

The ICP Algorithm (1)

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/McKay 1992]

For prior point set M ("model set") and data set D

- **1.** Select point correspondences $w_{i,j}$ in $\{0,1\}$
- Minimize for rotation R, translation t

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t})||^2$$

Iterate 1. and 2.

SVD-based calculation of rotation

- works in 3 translation plus 3 rotation dimensions
 - \Rightarrow 6D SLAM with closed loop detection and global relaxation.

The ICP Algorithm (2)

Closed form (one-step) solution for minimizing of the error function

1. Cancel the double sum:

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t})||^2$$

$$\propto \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_i + \mathbf{t})||^2,$$

2. Compute centroids of the matching points

$$\mathbf{c}_m = \frac{1}{N} \sum_{i=1}^N \mathbf{m}_i, \qquad \mathbf{c}_d = \frac{1}{N} \sum_{i=1}^N \mathbf{d}_j$$

$$M' = \{ \mathbf{m}'_i = \mathbf{m}_i - \mathbf{c}_m \}_{1,\dots,N}, \qquad D' = \{ \mathbf{d}'_i = \mathbf{d}_i - \mathbf{c}_d \}_{1,\dots,N}.$$

3. Rewrite the error function

$$E(\mathbf{R}, \mathbf{t}) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}'_i - \mathbf{R}\mathbf{d}'_i - \underbrace{(\mathbf{t} - \mathbf{c}_m + \mathbf{R}\mathbf{c}_d)}_{=\tilde{\mathbf{t}}}||^2$$

The ICP Algorithm (3)

Closed form (one-step) solution for minimizing of the error function

3. Rewrite the error function

$$E(\mathbf{R}, \mathbf{t}) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}_{i}' - \mathbf{R}\mathbf{d}_{i}' - \underbrace{(\mathbf{t} - \mathbf{c}_{m} + \mathbf{R}\mathbf{c}_{d})}_{=\tilde{\mathbf{t}}}||^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}_{i}' - \mathbf{R}\mathbf{d}_{i}'||^{2} - \frac{2}{N}\tilde{\mathbf{t}} \cdot \sum_{i=1}^{N} (\mathbf{m}_{i}' - \mathbf{R}\mathbf{d}_{i}') + \frac{1}{N} \sum_{i=1}^{N} ||\tilde{\mathbf{t}}||^{2}.$$

Minimize only the first term! (The second is zero and the third has a minimum for $\tilde{t}=0$).

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left| \left| \mathbf{m}'_i - \mathbf{R} \mathbf{d}'_i \right| \right|^2.$$

Arun, Huang und Blostein suggest a solution based on the singular value decomosition.

K. S. Arun, T. S. Huang, and S. D. Blostein. Least square fitting of two 3-d point sets. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 9(5):698 – 700, 1987.

The ICP Algorithm (4)

Theorem: Given a 3 x 3 correlation matrix

$$\mathbf{H} = \sum_{i=1}^{N} \mathbf{m}_{i}^{\prime T} \mathbf{d}_{i}^{\prime} = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}$$

with $S_{xx} = \sum_{i=1}^{N} m'_{ix}d'_{ix}$, $S_{xy} = \sum_{i=1}^{N} m'_{ix}d'_{iy}$, ..., then the optimal solution for $E(\mathbf{R},\mathbf{t}) = \sum_{i=1}^{N} \left|\left|\mathbf{m}'_{i} - \mathbf{R}\mathbf{d}'_{i}\right|\right|^{2}$ is $\mathbf{R} = \mathbf{V}\mathbf{U}^{T}$ with $\mathbf{H} = \mathbf{U}\Lambda\mathbf{V}^{T}$ from the SVD.

Proof:

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left| \left| \mathbf{m}'_{i} - \mathbf{R} \mathbf{d}'_{i} \right| \right|^{2}.$$

Rewrite

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left| \left| \mathbf{m}_{i}' \right| \right|^{2} - 2 \sum_{i=1}^{N} \mathbf{m}_{i}' \cdot \mathbf{R} \mathbf{d}_{i}' + \sum_{i=1}^{N} \left| \left| \mathbf{d}_{i}' \right| \right|^{2}.$$

Rotation is length preserving, i.e., maximize the term

$$\sum_{i=1}^{N} \mathbf{m}_{i}' \cdot \mathbf{R} \mathbf{d}_{i}' = \sum_{i=1}^{N} \mathbf{m}_{i}'^{T} \mathbf{R} \mathbf{d}_{i}'$$

The ICP Algorithm (5)

Theorem: Given a 3 x 3 correlation matrix

$$\mathbf{H} = \sum_{i=1}^{N} \mathbf{m}_{i}^{\prime T} \mathbf{d}_{i}^{\prime} = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}$$

with $S_{xx} = \sum_{i=1}^{N} m'_{ix}d'_{ix}$, $S_{xy} = \sum_{i=1}^{N} m'_{ix}d'_{iy}$, ..., then the optimal solution for $E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left| \left| \mathbf{m}'_{i} - \mathbf{R}\mathbf{d}'_{i} \right| \right|^{2}$ is $\mathbf{R} = \mathbf{V}\mathbf{U}^{T}$ with $\mathbf{H} = \mathbf{U}\Lambda\mathbf{V}^{T}$ from the SVD.

