法律声明

- □本课件包括演示文稿、示例、代码、题库、视频和声音等内容,小象学院和主讲老师拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意及内容,我们保留一切通过法律手段追究违反者的权利。
- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

数据清洗和特征选择

主要内容

- □内容
 - 庄家与赔率
 - Pandas数据读取和处理
 - Fuzzywuzzy字符串模糊查找
 - 数据清洗和校正
 - 特征提取主成分分析PCA
 - 手机用户流失率分析
 - One-hot编码
- □ 思考:
 - 字符串编辑距离
 - ROC与AUC
 - 分类器: 随机森林、Logistic回归

本次说明

□本PPT后面仅列举使用Python库的效果截图, 详细内容请参考该PPT的配套代码。

赔率

- □ 赔率最早出现在赛马中,1790年由英国人奥格登发明。
 - 中国从2001年发行足彩开始引入赔率。
- □ 赔率的举例定义:
- □ 浔阳江畔艄公张横和张顺正进行400米自由泳比赛, 宋江开赌场做庄,规定:张横赢赔率为3,张顺赢 赔率为2。假定不存在平局。赌徒李逵为张横下注 10两。
 - 比赛结束后,若最终张横赢,则采江付赌徒李逵30两 (10×3),赌资10两归庄家宋江所有,即李逵赚20两。
 - 若张顺赢,赌资10两归庄家宋江所有,即季逵赔10两。

		•
问题分析		

X 张横 张顺 P 0.8 0.2 y 1.25 5

- □假定张横赢的概率为0.8, 宋江给出的赔率为 张横1.25, 张顺5,则宋江的盈亏分析如下:
 - 为表述方便,张横赢简称"张横",张顺赢简称"张顺"。
- □假定所有赌徒中,共有a元买张横,b元买张 顺,则开寨前宋江收入为a+b元
- □ 开赛后的赔付期望为:

$$E(y) = \sum_{i} p_{i} y_{i} = 0.8 \times 1.25 \times a + 0.2 \times 5 \times b = a + b$$

赔率分析

X张横张顺P0.80.2Y1.255

- □ 从上述结论知:使用y=1/p作为赔率,会使得庄家在期望上不赔不赚。
 - 这即"公平赔率": y_{fair}
 - ——没有利润,这显然是庄家不希望看到的。
- \square 实际问题中,庄家总是会将公平赔率乘以某小于1的系数 α ,即得到真实赔率: $y=\alpha\cdot y_{fair}=\alpha/p$
 - 庄家对于α取值不公开。

身边的故事

- □ 5月18日《机器学习 升级版V期》 最终参团人数是素数还是合数?
- □ 我坐庄,我开出的赔率是:
 - 素数: 5.5
 - 合数: 1.1
- □ 以素数下注1元为例:
 - 若最终人数为素数,则返还5.5元,赌资1元为庄家所有。
 - 若最终人数是合数,则无返还,赌资1元为庄家所有。

计算赔率

```
p = np.array(filter(is_prime3, range(2, b+1)))
p = p[p >= a]
print p
p_rate = float(len(p)) / float(b-a+1)
print '素数的概率: ', p_rate, '\t',
print '公正赔率: ', 1/p_rate
print '合数的概率: ', 1-p_rate, '\t',
print '公正赔率: ', 1 / (1-p_rate)
```

[751 757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859 863 877 881 883 887]

素数的概率: 0.145695364238 公正赔率: 6.86363636364 合数的概率: 0.854304635762 公正赔率: 1.17054263566

- □ 拼团人数当时是603人,尚有两天结束,根据历史 先验,假定1天参团人数为100人,则最终参团人数 为803左右。结合业务逻辑,往往后期每日参团人 数略多于前期,因此大体参团区间可能是[750,900]。
- □ 计算该区间的素数
 - [751 757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859 863 877 881 883 887]
 - 素数的概率: 0.1457 公正赔率: 6.8636
 - 合数的概率: 0.8543 公正赔率: 1.1705

