ДИСКРЕТНАЯ МАТЕМАТИКА

ИУ5 - 4 семестр, 2014 г.

Лекция 14. ТЕОРЕМА КЛИНИ. ДЕТЕРМИНИЗАЦИЯ

Была сформулирована следующая теорема: "Язык в алфавите V регулярен тогда и только тогда, когда он является элементом полукольца $\mathcal{R}(V)$."

Это позволило нам называть элементы полукольца $\mathcal{R}(V)$ регулярными языками.

Докажем, что язык допускается конечным автоматом с входным алфавитом V тогда и только тогда, когда он есть элемент полукольца $\mathcal{R}(V)$.

Теорема 1 (теорема Клини). Пусть $V = \{a_1, \ldots, a_n\}$ — произвольный алфавит. Язык $L \subseteq V^*$ является элементом полукольца $\mathcal{R}(V)$ тогда и только тогда, когда он допускается некоторым конечным автоматом.

lacktriangled 1. Докажем, что всякий язык из $\mathcal{R}(V)$ допускается некоторым конечным автоматом.

Для доказательства этого утверждения воспользуемся методом индукции по построению языка из $\mathcal{R}(V)$ как элемента замыкания множества $\{\varnothing, \{\lambda\}, \{a_1\}, \ldots, \{a_n\}\}$. Этот метод состоит в следующем: сначала утверждение доказывается для языков исходного множества (замыкание которого строится), а затем в предположении, что утверждение доказано для языков L и K из $\mathcal{R}(V)$, оно доказывается для $L \cup K$, LK и L^* .

Пусть V — некоторый фиксированном алфавите . Конечные автоматы для языков \varnothing , $\{\lambda\}$, $\{a\}$, где $a\in V$:

Рис. 1

Пусть конечные автоматы

$$M_1 = (V, Q_1, q_{01}, F_1, \delta_1)$$
 и $M_2 = (V, Q_2, q_{02}, F_2, \delta_2)$

для языков L и K полукольца $\mathcal{R}(V)$ соответственно уже построены.

Входные алфавиты этих автоматов совпадают и автоматы не имеют ни общих вершин, ни общих дуг.

Построим конечные автоматы, допускающие языки $L \cup K$, LK и L^* .

Автомат для объединения языков получается путем добавления нового начального состояния s_0 , проведения из него пустых дуг в каждое из начальных состояний (q_{01} и q_{02}) объединяемых автоматов M_1 и M_2 .

Все дуги и состояния автоматов M_1 и M_2 сохраняются.

Объединение множеств заключительных состояний (F_1 и F_2) автоматов M_1 и M_2 объявляются множеством заключительных состояний конечного автомата, допускающего язык $L \cup K$.

Получается "параллельное соединение" автоматов для языков L и K .

Pirst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Новый конечный автомат как некое распознающее устройство может из своего начального состояния перейти в начальное состояние первого или в начальное состояние второго автомата.

Любая цепочка x , читаемая на некотором пути из состояния s_0 в какое-то из состояний множества $F_1 \cup F_2$, может быть представлена так: $x=\lambda x_1=x_1$ или $x=\lambda x_2=x_2$.

В первом случае — это переход по пустой цепочке из s_0 q_{01} и дальнейшее чтение произвольной цепочки x_1 , допускаемой автоматом M_1 .

Во втором случае — переход по пустой цепочке из s_0 q_{02} и дальнейшее чтение произвольной цепочки x_2 , допускаемой автоматом M_2 .

При построении конечного автомата для **соединения** новым начальным состоянием будет начальное состояние первого автомата (q_{01}).

Множество заключительных состояний —это множество заключительных состояний второго автомата (F_2).

Из каждого заключительного состояния первого автомата провести пустую дугу в начальное состояние второго автомата.

Получится "последовательное соединение" автоматов.

Конечный автомат для итерации языка L:

- **1.** Вводятся новое начальное состояние (s_0) и новое заключительное состояние (f).
- **2.** Проводятся пустые дуги из нового начального состояния s_0 в прежнее начальное состояние q_0 автомата, допускающего язык L .
- 3. Проводятся пустые дуги из каждого заключительного состояния множества F автомата, допускающего язык L в новое заключительное состояние и прежнее начальное состояние.

