Last class: Random vector $\vec{Y} = (Y_1, ..., Y_n)^T$ where $Y_1, ..., Y_n$ are R.V.

•
$$E(\vec{Y}) = (E(Y_i), ..., E(Y_n))^T = (\mu_i, ..., \mu_n)^T = \overline{\mu}_{n \times 1}$$

• $Var(\vec{Y}) = \sum_{n \times n} E[(\vec{Y} - E(\vec{Y}))(Y - E(\vec{Y}))^T]$

Var(1) = ∠_{nxn} EI((1-E(1))(1-E(1)))
→ Variance-covariance matrix of
$$\overrightarrow{Y}$$
 is symmetric, positive semi-definite.

→ If Y,..., Yn are independent >> Is a diagonal matrix

Multiple Linear Regression model

- · (XiI,..., Xip): explanatory variables for observation i.
- · Bj (j=1,...,p): regression coefficient or parameter representing the association between x and response.

Moreover, (*) has a matrix form given by XB where $\begin{bmatrix}
1 & \chi_{11} & \chi_{12} & \cdots & \chi_{1p} \\
1 & \chi_{21} & \chi_{22} & \chi_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \chi_{n_1} & \chi_{n_2} & \cdots & \chi_{np}
\end{bmatrix}$ where X is the design matrix $\chi = \chi_{n_1} \times \chi_{n_2} \times \chi$

Interpretation of B:

Bo: average or mean response when x1=x2====xp=0.

Bj (j=1,...,p): change in mean response for a unit increase in 1j, holding all Other covariates constant.

Note: Since $\mathcal{E}_i \stackrel{iid}{\bowtie} N(0_1 \delta^2)$, then random error vector $\widetilde{\mathcal{E}} \sim MVN(\widetilde{\delta}, \delta^2 I)$ where $\widetilde{I}_{n\times n}$ identity matrix = $\begin{bmatrix} i & \ddots \\ 0 & \ddots \end{bmatrix}$ $\therefore \widetilde{Y} \sim MVN(X\widetilde{\beta}, \delta^2 I)$, $\widetilde{\mu} = X\widetilde{\beta}$.

Least-square estimation: Analogous to SLR, we want to minimize $ec{eta}$ over an Objective function:

argmin ? (yi-(β.+β.xiι+···+βρχίρ))?

Then taking derivative wit
$$\vec{\beta}$$
, we get
$$\frac{\partial S(\vec{\beta})}{\partial \vec{\beta}} = \frac{\partial}{\partial \beta} \left[(\vec{y} - X \vec{\beta})^T (\vec{y} - X \vec{\beta}) \right] = \frac{\partial}{\partial \beta} \left[\vec{y}^T y - \vec{y}^T X \vec{\beta} - \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right]$$

Some useful matrix derivatives (scalar differentiation wrt vector):

• If
$$z = \vec{\alpha}^T \vec{y}$$
 where $\vec{\alpha}$, \vec{y} are $n \times 1$ vectors, then $\frac{\partial z}{\partial \vec{y}} = \vec{\alpha}$
• If $z = \vec{y}^T \vec{\alpha}$, then $\frac{\partial z}{\partial \vec{y}} = \vec{\alpha}$

• If
$$z = \hat{y}^{T}\hat{a}$$
, then $\hat{a}\hat{y} = \hat{a}$

If A is nxn matrix and let
$$z = \vec{q}^T A \vec{y}$$
, then $\frac{\partial z}{\partial y} = A \vec{y} + A^T \vec{y}$
Moreover, if A is symmetric, then $\frac{\partial z}{\partial y} = 2A \vec{y}$.

