Machine learning algorithm for classification of Activity of daily life's

Siddharth Chakravarty

Overview

- ADL- What is it?
- How is it monitored?
- Overview of sensor technology
- Problem statement
- Approach
- Results
- Application: Implementation in real world

ADL- Activity of Daily life's

Image Source: connectingcleveland.net/wp-content/uploads/2014/07/Daily_Life_Wallpaper.jpg

A technique for classification of human activities can be a useful tool to not only classify and monitor our activities, but also improve overall quality of life

What's out there?

	Heart rate	Walking	Running	Sleeping	ADL
Heart rate monitors	X				
Pedometers	X	Х	Χ		
Phone		Х	Χ		
Wearable	Χ	Х	Х	Х	

Major players

- Fitbit recently announced next generation device
- Jawbone- acquired bodymedia to complement it's technology
- Microsoft
- Samsung
- Pebble
- Misfit—Acquired by Fossil
- Facebook- acquired Finland-based fitness app maker Protogeo Many more....

Clearly there is a need for accurately monitor and classify ADL's not just for recreation, but also for other applications.

State of the art technology ADL monitoring

- An accelerometer essentially records the acceleration it experiences is the X,Y and Z direction.
- Accelerometers are the most commonly used type of sensor for activity recognition with wearable sensors and other consumer electronic devices ranging from Iphones to Wii

Problem statement

The automatic recognition of a set of Activities of Daily Living, is among the most challenging research fields in Ambient Intelligence. Main challenge with wearable technology is classification of use case ADL'

The objective of the project was to develop machine learning algorithm using SVM to predict ADL'.

Data science toolkit

Support vector machines SVM is a most popular and efficient classification and regression method. Currently four R packages contain SVM related software. For this project the e1071 R package was chosen that supports multi-level classification problems

- The Dataset for ADL Recognition with Wrist-worn Accelerometer is a public collection of labeled accelerometer data recordings to be used for the creation and validation of acceleration models of simple ADL.
- It was provided by UCI machine learning repository, Center for Machine learning and Intelligent systems.

\$Data

 The data was collected by using single tri-axial accelerometer attached to the right-wrist of the volunteer. It was carried out by Barbara Bruno, Fulvio Mastrogiovanni, Antonio Sgorbissa from the Laboratory for Ambient Intelligence and Mobile Robotics, DIBRIS, University of Genova

• The Dataset composed of the recordings of 11 simple ADL performed by a total of 16 volunteers.

Ger	nder		Age		Weight						
М	F	Min	Avg.	Max	Min	Avg.	Max				
11	5	19	81	57.4	56	85	72.7				

brush_teeth	getup_bed	walk
climb_stairs	liedown_bed	
comb_hair	pour_water	
descend_stairs	sitdown_chair	
drink_glass	standup_chair	

Wrist-worn Accelerometer Image courtesy: Chalkbeat Colorado

Overview of dataset

X,Y and Z direction.

Raw data from accelerometer for the task "brush teeth".

The columns represents the acceleration measured in

22 49 35

Feature extraction

 A key challenge for any classification ML algorithm is feature extraction -.i.e. what unique parameters distinguishes each class (Activity)

Feature extraction approaches

Group	Methods
Time domain	Mean ¹ , Std. Deviation ² , Variance ³ , MAD ⁴ , Entropy ⁵
Frequency domain	Fast Fourier transform ⁶ , Discrete cosine transform ⁷
Other	Principal component analysis ⁸ , Linear discriminant analysis ⁹ , Singular value decomposition

 The ML algorithm implemented for this project uses Discrete cosine transformation and Singular value decomposition approaches to classify ADL.

Data wrangling Data exploration Build and select model Validate model Build model in SVM The acceleration from the VM and SVD histograms · Use test data to validate files is consolidated into a Scale data using training data model. Calculate values for single CSV file. Under-sample and F measure Cost and Gamma Convert raw data into Oversample data Accuracy Cross validate model on acceleration and apply Split data Sensitivity filter training data. Selectivity Calculate components of SVD: uvd Sum vector magnitude $(VM) = \sqrt{(ax)^2 + (ay)^2 + (az)^2}$

- The original data comprises 479,288 observations of ax, ay, az, distributed among the 11 Activities
- The data is reduced to 827 observations that contribute to maximum variance in the data.

\$ Act : Factor w/ 11 levels "brush_teeth",..: 1 1 1 1 1 1 1 1 1 1 ...

VM refers to sum of vector magnitude

\$ VM : num 67.8 62.5 63.7 61.1 60.2 ... \$ SVD1: num 40.6 64.5 64.7 62.6 70.8 ... \$ SVD2: num 23.5 39.2 36.3 57.5 46.2 ...

