Instituto Tecnológico de Costa Rica

Escuela de Ingeniería Electrónica Trabajo Final de Graduación

Proyecto: Método basado en aprendizaje reforzado para el control automático de una planta no lineal.

Estudiante: Oscar Andrés Rojas Fonseca

I Semestre 2024 Firma del asesor

Bitácora de trabajo

Fecha	Actividad	Anotaciones	Horas
			dedicadas
05/02/2024	1. Estudio de a teoría de control para el péndulo amortiguado a hélice (PAMH).	 a) Consulta a bibliografía de control automático: Nise (2020) y Ogata (2003). b) Revisión de material multimedia de Anibal Ruiz-Barquero referente al PAMH vía Youtube. 	3 horas
06/02/2024	2. Estudio de la teoría de aprendizaje reforzado (RL).	 a) Consulta a libros de texto como Data-Driven Science and Engineering (Brunton y Kutz, 2021). b) Revisión de material multimedia de Steven Brunton vía Youtube. 	3 horas
06/02/2024	3. Revisión bibliográfica de algoritmos de aplicación de aprendizaje automático.	a) Consulta al libro Re- inforcement Learning: An introduction (Sutton y Barto, 2020) para mayor detalle. b) Revisión de otros métodos de aprendizaje automático. c) Ejemplos de imple- mentación de las redes neuronales recurrentes (RNN) por Patrick Loeber vía Youtube y la tésis de grad- uación de Jorge Brenes.	3 horas

07/02/2024	4. Revisión de repositorios en línea de métodos de aplicación de aprendizaje automático.	 a) Búsqueda preliminar de repositorios generales de RL mediante Github. b) Selección de códigos con enfoques similares al control del PAMH. 	5 horas
09/02/2024	5. Creación del ambiente de trabajo anaconda para montaje de la red neuronal mimetizadora (RNAM).	a) Revisión de bibliotecas utilizadas por el código base de la RNAM. b) Instalación/revisión de versiones adecuadas de Python, ArgumentParser, Numpy, Matplotlib, TensorFlow y Weights&Biasis.	2 horas
09/02/2024	6. Pruebas de funcionamiento de la red neuronal mimetizadora (Synthetic-PAHM.py).	 a) Estudio del código de la RNAM. b) Error en el proceso por falta de cuenta y permisos del autor en W&B. c) Creación de cuenta y proyecto en W&B. 	3 horas
09/02/2024	7. Estudio del funcionamiento de la herramienta Weights & Biases (W&B).	 a) Revisión de material en línea sobre el uso de W&B. b) Ejemplos de implementación de W&B. 	2 horas 21 horas
Total de horas de trabajo:			

Contenidos de actividades

Resumen de teoría PAMH

AAAA

Resumen de teoría RL

AAAA

Ambiente de trabajo anaconda para la RNAM

AAAA