Distribution Independent PAC Learning of Halfspaces w/ Massart Noise

Ilias Diakonikolas, Themis Gouleakis, Christos Tzamos

NeurlPS2019 Outstanding Paper Award

Main Result

First computationally efficient algorithm for learning halfspaces in the distribution-independent PAC model with Massart noise

HALFSPACES

Class of functions $f: \mathbb{R}^d \to \{\pm 1\}$ such that $f(\mathbf{x}) = \mathrm{sgn}(\langle \mathbf{w}, \mathbf{x} \rangle - \theta)$

where $\mathbf{w} \in \mathbb{R}^d, \theta \in \mathbb{R}$

- Also known as: Linear Threshold Functions, Perceptrons, Linear Separators, Threshold Gates, Weighted Voting Games, ...
- Extensively studied in ML since [Rosenblatt'58]

Massart noise

→ Perturbation of sample label

Given target function $f:R o\{\pm 1\}$

$$y^{(i)} = \begin{cases} f(\mathbf{x}^{(i)}), & \text{with probability } 1 - \eta(\mathbf{x}^{(i)}) \\ -f(\mathbf{x}^{(i)}), & \text{with probability } \eta(\mathbf{x}^{(i)}) \end{cases} \text{where } \eta(\mathbf{x}) : \mathbb{R}^d \to [0, \eta], \eta < 1/2$$

Designing robust estimators w.r.t. natural noise models

RCN Noise Rate exactly η

Massart Noise Rate at most η

Agnostic
Arbitrary η fraction

- Learning Halfspaces with Massart Noise
- X Weak agnostic learning of LTFs computationally intractable

Sample Complexity Well-Understood for Learning Halfspaces in all these models.

Fact: $\operatorname{poly}(d,1/\epsilon)$ samples suffice to achieve misclassification error $\operatorname{OPT} + \epsilon$.

Computational Complexity

- Halfspaces efficiently learnable in realizable PAC model
 - [e.g., Maass-Turan'94].

- [Blum-Frieze-Kannan-Vempala'96]
- Learning Halfspaces with Massart Noise
- Weak agnostic learning of LTFs is computationally intractable
 - [Guruswami-Raghevendra'06, Feldman et al.'06, Daniely'16]

Diakonikolas, Gouleakis, Tzamos

Learning Halfspaces with Massart Noise

"Given labeled examples from an unknown Boolean disjunction, corrupted with 1% Massart noise, can we efficiently find a hypothesis that achieves misclassification error 49%"

Problem Setting

 \mathcal{C} : known class of functions $f: \mathbb{R}^d \to \{\pm 1\}$

• Input: multiset of IID labeled examples $\{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^n$ from distribution $\mathcal D$ such that: $\mathbf{x}^{(i)} \sim \mathcal D_{\mathbf{x}}$, where $\mathcal D_{\mathbf{x}}$ is fixed but arbitrary, and

$$y^{(i)} = \begin{cases} f(\mathbf{x}^{(i)}), & \text{with probability } 1 - \eta(\mathbf{x}^{(i)}) \\ -f(\mathbf{x}^{(i)}), & \text{with probability } \eta(\mathbf{x}^{(i)}) \end{cases} \text{ where } \eta(\mathbf{x}) : \mathbb{R}^d \to [0, \eta], \eta < 1/2$$

for some fixed unknown target concept $f \in \mathcal{C}$.

• Goal: find hypothesis $h: \mathbb{R}^d \to \{\pm 1\}$ minimizing $\mathbf{Pr}_{(\mathbf{x},y) \sim \mathcal{D}}[h(\mathbf{x}) \neq y]$

Learning large margin halfspaces

Theorem 2.2. Let \mathcal{D} be a distribution on $\mathbb{B}_d \times \{\pm 1\}$ such that $\mathcal{D}_{\mathbf{x}}$ satisfies the γ -margin property with respect to \mathbf{w}^* and y is generated by $\operatorname{sign}(\langle \mathbf{w}^*, \mathbf{x} \rangle)$ corrupted with Massart noise at rate $\eta < 1/2$. Algorithm 1 uses $\tilde{O}(1/(\gamma^3 \epsilon^5))$ samples from \mathcal{D} , runs in $\operatorname{poly}(d, 1/\epsilon, 1/\gamma)$ time, and returns, with probability 2/3, a classifier h with misclassification error $\operatorname{err}_{0-1}^{\mathcal{D}}(h) \leq \eta + \epsilon$.

