Award Number: DAMD17-98-1-8528

TITLE: Preclinical and Clinical Evaluation of Novel Agents for

Noninvasive Imaging of Prostate Cancer

PRINCIPAL INVESTIGATOR: Raymond E. Counsell, Ph.D.

Milton D. Gross, M.D. Doctor Richard L. Wahl

CONTRACTING ORGANIZATION: University of Michigan

Ann Arbor, Michigan 48109-1274

REPORT DATE: February 2002

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;

Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank		3. REPORT TYPE AND D		
	February 2002	Final (1 Aug 98		
4. TITLE AND SUBTITLE			5. FUNDING N	
Preclinical and Cli		i i	DAMD17-98	-1-8528
Agents for Noninvas	sive Imaging of Pro	state Cancer		
6. AUTHOR(S)				
Raymond E. Counsell, Ph	1.D.			
Milton D. Gross, M.D. Doctor Richard L. Wahl	•			
Doctor Richard L. Walli				
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)			G ORGANIZATION
			REPORT NU	MBEK
University of Michi				
Ann Arbor, Michigan	48109-1274			
				·
E-Mail: counsell@umich	n.edu			
9. SPONSORING / MONITORING A	GENCY NAME(S) AND ADDRESS(ES)		NG / MONITORING
		,	AGENCY R	EPORT NUMBER
U.S. Army Medical Resea	arch and Materiel Comma	ind		
Fort Detrick, Maryland	21702-5012			
11. SUPPLEMENTARY NOTES				
				•
12a. DISTRIBUTION / AVAILABILITY	STATEMENT			12b. DISTRIBUTION CODE
Approved for Public Re	lease; Distribution Unl	imited		
40. ADOTTO OT (14-1-1-1-200 W/s	edol			
13. ABSTRACT (Maximum 200 Wol			~	
Imaging procedures play an impor	tant role in the current managemen	of patients with prostate	cancer. Despit	e advances in
many of these methodologies, imp	rovements are still needed, especial gated under this grant represent a ne	ly in the area of Nuclear i	entical which h	as provided
	a in animal models. Two of the net	ver analogs, namely inivi-	404 and min-4.	Z, Well louid
l	watatine agent NM-1/4 in both the	e tat and mouse turnor mo	Mers. withe avo	lung at mgn
first pass clearance by the liver dis	played by NM-324. NM-404 has o	een approved by the Food	d and Drug Adr	ninistration as
an Investigational New Drug (INI	62,703).			
1				
				1E MUMPED OF DACES
14. SUBJECT TERMS	octic imaging pharmag	rkinatice		15. NUMBER OF PAGES 135
prostate cancer, diagnariadioiodinated agents,	ostic imaging, pharmace phospholipid ether and	aloas	·	16. PRICE CODE
1				
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFI	CATION	20. LIMITATION OF ABSTRACT
OF REPORT Unclassified	Unclassified	Unclassifi	_ed	Unlimited

Table of Contents

Cover 1
SF 298 2
Table of Contents 3
ntroduction 4
Body 5-15
Key Research Accomplishments 15
Reportable Outcomes 16
Conclusions 17
References N/A
Appendices 18
Appendix 1: Synthesis of NM-404 and NM-412 Appendix 2: Biodistribution of NM-404 in Sprague-Dawley Rats and Dosimetry Appendix 3: Biodistribution of NM-412 in Sprague-Dawley Rats and Dosimetry Appendix 4: Acute Toxicology of NM-404 in Rats and Rabbits Appendix 5: Letter from Food and Drug Administration and I.N.D. Number Appendix 6: Presentation and Publications

5. Introduction:

Nuclear Medicine imaging procedures play a major role in the management of patients with prostate cancer. Despite advances in these procedures, improvements are still needed. To fulfill this need, a procedure has to be discovered that will selectively target a radionuclide such as radioiodine to prostate tumors. Working with a number of radioiodinated phospholipid analogs synthesized in our laboratory, we demonstrated the remarkable capacity of several of these agents to be taken up and retained by a variety of tumors. One of these radiotracers, NM-324, displayed excellent imaging characteristics in the Walker 256 tumor model and nude mouse/human tumor xenografts models. Following the necessary toxicologic studies, NM-324 was approved for an initial trial in cancer patents. This study revealed that NM-324 was capable of imaging tumors in patients, but the high first pass by the liver severely compromised its clinical utility as a diagnostic radiopharmaceutical. Therefore, the design of second-generation candidates focused on those agents that would have a longer plasma half-life and thereby avoid excessive accumulation in the liver. These follow up studies employed Copenhagen rats bearing the Dunning R3327 prostate tumors and SCID mice with human PC-3 xenografts to evaluate the newer agents. These preliminary studies showed two agents, namely NM-404 and NM-412, to be significantly superior to NM-324 in both the rat and mouse tumor models. It was, therefore, the propose of the present study to prepare more of the target compounds and perform the necessary preclinical animal biodistribution, gamma camera imaging, and toxicology to warrant approval as an Investigational New Drug (I.N.D.) by the Food and Drug Administration. The ultimate goal would be a preliminary pharmacokinetic evaluation of the best agent in patients suffering from prostate cancer.

6. **Body:** To achieve the goals of this study it was necessary to synthesize sufficient amounts of pure NM-404 and NM-412. This was followed up by reviewing our previous method for radioiodination and experimenting with several modifications in order to improve the resulting specific activity of the final product. Once labeled with radioiodine, both NM-404 and NM-412were appropriately formulated and subjected to biodistribution analysis in prostate tumor bearing animals in order to demonstrate their ability to concentrate in the tumors at a level sufficient for external imaging by a gamma camera. It was also necessary to obtain tissue biodistribution data in normal animals in order to calculate the radiation dose to each of the tissues. Finally, acute toxicity of each agent was conducted by the Toxicology Center of the University of New York at Buffalo. All of this preclinical data is required by the Food and Drug Administration in order to receive approval as an Investigational New Drug (I.N.D).

SYNTHESIS OF NM-404 AND NM-412: The details for the synthesis of NM-404 and NM-412 is provided in Appendix 1 and illustrated in the accompanying scheme. NM-404 was chemically less complex than NM-412 and was accomplished first. The synthesis of NM-412 was accomplished by the second year of the project. The final products were purified by column chromatography and the structures verified by proton NMR and elemental analysis.

RADIOIODINATION OF NM-404 AND NM-412: These molecules were readily labeled with radioiodine by utilizing a procedure known as isotope exchange. We have employed this technique for over three decades and have primarily used pivalic acid as the exchange media. During the course of this study, however, a significant improvement in the specific activity of the final product was achieved by conducting the exchange in ammonium sulfate.

FORMULATION OF NM-404 AND NM-412: Following purification of each of the radiopharmaceuticals by High Pressure Liquid Chromatography, they were dissolved in ethanol and Tween 20 (0.1 ul/mg of compound). The ethanol was removed under vacuum and the residue dissolved in sterile water to give a final solution containing no more than 2-3% Tween 20. Sterilization was then achieved by filtration through a sterile 0.2 um filter unit. All solutions of the test compounds were prepared in this way for the animal experiments and toxicological studies.

BIODISTRIBUTION OF NM-404 AND NM-412 IN SCID MICE BEARING PC-3 PROSTATE TUMORS: Adult male SCID mice were injected subcutaneously with 1x10⁶ PC-3 tumor cells. Tumors took 6-8 weeks to develop. Approximately 3-5 uCi of the radiopharmaceutical was administered intravenously to each animal while they were under deep Metofane anesthesia. At specified times, tissues were isolated, weighed and counted in order to calculate the concentration of radioactivity in each tissue and to calculate the target to non-target ratios. The results for NM-404 are shown in Table 1. The amount of radioactivity appearing in the thyroid is a result of a minimal amount of in vivo deiodination of the radiopharmaceutical. This is readily blocked when animals are pretreated with Lugol's (KI) solution. The levels of radioactivity localizing in the prostate tumor following administration of NM-404 were extremely high whereas only a small amount appeared in the normal prostate. At three days, the tumor/kidney and tumor/liver ratios were greater than 6 and at day eight they were greater than 10.

The results of a similar study with radioiodinated NM-412 are outlined in Table 2. While tumor uptake and retention of radioactivity following administration of NM-412 was significant, at no time did levels reach that seen for NM-404. Moreover, the target/non-target ratios for NM-404 were superior to those for NM-412. On this basis, NM-404 was selected as the preferred candidate for preclinical workup and clinical follow up.

GAMMA CAMERA IMAGING OF TUMORED ANIMALS: Adult male SCID mice with PC3 prostate tumors were injected with approximately 30 uCi of either NM-404 or NM-412. The mice were imaged by gamma camera scintigraphy for a number days following administration of the test agent. Figure 1 shows the dramatic ability of NM-404 to image the tumor at 1 day. By day 4 the tumor is intensely visible whereas radioactivity in the other tissues has dissipated. The inability to visualize the thyroid in these studies emphasized the stability of NM-404 to in vivo deiodination. Figures 2a and 2b show the results with NM-412. In contrast with NM-404, the tumor was not readily visualized at day 1, but became readily apparent by day 3 and day 5. The imaging results were consistent with the tissue distribution data.

EXTRACTION OF TUMORS AND PLASMA: In order to characterize the radioactive component in the tumors and plasma, these tissues were extracted with butanol and an aliquot analyzed by thin layer chromatography. Extraction of radioactivity was essentially 100% under these conditions. Figure 3 demonstrates that the radioactivity present in the tumor was unchanged NM-404. No other radioactive metabolite could be identified in the tumor extracts. Similarly, Figure 4 shows the results of thin layer analysis of the plasma extract. At days 1 and 3, radioactivity in the plasma is present largely as unchanged NM-404, whereas by day 5 and day 8 possible metabolites appear to be present. No attempt was made to characterize these metabolites.

Biodistribution of ¹²⁵I-NM-404 in male SCID mice bearing PC-3 prostate cancer xenografts, expressed as % Dose/gm ± SEM and Target/Non-target Ratio, (n=4).

	1 Day	ıy	3 Day	ίλ	5 Day	ay	8 Day	>
and the second second	% Dose/gm	Target/Non-target	% Dose/gm	Target/Non-	% Dose/gm	Target/Non-	% Dose/gm	Target/Non-
Adrenal	7.825±0.776	1.17	4.651±0.403	2 83	4 750+0 513	2.00	200010101	larget
Blood	5 738+0 204	1 50	3 101+0 133	70.7	20001200	2.00	3.000±0.137	4.99
1	2.1.20-0.404	1.07	J.101±0.133	47.4	3.07/±0.094	2.8/	2.166±0.066	6.91
Duodenum	5.115±0.669	1.79	2.872±0.102	4.58	2.704 ± 0.134	89.9	1.668±0.054	8.97
Fat	2.393±0.327	3.82	1.255±0.207	10.47	1.109±0.095	16.28	0.868±0.108	17.23
Heart	2.805±0.102	3.26	1.453±0.042	9.05	1.383±0.056	13.06	0 973+0 030	15.37
Kidney	4.217±0.141	2.17	2.145±0.113	6.13	2.281±0.089	7.92	1 458+0 041	10.26
Liver	3.690±0.215	2.48	1.930±0.103	6.81	1.632±0.061	11.07	1 018+0 060	14.60
Lung	5.363±0.326	1.71	2.596±0.200	5.06	2 267±0 089	7.97	1 543+0 064	07.0
Lymph Node	27.962±6.224	0.33	12.489	1.05			יייייייייייייי	2.70
Muscle	0.795±0.026	11.50	0.572±0.042	22.98	0.489±0.025	36.95	0.401+0.029	37.33
Plasma	9.927±0.529	0.92	5.271±0.158	2.49	5.405±0.136	3.34	3 975±0 152	37.5
Prostate	2.605±0.148	3.51	1.399±0.270	9.40	1.963±0.254	9.20	1 406+0 061	10.64
Spleen	4.989±0.365	1.83	2.237±0.115	5.88	1.987±0.102	60.6	1.355±0.066	11.04
Thyroid	42.684±10.718	0.21	54.529±12.537	0.24	26.475±3.987	0.68	33,900±11,015	0 44
Tumor	9.144±0.686	1.00	13.142±0.401	1.00	18.062±0.807	1.00	14.956±0.633	1.00

TABLE 2

BIODISTRIBUTION OF ¹²⁵I-NM-412 IN MALE SCID MICE BEARING PC-3 XENOGRAFTS EXPRESSED AS % ADMINISTERED DOSE/GM (MEAN, N=4).

	DAY 1	DAY 3	Day 5	Day 8	DAY 14
ADRENAL	6.369	3.028	1.450	1.113	0.700
BLOOD	1.842	0.707	0.371	0.347	0.050
DUODENUM	2,999	1.369	0.615	0.392	0.138
FAT	0.997	1.240	0.422	0.398	0.451
HEART	1.783	0.667	0.326	0.238	0.109
KIDNEY	3.603	1.539	0.591	0.380	0.088
LIVER	4.285	1.438	0.787	0.866	0.279
LUNG	6.032	2.812	1.178	0.674	0.197
MUSCLE	0.527	0.307	0.156	0.114	0.060
PLASMA	8,507	1.253	0.368	0.350	0.070
PROSTATE	1.695	1.212	0.633	0.320	0.130
SPLEEN	4,269	1.686	0.587	0.698	0.175
THYROID	1.933	1.219	0.435	0.300	0.221
TUMOR	2.163	3.230	2.848 .	2.640	1.839

TUMOR TO NON-TARGET RATIOS OF NM-412 IN MALE SCID MICE BEARING PC-3 XENOGRAFTS.

Non-Target Tissue	Day_1	DAY.3	DAY 5	DAY 8	DAY 14
ADRENAL	0.34	1.07	1.96	2.37	2.63
BLOOD	1.20	4.57	7.68	7.61	36.84
DUODENUM	0.72	2.36	4.63	6.73	13.32
FAT	2.17	2.60	6.75	6.63	4.08
HEART	1.12	4.84	8.87	11.09	16.91
KIDNEY	0.60	2.10	4.82	6.94	20.96
LIVER	0.50	2.25	3.62	3.05	6.59
LUNG	0.36	2.16	2.42	3.91	9.34
MUSCLE	4.11	10.52	18.27	23.12	30.64
PLASMA	0.24	2,58	7.74	7.55	26.12
PROSTATE	1.28	2.67	4.50	8.26	14.16
SPLEEN	0.51	1.92	4.85	3.78	10.49
THYROID	1.12	2.65	6.55	8.81	8.32

HUMAN PROSTATE TUMOR PC-3 IN A SCID MOUSE. INJECTED WITH 125-I-NM-404

DAY

ZAVO

Approx, tumor size 0.75 x 1.5 x 0.5 cm. Mouse #4

6 MICE

6 MICE

TLC OF BUTANOL EXTRACTS OF SCID MICE TUMORS FROM SCID MICE WITH PC-3 PROSTATE CANCER XENOGRAFTS INJECTED WITH 125I-NM-404

TLC OF BUTANOL EXTRACTS OF SCID MICE PLASMA FROM SCID MICE WITH PC-3 PROSTATE CANCER XENOGRAFTS INJECTED WITH 125I-NM-404

BIODISTRIBUTION STUDIES AND RADIATION DOSIMETRY: In order to provide the necessary data for dosimetry calculations, it was necessary to conduct biodistribution studies of both NM-404 and NM-412 in male Sprague-Dawley rats. Animals were injected with NM-404 as described above and the tissues were analyzed for radioactivity after 1, 6, 24, 72 hours and 7 and 10 days. The biodistribution results, dosimetry and residence time calculations are shown in Appendix 2. Similarly the data for NM-412 are shown in Appendix 3. On the basis of the data obtained for NM-404, our health physicist predicted that NM-404 labeled with iodine-131 could be safely administered to humans along with thyroid blocking with KI solution at a dose not to exceed 2 mCi.

ASSESSMENT OF ACUTE TOXICITY IN ANIMALS: Dr. Paul Kostyniak and his group at the Toxicology Center of the University of New York at Buffalo examined both stable NM-404 and NM-412 for acute toxicity. These studies were conducted in rats and rabbits. One group of each species was administered the test agent while another group was administered the vehicle only. The final report for NM-404 is provided as Appendix 4. The report for NM-412 was essentially the same and can be furnished if desired. Dr. Kostyniak reported an absence of toxic manifestations for both agents at a dose that was greater than 1000 times that which would be administered to humans.

APPLICATION FOR APPROVAL FOR A PRELIMINARY CLINICAL EVALUATION OF NM-404 IN PROSTATE CANCER PATIENTS: In order to undertake a preliminary pharmacokinetic appraisal of NM-404 in prostate cancer patients, it was necessary to obtain approval from various committees in addition to the Department of Defense. With the departure of Dr. Richard Wahl, this preliminary study would be under the direction of Dr. Milton D. Gross, Professor of Radiology and Internal Medicine. Internally applications are required for the Clinical Research Center (CRC) of the University Hospital, the University's Institutional Review Board for Human Subject Research (IRB), and the Radioactive Drug Research Committee (RDRC). The latter committee serves as an arm of the Food and Drug Administration and oversees the use of radioactive tracers in human studies. A change in policy by this committee made it necessary for us to file an Investigational New Drug (I.N.D.) application with the F.D.A. prior to review by the RDRC. Such an application was submitted to the F.D.A. on May 29, 2001. In July 2001, Dr. Gross received a letter from the F.D.A. indicating that they had completed their 30-day safety review and concluded that he could proceed with the proposed clinical investigation, Appendix 5.

ASSESSMENT OF TOXICITY IN HUMANS: RDRC requires that a preliminary toxicity evaluation of the stable tracer be conducted in five normal volunteers at a dose 5 to 10 times the anticipated imaging dose to be administered to cancer patients. As requested, the Volunteer Registry Data Sheets for the five normal volunteers was sent to Michelle M. Von Reichenbach of the Medical Research Materiel Command on December 7, 2001 (see attached).

7. KEY RESEARCH ACCOMPLISHMENT

- Accomplished the synthesis of NM-404 and NM-412 in sufficient quantity to accommodate future research objectives.
- Developed an improved method for radiolabeling NM-404 and NM-412 with radioiodine, which led to products with substantially higher specific activity.
- By using SCID mice bearing the PC-3 prostate tumor, we were able to demonstrate by tissue analysis the remarkable ability of both NM-404 and NM-412 to concentrate in the tumor.
- Confirmed the tumor avidity of NM-404 and NM-412 by gamma camera scintigraphy. The excellent tumor targeting and the excellent images obtained with NM-404 underscored its potential for human tumor diagnosis.
- Completed the necessary animal studies to permit radiation dosimetric calculations for both NM-404 and NM-412.
- Successfully demonstrated that appropriately formulated NM-404 and NM-412 lacked toxicity in animals at a dose over one thousand times the anticipated dose to humans.
- Compiled and submitted and Investigational New Drug Application to the Food and Drug Administration for the study of NM-404 in human subjects.
- Received a positive response from the University of Michigan General Clinical Research Center for the purpose of conducting patient studies with NM-404 in the clinical facilities.
- Submitted applications to the University's Institutional Review Board and the Radioactive Drug Research Committee for approval to conduct a preliminary pharmacokinetic evaluation of radioiodinated NM-404 in patients with prostate cancer (pending).

8. REPORTABLE OUTCOMES:

Manuscripts, Abstracts and Presentations:

Zasadny KR, Longino MA, Fisher SJ, Counsell RE and Wahl RL. Predicted Dosimetry for 131-l NM-404, A Phospholipid Ether Agent for Tumor Imaging and Possible Therapy. *J Nucl Med* 40:39P, 1999.

Counsell RE, Longino MA, Pinchuk AN, Skinner RWS, Fisher SJ, Van Dort ME, Pienta KF and Wahl RL. Synthesis and Evaluation of a Radioiodinated Phospholipid Ether Analog (NM-404) for Diagnostic Imaging of Prostate Cancer. *Isotope Production and Applications in the 21st Century*, NR Stevenson, ed., World Scientific, Singapore, pp163-166, 2000.

Counsell RE, Longino MA, Pinchuk AN, Van Dort ME, Fisher SJ, Skinner RWS, Zasadny KR and Wahl RL. Radioiodinated Phospholipid Ethers and Analogs as Tumor Imaging Agents. Fourth International Symposium on Radiohalogens, Whistler, B.C., Canada, September 9-13, 2000.

Funding Applied for Based on Work Supported by this Award:

With the depletion of funds on the present award, application was made to several organizations to support the clinical phases of the study. They were as follows:

- Office of the Vice President for Research. In October, 2001 submitted an application entitled "Clinical evaluation of NM-404 for the Noninvasive Imaging of Prostate Cancer". Requested \$14,252 and \$8,000 were awarded.
- 2001 CaP CURE: In October, 2001 submitted an application with the same title as above was submitted. Requested \$100,000, which was denied.

9. CONCLUSIONS:

Progress toward our stated goals was excellent for the preclinical phases of our project. Studies with tumor-bearing animals clearly demonstrated the remarkable ability of NM-404 and NM-412 to selectively accumulate in the tumor. Such successful targeting in animals clearly demonstrated the potential of such agents for the noninvasive imaging of tumors in humans. Moreover, the high level of tumor uptake shown for NM-404 suggests its potential as a possible agent for therapy. The high specific activity that we have achieved in our radioiodination procedure means that the actual amount of drug that would be administered in a clinical dose is extremely small, and toxicologic studies have demonstrated these agents to be devoid of toxicity at doses much higher than those anticipated for humans.

Three factors played a key role in hampering the translation of our preclinical results to the clinic. The initial setback occurred when Dr. Richard Wahl, the original P.I. for the project, left to become Professor and Chairman of the Division of Nuclear Medicine at Johns Hopkins Medical School. Upon Dr. Wahl's departure, Dr. Counsell became overall Principle Investigator in November 2000. Fortunately, Dr. Milton Gross, Professor of Radiology and Internal Medicine, who had been associated with our research for many years was available to assume responsibility for the clinical phases of the project. A second setback occurred when the RDRC changed their previous policy to require approval from the F.D.A. for an Investigational New Drug. Obviously, if we had known this in advance, we would have been less optimistic with our time lines. Nonetheless, our application was approved by the F.D.A. and efforts turned to getting approval for the clinical studies from the various internal Hospital and University committees and the Department of Defense. Moreover, since grant funds were becoming depleted, application was made to other agencies to support the proposed preliminary clinical study in prostate cancer patients (see section 8). With such support and our view that the D.O.D. wished to see us complete what we had outlined in our proposal, we requested "no cost time extensions" from D.O.D. which were approved. The final surprise came in the form of an e-mail on 5/30/02 from Ms. Kathy A. Witman, D.O.D. Contract Specialist, informing us to not proceed with the patient study as it "involved more than minimal risk". An adequate explanation for this decision was not provided. Accordingly, we are submitting our final report and wish to thank the Department of Defense for their support of our research. Our gratitude will be appropriately indicated on all future publications citing this research.

10. APPENDICES:

Appendix 1: Synthesis of NM-404 and NM-412

Appendix 2: Biodistribution of NM-404 in Sprague-Dawley Rats and Dosimetry

Appendix 3: Biodistribution of NM-412 in Sprague-Dawley Rats and Dosimetry

Appendix 4: Acute Toxicology of NM-404 in Rats and Rabbits

Appendix 5: Letter from Food and Drug Administration and I.N.D. Number

Appendix 6: Presentations and Publications

Personnel Receiving Pay for the Research Effort:

Raymond E. Counsell, PhD Richard L. Wahl, MD Marc A. Longino, PhD Marcian Van Dort, PhD Denise Regan, BS Susan Korenchuk, BS Joanna Hooten Appendix 1: Synthesis of NM-404 and NM-412

SYNTHESIS OF NM-404 (15) AND NM-412 (30)

¹H-NMR spectra were recorded on an AM-360 Bruker spectrometer using Me₄Si as an internal standard. Melting points were measured using a Melt-Temp apparatus and are uncorrected. Thin-layer chromatography was performed using DC-Alufolien Kieselgel 60 F plates (E. Merck, Darmstadt, Germany). Visualization was achieved by UV light and/or charring after spraying with 5 % H₂SO₄ in ethanol. For flash chromatography, silica gel 32-63 mkm (Fisher Scientific) was used. All chemicals were obtained from Aldrich Chemical Co. (Milwaukee, WI) except anhydrous trimethylamine which was from Fluka. Elemental analysis results were within ±0.4% of the theoretical values.

p-Iodobenzyl alcohol (2)

To a solution of p-iodobenzoic acid (5g, 20 mmol) in anhydrous THF (5 ml) was added BH3-THF complex (40 ml of 1.0 M solution, 40 mmol) dropwise at 0°C under an argon atmosphere. The reaction mixture was allowed to warm to room temperature and stirred for 5 h, then was cooled again to 0°C and quenched with H2O. Ethyl acetate and additional water were added. The organic layer was separated, washed with water and dried (Na2SO4). Evaporation of solvent gave a white solid (4.7 g, 100 %) which was used in the next step without purification. Analytical sample was crystallized from hexane, mp 71-73°C. ¹H-NMR (CDCl₃): 7.69 and 7.12 (two dt, 2H each, Ar-H); 4.65 (s, 2H, CH₂).

p-Iodobenzyl iodide (3)

To a solution of p-iodobenzyl alcohol 2 (4.7 g, 20 mmol) and sodium iodide (6 g, 40 mmol; dried at t⁰>100°C) in anhydrous acetonitrile (40 ml) was slowly added chlorotrimethylsilane (5 ml, 40 mmol) with stirring. The mixture was stirred at room temperature for 1.5, then diluted with ether and washed successively with water, Na₂S₂O₃ solution and brine. The organic phase was dried over Na₂SO₄. Silica gel chromatography with hexane-ethyl acetate (gradient from 100:0 to 100:5) gave the product as yellowish crystals (6.56 g, 95%), mp 83-84°C (long needles from hexane). ¹H-NMR (CDCl₃): 7.62 and 7.12 (two dt, 2H each, Ar-H); 4.38 (s, 2H, CH₂).

Tetrahydro-2-(11-bromoundecyloxy)-2H-pyran (4)

A solution of 11-bromoundecanol (6 g, 24 mmol) and dihydropyran (3.3 ml, 36 mmol) in methylene chloride (20 ml) containing pyridinium p-toluenesulfonate (600 mg, 2.4 mmol) was stirred at room temperature for 5 h. The solution was diluted with hexane, washed with water and dried (Na₂SO₄). Chromatography in hexane-ether (150:5) afforded the product (7.93 g, 99%) as a clear oil. ¹H-NMR (CDCl₃): 4.59-4.56 (m, 1H, anomeric 2-CH of THP), 3.91-3.84 (m, 1H, 6-CH_{eq} of THP), 3.73 (dt, 1H, CH₄H_BOTHP), 3.54-

3.46 (m, 1H, 6-CH_{ax} of THP), 3.41 (t, 2H, CH₂Br), 3.39 (dt, 1H, CH_AH_BOTHP), 1.85 (quintet, 2H, BrCH₂CH₂), 1.82-1.67 (m, 2H, THP), 1.64-1.40 (m, 6H, CH₂CH₂OTHP and 4H of THP), 1.40-1.20 (m, 16H, (CH₂)8).

Tetrahydro-2-(3-bromopropyloxy)-2H-pyran (8)

Following the procedure described for the preparation of 4, the title compound was obtained from 3-bromopropanol (1 g, 7.2 mmol) in 98 % yield as a clear oil. 1 H-NMR (CDCl₃): 4.62-4.59 (m, 1H, anomeric 2-CH of THP), 3.90-3.83 (m, 1H, 6-CH_{eq} of THP), 3.88 (dt, 1H, CH_AH_BOTHP), 3.56-3.48 (m, 1H, 6-CH_{ax} of THP), 3.54 (t, 2H, BrCH₂), 3.52 (dt, 1H, CH_AH_BOTHP), 2.14 (quintet, 2H, BrCH₂CH₂), 1.84-1.66 (m, 2H, THP), 1.64-1.49 (m, 6H, 4H, THP).

