

Stochastische Signale

1. Mengenalgebra

1.1. Mengen- und Boolsche Algebra

Kommutativ	$A \cap B = B \cap A$	$A \uplus B = B \uplus A$		
Assoziativ	$(A \cap B) \cap C = A \cap (A \cap B)$	$(A \cap B) \cap C = A \cap (B \cap C)$		
	$(A \uplus B) \uplus C = A \uplus ($	$B \uplus C$)		
Distributiv	$A \cap (B \uplus C) = (A \cap A)$	$A \cap (B \uplus C) = (A \cap B) \uplus (A \cap C)$		
	$A \uplus (B \cap C) = (A \uplus B) \cap (A \uplus C)$			
Indempotenz	$A \cap A = A$	$A \uplus A = A$		
Absorbtion	$A \cap (A \uplus B) = A$	$A \uplus (A \cap B) = A$		
Neutralität	$A \cap \Omega = A$	$A \uplus \emptyset = A$		
Dominant	$A \cap \emptyset = \emptyset$	$A \uplus \Omega = \Omega$		
Komplement	$A \cap \overline{A} = \emptyset$	$A \uplus \overline{A} = \Omega$		
	$\overline{\overline{A}} = A$	$\overline{\Omega} = \emptyset$		
De Morgan	$\overline{A \cap B} = \overline{A} \uplus \overline{B}$	$\overline{A \uplus B} = \overline{A} \cap \overline{B}$		

1.2. Kombinatorik

Mögliche Variationen/Kombinationen um k Elemente von maximal n Elementen zu wählen bzw. k Elemente auf n Felder zu verteilen:

	Mit Reihenfolge	Reihenfolge egal
Mit Wiederholung Ohne Wiederholung	$\frac{n^k}{\frac{n!}{(n-k)!}}$	$\binom{n+k-1}{k}$ $\binom{n}{k}$

Permutation von n mit jeweils k gleichen Elementen: $\frac{n!}{k_1! \cdot k_2! \cdot \dots}$ $\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k! \cdot (n-k)!}$ $\binom{4}{2} = 6$ $\binom{5}{2} = 10$

1.3. Grundbegriffe

Tupel	$(i,j) \neq (j,i)$ für $i \neq j$
Ungeordnetes Paar	$\{i,j\} = \{j,i\}$
Potenzmenge	$P(\Omega)$ ist Menge aller Teilmengen von Ω

1.4. Integralarten

F(x)	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{a}{2\sqrt{ax}}$
$x \ln(ax) - x$	$\ln(ax)$	$\frac{1}{x}$
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$\int \frac{\mathrm{d}t}{\sqrt{at+b}} = \frac{2\sqrt{at+b}}{a}$ $\int t e^{at} \mathrm{d}t = \frac{at-1}{a^2} e^{at}$	$\int t^2 e^{at} dt$	$t = \frac{(ax-1)^2 + 1}{a^3} e^{at}$
$\int t e^{at} \mathrm{d}t = \frac{at-1}{a^2} e^{at}$	$\int xe^{ax^2}$	$dx = \frac{1}{2a}e^{ax^2}$

1.5. Binome, Trinome

$$(a \pm b)^2 = a^2 \pm 2ab + b^2 \qquad a^2 - b^2 = (a - b)(a + b)$$
$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$
$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$

2. Wahrscheinlichkeitsräume (Ω, \mathbb{F}, P)

Ein Wahrscheinlichkeitsraum (Ω, \mathbb{F}, P) besteht aus ullet Ergebnismenge $\Omega = \{\omega_1, \omega_2, \ldots\}$:

- Menge aller möglichen **Ergebnisse** ω_i
- ullet Ereignisalgebra $\mathbb{F}=\left\{A_1,A_2,\ldots
 ight\}$: Menge von Ereignisen $A_i \subset \Omega$
- Wahrscheinlichkeitsmaß P

2.1. Ereignisalgebra $\mathbb{F} \subseteq \mathsf{P}(\Omega)$

- $\Omega \in \mathbb{F}$ • $A_i \in \mathbb{F} \Rightarrow A_i^{\mathbf{C}} \in \mathbb{F}$
- $A_1,...,A_k \in \mathbb{F} \Rightarrow \bigcup_{i=1}^k A_i \in \mathbb{F}$

Daraus folgt:

- Ø ∈ F
- $A_i \backslash A_i \in \mathbb{F}$
- $\bigcap_{i=1}^k A_i \in \mathbb{F}$
- | F | = 2^{Anzahl disjunkter Teilmengen} (muss endlich sein)

2.1.1. σ -Algebra

Entwicklung $k \to \infty$. Unendlich viele Ergebnisse, aber jedes A_i besteht aus abzählbar vielen Ergebnissen. Besitzt mindestens 2 Ereignisse.

2.2. Wahrscheinlichkeitsmaß P

$$P(A) = \frac{|A|}{|\Omega|} \qquad \qquad P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

2.2.1. Axiome von Kolmogorow

Nichtnegativität: $P(A) \ge 0 \Rightarrow P : \mathbb{F} \mapsto [0, 1]$ Normiertheit:

 $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i),$ Additivität:

2.2.2. Weitere Eigenschaften

- $P(A^c) = 1 P(A)$
- $P(\emptyset) = 0$ $P(\Omega) = 1$
- $P(A \setminus B) = P(A \cap B^c) = P(A) P(A \cap B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cap B) = P(A) + P(B) P(A \cup B)$
- $A \subset B \Rightarrow P(A) < P(B)$
- $P(\bigcup_{i=1}^k A_i) \leq \sum_{i=1}^k P(A_i)$

3. Bedingte Wahrscheinlichkeit und Unabhängigkeit

3.1. Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit für A falls B bereits eingetreten ist: $P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$

3.1.1. Totale Wahrscheinlichkeit und Satz von Bayes Es muss gelten: $\bigcup \ B_i = \Omega \ \text{für} \ B_i \cap B_j = \emptyset, \ \forall i \neq j$

 $\begin{array}{ll} \mbox{Totale Wahrscheinlichkeit:} & \mbox{P}(A) = \sum\limits_{i \in I} \mbox{P}(A|B_i) \mbox{P}(B_i) \\ \mbox{Satz von Bayes:} & \mbox{P}(B_k|A) = \frac{\mbox{P}(A|B_k) \mbox{P}(B_k)}{\sum\limits_{i \in I} \mbox{P}(A|B_i) \mbox{P}(B_i)} \end{array}$

