Sequential Circuit Design

Sequential Logic Design

Contents

- Why sequential logic?
- Flip-flop criteria table
- Sequential circuit analysis
- Sequential circuit design

Why Sequential Logic?

- Sequential circuit has additional dimension which is time
- Combinational logic only depends on current input
- Sequential circuit output depends on previous input other than current input
- More powerful than combination logic
- Able to model condition which can't be modeled by combinational logic

- Given sequential circuit diagram, behavioral analysis from state table and also state diagram
- Need state equations to get flip-flop input and output functions for circuit output other than flip-flop (if any)
- We use A(t) and A(t+1) to represent current condition and the next condition for flip-flop represented by A.
- Other method, we can use A and A⁺ to represent current condition and the following condition

Types of tables in sequential circuit

- Characteristic table
- Criteria Table
- State Table
- Excitation table

Q(t)	S	R	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	indeterminate
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	indeterminate

J	K	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q(t)	Toggle

	sent ate	Input		ext ate	F	lip-flo	p inpu	ts
A	8	X	A*	B°		KA		
0	0	0	0	0	0	X	0	Х
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

	sent ate	Input		ext ate	Output
A	В	X	A^{+}	B⁺	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Flip-flop Excitation Tables: Terminology (1)

- Analysis: Start from circuit diagram, build state table or state diagram
- Design: Start from specification set (i.e. in state equation form, state table or state diagram) build logic circuit.
- Criteria table is used in analysis
- Excitation tables is used in design

Sequential Circuit Analysis: Equations

Example 1: Find the input equation for flip-flops (using D flip-flop) and output equation

Sequential Circuit Analysis: Equations

Example 1 (using D flip-flop)

Sequential Circuit Analysis: State Table

 From the state equations and output function, we can derive state table which contains all combined binary available for current condition and input

State table

- The same as Truth Table
- Input and condition pad on the left
- Output and next condition on the right
- combined binary available for current condition and input
- M flip-flop and n input => 2^{m+n} line

State equation

Output function

$$A^+ = A.x + B.x$$
$$B^+ = A'.x$$

$$y = (A + B).x'$$

State table for circuit in Example 1

	sent ate	Input		ext ate	Output	FF I	nputs
A	В	X	A ⁺	B	У	DA	DB
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	1
0	1	0	0	0	1	0	0
0	1	1	1	1	0	1	1
1	0	0	0	0	1	0	0
1	0	1	1	0	0	1	0
1	1	0	0	0	1	0	0
1	1	1	1	0	0	1	0

	ent	Input		ext ate	Output			
Α	В	x	A ⁺	B	У			
0	0	0	0	0	0			
0	0	1	0	1	0			
0	1	0	0	0	1			
0	1	1	1	1	0			
1	0	0	0	0	1			
1	0	1	1	0	0	Other	mo	the
1	1	0	0	0	1	Other	IIIE	un
1_	1	11	1	0	0	20		
				61.	4 04 -4		3tm.	ıt
		Pre	sent	Ne	xt Stat	e (Dutpu	••
		10000000	sent ate	X=				=1
		St		200	0 x=	1 x=	=0 <i>x</i>	
		St	ate	x=	0 x=* 3* A*E	1 x=	=0 x	=1
		St	ate IB	X= A*E	0 x=' 3 A'E 0 01	1 x=3+ 1	0 x 0	=1 y
		St	ate B	A* E	0 x=' 3' A'E 0 01 0 11	1 x=3+ 1	=0 x= / .	=1 y 0

- From the truth table, we can draw state diagram
- State diagram
 - Each state is represented by circle
 - Each arrow (between two circle) represent transfer for sequential logic (i.e. line transition in truth table)
 - a/b label for each arrow where a represent inputs and b represent output for circuit in transition
- Each flip-flop value combination represent state.
 Therefore, m flip-flop=> until 2^m state.

