Artificial Intelligence – Spring 2021

Homework 3

Issued: March 29th, 2021 Due: April 12th, 2021

Problem 1:

6.5 Solve the cryptarithmetic problem in Figure 6.2 by hand, using the strategy of backtracking with forward checking and the MRV and least-constraining-value heuristics.

Figure 6.2

Problem 2:

6.11 Use the AC-3 algorithm to show that arc consistency can detect the inconsistency of the partial assignment $\{WA = green, V = red\}$ for the problem shown in Figure 6.1.

Figure 6.1

Problem 3:

- 7.4 Which of the following are correct?
 - **a.** $False \models True$.
 - **b**. $True \models False$.
 - $\mathbf{c}.\ (A \wedge B) \models (A \Leftrightarrow B).$
 - **d.** $A \Leftrightarrow B \models A \lor B$.
 - e. $A \Leftrightarrow B \models \neg A \lor B$.
 - **f.** $(A \land B) \Rightarrow C \models (A \Rightarrow C) \lor (B \Rightarrow C)$.
 - $\mathbf{g}.\ (C \vee (\neg A \wedge \neg B)) \equiv ((A \ \Rightarrow \ C) \wedge (B \ \Rightarrow \ C)).$

Problem 4:

7.18 Consider the following sentence:

$$[(Food \Rightarrow Party) \lor (Drinks \Rightarrow Party)] \Rightarrow [(Food \land Drinks) \Rightarrow Party].$$

- **a**. Determine, using enumeration, whether this sentence is valid, satisfiable (but not valid), or unsatisfiable.
- **b**. Convert the left-hand and right-hand sides of the main implication into CNF, showing each step, and explain how the results confirm your answer to (a).
- c. Prove your answer to (a) using resolution.