Многомерный анализ биологических данных на компьютере

Дальневосточный федеральный университет

Кислов Д.Е. 23 ноября 2018 г.

Структура лекционной программы (6 акад. часов)

- общие представления о теории вероятностей (ТВ);
- введение в среду статистического анализа R;
- многомерный анализ данных;

Общие представления о теории вероятностей

- Понятие вероятности, случайной величины, дискретно и непрерывно распределенные случайные величины, функции и плотности распределения вероятности, условные и безусловные вероятности, примеры;
- серия независимых испытаний (модель Бернулли), центральная предельная теорема;
- основные распределения используемые в ТВ;

Статистические оценки и гипотезы

- задача теории вероятностей и математической статистики (примеры), понятие статистической оценки, оценки вероятностей событий в серии независимых испытаний, точечные и интервальные оценки параметров распределений;
- проверка статистических гипоетз, понятия ошибок первого и второго рода, критерии согласия (тесты Колмогорова-Смирнова, χ^2 , Шапиро-Уилка и др.), анализ таблиц сопряженности (критерий χ^2 , точный тест Фишера);
- корреляционный анализ, метод наименьших квадратов, линейная и нелинейная регрессии (примеры), классический дисперсионный анализ и его обобщения;

Многомерный анализ данных

- задачи классификации многомерных данных, метод k-средних, иерархическая кластеризация, оценка качества кластеризации и сравнение кластерных структур;
- метод главных компонент (PCA), дискриминантный анализ (DA), многомерное шкалирование (MDS, NMDS), анализ соответствий (CA);
- классификация по прецедентам и основные методы решения задачи (k-NN, линейная классификация, машина опорных векторов, деревья решений и случайный лес), оценки качества решения задачи классификации по прецедентам (точность, матрица ошибок, ROC/AUC харатеристика);

Многомерный анализ биологических данных на компьютере

Пустая страница

Важные исторические даты

- Х. Гюйгенс (1629–1695): Первая книга по теории вероятностей – "О расчетах в азартной игре". Введено понятие среднего значения — математического ожидания;
- ◆ Зарождение статистики: Джон Граунт (1620–1674); Вильям Петти (1623–1687). "Естественные и политические наблюдения над бюллетенями смертности"(Граунт, 1662), "Политическая арифметика"(Петти, 1676);

Рис.: А. Муавр

Рис.: Я. Бернулли

Важные исторические даты

- И. Ньютон (1642–1727) Я. Бернулли (1654–1705);
 "Искусство предположений" (Бернулли, 1713);
- ◆ Абрахам де Муавр (1667–1754): "Учение о случаях"(Муавр, 1733); П.С. Лаплас (1749 – 1827);
- Т. Байес (1702–1761) "Формула Байеса" (Байес, 1763);
- ◆ Теория ошибок (конец XVIII) К.Ф. Гаусс (1777-1855);
- ◆ А.Н. Колмогоров (1903–1987) Аксиоматизация теории вероятностей (Колмогоров, 1933);
- lacktriangle К. Пирсон (1857–1936) Критерий χ^2 ; Р.А. Фишер (1890–1962) метод максимального правдоподобия; Е. Нейман (1894–1977) статистическая проверка гипотез;

Предпосылки теории вероятностей: комбинаторные задачи

Задача 1

Кодовый замок состоит из 10 кнопок, а открывается при одновременном нажатии 2 кнопок. Охарактеризовать численно его надежность.

Задача 2

Какова вероятность из цифр 1, 3, 5, 7, 9 сложить заданное пятизначное число?

Задача 3

В селе 2500 жителей. Каждый из них примерно 6 раз в месяц (30 дней) ездит в город, выбирая дни поездок по случайным, независящим от других мотивам. Рассчитать минимальную вместительность поезда, обеспечивающую его переполнение не чаще одного раза за 100 дней.

Основания теории вероятностей

Если ν – число осуществлений некоторого события, то $\frac{\nu}{n}$ – его частота реализации (появления).

ОСНОВНОЕ МОДЕЛЬНОЕ ПОЛОЖЕНИЕ

Частота появления события при многократном повторении эксперимента должна проявлять устойчивость: осуществляя колебания, она должна стремиться к определенному значению.

Что такое вероятность?

Под термином "вероятность" события будем понимать некоторое число, характеризующее частоту его реализации при многократном повторении эксперимента.

Теория вероятностей (TB) и математическая статистика (MC)

Задача ТВ

Построение математических моделей случайных явлений, проявляющих свойство статистической устойчивости.

Задача МС

Формирование выводов на основе данных опыта и представлений теории вероятностей.

