

Sub Name Code: DMDW Subject Code: IT-4037 Program Name: B.Tech Semester:VII (Regular)

Year - 2019

AUTUMN MID-SEMESTER - 2019 KIIT, Deemed to be University, Bhubaneswar-24 Data Mining and Data Warehousing IT 4037

Time: 11/2 Hours

Full Mark: 20

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable and all parts of a question should be answered at one place only.

(Answer any four questions including question No.1 which is compulsory)

	(Answer any <u>four</u> questions including question No.1 which is compulsory)		
Q1.	Answer all the following questions. Provide appropriate example, if necessary.	[1×	5 = 5]
(a)	Describe the steps of the knowledge discovery process in data mining.	CO1	
(b)	Define temporal, sequence and time-series databases.	CO1	
(c)	What is data warehouse? List out OLAP operations.	CO3	
(d)	What are the methods used to improve the Apriori's Efficiency?	CO2	
(e)	What are the techniques to handle missing data in any database?	CO1	
Q2.(a)	What is data mining? What are the application and issues of data mining.		[3]
	What is the difference between data base and data mining.	CO1	
(b)	Given two objects represented by the tuples (22, 1, 42, 10) and (20,0,36,8), compute the following distance	CO2	[2]
	i. Euclidean distance ii. Manhattan distance		
Q3. (a)	Consider the age :23, 23, 27, 27, 39, 41, 47, 49, 50. Use the following normalization to transform the age value 39	CO2	[3]
(b)		CO2	[2]
Q4.(a)	Illustrate the dimensionality reduction techniques and it's importance.	CO2	[2]
(b)	Demonstrate the major tasks in data pre-processing. What are the issues to be considered while data integration?	CO2	[3]
Q5. (a)		CO2	[2]
Q3. (a)	Consider the transactional data base with minimum support 22% and minimum confidence 70%.	COA	[3]
	Find out	CO4	
	TID List of item IDs		
	T100 I1, I2, I5		
	T200 12, I4		
	T300 I2, I3	-	
	T400 I1, I2, I4		
	T500 I1, I3		
	T600 I2,I3		
	T700 I1, I3		
	T800 I1,I2,I3,I5		
(b)	Construct the FP growth tree for the above given transactional database.	CO4	[2]
	9		

----ALL THE BEST---