Crystallization from $Na_2O-P_2O_5-Fe_2O_3-M^{II}O$ ($M^{II}=Mg$, Ni) Melts and the Structure of $Na_4MgFe(PO_4)_3$

N. Yu. Strutynska, I. V. Zatovsky, M. M. Yatskin, N. S. Slobodyanik, and I. V. Ogorodnyk

Shevchenko National University, Volodymyrs'ka ul. 64, Kyiv, 01033 Ukraine e-mail: Strutynska_N@bigmir.net
Received September 29, 2011

Abstract—We have studied general trends of phosphate crystallization from Na₂O–P₂O₅–Fe₂O₃–M^{II}O (M^{II} = Mg, Ni) high-temperature solutions at Na/P = 1.0–1.4, M^{II}/Fe = 1.0, and Fe/P = 0.15 or 0.3, and identified the stability regions of the phosphates Na₄M^{II}Fe(PO₄)₃ (M^{II} = Mg, Ni), NaFeP₂O₇, and Na₂NiP₂O₇. The synthesized compounds have been characterized by X-ray powder diffraction and infrared spectroscopy. The structure of Na₄MgFe(PO₄)₃ (sp. gr. $R\overline{3}c$, a = 8.83954(13) Å, c = 21.4683(4) Å) has been determined by Rietveld powder diffraction analysis.

DOI: 10.1134/S0020168512040176

INTRODUCTION

There is great interest in NASICON-type phosphates (NZP, NaZr₂(PO₄)₃), motivated by their attractive physicochemical properties, such as high ionic conductivity, small thermal expansion coefficients, good catalytic and luminescent properties, and chemical and thermal stability [1–5], which is essential for designing novel functional materials. NASI-CON-type compounds with the general formula

 $A'_aA'_bA'''(PO_4)_3$, $(A' = Na^+, Ag^+, Mn^{2+}, Co^{2+}, Ni^{2+}, Cu^{2+}, A'', A''' = tri-, tetra-, or pentavalent metals) have a considerable number of compositions and crystallize in a trigonal or monoclinic structure [6, 7].$

In this paper, we report a study of chemical interactions of $Fe_2O_3 + M^{II}O$ ($M^{II} = Ni$, Mg) oxide mixtures with sodium phosphate melts and identify conditions for phosphate formation, including new NZP-type compounds. The synthesized phosphates were characterized by X-ray powder diffraction and infrared spectroscopy. The structure of the new phosphate $Na_4MgFe(PO_4)_3$ was determined by Rietveld powder diffraction analysis.

EXPERIMENTAL

Phosphate crystallization from $Na_2O-P_2O_5-Fe_2O_3-M^{II}O$ ($M^{II}=Mg,\ Ni$) melts was studied at Na/P atomic ratios from 1.0 to 1.4 and fixed M^{II}/Fe (1.0) and Fe/P (0.15 and 0.3) ratios. The starting chemicals used were analytical-grade NaPO₃, $Na_2CO_3,\ Fe_2O_3,\ MgO,\ and\ NiO.$

Appropriate ratios of the starting reagents were ground in an agate mortar, placed in a platinum crucible, heated to 1000°C, and homogenized at this tem-

perature for 2 h. Crystallization was initiated by cooling the homogenized melt to 870–650°C (depending on melt composition) at a rate of 25–50°C/h. To check the completion of oxide dissolution and determine the crystallization onset temperature, melt samples were taken at intervals and examined by optical microscopy. The reaction products were boiled in distilled water in order to remove the residual flux.

The synthesized compounds were identified by chemical analysis, X-ray fluorescence analysis, and X-ray diffraction (XRD). XRD patterns were collected on a Shimadzu XRD-6000 powder diffractometer in reflection geometry (Cu K_{α} radiation, $\lambda = 1.54178$ Å, bent graphite monochromator) in a continuous θ –2 θ scan mode at a rate of 1.0° /min in the range $20 5.0^{\circ}$ -110.0°. Intensity data for structure analysis were also collected on the XRD-6000: step-scan mode with a step of 0.02° and a counting time per data point of 8 s. The crystal structure of Na₄MgFe(PO₄)₃ was refined by the Rietveld method with FullProf 2011 [8]. The peak profile function was modeled using the pseudo-Voigt function with an anisotropic Thompson—Cox— Hastings divergence [9]. As the input model, we used the atomic position coordinates in the structure of Na₄NiFe(PO₄)₃. The raw powder XRD data, calculated profile, and difference plot are presented in Fig. 1. The intensity data collection conditions are summarized in Table 1. Table 2 lists the atomic positional parameters, and the main bond distances in oxygen coordination polyhedra are presented in Table 3. More detailed structural data can be obtained from the ICSD database: Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany; depository number CSD-423 538.