827 obs. of 4 variables:

- SVD 1 and SVD2 refer to d1 and d2 components of Singular value decomposition
- Act refers to the activities

> str(dcs_comb)
'data.frame':

Two models are evaluated

- 1. Model 1 uses VD as the dependent variable to predict ADL
- 2. Model 2 uses VD and SVD to predict ADL

DATA SAMPLING

• The original data set is unbalanced with fewer data points for activities such as brush_teeth, comb_hair, and liedown_bed

> summary(dcs_comb\$Act)

brush_teeth	climb_stairs	comb_hair	descend_stairs	drink_glass	getup_bed	liedown_bed	pour_water
11	102	31	42	100	101	28	100
sitdown_chair	standup_chair	walk					
100	102	110					
. I							

• The SMOTE function is used to handle unbalanced classification problem. It generates **synthetic data sets** that addresses the class unbalance problem. Following which the data set is split into training (70%) and test data (30%)

> summary(files_smote\$Act)

brush_teeth	climb_stairs	comb_hair	descend_stairs	drink_glass	getup_bed	liedown_bed	pour_water
121	201	65	87	198	187	60	201
sitdown_chair	standup_chair	walk					
207	207	237					
> summary(train	data\$Act)						
brush_teeth	climb_stairs	comb_hair	descend_stairs	drink_glass	getup_bed	liedown_bed	pour_water
85	141	46	61	139	131	42	141

walk

166

> summary(testdata\$Act)

145

sitdown_chair standup_chair

brush_teeth	climb_stairs	comb_hair d	lescend_stairs	drink_glass	getup_bed	liedown_bed	pour_water
36	60	19	26	59	56	18	60

sitdown_chair standup_chair walk
62 62 71

145

Tuning of SVM parameters- for Model 1(VD only)

- The initial value of cost and gamma for the SVM model are predicted using the "tune function", and running a coarse grid search.
- Following the initial coarse grid search, the value of cost and gamma were fine tuned
- Each set of cost and gamma values are cross validated (10 fold)
- Parameter tuning of 'svm':
 - Sampling method: 10-fold cross validation
 - Best parameters:
 - Gamma:20
 - cost:900
 - best performance: 0.715 (1 error)

Confusion matrix

Model 1 validation with training and test data sets

TRA	AINING 1														Cla	ass pe	rforman	ce	
Reference	Prediction	brush_ teeth	climb_ stairs	comb_ hair	descend_ stairs	drink_ glass	getup_ bed	liedown_ bed	pour_ water	sitdown_ chair	standup_c hair	walk	Accuracy	TP	FP	FN	TN	Specivitiy	Sensitivity
85	brush_teeth	85	0	0	0	0	0	0	0	0	0	0	1.00	85	0	0	1157	1.00	1.00
138	climb_stairs	0	118	0	13	5	9	2	7	0	1	0	0.90	118	37	23	1064	0.97	0.84
47	comb_hair	0	0	42	0	0	0	0	0	0	0	0	0.96	42	0	4	1196	1.00	0.91
60	descend_stairs	0	2	0	35	0	5	0	3	0	0	0	0.78	35	10	26	1171	0.99	0.57
135	drink_glass	0	2	0	1	123	1	0	2	1	1	0	0.94	123	8	16	1095	0.99	0.88
153	getup_bed	0	3	0	3	5	104	2	9	1	2	0	0.89	104	25	27	1086	0.98	0.79
40	liedown_bed	0	2	0	0	1	2	35	0	0	0	0	0.91	35	5	7	1195	1.00	0.83
147	pour_water	0	14	0	7 _	5	7	2	120	2	1	2	0.91	120	40	21	1061	0.96	0.85
136	sitdown_chair	0	0	0	1	0	1	0	0	129	20	0	0.93	129	22	16	1075	0.98	0.89
144	standup_chair	0	0	0	1	0	0	1	0	12	120	0	0.91	120	14	25	1083	0.99	0.83
161	walk	0	0	4	0	0	2	0	0	0	0	164	0.99	164	6	2	1070	0.99	0.99

Accuracy	fp-rate	tp-rate	Specitivity	Sensitivity	F-measure
0.86	0.01	0.86	0.99	0.87	0.92

