Devoir à la maison n°04

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

- 1 On sait que la convergence absolue d'une intégrale impropre implique sa convergence. On en déduit que $E \subset E'$.
- Supposons E non vide. Soit $a \in E$. Soit également $x \in [a, +\infty[$. Comme λ est à valeurs positives, pour tout $t \in \mathbb{R}_+$,

$$|f(t)e^{-\lambda(t)x}| \le |f(t)e^{-\lambda(t)a}|$$

Par hypothèse, $t \mapsto f(t)e^{-\lambda(t)a}$ est intégrable sur \mathbb{R}_+ donc $t \mapsto f(t)e^{-\lambda(t)x}$ également i.e. $x \in \mathbb{E}$. On a donc montré que pour tout $a \in \mathbb{E}$, $[a, +\infty[\subset \mathbb{E}, ce qui signifie que <math>\mathbb{E}$ est un intervalle non majoré de \mathbb{R} .

- 3 On utilise le théorème de continuité des intégrales à paramètre. Soit $a \in E$.
 - Pour tout $x \in [a, +\infty[$, $t \mapsto f(t)e^{-\lambda(t)x}$ est continue par morceaux sur \mathbb{R}_+ .
 - Pour tout $t \in \mathbb{R}_+$, $x \mapsto f(t)e^{-\lambda(t)x}$ est continue sur $[a, +\infty[$.
 - Pour tout $(x, t) \in [a, +\infty[\times \mathbb{R}_+,$

$$|f(t)e^{-\lambda(t)x}| \le |f(t)e^{-\lambda(t)a}|$$

et $t \mapsto |f(t)e^{-\lambda(t)a}|$ est intégrale sur \mathbb{R}_+ .

On en déduit que Lf est continue sur $\bigcup_{a \in E} [a, +\infty[= E.$

- **4** Si f est positive, pour tout $x \in E$, les fonctions $t \mapsto |f(t)e^{-\lambda(t)x}|$ et $t \mapsto e^{-\lambda(t)x}$ sont égales donc E = E'.
- **5** Dans les trois cas de figure suivants, la fonction f est positive donc E = E'.
- **5.a** Comme λ est croissante et non majorée, $\lim_{t \to \infty} \lambda = +\infty$.
 - On en déduit que $\int_0^{+\infty} \lambda'(t) dt$.
 - Pour $x \in \mathbb{R}^*$, $t \mapsto -\frac{1}{x}e^{-\lambda(t)x}$ est une primitive de $t \mapsto \lambda'(t)e^{-\lambda(t)x}$ et

$$\lim_{t \to +\infty} -\frac{1}{x} e^{-\lambda(t)x} = \begin{cases} +\infty & \text{si } x < 0 \\ 0 & \text{si } x > 0 \end{cases}$$

On en déduit que $\int_0^{+\infty} \lambda'(t)e^{-\lambda(t)x} dt$ diverge si x < 0 et converge si x > 0.

On peut alors conclure que $E = E' = \mathbb{R}_+^*$.

Remarque. On peut aussi affirmer que si x > 0,

$$Lf(x) = \frac{e^{-\lambda(0)x}}{x}$$

1

5.b Soit $x \in \mathbb{R}$. Alors pour tout $t \in [x, +\infty] \cap \mathbb{R}_+$,

$$e^{t\lambda(t)}e^{-\lambda(t)x} = e^{\lambda(t)(t-x)} > 1$$

On en déduit que $\int_{-\infty}^{+\infty} e^{t\lambda(t)} e^{-\lambda(t)x} dt$ diverge. Ainsi $E = E' = \emptyset$.

5.c Soit $x \in \mathbb{R}$. Alors, pour tout $t \in [-x, +\infty[\cap \mathbb{R}_+,$

$$0 \le \frac{e^{-t\lambda(t)}}{1+t^2}e^{-x\lambda(t)} \le \frac{1}{1+t^2}$$

Or $t \mapsto \frac{1}{1+t^2}$ est intégrable sur \mathbb{R}_+ (on peut dire au choix que $1/(1+t^2) \sim 1/t^2$ ou que arctan admet une limite finie en $+\infty$), donc $x \in E$. Finalement $E = \mathbb{R}$.

6 6.a Soit $x \in \mathbb{R}$.

• Si $x \ge 0$, alors pour tout $t \in \mathbb{R}_+$,

$$0 \le \frac{e^{-xt^2}}{1+t^2} \le \frac{1}{1+t^2}$$

et $t \mapsto \frac{1}{1+t^2}$ est intégrable sur \mathbb{R}_+ donc $x \in \mathbb{E}$.

• Si x > 0, on remarque que $\frac{e^{-xt^2}}{1+t^2} \underset{t \to +\infty}{\sim} e^{-xt^2} t^2$ donc, quitte à poser $u = t^2$, $\lim_{t \to +\infty} \frac{e^{-xt^2}}{1+t^2} = +\infty$. On peut alors par exemple minorer $t \mapsto \frac{e^{-xt^2}}{1+t^2}$ par 1 au voisinage de $+\infty$, ce qui prouve que $x \notin E$.

En conclusion, $E = \mathbb{R}_+$. Par ailleurs,

$$Lf(0) = \int_0^{+\infty} \frac{dt}{1+t^2} = \lim_{+\infty} \arctan - \arctan(0) = \frac{\pi}{2}$$

- **6.b** Posons $\varphi(x,t) = \frac{e^{-xt^2}}{1+t^2}$ pour $(x,t) \in (\mathbb{R}_+)^2$.
 - Pour tout $x \in \mathbb{R}_+$, $t \mapsto \varphi(x,t)$ est intégrable sur \mathbb{R}_+ .
 - Pour tout $t \in \mathbb{R}_+$, $x \mapsto \varphi(x,t)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+ .
 - Pour tout $x \in \mathbb{R}_+$, $t \mapsto \frac{\partial \varphi}{\partial x}(x,t) = -\frac{t^2 e^{-xt^2}}{1+t^2}$ est continue par morceaux sur \mathbb{R}_+ . Soit $a \in \mathbb{R}_+^*$. Pour tout $(x,t) \in [a,+\infty[\times \mathbb{R}_+,$

$$\left| \frac{\partial \varphi}{\partial x}(x,t) \right| \le e^{-at^2}$$

Or $e^{-at^2} = o(1/t^2)$ donc $t \mapsto e^{-at^2}$ est intégrable sur \mathbb{R}_+ .

