NOIP 模拟题

Cxt

August 5, 2018

题目名称	听我说,海蜗牛	触手不及	有所失
提交程序名	connect.cpp	expression.cpp	travel.cpp
空间限制	512MB	512MB	512MB
时间限制	1s	1s	1s
测试点数	10	20	20
测试点分值	10	5	5
题目类型	传统型	传统型	传统型
编译命令	-O2 -lm	-O2 -lm	-O2 -lm

1 听我说,海蜗牛

(connect.cpp/c/pas)

1.1 Background

风平浪静的大海开始泛起波澜。

1.2 Description

在广阔的大海沿岸有n个港口,其两两之间都可以通航.但是最近,风平浪静的大海开始泛起波澜,使得其中m对港口之间的航路间断了.

这个月有q天,每天都有一些港口是开放的. 定义两个开放的港口联通,为它们可以只经过开放的港口以及未间断的航路相到达.

在这种情况下, 小 M.M.T. 希望能够知道对于每一天, 那些开放的港口被划分为了多少个联通块. 她会告诉你每天开放的港口编号, 由你来求出答案.

1.3 Input

第一行三个数 n,m,q, 意义如题面.

之后 m 行, 每行两个数 x,y 表示 x 和 y 的航路间断了.

保证无重边无自环.

之后 2*q 行, 对于第 2*i 行输入一个数 k, 对于第 2*i+1 行输入 k 个数, 表示这天开放的港口数.

1.4 Output

q 行, 每行一个数表示这天联通块的个数.

1.5 Sample

input1

- 4 4 3
- 1 4
- 1 2
- 1 3
- 2 3
- 4
- 1 2 3 4

output1

1.6 Limit

CaseNum	$n \leq$	$m \leq$	$q \leq$	Σk
1	10	20	10	100
2	100	200	100	10000
3	5000	10000	5000	100000
4				
5	50000	100000	50000	100000
6				
7				
8	100000	200000	100000	200000
9				
10				

2 触手不及

(expression.cpp/c/pas)

2.1 Background

一我一直注视着你, 似近, 似远。但你永远, 看不见我.....

2.2 Description

为了避免流露出自己的感情伤害别人, 小 M.M.T. 决定通过一个表达式来传递心意.

给出一个等式.

等式左边是一个 int 范围内的数, 等式右边是一个合法的 c++ 表达式. 例如:233 = 66 * 4 - 31

保证等式右边只包含数字 x ($x \in [0,p),p$ 是给定的质数), 加号, 减号, 乘号, 除号, 左右括号.

保证等式中没有任何空格,tab 等不可见字符. 而且保证合法 (即拖到 c++ 中可以通过编译)

但是遗憾的是, 因为一些原因, 该等式不保证成立.

于是, 小 M.M.T. 希望知道, 在模 p 意义下, 她的表达式的每个数字 x, 需要变成多少才能使等式成立.

保证原不等式不存在除 0, 你需要保证把数字变成 x 之后等式仍然不会除 0.

如果无论 x 取多少都不能使等式成立, 则输出"No Solution".

如果无论 x 取多少都能使等式成立, 则输出"-1".

2.3 Input

输入共两行,

第一行两个整数 $n, p(n, p \ge 1)$ 表示等式右边共会出现 n 个整数. 第二行给出长为 len 的等式.

2.4 Output

n 行, 每行一个数 $ans(ans \in [-1, p))$ 或者"No Solution".

2.5 Sample

input1

3 11 6=1*0+4

output 1

No Solution

2

6

input 2

5 11

10=2*(3+5-1)/1

output2

3

1

3

3

8

2.6 Limit

CaseNum	$len \leq$	$p \leq$	特殊性质
1	10	10	无
2			
3	100000	10000	等式保证成立
4	100000	10000	等式中符号只包含'+','-'
5			
6	100000	10000	等式中符号只包含'*','/'
7			
8	100000	10000	等式中符号不包含'(',')'
9			
10			
11			
12	5000	2000	无
13			
14			
15			
16	5000000	500000	无
17			
18			
19			
20			

3 有所失

(travel.cpp/c/pas)

3.1 Background

我,希望明天,依旧风平浪静。

3.2 Description

时光飞逝, 五年过去了, 小 M.M.T. 长大成为了一名妙龄少女. 她决定独自探索大海.

