Asymptotic bounds for the combinatorial diameter of random polytopes

Sophie Huiberts (Columbia University)

joint work with Gilles Bonnet, Daniel Dadush, Uri Grupel, Galyna Livshyts

Cargese 2022

https://sophie.huiberts.me

Outline

Dramatis Personae

Diameter: a Question About Geometry

Given a polyhedron, how many edges do we need to traverse to go from any vertex to any other?

- $ightharpoonup P \subset \mathbb{R}^n$
- m facets

Diameter: a Question About Optimization

Given a polyhedron, how many edges do we need to traverse to go from any vertex to any other?

- $ightharpoonup P \subset \mathbb{R}^n$
- m facets

Given a vertex of the set of points *x* satisfying

$$Ax \leq b$$
,

how many steps do you need to find a vertex maximizing $c^{T}x$?

- n variables
- m constraints

Diameter Backstory: The Hirsch conjecture

If $P \subset \mathbb{R}^n$ has m facets, is the diameter at most m - n?

Diameter Backstory: The Hirsch conjecture

If $P \subset \mathbb{R}^n$ has m facets, is the diameter at most m - n?

True for

- ▶ polytopes in \mathbb{R}^3
- network flow polytopes
- fractional stable set polytopes
- polytopes with vertices in {0,1}ⁿ
- and many more

But false in general.

Diameter Backstory: The Hirsch conjecture

If $P \subset \mathbb{R}^n$ has m facets, is the diameter at most m - n?

True for

- polytopes in R³
- network flow polytopes
- fractional stable set polytopes
- ▶ polytopes with vertices in $\{0,1\}^n$
- and many more

But false in general.

B69, L70, B74:

Diameter(P) $\leq 2^{n-2}m$.

KK92, T14, S19:

Diameter(P) $\leq (m-n)^{\log_2 O(n/\log n)}$.

Polar Duality

Given a convex set $P \subset \mathbb{R}^n$, define

$$P^{\circ} = \{x \in \mathbb{R}^n : y^{\mathsf{T}}x \le 1 \ \forall y \in P\}.$$

Polar Duality

Given a convex set $P \subset \mathbb{R}^n$, define

$$P^{\circ} = \{ x \in \mathbb{R}^n : y^{\mathsf{T}} x \le 1 \ \forall y \in P \}.$$

If that *P* is a bounded polytope and contains the origin in its interior, then:

- P° is a bounded polytope and contains the origin in its interior
- $(P^{\circ})^{\circ} = P$
- if P is simple then P° is simplicial
- vertices of P correspond to facets of P°

Random Models

Let

$$P = \{x \in \mathbb{R}^n : \langle a, x \rangle \le 1 \ \forall a \in A\}, \qquad Q = \text{conv}(A),$$

where $A \subset \mathbb{S}^{n-1}$, $|A| \sim \mathsf{Poison}(m)$ is sampled iid.

Figure: $P \subset \mathbb{R}^3$ might look like this

Call to Adventure

DF94, BdSEHN14, DH16, NSS22:

If $S = \{x \in \mathbb{R}^n : Ax \le b\}$ where $A \in \mathbb{Z}^{n \times m}$ and every absolute square subdeterminant of A is at most Δ then

 $\mathsf{Diameter}(\mathsf{S}) \leq O(n^3 \Delta^2 \log(\Delta)).$

Call to Adventure

DF94, BdSEHN14, DH16, NSS22:

If $S = \{x \in \mathbb{R}^n : Ax \le b\}$ where $A \in \mathbb{Z}^{n \times m}$ and every absolute square subdeterminant of A is at most Δ then

Diameter(S)
$$\leq O(n^3 \Delta^2 \log(\Delta))$$
.

Borgwardt 1977,1982,1987,1999: consider the projection π onto a fixed two-dimensional subspace $W \subset \mathbb{R}^n$. In expectation, the random polygon $\pi(P)$ has $\Theta(n^2m^{\frac{1}{n-1}})$ vertices.

Call to Adventure

DF94, BdSEHN14, DH16, NSS22: If $S = \{x \in \mathbb{R}^n : Ax \leq b\}$ where $A \in \mathbb{Z}^{n \times m}$ and every absolute square subdeterminant of A is at most Δ then

Diameter(S)
$$\leq O(n^3 \Delta^2 \log(\Delta))$$
.

Borgwardt 1977,1982,1987,1999: consider the projection π onto a fixed two-dimensional subspace $W \subset \mathbb{R}^n$. In expectation, the random polygon $\pi(P)$ has $\Theta(n^2m^{\frac{1}{n-1}})$ vertices.

