Decision Trees: From Intuition to Implementation

Nipun Batra and teaching staff

IIT Gandhinagar

July 30, 2025

Outline

- 1. Introduction and Motivation
- 2. Information Theory Foundations
- 3. Building Decision Trees
- 4. Discrete Input, Real Output
- 5. Real Input Real Output
- 6. Pruning and Overfitting
- 7. Summary and Key Takeaways
- 8. Weighted Entropy

Intuitive approach: Make decisions by asking yes/no questions

- Intuitive approach: Make decisions by asking yes/no questions
- Tree structure: Each internal node = decision rule, leaves = predictions

- Intuitive approach: Make decisions by asking yes/no questions
- Tree structure: Each internal node = decision rule, leaves = predictions
- Human-interpretable: Easy to understand and explain

- Intuitive approach: Make decisions by asking yes/no questions
- Tree structure: Each internal node = decision rule, leaves = predictions
- Human-interpretable: Easy to understand and explain

- Intuitive approach: Make decisions by asking yes/no questions
- Tree structure: Each internal node = decision rule, leaves = predictions
- Human-interpretable: Easy to understand and explain
- Versatile: Works for both classification and regression

- Intuitive approach: Make decisions by asking yes/no questions
- Tree structure: Each internal node = decision rule, leaves = predictions
- Human-interpretable: Easy to understand and explain
- Versatile: Works for both classification and regression

- Intuitive approach: Make decisions by asking yes/no questions
- Tree structure: Each internal node = decision rule, leaves = predictions
- Human-interpretable: Easy to understand and explain
- Versatile: Works for both classification and regression

Real-world Example

Should I play tennis today?

- Intuitive approach: Make decisions by asking yes/no questions
- Tree structure: Each internal node = decision rule, leaves = predictions
- Human-interpretable: Easy to understand and explain
- Versatile: Works for both classification and regression

Real-world Example

Should I play tennis today?

 $\bullet \ \, \text{If sunny} \to \text{check humidity}$

- Intuitive approach: Make decisions by asking yes/no questions
- Tree structure: Each internal node = decision rule, leaves = predictions
- Human-interpretable: Easy to understand and explain
- Versatile: Works for both classification and regression

Real-world Example

Should I play tennis today?

- If sunny → check humidity
- If rainy → check wind

- Intuitive approach: Make decisions by asking yes/no questions
- Tree structure: Each internal node = decision rule, leaves = predictions
- Human-interpretable: Easy to understand and explain
- Versatile: Works for both classification and regression

Real-world Example

Should I play tennis today?

- If sunny → check humidity
- If rainy → check wind
- If overcast → always play!

Pop Quiz: Decision Tree Basics

Quick Quiz 1

What makes decision trees particularly useful in practice?

a) They always give the highest accuracy

Answer: b) Interpretability is a key advantage of decision trees!

Pop Quiz: Decision Tree Basics

Quick Quiz 1

What makes decision trees particularly useful in practice?

- a) They always give the highest accuracy
- b) They're easy to interpret and explain to humans

Answer: b) Interpretability is a key advantage of decision trees!

Pop Quiz: Decision Tree Basics

Quick Quiz 1

What makes decision trees particularly useful in practice?

- a) They always give the highest accuracy
- b) They're easy to interpret and explain to humans
- c) They work only for numerical data

Answer: b) Interpretability is a key advantage of decision trees!

The Core Question: How do we choose the best question to ask?

Dataset: 9 Yes, 5 No (mixed outcomes)

The Core Question: How do we choose the best question to ask?

Dataset: 9 Yes, 5 No (mixed outcomes)

- Dataset: 9 Yes, 5 No (mixed outcomes)
- Scenario 1: What if we had 14 Yes, 0 No?

- Dataset: 9 Yes, 5 No (mixed outcomes)
- Scenario 1: What if we had 14 Yes, 0 No?

- Dataset: 9 Yes, 5 No (mixed outcomes)
- Scenario 1: What if we had 14 Yes, 0 No?
- Scenario 2: What if we had 0 Yes, 14 No?

