Ответы к экзамену по курсу

"Методы Численного анализа" (1-ый семестр 2016/2017 учебного года, специальность "Информатика")

Содержание

1	Интерполяционный многочлен Лагранжа. Оценка погрешности	3
2	Оценка погрешности на равномерной сетке узлов	4
3	Разделённые разности и их свойства	5
4	Интерполяционный многочлен Ньютона	6
5	Конечные разности и их свойства	7
6	Интерполяционный многочлен Ньютона на равномерной сетке узлов	8
7	Многочлен Чебышева	9
8	Минимизация остатка интерполирования	10
9	Интерполирование с кратными узлами	11
10	Интерполяционный сплайн второго порядка	12
11	Интерполяционный кубический сплайн	13
12	Наилучшее приближение в линейном векторном пространстве	14
13	Наилучшее приближение в гильбертовом пространстве	15
14	Метод наименьших квадратов	16
15	Метод Пикара и метод рядов Тейлора 15.1 Метод Пикара 15.2 Метод рядов Тейлора	17 17 18
16	Методы Эйлера, трапеций, средней точки	19
17	Сходимость явного метода Эйлера	21
18	Методы последовательного повышения порядка точности	23
19	Методы Рунге-Кутта	25
20	Экстраполяционные методы Адамса	27
21	Интерполяционные методы Адамса	29
22	Усточивость линейных многошаговых методов	30
23	Простейшие разностные операторы	31
24	Основные понятия теории разностных схем	33
25	Интегро-интерполяционный метод	35
26	Разностные схемы повышенного порядка аппроксимации	36
27	Разностные схемы для уравнения Пуассона	37
28	Аппроксимация краевых условий 2-го и 3-го рода	38
29	Монотонные разностные схемы	39

30 Явная левостороняя схема для уравнения переноса	40
31 Неявная левостороняя схема для уравнения переноса	41
32 Начальная краевая задача для уравнения переноса	42
33 Явная схема для уравнения теплопроводности	43
34 Шеститочечная схема для уравнения теплопроводности	44

1. пока пусто

1 Интерполяционный многочлен Лагранжа. Оценка погрешности

Замечания:

1. пока пусто

2 Оценка погрешности на равномерной сетке узлов

Замечания:

1. пока пусто

3 Разделённые разности и их свойства

Замечания:

1. пока пусто

4 Интерполяционный многочлен Ньютона

Замечания:

1. пока пусто

5 Конечные разности и их свойства

Замечания:

1. пока пусто

6 Интерполяционный многочлен Ньютона на равномерной сетке узлов

Замечания:

1. пока пусто

7 Многочлен Чебышева

Замечания:

1. пока пусто

8 Минимизация остатка интерполирования

Замечания:

1. пока пусто

9 Интерполирование с кратными узлами

Замечания:

1. пока пусто

10 Интерполяционный сплайн второго порядка

Замечания:

1. пока пусто

11 Интерполяционный кубический сплайн

Замечания:

1. пока пусто

12 Наилучшее приближение в линейном векторном пространстве

Замечания:

1. пока пусто

13 Наилучшее приближение в гильбертовом пространстве

Замечания:

1. пока пусто

14 Метод наименьших квадратов

Если функция f(x) задана на конечном множестве узлов x_j , другими словами, f(x) - сеточная функция, то скалярное произведение определяется не интегралом, а суммой:

$$(f,g) = \sum_{i=1}^{m} \rho_i f_i g_i, f_i = f(x_i),$$
 (1)

 $\rho_i > 0$ — весовые коэффициенты.

Будем рассматривать полиномиальную аппроксимацию многочлена. Тогда базисные функции -

$$g_k(x) = x^k, k = \overline{0, n} \tag{2}$$

Если значения f задаются в (n+1) разных точках, то существует единственный интерполяционный полином степени не выше n.

Во многих случаях значения f находят в результате измерений и содержат ошибки. При этом число измерений проводят гораздо большее число раз, чем (n+1), надеясь при этом в результате измерения уменшить эти ошибки.

Обычно в качестве такого метода усреднения выбирают метод наименьших квадратов.

Для базиса из полиномов (2) система определяет элемент наилучшего определения.

$$\sum_{i=0}^{n} \alpha_i(g_i, g_j) = (f_i, g_j) \tag{3}$$

Имеет следующий вид: $[(g_0, g_0) = (1, 1) = m]$.

$$\begin{bmatrix} m & \sum x_i & \sum x_i^2 & \dots & \sum x_i^n \\ \sum x_i & \sum x_i^2 & \sum x_i^3 & \dots & \sum x_i^{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum x_i^n & \sum x_i^{n+1} & \sum x_i^{n+2} & \dots & \sum x_i^{2n} \end{bmatrix} \cdot \begin{bmatrix} d_0 \\ d_1 \\ \vdots \\ d_n \end{bmatrix} = \begin{bmatrix} \sum f_i \\ \sum x_i f_i \\ \vdots \\ \sum x_i^n f_i \end{bmatrix}$$

$$(4)$$

Уравнения в (4) называются нормальными.

$$\phi = \alpha_0 + \alpha_1 x + \ldots + \alpha_n x^n.$$

На практике, когда $n \geqslant 5$ нормальные уравнения обычно становятся плохо обусловленными. Решить эту проблему можно с помощью ортогональных полиномов.

Будем говорить, что полиномы g_j , где j - степень полинома, образуют на множестве точек $x_1, \dots x_m$ ортогональную систему, если

$$(g_k, g_j) = \sum_{i=1}^m g_k(x_i)g_j(x_i) = 0, \forall k \neq j, k, j = \overline{0, n}.$$
 (5)

Тогда система (3) будет иметь вид

$$\sum_{i=1}^{m} g_k^2(x_i) \alpha_k = \sum_{i=1}^{m} g_k(x_i) f_i, k = \overline{0, n}.$$
 (6)

Из (6)

$$\alpha_k = \frac{\sum_{i=1}^{m} g_k(x_i) f_i}{\sum_{i=1}^{m} g_k^2(x_i)}$$
 (7)

Для полинома Чебышева: $T_p=1, T_1=x,\dots$ $T_{n+1}=2xT_n-T_{n-1}$ - частный случай ортогональных полиномов с $\rho=\frac{1}{\sqrt{1-x^2}}$. Элемент наилучшего приближения

$$\phi(x) = \sum_{k=0}^{n} \alpha_k g_k(x) \tag{8}$$

Геометрический смысл -проекция.

