Machine Learning and Data Science

Machine à vecteurs de support, astuce du noyau (kernel SVM)

Bassem Ben Hamed

Juillet 2018

Kernel SVM Intuition

SVM sépare bien ces points

Et ces points?

Pourquoi?

Parce que les points d'observation ne sont pas LINÉAIREMENT SEPARABLES

Linéairement Séparable

Espace de plus grande dimension

f=x-5

f=x-5

Re-Projection vers Espace 2D

Mais il y a un petit problème...

Le Mapping vers un espace de plus grande dimension peut demander trop de calculs

La solution Kernel

$$K(\vec{x}, \vec{l}^i) = e^{-\frac{\|\vec{x} - \vec{l}^i\|^2}{2\sigma^2}}$$

Image source: http://www.cs.toronto.edu/~duvenaud/cookbook/index.html

D'autres Kernels

D'autres Kernels

Gaussian RBF Kernel

$$K(\vec{x}, \vec{l}^i) = e^{-\frac{\left\|\vec{x} - \vec{l}^i\right\|^2}{2\sigma^2}}$$

Sigmoid Kernel

$$K(X,Y) = \tanh(\gamma \cdot X^T Y + r)$$

Polynomial Kernel

$$K(X,Y) = (\gamma \cdot X^T Y + r)^d, \gamma > 0$$