```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
```

```
In [2]: ▶
```

```
data1 = pd.read_csv("amd_processors.csv")
data2 = pd.read_csv("intel_processors.csv")
data3 = pd.read_csv("cpu_benchmarks.csv")
```

```
In [3]:
```

data1.head()

Out[3]:

	id	cores	threads	name	launch_date	lithography	base_frequency	turbo_frequency	cache_
0	1	16.0	32.0	AMD Ryzen 9 5950X	05-11-2020	7.0	3400	4900.0	Nε
1	2	12.0	24.0	AMD Ryzen 9 5900X	05-11-2020	7.0	3700	4800.0	Ne
2	3	12.0	24.0	AMD Ryzen 9 5900 (OEM Only)	12-01-2021	7.0	3000	4700.0	Nε
3	4	8.0	16.0	AMD Ryzen 7 5800X	05-11-2020	7.0	3800	4700.0	Na
4	5	8.0	16.0	AMD Ryzen 7 5800 (OEM Only)	12-01-2021	7.0	3400	4600.0	Nε
4									•

In [4]: ▶

data2.head()

Out[4]:

	id	cores	threads	name	processor_number	launch_date	lithography	bus_speed	base_fre
0	1	2	2.0	Intel Atom C2338	C2338	01-08-2013	22.0	NaN	
1	2	2	2.0	Intel Atom C2350	C2350	01-08-2013	22.0	NaN	
2	3	2	2.0	Intel Atom C2358	C2358	01-08-2013	22.0	NaN	
3	4	4	4.0	Intel Atom C2518	C2518	01-08-2013	22.0	NaN	
4	5	4	8.0	Intel Core i7- 8709G	i7-8709G	01-02-2018	14.0	8.0	
5 r	ows	× 26 c	olumns						
4									>

localhost:8888/notebooks/Intel Processors verses AMD Processors.ipynb

```
In [5]:

data3.head()

Out[5]:
```

	id	manufacturer	sku	rating	uri
0	1	amd	10456	46113	https://www.cpubenchmark.net/cpu.php?cpu=AMD+R
1	2	amd	10461	39634	https://www.cpubenchmark.net/cpu.php?cpu=AMD+R
2	3	amd	10466	28481	$https:/\!/www.cpubenchmark.net/cpu.php?cpu=AMD+R\\$
3	4	amd	10471	22165	$https:/\!/www.cpubenchmark.net/cpu.php?cpu=AMD+R\\$
4	5	amd	9931	32902	https://www.cpubenchmark.net/cpu.php?cpu=AMD+R

```
In [6]:
data1.shape
```

```
•
```

```
Out[6]:
```

(538, 20)

```
In [7]: ▶
```

data2.shape

Out[7]:

(1098, 26)

```
In [8]: ▶
```

```
data3.shape
```

Out[8]:

