

Cahier-réponses Contrôle périodique 2

PHS1101

Sigle du cours

	Identification	n de l'étudiant(e)		
Nom: Kim	₽¹ ~	Prénom: Victor		Réservé
Signature :	tu hi	Matricule : 1954607	Groupe : 3	Q1: 35 /40
				Q2:26/50
	Sigle et	titre du cours		Q3 /60
		HS1101 pour ingénieurs		Q4: () /50
Profe	esseur	Groupe	Trimestre	
Djamel :	Seddaoui	Tous	Hiver 2021	
Jour	Date	<i>Dur</i> ée	Heures	
Samedi	27 mars 2021	2h00	09h30 à 11h30	
Documentation		Calculatrice	Outils électroniques	
		☐ Aucune	Les appareils	Total:
☐ Toute		☐ Toutes	électroniques personnels sont	00
☐ Voir directives	particulières		interdits.	7
	Directive	s particulières		200
 Vous vous er 	ngagez à faire cet exame	en individuellement.		
		Une réponse sans justification it être accompagnée des unités		
 Si vous pens pouvez. 	ez qu'il y a une erreur d	dans le questionnaire, réponde	z du mieux que vous	
	rmulaire des positions d	contre un aide-mémoire pour le es centres de masse des corps		
 Ne débroche 	z pas ce cahier			11
 Écrivez votre 	matricule dans toutes le	es pages de l'examen.		
Cet examen contient 4 questions sur un total de 20 pages (incluant cette page).				
La pondération d	e cet examen est de	/ 25/% .30%		

L'étudiant doit honorer l'engagement pris lors de la signature du code de conduite.

Question 1 (40 points) - Questions à court développement

35/40

Répondez aux sous-questions suivantes en expliquant votre raisonnement et en incluant les équations pertinentes. Une réponse sans justification ne vaut aucun point.

- **A.** Vrai ou faux : L'énergie mécanique d'un système isolé (sur lequel aucune force externe ne s'applique) est toujours conservée. Justifiez votre réponse (5 points)
- **B.** Vrai ou faux : Si j'applique une force sur un objet et que cet objet demeure immobile, alors l'impulsion de ma force est nulle. Justifiez votre réponse (5 points)
- **C.** Une voiture roule sur une route parfaitement horizontale. Son moteur développe une puissance constante $P=120\,\mathrm{kW}$ alors que le module de la résultante des forces de frottement est donné par $f=1,3\times v^2$ où f est en Newton et v en m/s. Déterminer la vitesse maximale que peut atteindre la voiture. (15 points)
- **D.** Déterminer la position (\bar{x}, \bar{y}) du centre de masse de la pièce grise 2D ci-dessous. La pièce a une masse surfacique homogène. (15 points)

A. Viai car il n'y a aucun travail fait donc \(\sum_{\text{Unc}} = \Delta E \) et si \(\sum_{\text{Unc}} = 0 \) alors \(E_1 = E_2 \)

To ces internes existentes

B. Faux car si elle était en mouvement au début et que par la suite après l'application de la force elle devient immobile l'impulsion, n'est pas nulle $Imp = L_2 - L_1$ si $L_2 = 0$ $Imp = -L_1$

C. $P = \vec{F} \cdot \vec{V}$ | 120 000 = 1.3 $V^2 \cdot V$ | 120 000 = 1.3 V^3 = > V = 45.2 m/s est le module maximum de la vitesse.

(3)
$$V_{y=3\pi} = -\frac{4r}{3\pi} = -\frac{4(10)}{3\pi} = -4.24$$
 $X = \frac{\sum A_1 X_1}{\sum A_1}$
 $X = 20 + 10 = 30 \text{ cm}$ $X = \frac{\sum A_1 X_1}{\sum A_1}$
 $X = \frac{\pi r^2}{2} = \frac{\pi (10)^2}{2} = 157 \text{ cm}^2$ $X = \frac{1413.72 \cdot 30 - 157 \cdot 30 + 157 \cdot 30}{1413.72 - 157 + 157}$

$$y = \frac{1413.72 \cdot 12.7 - 157 \cdot 4.24 + 157 - 4.24}{1413.72 - 157 + 157} = 30 cm$$

= 11.8 cm $)(\bar{x},\bar{y}) = (30,11.8) cm)$

Question 2 (50 points)

On utilise le dispositif de la figure ci-dessous pour soulever une charge A de masse $m_A = 1800 \text{ kg}$ en se servant de la force du camion B de masse m_B . Le moteur du camion produit une force vers l'avant donnée par $F = \alpha(\beta - v_B)$ où α et β sont des constantes et v_B est la vitesse du camion.

