a= sum(x)	Calcola la somma degli elementi dell' array		
a= prod(x)	Calcola la produttori degli elementi dell'array		
a= max(x)	Calcola il valore massimo dell'array		
a= min(x)	Calcola il valore minimo dell'array		
a= norm(x)	Norma euclidea (lunghezza di un vettore in un piano cartesiano)		
a= norm(x,1)	Calcola la somma dei moduli degli elementi del vettore x		
⋆a= norm(x, inf	f) Calcola il massimo modulo degli elementi del vettore		
a= diag(x)	Dato un vettore, restituisce la matrice che ha come elementi della diagonale, gli elementi del		
	vettore x		
Ripasso sulle	norme:		
Un applicazione IR	'→ IR* è chiamata norma, indicata con x , quando si verifica le seguenti condizioni:		
1) x 1 2 0, per ogni	x 6 IR"		
2) × = 0 Se e Sok	o se x = 0		
3) a x = a x	per ogni x e IR", a eIR		
4) Per ogni x, y E IR ⁿ ,	vale la disuguaglianza triangolare x + y 4 x + y		
* norma. p per 1.5	p < 100 1 P		
	$\ \mathbf{x}\ _{\mathbf{p}} = \left(\sum_{i=1}^{n} \mathbf{x}_{i} ^{p}\right)^{\frac{1}{p}}$		
p = 2 : NORMA EUCLIDEA			
P: 1 : NORMA 1 [SOY			
P= INF : # * 00 = 1	no.x x i s i < n		
Esistono anch	ne le norme sulle matrici, chiamate NORME INDOTTE:		
A = matrice			
1. A = max \(\sum_{i}^{n} \)	Fa la norma 1 dei vettori colonna della matrice e ne prende il massimo		
=j - 6			
2. A ₂ = √ρ (A' A	La radice quadrata del raggio spettrale di A trasposto per A.		
	è il massimo autovalore del prodotto di A con la sua trasposta		
3.	Sommatoria di ogni riga, in valore assoluto, e ne prendo il massimo		
Quella che po	tevamo aspettarci come norma 2 (la sommatoria di tutti i quadrati di tutti gli elementi della		
	o radice) è in realtà si chiama NORMA DI FROBENIUS:		
A & IR nxm			
IIAII	$\begin{array}{c c} & \sum_{i=1}^{m} \sum_{j=1}^{n} a^{2j} \\ & i = 1 \text{id} \end{array}$		
	r √ i=1 j=1 'ð		
COMANDI AF	PLICABILI ALLE MATRICI:		
a= norm(A)	Restituisce la norma 2		
a= norm(A,1)	Norma 1 di una matrice		
a= norm (A, Ir	nf) Norma Inf di una matrice		
x= sum(A)	Ottengo come risultato un vettore riga con lunghezza pari al numero di colonne e al		
	ovo le varie somme dei rispettivi vettori colonna		

x= max(A) x= min(A)	
x= diag(A)	Estrae la diagonale di una matrice assegnata
B= abs(A)	Fa il valore assoluto di ogni elemento della matrice
B= tril(A)	Estrae la matrice triangolare inferiore
B= triu(A)	Estrae la matrice triangolare superiore
c= sort(x)	Dispone gli elementi delle colonne dell'array A in ordine crescente
C= sort(A)	Riordina per ogni colonna i numeri in ordine crescente

Che operazioni si possono fare sugli array?

- Prodotto riga* colonna
- Prodotto di una scalare per un vettore —> come risultato ottengo l'area originale con gli elementi al suo interno moltiplicati per lo scalare
- Somma di matrici —> matrice dove in ogni cella trovo la somma degli elementi delle due matrici

OPERAZIONI ELEMENTO PER ELEMENTO:

Gli operatori *. ^, / possono essere preceduti da . e l'operazione verrà eseguita su ogni elemento dell'array

Operazioni in MatLab

Simbolo	Operazione	Forma	Esempio
,	Trasposizione	A'	[1 2]'=[1 2]
+	Somma array-scalare	A + b	[5,2] + 1 = [6,3]
-	Sottrazione array-scalare	A - b	[5,2] - 1 = [4,1]
+	Somma di array	A + B	[5,2] + [-1,2] = [4,4]
-	Sottrazione di array	A - B	[5,2] - [-1,2] = [6,0]
.*	Moltiplicazione di array	A .* B	[2,3] .* [3,3] = [6,9]
./	Divisione a destra o diretta di array	A ./ B	[2,6] ./ [3,7] = [2/3,6/7]
٠,	Divisione a sinistra o inversa di array	A .\ B	[2,7] .\ [3,4] = [2\3,7\4]
.^	Elevamento a potenza di array	A .^ B	[2,3] .^ 2 = [2^2,3^2] 2 .^ [2,3] = [2^2,2^3] [2,3] .^ [3,5] = [2^3,3^5]

d= det(A) Calcola il determinante di una matrice

B= inv(A) Calcola l'inverso di una matrice

[M, D]= eig(A) Calcola gli autovalori e autovettori di una matrice

A\b Calcola la soluzione del sistema lineare Ax=b con il metodo di eliminazione di Gauss