# PROJECT REPORT DEEP NEURAL NETWORK

SAI CHARAN REDDY PISATI 200490526 Name: Sai Charan Reddy Pisati

Unity Id: spisati2 Student Id: 200490526

Delay:30920.4ns Clock period:5.9ns #Cycles:4908

#Cycles input1=3554 #Cycles input2=1354

Delay(TA provided example) TA to complete Logic Area:  $18091.1918 \mu m^2$ 

MEMORY=N/A

1/(delay.area) =  $0.178767151 \times 10^{-8} \mu m^{-2} n s^{-1}$ 

1/delay.area(TA)

#### **Abstract:**

Convolutional Neural Networks are designed to detect the real time images. The aim is to design the model using Verilog language at the hardware level. The purpose of it is to improve storage and computation, and serves as a technique for deep models on resource-limited devices. The project intends to develop a multi-stage neural network which performs convolution and ReLu activation function and the max pooling operation on the inputs provided from SRAM Memory unit. The model takes the NXN input matrix as input each of size 8-bit, weight matrix kernel of 8-bit size. The operation is performed on input and kernel matrix then transferred to the ReLu function, is a piecewise linear function that will output the input directly if it is positive, otherwise, it will output zero. It is being used because a model that uses it is easier to train and often achieves better performance. The model follows a 18 stage Finite State Machine, following the data reading from addresses and writing back the convoluted output to Output SRAM'S. The hardware is designed to meet the hold and setup violations, minimal area and slack. The outputs are verified with ModelSim and synthesis is done using Synopsys Design Vision.

# **Contents**

- 1)Introduction
- 2) Micro-Architecture
- 3) Interface Specification
- 4) Technical Implementation
- 5) Verification
- 6) Results Achieved
- 7) Conclusion

#### 1.Introduction

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm that can take in an input image, assign importance (learnable weights and biases) to various aspects/objects in the image, and be able to differentiate one from the other.

An ANN is a multi-level network that can perform inference. It's composed, in part of a set of neurons per the figure below. x,w,f() are the activation, weights and nonlinear functions.



The input to the neuron is the weighted sum of inputs  $\Sigma$  w\_i\*x\_i, where x\_i are the inputs and w\_i are the weights. In this project, all variables are 8-bit signed integers. x\_i can only take on positive values. Computations are to saturate, not overflow. With 8-bits you can represent integers from -128 to +127 digital. +127 is represented as 0111\_1111 or 7F.

The output of the sum of weights is then passed to an activation function f. This is a nonlinear function and represents an important reason why ANNs are so effective. We will use the ReLu activation function, illustrated below





In a convolutional neural network layer, the weight matrix, called a kernel, is smaller than the input matrix, and an output matrix is produced with a size smaller than the input.

In a convolutional stage the kernel is multiplied by a subrange of the input to produce the feature map. For example, using row major ordering, element [0,1] of the feature map is produced by the following computation

$$F[0,1] = f(i[0,1]*k[0,0] + i[0,2]*k[0,1] + i[0,3]*k[0,2] + ... i[2,3]*k[2,2])$$



The further sections elaborate about the design, architecture, technical implementation, FSM, schematic and results achieved

#### 2.Micro Architecture

"Design before coding " approach has been used while designing the model. The design consists of Input SRAM, Weight SRAM's, which provide the required inputs to the model, higher byte and lower byte are the values stored in the matrices. The interface consists of the read\_address, read\_data for both the SRAM's. The information passed to the Multiply & Adder units, stored in the accumulator then written to the output SRAM.



Design's I/O ports illustration.

#### High Level Design



#### Algorithm

The algorithm implemented is, we took 4x4 input from NxN input address and 3x3 weight matrices from KxK weight addresses are fetched to the registers. Then 3x3 inputs are taken in the order then multiplied with the corresponding weights, then added to the adder unit. I used control signals like rc and cc to keep the counts of the rows and counts when I have to iterate. We need to send the outputs of multiply & add units to the ReLu unit. We use two relus for two multiply & adder units. Two max pooling units which filter out the clutter. Gives the maximum value of the window. Then, we write the data to the output SRAM. We enable the write enable signal when we need to write the data to the addresses. We store the two relu outputs on the each address. r+size/2 formula to iterated over the rows and counts to move around. The architecture shows the data flow from the input address and weight address to the required registers. The data is stored in the registers to hold the data and then transferred to the multiply & add units for convolution.



