Compito di Reti Logiche 18/02/2020

Cognome e Nome:	Matricola
Programma: vecchio (senza prova pratica)	nuovo (con prova pratica)
Prima della consegna barrare una delle due caselle sottostant	ii. L'opzione scelta non può essere modificata dopo la consegna
Intendo sostenere la prova orale nell'appello di Febbraio. Pre prove consegnate cesseranno di essere valide al termine di qu straordinario di Aprile.	
Ho <u>diritto a</u> ed <u>intenzione di</u> rimandare la prova orale all'app diritto a rimandare la prova orale sarà oggetto di verifica, e c darà esiti negativi (per qualunque motivo).	*

Esercizio 1

1) Descrivere e sintetizzare un circuito che ha in ingresso un numero naturale a una cifra in base 6, X, ed un bit di riporto entrante, r_{in} , e produce in uscita un numero naturale a una cifra in base 6, Y, ed un bit r_{out} , dove:

$$X + r_{in} \cdot 6 = Y \cdot 2 + r_{out}$$

In altre parole, Y ed r_{out} sono il quoziente e resto della divisione per due del numero X (se $r_{in} = 0$) o del numero X + 6 (se $r_{in} = 1$).

2) Usando il circuito di cui al punto precedente, sintetizzare un circuito che prende in input numeri in base 6 a *n* cifre e calcola resto e quoziente della loro divisione per due.

Esercizio 2

Descrivere l'Unità XXX in modo che la variabile di uscita *out* stia a 1 per un tempo pari a quello in cui è stata precedentemente a 0 e la durata in cui starà di nuovo a 0 dipenda dal *numero* che XXX preleva dal Produttore mentre *out* era a 1 .

Più precisamente l'Unità XXX si evolve all'infinito nel seguente modo:

- 1) In una prima fase tiene *out* a 0 per un numero di clock pari all'ultimo *numero* che essa ha prelevato dal Produttore;
- 2) Entra quindi in una seconda fase in cui tiene *out* a 1 per uno stesso numero di clock. **Mentre è in corso** questa seconda fase, preleva anche dal Produttore un **nuovo** *numero*
- 3) Torna al punto 1;

Si tracci il diagramma temporale di una evoluzione completa di XXX. Si chiami NUMERO il registro che contiene il valore di *numero* prelevato da XXX mentre essa sta tenendo *out* a 1. Si chiami COUNT il registro utilizzato per il conteggio della durata di ciascuna delle due fasi e si descriva in Verilog la porzione della Parte Operativa che lo riguarda e poi la corrispondente struttura circuitale.

Si supponga che:

- Il Produttore emetta numeri abbastanza grandi e sia rapido cosicché l'handshake con XXX si concluda nel corso della seconda fase e termini sempre prima che essa termini (senza che si creino problemi a nessuno, di nessun tipo e per nessuna ragione).
- Al reset iniziale XXX ritenga di aver prelevato un *numero* uguale a 6, ovvero:

