

ISIS-1104 Matemática Estructural y Lógica Parcial 1 - Sección 5

Fecha: Septiembre 15, 2017

- Esta prueba es INDIVIDUAL.
- Está permitido el uso de una hoja con teoremas y reglas.
- Está prohibido el uso de cualquier dispositivo electrónico.
- El intercambio de información relevante a esta prueba con otro estudiante está terminantemente prohibido.
- Cualquier irregularidad con respecto a estas reglas podría ser considerada fraude.
- No olvide marcar el examen antes de entregarlo.

IMPORTANTE: Soy consciente de que cualquier tipo de fraude en los exámenes es considerado como una falta grave en la Universidad. Al firmar y entregar este examen doy expreso testimonio de que este trabajo fue desarrollado de acuerdo con las normas establecidas. Del mismo modo, aseguro que no participé en ningún tipo de fraude.

Nombre	Carné
Firma	Fecha

NO ESCRIBIR NADA BAJO ESTA LÍNEA

1	20 pts	
2	20 pts	
3	30 pts	
4	30 pts	
Total	100 pts	

Para las preguntas 1 y 2, considere el operador ternario \diamond , definido por la siguiente equivalencia:

$$\diamond(p,q,r)\equiv(p\equiv q\Rightarrow r)$$

1. (20 puntos) Demuestre sin tablas de verdad que $\diamond(p,q,r) \land \neg p \equiv \neg(p \lor \neg q \lor r)$.

2. (20 puntos) Demuestre sin tablas de verdad que $\neg(\diamond(p,q,r)) \land q \Rightarrow \neg(p \land r)$

3. (30 puntos) Modele y resuelva con lógica proposicional:

Gabriela desea invertir en Ethereum, una criptomoneda cuyo valor está aumentando rápidamente. Se sabe lo siguiente:

- Si Gabriela pierde su inversión entonces la mayoría de nodos en la red no son honestos.
- Si el gobierno no prohibe Ethereum y Ethereum es estable, entonces Gabriela duplica su inversión si y solo si la mayoría de nodos en la red son honestos
- Se comprobó que la mayoría de nodos en la red son honestos.
- Sin embargo, Gabriela no duplicó su inversión.
- Si Gabriela no pierde su inversión y tampoco la duplica, entonces Ethereum es estable.

A partir de esto, se concluye que el gobierno prohibe Ethereum.

- (a) (5 puntos) Escoja las variables proposicionales para modelar el problema.
- (b) (10 puntos) Usando estas variables, modele tanto las hipótesis como la conclusión.
- (c) (15 puntos) Demuestre que el razonamiento que se presenta es correcto (a partir de las hipótesis, demuestre que el gobierno prohibe Ethereum).

(Continúe la solución de la pregunta 3 aquí)

- 4. (30 puntos) Modele y resuelva con lógica de predicados. El universo son problemas que se resuelven con algoritmos computacionales:
 - Si P=NP, entonces todo problema que se puede verificar rápidamente se puede resolver rápidamente.
 - Todo problema NP-completo se puede verificar rápidamente.
 - Si existe un problema que sea NP-completo y se puede resolver rápidamente, entonces P=NP.
 - SAT y el problema de la mochila son problemas NP-completos.

A partir de lo anterior, se concluye que si el problema de la mochila se puede resolver rápidamente entonces SAT se puede resolver rápidamente.

Considere los siguientes términos (constantes):

- 1. sat: el problema SAT;
- 2. m: el problema de la mochila;

y considere los siguientes símbolos de predicado:

- 1. P = NP: Para denotar que P=NP. Este es un predicado sin variables, que puede ser tratado como una variable proposicional.
- 2. P(x): El problema x se puede resolver rápidamente.
- 3. NP(x): El problema x se puede verificar rápidamente.
- 4. NPC(x): El problema x es NP-completo.

Usted debe hacer lo siguiente:

- (a) (10 puntos) Usando estos términos y símbolos de predicado, realice la traducción del problema (las hipótesis y la conclusión).
- (b) (20 puntos) Demuestre que el razonamiento es correcto.

(Continúe la solución del problema 4 aquí)