

Министерство образования Российской Федерации МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность (ИУ8)

ИНТЕЛЛЕКТУАЛЬНЫЕ ТЕХНОЛОГИИ НА ОСНОВЕ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ

Лабораторная работа №1 Исследование однослойных нейронных сетей на примере моделирования булевых выражений

Вариант 13

Проверяющий: Гурова Е.Б.

Студент: Перескоков В.А.

Группа: ИУ8-61

Цель работы

Исследовать функционирование простейшей нейронной сети (HC) на базе нейрона с нелинейной функцией активации и ее обучение по правилу Видроу-Хоффа.

Постановка задачи

Постановка задачи. Получить модель булевой функции (БФ) на основе однослойной НС (единичный нейрон) с двоичными входами $x1,x2,x3,x4 \in \{0,1\}$, единичным входом смещения x0 = 1, синаптическими весами , двоичным выходом $y \in \{0,1\}$ и заданной нелинейной функцией активации (ФА) $f : R \rightarrow (0,1)$ (рис. 1.1).

Рис. 1.1. Однослойная НС

Исходные данные в соответствии с вариантом задания

Моделируемая БФ:
$$(\overline{x_1} + \overline{x_2} + \overline{x_3})(\overline{x_2} + \overline{x_3} + x_4)$$
 Функции активации:

1)
$$f(\text{net}) = \begin{cases} 1, & \text{net } \ge 0, \\ 0, & \text{net } < 0; \end{cases}$$

1)
$$f(\text{net}) = \begin{cases} 1, & \text{net} \ge 0, \\ 0, & \text{net} < 0; \end{cases}$$

2) $f(\text{net}) = \frac{1}{2} \left(\frac{\text{net}}{1 + |\text{net}|} + 1 \right);$

Таблица истинности

X1	X2	X3	X4	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

Графики суммарной квадратичной ошибки в зависимости от эпохи

На рисунке показано, что к 26 эпохе НС уже полностью обучена

На рисунке 2 мы видим уже немного другую картину.

Выход НС на разных эпохах (2 ФА)

E(k) = 13

X1	X2	X3	X4	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

E(k) = 9

X1	X2	X3	X4	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

E(k) = 3

X1	X2	X3	X4	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

E(k) = 1

X1	X2	X3	X4	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

Минимизация

После полного перебора всех векторов было получено, что минимальный набор обучаемой выборки – 9 векторов.

Выводы

В ходе лабораторной работы было исследовано функционирование простейшей нейронной сети на базе нейрона с нелинейной функцией активации и ее обучение по правилу Видроу-Хоффа.

Было установлено, что функция активации, производная которой равна 0, не подходит для обучения.

Было изучено правило Видроу-Хоффа – реализовано на языке python 3.х (https://github.com/vladpereskokov/BMSTU_Neural-network/tree/lab-01). Для доступа к репозиторию, напишите на почту (v.pereskokov@ivpa.ru).

Помимо реализации HC, были добавлены тесты (python.unittest) для 2х переменных и логической функции И, а также для 4х переменных и логической функции моего вариант (13).

На Flask'е были реализованы ручки для получения значения функции по 4 значениям переменной. https://bmstu-neural-network.herokuapp.com/api/v1/lab_01

API написано в README репозитория.

Bce тесты пройдены. https://travis-ci.com/vladpereskokov/BMSTU_Neural-network/builds/67332090?utm_source=github_status&utm_medium=notification