The select lines decides the state in s11 which enables the writing data to the SRAM for output



The block diagram writes the data to output SRAM address with a control signal which tells it to start writing.

Convolution Units
Two Multiply & Adder units are used for convolution using the algorithm.





#### ReLu units

Convolved outputs are passed to the ReLu activation function, when convolved output is greater than 127, it saturates, when the values are negative then output is zero, when input is between the extremes then remains the same.



Select lines for the input address and shifting



Block diagram describes the size taken from the firstaddress and has a control signal to initiate.



Select line clear\_offset, which controls taking the input of the next image. It avoids over writing the current data, and starting from zero.







Input address reading and offset value., along with the enable signal to writing the sram



, compl control signal to set the count values of the sram, iterates to next thing when it is reached or saturated.





# Max pooling units and their control signals





# **3.Interface Specifications**

## **SRAM** interface



| TYPE | WIDTH | NAME                     | FUNCTION                       |
|------|-------|--------------------------|--------------------------------|
| wire | 1     | dut_run                  | Indicates function started     |
| reg  | 1     | dut_busy                 | Model is running               |
| wire | 1     | reset_b                  | Reset the hardware             |
| wire | 1     | clk                      | clock                          |
| reg  | 1     | input_sram_write_enable  | Enable for write/read          |
| reg  | 12    | input_sram_write_addr    | Write address                  |
| reg  | 16    | input_sram_write_data    | Writes the data to SRAM        |
| reg  | 12    | input_sram_read_addr     | Read address to input SRAM     |
| reg  | 16    | input_sram_read_data     | Input data                     |
| reg  | 1     | output_sram_write_enable | Enable for write/read          |
| reg  | 12    | output_sram_write_addr   | Write address                  |
| reg  | 16    | output_sram_write_data   | Writes the data to outputSRAM  |
| reg  | 12    | output_sram_read_addr    | Read address to output SRAM    |
| reg  | 16    | output_sram_read_data    | output data to output SRAM     |
| reg  | 1     | weight_sram_write_enable | Enable for write/read          |
| reg  | 12    | weight_sram_write_addr   | Write address for weights      |
| reg  | 16    | weight_sram_write_data   | Writes the data to weight SRAM |

| reg        | 12 | weight_sram_read_addr | Read address to weight SRAM               |
|------------|----|-----------------------|-------------------------------------------|
| reg        | 16 | weight_sram_read_data | Weight Input data                         |
| reg signed | 16 | input                 | Data inputs for convolution               |
| reg signed | 8  | w_data                | weights                                   |
| reg        | 1  | get_data_begin        | Enable for fetching data                  |
| reg        | 4  | reg_flag_select       | Enable for splitting the data             |
| reg        | 1  | higher_bits_select    | Selects the data's higher byte            |
| reg        | 1  | lower_bits_select     | Selects the data's lower byte             |
| reg        | 1  | valid_conv_check      | Convolution enable                        |
| reg        | 2  | kerenel_select        | Flag for Weight matrix selection          |
| reg        | 2  | input_sel_address     | Enable for input addr select              |
| reg        | 1  | output_write_addr     | Enable to write for outputSRAM            |
| reg signed | 20 | mac1,mac2             | units for convolution                     |
| reg        | 8  | relu1,relu2           | Activation functions                      |
| reg        | 16 | output_relu           | Relu output                               |
| reg        | 7  | end_of_address        | Wraps the output sram address to next row |
| reg        | 2  | end_of_address_sel    | enable                                    |
| reg        | 4  | current_state         | FSM current state                         |
| reg        | 4  | next_state            | FSM next state                            |
| reg signed | 30 | temp11,temp22temp88   | Temporary storing                         |
| reg        | 4  | compl                 | Control signal for address filling        |
| reg        | 1  | wc                    | Write count                               |
| reg        | 2  | wc_sel                | Selection line                            |
| reg        | 1  | next_addr_sel         | Selection for next incoming addr          |
| reg        | 3  | сс                    | Column count                              |
| reg        | 5  | cc_sel                | Column count select                       |
| reg        | 1  | clear_new             | Resets the offset                         |

