# **PROJECT PRESENTATION**

#### **DEPARTMENT OF MECHANICAL ENGINEERING**



# POWER GENERATION FROM A SMALL WIND TURBINE

HORIZONTAL AXIS MAGNUS EFFECT TURBINE

## **PROJECT MEMBERS**

1. Kaviyaselvan.K - 710021114013

2. Madhavan .S - 710021114019

3. Monish .R - 710021114023

4. Naveenkumar.A - 710021114315

## **PROJECT SUPERVISOR**

#### DR.K.SOORYA PRAKASH M.E., Ph.D.,

H.O.D/Assistant Professor

Dept of Mechanical Engineering

Anna university Regional campus

Coimbatore-641046

# **NEED FOR RENEWABLE ENERGY**

#### **Environmental Concerns**

- Fossil fuels cause air pollution, global warming, and climate change.
- Renewable energy produces zero greenhouse gas emissions during operation.

#### **Depletion of Fossil Fuels**

- Coal, oil, and natural gas are finite and rapidly depleting.
- Energy demand is rising globally.

#### **Cost & Energy Security**

- Fossil fuel prices are **volatile** due to geopolitical and supply chain issues.
- Renewables provide **stable**, **domestic energy** sources.

#### **Global Shift Toward Clean Energy**

• Initiatives like Mission Innovation, Net Zero by 2050, and UN SDGs drive adoption of renewables.



## **ABSTRACT**

- The project focuses on renewable energy generation using a small-scale wind turbine.
- Aims to harness wind energy effectively through a Magnuseffect-based turbine.
- Utilizes **rotating cylindrical blades** instead of traditional airfoil blades to improve performance at low wind speeds.
- Designed and analyzed using Siemens NX for modeling and ANSYS Fluent for CFD simulations.
- The prototype was fabricated and tested in real wind conditions, showing promising voltage output even at low wind speeds.



# **OBJECTIVE**

## **GOALS**

- To design and develop a horizontal axis Magnus wind turbine for small-scale power generation.
- To convert wind energy into electrical energy using the Magnus effect with rotating cylindrical blades.
- To reduce dependency on fossil fuels and promote the use of clean, renewable energy sources.
- To evaluate turbine performance under **low to moderate wind speeds**, making it suitable for rural and urban applications.
- To carry out **CFD analysis** and **field testing** for validating the design efficiency.
- To create a **cost-effective prototype** with potential for future scale-up and real-world implementation.

# WHAT IS MAGNUS EFFECT?

- The Magnus Effect is a physical phenomenon where a spinning object in a fluid (like air) experiences a lift force perpendicular to the direction of flow.
- It occurs due to **pressure differences** created by the variation in flow speed around the rotating surface.
- Common in sports: seen in the curved path of spinning balls (football, baseball, golf).



# **MAGNUS EFFECT WIND TURBINE**

- Replaces traditional airfoil blades with rotating cylindrical blades.
- These rotating cylinders generate lift using the Magnus effect, which creates torque to drive the turbine shaft.
- Particularly effective in **low wind speed** conditions, where traditional turbines struggle.
- Offers potential for **higher efficiency**, lower noise, and better **performance in urban or low-wind regions**.





# **DESIGN TOOLS USED**

#### 1. Siemens NX (CAD Software)

- Used for **3D modeling and assembly** of turbine components.
- Designed parts such as **blades**, **hub**, **shaft**, **and base**.
- Enabled precise dimensioning and part alignment.
- Supported mechanical validation before fabrication.

#### 2. ANSYS Fluent (CFD Analysis)

- Used for Computational Fluid Dynamics (CFD) simulations.
- Analyzed airflow, pressure distribution, and velocity contours.
- Helped visualize **Magnus effect behavior** on rotating cylinders.
- Ensured design efficiency before physical testing.





# **TURBINE BLADE DESIGN**

- Three **cylindrical blades** made of **PVC** for strength and lightweight.
- Spiral profile added using FRP (Fibre Reinforced Plastic) to enhance surface roughness and lift via Magnus effect.
- Connected to an 18 mm shaft at each end for rotation and torque transmission.

## **Key Dimensions:**

• Blade Length: **750 mm** 

• Blade Diameter: **50 mm** 

• Diameter with Spiral: **90 mm** 

• Spiral Pitch: 90 mm



# **HUB & BASE DESIGN**

#### **Hub:**

- Hub connects all three blades to the main shaft.
- Includes **bearings** for smooth rotation and load transfer.
- Precisely machined for **aerodynamic alignment**.

#### Base:

- Mild steel base supports the entire turbine structure.
- Designed for **stability** against wind loads and vibrations.
- Tapered form for better **center of gravity and mounting**.

