АНАЛИТИЧЕСКИЙ ОТЧЕТ ПРЕДМЕТНОЙ КОМИССИИ О РЕЗУЛЬТАТАХ ЕГЭ ПО ХИМИИ

Отчет подготовил A.H.Левкин, заместитель председателя предметной комиссии по химии.

1. ПОДГОТОВКА К ПРОВЕДЕНИЮ ЕДИНОГО ГОСУДАРСТВЕННОГО ЭКЗАМЕНА (ДАЛЕЕ ЕГЭ) ПО ХИМИИ В 2011 ГОДУ

Основные сведения о динамике состава предметной по химии приведены в табл. 1.

Таблица $\it l$ Состав предметной комиссии по химии. 2009-2011 гг.

	2011 г.			2010 г.		2009 г.		
Зареги-	Яви,	лось	Зареги-	Яви	лось	Зареги-	Яви	илось
стри- ровано чел.	чел.	%	стри- ровано, чел.	чел.	%	стри- ровано, чел.	чел.	%
155	120	77,4%	162	142	87,7%	184	149	81,0%

Из представленных данных табл. 1 видно, что численность экспертов несколько уменьшается, но повышается доля экспертов, явившихся на проверку работ. Действительно, численность экзаменуемых уменьшается, что объясняется демографической тенденцией, и на данный момент нет необходимости в большом количестве экспертов. Вместе с тем повышается ответственность и компетентность тех экспертов, которые стабильно работают в составе предметной комиссии.

В 2011 году новых экспертов не обучали, так как число экспертов в предметной комиссии по химии оказалось достаточным для проверки работ экзаменуемых. С экспертами, которые уже имели опыт проверки работ в 2009 и 2010 гг., были проведены групповые и индивидуальные консультации (6 групп экспертов).

Состав предметной комиссии остался практически прежним. В 2011 г. всего зарегистрировано 155 экспертов. На проверку работ 4 июня (суббота, следующий день после основного дня экзамена) явилось 120 экспертов (77,4% от числа зарегистрированных экспертов).

В 2010/2011 учебном году были обучены 2 группы учителей по курсу «ЕГЭ: технология подготовки учащихся к экзамену».

Координация деятельности по повышению квалификации учителей осуществлялась Региональным центром оценки качества образования и информационных технологий (далее РЦОКОиИТ) и кафедрой естественно-научного образования Академии постдипломного педагогического образования (далее АППО).

2. ХАРАКТЕРИСТИКА КОНТРОЛЬНЫХ ИЗМЕРИТЕЛЬНЫХ МАТЕРИАЛОВ (ДАЛЕЕ КИМ) ЕГЭ. СРАВНЕНИЕ С КИМами ПРЕДЫДУЩЕГО ГОДА

2.1. Структура экзаменационной работы (табл. 2)

Структура и содержание проверяемых знаний, умений и навыков остались такими же, как и в экзаменационной работе 2010 года. Каждый вариант экзаменационной работы состоит из трех частей и включает 45 заданий. Одинаковые по форме представления и уровню сложности задания сгруппированы в определенной части работы.

Таблица 2 Распределение заданий по частям экзаменационной работы

Часть работы	Количе- ство заданий	Макси- мальный первич- ный балл	% максимального первичного балла за задания данной части от максимального первичного балла за всю работу	Тип зада- ний	Рекомендо- ванное время на выполнение
A	30	30	45,4%	Задания с выбором ответа	2-3 мин
В	10	18	27,3%	Задания с кратким ответом	До 5 мин
C	5	18	27,3%	Задание с развернутым ответом	До 10 мин
Итого	45	66			

По сравнению с 2010 годом поменялся порядок вопросов в части А:

В 2010 г.		В 2011 г.	В 2010 г	`.	В 2011 г.	В 2010 г.	В 2011 г.	В 2010 г.	В 2011 г.
A3	\rightarrow	A5	A7	\rightarrow	A3	A20 -	→ A22	A24 —	→ A27
								A25 —	
A5	\rightarrow	A7	A18	\rightarrow	A20	A22 -	→ A24	A26 —	→ A18
A6	\rightarrow	A8	A19	\rightarrow	A21	A23 -	→ A25	A27 —	→ A19