(1667, 5)

```
In [9]: ▶
```

data1.columns

Out[9]:

```
In [10]:
                                                                                          M
data2.columns
Out[10]:
Index(['id', 'cores', 'threads', 'name', 'processor_number', 'launch_dat
       'lithography', 'bus_speed', 'base_frequency', 'turbo_frequency',
       'configurable_tdp_up_frequency', 'cache_size', 'tdp',
       'configurable_tdp_up', 'price', 'product_line', 'socket', 'memory_t
ype',
       'url', 'vertical_segment', 'max_memory_size', 'status', 'max_temp',
'sku', 'package_size', 'fullname'],
      dtype='object')
                                                                                          M
In [11]:
data3.columns
Out[11]:
Index(['id', 'manufacturer', 'sku', 'rating', 'url'], dtype='object')
In [12]:
                                                                                          H
data1.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 538 entries, 0 to 537
Data columns (total 20 columns):
                        Non-Null Count
 #
     Column
                                         Dtype
     ----
                        -----
 0
     id
                        538 non-null
                                         int64
                                         float64
 1
                        533 non-null
     cores
 2
     threads
                        478 non-null
                                         float64
 3
     name
                        538 non-null
                                         object
 4
     launch_date
                        185 non-null
                                         object
 5
                        440 non-null
                                         float64
     lithography
 6
     base_frequency
                        538 non-null
                                         int64
 7
     turbo frequency
                        457 non-null
                                         float64
 8
     cache_l1
                        285 non-null
                                         float64
 9
     cache_12
                        476 non-null
                                         float64
 10
    cache 13
                        331 non-null
                                         float64
 11
                        523 non-null
                                         float64
     tdp
 12
     product line
                        538 non-null
                                         object
                        520 non-null
 13
     socket
                                         object
 14
    memory_type
                        503 non-null
                                         object
 15
    url
                        538 non-null
                                         object
 16
    vertical segment 538 non-null
                                         object
 17
     max temp
                        407 non-null
                                         float64
                                         float64
 18
     max_memory_speed 442 non-null
                        538 non-null
                                         int64
 19
     sku
dtypes: float64(10), int64(3), object(7)
memory usage: 84.2+ KB
```

```
In [13]:
```

```
data2.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1098 entries, 0 to 1097 Data columns (total 26 columns):

#	Columns (total 26 columns):	Non-Null Count	Dtype
0	id	1098 non-null	int64
1	cores	1098 non-null	int64
2	threads	1094 non-null	float64
3	name	1098 non-null	object
4	processor_number	1098 non-null	object
5	launch_date	1098 non-null	object
6	lithography	1089 non-null	float64
7	bus_speed	713 non-null	float64
8	base_frequency	1055 non-null	float64
9	turbo_frequency	871 non-null	float64
10	<pre>configurable_tdp_up_frequency</pre>	98 non-null	float64
11	cache_size	1098 non-null	int64
12	tdp	1044 non-null	float64
13	configurable_tdp_up	102 non-null	float64
14	price	839 non-null	float64
15	<pre>product_line</pre>	1098 non-null	object
16	socket	1046 non-null	object
17	memory_type	1094 non-null	object
18	url	1098 non-null	object
19	vertical_segment	1098 non-null	object
20	max_memory_size	1092 non-null	float64
21	status	1098 non-null	object
22	max_temp	997 non-null	float64
23	sku	1098 non-null	int64
24	package_size	1048 non-null	object
25	fullname	1098 non-null	object
dtype	es: float64(11), int64(4), obje	ct(11)	
	222 2 1/5		

memory usage: 223.2+ KB

In [14]: H

```
data3.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1667 entries, 0 to 1666 Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	id	1667 non-null	int64
1	manufacturer	1667 non-null	object
2	sku	1667 non-null	int64
3	rating	1667 non-null	int64
4	url	1667 non-null	object

dtypes: int64(3), object(2)

memory usage: 65.2+ KB

In [15]: ▶

data1.describe()

Out[15]:

	id	cores	threads	lithography	base_frequency	turbo_frequency	
cou	nt 538.000000	533.000000	478.000000	440.000000	538.000000	457.000000	21
mea	n 269.500000	8.221388	14.845188	21.454545	2859.211896	3684.463895	18;
s	td 155.451493	10.689384	22.932795	10.181171	742.696634	581.104974	1640
m	in 1.000000	2.000000	2.000000	7.000000	56.000000	1500.000000	
25	% 135.250000	4.000000	4.000000	12.000000	2300.000000	3350.000000	2!
50	% 269.500000	4.000000	8.000000	28.000000	3000.000000	3800.000000	31
75	% 403.750000	8.000000	16.000000	28.000000	3500.000000	4100.000000	5
ma	1x 538.000000	64.000000	128.000000	65.000000	4700.000000	5000.000000	19660
4							

In [16]:

data2.describe()

Out[16]:

	id	cores	threads	lithography	bus_speed	base_frequency	turbo
count	1098.000000	1098.000000	1094.000000	1089.000000	713.000000	1055.00000	{
mean	549.500000	7.590164	14.213894	15.052342	6.417251	2574.64455	31
std	317.109603	7.403193	15.188295	3.725658	1.831803	731.75703	•
min	1.000000	2.000000	2.000000	10.000000	0.000000	700.00000	1;
25%	275.250000	2.000000	4.000000	14.000000	5.000000	2100.00000	34
50%	549.500000	4.000000	8.000000	14.000000	8.000000	2500.00000	38
75%	823.750000	8.000000	16.000000	14.000000	8.000000	3100.00000	44
max	1098.000000	56.000000	112.000000	32.000000	8.000000	4300.00000	5;
4							+

H

In [17]:

data3.describe()

Out[17]:

	id	sku	rating
count	1667.000000	1667.000000	1667.000000
mean	834.000000	84215.235753	8068.811038
std	481.365765	60703.514320	10191.251437
min	1.000000	1221.000000	106.000000
25%	417.500000	42808.000000	2017.000000
50%	834.000000	76622.000000	4522.000000
75%	1250.500000	97472.500000	9738.500000
max	1667.000000	217187.000000	87767.000000