1. пока пусто

15 Метод Пикара и метод рядов Тейлора

15.1 Метод Пикара

Рассмотрим задачу Коши для однородного дифференциального уравнения:

$$\begin{cases} u'(x) = f(x, u), u = u(x), x \in [x_0, x_l] \\ u(x_0) = u_0 \end{cases}$$
 (1)

Проинтегрируем уравнение (1)

$$u(x) = u(x_0) + \int_{x_0}^{x} f(t, u(t))dt$$
 (2)

y - приближённое решение, s - номер итерации.

$$\begin{cases} y_s(x) = u_0 + \int_{x_0}^x f(t, y_{s-1}(t)) dt \\ y_0(t) = u_0 \end{cases}$$
 (3)

Этот метод удобен, если интеграл можно вычислить аналитически. Докажем сходимость метода Пикара.

Пусть в некоторой ограниченной области G функция f(x,u) непрерывная и удовлетворяет условию Лившица по переменной u:

$$|f(x_1, u_1) - f(x_1, u_2)| \le L |u_1 - u_2| \tag{4}$$

$$\begin{cases}
|x - x_0| \leq E, \forall x \in G \\
|u - u_0| \leq V, E, V - \text{const}
\end{cases}$$
(5)

(5) - условия ограниченности, выполняются в силу ограниченности области G.

$$(2), (3) \Rightarrow |y_s(x) - u(x)| = \left| \int_{x_0}^x f(t, y_{s-1}(t)) dt - \int_{x_0}^x f(t, u(t)) dt \right|$$
 (6)

$$|y_s(x) - u(x)| \le \int_{x_0}^x |f(t, y_{s-1}(t)) - f(t, u(t))| dt$$
 (7)

Обозначим $z_s(x) = y_s(x) - u(x)$ - погрешность в точке x.

$$|z_s(x)| \leqslant L \int_{x_0}^x |z_{s-1}(t)| dt \tag{8}$$

Если s=0, то

 $|z_0(x)| = |u_0 - u(x)| \leqslant V$ - погрешность начального приближения.

$$|z_1(x)| \leqslant LV |x - x_0|$$

$$|z_2(x)| \le \frac{1}{2} L^2 V \left| (x - x_0)^2 \right|$$
 (9)

. .

$$|z_s(x)| \leqslant \frac{1}{s!} L^s V |(x - x_0)^s|$$

Формула Стирлинга:

$$n! \approx \frac{\sqrt{2\pi}n^{n+\frac{1}{2}}}{e^n} (1 + \varepsilon_n), \lim_{n \to \infty} \varepsilon_n = 0$$

$$(9) \Leftrightarrow |z_s(x)| \leqslant \frac{1}{s!} L^s V E^s$$

$$(10)$$

Используя формулу Стирлинга

$$|z_s(x)| \leqslant \frac{v}{\sqrt{2\pi s}} \left(\frac{eEL}{s}\right)^s$$
 (11)

 $(11) \Rightarrow |z_s(x)| \xrightarrow[s \to \infty]{} 0 \Rightarrow$ итерационный процесс сходится.

15.2 Метод рядов Тейлора

Рассмотрим

$$\begin{cases} u' = f(x, u), x \in [x_0, x_l] \\ u(x_0) = u_0 \end{cases}$$
 (1)

Продифференцируем (1) по x:

$$u'' = f_x + f_u \cdot u' = f_x + f \cdot f_u$$

$$u''' = f_{xx} + 2f_{xu}u' + f_{uu}u'^2 + f_uu''$$
(2)

Подставим в формулу (2) в качестве $x = x_0, u = u_0$, последовательно находим значения $u'(x_0), u''(x_0), u'''(x_0)$ и т. д. Получаем ряд Тейлора:

$$u(x) \approx y_n(x) = \sum_{i=0}^n \frac{u^{(i)}(x_0)}{i!} \cdot (x - x_0)^i$$
(3)

Если $|x-x_0|$ не превышает радиуса сходимости ряда Тейлора, то приближенное решение $y_n(x) \xrightarrow[n \to \infty]{} u(x)$.

Иногда полезно разбить исходный отрезок $[x_0, x_l]$ на N частей $[x_{j-1}, x_j], j = \overline{1, N}, x_N = x_l$. Отрезки не обязательно равные. На каждом отрезке применим метод рядов Тейлора для более точного решения.

Рассмотрим произвольный отрезок $[x_j, x_{j+1}]$. Будем считать, что y_j найдено. Значит, мы можем найти $u^{(i)}(x_j)$. Тогда применяя метод рядов, можно приблизить на этом отрезке

$$u(x) \approx v_j(x) = \sum_{i=0}^n \frac{u_j^{(i)}}{i!} (x - x_j)^i$$

$$y_{j+1} = v_j(x_{j+1})$$
(4)

При использовании метода рядов необходимо находить значения $\approx \frac{n(n+1)}{2}$ различных функций, поэтому на практике обычно ограничиваются первым и вторым порядком точности (2-3 производные).

1. пока пусто

16 Методы Эйлера, трапеций, средней точки

$$\begin{cases} u' = f(x, u) \\ u(x_0) = u_0. \end{cases}$$
 (1)

Проинтегрируем (1) на отрезке $[x_n, x_{n+1}], x_{n+1} - x_n = h$.

$$u_{n+1} = u_n + \int_{x_n}^{x_{n+1}} f(t, u(t))dt, u_n \equiv u(x_n)$$
 (2)

Используем для вычисления интеграла в формуле (2) правило левых прямоугольников

$$\int_{A}^{B} f dx \approx f(A)(B - A)$$

$$u_{n+1} = u_n + hf_n + R_2(f) (3)$$

Отбрасывая в (3) $R_2(f)$, получаем **явную фомрулу Эйлера**

$$y_{n+1} = y_n + hf(x_n, y_n) = y_n + hf_n \tag{4}$$

Если для вычисления интеграла в формуле (2) применить формулу правых прямоугольников

$$\int_{A}^{B} f dx \approx f(B)(B - A)$$

получим неявную формулу Эйлера

$$y_{n+1} = y_n + hf(x_{n+1,y_{n+1}}) = y_n + hf_{n+1}$$
(5)