Tetrahydro-2-(6-bromohexadecyloxy)-2H-pyran (11)

This compound was prepared from 6-bromohexanol (1.38 g, 7.62 mmol) in 92 % yield (clear oil) according to the general procedure described for 4. 1 H-NMR (CDCl₃): 4.59-4.56 (m, 1H, anomeric 2-CH of THP), 3.91-3.86 (m, 1H, 6-CH_{eq} of THP), 3.74 (dt, 1H, CH_AH_BOTHP), 3.55-3.47 (m, 1H, 6-CH_{ax} of THP), 3.41 (t, 2H, CH₂Br), 3.39 (dt, 1H, CH_AH_BOTHP), 1.87 (quintet, 2H, BrCH₂CH₂), 1.83-1.67 (m, 2H, THP), 1.64-1.37 (m, 10H, (CH₂)₃CH₂OTHP and 4H of THP).

Tetrahydro-2-(12-p-iodophenyldodecyloxy)-2H-pyran (5)

Grignard reagent was prepared from bromide 4 (2.715 g, 8.1 mmol) and approx. three-times excess of magnesium powder. Magnesium powder was suspended in THF (2.5 ml) and dibromoethane (0.05 ml) was added for activation. After 10 min, the THF solution was withdrawn by syringe and replaced with 5 ml of fresh THF. A solution of the bromide 4 in THF (20 ml) was added dropwise over 1h at room temperature. Then, a solution of Grignard reagent was transferred into a round-bottom flask via canula and cooled to -78°C. A solution of Li₂CuCl₄ in THF (0.5 ml of 0.12 mmol/ml solution, 0.06 mmol) was added to the Grignard reagent with stirring followed by a solution of p-iodobenzyl iodide 4 (3.2 g, 9.32 mmol) in THF (20 ml). The reaction mixture was allowed to warm to room temperature during 2 h and stirring was continued for additional 12 h. The reaction mixture was quenched with ammonium chloride solution and extracted with ethyl acetate. The extract was washed with water and dried (Na2SO4). The solvent was removed in vacuo and the residue was chromatographed on silica gel, first eluting with hexane-chloroform (8:2), then with hexane-THF (150:3) to give a clear oil (2.37 g, 62 %) ¹H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, Ar-H), 4.59-4.57 (m, 1H, anomeric 2-CH of THP), 3.91-3.84 (m, 1H, 6-CHeq of THP), 3.73 (dt, 1H, CH_AH_BOTHP), 3.54-3.46 (m, 1H, 6-CH_{ax} of THP), 3.38 (dt, 1H, CH_AH_BOTHP), 2.55 (t, 2H, ArCH2), 1.82-1.67 (m, 2H, THP), 1.64-1.45 (m, 8H, Ar-CH2CH2, CH2CH2OTHP and 4H of THP), 1.40-1.20 (m, 16H, (CH₂)₈).

12-p-(Iodophenyl)dodecanol (6)

A solution of THP ether 5 (4.068 g, 8.62 mmol) and pyridinium p-toluenesulfonate (216 mg, 0.86 mmol) in ethanol (20 ml) was stirred at 50°C for 3 h until TLC showed no starting material. The reaction mixture was diluted with water and extracted with ethyl acetate, washed with water, dried (Na₂SO₄) and evaporated. Silica gel chromatography of the residue in hexane-ethyl acetate (85:15) gave the product (3.01 g, 90 %) as a white solid, mp In cases when contamination by the aliphatic alcohol derived from Grignard reagent was revealed by NMR, the product was crystallized from hexane at 15°C (for alcohols 10 and 13 at 0°C). ¹H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, Ar-H), 3.64 (t, 2H, CH₂OH), 1.52-1.60 (m, 4H, ArCH₂CH₂ and CH₂CH₂OH), 1.35-1.22 (m, 16H, (CH₂)₈).

12-p-(Iodophenyl)dodecyl tosylate (7)

A solution of 12-p-(iodophenyl)dodecanol 6 (2.01 g, 5.18 mmol), tosyl chloride (1.09 g, 5.7 mmol) and N,N-dimethylaminopyridine (0.72 g, 5.9 mmol) in dichloromethane (15 ml) was stirred for 6 h. The clear reaction mixture was diluted with 10 ml of hexane and carefully poured directly onto the top of a silica gel column. The column was eluted with hexane-chloroform (1:1), then with chloroform to give the tosylate (2.69 g, 96 %) as a slightly colored solid, mp 39-41°C. ¹H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, IC₆H₄), 7.79 and 7.34 (two dt, 2H each, CH₃C₆H₄SO₃), 4.02 (t, 2H, CH₂OTs), 2.53 (t, 2H, Ar-CH₂), 2.44 (s, 3H, CH₃C₆H₄SO₃), 1.62-1.50 (m, 4H, Ar-CH₂CH₂ and CH₂CH₂OTs), 1.32-1.18 (m, 16H, (CH₂)8).

Tetrahydro-2-(18-p-iodophenyloctadecyloxy)-2H-pyran (12)

Magnesium powder (370 mg, 15.4 mmol) in THF (2.5 ml) was activated by addition of 1.2-dibromoethane (0.03 ml) and stirring for 10 min. After the reaction with dibromoethane had ceased, the solution was removed via syringe and replaced with fresh THF (5 ml). This procedure was followed by the addition of bromide 8 (1.373 g, 5.18 mmol) in THF (10 ml) over 1h at room temperature. When all the halide had been added, stirring was continued for additional 15 min whereupon the small aliquot was hydrolyzed and analyzed by TLC in hexane-THF (150:6) which revealed no presence of starting bromide. The Grignard reagent was transferred to a round bottom flask and cooled to -78°C. The organometallic reagent was stirred for 10 min at this temperature before a solution of Li₂CuCl₄ in THF (0.5 ml of 0.077 mmol/ml solution, 0.0385 mmol) was added followed by 12-p-(iodophenyl)dodecyl tosylate 7 (2.69 g, 4.96 mmol) dissolved in THF (10 ml). The reaction mixture was allowed to gradually warm to room temperature for 3 h and was kept at this temperature for additional 12 h before a saturated ammonium chloride solution was added to quench the reaction. The mixture was extracted with hexane, washed with water and dried (Na₂SO₄). The solvent was removed in vacuo and silica gel chromatography with hexane-THF (150:3) gave the product (1.77 g, 64 %) as a white wax, mp 26-27°C. 1H-NMR (CDCl3): 7.58 and 6.92 (two dt, 2H each, Ar-H), 4.59-4.57 (m, 1H, anomeric 2-CH of THP), 3.91-3.84 (m, 1H, 6-CH_{eq} of THP), 3.73 (dt, 1H, CHAHBOTHP), 3.54-3.46 (m, 1H, 6-CHax of THP), 3.38 (dt, 1H, CHAHBOTHP), 2.55 (t, 2H, ArCH2), 1.82-1.67 (m, 2H, THP), 1.64-1.45 (m, 8H, Ar-CH2CH2, CH2CH2OTHP and 4H of THP), 1.39-1.22 (m, 28H, (CH₂)₁₄).

Tetrahydro-2-(15-p-iodophenylpentadecyloxy)-2H-pyran (9)

This compound was obtained in a manner analogous to that of compound 12 from tosylate 7 (300 mg, 0.55 mmol) and bromide 8 (136 mg, 0.61 mmol). Silica gel chromatography as before gave the product (165 mg, 52 %). 1 H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, Ar-H), 4.59-4.57 (m, 1H, anomeric 2-CH of THP), 3.91-3.84 (m, 1H, 6-CH_{eq} of THP), 3.73 (dt, 1H, CH_AH_BOTHP), 3.54-3.46 (m, 1H, 6-CH_{ax} of THP), 3.38 (dt, 1H, CH_AH_BOTHP), 2.55 (t, 2H, ArCH₂), 1.82-1.67 (m, 2H, THP), 1.64-1.45 (m, 8H, Ar-CH₂CH₂CH₂CH₂OTHP and 4H of THP), 1.39-1.22 (m, 22H, (CH₂)₁₁).

15-(p-Iodophenyl)pentadecanol (10)

Compound 9 (150 mg g, 0.26 mmol) was converted to the desired product by the procedure described for 6. Alcohol 10 was obtained with a yield of 91 %, 1 H-NMR (CDCl₃): 7.57 and 6.92 (two dt, 2H each, Ar-H),3.64 (t, 2H, CH₂OH), 2.54 (t, 2H, Ar-CH₂), 1.60-1.55 (m, 4H, Ar-CH₂CH₂ and CH₂CH₂OH), 1.35-1.22 (m, 22H, (CH₂)₁₁).

18-(p-Iodophenyl)octadecanol (13)

By the procedure described for 6, THP ether 12 (1.4 g, 2.5 mmol) was converted to the desired product 13 with 85 % yield, mp 64-67°C (from hexane). 1 H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, Ar-H), 3.64 (t, 2H, CH₂OH), 2.54 (t, 2H, Ar-CH₂), 1.60-1.55 (m, 4H, Ar-CH₂CH₂ and CH₂CH₂OH), 1.35-1.20 (m 28H, (CH₂)₁₄).

18-(p-Iodophenyl)octadecyl methanesulfonate (17)

To a solution of 18-(p-iodophenyl)octadecanol 13 (150 mg, 0.317 mmol) and triethylamine (0.07 ml, 0.48 mmol) in methylene chloride (2 ml) was added methane sulfonyl chloride (0.03 ml, 0.38 mmol) at 0°C.

Stirring was continued for 40 min whereupon the reaction mixture was quenched by addition of water. The reaction mixture was diluted with chloroform and washed several times with NaHCO3 solution and water. The chloroform layer was dried (Na₂SO₄) and and the solvent was removed in vacuo. The residue was chromatographed with hexane - ethyl acetate (9:1). This afforded pure 17 (142 mg; 82 %), mp 61-62°C (from ethanol). ¹H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, Ar-H), 4.22 (t, 2H, CH₂OMs), 3.00 (s, 3H, CH₃S), 2.53 (t, 2H, Ar-CH₂), 1.75 (quintet, 2H, CH₂CH₂OMs), 1.60-1.5 (m, 2H, Ar-CH₂CH₂), 1.40-1.20 (m, 28H, (CH₂)₁₄).

15-(p-Iodophenyl)pentadecyl methanesulfonate (16)

By the above procedure, alcohol 10 (150 mg, 0.35 mmol) was converted to the desired product 16 (163 mg, 92 %), mp

¹H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, Ar-H), 4.22 (t, 2H, CH₂OMs), 3.00 (s, 3H, CH₃S), 2.53 (t, 2H, Ar-CH₂), 1.75 (quintet, 2H, CH₂CH₂OMs), 1.60-1.50 (m, 2H, Ar-CH₂CH₂), 1.40- 1.20 (m, 22H, (CH₂)₁₁).

1-O-[18-(p-Iodophenyl)octadecyl]-3-O-benzyl-1,3-propanediol (22)

To a solution of 3-benzyloxypropanol 18 (0.03 ml; 0.18 mmol) and 18-(p-iodophenyl) octadecyl methanesulfonate 17 (66 mg; 0.12 mmol) in dimethylformamide (3 ml) was added sodium hydride (8 mg of 60 % suspension in oil; 0.2 mmol) at room temperature. The reaction mixture was stirred for 12 hr, quenched with water and extracted with ethyl acetate. The extract was washed with brine, dried (Na₂SO₄) and the solvent was removed in vacuo. Column chromatography with hexane-ethyl acetate (gradient from 95:5 to 85:15) afforded 22 (60 mg; 81 %). ¹H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, Ar-H), 7.36-7.30 (m, 5H, C₆H₅), 4.50 (s, 2H, PhC*H*₂), 3.57 (t, 2H, alkyl-OC*H*₂(CH₂)₂O), 3.52 (t, 2H, C*H*₂OBn), 3.39 (t, 2H, C*H*₂O(CH₂)₃O), 2.53 (t, 2H, Ar-CH₂), 1.90 (quintet, 2H, OCH₂CH₂CH₂O), 1.65-1.55 (m, 4H, Ar-CH₂CH₂ and CH₂CH₂O(CH₂)₃O), 1.35-1.20 (m, 28H, (CH₂)₁4).

1-O-[15-(p-Iodophenyl)pentadecyl]-3-O-benzyl-1,3-propanediol (20)

This compound was synthesized as described above from mesylate 16 (85 mg, 0.17 mmol) and 3-benzyloxypropanol 18 (0.036 ml; 0.23 mmol). The compound 20 was obtained in a yield of 79 % (76 mg) after chromatographic purification. 1 H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, Ar-H), 7.36-7.30 (m, 5H, C₆H₅), 4.50 (s, 2H, PhCH₂), 3.57 (t, 2H, alkyl-OCH₂(CH₂)₂O), 3.52 (t, 2H, CH₂OBn), 3.39 (t, 2H, CH₂O(CH₂)₃O), 2.53 (t, 2H, Ar-CH₂), 1.89 (quintet, 2H, OCH₂CH₂CH₂O), 1.65-1.55 (m, 4H, Ar-CH₂CH₂ and CH₂CH₂O(CH₂)₃O), 1.40-1.20 (m, 22H, (CH₂)₁1).

1-O-[15-(p-Iodophenyl)pentadecyl]-2-O-methyl-3-O-benzyl-rac-glycerol

This compound was synthesized as described for 22 from mesylate 16 (92 mg, 0.18 mmol) and 1-O-benzyl-2-O-methyl-rac-glycerol 19 (43 mg, 0.22 mmol) to give 75 mg (68 %) of the product. ¹H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, Ar-H), 7.35-7.25 (m, 5H, C₆H₅), 4.55 (s, 2H, PhC H_2), 3.60-3.50 (m, 5H, CH₂CHCH₂), 3.45 (s, 3H, OCH₃), 3.42 (t, 2H, CH₂OCH₂CH), 2.53 (t, 2H, IC₆H₄C H_2), 1.60-1.50 (m, 4H, ArCH₂C H_2 and C H_2 CH₂O), 1.35-1.20 (m, 22H, (CH₂)₁₁).

$1\hbox{-} O\hbox{-} [18\hbox{-} (\hbox{p-Iodophenyl}) octade \hbox{cyl}]\hbox{-} 2\hbox{-} O\hbox{-} methyl\hbox{-} 3\hbox{-} O\hbox{-} benzyl\hbox{-} rac\hbox{-} glycerol$

This compound was synthesized as described for 22 from mesylate 17 (67 mg, 0.12 mmol) and 1-O-benzyl-2-O-methyl-rac-glycerol 19 (36 mg, 0.18 mmol) to give 62 mg (78 %) of the product. ¹H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, Ar-H), 7.35-7.25 (m, 5H, C₆H₅), 4.55 (s, 2H, PhCH₂), 3.60-3.50 (m, 5H, CH₂CHCH₂), 3.45 (s, 3H, OCH₃), 3.42 (t, 2H, CH₂OCH₂CH), 2.53 (t, 2H, IC₆H₄CH₂), 1.60-1.50 (m, 4H, ArCH₂CH₂ and CH₂CH₂O), 1.35-1.20 (m, 28H, (CH₂)₁₄).

1-O-[18-(p-Iodophenyl)octadecyl]-1,3-propanediol (26)

To a solution of benzyl ether 22 (413 mg, 0.66 mmol) and anisole (0.36 ml, 3.33 mmol) in methylene chloride (10 ml) was added powdered aluminum chloride (353 mg, 2.66 mmol) at room temperature. Stirring was continued for 2 h. The reaction mixture was quenched by dilution with 1N HCl, and aqueous layer was extracted with ethyl acetate. The organic layer was washed with NaHCO3 solution, dried (Na₂SO₄) and evaporated. The remaining residue was chromatographed with hexane-ethyl acetate (gradient from 95:5 to 80:20) to give the product (301 mg, 85 %). ¹H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, Ar-H), 3.78 (q, 2H, CH₂OH), 3.62 (t, 2H, OCH₂CH₂CH₂OH), 3.42 (t, 2H, CH₂O(CH₂)₃OH), 2.55 (t, 2H, Ar-CH₂, 2H), 1.83 (quintet, 2H, OCH₂CH₂CH₂OH), 1.60-1.50 (m, 4H, Ar-CH₂CH₂ and CH₂CH₂O), 1.35-1.20 (m, 28H, (CH₂)₁₄).

1-O-[15-(p-Iodophenyl)pentadecyl]-1,3-propanediol (24)

By the above procedure, compound **20** (76 mg, 0.13 mmol) was converted to the alcohol **24** (60 mg, 94 %). 1 H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, Ar-H), 3.78 (q, 2H, CH₂OH), 3.62 (t, 2H, OCH₂CH₂CH₂OH), 3.42 (t, 2H, CH₂O(CH₂)₃OH), 2.55 (t, 2H, Ar-CH₂, 2H), 1.83 (quintet, 2H, OCH₂CH₂OH), 1.60-1.45 (m, 4H, Ar-CH₂CH₂ and CH₂CH₂O), 1.35-1.20 (m, 22H, (CH₂)₁₁).

1-O-[18-(p-Iodophenyl)pentadecyl]-2-O-methyl-rac-glycerol (25)

Compound 21 (75 mg, 0.12 mmol) was converted to the desired alcohol, 25 (51 mg, 80 %), by the procedure described for 26. 1 H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each, Ar-H), 3.76 and 3.65 (two m, 2H, CH₂OH), 3.54 (m, 2H, CHCH₂OCH₂), 3.47 (s, 3H, OCH₃), 3.46-3.41 (m, 3H, CHCH₂OCH₂), 2.53 (t, 2H, Ar-CH₂), 1.60-1.50 (m, 4H, Ar-CH₂CH₂ and OCH₂CH₂), 1.35-1.20 (m, 22H, (CH₂)₁₁).

1-O-[18-(p-Iodophenyl)octadecyl]-2-O-methyl-rac-glycerol (27)

This compound was synthesized as described for 26 from the benzyl ether 23 (58 mg (0.09 mmol). The alcohol 27 was obtained in a yield of 80 % (40 mg). ¹H-NMR (CDCl₃): 7.58 and 6.92 (two dt, 2H each,

Ar-H), 3.76 and 3.65 (two m, 2H, CH_2OH), 3.54 (m, 2H, $CHCH_2OCH_2$), 3.47 (s, 3H, OCH_3), 3.46-3.41 (m, 3H, $CHCH_2OCH_2$), 2.53 (t, 2H, Ar- CH_2), 1.60-1.50 (m, 4H, Ar- CH_2CH_2 and OCH_2CH_2), 1.35-1.20 (m, 28H, $(CH_2)_{14}$).

18-(p-Iodophenyl)octadecyl phosphocholine (15)

2-Chloro-2-oxo-1,3,2-dioxaphospholane (0.025 ml; 0.27 mmol) was added to the stirred solution of 18-(p-iodophenyl)octadecanol 13 (115 mg; 0.24 mmol) in benzene (3 ml) containing triethylamine (0.042 ml; 0.29 mmol). Stirring was continued overnight. The precipitated triethylamine hydrochloride was filtered off

and the solvent was removed *in vacuo*. The residue was transferred into a pressure bottle. A solution of trimethylamine in acetonitrile (5 ml; 25 % w/v) was added. The bottle was sealed and heated at 75°C for 24 h. The acetonitrile was then evaporated and the residue was chromatographed on silica gel with chloroform-methanol (gradient from 10:0 to 5:5) followed by final elution with chloroform-methanol-water (65:25:4). After evaporation of the solvent, the product was precipitated by addition of acetone to give a white solid (130 mg; 84 %). ¹H-NMR (CDCl₃-CD₃OD-D₂O 1:1:0.3): 7.57 and 6.94 (two dt, 2H each, Ar-H), 4.24 (br. m, 2H, POCH₂CH₂N), 3.85 (q, 2H, CH₂POCH₂CH₂N), 3.61 (m, 2H, CH₂N), 3.21 (s, 9H, N(CH₃)₃), 2.55 (2H, t, Ar-CH₂), 1.65-1.55 (m, 4H, Ar-CH₂CH₂ and CH₂CH₂O), 1.35-1.25 (m, 28H, (CH₂)₁₄).

15-(p-Iodophenyl)pentadecyl phosphocholine (14)

The introduction of the phosphocholine side chain into 10 (232 mg, 0.54 mmol) was carried out as described for 15, yielding 14 (231 mg, 72 %) as an amorphous powder.

1H-NMR (CDCl₃-CD₃OD-D₂O 1:1:0.3): 7.57 and 6.94 (two dt, 2H each, Ar-H), 4.24 (br. m, 2H, POCH₂CH₂N), 3.85 (q, 2H, CH₂POCH₂CH₂N), 3.61 (m, 2H, CH₂N), 3.21 (s, 9H, N(CH₃)₃), 2.55 (2H, t, Ar-CH₂), 1.65-1.55 (m, 4H, Ar-CH₂CH₂ and CH₂CH₂O), 1.35-1.25 (m, 22H, (CH₂)₁₁).

1-*O*-[15-(p-Iodophenyl)pentadecyl]-1,3-propanediol-3-phosphocholine (28)

Alcohol 24 (60 mg, 0.12 mmol) was converted into the phosphocholine 28 (65 mg, 81 %) as described above for 15. ¹H-NMR (CDCl₃-CD₃OD-D₂O 1:1:0.3): 7.57 and 6.94 (two dt, 2H each, Ar-H), 4.26 (br. m, 2H, POCH₂CH₂N), 3.93 (q, 2H, CH₂POCH₂CH₂N), 3.61 (m, 2H, CH₂N), 3.54 (t, 2H, OCH₂CH₂CH₂OP), 3.21 (s, 9H, N(CH₃)₃), 2.55 (t, 2H, Ar-CH₂), 1.65-1.55 (m, 4H, Ar-CH₂CH₂ and CH₂CH₂O(CH₂)₃OP), 1.35-1.25 (m, 28H, (CH₂)₁₄).

1-O-[15-(p-Iodophenyl)pentadecyl]-2-O-methyl-rac-glycero-3 phosphocholine (29)

Using the procedure for synthesis of **15**, alcohol **21** (51 mg, 0.1 mmol) was converted to the desired product **29** (55 mg, 82 %). ¹H-NMR (CDCl₃-CD₃OD-D₂O 1:1:0.3): 7.57 and 6.95 (two dt, 2H each, Ar-H), 4.26 (br. m, 2H, POCH₂CH₂N), 3.95 and 3.86 (two m, 2H, CHCH₂OP); 3.62 (m, 2H, CH₂N), 3.60-3.50 (m, 3H, CHCH₂OCH₂), 3.47 (s, 3H, OCH₃), 3.46 (t, 2H, CHCH₂OCH₂), 3.21 (s, 9H, N(CH₃)₃), 2.55 (t, 2H, Ar-CH₂), 1.65-1.55 (m, 4H, Ar-CH₂CH₂ and CH₂CH₂O(CH₂)₃OP), 1.35-1.22 (m, 22H, m, (CH₂)₁₁).

1-O-[18-(p-Iodophenyl)octadecyl]-1,3-propanediol-3-phosphocholine (30)

The phosphocholine 30 was synthesized by analogous manner to that of 15 from the alcohol 26 (42 mg; 79 mmol) in 55 % yield (45 mg). ¹H-NMR (CDCl₃-CD₃OD-D₂O 1:1:0.3): 7.57 and 6.94 (two dt, 2H each, Ar-H), 4.26 (br. m, 2H, POCH₂CH₂N), 3.93 (q, 2H, CH₂POCH₂CH₂N), 3.61 (m, 2H, CH₂N), 3.54 (t, 2H, OCH₂CH₂CH₂OP), 3.21 (s, 9H, N(CH₃)₃), 2.55 (t, 2H, Ar-CH₂), 1.65-1.55 (m, 4H, Ar-CH₂CH₂ and CH₂CH₂O(CH₂)₃OP), 1.35-1.25 (m, 28H, (CH₂)₁₄).

1-O-[18-(p-Iodophenyl)octadecyl]-2-O-methyl-rac-glycero-3-phosphocholine (31)

The phosphocholine 31 was synthesized from the alcohol 27 (33 mg, 0.06 mmol) by the procedure described above for 15 in a yield of 75 % (32 mg). ¹H-NMR (CDCl₃-CD₃OD-D₂O 1:1:0.3): 7.57 and 6.95 (two dt, 2H each, Ar-H), 4.26 (br. m, 2H, POCH₂CH₂N), 3.95 and 3.86 (two m, 2H, CHCH₂OP); 3.62 (m, 2H, CH₂N), 3.60-3.50 (m, 3H, CHCH₂OCH₂), 3.47 (s, 3H, OCH₃), 3.46 (t, 2H, CHCH₂OCH₂), 3.21 (s, 9H, N(CH₃)₃), 2.55 (t, 2H, Ar-CH₂), 1.65-1.55 (m, 4H, Ar-CH₂CH₂ and CH₂CH₂O(CH₂)₃OP), 1.35-1.22 (m, 28H, m, (CH₂)₁₄).

References

- a) G. Fouquet and M. Schlosser (1974) Improved carbon-carbon linking by controlled copper catalysis. Angew. Chem. Int. Ed. 13, 82-83; b) M. Schlosser and H. Bossert (1991) The "two-fold reaction" benchmark applied to the copper catalyzed assembling of 1,ω-bifunctional hydrocarbon chains. Tetrahedron, 47, 6287-6292.
- 2. A. Akiyama, H. Hirofuji and S. Ozaki (1992) AlCl₃ N,N-dimethylaniline: a novel benzyl and allyl ether cleavage reagent. *Bull. Chem. Soc. Jpn.* **65**, 1932-1938.
- M.A. Rampy, T.S. Chou, A.N. Pinchuk, R.W.S. Skinner, M.D. Gross, S. Fisher, R. Wahl and R.E. Counsell (1995) Synthesis and biological evaluation of radioiodinated phospholipid ether analogs *Nucl. Med. Biol.* 22, 505-512.

PPTS

EtoH

PPTS

EtoH

Appendix 2: Biodistribution of NM-404 in Sprague-Dawley Rats and Dosimetry

NM-404 1hr Biodistribution in Male S-D Rats, n=3.

