Кафедра программного обеспечения ВТ и АС

Разработка и реализация алгоритма вычисления уровня топлива в баках сложной конфигурации

Автор работы:

Притчин Иван Сергеевич, магистрант МИВТ-191

Руководитель:

Зуев Сергей Валентинович, канд. ф-м наук

Актуальность

Компании, осуществляющие мониторинг за транспортным средством столкнулись с проблемой точности вычислений уровня топлива в баках сложной конфигурации.

Основными факторами являются:

- большое количество конфигураций баков: требуется адаптация под новую форму;
- ограничения на стороне сервера у систем спутникового мониторинга в вопросах вычисления уровня топлива по данным, отсылаемых трекером;
- тяжелые условия экплуатации, приводящие к колебаниям топлива.

Монтаж и тарировка ДУТ

- Специалист сервисной службы осуществляет монтаж ДУТ в бак
- Производится процесс тарирования. Повторяются следующие действия:
 - Заливается *v_i* литров в бак
 - Снимаются показания D_i с датчика

В результате тарировки получаем функцию, заданную множеством точек: $\{(D_i, V_i)\}$, где

$$V_i = \sum_i v_i$$

Процесс вычисления показаний с ДУТ

- **1** Трекер считывает данные с датчиков и формирует сообщение;
- 2 Сообщение отправляется на сервер, на котором сохранена функция преобразования:

$$f:D\to V$$

3 Если приходящее с трекера значение отсутствует в таблице, используются алгоритмы линейной интерполяции и экстраполяции

Процесс вычисления показаний с ДУТ

В данном примере датчики отсылают значения D_1 , D_2 . Вычисляются показания на датчиках:

$$fuel_1 = f_1(D_1)$$
 $fuel_2 = f_2(D_2)$

И для баков простой конфигурации является достаточным вычисление среднего арифметического:

$$fuel = \frac{fuel_1 + fuel_2}{2}$$

Процесс вычисления показаний с ДУТ

Допустим, что данный бак рассчитан на 140 литров, а максимальное показание, которое может увидеть второй (правый) ДУТ - 100 литров. Далее для него начинается слепая зона.

Если бак будет полон, будут присланы значения D_1 и D_2 соответствующие 140 и 100 литрам, и тогда уровень топлива:

$$fuel = \frac{fuel_1 + fuel_2}{2} = 120$$

Цель и задачи

Цель: улучшение точности измерения количества топлива в баках сложной конфигурации при использовании нескольких датчиков уровня топлива.

Задачи:

- исследовать существующие подходы к решению задач определения уровня топлива в баках сложной конфигурации.
- 🤰 определить требования к программному обеспечению.
- 3 разработать и реализовать в программном обеспечении алгоритм адаптации данных, получаемых с датчиков уровня топлива для систем спутникового мониторинга.
- провести тестирование разработанного продукта.
- описать алгоритм действия для специалистов технической поддержки по внедрению метода вычислений в системы спутникового мониторинга.

Решение

Рассмотрим бак следующей конфигурации с тремя датчиками:

Этап 1: выделение зон

По тарировочной таблице выделяются зоны на основании множества ДУТов, покрывающих данный уровень:

В данном виде формулы не могут быть использованы, так как:

- Формула имеет разветвляющуюся структуру
- Для вычисления зоны надо знать уровень топлива, но чтобы знать уровень топлива надо знать зону.

Этап 2: получение виртуальных датчиков

Назовём виртуальным датчиком уровня топлива (ВДУТ) некоторый отрезок ДУТа. Границы зон $Z_1,...,Z_4$ разделяют физические датчики $D_1,...,D_3$ на множество виртуальных $V_1,...,V_7$:

Напомним, что датчик задаётся множеством точек $\{(D_i, V_i)\}$ Каждому из виртуальных датчиков необходимо сопоставить множество точек на ДУТе.

