

What is claimed is:

1. An apparatus for determining the position of incidence of radiation, comprising  
a solid-state device with internal gain, and  
a means for using charge separation to obtain electrical signals from said device in response  
to incidence of radiation,  
whereby the position of incidence of radiation is calculated using a plurality of said electrical  
signals.
2. The apparatus of claim 1, wherein said solid-state device is an avalanche photodiode.
3. The apparatus of claim 1, wherein said solid-state device is a solid state photomultiplier.
4. The apparatus of claim 1, further comprising  
a means for calculating from said electrical signals the energy of the incident radiation.
5. The apparatus of claim 4, wherein said solid-state device is an avalanche photodiode.
6. The apparatus of claim 1, further comprising  
a means for calculating from said electrical signals the energy of the incident radiation, and  
a means for calculating from said electrical signals the time of incidence of pulsed radiation.
7. The apparatus of claim 6, wherein said solid-state device is an avalanche photodiode.
8. An apparatus for determining the position of incidence of radiation, comprising  
a solid-state device with internal gain,  
a plurality of electrically conductive structures that use charge separation to obtain electrical  
signals from said device in response to incidence of radiation, and  
a means for calculating the position of incidence of radiation using a plurality of said  
electrical signals.
9. The apparatus of claim 8, wherein said solid-state device is an avalanche photodiode.
10. The apparatus of claim 8, wherein said solid-state device is a solid state photomultiplier.
11. The apparatus of claim 8, further comprising  
a means for calculating from said electrical signals the energy of the incident radiation.
12. The apparatus of claim 11, wherein said solid-state device is an avalanche photodiode.
13. The apparatus of claim 8, further comprising  
a means for calculating from said electrical signals the energy of the incident radiation, and  
a means for calculating from said electrical signals the time of incidence of pulsed radiation.

14. The apparatus of claim 13, wherein said solid-state device is an avalanche photodiode.
15. The apparatus of claim 8, further comprising  
one or more termination lines between the conductive structures, disposed to eliminate  
geometric distortion in the electrical signals.
16. The apparatus of claim 8, further comprising  
a means of correcting for geometric distortion in coordinates calculated from said electrical  
signals using a termination line or lines between said conductive structures.
17. A method for determining the position of incidence of radiation on a solid state device with  
internal gain, comprising the steps of:  
arranging a plurality of electrically conductive structures with respect to said solid state  
device that obtain by charge separation electrical signals from said device in response to  
incidence of radiation, and  
calculating the position of incidence of said radiation using a plurality of said electrical  
signals.
18. The method of claim 17, wherein said solid-state device is an avalanche photodiode.
19. The method of claim 17, wherein said solid-state device is a solid state photomultiplier.
20. A method of measuring the energy of incident radiation on a position sensitive solid state  
detector with internal gain, comprising the steps of  
extracting an electrical signal from a single contact that indicates the total energy incident on  
said detector, and  
calculating said total incident energy from said electrical signal.
21. The method of claim 20, further comprising the step of  
obtaining the time of incidence from said electrical signal.

TOTALITY OF THE SPECIFICATION