计算庄家的盈亏期望

口 实际给出的赔率为5.5和1.1, 带入赔率公式 $y = \alpha/p$ 得到 α 分别是0.8013和0.9397,则庄家盈利期望为:

$$E = (a+b)-E(y) = a+b-(\alpha_1 \cdot a + \alpha_2 \cdot b)$$

$$= (1 - \alpha_1) \cdot a + (1 - \alpha_2) \cdot b$$

- □ 若假定a=b,则庄家盈利率为12.94%
 - 即:赌徒不分析场景,随机选边下注。
- □ 若假定a/b=0.1457/0.8543,则庄家盈利率为8.04%
 - 即:赌徒下注前经过了细致分析,下注比例与实际估计场景概率相符。
- □ 结论:无论如何,庄家肯定赚。
 - 最终报名人数为1257人,原区问估计结果略显保守。

Pandas

	Α	В	С	D	Е	F	G	Н	
1	account	name	street	city	state	postal-code	Jan	Feb	Mar
2	211829	Kerluke, Koepp and Hilpert	34456 Sean Highway	New Jaycob	Texas	28752	10000	62000	35000
3	320563	Walter-Trantow	1311 Alvis Tunnel	Port Khadijah	NorthCarolina	38365	95000	45000	35000
4	648336	Bashirian, Kunde and Price	62184 Schamberger Underpass Apt. 231	New Lilianland	Iowa	76517	91000	120000	35000
5	109996	D'Amore, Gleichner and Bode	155 Fadel Crescent Apt. 144	Hyattburgh	Maine	46021	45000	120000	10000
6	121213	Bauch-Goldner	7274 Marissa Common	Shanahanchester	California	49681	162000	120000	35000
7	132971	Williamson, Schumm and Hettinger	89403 Casimer Spring	Jeremieburgh	Arkansas	62785	150000	120000	35000
8	145068	Casper LLC	340 Consuela Bridge Apt. 400	Lake Gabriellaton	Mississipi	18008	62000	120000	70000
9	205217	Kovacek-Johnston	91971 Cronin Vista Suite 601	Deronville	RhodeIsland	53461	145000	95000	35000
10	209744	Champlin-Morar	26739 Grant Lock	Lake Juliannton	Pennsylvania	64415	70000	95000	35000
11	212303	Gerhold-Maggio	366 Maggio Grove Apt. 998	North Ras	Idaho	46308	70000	120000	35000
12	214098	Goodwin, Homenick and Jerde	649 Cierra Forks Apt. 078	Rosaberg	Tenessee	47743	45000	120000	55000
13	231907	Hahn-Moore	18115 Olivine Throughway	Norbertomouth	NorthDakota	31415	150000	10000	162000
14	242368	Frami, Anderson and Donnelly	182 Bertie Road	East Davian	Iowa	72686	162000	120000	35000
15	268755	Walsh-Haley	2624 Beatty Parkways	Goodwinmouth	Rhodelsland	31919	55000	120000	35000
16	273274	McDermott PLC	8917 Bergstrom Meadow	Kathryneborough	Delaware	27933	150000	120000	70000
				-					

- ☐ Fuzzywuzzy Levenshtein distance
- □ 模糊查询与替换

	Α	В	С	D	E	F	G	Н	I	J	K
1	account	name	street	city	state	SC	postal-code	Jan	Feb	Mar	total
2	211829	Kerluke, Koepp and Hilpert	34456 Sean Highway	New Jaycob	Texas	TX	28752	10000	62000	35000	107000
3	320563	Walter-Trantow	1311 Alvis Tunnel	Port Khadijah	North Carolina	NC	38365	95000	45000	35000	175000
4	648336	Bashirian, Kunde and Price	62184 Schamberger Underpass Apt. 231	New Lilianland	Iowa	IA	76517	91000	120000	35000	246000
5	109996	D'Amore, Gleichner and Bode	155 Fadel Crescent Apt. 144	Hyattburgh	Maine	ME	46021	45000	120000	10000	175000
6	121213	Bauch-Goldner	7274 Marissa Common	Shanahanchester	California	CA	49681	162000	120000	35000	317000
7	132971	Williamson, Schumm and Hettinger	89403 Casimer Spring	Jeremieburgh	Arkansas	AR	62785	150000	120000	35000	305000
8	145068	Casper LLC	340 Consuela Bridge Apt. 400	Lake Gabriellaton	Mississippi	MS	18008	62000	120000	70000	252000
9	205217	Kovacek-Johnston	91971 Cronin Vista Suite 601	Deronville	Rhode Island	RI	53461	145000	95000	35000	275000
10	209744	Champlin-Morar	26739 Grant Lock	Lake Juliannton	Pennsylvania	PA	64415	70000	95000	35000	200000
11	212303	Gerhold-Maggio	366 Maggio Grove Apt. 998	North Ras	Idaho	ID	46308	70000	120000	35000	225000
12	214098	Goodwin, Homenick and Jerde	649 Cierra Forks Apt. 078	Rosaberg	Tennessee	TN	47743	45000	120000	55000	220000
13	231907	Hahn-Moore	18115 Olivine Throughway	Norbertomouth	North Dakota	ND	31415	150000	10000	162000	322000
14	242368	Frami, Anderson and Donnelly	182 Bertie Road	East Davian	Iowa	IA	72686	162000	120000	35000	317000
15	268755	Walsh-Haley	2624 Beatty Parkways	Goodwinmouth	Rhode Island	RI	31919	55000	120000	35000	210000
16	273274	McDermott PLC	8917 Bergstrom Meadow	Kathryneborough	Delaware	DE	27933	150000	120000	70000	340000
17	0	0	0	0	0		0	1462000	1507000	717000	3686000