Large margin:

Target vector \mathbf{w}^* with $\|\mathbf{w}^*\|_2 = 1$ Marginal $\mathcal{D}_{\mathbf{x}}$ satisfies $|\langle \mathbf{w}^*, \mathbf{x} \rangle| \geq \gamma$

Limitation on loss function

Theorem 3.1: No single convex surrogate can lead to even a weak learner

The problem we're solving is non-convex

→ Theorem 3.1 and proof are not covered in this presentation

Learning large margin halfspaces

Algorithm 1 Main Algorithm (with margin)

- 1: Set $S^{(1)} = \mathbb{R}^d$, $\lambda = \eta + \epsilon$, $m = \tilde{O}(\frac{1}{2^2 \epsilon^4})$.
- 2: Set $i \leftarrow 1$.
- 3: Draw $O((1/\epsilon^2)\log(1/(\epsilon\gamma)))$ samples from $\mathcal{D}_{\mathbf{x}}$ to form an empirical distribution $\tilde{\mathcal{D}}_{\mathbf{x}}$.
- 4: while $\Pr_{\mathbf{x} \sim \tilde{\mathcal{D}}_{\mathbf{x}}} \left[\mathbf{x} \in S^{(i)} \right] \geq \epsilon \ \mathbf{do}$
- Set $\mathcal{D}^{(i)} = \mathcal{D}|_{S^{(i)}}$, the distribution conditional on the unclassified points.
- Let $L^{(i)}(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y) \sim \mathcal{D}^{(i)}}[\text{LeakyRelu}_{\lambda}(-y\langle \mathbf{w}, \mathbf{x} \rangle)]$
- Run SGD on $L^{(i)}(\mathbf{w})$ for $\tilde{O}(1/(\gamma^2\epsilon^2))$ iterations to get $\mathbf{w}^{(i)}$ with $\|\mathbf{w}^{(i)}\|_2 = 1$ such that $L^{(i)}(\mathbf{w}^{(i)}) \le \min_{\mathbf{w}: \|\mathbf{w}\|_2 \le 1} L^{(i)}(\mathbf{w}) + \gamma \epsilon/2.$
- Draw m samples from $\mathcal{D}^{(i)}$ to form an empirical distribution $\mathcal{D}_m^{(i)}$.
- Find a threshold $T^{(i)}$ such that $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}_m^{(i)}}[|\langle \mathbf{w}^{(i)},\mathbf{x}\rangle|\geq T^{(i)}]\geq \gamma\epsilon$ and the empirical 9: misclassification error, $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}_m^{(i)}}[h_{\mathbf{w}^{(i)}}(\mathbf{x})\neq y\,\big|\,|\langle\mathbf{w}^{(i)},\mathbf{x}\rangle|\geq T^{(i)}]$, is minimized.
- Update the unclassified region $S^{(i+1)} \leftarrow S^{(i)} \setminus \{\mathbf{x} : |\langle \mathbf{w}^{(i)}, \mathbf{x} \rangle| \geq T^{(i)} \}$ and set $i \leftarrow i+1$. 10:
- 11: Return the classifier $[(\mathbf{w}^{(1)}, T^{(1)}), (\mathbf{w}^{(2)}, T^{(2)}), \cdots]$

Lemmas

Lemma 2.3. If $\lambda \geq \eta$, then $L(\mathbf{w}^*) \leq -\gamma(\lambda - \text{OPT})$.

Lemma 2.4 (see, e.g., Theorem 3.4.11 in [Duc16]). Let L be any convex function. Consider the (projected) SGD iteration that is initialized at $\mathbf{w}^{(0)} = \mathbf{0}$ and for every step computes

$$\mathbf{w}^{(t+\frac{1}{2})} = \mathbf{w}^{(t)} - \rho \mathbf{v}^{(t)}$$
 and $\mathbf{w}^{(t+1)} = \arg\min_{\mathbf{w}: \|\mathbf{w}\|_2 \le 1} \left\| \mathbf{w} - \mathbf{w}^{(t+\frac{1}{2})} \right\|_2$,

where $\mathbf{v}^{(t)}$ is a stochastic gradient such that for all steps $\mathbf{E}[\mathbf{v}^{(t)}|\mathbf{w}^{(t)}] \in \partial L(\mathbf{w}^{(t)})$ and $\|\mathbf{v}^{(t)}\|_2 \leq 1$. Assume that SGD is run for T iterations with step size $\rho = \frac{1}{\sqrt{T}}$ and let $\bar{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{(t)}$. Then, for any $\epsilon, \delta > 0$, after $T = \Omega(\log(1/\delta)/\epsilon^2)$ iterations with probability with probability at least $1 - \delta$ we have that $L(\bar{\mathbf{w}}) \leq \min_{\mathbf{w}: \|\mathbf{w}\|_2 \leq 1} L(\mathbf{w}) + \epsilon$.

Lemma 2.5. Consider a vector \mathbf{w} with $L(\mathbf{w}) < 0$. There exists a threshold $T \geq 0$ such that (i) $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[|\langle \mathbf{w},\mathbf{x}\rangle| \geq T] \geq \frac{|L(\mathbf{w})|}{2\lambda}$, and (ii) $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h_{\mathbf{w}}(\mathbf{x}) \neq y \mid |\langle \mathbf{w},\mathbf{x}\rangle| \geq T] \leq \lambda - \frac{|L(\mathbf{w})|}{2}$.