Fig. 1. Raw powder XRD data, calculated profile, and difference plot for Na₄MgFe(PO₄)₃.

Infrared spectra were measured on a Nicolet Nexus 470 FTIR spectrophotometer in the frequency range 400–4000 cm⁻¹ using KBr pellets.

RESULTS AND DISCUSSION

Phase relations. Our results for the $Na_2O-P_2O_5-Fe_2O_3-M^{II}O$ ($M^{II}=Mg$, Ni) systems demonstrate that, under isothermal conditions (1000°C), a mixture of polyvalent metal oxides dissolves in sodium phosphate melts in 1-2 h at Fe/P=0.15 and in 2-4 h at Fe/P=0.3. During subsequent cooling of homogeneous high-temperature solutions, we identified the crystallization regions of compounds and mixtures of crystalline phases, whose composition depended on the initial Na/P and Fe/P ratios (Table 4).

 $Na_2O-P_2O_5-Fe_2O_3-MgO$. When Fe₂O₃ + MgO mixture is dissolved in a melt with Na/P = 1.0 (Fe/P = 0.15, Fe/Mg = 1.0), homogenization takes about 1 h. Subsequent cooling to 770°C at a rate of 25°C leads to melt vitrification, without formation of crystalline phases. From melts with Na/P =1.2-1.3 below 800°C, we obtained two types of crystals. XRD examination showed that the mixture consisted of Na₄MgFe(PO₄)₃ and NaFeP₂O₇ (PDF2, no. 00-036-1454). At Na/P = 1.4, the high-temperature solution experienced vitrification at 700°C. Increasing the concentration of oxides (Fe/P = 0.3, Fe/Mg = 1.0) in the melt extends the phase field of Na₄MgFe(PO₄)₃, which forms as phase-pure material in the range Na/P = 1.2-1.4. At the same time, we observe crystallization of two compounds in the metaphosphate section: $Na_4MgFe(PO_4)_3$ and $NaFeP_2O_7$. The composition of the synthesized ternary orthophosphate $Na_4MgFe(PO_4)_3$ was determined by elemental analysis (found: Na, 20.17 wt % (calculated, 20.12 wt %); Mg, 5.28 wt % (5.32 wt %); Mg, M

Table 1. Intensity data collection conditions and crystal data for $Na_4MgFe(PO_4)_3$

Crystal system	Trigonal
Space group	$R\overline{3}c$
Unit-cell parameters	
a, Å	8.83954(13)
c, Å	21.4683(4)
V, Å ³	1452.74(4)
Z	6
Diffractometer	Shimadzu XRD-6000
Wavelength, Å	1.54187
Temperature, K	293
$2\theta_{min}$; $2\theta_{max}$, deg	8.0; 110.0
Measured reflections	414
$R_{ m p}$	10.667
R_{B}	2.700
R_I	7.768
wR	13.626
$wR_{\rm exp}$	4.103

Table 2. Atomic position coordinates in the structures of $Na_4MgFe(PO_4)_3$

Atom	Position	x	у	z
Mg/Fe	12 <i>c</i>	0	0	0.14896(14)
Na1	6 <i>b</i>	0	0	0
Na2	18 <i>e</i>	-1/3	-0.0244(7)	0.08333
P1	18 <i>e</i>	-1/3	-0.3723(4)	0.08333
O 1	36 <i>f</i>	0.1767(6)	0.2041(7)	0.1915(2)
O2	36 <i>f</i>	0.1917(6)	0.0275(7)	0.0895(3)

20.41 wt % (20.33 wt %). The XRD pattern of the mixed orthophosphate could be indexed in trigonal symmetry, sp. gr. $R\overline{3}c$. This compound has the NASICON structure, which was refined by powder XRD.