В общем случае неявный метод Эйлера представляет собой неявное уравнение отностельно искомого значения y_{n+1} . Для решеня неявного уравнения можно использовать итерационный метод (например метод простой итерации).

$$y_{n+1}^{k+1} = y_n + hf(x_{n+1}, y_{n+1}^k), k = 0, 1, \dots; n = \overline{0, N-1}.$$
 (6)

Чтобы итерационный метод сходился, достаточно потребовать, чтобы

$$h \left| \frac{\delta f}{\delta y_{n+1}} \right| < 1, \forall n \tag{7}$$

В качестве нулевого приближения возьмём:

- 1. $y_{n+1}^0 = y_n$
- 2. $y_{n+1}^0 = y_n + h f_n$

Локальная погрешность явного и неявного метода Эйлера (это погрешность нахождения u(x+h) при известном значении u(x)) имеет порядок $O(h^2)$.

Рассмотрим для неявного метода Эйлера:

$$r_{n+1} = u(x_n + h) - u(x_n) - hf(x_n + h, u(x_n + h)) =$$

$$= u_n + hu'_n + \frac{h^2}{2}u''_n + O(h^3) - u_n - h(u'_n + hu''_n + O(h^2)) =$$

$$= -\frac{h^2}{2}u''_n + O(h^3) = O(h^2)$$
(8)

Неявный метод Эйлера сложнее в реализации, но имеет значительное преимущество перед явным за счёт своей устойчивости.

Если интеграл в правой части вычислить по формуле трапеций, то получим:

$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(f_n + f_{n+1}) & r_{n+1} = O(h^3) \\ y_0 = u_0, n = 0, 1, \dots \end{cases}$$
 (9)

Применим для вычисления (2) правило средних прямоугольников (формулу средней точки)

$$y_{n+1} = y_n + h f_{n+\frac{1}{2}}; y_0 = u_0, n = 0, 1, \dots$$
 (10)

Чтобы вычислить $f_{n+\frac{1}{2}}$ необходимо знать значение $y_{n+\frac{1}{2}}.$ Способы вычисления:

$$y_{n+\frac{1}{2}} \approx \frac{1}{2}(y_n + y_{n+1}) \tag{11}$$

$$y_{n+\frac{1}{2}} = y_n + \frac{h}{2} f_n \tag{12}$$

Если применять (10) и (11), то получим

$$y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, \frac{1}{2}(y_n + y_{n+1})\right)$$
(13)

Если применять (10) и (12), то получим

$$y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, y_n + \frac{1}{2}f_n\right)$$
(14)

1. пока пусто

17 Сходимость явного метода Эйлера

При использовании приближённых методом основным является вопрос о сходимости. Сформулируем понятие сходимости, когда $h \to 0$. Зафиксируем некоторую точку x и будем строить последовательность сеток ω_h таких, что $h \to 0, x_n = x_0 + nh = x$.

Определение: Говорят, что методя сходится в точке x, если разностное решение $|y_n(x) - u(x)| \xrightarrow[h \to 0]{} 0$.

Определение: Метод сходится на отрезке $[x_0, x]$, если он сходится в каждой точке этого отрезка.

Определение: Говорят, что метод имеет порядок точности p > 0, если $|y_n(x) - u(x)| = O(h^p), h > 0$.

Исследуем сходимость явного метода Эйлера

$$y_{n+1} = y_n + hf_n \tag{1}$$

$$u(x_{n+1}) = u(x_n) + hu'(x_n) + \frac{h^2}{2}u''(\xi_n), \tag{2}$$

$$x_n < \xi_n < x_{n+1}, u(x) \in C^2[x_0, x]$$

 $u' = f(x, u)$ (3)

$$(2) \Leftrightarrow u(x_{n+1}) = u(x_n) + hf(x_n, u(x_n)) + \frac{h^2}{2}u''(\xi_n)$$
(4)

$$u(x_{n+1}) - y_{n+1} = u(x_n) - y_n + h(f(x_n, u(x_n)) - f(x_n, y_n)) + \frac{h^2}{2}u''(\xi_n)$$
(5)

Введём обозначение погрешности в *n*-ой точке

$$E_n = u(x_n) - y_n \tag{6}$$

Будем полагать, что функция f удовлетворяет условию Лившица с const L по второму аргумент, тогда $(5) \Rightarrow$

$$|E_{n+1}| \le |E_n| + hL(|u(x_n) - y_n|) + \frac{h^2}{2} |u''(\xi_n)|.$$
 (7)

Определение: $M_2 = \max_{x \in [a,b]} |u''(x)|$

$$|E_{n+1}| \le |E_n| (1+hL) + \frac{h^2}{2} M_2, n = 0, 1, \dots$$
 (8)

Слагаемое $\frac{h^2}{2} M_2$ - оценка локальной погрешности метода, которая возникает на очередном шаге.

Для оценки погрешности E_n рассмотрим обобщение неравенства (8). Будем полагать, что $\exists \delta > 0, M > 0$, такие, что последовательность d_0, d_1, \ldots удовлетворяет неравенству

$$d_{n+1} \le (1+\delta)d_n + M, n = 0, 1, \dots$$
 (9)

Тогда

$$d_1 \le (1+\delta)d_0 + M$$

$$d_2 \le (1+\delta)d_1 + M \le (1+\delta)^2 d_0 + M(1+(1+\delta))$$

• •

$$d_n \le (1+\delta)^n + M(1+(1+\delta) + \dots + (1+\delta)^{n-1})$$
(10)

$$d_n \leqslant (1+\delta)^n d_0 + M \frac{(1+\delta)^n - 1}{\delta} \tag{11}$$

Из разложения экспоненты:

$$e^{\delta} = 1 + \delta + \frac{\delta^2}{2} e^{\xi}, 0 < \xi < \delta \Rightarrow 1 + \delta \leqslant e^{\delta}$$
(12)

$$(1+\delta)^n \leqslant e^{n\delta} \tag{13}$$

Подставим (13) в (11) и получим оценку:

$$d_n \leqslant e^{n\delta} d_0 + M \frac{e^{n\delta} - 1}{\delta} \tag{14}$$

Применим неравенство (14) к формуле (8)

$$|E_n| \leqslant e^{nhL} |E_0| + \frac{hM_2}{2L} \left(e^{nhL} - 1 \right)$$
 (15)

$$nh = x_n - a, E_0 = u_0 - y_0 = 0$$

$$|u(x_n) - y_n| \leqslant \frac{hM_2}{2L} \left(e^{L(b-a)} - 1 \right) \tag{16}$$

$$\max_{h} |u(x_n) - y_n| \leqslant \frac{hM_2}{2L} \left(e^{L(b-a)} - 1 \right) \xrightarrow[h \to 0]{} 0 \tag{17}$$