- **Вывод.** Каждый язык полукольца $\mathcal{R}(V)$ допускается некоторым конечным автоматом.
- 2. Докажем, что язык произвольного конечного автомата есть элемент полукольца $\mathcal{R}(V)$. Язык конечного автомата, как следует из формулы

$$L(M) = \{x: q_0 \Rightarrow_x^* q_f, q_f \in F\} = \bigcup_{q_f \in F} c_{q_0 q_f},$$

— это конечное объединение языков, являющихся определенными элементами матрицы стоимостей автомата. Матрица стоимостей есть **итерация матрицы** меток дуг, задающей автомат.

Метка каждой дуги — регулярное выражение, обозначающее язык из полукольца $\mathcal{R}(V)$.

Матрица стоимостей является итерацией матрицы, все элементы которой могут быть определены регулярными выражениями, т.е. принадлежат полукольцу $\mathcal{R}(V)$. Полукольцо $\mathcal{R}(V)$ есть полукольцо с итерацией. Вспомним утверждение: "Если A — матрица, все элементы которой принадлежат некоторому полукольцу с итерацией, то все элементы ее **итерации** A^* также принадлежат этому полукольцу с итерацией." В силу этого утверждения матрица стоимостей конечного автомата будет состоять из языков полукольца $\mathcal{R}(V)$. Отсюда следует, что язык конечного автомата есть элемент этого полукольца.

Замечание В общем случае при построении итерации нельзя обойтись без добавления новых начального и заключительного состояния.

Построим КА для итерации языка, допускаемого следующим КА.

Язык $L: (01)^*1$. Итерация языка L есть $L^* = ((01)^*1)^*$. Любая цепочка из итерации исходного языка есть либо цепочка 1^n , где $n \geq 0$, либо цепочка, оканчивающаяся подцепочкой 11.

Построим автомат для итерации, не вводя новое начальное состояние.

Рис. 6

Этот автомат будет допускать цепочки, описываемые регулярным выражением $(01)^*$. Однако эти цепочки не содержатся в языке L^* (итерации исходного языка L). В частности, $01 \notin ((01)^*1)^*$.

Исходный автомат:

Правильно построенный автомат для итерации языка:

Рис. 8

Вычисление языка конечного автомата.

Вычислим матрицу стоимостей $C = A^*$ автомата как размеченного ориентированного графа.

Надо решить n = |Q| систем вида

$$X^j = AX^j + B^j,$$

где A — квадратная матрица n -го порядка. Элемент a_{ij} является регулярным выражением, служащим меткой дуги из вершины (состояния) q_i в вершину (состояние) q_j , если такая дуга существует, и равен регулярному выражению \varnothing , если нет дуги из q_i в q_j ;

 B^{j} — j -й столбец единичной матрицы, т.е. столбец, у которого все компоненты, кроме j -й, равны нулю полукольца $\mathcal{R}(V)$ — \varnothing , j -я компонента равна единице полукольца $\mathcal{R}(V)$ — λ .

Язык L(M) конечного автомата M есть множество всех цепочек во входном алфавите, читаемых в M на некотором пути из начального состояния в одно из заключительных состояний:

$$L(M) = \{x: q_0 \Rightarrow_x^* q_f, q_f \in F\} = \bigcup_{q_f \in F} c_{q_0 q_f},$$

где F — множество заключительных состояний. Поэтому язык КА будет задаваться регулярным выражением, равным сумме элементов вида c_{st_i} , где s — номер начального, t_i , $i=1,\ldots,m$ — номера заключительных состояний:

$$\sum_{i=1}^{m} c_{st_i}.$$

Для нахождения языка конечного автомата достаточно решить одну систему линейных уравнений:

$$X^j = AX^j + \beta, \tag{14.1}$$

где β — столбец, все компоненты которого равны \varnothing (нулю полукольца $\mathcal{R}(V)$), кроме компонент с номерами t_1 , ..., t_m , которые являются номерами заключительных состояний. Эти компоненты равны λ (единице полукольца $\mathcal{R}(V)$).

Другими словами, ко всем уравнениям системы, соответствующим заключительным состояниям, добавляется слагаемое λ .