#### **Base Dimensions:**

• Height: **1270 mm** 

• Top area: **460 mm × 260 mm** 

• Bottom area: 460 mm × 520 mm





# **SHAFT DESIGN**

- Transfers rotational energy from blades to the Permanent Magnet Generator (PMG).
- Made of Mild Steel (MS) for strength and durability.
- Connected securely to hub on one end and generator on the other.

## **Key Specifications:**

• Shaft Diameter: 25 mm

• Shaft Length: **850 mm** 



# **FULL ASSEMBLY**

- Complete 3D model designed in Siemens NX.
- Includes blades, hub, shaft, base, and generator housing.
- Ensures **correct alignment and fitment** before fabrication.
- Used as reference during physical assembly and testing.



# **MOTION SIMULATION**



# **CFD SETUP – GEOMETRY & MESH**

- 3D model exported from Siemens NX into ANSYS Fluent.
- Fluid domain created around rotating blades.
- Used Moving Reference Frame (MRF) for rotational simulation.
- Fine mesh near blade surface; coarse mesh far from the body.

- Boundary Conditions:
- Inlet: Wind velocity (5 m/s)
- Outlet: Pressure outlet
- Blade: Rotating wall (Magnus effect)





# **CFD RESULTS**

## **Velocity Contour:**

- Shows **higher velocity** on one side of rotating cylinder and lower on the other.
- Confirms **Magnus effect** in action → Lift and torque generated.



#### **Pressure Contour:**

- Low pressure where flow velocity is high.
- Pressure difference across cylinder drives rotation.







# **FABRICATION PROCESS OVERVIEW**

- Fabrication involved cutting, drilling, welding, and assembly of components.
- Main Steps:
- Helical cylinder blades made using PVC and FRP spiral wrapping.
- Mild steel base constructed with L-angles for stability.
- **Hub and shaft** machined and aligned using SKF bearings.
- Components were assembled on a **welded support frame**.
- Ensured **proper alignment** for smooth rotation and torque transfer.







# **FABRICATION PROCESS OVERVIEW**







# **ASSEMBLY**

- Final prototype was assembled after fabricating individual components.
- All parts were aligned for smooth rotation and load transfer.
- Major components in the assembly:
  - Rotating blades (PVC + FRP spiral)
  - Hub with SKF bearings
  - Mild steel base frame
  - Central shaft connecting rotor to generator
  - Permanent Magnet Generator (PMG) mounted at the rear



# MATERIALS USED

| Component  | Material                                      |  |
|------------|-----------------------------------------------|--|
| Blades     | PVC (Cylinder) + FRP (Spiral layer)           |  |
| Base Frame | Mild Steel (MS)                               |  |
| Shaft      | EN8 Steel                                     |  |
| Bearings   | SKF Bearings                                  |  |
| Generator  | Neodymium Permanent Magnet<br>Generator (PMG) |  |
| Hub        | Aluminum rod                                  |  |
| Fasteners  | Standard steel bolts and nuts                 |  |







# PERMANENT MAGNET GENERATOR (PMG)

- Converts mechanical rotation into electrical energy.
- Uses **neodymium magnets** for strong, efficient field generation.
- No external power required **self-exciting** design.
- High efficiency (>90%) and low starting torque (0.1 Nm).

- Specs:
- Power: 200W | Voltage: 12V (3-phase)
- Poles: 30 | RPM: 200
- Shaft: EN8 | Material: Cast Iron
- Insulation Class: H | Protection: IP54



# **Testing & Results – Field Test**

- Conducted **open field tests** under natural wind conditions.
- Instruments used:
- Anemometer (Wind speed)
- Tachometer (Rotor RPM)
- Voltmeter (DC output)

| Wind Speed (m/s) | RPM | Voltage (V) |
|------------------|-----|-------------|
| 2.8              | 120 | 3.2         |
| 3.5              | 150 | 4.1         |
| 4.2              | 180 | 5.0         |
| 5.0              | 210 | 6.2         |

# **CONCLUSION & FUTURE SCOPE**

#### **Conclusion:**

- Successfully designed, fabricated, and tested a Magnus-effect-based wind turbine.
- Demonstrated reliable **low-speed wind energy generation**.
- CFD analysis validated aerodynamic efficiency.

#### **Future Scope:**

- Integrate **energy storage** or **grid-tie inverter** for real-world use.
- Optimize blade surface (fins/texture) for better torque.
- Scale up for community or rooftop-level installations.

# **Q&A / THANK YOU**

"Thank you for your attention!"

**Any Questions?** 

