NETWORK MODELING AND SIMULATION

NETWORK MODELING AND SIMULATION

A PRACTICAL PERSPECTIVE

Mohsen Guizani

Kuwait University, Kuwait

Ammar Rayes

Cisco Systems, USA

Bilal Khan

City University of New York, USA

Ala Al-Fuqaha

Western Michigan University, USA

This edition first published 2010 © 2010 John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

MATLAB® is a trademark of The MathWorks, Inc., and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of MATLAB® software.

Library of Congress Cataloging-in-Publication Data

Network modeling and simulation : a practical perspective / M. Guizani ... [et al.].

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-03587-0 (cloth)

1. Simulation methods. 2. Mathematical models. 3. Network analysis (Planning)—Mathematics. I. Guizani, Mohsen.

T57.62.N48 2010 003'.3-dc22

2009038749

A catalogue record for this book is available from the British Library.

ISBN 9780470035870 (H/B)

Set in 11/13 Times Roman by Thomson Digital, Noida, India Printed and Bound in Great Britain by Antony Rowe

Contents

	face nowledgments	xi xv
1 B	Basic Concepts and Techniques	1
1.1	Why is Simulation Important?	1
1.2	*	4
	1.2.1 Modeling and System Terminology	6
	1.2.2 Example of a Model: Electric Car Battery Charging Station	6
1.3	Performance Evaluation Techniques	8
	1.3.1 Example of Electric Car Battery Charging Station	10
	1.3.2 Common Pitfalls	13
	1.3.3 Types of Simulation Techniques	14
1.4	Development of Systems Simulation	16
	1.4.1 Overview of a Modeling Project Life Cycle	18
	1.4.2 Classifying Life Cycle Processes	20
	1.4.3 Describing a Process	21
	1.4.4 Sequencing Work Units	22
	1.4.5 Phases, Activities, and Tasks	23
1.5	Summary	24
Rec	ommended Reading	24
2 D	Designing and Implementing a Discrete-Event Simulation Framework	25
2.1	The Scheduler	26
2.2	The Simulation Entities	32
2.3	The Events	34
2.4	Tutorial 1: Hello World	34
2.5	Tutorial 2: Two-Node Hello Protocol	36
2.6	Tutorial 3: Two-Node Hello through a Link	38
2.7	Tutorial 4: Two-Node Hello through a Lossy Link	41
2.8	Summary	44
Rec	ommended Reading	44
3 H	Ioneypot Communities: A Case Study with the Discrete-Event	
	imulation Framework	45
3.1	Background	45

Contents vi

3.2	2 System Architecture		
3.3	Simulation Modeling	49	
	3.3.1 Event Response in a Machine, Honeypot, and Sensors	49	
	3.3.2 Event Response in a Worm	51	
	3.3.3 System Initialization	53	
	3.3.4 Performance Measures	60	
	3.3.5 System Parameters	62	
	3.3.6 The Events	64	
3.4	Simulation Execution	66	
3.5	Output Analysis	67	
3.6	Summary	68	
Rec	ommended Reading	68	
4 N	Monte Carlo Simulation	69	
4.1	Characteristics of Monte Carlo Simulations	69	
4.2	The Monte Carlo Algorithm	70	
	4.2.1 A Toy Example: Estimating Areas	70	
	4.2.2 The Example of the Electric Car Battery Charging Station	72	
	4.2.3 Optimizing the Electric Car Battery Charging Station	73	
4.3	Merits and Drawbacks	74	
4.4	Monte Carlo Simulation for the Electric Car Charging Station	75	
	4.4.1 The Traffic Generator	76	
	4.4.2 The Car	79	
	4.4.3 The Charging Station	80	
	4.4.4 The Server	82	
	4.4.5 Putting It All Together	85	
	4.4.6 Exploring the Steady State	87	
	4.4.7 Monte Carlo Simulation of the Station	90	
4.5	Summary	95	
Rec	ommended Reading	96	
5 N	Network Modeling	97	
5.1	Simulation of Networks	98	
5.2	The Network Modeling and Simulation Process	99	
5.3	Developing Models	100	
5.4	Network Simulation Packages	103	
5.5	OPNET: A Network Simulation Package	106	
5.6	Summary	110	
Rec	ommended Reading	110	
	Designing and Implementing CASiNO: A Network Simulation Framework	111	
6.1	Overview	112	
6.2	Conduits	117	
6.3	Visitors	121	
6.4	The Conduit Repository	122	