Решение системы (14.1) будет иметь вид

$$X^{j} = A^{*}\beta = A^{*}(\varnothing, \ldots, \varnothing, \lambda, \varnothing, \ldots, \varnothing, \lambda, \varnothing, \ldots, \varnothing)^{\mathrm{T}}$$
(14.2)

(элементы λ находятся в строках с номерами t_1 , ..., t_m).

Умножая в (14.2) матрицу A^* , равную матрице C стоимостей, на столбец β , получим столбец, s -я компонента которого x_s будет равна произведению s -й строки матрицы C $(c_{s1}, \ldots, c_{st_1}, \ldots, c_{st_m}, \ldots, c_{sn})$ на столбец β в формуле (14.2), т.е.

$$x_s = c_{st_1} + \ldots + c_{st_m},$$

но это и есть регулярное выражение, обозначающее язык конечного автомата.

Пример 14.1.

Рис. 9

Запишем для этого автомата матрицу A меток дуг и систему уравнений:

$$A = \begin{pmatrix} 0 & a & b \\ b & a & 0 \\ a & b & 0 \end{pmatrix}, \qquad \begin{cases} x_0 = ax_1 + bx_2, \\ x_1 = bx_0 + ax_1, \\ x_2 = ax_0 + bx_1 + \lambda \end{cases}$$

Слагаемое λ добавлено в уравнение для x_2 , так как вершина q_2 является заключительной.

Исключая x_0 , получаем

$$\begin{cases} x_1 = b(ax_1 + bx_2) + ax_1, \\ x_2 = a(ax_1 + bx_2) + bx_1 + \lambda, \end{cases}$$

откуда

$$\begin{cases} x_1 = (ba+a)^*b^2x_2, \\ x_2 = (a^2+b)(ba+a)^*b^2x_2 + abx_2 + \lambda. \end{cases}$$

Тогда

$$\begin{cases} x_2 = ((a^2 + b)(ba + a)^*b^2 + ab)^*, \\ x_1 = (ba + a)^*b^2((a^2 + b)(ba + a)^*b^2 + ab)^*. \end{cases}$$

Отсюда получим регулярное выражение, обозначающее язык конечного автомата, как значение переменной x_0 :

$$x_0 = a(ba+a)^*b^2((a^2+b)(ba+a)^*b^2+ab)^*+b((a^2+b)(ba+a)^*b^2+ab)^*$$

Полученное регулярное выражение весьма сложно. Найти его, не располагая заранее разработанным алгоритмом, было бы затруднительно.

14.1. Детерминизация конечных автоматов

Функция переходов— это отображение

$$\delta$$
: $Q \times (V \cup \{\lambda\}) \to 2^Q$, такое, что $\delta(q,a) = \{r: q \to_a r\}$,

т.е. значение функции переходов на упорядоченной паре (состояние, входной символ или пустая цепочка) есть множество всех состояний, в которые из данного состояния возможен переход по данному входному символу или пустой цепочке. В частности, это может быть пустое множество.

Используя функцию переходов, конечный автомат можно задавать как упорядоченную пятерку:

$$M = (V, Q, q_0, F, \delta),$$

где V — входной алфавит; Q — множество состояний; q_0 — начальное состояние; F — множество заключительных состояний; δ — функция переходов, заданная в виде системы команд.

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Конечный автомат называется **детерминированным**, если в нем нет дуг с меткой λ и из любого состояния по любому входному символу возможен переход в точности в одно состояние, т.е.

$$(\forall q \in Q)(\forall a \in V)(|\delta(q,a)| = 1). \blacksquare$$

Конечный автомат называется **квазидетерминированным**, если в нем нет дуг с меткой λ и из любого состояния по любому символу возможен переход не более чем в одно состояние, т.е.

$$(\forall q \in Q)(\forall a \in V)(|\delta(q, a)| \le 1). \blacksquare$$

Для детерминированного конечного автомата значением функции переходов для любой пары (состояние, входной символ) является одноэлементное подмножество множества состояний.

Для решения задачи синтеза конечных автоматов важное значение имеет следующая теорема.

