Approximate Inference

Artificial Intelligence

School of Computer Science The University of Adelaide

Inference on Bayesian Networks

Exact inference: computational expensive for a large BN.

• Number of multiplications approach to $O(n2^n)$

$$\begin{split} P(b|j,\neg m) &= \alpha \sum_{e} \sum_{a} P(b)P(e)P(a|b,e)P(j|a)P(\neg m|a) \\ &= \alpha \left[P(b)P(e)P(a|b,e)P(j|a)P(\neg m|a) \right. \\ &+ P(b)P(e)P(\neg a|b,e)P(j|\neg a)P(\neg m|\neg a) \\ &+ P(b)P(\neg e)P(a|b,\neg e)P(j|a)P(\neg m|a) \\ &+ P(b)P(\neg e)P(\neg a|b,\neg e)P(j|\neg a)P(\neg m|\neg a) \right] \end{split}$$

Approximate inference:

- Approximately calculate the posterior probability.
- Use random sampling for inference.
- More samples leads to more accurate solutions.

Inference on Bayesian Networks

Exact inference: computational expensive for a large BN.

• Number of multiplications approach to $O(n2^n)$

Approximate inference with sampling:

- Direct Sampling (Prior Sampling). γ
- Rejection Sampling.
- Likelihood Weighting.
- Gibbs Sampling

Direct sampling

→ Markov Chain Monte Carlo (MCMC) sampling

Sampling

What is sampling

Sampling is a statistical procedure to select the individual observations from the population.

Why sampling

Statisticians attempt for the samples to represent the whole population in question.

Example:

What is the probability of getting 3 when rolling a dice?

$$P(X = x_i) = \frac{number\ of\ times\ \{X = x_i\}}{total\ number\ of\ trials}$$

Sampling from a Distribution

How to sample a single discrete variable from a given distribution?

- Get a sample u from uniform distribution between [0,1).
 - In python : random()
- Map u to a specific instantiation of your random variable.

Weather (W)	P(W = w)
Sunny	0.3
Rain	0.3
Cold	0.3
Snow	0.1

$$0.0 \le u < 0.3 \Rightarrow W = sunny$$

 $0.3 \le u < 0.6 \Rightarrow W = rain$
 $0.6 \le u < 0.9 \Rightarrow W = cold$
 $0.9 \le u < 1.0 \Rightarrow W = snow$

Sampling from a Distribution

Sample from a given distribution of a Variable.

Given the distribution of discrete random variable W.

```
values: \{w_1, w_2, ..., w_n\}, corresponding probabilities: p_1, p_2, ..., p_n, \sum_i p_i = 1.
```

- Get a sample u from uniform distribution in [0,1).
 In python : random()
- Map u to a specific instantiation of W.

$$0 \le u < p_1 \qquad \mathbf{W_1}$$

$$p_1 \le u < p_1 + p_2 \qquad \mathbf{W_2}$$

$$p_1 + p_2 \le u < p_1 + p_2 + p_3 \quad \mathbf{W_3}$$

$$p_1 + p_2 + \ldots + p_{n-1} \le u < p_1 + p_2 + \ldots + p_{n-1} + p_n = 1 \qquad \mathbf{W_n}$$

How to sample from a given distribution of Variables in BN?

- Sample each variable in turn, in a topological order of a BN.
- Previously sampled variables value are used as condition for sampling the next node of BN.

How to sample from a given distribution of Variables in BN?

- Sample each variable in turn, in a topological order of a BN.
- Previously sampled variables value are used as condition for sampling the next node of BN.

Example: Wet Grass Network.

8.0

0.2

S	R	P(w S,R)
S	r	0.99
S	-r	0.90
-s	r	0.90
-s	-r	0.01

8.0

0.2

0.2

0.8

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-w	0.10
-S		W	0.01
	-r	-W	0.99

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-w	0.10
-S		W	0.01
	-r	-W	0.99

- Fix sampling order
 - {C, S, R,W}
- Sample examples given CPTs.

1)
R)

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-w	0.10
-S		W	0.01
	-r	-W	0.99

u = 0.22

- Fix sampling order
 - {C, S, R,W}
- Sample examples given CPTs.
 - {+C,

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-w	0.10
-S		W	0.01
	-r	-W	0.99

$$u = 0.81$$

- Fix sampling order
 - {C, S, R,W}
- Sample examples given CPTs.