Z						•				٠								
% Dose/organ ± SEM	0.036 ± 0.002	25.964 ± 1.575	0.417 ± 0.047	1.462 ± 0.283	0.013 ± 0.001	2.544 ± 0.515	0.385 ± 0.004	1.124 ± 0.018	5.023 ± 0.223	1.180 ± 0.076	12.350 ± 2.273	23.312 ± 1.856	0.000 ± 0.000	6.349 ± 0.136	0.375 ± 0.048	0.000 ± 0.000	. 0.008 ± 0.001	0.000 ± 0.000
•		•		•				•		•		•						
					٠.	٠.				٠								
% Kg-dose/g ± SEM	0.142 ± 0.006	0.525 ± 0.032	0.120 ± 0.014	0.076 ± 0.015	0.010 ± 0.001	0.036 ± 0.007	0.133 ± 0.001	0.148 ± 0.002	0.111 ± 0.011	0.211 ± 0.014	0.027 ± 0.005	0.857 ± 0.068	0.032 ± 0.001	0.035 ± 0.001	0.143 ± 0.007	0.074 ± 0.005	0.106 ± 0.017	0.057 ± 0.006
% K					- . ·	•	-		•-	- - -	٠.	•	- •	•••	-		:	
	•									٠.	•						•	
% Dose/g ± SEM	0.544 ± 0.029	1.999 ± 0.082	0.459 ± 0.049	0.289 ± 0.055	0.036 ± 0.003	· 0.138 ± 0.031 ·	0.509 ± 0.012	0.565 ± 0.010	0.427 ± 0.052	0.803 ± 0.040	0.103 ± 0.017	3.263 ± 0.195	0.123 ± 0.004	0.135 ± 0.004	0.546 ± 0.029	0.282 ± 0.015	0.408 ± 0.072	0.216 ± 0.019
	•					••		•	•							•		
															•	•		
dom/me ± SEM	135.385 ± 7.797	497.461 ±18.618	113 891 ±10.203	71.647 ±12.461	9.075 ± 0.795	34.658 ± 8.294	126.931 ± 4.726	140.823 ± 5.596	106.893 ± 14.930	199.591 ± 5.641	25.461 ± 3.846	811,593 ±42,200	30.705 ± 1.252	33,565 ± 1,267	135.762 ± 6.450	70.192 ± 3.868	101.968 ±19.269	53.677 ± 3.468
	Adrenal	Blood	Rone Marrow	Duodenum	Eve	Fat	Heart	Kidnev	Liver	Lune	Muscle	Plasma	Prostate	Skin	Spleen	Testes	Thyroid	Bladder

NM-404 6hr Biodistribution in Male S-D Rats, n=3.

	dom/mg ± SEM	• `	% Dose/g ± SEM	% Kg-dose/g ± SEM	% Dose/organ ± SEM
Adrenal	114.576±13.659		0.454 ± 0.051	0.110 ± 0.012	0.028 ± 0.003
Blood	231.778 ± 9.400		0.921 ± 0.047	0.224 ± 0.013	11.067 ±0.634
Вопе Маггом	83.680 ±11.739		0.332 ± 0.045	0.080 ± 0.011	0.279 ± 0.037
Duodenum	103.310 ± 4.508		0.410 ± 0.019	0.100 ± 0.005	1.921 ± 0.087
Eve	12.729 ± 1.390		0.051 ± 0.005	0.012 ± 0.001	0.016 ± 0.002
Fat	$44:221 \pm 8.974$		0.175 ± 0.034	0.043 ± 0.008	3.012.±0.593
Heart	77.057 ± 3.064		0.306 ± 0.013	0.074 ± 0.003	0.215 ± 0.010
Kidney	119.489 ± 9.760		0.474 ± 0.037	0.115 ± 0.008	0.873 ± 0.062
Liver	97.588 ±16.219		0.387 ± 0.063	0.094 ± 0.015	3.946 ± 0.602
Lung	151.461 ±19.696		0.601 ± 0.075	0.146 ± 0.017	0.815 ± 0.096
Muscle	31.809 ± 3.219		0.126 ± 0.012	0.031 ± 0.003	13.914 ± 1.256
Plasma	403.114 ±12.600		1.599 ± 0.038	0.388 ± 0.010	10.557 ± 0.283
Prostate	46,654 ± 5,309 ·	•	0.185 ± 0.021	0.045 ± 0.005	0.000 ± 0.000
Skin	57.928 ±12.021	•	0.230 ± 0.048	0.056 ± 0.011	10.043 ± 2.041
Spicen	98.683 ±13.841		0.392 ± 0.054	0.095 ± 0.013	. 0.286 ± 0.031
Testes	68.325 ± 6.282		0.272 ± 0.029	0.066 ± 0.007	0000 ∓ 000°0
Thyroid	89.944 ±17.062		0.356 ± 0.065	0.086 ± 0.015	0.006 ± 0.001
Bladder	86.583 ± 5.787	•	0.344 ± 0.026	0.084 ± 0.006	0.000 ± 0.000
				•	

NM-404 24hr Biodistribution in Male S-D Rats, n=3.

	dpm/mg ± SEM	. % Dose/g ± SEM	% Kg-dose/g ± SEM	% Dose/organ ± SEM
enal	160.551 ±11.984	0.640 ± 0.056	0.153 ± 0.014	0.039 ± 0.004
Blood	198.436 ±21.638	0.787 ± 0.077	0.187 ± 0.013	9.245 ± 0.619
Sone Marrow	87.570 ± 5.774	0.349 ± 0.028	0.083 ± 0.007	0.288 ± 0.024
Ouodenum:	85.915 ±17.702	0.343 ± 0.072	0.081 ± 0.016	1.569 ± 0.304
	19.796 ± 1.254	0.079 ± 0.004	0.019 ± 0.001	0.025 ± 0.002
	36,500 ± 4.767	0.146 ± 0.022	0.035 ± 0.006	2.486 ± 0.446
Heart	67.633 ± 2.141	0.269 ± 0.008	0.064 ± 0.001	0.185 ± 0.004
ney	113.747 ± 5.928	0.453 ± 0.032	0.108 ± 0.010	0.824 ± 0.072
a.	69.516± 5.616	. 0.277 ± 0.027	0.066 ± 0.008	2.876 ± 0.356
80	142.638 ± 8.124	0.568 ± 0.041	0.136 ± 0.011	0.761 ± 0.063
scle .	32.697 ± 2.768	0.130 ± 0.010	0.031 ± 0.001	14.036 ± 0.558
ima ·	.339.933 ±39.206	1.348 ± 0.143	0.320 ± 0.023	8.698 ± 0.622
state.	76.262 ±12.695	0.304 ± 0.052	0.072 ± 0.011	0.000 ±.0.000
c	112.581±10.786	0.446 ± 0.035	. 0.106 ± 0.007	19.129 ± 1.294
cen	93.169 ± 2.529	0.371 ± 0.016	. 0.089.± 0.005	0.261 ± 0.051
tes	73.780 ±10.564	0.293 ± 0.040	0.069 ± 0.007	0.000 ± 0.000
roid	215.059 ±54.844	0.858 ± 0.221	0.203 ± 0.047	0.015 ± 0.004
dder .	147,558 ±14,536	0.586 ± 0.055	0.139 ± 0.008	0.000 ≠ 0.000

NM-404 72hr Biodistribution in Male S-D Rats, n=3.

	dpm/mg ± SEM	% Dose/g ± SEM	% Kg-dose/g ± SEM	% Dose/organ ± SEM
Adrenal	130.695 ± 6.602	0.518 ± 0.020	0.136 ± 0.004	0.035 ± 0.001
Blood	185.405 ± 11.442	0.734 ± 0.036	0.193 ± 0.003	9.554 ± 0.150
Bone Marrow	84.331 ± 4.550	· 0.334 ± 0.015	0.088 ± 0.003	0.304 ± 0.009
Duodenum	93,040 ± 7.019	0.368 ± 0.023	0.097 ± 0.003	. 1.867 ± 0.051
Eye	16.887 ± 1.165	0.067 ± 0.004	0.018 ± 0.000	0,023 ± 0,000
Fat ·	26.388 ± 3.171	0.104 ± 0.011	0.027 ± 0.002	1.930 ± 0.122
Heart	57.727 ± 2.063	0.229 ± 0.006	0.060 ± 0.002	0.174 ± 0.007
Kidney	92.732 ± 3.917	0.368 ± 0.015	0.097 ± 0.006	0.738 ± 0.049
Liver	50.896± 3.300	0.202 ± 0.011	0.053 ± 0.001	2.244 ± 0.137
Lung	126.766 ± 11.538	. 0.502 ± 0.039	0.131 ± 0.004	0.736 ± 0.024
Muscle	26.884 ± 0.294	0.107 ± 0.003	0.028 ± 0.002	12.848 ± 0.959
Plasma	307.746 ±23.657	1.219 ± 0.078	0.320 ± 0.007	- 8.697 ± 0.188
Prostate .	54.520 ± 4.055	0.216 ± 0.014	0.057 ± 0.003	0.000 ± 0.000
Skin	119,139.± 9,929	0.472 ± 0.033	! 0.124 ± 0.003	. ∶22.256 ± 0.536
Spieen	80.716 ± 6.038	0.320 ± 0.020	0.084 ± 0.001	0.198 ± 0.024
Testes	72.795 ± 4.327	0.288 ± 0.014	0.076 ± 0.003	0.000 ± 0.000
Thyroid	125.261 ± 10.922	0.497 ± 0.044	0.131 ± 0.014	0.010 ± 0.001
Bladder	114.843 ± 10.522	0.455 ± 0.036	0.119 ± 0.004	0.000 ± 0.000

NM-404 7d Biodistribution in Male S-D Rats, n=3.

% Dose/organ ± SEM.	0.032 ± 0.000	8.118 ± 0.362	0.286 ± 0.013	1.800 ± 0.043	0.025 ± 0.001	1.721 ± 0.080	0.153 ± 0.007	0.712 ± 0.018	2.076 ± 0.042	0.649 ± 0.018	10.795 ± 0.417	7.475 ± 0.384	· 0.000 ± 0.000	19.555 ± 0.757	0.164 ± 0.007	0.000 ± 0.000	0.016 ± 0.001	0.000 ± 0.000
% Kg-dose/g ± SEM	0.126 ± 0.002	0.164 ± 0.007	0.083 ± 0.004	0.093 ± 0.002	. 0.019 ± 0.001	0.024 ± 0.001	0.053 ± 0.002	0.094 ± 0.002	0.053 ± 0.001	0.116 ± 0.003	0.024 ± 0.001	0.275 ± 0.014	0.054 ± 0.004	0.109 ± 0.004	0.077 ± 0.002	0.079 ± 0.001	. 0.208 ± 0.014	0.108 ± 0.006
% Dose/g ± SEM	0.429 ± 0.005	0.557 ± 0.012	. 0.282 ± 0.019	0.318 ± 0.014	0.066 ± 0.002	0.083 ± 0.004	0.180 ± 0.006	0.319 ± 0.015	0.181 ± 0.008	0.395 ± 0.015	0.081 ± 0.004	0.934 ±.0.026	0.184 ± 0.009	0.369 ± 0.006	0.261 ± 0.007	0.270 ± 0.009	0.708 ± 0.054	0.367 ± 0.012 .
dpm/mg ± SEM	98.377 ± 2.514	127.774 ± 2.047	64.857 ± 5.236	73.035 ± 4.426	15.042 ± 0.762	19.024 ± 1.378	41.383 ± 1.796	73.368 ± 4.521	41.602 ± 2.542	90.641 ± 5.044	18.565 ± 1.207	213.990 ± 4.140	42.100 ± 1.466	84.685 ± 1.628	60.015 ± 2.752	62.066 ± 3.133		83.982 ± 1.284
	Adrėnal	Blood	Вопе Матгоw	Drodenum	Eye	Fat	Heart	Kidney	Liver	Lung	Muscle	Plasma	Prostate	Skin	Spleen	Testes	Thyroid	Bladder

NM-404 10d Biodistribution in Male S-D Rats, n=3

	dpm/mg.±SEM	% Dose/g ± SEM	% Kg-dsoe/g ± SEM	% Dose/organ ± SEN
Adrenal	88.900 ± 8.207	0.378 ± 0.040	0.116 ± 0.007	0.030 ± 0.002
Blood	114.208 ± 6.498	0.486 ± 0.035	0.150 ± 0.007	7,402 ± 0,340
Bone Marrow	59.916 ± 5.060	0.255 ± 0.024	0.078 ± 0.004	0.271 ± 0.014
Duodenum	66.450 ± 4.183	0.282 ± 0.020	0.087 ± 0.002	1.675 ± 0.048
Eye .	13.487 ± 0.774	· 0.057 ± 0.003	0.018 ± 0.001	0.023 ± 0.001
Fat	24.100 ± 3.002	0.103 ± 0.014	0.032 ± 0.004	2.234 ± 0.264
Heart	35,233 ± 2,163	0.150 ± 0.011	0.046 ± 0.002	0.133 ± 0.005
Kidney	70.284 ± 3.702	0.299 ± 0.020	0.092 ± 0.003	0.699 ± 0.022
Liver	37.548 ± 3.360	0.160 ± 0.016	0.049 ± 0.003	2.062 ± 0.052
Lung	84.354 ± 1.710	0.358 ± 0.009	0.111 ± 0.006	0.621 ± 0.034
Muscle	18.204 ± 1.051	0.077 ± 0.005	0.024 ± 0.002	10.904 ± 0.983
Plasma	188,205 ±10.392	0.800 ± 0.056	0.246 ± 0.009	6.698 ± 0.239
Prostate	39.008 ± 2.255	0.166 ± 0.012	0.051 ± 0.001	0.000 ± 0.000
Skin	83.979'± 3.314	0.357 ± 0.017	0.110 ± 0.001	19.782 ± 0.143
Spleen	53.956/± 5.370	0.230 ± 0.025	0.070 ± 0.005	0.173 ± 0.007
Testes	61.869 ± 3.959	0.263 ± 0.018	0.081 ± 0.003	0.000 ± 0.000
· Thyroid	131.373 ±13.766	0.557 ± 0.055	0.172 ± 0.016	0.013 ± 0.001
Bladder	80.858 ± 5.609	0.344 ± 0.028 .	0.106 ± 0.007	0.000 ± 0.000
	•			

MIRDOSE (IBM PC VERSION 3.1 - AUGUST 1995)

Radiation Dose Estimates for the REFERENCE ADULT for 131-I-53 NM-404

TARGET ORGAN	TOTAL DOSE mGy/MBq rad/mCi	PRIMARY CONTRIBUTOR	8	SECONDARY CONTRIBUTOR	8
24) Uterus 27) Total Body 28) EFF DOSE EQUIV	7.01E-02 2.59E-01 6.55E-02 2.43E-01 7.17E-02 2.65E-01 6.63E-02 2.45E-01 2.98E-01 1.10E+00 4.99E-01 1.85E+00 3.41E-01 2.08E+00 5.61E-01 2.08E+00 2.39E-01 8.86E-01 7.59E-02 2.81E-01 9.72E-02 3.60E-01 2.40E-01 8.89E-01 1.65E-01 6.12E-01 3.69E-02 1.37E-01 4.10E-01 1.52E+00 3.86E-01 1.43E+00 7.21E-02 2.67E-01 8.23E-01 3.04E+00 1.86E-02 2.54E-01 7.28E-02 2.69E-01 1.51E-01 5.57E-01	Muscle Muscle Muscle Muscle Muscle Muscle Muscle Muscle Heart Wall Kidneys Liver Lungs Muscle Muscle Muscle Red Marrow Muscle Spleen Testes Muscle Thyroid Muscle M	83.75 55.77 55.09 8894.56 8877.55 88894.56 8887.56 8897.56 8897.56 8897.56 8897.56 8897.56	Muscle Red Marrow Lungs Liver Red Marrow Red Marrow Liver Muscle Muscle Muscle Muscle Lungs Red Marrow Liver Muscle Lungs	8.7% 20.6% 310.1% 9.7% 10.5% 10.6% 1

RESIDENCE TIMES:

MIRDOSE 3.1 Source Files:

File Name MIRDOSEI.EXE DATALOGI.DAT MASTERI.DAT PIFFER.DAT FIFFER.DAT FIFFER.DAT TENYEAR.DAT TENYEAR.DAT ANDILITH.DAT ANDILITH.DAT HOMORG.DAT HOMORG.DAT HOMORG.DAT HOMORG.DAT ADSKEL FFSKEL TESKEL	File Size (bytes) 266810 3808 56440 72848 72848 72848 72848 72848 72848 72848 72848 72848 72848 72848 72848 72848 72848 72848 72848 72848 72848 72848	Date and Time 12/28/94 5:47:06 PM 3/30/94 10:30:00 AM 3/30/94 10:30:00 AM 11/11/94 9:14:02 AM 11/11/94 9:17:26 AM 11/11/94 9:17:44 AM 11/11/94 9:20:06 AM 11/11/94 9:20:06 AM 11/11/94 9:18:24 AM 11/11/94 10:13:13 AM 12/21/94 10:13:13 DA 12/21/94 10:13:13 AM 12/21/94 10:12:52 AM 12/21/94 10:12:52 AM 3/30/94 10:07:32 AM 10/27/94 11:49:18 PM 10/27/94 11:36:00 PM 10/28/94 12:22:44 AM 10/28/94 12:22:44 AM

Radiation Dose Estimates for the REFERENCE ADULT for I131 NM-404

Target Organ	rad/mCi	rad / 2mCi total dose		
Adrenals	2.27	4.54		
Brain	0.057	0.114		
Breasts	0.146	0.292		
Gallbladder Wall	0.367	0.734		
LLI Wall	0.259	0.518		
Small Intestine	0.243	0.486		
Stomach	0.265	0.530		
ULI Wall	0.245	0.490		
Heart Wall	1.10	2.20		
Kidneys	1.85	3.70		
Liver	1.26	2.52		
Lungs	2.08	4.16		
Muscle	0.886	1.772		
Ovaries	0.281	0.562		
Pancreas	0.360	0.72		
Red Marrow	0.889	1.778		
Bone Surfaces	0.612	1.224		
Skin	0.137	0.274		
Spleen	1.52	3.04		
Testes	1.43	2.86		
Thymus	0.267	0.534		
Thyroid	3.04	6.08		
Urine Bladder Wall	0.254	0.508		
Uterus	0.269	0.538		
Total Body	0.557	1.114		

•		•					
٠.٠							
	•					•	
				•	•	·	٠
. •					•		
, , , , , , , , , , , , , , , , , , ,	0.000					78	
	0.000 0.010 0.012 0.019 0.018		e l	1	► Need • I	300 380	
	0.000 0.005 0.005 0.003 0.003		·	250 300	: .	200 250 3	
	0.097 0.097 0.097 0.093		•	100 169 200		100 150	-
	0.000 0.001 0.001 0.003 0.003	•	•• ••••••	2	1,1,		· .
,	0.000 0.000 0.080 0.083 0.083 0.083	0.003584 M	. 50	9.05 0.05	8.0 0.6 0.5 0.5 0.5	o	
	0.002 0.032 0.013 0.013 0.003 0.007	6	•	0.000543	son son	0.50354	
	0.000 0.525 0.224 0.187 0.183 0.164	193.4 h	0.4487 16.3 g 7.313 ' 0.073 h	#2	0.5890 5400 g 3175.452 31.755 h 1.874 rad/mCl	<u> </u>	
-	0.006 0.006 0.012 0.014 0.004	T1/2 1-131:	nan %ID/g-h: organ mass: %ID-h: sidence time:	0.13652 kj	5	0.53971	٠
·	0.142 0.142 0.110 0.153 0.126 0.126	•	ref man %ID/g-h: organ mass: %ID-h: residence time:		ref man %ID/g-h: organ mass: %ID-h: residence time: Dose: ff: table 8, p334, Člo	A11=	•
•	24.0 72.0 6.0 72.0 68.0	73.7 Kg	0.1035 0.0011 0.0190 0.9895	319 653 4437 000 000 001 2437	0.4474 0.0001 0.0083 0.9997 0.9993 0.9993	000 1,486 000	
		ë '		0.94 1.15 0.94 secs 0.00 0.00		0.38 secs 0.38 secs 0.00 0.00 0.00	•
		iference mi	od obs: ons: ata:	¥ <u>\$6</u> €	ed obs: ons: lata:	als: for:	
	z 	Extrapolation to reference men:	Goodness-of-ift stat Weighted sum of squared obs: Sum of squared deviations: Standard deviation of data: Psougned:	Coeff of determination: Correlation: Model Selection Criterion: Weighting Factor: computation time: calculated lag time: sum of squared residuals: Model Selection Criterion: Weighting Factor:	blood Goodness-of-fit statisti Goodness-of-fit statisti Weighted sum of squared obs: Sum of squared deviation of data: r-squared: Coeff of determination: Correlation: Model Sefection Criterion:	Weighting Factor: computation lime: catculated lag time: sum of squared residuals: Model Selection Criterion: Weighting Factor:	
		Extrap	Goodness-of-fit stat Weighted sum of sq Sum of squared dev Standard deviation (-souared:	Coeff of determination: Correlation: Model Selection Criteria Weighting Factor: computation lime: calculated lag time: sum of squared residua Model Selection Criteria	blood Goodness-of-fit statisti Weighted sum of squar Sum of squared devlati Standard devlation of c requared: Coeff of determination: Correlation:	Weighting Factor: computation time: calculated lag time: sum of squared resi Model Selection Cri Weighting Factor:	
			ថ ≶លិលិរី	., , , , O 2 5 8 8 8 5 5			,
	•				٠	•	

.

	Brror	0.00	0.00	0.01	0.007	0.003	9 9	0.001
	- 1					0.124	•	
	1					0.003		•
	ostate				•	0.057		
	error pr					. 0.007		
		1	• .	•		0.320	•	
	•	0000	0.005	0.003	0.00	0.002	0.001	0.002
•	Ruscle	0000	0.027	0.031	0.631	0.028	0.024	0.024
	error	000	0.014	0.017	.0.01	0.004	0.003	0.006
	Pung	000	0.211	0.146	0.136	0.131	0.116	0.111
	error	0000	0.01	0.015	0.00	0.00	0.001	0.003
	IIVer	0000	0.111	0.094	990'0	0.053	0.053	0.049
	error	000	0.002	0.00	0.010	9000	0.002	0.003
	kidnev	0000	0.148	0.115	0.108	0.097	0.094	0.092
•	error	0000	0.0	0.003	000	0.00	0.002	0.002 0.092
	· heart	0000	0.133	0.074	0.064	0.0	0.053	0.0040 0.046
	am,	0000	0.0070	0.0080	09000	0.0020	0.0010	0.0040
		0000	0.036	0.043	0.035	0.027	0.024	0.032
								•

•							
POTO	000	0.00	900'0	0.008	0.00	9000	0.007
bladder	000	0.057	0.084	0.139	0.119	0.108	0.106
arror	0.00	0.017	0.015	0.047	0.014	0.014	0.016
thyrold	0.00	0.106	0.086	0.203	0.131	0.208	0.172
error	0.000	0.005	. 0.007	0.007	0.003	0.001	0.003
testes	0.000	0.074	990.0	0.069	0.076	0.079	0.081
error	0.000	0.007	0.013	0.005	0.00	0.002	0.005
spleen	0.000	0.143	0.095	. 0.089	0.084	0.077	0.070

.

force obes: 0.00494 organ mass: 1120 gs force obes: 0.00500 residence time: 3.441 hs force of 0.0050 residence time: 0.0000 residence	Condrose of the statistics	į		rer men		0.3064			•	•	•
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000		i .		000	In mass:	1120 g			•	• ####	
0.0000 0.9590 0.9590 0.9590 0.9590 0.9590 0.9590 0.0000 1.15 secs A(1= 0.083798 k(1)= 0.000169 0.0000	sum of squared obs:		0.0484		% 다구	343.114				- manoucht	·
0.00050 0.00050 0.00050 0.00000 1.15903 0.00000 1.15903 0.000000	quared deviations:	-	0.000	residen	rce time:	3.431 h				٠	•
### of the function of functio	deviation of data:		0.0050			•		.0.15			
### Control of the co	٠		0.9990				•		•		
### difference of the control of the	letermination:		0,9598					, ,			
actor: 1.15 accos A(1)= 0.083796 k(1)= 0.000169	n: Louting Orthorius	•	4 8802					verbe	1		
115 accs	reconstructions.			•) -	
ig time:	ion time.	1.15	3) 083796 k		0.000166	0.08			
1.8803 1	s lac time:		8		0.6771 k		2,9283		•	•	
1.8803 1	uared residuals:		0000								
Section Control Cont	lection Criterion:	 •	1.8803	•	-				100 150	250 300 350 400	
Deciding the case	g Factor.		0.0000				.•				
ad obs: 0.0480	E	•				٠					
and obs: 0.0480 organ mass: 0.000 organ mass: 0.0002 residence time: 0.000 h 0.11 organ mass: 0.0008 organ mass: 0.0008	s-of-fit statisti	8		refrman	%ID/g-h:	0.3351				•••	
ons: 0.0002 residence time: 0.000 h 0.1		-		go	an mass:		_	0.12			
atis: 0.0086 0.9953 0.9960 0.9944 0.0000 0.44 secs A(1)= 0.09326 k(2)= 1.6837 0.0000 0.44 secs A(1)= 0.09326 k(2)= 1.6837 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9971 0.9970	d sum of squared cost		25.5	object	10-118 10-118 10-118	3 8				- Curdenum	
0.9953 0.9864 0.9844 0.0984 0.00804 0.00804 0.00000 A[2]= -0.09326 K[2]= 1.6837 0.0000 0.0000 A[2]= -0.09326 K[2]= 1.6837 0.0000 0.0000 residence time: 0.000 h 0.9812 0.0000 0.27 secs A[1]= 0.018388 K[1]= 0.21305 0.0000 0.27 secs A[1]= 0.018388 K[1]= 1.73E-05 0.0000 0.27 secs A[1]= 0.01651 K[2]= 0.21305 0.0000 0.27 secs A[1]= 0.01651 K[2]= 0.21305 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	quarec deviations:	•	2000			3	_	2.	101 101	#	:
0.0890 0.9844 2.3310 0.0000 0.9844 2.3310 0.0000 0.44 secs A(1)= 0.09328 k(1)= 0.000187 0.0000			0000					٠	()		
0.44 secs A(1)= 0.093353 K(1)= 0.000187 0.04 0.44 secs A(1)= 0.093353 K(1)= 0.000187 0.02 0.0000 A(2)= -0.09326 K(2)= 1.6837 0.02 0.0000 Ref man %ID/g-h: 0.0683 cs: ref man %ID/g-h: 0.0083 cs: A(1)= 0.0016 %ID/g-h: 0.0000 0.0000 residence time: 0.000 h 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1300 0.0000 1.1300 0.0000 1.1300 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	dolerminoston.		0000		•			90.0			
0.0000 0.44 secs A(1)= 0.093353 K(1)= 0.000187 0.0000 A(2)= -0.09326 K(2)= 1.6837 0.0002 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000		٠.	0.9844			•		- AVAITEMENT OF			
0.0000 0.44 secs A(1)= 0.093353 k(1)= 0.000187 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.000000	election Criterion:		2.3310						•		•
als: 0.00000 A(2)= -0.09326 K(2)= 1.6837 0.02 on: 0.0000 A(2)= -0.09326 K(2)= 1.6837 0.02 on: 0.0000 A(2)= -0.09326 K(2)= 1.6837 0.02 cs: ref man %ID/g-h: 0.0683 on: 0.0000 residence time: 0.000 h long: 0.0000 residence time: 0.000 h on: 0.9471 condition: 0.0000 A(2)= -0.01551 K(2)= 0.21305 on: 0.0000	g Factor:	-	0.000		. •			9.0			
als: 0.0000 A[2]= -0.09326 K[2]= 1.6837	tion time:	4.0	Secs	A(1)=	0.093353	Ž T	0.000187				
als: 0.0002 on: 2.3310 con: 0.0000 con: 0.	nd lag time:		0.0000	A(2)=	-0.09326	- - - -	1.6837	0.02		•	
on: 2.3310 0.0000 0.0000 cs: ref man %ID/g-h: 0.0683 cgan mass: 0.00016 %ID-h: 0.000 h bons: 0.0032 chata: 0.0032 chata: 0.0032 chata: 0.0032 chata: 0.0032 chata: 0.0032 chata: 0.0000 color: 0.0000	quared residuals:	-	0.0002	-				•			•
cs: ref man %LD/g-h: 0.0683 red obs: 0.0006	election Criterion:		2.3310					.	100 150	250 300 350 400	
cs: ref man %LD/g-h: 0.0683 red obs: 0.0016	ng Factor:		0.000				٠				
cs: ref man %ID/g-h: 0.0683 red obs: 0.0016		-		•			•		•	. ·	
cs: ref man %ID/g+h: 0.0683 red obs: 0.0016 %ID-h: 0.000 h lons; 0.0000 residence time: 0.000 h 0.8970 0.8970 0.9471 fon: 0.0000 0.27 secs A[1]= 0.018389 k[1]= 1.73E-05 0.005 0.0000 A[2]= -0.01551 k[2]= 0.21305 0.0000 0.0000 A[2]= 0.001551 k[2]= 0.00151 k[2]= 0.001551 k[2]= 0.00											
0.0016 %ID-h: 0.000 0.0016 0.0016 0.0016 0.0018 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0000 0.0	ss-of-fit statisti	ß		ref mar	n %ID/g-h: oan mass:	0.0683	5			•	•
0.0000 residence time: 0.000 h 0.0032 0.9812 0.9812 0.9870 0.9471 1.1300 0.27 secs A[1]= 0.018388 K[1]= 1.73E-05 0.003 0.0000 A[2]= -0.01551 K[2]= 0.21305 0.0000 1.1300 0.0000	d sum of squared obs:		0.0016		% -1-01%		•	0.02			•
0.0032 0.9812 0.8970 0.9471 1.1300 0.27 secs A[1]= 0.018388 K[1]= 1.73E-05 0.005 0.0000 0.0000 1.1300 0.0000 0.0000	squared deviations:		0.000		ence time:				1. T. 1 L.	· - - - - - - - - - - - - -	
0.9812 0.8970 0.9471 1.1300 0.27 secs A[1]= 0.018388 K[1]= 1.73E-05 0.003 0.0000 0.0000 1.1300 0.0000 0.0000 0.0000	rd deviation of data:		0.0032								
0.9870 0.9471 0.09471 1.1300 0.0000 0.27 secs A[1]= 0.018388 K 1]= 1.73E-05 0.003 0.0000 A[2]= -0.01551 K 2]= 0.21305 0.0000 0.11300 0.0000 0.0000			0.9812					. a.o.s		•	٠.
0.9471 1.1300 0.0000 0.27 secs A[1]= 0.018388 K[1]= 1.73E-05 0.005 0.0000 A[2]= -0.01551 K[2]= 0.21305 0.0000 0.0000 0.0000 0.0000 0.0000	f determination:		0.8970							٠	
1.1300 0.0000 0.27 secs A(1)= 0.018388 M(1)= 1.73E-05 0.005 0.0000 A(2)= -0.01551 M(2)= 0.21305 0.0000 1.1300 0.0000	tion:		0.9471	•				*Kg*ID/90.01			
0.0000 0.27 secs A(1)= 0.018388 k(1)= 1.73E-05 0.005 siduals: 0.0000 A(2)= -0.01551 k(2)= 0.21305 siduals: 0.0000 1.1300 0.0000	Selection Criterion:		1.1300				•				
si 0.27 secs A(1}= 0.018388 k(1}= 1.73E-05 0.005 1.73E-05 0.005 1.73E-05 0.000 1.73E-05 0.000 1.73E-05 0.0000	ng Factor:		0.0000								
0.0000 A[2]= -0.01551 K[2]= 0.21305	ation time:	0.2	7 secs	A(T)	0.018388	- K	1.73E-05	. 0.005			•
0.0000 1.1300 0.0000	led lag time:		0.000	A ZF	-0.01551	전2	0.21305				
1.1300 6 60 100 150 200 0.0000	squared residuals:		0.000					•			
	Selection Criterion:		1.1300	<u>.</u>				•	100 150	0 250 300 350 400	
	fing Factor:		0.000		•						

,

٠.

