Classical Planning Algorithms

2. Planning Formalisms and Models

Malte Helmert

ICAPS 2018 Summer School

June 21, 2018

Transition Systems

Transition Systems 000000

Transition Systems

Definition (Transition System)

A transition system (or state space) is a 6-tuple

$$\mathcal{T} = \langle S, s_0, S_{\star}, A, cost, T \rangle$$
 with

- S finite set of states
- $s_0 \in S$ initial state
- $S_{\star} \subseteq S$ set of goal states
- A finite set of actions
- $cost: A \to \mathbb{R}_0^+$ action costs
- $T \subseteq S \times A \times S$ transition relation
 - deterministic in $\langle s, a \rangle$: for each $\langle s, a \rangle$ at most one transition $\langle s, a, s' \rangle \in T$

Plans

Definition (Plan)

A plan for a transition system is a sequence of actions occurring as labels on a path from the initial state to a goal state.

The cost of a plan $\langle a_1, \ldots, a_n \rangle$ is $\sum_{i=1}^n cost(a_i)$.

A plan is optimal if it has minimal cost.

Plans

Definition (Plan)

A plan for a transition system is a sequence of actions occurring as labels on a path from the initial state to a goal state.

The cost of a plan $\langle a_1, \ldots, a_n \rangle$ is $\sum_{i=1}^n cost(a_i)$.

A plan is optimal if it has minimal cost.

Classical Planning

Definition (Optimal Classical Planning)

Given an encoding of a transition system, find an optimal plan.

Definition (Satisficing Classical Planning)

Given an encoding of a transition system, find a (not necessarily optimal) plan.

Cheaper plans are better solutions.

Definition (Transition System)

A transition system (or state space) is a 6-tuple $\mathcal{T} = \langle S, s_0, S_{\star}, A, cost, T \rangle$ with . . .

Definition (Transition System)

A transition system (or state space) is a 6-tuple $\mathcal{T} = \langle S, s_0, S_{\star}, A, cost, T \rangle$ with . . .

n blocks: more than *n*! states

Definition (Transition System)

A transition system (or state space) is a 6-tuple $\mathcal{T} = \langle S, s_0, S_{\star}, A, cost, T \rangle$ with . . .

n blocks: more than n! states

heuristics require structure

Definition (Transition System)

A transition system (or state space) is a 6-tuple $\mathcal{T} = \langle S, s_0, S_{\star}, A, cost, T \rangle$ with . . .

n blocks: more than *n*! states

heuristics require structure

not suitable as input formalism for planning systems

Planning Formalisms in Theory

Propositional STRIPS

- most basic common planning formalism
- states and actions specified in terms of propositional state variables

Propositional STRIPS

- most basic common planning formalism
- states and actions specified in terms of propositional state variables
- state: set of state variables
 - $v \in s$: variable v is true in state s
 - $v \notin s$: variable v is false in state s

Propositional STRIPS

- most basic common planning formalism
- states and actions specified in terms of propositional state variables
- state: set of state variables
 - $v \in s$: variable v is true in state s
 - $v \notin s$: variable v is false in state s
- actions have preconditions, add effects and delete effects
 - action is applicable in state s if all preconditions are true in s
 - add effects become true in successor state
 - delete effects become false in successor state (unless also included in add effects)

Propositional STRIPS: Planning Tasks

Definition (Propositional STRIPS Planning Task)

A propositional STRIPS planning task is a 4-tuple

 $\Pi = \langle V, I, G, A \rangle$ with the following components:

- V: finite set of state variables
- \blacksquare $I \subseteq V$: initial state
- $G \subseteq V$: set of goal variables
- A: finite set of actions (or operators), where each action $a \in A$ has the following components:
 - $pre(a) \subseteq V$: preconditions
 - $add(a) \subseteq V$: add effects
 - \blacksquare *del*(*a*) \subseteq *V*: delete effects
 - \blacksquare $cost(a) \in \mathbb{R}_0^+$: action cost

Remark: action costs are an extension of traditional STRIPS

Propositional STRIPS: Semantics

Definition (Transition System Induced by a STRIPS Planning Task)

Let $\Pi = \langle V, I, G, A \rangle$ be a (propositional) STRIPS planning task.