vii Contents

6.5	Behav	riors and Actors	123
	6.5.1	Adapter–Terminal	125
	6.5.2	Mux-Accessor	126
	6.5.3	Protocol–State	128
	6.5.4	Factory-Creator	129
6.6	Tutori	al 1: Terminals	131
6.7	Tutori	al 2: States	135
6.8	Tutori	al 3: Making Visitors	138
6.9	Tutori	al 4: Muxes	142
6.10	Tutori	al 5: Factories	149
6.11	Sumn	nary	154
Rec	ommen	ded Reading	155
7 S	tatistic	al Distributions and Random Number Generation	157
7.1	Introd	luction to Statistical Distributions	158
	7.1.1	Probability Density Functions	158
	7.1.2	Cumulative Density Functions	158
		Joint and Marginal Distributions	159
		Correlation and Covariance	159
	7.1.5	Discrete versus Continuous Distributions	160
7.2	Discrete Distributions		160
	7.2.1	Bernoulli Distribution	160
	7.2.2	Binomial Distribution	161
	7.2.3	Geometric Distribution	162
	7.2.4	Poisson Distribution	163
7.3	Continuous Distributions		164
	7.3.1	Uniform Distribution	164
		Gaussian (Normal) Distribution	165
		Rayleigh Distribution	166
	7.3.4		167
		Pareto Distribution	168
7.4		nenting CASiNO with Random Variate Generators	169
7.5		om Number Generation	170
		Linear Congruential Method	170
		Combined Linear Congruential	171
		Random Number Streams	172
7.6	Frequency and Correlation Tests		172
,.0		Kolmogorov–Smirnov Test	173
	7.6.2	Chi-Square Test	174
	7.6.3	Autocorrelation Tests	174
7.7		om Variate Generation	175
,	7.7.1	Inversion Method	175
	7.7.2	Accept–Reject Method	176
	7.7.3	Importance Sampling Method	177

Contents

	7.7.4	Generate Random Numbers Using the Normal			
		Distribution	177		
	7.7.5	Generate Random Numbers Using the Rayleigh			
		Distribution	178		
7.8	Summ	ary	179		
Rec		led Reading	180		
8 N	Jetwork	Simulation Elements: A Case Study			
	Jsing C	· · · · · · · · · · · · · · · · · · ·	181		
8.1	_	g a Poisson Source of Packets	181		
8.2		g a Protocol for Packet Processing	183		
8.3		ing Protocol Resources	187		
8.4					
8.5	· , , 1				
8.6	-	g it All Together	190 192		
8.7	Summ	•	195		
9 ()nening	Theory	197		
9.1		action to Stochastic Processes	198		
9.2		te-Time Markov Chains	201		
9.3		uous-Time Markov Chains	203		
9.4		Properties of Markov Chains	203		
9.5		nan–Kolmogorov Equation	204		
9.6	-	Death Process	205		
9.7	Little's	s Theorem	206		
9.8		on a Link	207		
9.9	-	rd Queuing Notation	207		
		/M/1 Queue	208		
		A CASiNO Implementation of the M/M/1 Queue	209		
		A SimJava Implementation of the M/M/1 Queue	211		
		A MATLAB Implementation of the M/M/1 Queue	211		
9.11	The M	/M/m Queue	212		
	9.11.1	A CASiNO Implementation of the M/M/m Queue	214		
		A SimJava Implementation of the M/M/m Queue	217		
	9.11.3	A MATLAB Implementation of the M/M/m Queue	220		
9.12	The M	/M/1/b Queue	221		
	9.12.1	A CASiNO Implementation of the M/M/1/b Queue	222		
	9.12.2	A SimJava Implementation of the M/M/1/b Queue	224		
	9.12.3	A MATLAB Implementation of the M/M/1/b Queue	225		
9.13	The M	/M/m/m Queue	226		
	9.13.1	A CASiNO Implementation of the M/M/m/m Queue	227		
	9.13.2	A SimJava Implementation of the M/M/m/m Queue	230		
	9.13.3	A MATLAB Implementation of the M/M/m/m Queue	231		
	Summ		232		
Rec	ecommended Reading				

