THLR Quick Sheet

Author: Matthieu Stombellini Last revision: 2019-09-03

EPITA did not give lecture notes this year, so I just made some.

Definitions

- Alphabet: A *finite* set of symbols (denoted Σ)
- Word: A finite sequence of symbols from Σ (denoted u)
- Language: A set of words on Σ (*L*). It does not have to be finite.
- Σ^* is the set of all the words that can be built from the alphabet Σ . e.g.: $\{a,b\}^* = \{\varepsilon,a,b,aa,ab,ba,...\}$
- ε (also denoted 1 or λ) is the "empty word", the word that has no symbols.
- Ø denotes the empty language: the language with no words.

Operations on words

• Concatenation:

$$u, v \in \Sigma^*, u = u_0 \dots u_n$$
, then $u \cdot v = u_0 \dots u_n v_0 \dots v_m$

e.g.: The result of the concatenation of "foo" and "bar" is "foobar" Concatenation is a **free monoid**, because it:

- Is stable: the concatenation of a word to another word is a word
- o Is associative: $(u \cdot v) \cdot w = u \cdot (v \cdot w) = u \cdot v \cdot w$
- Has a **neutral element**: ε because $a \cdot \varepsilon = \varepsilon \cdot a = a$
- Gives a unique decomposition of words

The concatenation behaves like a product.

Another way to express concatenation is with an exponentiation notation

$$u^n = \underbrace{u \cdot \dots \cdot u}_{n \text{ times}}$$
$$u^0 = \varepsilon$$

• Length:

The length of a word u is denoted |u|

Relations between words

Subword

$$u$$
 subword of v
$$\exists u_1, u_2 \in \Sigma^{*2}, v = u_1 \cdot u \cdot u_2$$

Prefix¹

$$u \text{ prefix of } v \quad u \leq_p v$$

$$\exists w \in \Sigma^*, v = u \cdot w$$

e.g.: "ban" is a prefix of "banana".

By this definition, "banana" is also a prefix of "banana" (in which case $w=\varepsilon$). A "proper prefix" is a prefix that is not the word itself (so a prefix such that $w\neq\varepsilon$)

Prefix is an order relation but not a total one. It is:

- Reflexive: $u \leq_p u$
- o **Transitive:** if $u \leq_p w$ and $v \leq_p w$, then $u \leq_p w$
- o Antisymmetric: if $u \leq_p v$ and $v \leq_p u$ then u = v
- Suffix²

$$u \text{ suffix of } v \quad u \leq_s v$$

$$\exists w \in \Sigma^*, v = w \cdot u$$

 Subsequence or scattered subwords: Non-contiguous sequences from the original word that still respect the order in which symbols

 $^{^{1}}$ Prefixes are just a particular case of subwords (where $u_{2}=arepsilon$)

 $^{^{2}}$ Suffixes are just a particular case of subwords (where $u_{1}=\varepsilon$)

appear in the original word. You can see that as just the original word from which you remove some symbols.

e.g.: "bd" is a subsequence of "abcde"

• Lexicographic order:

$$u \leq_{lex} v \Leftrightarrow \begin{cases} u = w \cdot u_0 u' \\ v = w \cdot v_0 v' \end{cases} \text{ with } u < v$$
or u prefix of v

We cannot enumerate all the words since we would only get an infinity of aaaa when running recursively.

e.g.: egg, example, reminded, reminder, road

Alphabetical/radicial/military order:

$$u \le v \Leftrightarrow \frac{|u| < |v|}{\text{or } |u| = |v| \text{ and } u \le_{lex} v}$$

e.g.: egg, road, example, reminded, reminder

Operations on languages

Let L_1 and L_2 be languages on the same alphabet Σ . We can have different operations:

- Since languages are sets, all the usual operations on sets apply
 - \circ $L_1 \cup L_2$
 - \circ $L_1 \cap L_2$
 - \circ $\overline{L_1}$
 - \circ $L_1 \setminus L_2$
 - o Ø (empty set, the language with no words)
- We can also lift operations on words into operations on languages, like **concatenation**:

$$L_1 \cdot L_2 = \{u \cdot v \mid u \in L_1, v \in L_2\}$$
 e.g.: $\{a\} \cdot \{b\} = \{ab\}$
$$L^n = \underbrace{L \cdot \ldots \cdot L}_{n \text{ times}}$$

$$L^0 = \{\varepsilon\}$$

This is associative, stable (a language concatenated with another language is still a language) and has a neutral element $\{\varepsilon\}$

Kleene star

$$L^* = \bigcup_{n \in \mathbb{N}} L^n$$

It can also be defined as $u \in L^* \Leftrightarrow \exists n \in \mathbb{N}, u \in L^n$

e.g.
$$\{a,b\}^* = \left\{\underbrace{\varepsilon}_{L^0}, \underbrace{a,b}_{L^1}, \underbrace{aa,ab,ba,bb}_{L^2}, aaa \dots\right\}$$