手机用户流失率分析

1 region to			address incor									ollmon e	quipmon c		iremon l			equipten		wireten multli									churn
2 Zone 2		44 Married	9	64 College degree	5 No	Male	2 No	No	Yes	No	3.7	0	0	7.5	0	37. 45		0	110	0 No	No	No	No	No	Yes	No	No	4.16 Basic service	
3 Zone 3		33 Married	7	136 Post-undergraduate degree	5 No	Male	6 Yes	No	Yes	Yes		20.75	0	15.25	35.7		211.45				Yes	Yes		Yes	Yes		No	4.91 Total service	
4 Zone 3		52 Married		116 Did not complete high school	29 No	Female		No	Yes	No	18.15	18	0	30.25	0		1,247.20		2,150.00	0 No	No	No	No	Yes	No	Yes	No	4.75 Plus service	
5 Zone 2		33 Unmarried	12	33 High school degree	0 No	Female		No	No	No	9.45	0	0	0	0	288.8	0	0		0 No	No	No	No	No	No		No	3.5 Basic service	
6 Zone 2		30 Married	9	30 Did not complete high school	2 No	Male	4 No	No	No	No	6.3	0	0	0	0	157.05	0	0	0	0 No	No	No	No	No	Yes	Yes	No	3.4 Plus service	
7 Zone 2		39 Unmarried	17	78 High school degree	16 No	Female		No	Yes	No	11.8	19.25	0	13.5	0	487.4	798.4	0	570	0 No	No	No	No	Yes	No		No	4.36 Plus service	No
8 Zone 3		22 Married	2	19 High school degree	4 No	Female		No	Yes	No	10.9	0	0	8.75	0	504.5	0	0	415	0 Yes	No	No	Yes	Yes	No	No	Yes	2.94 E-service	Yes
9 Zone 2		35 Unmarried	5	76 High school degree	10 No	Male	3 Yes	Yes	Yes	Yes	6.05	45	50.1	23. 25	64.9			1,820.90		2, 256. 70 Yes	4.33 Total service								
10 Zone 3		59 Married	7	166 College degree	31 No	Male	5 Yes	No	Yes	No	9.75	28.5	0	12	0		1,240.15			0 Yes	No	No	No	Yes	Yes		No	5.11 Plus service	
11 Zone 1		41 Married	21	72 Did not complete high school	22 No	Male	3 No	No	Yes	No	24.15	0	0	16.5	0	1,659.70	0		1,155.00	0 Yes	No	4.28 E-service	No						
12 Zone 2		33 Unmarried	10	125 College degree	5 No	Female		Yes	No	No	4.85	0	26.15	0	0	17.25	0	110.1	0	0 No	No		Yes	No	No	No	Yes	4.83 Basic service	
13 Zone 3		35 Unmarried	14	80 High school degree	15 No	Female		No	Yes	No	7.1	22	0	23.75	0	47.45	166.1		145	0 No	Yes	No	No	Yes	Yes		No	4.38 Plus service	
14 Zone 1		38 Married	8	37 High school degree	9 No	Female		No	Yes	No	8.55	0	0	41.75	0	308.7	0		1,650.00	0 No	No	No	No	No	No	No	No	3.61 Basic service	
15 Zone 2		54 Married	30	115 College degree	23 No	Female		Yes		Yes	15.6	46.25	46.7	0	61.05			2,590.95	0	3, 348.85 Yes	Yes	Yes	Yes	Yes	Yes		Yes	4.74 Total service	
16 Zone 2		46 Unmarried	3	25 Did not complete high school	8 No	Female		No	No	No	4.4	0	0	0	0	36.8		0	0	0 No	No	No	No	No	No	No	No	3.22 Basic service	
17 Zone 1		38 Married	12	75 Post-undergraduate degree	1 No	Male	4 No	Yes		No	5.1	0	30.25	11.25	0	146.25		780.8	295	0 Yes	No	No	Yes	No	No	No	No	4.32 E-service	No
18 Zone 3		57 Unmarried	38	162 High school degree	30 No	Male	1 Yes		Yes	No	16.15		31.3	30	0			1,788.95	1,795.00	0 Yes	No	No	No	Yes	Yes	Yes	No	5.09 Plus service	
19 Zone 3		48 Unmarried	3	49 High school degree	6 No	Female		No	No	No	6.65	18.5	0	0	0	230.8	614.3	0	0	0 No	No	No	No	Yes	Yes	Yes	No	3.89 Plus service	
20 Zone 2		24 Unmarried	3	20 Did not complete high school	3 No	Male	1 No	No	No	No	1.05	0	0	0	0	1.05	0	0	0	0 No	No	No	No	No	No		No	3 Basic service	
21 Zone 1		29 Married	3	77 College degree	2 No	Male	4 No	Yes	Yes	Yes	6.7	0	48.1	24. 25	38.3	140.95	0	1,132.80	610	910.1 Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	4.34 Total service	
22 Zone 3		30 Unmarried	7	16 Some college	1 No	Female		Yes		Yes	3.75	0	33.8	0	18.7	25.65	0	175.3		78. 2 Yes	No	Yes	Yes	Yes	No	No	No	2.77 E-service	Yes
23 Zone 1		52 Married	17	120 Did not complete high school	24 No	Male	2 No	No	Yes	No	20.7	0	0	22		1,391.05	0		1,505.00	0 No	No	No	No	No	Yes	No	No	4.79 Basic service	
