

Mark Scheme (Results)

October 2023

Pearson Edexcel International Advanced Level In Chemistry (WCH15) Paper 01 Unit 5: Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2023

Question Paper Log Number: P72995A Publications Code: WCH15_01_MS_2310 All the material in this publication is copyright.

© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist

vocabulary when appropriate. Full marks will be awarded if

the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question number	Answer	Mark
1	The only correct answer is D (zinc)	(1)
	$m{A}$ is incorrect because cobalt forms a stable Co^{2+} ion with incompletely-filled d-orbitals	
	$m{B}$ is incorrect because copper forms a stable Cu^{2+} ion with incompletely-filled d-orbitals	
	$m{C}$ is incorrect because nickel forms a stable Ni^{2+} ion with incompletely-filled d-orbitals	

Question number	Answer	Mark
2	The only correct answer is D (VO ₃ and VO ₂)	(1)
	A is incorrect because chromium has oxidation numbers +6 and +3 respectively	
	B is incorrect because copper has oxidation numbers +1 and +2 respectively	
	C is incorrect because manganese has oxidation numbers +3 and +4 respectively	

Question number	Answer	Mark
3	The only correct answer is D (6)	(1)
	A is incorrect because although there are two different ligands, there are 6 atoms bonded to the central ion	
	B is incorrect because the charge on Cr is 3+ but there are 6 atoms bonded to the central ion	
	C is incorrect because although there are 4 ligands, there are 6 atoms bonded to the central ion	

Question number	Answer	Mark
4	The only correct answer is C (Ni ²⁺)	(1)
	A is incorrect because Cu^{2+} gives a blue precipitate with aqueous sodium hydroxide and with aqueous ammonia	
	$m{B}$ is incorrect because the precipitate formed with Fe^{2+} and aqueous ammonia is insoluble in excess ammonia	
	$m{D}$ is incorrect because V^{2+} is a purple solution	

Question number	Answer	Mark
5	The only correct answer is B ([Zn(H ₂ O) ₆] ²⁺ + 2NH ₃ \rightarrow Zn(OH) ₂ (H ₂ O) ₄ + 2NH ₄ ⁺)	(1)
	A is incorrect because the precipitate should not have a positive charge and the charges do not balance	
	C is incorrect because $[Zn(NH_3)_4(H_2O)_2]^{2+}$ is formed when the precipitate dissolves in excess aqueous ammonia	
	D is incorrect because $Zn(NH_3)_4(H_2O)_2$ should have a 2+ charge and the equation is not balanced	

Question number	Answer	Mark
6	The only correct answer is B (Mn ²⁺ acts as a catalyst; concentration of reactants decreases)	(1)
	A is incorrect because the kinetic energies of the particles do not change	
	C is incorrect because MnO_4^- is not a catalyst and the kinetic energies of the particles do not change	
	$m{D}$ is incorrect because MnO_4 is not a catalyst	

Question number	Answer	Mark
7	The only correct answer is C (ΔS_{total} and $\ln K$)	(1)
	A is incorrect because E^o_{-cell} is not directly proportional to $\Delta_{ m r}H$	
	B is incorrect because E^o_{-cell} is not directly proportional to $\Delta_{\rm r} H$ or to $\ln RT$	
	$m{D}$ is incorrect because E^o_{-cell} is not directly proportional to $\ln RT$	

Question number	Answer	Mark
8	The only correct answer is A (standard reduction potential; most negative to most positive)	(1)
	B is incorrect because the electrochemical series has the most negative standard electrode potential first	
	C is incorrect because standard cell potentials are determined from two standard electrode potentials	
	D is incorrect because standard cell potentials are determined from two standard electrode potentials and the electrochemical series has the most negative standard electrode potential first	

Question number	Answer	Mark
9	The only correct answer is A (H ₂ + 2OH ⁻ \rightarrow 2H ₂ O + 2e ⁻)	(1)
	$m{B}$ is incorrect because H^+ ions cannot be produced in an alkaline solution	
	$oldsymbol{C}$ is incorrect because H^+ ions cannot be produced in an alkaline solution	
	$m{D}$ is incorrect because H^+ ions cannot be produced in an alkaline solution	

