

	Candidate session number			
Mathematics	Solutions.			
Higher level				
Paper 1				
Trial Examination 2020				
2 hours				

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all questions. Answers must be written within the answer boxes provided.
- Section B: answer all questions in the answer booklet provided. Fill in your session number on the front of the answer booklet, and attach it to this examination paper.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [100 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer all questions. Answers must be written within the answer boxes provided. Working may be continued below the lines if necessary.

1. [Maximum mark: 9]

Given the function $f(x) = \ln x - \ln(1 - x)$,

- (a) Find:
- (i) the domain
- (ii) the range

(iii) the inverse function
$$f^{-1}(x)$$

[5]

(b) Sketch y = f(x) and $y = f^{-1}(x)$, labelling any intercepts and asymptotes. [4]

2.	[Maximum	mark:	61
		~~~~~~	~ ]

(a) Prove the identity

$$\frac{\cos\theta}{1+\sin\theta} + \frac{1+\sin\theta}{\cos\theta} = 2\sec\theta.$$
 [2]

(b) Solve the equation  $\sec^2 x + 2 \tan x = 0$ ,  $-\pi \le x \le \pi$ .

[4]

	<del></del>
a) LHS= $\frac{\cos \alpha + 17 \cos \alpha + \sin^2 \alpha}{(14 \sin \alpha) \cos \alpha}$	•••••
= 2+25100 sin°0+cos°0=1	
(Itsing)rose	
= 10.50 2	*******
= 2500 = RHS.	*********
	*******
L\ . 2 \1	*********
D) scc xx 2tansc=0	••••••
(tan2x41) + 2tanx =0.	*********
tenta + 2/anx +1=0	
$(tans(+1))^2 = 0$	
tagx =−1	
~ X=-17/4 3#	
474	

#### 3. [Maximum mark: 7]

- (a) Write the first three derivatives of  $f(x) = x^2 e^x$ . [3]
- (b) Use mathematical induction to prove that

$$f^{(n)}(x) = e^x[x^2 + 2nx + n(n-1)]$$

where  $n \in \mathbb{Z}^+$  and  $f^{(n)}(x)$  represents the  $n^{th}$  derivative.

[4]

(a) 
$$f(x) = \chi^2 e^{x}$$
  
 $f'(x) = 2xe^{x} + 2x$ 

(b) Prove true for N=1 is  $f(x)=e^{2x}\left[x^2+2x+0\right]$ The (see part (a))

Assume the for n=k 1c f(k) x = ex [x2 + 2kx+ k(k-1)]

Prove the for n=k+1 1c f(k+1)x=ex[x2+2(k+1)x+(k+1)k]

From assumption  $f^{(k)}x = e^{3C}x^2 + 2ke^{3C}x + k(k-1)e^{3C}$ 

:.  $f^{(kt)}_{x} = 2xe^{x} + x^{2}e^{x} + 2ke^{x} + k(k-1)e^{x}$ =  $x^{2}e^{x} + (2+2k)xe^{x} + (2k+k(k-1))e^{x}$ =  $x^{2}e^{x} + 2(k+1)xe^{x} + (k+k^{2})e^{x}$ =  $e^{x}((2+2k)xe^{x} + k(k+1))e^{x}$ :.  $f^{(kt)}_{x} = 2xe^{x} + x^{2}e^{x} + 2ke^{x} + k(k+1)e^{x}$ =  $e^{x}((k+1)xe^{x} + k(k+1))e^{x}$ :.  $f^{(kt)}_{x} = 2xe^{x} + x^{2}e^{x} + 2ke^{x} + k(k+1)e^{x}$ =  $e^{x}((k+1)xe^{x} + k(k+1))e^{x}$ :.  $f^{(kt)}_{x} = 2xe^{x} + x^{2}e^{x} + 2ke^{x} + k(k+1)e^{x}$ =  $e^{x}((k+1)xe^{x} + k(k+1))e^{x}$ :.  $f^{(kt)}_{x} = 2xe^{x} + x^{2}e^{x} + 2ke^{x} + k(k+1)e^{x}$ 