	0 80 100 150 200 250 300 350 400	o production of the state of th	S 50 100 150 200 250 300 350 400	255 250 2015 2016 2016 2016 2016 2016 2016 2016 2016	0 50 100 130 200 250 300 350 400
ref man %ID/g-h: 0.1981 organ mass: 1910 g 0.12 %ID-h: 378.338 o.12 5 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	A[1]= 0.055087 k[1]= 0.000412 A[2]= 0.059843 k[2]= 0.069991	ref man %iD/g-h; 0.4167 organ mass: 1000 g o.3 %iD-h; 418.852 o.3 %iD-h; 416.852 o.3 0.2 g o.2 o.3 o.2 o.3	A(1)= 0.13955 k(1)= 0.000997 A(2)= 0.11307 k(2)= 0.457 ref man %ID/g-h: 0.0870	organ meass: 51800 g %1D-h: 4504.819 % 6. % 6. % 6. % 6. % 6. % 6. % 6. % 6	4.2313 0.0000
Weighted sum of squared obs: 0.00335 Sum of squared deviations: 0.0000 Standard deviation of data: 0.0015 r-squared: 0.0015 Coeff of determination: 0.9999 Correlation: 0.9994 Model Selection Criterion: 5.3077 Which salection Criterion: 5.3077	0.66 se e: ssiduals: Afferion:	Weighted sum of squared obs: Weighted sum of squared obs: Standard deviations of data: -squared: Coeff of determination: Correlation: Model Selection Criterion: 5.5489 Woods Selection Criterion: 5.5489	o.38 se siduals: riterion:	Weighted sum of squared obs: Sum of squared deviations; Standard deviation of data: 10,0000 Standard deviation of data: 10,9993 Coeff of determination: 10,9974 Model Selection Criterion: 10,0000 Computation time: 10,0000 Sum of squared has fitne: 10,0000	

				•							-								•	•		٦	•	•		•					•									•	•	•			•		
			H-Eussie							ー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		•	•	150 300 350 400	1	-						 				•			1	150 200 250 350 400			.4	Tracks and			•	11111	· · · · · · · · · · · · · · · · · · ·							150 250 250 300 350 400	· ·
•			••	• • •				4		÷			,	50 100		•			٠٠٠								ابي.			50 100		•						1	· 	-	•		ب		•	. 62	
		0.2		-	0.15		,	. 0.	p.		0.08			•	•	٠.,			5		0.08		90.0	*KgriDig	0.04		. 00								0.25		0.2	•	0.15	*XXX*TDV		•	•	60.0		-	
	:								•		0.001075	0.49571										•	•	•		••	1.51E-12	5.9149				•		5 0	ì	E					•	•	5.98E-05	0.13291			٠
	0.2680	5	•	0.490 h				٠				K(2)=-			•		0.2807		₹.	0.110 h		٠					0.0742 k(1)⊨	-0.0741 k[Z]=			•		: 0.6515	: 20.7 g	-	i: 0.135 h					,		9.成1上	-0.14366 K[Z]=			
	ref man %ID/g-h:			residence time:							0.091237	0.085137 K[2]=					ref man %ID/g-h:	organ mass:	%ID4:	residence time:							0.0742	-0.0741	_		.,		ref man %ID/g-h:	organ mass:	%ID-h:	esidence time						_	0.1787	-0.1436	_		
_	Te Te	-			9000	0000	26660	86660	6.8592	0000	A(1)=	8	0.0000	6.6592	0.000	,	n ier.		0.0332	_	0.0075	0.9950	0.9657	0.9827	2.2310	8	A[1]⊧	0.0000 A[2]=	0.0002	2.2310	. 0000.	•	Ţ e L	•	0.1499	_	0.0546	0.9404	0.7257	0.8519	0.1506	0.0000	1 A(1)=	0.0000 A[Z]=	0.0089	0,1506	0.0000
•	8			Ö	ŏ.	<u>.</u>	80	60	6.8	Ö	0.38 secs	0.0	O.O	. 6.6	0.0				0.0	0.0	0.0	0.9	9.0	0.9	2.2		1.21 secs		ö	22			ij		ö	ö	ö	Ö	Ö	ö	ó	ö	0.55 secs	Ó	Ö	Ö	Ö
	Goodness-of-fit statisti		Weignted sum of squared oos:	Sum of squared deviations:	Standard deviation of data:	r-squared:	· Coeff of determination:	Correlation:	Model Selection Criterion:	Weighting Factor:	computation time:	calculated lag time:	sum of squared residuals:	Model Selection Criterion:	Weighling Factor:	testes	Goodness-of-fit statistics		Weighted sum of squared obs:	Sum of squared deviations:	Standard deviation of data:	r-squared:	Coeff of determination:	· Correlation:	Model Selection Criterion:	Weighting Factor:	computation time:	calculated lag time:	sum of squared residuals:	Model Selection Criterion:	Weighting Factor:	thyrold	Goodness-of-fit statistic	•	Weighted sum of squared obs:	Sum of squared deviations:	"Standard deviation of data:	r-squared:	Coeff of determination:	Correlation:	Model Selection Criterion:	Weighting Factor:	computation time:	calculated lag time:	sum of squared residuals:	Model Selection Criterion:	Weighting Factor:

Appendix 3: Biodistribution of NM-412 in Sprague-Dawley Rats and Dosimetry

TABLE 1. BIODISTRIBUTION OF ¹²⁵I-NM-412 IN 2% TWEEN 20/STERILE WATER IN MALE SPRAGUE-DAWLEY RATS FOLLOWING I.V. INJECTION.

ABLE 1. BIODISTRIBUTION OF	NI 71 + NN-1	Z% I WEEN ZU/STERILE WATER IN MALE SPRAGUE-DAWLEY RATS FOLLOWING I.V. INJECTION	GUE-DAWLEY RATS FOLLOWING I.V	. INJECTION.
NM-412 1 Day (n=4)	dpm/mg	% dose/gm ± SEM	% kg-does/gm ± SEM	% dose/organ ± SEM
Adrenal	122.649 ±9.922	0.939 ± 0.092	0.219 ± 0.020	0.056 ± 0.005
Blood	30.400 ±1.536	0.233 ± 0.017	0.054 ± 0.003	2.689 ± 0.169
Bone Marrow	50.994 ± 3.887	0.390 ± 0.036	0.091 ± 0.008	0.316 ± 0.027
Duodenum	46.064 ± 4.552	0.354 ± 0.044	0.082 ± 0.009	1.591 ± 0.174
Eye		0.042 ± 0.008	0.010 ± 0.002	-
Fat		0.145 ± 0.021	0.034 ± 0.005	2,410 + 0.360
Heart	21.540 ± 1.503	0.164 ± 0.012	0.038 ± 0.003	. +
Kidney	57.235 ± 3.774	0.438 ± 0.036	0.102 ± 0.008	0.778 + 0.059
Liver	49.792 ± 2.917	0.380 ± 0.022	0.089 ± 0.006	3 880 + 0 405
Lung		0.487 ± 0.058	0.114 ± 0.014	0 639 + 0 078
Muscle	10.650 ± 0.876	0.081 ± 0.008	0.019 ± 0.002	8 644 + 0 607
Plasma		0.326 ± 0.027	0.076 ± 0.005	2 073 + 0 140
Prostate	20.251 ± 1.490	0.155 ± 0.014	0.036 + 0.003	00000
Skin	27.142 ± 2.986	0.207 ± 0.023	0.049 ± 0.006	8 733 ± 1 008
Spleen	55.069 ± 2.844	0.420 ± 0.025	9000 + 8600	4 4
Testes	15.503 ± 1.356	0.119 ± 0.012	0.028 ± 0.000	н н
Thyroid	4624.799 ± 218.561	35.321 + 2.015	8 262 ± 0.203	н.
Bladder	31.393 ± 3.050	0.241 ± 0.028	0.056 ± 0.006	0.000 ± 0.036
				1
NM-412 3 Day (n=4)				
Adrenal	89.169 ±5.668	0.687 ± 0.030	0.172 ± 0.005	0.044 + 0.001
Blood	12.081 ± 0.396	0.094 ± 0.004	0.023 ± 0.001	1 150 + 0 063
Bone Marrow	31.589 ± 1.256	0.244 ± 0.011	0.061 ± 0.003	0.000 ± 0.000
Duodenum	22.852 ± 1.413	0.176 ± 0.009	0.044 ± 0.002	0.2.2.1 0.003 0.852 + 0.048
Eye	4.429 ± 0.227	0.034 ± 0.001	0000 ± 600.0	0.032 1.048
Fat	20.378 ± 2.393	0.157 ± 0.018	0.039 ± 0.005	1 +
Heart	9.448 ± 0.398	0.073 ± 0.004	0.018 ± 0.001	0.053 + 0.003
Kidney	32.284 ± 0.844	0.249 ± 0.004	0.062 ± 0.002	0.474 + 0.012
Liver	23.407 ± 0.637	0.181 ± 0.007	0.045 ± 0.002	1.843 ± 0.058
Lung	34.258 ± 0.999	0.265 ± 0.013	0.066 ± 0.003	I +H
Muscle	5.213 ± 0.145	0.040 ± 0.002	0.010 ± 0.001	-
Plasma	17.059 ± 0.787	0.132 ± 0.007	0.033 ± 0.002	0.899 ± 0.052
Prostate	13.147 ± 1.110	0.101 ± 0.007	0.025 ± 0.002	0.000 ± 0.000
SKI	21.706 ± 1.855	0.168 ± 0.015	0.042 ± 0.003	- ++
Spieen	29.845 ± 1.874	0.230 ± 0.013	0.058 ± 0.003	0.127 ± 0.005
	12.930 ± 0.385	H	0.025 ± 0.000	0.000 ± 0.000
I nyrold	Z896.9Z/ ± 90.44/	22.371 ± 0.307	+1	++
טווומיץ טומעטקי	H	0.170 ± 0.007	0.043 ± 0.002	0.000 ± 0.000

NM-412 5 Day (n=4)	dpm/mg	% dose/gm ± SEM	% kg-does/gm ± SEM	% dose/organ ± SEM
Adrenal	61.839 ± 5.512 7.224 ± 1.305	0.446 ± 0.033	0.089 ± 0.006	0.023 ± 0.002
Bone Marrow	20.064 ± 1.238	0.145 ± 0.008	0.010 ± 0.002 0.029 ± 0.001	0.511 ± 0.083
Duodenum	16.391 ± 1.940	0.118 ± 0.013	0.023 ± 0.002	0.453 ± 0.045
Eye	4.448 ± 0.625	0.032 ± 0.004	0.006 ± 0.001	0.008 ± 0.001
Tat	25.814 ± 1.983	0.187 ± 0.016	0.037 ± 0.003	2.644 ± 0.221
Kidney	0.462 ± 0.443 25 004 + 1 535	0.047 ± 0.002	0.009 ± 0.000	0.027 ± 0.001
Liver	22.883 + 1.663	0.167 + 0.006	0.03/ ± 0.00 0.03 ± 0.000	0.283 ± 0.010
Lung	24.734 ± 3.568	0.177 + 0.022	0.035 ± 0.002	1.002 ± 0.059
Muscle	4.967 ± 0.976	0.036 ± 0.008	0.007 ± 0.002	3.308 ± 0.023
Plasma	8.581 ± 2.476	0.061 ± 0.016	0.012 ± 0.003	0.330 ± 0.091
Prostate	9.205 ± 0.897	0.067 ± 0.007	0.013 ± 0.001	0.000 ± 0.000
Skin	20.517 ± 0.638	0.148 ± 0.004	0.030 ± 0.001	5.335 ± 0.208
Spleen	22.204 ± 1.707	0.161 ± 0.012	0.032 ± 0.002	0.072 ± 0.003
Testes	12.848 ± 0.689	0.093 ± 0.003	0.018 ± 0.001	0.000 ± 0.000
Thyroid	3523.361 ± 240.666	#	H	0.381 ± 0.024
Unnary Bladder	15.425 ± 1.817	0.111 ± 0.011	0.022 ± 0.002	0.000 ± 0.000
NM-412 8 Day (n=4)				
Adrenal	29.256 ± 1.685	0.259 ± 0.017	0.070 ± 0.003	0.018 ± 0.001
Blood	1.798 ± 0.108	0.016 ± 0.001	0.004 ± 0.000	0.215 ± 0.014
Bone Marrow	6.721 ± 0.963	0.059 ± 0.009	0.016 ± 0.002	0.056 ± 0.007
Drodenum	4.901 ± 0.284	0.043 ± 0.002	0.004 ± 0.001	0.006 ± 0.001
Fat	22.953 ± 1.155	0.203 ± 0.009	0.055 ± 0.003	3.925 ± 0.244
Heart	1.943 ± 0.144	0.017 ± 0.001	0.005 ± 0.000	0.013 ± 0.001
Maney	7.156 ± 0.619	0.063 ± 0.006	0.017 ± 0.001	0.130 ± 0.009
Liver	0.437 ± 0.207	0.057 ± 0.002	0.016 ± 0.001	0.588 ± 0.019
Lung	7.155 ± 0.909	0.063 ± 0.009	0.017 ± 0.002	0.096 ± 0.011
Muscie	1.201 ± 0.160	0.011 ± 0.002	0.003 ± 0.000	1.311 ± 0.159
Plasma	2.328 ± 0.114	0.021 ± 0.001	0.006 ± 0.000	0.153 ± 0.009
Prostate	3.238 ± 0.370	0.028 ± 0.003	0.008 ± 0.001	0.000 ± 0.000
Skin	7.579 ± 0.844	0.067 ± 0.007	0.018 ± 0.001	3.255 ± 0.260
Spieen	7.808 ± 0.804	0.069 ± 0.008	0.019 ± 0.002	0.039 ± 0.002
lestes	6/8/0 ± 6/8/1	0.060 ± 0.004	0.016 ± 0.001	0.000 ± 0.000
Inyroid	15/1.119 ± 330.362	13:693 ± 2.508	3.741 ± 0.717	0.281 ± 0.054
Urinary Bladder	4.266 ± 0.304	0.038 ± 0.003	0.010 ± 0.001	0.000 ± 0.000

NM-412 14 Day (n=4)	dpm/mg	% dose/gm ± SEM	% kg-does/gm ± SEM	% dose/organ ± SEM
Adrenal	16.812 ± 1.826	0.149 ± 0.011	0.041 + 0.002	000 0 + 000 0
Blood	0.646 ± 0.085	0.006 ± 0.001	200.0 ± 0.00 0	0.00 H 0.000
Bone Marrow	4.763 ± 0.802	0.042 + 0.005	0.001 + 0.000	210.0 ± 0.0.0
Duodenum	1.787 ± 0.288	0.016 + 0.002	- 000 C + 100 C	0.040 ± 0.003
Еуе	0.869 ± 0.107	0.008 + 0.004	0000 H + 000 C	0.083 ± 0.006
Fat	15.230 ± 1.599	0 135 + 0 007	0.002 # 0.000	0.003 ± 0.000
1007	0.000	100'0 T 001'0	COOT I COO	2.651 ± 0.184
	9.9.0 ± 0.99	0.009 ± 0.000	0.002 ± 0.000	0.007 ± 0.000
Kidney	2.471 ± 0.443	0.022 ± 0.003	0.006 ± 0.001	0.045 + 0.005
Liver	3.116 ± 0.192	0.028 ± 0.002	0.008 + 0.001	2000 H 2000 C
Lung	2.406 ± 0.102	0.001 + 0.000		210.0 ± C62.0
Miscle	0 747 ± 0 489	00000 - 10000		0.033 ± 0.001
	0.7.17 ± 0.100	0.007 ± 0.002	0.002 ± 0.001	0.823 ± 0.241
Plasma	0.677 ± 0.069	0.006 ± 0.000	0.002 ± 0.000	0.045 + 0.004
Prostate	1.156 ± 0.223	0.010 ± 0.001	0000 + 0000	1000 d + 000 d
Skin	4 268 + 0 573	FOU O + 850 O		0,000 H 0,000
10010		POOLD H DOOLD	200.0 ± L10.0	1.911 ± 0.284
Spieen	4.8/0 ± 0.334	0.044 ± 0.004	0.012 ± 0.001	0.027 + 0.002
Testes	6.048 ± 0.353	0.054 ± 0.002	0.015 ± 0.000	7000 0 + 000 0
Thyroid	787.892 ± 100.612	6.988 + 0.705	1 025 + 0 100	0.000 ± 0.000
Urinary Bladder	1.439 ± 0.156	0.013 ± 0.002	0.004 ± 0.000	0.00 # 0.013
				00000

TABLE 2. PREDICTED DOSIMETRY TO MIRD ADULT PHANTOM OF ¹³¹I-LABELED PHOSPHOLIPID ETHER ANALOGS BASED UPON RAT BIODISTRIBUTION DATA.

TARGET ORGAN	NM-324 rad/mCi	NM-404 rad/mCi	NM-412 rad/mCi
Adrenals	0.646	2.270	1.650
Brain	0.014	0.057	0.018
Breasts	0.069	0.146	0.048
Gallbladder	0.466	0.367	0.145
LLI Wall	0.239	0.259	0.078
Small Intestine	4.070	. 0.243	0.078
Stomach	0.197	0.265	0.088
ULI Wall	0.507	0.245	0.081
Heart Wall	0.401	1.100	0.289
Kidneys	4.200	1.850	0.701
Liver	2.360	1.260	0.689
Lungs	0.838	2.080	0.697
Muscle	0.229	0.887	0.258
Pancreas	0.281	0.360	0.129
Red Marrow	0.153	0.889	0.335
Bone Surfaces	0.121	0.613	0.222
Skin	0.063	0.137	0.042
Spleen	0.826	1.520	0.696
Testes	0.063	1.430	0.358
Thymus	0.099	0.267	0.082
Thyroid	0.069	3.040	0.068
Urinary Bladder	0.134	0.254	0.074
Total Body	0.318	0.557	0.178

Residence Times: (source organs used)

	NM-324	NM-404	NM-412
Adrenals	0.013	0.073	0.058
Small Intestine	70510		
Heart Wall	0.171	0.575	0.135
Kidneys	2.570	1.020	0.391
Liver	7.940	3.780	2.230
Lungs	1.610	4.170	1.400
Muscle	13.10	45.00	12.80
Red Marrow		3,430	1.360
Spleen	0.252	0.490	0.239
Testes	0.202	0.110	0.027
Thyroid		0.135	2.34.

Appendix 4: Acute Toxicology of NM-404 in Rats and Rabbits

Toxicology Research Center

April 5, 1999

Dr, Ray Counsell University of Michigan Medical School Department of Pharmacy Ann Arbor, MI 48109-0632

Dear Dr. Counsell:

Enclosed please find the final reports for the acute toxicity assays in rat and rabbit for NM-404. At the dose studied, there were no pathological changes attributable to the test article in comparing test animals with controls. Slight differences in chemical, hematological or organ weights between test and control animals were not consistent across species. At the dose used, there were no apparent signs of distress in the animals throughout the observation period. The reports include the protocols utilized, and a detailed compilation of the data collected.

Thank you for the opportunity to evaluate this new radio-imaging agent.

Very truly yours,

Dr. Paul J. Kostyniak

STUDY 27 – FINAL REPORT

NM-404

Acute Toxicology Study in the Rat

The purpose of this study was to evaluate the toxicity in rats of phospholipid ether NM-404 (alkyl chain length of 18 carbons), a radioimaging agent for tumors. The control and test articles were formulated by Raymond E. Counsell, Ph.D., Professor of Pharmacology & Medicinal Chemistry, Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan. The test article was NM-404 in a solution of 2% Tween 20 and sterile water. The control article was only 2% Tween 20 and sterile water. The sponsor of this project was responsible for the specifications of the test and control articles with concern for contaminants that could reasonably be expected to be present and capable of interfering with the purpose of this study. All procedures followed during this study are included in "Study 27 – Protocol" which is attached at the end of this report.

The control and test articles were received from Dr. Counsell on October 29, 1998. At the University of Buffalo, the study test site, the four (4) vials of test articles labeled "NM-404 in 2% Tween 20/Sterile Water, MAL-V1-82" and the four (4) vials of control articles labeled "Control Vehicle – 2% Tween 20/Sterile Water, MAL-V1-83" were inventoried and stored at room temperature in Farber Hall, Room 111. All the vials were dated October 16, 1998. The test article of the NM-404 solution was to be administered at approximately 200 times the clinical dose at a concentration of 2 mg/ml and a dose of 4 mg/kg. Each vial was reported to have an approximate volume of 10 ml. A green sticker dot was attached to each test vial to designate the NM-404 solution from the control solution; the control vials were designated with a "C" and then each set of control and test vials were numbered #1 to #4. Control vial #1C and test vial (with a green dot) #1 were injected on December 2, 1998 (Day 0 of the study). The control and test rats were injected intravenously in the lateral tail veins at a dose of 2 ml/kg.

On November 24, 1998 sixteen (16) Sprague-Dawley rats were received from Harlan Sprague Dawley, Indianapolis, Indiana. The rats were all males, all born on October 9, 1998, and all appeared healthy. They were housed at the Laboratory Animal Facility, CFS Addition – Room 110E. The next day the rats were weighed and their weights ranged from 223.6 grams to 250.7 grams. Two groups of eight (8) rats per group, controls and tests, were established with a mean weight for each group of 238.4 grams and 234.0 grams, respectively. The rats were housed two (2) animals per cage and given food and water ad lib. Each rat was ear punched with a unique number of '1' to '16', numerically. The control rats were numbered '1' to '8' and the test rats were numbered '9' to '16'. The unique numbers were also applied to each cage indicating

which rats were housed within. There were four cages of control rats and four cages of test rats. The rats were then weighed daily Monday through Friday until the termination of the study.

On December 2, 1998 (Day 0) the eight (8) control and eight (8) test rats were placed in a commercial rat restrainer, their tails scrubbed with alcohol, and then the tail placed in a container of very warm water for a minute to dialate the tail vein. The rats were injected intravenously in the lateral tail vein at 2 ml/kg of body weight using a 25 gauge needle and a 1 ml syringe. The injections were given by alternating a rat from the control group with a rat from the test group, with the injections given over a 30 second to 1 minute interval. Control rat #6 received the injection in 2 sites; test rat #9 received the injection in 2 sites and test rat #15 received the injection in 3 sites. This occurred because the rat moved during the injection procedure. All other injections were given at one site only. The injection on control rat #1 was given at 9:03 A.M. and the last injection of test rat #16 was given at 11:01 A.M. No adverse reactions were observed at the time of the injection or noted after the injections were completed. The rats were observed for signs of acute toxicity as described in Principles and Methods of Toxicology, 2nd Edition, Editor: A.W. Hayes, 1989, p. 180-181. The rats were observed closely until 1:15 P.M., and again at 3:30 P.M. No unusual behavior was noted in any of the rats during this time or during the remainder of the study. The tail injection sites were observed daily while the rats were weighed and no adverse tissue reactions were noted in any of the rats.

The rats were weighed five (5) times a week (Monday through Friday) and their weights, recorded in kilograms, appear in Table 1. The mean weights of the control group and the test group also appear in Table 1 and these values are compared in Graph 1. Weight gain appears to be consistent between the two groups.

The rats were anesthetized with sodium pentobarbital administered intraperitoneally (65 mg/ml, Lot #970789, Expiration Date: 2/00) on December 17, 1998. A heart puncture was then performed using a 20 gauge needle and a 10 ml syringe to collect the blood samples for hematology testing. The rats were exsanguinated to cause death. The brain, heart, lungs, thymus, spleen, kidneys (both), liver, and testes (both) were collected, examined grossly, weighed, and sectioned for pathology. The organ weights and the organ to final body weight ratio data appears in Table 2. The organ/body weight ratios were compared using a Students t-test and the only significant difference was found between the lung/body weight ratio of the study control and test rats. The tissue samples (except thymus) were placed in jars of 'Z-Fix' fixative. The following week, the organs were examined by the pathologist, Dr. Peter Nickerson, and cut into a representative section for processing for histopathological examination. Dr. Nickerson reports that "no gross lesions were noted in any of the groups receiving either the test material or in the control group". The collected organs were processed by the Department of Pathology, SUNY at Buffalo, School of Medicine. The histological preparations were examined by Peter A. Nickerson, Ph.D., Professor of Pathology, SUNY at Buffalo. The report from Dr. Nickerson lists his findings for control rat #27-01 to #27-08 and test rat #27-09 to #27-16, with a description of each organ. Dr. Nickerson

concludes that "by light microscopic examination, there are no changes in the histopathology of the organs examined that can be attributed to administration of the test material. Rat #12 receiving the test material has a small, focal area of myocardial injury (Infarct in an early stage). This change is not seen in the other section of heart that was also processed so is interpreted as being quite small. Since the lesion is not seen in other animals receiving the material, it is likely that it is attributable to some unexplained alteration. It is not due to infection arising from the lung since the lungs did not show histopathological change". The complete histological report prepared by Dr. Nickerson is attached.