Proof:
$$\sum_{i=1}^{N} \mathbf{m}_{i}' \cdot \mathbf{R} \mathbf{d}_{i}' = \sum_{i=1}^{N} \mathbf{m}_{i}'^{T} \mathbf{R} \mathbf{d}_{i}'$$

Rewrite using the trace of a matrix

$$\operatorname{Trace}\left(\sum_{i=1}^{N} \operatorname{Rd}_{i}' \mathbf{m}_{i}'^{T}\right) = \operatorname{Trace}\left(\mathbf{R}\mathbf{H}\right)$$

Lemma: For all positiv definite matrices AA^T and all orthonormal matrices B the following equation holds: $\operatorname{Trace}(AA^T) \geq \operatorname{Trace}(BAA^T)$

The ICP Algorithm (6)

Theorem: Given a 3 x 3 correlation matrix

$$\mathbf{H} = \sum_{i=1}^{N} \mathbf{m}_{i}^{\prime T} \mathbf{d}_{i}^{\prime} = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}$$

with $S_{xx} = \sum_{i=1}^{N} m'_{ix}d'_{ix}$, $S_{xy} = \sum_{i=1}^{N} m'_{ix}d'_{iy}$, ..., then the optimal solution for $E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left| \left| \mathbf{m}'_{i} - \mathbf{R}\mathbf{d}'_{i} \right| \right|^{2}$ is $\mathbf{R} = \mathbf{V}\mathbf{U}^{T}$ with $\mathbf{H} = \mathbf{U}\mathbf{\Lambda}\mathbf{V}^{T}$ from the SVD.

Proof: Suppose the singular value decomposition of H is $H=U\Lambda V^T$ U and V are orthonormal 3 x 3 and Λ a diagonal matrix without negative entries .

$$\mathbf{R} = \mathbf{V}\mathbf{U}^T$$

 ${
m R}$ is orthonormal and ${
m RH}$ =

$$RH = VU^TU\Lambda V^T$$
$$= V\Lambda V^T$$

And using the lemma it is $\operatorname{Trace}\left(RH\right)\geq\operatorname{Trace}\left(BRH\right).$

Therefore R maximizes

$$\sum_{i=1}^{N} \mathbf{m_i'}^T \mathbf{R} \mathbf{d}_i'$$

The ICP Algorithm (7)

- Estimating the transformation can be accomplished very fast O(n)
- Closest point search
 - Naïve O(n²), i.e., brute force
 - K-d trees for searching in logarithmic time
 Recommendation: Start with
 ANN: A Library for Approximate Nearest
 Neighbor Searching by David M. Mount
 and Sunil Arya (University of Maryland)
 - Easy to use
 - Many different methods are available
 - Quite fast

http://www.cs.umd.edu/~mount/ANN/

K-d Tree based NNS (1)

 One has to search all buckets according to the ball-withinbounds-test.

 ⇒ Backtracking

NNS Search – the Critical Issue

Properties for all tested NNS libraries.

Library	revision	Data structure	k-NN search	fixed radius	ranged search	optimized for
3DTK [2]	rev. 470	k-d tree	×	×	V	shape registration
3DTK	rev. 470	octree	×	×	1	shape registration & efficient storage
ANN [3]	Ver. 1.1.1	k-d tree	1	1	×	
CGAL [4]	Ver. 3.5.1-1	k-d tree	×	✓	×	
FLANN [5]	bcf3a56e5fed2d4dc3a340725fa341fa36ef79a4	k-d tree	V	1	×	high dimensions
libnabo [6]	Ver. 1.0.0	k-d tree	✓	×	1	
SpatialIndex [7]	Ver. 1.4.0-1.1	R-tree	1	×	×	10.00
STANN [8]	Ver. 0.71 beta	SFC	✓	×	×	multithreading

NNS Search – the Critical Issue

The ICP Algorithm (8)

- Point reduction another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud

The ICP Algorithm (9)

- Point reduction another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud
 - Divide

Another key issue: maximal point-to-point distance.

Registering Surfaces (1)

Given

The main idea:

- Pairwise matching technique
- We want to minimize the distance between the two parts
- We set up a variational problem
- Minimize distance "energy" by rigid motion of one part

Registering Surfaces (2)

Problem:

- How to compute the distance
- This is simple if we know the corresponding points.
- Of course, we have in general no idea of what corresponds...
- ICP-idea: set closest point as corresponding point
- Full algorithm:
 - Compute closest point points
 - Minimize distance to these closest points by a rigid motion
 - Recompute new closest points and iterate

Registering Surfaces (3)

Distances

Closest Point Distances

Registering Surfaces (4) – ICP iterations

Processing Large Data Sets (1)

```
bin/slam6D -s 1 -e 65 -r 10 -i 100 -d 75 --epsICP=0.00001 ~/dat/hannover/
```

We see: small matching errors accumulate

6D SLAM – Global Relaxation (1)

