

Mobile & Embedded System Lab.

경희대학교 컴퓨터공학과

Mobile & Embedded System Lab. http://mesl.khu.ac.kr

지도교수: 조 진 성 (chojs@khu.ac.kr)

IoT 보안 위협 사례

Mirai Botnet (2016)

[https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html]

[https://youtu.be/mxHWATXu3K0]

Drone Hacking (2015)

[https://youtu.be/c1XyhReNcHY]

Tesla Hacking (2017)

Sensor Hacking (2016)

[https://youtu.be/IBDS4mD_WRE]

[Robust Physical-World Attacks on Deep Learning Models:

https://arxiv.org/pdf/1707.08945.pdf]

Adversarial ML (2017)

IoT 보안 취약 지점

INITECH 이주화, KRnet 2017

IoT 디바이스 보안의 취약성

❖ IoT 보안 위협의 증가

- 경제적, 산업적, 또는 인명적 피해 유발
- 심각한 프라이버시 침해 야기

Internet of Broken Things

- Open source H/W 및 S/W 활용 가능성 증대
- 플랫폼/서비스의 상호 운용 증대
- → 많은 요소 기술들의 통합으로 보안 취약성이 높음

IoT 디바이스 보안의 취약성

- ❖ 오픈소스 HW 고사양 IoT 디바이스 모의 해킹 (1)
 - Raspberry Pi 기반 Smart Energy Meter 모의 해킹
 - ▶ 해킹된 smart metering 디바이스의 동작

■ 동영상 데모 (https://youtu.be/zmzIUV2CsLA)

IoT 디바이스 보안의 취약성

- ❖ 오픈소스 HW IoT 디바이스 모의 해킹 (2)
 - Arduino 기반 Smart Energy Meter 모의 해킹
 - ▶ 해킹된 smart metering 디바이스의 동작
 - 기존 대비 80% 감소된 평균 전력 소모량을 서버에 전송
 - 디바이스 Reset에도 변조된 펌웨어 바이너리는 지속적으로 존재

■ 동영상 데모 (https://youtu.be/egZ9bOUYUcc)

loT 디바이스 취약점 분석 및 모의 해킹 💍

- ❖ 상용 IoT 디바이스 취약점 분석 및 모의 해킹
 - 펌웨어 추출
 - 펌웨어 정적 분석
 - 펌웨어 동적 분석

LoT 디바이스 취약점 분석 및 모의 해킹 ◎

❖ IoT 디바이스 펌웨어 추출

FW update file

IoT 디바이스 취약점 분석 및 모의 해킹 🔞

Firmware Modification Attack !!! (Backdoor installation)

Trusted Computing Platforms (MESL @ KHU)

- Mobile & Embedded System Security
 - Security for Mobile Systems
 - Android/iOS/Tizen
 - Malware analysis
 - Security for Embedded Systems
 - IoT device security
 - Hardware-assisted security
 - Embedded Linux security

Secure Pi (Secure Raspberry Pi)

SArduino (Secure Arduino)

(integrated Security for IoT device)

TPM SE ISE TEE

IoT 디바이스 보안 요소기술

Insecure COTS IoT 디바이스 플랫폼

Secure Key Storage & Management

Secure Boot

Secure Firmware Update

Remote Attestation

Secure Communication

Mandatory Access Control (MAC)

File(system) Integrity

File(system) Encryption

Secure Pi: Secure Raspberry Pi

- Raspberry Pi + TPM
 - Secure Key Storage & Management
 - Secure Boot
 - Secure Firmware Update
 - ▶ Remote Attestation
 - ▶ Secure Communication
 - Mandatory Access Control (MAC)
 - ► File(system) Integrity
 - ► File(system) Encryption

SECURE 플랫폼 (Secure Pi)

TPM

Secure Pi: Secure Raspberry Pi Mal 800

❖ Linux 기반 고사양 COTS IoT 디바이스 신뢰 플랫폼

■ 동영상 데모 (https://youtu.be/jgB5OKd6EME)

< Secure Key Storage & Management >

< Secure Boot >

< Secure Firmware Update >

< Remote Attestation >

< Secure Communication >

< Mandatory Access Control >

< File(system) Integrity >

< File(system) Encryption >

SArduino: Secure Arduino

- ❖ RTOS/Firmware 기반 저사양 COTS IoT 디바이스 신뢰 플랫폼
 - Arduino + SE
 - Secure Key Storage & Management
 - Secure Boot
 - Secure Firmware Update
 - Remote Attestation
 - Secure Communication

SECURE 플랫폼 (SArduino)

SArduino: Secure Arduino (계속)

