Computational physics

Một vài kỹ thuật lặp giải hệ phương trình tuyến tính Iterative Techniques to Solve Linear Systems

1

Phương pháp lặp / Iterative Techniques

- Phần này sẽ xét hai phương pháp lặp "kinh điển" – phương pháp lặp Jacobi và phương pháp lặp Gauss – Seidel [The Jacobi and the Gauss-Seidel iterative methods]
- Hai phương pháp này hiệu quả trong việc giải những hệ phương trình tuyến tính loại "lớn" [ví dụ từ vài trăm phương trình, như sẽ gặp khi giải số phương trình đạo hàm riêng].

Phương pháp lặp / Iterative Technique

• Kỹ thuật lặp để giải hệ phương trình tuyến tính $n \times n$ [iterative techniques to solve the $n \times n$ linear system]

$$Ax = b$$

• A, x, b : các ma trận [matrices].

3

the $n \times n$ linear system

$$Ax = b$$

$$\Leftrightarrow \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

4

PP lặp/ Iterative Technique

- Starts with an initial approximation $x^{(0)}$ to the solution x / Chọn ("đại") 1 bộ nghiệm ban đầu $x^{(0)}$ xấp xỉ nghiệm x
- Generates a sequence of vectors / Từ hệ tuyến tính, tạo "chuỗi nghiệm" [nghiệm lần thứ nhất $x^{(1)}$, lần hai $x^{(2)}$, ... lần thứ k $x^{(k)}$]

$$\{\boldsymbol{x}^{(k)}\}$$

that converges to / hội tụ về nghiệm (được chờ đợi) \boldsymbol{x}

5

Jacobi iterative method

• The Jacobi iterative method is obtained by solving the i-th equation in Ax = b for x_i to obtain (provided $a_{ii} \neq 0$)

$$x_i = \frac{1}{a_{ii}} \left[\sum_{j=1, j \neq i}^{n} -a_{ij} x_j + b_i \right], i = 1, 2, ..., n$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases} \Rightarrow x_i = \frac{1}{a_{ii}} \left[\sum_{j=1, j \neq i}^{n} -a_{ij}x_j + b_i \right]$$

Jacobi iterative method

• For each $k \ge 1$, generate the components $x_i^{(k)}$ of $x^{(k)}$ from the components of $x^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1\\j\neq i}}^{n} -a_{ij} x_j^{(k-1)} + b_i \right], i = 1, 2, ..., n$$

until

$$\|\vec{x}^{(k)} - \vec{x}^{(k-1)}\| < \varepsilon \text{ or } \frac{\|\vec{x}^{(k)} - \vec{x}^{(k-1)}\|}{\|\vec{x}^{(k)}\|} < \varepsilon.$$

• Chú ý:

$$\|\vec{x}^{(k)}\| \stackrel{\text{\tiny def}}{=} \max_{1 \le i \le n} |x_i|$$

7

Jacobi iterative method

• For each $k \ge 1$, generate the components $x_i^{(k)}$ ["new"] of $x^{(k)}$ from the components of $x^{(k-1)}$ ["old" / known/ $d\tilde{a}$ biết/ $d\tilde{a}$ có] by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1\\j\neq i}}^{n} -a_{ij} x_j^{(k-1)} + b_i \right], i = 1, 2, ..., n$$

$$x_i^{\text{(new)}} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1\\j\neq i}}^n -a_{ij} x_j^{\text{(old)}} + b_i \right], i = 1, 2, ..., n$$

Jacobi iterative method - Example

The linear system:

$$E_1$$
: $10x_1 - x_2 + 2x_3 = 6$
 E_2 : $-x_1 + 11x_2 - 2x_3 + 3x_4 = 25$
 E_3 : $2x_1 - x_2 + 10x_3 - x_4 = -11$
 E_4 : $3x_2 - x_3 + 8x_4 = 15$