Question number	Answer	Mark
10	The only correct answer is B (negative; positive)	(1)
	A is incorrect because $E_{-cell}^o = E_{rhs} - E_{lhs}$ so $0.17 - (-0.40) = +0.57 \text{ V or } 0.40 - (-0.17) = +0.57 \text{ V}$	
	C is incorrect because $E_{-cell}^o = E_{rhs} - E_{lhs}$ so $0.17 - (-0.40) = +0.57 \text{ V or } 0.40 - (-0.17) = +0.57 \text{ V}$	
	D is incorrect because $E_{-cell}^o = E_{rhs} - E_{lhs}$ so $0.17 - (-0.40) = +0.57 \text{ V or } 0.40 - (-0.17) = +0.57 \text{ V}$	

Question number		Answer	Mark
11	The	e only correct answer is C (magnesium)	(1)
	\boldsymbol{A}	is incorrect because $1.635 \div 65.4 = 0.025$ mol of zinc produced which gives a relative atomic mass of 24.3 for G	
	В	is incorrect because $1.635 \div 65.4 = 0.025$ mol of zinc produced which gives a relative atomic mass of 24.3 for G	
	D	is incorrect because $1.635 \div 65.4 = 0.025$ mol of zinc produced which gives a relative atomic mass of 24.3 for G	

Question number	Answer	Mark
12	The only correct answer is D (phenylamine)	(1)
	A is incorrect because the lone pair of electrons on N in ammonia is not delocalised so can be donated more easily	
	B is incorrect because the lone pair of electrons on N in butylamine is not delocalised so can be donated more easily	
	<i>C</i> is incorrect because the lone pair of electrons on N in ethylamine is not delocalised so can be donated more easily	

Question number	Answer			
13	the only correct answer is B (H ₂ NCH(CH ₃)COO ⁻)			
	A is incorrect because this is the structure of the uncharged molecule			
	C is incorrect because this structure would exist at pH less than 6.0			
	D is incorrect because this is the structure of the zwitterion			

Question number	Answer	
14	The only correct answer is A (CH ₂ =CHCOOH)	
	B is incorrect because phenol does not react with ethanol	
	C is incorrect because 2-propen-1-ol does not react with sodium hydroxide or ethanol	
	D is incorrect because ethanoic acid does not react with hydrogen in the presence of a nickel catalyst	

Question number		Answer				
15(a)	The	the only correct answer is A (further substitution by a nitro group occurs)				
	В	is incorrect because nitrobenzene does not decompose at 80°C				
	C	is incorrect because fuming sulfuric acid is needed for the substitution of SO ₃ H				
	D	is incorrect because nitric acid does not decompose at 80°C				

Question number	Answer				
15(b)	The only correct answer is C (Sn and concentrated HCl(aq) are added first, then NaOH(aq) is added at the end)	(1)			
	$m{A}$ is incorrect because the acid and alkali would react to form a salt if they are added together				
	B is incorrect because the acid and alkali would react to form a salt if they are added together				
	D is incorrect because dilute hydrochloric acid would not react quickly enough with the tin				

Question number	Answer	Mark
15(c)	The only correct answer is B A is incorrect because the chlorine is not bonded covalently to the nitrogen C is incorrect because the chlorine is not bonded covalently to the nitrogen D is incorrect because the charge should be on the nitrogen on the right not the nitrogen on the left	(1)

Question number	Answer		
15(d)	The only correct answer is B (alkaline)		
	$oldsymbol{A}$ is incorrect because a phenoxide ion is needed for the reaction and that is produced in alkaline solution		
	$oldsymbol{C}$ is incorrect because a phenoxide ion is needed for the reaction and that is produced in alkaline solution		
	D is incorrect because a phenoxide ion is needed for the reaction and that is produced in alkaline solution		

Question number	Answer				
16	ne only correct answer is D (8 (cm ³))				
	A is incorrect because 2 cm^3 of methane reacts with 4 cm^3 of oxygen				
	\boldsymbol{B} is incorrect because 4 cm ³ of methane would react with 4 cm ³ of oxygen if they reacted in a 1:1 mole ratio				
	C is incorrect because 6 cm ³ would be the volume of argon if methane reacted with oxygen in a 1:1 mole ratio				

Question number	Answer				
17	The only correct answer is A (x is 30 and y is 40)	(1)			
	B is incorrect because water is a liquid at room temperature				
	<i>C</i> is incorrect because 10 cm³ of but-1-ene reacts with 60 cm³ of oxygen to form 40 cm³ of carbon dioxide so there is an initial decrease of 30 cm³				
	D is incorrect because 10 cm³ of but-1-ene reacts with 60 cm³ of oxygen to form 40 cm³ of carbon dioxide so there is an initial decrease of 30 cm³ and water is a liquid at room temperature				

(Total for Section A = 20 marks)