- In SLAM loop closing is the key to build consistent maps
- Notice: Consistent vs. correct or accurate
- GraphSLAM
 - Graph Estimation
 - Graph Optimization
- Graph Estimation
 - Simple strategy: Connect poses with graph edges that are close enough
 - Simple strategy: Connect poses, they have enough point pairs (closest points)

The both algorithm

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/McKay 1992]

For prior point set M ("model set") and data set D

- 1. Select point correspondences wi,j in {0,1}
- 2. Minimize for rotation R, translation t

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t})||^2$$

3. Iterate 1. and 2.

For groband forms is relative afar that an inimization working transfation of the spin of

sying eraons fation dimensions $E = \sum_{j o k} \sum_i |\mathbf{R}_j \mathbf{m}_i + \mathbf{t}_j - (\mathbf{R}_k \mathbf{d}_i + \mathbf{t}_k)|^2$

Minimize for all rotations **R** and translations **t** at the same time

Parametrizations for the Rigid Body Transformations

$$E = \sum_{j \to k} \sum_{i} |\mathbf{R}_{j} \mathbf{m}_{i} + \mathbf{t}_{j} - (\mathbf{R}_{k} \mathbf{d}_{i} + \mathbf{t}_{k})|^{2}$$

Helix transformation

$$\mathbf{v}(\mathbf{p}) = \bar{\mathbf{x}} + \mathbf{x} \times \mathbf{p}$$

$$E = \sum_{i \to k} \sum_{i} (\mathbf{m}_i - \mathbf{d}_i + (\bar{\mathbf{x}}_j + \mathbf{x}_j \times \mathbf{m}_i) - (\bar{\mathbf{x}}_k + \mathbf{x}_k \times \mathbf{m}_i))^2$$

... solving a system of linear equations

Parametrizations for the Rigid Body Transformations

$$E = \sum_{i \to k} \sum_{i} |\mathbf{R}_{j} \mathbf{m}_{i} + \mathbf{t}_{j} - (\mathbf{R}_{k} \mathbf{d}_{i} + \mathbf{t}_{k})|^{2}$$

$$\sin \theta \approx \theta - \frac{\theta^3}{3} + \frac{\theta^5}{5} - \cdots$$

$$\cos \theta \approx 1 - \frac{\theta^2}{2} + \frac{\theta^4}{4} - \cdots$$

• Small angle approximation
$$\begin{aligned} E &= \sum_{j \to k} \sum_i |\mathbf{R}_j \mathbf{m}_i + \mathbf{t}_j - (\mathbf{R}_k \mathbf{d}_i + \mathbf{t}_k)|^2 \\ & \sin \theta \approx \theta - \frac{\theta^3}{3} + \frac{\theta^5}{5} - \cdots \\ & \cos \theta \approx 1 - \frac{\theta^2}{2} + \frac{\theta^4}{4} - \cdots \end{aligned}$$

$$\mathbf{R} \approx \begin{pmatrix} 1 & -\theta_z & \theta_y \\ \theta_x \theta_y + \theta_z & 1 - \theta_x \theta_y \theta_z & -\theta_x \\ \theta_x \theta_z - \theta_y & \theta_x + \theta_y \theta_z & 1 \end{pmatrix}$$

Parametrizations for the Rigid Body Transformations

$$E = \sum_{j \to k} \sum_{i} |\mathbf{R}_{j} \mathbf{m}_{i} + \mathbf{t}_{j} - (\mathbf{R}_{k} \mathbf{d}_{i} + \mathbf{t}_{k})|^{2}$$

- Explicit modeling of uncertainties
- Assumptions: The unknown error is normally distributed

$$W = \sum_{j \to k} (\bar{\mathbf{E}}_{j,k} - \mathbf{E}'_{j,k})^T \mathbf{C}_{j,k}^{-1} (\bar{\mathbf{E}}'_{j,k} - \mathbf{E}'_{j,k})$$

$$= \sum_{j \to k} (\bar{\mathbf{E}}_{j,k} - (\mathbf{X}'_j - \mathbf{X}'_k)) \mathbf{C}_{j,k}^{-1} (\bar{\mathbf{E}}'_{j,k} - (\mathbf{X}'_j - \mathbf{X}'_k)).$$

$$E_{j,k} = \sum_{i=1}^m ||\mathbf{X}_j \oplus \mathbf{d}_i - \mathbf{X}_k \oplus \mathbf{m}_i||^2 = \sum_{i=1}^m ||\mathbf{Z}_i(\mathbf{X}_j, \mathbf{X}_k)||^2$$

... solving a system of linear equations

Comparisons of the Parametrizations

Global ICP

- Gaussian noise in the "3D Point Cloud" space
- Locally optimal
- ICP-like iterations using new point correspondences
 - Riegl Laser Measurement GmbH

(video)
(video) (video)

Closed Loop Detection and Global Relaxation

Processing Large Data Sets (2)

```
bin/slam6D -s 1 -e 65 -r 10 -i 100 -d 75 --epsICP=0.00001 ~/dat/hannover/
```

We see: small matching errors accumulate

