CISE IV – Control (Quadrimestre de Primavera 2008)

PROBLEMA 1: (6 punts): Hem connectat una RAM IS61LV25616-10 a un μC Philips LPC2292, basat en el μP ARM7TDMI. Els senyals del microcontrolador són:

Pin Name	Туре	Pin Description
D[31:0]	Input/ Output	External memory data lines.
A[23:0]	Output	External memory address lines.
OE .	Output	Low-active Output Enable signal.
BLS[3:0]	Output	Low-active Byte Lane Select signals.
WE	Output	Low-active Write Enable signal.
CS[3:0]	Output	Low-active Chip Select signals.

Table 6: External Memory Controller Pin Description

Hem configurat el µC per tal que faci accessos de 8 o 16 bits a aquesta memòria. És a dir, quan el microcontrolador faci un accés només activarà:

A1-A23:

Bus d'adreces (A0 no pren cap valor significatiu)

D0:15:

Bus de dades de 16 bits (la part D16:D31 NO es fa servir)

OE*:

Output enable

WE*: BLS0*:

Write enable Senyal de validació dels bits D0-D7 del bus de dades

BLS1*:

Senyal de validació dels bits D8-D15 del bus de dades

CS1*:

Senyal d'habilitació de memòria, generat pel LPC2292, per connectar directament al CS* d'una

RAM. S'activarà per qualsevol accés al rang d'adreces: 0x8100 0000-0x81FF FFFF.

Els senyals amb '*' són actius a nivell baix. L'esquema de connexions que hem fet és:

Els senyals LB* i UB* de la RAM són senyals d'habilitació de la part baixa i alta respectivament del bus de dades (D0:7 i D8:15). La temporització de la RAM és:

Symbol	Parameter	Min.	Max.
t rc	Read Cycle Time	10	trans.
t aa	Address Access Time		10
t oha	Output Hold Time	3	
t ace	CE Access Time		10
t DOE	OE Access Time		4
tHZOE ⁽²⁾	OE to High-Z Output		4
tLZOE ⁽²⁾	OE to Low-Z Output	0	
thzce(2	CE to High-Z Output	0	4
tLZCE ⁽²⁾	CE to Low-Z Output	3	
t BA	LB, UB Access Time		4

El cronograma de <u>lectura</u> del µC Philips LPC2292 és:

El datasheet del microcontrolador ens diu que entre que s'ha activat l'últim d'aquests senyals:

Adreces CS1*, BLS0* i/o BLS1* OE*

i hem de posar la dada al bus de dades, disposem d'un temps màxim $t_{AVDV} = t_{CYC} *(2+WST1) - 20 \text{ ns}$, en lectura. $t_{CYC} = 20 \text{ns} = (50 \text{MHz})^{-1}$, i WST1 és el nombre d'estats d'espera que volem.

Es demana:

a) (1 punt) Quina capacitat, en bytes, té la memòria?

b) (2 punts) Tenint en compte que el senyal CS1*, connectat al CS* de la RAM, s'activarà per qualsevol accés al rang d'adreces: 0x8100 0000 – 0x81FF FFFF, digueu el nombre de zones imatge, si n'hi ha, de la memòria.

c) (3 punts) Calculeu el nombre mínim de cicles d'espera per accedir a la RAM en lectura.

PROBLEMA 2: (4 punts) Dissenyeu un sistema basat en el μP i80486, que tingui situats els xips de RAM de la figura en un sol bloc a partir de l'adreça: A0000000. Poden haver-hi zones imatge situades a adreces més altes, però sempre garantint que el rang 00000000-9FFFFFFF no estigui ocupat per aquests xips.

