| Course No. | Course Name         | L-T-P-Credits | Year of Introduction |
|------------|---------------------|---------------|----------------------|
| PH100      | ENGINEERING PHYSICS | 3-1-0-4       | 2016                 |

#### Course Objectives

Most of the engineering disciplines are rooted in Physics. In fact a good engineer is more or less an applied physicist. This course is designed to provide a bridge to the world of technology from the basics of science and to equip the students with skills in scientific inquiry, problem solving, and laboratory techniques.

### Syllabus

Harmonic Oscillations: Damped and Forced Harmonic Oscillations. Waves: One Dimensional and Three Dimensional waves, Interference: Interference in thin films (Reflected system) Diffraction: Fraunhofer and Fresnel Diffraction, Grating, Polarization of Light: Double refraction, production and detection of polarized light, Superconductivity: Properties and Applications. Quantum Mechanics: Schrodinger Equations- Formulation and Solution, Operators, Applications. Statistical Mechanics: Microstates and macro states Maxwell - Boltzmann, Bose-Einstein and Fermi Dirac statistics. Fermi level and its significance. Acoustics: Intensity of sound, Reverberation and design concepts, Ultrasonics: Production, Detection and Applications, NDT methods, Lasers: Properties, Working Principles, Practical Lasers. Photonics: Basics of Solid State lighting, Photo detectors, Solar Cells, Fiber Optics.

## Expected outcome

Familiarity with the principles of Physics and its significance in engineering systems and technological advances.

#### References:

- Aruldhas, G., Engineering Physics, PHI Ltd.
- Beiser, A., Concepts of Modern Physics, McGraw Hill India Ltd.
- Bhattacharya and Tandon, Engineering Physics, Oxford India
- Brijlal and Subramanyam, A Text Book of Optics, S. Chand & Co.
- Dominic and Nahari, A Text Book of Engineering Physics, Owl Books Publishers
- · Hecht, E., Optics, Pearson Education
- Mehta, N., Applied Physics for Engineers, PHI Ltd
- Palais, J. C., Fiber Optic Communications, Pearson Education
- Pandey, B. K. and Chathurvedi, S., Engineering Physics, Cengage Learning
- Philip, J., A Text Book of Engineering Physics, Educational Publishers
- Premlet, B., Engineering Physics, Mc GrawHill India Ltd
- Sarin, A. and Rewal, A., Engineering Physics, Wiley India Pvt Ltd
- Sears and Zemansky, University Physics, Pearson
- Vasudeva, A. S., A Text Book of Engineering Physics, S. Chand & Co

# Web:

www.physics.org

www.howstuffworks.com www.physics.about.com

| Module | APJ AB Contents L KALAM                                                                                                                                                                                                                                                                                                                       | Hours | Sem.<br>Exam<br>Marks |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|--|
| 1      | Harmonic Oscillations: Differential equation of damped harmonic oscillation, forced harmonic oscillation and their solutions- Resonance, Q factor, Sharpness of resonance- LCR circuit as an electrical analogue of Mechanical Oscillator (Qualitative)                                                                                       | 5 15% |                       |  |
|        | Waves: One dimensional wave - differential equation and solution. Three dimensional waves - Differential equation & its solution. (No derivation) Transverse vibrations of a stretched string.                                                                                                                                                | 4     |                       |  |
| п      | Interference: Coherence. Interference in thin films and wedge shaped films (Reflected system) Newton's rings-measurement of wavelength and refractive index of liquid Interference filters. Antireflection coating.                                                                                                                           | 5     |                       |  |
|        | Diffraction Fresnel and Fraunhofer diffraction. Fraunhofer diffraction at a single slit. Plane transmission grating. Grating equation - measurment of wavelength. Rayleigh's criterion for resolution of grating- Resolving power and dispersive power of grating.                                                                            | 4     | 15%                   |  |
|        | FIRST INTERNAL EXAM                                                                                                                                                                                                                                                                                                                           |       |                       |  |
| Ш      | Polarization of Light: Types of polarized light. Double refraction. Nicol<br>Prism, Quarter wave plate and half wave plate. Production and detection of<br>circularly and elliptically polarized light. Induced birefringence- Kerr Cell<br>- Polaroid & applications.                                                                        | 4     | 2007007               |  |
|        | Superconductivity: Superconducting phenomena. Meissner effect. Type-I and Type-II superconductors. BCS theory (qualitative). High temperature superconductors - Applications of superconductors.                                                                                                                                              | 5     | 15%                   |  |
| IV     | Quantum Mechanics: Uncertainty principle and its applications-<br>formulation of Time dependent and Time independent Schrödinger<br>equations- physical meaning of wave function- Energy and momentum<br>Operators-Eigen values and functions- One dimensional infinite square<br>well potential .Quantum mechanical Tunnelling (Qualitative) | 6     |                       |  |
|        | Statistical Mechanics: Macrostates and Microstates. Phase space. Basic postulates of Maxwell- Boltzmann, Bose-Einstein and Fermi Dirac                                                                                                                                                                                                        | 3     |                       |  |

|    | statistics, Distribution equations in the three cases (no derivation). Fermi<br>Level and its significance.                                                                                                                                                                                                                                                                                                                                                   |   |     |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|--|
|    | SECOND INTERNAL EXAM                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |     |  |
| V  | Acoustics: Intensity of sound- Loudness-Absorption coefficient - Reverberation and reverberation time- Significance of reverberation time- Sabine's formula (No derivation) -Factors affecting acoustics of a building.                                                                                                                                                                                                                                       | 3 | 3   |  |
|    | Ultrasonics: Production of ultrasonic waves - Magnetostriction effect and<br>Piezoelectric effect - Magnetostriction oscillator and Piezoelectric<br>oscillator - Detection of ultrasonics - Thermal and piezoelectric methods-<br>Applications of ultrasonics - NDT and medical.                                                                                                                                                                             | 4 | 20% |  |
| VI | Laser: Properties of Lasers, absorption, spontaneous and stimulated<br>emissions, Population inversion, Einstein's coefficients, Working principle<br>of laser, Optial resonant cavity. Ruby Laser, Helium-Neon Laser,<br>Semiconductor Laser (qualitative). Applications of laser, holography<br>(Recording and reconstruction)                                                                                                                              |   |     |  |
|    | Photonics: Basics of solid state lighting - LED - Photodetectors - photo voltaic cell, junction & avalanche photo diodes, photo transistors, thermal detectors, Solar cells- I-V characteristics - Optic fibre-Principle of propagation-numerical aperture-optic communication system (block diagram) - Industrial, medical and technological applications of optical fibre. Fibre optic sensors - Basics of Intensity modulated and phase modulated sensors. | 5 | 20% |  |
|    | END SEMESTER EXAM                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | -   |  |

