Instructor: Fred Khoury

- 1. The solid lies between planes perpendicular to the *x*-axis at x = 0 and x = 1. The cross-sections perpendicular to the *x*-axis between these planes are circular disks whose diameters run from the parabola $y = x^2$ to the parabola $y = \sqrt{x}$. Find the volume of the solid.
- 2. The base of the solid is the region in the first quadrant between the line y = x and the parabola $y = 2\sqrt{x}$. The cross-sections of the solid perpendicular to the *x*-axis are equilateral triangles whose bases stretch from the line to the curve. Find the volume of the solid.
- 3. The solid lies between planes perpendicular to the *x*-axis at x = 0 and x = 6. The cross-sections between these planes are squares whose bases run from the *x*-axis up to the curve $x^{1/2} + y^{1/2} = \sqrt{6}$. Find the volume of the solid.

- 4. Find the volume of the solid generated by revolving the region bounded by $y = \frac{4}{x^3}$ and the lines x = 1, and $y = \frac{1}{2}$ about (a) the x-axis; (b) the y-axis; (c) the line x = 2; (d) the line y = 4.
- 5. Find the volume of the solid generated by revolving the region bounded by $y = \sin x$ and the lines x = 0, $x = \pi$, and y = 2 about the line y = 2.
- **6.** The profile of a football resembles the ellipse. Find the football's volume to the nearest cubic inch.

- 7. The region in the first quadrant that is bounded by the curve $y = \frac{1}{\sqrt{x}}$, on the left by the line $x = \frac{1}{4}$, and below by the line y = 1 is revolved about the y-axis to generate a solid. Find the volume of the solid by
 - a) The shell method
- b) The washer method
- 8. Find the length of the curve $y = x^{1/2} \frac{1}{3}x^{3/2}$ from x = 1 to x = 4
- **9.** Find the length of the curve $x = y^{2/3}$, $1 \le y \le 8$
- **10.** Find the area of the surface generated by $y = \frac{1}{3}x^3$, $0 \le x \le 1$, x axis
- 11. Find the area of the surface generated by $x = \sqrt{4y y^2}$, $1 \le y \le 2$; y axis
- 12. At points on the curve $y = 2\sqrt{x}$, line segments of length h = y are drawn perpendicular to the xy-plane. Find the area of the surface formed by these perpendiculars from (0, 0) to $(3, 2\sqrt{3})$

- **13.** A rock climber is about to haul up 100 *N* (about 22.5 *lb*.) of equipment that has been hanging beneath her on 40 *m* rope that weighs 0.8 *N/m*. How much work will it take? (*Hint*: Solve for the rope and equipment separately, then add)
- 14. You drove an 800-*gal* tank truck of water from the base of a mountain to the summit and discovered on arrival that the tank was only half full. You started with a full tank, climbed at a steady rate, and accomplished the 4750-*ft* elevation change in 50 *min*. Assuming that the water leaked out at a steady rate, how much work was spent in carrying water to the top? Do not count the work done in getting yourself and the truck there. Water weighs 8 *lb/gal*.
- **15.** A force of 200 *N* will stretch a garage door spring 0.8 *m* beyond its unstressed strength. How far will a 300-*N* force stretch the spring? How much work does it take to stretch the spring this far from its unstressed length?

16. You are under contract to build a solar station at ground level on the east-west line between the two buildings. How far from the taller building should you place the station to maximize the number of hours it will be in the sun on a day when passes directly overhead? Begin by observing that

$$\theta = \pi - \cot^{-1}\left(\frac{x}{60}\right) - \cot^{-1}\left(\frac{50 - x}{30}\right)$$

Then find the value of x that maximizes θ .

17. A round underwater transmission cable consists of a core of copper wires surrounded by nonconducting insulation. If x denotes the ratio of the radius of the core to the thickness of the insulation, it is known that the speed of the transmission signal is given by the equation $v = x^2 \ln\left(\frac{1}{x}\right)$. If the radius of the core is 1 cm, what insulation thickness h will allow the greatest transmission speed?

- 18. Find the area of the triangular region bounded on the left by x + y = 2, on the right by $y = x^2$, and above by y = 2
- 19. Find the extreme values of $f(x) = x^3 3x^2$ and find the area of the region enclosed by the graph of f and the x-axis.
- 20. Find the area of the region bounded by the curves and line

a)
$$\sqrt{x} + \sqrt{y} = 1$$
, $x = 0$, $y = 0$

3

b)
$$x^3 + \sqrt{y} = 1$$
, $x = 0$, $y = 0$, for $0 \le x \le 1$

c)
$$y = 8\cos x$$
, $y = \sec^2 x$, $-\frac{\pi}{3} \le x \le \frac{\pi}{3}$

d)
$$y = 2\sin x$$
, $y = \sin 2x$, $0 \le x \le \pi$

$$e) \quad y^2 = 4x + 4, \quad y = 4x - 16$$

$$f$$
) $x = 2y^2$, $x = 0$, $y = 3$

Answer

1.
$$V = \frac{9\pi}{280}$$

2.
$$V = \frac{8\sqrt{3}}{15}$$

3.
$$V = \frac{72}{5}$$

4. a) Washer Method:
$$V = \frac{57\pi}{20}$$
 b) Shell Method: $V = \frac{5\pi}{2}$

c) Shell Method:
$$V = \frac{3\pi}{2}$$
 d) Washer Method: $V = \frac{103\pi}{20}$

5.
$$V = \frac{\pi}{2} (9\pi - 16)$$

6.
$$V \approx 276 \text{ in}^3$$

7. a) Shell Method:
$$V = \frac{11\pi}{48}$$
 b) Washer Method: $V = \frac{11\pi}{48}$

8.
$$L = \frac{10}{3}$$

9.
$$L \approx 7.634$$

10.
$$S = \frac{\pi}{9} (2\sqrt{2} - 1)$$

11.
$$S = 4\pi$$

12.
$$A = \frac{28}{3}$$

13.
$$W = 4640 J$$

14.
$$W = 22,800,000 \text{ ft.lb}$$

15.
$$W = 180 J$$

16. a)
$$\frac{a}{b}$$
 b) 1 c) $\frac{m}{n}$ d) 0 e) $-\ln 2$ f) $2\pi^2$ g) 1

17.
$$x \approx 17.54 \ m$$

18.
$$h = \sqrt{e} \approx 1.65 \ cm$$

19.
$$\frac{8\sqrt{2}-7}{6}$$

20.
$$\frac{27}{4}$$

21. a)
$$\frac{1}{6}$$
 b) $\frac{9}{14}$

d) 4 e)
$$\frac{243}{8}$$
 f) 18