Section B

Question Number	Answer		Additional Guidance	Mark
18(a)	Hydrogen half-cell: • (M1) 1 mol dm ⁻³ H ⁺ (aq) and platinum (black) electrode	(1)	Example of diagram: hydrogen gas copper salt bridge solution containing Cu²+(aq) Allow hydrogen half-cell drawn on the right Concentration only needed once in M1 and M4 if both are 1 mol dm³ Allow 1 mol dm³ hydrochloric acid / HCl / nitric acid / HNO3 Allow 0.5 mol dm³ sulfuric acid / H ₂ SO ₄ Do not award just 1 mol but only penalise once in M1 and M4	(5)
	• (M2) hydrogen gas in suitable apparatus at 100 kPa / 1 × 10 ⁵ Pa (at 298 K)	(1)	Accept $101 \text{ kPa} / 1.01 \times 10^5 \text{ Pa} / 1$ atmosphere pressure Allow 1 bar pressure Do not award other temperatures	
	 Copper half-cell: (M3) copper (electrode) dipping into solution 	(1)	Ignore references to anode/cathode	
	• (M4) 1 mol dm ⁻³ Cu ²⁺ (solution)	(1)	Allow any soluble named copper(II) salt e.g. copper(II) sulfate / CuSO ₄ / copper(II) nitrate / Cu(NO ₃) ₂ / copper(II) chloride / CuCl ₂	
	Connections:(M5) salt bridge (dipping into /touching both solutions)		Allow salt bridge drawn and labelled just with the electrolyte e.g. potassium, sodium or ammonium nitrate, chloride or sulfate	
	and voltmeter and complete circuit	(1)	Do not award M5 if the circuit is incorrect e.g. a cell or ammeter instead of voltmeter or incorrect compounds such as KOH/HNO ₃ in salt bridge	

Question Number	Answer		Additional Guidance	Mark
_	An explanation that makes reference to the following points: (concentrated hydrochloric acid) • increases the concentration of H ⁺ ions in the first equilibrium (and displaces it to the right) so increases the value of E / E > 1.33 (V) (concentrated hydrochloric acid) • increases the concentration of chloride ions in the second equilibrium (and displaces it to the left) so decreases the value of E / E < 1.36 (V) • the difference between 1.33 and 1.36 is (very) small and so using concentrated hydrochloric acid, E _{cell} will be positive (so the reaction occurs)	(1) (1)	Ignore any references to E_a /energy Allow just 'when [H ⁺] increases the first equilibrium shifts to the right' Allow because the coefficient for H ⁺ is 14, the position of equilibrium is very sensitive to the concentration of H ⁺ Allow just 'when [Cl ⁻] increases the second equilibrium shifts to the left' There must be some indication of the equilibrium referred to but can simply be Cl_2 :2 Cl^- Allow answer in terms of first E^0 increasing (above 1.36 (V)) or second E^0 decreasing (below 1.33(V)) so E_{cell} will be positive for M3 Allow chlorine escapes and displaces second equilibrium to the left and decreases E^0 decreasing	(3)
			below 1.33 (V) so E_{cell} will be positive Ignore references to anode/cathode	

Question Number	Answer	Additional Guidance	Mark
18(b)(ii)	(1)	Example of cell diagram: $Pt(s) \mid 2Cl^{-}(aq) \mid Cl_{2}(g) \parallel [Cr_{2}O_{7}^{2-}(aq) + 14H^{+}(aq)], [2Cr^{3+}(aq) + 7H_{2}O(l)] \mid Pt(s)$	(2)
	left hand side of cell diagram	Allow comma between Cl ⁻ and Cl ₂ Do not award missing molar ratio but penalise once only	
	central vertical lines and right hand side of cell diagram (1)	Allow dotted / dashed vertical lines in the cell junction of the cell diagram Allow comma between dichromate ion and proton Allow vertical line between protons and chromium(III) ions Ignore missing / incorrect state symbols Ignore omission of water Ignore missing brackets/use of rounded brackets Penalise inclusion of electrons once only	
		If no other mark is awarded, allow (1) for whole cell diagram written in reverse If no other mark is awarded, allow (1) for electrodes on correct sides but $2Cl^{-}$ and Cl_{2} in reverse order and / or $2Cr^{3+}$ and $Cr_{2}O_{7}^{2-} + 14H^{+}$ in reverse order Award (1) if $Pt(s)$ missing both sides but all otherwise correct	