2.2. Содержательные блоки экзаменационной работы

При определении количества заданий экзаменационной работы, ориентированных на проверку усвоения учебного материала отдельных блоков, учитывалось прежде всего, какой объем каждый из них занимает в курсе химии. Принято во внимание, что в системе знаний, определяющих уровень подготовки выпускников по химии, важное место занима-

ют элементы содержания 2-х содержательных блоков: «Неорганическая химия» и «Органическая химия» и содержательной линии «Химическая реакция». По этой причине суммарная доля заданий, проверяющих усвоение содержания данных блоков, составила в экзаменационной работе 64,4% от общего числа всех заданий (45). Информацию о распределении заданий по содержательным разделам дает табл. 3.

 Таблица 3

 Распределение заданий по основным содержательным разделам

Содержательные		Число зад	цаний*	
блоки/содержательные линии	Вся работа	Часть А	Часть В	Часть С
І. Теоретические основы химии				
Современные представления о	1 (2,2%)	1 (3,3%)	_	_
строении атома	1 (2,2/0)	1 (3,370)		_
Периодический закон и периодиче-	3 (6,7%)	3 (10%)		
ская система химических элементов	3 (0,770)	3 (1070)	_	_
Химическая связь и строение ве-	3 (6,7%)	3 (10%)		
щества	3 (0,770)	3 (1070)	_	1
Химическая реакция	11 (24,4%)	7 (23,4%)	3 (30%)	1 (20%)
II. Неорганическая химия	9 (20%)	6 (20%)	2 (20%)	1 (20%)
III. Органическая химия	9 (20%)	5 (16,7%)	3 (30%)	1 (20%)
IV. Методы познания в химии. Хи	мия и жизі	НЬ		
Экспериментальные основы химии.	3 (6,7%)	3 (10%)		
Общие способы получения веществ	3 (0,7%)	3 (10%)	_	_
Общие представления о промыш-	1 (2 20/)	1 (2 20/)		
ленных способах получения веществ	1 (2,2%)	1 (3,3%)	_	1
Расчеты по химическим формулам	5 (11%)	1 (3,3%)	2 (20%)	2 (40%)
и уравнениям	3 (1170)	1 (3,3%)	2 (2070)	2 (40%)
Итого	45 (100%)	30 (100%)	10 (100%)	5 (100%)
* В скобках – доля содержательно	ого раздела с	реди заданий	и́ во всей ра	аботе или в
данной части работы.				

Таким образом, произошло более четкое разделение заданий по содержательным блокам по сравнению с предыдущими годами. Например, в работе 2009 г. задания распределялись на 4 содержательных блока: «Химический элемент», «Вещество», «Химическая реакция», «Познание и применение веществ и химических реакций».

2.3. Распределение заданий по уровню сложности

В экзаменационную работу включаются задания различного уровня сложности: базового, повышенного, высокого (табл. 4). Распределение заданий по уровню сложности в 2011 году не отличается от версий предыдущих лет.

Таблица 4

Распределение заданий по уровню сложности

Уровень	Число	Максималь-	% максимального первичного балла за зада-
сложности	зада-	ный первич-	ния данного уровня сложности от макси-
СЛОЖНОСТИ	ний	ный балл	мального первичного балла за всю работу
Базовый	30	30	45,4%
Повышенный	10	18	27,3%
Высокий	5	18	27,3%
Итого	45	66	100%

Предполагалось, что для преодоления нижнего порога аттестации для получения сертификата учащемуся потребуеся набрать 12 первичных баллов из 66 максимально возможных.

3. РЕЗУЛЬТАТЫ ЕГЭ ПО ХИМИИ В 2011 ГОДУ И ИХ АНАЛИЗ

3.1. Основные результаты ЕГЭ

В июне 2011 г. в Российской Федерации экзамен по химии сдавало 77 806 человек, из них 2 009 – в Санкт-Петербурге.