System Na₂O-P₂O₅-Fe₂O₃-NiO. Crystallization from high-temperature solutions in this system yields

mixed ortho- and diphosphates. At Na/P = 1.0 and 1.4 (Fe/P = 0.15, Fe/Ni = 1.0) and temperatures from 1000 to 700°C, we observed glass formation, without crystallization. At Na/P from 1.2 to 1.3, cooling to 780°C led to crystallization of a phase mixture. In contrast to the above system, three phases were concurternary rently formed: the orthophosphate Na₄NiFe(PO₄)₃ and binary diphosphates NaFeP₂O₇ (PDF2, no. 00-036-1454) and $Na_2NiP_2O_7$ (PDF2, no. 00-052-1256) [10]. Increasing the concentration of oxides (Fe/P = 0.3, Fe/Ni = 1.0), we obtained phase-pure $Na_4NiFe(PO_4)_3$ in the range Na/P = 1.21.4. This compound precipitates below 950°C, and the melt solidifies even at 900°C. According to powder XRD data, Na₄NiFe(PO₄)₃ also has a trigonal structure (sp. gr. $R\overline{3}c$, a = 8.801(1) Å, c = 21.623(5) Å), in agreement with previous data [11]. At Na/P = 1.0 and temperatures from 1000 and 880°C, we observed the formation of Na₄NiFe(PO₄)₃ and NaFeP₂O₇.

Table 3. Bond distances (Å) and angles (deg) in the oxygen coordination polyhedra in the structure of Na₄MgFe(PO₄)₃

(Mg/Fe)O ₆ polyhedra					
Mg/Fe-O1	$1.926(5) \times 3$	Mg/Fe -O2	$2.037(6) \times 3$	O1-Mg/Fe-O1i	99.4(2)
$O1-Mg/Fe-O2^{i}$	169.5(2)	O2-Mg/Fe-O1i	87.7(1)	O2-Mg/Fe-O2i	84.9(1)
PO ₄ tetrahedra					
P1-O2i	$1.554(4) \times 2$	P1-O2ii	$1.570(5) \times 2$	$O1^{iii}$ $-P1$ $-O2^{i}$	106.1(2)
$O1^{iii}$ $-P1$ $-O2^{iv}$	111.3(2)	$O1^{iii}$ $-P1$ $-O1^{ii}$	108.4(2)	$O2^{i}$ $-P1$ $-O2^{iv}$	113.8(1)
NaO_x polyhedra					
Na1-O2	$2.492(5) \times 6$	O2-Na1-O2 ^v	180.0(1)	O2-Na1-O2i	66.9(1)
		O2-Na1-O2vi	113.1(1)		
Na2-O2i	$2.366(6) \times 2$	Na2-O2 ^{vii}	$2.579(8) \times 2$	Na2-O1 ⁱ	$2.594(4) \times 2$
Na2–O1 ^{viii}	$2.825(8) \times 2$				

Note: Coordinates of equivalent positions (i) -x + y, -x, z; (ii) -1/3 + x - y, -2/3 + x, 1/3 - z; (iii) -1/3 - x + y, -2/3 + y, -1/6 + z; (iv) -2/3 + x - y, -1/3 - y, 1/6 - z; (v) -x, -y, -z, 1/3 - z; (vi) x - y, x, -z; (vii) -y, x - y, z; (viii) -1/3 + x, 2/3 + x - y, 1/6 + z.

Table 4. Crystallization of mixed phosphates from $Na_2O-P_2O_5-Fe_2O_3-M^{II}O$ ($M^{II}=Mg,Ni$) high-temperature solutions in the temperature range $1000-670^{\circ}C$

Na/P	$Na_2O-P_2O_5-Fe_2O_3-MgO$		Na ₂ O-P ₂ O ₅ -Fe ₂ O ₃ -NiO	
144/1	0.15*	0.3*	0.15*	0.3*
1.0	Glass formation	$Na_4MgFe(PO_4)_3 + NaFeP_2O_7$	Glass formation	$Na_4NiFe(PO_4)_3 + NaFeP_2O_7$
1.2	$Na_4MgFe(PO_4)_3 +$	Na ₄ MgFe(PO ₄) ₃	Na ₄ NiFe(PO ₄) ₃ +	Na ₄ NiFe(PO ₄) ₃
1.3	NaFeP ₂ O ₇		$NaFeP_2O_7 + Na_2NiP_2O_7$	
1.4	Glass formation		Glass formation	

^{*} Fe/P.

