Quiz sugli ASF

Prof. Giorgio Gambosi

Quesito 1: Definire un ASFD che riconosce il linguaggio $L \subseteq \{0,1\}^*$ definito come

 $L = \{w | w \text{ ogni } 0 \text{ in } w \text{ è seguito immediatamente da almeno due } 1\}$

.

Quesito 2: Definire un ASFD che riconosce il linguaggio $L \subseteq \{0,1\}^*$ definito come

 $L = \{w | w \neq \varepsilon \text{ e il primo simbolo di } w \text{ e l'ultimo sono uguali } \}$

.

Quesito 3: Definire un ASFD che riconosce il linguaggio $L\subseteq\{0,1\}^*$ definito come

$$L = \{w | \mid w \mid = 7i, i \geq 0\}$$

.

Quesito 4: Definire un ASFD che riconosce il linguaggio $L\subseteq\{0,1\}^*$ definito come

$$L = \{0, 1\}^* - \{\varepsilon\}$$

.

Quesito 5: Definire un ASFD che riconosce il linguaggio $L \subseteq \{0,1\}^*$ definito come

$$L = \{w|w \text{ inizia con } 1 \text{ e termina con } 0\}$$

.

Quesito 6: Definire un ASFD che riconosce il linguaggio $L\subseteq\{0,1\}^*$ definito come

 $L = \{w | w \text{ contiene un numero pari di } 0, \text{ o contiene esattamente due } 1\}$

.

Quesito 7: Definire un ASFD che riconosce il linguaggio $L \subseteq \{0,1\}^*$ definito come

$$L = \{w | w \text{ contiene esattamente due}0\}$$

.

Quesito 8: Definire un ASFD che riconosce il linguaggio $L\subseteq\{0,1\}^*$ definito come

 $L = \{w | w \text{ contiene esattamente due} 0 \text{ e almeno due } 1\}$

.

Quesito 9:efinire un ASFD che riconosce il linguaggio $L\subseteq\{0,1\}^*$ definito come

$$L = \{w | \mid w \mid mod5 = 1\}$$

Quesito 10: Utilizzare gli ASF per dimostrare che:

- 1. $L = \{a^n | n \ge 4\}$ è regolare
- 2. Se L è regolare allora $L \cup \{\varepsilon\}$ è regolare
- 3. Se L è regolare allora \overline{L} è regolare

Quesito 11: Definire un ASFND avente 3 stati e che riconosce il linguaggio $L \subseteq \{0,1\}^*$ definito come

$$L = 0^*1^*0^+$$

L è quindi l'insieme delle stringhe composte da una sequenza (eventualmente nulla) di 0 seguita da una sequenza (eventualmente nulla) di 1 seguita da una sequenza di almeno uno 0.

Quesito 12: Definire un ASFND che riconosce il linguaggio $L \subseteq \{a,b\}^*$ definito come

$$L_1 = \{a^n b a^m | n, m \ge 0\}$$

.

Quesito 13:efinire un ASFND che riconosce il linguaggio $L\subseteq\{a,b\}^*$ definito come

$$L_1 = \{a^n b a^m | n, m \ge 0\}$$

.

Quesito 14: Dato il seguente AFND,

derivare un ASFD equivalente.

Quesito 15: Dato il seguente AFND con ε -transizioni,

derivare un ASFND privo di ε -transizioni equivalente.

Quesito 16: Dato il seguente grafo di transizione,

Costruire un ASFD $\mathcal{A}_D=(Q',\Sigma,\delta',q_0',F')$ equivalente a \mathcal{A}_N : definire gli elementi Q',δ',q_0',F' e descrivere poi l'automa mediante il relativo grafo di transizione.

Quesito 17: Dato il seguente ASFD,

derivare una espressione regolare che descriva il linguaggio riconosciuto dall'automa.

Quesito 18: Dato il seguente ASFD,

derivare una espressione regolare che descriva il linguaggio riconosciuto dall'automa.

