Command line usage and plotting with Madagascar

Ben Witten

Outline

- RSF data format
- Command line usage
- Plotting

RSF data format

RSF := regularly sampled format

Data exists on a N-dimensional grid

RSF data format

RSF := regularly sampled format

- Data exists on a N-dimensional grid
 - Storing large-scale datasets in a text format may not be economical. RSF chooses the next best thing: it allows data values to be stored in a binary format but puts all data attributes in text files that can be read by humans and processed with universal text-processing utilities.

RSF data format

*.rsf	*.rsf@
Header file	Binary file in column major order
Information about the origin, sampling, data type, data format, labels, where the binary lives, size of binary	The actual data
Human readable, contains history of what has been done	Not human readable

Madagascar programs

Most programs begin with the prefix "sf"

Can "pipe" from one program to another to

avoid intermediate files

 Examples: sftransp, sffft, sfbandpass, sfsegyread

Program documentation

- Each program has self-documentation
- Type the program name without parameters to bring it up

```
Last login: Tue Jun 16 16:24:45 on ttys003
[wituwa:~] bwitten% sfbandpass
        sfbandpass
DESCRIPTION
        Bandpass filtering.
SYNOPSIS
        sfbandpass < in.rsf > out.rsf flo= fhi= phase=n verb=n nplo=6 nphi=6
COMMENTS
        November 2012 program of the month:
       http://ahay.org/rsflog/index.php?/archives/313-Program-of-the-month-sfbandbass.html
PARAMETERS
        float fhi= High frequency in band, default is Nyquist
                     Low frequency in band, default is 0
               nphi=6 number of poles for high cutoff
               nplo=6 number of poles for low cutoff
               phase=n [y/n] y: minimum phase, n: zero phase
               verb=n [v/n]
                               verbosity flaa
```

Program documentation

sfbrowser

```
0 0
                                                X Browse Madagascar programs
Search by functionality
                                                                                                              Find program
                                                                                     sfwindow
[NAME]:
        sfwindow - Window a portion of a dataset.
                                                                                    Isfwexwfl
                                                                                    Isfwexzoima
[SYNOPSIS1:
                                                                                    Isfwexzomva
        sfwindow < in.rsf > out.rsf verb=n squeeze=v j#=(1,...) d#=(d1,d2,...) f
                                                                                    sfwiab
#=(0,...) min#=(o1,o2,,...) n#=(0,...) max#=(o1+(n1-1)*d1,o2+(n1-1)*d2,,...)
                                                                                    sfwiggle
                                                                                    sfwigner
[COMMENTS]:
                                                                                    sfwiki2static
                                                                                    sfwile
Other parameters from the command line are passed to the output (similar to sfpu
                                                                                    sfwilson
t).
                                                                                    sfwindow
                                                                                    sfwkbjTl
                                                                                    sfwlslfdc1
[PARAMETERS ]:
                                                                                    sfwlslfdc1tw2
        (string) custom= - additional parameters specified by the user without
                                                                                    sfwlslfdc1ww
kev=val formatting
                                                                                    Isfwmf
        (float) d#==(d1,d2,...) - sampling in #-th dimension
                                                                                    sfwuab
        (largeint) f#==(0,...) - window start in #-th dimension
                                                                                    sfx11pen
        (string) input= - input rsf file names
                                                                                    sfxcor2d
        (int) i\#==(1,...) - jump in #-th dimension
                                                                                    sfxcorr
        (float) max#==(o1+(n1-1)*d1,o2+(n1-1)*d2,,...) - maximum in #-th dimen
                                                                                    sfximage
sion
```

< input.rsf sfprogram par1= par2= > output.rsf

"<" = input sign: next string is taken as input

">" = output sign : next string is taken as output

Note: does not have to be written in this order

< input.rsf sfprogram par1= par2= > output.rsf

< input.rsf sfprogram par1= par2= > output.rsf

sfprogram < input.rsf par1= par2= > output.rsf

< input.rsf sfprogram par1= par2= > output.rsf

sfprogram < input.rsf par1= par2= > output.rsf

sfprogram par1= par2= < input.rsf > output.rsf

< input.rsf sfprogram par1= par2= > output.rsf

sfprogram < input.rsf par1= par2= > output.rsf

sfprogram par1= par2= < input.rsf > output.rsf

> output.rsf sfprogram par1= par2= < input.rsf

sfspike n1=100 k1=20 > file.rsf

```
sfspike n1=100 k1=20 > file.rsf

sfin < file.rsf (or sfin file.rsf)

sfin is probably the most commonly

used program. It shows information about
the file
```

```
sfspike n1=100 k1=20 > file.rsf
sfin < file.rsf (or sfin file.rsf)
```

