Inhaltsverzeichnis

VC	Drwort	${f i}$			
1	Der Körper $\mathbb C$ der komplexen Zahlen	7			
2	Topologische Grundbegriffe	9			
3	Konvergente Folgen komplexer Zahlen	13			
4	Konvergente und absolut konvergente Reihen	17			
5	Stetige Funktionen	21			
6	Zusammenhängende Räume, Gebiete in $\mathbb C$	25			
7	Komplexe Differentialrechnung	31			
8	Holomorphe Funktionen	35			
9	Konvergenzbegriffe der Funktionentheorie	39			
10	Potenzreihen 10.1 Konvergenzkriterien	41 41 44 45			
11	Elementar-transzendente Funktionen 11.1 Exponentialfunktion und trigonometrische Funktionen	49 49 51 53			
12	Komplexe Integralrechnung 12.1 Wegintegrale in \mathbb{C}	55 55 55 55			

12

Komplexe Integralrechnung

12.1 Wegintegrale in \mathbb{C}

Eine Kurve: $\gamma: I = [a,b] \to \mathbb{C} \cong \mathbb{R}^2_{x,y}$, $\gamma(t) = (x(t),y(t))$, stetig differenzierbar. $\gamma(a)$ heißt Anfangspunkt, $\gamma(b)$ Endpunkt.

12.2 Eigenschaften komplexer Wegintegrale

Satz 12.2.1 Vertauschungssatz für Reihen

Sei γ ein Weg und $\sum f_{\nu}$, $f_{\nu} \in C(|\gamma|)$, eine Funktionsreihe, die in $|\gamma|$ gleichmäßig gegen eine Funktion $f: |\gamma| \to \mathbb{C}$ konvergiert. Dann gilt:

$$\sum \int_{\gamma} f_{\nu} dz = \int_{\gamma} \left(\sum f_{\nu} \right) dz = \int_{\gamma} f dz$$

12.3 Wegunabhängigkeit von Integralen, Stammfunktionen

Satz 12.3.1

Ist f stetig in D, so sind folgende Aussagen über eine Funktion $F: D \to \mathbb{C}$ äquivalent:

- i) F ist holomorph in D und es gilt F' = f.
- ii) Für jeden Weg γ in D mit Anfangspunkt w und Endpunkt z gilt:

$$\int_{\gamma} f \, \mathrm{d}z = F(z) - F(w)$$

Beweis:

i) \Rightarrow ii): Ist γ : [a,b] \rightarrow D, $t \mapsto \zeta(t)$, stetig differenzierbar, so gilt

$$\int_{\gamma} f dz = \int_{a}^{b} f(\zeta(t))\zeta'(t)dt = \int_{a}^{b} F'(\zeta(t))\zeta'(t)dt = \int_{a}^{b} \frac{d}{dt}(F(\zeta(t)))dt = F(\zeta(b)) - F(\zeta(a)) = F(z) - F(w)$$

Ist nun $\gamma = \gamma_1 + ... + \gamma_m$ irgendein Weg, dann ist

$$\int_{\gamma} f dz = \sum_{\mu=1}^{m} \int_{\gamma_{\mu}} f dz = \sum_{\mu=1}^{m} F(b_{\mu}) - F(a_{\mu}) = F(b_{m}) - F(a_{i}) = F(z) - F(w)$$

 $ii)\Rightarrow i$: Wir zeigen, dass für jeden Punkt $c\in D$ gilt: F'(c)=f(c). Es sei $\bar{B}\subset D$ eine Kreisscheibe um c. Nach Voraussetzung gilt:

$$F(z) = F(c) + \int_{[c,z]} f \, \mathrm{d}z \, \forall z \in B$$

Setzt man

$$F_1(z) = \frac{1}{z - c} \int_{[c,z]} f \,\mathrm{d}\zeta$$

für $z \in B \setminus \{c\}$ und $F_1(c) := f(c)$, so folgt:

$$F(z) = F(c) + (z - c)F_1(z), \quad z \in B$$

Zeigen wir noch, dass F_1 stetig in c ist, so folgt $F'(c) = F_1(c) = f(c)$. Für $z \in B \setminus \{c\}$ gilt:

$$F_1(z) - F_1(c) = \frac{1}{z - c} \int_{[c,z]} (f(\zeta) - f(c)) d\zeta$$

Es folgt:

$$|F_1(z) - F_1(c)| \le \frac{1}{|z - c|} |f - f(c)|_{[z, c]} |z - c| \le |f - f(c)|_B \, \forall z \in B$$

f ist stetig, also folgt, dass F_1 stetig in c ist.