P(W|S,R)

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-w	0.10
-S		W	0.01
	-r	-W	0.99

u = 0.65

- Fix sampling order
 - {C, S, R,W}
- Sample examples given CPTs.

D	TTT	a	D
P	(W)	5.	K)
	1.	7	/

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-w	0.10
-S		W	0.01
	-r	-W	0.99

u = 0.78

- Fix sampling order
 - {C, S, R,W}
- Sample examples given CPTs.

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-w	0.10
-S		W	0.01
	-r	-W	0.99

- Fix sampling order
 - {C, S, R,W}
- Sample examples given CPTs.
 - {+c, -s, +r, +w}
 - {-c, +s, -r, +w}
 - 0
 - 0
 - {+c, -s, -r, -w}

• Given N samples, and the number of samples for a specific event is $N_{PS}(x_1, \ldots, x_n)$, then approximate inference with sampling gives the probability of this event:

$$S_{PS}(-c,+s,+r,-w) = \lim_{N\to\infty} \frac{N_{PS}(-c,s,r,-w)}{N}$$

 $S_{PS}(-c,+s,+r,-w) \approx \frac{N_{PS}(-c,s,r,-w)}{N}$

Why direct sampling works?
 The sampling process generates samples with following probability as each sampling step depends only on the parent values:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i)) = P(x_1 \dots x_n)$$

Recall global semantics of the BN.

We frequently want to estimate the probability of partially specified events $P(x_1, \ldots, x_m)$ with m < n.

This can be approximated by

$$P(x_1,\ldots,x_m) \approx \frac{N_{PS}(x_1,\ldots,x_m)}{N}$$

where $N_{PS}(x_1,\ldots,x_m)$ is now the number of samples among N

Given following set of samples:

$$\circ$$
 {-c, +s, -r, +w}

$$\circ$$
 {-c, -s, +r, +w}

$$\circ$$
 {+c, +s, +r, +w}

$$\circ$$
 {-c, -s, +r, +w}

•
$$P(+r) = ?$$

Given following set of samples:

$$\circ$$
 {-c, +s, -r, +w}

$$\circ$$
 {-c, +s, +r, -w}

$$\circ$$
 {+c, +s, +r, +w}

$$\circ$$
 {-c, -s, +r, +w}

•
$$P(-c, +s, +r, -w) = 2/8 = 0.25$$

•
$$P(+r) = 5/8 = 0.625$$

•
$$P(R \mid +w) = ?, P(-s \mid +w) = ?$$

Rejection Sampling

Generate samples as follows.

Rejects the samples which does not match the evidence.

Rejection Sampling

Generate samples as follows.

- Rejects the samples which does not match the evidence.
- $\hat{P}(X|e)$ is estimated by counting how many times X = x occurs for samples which are consistent with observations.

Rejection Sampling

Generate samples as follows.

- Rejects the samples which does not match the evidence.
- $\hat{P}(X|e)$ is estimated by counting how many times X = x occurs for samples which are consistent with observations.

Likelihood Weighting

Rejection sampling:

Inefficient with P(e) being small: We sample too many examples that are inconsistent with evidence.

Likelihood weighting

- Samples examples which are consistent with evidence.
- Each sample have a support value w (i.e., weight).
 - Initialize w of the generated sample as w = 1
 - Repeat
 - If variable is non-evidence : sample as usual.
 - If variable is evidence variable E: set E = e, and set w = w * P(E= e | parents(E))

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-w	0.10
-S		W	0.01
	-r	-W	0.99

- Fix sampling order {C, S, R, W}
- Likelihood weighted sampling with (+s, +w)

D	TXT	C	DI
Γ	(W)	0,	T()

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-w	0.10
-S		W	0.01
	-r	-w	0.99

- Fix sampling order {C, S, R,W}
- Likelihood weighted sampling with (+s, +w)

$$u = 0.22$$
 ° {+c, _, _, _}, w = 1

D	TTT	10	D
P	(W)	15.	K.)
-	(~ ,	/

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-w	0.10
-S		W	0.01
	-r	-w	0.99

- Fix sampling order {C, S, R,W}
- Likelihood weighted sampling with (+s, +w)

$$u = 0.81$$
 \circ {+c, +s, _, _}, w = 1*0.1
Not $P(+s|+c)$
Used!