In [18]:

data1.isnull().sum()

Out[18]:

id	0
cores	5
threads	60
name	0
launch_date	353
lithography	98
base_frequency	0
turbo_frequency	81
cache_l1	253
cache_12	62
cache_13	207
tdp	15
product_line	0
socket	18
memory_type	35
url	0
vertical_segment	0
max_temp	131
max_memory_speed	96
sku	0
dtype: int64	

In [19]: ▶

```
data2.isnull().sum()
```

Out[19]:

id	0
cores	0
threads	4
name	0
processor_number	0
launch_date	0
lithography	9
bus_speed	385
base_frequency	43
turbo_frequency	227
configurable_tdp_up_frequency	1000
cache_size	0
tdp	54
configurable_tdp_up	996
price	259
product_line	0
socket	52
memory_type	4
url	0
vertical_segment	0
max_memory_size	6
status	0
max_temp	101
sku	0
package_size	50
fullname	0
dtype: int64	

In [20]: ▶

data3.isnull().sum()

Out[20]:

id 0
manufacturer 0
sku 0
rating 0
url 0
dtype: int64

In [21]: M data1.nunique() Out[21]: id 538 cores 13 threads 15 name 525 launch_date 36 lithography 7 base_frequency 48 turbo_frequency 36 cache_l1 24 cache_12 11 cache_13 10 35 tdp product_line 127 socket 25 memory_type 9 538 url vertical_segment 6 31 max_temp max_memory_speed 19 538 sku dtype: int64 In [22]: H data1.cores.unique() Out[22]: array([16., 12., 8., 6., 64., 32., 24., 4., 2., 56., 48., 28., nan, 3.]) H In [23]: data1.base_frequency.unique() Out[23]: array([3400, 3700, 3000, 3800, 3900, 2700, 3500, 4000, 2900, 3300, 3200, 2800, 1900, 1800, 3100, 2300, 2100, 2600, 3600, 2000, 2200, 2400, 1400, 1200, 2500, 1700, 1600, 200, 4100, 2450, 2950, 2750, 2850, 2650, 2250, 2350, 1550, 1500, 4700, 4400, 4200, 56, 2050, 1300,

localhost:8888/notebooks/Intel Processors verses AMD Processors.ipynb

1450, 1650, 1350, 1000], dtype=int64)

```
In [24]:
                                                                                       M
data1.turbo_frequency.unique()
Out[24]:
array([4900., 4800., 4700., 4600., 4500., 4200., 4300., 4400., 4000.,
       3800., 3900., 4100., 3700., 3500., nan, 3300., 3200., 2800.,
       2600., 2300., 3400., 3600., 2900., 3100., 2700., 2500., 2400.,
       2200., 3000., 3675., 3650., 3450., 3350., 5000., 2000., 1800.,
       1500.1)
In [25]:
                                                                                       H
data1.memory_type.unique()
Out[25]:
array(['DDR4', 'DDR4 - Up to 3200MHz, LPDDR4 - Up to 4266MHz', 'LPDDR4',
       nan, 'DDR4, LPDDR4', 'DDR3', 'DDR3/DDR3L', 'Not Listed', 'DDR3L',
       'DDR2'], dtype=object)
In [26]:
                                                                                       M
data1.max_memory_speed.unique()
Out[26]:
array([3200., nan, 2400., 4267., 2933., 2667., 1600., 2133., 1866.,
        186., 2666., 1333., 1865., 1599., 800., 2000., 1800., 2200.,
       1400., 667.])
In [28]:
                                                                                       H
data1.drop(['id','url'] ,axis=1 , inplace =True)
In [29]:
amd_cores = list(data1['cores'].dropna().unique())
```

In [33]: ▶

```
plt.figure(figsize =(15, 10))
plt.pie(amd_cores, labels = amd_cores , autopct='%1.1f%%')
plt.title('AMD Processors with number of cores')
plt.show()
```

AMD Processors with number of cores


```
In [35]: ▶
```

```
from PIL import Image
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
```

```
In [36]: ▶
```

```
text = " ".join(review for review in data1.name.astype(str))
stopwords = set(STOPWORDS)
```

```
In [37]:
```

```
wordcloud = WordCloud(stopwords=stopwords, background_color="white", width=800, height=2
plt.axis("off")
plt.tight_layout(pad=0)
plt.imshow(wordcloud, interpolation='bilinear')
plt.show()
```


