# **Galaxy Colors in Various Photometric Band Systems**

### M. FUKUGITA<sup>1</sup>

Institute for Advanced Study, Princeton, New Jersey 08540 Electronic mail: fukuqita@sns.ias.edu

# K. SHIMASAKU<sup>2</sup>

Princeton University Observatory, Princeton, New Jersey 08544 Electronic mail: shima@astro.princeton.edu

#### T. ICHIKAWA

Kiso Observatory, University of Tokyo, Kiso-gun, Nagano 397-01, Japan Electronic mail: ichikawa@kikyo.kiso.ioa.s.u-tokyo.ac.jp

\*Received 1995 March 10; accepted 1995 June 14\*

**ABSTRACT.** A study is made of stellar and galaxy colors using a spectrophotometric synthesis technique. We show that use of good color response functions and a modern determination of the spectroscopic energy distribution for  $\alpha$  Lyr gives synthetic stellar colors in a good agreement with photometric observations to about 0.05 mag. The synthetic method then is applied to study galaxy colors using the spectrophotometric atlas of Kennicutt (1992, ApJS, 79, 255), and a comparison is made with observed galaxy colors. The K correction is calculated and compared with that of Coleman, Wu, and Weedman (1980, ApJS, 43, 393). We then study colors of galaxies in various photometric band systems and obtain color transformation laws, which enable us to find offsets among different systems. We include 48 photometric bands in our study.

### 1. INTRODUCTION

Colors of galaxies provide us with valuable information concerning their present-day composition of stars, and accordingly it gives us hints about the formation and evolution of galaxies. While a large number of studies have been made in this area, different authors have usually used varieties of different photometric band systems. Indeed, each photometric band system has its own advantages. This causes, however, great complications for the analysis of the accumulated data in a coherent way. To solve this problem, the author usually gives a transformation law from his own photometric system to another, which is more frequently adopted, in terms of empirical color-color relations. If we want to transform one magnitude to another, which is not given directly by the author, however, we must combine empirical relations successively for a number of times, which often leads to inaccurate results; we occasionally find that the results depend on how these relations are combined. Furthermore, the laws given by different authors sometimes disagree, and it is difficult to trace the origin of discrepancies, since these laws are derived using different standard stars.

An alternative way to give transformation laws among different colors is to synthetically calculate magnitude using the spectroscopic energy distribution (SED) of galaxies and the filter response functions. Such attempts, however, are not popular. The reason is that it requires accurate response functions, and also an accurate continuous SED of  $\alpha$  Lyr (Vega), used to define a zero point of the standard magnitude system,

the general accuracy of the method, we first compute broad band stellar colors using the SED of stars (Jacoby, Hunter and Christian 1984; Gunn and Stryker 1982) and compare them with observed colors (Sec. 1). Such studies have been made from time to time by many authors. The new feature of our calculation is that we use directly the SED of  $\alpha$  Lyr to set the zero point, rather than resorting to an empirical relation. We then calculate broadband colors from SED of galaxies, comparing them with observations, and briefly discuss the color distribution of galaxies (Sec. 3). With these preparations, we calculate colors of galaxies in various photometric

band systems for galaxies at z=0 and higher redshifts. We

then compute color transformation laws among various pho-

in addition to a good sample of galaxy SED over a wide range of wavelength. Continual efforts to obtain the SED of

Vega (Oke and Schild 1970; Hayes and Latham 1975; Oke

and Gunn 1983; Kurucz 1979; Hayes 1985, hereafter re-

ferred to as H85; Castelli and Kurucz 1994, hereafter re-

ferred to as CK94) and response functions (e.g., Code 1960;

Arp 1961; Matthews and Sandage 1963; Azusienis and

Straizys 1969; Hayes 1975; Buser 1978; Bessell 1990), how-

ever, lead us to expect that the error from the first two issues

can now be controlled to a tolerable level for our purpose.

We also have a reasonable amount of spectrophotometric

data for a few dozens of galaxies. This prompts us to carry

out a synthetic study of galaxy colors in various band sys-

tems and to obtain transformation laws among them. With

this calculation we can directly estimate the offset between

two different magnitude systems, which is important in, for

colors using the best modern data available. In order to see

In this paper we carry out a synthetic study of galaxy

example, number counts of galaxies.

tometric band systems (Sec. 4).

© 1995. Astronomical Society of the Pacific

<sup>&</sup>lt;sup>1</sup>Also at Yukawa Institute, Kyoto University, Kyoto 606 Japan.

<sup>&</sup>lt;sup>2</sup>On leave from Department of Astronomy, University of Tokyo, Tokyo 113, Japan.



Fig. 1—Comparison of the H85 SED of  $\alpha$  Lyr (dots) with that of CK94 (solid curve). The wavelength scale is enlarged to emphasize the small discrepancy between the two.

After completion of this work we find parallel work by Frei and Gunn (1994), who computed colors and *K* corrections of galaxies for five photometric systems, using an SED of Coleman, Wu, and Weedman (1980) with the zero point of photometric systems calibrated with the SED of F subdwarfs. Our present study is a substantially more systematic exploration of the subject with a number of checks needed to define accurate photometric systems.

# 2. SYNTHETIC STELLAR COLORS FOR THE STANDARD JOHNSON/COUSINS SYSTEM

A number of studies have been done for the standard UBV photometric system to give response functions that yield stellar colors of standard Johnson-Morgan photometry (Johnson and Morgan 1953) as accurately as possible. It has been found (e.g., Hayes 1975; Azusienis and Straizys 1969; Buser 1978) that the response function presented by Johnson (1965) is not accurate enough to reproduce observed broadband colors in the standard system. The most accurate response functions known to date are those given by Azusienis and Straizys (1969) for the B and V bands and by Buser (1978) for the U band. Straizys, Sudzius, and Kuriliene



Fig. 2—(a) Difference of synthetic and observed colors  $\Delta(B-V) = (B-V)_{\rm syn} - (B-V)_{\rm obs}$  plotted as a function of observed B-V color. Stellar data are taken from Jacoby et al. (1984) and the  $\alpha$  Lyr SED used for this synthetic calculation is CK94. (b) As (a), but for (U-B) color.



Fig. 3—As for Fig. 2, but H85 SED is used for  $\alpha$  Lyr.

(1976) and Buser and Kurucz (1978) have argued that the set of response functions  $(U_3, B_2, V)$  reproduces the relative stellar colors of the Johnson-Morgan photometry most accurately. For redder colors we consider both Cousins' system (Cousins 1978) and Johnson's (1965). The response function of the former is taken from Bessell (1990), which reproduces Cousins' photometry most accurately.

Whether the combined use of these response functions and the SED of  $\alpha$  Lyr provides an accurate zero point is a nontrivial problem, since the SED of  $\alpha$  Lyr contains many strong absorption features whereas the SED was accurately measured only in the continuum part, avoiding absorption features (e.g., Oke and Schild 1970; Hayes and Latham 1975; Oke and Gunn 1983). Therefore, in most of the synthetic studies, only relative colors have been considered and they are converted into observed colors by adding an appropriate constant, as  $(B-V)_{obs} = (B-V)_{syn} + a_{B-V}$  etc. An exception is a synthetic study of Gunn and Stryker (1982), in which a zero point was derived with the aid of AB79 system, by using an SED of F-subdwarf BD+17°4708 and three other F dwarfs, which were calibrated against the absolute SED of  $\alpha$  Lyr. Since then, much effort has been invested to improve the SED of  $\alpha$  Lyr. Here, we use the  $\alpha$  Lyr SED to obtain directly the zero point. The most recent summary of observed SED has been given by H85, and the most recent work using the stellar atmosphere model has been given by CK94. As CK94 have discussed, the agreement between the two seems excellent except for around the Balmer absorption



Fig. 4—Difference of synthetic and observed V magnitudes as a function of  $V_{\rm obs}$ . Stellar data are taken from Jacoby et al. (1984) and the  $\alpha$  Lyr SED used for this synthetic calculation is CK94.



Fig. 5—As for Fig. 2, but for stars of Gunn and Stryker (1982). CK94 SED is used for  $\alpha$  Lyr.

lines and the Paschen region (see Fig. 5 of CK94). In order to demonstrate clearly where the two disagree, we give in Fig. 1 a plot of the two SED's in terms of  $f_{\lambda}$  with an enlarged wavelength scale. This shows that absorption features of the Balmer lines are clearly different between the two: the observed SED shows dips much shallower than are predicted by an atmosphere model. We can imagine a number of possible origins for this disagreement, but we cannot determine which is correct.

For this reason, we try to use both SED's to calculate the broadband colors and examine which gives observed colors more accurately. Since the SED of H85 does not fully cover UV or IR wavelengths, we supplement it with CK94 for the ranges 3000–3300 Å and 10,500–12,000 Å, normalizing the latter to H85. We calculate the synthetic magnitude in a way such that

$$m = -2.5 \left[ \log \int d\lambda R(\lambda) f_{\lambda} - \log \int d\lambda R(\lambda) f_{\lambda}(\alpha \text{ Lyr}) \right], \quad (1)$$

where  $R(\lambda)$  is a response function and  $f_{\lambda}$  is a flux. We interpolate the response function quadratically and the flux linearly through the points given in the table, and integrate  $R(\lambda)f_{\lambda}$  over  $d\lambda$  with a 1 Å mesh. When relevant, the absolute normalization is set using the H85 zero point:  $f_{\lambda}(\alpha \text{ Lyr}) = 3.44 \pm 0.05 \times 10^{-9} \text{erg cm}^{-2} \text{ s}^{-1} \text{ Å}^{-1}$  at 5556 Å, which is compared to  $3.36 \times 10^{-9}$  of Oke and Schild (1970) and  $3.39 \times 10^{-9}$  of Hayes and Latham (1975) and of Oke and Gunn (1983). Fiducial normalizations adopted by other authors are scaled to the H85 zero point.

A comparison of synthetic versus observed broadband magnitudes is shown with the stars of Jacoby et al. (1984) in Fig. 2 (using CK94) and Fig. 3 (using H85), where  $\Delta(B-V)=(B-V)_{\rm syn}-(B-V)_{\rm obs}$  or  $\Delta(U-B)=(U-B)_{\rm syn}-(U-B)_{\rm obs}$  is plotted as a function of the B-V or U-B color. Since Jacoby et al. have given SED only to 3500 Å, we extrapolate their UV SED to 3000 Å. The result is insensitive to the detail of this procedure, because the response function is already suppressed and also the flux of stars is small in the relevant wavelength range. We note that B-V=0 and U-B=-0.01 for  $\alpha$  Lyr in the standard Johnson-Morgan system. We do not see systematic trends

TABLE 1
Synthetic vs. Observed Broad Band Colors of Galaxies

| - Sym    | iictic       | 13. 00301 | ved broad              |                   | or Guida.         |                        |
|----------|--------------|-----------|------------------------|-------------------|-------------------|------------------------|
| galaxy   | type         | T(RC3)    | $(U - B)_{\text{syn}}$ | $(U-B)_{\rm obs}$ | $(B-V)_{\rm syn}$ | $(B-V)_{\mathrm{obs}}$ |
| NGC4649  | E            | -5        | 0.77                   |                   | 1.02              | 0.97                   |
| NGC3379  | E            | -5        | 0.51                   | 0.53              | 0.90              | 0.96                   |
| NGC4472  | $\mathbf{E}$ | -5        | 0.51                   | 0.55              | 0.95              | 0.96                   |
| NGC4648  | $\mathbf{E}$ | -5        | 0.51                   | 0.52              | 0.87              | 0.92                   |
| NGC4889* | $\mathbf{E}$ | -4        | 0.57                   | 0.52              | 0.84              | 1.04                   |
|          |              |           |                        |                   |                   |                        |
| NGC3245  | S0           | -2        | 0.42                   | 0.47              | 0.91              | 0.91                   |
| NGC3941  | S0           | -2        | 0.44                   | 0.44              | 0.77              | 0.91                   |
| NGC4262  | S0           | -3        | 0.43                   | 0.51              | 0.84              | 0.94                   |
| NGC5866  | S0           | -1        | 0.38                   | 0.38              | 0.89              | 0.85                   |
|          |              |           |                        |                   |                   |                        |
| NGC1357  | Sab          | 2         | 0.30                   | 0.25              | 0.76              | 0.87                   |
| NGC2775  | Sab          | 2         | 0.39                   | 0.38              | 0.83              | 0.90                   |
| NGC3368  | Sab          | 2         | 0.38                   | 0.31              | 0.83              | 0.86                   |
| NGC3623  | Sab          | 1         | 0.47                   | 0.45              | 0.85              | 0.92                   |
| Madaga   | C1           |           | 0.04                   | 0.01              | 0.50              | 0.00                   |
| NGC1832  | Sb           | 4         | 0.04                   | -0.01             | 0.59              | 0.63                   |
| NGC3147  | Sb           | 4         | 0.25                   | 0.00              | 0.67              | 0.82                   |
| NGC3627  | Sb           | 3         | 0.11                   | 0.20              | 0.63              | 0.73                   |
| NGC2903  | Sbc          | 4         | 0.05                   | 0.06              | 0.65              | 0.67                   |
| NGC5248  | Sbc          | 4         | 0.04                   | 0.05              | 0.64              | 0.65                   |
| NGC6217* | Sbc          | 4         | -0.01                  | -0.18             | 0.48              | 0.63                   |
|          |              |           |                        |                   |                   |                        |
| NGC2276  | Sc           | 5         | -0.22                  | -0.09             | 0.42              | 0.52                   |
| NGC4775* | Sc           | 7         | -0.28                  |                   | 0.29              |                        |
| NGC4631* | Sc           | 7         | -0.29                  |                   | 0.29              | 0.56                   |
| NGC6181  | Sc           | 5         | -0.05                  | -0.03             | 0.57              | 0.63                   |
| NGC6643  | Sc           | 5         | 0.04                   | -0.04             | 0.51              | 0.64                   |
|          |              |           |                        |                   |                   |                        |
| NGC4449  | Im           | 10        | -0.40                  | -0.35             | 0.26              | 0.41                   |
| NGC4485  | Im           | 10        | -0.32                  | -0.22             | 0.28              | 0.39                   |

Note - Galaxies flagged with an asterisk are not used to make a composite SED.

in any of figures. The average and scatter are  $\langle \Delta(B-V) \rangle = -0.008 \pm 0.050$  and  $\langle \Delta(U-B) \rangle = -0.012 \pm 0.068$  with the CK94 SED (Fig. 2), and  $0.008 \pm 0.050$  and  $-0.057 \pm 0.068$  with H85 (Fig. 3). Here we exclude one point which gives an offset larger than >0.5 mag.

We also compare synthetic V magnitude with observed V magnitude in Fig. 4 (with CK94 SED). We obtain  $\langle V_{\rm syn} - V_{\rm obs} \rangle = -0.054 \pm 0.108$  (for 114 stars). If the H85 SED is used the offset and scatter become  $-0.056 \pm 0.108$ .

A similar analysis is also made with the Gunn and Stryker (1982) stars using CK94 SED for  $\alpha$  Lyr (Fig. 5). Some systematic trends are visible in both  $\Delta(B-V)$  and  $\Delta(U-B)$  due to a small scatter of the data. The plots indicate  $(B-V)_{\rm syn}=0.964(B-V)_{\rm obs}-0.026$ , and  $(U-B)_{\rm syn}=0.964(U-B)_{\rm obs}+0.031$  (for U-B>0) or  $(U-B)_{\rm syn}=0.879(U-B)_{\rm obs}-0.016$  (for U-B<0). The variation, however, is small ( $\Delta\approx0.1$ ) for a wide interval of colors, and is not important for our study below. If the coefficient is set



Fig. 6—(a) Regression plot of synthetic color  $(B-V)_{\rm syn}$  vs. observed color  $(B-V)_{\rm obs}$  for galaxies obtained by K92. The observed color is taken from RC3. Morphological-type indices are those defined in RC3. The line shows an identical regression. (b) As (a) but for U-B colors.