We start by noting that with high probability the total number of iterations is $O(1/(\gamma\epsilon))$. This can be seen as follows: The empirical probability mass under $\mathcal{D}_m^{(i)}$ of the region $\{\mathbf{x}: |\langle \mathbf{w}^{(i)}, \mathbf{x} \rangle| \geq T^{(i)} \}$ removed from $S^{(i)}$ to obtain $S^{(i+1)}$ is at least $\gamma\epsilon$ (Step 9). Since $m = \tilde{O}(1/(\gamma^2\epsilon^4))$, the DKW inequality [DKW56] implies that the true probability mass of this region is at least $\gamma\epsilon/2$ with high probability. By a union bound over $i \leq K = \Theta(\log(1/\epsilon)/(\epsilon\gamma))$, it follows that with high probability we have that $\Pr_{\mathcal{D}_{\mathbf{x}}}[S^{(i+1)}] \leq (1 - \gamma\epsilon/2)^i$ for all $i \in [K]$. After K iterations, we will have that $\Pr_{\mathcal{D}_{\mathbf{x}}}[S^{(i+1)}] \leq \epsilon/3$. Step 3 guarantees that the mass of $S^{(i)}$ under $\tilde{\mathcal{D}}_{\mathbf{x}}$ is within an additive $\epsilon/3$ of its mass under $\mathcal{D}_{\mathbf{x}}$, for $i \in [K]$. This implies that the loop terminates after at most K iterations.

We start by noting that with high probability the total number of iterations is $O(1/(\gamma\epsilon))$. This can be seen as follows: The empirical probability mass under $\mathcal{D}_m^{(i)}$ of the region $\{\mathbf{x}: |\langle \mathbf{w}^{(i)}, \mathbf{x} \rangle| \geq T^{(i)}\}$ removed from $S^{(i)}$ to obtain $S^{(i+1)}$ is at least $\gamma\epsilon$ (Step 9). Since $m = O(1/(\gamma^2\epsilon^4))$, the DKW inequality [DKW56] implies that the true probability mass of this region is at least $\gamma\epsilon/2$ with high probability. By a union bound over $i \leq K = \Theta(\log(1/\epsilon)/(\epsilon\gamma))$, it follows that with high probability we have that $\Pr_{\mathcal{D}_{\mathbf{x}}}[S^{(i+1)}] \leq (1 - \gamma\epsilon/2)^i$ for all $i \in [K]$. After K iterations, we will have that $\Pr_{\mathcal{D}_{\mathbf{x}}}[S^{(i+1)}] \leq \epsilon/3$. Step 3 guarantees that the mass of $S^{(i)}$ under $\tilde{\mathcal{D}}_{\mathbf{x}}$ is within an additive $\epsilon/3$ of its mass under $\mathcal{D}_{\mathbf{x}}$, for $i \in [K]$. This implies that the loop terminates after at most K iterations.

- 2: Set $i \leftarrow 1$.
- 3: Draw $O((1/\epsilon^2)\log(1/(\epsilon\gamma)))$ samples from $\mathcal{D}_{\mathbf{x}}$ to form an empirical distribution $\tilde{\mathcal{D}}_{\mathbf{x}}$.
- 4: while $\Pr_{\mathbf{x} \sim \tilde{\mathcal{D}}_{\mathbf{x}}} \left[\mathbf{x} \in S^{(i)} \right] \geq \epsilon \operatorname{do}$
- 5: Set $\mathcal{D}^{(i)} = \mathcal{D}|_{S^{(i)}}$, the distribution conditional on the unclassified points.
- 6: Let $L^{(i)}(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y) \sim \mathcal{D}^{(i)}}[\text{LeakyRelu}_{\lambda}(-y\langle \mathbf{w}, \mathbf{x} \rangle)]$

We start by noting that with high probability the total number of iterations is $O(1/(\gamma\epsilon))$. This can be seen as follows: The empirical probability mass under $\mathcal{D}_m^{(i)}$ of the region $\{\mathbf{x}: |\langle \mathbf{w}^{(i)}, \mathbf{x} \rangle| \geq T^{(i)} \}$ removed from $S^{(i)}$ to obtain $S^{(i+1)}$ is at least $\gamma\epsilon$ (Step 9). Since $m = \tilde{O}(1/(\gamma^2\epsilon^4))$, the DKW inequality [DKW56] implies that the true probability mass of this region is at least $\gamma\epsilon/2$ with high probability. By a union bound over $i \leq K = \Theta(\log(1/\epsilon)/(\epsilon\gamma))$, it follows that with high probability we have that $\Pr_{\mathcal{D}_{\mathbf{x}}}[S^{(i+1)}] \leq (1-\gamma\epsilon/2)^i$ for all $i \in [K]$. After K iterations, we will have that $\Pr_{\mathcal{D}_{\mathbf{x}}}[S^{(i+1)}] \leq \epsilon/3$. Step 3 guarantees that the mass of $S^{(i)}$ under $\tilde{\mathcal{D}}_{\mathbf{x}}$ is within an additive $\epsilon/3$ of its mass under $\mathcal{D}_{\mathbf{x}}$, for $i \in [K]$. This implies that the loop terminates after at most K iterations.