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-w	0.10
-S		W	0.01
	-r	-W	0.99

- Fix sampling order {C, S, R,W}
- Likelihood weighted sampling with (+s, +w)

$$u = 0.95$$

D	TXT	C	D
Γ	(W)	D,	n_{j}

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-w	0.10
-S		W	0.01
	-r	-W	0.99

- Fix sampling order {C, S, R,W}
- Likelihood weighted sampling with (+s, +w)

$$u = 0.78$$

Not Used

$$\{+c, +s, -r, +w\}$$
, $W = 1*0.1*0.9$
 $P(+s|+c) P(+w|+s,-r)$
Evidence: $(+s,+w)$

P(W|S,R)

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-w	0.10
-S		W	0.01
	-r	-W	0.99

- Fix sampling order {C, S, R,W}
- Likelihood weighted sampling with (+s, +w)

$$\circ$$
 {+c, +s, -r, +w}, W = 0.09

w is small,

meaning we have less confidence in our sample.

		W	0.99
	r	-w	0.01
S		W	0.90
	-r	-w	0.10
		W	0.90
	r	-W	0.10
-S		W	0.01
	-r	-W	0.99

- Fix sampling order {C, S, R,W}
- Likelihood weighted sampling with (+s, +w)

$$\circ$$
 {+c, +s, -r, +w}, W = 0.09

$$\circ$$
 {-c, +s, -r, +w}, W = 0.45

$$\circ$$
 {+c, +s, +r, +w}, W = 0.099

Say the following N=100 samples were generated from the wetgrass network with associated likelihood/weights:

- ▶ 3 samples of [true, true, true, true] with w = 0.099
- ▶ 2 samples of [true, true, false, true] with w = 0.09
- ▶ 55 samples of [false, true, true, true] with w = 0.495
- ▶ 40 samples of [false, true, false, true] with w = 0.45

Notice that all samples are consistent with the evidence Sprinkler = true and WetGrass = true.

The desired probability estimate is

$$P(R|s,w)=P(R,s,w)/P(s,w)=\alpha P(R,s,w)=\alpha \sum_{C} P(C,R,s,w,s) \\ \hat{P}(Rain|Sprinkler=true,WetGrass=true) \\ (c,r,s,w) (-c,r,s,w) \\ = \alpha \langle 3 \times 0.099 + 55 \times 0.495, 2 \times 0.09 + 40 \times 0.45 \rangle \\ (c,-r,s,w) (-c,-r,s,w) \\ = \alpha \langle 27.522, 18.18 \rangle = \langle 0.60, 0.40 \rangle$$

Likelihood Weighting

For an arbitrary Bayesian Network, let X be the query variable, e be the values of the evidence variables and Y be the unobserved variables.

Let

- ▶ $N_{WS}(X,Y,e)$ be the number of samples generated for the event X, Y and e.
- w(X,Y,e) be the weight of a sample corresponding to the event X, Y and e.

The the estimate for P(X|e) is

$$\hat{P}(X|e) = \alpha \sum_{\forall Y} N_{WS}(X, Y, e) w(X, Y, e)$$

Likelihood Weighting: Why it works?

 In a BN, let E represents all evidence variables, Z represents all nonevidence variables including the query variable X.
 The sampling probability distribution is:

I: the number of nonevidence variables.

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$$

The sampling process: $S_{WS}(C, s, R, w)=P(C)P(R|C)$

Now, samples have weights.

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i \mid parents(E_i))$$

e.g.,
$$w=P(s|c)P(w|s,-r)$$
 for $\{+c, +s, -r, +w\}$

Likelihood Weighting: Why it works?

Together, weighted sampling distribution is consistent.

 $\approx \alpha \sum_{V} N_{WS}(X, Y, e) w(X, Y, e)$

$$S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i)) \prod_{i=1}^{m} P(e_i | parents(E_i))$$
$$= P(\mathbf{z}, \mathbf{e})$$

$$P(X|e) = \alpha \sum_{\forall Y} P(X,Y,e)$$
 X: query variable
$$= \alpha \sum_{\forall Y} S_{WS}(X,Y,e) w(X,Y,e)$$
 Y: nonevidence variable and not X Z: includes X and Y.
$$= \lim_{N \to \infty} \alpha \sum_{\forall Y} N_{WS}(X,Y,e) w(X,Y,e)$$
 {X,Y, e}: all random variables

MCMC Methods

Likelihood weighting

- More efficient than rejection sampling.
- Efficiency decreases if the samples have low weights.
 i.e. w approaches 0, when P(e) is small.
- You sample downstream in BN without reasoning about evidence probability being low. $P(C \mid s,r,w)$

Markov Chain Monte Carlo (MCMC) Methods

- Generate samples with high probability accounting for evidence being low probability.
- Gibbs sampling is a special instance of MCMC methods which we will study.

