Hands-on Activity 6.1 Introduction to Data Analysis and Tools

CPE311 Computational Thinking with Python

Name: Dolores, Marc Joseph S.

Section: CPE22S3

Performed on: 03/07/2024 Submitted on: 03/07/2024

Submitted to: Engr. Roman M. Richard

6.1 Intended Learning Outcome

- . Use pandas and numpy data analysis tools.
- . Demonstrate how to analyze data using numpy and pandas

6.2 Resources:

Personal Computer

Jupyter Notebook

Internet Connection

6.3 Supplementary Activities:

EXERCISE 1:

```
1 import random
2 random.seed(0)
 3 salaries = [round(random.random()*1000000, -3) for _ in range(100)]
 4 print(salaries)
    [844000.0, 758000.0, 421000.0, 259000.0, 511000.0, 405000.0, 784000.0, 303000.0, 477000.0, 583000.0, 908000.0, 505000.0, 282
1 #MEAN
2 def getmean(salaries):
3 #GET THE SUM OF ALL NUMBERS IN ARRAY AND DIVIDE IT BY ITS SIZE
    mean = sum(salaries)/len(salaries)
    return mean
 7 print(getmean(salaries))
    585690.0
1 #MEDIAN
2 def getmedian(salaries):
   sortarr = sorted(salaries)
   midex = len(sortarr)//2
   if (len(sortarr) % 2 == 0):
      #IF THE SIZE OF ARRAY IS EVEN DIVED THE TWO MIDDLE NUMBERS
      median = (sortarr[midex-1]+sortarr[midex])/2
9
      #IF THE SIZE OF ARRAY IS ODD THEN THE MIDDLE IS THE MEDIAN
10
      median = sortarr[midex]
11
   return median
12
13 print(getmedian(salaries))
    589000.0
1 #MODE
2 def getmode(salaries):
    #INITIALIZE A DICTIONARY TO STORE THE FREQUENCY
```

```
5 for i in salaries:
      #ITERATES TO GET THE FREQUENCY OF EACH NUMBER
      frequendict[i] = frequendict.get(i,0)+1
8
   maxc = max(frequendict.values())
9
    #FIND THE NUMBER WITH HIGHEST FREQUENCY
10 mode = [i for i, count in frequendict.items() if count == maxc]
11 freq = frequendict[mode[0]]
12 return mode, freq
13
14 print(getmode(salaries))
    ([477000.0], 3)
1 #SAMPLE VARIANCE
2 def getsamvar(salaries):
3 index = len(salaries)
4 #CALLING THE GETMEAN FUNCTION
5 mean = getmean(salaries)
    #CALCULATE BY GETTING THE SUM OF SQUARED DIFFERENCE OF MEAN AND EACH SALARY
   variance = sum((i-mean)**2 for i in salaries)/(index-1)
10 print(getsamvar(salaries))
    70664054444.44444
 1 #STANDARD DEVIATION
2 def getstandev(salaries):
 3 #RAISE TO 1/2 TO GET THE STANDARD DEVIATION
    standev = getsamvar(salaries)**(1/2)
   return standev
 7 print(getstandev(salaries))
    265827.11382484
EXERCISE 2:
1 #RANGE
2 def getrange(salaries):
 3 range = max(salaries) - min(salaries)
   return range
 6 print(getrange(salaries))
    995000.0
1 #COEFFICIENT OF VARIATION & INTEROUARTAL RANGE
2 def getcviqr(salaries):
3 mean = getmean(salaries)
4 stdv = getstandev(salaries)
   cv = (stdv/mean)*100
6 import statistics as st
   q1 = st.quantiles(salaries, n=4)[0]
8
   q3 = st.quantiles(salaries, n=4)[2]
   iqr = q3 - q1
10 return cv, iqr
11
12 cv, iqr = getcviqr(salaries)
13 print("Coefficient of Variation: " + str(cv))
14 print("InterQuartal Range: " + str(iqr))
    Coefficient of Variation: 45.38699889443903
    InterQuartal Range: 421750.0
1 #QUARTILE COEFFICIENT OF DISPERSION
2 def getqcd(salaries):
3 import statistics as st
4 q1 = st.quantiles(salaries, n=4)[0]
    q3 = st.quantiles(salaries, n=4)[2]
   iqr = q3 - q1
   median = getmedian(salaries)
8
    qcd = iqr/median
9
    return qcd
```

```
11 qcd = getqcd(salaries)
12 print("QCD: "+str(qcd))
         QCD: 0.716044142614601
```

EXERCISE 3:

```
1 import pandas as pd
```

2 import numpy as np

3 filepath = '/content/diabetes.csv'

4 df = pd.read_csv(filepath)

1 df

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0

```
Next steps: View recommended plots
```

```
1 #COLUMNS
```

2 columns = df.columns.tolist()

3 print(columns)

```
['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome']
```

```
1 #DATA TYPES
```

