CMPT363 – Project 2

Student name: TRUNGLAM NGUYEN

Student ID: 301326848

Question 1:

- I managed to implement Huffman and LZW encoding that can achieve roughly from 1.2 to 1.6 compression ratio for the sample inputs. I also encoded both header data and sample data. For each header data, I treated one byte as one symbol and for samples data I treated 1 sample (2 bytes) as 1 symbol
- The compression ratio is computed as:

$$\mbox{Ratio} = \frac{\mbox{\it Number of bits to represent original file}}{\mbox{\it Number of bits of encoded file}}$$

File name	Huffman	Lzw compression	FLAC
	compression ratio	ratio	
car+horn+x.wav	1.2616	1.2138	1.8148
Explosion+1.wav	1.2016	1.2205	1.5542
Fireignite.wav	1.2060	1.2335	1.6260
Leopard.wav	1.6548	1.5587	2.00

Compared with FLAC coding, this compression ratios that I achieved are quite lower than FLAC's compressions. The reason is that what I did was just to apply normal Huffman and LZW encoding technique while FLAC coding includes many sophisticated techniques to compress an audio file. For example, FLAC always tries to predict a mathematical description of the audio signal so that it can obtain a better compression pattern. When a WAV file is compressed by FLAC, it only encodes the 'fmt' and 'data' sub-chunks of WAV file so FLAC can avoid encoding unnecessary data from WAV, therefore it can achieve a better compression ratio.