Sequential Circuit Analysis: State Diagram

Present	Next	State	Out	put
State	x=0	x=1	x=0	χ=1
AB	A ⁺ B ⁺	A ⁺ B ⁺	У	У
00	00	01	0	0
01	00	11	1	0
10	00	10	1	0
11	00	10	1	0

State diagram for circuit in example 1

- Output of sequential circuit is function for current condition for flip-flop and input. This is explained using algebra by circuit output function
 - □ In example 1: y= (A+B)x'
- Circuit part that generate input to flip-flop is explained using algebra by flip-flop input functions

- Flip-flop input function determine next condition
- From flip-flop input function and criteria table for flip-flop, we get next condition of the flip-flop

 Example 2: Find flip-flop input equation in circuit with JK flip flop

- Example 2: Find flip-flop input equation in circuit with JK flip flop
- We use 2 character to represent flip-flop input: first character represent flip-flop input (J or K for JK flip-flop, S or R for SR flip-flop, D for D flip-flop, T for T flip-flop) and second character represent name of the flip-flop

$$JA = B.C'.x + B'.C.x'$$

$$KA = B + y$$

$$E'_{x}$$

$$E'_{x}$$

$$E'_{y}$$

$$E'_{x}$$

$$E'_{x}$$

$$E'_{y}$$

$$E'_{x}$$

$$E'_{y}$$

$$E'_{x}$$

$$E'_{y}$$

$$E'_{x}$$

$$E'_{y}$$

$$E'_{x}$$

$$E'_{x}$$

$$E'_{y}$$

$$E'_{x}$$

$$E'_{y}$$

$$E'_{x}$$

$$E'_{x}$$

$$E'_{y}$$

$$E'_{x}$$

$$E'_{x}$$

$$E'_{y}$$

$$E'_{x}$$

$$E'_{y}$$

$$E'_{x}$$

$$E'_{y}$$

$$E'_{x}$$

$$E'_{y}$$

$$E'_{x}$$

$$E'_{y}$$

 Given sequential circuit with two JK flip-flop, A and B and one input x

 Given sequential circuit with two JK flip-flop, A and B and one input x

Get the input flip-flop function from the circuit

$$JA = B$$

 $KA = B.x'$

$$JB = x'$$

 $KB = A'.x + A.x' = A \oplus x$

Input flip-flop function

$$JA = B$$
 $JB = x'$
 $KA = B.x'$ $K.B = A'.x + A.x' = A \oplus x$

 Fill the state table with the above function using criteria table for used flip-flop

J	K	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q(t)	Toggle

	sent ate	Input		ext ate	FI	ip-flo	p inpı	uts
Α	В	X	A^{+}	B+	JA	KA	JB	KB
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Draw state diagram from the state table

Flip-flop Excitation Tables: Terminology (2)

- Analysis: Start from circuit diagram, build state table or state diagram
- Design: Start from specification set (i.e. in state equation form, state table or state diagram) build logic circuit.
- Criteria table is used in analysis
- Excitation tables is used in design

Flip-flop Excitation Tables

 Excitation tables: it give transition characteristic between current condition and next condition to determine flip-flop input

How to build excitation table:

Example: JK Flip-Flop

Q	Q+	wi	ually nat pens	Com	nal bined sult		
		J	K	J	K	Q	Q
0	0	0	1	0		0	0
0	0	0	0	0	X	0	1
		1	0			1	0
0	1	1	1	1	X	1	1
4		0	1		4		JK
1	0	1	1	X	1		
4	4	0	0		0		
1	1	1	0	Х	0		

Designing Sequential Circuit

Design steps

- Step 1: Start with circuit specification characteristic of circuit
- Step 2: Build state table
- (Ignore) Do state reduction if needed (not in syllabus)
- (Ignore) Do state assignment (not in syllabus)
- Step 3: Determine number of flip-flop which will be used
- Step 4: Build circuit excitation and output table from state table
- Step 5: Build circuit output function and flip-flop input function
- Step 6: Draw logic diagram

Given state diagram as follows, get the sequential circuit using JK flip-flop

State/excitation table using JK flip-flop

Note: Step 1: Build state table Step 2: Find no. of Flip-Flop (i.e. 2^m states means m flip-flips) Step 3: Build **Excitation** table Step 4: Use K-map to find input functions **Step 5:** Design logic <u>diagram</u>

