Tantalum

From Wikipedia, the free encyclopedia

Tantalum is a chemical element with symbol **Ta** and atomic number 73. Previously known as *tantalium*, its name comes from *Tantalus*, a villain from Greek mythology.^[4] Tantalum is a rare, hard, blue-gray, lustrous transition metal that is highly corrosion-resistant. It is part of the refractory metals group, which are widely used as minor components in alloys. The chemical inertness of tantalum makes it a valuable substance for laboratory equipment and a substitute for platinum. Its main use today is in tantalum capacitors in electronic equipment such as mobile phones, DVD players, video game systems and computers. Tantalum, always together with the chemically similar niobium, occurs in the minerals tantalite, columbite and coltan (a mix of columbite and tantalite).

Characteristics

Physical properties

Tantalum is dark (blue-gray),^[19] dense, ductile, very hard, easily fabricated, and highly conductive of heat and electricity. The metal is renowned for its resistance to corrosion by acids; in fact, at temperatures below 150 °C tantalum is almost completely immune to attack by the normally aggressive aqua regia. It can be dissolved with hydrofluoric acid or acidic solutions containing the fluoride ion and sulfur trioxide, as well as with a solution of potassium hydroxide. Tantalum's high melting point of 3017 °C (boiling point 5458 °C) is exceeded among the elements only by tungsten, rhenium and osmium for metals, and carbon.

Tantalum exists in two crystalline phases, alpha and beta. The alpha phase is relatively ductile and soft; it has body-centered cubic structure (space group Im3m, lattice constant a=0.33058 nm), Knoop hardness 200–400 HN and electrical resistivity 15–60 $\mu\Omega cm$. The beta phase is hard and brittle; its crystal symmetry is tetragonal (space group P42/mnm, a=1.0194 nm, c=0.5313 nm), Knoop hardness is 1000–1300 HN and electrical resistivity is relatively high at 170–210 $\mu\Omega cm$. The beta phase is metastable and converts to the alpha phase upon heating to 750–

Tantalum, 73Ta

Spectral lines of tantalum

General properties

Name, symbol tantalum, Ta Appearance gray blue

Tantalum in the periodic table

Atomic number (Z) 73

Group, block group 5, d-block

Period period 6

Element category

| transition metal

Standard atomic weight (±) (A_r)

180.94788(2)^[1]

Electron configuration

[Xe] 4f¹⁴ 5d³ 6s²

per shell 2, 8, 18, 32, 11, 2

Physical properties

Phase solid

Melting point 3290 K (3017 °C,

5463 °F)

775 °C. Bulk tantalum is almost entirely alpha phase, and the beta phase usually exists as thin films obtained by magnetron sputtering, chemical vapor deposition or electrochemical deposition from an eutectic molten salt solution.^[20]

Chemical properties

Tantalum forms oxides with the oxidation states +5 (Ta₂O₅) and +4 (TaO₂).^[21] The most stable oxidation state is +5, as seen in tantalum pentoxide.^[21] Tantalum pentoxide is the starting material for several tantalum compounds. The compounds are created by dissolving the pentoxide in basic hydroxide solutions or by melting it in another metal oxide. Such examples are lithium tantalate (LiTaO₃) and lanthanum tantalate (LaTaO₄). In the lithium tantalate, the tantalate ion TaO₃⁻ does not occur; instead, this part of the formula represents linkage of TaO₆⁷⁻ octahedra to form a three-dimensional perovskite framework; while the lanthanum tantalate contains lone TaO₄³⁻ tetrahedral groups.^[21]

