UNIT 2

Classical Cryptography

Content...

- Introduction
- Encryption Method
 - 1. Symmetric/private(secret) key/one key/same key
 - 2. Asymmetric/public key/ key pair/different key
- Cryptography
 - 1. Operation Used: Substitution & Transposition
 - 2.*Key*:-
 - 3. Type of processing:- Algorithm types are block & stream
 - 4. No. of Rounds
- Substitution
- Transposition

Terminology

- Code
 - Replacement based on words or semantic structures
- Cipher
 - Replacement based on symbol
- Cryptosystem
 - A model used for encryption & dencryption process

Terminology

- Cryptography
 - The science of encrypting or hiding secrets.
- Cryptanalysis
 - The art & science of decrypting messages or breaking codes and ciphers.
- Cryptanalyst
 - The hacker/attacker/person who attempts to break.
- Cryptology
 - The combination of the two.

Terminology

- Plaintext an unencrypted message
- Cipher text an encrypted message
- Key pattern of alphabets & numbers
- Security: a combination of
 - Authentication
 - Authorization
 - Access control

Three Era's of Cryptology

- Pre-World War II
 - Cryptography as a craft
 - Widely used, but few provable techniques
- 1940s-1970
 - Secret key encryption introduced
 - Information theory used to characterize security
- 1970-present
 - Public key systems introduced

Substitution Ciphers

- Plain text are replaced by other character, number, symbols according to a key.
 - Substitution is said to add confusion
 - Measure of the relationship between plaintext and cipher text

SUBSTITUTION TECHNIQUES

- In the substitution cipher technique, the characters of a plain text message are replaced by other characters, numbers or symbols.
 - Caesar Cipher
- Modified Version of Caesar Cipher
- Mono-alphabetic Cipher
- Homophonic Substitution Cipher
- Polygram Substitution Cipher
- Polyalphabetic Substitution Cipher
- Playfair Square
- Hill

Early cryptography

- Caesar cipher
 - Julius Caesar in 100 B.C
 - Replace each letter l with $(l+3) \mod 26$
 - "Attack at dawn"
 - Dwwdfn dw gdzq

Plain text becomes

Cipher Text

- Two components:
 - Algorithm: Shift characters by a fixed amount
 - Key: the fixed amount.
 - <u>Uniform Scheme</u> of substitution

Caesar Cipher

- The Caesar cipher is still useful as a way to prevent people from unintentionally reading something.
- Fundamental problem: key length is shorter than the message.
- Weak Scheme: work backwards/reverse to break this.
- Note: Knowing the algorithm (but not the key) makes this cipher much easier to crack
 - 26 possibilities v/s 26!

Modified Version of Caesar Cipher

- It cab be k *place* down the line this can increase complexity.
- Once replacement scheme is decided, it would be constant for whole PT.
- 25 possibilities of replacement.
- Brute force attack
- Measure Weakness Predictability
- Refer table on next slide

Weaknesses of the Caesar Cipher

- Word structure is preserved.
 - Break message into equal-length blocks.
 - dww dfn dwg dzq
- Solution: use multiple keys
 - E.g. shift by (3,5,7)
 - "Attack at dawn" becomes dya dhr dyk dbu
 - Better, but frequency information still present.
 - An attacker that knows the block size can separate out characters encoded with different keys.