On en déduit que Lf est de classe \mathcal{C}^1 (et a fortiori dérivable) sur $\bigcup_{a \in \mathbb{R}^*} [a, +\infty[=\mathbb{R}^*_+]$

6.c Soit $x \in \mathbb{R}_+^*$. On sait de plus que

$$(Lf)'(x) = -\int_0^{+\infty} \frac{t^2 e^{-xt^2}}{1+t^2} dt$$

On en déduit que

$$Lf(x) - (Lf)'(x) = \int_0^{+\infty} e^{-xt^2} dt$$

En effectuant le changement de variable $u = t\sqrt{x}$ (licite car linéaire),

$$Lf(x) - (Lf)'(x) = \frac{A}{\sqrt{x}}$$

en posant $A = \int_{a}^{+\infty} e^{-u^2} du$. Comme A est l'intégrale d'une fonction continue, positive et non constamment nulle sur

Remarque. Avec l'égalité précédente et la continuité de Lf en 0, $\lim_{\Omega \to 0} (Lf)' = -\infty$. D'après le théorème de la limite de la dérivée, $\lim_{x \to 0^+} \frac{Lf(x) - Lf(0)}{x - 0} = -\infty$ et donc Lf n'est pas dérivable en 0.

6.d D'après ce qui précède, la fonction g est dérivable sur \mathbb{R}_+^* et

$$\forall t \in \mathbb{R}_+^*, \ g'(t) = e^{-t} (Lf(t) - (Lf)'(t)) = \frac{Ae^{-t}}{\sqrt{t}}$$

Si l'on se donne $(x, y) \in (\mathbb{R}_+^*)^2$, on peut alors écrire

$$g(x) - g(y) = A \int_{v}^{x} \frac{e^{-t}}{\sqrt{t}} dt$$

Comme Lf est continue en 0, g l'est également et $\lim_{y\to 0^+} g(y) = g(0) = Lf(0) = \frac{\pi}{2}$. Par ailleurs, $\int_0^x \frac{e^{-t}}{\sqrt{t}} dt$ converge

puisque
$$\frac{e^{-t}}{\sqrt{t}} \underset{t \to 0^+}{\sim} \frac{1}{\sqrt{t}}$$
. On en déduit que $\lim_{y \to 0^+} \int_{y}^{x} \frac{e^{-t}}{\sqrt{t}} \ \mathrm{d}t = \int_{0}^{x} \frac{e^{-t}}{\sqrt{t}} \ \mathrm{d}t$.

On obtient alors l'égalité voulue en faisant tendre y vers 0⁺ dans l'égalité initiale.

6.e Pour tout $x \in \mathbb{R}_+$,

$$0 \le g(x) \le e^{-x} \int_0^{+\infty} \frac{\mathrm{d}t}{1+t^2} = \frac{\pi e^{-x}}{2}$$

donc $\lim_{t \to \infty} g = 0$. Avec la question précédente, on obtient la convergence et l'égalité

$$A \int_0^{+\infty} e^{-t} \sqrt{t} \, dt = \frac{\pi}{2}$$

Par le changement de variable $u = \sqrt{t}$, on obtient

$$\int_0^{+\infty} e^{-t} \sqrt{t} \, dt = 2 \int_0^{+\infty} e^{-u^2} \, du = 2A$$

et donc $A^2 = \frac{\pi}{4}$. Comme A > 0, $A = \frac{\sqrt{\pi}}{2}$.

7 On sait que $e^t - 1 \sim_{t \to 0} t$ donc $\lim_{t \to 0} f = 0$ et f se prolonge bien par continuité en 0.

8 Soit $x \in \mathbb{R}$. Remarquons que

$$f(t) = \frac{t}{t \to +\infty} \frac{t}{t + t^2/2 + t^3/6 + o(t^3)} - 1 + \frac{t}{2}$$

$$= \frac{1}{1 + t/2 + t^2/6 + o(t^2)} - 1 + \frac{t}{2}$$

$$= \frac{1}{t \to +\infty} 1 - \frac{t}{2} - \frac{t^2}{6} + \frac{t^2}{4} + o(t^2) - 1 + \frac{t}{2}$$

$$= \frac{t^2}{12} + o(t^2)$$

Aisni $f(t)e^{-xt} \underset{t \to +\infty}{\sim} \frac{t^2}{12}e^{-xt}$. Si x > 0, alors $f(t)e^{-xt} \underset{t \to +\infty}{=} o(1/t^2)$ et $t \mapsto f(t)e^{-xt}$ est intégrable sur \mathbb{R}_+ . Si $x \ge 0$, $\frac{t^2}{12}e^{-xt} \ge t^2/12 \ge 0$ pour tout $t \in \mathbb{R}_+$ donc $t \mapsto f(t)e^{-xt}$ n'est pas intégrable sur \mathbb{R}_+ . Finalement, $E = \mathbb{R}_+^*$.