3.1.2. Multiplikationssatz

$$P(A \cap B) = P(A|B) P(B) = P(B|A) P(A)$$

Beliebig viele Ereignisse:

$$P(A_1 \cap A_2 \cap \cdots \cap A_k)$$

$$= \operatorname{P}\left(A_{\pi(1)}\right)\operatorname{P}\left(A_{\pi(2)}|A_{\pi(1)}\right)\operatorname{P}\left(A_{\pi(3)}|A_{\pi(2)}\cap A_{\pi(1)}\right)\times \\ \cdots \times \operatorname{P}\left(A_{\pi(k)}|A_{\pi(k-1)}\cap \cdots \cap A_{\pi(1)}\right)$$

3.2. Stochastische Unabhängigkeit

Ereignise A und B sind unabhängig falls: $P(A \cap B) = P(A) P(B)$

 $\Rightarrow P(B|A) = P(B)$

$$\mathsf{P}\left(\bigcap_{i\in J}A_i\right) = \prod_{i\in J}\mathsf{P}\left(A_i\right) \text{ mit Indexmenge } I \text{ und } \emptyset \neq J \subseteq I$$

4. Zufallsvariablen

4.1. Definition

 $X: \Omega \mapsto \Omega'$ ist Zufallsvariable, wenn für jedes Ereignis $A' \in \mathbb{F}'$ im Bildraum ein Ereignis A im Urbildraum $\mathbb F$ existiert, sodass $\{\omega \in \Omega | X(\omega) \in A'\} \in \mathbb{F}$

4.2. Unabhängigkeit von Zufallsvariablen

Zufallsvariablen X_1,\cdots,X_n sind stochastisch unabhängig, wenn für jedes $\vec{x}=[x_1,\cdots,x_n]$ $\in \mathbb{R}^n$ gilt:

$$\mathsf{P}(\{\mathsf{X}_1 \leq x_1, \cdots, \mathsf{X}_n \leq x_n\}) = \prod_{i=1}^n \mathsf{P}(\{\mathsf{X}_i \leq x_i\})$$

Gleichbedeutend:

$$\begin{aligned} & \overbrace{F_{X_1, \cdots, X_n}(x_1, \cdots, x_n)} &= \prod_{i=1}^n F_{X_i}(x_i) \\ & p_{X_1, \cdots, X_n}(x_1, \cdots, x_n) &= \prod_{i=1}^n p_{X_i}(x_i) \\ & f_{X_1, \cdots, X_n}(x_1, \cdots, x_n) &= \prod_{i=1}^n f_{X_i}(x_i) \end{aligned}$$

4.3. Bedingte Zufallsvariablen

Bedingte Wahrscheinlichkeit für Zufallsvariablen:

Ereignis A gegeben: $F_{X|A}(x|A) = P(\{X \le x\}|A)$ $F_{X|Y}(x|y) = P(\{X \le x\} | \{Y = y\})$ ZV Y gegeben:

$p_{X\mid Y}(x|y) = \frac{p_{X\mid Y}(x,y)}{p_{Y\mid Y}(x)}$ $f_{X\mid Y}(x|y) = \frac{f_{X\mid Y}(x,y)}{f_{Y\mid Y}(y)} = \frac{\mathrm{d}F_{X\mid Y}(x|y)}{\mathrm{d}x}$

5. Wahrscheinlichkeitsverteilungen

5.0.1. Definition

$$\mathsf{P}_X(A') = \mathsf{P}(\{\omega \in \Omega | X(\omega) \in A'\}) = \mathsf{P}(\{X \in A'\}) \quad \forall A' \in \mathbb{F}'$$

5.0.2. Kumulative Verteilungsfunktion (KVF bzw. CDF)

$$F_X(x) = P(\{X \le x\})$$

Eigenschaften

- F_X(x) ist monoton wachsend
- $F_X(x) > 0$

$$\begin{array}{l} \bullet \ \ F_{X}(x) \ \text{ist rechtsseitig stetig:} \\ \forall h>0: \lim_{h\to 0} F_{X}(x+h) = F_{X}(x) \quad \forall x\in \mathbb{R} \end{array}$$

- $\lim_{x \to -\infty} F_X(x) = 0$; $\lim_{x \to \infty} F_X(x) = 1$
- $P(\{a < X \le b\}) = F_X(b) F_X(a)$
- $P(\{X > c\}) = 1 F_X(c)$

5.0.3. Verteilung diskreter Zufallsvariablen

Bezeichnung Zusammenhang Wahrscheinlichkeitsmassenfkt. $p_X(x) = P(\{X = x\})$ nmf

 $F_X(x) = \sum_{\xi \in \Omega' : \xi \le x} p_X(\xi)$ Kumulative Verteilungsfkt.

5.0.4. Verteilung stetiger Zufallsvariablen

Bezeichnung	Abk.	Zusammenhang
Wahrscheinlichkeitsdichtefkt.	pdf	$f_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}$
Kumulative Verteilungsfkt.	cdf	$F_X(x) = \int_{-\infty}^x f_X(\xi) d\xi$

Berechnung von $f_X(x)$:

$$f_X(x) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{x}^{x+\epsilon} f_X(\xi) d\xi = \lim_{\epsilon \to 0} \frac{1}{\epsilon} P(x \le X \le x + \epsilon)$$

$$\sum p(x) + \int_{\mathbb{R}} f_X(x) dx \stackrel{!}{=} 1$$

5.1. Mehrdimensionale Verteilungen

5.1.1. Mehrdimensionale Zufallsvariable:

 $\vec{X} = [X_1, \dots, X_n]^T$ mit X_i Zufallsvariablen

5.1.2. Gemeinsame kumulative Verteilungsfunktion:

$$\begin{split} F_{X_1, \cdots, X_n}(x_1, \cdots, x_n) &= \boxed{F_{\vec{X}}(\vec{x}) = \mathsf{P}(\{\vec{X} \leq \vec{x}\})} = \\ \mathsf{P}(\{X_1 \leq x_1, \cdots, X_n \leq x_n\}) \end{split}$$

5.1.3. Diskrete Zufallsvariablen:

 $p_{X_1,\dots,X_n}(x_1,\dots,x_n) = P(\{\vec{X}=\vec{x}\})$ (joint probability mass function)