<sup>&</sup>lt;sup>1</sup>Oke and Gunn claimed that they have adopted the zero point of Oke and Schild at 5480 Å. The actual Oke and Gunn's zero point, however, is in the middle of Hayes and Latham's and Oke and Schild's. At 5556 Å Oke and Gunn's flux is closer to Hayes and Latham's, than Oke and Schild's flux.

#### 948 FUKUGITA ET AL.



FIG. 7—B-V color distribution of RC3 galaxies with specified morphological types. Only galaxies with galactic latitude  $|b| > 30^{\circ}$  are plotted. The indicated ranges are synthetic B-V colors for K92 galaxies (the range is one standard deviation). The triangle is synthetic color of NGC 4649 of Bertola et al. (1982).

to be unity, the average offset is  $\langle \Delta (B-V) \rangle = -0.056 \pm 0.026$  and  $\Delta (U-B) = -0.002 \pm 0.061$ . If we use the H85 SED, these numbers become  $-0.040 \pm 0.026$  and  $-0.046 \pm 0.061$ , respectively.

We conclude that the error and systematic effects between synthetic and observed colors are of the order of 0.05 mag. This level of errors is acceptable for our purpose. In what follows, we take the CK94 SED (the normalization is H85), which yields a slightly smaller offset for the standard broadband colors of stars. With this SED we have

$$U = -2.5 \log \int d\lambda R_U(\lambda) f_{\lambda} - 14.08 + c_U,$$
 (2)

$$B = -2.5 \log \int d\lambda R_B(\lambda) f_{\lambda} - 13.00 + c_B, \qquad (3)$$

$$V = -2.5 \log \int d\lambda R_V(\lambda) f_{\lambda} - 13.76 + c_V, \qquad (4)$$

where the peak of the response function is normalized to unity, and c represents the magnitude of  $\alpha$  Lyr;  $c_U$ =0.02,  $c_B$ = $c_V$ =0.03 (Johnson and Morgan 1953).

It is desirable to carry out a similar analysis for redder bands. Unfortunately, systematic broadband photometric data are not available for the stars of Jacoby et al. (1984) and of Gunn and Stryker (1982) in *R* and *I* bands. With the CK94 SED and H85 zero point we have

Table 2 Average Colors of Galax

|          |        |          | Average Co                           | iois of Gaia                         | IVICS    |                                      |                                      |
|----------|--------|----------|--------------------------------------|--------------------------------------|----------|--------------------------------------|--------------------------------------|
| type     | T(RC3) | $n_{UB}$ | $\langle U - B \rangle_{\text{obs}}$ | $\langle U - B \rangle_{\text{syn}}$ | $n_{BV}$ | $\langle B - V \rangle_{\text{obs}}$ | $\langle B - V \rangle_{\text{syn}}$ |
| E        | -54    | 227      | $0.45 \pm 0.17$                      | $0.51 \pm 0.00$                      | 307      | $0.97 \pm 0.10$                      | $0.91 \pm 0.03$                      |
| E(N4649) | -5     |          |                                      | 0.77                                 |          | 0.97                                 | 1.02                                 |
| S0       | -31    | 379      | $0.40 \pm 0.18$                      | $0.42 \pm 0.02$                      | 483      | $0.93 \pm 0.12$                      | $0.85 \pm 0.05$                      |
| Sa-Sb    | 1 - 3  | 338      | $0.19 \pm 0.21$                      | $0.33 \pm 0.12$                      | 437      | $0.79 \pm 0.15$                      | $0.78 \pm 0.08$                      |
| Sb-Sc    | 3 - 5  | 469      | $0.07 \pm 0.18$                      | $0.00 \pm 0.10$                      | 676      | $0.68 \pm 0.14$                      | $0.57 \pm 0.08$                      |
| Sc-Sd    | 5 - 7  | 261      | $-0.04 \pm 0.15$                     | $-0.08 \pm 0.11$                     | 389      | $0.60 \pm 0.14$                      | $0.50 \pm 0.06$                      |
| Sdm-Im   | 8 - 10 | 234      | $-0.17 \pm 0.16$                     | $-0.36\pm0.04$                       | 253      | $0.47 \pm 0.13$                      | $0.27 \pm 0.01$                      |

Notes —  $n_{UB}$  and  $n_{BV}$  are the numbers of RC3 galaxies used to obtain  $(U-B)_{\rm obs}$  and  $(B-V)_{\rm obs}$ , respectively. Colours of NGC4649 (SED is taken from BCO) are added for comparison.



Fig. 8—As Fig. 7, but for U-B color.

$$R_C = -2.5 \log \int d\lambda R_{R_C}(\lambda) f_{\lambda} - 13.67 + c_{R_C},$$
 (5)

$$I_C = -2.5 \log \int d\lambda R_{I_C}(\lambda) f_{\lambda} - 14.45 + c_{I_C}$$
 (6)

for the Cousins system ( $c_{R_C}$ =0.03,  $c_{I_C}$ =0.024) (Taylor 1986), and

$$R_J = -2.5 \log \int d\lambda R_{R_J}(\lambda) f_{\lambda} - 13.54 + c_{R_J},$$
 (7)

$$I_J = -2.5 \log \int d\lambda R_{I_J}(\lambda) f_{\lambda} - 14.18 + c_{I_J}$$
 (8)

for the Johnson red color bands ( $c_{R_J}$ =0.07,  $c_{I_J}$ =0.09) (Johnson 1965).



Fig. 9—Comparison of SED obtained from K92 (and Bertola et al. 1982 for elliptical galaxies) (solid curve) with the SED of Coleman et al. (1980) (dotted curve). The line for K92 SED extended to the right shows our extrapolation. Vertical axis is in arbitrary units. (a) E galaxies, (b) Sbc galaxies, (c) Scd galaxies, and (d) Im galaxies.



Fig. 10—K corrections derived from K92 (and Bertola et al. for E galaxies) (thick curve), as compared with those of CWW (thin curve). Solid curve segment is the portion where SED of K92 galaxies dominate the behavior. The dashed parts are determined with the UV SED of Bertola et al. (1982) (for E) or of Coleman et al. (1980) (for Sab and later types). (a)–(g) refer to 7 standard colors.

## 3. GALAXY COLORS

A number of studies have been made to obtain the integral SED of elliptical galaxies (Schild and Oke 1971; Whitford 1971; Oke, Bertola, and Capaccioli 1981; Bertola, Capaccioli, and Oke 1982). On the other hand, available work is limited for spiral galaxies. The work of Wells (1972) has long been used to estimate the *K* correction of spiral galaxies (Pence 1976; Coleman, Wu, and Weedman 1980). We note that the composite SED of Coleman et al., which has been used for many studies that require galaxy colors, is based on only a handful of galaxy SEDs. Turnrose (1976) has also



Fig. 11—48 response functions used in our study. The four response functions of Strömgren are also added. The peak height is normalized to unity. Details are given in Table 9.

obtained SED of 7 Sbc and Sc galaxies. More recently, Kennicutt (1992; hereafter referred to as K92) has presented integrated SEDs for 8 early-type galaxies and 17 spiral to irregular galaxies from 3650 to 7100 Å with a resolution of 5-8 Å. This represents the largest spectrophotometric atlas available to date.

We first examine the colors obtained synthetically against those from broadband photometry. The data for the latter are taken from *Third Reference Catalogue of Bright Galaxies* (de Vaucouleurs et al. 1991, hereafter referred to as RC3). Synthetic colors are obtained in the same way as that for stellar colors in Sec. 2. The Johnson–Morgan standard photometric