 $\{a\}^* = \{\varepsilon, a, aa, aaa, aaaa, \dots\}$

Note that L^* always includes the empty word ε (since $L^0 = \{\varepsilon\}$). There is another notation which does *not* include the empty word ε :

$$L^{+} = \bigcup_{n \ge 1} L^{n}$$
e.g. $\{a, b\}^{+} = \left\{\underbrace{a, b}_{L^{1}}, \underbrace{aa, ab, ba, bb}_{L^{2}}, aaa \dots\right\}$

Language of prefixes

$$Pref(L) = \{ u \in \Sigma^* | \exists v \in \Sigma^*, u \cdot v \in L \}$$

In other words: Pref(L) is the set of all the prefixes of the words of L.

Language of suffixes

$$Suff(L) = \{ u \in \Sigma^* | \exists v \in \Sigma^*, v \cdot u \in L \}$$

In other words: Suff(L) is the set of all the suffixes of the words of L.

Language of subwords

$$\operatorname{Frac}(L) = \left\{ u \in \Sigma^* \middle| \exists (v, w) \in \Sigma^{*2}, v \cdot u \cdot w \in L \right\}$$

In other words: Frac(L) is the set of all the subwords of the words of L.

Recursive(ly enumerable)

- A set is **recursive** (or **decidable**) when there exists a program (called the *indicator function*) which *always terminates* which tests membership in the set.
- A set is **recursively enumerable** when there exists a program which generates each element of the set.

Rational expressions

- The following operations are said to be the "rational operations":
 - o Ø
 - \circ $\{\varepsilon\}$
 - \circ {a}, $a \in \mathbb{Z}$
 - \circ $L_1 \cup L_2$
 - \circ $L_1 \cdot L_2$
 - $\circ L_1^*$
- Languages that can be described using only rational operations are said to be **rational languages**.
- The operations can also be described using a better syntax: **rational expressions.** *e* and *f* are languages here.

Set theory syntax

Rational expression syntax

	, , , , , , , , , , , , , , , , , , ,
Ø	Ø
$\{arepsilon\}$	ε
$\{a\}, a \in \Sigma$	а
$L_1 \cup L_2$	e+f
$L_1 \cdot L_2$	$e\cdot f$
L^*	e^*

• There are multiple ways to express the same languages. We say that two rational expressions are **equivalent** if they describe the same language.

Here is a list of elementary equivalences

$$\emptyset e \equiv \emptyset$$
 $\varepsilon e \equiv e$
 $e\emptyset \equiv \emptyset$ $e\varepsilon \equiv e$
 $\emptyset^* \equiv \varepsilon$ $\varepsilon^* \equiv \varepsilon$
 $e+f \equiv f+e$ $e+\emptyset \equiv e$
 $e+e \equiv e$ $(e^*)^* \equiv e^*$
 $(ef)^*e \equiv e(fe)^*$ $(e+f)g = eg+fg$
 $(e+f)^* \equiv e^*(e+f)^*$ $e(f+g) \equiv ef+eg$
 $(e+f)^* \equiv (e^*f^*)^*$ $(e+f)^* \equiv (e^*+f)^*e^*$

- Additional syntaxes exist for writing cleaner expressions exist. They
 are not new operations, just shortcuts. They will appear in some
 exercises and in regular expressions (regex).
 - \circ Optional $e^?$

$$e^? = (e + \varepsilon)$$

This simply makes this whatever it is applied to optional.

 \circ Kleene plus e^+

$$e^{+} = ee^{*}$$

Just like when we were working with sets, we can use this notation to denote "1 or more" occurrences of *e*, while the Kleene star denotes "0 or more" occurrences.

• Character set [abc]

Take for example the alphabet $\Sigma = \{a, b, c, d, e, f\}$

$$[abcd] = (a+b+c+d)$$

This is similar to saying "match one of the characters in this set".

We can negate this.

$$\lceil ^{\wedge}ab \rceil = \lceil cdef \rceil = (c+d+e+f)$$

Here, this simply means "match *one* character that is *not* in this set".

We can also use ranges of letters instead of writing all of them. For example, if Σ is the Latin alphabet, then

$$[a-m]$$

will match a single character from a to m, all lowercase.³ We can also use multiple ranges in the same character set.

$$[a - mA - X]$$

This will match a single lowercase letter from a to m and uppercase letters from A to X.

We can, of course, use quantifiers on our character set, for example $[a-c]^* = [abc]^* = (a+b+c)^*$.

 $^{^3}$ This implies that there is an order in our alphabet. For example, this order can be the natural order of numbers (e.g. [0-9]), lowercase or uppercase letters of the alphabet [a-z] or [A-Z])