> Problématique 1

FIGURE 1 : Projection sur un écran

Questions: Comment faire pour projeter une image sur un écran? Pour que l'image soit nette? La + grande possible?

> Problématique 2

FIGURE 2 : Les aventures de Tintin – L'étoile mystérieuse (Hergé)

Questions: Comment concevoir une lunette? Comment la régler sachant que l'observation est réalisée avec l'œil, qui constitue le dernier 5.0.?

1 Lentilles minces dans les conditions de

Gauss

Pour approfondir... Idées de physique...
[1] J.M. Courty, E. Kierlik, Du liquide pour faire des lentilles, *Pour la Science*, n°382, p 88-90, Août 2009

1.1 Constitution

- > <u>Définition</u>: Lentille sphérique
- > <u>Définition</u>: Lentille sphérique mince
- > Conséquence : Centre optique O

FIGURE 3: Constitution d'une lentille

1 Lentilles minces dans les conditions de Gauss

1.1 Constitution

> Types de lentilles

FIGURE 4: Lentilles convergentes et divergentes

6 types et 2 catégories

Convergentes (CV) Divergentes (DV)

> Modélisation

1 Lentilles minces dans les conditions de Gauss

1.2 Espaces objets et espaces images 5.0. de transmission

FIGURE 5: Espaces objets et images d'une lentille

1 Lentilles minces dans les conditions de Gauss

- 1.3 Foyers et distances focales
- 1.3.1 Foyer principal image et distance focale image
- > Définitions
 - Foyer image F'
 - Distance focale image f'
 - Plan focal image Π'
- > Propriétés

· L CV : F' réel

$$f' = \overline{OF'} > 0$$

L DV : F' virtuel | f

$$f' = \overline{OF'} < 0$$

- 1 Lentilles minces dans les conditions de Gauss
- 1.3 Foyers et distances focales

1.3.2 Foyer principal objet et distance focale objet

- > Définitions
 - Foyer objet F
 - Distance focale objet f
 - Plan focal objet Π

> Propriétés

• L CV : F réel
$$f = \overline{OF} < 0$$

• L DV : F virtuel $f = \overline{OF} > 0$

> Propriété

F et F' symétriques p/r à O|f'=-f

CHAPITRE OS3

Systèmes optiques : cas des lentilles

1 Lentilles minces dans les conditions de Gauss

1.3 Foyers et distances focales

1.3.3 Vergence

> Définition

$$V = \frac{1}{f'}$$
 (dioptrie δ)

> Conséquence

• L CV: f' > 0 et V > 0

• L DV: f' < 0 et V < 0

2 Objets et images - tracé de rayons

- 2.1 Règles de construction
- > Règle 1
- > Règle 2

- > Règle 3
- 2.2 Image d'un objet à distance finie
- > Exemple avec une lentille CV
- > Exemple avec une lentille DV
- > Nature des objets et images
 - Animation : Figures animées pour la physique : Optique géométrique /
 Lentilles / Lentille sphérique mince dans les conditions de Gauss

2 Objets et images – tracé de rayons

2.3 Image d'un objet à l'infini

> Objet étendu à l'infini

Définition:

diamètre angulaire apparent α

FIGURE 6 : Diamètre angulaire apparent α

Exemple

- 2 Objets et images tracé de rayons
- 2.3 Image d'un objet à l'infini
- > Construction pour une lentille convergente

Méthode

> Foyer secondaire image

Définition: Foyer secondaire image Φ'

FIGURE 7: Foyers secondaires images

$$A_{\scriptscriptstyle \infty}B_{\scriptscriptstyle \infty} \stackrel{L}{\longrightarrow} A'B' = F'\Phi'$$

- 2 Objets et images tracé de rayons
- 2.3 Image d'un objet à l'infini

> Diamètre angulaire apparent de l'objet

$$\alpha \simeq \tan(\alpha) = \frac{\overline{A'B'}}{f'}$$

2.4 Image d'un objet dans le plan focal objet

> Foyer secondaire objet

<u>Définition</u>: Foyer secondaire objet Φ

FIGURE 8: Foyers secondaires objets

> Conjugaison

$$AB = F\Phi \xrightarrow{L} A'_{\infty} B'_{\infty}$$

3 Relations de conjugaison et grandissement

- 3.1 Formules avec origine aux foyers (de Newton)
- > Relation de conjugaison

$$\overline{FA} \cdot \overline{F'A'} = ff' = -f'^2$$

15

> Grandissement

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{FO}}{\overline{FA}} = -\frac{f}{\overline{FA}} = \frac{\overline{F'A'}}{\overline{F'O}} = -\frac{\overline{F'A'}}{f'}$$

> Quand les utiliser?