9 Pour $t \in \mathbb{R}_{+}^{*}$, $0 < e^{-t} < 1$ donc

$$\frac{t}{e^t - 1} = \frac{te^{-t}}{1 - e^{-t}} = te^{-t} \sum_{n=0}^{+\infty} e^{-nt} = \sum_{n=1}^{+\infty} te^{-nt}$$

Remarquons que pour $\alpha \in \mathbb{R}_+^*$, on obtient par double intégration par parties :

$$\int_0^{+\infty} t e^{-\alpha t} \, \mathrm{d}t = \frac{1}{\alpha^2}$$

Fixons $x \in \mathbb{R}_+^*$. Ainsi, pour tout $n \in \mathbb{N}^*$,

$$\int_0^{+\infty} |te^{-nt}e^{-xt}| dt = \int_0^{+\infty} te^{-(n+x)t} dt = \frac{1}{(n+x)^2}$$

et $\sum_{n\in\mathbb{N}^*} \frac{1}{(n+x)^2}$ converge. En vertu du théorème d'intégration terme à terme, on peut donc dire que :

$$\int_0^{+\infty} \frac{t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2}$$

Puisque $\int_0^{+\infty} e^{-xt} dt = \frac{1}{x} \operatorname{et} \int_0^{+\infty} t e^{-xt} = \frac{1}{x^2}$, on obtient

$$Lf(x) = \frac{1}{2x^2} - \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{1}{(n+x)^2}$$

10 Si on pose $f_n: x \in \mathbb{R}_+^* \mapsto \frac{1}{(n+x)^2}$, $||f_n||_{\infty,\mathbb{R}_+^*} = \frac{1}{n^2}$ de sorte que $\sum f_n$ converge normalement et donc uniformément sur \mathbb{R}_+^* . Par le théorème d'interversion série limite, $x \mapsto \mathrm{L} f(x) - \frac{1}{2x^2} + \frac{1}{x}$ admet bien une limite finie en 0^+ . Plus précisément,

$$\lim_{x \to 0^+} Lf(x) - \frac{1}{2x^2} + \frac{1}{x} = \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

- 11 Posons $\varphi(x,t) = f(t)e^{-xt}$ pour $(x,t) \in E \times \mathbb{R}_+$.
 - Pour tout $t \in \mathbb{R}_+$, $x \mapsto f(t)e^{-xt}$ est de classe \mathcal{C}^{∞} sur $]\alpha, +\infty[$.
 - Pour tout $n \in \mathbb{N}$ et tout $x \in]\alpha, +\infty[$, $t \mapsto \frac{\partial^n \varphi}{\partial x^n}(x,t) = (-t)^n f(t) e^{-xt}$ est continue par morceaux sur \mathbb{R}_+ .
 - Soit $a \in]\alpha, +\infty[$. Pour tout $(x, t) \in [a, +\infty[\times \mathbb{R}_+ \text{ et tout } n \in \mathbb{N},$

$$\left| \frac{\partial^n \varphi}{\partial x^n}(x, t) \right| = t^n |f(t)| e^{-xt} \le t^n |f(t)| e^{-at}$$

Comme $\alpha = \inf E$, il existe $b \in E$ tel que $c \in]\alpha, b[$. Alors $t^n | f(t)| e^{-at} = o(|f(t)| e^{-bt})$. Comme $b \in E$, $t \mapsto |f(t)| e^{-bt}$ est intégrable sur \mathbb{R}_+ . Par domination, $t \mapsto t^n |f(t)| e^{-at}$ l'est également.

On en déduit que Lf est de classe \mathcal{C}^{∞} sur $]\alpha, +\infty[$ et que

$$\forall n \in \mathbb{N}, \ \forall x \in]\alpha, +\infty[, \ (Lf)^{(n)}(x) = (-1)^n \int_0^{+\infty} t^n f(t) e^{-xt} \ \mathrm{d}t$$

Comme f est positive, E = E'. Lorsque x + a > 0, $f(t)e^{-xt} = o(1/t^2)$ donc $t \mapsto f(t)e^{-xt}$ est intégrable sur \mathbb{R}_+ . Lorsque $x + a \le 0$, $f(t)e^{-xt} \ge t^n$ pour tout $t \in \mathbb{R}_+$ donc $t \mapsto f(t)e^{-xt}$ n'est pas intégrable sur \mathbb{R}_+ . On en déduit que $E = E' =]-a, +\infty[$. De plus, on prouve par intégration par parties successives que

$$\forall x \in]-a, +\infty[, Lf(x) = \frac{n!}{(x+a)^{n+1}}$$

13. Posons $g(t) = f(t) - \sum_{k=0}^{n} \frac{a_k}{k!} t^k$ de sorte que $g(t) = \mathcal{O}(t^{n+1})$. Il existe donc $M \in \mathbb{R}_+$ et $c \in]0, \beta]$ tels que

$$\forall t \in [0, c], |g(t)| \leq Mt^{n+1}$$

Mais la fonction $t\mapsto g(t)/t^{n+1}$ est continue sur le segment $[c,\beta]$ donc elle y est également bornée. On en déduit qu'il existe $C\in\mathbb{R}_+$ tel que

$$\forall t \in [0, \beta], |g(t)| \leq Ct^{n+1}$$

Par inégalité triangulaire,

$$\left| \int_0^\beta g(t) e^{-tx} dt \right| \le \int_0^\beta |g(t)| e^{-tx} dt \le C \int_0^\beta t^{n+1} e^{-xt} dt \le C \int_0^\beta t^{n+1} e^{-xt} dt = \frac{C(n+1)!}{x^{n+2}}$$

ce qui permet de conclure.