Task Π induces the transition system $\langle S, s_0, S_{\star}, A, cost, T \rangle$:

- states: $S = 2^V$ (= power set of V)
- initial state: $s_0 = I$
- goal states: $s \in S_{\star}$ iff $G \subseteq s$
- actions: actions A of Π
- action costs: cost defined as in Π
- transitions: $\langle s, a, s' \rangle \in T$ iff
 - $pre(a) \subseteq s$, and
 - $s' = (s \setminus del(a)) \cup add(a)$

Example: Blocks World in Propositional STRIPS

Example

```
\Pi = \langle V, I, G, A \rangle with:
```

- $V = \{on_{R,G}, on_{R,B}, on_{G,R}, on_{G,B}, on_{B,R}, on_{B,G}, on-table_R, on-table_G, on-table_B, clear_R, clear_G, clear_B\}$
- $I = \{on_{R,B}, on_{B,G}, on\text{-table}_G, clear_R\}$
- $G = \{on_{G,R}\}$
- $A = \{move_{R,B,G}, move_{R,G,B}, move_{B,R,G}, move_{B,G,R}, move_{B,G,R}, move_{G,B,R}, to-table_{R,B}, to-table_{R,G}, to-table_{B,R}, to-table_{B,G}, to-table_{G,R}, from-table_{B,G}, from-table_{B,G}, from-table_{B,R}, from-table_{B,G}, from-table_{G,B}\}$

Example: Blocks World in Propositional STRIPS

Example

move actions encode movements of a block from one block onto another

Example:

- $pre(move_{R,B,G}) = \{on_{R,B}, clear_{R}, clear_{G}\}$
- $add(move_{R,B,G}) = \{on_{R,G}, clear_B\}$
- \bullet $del(move_{R,B,G}) = \{on_{R,B}, clear_G\}$
- \bullet $cost(move_{R,B,G}) = 1$

skip: to-table and from-table actions

SAS⁺ Formalism

- similar to propositional STRIPS but state variables may have an arbitrary (possibly non-binary) finite domain
- often more natural formulation than with STRIPS

- similar to propositional STRIPS but state variables may have an arbitrary (possibly non-binary) finite domain
- often more natural formulation than with STRIPS
- state: variable assignment
- preconditions and goal: partial variable assignments Example: $\{v_1 \mapsto a, v_3 \mapsto b\}$ as precondition (or goal)
 - If state s satisfies $s(v_1) = a$ and $s(v_3) = b$, then the action is applicable (or s is a goal state).
 - Values of other variables are irrelevant.
- effects: partial variable assignment Example: effect $\{v_1 \mapsto b, v_2 \mapsto c\}$
 - Successor state s' satisfies $s'(v_1) = b$ and $s'(v_2) = c$.
 - All other variables remain unchanged.

SAS⁺ Planning Tasks

Definition (SAS⁺ Planning Task)

A SAS⁺ planning task is a 5-tuple

 $\Pi = \langle V, s_0, s_{\star}, A \rangle$ with the following components:

- V: finite set of state variables v, each with finite domain dom(v),
- s_0 : variable assignment defining the initial state
- s_{*}: partial variable assignment defining the goal
- A: finite set of actions (or operators), where each action $a \in A$ has the following components:
 - preconditions pre(a): partial variable assignment
 - effects eff(a): partial variable assignment
 - cost cost(a): non-negative real number

Example: Blocks World in SAS⁺

Example

 $\Pi = \langle V, s_0, s_{\star}, A \rangle$ with:

- $V = \{on_R, on_G, on_B, clear_R, clear_G, clear_B\}$ with $dom(on_X) = \{R, G, B, Table\} \setminus \{X\}$ and $dom(clear_X) = \{T, F\}$ for all $X \in \{R, G, B\}$
- $s_0 = \{on_R \mapsto B, on_G \mapsto \mathsf{Table}, on_B \mapsto G, \\ clear_R \mapsto T, clear_G \mapsto F, clear_B \mapsto F\}$
- $\bullet s_{\star} = \{on_G \mapsto R\}$
- \blacksquare A =same action labels as in STRIPS example

. . .

Example: Blocks World in SAS⁺

Example

move actions encode movements of a block from a block onto another

For example:

- $pre(move_{R,B,G}) = \{on_R \mapsto B, clear_R \mapsto T, clear_G \mapsto T\}$
- $eff(move_{R,B,G}) = \{on_R \mapsto G, clear_B \mapsto T, clear_G \mapsto F\}$
- \bullet $cost(move_{R,B,G}) = 1$

skip: to-table and from-table actions

Other Formalisms

Extensions of these formalisms include additional features, e.g.,

- propositional formulas in conditions
- conditional effects
- derived predicates
- schematic representations with first-order formulas in conditions and universally quantified effects
-

Planner Input Language PDDL

PDDL

PDDI

- Planning Domain Definition Language
- input language of most planning systems
- used by the International Planning Competitions
- requirements denote different language fragments
- some fragments beyond classical planning
- supports parameterized, schematic definition of operators

Internal Planner Format

Most planners transform the PDDL input into an internal format.

Fast Downward: SAS⁺ (+ some extensions)

```
Hands-On
```

Summary

Summary

- classical planning: path finding in very large deterministic transition systems
 - optimal planning: only optimal plans are solutions
 - satisficing planning: any plan is a solution, but cheaper plans are preferred
- planning formalisms: factored declarative specification languages for transition systems
 - research papers: mostly propositional STRIPS or SAS+
 - PDDL: standard input language for planning systems