Сведения об участниках основного этапа ЕГЭ 2011 г. представлены в табл 5

Таблица 5 Основные результаты ЕГЭ по химии 2011 года

			•		1 1
Зарегистри-	Яви	лось	Получили	Число экзаменуемых,	Доля экзаменуе-
ровано на	на эк	замен	100 баллов,	не сдавших экзамен в	мых, не сдавших
экзамен, чел.	чел.	%	чел.	Санкт-Петербурге	экзамен в РФ
2676	2009	75,1	16	121 (6,0%)	8,6%

Минимальное количество баллов единого государственного экзамена по химии, подтверждающее освоение выпускником основных общеобразовательных программ среднего (полного) общего образования в 2011 году — **33** (так же, как и в 2009-2010 гг.). Средний балл в Санкт-Петербурге — 59,14 (по $P\Phi - 57,75$).

Сравнение результатов основного этапа ЕГЭ по предмету в 2011 г. с результатами 2009-2010 гг. приведено в табл. 6.

Таблица 6 Сравнительные результаты ЕГЭ по химии в 2009-2011 годах

Год	РФ / Санкт-Петербург	Средний балл	Доля участников, не сдавших экзамен
2009	РФ	54,3	9,46%
2009	Санкт-Петербург	50,7	10,3%
2010	РФ	55,1	6,2%
2010	Санкт-Петербург	56,4	5,7%
2011	РФ	57,75	8,60%
2011	Санкт-Петербург	59,14	6,0%

Приятно отметить, что в Санкт-Петербурге растёт число учащихся, получивших за экзамен 100 баллов. В 2009 г. таких было всего 2 человека, в 2010 – 8 человек, а в 2011 г. – уже 16. По всей видимости, можно говорить, что за указанный промежуток времени наблюдается некоторая тенденция роста качества обучения химии, что вселяет сдержанный оптимизм.

3.2. Анализ результатов выполнения заданий ЕГЭ по частям А, В, С

3.2.1. Анализ результатов выполнения заданий части А

3.2.1.1. Результаты выполнения заданий части А (табл. 7)

Таблица 7

Содержание заданий части А и результаты их выполнения

Обозна-	, , , , , , , , , , , , , , , , , , ,	_	
чение		Процент	
задания	Содержание задания	правильных	
в работе		ответов	
L	Современные представления о строении атомов. Изо-		
	топы. Строение электронных оболочек атомов элемен-		
A1	тов первых четырех периодов: s-, p- и d-элементы.	81,72%	
	Электронная конфигурация атома. Основное и возбуж-	,	
	денное состояние атомов		
A2	Закономерности изменения химических свойств эле-	72 260/	
AZ	ментов и их соединений по периодам и группам	73,36%	
	Общая характеристика металлов главных подгрупп І—		
	III групп в связи с их положением в периодической		
	системе химических элементов Д.И.Менделеева и осо-		
A3	бенностями строения их атомов.	62,50%	
A3	Характеристика переходных элементов – меди, цинка,	02,3070	
	хрома, железа по их положению в периодической сис-		
	теме химических элементов Д.И.Менделеева и особен-		
	ностям строения их атомов		
	Общая характеристика неметаллов главных подгрупп	ļ	
A4	IV–VII групп в связи с их положением в периодической	77,14%	
711	системе химических элементов Д.И.Менделеева и осо-	77,1170	
	бенностями строения их атомов		
	Ковалентная химическая связь, ее разновидности и ме-		
A5	ханизмы образования. Характеристики ковалентной	69,82%	
113	связи (полярность и энергия связи). Ионная связь. Ме-	32,3270	
	таллическая связь. Водородная связь		
A6	Электроотрицательность. Степень окисления и валент-	87,65%	
	ность химических элементов	2.,	
	Вещества молекулярного и немолекулярного строения.	64.0007	
A7	Тип кристаллической решетки. Зависимость свойств	64,89%	
	веществ от их состава и строения		