Задача

Симметричную монету подбросили 100 раз, из которых 42 раза выпала «решка» и 58 — «орел». Построены 2 модели этого явления: 1) P(«орел»)=1/2, P(«решка»)=1/2; 2) P(«орел»)=2/3, P(«решка»)=1/3. Какую модель следует выбрать?

Основания теории вероятностей

 Таблица:
 Соответствие вероятностных и теоретико-множественных представлений

Множественное понятие	Понятие теории вероятностей
1. Множество A пусто $(A = \emptyset)$.	1. Событие A невозможно.
2. $A \cap B = \emptyset$.	2. Два события несовместны.
$3. A_1 \cap A_2 \cap \ldots \cap A_k = X.$	3. Событие X состоит в одно-
	временном наступлении событий
	A_1, A_2, \ldots, A_k .
$4. A_1 \bigcup A_2 \bigcup \ldots \bigcup A_k = X.$	4. Событие X состоит в наступлении
	одного из событий A_1,A_2,\ldots,A_k .
5. Дополнительное множество к A	5. Событие состоит в ненаступлении
$(\overline{A}).$	события A (в этом случае говорят, что
	наступило противоположное A собы-
	тие).
6. $B \subseteq A$.	6. Наступление события B влечет на-
	ступление события A .
7. $A=\Omega$.	7. Событие A достоверно.

Аксиомы теории вероятностей (А.Н. Колмогоров)

Вероятностная модель явления построена, если:

- Задано множество элементарных исходов эксперимента (Ω) и возможных событий (\mathcal{F}) ;
- Каждому событию $A \in \mathcal{F}$ сопоставляется действительное число $P(A) \in [0,1]$, именуемое его вероятностью;
- \bullet $P(\Omega)=1;$
- Для любых двух событий A и B, таких что $A\cap B=\emptyset$, выполнено $P(A\cup B)=P(A)+P(B)$;

Аксиомы теории вероятностей (А.Н. Колмогоров)

Вероятностная модель явления построена, если:

- Задано множество элементарных исходов эксперимента (Ω) и возможных событий (\mathcal{F}) ;
- Каждому событию $A \in \mathcal{F}$ сопоставляется действительное число $P(A) \in [0,1]$, именуемое его вероятностью;
- \bullet $P(\Omega)=1;$
- Для любых двух событий A и B, таких что $A\cap B=\emptyset$, выполнено $P(A\cup B)=P(A)+P(B)$;

Пример

В эксперименте с подбрасыванием монеты: $\Omega = \{ \text{ «Орел», }$ «Решка» $\}$; В качестве $\mathcal F$ можно выбрать $\{\Omega, \text{ «Орел», }$ «Решка», $\emptyset \}$, или $\mathcal F = \{\Omega, \emptyset \}$, и положить: P(«Орел») = p, P(«Решка») = 1 - p, p < 1.

Схема Бернулли

Задача 4

Эксперимент состоит в n-кратном повторении опыта с двумя исходами. Вероятность «успеха» в опыте равна p, вероятность «неудачи» — q (p+q=1). Определить вероятность k успехов при выполнении эксперимента.

Решение

Рассмотрим событие, состоящее в том, что первые k испытаний окончились «успехом», а остальные n-k-k «неудачей». Вероятность такого события — $p^k \cdot q^{n-k}$. Общее число подобных событий в эксперименте, отличающихся порядком «успехов» и «неудач» равно количеству k-элементных подмножеств n-элементного множества, т. е. C_n^k . Следовательно, искомая вероятность определяется выражением: $C_n^k p^k q^{n-k}$. $C_n^k = n!/(k!(n-k)!)$

Задача 5

При посадке тиса приживаемость составляет 10%. Какова вероятность, что из 10 посаженных образцов приживется хотя бы один.

Задача 6

При посадке тиса приживаемость составляет 10%. Какова вероятность, что из 10 посаженных образцов приживется хотя бы один.

Решение

• $(1/10)^{10}$ – не приживется ни один, $1-(1/10)^{10}$ – приживется хотябы один.

Задача 7

При посадке тиса приживаемость составляет 10%. Какова вероятность, что из 10 посаженных образцов приживется хотя бы один.

Решение

- $(1/10)^{10}$ не приживется ни один, $1-(1/10)^{10}$ приживется хотябы один.
- $\sum_{k=1}^{10} C_{10}^k (1/10)^k (9/10)^{n-k}$

Задача 8

При посадке тиса приживаемость составляет 10%. Какова вероятность, что из 10 посаженных образцов приживется хотя бы один.

Решение

- $(1/10)^{10}$ не приживется ни один, $1-(1/10)^{10}$ приживется хотябы один.
- $\sum_{k=1}^{10} C_{10}^k (1/10)^k (9/10)^{n-k}$

Задача 9

При высаживании непикированной рассады помидоров только 80% растений приживаются. Найдите вероятность того, что из десяти посаженных кустов приживется не менее 7.

