Cálculo III

Lista 8 - Integrais de linha

Calcule a integral de linha sobre a curva ${\cal C}$ dada.

1.
$$\int_C y \, ds$$
, $C: x = t^2$, $y = 2t$, $0 \le t \le 3$ Resposta: $\frac{40\sqrt{10}-4}{3}$

2.
$$\int_C \left(\frac{x}{y}\right) ds$$
, $C: x = t^3$, $y = t^4$, $1 \le t \le 2$ Resposta: $\frac{73\sqrt{73} - 125}{48}$

3.
$$\int_C xy^4 ds$$
, C é a metade direita do círculo $x^2 + y^2 = 16$ Resposta: $\frac{8192}{5}$

4.
$$\int_C xe^y ds$$
, C é o segmento de reta de $(2,0)$ a $(5,4)$ Resposta: $\frac{5(17e^4-5)}{16}$

5.
$$\int_C (x^2y + \sin x) dy$$
, C é o arco da parábola $y = x^2$ de $(0,0)$ a (π,π^2) Resposta: $\frac{\pi^2 + 6\pi}{3}$

6.
$$\int_C e^x dx$$
, C é o arco da curva $x = y^3$ de $(-1, -1)$ a $(1, 1)$

7.
$$\int_C (x+2y) dx + x^2 dy$$
, C consiste nos segmentos de reta de $(0,0)$ a $(2,1)$ e de $(2,1)$ a $(3,0)$ Resposta: $\frac{5}{2}$

8.
$$\int_C xe^y dx$$
, C é o arco da curva $x = e^y$ de $(1,0)$ a $(e,1)$ Resposta: **FAZER**

9.
$$\int_C x^2 y \, ds$$
, $C: x = \cos t$, $y = \sin t$, $z = t$, $0 \le t \le \frac{\pi}{2}$ Resposta: $\frac{\sqrt{2}}{3}$

10.
$$\int_C y^2 z \, ds$$
, C é o segmento de reta de $(3,1,2)$ a $(1,2,5)$ Resposta: $\frac{107\sqrt{14}}{12}$

11.
$$\int_C xe^{yz} ds$$
, C é o segmento de reta de $(0,0,0)$ a $(1,2,3)$ Resposta: $\frac{(e^6-1)\sqrt{14}}{12}$

12.
$$\int_C xyz^2 ds$$
, C é o segmento de reta de $(-1,5,0)$ a $(1,6,4)$ Resposta: **FAZER**

13.
$$\int_C xye^{yz} dy$$
, $C: x = t$, $y = t^2$, $z = t^3$, $0 \le t \le 1$ Resposta: $\frac{2(e-1)}{5}$

14.
$$\int_C z \, dx + x \, dy + y \, dz$$
, $C: x = t^2$, $y = t^3$, $z = t^2$, $0 \le t \le 1$ Resposta: **FAZER**

15.
$$\int_C z^2 dx + x^2 dy + y^2 dz$$
, C consiste no segmento de reta de $(1,0,0)$ a $(4,1,2)$ Resposta: $\frac{35}{3}$

16.
$$\int_C (y+z) dx + (x+z) dy + (x+y) dz$$
, C consiste nos segmentos de reta de $(0,0,0)$ a $(1,0,1)$ e de $(1,0,1)$ a $(0,1,2)$

Calcule a integral de linha $\int_C \mathbf{F} \cdot d\mathbf{r}$, em que C é dada pela função vetorial $\mathbf{r}(t)$.

17.
$$\mathbf{F}(x,y) = xy^2\mathbf{i} - x^2\mathbf{j},$$

 $\mathbf{r}(t) = t^3\mathbf{i} + t^2\mathbf{j}, \ 0 \le t \le 1$

Resposta: $\frac{1}{20}$

18.
$$\mathbf{F}(x, y, z) = (x + y^2)\mathbf{i} + xz\mathbf{j} + (y + z)\mathbf{k},$$

 $\mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j} - 2t\mathbf{k}, \quad 0 \le t \le 2$

Resposta: 8

19.
$$\mathbf{F}(x, y, z) = \sin x \mathbf{i} + \cos y \mathbf{j} + xz \mathbf{k},$$
$$\mathbf{r}(t) = t^3 \mathbf{i} - t^2 \mathbf{j} + t \mathbf{k}, \quad 0 \le t \le 1$$

Resposta:
$$\frac{6-5[\sin(1)+\cos(1)]}{5}$$

20.
$$\mathbf{F}(x, y, z) = (x + y)\mathbf{i} + (y - z)\mathbf{j} + z^2\mathbf{k},$$

 $\mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j} + t^2\mathbf{k}, \quad 0 \le t \le 1$

Resposta: FAZER

Referência

STEWART, James. Cálculo: volume 2. 8ª ed. São Paulo, SP: Cengage Learning, 2016. ISBN 9788522125845.