- Dataset: 9 Yes, 5 No (mixed outcomes)
- Scenario 1: What if we had 14 Yes, 0 No?
- Scenario 2: What if we had 0 Yes, 14 No?

- Dataset: 9 Yes, 5 No (mixed outcomes)
- Scenario 1: What if we had 14 Yes, 0 No?
- Scenario 2: What if we had 0 Yes, 14 No?
- Key insight: Pure subsets (no disagreement) are easier to handle!

- Dataset: 9 Yes, 5 No (mixed outcomes)
- Scenario 1: What if we had 14 Yes, 0 No?
- Scenario 2: What if we had 0 Yes, 14 No?
- Key insight: Pure subsets (no disagreement) are easier to handle!

- Dataset: 9 Yes, 5 No (mixed outcomes)
- Scenario 1: What if we had 14 Yes, 0 No?
- Scenario 2: What if we had 0 Yes, 14 No?
- Key insight: Pure subsets (no disagreement) are easier to handle!
- We need a statistical measure of "disagreement" or "impurity"

- Dataset: 9 Yes, 5 No (mixed outcomes)
- Scenario 1: What if we had 14 Yes, 0 No?
- Scenario 2: What if we had 0 Yes, 14 No?
- Key insight: Pure subsets (no disagreement) are easier to handle!
- We need a statistical measure of "disagreement" or "impurity"

The Core Question: How do we choose the best question to ask?

- Dataset: 9 Yes, 5 No (mixed outcomes)
- Scenario 1: What if we had 14 Yes, 0 No?
- Scenario 2: What if we had 0 Yes, 14 No?
- Key insight: Pure subsets (no disagreement) are easier to handle!
- We need a statistical measure of "disagreement" or "impurity"

Goal

Find the question that **reduces impurity the most** after splitting

Entropy Formula

$$H(X) = -\sum_{i=1}^k \rho(x_i) \log_2 \rho(x_i)$$

Entropy Formula

$$H(X) = -\sum_{i=1}^k p(x_i) \log_2 p(x_i)$$

Interpretation:

H(X) = 0: Pure set (all same class)

Entropy Formula

$$H(X) = -\sum_{i=1}^{k} p(x_i) \log_2 p(x_i)$$

- H(X) = 0: Pure set (all same class)
- H(X) = 1: Maximum impurity (50-50 split)

Entropy Formula

$$H(X) = -\sum_{i=1}^{k} p(x_i) \log_2 p(x_i)$$

- H(X) = 0: Pure set (all same class)
- H(X) = 1: Maximum impurity (50-50 split)
- Higher entropy = more mixed/impure

Entropy Formula

$$H(X) = -\sum_{i=1}^{\kappa} p(x_i) \log_2 p(x_i)$$

- H(X) = 0: Pure set (all same class)
- H(X) = 1: Maximum impurity (50-50 split)
- Higher entropy = more mixed/impure

Entropy Formula

$$H(X) = -\sum_{i=1}^{\kappa} p(x_i) \log_2 p(x_i)$$

- H(X) = 0: Pure set (all same class)
- H(X) = 1: Maximum impurity (50-50 split)
- Higher entropy = more mixed/impure

Entropy Formula

$$H(X) = -\sum_{i=1}^{\kappa} p(x_i) \log_2 p(x_i)$$

- H(X) = 0: Pure set (all same class)
- H(X) = 1: Maximum impurity (50-50 split)
- Higher entropy = more mixed/impure

Pop Quiz: Entropy Calculation

Quick Quiz 2

For a dataset with 8 positive and 8 negative examples, what is the entropy?

a) H = 0 (pure)

Answer: b) $H = -0.5 \log_2(0.5) - 0.5 \log_2(0.5) = 1$

Pop Quiz: Entropy Calculation

Quick Quiz 2

For a dataset with 8 positive and 8 negative examples, what is the entropy?