Lycée M. Montaigne – MP2I

3 Relations de conjugaison et grandissement

3.2 Formules avec origine au centre (de Descartes)

> Relation de conjugaison

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}} = \frac{1}{f'} = V = -\frac{1}{f}$$

$$\frac{1}{p'} - \frac{1}{p} = \frac{1}{f'}$$
 avec $\overline{OA} = p$ et $\overline{OA'} = p'$

- > Remarque
- > Grandissement

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}} = \frac{p'}{p}$$

> Quand les utiliser?

3 Relations de conjugaison et grandissement

3.3 Application : projection d'un objet réel sur un écran

Exercice d'application 1 : retour à la problématique 1

Avec un projecteur, on souhaite obtenir une image réelle sur l'écran d'un objet réel (diapositive ou matrice).

- 1. Quelle doit-être la nature de la lentille ?
- 2. Déterminer la condition sur la distance D (fixée) entre objet et écran pour que l'image soit nette.
- 3. Déterminer la condition sur la position x de la lentille par rapport à l'objet pour que l'image soit la plus grande possible.

FIGURE 1 : Projection sur un écran

- 3 Relations de conjugaison et grandissement
- 3.3 Application : projection d'un objet réel sur un écran
- 1. Nature de la lentille

L CV : OR → IR

2. Condition de netteté

FIGURE 1: Projection sur un écran

- 3. Condition pour avoir une image agrandie
 - √lentille plus près de l'objet que de l'écran
 - ✓ pour *D* fixée, distance focale la plus petite possible

4 Modèle optique de l'œil

- 4.1 Description sommaire de l'œil modèle optique
- > Constitution

5.0. centré

FIGURE 9 : Coupe de l'œil humain

4 Modèle optique de l'œil

4.1 Description sommaire de l'œil – modèle optique

> Modèle optique

Élément optique	Fonction	Caractéristiques
Objectif: dioptre sphérique: cornée + lentille biconvexe: cristallin	Formation de l'image	Système convergent déformable de vergence environ $+20 \delta$ $(f' \simeq 50 \text{ mm})$ donnant une image renversée. Le cristallin sépare l'humeur aqueuse de l'humeur vitrée $(n=1,336)$
Diaphragme : pupille + iris	Réglage de la quantité de lumière entrant dans l'œil	L'iris agit sur la pupille par des muscles circulaires et longitudinaux (par réflexes inconscients).
Obturateur : paupière	Réglage de la durée d'admission de la lumière	L'ouverture et la fermeture de la paupière sont déclenchées par un réflexe.

- 4 Modèle optique de l'œil
- 4.1 Description sommaire de l'œil modèle optique

Récepteur de lumière : rétine	Impression de l'image	Au niveau de la tache jaune, la rétine est constituée de nombreuses cellules sensibles à la lumière, de l'ordre du µm (cônes sensibles à la couleur : vision diurne ; bâtonnets : vision nocturne)
Nerf optique	Perception de l'image	Il transmet l'information (liée à l'image) à la zone du cerveau qui traite l'image (en l'inversant).

FIGURE 11 : Modèle optique de l'œil

4 Modèle optique de l'œil

4.2 Phénomène d'accommodation

> Œil au repos

> Accommodation

FIGURE 12: Phénomène d'accommodation

- 4 Modèle optique de l'œil
- 4.2 Phénomène d'accommodation

> Plage d'accommodation

	Punctum Proximum (PP)	Punctum Remotum (PR)
Définition	Point objet le plus proche de l'œil,	Point objet le plus éloigné de l'œil,
	vu nettement.	vu nettement.
Ordre de grandeur	$d_m \approx 25 \text{ cm}$	$D_m \simeq \infty$
Accommodation ou pas ?	Accommodation maximale : fatigue visuelle	Pas d'accommodation : œil au repos

FIGURE 13: Plage d'accommodation

CHAPITRE OS3

Systèmes optiques : cas des lentilles

4 Modèle optique de l'œil

4.3 Résolution angulaire

> Diamètre angulaire

Définition

$$\tan(\alpha) = \frac{AB}{d}$$

> Résolution angulaire

Définition

$$\alpha_{\min} = 1' = \frac{1}{60} \deg = 3.10^{-4} \text{ rad}$$

Exercice d'application 2

- 1. Jusqu'à quelle distance peut-on distinguer deux points A et B séparés de la distance $AB=1 \ \mathrm{mm}$?
- 2. Quel est la taille du plus petit objet perceptible à l'œil nu ?