Question Number	Answer	Additional Guidance	Mark
18(c)	• calculation of mol MnO ₄ ⁻ and X ₂ O ₅ (1)	Example of calculation: mol MnO ₄ ⁻ = $\underline{50.0 \times 0.02} = 0.001 / 1.00 \times 10^{-3}$ 1000	(3)
		and	
	• deduction of mol ratio (1)	mol ratio X : MnO $_{_4}^{-}$ is 5 : 1 Allow calculation of moles of electrons per Mn and per X giving 5×10^{-3} : 5×10^{-3}	
	• final oxidation number of X (1)	(there are 5 electrons in the MnO $_4^-$ half-equation so X's oxidation number decreased by 1 to (+) 4 Allow X ⁺⁴	
		Allow TE of oxidation number (+) 3 from 5 : 2 ratio or from $5 \times 10^{-3} \div 2.5 \times 10^{-3} = 2$ so $+5 - 2 = (+)3$ Award (3) for oxidation number (+) 4 provided some working such as number of moles for M1	

(Total for Question 18 = 13 marks)

Question Number	Answer		Additional Guidance				Mark
19(a)			Example	(2)			
	• calculation of mol of K, Fe and O	(1)		K	Fe	О	
			mol	$\frac{39.5}{39.1} = 1.01$	$\frac{28.2}{55.8} = 0.505$	$\frac{32.3}{16} = 2.02$	
	• deduction of mol ratio and		ratio	2	1	4	
	empirical formula	(1)	Accept s	l formula is K ₂ F ymbols in any o	rder		
			mol of Fo	e E for M2 from c	K, 56 as A_r of Fe a andidates own most a with no working	bles	
				two atomic nun ate for (1)	nbers are used ther	allow TE as	
					ment percentage) x 100 = 197.87 / 19		
			Fe = (28.3) O = (32.3)	5 ÷ 100) x 198 ; 2 ÷ 100) x 198 ; 3 ÷ 100) x 198 ; l formula is K ₂ F	= 55.8 so 1Fe = 64 so 4O		
	Alternative method	74)					
	• calculation of $M_{\rm r}$ value	(1)					
	 deduction of elemental values and empirical formula 	(1)					

Question Number	Answer	Additional Guidance	Mark
19(b)(i)	An answer that makes reference to the following point:		(1)
	reaction between two negative ions is slow due to repulsion	Allow negative species for negative ions Allow just 'the negative ions repel' Ignore references to unlikelihood of three negative ions colliding Do not award negative molecules	

Question Number	Answer	Additional Guidance	Mark
19(b)(ii)	• ionic equation involving iron(II) (1)	$\frac{\text{Examples of ionic equations}}{2\text{Fe}^{2+} + \text{S}_2\text{O}_8^{2-}} \xrightarrow{2} 2\text{Fe}^{3+} + 2\text{SO}_4^{2-}$	(2)
	• ionic equation involving iron(III) (1)	$2Fe^{3+} + 2I^{-} \rightarrow 2Fe^{2+} + I_{2}$	
		Award (1) for balanced equations given in reverse order	
		Allow (1) for two unbalanced equations with all species paired correctly Ignore state symbols even if incorrect	

Question Number	Answer	Additional Guidance	Mark	
19(c)(i)	An explanation that makes reference to the following points:			(2)
	• because it forms one dative (covalent) / co-ordinate bond (to Fe ²⁺)	(1)	Allow 'a dative/co-ordinate bond'	
	• using a lone pair (of electrons) on oxygen	(1)	Allow oxygen donates a pair of electrons Ignore water uses a lone pair of electrons	

Question Number	Answer		Additional Guidance	Mark
19(c)(ii)	An explanation that makes reference to the following points:			(2)
	octahedral because there are six pairs of electrons	(1)	Allow this shown on a diagram Allow octahedral because there are 6 coordinate bonds/coordination number is 6 Ignore just octahedral because there are 6 ligands	
			Do not award if bond angle other than 90° / 90° and 180° stated	
	which are as far apart as possible to minimise repulsion	(1)	Allow repel/arrange/shape to maximum separation	
			Do not allow repulsion between atoms or water molecules or ligands	

Question Number	Answer		Additional Guidance	Mark
19(d)	An explanation that makes reference to the following points:			(2)
	carbon monoxide replaces / takes the place of the oxygen molecule / ligand	(1)	Accept ligand substitution / exchange reaction between oxygen and carbon monoxide COMMENT The question refers to oxygen being carried around and so there needs to be explicit reference and not just implied that to it being replaced/substituted or its place being taken	
	• (and it may be toxic) because it binds strongly to the Fe ²⁺ ion	(1)	Allow carbon monoxide forms a stronger bond to Fe ²⁺ (than oxygen) Allow carbon monoxide binds (almost) irreversible / permanently to Fe ²⁺ Allow carbon monoxide forms a more stable	
			complex ion with Fe ²⁺ / the complex formed has a larger equilibrium constant	
			Allow prevents / reduces the amount of oxygen being carried to the cells / organs / around the body / blood – scores M2 not M1	
			Allow just carbon monoxide binds more strongly to haemoglobin/globin	