--

Table 3
Galaxy Colors in Various Photometric Band Systems

|           |                                           | (a) Sta                                                                                                        | andard Jo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | olmson-Mo                                                                                                                      | organ/Co                                                                                                                                                                                   | usins (A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V)                                                                                                                                                                                                                                   |                                 |                                             |                                              | (h) S                                                                                                                                                | chneider,                                                | Gunn &                                                                                                                                                                   | Hoessel                                                                                              | : Pfuei                                                                       | (BD+17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | °4708)                                                       |                                                      |
|-----------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
|           | type                                      | $\overline{U} - B$                                                                                             | B-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V-R_{\rm C}$                                                                                                                  | $R_{\rm C}-I$                                                                                                                                                                              | V-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $R_{ m J}-I_{ m J}$                                                                                                                                                                                                                  |                                 | =                                           | type                                         | g-r                                                                                                                                                  | r-i $i$                                                  | - z                                                                                                                                                                      | g - B                                                                                                | g - V                                                                         | $r-R_{\rm C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $i-I_{\rm C}$                                                | $z - I_{\rm C}$                                      |
|           | E                                         | 0.64                                                                                                           | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.61                                                                                                                           | 0.7                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                 |                                             | E                                            | 0.40                                                                                                                                                 |                                                          | 0.26                                                                                                                                                                     | -0.83                                                                                                | 0.14                                                                          | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.75                                                         | 0.49                                                 |
|           | S0                                        | 0.42                                                                                                           | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.54                                                                                                                           | 0.6                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                 |                                             | S0                                           | 0.31                                                                                                                                                 |                                                          |                                                                                                                                                                          | -0.73                                                                                                | 0.12                                                                          | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | 0.53                                                 |
|           | Sab<br>Sbc                                | 0.33                                                                                                           | 0.78<br>0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.56 \\ 0.52$                                                                                                                 | 0.6<br>0.6                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                 |                                             | Sab                                          | 0.33                                                                                                                                                 |                                                          | 0.23                                                                                                                                                                     | -0.67                                                                                                | 0.12                                                                          | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | 0.51                                                 |
|           | Scd                                       | 0.08                                                                                                           | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.52                                                                                                                           | 0.5                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                 |                                             | Sbc<br>Scd                                   | $0.26 \\ 0.24$                                                                                                                                       |                                                          | 0.23<br>0.21                                                                                                                                                             | -0.49<br>-0.43                                                                                       | 0.09                                                                          | 0.34<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              | 0.52<br>0.54                                         |
|           | Im                                        | -0.35                                                                                                          | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.31                                                                                                                           | 0.3                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                 |                                             |                                              |                                                                                                                                                      |                                                          | 0.07                                                                                                                                                                     | -0.45                                                                                                | 0.08                                                                          | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.73                                                         | 0.66                                                 |
|           |                                           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s. Cousin                                                                                                                      |                                                                                                                                                                                            | bandpasse:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                      |                                 | =                                           |                                              | ~~ <del>~~</del>                                                                                                                                     |                                                          | chmidt &                                                                                                                                                                 |                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                      |
|           |                                           | (-/-                                                                                                           | type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                |                                                                                                                                                                                            | _ `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                      |                                 | :                                           | type                                         | A - B                                                                                                                                                | B-C                                                      | C-D                                                                                                                                                                      | A -                                                                                                  |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C - I_{\rm C}$                                              | $\overline{D-I_{\mathrm{C}}}$                        |
|           |                                           |                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.1                                                                                                                           |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                 |                                             | E                                            | 0.15                                                                                                                                                 | 0.21                                                     | 0.13                                                                                                                                                                     |                                                                                                      | 0.20                                                                          | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.55                                                         | 0.42                                                 |
|           |                                           |                                                                                                                | S0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.03                                                                                                                          |                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                      |                                 |                                             | S0                                           | 0.11                                                                                                                                                 | 0.15                                                     | 0.12                                                                                                                                                                     |                                                                                                      | 0.19                                                                          | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.54                                                         | 0.42                                                 |
|           |                                           |                                                                                                                | Sab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0                                                                                                                           |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                 |                                             | Sab                                          | 0.14                                                                                                                                                 | 0.17                                                     | 0.13                                                                                                                                                                     |                                                                                                      | 0.20                                                                          | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.55                                                         | 0.42                                                 |
|           |                                           |                                                                                                                | Sbc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0                                                                                                                           |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                 |                                             | Sbc                                          | 0.08                                                                                                                                                 | 0.16                                                     | 0.13                                                                                                                                                                     |                                                                                                      | 0.17                                                                          | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.55                                                         | 0.42                                                 |
|           |                                           |                                                                                                                | Scd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0                                                                                                                           |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                 |                                             | Scd                                          | 0.03                                                                                                                                                 | 0.14                                                     | 0.12                                                                                                                                                                     |                                                                                                      | 0.14                                                                          | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.54                                                         | 0.42                                                 |
|           |                                           |                                                                                                                | Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0                                                                                                                           | 3 -0.0                                                                                                                                                                                     | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                      |                                 |                                             | Im                                           | -0.06                                                                                                                                                | 0.03                                                     | 0.04                                                                                                                                                                     |                                                                                                      | 0.11                                                                          | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.47                                                         | 0.43                                                 |
|           | (c) San                                   | dage-Smi                                                                                                       | th vs. sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an/Johnson)                                                                                                                                                                                                                          |                                 |                                             |                                              |                                                                                                                                                      |                                                          | (j) Tyson                                                                                                                                                                | (CCD)                                                                                                | (Lando                                                                        | olt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                      |
|           |                                           |                                                                                                                | pe $u-l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                |                                                                                                                                                                                            | $r-R_{ m C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                      |                                 |                                             |                                              | type                                                                                                                                                 | $B_{J} - B$                                              |                                                                                                                                                                          |                                                                                                      |                                                                               | $R - R_{\rm C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $I - I_{\rm C}$                                              |                                                      |
|           |                                           | E                                                                                                              | -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                | 0.06                                                                                                                                                                                       | -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                 |                                             |                                              | E                                                                                                                                                    | 1.38                                                     |                                                                                                                                                                          |                                                                                                      | 0.22                                                                          | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.18                                                        |                                                      |
|           |                                           | S0                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                | 0.05                                                                                                                                                                                       | -0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                 |                                             |                                              | S0                                                                                                                                                   | 1.24                                                     |                                                                                                                                                                          |                                                                                                      | 0.18                                                                          | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.16                                                        |                                                      |
|           |                                           | Sa<br>Sb                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                                                                                                                                                                                            | -0.05<br>-0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                      |                                 |                                             |                                              | Sab<br>Sbc                                                                                                                                           | 1.21<br>1.01                                             |                                                                                                                                                                          |                                                                                                      | 0.16<br>0.12                                                                  | -0.03 $-0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.17 $-0.17$                                                |                                                      |
|           |                                           | Sc                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                                                                                                                                                                                            | -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                 |                                             |                                              | Scd                                                                                                                                                  | 0.94                                                     |                                                                                                                                                                          |                                                                                                      | 0.12                                                                          | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.17<br>-0.16                                               |                                                      |
|           |                                           | In                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                | 0.02                                                                                                                                                                                       | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                 |                                             |                                              | Im                                                                                                                                                   | 0.53                                                     |                                                                                                                                                                          |                                                                                                      | 0.07                                                                          | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.09                                                        |                                                      |
|           |                                           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Johnson-M                                                                                                                      |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                 |                                             |                                              |                                                                                                                                                      |                                                          | k) WFPC                                                                                                                                                                  |                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                      |
| type      | $U_{\rm K} - J_{\rm K}$                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                | $U_{\rm K} - U$                                                                                                                                                                            | J <sub>K</sub> – B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $F_{\rm K} - R_{\rm C}$ N                                                                                                                                                                                                            | / <sub>K</sub> – / <sub>C</sub> | type                                        | F555V                                        | W Fe                                                                                                                                                 | 06W                                                      | F702W                                                                                                                                                                    | F555                                                                                                 |                                                                               | 606W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F702W                                                        | F814W                                                |
| Ē         | 0.84                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.89                                                                                                                           | 0.01                                                                                                                                                                                       | -0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.24                                                                                                                                                                                                                                 | 0.06                            | • •                                         | -F60                                         |                                                                                                                                                      | F702W                                                    | -F814W                                                                                                                                                                   |                                                                                                      | -V                                                                            | -V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-R_0$                                                       |                                                      |
| S0        | 0.59                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.78                                                                                                                           | 0.01                                                                                                                                                                                       | -0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.22                                                                                                                                                                                                                                 | 0.05                            | E                                           |                                              | 0.33                                                                                                                                                 | 0.47                                                     | 0.47                                                                                                                                                                     |                                                                                                      | 0.00                                                                          | -0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.1                                                         |                                                      |
| Sab       | 0.49                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.83                                                                                                                           | 0.01                                                                                                                                                                                       | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.23                                                                                                                                                                                                                                 | 0.05                            | S0                                          |                                              | 0.30                                                                                                                                                 | 0.41                                                     | 0.41                                                                                                                                                                     |                                                                                                      | 0.01                                                                          | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.1                                                         |                                                      |
| Sbc       | 0.12                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.77                                                                                                                           | 0.01                                                                                                                                                                                       | -0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.20                                                                                                                                                                                                                                 | 0.05                            | Sab<br>Sbc                                  |                                              | 0.31<br>0.28                                                                                                                                         | 0.44                                                     | 0.44                                                                                                                                                                     |                                                                                                      | 0.00<br>0.00                                                                  | -0.30<br>0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.13<br>-0.1                                                |                                                      |
| Scd       | 0.02<br>-0.27                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.71<br>0.41                                                                                                                   | 0.01<br>0.02                                                                                                                                                                               | 0.09<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.19<br>0.12                                                                                                                                                                                                                         | $0.05 \\ 0.03$                  | Scd                                         |                                              | 0.28                                                                                                                                                 | 0.38                                                     | 0.47                                                                                                                                                                     |                                                                                                      | 0.01                                                                          | -0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.1                                                         |                                                      |
| Im        | -0.21                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                 | Im                                          |                                              | 0.17                                                                                                                                                 | 0.22                                                     | 0.20                                                                                                                                                                     |                                                                                                      | 0.01                                                                          | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.0                                                         |                                                      |
|           |                                           | (e) C                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                                                                                                                                                                                            | an/Cousir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . '                                                                                                                                                                                                                                  |                                 |                                             |                                              |                                                                                                                                                      |                                                          | (l) POSS                                                                                                                                                                 | II (BD-                                                                                              | +17°470                                                                       | 08)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              |                                                      |
|           |                                           | E                                                                                                              | ре <i>В</i> <sub>Ј</sub> –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R <sub>F</sub> 1.53                                                                                                            | $B_{\rm J} - B_{\rm J} - 0.16$                                                                                                                                                             | $\frac{R_{\rm F} - R_{\rm C}}{-0.11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                    |                                 | type                                        | g <sub>POSS</sub>                            | - r <sub>POSS</sub>                                                                                                                                  | r <sub>POSS</sub> -                                      | i <sub>POSS</sub>                                                                                                                                                        | Jeoss -                                                                                              | $\overline{B}$ $g_{PC}$                                                       | oss - V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $r_{ m POSS}$ –                                              |                                                      |
|           |                                           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                 | E                                           |                                              |                                                                                                                                                      |                                                          |                                                                                                                                                                          |                                                                                                      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                      |
|           |                                           | S0                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.37                                                                                                                           | -0.13                                                                                                                                                                                      | -0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                 |                                             |                                              | 0.44                                                                                                                                                 |                                                          | 0.26                                                                                                                                                                     | -0.                                                                                                  |                                                                               | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.                                                           |                                                      |
|           |                                           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                 | S0                                          |                                              | 0.35                                                                                                                                                 |                                                          | 0.19                                                                                                                                                                     | -0.0                                                                                                 | 59                                                                            | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.                                                           | 35 0.7                                               |
|           |                                           | S0<br>Sa<br>Sb                                                                                                 | b<br>c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.37<br>1.34<br>1.14                                                                                                           | -0.13 $-0.12$ $-0.08$                                                                                                                                                                      | -0.10<br>-0.11<br>-0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                      |                                 | S0<br>Sab                                   |                                              | $0.35 \\ 0.37$                                                                                                                                       |                                                          | $0.19 \\ 0.23$                                                                                                                                                           | -0.0<br>-0.0                                                                                         | 69<br>63                                                                      | $0.16 \\ 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.                                                     | 35 0.7<br>35 0.7                                     |
|           |                                           | S0<br>Sa<br>Sb<br>Sc                                                                                           | b<br>c<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.37<br>1.34<br>1.14<br>1.08                                                                                                   | -0.13 $-0.12$ $-0.08$ $-0.07$                                                                                                                                                              | -0.10<br>-0.11<br>-0.13<br>-0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                 | S0<br>Sab<br>Sbc                            |                                              | 0.35<br>0.37<br>0.28                                                                                                                                 |                                                          | 0.19<br>0.23<br>0.19                                                                                                                                                     | -0.6<br>-0.6                                                                                         | 69<br>63<br><b>1</b> 7                                                        | 0.16<br>0.15<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.<br>0.<br>0.                                               | 35 0.5<br>35 0.5<br>34 0.5                           |
|           |                                           | S0<br>Sa<br>Sb                                                                                                 | b<br>c<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.37<br>1.34<br>1.14                                                                                                           | -0.13 $-0.12$ $-0.08$                                                                                                                                                                      | -0.10<br>-0.11<br>-0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u>                                                                                                                                                                                                                             |                                 | S0<br>Sab                                   |                                              | $0.35 \\ 0.37$                                                                                                                                       |                                                          | $0.19 \\ 0.23$                                                                                                                                                           | -0.0<br>-0.0                                                                                         | 59<br>53<br>47<br>41                                                          | $0.16 \\ 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.<br>0.<br>0.                                               | 35 0.7<br>35 0.7<br>34 0.7<br>34 0.7                 |
|           |                                           | S0<br>Sa<br>Sb<br>Sc                                                                                           | b<br>c<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.37<br>1.34<br>1.14<br>1.08                                                                                                   | -0.13<br>-0.12<br>-0.08<br>-0.07<br>-0.04                                                                                                                                                  | -0.10<br>-0.11<br>-0.13<br>-0.15<br>-0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                                                                                                                                                                                                                                    | _                               | S0<br>Sab<br>Sbc<br>Scd                     |                                              | 0.35<br>0.37<br>0.28<br>0.25                                                                                                                         |                                                          | 0.19 $0.23$ $0.19$ $0.14$ $-0.05$                                                                                                                                        | -0.6<br>-0.6<br>-0.6<br>-0.5                                                                         | 69<br>63<br>47<br>41<br>26                                                    | 0.16<br>0.15<br>0.11<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.<br>0.<br>0.                                               | 35 0.7<br>35 0.7<br>34 0.7<br>34 0.7                 |
|           | type                                      | S0<br>Sa<br>Sb<br>Sc<br>In                                                                                     | b b c d $\frac{1}{(f)}$ Thu $\frac{1}{v-g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.37<br>1.34<br>1.14<br>1.08<br>0.67<br>an-Gunn                                                                                | $ \begin{array}{r} -0.13 \\ -0.12 \\ -0.08 \\ -0.07 \\ -0.04 \\ \hline (BD+17^{\circ}) \\ u-U \end{array} $                                                                                | $ \begin{array}{r} -0.10 \\ -0.11 \\ -0.13 \\ -0.15 \\ -0.13 \end{array} $ $ \begin{array}{r} 4708 \\ v - B  g \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-V r - R_{\rm C}$                                                                                                                                                                                                                   |                                 | S0<br>Sab<br>Sbc<br>Scd<br>Im               | 21 - at                                      | 0.35<br>0.37<br>0.28<br>0.25<br>-0.04                                                                                                                | <u>. بر ر</u>                                            | 0.19<br>0.23<br>0.19<br>0.14<br>-0.05                                                                                                                                    | -0.6<br>-0.6<br>-0.4<br>-0.5<br>SDSS (A                                                              | 59<br>53<br>47<br>41<br>26<br>AB)                                             | 0.16<br>0.15<br>0.11<br>0.09<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.<br>0.<br>0.<br>0.                                         | 35 0.1<br>35 0.1<br>34 0.1<br>34 0.2<br>36 0.2       |
|           | E                                         | S0 Sa Sb Sc In  u-v  0.23                                                                                      | b b c d $\frac{1}{2}$ $\frac{1}{2$ | 1.37<br>1.34<br>1.14<br>1.08<br>0.67<br>an-Gunn (                                                                              | -0.13 $-0.12$ $-0.08$ $-0.07$ $-0.04$ (BD+17) $u - U$ $-0.23$                                                                                                                              | $ \begin{array}{c} -0.10 \\ -0.11 \\ -0.13 \\ -0.15 \\ -0.13 \end{array} $ $ \begin{array}{c} -0.18 \\ 0.18 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26 0.37                                                                                                                                                                                                                            |                                 | S0<br>Sab<br>Sbc<br>Scd<br>Im               | u' - g'                                      | 0.35<br>0.37<br>0.28<br>0.25<br>-0.04                                                                                                                |                                                          | 0.19<br>0.23<br>0.19<br>0.14<br>-0.05<br>(m)                                                                                                                             | -0.6<br>-0.6<br>-0.6<br>-0.5<br>SDSS (A                                                              | 59<br>53<br>47<br>41<br>26<br>AB)                                             | 0.16<br>0.15<br>0.11<br>0.09<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.<br>0.<br>0.<br>0.<br>0.                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|           | E<br>S0                                   | S0<br>Sa<br>Sb<br>Sc<br>In<br>0.23<br>0.16                                                                     | (f) Thu  v-g g  0.88  0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.37<br>1.34<br>1.14<br>1.08<br>0.67<br>an-Gunn (<br>7 - r<br>0.49<br>0.40                                                     | -0.13<br>-0.12<br>-0.08<br>-0.07<br>-0.04<br>(BD+17 <sup>6</sup><br>u-U<br>-0.23<br>-0.23                                                                                                  | $ \begin{array}{c} -0.10 \\ -0.11 \\ -0.13 \\ -0.15 \\ -0.13 \end{array} $ $ \begin{array}{c} 4708 \\ 0.18 \\ 0.03 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.26 0.37<br>0.23 0.37                                                                                                                                                                                                               | -                               | S0 Sab Sbc Scd Im                           | 1.99                                         | $0.35$ $0.37$ $0.28$ $0.25$ $-0.04$ $g' - \tau$ $0.7'$                                                                                               | 7 0.43                                                   | 0.19 $0.23$ $0.19$ $0.14$ $-0.05$ $m$ $i'-z'$ $0.36$                                                                                                                     | -0.6<br>-0.6<br>-0.5<br>-0.5<br>SDSS (A<br>u' - U<br>0.80                                            | 69<br>63<br>47<br>41<br>26<br>AB)<br>7 g' -<br>0 -0.                          | 0.16 $0.15$ $0.11$ $0.09$ $0.01$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000000000000000000000000000000000                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|           | E<br>S0<br>Sab                            | S0<br>Sa<br>Sb<br>Sc<br>In<br>0.23<br>0.16<br>0.19                                                             | (f) Thu  v-g g  0.88  0.66  0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.37<br>1.34<br>1.14<br>1.08<br>0.67<br>an-Gunn<br>7 - r<br>0.49<br>0.40<br>0.39                                               | $-0.13$ $-0.12$ $-0.08$ $-0.07$ $-0.04$ $(BD+17^{\circ}$ $u-U$ $-0.23$ $-0.23$ $-0.19$                                                                                                     | $\begin{array}{c} -0.10 \\ -0.11 \\ -0.13 \\ -0.15 \\ -0.13 \\ \hline \begin{array}{c} -0.15 \\ -0.13 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.26 0.37<br>0.23 0.37<br>0.20 0.38                                                                                                                                                                                                  | -                               | S0<br>Sab<br>Sbc<br>Scd<br>Im               |                                              | $0.35$ $0.37$ $0.28$ $0.25$ $-0.04$ $g' - \tau$ $0.7'$ $0.66$                                                                                        | 7 0.43<br>8 0.34                                         | 0.19<br>0.23<br>0.19<br>0.14<br>-0.05<br>(m)<br>i'-z'<br>0.36<br>0.29                                                                                                    | -0.6<br>-0.6<br>-0.6<br>-0.5<br>SDSS (A                                                              | 59<br>53<br>47<br>41<br>26<br>AB)<br>$\frac{g'-}{0}$<br>0 -0.                 | 0.16 $0.15$ $0.11$ $0.09$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $R_{\rm C}$ $i' - 0.25$ 0.23 0.                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|           | E<br>S0                                   | S0<br>Sa<br>Sb<br>Sc<br>In<br>0.23<br>0.16                                                                     | (f) Thu  v - g g  0.88  0.66  0.53  0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.37<br>1.34<br>1.14<br>1.08<br>0.67<br>an-Gunn<br>0.49<br>0.40<br>0.39<br>0.28                                                | $\begin{array}{c} -0.13 \\ -0.12 \\ -0.08 \\ -0.07 \\ -0.04 \\ \hline \text{(BD+17}^c \\ u-U \\ -0.23 \\ -0.19 \\ -0.19 \\ \end{array}$                                                    | $\begin{array}{c} -0.10 \\ -0.11 \\ -0.13 \\ -0.15 \\ -0.13 \\ \hline 00000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.26 0.37<br>0.23 0.37                                                                                                                                                                                                               | near                            | S0 Sab Sbc Scd Im  type E S0                | 1.99<br>1.70                                 | $\begin{array}{c} 0.35 \\ 0.37 \\ 0.28 \\ 0.25 \\ -0.04 \\ \hline \\ & 0.7' \\ 0 & 0.60 \\ \end{array}$                                              | 7 0.43<br>8 0.34<br>6 0.38                               | 0.19<br>0.23<br>0.19<br>0.14<br>-0.05<br>(m)<br>i'-z'<br>0.36<br>0.29<br>0.32                                                                                            | -0.6<br>-0.4<br>-0.4<br>-0.5<br>SDSS (A<br>u' - U<br>0.80<br>0.80                                    | 59<br>53<br>47<br>41<br>41<br>226<br>AB)<br>7 g' -<br>0 -0.<br>0 -0.<br>2 -0. | 0.16 $0.15$ $0.11$ $0.09$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $R_{\rm C}$ $i'-$ 0.25 0.23 0.24 0.                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|           | E<br>S0<br>Sab<br>Sbc                     | S0 Sa Sb Sc Int 0.23 0.16 0.19 0.08 0.04                                                                       | (f) Thu  v - g g  0.88  0.66  0.53  0.18  0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.37<br>1.34<br>1.14<br>1.08<br>0.67<br>an-Gunn (7-7)<br>0.49<br>0.40<br>0.39<br>0.28<br>0.25                                  | $\begin{array}{c} -0.13 \\ -0.12 \\ -0.08 \\ -0.07 \\ -0.04 \\ \hline \text{(BD+17}^{\circ} \\ u-U \\ -0.23 \\ -0.19 \\ -0.20 \\ \end{array}$                                              | $\begin{array}{c} -0.10 \\ -0.11 \\ -0.13 \\ -0.15 \\ -0.13 \\ \hline \end{array}$ $\begin{array}{c} -0.15 \\ -0.13 \\ \hline \end{array}$ $\begin{array}{c} -0.18 \\ 0.03 \\ -0.05 \\ -0.27 \\ -0.31 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.26 0.37<br>0.23 0.37<br>0.20 0.38<br>0.13 0.36                                                                                                                                                                                     | near .                          | S0 Sab Sbc Scd Im  type E S0 Sab Sbc Scd    | 1.99<br>1.70<br>1.60<br>1.16                 | $\begin{array}{c} 0.35 \\ 0.37 \\ 0.28 \\ 0.25 \\ -0.04 \\ \end{array}$ $\begin{array}{c} 0.7 \\ 0.7 \\ 0.66 \\ 0.66 \\ 0.55 \\ 0.44 \\ \end{array}$ | 7 0.43<br>8 0.34<br>6 0.38<br>2 0.33<br>8 0.28           | 0.19<br>0.23<br>0.19<br>0.14<br>-0.05<br>(m)<br>1 i'-z'<br>0.36<br>0.29<br>0.32<br>0.32<br>0.32                                                                          | -0.4<br>-0.4<br>-0.3<br>-0.5<br>SDSS (A<br>u' - U<br>0.80<br>0.82<br>0.82<br>0.83                    | 59<br>53<br>47<br>41<br>226<br>AB)<br>-0.<br>0 -0.<br>2 -0.<br>2 -0.<br>-0.   | $\begin{array}{c} 0.16 \\ 0.15 \\ 0.11 \\ 0.09 \\ 0.01 \\ \hline \\ \hline \\ B  r' - \\ 555  0 \\ 49  0 \\ 45  0 \\ 34  0 \\ 30  0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0. \\ 0. \\ 0. \\ 0. \\ 0. \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|           | E<br>S0<br>Sab<br>Sbc<br>Scd<br>Im        | S0<br>Sa<br>Sb<br>Sc<br>In<br>0.23<br>0.16<br>0.19<br>0.08<br>0.04<br>-0.11                                    | b b c d d f f f f f f f f f f f f f f f f f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.37<br>1.34<br>1.14<br>1.08<br>0.67<br>an-Gunn (7-r)<br>0.49<br>0.40<br>0.39<br>0.28<br>0.25<br>0.06                          | $\begin{array}{c} -0.13 \\ -0.12 \\ -0.08 \\ -0.07 \\ -0.04 \\ \hline (BD+17^4 \\ u-U \\ -0.23 \\ -0.23 \\ -0.19 \\ -0.20 \\ -0.22 \\ \end{array}$                                         | $\begin{array}{c} -0.10 \\ -0.11 \\ -0.13 \\ -0.15 \\ -0.13 \\ \hline \end{array}$ $\begin{array}{c} -0.15 \\ -0.13 \\ \hline \end{array}$ $\begin{array}{c} -0.18 \\ 0.03 \\ -0.05 \\ -0.27 \\ -0.31 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.26     0.37       0.23     0.37       0.20     0.38       0.13     0.36       0.10     0.35       0.03     0.34                                                                                                                    | near .                          | S0 Sab Sbc Scd Im  type E S0 Sab Sbc        | 1.99<br>1.70<br>1.60<br>1.16                 | $\begin{array}{c} 0.35 \\ 0.37 \\ 0.28 \\ 0.25 \\ -0.04 \\ \end{array}$ $\begin{array}{c} 0.7 \\ 0.7 \\ 0.66 \\ 0.66 \\ 0.55 \\ 0.44 \\ \end{array}$ | 7 0.43<br>8 0.34<br>6 0.38<br>2 0.33<br>8 0.28           | 0.19<br>0.23<br>0.19<br>0.14<br>-0.05<br>(m)<br>1 i'-z'<br>0.36<br>0.29<br>0.32<br>0.32<br>0.32                                                                          | -0.4<br>-0.4<br>-0.5<br>-0.5<br>-0.5<br>-0.5<br>-0.5<br>-0.8<br>-0.8<br>-0.8<br>-0.8<br>-0.8<br>-0.8 | 59<br>53<br>47<br>41<br>226<br>AB)<br>-0.<br>0 -0.<br>2 -0.<br>2 -0.<br>-0.   | $\begin{array}{c} 0.16 \\ 0.15 \\ 0.11 \\ 0.09 \\ 0.01 \\ \hline \\ \hline \\ B  r' - \\ 555  0 \\ 49  0 \\ 45  0 \\ 34  0 \\ 30  0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0. \\ 0. \\ 0. \\ 0. \\ 0. \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| type      | E<br>S0<br>Sab<br>Sbc<br>Scd<br>Im        | S0<br>Sa<br>Sb<br>Sc<br>In<br>0.23<br>0.16<br>0.19<br>0.08<br>0.04<br>-0.11                                    | (f) Thu  v - g g  0.88  0.66  0.53  0.18  0.09  -0.17  er, Schmi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.37<br>1.34<br>1.14<br>1.08<br>0.67<br>an-Gunn (7-r)<br>0.49<br>0.40<br>0.39<br>0.28<br>0.25<br>0.06                          | -0.13<br>-0.12<br>-0.08<br>-0.07<br>-0.04<br>(BD+17'<br>u - U<br>-0.23<br>-0.19<br>-0.19<br>-0.20<br>-0.22<br>n: 4-shoo                                                                    | -0.10<br>-0.11<br>-0.13<br>-0.15<br>-0.13<br>-0.18<br>-0.03<br>-0.03<br>-0.05<br>-0.27<br>-0.31<br>-0.47<br>-0.47<br>-0.47<br>-0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.26 0.37<br>0.23 0.37<br>0.20 0.38<br>0.13 0.36<br>0.10 0.35<br>0.03 0.34<br>17°4708)                                                                                                                                               | near .                          | S0 Sab Sbc Scd Im  type E S0 Sab Sbc Scd Im | 1.99<br>1.70<br>1.60<br>1.16<br>1.04<br>0.64 | 0.35 $0.37$ $0.28$ $0.25$ $-0.04$ $0.7$ $0.66$ $0.66$ $0.4$ $0.26$                                                                                   | 7 0.43<br>8 0.34<br>6 0.38<br>2 0.33<br>8 0.28<br>0 0.04 | 0.19<br>0.23<br>0.19<br>0.14<br>-0.05<br>(m)<br>1 i'-z'<br>0.36<br>0.29<br>0.32<br>0.32<br>0.32                                                                          | -0.4<br>-0.6<br>-0.4<br>-0.5<br>-0.5<br>SDSS (A<br>u' - U<br>0.80<br>0.82<br>0.82<br>0.83<br>0.78    | 59<br>53<br>47<br>41<br>26<br>AB)<br>-0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.  | 0.16 $0.15$ $0.11$ $0.09$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ | $\begin{array}{c} 0. \\ 0. \\ 0. \\ 0. \\ 0. \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| type<br>E | E<br>S0<br>Sab<br>Sbc<br>Scd<br>Im        | S0 Sa Sb Sc In  0.23 0.16 0.19 0.08 0.04 -0.11 Schneide                                                        | b b c d d f f f f f f f f f f f f f f f f f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.37<br>1.34<br>1.14<br>1.08<br>0.67<br>an-Gunn (1)<br>7-r<br>0.49<br>0.49<br>0.40<br>0.39<br>0.28<br>0.25<br>0.06<br>dt & Gun | $\begin{array}{c} -0.13 \\ -0.12 \\ -0.08 \\ -0.07 \\ -0.04 \\ \hline (BD+17^4 \\ -0.23 \\ -0.23 \\ -0.19 \\ -0.19 \\ -0.20 \\ -0.22 \\ \text{n: 4-shoot} \\ \hline B \ g_4 - \end{array}$ | -0.10<br>-0.11<br>-0.13<br>-0.15<br>-0.13<br>-0.18<br>0.03<br>0.03<br>-0.05<br>-0.27<br>-0.31<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.47<br>-0.4 | $\begin{array}{cccc} 0.26 & 0.37 \\ 0.23 & 0.37 \\ 0.20 & 0.38 \\ 0.13 & 0.36 \\ 0.10 & 0.35 \\ 0.03 & 0.34 \\ \hline 0.17^{\circ}4708) \\ \hline R_{\rm C} & i_4 - I_{\rm C} \\ \end{array}$                                        |                                 | S0 Sab Sbc Scd Im  type E S0 Sab Sbc Scd Im | 1.99<br>1.70<br>1.60<br>1.16<br>1.04<br>0.64 | 0.35 $0.37$ $0.28$ $0.25$ $-0.04$ $0.7$ $0.66$ $0.66$ $0.4$ $0.26$                                                                                   | 7 0.43<br>8 0.34<br>6 0.38<br>2 0.33<br>8 0.28<br>0 0.04 | $\begin{array}{c} 0.19 \\ 0.23 \\ 0.19 \\ 0.14 \\ -0.05 \\ \hline \\ (m) \\ \vdots \\ 0.36 \\ 0.29 \\ \vdots \\ 0.32 \\ \vdots \\ 0.32 \\ \vdots \\ 0.11 \\ \end{array}$ | -0.4<br>-0.6<br>-0.4<br>-0.5<br>-0.5<br>SDSS (A<br>u' - U<br>0.80<br>0.82<br>0.82<br>0.83<br>0.78    | 59<br>53<br>47<br>41<br>26<br>AB)<br>-0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.  | 0.16 $0.15$ $0.11$ $0.09$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ | $\begin{array}{c} 0. \\ 0. \\ 0. \\ 0. \\ 0. \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|           | E<br>S0<br>Sab<br>Sbc<br>Scd<br>Im<br>(g) | $\begin{array}{c} S0\\ Sa\\ Sb\\ Sc\\ \underline{Im}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | b b c d d $\frac{v-g}{(f)}$ Thu $\frac{v-g}{(0.88)}$ 0.66 0.53 0.18 0.09 -0.17 -er, Schmitz $\frac{1}{4} - \frac{z_4}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.37<br>1.34<br>1.14<br>1.08<br>0.67<br>an-Gunn<br>1 - r<br>0.49<br>0.40<br>0.39<br>0.28<br>0.25<br>0.06<br>dt & Gun           | $\begin{array}{c} -0.13 \\ -0.12 \\ -0.08 \\ -0.07 \\ -0.04 \\ (BD+17^{\circ} \\ u-U \\ -0.23 \\ -0.23 \\ -0.19 \\ -0.20 \\ -0.22 \\ \text{n: 4-shoot} \\ B & g_4- \\ \hline \end{array}$  | -0.10 -0.11 -0.13 -0.15 -0.13 -0.15 -0.13  2.4708)  -0.05 -0.03 -0.05 -0.07 -0.27 -0.31 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.47 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{cccc} 0.26 & 0.37 \\ 0.23 & 0.37 \\ 0.20 & 0.38 \\ 0.13 & 0.36 \\ 0.10 & 0.35 \\ 0.03 & 0.34 \\ \hline 17^{\circ}4708) \\ \hline R_{C} & i_{4} - I_{C} \\ \hline 35 & 0.73 \\ \hline 36 & 0.73 \\ \hline \end{array}$ | $z_4 - I_C$                     | S0 Sab Sbc Scd Im  type E S0 Sab Sbc Scd Im | 1.99<br>1.70<br>1.60<br>1.16<br>1.04<br>0.64 | 0.35 $0.37$ $0.28$ $0.25$ $-0.04$ $0.7$ $0.66$ $0.66$ $0.4$ $0.26$                                                                                   | 7 0.43<br>8 0.34<br>6 0.38<br>2 0.33<br>8 0.28<br>0 0.04 | $\begin{array}{c} 0.19 \\ 0.23 \\ 0.19 \\ 0.14 \\ -0.05 \\ \hline \\ (m) \\ \vdots \\ 0.36 \\ 0.29 \\ \vdots \\ 0.32 \\ \vdots \\ 0.32 \\ \vdots \\ 0.11 \\ \end{array}$ | -0.4<br>-0.6<br>-0.4<br>-0.5<br>-0.5<br>SDSS (A<br>u' - U<br>0.80<br>0.82<br>0.82<br>0.83<br>0.78    | 59<br>53<br>47<br>41<br>26<br>AB)<br>-0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.  | 0.16 $0.15$ $0.11$ $0.09$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ | $\begin{array}{c} 0. \\ 0. \\ 0. \\ 0. \\ 0. \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