The fluorides of tantalum can be used for its separation from niobium.^[22] Tantalum forms halogen compounds in the oxidation states of +5, +4, and +3 of the type TaX₅, TaX₄, and TaX₃, although multi-core complexes and substoichiometric compounds are also known. [21][23] Tantalum pentafluoride (TaF₅) is a white solid with a melting point of 97.0 °C and tantalum pentachloride (TaCl₅) is a white solid with a melting point of 247.4 °C. Tantalum pentachloride is hydrolyzed by water and reacts with additional tantalum at elevated temperatures by forming the black and highly hygroscopic tantalum tetrachloride (TaCl₄). While the trihalides can be obtained by reduction of the pentahalides with hydrogen, the dihalides do not exist. [21] A tantalum-tellurium alloy forms quasicrystals. [21] Tantalum compounds with oxidation states as low as -1have been reported in 2008.^[24] As in the cases of most other refractory metals, the hardest known compounds of tantalum are its stable nitrides and carbides. Tantalum carbide, TaC, like the more commonly used tungsten carbide, is a very hard ceramic that is used in cutting tools. Tantalum(III) nitride is used as a thin film insulator in some microelectronic fabrication processes.^[25] Chemists at the Los Alamos National Laboratory in the United States have developed a tantalum carbide-graphite composite material that is one of the hardest materials ever synthesized. Korean

Boiling point	5731 K (5458 °C,				
	9856 °F)				

Density near r.t. 16.69 g/cm³

when liquid, at m.p. 15 g/cm³

Heat of fusion 36.57 kJ/mol

Heat of vaporization

Molar heat 25.36 J/(mol·K)

capacity

Vapor pressure

753 kl/mol

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	3297	3597	3957	4395	4939	5634

Atomic properties

Oxidation states 5, 4, 3, 2, 1, -1, -3

(a mildly acidic oxide)

Electronegativity Pauling scale: 1.5

Ionization1st: 761 kJ/molenergies2nd: 1500 kJ/mol

Atomic radius empirical: 146 pm

Covalent radius 170±8 pm

Miscellanea

Crystal structure body-centered cubic

(bcc)^[2] α-Ta

Crystal structure tetragonal^[2]

β-Ta

Speed of sound 3400 m/s (at 20 °C)

thin rod

Thermal 6.3 μ m/(m·K)

researchers have developed an amorphous tantalum-tungsten-copper alloy that is more flexible and two to three times stronger than commonly used steel alloys. [26] There are two tantalum aluminides, $TaAl_3$ and Ta_3Al . These are stable, refractory, and reflective, and they have been proposed [27] as coatings for use in infrared wave mirrors.

Isotopes

Natural tantalum consists of two isotopes: $^{180\text{m}}$ Ta (0.012%) and 181 Ta (99.988%). 181 Ta is a stable isotope. $^{180\text{m}}$ Ta (m denotes a metastable state) is predicted to decay in three ways: isomeric transition to the ground state of 180 Ta, beta decay to 180 W, or electron capture to 180 Hf. However, radioactivity of this nuclear isomer has never been observed, and only a lower limit on its half life of 2.0×10^{16} years has been set. $^{[28]}$ The ground state of 180 Ta has a half life of only 8 hours. $^{180\text{m}}$ Ta is the only naturally occurring nuclear isomer (excluding radiogenic and cosmogenic short-living nuclides). It is also the rarest isotope in the Universe, taking into account the elemental abundance of tantalum and isotopic abundance of $^{180\text{m}}$ Ta in the natural mixture of isotopes (and again excluding radiogenic and cosmogenic short-living nuclides). $^{[29]}$

Tantalum has been examined theoretically as a "salting" material for nuclear weapons (cobalt is the better-known hypothetical salting material). An external shell of ¹⁸¹Ta would be irradiated by the intensive high-energy neutron flux from a hypothetical exploding nuclear weapon. This would transmute the tantalum into the radioactive isotope ¹⁸²Ta, which has a half-life of 114.4 days and produces gamma rays with approximately 1.12 million electron-volts (MeV) of energy apiece, which would significantly increase the radioactivity of the nuclear fallout from the explosion for several months. Such "salted" weapons have never been built or tested, as far as is publicly known, and certainly never used as weapons.^[30]

Tantalum can be used as a target material for accelerated proton beams for the production of various short-lived isotopes including ⁸Li, ⁸⁰Rb, and ¹⁶⁰Yb. ^[31]

expansion (at 25 °C)
Thermal 57.5 W/(m·K)

conductivity

Electrical 131 n Ω ·m (at 20 °C)

resistivity

Magnetic ordering paramagnetic^[3]

