Amendments to the Claims

This listing of claims will replace all prior versions and listing of claims in the application.

1. - 20. (Canceled)

21. (Currently Amended) A corrosion-resisting and wearresisting alloy, which is obtained by casting a material from
a cobalt base alloy into an ingot or a slab as an intermediate
material, hot plastic forming being applied to said
intermediate material at a temperature which is 650°C or more
and the solidus temperature or less, which includes a
structure comprising mesh-like eutectic carbide and a base
material surrounded by the eutectic carbide, the eutectic
carbide is formed as a discontinuous distribution in a form of
multiple grains or clusters, wherein the coefficient of
friction is 0.1 to 0.5, and the Vickers hardness without age
hardening process is 300 to 600 Hv;

wherein the cobalt base alloy comprises 0.1 to 3.5% of C, 25% or less of Ni, 25 to 35% of Cr, 5% or less of Fe, 20% or less of W, 1.5% or less of Mo, and 1.5% or less of Si in weight ratio, the remaining balance being Co and inevitable impurities, and

wherein the grain size of said eutectic carbide is 30 μm or smaller.

- 22. (Previously Presented) A corrosion-resisting and wear-resisting alloy according to Claim 21, wherein the coefficient of friction of the corrosion-resisting and wear-resisting alloy is 0.1 to 0.3.
- 23. (Currently Amended) A corrosion-resisting and wearresisting alloy, which is obtained by casting a material from
 a nickel base alloy into an ingot or a slab as an intermediate
 material, hot plastic forming being applied to said
 intermediate material at a temperature which is 650°C or more
 and the solidus temperature or less, which includes a
 structure comprising mesh-like eutectic carbide and a base
 material surrounded by the eutectic carbide, the eutectic
 carbide being formed as a discontinuous distribution in a form
 of multiple grains or clusters, wherein the coefficient of
 friction is 0.1 to 0.5, and the Vickers hardness without age
 hardening process is 300 to 600 Hv;

wherein the nickel base alloy comprises 0.1 to 2.5% of C, 3 to 9% of Si, 7 to 25% of Cr, 0.5 to 5% of B, 2 to 6% of Fe,

1 to 5 of W and 17% or less of Mo in weight ratio, the remaining balance being Ni and inevitable impurities, and $\frac{\text{wherein the grain size of said eutectic carbide is 30 } \mu\text{m}}{\text{wherein the grain size of said eutectic carbide is 30 }}$

or smaller.

- 24. (Previously Presented) A corrosion-resisting and wear-resisting alloy according to Claim 23, wherein the coefficient of friction of the corrosion-resisting and wear-resisting alloy is 0.1 to 0.3.
- 25. (Currently Amended) A corrosion-resisting and wearresisting alloy, which is obtained by casting a material from
 an iron base alloy into an ingot or a slab as an intermediate
 material, hot plastic forming being applied to said
 intermediate material at a temperature which is 650°C or more
 and the solidus temperature or less, which includes a
 structure comprising mesh-like eutectic carbide and a base
 material surrounded by the eutectic carbide, the eutectic
 carbide being formed as a discontinuous distribution in a form
 of multiple grains or clusters, wherein the coefficient of
 friction is 0.1 to 0.5, and the Vickers hardness without age
 hardening process is 300 to 600 Hv;

wherein the iron base alloy comprises 0.1 to 1.5% of C, 0.3 to 4% of Si, 4 to 9% of Ni, 3% or less of Mo, 6 to 10% of Mn, and 15 to 25 of Cr in weight ratio, the remaining balance being Fe and inevitable impurities, and

wherein the grain size of said eutectic carbide is 30 μm or smaller.

- 26. (Previously Presented) A corrosion-resisting and wear-resisting alloy according to Claim 25, wherein the coefficient of friction of the corrosion-resisting and wear-resisting alloy is 0.1 to 0.3.
- 27. (Currently Amended) A fluid device whereincomprising the corrosion-resisting and wear-resisting alloy according to Claim ±21, the corrosion-resisting and wear-resisting alloy functioning as is used for a wear-resisting part that wears is subjected to wearing due to a contacted slide between elements of the fluid device or functioning as an erosion shield part that is subjected to erosion erodes due to contact with a liquid fluid of the fluid device.

- 28. (Previously Presented) A corrosion-resisting and wear-resisting alloy according to Claim 27, wherein the coefficient of friction of the corrosion-resisting and wear-resisting alloy is 0.1 to 0.3.
- 29. (Currently Amended) A fluid device whereincomprising the corrosion-resisting and wear-resisting alloy according to Claim 23, the corrosion-resisting and wear-resisting alloy functioning as is used for a wear-resisting part that wears is subjected to wearing due to a contacted slide between elements of the fluid device or functioning as an erosion shield part that is subjected to erosion erodes due to contact with a liquid fluid of the fluid device.
- 30. (Previously Presented) A fluid device wherein the corrosion-resisting and wear-resisting alloy according to Claim 29, wherein the coefficient of friction of the corrosion-resisting and wear-resisting alloy is 0.1 to 0.3.
- 31. (Currently Amended) A fluid device whereincomprising the corrosion-resisting and wear-resisting alloy according to Claim 25, the corrosion-resisting and wear-resisting alloy

functioning as is used for a wear-resisting part that wears is subjected to wearing due to a contacted slide between elements of the fluid device or functioning as an erosion shield part that is subjected to erosion erodes due to contact with a liquid fluid of the fluid device.

- 32. (Previously Presented) A fluid device wherein the corrosion-resisting and wear-resisting alloy according to Claim 31, wherein the coefficient of friction of the corrosion-resisting and wear-resisting alloy is 0.1 to 0.3.
- 33. (Previously Presented) A dynamic device wherein the corrosion-resisting and wear-resisting alloy according to Claim 21 is joined with a base metal without changing the metal composition for application to a sliding part or a contact part.
- 34. (Previously Presented) A dynamic device wherein the corrosion-resisting and wear-resisting alloy according to Claim 33 has a coefficient of friction of 0.1 to 0.3.

- 35. (Previously Presented) A dynamic device wherein the corrosion-resisting and wear-resisting alloy according to Claim 23 is joined with a base metal without changing the metal composition for application to a sliding part or a contact part.
- 36. (Previously Presented) A dynamic device wherein the corrosion-resisting and wear-resisting alloy according to Claim 35 has a coefficient of friction of 0.1 to 0.3.
- 37. (Previously Presented) A dynamic device wherein the corrosion-resisting and wear-resisting alloy according to Claim 25 is joined with a base metal without changing the metal composition for application to a sliding part or a contact part.
- 38. (Previously Presented) A dynamic device wherein the corrosion-resisting and wear-resisting alloy according to Claim 37 has a coefficient of friction of 0.1 to 0.3.