13.b On a vu que pour tout $k \in \mathbb{N}$,

$$\int_0^{+\infty} t^k e^{-tx} \, \mathrm{d}t = \frac{1}{k+1}$$

On en déduit que

$$L(f)(x) - \sum_{k=0}^{n} \frac{a_k}{x^{k+1}} = \int_0^{+\infty} g(t) dt = \int_0^{\beta} g(t)e^{-tx} dt + \int_{\beta}^{+\infty} g(t)e^{-tx} dt$$

D'une part, d'après la question précédente,

$$\int_0^\beta g(t) dt = \mathcal{O}(x^{-n-2})$$

D'autre part, donnons-nous $c \in E$. Alors $t \mapsto f(t)e^{-ct}$ est intégrable sur \mathbb{R}_+ et, pour tout $k \in \mathbb{N}$, $x \mapsto t^k e^{-ct}$ l'est également. Ainsi g est intégrable sur \mathbb{R}_+ comme combinaison linéaire de telles fonctions. Remarquons alors que pour tout $x \ge c$,

$$\left| \int_{\beta}^{+\infty} g(t)e^{-xt} \, dt \right| \leq \int_{\beta}^{+\infty} |g(t)|e^{-xt} \leq e^{(c-x)\beta} \int_{\beta}^{+\infty} |g(t)|e^{-ct} \, dt \leq Me^{-\beta x}$$

en posant $M=e^{c\beta}\int_{\beta}^{+\infty}|g(t)|e^{-ct}\;\mathrm{d}t.$ On en déduit que

$$\int_{\beta}^{+\infty} g(t)e^{-xt} dt = O(e^{-\beta x})$$

A fortiori

$$\int_{\beta}^{+\infty} g(t)e^{-xt} dt = \mathcal{O}(x^{-n-2})$$

ce qui permet de conclure.

14 14.a Soit $x \in \mathbb{R}_+^*$. Alors $f(t)e^{-xt} \sim \ell e^{-xt}$. On sait que $t \mapsto \ell e^{-xt}$ est intégrable sur \mathbb{R}_+^* donc $t \mapsto f(t)e^{-xt}$ également. Ainsi $x \in E$. Finalement, $\mathbb{R}_+^* \subset E$.

14.b Soit $x \in \mathbb{R}_+^*$. En effectuant le changement de variable u = xt, on obtient

$$xLf(x) = \int_0^{+\infty} f(u/x)e^{-u} du$$

Pour tout $u \in \mathbb{R}_+$, $\lim_{x \to 0^+} f(u/x)e^{-u} = \ell e^{-u}$. De plus, f est continue sur \mathbb{R}_+ et admet une limite finie en $+\infty$ donc elle est bornée sur \mathbb{R}_+ (résultat classique à redémontrer). On en déduit que pour tout $(u, x) \in \mathbb{R}_+ \times \mathbb{R}_+^*$, $|f(u/x)e^{-u}| \le ||f||_{\infty} e^{-u}$. Comme $u \mapsto e^{-u}$ est intégrable sur \mathbb{R}_+ , on peut appliquer le théorème de convergence dominée :

$$\lim_{x \to +\infty} x L f(x) = \lim_{x \to +\infty} \int_0^{+\infty} f(u/x) e^{-u} du = \int_0^{+\infty} \ell e^{-u} du = \ell$$

15 Remarquons que pour tout $k \in \mathbb{N}$,

$$\int_{k\pi}^{(k+1)\pi} |f(t)| dt \ge \frac{1}{(k+1)\pi} \int_{k\pi}^{(k+1)\pi} |\sin t| dt = \frac{1}{(k+1)\pi} \int_{0}^{\pi} \sin t dt = \frac{2}{(k+1)\pi}$$

Ainsi pour tout $n \in \mathbb{N}$,

$$\int_0^{n\pi} |f(t)| \, \mathrm{d}t \ge \frac{2}{\pi} \sum_{k=0}^{n-1} \frac{1}{k+1} = \frac{2}{\pi} \sum_{k=1}^n \frac{1}{k}$$

Comme la série harmonique diverge vers $+\infty$, $\lim_{n\to+\infty}\int_0^{n\pi}|f(t)|\,\mathrm{d}t=+\infty$, de sorte que f n'est pas intégrable. Ainsi $0\notin\mathrm{E}$.

On sait que $0 \in E$ et que E est un intervalle donc $E \subset \mathbb{R}_{+}^{*}$ ou $E \subset \mathbb{R}_{+}^{*}$. Mais E n'est pas majoré donc $E \subset \mathbb{R}_{+}^{*}$. Si x > 0, $f(t)e^{-xt} = o(1/t^{2})$ donc $x \in E$. Ainsi $E =]0, +\infty[$.

17 Comme 1 – cos est une primitive de sin, on obtient sous réserve de convergence

$$\int_0^{+\infty} f(t) dt = \left[\frac{1 - \cos t}{t} \right]_0^{+\infty} + \int_0^{+\infty} \frac{1 - \cos t}{t^2} dt$$

- Puisque $1 \cos t \sim t^2/2$, $\lim_{t \to 0} \frac{1 \cos t}{t} = 0$.
- Comme 1 cos est bornée, $\lim_{t \to +\infty} \frac{1 \cos t}{t} = 0$.
- Puisque $1 \cos t \sim_{t \to 0} t^2/2$, $t \mapsto \frac{1 \cos t}{t^2} \sim_{t \to 0} \operatorname{donc} t \mapsto \frac{1 \cos t}{t^2}$ est intégrable en 0^+ .
- Comme 1 cos est bornée, $\frac{1-\cos t}{t^2} = \mathcal{O}(1/t^2)$ donc $t \mapsto \frac{1-\cos t}{t^2}$ est intégrable en $+\infty$.

On en déduit donc la convergence des deux termes du membre de droite de l'égalité. Il en résulte que $\int_0^{+\infty} f(t) dt$ converge i.e. $0 \in E'$.

- 18 Posons $\varphi(x,t) = f(t)e^{-xt}$ pour $(x,t) \in \mathbb{R}_+^* \times \mathbb{R}_+$.
 - Pour tout $x \in \mathbb{R}_+^*$, $t \mapsto \varphi(x,t)$ est intégrable sur \mathbb{R}_+ .
 - Pour tout $t \in \mathbb{R}$, $x \mapsto \varphi(x, t)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .
 - Pour tout $x \in \mathbb{R}_+^*$, $t \mapsto \frac{\partial \varphi}{\partial x}(x,t) = -\sin(t)e^{-xt}$ est continue par morceaux sur \mathbb{R}_+ .
 - Fixons $a \in \mathbb{R}_+^*$. Alors pour tout $(x, t) \in [a, +\infty[\times \mathbb{R}_+, x]]$

$$\left| \left| \frac{\partial \varphi}{\partial x}(x,t) \right| \le e^{-at}$$

et $t \mapsto e^{-at}$ est intégrable sur \mathbb{R}_+ .