system is used together with CK94 SED for  $\alpha$  Lyr.

-0.47

0.10

 $0.22 \\ 0.20$ 

0.24

In Table 1 we compare the synthetically obtained colors with those listed in RC3 for B-V and U-B for galaxies measured by K92. We also add from Bertola et al. (1982) the colors for NGC 4649, which represents a typical galaxy that shows a strong UV component shortward of 2500 Å. Regression diagrams are given in Fig. 6. Since the SED of K92 is limited to longward of 3650 Å, we extrapolated the flux of each galaxy to the UV side using the SED of Coleman et al. (or of NGC 4649 for E and S0) with the normalization adjusted at 3650-3700 Å. For elliptical galaxies the UV SED of Coleman et al. represents a UV quiscent galaxy. Therefore, we expect general UV SED between the two. For our calculation of U colors of nearby galaxies, however, the extrapolation is only slight, and the result does not depend upon whichever UV SED is used for the extrapolation. The Galactic reddening corrections are not made for the colors (when the original data include corrections, we removed them). We see that the agreement is generally good; the offset is typically smaller than 0.1 mag for most of the galaxies. There is, however, a trend that synthetic B-V colors are slightly bluer; there are a few cases where the difference of the two colors is as large as 0.2 mag. This might be ascribed to the difference of the aperture for broadband photometry and for spectrophotometry, as well as errors of the measurements. When an offset of one of the colors is larger than 0.15 mag, we exclude those galaxies from the averaging procedure which will be employed later in the present work.

The next question to ask is whether the galaxies studied by K92 represent a typical member of each morphological type. We show in Fig. 7 the B-V color distribution of galaxies in RC3, by grouping them into 6 morphological types (E, S0, Sa-Sb, Sb-Sc, Sc-Sd, Sdm-Im, allowing for overlaps). We also indicate colors from synthetic calculation obtained

|                  |                   |                  | TABLE            | 4                |               |               |          |
|------------------|-------------------|------------------|------------------|------------------|---------------|---------------|----------|
| Magnitu          | des of $\alpha$ l | Lyr in the       | Thuan-G          | unn Defii        | nition of     | f the Ze      | ro Point |
| $\overline{U}$   | В                 | V                | $R_{ m C}$       | $I_{\mathrm{C}}$ | $R_{ m J}$    | $I_{ m J}$    |          |
| -0.181           | -0.342            | 0.083            | 0.399            | 0.752            | 0.473         | 0.805         |          |
|                  |                   |                  |                  |                  |               |               |          |
| $U_{\mathbf{K}}$ | $J_{K}$           | $F_{K}$          | $N_{\mathrm{K}}$ | $B_J$            | $R_F$         |               |          |
| -0.195           | -0.256            | 0.271            | 0.723            | -0.281           | 0.481         |               |          |
|                  |                   |                  |                  |                  |               |               |          |
| u                | v                 | $\boldsymbol{g}$ | r                | $g_4$            | $r_4$         | $i_4$         | $z_4$    |
| 0.000            | -0.440            | -0.126           | 0.429            | -0.047           | 0.455         | 0.739         | 0.851    |
|                  |                   |                  |                  |                  |               |               |          |
| g                | r                 | i                | z                | A                | B             | C             | D        |
| -0.016           | 0.458             | 0.730            | 0.853            | 0.404            | 0.525         | 0.664         | 0.770    |
|                  |                   |                  |                  |                  |               |               |          |
| F555W            | F606W             | F702W            | F814W            | $g_{ m POSS}$    | $r_{ m POSS}$ | $i_{ m POSS}$ |          |
| 0.069            | 0.250             | 0.511            | 0.726            | -0.035           | 0.459         | 0.709         |          |
|                  |                   |                  |                  |                  |               |               |          |
| u'               | g'                | r'               | i'               | z'               |               |               |          |
| -0.077           | -0.178            | 0.342            | 0.687            | 0.855            |               |               |          |