- a) H = 0 (pure)
- b) H = 1 (maximum impurity)

Answer: b) $H = -0.5 \log_2(0.5) - 0.5 \log_2(0.5) = 1$

Pop Quiz: Entropy Calculation

Quick Quiz 2

For a dataset with 8 positive and 8 negative examples, what is the entropy?

- a) H = 0 (pure)
- b) H = 1 (maximum impurity)
- c) H = 0.5 (moderate impurity)

Answer: b) $H = -0.5 \log_2(0.5) - 0.5 \log_2(0.5) = 1$

Question: Which feature should we use as the root node?

Goal: Choose the feature that best separates the classes

Question: Which feature should we use as the root node?

Goal: Choose the feature that best separates the classes

- Goal: Choose the feature that best separates the classes
- Example: When Outlook = Overcast, we always Play!

- Goal: Choose the feature that best separates the classes
- Example: When Outlook = Overcast, we always Play!
 - Perfect separation = zero disagreement

- Goal: Choose the feature that best separates the classes
- Example: When Outlook = Overcast, we always Play!
 - Perfect separation = zero disagreement
 - This is a very good feature for splitting

- Goal: Choose the feature that best separates the classes
- Example: When Outlook = Overcast, we always Play!
 - Perfect separation = zero disagreement
 - This is a very good feature for splitting

- Goal: Choose the feature that best separates the classes
- Example: When Outlook = Overcast, we always Play!
 - Perfect separation = zero disagreement
 - This is a *very good* feature for splitting
- Criterion: Select feature with highest Information Gain

- Goal: Choose the feature that best separates the classes
- Example: When Outlook = Overcast, we always Play!
 - Perfect separation = zero disagreement
 - This is a *very good* feature for splitting
- Criterion: Select feature with highest Information Gain

Question: Which feature should we use as the root node?

- Goal: Choose the feature that best separates the classes
- Example: When Outlook = Overcast, we always Play!
 - Perfect separation = zero disagreement
 - This is a very good feature for splitting
- Criterion: Select feature with highest Information Gain

Information Gain Formula

$$Gain(S, A) = H(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} H(S_v)$$

Pure Subset		
Outlook	Play	
Overcast	Yes	
4 Yes, 0 No <i>H</i> = 0 (perfect pur		

Pure Subset		
Outlook	Play	
Overcast	Yes	
4 Yes, 0 No <i>H</i> = 0 (perfect pur		

Pure Subset		
Outlook	Play	
Overcast	Yes	
4 Yes, 0 No <i>H</i> = 0 (perfect pur		

Pure Subset		
Outlook	Play	
Overcast	Yes	
4 Yes, 0 No <i>H</i> = 0 (perfe		

Mixed Subset		
Outlook	Play	•
Rain	Yes	
Rain	Yes	
Rain	No	
Rain	Yes	
Rain	No	
3 Yes, 2 N $H = -\frac{3}{5} \log x$		

Pure Subset		
Outlook	Play	
Overcast	Yes	
4 Yes, 0 No <i>H</i> = 0 (perfe		

Mixed Subset		
Outlook	Play	•
Rain	Yes	
Rain	Yes	
Rain	No	
Rain	Yes	
Rain	No	
3 Yes, 2 N $H = -\frac{3}{5} \log x$		

Pure Subset		
Outlook	Play	
Overcast	Yes	
4 Yes, 0 No H = 0 (perfect put		

Mixed Subset		
Outlook	Play	
Rain	Yes	
Rain	Yes	
Rain	No	
Rain	Yes	
Rain	No	
3 Yes, 2 N $H = -\frac{3}{5} \log = 0.971$ (hi	$\frac{1}{2}\left(\frac{3}{5}\right)$	$\frac{2}{5}\log_2\left(\frac{2}{5}\right)$

3 Yes, 2 No

$$H = -\frac{3}{5}\log_2\left(\frac{3}{5}\right) - \frac{2}{5}\log_2\left(\frac{2}{5}\right)$$

= 0.971 (high impurity)

Key Insight: We want to create splits that result in low entropy subsets!