В общем случае следует учитывать погрешность округления. На практике, когда вычисляется $f(x_n, y_n)$, на самом деле мы находим $f(x_n, y_n) + \varepsilon_n$. Кроме этого, когда по формуле Эйлера мы находим

$$y_{n+1} = y_n + h(f(x_n, y_n) + \varepsilon_n) + \rho_n \tag{18}$$

появляется погрешность ρ_n .

Будем полагать, что $|\rho_n| \leqslant \rho, |\varepsilon_n| \leqslant \varepsilon, \forall h \leqslant h_0$. Тогда формулу (17) надо изменить следующим образом

$$\max_{h} |u(x_n) - y_n| \leqslant \frac{1}{L} \left(e^{L(b-a)} - 1 \right) \left(\frac{hM_2}{2} + \varepsilon + \frac{\rho}{h} \right)$$
(19)

Из оценки (19) следует, что повышать точность за счёт уменьшения шага h можно только до некоторого предела, за которым погрешность округления будет доминировать.

1. пока пусто

18 Методы последовательного повышения порядка точности

Будем рассматривать уравнение u' = f(x, y). Проинтегрируем на $[x_n, x_{n+1}]$

$$u(x_{n+1}) = u(x_n) + h \int_0^1 f(x_n + \alpha h, u(x_n + \alpha h)) d\alpha$$
(1)

Заменим $t = x_n + \alpha h$. Заменим в (1) интеграл квадратурной суммой общего вида, получим

$$y_{n+1} = y_n + h \sum_{i=0}^{q} A_i f(x_n + \alpha_i h, y(x_n + \alpha_i h))$$
 (2)

Получим 2 набора параметров A_i и $\alpha_i, i = \overline{0, q}$. В (2) 2q + 2 параметров.

Параметры A_i и α_i выбираем так, чтобы квадратурная формула, которую мы использовали

$$\int_{0}^{1} f_{n+\alpha} d\alpha \approx \sum_{i=0}^{q} A_{i} f_{n+\alpha_{i}},\tag{3}$$

была точна для всех полиномов степени k-1, где $0 < k \le 2q+2$.

В результате получим систему из k уравнений, в которые входят 2q+2 неизвестных параметров.

$$\sum_{i=0}^{q} A_i \alpha_i^j = \frac{1}{j+1}, j = \overline{0, k-1}$$
 (4)

В дальнейшем будем использовать обозначение

$$f_{n+\alpha}^{[m]} = f(x_n + \alpha h, y^{[m]}(x_n + \alpha h)),$$

где $y_{n+\alpha}^{[m]}$ - приближённое решение в точке $x_n + \alpha h$ с погрешностью $O(h^m)$.

Систему (4) можно получить также из требования, чтобы разложить в ряд Тейлора по степеням h

$$u(x_n + h) - u(x_n) \approx h \sum_{i=0}^{q} A_i u'(x_n + \alpha h)$$

$$\tag{5}$$

совпадающее до членов при h^k включительно. При этом локальная погрешность

$$\psi_{n+1} = u_{n+1} - u_n - h \sum_{i=0}^{q} A_i f_{n+\alpha_i}$$
(6)

будет иметь вид

$$\psi_{n+1} = h^{k+1} u_n^{(k+1)} \left[\frac{1}{(k+1)!} - \frac{1}{k!} \sum_{i=0}^q A_i d_i^k \right] + O(h^{k+2})$$
 (7)

Поскольку весовая функция в формуле (3) в среднем равна 1, то квадратурная формула может быть построена единственным образом с НАСТ = $2q+1, \forall q \geqslant 0$, то когда k=2q+2, то система (4) имеет единственное решение, причём $0 \leqslant A_i \leqslant 1, 0 \leqslant \alpha_i \leqslant 1, i=\overline{0,q}$.

Для определения неизвестных величин $y_{n+\alpha_i}$ в (2) можно строить аналогичные методы

$$y_{n+\alpha_i}^{[k]} = y_n + \alpha_i h \sum_{j=0}^{q_1} B_j f_n + \alpha_i \beta_j, q_1 \leqslant q$$
 (8)

Значение $y_{n+\alpha_i\beta_j}$ также определяется по аналогичным формулам с погрешностью $O(h^{k-1})$. Неизвестные параметры β_j, B_j будут определятся из систем, аналогичных (4). С каждым шагом порядок точности будет понижаться, т.е. $q \geqslant q_1 \geqslant \ldots \geqslant 1$.

$$\sum_{i=0}^{q_1} B_i \beta_i^j = \frac{1}{j+1}, j = \overline{0, k-2}$$
(9)

Завершать данную схему будут явные формулы Эйлера

$$y_{n+\alpha_i\beta_j\cdot\ldots\cdot\gamma_m}^{[2]} = y_n^{[k+1]} + \alpha_i\beta_j\cdot\ldots\cdot\gamma_m h f_n^{[k+1]}$$
(10)

Построим в качестве примера метод второго порядка точности, т.е. k=2. Если взять q=0, то система (4) имеет единственное решение $A_0=1, \alpha_0=\frac{1}{2}$. Получаем формулу

$$y_{n+1}^{[3]} = y_n^{[3]} + h f_{n+\frac{1}{2}}^{[2]}$$
 (11)

$$y_{n+1}^{[2]} = y_n^{[3]} + \frac{h}{2} f_n^{[3]}$$
(12)

(13)