24 Zone 3		33 Unmarried	10	101 Post-undergraduate degree	4 No	Female		Yes	Yes	Yes	5.3	0	49.6	26.75	51.4		0			2,645.15 Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	4.62 Total service	
25 Zone 3		48 Married	19	67 Did not complete high school	25 No	Male	3 No	No	Yes	No	15.05	0	0	27. 25	0	810.45	0		1,390.00	0 No	No	No	No	No	No		No	4.2 Basic service	
26 Zone 3		43 Married	18	36 Did not complete high school	5 No	Male	5 Yes	No	Yes	No	12.5		0	18	0	153.75			215	0 No	No	No	No	Yes	Yes	Yes	No	3.58 Plus service	
27 Zone 2		21 Unmarrie	0	33 High school degree	0 No	Female		No	Yes	No	2. 2	20.75	0	40.5	0	2.2			40.5	0 No	No	No	No	Yes	Yes	Yes	No	3.5 Plus service	
28 Zone 2		40 Unmarried	7	37 High school degree	8 No	Female		Yes	Yes	Yes	8. 25	23.5	36.9	28	37.4		950.65	1,532.90	1,190.00	1,562.00 Yes	Yes	No	Yes	Yes	No	Yes	Yes	3.61 Total service	
29 Zone 3		33 Married	11	31 Did not complete high school	5 No	Male	4 No	No	No	No	9.1	0	0	0	0	234. 95	0	0	0	0 Yes	No	No	No	No	Yes	No	No	3.43 Plus service	
30 Zone 1		21 Married	1	17 High school degree	2 No	Female		No	No	No	2.9	0	0	0	0	25. 25	0	0	0	0 No	No	No	No	No	No	No	No	2.83 Basic service	
31 Zone 2		33 Married	9	19 College degree	0 No	Female		Yes		No	5.55	0	27.35	0	0	75.25	0	330.65	0	0 Yes	No	No	Yes	No	No	Yes	Yes	2.94 E-service	No
32 Zone 1		37 Married	6	36 Did not complete high school	13 No	Female		Yes		No	10.6	0	31.1	18.25	0	582.6		1,756.35		0 Yes	No	No	Yes	No	No	No	Yes	3.58 E-service	No
33 Zone 1		53 Married	27	155 Post-undergraduate degree	12 No	Male	2 Yes	No	Yes	Yes	21	56	0	34	49.95		4,064.30			3,646.90 Yes	Yes	No	Yes	No	Yes	Yes	Yes	5.04 Total service	
34 Zone 1		50 Married	26	140 High school degree	21 No	Female		No	Yes	No	6.5	27.5	0	35	0		1,068.25		1,215.00	0 No	No	No	No	Yes	Yes	Yes	No	4.94 Plus service	
35 Zone 1		27 Married	8	55 Post-undergraduate degree	0 No	Male	3 No	Yes		No	4.8	- 0	19.55	- 0	0	54.1	0	220.4	0	0 Yes	No	No	Yes	No	No	No	No	4.01 E-service	No
36 Zone 2		46 Married	13	163 Some college	24 No	Male	2 Yes	Yes		Yes	33. 9	38. 25	44.65	13.75	55. 25			2,645.85		3, 125. 95 Yes	5.09 Total service								
37 Zone 3		35 Married	11	52 College degree	0 No	Male	2 No	Yes		No	4. 25	- 0	30.55	- 0	0	82.7	0			0 Yes	No	No	Yes	No	No	No	Yes	3.95 E-service	Yes
38 Zone 2		60 Unmarried	38	211 College degree	25 No	Male	1 Yes	Yes	Yes	Yes	21.15		46.35							2,895.85 Yes	Yes	Yes	Yes	No	No	Yes	Yes	5.35 Total service	
39 Zone 1		57 Married	1	186 High school degree	17 No	Male	2 Yes	No	Yes	Yes	9.8	33.5	0	36	41.65		1,379.55			1,826.70 Yes		No	No	Yes	Yes		No	5.23 Plus service	
40 Zone 1		41 Married	0	39 Did not complete high school	1 No	Female		No	Yes	No		29. 25		19.75	0		303.65		200	0 No	Yes		No	Yes	Yes	Yes	No	3.66 Plus service	
41 Zone 2		57 Unmarried	34	22 High school degree	35 Yes	Female		No	Yes	No	41.75	49		18.75	0		3,581.00	0	1,360.00	0 Yes	No		No	Yes	Yes		No	3.09 Plus service	
42 Zone 3		41 Unmarried	7	30 Did not complete high school	7 No	Male	1 Yes	No	Yes	No		19.25		53.75	0	31.25		0	490	0 No	No		No	Yes	Yes		No	3.4 Plus service	
43 Zone 2		28 Unmarried	0	29 High school degree	4 No	Female		No	Yes	No	4. 25	30	0	17.75	0	78	426.05	0	255	0 No	No	No	No	Yes	Yes	Yes	No	3.37 Plus service	
44 Zone 2		28 Married	4	23 High school degree	8 No	Male	5 No	No	No	No	6.2	0	0	0	0	180.15	0	0	0	0 No	No	No	No	No	No	No	No	3.14 Basic service	
45 Zone 1	9	36 Married	14	62 College degree	10 No	Male	6 No	Yes	No	Yes	5.65	0	46.75	0	48.5	43.3	- 0	386.6	0	364.85 Yes	Yes	Yes	Yes	No	No	Yes	Yes	4.13 Total service	Yes