On en déduit que Lf est dérivable sur \mathbb{R}_+^* et que

$$\forall x \in \mathbb{R}_+^*, \ (Lf)'(x) = -\int_0^{+\infty} \sin(t)e^{-xt} \, dt$$
$$= -\operatorname{Im}\left(\int_0^{+\infty} e^{it}e^{-xt} \, dt\right)$$
$$= -\operatorname{Im}\left(\int_0^{+\infty} e^{(i-x)t} \, dt\right)$$
$$= -\operatorname{Im}\left(\frac{1}{x-i}\right) = -\frac{1}{1+x^2}$$

19 Il existe donc une constante C telle que

$$\forall x \in E, Lf(x) = C - \arctan(x)$$

Par ailleurs, f est bornée sur \mathbb{R}_+ (continue et de limite finie en $+\infty$) donc on peut écrire

$$\forall x \in \mathbb{R}_+^*, \ |\mathrm{L}f(x)| \le \int_0^{+\infty} |f(t)| e^{-xt} \ \mathrm{d}t \le \|f\|_\infty \int_0^{+\infty} e^{-xt} \ \mathrm{d}t = \frac{\|f\|_\infty}{x}$$

de sorte que $\lim_{t\to\infty} Lf = 0$. On en déduit que $C = \lim_{t\to\infty} \arctan = \frac{\pi}{2}$. Finalement,

$$\forall x \in E, \ Lf(x) = \frac{\pi}{2} - \arctan(x)$$

20 Tout d'abord, $\sum f_n$ converge simplement sur \mathbb{R}_+ puisque $\mathrm{E}' = \mathbb{R}_+$. Par le changement de variable $u = t - n\pi$,

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}_+, \ f_n(x) = \int_0^\pi \frac{\sin(u + n\pi)}{u + n\pi} e^{-(u + n\pi)x} \ \mathrm{d}u = (-1)^n e^{-n\pi x} \int_0^\pi \frac{\sin(u)}{u + n\pi} e^{-ux} \ \mathrm{d}u$$

Fixons $x \in \mathbb{R}_+$ et posons $u_n = e^{-n\pi x} \int_0^{\pi} \frac{\sin(u)}{u + n\pi} e^{-ux} du$. Pour tout $n \in \mathbb{N}$,

$$0 < e^{-(n+1)\pi x} < e^{-n\pi x}$$

et, comme sin est positive sur $[0, \pi]$,

$$0 \le \int_0^{\pi} \frac{\sin(u)}{u + (n+1)\pi} e^{-ux} du \le \int_0^{\pi} \frac{\sin(u)}{u + n\pi} e^{-ux} du$$

On en déduit que $u_{n+1} \le u_n$. Ainsi (u_n) est décroissante. Par ailleurs, en posant F: $y \mapsto \int_0^y f(t)e^{-tx} dt$, F admet une limite finie en $+\infty$ car $x \in E'$. On en déduit que $f_n(x) = F((n+1)\pi) - F(n\pi) \xrightarrow[n \to +\infty]{0} 0$ puis que $u_n = |f_n(x)| \xrightarrow[n \to +\infty]{0} 0$. On peut donc appliquer le critère spécial des séries alternées pour affirmer que

$$\left| \sum_{k=n+1}^{+\infty} u_k \right| \le |u_{n+1}|$$

ou encore

$$\left| \sum_{k=n+1}^{+\infty} f_k(x) \right| \le |f_{n+1}(x)| \le \int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}t}{t} = \ln\left(1 + \frac{1}{n}\right)$$

Cette dernière inégalité étant valide pour tout $x \in \mathbb{R}_+$, on a donc

$$\left\| \sum_{k=n+1}^{+\infty} f_k \right\|_{\infty} \le \ln\left(1 + \frac{1}{n}\right)$$

Ainsi le reste de la série $\sum f_n$ converge uniformément vers la fonction nulle sur \mathbb{R}_+ . On en déduit que $\sum f_n$ converge

21 Tout d'abord, on a vu que $\lim_{0^+} \mathbf{L} f = \frac{\pi}{2}$. Remarquons maintenant que, pour tout $n \in \mathbb{N}$, $\lim_{0^+} f_n = f_n(0)$. Pour cela, on peut appliquer le théorème de convergence dominée ou plus simplement constater que pour x > 0

$$|f_n(x) - f_n(0)| \le \int_{n\pi}^{(n+1)\pi} |f(t)| (1 - e^{-tx}) \, dt \le ||f_n||_{\infty} \int_{n\pi}^{(n+1)\pi} (1 - e^{-tx}) \, dt \le x ||f_n||_{\infty} \int_{n\pi}^{(n+1)\pi} t \, dt$$

La question précédente nous permet alors d'appliquer le théorème d'interversion série/limite :

$$\lim_{0^+} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \lim_{0^+} f_n$$

ou encore

$$\lim_{0^{+}} Lf = \sum_{n=0}^{\infty} +\infty f_n(0) = Lf(0)$$

On en déduit que $Lf(0) = \frac{\pi}{2}$.

22 22.a Par linéarité de l'intégrale, $\int_{0}^{1} P(t)g(t) dt = 0$ pour tout $P \in \mathbb{R}[X]$.