We start by noting that with high probability the total number of iterations is $O(1/(\gamma\epsilon))$. This can be seen as follows: The empirical probability mass under $\mathcal{D}_m^{(i)}$ of the region $\{\mathbf{x}: |\langle \mathbf{w}^{(i)}, \mathbf{x} \rangle| \geq T^{(i)}\}$ removed from $S^{(i)}$ to obtain $S^{(i+1)}$ is at least $\gamma\epsilon$ (Step 9). Since $m = \tilde{O}(1/(\gamma^2\epsilon^4))$, the DKW inequality [DKW56] implies that the true probability mass of this region is at least $\gamma\epsilon/2$ with high probability. By a union bound over $i \leq K = \Theta(\log(1/\epsilon)/(\epsilon\gamma))$, it follows that with high probability we have that $\Pr_{\mathcal{D}_{\mathbf{x}}}[S^{(i+1)}] \leq (1 - \gamma\epsilon/2)^i$ for all $i \in [K]$. After K iterations, we will have that $\Pr_{\mathcal{D}_{\mathbf{x}}}[S^{(i+1)}] \leq \epsilon/3$. Step 3 guarantees that the mass of $S^{(i)}$ under $\tilde{\mathcal{D}}_{\mathbf{x}}$ is within an additive $\epsilon/3$ of its mass under $\mathcal{D}_{\mathbf{x}}$, for $i \in [K]$. This implies that the loop terminates after at most K iterations.

- 2: Set $i \leftarrow 1$.
- 3: Draw $O((1/\epsilon^2)\log(1/(\epsilon\gamma)))$ samples from $\mathcal{D}_{\mathbf{x}}$ to form an empirical distribution $\tilde{\mathcal{D}}_{\mathbf{x}}$.
- 4: while $\Pr_{\mathbf{x} \sim \tilde{\mathcal{D}}_{\mathbf{x}}} \left[\mathbf{x} \in S^{(i)} \right] \geq \epsilon \, \mathbf{do}$
- 5: Set $\mathcal{D}^{(i)} = \mathcal{D}|_{S^{(i)}}$, the distribution conditional on the unclassified points.
- 6: Let $L^{(i)}(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y) \sim \mathcal{D}^{(i)}}[\text{LeakyRelu}_{\lambda}(-y\langle \mathbf{w}, \mathbf{x} \rangle)]$

Proof of Theorem 2.2 (SGD)

By Lemma 2.3 and the fact that every $\mathcal{D}^{(i)}$ has margin γ , it follows that the minimizer of the loss $L^{(i)}$ has value less than $-\gamma(\lambda - \mathrm{OPT}^{(i)}) \leq -\gamma\epsilon$, as $\mathrm{OPT}^{(i)} \leq \eta$ and $\lambda = \eta + \epsilon$. By the guarantees of Lemma 2.4, running SGD in line 7 on $L^{(i)}(\cdot)$ with projection to the unit ℓ_2 -ball for $O\left(\log(1/\delta)/(\gamma^2\epsilon^2)\right)$ steps, we obtain a $\mathbf{w}^{(i)}$ such that, with probability at least $1-\delta$, it holds $L^{(i)}(\mathbf{w}^{(i)}) \leq -\gamma \epsilon/2$ and $\|\mathbf{w}^{(i)}\|_2 = 1$. Here $\delta > 0$ is a parameter that is selected so that the following claim holds: With probability at least 9/10, for all iterations i of the while loop we have that $L^{(i)}(\mathbf{w}^{(i)}) \leq -\gamma \epsilon/2$. Since the total number of iterations is $\tilde{O}(1/(\gamma \epsilon))$, setting δ to $\tilde{\Omega}(\epsilon \gamma)$ and applying a union bound over all iterations gives the previous claim. Therefore, the total number of SGD steps per iteration is $\tilde{O}(1/(\gamma^2 \epsilon^2))$. For a given iteration of the while loop, running SGD requires $\tilde{O}(1/(\gamma^2 \epsilon^2))$ samples from $\mathcal{D}^{(i)}$ which translate to at most $\tilde{O}(1/(\gamma^2 \epsilon^3))$ samples from \mathcal{D} , as $\mathbf{Pr}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} \left[\mathbf{x} \in S^{(i)} \right] \geq 2\epsilon/3$.

