Cohomología Weil-étale de esquemas aritméticos

Alexey Beshenov

15/06/2021

V Encuentro Conjunto de la Real Sociedad Matemática Española y la Sociedad Matemática Mexicana

- 1. **Motivación**: esquemas aritméticos, funciones zeta, valores especiales y su interpretación cohomológica.
- 2. **Programa Weil-étale de Lichtenbaum**: ideas y resultados principales.
- 3. Mi trabajo: conjeturas y resultados incondicionales.
- 4. Preguntas para el futuro.

- 1. **Motivación**: esquemas aritméticos, funciones zeta, valores especiales y su interpretación cohomológica.
- 2. **Programa Weil-étale de Lichtenbaum**: ideas y resultados principales.
- 3. Mi trabajo: conjeturas y resultados incondicionales.
- 4. Preguntas para el futuro.

- 1. **Motivación**: esquemas aritméticos, funciones zeta, valores especiales y su interpretación cohomológica.
- 2. **Programa Weil-étale de Lichtenbaum**: ideas y resultados principales.
- 3. Mi trabajo: conjeturas y resultados incondicionales.
- 4. Preguntas para el futuro.

- 1. **Motivación**: esquemas aritméticos, funciones zeta, valores especiales y su interpretación cohomológica.
- 2. **Programa Weil-étale de Lichtenbaum**: ideas y resultados principales.
- 3. Mi trabajo: conjeturas y resultados incondicionales.
- 4. Preguntas para el futuro.

- 1. **Motivación**: esquemas aritméticos, funciones zeta, valores especiales y su interpretación cohomológica.
- 2. **Programa Weil-étale de Lichtenbaum**: ideas y resultados principales.
- 3. Mi trabajo: conjeturas y resultados incondicionales.
- 4. Preguntas para el futuro.

Motivación (motívica)

- **Esquema aritmético** X = separado, de tipo finito sobre Spec \mathbb{Z} .
- ► Función zeta:

- Convergencia para $s > \dim X$.
- ▶ Conjetura: prolongación meromorfa a $s \in \mathbb{C}$.
- ▶ Fijemos $n \in \mathbb{Z}$.
- ightharpoonup ord_{s=n} $\zeta(X,s)=d_n:=$ orden de anulación en s=n.
- ▶ Valor especial: $\zeta^*(X, n) := \lim_{s \to n} (s n)^{-d_n} \zeta(X, s)$.

- **Esquema aritmético** X = separado, de tipo finito sobre Spec \mathbb{Z} .
- ► Función zeta:

- Convergencia para $s > \dim X$.
- ▶ Conjetura: prolongación meromorfa a $s \in \mathbb{C}$.
- ▶ Fijemos $n \in \mathbb{Z}$.
- ightharpoonup ord_{s=n} $\zeta(X,s)=d_n:=$ orden de anulación en s=n.
- ▶ Valor especial: $\zeta^*(X, n) := \lim_{s \to n} (s n)^{-d_n} \zeta(X, s)$.

- **Esquema aritmético** X = separado, de tipo finito sobre Spec \mathbb{Z} .
- ► Función zeta:

- Convergencia para $s > \dim X$.
- ▶ Conjetura: prolongación meromorfa a $s \in \mathbb{C}$.
- ▶ Fijemos $n \in \mathbb{Z}$.
- ightharpoonup ord_{s=n} $\zeta(X,s)=d_n:=$ orden de anulación en s=n.
- ▶ Valor especial: $\zeta^*(X, n) := \lim_{s \to n} (s n)^{-d_n} \zeta(X, s)$.

- **Esquema aritmético** X = separado, de tipo finito sobre Spec \mathbb{Z} .
- ► Función zeta:

- ► Convergencia para $s > \dim X$.
- ▶ Conjetura: prolongación meromorfa a $s \in \mathbb{C}$.
- ▶ Fijemos $n \in \mathbb{Z}$.
- ightharpoonup ord_{s=n} $\zeta(X,s)=d_n:=$ orden de anulación en s=n.
- ▶ Valor especial: $\zeta^*(X, n) := \lim_{s \to n} (s n)^{-d_n} \zeta(X, s)$.

- **Esquema aritmético** X = separado, de tipo finito sobre Spec \mathbb{Z} .
- ► Función zeta:

- ► Convergencia para $s > \dim X$.
- ► Conjetura: prolongación meromorfa a $s \in \mathbb{C}$.
- ▶ Fijemos $n \in \mathbb{Z}$.
- ▶ ord_{s=n} $\zeta(X,s) = d_n :=$ orden de anulación en s = n.
- ▶ Valor especial: $\zeta^*(X, n) := \lim_{s \to n} (s n)^{-d_n} \zeta(X, s)$.

- **Esquema aritmético** X = separado, de tipo finito sobre Spec \mathbb{Z} .
- ► Función zeta:

- ► Convergencia para $s > \dim X$.
- ► Conjetura: prolongación meromorfa a $s \in \mathbb{C}$.
- ▶ Fijemos $n \in \mathbb{Z}$.
- ightharpoonup ord_{s=n} $\zeta(X,s)=d_n:=$ orden de anulación en s=n.
- ▶ Valor especial: $\zeta^*(X, n) := \lim_{s \to n} (s n)^{-d_n} \zeta(X, s)$.

- **Esquema aritmético** X = separado, de tipo finito sobre Spec \mathbb{Z} .
- ► Función zeta:

- ► Convergencia para $s > \dim X$.
- ► Conjetura: prolongación meromorfa a $s \in \mathbb{C}$.
- ▶ Fijemos $n \in \mathbb{Z}$.
- ▶ ord_{s=n} $\zeta(X,s) = d_n :=$ orden de anulación en s = n.
- ▶ Valor especial: $\zeta^*(X, n) := \lim_{s \to n} (s n)^{-d_n} \zeta(X, s)$.

- **Esquema aritmético** X = separado, de tipo finito sobre Spec \mathbb{Z} .
- ► Función zeta:

- ► Convergencia para $s > \dim X$.
- ► Conjetura: prolongación meromorfa a $s \in \mathbb{C}$.
- ▶ Fijemos $n \in \mathbb{Z}$.
- ▶ ord_{s=n} $\zeta(X,s) = d_n :=$ orden de anulación en s = n.
- ▶ Valor especial: $\zeta^*(X, n) := \lim_{s \to n} (s n)^{-d_n} \zeta(X, s)$.

Ejemplos extensivamente estudiados

► Función zeta de Dedekind (siglo XIX). F/\mathbb{Q} cuerpo de números, $\mathcal{O}_F \subset F$ anillo de enteros.

$$\zeta_F(s) := \zeta(\operatorname{Spec} \mathcal{O}_F, s) \stackrel{\text{Euler}}{=} \sum_{0 \neq \mathfrak{a} \subseteq \mathcal{O}_F} \frac{1}{\# (\mathcal{O}_F/\mathfrak{a})^s}.$$

E.g.
$$\zeta_{\mathbb{O}}(s) = \zeta(\operatorname{Spec} \mathbb{Z}, s) = \zeta(s)$$
.

► Función zeta de Hasse–Weil (siglo XX). X/\mathbb{F}_q variedad sobre cuerpo finito.

$$Z(X,t) := \exp\left(\sum_{k \geq 1} \frac{\#X(\mathbb{F}_{q^k})}{k} t^k\right) \overset{\mathsf{Dwork}}{\in} \mathbb{Q}(t).$$

$$\zeta(X,s) = Z(X,q^{-s}).$$

Conjeturas de Weil (Grothendieck, Deligne, ...)