Классификация неорганических веществ. Номенклатура неорганических веществ (тривиальная и международная). Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная) Характерные химические свойства простых веществметаллов: щелочных, щелочноземельных, алюминия, переходных металлов – меди, цинка, хрома, железа. Характерные химические свойства простых веществнеметаллов: водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния Характерные химические свойства оксидов: основных, амфотерных, кислотных Характерные химические свойства оснований и амфотерных гидроксидов. Характерные химические свойства оснований и амфотерных гидроксидов. Характерные химические свойства солей: средних, кислых, основных; комплексных (на примере соединений алюминия и цинка) А13 Взаимосвязь неорганических веществ Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах. Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и толуола) А16 Характерные химические свойства предельных одноатомных и многоатомных спиртов; фенола Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров. 57,57%
Характерные химические свойства простых веществметаллов: щелочных, щелочноземельных, алюминия, переходных металлов – меди, цинка, хрома, железа. Характерные химические свойства простых веществнеметаллов: водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния Характерные химические свойства оксидов: основных, амфотерных, кислотных Характерные химические свойства оснований и амфотерных гидроксидов. Характерные химические свойства солей: средних, кислых, основных; комплексных (на примере соединений алломиния и цинка) 58,96% алломиния и цинка 55,93% Теория строения органических веществ 55,93% Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах. Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и толуола) Характерные химические свойства предельных одноатомных и многоатомных спиртов; фенола Характерные химические свойства альдегидов, предельных карабоновых кислот сложных адмиров 54,93% Характерные химические свойства альдегидов, предельных карабоновых кислот сложных адмиров 54,93% Структурная кислот сложных адмиров Структурная и пространства альдегидов, предельных карабоновых кислот сложных адмиров 54,93% Структурная и пространства альдегидов, предельных карабоновых кислот сложных адмиров Структурная и пространства альдегидов, предельных карабоновых кислот сложных адмиров Структурная и пространства альдегидов, предельных карабоновых кислот сложных адмиров Структурная и пространства альдегидов, предельных карабоновых кислот сложных адмиров Структурная и пространства в предельных спиртов (Структурная и пространства в предельных структурная и пространства в предельных структурная Структурная и пространства в предельных структурная Структурная и пространства в предельных структурн
А10 амфотерных, кислотных Характерные химические свойства оснований и амфотерных гидроксидов. Характерные химические свойства кислот Характерные химические свойства солей: средних, кислых, основных; комплексных (на примере соединений алюминия и цинка) А13 Взаимосвязь неорганических веществ Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах. Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и толуола) Характерные химические свойства предельных одноатомных и многоатомных спиртов; фенола Характерные химические свойства альдегидов, предельных карбоновых кислот сложных афиров
А11 терных гидроксидов. Характерные химические свойства кислот Характерные химические свойства солей: средних, кислых, основных; комплексных (на примере соединений алюминия и цинка) А13 Взаимосвязь неорганических веществ Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах. Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и толуола) А16 Характерные химические свойства предельных одноатомных и многоатомных спиртов; фенола Характерные химические свойства альдегидов, предельных карбоновых кислот сложных афиров
A12 лых, основных; комплексных (на примере соединений алюминия и цинка) 58,96% A13 Взаимосвязь неорганических веществ 55,93% Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах. Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа 66,88% А15 Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и толуола) 61,65% А16 Характерные химические свойства предельных одноатомных и многоатомных спиртов; фенола 54,93% Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных афиров 54,93%
А13 Взаимосвязь неорганических веществ 55,93% Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах. Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа 66,88% А15 Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и толуола) 61,65% А16 Характерные химические свойства предельных одноатомных и многоатомных спиртов; фенола 54,93% Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных афиров 54,93%
Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах. Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и толуола) А16 Характерные химические свойства предельных одноатомных и многоатомных спиртов; фенола Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров
А15 канов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и толуола) А16 Характерные химические свойства предельных одноатомных и многоатомных спиртов; фенола Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров
А16 Характерные химические свойства предельных одноатомных и многоатомных спиртов; фенола 54,93% Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров
пельных карбоновых кислот, сложных афиров
А17 Биологически важные вещества: жиры, белки, углеводы (моносахариды, дисахариды, полисахариды) 57,57%
А18 Основные способы получения углеводородов (в лаборатории) 55,08%
А19 Основные способы получения кислородсодержащих соединений (в лаборатории) 66,63%
А20 Взаимосвязь углеводородов и кислородсодержащих органических соединений 72,66%
А21 Классификация химических реакций в неорганической и органической химии 76,29%
А22 Скорость реакции, ее зависимость от различных факторов 65,19%
А23 Обратимые и необратимые химические реакции. Химическое равновесие. Смещение равновесия под действием различных факторов
А24 Электролитическая диссоциация электролитов в водных растворах. Сильные и слабые электролиты 74,20%
А25 Реакции ионного обмена 82,37%

