The Mesh Model vs. The Standard Model: Structural Comparison Across 70+ Categories

Thomas Lock

Purpose

This table offers a structured comparison between the Mesh Model and the Standard Model (SM) across over seventy key dimensions. It is designed to:

- Provide conceptual clarity for researchers evaluating foundational physical frameworks,
- Highlight the unique structural, dynamical, and causal features of the Mesh Model relative to symmetry-based gauge field constructions,
- Situate coherence-driven emergence alongside symmetry-imposed quantization,
- Acknowledge the unmatched experimental success of the Standard Model across modern physics.

0. Observational Power and Experimental Achievements		
Collider Predictions	Causal overlap structure defines scattering qualitatively; amplitude structures under development	Predicts particle production cross- sections at LHC to better than 1% ac- curacy
Quantum Electrodynamics (QED) Accuracy	Mesh reproduces $E = hf$ propagation and coherence-tension behavior; loop corrections not yet modeled	Predicts electron $g-2$ value to 1 part in 10^{13} ; highest precision agreement ever achieved
Higgs Boson Prediction	Mass generation via coherence divergence; no separate Higgs field required	Predicted and discovered Higgs boson at 125 GeV
Neutrino Oscillations	Natural emergence via coherence superposition and causal cone dynamics	Extensions to SM accurately model neutrino oscillations (Super-Kamiokande, SNO confirmed)
CP Violation Observations	Phase offsets in causal coherence produce CP violation structurally	CP violation predicted in kaon and B-meson systems; experimentally ob- served
Running of Coupling Constants	Coherence-curvature suggests dy- namic field-dependent behavior; detailed beta functions under devel- opment	Asymptotic freedom of QCD and running couplings experimentally verified
Anomalous Magnetic Moments	Phase-induced corrections possible; detailed structure under development	Electron and muon $g-2$ match experimental values; discrepancies being investigated
Dark Matter Candidates	Stable coherence solitons in non-radiative CPS zones proposed	SM lacks intrinsic dark matter; WIMP, axion models added externally

Dark Energy Interpretation	High-coherence curvature substrate phase matches accelerating expansion	Cosmological constant added by hand in Λ CDM model
S-Matrix Formulation	Causal S-matrix from real field over- lap structure	Traditional S-matrix built from asymptotic states; matches experiment
Renormalization Needs	Structurally finite: no divergences requiring renormalization	Requires renormalization in QED, QCD, electroweak sectors
Singularity Behavior	No singularities: field structure saturates at high resistance	Predicts singularities (black hole cores, Big Bang); no internal resolution
	1. Structural Foundations	3
Foundational Principle	Coherence-regulated causal structure defining mass, charge, spacetime	Symmetry-based quantum fields governed by gauge invariance
Geometry Origin	Emergent from coherence, tension, and curvature field interactions	External Minkowski (or curved) spacetime assumed
Spacetime Definition	Region of dynamic mesh coupling through causal cones	Fixed 3+1 dimensional manifold background
Causality Source	Derived from field structure and causal cone overlap dynamics	Imposed via Lorentz invariance as a postulate
Time Emergence	Directional coherence divergence defines effective time flow	Time parameter externally imposed; not emergent
Vacuum Structure	Structured tension-curvature back- ground with residual energy density	Ground state of quantum fields; no deeper structure
Particle Identity	Stability zones in Coherence Phase Space (CPS) determine identity	Excitations classified by mass, spin, and gauge group representation
Field Quantization Origin	Ripple-locking and soliton coherence structure	Canonical quantization of fields by operator promotion
Antimatter Mechanism	Curvature inversion and ripple reversal creates antimatter states	Charge conjugation symmetry operation imposed manually
Mass Generation Mechanism	Mass from internal oscillation: $m = \chi \times f$ (coherence × frequency)	Higgs mechanism via spontaneous symmetry breaking
	2. Field Theory & Dynamic	cs
Quantum Behavior	Emergent from causal coherence phase structure and cone interactions	Imposed via operator quantization of classical fields
Superposition Principle	Real harmonic modes of tension- coherence fields superpose naturally	Hilbert space superposition principle fundamental
Entanglement Origin	Phase-locked coherence across separated causal cones	Tensor product structure of independent quantum systems
Born Rule Origin	Emergent from structural collapse of coherent phase overlap	Postulated axiomatically in standard quantum mechanics
Gauge Interactions	Emergent from twist, coherence, and tension coupling structure	Imposed by local gauge symmetry $(SU(3)\times SU(2)\times U(1))$
Gravitational Behavior	Curvature resistance to coherence- tension transport generates gravity	Gravity external to SM; described by General Relativity