Теорема 2 (теорема о детерминизации). Для любого конечного автомата может быть построен эквивалентный ему детерминированный конечный автомат.

(без доказательства)

Алгоритм построения детерминированного автомата.

Преобразование произвольного конечного автомата к эквивалентному детерминированному осуществляется в два этапа:

- 1. Строится новый КА, не содержащий дуг с меткой λ .
- **2.** По построенному автомату строится детерминированный КА, эквивалентный исходному автомату.

1. Построение КА без λ -переходов.

Переход от исходного КА $M=(V,\,Q,\,q_0,\,F,\,\delta)$ к эквивалентному КА $M_1=(V,\,Q_1,\,q_0,\,F_1,\,\delta_1)$ без λ -переходов осуществляется следующим образом:

а. Определим множество состояний Q_1 нового КА M_1 . Включим в множество состояний начальное состояние q_0 исходного автомата M и все состояния из множества состояний Q исходного КА M, в которые заходит хотя бы одна дуга, помеченная буквой входного алфавита. Все состояния из Q, в которые заходят только дуги с меткой λ , не включаются в множество состояний Q_1 .

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

6. Определим множество дуг конечного автомата M_1 и их меток (функцию переходов M_1) следующим образом. Для любых двух состояний $p,r\in Q_1$ $p\to_a r$ имеет место тогда и только тогда, когда $a\in V$, в графе M либо существует дуга из p в r, метка которой содержит символ a, либо существует такое состояние q, что $p\Rightarrow_{\lambda}^+q$ и $q\to_a r$.

Рис. 10

Рис. 11

в. Включим в множество заключительных состояний F_1 конечного автомата M_1 все состояния $q \in Q_1$, которые являются заключительными состояниями исходного КА M, или из которых ведет путь ненулевой длины по дугам с меткой λ в одно из заключительных состояний КА M.

Рис. 12

🕨 First 🔍 Prev 🔍 Next 🔍 Last 🔍 Go Back 🔍 Full Screen 🔍 Close 🔍 Quit

2. Построение детерминированного КА.

Пусть $M_1=(Q_1,\ V,\ q_0,\ F_1,\ \delta_1)$ — конечный автомат без λ -переходов.

Построим эквивалентный M_1 детерминированный КА M_2 , в котором из любого состояния КА по любому входному символу возможен переход ровно в одно состояние.

Каждое отдельное состояние $S = \{q_{s1}, \dots, q_{sk}\}$ КА M_2 определено как некоторое подмножество множества состояний КА $M_1: S \subseteq Q_1$.

Множество состояний КА M_2 есть подмножество множества всех подмножеств множества состояний КА M_1 $Q_2\subseteq 2^Q$.

Начальным состоянием КА M_2 является одноэлементное подмножество $\{q_0\}$, содержащее начальное состояние КА M_1 .

Заключительными состояниями КА M_2 являются все подмножества Q_1 , которые содержат хотя бы одну заключительную вершину КА M_1 .

Состояния КА будем иногда называть состояниями-множествами. Каждое такое состояние-множество есть отдельное состояние КА M_2 , но не множество его состояний.

Для исходного КА M_1 это именно множество его состояний. Каждое подмножество состояний старого КА M_1 "свертывается" в одно состояние нового конечного автомата.

Функция переходов нового КА:

из состояния-множества S по входному символу a КА M_2 переходит в состояние-множество, представляющее собой объединение всех множеств состояний КА M_1 , в которые этот КА переходит по символу a из каждого состояния множества S

$$\delta_2(S, a) = \bigcup_{q \in S} \delta(q, a).$$

Таким образом, КА M_2 является детерминированным по построению.

Формально конечный автомат M_2 определяется так:

$$M_2 = (Q_2, V, \{q_0\}, F_2, \delta_2),$$

где

$$\begin{cases}
Q_2 \subseteq 2^Q, & F_2 = \{T: T \cap F_1 \neq \emptyset, T \in Q_2\}, \\
(\forall S \subseteq Q_2)(\forall a \in V)(\delta_2(S, a) = \bigcup_{a \in S} \delta(q, a)).
\end{cases} (14.3)$$

Среди состояний нового КА может быть состояние \varnothing , причем $\delta_2(\varnothing,a)=\varnothing$ для любого входного символа a .