| Reg signed | 20 | pool_1,pool_2        | Max poolers                        |
|------------|----|----------------------|------------------------------------|
| reg        | 20 | off                  | Offset value                       |
| reg        | 16 | output _dimension    | Size for output                    |
| reg        | 8  | relu_final           | Relu final output                  |
| reg        | 16 | final                | Max poolin output                  |
| reg        | 1  | clear_addr_selection | Clears the addresses for new image |

## 4. Technical Implementation

#### **FSM**

Finite state machine is necessary to design the control path, so that model knows what to do at each step. Control signals control the path the model needs to go.

Total 18 states are used for designing the model.



When the dut\_run goes high the FSM starts, else it remains in the s0 state. Then FSM goes up to state 15, where it again checks for the condition(writing the data to output sram addresses). If the condition meets it goes state 16, otherwise iterates over s4 state, reiterates over, when it meets the condition, moves to s16 state, then moves on to s17. There it again checks the condition for the row count and column count to iterate over the next row or shifting to next rows and columns. Else it goes to s2. When the size is equal to FFFF or saturated s18, it moves to s0 state.

#### 5. Verification

- Design verification is where you test ("verify") that your design outputs match your design inputs. Using testbench,outputs that are convolution output, Relu output are verified with the output SRAM waveforms.
- The testbench compares the computed output with the golden reference values and reports any mismatch.
- The read address increments by 1 and needs to hold when performing convolution.
- As the read address increments the data is fetched into the convolution unit.
- The convolution is performed at Multiply&Adder units and transferred to the ReLu unit, then stored in the unit.
- As soon as write enable is asserted the output is written back to the SRAM.
- Any discrepancy in the output data is caught by comparing output result with golden values.



The design is verified using the make verify-<file>-extra.

# **6.Results Achieved**

| Clock Period | 6.5ns         |
|--------------|---------------|
| Area         | 18091.1918μm2 |
| Total Cycles | 4908          |
| Delay        | 30920.4ns     |

## **Transcript**

| # Loading work.MyDesign(fast)<br># run -all<br># +CLASS+564                                                                                                                          |                                                                                                                             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| # +RUN_TYPE+base                                                                                                                                                                     |                                                                                                                             |  |  |  |
| #<br>#                                                                                                                                                                               | start_simulation                                                                                                            |  |  |  |
| INFO::tb_top.input_mem.loadInitFile::readmem :/564/input_0/input_sram_564.dat<br>  INFO::tb_top.weight_mem.loadInitFile::readmem :/564/input_0/weight_sram_564.dat<br> Round 0 start |                                                                                                                             |  |  |  |
| #<br>#<br>#                                                                                                                                                                          | Round O check start                                                                                                         |  |  |  |
|                                                                                                                                                                                      | store results to g_result.dat                                                                                               |  |  |  |
|                                                                                                                                                                                      | load results to output_array                                                                                                |  |  |  |
|                                                                                                                                                                                      | load results to golden_output_array                                                                                         |  |  |  |
| # INFO::tb_top::readmem :/5                                                                                                                                                          | 664/input_0/golden_base_outputs_564.dat<br>Round O start compare                                                            |  |  |  |
| <b>#</b>                                                                                                                                                                             | Round O Your report                                                                                                         |  |  |  |
| #<br># Check 1 : Correct g results<br># computeCycle=3554<br>#                                                                                                                       | = 143/143                                                                                                                   |  |  |  |
| # INFO::tb_top.weight_mem.load<br>#                                                                                                                                                  | InitFile::readmem :/564/input_1/input_sram_564.dat<br>HInitFile::readmem :/564/input_1/weight_sram_564.dat<br>Round 1 start |  |  |  |
|                                                                                                                                                                                      | Round 1 check start                                                                                                         |  |  |  |
|                                                                                                                                                                                      | store results to g_result.dat                                                                                               |  |  |  |
|                                                                                                                                                                                      | load results to output_array                                                                                                |  |  |  |
| #<br>#<br>#                                                                                                                                                                          | load results to golden_output_array                                                                                         |  |  |  |
| # INFO::tb_top::readmem :/5<br>#                                                                                                                                                     | 664/input_1/golden_base_outputs_564.dat<br>Round 1 start compare                                                            |  |  |  |
|                                                                                                                                                                                      | Round 1 Your report                                                                                                         |  |  |  |
| #<br># Check 1 : Correct g results<br># computeCycle=1354                                                                                                                            | = 55/55                                                                                                                     |  |  |  |

