

PROGRAMMABLE SCHOTTKY 32768-BIT READ ONLY MEMORY

MB7142E/H

SCHOTTKY 32768-BIT DEAP PROM (4096 WORDS x 8 BITS)

The Fujitsu MB7142 is high speed schottky TTL electrically field programmable read only memory organized as 4096 words by 8 bits. With threestate outputs, memory expansion is simple.

The memory is fabricated with all logic "zeros" (positive logic). Logic level "ones" can be programmed by the highly reliable DEAP(Diffused Eutectic Aluminum Process) according to simple programming procedures.

The sophisticated passive isolation termed IOP (Isolation by Oxide and Polysilicon) with thin epitaxial layer and schottky TTL process permits minimal chip size and fast access time.

The extra test cells and unique testing methods provide enhanced correlation between programmed and unprogrammed circuits in order to perform AC, DC and programming test prior to shipment. This results in extremely high programmability.

- Single +5V supply voltage.
- 4096 words x 8 bits organization , fully decoded.
- Proven high programmability and reliability.
- Programming by DEAP (Diffused Eutectic Aluminum Process).
- Simplified and lower power programming
- Low current PNP inputs.
- AC characteristics guaranteed over full operating voltage and temperature range via unique testing techniques.

- Fast access time, 45ns typ.
 E: 65ns max.
 H: 55ns max.
- TTL compatible inputs and outputs.
- · 3 State outputs.
- Two chip enable pins for simplified memory expansion.
- Standard 24-pin Ceramic DIP
- Standard 24-pin Ceramic FPT
- Standard 28-pad Ceramic LCC
- · JEDEC approved pin out

ABSOLUTE MAXIMUM RATINGS (see NOTE)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{cc}	-0.5 to +7.0	V
Power Supply Voltage (during programming)	V _{CCP}	-0.5 to +7.5	٧
Input Voltage	V _{IN}	-1.5 to 5.5	٧
Input Voltage(during programming)	V _{IPRG}	22.5	V
Output Voltage(during programming)	VOPRG	-0.5 to +22.5	V
Input Current	I IN	-20	mA
input Current (during programming)	I _{IPRG}	+270	mA
Output Current	I _{OUT}	+100	mA
Output Current (during programming)	I OPRG	+150	mA
Storage Temperature	T stg	-65 to +150	°c
Output Voltage	V _{out}	-0.5 to 5.5	V

IOTE: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. November 1988 Edition 4.0

CERAMIC PACKAGE DIP-24C-C-03

CERAMIC PACKAGE FPT-24C-A01

CERAMIC PACKAGE LCC-28C-A01

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

MB7142 MODE SELECTION

MODE	CE1	CE2	Output O 1 ~ O 8
READ	VıL	V _{IH}	Dout
CHIP-DISABLE	V _{IH}	*	
	*	VIL	HZ
WRITE	PV _{CE}	*	HZ

* : any TTL level
HZ : high-impedance
Dout : memory answer

PV_{CE}: 20V (see programming information)

CAPACITANCE (f = 1MHz, $V_{CC} = +5V$, $V_{IN} = +2V$, $T_A = 25$ °C)

Parameter	0				
raiameter	Symbol	Min	Тур	Max	Unit
Input Capacitance	C _t			10	pF
Output Capacitance	Со			15	pF

GUARANTEED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	v _{cc}	4.75	5.0	5.25	V
Input Low Voltage	V _{IL}	0	-	0.8	
Input High Voltage	V _{IH}	2.0	-	5.5	V
Ambient Temperature	TA	0	-	75	°C

DC CHARACTERISTICS

(Full guaranteed operating conditions unless otherwise noted)

Parameter		Symbol	Min	Тур	Max	Unit
Input Leakage Current (V _{IH} = 5.5V)	I _R			40	μА
Input Load Current (VIL	= 0.45V)	l _F	_		-250	μА
Output Low Voltage	I _{OL} = 10mA				0.45	٧
	1 _{OL} = 16mA	V _{OL}			0.50	٧
Output Leakage Current	(V _O = 2.4V, chip disabled)	l _{OiH}			40	μА
Output Leakage Current	(V _O = 0.45V, chip disabled)	l OIL			-40	μА
Input Clamp Voltage (I _{th}	_√ = -18mA)	V _{IC}			~1.2	V
Power Supply Current (V	IN = OPEN or GND)	I cc		140**	185	mA
Output High Voltage (Io	= -2.4mA)	V _{он} *	2.4			
Output Short Circuit Cur	rent (V _O = GND)	los*	-15		-60	mA

Note: * Denotes guaranteed characteristics of the output high-level (ON) state when the chip is enabled ($V_{\overline{C}}=0.4V$, Voc = 2.4V) and the programmed bit is addressed. These characteristics cannot be

tested prior to programming, but are guaranteed by

factor testing.

