Aula 7: Sistemas Operacionais

Professor(a): Virgínia Fernandes Mota

OCS (TEORIA) - SETOR DE INFORMÁTICA

Introdução

- Sistema computacional: conjunto de recursos computacionais, parte hardware e parte software
- Essencialmente, um sistema computacional consiste em:
 - hardware;
 - programas do sistema;
 - programas de aplicação.

Por que?

- Sistemas de computadores modernos são compostos por diversos dispositivos:
 - Processadores:
 - Memória;
 - Controladoras;
 - Monitor:
 - Teclado;
 - Mouse;
 - Impressoras;
 - Etc...
- → ALTA COMPLEXIDADE

Por que?

- Com tantos dispositivos, surge a necessidade de gerenciamento e manipulação desses diversos dispositivos → Tarefa difícil
- Solução: Sistema Operacional

O que é um Sistema Operacional (SO)?

- Software responsável por gerenciar dispositivos que compõem um sistema computacional e realizar a interação entre o usuário e esses dispositivos;
- Hardware: Processador; Memória Principal; Dispositivos de Entrada/Saída;
- Software: Programas de Aplicação; Programas do Sistema;

O que é um SO?

- Sistema Operacional: software que controla os recursos do sistema computacional e oferece ao usuário uma interface para interagir com cada um destes recursos
- Estrutura em níveis de um SO

Sistema bancário	Reserva de passagens aéreas	Visualizador Web	Programas de aplicação
Compiladores	Editores	Interpretador de comandos	Programas do sistema
Sistema operacional			do sistema
Linguagem de máquina			
Microarquitetura			- Hardware
Dispositivos físicos			

O que é um SO?

- É uma máquina estendida (abordagem topdown, "abstração do todo para as partes")
 - Oculta os detalhes complicados que têm quer ser executados
 - Apresenta ao usuário uma máquina virtual, mais fácil de usar
- É um gerenciador de recursos (abordagem bottom-up "abstração das partes para o todo")
 - Gerencia todas as partes de um sistema complexo
 - Cada programa tem um tempo com o recurso
 - Cada programa tem um espaço no recurso

Sistema Operacional como Máquina Estendida

- Ex.: como é feita a entrada/saída de um disco flexível tarefa:
 Leitura e Escrita
 - SO: baixo nível de detalhes
 - Número de parâmetros;
 - Endereço de bloco a ser lido;
 - Endereço de bloco a ser lido;
 - Número de setores por trilha;
 - Modo de gravação;
 - Usuário: alto nível abstração simples
 - Visualização do arquivo a ser lido e escrito;
 - Arquivo é lido e escrito;
 - Arquivo é fechado.

Sistema Operacional como Gerenciador de Recursos

- Gerenciar todos os dispositivos e recursos disponíveis no computador
 - Ex.: se dois processos querem acessar um mesmo recurso, por exemplo, uma impressora, o SO é responsável por estabelecer uma ordem para que ambos os processos possam realizar sua tarefa de utilizar a impressora.
 - Uso do HD:
 - Uso da memória;
- Coordena a alocação controlada e ordenada dos recursos;

Objetivos de um Sistema Operacional

- Apresentar ao usuário do computador uma forma amena de utilizar a máquina. Criar uma máquina virtual, de fácil compreensão para o usuário, com características características diferentes diferentes da máquina física;
- Realizar o melhor uso possível do hardware disponível, aumentando o desempenho do sistema e diminuindo o custo.

Histórico de Evolução do SO

- Meados do século XIX: Charles Babbage (1792-1871), por volta de 1833, projetou o primeiro computador. No entanto, a pouca tecnologia da época não permitiu que o projeto tivesse sucesso.
- Máquina análitica
 - Não tinha um SO;
 - Percebeu que precisava de um software que possibilitasse seu uso;
 - Contratou Ada Lovelace, que se tornou a primeira programadora.

