Chapter 3

Lecture 3
Informed Search Algorithms (Ch 3.5)

Jim Rehg

Evaluation Function

- * f(n) = desirability of node n
- Best-First Search:
 Tree search + Evaluation Function f(n)

Search Strategy: How to define eval function

Heuristic Function

- Key to BFS
 algorithms is the heuristic h(n)
 - estimated cheapest path, n to goal
 - estimated futurepath cost from n

Greedy Best-First

- * f(n) = h(n): expand node that appears to be closest from here
- Example Route planning a common heuristic is straight line distance to goal

Greedy Best-First

- * Complete?
 - * No, can get stuck in loops
 - * Yes, if graph-search version
- * Optimal?
 - No, only pays attention to future not how costly it was to get here

A* Search

- * Most widely known Best-First alg
- * f(n) = g(n) + h(n)
 - * g(n) = cost to get to this node
 - * h(n) = estimated cost from here
- * Minimizes total solution cost
- With an admissible h(n) A* is both complete and optimal

Admissible Heuristic

- * h(n) =
 - under-estimate of cost to goal
 - zero for any goal state
 - * non-zero for all others
- * Makes A* Optimal & Complete!

*
$$f(n) = g(n) + h(n)$$

*
$$f(n) = g(n) + h(n)$$

$$* f(n) = g(n) + h(n)$$

$$* f(n) = g(n) + h(n)$$

Goal appears in the frontier

But we keep searching cheaper paths

And we find the cheapest path instead of first path to the goal...

A* Optimality Proof

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

A* + Graph-Search

- Basic A* can have repeated states
- Graph search more efficient
 - * Not optimal, may cut off opt. path
 - Fix with extra book keeping to make sure you repeat a state only if it's more optimal

- * An extra requirement on h(n) can make A* graph search optimal
- * consistent: h(n) <= c(n,a,n') + h(n')</pre>

* $h(n) \le c(n,a,n') + h(n')$

- * $h(n) \le c(n,a,n') + h(n')$
- * f(n') = g(n') + h(n')

- * $h(n) \le c(n,a,n') + h(n')$
- * f(n') = g(n') + h(n')

- * $h(n) \le c(n,a,n') + h(n')$
- * f(n') = g(n') + h(n')

$$= g(n) + c(n,n') + h(n')$$

- * $h(n) \le c(n,a,n') + h(n')$
- * f(n') = g(n') + h(n')

$$= g(n) + c(n,n') + h(n')$$

- * $h(n) \le c(n,a,n') + h(n')$
- * f(n') = g(n') + h(n')

$$= g(n) + c(n,n') + h(n')$$

$$>= g(n) + h(n)$$

- * $h(n) \le c(n,a,n') + h(n')$
- * f(n') = g(n') + h(n')

$$= g(n) + c(n,n') + h(n')$$

$$>= g(n) + h(n)$$

*
$$f(n') >= f(n)$$

- * h(n) <= c(n,a,n') +
 h(n')</pre>
- * f(n') = g(n') + h(n')

$$= g(n) + c(n,n') + h(n')$$

$$>= g(n) + h(n)$$

*
$$f(n') >= f(n)$$

The values of f() along any path are nondecreasing
First goal expanded will be optimal since future ones are more expensive

Informed Search Review

- Instead of Breadth/Depth, "Best" first
- Evaluation function = f(n) = desirability
- * h(n) = estimated cost of cheapest path
- Greedy, only looks ahead: h(n)
- A*, consider total path cost: g(n)+h(n)
- * Admissible heuristic = under-estimate