** This value denotes conditions at TA=25°C and V_{CC} = +5.0V

AC CHARACTERISTICS

(Full guaranteed operating conditions unless otherwise noted)

Parameter	Symbol	E		ŀ	Unit	
		Тур	Max	Тур	Max]
Access Time (via address input)	t	45	65	45	55	ns
Output Disable Time	t DIS	15	40	15	40	ns
Output Enable Time	t _{EN}	20	40	20	40	ns

Note: Output disable time is the time taken for the output to reach a high resistance when some of chip enables is taken disable. Output enable time is the time taken for the output to become active when all of chip enables

are taken enable. The high resistance state is defined as a point on the output waveform equal to a ΔV of 0.5V from the active output level.

INPUT/OUTPUT CIRCUIT INFORMATION

INPUT

In the input circuit, schottky TTL circuit technology is used to achieve high-speed operation. A PNP transistor in the first stage of input circuit remarkably improves input high/low current characteristics. Also, the input circuit includes a protection diode for reliable operation.

THREE-STATE OUTPUT

A "three-state" output is a logic element which has three distinct output states of ZERO, ONE and OFF (wherein OFF represents a high impedance condition which can neither sink nor source current at a definable logic level). Effectively, then, the device has all the desirable features of a totem-pole TTL output (e.g., greater noise immunity, good rise time, line driving capacity), plus the ability to connect to bus-organized systems.

In the case where two devices are on at the same time, the possibility exists that they may be in opposite low impedance states simultaneously; thus, the short circuit current from one enabled device may flow through the other enabled device. While physical damage under these conditions is unlikely, system noise problems could result. Therefore, the system designer should consider these factors to ensure that this condition does not exist.

Also in the output circuit, Schottky TTL circuit technology is used to achieve high-speed operation. Also, a PNP transistor provided in the output circuit is effective to decrease a load for the Chip Enable circuit.

Fig.6-I OLOUTPUT LOW CURRENT VS. VOLOUTPUT LOW VOLTAGE 1_{OL}, OUTPUT LOW CURRENT (mA) 70 TA= 25 °C V_{CC}= 5.0V 60 50 40 30 20 10 200 400 600 0 VOL, OUTPUT LOW VOLTAGE (mV)

PROGRAMMING INFORMATION

FUJITSU PROM TECHNOLOGY

The Fujitsu MB7100 series is the junction-shorting schottky PROM. A memory cell consists of a programmable element of a PN diode and a vertically connected PNP transistor. The current blocking state of the reverse diode is changed to the current conducting state of the shorted-junction diode by programming. The programming element of the PN diode uses the N+ and Pt diffusion layer, the PNP transistor uses a P+ diffusion layer, an Nt epitaxial layer, and a P- substrate (Fig. 12).

Each word line island is divided by passive Isolations named IOP (Isolation by Oxide and Poly-silicon), and each memory ceil in the same Island is divided by the pasive Isolation named SVG (Shallow V-Groove).

The vertical structure of the junctionshorting memory cell makes a high packing density possible.

In programming, reverse current pulses are applied to the cathode of the PN diode. This increases the temperature at the junction. When the temperature reaches the point where the silicon and aluminum form a eutectic diffuses from the surface of the metal-silicon contact region to the anode of the PN diode, and results in junction shorting. This program technique was therefore named "Diffused Eutectic Aluminum Process" (DEAP).

Once the junction is shorted, the power dissipation at the junction decreases to less than one fifth, and the temperature decreases. This drop in temperature stops further diffusion of the eutectic, and protects the PNP transistor from destruction.

1

PROGRAMMING INFORMATION (continued)

SPECIAL FACTORY TESTING

Extra rows and extra columns of test cells, plus additional circuitry built into the PROM chip, allow improved factory testing of DC, AC and programming characteristics. These test cells and test circuitry provide enhanced correlation between programmed and unprogrammed circuits in order to guarantee high programmability and reliability.

PROGRAMMING (in electrical view)

The device is manufactured with outputs low (positive logic "zero") in all storage cells. An output at the selected cell is changed to high (logic "one") by programming.

As shown in Fig. 13, transistors, Q1 and Q2, are turned on to select the desired bit for programming by using twelve address inputs. By applying the PV $_{\text{CE}}$ pulse voltage, the chip is disabled and

transistor Q3 is held off. Then, a train of programming pulses applied to the desired output flows through transistor Q2 and memory cell into transistor Q1. This programming current changes the programmable element to the conducting state.

The pulse train is stopped and two additional programming pulses are then applied to assure that the element is programmed properly, as soon as the output voltage indicates that the selected cell is in the logic "one" state. One output must be programmed at a time since the internal decoding circuit is capable of sinking only one unit of programming current at a time.