Attempt to Break Modified Caesar Cipher Text Using All Possibilities

Cipher text	K	W	U	M	P	M	Z	M
Attempt Number								
(Value of K)								
1	L.	X	V	N	Q	N	A	N
2	M	Y	W	O	R	O	В	O
3	N	Z	X	P	S	P	C	P
4	O	A	Y	Q	T	Q	D	Q
5	P	B	Z	R	U	R	E	R
6	Q	C	A	S	V	S	F	S
7	R	D	В	T	W	T	G	T
8		E	C	U	X	U	H	U
9	T	F	D	V	Y	V	I	V
10	U	G	E	W	Z	W	J K	W
11	V	H	F	X	A	X	K	X
12	W	I	G	Y	В	Y	L	Y
13	X	J	H	Z	C		M	Z
14	Y	K	I	A	D	A	N	A
15	Z	L	J	В	E	В	O	В
16	A	M	K	C	F	C	P	C
17	В	N	L	D	G	D	Q	D
18	C	OP	M	E F	H	E F	R	E F
19	D		N		I			
20	E	Q	O	G	J	G	T	G
21	F	R	P	H	K	H	U	H
22	G	S	Q	I	L	I	V	I
23	H	T	R	J	M	J	W	J
24	1	U	S	J K	N	K	X	K
25	J	V	Т	L.	O	L	Y	L

Mono-alphabetic Cipher

<u>RondomScheme</u> of substitution

- Change
- No relation between the replacement of one to other.
- High number of possible permutation & combination.
- If the cipher text created with this technique is *short*
- Letter frequency is a big clue
 - e,t,a,o most common English letters.
 - Using a *single key* preserves frequency.

- There is only one hitch. If the cipher text created with this technique is short, the cryptanalyst can try different attacks based on her knowledge of the English language.
- As we know, some alphabets in the English language occur more frequently than others.
- Language analysts have found that given a single alphabet in cipher text, the probability
- that it is a P is 13.33%—the highest.
- After P comes Z, which is likely to occur 11.67%.
- The probability that the alphabet is C, K, L, N or R is almost 0—the lowest.
- A cryptanalyst looks for patterns of alphabets in a cipher text, substitutes the various
- available alphabets in place of cipher text alphabets, and then tries her attacks.
- Apart from single-alphabet replacements, the cryptanalyst also looks for repeated patterns of words to try the attacks. For example, the cryptanalyst might look for two-alphabet cipher text patterns since the word to occurs very frequently in English.
- If the cryptanalyst finds that two alphabet combinations are found frequently in a cipher text message, she might try and replace all of them with to, and then try and deduce the remaining alphabets/words.
- Next, the cryptanalyst might try to find repeating three-alphabet patterns and try and replace them with the word the, and so on.

Homophonic substitution cipher

- To escape frequency analysis, we can use a homophonic substitution cipher
 - Map symbols to multiple symbols.
 - \bullet *e.g* 0 -> {01, 10}, 1->{00,11}
 - Given Text 011010010 becomes: 011100101101011110
 - Advantage: -Frequencies Hidden
 - Disadvantage: -Message and Key are Longer

Polygram Cipher

- All previous techniques are based on stream cipher.
- Polygram is a block cipher.
- Following figure shows it

Poly-alphabetic Cipher

- Leon Battista invented in 1568.
- This cipher has been broken many times, and yet it has been used extensively.
- The Vigenere Cipher and the Beaufort Cipher are examples of it.
- It uses multiple one-character keys.
- Each of the keys encrypts one plain text character.
- The first key encrypts the first plain text character; the second key encrypts the second plain text character, and so on.
- After all the keys are used, they are recycled.
- Thus, if we have 26 one-letter keys, every 26th character in the plain text would be replaced with the same key.
- This number (in this case, 26) is called as the *period* of the cipher.

Example of Poly-alphabetic Cipher

- For key v & PT i, the corresponding CT is at the intersection of row titled v & column titled i.
- For encryption
 - *1. Key=PT*
 - 2. Key repeats itself after n period.

Blaise de Vigenere (1523-1596) — French diplomat and cryptographer — See next slide