If the for n=1 and n=k+1, then it is the for n=1+1=2 and n=2+1=3 etc for all  $n\in \mathbb{Z}^+$ 

#### 4. [Maximum mark: 8]

- (a) Factorise  $2x^2 3x 5$ . [2]
- (b) Hence, or otherwise, find the coefficient of  $x^{23}$  in the expansion of  $(2x^2 3x 5)^{12}$ , writing your answer in the form  $k \times 2^m$  where  $k, m \in \mathbb{Z}$ . [6]

## (a) (2x-5)(x+1)

- (b)  $(2x^2-3)(-5)^2 = (2x-5)^2(2x+1)^2$   $(2x^2-3)(-5)^2 = (2x-5)^2(2x+1)^2$  $(2x^2-3)(-5)^2 = (2x-5)^2(2x+1)^2$
- : Coefficient x23 when 12-17+K=23
  - -n+K=11 : n=1 K=12 0
    - and n=0 K=11 @
- From (2) 12 (0 × 12 (1) × 2" (-5) = 12 × 2"
  - : Coefficint =  $-60 \times 2^{11} + 12 \times 2^{12}$ =  $-60 \times 2^{11} + 24 \times 2^{11}$ =  $-36 \times 2^{11}$ =  $-9 \times 2^{13}$

K=-9 ,m=13

- 5. [Maximum mark: 6]
- (a) Find  $\int x^2 \sin x \, dx$ .

[4]

(b) Evaluate  $\int_{-1}^{1} x^2 \sin x \, dx$ .

[2]

(a) Szsinxdx let	ω-χ²	dv=sin	χ	
	du=20c	Va	OSX	***************************************
$= -x^2 (\cos x - \int 2x (-\cos x) dx$				
=- x210sx + S 2x 10s Edx	let	· u > 2x	dv=cosz	***************************************
	>>>aa haa aaa baa oo oo baa baa baa baa aa	du=2	V = SINX	***************************************
= -x2(06x + 2x510x- ) Z510x	χ dχ.			*****************************
=-x2 (05X + 2)(5)(0X + 2(05))	+ (_	«»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»»		***************************************
		••••••		***************************************
1				
$(b)$ $\int x^2 \sin x  dx$				
-1				
= [-2205x +2xsinx +2		-1		
- 0				

### 6. [Maximum mark: 9]

Let the probability that it rains on any one day be p and the weather on any day is independent of the weather on any other day.

- (a) Using p = 0.5, find the probability that during a period of one week:
  - (i) it will rain on at least five;
  - (ii) it will rain on the last day;
  - (iii) raining and non-raining days will alternate.
- (b) Find p, if during a full week period, it is equally likely that there will be five raining days as there will be six raining days. [4]

[5]

(a) (1) 
$$\rho = 0.5$$
:  $q = 0.5$ 

$$\rho(x > 5) = \rho(x = 5) + \rho(x = 6) + \rho(x = 7)$$

$$= \frac{7}{2} < (\frac{1}{12})^{5} (\frac{1}{12})^{2} + \frac{7}{2} < (\frac{1}{12})^{3} + \frac{1}{2} < (\frac{1}{12})^{7}$$

$$= \frac{7}{2} < (\frac{1}{12})^{7} + \frac{7}{2} < (\frac{1}{12})^{7} + \frac{1}{2} < (\frac{1}{12})^{7}$$

$$= (\frac{1}{12})^{7} (21 + 7 + 1)$$

