Multi-Inputs Non-Interactive Functional Encryption (MINI-FE) without Trusted Authorities and Applications to Private Grading

Vincenzo Iovino¹

University of Salerno

January 15, 2021

Based on the work: https://eprint.iacr.org/2015/1119

Table of contents

- Introduction
 - Motivation
 - Failure of e-voting and FE
 - Overview of MINI-FE
 - Technical details of MINI-FE
 - Privacy
 - Verifiability
- Our scheme
 - NIZK proofs of Disjunctions
 - Beyond Average Grading
 - Security reduction
- 3 Implementations
 - Compatibility with Staford pbc library
- 4 Future directions

Motivation

- Alice, Bob and Eve are the Judges for an online Hackaton and Eve and Peggy are the candidates who submit some projects to be evaluated.
 - The Judges submit a grade, e.g., a number that is 0 (reject the project), 1 (borderline), 2 (accept) and the candidate is evaluated with the average of the grades submitted by all Judges.
- For privacy reasons Alice, Bob and Eve do not want to submit their grades in clear.
 - Also Eve and Peggy may be wish that the grades are not public to not generate conflicts of interest with the Judges.
- We do not want any trusted party and setup assumptions beyond the fact that the identities (e.g., public-keys) of both Judges and Candidates are public.

Failure of FE or e-voting

- The problem seems very similar to e-voting.
 - Unfortunately, in traditional e-voting there are trusted election authorities that colluding together can always leak the votes.
- In Multi-Inputs Functional Encryption, a function of N ciphertexts encrypting the grades can be computed.
 - Unfortunately, Functional Encryption also needs one or more trusted authorities that colluding together can leak the grades of the Judges.

The MINI-FE setting

- There are n participants, and each of them generates a pair of public- and secret-keys. Each participant knows the public-keys of all other participants.
- The i-th participant can encode an input X_i with her/his own secret-key and the public-keys of the others to generate a ciphertext CT_i.
- There is a public Evaluation function that takes all ciphertexts and compute $f(x_1, ..., x_n)$ where f is a given function (we explain later the functions we achieve).
- MINI-FE can be seen as a sort of Multi-Inputs Functional Encryption but without central/trusted authorities.

Syntax

MINI-FE

- Setup(1^{\(\lambda\)}), on input the security parameter in unary, outputs public parameters pp.
- (2) KeyGen(pp), on input the public parameters pp outputs a public-key Pk and a secret-key Sk.
- ③ Encode(pp, j, id, Sk, (Pk) $_{i \in [n] \{j\}}$, v), on input the public parameters pp, the secret-key Sk of j, the identifier id $\in \{0,1\}^{\lambda}$ of the ceremony, the public keys (Pk $_i$) $_{i \in [v] \{j\}}$ of the other Judges, and a grade $v \in D$, outputs CT;
- ① VerifyCT(pp, Pk, id, CT), on input the public parameters pp, a public-key Pk of a Judge, the identifier id $\in \{0,1\}^{\lambda}$, and a ciphertext CT, outputs a value in $\{\bot, \mathsf{OK}\}$;
- **5** Eval(pp, Pk₁, . . . , Pk_n, id, CT₁, . . . , CT_n), on input the public parameters pp, the public-keys of all Judges, the identifier id $\in \{0,1\}^{\lambda}$, and the ciphertexts submitted by all Judges, outputs $y \in \Sigma \cup \{\bot\}$.

Privacy

- Setup phase. $\mathcal C$ generates pp \leftarrow Setup(1 $^{\lambda}$), choose a random bit $b \leftarrow \{0,1\}$ and runs $\mathcal A_0$ on input pp;
- Corruption phase. A_0 , on input pp, outputs a set $S \subset [n]$ of indices of Judges it wants to corrupt.
- Key Generation Phase. For all $i \in [n]$ the challenger generates n pairs $(\mathsf{Pk}_i, \mathsf{Sk}_i) \leftarrow \mathsf{KeyGen}(\mathsf{pp})$, and runs $\mathcal{A}_1^{\mathsf{Grade}(\cdot)}$ on input $(\mathsf{Pk}_i, \mathsf{Sk}_i)_{i \in S}$ and $(\mathsf{Pk}_i)_{i \in [n] S}$.
- Query phase. The adversary \mathcal{A}_1 has access to a stateful oracle Grade that on input an identifier $\mathrm{id} \in \{0,1\}^\lambda$ and a pair of vectors $\vec{v_0} \stackrel{\triangle}{=} (v_{0,1},\ldots,v_{0,n})$ and $\vec{v_1} \stackrel{\triangle}{=} (v_{1,1},\ldots,v_{1,n})$ outputs the ciphertexts (Encode(pp, 1, id, Sk₁, (Pk_i)_{i∈[n]-{1}}, v_{b,1}),..., Encode(pp, n, id, Sk_n, (Pk_i)_{i∈[n]-{n}}, v_b
- \bullet Output. At some point the adversary outputs its guess b'.
- Winning condition. The adversary wins the game if the following conditions hold:
 - b' = b; $v_{0,i} = v_{1,i}$ for any $i \in S$; S has cardinality < n, \vec{v}_0 and \vec{v}_1 are vectors of n values in D and id $\in \{0,1\}^{\lambda}$.
 - for any (\vec{v}_0, \vec{v}_1) for which \mathcal{A} asked a query to Grade it holds that: for any vector \vec{v} , $F(\vec{v}'_0) = F(\vec{v}'_1)$ where for b = 0, 1 \vec{v}'_b is the vector equal to \vec{v} in all indices in S and equal to \vec{v}_b elsewhere.