Question Number	Answer		Additional Guidance	Mark
Number 19(e)	 An explanation that makes reference to the following points: there are more particles / moles on the right (of the equation or there is an increase from 3 particles / moles / species on the left of the equation to 5 on the right so ΔS_{system} increases / is positive (and the reaction is thermodynamically feasible) 	(1) (1)	Allow species for particles Do not award reference to molecules / atoms /compounds Do not award incorrect numbers Allow ΔS_{total} is positive / increasing (and the reaction is thermodynamically feasible) Allow there is an increase in entropy (and the reaction is thermodynamically feasible) Ignore references to increases in disorder	(2)

Question Number	Answer		Additional Guidance	Mark
19(f)	• (M1) calculation of concentration of $Cr_2O_7^{2-}$ in mol dm ⁻³	(1)	Example of calculation Conc $Cr_2O_7^2 = \underline{2.56} = 0.011852 / 1.1852 \times 10^{-2} \text{ (mol dm}^{-3)}$ 216	(5)
	• (M2) calculation of mol Cr ₂ O ₇ ²⁻ in 22.55 cm ³	(1)	Mol Cr ₂ O ₇ ²⁻ = $\frac{0.011852 \times 22.55}{1000}$ = $0.00026726 / 2.6726 \times 10^{-4}$ (mol)	
	• (M3) calculation of mol Fe ²⁺ in 25.0 cm ³	(1)	Mol Fe ²⁺ = $0.00026726 \times 6 = 0.0016036 / 1.6036 \times 10^{-3}$ (mol)	
	• (M4) calculation of mass of Fe ²⁺ in 1 dm ³	(1)	Mass Fe ²⁺ = $0.0016036 \times 1000 \times 55.8 = 3.5791$ (g) 25.0 Allow 3.5921 (g) using 56 as A_r for Fe	
	• (M5) calculation of percentage of Fe ³⁺	(1)	Mass Fe ³⁺ = $6.28 - 3.5791 = 2.7009$ (g) and % of Fe ³⁺ = $2.7009 \times 100 = 43.007 / 43.0$ (%) 6.28 Allow 42.8% using 56 as A_r for Fe Allow TE at each stage Ignore SF except 1 SF Do not award M5 if %>100 Correct answer with some working scores (5)	
			See second page for alternative method	

	1 .	. •	.1 1	1
	Itarn	011170	method	ı
$\overline{}$	пспп	alive	THEILIOU	П

• (M1) mass of $Cr_2O_7^{2-}$ in 22.55 cm³

(1)

(1)

(1)

(1)

• (M2) calculation of mol Cr₂O₇²⁻ in 22.55 cm³

• (M3)calculation of mol Fe²⁺ in 25.0 cm³

(M4) calculation of mass of Fe²⁺ in 25.0 cm³
 and calculation of total mass of (Fe²⁺ + Fe³⁺)

• (M5) calculation of percentage of Fe³⁺

Example of calculation Mass $(Cr_2O_7^{2-}) = \underline{2.56 \times 22.55} = 0.057728$ (g) 1000

Mol (Cr₂O₇²⁻) = $\frac{0.057728}{216}$ = 0.00026726 /2.6726 × 10⁻⁴ (mol)

Mol Fe²⁺ = $0.00026726 \times 6 = 0.0016036 / 1.6036 \times 10^{-3}$ (mol)

Mass $Fe^{2+} = 0.0016036 \times 55.8 = 0.089481$ (g) and Mass $(Fe^{2+} + Fe^{3+}) = \underline{6.28 \times 25.0}_{1000} = 0.157$ (g)

Mass $Fe^{3+} = 0.157 - 0.089481 = 0.067519$ (g) **and**% of $Fe^{3+} = 0.067519 \times 100 = 43.0/43$ (%) 0.157

(Total for Question 19 = 18 marks)