In [38]:

```
plt.figure(figsize =(8, 6))
data1['socket'].value_counts().plot.bar(color=['red','blue','green'])
plt.title('Types of Sockets in which AMD Processors are available')
plt.show()
```



```
In [39]:
                                                                                         M
data2.nunique()
Out[39]:
id
                                  1098
cores
                                    18
threads
                                    20
name
                                  1090
processor_number
                                  1087
launch date
                                    40
lithography
                                     4
bus_speed
                                     6
base_frequency
                                    46
turbo_frequency
                                    38
configurable_tdp_up_frequency
                                    24
                                    43
cache_size
tdp
                                    96
configurable_tdp_up
                                     9
                                   322
product_line
                                    42
socket
                                    36
memory_type
                                    77
url
                                  1098
vertical_segment
                                     5
max_memory_size
                                    20
                                     3
status
                                    52
max_temp
                                  1098
sku
package_size
                                    48
                                  1098
fullname
dtype: int64
In [40]:
                                                                                         M
data2.cores.unique()
Out[40]:
array([ 2, 4, 8, 16, 14, 20, 12, 18, 6, 22, 10, 24, 28, 26, 56, 32, 36,
       38], dtype=int64)
In [41]:
                                                                                         M
data2.base_frequency.unique()
Out[41]:
array([1700., 3100., 3400., 2600., 2400., 2000., 2200., 2700., 2800.,
       3500., 2500., 1300., 3000., 1500., 2300., 3200., 2900., 1400.,
       1600., 1900., 1800., 3300., 2100., 3900., 3600., 4000., 2410.,
       1200., 1460., 1860., 2130., 1830., 2160., 1580., 3800., 3700.,
       4200., 1040., 1100., 2260., 1250., 1000., 800., 700., 4100.,
         nan, 4300.])
```

In [42]: ▶

```
data2.turbo_frequency.unique()
```

Out[42]:

```
array([2000., nan, 4100., 4000., 3600., 3400., 3000., 3100., 3200., 3800., 3900., 3700., 2600., 1900., 3300., 2900., 2300., 3500., 2700., 4200., 2800., 4400., 2500., 4300., 4500., 4700., 4600., 2400., 5000., 2200., 4800., 4900., 2100., 1700., 1600., 5100., 5300., 5200., 1300.])
```