Table 5 AB Magnitudes of  $\alpha$  Lyr 0.504 -0.1100.011 0.199 0.456 0.249 0.689 -0.056 0.120 -0.091 0.259 0.434 υ 1.049 0.041 -0.0750.221 -0.0430.236 0.445 0.545 A В  $\overline{D}$ -0.0310.241 0.437 0.547 0.210 0.276 0.380 0.471 F555W F606W F702W F814W 0.009 0.111 0.275 0.434 -0.0340.244 0.928 -0.0870.163 0.401 0.549

by averaging the K92 galaxies and NGC 4649 of Bertola et al. We use only galaxies at Galactic latitude  $|b| > 30^{\circ}$  and do not apply reddening corrections. The number of galaxies used to draw this histogram and the average colors are also given in Table 2. Figure 7 shows that the averages of synthetic colors of the galaxies studied by K92, except for those for the latest type Sdm-Im, reside close to the median of the color distribution of the RC3 galaxies, with a trend that the

former is slightly (≤0.1) bluer. This does not necessarily mean that the galaxies in the K92 sample are bluer than the average, but it probably reflects the fact that synthetic colors are slightly bluer than observed broadband colors. For Sdm-Im synthetic magnitudes are significantly bluer ( $\approx 0.2$ mag). This is due to the fact that the two galaxies NGC 4449 and NGC 4485 are among the bluest nearby galaxies. Also noteworthy in this figure is the fact that the color distribution

|            |                  |                         |                |              |                  |                 |                         |                     |                         |                       | Table 6                                 |                     |                                         |                |                            |                     |                       |                    |                    |
|------------|------------------|-------------------------|----------------|--------------|------------------|-----------------|-------------------------|---------------------|-------------------------|-----------------------|-----------------------------------------|---------------------|-----------------------------------------|----------------|----------------------------|---------------------|-----------------------|--------------------|--------------------|
|            |                  |                         |                |              |                  |                 |                         |                     |                         | Galax                 | Colors at z=                            | 0.2                 |                                         |                |                            |                     |                       |                    |                    |
|            |                  |                         | (a) Sta        | andard       | Johnso           | n-Mor           | gan/Cou                 | sins                |                         |                       |                                         |                     |                                         | (f) T          | yson                       |                     |                       |                    |                    |
|            | type             | U                       | J – B          | B-V          | V -              | $R_{\rm C}$ $F$ | $I_{\rm C} - I_{\rm C}$ | $V - R_{\rm J}$     | $R_{\rm J} - I_{\rm J}$ |                       |                                         | type                | $B_{\rm J} - R$                         | R-I            | $B_{\rm J} - \overline{B}$ | $R-R_{\rm C}$       | $I - I_{\rm C}$       |                    |                    |
|            | E                |                         | 0.47           | 1.59         | 0                | .80             | 0.77                    | 0.93                | 0.78                    |                       |                                         | E                   | 2.09                                    | 0.91           | -0.34                      | -0.05               | -0.19                 |                    |                    |
|            | S0               |                         | 0.41           | 1.38         |                  | .71             | 0.70                    | 0.83                | 0.68                    |                       |                                         | S0                  | 1.84                                    | 0.81           | 0.30                       | -0.05               | -0.16                 |                    |                    |
|            | Sab              |                         | $0.38 \\ 0.07$ | 1.30<br>0.98 |                  | .67<br>.52      | 0.71<br>0.66            | 0.79<br>0.63        | 0.72<br>0.66            |                       |                                         | Sab<br>Sbc          | 1.71<br>1.30                            | $0.85 \\ 0.79$ | -0.30 $-0.24$              | -0.05 $-0.03$       | -0.18 $-0.17$         |                    |                    |
|            | Sbc<br>Scd       |                         | -0.10          | 0.89         |                  | .32<br>.47      | 0.63                    | 0.53                | 0.63                    |                       |                                         | Scd                 | 1.16                                    | 0.79           | -0.24<br>-0.23             | -0.03               | -0.17<br>-0.15        |                    |                    |
|            | Im               |                         | -0.10          | 0.61         |                  | .30             | 0.40                    | 0.34                | 0.36                    |                       |                                         | Im                  | 0.75                                    | 0.46           | -0.17                      | -0.02               | -0.07                 |                    |                    |
|            | E(CW             |                         | 0.43           | 1.59         | 0                | .82             | 0.81                    | 0.96                | 0.80                    |                       |                                         | E(CW                | W) 2.11                                 | 0.95           | -0.34                      | -0.04               | -0.18                 |                    |                    |
|            |                  |                         |                |              | (b) K            | ron             |                         |                     |                         | -                     |                                         |                     | 221121111111111111111111111111111111111 | (g) W          | FPC2                       |                     |                       |                    |                    |
| type       | U <sub>K</sub> · | – <i>J</i> <sub>K</sub> | $J_{\rm K}-F$  | K FK         | - N <sub>K</sub> | $U_{P}$         | $\zeta = U - J$         | $I_{\rm K} - B = I$ | $F_{\rm K}-R_{ m C}$    | $N_{\rm K}-I_{\rm C}$ | type                                    | F555W               | F606W                                   | F702W          | F555W                      | F606W               | F702W                 | F81                | 4W                 |
| E          |                  | 0.86                    | 1.7            |              | 1.00             |                 | 0.01                    | -0.39               | 0.29                    | 0.05                  |                                         | -F606W              | -F702W                                  | -F814W         | -V                         | -V                  | $-R_{\rm C}$          | :                  | $-I_{\rm C}$       |
| S0         |                  | 0.75                    | 1.5            |              | 0.91             |                 | 0.01                    | -0.33               | 0.25                    | 0.05                  | E                                       | 0.49                | 0.58                                    | 0.51           | 0.04                       | -0.4                |                       |                    | 0.03               |
| Sab        |                  | 0.71                    | 1.4            |              | 0.91             |                 | 0.01                    | -0.31               | 0.25                    | 0.05                  | S0                                      | 0.44<br>0.41        | 0.53<br>0.51                            | 0.45<br>0.47   | 0.05<br>0.05               | -0.40<br>-0.3       |                       |                    | 0.03<br>0.03       |
| Sbc<br>Scd |                  | $0.32 \\ 0.13$          | 1.0<br>0.9     |              | 0.81<br>0.78     |                 | $0.02 \\ 0.02$          | -0.23 $-0.21$       | 0.20<br>0.19            | 0.05<br>0.05          | Sab<br>Sbc                              | 0.41                |                                         | 0.43           | 0.03                       | -0.2                |                       |                    | 0.03               |
| Im         | _                | 0.13                    | 0.6            |              | 0.49             |                 | 0.02                    | -0.15               | 0.13                    | 0.03                  | Scd                                     | 0.28                |                                         | 0.41           | 0.04                       | -0.2                |                       |                    | 0.04               |
| E(CWW      |                  | 0.82                    | 1.7            |              | 1.05             |                 | 0.01                    | -0.38               | 0.30                    | 0.06                  | Im                                      | 0.18                |                                         | 0.25           | 0.02                       | -0.1                |                       |                    | 0.05               |
|            |                  |                         |                | (c           | ) Couch          | -Newe           | ell                     |                     | <del></del>             |                       | E(CWW)                                  | 0.50                | 0.60                                    | 0.53           | 0.04                       | -0.4                | 6 -0.24               |                    | 0.04               |
|            |                  |                         | ype            | R.           | - R <sub>F</sub> | R.              | $-B$ $R_1$              | $F - R_{\rm C}$     |                         |                       |                                         |                     |                                         | (h) PO         | SS II                      |                     |                       |                    |                    |
|            |                  | E                       |                | DJ.          | 2.26             |                 | 0.31                    | -0.18               |                         |                       | type                                    | g <sub>POSS</sub> — | rposs rposs                             | - iposs        | $g_{POSS} - B$             | g <sub>POSS</sub> - | V r <sub>POSS</sub>   | R <sub>C</sub>     | $POSS - I_C$       |
|            |                  |                         | 0              |              | 2.01             |                 | 0.26                    | -0.18               |                         |                       | E                                       |                     | 0.85                                    | 0.30           | -1.23                      | 0.3                 |                       | 0.31               | 0.78               |
|            |                  |                         | ab             |              | 1.89             |                 | 0.24                    | -0.16               |                         |                       | S0                                      |                     | 0.69                                    | 0.24           | -1.09                      | 0.2                 |                       | 0.31               | 0.77               |
|            |                  |                         | bc             |              | 1.46             |                 | 0.18                    | -0.13               |                         |                       | Sab<br>Sbc                              |                     | 0.60<br>0.33                            | 0.26<br>0.23   | -1.05<br>-0.83             | 0.2<br>0.1          |                       | 0.32<br>0.34       | 0.77<br>0.77       |
|            |                  |                         | cd<br>m        |              | 1.32<br>0.87     |                 | 0.16<br>0.11            | -0.12 $-0.07$       |                         |                       | Scd                                     |                     | 0.33                                    | 0.23           | -0.83                      | 0.1                 |                       | 0.3 <del>4</del>   | 0.76               |
|            |                  |                         | in<br>E(CWW    | n            | 2.27             |                 | 0.30                    | -0.16               |                         |                       | Im                                      |                     | -0.05                                   | 0.07           | -0.56                      | 0.0                 |                       | 0.40               | 0.73               |
|            |                  | =                       | 2(01111        |              |                  |                 |                         |                     |                         |                       | E(CWW)                                  |                     | 0.87                                    | 0.34           | -1.22                      | 0.3                 | 16                    | 0.31               | 0.78               |
|            |                  | (                       | (d) Schr       | neider,      | Schmid           | t&G             | unn: 4-sh               | nooter              |                         |                       | *************************************** |                     | •                                       | (i) Sl         | DSS                        |                     |                       |                    |                    |
| type       | g <sub>4</sub>   |                         | $4 - i_4$      |              |                  | -B              |                         | $r_4 - R_{\rm C}$   |                         |                       | type                                    | u'-q'               | g'-r'-r'-                               | i' $i'-z'$     | u' - U                     | g' - B r'           | - R <sub>C</sub> i' - | - I <sub>C</sub> 2 | ' - I <sub>C</sub> |
| E          |                  | .86                     | 0.36           | 0.26         |                  | -1.21           | 0.38                    | 0.32                |                         | 0.47                  | E                                       | 2.19                | 1.31 0.5                                | 0.37           | 0.91                       | -0.80               |                       | ).52               | 0.15               |
| S0<br>Sab  |                  | .71<br>.62              | $0.29 \\ 0.31$ | 0.20<br>0.23 |                  | -1.07<br>-1.02  | $0.32 \\ 0.28$          | 0.32<br>0.33        | 0.73<br>0.73            | 0.53<br>0.50          | SO                                      | 2.05                | 1.13 0.4                                |                |                            | -0.71               |                       | ).50               | 0.21               |
| Sbc        |                  | .35                     | 0.27           | 0.20         |                  | -0.81           | 0.17                    | 0.35                |                         | 0.53                  | Sab                                     | 1.96                | 1.02 0.4                                |                | 0.89                       | -0.69               |                       | ).51               | 0.18               |
| Scd        |                  | .26                     | 0.26           | 0.16         |                  | -0.75           | 0.15                    | 0.36                |                         | 0.58                  | Sbc<br>Scd                              | 1.40<br>1.17        | 0.71 0.3<br>0.62 0.3                    |                | 0.77<br>0.76               | -0.55<br>-0.51      |                       | ).50<br>).49       | 0.22<br>0.26       |
| Im         |                  | .04                     | 0.07           | 0.00         |                  | -0.55           | 0.06                    | 0.40                |                         | 0.73                  | Im                                      | 0.71                | 0.32 0.1                                |                |                            | -0.39               |                       | 0.45               | 0.42               |
| E(CWW      | V) 0             | .88                     | 0.41           | 0.23         |                  | -1.20           | 0.39                    | 0.33                | 0.73                    | 0.50                  | E(CWW)                                  | 2.12                | 1.33 0.5                                | 6 0.35         | 0.90                       | -0.80               | 0.28                  | ).53               | 0.18               |
|            |                  |                         | (e) So         | chneide      | r, Gunr          | & Ho            | oessel: Pi              | fuei                |                         |                       |                                         |                     |                                         |                |                            |                     |                       |                    |                    |
| type       | ,                | g-r                     |                | i-z          |                  |                 |                         |                     |                         | $-I_{\rm C}$          |                                         |                     |                                         |                |                            |                     |                       |                    |                    |
| E          |                  | 0.76                    | 0.34           | 0.27         |                  | 1.31            | 0.28                    | 0.32                | 0.75                    | 0.47                  |                                         |                     |                                         |                |                            |                     |                       |                    |                    |
| S0<br>Sab  |                  | 0.63<br>0.55            | $0.27 \\ 0.29$ | 0.21<br>0.25 |                  | 1.15<br>1.09    | 0.23<br>0.21            | $0.32 \\ 0.33$      | $0.74 \\ 0.75$          | 0.53<br>0.50          |                                         |                     |                                         |                |                            |                     |                       |                    |                    |
| Sbc        |                  | 0.32                    | 0.26           | 0.20         |                  | 0.84            | 0.14                    | 0.35                | 0.74                    | 0.54                  |                                         |                     |                                         |                |                            |                     |                       |                    |                    |
| Scd        |                  | 0.23                    | 0.25           | 0.16         |                  | 0.77            | 0.12                    | 0.36                | 0.74                    | 0.58                  |                                         |                     |                                         |                |                            |                     |                       |                    |                    |
| Im         |                  | -0.04                   | 0.07           | 0.01         |                  | 0.55            | 0.06                    | 0.40                | 0.73                    | 0.74                  |                                         |                     |                                         |                |                            |                     |                       |                    |                    |
| E(C        | WW)              | 0.78                    | 0.38           | 0.25         | -                | 1.30            | 0.28                    | 0.32                | 0.75                    | 0.50                  |                                         |                     |                                         |                |                            |                     |                       |                    |                    |