For Outlook=Sunny subset (2 Yes, 3 No):

Temp split:

- Temp split:
 - Hot: (0 Yes, 2 No), Cool: (1 Yes, 1 No), Mild: (1 Yes, 0 No)

- Temp split:
 - Hot: (0 Yes, 2 No), Cool: (1 Yes, 1 No), Mild: (1 Yes, 0 No)
 - Gain = $H(2,3) \frac{2}{5}H(0,2) \frac{2}{5}H(1,1) \frac{1}{5}H(1,0)$

- Temp split:
 - Hot: (0 Yes, 2 No), Cool: (1 Yes, 1 No), Mild: (1 Yes, 0 No)
 - Gain = $H(2,3) \frac{2}{5}H(0,2) \frac{2}{5}H(1,1) \frac{1}{5}H(1,0)$

- Temp split:
 - Hot: (0 Yes, 2 No), Cool: (1 Yes, 1 No), Mild: (1 Yes, 0 No)
 - Gain = $H(2,3) \frac{2}{5}H(0,2) \frac{2}{5}H(1,1) \frac{1}{5}H(1,0)$
- Humidity split:

- Temp split:
 - Hot: (0 Yes, 2 No), Cool: (1 Yes, 1 No), Mild: (1 Yes, 0 No)
 - Gain = $H(2,3) \frac{2}{5}H(0,2) \frac{2}{5}H(1,1) \frac{1}{5}H(1,0)$
- Humidity split:
 - High: (0 Yes, 3 No), Normal: (2 Yes, 0 No)

- Temp split:
 - Hot: (0 Yes, 2 No), Cool: (1 Yes, 1 No), Mild: (1 Yes, 0 No)
 - Gain = $H(2,3) \frac{2}{5}H(0,2) \frac{2}{5}H(1,1) \frac{1}{5}H(1,0)$
- Humidity split:
 - High: (0 Yes, 3 No), Normal: (2 Yes, 0 No)
 - Gain = $H(2,3) \frac{3}{5}H(0,3) \frac{2}{5}H(2,0) =$ maximum!

- Temp split:
 - Hot: (0 Yes, 2 No), Cool: (1 Yes, 1 No), Mild: (1 Yes, 0 No)
 - Gain = $H(2,3) \frac{2}{5}H(0,2) \frac{2}{5}H(1,1) \frac{1}{5}H(1,0)$
- Humidity split:
 - High: (0 Yes, 3 No), Normal: (2 Yes, 0 No)
 - Gain = $H(2,3) \frac{3}{5}H(0,3) \frac{2}{5}H(2,0) =$ maximum!

- Temp split:
 - Hot: (0 Yes, 2 No), Cool: (1 Yes, 1 No), Mild: (1 Yes, 0 No)
 - Gain = $H(2,3) \frac{2}{5}H(0,2) \frac{2}{5}H(1,1) \frac{1}{5}H(1,0)$
- Humidity split:
 - High: (0 Yes, 3 No), Normal: (2 Yes, 0 No)
 - Gain = $H(2,3) \frac{3}{5}H(0,3) \frac{2}{5}H(2,0) =$ maximum!
- Wind split:

- Temp split:
 - Hot: (0 Yes, 2 No), Cool: (1 Yes, 1 No), Mild: (1 Yes, 0 No)
 - Gain = $H(2,3) \frac{2}{5}H(0,2) \frac{2}{5}H(1,1) \frac{1}{5}H(1,0)$
- · Humidity split:
 - High: (0 Yes, 3 No), Normal: (2 Yes, 0 No)
 - Gain = $H(2,3) \frac{3}{5}H(0,3) \frac{2}{5}H(2,0) =$ maximum!
- Wind split:
 - Strong: (1 Yes, 2 No), Weak: (1 Yes, 1 No)