Question Number	Answer	Additional Guidance	Mark
20(a)(i)	• equation for the formation of the electrophile (1	See examples of mechanism on next page $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	(4)
	• curly arrow within the circle/hexagon to anywhere towards or on Br ⁺	Do not award curly arrow starting on or outside the hexagon Do not award missing \pm/δ^+ on electrophile Do not award curly arrow to a lone pair of electrons on Br ⁺	
	• intermediate structure including charge with horseshoe covering at least 3 carbon atoms and facing the tetrahedral carbon atom and some part of the positive charge must be within the horseshoe	Do not award dotted bonds to H and Br unless they are part of a 3D structure	
	• curly arrow from C–H bond to anywhere in the hexagon, reforming the delocalised structure	Ignore missing H^+ / involvement of FeBr $_4^-$ in removal of H^+ Ignore reformation of the catalyst even if incorrect	

Examples of mechanism

Or

Question Number	Acceptal	ble Answe	ers		Additional Guidance	Mark
20(a)(ii)*	structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content.				Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points	(6)
					that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	
			narks awarded for			
	-	indicative m	arking points		In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for	
	5–4		4 3		reasoning, and 0, 1 or 2 indicative points would score zero marks for	
	3–2		2		reasoning.	
	1		1			
	0		0		General points to note If there is any incorrect chemistry, deduct mark(s) from the reasoning.	
	The following table shows how the marks should be awarded for structure and lines of reasoning.				If no reasoning mark(s) awarded do not deduct mark(s).	
			Number of marks awarded for struct answer and sustain line of reasoning	ure of		
	Answer shows a coherent and logic		2			
	structure with linkages and fully su		2		A	
	lines of reasoning demonstrated thr Answer is partially structured with linkages and lines of reasoning.		1		Accept structures for names throughout If name and formula given both must be correct	
	Answer has no linkages between points and is unstructured.			Deduct a reasoning mark if there is no comparison given for IP1 to IP3		
	Comment: Look for the indicative marking points first, then consider the mark for structure of answer and sustained line of reasoning			for	Do not penalise unbalanced / incomplete equations Deduct (mark) from reasoning if any products given are incorrect	

Indicative content

• IP1 – Similarity

All are attacked by / react with electrophiles

• IP2 – Types of reaction

Cyclohexene undergoes addition reactions but benzene and/or phenol undergo substitution reactions

• IP3 – Conditions

Cyclohexene and/or phenol react with (aqueous) bromine / without a catalyst **and** benzene needs (a Friedel-Crafts catalyst / iron / iron(III) bromide)

• IP4 – Benzene

Benzene has delocalised electrons and is (kinetically) stable so the reaction has a high activation energy

• IP5 – Cyclohexene

Cyclohexene has **localised** electron density in one π bond (which increases the electron density and makes it more susceptible to electrophilic attack)

• IP6 - Phenol

Phenol has a **lone pair** of electrons on the oxygen which is delocalised (within the ring)

and

makes it more susceptible to electrophilic attack

All three need to be mentioned for this IP – evidence for phenol reacting with an electrophile may be seen in IP6

Accept benzene forms monobromo product / bromobenzene, cyclohexene forms dibromo product / 1,2-dibromocyclohexane **and** phenol forms tribromo product / 2, 4, 6-tribromophenol

Allow HBr is produced with benzene and phenol but cyclohexene only forms one product

Allow react under normal laboratory conditions / room temperature and pressure

Allow reference to AlBr₃/AlCl₃

This IP can be awarded if benzene equation has catalyst **and** other equation(s) do not

Ignore references to specific temperatures

Allow delocalised (π) electron ring in benzene is (very) stable

Allow delocalisation of electrons in π bonds which decreases the electron density (of the ring) and makes it less susceptible to electrophilic attack

If neither IP4 or IP5 awarded then allow (1) for benzene has delocalised **electrons** but cyclohexene does not

Allow the **lone pair** (of electrons) on the oxygen/OH in phenol

and increases the electron density of the (benzene) ring/overlaps with the delocalised ring

Question Number	Answer		Additional Guidance	Mark
20(b)	An answer that makes reference to the following points:		Allow displayed / structural / skeletal formulae or any combination of these	(7)
			Ignore any references to heat/incorrect inorganic products	
	• (M1) reagent for step 1 - magnesium and (dry) ether (reacting with bromobenzene)	(1)	Examples of structures of intermediates: Do not award	
	• (M2) first intermediate – phenyl magnesium bromide	(1)	Br Mg	
	• (M3) reagent for step 2 – phenyl magnesium bromide with carbon dioxide / CO ₂ and (followed by hydrolysis with) dilute acid / H ⁺ or methanal and dilute acid / H ⁺ then oxidation	(1)	Allow (1) for M3 for the acid hydrolysis of benzonitrile	
	• (M4) second intermediate – benzoic acid	(1)		
	• (M5) reagent for step 3 – phosphorus(V) chloride / PCl ₅	(1)(1)	Allow thionyl chloride/SOCl ₂	
	• (M6) third intermediate – benzoyl chloride		C CI	
	•(M7) reagent for step 4 – ammonia / NH ₃ added to an acyl chloride	(1)	Do not award dilute ammonia or ammonia added to benzoic acid M4 to M7 from scheme above can be awarded from benzoic acid however produced	

