Agrupamento de Textos e suas Aplicações em Inteligência Analítica

Pré-processamento de Textos:

Bag-of-Words e Similaridade Cosseno

Ricardo M. Marcacini

ricardo.marcacini@icmc.usp.br

Cursos de Extensão – Difusão de Conhecimento – Dezembro de 2021

Pré-processamento

Informação Textual

Informação Geográfica

Informação Temporal

Pré-processamento

Informação Textual

Informação Geográfica

Informação Temporal Documentos textuais podem estar relacionados se possuem conteúdo similar.

Como extrair e representar a informação textual dos eventos?

Pré-processamento

Informação Textual

Informação Geográfica

Informação Temporal Textos podem estar relacionados de acordo com entidades geográficas

Como identificar informação geográfica em dados textuais?

Pré-processamento

Informação Textual

Informação Geográfica

Informação Temporal Documentos textuais podem estar relacionados se ocorreram no mesmo período de tempo.

Como extrair informação temporal dos textos?

Pré-processamento

Informação Textual

Informação Geográfica

Informação Temporal Documentos textuais podem estar relacionados se possuem conteúdo similar.

Como extrair e representar a informação textual dos eventos?

Pré-processamento de Textos <u>Modelo Espaço-Vetorial</u>

[11] AGGARWAL, Charu C. Text Preparation and Similarity Computation. In: Machine Learning for Text. Springer, Cham, 2018. p. 17-30.

- Pré-processamentos dos textos
 - Modelo espaço-vetorial
 - Cada objeto (e.g. documentos, eventos, etc.) é representado por um vetor de m dimensões.
 - Cada dimensão é um atributo.
 - Cada atributo tem um peso indicando sua relevância para um determinado objeto

Pré-processamentos dos textos

- Modelo espaço-vetorial
 - Cada objeto (e.g. documentos, eventos, etc.) é representado por um vetor de m dimensões.
 - Cada dimensão é um atributo.
 - Cada atributo tem um peso indicando sua relevância para um determinado objeto

Questões do modelo espaço-vetorial:

1) Quais são os atributos?2) Como definir os pesos dos atributos?

- Pré-processamentos dos textos
 - Modelo espaço-vetorial usando Bag-of-words
 - Atributos são extraídas dos textos
 - Peso da palavra é sua frequência objeto
 - A ordem das palavras nos textos não é considerada

- Pré-processamentos dos textos
 - Modelo espaço-vetorial usando Bag-of-words
 - Atributos são extraídas dos textos
 - Peso da palavra é sua frequência objeto
 - A ordem das palavras nos textos não é considerada

Bag-of-words é uma representação que "subestima" o problema. Porém, pode ser suficiente para várias aplicações!

- Pré-processamentos dos textos
 - Modelo espaço-vetorial usando Bag-of-words
 - Atributos são extraídas dos textos
 - Peso da palavra é sua frequência objeto
 - A ordem das palavras nos textos não é considerada

Como tornar a *Bag-of-Words* uma <u>representação mais concisa</u>, ou seja, reduzir informação redundante?

- Pré-processamento Informação Textual
 - <u>Bag-of-words:</u> representação no modelo espaçovetorial. Simples (Baseline).

- Pode ser construída com técnicas estatísticas simples
- Permite o uso de diferentes algoritmos de aprendizado de máquina

Exemplo de modelo espaço-vetorial (bag-of-words)

Text	This	Is	A	Nice	Hotel	Not	All	at
This is a nice hotel	1	1	1	1	1	0	0	0
Not a nice hotel! not at all	0	0	1	1	1	2	1	1

Fonte: [3]

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - Técnicas mais utilizadas:
 - Remoção de pontuações e stopwords
 - Radicalização de palavras
 - N-gramas
 - Ponderação por TF-IDF

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - Remoção de pontuações e stopwords

Dado um texto, remover pontuações, pronomes, preposição e artigos.

Original:

O estudante de Inteligência Artificial foi na livraria comprar livros para estudar.

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - Remoção de pontuações e stopwords

Dado um texto, remover pontuações, pronomes, preposição e artigos.

Original:

O estudante de Inteligência Artificial foi na livraria comprar livros para estudar.

Identificando pontuação e stopwords:

O estudante de Inteligência Artificial foi na livraria comprar livros para estudar.

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - Remoção de pontuações e stopwords

Dado um texto, remover pontuações, pronomes, preposição e artigos.

Original:

O estudante de Inteligência Artificial foi na livraria comprar livros para estudar.

Identificando pontuação e stopwords:

O estudante de Inteligência Artificial foi na livraria comprar livros para estudar.

Final:

estudante Inteligência Artificial foi livraria comprar livros estudar

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - Técnicas mais utilizadas:
 - Remoção de pontuações e stopwords
 - Radicalização de palavras
 - N-gramas
 - Ponderação por TF-IDF

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - Radicalização de palavras

Dado um texto converter variações de uma palavra para uma única forma.

Exemplo: {comprar, compras, comprei} → compr

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - Radicalização de palavras

Dado um texto converter variações de uma palavra para uma única forma.

Exemplo: {comprar, compras, comprei} → compr

Texto:

estudante Inteligência Artificial foi livraria comprar livros estudar

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - Radicalização de palavras

Dado um texto converter variações de uma palavra para uma única forma.

Exemplo: {comprar, compras, comprei} → compr

Texto:

estudante Inteligência Artificial foi livraria comprar livros estudar

Após radicalização:

estud Intelig Artifici fo livr compr livr estud

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - Radicalização de palavras

Dado um texto converter variações de uma palavra para uma única forma.

