1-x^2}$.

 - $\begin{array}{ccc}
 J_0 & 1 x^- \\
 & t \mapsto \frac{1}{1 t^2} \text{ est continue sur } [0, 1[.] \\
 & \frac{1}{1 t^2} = \frac{1}{(1 + t)(1 t)} \sim_1 \frac{1}{2(1 t)}.
 \end{array}$

Or, $\int_0^x \frac{\mathrm{d}t}{1-t} = -\ln(1-x) \to +\infty$ quand $x \to 1$.

Ainsi, $\int_{0}^{1} \frac{\mathrm{d}x}{1-x^2}$ n'est pas convergente.

III.4 - Méthodes de calculs

Utiliser les méthodes de calcul sur un segment (primitivation, intégration par parties, changement de variable), puis étudier la limite.

Exemple 14

Soit $n \in \mathbb{N}$. Calculons $I_n = \int_0^{+\infty} x^n e^{-x} dx$.

- Si n = 0, alors $I_0 = \int_0^{+\infty} e^{-x} dx = \left[-e^{-x}\right]_0^{+\infty} = 1$. Si $n \ge 1$. Soit $M \ge 0$. Les fonctions $u : x \mapsto x^n$ et
- $v: x \mapsto -e^{-x}$ sont de classe \mathscr{C}^1 sur [0, M]. D'après la

Chapitre VIII - Intégration

formule d'intégration par parties,

$$\int_0^M x^n e^{-x} dx = \left[-x^n e^{-x} \right]_0^M + \int_0^M nx^{n-1} e^{-x} dx$$
$$= -M^n e^{-M} + n \int_0^M x^{n-1} e^{-x} dx.$$

Ainsi, lorsque $M \to +\infty$, on obtient la relation :

$$I_n = nI_{n-1}.$$

• On montre alors par récurrence que, pour tout n entier naturel, $I_n = n!$.