5.1.4. Stetige Zufallsvariablen:

$$\begin{array}{ll} \textbf{5.1.4. Sterige Zuraiis variablen:} \\ F_{X_1,\cdots,X_n}(x_1,\cdots,x_n) = \int\limits_{-\infty}^{x_1} -\int\limits_{-\infty}^{x_n} f_{X_1,\cdots,X_n}(\xi_1,\cdots,\xi_n) \,\mathrm{d}\xi_n\cdots\mathrm{d}\xi_1 \\ -\sum\limits_{-\infty} -\sum\limits_{-\infty}^{\infty} f_{X_1,\cdots,X_n}(\xi_1,\cdots,\xi_n) \,\mathrm{d}\xi_n\cdots\mathrm{d}\xi_1 \\ f_{X_1,\cdots,X_n}(x_1,\cdots,x_n) = \frac{\partial^n F_{\overrightarrow{X}}(x_1,\cdots,x_n)}{\partial x_1\cdots\partial x_n} \\ f_{X,Y} = f_{Y,X} \\ \text{(joint probability density function)} \end{array}$$

5.1.5. Marginalisierung

Prinzip: Lasse alle vernachlässigbaren ZV gegen unendlich gehen.

 $F_{X_1,\cdots,X_m}(x_1,\cdots,x_m)=F_{X_1,\cdots,X_n}(x_1,\cdots,x_m,\infty,\cdots,\infty)$

Randverteilung:

Spezialfall der Marginalisierung um aus der mehrdimensionalen KVF die KVF für eine ZV zu erhalten.

$$F_{X_{1}}(x_{1})=F_{X_{1},\cdot\cdot\cdot,X_{n}}(x_{1},\infty,\cdot\cdot\cdot,\infty)$$

Randverteilung der Wahrscheinlichkeitsmasse (PMF)

Randverteilung der Wahrscheinlichkeitsmasse (für diskrete ZV)
$$p_{X_1}(x_1) = \sum_{x_2, \cdots, x_n} p_{X_1, \cdots, X_n}(x_1, \cdots, x_n)$$

Randverteilung der Wahrscheinlichkeitsdichte (WDF) (für stetige ZV)

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1, \dots, X_n}(x_1, \dots, x_n) \, \mathrm{d}x_n \cdots \mathrm{d}x_2$$

6. Funktionen von Zufallsvariablen

 $\begin{array}{l} \mathbf{X}:\Omega\rightarrow\Omega'=\mathbb{R} \text{ und jetzt } g:\Omega'\rightarrow\Omega''=\mathbb{R} \\ \mathbf{P}(A''')=\mathbf{P}(\mathbf{Y}\in A'')=\mathbf{P}(\left\{X\in\Omega'\mid g(\mathbf{X})\in A''\right\}=\mathbf{P}(\left\{\omega\in\mathbf{Y}\mid g(\mathbf{X})\in\mathbf{Y}\mid g(\mathbf{X})\in\mathbf{Y}\right\}) \end{array}$ $\Omega \mid g(X(\omega)) \in A''$

6.1. Transformation von Zufallsvariablen

Berechnung von $f_Y(y)$ aus $f_X(x)$

g(x) streng monoton & differenzierbar:

$$g^{-1}(y)$$
 - Umkehrfunktion

$$f_{Y}(y) = f_{X}\left(g^{-1}(y)\right) \left[\left| \frac{\mathrm{d}g(x)}{\mathrm{d}x} \right|_{x=g^{-1}(y)} \right]^{-1}$$

$$\begin{aligned} g & & (y) \text{ = Gradient mixtor} \\ f_Y(y) & = f_X \left(g^{-1}(y)\right) \left[\left|\frac{\mathrm{d}g(x)}{\mathrm{d}x}\right|_{x=g^{-1}(y)}\right]^{-1} \\ g(x) \text{ nur differenzierbar:} \\ f_Y(y) & = \sum_{i=1}^N f_X(x_i) \left[\left|\frac{\mathrm{d}g(x)}{\mathrm{d}x}\right|_{x=x_i}\right]^{-1} \text{ mit } i \in \{1,\dots,N\} \\ x_i \text{ sind Nullstellen von } y - g(x) & = 0 \end{aligned}$$

6.1.1. Beispiel: lineare Funktion

 $Y = aX + b \Leftrightarrow g(x) = ax + b \text{ mit } a \in \mathbb{R} \setminus 0, \ b \in \mathbb{R}$:

$$\Rightarrow f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

$$F_Y(y) = \begin{cases} F_X\left(\frac{y-b}{a}\right) & a > 0\\ 1 - F_X\left(\frac{y-b}{a}\right) & a < 0 \end{cases}$$

6.2. Summe unabhängiger Zufallsvariablen

Z = X + Y mit X und Y unabhängig.

$$\Rightarrow f_{Z=X+Y}(z) = (f_X * f_Y)(z) = \int_{-\infty}^{\infty} f_X(z-y)f_Y \, dy$$

7. Stochastische Standardmodelle

7.1. Begriffe Gedächtnislos

Eine Zufallsvariable X ist gedächtnislos, falls:

a, b > 0 $P({X > a + b})|{X > a}) = P({X > b}),$

7.2. Gleichverteilung

7.2.1. Diskret

$$p_X(x) = \frac{1}{|\Omega|}, \quad x \in \{1, \dots, |\Omega|\}$$

Beispiele: Wurf einer fairen Münze, Lottozahlen

7.2.2. Stetig ($a, b : -\infty < a < b < \infty$)

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{sonst} \end{cases} \qquad F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a,b] \\ 1 & x > b \end{cases}$$

$$\mathsf{E}[X] = \frac{a+b}{2} \qquad \mathsf{Var}[X] = \frac{(b-a)^2}{12} \qquad \varphi_X(s) = \frac{e^{j\omega b} - e^{j\omega}}{j\omega(b-a)}$$

$$\mathsf{Envartungswert} \qquad \mathsf{Varianz} \qquad \mathsf{Charakt.} \; \mathsf{Funktion}$$