In particular, any two vertices that project onto the boundary of $\pi(P)$ are connected by a path along the boundary, so of length $O(n^2m^{\frac{1}{n-1}})$.

Quest: Prove the Following Results

When $A \subset \mathbb{S}^{n-1}$ follows a Poisson point process with $\mathbb{E}[|A|] = m > 2^{\Omega(n)}$, then for

$$P = \{x \in \mathbb{R}^n : \langle a, x \rangle \le 1 \ \forall a \in A\}, \qquad Q = \text{conv}(A),$$

with probability 1 - O(1/m) we have

$$\Omega(nm^{\frac{1}{n-1}}) \le \text{diam}(P) \le O(n^2m^{\frac{1}{n-1}} + 17^n)$$

 $\Omega(m^{\frac{1}{n-1}}) \le \text{diam}(Q) \le O(nm^{\frac{1}{n-1}} + 17^n).$

Let $P \subset \mathbb{R}^n$ be a bounded simple polytope containing the origin in its interior. Let $P^{\circ} = \{x \in \mathbb{R}^n : y^{\mathsf{T}}x \leq 1 \ \forall y \in P\}$.

Lemma: We have $diam(P) \ge (n-1)diam(P^{\circ}) - 2$.

Let $P \subset \mathbb{R}^n$ be a bounded simple polytope containing the origin in its interior. Let $P^{\circ} = \{x \in \mathbb{R}^n : y^{\mathsf{T}}x \leq 1 \ \forall y \in P\}$.

Lemma: We have $diam(P) \ge (n-1)diam(P^{\circ}) - 2$.

Proof: consider two vertices of P° , which correspond to two facets F, F' of P. Pick a path $v_1, v_2, \ldots, v_k \in P$ of vertices, with length $k - 1 \leq \text{diam}(P)$ and $v_1 \in F, v_k \in F'$.

Let $P \subset \mathbb{R}^n$ be a bounded simple polytope containing the origin in its interior. Let $P^{\circ} = \{x \in \mathbb{R}^n : y^{\mathsf{T}}x \leq 1 \ \forall y \in P\}$.

Lemma: We have $diam(P) \ge (n-1)diam(P^{\circ}) - 2$.

Proof: consider two vertices of P° , which correspond to two facets F, F' of P. Pick a path $v_1, v_2, \ldots, v_k \in P$ of vertices, with length $k - 1 \leq \text{diam}(P)$ and $v_1 \in F, v_k \in F'$.

Construct a sequence F_1, \ldots, F_p of facets of P, each consecutive pair having non-empty intersection, such that $v_1 \in F_1, v_k \in F_p$ and $v_2, \ldots, v_{k-1} \in F_1 \cup \cdots \cup F_p$. We can get $p \leq (k-1)/(n-1)$.

Let $P \subset \mathbb{R}^n$ be a bounded simple polytope containing the origin in its interior. Let $P^{\circ} = \{x \in \mathbb{R}^n : y^{\mathsf{T}}x \leq 1 \ \forall y \in P\}$.

Lemma: We have $diam(P) \ge (n-1)diam(P^{\circ}) - 2$.

Proof: consider two vertices of P° , which correspond to two facets F, F' of P. Pick a path $v_1, v_2, \ldots, v_k \in P$ of vertices, with length $k - 1 \leq \text{diam}(P)$ and $v_1 \in F, v_k \in F'$.

Construct a sequence F_1, \ldots, F_p of facets of P, each consecutive pair having non-empty intersection, such that $v_1 \in F_1, v_k \in F_p$ and $v_2, \ldots, v_{k-1} \in F_1 \cup \cdots \cup F_p$. We can get $p \le (k-1)/(n-1)$.

Since P is simple, any two facets with non-empty intersection share a (n-2)-dimensional face, meaning that the corresponding vertices of P° are adjacent.

Let $P \subset \mathbb{R}^n$ be a bounded simple polytope containing the origin in its interior. Let $P^{\circ} = \{x \in \mathbb{R}^n : y^{\mathsf{T}}x \leq 1 \ \forall y \in P\}.$

Lemma: We have $diam(P) \ge (n-1)diam(P^{\circ}) - 2$.

Proof: consider two vertices of P° , which correspond to two facets F, F' of P. Pick a path $v_1, v_2, \ldots, v_k \in P$ of vertices, with length $k - 1 \leq \text{diam}(P)$ and $v_1 \in F, v_k \in F'$.

Construct a sequence F_1, \ldots, F_p of facets of P, each consecutive pair having non-empty intersection, such that $v_1 \in F_1, v_k \in F_p$ and $v_2, \ldots, v_{k-1} \in F_1 \cup \cdots \cup F_p$. We can get $p \le (k-1)/(n-1)$.

