$Predict_413_Discussion_Week_9$

Singh, Gurjeet March 9, 2018

${\bf Contents}$

1. Introduction	2
2. Data	2
2.1 Split Data - Training/Test set	2
3. Model	2
3.1 Auto Models - Arima & ETS Full Data	2
3.2 Auto Model - Train & Test Data	3
4. Conclusion	4
5. Appendix I: R Code	4

1. Introduction

For this week's discussion, we build an neaural nets models along with Auto Arima model and ETS model for comparison. We will test the performance of each model and select the best model.

2. Data

For this week's discussion, I am using the same dataset (U.S Air Carrier Traffic Statistics – Revenue Passenger Miles) from the previous discussion. The figure below shows that this data has strong seasonality within each year. Along with the seasonality, there is also an upward trend to it. We notice that every summer there's high traffic i.e. peak times. During the months of January and February, we see a dip in the traffic. This makes sense because a lot of people are back to their normal routine after the holidays. Therefore, not many people are traveling in those months.

U.S. Air Carrier Traffic Statistics – Revenue Passenger Miles

2.1 Split Data - Training/Test set

We split the data into the training set and test set. As per the requirement, we will hold out only 6 months of data for the test.

3. Model

3.1 Auto Models - Arima & ETS Full Data

When comparing MAE and MASE, we notice that the Auto ARIMA performed better than the other two models. When comparing RMSE, ETS model is the clear model. Since we are testing on the same data, there is a high likelihood that model is over-fitting. Hence, we would try another approach to build models with the training data (in sample data) and test the model with the test data (out of sample data).

Table 1: Metrics for each model using full data

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
ARIMA(2,0,0)(0,1,1)[12] with drift	17726.37	1895929	1139228	-0.0876403	1.997818	0.3670247	-0.0024269
ETS(A,N,A)	123403.47	1881491	1256336	0.1346370	2.231370	0.4047536	0.0182516
NNAR(1,1,2)[12]	99795.88	3156666	2176600	-0.1651143	3.705640	0.7012347	0.4852330

3.2 Auto Model - Train & Test Data

Now, we create all three models again but using the training dataset. We test the accuracy of each model using the test data. The table below shows the metrics for each model. Based on the results, we can confirm that our previous models built on full dataset were over-fitting.

In the result below, when comparing MAE, MAPE, and MASE for test results, we clearly see that Neural Network model performed the best. Therefore, we will select this model as our final model.

Table 2: Metrics for each model

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Auto Arima - Train	16700.777	1923840	1161344.6	-0.0964374	2.043157	0.3653068	-0.0019718
Auto Arima - Test	-887716.186	1026463	887716.2	-1.1647129	1.164713	0.2792356	0.3591187
Auto ETS - Train	115236.101	1904285	1273352.1	0.1193085	2.269276	0.4005394	0.0192389
Auto ETS - Test	1912761.296	2031558	1912761.3	2.5449616	2.544962	0.6016688	0.3539079
Auto Neural Network - Train	-1158.563	3194137	2190818.8	-0.3496417	3.766630	0.6891332	0.4850520
Auto Neural Network - Test	543617.818	1146945	776930.9	0.7527004	1.066213	0.2443876	-0.0106960

The figure below shows the forecast for each of our models. We forecasted for 12 months so we could see the trend after the test period as well. It appears that neural network model is very accurate in predicting the forecast because both the forecasted and test data overlay each other. This can be observed in the bottom graph. We also notice the similar decreasing trend for the next 6 months as we saw in the previous months.

4. Conclusion

In conclusion, we would select the neural model because it performed better and also the forecast is pretty accurate.

RMarkdown code is available on my GitHub page (https://github.com/Singh-Gurjeet) in the Time Series and Forecasting repository.

5. Appendix I: R Code

```
knitr::opts_chunk$set(echo = TRUE, warning = F, message = F)
library(tidyverse)
library(fpp)
options(scipen = 999)
#Import the data
US.air.traffic <- read.csv("us-air-carrier-traffic-statistic.csv")</pre>
colnames(US.air.traffic) <- c("YearMonth", "Revenue_Miles")</pre>
autoplot(ts(US.air.traffic[,"Revenue_Miles"],
              frequency = 12)) +
  ggtitle(paste0("U.S. Air ",
                    "Carrier Traffic Statistics ",
                    "- Revenue Passenger Miles")) +
  xlab("Year")+
  ylab("Miles")+
  theme_bw()
# #Split the data into training set and test set
data.ts<-ts(US.air.traffic[,"Revenue_Miles"], frequency=12)</pre>
```

```
train.ts<-ts(US.air.traffic[1:193, "Revenue_Miles"],end=c(2012,2),frequency=12)
test.ts<-ts(US.air.traffic[194:199, "Revenue Miles"], start=c(2012,3), frequency=12)
#Auto Arima
traffic.arima <- auto.arima(data.ts)</pre>
#ETS AUTO Model
traffic.ets <- ets(data.ts)</pre>
#Neural Network auto selection model
fit nn <- nnetar(data.ts, lambda=0)</pre>
#Metrics
aa.model <- accuracy(traffic.arima)</pre>
est.model <- accuracy(traffic.ets)</pre>
nn.model <- accuracy(fit_nn)</pre>
rownames(aa.model) <- "ARIMA(2,0,0)(0,1,1)[12] with drift"</pre>
rownames(est.model) <- "ETS(A,N,A) "</pre>
rownames(nn.model) <- "NNAR(1,1,2)[12]"
knitr::kable(rbind(aa.model, est.model, nn.model),
              caption = "Metrics for each model using full data")
set.seed(123)
#Auto Arima using training dataset
traffic.arima.train <- auto.arima(train.ts)</pre>
fcast.arima.train <- forecast(traffic.arima.train, h=12)</pre>
acc.arima <- accuracy(fcast.arima.train, test.ts)</pre>
rownames(acc.arima) <- c("Auto Arima - Train", "Auto Arima - Test")</pre>
#Auto ETS using training dataset
traffic.ets.train <- ets(train.ts)</pre>
fcast.ets.train <- forecast(traffic.ets.train, h=12)</pre>
acc.ets <- accuracy(fcast.ets.train, test.ts)</pre>
rownames(acc.ets) <- c("Auto ETS - Train", "Auto ETS - Test")</pre>
#Auto ETS using training dataset
traffic.nn.train <- nnetar(train.ts)</pre>
fcast.nn.train <- forecast(traffic.nn.train, h=12)</pre>
acc.nn <- accuracy(fcast.nn.train, test.ts)</pre>
rownames(acc.nn) <- c("Auto Neural Network - Train", "Auto Neural Network - Test")
knitr::kable(rbind(acc.arima[,1:7], acc.ets[,1:7], acc.nn[,1:7]),
              caption = "Metrics for each model")
AA_plot <- autoplot(fcast.arima.train) +
             autolayer(test.ts) +
             xlab("Year")+
             ylab("Miles")+
             theme_bw()
ETS_plot <- autoplot(fcast.ets.train) +</pre>
             autolayer(test.ts) +
             xlab("Year")+
            ylab("Miles")+
```