22.b D'après le théorème de Weierstrass, il existe une suite (P_n) de polynômes de $\mathbb{R}[X]$ convergeant uniformément vers gsur le segment [0,1]. Alors pour tout $x \in [0,1]$,

$$|P_n(x)g(x) - g^2(t)| = |P_n(x) - g(x)||f(t)| \le ||P_n - g||_{\infty} ||g||_{\infty}$$

donc

$$\|P_n g - g^2\|_{\infty} \le \|P_n - g\|_{\infty} \|g\|_{\infty}$$

Comme $\|P_n - g\|_{\infty}\| \xrightarrow[n \to +\infty]{} 0$, $\|P_n g - g^2\|_{\infty}\| \xrightarrow[n \to +\infty]{} 0$ i.e. $(P_n g)$ converge uniformément vers g^2 sur [0,1]. On en déduit que $\int_0^1 P_n(t)g(t) dt \xrightarrow[n \to +\infty]{} \int_0^1 g(t)^2 dt.$ D'après la question précédente, $\int_0^1 g(t)^2 dt = 0.$ Comme g^2 est positive et continue sur [0, 1], elle est nulle sur [0, 1] et donc g également

23.a D'après le théorème fondamental de l'analyse, h est de classe \mathcal{C}^1 sur \mathbb{R}_+ et pour tout $t \in \mathbb{R}_+$, $h'(t) = e^{-xt} f(t)$.

$$Lf(x + a) = \int_0^{+\infty} f(t)e^{-(x+a)t} dt = \int_0^{+\infty} h'(t)e^{-at}$$

Sous réserve de convergence, on obtient par intégration par parties :

$$Lf(x+a) = [h(t)e^{-at}]_0^{+\infty} + a \int_0^{+\infty} h(t)e^{-at} dt$$

Comme $x \in E \subset E'$, h admet une limite finie en $+\infty$. Ainsi $\lim_{t \to +\infty} h(t)e^{-at} = 0$. Ceci légitime l'intégration par parties précédente. Comme h(0) = 0, on peut de plus affirmer que

$$Lf(x+a) = a \int_0^{+\infty} h(t)e^{-at} dt$$

23.b L'application $u \mapsto -\frac{\ln(u)}{a}$ est une bijection strictement décroissante de classe \mathcal{C}^1 de]0,1] sur $[0,+\infty[$. Via le changement de variable $t=-\frac{\ln(u)}{a}$, les intégrales $\int_0^1 u^n h\left(-\frac{\ln(u)}{a}\right) \,\mathrm{d}u$ et $\int_0^{+\infty} ae-(n+1)ath(t) \,\mathrm{d}t$ sont de même nature et égales en cas de convergence. La question précédente montre la convergence de la seconde intégrale et permet d'affirmer que

$$\int_{0}^{1} u^{n} h\left(-\frac{\ln(u)}{a}\right) du = -\frac{1}{n+1} Lf(x + (n+1)a) = 0$$

23.c Comme h admet une limite finie en $+\infty$, $u \in]0,1] \mapsto u^n h\left(-\frac{\ln(u)}{a}\right)$ est prolongeable en une fonction continue sur [0,1]. D'après la question **22.b**, $u \mapsto u^n h\left(-\frac{\ln(u)}{a}\right)$ est nulle sur [0,1] i.e. h est nulle sur \mathbb{R}_+ .

L'application L est clairement linéaire. Soit $f \in \text{Ker L}$. En reprenant les notations de la question précédente, on a donc Lf(x+na)=0 pour tout $n \in \mathbb{N}$ de sorte que h est nulle sur \mathbb{R}_+ . Ainsi $h': u \mapsto e^{-xu}f(u)$ est nulle sur \mathbb{R}_+ et enfin f est nulle sur \mathbb{R}_+ . Ceci prouve que L est injective.

25. 25.a Notons M un majorant de Lf sur E. Soit $A \in \mathbb{R}_+$. Comme f est positive,

$$\forall x \in E, \ \int_0^A f(t)e^{-x\lambda(t)} \ dt \le Lf(x) \le M$$

Mais $\lim_{x\to\alpha^+}\int_0^A f(t)e^{-x\lambda(t)}\,\mathrm{d}t=\int_0^A f(t)e^{-\alpha\lambda(t)}.$ On pourrait utiliser le théorème de convergence dominée mais on peut aussi tout simplement remarquer que, pour $x\in]\alpha,+\infty[$,

$$0 \le \int_0^A f(t)e^{-\alpha\lambda(t)} dt - \int_0^A f(t)e^{-\alpha\lambda(t)} dt = \int_0^A f(t)e^{-\alpha\lambda(t)} (1 - e^{-(x-\alpha)\lambda(t)}) dt \le (x - \alpha) \int_0^A \lambda(t)f(t)e^{-\alpha\lambda(t)} dt$$

En effet, pour tout $u \in \mathbb{R}_+$, $1 - e^{-u} \le u$ par convexité de l'exponentielle. En passant à la limite dans l'inégalité initiale, on obtient donc :

$$\int_0^{\mathbf{A}} f(t)e^{-\alpha\lambda(t)} \, \mathrm{d}t \le \mathbf{M}$$

Enfin, l'application $A \mapsto \int_0^A f(t)e^{-\alpha\lambda(t)} dt$ est croissante (car f est positive) et majorée donc elle admet une limite finie en $+\infty$. L'intégrale $\int_0^{+\infty} f(t)e^{-\alpha\lambda(t)} dt$ converge i.e. $\alpha \in E' = E$.

25.b Montrons que Lf est décroissante. Soit $(x,y) \in E^2$ tel que $x \le y$. Comme λ et f sont positives, $f(t)e^{-\lambda(t)x} \ge f(t)e^{-\lambda(t)y}$ pour tout $t \in \mathbb{R}_+$ puis, par croissance de l'intégrale, L $f(x) \ge Lf(y)$. Notamment, Lf admet une limite $\ell \in \mathbb{R} \cup \{+\infty\}$ en α^+ . Mais d'après la question précédente, Lf n'est pas bornée sur E. Or Lf est minorée par 0 (positivité de l'intégrale) donc elle n'est en fait pas majorée. On en déduit que $\ell = +\infty$.