大海可以视为一个无限大的二维平面, 初始时, 小 M.M.T. 在 $(-\infty, -\infty)$. 由于技术原因, 小 M.M.T. 乘坐的船只拥有两个第一象限点作为参数: $P_{x,y}(p.x > p.y)$, $Q_{x,y}(q.x < q.y)$. 这两个点 (向量) 构成了一个夹角 (包括角的两边), 表示每次船只只能向这个夹角内的方向前进.

大海内初始时有 n 个岛屿,每个岛屿都在第一象限. 小 M.M.T. 的探索计划有 m 天,每天小 M.M.T. 会希望从初始点出发到某一个岛屿上探索,或者会发现一个新岛屿.

为了方便, 岛屿两两之间 (包括新发现的) 没有 x 相同且 y 相同的.

另外, 设新发现的岛屿为 $O_{x,y}$, 由于是新发现的, 可以保证: 只有不超过 k 个点在 O 和 O+P 所形成直线的左侧 1 , 或者只有不超过 k 个点在 O 和 O+Q 所形成直线的右侧.

为了欣赏更多沿路的风景, 她希望在行进的过程中经过更多的岛屿. 因为输出方案太麻烦, 你可以直接告诉她, 她最多能经过的岛屿数目.

3.3 Input

第一行两个数 n,k.

第二行四个数, 即两个坐标 P.x, P.y, Q.x, Q.y 表示船的两个参数.

之后 n 行每行两个数,P.x, P.y, 表示初始就存在的岛屿的位置.

然后首先一行一个数 m.

接下来 m 行每行先输入一个 opt

若 opt = 1,紧跟一个数 id 这次要探索的岛屿. 保证 id 存在. 原先存在的岛屿的 id 为 $1,2,3,\ldots$ 新发现的岛屿的 id 为 $n+1,n+2,n+3\ldots$

若 opt = 2 or 3, 紧跟两个数 O.x, O.y 表示要插入的新岛屿.

- 2 表示只有不超过 k 个点在 O 和 O+P 所形成直线的左侧.
- 3 表示只有不超过 k 个点在 O 和 O+Q 所形成直线的右侧.

 $^{^{1}}$ 我们定义一个点 U 在左侧为: $P*(U-O) \geq 0$, 其中* 为叉积. 右侧则 \leq .

3.4 Output

若干行,对于每一个2操作,输出最多能经过多少个点.

3.5 Sample

input1

3 5

1 0 0 1

0 0

1 0

0 1

5

1 3

2 1 1

1 4

2 2 2

1 5

output1

2

3

4

input2

3 5

2 1 1 2

0 0

1 0

0 1

5

1 3

2 1 1

1 4

2 2 2

1 5

output 2

1

2

3

3.6 Limit

CaseNum	$n \leq$	$m \leq$	$k \leq$	特殊性质 1	特殊性质 2
			5		1 1 1
1	10	10) 3	所有 $opt = 1$	P = (1,0)
2	10	10			Q = (0,1)
3	100	100			
4	100	100			
5	1000	1000		无	
6	1000	1000			
7	50000	50000	20		
8	50000	50000			
9	50000	50000			
10	50000	50000			
11	100	100	5	所有 $opt = 1$	无
12	100	100			
13	1000	1000		无	
14	1000	1000			
15	100000	100000	20		
16	100000	100000			
17	100000	100000			
18	100000	100000			
19	100000	100000			
20	100000	100000			

对于所有的数据, 保证输入的数字都是小于 109 的整数