Clinical blood chemistries (Superchem) and a CBC (Complete Blood Count with differential) were performed by Antech Diagnostics, Memphis, Tennessee on December 17, 1998 (Day 14). The results of the Superchem screen and CBC appear in Table 3 (Page 1: Control Rats #1 - #8; Page 2: Test Rats #9 - #16; Page 3: Mean Data with Standard Deviation for both groups). The values were checked for any obvious low or high values that were below or above the reference range provided by Antech Diagnostics. Whenever any value was outside of this reference range the groups were compared using a Students t-test at a p value of less than 0.05. T-tests were performed for the following blood tests: Phosphorus, Sodium, Potassium, AST (SGOT), ALT (SGPT), Alkaline phosphatase, Globulin, A/G ratio, Glucose, WBC, RBC, and Hemoglobin. There were no significant differences found. The platelet estimation was similar between the control and test rats (Control rats: adequate in 1 rat, increased in 5 rats, decreased in 2 rats; Test rats: adequate in 3 rats, increased in 5 rats, decreased in no rats). Platelets were found to be clumped in 3 control rats and 2 test rats. Slight anistocytosis was reported in 3 control rats and 6 test rats; only moderate anistocytosis was reported in 1 control rat. Slight polychromasia was reported in 6 control rats and 6 test rats. Only control rat #27-07 was reported to have 1 NRBC/100 WBC.

External factors which might effect the study outcome appear to have been very limited in this study. Daily observations of the rats were also made by the personnel of the Laboratory Animal Facilities, SUNY at Buffalo.

At the conclusion of this study, all data notebooks with reports, histology tissue blocks, and stained slides are stored in Farber Hall, Room 118G at SUNY at Buffalo. All materials are labeled as "Study 27".

During the course of this study, an attempt was made to follow the Good Laboratory Practice (GLP) Regulations as outlined in the <u>Federal Register</u> of December 22, 1978 and September 4, 1987, Final Rule (21 CFR Part 58). Technical procedures are described in the "Study 27 – Protocol NM-404 Acute Toxicology Study in the Rat" which is attached at the end of this report.

At the State University of New York at Buffalo, the Study Technician was Ellen M. Schopp under the supervision of the Project Director, Paul J. Kostyniak, Ph.D. A special thanks to Marian M. Pazik for his assistance and cooperation during this study and for his technical support in the compiling of the study data and to Joseph A.

Syracuse, Ph.D. for his support on the final day. The Quality Assurance Officer who reviewed this report was Hebe B. Greizerstein, Ph.D.

Reviewed and Approved by:

Dr. Paul J. Kostyniak

Study Director

3-24-99

Ellen M. Schopp Study Technician 3/23/99

Dr. Hebe B. Greizerstein Quality Assurance Officer Dat

27

STUDY # DESCRIPTION:

NM-404: Rat /Acute

RAT WEIGHTS (Kilograms)

3	339 328 328 3307 364 353 333 0.34 0.32	1.329 1.329 1.329 1.329 1.346 1.334 1.334 1.334 0.01
	000000	0000000
4	0.337 0.365 0.365 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.366 0.376 0.386	0.328 0.353 0.353 0.348 0.332 0.333 0.333 0.35
ç	0.330 0.360 0.360 0.348 0.352 0.352 0.352 0.352 0.352 0.352	0.326 0.346 0.348 0.344 0.328 0.327 0.32 0.33
	8888888	
σ	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	313 316 3316 3316 3324 3328 3328 0.32
	0.315 0.308 0.351 0.289 0.333 0.333 0.319 0.319 0.32	000000
60	0.314 0.304 0.341 0.330 0.329 0.329 0.32 0.32 0.32	0.308 0.315 0.326 0.320 0.321 0.320 0.306 0.306 0.31 0.31
7	0.311 0.324 0.328 0.324 0.329 0.306 0.32 0.32 0.32	0.304 0.310 0.324 0.311 0.311 0.316 0.31 0.31 0.31 0.32
9		0.306 0.315 0.315 0.309 0.312 0.304 0.31 0.31
ro	0.303 0.295 0.295 0.328 0.314 0.315 0.31 0.31 0.32 0.32 0.32 0.33	0.296 0.305 0.311 0.296 0.308 0.308 0.296 0.296 0.30
	6666666	888888
7	8 1 1 9 6 6 1 8 8 8 8 9	25 25 25 25 25 25 25 25 25 25 25 25 25 2
••	0.289 0.275 0.308 0.272 0.298 0.296 0.296 0.296 0.296	0.280 0.287 0.297 0.292 0.296 0.296 0.283 0.293 0.293 0.293 0.293 0.293
~	0.284 0.272 0.306 0.306 0.310 0.294 0.282 0.282 0.01 0.29	0.275 0.286 0.293 0.279 0.291 0.284 0.287 0.28 0.28 0.28
0	0.280 0.267 0.299 0.298 0.288 0.301 0.279 0.279 0.01 0.27	0.271 0.286 0.286 0.273 0.285 0.277 0.273 0.273 0.273
7	7.276 7.294 7.294 7.295 7.299 7.299 7.291 7.277 7.277 0.28	0.268 0.277 0.282 0.271 0.285 0.273 0.273 0.273 0.274 0.28
ņ	0.271 0.258 0.289 0.284 0.284 0.272 0.272 0.29 0.29	0.259 0.270 0.276 0.262 0.277 0.260 0.27 0.01
	0000000	000000
		200000000000000000000000000000000000000
. rů	0.239 0.246 0.263 0.247 0.257 0.257 0.257 0.25 0.27 0.27	0.242 0.243 0.253 0.259 0.259 0.247 0.248 0.01 0.26
မှ	0.231 0.241 0.256 0.258 0.258 0.250 0.250 0.25 0.26	0.235 0.246 0.254 0.254 0.241 0.24 0.24 0.25 0.24
-7	0.224 0.235 0.243 0.248 0.248 0.251 0.237 0.237 0.25 0.25	0.225 0.233 0.239 0.245 0.245 0.227 0.237 0.23 0.23
ဆု		
e.		
	<u> </u>	90
	CONTROLS 27-01 27-02 27-02 27-04 27-05 27-06 27-07 27-08 MEAN+STD MEAN-STD MEAN-STD	27-09 27-10 27-11 27-12 27-13 27-14 27-15 27-16 AVG STD MEAN+STD
DAY	CONT 27 27 27 27 27 27 27 27 AVG STD MEAI	27 27 27 27 27 27 27 87D 87D 87D
•		

STUDY 27: NM-404 Rats - Acute

STUDY # 27

DESCRIPTION: NM-404: Rats / Acute

ORGAN WEIGHTS AND ORGAN/BODY WEIGHT RATIOS

																- (1		_		_		T-	T		т-	T .	_
Kidnev/BW	Ratio		6.490	6.860	6.477	6.287	6.022	5.549	6.459	6.186	6.291	0.364	6.66	5.93		6.246	6.687	6.314	7.287			6.108		6.401	0.405		
Kidneys		(a)	2.20	2.25	2.39	1.93	2.18	2.02	2.28	2.06	2.164	0.141	2.31	2.02		2.08	2.20		2.31		2.18	2.04	1.95	2.136	0.105	2.24	
Liver/BW			38.791	39.238	38.455	34.104	37.320	36.319	36.629	38.739	37.449	1.614	39.06	35.84		35.225	35.076	37.743	40.126	36.273	35.665	35.120	36.766	36.499	1.623	38.12	34.88
Liver 1		(b)	13.15	12.87	14.19	10.47	13.51	13.22	12.93	12.90	12.905	1.007	13.91	11.90		11.73	11.54	13.21	12.72	11.97	12.34	11.73	12.28	12.190	0.530	12.72	11.66
Testes/BW	Ratio		11.032	11.585	10.921	11.857	10.028	9.780	10.935	9.399	10.692	0.816	11.51	9.88		10.210	11.550	10.486	12.019	10.545	11.069	11.168	10.419	10.933	0.588	11.52	10.34
Testes		(B)	3.74	3.80	4.03	3.64	3.63	3.56	3.86	3.13	3.674	0.248	3.92	3.43		3.40	3.80	3.67	3.81	3.48	3.83	3.73	3.48	3.650	0.161	3.81	3.49
Brain/BW	Ratio	-	5.015	5.549	5.014	5.537	5:055	4.725	5.411	4.955	5.158	0.283	5.44	4.87		5.165	5.502	5.143	5.678		5.260	5.299	5.359	5.342	0.165	5.51	5.18
Brain		(a)	1.70	1.82	1.85	1.70	1.83	1.72	1.91	1.65	1.773	0.086	1.86	1.69		1.72	1.81	1.80	1.80	1.76	1.82	1.77	1.79	1.784	0.030	1.81	1.75
Final	Body	Weight (kg)	0.339	0.328	0.369	0.307	0.362	0.364	0.353	0.333	0.344	0.020	0.364	0.324		0.333	0.329	0.350	0.317	0.330	0.346	0.334	0.334	0.334	0.010	0.344	0.325
Final			0.339	0.328	0.369	0.307	0.362	0.364	0.353	0.333	0.344	0.020	0.364	0.324		0.333	0.329	0.350	0.317	0.330	0.346	0.334	0.334	0.334	0.010	0.344	0.325
CONTROLS			27-01	27-02	27-03	27-04	27-05	27-06	27-07	27-08	Mean	STD	Mean + STD	Mean - STD	TESTS	27-09	27-10	27-11	27-12	27-13	27-14	27-15	27-16	Mean	STD	Mean + STD	Mean - STD

STUDY # 27

DESCRIPTION: NM-404: Rats / Acute

ORGAN WEIGHTS AND ORGAN/BODY WEIGHT RATIOS

us Thymus/BW	.		0.64 1.888	0.40 1.220		0.39 1.270		0.59 1.621		0.47	0.491 1.424	0.099 0.262	0.59 1.69			0.46	0.40 1.216		0.46 1.451	0.50 1.515	0.41 1.185	0.45 1.347		0.478 1.427	0.085 0.230	0.56 1.66	
V Thymus		(b)										L												L		4.50	
Lung/BW	Ratio		3.776	4.055		4.169		3.681		4.024	3.870	0.212	4.08		·	4.054	4.529	L	4.353	4.485	4.220	4.012	4.521	4.307	0.190		
Lungs		(B)	1.28	1.33	1.47	1.28	1.37	1.34	1.23	1.34	1.330	0.067	1.40	1.26		1.35	1.49	1.50	1.38	1.48	1.46	1.34	1.51	1.439	0.066	1.50	
Heart/BW	Ratio		3.363	3.628	3.089	3.485	3.177	3.187	3.541	3.754	3.403	0.223	3.63	3.18		3.183	3.495	3.543	3.218	3.697	3.642	2.754	3.922	3.432	0.342	3.77	
Heart	•	(6)	1.14	1.19	1.14	1.07	1.15	1.16	1.25	1.25	1.169	0.056	1.23	1.11		1.06	1.15	1.24	1.02	1.22	1.26	0.92	1.31	1.148	0.127	1.27	
Spleen/BW	Ratio		2.035	2.165	2.466	2.606	2.265	2.225	2.380	2.523	2.333	0.181	2.51	2.15		2.432	2.249	2.257	2.555	2.273	2.543	2.874	2.126	2.414	0.225	2.64	
Spleen		(B)	69.0	0.71	0.91	0.80	0.82	0.81	0.84	0.84	0.803	0.067	0.87	0.74		0.81	0.74	0.79	0.81	0.75	0.88	0.96	0.71	0.806	0.076	0.88	
Final	Body	Weight (ka)	0.339	0.328	0.369	0.307	0.362	0.364	0.353	0.333	0.344	0.020	0.364	0.324		0.333	0.329	0.350	0.317	0.330	0.346	0.334	0.334	0,334	0.010	0.344	
CONTROLS	•		27-01	27-02	27-03	27-04	27-05	27-06	27-07	27-08	Mean	STD	Mean + STD	Mean - STD	TESTS	27-09	27-10	27-11	27-12	27-13	27-14	27-15	27-16	Mean	STD	Mean + STD	

STUDY # 27

PAGE 1 OF 3

TITLE: NM-404: Rats / Acute

Blood Chemistry & CBC Results -

DAY# 14

	CONTROLS								
ANIMAL #	27-01	27-02	27-03	27-04	27-05	27-06	27-07	27-08	
BLOOD TEST					_				1
Calcium mg/dL	11.6	10.7	10.6	10.7	7 10.4	10.1			-
Phosphorus mg/dL	8.0					8.1			_
Sodium mEq/L	142			142	2 139	143			_
Potassium mEq/L	5.4			2 5.0	4.7	4.3	4.5		
Chloride mEq/L	103				98	102	103		
Cholesterol mg/dL	97			86	82	85			_
Triglycerides mg/dL	147		. 127	57	54	125	148		_
AST (SGOT) U/L	96	+	95	209	210	93			-
Bilirubin, Total mg/dL	0.1			0.1	0.1	0.1			-
GGTP U/L	2	2	2	2	2	2			
ALT (SGPT) U/L	68			67	59				
Alkal. Phosphatase U/L	381	279	301	210					-
Protein, Total g/dL	6.3	5.7	5.9						
Globulin g/dL	2.7	2.5	2.7	2.7					
Albumin g/dL	3.6	3.2	3.2				3.2		-
A/G Ratio	1.30	1.30							+
Urea Nitrogen mg/dL	16	17	16						+-
Creatinine mg/dL	0.8	0.9	0.8						+
BUN/Creatinine Ratio	20	19	20	19					+
Glucose mg/dL	163	212	214	226			222	193	Ļ
Amylase U/L	3138	2908	2859	2811	2698	2510	2840	2911	1
Lipase U/L	6	4	7	5		7	705	9 1352	_
CPK U/L	1008	2476	1405	4025		1312	795	1352	╄-
Magnesium mEq/ L	1.9	3.3	2.0	2.2		2.0	2.2		-
Osmolality, Calc'd mosm/	289	292	284	292	288	290	290	288	-
							6.4	3.3	┝
WBC thds/cmm	3.6	1.4	4.7	4.2		5.4	6.4	7.15	_
RBC mill/cmm	7.74	6.80	7.29	5.36	6.79	7.14	6.94	14.6	H
Hemoglobin g/dL	15.3	13.6	14.3	13.8	13.2	14.1	14.0 41.7	45.1	\vdash
Hematocrit %	46.4	43.4	44.4	31.8	40.8 60	42.8	60	63	┝
MCV	60	64	61	59		60 19.7	20.2	20.4	H
MCH	19.8	20.0	19.6	25.7	19.4 32.4	32.9	33.6	32.4	H
MCHC	33.0	31.3	32.2	43.4		23	13	11	┝
Polys %	10	7	22	4	8	. 23		0	
Bands_%	1	0	0	0		70	87	77	-
Lymphocytes %	79	93	66	92	83	3	0	9	H
Monocytes %	10	0	9	0	8	2	0		-
Eosinophils %	0	0	2	0	0	2	0	2	\vdash
Basophils %	0	0	1	_					-
				Decreas	increase	increase	Clumps	Decieas	H
Platelet Comments			Clumps	011		Moderat	Ciuinps		H
Anisocytosis	Slight	Slight	015-1-4	Slight	ļ			Slight	-
Polychromasia	Slight	Slight	Slight	Slight		Slight	1	Signe	\vdash
Other Comments							NRBC		
							HUDO		_

TITLE:

NM-404: Rats / Acute

Blood Chemistry & CBC Results - DAY # 14

	T 7								T
				TESTS		1		1 0 7 40	
ANIMAL #	27-09	27-10	27-11	27-12	27-13	27-14	27-15	27-16	ı
BLOOD TEST									1
Calcium mg/dL	10.								
Phosphorus mg/dL	9.4	4 10.0							
Sodium mEq/L	143								-11-
Potassium mEq/L	4.	5.5							-
Chloride mEq/L	10	1 100							-11-
Cholesterol mg/dL	103	3 102	2 89	70	91				₩-
Triglycerides mg/dL	8	77	65	119	95				-
AST (SGOT) U/L	95	328	149	103					4
Bilirubin, Total mg/dL	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
GGTP U/L	2	2 2						2	
ALT (SGPT) U/L	45								
Alkal. Phosphatase U/L	290					231	277	242	-11
Protein, Total g/dL	5.8	5.9							
Globulin g/dL	2.6	2.6	2.3	2.3	2.4	2.6	2.5	2.4	-
Albumin g/dL	3.2	3.3	3.2	3.2		3.3		3.1	_
A/G Ratio	1.20	1.30	1.40	1.40		1.30	1.20	1.30	
Urea Nitrogen mg/dL	18	18	18	18	21	16	16	16	-
Creatinine mg/dL	0.8	0.9	0.9	0.8	0.9	1.0	0.9	0.9	
BUN/Creatinine Ratio	23	20	20	23	23	16	18	18	-
Glucose mg/dL	190	200	206	200	243	236	197	206	L
Amylase U/L	2768	2932	2385	2466	2772	3405	2318	3348	
Lipase U/L	6	5	5	5	6	6	6	6	
CPK U/L	721	4840	2681	1355	1233	2004	2011	1142	
Magnesium mEq/ L	2.2	2.9	2.3	2.0	2.9	2.7	1.9	2.4	L
Osmolality, Calc'd mosm/	289	290	289	282	292	292	291	296	L
oometa,									
WBC thds/cmm	3.6	4.2	3.4	3.7	5.9	1.7	6.1	4.9	
RBC mill/cmm	7.08	6.95	6.93	7.47	7.45	7.28	7.46	7.56	
Hemoglobin g/dL	13.5	13.4	13.4	14.3	14.9	13.9	13.8	14.7	
Hematocrit %	42.7	43.1	42.2	43.1	45.6	43.7	43.8	45.0	
MCV	60	62	61	58	61	60	59	60	
MCH	19.1	19.3	19.3	19.1	20.0	19.1	18.5	19.4	
MCHC	31.6	31.1	31.8	33.2	32.7	31.8	31.5	32.7	
Polys %	10	22	7	20	13	27	7	20	
Bands %	0	0	0	0	0	0	0	0	
Lymphocytes %	88	70	92	72	86	67	93	75	F
Monocytes %	1	4	1	5	1	2	1	3	Π
Eosinophils %	1	2	0	1	1	2	1	1	П
Basophils %	<u> </u>	2	0	2	3	2	2	1	П
Platelet Estimation	Adequat	_	Increase	Increase	Increase	increase	Increase	Adequat	П
Platelet Comments	Clumps				Clumps			•	П
Anisocytosis	Slight	Slight	Slight	Slight	Slight	Slight			П
Polychromasia Polychromasia	Slight		Slight	Slight	Slight	Slight	Slight		П
Other Comments	giit		gs	3	3				П
Other Comments									
				····					

TITLE:

NM-404: Rats / Acute

Blood Chemistry & CBC Results - DAY # 14

	T		*			
ANIMAL#	1 6	CONT	MEAN I	TES	Significant	
BLOOD TEST		AN	STD	MEAN		Difference
Calcium mg/dL		10.6	0.4	10.5	0.5	
Phosphorus mg/dL	╅	8.8	0.8	9.4	0.8	
Sodium mEq/L	1	141.3	1.4	141.4	1.9	
Potassium mEq/L		4.8	0.4	5.0	0.5	
Chloride mEq/L	1	100.9	1.7	100.8	1.7	
Cholesterol mg/dL	 	92.6	9.4	87.6	14.2	
Triglycerides mg/dL	1	96.5	44.8	101.8	29.0	
AST (SGOT) U/L	1 -	28.5	47.7	141.6	72.7	
Bilirubin, Total mg/dL	1	0.1	0.0	0.1	0.0	
GGTP U/L		2.0	0.0	2.0	0.0	
ALT (SGPT) U/L	1	64.8	13.0	55.5	9.4	
Alkal. Phosphatase U/L		299.9	51.7	257.6	31.1	
Protein, Total g/dL	┰	5.8	0.3	5.7	0.2	
Globulin g/dL	1	2.6	0.1	2.5	0.1	
Albumin g/dL		3.2	0.2	3.2	0.1	
A/G Ratio		1.2	0.1	1.3	0.1	
Urea Nitrogen mg/dL	1	16.1	1.2	17.6	1.6	
Creatinine mg/dL	1	0.9	0.1	0.9	0.1	
BUN/Creatinine Ratio	1	18.6	1.2	20.1	2.5	
Glucose mg/dL	2	11.8	27.5	209.8	17.9	
Amylase U/L		34.4	169.0	2799.3	387.6	
Lipase U/L	1	6.4	1.4	5.6	0.5	
CPK U/L	22	27.3	1559.9	1998.4	1219.9	
Magnesium mEq/ L		2.3	0.4	2.4	0.4	
Osmolality, Calc'd mosm/	2	89.1	2.4	290.1	3.7	
Comolandy, Care						
WBC thds/cmm		4.5	1.6	4.2	1.3	
RBC mill/cmm		6.9	0.6	7.3	0.2	· ·
Hemoglobin g/dL		14.1	0.6	14.0	0.5	
Hematocrit %		42.1	4.2	43.7	1.1	
MCV		60.9	1.6	60.1	1.2	
MCH	-	20.6	2.0	19.2	0.4	
MCHC		33.9	3.6	32.1	0.7	
Polys %		12.3	6.4	15.8	7.0	
Bands %		0.1	0.3	0.0	0.0	
Lymphocytes %		80.9	9.2	80.4	9.8	
Monocytes %	1	4.9	4.3	2.3	1.5	
Eosinophils %		0.8	0.8	1.1	0.6	
Basophils %		0.6	0.9	2.0	1.1	
Platelet Estimation						
Platelet Comments						
Anisocytosis						
Polychromasia						
Other Comments				·		
			İ	ŀ		ł L
	IL.					

STUDY 27

Gross Examination:

Organs were examined grossly at the time of removal and after fixation, before a representative section was cut for processing for histopathological examination. No gross lesions were noted in any of the groups receiving either the test material or in the control group.

Histopathological Examination of Organs:

Rats receiving the Test Material.

Rat #9

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #10

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #11

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #12

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: There is a focal area in the myocardium that extends to the endocardium which contains lightly eosinophilic myocardium and numerous macrophages. The other half of the heart was also processed for histology and did not contain this lesion; coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #13

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #14

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #15

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of

infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #16

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Control Group:

Rat #1

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #2

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #3

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #4

Brain: The cerebrum and cerebellum have normal structure; there is

no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #5

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are

spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #6

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #7

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Rat #8

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp have normal structure.

Testis: The testis is mature, spermatogenesis is normal and there are spermatozoa in the seminiferous tubules. The epididymis is normal.

Interpretation and comments:

By light microscopic examination, there are no changes in the histopathology of the organs examined that can be attributed to administration of the test material. Rat #12 receiving the test material has a small, focal area of myocardial injury (infarct in an early stage). This change is not seen in the other section of heart that was also

processed so is interpreted as being quite small. Since the lesion is not seen in other animals receiving the material, it is likely that it is attributable to some unexplained alteration. It is not due to infection arising from the lung since the lungs did not show histopathological change.

Peter A. Nickerson, Ph.D.

Professor of Pathology

Date

STUDY 27 - PROTOCOL

NM-404

ACUTE TOXICOLOGY STUDY

IN THE RAT

I. Description

The purpose of this study is to evaluate the toxicity in rats of phospholipid ether NM-404 (alkyl chain length of 18 carbons), a radioimaging agent for tumors.

II. Control/Test Articles

The formulation of the control and test articles will be performed by the sponsor. The control and test articles received from the sponsor for this study will be stored at room temperature in Farber Hall, Room 111, SUNY at Buffalo, New York. At termination of the study, the remaining control and test articles will be returned to the sponsor for QC and integrity testing.

Control Article: The control solution will be 2% Tween 20 and sterile water.

Test Article: The NM-404 solution will be NM-404 in a solution of 2% Tween 20 and sterile water. The test article of NM-404 solution will be approximately 200 times the clinical dose with a concentration of 2 mg/ml.

III. Sponsor/Testing Facility

Sponsor: Raymond E. Counsell, Ph.D.

Professor of Pharmacology & Medicinal Chemistry

Department of Pharmacology

1301 Medical Science Research Building The University of Michigan Medical School

Ann Arbor, Michigan 48109-0632

Office: 313-764-8165 FAX: 313-763-4450

Project Director: Paul J. Kostyniak, Ph.D.

Director, Toxicology Research Center

Farber Hall - Room 111

SUNY at Buffalo

Office: 716-829-2125 FAX: 716-829-2806

Testing Facility: SUNY at Buffalo

Laboratory Animal Facilities

CFS Addition

Main Street Campus

Buffalo, New York 14214-3000

Laboratory Animal Facilities

Director:

Thomas Martin, BVSC DipVetPath PhD MBA

MACVSc DiplaCLAM

Laboratory Animal Facilities

116 CFS Addition SUNY at Buffalo

Office: 716-829-2919 FAX: 716-829-3249

The Institutional Animal Care and Use Committee (IACUC) at the University of Buffalo has approved this study with the animal use project number of PMY22074N.

IV. Test System

Rat Supplier: Harlan Sprague Dawley

P.O. Box 29176

Indianapolis, Indiana 46229

1-800-793-7297

Rat Description:

Sprague Dawley

Male

225-250 grams

Quantity - 16 animals

The rats will be housed at the State University of New York at Buffalo, Laboratory Animal Facilities, CFS Addition - Room $_{10~E}$

V. Identification of Test System

Each rat will be given a two-part number starting with 27-(Study #), followed by a 'unique' number of '01' to '16' (numerical). The unique number will be applied to each rat using the ear punch identification code as illustrated in Figure 13-1, Manual for Assistant Laboratory Animal Technicians, W.B. Sapanski, Jr. & J.E. Harkness, Eds., August, 1984. The unique number will be applied to each rat using an animal ear punch. Each rat, housed two (2) animals per cage, will have a cage card with the unique numbers indicated and applied with a Sanford Sharpie Fine Point Permanent Marker, reflective of the rats housed within.

When referring to any rat during this study the 'unique' number of '01' to '16' will be referred to.

IV. Experimental Design

- A. The sixteen (16) rats are randomly divided into two (2) groups having approximately the same mean weight:
 - Control Group: Eight (8) rats to receive the control article of 2% Tween 20
 - 2. Test Group: Eight (8) rats to receive the test article of NM-404 in 2% Tween 20
- B. The rats are weighed and their weights recorded in grams (g) during the one week acclimation period and during the two week study period, Monday through Friday, and more often if problems with weight gain occur.
- C. The rats will be observed for any unusual behavior or change in food and water intake for the duration of the study.

- D. The rats will be injected in one of the lateral tail veins, using sterile techniques, and an appropriately sized syringe with a 25 gauge needle (see Section VIII, Part B).
- E. Initially, one (1) control and one (1) test rat will be injected at 2 ml/kg with the appropriate dosing solution:
 - These rats will be observed for any signs of toxicity, respiratory distress, change in motor activity, seizures, etc. (see Section IX, Part C).
 - A. If any deaths occur, the remaining rats will be injected at 1/2 that dose rate (1 ml/kg) and observed.
 - B. If no deaths occur, the remaining rats will be injected at the initial dose of 2 ml/kg, alternating control rat and test rat, and observed.
 - If any deaths occur following the injections, a veterinarian/pathologist will perform a postmortem.
- F. Fourteen (14) days after the dosing solution is injected, the rats will be killed:
 - 1. Weigh the rat (final body weight).
 - Anesthetize the rat with the sodium pentobarbital, dosed 50 mg/kg with an intraperitoneal injection, using a 25 gauge needle and 1 ml syringe.
 - 3. A heart puncture is then performed using a 20 gauge needle and 10 ml syringe to collect the blood samples for hematology testing (Superchem and CBC with differential) and to exsanguinate the rat causing death (see Section IX, Part D, #1).
 - 4. Collect and examine grossly the following organs: Brain, Heart, Lungs, Thymus, Spleen, Kidneys (both), Liver and Testes (both) in the animal and upon removal.
 - 5. Weigh each organ and record the weight (the weighing boats have been pre-weighed, their weights recorded and this weight needs to be subtracted from the combined organ and weighing boat weight to obtain organ weight).