Ejemplos extensivamente estudiados

► Función zeta de Dedekind (siglo XIX). F/\mathbb{Q} cuerpo de números, $\mathcal{O}_F \subset F$ anillo de enteros.

$$\zeta_F(s) := \zeta(\operatorname{\mathsf{Spec}} \mathcal{O}_F, s) \overset{\mathsf{Euler}}{=} \sum_{0
eq \mathfrak{a} \subseteq \mathcal{O}_F} \frac{1}{\# (\mathcal{O}_F/\mathfrak{a})^s}.$$

E.g.
$$\zeta_{\mathbb{Q}}(s) = \zeta(\operatorname{Spec} \mathbb{Z}, s) = \zeta(s)$$
.

Función zeta de Hasse–Weil (siglo XX). X/\mathbb{F}_q variedad sobre cuerpo finito.

$$Z(X,t) := \exp\left(\sum_{k \geq 1} \frac{\#X(\mathbb{F}_{q^k})}{k} t^k\right) \overset{\mathsf{Dwork}}{\in} \mathbb{Q}(t).$$

$$\zeta(X,s) = Z(X,q^{-s}).$$

Conjeturas de Weil (Grothendieck, Deligne, ...)

Ejemplos extensivamente estudiados

► Función zeta de Dedekind (siglo XIX). F/\mathbb{Q} cuerpo de números, $\mathcal{O}_F \subset F$ anillo de enteros.

$$\zeta_F(s) := \zeta(\operatorname{\mathsf{Spec}} \mathcal{O}_F, s) \overset{\mathsf{Euler}}{=} \sum_{0 \neq \mathfrak{a} \subset \mathcal{O}_F} \frac{1}{\# (\mathcal{O}_F/\mathfrak{a})^s}.$$

E.g.
$$\zeta_{\mathbb{O}}(s) = \zeta(\operatorname{Spec} \mathbb{Z}, s) = \zeta(s)$$
.

► Función zeta de Hasse–Weil (siglo XX). X/\mathbb{F}_a variedad sobre cuerpo finito.

$$Z(X,t) := \exp\left(\sum_{k\geq 1} rac{\#X(\mathbb{F}_{q^k})}{k} t^k
ight) \stackrel{\mathsf{Dwork}}{\in} \mathbb{Q}(t).$$

$$\zeta(X,s)=Z(X,q^{-s}).$$

Conjeturas de Weil (Grothendieck, Deligne, ...)

- ► Lichtenbaum, 1984: complejos hipotéticos (!) de haces sobre *X*^{ét} responsables por los valores especiales.
- ▶ Bloch, 1986: complejos de ciclos / grupos de Chow superiores.
- ▶ Versión étale: complejo de haces $\mathbb{Z}^c(n)$ sobre $X_{\acute{et}}$.
- Funciona para $X/\operatorname{Spec} \mathbb{Z}$ (Levine, Geisser, ...).
- ▶ Para *X* propio, regular, $d = \dim X$:

$$\underbrace{H^i(X_{\acute{e}t},\mathbb{Z}^c(n))}_{\text{coh. de Borel-Moore motivica}}\cong \underbrace{H^{i+2d}(X_{\acute{e}t},\mathbb{Z}(d-n))}_{\text{coh. motivica habitual}}.$$

- Pocos cálculos explícitos disponibles.
- ▶ **Gran conjetura** (Lichtenbaum): $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados, o \mathbb{Q}/\mathbb{Z} -duales a finitamente generados.

- Lichtenbaum, 1984: complejos hipotéticos (!) de haces sobre $X_{\acute{e}t}$ responsables por los valores especiales.
- Bloch, 1986: complejos de ciclos / grupos de Chow superiores.
- ▶ Versión étale: complejo de haces $\mathbb{Z}^c(n)$ sobre $X_{\acute{et}}$.
- Funciona para $X/\operatorname{Spec} \mathbb{Z}$ (Levine, Geisser, ...).
- ▶ Para *X* propio, regular, $d = \dim X$:

$$\underbrace{H^i(X_{\acute{e}t},\mathbb{Z}^c(n))}_{\text{coh. de Borel-Moore motivica}}\cong \underbrace{H^{i+2d}(X_{\acute{e}t},\mathbb{Z}(d-n))}_{\text{coh. motivica habitual}}$$

- Pocos cálculos explícitos disponibles.
- ▶ **Gran conjetura** (Lichtenbaum): $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados, o \mathbb{Q}/\mathbb{Z} -duales a finitamente generados.

- Lichtenbaum, 1984: complejos hipotéticos (!) de haces sobre $X_{\acute{e}t}$ responsables por los valores especiales.
- ► Bloch, 1986: complejos de ciclos / grupos de Chow superiores.
- ▶ Versión étale: complejo de haces $\mathbb{Z}^c(n)$ sobre $X_{\acute{e}t}$.
- Funciona para X/ Spec \mathbb{Z} (Levine, Geisser, ...).
- ▶ Para *X* propio, regular, $d = \dim X$:

$$\underbrace{\mathcal{H}^i(X_{\acute{e}t},\mathbb{Z}^c(n))}_{ ext{coh. de Borel-Moore motívica}}\cong \underbrace{\mathcal{H}^{i+2d}(X_{\acute{e}t},\mathbb{Z}(d-n))}_{ ext{coh. motívica habitual}}$$

- Pocos cálculos explícitos disponibles.
- ▶ **Gran conjetura** (Lichtenbaum): $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados, o \mathbb{Q}/\mathbb{Z} -duales a finitamente generados.

- Lichtenbaum, 1984: complejos hipotéticos (!) de haces sobre $X_{\acute{e}t}$ responsables por los valores especiales.
- ► Bloch, 1986: complejos de ciclos / grupos de Chow superiores.
- ▶ Versión étale: complejo de haces $\mathbb{Z}^c(n)$ sobre $X_{\acute{e}t}$.
- Funciona para $X/\operatorname{Spec} \mathbb{Z}$ (Levine, Geisser, ...).
- ▶ Para *X* propio, regular, $d = \dim X$:

$$\underbrace{H^i(X_{\acute{e}t},\mathbb{Z}^c(n))}_{ ext{coh. de Borel-Moore motivica}}\cong \underbrace{H^{i+2d}(X_{\acute{e}t},\mathbb{Z}(d-n))}_{ ext{coh. motivica habitual}}$$

- Pocos cálculos explícitos disponibles.
- ▶ **Gran conjetura** (Lichtenbaum): $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados, o \mathbb{Q}/\mathbb{Z} -duales a finitamente generados.

- Lichtenbaum, 1984: complejos hipotéticos (!) de haces sobre $X_{\acute{e}t}$ responsables por los valores especiales.
- ► Bloch, 1986: complejos de ciclos / grupos de Chow superiores.
- ▶ Versión étale: complejo de haces $\mathbb{Z}^c(n)$ sobre $X_{\acute{et}}$.
- Funciona para $X/\operatorname{Spec} \mathbb{Z}$ (Levine, Geisser, ...).
- ▶ Para *X* propio, regular, $d = \dim X$:

$$\underbrace{H^i(X_{\acute{e}t},\mathbb{Z}^c(n))}_{\text{coh. de Borel-Moore motivica}}\cong \underbrace{H^{i+2d}(X_{\acute{e}t},\mathbb{Z}(d-n))}_{\text{coh. motivica habitual}}$$

- Pocos cálculos explícitos disponibles.
- ▶ **Gran conjetura** (Lichtenbaum): $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados, o \mathbb{Q}/\mathbb{Z} -duales a finitamente generados.

- Lichtenbaum, 1984: complejos hipotéticos (!) de haces sobre $X_{\acute{e}t}$ responsables por los valores especiales.
- ► Bloch, 1986: complejos de ciclos / grupos de Chow superiores.
- ▶ Versión étale: complejo de haces $\mathbb{Z}^c(n)$ sobre $X_{\acute{e}t}$.
- Funciona para $X/\operatorname{Spec} \mathbb{Z}$ (Levine, Geisser, ...).
- ▶ Para *X* propio, regular, $d = \dim X$:

$$\underbrace{H^i(X_{\acute{e}t},\mathbb{Z}^c(n))}_{\text{coh. de Borel-Moore motivica}}\cong \underbrace{H^{i+2d}(X_{\acute{e}t},\mathbb{Z}(d-n))}_{\text{coh. motivica habitual}}.$$

- Pocos cálculos explícitos disponibles.
- ▶ **Gran conjetura** (Lichtenbaum): $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados, o \mathbb{Q}/\mathbb{Z} -duales a finitamente generados.

