Query/Command: PRT SS 3 MAX 1-5 IMG

1/1 JAPIO - (C) JPO- image

N - JP 61252702 A 19861110 [JP61252702]

TI - OSCILLATOR CONTROLLED BY DIELECTRIC RESONATOR

IN - NAGATA EIJI

PA - NEC CORP

AP - JP09413385 19850501 [1985JP-0094133]

IC1 - H03B-005/18

IC2 - H01P-007/10 H03B-009/14

AB - PURPOSE: To prevent surely leakage of air-tightness from an oscillating frequency adjusting screw by isolating air-tightly an oscillating frequency adjusting screw by a barrier formed at the inner face of an outer package frame from the oscillation circuit and forming at least a part of the barrier with a dielectric through which an electromagnetic magnetic field.

- CONSTITUTION: The barrier 9 isolating the oscillating frequency adjusting screw 7 from the oscillation circuit is bonded air-tightly to the inner face of a metallic cap 2 by solar or laser seal. The barrier 9 is formed by a dielectric such as ceramic, through which the transmission of the electromagnetic field is attained between the screw 7 and the dielectric resonator 6. Since the barrier 9 is constituted with a member having a high air-tight capability such as ceramic, it is possible to obtain a sufficient air-tightness over the air-tightness performance of an adhesives. Since the barrier 9 is bonded by solder or the like without using an adhesives, no exfoliation is caused to the bonded part due to temperature change or the like and the characteristic deterioration of the oscillating circuit is prevented over a long period. Thus, the reliability of the device is kept over a long period.
- COPYRIGHT: (C) 1986, JPO&Japio

Click on image to view Tiff

19日本国特許庁(JP)

10 特許出願公開 10 日

⑩公開特許公報(A)

昭61-252702

@Int_Cl_4

識別記号

庁内整理番号

匈公開 昭和61年(1986)11月10日

H 03 B H 01 P 5/18 7/10 H 03 B 9/14 7530-5 J 6749-5 J

審杳諳求 有

発明の数 1 (全4 頁)

②発明の名称

誘電体共振器制御発振器

②特 願 昭60-94133

29出 昭60(1985)5月1日

砂発 眀 永 田

英 可

東京都港区芝5丁目33番1号 日本電気株式会社内

砂出 PE 日本電気株式会社

少代 理 弁理士 八幡

1. 発明の名称

誘電体共振器制御発振器

2. 特許請求の範囲

詩電体共振器と半導体チップとを含む発振図 路を気密収容する外囲器枠を有し、この外囲器 枠には誘電体供振器に対向させて進退自在の発 振 周 波 数 綱 整用 ね じ が 設 け ら れ て い る 静 電 体 共 振器制御発振器において、前配発振周波数調整 用ねじは外囲器枠の内面に形成された隔壁によ つて発掘回路と気密に隔絶されてかり、この隔 壁の少くとも一部は電磁界を透過する弱電体に よつて形成されているととを特徴とする酵電体 共报器制御条提器。

発明の詳細な説明

(産業上の利用分野)

本発明は発掘周波数調整用ねじを備えた誘電 体共経器制御発提器に関し、特に、そのねじ部 の気密性の改善に関するものである。

(従来の技術)

東京都港区芝5丁目33番1号

誘電体共振器制御MI 0 発振器あるいは電圧 制御発扱器として従來から使用されている詩電 体共振器制御発振器の装置構成が第4図に示さ れている(以下、説明の都合上酸館体共振器制 脚NIO 発振器を例として説明する。)。図に おいて、金属ヘッダー1と金属キャップ2はロ **ク付け又はレーザーシール等の手段により気密 に接合され、との金属ヘッダー1と金属キャッ** プ2とで、外囲器枠3が形成されている。前記 金属ヘッダー1の上面にはMIO基板4が固定 されており、このNIO基板4に半導体チップ 5 および誘覚体共振器 6 が配設されている。と の半導体チップ 5 および誘電体共振器 6 は誘電 体共振器制御MIO発振器の発振回路を構成す るものである。前配金属キャップ2の頂盤 2aに は前記勝電体共振器 6 に対向させて発掘周波数 調整用ねじが進退自在に媒合配設されてかり、 との発振周波数調整用ねじ7を進退させて発振 周波数を調整できるよりになつている。一般に、

