第三章作业

3.3:

由题意,总体 $X \sim N(\mu, \sigma^2)$,其中 μ, σ^2 未知,要检验假设

$$H_0: \mu = 83.8\% \leftrightarrow H_1: \mu \neq 83.8\%$$

取检验统计量 $T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S^*}$,当 H_0 成立时,有 $T \sim t(n-1)$,则拒绝域为

$$W = \left\{ T \ge t_{\frac{\alpha}{2}}(n-1) \right\}$$

 \mathbb{X} n=10,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = 83.88\%$$

$$S^* = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2} = 0.009773$$

$$T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S^*} = 0.259$$

对给定的水平 $\alpha = 0.05$,查 $t_{0.025}(9) = 2.2622$,由于 $T < t_{0.025}(9)$,接受 H_0 ,认为更换了原料以后成品无明显变化。

3.6:

由题意,总体 $X \sim N(\mu, \sigma^2)$,其中 μ, σ^2 未知,要检验假设

$$H_0: \sigma^2 = 0.01 \leftrightarrow H_1: \sigma^2 \neq 0.01$$

取检验统计量 $\mathcal{X}^2=\frac{(n-1)S^{*2}}{\sigma_0^2}$,当 H_0 成立时,有 $\mathcal{X}^2\sim\mathcal{X}^2(n-1)$,则拒绝域为

$$W = \left\{ \mathcal{X}^2 \ge \mathcal{X}_{\frac{\alpha}{2}}^2(n-1) \right\} \bigcup \left\{ \mathcal{X}^2 \le \mathcal{X}_{1-\frac{\alpha}{2}}^2(n-1) \right\}$$

 \mathbb{Z} n=5,

$$S^* = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2} = 0.00173$$
$$\mathcal{X}^2 = \frac{(n-1)S^{*2}}{\sigma_0^2} = 0.692$$

对给定的水平 $\alpha = 0.05$,查 $\mathcal{X}^2_{0.975}(4) = 0.484$, $\mathcal{X}^2_{0.025}(4) = 11.143$,由于 $\mathcal{X}^2_{0.975}(4) < \mathcal{X}^2 < \mathcal{X}^2_{0.025}(4)$,接 受 H_0 ,认为总体标准差为 0.1.

3.8:

由题意,总体 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$,其中 $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ 未知,且 $\sigma_1^2 = \sigma_2^2$,要检验假设

$$H_0: \mu_1 = \mu_2 \leftrightarrow H_1: \mu_1 \neq \mu_2$$

取检验统计量 $T = \frac{\bar{X} - \bar{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$,其中 $S_w = \sqrt{\frac{(n_1 - 1)S_{1n_1}^{*2} + (n_2 - 1)S_{2n_2}^{*2}}{n_1 + n_2 - 2}}$,当 H_0 成立时,有 $T \sim t(n_1 + n_2 - 2)$,则拒绝域为

$$W = \left\{ |T| \ge t_{\frac{\alpha}{2}}(n_1 + n_2 - 2) \right\}$$

$$n_1 = 13, \bar{X} = 80.02, S_{1n_1}^{*2} = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2 = 0.00055$$

$$n_2 = 8, \bar{Y} = 79.97875, S_{2n_2}^{*2} = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 = 0.000984$$

故

$$S_w = \sqrt{\frac{(n_1 - 1)S_{1n_1}^{*2} + (n_2 - 1)S_{2n_2}^{*2}}{n_1 + n_2 - 2}} = 0.02664$$

$$T = \frac{\bar{X} - \bar{Y}}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = 3.4458$$

对给定的水平 $\alpha = 0.05$,查 $t_{0.025}(19) = 2.0930$,由于 $T > t_{0.025}(19)$,拒绝 H_0 ,认为它们的总体均值不相等。

3.10:

由题意,总体 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$,其中 $\mu_1 = 76, \mu_2 = 79, \sigma_1, \sigma_2$ 未知,要检验假设

$$H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$$

因为 $\frac{X-\mu_1}{\sigma_1} \sim N(0,1), \frac{Y-\mu_2}{\sigma_2} \sim N(0,1),$ 故

$$\sum_{i=1}^{n_1} (\frac{X_i - \mu_1}{\sigma_1})^2 \sim \mathcal{X}^2(n_1), \sum_{i=1}^{n_2} (\frac{Y_i - \mu_2}{\sigma_2})^2 \sim \mathcal{X}^2(n_2)$$

又 $n_1 = n_2 = 10$, 所以当 H_0 成立时, 有

$$F = \frac{\sum_{i=1}^{n_1} (X_i - \mu_1)^2 / n_1}{\sum_{i=1}^{n_2} (Y_i - \mu_2)^2 / n_2} \sim F(n_1, n_2)$$

