In This notebook we have done some data visualization for :

- · Checking for missing values
- · Data Sanity Checks
- · Outlier Capping
- · Basic Analysis of the data

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
# sns.set()
from sklearn.model_selection import train_test_split
from collections import Counter
import random
# import logging

df=pd.read_csv('UCI_Credit_Card.csv')

df.shape

→ (30000, 25)

df.drop('ID',axis=1,inplace=True)
```



```
df.isnull().sum(axis=0)
```

```
→ LIMIT_BAL
    SEX
    EDUCATION
    MARRIAGE
                                   0
    AGE
    PAY 0
                                   0
    PAY 2
    PAY_3
                                   0
    PAY_4
                                   0
    PAY_5
    PAY_6
                                   0
    BILL_AMT1
    BILL_AMT2
    BILL_AMT3
    BILL_AMT4
    BILL AMT5
                                   0
    BILL_AMT6
                                   0
    PAY_AMT1
                                   0
    PAY_AMT2
                                   0
    PAY_AMT3
                                   0
    PAY_AMT4
                                   0
    PAY_AMT5
                                   0
    PAY_AMT6
    default.payment.next.month
                                   0
    dtype: int64
```

→ TARGET ANALYSIS

```
df['default.payment.next.month'].value_counts(normalize=True).plot.bar()
plt.title('Non Defaulters vs Defaulters')
plt.show()
```


Inference

- prob_default=0.22
- · Imbalanced data

→ SEX EDUCATION MARRIAGE

• SEX: Gender (1=male, 2=female)

Name: count, dtype: int64

- EDUCATION: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown, 6=unknown)
- MARRIAGE: Marital status (1=married, 2=single, 3=others)

df[['SEX','EDUCATION','MARRIAGE']].describe()

→	SEX		EDUCATION	MARRIAGE	
	count	30000.000000	30000.000000	30000.000000	
	mean	1.603733	1.853133	1.551867	
	std	0.489129	0.790349	0.521970	
	min	1.000000	0.000000	0.000000	
	25%	1.000000	1.000000	1.000000	
	50%	2.000000	2.000000	2.000000	
	75%	2.000000	2.000000	2.000000	
	max	2.000000	6.000000	3.000000	

• Education and marriage have a category 0 which is unknown

```
# Replacing 0 of marriage with 3(others)

df['MARRIAGE']=df['MARRIAGE'].replace({0:3}))

# Replacing 0,5,6 with 4

df['EDUCATION']=df['EDUCATION'].replace({0:4,5:4,6:4})

df['MARRIAGE']=df['MARRIAGE'].replace({1:'married',2:'single',3:'others'})

df['EDUCATION']=df['EDUCATION'].replace({1:'graduate school',2:'university',3:'high school',4:'others'})

df['SEX']=df['SEX'].replace({1:'male', 2:'female'})

df[['MARRIAGE']].value_counts()

ARRIAGE
single 15964
married 13659
others 377
```

```
def plot_categoric(cat_col):
    plt.title('{0} vs DEFAULT PROBABILITY'.format(cat_col))
    df.groupby(cat_col)['default.payment.next.month'].mean().plot.bar()
    plt.show()
```


SEX

male

• Men are more likely to default than feamles

female

plot_categoric('MARRIAGE')

0.00

plot_categoric('EDUCATION')

Inference On Categoric Variables

- University and high school people are more likely to default.
- Married People are more likely to default.
- · Males are more likely to default

Limit Balance And Influence On Target Var

```
sns.histplot(df['LIMIT_BAL'])
plt.title('DISTN OF LIMIT_BAL')
plt.xlabel('LIMIT_BAL in Millions')
plt.show()
```


df.groupby('default.payment.next.month')['LIMIT_BAL'].mean().plot.bar()
plt.title('Mean Limit Balance v/s Target')
plt.show()

→

Inference

- Very few have a high limit balance
- · Those who do not default have a higher limit balance

→ AGE And Influence On Target

```
sns.histplot(df['AGE'])
plt.title('DISTN OF AGE')
plt.show()
```


• Most people are in late 20's and early 30's

ANALYSING NUMERIC FEATURES FOR OUTLIERS

1.Limit Balance

```
sns.boxplot(x=df['default.payment.next.month'],y=df['LIMIT_BAL'],data=df)
plt.title('Limit Balance and Target')
plt.show()
```



```
sns.boxplot(df['LIMIT_BAL'])
plt.title('Box Plot of Limit Balance')
plt.show()
```


df['LIMIT_BAL'].describe()

∑ ₹	count	30000.000000
	mean	164061.989333
	std	121035.014953
	min	10000.000000
	25%	50000.000000
	50%	140000.000000
	75%	240000.000000
	max	430000.000000
	Name:	LIMIT BAL, dtype: float64

Capping to 95%

