Sediment Tool

A Simple Method for Erosion and Sediment Delivery Estimation

James M. Greenfield

Sediment Tool

A Simple Method for Erosion and Sediment Delivery Estimation

- ☐ Introduction and background
- Sediment tool: Interface, equations and results
- Quick demonstration
- ☐ Georgia TMDL example: Stekoa Creek watershed

EPA Region 4 Sediment TMDL: What Questions Need to be Answered?

- ☐ What is the allowable sediment delivery to a stream or how much sediment is too much?
- ☐ Where is the sediment coming from?
- ☐ What are the major sources?

To Answer These Questions

- ☐ A Joint Southeastern Regional Sediment Project
 - —U. S. Forest Service Region 8 and Coweeta Research Lab
 - —Natural Resource Conservation Service
 - —EPA Region 4
 - —Georgia Forestry and Agriculture Agencies
- Recommended a Sediment Tool based on the USLE

EPA Region 4 Sediment TMDL Objectives

- Develop Sediment Procedures for Sampling, Lab Analysis and Data Analysis
- Develop a Sediment Modeling Tool
- ☐ Integrate Sediment Protocol with Aquatic Ecology
- ☐ Test Protocol across Ecoregions
- Develop TMDLs Protective of Stream Functions and Beneficial Uses

Sediment Model Goals

- ☐ Calculate potential source erosion from landuses and roads using GIS spatial data sets.
- Calculate potential sediment delivery to streams.
- Evaluate effects of land use change, BMP implementation, and road network on erosion and sediment delivery.
- ☐ Intuitive and easy to use.

Sediment Tool

A Simple Method for Erosion and Sediment Delivery Estimation

- ☐ Introduction and background
- ☐ Sediment tool: Interface, equations and results
- Quick demonstration
- ☐ Georgia TMDL example: Stekoa Creek watershed

Sediment Tool: An ArcView GIS Extension of

The Watershed Characterization System (WCS)

WCS

Watershed Characterization System (WCS)

- □ Characterization of the physical and hydrological properties
- Evaluation of ambient water quality conditions
- ☐ Assessment of potential sources of impairment

Sediment Tool: Data Input and Output

Soil Erosion

Soil erosion is calculated by the USLE equation:

$$A = RKLSCP$$

• $A = \text{average annual soil loss in t/a (tons per acre)} \rightarrow \text{Erosion Map}$

■ \mathbf{R} = rainfall erosivity factor \leftarrow County and NRI database

• $K = \text{soil erodibility factor} \leftarrow \text{STATSGO or SSURGO}$

■ LS = topographic factor \leftarrow DEM and user s input

• $C = \text{cover and management factor} \leftarrow \text{Land use (MRLC)}$

■ P =conservation practice factor $\leftarrow BMP$ table and user s input

Land Use & Erosion - Little River Watershed K, GA

(Land Erosion = 1032 US tons, Road Erosion = 30 US tons)

Land Uses and Covers

Erosion Distribution

BMP & Erosion - Little River Watershed K, GA

Before, no BMP, erosion = 1032 US tons. Dark orange color indicates high Erosion.

After, applying a BMP to row crop areas, P = 0.65, erosion = 851 US tons, an 18% reduction.

■ Method 1, distance-based, developed for a forested landscape (Sun and McNulty 1998).

☐ *Md* is the mass moved from each cell to the closest stream network (tons/acre/yr.);

D is the least cost distance from a cell to the nearest stream network; and L is the maximum distance that sediment with mass M may travel (meters).

Sun, G. and S. G. McNulty. 1998. Modeling soil erosion and transport on forest landscape. Proceedings of Conference 29. International Erosion Control Association. pp. 187-198.

- Method 2, a distance- and relief- based method, developed for agriculture lands in Virginia (Yagow et al. 1988).
- ☐ For each map grid:

Sf =
$$e^{(-16.1* (r/L + 0.057))}$$
 - 0.6, and DR = $e^{(-0.4233*L*Sf)}$.

0

Where DR is the sediment delivery ratio; L is the distance to stream in meters; and r is the relief to stream in meters.

Yagow, E. R., V. O. Shanholtz, B. A. Julian and J. M. Flagg. 1988. A Water quality module for CAMPS. American Society of Agricultural Engineers Meeting Presentation Paper No. 88-2653.