- Lichtenbaum, 1984: complejos hipotéticos (!) de haces sobre $X_{\acute{e}t}$ responsables por los valores especiales.
- ► Bloch, 1986: complejos de ciclos / grupos de Chow superiores.
- ▶ Versión étale: complejo de haces $\mathbb{Z}^c(n)$ sobre $X_{\acute{e}t}$.
- Funciona para $X/\operatorname{Spec} \mathbb{Z}$ (Levine, Geisser, ...).
- ▶ Para *X* propio, regular, $d = \dim X$:

$$\underbrace{H^i(X_{\acute{e}t},\mathbb{Z}^c(n))}_{\text{coh. de Borel-Moore motivica}}\cong \underbrace{H^{i+2d}(X_{\acute{e}t},\mathbb{Z}(d-n))}_{\text{coh. motivica habitual}}.$$

- ► Pocos cálculos explícitos disponibles.
- ▶ **Gran conjetura** (Lichtenbaum): $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados, o \mathbb{Q}/\mathbb{Z} -duales a finitamente generados.

- Lichtenbaum, 1984: complejos hipotéticos (!) de haces sobre $X_{\acute{e}t}$ responsables por los valores especiales.
- ► Bloch, 1986: complejos de ciclos / grupos de Chow superiores.
- ▶ Versión étale: complejo de haces $\mathbb{Z}^c(n)$ sobre $X_{\acute{e}t}$.
- Funciona para $X/\operatorname{Spec} \mathbb{Z}$ (Levine, Geisser, ...).
- ▶ Para *X* propio, regular, $d = \dim X$:

$$\underbrace{H^i(X_{\acute{e}t},\mathbb{Z}^c(n))}_{\text{coh. de Borel-Moore motivica}}\cong \underbrace{H^{i+2d}(X_{\acute{e}t},\mathbb{Z}(d-n))}_{\text{coh. motivica habitual}}.$$

- ► Pocos cálculos explícitos disponibles.
- ▶ **Gran conjetura** (Lichtenbaum): $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados, o \mathbb{Q}/\mathbb{Z} -duales a finitamente generados.

- ightharpoonup n < 0.
- $d_{n} = \operatorname{ord}_{s=n} \zeta_{F}(s) = \operatorname{rk}_{\mathbb{Z}} H^{-1}(\operatorname{Spec} \mathcal{O}_{F,\acute{e}t}, \mathbb{Z}^{c}(n)) = \begin{cases} r_{1} + r_{2} 1, & n = 0, \\ r_{1} + r_{2}, & n < 0 \text{ par}, \\ r_{1}, & n < 0 \text{ impar}. \end{cases}$
- **Conjetura** (teorema para F/\mathbb{Q} abeliano): para $n \leq 0$

$$\zeta_F^*(n) = \pm \frac{\#H^0(X_{\acute{e}t}, \mathbb{Z}^c(n))}{\#H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))_{tors}} R_{F,n}.$$

- ▶ $n = 0 \iff$ fórmula analítica del número de clases (Dirichlet).
- ▶ En términos de $K_i(\mathcal{O}_F)$, para F real, n impar ($R_{F,n} = 1$): Lichtenbaum, 1973.
- ► Reguladores superiores: Borel, Beilinson:

$$R_{F,n} = \operatorname{vol} \operatorname{coker} \left(\underbrace{H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))}_{\operatorname{rk}_{\mathbb{Z}} = d_n} \to \underbrace{H^1_{\mathcal{D}}(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n))}_{\operatorname{dim}_{\mathbb{R}} = d_n} \right).$$

- ightharpoonup n < 0.
- $d_n = \operatorname{ord}_{s=n} \zeta_F(s) = \operatorname{rk}_{\mathbb{Z}} H^{-1}(\operatorname{Spec} \mathcal{O}_{F,\acute{e}t}, \mathbb{Z}^c(n)) =$ $\begin{cases} r_1 + r_2 1, & n = 0, \\ r_1 + r_2, & n < 0 \text{ par,} \\ r_1, & n < 0 \text{ impar.} \end{cases}$
- **Conjetura** (teorema para F/\mathbb{Q} abeliano): para $n \leq 0$

$$\zeta_F^*(n) = \pm \frac{\#H^0(X_{\acute{e}t}, \mathbb{Z}^c(n))}{\#H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))_{tors}} R_{F,n}.$$

- ▶ $n = 0 \iff$ fórmula analítica del número de clases (Dirichlet).
- ▶ En términos de $K_i(\mathcal{O}_F)$, para F real, n impar $(R_{F,n} = 1)$: Lichtenbaum, 1973.
- ► Reguladores superiores: Borel, Beilinson:

$$R_{F,n} = \operatorname{vol} \operatorname{coker} \left(\underbrace{H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))}_{\operatorname{rk}_{\mathbb{Z}} = d_n} \to \underbrace{H^1_{\mathcal{D}}(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n))}_{\operatorname{dim}_{\mathbb{R}} = d_n} \right).$$

- ightharpoonup n < 0.
- $\begin{array}{l} \blacktriangleright \ d_n = \operatorname{ord}_{s=n} \zeta_F(s) = \operatorname{rk}_{\mathbb{Z}} H^{-1}(\operatorname{Spec} \mathcal{O}_{F,\acute{e}t}, \mathbb{Z}^c(n)) = \\ \begin{cases} r_1 + r_2 1, & n = 0, \\ r_1 + r_2, & n < 0 \text{ par}, \\ r_1, & n < 0 \text{ impar}. \end{cases}$
- ► Conjetura (teorema para F/\mathbb{Q} abeliano): para $n \leq 0$

$$\zeta_F^*(n) = \pm \frac{\#H^0(X_{\acute{e}t}, \mathbb{Z}^c(n))}{\#H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))_{tors}} R_{F,n}.$$

- $n = 0 \iff$ fórmula analítica del número de clases (Dirichlet).
- ▶ En términos de $K_i(\mathcal{O}_F)$, para F real, n impar $(R_{F,n} = 1)$: Lichtenbaum. 1973.
- ► Reguladores superiores: Borel, Beilinson:

$$R_{F,n} = \operatorname{vol} \operatorname{coker} \left(\underbrace{H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))}_{\operatorname{rk}_{\mathbb{Z}} = d_n} \to \underbrace{H^1_{\mathcal{D}}(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n))}_{\operatorname{dim}_{\mathbb{R}} = d_n} \right).$$

- ightharpoonup n < 0.
- $\begin{array}{l} \blacktriangleright \ d_n = \operatorname{ord}_{s=n} \zeta_F(s) = \operatorname{rk}_{\mathbb{Z}} H^{-1}(\operatorname{Spec} \mathcal{O}_{F,\acute{e}t}, \mathbb{Z}^c(n)) = \\ \begin{cases} r_1 + r_2 1, & n = 0, \\ r_1 + r_2, & n < 0 \text{ par}, \\ r_1, & n < 0 \text{ impar}. \end{cases}$
- ▶ **Conjetura** (teorema para F/\mathbb{Q} abeliano): para $n \leq 0$

$$\zeta_F^*(n) = \pm \frac{\#H^0(X_{\acute{e}t}, \mathbb{Z}^c(n))}{\#H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))_{tors}} R_{F,n}.$$