9

Jacobi iterative method - Example

• Use Jacobi's iterative technique to find approximations $x^{(k)}$ to x starting with

$$\mathbf{x}^{(0)} = (0, 0, 0, 0) \text{ until}$$

$$\frac{\left\|\vec{x}^{(k)} - \vec{x}^{(k-1)}\right\|}{\left\|\vec{x}^{(k)}\right\|} < 10^{-3}$$

Jacobi iterative method - Example

• We first solve equation E_i for x_i , for each i = 1, 2, 3, 4, to obtain

$$x_{1} = \frac{1}{10}x_{2} - \frac{1}{5}x_{3} + \frac{3}{5}$$

$$x_{2} = \frac{1}{11}x_{1} + \frac{1}{11}x_{3} - \frac{3}{11}x_{4} + \frac{25}{11}$$

$$x_{3} = -\frac{1}{5}x_{1} + \frac{1}{10}x_{2} + \frac{1}{10}x_{4} - \frac{11}{10}$$

$$x_{4} = -\frac{3}{8}x_{2} + \frac{1}{8}x_{3} + \frac{15}{8}$$

11

Jacobi iterative method - Example

• From the initial "guess" (approximation) $x^{(0)}=(0,0,0,0)$ we have $x^{(1)}$ given by

$$x_{1}^{(1)} = \frac{1}{10}x_{2}^{(0)} - \frac{1}{5}x_{3}^{(0)} + \frac{3}{5} = 0.6000$$

$$x_{2}^{(1)} = \frac{1}{11}x_{1}^{(0)} + \frac{1}{11}x_{3}^{(0)} - \frac{3}{11}x_{4}^{(0)} + \frac{25}{11} = 2.2727$$

$$x_{3}^{(1)} = -\frac{1}{5}x_{1}^{(0)} + \frac{1}{10}x_{2}^{(0)} + \frac{1}{10}x_{4}^{(0)} - \frac{11}{10} = -1.1000$$

$$x_{4}^{(1)} = -\frac{3}{8}x_{2}^{(0)} + \frac{1}{8}x_{3}^{(0)} + \frac{15}{8} = 1.8750$$

Jacobi iterative method - Example

• Additional iterates, $x^{(k)}=(x_1^{(k)},x_2^{(k)},x_3^{(k)},x_4^{(k)})$, are generated in a similar manner. ...

k	0	1	2	 9	10
$x_1^{(k)}$	0.0000	0.6000	1.0473	0.9991	1.0001
$x_{2}^{(k)}$	0.0000	2.2727	1.7159	2.0004	1.9998
$x_3^{(k)}$	0.0000	-1.1000	-0.8052	-1.0004	-0.9998
$x_4^{(k)}$	0.0000	1.8750	0.8852	1.0006	0.9998

• The process was stopped after 10 iterations because

$$\frac{\left\|x^{10} - x^9\right\|}{\left\|x^{10}\right\|} < 10^{-3}$$

• In fact, $||x^{10} - x|| < 10^{-3}$

15

Jacobi iterative method - Example

The linear system:

$$E_1$$
: $10x_1 - x_2 + 2x_3 = 6$

$$E_2$$
: $-x_1 + 11x_2 - 2x_3 + 3x_4 = 25$

$$E_3$$
: $2x_1 - x_2 + 10x_3 - x_4 = -11$

$$E_4: 3x_2 - x_3 + 8x_4 = 15$$

has the unique solution x = (1, 2, -1, 1)

Jacobi Iterative Algorithm

- To solve Ax = b given an initial approximation $x^{(0)}$:
- INPUT:
 - the number of equations and unknowns n;
 - a_{ii} , $1 \le i, j \le n$ of the matrix A;
 - $-b_i$, $1 \le i \le n$ of **b**;
 - $-XO = x^{(0)};$
 - TOL ε;
 - Maximum number of iterations N.
- OUTPUT:
 - the approximate solution x_1, \ldots, x_n or a message that the number of iterations was exceeded.

