TD IT1 Feuille 1 - MAM3 - SI3

1 Tables de vérité

Écrire la table de vérité des expressions :

- 1. $A \Rightarrow B$
- 2. $\neg A \lor B$
- 3. $\neg (A \lor B)$
- 4. $\neg A \land \neg B$
- 5. $A \wedge (B \vee C)$
- 6. $(A \wedge B) \vee (A \wedge C)$

Que peut-on dire de : $\neg A \lor \neg B$ et $\neg (A \land B)$?

Que peut-on dire de : $(A \lor B) \land (A \lor C)$ et $(A \land B) \lor (A \land C)$?

2 NAND

- 1. Écrire la table de vérité du ⋪, c'est à dire la table de de la négation du ∧.
- 2. Donner une formule propositionnelle qui n'utilise que ∧ comme connecteur et dont la table de vérité est celle du ¬
- 3. Donner une formule propositionnelle qui n'utilise que \wedge comme connecteur et dont la table de vérité est celle du \Rightarrow
- 4. Donner une formule propositionnelle qui n'utilise que \wedge comme connecteur et dont la table de vérité est celle du \vee
- 5. Donner une formule propositionnelle qui n'utilise que \wedge comme connecteur et dont la table de vérité est celle du \wedge

3 Formes normales

Transformer les expressions:

- $\neg((((A \Rightarrow B) \lor C) \land A) \lor (D \land \neg C)) \land B$
- $(A \Leftrightarrow B) \vee \neg ((C \wedge D) \vee (\neg D \vee A))$

pour qu'elles soient en forme normale conjonctive c'est à dire de la forme $p_1 \wedge p_2 \wedge p_3 \wedge \wedge p_n$ avec p_i de la forme $t_1 \vee t_2 \vee t_3 \vee \vee t_m$ où t_i est une variable ou la négation d'une variable.

4 Formules

On considère les symboles suivants :

Symboles de prédicat : $\{P(0-aire), Q(0-aire), p(2-aire), q(2-aire)\}$

Symboles de fonction : $\{a(0-aire), b(0-aire), f(3-aire), g(2-aire)\}$

Parmi les expressions suivantes, lesquelles sont des formules logiques du premier ordre ?

- 1. $\forall x(((P \lor p(x, f(Q, a, b))) \land \neg a))$
- 2. $(\forall x (P \lor p(x, f(x, a, b))) \land \neg Q)$
- 3. $(\forall P((P \lor p(x, f(y, a, b)))) \land \neg Q)$
- 4. $\exists x (\forall y ((q(x, g(x, a)) \lor (p(x, y) \land \neg Q))))$

5 Un peu de formalisation

Soit le prédicat H(x) qui signifie x est un humain, le prédicat LG(x) qui signifie x est une langue et le prédicat p(x, y, z) signifie x et y parlent la langue z.

Exprimer:

- tous les humains parlent une langue
- il existe une langue universelle pour les humains
- il existe une personne qui parle toutes les langues
- deux humains quelconques peuvent communiquer par le biais d'un interprète

où personne et interprète sont des humains.

6 Ambiguïté de la langue naturelle

En notant H(x) le fait que x est un humain, M(x) le fait que x est mortel, F(x) le fait que x est un menteur, A(x) le fait que x est un animal et B(x) le fait que x est bienvenu et exprimer :

- tous les humains sont mortels
- tous les humains ne sont pas des menteurs
- humains et animaux sont bienvenus

7 Que du vent

Soit le langage du premier ordre formé de l'ensemble des variables $V = \{x, y, z\}$, des symboles fonctionnels 0-aire n,s, du symbole fonctionnel 1-aire emp, du symbole de prédicat 1-aire renouv et des symboles de prédicat 2-aire plusPerf, inf.

Dans ce langage, exprimer les énoncés suivants :

- 1. Il existe des énergies renouvelables plus performantes que l'énergie nucléaire
- 2. L'énergie solaire est l'unique énergie renouvelable qui est plus performante que l'énergie nucléaire

- 3. Il existe une énergie renouvelable qui est plus performante que l'énergie nucléaire et qui est plus performante que les autres énergies renouvelables
- 4. Si deux énergies renouvelables ont la même empreinte écologique, alors si l'empreinte écologique de la première est inférieure à l'empreinte écologique du nucléaire, l'empreinte écologique de la seconde est aussi inférieure à l'empreinte écologique du nucléaire.

En supposant que

- n représente l'énergie nucléaire
- s représente l'énergie solaire
- emp est une fonction d'arité un qui calcule l'empreinte écologique d'une énergie
- le domaine (pas encore défini à ce moment du cours) est celui des énergies et des empreintes écologiques.
- renouv est un prédicat unaire tel que renouv(x) est vrai si et seulement si x est une énergie renouvelable
- ullet plusPerf(x,y) est vrai si et seulement si l'énergie x est strictement plus performante que l'énergie y
- inf(x,y) est vrai si et seulement si l'empreinte écologique de x est strictement inférieure à l'empreinte écologique de y

8 Quantificateurs

On considère l'ensemble de couleurs $\{bleu, vert, rouge, jaune \}$ et les deux phrases :

F1: il existe une couleur primaire,

 $F2:\ toutes\ les\ couleurs\ sont\ des\ couleurs\ primaires.$

Formaliser ces deux phrases sans utiliser de quantificateur.