Problem 1

The DFA recognizes the language of all binary strings that end with at least two consecutive "0"s, which can be written as:

$$L(M_1) = \{w \in \{0,1\}^* \mid w \text{ ends with at least two "0"s}\}$$

Problem 2

Problem 3

We define the NFA as the 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where:

$$Q=\{q_0,q_1,q_2\},\quad \Sigma=\{a,b\},\quad \delta \text{ is as follows:}$$

$$\delta(q_0,a)=\{q_1,q_2\}$$

$$\delta(q_1,\epsilon)=\{q_0\}$$

$$\delta(q_2,b)=\{q_1\}$$

 q_0 is the start state, $F = \{q_1\}$ is the accepting state.

To show that the string "aab" is accepted, we trace the computation:

$$q_0 \xrightarrow{a} q_1 \xrightarrow{\epsilon} q_0 \xrightarrow{a} q_2 \xrightarrow{b} q_1$$

Since q_1 is the accepting state, the string "aab" is accepted.

Problem 4

Given an NFA with states $Q = \{q_0, q_1, q_2\}$, input alphabet $\Sigma = \{a, b\}$, and transition function:

$$\delta(q_0, a) = \{q_1, q_2\}$$

$$\delta(q_1, \epsilon) = \{q_0\}$$

$$\delta(q_2, b) = \{q_1\}$$

The start state is q_0 , and the accept state is q_1 .

The DFA's start state is the ϵ -closure of the NFA's start state q_0 , which is $\{q_0\}$. From state $\{q_0\}$ with input a:

$$q_0 \xrightarrow{a} \{q_1, q_2\}$$

$$\epsilon\text{-closure}(\{q_1, q_2\}) = \{q_0, q_1, q_2\}$$

So, $\{q_0\} \xrightarrow{a} \{q_0, q_1, q_2\}.$

From state $\{q_0\}$ with input b:

 q_0 has no transition on b.

So, $\{q_0\} \xrightarrow{b} \emptyset$.

From state $\{q_0, q_1, q_2\}$ with input a:

$$\begin{array}{c} q_0 \xrightarrow{a} \{q_1,q_2\} \\ q_1 \text{ has no transition on } a \\ q_2 \text{ has no transition on } a \\ \epsilon\text{-closure}(\{q_1,q_2\}) = \{q_0,q_1,q_2\} \end{array}$$

So, $\{q_0, q_1, q_2\} \xrightarrow{a} \{q_0, q_1, q_2\}.$

From state $\{q_0, q_1, q_2\}$ with input b:

$$q_0$$
 has no transition on b
$$q_1$$
 has no transition on b
$$q_2 \xrightarrow{b} \{q_1\}$$
 $\epsilon\text{-closure}(\{q_1\}) = \{q_0, q_1\}$

So,
$$\{q_0, q_1, q_2\} \xrightarrow{b} \{q_0, q_1\}.$$

From state $\{q_0, q_1\}$ with input a:

$$\begin{array}{c} q_0 \xrightarrow{a} \{q_1,q_2\} \\ q_1 \text{ has no transition on } a \\ \epsilon\text{-closure}(\{q_1,q_2\}) = \{q_0,q_1,q_2\} \end{array}$$

So, $\{q_0, q_1\} \xrightarrow{a} \{q_0, q_1, q_2\}$. From state $\{q_0, q_1\}$ with input b:

 q_0 and q_1 have no transitions on b.

So, $\{q_0, q_1\} \xrightarrow{b} \emptyset$. From state \emptyset with any input: remain in \emptyset .

DFA State	a	b
$\{q_0\}$	$\{q_0,q_1,q_2\}$	Ø
$\{q_0,q_1,q_2\}$	$\{q_0,q_1,q_2\}$	$\{q_0,q_1\}$
$\{q_0,q_1\}$	$\{q_0,q_1,q_2\}$	Ø
Ø	Ø	Ø

The accept states are those that contain the NFA's accept state q_1 : $\{q_0,q_1,q_2\}$ $\{q_0,q_1\}$

Problem 5

Since A and B are regular languages, there exist DFAs $M_A = (Q_A, \Sigma, \delta_A, q_{A0}, F_A)$ and $M_B = (Q_B, \Sigma, \delta_B, q_{B0}, F_B)$ that recognize A and B, respectively.

We construct a new DFA $M = (Q, \Sigma, \delta, q_0, F)$ to recognize $A \cap B$ as follows:

$$Q = Q_A \times Q_B = \{ (q_a, q_b) \mid q_a \in Q_A, \ q_b \in Q_B \}$$

 Σ (same as the alphabets of M_A and M_B)

$$\delta((q_a, q_b), a) = (\delta_A(q_a, a), \delta_B(q_b, a)), \quad \forall a \in \Sigma$$

$$q_0 = (q_{A0}, q_{B0})$$

$$F = F_A \times F_B = \{ (q_a, q_b) \mid q_a \in F_A, \ q_b \in F_B \}$$

- The state set Q consists of all possible pairs of states from M_A and M_B .
- The transition function δ simulates both M_A and M_B simultaneously by updating the state pair according to their individual transitions.
- A string is accepted by M if and only if it is accepted by both M_A and M_B , since (q_a, q_b) is an accepting state only when both $q_a \in F_A$ and $q_b \in F_B$.

The constructed DFA M recognizes the intersection $A \cap B$. Since we can construct such a DFA for any regular languages A and B, the class of regular languages is closed under intersection.

Collaborators: None