a) apport and
$$(2x2x\frac{1}{2})12=4$$

Joint port calculation $\int \int P_{xy}(x,y) dxdy = 1$

4 $P_{xy}(x,y) = 1$

Port of x
 $x \ge -1$
 $\int P_{x,y}(x,y) dy = 0$
 $-1 \ge x \ge 0$
 $\int_{x-1}^{x+1} P_{x,y}(x,y) dy = \frac{1}{9} (x+1-x+1) = \frac{1}{2}$
 $0 \ge x \le 1$
 $\int_{x-1}^{x+1} P_{x,y}(x,y) dy = \frac{1}{9} [x+1-(x-1)]^{-\frac{1}{2}} \frac{1}{2}$
 $0 \ge x \le 1$
 $\int P_{x,y}(x,y) dy = 0$
 $0 \ge (x+1) = 0$
 $0 \ge$

²m\g08

S

$$y < -2$$
, $\int P_{x,y}(x,y) dx = 0$
 $-2 < y < 0$, $\int_{-1}^{y+1} P_{x,y}(x,y) dx = \int_{y-1}^{y+1} \frac{1}{\varphi} dx = \frac{y+2}{4}$
 $0 < y < z$, $\int P_{x,y}(x,y) dx = \int_{y-1}^{1} \frac{1}{\varphi} dx = \frac{z-3}{\varphi}$
 $y > z$, $\int P_{x,y}(x,y) dx = 0$

= 7

last year exam part2

8)
$$P(x|y) = Far y \in [0,2], x \in [y-1,1]$$

For $y \in [-2,0], x \in [-1,y+1]$
 $Var(x|y) = \frac{y}{2}$
 $Var(x|y) = \frac{(y-1)^2}{12}$
 $Var(x|y) = Cov(F(x|y),y)$
 $Var(x|y) = Cov(F(x|y),y)$
 $Var(x|y) = Cov(F(x|y),y)$
 $Var(x|y) = \frac{y}{2}$
 $Var(x|y) = \frac{y}{2}$

$$\begin{cases} ||a|([\frac{x}{y}])| = ||a|([\frac{x}{y})| = |$$

last year exam part4