- 6. Section organs (except thymus), if needed, for pathology (see Section IX, Part F, #1) and place the whole organ or representative organ sections in formalin.
- 7. Place carcass and remaining organs in plastic bag for incineration; clean area and instruments after each rat is sacrificed.
- 8. Prepare blood samples as described in Section IX, Part D, #2.
- 9. The organs and organ sections will be allowed to fix in the formalin for at least 24 hours before smaller sections are selected and cut to fit the histological cassettes for embedding.
- 10. Deliver the sectioned tissues in formalin to the Pathology Department, SUNY at Buffalo for histological preparation (See Section IX, Part F, #3).

VII. External Factors

A. Animal Diet

1. ProLab RMH 1000 Lab Diet

Guaranteed Analysis:	
Crude protein not less than	14.0%
Crude fat not less than	6.0%
Crude fiber not more than	4.5%
	8.0%
Ash not more than	2.5%
Added minerals not more than	∠.⊃%

Rats are fed ad lib

2. Water will be available from the automatic watering system that is attached to each cage rack, with a water spigot available the rats. The water is obtained from the City of Buffalo's public water system (tap water). The water spigot will be checked daily to assure that water is available to each cage.

B. Control and Test Articles

The sponsor of this project is responsible for the specifications of the control and test articles, with

concern for contaminants that could reasonably be expected to be present and capable of interfering with the purpose of this study.

VIII. Administration of Control/Test Articles

A. Dosage Level

The control and test rats will receive one (1) injection which will be administered intravenously at a dose of 2 ml/kg of body weight. If acute toxicity is observed, then reduce the dose to 1 ml/kg for both the control and test articles. A reference for a maximum bolus dose of 2 ml/kg is recommended in <u>Principles and Methods of Toxicology</u>, 2nd Edition, Editor: A. Wallace Hayes, Raven Press, New York, 1989, p. 862. This study dose does not exceed this recommendation.

B. Method

The test and control articles will be administered in an alternating pattern (control rat, test rat, control rat, etc.) with an intravenous injection in one of the lateral tail veins.

- 1. Properly restrain the rat using a commercial rat restrainer.
- Position restrainer over a container of very warm water, with the rats tail in the water for several minutes (to increase blood flow).
- 3. Apply a tourniquet at the base of the tail using a rubber band and hemostats (to tightly clamp rubber band).
- 4. Re-enter tail into container of water for several minutes.
- 5. Vigorously rub tail injection area with 70% alcohol before injecting.
- 6. Insert the 25 gauge needle attached to an appropriately sized syringe (1 ml) into the tail vein and release tourniquet.
- Inject the control and test articles cautiously, but at a reasonable rate (average = 15-30 seconds).

8. Remove needle/syringe from vein and apply pressure to area with a 2x2 gauze until bleeding stops.

IX. Type/Frequency of Tests

- A. Scale Calibration To be performed on a pre-weighing and post-weighing basis when the rats are weighed, when the weighing boats are weighed, and when the rat organs are weighed on the day of sacrifice.
- B. Body Weight Gain The rats will be weighed Monday through Friday during the one week acclimation period and during the two week study period.

C. Monitoring

- Physical The rats will be observed daily for any changes in food or water consumption and for tissue reactions at the site of the injection.
- Toxicological The rats will be observed after the injection for signs of acute toxicity as described in <u>Principles and Methods of Toxicology</u>, 2nd Edition, Editor: A. W. Hayes, 1989, p. 180-181.

D. Clinical

- 1. On the day of the kill (fourteen days after the dosing injection) the following blood samples will be drawn with a heart puncture, after the rat is anesthetized with sodium pentobarbital, for testing:
 - a. 3 ml EDTA vacutainer tube for CBC with differential (ANTECH Diagnostics Test #951); with the rat's limited total blood volume, only transfer approximately 1-1.5 ml of blood to the EDTA tube and invert tube a minimum of ten (10) times to mix.
 - b. 4 ml SST (Serum Separator Tube) vacutainer tube for diagnostic Superchem screen (ANTECH Diagnostics Test #951); invert tube five times to mix the clot activator and blood, allow blood to clot for at least 20 minutes, then centrifuge at full speed for 15 minutes.

- 2. Sort each rat's labeled EDTA tube and labelled Serum Separator Tube with a completed ANTECH Diagnostics Test Requistion form (ANTECH Diagnostics Account Number #31104260-6) into a plastic bag (one per rat); place specimen bags into ANTECH Shipping Box (provided); call FED EX at 1-800-463-3339 for pick-up.
- 3. Samples will be transported by FED EX to ANTECH Diagnostics (Phone: 1-888-397-8378) for testing.
- E. Organ Weights On the day of the kill (fourteen days after the dosing injection) the following body organs will be examined grossly for abnormalities, collected, and their weights recorded:

1.	Thymus	Small weighing boat
2.	Lungs (both)	Small weighing boat
3.	Heart	Small weighing boat
4.	Spleen	Small weighing boat
5.	Kidneys (both, peel off capsule before weighing)	Small weighing boat
6.	Liver	Medium weighing boat
7.	Testes (both)	Small weighing boat
8.	Brain	Small weighing boat
	Note: The weighing boat s	ize is selected to

Histological Preparation

F.

weighed.

1. After the specified organs have been weighed, the organs will be placed into a jar containing formalin. Each jar will be pre-labeled with the rat's study number and the date. The organs will be prepared for the fixative process by placing them in the formalin in the following manner:

accommodate the total organ and is pre-

- a. Lungs with scissors/mid-section slice (from 2 lobes)
- b. Heart whole organ into fixative
- c. Spleen whole organ into fixative

- d. Kidneys with razor blade/butterfly each
- e. Liver with razor blade/mid-section slice (from 2 lobes)
- f. Testes whole organs (both) into fixative
- g. Brain whole organ into fixative (use separate formalin jar)
- 2. The organs or organ sections will be allowed to fix in the formalin for at least 24 hours; the fixed organ or organ section will then be removed from the formalin and sectioned into properly sized pieces to fit into the histological cassette used during the embedding process.
- 3. The formalin jars containing the sectioned organs and a Histological Preparation Request Form, will be delivered to the Pathology Department, School of Medicine, SUNY at Buffalo, for processing:

Request Form includes:

- a. Dehydration and Embedding -R
- b. Sectioning 5 um
- c. Stain H&E
- 4. Histology slides will be read by the pathologist, Peter A. Nickerson, A.B., M.A., Ph.D. Professor and Director of the Pathology Graduate Program, 212 Cary Hall, SUNY at Buffalo. The complete pathology procedure is attached to the end of this protocol.

X. Records

- A. "Study 27" Data Notebook will be kept in Farber Hall Room 118G, SUNY at Buffalo:
 - 1. Inventory of control and test articles received from the sponsor and the animals on which it was administered; paper work for returned control and test articles to the sponsor.
 - Information on rats: Shipment information, initial weights, sex, physical condition.

- Scale calibration: Scales used for rat weights, organ weights, and weighing boat weights.
- 4. Rat body weights, with a group mean weight ± Standard Deviation.
- 5. Daily physical observations of rats.
- 6. Injection day data: Date, Rat weights, Dose volume, Time, Vial #of article injected, Physical observations (signs of acute toxicity), Postmortem report of any deaths.
- 7. Weight of organs at sacrifice: Brain, Thymus, Lungs, Heart, Spleen, Kidneys, Liver, Testes.
- 8. ANTECH Diagnostics Test Request Form (copy) for the clinical diagnostic tests to be performed on each rat.
- 9. Histology Request Forms for the tissue specimens submitted for pathology.
- 10. Hematology test results (Superchem and CBC with differential) on each rat, as performed by ANTECH Diagnostics.
- 11. Compilation chart of hematology test results.
- Compilation chart of organ weights with organ/body weight ratios for each rat.
- 13. Pathology report of histology slides, as prepared by Dr. Peter A. Nickerson.
- 14. Statistical findings.
- B. Histology tissue blocks.
- C. Histology slides.

XI.	App	roval of Proto	col	
		De Congore	R.E. Comes M	8/21/95
	Α.	By Sponsor:	Dr. Raymond Counsell	Date

B. By Study Director: Dr. Paul J. Kostyniak Date

XII. Statistical Methods

Differences in body weights and biochemical parameters will be compared between groups using the t-test.

XIII. Revisions

Any revisions made to this protocol will be attached in the appendices.

XIV. Materials and Equipment

A. Scales

- AND EK-1200G (Serial #J8025023) Measures to 0.1 grams, at the Laboratory Animal Facilities, SUNY at Buffalo.
- 2. Sartorius 1212 MP (Serial #2907085) Measures to 0.001 grams, from the Toxicology
 Research Center, SUNY at Buffalo.
- B. Centrifuge Dynac Benchtop Centrifuge #0101 (Serial #22424), from the Toxicology Research Center, SUNY at Buffalo.
- C. Syringes BD syringes 1 ml and 10 ml, Single dose, Sterile, with Luer Lock tip, purchased from the Laboratory Animal Facilities, SUNY at Buffalo.

D. Needles

- Monoject 25 gauge hypodermic needles X 5/8" long, purchased from the Laboratory Animal Facilities, SUNY at Buffalo.
- Monoject 20 gauge hypodermic needles x 1" long, purchased from the Laboratory Animal Facilities, SUNY at Buffalo.

Note: Monoject needles are sharper than BD needles

- E. Instruments Large dissection scissors, Small dissection scissors, Scalpel handle #4, Scalpel blades #21, Forceps, Rongeur, Spoon, Single-edged razor blades.
- F. Drugs Sodium Pentobarbital @ 65 mg/ml, manufactured by Veterinary Laboratories, Inc. for the Butler Company, Lot #970789, Expiration Date 2/00 . This will be purchased from the Laboratory Animal Facilities, SUNY at Buffalo, on an ml's as needed basis.

G. ANTECH Diagnostics

- 1. 3 ml EDTA vacutainer tube (Lavender top), Becton Dickinson #366385, Lot #8B107, Expiration Date: FEB00.
- 2. 4 ml Serum Separator Tube (SST Vacutainer Red/Gray top), Becton Dickinson #366514, Lot #8C912, Expiration Date: FEB99.
- 3. Plastic bags for transporting specimens (a bag for each animals blood tubes).
- 4. ANTECH Diagnostics Hematology Request Forms with pre-printed Toxicology Research Center Account #31104260-6 and address.
- 5. FED EX Shipping boxes.

H. Miscellaneous

- 1. Lab table soaker paper for kill (individual pieces per rat), rolls purchased from Biochemistry Stockroom, Farber Hall Room 10, SUNY at Buffalo.
- Glass cutting board for sectioning organs for pathology, Toxicology Research Center, SUNY at Buffalo.
- 3. Polystyrene weigh boats
 - a. Small: 37x10 mm, Laboratory Products
 Sales (Catalog # D205-1), purchased from
 Biochemistry Stockroom, Farber Hall Room 10, SUNY at Buffalo.
 - b. Medium: 78x19 mm, Laboratory Products Sales (Catalog # D205-2), purchased from Biochemistry Stockroom, Farber Hall -Room 10, SUNY at Buffalo.

- 4. Formalin jars Nalgene, 250 mL (8 oz.) with polypropylene cap, from VWR Scientific Products, Catalog # 16129-378.
- 5. Formalin "Z-Fix" prepared by and obtained from Pathology Department, Farber Hall Room 202C, SUNY at Buffalo (Concentrate from Anatech Ltd, 1020 Harts Lake Road, Battle Creek, Michigan 49015, Phone: 1-800-Anatech).
- 6. Disposable latex exam gloves, purchased from Biochemistry Stockroom, Farber Hall Room 10, SUNY at Buffalo.

PATHOLOGY PROCEDURES

The contents of the jar containing tissue from one animal are poured into a sieve. The formalin solution is drained off and collected into a separate container for proper disposal. Technicians in the histology laboratory prepare two processing plastic cassettes with the exact number that matches the number on the jar and the number on the list. The liver, lung, heart, spleen, kidney and testes are sliced with a safety razor blade to a thickness of 2 mm and placed into the cassette. The cassette is then dropped into a running water bath. The brain is sliced transversely to include the basal ganglia in the cerebrum and the cerebellum. The brain tissues are processed in a similar manner by being placed in a cassette and dropped into the water bath.

The tissues are processed by standard procedures for preparation of histological sections: dehydration through several concentrations of alcohols, xylene and paraffin embedding with a 5 micron section fixed on a microscope slide. The slide is then stained with hematoxylin and eosin and cover slipped. The identification number is consistently marked on each slide.

Each slide is microscopically examined:

- 1. The number of the slide is recorded, the entire section on each slide is surveyed at low power (40 X), for orientation of the section, histological components and any abnormalities visible at this magnification
- 2. The entire section is viewed with medium power (100 X), and any abnormalities are noted.
- 3. With high dry power (400 X) the individual histologic components of the section are carefully examined and any abnormality differing from the normal histological appearance is noted and recorded.

After reading all the slides and recording histopathological changes, general comments and comparisons are made. A report on the findings is prepared, signed and presented to the Toxicology Research Center.

Pota G. Rukérson.
Peter A. Nickerson, Ph.D.
Professor of Pathology

STUDY 28 - FINAL REPORT

NM-404

Acute Toxicology Study in the Rabbit

The purpose of this study was to evaluate the toxicity in rabbits of phospholipid ether NM-404 (alkyl chain length of 18 carbons), a radioimaging agent for tumors. The control and test articles were formulated by Raymond E. Counsell, Ph.D., Professor of Pharmacology & Medicinal Chemistry, Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan. The test article was NM-404 in a solution of 2% Tween 20 and sterile water. The control article was only 2% Tween 20 and sterile water. The sponsor of this project was responsible for the specifications of the test and control articles with concern for contaminants that could reasonably be expected to be present and capable of interfering with the purpose of this study. All procedures followed during this study are included in "Study 28 – Protocol" which is attached at the end of this report.

The control and test articles were received from Dr. Counsell on October 29, 1998. At the University of Buffalo, the study test site, four (4) vials of test articles labeled "NM-404 in 2% Tween 20/Sterile Water, MAL-V1-82" and four (4) vials of control articles labeled "Control Vehicle - 2% Tween 20/Sterile Water, MAL-V1-83" were inventoried and stored at room temperature in Farber Hall, Room 111. It was determined after the injections were completed in Study 27 - NM-404 (Acute Rats) that more test and control article would be needed in order to complete the injections to the rabbits. Therefore, on December 4, 1998 an additional vial of test and control article, from the original formulations, were received from Dr. Counsell. All the vials were dated October 16, 1998. The test article of the NM-404 solution was to be administered at approximately 200 times the clinical dose at a concentration of 2 mg/ml and a dose of 4 mg/kg. Each vial was reported to have an approximate volume of 10 ml. A green sticker dot was attached to each test vial to designate the NM-404 solution from the control solution; the control vials were designated with a "C" and then each set of control and test vials were numbered #1 to #5. Control vial #2C and test vial (with a green dot) #2 were injected into the rabbits on January 13, 1999 (Day 0 of the study). Control and test vials #1 were used exclusively for the rats and were not used for any of the rabbits. The control and test rabbits were injected intravenously in the lateral ear vein at a dose of 2 ml/kg.

On January 5, 1999 sixteen (16) New Zealand White rabbits were received from HRP, Inc. (Covance), Denver, Pennsylvania. The rabbits were all males, all born on November 7, 1998, and all appeared healthy. They were housed at the Laboratory Animal Facility, CFS Addition – Room 122 D. The rabbits were weighed upon arrival and their weights ranged from 1.48 kilograms to 1.68 kilograms. Two groups of eight (8) rabbits per group, controls and tests, were established with a mean weight of each group of 1.55 kilograms and 1.60 kilograms, respectively. The rabbits were housed one (1) animal per cage and given water ad lib. The food was at first restricted and then increased daily over a 5 day period until they were fed a maximum amount of 125 grams. This occurred during their 7 day quarantine period. Each rabbit was ear tagged with a metal tag imprinted with an individual number by the Laboratory Animal Facilities. For the purpose of this study, a study number was written on the ear of each rabbit that was a unique number of '1' to '16', numerically. The control rabbits were numbered '1' to '8' and the test rabbits were numbered '9' to '16". The unique numbers were also applied to each cage indicating which rabbit was housed within.

On January 13, 1999 (Day 0) the eight (8) control and eight (8) test rabbits were restrained, their ears cleaned with alcohol, and injected intravenously in the lateral ear vein at 2 ml/kg of body weight using a 25 gauge needle and a 5 ml syringe. The injections were given by alternating a rabbit from the control group with a rabbit from the test group, with the injections given over a 1 minute to 5 minute interval. Most of the injection times averaged between 1 - 2 minutes. The injections were administered in the left ears of the rabbits, except in test rabbit #28-09 when both ears received a portion of the total dose. Control rabbits #28-03, #28-04, #28-05, #28-06 received the injection in 2 sites; also test rabbit #28-09 and #28-11 received the injection in 2 sites. This occurred because the rabbit moved during the initial injection procedure. The injection on control rabbit #28-01 was given at 9:32 A.M. and the last injection on test rabbit #28-16 was given at 11:05 A.M. No adverse reactions were observed at the time of the injection or noted after the injections were completed. The rabbits were observed for signs of acute toxicity as described in Principles and Methods of Toxicology, 2nd Edition, Editor: A.W. Hayes, 1989, p. 180-181. The rabbits were observed closely until 1:45 P.M., and throughout the afternoon. No unusual behavior was noted in any of the rabbits during this time or during the remainder of the study.

The ear injection sites were observed daily. On Day 1 the left ear of control rabbit #28-01 was slightly red around the injection site; the left ear of control rabbit #28-03 was reddish purple and warm for almost the entire length of the ear and past the medial artery; the left ear of control rabbit #28-05 was bruised along the vein and below the injection site; and the left ear of test rabbit #28-10 was red around the injection site. On Day 2 the left ear of control rabbit #28-01 was improved — the redness was gone but the vein was slightly bruised at the injection site; the left ear of control rabbit #28-03 was improved — the area was less discolored and no longer warm but there was bruising along the vein; the left ear of control rabbit #28-05 did not show any improvement with the bruising still present; and the left ear of test rabbit #28-10 was normal. On Day 5 the left ears of control rabbits #28-01 and #28-03 were normal. The left ear of control rabbit #28-05 was improved but still had a 1 ½ inch thickened and discolored area along the

vein. Day 6 showed the left ear of control rabbit #28-05 to be improving with less discoloration and less thickening along the vein. The left ear of control rabbit #28-05 continued to improve until Day 12 when the ear and vein were normal.

The rabbits were weighed five (5) times a week (Monday through Friday) and their weights, recorded in kilograms, appear in Table 1. The mean weights of the control group and the test group also appear in Table 1 and these values are compared in Graph 1. Some rabbits did show a weight loss for a day or two and this could be attributed to the time of feeding or the time of normal bodily functions. Weight gain appears to be normal between the two groups.

The rabbits were anesthetized with sodium pentobarbital (65 mg/ml, Lot #970789, Expiration Date: 2/00 and Lot #980410, Expiration Date: 6/00) administered intravenously in the lateral ear vein on January 27, 1999. A heart puncture was then performed using a 21 gauge vacutainer needle and cuff to collect the blood samples for hematology testing. The rabbits were then overdosed with sodium pentobarbital until death occurred. The brain, heart, lungs, thymus, spleen, kidneys (both), liver, and testes (both) were collected, examined grossly, weighed, and sectioned for pathology. The organ weights and the organ to final body weight ratios data appears in Table 2. The organ/body weight ratios were compared using a Students t-test and the only significant difference was found when comparing the thymus/body weight ratio of the control and test rabbits. The tissue samples (except thymus) were placed in jars of 'Z-Fix' fixative. The following week, the organs were examined by the pathologist, Dr. Peter Nickerson, and cut into a representative section for processing for histopathological examination. Dr. Nickerson reports that "no gross lesions were noted in any of the groups receiving either the test material or in the control group". The collected organs were processed by the Department of Pathology, SUNY at Buffalo, School of Medicine. The histological preparations were examined by Peter A. Nickerson, Ph.D., Professor of Pathology, SUNY at Buffalo. The report from Dr. Nickerson lists his findings for control rabbit #28-01 to #28-08 and for test rabbit #28-09 to #28-16, with a description of each organ. Dr. Nickerson concludes that "by light microscopic examination, there are no changes in the histopathology of the organs examined that can be attributed to administration of the test material. Brain, kidney (casts observed in both groups are within normal limits), liver, spleen, testis and heart were within normal limits in the control and in the test group. In rabbits #6 and #7 for controls and #10 in the test material groups there are a few granulomas in the area of the triad. Also, in the control group, rabbit #6, a granuloma is observed in the myocardial septum. These findings of granulomas are known to occur in rabbits and are not attributable to the test material". The complete histological report prepared by Dr. Nickerson is attached.

Clinical blood chemistries (Superchem) and a CBC (Complete Blood Count with differential) were performed by Antech Diagnostics, Memphis, Tennessee on January 28, 1999 (Day 14). The results of the Superchem screen and CBC appear in Table 3 (Page 1: Control Rabbits #1- #8; Page 2: Test Rabbits #9 - #16; Page 3: Mean Data with Standard Deviation for both groups). The values were checked for any obvious low or high values that were below or above the reference range provided by Antech

Diagnostics. Whenever any value was outside of this reference range the groups were compared using a Students t-test at a p value of less than 0.05. T-tests were performed for the following blood tests: Calcium, Phosphorus, Sodium, Potassium, Triglycerides, AST (SGOT), ALT (SGPT), Alkaline phosphatase, Protein, Globulin, A/G ratio, Urea Nitrogen, Glucose, WBC, Hemoglobin, Hematocrit, and MCV. A significant difference was found with the A/G ratios when these values of the control and test rabbits were compared. The A/G ratio values for both the control and test rabbits were higher than the given reference range of 0.9 to 1.7. The control rabbit values ranged from 2.0 to 3.0 (Mean + STD = 2.6 ± 0.3); the test rabbit values ranged from 2.6 to 3.3 (Mean \pm STD = 2.9 ± 0.2). The WBC values also showed a significant difference between the control and test rabbits. The given reference range was 4.0 to 10.0 thds/cmm. Four (4) control rabbits had lower WBC values, with three (3) control rabbits within the normal reference range; all eight (8) test rabbits were reported to have lower WBC values. The control rabbit Mean \pm STD was 3.4 ± 1.1 and the test rabbit Mean \pm STD was 1.7 ± 0.9 . No other significant differences were found. The platelet estimation was similar between the control and test rabbits (Control rabbits: adequate in 7 rabbits, decreased in 1 rabbit; Test rabbits: adequate in 7 rabbits, decreased in 1 rabbit). Platelets were found to be clumped in only test rabbit #28-11. Slight anisocytosis was reported in control rabbit #28-02 and #28-08 and test rabbit #28-10. Moderate anisocytosis was only reported in control rabbit #28-04. Polychromasia was only reported in test rabbit #28-15.

External factors which might effect the study outcome appear to have been very limited in this study. Daily observations of the rabbits were also made by the personnel of the Laboratory Animal Facilities, SUNY at Buffalo.

At the conclusion of this study, all data notebooks with reports, histology tissue blocks, and stained slides are stored in Farber Hall, Room 118G at SUNY at Buffalo. All materials are labeled as "Study 28".

During the course of this study, an attempt was made to follow the Good Laboratory Practice (GLP) Regulations as outlined in the <u>Federal Register</u> of December 22, 1978 and September 4, 1987, Final Rule (21 CFR Part 58). Technical procedures are described in the "Study 28 – Protocol NM-404 Acute Toxicology Study in the Rabbit" which is attached at the end of this report.

At the State University of New York at Buffalo, the Study Technician was Ellen M. Schopp under the supervision of the Project Director, Paul J. Kostyniak, Ph.D. A special thanks to Marian M. Pazik for his assistance and cooperation during this study and for his technical support in the compiling of the study data and to Joseph A. Syracuse for his support on the final day. The Quality Assurance Officer who reviewed this report was Hebe B. Greizerstein, Ph.D.