- ▶ $n = 0 \iff$ fórmula analítica del número de clases (Dirichlet).
- ▶ En términos de $K_i(\mathcal{O}_F)$, para F real, n impar ($R_{F,n} = 1$): Lichtenbaum. 1973.
- ► Reguladores superiores: Borel, Beilinson:

$$R_{F,n} = \operatorname{vol} \operatorname{coker} \left(\underbrace{H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))}_{\operatorname{rk}_{\mathbb{Z}} = d_n} \to \underbrace{H^1_{\mathcal{D}}(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n))}_{\operatorname{dim}_{\mathbb{R}} = d_n} \right).$$

- ightharpoonup n < 0.
- $\begin{array}{l} \blacktriangleright \ d_n = \operatorname{ord}_{s=n} \zeta_F(s) = \operatorname{rk}_{\mathbb{Z}} H^{-1}(\operatorname{Spec} \mathcal{O}_{F,\acute{e}t}, \mathbb{Z}^c(n)) = \\ \begin{cases} r_1 + r_2 1, & n = 0, \\ r_1 + r_2, & n < 0 \text{ par}, \\ r_1, & n < 0 \text{ impar}. \end{cases}$
- ▶ **Conjetura** (teorema para F/\mathbb{Q} abeliano): para $n \leq 0$

$$\zeta_F^*(n) = \pm \frac{\#H^0(X_{\acute{e}t}, \mathbb{Z}^c(n))}{\#H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))_{tors}} R_{F,n}.$$

- ► $n = 0 \iff$ fórmula analítica del número de clases (Dirichlet).
- ▶ En términos de $K_i(\mathcal{O}_F)$, para F real, n impar ($R_{F,n} = 1$): Lichtenbaum, 1973.
- ► Reguladores superiores: Borel, Beilinson:

$$R_{F,n} = \operatorname{vol} \operatorname{coker} \left(\underbrace{H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))}_{\operatorname{rk}_{\mathbb{Z}} = d_n} \to \underbrace{H^1_{\mathcal{D}}(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n))}_{\operatorname{dim}_{\mathbb{R}} = d_n} \right).$$

- ightharpoonup n < 0.
- ▶ **Conjetura** (teorema para F/\mathbb{Q} abeliano): para $n \leq 0$

$$\zeta_F^*(n) = \pm \frac{\#H^0(X_{\acute{e}t}, \mathbb{Z}^c(n))}{\#H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))_{tors}} R_{F,n}.$$

- ► $n = 0 \iff$ fórmula analítica del número de clases (Dirichlet).
- ► En términos de $K_i(\mathcal{O}_F)$, para F real, n impar ($R_{F,n} = 1$): Lichtenbaum. 1973.
- ► Reguladores superiores: Borel, Beilinson:

$$R_{F,n} = \operatorname{vol} \operatorname{coker} \left(\underbrace{H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))}_{\operatorname{rk}_{\mathbb{Z}} = d_n} \to \underbrace{H^1_{\mathcal{D}}(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n))}_{\operatorname{dim}_{\mathbb{R}} = d_n} \right).$$

- ightharpoonup n < 0.
- $\begin{array}{l} \bullet \quad \overline{d_n = \operatorname{ord}_{s=n} \zeta_F(s) = \operatorname{rk}_{\mathbb{Z}} H^{-1}(\operatorname{Spec} \mathcal{O}_{F,\acute{e}t}, \mathbb{Z}^c(n)) =} \\ \begin{cases} r_1 + r_2 1, & n = 0, \\ r_1 + r_2, & n < 0 \text{ par}, \\ r_1, & n < 0 \text{ impar}. \end{cases}$
- ▶ Conjetura (teorema para F/\mathbb{Q} abeliano): para $n \leq 0$

$$\zeta_F^*(n) = \pm \frac{\#H^0(X_{\acute{e}t}, \mathbb{Z}^c(n))}{\#H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))_{tors}} R_{F,n}.$$

- $ightharpoonup n=0 \Longleftrightarrow$ fórmula analítica del número de clases (Dirichlet).
- ► En términos de $K_i(\mathcal{O}_F)$, para F real, n impar ($R_{F,n} = 1$): Lichtenbaum. 1973.
- ► Reguladores superiores: Borel, Beilinson:

$$R_{F,n} = \operatorname{vol} \operatorname{coker} \left(\underbrace{H^{-1}(X_{\acute{e}t}, \mathbb{Z}^c(n))}_{\operatorname{rk}_{\mathbb{Z}} = d_n} \to \underbrace{H^1_{\mathcal{D}}(G_{\mathbb{R}}, X(\mathbb{C}), \mathbb{R}(n))}_{\dim_{\mathbb{R}} = d_n} \right).$$

Cohomología Weil-étale

Cohomología Weil-étale (Lichtenbaum)

- ► Cohomología motívica étale ~ cohomología Weil-étale.
- ▶ Grupos $H^i_{W,c}(X,\mathbb{Z}(n))$ finitamente generados, nulos para $|i|\gg 0$.
- Sucesión exacta

$$\cdots \to H^{i}_{W,c}(X,\mathbb{Z}(n)) \otimes \mathbb{R} \xrightarrow{\smile \theta} H^{i+1}_{W,c}(X,\mathbb{Z}(n)) \otimes \mathbb{R} \to \cdots$$

 $ightharpoonup H^i_{W,c}(X,\mathbb{Z}(n))$ codifica $\operatorname{ord}_{s=n}\zeta(X,s)$ y $\zeta^*(X,n)$.

Cohomología Weil-étale (Lichtenbaum)

- ► Cohomología motívica étale ~ cohomología Weil-étale.
- ▶ Grupos $H^i_{W,c}(X,\mathbb{Z}(n))$ finitamente generados, nulos para $|i|\gg 0$.
- Sucesión exacta

$$\cdots \to H^{i}_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R} \xrightarrow{\smile \theta} H^{i+1}_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R} \to \cdots$$

 $ightharpoonup H^i_{W,c}(X,\mathbb{Z}(n))$ codifica $\operatorname{ord}_{s=n}\zeta(X,s)$ y $\zeta^*(X,n)$.

Cohomología Weil-étale (Lichtenbaum)

- ► Cohomología motívica étale ~ cohomología Weil-étale.
- Grupos $H^i_{W,c}(X,\mathbb{Z}(n))$ finitamente generados, nulos para $|i|\gg 0$.
- Sucesión exacta

$$\cdots \to H^{i}_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R} \xrightarrow{\smile \theta} H^{i+1}_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R} \to \cdots$$

 \vdash $H^i_{W,c}(X,\mathbb{Z}(n))$ codifica ord_{s=n} $\zeta(X,s)$ y $\zeta^*(X,n)$.

Cohomología Weil-étale (Lichtenbaum)

- ► Cohomología motívica étale ~ cohomología Weil-étale.
- Grupos $H^i_{W,c}(X,\mathbb{Z}(n))$ finitamente generados, nulos para $|i|\gg 0$.
- Sucesión exacta

$$\cdots \to H^i_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R} \xrightarrow{\smile \theta} H^{i+1}_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R} \to \cdots$$

 \vdash $H^i_{W,c}(X,\mathbb{Z}(n))$ codifica ord_{s=n} $\zeta(X,s)$ y $\zeta^*(X,n)$.

Cohomología Weil-étale (Lichtenbaum)

- ► Cohomología motívica étale ~ cohomología Weil-étale.
- ► Grupos $H^i_{W,c}(X,\mathbb{Z}(n))$ finitamente generados, nulos para $|i|\gg 0$.
- Sucesión exacta

$$\cdots \to H^i_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R} \xrightarrow{\smile \theta} H^{i+1}_{W,c}(X,\mathbb{Z}(n))\otimes \mathbb{R} \to \cdots$$

► $H^{i}_{W.c}(X, \mathbb{Z}(n))$ codifica ord_{s=n} $\zeta(X, s)$ y $\zeta^{*}(X, n)$.