17

Jacobi Iterative Algorithm

- Step 1: Set k = 1 // k: k-th iteration [lần lặp thứ k]
- Step 2: While $(k \le N)$ do Step 3 -6
 - Step 3: For i = 1, n

Set
$$x_i = \frac{1}{a_{ii}} \left[-\sum_{\substack{j=1\\j\neq i}}^n a_{ij} X O_j + b_i \right]$$

- Step 4: If $\|x XO\| < \varepsilon$ then OUTPUT x_1, \dots, x_n STOP
- Step 5: Set k = k + 1
- Step 6: For i = 1, $n \operatorname{set} XO_i = x_i$
- Step 7: OUTPUT "Maximum number of iterations exceeded!" STOP (The procedure was unfortunately unsuccessful ⊗)

Gauss-Seidel method

· Jacobi's method

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^n a_{ij} x_j^{(k-1)} + b_i \right], i = 1, 2, ..., n$$

· Gauss-Seidel method

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} + b_i \right]$$

19

Gauss-Seidel method - example

The linear system Ax = b given by

$$E_1: 10x_1 - x_2 + 2x_3 = 6$$

$$E_2: -x_1 + 11x_2 - 2x_3 + 3x_4 = 25$$

$$E_3: 2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$E_4: 3x_2 - x_3 + 8x_4 = 15$$

has the unique solution x = (1, 2, -1, 1)

Gauss-Seidel method - example

• For the Gauss-Seidel technique we write the system, for each k=1,2,... as

$$x_{1}^{(k)} = \frac{1}{10}x_{2}^{(k-1)} - \frac{1}{5}x_{3}^{(k-1)} + \frac{3}{5} = 0.6000$$

$$x_{2}^{(k)} = \frac{1}{11}x_{1}^{(k)} + \frac{1}{11}x_{3}^{(k-1)} - \frac{3}{11}x_{4}^{(k-1)} + \frac{25}{11} = 2.2727$$

$$x_{3}^{(k)} = -\frac{1}{5}x_{1}^{(k)} + \frac{1}{10}x_{2}^{(k)} + \frac{1}{10}x_{4}^{(k-1)} - \frac{11}{10} = -1.1000$$

$$x_{4}^{(k)} = -\frac{3}{8}x_{2}^{(k)} + \frac{1}{8}x_{3}^{(k)} + \frac{15}{8} = 1.8750$$

21

Gauss-Seidel method - example

- When $x^{(0)} = (0, 0, 0, 0)$, we have $x^{(1)} = (0.6000, 2.3272, -0.9873, 0.8789)$.
- Subsequent iterations give the values in the following table:

k	0	1	2	3	4	5
$x_1^{(k)}$	0.0000	0.6000	1.030	1.0065	1.0009	1.0001
$x_{2}^{(k)}$	0.0000	2.3272	2.037	2.0036	2.0003	2.0000
$x_{3}^{(k)}$	0.0000	-0.9873	-1.014	-1.0025	-1.0003	-1.0000
$x_4^{(k)}$	0.0000	0.8789	0.9844	0.9983	0.9999	1.0000

Gauss-Seidel Iterative Algorithm

- To solve Ax = b given an initial approximation $x^{(0)}$:
- INPUT:
 - the number of equations and unknowns n;
 - a_{ij} , $1 \le i, j \le n$ of the matrix A;
 - $-b_i$, $1 \le i \le n$ of **b**;
 - $-XO = x^{(0)};$
 - TOL ε ;
 - Maximum number of iterations N.
- OUTPUT:
 - the approximate solution x_1, \ldots, x_n or
 - a message that the number of iterations was exceeded

23

Gauss-Seidel Iterative Algorithm

- Step 1: Set k = 1 // k: k-th iteration [lần lặp thứ k]
- Step 2: While $(k \le N)$ do Step 3 -6
 - Step 3: For i = 1, n

Set
$$x_i = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^{n} a_{ij} X_{ij} + b_i \right]$$

- Step 4: If $||x XO|| < \varepsilon$ then OUTPUT x_1, \dots, x_n STOP
- Step 5: Set k = k + 1
- Step 6: For i = 1, $n \operatorname{set} XO_i = x_i$
- Step 7: OUTPUT "Maximum number of iterations exceeded!" STOP (The procedure was unfortunately unsuccessful ⊗)

Nhận xét

- Trong một số trường hợp, phương pháp Gauss
 Seidel hội tụ nhanh hơn phương pháp Jacobi.
- Nhưng không có kết luận chung rằng phương pháp Gauss – Seidel tốt hơn phương pháp Jacobi!

