TheAnalyticsTeam

Sprocket Central Pty Ltd

Data analytics approach

Muhoza U Bizumuremyi

Linkedin: https://www.linkedin.com/in/muhozaursus/

Email: writetoursus@gmail.com

Phone: +14696395382

Github: https://github.com/ursus123/KPMG-Data-Analytics-Internship

Agenda

- 1. Introduction
- 2. Data Exploration
- 3. Model Development
- 4. Interpretation

Introduction

Available Data

After a careful data assessment, we are remained with a 3-month transaction (as suggested in the email) dataset where we have to analyze customer behaviors and suggest to the client the best customers (loyal customers) to focus on. There are 4871 transactions.

Method used:

- Cohort Analysis
- Customer Segmentation (RFM Metrics and K-Means Clustering)

```
In [6]: H t3m.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 4871 entries, 0 to 4870
            Data columns (total 26 columns):
                 Column
                                                       Non-Null Count Dtype
                                                                       int64
                 customer id
                                                       4871 non-null
                 first name
                                                       4871 non-null
                 last name
                                                       4871 non-null
                                                                       object
                 gender
                                                       4871 non-null
                                                                       object
                 transaction id
                                                       4871 non-null
                                                                       int64
                 product id
                                                       4871 non-null
                                                                       int64
                 transaction date
                                                       4871 non-null
                                                                       datetime64[ns]
                 online order
                                                       4871 non-null
                                                                       float64
                 order status
                                                       4871 non-null
                                                                       object
                                                       4871 non-null
                 brand
                                                                       object
                 product line
                                                       4871 non-null
                                                                       object
                 product class
                                                       4871 non-null
                                                                       object
                 product size
                                                       4871 non-null
                                                                       object
                 list price
                                                                       float64
                 standard cost
                                                       4871 non-null
                                                                       float64
                 product first sold date
                                                       4871 non-null
                                                                       datetime64[ns]
                 address
                                                       4871 non-null
                                                                       object
                                                       4871 non-null
                 postcode
                                                                       float64
                 state
                                                       4871 non-null
                                                                       object
                 property_valuation
                                                       4871 non-null
                                                                       float64
                 past 3 years bike related purchases 4871 non-null
                                                                       float64
                 wealth segment
                                                       4871 non-null
                                                                       object
                                                       4871 non-null
                 deceased indicator
                                                                       object
                 owns car
                                                       4871 non-null
                                                                       obiect
             24
                 DOB
                                                       4871 non-null
                                                                       datetime64[ns]
                                                                       float64
            dtypes: datetime64[ns](3), float64(7), int64(3), object(13)
            memory usage: 989.5+ KB
```

Data Exploration

Basic Exploratory Analysis

- Almost 51% of all transactions were made by women and 49% by men
- Almost 51% of all transactions were made by customers who owns a car
- 54% of all transactions were made by customers who are situated in New South Wales, 24% are in Victoria and 21% are in Queensland
- Almost 50% of all transactions were made by Mass Customers, while high net worth customers purchased around 26% and 24% were made by Affluent customers
- Solex is the most purchased brand around 21%

Data Exploration

Cohort Analysis

- 23% of all customers who made their first purchases in september were still active in December
- 35% of all customers who made their first purchases in October were still active in December
- 38% of all customers who made their first purchases in November were still active in December

This shows that there is some kind of retention

- Almost 54% of all customers have made more than 1 purchases in the last 3 month

Data Exploration

Customer Segmentation

The method used here: RFM Metrics

R: Recency of a customer

F: Frequency of a customer

M: Monetary Value of a customer

Then we gave RFM Score and we grouped customers into Gold(Good Customers), Silver and Bronze categories

As you can see in the table: we have 584 customers a recency (the lower the better) of 21, mean frequency of 3 (meaning they have at least 3 purchases for the last 3 month) and 3465 monetary value considering each brand costs \$1000

(The list of those customers can be found in github repository provide at the end of this presentation)

	Recency mean	Frequency mean	MonetaryValue mean count	
Segments				
Bronze	63.210859	1.000000	1000.000000	792
Gold	21.354452	3.465753	3465.753425	584
Silver	27.090688	1.663968	1663.967611	1235

Model Development

Model Pre_Processing and Processing

The methodology used is K-Means clustering (an unsupervised machine learning algorithm). This algorithm will help us group our customers into groups/segments or clusters and then we will see what kind of characteristics those groups share.

To choose the number of groups (segments, clusters), we used a common method called the elbow method, in our case both 2 and 3 groups were used.

However, to use this algorithm we had to unskew and standardize the data.

Interpretation

Final Thoughts

Using the 3 groups/segments (number of clusters) we can see that group 2 buys more often (more frequency), they recently purchased products (low recency) and they spent more.

They are about 744 customers. I have provided the list in my github repository, check the link at the last page)

These are the customers who are very important.

Interpretation

Final Thoughts

Using the 2 groups/segments (number of clusters) we can see that group 0 buys more often (more frequency), they recently purchased products (low recency) and they spent more.

They are about 1404 loyal customers. I have provided the list in my github repository, check the link at the last page)

These are the customers who are very important.

THANK YOU

Appendix

For more information visit my github page:

(https://github.com/ursus123/KPMG-Data-Analytics-Internship/blob/main/KPMG%20Data%20Analytics%20Internship%20Part%20%202%20EDA%20and%20Modeling.ipynb)