Slides for Chapter 2: Architectural Models

From Coulouris, Dollimore, Kindberg and Blair

Distributed Systems:

Concepts and Design

Edition 5, © Addison-Wesley 2012

Figure 2.1 Generations of distributed systems

Distributed systems:	Early	Internet-scale	Contemporary
Scale	Small	Large	Ultra-large
Heterogeneity	Limited (typically relatively homogenous configurations)	Significant in terms of platforms, languages and middleware	Added dimensions introduced including radically different styles of architecture
Openness	Not a priority	Significant priority with range of standards introduced	Major research challenge with existing standards not yet able to embrace complex systems
Quality of service	In its infancy	Significant priority with range of services introduced	Major research challenge with existing services not yet able to embrace complex systems

Figure 2.2 Communicating entities and communication paradigms

Communicating entities (what is communicating)		Communication paradigms (how they communicate)		
System-oriented entities Nodes Processes	Problem- oriented entities Objects Components Web services	Interprocess communication Message passing Sockets Multicast	Remote invocation Request-reply RPC RMI	Indirect communication Group communication Publish-subscribe Message queues Tuple spaces

Figure 2.3 Clients invoke individual servers

Figure 2.4a Peer-to-peer architecture

Instructor's Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 2.4b A service provided by multiple servers

Figure 2.5 Web proxy server

Figure 2.6 Web applets

a) client request results in the downloading of applet code

b) client interacts with the applet

Figure 2.7
Software and hardware service layers in distributed systems

Figure 2.8 Two-tier and three-tier architectures

AJAX example: soccer score updates

```
new Ajax.Request('scores.php?
            game=Arsenal:Liverpool',
           {onSuccess: updateScore});
function updateScore(request) {
(request contains the state of the Ajax request
including the returned result.
The result is parsed to obtain some text giving the
score, which is used to update the relevant portion
of the current page.)
```

Figure 2.10 Thin clients and compute servers

Figure 2.11
The web service architectural pattern

Figure 2.12 Categories of middleware

Major categories:	Subcategory	Example systems
Distributed objects (Chapters 5, 8)	Standard	RM-ODP
	Platform	CORBA
	Platform	Java RMI
Distributed components (Chapter 8)	Lightweight components	Fractal
	Lightweight components	OpenCOM
	Application servers	SUN EJB
	Application servers	CORBA Component Model
	Application servers	JBoss
Publish-subscribe systems (Chapter 6)	-	CORBA Event Service
	-	Scribe
	2	JMS
Message queues (Chapter 6)		Websphere MQ
		JMS
Web services (Chapter 9)	Web services	Apache Axis
	Grid services	The Globus Toolkit
Peer-to-peer (Chapter 10)	Routing overlays	Pastry
	Routing overlays	Tapestry
	Application-specific	Squirrel
	Application-specific	OceanStore
	Application-specific	Ivy
	Application-specific	Gnutella

Figure 2.13 Real-time ordering of events

Figure 2.14 Processes and channels

Figure 2.15 Omission and arbitrary failures

Class of failure	Affects	Description
Fail-stop	Process	Process halts and remains halted. Other processes may
		detect this state.
Crash	Process	Process halts and remains halted. Other processes may
		not be able to detect this state.
Omission	Channel	A message inserted in an outgoing message buffer never
		arrives at the other end's incoming message buffer.
Send-omission	Process	A process completes a <i>send</i> , but the message is not put
		in its outgoing message buffer.
Receive-omission	on Process	A message is put in a process's incoming message
		buffer, but that process does not receive it.
Arbitrary	Process or	Process/channel exhibits arbitrary behaviour: it may
(Byzantine)	channel	send/transmit arbitrary messages at arbitrary times,
		commit omissions; a process may stop or take an
		incorrect step.

Figure 2.11 Timing failures

Class of Failure	Affects	Description
Clock	Process	Process's local clock exceeds the bounds on its rate of drift from real time.
Performance	Process	Process exceeds the bounds on the interval between two steps.
Performance	Channel	A message's transmission takes longer than the stated bound.

Figure 2.17
Objects and principals

Figure 2.19 Secure channels