$$= \frac{7}{2} \times 20$$

$$= \frac{29}{12} < \frac{1}{2} \times 20$$

$$= \frac{29}{12} < \frac{1}{2} \times 20$$

$$= \frac{29}{12} < \frac{1}{2} \times 20$$

$$= \frac{9}{2} + \rho^{7}$$

$$= 2\rho^{7}$$

$$= \frac{7}{6} + \rho^{7}$$

$$= 2\rho^{7}$$

$$= \frac{7}{6} + \rho^{7}$$

$$= \frac{7}{6} < \rho^{8} (1 + \rho)^{8} = \frac{7}{6} < \rho^{8} (1 + \rho)$$

$$21 (1 - \rho) = \frac{7}{6} \rho$$

$$3 - 3\rho = \rho$$

$$4\rho = 3$$

$$\rho = \frac{3}{12}$$

$$\rho = \frac{3}{12}$$

## 7. [Maximum mark: 5]

Prove that  $1 + \operatorname{cis} \theta + \operatorname{cis} 2\theta + ... + \operatorname{cis} n\theta = \frac{1 - \operatorname{cis}(n+1)\theta}{1 - \operatorname{cis}\theta}$ .

Prove	hue for n=1
	LH5=1+C150 PHS= 1-C1520
***************************************	1-050
	=1- (coszo + (s10 do)
	1-cis9
	$=1-\left(\cos^2\theta-\sin^2\theta+2\cos\theta\right)$
••••••	1-c150
	$=1-\left(\cos\varphi+\cos\varphi\right)^{2}$
	1-c15 0
	= (1-CISQ)(1+CISQ)
	1-0150
***************************************	= 1+(150 = LHS : Tome.
Hssum	1.C. 1+1150+11570++(15K0 = 1-(15(k+1)6)
Prove	the for n=k+1
	1- 1+ (150+ (150+ + (15 kg+ (15 (k+)0)= 1-(15 (k+2)0)
	LHS= 1-cis(kH)0 + cis(kH)0 from assumption.
	1-C15 0
	= 1- CIS(KH) 0+ (CIS(KH) 0) (1-CISO)
	1- C150
	= 1-c1s(kH)0+c1s(kH)0-c1s0
	•
	- 1- cis (k+2)0 - RHS.

. The for n=k+1

# Section B

- 8 (a) By the triangle inequality

  2x+3< x+1+2x+1
  - (b)  $(x+1)^2 + (2x+1)^2 = (2x+3)^2$   $x^2 + 2x + 1 + 4x^2 + 4x + 1 = 4x^2 + 12x + 9$   $x^2 - 6x - 7 = 0$  (x-7)(x+1) = 0x=7 os x > 0
  - (c) (1) largest ungle is opposite largest side 2x13.

$$(\cos 0 = (x+1)^{2} + (2x+1)^{2} - (2x+3)^{2}$$

$$= (x+1)(2x+1)$$

$$= (x-7)(x+1)$$

$$= (x-7)(x+1)$$



- $\cos \phi = \frac{5(3)(4)}{x-3}$  S(XH)(5XH)
- $\frac{2}{2} = \frac{2(2x+1)}{2(2x+1)}$

as 120° must be the largest angle

- 4x + 2 = 14 2x 6x = 12x = 2
- (d) on next page

	8 (d) 60° must be the middle angle
	= opposite Zxx+).
	$\frac{2x+3}{(2x+3)^2+(x+1)^2-(2x+1)^2}$
	2 (2x+3)(x+1).
	$\frac{1}{2} = 4x^{2} + 12x + 9 + x^{2} + 2x + 1 - 4x^{2} - 4x - 1$
	S(511+3)(X+1)
	$  _{2} = \frac{x^{2} + 10xc + 9}{x^{2}}$
	$\int (24+3)(3+1)$
	$\frac{1}{2} = \frac{(\chi+9)(\chi+1)}{2}$
	2(2x+3)(x+1)
	$\frac{2(2x+3)(x+1)}{2} = \frac{2(2x+3)}{2(2x+3)}.$
<u> </u>	
	4x46=2x+18
	20=12
	$\chi = 6$
	,



A: 
$$y=x^3-3x^2-2x-6$$
  
 $y=-2x-6$   
 $x^3-3x^2-2x-6=-2x-6$   
 $x^3-3x^2=0$   
 $x^2(x-3)=0$ 

$$A = \int_{0}^{3} \left[ (-2x-6) - (x^{3}-3x^{2}-2x-6) \right] dx$$

$$= \int_{0}^{3} (-x^{3}+3x^{2}) dx$$

$$= \left[ -\frac{2x^{4}}{4} + x^{3} \right]_{0}^{3}$$

