Unobservable Subspace

Intro to Observability

- Unobservable subspace: null-space of $\mathcal{O}_k = \mathcal{N}(\mathcal{O}_k)$
- It is basically the space (i.e., set of states $x \in \mathcal{X}$ that you cannot estimate or observer
- Notice that if $x(0) \in Null(\mathcal{O}_k)$, and u(k) = 0, then the output is going to zero from [0, k-1]
- Notice that input u(k) does not impact the ability to determine x(0)
- The unobservable subspace $\mathcal{N}(\mathcal{O}_k)$ is A-invariant: if $z \in \mathcal{N}(\mathcal{O}_k)$, then $Az \in \mathcal{N}(\mathcal{O}_k)$

Unobservable Space

The null spaces $Null(\mathcal{O}_k) = \mathcal{N}(\mathcal{O}_k)$ satisfy

$$\mathcal{N}(\mathcal{O}_0)\supseteq\mathcal{N}(\mathcal{O}_1)\supseteq\cdots\supseteq\mathcal{N}(\mathcal{O}_n)=\mathcal{N}(\mathcal{O}_{n+1})=\cdots$$

This means that the more output measurements you have, the smaller the unobservable subspace.

It also implies that you cannot get more information if you go above k > n. You can prove this by C-H theorem $(A^n = \sum_{i=0}^{n-1} \alpha_i A^i)$