Optimization (ND Methods)

What is the optimal solution? (ND)

$$f(x^*) = \min_{x} f(x) \qquad f(x)$$

(First-order) Necessary condition

1D:
$$f'(x) = 0$$

$$\underline{\underline{ND}}: \nabla f(\underline{X}) = 0 \longrightarrow \text{gives stationary solution}$$

(Second-order) Sufficient condition

1D:
$$f''(x) > 0$$

$$\underline{ND}$$
: $H(x^*)$ is positive definite $\rightarrow x^*$ is minimizer

Taking derivatives...

$$f(X) = f(x_1, x_2, ..., x_n)$$

$$\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} - ... = \frac{\partial f}{\partial x_n}$$

$$\frac{\partial f}{\partial x_n} = \frac{\partial f}{\partial x_n} - ... = \frac{\partial f}{\partial x_n}$$

$$\frac{\partial f}{\partial x_n} = \frac{\partial f}{\partial x_n} - ... = \frac{\partial f}{\partial x_n} - ..$$

From linear algebra:

A symmetric $n \times n$ matrix H is **positive definite** if $y^T H y > 0$ for any $y \neq 0$

A symmetric $n \times n$ matrix H is **positive semi-definite** if $y^T H y \ge 0$ for any $y \ne 0$

A symmetric $n \times n$ matrix H is negative definite if $y^T H y < 0$ for any $y \neq 0$

A symmetric $n \times n$ matrix H is negative semi-definite if $y^T H y \leq 0$ for any $y \neq 0$

A symmetric $n \times n$ matrix H that is not negative semi-definite and not positive semi-definite is called indefinite.

First order necessary condition:
$$\nabla f(x) = 0$$

Second order sufficient condition: $H(x)$ is positive definite

How can we find out if the Hessian is positive definite?

Hy = $\lambda y \rightarrow (\lambda, y) \rightarrow \text{are eigenpairs of H}$
 $\chi^{T} + y = \lambda y^{T}y = \lambda$

Types of optimization problems

$$f(\mathbf{x}^*) = \min_{\mathbf{x}} f(\mathbf{x})$$

f: nonlinear, continuous and smooth

Gradient-free methods

Evaluate f(x)

Gradient (first-derivative) methods

Evaluate f(x), $\nabla f(x)$

Second-derivative methods

Evaluate f(x), $\nabla f(x)$, $\nabla^2 f(x)$

Example (ND)

Consider the function $f(x_1, x_2) = 2x_1^3 + 4x_2^2 + 2x_2 - 24x_1$ Find the stationary point and check the sufficient condition

$$\nabla f = \begin{bmatrix} 6x_1^2 - 24 \\ 8x_2 + 2 \end{bmatrix}; \quad H = \begin{bmatrix} 12x_1 & 0 \\ 0 & 8 \end{bmatrix}$$

$$|\nabla f = 0 \Rightarrow \begin{bmatrix} 6x_1^2 - 24 \\ 8x_2 + 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} 6x_1^2 = 24 \Rightarrow x_1^2 = 4 \Rightarrow x_1 = \frac{1}{2} \\ 8x_2 = -2 \Rightarrow x_2 = -0.25 \end{aligned}$$
Solvionary points: $x'' = \begin{bmatrix} -2 \\ -0.25 \end{bmatrix}$

2)
$$H = \begin{bmatrix} -2 \\ -0.25 \end{bmatrix} = \begin{bmatrix} -24 & 0 \\ 0 & 8 \end{bmatrix} \Rightarrow \text{ indefinite}$$

$$Saddle \text{ point}$$

$$Saddle \text{ point}$$

$$Saddle \text{ point}$$

Optimization in ND: Steepest Descent Method

min f(x) x [-Vf]

Given a function $f(x): \mathbb{R}^n \to \mathbb{R}$ at a point x, the function will decrease its value in the direction of steepest descent: $-\nabla f(x)$

What is the steepest descent direction?

Steepest Descent Method $\frac{x_2 = x_1 - \nabla F(x_1)}{2}$

Start with initial guess:

$$x_0 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

Check the update:

$$X_{1} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Steepest Descent Method

Update the variable with:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \underset{\boldsymbol{\Xi}}{\alpha_k} \nabla f(\boldsymbol{x}_k)$$

How far along the gradient should we go? What is the "best size" for α_k ?

$$X_1 = X_0 - 0.5 \nabla f(x_0)$$

How can we get a?

$$f(x_1, x_2) = (x_1 - 1)^2 + (x_2 - 1)^2$$

Steepest Descent Method

Algorithm:

Initial guess:
$$x_0$$

Evaluate:
$$\mathbf{s}_k = \left(\nabla f(\mathbf{x}_k) \right)$$

Perform a line search to obtain α_k (for example, Golden Section Search)

Search)
$$\alpha_{k} = \underset{\alpha}{\operatorname{argmin}} f(\mathbf{x}_{k} + \alpha \mathbf{s}_{k})$$

$$\underset{\alpha}{\text{Update:}} \mathbf{x}_{k+1} = \mathbf{x}_{k} + \alpha_{k} \mathbf{s}_{k}$$

XKH = XE - OR OF (XE) Line Search we want to find dx s.t. f(XK+1) min f(x2-02 () () $\frac{df}{dt} = 0$ \rightarrow gives α 1st order condition $\frac{\partial f}{\partial \alpha} = \underbrace{\frac{\partial f}{\partial x_{k+1}}}_{2x_{k+1}} \underbrace{\frac{\partial x_{k+1}}{\partial \alpha}}_{2x_{k+1}} = \nabla f(x_{k+1}) \cdot \nabla f(x_k) = 0$ VF(XKH). Vf(XK) = 0 THE (XKHI) is orthogonal to

Example

Consider minimizing the function

$$f(x_1, x_2) = 10(x_1)^3 - (x_2)^2 + x_1 - 1$$

Given the initial guess

$$x_1 = 2, x_2 = 2$$

$$x_0 = \begin{bmatrix} 2 \\ z \end{bmatrix}$$

what is the direction of the first step of gradient descent?

$$\nabla f = \begin{bmatrix} 30x_1^2 + 1 \\ -2x_2 \end{bmatrix} \quad \nabla f(x_0) = \begin{bmatrix} 121 \\ -4 \end{bmatrix}$$

steepest descent
$$\Longrightarrow \begin{bmatrix} -121 \\ +4 \end{bmatrix}$$

Newton's Method

Using Taylor Expansion, we build the approximation:

$$f(x+s) = f(x) + \nabla f(x)^T s + \frac{1}{2} (s) + (s) = f(s)$$

nonlinear

:1st order condition:
$$\nabla \hat{f} = 0$$

Note that the <u>Hessian</u> is related to the <u>curvature</u> and therefore contains the information about how large the step should be.

Try this out!

When using the Newton's Method to find the minimizer of this function, estimate the number of iterations it would take for convergence?

A) 1 B) 2-5 C) 5-10 D) More than 10 E) Depends on the initial guess

Newton's Method Summary

Algorithm:

Initial guess: \boldsymbol{x}_0

Solve: $\boldsymbol{H}_{\boldsymbol{f}}(\boldsymbol{x}_k) \boldsymbol{s}_k = -\boldsymbol{\nabla} f(\boldsymbol{x}_k)$

Update: $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{s}_k$

About the method...

- Typical quadratic convergence ©
- Need second derivatives 😂
- Local convergence (start guess close to solution)
- Works poorly when Hessian is nearly indefinite
- Cost per iteration: $O(n^3)$