region, tenure, age, marital, address, income, ed, employ, retire, gender, reside, tollfree, equip, callcard, wireless, longmon, tollmon, equipmon, cardmon, wiremon, longten, tollten, equipten, cardten, wireten, multline, voice, pager, internet, callwait, forward, confer, ebill, lninc, custcat, churn

```
data = pd.read csv('tel.csv', skipinitialspace=True, thousands=',')
print u'原始数据: \n', data.head(10)
le = LabelEncoder()
for col in data.columns:
    data[col] = le.fit transform(data[col])
# 年龄分组
bins = [-1, 6, 12, 18, 24, 35, 50, 70]
data['age'] = pd.cut(data['age'], bins=bins, labels=np.arange(len(bins)-1))
# 取对数
columns log = ['income', 'tollten', 'longmon', 'tollmon', 'equipmon', 'cardmon',
              'wiremon', 'longten', 'tollten', 'equipten', 'cardten', 'wireten', ]
mms = MinMaxScaler()
for col in columns log:
    data[col] = np.log(data[col] - data[col].min() + 1)
   # data[col] = pd.cut(data[col], bins=10, labels=np.arange(10))
                                                                  # 可不做
    data[col] = mms.fit transform(data[col].values.reshape(-1, 1))
                                                              00B Score: 0.742666666667
# one-hot编码
columns_one_hot = ['region', 'age', 'address', 'ed', 'reside', 'c 训练集准确率:
                                                                              0.988
for col in columns one hot:
                                                              训练集查准率: 0.962264150943
    data = data.join(pd.get dummies(data[col], prefix=col))
                                                              训练集查全率: 0.99512195122
data.drop(columns one hot, axis=1, inplace=True)
                                                              训练集f1 Score: 0.978417266187
                                                              训练集准确率: 0.784
columns = list(data.columns)
columns.remove('churn')
                                                              训练集查准率: 0.647058823529
x = data[columns]
                                                              训练集查全率: 0.478260869565
y = data['churn']
print u'分组与One-Hot编码后: \n', x.head(10)
                                                              训练集f1 Score: 0.55
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.75, random state=0)
clf = RandomForestClassifier(n estimators=100, criterion='gini', max_depth=12, min_samples_split=5,
                           oob score=True, class weight={0: 1, 1: 1/y train.mean()})
```


