International Rectifier

PD-91334E

IRLR/U2905

HEXFET® Power MOSFET

- Logic-Level Gate Drive
- Ultra Low On-Resistance
- Surface Mount (IRLR2905)
- Straight Lead (IRLU2905)
- Advanced Process Technology
- Fast Switching
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The D-PAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	42 ⑤	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	30	A
I _{DM}	Pulsed Drain Current ①	160	
$P_D @ T_C = 25 ° C$	Power Dissipation	110	W
	Linear Derating Factor	0.71	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS}	Single Pulse Avalanche Energy@	210	mJ
I _{AR}	Avalanche Current ①	25	A
E _{AR}	Repetitive Avalanche Energy ①	11	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.4	
$R_{\theta JA}$	Case-to-Ambient (PCB mount)**		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient		110	

^{**} When mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended footprint and soldering techniques refer to application note #AN-994
WWW.irf.com

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55	_		V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.070		V/°C	Reference to 25°C, I _D = 1mA
			_	0.027		V _{GS} = 10V, I _D = 25A ⊕
R _{DS(on)}	Static Drain-to-Source On-Resistance		_	0.030	W	V _{GS} = 5.0V, I _D = 25A ④
			_	0.040		V _{GS} = 4.0V, I _D = 21A ④
V _{GS(th)}	Gate Threshold Voltage	1.0	_	2.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance	21			S	V _{DS} = 25V, I _D = 25A⑦
	Drain-to-Source Leakage Current		25	μA	$V_{DS} = 55V, V_{GS} = 0V$	
I _{DSS}	Dialii-to-Source Leakage Current			250	μΑ	V _{DS} = 44V, V _{GS} = 0V, T _J = 150°C
Lana	Gate-to-Source Forward Leakage		_	100	nA	V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage		_	-100		V _{GS} = -16V
Qg	Total Gate Charge		_	48		I _D = 25A
Q _{gs}	Gate-to-Source Charge		_	8.6	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		_	25		$V_{GS} = 5.0V$, See Fig. 6 and 13 \oplus \oslash
t _{d(on)}	Turn-On Delay Time		11			V _{DD} = 28V
t _r	Rise Time		84		ns	$I_D = 25A$
t _{d(off)}	Turn-Off Delay Time		26		115	$R_G = 3.4\Omega, V_{GS} = 5.0V$
t _f	FallTime		15			$R_D = 1.1\Omega$, See Fig. 10 \oplus \oslash
L _D	Internal Drain Inductance		4.5			Between lead,
					nH	6mm (0.25in.)
L _S	Internal Source Inductance		7.5	_		from package GV
						and center of die contact® s
C _{iss}	Input Capacitance	_	1700	_		$V_{GS} = 0V$
Coss	Output Capacitance		400		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		150			f = 1.0 MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			40.0		MOSFET symbol	
	(Body Diode)		42 ⁽⁵⁾	A	showing the		
I _{SM}	Pulsed Source Current				400		integral reverse
	(Body Diode) ①		160	50	p-n junction diode.		
V _{SD}	Diode Forward Voltage	_		1.3	٧	$T_J = 25^{\circ}C$, $I_S = 25A$, $V_{GS} = 0V$ ④	
t _{rr}	Reverse Recovery Time		80	120	ns	$T_J = 25^{\circ}C, I_F = 25A$	
Q _{rr}	Reverse RecoveryCharge	_	210	320	nC	di/dt = 100A/µs ④⑦	
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)					

Notes:

2

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11) $V_{DD} = 25V$, starting $T_J = 25^{\circ}C$, $L = 470 \mu H$
- $R_G = 25\Omega$, $I_{AS} = 25A$. (See Figure 12)
- $3 I_{SD} \le 25A$, di/dt $\le 270A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J\!\le 175^\circ C$
- ④ Pulse width \leq 300µs; duty cycle \leq 2%.

- © Caculated continuous current based on maximum allowable junction temperature; Package limitation current = 20A.
- 6 This is applied for I-PAK, L_S of D-PAK is measured between lead and center of die contact.
- 7 Uses IRLZ44N data and test conditions.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* $V_{GS} = 5V$ for Logic Level Devices

Fig 14. For N-Channel HEXFETS

International

TOR Rectifier

Package Outline

TO-252AA Outline

Dimensions are shown in millimeters (inches)

Part Marking Information TO-252AA (D-PARK)

EXAMPLE: THIS IS AN IRFR120

WITH ASSEMBLY LOT CODE 9U1P

INTERNATIONAL
RECTIFIER
LOGO
IRFR
120
9U 1P
ASSEMBLY
LOT CODE
SECOND PORTION
OF PART NUMBER

International

TOR Rectifier

IRLR/U2905

Package Outline

TO-251AA Outline

Dimensions are shown in millimeters (inches)

Part Marking Information TO-251AA (I-PARK)

EXAMPLE: THIS IS AN IRFU120

WITH ASSEMBLY LOT CODE 9U1P

International IOR Rectifier

Tape & Reel Information

TO-252AA

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481.

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 12/00 This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.