Eine Funktion $f \in C(D)$ heißt integrabel, wenn eine Stammfunktion von f existiert.

Satz 12.3.2 Integrabilitätskriterium

Folgende Aussagen über eine in *D* stetige Funktion *f* sind äquivalent:

- i) *f* ist integrabel in *D*.
- ii) Für jeden in D geschlossenen Weg γ gilt:

$$\int_{\mathcal{X}} f \, \mathrm{d}z = 0$$

Bemerkung

$$F(z) \coloneqq \int_{\gamma_z} f(\zeta) \mathrm{d}\zeta$$

ist eine Stammfunktion wenn i) gilt. Weil

$$0 = \int_{\gamma_z - \gamma_z'} f(\zeta) d\zeta = \int_{\gamma_z} f d\zeta - \int_{\gamma_z'} f d\zeta$$

also

$$\int_{\gamma_z} f \, \mathrm{d}\zeta = \int_{\gamma_z'} f \, \mathrm{d}\zeta \, \forall \gamma_z, \gamma_z'$$

mit Anfangspunkt z und Endpunkt z, d.h. F(z) ist von der Wahl von γ_z unabhängig, d.h. F(z) ist korrekt definiert und man kann zeigen, dass $F'(z) = f(z) \forall z \in D$.

Beweis:

 $ii)\Rightarrow i)$: Da Wege stets in Zusammenhangskomponenten von D verlaufen, darf man annehmen, dass D ein Gebiet ist. Sei γ irgendein Weg in D von w nach z, Wege γ_z , γ_w in D von z_1 nach w bzw. z. Dann ist $\gamma_w + \gamma - \gamma_z$ ein geschlossener Weg, daher gilt

$$0 = \int_{\gamma_w + \gamma - \gamma_z} f \, \mathrm{d}\zeta = \int_{\gamma_w} f \, \mathrm{d}\zeta + \int_{\gamma} f \, \mathrm{d}\zeta - \int_{\gamma_z} f \, \mathrm{d}\zeta = F(w) + \int_{\gamma} f \, \mathrm{d}\zeta - F(z)$$

Also erfüllt F die Eigenschaft vom letzten Satz.

i)⇒ii): Trivial, weil

$$\int_{\gamma} f \, d\zeta = F(\text{Endpunkt}) - F(\text{Anfangspunkt}) = 0$$

Definition 12.3.3

 $G \subset \mathbb{C}$ heißt Sterngebiet mit Zentrum $c \in G$ genau dann, wenn $\forall z \in G$ gilt: $[c,z] \subset G$.

Definition 12.3.4

Seien $z_1, z_2, z_3 \in \mathbb{C}$ drei Punkte. Die kompakte Menge

$$\Delta := \{z \in \mathbb{C} \mid z = z_1 + s(z_2 - z_1) + t(z_3 - z_1), s \ge 0, t \ge 0, s + t \le 1\}$$

heißt das (kompakte) Dreieck mit Eckpunkten z_1, z_2, z_3 .

Der geschlossene Streckenzug

$$\partial \Delta := [z_1, z_2] + [z_2, z_3] + [z_3, z_1]$$

heißt der Rand von Δ .

Satz 12.3.5

Es sei G ein Sterngebiet mit Zentrum z_1 . Es sei $f \in C(G)$, für den Rand $\partial \Delta$ eines jeden Dreiecks $\Delta \subset G$, das z als Endpunkt hat, gelte:

$$\int_{\partial \Delta} f \, \mathrm{d}\zeta = 0$$

Dann ist f integrabel in G, die Funktion

$$F(z) := \int_{[z_1,z]} f \,\mathrm{d}\zeta, \quad z \in G$$

ist eine Stammfunktion zu *f* in *G*. Speziell gilt:

$$\int_{\gamma} f \, \mathrm{d}\zeta = 0$$

für jeden geschlossenen Weg γ in G.

Beweis: Sei G ein Sterngebiet. Dann ist $[z_1,z] \subset G \forall z \in G$ und F wohldefiniert. Sei $c \in G$ fixiert. Ist z nahe genug bei c gewählt, so liegt das Dreieck Δ mit den Eckpunkten z_1,c,z in G. Nach Voraussetzung verschwindet das Integral von f längs $\partial \Delta = [z_1,c] + [c,z] + [z,z_1]$, so gilt:

$$F(z) = F(c) + \int_{[c,z]} f \,\mathrm{d}\zeta$$

 $z \in G$ nahe bei c. hieraus folgt wie im Beweis der Implikation ii) \Rightarrow i) des Satzes 1, dass F in c komplex differenzierbar ist und dass gilt: F'(c) = f(c).