clf.fit(x train, y train)

鸢尾花数据集

- □ 鸢尾花数据集或许是最有名的模式识别测试数据。
 - 早在1936年,模式识别的先驱Fisher就在论文"The use of multiple measurements in taxonomic problems"中使用了它(直至今日该论文仍然被频繁引用)。
- □ 该数据集包括3个鸢尾花类别,每个类别有50个样本。其中一个类别是与另外两类线性可分的,而另外两类不能线性可分。
 - 由于Fisher的最原始数据集存在两个错误(35号和38号样本),实验中我们使用的是修正过的数据。
- □ 下载链接: http://archive.ics.uci.edu/ml/datasets/Iris

数据描述

- □ 该数据集共150行,每行1个样本。 每个样本有5个字段,分别是
 - 花萼长度 (单位cm)
 - 花萼宽度(单位: cm)
 - 花瓣长度(单位: cm)
 - 花瓣宽度(单位: cm)
 - 类别(共3类)
 - ☐ Iris Setosa
 - ☐ Iris Versicolour
 - ☐ Iris Virginica

4. 6, 3. 1, 1. 5, 0. 2, Iris-setosa 5. 0, 3. 6, 1. 4, 0. 2, Iris-setosa 5. 4, 3. 9, 1. 7, 0. 4, Iris-setosa 4. 6, 3. 4, 1. 4, 0. 3, Iris-setosa 5. 0, 3. 4, 1. 5, 0. 2, Iris-setosa 4. 4, 2. 9, 1. 4, 0. 2, Iris-setosa 4.9, 3.1, 1.5, 0.1, Iris-setosa 5. 4, 3. 7, 1. 5, 0. 2, Iris-setosa 4.8, 3.4, 1.6, 0.2, Iris-setosa 4.8, 3.0, 1.4, 0.1, Iris-setosa 4.3,3.0,1.1,0.1,Iris-setosa 5. 8, 4. 0, 1. 2, 0. 2, Iris-setosa 5. 7, 4. 4, 1. 5, 0. 4, Iris-setosa 5. 4, 3. 9, 1. 3, 0. 4, Iris-setosa 5.1, 3.5, 1.4, 0.3, Iris-setosa 5. 7, 3. 8, 1. 7, 0. 3, Iris-setosa 5.1, 3.8, 1.5, 0.3, Iris-setosa 5. 4, 3. 4, 1. 7, 0. 2, Iris-setosa 5.1, 3.7, 1.5, 0.4, Iris-setosa 4. 6, 3. 6, 1. 0, 0. 2, Iris-setosa

主成分分析PCA

- □ 多项式特征: 2/3
- □ 管道Pipeline

数据清洗和数据处理

如何找到下图中的异常值

排污数据的异常值检测与校正

车辆数据描述

- □ 该数据共1728个样本,每行为1 个样本。每个样本有7个特征:
 - 购买价格: low/med/high/vhigh
 - 维护价格: low/med/high/vhigh
 - 车门数量: 2/3/4/5more
 - 载人数目: 2/4/more
 - 后备箱大小: small/med/big
 - 安全程度: low/med/high
 - 接受程度: unacc/acc/good/vgood

