MATH 307 — Winter 2020 — Final Exam

Instructions:

- 1. $(1+i)^{17}$ equals:
 - A. 512(1+i)
 - B. 512(1-i)
 - C. 256(1+i)
 - D. 256(1-i)
 - E. None of these.
- 2. Let $\log z$ be the branch of the logarithm for which

$$\log r e^{i\theta} = \log r + i\theta$$
 for $\theta \in [\pi, 3\pi)$.

If

$$z = \frac{2i}{\sqrt{3} + i},$$

then $\log z$ equals:

- A. $4\pi i/3$
- B. $5\pi i/3$
- C. $7\pi i/3$
- D. $8\pi i/3$
- E. None of these.
- 3. $\frac{-2+i}{\sqrt{5}}$ equals:
 - A. $e^{i \arctan(1/2)}$
 - B. $e^{i(\pi \arctan(1/2))}$
 - C. $e^{i(\pi + \arctan(1/2))}$
 - D. $e^{i(-\pi \arctan(1/2))}$
 - E. $e^{i(-\pi + \arctan(1/2))}$
 - F. None of these.

- 4. The function e^z maps
 - A. circles to vertical lines.
 - B. horizontal lines to circles.
 - C. vertical lines to rays through the origin.
 - D. rays through the origin to horizontal lines.
 - E. None of these.
- 5. $e^{2020\pi i/11}$ equals:
 - A. $e^{-4i\pi/11}$
 - B. $e^{-9i\pi/11}$
 - C. $e^{-14i\pi/11}$
 - D. $e^{-19i\pi/11}$
 - E. None of these.
- 6. $\lim_{z \to e^{2i\pi/3}} \frac{z(z e^{2i\pi/3})}{z^3 1}$ equals:
 - A. $-\frac{1}{2} i\frac{\sqrt{3}}{2}$
 - B. $\frac{1}{2} i \frac{\sqrt{3}}{2}$
 - C. $-\frac{1}{2} + i\frac{\sqrt{3}}{2}$
 - D. $\frac{1}{2} + i \frac{\sqrt{3}}{2}$
 - E. None of these.
- 7. Which of the following functions u(x, y) is harmonic?
 - A. $\operatorname{Im} e^z$
 - B. Re $e^{\bar{z}}$
 - C. $\operatorname{Im} e^{\bar{z}}$
 - D. $Re(z^2) Im(z^3) + Im(z^2) Re(z^3)$

- E. All of these.
- F. None of these.
- 8. For $z \in \mathbb{C} \setminus \{0\}$, let Γ_z be the set of all smooth paths from 1 to z that don't pass through 0. Which of the following is correct?
 - A. $\int_{\gamma} \frac{dw}{w}$ is independent of $\gamma \in \Gamma_z$, for all $z \in \mathbb{C} \setminus \{0\}$.
 - B. $\int_{\gamma} \frac{dw}{e^w 1}$ is independent $\gamma \in \Gamma_z$, for all $z \in \mathbb{C} \setminus \{0\}$.
 - C. $\int_{\gamma} \frac{dw}{e^{-w}}$ is independent of $\gamma \in \Gamma_z$, for all $z \in \mathbb{C} \setminus \{0\}$.
 - D. $\int_{\gamma} \frac{dw}{\sinh w}$ is independent of $\gamma \in \Gamma_z$, for all $z \in \mathbb{C} \setminus \{0\}$.
 - E. None of these.
- 9. Let $I = \int_{|z|=1} \frac{e^z}{z^2} dz$ and let $J = \int_{|z|=1} \frac{\cos z}{z^2} dz$.

Which of the following is correct?

- A. I = 0 and J = 0.
- B. I = 0 and $J \neq 0$.
- C. $I \neq 0$ and J = 0
- D. $I \neq 0$ and $J \neq 0$.
- E. None of these.
- 10. Let γ be the positively oriented, circular path of radius 1/2 around -1. Let

$$I = \int_{\gamma} \frac{dz}{z^3 + 1} dz, \qquad J = \int_{\gamma} \frac{dz}{(z+1)^3} dz.$$

Which of the following is correct?

- A. I = 0 and J = 0.
- B. I = 0 and $J \neq 0$.

- C. $I \neq 0$ and J = 0
- D. $I \neq 0$ and $J \neq 0$.
- E. None of these.
- 11. Which of the following is a harmonic conjugate of $u(x, y) = \sinh x \sin y$?
 - A. $v(x, y) = \cos x \cosh y$
 - B. $v(x, y) = -\cos x \cosh y$
 - C. $v(x, y) = \cosh x \cos y$
 - D. $v(x, y) = -\cosh x \cos y$
 - E. None of these.
- 12. Let f = u + iv be a continuous, complex-valued function on the connected open set U. Which of the following statements is equivalent to the analyticity of f on U?
 - A. $\frac{\partial f}{\partial z} = 0$
 - B. For every $z_0 \in U$, there are coefficients a_0, a_1, \ldots such that