Reviewed and Approved by:

Dr. Paul J. Kostyniak Study Director	3-24-18 Date
Ellen M. Soluys) Ellen M. Schopp Study Technician	3 23 99 Date
Dr. Hebe B. Greizerstein Quality Assurance Officer	$\frac{3/2 \ 3/9 \ 9}{\text{Date}}$

STUDY#

DESCRIPTION:

NM-404: Rabbits / Acute

RABBIT WEIGHTS (Kilograms)

	ſ										7																			
7	ᡱ	2	2.0.2	2.255	7.500	2.260	2.170	2 445	2 445	2 400	224	- 1	0 0	7.40	2.16	ŀ	10,	7.165	2.190	2.365	2 255	2 120	2440	2 6 6	7.220	2.355	2.26	0.10	2.36	2.16
ţ	2	000				2.195	2.055					,	2 .	4.34	2.08			2.005	2.015	2.245	2 155	2,100	2 320	244	7.113	2.150	2.15	0.09	2.24	2.05
5	4	7 670				2.155	2.040		2.225	2.205	2.15	; ;	20.00	7.40	2.03			7.170	2.070	2.260	2.120	2.115	2 235	2 405	2.103	2.155	2.15	0.06	2.21	2.08
	F																					-				-				
Ø	·	1 890	2 465	2 26 5	2000	2.035	1.995	2.245	2.300	2.205	2.16	14	2.5		2.01		200		2.100	2.160						۱			2.16	2.06
60		1.900	2 060	2 255	200	2. 100	1.930	2.225	2.205	2.120	2.10	0.13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	1.98		1 005		2.035	2.130	2.040					יי		0.04		2.01
7		1.885	1 980	2 250	2 6	600.7	1.910	2.200	2.225	2.120	2.08	0.13	2 24		1.95		2006			2.150	2.120	2.010				- 1			2.13	
9		1.775	1910	2.205	100	.300	1.910	2.065	2.060	2.045	1.99	0.12	2.12	: :	1.87		2006	7:01		2.090	2.040	1.960			•				2.06	1.93
'n		1.795	1,970	2.165	200	4.040	1.925	2.145	2.115	2.075	2.03	0.12	2.15		1.9.1		2 070	1 1	1.905	2.095	2.060	1.950	2.095	1.985	2 060	2000	4.04	0.0	2.09	1.98
			_																											
7		1.680	1.965	1.990	1 205	2 6	1.760	1.925	2.025	1.885	1.89	0.11	2.00	7.	1.70		1 875			1.960	2.035	1.805	1.935	1.830				_	_	1.82
₹		1.675	1.955	2.040	1 015	2 1	1.6/5	1.925	2.005	1.870	1.88	0.13	2.01	4 75	07:1		1.915			2.005	1.995	1.840	1.965	_						1.86
0		1.680	1.935	1.960				1.890	1.920		1.85	0.11	1.96	1 7/	* 7:		1.925	•			1.920	1.820	1.950	1.860		_			•	1.85
7		1.620	1.835	1.930	1 800	7 7 7	_	-	Ë	-	1.80	0	***	7	-		1.855	_			~		1.890		T]	•	٠ ر		7.87
-5		1.590	1.760	1.805	1.795	7	1.700	1.755	1.745	1.725	1.73	90.0	1.80	4 G7	<u>-</u>		1.750	1 740	2 7	7.810	1.860	1.725	1.850	1.745	1.770	1 78			1.83	1.7.
١	-																							_						
		1.390	1.655	1.620	1.680	_				~		0.09	1.70	152			1.685				Τ.		_	1.705	1,775	_}			-	1.62
မှ		1.390	1.705	1.665	1.690					-		0.10	•	1.53	?		1.690	1 560			_	`	•	1.745	1.720	,				1.60
7-		1.480	1.640	1.630	1.665	4 40E	004.	1.495	1.635	1.585	1.58	0.07	1.65	7.57	2		1.765	1 535	7	1.040	1.650	1.570	1.710	1.770	1.685	1.65	0	7 7	1.74	1.56
ထု																		•												
6-																												,	. د	_
	CONTROLS	28-01	28-02	28-03	28-04	28.05		78-06	28-07	28-08	'B	_	MEAN+STD	MEAN-STD	! }	TESTS	28-09	28-10	2000	1.1-07	28-12	28-13	28-14	28-15	28-16	ניז	_	F	MEAN+SID	MEAN-SID
DAY	SOS	7	7	7	7	•	4 (7	14		AVG	STD	ME/	ME	Ì	-	•4	• •	. •	•	- •	. •	- 4	. •	. 1	AVG	STD	ב ב כ	<u> </u>	E T

STUDY 28: NM-404 Rabbits - Acute

STUDY # 28

DESCRIPTION: NM-404: Rabbits / Acute

ORGAN WEIGHTS AND ORGAN/BODY WEIGHT RATIOS

											п		т		u	II.	т-	_	τ-	1	1	_	Г	1	T	T	T -
Kidnev/BW	Ratio		6.074	5.916	4.952	5.274	6.189	5.462	5.616	5.800	5.660	0.392	6.05	5.27		6.194	5.155	5.598	5.126	5.849	6.079	6.739	4.743	5.685	0.616	6.30	
Kidnevs II		(ā)	12.24	13.34	12.38	11.92	13.43	13.19	13.73	13.92	13.019	0.693	13.71	12.33		13.41	11.29	13.24	11.56	12.40	14.65	14.96	11.17	12.835	1.382	14.22	
Liver/BW	Ratio		33.816	25.016	30.472	29.611	31.516	26.178	31.607	35.725	30.493	3.356	33.85	27.14		30.139	29.781	31.594	30.909	29.467	31.992	41.482	33.002	32.296	3.646	35.94	28.65
Liver		(6)	68.14	56.41	76.18	66.92	68.39	63.22	77.28	85.74	70.285	8.548	78.83	61.74		65.25	65.22	74.72	69.70	62.47	77.10	92.09	77.72	73.034	9.006	82.04	64.03
Testes/BW	Ratio	· · · · · · · · · · · · · · · · · · ·	0.422	0.479	0.400	0.553	0.461	0.563	0.646	0.275	0.475	0.107	0.58	0.37	·	0.794	0.511	0.440	0.523	0.594	0.548	0.482	0.913	0.601	0.155	0.76	0.45
Testes		(ā)	0.85	1.08	1.00	1.25	1.00	1.36	1.58	99.0	1.098	0.273	1.37	0.82		1.72	1.12	1.04	1.18	1.26	1.32	1.07		1.358	0.361	1.72	1.00
Brain/BW	Ratio		4.089	3.792	3.320	3.686	3.788	3.590	3.509	3.379	3.644	0.234	3.88	3.41		3.755	3.826	3.645	3.601		3.390	3.392			0.224	3.87	3.42
Brain		(6)	8.24	8.55	8.30	8.33	8.22	8.67	8.58	8.11	8.375	0.187	8.56	8.19		8.13	8.38	8.62		8.64					0.330		7.88
Final	Body	Weight (ka)	2.015	2.255	2.500	2.260	2.170	2.415	2.445	2.400	2.308	0.152	2.460	2.155		2.165	2.190	2.365	2.255	2.120	2.410				0.099	2.359	2.161
Final			2.015	2.255	2.500	2.260	2.170	2.415	2.445	2.400	2.308	0.152	2.460	2.155		2.165	2.190	2.365	2.255	2.120	2.410	2.220	2.355	2.260	0.099	2.359	2.161
CONTROLS			28-01	28-02	28-03	28-04	28-05	28-06	28-07	28-08	Mean	STD	Mean + STD	Mean - STD	TESTS	28-09	28-10	28-11	28-12	28-13	28-14	28-15	28-16	Mean	STD	Mean + STD	Mean - STD

STUDY# 28

DESCRIPTION: NM-404: Rabbits / Acute

ORGAN WEIGHTS AND ORGAN/BODY WEIGHT RATIOS

CONTROLS	1	Spleen	Spleen/BW	Heart	Heart/BW	Lungs	Lung/BW	Thymus	Thymus/BW
	Body		Ratio		Ratio		Ratio		Ratio
	Weight	(B)		(6)		(B)		(a)	
	(kg)	۱							
Z8-01	2.015	1.08	0.536	8.91	4.422	9.00	4.467	3.45	1.712
28-02	2.255	1.47		4.19	1.858	8.60	3.814	3.23	1.432
28-03	2.500	0.89	0.356	9.08	3.632	8.51	3.404	4.07	1.628
28-04	2.260	1.37	909'0	4.78	2.115	8.61	3.810	4.05	1.792
28-05	2.170	1.34	0.618	4.63	2.134	8.40	3.871	3.74	1.724
28-06	2.415	1.26	0.522	4.53	1.876	8.10	3.354	3.88	1.607
28-07	2.445			4.74	1.939	8.63	3.530		1.763
28-08	2.400	0.93	0.388	5.44		8.52			1.596
Mean	2.308	1.175	0.514	3.151	2.530	8.546	3.725	3.820	1.657
STD	0.152	0.201	0.104	2.954	968.0	0.235	0.335	0.326	0.109
Mean + STD	2.460	1.38	0.62	6.10	3.43	8.78	4.06	4.15	1.77
Mean - STD	2.155	0.97	0.41	0.20	1.63	8.31	3.39	3.49	
TESTS									
28-09	2.165	0.64	0.296	5.83	2.693	8.20	3.788	3.75	1.732
28-10	2.190	1.11	0.507	4.51	2.059	7.86	3.589	4.10	1.872
28-11	2.365	0.86	0.364	4.96	2.097	10.13	4.283	4.00	1.691
28-12	2.255			4.47		8.02	3.557	3.34	1.481
28-13	2.120		0.585	4.50		8.50	4.009	3.90	1.840
28-14	2.410		0.361	4.91	2.037	8.41	3.490	4.80	1.992
28-15	2.220			5.99	2.698	8.66	3.901	4.89	2.203
28-16	2.355			6.55			3.567	4.58	1.945
Mean	2.260			5.215	2.309	8.523	3.773	4.170	1.844
STD		0.186	0.000	0.749	0.325	0.654	0.259	0.507	0.203
Mean + STD				5.96			4.03	4.68	2.05
Mean - STD	2.161	0.76	0.33	4.47	1.98	7.87	3.51	3.66	

TITLE:

NM-404: Rabbits / Acute

Blood Chemistry & CBC Results -

DAY# 14

				TESTS				
ANIMAL #	28-09	28-10	28-11	28-12	28-13	28-14	28-15	28-16
BLOOD TEST								
Calcium mg/dL	14.3	3 15.0	14.4	1 15.7	13.9	15.0		
Phosphorus mg/dL	8.9	5 5.6	6.1	4.6	5.7	4.0		
Sodium mEq/L	144	1 14	142	141	140	140		
Potassium mEq/L	6.0	6.2	7.0	7.6	6.0	6.5	6.6	
Chloride mEq/L	99	106	104	103	103	105		103
Cholesterol mg/dL	26	37	41	41	31			27
Triglycerides mg/dL	34	52	63	77	48	87		106
AST (SGOT) U/L	171	46	103	40	66		1	25
Bilirubin, Total mg/dL	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1
GGTP U/L		2 2	2	2				2
ALT (SGPT) IU/L	54	67	65	86	70		36	40
Alkal. Phosphatase U/L	125	151	125				100	59
Protein, Total g/dL	5.5		5.3	5.7			5.2	5.2
Globulin g/dL	1.4		1.3	1.6			1.2	1.3
Albumin g/dL	4.1		4.0	4.1	4.0	3.8	4.0	3.9
A/G Ratio	2.9	2.7	3.1	2.6			3.3	3.0
Urea Nitrogen mg/dL	16	22	20	28	26	26	26	24
Creatinine mg/dL	1.3	1.1	1.2	1.2	1.0	1.0	1.0	1.1
BUN/Creatinine Ratio	12	20	17	23	26	26	26	22
Glucose mg/dL	166	133	139	154	126	163	141	121
Amylase U/L	255	284	228	330	264	306	274	326
Lipase U/L	269	319	300	499	615	389	356	445
CPK U/L	3999	806	2596	931	2783	1313	917	1251
Magnesium mEq/L	2.4	2.3	2.8	2.9	2.5	2.3	2.3	2.6
Osmolality, Calc'd mosm/	295	296	292	295	288	291	295	289
WBC thds/cmm	2.0	2.1	1.1	3.2	2.0	2.5	0.4	0.5
RBC mill/cmm	6.99	5.40	5.61	5.42	5.91	5.60	5.71	5.68
Hemoglobin g/dL	13.6	11.4	11.2	11.8	12.3	11.3	11.4	11.7
Hematocrit %	42.8	35.4	34.6	36.7	37.6	35.3	35.8	35.8
MCV	61	66	62	68	64	63	63	63
MCH	19.5	21.1	20.0	21.8	20.8	20.2	20.0	20.6
MCHC	31.8	32.2	32.4	32.2	32.7	32.0	31.8	32.7
Polys %	42	28	62	46	72	58	35	43
Bands %	0	0	0	0	0	0	0	0
Lymphocytes %	40	72	38	34	18	32	52	37
Monocytes %	18		0	17	10	10	8	18
Eosinophils %	0		0	3	0	0	3	2
Basophils %	0	0	0	0	0	0	2	0
Platelet Estimation	Adequat	Adequat	Decreas	Adequat	Adequat	Adequat	Adequat	Adequat
Platelet Comments	+		Clumps	•	•			
Anisocytosis	 	Slight						
Polychromasia		3					Slight	
Other Comments	 							
Ottlet Collinion								
	1							

TITLE:

NM-404: Rabbits / Acute

Blood Chemistry & CBC Results -

DAY# 14

		MEAN D	ATA		*
ANIMAL#	CONT	ROLS	TES	TS	Significant
BLOOD TEST	MEAN	STD	MEAN	STD	Difference
Calcium mg/dL	14.5	1.1	14.6	0.6	
Phosphorus mg/dL	5.5	1.1	5.5	1.3	
Sodium mEq/L	140.9	1.2	142.0	1.7	
Potassium mEq/L	6.0	0.7	6.6	0.5	
Chloride mEq/L	103.1	1.4	103.6	2.1	
Cholesterol mg/dL	40.9	12.1	34.0	5.6	
Triglycerides mg/dL	80.5	43.0	70.5	23.8	
AST (SGOT) U/L	38.6	15.7	64.3	46.8	
Bilirubin, Total mg/dL	0.1	0.0	0.1	0.0	
GGTP U/L	2.5	1.3	2.0	0.0	
ALT (SGPT) IU/L	46.1	12.3	62.9	17.4	
Alkal. Phosphatase U/L	111.5	24.4	114.6	26.3	
Protein, Total g/dL	5.4	0.2	5.4	0.2	
Globulin g/dL	1.5	0.2	1.4	0.1	
Albumin g/dL	3.9	0.2	4.0	0.1	
A/G Ratio	2.6	0.3	2.9	0.2	*
Urea Nitrogen mg/dL	22.8	6.4	23.5	3.7	
Creatinine mg/dL	1.1	0.1	1.1	0.1	
BUN/Creatinine Ratio	21.6	6.8	21.5	4.7	
Glucose mg/dL	141.9	15.5	142.9	15.6	
Amylase U/L	267.9	55.5	283.4	33.2	
Lipase U/L	470.8	152.8	399.0	108.3	
CPK U/L	893.8	344.6	1824.5	1089.3	
Magnesium mEq/L	2.5	0.2	2.5	0.2	
Osmolality, Calc'd mosm/	289.1	4.1	292.6	2.9	
Osmolanty, Guie a meens					
WBC thds/cmm	3.4	1.1	1.7	0.9	*
RBC mill/cmm	5.7	0.4	5.8	0.5	
Hemoglobin g/dL	11.8	0.6	11.8	0.7	
Hematocrit %	36.8	2.1	36.8	2.4	
MCV	65.1	2.0	63.8	2.1	
MCH	20.9	0.7	20.5	0.7	
MCHC	32.1	0.6	32.2	0.3	
Polys %	57.1	15.8	48.3	13.7	
Bands %	0.0	0.0	0.0	0.0	
Lymphocytes %	34.0	17.3	40.4	14.8	
Monocytes %	6.3	5.2	10.1	6.9	
Eosinophils %	1.9	2.4	1.0	1.3	
Basophils %	0.6	0.9	0.3	0.7	
Platelet Estimation					
Platelet Comments					
Anisocytosis					
Polychromasia	-				
Other Comments					
Other Commence					
<u></u>					

STUDY 28

Gross Examination:

Organs were examined grossly at the time of removal and after fixation, before a representative section was cut for processing for histopathological examination. No gross lesions were noted in any of the groups receiving either the test material or in the control group.

Histopathological Examination of Organs:

Rabbits receiving the Test Material.

Rabbit #9

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp has normal structure. -

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #10

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are

normal; there is no inflammation or other indication of infection.

Heart: The myocardium, endocardium and coronary vessels are normal.

Liver: The lobule structure and the cellular structure of the parenchymal cells are normal; there are no vacuoles within the parenchymal cells of the liver. In several triads there is evidence of macrophages in the interstitial space around the bile duct, hepatic artery and the portal vein.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. A few casts are observed in the tubular system.

Spleen: White and red pulps have normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #11

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary yessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp has normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #12

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp has normal structure,

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #13

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp has normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #14

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp has normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #15

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp has normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #16

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp has normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Control Group:

Rabbit #1

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are

normal; there is no inflammation or other indication of infection.

Liver: The lobule structure and the cellular structure of the parenchymal cells are normal; there is no inflammation or vacuoles within the parenchymal cells of the liver.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. In a few tubules, there are a few eosinophilic casts.

Spleen: White and red pulp have normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #2

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection.

Liver: The lobule structure and the cellular structure of the parenchymal cells are normal; there are no vacuoles within the parenchymal cells of the liver.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several focal areas in the renal medulla contain tubules that exhibit eosinophilic casts.

Spleen: White and red pulp have normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #3

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection.

Liver: The lobule structure and the cellular structure of the parenchymal cells are normal; there is no inflammation or vacuoles within the parenchymal cells of the liver.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Eosinophilic casts are observed in some medullary tubule cells.

Spleen: White and red pulp have normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #4

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection.

Liver: The lobule structure and the cellular structure of the parenchymal cells are normal; there is no inflammation or vacuoles within the parenchymal cells of the liver.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Eosinopilic casts are observed in some medullary tubules.

Spleen: White and red pulp have normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #5

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection.

Liver: The lobule structure and the cellular structure of the parenchymal cells are normal; there are no vacuoles within the parenchymal cells of the liver.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. A few eosinophilic casts are seen in the medullary tubules.

Spleen: White and red pulp have normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #6

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection.

Liver: The lobule structure and the cellular structure of the parenchymal cells are normal; there are no vacuoles within the parenchymal cells of the liver. In a few of the triads there are macrophages in the interstitium among the bile ducts, hepatic artery and portal vein.

Heart: The endocardium and coronary vessels are normal. In the myocardial septum, one focal area with inflammatory cells (neutrophils and macrophages) extends to the endocardium and resembles a granuloma.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. A few eosinophilic casts are observed in focal medullary tubules.

Spleen: White and red pulp have normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #7

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection.

Liver: The lobule structure and the cellular structure of the parenchymal cells are normal; there are no vacuoles within the

parenchymal cells of the liver. Several triads have a small collection of macrophages and are interpreted as a granuloma.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Some tubules with eosinophilic casts are observed.

Spleen: White and red pulp have normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Rabbit #8

Brain: The cerebrum and cerebellum have normal structure; there is no edema, inflammation or infarcts.

Lung: The airways and distal structure of the lung (alveoli) are normal; there is no inflammation or other indication of infection. There is no pulmonary edema.

Liver: The lobule structure is normal.

Heart: The myocardium, endocardium and coronary vessels are normal.

Kidney: The cortex, medulla and urinary space exhibit a normal histology. Several casts are present in the renal tubular system.

Spleen: White and red pulp has normal structure.

Testis: The testis is immature and there are no spermatozoa in the seminiferous tubules.

Interpretation and comments:

By light microscopic examination, there are no changes in the histopathology of the organs examined that can be attributed to administration of the test material.

Brain, kidney (casts observed in both groups are within normal limits), liver, spleen, testis and heart were within normal limits in the control and in the test group.

In rabbits #6 and #7 for controls and #10 in the test material groups there are a few granulomas in the area of the triad. Also, in the control group, rabbit #6, a granuloma is observed in the myocardial septum. These findings of granulomas are known to occur in rabbits and are not attributable to the test material.

Peter A. Nickerson, Ph.D.

Professor of Pathology

3/22/8

Date

STUDY 28 - PROTOCOL

NM-404

ACUTE TOXICOLOGY STUDY

IN THE RABBIT

I. Description

The purpose of this study is to evaluate the toxicity in rabbits of phospholipid ether NM-404 (alkyl chain length of 18 carbons), a radioimaging agent for tumors.

II. Control/Test Articles

The formulation of the control and test articles will be performed by the sponsor. The control and test articles received from the sponsor for this study will be stored at room temperature in Farber Hall - Room 111, SUNY at Buffalo, New York. At termination of the study, the remaining control and test articles will be returned to the sponsor for QC and integrity testing.

Control Article: The control solution will be 2% Tween 20 and sterile water.

Test Article: The NM-404 solution will be NM-404 in a solution of 2% Tween 20 and sterile water. The test article of NM-404 solution will be approximately 200 times the clinical dose with a concentration of 2 mg/ml.

III. Sponsor/Testing Facility

Sponsor: Raymond E. Counsell, Ph.D.

Professor of Pharmacology & Medicinal Chemistry

Department of Pharmacology

1301 Medical Science Research Building
The University of Michigan Medical School

Ann Arbor, Michigan 48109-0632

Office: 313-764-8165 FAX: 313-763-4450

Project Director: Paul J. Kostyniak, Ph.D.

Director, Toxicology Research Center

Farber Hall - Room 111

SUNY at Buffalo

Office: 716-829-2125 FAX: 716-829-2806

Testing Facility: SUNY at Buffalo

Laboratory Animal Facilities

CFS Addition

Main Street Campus

Buffalo, New York 14214-3000

Laboratory Animal Facilities

Director:

Thomas Martin, BVSC DipVetPath PhD MBA MACVSc

DiplACLAM

Laboratory Animal Facilities

116 CFS Addition SUNY at Buffalo

Office: 716-829-2919 FAX: 716-829-3249

The Institutional Animal Care and Use Committee (IACUC) at the University of Buffalo has approved this study with the animal use project number of PMY22074N.

IV. Test System

Rabbit Supplier: HRP, Inc. (Covance)

P.O. Box 7200

Denver, Pennsylvania 17517

Phone: 1-800-345-4114 FAX: 717-336-5344

Rabbit Description: New Zealand White

Specific Pathogen Free (S.P.F.)

Male

3.5-4.0 lbs.

Quantity - 16 animals

The rabbits will be housed at the State University of New York at Buffalo, Laboratory Animal Facilities, CFS Addition, Room 122 D.

V. Identification of Test System

Each rabbit will be given an individual animal number by the Laboratory Animal Facilities. This number is stamped into a metal tag that is applied to the ear of each rabbit and identifies it from any other rabbit in the facility. Each rabbit will also have a two-part number starting with 28-(Study #), followed by a 'unique' number of '01' to '16' (numerical). The unique number will be applied to the hairless (inner) side of the right ear with a Sanford Sharpie Fine Point Permanent Marker and re-applied when the number begins to wear off. Each rabbit, housed one (1) animal per cage, will have a cage card with the unique number indicated, applied with the permanent marker, and reflective of the rabbit housed within.

When referring to any rabbit during this study the 'unique' number of '01' to '16' will be used.

IV. Experimental Design

- A. The sixteen (16) rabbits are randomly divided into two (2) groups having approximately the same mean weight:
 - 1. Control Group: Eight (8) rabbits to receive the control article of 2% Tween 20
 - 2. Test Group: Eight (8) rabbits to receive the test article of NM-404 in 2% Tween 20
- B. The rabbits are weighed and their weights recorded in kilograms (kg), during the one week quarantine period

and during two week study period, Monday through Friday, and more often if problems with weight gain occur.

- C. The rabbits will be observed for any unusual behavior or change in food and water intake for the duration of the study.
- D. The rabbits will be injected intravenously in the lateral ear vein using sterile techniques, and an appropriately sized syringe with a 25 gauge needle (see Section VIII, Part B).
- E. Initially, one (1) control and one (1) test rabbit will be injected at 2 ml/kg with the appropriate dosing solution:
 - These rabbits will be observed for any signs of toxicity, respiratory distress, change in motor activity, seizures, etc. (see Section IX, Part C).
 - a. If any deaths are observed, the remaining rabbits will be injected at 1/2 that dose rate (1 ml/kg) and observed.
 - b. If no deaths are observed, the remaining rabbits will be injected at the initial 2 ml/kg dose, alternating control rabbit and test rabbit, and observed.
 - If any deaths occur following the injections, a veterinarian/pathologist will perform a postmortem.
- F. Fourteen (14) days after the dosing solution is injected, the rabbits will be killed:
 - 1. Weigh the rabbit (final body weight).
 - 2. Anesthetize the rabbit with the sodium pentobarbital, dosed at 40 mg/kg, into the lateral ear vein using a 25 gauge needle and 3 ml syringe.
 - 3. A heart puncture is then performed using a vacutainer cuff/needle and vacutainer tubes to collect the blood samples for hematology testing (Superchem and CBC with differential, see Section IX, Part D, #1).
 - 4. Overdose the rabbit with sodium pentobarbital until death occurs.

- 5. Collect and examine grossly the following organs:
 Brain, Heart, Lungs, Thymus, Spleen, Kidneys
 (both), Liver and Testes (both) in the animal and
 upon removal.
- 6. Weigh each organ and record the weight (the weighing boats have been pre-weighed, their weights recorded and this weight needs to be subtracted from the combined organ and weighing boat weight to obtain organ weight).
- 7. Section organs (except thymus), if needed, for pathology (see Section IX, Part F, #1) and place the whole organ or representative organ sections in formalin.
- 8. Place carcass and remaining organs in plastic bag for incineration; clean area and instruments after each rabbit is sacrificed.
- Prepare blood samples as described in Section IX, Part D, #2.
- 10. The organs and organ sections will be allowed to fix in the formalin for at least 24 hours before smaller sections are selected and cut to fit the histological cassettes for embedding.
- 11. Deliver the sectioned tissues in formalin to the Pathology Department, SUNY at Buffalo for histological preparation (See Section IX, Part F, #3).

VII. External Factors

A. Animal Diet

1. ProLab High Fiber Rabbit 5P25

Guaranteed Analysis:	
Crude protein not less than	16.0%
Crude fat not less than	2.0%
Crude fiber not less than	19.0%
Crude fiber not more than	24.0%
Calcium not less than	०.8%
Calcium not more than	1.3%
Phosphorus not less than	0.5%
Salt (NaCl) not less than	0.5%
Salt (NaCl) not more than	1.0%

Vitamin A not less than 5000.0 IU/Lb
Ash not more than 6.5%
Added minerals not more than 3.5%

2. The rabbits will be fed on the following schedule which is on the recommendations of HRP, Inc.:

First 12-24 hours - NO FOOD

Day 1 - 25 grams

Day 2 - 50 grams

Day 3-4 - 75-100 grams

Day 5-7 - 100-125 grams

Note: Restricted feeding will not restrict growth rates because nutritional requirements are met at 125 grams.

3. Water will be available from the automatic watering system that is attached to each cage rack, with a water spigot available to each rabbit. The water is obtained from the City of Buffalo's public water system (tap water). The water spigot will be checked daily to assure that water is available to each cage.

B. Control and Test Articles

The sponsor of this project is responsible for the specifications of the control and test articles, with concern for contaminants that could reasonably be expected to be present and capable of interfering with the purpose of this study.

VIII. Administration of Control/Test Articles

A. Dosage Level

The control and test rabbits will receive one (1) injection that will be administered intravenously at a dose of 2 ml/kg of body weight. If acute toxicity is observed, then reduce the dose to 1 ml/kg for both the control and test articles. A reference for a maximum bolus dose of 2 ml/kg is recommended in Principles and Methods of Toxicology, 2nd Edition, Editor: A. Wallace Hayes, Raven Press, New York, 1989, p. 862. This study dose does not exceed this recommendation.

B. Method

The test and control articles will be administered in an alternating pattern (control rabbit, test rabbit, control rabbit, etc.) with an intravenous injection in the lateral ear vein.

- Properly restrain the rabbit (hand-held or in a commercial rabbit restrainer).
- 2. Prepare lateral ear vein by applying 70% alcohol to area.
- Stimulate blood flow to vein with sharp fingerflicks to area.
- 4. Insert the 25 gauge needle attached to an appropriately sized syringe (1 ml or 3 ml) into the ear vein.
- Inject the control and test articles cautiously, but at a reasonable rate (average = 1-2 minutes).
- 6. Remove needle/syringe from the vein and apply pressure to area with a 2x2 gauze until bleeding stops.

IX. Type/Frequency of Tests

- A. Scale Calibration To be performed on a pre-weighing and post-weighing basis when the rabbits are weighed, when the weighing boats are weighed, and when the rabbit organs are weighed on the day of sacrifice.
- B. Body Weight Gain The rabbits will be weighed Monday through Friday during the one week quarantine period and during the two week study period.

c. Monitoring

- Physical The rabbits will be observed daily for any changes in food or water consumption and for tissue reactions at the site of the injection.
- Toxicological The rabbits will be observed after the injection for signs of acute toxicity as described in <u>Principles and Methods of Toxicology</u>, 2nd Edition, Editor: A. W. Hayes, 1989, p. 180-181.