# **Timing Reports**

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### Timing max slow:

| POTIIC                          | THE              | ratii   |   |
|---------------------------------|------------------|---------|---|
| clock clk (rise edge)           | 0.0000           |         |   |
| clock network delay (ideal)     | 0.0000           |         |   |
| data_input_4_reg[4]/CK (DFF_X1) |                  |         | r |
| data_input_4_reg[4]/Q (DFF_X1)  | 0.5833           |         |   |
| U13739/Z (XOR2_X2)              | 0.3981           | 0.9814  |   |
| U2504/ZN (INV_X4)               | 0.1743           |         |   |
| U13738/ZN (NAND2_X4)            | 0.1157           |         |   |
| U13058/ZN (OAI22_X2)            | 0.2374           | 1.5089  |   |
| U13115/ZN (XNOR2_X2)            | 0.3687           |         |   |
| U12595/ZN (XNOR2_X2)            | 0.3202           |         |   |
| U12859/ZN (XNOR2_X2)            | 0.3134           |         |   |
| U12858/ZN (XNOR2_X2)            | 0.3198           | 2.8309  |   |
| U2081/ZN (NAND2_X1)             | 0.0920           | 2.9230  |   |
| U1223/ZN (NAND2 X1)             | 0.1843           |         |   |
| U10165/ZN (OAI21_X1)            | 0.1653           |         |   |
| U14966/ZN (NAND2 X2)            |                  |         |   |
| U5250/ZN (XNOR2_X2)             | 0.1438<br>0.2911 | 3.7075  |   |
| U11569/ZN (XNOR2_X2)            | 0.3184           | 4.0259  |   |
| U1565/ZN (NAND2_X1)             | 0.1212           |         |   |
| U5237/ZN (NAND2_X1)             | 0.1212           | 4.2757  |   |
| U5235/ZN (NAND2_X2)             | 0.0687           | 4.3444  |   |
| U1864/ZN (NAND2_X2)             | 0.1232           |         |   |
| U12828/ZN (XNOR2_X2)            |                  |         |   |
| U12827/ZN (XNOR2_X2)            | 0.2911<br>0.3304 | 5.0890  |   |
| U12865/ZN (NOR2_X2)             | 0.0946           | 5.1836  |   |
| /                               | 0.0952           | 5.1030  |   |
| U2682/ZN (INV_X4)               |                  |         |   |
| U5908/ZN (NAND2_X2)             | 0.0758           | 5.3546  |   |
| U1792/ZN (NOR2_X2)              | 0.1572<br>0.0885 | 5.5117  |   |
| U6203/ZN (NAND2_X2)             |                  |         |   |
| U5909/ZN (NAND3_X2)             | 0.1179           |         |   |
| U1757/ZN (INV_X1)               | 0.0722           | 5.7903  |   |
| U6456/ZN (NAND2_X2)             | 0.0906           | 5.8809  |   |
| U13584/ZN (NAND3_X2)            | 0.0669           |         |   |
| mac_2_reg[18]/D (DFF_X2)        | 0.0000           | 5.9478  | Ť |
| data arrival time               |                  | 5.9478  |   |
| clock clk (rise edge)           | 6.3000           | 6.3000  |   |
| clock network delay (ideal)     | 0.0000           | 6.3000  |   |
| clock uncertainty               | -0.0500          | 6.2500  |   |
| mac_2_reg[18]/CK (DFF_X2)       | 0.0000           | 6.2500  | r |
| library setup time              | -0.3021          | 5.9479  |   |
| data required time              |                  | 5.9479  |   |
|                                 |                  |         |   |
| data required time              |                  | 5.9479  |   |
| data arrival time               |                  | -5.9478 |   |
| slack (MET)                     |                  | 0.0000  |   |