26. 26.a Pour x > 1, $f(t)e^{-x\lambda(t)} = \frac{\cos(t)}{(1+t)^x} = \mathcal{O}(1/t^x)$ donc $t \mapsto f(t)e^{-x\lambda(t)}$ est intégrable en $+\infty$ et $x \in E$. Par ailleurs,

$$\int_{0}^{n\pi} \frac{|\cos(t)|}{1+t} dt = \sum_{k=0}^{n-1} \int_{k\pi}^{(k+1)\pi} \frac{|\cos(t)|}{1+t}$$

$$= \sum_{k=0}^{n-1} \int_{0}^{\pi} \frac{|\cos t|}{1+t+k\pi} \quad \text{par changement de variable } t \mapsto t-k\pi$$

$$\geq \sum_{k=0}^{n-1} \frac{1}{1+(k+1)\pi} \int_{0}^{\pi} |\cos t| dt$$

$$= \sum_{k=0}^{n-1} \frac{A}{1 + (k+1)\pi}$$
 en notant $A = \int_0^{\pi} |\cos t| dt$

Remarque. On peut montrer que A = 2 mais ce n'est pas nécessaire. Il suffit juste de savoir que A > 0.

Or la série à termes positifs $\sum \frac{A}{1+(n+1)\pi}$ diverge vers $+\infty$ puisque $\frac{A}{1+(n+1)\pi} \sim \frac{A}{n\pi}$. On en déduit par minoration que

$$\lim_{n \to +\infty} \int_0^{n\pi} \frac{|\cos(t)|}{1+t} dt = +\infty$$

Par conséquent, $\int_0^{+\infty} \frac{|\cos(t)|}{1+t} dt$ diverge. Ainsi $1 \notin E$. Comme E est un intervalle, $E =]1, +\infty[$.

26.b Sous réserve de convergence, on obtient par intégration par parties,

$$\int_0^{+\infty} \frac{\cos(t)}{(1+t)^x} dt = \left[\frac{\sin t}{(1+t)^x} \right]_0^{+\infty} + x \int_0^{+\infty} \frac{\sin(t)}{(1+t)^{x+1}} dt$$

Si x > 0, $\lim_{t \to +\infty} \frac{\sin t}{(1+t)^x} = 0$ et $\frac{\sin(t)}{(1+t)^{x+1}} = \mathcal{O}(1/t^{x+1})$ avec x+1 > 1 donc $\int_0^{+\infty} \frac{\sin(t)}{(1+t)^{x+1}} \, dt$ converge. On en déduit que $\int_0^{+\infty} \frac{\cos(t)}{(1+t)^x} \, dt$ converge i.e. $x \in E'$.

De plus, $\int_0^A \cos(t) dt = \sin(A)$ et A n'admet pas de limite en $+\infty$ donc $\int_0^{+\infty} \cos(t) dt$ diverge i.e. $0 \notin E'$.

$$\int_{2n\pi}^{2n\pi+\pi/2} \frac{\cos t}{(1+t)^x} dt \ge (1+2n\pi)^{-x} \int_{2n\pi}^{2n\pi+\pi/2} \cos t dt = (1+2n\pi)^{-x}$$

On en déduit que $\lim_{n\to+\infty}\int_{2n\pi}^{2n\pi+\pi/2}\frac{\cos t}{(1+t)^x}\,\mathrm{d}t=+\infty$, ce qui empêche la convergence de $\int_0^{+\infty}\frac{\cos t}{(1+t)^x}\,\mathrm{d}t$ (cette limite serait alors nulle). Ainsi $x\ni n\mathrm{E}'$. Finalement, $\mathrm{E}'=]0,+\infty[$.

26.c D'après l'intégration par parties effectué à la question précédente :

$$\forall x \in \mathbb{R}_+^*, \ Lf(x) = x \int_0^{+\infty} \frac{\sin t}{(1+t)^{x+1}} \ \mathrm{d}t$$

Posons $\varphi: (x,t) \mapsto \frac{\sin t}{(1+t)^{x+1}}$.

- Pour tout $x \in \mathbb{R}_+^*$, $t \mapsto \varphi(x,t)$ est continue par morceaux sur \mathbb{R}_+ .
- Pour tout $t \in \mathbb{R}_+$, $x \mapsto \varphi(x, t)$ est continue sur \mathbb{R}_+ .
- Soit a > 0. Pour tout $(x, t) \in [a, +\infty[\times \mathbb{R}_+,$

$$|\varphi(x,t)| \le \frac{1}{(1+t)^{a+1}}$$

et $t \mapsto \frac{1}{(1+t)^{a+1}}$ est intégrable sur \mathbb{R}_+ .

On en déduit que Lf est continue sur \mathbb{R}_+^* et notamment en 1. Ainsi

$$\lim_{x \to 1} Lf(x) = Lf(1) = \int_0^{+\infty} \frac{\sin t}{(1+t)^2} dt$$

27 Par croissances comparées, $P(t)Q(t)e^{-t} = o(1/t^2)$, ce qui garantit la convergence de $\int_0^{+\infty} P(t)Q(t)e^{-t} dt$.

• Pour tout $(P, Q) \in \mathcal{P}^2$,

$$(Q, P) = \int_0^{+\infty} Q(t)P(t)e^{-t} dt = \int_0^{+\infty} P(t)Q(t)e^{-t} dt = (P, Q)$$

• Pour tout $(P, Q, R) \in \mathcal{P}^2$ et tout $(\lambda, \mu) \in \mathbb{C}^2$,

$$(P, \lambda Q + \mu R) = \lambda(P, Q) + \mu(Q, R)$$

par linéarité de l'intégrale.