TABLE 7 Galaxy Colors at z = 0.5

|            |                         | (a) Sta   | andard Jo           | hnson-Mo        | rgan/Co               | usins                 |                         |                       |        |                       |                  | (f) ?      | Гуson          |                 |                      |                 |
|------------|-------------------------|-----------|---------------------|-----------------|-----------------------|-----------------------|-------------------------|-----------------------|--------|-----------------------|------------------|------------|----------------|-----------------|----------------------|-----------------|
| .,         | type                    | U - B     | $\vec{B} - \vec{V}$ | $V - R_{\rm C}$ | $R_{\rm C}-I_{\rm C}$ | $V - R_{\rm J}$       | $R_{\rm J} - I_{\rm J}$ | =                     |        | type                  | B <sub>J</sub> - | R $R-I$    | $B_{\rm J}-B$  | $R - R_{\rm C}$ | $I - I_{\mathbf{C}}$ |                 |
|            | E                       | 0.13      | 1.53                | 1.44            | 1.17                  | 1.72                  | 1.07                    | -                     |        | E                     | 2.               | 0 1.29     | -0.38          |                 | -0.23                |                 |
|            | S0                      | 0.13      | 1.49                | 1.25            | 1.05                  | 1.49                  | 0.97                    |                       |        | S0                    | 2.               | 7 1.15     | -0.38          | -0.10           | -0.21                |                 |
|            | Sab                     | -0.01     | 1.47                | 1.19            | 0.97                  | 1.40                  | 0.93                    |                       |        | Sab                   | 2.4              | 1.08       | -0.35          | -0.10           | -0.21                |                 |
|            | Sbc                     | -0.31     | 1.05                | 0.93            | 0.75                  | 1.06                  | 0.74                    |                       |        | Sbc                   | 1.3              |            | -0.19          |                 | -0.18                |                 |
|            | Scd                     | -0.36     | 0.88                | 0.86            | 0.67                  | 0.97                  | 0.68                    |                       |        | Scd                   | 1.0              |            | -0.16          |                 | -0.17                |                 |
|            | Im                      | -0.72     | 0.55                | 0.63            | 0.44                  | 0.69                  | 0.42                    |                       |        | Im                    | 1                |            | -0.10          |                 | -0.08                |                 |
|            | E(CWW)                  | 1.26      | 1.53                | 1.44            | 1.18                  | 1.72                  | 1.10                    | _                     |        | E(CW)                 | V) 2.            | 0 1.32     | -0.36          | -0.10           | -0.25                |                 |
|            |                         |           |                     | b) Kron         |                       |                       |                         |                       | _      |                       |                  | (g) W      | FPC2           |                 |                      |                 |
| type       | $U_{\rm K} - J_{\rm I}$ |           |                     |                 |                       |                       | $F_{\rm K}-R_{ m C}$    | $N_{\rm K}-I_{\rm C}$ |        | F555W                 | F606W            | F702W      | F555W          | F606W           | F702W                | F814W           |
| E          | 0.5                     |           |                     | .53             | 0.02                  | -0.37                 | 0.42                    | 0.06                  |        | -F606W                | -F702W           |            |                |                 | -R <sub>C</sub>      | -I <sub>C</sub> |
| S0         | 0.5                     |           |                     | .37             | 0.02                  | -0.37                 | 0.38                    | 0.06                  |        | 0.84                  | 0.93             |            |                |                 | -0.41                | 0.04            |
| Sab        | 0.30                    |           |                     | .28             | 0.02                  | -0.35                 | 0.37                    | 0.06                  | , eu   | 0.73                  | 0.83             |            |                |                 | -0.37                | 0.04            |
| Sbc<br>Scd | -0.09<br>-0.19          |           |                     | .00             | $0.02 \\ 0.02$        | -0.20<br>-0.16        | 0.31<br>0.29            | 0.05<br>0.04          |        | 0.69                  | 0.78             | 0.59       | -0.06          |                 | -0.34                | 0.04            |
| Im         | -0.6                    |           |                     | .92<br>.64      | 0.02                  | -0.10<br>-0.10        | 0.29                    | 0.04                  |        | 0.53                  | 0.61             | 0.46       | -0.03          | -0.56           | -0.25                | 0.04            |
| E(CWW      |                         |           |                     | .55             | 0.02                  | -0.10                 | 0.23                    | 0.03                  | , scu  | 0.48                  | 0.56             | 0.41       | -0.04          | -0.52           | -0.22                | 0.04            |
| ECWW       | 1.0                     | 0 2.1     |                     |                 |                       | 0.33                  | 0.45                    | 0.00                  | ım     | 0.34                  | 0.41             |            |                |                 | -0.15                | 0.03            |
|            |                         |           | (c) C               | ouch-New        | vell                  |                       |                         |                       | E(CWW) | 0.83                  | 0.94             | 0.73       | -0.09          | -0.92           | -0.42                | 0.03            |
|            |                         | type      | $B_{\rm J} - I$     |                 |                       | $R_{\rm F}-R_{\rm C}$ |                         |                       |        |                       |                  | (h) P      | oss II         |                 |                      |                 |
|            |                         | E         | 2.                  |                 | -0.29                 | -0.30                 |                         |                       | type   | g <sub>POSS</sub> - 1 | Poss PPO         | ss - iposs | $g_{POSS} - B$ | $g_{POSS} - V$  | $r_{POSS} - h$       | c iposs - Ic    |
|            |                         | S0        | 2.                  |                 | -0.29                 | -0.28                 |                         |                       | E      |                       | 1.59             | 0.55       | -1.19          | 0.34            | 0.1                  | 9 0.81          |
|            |                         | Sab       | 2.0                 |                 | -0.27                 | -0.26                 |                         |                       | S0     |                       | 1.36             | 0.46       | -1.17          | 0.31            | 0.2                  |                 |
|            |                         | Sbc       | 2.0                 |                 | -0.15                 | -0.20                 |                         |                       | Sab    |                       | 1.31             | 0.40       | -1.13          | 0.34            |                      |                 |
|            |                         | Scd<br>Im | 1.3                 |                 | -0.11                 | -0.18<br>-0.12        |                         |                       | Sbc    |                       | 0.96             | 0.24       | -0.74          | 0.31            |                      |                 |
|            |                         | E(CWW     | 1.:<br>) 2.:        |                 | -0.06<br>-0.28        | -0.12                 |                         |                       | Scd    |                       | 0.83             | 0.19       | -0.63          | 0.26            |                      |                 |
|            |                         | E(CWW     | ) 2.:               | 90 -            | -0.26                 | -0.20                 |                         |                       | Im     |                       | 0.47             | 0.04       | -0.39          |                 |                      |                 |
|            |                         | (d) Schr  | neider, Sch         | midt & C        | Gunn: 4-s             | hooter                |                         |                       | E(CWW) |                       | 1.58             | 0.57       | -1.18          | 0.35            | 0.2                  | 0.81            |
| type       | $g_4 - r_4$             |           | $i_4 - z_4$         | $g_4 - B$       |                       |                       |                         |                       |        |                       |                  |            | SDSS           |                 |                      |                 |
| E          | 1.58                    | 0.65      | 0.33                | -1.17           | 0.36                  |                       |                         | 0.40                  |        |                       |                  | -i'i'-z    |                |                 | $-R_{\rm C}$ $i'-I$  |                 |
| S0         | 1.36                    | 0.54      | 0.30                | -1.16           | 0.33                  |                       | 0.73                    | 0.43                  |        | 1.54                  |                  | 1.01 0.49  |                | -0.78           | 0.41 0.5             |                 |
| Sab        | 1.31                    | 0.48      | 0.30                | -1.12           |                       |                       | 0.73                    | 0.43                  |        | 1.54                  |                  | 0.85 0.44  |                | -0.77           | 0.36 0.5             |                 |
| Sbc        | 0.96                    | 0.30      | 0.25                | -0.74           | 0.31                  |                       |                         | 0.48                  |        | 1.36                  |                  | 0.76 0.43  |                | -0.74           | 0.33 0.5             |                 |
| Scd        | 0.83                    | 0.24      | 0.24                | -0.62           | 0.26                  |                       | 0.73                    | 0.49                  |        | 0.89                  |                  | 0.50 0.3   |                | -0.47           | 0.27 0.5             |                 |
| Im         | 0.48                    | 0.06      | 0.08                | -0.36           | 0.18                  |                       | 0.72                    |                       |        | 0.77                  |                  | 0.42 0.3   |                | -0.40           | 0.25 0.5             |                 |
| E(CWW      | 7) 1.57                 | 0.67      | 0.36                | -1.17           | 0.36                  | 0.23                  | 0.73                    | 0.38                  |        | 0.22                  |                  | 0.20 0.13  |                | -0.24           | 0.21 0.4             |                 |
|            |                         |           | hneider, (          |                 |                       |                       |                         |                       | E(CWW) | 2.75                  | 1.76             | 1.03 0.5   | 0.70           | -0.79           | 0.42 0.5             | 6 0.05          |
| type       |                         |           | i-z                 |                 | g - V                 |                       |                         | $-I_{\mathbf{C}}$     |        |                       |                  |            |                |                 |                      |                 |
| Е          |                         | 52 0.62   | 0.36                | -1.23           | 0.30                  | 0.22                  |                         | 0.40                  |        |                       |                  |            |                |                 |                      |                 |
| S0         |                         | 30 0.51   | 0.33                | -1.21           | 0.28                  | 0.23                  |                         | 0.44                  |        |                       |                  |            |                |                 |                      |                 |
| Sab        |                         | 24 0.45   | 0.32                | -1.19           | 0.28                  | 0.24                  |                         | 0.44                  |        |                       |                  |            |                |                 |                      |                 |
| Sbc        |                         | 89 0.28   | 0.27                | -0.80           | 0.25                  | 0.28                  |                         | 0.48                  |        |                       |                  |            |                |                 |                      |                 |
| Scd        |                         | 78 0.22   | 0.25                | -0.67           | 0.21                  | 0.29                  |                         | 0.50                  |        |                       |                  |            |                |                 |                      |                 |
| Im         |                         | 45 0.05   | 0.08                | -0.40           | 0.15                  | 0.33                  |                         | 0.65                  |        |                       |                  |            |                |                 |                      |                 |
| _E(C       | (WW) 1.                 | 51 0.64   | 0.38                | -1.23           | 0.30                  | 0.23                  | 0.76                    | 0.38                  |        |                       |                  |            |                |                 |                      |                 |

of galaxies is reasonably sharp even for spiral galaxies, if a morphology grouping is made. Figure 8 is a corresponding figure for the U-B colors. Here, the colors calculated from K92 fall almost at the median of the distributions, except for Sdm-Im for the reason the same as for B-V. The analysis given here indicates that the composite SED obtained from galaxies of the K92 sample probably well represents a median of entire galaxy sample with the exception for Sdm-Im, for which the K92 sample represents the bluest of normal galaxies.

We now make an assessment of the SED of Coleman et al. (1980) against those of K92. In Fig. 9 we compare the composite SED of Coleman et al. (reddening correction is now included again) with that obtained from the K92 data. Here and hereafter we rename Sa-Sb as Sab, Sb-Sc as Sbc, and so on. Im represents the bluest galaxies. Corresponding to Fig. 9, we show in Fig. 10(a)–10(g) the K correction calculated from the two SED's. For early type SED, we take an average of three elliptical galaxies of K92 and NGC 4649 of Bertola et al. (1982), the quality of which seems equally good. Since the K92's SED does not go beyond 3650 Å, the UV part is supplemented with the SED of Coleman et al. (for the late types) and NGC 4649 (for the early types). The portion of the curve dominantly determined by the K92 data is shown by solid curves. We see that the agreement is good

for this part, with a difference between the two being at most 0.1 mag except for Im. A larger difference becomes manifest, however, for the part for which the K correction is dominated by the UV SED. The most conspicuous difference is seen for elliptical galaxies for  $z \ge 0.4$  in U and  $z \ge 0.7$  in B; it arises from a strong UV component of NGC 4649, compared with very weak UV of the SED of Coleman et al.

# 4. TRANSFORMATION LAWS AMONG VARIOUS PHOTOMETRIC SYSTEMS

We obtain the transformation law among various colors frequently used in the literature. We take Johnson–Morgan UBV (Johnson and Morgan 1953) and Cousins  $R_CI_C$  (Cousins 1978; Bessell 1976) as a standard set. We also consider Johnson  $R_JI_J$  (Johnson 1965); Sandage–Smith ubvr (Sandage and Smith 1963); Thuan–Gunn uvgr (Thuan and Gunn 1976) and its CCD versions  $g_4r_4i_4z_4$  (Schneider, Schmidt and Gunn 1989), griz (Schneider, Gunn and Hoessel 1983); red narrowband ABCD of Schneider, Schmidt, and Gunn (1991). Also often used for galaxy studies are Kron  $U_KJ_KF_KN_K$  (Kron 1980; Koo 1985) and Couch–Newell  $B_JR_F$  (Couch and Newell 1980). We include in our consideration Tyson's  $B_JRI$  (Tyson 1988) and a few wide filters, F555W, F606W, F702W and F814W, of WFPC2 on the