Этап 3: получение тарировок ВДУТ

Процесс разбиения D_3 на виртуальные датчики:

	- n	i i		
L	D_3		L	D_3
0	30		0	30
10	100		10	100
20	213		20	213
30	345		30	345
40	450		40	450
50	567		50	567
60	710		60	710
70	842		70	842
80	960		80	960
90	1080		90	1080
100	1200		100	1200
110	1315		110	1315
120	1435		120	1435
130	1553		130	1553
140	1670		140	1670
150	1800		150	1800
150	1000		150	1000

D_3	
30	
100	
213	
345	
450	
567	
710	
842	
960	
1080	
1200	
1315	
1435	
1553	
1670	
1800	
	30 100 213 345 450 567 710 842 960 1080 1200 1315 1435 1553 1670

L	D_3
0	30
10	100
20	213
1	D

20	213
L	D_3
20	213
30	345
40	450
50	567
60	710

L	D_3
60	710
70	842
80	960
90	1080
100	1200
110	1315
120	1435

L	D_3
120	1435
130	1553
140	1670
150	1800

L	D_3
0	30
10	100
20	213
•	

L	D_3
20-20	213
30-20	345
40-20	450
50-20	567
60-20	710

 D_3

710

842

960

1080

1200

1315

1435

L
60-60
70-60
80-60
90-60
100-60
110-60
120-60

D_3
1435
1553
1670
1800

L	D_3	
0	30	.,
10	100	V ₁
20	213	

D_3	
213	
345	1,
450	V_3
567	
710	
	213 345 450 567

L	D_3	
0	710	
10	842	
20	960	V_6
30	1080	V 6
40	1200	
50	1315	
60	1435	

L	D_3	
0	1435	
10	1553	V_7
20	1670	
30	1800	

Этап 4: подавление экстраполяции

Чтобы вычисления происходили корректно, необходимо подавить экстраполяцию. Достаточно добавить две точки, которые бы дублировали показания литров, но отличались на единицу в показаниях на ДУТе:

L	D_3
0	709
0	710
10	842
20	960
30	1080
40	1200
50	1315
60	1435
60	1436

Этап 5: получение формулы

Наличие виртуальных датчиков с устраненной экстраполяцией позволяет для случая получить формулу:

$$fuel = f_{v_1}(D_3) + \frac{f_{v_2}(D_2) + f_{v_3}(D_3)}{2} + \frac{f_{v_4}(D_1) + f_{v_5}(D_2) + f_{v_6}(D_3)}{3} + f_{v_7}(D_3)$$

где f_{v_i} - функция для вычисления количества топлива для виртуального ДУТа v_i , а D_i - показания с i-го физического датчика.

Проведенные вычисления было легко провести, так как мы имели представление о форме бака и местоположений датчиков.

Была поставлена задача разработать такой продукт, который бы не имел такой информации, а ориентировался только на тарировочные таблицы.

Используемые инструменты

Язык программирования: Python 3.X

Среда разработки: PyCharm Community

Библиотеки:

- для чтения и записи исходных данных: xlrd, openpyxl;
- для обработки данных: pandas, numpy;
- для визуализации данных: matplotlib;
- для unit-тестирования: unittest.

Результаты работы программы

Программа выполняет разбиение тарировочной таблицы на множество файлов:

Результаты работы программы

17/20

Иван Притчин

БГТУ им. В.Г.Шухова

Структура проекта. Тестирование

- Unit-тестирование. Достигнуто 98%-е покрытие строк
- Инсталяционное тестирование в лаборатории технической защиты информации
- Эксплуатационное приёмочное тестирование в ООО "Экспертком"

Заключение

В рамках выпускной квалификационной работы:

- исследованы подходы повышения точности вычисления уровня топлива
- 2 разработан и реализован алгоритм на ЯП Руthon для разбиения тарировочной таблицы на виртуальные датчики уровня топлива
- в проведено unit-тестирование, эксплуатационное приёмочное тестирование
- Описан алгоритм действия для специалистов технической поддержки по внедрению метода вычислений на примере ССМ wialon.