特開昭61~252702 (2)

外囲器枠3の内部には乾燥窒素ガスが封入されており半導体テップ5をよび静電体共振器6等が空気に触れないようになつている。また、前配発振周波数調整用ねじ7の周囲には接着剤8が進布されており、前配外囲器枠3内の気管化、 すなわち、発振周波数調整用ねじ部からの気管 消費の防止が図られている。

(発明が解決しようとする問題点)

しかしながら、上記従来の装置のように、発振周波数調整用ねじ部からの気密構説を接着剤 8によつて図る構成にあつては、その気密保持を十分に図ることができず共振回路の信頼性が 待られないという問題がある。

一般に、気密度が低い場合には外気が侵入し あく、この外気の侵入によつて半導体チップ 5 の表面にイオンが侵入し半導体回路の安定性が 悪くなつたり、誘電体共振器のQが変化して発 掘回路の特性が悪化してしまりからである。こ のような特性悪化を避けるため発振周波数調整 用ねじ部を接着剤により對止するのであるが、

電体共振器に対向させて進退自在の発振周波数 調整用ねじが設けられている誘電体共振器制御 発振器において、前記発振周波数調整用ねじは 外囲器枠の内面に形成された隔壁によつて発振 回路と気密に隔絶されており、この隔壁の少く とも一部は電磁界を透過する誘電体によつて形成されている誘電体共振器制御発振器である。 (作 用)

接着剤8自体による気密度の性能はそれ程高くできないことが経験的に知られている。また長期の気密安定性の上でも、特にその周囲温度が広い範囲にわたり変化するような環境下になかいでは、金属と接着剤の膨張係数の差から生じながない。 を関すが生じやすく、このよう気が を関が生じた場合には外部雰囲気、例えば外のや 水蒸気等の内部への侵入を招き、削途のは 発振器の特性が悪化してしまうという問題があった。

本発明は上記従来の問題点を解決するために なされたものであり、その目的は発振周波数調整用ねじ部からの気密端洩を確実に防止し、発 振器の信頼性を長期に保つことができる時間体 共振器制御発振器を提供することにある。

(問題点を解決するための手段)

本発明は上記目的を達成するために次のように構成されている。すなわち、本発明は、誘電体共振器と半導ケップとを含む発酵回路を気密収容する外囲器枠を有し、この外囲器枠には誘

誘電体によって形成されているので、この誘電体を介して発振周波数調整用ねじと誘電体共振器間に電磁界の透過が行われる。したがつて、発振周波数調整用ねじを進退させることにより、誘電体共振器の周囲の電磁界分布を変化することが可能となり、誘電体共振器の共振局波数を支障なく調整することが可能となるものである。(実施例)

以下、本発明の実施例(第1実施例から第3 実施例)を図面に基づいて説明する。なか、各 実施例の説明にかいて従来装置の各部材と同一 部材には同一符号を付してその説明を省略する

第1図には本発明の第1実施例が示されている。本第1実施例が従来装置と異なる特徴的研究来装置と異なる特徴的調整用なじてを獲り隔壁9、すなわち、発掘周波数調整用なじてを発展回路と隔絶する隔壁9をロウ付又はレーザーシール等により気管に接受りたととである。この隔壁9はセラミックス等の誘電体により形成され、発振周波数調整用な

特開昭61~252702 (3)