- Temp split:
 - Hot: (0 Yes, 2 No), Cool: (1 Yes, 1 No), Mild: (1 Yes, 0 No)
 - Gain = $H(2,3) \frac{2}{5}H(0,2) \frac{2}{5}H(1,1) \frac{1}{5}H(1,0)$
- · Humidity split:
 - High: (0 Yes, 3 No), Normal: (2 Yes, 0 No)
 - Gain = $H(2,3) \frac{3}{5}H(0,3) \frac{2}{5}H(2,0) =$ maximum!
- Wind split:
 - Strong: (1 Yes, 2 No), Weak: (1 Yes, 1 No)
 - Lower gain than Humidity

- Temp split:
 - Hot: (0 Yes, 2 No), Cool: (1 Yes, 1 No), Mild: (1 Yes, 0 No)
 - Gain = $H(2,3) \frac{2}{5}H(0,2) \frac{2}{5}H(1,1) \frac{1}{5}H(1,0)$
- · Humidity split:
 - High: (0 Yes, 3 No), Normal: (2 Yes, 0 No)
 - Gain = $H(2,3) \frac{3}{5}H(0,3) \frac{2}{5}H(2,0) =$ maximum!
- Wind split:
 - Strong: (1 Yes, 2 No), Weak: (1 Yes, 1 No)
 - Lower gain than Humidity

For Outlook=Sunny subset (2 Yes, 3 No):

- Temp split:
 - Hot: (0 Yes, 2 No), Cool: (1 Yes, 1 No), Mild: (1 Yes, 0 No)
 - Gain = $H(2,3) \frac{2}{5}H(0,2) \frac{2}{5}H(1,1) \frac{1}{5}H(1,0)$
- · Humidity split:
 - High: (0 Yes, 3 No), Normal: (2 Yes, 0 No)
 - Gain = $H(2,3) \frac{3}{5}H(0,3) \frac{2}{5}H(2,0) =$ maximum!
- Wind split:
 - Strong: (1 Yes, 2 No), Weak: (1 Yes, 1 No)
 - Lower gain than Humidity

Winner

Humidity gives the highest information gain for this subset!

Pop Quiz: Information Gain

Quick Quiz 3

Which split would give the highest information gain?

a) Split that creates subsets: (5 Yes, 5 No) and (3 Yes, 2 No)

Answer: b) Pure subsets (entropy = 0) give maximum information gain!

Pop Quiz: Information Gain

Quick Quiz 3

Which split would give the highest information gain?

- a) Split that creates subsets: (5 Yes, 5 No) and (3 Yes, 2 No)
- b) Split that creates subsets: (8 Yes, 0 No) and (0 Yes, 7 No)

Answer: b) Pure subsets (entropy = 0) give maximum information gain!

Pop Quiz: Information Gain

Quick Quiz 3

Which split would give the highest information gain?

- a) Split that creates subsets: (5 Yes, 5 No) and (3 Yes, 2 No)
- b) Split that creates subsets: (8 Yes, 0 No) and (0 Yes, 7 No)
- c) Split that creates subsets: (4 Yes, 3 No) and (4 Yes, 4 No)

Answer: b) Pure subsets (entropy = 0) give maximum information gain!

Prediction Example

Prediction for <High Humidity, Strong Wind, Sunny Outlook, Hot Temp> is ?

Prediction Example

Prediction for <High Humidity, Strong Wind, Sunny Outlook, Hot Temp> is ?
No

Apply the same rules, except when depth limit is reached, the leaf node is assigned the most common occurring value in that path.

Apply the same rules, except when depth limit is reached, the leaf node is assigned the most common occurring value in that path.

What is depth-0 tree (no decision) for the examples?

Apply the same rules, except when depth limit is reached, the leaf node is assigned the most common occurring value in that path.

What is depth-0 tree (no decision) for the examples? Always predicting Yes

Apply the same rules, except when depth limit is reached, the leaf node is assigned the most common occurring value in that path.

What is depth-0 tree (no decision) for the examples? Always predicting Yes

What is depth-1 tree (no decision) for the examples?

Apply the same rules, except when depth limit is reached, the leaf node is assigned the most common occurring value in that path.