| <u> </u>                                                                                                                            |                            |                    |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|
| clock clk (rise edge) clock network delay (ideal) data_input_4_reg[4]/CK (DFF_X1) data_input_4_reg[4]/Q (DFF_X1) U13739/Z (XOR2_X2) | 0.0000                     | 0.0000             |
| clock network delay (ideal)                                                                                                         | 0.0000                     | 0.0000             |
| data input 4 reg[4]/CK (DFF X1)                                                                                                     | 0.0000                     | 0.0000<br>0.0000 r |
| data input 4 reg[4]/0 (DFF X1)                                                                                                      | 0.5833                     | 0.5833 f           |
| U13739/Z (XOR2_X2)                                                                                                                  | 0.3981                     | 0.3833 T           |
| U2504/ZN (INV_X4)                                                                                                                   |                            | 1.1557 r           |
| U13738/ZN (NAND2_X4)                                                                                                                |                            | 1.2715 f           |
| U13058/ZN (NAND2_X4)                                                                                                                | 0.1137                     |                    |
| U13115/ZN (XNOR2_X2)                                                                                                                | 0.2374<br>0.3687           | 1.3005 r           |
| U12595/ZN (XNOR2_X2)                                                                                                                | 0.3202                     | 2 1070 n           |
| U12859/ZN (XNOR2_X2)                                                                                                                | 0.3134                     |                    |
| U12858/ZN (XNOR2_X2)                                                                                                                | 0.3198                     |                    |
| U2081/ZN (NAND2_X2)                                                                                                                 |                            |                    |
| U1223/ZN (NAND2_X1)                                                                                                                 | 0.0920<br>0.1843           | 3.1073 r           |
| U10165/ZN (OAI21_X1)                                                                                                                | 0.1653                     | 2 2726 f           |
| U14966/ZN (NAND2_X2)                                                                                                                | 0.1033                     |                    |
| - · · · · · · · · · · · · · · · · · · ·                                                                                             |                            |                    |
| U5250/ZN (XNOR2_X2)                                                                                                                 | 0.2911                     |                    |
| U11569/ZN (XNOR2_X2)                                                                                                                | 0.3184                     | 4.0259             |
| U1565/ZN (NAND2_X1)                                                                                                                 | 0.1212<br>0.1286           | 4.14/1 T           |
| U5237/ZN (NAND2_X2)                                                                                                                 | 0.1286                     | 4.2/5/ r           |
| U5235/ZN (NAND2_X2)                                                                                                                 |                            |                    |
| U1864/ZN (NAND2_X2)                                                                                                                 | 0.1232                     |                    |
| U12828/ZN (XNOR2_X2)                                                                                                                | 0.2911                     | 4.7586 r           |
| U12827/ZN (XNOR2_X2)                                                                                                                | 0.3304<br>0.0946<br>0.0952 | 5.0890 r           |
| U12865/ZN (NOR2_X2)                                                                                                                 | 0.0946                     | 5.1836 T           |
| U2682/ZN (INV_X4)                                                                                                                   | 0.0952                     | 5.2/88 r           |
| U5908/ZN (NAND2_X2)                                                                                                                 | 0.0758                     |                    |
| U1792/ZN (NOR2_X2)                                                                                                                  | 0.1572                     |                    |
| U6203/ZN (NAND2_X2)                                                                                                                 | 0.0885                     |                    |
| U5909/ZN (NAND3_X2)                                                                                                                 | 0.1179<br>0.0722           | 5.7182 r           |
| U1757/ZN (INV_X1)                                                                                                                   | 0.0722<br>0.0906           | 5.7903 +           |
| U6456/ZN (NAND2_X2)                                                                                                                 |                            |                    |
| U13584/ZN (NAND3_X2)                                                                                                                | 0.0669                     |                    |
| mac_2_reg[18]/D (DFF_X2)                                                                                                            | 0.0000                     |                    |
| data arrival time                                                                                                                   |                            | 5.9478             |
| clock clk (rise edge)                                                                                                               | 6.3000                     | 6.3000             |
| clock network delay (ideal)                                                                                                         | 0.0000                     | 6.3000             |
| clock uncertainty                                                                                                                   | -0.0500                    | 6.2500             |
| mac_2_reg[18]/CK (DFF_X2)                                                                                                           | 0.0000                     |                    |
|                                                                                                                                     | -0.3021                    | 5.9479             |
| data required time                                                                                                                  |                            | 5.9479             |
|                                                                                                                                     |                            |                    |
| data required time                                                                                                                  |                            | 5.9479             |
| data arrival time                                                                                                                   |                            | -5.9478            |
| clack (MET)                                                                                                                         |                            | 0 0000             |
| slack (MET)                                                                                                                         |                            | 0.0000             |
|                                                                                                                                     |                            |                    |

