

INSTITUTE-UNIVERSITY INSTITUTE OF ENGINEERING

ACADEMIC UNIT-II

Computer Science Engineering
Subject Name-Biology For Engineers
Subject Code- 20SZT148

BIOINFORMATICS AND BLAST

DISCOVER. LEARN. EMPOWER

TYPES OF TRANSDUCERS

Course Outcome

CO Number	Title	Level
CO1	It gives an idea about the about the basic cell biology.	Understanding
CO2	It deals with the idea of uses of biology in engineering.	Understanding
CO3	It provide knowledge about the uses of softwares in biology field.	Remembering

BIOLOGY FOR ENGINEERS

Medical instruments, Biosensors, Biosensors, Recombinant DNA technology and Immunology (UNIT-2)

Enzymes,
Nervous
system,Bioinfo
rmatics and
Disesaes
(UNIT-3)

BIOINFORMATICS

• Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biological data.

• As an interdisciplinary field of science, bioinformatics combines computer science, statistics, mathematics, and engineering to study and process biological data.

BIOINFORMATICS

https://image.slidesharecdn.com/blast-170204042954/95/blast-basic-local-alignment-search-tool-1-638.jpg?cb=1486182905

NEED FOR BIOINFORMATICS

• The need for bioinformatics has arisen from the recent explosion of publicly available genomic information, such as resulting from the Human Genome Project.

• Gain a better understanding of gene analysis, taxonomy, & evolution.

• To work efficiently on the rational drug designs and reduce the time taken for the development of drug manually.

FIELD OF BIOINFORMATICS

- ➤ Molecular Medicine
- ➤ Gene Therapy
- Drug Development
- ➤ Microbial genome applications
- > Crop Improvement
- > Forensic Analysis of Microbes
- ➤ Biotechnology
- Evolutionary Studies
- ➤ Bio-Weapon Creation

WHERE BIOINFORMATICS HELP

- > Experimental Molecular Biology
- > In Genetics and Genomics
- ➤ In generating Biological Data
- > Analysis of gene and protein expression
- > Comparison of genomic data
- ➤ In Simulation & Modeling of DNA, RNA & Protein

APPLICATION OF BIOINFORMATICS

- ➤ Molecular medicine
- > Personalized medicine
- > Preventative medicine
- > Gene therapy
- Drug development
- ➤ Microbial genome applications
- > Waste cleanup

SOFTWARE AND TOOL

- Software tools for bioinformatics range from simple command-line tools
- To more complex graphical programs and standalone web-services available from various bioinformatics companies or public institutions.
- The computational biology tool best-known among biologists is probably BLAST, an algorithm for determining the similarity of arbitrary sequences against other sequences, possibly from curated databases of protein or DNA sequences.

SOFTWARE AND TOOL

- BLAST is one of a number of generally available programs for doing sequence alignment.
- The NCBI provides a popular web-based implementation that searches their databases.

SOFTWARE AND TOOL

BLAST is one of the most commonly used bioinformatics software

- It finds small sub-sequences of your query in the subject sequence
- Uses word to match with the database of subject and then uses heuristics to verify

and extend match

•

Global alignment – global optimization that "forces" the alignment to span the entire sequences (Needleman–Wunsch algorithm or *Clustal style*)

• Local alignment – identify short regions of similarity within long divergent sequences (Smith–Waterman algorithm or BLAST style)

Sequence alignment

Global alignment

Local alignment

GENOME ALIGNMENT

- Glocal alignment
- Uses a word matching method
- Creates suffix tree for faster search
- Searches suffix tree for exact matches of words clusters them and then uses

local alignment methods to extend match

GENOME ALIGNMENT

Suffix tree

GENOME ALIGNMENT

ASSEMBLY

Assembly

- Short read assembly is extremely difficult and computationally intensive!
- For longer reads an Overlap Consensus (OLC) assemblers are used
- For shorter reads (and in high numbers) De Bruijn Graph assemblers are better

ASSEMBLY

Assembly

- Short read assembly is extremely difficult and computationally intensive!
- For longer reads an Overlap Consensus (OLC) assemblers are used
- For shorter reads (and in high numbers) De Bruijn Graph assemblers are better

ASSEMBLY

Prediction of:

- Genes
- Repeats
- Non coding RNAs (rRNAs, tRNAs, miRNAs, snRNAs, siRNAs, ta-siRNAs)
- Promoters
- Enhancers
- Protein binding sites

- ...

Prediction of:

- Genes
- Repeats
- Non coding RNAs (rRNAs, tRNAs, miRNAs, snRNAs, siRNAs, ta-siRNAs)
- Promoters
- Enhancers
- Protein binding sites
- ...

