计算复杂性 作业 1

李煦阳 DZ21330015 (njulixuy@163.com)

2021年10月7日

1. 5.13, VC-Dimension

VC-d 的定义: $\mathcal{S} = \{S_1, S_2, \dots, S_m\}$ 是有限集 U 的子集集合(表示某类模型所有可以产生的二分),集合 \mathcal{S} 的 VC-d 指可以被该模型二分的最大集合的大小(这个集合,无论我们如何划分它,这个划分都可以被某个实例模型产生的二分描述)(the size of largest set $X \subseteq U$, such that $\forall X' \subseteq X$, $\exists i, S_i \cap X = X'$)。

- (a) 要证明所有的 **NP** 问题($L \in \mathbf{NP}$)都可以规约至停机问题。 已知 $\forall L \in \mathbf{NP}$. $\exists M, p. \ \forall x. \ x \in L \Leftrightarrow \exists u \in \{0,1\}^{p(|x|)}$. M(x,u) = 1. 令规约函数 $f(x) = \langle \langle \alpha \rangle, \langle \beta, \theta, x \rangle \rangle$,其中 $M_{\beta} = M$, θ 为 p 的编码, M_{α} 重复遍历 $u \in \{0,1\}^{p|x|}$,在 $M_{\beta}(x,u) = 1$ 时停机,否则不停机。易知其复杂度为常数,是一个双射函数。 基于 M 构造 HALT 问题:输入为 $\langle \langle \alpha \rangle, \langle \beta, \theta, x \rangle \rangle$,其对应的语言为 L' 现证 $x \in L \Leftrightarrow f(x) \in L'$.
 - (a) $x \in L \Rightarrow f(x) \in L'$ 由构造 L' 的方式可知,对于 $x \in L$, f(x) 在 HALT 上会停机,所以 $f(x) \in L'$ 。
 - (b) $f(x) \in L' \Rightarrow x \in L$ 反证,若存在 $f(x) \in L'$ 且 $x \notin L$,则 x 在构造的图灵机上不会 停机,所以 HALT(f(x)) 不为 0,所以 $f(x) \notin L'$

1

(b) HALT 问题不是 NP 问题。

易知 HALT 问题是不可判定问题(并不存在一种算法可以描述 HALT 问题)(将 HALT 问题带入自身可证)。只需证所有 **NP** 问题都是可判定的(即可以找到一个通用算法),便可说明 HALT 不是 **NP**。

对于每个 **NP** 问题,已知 M , **P** , 对于一个输入 x , 我们可以对解空间进行 EXP(p(|x|) 次枚举寻找 certificate,并在多项式时间内演算每个可能解的真假(总复杂度为 EXP(p(|x|))),所以 **NP** 是可判定的。

2