TABLE 8 Galaxy Colors at z=0.8

|       |                         | (a) Star                | idard J          | Johnson-M        | lorgan/Co             | ousins                  |                      | ·                     |        |                     |       |                     | (f)    | <b>Tyson</b> |        |                    |                    |                 |
|-------|-------------------------|-------------------------|------------------|------------------|-----------------------|-------------------------|----------------------|-----------------------|--------|---------------------|-------|---------------------|--------|--------------|--------|--------------------|--------------------|-----------------|
|       | type                    | U-B                     | 3-V              | $V - R_{\rm C}$  | $R_{\rm C}-I_{\rm C}$ | $V - R_{\rm J}$         | $R_{ m J}-I_{ m J}$  | :                     |        | type                |       | $B_{\rm J}-R$       | R-I    | $B_{J}$ $-$  | B R-   | - R <sub>C</sub> . | $I - I_{\rm C}$    |                 |
|       | E                       | -0.37                   | 1.23             | 1.44             | 1.67                  | 1.80                    | 1.62                 | •                     |        | E                   |       | 2.48                | 2.11   | -0.          | 09     | 0.10               | -0.34              |                 |
|       | S0                      | -0.38                   | 1.23             | 1.38             | 1.49                  | 1.68                    | 1.43                 |                       |        | S0                  |       | 2.45                | 1.84   | -0.          | 09     | 0.06               | -0.29              |                 |
|       | Sab                     | -0.62                   | 1.10             | 1.35             | 1.43                  | 1.65                    | 1.34                 |                       |        | Sab                 |       | 2.33                | 1.72   | -0.          | 08     | 0.03               | -0.26              |                 |
|       | Sbc                     | -0.54                   | 0.72             | 0.99             | 1.15                  | 1.23                    | 1.04                 |                       |        | Sbc                 |       | 1.60                | 1.31   | -0.          |        | -0.03              | -0.19              |                 |
|       | Scd                     | -0.64                   | 0.66             | 0.84             | 1.06                  | 1.06                    | 0.95                 |                       |        | Scd                 |       | 1.39                | 1.19   | -0.          | 13 -   | -0.02              | -0.16              |                 |
|       | Im                      | -0.75                   | 0.26             | 0.57             | 0.78                  | 0.72                    | 0.67                 |                       |        | Im                  |       | 0.79                | 0.84   | -0.          | 07 -   | -0.04              | -0.10              |                 |
|       | E(CWW)                  | 0.03                    | 2.15             | 1.39             | 1.66                  | 1.75                    | 1.62                 |                       |        | E(C                 | WW)   | 2.98                | 2.11   | -0.          | 47     | 0.09               | -0.35              |                 |
|       |                         |                         |                  | (b) Kron         |                       |                         |                      |                       |        |                     |       |                     | (g) V  | VFPC2        |        |                    |                    |                 |
| type  | $U_{\rm K} - J_{\rm K}$ | $J_{\rm K} - F_{\rm K}$ | F <sub>K</sub> - | - N <sub>K</sub> | $U_{\rm K} - U$       | $J_{\rm K}-B$           | $F_{\rm K}-R_{ m C}$ | $N_{\rm K}-I_{\rm C}$ | type   | F555W               | T F6  | 06W                 | F702W  | F555W        | F60    | 06W                | F702W              | F814W           |
| Е     | -0.21                   |                         |                  | 2.18             | 0.01                  | -0.15                   | 0.63                 | 0.13                  | type   | -F606               |       | F702W               | -F814W |              | -V     | -V                 | $-R_C$             | -I <sub>C</sub> |
| S0    | -0.21                   |                         |                  | 1.95             | 0.01                  | -0.15                   | 0.57                 | 0.11                  | E      |                     | .68   | 1.12                | 1.14   |              |        | -0.76              | -0.44              | 0.09            |
| Sab   | -0.47                   |                         |                  | 1.86             | 0.02                  | -0.14                   | 0.54                 | 0.11                  | S0     |                     | .67   | 1.03                | 1.00   |              |        | -0.75              | -0.40              | 0.09            |
| Sbc   | -0.38                   |                         |                  | 1.46             | 0.02                  | -0.14                   | 0.39                 | 0.08                  | Sab    | 0.                  | .68   | 1.01                | 0.9    | 4 -0         | .06    | -0.74              | -0.40              | 0.08            |
| Scd   | -0.49                   |                         |                  | 1.33             | 0.02                  | -0.13                   | 0.34                 | 0.07                  | Sbc    | 0.                  | .51   | 0.81                | 0.73   |              |        | -0.54              | -0.35              | 0.07            |
| Im    | -0.66                   |                         |                  | 0.96             | 0.02                  | -0.07                   | 0.23                 | 0.05                  | Scd    |                     | .44   | 0.72                | 0.6    |              | .01    | -0.44              | -0.32              | 0.06            |
| E(CWW | () 0.61                 | 2.36                    |                  | 2.17             | 0.02                  | -0.55                   | 0.63                 | 0.12                  | Im     |                     | .28   | 0.52                | 0.49   |              |        | -0.29              | -0.25              | 0.05            |
|       |                         |                         | (c)              | Couch-Ne         | ewell                 |                         |                      |                       | E(CWW  | ) 0.                | .70   | 1.11                | 1.1    |              | .03    | -0.72              | -0.44              | 0.08            |
|       |                         | type                    | Вл -             |                  | $B_{\rm J}-B$         | $R_{\rm F} - R_{\rm C}$ |                      |                       |        |                     |       |                     | (h) PO |              |        |                    |                    |                 |
|       |                         | E                       |                  | 2.52             | -0.11                 | -0.04                   |                      |                       | type   | g <sub>POSS</sub> - |       | r <sub>POSS</sub> - |        | POSS - B     |        |                    | $r_{POSS} - R_{C}$ |                 |
|       |                         | S0                      |                  | 2.50             | -0.11                 | 0.00                    |                      |                       | E      |                     | 1.61  |                     | 1.17   | -0.66        |        | 0.57               | 0.40               |                 |
|       |                         | Sab                     | - 1              | 2.41             | -0.09                 | -0.06                   |                      |                       | S0     |                     | 1.58  |                     | 0.99   | -0.65        |        | 0.57               | 0.37               | 0.87            |
|       |                         | Sbc                     | 1                | 1.76             | -0.09                 | -0.14                   |                      |                       | Sab    |                     | 1.54  |                     | 0.92   | -0.56        |        | 0.54               | 0.34               |                 |
|       |                         | Scd                     |                  | 1.54             | -0.09                 | -0.13                   |                      |                       | Sbc    |                     | 0.91  |                     | 0.64   | -0.51        |        | 0.21               | 0.30               |                 |
|       |                         | Im                      |                  | 0.94             | -0.03                 | -0.15                   |                      |                       | Scd    |                     | 0.71  |                     | 0.58   | -0.48        |        | 0.18               | 0.31               |                 |
|       |                         | E(CWW)                  |                  | 3.07             | -0.44                 | 0.04                    |                      |                       | Im     |                     | 0.29  |                     | 0.35   | -0.21        |        | 0.05               | 0.32               |                 |
|       |                         | (d) Schne               | eider. S         | Schmidt &        | Gunn: 4-              | shooter                 |                      |                       | E(CWW) |                     | 1.60  |                     | 1.16   | -1.55        |        | 0.60               | 0.39               | 0.90            |
| type  | $g_4 - r_4$             | <del></del>             | 4 - Z4           | g <sub>4</sub> - |                       |                         | $i_4 - I_C$          | $z_4 - I_{\rm C}$     |        |                     |       |                     | (i) SE |              |        |                    |                    |                 |
| E     | 1.50                    | 1.40                    | 0.53             | -0.6             |                       |                         |                      | 0.23                  | type   | u'-g'               | g'-r' | r'-i'               | i'-z'  |              | g' - B | r'-F               |                    |                 |
| S0    | 1.48                    | 1.17                    | 0.44             | -0.6             |                       |                         |                      | 0.31                  | E      | 0.73                | 1.76  |                     | 0.84   | 0.73         | -0.38  | 0.                 |                    | -0.10           |
| Sab   | 1.45                    | 1.07                    | 0.40             | -0.6             |                       |                         |                      | 0.35                  | S0     | 0.73                | 1.74  | 1.29                | 0.70   | 0.73         | -0.37  | 0.4                |                    | -0.02           |
| Sbc   | 0.86                    | 0.73                    | 0.26             | -0.5             |                       |                         |                      | 0.49                  | Sab    | 0.41                | 1.64  | 1.25                | 0.63   | 0.71         | -0.33  | 0.4                |                    | 0.03            |
| Scd   | 0.67                    | 0.66                    | 0.21             | -0.4             |                       |                         |                      | 0.53                  | Sbc    | 0.51                | 0.96  | 0.97                | 0.41   | 0.70         | -0.35  | 0.4                |                    | 0.17            |
| Im    | 0.26                    | 0.40                    | 0.09             | -0.2             |                       |                         |                      | 0.65                  | Scd    | 0.37                | 0.80  |                     | 0.34   | 0.68         | -0.33  | 0.3                |                    | 0.21            |
| E(CWW |                         | 1.38                    | 0.55             | -1.5             |                       |                         |                      | 0.21                  | Im     | 0.14                | 0.35  |                     | 0.16   | 0.70         | -0.18  | 0.5                |                    | 0.34            |
|       | -/tress.                | (e) Sch                 | neider           | , Gunn &         | Hoessel:              | Pfuei                   |                      |                       | E(CWW) | 1.70                | 1.97  | 1.47                | 0.86   | 0.64         | -1.03  | 0.4                | 55 0.74            | -0.12           |
| tun   |                         | r r - i                 |                  |                  |                       |                         | i _ Ia - 7 .         |                       |        |                     |       |                     |        |              |        |                    |                    |                 |

0.23

0.31

0.35

0.49

0.53

0.64

Hubble Space Telescope (Burrows et al. 1994). We also add two more recent survey photometric systems, gri of the Second Palomer Sky Survey (POSS II) (Djorgovsky, private communication) and u'g'r'i'z' of the Sloan Digital Sky Survey (SDSS) (Fukugita et al. 1995). The response curves are compiled in Fig. 11, and the characteristics are summarized in Appendix A. 1.0 airmass is assumed throughout our study, except for those for WFPC2. We also include the photometric band of Strömgren uvby (Strömgren 1963) in this figure (the response functions are taken from Matsushima 1969 and Olson 1974).

0.83

-0.82

-0.73

-0.55

-0.52

-0.21

0.40

0.40

0.37

0.17

0.14

0.05

0.39 0.79

0.36 0.79

0.32 0.76

0.34

0.34 0.74

1.28 1.09

1.39

1.35 1.00 0.43

0.84 0.71 0.28

 $0.65 \quad 0.64 \quad 0.23$ 

0.27 0.39 0.10

S0 Sab

Sbc

Scd

0.58

0.48

We note that for photometric bands defined with the use of CCD we take the definition,



Fig. 12—Difference of the K corrections for (a)  $J_K-B$  and (b)  $F-R_C$ . The meaning of curves is the same as for Fig. 10.

$$m = -2.5 \log \frac{\int d\nu S(\nu) f_{\nu} / \nu}{\int d\nu S(\nu) / \nu} - \text{const.}, \tag{9}$$

where  $S(\nu)$  is a product of the overall transmission function and the quantum efficiency of CCD, as usually adopted. An extra  $\nu^{-1}$  is inserted so that the integrand is proportional to the photon number received at a detector (Gunn, private communication). On the other hand, we use an integral over  $R(\lambda)$  times the flux for photoelectric (and also photographic) magnitude, since R is measured as a net response of the system.

In Table 3 we show color differences among various pho-



Fig. 13—As Fig. 12, but for the 4-shooter vs. the standard: (a)  $g_4 - V$  and (b)  $r_4 - R_C$ . Note a different definition (Thuan–Gunn definition) of the zero point for the 4-shooter photometric system.

#### 954 FUKUGITA ET AL.



Fig. 14—As Fig. 12, but for WFPC2 vs. the standard: (a) F555-V, (b) F606-V, and (c)  $F702-R_C$ .



Fig. 15—As Fig. 12, but for POSS II vs. the standard: (a)  $g_{POSS} - B$  and (b)  $g_{POSS} - V$ . The Thuan-Gunn definition is adopted for the zero point in POSS II



Fig. 16—As Fig. 12, but for SDSS vs. the standard: (a) u'-U, (b) g'-B, (c) g'-V, (d)  $r'-R_C$ , (e)  $i'-I_C$ , and (f)  $z'-I_C$ . The AB magnitude system is adopted in the SDSS system.

tometric bands for 6 morphology types of galaxies using the composite SED obtained from the K92 data and data of Bertola et al. (1982) as discussed in Sec. 3. Galactic reddening is not corrected for these colors. A color difference between two arbitrary bands can be obtained by arithmetically combining two or more numbers. A remark must be made on the zero point of each system. In the standard system magnitudes and colors are defined by some specific samples of stars (e.g., stars in the North Polar Sequence for V magnitude; 6 specific bright A0 V stars for B-V etc.), and therefore neither magnitude nor colors is necessarily precisely zero for  $\alpha$  Lyr. For  $\alpha$  Lyr, V=0.03, B-V=0, U-B=-0.01(Johnson and Morgan 1953), V-Rc=0 and V-Ic=0.006(Taylor 1986; Bessell 1983). The majority of recent efforts to establish accurate brightnesses of stars have adopted these systems and calibrations (e.g., Landolt 1983; 1992). For the Johnson redder colors,  $V-R_J = -0.07$  and  $R_J-I_J = -0.02$ (Johnson 1966) for  $\alpha$  Lyr. Most of photometry in different photometric band systems takes the zero point which agrees with that of the nearby colors in the standard system for A0 V stars. This also applies to the calibration of Holzman et al. (1995) for WFPC2.

An exception is the definition of Thuan-Gunn uvgr and its CCD versions (Schneider et al. 1983, 1989). For these systems Gunn and collaborators have defined the zero point so that all magnitudes of an F subdwarf BD+17°4708 are 9.5. This definition has also been adopted in POSS II. For convenience, we give in Table 4 magnitudes of  $\alpha$  Lyr in the Thuan-Gunn definition. Another zero point, recently more popular in the photometry work using CCD, is the AB magnitude (Oke and Gunn 1983). We assume the AB magnitude system for ABCD and the photometric bands for SDSS. AB magnitude is defined by AB =  $-2.5 \log f_{\nu}^{\text{eff}} - 48.60$ , where  $f_{\nu}$  is in units of erg cm<sup>-2</sup> s<sup>-1</sup> Hz<sup>-1</sup>. We give in Table 5 the AB magnitude of  $\alpha$  Lyr for various photometric systems. From Tables 4 and 5 it is straightforward to calculate translation between AB or Thuan-Gunn magnitude and that defined in a conventional way, as

<sup>&</sup>lt;sup>2</sup>Holzman et al. (1994) adopted  $R_c$  = 0.039 and  $I_c$  = 0.035 for α Lyr, instead of Rc = 0.03 and  $I_c$  = 0.024. Therefore, their magnitude appear fainter than the standard Cousins magnitude used in this article by  $R_c$ (Holzman) =  $R_c$  + 0.009 mag and I(Holzman) =  $I_c$  + 0.011 mag. For the WFPC2 photometric system we followed the definition of Holzman et al.: F505W-V=0; F606W-V=0;  $F702W-R_c$  (this paper) = 0.009;  $F814-I_c$  (this paper)=0.011 for α Lyr.

TABLE 9
Characteristics of Photometric Bands

|                  | <del></del>                        |                   |                           |             | Vega                            | ¿Vega                                                               | / Vegav_1                                 | «Vega                                                           |
|------------------|------------------------------------|-------------------|---------------------------|-------------|---------------------------------|---------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|
| bandpass system  | band                               | ref <sup>a)</sup> | $\lambda_{	ext{eff}}$ (Å) | FWHM<br>(Å) | λ <sup>Vega</sup><br>eff<br>(Å) | $f_{\lambda, 	ext{eff}}^{	ext{Vega}} \ (	imes 10^{-9} 	ext{cgs/Å})$ | $c( u_{	ext{eff}}^{	ext{Vega}})^{-1}$ (Å) | $f_{ u,	ext{eff}}^{	ext{Vega}} \ (	imes 10^{-20} 	ext{cgs/Hz})$ |
| Johnson-Morgan   | $U_3$                              | Buser 78          | 3652                      | 526         | 3709                            | 4.28                                                                | 3617                                      | 1.89                                                            |
| Ŭ                | $B_2$                              | AS69              | 4448                      | 1008        | 4393                            | 6.19                                                                | 4363                                      | 4.02                                                            |
|                  | V                                  | AS69              | 5505                      | 827         | 5439                            | 3.60                                                                | 5437                                      | 3.59                                                            |
| Cousins          | $R_{ m C}$                         | Bessell 90        | 6588                      | 1568        | 6410                            | 2.15                                                                | 6415                                      | 3.02                                                            |
|                  | $I_{\mathrm{C}}$                   | Bessell 90        | 8060                      | 1542        | 7977                            | 1.11                                                                | 7980                                      | 2.38                                                            |
| Johnson          | $R_{ m J}$                         |                   | 6930                      | 2096        | 6688                            | 1.87                                                                | 6693                                      | 2.89                                                            |
| Johnson          | $I_{ m J}$                         |                   | 8785                      | 1706        | 8571                            | 0.912                                                               | 8545                                      | 2.28                                                            |
| a 1 a 111        |                                    |                   | 2215                      |             | 0210                            |                                                                     | 0010                                      | 1.00                                                            |
| Sandage-Smith    | $egin{array}{c} u \ b \end{array}$ |                   | 3647<br>4466              | 595<br>1028 | 3710<br>4407                    | 4.30<br>6.10                                                        | 3610<br>4369                              | $\frac{1.89}{3.97}$                                             |
|                  | v                                  |                   | 5423                      | 823         | 5368                            | 3.75                                                                | 5365                                      | 3.64                                                            |
|                  | r                                  |                   | 6712                      | 969         | 6628                            | 1.96                                                                | 6629                                      | 2.90                                                            |
| Strömgren        | u                                  | Olson74           | 3465                      | 363         | 3496                            | 3.24                                                                | 3452                                      | 1.31                                                            |
| ottoingten .     | v                                  | Matsu69           | 4109                      | 197         | 4119                            | 7.21                                                                | 4103                                      | 4.12                                                            |
|                  | b                                  | Olson74           | 4668                      | 176         | 4666                            | 5.68                                                                | 4663                                      | 4.15                                                            |
|                  | $\boldsymbol{y}$                   | Olson74           | 5459                      | 244         | 5455                            | 3.62                                                                | 5453                                      | 3.60                                                            |
| Kron             | $U_{\mathbf{K}}$                   | Koo 85            | 3656                      | 556         | 3737                            | 4.32                                                                | 3617                                      | 1.93                                                            |
| 111011           | $J_{\rm K}$                        | 1100 00           | 4625                      | 1550        | 4537                            | 5.54                                                                | 4467                                      | 3.82                                                            |
|                  | $F_{ m K}$                         |                   | 6168                      | 1330        | 5978                            | 2.64                                                                | 5982                                      | 3.25                                                            |
|                  | $N_{ m K}$                         |                   | 7953                      | 1786        | 7838                            | 1.17                                                                | 7842                                      | 2.44                                                            |
| Couch-Newell     | $B_{ m J}$                         |                   | 4604                      | 1490        | 4515                            | 5.73                                                                | 4474                                      | 3.95                                                            |
|                  | $R_{ m F}$                         |                   | 6694                      | 517         | 6679                            | 1.92                                                                | 6677                                      | 2.86                                                            |
| Thuan-Gunn       | u                                  |                   | 3536                      | 412         | 3542                            | 3.33                                                                | 3519                                      | 1.38                                                            |
| I man-Gum        | v                                  |                   | 3992                      | 469         | 4013                            | 6.62                                                                | 3967                                      | 3.50                                                            |
|                  | g                                  |                   | 4927                      | 709         | 4888                            | 4.84                                                                | 4885                                      | 3.89                                                            |
|                  | r                                  |                   | <b>653</b> 8              | 893         | 6496                            | 2.09                                                                | 6498                                      | 2.96                                                            |
| Schneider et al. | $g_4$                              |                   | 5147                      | 913         | 5083                            | 4.34                                                                | 5075                                      | 3.78                                                            |
| (4-shooter)      | $r_4$                              |                   | 6659                      | 1028        | 6600                            | 1.99                                                                | 6599                                      | 2.92                                                            |
|                  | $i_4$                              |                   | 8056                      | 1604        | 7942                            | 1.13                                                                | 7941                                      | 2.41                                                            |
|                  | $z_4$                              |                   | 9141                      | 1472        | 9071                            | 0.797                                                               | 9045                                      | 2.20                                                            |
| Schneider et al. | g                                  |                   | <b>523</b> 8              | 882         | 5166                            | 4.14                                                                | 5160                                      | 3.74                                                            |
| (Pfuei)          | r                                  |                   | 6677                      | 916         | 6602                            | 1.98                                                                | 6603                                      | 2.91                                                            |
|                  | i                                  |                   | 7973                      | 1353        | 7876                            | 1.16                                                                | 7876                                      | 2.43                                                            |
|                  | z                                  |                   | 9133                      | 984         | 9054                            | 0.798                                                               | 9029                                      | 2.19                                                            |
| Schneider et al. | $\boldsymbol{A}$                   |                   | 6401                      | 534         | 6384                            | 2.19                                                                | 6388                                      | 2.99                                                            |
| (narrow bands)   | $\boldsymbol{B}$                   |                   | 6904                      | 450         | 6899                            | 1.77                                                                | 6895                                      | 2.81                                                            |
|                  | C                                  |                   | 7526                      | 608         | 7508                            | 1.36                                                                | 7509                                      | 2.56                                                            |
|                  | D                                  |                   | 8087                      | 515         | 8077                            | 1.08                                                                | 8075                                      | 2.35                                                            |
| Tyson (CCD)      | $B_{ m J}$                         |                   | 4614                      | 1215        | 4562                            | 5.46                                                                | 4477                                      | 3.80                                                            |
|                  | R                                  |                   | 6585                      | 1373        | 6503                            | 2.08                                                                | 6504                                      | 2.97                                                            |
|                  | I                                  |                   | 8668                      | 1725        | 8532                            | 0.928                                                               | 8508                                      | 2.28                                                            |
| WFPC2            | F555W                              |                   | 5536                      | 1480        | 5387                            | 3.62                                                                | 5381                                      | 3.60                                                            |
|                  | F606W                              |                   | 6102                      | 2050        | 5901                            | 2.73                                                                | 5900                                      | 3.28                                                            |
|                  | F702W                              |                   | 6979                      | 1957        | 6826                            | 1.77                                                                | 6829                                      | 2.82                                                            |
|                  | F814W                              |                   | 8092                      | 1653        | 7906                            | 1.14                                                                | 7923                                      | 2.43                                                            |
| POSS II          | $g_{ m POSS}$                      |                   | 5154                      | 942         | 5121                            | 4.25                                                                | 5113                                      | 3.74                                                            |
|                  | $r_{ m POSS}$                      |                   | 6696                      | 1050        | 6632                            | 1.96                                                                | 6632                                      | 2.90                                                            |
|                  | iPOSS                              |                   | 7837                      | 1469        | 7756                            | 1.21                                                                | 7761                                      | 2.46                                                            |
| SDSS             | u'                                 |                   | 3585                      | 556         | 3594                            | 3.67                                                                | 3530                                      | 1.54                                                            |
|                  | g'                                 |                   | 4858                      | 1297        | 4765                            | 5.11                                                                | 4748                                      | 3.93                                                            |
|                  | r'                                 |                   | 6290                      | 1358        | 6205                            | 2.40                                                                | 6210                                      | 3.12                                                            |
|                  | i'                                 |                   | 7706                      | 1547        | 7617                            | 1.28                                                                | 7623                                      | 2.51                                                            |
|                  | z'                                 |                   | 9222                      | 1530        | 9123                            | 0.783                                                               | 9098                                      | 2.19                                                            |