25

Thực hành

- 1. Hãy viết code để giải hệ phương trình tuyến tính đã được chọn làm ví dụ trong slides trước bằng i) phương pháp lặp Jacobi, và ii) PP Gausse-Seidel.
- 2. Xem bài toán giàn kèo ở slides sau và thực hành.

Một bài toán về cấu trúc giàn

- Giàn kèo [truss] là 1 cấu trúc gồm các thành phần tạo thành một nhiều đơn vị tam giác → giàn nhẹ có khả năng chịu tải trọng lớn. Ở thiết kế cầu, các thành phần riêng lẻ của giàn được kết nối với các khớp chốt [pin joints] có thể xoay cho phép lực được truyền từ thành phần này sang thành phần khác của giàn.
- Hình dưới mô tả 1 giàn được giữ tĩnh/cố định tại điểm cuối [endpoint]
 1); giàn được phép di chuyển theo chiều ngang ở điểm cuối 4, và có các khớp chốt tại 1, 2, 3, và 4.

27

Bài toán về cấu trúc giàn

- Tải đặt ở khớp chốt 3 \Rightarrow các lực f_1, f_2, f_3, f_4, f_5 ở các khớp nối, như được phác trong hình. Khi lực dương \Rightarrow lực căng, âm \Rightarrow lực nén tác động lên các thành phần của giàn. Khớp đỡ tĩnh 3 có thể có cả thành phần lực ngang F_1 và dọc F_2 . Ở đầu đỡ có thể di chuyển thì chỉ có phần lực dọc F_3 .
- Nếu hệ cân bằng tĩnh, tại mỗi khớp, chốt tổng các vector lực = 0.
 Chiếu lên phương dọc, ngang → Hệ phương trình tuyến tính ở slide sau.

28

Bài toán về cấu trúc giàn

• (1): Ngang:
$$-F_1 + \frac{\sqrt{2}}{2}f_1 + f_2 = 0$$
; Doc: $\frac{\sqrt{2}}{2}f_1 - F_2 = 0$

• ②: Ngang:
$$-\frac{\sqrt{2}}{2}f_1 + \frac{\sqrt{3}}{2}f_4 = 0$$
; Doc: $-\frac{\sqrt{2}}{2}f_1 - f_3 - \frac{1}{2}f_4 = 0$
• ③: Ngang: $-f_2 + f_5 = 0$; Doc: $f_3 - 10000 = 0$
• ④: Ngang: $-\frac{\sqrt{3}}{2}f_4 - f_5 = 0$; Doc: $\frac{1}{2}f_4 - F_3 = 0$

(3): Ngang:
$$-f_2 + f_5 = 0$$
; Doc: $f_3 - 10000 = 0$

• (4): Ngang:
$$-\frac{\sqrt{3}}{2}f_4 - f_5 = 0$$
; Doc: $\frac{1}{2}f_4 - F_3 = 0$

29

Giải bài toán về cấu trúc giàn kèo

Hãy đưa hệ 8 phương trình ở slide trước về dạng ma trận Ax = b, trong đó x và b là 2 ma trận cột như sau:

$$\mathbf{x} = \begin{pmatrix} F_1 \\ F_2 \\ F_3 \\ f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10000 \\ 0 \\ 0 \end{pmatrix}$$

• Xác định ma trận A. Với các phần tử của ma trận A này, hãy giải số hệ trên, độ chính xác $\varepsilon = 10^{-2}$, $\chi^{(0)} = 1$, bằng i) PP Jacobi, và ii) bằng PP Gauss – Seidel.