Pregnancies int64 Glucose int64 BloodPressure int64 SkinThickness int64 Insulin int64 float64 BMI DiabetesPedigreeFunction float64 int64 Age Outcome int64 dtype: object

```
1 #TOTAL RECORDS
```

768

1 #FIRST 20 RECORDS

2 df[:20]

² dtype = df.dtypes

³ print(dtype)

² total = df.shape[0]

³ print(total)

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	
0	6	148	72	35	0	33.6	0.627	50	1	11.
1	1	85	66	29	0	26.6	0.351	31	0	
2	8	183	64	0	0	23.3	0.672	32	1	
3	1	89	66	23	94	28.1	0.167	21	0	
4	0	137	40	35	168	43.1	2.288	33	1	
5	5	116	74	0	0	25.6	0.201	30	0	
6	3	78	50	32	88	31.0	0.248	26	1	
7	10	115	0	0	0	35.3	0.134	29	0	
8	2	197	70	45	543	30.5	0.158	53	1	
9	8	125	96	0	0	0.0	0.232	54	1	
10	4	110	92	0	0	37.6	0.191	30	0	
11	10	168	74	0	0	38.0	0.537	34	1	
12	10	139	80	0	0	27.1	1.441	57	0	
13	1	189	60	23	846	30.1	0.398	59	1	
14	5	166	72	19	175	25.8	0.587	51	1	
15	7	100	0	0	0	30.0	0.484	32	1	
16	0	118	84	47	230	45.8	0.551	31	1	
17	7	107	74	0	0	29.6	0.254	31	1	
18	1	103	30	38	83	43.3	0.183	33	0	
19	1	115	70	30	96	34.6	0.529	32	1	
20	3	126	88	41	235	39.3	0.704	27	0	

1 #LAST 20 RECORDS

2 df[748:]

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	Ē
748	3	187	70	22	200	36.4	0.408	36	1	
749	6	162	62	0	0	24.3	0.178	50	1	
750	4	136	70	0	0	31.2	1.182	22	1	
751	1	121	78	39	74	39.0	0.261	28	0	
752	3	108	62	24	0	26.0	0.223	25	0	
753	0	181	88	44	510	43.3	0.222	26	1	
754	8	154	78	32	0	32.4	0.443	45	1	
755	1	128	88	39	110	36.5	1.057	37	1	
756	7	137	90	41	0	32.0	0.391	39	0	
757	0	123	72	0	0	36.3	0.258	52	1	
758	1	106	76	0	0	37.5	0.197	26	0	
759	6	190	92	0	0	35.5	0.278	66	1	
760	2	88	58	26	16	28.4	0.766	22	0	
761	9	170	74	31	0	44.0	0.403	43	1	
762	9	89	62	0	0	22.5	0.142	33	0	
763	10	101	76	48	180	32.9	0.171	63	0	
764	2	122	70	27	0	36.8	0.340	27	0	
765	5	121	72	23	112	26.2	0.245	30	0	
766	1	126	60	0	0	30.1	0.349	47	1	
767	1	93	70	31	0	30.4	0.315	23	0	

- 1 #RENAME THE COLUMN OUTCOME INTO DIAGNOSIS
- 2 df.rename(columns={'Outcome':'Diagnosis'}, inplace=True)
- 3 df

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Diagnosis	
0	6	148	72	35	0	33.6	0.627	50	1	ılı
1	1	85	66	29	0	26.6	0.351	31	0	
2	8	183	64	0	0	23.3	0.672	32	1	
3	1	89	66	23	94	28.1	0.167	21	0	
4	0	137	40	35	168	43.1	2.288	33	1	
763	10	101	76	48	180	32.9	0.171	63	0	
764	2	122	70	27	0	36.8	0.340	27	0	
765	5	121	72	23	112	26.2	0.245	30	0	
766	1	126	60	0	0	30.1	0.349	47	1	
767	1	93	70	31	0	30.4	0.315	23	0	
760 **	ouro O ookumana									

768 rows \times 9 columns

- 1 #CREATE CLASSIFICATION WHERE THE VALUE DEPENDS ON DIAGNOSIS
- 2 df['Classification'] = np.where(df['Diagnosis']==1, 'Diabetes', 'No Diabetes')
- 3 df

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Diagnosis	Classification
0	6	148	72	35	0	33.6	0.627	50	1	Diabetes
1	1	85	66	29	0	26.6	0.351	31	0	No Diabetes
2	8	183	64	0	0	23.3	0.672	32	1	Diabetes
3	1	89	66	23	94	28.1	0.167	21	0	No Diabetes
4	0	137	40	35	168	43.1	2.288	33	1	Diabetes
763	10	101	76	48	180	32.9	0.171	63	0	No Diabetes
764	2	122	70	27	0	36.8	0.340	27	0	No Diabetes
765	5	121	72	23	112	26.2	0.245	30	0	No Diabetes
766	1	126	60	0	0	30.1	0.349	47	1	Diabetes
767	1	93	70	31	0	30.4	0.315	23	0	No Diabetes
768 rd	ows × 10 columns	;								

Next steps:

^{1 #}CREATING NEW DATAFRAME WITHDIABETES THAT ONLY HAS DATA WITH DIABETES IN CLASSIFICATION

² withDiabetes = df[df['Classification']=='Diabetes']

³ withDiabetes

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Diagnosis	Classification
0	6	148	72	35	0	33.6	0.627	50	1	Diabetes
2	8	183	64	0	0	23.3	0.672	32	1	Diabetes
4	0	137	40	35	168	43.1	2.288	33	1	Diabetes
6	3	78	50	32	88	31.0	0.248	26	1	Diabetes
8	2	197	70	45	543	30.5	0.158	53	1	Diabetes
									•••	
755	1	128	88	39	110	36.5	1.057	37	1	Diabetes
757	0	123	72	0	0	36.3	0.258	52	1	Diabetes
759	6	190	92	0	0	35.5	0.278	66	1	Diabetes
761	9	170	74	31	0	44.0	0.403	43	1	Diabetes
766	1	126	60	0	0	30.1	0.349	47	1	Diabetes
268 rd	ws × 10 columns									

Next steps:

View recommended plots

³ noDiabetes

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Diagnosis	Classification
1	1	85	66	29	0	26.6	0.351	31	0	No Diabetes
3	1	89	66	23	94	28.1	0.167	21	0	No Diabetes
5	5	116	74	0	0	25.6	0.201	30	0	No Diabetes
7	10	115	0	0	0	35.3	0.134	29	0	No Diabetes
10	4	110	92	0	0	37.6	0.191	30	0	No Diabetes
762	9	89	62	0	0	22.5	0.142	33	0	No Diabetes
763	10	101	76	48	180	32.9	0.171	63	0	No Diabetes
764	2	122	70	27	0	36.8	0.340	27	0	No Diabetes
765	5	121	72	23	112	26.2	0.245	30	0	No Diabetes
767	1	93	70	31	0	30.4	0.315	23	0	No Diabetes
500 rc	ows × 10 columns	i								

Next steps:

^{1 #}CREATING NEW DATAFRAME PEDIA THAT ONLY HAS DATA WITH LESS THAN 19 IN AGE

Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Diagnosis Classification

^{1 #}CREATING NEW DATAFRAME WITHDIABETES THAT ONLY HAS DATA WITH NO DIABETES IN CLASSIFICATION

² noDiabetes = df[df['Classification']=='No Diabetes']

² Pedia = df[df['Age'] <= 19]</pre>

³ Pedia

^{1 #}CREATING NEW DATAFRAME PEDIA THAT ONLY HAS DATA WITH MORE THAN 19 IN AGE

² Adult = df[df['Age'] > 19]

³ Adult

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	${\tt DiabetesPedigreeFunction}$	Age	Diagnosis	Classification
0	6	148	72	35	0	33.6	0.627	50	1	Diabetes
1	1	85	66	29	0	26.6	0.351	31	0	No Diabetes
2	8	183	64	0	0	23.3	0.672	32	1	Diabetes
3	1	89	66	23	94	28.1	0.167	21	0	No Diabetes
4	0	137	40	35	168	43.1	2.288	33	1	Diabetes
Next	·· O View re	ecommende	d plots							
763	10	101	76	48	180	32.9	0.171	63	0	No Diabetes

```
2 ages = np.array(df['Age'])
3 glucose = np.array(df['Glucose'])
4 aveage = int(np.average(ages))
5 aveglucose = int(np.average(glucose))
6 print("Average Age: " + str(aveage))
7 print("Average Glucose: " + str(aveglucose))
    Average Age: 33
    Average Glucose: 120
1 #GETTING THE MEDIAN OF AGE AND GLUCOSE
2 ages = np.array(df['Age'])
3 glucose = np.array(df['Glucose'])
4 medianage = int(np.median(ages))
5 medianglucose = int(np.median(glucose))
6 print("Median Age: " + str(medianage) + " years old")
7 print("Median Glucose: " + str(medianglucose))
    Median Age: 29 years old
    Median Glucose: 117
1 #GETTING THE MIDDLE VALUES OF AGE AND GLUCOSE
2 ages = np.array(df['Age'])
3 glucose = np.array(df['Glucose'])
4 index = int(len(ages)/2)
5 midage = ages[index]
6 midglucose = glucose[index]
7 print("Middle Age: " + str(midage) + " years old")
8 print("Middle Glucose: " + str(midglucose))
    Middle Age: 25 years old
    Middle Glucose: 125
1 #GETTING THE STANDARD DEVIATION OF SKIN THICKNESS
2 skinthicc = np.array(df['SkinThickness'])
3 stdevskin = np.std(skinthicc)
4 print("Standard Deviation of Skin Thickness: " + str(stdevskin))
    Standard Deviation of Skin Thickness: 15.941828626496939
```

CONLUSION:

i was enlightened in handling datas and how to make handling and organizing datas using import pandas and numpy which makes it more easier as there are built in functions on the import so that you don't need to make your own anymore