Question Number	Answer	Additional Guidance	Mark
20(c)(i)		Accept skeletal/displayed/structural formulae or combination thereof provided it is correct	(1)
	• repeat unit	Example of repeat unit:	
		$-\underset{H}{\overset{N}{-}}(CH_2)_6 - \underset{H}{\overset{O}{-}} \overset{O}{\underset{C}{-}} \overset{O}{\underset{C}{-}} \overset{O}{\underset{C}{-}} \overset{O}{\underset{C}{-}}$	
		Accept switching of monomer positions, e.g. O C N (CH ₂) ₆ N H	
		Allow amide link to be drawn as CONH/ – NH – CO – Allow 'cis' orientation of amide link	
		Ignore bond lengths and bond angles Ignore brackets around repeat unit and n Ignore byproducts such as HCl	
		Do not award additional incomplete repeat units	
		Do not award hydrogen drawn with two single bonds, e.g. $-N-H-CO$ Do not award missing continuation/extension bonds	

Question Number	Answer		Additional Guidance	Mark
20(c)(ii)	 An answer that makes reference to the following point: because there is hydrogen bonding (and London forces between the chains) in a polyamide 	(1)	Reference to breaking of covalent bonds scores (0) Ignore references to (permanent) dipole forces Allow 'it' for the polyamide since it is the subject of the question, so "it has hydrogen bonding" scores M1	(2)
	• (and this is) stronger than the London forces between		Do not award if hydrogen bonding to water stated Do not award if hydrogen bonding shown by CH ₂ Do not award if ionic bonding or ions referred to Accept dispersion forces / attractions between	
	the chains in polyalkenes (so more energy is needed to separate the polyamide molecules) or the London forces between the chains in polyalkenes are weaker (than hydrogen bonding so more energy is		temporary and induced dipoles for London forces Allow van der Waals' forces for London forces Allow London forces in polyalkenes are easier to overcome (than hydrogen bonding)	
	needed to separate the polyamide molecules)	(1)	Note that M2 is awarded for a comparison of the weakness of London forces to the strength of hydrogen bonding. Hence M2 is dependent on M1 or near-miss	

(Total for Question 20 = 20 marks) (Total for Section B = 51 marks)

Section C

Question Number	Answer	Additional Guidance	Mark
21(a)	2-hydroxybenzoic acid	Accept 2-hydroxybenzenecarboxylic acid Allow minor misspellings such as 2-hydroxylbenzenoic acid	(1)
		Ignore missing hyphen or comma instead of hyphen	

Question Number	Answer	Additional Guidance	Mark
21(b)(i)	• carboxylic acid and ester and benzene / arene	Accept names given in any order	(1)
		Allow just 'carboxyl' for carboxylic acid Allow just 'carboxylic'	
		Allow phen y l for benzene/arene Allow aromatic ring for benzene/arene	
		Ignore formulae of groups	
		Do not award phenol Do not award carbo n yl	

Question Number	Answer	Additional Guidance	Mark
21(b)(ii)		Example of equation:	(1)
	• correct equation	COOH + (CH ₃ CO) ₂ O - + CH ₃ COOH OCOCH ₃	
		Accept displayed / skeletal formulae	
		Allow use of C ₆ H ₄ for the benzene ring	
		Do not award molecular formulae	

Question Number	Answer		Additional Guidance	Mark
21(b)(iii)	calculation of amount of salicylic acid	(1)	Example of calculation: mol salicylic acid used = $\frac{2.00}{138}$ = 0.014493 (mol)	(3)
	calculation of theoretical mass of acetyl salicylic acid	(1)	theoretical mass of acetyl salicylic acid = 0.014493 × 180 = 2.6087 (g) TE on M1	
	calculation of actual mass of acetyl salicylic acid	(1)	actual mass of acetyl salicylic acid = $\underline{2.6087 \times 74.8} = 1.9513$ (g) TE on M2 provided answer ≤ 5.00 (g)	
			OR mass salicylic acid converted = $2.00 \times 0.748 = 1.496$ (g) (1) mol salicylic acid converted = $\frac{1.496}{138} = 0.01084$ (mol) (1) $\frac{138}{138}$ mass acetyl salicylic acid formed = 0.01084×180 = 1.9513 (g)	
			Ignore SF except 1 SF Correct answer scores without working scores (3)	