Quesito 19: Dato il seguente ASFND,

derivare una espressione regolare che descriva il linguaggio riconosciuto dall'automa.

Quesito 20:

Dato il seguente ASFND,

derivare un ASFD che riconosca lo stesso linguaggio.

Quesito 21: Si dimostri il seguente enunciato:

Sia $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ un ASFD che riconosce un linguaggio L infinito. Esiste allora (almeno) uno stato $q'\in Q$ per cui valgono le seguenti proprietà:

- Esiste un cammino da q_0 a q'
- Esiste un ciclo che include q'
- Esiste un cammino da q' a qualche stato in F.

Quesito 22: Per ogni stringa $w \in \{0,1\}^*$ sia $\mathtt{double}(w)$ la stringa ottenuta sostituendo in w ogni occorrenza di 0 con 00 ed ogni occorrenza di 1 con 11. Per ogni linguaggio $L \subseteq \{0,1\}^*$ sia $\mathtt{double}(L) = \{\mathtt{double}(w) \mid w \in L\}$. Si definisca un procedimento che, dato un linguaggio L riconosciuto da un ASFD \mathcal{A} , derivi da esso l'automa \mathcal{A}' che riconosce $\mathtt{double}(L)$.

Quesito 23: Sia dato l'ASFND con ε -transizioni $\mathcal{A}=(Q,\Sigma,\delta_N,q_0,\{q_F\})$ tale che non esistono né transizioni in q_0 né transizioni da q_F . Detto L il linguaggio accettato da \mathcal{A} , specificare quali linguaggi vengono accettati dai seguenti automi:

- 1. L'automa A_1 ottenuto da A aggiungendo una ε -transizione da q_F a q_0 .
- 2. L'automa A_2 ottenuto da A aggiungendo una arepsilon-transizione da q_0 a ogni stato raggiungibile da q_0 .
- 3. L'automa A_3 ottenuto da A aggiungendo una ε -transizione da ogni stato a partire da cui q_F è raggiungibile a q_F stesso.
- 4. L'automa \mathcal{A}_4 ottenuto applicando contemporaneamente le modifiche ai due punti precedenti.

Quesito 24:na stringa u è un prefisso di una stringa w se esiste v tale che w=uv. Dato un ASFND $\mathcal A$ che accetta un linguaggio L=L(A) derivare un ASFND $\mathcal A_p$ che accetta il linguaggio $L_s=\{w\mid \exists x\in L, w \text{ è un prefisso di } x\}.$

Quesito 25: Una stringa u è un suffisso di una stringa w se esiste v tale che w=vu. Dato un ASFND $\mathcal A$ che accetta un linguaggio L=L(A) derivare un ASFND $\mathcal A_s$ che accetta il linguaggio $L_p=\{w\mid \exists x\in L, w \text{ è un suffisso di } x\}$

Quesito 26: Sia $\mathcal A$ un ASFD con $\Sigma=\{a,b\}$, $Q=\{q_1,\ldots,q_8\}$, $q_0=q_1$, $F=\{q_3,q_4\}$ e δ definita nel modo seguente:

Determinare un automa minimo equivalente a \mathcal{A} .

Quesito 27: Definire un ASFD che riconosca il linguaggio $L \subset \{a,b\}$ comprendente tutte le stringhe he non contengono la stringa aba al loro interno.

Quesito 28: Definire un algortmo che, dato un ASFD \mathcal{A} , determina intempo finito se $L(\mathcal{A})$ contiene almeno 100 stringhe.