What is depth-0 tree (no decision) for the examples? Always predicting Yes

What is depth-1 tree (no decision) for the examples?

Why Outlook is Good Root?

Answer: B) When Outlook=Overcast, all examples have Play=Yes - This creates a pure subset with entropy=0, maximizing information gain.

· Any guesses?

· Any guesses?

· Any guesses?

- · Any guesses?
- Mean Squared Error

- · Any guesses?
- Mean Squared Error

- · Any guesses?
- Mean Squared Error
- MSE(S) = 311.34

- · Any guesses?
- Mean Squared Error
- MSE(S) = 311.34

- · Any guesses?
- Mean Squared Error
- MSE(S) = 311.34
- What about splitting criterion for regression?

- · Any guesses?
- Mean Squared Error
- MSE(S) = 311.34
- What about splitting criterion for regression?

- · Any guesses?
- Mean Squared Error
- MSE(S) = 311.34
- What about splitting criterion for regression?
- MSE Reduction (not Information Gain!)

- · Any guesses?
- Mean Squared Error
- MSE(S) = 311.34
- What about splitting criterion for regression?
- MSE Reduction (not Information Gain!)

- · Any guesses?
- Mean Squared Error
- MSE(S) = 311.34
- What about splitting criterion for regression?
- MSE Reduction (not Information Gain!)
- MSE Reduction = $\mathrm{MSE}(S) \sum_{V} \frac{|S_{V}|}{|S|} \, \mathrm{MSE}(S_{V})$

Regression Splitting Criterion

Answer: C) Mean Squared Error (MSE) Reduction - For regression, we minimize MSE instead of maximizing information gain.

Continuous Features

Answer: B) Use midpoints between consecutive sorted feature values - This ensures we test all meaningful boundaries between different class regions.

Leaf Node Predictions

Answer: C) The mean of target values in that region - Each leaf predicts the average target value of training samples that reach that leaf.

Unpruned trees: Can grow very deep and complex

Unpruned trees: Can grow very deep and complex

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data
- Symptoms:

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- · But: Poor generalization to new data
- Symptoms:
 - High training accuracy, low test accuracy

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- · But: Poor generalization to new data
- Symptoms:
 - High training accuracy, low test accuracy

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- · But: Poor generalization to new data
- Symptoms:
 - High training accuracy, low test accuracy
 - Very deep trees with many leaves

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data
- Symptoms:
 - High training accuracy, low test accuracy
 - Very deep trees with many leaves
 - Rules that are too specific to training data

- Unpruned trees: Can grow very deep and complex
- Perfect training accuracy: Each leaf contains single training example
- But: Poor generalization to new data
- Symptoms:
 - High training accuracy, low test accuracy
 - Very deep trees with many leaves
 - Rules that are too specific to training data
- Solution: Pruning to control model complexity

Pre-pruning (Early Stopping)

Stop growing tree before it becomes too complex:

Maximum depth: Limit tree depth (e.g., max_depth = 5)

Pre-pruning (Early Stopping)

Stop growing tree before it becomes too complex:

Maximum depth: Limit tree depth (e.g., max_depth = 5)

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has < N samples

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has < N samples

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has < N samples
- Minimum samples per leaf: Ensure each leaf has

 M samples

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has < N samples
- Minimum samples per leaf: Ensure each leaf has

 M samples

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has < N samples
- Minimum samples per leaf: Ensure each leaf has

 M samples
- Maximum features: Consider only subset of features at each split

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has < N samples
- Minimum samples per leaf: Ensure each leaf has

 M samples
- Maximum features: Consider only subset of features at each split

Stop growing tree before it becomes too complex:

- Maximum depth: Limit tree depth (e.g., max_depth = 5)
- Minimum samples per split: Don't split if node has < N samples
- Minimum samples per leaf: Ensure each leaf has

 M samples
- Maximum features: Consider only subset of features at each split
- Minimum impurity decrease: Only split if improvement > threshold

Advantages: Simple, computationally efficient **Disadvantages**: May stop too early, miss good splits later