A26	Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная	69,47%
A27	Реакции окислительно-восстановительные. Коррозия металлов и способы защиты от нее	73,11%
A28	Правила работы в лаборатории. Лабораторная посуда и оборудование. Правила безопасности при работе с едкими, горючими и токсичными веществами, средствами бытовой химии. Научные методы исследования химических веществ и превращений. Методы разделения смесей и очистки веществ. Качественные реакции на неорганические вещества и ионы. Идентификация органических соединений	57,42%
A29	Понятие о металлургии: общие способы получения металлов. Общие научные принципы химического производства (на примере промышленного получения аммиака, серной кислоты, метанола). Химическое загрязнение окружающей среды и его последствия. Природные источники углеводородов, их переработка. Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки	64,04%
A30	Расчеты объемных отношений газов при химических реакциях. Тепловой эффект химической реакции. Термохимические уравнения. Расчеты теплового эффекта реакции	66,78%

Графически соотношения доли правильных ответов на вопросы части A представлены на рис. 1.

Puc.1. Доля верных ответов на вопросы части A

3.2.1.2. Анализ неуспешных заданий части А

Самые низкие результаты получены при выполнении следующих заданий:

- А16. Характерные химические свойства предельных одноатомных и многоатомных спиртов; фенола;
- А17. Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров. Биологически важные вещества: жиры, белки, углеводы (моносахариды, дисахариды, полисахариды);
- А18. Основные способы получения углеводородов (в лаборатории);
- А12. Характерные химические свойства солей: средних, кислых, основных; комплексных (на примере соединений алюминия и цинка);
 - А13. Взаимосвязь неорганических веществ.

Результаты вновь показывают некоторые пробелы в знаниях учащихся по органической химии. Регулярно выявляются недостаточные знания по темам «Кислородсодержащие органические вещества» и «Углеводороды». Особо следует обратить внимание на освоение учащимися способов получения углеводородов — по этой теме наименьшая доля правильных ответов в части А.

И в прошлом году также доля верных ответов была невысока по заданию A16. Результаты этого года вновь показывают недостаточное освоение учащимися темы «Спирты и фенолы», на что следует обратить внимание учителей и методистов.

Так же как и в прошлом году, много ошибок учащиеся делали при ответах на вопросы по теме «Классы неорганических веществ», о чем свидетельствует невысокая доля верных ответов на вопросы A12-A13. В прошлом году по этой же теме была невысокой доля правильных ответов на вопросы A10 и A11. Так как свойства классов неорганических веществ изучались в 8 классе, многие учащиеся к 11 классу забывают особенности в свойствах оксидов, кислот, оснований и солей, на что также следует обратить внимание учителей и методистов.