4.4 Les défauts de l'œil

- > Œil normal ou emmétrope
 - Champ de vision : $d_m \approx 25 \text{ cm} \rightarrow D_m \infty$
 - Propriété

- 4 Modèle optique de l'œil
- 4.4 Les défauts de l'œil

- Myopie
 - Défaut
 - Champ de vision
 - Correction
- > Hypermétropie
 - Défaut
 - Champ de vision
 - Correction

Avec accommodation

PR

I

PP

Gil normal

Gil myope

Eil hypermétrope

Gil presbyte

25 cm

FIGURE 13 : Champs de vision selon les défauts de l'œil

- > Presbytie Défaut Champ de vision Correction
- > Astigmatisme Défaut Correction

5 Instruments d'optique

- 5.1 Associations de lentilles
- 5.1.1 Constitution d'un instrument d'optique
- > Utilisation de plusieurs lentilles
- > <u>Définitions</u>:
 - Lentille du côté de l'objet = objectif
 - Lentille du côté de l'œil = oculaire
- > Conjugaison

$$AB \xrightarrow{L_1} A_1B_1 \xrightarrow{L_2} A'B'$$

Lycée M. Montaigne – MP2I 27

CHAPITRE OS3

Systèmes optiques : cas des lentilles

5 Instruments d'optique

5.1 Associations de lentilles

5.1.1 Constitution d'un instrument d'optique

> Grandissement global

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{A'B'}}{\overline{A_1B_1}} \frac{\overline{A_1B_1}}{\overline{AB}} = \gamma_1 \gamma_2$$

5 Instruments d'optique

5.1 Associations de lentilles

5.1.2 Lentilles accolées

> <u>Définition</u>: Lentilles accolées

$$O_1O_2 \ll |f'_1|, |f'_2|$$

> Propriété

$$V = V_1 + V_2$$

5 Instruments d'optique

5.1 Associations de lentilles

5.1.3 Lentilles non accolées

> Système focal

[2] J.M. Courty, E. Kierlik, Faire d'un smartphone un microscope performant, Pour la Science, n°491, p 90-92, Septembre 2018

- > Système afocal
 - Définition : Système afocal
 - · Propriété:

$$oldsymbol{F'}_1 = oldsymbol{F}_2$$

5.2 Grossissement

Définition : grossissement (angulaire)

pour un objet étendu :

 α : diamètre angulaire de l'objet AB vu à l'œil nu α' : diam. ang. de l'image A'B' de l'objet AB vu à travers l'instrument

- instruments d'observation à l'infini : α = diam. ang. de l'objet à l'infini
- instruments d'observation proche : α = diam. ang. de l'objet placé au PP de l'œil

5 Instruments d'optique

5.3 Lunette astronomique

> Retour à la problématique 2

FIGURE 2: Les aventures de Tintin - L'étoile mystérieuse (Hergé)

Lunette astronomique = lunette afocale

CHAPITRE OS3 Systèmes optiques :

cas des lentilles

5 Instruments d'optique

5.3 Lunette astronomique

Exercice d'application 3

On considère une lunette astronomique, comportant un objectif constitué d'une lentille mince convergente L_1 de centre O_1 et de focale $f'_1 = \overline{O_1 F'_1} > 0$ et un oculaire constitué d'une lentille mince convergente L_2 de centre O_2 et de focale $f'_2 = \overline{O_2 F'_2} > 0$. Ces deux lentilles ont même axe.

On souhaite observer la planète Mars à travers la lunette, en formant un système afocal.

- 1. Quelle est la conséquence sur la position relative des lentilles ?
- 2. Faire un schéma sur papier millimétré en prenant $f'_1 = 5f'_2$ et représenter l'image intermédiaire notée A'B'.
- 3. On veut photographier la planète. Où faut-il placer le capteur CCD?

On note α ' le diamètre angulaire de la planète vue à travers la lunette et α le diamètre angulaire de la planète vue à l'œil nu.

- 4. L'image finale est-elle droite ou renversée?
- 5. Exprimer le grossissement G de la lunette.

Exercice d'application 4 : Lunette commerciale

La lunette astronomique Mizar 70/900 est une lunette avec un objectif de 70 mm de diamètre et de focale 900 mm. Deux oculaires sont fournis : 25 mm et 9 mm. Calculer les grossissements de cette lunette.