COMPLEX ANALYSIS CHEAT SHEET CONT'D

ALEX NELSON

Contents

1 I I W C	4
1. Laplace Transform	1
1.1. Table of Properties of the Laplace Transform	3
1.2. List of Properties of the Laplace Transform	4
2. Gamma Function	4
2.1. List of Properties of the Gamma Function	4
3. Zeta Function	5
3.1. Mellin Transform	6
3.2. Laurent Series	6
References	7

1. Laplace Transform

Definition 1. (Laplace Transform) The **Laplace Transform** of a function f(t) (for $t \ge 0$) is the function $\widetilde{f}(z)$ defined by

(1.1)
$$\widetilde{f}(z) = \mathcal{L}\{f\}(z) = \int_0^\infty e^{-zt} f(t) dt$$

where z is complex.

Proposition 1. (Asymptotic Behavior of Laplace Transform) Suppose g is analytic in a region containing the positive real axis and is bounded on the positive real axis. Let the Taylor series for g centered at 0 be

$$(1.2) \sum_{n=0}^{\infty} a_n z^n$$

and let

(1.3)
$$\widetilde{g}(z) = \int_0^\infty e^{-zt} g(t) dt.$$

Then

(1.4)
$$\widetilde{g}(z) \sim \frac{a_0}{z} + \frac{a_1}{z^2} + \frac{2a_2}{z^3} + \dots + \frac{n!a_n}{z^{n+1}} + \dots$$

as $z \to \infty$, $\arg(z) = 0$.

Date: June 10, 2009.

1

Proposition 2. Suppose g is infinitely differentiable on the positive real axis and that g and each of its derivatives are of exponential order. That is, there are constants A_n and B_n such that

$$(1.5) |g^{(n)}(t)| \le A_n e^{B_n t}$$

for $t \geq 0$. Let

(1.6)
$$\widetilde{g}(z) = \int_0^\infty e^{-zt} g(t) dt.$$

Then

(1.7)
$$\widetilde{g}(z) \sim \frac{g(0)}{z} + \frac{g'(0)}{z^2} + \frac{g''(0)}{z^3} + \dots + \frac{g^{(n)}(0)}{z^{n+1}} + \dots$$

as $z \to \infty$, $\arg(z) = 0$.

Theorem 1. (Convergence Theorem for Laplace Transform) Assume

$$(1.8) f:(0,\infty)\to\mathbb{C}$$

is of exponential order and let

(1.9)
$$\widetilde{f}(z) = \int_0^\infty e^{-zt} f(t) dt.$$

There exists a unique number σ , $-\infty \le \sigma < \infty$ such that this integral converges if $\operatorname{Re}(z) > \sigma$ and diverges if $\operatorname{Re}(z) < \sigma$. Furthermore if \widetilde{f} is analytic on the set

$$(1.10) A = \{z | \operatorname{Re}(z) > \sigma\}$$

and we have

(1.11)
$$\frac{d}{dz}\widetilde{f}(z) = -\int_0^\infty te^{-zt}f(t)dt$$

for $\operatorname{Re}(z) > \sigma$. The number σ is called the "Abscissa of Convergence" and if define ρ we define the number ρ by

(1.12)
$$\rho = \inf\{B \in \mathbb{R} | \text{there exists an } A > 0 \text{ such that } |f(t)| \le Ae^{Bt} \}$$
then $\sigma \le \rho$.

Theorem 2. (Laplace Transforms) Suppose that the functions f and h are continuous and that $\widetilde{f}(z) = \widetilde{h}(z)$ for $\operatorname{Re}(z) > \gamma_0$ for some γ_0 . Then f(t) = h(t) for all $t \in (0, \infty)$.

Proposition 3. Let f(t) (be continuous on $(0, \infty)$ and piecewise C^1 . Then for $\operatorname{Re}(z) > \rho$

(1.13)
$$\widetilde{\left(\frac{df}{dt}\right)}(z) = z\widetilde{f}(z) - f(0).$$

Proposition 4. Let

$$(1.14) g(t) = \int_0^t f(\tau)d\tau$$

Then for $Re(z) > max[0, \rho(f)],$

(1.15)
$$\widetilde{g}(z) = \frac{\widetilde{f}(z)}{z}.$$

Theorem 3. (First Shifting Theorem) Fix $a \in \mathbb{C}$ and let $g(t) = e^{-at}f(t)$. Then for $\text{Re}(z) > \sigma(f) - \text{Re}(a)$, we have

$$\widetilde{q}(z) = \widetilde{f}(z+a).$$

Theorem 4. (Second Shifting Theorem)Let H(t) = 0 if t < 0 and H(t) = 1 if $t \ge 1$ be the **Step Function** or **Heaviside Step Function**. Let $a \ge 0$ and let g(t) = f(t-a)H(t-a); that is, g(t) = 0 if t < a while g(t) = f(t-a) if $t \ge a$. Then for Re(z) > 0 we have

(1.17)
$$\widetilde{g}(z) = e^{-az}\widetilde{f}(z).$$

Definition 2. (Convolution) The "Convolution" of two functions f(t) and g(t) is defined for $t \ge 0$ by

$$(1.18) (f * g)(t) = \int_0^\infty f(t - \tau)g(\tau)d\tau$$

where we set f(t) = 0 if t < 0.