3.2.2. Анализ результатов выполнения заданий части В

3.2.2.1. Результаты выполнения заданий части B (табл. 8, рис. 2)

Таблица 8

Содержание заданий части В и результаты их выполнения

Обозначение		Процент
задания в	Содержание задания	правильных
работе		ответов
B1	Классификация неорганических веществ. Классификация и номенклатура органических соединений	75,70%

B2	Электроотрицательность. Степень окисления и валентность химических элементов. Реакции окислительновосстановительные	80,98%
В3	Электролиз расплавов и растворов (солей, щелочей, кислот)	62,80%
B4	Гидролиз солей	59,61%
B5	Характерные химические свойства неорганических веществ	78,83%
В6	Характерные химические свойства углеводородов: алканов, алкенов, диенов, алкинов. Механизмы реакций замещения и присоединения в органической химии. Правило В.В.Марковникова	77,64%
В7	Характерные химические свойства предельных одно- атомных и многоатомных спиртов; фенола; альдегидов, предельных карбоновых кислот, сложных эфиров	78,88%
В8	Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот. Биологически важные вещества: жиры, белки, углеводы (моносахариды, дисахариды, полисахариды)	78,14%
В9	Вычисление массы растворенного вещества, содержащегося в определенной массе раствора с известной массовой долей	52,24%
B10	Расчеты: массы вещества или объема газов по известному количеству вещества, массе или объёму одного из участвующих в реакции веществ	48,61%

Рис. 2. Доля абсолютно* верных ответов на вопросы части В

^{*} В ответах на вопросы B1-B8 абсолютно верным считается ответ, оцененный в 2 первичных балла, в ответах на вопросы B9-B10 — оцененный в 1 первичный балл.

3.2.2.2. Анализ неуспешных заданий части В

В этом году гораздо больше экзаменуемых дали верные ответы на вопросы В6-В8. Традиционно именно эти вопросы вызывали большие затруднения. Хорошо справились учащиеся и с вопросом В5, который тоже является отнюдь не простым и требует хорошего знания неорганической химии и умения видеть взаимосвязи между классами веществ. Вместе с тем вновь учащиеся показали, что тема «Гидролиз» вызывает большие затруднения (вопрос В4). Ведь и в 2010 г. экзаменуемые плохо ответили на вопрос, связанный с гидролизом солей (В4). Если раньше в таких вопросах надо было просто установить реакцию среды в растворах солей или определить тип гидролиза, то для ответов на вопрос В4 в 2010-2011 гг. надо было вспомнить окраску индикаторов в разных средах. По-видимому, эту подробность участники экзамена повторить забыли.

К сожалению, самые низкие результаты были получены по заданиям B9-B10. Выпускники этого года не показали умение решать простые задачи, связанные с расчетами массовой доли в растворах (B9) и стехиометрическими отношениями (B10).

Можно порекомендовать учителям и методистам обратить внимание при подготовке абитуриентов именно на отработку данных умений.

$3.2.3. \$ Анализ результатов выполнения заданий части C

3.2.3.1. Результаты выполнения задания части С (табл. 9)

 Таблица 9

 Результаты выполнения заданий части С

Обозначение задания	Оценка зада-	Доля экзаменуемых, %	
в работе	ния в баллах	2011 г.	2010 г.
C1	0	32,92%	32,26%
	1	12,00%	13,88%
	2	14,14%	23,22%
	3	40,94%	30,65%
C2	0	30,08%	34,77%
	1	26,59%	32,22%
	2	25,35%	17,85%
	3	13,20%	9,60%
	4	4,78%	5,55%
СЗ	0	45,67%	61,29%
	1	10,76%	13,05%
	2	9,81%	6,94%
	3	10,31%	5,78%
	4	7,87%	5,48%
	5	15,59%	7,46%

C4	0	55,58%	60,02%
	1	12,30%	15,72%
	2	10,46%	10,58%
	3	5,23%	4,73%
	4	16,43%	8,96%
C5	0	68,28%	68,60%
	1	8,72%	7,31%
	2	23,01%	24,08%

3.2.3.2. Анализ типичных ошибок по части С

Результаты экзамена показывают, что уровень подготовки выпускников в 2011 г. оказался несколько выше, чем в 2009-2010 гг. Это сразу почувствовали эксперты в ходе проверки заданий части С; по отзывам экспертов, «было что проверять, а ошибки были вполне объяснимы».

В задании С1 экзаменуемые иногда забывают указать окислитель и восстановитель, некоторые экзаменуемые не смогли правильно подобрать вещества, необходимые для осуществления окислительно-восстановительных реакций.