Fig. 2. Infrared spectra of the ternary orthophosphates (1) $Na_4MgFe(PO_4)_3$ and (2) $Na_4NiFe(PO_4)_3$.

Infrared spectra of the synthesized compounds. The spectra of the ternary orthophosphates Na₄M^{II}Fe(PO₄)₃ (M^{II} = Mg, Ni) contain absorption bands that confirm the presence of the orthophosphate anion (Fig. 2): asymmetric and symmetric bending modes of the phosphate tetrahedra (δ_{as} and $\delta_{s}(PO_{4})$) in the range 500–640 cm⁻¹ and the corresponding stretching modes (ν_{s} and $\nu_{as}(PO_{4})$) in the range 950–1200 cm⁻¹. Such spectra are typical of framework phosphates with an [M₂(PO₄)₃]_∞ anion sublattice.

Structure of the mixed orthophosphate $Na_4MgFe(PO_4)_3$. Analysis of the structure of the synthesized ternary phosphate shows that this compound is isostructural with the $Na_4M^{II}M^{III}(PO_4)_3$ ($M^{II}=Ni$, Fe, Mg, $M^{III}=Fe$, Cr) phosphates [11–14], which have the NASICON structure. These compounds have a three-dimensional framework made up of cornersharing AO_6 polyhedra and PO_4 tetrahedra and con-

tain two crystallographic sites, M1 and M2, for cations that compensate for the charge of the anion sublattice, which suggests the crystallographic formula $M(1)_x M(2)_y A_n (PO_4)_3$.

The anion sublattice $[MgFe(PO_4)_3]^{4-}$ of the $Na_4MgFe(PO_4)_3$ orthophosphate is made up of isolated $(Mg/Fe)O_6$ polyhedra and PO_4 tetrahedra, and its charge is neutralized by two types of sodium cations (Fig. 3).

The magnesium and iron atoms reside in the same crystallographic position (12c) and are surrounded each by six oxygens, with bond distances d((Mg/Fe)-O) = 1.926 and 2.037 Å (Table 3). Three O2 oxygens, 2.037 Å from the Mg/Fe atoms, also form the coordination of Na1 (Fig. 4). The O1 oxygens, with d((Mg/Fe)-O) = 1.926 Å, belong to "bridging" PO_4 tetrahedra, which reside between neighboring $(Mg/Fe)O_6$ polyhedra (Fig. 4). This seems to be evidence that the Na1 atoms have a significant effect on the coordination of the Mg/Fe atoms.

The P–O bond lengths in the PO₄ tetrahedra lie in the range 1.554–1.570 Å and slightly exceed those in the analogous phosphates Na₄Fe²⁺Fe³⁺(PO₄)₃ (d=1.533(6)-1.538(6) Å [12]) and Na₄NiFe(PO₄)₃ (d=1.533(6)-1.538(6) Å [11]). The O–P–O bond angles lie in the range 106.051° to 113.772°, typical of NASI-CON-type phosphates (106.9(3)°–112.1(3)° in Na₄Fe²⁺Fe³⁺(PO₄)₃ and 106.11(8)°–112.11(8)° in Na₄NiFe(PO₄)₃).

The sodium atoms reside in two independent crystallographic sites: Na1 and Na2 (Fig. 3). In the former site, Na is in a regular octahedral oxygen coordination, with d(Na1-O) = 2.492(5) Å. The Na(1)O₆ octahedron shares faces with two neighboring (Mg/Fe)O₆ polyhedra (Fig. 4). The other type of sodium atom resides in voids of the three-dimensional anion framework and is coordinated by eight oxygens, with d(Na2-O) = 2.366(6) - 2.825(8) Å (Table 3).

Fig. 3. Structure of $Na_4MgFe(PO_4)_3$ projected onto the *bc* plane.

Fig. 4. Coordination of the Mg/Fe atoms and linkage between the (Mg/Fe)O₆ polyhedron and Na(1)O₆ octahedron.