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

- converges to f(z) for all $z \in U$.
- C. $u_x = v_y$ and $v_x = u_y$
- D. $\int_{\gamma} f(z) dz = 0$ for all rectangular paths γ in U.
- E. None of these.
- 13. $\int_{|z|=1} \frac{\sin z}{z^2} \text{ equals:}$
 - A. 0
 - B. 1
 - C. -1
 - D. $2\pi i$
 - E. $-2\pi i$

- F. None of these.
- 14. Let γ be the positively oriented, triangular path with vertices 1, $e^{2\pi i/3}$, and $e^{4\pi i/3}$ Then

$$\int_{\gamma} \frac{dz}{z^2 + 1}$$

equals:

- A. 0
- B. 1
- C. -1
- D. $2\pi i$
- E. $-2\pi i$
- F. None of these.
- 15. The power series $\sum_{n=1}^{\infty} \frac{z^n}{n}$
 - A. converges pointwise in the disk $|z| \le 1$.
 - B. converges uniformly in the disk |z| < 1.
 - C. converges pointwise in the annulus $|z| \ge 1$.
 - D. converges uniformly in the annulus |z| > 1.
 - E. None of these are correct.
- 16. The radii of convergence of the series

$$\sum_{n=0}^{\infty} \frac{z^n}{n!} \quad \text{and} \quad \sum_{n=0}^{\infty} n! z^n$$

are

- A. 1 and 1, respectively.
- B. 1 and ∞ , respectively.
- C. ∞ and 1, respectively.
- D. ∞ and ∞ , respectively.

- E. None of these.
- 17. The sequence of functions $f_n(z) = z^n$
 - A. converges uniformly on |z| < 1.
 - B. does not converge uniformly on any disk centered at 0.
 - C. converges pointwise on $|z| \leq 1$.
 - D. diverges for infinitely many z with |z| = 1.
 - E. None of these.
- 18. Let $\operatorname{Log} z$ be the principal branch of the logarithm. Then the limit

$$\lim_{y \to 0^+} \left(\text{Log}(iy - 1) - \text{Log}(-iy - 1) \right)$$

equals:

- A. -2π
- B. $-2\pi i$
- C. 2π
- D. $2\pi i$
- E. None of these.

19.
$$\int_{-\infty}^{\infty} \frac{e^{-ix}}{1+x^2} dx$$

- A. $2\pi i \operatorname{Res}_{z=i} \frac{e^{-iz}}{1+z^2}$
- B. $2\pi i \operatorname{Res}_{z=-i} \frac{e^{-iz}}{1+z^2}$
- C. $2\pi i \left(\text{Res}_{z=i} \frac{e^{-iz}}{1+z^2} + \text{Res}_{z=-i} \frac{e^{-iz}}{1+z^2} \right)$
- D. $2\pi i \left(\text{Res}_{z=i} \frac{e^{-iz}}{1+z^2} \text{Res}_{z=-i} \frac{e^{-iz}}{1+z^2} \right)$
- E. None of these.

20. The function

$$f(z) = \frac{\sin(iz)}{z(z^2 + \pi^2)^2}$$

has

A. a removable singularity at z=0 and simple poles at $z=i\pi$ and $z=-i\pi$.

B. simple poles at $z=0,\,z=i\pi,$ and $z=-i\pi.$

C. a simple poles at z=0 and double poles at $z=i\pi$ and $z=-i\pi$.

D. a removable singularity at z=0 and double poles at $z=i\pi$ and $z=-i\pi$.

E. None of the above.

21. The function

$$f(z) = \frac{z^2}{\sin\frac{1}{z}}$$

has

A. a removable singularity at z = 0.

B. a simple pole at z = 0.

C. a pole of order ≥ 2 at z = 0.

D. an essential singularity at z = 0.

E. None of these.

22. Let

$$f(z) = \frac{1}{z(z-1)(z^2-9)}.$$

Denote by L be the Laurent expansion of f(z) around z = 1 that converges at z = 5/2. Then:

A. L diverges at both z = -1/2 and z = 3/2.

B. L diverges at z = -1/2 but converges at z = 3/2.

C. L converges at z = -1/2 but diverges at z = 3/2.

D. L converges at both z = -1/2 and z = 3/2.

E. None of these.

23.
$$\int_{|z-1|=3} \cot z \, dz \text{ equals}$$

- A. 0
- B. $2\pi i$
- C. $-2\pi i$
- D. $4\pi i$
- E. $-4\pi i$
- F. None of these.
- 24. The residue of

$$f(z) = \frac{z^2 - 1}{\cos(\pi z) + 1}$$

at z = 1 is:

- A. 0
- B. $-1/\pi$
- C. $2/\pi^2$
- D. $-3/\pi$
- E. $4/\pi^2$
- F. None of these.
- 25. Suppose f(z) is analytic on $\mathbb C$ except for
 - ullet removable singularities at z=0 and z=1,
 - a double pole at z = 1 + i,
 - and an essential singularity at z = 3i.

Then the radius of convergence of the Taylor expansion of f(z) around z=-1 is:

- A. 0
- B. 1
- C. 2
- D. $\sqrt{5}$
- E. $\sqrt{10}$
- F. None of these.