	A	В	С	D	E	F	G
1	buy	maintain	doors	persons	boot	safety	accept
2	vhigh	vhigh	2	2	small	low	unacc
3	vhigh	vhigh	2	2	small	med	unacc
4	vhigh	vhigh	2	2	small	high	unacc
5	vhigh	vhigh	2	2	med	low	unacc
6	vhigh	vhigh	2	2	med	med	unacc
7	vhigh	vhigh	2	2	med	high	unacc
8	vhigh	vhigh	2	2	big	low	unacc
9	vhigh	vhigh	2	2	big	med	unacc
10	vhigh	vhigh	2	2	big	high	unacc
11	vhigh	vhigh	2	4	small	low	unacc
12	vhigh	vhigh	2	4	small	med	unacc
13	vhigh	vhigh	2	4	small	high	unacc
14	vhigh	vhigh	2	4	med	low	unacc
15	vhigh	vhigh	2	4	med	med	unacc
16	vhigh	vhigh	2	4	med	high	unacc
17	vhigh	vhigh	2	4	big	low	unacc
18	vhigh	vhigh	2	4	big	med	unacc
19	vhigh	vhigh	2	4	big	high	unacc
20	vhigh	vhigh	2	more	small	low	unacc
21	vhigh	vhigh	2	more	small	med	unacc
22	vhigh	vhigh	2	more	small	high	unacc
23	vhigh	vhigh	2	more	med	low	unacc
24	vhigh	vhigh	2	more	med	med	unacc
25	vhigh	vhigh	2	more	med	high	unacc
26	vhigh	vhigh	2	more	big	low	unacc
27	vhigh	vhigh	2	more	big	med	unacc
28	vhigh	vhigh	2	more	big	high	unacc
29	vhigh	vhigh	3	2	small	low	unacc
30	vhigh	vhigh	3	2	small	med	unacc
31	vhigh	vhigh	3	2	small	high	unacc
32	vhigh	vhigh	3	2	med	low	unacc
33	vhigh	vhigh	3	2	med	med	unacc
34	vhigh	vhigh	3	2	med	high	unacc
35	vhigh	vhigh	3	2	big	low	unacc
36	vhigh	vhigh	3	2	big	med	unacc

决策树和随机森林分类

```
x = data.loc[:, columns[:-1]]
  v = data['accept']
  x, x test, y, y test = train test split(x, y, train size=0.7)
  if random forest:
      clf = RandomForestClassifier(n estimators=100, criterion='gini', max depth=12, min samples split=5
  else:
      clf = DecisionTreeClassifier(criterion='gini', max depth=12, min samples split=5, max features=5)
  if cross validation:
      model = GridSearchCV(clf, param_grid={'max_depth': np.arange(10,20),
                                                'min_samples_split': np.arange(5, 20),
                                                'max_features': np.arange(1, 7)
                                               \}, cv=3)
                                                                                              ROC曲线和AUC
      model.fit(x, y)
                                                                       1.0
      print model.best params
3.pca
                                                                      0.9
 1720
                                                       0
                                                                      0.8
 1721
                                               0
         1
 1722
         1
                                               1
                                                                      0. 7
 1723
                                                                    Rate
9.0
 1724
         1
                                                                    True Positive F
 1725
 1726
                                               0
                                                       3
 1727
         1
 [1728 rows x 7 columns]
                                                                      0.3
 训练集精确度: 0.988420181969
                                                                      0. 2
 测试集精确度: 0.967244701349
 Micro AUC: 0.991795397255
                                                                      0. 1
 Micro AUC(System): 0.991795397255
                                                                                                                     AUC=0. 9850
                                                                      0.0
 Macro AUC: 0.987885354719
                                                                                                   0. 5
                                                                              0. 1
                                                                                                        0.6
                                                                                                                        0.9
                                                                                            False Positive Rate
```