- Primeira Geração (1940-1955): Válvulas
- 1940: John von Neumann cria o primeiro computador digital (ainda primitivo. baseado em válvulas)
- Máquinas enormes que ocupavam salas imensas;
- Dezenas de milhares de válvulas 20.000
- Não existiam ainda os conceitos de sistema operacional e linguagem de programação de alto nível;

- Mesmo grupo de pessoas projetava, construía, programava, operava e fazia a manutenção de cada máquina;
- O acesso às máquinas era feito por meio de reserva de tempo: cada usuário fazia sua programação de tempo diretamente nos painéis das máquinas

 — "hardwired";
- Praticamente todos os problemas submetidos eram cálculos numéricos diretos (tabelas de seno, logaritmos, etc);

- Final dos anos 40: primeiro computador eletrônico → ENIAC
- 1950: surgem os cartões perfurados
- Os programas eram codificados nos cartões e sua leitura era feita por máquina (operadores de máquina);
- John von Neumann propõe uma programação não "hardwired"→ nasce o Assembler/Assembly;

- Segunda Geração (1955-1965) Transistores e Sistemas em Batch
- O desenvolvimento dos transistores tornou o computador mais confiável possibilitando sua comercialização - Mainframes;
- Separação entre projetistas, fabricante, programadores e técnicos de manutenção;
- No entanto, devido aos altos custos, poucos tinham acesso a essa tecnologia - somente grandes empresas, órgãos governamentais ou universidades;

- Surge a idéia de linguagem de programação de alto nível -Fortran (desenvolvida pela IBM - 1954-1957);
- Cartões perfurados ainda são utilizados
 - Operação: cada programa (job) ou conjunto de programas escrito e perfurado por um programador era entregue ao operador da máquina para que o mesmo fosse processado alto custo
- Sistemas em Batch (lote)
 - Consistia em coletar um conjunto de jobs e fazer a gravação desse conjunto para uma fita magnética

- Antigo sistema em batch (lote):
 - traz os cartões para o 1401;
 - lê os cartões para a fita;
 - coloca a fita no 7094 que executa o processamento;
 - coloca a fita no 1401 que imprime a saída.

FMS (Fortran Monitor System)
Processamento: IBSYS – SO IBM para o 7094

- Terceira Geração (1965-1980) Circuitos integrados e Multiprogramação
- Máquinas imensas e poderosas orientadas a palavra (7094) x
 Máquinas comerciais orientadas a caracter (1401)
- Alta carga de desenvolvimento e manutenção
- IBM introduz o System/360

- System/360: Série de máquinas com software compatível;
- Essas máquinas diferiam apenas no preço e desempenho, variando da 1401 até a 7094;
- Foi a primeira a usar circuito integrado em pequena escala, ao invés de transistores;
- O sistema operacional era o OS/360
 - Sua maior vantagem era também sua maior fraqueza: SO enorme e muito complexo, pois precisava realizar as funções de todas as máquinas → ineficiente, cheio de erros (milhões de linhas de código assembly escritas por milhares de programadores = milhares de erros)

- Aplicações que eram CPU-bound não tinham problema com relação ao tempo que se precisava esperar para realizar E/S
- Aplicações que eram IO-bound gastavam de 80 a 90% do tempo realizando E/S
 - Enquanto isso, a CPU ficava parada
 - Solução: Multiprogramação

- Multiprogramação
- Dividir a memória em diversas partes e alocar a cada uma dessas partes um job.
- Manter na memória simultaneamente uma quantidade de jobs suficientes para ocupar 100% do tempo do processador, diminuindo a ociosidade.
- Importante: o hardware é que protegia cada um dos jobs contra acesso indevidos de outros jobs.

- Spooling (Simultaneous Peripheral Operation On Line)
- Possibilitar que a leitura de cartões de jobs fosse feita direta do disco;
- Assim que um job terminava, o sistema operacional já alocava o novo job à uma partição livre da memória direto do disco;
- Eliminação de máquinas como as 1401 e a necessidade de se ficar andando entre as máquinas

- Mesmo com o surgimento de novas tecnologias, o tempo de processamento ainda era algo crítico. Para corrigir um erro de programação, por exemplo, o programador poderia levar horas pois cada job era tratado dentro de um lote
- Timesharing

- Timesharing: cada usuário tinha um terminal on-line à disposição;
- Primeiro sistema Timesharing: CTSS (Compatible Time Sharing System) - 7094 modificado.
- Ex.: se 20 usuários estão ativos e 17 estão ausentes, o processador é alocado a cada um dos 3 jobs que estão sendo executados;