	A	В	C	D	E	F	G	Н	1	1	K	L	M	N	0	P	Q	R	S	T	U	٧	W	X	Y	Z
A	Α	В	C	D	E	F	G	Н	1	1	K	L	M	N	0	Р	Q	R	S	Ŧ	U	٧	W	Х	Y	Z
В	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U	٧	W	χ	Υ	Z	Α
C	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T	U	٧	W	X	Y	Z	Α	В
D	D	E	F	G	Н	1	1	K	L	M	N	0	P	Q	R	5	Т	U	٧	W	X	Y	Z	Α	В	C
E	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T	U	٧	W	X	Y	Z	Α	В	C	D
F	F	G	Н	1	1	K	L	M	N	0	P	Q	R	S	T	U	٧	W	Х	Y	Z	A	В	C	D	E
G	G	Н	1	1	K	L	M	N	0	Р	Q	R	5	T	U	٧	W	χ	Υ	Z	Α	В	С	D	E	F
H	Н	1	1	K	1	M	N	0	P	Q	R	S	T	U	٧	W	X	Υ	Z	A	В	C	D	Ε	F	G
1	1	1	K	L	М	N	0	P	Q	R	5	Т	U	٧	W	X	Y	Z	Α	В	C	D	E	F	G	Н
1	1	K	L	M	N	0	P	Q	R	S	T	U	٧	W	Х	Y	Z	A	В	C	D	E	F	G	Н	. 1
K	K	L	îvî	N	0	ç.	Q	R	S	T	U	٧	W	×	Y	Z	A	B	C	O	2	f	G	11	1	1
L	L	M	N	0	P	Q	R	5	T	U	٧	W	Χ	Υ	Z	Α	В	C	D	E	F	G	H	1	J	K
M	M	N	0	P	Q	R	S	Т	U	٧	W	X	Y	Z	A	В	C	D	E	F	G	Н	1	1	K	L
N	N	0	P	Q	R	S	Т	U	٧	W	X	Y	Z	Α	В	C	D	E	F	G	Н	1	1	K	L	M
0	0	P	Q	R	5	T	U	٧	W	X	Y	Z	A	В	C	D	E	F	G	Н	1	1	K	L	M	N
P	P	Q	R	S	T	U	٧	W	X	Y	Z	Α	В	C	D	E	F	G	Н	1	1	K	L	M	N	0
Q	Q	R	S	T	U	٧	W	X	Y	Z	Α	В	C	D	E	F	G	Н	1	1	K	L	M	N	0	P
R	R	S	Т	U	٧	W	X	Υ	Z	A	В	C	D	E	F	G	Ξ	1	J	K	L	M	N	0	P	Q
W	5	Т	U	٧	W	X	Y	Z	A	В	C	D	E	F	G	Н	1	1	K	L	M	N	0	P	Q	R
Т	T	U	٧	W	Х	Y	Z	Α	В	C	D	E	F	G	Н	1.	1	K	L	M	N	0	P	Q	R	5
U	U	٧	W	χ	Y	Z	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	Т
٧	٧	W	Χ	Y	Z	Α	B	C	D	E	F	G	H	1	1	K	L	M	N	0	P	Q	R	S	T	U
W	W	X	Υ	Z	Α	В	C	D	E	F	G	Н	1	1	K	L	M	N	0	P	Q	R	5	Т	U	٧
X	Χ	Υ	Z	A	В	C	D	E	F	G	H	1	1	K	L	M	N	0	P	Q	R	S	Т	U	٧	W
Y	Y	Z	Α	В	C	D	E	F	G	H	1	1	K	L	M	N	0	Р	Q	R	5	T	U	٧	W	Х
Z	Z	A.	В	C	D	E	F	G	н	1	J	K	L	M	N	0	P	Q	R	5	Т	U	V	W	X	Υ

Play Fair Square

- Used for Manual Encryption Of Data
- Invented by Charles Wheatstone in 1854
- But known by Lord Playfair, who was friend of CW
- Playfair made this scheme popular & hence his name was used.
- Used by British Army in World War I
- Australians in World War II

Use

- Fast
- No equipments used.
- Important but not critical information.
- At the one could break it ->Value of information was nullified.
- Crosswords that appears in several Newspapers.

Playfair Encryption Scheme

Uses to main processes

Step 1:Creation & Population Of Matrix

- 5*5 Matrix table
- Used to store keyword & phrase that becomes Key for E,D.
- 1. Enter the keyword in the matrix row-wise: L->R Top-to-bottom.
- 2. Drop duplicate letters.
- Fill the remaining spaces in the matrix with the rest of the English alphabets(A-Z) that was not the part of our keyword.

