COMP2012 (Fall 2022) Discrete Mathematics

Individual Assignment 1 Due Date: 23:59, 28th October, 2022

Name	
Student number	

Notes:

- > This is an **individual** assignment.
- Please submit the **soft copy** of your answer to Blackboard (as a doc/docx/pdf file).
- You just need to write your answer. There is no need to copy questions.

Question 1.

1(a) [10 marks]

You are given n integers $a_1, a_2, ..., a_n$.

Let
$$m = (a_1 + a_2 + ... + a_n)/n$$
.

Prove that there exists some number in $a_1, a_2, ..., a_n$ such that it is smaller than or equal to m.

1(b) [10 marks]

Prove that $\neg (p \lor q \lor r)$ and $\neg p \land \neg q \land \neg r$ are logically equivalent by using a truth table.

1(c) [10 marks]

Let *Dom* be the domain {2,4,6,8,10,12,14,16,18}.

Suggest two propositional functions P(x) and Q(y) so that all the following statements are true at the same time:

- $\exists x \in Dom P(x)$
- $\exists y \in Dom Q(y)$
- $\neg (\exists z \in Dom P(z) \land Q(z))$

Prove that your proposed functions P and Q satisfy the above conditions.

Question 2.

2(a) [10 marks]

You are given the following sets: A, B, C. **Draw** the Venn diagram and **shade** the region of (A - C) - B.

2(b) [10 marks]

Let $A = \{a, b, c, d, e\}$ be a set with 5 elements.

- (I) How many relations are there on A?
- (II) How many equivalence relations \sim are there on A that satisfy $d \sim e$ and $d \sim a$?

(Hint: you may count the number of partitions.)

Question 3.

3(a) [10 marks]

What is the asymptotic relationship between f(n) and g(n), where $f(n) = log_2 n^{log_2 23}$, and $g(n) = log_2 23^{log_2 n}$? You can determine whether f(n) = O(g(n)), $\Omega(g(n))$, and / or $\Theta(g(n))$.

3(b) [10 marks]

Show the relation \prec is a transitive relation on the set of all real-valued functions on $(0, \infty)$. That is, **show** that $f(n) \prec g(n)$ and $g(n) \prec h(n)$ implies $f(n) \prec h(n)$. (Hint: You may use the Big-O notation to rewrite the statement.)

3(c) [10 marks]

You are given an array A of n integers.

Assume that *n* is odd and all *n* integers in the array *A* are different.

Write an algorithm to find the median of the input array A.

FindMedian (Array A[1..n])

- 1. ???
- 2. ???
- 3. ...

...

return ???

Question 4.

4(a) [10 marks]

You are given the following sets: $S_1, S_2, ..., S_n, T$. **Prove** that the following statement is true for all integers n by using mathematical induction.

$$(S_1 \cup T) \cap (S_2 \cup T) \cap \ldots \cap (S_n \cup T) = (S_1 \cap S_2 \ldots \cap S_n) \cup T$$

4(b) [10 marks]

We are referring to the tiling problem in "MI: example 3" in the slides of lecture #5. Now, we are given the following 16×16 checkboard with a missing square (X).

	Α	triomino	looks	like	one	of the	followings	š.
--	---	----------	-------	------	-----	--------	------------	----

Draw the above checkboard after tiling it with triominoes.	
Adjacent triominoes should be filled in different colours (like in the slides)).

End of Assignment 1