On donne : $\alpha = 300 \text{ kg/s et } \beta = 30 \text{ m/s}$

- A. Faire le DCL-DCE de la charge A et du camion B séparément. (15 points)
- **B.** Déterminer l'expression algébrique de l'accélération de la charge a_A en fonction de sa vitesse v_A et des paramètres constants du problème. (20 points)
- C. Déterminer la vitesse maximale v_{Amax} atteinte par la charge A. (15 points)

B. Mouvements contraintes

Le frottement fournit F

je suppose qu'il n'y a pas de frottements cor pas de données

VB = 2 VA

$$\Delta x_{B} = 2\Delta y_{A}$$

$$\int_{A} \frac{df}{df}$$

$$V_{B} = 2V_{A}$$

$$\int_{A} \frac{df}{df}$$

$$Q_{B} = 2Q_{A}$$

Pour C voir p.9

Camion B

$$M_B Q_B = \alpha (B - V_B) - T$$

$$QB = 300(30 - V_B) - T$$

$$a_A = \frac{1}{2}a_B = 150(30-2V_A) - \frac{T}{2}$$

.....

On te demande une expression algébrique!!

PHS1101 - Mécanique pour ingénieurs

C.
$$a = \frac{dV}{dt}$$
 $\int dt = \int \frac{dV}{a}$ $\int dt = \int \frac{1}{|150(30)-2V_A|} - \frac{2}{T} \int dV$
 $t + C = \frac{1}{2} |n| |4500 - 2V_A| - \frac{2}{T} V_A$ $t = 0, V_A = 0$
 $C = -4.2$
 $t - 4.2 = -\frac{1}{2} |n| |4500 - 2V_A| - \frac{2}{T} V_A$
 $e^{-2t} + 4.2 = 4500 - 2V_A - \frac{2}{T} V_A$
 $2V_A \left(1 + \frac{1}{T}\right) = 4500 - e^{-2t + 4.2}$
 $V_A = \frac{4500 - e^{-2t + 4.2}}{1 + \frac{1}{T}}$ $V_{Amax} = \frac{dV}{dt} = 0$
 $\frac{-1}{1 + \frac{1}{T}} \cdot -e^{-2t + 4.2} - 2 = \frac{-2}{1 + \frac{1}{T}} \cdot e^{-2t + 4.2} = 0$
Donc c'est pair bon

On te demande v_max. Donc, faut juste mettre a_A=0...

Avec ta méthode, après avoir trouvé T (que tu n'as pas) et après avoir fait ton intégration, il te faut dériver v pour trouver a, mettre ça a zéro pour trouver la valeur de t, qui se trouverait être très grand. C'est beaucoup de travail et c'est compliqué, alors qu'il y a beaucoup plus simple.

Aussi, tu as beaucoup d'erreurs dans ton travail, et tu as rien expliqué de ce que tu fais...

Question 3 (60 points)

Le bloc de masse $M=5\,\mathrm{kg}$ représenté sur la figure ci-dessous repose sur trois ressorts identiques de longueurs naturelles $L_0=0.8\,\mathrm{m}$ et de constantes k. Le bloc est susceptible de se déplacer verticalement sans frottement sur un guide grâce à des roulettes. On note h la position verticale de sa face inférieure (h représente aussi la longueur des ressorts). Une balle de dimensions négligeables et de masse $m=0.5\,\mathrm{kg}$ percute la face inclinée du bloc avec une vitesse initiale verticale v_i puis rebondit dans la direction horizontale avec une vitesse v_f tel que représenté sur la figure. On considérera que <u>l'impact est élastique</u> et de durée très courte. On négligera aussi tout frottement. Avant l'impact, le bloc est au repos à une hauteur $h=h_0$ du sol. Après l'impact, le bloc descend jusqu'à une hauteur minimale $h=h_{min}$. On donne : $h_0=0.5\,\mathrm{m}$ et $h_{min}=0.3\,\mathrm{m}$.

- A. Déterminer la constante k des ressorts. (10 points)
- **B.** Déterminer la grandeur de la vitesse v_i de la balle juste avant l'impact. (20 points)
- **C.** Déterminer la grandeur de la vitesse v_f de la balle juste après l'impact. (15 points)
- **D.** Quel est l'angle d'inclinaison θ de la face inclinée du bloc? (15 points)

Instant avant l'impact. Le bloc est à sa hauteur initiale.

Instant où le bloc est à sa hauteur minimale après l'impact.