Попав в такое состояние, КА M_2 уже его не покинет. Поглощающим состоянием конечного автомата называют такое состояние q КА, что для любого входного символа a $\delta(q,a)=q$.

Таким образом, состояние \varnothing детерминированного конечного автомата M_2 является поглощающим.

 $\delta_2(S,a)=\varnothing$ тогда и только тогда, когда в старом КА M_1 для каждого состояния $q\in S$ из множества состояний S $\delta_1(q,a)=\varnothing$, т.е. в графе M_1 из каждого такого состояния q не выходит ни одна дуга, помеченная символом a .

Пример 14.2. Детерминизируем конечный автомат M (рис.13)

Построим КА M_1 без λ -переходов, эквивалентный КА M .

Рис. 14

Состояние q_2 не вошло в множество состояний нового автомата M_1 , так как в него заходят только дуги с метками λ в КА M .

Из состояния q_1 по дуге с меткой λ можно попасть в заключительное состояние q_3 , следовательно, состояние q_1 войдет в множества заключительных состояний. Чтобы детерминизировать полученный автомат воспользу-

чтооы детерминизировать полученный автомат воспользуемся **методом вытягивания**. В результате получим детерминированный КА M_2 , все состояния которого достижимы из начальной вершины $\{q_0\}$.

Метод вытягивания.

- В КА без λ (пустых) дуг M_1 определяем все множества состояний, достижимых из начального.
- **1.** Для каждого символа входного алфавита a находим множество $\delta(q_0,a)$. Каждое такое множество в новом автомате является состоянием-множеством, непосредственно достижимым из начального.
- **2.** Для каждого из определенных на предыдущем шаге состояний-множеств S и каждого символа входного алфавита a находим множество $\bigcup_{a \in S} \delta(q,a)$.

Все полученные на этом шаге состояния будут состояниями нового детерминированного автомата M_2 , достижимыми из начальной вершины $\{q_0\}$ по пути длины 2.

3. Повторяем шаг 2 до тех пор, пока не перестанут появляться новые состояния-множества (включая пустое).

Получим все состояния нового детерминированного автомата M_2 , достижимые из начальной вершины $\{q_0\}$ по пути длины n,n>2 .

4. Выделяем множество заключительных состояний. Состояние-множество нового детерминированного конечного автомата (ДКА) будет заключительным, оно включает хотя бы одно заключительное состояние автомата M_1

Рис. 15. Повторим рисунок 2

Для конечного автомата M_1 имеем:

$$\begin{split} \delta_1(\{q_0\},a) &= \{q_1\}; & \delta_1(\{q_0\},b) = \{q_1,\,q_3\}; \\ \delta_1(\{q_1\},a) &= \{q_1\}; & \delta_1(\{q_1\},b) = \{q_1\}; \\ \delta_1(\{q_1,\,q_3\},a) &= \delta(q_1,a) \cup \delta(q_3,a) = \{q_1\} \cup \{q_1\} = \{q_1\}; \\ \delta_1(\{q_1,\,q_3\},b) &= \delta(q_1,b) \cup \delta(q_3,b) = \{q_1\} \cup \{q_1\} = \{q_1\}. \end{split}$$

Так как новых состояний-множеств больше не появилось, процедура "вытягивания" на этом заканчивается. Получаем следующий граф:

Рис. 16

Пусть L — регулярный язык в алфавите V . Тогда дополнение языка L (как множества слов) есть язык $\overline{L}=V^*\setminus L$. Важным следствием теоремы о детерминизации является следующая теорема.

Теорема 3. Дополнение регулярного языка есть регулярный язык.

 \blacktriangleleft Согласно теореме о детерминизации, для регулярного языка L может быть построен ДКА M , допускающий язык L .

В детерминированном автомате из каждого состояния по каждому входному символу определен переход в точности в одно состояние.

Для любой цепочки x в алфавите V найдется единственный путь в КА M, на котором читается эта цепочка x, начинающийся в начальном состоянии q_0 и заканчивающийся в некотором состоянии p.

Цепочка x допускается автоматом M ($x \in L(M)$) тогда и только тогда, когда последнее состояние p указанного пути является заключительным ($p \in F$).