Note — a) References are given whenever the response functions are taken from those which are different from the original ones. AS69 stands for Azusienis & Straizys 1969, and Matsu69 for Matsushima 1969.



Fig. 17—K corrections for the  $U_K J_K F_K N_K$  photometric system. The meaning of curves is the same as that in Fig. 10.

$$m_{AB} = (m - c_i) + m_{AB}(\alpha \text{ Lyr}),$$
  
 $m_{TG} = (m - c_i) + m_{TG}(\alpha \text{ Lyr}),$ 

where  $c_i$  is a small band(i)- dependent constant representing the magnitude of  $\alpha$  Lyr in the conventional system (see Eqs.(2)-(8)). We remark that with the H85 flux zero point, the AB magnitude of  $\alpha$  Lyr at 5480 Å is 0.012 mag, rather than 0.03 mag as it is with the Oke–Gunn zero point (Fukugita et al. 1995).

The numbers in Table 3 across the different photometric band system show that the color difference between the neighboring color bands, e.g., B and  $J_K$  or  $B_J$ ,  $R_C$  and  $R_J$ , etc., is generally  $\approx 0.15$  mag for typical



Fig. 18—K corrections for the WFPC2 photometric system. The meaning of curves is the same as that in Fig. 10



Fig. 19—K corrections for the POSS II photometric system. The meaning of curves is the same as that in Fig. 10.

galaxies (at z=0);  $\langle J_K - B \rangle \approx -0.15$ ,  $\langle B_J - B \rangle \approx -0.12$  and  $\langle J_{Ty} - B \rangle \approx -0.13$ .  $J_K$ ,  $B_J$  and  $J_{Ty}$  are practically the same, allowing for errors of 0.03 mag.

Similar tables (somewhat reduced) are also given for galaxies when they are brought to z=0.2 (Table 6), z=0.5(Table 7) and z = 0.8 (Table 8). These tables give us transformation laws for brightness of faint galaxies observed in nonstandard photometric bands into that in the standard system, either with conventional magnitudes or with AB magnitude. An interesting observation in Tables 6-8 is that the colors in neighboring bands change significantly with redshift. For instance, the color difference  $J_K - B$  for Sab galaxies, which are -0.14 at z=0 decreases to -0.31 at z=0.2, and -0.35at z = 0.5 (the variation is slightly less in  $B_J - B$ ). This variation is particularly large, since the 4000 Å discontinuity moves to the  $B-J_K$  region at z=0.2. For clarity, we depicted in Fig. 12(a) the difference of the K-corrections between  $J_K$  and B bands (reddening corrections are made for this figure: so the values are slightly different from those in Tables 6-8). The difference is indeed as large as 0.4 at  $z \approx 0.15$  and probably more at  $z \approx 0.6$ . On the other hand, the transformation from  $J_K$  to B is usually taken into account merely by a constant shift of magnitude in most number count analyses. This means that the  $J_K$  count, if presented in B magnitude or compared with a calculation made for Bmagnitude, shows extra "brightening" by 0.2 mag from z=0to z=0.2. This is a non-negligible effect when compared with recently achieved accuracy of the number count. A similar effect is seen with  $F_K$  and  $R_C$  bands, but at higher z, as expected from the difference of the two K corrections shown in Fig. 12(b). The offsets of  $U_K$  vs. U and N vs. I are small and stay almost at constant. Similar offsets among a few photometric systems are given in Figs. 13-16. Figure 13 shows 4-shooter versus the standard:  $g_4 - V$  and  $r_4 - R_c$ .  $i_4 - I_c$  stays at 0.73-0.75 for the entire z range, and is omitted. The WFPC2 color versus the standard color is given in



Fig. 20—K corrections for the SDSS photometric system. The meaning of curves is the same as that in Fig. 10.

Fig. 14.  $F814W-I_c$  is not shown, since the curves show only a modest increase: from 0.05 at  $z\!=\!0$  to 0.1 at  $z\!=\!1$  for all morphological types. Figure 15 refers to the POSS II system. Figures for  $r_{\rm POSS}-R_c$  (which stays at 0.65–0.8) and  $i_{\rm POSS}-I_c$  (0.75 at  $z\!=\!0$  increases to 0.95 (E) or 0.8 (Im) at  $z\!=\!1$ ) are omitted. Figure 16 shows the SDSS system versus the standard colors. K corrections are also presented in Appendix B for a few photometric systems used in modern galaxy surveys.

We thank Andy Connolly, Harry Ferguson, and Don Schneider for providing us some of tables of the color response function and Y. Takeda for generating a numerical table of the CK94 SED for  $\alpha$  Lyr. Useful discussions with Jim Gunn about the definition of the response function are gratefully acknowledged. We also thank George Djorgovsky and Edwin Turner for valuable comments improving the manuscript. This work is supported in part by Grant-in-Aid of the Ministry of Education of Japan (05101002) and Japan-US Science Programme by JSPS. K. S. is supported in part by NSF grant AST94-19400. M. F. also wishes to acknowledge generous support from the Fuji Xerox Corporation.

# APPENDIX A: CHARACTERISTICS OF VARIOUS FILTERS

In Table 9 we present a compilation of characteristics of frequently used photometric bands. We take

$$\lambda_{\text{eff}} = \frac{\int d\lambda \lambda R(\lambda)}{\int d\lambda R(\lambda)},\tag{A1}$$

$$f_{\lambda}^{\text{eff}}(\alpha \text{ Lyr}) = \frac{\int d\lambda f_{\lambda}(\alpha \text{ Lyr})R(\lambda)}{\int d\lambda R(\lambda)},$$
 (A2)

$$\lambda_{\text{eff}}(\alpha \text{ Lyr}) = \frac{\int d\lambda \lambda f_{\lambda}(\alpha \text{ Lyr}) R(\lambda)}{\int d\lambda f_{\lambda}(\alpha \text{ Lyr}) R(\lambda)}, \quad (A3)$$

in agreement with the conventional definition. The flux of (A2) is given for the actual flux of  $\alpha$  Lyr, rather than at zero magnitude. Hence, the flux for zero magnitude has some offset corresponding to the definition of the zero magnitude. The denominator of (A2) is close to the FWHM if the peak of the response function is normalized to unity: the difference is usually of the order of <5% except for the case of Kron  $J_K$  and  $N_K$ , the response functions of which are double peaked. For the Johnson–Morgan system, the values given in Table 9 show a very good agreement with those given in Buser (1978), where available in the latter literature. Where we adopt the definition (9), the effective lambda is defined with the flux  $f_{\nu} \sim \nu^{-2}$ , consistent with  $f_{\lambda} = \text{const.}$  in (A1).

We also give quantities similar to (A2) and (A3), but defined in terms of  $\nu$ :

$$f_{\nu}^{\text{eff}}(\alpha \text{ Lyr}) = \frac{\int d\nu f_{\nu}(\alpha \text{ Lyr})R(\nu)}{\int d\nu R(\nu)},$$
 (A4)

$$\nu_{\text{eff}}(\alpha \text{ Lyr}) = \frac{\int d\nu \nu f_{\nu}(\alpha \text{ Lyr}) R(\nu)}{\int d\nu f_{\nu}(\alpha \text{ Lyr}) R(\nu)}$$
(A5)

where  $f_{\nu} = \lambda^2 f_{\lambda} / c$  and  $R_{\nu} = R_{\lambda}$ .

# APPENDIX B: K CORRECTIONS FOR SELECTED FILTERS

In this appendix we present K corrections for the Kron system, WFPC 2, POSS II, and SDSS photometric systems (Figs. 17–20). The Galactic absorption is corrected. The meaning of figures is the same as that for Fig. 10.

### REFERENCES

Arp, H. 1961, ApJ, 133, 874

Azusienis, A. and Straizys, V. 1969, AZ, 13, 316

Bessell, M. S. 1976, PASP, 88, 557

Bessell, M. S. 1983, PASP, 95, 486

Bessell, M. S. 1990, PASP, 102, 1181

Bertola, F., Capaccioli, M., and Oke, J. B. 1982, ApJ, 254, 494

Burrows, C. J., Clampin, M., Griffiths, R. E., Krist, J., and MacKenty, J. W. 1994, Hubble Space Telescope, Wide Field and Planetary Camera 2, Instrument Handbook, version 2.0 (Baltimore, Space Telescope Science Institute)

Buser, R. 1978, A&A, 62, 411

Buser, R., and Kurucz, R. L. 1978, A&A, 70, 555

Castelli, F., and Kurucz, R. L. 1994, A&A, 281, 817 (CK94)

### 958 FUKUGITA ET AL.

Code, A. D. 1960, Stars and Stellar Systems, Vol. 6: Stellar Atmospheres, ed. J. L. Greenstein (Chicago, University of Chicago Press), p. 50

Coleman, C. D., Wu, C.-C., and Weedman, D. W. 1980, ApJS, 43, 393

Couch, W. J., and Newell, E. B. 1980, PASP, 92, 746

Cousins, A. W. J. 1978, MNASSA, 37, 8

de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G., Buta, R. J. Paturel, G., and Fouqué 1991, Third Reference Catalogue of Bright Galaxies (New York, Springer) (RC3)

Frei, Z., and Gunn, J. E. 1994, AJ, 108, 1476

Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., and Schneider, D. P. 1995, preprint

Gunn, J. E., and Stryker 1982, ApJS, 52, 121

Hayes, D. S. 1975, in Multicolor Photometry and the Theoretical HR Diagram, ed. A. G. D. Philip and D. S. Hayes, Dudley Observatory Report, No. 9, p.309

Hayes, D. S. 1985, in Calibration of Fundamental Stellar Quantities, IAU Symposium 111, ed. D. S. Hayes et al. (Dordrecht, Reidel) p.225 (H85)

Hayes, D. S., and Latham, D. W. 1975, ApJ, 197, 593

Holzman, J. A., Burrows, C. J., Casertano, S., Hester, J. J., Trauger, J. T., Watson, A. M., and Worthey, G. 1995, preprint

Jacoby, G. H., Hunter, D. A., and Christian, C. A. 1984, ApJS, 56, 257

Johnson, H. L. 1965, ApJ, 141, 923

Johnson, H. L., and Morgan, W. W. 1953, ApJ, 117, 313

Kennicutt, R. C. 1992, ApJS, 79, 255 (K92)

Koo, D. C. 1985, AJ, 90, 418

Kron, R. G. 1980, ApJS, 43, 305

Kurucz, R. L. 1979, ApJS, 40, 1

Landolt, A. U. 1983, AJ, 88, 439

Landolt, A. U. 1992, AJ, 104, 340

Matthews, T. A., and Sandage, A. 1963, ApJ, 138, 30

Matsushima, S. 1969, ApJ, 158, 1137

Oke, J. B., Bertola, F., and Capaccioli, M. 1981, ApJ, 243, 453

Oke, J. B., and Gunn, J. E. 1983, ApJ, 266, 713

Oke, J. B., and Schild, R. E. 1970, ApJ, 161, 1015

Olson, E. C. 1974, PASP, 86, 80

Pence, W. 1976, ApJ, 203, 39

Sandage, A., and Smith, L. L. 1963, ApJ, 137, 1057

Schild, R. and Oke, J. B. 1971, ApJ, 169, 209

Schneider, D. P., Gunn, J. E., and Hoessel, J. G. 1983, ApJ, 264, 337

Schneider, D. P., Schmidt, M., and Gunn, J. E. 1989, AJ, 98, 1507 Schneider, D. P., Schmidt, M., and Gunn, J. E. 1991, AJ, 102, 837

Straizys, V., Sudzius, J., and Kuriliene, G. 1976, A & A 50, 413

Strömgren, B. 1963, in Basic Astronomical Data, ed. K. Å. Strand

(Chicago, University of Chicago Press), Vol. III, p. 131

Taylor, R. J. 1986, ApJS, 60, 577

Thuan, T. X., and Gunn, J. E. 1976, PASP, 88, 543

Turnrose, B. E. 1976, ApJ, 210, 33

Tyson, J. A. 1988, AJ, 96, 1

Wells, D. C. 1972, PhD thesis

Whitford, A. E. 1971, ApJ, 169, 215