Exemplo: {comprar, compras, comprei} → compr

Notas importantes:

- Radicalização é dependente da línguagem.
- Alguns estudos reportam que pode prejudicar a extração de conhecimento.
- Erros de radicalização: overstemming e understemming
- Algoritmos de radicalização populares: Porter (várias línguas) e Orengo (português)

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - Técnicas mais utilizadas:
 - Remoção de pontuações e stopwords
 - Radicalização de palavras
 - N-gramas
 - Ponderação por TF-IDF

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - N-gramas

Consiste em combinar duas ou mais palavras em um termo (composto), com um sentido único.

Exemplo: {Data, Mining} → {Data_Mining}

Texto:

estud Intelig Artifici fo livr compr livr estud

Após identificação de n-gramas:

estud Intelig_Artifici fo livr compr livr estud

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - N-gramas
 - Extração de n-gramas não é um problema trivial.
 - Identificar quando a coocorrência entre duas ou mais palavras é significativa (não ocorre ao acaso).
 - Exemplo:

https://books.google.com/ngrams

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - Técnicas mais utilizadas:
 - Remoção de pontuações e stopwords
 - Radicalização de palavras
 - N-gramas
 - Ponderação por TF-IDF

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - Ponderação por TF-IDF
 - Identificar um trade-off:
 - Atributos que são frequentes em um objeto são relevantes.
 - Atributos que ocorrem em muitos objetos não são relevantes.

- Pré-processamento Informação Textual
 - Refinando a Bag-of-words (representação concisa)
 - Ponderação por TF-IDF

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

 $\mathsf{tf}_{x,y} = \mathsf{frequency} \ \mathsf{of} \ x \ \mathsf{in} \ y$ $\mathsf{df}_x = \mathsf{number} \ \mathsf{of} \ \mathsf{documents} \ \mathsf{containing} \ x$

N = total number of documents

- Pré-processamentos dos textos
 - Modelo espaço-vetorial
 - Estudamos as técnicas mais básicas da área.
 - Representa um (razoável) baseline para representação.
 - Qualquer nova proposta de representação de textos deve ser melhor do que a representação aqui estudada.

A partir de uma representação estruturada podemos computar a similaridade entre dois documentos textuais!

- O problema da similaridade
 - Proximidade de Conteúdo.

Como calcular a proximidade entre conteúdo no modelo espaço-vetorial?

caç(a)		submarin(a)
e1	0	1
e2	1	0
е3	1	1
e4	3	3

Vamos considerar quatro eventos.

Escolhemos (propositalmente) apenas dois atributos.

- e1 → 0 estudo da vida submarina (...)
- e2 → A temporada de caça começou (...)
- e3 → A caça submarina é ilegal no período (...)
- e4 → Multas por caça submarina cresceram (...)

- O problema da similaridade
 - Proximidade de Conteúdo.
 - Como calcular a proximidade entre conteúdo no modelo espaço-vetorial?

	caç(a)		submarin(a)
	e1	0	1
	e2	1	0
Mais	e3	1	1
Mais relacionados	e4	3	3

Vamos considerar quatro eventos. Escolhemos (propositalmente) apenas dois atributos.

- e1 → 0 estudo da vida submarina (...)
- e2 → A temporada de caça começou (...)
- e3 → A caça submarina é ilegal no período (...)
- e4 → Multas por caça submarina cresceram (...)

- O problema da similaridade
 - Proximidade de Conteúdo.
 - Como calcular a proximidade entre conteúdo no modelo espaço-vetorial?

	caç(a)	submarin(a)
e1	0	1
e2	1	0
е3	1	1
e4	3	3

- O problema da similaridade
 - Proximidade de Conteúdo.
 - O espaço euclidiano não capturou adequadamente o conceito de proximidade entre os eventos!

	caç(a)	submarin(a)
e1	0	1
e2	1	0
е3	1	1
e4	3	3

- O problema da similaridade
 - Proximidade de Conteúdo.
 - Considere utilizar o ângulo entre os vetores!

C	aç(a)	submarin(a)
e1	0	1
e2	1	0
e3	1	1
e4	3	3

- O problema da similaridade
 - Proximidade de Conteúdo.
 - Considere utilizar o ângulo entre os vetores!

ca	ıç(a)	submarin(a)
e1	0	1
e2	1	0
е3	1	1
e4	3	3

Alguns exemplos:

ângulo(e1,e2) =
$$90^{\circ}$$
; $cos(90^{\circ}) = 0$
ângulo(e2,e3) = 45° ; $cos(45^{\circ}) = 0.5$
ângulo(e3,e4) = 0° ; $cos(0^{\circ}) = 1$

- O problema da similaridade
 - Proximidade de Conteúdo.
 - Sejam os vetores a_i e a_j, com k dimensões:

Proximidade de conteúdo por similaridade de cosseno

$$\frac{\sum_{k} a_{i,k} a_{j,k}}{\sqrt{\sum_{k} a_{i,k}^2} \sqrt{\sum_{k} a_{j,k}^2}}$$

Quanto maior, mais próximo.

- O problema da similaridade
 - Proximidade de Conteúdo.
 - Sejam os vetores a_i e a_j, com k dimensões:

Proximidade de conteúdo por similaridade de cosseno

$$\frac{\sum_{k} a_{i,k} a_{j,k}}{\sqrt{\sum_{k} a_{i,k}^2} \sqrt{\sum_{k} a_{j,k}^2}}$$

Quanto maior, mais próximo.

