

## Focus for this lecture

• Introduction to

PCA AlgorithmApplications of

PCA

**PCA** 





• Dimensionality Reduction

# **Dimensionality Reduction**



## **Reducing Dimensions**

#### Feature Selection:

 Choose the "best" features from your data

#### Feature Extraction:

 Initial set of measured data and builds derived features intended to be informative and non-redundant

#### • Feature Visualization:

– How are the 'best' features distributed in 1D/2D/3D ?







## **Selecting and Extracting Features**

$$\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Selecting first and third feature

$$\begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Selecting first and fourth feature



NOTE: Data samples are color-coded by their class label. But label info is <u>not used</u> for feature selection.







## **Selecting and Extracting Features**

$$\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Selecting first and third feature





$$\begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Selecting first and fourth feature

NOTE: Data samples are color-coded by their class label. But label info is <u>not used</u> for feature selection.

## **Selecting and Extracting Features**



$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 0.1 & 0.2 & 0.3 \\ 0.0 & 0.4 & 0.2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

New Features as linear combination of old Features

$$X' = AX$$





## Journey so far...





- Introduction to PCA
- PCA Algorithm

#### **Feature Extraction**

Introduction to
Principal Component Analysis (PCA)



Consider the following dataset:

   5 2 10 4 15 6



• All these points fall on a line: a 1-dimensional subspace of the original 3D space:





- Consider a new co-ordinate system with one axis along the line
- All co-ordinates except the first one are zeros now.

| 3.7 | 7.5 | 11.2 | 15 | 18.7 | 22.4 |  |
|-----|-----|------|----|------|------|--|
| 0   | 0   | 0    | 0  | 0    | 0    |  |
| 0   | 0   | 0    | 0  | 0    | 0    |  |





Consider the following dataset:

| 1   |
|-----|
| 2   |
| 3.1 |

| 4   |
|-----|
| 7.9 |
| 12  |

| 3   |
|-----|
| 5.8 |
| 9   |



| 1 |
|---|
| 2 |

7.9 3.1

4

12

3

5.8

9

5.7

12

18

5.1

9.9

15

2.2

4.1

6.3







1

2

3.1

4

7.9

12

3

5.8

9

5.7

12

18

5.1 | 2

9.9

15

2.2

4.1

6.3



| 3.61 | 7.4 | 11.1 | 15.0 | 18.4 | 22.4 |
|------|-----|------|------|------|------|
| 0.2  | 0.4 | 0.9  | 0.7  | 0.8  | 0.3  |
| 0.1  | 0.1 | 0.1  | 0.1  | 0.1  | 0.1  |

NOTE: These values are made up. Not exact.



### **Variance**



| Data values | Mean |                              | 2                  |
|-------------|------|------------------------------|--------------------|
| ×           | ₹    | $\times - \overline{\times}$ | $(x-\overline{x})$ |
| 7           | 16   | -9                           | 81                 |
| 11          | 16   | -5                           | 25                 |
| 11          | 16   | -5                           | 25                 |
| 15          | 16   | - (                          | 1                  |
| 20          | 16   | 4                            | 16                 |
| 20          | 16   | 4                            | 16                 |
| 28          | 16   | 12                           | 144                |

Variance: 
$$\frac{1}{5}$$
  $\sum (x-\bar{x})^2 = \frac{308}{7-1} = \frac{308}{6} = \frac{3$ 

#### Sample Variance:

$$S^2 = \sum_{N=1}^{\infty} (x - \overline{x})^2$$

#### **Standard Deviation:**

$$S = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

$$N = Sample size$$

$$N = 7$$

$$Mean = \sum X$$

$$X = 16$$

Mean = 'Average' value

S.D = Average deviation of samples from mean

#### **Histograms for IQ Test Components**





## **Covariance : m samples, n features**

Matrix



 [0.39701
 0.51117]

 0.55582
 0.93003

 0.59403
 0.96645

 0.51544
 0.29759

 0.85313
 0.18118

 0.88564
 0.69114

$$\begin{pmatrix} M1 & M2 & M3 & \dots & Mn \\ S1 & q_{1,1} & q_{1,2} & q_{1,3} & \dots & q_{1,n} \\ S2 & q_{2,1} & q_{2,2} & q_{2,3} & \dots & q_{2,n} \\ S3 & q_{3,1} & q_{3,2} & q_{3,3} & \dots & q_{3,n} \\ \dots & \dots & \dots & \dots & \dots \\ Sm & q_{m,1} & q_{m,2} & q_{m,3} & q_{m,n} \end{pmatrix}$$

Variance:

$$s^2 = \frac{\sum \left(\overline{X} - X_i\right)^2}{N}$$

Covariance:

$$cov(\boldsymbol{X}, \boldsymbol{Y}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$Cov(M_a, M_b) = \frac{1}{m} \sum_{i=1}^{m} (q_{i,a} - \overline{q_a})(q_{i,b} - \overline{q_b})$$

$$C = \begin{pmatrix} cov(M_{1}, M_{1}) & cov(M_{1}, M_{2}) & \cdots & cov(M_{1}, M_{n}) \\ cov(M_{2}, M_{1}) & cov(M_{2}, M_{2}) & \cdots & cov(M_{2}, M_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ cov(M_{n}, M_{1}) & cov(M_{n}, M_{2}) & \cdots & cov(M_{n}, M_{n}) \end{pmatrix}_{n \neq n}$$