则拒绝域为

$$W = \left\{ F \ge F_{\frac{\alpha}{2}}(n_1, n_2) \right\} \bigcup \left\{ F \le F_{1 - \frac{\alpha}{2}}(n_1, n_2) \right\}$$

故计算得 F = 1.392,对给定的水平 $\alpha = 0.05$,查 $F_{0.025}(10,10) = 3.72, F_{0.975}(10,10) = 0.269$,由于 $F_{0.975}(10,10) < F < F_{0.025}(10,10)$,接受 H_0 ,认为两种方法的得率的方差无显著差异。

3.12:

1. 由题意,总体 $X \sim N(\mu, \sigma^2)$,其中 μ, σ^2 未知,要检验假设

$$H_0: \mu \ge 65 \leftrightarrow H_1: \mu < 65$$

取检验统计量 $T=\frac{\sqrt{n}(\bar{X}-\mu_0)}{S^*}$,当 H_0 成立时,有 $T\sim t(n-1)$,则拒绝域为

$$W = \left\{ T \le -t_{\alpha}(n-1) \right\}$$

n = 10,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = 62.4$$

$$S^* = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2} = 11.037$$

$$T = \frac{\sqrt{n}(\bar{X} - \mu_0)}{S^*} = -0.745$$

对给定的水平 $\alpha = 0.05$,查 $t_{0.05}(9) = 1.8331$,由于 $T > -t_{0.05}(9)$,接受 H_0 ,认为这批保险丝的平均熔化时间不小于 65 秒。

2. 由题意,要检验假设

$$H_0: \sigma^2 \le 80 \leftrightarrow H_1: \sigma^2 > 80$$

取检验统计量 $\mathcal{X}^2=rac{(n-1)S^{*2}}{\sigma_0^2}$,当 H_0 成立时,有 $\mathcal{X}^2\sim\mathcal{X}^2(n-1)$,则拒绝域为

$$W = \left\{ \mathcal{X}^2 \ge \mathcal{X}_{\alpha}^2(n-1) \right\}$$

n=5,

$$S^* = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2} = 121.822$$
$$\mathcal{X}^2 = \frac{(n-1)S^{*2}}{\sigma_0^2} = 13.705$$

对给定的水平 $\alpha=0.05$,查 $\mathcal{X}^2_{0.05}(9)=16.919$,由于 $\mathcal{X}^2<\mathcal{X}^2_{0.05}(9)$,接受 H_0 ,认为熔化时间的方差不超过 80。

3.15:

由题意,总体 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$,其中 $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ 未知,且 $\sigma_1^2 = \sigma_2^2$,要检验假设

$$H_0: \mu_1 - \mu_2 \le 2 \leftrightarrow H_1: \mu_1 - \mu_2 > 2$$

取检验统计量 $T = \frac{(\bar{X} - \bar{Y}) - c}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$,其中 $S_w = \sqrt{\frac{(n_1 - 1)S_{1n_1}^{*2} + (n_2 - 1)S_{2n_2}^{*2}}{n_1 + n_2 - 2}}$,当 H_0 成立时,有 $T \sim t(n_1 + n_2 - 2)$,则拒绝域为

$$W = \left\{ T \ge t_{\frac{\alpha}{2}}(n_1 + n_2 - 2) \right\}$$

 $n_1 = n_2 = 12, c = 2$

$$\bar{X} = 5.25, (n_1 - 1)S_{1n_1}^{*2} = \sum_{i=1}^{n_1} (X_i - \bar{X})^2 = 10.25$$

$$\bar{Y} = 1.5, (n_2 - 1)S_{2n_2}^{*2} = \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 = 11$$

故

$$S_w = \sqrt{\frac{(n_1 - 1)S_{1n_1}^{*2} + (n_2 - 1)S_{2n_2}^{*2}}{n_1 + n_2 - 2}} = 0.983$$

$$t = \frac{(\bar{X} - \bar{Y}) - c}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = 4.363$$

对给定的水平 $\alpha=0.05$,查 $t_{0.05}(22)=1.7171$,由于 $T>t_{0.05}(22)$,所以在显著性水平 $\alpha=0.05$ 下,拒绝 H_0 。

3.17:

由题意,总体 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$,其中 $\mu_1 = \mu_2$,要检验假设

$$H_0: \frac{\sigma_1^2}{\sigma_2^2} \ge 1 \leftrightarrow H_1: \frac{\sigma_1^2}{\sigma_2^2} < 1$$

取检验统计量 $F = \frac{S_{1n_1}^{*2}}{S_{2n_2}^{*2}}$, 当 H_0 成立时,有 $F \sim F(n_1 - 1, n_2 - 1)$,则拒绝域为

$$W = \left\{ F \le F_{1-\alpha}(n_1 - 1, n_2 - 1) \right\}$$

$$n_1 = 8, \bar{X} = 15.0125, S_{1n_1}^{*2} = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2 = 0.0955$$

$$n_2 = 9, \bar{Y} = 14.9889, S_{2n_2}^{*2} = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 = 0.0261$$

