Industrielles de

l'Ingénieur

**Sciences** 

## Colle 6



## Station d'épuration

CCP MP 2012

Savoirs et compétences :

## **Présentation**

**Objectif** L'objectif de cette partie est de vérifier le contrôle de la siccité des boues pour leur incinération (FS5).

| FS5: traiter les boues | Débit extraction moyen horaire                 | $11 \text{ m}^3/\text{h} \pm 10 \%$                                                  |
|------------------------|------------------------------------------------|--------------------------------------------------------------------------------------|
|                        | Taux de siccité                                | 20 % obtenu pour une vitesse relative<br>de 2 tours/min                              |
|                        | Rapidité                                       | Temps de réponse à 1 ‰ de $270 \text{ s} \pm 135 \text{ s}$                          |
|                        | Dépassement maximum pour la vitesse du tambour | 0,2 % ± 0,1 %                                                                        |
|                        | Marge de phase pour la vitesse<br>du tambour   | 45° minimum                                                                          |
|                        | Marge de gain pour la vitesse du tambour       | 7 db minimum                                                                         |
|                        | Précision pour la vitesse du<br>tambour        | N <sub>10c</sub> ± 0,1 tour/min<br>N <sub>10c</sub> : vitesse de consigne du tambour |
|                        | Précision pour la vitesse relative             | V <sub>Rc</sub> ± 0,1 tour/min                                                       |
|                        | (différentielle)                               | V <sub>Rc</sub> : vitesse relative de consigne                                       |

La structure de l'asservissement est donnée cidessous. La consigne en vitesse du tambour est une constante:  $N_{10c}(t) = 2000$  tours/min.



|                     | Données                                                                                                                                                                                  |                                   |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| U <sub>m</sub> (t)  | Tension aux bornes de l'induit                                                                                                                                                           | 400 V                             |
| R                   | Résistance de l'induit                                                                                                                                                                   | 0,3 Ω                             |
| i(t)                | Courant dans l'induit                                                                                                                                                                    | 160 A maximum                     |
| e(t)                | Force contre-électromotrice (en Volt) proportionnelle à la vitesse de rotation                                                                                                           |                                   |
| N <sub>10</sub> (t) | Vitesse Nominale de rotation du moteur tambour M <sub>tambour</sub> Remarque : la vitesse du moteur et celle du tambour 1 sont identiques car les diamètres des poulies sont identiques. | 2 072 tours/min                   |
| $\omega_{10}(t)$    | Vitesse de rotation du moteur                                                                                                                                                            | 217 rad/s nominale                |
| C <sub>m</sub> (t)  | Couple disponible sur l'arbre de sortie du moteur                                                                                                                                        | 420 N.m maximum                   |
| C <sub>r</sub> (t)  | Couple résistant sur l'arbre de sortie du moteur (en Newton mètre)                                                                                                                       |                                   |
| $J_{\rm eq1}$       | Inertie équivalente en kg.m² ramenée à l'axe de rotation de l'arbre moteur de M <sub>tambour</sub>                                                                                       |                                   |
| $K_{e} = K_{T}$     | Coefficients de couplage (en N.m/A pour K <sub>T</sub> , en V.s/rad pour K <sub>e</sub> )                                                                                                | 2,8                               |
| P <sub>T</sub>      | Puissance nominale                                                                                                                                                                       | 80 kW                             |
| K <sub>mT</sub>     | Coefficient de transfert de la génératrice tachymétrique                                                                                                                                 | 1.5×10 <sup>-3</sup> V/(tour/min) |

**Question** 1 Mettre le schéma de la figure précédente sous la forme de la figure suivante. Donner les expressions sous forme canonique de  $H_1(p)$  et de  $H_2(p)$  en fonction des données du moteur  $M_{tambour}$ .



Pour la suite du sujet, vous prendrez :  $K_1 = 71.4(\text{tours/min})/(\text{N m})$ ;  $K_2 = 5.1 \times 10^{-3}$ ;  $\tau_2 = 20.2$  s.