Theorem 5. (Convolution Theorem) The equalities

$$(1.19) (f * g)(t) = (g * f)(t)$$

whenever $Re(z) > max[\rho(f), \rho(g)].$

1.1. Table of Properties of the Laplace Transform. Let u(t) be the Heaviside step function.

(1.20)
$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

where δ is the delta function we all know and love.

Linearity	af(t) + bg(t)	$a\widetilde{f}(z) + b\widetilde{g}(z)$
Frequency Differentiation	tf(t)	$-\widetilde{f}'(z)$
Frequency Differentiation	$t^{n}f\left(t\right)$	$(-1)^n \widetilde{f}^n(z)$
Differentiation	f'(t)	$z\widetilde{f}\left(z\right) - f\left(0\right)$
Differentiation	f''(t)	$z^{2}\widetilde{f}\left(z\right) - zf\left(0\right) - f'\left(0\right)$
Differentiation	$f^{(n)}(t)$	$z^n \widetilde{f}(z) - z^{n-1} f(0) - \dots - f^{(n-1)}(0)$
Frequency Integration	f(t)/t	$\int_{z}^{\infty} \widetilde{f}(\omega) d\omega$
Integration	$\int_0^t f(\tau)d\tau = (u * f)(t)$	$\widetilde{f}(z)/z$
Scaling	f(at)	$ \widetilde{f}(z/a)/ a $
Frequency Shifting	$e^{at}f(t)$	$\widetilde{f}(z-a)$
Time shifting	f(t-a)u(t-a)	$e^{-az}\widetilde{f}(z)$
Convolution	(f*g)(t)	$\widetilde{f}(z)\widetilde{g}(z)$
Periodic Function	f(t)	$(\int_0^T e^{-zt} f(t)dt)/(1 - e^{-Tz})$

1.2. List of Properties of the Laplace Transform. Definition

(1.21)
$$\widetilde{f}(z) = \int_0^\infty e^{-zt} f(t) dt.$$

(1)
$$\widetilde{g}(z) = -\frac{d}{dz}\widetilde{f}(z)$$
 where $g(t) = tf(t)$.

(2)
$$\mathcal{L}\left\{af + bg\right\} = a\widetilde{f} + b\widetilde{g}$$

(3)
$$\left(\frac{df}{dt}\right)(z) = z\widetilde{f}(z) - f(0).$$

2. Gamma Function

So for n a positive integer, we have

$$(2.1) \Gamma(n) = (n-1)!$$

2.1. List of Properties of the Gamma Function. Remember that it is defined

(2.2)
$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt.$$

or equivalently as an infinite product

(2.3)
$$\Gamma(z) = \frac{1}{ze^{\gamma z} \left[\prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) e^{-z/n} \right]}$$

where

(2.4)
$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln(n) \right)$$

$$\approx 0.577215664901532860606512090082$$

It has the following properties:

- (1) Γ is meromorphic with simple poles at $0, -1, -2, \ldots$
- (2) $\Gamma(z+1) = z\Gamma(z)$ for $z \neq 0, -1, -2, ...$
- (3) $\Gamma(n+1) = n!$ for $n = 0, 1, \dots$ (4) $\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$

(5)
$$\Gamma(z) \neq 0$$
 for all z
(6) $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \Gamma\left(n + \frac{1}{2}\right) = \frac{1 \cdot 3 \cdot (\cdots) \cdot (2n-1)}{2n} \sqrt{\pi}$

(7)
$$\Gamma(z) = \frac{1}{z} \prod_{n=1}^{\infty} \left[\left(1 + \frac{1}{n} \right)^z \left(1 + \frac{z}{n} \right)^{-1} \right]$$

(8)
$$\Gamma(z) = \lim_{n \to \infty} \frac{n! n^z}{z(z+1)(\cdots)(z+n)}$$

(8)
$$\Gamma(z) = \lim_{n \to \infty} \frac{n! n^z}{z(z+1)(\cdots)(z+n)}$$

(9) $\Gamma(z)\Gamma\left(z + \frac{1}{n}\right)(\cdots)\Gamma\left(z + \frac{n-1}{n}\right) = (2\pi)^{(n-1)/2} n^{(1/2) - nz} \Gamma(nz)$