Note:-While doing so, combine I & J in the same cell of the table. If I & J is the part of keyword, disregard both I & J while filling the remaining slots.

Step2: Encryption Process

- 1. **PT** broken into groups of two alphabets.
- 2. If both the alphabets are same OR only one is left, add an X after the first alphabet. E the new pair & continue.
- 3. If both the alphabets in the pair appear in the *same row* of our matrix, replace them with the alphabets of their *immediate right* respectively. If the original pair is on the right side of the row, then wrapping around to the *left side of the row* happens.
- 4. If both the alphabets in the pair appear in the *same coloum* of our matrix, replace them with the alphabets of their *immediate below* respectively. If the original pair is on the bottom side of the row, then wrapping around to the *top side of the row* happens.

Continue...

- 5. If the alphabets are not in *same row or column* of our matrix, replace them with the alphabets in the *same row* respectively, but the other pair of the corners of the rectangle defined by the original pair, The order is quite significant here. The first **E** alphabet of the pair is the one that is present on the same row as the first plain text alphabet.
- D process works in the opposite direction. We also need to remove the extra X alphabets that we had added in step 1# above, if any.

Hill Cipher

- Works on multiple letters at the same time(i.e: Polygraphic).
- Lester Hill invented this in 1929.
- Its roots in Matrix Theory of Mathematics.
- Inverse of Matrix
- Attack:- Known Plain Text Attack

Encryption Steps

- 1. Treat every letter in **PT** message as a number, so that $A=0,B=1,\ldots,Z=25$.
- 2. The **PT** matrix organized as a number.
- 3. **PT** is multiplied by a *randomly chosen keys*. The key matrix consist of size n*n, where n is the number of **rows** in **PT**.
- 4. Multiply the two matrix.
- 5. Now compute a mod26 value of the above matrix.
- 6. Now, translate the numbers to alphabets.

Decryption Steps

- 1. CT matrix multiply it by the Inverse of original key Matrix.
- 2. Take mod26 of the above matrix.
- 3. Now, translate the numbers to alphabets

Transposition Ciphers

- A transposition cipher is one that permutes the symbols of the message according to a preset pattern.
 - Helps avoid detection of symbols based on correspondence.
 - Said to increase diffusion
 - Reduce redundancies in plaintext.

Rail Fence Technique

- 1. Write down the plain text message as a sequence of diagonals(*i.e.*: zigzag sequence).
- 2. Read the text row-by-row, & write it sequentially.
- **✓** Original plain text message: Come home tomorrow

- we have the cipher text as: Cmhmtmrooeoeoorw
- Simple too break

Simple Columnar Transposition

Technique

- It simply arranges the plain text as a sequence of rows of a rectangle that are read in columns randomly.
- 1. Write the plain text message row-by-row in a rectangle of a pre-defined size.
- 2. Read the message column-by-column. However, it need not be in the order of columns 1,2, 3 etc. It can be any random order such as 2, 3, 1, etc.
- 3. The message thus obtained is the cipher text message.
- Trying out a few permutations and combinations of column orders quite simple to break into.

- Original plain text message: Come home tomorrow
- 1. Let us consider a rectangle with *six columns*. Therefore, when we write the message in the rectangle row-by-row(suppressing spaces), it would look as follows

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
С	0	m	е	h	0
m	е	t	0	m	0
r	r	0	w	100	() ()

- 2. Now, let us decide the order of columns as some random order, say 4, 6, 1, 2, 5, 3. Then read the text in the order of these columns.
- 3. we have the cipher text as: **eowoocmroerhmmto**.

Simple columnar transposition technique with multiple rounds

- To add more complexity & twist using no. of iterations.
- Only one additional step is added is given below
- Repeat step 1 to 3 as many times as desired.

