STAT 5113: Statistical Inference

Homework 6 – Due April 13, 2018

1. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{E}xp(1/\theta)$. Note that we are taking the parameter θ to be the expected value of the distribution. The sufficient statistic for this model is the sample mean \bar{X} , which has distribution $\mathcal{G}am(n, n/\theta)$. Consider testing the hypothesis

$$H_0: \theta \leq \theta_0$$
 versus $H_1: \theta > \theta_0$.

- (a) Based on the distribution of the sufficient statistic, determine the Likelihood Ratio Test (LRT) statistic, $\lambda(\bar{X})$.
- (b) Show that λ is a decreasing function. Use this fact to express the general form of the rejection region of the LRT as explicitly as possible in terms of \bar{x} .
- (c) Determine the power function $\pi(\theta)$ of the test.
- (d) Consider the following data set, providing survival times in weeks of patients who were diagnosed with leukemia:

Assuming independent, exponentially distributed survival times, with expected value θ , use the framework above to test the hypothesis the the average survival time is more than one year. That is, consider $\theta_0 = 52$. Select the threshold of the rejection region so that $\pi(\theta_0) = \alpha$.

- (e) Plot the graph of the power function. What can you deduce about the size of the test?
- (f) Carry out the test with the data provided and draw your conclusions.
- (g) What is the p-value of the test?
- (h) [Extra Credit] Show that for any value of the threshold and any sample size, the power function of the test is increasing in θ .
- 2. Consider two independent samples X_1, \ldots, X_n and Y_1, \ldots, Y_m from Normal populations with means μ_X and μ_Y and variances σ_X^2 and σ_Y^2 .
 - (a) Determine the LRT statistic to test

$$H_0: \sigma_X^2 = \sigma_Y^2$$
 versus $H_1: \sigma_X^2 \neq \sigma_Y^2$.

(b) In a packing plant, two machines pack cartons with jars. The times it takes each machine to pack 20 cartons are recorded. Assume that the model specified above holds for these data. A summary of the data, in seconds, is give below:

$$\bar{x} = 42.14, \ \hat{\sigma}_X^2 = 0.4664, \ \bar{y} = 43.23, \ \hat{\sigma}_Y^2 = 0.5625.$$

Using the asymptotic distribution of the LRT statistics, calculate an approximate p-value to test the equality of the variances.y