- «Resultado» =
 - definir $H^i_{W,c}(X,\mathbb{Z}(n))$ asumiendo las conjeturas de Lichtenbaum sobre estructura de cohomología motívica.
 - ► formular la relación conjetural de $H^i_{W,c}(X,\mathbb{Z}(n))$ cor ord_{s=n} $\mathcal{L}(X,s)$ v $\mathcal{L}^*(X,n)$,
 - establecer relaciones con otras conjeturas, probar casos particulares.
- ▶ Lichtenbaum (2005): X/\mathbb{F}_a .
- ▶ Geisser (2004–...): X/\mathbb{F}_q , posiblemente singular.
- ▶ Lichtenbaum (2009): $X = \operatorname{Spec} \mathcal{O}_F$
- ▶ Morin (2014): X/\mathbb{Z} propio y regular, n = 0.
- Flach, Morin (2018): —, $n \in \mathbb{Z}$.
- ▶ B. (2020/21): cualquier esquema aritmético X/\mathbb{Z} , n < 0.

«Resultado» =

- definir $H^i_{W,c}(X,\mathbb{Z}(n))$ asumiendo las conjeturas de Lichtenbaum sobre estructura de cohomología motívica,
- ► formular la relación conjetural de $H^i_{W,c}(X,\mathbb{Z}(n))$ con ord_{s=n} $\zeta(X,s)$ y $\zeta^*(X,n)$,
- establecer relaciones con otras conjeturas, probar casos particulares.
- Lichtenbaum (2005): X/\mathbb{F}_q .
- ► Geisser (2004–...): X/\mathbb{F}_q , posiblemente singular.
- ▶ Lichtenbaum (2009): $X = \operatorname{Spec} \mathcal{O}_F$.
- ▶ Morin (2014): X/\mathbb{Z} propio y regular, n = 0.
- Flach, Morin (2018): —, $n \in \mathbb{Z}$.
- ▶ B. (2020/21): cualquier esquema aritmético X/\mathbb{Z} , n < 0.

- «Resultado» =
 - ▶ definir $H^i_{W,c}(X,\mathbb{Z}(n))$ asumiendo las conjeturas de Lichtenbaum sobre estructura de cohomología motívica,
 - ► formular la relación conjetural de $H^i_{W,c}(X,\mathbb{Z}(n))$ con ord_{s=n} $\zeta(X,s)$ y $\zeta^*(X,n)$,
 - establecer relaciones con otras conjeturas, probar casos particulares.
- Lichtenbaum (2005): X/\mathbb{F}_q .
- ▶ Geisser (2004–...): X/\mathbb{F}_q , posiblemente singular.
- ▶ Lichtenbaum (2009): $X = \operatorname{Spec} \mathcal{O}_F$.
- ▶ Morin (2014): X/\mathbb{Z} propio y regular, n = 0.
- ▶ Flach, Morin (2018): —, $n \in \mathbb{Z}$.
- ▶ B. (2020/21): cualquier esquema aritmético X/\mathbb{Z} , n < 0.

- «Resultado» =
 - ▶ definir $H^i_{W,c}(X,\mathbb{Z}(n))$ asumiendo las conjeturas de Lichtenbaum sobre estructura de cohomología motívica,
 - ► formular la relación conjetural de $H^i_{W,c}(X,\mathbb{Z}(n))$ con ord_{s=n} $\zeta(X,s)$ y $\zeta^*(X,n)$,
 - establecer relaciones con otras conjeturas, probar casos particulares.
- Lichtenbaum (2005): X/\mathbb{F}_q .
- ▶ Geisser (2004–...): X/\mathbb{F}_q , posiblemente singular.
- ▶ Lichtenbaum (2009): $X = \operatorname{Spec} \mathcal{O}_F$.
- ▶ Morin (2014): X/\mathbb{Z} propio y regular, n = 0.
- ▶ Flach, Morin (2018): —, $n \in \mathbb{Z}$.
- ▶ B. (2020/21): cualquier esquema aritmético X/\mathbb{Z} , n < 0.

- «Resultado» =
 - ▶ definir $H^i_{W,c}(X,\mathbb{Z}(n))$ asumiendo las conjeturas de Lichtenbaum sobre estructura de cohomología motívica,
 - ► formular la relación conjetural de $H^i_{W,c}(X,\mathbb{Z}(n))$ con ord_{s=n} $\zeta(X,s)$ y $\zeta^*(X,n)$,
 - establecer relaciones con otras conjeturas, probar casos particulares.
- ▶ Lichtenbaum (2005): X/\mathbb{F}_q .
- ▶ Geisser (2004–...): X/\mathbb{F}_q , posiblemente singular.
- ▶ Lichtenbaum (2009): $X = \operatorname{Spec} \mathcal{O}_F$.
- ► Morin (2014): X/\mathbb{Z} propio y regular, n = 0.
- Flach, Morin (2018): —, $n \in \mathbb{Z}$.
- ▶ B. (2020/21): cualquier esquema aritmético X/\mathbb{Z} , n < 0.

- «Resultado» =
 - ▶ definir $H^i_{W,c}(X,\mathbb{Z}(n))$ asumiendo las conjeturas de Lichtenbaum sobre estructura de cohomología motívica,
 - ► formular la relación conjetural de $H^i_{W,c}(X,\mathbb{Z}(n))$ con ord_{s=n} $\zeta(X,s)$ y $\zeta^*(X,n)$,
 - establecer relaciones con otras conjeturas, probar casos particulares.
- ► Lichtenbaum (2005): X/\mathbb{F}_q .
- ▶ Geisser (2004–...): X/\mathbb{F}_q , posiblemente singular.
- ▶ Lichtenbaum (2009): $X = \operatorname{Spec} \mathcal{O}_F$.
- ▶ Morin (2014): X/\mathbb{Z} propio y regular, n = 0.
- Flach, Morin (2018): —, $n \in \mathbb{Z}$.
- ▶ B. (2020/21): cualquier esquema aritmético X/\mathbb{Z} , n < 0.

- «Resultado» =
 - ▶ definir $H^i_{W,c}(X,\mathbb{Z}(n))$ asumiendo las conjeturas de Lichtenbaum sobre estructura de cohomología motívica,
 - ► formular la relación conjetural de $H^i_{W,c}(X,\mathbb{Z}(n))$ con ord_{s=n} $\zeta(X,s)$ y $\zeta^*(X,n)$,
 - establecer relaciones con otras conjeturas, probar casos particulares.
- ► Lichtenbaum (2005): X/\mathbb{F}_q .
- ► Geisser (2004–...): X/\mathbb{F}_q , posiblemente singular.
- ▶ Lichtenbaum (2009): $X = \operatorname{Spec} \mathcal{O}_F$.
- ▶ Morin (2014): X/\mathbb{Z} propio y regular, n = 0.
- ▶ Flach, Morin (2018): —, $n \in \mathbb{Z}$.
- ▶ B. (2020/21): cualquier esquema aritmético X/\mathbb{Z} , n < 0.

- ➤ «Resultado» =
 - ▶ definir $H^i_{W,c}(X,\mathbb{Z}(n))$ asumiendo las conjeturas de Lichtenbaum sobre estructura de cohomología motívica,
 - ► formular la relación conjetural de $H^i_{W,c}(X,\mathbb{Z}(n))$ con ord_{s=n} $\zeta(X,s)$ y $\zeta^*(X,n)$,
 - establecer relaciones con otras conjeturas, probar casos particulares.
- ► Lichtenbaum (2005): X/\mathbb{F}_q .
- ► Geisser (2004–...): X/\mathbb{F}_q , posiblemente singular.
- ▶ Lichtenbaum (2009): $X = \operatorname{Spec} \mathcal{O}_F$.
- Morin (2014): X/\mathbb{Z} propio y regular, n = 0.
- ► Flach, Morin (2018): —, $n \in \mathbb{Z}$.
- ▶ B. (2020/21): cualquier esquema aritmético X/\mathbb{Z} , n < 0.

