Majeure Machine Learning

Deep learning Méthodologie

Contenu

- Augmenter le jeu de données
- Design
- Débugger
- Mettre en production un modèle
- Faire de la veille

Ce que vous devrez savoir faire

- Comprendre le principe et l'utilité de la Data Augmentation
- Savoir quoi faire pour designer un réseau de neurones
- Savoir comment débugger l'apprentissage d'un réseau de neurones
- Avoir une idée des techniques actuelles pour mettre en production un modèle
- Savoir qui suivre et où faire de la veille

Gérer le jeu de données

Répartition Train / Test

Objectif: Détection de visage

Données en provenance :

-USA
-Inde
-France
-Allemagne
-Russie
-Serbie
-Australie

Sexe :

-Homme
-Femme

Train

A ne surtout pas faire!

Découpage

1.

Train: 90%

Validation: 5%

Test: 5%

2.

Pour i allant de 1 à *nb_epochs*

Pour j allant de 1 à train_size/batch_size

Tirer batch_size exemples parmi ceux du TrainSet non tirés durant cet epoch

Faire la ForwardPropagagtion pour ce mini-batch

Calculer la Loss

Mettre à jour les poids

Calculer l'accuracy sur le TrainSet

Calculer l'accuracy sur le ValidationSet

Afficher les résultats

Calculer l'accuracy sur le TestSet Afficher

Découpage

```
n epochs = 100
batch size = 32
for i in range (n epoch):
    for j in range(len(X train)/batch size):
        X, Y = get minibatch(X train, Y train)
        Y pred = NN.predict(X)
        loss = categorical crossentropy(Y, Y pred)
        NN.optimize(loss)
   Y train pred = NN.predict(X train)
   Y val pred = NN.predict(X val)
    print ("Train Accuracy: " + str(accuracy score (Y train, Y train pred))
    print ("Validation Accuracy: " + str(accuracy score (Y val, Y val pred))
Y test pred = NN.predict(X test)
print("Test Accuracy : " + str(accuracy score(Y test, Y test pred))
```

Data Augmentation

Problématique : Pas assez de données pour entraîner une réseau de neurones profond

<u>Principe</u>: Augmenter le nombre d'exemples de données en générant de nouvelles données à partir des existantes modifiées

+ rend le réseau plus robuste!

Gestion d'un projet de Deep Learning

Précision vs Performance

Classifier	Accuracy	Learning time (j)	Running time (ms)
Α	90%	1	80
В	95%	1,5	95
С	99%	3	1 500
D	99,5%	10	3 000

Performance de l'homme vs modèle

Tant que notre modèle est moins précis que l'homme, on peut :

- Observer les données mal prédites et essayer d'identifier la cause
- Labeliser (plus) des données humainement
- Analyser les biais / overfitting

Dès lors que notre modèle est plus précis que l'homme, on peut :

- Identifier si le modèle est aussi précis que le meilleur des hommes
- Estimer si le modèle peut réellement s'améliorer
- Ajouter de nouvelles données qualifiées
- Créer des modèles plus complexes

Méthode projet

Approche itérative

Itération 1:

- Mise en place d'un premier réseau avec un peu de Dropout et de régularisation.
- Utiliser Adam ou SGD + momentum + learning rate decay
- Mettre en place du Early stopping
- Utiliser du Transfer Learning si l'opportunité se présente

Itérations suivantes:

- Si Underfitting : Augmenter la capacité (profondeur / densité)
- Si Overfitting : Augmenter le Dropout / Régularisation, réduire la capacité
- Si problèmes d'optimisation : Surveiller les valeurs des gradients, réduire le learning rate, autres (gradient clipping, batch normalization)...

Designer son réseau de neurones

Le choix de l'architecture

<u>Types de données</u>	Architectures à privilégier	
Vecteur de taille fixe	FeedForward	
Structure topologique	Convolution	
Séquence	Récurrence	

Densité (Geoff Hinton)

3 hypothèses:

- Le nombre de neurones cachés doit être compris entre la taille de la couche d'entrée et la taille de la couche de sortie.
- Le nombre de neurones cachés doit être 2/3 de la couche d'entrée, plus celle de sortie.
- Le nombre de neurones cachés doit être inférieur à deux fois la taille de la couche d'entrée.

Profondeur

Nombre de couches :

- 0 Uniquement capable de représenter des fonctions ou des décisions séparables linéaires.
- 1 Peut théoriquement approximer n'importe quelle fonction si possède suffisamment de neurones et si l'algorithme d'optimisation le permet
- >1 Peut théoriquement approximer n'importe quelle fonction (comme 1) mais avec moins de neurones. Fait également l'hypothèse que le problème peut être découpé en sous problèmes.

Débuggage

Métriques

Afficher un maximum d'informations!

Loss

Feature Maps

Gradients

Valider son implémentation

Mon réseau de neurones n'apprend pas !!

Si Backpropagation custom : <u>Gradient</u> <u>Checking</u>

Réduire son jeu de données à quelques exemples pour valider l'overfitting (et donc l'apprentissage!)

Mise en production

Sauvegarder un modèle

<u>Intérêts :</u>

- Avoir plusieurs versions pour sélectionner la meilleure
- Pouvoir reprendre l'apprentissage à partir d'une des sauvegardes

Mise en place d'un API

Réponse : Chat

<u>Avantages</u>:

- Appels possibles depuis
 n'importe qu'elle solution
 (logiciel, site web, embarqué...)
- Peu importe le langage de développement
- Gestion du load balancing que sur l'API

Faire de la veille sur le Deep Learning

Nos références

- Andrew Ng (@AndrewYNg)
- Yann Lecun (@ylecun)
- Ian Goodfellow (@goodfellow_ian)
- François Chollet (@fchollet)
- Arthur Juliani (RL) (@awjuliani)

Sites / Blogs

- ActulA (actuia.com)
- Al Weekly (http://aiweekly.co/)
- Data Science Weekly (datascienceweekly.org)
- KDnuggets (kdnuggets.com)
- ML Mastery (machinelearningmastery.com)

Autre: arXiv.org

arXiv.org

Fin du chapitre 5.4