Conservation énergie mais avec m et 14 comme système

$$E_1 = \frac{1}{2}mV_1^2 +$$

Question 4 (50 points)

Un bloc B de masse $m=2~{\rm kg}$ est attaché à un clou 0 à l'aide d'une corde inextensible de longueur $L=0.8~{\rm m}$ (de masse négligeable). Le bloc est susceptible de glisser sur une table horizontale. Le coefficient de frottement cinétique entre le bloc et la table est $\mu_k=0.1$. On lance le bloc avec une vitesse initiale $v_i=2~{\rm m/s}$ comme représenté sur la figure ci-dessous. Le bloc tourne d'abord autour de 0 puis autour de la cheville A fixée sur la table lorsque la corde la touche. On prendra comme origine du temps (t=0) l'instant où la corde touche la cheville A. Sur la figure, la gravité agit perpendiculairement à la page dans le sens entrant.

On donne : $\overline{OA} = L/2$ et $\alpha = \pi/6$ rad.

- **A.** Déterminer la vitesse v_0 du bloc à l'instant t = 0. (10 points)
- **B.** Faire le DCL-DCE du bloc pour un angle θ quelconque compris entre 30° et 90°. Utiliser le même angle de vue que dans la figure. (10 points)
- **C.** Déterminer l'expression algébrique de la tension T de la corde en fonction du temps, de v_0 et des paramètres constants du problème lorsque $t \ge 0$. (20 points)
- **D.** Quelle est la distance totale Δs parcourue par le bloc à partir de son lancement jusqu'à son arrêt total? (10 points)

A.
$$V_0 = V_i = 2m/s$$

B,

$$T = m(an + g)$$

$$T = 2\left(\frac{V_0^2}{0.4} + 9.81\right)$$

$$a_n = \frac{V_0^2}{AB} = \frac{V_0^2}{0.4}$$

$$\frac{ds}{dt} = V$$

$$Vdt = dS$$

$$S_1 = OB \cdot \frac{\pi}{G}$$

$$= 0.8. \pi$$

$$= 2\pi$$

$$de = \int_{C} \int_{C} dt = \int_{C} ds$$

$$de = \int_{C} \int_{C} \int_{C} dt = \int_{C} ds$$

$$de = \int_{C} \int_{C} \int_{C} dt = \int_{C} ds$$

$$de = \int_{C} \int_{C} ds$$

PHS1101 – Mécanique pour ingénieurs Aide-mémoire

Moment d'une force :	$\vec{M}_O = \vec{r} \times \vec{F}$		$\vec{v} = \vec{v}_0 + \vec{a}t$
Moment d'une force par rapport à un axe :	$\vec{M}_{OO'} = (\vec{M}_O \cdot \hat{u}_{OO'}) \hat{u}_{OO'}$	Mouvement uniformément accéléré :	$\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$
Moment d'un couple :	M = Fd		$v^2 = v_0^2 + 2\vec{a} \cdot (\vec{r} - \vec{r}_0)$
Système force-couple	$ec{R} = \sum ec{F}_i$	Accélération non	$\int_0^t dt = \int_{v_0}^v \frac{dv}{a(v)}$
équivalent :	$\vec{M}_O^R = \sum \vec{M}_i + \sum \vec{r}_{Oi} \times \vec{F}_i$	uniforme :	$\int_{v_0}^v v dv = \int_{x_0}^x a(x) dx$
Équilibre statique :	$\sum \vec{F} = \vec{0}, \qquad \sum \vec{M}_O = \vec{0}$		$ec{r}=r\widehat{u}_{r}$
Loi de Hooke :	$\vec{F} = -k(\vec{L} - \vec{L}_0)$	Coordonnées polaires :	$\vec{v} = \dot{r}\hat{u}_r + r\dot{\theta}\hat{u}_t$
Frottement sec :	$f_{s,\max} = \mu_s N,$ $f_k = \mu_k N$		$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{u}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{u}_t$
Pression :	$p = F_n/A$, $\tilde{p} = p - p_0$		$ec{v} = v \hat{u}_t$
Principe de Pascal :	$p_2 = p_1 + \rho g h$	Coordonnées normale et	$\vec{a} = (v^2/\rho)\hat{u}_n + (dv/dt)\hat{u}_t$
Poussée d'Archimède :	$P_A = \rho g V$	tangentielle :	$\rho(x) = \frac{[1 + (dy/dx)^2]^{3/2}}{ d^2y/dx^2 }$
Force hydrostatique sur une paroi :	$F_H = \frac{\rho g h A}{2}$	Deuxième loi de Newton :	$\sum ec{F} = m ec{a}_{\mathit{CM}}$
	$\vec{v} = \frac{d\vec{r}}{dt}, \qquad \vec{a} = \frac{d\vec{v}}{dt}$	Mouvement contraint :	$\sum \Delta \ell_i = 0$
Variables du mouvement :	$\vec{r} = \vec{r}_0 + \int_0^t \vec{v} dt$	Travail d'une force :	$U = \int \vec{F} \cdot d\vec{r}$
	$\vec{v} = \vec{v}_0 + \int_0^t \vec{a} dt$	Énergie cinétique (particule) :	$T = \frac{1}{2}mv^2$
	$\omega = \frac{d\theta}{dt}, \qquad \alpha = \frac{d\omega}{dt}$	Énergie	$V_g = mgh$
Variables du mouvement (angulaires) :	$\theta = \theta_0 + \int_0^t \omega dt$	potentielle :	$V_{res} = \frac{1}{2}k(L - L_0)^2$
(angulanes).	$\omega = \omega_0 + \int_0^t \alpha dt$	Énergie mécanique :	E = T + V
	$\vec{r}_{B/A} = \vec{r}_B - \vec{r}_A$	Principe travail- énergie :	$\sum U = \Delta T, \qquad \sum U_{nc} = \Delta E$
Mouvement relatif :	$\vec{v}_{B/A} = \vec{v}_B - \vec{v}_A$	Puissance :	$ar{P} = U/\Delta t$, $P = dU/dt = \vec{F} \cdot \vec{v}$
	$\vec{a}_{B/A} = \vec{a}_B - \vec{a}_A$	Rendement	$\eta = P_{\text{sortie}}/P_{\text{entrée}}$