- «Resultado» =
 - ▶ definir $H^i_{W,c}(X,\mathbb{Z}(n))$ asumiendo las conjeturas de Lichtenbaum sobre estructura de cohomología motívica,
 - ► formular la relación conjetural de $H^i_{W,c}(X,\mathbb{Z}(n))$ con ord_{s=n} $\zeta(X,s)$ y $\zeta^*(X,n)$,
 - establecer relaciones con otras conjeturas, probar casos particulares.
- ► Lichtenbaum (2005): X/\mathbb{F}_q .
- ► Geisser (2004–...): X/\mathbb{F}_q , posiblemente singular.
- ▶ Lichtenbaum (2009): $X = \operatorname{Spec} \mathcal{O}_F$.
- ► Morin (2014): X/\mathbb{Z} propio y regular, n = 0.
- ► Flach, Morin (2018): —, $n \in \mathbb{Z}$.
- ▶ B. (2020/21): cualquier esquema aritmético X/\mathbb{Z} , n < 0.

- «Resultado» =
 - ▶ definir $H^i_{W,c}(X,\mathbb{Z}(n))$ asumiendo las conjeturas de Lichtenbaum sobre estructura de cohomología motívica,
 - ► formular la relación conjetural de $H^i_{W,c}(X,\mathbb{Z}(n))$ con ord_{s=n} $\zeta(X,s)$ y $\zeta^*(X,n)$,
 - establecer relaciones con otras conjeturas, probar casos particulares.
- ► Lichtenbaum (2005): X/\mathbb{F}_q .
- ► Geisser (2004–...): X/\mathbb{F}_q , posiblemente singular.
- ▶ Lichtenbaum (2009): $X = \operatorname{Spec} \mathcal{O}_F$.
- ► Morin (2014): X/\mathbb{Z} propio y regular, n = 0.
- ► Flach, Morin (2018): —, $n \in \mathbb{Z}$.
- ▶ B. (2020/21): cualquier esquema aritmético X/\mathbb{Z} , n < 0.

- «Resultado» =
 - ▶ definir $H^i_{W,c}(X,\mathbb{Z}(n))$ asumiendo las conjeturas de Lichtenbaum sobre estructura de cohomología motívica,
 - ► formular la relación conjetural de $H^i_{W,c}(X,\mathbb{Z}(n))$ con ord_{s=n} $\zeta(X,s)$ y $\zeta^*(X,n)$,
 - establecer relaciones con otras conjeturas, probar casos particulares.
- ► Lichtenbaum (2005): X/\mathbb{F}_q .
- ► Geisser (2004–...): X/\mathbb{F}_q , posiblemente singular.
- ▶ Lichtenbaum (2009): $X = \operatorname{Spec} \mathcal{O}_F$.
- ► Morin (2014): X/\mathbb{Z} propio y regular, n = 0.
- ► Flach, Morin (2018): —, $n \in \mathbb{Z}$.
- ▶ B. (2020/21): cualquier esquema aritmético X/\mathbb{Z} , n < 0.

Mi trabajo

- ► $X \rightarrow \operatorname{Spec} \mathbb{Z}$ esquema aritmético (= separado, de tipo finito).
- ightharpoonup n < 0.
- Asumamos $L^c(X_{\acute{e}t}, n)$: los grupos $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados para todo $i \in \mathbb{Z}$ y n < 0.
- Existe un complejo perfecto $R\Gamma_{W,c}(X,\mathbb{Z}(n)) \in \mathcal{D}(\mathbb{Z})$.
- ► Los grupos

$$H^{i}_{W,c}(X,\mathbb{Z}(n)) := H^{i}(R\Gamma_{W,c}(X,\mathbb{Z}(n)))$$

- ► $X \rightarrow \operatorname{Spec} \mathbb{Z}$ esquema aritmético (= separado, de tipo finito).
- ightharpoonup n < 0.
- Asumamos $L^c(X_{\acute{e}t}, n)$: los grupos $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados para todo $i \in \mathbb{Z}$ y n < 0.
- Existe un complejo perfecto $R\Gamma_{W,c}(X,\mathbb{Z}(n)) \in \mathcal{D}(\mathbb{Z})$.
- ► Los grupos

$$H^{i}_{W,c}(X,\mathbb{Z}(n)) := H^{i}(R\Gamma_{W,c}(X,\mathbb{Z}(n)))$$

- ► $X \rightarrow \operatorname{Spec} \mathbb{Z}$ esquema aritmético (= separado, de tipo finito).
- ightharpoonup n < 0.
- Asumamos $\mathbf{L}^c(X_{\acute{e}t}, n)$: los grupos $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados para todo $i \in \mathbb{Z}$ y n < 0.
- Existe un complejo perfecto $R\Gamma_{W,c}(X,\mathbb{Z}(n)) \in \mathcal{D}(\mathbb{Z})$.
- ► Los grupos

$$H^{i}_{W,c}(X,\mathbb{Z}(n)) := H^{i}(R\Gamma_{W,c}(X,\mathbb{Z}(n)))$$

- ► $X \rightarrow \operatorname{Spec} \mathbb{Z}$ esquema aritmético (= separado, de tipo finito).
- ightharpoonup n < 0.
- Asumamos $\mathbf{L}^c(X_{\acute{e}t}, n)$: los grupos $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados para todo $i \in \mathbb{Z}$ y n < 0.
- Existe un complejo perfecto $R\Gamma_{W,c}(X,\mathbb{Z}(n)) \in \mathcal{D}(\mathbb{Z})$.
- ► Los grupos

$$H^{i}_{W,c}(X,\mathbb{Z}(n)) := H^{i}(R\Gamma_{W,c}(X,\mathbb{Z}(n)))$$

- ► $X \rightarrow \operatorname{Spec} \mathbb{Z}$ esquema aritmético (= separado, de tipo finito).
- ightharpoonup n < 0.
- Asumamos $\mathbf{L}^c(X_{\acute{e}t}, n)$: los grupos $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados para todo $i \in \mathbb{Z}$ y n < 0.
- ► Existe un complejo perfecto $R\Gamma_{W,c}(X,\mathbb{Z}(n)) \in \mathcal{D}(\mathbb{Z})$.
- ► Los grupos

$$H^{i}_{W,c}(X,\mathbb{Z}(n)) := H^{i}(R\Gamma_{W,c}(X,\mathbb{Z}(n)))$$

- ► $X \rightarrow \operatorname{Spec} \mathbb{Z}$ esquema aritmético (= separado, de tipo finito).
- ightharpoonup n < 0.
- Asumamos $\mathbf{L}^c(X_{\acute{e}t}, n)$: los grupos $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$ son finitamente generados para todo $i \in \mathbb{Z}$ y n < 0.
- ► Existe un complejo perfecto $R\Gamma_{W,c}(X,\mathbb{Z}(n)) \in \mathcal{D}(\mathbb{Z})$.
- ► Los grupos

$$H^{i}_{W,c}(X,\mathbb{Z}(n)):=H^{i}(R\Gamma_{W,c}(X,\mathbb{Z}(n)))$$

Conjetura del orden de anulación

Asumiendo
$$L^c(X, n)$$
, conjeturamos $VO(X, n)$:

$$\operatorname{ord}_{s=n} \zeta(X,s) = \sum_{i\in\mathbb{Z}} (-1)^i \cdot i \cdot \operatorname{rk}_{\mathbb{Z}} H^i_{W,c}(X,\mathbb{Z}(n))$$