Схема Бернулли. Планирование эксперимента.

Задача 10

Приживаемость саженцев составляет в среднем 30%. Каков должен быть минимальный объём посадок, чтобы можно было гарантировать выживаемость 50 экземпляров с доверительной вероятностью не меньшей 90%?

Схема Бернулли. Планирование эксперимента.

Задача 11

Приживаемость саженцев составляет в среднем 30%. Каков должен быть минимальный объём посадок, чтобы можно было гарантировать выживаемость 50 экземпляров с доверительной вероятностью не меньшей 90%?

Решение

$$\min_{N} \sum_{k=50}^{N} C_n^k 0.3^k 0.7^{n-k} \ge 0.9$$

Схема Бернулли. Планирование эксперимента.

Задача 12

Приживаемость саженцев составляет в среднем 30%. Каков должен быть минимальный объём посадок, чтобы можно было гарантировать выживаемость 50 экземпляров с доверительной вероятностью не меньшей 90%?

Решение

$$\min_{N} \sum_{k=50}^{N} C_n^k 0.3^k 0.7^{n-k} \ge 0.9$$

Решить такую задачу можно численно, используя язык программирования.

Случайные величины и их распределения

Эксперимент $\omega_i \in \Omega$:

Определение

Если $P(\omega_i)=p_i$ определены, то преобразование ψ совместно с p_i и Ω определяют дискретную случайную величину $\xi\colon P(\xi=x_i)=p_i.$ Множество $\{(x_i,p_i)\}$ образуют закон распределения случайной величины $\xi.$

Пример

Количество очков, выпавшее при подбрасывании игральной кости, — дискретная случайная величина.

Функция распределения случайной величины

Определение

Функция $F_{\xi}(x) = P(\xi < x)$, где $x \in \mathbb{R}$, называется функцией распределения случайной величины ξ .

Замечание

Случайная величина называется распределенной непрерывно, если соответствующая функция распределения является непрерывной.

Замечание

Для случайных величин, имеющих дискретное распределение, функция распределения терпит разрывы. Аксиомы теории вероятностей определяют основные свойства функции распределения.

Примеры непрерывных и разрывной функций распределения

Стандартная нормальная функция распределения.

Функция распределения случайной величины равномерно распределенной на интервале [0,1].

Разрывная функция распределения

Функция распределения случайной величины — числа очков при подбрасывании кубика.

Плотность распределения случайной величины

Определение

Плотностью распределения $(f_{\xi}(x))$ случайной величины ξ называется производная по x(если таковая существует) от функции распределения $F_{\xi}(x)$:

$$f_{\xi}(x) = \frac{dF_{\xi}(x)}{dx}.$$

Замечание

Плотность распределения — скорость изменения вероятности события $\{\xi < x\}$, зависящая от x.

Замечание

Плотность распределения в точке x характеризует вероятность принадлежности случайной величины достаточно малой окрестности, содержащей точку x.

Примеры плотностей распределения случайных величин

Плотность стандартного нормального распределения.

f(x)

Плотность случайной величины ξ , распределенной равномерно на интервале [-1,1].

Свойства плотности распределения

Утверждение

Если $f_{\xi}(x)$ плотность распределения случайной величины ξ , то

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(\tau) d\tau;$$

- $P(a \le \xi < b) = \int_{a}^{b} f_{\xi}(x) dx, a, b \in \mathbb{R}.$

Доверительные интервалы нормального распределения

Несмещенное нормальное распределение с дисперсией σ^2 .

Многомерное нормальное распределение

Определение

Пусть $\Upsilon=(\eta_1,\dots,\eta_n)\in\mathcal{N}(0,1)$ — независимы в совокупности случайные величины; тогда $\Xi=A\Upsilon+b$, где $A=A_{n\times n}$, $\dim b=n$, имеет многомерное нормальное распределение.

Утверждение

Если матрица A невырождена, то Ξ имеет плотность $f_\Xi(x) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(A^TA)}} \mathrm{e}^{-(x-b)^T (A^TA)^{-1} (x-b)/2}.$

Геометрическая интерпретация

Пример многомерного нормального распределения с диагональной матрицей A;

Вычислительные среды для анализа данных

- R, http://r-project.org + Packages (https://cran.r-project.org/)
- Python, http://python.org
 - Pandas, http://pandas.pydata.org
 - SciPy+NumPy, http://scipy.org
 - Matplotlib, http://matplotlib.org/
 - Scikit-learn, http://scikit-learn.org/
 - .. Packages
- Statistica, http://statsoft.com
- MatLab, http://www.mathworks.org

Интерактивные среды

RStudio Server

www.rstudio.com

Jupiter Notebook

ipython.org/notebook.html