Proof of Theorem 2.2 (SGD)

By Lemma 2.3 and the fact that every $\mathcal{D}^{(i)}$ has margin γ , it follows that the minimizer of the loss $L^{(i)}$ has value less than $-\gamma(\lambda - \mathrm{OPT}^{(i)}) \leq -\gamma\epsilon$, as $\mathrm{OPT}^{(i)} \leq \eta$ and $\lambda = \eta + \epsilon$. By the guarantees of Lemma 2.4, running SGD in line 7 on $L^{(i)}(\cdot)$ with projection to the unit ℓ_2 -ball for $O\left(\log(1/\delta)/(\gamma^2\epsilon^2)\right)$ steps, we obtain a $\mathbf{w}^{(i)}$ such that, with probability at least $1-\delta$, it holds $L^{(i)}(\mathbf{w}^{(i)}) \leq -\gamma \epsilon/2$ and $\|\mathbf{w}^{(i)}\|_2 = 1$. Here $\delta > 0$ is a parameter that is selected so that the following claim holds: With probability at least 9/10, for all iterations i of the while loop we have that $L^{(i)}(\mathbf{w}^{(i)}) \leq -\gamma \epsilon/2$. Since the total number of iterations is $\tilde{O}(1/(\gamma \epsilon))$, setting δ to $\tilde{\Omega}(\epsilon \gamma)$ and applying a union bound over all iterations gives the previous claim. Therefore, the total number of SGD steps per iteration is $O(1/(\gamma^2 \epsilon^2))$. For a given iteration of the while loop, running SGD requires $\tilde{O}(1/(\gamma^2 \epsilon^2))$ samples from $\mathcal{D}^{(i)}$ which translate to at most $\tilde{O}(1/(\gamma^2 \epsilon^3))$ samples from \mathcal{D}_{\bullet} as $\Pr_{\mathbf{x}\sim\mathcal{D}_{\mathbf{x}}}[\mathbf{x}\in S^{(i)}]T\stackrel{2\epsilon/3}{=}\Omega(log(1/\delta)/\epsilon^2)$ SGD Steps

Proof of Theorem 2.2 (SGD)

By Lemma 2.3 and the fact that every $\mathcal{D}^{(i)}$ has margin γ , it follows that the minimizer of the guarantees of Lemma 2.4, running SGD in line 7 on $L^{(i)}(\cdot)$ with projection to the unit ℓ_2 -ball for $L^{(i)}(\mathbf{w}^{(i)}) < -\gamma \epsilon/2$ and $\|\mathbf{w}^{(i)}\|_2 = 1$. Here $\delta > 0$ is a parameter that is selected so that the that $L^{(i)}(\mathbf{w}^{(i)}) \leq -\gamma \epsilon/2$. Since the total number of iterations is $\tilde{O}(1/(\gamma \epsilon))$, setting δ to $\tilde{\Omega}(\epsilon \gamma)$ and applying a union bound over all iterations gives the previous claim. Therefore, the total number of SGD steps per iteration is $O(1/(\gamma^2 \epsilon^2))$. For a given iteration of the while loop, running SGD requires $\tilde{O}(1/(\gamma^2 \epsilon^2))$ samples from $\mathcal{D}^{(i)}$ which translate to at most $\tilde{O}(1/(\gamma^2 \epsilon^3))$ samples from \mathcal{D} , as $\mathbf{Pr}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} \left[\mathbf{x} \in S^{(i)} \right] \geq 2\epsilon/3$.

Proof of Theorem 2.2 (Threshold)

Lemma 2.5 implies that there exists $T \geq 0$ such that: (a) $\Pr_{(\mathbf{x},y) \sim \mathcal{D}^{(i)}}[|\langle \mathbf{w}, \mathbf{x} \rangle| \geq T] \geq \gamma \epsilon$, and (b)) $\Pr_{(\mathbf{x},y) \sim \mathcal{D}^{(i)}}[h_{\mathbf{w}}(\mathbf{x}) \neq y \, | \, |\langle \mathbf{w}, \mathbf{x} \rangle| \geq T] \leq \eta + \epsilon$. Line 9 of Algorithm 1 estimates the threshold using samples. By the DKW inequality [DKW56], we know that with $m = \tilde{O}(1/(\gamma^2 \epsilon^4))$ samples we can estimate the CDF within error $\gamma \epsilon^2$ with probability $1 - \text{poly}(\epsilon, \gamma)$. This suffices to estimate the probability mass of the region within additive $\gamma \epsilon^2$ and the misclassification error within $\epsilon/3$. This is satisfied for all iterations with constant probability.

Lemma 2.5. Consider a vector \mathbf{w} with $L(\mathbf{w}) < 0$. There exists a threshold $T \geq 0$ such that (i) $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[|\langle \mathbf{w},\mathbf{x}\rangle| \geq T] \geq \frac{|L(\mathbf{w})|}{2\lambda}$, and (ii) $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h_{\mathbf{w}}(\mathbf{x}) \neq y \mid |\langle \mathbf{w},\mathbf{x}\rangle| \geq T] \leq \lambda - \frac{|L(\mathbf{w})|}{2}$.

