

Oct 09, 2024

Protocols for stereotaxic injections into mouse brain and ex-vivo electrophysiology

DOI

dx.doi.org/10.17504/protocols.io.n2bvjn7qpgk5/v1

Jyoti Gupta¹, Michael J. Higley¹

¹Yale University

ASAP Collaborative Rese...

Team Biederer

Maria Matos

Yale University

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.n2bvjn7qpgk5/v1

Protocol Citation: Jyoti Gupta, Michael J. Higley 2024. Protocols for stereotaxic injections into mouse brain and ex-vivo electrophysiology. **protocols.io** https://dx.doi.org/10.17504/protocols.io.n2bvjn7qpgk5/v1

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working
We use this protocol and it's

working

Created: September 23, 2024

Last Modified: October 09, 2024

Protocol Integer ID: 109187

Keywords: ASAPCRN

Funders Acknowledgement:

ASAP

Grant ID: ASAP-020616

Abstract

This protocol describes the method for injection of α -Synuclin PFF and monomer into the mouse brain. The second part of the protocol describes preparation of acute slices from these mice and whole-cell patch clamp recordings.

Materials

Oxygenated (95% O₂/5% CO₂) ice-cold choline artificial cerebrospinal fluid (Choline ACSF) containing (in mM):

A	В
choline	110
NaHCO3	25
NaH2PO4	1.25
KCI	2.5
MgCl2	7
CaCl2	0.5
glucose	20
sodium ascorbate	11.6
sodium pyruvate	3.1

ACSF (32 °C) containing (in mM):

A	В
NaCl	127
NaHCO3	25
NaH2P04	1.25
KCI	2.5
MgCl2	1
CaCl2	2
glucose bubbled with 95% O2/5% CO2	20

Backfill glass electrodes (3-3.5 $M\Omega$) with an internal solution containing (in mM):

A	В
cesium gluconate	126
HEPES	10
sodium phosphocreatine	10
magnesium chloride	4
Na2ATP	4
Na2GTP	0.4
EGTA (pH 7.3 with cesium hydroxide)	1

Protocol for stereotaxic injections

- 1 Anesthetize the mouse with isoflurane by placing in the anesthesia chamber.
- 2 Place the anesthetized mouse in the stereotaxic frame and continually maintain isoflurane anesthesia using a vaporizer (Harvard Apparatus).
- 3 Locate the injection sites relative to bregma and make holes into the skull using a drill.
- 4 Lower the injection pipette into the brain at the predetermined coordinates. Perform the injection at a rate of 20 nL/s using a Nanoject III microinjector (Drummond Scientific).

- A
- Following the injection, leave the pipette in place for 10 minutes to prevent backflow while withdrawing.

- 6 Seal the incisions with sutures and allow the mice to recover on a heating pad until conscious.
- 7 Continue to monitor the mice and administer the post-operative analgesia.

Protocol for acute slice preparation and electrophysiology

- 8 Anesthetize the mouse with isoflurane.
- 9 Transcardially perfuse the anesthetized mouse with oxygenated (95% $O_2/5\%$ CO_2) ice-cold choline artificial cerebrospinal fluid (Choline ACSF) containing (in mM):

	A	В
	choline	110
	NaHCO3	25
	NaH2PO4	1.25
	KCI	2.5
	MgCl2	7
_	CaCl2	0.5

A	В
glucose	20
sodium ascorbate	11.6
sodium pyruvate	3.1

- 10 Decapitated the mouse and quickly remove the brain.
- 11 Mount the brain in the vibratome and cut 300 µm thick slices in the coronal plane.
- 12 Transfer the slices to warm ACSF (\$\ 32 \ C) containing (in mM):

A	В
NaCl	127
NaHCO3	25
NaH2PO4	1.25
KCI	2.5
MgCl2	1
CaCl2	2
glucose bubbled with 95% O2/5% CO2	20

13 After incubating at 32 °C for 00:30:00 , transfer the slices to Room temperature (RT).

30m

- 14 Transfer the slices to the slice chamber that is perfused with oxygenated ACSF.
- 15 Identify layer 2/3 pyramidal cells in the primary somatosensory cortex.
- 16 Backfill glass electrodes (3-3.5 $M\Omega$) with an internal solution containing (in mM):

A	В
cesium gluconate	126

A	В
HEPES	10
sodium phosphocreatine	10
magnesium chloride	4
Na2ATP	4
Na2GTP	0.4
EGTA (pH 7.3 with cesium hydroxide)	1

- 17 Add [M] 1 micromolar (µM) tetrodotoxin to the bath to record miniature postsynaptic currents.
- 18 Voltage-clamp the cells at -70mV to record miniature excitatory postsynaptic currents (mEPSCs) and at 0mV to record miniature inhibitory postsynaptic currents (mIPSCs).

Note

All protocols were carried out in accordance with Yale IACUC guidelines.