#### Timing min fast hold

```
Information: Updating design information... (UID-85)
************
Report : timing
         -path full
         -delay min
         -max_paths 1
Design : MyDesign
Version: S-2021.06-SP3
Date : Mon Dec 5 14:40:04 2022
************
Operating Conditions: fast Library: NangateOpenCellLibrary_PDKv1_2_v2008_10_fast_nldm
Wire Load Model Mode: top
  Startpoint: compl_reg[0]
                 (rising edge-triggered flip-flop clocked by clk)
  Endpoint: compl_reg[0]
              (rising edge-triggered flip-flop clocked by clk)
  Path Group: clk
  Path Type: min
  Point
                                                   Incr
                                                                Path

      clock clk (rise edge)
      0.0000
      0.0000

      clock network delay (ideal)
      0.0000
      0.0000

      compl_reg[0]/CK (DFF_X1)
      0.0000
      0.0000

      compl_reg[0]/Q (DFF_X1)
      0.0624
      0.0624

      U15082/ZN (NOR2_X1)
      0.0222
      0.0846

      compl_reg[0]/D (DFF_X1)
      0.0000
      0.0846

  data arrival time
                                                               0.0846
  clock clk (rise edge) 0.0000
clock network delay (ideal) 0.0000
clock uncertainty 0.0500
compl_reg[0]/CK (DFF_X1) 0.0000
                                                               0.0000
                                                              0.0000
                                                                0.0500
                                                                0.0500 r
                                                  0.0002
                                                               0.0502
  library hold time
  data required time
   -----
  data required time
  data arrival time
                                                               -0.0846
               -----
  slack (MET)
                                                                0.0344
```

#### **Total Area**

```
Total 15479 cells 18091.1918
```

## Schematic:



#### 7. Conclusion

The key takeaway from the project are:

- Understood the importance of Design before Coding in complex circuits.
- Control signals, control path and data path are needed before coding.
- Latches can lead to timing issues and race conditions. They may lead to combinatorial feedback routing of the output back to the input which can be unpredictable.
- The circuit should meet all the timing requirements.
- There should not be any Hold or Set-Up time violations.

Deep Neural Network consists of a Convolutional neural network along with ReLu activation function along with Max pooling which works well for the given inputs and weights. The design can be tweaked in order to change according to the inputs. No unintentional latches were formed during the synthesis, which is a major thing in real-time design. No timing arcs were observed, no setup and hold violations. The model has been developed to meetup all the violations. Common warnings were ignored and other warnings were removed. The following design generated the  $19625.4798\mu m^2$ , with clock period 5.9ns and clock cycles are 3554 for input1 and 1354 for 2nd input, by meeting all the timing constraints.

The trade-off between Area and Clock Period:

| CLOCK | AREA       | VIOLATED/MET |
|-------|------------|--------------|
| 10    | 14768.3201 | MET          |
| 9     | 14954.2541 | MET          |
| 8     | 15496.8941 | MET          |
| 7     | 16571.8000 | MET          |
| 6.5   | 17273.5079 | MET          |
| 6     | 18076.5618 | MET          |
| 6.3   | 18091.1918 | MET          |