N-dimensional Covariance Matrix



#### **Covariance Matrix**





$$C = \begin{bmatrix} +0.95 & -0.04 \\ -0.04 & +0.87 \end{bmatrix}$$

$$C = \begin{bmatrix} +0.95 & +0.92 \\ +0.92 & +1.12 \end{bmatrix}$$



#### **Mean Normalization**





$$C = \begin{bmatrix} +0.95 & +0.92 \\ +0.92 & +1.12 \end{bmatrix}$$



 $X' = X - \bar{x}$ 

$$C = \begin{bmatrix} +0.95 & +0.92 \\ +0.92 & +1.12 \end{bmatrix}$$

# Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance Matrix encodes spread and orientation of NSE talent & Land Covariance & Land Covarian



# Covariance Matrix encodes spread and orientation of NSE talent Sprint data



## **Eigen-analysis of Covariance Matrix**



 $v_1$ ,  $v_2$ : Principal Components



$$\Sigma \vec{v} = \lambda \vec{v}$$

Value of  $\lambda$  indicates `variance'(spread) in direction of eigenvector v associated with  $\lambda$ 



- Consider a new co-ordinate system with one axis along the line
- All co-ordinates except the first one are zeros now.

| 3.7 | 7.5 | 11.2 | 15 | 18.7 | 22.4 |  |
|-----|-----|------|----|------|------|--|
| 0   | 0   | 0    | 0  | 0    | 0    |  |
| 0   | 0   | 0    | 0  | 0    | 0    |  |





1

2

3.1

4

7.9

12

3

5.8

9

5.7

12

18

5.1

9.9

15

2.2

4.1

6.3



| 3.61 | 7.4 | 11.1 | 15.0 | 18.4 | 22.4 |
|------|-----|------|------|------|------|
| 0.2  | 0.4 | 0.9  | 0.7  | 0.8  | 0.3  |
| 0.1  | 0.1 | 0.1  | 0.1  | 0.1  | 0.1  |

NOTE: These values are made up. Not exact.







## **Covariance, Eigen Values and Vectors**



Both the Eigen values are equal (Distribution is circular)



One Eigen value is greater than the other (Distribution is elongated in the direction of that Eigen vector)





## Covariance, Eigen Values and Vectors





Only one Eigen value is non-zero, distribution of data will align on that Eigen vector

## The PCA Recipe

#### 1. Center the data





$$oldsymbol{X}' = oldsymbol{X} - ar{x}$$

### 2. Compute the covariance matrix



## The PCA Recipe

3. Compute Eigenvectors and Eigenvalues of Covariance Matrix  $\Sigma$ 

$$\sum \vec{v} = \lambda \vec{v}$$

4. Project data onto eigenvectors to obtain new coordinates







New

coordinates

#### v (eigenvector)

$$\begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} = \begin{bmatrix} \cdot & \cdot & v_1^T & \cdot & \cdot \\ \cdot & \cdot & v_2^T & \cdot & \cdot \\ \cdot & \cdot & v_3^T & \cdot & \cdot \\ \cdot & \cdot & v_4^T & \cdot & \cdot \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Old

coordinates







1

2

3.1

4

7.9

12

3

5.8

9

5.7

12

18

5.1

9.9

15

2.2

4.1

6.3



| 3.61 | 7.4 | 11.1 | 15.0 | 18.4 | 22.4 |
|------|-----|------|------|------|------|
| 0.2  | 0.4 | 0.9  | 0.7  | 0.8  | 0.3  |
| 0.1  | 0.1 | 0.1  | 0.1  | 0.1  | 0.1  |

NOTE: These values are made up. Not exact.





## **3D to 2D**



X1, X2, X3

Z1, Z2



#### **PCA based Feature Extraction**



 $X_1$  $X_2$  $X_3$  $X_d$ 



## **Appreciating PCA: Two Questions**

$$Eg. \frac{\sum_{i=1}^{r} \lambda_i}{\sum_{i=1}^{d} \lambda_i} > 0.90$$

- How many Eigen vectors to select?
  - Ans: Eigen Vectors corresponding to the larger Eigen values
- How much information is lost? Can we recover the old

data/information from the new?

$$\mathbf{x} = z_1 \mathbf{u_1} + z_2 \mathbf{u_2} + z_3 \mathbf{u_3} + z_4 \mathbf{u_4}$$

$$\mathbf{x} = z_1 \mathbf{u_1} + z_2 \mathbf{u_2} + z_3 \mathbf{u_3} + z_4 \mathbf{u_4}$$

$$\mathbf{x}' = z_1 \mathbf{u_1} + z_2 \mathbf{u_2}$$

Loss in Information =  $||\mathbf{x} - \mathbf{x}'||$ 

Note:  $z_3$  and  $z_4$  are small and also  $\lambda_3$  and  $\lambda_4$  are small





1

2

3.1

4

7.9

12

3

5.8

9

5.7

12

18

5.1

9.9

15

2.2

4.1

6.3



| 3.61 | 7.4 | 11.1 | 15.0 | 18.4 | 22.4 |
|------|-----|------|------|------|------|
| 0.2  | 0.4 | 0.9  | 0.7  | 0.8  | 0.3  |
| 0.1  | 0.1 | 0.1  | 0.1  | 0.1  | 0.1  |

NOTE: These values are made up. Not exact.