Proof of Theorem 2.2 (Threshold)

Lemma 2.5 implies that there exists $T \geq 0$ such that: (a) $\Pr_{(\mathbf{x},y) \sim \mathcal{D}^{(t)}}[|\langle \mathbf{w}, \mathbf{x} \rangle| \geq T] \geq \gamma \epsilon$, and (b) $\Pr_{(\mathbf{x},y) \sim \mathcal{D}^{(t)}}[h_{\mathbf{w}}(\mathbf{x}) \neq y \, | \, \langle \mathbf{w}, \mathbf{x} \rangle| \geq T] \leq \eta + \epsilon$. Line 9 of Algorithm 1 estimates the threshold using samples. By the DKW inequality [DKW56], we know that with $m = \tilde{O}(1/(\gamma^2 \epsilon^4))$ samples we can estimate the CDF within error $\gamma \epsilon^2$ with probability $1 - \text{poly}(\epsilon, \gamma)$. This suffices to estimate the probability mass of the region within additive $\gamma \epsilon^2$ and the misclassification error within $\epsilon/3$. This is satisfied for all iterations with constant probability.

Proof of Theorem 2.2 (total sample complexity)

In summary, with high constant success probability, Algorithm 1 runs for $\tilde{O}(1/(\gamma\epsilon))$ iterations and draws $\tilde{O}(1/(\gamma^2\epsilon^4))$ samples per round for a total of $\tilde{O}(1/(\gamma^3\epsilon^5))$ samples. As each iteration runs in polynomial time, the total running time follows.

When the while loop terminates, we have that $\Pr_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}}[\mathbf{x} \in S^{(i)}] \leq 4\epsilon/3$, i.e., we will have accounted for at least a $(1-4\epsilon/3)$ -fraction of the total probability mass. Since our algorithm achieves misclassification error at most $\eta + 4\epsilon/3$ in all the regions we accounted for, its total misclassification error is at most $\eta + 8\epsilon/3$. Rescaling ϵ by a constant factor gives Theorem 2.2.

Proof of Theorem 2.2 (misclassification error)

In summary, with high constant success probability, Algorithm 1 runs for $O(1/(\gamma \epsilon))$ iterations and draws $\tilde{O}(1/(\gamma^2 \epsilon^4))$ samples per round for a total of $\tilde{O}(1/(\gamma^3 \epsilon^5))$ samples. As each iteration runs in polynomial time, the total running time follows.

When the while loop terminates, we have that $\Pr_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}}[\mathbf{x} \in S^{(i)}] \leq 4\epsilon/3$, i.e., we will have accounted for at least a $(1-4\epsilon/3)$ -fraction of the total probability mass. Since our algorithm achieves misclassification error at most $\eta + 4\epsilon/3$ in all the regions we accounted for, its total misclassification error is at most $\eta + 8\epsilon/3$. Rescaling ϵ by a constant factor gives Theorem 2.2.

Proof of Lemma 2.3

Lemma 2.3. If $\lambda \geq \eta$, then $L(\mathbf{w}^*) \leq -\gamma(\lambda - \text{OPT})$.

Proof. For any fixed x, using Claim 2.1, we have that

$$\ell(\mathbf{w}^*, \mathbf{x}) = (\operatorname{err}(\mathbf{w}^*, \mathbf{x}) - \lambda) |\langle \mathbf{w}^*, \mathbf{x} \rangle| = (\eta(\mathbf{x}) - \lambda) |\langle \mathbf{w}^*, \mathbf{x} \rangle| \le -\gamma(\lambda - \eta(\mathbf{x})),$$

since $|\langle \mathbf{w}^*, \mathbf{x} \rangle| \ge \gamma$ and $\eta(\mathbf{x}) - \lambda \le 0$. Taking expectation over $\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}$, the statement follows. \square

Claim 2.1. For any \mathbf{w} , \mathbf{x} , we have that $\ell(\mathbf{w}, \mathbf{x}) = (\operatorname{err}(\mathbf{w}, \mathbf{x}) - \lambda) |\langle \mathbf{w}, \mathbf{x} \rangle|$.

Proxy loss

$$\ell(\mathbf{w}, \mathbf{x}) = \mathbf{E}_{y \sim \mathcal{D}_y(\mathbf{x})} [\text{LeakyRelu}_{\lambda}(-y\langle \mathbf{w}, \mathbf{x} \rangle)]$$

Optimal misclassification error

$$\mathrm{OPT} = \mathbf{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}}[\mathrm{err}(\mathbf{w}^*, \mathbf{x})] = \mathbf{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}}[\eta(\mathbf{x})].$$

Proof of Lemma 2.5

Lemma 2.5. Consider a vector \mathbf{w} with $L(\mathbf{w}) < 0$. There exists a threshold $T \geq 0$ such that (i) $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[|\langle \mathbf{w},\mathbf{x}\rangle| \geq T] \geq \frac{|L(\mathbf{w})|}{2\lambda}$, and (ii) $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h_{\mathbf{w}}(\mathbf{x}) \neq y \mid |\langle \mathbf{w},\mathbf{x}\rangle| \geq T] \leq \lambda - \frac{|L(\mathbf{w})|}{2}$.