1. пока пусто

19 Методы Рунге-Кутта

Исходное уравнение u' = f(x, u). Интегрируем на отрезке $[x_n, x_n + h]$.

$$u_{n+1} = u_n + h \int_0^1 f(x_n + \alpha h, u(x_n + \alpha h)) d\alpha$$
 (1)

Для вычисления интеграла предлагается использование следующего набора параметров

$$\phi_0 = hf(x_n, y_n)$$

$$\phi_1 = hf(x_n + \alpha_1 h, y_n + \beta_{10}\phi_0)$$

$$\cdots$$

$$\phi_q = hf(x_n + \alpha_q h, y_n + \sum_{j=0}^{q-1} \beta_{qj}\phi_j)$$
(2)

Параметры $\phi_0, \phi_1, \dots \phi_q$ находится последовательно. После этого интеграл в (1) заменяется на $\sum_{i=0}^{q} A_i \phi_i$. В результате получим формулу

$$y_{n+1} = y_n + \sum_{i=0}^{q} A_i \phi_i \tag{3}$$

Неизвестные параметры A, α, β выбираются таким образом, чтобы при заданном значении q построить метод максимально высокого порядка точности.

Определение: Формулы (2), (3) - метод Рунге-Кутты.

Локальная погрешность

$$r_q(h) = u(x_n + h) - u(x_n) - \sum_{i=0}^{q} A_i \phi_i$$
 (4)

Считая функцию f достаточно гладной, запишем разложение в ряд Тейлора

$$r_q(h) = \sum_{j=0}^k \frac{h^j}{j!} r_q^{(j)}(0) + O(h^{k+1})$$
 (5)

Если параметры A, α, β выбрать таким образом, чтобы производные

$$r_q^{(j)} = 0, \forall j = \overline{0, k} \tag{6}$$

то метод будет иметь k-ый порядок погрешности.

Примеры:

1. q = 0.

$$r_0(h) = u(x_n + h) - u(x_n) - hA_0f_n$$

$$r'_0(h) = u'(x_n + h) - A_0f_n$$

$$r''_0(h) = u''(x_n + h)$$

Условие (6) выполняется, когда $A_0 = 1, j = \overline{0,1}$.

$$y_{n+1} = y_n + hf_n$$
$$u'(x_n) = f_n$$

В итоге приходим к формуле явного метода Эйлера - метода первого порядка точности.

2. q = 1.

$$u_{n+1} - u_n = hf_n + \frac{h^2}{2}(f_x + ff_u)_n + \frac{h^3}{6}(f_{xx} + 2ff_{xu} + f^2f_{uu} + f(f_x + ff_u))_n + O(h^4)$$
(7)

$$A_{0}\phi_{0} + A_{1}\phi_{1} = h(A_{0}f_{n} + A_{1}f(x_{n} + \alpha_{1}h, u + h\beta_{10}f_{n})) =$$

$$= h(A_{0} + A_{1})f_{n} + h^{2}A_{1}(\alpha_{1}f_{x} + \beta_{10}ff_{u})_{n} + \frac{h^{3}}{2}A_{1}(\alpha_{1}^{2}f_{xx} + 2\alpha_{1}\beta_{10}ff_{xu} + \beta_{10}^{2}f^{2}f_{uu}) + O(h^{4})$$
(8)

$$hf: A_0 + A_1 = 1$$

 $h^2 f_x: A_1 \alpha_1 = \frac{1}{2}$
 $h^2 f f_u: A_1 \beta_{10} = \frac{1}{2}$

$$(9)$$

При выполнении условий (9) нельзя добиться совпадения коэффициентов (7) и (8) формулы при h^3 . Поэтому при q=1 метод Рунге-Кутты имеет второй порядок точности

$$\begin{cases} \alpha_1 = \beta_{10} = \frac{1}{2A_1} \\ A_0 = 1 - A_1 \end{cases}$$
 (10)

Формула (10) даёт семейство методов Рунге-Кутты второго порядка точности, где A_1 - свободный параметр. Возьмём $A_1=\frac{1}{2}.$

$$\begin{cases} y_{n+1} = y_n + \frac{\phi_0 + \phi_1}{2} \\ \phi_1 = hf(x_n + h, y_n + \phi_0) \\ \phi_0 = hf_n \end{cases}$$
 (11)

Если $A_1 = 1$.

$$\begin{cases} y_{n+1} = y_n + \phi_1 \\ \phi_1 = hf\left(x_n + \frac{h}{2}, y_n + \frac{\phi_0}{2}\right) \\ \phi_0 = hf_n \end{cases}$$
 (12)

1. пока пусто

20 Экстраполяционные методы Адамса

Данный метод относится к многошаговым, которые имеют следующий вид

$$y_{n+1} = y_n + h \sum_{i=0}^{q} A_i f_{n-i}$$
 (1)

Неизвестные параметры A_i можно определить также, как и при построении методов последовательного повышения порядка точности, т.е. из системы

$$\sum_{i=0}^{q} A_i (-i)^j = \frac{1}{j+1}, j = \overline{0, q}$$
 (2)

Система (2) имеет единственное решение.

Погрешность явного метода Адамса можно также получить из формулы для метода последовательного повышения порядка точности

$$r_{n+1} = h^{q+2} u_n^{(q+2)} \left(\frac{1}{(q+2)!} - \frac{1}{(q+1)!} \sum_{i=0}^q A_i (-i)^{q+1} \right) + O(h^{q+3}) = O(h^{q+2})$$
(3)

Параметры A_i можно построить, не решая систему (2). Рассмотрим интегральное уравнение (получено интегрированием исходного уравнения на [0,1])

$$u_{n+1} = u_n + h \int_0^1 f_{n+\alpha} d\alpha \tag{4}$$

Подинтегральную функцию f можно заменить интерполяционным полиномом, построенным по точкам $0,-1,\ldots -q$. Поскольку узлы интерполирования $x_n,\ldots x_{n-q}$ (или $\alpha=0,-1,\ldots -q$) располагаются вне отрезка $[x_n,x_{n+h}]$, то такая процедура интерполирования называется **экстраполированием**.