CONCLUSIONS

We have studied crystallization of phosphates from $Na_2O-P_2O_5-Fe_2O_3-M^{II}O$ ($M^{II}=Mg$, Ni) high-temperature solutions at Na/P=1.0-1.4, Fe/P=0.15 or 0.3, and $Fe/M^{II}=1.0$, and established conditions for the formation of the mixed phosphates $Na_4M^{II}Fe(PO_4)_3$ ($M^{II}=Mg$, Ni), $NaFeP_2O_7$, and $Na_2NiP_2O_7$. The structure of the new ternary orthophosphate $Na_4MgFe(PO_4)_3$ has been determined by X-ray powder diffraction.

REFERENCES

- Anantharamulu, N., Rao, K.K., Vithal, M., and Prasad, G., Preparation, Characterization, Impedance and Thermal Expansion Studies of Mn_{0.5}MSb(PO₄)₃ (M = Al, Fe and Cr), *J. Alloys Compd.*, 2009, vol. 479, nos. 1–2, pp. 684–691.
- Feng, J.K., Lu, L., and Lai, M.O., Lithium Storage Capability of Lithium Ion Conductor Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃, *J. Alloys Compd.*, 2010, vol. 501, no. 2, pp. 255–258.
- 3. Cushing, B.L. and Goodenough, J.B., Li₂NaV₂(PO₄)₃: A 3.7V Lithium-Insertion Cathode with the Rhombohedral NASICON Structure, *J. Solid State Chem.*, 2001, vol. 162, pp. 176–181.
- Sun, J.-K., Huang, F.-Q., Wang, Y.-M., et al., Characterization of Nasicon-Type Li₃Fe_{2-2x}Ti_xMn_x(PO₄)₃/C Cathode Materials, *J. Alloys Compd.*, 2009, vol. 469, pp. 327–331.
- El Bouari, A., El Jazouli, A., Benmokhtar, S., Gravereau, P., and Wattiaux, A., Synthesis, Structure, Magnetic, Optical and Moessbauer Properties of

- Na₂FeSn(PO₄)₃, *J. Alloys Compd.*, 2010, vol. 503, pp. 480–484.
- Boilot, J.P., Salanié, J.P., Desplanches, G., and Le Potier, D., Phase Transformation in Na_{1+x}Si_xZr₂P_{3-x}O₁₂ Compounds, *Mater. Res. Bull.*, 1979, vol. 14, no. 111, pp. 1469–1477.
- 7. Alpen, U., Bell, M.F., and Wichelhaus, W., Phase Transition in Nasicon (Na₃Zr₂Si₂PO₁₂), *Mater. Res. Bull.*, 1979, vol. 14, no. 10, pp. 1317–1322.
- 8. Rodriguez-Carvajal, J., *FullProf*, Saclay: Laboratoire Léon Brillouin (CEA-CNRS), 2006.
- Thompson, P., Cox, D.E., and Hastings, J.B., Rietveld Refinement of Debye–Scherrer Synchrotron X-Ray Data from Al₂O₃, *J. Appl. Crystallogr.*, 1987, vol. 20, pp. 79–83.
- 10. Nagornyi, P.G., Slobodyanik, N.S., and Petrenko, O.V., Phase Relations in the Na₂O–P₂O₅–NiO System, *Zh. Neorg. Khim.*, 1998, vol. 43, no. 4, pp. 599–603.
- 11. Essehli, R., Bali, B.E., Benmokhtar, S., et al., Crystal Structure and Magnetic Properties of Iron(III)-Based Phosphates: Na₄NiFe(PO₄)₃ and Na₂Ni₂Fe(PO₄)₃, *J. Alloys Compd.*, 2011, vol. 509, pp. 1163–1171.
- 12. Hatert, F., Na₄Fe²⁺Fe³⁺(PO₄)₃, a New Synthetic NASICON-Type Phosphate, *Acta Crystallogr., Sect. E: Struct. Rep. Online*, 2009, vol. 65, p. i30.
- 13. Manoun, B., Jazouli, A.El., Krimi, S., and Lacggar, A., Synthesis and Crystallochemistry of Na₄CrNi(PO₄)₃, *Powder Diffr.*, 2004, vol. 19, no. 2, pp. 162–164.
- 14. Delmas, C., Cherkaoui, F., and Hagenmuller, P., Ionic Conductivity in a New NASICON Related Solid Solution: Na_{3+y}Cr_{2-y}Mg_y(PO₄)₃. An Optical Characterization of the Skeleton Covalency, *Mater. Res. Bull.*, 1986, vol. 21, no. 4, pp. 469–477.