Лабораторная работа №1 Тепловое расширение твёрдых тел

ФИО, группа	
Дата выполнения	
Подпись	
Дата отчета	
Оценка	
Подпись	

Цель работы: Определение температурного коэффициента линейного расширения металлического стержня в некотором интервале температур.

Основные формулы:

Коэффициенты в методе наименьших квадратов:

$$a = \frac{T = al + b}{< Tl > - < l > < T >}$$

$$= \frac{< Tl^2 > - < l^2 >}{< l^2 > - < l^2 >}$$

$$= \frac{< Tl^2 > - < l^2 > < T >}{< l^2 > - < l^2 >}$$
 Среднеквадратичные ошибки в методе наименьших квадратов:

$$S_a = \sqrt{\frac{\langle (T - al - b)^2 \rangle}{(n - 2)(\langle l^2 \rangle - \langle l \rangle^2)}}$$

$$S_b = \sqrt{\frac{\langle (T - al - b)^2 \rangle \langle l^2 \rangle}{(n - 2)(\langle l^2 \rangle - \langle l \rangle^2)}}$$

Абсолютные ошибки среднего:

$$\Delta a = t_{\alpha n} S_a$$
$$\Delta b = t_{\alpha n} S_b$$

Коэффициент температурного расширения твёрдых тел:

$$\eta = \frac{1}{L} \frac{\Delta l}{\Delta T} = \frac{1}{La}$$

Абсолютная ошибка коэффициента температурного расширения твёрдых тел:

$$\Delta \eta = \frac{\Delta a}{La^2}$$

Относительная ошибка коэффициента температурного расширения твёрдых тел:

$$\frac{\Delta \eta}{\eta} = \frac{\Delta a}{a}$$

Таблица 1 Результаты измерений

l, мкм	Сопротивление	Температура	$(T_i - al_i - b)^2$	Сопротивление	Температура	$(T_i - al_i - b)^2$
	<i>R</i> , кОм	Т, К		<i>R</i> , кОм	Т, К	
200	2,8	62,5	30,97	2,3	74,0	0,42
195	2,9	65,0	3,30	2,4	73,0	0,77
190	3,0	64,7	0,83	2,5	70,0	0,79
185	3,1	64,3	0,00	2,6	66,4	10,93
180	3,2	63,9	0,67	2,7	63,4	25,24
175	3,3	63,1	1,70	2,8	62,5	22,01
170	3,4	61,9	1,72	2,9	65,0	0,92
165	3,6	59,3	0,00	3,0	64,7	0,00
160	3,7	58,7	0,40	3,1	64,3	0,72
155	3,9	57,5	0,45	3,3	63,1	0,75
150	4,0	56,9	1,73	3,4	61,9	0,73
145	4,2	55,7	1,75	3,5	60,0	0,04
140	4,4	54,2	1,19	3,6	59,3	0,60
135	4,5	53,3	2,25	3,8	58,1	0,59
130	4,7	51,6	1,12	3,9	57,5	1,96
125	4,9	50,0	0,43	4,1	56,3	2,01

1	Сопротивление	Температура	$(T_i - al_i - b)^2$	Сопротивление	Температура	$(T_i - al_i - b)^2$
l, мкм	R, к O м	T, K	(1 2)	R, кОм	T, K	(11 001 2)
120	5,2	48,1	0,00	4,2	55,7	4,08
115	5,4	47,0	0,02	4,4	54,2	3,13
110	5,6	46,0	0,14	4,6	52,5	1,74
105	5,8	45,0	0,43	4,8	50,8	0,76
100	6,1	43,4	0,10	5,0	49,3	0,39
95	6,4	41,9	0,00	5,2	48,1	0,39
90	6,7	40,5	0,02	5,4	47,0	0,56
85	7,0	39,1	0,04	5,6	46,0	0,91
80	7,3	37,9	0,03	5,8	45,0	1,49
75	7,6	36,8	0,00	6,1	43,4	0,76
70	7,9	35,7	0,01	6,4	41,9	0,35
65	8,3	34,2	0,01	6,6	40,9	0,73
60	8,7	32,8	0,13	6,9	39,6	0,52
55	9,1	31,3	0,28	7,2	38,3	0,51
50	9,6	29,7	0,87	7,5	37,2	0,62
45	10,1	28,2	1,37	7,8	36,1	0,84
40	10,6	26,9	1,42	8,2	34,6	0,49
35	11,2	25,7	1,27	8,6	33,1	0,19
30	11,8	25,0	0,39	9,0	31,7	0,05
25	12,4	24,1	0,10	9,4	30,3	0,01
20	13,1	23,0	0,01	10,0	28,5	0,26
15	13,7	22,2	0,08	10,6	26,9	0,69
10	14,3	21,2	0,35	11,4	25,4	1,18
5	15,0	20,0	0,38	13,5	22,5	8,08
0	15,7	18,6	0,18	15,7	18,6	30,34

Таблица 2 Обработка результатов измерений

< l >, мкм	$< l^2 >$, MKM ²	< T >, K	< Tl >	$< Tl >$, К \cdot мкм	
100	13500	43,1	51	190	
		48,7	5730		
а, К/мкм	<i>b</i> , К	$<(T-al-b)^2>, K^2$	S_a	S_b	
0,250	18,1	1,37	0,00316	0,127	
0,246	24,0	3,11	0,00477	0,285	
n	α	$t_{lpha n}$	Δα	Δb	
41	0,95	2.0	0,00632	0,254	
			0,00954	0,570	
L, мм	η , K^{-1}	$\Delta\eta$, K^{-1}	$\Delta \eta/\eta$	$\Delta\eta/\eta$, %	
243	$1,64 \cdot 10^{-5}$	$4,15 \cdot 10^{-7}$	0,0253	2,53	
	$1,67 \cdot 10^{-5}$	$3,24 \cdot 10^{-7}$	0,0194	1,94	

Рисунок 1 Зависимость температуры от удлинения