じっと誘電体共振器 6 間の電磁界の透過を可能 にしている。

したがつて、本第1実施例によれば隔壁9を セラミックス等気密能力の高い部材により構成 するものであるから、接着剤の気密性能を越え た充分な気密度(例えばリークレート10⁻⁸ Atm.cc/sec以下)を得ることが可能となる。し かもこの隔盤9は接着剤を使用することなくロ ウ付等により接合されるので、温度変化等によ つて接合部に剥離等が生じるとともなく発掘回 路の特性劣化を長期にわたり防止することがで きる。また発振周波数調整用ねじ7と誘電体共 **振器6とを隔壁9により隔絶するにもかかわら ポとの隔壁9は電磁界を透過する時電体によつ** て形成されているので、発振周放数調整用ねじ 7の進退によつて誘電体共振器6の周囲の電磁 界分布に影響を与えることが可能となり、 共振 周波数の調整を支障なく行りことができる。

第2回には本発明の第2実施例が示されてい る。本第2実施例が前記第1実施例と異なる点

突殺された金属製簡枠10の先端面には第2実 ・施例の場合と同様に誘電体基板11がロウ付等 により固定されている。したがつて本第3実施 例においても、前記第1実施例および第2実施 例の場合と同様に、外囲器枠3内の気密度を充 分高くすることが可能となり、発掘回路の特性 劣化を防止できるとともに、発振周波数調整用 ねじての進退操作により発振周波数の調整を支 障なく行うことが可能となる。

以上説明したように各実施例はいずれも隔壁 4. 図面の簡単な説明 9 によつて発振回路と発振周波数調整用ねじて との気密隔絶が充分に図られるから、発掘周波 数調整ねじ7の進退による発振周波数の調整を 必要に応じその都度行うととができるという利 点があり、接着剤の封止後は外気侵入のためそ の発振周波数の調整ができないという従来装置 の不便を効果的に解消するものでもある。 (発明の効果)

本発明は以上説明したように構成されている ので、発振周波数網整用ねじと発振回路との隔 は隔壁9をセラミックス等の誘電体によつて一 体的に形成するのではなく、円筒あるいは角形 筒状の金属製筒枠10とセラミックス等の誘電 ある。前記金属製筒枠10の基端は発振周波数 調整用ねじての下端部を囲成して金属キャップ 2の内面に落着等により固定されており、その 先端面には前記誘電体蓄板11がロウ付により 固定されている。したがつて本男2実施例も前 配第1実施例と同様に、隔壁9により発振周波 数調整用ねじてからの気密備機を防止できるの で、発掘回路の特性劣化を回避することができ る。また、隔壁9には鬱電体基板11が設けら れているので発援周波改調整用ねじての進退に より発掘周波数の調整を支置なく行うことが可 能となる。

第3図には本発明の第3実施例が示されてい る。本無3 実施例が前記第2 実施例と異なると とは金属製簡粋10を金属キャップ2の内面か ら一体的に突殺したことである。この一体的に

絶を確実に図ることができるので発信回路の周 囲の気密度を充分高くすることが可能とたる。 との結果、外気の侵入により発振回路の特性が 悪化するという弊害が防止され、装置の信頼性 を長期に使つて維持することが可能となる。

また、隔壁の少くとも一部は誘電体により形 成されているから、発振周波数調整用ねじの進 退によつて発振周波数の調整を支障なく行りと とがてきる。

第1図は本発明の第1実施例を示す断面図、 第2図は本発明の第2実施例を示す断面図、第 3 図は本発明の第3 実施例を示す断面図、第4 図は従来装置を示す断面図である。

1…金属ヘッダー、 2…金属キャップ、 2a… 頂魔、 3 … 外囲器枠、 4 … MII O 基板、 5 …半導体チップ、 6 … 誘電体共振器、 7 … 発振周波数調整用ねじ、 9 … 隔壁、 10…金属製筒枠、 11…精實 体基板。

特開昭61-252702 (4)

第 / 図

\$ E. J. C. S.

第 2. 图

第3図

第 4 図