Beispiele: Winkel beim Flaschendrehen. Phase einer empf. Sinusschwin-

7.3. Bernoulliverteilung ($p \in [0, 1]$)

Wahrscheinlichkeitsmasse

2 Ereignisse: Erfolg und Misserfolg p: Wahrscheinlichkeit

$$\rho_X(k) = \begin{cases} p, & k = 1 \\ 1 - p & k = 0 \\ 0, & \text{sonst} \end{cases} \qquad F_X(k) = \begin{cases} 0, & k < 0 \\ 1 - p & 0 \le k < 1 \\ 1, & k \ge 1 \end{cases}$$

$$\mathsf{E}[X] = p$$
 $\mathsf{Var}[X] = p(1-p)$ $G_X(z) = pz + 1 - p$ Erwartungswert $\mathsf{Varianz}$ Wahrscheinlichkeitserz. Funktio

Beispiele: Einmaliger Wurf einer (unfairen) Münze

7.4. Binomialverteilung $\mathcal{B}(n,p)$ ($p \in [0,1], n \in \mathbb{N}$)

Folge von n Bernoulli-Experimenten

p: Wahrscheinlichkeit für Erfolg k: Anzahl der Erfolge

$$p_X(k) = B_{n,p}(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & k \in \{0,\dots,n\} \\ 0 & \text{sonst} \end{cases}$$

E[X] = np $\mathsf{Var}[X] = np(1-p)$ $G_X(z) = (pz + 1 - p)^n$ Erwartungswert Varianz Wahrscheinlichkeitserz, Funktion

Charakteristische Funktion $\varphi_X(s) = (1 - p + pe^s)^n$

Beispiele: Anzahl der Übertragungsfehler in einem Datenblock endlicher Länge, Wiederholtes Werfen einer Münze

7.5. Poisson-Verteilung ($\lambda > 0$)

Asymptotischer Grenzfall der Binomialverteilung $n \to \infty, p \to 0, np \to \lambda$ $p_X(k) = \lim_{n \to \infty} B_{n, \underline{\lambda}}(k)$

Charakteristische Funktion $\varphi_X(s) = \exp(\lambda(e^s - 1))$ Beispiele: Zahl der Phänomene in einem Zeitintervall, Google-Anfragen in einer Stunde, Schadensmeldungen an Versicherungen in einem Monat

7.6. Geometrische Verteilung ($p \in [0, 1]$)

Erster Erfolg eines Bernoulli-Experiments beim k-ten Versuch. Gedächtnislos

Charakteristische Funktion $\varphi_X(s) =$

Beispiele: diskrete Dauer bis ein technisches Gerät zum ersten Mal ausfällt, Anzahl der Würfe bis man eine "6" würfelt

7.7. Exponential verteilung ($\lambda > 0$)

Erwartungswert

Wie geometrische Verteilung für stetige Zufallsvariablen ("Lebensdauer") Gedächtnislos

= Wartezeit bis zum ersten Auftreten eines Ereignisses

Beispiele: Lebensdauer von el. Bauteilen, Zeitdauer zwischen zwei Anrufen in einem Call-Center

7.8. Normalverteilung ($\mu \in \mathbb{R}, \sigma > 0$) KVF/CDF: WDF/PDF:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad x \in \mathbb{R}$$

 $E(X) = \mu$ Erwartungswert $Var(X) = \sigma^2$ Varianz

Schreibweise $X \sim \mathcal{N}(\mu, \sigma^2)$

Beispiele: Rauschen, Ort eines Teilchens relativ zu seiner Anfangsposition bei brownscher Molekularbewegung, abgefahrene Sachen, die man nicht genauer bestimmen will oder kann

7.8.1. Standartnormalverteilung

ist der Spezialfall $X \sim \mathcal{N}(0, 1)$

$$\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
 Es gilt außerdem:

- $Y \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow X = \frac{1}{2}(Y \mu) \sim \mathcal{N}(0, 1)$
- $X \sim \mathcal{N}(0,1) \Rightarrow Y = \sigma X + \mu \sim \mathcal{N}(\mu, \sigma^2)$

8. Erwartungswert

8.1. Erwartungswert

gibt den mittleren Wert einer Zufallsvariablen an

$$\begin{array}{cccc} \mathsf{E}[X] = \sum\limits_{\substack{x \in \Omega'}} x \cdot \mathsf{P}_X(x) & \stackrel{\wedge}{=} & \int\limits_{\mathbb{R}} x \cdot f_X(x) \, \mathrm{d}x \\ & \text{diskrete } X : \Omega {\to} \Omega' & \text{stetige } X : \Omega {\to} \mathbb{R} \end{array}$$

Eigenschaften:

 $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$ Linearität: $X < Y \Rightarrow E[X] < E[Y]$ Monotonie:

Beweis mit der Definition und der Linearität des Integrals bzw. der Summe

 $E[X \ Y] = E[X] E[Y]$, falls X und Y stochastisch unabhängig Umkehrung nicht möglich: Unkorrelliertheit

Stoch, Unabhängig!

$$\mathsf{E}[\mathsf{X}\;\mathsf{Y}] = \int\limits_{\mathbb{R}}\int\limits_{\mathbb{R}} xy\cdot f_{X,Y}(x,y)\,\mathrm{d}x\,\mathrm{d}y$$

Spezialfall für $X:\Omega \to \mathbb{R}_+$:

$$\mathsf{E}[X] = \int\limits_0^\infty \mathsf{P}(X>t) \,\mathrm{d}t$$
 (stetig) $\mathsf{E}[X] = \sum\limits_{k=0}^\infty \mathsf{P}(X>k)$ (diskret)

8.1.1. Für Funktionen von Zufallsvariablen $g:\mathbb{R}
ightarrow \mathbb{R}$

$$\mathsf{E}[g(\mathsf{X})] = \sum_{x \in \Omega'} g(x) \, \mathsf{P}_{\mathsf{X}}(x) \quad \stackrel{\wedge}{=} \quad \int\limits_{\mathbb{R}} g(x) f_{X}(x) \, \mathrm{d}x$$

9. Varianz und Kovarianz

9.1. Varianz

ist ein Maß für die Stärke der Abweichung vom Erwartungswert

$$Var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

$$\operatorname{Var}[\alpha X + \beta] = \alpha^2 \operatorname{Var}[X]$$

$$Var[X] = Cov[X, X]$$

$$\mathsf{Var}\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n \mathsf{Var}[X_i] + \sum_{j \neq i} \mathsf{Cov}[X_i, X_j]$$

