Применение ПЗУ и ПЛМ для обработки информации

- 1 Табличная реализация функций с помощью ПЗУ
 - 1.1 Арифметические операции и элементарные функции
 - 1.2 Логические преобразователи
 - 1.3 Знакогенераторы
- 2 ПЛМ и их применение

- Знать: структурные схемы и принципы работы преобразователей на основе ПЗУ и ПЛМ.
- <u>Уметь</u>: разработать структурные схемы и таблицы прошивок для реализации функций (операций) на ПЗУ и ПЛМ.
- Помнить: об ограничениях, накладываемых на систему булевых функций числом переходных шин ПЛМ.
- Литература: [1].

1 Табличная реализация функций с помощью ПЗУ

1.1 Арифметические операции и элементарные функции *Пример табличного задания функции*

Адрес ЯП			Содержимое ЯП							
X ₇	• • •	\mathbf{x}_1	\mathbf{x}_0	y ₁₅	• • •	y_4	y ₃	y_2	y_1	y_0
0	• • •	0	0	0	• • •	0	0	0	0	0
0	• • •	0	1	0	• • •	0	0	0	0	1
0	• • •	1	0	0	• • •	0	0	1	0	0
0	• • •	1	1	0	• • •	0	1	0	0	1

Примеры табличных вычислений функций

Вычисление функции одного аргумента (Y=X²)

Вычисление функции двух аргументов (Z=sinX*lnY)

$$X \times Y = ((X+Y)^2 - (X^2+Y^2))/2$$

Достоинства и недостатки табличных вычислений функций

- Главное достоинство табличного вычисления функций высокая скорость выполнения операций.
- Основной недостаток большой объем памяти, необходимой для табличной реализации функции.
- Для сокращения объема памяти могут быть использованы таблично-алгоритмические методы. В этом случае в ПЗУ хранятся не все значения функции, а только значения её в узловых точках.

Таблично-алгоритмическое вычисление функций

Функция вычисляется в два этапа:

из ПЗУ считывается значение функции в ближайшей узловой точке;

к считанному значению прибавляется приращение до заданной точки Для вычисления приращения обычно используется линейная аппроксимация.

1.2 Логические преобразователи Вычисление логических функций

A	дре	cc	ПК			
U	\mathbf{x}_1	X_0	$y_1(y_3)$	$y_0(y_2)$		
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	1		
0	1	1	1	0		
1	0	0	0	1		
1	0	1	1	0		
1	1	0	1	1		
1	1	1	1	1		

$$y_0 = x_0 \oplus x_1;$$

 $y_1 = x_0 \& x_1;$
 $y_2 = x_0 \to x_1;$
 $y_1 = x_0 \lor x_1.$

Выполнение логических операций

$$z_j = x_j f y_j; j = 1,...,J; f \in \{ \oplus, \&, \vee, ... \}$$

1.3 Знакогенераторы

2 ПЛМ и их применение

Состав ПЛМ

- М1 матрица конъюнкторов;
- М2 матрица дизъюнкторов.
- Матрица М1 связана с матрицей М2 переходными шинами, число которых накладывает ограничение на число различных конъюнкций в реализуемой системе булевых функций. В ПЛМ К556РТ1 было 16 входов, 8 выходов и 48 переходных шин.
- Программирование ПЛМ осуществляется путем пережигания x_i плавких предохранителей (ПП). x_i ПП x_i ПП

Применение ПЛМ

- Основные направления использования ПЛМ.
 - Управляющие автоматы с "жесткой логикой".
 Используется для реализации функций возбуждения, переходов и выходов;
 - Логические преобразователи. Используется для вычисления значений логических функций;
 - Преобразователи начального адреса. Например, используется для преобразования кода операции в начальный адрес соответствующей микропрограммы.