Moreover, if A is symmetric, then
$$\frac{\partial \vec{\beta}}{\partial \vec{g}} = 2A\vec{g}$$
.
 $\frac{\partial S(\vec{b})}{\partial \vec{\beta}} = -X^T\vec{y} - X^T\vec{y} + 2X^TX\vec{\beta}$ (XTX is symmetric).

$$x^{T} \times \vec{\beta} = x^{T} \vec{y} \quad (\Rightarrow) \quad x^{T} (\vec{y} - x \vec{\beta}) = 0$$

$$\vec{\beta} = (x^{T} \times)^{-1} x^{T} \vec{y}$$

:. Least-squares (LS) estimator of
$$\vec{\beta}$$
 is given by $\hat{\vec{\beta}} = (\vec{x}^T \vec{x})^T \vec{x}^T \vec{y}$
Given a data sample, the LS estimate of $\vec{\beta}$ is $\hat{\vec{\beta}} = (\vec{x}^T \vec{x})^T \vec{x}^T \vec{y}$

Properties of LS estimator B: B = (XTX) XTY.

Note that \hat{Y} is MVN($X\beta$, σ^2I) and that $(X^TX)^TX^T$ is a (pt1)XN matrix

of constants. By property (1) of MVN dist2, we know that $\hat{\beta}$ is MVN distributed.

Assuming that XTX is invertible (full rank is PH; Columns of X are linearly indpt.).

=
$$(x^{T}x)^{-1}x^{T} \in (x^{T})^{-1} = (x^{T}x)^{-1}x^{T}x^{T}x^{T} = \beta$$

②
$$Var(\vec{\beta}) = Var((X^TX)^H X^T \vec{\gamma})$$

= $(X^TX)^H X^T Var(\vec{\gamma}) X(X^TX)^H (: X^TX is symmetric)$.

$$= 6^{-2} (X^T X)^{-1}$$

Claim:
$$\hat{\sigma}^2 = SS(Res)/n-(p+i)$$
 is an unbiased estimator of σ^2 .

In
$$X\hat{\vec{\beta}} = X(X^TX)^{-1}X^T\hat{\vec{\gamma}}$$
 let $H = X(X^TX)^{-1}X^T$ where H is hot matrix.

Properties of residuals (as a R.V).
$$\overrightarrow{e} = \overrightarrow{Y} - X \widehat{\beta} = (\overrightarrow{I} - \overrightarrow{H}) \overrightarrow{Y}$$

 $= \sigma^2(I-H)$

$$e = \gamma - \chi \beta = (1-H)\gamma$$

 \vdots \vec{e} is a linear transformation of $\vec{\gamma}$ and since $\vec{\gamma}$ is MVN distributed
 \vec{e} is MVN.

$$(1) E(\vec{e}) = E[(I-H)\vec{Y}].$$

$$= (I-H) E(\vec{Y})$$

$$= (I-H) \times \vec{\beta} = \times \vec{\beta} - H \times \vec{\beta} = \times \vec{\beta} - \times (x^T \times)^H \times^T \times \vec{\beta}$$

$$= \times \vec{\beta} - \times \vec{k} = \vec{0}$$

$$= (I-H) \times \vec{\beta} = X \vec{\beta} - H \times \vec{\beta} = X \vec{\beta} - X(X^TX)^T \times \vec{\beta}$$

$$= X \vec{\beta} - X \vec{\beta} = \vec{0}$$

$$= (I-H) \times \vec{\beta} = X \vec{\beta} - X(X^TX)^T \times \vec{\beta}$$

$$= X \vec{\beta} - X \vec{\beta} = \vec{0}$$

$$= (I-H) \times \vec{\beta}$$

$$= (I-H) \times \vec{\beta}$$

$$= (I-H) \times \vec{\beta}$$

$$= (I-H) \times \vec{\beta}$$

$$= \chi \vec{\beta} - \chi \vec{k} = \vec{0}$$

$$= \sqrt{ar(\vec{e})} = \sqrt{ar[(I-H)\vec{\gamma}]}$$

$$= (I-H) \sqrt{ar(\vec{\gamma})(I-H)}$$

$$= (I-H) \sigma^2 I (I-H).$$

$$= \sigma^2 (I-H), \qquad \therefore \vec{C} \sim M \sqrt{\vec{0}}, \sigma^2 (I-H).$$