9.1.1. Standard Abweichung

$$\sigma = \sqrt{\operatorname{Var}[X]}$$

9.2. Kovarianz

Maß für den linearen Zusammenhang zweier Variablen

$$Cov[X, Y] = E[(X - E[X])(Y - E[Y])] = Cov[Y, X]$$

 $Cov[X, Y] = E[X Y] - E[X] E[Y] = Cov[Y, X]$

9.3. Unkorreliertheit

wenn gilt:

$$\mathsf{Cov}[X,\,Y] = 0 \Leftrightarrow \mathsf{E}[X\,Y] = \mathsf{E}[X]\,\mathsf{E}[Y]$$

Stoch. Unabhängig ⇒ Unkorrelliertheit

wenn ZV normalverteilt (sonst nicht!): Unkorreliertheit ⇒ stoch. Unabhängigkeit

bei paarweisen unkorrellierten Zufallsvariablen:

$$\mathrm{Var}[\sum_{i=1}^n X_i] = \sum_{i=1}^n \mathrm{Var}[X_i]$$

9.4. Orthogonalität

$$\mathsf{E}[X\;Y]=0$$

mit dem Korrelationswert E[X Y]

9.5. Korrelationskoeffizient

$$\rho_{X,Y} = \frac{\operatorname{Cov}[X,Y]}{\sqrt{\operatorname{Var}[X]}\sqrt{\operatorname{Var}[Y]}} = \frac{c_{X,Y}}{\sigma_X\sigma_Y} \text{ mit } \rho_{X,Y} \in [-1,1]$$

Korrelationskoeffizient von X und Y

Es gilt:
$$\begin{cases} \text{negativ korreliert} & \rho_{X,Y} \in [-1,0) \\ \text{unkorreliert} & \rho_{X,Y} = 0 \\ \text{positiv korreliert} & \rho_{X,Y} \in (0,1] \end{cases}$$

10. Erzeugende und charakter. Funktionen

10.1. Wahrscheinlichkeitserzeugende Funktion

$$G_X(z) = \mathsf{E}[z^X] = \sum_{k=0}^{\infty} p_X(k)z^k, \quad |z| \le 1$$

Anwendungen

$$\begin{split} p_X(n) &= \mathsf{P}(\left\{X = n\right\}) = \frac{1}{n!} [\frac{\mathrm{d}^n}{\mathrm{d}z^n} G_X(z)]_{z = 0}, \quad \forall n \in \mathbb{N}_0 \\ & \mathsf{E}[X] = [\frac{\mathrm{d}}{\mathrm{d}z} G_X(z)]_{z = 1} \end{split}$$

$$E[X^2] - E[X] = \left[\frac{d^2}{dz^2}G_X(z)\right]_{z=1}$$

$$\mathsf{Var}[X] = \big[\frac{\mathrm{d}^2}{\mathrm{d}z^2} G_X(z)]_{z=1} - \mathsf{E}[X]^2 + \mathsf{E}[X]$$

Für $X_i:\Omega\to\mathbb{N}_0$, $i\in\{1,\ldots,n\}$ stochastisch unabhängige, diskrete, nichtnegative ZV und $Z=\sum_{i=1}^n X_i$

$$G_{\mathcal{Z}}(z) = \prod_{i=1}^{n} G_{X_i}(z)$$

10.2. Charakteristische Funktion

Erwartungswert:

$$\mathsf{E}[X^n] = \frac{1}{\mathbf{1}^n} \left[\frac{\mathrm{d}^n}{\mathrm{d}\omega^n} \varphi_X(\omega) \right]_{\omega=0}$$

Summe von ZV: $Z = \sum_{i=1}^n X_i$

$$\varphi_{\mathsf{Z}}(\omega) = \prod_{i=1}^{n} \varphi_{\mathsf{X}_{i}}(\omega)$$

10.3. Der zentrale Grenzwertsatz

Definition: Seien X_i , $i \in {1, ..., n}$, stochastisch unabhängige und identisch verteilte reelle Zufallsvariablen und gelte $E[X_i] = \mu < \infty$ und $Var[X_i] = \sigma^2 < \infty$. Dann konvergiert die Verteilung der standardisierten Summe

$$Z_n = \sum_{i=1}^n \frac{(X-\mu)}{\sigma\sqrt{n}}$$

 $Z_n=\sum_{i=1}^n\frac{(X-\mu)}{\sigma\sqrt{n}}$ d.h $E[Z_n]=0$ und $Var[Z_n]=1$, für $n\to\infty$ gegen die Standart normalverteilung.

Es gilt also:

$$\lim_{n\to\infty} P(Z_n \le z) = \Phi(z)$$

11. Reelle Zufallsfolgen

Eine reelle Zufallsfolge ist ganz einfach eine Folge reeller Zufallsvariablen

 $S_n: \Omega_n \times \Omega_{n-1} \times \cdots \times \Omega_1 \to \mathbb{R}$ $(\omega_n, \omega_{n-1}, \dots, \omega_1) \mapsto s_n(\omega_n, \omega_{n-1}, \dots, \omega_1), \quad n \in \mathbb{N}$

Erklärung: Jede Realisierung von S_n wird erzeugt durch die Menge (das Ensemble) aufeinanderfolgender Realisierungen X_k mit $k \in \{1, \ldots, n\}.$

Pfad

Frad
$$\begin{split} \widetilde{S}_n &= (\mathsf{S}_n,\mathsf{S}_{n-1},\dots,\mathsf{S}_1) : \Omega^{(n)} \to \mathbb{R}^n \\ \widetilde{\omega}_n &\mapsto \widetilde{s}_n(\widetilde{\omega}_n) = (s_n(\widetilde{\omega}_n),s_{n-1}(\widetilde{\omega}_n),\dots,s_1(\widetilde{\omega}_n)), \quad n \in \mathbb{N} \\ \text{Erklärung: Die Abfolge der Realisierungen von S_1 bis S_n (also der Pfad von $\mathsf{S}) und somit auch jedes einzelne S_k kann als Ergebnis des Ereignisses \\ \end{split}$$
 $\vec{\omega}_n$ angesehen werden