In [43]: ▶

```
data2.memory_type.unique()
```

Out[43]:

```
array(['DDR3/DDR3L 1333', 'DDR4-2400',
       'DDR4-1866/2133, DDR3L-1333/1600 @ 1.35V', 'DDR3L 1333/1600',
       'DDR3L 1333/1600, LPDDR3 1600/1866',
       'DDR3L 1333/1600, LPDDR3 1333/1600', 'DDR3L 1600',
       'DDR3-1333/1600, DDR3L-1333/1600 @ 1.5V',
       'DDR3 and DDR3L 1333/1600 at 1.5V', 'DDR3 1333/1600',
       'DDR3L-1333, 1600; LPDDR3-1333, 1600',
       'DDR3L 1600/1866 LPDDR3 1600/1866', 'DDR3L-1333/1600/1866 @ 1.5V',
       'DDR4-2666', 'DDR3L-1333/1600 @ 1.5V',
       'DDR4-2133, LPDDR3-1866, DDR3L-1600',
       'DDR4-2133, LPDDR3 - 1866, DDR3L-1600', 'DDR3L 1333', 'DDR3L-1600',
       'DDR3L/LPDDR3 up to 1866 MT/s; LPDDR4 up to 2400 MT/s'
       'DDR4/LPDDR4 upto 2400 MT/s', 'LPDDR3-1866, DDR3L-1600',
       'DDR4-2400, LPDDR3-2133, DDR3L-1600',
       'DDR4-2133/2400, DDR3L-1333/1600 @ 1.35V', '2667', 'DDR4-2933',
       '4x32 LPDDR4/x 3733MT/s Max (8GB, 16GB @3200MT/s) / 2x64 DDR4 3200M
T/s Max 32GB',
       'DDR3L 1066', 'DDR4-2400, LPDDR3-2133', 'DDR4-2666, LPDDR3-2133',
       'DDR4-2667', 'DDR4/LPDDR4 upto 2400MT/s'
       'DDR4/LPDDR4 (SRET0) up to 2400 MT/s DDR4 (SRKLL) up to 2400 MT/s',
       'DDR4/LPDDR4 up to 2400 MT/s',
       '4x32 LPDDR4/x 3200MT/s Max 16GB / 2x64 DDR4 3200MT/s Max 32GB',
       'DDR4 LPDDR4x', 'LPDDR3-2133, DDR3L-1600',
       'DDR3L 1333/1600 LPDDR 1333 /1600', 'DDR3 1066', 'DDR4 RDIMM',
       'DDR3L-1600, DDR4-2400', nan, 'DDR3/DDR3L 1600', 'DDR3 1333',
       'DDR 1333', 'DDR4: 1866', 'LPDDR4-3733',
       'DDR3-1333, DDR3L-1333 @ 1.5V', 'DDR4-3200, LPDDR4-3733',
       'DDR4-2666, LPDDR3-2133, LPDDR4-2933', 'DDR4-3200', 'RDIMM',
       'DDR4-2400, LPDDR4/x-2400', 'DDR4: 2400', 'DDR4: 2133',
       'DDR4-1866', 'DDR3 1066/1333/1600', 'DDR3/L/-RS 1333/1600',
       'DDR3 1333/1600/1866', 'DDR4 1600/1866/2133', 'DDR4 2400/2133',
       'DDR4-2133, LPDDR3-1866', 'DDR4-3200, LPDDR4x-3733',
       'LPDDR4x-4267', 'DDR4 2133, DDR3L 1333/1600 @ 1.35V',
       'DDR4-2133, DDR3L-1600', 'DDR4-3200, LPDDR4x-4267',
       'DDR4-3200, LPDDR4x-4267, In-Band ECC', 'DDR4', 'DDR-2400',
       'Up to 3200 MT/s', 'DDR4-3200, LPDDR4x-3733, In -Band ECC',
       'DDR4-2133', 'DDR4 2933', 'DDR4 2666', 'DDR4 1600/1866/2133/2400',
       'DDR4 1600/1866/2133/2400/2666', 'DDR4, DDR3'], dtype=object)
```

```
In [44]:
                                                                                       M
data2.max_memory_size.unique()
Out[44]:
array([1.67772160e+07, 3.35544320e+07, 6.71088640e+07, 8.05306368e+08,
       1.61061274e+09, 8.38860800e+06, 1.07374182e+09, 9.21698304e+06,
       4.19430400e+06, 1.34217728e+08, 4.83183821e+09, 1.71756749e+07,
       1.20259084e+09,
                                  nan, 6.44245094e+09, 2.68435456e+08,
       6.73500365e+07, 6.75807232e+07, 5.36870912e+08, 2.14748365e+09,
       4.29496730e+091)
In [45]:
                                                                                       H
data2.drop(['id','url'] ,axis=1 , inplace =True)
In [46]:
intel_cores = list(data2['cores'].dropna().unique())
```

In [47]: ▶

```
plt.figure(figsize =(15, 10))
plt.pie(intel_cores, labels = intel_cores , autopct='%1.1f%%')
plt.title('Intel Processors with number of cores')
plt.show()
```

Intel Processors with number of cores

In [48]: ▶

```
text = " ".join(review for review in data2.name.astype(str))
stopwords = set(STOPWORDS)
```

```
In [49]: ▶
```

```
wordcloud = WordCloud(stopwords=stopwords, background_color="white", width=800, height=2
plt.axis("off")
plt.tight_layout(pad=0)
plt.imshow(wordcloud, interpolation='bilinear')
plt.show()
```


In [50]: ▶

```
plt.figure(figsize =(8, 6))
data2['socket'].value_counts().plot.bar(color=['red','blue','green'])
plt.title('Types of Sockets in which Intel Processors are available')
plt.show()
```


In [52]: ▶

```
plt.figure(figsize =(8, 6))
data2['status'].value_counts().plot.bar(color=['red','blue','green'])
plt.title('No. of Intel Processors which are Launched or Discontinued or Yet to be Launce
plt.show()
```


In [53]: ▶

```
plt.figure(figsize =(8, 6))
data2['vertical_segment'].value_counts().plot.bar(color=['green','blue','purple','gray',
plt.title('Types of Vertical Segments in which Intel Offers Processors')
plt.show()
```


In [54]:

```
sns.relplot(
   data=data2,
   x="launch_date", y="sku",
   kind="line", size_order=["T1", "T2"],
   height=5, aspect=1.3, facet_kws=dict(sharex=False),
)
plt.xticks(rotation = 90)
plt.title('SKU Benchamrks over the Years for Intel Processors')
plt.show()
```