ix Contents

	_	Modeling and Output Analysis	235
		ollection	236
10.2	Identify	ying the Distribution	237
10.3	Estima	tion of Parameters for Univariate Distributions	240
10.4	Goodne	ess-of-Fit Tests	244
	10.4.1	Chi-Square Goodness-of-Fit Test	246
	10.4.2	Kolomogorov–Smirnov Goodness-of-Fit Test	247
10.5	Multiva	ariate Distributions	249
	10.5.1	Correlation and Covariance	249
	10.5.2	Multivariate Distribution Models	251
	10.5.3	Time-Series Distribution Models	251
10.6	Selection	ng Distributions without Data	253
10.7	Output	Analysis	253
	10.7.1	Transient Analysis	254
	10.7.2	Steady-State Analysis	255
10.8	Summa	nry	256
Reco	ommend	ed Reading	256
11	Modeli	ng Network Traffic	259
11.1	Introdu	ction	259
11.2	Networ	k Traffic Models	260
	11.2.1	Constant Bit Rate (CBR) Traffic	260
	11.2.2	Variable Bit Rate (VBR) Traffic	260
	11.2.3	Pareto Traffic (Self-similar)	261
11.3	Traffic	Models for Mobile Networks	261
11.4	Global	Optimization Techniques	263
	11.4.1	Genetic Algorithm	263
	11.4.2	Tabu Search	263
	11.4.3	Simulated Annealing	264
11.5	Particle	e Swarm Optimization	266
	11.5.1	Solving Constrained Optimization Problems Using	
		Particle Swarm Optimization	266
11.6	Optimi	zation in Mathematics	267
	11.6.1	The Penalty Approach	267
	11.6.2	Particle Swarm Optimization (PSO)	268
		The Algorithm	269
11.7	Summa		270
		ed Reading	270
Inde	ex		273

Preface

Networking technologies are growing more complex by the day. So, one of the most important requirements for assuring the correct operation and rendering of the promised service to demanding customers is to make sure that the network is robust. To assure that the network is designed properly to support all these demands before being operational, one should use the correct means to model and simulate the design and carry out enough experimentation. So, the process of building good simulation models is extremely important in such environments, which led to the idea of writing this book.

In this book, we chose to introduce generic simulation concepts and frameworks in the earlier chapters and avoid creating examples that tie the concepts to a specific industry or a certain tool. In later chapters, we provide examples that tie the simulation concepts and frameworks presented in the earlier chapters to computer and telecommunications networks. We believe that this will help illustrate the process of mapping the generic simulation concepts to a specific industry.

Therefore, we have concentrated on the core concepts of systems simulation and modeling. We also focused on equipping the reader with the tools and strategies needed to build simulation models and solutions from the ground up rather than provide solutions to specific problems. In addition, we presented code examples to illustrate the implementation process of commonly encountered simulation tasks.

The following provides a chapter-by-chapter breakdown of this book's material.

Chapter 1 introduces the foundations of modeling and simulation, and emphasizes their importance. The chapter surveys the different approaches to modeling that are used in practice and discusses at a high level the methodology that should be followed when executing a modeling project.

In Chapter 2, we assemble a basic discrete event simulator in Java. The framework is not very large (less than 250 lines of code, across three classes) and yet it is extremely powerful. We deduce the design of the simulation framework (together with its code). Then, we discuss a few "toy examples" as a tutorial on how to write applications over the framework.

In Chapter 3, we turn to a case study that illustrates how to conduct large discrete event simulations using the framework designed in Chapter 2. We then design and

Preface xii

develop a simulation of a system that will generate malware antivirus signatures using an untrusted multi-domain community of honeypots (as a practical example encountered usually in today's networks).

Chapter 4 introduces the well-known Monte Carlo simulation technique. The technique applies to both deterministic and probabilistic models to study properties of stable systems that are in equilibrium. A random number generator is used by Monte Carlo to simulate a performance measure drawn from a population with appropriate statistical properties. The Monte Carlo algorithm is based on the law of large numbers with the promise that the mean value of a large number of samples from a given space will approximate the actual mean value of such a space.