$$= -\frac{3^{4}}{4} + 27$$

$$= 6^{3}/4 + 3^{3}$$

direction rector 
$$\binom{2}{3}$$

for it for the line  $\binom{2}{3}$ 

line  $m: \text{dir. vector} \binom{3}{-2}$ 

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 2\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{m} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{l} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{l} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{l} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{l} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{l} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{l} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{l} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{l} = \chi_{l} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{l} = \chi_{l} = \frac{1 + 3\mu}{2 + 3\lambda}$$

$$\chi_{l} = \chi_{l} = \chi_{l$$

$$\overrightarrow{N} = \begin{pmatrix} 7 \\ 7 \\ -7 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

$$\frac{Q.10 \text{ Contributed}}{C) \overline{N^2} = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} \qquad \hat{N} = \frac{\overline{N^2}}{\sqrt{12+1^2+(7)^2}} = \frac{\overline{N^2}}{\sqrt{3}} = \begin{pmatrix} \frac{1}{153} \\ \frac{1}{153} \\ \frac{1}{155} \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{1+3} - \frac{1}{15} \\ \frac{1}{155} \end{pmatrix}$$

d) line 
$$\kappa$$
:  $\vec{r} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 

$$\frac{\chi_{P_1} + \chi_{P_2}}{2} = \chi_{C}$$

$$x_{P_1} = 5 + t_n : x_{P_2} = 5 + t_2 \implies t_1 + t_2 = 0$$

$$P_{1}C=5=7 \sqrt{(55+t-5)^{2}+(t-0)^{2}+(5-t-5)^{2}} = \sqrt{3}t^{2}=5$$

$$t = \frac{5}{\sqrt{3}} \implies P_1: x_{P_1} = \frac{5}{\sqrt{3}}: 4P_1 = \frac{5}{\sqrt{3}}: 4P_1 = \frac{5}{\sqrt{3}}: 4P_2 = \frac{5}{\sqrt{3}}$$

$$P_{2}(t=-\frac{5}{\sqrt{3}}): \gamma_{p_{2}}=5-\frac{5}{\sqrt{3}}; \gamma_{p_{2}}=-\frac{5}{\sqrt{3}}: \gamma_{p_{2}}=5+\frac{5}{\sqrt{3}}$$

e) 
$$P_{1}(t;-t_{3})$$
:  $P_{2}=-(t_{3})$ 

The plane is  $11+o(t_{3})$ 

Normal vector  $T_{1}=(t_{3})$ 

Normal vector  $T_{2}=(t_{3})$ 

$$\begin{pmatrix}
x - 5 - \frac{1}{15} \\
y - \frac{5}{15} \\
-1
\end{pmatrix} = 0 = x - x - \frac{5}{15} + 4 - \frac{5}{15} - 2 + x - \frac{5}{15} = 0$$

$$\begin{pmatrix}
x - 5 - \frac{1}{15} \\
y - \frac{5}{15} \\
-1
\end{pmatrix} = 0 = x - x - \frac{5}{15} + 4 - \frac{5}{15} - 2 + x - \frac{5}{15} = 0$$

$$\begin{pmatrix}
x - 5 - \frac{1}{15} \\
y - \frac{5}{15} \\
-1
\end{pmatrix} = 0 = x - x - \frac{5}{15} + 4 - \frac{5}{15} - 2 + x - \frac{5}{15} = 0$$