## PCA in a nutshell

3. compute covariance matrix





h u
h 2.0 0.8 
$$cov(h,u) = \frac{1}{n} \sum_{i=1}^{n} h_i u_i$$



4. eigenvectors + eigenvalues

$$\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{bmatrix} e_h \\ e_u \end{bmatrix} = \lambda_e \begin{bmatrix} e_h \\ e_u \end{bmatrix}$$

$$\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{bmatrix} f_h \\ f_u \end{bmatrix} = \lambda_f \begin{bmatrix} f_h \\ f_u \end{bmatrix}$$

eig(cov(data))



7. uncorrelated low-d data

height [inches]



project data points to those eigenvectors



pick m<d eigenvectors w. highest eigenvalues





# Analysis using 'factor loadings'





# **Linear Discriminant Analysis (LDA)**





#### **Linear Discriminant Analysis (LDA)**



- Maximize distance between classes
- Minimize distance within a class

• Criterion: 
$$J(w) = \frac{w^T S_b w}{w^T S_w w}$$

 $S_b$ = between-class scatter matrix

 $S_w$  = within-class scatter matrix

 Vector w is a solution of generalized Eigen value problem:

$$S_b w = \lambda S_w w$$

Classification function:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 \mathop{\gtrless}_{\text{Class 2}}^{\text{Class 1}} 0$$



### **Linear Discriminant Analysis (LDA)**

Also known as "Fisher Discriminant"

- Does dimensionality Reduction
  - Also use the label "y"
  - Or Supervised Dimensionality Reduction

There are also nonlinear Dimensionality Reduction schemes



#### **Summary**

We often get raw data/logs/measurements

- Two problems:
  - Select good ones out of all
  - Define new ones as linear combination of existing

- Dimensionality reduction for
  - Compression/compaction
  - Classification/Discrimination



#### **Selecting and Extracting Features**

$$\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Selecting first and third feature

$$\begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Selecting first and fourth feature

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 0.1 & 0.2 & 0.3 & 0.4 \\ 0.0 & 0.4 & 0.2 & 1.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

New Features as linear combination of old Features

$$X' = AX$$

For PCA: Rows are Eigen vectors of the covariance matrix.

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} \cdots & u_1^T & \cdots \\ \cdots & u_2^T & \cdots \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$



## Journey so far...

✓ PCA Algorithm





# **Questions?**



# **Dimensionality Reduction**

Applications of PCA



### **Case Study**

Classification after PCA





#### **Case Study: PCA and Classification**

- Text data with 20 classes
- Preprocessing:
  - Find the Histograms for Each Document using Bag of words
  - Apply PCA to reduce the dimensions
- Train the classifier on the reduced data
- Find the Accuracy to Evaluate the model







#### **Effect of PCA on the Accuracy**

- Change r (dimensions in projected space) to 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
- With just 3% (32) of the total dimensions (4096), comparable accuracies are obtained





### **Case Study**

Recognition and data compression with \_\_\_\_\_\_
Eigen faces



#### **Recognize Indian Celebrities**



- Rescale and Find mean of the face
- Find the Eigen Faces
  - All Eigen faces are not equally important
- Find the weights to represent the face in Eigen space
- Reconstruct the image



#### NSE talent Sprint IIIT Hyderabad



#### Classification

Training images: 400

Test images: 200

Accuracy: 96%





## **Three Viewpoints**

Maximal variance on the new features.

Data Compression and Minimal Reconstruction Error.

Orthogonal Line Fitting.





# **Application: Compression**



12 X 12 Patches = 144D (a) 144 (b) 60 (c) 16 (d) 6 (e) 3



# Question/Quiz

- Q1: Dimensionality reduction: 144 to 3
  - What is the compression ratio? Is it really 3/144?
  - Do you think you can get a compression scheme for compressing a 100 X 100 color (or 3\* 10000 Bytes) to 3\*10000 \* 3/144 Bytes?

- Q2: Then why PCA is not replacing JPEG or other similar ones?
  - Why are we stuck with these "old" standards?



#### **Summary: PCA**

- Compute Eigen values and Eigen Vectors of the covariance matrix
- Select the principal components
- Define new features.
- Will classification performance improve? Depends:
  - Do we throw away signal?
  - Do we throw away noise?



## **Summary**

**Applications** 

of PCA





# Thanks!!

**Questions?**