sfin is probably the most commonly used program. It shows information about the file

```
sfspike n1=100 k1=20 > file.rsf

sfin < file.rsf (or sfin file.rsf)

sfin is probably the most commonly

used program shows information about
the file
```

```
sfspike n1=100 k1=20 > file.rsf

sfin < file.rsf (or sfin file.rsf)

sfin is probably the most commonly

used program shows information about
the file
```

```
sfspike n1=100 k1=20 > file.rsf

sfin < file.rsf (or sfin file.rsf)

sfin is probably the most commonly

used program shows information about
the file
```

```
sfspike n1=100 k1=20 > file.rsf

sfin < file.rsf (or sfin file.rsf)

sfin is probably the most commonly

used program shows information about
the file
```

```
sfspike n1=100 k1=20 > file.rsf

sfin < file.rsf (or sfin file.rsf)

sfin is probably the most commonly

used program shows information about
the file
```

```
sfspike n1=100 k1=20 > file.rsf

sfin < file.rsf (or sfin file.rsf)

sfin is probably the most commonly

used program shows information about
the file
```

```
sfspike n1=100 k1=20 > file.rsf

sfin < file.rsf (or sfin file.rsf)

sfin is probably the most commonly

used program shows information about
the file
```

```
sfspike n1=100 k1=20 > file.rsf

sfin < file.rsf (or sfin file.rsf)

sfin is probably the most commonly

used program shows information about
the file
```

sfin on higher dimensionality data

```
[bwitten@geocomp202 PEIC-inv-gau]$ sfin junk.rsf
junk.rsf:
   in="/geofs/SCRATCH/bwitten/junk.rsf@"
   esize=8 type=complex form=native
   n1=200
               d1=0.2 o1=0.2
                                        label1="Frequency" unit1="Hz"
                                        label2="Distance" unit2="km"
   n2=608 d2=0.01 o2=0
   n3=302 d3=0.01 o3=0
                                        label3="Time" unit3="s"
   n4=1 d4=0.0005 o4=0
                                        label4="Time" unit4="s"
   n5=1 d5=? o5=?
      36723200 elements 293785600 bytes
[bwitten@geocomp202 PEIC-inv-gau]$
```

sfspike n1=100 k1=20 > file.rsf

```
sfin < file.rsf (or sfin file.rsf )

sfattr < file.rsf

sfattr may be the 2<sup>nd</sup> most common program
```

sfattr provides statistics about the data set

Why is sfin important?

- Quickly provide information about your data
 - Size
 - Dimensionality
 - Sampling
 - If its all there

Why is sfin important?

- Quickly provide information about your data
 - Size
 - Dimensionality
 - Sampling
 - If its all there --- Come back to this

Piping programs

Method 1:

```
sfspike n1=100 k1=20 > file.rsf
sfbandpass < file.rsf flo=1 fhi=40 > file2.rsf
```

Piping programs

Method 1:

```
sfspike n1=100 k1=20 > file.rsf
sfbandpass < file.rsf flo=1 fhi=40 > file2.rsf
```

Let's say we don't care about file.rsf, just file2.rsf

No need to create file.rsf

Piping programs

Method 2:

sfspike n1=100 k1=20 |sfbandpass flo=1 fhi=40 > file3.rsf

No intermediate files now.

