Predicting Effective Arguments

W207 Final Project

Adam, Vivek & Waqas

Problem Motivation: Grading Argumentative Essays

Problem: It is difficult to provide uniform grading of argumentative essays, on-demand and at scale.

The current state-of-the-art can provide writing feedback, but is weak at grading argumentative essays.

Feedback Prize - Predicting Effective Arguments | Kaggle. Kaggle.com. Published 2022. Accessed July 12, 2022. https://www.kaggle.com/competitions/feedback-prize-effectiveness/data

Dataset Description

Datasets

Data Source:

- The dataset contains 4161 argumentative essays written by U.S students in grades 6-12.
- These essays were annotated by expert raters for 7 discourse elements
 - 1) Lead, 2) Position, 3) Claim, 4) Counterclaim, 5) Rebuttal, 6) Evidence & 7) Concluding Statement
- 36765 discourse texts

Labelling:

Human readers rated each argumentative element, in order of increasing quality, as one of **3 Classes**:

1) Ineffective, 2) Adequate & 3) Effective

Inputs and Outputs

Solution Output

Discourse ID	Ineffective	Adequate	Effective
a261	0.2	0.6	0.2
5a8b	0.7	0.15	0.15

Goal → Predict the effectiveness rating for each discourse element

Imbalance Training Data

Approach

Leveraging Expert Knowledge for Feature Selection

Grading Guidance:

The introduction begins with a statistic, a quotation, a description, or some other device to grab the reader's attention and point toward the thesis.

Classification:

Effective

Adequate

Ineffective

Leveraging Expert Knowledge for Feature Selection

Discourse Element

The study the ability of humans to read subatle changes in facial expressions, thast they appiled reverse correlation technique to reveal visual features that mediate understanding of emotion expressed by the face. Suprising finding were that (1) the noise added to test face image had profound effect on the facail expression and (2) in most every istance the new expression was meaningful. [...]

Educator Response

I would suggest the evidence was graded as ineffective because it isn't in direct support of a claim. Honestly, I don't see a claim at all. This essay is really difficult to read/follow.

Include feature: Text Perplexity

Class Imbalance

Technique	Description			
Downsampling	Reducing samples of majority class Not suited for this dataset (Training Samples = ~33k)			
Upsampling	Replicating minority class samples. 2 * Effective Samples + 3 * Ineffective Samples + Adequate Samples			
Focal Loss [1708.02002] Focal Loss for Dense Object Detection (arxiv.org)	Addresses class imbalance during training. Applies a modulating term to Cross-Entropy loss to focus on hard misclassified examples. (Gamma = 2) $ \frac{Cross\ Entropy\ Loss(prob_t) = -log(prob_t)}{Focal\ Loss(prob_t) = -(1-prob_t)^{\gamma}\ log(prob_t)} $			
Weighted Sampling & Loss Function	Weighted mini-batch sampling. Weighted Cross-Entropy loss function [Effective: 3.93 / 1.5, Adequate: 1.75 / 1, Ineffective:5.69 / 2]			

Feature Engineering

Feature Engineering: Part of speech

Proper_Nouns	0.216405
misspelled_count	0.139763
Cardinal number	0.127971
Noun, Plural	0.121559
Existential There	0.074274

Not-In-Vocabulary Count

- Misspelled words are not penalized while grading Discourse elements.
- Subword Tokenizers in Large Language models Out of Vocabulary and Misspelled Words.
- Correlation between the count of misspelled words in discourse text and effectiveness

Effectiveness Class	Effective	Adequate	Ineffective
Mean (Not in Vocabulary Words)	0.59	0.78	1.42

- Dictionary/Vocabulary is built from NLTK word corpora (words, brown and wordnet)
- ❖ |Vocabulary| 346,423

Text Perplexity GPT-2

Pre-trained Language Models are trained on Clean Corpora. The standard evaluation metric is perplexity:

$$Perplexity = \prod_{t=1}^T \left[rac{1}{P_{LM}(x^{(t+1)}|x^{(t)},\dots x^{(1)})}
ight]^{1/T}$$

- The lower the perplexity, the more probable (natural) the sentence is.
- We are using the Generative Pre-trained Transformer model (GPT2) to compute the perplexity score of the discourse text, and the normalized perplexity score is used as a feature.

Effectiveness Class	Effective	Adequate	Ineffective
Mean (Perplexity Score)	157.58	240.87	297.66
Median (Perplexity Score)	46.10	79.86	87.28
Standard Deviation (Perplexity Score)	1357.04	1569.65	1858.54

Model Architecture

Bag of Embeddings

EPOCHS = 10

LEARNING RATE = 5

BATCH SIZE = 64

EMBEDDING SIZE = 64

Feed Forward Neural Network

INPUT SIZE = 40

EPOCHS = 10

LEARNING RATE = 0.001

BATCH SIZE = 500

HIDDEN SIZE = 200

Augmented DeBERTa Network

Experiment Details & Hyperparameters (Best Model)			
Component / Hyperparameter	Description		
Input Representation	The input text for the DeBERTa tokenizer is the concatenation of "Discourse Type", " Discourse Text", and "Argumentative Essay" separated by special tokens (start token: [CLS], separator token: [SEP]).		
Input Text Length	Max token length is set to 1024, which ensures that the complete discourse text and type for all samples are represented, and a portion of the essay is covered.		
DeBERTa Representation	Output hidden states for each sub-word is fed to the Mean Pooling layer, which computes the final representation considering the Mask values.		
Feed Forward Input	Input to the Feed Forward Network consisted of representation from the DeBERTa model and augmented features of normalized GPT-2 Perplexity score and Not-In-Vocabulary count using NLTK word corpora.		
#Hidden Units in Feed Forward Layer	128		
Optimizer	AdamW		
Scheduler	Linear Scheduler with Warmup (500 steps)		
Loss Function	Cross Entropy Loss		
Batch Size	4		
#Epochs	5		

3e-6

0.10

0.005

Learning Rate

Weight Decay / L2 Regularization

Dropout

Augmented 2-DeBERTa Network

Augmented 2-DeBERTa Network with PoS Counts

Results

Description	Parameters	Training Time	Log Loss	Balanced Accuracy	Test Accuracy
Bag of Embeddings [Input: Discourse Text, Embedding size: 64]	620K	50.5 sec	3.390	-	61.0%
Neural Network [Input: Features (POS), Hidden layer: 200]	8.8k	4.7 sec	0.823	-	63.5%
BERT[Input: Discourse Text, BERT Hidden Layers: 6]	66.95M	2 hours 50 mins	0.777	56.38%	66.70%
ROBERTa [Input: Discourse Text, Essay, Roberta Hidden Layers: 8, Features: Not-In-Vocabulary, Discourse Type, 2 Roberta models]	193.38M	5 hours 35 mins	0.741	59.22%	68.80%
Roberta [Input: Discourse Text, Essay, Roberta Hidden Layers: 6, Features: Not-In-Vocabulary, Discourse Type, 2 Roberta models, Weighted Loss]	164.63M	4 hours 10 mins	0.741	62.61%	65.66%
DeBERTa-v3 [Input: Discourse Text, Essay, DeBERTa Hidden Layers: 12, Features: Not-In-Vocabulary, Discourse Type, 2 DeBERTa models, Focal Loss]	367.66M	10 hours 35 mins	0.681	59.93%	69.98%
DeBERTa-v3 [Input: Discourse Type, Discourse Text, Essay, DeBERTA Hidden Layers: 12, Features: misspelled count]	184.03M	6 hours 3 mins	0.657	64.63%	70.6%
DeBERTa-v3 [Input: Discourse Type, Discourse Text, Essay, DeBERTA Hidden Layers: 12, Features: misspelled count, cardinal numbers, proper nouns, and existential there.]	184.02M	4 hours 31 mins	0.660	62.98%	70.0%
DeBERTa-v3 [Input: Discourse Text, Essay, DeBERTa Hidden Layers: 12, Features: Not-In-Vocabulary, Discourse Type, GPT-2 Perplexity Score]	183.93M	10 hours 30 mins	0.660	63.05%	71.11%

Kaggle Submissions

Conclusions

- Prediction with unconstrained content and qualitative labels is non-trivial
- Domain Experts help when Feature Engineering
- Teams: Parallel model development and verification
- Abandon features when they aren't helping
- Ensemble models can improve accuracy

References

- 1. Feedback Prize Predicting Effective Arguments | Kaggle. Kaggle.com. Published 2022. Accessed July 12, 2022. https://www.kaggle.com/competitions/feedback-prize-effectiveness/data.
- argumentation_scheme_and_rubrics_kaggle.docx. argumentation_scheme_and_rubrics_kaggle.docx. Google Docs. Published 2022. Accessed July 12, 2022. https://docs.google.com/document/d/1G51Ulb0i-nKCRQSs4p4ujauy4wjAJOae/edit