11.1. Verteilungen und Momente

Erwartungswert $\mu_X(n) = E[X_n]$

 $\sigma_{X}^{2}(n) = Var[X_{n}] = E[X_{n}^{2}] - E[X_{n}]^{2}$

Autokorrelation $r_X(k, l) = E[X_k X_l]$

Autokovarianz $c_X(k, l) = Cov[X_k, X_l] = r_X(k, l) - \mu_X(k)\mu_X(l)$

11.2. Random Walk

 $n \in \mathbb{N}$ Schritte mit 2 möglichen Bewegungsrichtungen $X \in \{+\delta, -\delta\}$

$$S_n = \sum_{i=1}^n X_i$$

P (
$$\{X_i = +\delta\}$$
) = p
P ($\{X_i = -\delta\}$) = p
P ($\{X_i = -\delta\}$) = p
symmetrisch $\Leftrightarrow p = \frac{1}{2}, \ \mu_{\mathsf{S}}(n) = 0$

$$\begin{split} E[S] &= \mu_{\mathsf{S}}(n) = n(2p-1)\delta \\ Var[S] &= \sigma_{\mathsf{S}}^2(n) = 4np(1-p)\delta^2 \end{split} \qquad \begin{aligned} E[X_i] &= (2p-1)\delta \\ Var[X_i] &= 4p(1-p)\delta^2 \end{aligned}$$

11.3. Stationarität

Eine Zufallsfolge ist stationär, wenn um ein beliebiges k ($k \in \mathbb{N}$) zueinander verschobene Zufallsvektoren die selbe Verteilung besitzen. Im weiteren Sinne stationär (W.S.S.), wenn:

$$\begin{array}{l} \mu_X(i)=\mu_X(i+k)\\ r_X(i_1,i_2)=r_X(i_1+k,i_2+k)=r_X(i_1-i_2)\\ \text{(verschiebungsinvariant)} \end{array}$$

stationär ⇒ WSS (aber nicht anders herum!)

11.4. Markow-Ungleichung

$$P(\{|X| \ge a\}) \le \frac{E[|X|]}{a}$$

11.5. Tschebyschow-Ungleichung

$$\boxed{\mathsf{P}(\big\{|\mathsf{X}-\mathsf{E}[\mathsf{X}]|\geq a\big\})\leq \frac{\mathsf{Var}[\mathsf{X}]}{a^2}}$$

11.6. Das schwache Gesetz der großen Zahlen

Sei $(X_i : i \in \mathbb{N})$ eine Folge reeller, paarweise unkorrelierter Zufallsvariablen mit beschränkter Varianz:

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \mathsf{E}[X_i]) \to 0$$

Für stochastisch unabhängige und identisch verteilte Folgenelemente mit $E[X_i] = E[X]$ und $Var[X_i] = Var[X] < \infty$ gilt:

$$\frac{1}{n}\sum_{i=1}^{n}(X_i)\to \mathsf{E}[X_i]$$

12. Markowketten (bedingte Unabhängigkeit: Abschnitt 14)

12.1. Markowketten

12.1.1. Allgemein

Eine Zufallsfolge $(X_n : n \in \mathbb{N})$ heißt Markowkette, falls $\forall n_i \in \mathbb{N}$, $i \in 1, \ldots k \text{ mit } n_1 < \cdots < n_k \text{ gilt:}$ $(X_{n_1}, X_{n_2}, \dots X_{n_{k-2}}) \to X_{n_{k-1}} \to X_{n_k}$

⇒ Die Verteilung eines Folgeelements hängt nur vom direkten Vorgänger

$$\begin{aligned} & p_{X_{n_k} \mid X_{n_{k-1}}, X_{n_{k-2}}, \dots, X_{n_1}}(x_{n_k} \mid x_{n_{k-1}}, x_{n_{k-2}}, \dots, x_{n_1}) \\ & = p_{X_{n_k} \mid X_{n_{k-1}}}(x_{n_k} \mid x_{n_{k-1}}) \end{aligned}$$

$$\begin{aligned} &f_{X_{n_k} \mid X_{n_{k-1}}, X_{n_{k-2}}, \dots, X_{n_1}}(x_{n_k} \mid x_{n_{k-1}}, x_{n_{k-2}}, \dots, x_{n_1}) \\ &= f_{X_{n_k} \mid X_{n_{k-1}}}(x_{n_k} \mid x_{n_{k-1}}) \end{aligned}$$

12.1.2. Zustandsübergang Zustandsübergangswahrscheinlichkeit:

$$p_{X_n \mid X_{n-1}}(x_n | x_{n-1})$$

$$p_{X_1,...,X_n}(x_1,...,x_n) = p_{X_1}(x_1) \prod\limits_{i=2}^n p_{X_i\mid X_{i-1}}(x_i|x_{i-1})$$

Zustandsübergangsdicht:

$$f_{X_n \mid X_{n-1}}(x_n | x_{n-1})$$

$$f_{X_1,...,X_n}(x_1,...,x_n) = f_{X_1}(x_1) \prod_{i=2}^n f_{X_i \mid X_{i-1}}(x_i | x_{i-1})$$

Eine Markowkette heißt homogen, wenn die Übergangswahrscheinlichkeit unabhängig vom Index ist

$$\begin{split} p_{X_{n+1} \mid X_n}(x_{n+1} | x_n) &= p_{X_{n+1+k} \mid X_{n+k}}(x_{n+1} | x_n) \\ f_{X_{n+1} \mid X_n}(x_{n+1} | x_n) &= f_{X_{n+1+k} \mid X_{n+k}}(x_{n+1} | x_n) \end{split}$$

12.1.3. Chapman-Kologorow Gleichung

2-Schritt-Übergangswahrscheinlichkeit:

$$\begin{array}{l} p_{X_{n+2} \mid X_{n}}(x_{n+2} \mid x_{n}) = \\ \sum\limits_{\xi \in \mathbb{X}} p_{X_{n+2} \mid X_{n+1}}(x_{n+2} \mid \xi) p_{X_{n+1} \mid X_{n}}(\xi \mid x_{n}) \end{array}$$

m+I-Schritt-Übergangswahrscheinlichkeit:

$$\begin{array}{l} p_{X_{n+m+l} \mid X_{n}}(x_{n+m+l} | x_{n}) = \\ \sum\limits_{\xi \in \mathbb{X}} p_{X_{n+m+l} \mid X_{n+m}}(x_{n+m+l} | x_{n+m}) p_{X_{n+m} \mid X_{n}}(x_{n+m} | x_{n}) \end{array}$$