Header file

 Earlier I mentioned that the *.rsf stores the history of what has been done to the data

 Use your favorite text editor to open file2.rsf or file3.rsf

Header/History file

• File2.rsf:

```
[wituwa:~] bwitten% cat file2.rsf
       sfspike Users/bwitten: bwitten@wituwa.local Thu Jun 18 14:21:13 2015
1.6
       01=0
       label1="Time"
       data_format="native_float"
       esize=4
       in="/var/tmp/file.rsf@"
       unit1="s"
       d1=0.004
       n1=100
                       Users/bwitten: bwitten@wituwa.local Thu Jun 18 14:27:27 2015
1.6
       sfbandpass
       data_format="native_float"
       esize=4
       in="/var/tmp/file2.rsf@"
```

Back to sfin

- What sfin actually does is read the *.rsf file from bottom to top looking for n[1,2,3...], d[1,2,3...], o[1,2,3...], esize, etc
- Calculate size and print to screen
- Great feature is that it can tell you if you don't have the "correct" data size

Back to sfin

- What sfin actually does is read the *.rsf file from bottom to top looking for n[1,2,3...], d[1,2,3...], o[1,2,3...], esize, etc
- Calculate size and print to screen
- Great feature is that it can tell you if you don't have the "correct" data size
- TEST: change n1=100 to n1=90 in file2.rsf
- Run sfin file2.rsf
- Go change it back

Plotting

Line

Line, x²

With symbol=

Plot(...,'sfgrey color=i ...'); Result(...,'SideBySideIso')

Lateral (km) 0.2 0.40.6 8.0 (km) 0,4 Depth 0,6 Component-z

Slices, flat

Plotting

Numerous ways to make plots in Madagascar:

List of available plotting programs in Madagascar.			
sfbox	make box-line plots		
sfcontour	make contour plots		
sfcontour3	make contour plots of 3D surfaces		
sfdots	plot signal with lollipops		
sfgraph	create line plots, or scatter plots		
sfgraph3	generate 3-D cube plots for surfaces.		
sfgrey	create raster plots or 2D image plots		
sfgrey3	create 3D image plots of panels (or slices) of a 3D cube		
sfgrey4	generate movies of 3-D cube plots		
sfplotrays	make plots of rays		
sfthplot	make hidden-line surface plots		
sfwiggle	plot data with wiggly traces		

Plotting

Numerous ways to make plots in Madagascar:

List	of available plotting programs in Madagascar.		
sfbox	make box-line plots		
sfcontour	make contour plots		
sfcontour3	make contour plots of 3D surfaces		
sfdots	plot signal with lollipops		
sfgraph	create line plots, or scatter plots	k .	
sfgraph3	generate 3-D cube plots for surfaces.		My most
sfgrey	create raster plots or 2D image plots	\longmapsto	commonly used
sfgrey3	create 3D image plots of panels (or slices) of a 3D cube		plotting functions
sfgrey4	generate movies of 3-D cube plots		
sfplotrays	make plots of rays		
sfthplot	make hidden-line surface plots		
sfwiggle	plot data with wiggly traces	Y	

Let's generate a plot of our file

sfgraph

Let's generate a plot of our file

- sfgraph
- sfgraph < file3.rsf > file3.vpl

Vplot

- VPLOT provides a method for making plots that are small in size, aesthetically pleasing, and easily compatible with Latex for rapid creation of production-quality images in Madagascar.
- The VPLOT file format (.vpl suffix) is a self-contained binary data format that describes in vector format how to draw a plot on the screen or a page using an interpreter. Since VPLOT is not a standard imaging format, VPLOT files must be viewed with interpreter programs which, for historical reasons, are called pens. Each pen interfaces VPLOT with a third-party graphing library such as X11, plplot, opengl, and others.
- This flexibility makes VPLOT files almost as portable as standard image formats such as: EPS, GIF, JPEG, PDF, PNG, SVG, and TIFF. Unlike rasterized formats, VPLOT files can be scaled to any size without losing image quality.

How to view vpl files?

- Method 1:
 - Use vpconvert to convert from vplot to standard format (e.g. avi, gif, jpg, pdf, etc)

- Method 2:
 - Use sfpen to plot to screen

Sfpen

sfpen renders your plot to the screen

• < file3.vpl sfpen

Everything that we did could be done in 1 line

 sfspike n1=100 k1=20 |sfbandpass flo=1 fhi=20 |sfgraph |sfpen

Pop Quiz

- Use:
 - sfspike, sfpen, sfspray, sfbandpass, sfgrey
 - To make something like this:

– Bonus: can you use sfwindow to extract and plot a single trace?

Solution:

sfspike nsp=3 n1=1000 k1=200,600,800 mag=1,-0.5,.5 |
sfbandpass fhi=5 | sfspray axis=2 n=100 | sfgrey color=e
title="Can you do this?" | sfpen &