Vernam Cipher

- In 1920's was first implemented at AT&T with the help of a device called as the Vernam Machine.
- once an input cipher text for transposition is used, it is never used again for any other message (hence the name one-time pad).
- Random set of non-repeating characters as the input cipher text key.
 - Same length as message
 - XORed with message
- Theoretically unbreakable
 - Attacker can do no better than guessing
 - Ciphertext gives no information about plaintext.

Vernam Cipher Algorithm

- 1. Treat each plain text alphabet as a number in an increasing sequence, i.e. A = 0, B = 1, ... Z = 25.
- 2. Do the same for each character of the input cipher text.
- 3. each number corresponding to the plain text alphabet to the corresponding input cipher text alphabet number.
- 4. If the sum thus produced is greater than 26, subtract 26 from it.
- 5. Translate each number of the sum back to the corresponding alphabet. This gives the output cipher text.

Example of Vernam Cipher

Н	0	W	A	R	Е	Y	0	U
7	14	22	0	17	4	24	14	20
+								
13	2	1	19	25	16	0	17	23
N	C	В	T	Z	Q	A	R	X
20	16	23	19	42	20	24	31	43
20	16	23	19	16	20	24	5	17
U	Q	X	T	Q	U	Y	F	R
	7 + 13 N 20 20	7 14 + 13 2 N C 20 16 20 16	7 14 22 + 13 2 1 N C B 20 16 23 20 16 23	7 14 22 0 + 13 2 1 19 N C B T 20 16 23 19 20 16 23 19	7 14 22 0 17 + 13 2 1 19 25 N C B T Z 20 16 23 19 42 20 16 23 19 16	7 14 22 0 17 4 + 13 2 1 19 25 16 N C B T Z Q 20 16 23 19 42 20 20 16 23 19 16 20	7 14 22 0 17 4 24 + 13 2 1 19 25 16 0 N C B T Z Q A 20 16 23 19 42 20 24 20 16 23 19 16 20 24	7 14 22 0 17 4 24 14 + 13 2 1 19 25 16 0 17 N C B T Z Q A R 20 16 23 19 42 20 24 31 20 16 23 19 16 20 24 5

Book Cipher/Running Key Cipher

- For producing cipher text, *some portion of text from a book is used*, which serves the purpose of a one-time pad.
- Thus, the characters from a book are used as one-time pad, and they are *added* to the input plain text message similar to the way a one-time pad works.
- It should be clear that since the one-time pad is discarded after a single use.
- This technique is highly secure and suitable for small plain text message, but is clearly impractical for largemessages.

Product ciphers

- By themselves, substitution and transposition ciphers are relatively insecure.
- By combining these operations, we can produce a secure cipher.
 - This is how DES works.
- \bullet M -> Sub(M) -> Trans(Sub(M)).
 - Might go through multiple rounds.

Symmetric Key Encryption

- The Caesar Cipher and the one-time pad are examples of symmetric-key (secret-key) encryption.
- Single key shared by all users.
- Fast
- How to distribute keys?

Keyspace

- The *keyspace* is the set of all possible keys.
 - Caesar cipher: keyspace = $\{0,1,2,\ldots,25\}$
 - Vernam cipher: $|\text{keyspace}| = 2^{\text{n}} 1$
- Size of the keyspace helps us estimate security.
 - Assumption: exhaustive search is the only way to find a key.

Block Ciphers

- The ciphers we have seen so far are known as *block ciphers*.
- Plaintext is broken into blocks of size k.
- Each block is encrypted separately.
- Advantages: random access, potentially high security
- Disadvantages: larger block size needed, patterns retained throughout messages.

Stream Ciphers

- A stream cipher encodes a symbol based on both the key and the encoding of previous symbols.
 - \bullet $C_i = M_i XOR K_i XOR M_{i-1}$
- Advantages:
 - can work on smaller block sizes little memory/processing/buffering needed.
- Disadvantages:
 - Random access difficult, hard to use large keys.
 - Sender and receiver must be synchronized
 - Inserted bits can lead to errors.