12.1.4. Markowketten im endlichen Zustandsraum

$$\vec{p}_{n} \triangleq \begin{bmatrix} p_{X_{n}}\left(x_{1}\right) \\ p_{X_{n}}\left(x_{2}\right) \\ \vdots \\ p_{X_{n}}\left(x_{N}\right) \end{bmatrix} \in \left[0,1\right]^{N} \text{ mit } \left[\vec{p}_{n}\right]_{i} = p_{X_{n}}\left(x_{i}\right)$$

Übergangswahrscheinlichkeit: $p_{ij} = p_{X_{n+1} \mid X_n}(\xi_i | \xi_j)$ Spaltensumme muss immer 1 ergeben!

$$\vec{p}_{n+1} = \Pi \vec{p}_n \quad n \in \mathbb{N}$$
$$\vec{p}_{n+m} = \Pi^m \vec{p}_n \quad n, m \in \mathbb{N}$$

Eine Verteilung heißt stationär, wenn gilt:

$$\vec{p}_{\infty} = \Pi \vec{p}_{\infty}$$

13. Reelle Zufallsprozesse

13.1. Ensemble und Musterfunktion

- Ein Zufallsprozess kann als Ensemble einer nicht abzählbaren Menge von Zufallsvariablen X_t mit $t \in \mathbb{R}$ interpretiert werden.
- Ein Zufallsprozess kann als Schar von Musterfunktionen $X_t(\omega): \mathbb{R} \to \mathbb{R}$, mit $X(\omega)$ als deterministische Funktion von t. mit einem gegebenen Ereignis $\omega \in \Omega$ interpretiert werden.

13.2. Verteilungen und Momente

Zeitlich, Kontinuierlich veränderliche Zufallsvariable Xt

Erwartungswertfunktion:

$$\mu_X(t) = E[X_t]$$

Autokorrelationsfunktion:

 $r_X(s,t) = E[X_s X_t]$

Autokovarianzfunktion:

$$c_X(s,t) = \operatorname{Cov}(X_s, X_t) = r_X(s,t) - \mu_X(s)\mu_X(t)$$

Hinweis: Bei Integration über r_X immer darauf achten, dass s-t>0. Bei Bedarf Integral aufteilen und Grenzen anpassen.

Ein Zufallsprozess ist **stationär**, wenn um ein beliebiges s ($s \in \mathbb{R}$) zueinander verschobene Zufallsvektoren die selbe Verteilung besitzen.

$$F_{\mathsf{X}_{t_1},\ldots,\mathsf{X}_{t_n}}(x_1,\ldots x_n) = F_{\mathsf{X}_{t_1+s},\ldots,\mathsf{X}_{t_n+s}}(x_1,\ldots x_n)$$

Im weiteren Sinne stationär (WSS), wenn:

$$\mu_X(i) = \mu_X(i+k) = \mu_X r_X(i_1, i_2) = r_X(i_1+k, i_2+k) = r_X(i_1-i_2)$$

Daraus folgt mit $s = t + \tau$

$$r_X(s,t) = \mathsf{E}[X_s \, X_t] = \mathsf{E}[X_{t+\tau} \, X_t] = r_X(s-t) = r_X(\tau)$$

Im weiteren Sinne zyklisch stationär, wenn:

$$\mu_X(t) = \mu_X(t+T)$$
 \wedge $r_X(t_1, t_2) = r_X(t_1 + T, t_2 + T)$

stationär \Rightarrow WSS \Rightarrow im weiteren Sinne zyklisch stationär (aber nicht

13.4. Mehrere Zufallsvariablen auf dem selben Wahrscheinlichkeitsraum

Kreuzkorrelationsfunktion:

$$r_{X,Y}(s,t) = \mathsf{E}[X_s \ Y_t] = r_{Y,X}(t,s)$$

Kreuzkovarianzfunktion:

$$c_{X,Y}(s,t) = r_{X,Y}(s,t) - \mu_X(s)\mu_Y(t) = c_{Y,X}(t,s)$$

13.4.1. Gemeinsame Stationarität

Zwei Zufallsprozesse auf demselben Wahrscheinlichkeitsraum sind gemeinsam stationär, wenn die einzelnen ZPs ieweils selbst stationär sind und ihre gemeinsamen Verteilungen verschiebungsinvariant sind.

13.4.2. Gemeinsam im weiteren Sinne stationär

Voraussetzung: Xt und Yt sind gemeinsam WSS wenn,

$$X_t$$
 und Y_t einzelnd WSS und $x_t \vee y(t_1, t_2) = x_t \vee y(t_1 + s, t_2 + s)$

$$r_{X,Y}(t_1,t_2) = r_{X,Y}(t_1+s,t_2+s)$$
 gemeinsam stationär \Rightarrow gemeinsam WSS (aber nicht umgekehrt!)

Daraus folgt mit
$$s=t+\tau$$

$$\begin{aligned} r_X(s,t) &= \mathsf{E}[X_{t+\tau} \, X_t] = r_X(\tau) = r_X(-\tau) & r_X(\tau) \leq r_X(0) \\ r_{X,Y}(\tau) &= \mathsf{E}[X_{t+\tau} \, Y_t] = \mathsf{E}[Y_t \, X_{t+\tau}] = r_{Y,X}(-\tau) \end{aligned}$$

13.4.3. Stochastische Unkorreliertheit

$$c_{X,Y}(s,t) = 0 \Leftrightarrow r_{X,Y}(s,t) = \mu(s)\mu(t), \quad \forall s,t \in \mathbb{R}$$

$$r_{X,Y}(s,t) = 0, \quad \forall s,t \in \mathbb{R}$$

13.5. Wiener-Prozess ($\sigma > 0$)

Als Basis benutzen wir den Random Walk. Durch Multiplikation mit einer Heaviside-Funktion wird der Random Walk zeitkontinuierlich:

$$S_n = \sum_{i=1}^n X_i$$
 \Rightarrow $S_t = \sum_{i=1}^n X_i u(t-iT)$ $T > 0$

Für n $\rightarrow \infty$ und T $\rightarrow 0$, mit Schrittweite $\delta = \sqrt{\sigma^2 T}$ folgt der

$$f_{W_t}(w) = \frac{1}{\sqrt{2\pi\sigma^2 t}} \exp\left(-\frac{w^2}{2\sigma^2 t}\right)$$

Eigenschaften

- Kein Zählprozess!
- $P(\{W_0 = 0\}) = 1$
- hat unabhängige Inkremente $\rightarrow r_{xy}(s,t) = 0$
- $W_t \sim \mathcal{N}(0, \sigma^2 t), \forall 0 \leq t$
- $W_t W_s \sim \mathcal{N}(0, \sigma^2(t-s)), \forall 0 < s < t$
- ullet $W_t(\omega)$ ist eine stetige Musterfunktion mit Wahrscheinlichkeit 1

 $\mu_{W}(t) = 0$

Erwartungswertfunktion. Varianz

 $r_W(s,t) = \sigma^2 min\{s,t\}$ Autokorrelationsfunktion Autokovarianzfunktion $c_W(s,t) = \sigma^2 min\{s,t\}$

13.6. Poisson-Prozess $(N_t: t \in \mathbb{R}_+)$

Der Poisson-Prozess ist ein Zählprozess, bei dem der Zeitpunkt der Sprünge durch ZV modelliert wird, nicht die Amplitude.

