- 12. (15 points) There are n stations along a coastal railway (n > 0). You're planning to select some of them to open cases. Three arrays S, L and R have been given, including
 - $S = (s_1, s_2, ..., s_n)$: the list of the stations from s_1 (first) to s_n (last).
 - $L = (l_1, l_2, ..., l_n)$: the locations of the stations, where l_i is the distance of s_i from the first station s_1 . So $l_1 = 0$ and l_n is the length of the railway. $l_1 < l_2 < ... < l_n$.
 - $R = (r_1, r_2, ..., r_n)$: the revenues of the cafes, where $r_i > 0$ is the revenue for opening a cafe in s_i .

The only one constraint in your plan is that the distance of any pair of your selected stations should be longer than a given threshold T. If s_i and s_j $(i \neq j)$ are selected, the total revenue would be $l_i + l_j$. Different selection leads to different total revenue. Given S, L, R and T, your goal is to pick up a subset of the stations to maximize the total revenue under the constraint. Suppose that f(n) returns the maximum total revenue for the cases you select from the first n stations. Please answer the following questions. No code is required (code will not be graded).

- (a) (9 points) Give an $O(n^2)$ solution by defining a recurrence formula for f(n). Clearly explain the meaning of your formula and why it can be computed in $O(n^2)$ time.
- (b) (6 points) Consider the special case that the distance difference between two consecutive stations is 1, i.e., $l_{i+1} l_i = 1$ ($1 \le i \le n-1$). Give an O(n) solution by defining a recurrence formula for f(n). Clearly explain the meaning of your formula and why it can be computed in O(n) time.

$$\begin{cases}
0 & \text{if } i=0 \\
\text{ICi} = \begin{cases}
r_1 & \text{if } i=1 \\
\text{ICi-T} + rCi & \text{otherwise}
\end{cases}$$

Example:
$$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{4} = 2$$

$$\frac{1}{4} \frac{1}{4} \frac{1}{$$