Verifiability

- A MINI-FE scheme should be verifiable.
- This means that the Evaluation procedure should be able to detect if a Judge submitted an invalid grade/decision.
- For example a Candidate could corrupt a Judge and asks him/her to submit a grade higher than the maximum in an attempt to increase the average. Without verifiability this attack would go undetected.
- The schemes we construct are verifiable.

Definition of Verifiability (very technical)

Definition of verifiability

```
For all pp \leftarrow Setup(1^{\lambda}), j \in [n], Pk, CT, there exists a vote v \in D such that: for all identifiers id \in \{0,1\}^{\lambda}, all except negligible fraction of (\operatorname{Pk}_i,\operatorname{Sk}_i)_{i\in[n]-\{j\}} such that for all i\in[n]-\{j\} (Pk<sub>i</sub>, Sk<sub>i</sub>) \leftarrow KeyGen(pp), and all v_i\in D with i\in[n]-\{j\} and all except negligible fraction of (\operatorname{CT}_i)_{i\in[n]-\{j\}} satisfying \operatorname{CT}_i\leftarrow\operatorname{Encode}(\operatorname{pp},i,\operatorname{id},\operatorname{Sk},(\operatorname{Pk})_{j\in[n]-\{i\}},v_i), it holds that \operatorname{Eval}(\operatorname{pp},\operatorname{Pk}_1,\ldots,\operatorname{Pk}_{j-1},\operatorname{Pk},\operatorname{Pk}_{j+1},\ldots,\operatorname{Pk}_n,\operatorname{id},\operatorname{CT}_1,\ldots,\operatorname{CT}_{j-1},\operatorname{CT},\operatorname{CT}_{j+1},\ldots,\operatorname{CT}_n) outputs either F(v_1,\ldots,v_{j-1},v,v_{j+1},\ldots,v_n) or \bot
```

(continued...)

```
For all pp \leftarrow Setup(1^{\lambda}), j \in [n], Pk, CT, if VerifyCT(pp, Pk, id, CT) = OK then: for all identifiers id \in \{0,1\}^{\lambda}, all except negligible fraction of (Pk_i, Sk_i)_{i \in [n] - \{j\}} such that for all i \in [n] - \{j\} (Pk<sub>i</sub>, Sk<sub>i</sub>) \leftarrow KeyGen(pp), all v_1, \ldots, v_{n_1} \in D, all except negligible fraction of (CT_i)_{i \in [n] - \{j\}} such that for all i \in [v] - \{j\} CT<sub>i</sub> \leftarrow Encode(pp, j, id, Sk, (Pk)<sub>i \in [n] - \{j\}</sub>, v), it holds that Eval(pp, Pk<sub>1</sub>, ..., Pk<sub>j-1</sub>, Pk, Pk<sub>j+1</sub>, ..., Pk<sub>n</sub>, id, CT<sub>1</sub>, ..., CT<sub>j-1</sub>, CT, CT<sub>j+1</sub>, ..., CT<sub>n</sub>) \neq \bot
```

Overview of Our Main scheme

Our main scheme (simplified)

- Use bilinear maps (for simplicity henceforth we use symmetric groups) and pair any element with Hash(id) and evaluate in the target group.
- In ceremony id Judge j submits her grade v_j as $CT_j \stackrel{\triangle}{=} \mathbf{e}(g^{y_j}, \mathsf{Hash(id)})^{x_j} \cdot \mathbf{e}(g^{v_j}, \mathsf{Hash(id)})$, where g^{y_j} is computed from the PKs g^{x_j} 's in the following way:
 - $g^{y_j} \stackrel{\triangle}{=} g^{\sum_{k < j} x_k \sum_{k > j} x_k}$
 - Note that $\prod_{j \in [n]} g^{x_j y_j} = 1$.
- $\bullet \ \ \mathsf{If} \ g_{\mathsf{id}} \stackrel{\triangle}{=} \mathbf{e}(g,\mathsf{Hash}(\mathsf{id})) \ \mathsf{then} \ \mathsf{CT}_j = g_{\mathsf{id}}^{v_j} g_{\mathsf{id}}^{x_j y_j} \to \prod_{j \in [n]} \mathsf{CT}_j = g_{\mathsf{id}}^{\sum v_j}.$
- The sum of v_j 's can be computed by brute force and the *average* of the grades $(\sum_{j \in [n]} v_j)/n$ can be computed.
- In the target group we construct hash function creating new generators for each ceremony in such a way that the PK for any participant in the new generator can be calculated by the other participants and the SKs stay unchanged.