Показательным является выполнение задания высокого уровня сложности (С2), которое ориентировано на проверку знаний о свойствах каждого из предложенных веществ как представителя своего класса, а также знания его специфических свойств, в том числе окислительновосстановительных реакций. При составлении развернутого ответа экзаменуемые должны были продемонстрировать умения составлять уравнения реакций различных типов, учитывать сущность окислительновосстановительных процессов и реакций ионного обмена. Результаты показали, что большинство выпускников с хорошим уровнем подготовки успешно выполнили это задание. Не справились с таким заданием в среднем около 30% экзаменуемых, примерно как и в прошлом году. Вместе с тем часть выпускников со слабым уровнем подготовки выполнили 1-2 элемента решения задания этого типа. Этот факт говорит о том, что подобная форма заданий является знакомой для выпускников, и они приступают к их выполнению, но полностью выполнить задание под силу только экзаменуемым, изучавшим химию на профильном уровне.

Важно отметить, что в этом году при оценивании задания учитывались только первые четыре уравнения реакции, которые были записаны экзаменуемыми в бланке ответов. Многие экзаменуемые записывали совершенно правильные уравнения реакций на 5–6-й позициях, но такие уравнения не могли быть зачтены (в соответствии с инструкцией в критериях оценки заданий). Важно обратить внимание учителей и методистов на этот факт, чтобы это было учтено в ходе подготовки учащихся к экзамену.

Лучше стали результаты выполнения задания С3. Это говорит о том, что учащиеся стали более основательно готовиться к его выполнению. Однако в задании С3 некоторые участники экзамена подбирали, как им казалось, верное уравнение реакции, продолжали решать цепочку превращений веществ в выбранном направлении и теряли на этом не 1 балл, а 2-3 и более.

К решению задания С4 более половины участников экзамена не приступали или не получили значимых результатов. К сожалению, реакции, на которых основывались задания С4 некоторых вариантов контрольных измерительных материалов 2010 г., не изучаются в курсе 11 класса, материал выходил за рамки школьного уровня. Тем не менее часть экзаменуемых выполнили эти довольно сложные задания, и приятно отметить, что доля таких экзаменуемых выросла по сравнению с 2010 годом.

По-прежнему, как и в 2009–2010 гг., экзаменуемые не уделяли достаточного внимания решению задания С5. Действительно, решение задания С5 требует творческого подхода, типология заданий достаточно разнообразна. Здесь требуется тщательный разбор учителями и методистами типов задач на вывод формул и достаточная проработка этих задач с учащимися, планирующими сдавать ЕГЭ по химии в 2012 году.

4. СВЕДЕНИЯ О РАБОТЕ КОНФЛИКТНОЙ КОМИССИИ

Количество поданных и удовлетворенных апелляций по результатам ЕГЭ в 2011 году

Количество участников основного ЕГЭ, чел.	2009
Количество поданных апелляций всего	47 (2,34%)
из них о несогласии с выставленными баллами	47 (2,34%)
Удовлетворено апелляций всего (с повышением балла)	7
Отклонено апелляций	40

Анализ причин удовлетворения апелляций по части С

В нескольких случаях эксперты слишком строго подошли к оценке заданий С4. Участники экзамена решили расчетную задачу иначе, чем предлагалось в ключе; в ходе решения была допущена несущественная ошибка, вследствие чего окончательный ответ был неверный. Однако если рассмотреть решение задачи поэтапно, то участники экзамена вы-

полнили большее количество действий, чем сочли эксперты, и поэтому оценка могла быть выше.

Во всех остальных случаях (!) эксперты оценили работы правильно, и апелляции были отклонены.