Claim 2.1. For any \mathbf{w} , \mathbf{x} , we have that $\ell(\mathbf{w}, \mathbf{x}) = (\operatorname{err}(\mathbf{w}, \mathbf{x}) - \lambda) |\langle \mathbf{w}, \mathbf{x} \rangle|$.

Proof of Lemma 2.5

For a T drawn uniformly at random in [0, 1], we have that:

1.
$$\int_{0}^{1} \mathbf{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} [(\operatorname{err}(\mathbf{w}, \mathbf{x}) - \lambda + \zeta) \mathbf{1}_{|\langle \mathbf{w}, \mathbf{x} \rangle| \geq T}] dT = \mathbf{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} [(\operatorname{err}(\mathbf{w}, \mathbf{x}) - \lambda) |\langle \mathbf{w}, \mathbf{x} \rangle|] + \zeta \mathbf{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} [|\langle \mathbf{w}, \mathbf{x} \rangle|] \\ \leq \mathbf{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} [\ell(\mathbf{w}, \mathbf{x})] + \zeta = L(\mathbf{w}) + \zeta = L(\mathbf{w})/2 < 0.$$

Thus, there exists a \bar{T} such that $\mathbf{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}}[(\operatorname{err}(\mathbf{w}, \mathbf{x}) - \lambda + \zeta)\mathbb{1}_{|\langle \mathbf{w}, \mathbf{x} \rangle| \geq \bar{T}}] \leq 0$. Consider the minimum such \bar{T} . Then we have

$$\int_{\bar{T}}^{1} \mathbf{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} [(\operatorname{err}(\mathbf{w}, \mathbf{x}) - \lambda + \zeta) \mathbb{1}_{|\langle \mathbf{w}, \mathbf{x} \rangle| \geq T}] dT \geq -\lambda \cdot \mathbf{Pr}_{(\mathbf{x}, y) \sim \mathcal{D}} [|\langle \mathbf{w}, \mathbf{x} \rangle| \geq \bar{T}] .$$

By definition of \bar{T} , it must be the case that $\int_0^{\bar{T}} \mathbf{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} [(\operatorname{err}(\mathbf{w}, \mathbf{x}) - \lambda + \zeta) \mathbb{1}_{|\langle \mathbf{w}, \mathbf{x} \rangle| \geq T}] dT \geq 0$. Therefore,

$$\frac{L(\mathbf{w})}{2} \ge \int_{\bar{T}}^{1} \mathbf{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} [(\operatorname{err}(\mathbf{w}, \mathbf{x}) - \lambda + \zeta) \mathbb{1}_{|\langle \mathbf{w}, \mathbf{x} \rangle| \ge T}] dT \ge -\lambda \cdot \mathbf{Pr}_{(\mathbf{x}, y) \sim \mathcal{D}} [|\langle \mathbf{w}, \mathbf{x} \rangle| \ge \bar{T}],$$

which implies that $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[|\langle \mathbf{w}, \mathbf{x} \rangle| \geq \bar{T}] \geq \frac{|L(\mathbf{w})|}{2\lambda}$. This completes the proof of Lemma 2.5.

Generalization

Definition 2.7 ([DV04a]). We call a point \mathbf{x} in the support of a distribution $\mathcal{D}_{\mathbf{x}}$ a β -outlier, if there exists a vector $\mathbf{w} \in \mathbb{R}^d$ such that $\langle \mathbf{w}, \mathbf{x} \rangle^2 \leq \beta \mathbf{E}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}} [\langle \mathbf{w}, \mathbf{x} \rangle^2]$.

Lemma 2.8 (Rephrasing of Theorem 3 of [DV04a]). Using $m = \tilde{O}(d^2b)$ samples from $\mathcal{D}_{\mathbf{x}}$, one can identify with high probability an ellipsoid E such that $\mathbf{Pr}_{\mathbf{x} \sim \mathcal{D}_{\mathbf{x}}}[\mathbf{x} \in E] \geq \frac{1}{2}$ and $\mathcal{D}_{\mathbf{x}}|_E$ has no $\Gamma^{-1} = \tilde{O}(db)$ -outliers.

Theorem 2.9. Let \mathcal{D} be a distribution over (d+1)-dimensional labeled examples with bit-complexity b, generated by an unknown halfspace corrupted by Massart noise at rate $\eta < 1/2$. Algorithm 2 uses $\tilde{O}(d^3b^3/\epsilon^5)$ samples, runs in $\operatorname{poly}(d,1/\epsilon,b)$ time, and returns, with probability 2/3, a classifier h with misclassification error $\operatorname{err}_{0-1}^{\mathcal{D}}(h) \leq \eta + \epsilon$.

