

CSCI 3022: Intro to Data Science
Spring 2019 Tony Wong

THIS TRICK MAY ONLY WORK 1% OF THE TIME, BUT WHEN IT DOES, IT'S TOTALLY WORTH IT.

Lecture 4: Introduction to Probability ... probably

Announcements and reminders

Homework 1 due Friday 1 Feb at 5 PM

Why we need probability

Aspects of the world seem random and unpredictable

- Are we tall or short?
- Do we have Mom's eyes or Dad's?
- Is the eye of the hurricane going to pass over New Orleans?
- Which team will win a best-of-seven series?
- How long will it take to drive to the airport?
- Which grocery store line should I get in?

Why we need probability

Aspects of the world seem random and unpredictable

- Are we tall or short?
- Do we have Mom's eyes or Dad's?
- Is the eye of the hurricane going to pass over New Orleans?
- Which team will win a best-of-seven series?
- How long will it take to drive to the airport?
- Which grocery store line should I get in?

Why we need probability

Aspects of the world seem random and unpredictable

- Are we tall or short?
- Do we have Mom's eyes or Dad's?
- Is the eye of the hurricane going to pass over New Orleans?
- Which team will win a best-of-seven series?
- How long will it take to drive to the airport?
- Which grocery store line should I get in?

Probability is a way of thinking about unpredictable phenomena as if they were each generated from some **random process** ...

... and there are specific classes of random processes we can **describe with math!**

Basic definitions

Think of a random process as a trial or experiment

Definition: The <u>sample space</u> Ω is the set of all possible outcomes of the experiment.

Example: If we flip a fair coin a single time, what is the sample space?

Example: If we are doing a poll, and ask each person their birth month, what is the sample space?

Observation: These are <u>discrete</u> sample spaces because there are a finite number of outcomes.

Basic definitions

Think of a random process as a **trial** or **experiment**

Definition: The <u>sample space</u> Ω is the set of all possible outcomes of the experiment.

Example: If we flip a fair coin a single time, what is the sample space?

 $\Omega = \{ \text{Heads, Tails} \}$

Example: If we are doing a poll, and ask each person their birth month, what is the sample space?

 $\Omega = \{Jan, Feb, Mar, ..., Nov, Dec\}$

Observation: These are <u>discrete</u> sample spaces because there are a finite number of outcomes.

Refresher: Discrete vs Continuous

What does "Discrete Structures" mean?

It's the computer sciency way of saying...

"discrete math"

Okay... then what is "discrete math"?

Well, there's continuous math

- like derivatives and integrals
- or the flow of water out of a faucet

and then there's discrete math

- like counting, sorting, enumeration
- or individual droplet of water

Basic definitions

Definition: For each event in Ω the **probability** is a measure between 0 and 1 of how likely it is for the event to occur.

Observation: The sum of the probability of each distinct outcome in Ω is 1. Why?

P(s2) = 1

All possible outcomes, & something must occur

Definition: The <u>intersection</u> of two events is the subset of outcomes in **both** events

intersection = "and"

Definition: The <u>union</u> of two events is the subset of outcomes in **one or both** events

Definition: The <u>complement</u> of an event A is the set of all outcomes in Ω that are **not** in A

Notation:

- Intersection: A 1B
- Union:

Definition: When the intersection of two events is empty, we call those two events **disjoint** or **mutually exclusive**.

Notation:

• Null (empty) set:

\emptyset

Definition: If all outcomes of event A are also outcomes of event B, we say A is a **subset** of B

Notation:

• Subset: AcB

If A is a subset of B AND A&B, then A is a Proper subset of B: ACB

De Morgan's Laws

- Complement of a union: $(A \cup B)^c = A^c \cap B^c$ Complement of an intersection $(A \cap B)^c = A^c \cup B^c$

Question: Can we convince our selves these are true using pictures?

ACNBC

Probability functions

A **biased coin** is a coin with a modified probability function

$$P(H)$$

$$\downarrow \qquad \qquad P(T)$$

$$\downarrow = \{p, q\}$$

Instead of $P(\{H, T\}) = \{\frac{1}{2}, \frac{1}{2}\}$, a biased coin's probability function is $P(\{H, T\}) = \{p, q\}$

Question: What can we say about q?

$$P(SL) = 1$$

 $P(H) + P(T) = 1$
 $Q = P(T) = 1 - P(H) \longrightarrow Q = 1 - P$

Looking ahead: A random process with two outcomes with fixed probabilities assigned to each outcome is called a **Bernoulli Trial**.

Probability functions

A **biased coin** is a coin with a modified probability function

Instead of $P(\{H, T\}) = \{\frac{1}{2}, \frac{1}{2}\}$, a biased coin's probability function is $P(\{H, T\}) = \{p, q\}$

Question: What can we say about q?

 \rightarrow q = 1-p (because the probabilities of all possible outcomes need to sum to 1) \rightarrow P({H, T}) = {p, 1-p}

$$\rightarrow P(\{H, T\}) = \{p, 1-p\}$$

Looking ahead: A random process with two outcomes with fixed probabilities assigned to each outcome is called a Bernoulli Trial.

