# Data Analysis 2: Fundaments of Statistics

Instructor: Arieda Muço, Fall 2017



# Types of Random Variables

- Continuous, takes values in any interval
  - i.e prices, temperature, grades...
- Discrete, takes no more than a countable number of values
  - i.e hotel stars, gender, number of rooms

Each have their own distributions



# Histograms in practice



# If I tell you that football players have a favorite foot?















#### Covariance

 It provides an indication of the dependence between two variables

$$Cov(x,y) = rac{\sum_i (x_i - \overline{x})(y_i - \overline{y})}{n}$$



#### Covariance

ullet In case:  $y_i=a+bx_i$ 

$$Cov(x,y) = rac{b(\sum_i (x_i - \overline{x})(y_i - \overline{y}))}{n}$$

#### Correlation

 Is computed by dividing the covariance by the standard deviation of each variable

$$ho = Corr(x,y) = rac{Cov(x,y)}{Std(x) \cdot Std(y)}$$

$$ho \in [-1,1]$$



# Scatterplot

- Tells us if there is a relationship among the variables
- We investigate if there is a linear relationship, nonlinear, or no relationship



Data Analysis 2: Foundations of Statistics





Data Analysis 2: Foundations of Statistics



Height and weight of football players on Fifa database

Downloaded from Kaggle
https://www.kaggle.com/hiteshp/exploring-fifa-2017dataset/notebook



Data Analysis 2: Foundations of Statistics





Data Analysis 2: Foundations of Statistics





Data Analysis 2: Foundations of Statistics







Data Analysis 2: Foundations of Statistics





# Sampling

- Sampling theory is a study of relationships between a population and the draws from that population.
- There plenty of questions we want to ask when it comes to sampling such as:
  - Is the sample representative?
  - Are differences in statistics across the samples due to chance or due to measurement error (or any other type of error?)

# Dangers of non representative sampling

We cannot draw reliable statistics from the data

Our findings are not generalizable

# Order of random sampling

- We want the sample we are dealing with to be representative of the population.
- In order to do this, we should sample randomly from the populations.
  - Examples of sampling gone wrong?



### **Extreme values (Outliers)**

- In statistics, an outlier is an observation point that is distant from other observations
- There are several reasons for observing extreme values in the data as well as several types
- You deal with them if you know your context and data very well

Examples?