Grow full tree, then remove unnecessary branches:

• Algorithm:

- Algorithm:
 - 1. Grow complete tree on training data

- Algorithm:
 - 1. Grow complete tree on training data

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - 4. Repeat until no beneficial removals remain

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - 4. Repeat until no beneficial removals remain

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - Repeat until no beneficial removals remain
- Cost Complexity Pruning: Minimize Error $+ \alpha \times$ Tree Size

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - Repeat until no beneficial removals remain
- Cost Complexity Pruning: Minimize Error $+ \alpha \times$ Tree Size

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - Repeat until no beneficial removals remain
- Cost Complexity Pruning: Minimize $Error + \alpha \times Tree Size$
- Advantages: More thorough, can recover from early stopping mistakes

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - Repeat until no beneficial removals remain
- Cost Complexity Pruning: Minimize $Error + \alpha \times Tree Size$
- Advantages: More thorough, can recover from early stopping mistakes

- Algorithm:
 - 1. Grow complete tree on training data
 - 2. Use validation set to evaluate subtree performance
 - 3. Remove branches that don't improve validation accuracy
 - Repeat until no beneficial removals remain
- Cost Complexity Pruning: Minimize $Error + \alpha \times Tree Size$
- Advantages: More thorough, can recover from early stopping mistakes
- Disadvantages: More computationally expensive

Systematic approach to find optimal tree size:

• Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - $\sim R(T)$: Misclassification error on validation set

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - $\sim R(T)$: Misclassification error on validation set

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - R(T): Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - $\sim R(T)$: Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)
 - lpha: Complexity parameter (penalty for larger trees)

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - \circ R(T): Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)
 - α : Complexity parameter (penalty for larger trees)
- Process:

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - \circ R(T): Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)
 - α : Complexity parameter (penalty for larger trees)
- Process:
 - 1. Start with full tree ($\alpha = 0$)

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - $\sim R(T)$: Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)
 - α : Complexity parameter (penalty for larger trees)
- Process:
 - 1. Start with full tree ($\alpha = 0$)
 - 2. Gradually increase α

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - \circ R(T): Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)
 - α : Complexity parameter (penalty for larger trees)
- Process:
 - 1. Start with full tree ($\alpha = 0$)
 - 2. Gradually increase α
 - 3. At each α , prune branches that increase cost

Systematic approach to find optimal tree size:

- Cost function: $R_{\alpha}(T) = R(T) + \alpha |T|$
 - \circ R(T): Misclassification error on validation set
 - |T|: Number of terminal nodes (tree size)
 - α : Complexity parameter (penalty for larger trees)

Process:

- 1. Start with full tree ($\alpha = 0$)
- 2. Gradually increase α
- 3. At each α , prune branches that increase cost
- 4. Select α with best cross-validation performance

Unpruned trees:

- Unpruned trees:
 - Low bias (can fit complex patterns)

- Unpruned trees:
 - Low bias (can fit complex patterns)

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)

Unpruned trees:

- Low bias (can fit complex patterns)
- High variance (sensitive to training data changes)
- Prone to overfitting

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)
 - Prone to overfitting
- Heavily pruned trees:

Unpruned trees:

- Low bias (can fit complex patterns)
- High variance (sensitive to training data changes)
- Prone to overfitting

Heavily pruned trees:

High bias (may miss important patterns)

Unpruned trees:

- Low bias (can fit complex patterns)
- High variance (sensitive to training data changes)
- Prone to overfitting

Heavily pruned trees:

- High bias (may miss important patterns)
- Low variance (more stable predictions)

Unpruned trees:

- Low bias (can fit complex patterns)
- High variance (sensitive to training data changes)
- Prone to overfitting

Heavily pruned trees:

- High bias (may miss important patterns)
- Low variance (more stable predictions)

Unpruned trees:

- Low bias (can fit complex patterns)
- High variance (sensitive to training data changes)
- Prone to overfitting

Heavily pruned trees:

- High bias (may miss important patterns)
- Low variance (more stable predictions)
- Risk of underfitting