Conjetura del orden de anulación

Asumiendo $L^c(X, n)$, conjeturamos VO(X, n):

$$\operatorname{ord}_{s=n} \zeta(X,s) = \sum_{i \in \mathbb{Z}} (-1)^i \cdot i \cdot \operatorname{rk}_{\mathbb{Z}} H^i_{W,c}(X,\mathbb{Z}(n)).$$

$$\lambda \colon \mathbb{R} \xrightarrow{\cong} (\underbrace{\det_{\mathbb{Z}} R\Gamma_{W,c}(X,\mathbb{Z}(n))}_{\mathbb{Z}\text{-m\'odulo} \text{ de rk } 1}) \otimes \mathbb{R}$$

- Asumamos
 - ▶ $L^c(X_{\acute{e}t}, n)$: generación finita de $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$,
 - ightharpoonup fibra $X_{\mathbb{C}}$ lisa,
 - ightharpoonup B(X, n): conjetura de Beilinson sobre reguladores,
 - ightharpoonup prolongación meromorfa alrededor de s=n<0.
- ▶ C(X, n): el valor especial en s = n se determina salvo signo por

$$\lambda(\zeta^*(X,n)^{-1})\cdot \mathbb{Z} = \det_{\mathbb{Z}} R\Gamma_{W,c}(X,\mathbb{Z}(n))$$

$$\lambda \colon \mathbb{R} \xrightarrow{\cong} (\underbrace{\det_{\mathbb{Z}} R\Gamma_{W,c}(X,\mathbb{Z}(n))}_{\mathbb{Z}\text{-m\'odulo de rk 1}}) \otimes \mathbb{R}.$$

- Asumamos
 - ▶ $L^c(X_{\acute{e}t}, n)$: generación finita de $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$,
 - ▶ fibra $X_{\mathbb{C}}$ lisa,
 - ightharpoonup **B**(X, n): conjetura de Beilinson sobre reguladores,
 - ightharpoonup prolongación meromorfa alrededor de s = n < 0.
- ▶ C(X, n): el valor especial en s = n se determina salvo signo por

$$\lambda(\zeta^*(X,n)^{-1}) \cdot \mathbb{Z} = \det_{\mathbb{Z}} R\Gamma_{W,c}(X,\mathbb{Z}(n))$$

$$\lambda \colon \mathbb{R} \xrightarrow{\cong} (\underbrace{\det_{\mathbb{Z}} R\Gamma_{W,c}(X,\mathbb{Z}(n))}_{\mathbb{Z}\text{-m\'odulo}\ \text{de rk } 1}) \otimes \mathbb{R}.$$

- Asumamos
 - ▶ $L^c(X_{\acute{e}t}, n)$: generación finita de $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$,
 - ▶ fibra $X_{\mathbb{C}}$ lisa,
 - ightharpoonup **B**(X, n): conjetura de Beilinson sobre reguladores,
 - ightharpoonup prolongación meromorfa alrededor de s = n < 0.
- ▶ C(X, n): el valor especial en s = n se determina salvo signo por

$$\lambda(\zeta^*(X,n)^{-1}) \cdot \mathbb{Z} = \det_{\mathbb{Z}} R\Gamma_{W,c}(X,\mathbb{Z}(n))$$

$$\lambda \colon \mathbb{R} \xrightarrow{\cong} (\underbrace{\det_{\mathbb{Z}} R\Gamma_{W,c}(X,\mathbb{Z}(n))}_{\mathbb{Z}\text{-m\'odulo}\ \text{de rk } 1}) \otimes \mathbb{R}.$$

- Asumamos
 - ▶ $L^c(X_{\acute{e}t}, n)$: generación finita de $H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))$,
 - ▶ fibra $X_{\mathbb{C}}$ lisa.
 - ightharpoonup **B**(X, n): conjetura de Beilinson sobre reguladores,
 - ightharpoonup prolongación meromorfa alrededor de s = n < 0.
- ▶ $\mathbf{C}(X, n)$: el valor especial en s = n se determina salvo signo por

$$\lambda(\zeta^*(X,n)^{-1})\cdot \mathbb{Z} = \det_{\mathbb{Z}} R\Gamma_{W,c}(X,\mathbb{Z}(n)).$$

 $ightharpoonup \mathbf{C}(X,n)$ es equivalente a la fórmula

$$\zeta(X,n) = \prod_{i \in \mathbb{Z}} |H^i(X_{\acute{e}\acute{t}}, \mathbb{Z}^c(n))|^{(-1)^i}.$$

- ▶ Se cumple, asumiendo $L^c(X_{\acute{e}t}, n)$.
- ightharpoonup \Longrightarrow finitud de $H^i(X_{\acute{e}t},\mathbb{Z}^c(n))$, anulación para $|i|\gg 0$.
- Explicación: la fórmula de traza de Grothendieck.

ightharpoonup C(X, n) es equivalente a la fórmula

$$\zeta(X,n) = \prod_{i \in \mathbb{Z}} |H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))|^{(-1)^i}.$$

- ► Se cumple, asumiendo $L^c(X_{\acute{e}t}, n)$.
- ightharpoonup \Longrightarrow finitud de $H^i(X_{\acute{e}t},\mathbb{Z}^c(n))$, anulación para $|i|\gg 0$.
- Explicación: la fórmula de traza de Grothendieck.

▶ $\mathbf{C}(X, n)$ es equivalente a la fórmula

$$\zeta(X,n) = \prod_{i \in \mathbb{Z}} |H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))|^{(-1)^i}.$$

- ► Se cumple, asumiendo $\mathbf{L}^c(X_{\acute{e}t}, n)$.
- ightharpoonup \Longrightarrow finitud de $H^i(X_{\acute{e}t},\mathbb{Z}^c(n))$, anulación para $|i|\gg 0$.
- Explicación: la fórmula de traza de Grothendieck.

▶ $\mathbf{C}(X, n)$ es equivalente a la fórmula

$$\zeta(X,n) = \prod_{i \in \mathbb{Z}} |H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))|^{(-1)^i}.$$

- ► Se cumple, asumiendo $L^c(X_{\acute{e}t}, n)$.
- ightharpoonup \Longrightarrow finitud de $H^i(X_{\acute{e}t},\mathbb{Z}^c(n))$, anulación para $|i|\gg 0$.
- Explicación: la fórmula de traza de Grothendieck.

ightharpoonup C(X, n) es equivalente a la fórmula

$$\zeta(X,n) = \prod_{i \in \mathbb{Z}} |H^i(X_{\acute{e}t}, \mathbb{Z}^c(n))|^{(-1)^i}.$$

- ► Se cumple, asumiendo $L^c(X_{\acute{e}t}, n)$.
- ightharpoonup \Longrightarrow finitud de $H^i(X_{\acute{e}t},\mathbb{Z}^c(n))$, anulación para $|i|\gg 0$.
- Explicación: la fórmula de traza de Grothendieck.

Aplicación: esquemas unidimensionales

- Teorema (B.): Sea B un esquema aritmético 1-dimensional. Asumamos que para todo punto genérico η ∈ B se cumple uno de los dos:
 - a) $\operatorname{char} \kappa(\eta) = p > 0$; b) $\operatorname{char} \kappa(\eta) = 0$ y $\kappa(\eta)/\mathbb{Q}$ es un cuerpo de números abeliar Entonces, se cumple $\operatorname{VO}(B,n)$ y $\operatorname{C}(B,n)$.
- ightharpoonup Cálculos de $H^i_{Wc}(B_{\acute{e}t},\mathbb{Z}(n))\Longrightarrow$

$$\zeta^*(B, n) = \pm 2^{\delta} \frac{|H^0(B_{\acute{e}t}, \mathbb{Z}^c(n))|}{|H^{-1}(B_{\acute{e}t}, \mathbb{Z}^c(n))_{tors}| \cdot |H^1(B_{\acute{e}t}, \mathbb{Z}^c(n))|} R_{B,n}$$

$$\delta = \delta_{B,n} = \begin{cases} |B(\mathbb{R})|, & n \text{ par,} \\ 0, & n \text{ impar,} \end{cases}$$

$$R_{B,n} := \text{regulador sobre } H^{-1}(B_{\acute{e}t}, \mathbb{Z}^c(n)).$$

Aplicación: esquemas unidimensionales

- Teorema (B.): Sea B un esquema aritmético 1-dimensional. Asumamos que para todo punto genérico η ∈ B se cumple uno de los dos:
 - a) char $\kappa(\eta) = p > 0$;
 - b) char $\kappa(\eta)=0$ y $\kappa(\eta)/\mathbb{Q}$ es un cuerpo de números abeliano.

