Capstone Project: CAR Crash SEVERITY Sasith Rajasooriya

OUTLINE

- INTRODUCTION
- DATA SOURCE AND DATA SET
- PREPROCESSING
 - Data Cleaning
 - Exploratory Analysis
 - ▶ Dimensionality Reduction effort (PCA)PREPROCESSING
- ► SAMPLING AND BALANCED SAMPLING
- CLASSIFICATION
- SUMMARY AND CONCLUSIONS

INTRODUCTION

- ▶ A machine learning model which is successful in predicting the severity with a great accuracy will make sure following important informative measures are taken efficiently.
- ▶ Successful machine learning model will elaborate a set of conditions (ex: temperature, wind speed, other weather conditions etc.) which are found to be highly related to accidents with higher level of severity (ex: degree 4 accidents.
- ► Traffic Police officials and patrolling security officials can be informed about these conditions prior and make sure additional security and road/highway support teams are allocated on these areas.

Problem

- "What is the severity of the probable accident in the USA under a set of certain conditions (features)?
- ► How can we classify to train and test effective machine learning models?

DATA SOURCE AND THE DATASET

Data Source

- In this project I use the accident data in the United States in the "US Accidents" data set available in kaggle.com.
- ▶ The data set is maintained by its owner Sobhan Moosavi. The data set has 3513740 accident data recorded from 2016-02-01 to 2019-12-31, and further updated annually.
- ▶ The data set is developed from "Traffic Streaming Report APIs" and collected using streaming reports on important traffic events.

DATA SOURCE AND THE DATASET

Data Source

- In this project I use the accident data in the United States in the "US Accidents" data set available in kaggle.com.
- ▶ The data set is maintained by its owner Sobhan Moosavi. The data set has 3513740 accident data recorded from 2016-02-01 to 2019-12-31, and further updated annually.
- ▶ The data set is developed from "Traffic Streaming Report APIs" and collected using streaming reports on important traffic events.

DATA SOURCE AND THE DATASET

Data Set

▶ The data set is of the dimension of 3513740 rows and 49 columns. Each row had measured and recorded attributes of an accident occurred. Different data types was observed as mentioned below.

METHODOLOGY PREPROCESSING: Cleaning the data set

- Removing irrelevant and unusable variables.
 - Ex: Start_Time
 - City
 - Description
- Large portion of values are missing
 - ► Ex: Windchill / Precepitation
- ► To avoid Multicolinearity
 - Ex: Sunrise_Sunset

PREPROCESSING: Dealing with the Missing data

- ▶ Out of the 21 columns, 9 columns did not have any missing values, which is very good. Other 12 columns had missing values that we have to deal with. After the removal of irrelevant variables, only 10 left with the missing values to deal with.
 - ▶ Variables "Precipitation" and "Wind_Chill" were missing a large portion of data values. These variables are dropped
 - Attribute Wind_speed is also missing over 10% of the values recorded. We will replace these missing values by the average wind speed.
 - Other records with missing attributes values will be removed.

PREPROCESSING: DATA ENTRY ERRORS

Windspeed

▶ As per real records, the highest recorded Wind Speed in the history of US is around 231 mph, which is in 1984. Therefore, keeping that in mind, we removed accident records with "Wind speed" recorded over 200 mph for better accuracy

PREPROCESSING: Exploratory analysis

Distribution of Quantitative Variables

PREPROCESSING: Summaries

	Severity	Start_Lat	Start_Lng	Distance(mi)	Temperature(F)	Humidity(%)	Pressure(in)	Visibility(mi)	Wind_Speed(mph)
count	3.402846e+06	3.402846e+06	3.402846e+06	3.402846e+06	3.402846e+06	3.402846e+06	3.402846e+06	3.402846e+06	3.402846e+06
mean	2.338182e+00	3.653426e+01	-9.580557e+01	2.784780e-01	6.196677e+01	6.513318e+01	2.974571e+01	9.122411e+00	8.215800e+00
std	5.511117e-01	4.901260e+00	1.733790e+01	1.537528e+00	1.860005e+01	2.274934e+01	8.281320e-01	2.870008e+00	4.698650e+00
min	1.000000e+00	2.455527e+01	-1.246238e+02	0.000000e+00	-2.900000e+01	1.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
25%	2.000000e+00	3.362516e+01	-1.174452e+02	0.000000e+00	5.000000e+01	4.900000e+01	2.973000e+01	1.000000e+01	5.000000e+00
50%	2.000000e+00	3.587602e+01	-9.100744e+01	0.000000e+00	6.400000e+01	6.700000e+01	2.995000e+01	1.000000e+01	8.100000e+00
75%	3.000000e+00	4.037007e+01	-8.096712e+01	1.000000e-02	7.590000e+01	8.400000e+01	3.009000e+01	1.000000e+01	1.040000e+01
max	4.000000e+00	4.900220e+01	-6.711317e+01	3.336300e+02	1.706000e+02	1.000000e+02	5.774000e+01	1.400000e+02	1.750000e+02