Chapter 5 expands upon the concepts introduced in earlier chapters and applies them to the area of network modeling and simulation. Different applications of modeling and simulation in the design and optimization of networked environments are discussed. We introduce the network modeling project life cycle and expose the reader to some of the particular considerations when modeling network infrastructures. Finally, the chapter attempts to describe applications of network modeling within the linkage between network modeling and business requirements.

In Chapter 6, we define a framework that will allow for modular specification and assembly of dataflow processing modules within a single device. We call this framework the Component Architecture for Simulating Network Objects (CASiNO). A discussion on how to use CASiNO and code its components is presented in some detail.

Then, in Chapter 7, we study a set of statistical distributions that could be used in simulation as well as a set of random number generation techniques.

In Chapter 8, we create some useful network simulation elements that will serve as building blocks in the network structures that we consider in the context of queuing theory in Chapter 9.

Chapter 9 presents a brief discussion on several topics in queuing theory. In the first part, we cover the basic concepts and results, whereas in the second part we discuss specific cases that arise frequently in practice. Whenever possible, there are code samples implemented using the CASiNO framework (developed in Chapter 6), the SimJava Package, and the MATLAB package.

Chapter 10 elaborates on the importance of data collection as a phase within the network modeling project life cycle. It lists the different data types that need to be collected to support network modeling projects, and how to collect the data, choose the right distribution, and validate the correctness of one's choice.

Chapter 11 presents traffic models used to simulate network traffic loads. The models are divided into two main categories: models which exhibit long-range dependencies or self-similarities and Markovian models that exhibit only short-range dependence. Then, an overview of some of the commonly used global optimization techniques to solve constrained and unconstrained optimization problems are

xiii Preface

presented. These techniques are inspired by the social behaviors of birds, natural selection and survival of the fittest, and the metal annealing process as well as the fact of trying to simulate such behaviors.

Finally, we hope that this book will help the reader to understand the code implementation of a simulation system from the ground up. To that end, we have built a new simulation tool from scratch called "CASiNO." We have also treated all the examples in a step-by-step fashion to keep the user aware of what is happening and how to model a system correctly. So, we hope that this book will give a different flavor to modeling and simulation in general and to that of network modeling and simulation in particular.

Mohsen Guizani Ammar Rayes Bilal Khan Ala Al-Fuqaha

Acknowledgments

We realize that this work would not have been a reality without the support of so many people around us. First, we would like to express our gratitude to Cisco Systems for partly supporting the research work that has contributed to this book. In particular, thanks to Mala Anand, VP of Cisco's Smart Services, and Jim McDonnell, Senior Director of Cisco's Smart Services. The Cisco research Grant to Western Michigan University was the nucleus of this project. Therefore, we are grateful for Cisco's research support for the last three years. Also, special thanks to the students of the Computer Science Department at Western Michigan University who worked on Cisco's research project and eventually played an important role in making this project a success. Mohsen Guizani is grateful to Kuwait University for its support in this project. Ammar Rayes is thankful to his department at Cisco Systems for encouragement and support. Ala Al-Fuqaha appreciates the support of Western Michigan University. Bilal Khan acknowledges collaboration with Hank Dardy and the Center for Computational Science at the US Naval Research Laboratory. He also thanks The John Jay College at CUNY for its support, and the Secure Wireless Ad-hoc Network (SWAN) Lab and Social Network Research Group (SNRG) for providing the context for ongoing inquiry into network systems through simulation.

The authors would like also to thank the John Wiley & Sons, Ltd team of Mark Hammond, Sarah Tilley, and Sophia Travis for their patience and understanding throughout this project.

Last but not least, the authors are grateful to their families. Mohsen Guizani is indebted to all members of his family, his brothers and sisters, his wife Saida, and his children: Nadra, Fatma, Maher, Zainab, Sara, and Safa. Ammar Rayes would like to express thanks to his wife Rana, and his kids: Raneem, Merna, Tina, and Sami. Ala Al-Fuqaha is indebted to his parents as well his wife Diana and his kids Jana and Issam.