TTCTCTTCCTAATTCCTTCAACAATGGCCAATAATCTCAATCTCTTCCTTTGTTTCCTTCTCTTTATT TGTTTCTTCACTCTCTGCCTTAGCCCTGGTGGTCTAGCTTGGGCTCTAATTTCAAAGCCAAAAAA CCAATCCATCATTCCTAGAATCAGCTTATGAGCTTTTGTTTCATAGAGCAATGGGGTTTGCTCCAT TGGAGAGTGTGTTTGTGTTGGTGATGAAGAAAATAAGAACAGCCCTAATGATAATGAAGATGAA TGTGTTAGGTACGTATGTGTATTATAATTTCTTGTTTCATTACTATTTTTGATATTTTTCTACTGCACT TCAATTTTAATCGGTTTGAAATGATTTTTTAATATGCTCTTACAAGATTATGACTTGGGAAAGATTC TTACATCTTTAAATATTTCAATTTTTTGTGTGATACATGAAATGCATGACTGTTTTTTTACTTGCGATT CATGTAGGAAATGACCTCCCAAATCTTCCTTATCTCCATGCAGTCGTCAAAGAGACTCTTAGAAT CACTACATTCCTGCTGGCACCACTGCGATGGTCAACATGTGGGCCATAACCCACGACGACCAAA CTGTGGCTCGCTCAGTTAGTTCATAAGTTCGAATGGGTTCAAGCTGATGAATCGAAAATCAAAG TGGATTTGTCTGAGTGTTTGAAGCTATCTCTGGAAATGAAACACCCTTTGATTTGTAGGGCTATC CTTTTCTTTTTTTCTTTTTCCTTTCTTCTTCTTCATCAATTGATATTATATCTTGTGTGGAACAA ATAGTAT CGGATT CGAGATT TAATGT TGGGATAAT CCT TAAATGTAAT TCCGT TATTAAGTGT GAA

TTCTCTTCCTAATTCCTTCAACAATGGCCAATAATCTCAATCTCTTTCCTTTGTTTCCTTCTCTTTATT TGTTTCTTCACTCTCTGCCTTAGCCCTGGTGGTCTAGCTTGGGCTCTAATTTCAAAGCCAAAAAA CCAATCCATCATTCCTAGAATCAGCTTATGAGCTTTTGTTTCATAGAGCAATGGGGTTTGCTCCAT TGGAGAGTGTGTTTGTGTTGGTGATGAAGAAAATAAGAACAGCCCTAATGATAATGAAGATGAA TGTGTTAG GTACGTATGTGTATTATAATTTCTTGTTTCATTACTATTTTGATATTTTTCTACTGCACT TCAATTTTAATCGGTTTGAAATGATTTTTTAATATGCTCTTACAAGATTATGACTTGGGAAAGATTC TTACATCTTTAAATATTTCAATTTTTTGTGTGATACATGAAATGCATGACTGTTTTTTTACTTGCGATT CATGTAG GAAATGACCTCCCAAATCTTCCTTATCTCCATGCAGTCGTCAAAGAGACTCTTAGAAT CACTACATTCCTGCTGGCACCACTGCGATGGTCAACATGTGGGCCATAACCCACGACGACCAAA CTGTGGCTCGCTCAGTTAGTTCATAAGTTCGAATGGGTTCAAGCTGATGAATCGAAAATCAAAG TGGATTTGTCTGAGTGTTTGAAGCTATCTCTGGAAATGAAACACCCTTTGATTTGTAGGGCTATC CTTTTCTTTTTTCTTTTTCCTTTCTTCTTTCTCTTAATCAATTGATATTATATCTTGTGTGGAACAA ATAGTATCGGGATTCGAGATTTAATGTTGGGATAATCCTTAAATGTAATTCCGTTATTAAGTGTGAA

USES OF BLAST

- Uses of blast BLAST can be used for several purposes.
- These include:
 - the sequence of interest. Identifying Species: With the use of BLAST, you can possibly correctly identify a species and/or find homologous species.
 - This can be useful, for example, when you are working with a DNA sequence from an unknown species.
- Locating Domains: When working with a protein sequence you can input it into BLAST, to locate known domains within

USES OF BLAST

- Establishing Phylogeny: Using the results received through BLAST, you can create a phylogenetic tree using the BLAST web-page.
- Comparison: When working with genes,
- BLAST can locate common genes in two related species,
- and can be used to map annotations from one organism to another.

CONCLUSION

- Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biological data.
- Software tools for bioinformatics range from simple command-line tools
- To more complex graphical programs and standalone web-services available from various bioinformatics companies or public institutions.

REFERENCES

- C.B.Powar, 2010.Cell Biology.5th Ed,Himalyan Publishing House.
- Leshie Cromwell, Fred.J. Weibell and Erich.A.Pfeiffer. 2003. Biomedical instrumentation and measurements. 2nd edition, PHI.
- John G. Webster 1998. Medical Instrumentation: Applications and Design, 3rd edition, Jon Wiley and Sons, New York.
- Jeremy M. Berg, John L. Tymoczko and Lubert Stryer. 2006. "Biochemistry," 6th Ed. W.H. Freeman and Co. Ltd.
- Robert Weaver. 2012 "Molecular Biology," 5th Edition, MCGraw-Hill.
- Jon Cooper, , 2004. "Biosensors A Practical Approach" Bellwether Books.
- Martin Alexander, 1994 "Biodegradation and Bioremediation," Academic Press.

For queries

Email: subject_code_2020@gmail.com