Задача 1.1 Решите в поле \mathbb{Z}_5 систему уравнений

$$\begin{cases} 2x + y + 4z = 1, \\ x + 2y + z = 2, \\ x + y + 4z = 4 \end{cases}$$

Мне было лень везде писать чёрточки над цифрами; на самом деле все числа — это остатки, конечно.

Указание. Система решается, на самом деле, тем же самым методом Гаусса: пишется матрица системы, приводится к ступенчатому виду... Просто немного по-другому работают операции. Представим, например, что нам пришла в голову фантазия поделить на 2 первую строку. Поделить на 2- это то же самое, что умножить на 2^{-1} . Но в \mathbb{Z}_5 имеем $2\cdot 3=1$ (остаток от 6 при делении на 5 равен 1), поэтому $3=2^{-1}$. Можно ещё заметить, что 2+3=0, то есть 3=-2. Иными словами, разделить строку на 2- это то же самое, что умножить её на (-2). Получится вот что:

$$(-2) \cdot (2x + y + 4z) = (-2) \cdot 1 \Longleftrightarrow x - 2y + \underbrace{(-2) \cdot 4}_{=-8=-3} z = -2,$$

то есть мы получили уравнение x - 2y - 3z = -2.

Задача 1.2. Решите в поле \mathbb{Z}_{17} систему уравнений

$$\begin{cases} 3x + 2y + 5z = 1, \\ 2x + 5y + 3z = 1, \\ 5x + 3y + 2z = 4 \end{cases}$$

Задача 1.3. Из скана задачи 20.1 (е,к)

Задача 1.4. Задача 20.4 (a).

Указание. Можете решить методом Гаусса или любым другим приятным вам методом решения систем из двух уравнений с двумя неизвестными. Например, если сложить два уравнения, будет приятно.

Задача 1.5. Задача 20.5 (б).

yказание. Комплексные числа равны тогда и тогда, когда их действительные части равны и их мнимые части равны. Приравняйте действительную часть левой части (всё, что без i) к действительной части правой и мнимую часть левой (все коэффициенты при i) к мнимой части правой. Получится система уравнений на x и y.

Задача 1.6. Задача 20.11 (e).

Задача 2.1. Задача 300 из прошлого скана.

Задача 2.2. Задача 303 из прошлого скана (обратите внимание, что элементы в левом верхнем углу выбиваются из общего паттерна, то есть начинать раскладывать оттуда неправильно — начните лучше с правого нижнего угла).

Пара слов про то, как проверить, является ли множество полем. Зачастую приходится иметь дело с подмножеством С или множества матриц или ещё чего-то такого. Так вот, если мы рассматриваем элементы чего-то такого, то нам не надо проверять ассоциативность, коммутативность и дистрибутивность: ведь эти операции над числами, матрицами или чем-то ещё и так обладают всеми этими свойствами. Но надо очень внимательно следить за наличием нейтральных элементов и всяких противоположных и обратных объектов.

1

Задача 2.3. Является ли полем множество чисел вида $a+\sqrt[3]{2}b$, где $a,b\in\mathbb{Q}$? Задача 2.4. Определите, при каких n следующие множества матриц образуют поля по отношению к стандартным операциям сложения и умножения

$$a) \ \left\{ \begin{pmatrix} x & y \\ ny & x \end{pmatrix} \middle| \ x,y \in \mathbb{Q} \right\}, \ \text{где } n \ - \ \text{фиксированное целое число}$$

$$a) \ \left\{ \begin{pmatrix} x & y \\ ny & x \end{pmatrix} \middle| \ x,y \in \mathbb{R} \right\}, \ \text{где } n \ - \ \text{фиксированное целое число}$$

Указание. Я говорил вам, что если вы имеете дело с объектами из достаточно хорошего множества, можно не проверять свойства операций. В данном случае вы можете не проверять ассоциативность и дистрибутивность (с ними у матриц всё хорошо). А вот свойством коммутативности матрицы не обладают, его вам придётся проверять.

Задача 2.5. Задача 20.3 (б).

Указание. Просто докажите по индукции.

Задача 2.6. Задача 20.7 (б).

Задача 2.7. Задача 20.8 (а).

Указание. Эту задачу можно по-разному решать, но я думаю, что проще всего через тригонометрическую запись. Помните, что если $|z|e^{i\varphi}=|w|e^{i\psi}$, то |z|=|w|, а φ и ψ отличаются на нечто, кратное 2π .

Задача 2.8. Задача 20.10.

Замечание. Будет круто, если вы решите эту задачу, не расписывая определитель по формуле. Подсказка: число является чисто мнимым тогда и только тогда, когда оно меняет знак при сопряжении (то есть $\overline{z}=-z$).

Задача 3.1. Докажите, что в поле \mathbb{Z}_3 из двух элементов выполнено «правило двоечника»:

$$(x+y)^3 = x^3 + y^3$$
, $(x+y)^9 = x^9 + y^9$.

Верно ли, что $(x+y)^6 = x^6 + y^6$?

Как будет выглядеть аналог «правила двоечника» в поле \mathbb{Z}_5 ?

Задача 3.2. Попробуйте придумать поле из четырёх элементов. Задать его нужно таблицами сложения и умножения (см.ниже); разумеется, не какими угодно, а такими, чтобы имели место аксиомы поля. В поле определённо должны быть 0, 1 и ещё какие-то два элемента, назовём их x и y. Значительную часть клеток вы заполните легко с помощью свойств нуля и единицы. Чтобы заполнить все оставшиеся клетки, вам нужно будет ответить на три вопроса:

- Чему (то есть какому из элементов 0, 1, x или y) равно x+1? Этот вопрос совсем лёгкий.
- Чему (то есть какому из элементов 0, 1, x или y) равно 1 + 1?
- Чему равно x^2 ? Этот вопрос уже сложнее. Переберите разные варианты и постарайтесь найти среди них единственно возможный.

После этого таблицы сложения и умножения заполняются уже легко.

Ŀ	+	0	1	X	у
()				
	L				
	C				
7	y				

×	0	1	X	у
0				
1				
X				
У				

Задача 3.3. Докажите, что любая функция на конечном поле является многочленом (иными словами, для любой функции найдётся многочлен, принимающий те же самые значения).

Задача 3.4. Задача 21.10.