(10)
$$2^{2z-1}\Gamma(z)\Gamma\left(z+\frac{1}{2}\right) = \sqrt{\pi}\Gamma(2z)$$

(11) The residue of $\Gamma(z)$ at z = -m is equals $(-1)^m/m!$

(12) (Euler's Integral) $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$ for Re(z) > 0. The convergence is uniform and absolute for $-\pi/2 + \delta \leq \arg(z) \leq \pi/2 + \delta$ ($\delta > 0$) and for $\varepsilon \leq |z| \leq R$ where $0 < \varepsilon < R$.

$$(13) \ \frac{\Gamma'(z)}{\Gamma(z)} = -\gamma - \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{z+n} \right) = \int_0^{\infty} \left(\frac{e^{-t}}{t} - \frac{e^{-zt}}{1 - e^{-t}} \right) dt.$$

(14)
$$\pi^{-z/2} \Gamma\left(\frac{z}{2}\right) \zeta(z) = \pi^{-\frac{1-z}{2}} \Gamma\left(\frac{1-z}{2}\right) \zeta(1-z)$$
. (Where $\zeta(s)$ is the Riemann zeta function)

(15)
$$\zeta(z) \Gamma(z) = \int_0^\infty \frac{u^{z-1}}{e^u - 1} du$$
 which holds for $\operatorname{Re}(z) > 1$.

3. Zeta Function

The definition for the Riemann zeta function is

(3.1)
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \cdots$$

It is holomorphic everwhere except for a simple pole at s = 1 with residue 1. For any positive even integer 2n, we have

(3.2)
$$\zeta(2n) = (-1)^{n+1} \frac{B_{2n}(2\pi)^{2n}}{2(2n)!}$$

where B_{2n} is a Bernoulli number, and for negative integers we have

(3.3)
$$\zeta(-n) = \frac{-B_{n+1}}{n+1}$$

for $n \ge 1$.

Let

$$f(x) = \frac{x}{e^x - 1}$$

then the Bernoulli numbers may be found from

(3.5)
$$B_n = \lim_{x \to 0} \frac{d^n}{dx^n} \frac{x}{(e^x - 1)}.$$

Observe that for n=1

(3.6)
$$f'(x) = \left(\frac{1}{e^x - 1}\right) \left(1 - \frac{f(x)}{e^x - 1}\right)$$

and now observe that

(3.7)
$$\frac{d}{dx}\left(\frac{1}{e^x - 1}\right) = -e^x \left(\frac{1}{e^x - 1}\right)^2$$

and we can use the product rule to find all of our favorite Bernoulli numbers. We have a table of the first few Bernoulli numbers:

n	B_n
0	1
1	-1/2
2	1/6
4	-1/30
6	1/42
8	-1/30
10	$5/66 \approx 0.07575757576$
12	-691/2730≈-0.25311355311
14	7/6
16	$-3617/510 \approx -7.09125686275$
18	$43867/798 \approx 54.9711779448$

The zeta function satisfies the functional equation

(3.8)
$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s),$$

valid for all $s \in \mathbb{C}$. An equivalent relationship may be expressed as a sum

(3.9)
$$\zeta(s)(1-2^{1-s}) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^s}.$$

3.1. **Mellin Transform.** The Mellin transform of a function f(x) is defined as

$$(3.10) \qquad \qquad \int_0^\infty f(x)x^{s-1} \, dx,$$

when defined. We can relate the zeta function to one million and one things this way, we have

(3.11)
$$\Gamma(s)\zeta(s) = \int_0^\infty \frac{x^{s-1}}{\exp(x) - 1} dx,$$

where Γ is our favorite gamma function, and

(3.12)
$$2\sin(\pi s)\Gamma(s)\zeta(s) = i\oint_C \frac{(-x)^{s-1}}{\exp(x) - 1}dx$$

for all s where the contour C begins and ends at $+\infty$ and circles the origin once.

3.2. Laurent Series. Since the zeta function has a single simple pole at s = 1 we can expand it around the singular point. The series is

(3.13)
$$\zeta(s) = \frac{1}{s-1} + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \gamma_n (s-1)^n.$$

where γ_n are the Stieltjes constants, defined by the limit

(3.14)
$$\gamma_n = \lim_{m \to \infty} \left(\left(\sum_{k=1}^m \frac{(\log k)^n}{k} \right) - \frac{(\log m)^{n+1}}{n+1} \right).$$

where the constant n=0 term in the Laurent series is just γ_0 the Euler-Mascheroni constant.

References

[1] J. E. Marsden and M. J. Hoffman, Basic Complex Analysis. W. H. Freeman, third ed., 1998. $E\text{-}mail\ address:\ pqnelson@gmail.com}$