6. ОСНОВНЫЕ ИТОГИ ПРОВЕДЕНИЯ ЕГЭ ПО ХИМИИ В 2011 ГОДУ, ОБЩИЕ ВЫВОДЫ И РЕКОМЕНДАЦИИ

Анализ результатов ЕГЭ 2011 г. показал, что выпускники с различным уровнем подготовки продемонстрировали наиболее высокий уровень овладения учебным материалом в основном при выполнении заданий базового уровня сложности. В первую очередь это относится к заданиям по следующим разделам и темам курса химии средней школы: «Современные представления о строении атома», «Периодический закон и периодическая система химических элементов Д. И. Менделеева», «Классификация и номенклатура неорганических и органических веществ», «Характерные химические свойства неорганических и органических веществ различных классов», «Гидролиз», «Реакции ионного обмена», «Окислительно-восстановительные реакции». Средний процент выполнения таких заданий всё ещё остаётся в пределах 60-84%.

Между тем результаты выполнения заданий повышенного и высокого уровней сложности свидетельствует о наличии определенного числа слабо усвоенных элементов содержания. Среди этих элементов такие общие понятия, как «химическое равновесие», «степень окисления и виды химической связи в органических соединениях», «лабораторные и промышленные способы получения отдельных веществ».

На основании результатов ЕГЭ 2011 г. следует сделать выводы о совершенствовании отдельных аспектов преподавания химии в школе.

Важным основанием для совершенствования учебного процесса является анализ затруднений выпускников в освоении отдельных элементов содержания курса химии. Анализ этих затруднений позволит в рамках учебного процесса организовать подготовку к ЕГЭ по следующим направлениям.

Большое значение имеет организация целенаправленной работы по систематизации и обобщению учебного материала, которая должна быть направлена на развитие умений выделять в нем главное, устанавливать причинно-следственные связи между отдельными элементами содержания, обращая особое внимание на взаимосвязь состава, строения и свойств вешеств

Систематизация теоретических знаний поможет достаточно эффективно организовать повторение материала об отдельных химических элементах и их соединениях. Этот учебный материал проверяется в экзаменационной работе заданиями разного типа. Успешному выполнению их будет способствовать не столько использование подобных заданий в процессе тренировочных занятий при подготовке к экзамену, сколько применение определенного алгоритма в ходе систематизации и обобщения знаний об элементе, веществе и классе веществ.

Прежде всего следует обращать внимание учащихся на то, что характерные свойства каждого конкретного вещества и различных классов веществ в полной мере зависят от их состава и строения. Именно поэтому при выполнении заданий, связанных со свойствами веществ (классов веществ), в первую очередь необходимо использовать знания о видах химической связи и способах ее образования, об электроотрицательности и степенях окисления химических элементов в соединениях, о зависимости свойств веществ от типа кристаллической решетки, поведении веществ с различным типом химической связи в растворах и т. д.

Для успешного формирования важнейших теоретических понятий, перечисленных выше, учащимся целесообразно чаще предлагать разнообразные по форме упражнения и задания на их применение в различных ситуациях, привлекая при этом знания из других разделов курса.

С самого начала изучения курса химии следует ориентировать учащихся на овладение химическим языком, использование номенклатуры ИЮПАК, совершенствование умения терминологически грамотно характеризовать любой химический процесс.

С введением ЕГЭ большое значение в преподавании приобретает совершенствование методики контроля учебных достижений выпускников. Формы контроля могут быть самыми разнообразными в зависимости от конкретных целей и специфики изученного материала. Вместе с тем целесообразно уже в ходе текущего контроля использовать задания, аналогичные тем, которые представлены в экзаменационной работе ЕГЭ и в значительной степени нацелены не на простое воспроизведение полученных знаний, а на проверку сформированности умения применять их. В частности, задания, ориентированные на проверку умения описывать химические свойства конкретного вещества того или иного класса. Учитывая содержание контрольных измерительных материалов ЕГЭ и принятую форму его проведения, целесообразно шире использовать практикоориентированные задания и задания на комплексное применение знаний из различных разделов курса. Обучая школьников приемам работы с различными типами контролирующих заданий (с выбором ответа, с кратким и развернутым ответами), необходимо добиваться понимания того, что успешное выполнение любого задания невозможно без тщательного анализа его условия и выбора адекватной последовательности действий.