**Question 2** Exprimer l'écart  $\varepsilon(p)$  (écart en sortie du second comparateur) en fonction de  $C_r(p)$  et  $N_{10c}(p)$ .

**Question 3** Pour les 4 cas du tableau ci-dessous en fonction de  $K_1$ ,  $K_2$ ,  $\tau_2$ ,  $K_c$ ,  $K_i$ ,  $N_{10}c(t)$  et  $C_r(t)$ . Pour quel(s) correcteur(s), le critère de précision de la fonction FS5 est-il vérifié?

| $\epsilon_S$                       | $C_T(p) = K_c$ | $C_T(p) = K_c + \frac{K_i}{p}$ |
|------------------------------------|----------------|--------------------------------|
| $N_{10c}(t) =$                     |                |                                |
| 2000 tr/min et                     |                |                                |
| $C_r(t) = 0$                       |                |                                |
| $N_{10c}(t) = 0 \text{ tr/min et}$ |                |                                |
| $C_r(t) = 3 \text{kNm}$            |                |                                |

## Réglage du correcteur Pl

On choisit d'installer un correcteur « PI » de vérifier le cahier des charges :  $C_T(p) = K_C + \frac{K_i}{p}$ . Le réglage se fera en prenant le couple résistant nul et on notera  $\frac{N_{10}(p)}{N_{10c}(p)} = H(p).$ 

Les critères prépondérants de précision et de stabilité étant vérifiés, il reste à régler les deux paramètres  $K_c$  et  $K_i$  à partir des critères de dépassement et de rapidité. Les deux termes  $K_c$  et  $K_i$  ont tous les deux une influence sur ces critères : il y a un couplage. Afin de déterminer ces paramètres, une simulation va être utilisée. Cependant, afin de converger au plus vite, il est nécessaire de trouver un jeu de valeurs à entrer dans la simulation au plus proche des contraintes du cahier des charges. La démarche est la suivante :

- calcul de K<sub>c</sub> permettant d'obtenir le temps de réponse à un pour mille (tr1<sup>0</sup>/<sub>00</sub>) du cahier des charges;
- calcul de  $K_i$  permettant d'obtenir le dépassement du cahier des charges.



**Question** 4 Pour cette question, on prend  $C_T(p) = K_c$  et  $C_r = 0$ . Mettre H(p) sous la forme :  $H(p) = \frac{K}{1 + \tau p}$ . Donner les valeurs de K et  $\tau$  en fonction de  $K_2$ ,  $\tau_2$  et  $K_c$ . On donne  $tr1^0/_{00} = 7\tau_1$  pour un premier ordre. Donner l'expression de la valeur minimale de  $K_c$  en fonction de  $K_2$ ,  $\tau_2$  et  $tr1^0/_{00}$  afin de vérifier le cahier des charges. Calculer alors la valeur de  $K_c$  permettant d'avoir un temps de réponse à  $1^0/_{00}$  de 135 s.

Question 5 Pour cette question, on prend  $C_T(p) = \frac{K_i}{p}$  et  $C_r = 0$ . Mettre H(p) sous la forme  $H(p) = \frac{K_3}{1 + \frac{2m}{\omega_0}p + \frac{p^2}{\omega_2}}$ .

Donner les expressions de  $K_3$ , m et  $\omega_0$  en fonction de  $K_2$ ,  $\tau_2$  et  $K_i$ . On donne l'amplitude du premier dépassement (valeur relative) de la réponse indicielle d'un second ordre :  $D_1 = exp\left(-\frac{\pi m}{\sqrt{1-m^2}}\right)$ . Calculer alors  $K_i$  permettant d'avoir un dépassement maximal de 1%.

**Question** 6 Les figures suivantes donnent le résultat de la simulation du modèle avec les valeurs de  $K_c$  et  $K_i$  trouvées aux questions précédentes. Conclure quant au respect des critères de la fonction FS5.