TEST DA	TA SET														Cla	ass pe	erforma	nce	
Referenc	e Prediction	brush_ teeth	climb_ stairs	comb_ hair	descend _stairs	d drink_ glass	getup_ bed	liedown_ bed	pour_ water	sitdown_ chair	standup_ chair	-walk	Accuracy	TP	FP	FN	TN	Specivitiy	Sensitivity
36	brush_teeth	34	0	0	0	0	0	0	0	0	0	0	0.97	34	0	2	1121	1.00	0.94
60	climb_stairs	0	42	0	4	2	5	0	6	0	0	1	0.83	42	18	18	1079	0.98	0.70
19	comb_hair	0	0	14	0	2	0	0	0	0	0	1	0.87	14	3	5	1135	1.00	0.74
26	descend_stairs	s 0	1	0	10	2	2	0	2	0	0	0	0.69	10	7	16	1124	0.99	0.38
59	drink_glass	0	2	1	1	41	3	0	3	2	2	0	0.83	41	14	18	1084	0.99	0.69
56	getup_bed	0	1	0	2	9	33	0	7	1	0	0	0.77	33	20	23	1081	0.98	0.59
18	liedown_bed	0	4	0	0	0	3	15	1	2	0	0	0.90	15	10	3	1129	0.99	0.83
60	pour_water	0	6	0	7	1	_ 7	0	41	1	0	3	0.81	41	25	19	1072	0.98	0.68
62	sitdown_chair	0	1	0	1	0	1	0	0	47	11	0	0.86	47	14	15	1081	0.99	0.76
62	standup_chair	0	2	0	0	1	0	3	0	9	49	0	0.87	49	15	13	1080	0.99	0.79
71	walk	2	1	4	1	1	2	0	0	0	0	66	0.95	66	11	5	1075	0.99	0.93

Accuracy	fp-rate	tp-rate	Specitivity	Sensitivity	F-measure
0.74	0.01	0.31	0.99	0.74	0.85

VD model test summary

- The initial results using VD' to predict ADL was satisfactory, but showed low tp-rate when implemented on test model.
- The training model performance could be further improved by tuning the value of cost and gamma ,.i.e. high cost and gamma number.
- Prior to implementing model 2, we need to check for collinearity (Strong correlation between two or more predictor variables).
- The vif function is used to check for collinearity among the three variables

Tuning of SVM parameters: Model 2 (VD and SVM)

- The initial value of cost and gamma for the SVM model are predicted using the "tune function", and running a coarse grid search.
- Following the initial coarse grid search, the value of cost and gamma were fine tuned
- Each set of cost and gamma values are cross validated (10 fold)
- Parameter tuning of 'svm':
 - Sampling method: 10-fold cross validation
 - Best parameters:
 - gamma:14.5
 - cost:800
 - best performance: 0.863 (1 error)

Confusion matrix Model 2 validation with training and test data sets

TRAININ	G DATA SET														Cla	ass pe	erforma	nce	
Reference	e Prediction	brush_ teeth	climb_ stairs	comb_ hair	descend _stairs	drink_ glass	getup_ bed	liedown_ bed	pour_ water	sitdown_ chair	standup_ _v chair	valk	Accuracy -	TP I	FP	FN	TN	Speciviti	y Sensitivit
85	brush_teeth	85	0	0	0	0	0	0	0	0	0	0	1.00	85	0	0	1161	1.00	1.00
138	climb_stairs	0	124	0	5	0	2	1	2	0	4	1	0.98	124	15	14	1093	0.99	0.90
47	comb_hair	0	0	47	0	0	0	0	0	0	0	0	1.00	47	0	0	1199	1.00	1.00
60	descend_stairs	0	3	0	51	0	2	0	0	0	4	0	0.99	51	9	9	1177	0.99	0.85
135	drink_glass	0	0	0	0	118	0	0	15	0	0	0	0.97	118	15	17	1096	0.99	0.87
153	getup_bed	0	1	0	1	1	146	0	2	1	0	1	0.99	146	7	7	1086	0.99	0.95
40	liedown_bed	0	1	0	0	0	1	39	0	0	0	0	1.00	39	2	1	1204	1.00	0.98
147	pour_water	0	1	0	0	16	1	0	127	2	2	1	0.97	127	23	20	1076	0.98	0.86
136	sitdown_chair	0	2	0	0	0	0	0	0	133	1	0	1.00	133	3	3	1107	1.00	0.98
144	standup_chair	0	6	0	3	0	0	0	1	0	133	0	0.98	133	10	11	1092	0.99	0.92
161	walk	0	0	0	0	0	1	0	0	0	0	158	1.00	158	1	3	1084	1.00	0.98
		Ac	curacy	1	p-rate		tp-rate	Sį	pecitivity	Sen	sitivity	F-me	asure						
			0.98		0.01		0.93		0.99	C	0.93	0.	96						
EST DA	TA SET												ı		Cla	ss ne	rformar	nce	
	_	brush	climb	comb	descend	drink	getup_	liedown_	pour_	sitdown_	standup_w	.=11.	^ · · · · · · · · · · · · · · · · ·			•			. 0 141- 14
Reference	Prediction	teeth _	stairs	hair [—]	_stairs	glass	bed	bed	water	chair	chairw	aik	Accuracy 7	IP F	Р	FN	IN	Specivitiy	Sensitivit
36	brush_teeth	28	0	0	0	0	0	0	0	0	0 _	0	0.99	28	0	8	1210	1.00	0.78
58	climb_stairs	0	53	0	1	0	2	1	0	0	0	4	0.99	53	8	5	1180	0.99	0.91
19	comb_hair	0	0	17	0	0	0	0	0	0	0	0	1.00	17	0	2	1227	1.00	0.89
25	descend_stairs	0	0	0	20	0	2	0	1	0	3	1	0.99	20	7	5	1214	0.99	0.80
57	drink_glass	0	0	0	0	53	0	0	4	0	1	0	0.99	53	5	4	1184	1.00	0.93
65	getup_bed	0	1	1	1	0	57	1	2	1	2	1	0.99	57	10	8	1171	0.99	0.88
16	liedown_bed	0	0	0	0	0	0	10	0	2	0	0	0.99	10	2	6	1228	1.00	0.63
62	pour_water	0	0	0	0	1	1	0	52	0	1	0	0.99	52	3	10	1181	1.00	0.84
57	sitdown_chair	0	1	0	0	0	0	4	0	52	3	0	0.99	52	8	5	1181	0.99	0.91
61	standup_chair	0	0	0	3	0	3	0	3	2	50	1	0.98	50	12	11	1173	0.99	0.82
69	walk	8	3	1	0	3	0	0	0	0	1	62	0.98	62	16	7	1161	0.99	0.90
,		,	Accurac	y	fp-rate		tp-rat	е	Specitivit	y S	ensitivity	F-n	neasure						
•	331		0.86		0.01		0.86		0.99		0.86		0.92						

