FCAI fcai.fi

Shooting Methods

Cross-Entropy Method

Iteration

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$ from sampling distribution

Evaluate objective $J(a_{0:H}^i) = \sum_{t} \gamma^t r(s_t, a_t^i)$ for each sample

Select top K performing samples, i.e. highest value $J(a_{0:H}^{l})$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Shooting Methods

Cross-Entropy Method

Iteration 1

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$ from sampling distribution

Evaluate objective $J(a_{0:H}^i) = \sum_{t=0}^{H} \gamma^t r(s_t, a_t^i)$ for each sample

Select top K performing samples, i.e. highest value $J(a_{0:H}^i)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

Shooting Methods

Cross-Entropy Method

Iteration 2

Initialise action sequence sampling distribution $\{a_t \sim \mathcal{N}(\mu_t, \sigma_t^2)\}_{t=0}^H$

For each iteration

Sample N action sequences $\{a_{0:H}^i\}_{i=1}^N$ from sampling distribution

Evaluate objective $J(a_{0:H}^i) = \sum_{t=0}^{H} \gamma^t r(s_t, a_t^i)$ for each sample

Select top K performing samples, i.e. highest value $J(a_{0:H}^i)$

Update parameters $\{\mu_t, \sigma_t^2\}_{t=0}^H$ of action dist. using top K samples