Если интерполяционный полином взять в форме Лагранжа, то коэффициенты A_i находятся по формуле

$$A_{i} = \frac{(-1)^{i}}{i!(q-i)!} \int_{0}^{1} \frac{\alpha(\alpha+1)\dots(\alpha+q)}{\alpha+i} d\alpha, i = \overline{0,q}$$

$$(5)$$

Для организации счёта по формуле (1) одного известного условия $y_0 = u_0$ не достаточно. Необходимо также задать значения $y_1, \dots y_q$ с той же точностью, которую имеет метод Адамса. Эти начальные значения находят по одношаговым методам (например Рунге-Кутта). Эти одношаговые методы называются стартовыми.

Примеры:

1.
$$q = 0, A_0 = 1$$
.

$$y_{n+1} = y_n + hf_n \tag{6}$$

совпадает с явным методом Эйлера.

2. $q=1, A_0+A_1=1, A_1=\frac{1}{2} \Rightarrow A_0=\frac{3}{2}$. Получаем метод Адамса второго порядка точности

$$y_{n+1} = y_n + \frac{h}{2}(3f_n - f_{n-1})$$

$$y_0 = y_0$$
(7)

Получился явный двухшаговый метод. y_1 необходимо посчитать по формуле Рунге-Кутты.

Локальная погрешность

$$r_{n+1} = \frac{5}{12}h^3u_n^{(3)} + O(h^4) = O(h^3)$$

3. q = 2.

$$\begin{cases} A_0 + A_1 + A_2 = 1 \\ A_1 + 2A_2 = -\frac{1}{2}A_1 + 4A_2 = -\frac{1}{3} \end{cases}$$
$$A_0 = \frac{23}{12}, A_1 = -\frac{4}{3}, A_2 = \frac{5}{2}$$

$$y_{n+1} = y_n + \frac{h}{12} (23f_n - 16f_{n-1} + 5f_{n-2})$$

$$y_0 = u_0$$
(8)

Получился трёхшаговый метод.

Если подынтегральную функцию в (4) аппроскимировать интерполяционным полиномом в форме Ньютона, то экстраполяционный метод Адомса примет вид

$$y_{n+1} = y_n + \phi_n + \frac{1}{2}\Delta\phi_{n-1} + \frac{5}{12}\Delta^2\phi_{n-2} + \dots + C_q\Delta^q\phi_{n-q}$$

$$\phi_i = hf_i, C_q = \frac{1}{q!} \int_0^1 \alpha(\alpha+1) \dots (\alpha+q-1)d\alpha$$
(9)

 Δ - оператор конечной разности

$$\Delta \phi_{n-1} = \phi_n - \phi_{n-1}$$

Погрешность

$$r_{n+1} = h^{q+2} u_n^{(q+2)} C_{q+1} + O(h^{q+3}) = O(h^{q+2})$$
(10)

1. пока пусто

21 Интерполяционные методы Адамса

Являются неявными методами и определяются расчётной формулой

$$y_{n+1} = y_n + h \sum_{i=-1}^{q} A_i f_{n-i}$$
 (1)

Параметры A_i определяются также, как и в методе последовательного повышения порядка точности.

$$\alpha_i = -i, i = \overline{1, q}$$

$$\sum_{i=-1}^{q} A_i (-i)^j = \frac{1}{j+1}, j = \overline{0, q+1}$$
(2)

Система имеет единственное решение при $q \geqslant -1$.

Параметры A_i можно найти, используя интерполяционный полином Лагранжа, который строится по значениям функции f в узлах

$$x: x_{n+1}, x_n, \dots x_{n-q}$$

$$\alpha: 1, 0, \dots - q$$

Получим полином (q+1)-ой степени, где

$$A_{i} = \frac{(-1)^{i+1}}{(i+1)!(q-i)!} \int_{0}^{1} \frac{(\alpha-1)\alpha(\alpha+1)\dots(\alpha+1)}{(\alpha+i)} d\alpha$$
 (3)

$$r_{n+1} = h^{q+3} u_n^{(q+3)} \left(\frac{1}{(q+3)!} - \frac{1}{(q+2)!} \sum_{i=-1}^q A_i (-i)^{q+2} \right) + O(h^{q+4}) = O(h^{q+3})$$
(4)

Т.е. метод имеет порядок точности (q+2).

Примеры:

1.
$$q = -1$$
.

$$y_{n+1} = y_n + h f_{n+1}$$
 совпадает с неявным методом Эйлера (5)

$$r_{n+1} = -\frac{1}{2}h^2u_n'' + O(h^3) = O(h^2)$$

Для случая, когда сетка равномерная, можно подынтегральную функцию заменить интерполяционным полиномом Ньютона.

2. q = 0.

$$y_{n+1} = y_n + \frac{h}{2}(f_{n-1} + f_n)$$
 - формула трапеций
$$r_{n+1} = -\frac{1}{12}h^3u_n^{(3)} + O(h^4) = O(h^3)$$
 (6)

В общем виде:

$$y_{n+1} = y_n + \phi_{n+1} - \frac{1}{2}\Delta\phi_n - \frac{1}{12}\Delta^2\phi_{n-1} - \frac{1}{24}\Delta^3\phi_{n-2} - \dots - C_{q+1}\Delta^{q+1}\phi_{n-q}$$
 (7)

$$\phi_i = hf_i, C_{q+1} = \frac{1}{(q+1)!} \int_0^1 \alpha(\alpha+1) \dots (\alpha+q) d\alpha$$

$$r_{n+1} = h^{q+3} u_n^{(q+3)} C_{q+2} + O(h^{q+4})$$
(8)

Поскольку отрезок $[x_n, x_{n+1}]$, на котором аппроксимируется функция f входит в отрезок $[x_{n-q}, x_{n+1}]$, на котором расположены узлы интерполяции...

Интерполяционные формулы Адамса представляют собой в общем случае неявное уравнение относительно y_{n+1} . Значение y_{n+1} находится с помощью некоторого итерационного метода.

В качестве нулевой итерации обычно берут приближённое значение, полученной с помощью экстраполяционного метода Адамса или методом Рунге-Кутты. При этом часто ограничиваются только одной итерацией. В этом случае вычислительный процесс относится к типу предиктор-корректор.