NIZK proofs

Adding proofs of well-formedness

- Consider the pair (g, g^{y_i}) as El Gamal PKs and the pair $(g^{x_i}, g^{y_i x_i} g^{v_i})$ as El Gamal encryption with randomness x_i , public-key g^{y_i} and plaintext v_i .
- The Cramer et al.'s (CDS) sigma protocol can prove that v_i is either 0 or 1 without revealing which one.
- Our work identical except that g is in target group.
- Variable becomes $g \stackrel{\triangle}{=} \mathbf{e}(g', \mathsf{Hash}(\mathsf{id}))$ where g' is in bilinear group and Hash function mapping the input to the base group.
- ullet Straightforward to verify that CDS work when g has this form.

Beyond Average Grading

Dead or Alive

- In *Dead or Alive decisions* (or Accept/Reject) the evaluation procedure has to compute the predicate $P_{\neq 0}$ that is true iff at least one Judge selected the project for the candidate.
- Change average grade ceremonies so that if the j-th Judge submits 0, she sets $v_j = 0$, otherwise she sets v_j to random, i.e, $\mathsf{CT}_j \stackrel{\triangle}{=} \mathbf{e}(g^{y_j}, \mathsf{Hash}(\mathsf{id}, \mathcal{I}))^{x_j} \cdot \mathbf{e}(g^{v_j}, \mathsf{Hash}(\mathsf{id}, \mathcal{I}))$, but with v_i set as described before.

Unanimity

• Similar except that we invert the setting of v_j by choosing $v_j = 0$ if the Judge submits 1 or choosing v_j at random for 0

Security reduction

Goal

Reduce to BDDH, e.g. hard to distinguish $\mathbf{e}(g,g)^{abc}$ from random given g, g^a, g^b, g^c .

Strategy

- For any query we consider the two challenge vectors \vec{x}_0, \vec{x}_1 , e.g. $\vec{x}_0 \stackrel{\triangle}{=} 00101, \vec{x}_1 \stackrel{\triangle}{=} 10010.$
- In any iteration identify two positions i,j in which $\vec{x_0}$ and $\vec{x_1}$ have symmetric difference, e.g. 00101 and 10010.
- Swap them, e..g $\vec{z} \stackrel{\triangle}{=} 10001$; now \vec{z} is more similar to \vec{x}_1 .
- continue to swap until $\vec{z} = \vec{x}_1$.
- In any iteration plant the challenge $e(g,g)^{abc}$ of the BDDH in the two positions i,j.
- Setting: $\mathsf{Hash}(\mathsf{id}^*) = g^c, \mathsf{Pk}_i = g^b, \mathsf{Pk}_j = g^c.$

Our Implementations

- We implemented MINI-FE routines for both average grading, dead or alive and unanimity cerimonies in a shared library libminife.so
- + we implemented a framework that makes possible to design paring-based cryptosystems and protocols in a way that is compatible both with CiFEr library and the Stanford pbc library.
- ullet + a demo for evaluating candidates in an online Hackaton.
- All the code and documentation can be found here: https://github.com/cryptohackathon/MINI-FE

Compatibility with Stanford pbc library

Example

```
#include <stdio.h>
#include "pairings.h"
int main(void){
element_t a,b,a2,b2,y,T,T4,_T4; // all elements are of type element_t
pairing_t p; // pairing instance
pairing_init_set_str(p,Param); // Param is a static global constant
element_init_G1(a,p); // a is an element of G1 - all the following elements are
     associated to the pairing instance p
element_init_G1(a2.p):
element_init_G2(b,p); element_init_G2(b2,p); // b and b2 are in G2
element_random(a); element_random(b); // choose random elements in the group
     where a.b have been initialized
element_mul(a2.a.a): // a2=a^2
element_mul(b2,b,b); // b2=b^2
element_init_GT(T,p); // T belongs to the target group
element_init_GT (T4,p); element_init_GT (_T4,p);
element_pairing (T,a,b); //T=e(a,b)
element_pairing (T4, a2, b2); //T4=e(a2, b2)=e(a^2, b^2)=e(a, b)^4=T^4
element_init_Zr(v.p): // v belongs to Zr with r order of the groups
element_set1(v): // v=1
element_add(v, v, v); element_add(v, v, v); // v = v + v + = 4
element_pow_zn(_T4.T.v): //_T4=T^4
printf("%d\n".element.cmp(T4._T4)): // test if T4 = _T4 - should output 0
return 0:
```

Future directions

MINI-FE over blockchains

- Independently, we are implementing a "proxy" that makes transparent for secure multy-party protocols to communicate over a blockchain.
- The protocol over TCP is changed just replacing the IP/port addresses of the remote parties by localhost/ports of the proxy running on the local machine and the proxy handles in a transparent way the communication among parties.
- Advantages: All messages are logged into the blockchain and you can restart the computation from where you started in case of energy interruption.
- This also allows to implement a perfect broadcast channel needed by MINI-FE protocols.