- Surge o MULTICS (Multiplexed Information and Computing Service), predecessor do UNIX;
 - Fruto de uma idéia do MIT, Bell Labs e General Electric, de desenvolver um computador que suportasse centenas de usuários simultâneos em timesharing
 - Codificado em PL/I, o que atrapalhou seu desenvolvimento (compilador fraco)
 - Apesar do fracasso comercial, teve enorme influência em SO's futuros
- Família de minicomputadores PDP da DEC;
 - Diferente da família System/360, eram incompatíveis;
 - Unix original rodava no PDP-7 (Ken Thompson cientista da Bell Labs)
 - O PDP-1 custava \$120 mil (5% do valor de um 7094) Tinha 4K palavras de 18 bits

- Quarta Geração (1980-1990) Computadores Pessoais
- Com a tecnologia de circuitos integrados de larga escala (LSI) surgem chips com milhares de transistores encapsulados em um centímetro quadrado de silício
 - Intel 8080 (1974)
 - IBM PC (início dos anos 80)
 - Apple Apple e Macintosh

- Intel 8080 CP/M da Digital Research Gary Kildall)
 - CP/M (Control Program for MicroComputer) sistema operacional baseado em disco;
- IBM PC DOS
 - Inicialmente, a IBM tentou utilizar o CP/M, mas Kildall não quis nenhum acordo;
 - IBM procurou Bill Gates pedindo um sistema operacional para rodar e ser vendido juntamente com o IBM PC;
 - Bill Gates comprou a empresa que desenvolvia o DOS (Disk Operating System): Seattle Computer Products; Desenvolvedor: Tim Paterson;

- Evolução do DOS → MS-DOS (MicroSoft DOS)
- Tanto o CP/M quanto o MS-DOS eram baseados em comandos;
- Macintosh Apple Sistemas baseados em janelas (GUI -Graphical User Interface)
- Microsoft Plataforma Windows

- Quinta Geração (1990 hoje)
- Era da computação distribuída: um processo é dividido em subprocessos que executam em sistemas multiprocessados e em redes de computadores ou até mesmo em sistemas virtualmente paralelos

- O protocolo de comunicações TCP/IP tornou-se largamente utilizado (Depto. de Defesa dos EUA) e as LANs (Local Area Networks) tornaram-se mais práticas e econômicas com o surgimento do padrão Ethernet, desenvolvido pela Xerox;
- Desenvolvimento e popularização do modelo cliente/servidor;
- Proliferação das redes de computadores → Internet

- Sistemas Operacionais Distribuídos: Apresenta-se como um sistema operacional centralizado, mas que, na realidade, tem suas funções executadas por um conjunto de máquinas independentes;
- Sistemas Operacionais em Rede: Usuários conhecem a localização dos recursos que estão utilizando e não têm a visão de um sistema centralizado
- Sistema Operacionais para dispositivos móveis: Execução de tarefas com economia de energia (baterias limitadas), aplicações voltadas principalmente para web

- Unix → Minix → Linux;
- Família Windows (NT, 95, 98, 2000, XP, Vista, 7, 8, 10);
- Apple iOS, Android, WinCE \rightarrow Win 7 \rightarrow Win8 \rightarrow Win10

SO em todos os lugares

- Sistemas operacionais de computadores de grande porte;
- Sistemas operacionais de servidores;
- Sistemas operacionais de multiprocessadores;
- Sistemas operacionais de computadores pessoais;
- Sistemas operacionais de tempo real;
- Sistemas operacionais embarcados;
- Sistemas operacionais de cartões inteligentes;
- Sistemas operacionais para dispositivos móveis.

Arquiteturas de SO

- Arquitetura Monolítica: Todos os componentes do SO estão contidos no núcleo, comunicando-se diretamente entre si;
 Rapidez na comunicação, mas complexidade no código.
- Arquitetura em Camadas: Componentes autocontidos, em camadas de componentes que realizam tarefas similares; Pior desempenho que a monolítica.
- Arquitetura de micronúcleo: Também é uma forma de arquitetura em camadas (modular); Somente uma pequena parte dos serviços pode acessar diretamente o hardware

Perguntinha da semana

 Para saber qual sistema operacional utilizar, diversos critérios devem ser considerados. Quais?

Próxima aula

Serviços do Sistema Operacional