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)
 - Prone to overfitting
- Heavily pruned trees:
 - High bias (may miss important patterns)
 - Low variance (more stable predictions)
 - Risk of underfitting
- Optimal pruning: Balances bias and variance

- Unpruned trees:
 - Low bias (can fit complex patterns)
 - High variance (sensitive to training data changes)
 - Prone to overfitting
- Heavily pruned trees:
 - High bias (may miss important patterns)
 - Low variance (more stable predictions)
 - Risk of underfitting
- · Optimal pruning: Balances bias and variance
- Cross-validation: Essential for finding this balance

Start simple: Begin with restrictive pre-pruning parameters

Start simple: Begin with restrictive pre-pruning parameters

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - max_depth: Start with 3-10

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - max_depth: Start with 3-10

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - max_depth: Start with 3-10
 - min_samples_split: Try 10-100

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - max_depth: Start with 3-10
 - min_samples_split: Try 10-100
 - min_samples_leaf: Try 5-50

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - max_depth: Start with 3-10
 - min_samples_split: Try 10-100
 - min_samples_leaf: Try 5-50
 - ccp_alpha: Use for cost complexity pruning

- Start simple: Begin with restrictive pre-pruning parameters
- Cross-validation: Always use CV to select pruning parameters
- Validation curves: Plot training/validation error vs. tree complexity
- Common parameters (sklearn):
 - max_depth: Start with 3-10
 - min_samples_split: Try 10-100
 - min_samples_leaf: Try 5-50
 - ccp_alpha: Use for cost complexity pruning
- Domain knowledge: Consider interpretability requirements

· Interpretability an important goal

- · Interpretability an important goal
- · Decision trees: well known interpretable models

- · Interpretability an important goal
- · Decision trees: well known interpretable models

- Interpretability an important goal
- · Decision trees: well known interpretable models
- Learning optimal tree is hard

- Interpretability an important goal
- Decision trees: well known interpretable models
- · Learning optimal tree is hard
- · Greedy approach:

- Interpretability an important goal
- · Decision trees: well known interpretable models
- · Learning optimal tree is hard
- Greedy approach:
- Recursively split to maximize "performance gain"

- Interpretability an important goal
- · Decision trees: well known interpretable models
- · Learning optimal tree is hard
- Greedy approach:
- Recursively split to maximize "performance gain"

- Interpretability an important goal
- · Decision trees: well known interpretable models
- · Learning optimal tree is hard
- · Greedy approach:
- Recursively split to maximize "performance gain"
- Issues:

- Interpretability an important goal
- Decision trees: well known interpretable models
- · Learning optimal tree is hard
- · Greedy approach:
- Recursively split to maximize "performance gain"
- Issues:
 - Can overfit easily!

- Interpretability an important goal
- Decision trees: well known interpretable models
- Learning optimal tree is hard
- Greedy approach:
- Recursively split to maximize "performance gain"
- Issues:
 - Can overfit easily!
 - Empirically not as powerful as other methods

Entropy =
$$-P(+) \log_2 P(+) - P(-) \log_2 P(-)$$

$$P(+) = \frac{0.1 + 0.1 + 0.3}{1} = 0.5, \quad P(-) = \frac{0.3 + 0.1 + 0.1}{1} = 0.5$$

28/32

Candidate Line: $X1 = 4(X1^*)$

Entropy of $X1 \le X1^* = E_{S(X1 < X1^*)}$

$$P(+) = \frac{0.1 + 0.1}{0.1 + 0.1 + 0.3} = \frac{2}{5}$$
$$P(-) = \frac{3}{-}$$

30/32

Entropy of $X_1 > X_1^* = E_{\mathcal{S}(X_1 > X_1^*)}$

$$P(+) = P(-) =$$

$$\mathsf{IG}(X_1 = X_1^*) = E_{S} - \frac{0.5}{1} \cdot E_{S(X_1 < X_1^*)} - \frac{0.5}{1} \cdot E_{S(X_1 > X_1^*)}$$