Optz Cheat Sheet

Graph Theory

Eulerian Trail / Path

A trail which passes through every edge exactly once.

If such trail starts and end on same node = Eulerian Circuit / Cycle

Walk

Sequence of edges connecting vertices without gaps

Trail

A walk where all edges are different

Path

Trail where all vertices are different

Degree

Number of edges to adjacent nodes

outdeg
$$(2)=2$$
 indeg $(2)=1$

outdeg(3)=2 indeg(3)=2

Extra Conditions (Euler)

Node with odd degree \rightarrow first / last

If fist = last → even degree

If odd degree nodes $> 2 \rightarrow No$ Euler path

Hamiltonian Cycle

一筆書

Condition of Existence

- 1) Connected graph, num of E = num of V
- 2) No Isolated V
- 3) No V with deg = 1

- n = 6, m = 7
- Set of Vertices (V) = {1,2,3,4,5,6}
- Set of Edges (E) = $\{\{1,2\},\{1,5\},\{2,3\},\{2,5\},\{3,4\},\{4,5\},\{4,6\}\}$
- N(4) = Neighborhood (4) = {6,5,3}

Simple Graph

No loop or multiple edges

Total Degree: $\sum deg(v) = 2\,|E|$, where $|E| = rac{n(n-1)}{2}$

Complete Graph

Simple undirected graph K_n which every pair of distinct vertices connected by unique edge

Degree per Node = n-1 = Num of edges connected to each node

Total Degree = n(n-1)

Num of E = $|E| = \frac{n(n-1)}{2}$

Bipartite

V can be partitioned into 2 sets V_1V_2

Tree

Path between 2 nodes $\equiv 1$

Adjacency Matrix

_										
		1	2	3	4	5	6	7	8	
	1	0	1	1	0	0	0	0	0	
	2	1	0	1	1	1	0	0	0	
	3	1	1	0	0	1	0	1	1	
	4	0	1	0	1	1	0	0	0	
	5	0	1	1	1	0	1	0	0	
	6	0	0	0	0	1	0	0	0	
	7	0	0	1	0	0	0	0	1	
	8	0	0	1	0	0	0	1	0	
1										

Incidence Matrix

	1, 2	2,3	3, 4
1	-1	0	0
2	1	1	0
3	0	-1	1
4	0	0	-1

4,6

0

0

0

1

0

1

Isomorphic

Same num of nodes, vertices and edge connectivity

Diameter

Longest shortest path between any pairs

NP-Complete

No known polynomial time solution

Spanning Tree

Connected subgraph including all nodes without cycle

Prim's Algorithm

Random choose vertex → add minimum weight adjacent edge