PREPROCESSING: No strong Correlation

	Severity	Start_Lat	Start_Lng	Distance(mi)	Temperature(F)	Humidity(%)	Pressure(in)	Visibility(mi)	Wind_Speed(mph)
Severity	1.000000	0.048074	0.080781	0.149823	-0.027094	0.034490	0.038070	-0.006538	0.034585
Start_Lat	0.048074	1.000000	-0.018528	0.063694	-0.426581	0.043504	-0.099053	-0.050111	0.053914
Start_Lng	0.080781	-0.018528	1.000000	0.048768	-0.061358	0.181011	0.147191	-0.047099	0.084428
Distance(mi)	0.149823	0.063694	0.048768	1.000000	-0.038270	0.019242	-0.026468	-0.011383	0.014547
Temperature(F)	-0.027094	-0.426581	-0.061358	-0.038270	1.000000	-0. <mark>338875</mark>	-0.021139	0.181904	-0.006169
Humidity(%)	0.034490	0.043504	0.181011	0.019242	-0.338875	1.000000	0.112170	-0.383826	-0.143815
Pressure(in)	0.038070	-0.099053	0.147191	-0.026468	-0.021139	0.112170	1.000000	-0.012475	0.000544
Visibility(mi)	-0.006538	-0.050111	-0.047099	-0.011383	0.181904	-0.383826	-0.012475	1.000000	0.015000
Wind_Speed(mph)	0.034585	0.053914	0.084428	0.014547	-0.006169	-0.143815	0.000544	0.015000	1.000000

PREPROCESSING : Chi-Square Test for independence: Drop Sunrise_sunset!

- "Weather condition" and the "Sunrise_Sunset"
 - ► Test results : Not independent

Chi-Square test results were statistically significant.

p-value: [0. 0.]

Significance level: 0.05

Degree of freedom: 125

Merge Severity class: Severity 4 priority

Target Feature

Severity	Count	%
1	28540	0.008387
2	2302403	0.676611
3	964484	0.283435
4	107419	0.031567

PREPROCESSING: categorical feature "Weather_Condition"

- "Weather condition" we have in our data frame has 126 different categories (levels).
- Out of 126 categories only 8 categories have occurred at frequencies higher than 100,000.
- Therefore, this column was re-organized by bringing down from 126 to 20 levels with the highest frequencies
- all other conditions in to one category called "Other Weather Conditions".

PREPROCESSING: Dimensionality Reduction effort (PCA)

PREPROCESSING: PCA not Success

▶ REDUCING THE DIMENTIONALITY of the accidents severity feature set. Explained variances did not add up to at least 95% of the variance (first component about 81.6% and the second component 5.6% didn't add up to at least 95% of the variation).

METHODOLOGY SAMPLING AND BALANCING THE SAMPLES

Balancing the Data

data set is not a balanced one. It is mostly observed that accident severity data is highly imbalanced. Therefore, it was needed to take steps to make the data set balanced using steps such as Random "Under-sampling" from majority subsets.

Making a Main Random Sample

► For processing convenience, first a random sample of the size 15000 was obtained from our cleaned data frame. Taking this step was compelled since when the entire data set or a larger sample was run without high power cloud computing or similar techniques, the Kernel did not run due to memory limitations

SAMPLING AND BALANCING THE SAMPLES

Severity value count of Balanced Sample

- 4 107419
- 3 107419
- 2 107419

Name: Severity, dtype: int64

SAMPLING AND BALANCING THE SAMPLES

MAIN SAMPLE

Severity value count of the Main Random Sample

- 2 10121
- 3 4374
- 4 505

TRAIN TEST SPLIT

- ►Train set 70%
- ►Test Set 30%

METHODOLOGY: CLASSIFICATION

- **KNN**
- SVM
- Random Forrest

RESULTS: CLASSIFICATION: KNN

KNN Mainsam	ple Model			
	Precision	recall	f1-score	support
2	0.68	0.96	0.80	3022
3	0.46	0.08	0.13	1347
4	0.00	0.00	0.00	131
accuracy			0.67	4500
macro avg	0.38	0.35	0.31	4500
weighted avg	0.60	0.67	0.58	4500
KNN undersam	ple Model			
3657	Precision	recall	f1-score	support
2	0.41	0.52	0.46	1495
3	0.42	0.42	0.42	1524
4	0.64	0.46	0.54	1481
accuracy			0.47	4500
macro avg	0.49	0.47	0.47	4500
weighted avg	0.49	0.47	0.47	4500