- Model 2 (VM + SVD) performs much better compared to VM model alone.
- The Train and testing model accuracies are comparable

Summary

- The results from the study clearly demonstrate a novel method for detecting ADL'
- The VD and SVM factors when used in conjunction help to classify activities that would be otherwise be misclassified.
- The study needs to extended to other ADL data sets that are publically available.
- While publically available data sets will help tune and validate the model, the efficacy of the model can only be validated using data sets from the industry.
- The application of a machine learning algorithm in this setting is quite vast
 - VR band
 - Health monitoring
 - Activity monitoring
 - Quality of activity, not just quantity
 - Remote point of care devices
 - Fall sensors

References

- 1. J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and I. Korho- nen, "Activity classification using realistic data from wearable sensors," IEEE Transactions on Information Technology in Biomedicine, vol. 10, no. 1, pp. 119–128, 2006.
- 2. E. M. Tapia, S. S. Intille, W. Haskell, K. Larson, J. Wright, A. King, and R. Friedman, "Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart monitor," in *International Symposium on Wearable Computers*, 2007.
- 3. O. D. Lara, A. J. Perez, M. A. Labrador, and J. D. Posada, "Centinela: A human activity recognition system based on acceleration and vital sign data," Journal on Pervasive and Mobile Computing, 2011.
- 4. Y.-P. Chen, J.-Y. Yang, S.-N. Liou, Gwo-Yun=Lee, and J.-S. Wang, "Online classifier construction algorithm for human activity detection using a tri-axial accelerometer," *Applied Mathematics and Computation*, vol. 205, no. 2, pp. 849–860, 2008.
- 5. M. Ermes, J. Parkka, and L. Cluitmans, "Advancing from offline to online activity recognition with wearable sensors," in *Engineering in Medicine and Biology Society. 30th Annual International Conference of the IEEE*, pp. 4451–4454, 2008.
- 6. L. Bao and S. S. Intille, "Activity recognition from user-annotated acceleration data," in *Pervasive*, pp. 1–17, 2004.
- 7. K. Altun and B. Barshan, "Human activity recognition using iner- tial/magnetic sensor units," in Human Behavior Understanding, Lecture Notes in Computer Science, pp. 38–51, Springer Berlin / Heidelberg, 2010.
- 8. Z. He and L. Jin, "Activity recognition from acceleration data based on discrete consine transform and sym," in *IEEE International Conference on Systems, Man and Cybernetics*, pp. 5041–5044, 2009.
- 9. Z. He, Z. Liu, L. Jin, L.-X. Zhen, and J.-C. Huang, "Weightlessness feature; a novel feature for single tri-axial accelerometer based activity recognition," in 19th International Conference on Pattern Recognition, pp. 1–4, 2008.
- 10. Y.-P. Chen, J.-Y. Yang, S.-N. Liou, Gwo-Yun=Lee, and J.-S. Wang, "Online classifier construction algorithm for human activity detection using a tri-axial accelerometer," Applied Mathematics and Computation, vol. 205, no. 2, pp. 849–860, 2008.
- 11. Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin, "A Practical Guide to Support Vector Classification", Department of Computer Science, National Taiwan University, Taipei 106, Taiwan
- 12. Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition, 30 (7), 1145-1159.