• Pour tout $P \in \P$,

$$(P, P) = \int_0^{+\infty} |P(t)|^2 e^{-t} dt \ge 0$$

par positivité de l'intégrale.

• Soit $P \in \mathcal{P}$ tel que (P, P) = 0. Comme $t \mapsto |P(t)|^2 e^{-t}$ est positive sur \mathbb{R}_+ , elle est nulle sur \mathbb{R}_+ par stricte positivité de l'intégrale. Comme l'exponentielle ne s'annulle pas, le polynôme P admet une infinité de racines (tous les réels positifs) : c'est le polynôme nul.

On en déduit que (\cdot, \cdot) est bien un produit scalaire.

29 La linéarité de U découle directement de la linéarité de la dérivation. De plus, un simple calcul donne :

$$\forall t \in \mathbb{R}, \ U(P)(t) = e^t(e^{-t}P'(t) - te^{-t}P'(t) + te^{-t}P''(t)) = P'(t) - tP'(t) + tP''(t)$$

Ainsi $U(P) \in \mathcal{P}$. On en déduit que $U \in \mathcal{L}(\mathcal{P})$.

30 A l'aide d'une intégration par parties,

$$(U(P), Q) = \int_0^{+\infty} U(P)(t)Q(t)e^{-t} dt$$

$$= \int_0^{+\infty} U(\overline{P})(t)Q(t)e^{-t} dt$$

$$= \int_0^{+\infty} D(te^{-t}P'(t))Q(t) dt$$

$$= \left[te^{-t}P'(t)Q(t)\right]_0^{+\infty} - \int_0^{+\infty} te^{-t}P'(t)Q(t) dt$$

Par croissances comparées, $\lim_{t \to +\infty} te^{-t} P'(t) Q(t) = 0$ donc

$$(U(P), Q) = -\int_0^{+\infty} P'(t)tQ(t)e^{-t} dt$$

On procède à nouveau à une intégration par parties :

$$(U(P), Q) = -\left[P(t)tQ(t)e^{-t}\right]_0^{+\infty} + \int_0^{+\infty} P(t)D(tQ(t)e^{-t}) dt$$

Le crochet est à nouveau nul par croissances comparées, ce qui donne :

$$(U(P), Q) = (P, U(Q))$$

Si P et Q sont deux vecteurs propres associés à des valeurs propres distinctes λ et μ , la question précédente donne $\lambda(P,Q) = \mu(P,Q)$ et donc (P,Q) = 0.

REMARQUE. On peut aussi remarquer que pour tout $n \in \mathbb{N}$, $\mathbb{R}_n[X]$ est stable par U. U induit donc un endomorphisme auto-adjoint de l'espace eucliden $\mathbb{R}_n[X]$. On sait alors que les sous-espaces propres sont deux à deux orthogonaux. En fait, on vient de montrer que le résultat est encore valide pour un endomorphisme auto-adjoint d'un espace préhilbertien réel de dimension non nécessairement finie.

32. 32.a D'après un calcul effectué précédemment, $U(P) = \lambda P$ équivaut à

$$\forall t \in \mathbb{R}, \ P'(t) - tP'(t) + tP''(t) = \lambda P(t)$$

32.b Si on note n le degré de P est α son coefficient dominant. Alors les coefficients de X^n dans l'égalité précédente sont respectivement $-n\alpha$ et $\lambda\alpha$ d'où $\lambda=-n$.

33 33.a A l'aide d'intégration par parties, on obtient

$$\forall x > 0$$
, $L(XP')(x) = -LP(x) - x(LP)'(x)$
 $\forall x > 0$, $L(XP'')(x) = -L(P')(x) - xLP(x) - x^2(LP)'(x)$

ce qui donne

$$\forall x > 0, \ x(1-x)(LP)'(x) + (1-x)LP(x) + nLP(x) = 0$$

Ainsi Q = LP est solution sur \mathbb{R}_+^* de l'équation différentielle

$$(E'_n)$$
: $x(1-x)y' + (n+1-x)y = 0$

33.b Une décomposition en éléments simples donne

$$\frac{x - (n+1)}{x(1-x)} = -\frac{n+1}{x} + \frac{n}{1-x}$$

On en déduit que l'ensemble des solutions de (E'_n) sur $]1, +\infty[$ est la droite engendré par $f_n: x \mapsto \frac{(x-1)^n}{x^{n+1}}$. On a vu à la question **32.b** que $Sp(U) \subset -\mathbb{N}$. Soit $n \in \mathbb{N}$. Comme L est injective, $P \in Ker(U + n \operatorname{Id}_{\mathcal{P}})$ si et seulement si LP est solution de E'_n . D'après la question précédente, ceci équivaut à $LP \in \operatorname{vect}(f_n)$. Remarquons alors que

$$\forall x > 0, \ f_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{x^{k+1}}$$

En prenant a=0 dans la question 12, on obtient par linéarité de L que $f_n=\mathrm{LQ}_n$ avec $\mathrm{Q}_n=\sum_{k=0}^n \binom{n}{k}(-1)^k\frac{X^k}{k!}$. L'injectivité de L prouve donc que $\mathrm{Ker}(\mathrm{U}+n\,\mathrm{Id}_{\mathcal{P}})=\mathrm{vect}(\mathrm{Q}_n)$. Ces noyaux sont non vides de sorte que $\mathrm{Sp}(\mathrm{U})=-\mathbb{N}$ et pour tout $n\in\mathbb{N},\,\mathrm{E}_{-n}(\mathrm{U})=\mathrm{vect}(\mathrm{Q}_n)$.

33.c D'après la formule de Leibniz,

$$\forall t \in \mathbb{R}, \ P_n(t) = e^t \sum_{k=0}^n \binom{n}{k} (-1)^k e^{-t} \frac{n!}{k!} t^k = n! Q_n(t)$$

On a donc $E_{-n}(U) = \text{vect}(P_n)$ pour tout $n \in \mathbb{N}$.