Entonces, se cumple VO(B, n) y C(B, n).

ightharpoonup Cálculos de $H^i_{W,c}(B_{cute{e}t},\mathbb{Z}(n))\Longrightarrow$

$$\zeta^*(B,n) = \pm 2^{\delta} \frac{|H^0(B_{\acute{e}t},\mathbb{Z}^c(n))|}{|H^{-1}(B_{\acute{e}t},\mathbb{Z}^c(n))_{tors}| \cdot |H^1(B_{\acute{e}t},\mathbb{Z}^c(n))|} R_{B,n},$$

$$\delta = \delta_{B,n} = \begin{cases} |B(\mathbb{R})|, & n \text{ par,} \\ 0, & n \text{ impar,} \end{cases}$$

$$R_{B,n} := \text{regulador sobre } H^{-1}(B_{\acute{e}t},\mathbb{Z}^c(n)).$$

Aplicación: esquemas unidimensionales

- Teorema (B.): Sea B un esquema aritmético 1-dimensional. Asumamos que para todo punto genérico η ∈ B se cumple uno de los dos:
 - a) char $\kappa(\eta) = p > 0$;
 - b) $\operatorname{char} \kappa(\eta) = 0$ y $\kappa(\eta)/\mathbb{Q}$ es un cuerpo de números abeliano.

Entonces, se cumple VO(B, n) y C(B, n).

ightharpoonup Cálculos de $H^i_{W,c}(B_{\acute{e}t},\mathbb{Z}(n))\Longrightarrow$

$$\zeta^*(B,n) = \pm 2^{\delta} \frac{|H^0(B_{\acute{e}t},\mathbb{Z}^c(n))|}{|H^{-1}(B_{\acute{e}t},\mathbb{Z}^c(n))_{tors}| \cdot |H^1(B_{\acute{e}t},\mathbb{Z}^c(n))|} R_{B,n},$$

$$\delta = \delta_{B,n} = \begin{cases} |B(\mathbb{R})|, & n \text{ par,} \\ 0, & n \text{ impar,} \end{cases}$$

$$R_{B,n} := \text{regulador sobre } H^{-1}(B_{\acute{e}t},\mathbb{Z}^c(n)).$$

Esquema **celular** $X \rightarrow B$: admite filtración por cerrados

$$X = Z_N \supseteq Z_{N-1} \supseteq \cdots \supseteq Z_0 \supseteq Z_{-1} = \emptyset,$$

donde $Z_i \setminus Z_{i-1} \cong \coprod_j \mathbb{A}_B^{r_{i_j}}$

- ▶ **Teorema** (B.): Sea B un esquema aritmético 1-dimensional abeliano. Entonces, **VO**(X, n) y **C**(X, n) se cumplen para todo n < 0 y todo esquema aritmético B-celular X con la fibra $X_{\mathbb{C}}$ lisa.
- ▶ Idea: $\mathbf{C}(X, n)$ se conoce para curvas y cuerpos de números abelianos F/\mathbb{Q} (¡via TNC!). Proceder por dévissage.

E Esquema **celular** $X \rightarrow B$: admite filtración por cerrados

$$X = Z_N \supseteq Z_{N-1} \supseteq \cdots \supseteq Z_0 \supseteq Z_{-1} = \emptyset,$$

donde
$$Z_i \setminus Z_{i-1} \cong \coprod_j \mathbb{A}_B^{r_{i_j}}$$

- ▶ **Teorema** (B.): Sea B un esquema aritmético 1-dimensional abeliano. Entonces, **VO**(X, n) y **C**(X, n) se cumplen para todo n < 0 y todo esquema aritmético B-celular X con la fibra $X_{\mathbb{C}}$ lisa.
- ▶ Idea: $\mathbf{C}(X, n)$ se conoce para curvas y cuerpos de números abelianos F/\mathbb{Q} (¡via TNC!). Proceder por dévissage.

E Esquema **celular** $X \rightarrow B$: admite filtración por cerrados

$$X = Z_N \supseteq Z_{N-1} \supseteq \cdots \supseteq Z_0 \supseteq Z_{-1} = \emptyset,$$

donde
$$Z_i \setminus Z_{i-1} \cong \coprod_j \mathbb{A}_B^{r_{i_j}}$$

- ▶ **Teorema** (B.): Sea B un esquema aritmético 1-dimensional abeliano. Entonces, **VO**(X, n) y **C**(X, n) se cumplen para todo n < 0 y todo esquema aritmético B-celular X con la fibra X \mathbb{C} lisa.
- ▶ Idea: C(X, n) se conoce para curvas y cuerpos de números abelianos F/\mathbb{Q} (¡via TNC!). Proceder por dévissage.

E Esquema **celular** $X \rightarrow B$: admite filtración por cerrados

$$X = Z_N \supseteq Z_{N-1} \supseteq \cdots \supseteq Z_0 \supseteq Z_{-1} = \emptyset,$$

donde
$$Z_i \setminus Z_{i-1} \cong \coprod_j \mathbb{A}_{\mathcal{B}}^{r_{i_j}}$$

- ▶ **Teorema** (B.): Sea B un esquema aritmético 1-dimensional abeliano. Entonces, **VO**(X, n) y **C**(X, n) se cumplen para todo n < 0 y todo esquema aritmético B-celular X con la fibra X \mathbb{C} lisa.
- ▶ Idea: $\mathbf{C}(X, n)$ se conoce para curvas y cuerpos de números abelianos F/\mathbb{Q} (¡via TNC!). Proceder por dévissage.

- ▶ Regulador para la fibra $X_{\mathbb{C}}$ singular.
- Cuando la comparación tiene sentido, C(X, n) es equivalente a la TNC. ¿Cómo formular un análogo equivariante compatible cor la ETNC?
- ▶ Valores especiales de funciones $L(\mathcal{F}, s)$ para haces \mathbb{Z} -constructibles \mathcal{F}/X (Thomas Geisser, Takashi Suzuki).

- ▶ Regulador para la fibra $X_{\mathbb{C}}$ singular.
- Cuando la comparación tiene sentido, C(X, n) es equivalente a la TNC. ¿Cómo formular un análogo equivariante compatible cor la ETNC?
- ▶ Valores especiales de funciones $L(\mathcal{F}, s)$ para haces \mathbb{Z} -constructibles \mathcal{F}/X (Thomas Geisser, Takashi Suzuki).

- ▶ Regulador para la fibra $X_{\mathbb{C}}$ singular.
- Cuando la comparación tiene sentido, C(X, n) es equivalente a la TNC. ¿Cómo formular un análogo equivariante compatible con la ETNC?
- Valores especiales de funciones L(F, s) para haces Z-constructibles F/X (Thomas Geisser, Takashi Suzuki).

- ▶ Regulador para la fibra $X_{\mathbb{C}}$ singular.
- Cuando la comparación tiene sentido, C(X, n) es equivalente a la TNC. ¿Cómo formular un análogo equivariante compatible con la ETNC?
- ▶ Valores especiales de funciones $L(\mathcal{F}, s)$ para haces \mathbb{Z} -constructibles \mathcal{F}/X (Thomas Geisser, Takashi Suzuki).

¡Gracias por su atención!