Since P is simple, any two facets with non-empty intersection share a (n-2)-dimensional face, meaning that the corresponding vertices of P° are adjacent.

Hence the vertices of P° corresponding to F, F_1, \dots, F_p, F' form a path of length at most

$$p+2 \le (k-1)/(n-1)+2 \le \operatorname{diam}(P)/(n-1)+2.$$

A set $B \subset \mathbb{S}^{n-1}$ is called ε -dense if every spherical cap of radius ε contains a point from B.

A set $B \subset \mathbb{S}^{n-1}$ is called ε -dense if every spherical cap of radius ε contains a point from B.

Our set *A* is $\varepsilon = O((\log(m)/m)^{\frac{1}{n-1}})$ -dense with probability $1 - n^{-n}m^{-2}$.

A set $B \subset \mathbb{S}^{n-1}$ is called ε -dense if every spherical cap of radius ε contains a point from B.

Our set A is $\varepsilon = O((\log(m)/m)^{\frac{1}{n-1}})$ -dense with probability $1 - n^{-n}m^{-2}$.

Every facet of Q is encapsulated in a spherical cap of radius ε .

A set $B \subset \mathbb{S}^{n-1}$ is called ε -dense if every spherical cap of radius ε contains a point from B.

Our set A is $\varepsilon = O((\log(m)/m)^{\frac{1}{n-1}})$ -dense with probability $1 - n^{-n}m^{-2}$.

Every facet of Q is encapsulated in a spherical cap of radius ε .

Every edge of Q has length at most 2ε , but Q has vertices at distance ≥ 1 from each other.

A set $B \subset \mathbb{S}^{n-1}$ is called ε -dense if every spherical cap of radius ε contains a point from B.

Our set A is $\varepsilon = O((\log(m)/m)^{\frac{1}{n-1}})$ -dense with probability $1 - n^{-n}m^{-2}$.

Every facet of Q is encapsulated in a spherical cap of radius ε .

Every edge of Q has length at most 2ε , but Q has vertices at distance ≥ 1 from each other.

With high probability Diameter(Q) $\geq 1/2\varepsilon = \Omega(m/\log m)^{\frac{1}{n-1}}$.

Since every facet of Q is encapsulated in a spherical cap of radius ε whp, events taking place at distance 20ε from each other are nearly independent.

- Since every facet of Q is encapsulated in a spherical cap of radius ε whp, events taking place at distance 20ε from each other are nearly independent.
- ▶ Borgwardt's result tells us the expected number of vertices of $\pi(P)$ in each arc segment of length 2ε .

- Since every facet of Q is encapsulated in a spherical cap of radius ε whp, events taking place at distance 20ε from each other are nearly independent.
- ▶ Borgwardt's result tells us the expected number of vertices of $\pi(P)$ in each arc segment of length 2ε .
- ► Independence + upper and lower bounds on expectatation ⇒ concentration

- ▶ Since every facet of Q is encapsulated in a spherical cap of radius ε whp, events taking place at distance 20 ε from each other are nearly independent.
- ▶ Borgwardt's result tells us the expected number of vertices of $\pi(P)$ in each arc segment of length 2ε .
- Independence + upper and lower bounds on expectatation concentration
- ► The polygon $\pi(P)$ has $O(n^2 m^{\frac{1}{n-1}} + 2^{O(n)})$ vertices with probability $1 n^{-n} m^{-2}$.

- ▶ Since every facet of Q is encapsulated in a spherical cap of radius ε whp, events taking place at distance 20 ε from each other are nearly independent.
- ▶ Borgwardt's result tells us the expected number of vertices of $\pi(P)$ in each arc segment of length 2ε .
- Independence + upper and lower bounds on expectatation concentration
- ► The polygon $\pi(P)$ has $O(n^2 m^{\frac{1}{n-1}} + 2^{O(n)})$ vertices with probability $1 n^{-n} m^{-2}$.
- Taking a union bound over many different projections π , this can be extended to a diameter bound.

Atonement: Sketch of the True Lower Bound

► Every path along *Q* can be described by a curve of objectives

Atonement: Sketch of the True Lower Bound

- Every path along Q can be described by a curve of objectives
- Each such curve connecting antipodal points meets $\Omega(m^{\frac{1}{n-1}})$ distinct vertices of Q with high probability.

Atonement: Sketch of the True Lower Bound

- Every path along Q can be described by a curve of objectives
- Each such curve connecting antipodal points meets $\Omega(m^{\frac{1}{n-1}})$ distinct vertices of Q with high probability.
- Do the rest of the proof.

Return

- Close the gap between upper and lower bound.
- Other distributions, such as Gaussian?
- ▶ What if $m \le poly(n)$?