							bu	ıy maintair	n doors pe	rsons	boot	safety	accept		
						0				2		low	unacc		
						1	_			2	small	med			
						2				2		high			
						3	_			2	med	low			
			12 244	ウエコ		4				2	med	med			
	$\mathbf{U}_{\mathbf{I}}$	[] e -	HOLS	扁码		5 6				2	med big	high low			
						7	vhig			2	big	med			<u></u>
						8				2	big	high	unacc		
						9	vhig	gh vhigh	n 2	4	small	low	unacc		
bu	y_high	buy_low	buy_med	buy_vhigh	maintain_hi	gh ma	ainta	in_low	maintain	_med	main	tain_v	high	doors_2	doors_3
0	0	0	0	1		0		0		0			1	1	0
1	0	0	0	1		0		0		0			1	1	0
2	0	0	0	1		0		0		0			1	1	0
3	0	0	0	1		0		0		0			1	1	0
4	0	0	0	1		0		0		0			1	1	0
5	0	0	0	1		0		0		0			1	1	0
6	0	0	0	1		0		0		0			1	1	0
7	0	0		1		0		0		0			1	1	0
8	0	0		1		0		0		0			1	1	0
9	0	0		1		0		0		0			1	1	0
doors_4	doors_	_	_	persons_4	persons_more	boot_i	big	boot_med	boot_sm	nall	safet	y_high	safe	ty_low :	safety_med
0)	0	1	0	0		0	0		1		0		1	0
0)	0	1	0	0		0	0		1		0		0	1
0)	0	1	0	0		0	0		1		1		0	0
0)	0	1	0	0		0	1		0		0		1	0
0)	0	1	0	0		0	1		0		0		0	1
0)	0	1	0	0		0	1		0		1		0	0
0)	0	1	0	0		1	0		0		0		1	0
0)	0	1	0	0		1	0		0		0		0	1
0)	0	1	0	0		1	0		0		1		0	0
0)	0	0	1	0		0	0		1		0		1	0

Logistic回归

```
# one-hot编码
        x = pd.DataFrame()
        for col in columns[:-1]:
            t = pd.get dummies(data[col])
            t = t.rename(columns=lambda x: col+'_'+str(x))
            x = pd.concat((x, t), axis=1)
         print x.head(10)
        # print x.columns
        y = pd.Categorical(data['accept']).codes
        x, x test, y, y test = train test split(x, y, train size=0.7)
        clf = LogisticRegressionCV(Cs=np.logspace(-3, 4, 8), cv=5)
        clf.fit(x, y)
        print clf.C
        y hat = clf.predict(x)
        print '训练集精确度: ', metrics.accuracy_score(y, y_hat)
        v test hat = clf.predict(x_test)
         print '测试集精确度: ', metrics.accuracy score(y test, y test hat)
        n class = len(data['accept'].unique())
        y test one hot = label binarize(y test, classes=np.arange(n class))
        y test one hot hat = clf.predict proba(x test)
        fpr, tpr, = metrics.roc curve(y test one hot.ravel(), y test one hot hat.ravel())
         print 'Micro AUC:\t', metrics.auc(fpr, tpr)
        print 'Micro AUC(System):\t', metrics.roc auc score(y test one hot, y test one hot hat, average='micro')
         auc = metrics.roc auc score(y test one hot, y test one hot hat, average='macro')
         print 'Macro AUC:\t', auc
         mpl.rcParams['font.sans-serif'] = u'SimHei'
         mpl.rcParams['axes.unicode minus'] = False
        plt.figure(figsize=(8, 7), dpi=80, facecolor='w')
        plt.plot(fpr, tpr, 'r-', lw=2, label='AUC=%.4f' % auc)
        plt.legend(loc='lower right')
         plt.xlim((-0.01, 1.02))
         plt.ylim((-0.01, 1.02))
        plt.xticks(np.arange(0, 1.1, 0.1))
        plt.yticks(np.arange(0, 1.1, 0.1))
        plt.xlabel('False Positive Rate', fontsize=14)
互联网; plt.ylabel('True Positive Rate', fontsize=14)
         plt.grid(b=True, ls=':')
         plt.title(u'ROC曲线和AUC', fontsize=18)
```

训练集精确度: 0.9206 测试集精确度: 0.8651 Micro AUC: 0.9776 Macro AUC: 0.9535

作业

- □除准确率(accuracy)外,还有哪些评价分类模型性能的指标?为什么有这些指标?
- □ 什么是混淆矩阵? TPR、FPR是什么含义?
 - Precision
 - Recall
 - F1-measure
 - AUC
 - AIC/BIC

我们在这里

- http://wenda.ChinaHadoop.cm
 - 视频/课程/社区
- □ 微博
 - @ChinaHadoop
 - @邹博_机器学习
- □ 微信公众号
 - 小象学院
 - 大数据分析挖掘

感谢大家!

恳请大家批评指正!