RESULTS: CLASSIFICATION: SVM

SVM_Mainsam	ple Model			
	precision	recall	f1-score	support
	200			(0) (0)
2	0.68	1.00	0.81	3022
3	0.55	0.02	0.03	1347
4	0.00	0.00	0.00	131
accuracy			0.67	4500
macro avg	0.41	0.34	0.28	4500
weighted avg	0.62	0.67	0.55	4500
SVM undersam	ple Model			
1 78 0	precision	recall	f1-score	support
2	0.69	0.91	0.78	3022
3	0.40	0.15	0.22	1347
4	0.26	0.04	0.07	131
accuracy			0.65	4500
macro avg	0.45	0.36	0.35	4500
weighted avg	0.59	0.65	0.59	4500

RESULTS: CLASSIFICATION: Random Forrest

RF Mains	ampl	e Model			
		precision	recall	f1-score	support
	2	0.69	0.91	0.78	3022
	3	0.40	0.15	0.22	1347
	4	0.26	0.04	0.07	131
accur	acy			0.65	4500
macro	avg	0.45	0.36	0.35	4500
weighted	avg	0.59	0.65	0.59	4500

RF	undersan	nnle N	Todel
	thank the true to the tr		

	precision	recall	f1-score	support
2	0.50	0.47	0.49	1495
3	0.51	0.40	0.45	1524
4	0.68	0.89	0.77	1481
accuracy			0.58	4500
macro avg	0.57	0.58	0.57	4500
weighted avg	0.57	0.58	0.57	4500

Confusion Matrix: Model comparision

RESULTS: CLASSIFICATION: BEST MODEL

► RF_Grid_undersample Model Performances

RF_Grid_undersample Model Performances

	preci	ision	recall	f1-score	support
	2	0.53 0.55	0.47		1495 1524
	4	0.68	0.91		1481
accura	су			0.60	4500
macro a weighted a	rnd rnd	0.59 0.59	0.60 0.60		4500 4500

RESULTS: CLASSIFICATION: BEST MODEL

PERFORMANCES: DISCUSSION

	Classifier	KNN_main	KNN_under	SVM-Main	SVM_under	RF_Main	RF_under	RF_Grid_under
0	Overall Acuracy	0.670222	0.468667	0.674889	0.501556	0.653778	0.582667	0.601111
1	Severity 2 precision	0.680000	0.410000	0.680000	0.470000	0.690000	0.500000	0.530000
2	Severity 3 precision	0.460000	0.420000	0.550000	0.430000	0.400000	0.510000	0.550000
3	Severity 4 precision	0.000000	0.640000	0.000000	0.690000	0.260000	0.680000	0.680000
4	Severity 2 recall	0.960000	0.520000	1.000000	0.310000	0.910000	0.470000	0.470000
5	Severity 3 recall	0.080000	0.420000	0.020000	0.670000	0.150000	0.400000	0.430000
6	Severity 3 recall	0.000000	0.460000	0.000000	0.520000	0.040000	0.890000	0.910000
7	Severity 2 f1-score	0.800000	0.460000	0.810000	0.380000	0.780000	0.490000	0.500000
8	Severity 3 f1-score	0.130000	0.420000	0.030000	0.520000	0.220000	0.450000	0.480000
9	Severity 4 f1-score	0.000000	0.540000	0.000000	0.590000	0.070000	0.770000	0.780000
10	Severity 2 support	3022.000000	1495.000000	3022.000000	1495.000000	3022.000000	1495.000000	1495.000000
11	Severity 3 support	1347.000000	1524.000000	1347.000000	1524.000000	1347.000000	1524.000000	1524.000000
2	Severity 4 support	131.000000	1481.000000	131.000000	1481.000000	131.000000	1481.000000	1481.000000
13	Jaccard Index	0.467821	0.310351	NaN	NaN	NaN	NaN	NaN

CONCLUSIONS

- RF with a balanced sample clearly performed well and predict much better.
- The best model therefore is the RF_Grid_under model.
- ▶ Both KNN and SVM models are highly affected by the imbalance of the samples as all the performance indicators with respect to the minority class is nothing but zero for both these models.

THANK YOU!