Block diagram

From state table, get input flip-flop function

Input flip-flop function

$$JA = B.x'$$
 $JB = x$
 $KA = B.x$ $KB = (A \oplus x)'$

Logic Diagram

 Design, using D flip-flop, circuit is based on state table below. (Exercise: How if using JK flip-flop)

	sent ate	Input		ate	Output
Α	В	X	A^{+}	B ⁺	У
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	0
1	1	1	0	0	0

Determine input expression for flip-flop and y

output

	sent ate	Input		ext ate	Output
4	В	X	A+	B+	У
0	0	0	0	0	0
	0	1	0	1	1
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	0
1	1	11	0	0	0
	DB(A, B, x) = A, B, x) = B, x) = 3	= Σ m	(1,3,	

From expression built, draw logic diagram

Introduction: Counters

- Counters are circuits that cycle through a specified number of states.
- Two types of counters:
 - synchronous (parallel) counters
 - asynchronous (ripple) counters
- Ripple counters allow some flip-flop outputs to be used as a source of clock for other flip-flops.
- Synchronous counters apply the same clock to all flip-flops.

Synchronous (Parallel) Counters

- Synchronous (parallel) counters: the flip-flops are clocked at the same time by a common clock pulse.
- We can design these counters using the sequential logic design process.
- Example: 2-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J,K inputs).

_	sent ate		ext ate	•	-flop uts
A_1	A_0	A_1^{\dagger}	A_0^{\dagger}	<i>TA</i> ₁	TA_0
0	0	0	1	0	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	0	0	1	1

Synchronous (Parallel) Counters

Example: 2-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J,K inputs).

Present state		Next state		Flip-flop inputs	
A ₁	A_0	A_1^{\dagger}	A_0^+	<i>TA</i> ₁	TA_0
0	0	0	1	0	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	0	0	1	1

$$TA_1 = A_0$$
 $TA_0 = 1$

Dracant

 Example: 3-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J, K inputs).

		:IIL		<u>state</u>			ip-iio nnute							
		state A ₁	A 0	$\overline{A_2}^+$	A_1^{\dagger}	A_0^+	TA ₂	nputs <i>TA</i> 1	TA_0					
	0	0	0	0	0	1	0	0	1	_				
	0	0	1	0	1	0	0	1	1					
	0	1	0	0	1	1	0	0	1					
	0	1	1	1	0	0	1	1	1					
	1	0	0	1	0	1	0	0	1					
	1	0	1	1	1	0	0	1	1					
	1	1	0	1	1	1	0	0	1					
	1	1	1	0	0	0	1	1	1					
			A_1	_			A_1			A_1				
_			1		_ [1 1			1 1 1 1				
$-\left\{ \left\lfloor {}\right. \right\}$	- 1				A_{2}					1 1 1				
		A_0					A_0			A_0				
	$T\Delta$:	= <i>A</i>	Δ		TA = A					TA = 1				

Flin-flon

 A_{2}

 Example: 3-bit synchronous binary counter (cont'd).

Note that in a binary counter, the nth bit (shown underlined) is always complemented whenever

$$011...11 \rightarrow 100...00$$

or $111...11 \rightarrow 000...00$

- Hence, X_n is complemented whenever $X_{n-1}X_{n-2} \dots X_1X_0 = 11 \dots 11.$
- As a result, if T flip-flops are used, then $TX_{n} = X_{n-1} \cdot X_{n-2} \cdot \dots \cdot X_{1} \cdot X_{n}$

Example: 4-bit synchronous binary counter.

$$TA_3 = A_2 \cdot A_1 \cdot A_0$$

 $TA_2 = A_1 \cdot A_0$
 $TA_1 = A_0$
 $TA_0 = 1$

SELF STUDY

Example: Synchronous decade/BCD counter.