Отсюда следует, что цепочка $x \notin L(M)$ тогда и только тогда, когда последнее состояние указанного пути не будет заключительным ($p \notin F$).

Следовательно, КА M_1 , который допускает цепочку x тогда и только тогда, когда ее не допускает исходный КА M, можно получить, превращая каждое заключительное состояние КА M в не заключительное и наоборот.

В результате получим детерминированный КА, допускающий дополнение языка L . \blacktriangleright

Доказанная теорема позволяет строить конечный автомат, не допускающий определенное множество цепочек, следующим методом:

- 1) строим конечный автомат, допускающий данное множество цепочек;
- 2) детерминизируем построенный КА;
- 3) строим КА для дополнения согласно методу, приведенному в доказательстве теоремы 3.

Пример 14.3. Построим конечный автомат, допускающий все цепочки в алфавите $\{0,1\}$, кроме цепочки 101.

1. Строим конечный автомат , допускающий единственную цепочку 101 .

Этот автомат квазидетерминированный, но не детерминированный.

2. Проведем детерминизацию КА, получим ДКА, эквивалентный исходному.

Рис. 18

3. Перейдем к дополнению ДКА и переименуем состояния. Получим ДКА, допускающий все цепочки в алфавите $\{0,1\}$, кроме цепочки 101.

В полученном ДКА все вершины, кроме s_3 , заключительные.

ДКА на рис.19 допускает все цепочки, содержащие вхождение цепочки 101, но не совпадающие с самой этой цепочкой. Например, на пути s_0 , s_1 , s_2 , s_3 , t читается цепочка 1011.

Построение дополнения языка L можно проводить только с использованием ДКА, допускающего язык L. В Если поменяем ролями заключительные и незаключительные вершины в исходном КА (рис.17), то получим КА, допускающий язык $\{\lambda, 1, 10\}$, который не является множеством всех цепочек, отличных от цепочки 101.

Из свойства замкнутости класса регулярных языков относительно дополнения (см. теорему 3) вытекает замкнутость этого класса относительно пересечения, теоретико-множественной и симметрической разности. Из того, что дополнение регулярного языка есть регулярный язык, вытекают следующие утверждения.

Следствие 14.1. Для любых двух регулярных языков L_1 и L_2 справедливы следующие утверждения:

- 1) пересечение $L_1 \cap L_2$ регулярно;
- 2) разность $L_1 \setminus L_2$ регулярна;
- 3) симметрическая разность $L_1 \triangle L_2$ регулярна.
 - ◀ Справедливость утверждений вытекает из тождеств:
- 1) $L_1 \cap L_2 = \overline{L}_1 \cup \overline{L}_2$;
- 2) $L_1 \setminus L_2 = L_1 \cap \overline{L}_2$;
- 3) $L_1 \triangle L_2 = (L_1 \cup L_2) \setminus (L_1 \cap L_2)$.

Полученные результаты позволяют утверждать, что множество регулярных языков замкнуто относительно операций объединения, пересечения и дополнения.

Эти свойства регулярных языков позволяет решить важную проблему распознавания эквивалентности двух произвольных КА.

Конечные автоматы эквивалентны, если допускаемые ими языки совпадают.

Чтобы убедиться в эквивалентности автоматов M_1 и M_2 , достаточно доказать, что симметрическая разность языков $L(M_1)$ и $L(M_2)$ пуста.

Для этого необходимо построить КА, допускающий эту разность, и убедиться в том, что допускаемый им язык пуст.

В общем случае проблему распознавания того, что язык конечного автомата пуст, называют проблемой пустоты для конечного автомата.

Чтобы решить **проблему непустоты** для **КА**, достаточно найти множество заключительных состояний автомата, достижимых из начального состояния.

Так как КА — это ориентированный граф, то решить такую проблему можно, например, с помощью, поиска в ширину из начальной вершины.

Язык, допускаемый конечным автоматом, пуст тогда и только тогда, когда множество заключительных состояний, достижимых из начального состояния, пусто.

Практически эквивалентность конечных автоматов предпочтительнее распознавать, используя алгоритм минимизации.