Generalization

Algorithm 2 Main Algorithm (general case)

- 1: Set $S^{(1)} = \mathbb{R}^d$, $\lambda = \eta + \epsilon$, $\Gamma^{-1} = \tilde{O}(db)$, $m = \tilde{O}(\frac{1}{\Gamma^2 \epsilon^4})$.
- 2: Set $i \leftarrow 1$.
- 3: Draw $O((1/\epsilon^2)\log(1/(\epsilon\Gamma)))$ samples from $\mathcal{D}_{\mathbf{x}}$ to form an empirical distribution $\tilde{\mathcal{D}}_{\mathbf{x}}$.
- 4: while $\mathbf{Pr}_{\mathbf{x} \sim \tilde{\mathcal{D}}_{\mathbf{x}}} \left[\mathbf{x} \in S^{(i)} \right] \geq \epsilon \ \mathbf{do}$
- 5: Run the algorithm of Lemma 2.8 to remove Γ^{-1} -outliers from the distribution $\mathcal{D}_{S^{(i)}}$ by filtering points outside the ellipsoid $E^{(i)}$.
- 6: Let $\Sigma^{(i)} = \mathbf{E}_{(\mathbf{x},y) \sim \mathcal{D}^{(i)}|_{S^{(i)}}}[\mathbf{x}\mathbf{x}^T]$ and set $\mathcal{D}^{(i)} = \Gamma \Sigma^{(i)-1/2} \cdot \mathcal{D}|_{S^{(i)} \cap E^{(i)}}$ be the distribution $\mathcal{D}|_{S^{(i)} \cap E^{(i)}}$ brought in isotropic position and rescaled by Γ so that all vectors have ℓ_2 -norm at most 1.
- 7: Let $L^{(i)}(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y) \sim \mathcal{D}^{(i)}}[\text{LeakyRelu}_{\lambda}(-y\langle \mathbf{w}, \mathbf{x} \rangle)]$
- 8: Run SGD on $L^{(i)}(\mathbf{w})$ for $\tilde{O}(1/(\Gamma^2 \epsilon^2))$ iterations, to get $\mathbf{w}^{(i)}$ with $\|\mathbf{w}^{(i)}\|_2 = 1$ such that $L^{(i)}(\mathbf{w}^{(i)}) \leq \min_{\mathbf{w}: \|\mathbf{w}\|_2 \leq 1} L^{(i)}(\mathbf{w}) + \Gamma \epsilon/2$.
- 9: Draw m samples from $\mathcal{D}^{(i)}$ to form an empirical distribution $\mathcal{D}_m^{(i)}$.
- 10: Find a threshold $T^{(i)}$ such that $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}_m^{(i)}}[|\langle\mathbf{w}^{(i)},\mathbf{x}\rangle|\geq T^{(i)}]\geq \Gamma\epsilon$ and the empirical misclassification error, $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}_m^{(i)}}[h_{\mathbf{w}}(\mathbf{x})\neq y\,\big|\,|\langle\mathbf{w}^{(i)},\mathbf{x}\rangle|\geq T^{(i)}]$, is minimized.
- 11: Revert the linear transformation by setting $\mathbf{w}^{(i)} \leftarrow \Gamma \Sigma^{(i)-1/2} \cdot \mathbf{w}^{(i)}$.
- 12: Update the unclassified region $S^{(i+1)} \leftarrow S^{(i)} \setminus \{\mathbf{x} : \mathbf{x} \in E^{(i)} \land |\langle \mathbf{w}^{(i)}, \mathbf{x} \rangle| \ge T^{(i)} \}$ and set $i \leftarrow i+1$.
- 13: Return the classifier $[(\mathbf{w}^{(1)}, T^{(1)}, E^{(1)}), (\mathbf{w}^{(2)}, T^{(2)}, E^{(2)}), \cdots]$

Conclusions

- Contributions
 - first non-trivial learning algorithm for the class of halfspaces in the distribution-free PAC model with Massart noise
- Future work
 - Proper learner?
 - Different noise model (closer to agnostic setting?)

Quiz Questions

- Which of the following noises lead to an intractable classification problem?
 - Massart noise
 - Random Classification Noise
 - Agnostic Noise
- Given an example (x,y), a response corrupted with \eta Massart noise is
 - y with probability \eta, -y otherwise
 - y with probability <= \eta(x) <\ \eta, -y otherwise (\eta \in [0,1])
 - y with probability <= \eta(x) <\ \eta, -y otherwise (\eta \in [0,½])
 - -y if example (x,y) is within adversarially chosen set of samples representing \eta fraction of all samples, and y if not
- Minimizing a single convex surrogate over a space with Massart noise can lead to a weak learner.
 [True/False]
- Choose the options describing a gamma-margin halfspace (w^* describes the true hyperplane)
 - |\langle w^*, x\rangle| [\geq/\leq] \gamma for [all/some] x in the support
- Given a vector w representing a half-space, how do you predict the label of a given sample x. [write answer]
 - sign(\langle w,x\rangle)