- ❖ RTOS/펌웨어 기반 저사양 COTS IoT 디바이스 신뢰 플랫폼
 - 동영상 데모 (https://youtu.be/9Tf9SKmWVKg)

< Secure Key Storage & Management >

< Secure boot >

< Secure firmware update >

< Secure communication >

< Remote Attestation >

iS4IoT: integrated Security for IoT Device

- ❖ Integrated Security SoC 기반 저사양 COTS IoT 디바이스 신뢰 플랫폼
 - eWBM MS500 기반 Axio Builder
 - Secure Key Storage & Management
 - Secure Boot
 - Secure Firmware Update
 - Remote Attestation
 - Secure Communication
 - ▶ Lightweight Security Services

Integrated Secure SoC 기반 COTS IoT 디바이스 신뢰 플랫폼

iS4IoT: integrated Security for IoT Device

- ❖ Integrated Security SoC 기반 저사양 COTS IoT 디바이스 보안 플랫폼
 - 동영상 데모 (https://youtu.be/DvEIU1w1BE4)

< Secure Key Storage & Management >

< Secure boot >

< Secure communication >

< Remote Attestation >

KHU-TEE

❖ IoT 디바이스 용 경량 TEE

- ARM TrustZone-M
- ARM PSA (Platform Security Architecture)

Secure boot

Root of Trust keys

LoT 보안 관제 및 취약점 분석

- ❖ IoT 디바이스 및 서비스 보안 문제의 대응
 - 취약점, 다양한 공격 유형 분석을 통한 보안 관제 프로세스의 정립

SCC: Security Control Center

- ❖ 보안 모니터링/관제 시스템 POC 개발 (for Secure Pi, SArduino, iS4IoT)
 - Secure Key Storage & Management Monitoring
 - Secure Boot Monitoring
 - Secure Firmware Update Monitoring
 - Remote Attestation Monitoring
 - Login Monitoring
 - Packet Monitoring

SCC: Security Control Center (계속) ।

SCC System Architecture

■ 동영상 데모 (https://youtu.be/iFZc9yiRdec)

IoT 디바이스 보안을 위한 신뢰 플랫폼 활용

Secure Pi / SArduino / iS4IoT / KHU-TEE

IoT 디바이스 보안을 위한 신뢰 플랫폼 활용예를

❖ iS4IoT / KHU-TEE / KHU-TEE+SE

- Secure SSD
 - ▶ 디바이스 고유 키를 통한 데이터의 안전한 백업 및 불법 복제 방지
 - ▶ 사용자 권한 별 암호화 키 기반 따른 파티션/파일 접근 제어
 - ▶ 자체 인증서(Certificate)을 통한 각 파티션 유효성 보장
 - ▶ 파티션 무결성 보호 기술을 통해 파일 시스템 변조 방지

- ▶ 전자 제어 장치 고유의 인증 키를 통해 외부의 불법 접근을 제한
- ▶ Secure Boot를 통해 네트워킹이 가능한 차량 내 제어 시스템의 무 결성 보장
- IoT 블록체인
 - ▶ 평문으로 보관되는 디바이스의 정보를 안전하게 보관
 - ▶ 무결성 검증 시 연결된 디바이스를 순서대로 확인하는 시간을 디바이스 인증을 통해 단축
 - ▶ 디바이스를 통한 자동 물품 구매 시 안전한 결제 제공

창의적종합설계 / 졸업연구 주제 사례

- Secure Pi를 활용한 IoTivity 기반 안전한 택배함 (2017-1)
- Secure Pi를 이용한 Home Security Service (2017-1)
- Secure OTP Doorlock System (2017-1)

창의적종합설계 / 졸업연구 주제 사례 👓 🗵

- ❖ "스마트 홈 서비스를 위한 보안이 강화된 게이트웨이" (2015-2)
 - OpenSSL 기반 Raspberry Pi 공유기, 보안 강화 서비스 어플리케이션 개발
 - ▶ 각종 보안 프로토콜/소프트웨어를 응용, IoT 하드웨어 제작
 - ▶ 성능평가 (취약점을 악용한 모의 침투)

[Client] Android Application

- 1. OpenSSL
- 2. Authentication
 - ID/Password
 - OTP

창의적종합설계 / 졸업연구 주제 사례

- ❖ "Arduino & Raspberry Pi 기반의 스마트 홈 허브" (2015-1)
 - 홈 시스템 구축을 통한 보안 서비스 및 다양한 생활정보 기능 개발
 - ▶ Raspberry Pi (홈 허브) / Arduino (센서 컨트롤)

Q&A

http://mesl.khu.ac.kr