

Проектирование орбитального детектора солнечных космических лучей.

Михаил Зелёный^{1,2,3}
¹ИЯИ РАН, ²МФТИ (НИУ), ³ИКИ РАН
11 апреля, 2019, г. Москва

Орбитальный детектор

Задачи:

- Проведение исследований солнечных космических лучей и солнечных вспышек;
- Обеспечение радиационной безопасности для космонавтов и электроники

Технические требования:

- Протоны от 10 МэВ до 100 МэВ;
- Электроны от 1 МэВ до 10 МэВ;
- Загрузки от 10⁶ Гц;
- Канал связи 1-10 МБ/сутки;
- Размеры 8 см х 6 см х 6 см;
- Масса до 700 грамм.

Методика измерения

Сцинтилляционный сегментированный детектор

Режимы работы

- Одночастичный (счетный) режим работы для загрузок менее 10⁴ – 10⁵ Гц
- Интегральный режим (при загрузках >10⁶ Гц и узких каналах связи)

Максимальное правдоподобие

$$L(E,\Theta) = \prod P(ион. потери | E,\Theta)$$

Разрешение: 5%

Статистическая регуляризация

$$f = \mathbf{K} * \varphi$$

f — Ион. потери

K — аппаратная функция

 φ —энергетический спектр

Application of Turchin's method of statistical regularization

https://doi.org/10.1051/epjconf/2018177070 05

pip install statreg

Статистическая регуляризация

Создание макета

Крепление SiPM

сцинтиллятору

SiPM крепится к оптоволокну

Крепление SiPM

- Светосбор ~35 фотоэлектронов
- Плохая однородность светосбора — на краю на 40% меньше

Крепление SiPM

- Хуже светосбор ~10 фотоэлектронов
- Хорошая однородность светосбора – на краю на 7 % меньше
- Удобнее при монтаже

Температурные характеристики SiPM

- MPPC Hamamatsu SiPM S12575-015P
- От -20 °C до + 50 °C
- ~0.8 Вольт на 10 °С

Сборка макета

15 шайб из полистирола толщина 4 мм диаметр 3 см

- Калибровка на космических мюонах
- Подготовка макета и электроники к испытаниям на протонном пучке

Заключение

- Спроектирован компактный орбитальный детектор.
 - Ожидаемое энергетическое разрешение 5 %
 - Определение угла падения частицы в одночастичном режиме
- Ведется сборка и испытания лабораторного макета:
 - Исследованы способы крепления SiPM
 - Исследованы температурные характеристики SiPM
 - Собрана протонная часть макета