Fermion Structure	Topological coherence winding yields spin- $\frac{1}{2}$ behavior	Dirac spinors assigned by Lorentz symmetry representation
Boson Structure	Propagating tension-coherence ripples (massless or massive)	Gauge bosons from gauge field excitations (gluons, $\mathrm{W/Z},\mathrm{photon})$
Spin Origin	Coherence phase wrapping: $\phi(x) = \theta(x)/2$ yields spin- $\frac{1}{2}$ solitons	Spin arises from Lorentz symmetry group properties
Charge Origin	Ripple asymmetry and twist topology define electric charge	Hypercharge and isospin quantum numbers assigned externally
Interaction Mediation	Real causal field deformation through cone overlap	Mediated by virtual particle exchange in perturbative QFT
Decay Mechanism	Structural coherence collapse induces decay transitions	Weak force mediated decays via W, Z boson propagators
Field Equations	Lagrangian coupling of tension, curvature, and coherence fields	Yang-Mills gauge field Lagrangians plus Dirac equation
Curved-Spacetime QFT Support	Naturally extends to curvature- structured spacetime	Standard Model assumes flat or classical GR background
Feynman Diagram Support	Mesh causal overlaps produce real scattering amplitudes	Developed perturbative expansion using Feynman diagrams
Scattering Amplitudes	Causal transition amplitudes from field overlap integrals	Amplitudes computed via perturbative S-matrix expansion
Geometry Source Equation	Dynamic generation: $g^{\mu\nu}(x) \propto \sum \phi_i \phi_j \partial^{\mu} \psi_i \partial^{\nu} \psi_j$	Geometry assumed external; no internal field-driven spacetime generation
	3. Observational & Experimental A	Alignment
Testability	Designed for laboratory testing; causal scattering under development	Tested to extreme precision in particle physics and cosmology
Low-Mass Gravity Suppression	Predicts deviations below $\sim 1 \text{ mg}$ mass scale	No prediction within SM; gravity external to framework
Vacuum Energy Problem	Curvature substrate structure explains dark energy phase naturally	Huge discrepancy between predicted and observed vacuum energy (120 or- ders of magnitude)
Dark Matter Candidates	Predicts stable coherence solitons in non-radiative zones (CPS Zone V)	Requires external models (e.g., WIMPs, axions); not intrinsic to SM
Early Universe Behavior	Inflation linked to rapid causal coherence phase locking	Inflation modeled by scalar fields (inflaton) added externally
Cosmic Expansion	Expansion explained by coherence spread and causal divergence	Fits observations through Λ CDM and GR framework; SM incomplete alone
Time's Arrow	Irreversible causal coherence divergence defines thermodynamic direction	No fundamental time asymmetry mechanism built into SM
Black Hole Radiation	Predicts tunneling-based Hawking radiation analogs	Hawking radiation predicted from quantum fields on curved backgrounds (not SM itself)
Black Hole Core Behavior	Coherence saturation avoids singularities at collapse points	Predicts classical singularities; quantum gravity needed for resolution

	T	I
Higgs Decay Behavior	Decay channels emerge from coherence saturation collapse	Higgs decay modes predicted accurately and confirmed at LHC
Entropy Origin	Entropy arises from causal phase breakdown and structure loss	Entropy interpreted statistically; no fundamental SM derivation
Gravitational Coupling Constant	Emerges dynamically from field structure stiffness	G remains an external input constant to the SM
Curvature Limit	Saturation of field resistance imposes curvature bounds	No upper limit; allows infinite curvature and singularities
Amplitude-Level Predictions	Transition amplitudes from causal coherence overlap under development	SM amplitudes (cross-sections, branching ratios) match experiments with high precision
	4. Cosmology & Quantum Gra	avity
Singularity Resolution	No singularities; field saturation halts collapse before divergence	Classical singularities (Big Bang, black holes) persist without quantum gravity fix
Remnant Problem (Black Holes)	Smooth evaporation avoids stable remnants	Remnant endpoint of evaporation unresolved within $SM + GR$
Inflation Mechanism	Coherence phase-locking initiates rapid causal expansion	Inflation modeled via scalar inflaton field externally to SM
Dark Energy Identity	High-coherence curvature phase explains observed acceleration	Cosmological constant inserted by hand; Λ CDM model fits observations
Time Dilation Origin	Extreme ripple slowdown near causal horizons	Gravitational time dilation explained via spacetime curvature in GR
Radiation Pathway (Hawking Analog)	Quantum tunneling across causal gradients enables radiation emission	Hawking radiation derived by QFT in curved spacetime; not part of SM
Information Recovery in Black Holes	Coherence phase return enables information preservation and Page curve turnover	SM alone does not resolve information paradox; black hole information loss debated
Horizon Structure	Apparent horizons formed by field saturation; no true event horizons	Event horizons in GR represent causal boundaries; no internal field explanation
Page Curve Prediction	Mesh structure predicts early rise, smooth turnover, and recovery	Page curve behavior requires full quantum gravity beyond SM
Coherence Phase Space (CPS)	Full structural particle map based on coherence lifetime, scale, and stability	No structural classification; particles grouped by mass, spin, charge, gauge representation
5. Teaching, Math, & Scientific Philosophy		
Mathematical Transparency	Field structure (tension, coherence, curvature) fully exposed in causal terms	Formal but abstract; gauge fixing, renormalization, and perturbative expansions complicate intuitive understanding
Dimensional Assumptions	3+1 dimensions fundamental; no hidden or extra dimensions introduced	3+1 dimensions assumed; extensions like string theory introduce higher dimensions externally

