Лабораторная работа № 3.5.1 "Изучение плазмы газового разряда в неоне"

Кирилл Шевцов Б03-402 16.09.2025

Цель работы

Изучить вольт-амперную характеристику тлеющего разряда, изучить свойства плазмы методом зондовых характеристик.

Оборудование

Стеклянная газоразрядная трубка, наполненная неоном, источник напряжения, делитель напряжения, потенциометр, амперметры, амперметры, переключатели.

Лабораторная установка

Стеклянная газоразрядная трубка имеет ненагреваемый полый катод, три анода и геттерный узелстеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона при давлении 2 мм. рт. столба. Катод и один из анодов (первый или второй) с помощью переключателя P_1 подключаются через балластный резистор R_b к регулируемому ВИП. При подключении первого анода к ВИП, между ним и катодом возникает

Рис. 1: установка для исследования газового разряда

газовый разряд. Ток разряда измеряется амперметром A_1 , падение напряжения - на вольтметре V_1 , подключенным к трубке через делитель напряжения с коэффициентом, равным $\alpha = R_1 + R_2/R_2$. При подключении к ВИП второго анода, возникает газовый разряд между катодами и вторым анодом, где находится двойной зонд, необходимый для диагностики плазмы. Третий анод в работе не используется.

Необходимые формулы

Для поля \vec{E} и плотности ho электрического заряда теорема Гаусса в дифференциальной форме:

$$div\vec{E} = \rho \to \frac{d^2\varphi}{dr^2} + \frac{2d\varphi}{rdr} = -4\pi\rho \tag{1}$$

Последнее выражение записано в сферических координатах.

Важнейшний плазменный параметр, задающий характерный пространственный масштаб многих плазменных явления - дебаевский радиус:

$$r_D = \sqrt{\frac{k_B T_e}{4\pi n_e e^2}} \tag{2}$$

Выражения для среднего числа ионов в дебаевской сфере:

$$N_D = \frac{4}{3}nr_D^2 \tag{3}$$

Частота коллективных колебаний электронов относительно квазинейтрального состояния (то есть такого состояния, при котором равна нулю средняя плотность заряда):

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} \tag{4}$$

Выполнение работы

- 1. Настроим установку для ВАХ газового разряда согласно инструкции, плавно увеличивая показания ВИП, запишем напряжение зажигания, показание вольтметра V_1 :
- 2. С помощью вольтметра V_1 и амперметра A_1 измерим BAX газового разряда $I_p(U_p)$. Ток изменяется в диапазоне 0.5-5.0 мА. Построим BAX разряда, определим дифференциальное сопротивление.
- 3. По каждой зондовой характеристике определим ионный ток насыщения, наклон характеристики dI/dU в начале координат.
- 4. По результатам предыдущего пункта рассчитаем температуру электронов T_e , концентрацию электронов и ионов в плазме. Считам площадь поверхности зонда равной $S \approx \pi dl$, необходимые параметры указаны на установке.
- 5. Рассчитаем плазменную частоту колебаний ω_p , электронную поляризационную длину r_{D_e} и дебаевский радиус экранирования r_D .
- 6. Оценим степень ионизации плазмы, считая давление в трубке $P \approx 2$ торр.
- 7. Построим графики зависимости $T_e(I_p)$, $n_e(I_p)$.