VERIFICATION

After the device has been programmed, the correct program pattern can be verified when all of chip enables are taken enable. To guarantee full supply voltage and full temperature range operation, a programmed device should sougge 2.4mA at V_{CC}= 2.4V and V = 7.0V at 25°C ambient temperature.

LIABILITY

Fujitsu utilizes an extensive testing procedure to ensure device performance prior to shipment. However, 100% programmability is not guaranteed, and it is imperative that this specification be rigorously adhered to in order to achieve a satisfactory programming yield. Fujitsu will not accept responsibility for any device found defective if it was not programmed according to this specification. Devices returned to Fujitsu as defective must be accompanied by a complete truth table with clearly indicated locations of supposedly defective memory cells.

DC SPECIFICATIONS (TA = 25°C)

Parameter	Symbo	Symbol		Тур	Max	Unit
Input Low Voltage	V _{IL}	V _{IL}			0.8	V
Input High Voltage	V _{IH}		2.0		5.25	V
Power Supply Voltage	PV	P:	6.7	7.0	7.3	V
	PV _{CC}	R:	4.75	5.0	5.25	V
Programming Pulse Current	PRG		120		130	mA
PV _{CE} Pulse Voltage	PV _{CE}		20	20	22	V
Programming Pulse Clamp Voltage	V _{PRG}		20	20	22	
PV _{CE} Pulse Clamp Current	PI _{CE}		230		260	mA
Reference Voltage for a Prog. "1"	V _{REF}		1.0	1.5	2.4	

PROGRAMMING INFORMATION (continued)

AC SPECIFICATIONS (TA = 25°C)

Parameter	Symbol	Min	Тур	Max	Unit
Programming Pulse Cycle Time	t _{cyc}	40	50	60	μs
Programming Pulse Width	t _{PW} (1)	10	11	12	μs
Programming Pulse Rise Time	t _r (2)	-	-	2	µs
PV _{CE} Pulse Rise Time	t _r ⁽³⁾	-	-	2	μs
PV _{CC} Pulse Rise Time	t _r ⁽⁴⁾	~	-	2	μs
Programming Pulse Fall Time	t _f ⁽⁵⁾	-	_	2	μs
PV _{CE} Pulse Fall Time	t _f (6)	-	-	2	μs
PV _{CC} Pulse Fall Time	t _f (7)	-	_	2	μs
Address Input Set-up Time	^t sa	2	-	-	μs
Chip Enable Input Set-up Time	t _{sc}	2		-	μs
PV _{CE} Set-up Time	t _{SP} (8)	4		-	μs
Address Input Hold Time	t _{HA}	2	+	-	μs
Chip Enable Input Hold Time	t _{HC}	2	-	-	μs
PV _{CE} Hold Time	t _{HP} (9)	2	-	-	μs
PV _{CE} Pulse Trailing Edge to Read Strobe Time	t _{PR} ⁽¹⁰⁾	10	_	-	μs
Programming Pulse Number	-	-	-	100	Times
Programming Time/Bit		120	150	6120	μs/bit
Additional Programming Pulse Number		2	2	2	Times

Note: (1) Stipulated 200 Ω load and 15V.

⁽¹⁾ conclude 20032 load and 13V. (2) From 1V to 19V $(200\Omega | \text{load})$. (3) From 1V to 19V. (4) From 5.2V to 6.8V. (5) From 19V to 1V $(200\Omega | \text{load})$.

⁽⁶⁾ From 19V to 1V.

⁽a) From 197 to 17.
(7) From 6.8V to 5.2V.
(8) From PV_{CE} pulse 19V to programming pulse 1V.
(9) From programming pulse 1V to PV_{CE} pulse 19V.
(10) From PV_{CE} pulse 1V to read strobe.

PROGRAMMING INFORMATION (continued)

PROGRAMMING INFORMATION (continued)

PROGRAMMING PROCEDURE

- 1. Apply power; V_{CC} = PV_{CC}, GND =
- 2. Select the desired bit.
- 3. Read the output to confirm the voltage $V_O = low$. (In the case of $V_O = high$, select the next desired bit.)
- 4. Apply a 20V pulse voltage to the
- PV_{CE} input.

 5. Apply a programming pulse with amplitude of 125mA and duration of t_{PW}(11µS) after a delay of t_{SP}(4µS).

 6. Read the output V_O after a delay
- - of t_{PR} (10μS).
 a) In the case of V_O = low, repeat steps "4", "5" and "6" with cycle time of toyo (50µS)
 - b) In the case of V_O = high, apply 2 additional programming pulses to provide a highly reliable memory cell.
- 7. Select the next desired bit after a delay of $t_{HA}(2\mu S)$.

Note

- Programming must be done bit by bit.
- 2) Ambient temperature during programming must be room temperature. (25°C ± 2°C)

PACKAGE DIMENSIONS

Standard 24-pin Ceramic Flat Package (Suffix: -CF)

PACKAGE DIMENSIONS

1