Question Number	Answer	Additional Guidance	Mark
21(c)(i)	completed equation	Example of equation: $ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	(1)

Question Number	Answer	Additional Guidance	Mark	
21(c)(ii)	An explanation that makes reference to the following points:		Penalise reference to change in K_a once only	(3)
	acetylsalicylic acid will dissociate less in acidic solution or		Allow reference to the stomach for 'acidic solution'	
	acetylsalicylic acid dissociate more in alkaline solution	(1)	Allow reference to small intestine for 'alkaline' If both stated then both must be correct	
	• because the additional H ⁺ / H ₃ O ⁺ ions in the acid will shift the equilibrium position to the left	(1)	Allow the backward reaction is favoured by the additional/higher H^+/H_3O^+ ions in the acid	
	• and OH ⁻ / hydroxide ions in the alkali will <u>react</u> with the H ⁺ ions and shift the equilibrium position to the right	(1)	Accept $H^+ + OH^- \rightarrow H_2O$ and this shifts the equilibrium position to the right	
			Allow $-COOH + OH^- \rightarrow -COO^- + H_2O$ Or carboxylic acid group reacts with /neutralises the OH^-	
			and this shifts the equilibrium position to the right/favours the forward reaction	

Question Number	Answer	Additional Guidance	Mark
21(d)	d 1/GH OH	Allow displayed formula / combination of structural and displayed formula	(1)
	• methanol / CH ₃ OH	If name and formula are given then both must be correct Allow methyl alcohol	
		Ignore reference to acid catalyst/ H ₂ SO ₄ / HCl/ heat	
		Do not award methanal	
		Do not award CH ₄ O	

Question Number	Answer			Additional Guidance				
21(e)			Example of	table:				(2)
	• chemical shift ranges for OH and CH ₃ in	/43		Acetylsal	icylic acid	Methyl s	salicylate	
	acetylsalicylic acid	(1)	Type of proton	ОН	CH ₃	ОН	CH ₃	
	• chemical shift ranges for OH and CH ₃ in methyl salicylate	(1)	Chemical shift / ppm	10.0 – 12.0	1.6 – 2.8	3.8 – 7.6	2.8 – 4.3	
			Allow range Allow any r				2	
			If no other mark is awarded, allow (1) for any two correct ranges If no other mark awarded, allow (1) for any three single values within the correct ranges or two single values with one acceptable range					

Question Number		Answer		Additional Guidance	Mark
21(f)	•	(M1) calculation of mol NaOH added at start	(1)	Example of calculation: mol NaOH = $\underline{25.0 \times 1.00} = 0.025 / 2.5 \times 10^{-2}$ (mol) $\underline{1000}$	(6)
	•	(M2) calculation of mol HCl used in titration	(1)	mol HC1 = $\underline{16.95 \times 0.100}$ = 0.001695 / 1.695 × 10 ⁻³ (mol) 1000	
	•	(M3) calculation of mol NaOH remaining in 250 cm ³	(1)	(mol NaOH remaining in 25.0 cm ³ = $0.001695 / 1.695 \times 10^{-3}$ (mol)) mol NaOH remaining in 250 cm ³ = $0.01695 / 1.695 \times 10^{-2}$ (mol)	
	•	(M4) calculation of mol acetylsalicylic acid reacted	(1)	mol NaOH = $0.025 - 0.01695 = 0.00805 / 8.05 \times 10^{-3}$ (mol) mol acetylsalicylic acid = $0.00805 = 0.004025$	
	•	(M5) calculation of acetylsalicylic acid mass	(1)	mass acetylsalicylic acid = $0.004025 \times 180 = 0.7245$ (g)	
	•	(M6) calculation of percentage of acetylsalicylic acid and deduction of Brand of tablet	(1)	percentage of acetylsalicylic acid = $\frac{0.7245 \times 100}{0.760}$ = 95.329 (%) and Brand B	
				Allow TE at each stage Brand / percentage with no working scores (0)	
				Ignore SF except 1 SF in the final mass calculated Ignore incorrect intermediate units	
				Do not credit a division of moles by 2 if carried out before the subtraction	

(Total for Question 21 = 19 marks) (Total for Section C = 19 marks) (Total for Paper = 90 marks)