Probability functions

Note that a probability function has two key properties:

1) The probability of the entire sample space is 1

2) The probability of the union of disjoint events is the sum of the probability of each event

Formal definition: A <u>probability function</u> P assigns to each event A a number P(A) in [0, 1] s.t.

- \checkmark 1) $P(\Omega) = 1$
- \checkmark 2) $P(A \cup B) = P(A) + P(B)$ if A and B are disjoint events

Probability of non-disjoint events

Question: What is the probability of the union of events A and B if they are *not* disjoint?

Example:
$$A = \{2, 4, 6\},\$$

$$B = [3, 6]$$

Example:
$$A = \{2, 4, 6\}$$
, $B = \{3, 6\}$ (S pose we roll a fair 6-sided dx)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= \frac{3}{6} + \frac{2}{6} - \frac{1}{6}$$

Probability of non-disjoint events

Question: What is the probability of the union of events A and B if they are not disjoint?

Example:
$$A = \{2, 4, 6\}, B = \{3, 6\}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= $\frac{1}{2}$ + $\frac{1}{3}$ - $\frac{1}{6}$

= 2/3

DISM NA
A NB= P

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 (always true)

19

Probability of the complement

Question: What is the probability of the complement of an event A?

Example:
$$A = \{2, 4\}, \ \Omega = \{1, 2, 3, 4, 5, 6\}$$
 $P(A^{c}) = \frac{4}{6}$
 $P(A^{c}) = \frac{4}{6}$
 $P(A^{c}) = \frac{4}{6}$
 $P(A^{c}) = P(A^{c}) = P(A^{c})$
 $P(A^{c}) = P(A^{c}) = P(A^{c})$

Probability of the complement

Question: What is the probability of the complement of an event A?

Example: A = $\{2, 4\}$, $\Omega = \{1, 2, 3, 4, 5, 6\}$

$$\Omega = A \cup A^c$$
, and A and A^c are **disjoint** \rightarrow $P(\Omega) = P(A \cup A^c) = P(A) + P(A^c)$ \rightarrow $1 = P(A) + P(A^c)$ \rightarrow $P(A^c) = 1 - P(A)$

Question: What is the probability that I flip a biased coin twice and both flips come up heads?

The sample space for a single coin flip is: $\Omega = \{H, T\}$

The sample space for two coin flips is:

$$\Omega = \{H, T\} \times \{H, T\} = \{(H, H), (H, T), (T, H), (T, T)\}$$

Question: What is the probability that I flip a biased coin twice and both flips come up heads?

$$P({H, T}) = {p, 1-p}$$

$$P(HH) = P(H) \cdot P(H) = p \cdot p = p^2$$

The sample space for a single coin flip is: $\Omega = \{H, T\}$

The sample space for two coin flips is:

$$\Omega = \{H, T\} \times \{H, T\} = \{(H, H), (H, T), (T, H), (T, T)\}$$

Question: What is the probability that I flip a biased coin twice and both flips come up heads?

Sanity check: Does the result of the first flip affect the result of the second flip?

Question: What is the probability that I flip a biased coin twice and both flips come up heads?

Sanity check: Does the result of the first flip affect the result of the second flip?

More later 1

Definition: When two (or more) trials do not affect each other, we say they are **independent**

Fun fact: When two events are independent, we can **multiply** their probabilities to find the probability of **both** occurring:

$$P((H, H)) = P(H) \cdot P(H) = p \cdot p = p^2$$

Question: What is the probability that I flip a biased coin twice and get one H and one T?

- \rightarrow We want to know the probability of events (H, T) **OR** (T, H)
- → If the outcomes are independent, then **OR** means addition: (b/c they're **disjoint**)

Question: What is the probability that I flip a biased coin twice and get one H and one T?

- \rightarrow We want to know the probability of events (H, T) **OR** (T, H)
- → If the outcomes are independent, then **OR** means addition:

P((H, T) or (T, H)) = P((H, T)) + P((T, H)) = P(H)·P(T) + P(T)·P(H) = $p \cdot (1-p) + (1-p) \cdot p$ = 2p(1-p)

Question: What is the probability that I flip 5 (possibly biased) coins and get exactly one H?

Question: What is the probability that I flip 5 (possibly biased) coins and get exactly one H?

→ Want P({HTTTT, THTTT, TTHTT, TTTHT})

disjoint, so we can add their individual probabilities

Question: What is the probability that I flip 5 (possibly biased) coins and get exactly one H?

- → Want P({HTTTT, THTTT, TTHTT, TTTHT})
- → All independent, disjoint, so...

$$= 5 \cdot p \cdot (1-p)^4$$

$$= 5/32$$
 (if $p=\frac{1}{2}$)

An empirical estimate

Question: S'pose we have a coin but do not know if it is biased. But we want to estimate the probabilities of H and T.

→ What could we do?!

flip it so so many times

A = hats = estmete

E see P = # heads

Hips \$20.5

An empirical estimate

Question: S'pose we have a coin but do not know if it is biased. But we want to estimate the probabilities of H and T.

→ What could we do?!

Let's find out!

- Get in groups, get out laptop, and open nb04
- **Today:** How to approximate probabilities of events using random simulation!