1. пока пусто

22 Усточивость линейных многошаговых методов

Будем рассматривать заадчу Коши

$$\begin{cases} u' = f(x, u), x > 0 \\ u(0) = u_0 \end{cases}$$
 (1)

Возьмём равномерную сетку узлов $\omega_h = \{x_n = nh, n = 0, 1, \ldots\}$. Будем рассматривать линейный m-шаговый метод.

$$a_0 y_n + a_1 y_{n-1} + \ldots + a_m y_{n-m} = h \sum_{k=0}^m b_k f_{n-k}$$
 (2)

$$n = m, m + 1, \dots$$

Коэфициенты $a_k, b_k = \text{const}, a_0 \neq 0$. Для счёта по формуле (2) необходимо задать m начальных значений $y_0 = u_0, y_1, \dots y_{m-1}$. Обычно они находятся с помощью одношагового метода Рунге-Кутты того же порядка точности, что и метод (2).

Запишем соответствующее однородное уравнение

$$a_0\delta_n + a_1\delta_{n-1} + \ldots + a_m\delta_{n-m} = 0$$

$$n = m, m+1, \ldots$$
(3)

Будем искать частные решения (3) в виде $\delta_n = q^n, q = {\rm const},$ тогда для опредления постоянной q получим уравнение

$$a_0 q^m + a_1 q^{m-1} + \ldots + a_m = 0 (4)$$

Определение: Уравнение (4) - характеристическое уравнение метода (2).

Определение: (2) - линейный двухшаговый метод, удовлетворяет условию корней, если все корни $q_1, \dots q - m$ характеристического уравнения (4) лежат внутри или на границе единичного круга комплексной плоскости. Причём на границе этого круга нет кратных корней.

Определение: Однородное уравнение (3) устойчиво по начальным данным, если \exists const M>0, независящая от номера узла n, такая, что при любых начальных данных $\delta_0, \dots \delta_{m-1}$ выполняется следующая оценка решения

$$|\delta_n| \leqslant M \max_{0 \le i \le m-1} |\delta_i|, n = m, m+1, \dots$$

$$\tag{5}$$

Таким образом устойчивость по начальным данным означает равномерную по n ограниченность решения задачи Коши.

Теорема.

Условие корней необходимо и достаточно для устойчивости метода (3) по начальным данным.

Доказательство. 1. \Rightarrow . Пусть имеется корень |q| > 1. Зададим начальные данные $\delta_i = q^i (i = \overline{0, m-1})$. Тогда уравнение (3) имеет решение в точке $\delta_n = q^n (n \geqslant m)$, которое неограничено возрастает при $n \to \infty$. Оценка (5) не выполняется.

Следовательно, условие $|q_k| \leq 1, k = \overline{1,m}$ - необходимое условие устойчивости. Пусть характеристическое уравнение (4) имеет корень q с кратностью r > 1, причём этот корень находится на границе единичного круга на комплексной плоскости |q| = 1. В этом случае однородное уравнение (3) имеет решение вида

$$\delta_n = q^n \cdot n^{r-1}$$

и оценка (5) снова не выполняется.

2. ←. Без доказательства.

Можно показать, что если уравнение (3) устойчиво по начальным данным, то для неоднородного случая

$$a_0y_n + a_1y_{n-1} + \ldots + a_my_{n-m} = hg_{n-m}, n = m, m+1, \ldots$$
 (6)

выполняется оценка

$$|y_n| \le M_1 \frac{|y_j|}{1 \le j \le m} + M_2 \sum_{k=0}^{n-m} h |g_k|$$
 (7)

которая означает устойчивость (6) по правой части и по начальным данным.

1. пока пусто

23 Простейшие разностные операторы

Область решения $\overline{\Omega} = [0, l]$.

Сетка узлов на этой области

$$\overline{\omega_h} = \{x_i = ih, i = \overline{0, n}, hn = l\}$$

Построим аппроксимацию производной

$$Lu = u'$$

Функцию u будем считать достаточно гладкой: $u(x) \in C^k(\Omega), k > 2$. Поставим в соответствие оператору Lu разностный оператор Λ_h .

Определение: Множество узлов сетки, которое используется для построения оператора Λ_h называется **шаблоном**. **Погрешность аппроксимации** оператора Lu разностным оператором Λ_h в i-ом узле определяется как

$$\psi_i = \Lambda_h u_i - (Lu)_i$$

Будем использовать разложение в ряд Тейлора в окрестности точки x_i , где

$$u_{i\pm 1} = u_i \pm hu_i' + \frac{1}{2}h^2u_i'' \pm \frac{1}{6}h^3u_i''' + O(h^3)$$

Используя это разложение можно построить разностную схему оператора левой разностной производной:

$$u_{\overline{x}} = \frac{u_i - u_{i-1}}{h} = u_i' - \frac{h}{2}u_i'' + O(h^2)$$
(1)

Оператор правой разностной производной

$$u_{\overline{x}} = \frac{u_{i+1} - u_i}{h} = u_i' + \frac{h}{2}u_i'' + O(h^2)$$
(2)

Минимальный шаблон - 2 узла. $u_{\overline{x},i+1}=u_{x,i}$. Если будем использовать шаблон из трёх узлов, то можно построить центральную разностную производную

$$u_{\dot{x}} = \frac{u_{i+1} - u_{i-1}}{2h} = \frac{1}{2}(u_{\overline{x},i} + u_{x,i}) = u_i' + \frac{h^2}{6}u''' + O(h^3)$$
(3)

Для оператора второй производной можно применить линейную комбинацию левой и правой производной.

$$Lu = u''$$

$$(u_{\overline{x}})_x = \frac{1}{h}(u_x - u_{\overline{x}}) = \frac{1}{h^2}(u_{i+1} - 2u_i + u_{i-1})$$
(4)

Погрешность аппроксимации оценивалась в отдельном i-ом узле. Для оценки на всей сетке ω_h необходимо использовать сеточные нормы

$$||\psi||_{C,h} = \max_{x \in \omega_h} |\psi(x)|$$

$$||\psi||_{2,h} = \left(\sum_{x \in \omega_h} \psi^2(x)h\right)^{\frac{1}{2}}$$

$$(5)$$

(1) - (4) имеют одинаковый порядок аппроксимации. В общем случае порядок аппроксимации может быть разным в различных сеточных нормах.