Gibbs Sampling

- Generates an event by making a random change to preceding event
 - Think that network is in a current state which species an event.
 - Next state is reached by sampling a value for one nonevidence variable X to be conditioned on the current values of X's Markov blanket variables.
 - Gibbs sampler thus wonders randomly in the state space by flipping one variable at a time while keeping evidence variables fixed.
- As sampling settles into a dynamic equilibrium, the fraction of time spend on each state is proportional its posterior probability.

Recall Markov Blanket

Recall that the Markov Blanket of a variable comprises of the parents, children, and children's parents of the variable.

In a BN, a node is conditionally independent of all others given the Markov Blanket of the node.

Step 1: initialize evidence

Step 1: initialize evidence

Step 2: initialize other variables (random)

Initial state, e.g,: {+c, -s, +r, -w}

Step 1: initialize evidence

Step 2: initialize other variables (random)

Step 3: Repeat following

Initial state, e.g,: {+c, -s, +r, -w}

- Choose a nonevidence variable X (at random). Here X is S, C, W.
- Sample X given the current values of X's Markov blanket variables.

Sample from P(S|+c,-w,+r)

Suppose the result is true, the we get a new sample $\{+c, +s, +r, -w\}$

Step 1: initialize evidence

Step 2: initialize other variables (random)

Initial state, e.g,: {+c, -s, +r, -w}

Step 3: Repeat following

- Choose a nonevidence variable X (at random). Here X is S, C, W.
- Sample X given the current values of X's Markov blanket variables.

 $\{+c, +s, +r, -w\}$

Sample from P(C|+s,+r)

Suppose the result is true, then we get another sample {+c, +s, +r, -w}

Step 1: initialize evidence

Step 2: initialize other variables (random)

Initial state, e.g,: {+c, -s, +r, -w}

Step 3: Repeat following

- Choose a nonevidence variable X (at random). Here X is S, C, W.
- Sample X given the current values of X's Markov blanket variables.

Now suppose we get 100 samples with Gibbs Sampling.

- All samples were satisfying observation, i.e. {Rain = true}
- 37 of them had {Sprinkler = true}
- Which means, 63 of them had {Sprinkler = false}

$$P(S|Rain = true) = \alpha < 37,63 >$$

= < 0.37, 0.63 >

Probability given Markov Blanket

Let **Y** be the children of X_i

 \mathbf{Z}_j be the parents of Y_j other than X_i

. . .

```
\mathbf{P}(X_{i}|MB(X_{i})) = \mathbf{P}(X_{i}|Parents(X_{i}), \mathbf{Y}, \mathbf{Z}_{1}, \dots, \mathbf{Z}_{\ell}) \\
= \alpha \mathbf{P}(X_{i}|Parents(X_{i}), \mathbf{Z}_{1}, \dots, \mathbf{Z}_{\ell}) \mathbf{P}(\mathbf{Y}|Parents(X_{i}), X_{i}, \mathbf{Z}_{1}, \dots, \mathbf{Z}_{\ell}) \\
= \alpha \mathbf{P}(X_{i}|Parents(X_{i})) \mathbf{P}(\mathbf{Y}|X_{i}, \mathbf{Z}_{1}, \dots, \mathbf{Z}_{\ell}) \\
= \alpha \mathbf{P}(X_{i}|Parents(X_{i})) \prod_{Y_{i} \in Children(X_{i})} P(Y_{j}|Parents(Y_{j}))
```

Sample from
$$P(S|+c,-w,+r)$$

Sample from $P(C|+s,+r)$
 $P(X|mb(X))$

As in BN,

P(X|variables of Markov Blanket of X)

$$= \alpha P\left(X|parents\left(X\right)\right) \times \prod_{Y_j \in Children(X)} P\left(Y_j|parents\left(Y_j\right)\right)$$

That is,

$$P(S|+c, -w, +r) = \alpha P(S|+c)P(-w|+r)$$

$$P(C|+s, +r) = \alpha'P(C)P(+s|C)P(+r|C)$$