Engineering Compatibility	Direct simulation pathways envisioned (e.g., Mesh drives, causal manipulation)	No direct engineering pathways from SM field structure; indirect via tech- nological applications
Computation Readiness	Fully simulatable via causal cone over- lap and structural coherence fields	Lattice QCD and numerical methods used to simulate aspects; full SM simulation extremely challenging
Student Accessibility	Teachable from first mechanical principles; structure first, quantization second	Requires strong prior understanding of quantum field theory, group theory, and differential geometry
Scientific Philosophy	Structure-first: mass, charge, and interactions emerge from causal field mechanics	Symmetry-first: gauge group structure postulated and imposed; dynamics follow symmetry constraints
Experimental Anchoring	Designed to connect directly with observable laboratory and cosmological tests	Exceptional experimental success across particle accelerators, atomic physics, cosmology
Future Vision	Tool for spacetime engineering and control over causal structure	Framework for describing all known matter interactions except gravity; extensions needed for unification
Metric Reconstruction	Metric structure dynamically generated by causal field structure	Metric externally provided (Minkowski or GR); SM fields propagate within fixed spacetime
6.	Causality, Collapse, and Coherence	e Structure
Causal Structure Source	Emerges from causal cone geometry, coherence availability, and field resistance	Imposed via Lorentz invariance; not dynamically constructed from field structure
Light Cone Definition	Derived from local field causal availability: function of tension, velocity, and coherence resistance	Light cones fundamental in Minkowski/curved spacetime back- ground; fields obey
Collapse Mechanism (Decoherence)	Coherence phase collapse triggers structural decay and decoherence	Decoherence explained statistically; no fundamental collapse mechanism inside SM
Interference Criteria	Based on causal cone overlap, coherence density, and resistance gradients	Quantum mechanical interference fol- lows from superposition of states; no causal geometry consideration
Mass Emergence	$m_{\text{eff}}^2(x) \propto \Gamma(x) + \mathcal{R}(x)$, where Γ is coherence divergence	Mass introduced via Higgs field interaction; symmetry breaking generates mass terms
Dark Matter Interpretation	High-resistance coherence-isolated phases remain gravitationally coupled but non-radiative	SM itself lacks dark matter candidates; extensions needed
Dark Energy Interpreta- tion	High-coherence curvature substrate phase drives cosmic acceleration without new fields	Cosmological constant inserted phenomenologically; no structural explanation in SM
Decay Law Derivation	Real coherence divergence drives decay probability: $P(t) = 1 - e^{-\int \Gamma(x(t))dt}$	Decay rates computed from Feynman diagram matrix elements and perturbative expansions

Entropy Bound Origin	Maximum entropy determined by field coherence gradients and causal structure	Black hole entropy proportional to event horizon area (Bekenstein-Hawking); not derived inside SM
Causal Horizon Type	Resistance-defined horizons where causal coherence transport halts $(\mathcal{R} \to \infty)$	Horizons defined geometrically by spacetime light cones in GR; not intrinsic to SM fields
	7. Particle Structure and Internal	Geometry
Spin-½ Behavior Origin	Topological coherence winding: $\phi(x) = \theta(x)/2$ produces double-valued soliton states	Spin- $\frac{1}{2}$ behavior arises from Lorentz group representation of Dirac spinors
Flavor Oscillation Mechanism	Coherence field superpositions enable neutrino flavor transitions dynami- cally	Neutrino oscillations modeled via PMNS matrix mixing in SM exten- sions
CP Violation Source	Structural phase offsets between coherence modes produce CP asymmetry	Complex phase in CKM matrix introduces CP violation for quarks; PMNS phase for leptons
Sterile Neutrino Realization	Causally isolated coherence modes weakly coupled to visible sector	Hypothetical; not included in SM; possible beyond-SM sterile neutrinos proposed
Quark Triplet Binding	Cone neutrality constraint: three- color coherence cancellation forms confined states	Imposed color confinement by non-Abelian SU(3) gauge theory (QCD)
Fractional Charge Origin	Topological coherence winding density gives quantized fractional charges	Fractional charges $(1/3, 2/3)$ assigned by group theory within $SU(3) \times SU(2)$ $\times U(1)$
Gluon Dynamics	Emergent from curvature of coherence vectors and non-Abelian coupling	Eight massless gluons mediate SU(3) color force; asymptotic freedom verified
Field Current Source	Mesh coherence flow generates conserved interaction currents naturally	Noether currents derived from gauge symmetries by standard field-theoretic formalism