- ☐ Method 3, a watershed area-based method,
- ☐ The equation (converted from a curve from National Engineering Handbook by Soil Conservation Service 1983) can be written as:

 $DR = 0.417762 * A^{-0.134958} - 0.127097.$

- \square Where DR is the sediment delivery ratio and $DR \le 1.0$; A is the watershed area in square miles.
- U.S. Department of Agriculture Soil Conservation Service. 1983. Sedimentation. Section 3, Chapter 6. National Engineering Handbook.

- ☐ Method 4, WEPP-based regression model,
- ☐ The equation was derived for North Carolina and Georgia forested landscape

$$Z = .9004 - .1341 (lnX) - .0465 (lnX)^2 + .00749 (lnX)^3 - .0399 (lnY) + .0144 (lnY)^2 + .00308 (lnY)^3$$

Where Z is the sediment passing efficiency (%), X is the distance to stream, and Y is the slope in percent. X > 0 and Y > 0.

Lloyd W. Swift. 2000. Equation to dissipate sediment from a grid cell downslope. U. S. Forest Service

Sediment Delivery and the Sediment Trapping Structure (Method 2)

Before, no retention pond, sediment = 349.3 US tons. Dark orange color indicates high sediment source. After, retention efficiency = 0.6, sediment = 331.3 US tons

Sediment Tool

A Simple Method for Erosion and Sediment Delivery Estimation

- ☐ Introduction and background
- ☐ Sediment tool: Interface, equations and results
- ☐ Quick demonstration
- ☐ Georgia TMDL example: Stekoa Creek watershed

WCS Sediment Tool Menu

Sediment Tool

A Simple Method for Erosion and Sediment Delivery Estimation

- ☐ Introduction and background
- Sediment tool: Interface, equations and results
- Quick demonstration
- ☐ Georgia TMDL example: Stekoa Creek watershed

Sediment TMDL Stekoa Creek Watershed, GA

- The five streams in the Stekoa Creek Watershed were included on the State of Georgia s 1998-303(d) List because of biological and habitat impairment.
- Sediment was determined to be the pollutant of concern

Stream Impairment

Stream	Use Support Status	Pollutant of Concern
Stekoa Creek	Partial Support	Excessive Sedimentation
Scott Creek	Partial Support	Excessive Sedimentation
Pool Creek	Partial Support	Excessive Sedimentation
Chechero Creek	Not Supporting	Excessive Sedimentation
Saddle Gap Cree	k Partial Support	Excessive Sedimentation

Chattooga Watershed Evaluation

Chattooga Watershed Evaluation

SEDIMENT TMDL PROTOCOL DEVELOPMENT SINGLE-STAGE SAMPLIER/MULTIPARAMETER PROBE

Field and Lab Results

- ☐ A positive relationship was observed between TSS and turbidity;
- ☐ Good correspondence was observed between TSS and aquatic macroinvertebrate results;
- ☐ Total sediment loading is critical to an overall assessment of bedform/habitat condition; and
- Roads and the connection between their ditches are major sources of sediment to streams

Target Identification

Unimpacted streams in the West Fork Watershed of the Chattooga River Basin.

☐ A percent reduction TMDL can be developed by comparing the sediment loading rates of impacted watersheds to that of the unimpacted watershed.

Sediment Tool was used to calculate sediment loading for impacted and unimpacted watersheds

Stream Reduction	Area (Mile²)	Existing Watershed Load (Tons/Year)	Percent Reduction Needed to Meet Target
Stekoa Creek	17	470	55
Scott Creek	6	83	35
Pool Creek	5	45	10
Chechero Creek	4.4	82	55
Saddle Gap Creek	3	82	70

Conclusions

- □ WCS Sediment Tool is an easy-to-use program for the estimation of watershed erosion and sediment delivery using widely available GIS spatial data.
- □ WCS Sediment Tool is an intuitive system for assisting users in developing sediment-related TMDLs.
- ☐ WCS Sediment Tool provides a flexible framework for adding new models and spatial data layers.

Contact Information

James Greenfield

EPA REGION 4 61 Forsyth Street, S. W. Atlanta, GA 30303-8960 Greenfield.jim@epa.gov