D. Clinical

- 1. On the day of the kill (fourteen days after the dosing injection) the following blood samples will be drawn with a heart puncture, after the rabbit is anesthetized intravenously with sodium pentobarbital, for testing:
 - a. 4 ml EDTA vacutainer tube for CBC with differential (ANTECH Diagnostics Test #951); invert tube a minimum of ten (10) times to mix.
 - b. 4 ml SST (Serum Separator Tube) vacutainer tube for diagnostic Superchem screen (ANTECH Diagnostics Test #951); invert tube five times to mix the clot activator and blood, allow blood to clot for at least 20 minutes, then centrifuge at full speed for 15 minutes.
- 2. Sort each rabbit's labeled EDTA tube and labelled Serum Separator Tube with a completed ANTECH Diagnostics Test Requisition form (ANTECH Diagnostics Account Number #31104260-6) into a plastic bag (one per rabbit); place specimen bags into ANTECH Diagnostics Shipping Box (provided); call FED EX at 1-800-463-3339 for pick-up.
- 3. Samples will be transported by FED EX to ANTECH Diagnostics (Phone: 1-888-397-8378) for testing.
- E. Organ Weights On the day of the kill (fourteen days after the dosing injection) the following body organs will be examined grossly for abnormalities, collected, and their weights recorded:

1.	Thymus	Small weighing boat
2.	Lungs (both)	Medium weighing boat
3.:	Heart	Small weighing boat
4.	Spleen	Small weighing boat
5.	Kidneys (both, peel off capsule before weighing)	Medium weighing boat
6.	Liver	Medium weighing boat
7.	Testes (both)	Small weighing boat
8.	Brain	Small weighing boat

Note: The weighing boat size is selected to accommodate the total organ and is preweighed

F. Histological Preparation

- 1. After the specified organs have been weighed, the organs will be placed into a jar containing formalin. Each jar will be pre-labeled with the rabbit's study number and the date. The organs will be prepared for the fixative process by placing them in the formalin in the following manner:
 - a. Lungs with scissors/mid-section slice (from 2 lobes)
 - b. Heart whole organ into fixative
 - c. Spleen whole organ into fixative
 - d. Kidneys with razor blade/butterfly each
 - e. Liver with razor blade/mid-section slice (from 2 lobes)
 - f. Testes whole organs (both) into fixative
 - g. Brain whole organ into fixative (use separate formalin jar)
- 2. The organs or organ sections will be allowed to fix in the formalin for at least 24 hours; the fixed organ or organ section will then be removed from the formalin and sectioned into properly sized pieces to fit into the histological cassette used during the embedding process.
- 3. The formalin jars containing the sectioned organs and a Histological Preparation Request Form, will be delivered to the Pathology Department, School of Medicine, SUNY at Buffalo, for processing:

Request Form includes:

- a. Dehydration and Embedding -R
- b. Sectioning 5 um
- c. Stain H&E

4. Histology slides will be read by the pathologist, Peter A. Nickerson, A.B., M.A., Ph.D. - Professor and Director of the Pathology Graduate Program, 212 Cary Hall, SUNY at Buffalo. The complete pathology procedure is attached to the end of this protocol.

x. Records

- A. "Study 28" Data Notebook will be kept in Farber Hall Room 118G, SUNY at Buffalo:
 - 1. Inventory of control and test articles received from the sponsor and the animals on which it was administered; paper work for returned control and test articles to the sponsor.
 - Information on rabbits: Shipment information, initial weights, sex, physical condition.
 - Scale calibration: Scales used for rabbit weights, organ weights, and weighing boat weights.
 - 4. Rabbit body weights, with a group mean weight ± Standard Deviation.
 - Daily physical observations of rabbits.
 - 6. Injection day data: Date, Rabbit weights, Dose volume, Time, Vial #of article injected, Physical observations (signs of acute toxicity), Postmortem report of any deaths.
 - 7. Weight of organs at sacrifice: Brain, Thymus, Lungs, Heart, Spleen, Kidneys, Liver, Testes.
 - 8. ANTECH Diagnostics Test Request Form (copy) for the clinical diagnostic tests to be performed on each rabbit.
 - 9. Histology Request Forms for the tissue specimens submitted for pathology.
 - 10. Hematology test results (Superchem and CBC with differential) on each rabbit, as performed by ANTECH Diagnostics.
 - 11. Compilation chart of hematology test results.
 - 12. Compilation chart of organ weights with organ/body weight ratios for each rabbit.

- 13. Pathology report of histology slides, as prepared by Dr. Peter A. Nickerson.
- 14. Statistical findings.
- B. Histology tissue blocks.
- C. Histology slides.

XI. Approval of Protocol

A. By Sponsor:

Dr. Raymond Counsell

Date

B. By Study Director:

Dr. Paul J. (Kostyniak

Date

XII. Statistical Methods

Differences in body weights and biochemical parameters will be compared between groups using the t-test

XIII. Revisions

Any revisions made to this protocol will be attached in the appendices.

XIV. Materials and Equipment

A. Scales

1. Ohaus PB-30(Serial #2295) - Measures to 0.005 kilograms (kg), from the Laboratory Animal Facilities, SUNY at Buffalo.

- 2. Sartorius 1212 MP (Serial #2907085) Measures to 0.001 grams (g), from the
 Toxicology Research Center, SUNY at Buffalo.
- B. Centrifuge Dynac Benchtop Centrifuge #0101 (Serial #22424), from the Toxicology Research Center, SUNY at Buffalo.
- C. Syringes BD syringes 1 ml and 3 ml Single dose, Sterile, with Luer Lock tip, purchased from the Laboratory Animal Facilities, SUNY at Buffalo.

D. Needles

- 1. Monoject 25 gauge hypodermic needles X 5/8" long, purchased from the Laboratory Animal Facilities, SUNY at Buffalo.
- Monoject 20 gauge hypodermic needles x 1" long, purchased from the Laboratory Animal Facilities, SUNY at Buffalo.

Note: Monoject needles are sharper than BD needles

- 3. Precision Glide Vacutainer Brand Blood Collection 21 gauge x 1", obtained from Lab Corp of America.
- E. Instruments Large dissection scissors, Small dissection scissors, Scalpel handle #4, Scalpel blades #21, Forceps, Rongeur, Spoon, Single-edged razor blades.
- F. Drugs Sodium Pentobarbital @ 65 mg/ml,
 manufactured by Veterinary Laboratories,
 Inc. for the Butler Company, Lot #980410,
 Expiration Date 2/00 & 6/00. This will be
 purchased from the Laboratory Animal
 Facilities, SUNY at Buffalo, on an ml's
 as needed basis.

G. ANTECH Diagnostics

1. 4 ml EDTA vacutainer tube (Lavender top), Becton Dickinson #366405, Lot #8C232, Expiration Date: MAR00.

- 4 ml Serum Separator Tube (SST Vacutainer -Red/Gray top), Becton Dickinson #366514, Lot #8D907, Expiration Date: MAR99.
- Plastic bags for transporting specimens (a bag for each animal's blood tubes).
- 4. ANTECH Diagnostics Hematology Request Forms with pre-printed Toxicology Research Center Account #31104260-6 and address.
- 5. FED EX Shipping boxes

H. Miscellaneous

- Lab table soaker paper for kill (individual pieces per rabbit), rolls purchased from Biochemistry Stockroom, Farber Hall - Room 10, SUNY at Buffalo.
- Glass cutting board for sectioning organs for pathology, Toxicology Research Center, SUNY at Buffalo.
- 3. Polystyrene weigh boats
 - a. Small: 37x10 mm, Laboratory Products
 Sales (Catalog # D205-1), purchased from
 Biochemistry Stockroom, Farber Hall Room 10, SUNY at Buffalo.
 - b. Medium: 78x19 mm, Laboratory Products Sales (Catalog # D205-2), purchased from Biochemistry Stockroom, Farber Hall -Room 10, SUNY at Buffalo.
- 4. Vacutainer cuff for drawing blood into vacutainer tubes, from Toxicology Research Center, SUNY at Buffalo.
- 5. Formalin jars Nalgene, 250 ml (8 oz.) with polypropylene cap, from VWR Scientific Products, Catalog #16129-378.
- 6. Formalin "Z-Fix" prepared by and obtained from Pathology Department, Farber Hall Room 202C, SUNY at Buffalo (Concentrate from Anatech Ltd, 1020 Harts Lake Road, Battle Creek, Michigan 49015, Phone: 1-800-Anatech).
- 7. Disposable latex exam gloves, purchased from Biochemistry Stockroom, Farber Hall Room 10, SUNY at Buffalo.

PATHOLOGY PROCEDURES

The contents of the jar containing tissue from one animal are poured into a sieve. The formalin solution is drained off and collected into a separate container for proper disposal. Technicians in the histology laboratory prepare two processing plastic cassettes with the exact number that matches the number on the jar and the number on the list. The liver, lung, heart, spleen, kidney and testes are sliced with a safety razor blade to a thickness of 2 mm and placed into the cassette. The cassette is then dropped into a running water bath. The brain is sliced transversely to include the basal ganglia in the cerebrum and the cerebellum. The brain tissues are processed in a similar manner by being placed in a cassette and dropped into the water bath.

The tissues are processed by standard procedures for preparation of histological sections: dehydration through several concentrations of alcohols, xylene and paraffin embedding with a 5 micron section fixed on a microscope slide. The slide is then stained with hematoxylin and eosin and cover slipped. The identification number is consistently marked on each slide.

Each slide is microscopically examined:

- 1. The number of the slide is recorded, the entire section on each slide is surveyed at low power (40 X), for orientation of the section, histological components and any abnormalities visible at this magnification
- 2. The entire section is viewed with medium power (100 X), and any abnormalities are noted.
- 3. With high dry power (400 X) the individual histologic components of the section are carefully examined and any abnormality differing from the normal histological appearance is noted and recorded.

After reading all the slides and recording histopathological changes, general comments and comparisons are made. A report on the findings is prepared, signed and presented to the Toxicology Research Center.

Peta a. nikorom

Peter A. Nickerson, Ph.D. Professor of Pathology

Appendix 5: Letter from Food and Drug Administration and I.N.D. Number

Food and Drug Administration Rockville, MD 20857

IND 62,703

Milton Gross, M.D.
Professor, Radiology and Internal Medicine
B1G 505C, University Hospital
1500 E. Medical Center Dr.
Ann Arbor, MI 48109-0028

Dear Dr. Milton:

Please refer to your Investigational New Drug Application (IND) submitted under section 505(i) of the Federal Food, Drug, and Cosmetic Act for NM-404.

We have completed our 30-day safety review of your application and, as discussed with your representative, Dr. Marc Longino, in the teleconferences on June 25 and 26, 2001, have concluded that you may proceed with your proposed clinical investigation.

If we have any comments to relay to you, we will send them to you in a separate letter or fax.

As sponsor of this IND, you are responsible for compliance with the Federal Food, Drug, and Cosmetic Act and the implementing regulations (Title 21 of the Code of Federal Regulations). Those responsibilities include (1) reporting any unexpected fatal or life-threatening adverse experience associated with use of the drug by telephone or fax no later than 7 calendar days after experience initial receipt of the information [21 CFR 312.32(c)(2)]; (2) reporting any adverse experience associated with use of the drug that is both serious and unexpected in writing no later than 15 calendar days after initial receipt of the information [21 CFR 312.32(c)(1)]; and (3) submitting annual progress reports (21 CFR 312.33).

Please forward all future communications concerning this IND in triplicate along with Form FDA 1571, identified by the above IND number, to the following address:

U.S. Postal Service/Courier/Overnight Mail:
Food and Drug Administration
Center for Drug Evaluation and Research
Division of Medical Imaging and Radiopharmaceutical Drug Products
Attention: Division Document Room, 18B-06
5600 Fishers Lane, HFD-160
Rockville, Maryland 20857

IND 62,703 Page 2

If you have any questions, call Thuy M. Nguyen, M.P.H., Regulatory Health Project Manager, at (301) 827-7510.

Sincerely,

{See appended electronic signature page}

Patricia Y. Love, M.D., M.B.A.
Director
Division of Medical Imaging and
Radiopharmaceutical Drug Products
Office of Drug Evaluation III
Center for Drug Evaluation and Research

Appendix 6: Presentations and Publications

Radiopharmaceutical Chemistry Track Dosimetry: Clinical Dosimetry

2:15 PM-3:45 PM Session 23

Moderator: Barry W. Wessels, PhD Co-Moderator: John L. Humm, PhD

No. 155

PREDICTED DOSIMETRY FOR I-131-NM-404, A PHOSPHOLIPID ETHER AGENT FOR TUMOR IMAGING AND POSSIBLE THERAPY. K. R. Zasadny*, M. A. Longino, S. J. Fisher, R. E. Counsell, R. L. Wahl, The University of Michigan Medical Center, Ann Arbor, MI. (500384)

Objectives: Phospholipid ether agents have the potential to image and possibly deliver therapeutic radiation to a wide variety of human tumors due to their differentially slower metabolism in tumors relative to normal tissues. Previous phospholipid ether agents have successfully targeted a variety of human neoplasms including colon, lung and ovarian cancer. lodine-labeled NM-404 has successfully targeted tumors in the rat including the Walker256 tumor line. This study focuses on predicted normal organ dosimetry for I-131-labeled NM-404 for humans based on biodistribution studies in the rat. Methods: Tissue distribution studies were carried out after I-125-labeled NM-404 injection in male Sprague-Dawley rats at six time points (3 animals per time point): 1 hr, 6 hr, 24 hr, 72 hr, 7 d and 10 d post injection. Kg*%ID/g uptake in tissues were calculated. Time-activity curves were fit by non-linear least-squares regression using a biexponential model. Extrapolation to human was accomplished by scaling by the total body and organ masses of the MIRD reference adult phantom. Fit time-activity curves were corrected for I-131 decay and integrated to determine doximetric residence times for the following source organs: adrenals, heart, kidneys, liver, lungs, muscle, marrow, spleen, testes and thyroid (unblocked). The MIRDOSE 3.1 program was used to produce dose estimates. Results: The NM-404 pharmacokinetics show a rapid clearance from the blood followed by a long-lived component. Normal tissues generally show rapid uptake followed by slow clearance. Highest normal organ dose estimates (mGy/MBq) for I-131-labeled NM-404 for the reference adult were seen in thyroid (unblocked) (0.82), followed by adrenals (0.61), lungs (0.56), kidneys (0.50), spleen (0.41), testes (0.39) and liver (0.34). The dose-limiting organ is the testes, with a 3 cGy dose resulting from a 78 MBq administration. Conclusion: Predicted I-131-labeled NM-404 dosimetry results indicate clinically-useful activities for imaging may safely be injected in humans with thyroid blocking. Phase I studies in humans are planned using a 74 MBq (2 mCi) dose.

No. 156

OPTIMIZING COMBINATION THERAPY WITH RADIOLABELED ANTIBODIES AND EXTERNAL BEAM. J. L. Humm*, S. Ruan, S. M. Larson, J. A. O'Donoghue. Memorial Sloan-Kettering Cancer Center, New York, NY. (100338)

Objective: To determine the optimum sequence for combined modality therapy with radiolabeled antibodies and fractionated external beam. Methods: The uptake and distribution of I-131 labeled tumor specific A33 monoclonal antibody was determined in SW1222 human colon carcinoma xenografts in nude mice for four study groups (4 animals per group): (1) radiolabeled antibody alone, i.e. pre-radiation therapy controls, (2) antibody administered (day 0) immediately prior to the first of five 2 Gy daily fractions of 320 kVp X-rays, (3) antibody administered after the 5th radiation fraction (day 5), (4) antibody administered five days post irradiation (on day 10). Tumors were excised 5 days post antibody administration. The %injected dose per gram was calculated. Tumors were frozen and sectioned for histology and phosphor imaging autoradiography. The percentage of antigen expressing cells was measured by immunohistochemistry. Results: The average tumor uptake relative to control group 1 were 1.47 (group 2), 0.78 (group 3) and 0.21 (group 4) respectively. This illustrates that turnor uptake is increased by almost 50% when the antibody is present in blood at the start of irradiation. 5 days into a fractionated irradiation protocol, antibody uptake was reduced, falling more significantly on day 10. Autoradiographs demonstrated decreased uptake uniformity for groups 3 and 4. Immunohistochemistry showed a reduction in A33 antigen positive cells from 85, 64, 50 to 41% for groups 1-4 respectively. Conclusions: Radioimmunotherapy should be administered just prior to the initiation of a course of external beam for maximum tumor uptake and radiolabeled antibody dose. Radiation therapy appears to cause a transient increase in capillary leakage to macromolecules, followed by a reduction at later times possibly the result of capillary damage and occlusion.

No. 157

Room: 403 B

NEW ADDITIONAL MIRD MODEL BASED ADULT PHANTOMS OF DIFFERENT SIZE FOR INTERNAL DOSIMETRY IMPROVEMENT. I. Clairand*, M. Ricard, M. Durigon, M. Di Paola, B. Aubert, Institut Gustave-Roussy, Villejuif, France; Institut Gustave-Roussy and U494 INSERM, Villejuif, France; Hopital Raymond-PoincarZ, Garches, France. (500325)

Objectives: In internal dosimetry, patient morphology is represented by a limited number of models. In the MIRD schema, the adult male phantom is an individual measuring 1.74 m and weighing 70 kg, the adult female is represented by 1.64 m and 58 kg. In order to work with more realistic models, we defined additional MIRD based mathematical anthropomorphic phantoms which represent the physical differences encountered in the adult population. The influence of these morphologic variations on the S-factors was studied. Methods: The analysis of anthropometric data gathered from a legal medicine department (355 men and 329 women of Caucasian type) showed that the mass of most organs is statistically correlated with the height of the body. This led us to develop 3 mathematical male phantoms of 1.60 m, 1.70 m and 1.80 m and 3 female phantoms of 1.50 m, 1.60 m and 1.70 m. These phantoms were built using combinatorial geometry. The S-factors for all the usual target organs were then calculated using a home made Usercode DOSE3D based on the EGS4 Monte Carlo code, when I-131 is uniformly distributed in the stomach and the urinary bladder. Results: An increase in the phantom height by 10 cm leads to a mean S-factor reduction by 20 % when the stomach is the source organ and by 29, % in the case of the urinary bladder. When the phantom height increase is 20 cm, the values are 35 % and 48 %. In some cases, especially when the target organ is far away from the source organ, the differences are 4 fold or more. Conclusion: This work showed the influence of the morphology on the S-factors. The development of new mathematical adult phantoms should contribute to improve dosimetric estimations by taking into account more realistic geometric parameters.

No. 158

ERROR ANALYSIS OF GAMMA CAMERA BASED DOSIMETRY IN RADIOIMMUNOTHERAPY. K. A. Hamacher*. G. Sgouros, Memorial Sloan-Kettering Cancer Center, New York, NY. (100032)

Objectives: The aim of the work presented here was to implement a detailed method to evaluate the error associated with the calculation of the absorbed dose to normal organs in patients undergoing radioimmunotherapy. Methods: The overall uncertainty in absorbed dose is assumed to include errors in (1) estimation of organ activity at multiple time-points from radionuclide imaging and (2) estimation of organ volume. Organ activity quantification is comprised of the following measurements, each of which will have its own uncertainty: attenuation correction, scatter correction, camera calibration, selection of an appropriate background region-of-interest, and selection of a region-of-interest for the organ. Several of these measurements are comprised of a number of independent measurements which themselves are subject to uncertainty. The uncertainty in organ volume quantification will be highly dependent upon the technique used to estimate organ volume with CT or MRI-based measurements being the most accurate and estimation based upon nuclear medicine imaging being less accurate. Error values were assigned to each of the measurements identified above and then propagated to obtain the uncertainty in calculated absorbed dose. Uncertainties were calculated assuming dosimetry was based upon imaging In-111, I-131, or Bi-213. Uncertainty values were determined for volume estimates based upon CT/MRI, SPECT and also estimates based upon organ projections obtained from planar imaging. Results and Conclusion: A formalism has been established which provides the uncertainty associated with conventional absorbed dose calculations. This analysis makes it possible to quantitatively identify those elements that contribute the largest uncertainty to absorbed dose estimates, thereby pointing to areas where improvement would be most beneficial.

Fourth International Symposium on Radiohalogens
Whistler, B.C., Canada
September, 9 - 13
2000

Radioiodinated Phospholipid Ethers and Analogs as Tumor Imaging Agents

R.E. Counsell, M.A. Longino, M.E. Van Dort, S.J. Fisher, A.N. Pinchuk, R.W.S. Skinner, K.R. Zasadny and R.L. Wahl.

Departments of Pharmacology, Radiology and Internal Medicine. The University of Michigan Medical School, Ann Arbor, Michigan, 48109 U.S.A.

Based upon reports that human tumor tissue contains significantly higher levels of phospholipid ether (PLE) than adjacent normal tissue, our laboratory designed and synthesized a number of radioiodinated PLE analogs as potential tumor imaging agents. Several of these agents showed a striking ability to be taken up and retained by a variety of animal tumors and human tumor xenografts. In an effort to establish the relevance of our animal models to the human situation, one candidate (NM-324) was selected for further preclinical evaluation and subsequently studied in cancer patients. Such studies revealed that NM-324 was capable of imaging tumors in patients, but the high first pass clearance by the liver severely compromised its clinical utility as a diagnostic radioiopharmaceutical. Conversely, this study demonstrated that our animal models were appropriate for the identification of clinical candidates. Therefore, the design of second-generation candidates was focused on those that would possess a longer plasma half-life and/or more rapid metabolic clearance by the liver and other non-target tissues. Two animal models were employed for these studies, namely: SCID mice bearing 1) human lung adenocarcinomas (A549) and 2) human prostate cancer (PC-3). Based upon biodistribution and whole body imaging, two candidates (NM-404 and NM-412) were observed to be superior to NM-324. Moreover, toxicological analysis has shown both NM-404 and NM-412 to have no physiologic or pathologic effects in rats or rabbits at a dose significantly greater than 200 times the anticipated human dose. Phase I trials with both these agents in cancer patents are planned.

$$(CH_{2})_{12} - O - P - OCH_{2}CH_{2}N + \frac{1}{25}I - \frac{O}{O} - \frac{O}{O$$

Proceedings of the 3rd International Conference on Isotopes

Vancouver, Canada

6 - 10 September 1999

Editor

Nigel R. Stevenson

World Scientific

SYNTHESIS AND EVALUATION OF A RADIOIODINATED PHOSPHOLIPID ETHER ANALOG (NM-404) FOR DIAGNOSTIC IMAGING OF PROSTATE CANCER

R.E. COUNSELL

Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, MI, 48109 U.S.A.

E-mail: counsell@umich.edu

M.A. LONGINO, A.N. PINCHUK, R.W.S. SKINNER, S.J. FISHER, M.E. VAN DORT, K.J. PIENTA AND R.L. WAHL

Departments of Internal Medicine, Pharmacology, Radiology and Surgery, The University of Michigan Medical School, Ann Arbor MI, 48109 U.S.A.

Imaging procedures play a major role in the current management of patients with prostate cancer. Despite advances in many of these procedures, improvements are still needed, especially in the area of Nuclear Medicine. The radioiodinated phospholipid ether analog (PLE) described here represents a new class of radiopharmaceutical, which has provided excellent images of prostate tumors in animal models and is now undergoing preclinical human pharmacokinetic evaluation.

Design and synthesis of radioiodinated PLE was based on the fact that various animal and human tumors contain higher concentrations of ether lipids than surrounding normal tissues. A number of radioiodinated PLE were synthesized and evaluated by γ -camera imaging using rat tumor models as well as nude and SCID mice bearing human tumor xenografts. Of the several agents that displayed promising results, one candidate (NM-324) was selected for further preclinical evaluation and subsequently studied in cancer patients in an effort to ascertain its ability to be retained in human tumors. These studies revealed that NM-324 was capable of imaging tumors in patients, but the high first pass clearance by the liver severely compromised its clinical utility as a diagnostic radiopharmaceutical. Conversely, this study demonstrated that our animal models were appropriate for the identification of clinical candidates.

In an effort to obtain a more suitable clinical candidate, the present study undertook the synthesis and evaluation of additional radioiodinated PLE with a focus on those displaying good tumor avidity and a prolonged plasma half-life relative to the prototype. Biodistribution analysis and γ-camera imaging of Copenhagea rats bearing Dunning R3327 prostate tumors and SCID mice bearing human prostate caricer (PC-3) revealed NM-404 to display a longer plasma half-life, better tumor/liver and tumor/kidney ratios, and significantly superior imaging properties than the initial prototype, NM-324. (Supported by the U. S. Department of Defense grant DAMD17-98-1-8528 and the SPORE in Prostate Cancer grant P50 CA 65968)

We previously described the remarkable capacity of certain radioiodinated phospholipid ether (PLB) analogs to be selectively retained by a variety of rodent and human tumor cell lines [1]. Moreover, this property made it possible to obtain images of these tumors in rabbits, rats and mice using γ -camera scintigraphy. Based

on these and other preliminary results, one of these radioiodinated analogs, 12-(m-iodophenyl)dodecyl phosphocholine (NM-324, Figure 1), was approved for pharmacokinetic evaluation in human cancer patients in order to determine whether the results in animals could be confirmed in humans. Although high first pass clearance by the liver compromised the imaging capabilities of NM-324, imaging of the tumors was successful in several patients, and thereby confirmed the potential of radioiodinated PLE analogs for tumor imaging in patients [2].

Figure 1. Structures for NM-324 & 404.

In an effort to obtain a more suitable clinical candidate, the present study undertook the synthesis and evaluation of analogs of NM-324 with the aim of improving the tumor retention vis a vis the liver and kidneys. Placing the radioiodine in the para position and increasing the aliphatic chain length led to NM-404 (Figure 1) which not only increased lipophilicity but also led to the desired properties.

Scheme 1. Synthesis of NM 404

Phosphocholination was performed according to Chandrakumar and Hajdu [3], and radioiodination followed the procedure of Mangner, et al. [4].

Biodistribution analysis (Table 1) and γ -camera imaging was performed in Copenhagen rats bearing Dunning R3327 prostate tumors and in SCID mice bearing human prostate cancer (PC-3). Comparison of NM-324 and 404 over several days revealed that tumor visualization was possible in both instances, but radioactivity was only seen to clear from abdominal organs following administration of NM-404.

Based on these results, NM-404 was selected for further preclinical analysis. The Toxicology Research Center at the University Buffalo found an isotonic solution of stable NM-404 to have no physiologic or pathologic effects in rats or rabbits at a dose 200 times the anticipated human dose. Moreover, the above tissue distribution studies along with those in normal Sprague-Dawley rats predicted that ¹³¹I labeled NM-404 could be safely injected in humans with thyroid blocking at a dose of 2 mCi.[5]. Phase I studies in humans are planned.

Table 1. Biodistribution of ¹²⁵I-NM-404 in male SCID mice bearing PC-3 human prostate cancer xenografts, expressed as Dose/gm ± SEM and Target/Non-target Ratio, (n=4).

	1 DAY	3 DAY	5 DAY	8 DAY
Tissue	% Dose/gm	% Dose/gm	% Dose/gm	% Dose/gm
	(Tumor/Tissue)	(Tumor/Tissue)	(Tumor/Tissue)	(Tumor/Tissue)
Blood	5.74±0.20	3.10±0.13	3.08±0.09	2.17±0.07
	(1.59)	(4.24)	(5.87)	(6.91)
Kidney	4.22±0.14	2.14±0.11	2.28±0.09	1.46±0.04
	(2.17)	(6.13)	(7.92)	(10.26)
Liver	3.69±0.21	1.93±0.10	1.63±0.06	1.02±0.06
	(2.48)	(6.81)	(11.07)	(14.69)
Lung	5.36±0.33	2.60±0.20	2.27±0.09	1.54±0.06
	(1.71)	(5.06)	(7.97)	(9.70)
Muscle	0.79±0.03	0.57±0.04	0.49±0.03	0.40±0.03
	(11.50)	(22.98)	(36.95)	(37.33)
Prostate	2.60±0.15	1.40±0.27	1.96±0.25	1.41±0.06
	(3.51)	(9.40)	(9.20)	(10.64)
Tumor	9.14±0.69	13.14±0.40	18.06±0.80	14.96±0.63
	(1.00)	(1.00)	(1.00)	(1.00)

References

5. #+ 1. Counsell R., Tumor visualization with radioiodinated phospholipid ethers, In Synthesis and Applications of Isotopically Labelled Compounds, ed. By J. Allen and R. Voges (John Wiley & Sons, New York, 1995) pp. 561-572.

2. Wahl R. L., Fig L. M., Shapiro B., Zasadny K. R., Gross M. D., Weichert J. P. and Counsell R. E., Initial clinical evaluation of I-131 NM-324, a tumor-avid phospholipid ether, in humans with cancer, *Radiology* 205 (T) (1997) p. 478.

3. Chandrakumar N. S. and Hajdu J., Stereospecific synthesis of ether phospholipids. Preparation of 1-alkyl 2-(acylamino)-2-deoxy-glycerophosphocholine, J. Org. Chem. 48 (1983) pp. 1197-1202.

4. Mangner T. J., Wu J. and Weiland D. M., Solid-phase exchange radioiodination of aryl iodides. Facilitation by ammonium sulfate, J. Org. Chem. 47 (1983) pp. 1484.

5. Zasadny K. R., Longino M. A., Fisher S. J., Counsell R. E. and Wahl R. L., Predicted dosimetry for I-131-NM-404, a phospholipid ether agent for tumor imaging and possible therapy, J. Nucl. Med. 40 (1999) p. 39P.