 $\sigma_W^2(t) = \sigma^2 t$

$$\begin{split} N_t &= \sum_{i=1}^\infty u(t-T_i), \quad T_i = \sum_{j=1}^i \mathsf{X}_j \\ \mathsf{X}_j \text{ ist exponentiell verteilt, } T_i \text{ ist Gamma-verteilt} \end{split}$$

$$\begin{split} f_{T_i}(t) &= \frac{\lambda^i}{(i-1)!} t^{i-1} e^{-\lambda t}, \quad t \geq 0 \\ \mathbb{P}\left(\left\{N_t = n\right\}\right) &= \frac{(\lambda t)^n}{n!} e^{-(\lambda t)}, \quad \forall n \in \mathbb{N}_0, t \in \mathbb{R}_+ \end{split}$$

- ist ein Zählprozess ($\mathbb{N}_t \in \mathbb{N}_0$, monoton steigend und stetig)
- hat unabhängige Inkremente
- \bullet $N_t N_s$ ist Poisson-verteilt mit Parameter $(\lambda(t-s)$ für alle 0 < s < t
- hat eine Rate λ
- Zeitintervalle zwischen den Inkremetierungen sind unabhängig und identisch exponentialverteilt mit Parameter $\lambda \stackrel{\triangle}{=} \mathbf{ged} \mathbf{\ddot{a}chtnislos}$

 $\begin{array}{l} \mu_N(t) = \lambda t \\ \sigma_N^2(t) = \lambda t \end{array}$ Erwartungswertfunktion Varianz

 $r_N(s,t) = \lambda \min\{s,t\} + \lambda^2 st$ Autokorrelationsfunktion $c_N(s,t) = \lambda \min\{s,t\}$ Autokovarianzfunktion

14. Bedingte Unabhängigkeit

14.1. Bedingte Unabhängigkeit

A und C heißen bedingt unabhängig gegeben B, wenn gilt: $P(A \cap C|B) = P(A|B) P(C|B)$ bzw. $P(A|B \cap C) = P(A|B)$

Dann gilt:

$$\begin{array}{c} p_{Z \mid Y,X}(y|y,x) = p_{Z \mid Y}(z|y) \\ f_{Z \mid Y,Y}(z|y,x) = f_{Z \mid Y}(z|y) \end{array}$$

 $f_{Z \ | \ Y, X}(z|y,x) = f_{Z \ | \ Y}(z|y)$ X, Z sind bedingt unabhängig gegeben Y, kurz: $X \to Y \to Z$

15. Zufallsprozesse(ZP) und lineare Systeme

15.1. Allgemeines

Im Zeitbereich:

$$w(t) = (h * v)(t) = \int_{-\infty}^{\infty} h(t - \tau)v(\tau) d\tau$$

Im Frequenzbereich:

$$W(f) = H(f)V(f)$$

Ausgang Eingang h(s,t) Impulsantwort

Falls Zufallsprozesse WSS:

Erwartungswert:
$$\mu_{\mathrm{W}} = \mu_{\mathrm{V}} \int\limits_{-\infty}^{\infty} h(t) \, \mathrm{d}t$$

 $\textit{Kreuzkorrelationsfkt: } r_{\mathsf{W},\mathsf{V}}(\tau) = \mathsf{E}[\mathsf{W}_s\mathsf{V}_t] = (h*r_{\mathsf{V}})(\tau)$

Autokorrelationsfkt:
$$r_{\rm W}(\tau) = {\rm E}[{\rm W}_s {\rm W}_t] = (\tilde{h}*h*r_{\rm V})(\tau)$$
 mit $\tilde{h}(\tau) = h(-\tau)$

15.2. Leistungsdichtespektrum (LDS)

Nicht WSS
$$\Rightarrow$$
 Kein LDS

Auf Frequenz bezogene Signalleistung für infitisimales Frequenzband.

$$S_{Y}(f) = |H(f)|^{2} S_{X}(f)$$

$$S_{Y,X}(f) = H(f)S_{X}(f)$$

$$S_{X,Y}(f) = H^{*}(f)S_{X}(f)$$

$$\begin{array}{c|c}
X & H_1(f) & \cdots & H_n(f) & Y \\
\hline
A & G_1(f) & \cdots & G_m(f) & B
\end{array}$$

$$S_{Y,X}(f) = (\prod_{i=1}^{n} H_i(f))S_X(f)$$

$$S_{X,Y}(f) = (\prod_{i=1}^n H_i^*(f))S_X(f)$$

$$S_{\mathsf{Y},\mathsf{B}}(f) = (\prod_{i=1}^n H_i(f))(\prod_{j=1}^m G_j(f))^*S_{\mathsf{X},\mathsf{A}}(f)$$

$$S_X(f) = S_X^*(f)$$
 & $S_{X,Y}(f) = S_{Y,X}^*(f)$, $\forall f \in \mathbb{R}$
 $S_X(f) = S_X(-f)$, $\forall f \in \mathbb{R}$

$$\int\limits_{-\infty}^{\infty} S_X(f) \, \mathrm{d}f = r_X(0) = \mathsf{Var}[X] + \mathsf{E}[X]^2 = \sigma_X^2 + \mu_X^2$$

$$S_X(f) \ge 0, \quad \forall f \in \mathbb{R}$$

Momenterzeugende Funktion, Multivariate Normalverteilung, Multivariate reelle Zufallsvariablen und Komplexe Zufallsvariablen waren im WS 2015/16 nicht priifungsrelevant und werden hier deshalb nicht behandelt. P.S. Stochastik ♥ dich.