Young's modulus 186 GPa
Shear modulus 69 GPa

Bulk modulus 200 GPa

Poisson ratio 0.34

Mohs hardness 6.5

Vickers hardness 870–1200 MPa

Brinell hardness 440-3430 MPa

CAS Number 7440-25-7

History

Discovery Anders Gustaf Ekeberg

(1802)

Recognized as a distinct element by

Heinrich Rose (1844)

Most stable isotopes of tantalum

Occurrence

Tantalite, Pilbara district, Australia

Tantalum is estimated to make up about 1 ppm^[32] or 2 ppm^[23] of the Earth's crust by weight. There are many species of tantalum minerals, only some of which are so far being used by industry as raw materials: tantalite, microlite, wodginite, euxenite, polycrase. Tantalite (Fe, Mn)Ta₂O₆ is the most important mineral for tantalum extraction. Tantalite has the same mineral structure as columbite (Fe, Mn) (Ta, Nb)₂O₆; when there is more tantalum than niobium it is called tantalite and when there is more niobium than tantalum is it called columbite (or niobite). The high density of tantalite and other tantalum containing minerals makes the use of gravitational separation the best method. Other

iso	NA	half-life	DM	DE (MeV)	DP		
¹⁷⁷ Ta	syn	56.56 h	ε	1.166	¹⁷⁷ Hf		
¹⁷⁸ Ta	syn	2.36 h	ε	1.910	¹⁷⁸ Hf		
¹⁷⁹ Та	syn	1.82 y	ε	0.110	¹⁷⁹ Hf		
180-	0.105 h	ε	0.854	¹⁸⁰ Hf			
- Too la	180Ta syn	8.125 h	β-	0.708	¹⁸⁰ W		
^{180m} Ta	0.012%	is stable with 107 neutrons					
¹⁸¹ Ta	99.988%	is stable with 108 neutrons					
¹⁸² Ta	syn	114.43 d	β-	1.814	¹⁸² W		
¹⁸³ Ta	syn	5.1 d	β-	1.070	¹⁸³ W		

minerals include samarskite and fergusonite.

The primary mining of tantalum is in Australia, where the largest producer, Global Advanced Metals, formerly known as Talison Minerals, operates two mines in Western Australia, Greenbushes in the Southwest and Wodgina in the Pilbara region. The Wodgina mine was reopened in January 2011 after mining at the site was suspended in late-2008 due to the global financial crisis. [33] Less than a year after it reopened, Global Advanced Metals announced that due to again "... softening tantalum demand ...", and other factors, tantalum mining operations were to cease at the end of February 2012. [34] Wodgina produces a primary tantalum concentrate which is further upgraded at the Greenbushes operation before being sold to customers. [35] Whereas the large-scale producers of niobium are in Brazil and Canada, the ore there also yields a small percentage of tantalum. Some other countries such as China, Ethiopia, and Mozambique

Tantalum producers in 2015 with Rwanda being the main producer

mine ores with a higher percentage of tantalum, and they produce a significant percentage of the world's output of it. Tantalum is also produced in Thailand and Malaysia as a by-product of the tin mining there. During gravitational separation of the ores from placer deposits, not only is cassiterite (SnO_2) found, but a small percentage of tantalite also included. The slag from the tin

smelters then contains economically useful amounts of tantalum, which is leached from the slag.[12][36]

World tantalum mine production has undergone an important geographic shift since the start of the 21st century when production was predominantly from Australia and Brazil. Beginning in 2007 and through 2014, the major sources of tantalum production from mines dramatically shifted to the DRC, Rwanda, and some other African countries.^[37] Future sources of supply of tantalum, in order of estimated size, are being explored in Saudi Arabia, Egypt, Greenland, China, Mozambique, Canada, Australia, the United States, Finland, and Brazil.^{[38][39]}

It is estimated that there are less than 50 years left of tantalum resources, based on extraction at current rates, demonstrating the need for increased recycling.^[40]

Source

Wikipedia: Tantalum (https://en.wikipedia.org/wiki/Tantalum)