故

$$F = \frac{S_{1n_1}^{*2}}{S_{2n_2}^{*2}} = 3.659$$

对给定的水平 $\alpha = 0.05$,查 $F_{0.95}(7,8) = 1/F_{0.05}(8,7) = 0.268$,由于 $F > F_{0.95}(7,8)$,所以接受 H_0 ,认为乙机床的加工精度比甲机床的高。

3.20:

设 X 表示可能出现的放射性物质放射的粒子数,其所有可能值的集合为 S=0,1,2,3,4,5,6,7,8,9,10,11 提出假设: $H_0:X\sim P(\lambda)$ 其中 λ 为未知参数。

由题中所给的数据计算出 λ 的极大似然估计估计值

$$\hat{\lambda} = \bar{x} = \frac{\sum_{i=1}^{11} n_i \times x_i}{\sum_{i=1}^{11} n_i} = 3.88$$

理论频数:

$$P(x_i \in S) = \frac{\hat{\lambda}^{x_i}}{x_i!} e^{-\hat{\lambda}} (i = 1, 2, \dots, 12)$$

计算理论概率等相关结果如下表:

x_i	0	1	2	3	4	5
p_i	0.0206	0.0801	0.1556	0.2013	0.1953	0.1515
np_i	53.8072	209.2212	406.4272	525.7956	510.1236	395.718
m_i	57	203	383	525	532	408
$(m_i - np_i)^2$	10.19397184	38.70332944	548.8336998	0.63297936	478.576877	150.847524
$\frac{(m_i - np_i)^2}{np_i}$	0.189453676	0.184987609	1.350386243	0.001203851	0.938158668	0.381199551

$\overline{x_i}$	6	7	8	9	10	11
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	0.0980	0.0542	0.0263	0.0113	0.0043	0.0015
np_i	255.976	141.5704	68.6956	29.5156	11.2316	3.918
$\overline{m_i}$	273	139	49	27	10	6
$(m_i - np_i)^2$	289.816576	6.60695616	387.9166594	6.32824336	1.51683856	4.334724
$\frac{(m_i - np_i)^2}{np_i}$	1.132202144	0.046669051	5.646892368	0.214403345	0.135050978	1.106361409

因为
$$K_n = \sum_{i=1}^r \frac{(m_i - np_i)^2}{np^i} \sim \chi^2(r - k - 1)$$
,其中 $np_{11} < 5$,则需要 x_{10} 和 x_{11} 合并,

r = 11和k = 1(未知参数个数)。代入数据计算:

$$K_n = \sum_{i=1}^r \frac{(m_i - np_i)^2}{np^i} < \chi_{0.05}^2(9) = 16.92$$

所以,不拒绝原假设,认为在每个时间间隔内观察到的粒子数是服从泊松分布。

3.22:

提出假设: $H_0: X \sim N(\mu, \sigma^2)$ 其中 μ, σ^2 为未知参数。 由题中所给的数据计算出 μ, σ^2 的极大似然估计估计值

$$\hat{\mu} = \bar{x} = 11.0024$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2 = 0.00101824$$

计算理论概率、理论频数等相关结果如下表:

组限 $(t_{i-1},t_i]$	10.93~10.95	10.95~10.97	10.97~10.99	10.99~11.01
$u_i = \frac{t_i - \hat{\mu}}{\hat{\sigma}}$	1.642633229	1.015673981	0.388714734	0.238244514
$F(t_i) = \Phi(u_i)$	0.0505	0.1539	0.3483	0.5948
$p_i = \Phi(u_i) - \Phi(u_{i-1})$	0.0351	0.1034	0.1944	0.2465
np_i	3.51	10.34	19.44	24.65
m_i	5	8	20	34

$=$ 组限 $(t_{i-1}, t_i]$	11.01~11.03	11.03~11.05	11.05~11.07	11.07~11.09
$u_i = \frac{t_i - \hat{\mu}}{\hat{\sigma}}$	0.865203762	1.492163009	2.119122257	2.746081505
$F(t_i) = \Phi(u_i)$	0.8078	0.9319	0.983	0.997
$p_i = \Phi(u_i) - \Phi(u_{i-1})$	0.213	0.1241	0.0511	0.014
np_i	21.3	12.41	5.11	1.4
m_i	17	6	6	4

因为
$$K_n = \sum_{i=1}^r \frac{(m_i - np_i)^2}{np^i} \sim \chi^2(r - k - 1)$$
,其中最后一组 $np < 5$,则合并后, $r = 7$, $k = 2$

(未知参数个数)。代入数据计算:
$$K_n = \sum_{i=1}^r \frac{(m_i - np_i)^2}{np^i} > \chi_{0.05}^2(4) = 9.49$$

所以,拒绝原假设,认为螺栓口径不服从正态分布。