В качестве альтернативного подхода можно использовать определение производной как решение интегралного уравнения и применения некоторой квадратурной формулы

$$\frac{d^k u}{dx^k} = f(x)$$

$$u(x) = \frac{1}{(k-1)!} \int_0^x (x-t)^{k-1} f(t) dt$$
(6)

Таким образом, можно определить производную как решение интегрального уравнения (6) при известной функции u(x).

Пример. k = 1.

$$u_{i+1} - u_{i-1} = \int_{x_{i-1}}^{x_{i+1}} f(t)dt$$
 (7)

Если для вычисления (7) использовать формулу центральных прямоугольников, то получим

$$\frac{u_{i+1} - u_{i-1}}{2h} = f_i + O(h^2) \tag{8}$$

Есть и другие варианты построения. Например, строить интерполяционный полином и брать производную. Использование квадратур с многими внутренними узлами приводит к так называемым **компактным разностным операторам**.

Если в формулы (7) вычислять интеграл с использованием трёхточечной формулы Симпсона, то получим

$$\frac{u_{i+1} - u_{i-1}}{2h} = \frac{1}{6}(f_{i-1} + 4f_i + f_{i+1}) + O(h^4). \tag{9}$$

В этом случае без расширения шаблона достигается более высокий порядок аппроксимации, но при этом вычисление связано с обращением трёхдиагональной матрицы.

1. пока пусто

24 Основные понятия теории разностных схем

Сеточные (разностные) методы основаны на переходе от функций непрерывного аргумента к функциям дискретного аргумента. Например, если на отрезке [0,1] ввести точки-узлы x_i , которые образуют множество

$$\omega_h = \left\{x_i = ih, i = \overline{0,h}, nh = l\right\}, h$$
 - шаг сетки

то приближённое решение ищется в узлах сетки ω_h и обозначается $y_h(x_i)$, $i = \overline{0,n}$ (y_n - функция дискретного аргумента).

Для нахождения этой сеточной функции формулируется разностная задача. Запишем её в операторном виде

$$Lu = F \tag{1}$$

где u - искомая функция, F - вектор правой части, содержащий входные данные задачи.

Например, рассмотрим задачу Коши

$$\begin{cases} u' = f(x, u) \\ u(0) = u_0 \end{cases}$$
 (2)

соответствующая разностная задача записывается в следующем виде

$$Lu = \begin{cases} u' - f, x > 0 \\ u(0), x = 0 \end{cases} \quad F = \begin{cases} 0, x > 0 \\ u_0, x = 0 \end{cases}$$
 (3)

Одна из аппроксимирующих эту задачу разностных схем имеет вид

$$\begin{cases} \frac{y_{i+1} - y_i}{h} = f_i, i = \overline{0, n - 1} \\ y_0 = u_0 \end{cases}$$
 (4)

Операторная форма записи

$$\Lambda_h y_n = \phi_h$$
 - в общем случае (5)

$$\Lambda_h y_n = \begin{cases} \frac{y_{i+1} - y_i}{h} & \phi_h = \begin{cases} f_i \\ u_0 \end{cases}$$
 (6)

Введём норму сеточной функции

$$||y_n||_h = \max_{0 \le i \le n} |y_i| \tag{7}$$

Определение: Решение разностной задачи (5) сводится при $h \to 0$ к решению исходной задачи (1), если

$$||(u)_h - y_h||_h \to 0 \tag{8}$$

 $(u)_h$ означает некоторую проекцию точного решения u на сетку ω_h . Самая простая проекция: u_i . Если

$$||(u)_h - y_h||_h \leqslant ch^p, \tag{9}$$

где c = const, не зависит от h, то имеет место сходимость порядка p.

Определение: Задача (5) аппроксимирует исходную задачу (1) на её решение, если невязка

$$||\psi_h||_h \xrightarrow[h \to 0]{} 0 \tag{10}$$

$$\psi_h = \Lambda_h(u)_h - \phi_h$$

Если при этом имеет место оценка

$$||\psi_h||_h \leqslant C_1 h^p, \tag{11}$$

где $C_1 = \text{const}$ не зависящая от h, то схема (5) имеет порядок аппроксимации p.

Определение: Разностная схема (5) называется устойчивой, если для любых достаточно малых h, z_h возмущённая разностная схема

$$\Lambda_h v_h = \phi_h + z_h \tag{12}$$

однозначно разрешима и $\exists \operatorname{const} c_2 > 0$ не зависящая от $h, ||z_h||_h$, такая, что выполняется оценка

$$||v_h - y_h||_h \leqslant c_2 \, ||z_h||_h \tag{13}$$

Другими словами, малые возмущения правой части разностной схемы приводят к равномерно малому по h изменению решения.

Поскольку

$$(5) \Rightarrow y_h = \Lambda_h^{-1}(\phi_h), v_h = \Lambda_h^{-1}(\phi_h + z_h),$$

то условие устойчивости можно записать следующим образом

$$\left\| \left| \Lambda_h^{-1}(\phi_h + z_h) - \Lambda_h^{-1}(\phi_h) \right| \right\|_h \leqslant c_2 \left\| z_h \right\|_h \tag{14}$$

(14) означает непрерывность обратного оператора Λ_h^{-1} в точке ϕ_h . **Теорема** ($\mathit{Лаксa}$).

Любая устойчивая разностная схема p-го порядка аппроксимации на решении является схемой p-го порядка сходимости.

1. пока пусто

25 Интегро-интерполяционный метод

Замечания:

1. пока пусто

26 Разностные схемы повышенного порядка аппроксимации

Замечания:

1. пока пусто

27 Разностные схемы для уравнения Пуассона

Замечания:

1. пока пусто

28 Аппроксимация краевых условий 2-го и 3-го рода

Замечания:

1. пока пусто

29 Монотонные разностные схемы

Замечания:

1. пока пусто

30 Явная левостороняя схема для уравнения переноса

Замечания:

1. пока пусто

31 Неявная левостороняя схема для уравнения переноса

Замечания:

1. пока пусто

32 Начальная краевая задача для уравнения переноса

Замечания:

1. пока пусто

33 Явная схема для уравнения теплопроводности

Замечания:

1. пока пусто

34 Шеститочечная схема для уравнения теплопроводности

Замечания: