Finally, we proceed to the main result of this section. We show that if G is a nontrivial (k, g, s)-multipole with $s \leq (k-2)g$, then it cannot happen that $|G| \leq b_1(k, g, s)$. Thus, we obtain a nontrivial lower bound on the size of G.

Theorem 9. Let G be a nontrivial (k, g, s)-multipole for some $k \geq 3$, $g \geq 5$ and $s \leq (k-2)g$. Then

 $|G| \ge b_2(k, g, s) \ge \frac{1}{2}M(k, g).$

Proof. Note that $b_2(k, g, s) \ge \frac{1}{2}M(k, g)$. It is easy to check that the statement is true for k = 3 and $g \le 8$ (see Table 1), for other values we can use Lemma 7 and it is sufficient to prove $|G| \ge b_2(k, g, (k-2)g)$ which is equivalent to $|G| > b_1(k, g, (k-2)g)$. This is clearly true for s = 0. We will proceed by induction as follows. Let G be a nontrivial (k, g, s)-multipole of order n with $0 < s \le (k-2)g$ and assume that Theorem 9 holds for all nontrivial (k', g', s')-multipoles of order n' with $s' \le (k'-2)g'$ where (k', g', s', n') is lexicographically smaller than (k, g, s, n). By Lemma 3 we also assume that G contains no vertex with inner degree 1.

Case 1: G contains a vertex v with inner degree 2

If $k \geq 4$, then let G' = G - v. Clearly, G' is a (k, g, s - (k - 4))-multipole of order n - 1. Graph G' cannot be trivial, otherwise either G would be trivial, or it would have girth less than $g \geq 5$. But then G' fulfils the theorem condition and as (k, g, s - (k - 4), n - 1) is lexicographically smaller than (k, g, s, n) we have $|G'| \geq b_2(k, g, s - (k - 4))$. By Lemma 7, $|G'| \geq b_2(k, g, (k - 2)g)$ and then $|G| \geq b_2(k, g, (k - 2)g) + 1$. Thus, k = 3.

For k=3 we already resolved the cases when $g \leq 8$. Thus, we may assume $g \geq 9$. We remove the vertex v from G and join the two links formerly incident with v to produce one new link. The constructed multipole G' is clearly a nontrivial (3, g-1, s-1)-multipole with $s-1 \leq (k-2)(g-1)$. By the induction hypothesis and Lemma 7 we have $|G| \geq b_2(3, g-1, s-1) \geq b_2(3, g-1, g-1)$. So it is sufficient to show that

$$b_2(3, g-1, g-1) > b_1(3, g, g)$$

We manually checked that this is true for all g < 14. For $g \ge 14$, by Proposition 8 it is sufficient to show

$$M(3, g - 1) - \frac{(g - 1)^2}{2} > \frac{g^2}{2}$$
, or equivalently, $M(3, g - 1) > g^2 - g + \frac{1}{2}$. (8)

For g = 2d + 1, Inequality (8) is equivalent to

$$M(k, 2d) = 2 \cdot 2^d - 2 > 4d^2 + 2d + \frac{1}{2},$$
(9)

which is true for q > 7.

For g = 2d + 2, Inequality (8) is equivalent to

$$M(3, 2d+1) = 3 \cdot 2^d - 2 > 4d^2 + 6d + \frac{11}{2},\tag{10}$$

which holds for $d \geq 6$, thus $g \geq 14$.