PHS1101 – Mécanique pour ingénieurs Aide-mémoire

Quantité de mouvement (QM) :	$ec{L} = m ec{v} \ ec{L} = M ec{v}_{CM}$	Vitesse de rotation :	$\vec{v} = \vec{\omega} \times \vec{r}$
Principe impulsion-	$\sum \vec{F} = \frac{d\vec{L}}{dt}$	Décomposition translation-rotation :	$\vec{v}_B = \vec{v}_A + \vec{\omega} \times \vec{r}_{B/A}$
QM:	$\Delta \vec{L} = \int \sum \vec{F} dt$	Centre instantané de rotation :	$\omega = \frac{v_A}{r_{A/CIR}} = \frac{v_B}{r_{B/CIR}}$
Force moyenne :	$ec{F}_{ m moy} \Delta t = \int ec{F} dt$,	$\Delta r = R\Delta heta$
	$ec{r}_{\mathit{CM}} = rac{\sum m_i ec{r}_i}{\sum m_i}$	Roulement sans glissement :	$v = \omega R$
Centre de masse :	$ec{v}_{\mathit{CM}} = rac{\sum m_i ec{v}_i}{\sum m_i}$		$a = \alpha R$
	$ec{a}_{\mathit{CM}} = rac{\sum m_i ec{a}_i}{\sum m_i}$	Deuxième loi de	$\sum \vec{M}_O = \vec{r}_{CM/O} \times M\vec{a}_{CM} + \mathbf{I}_{CM}\vec{\alpha}$
Moment d'inertie d'une particule :	$I_0 = mR^2$	Newton en rotation :	$\sum \vec{M}_O = \mathbf{I}_O \vec{\alpha}$
Rayon de giration :	$\kappa_O = \sqrt{I_O/m}$	Énergie cinétique	$T = \frac{1}{2}Mv_{CM}^2 + \frac{1}{2}I_{CM}\omega^2$
Théorème des axes parallèles :	$I_{O'} = I_{O,CM} + md_{OO'}^2$	d'un corps rigide :	$T = \frac{1}{2} I_0 \omega^2$
	$\vec{H}_O = \vec{r} \times m\vec{v}$	Travail d'un couple :	$U = \int \vec{M} \cdot d\vec{ heta}$
Moment cinétique :	$\vec{H}_O = I_O \vec{\omega}$		$\vec{M}_{res} = -\kappa \Delta \vec{ heta}$
	$\vec{H}_O = \vec{r}_{CM} \times M \vec{v}_{CM} + \mathbf{I}_{CM} \vec{\omega}$	Ressort de torsion :	$V_{res} = \frac{1}{2}\kappa(\Delta\theta)^2$
Principe impulsion-	$\sum \vec{M}_O = \frac{d\vec{H}_O}{dt}$	Puissance d'un couple :	$P = \vec{M} \cdot \vec{\omega}$
MC:	$\Delta \vec{H}_O = \int \sum \vec{M}_O dt$		
Système à masse variable :	$\sum \vec{F} + \frac{dm}{dt} (\vec{v}_p - \vec{v}) = m\vec{a}$		
Débit dans une conduite :	$ dV/dt = Sv,$ $ dm/dt = \rho Sv$		
Masse en fonction du temps :	$m = m_0 + \int_0^t \frac{dm}{dt} dt$		
Force exercée par un courant de	$\vec{F}_e = dm/dt \vec{v}_e$		