```
df.loc[df['LIMIT_BAL']>=df['LIMIT_BAL'].quantile(0.95),'LIMIT_BAL']=df['LIMIT_BAL'].quantile(0.95)
# Checking the outliers now
sns.boxplot(df['LIMIT_BAL'])
plt.title('Box Plot of Limit Balance After Outlier Treatment')
plt.show()
```


sns.boxplot(x=df['default.payment.next.month'],y=df['LIMIT_BAL'],data=df)
plt.title('Limit Balance and Target After Outlier Treatment')
plt.show()

2.BILL AMT (1-6)

df[['BILL_AMT1','BILL_AMT2','BILL_AMT3','BILL_AMT4','BILL_AMT5','BILL_AMT6']].describe()

₹		BILL_AMT1	BILL_AMT2	BILL_AMT3	BILL_AMT4	BILL_AMT5	BILL_AMT6
	count	30000.000000	30000.000000	3.000000e+04	30000.000000	30000.000000	30000.000000
	mean	51223.330900	49179.075167	4.701315e+04	43262.948967	40311.400967	38871.760400
	std	73635.860576	71173.768783	6.934939e+04	64332.856134	60797.155770	59554.107537
	min	-165580.000000	-69777.000000	-1.572640e+05	-170000.000000	-81334.000000	-339603.000000
	25%	3558.750000	2984.750000	2.666250e+03	2326.750000	1763.000000	1256.000000
	50%	22381.500000	21200.000000	2.008850e+04	19052.000000	18104.500000	17071.000000
	75%	67091.000000	64006.250000	6.016475e+04	54506.000000	50190.500000	49198.250000
	max	964511.000000	983931.000000	1.664089e+06	891586.000000	927171.000000	961664.000000

· Handling negative values

```
for i in range(1,7):
    feature='BILL_AMT'+str(i)+'_POS'
    df[feature]=df['BILL_AMT'+str(i)].apply(lambda x:1 if x>=0 else 0)
```

→

for i in range(1,6):

```
feature='BILL_AMT'+str(i)
  df[feature]=df[feature].apply(lambda x:abs(x))

sns.boxplot(x=df['default.payment.next.month'],y=df['BILL_AMT6'],data=df)
plt.title('Bill Amt and Target')
plt.show()
```



```
sns.boxplot(df['BILL_AMT1'])
plt.title('Box Plot of Bill Amount 1')
plt.show()
```


- Bill amount variables do not show much variability with the target
- · Capping them at 95%

```
def cap_upper(df,feature,limit):
    percentile_limit=df[feature].quantile(limit)
    df.loc[df[feature]>=percentile_limit,feature]=percentile_limit
    return df[feature]

for i in range(1,6):
    feature='BILL_AMT'+str(i)
    df[feature]=cap_upper(df,feature,limit=0.95)

sns.boxplot(df['BILL_AMT5'])
plt.title('Box Plot of Bill Amount 1')
plt.show()
```


✓ 3.PAY_AMT

 $df[['PAY_AMT1','PAY_AMT2','PAY_AMT3','PAY_AMT3','PAY_AMT5','PAY_AMT6']]. \\ describe(percentiles=[0.25,0.5,0.75,0.8,0.85,0.9,0.95,0.98]) \\$

_							
₹		PAY_AMT1	PAY_AMT2	PAY_AMT3	PAY_AMT4	PAY_AMT5	PAY_AMT6
	count	30000.000000	3.000000e+04	30000.00000	30000.000000	30000.000000	30000.000000
	mean	5663.580500	5.921163e+03	5225.68150	4826.076867	4799.387633	5215.502567
	std	16563.280354	2.304087e+04	17606.96147	15666.159744	15278.305679	17777.465775
	min	0.000000	0.000000e+00	0.00000	0.000000	0.000000	0.000000
	25%	1000.000000	8.330000e+02	390.00000	296.000000	252.500000	117.750000
	50%	2100.000000	2.009000e+03	1800.00000	1500.000000	1500.000000	1500.000000
	75%	5006.000000	5.000000e+03	4505.00000	4013.250000	4031.500000	4000.000000
	80%	6192.200000	6.000000e+03	5284.00000	5000.000000	5000.000000	5000.000000
	85%	8000.000000	7.956150e+03	7000.00000	6300.000000	6271.300000	6200.000000
	90%	10300.000000	1.040110e+04	10000.00000	9570.600000	9500.000000	9600.000000
	95%	18428.200000	1.900435e+04	17589.40000	16014.950000	16000.000000	17343.800000
	98%	40000.000000	4.102788e+04	38661.36000	39634.040000	37259.660000	45010.480000
	max	873552.000000	1.684259e+06	896040.00000	621000.000000	426529.000000	528666.000000

 $sns.boxplot(x=df['default.payment.next.month'], y=df['PAY_AMT6'], data=df)\\ plt.title('PAY_AMT6 and Target Before Outlier Treatment')\\ plt.show()$

→

```
for i in range(1,7):
    feature='PAY_AMT'+str(i)
    df[feature]=cap_upper(df,feature,limit=0.90)

sns.boxplot(x=df[c],y=df['PAY_AMT6'],data=df)
plt.title('PAY_AMT6 and Target After Outlier Treatment')
plt.show()
```