Quesito 29: Sia dato l'ASFND A con $\Sigma=\{0,1\}$, $Q=\{q_0,q_1\}$, $F=\{q_1\}$ e δ definita dalla tabella seguente:

entrambe il linguaggio $L(\mathcal{A})$ accettato da $\mathcal{A}.$

Quesito 30: Costruire un ASFND che accetti il linguaggio definito dall'espressione regolare $a(aa+ab)^*ab$

Quesito 31: Sia dato l'ASFD $\mathcal A$ con $\Sigma=\{a,b\}$, $Q=\{q_0,q_1,q_2,q_3,q_4,q_5\}$, $F=\{q_4,q_5\}$ e δ definita dalla tabella seguente:

Derivare l'automa minimo equivalente ad ${\cal A}$.

Quesito 32: Sia dato l'ASFND \mathcal{A} con $\Sigma=\{0,1\}, Q=\{q_0,q_1,q_2,q_3\}, F=\{q_3\}$ e δ definita dalla tabella seguente:

Derivare un ASFD, contenente soltanto stati raggiungibili, equivalente ad ${\cal A}$.

Quesito 33: Sia dato l'ASFND \mathcal{A} con $\Sigma = \{a, b\}$, $Q = \{q_0, q_1, q_2, q_3\}$, $F = \{q_3\}$ e δ definita dalla tabella seguente:

$$\begin{array}{c|ccccc} & q_0 & q_1 & q_2 & q_3 \\ \hline a & \{q_0, q_1\} & & q_3 \\ b & q_0 & q_2 & & \end{array}$$

Derivare un ASFD, contenente soltanto stati raggiungibili, equivalente ad \mathcal{A} .

Quesito 34:Definire un ASFD che accetti il linguaggio $L \subset \{a,b\}^*$ tale che, per ogni $\sigma \in \{a,b\}^*$, $\sigma \in L$ se e solo se in σ compaiono non più di tre caratteri a.

Quesito 35:Si supponga di avere due linguaggi L_1, L_2 riconosciuti dai due automi a stati finiti deterministici $\mathcal{A}_1, \mathcal{A}_2$. Si descriva l'automa a stati finiti \mathcal{A} che riconosce la differenza simmetrica di L_1 e L_2 .

Quesito 36: Sia dato l'ASFND $\mathcal A$ con $\Sigma=\{0,1\}$, $Q=\{q_0,q_1,q_2,q_3\}$, $F=\{q_3\}$ e δ definita dalla tabella seguente:

	q_0	q_1	q_2	q_3
0	$\{q_1\}$	Ø	$\{q_2\}$	Ø
1	Ø	$\{q_3\}$	$\{q_2,q_3\}$	Ø
ε	q_2	Ø	Ø	Ø

Derivare un automa a stati finiti deterministico equivalente ad ${\cal A}$

Quesito 37: Data l'espressione regolare $a^*b^*+b^*a^*$, costruire una automa a stati finiti deterministico che riconosca il linguaggio descritto da essa.

Quesito 38: Si definisca un automa a stati finiti che riconosca l'insieme delle stringhe corrispondenti a numeri reali in notazione esponenziale e base 2, del tipo cioé xey dove x è un numero (eventualmente) con punto e parte decimale ed eventualmente con segno e y è un numero con eventuale segno, diverso da 0 e 1.

Si assume che un numero debba iniziare con una cifra diversa da 0 e che una parte decimale non termini per 0. Esempi: 1,-10,+1.011,110e10,101e-10,10.01e1001,+1.0001e100.

Quesito 39: Sia dato il linguaggio

$$L = \{w \in \{a, b, c\}^+ | \text{ l'ultimo carattere in } w \text{ non è comparso prima} \}$$

Si definisca un automa a stati finiti che accetti ${\it L}$.

Quesito 40: Costruire un ASFD che riconosca il linguaggio descritto dall'espressione regolare $a((ab+aba)^*a)^*$

Quesito 41: Si consideri una estensione dei DFA in cui le transizioni sono associate ad espressioni regolari arbitrarie su Σ . Ad esempio:

Mostrare che l'insieme dei linguaggi riconoscibili dal modello esteso corrisponde ai linguaggi di tipo 3, mostrando l'equivalenza tra il modello esteso e i DFA.