 $\vec{F}_s = -|dm/dt|\vec{v}_s$

particules :

$ \frac{\ell/2}{\chi} + \frac{\ell/2}{\chi} $ $ \frac{\ell}{\chi} $ $ \frac$	b $\frac{\ell/2}{2}$ $\frac{\ell/2}{2}$ $\frac{\ell/2}{2}$ $\frac{\ell/2}{2}$ $\frac{\ell/2}{2}$ $\frac{\ell/2}{2}$	$I_{xx} = \frac{1}{12} m(a^{2} + \ell^{2})$ $I_{yy} = \frac{1}{12} m(b^{2} + \ell^{2})$ $I_{xz} = \frac{1}{12} m(a^{2} + b^{2})$ CORPS MINCES $\overline{x} = \overline{y} I_{xy} = \frac{1}{12} m\ell^{2}$ $\overline{x} = \overline{y} I_{xx} = I_{yy} = \frac{1}{2} mr^{2}$ $= \frac{2\Gamma}{I_{xz}} I_{xz} = mr^{2}$
$\frac{z}{ x } = \frac{z}{ x } = \frac{z}$	2 (/2 x d)	MINCES $I_{xx} = \frac{1}{12}m(a^2 + b^2)$ MINCES $I_{yy} = \frac{1}{12}m\ell^2$ $V = I_{xy} = \frac{1}{2}mr^2$ $I_{xx} = I_{yy} = \frac{1}{2}mr^2$
$\frac{\ell/2}{x} = \frac{\ell/2}{\pi} \qquad \frac{\ell/2}{x} = \frac{2\Gamma}{\pi} \qquad \frac{I_{xx}}{I_{xy}} = \frac{2\Gamma}{\pi} \qquad \frac{I_{xx}}{I_{xz}} = \frac{2\Gamma}{\pi} \qquad \frac{I_{xx}}{I_{xx}} = \frac{2\Gamma}{\pi} \qquad \frac{\Gamma}{\pi} = \frac{2\Gamma}{\pi} \qquad \frac{\Gamma}{\pi}$	(2 (/2)	MINCES $V_{yy} = \frac{1}{12} m\ell^2$ $V_{xx} = I_{yy} = \frac{1}{2} mr^2$ $I_{zz} = mr^2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 + mj²	$I_{xx} = I_{xx}$
$\frac{ +\ell/2 +\ell/2 }{ x }$ $\frac{ +\ell/2 +\ell/2 }{ x }$ $\frac{ x }{ x }$ $\frac{ x }{ x }$ $\frac{ x }{ x }$	$ \begin{array}{c c} \hline \mathbf{G} & \mathbf{y} \\ \hline \mathbf{X} & \overline{\mathbf{x}} = \overline{\mathbf{y}} \end{array} $	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Z X Z	$I_{xx} = I_{yy} = \frac{1}{2}m\Gamma^2$
$ \frac{1}{ X } = \frac{3r}{x} \qquad \frac{1}{x} = \frac{2}{8} \qquad I_{xx} = \frac{2}{8} m^{2} $ $ \frac{1}{ X } = I_{zz} = \frac{1}{4} m^{2} + $	$=$ \underline{x}	$\frac{2r}{\pi} \times I_{yy} = \left(\frac{1}{2} - \frac{4}{\pi^2}\right) mr^2$
/ = 1 mr ² +	ur ²	
$4r \begin{vmatrix} r_{x} - 4 & 11 \\ r & (1 & 16 \\ r & (1$	× × × × × × × × × × × × × × × × × × ×	$\begin{vmatrix} I_{xx} = mr^{2} & & & \\ \frac{2}{3}b & & & I_{xx} = \frac{1}{6}ma^{2} & & & \\ & & & & & & \end{vmatrix}$
$I_{xx} = I_{xx} = I_{xx}$	$\bar{y} = \bar{y}$ $X \qquad \qquad \bar{y} = \bar{y}$	$\frac{1}{3}a$ $I_{,y}=\frac{1}{2}mb^2$ Triangle rectangle mince

*Demi-cercle : les moments d'inertie avec une barre sont calculés par rapport à un axe qui passe par le centre de masse de l'objet.