Clock pulse	Q_3	Q_2	Q_1	Q_0
Initially	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10 (recycle)	0	0	0	0

$$T_0 = 1$$
 $T_1 = Q_3'.Q_0$
 $T_2 = Q_1.Q_0$
 $T_3 = Q_2.Q_1.Q_0 + Q_3.Q_0$

https://www.youtube.com/watch?v=fKVZpupyP_o&list=PLBInK6fEyqRj MH3mWf6kwqiTbT798eAOm&index=186

Example: Synchronous decade/BCD counter (cont'd).

$$T_0 = 1$$

 $T_1 = Q_3'.Q_0$
 $T_2 = Q_1.Q_0$
 $T_3 = Q_2.Q_1.Q_0 + Q_3.Q_0$

Up/Down Synchronous Counters

- Up/down synchronous counter: a bidirectional counter that is capable of counting either up or down.
- An input (control) line *Up/Down* (or simply *Up*) specifies the direction of counting.
 - ❖ *Up/Down* = 1 → Count upward
 - ◆ *Up/Down* = 0 \rightarrow Count downward

Up/Down Synchronous Counters

Example: A 3-bit up/down synchronous binary counter.

Clock pulse	Up	Q_2	Q ₁	Q_0	Down
0		0	0	0	₹5
1		0	0	1	√
2		0	1	0	√
3		0	1	1	★
4	<u> </u>	1	0	0	★
5	\	1	0	1	~
6	\	1	1	0	
7	<u>_</u>	1	1	1	24

$$TQ_0 = 1$$

 $TQ_1 = (Q_0.Up) + (Q_0'.Up')$
 $TQ_2 = (Q_0.Q_1.Up) + (Q_0'.Q_1'.Up')$

Up/Down Synchronous Counters

Example: A 3-bit up/down synchronous binary counter (cont'd).

$$TQ_0 = 1$$

 $TQ_1 = (Q_0.Up) + (Q_0'.Up')$
 $TQ_2 = (Q_0.Q_1.Up) + (Q_0'.Q_1'.Up')$

Implement the following counter using T FF 1->2->3->5->7->11->13->1

	A3	A2_	A.	A。	Ast	A2 [†]		Ao +	TA	TA2	TA	70
0	0	0	010	001	C-0.	000	.O. ,	21	. 0	. 0	0	IAO
1	0	0	O	ı	0	0	1	0	0	0	1	1
2	0	0	١	0	0	0	'	1 30	0	0	6	1
3	0	0	1	1 /	0	1	0	1.	0	1	1	0
4	0	1	0	0	0	0	0	1 ,	10	1	0	١
5	-CO.	7.4	0	110	AG O	-1	1	1 3511	0	0	1	0
6	0	1	41	0	0	0	0	-1- 0c	15 O	1	1-	1.
7	0	-1-	1	150	1	0	1	ા	1	1-	0	0
8	1	0	0	0	0	0	0	11	- A	0	0	1
9	ı	0	0		0	0	0	101-	1	0	0	O
10	N<1	0	.1.	0	Oi	00	σ	1	1 6	0	1	1
u	41	0	0	1	1	[0	1	0	ા	1	0
12	વ	1	Ö	0	0	0	0	1	1.1	T	0	f
13	11	1	0	1	0	0	0	1	3.1	1	0	0
14	P	ı	(I)	0	0	0	0	1	1	1	1	.1
15	1	1	1	- 1	0	0	0	4	101	1	11	0
* 1				- 1				1 17	IT .	e A	1	
7.		-33+				1 1	ć -	1-1/5	11 .	41		
								1			1887	

Implement the following counter using D FF
 Green->Yellow->Red->Yellow->Green

- Asynchronous counters: the flip-flops do not change states at exactly the same time as they do not have a common clock pulse.
- Also known as ripple counters, as the input clock pulse "ripples" through the counter – cumulative delay is a drawback.

This counter is also a frequency divider.

51

- Example: 2-bit ripple binary counter.
- Output of one flip-flop is connected to the clock input of the next more-significant flip-flop.

Timing diagram

$$00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00 \dots$$

Example: 3-bit ripple binary counter.

53

Example: 4-bit ripple binary counter (negative-edge triggered).

