Table 12.3-3 Requirements for Each Story Resisting More than 35% of the Base Shear

Lateral Force-Resisting Element	Requirement
Braced frames	Removal of an individual brace, or connection thereto, would not result in more than a 33% reduction in story strength, nor does the resulting system have an extreme torsional irregularity (horizontal structural irregularity Type 1b).
Moment frames	Loss of moment resistance at the beam-to-column connections at both ends of a single beam would not result in more than a 33% reduction in story strength, nor does the resulting system have an extreme torsional irregularity (horizontal structural irregularity Type 1b).
Shear walls or wall piers with a height-to-length ratio greater than 1.0	Removal of a shear wall or wall pier with a height-to-length ratio greater than 1.0 within any story, or collector connections thereto, would not result in more than a 33% reduction in story strength, nor does the resulting system have an extreme torsional irregularity (horizontal structural irregularity Type 1b). The shear wall and wall pier height-to-length ratios are determined as shown in Figure 12.3-2.
Cantilever columns	Loss of moment resistance at the base connections of any single cantilever column would not result in more than a 33% reduction in story strength, nor does the resulting system have an extreme torsional irregularity (horizontal structural irregularity Type 1b).
Other	No requirements

12.3.4.2 Redundancy Factor, ρ , for Seismic Design Categories D through F

For structures assigned to Seismic Design Category D, E, or F, ρ shall equal 1.3 unless one of the following two conditions is met, whereby ρ is permitted to be taken as 1.0:

- a. Each story resisting more than 35 percent of the base shear in the direction of interest shall comply with Table 12.3-3.
- b. Structures that are regular in plan at all levels provided that the seismic force-resisting systems consist of at least two bays of seismic force-resisting perimeter framing on each side of the structure in each orthogonal direction at each story resisting more than 35 percent of the base shear. The number of bays for a shear wall shall be calculated as the length of shear wall divided by the story height or two times the length of shear wall divided by the story height, h_{xx} , for light-frame construction.

12.4 SEISMIC LOAD EFFECTS AND COMBINATIONS

12.4.1 Applicability

All members of the structure, including those not part of the seismic force-resisting system, shall be designed using the seismic load effects of Section 12.4 unless otherwise exempted by this standard. Seismic load effects are the axial, shear, and flexural member forces resulting from application of horizon-

tal and vertical seismic forces as set forth in Section 12.4.2. Where specifically required, seismic load effects shall be modified to account for overstrength, as set forth in Section 12.4.3.

12.4.2 Seismic Load Effect

The seismic load effect, *E*, shall be determined in accordance with the following:

1. For use in load combination 5 in Section 2.3.2 or load combinations 5 and 6 in Section 2.4.1, *E* shall be determined in accordance with Eq. 12.4-1 as follows:

$$E = E_h + E_v (12.4-1)$$

2. For use in load combination 7 in Section 2.3.2 or load combination 8 in Section 2.4.1, *E* shall be determined in accordance with Eq. 12.4-2 as follows:

$$E = E_h - E_v (12.4-2)$$

where

E = seismic load effect

 E_h = effect of horizontal seismic forces as defined in Section 12.4.2.1

 E_v = effect of vertical seismic forces as defined in Section 12.4.2.2

12.4.2.1 Horizontal Seismic Load Effect

The horizontal seismic load effect, E_h , shall be determined in accordance with Eq. 12.4-3 as follows:

$$E_h = \rho Q_E \tag{12.4-3}$$