Связность в гиперграфах и матроидах

Сергеева Оксана Александровна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., профессор Сушков Ю.А. Рецензент: аспирант Прудникова Ю.А.

Санкт-Петербург 2008г.

Введение

Многорежимные системы (MPC) — системы, у которых настройка на определенный режим работы осуществляется путем дискретного изменения составляющих элементов и связей между ними, то есть путем изменения структуры системы.

Примеры MPC: механические коробки передач, электрические фильтры и другие радиоэлектронные устройства, дискретно настраиваемые регуляторы давления с изменяемой структурой и др.

Гиперграфы – представление МРС.

Настройка на определенный режим работы MPC — объединение разных компонент в одну введением дополнительных связей ⇒ понятие связности.

Конкретные интерпретации понятия связности определяют и конкретные приложения соответствующих математических моделей систем.

Связность можно вводить:

- через гиперграфы,
- через матроиды.

Основные определения

Гиперграфом называется пара $\Gamma = \langle \Gamma D, D \rangle$, где ΓD – конечное множество вершин гиперграфа, а D – конечное множество его ребер. Если у каждого ребра q вершин, то такой гиперграф называется q-униформным. (q=3)

Определение

Условие независимости для множества ребер D –

$$|\Gamma D| \ge |D| + q - 1.$$

Степень свободы – $\sigma = |\Gamma D| - |D|$.

Степень вершины - количество инцидентных ей ребер.

Гипердерево (одна компонента связности) – $\sigma=2$, все подмножества ребер удовлетворяют условию независимости.

Гиперлес (несколько компонент связности) – $\sigma > 2$, все подмножества ребер удовлетворяют условию независимости.

Гиперцикл – $\sigma=1$, все нетривиальные подмножества ребер удовлетворяют условию независимости.

Примеры и постановка задачи

Примеры различных гиперграфов:

Задача перечисления всех гиперлесов, гипердеревьев и гиперциклов:

- 1) построение списка объектов, принадлежащих данному множеству,
- 2) определение числа этих объектов.

Два подхода к решению поставленных задач:

- рекурсивный,
- морфологический.

Рекурсивное получение гипердеревьев

1-ый способ

2-ой способ

3-ий способ

Теорема

Используя приведенные выше 3 способа, можно получить все возможные гипердеревья с N ребрами, где N<6 .

Рекурсивное получение гипердеревьев

4-ый способ

5-ый способ

Теорема

Используя приведенные выше 5 способов, можно получить все возможные гипердеревья с N ребрами, где N < 8 .

Морфологический способ получения гиперграфов

Построение гиперграфов, все собственные подмножества ребер которых удовлетворяют условию независимости, с любым количествоом ребер N и любой степенью свободы σ .

Морфологический метод – перебор всех возможных кодов вида $\alpha_1\beta_1\gamma_1-\alpha_2\beta_2\gamma_2-...-\alpha_N\beta_N\gamma_N.$

Коды должны удовлетворять следующим условиям:

- 1 в любом выбранном коде должны содержаться все числа от 1 до $N+\sigma;$
- 2 номера вершин в каждой тройке должны быть упорядочены строго по возрастанию;
- 3 тройки должны быть упорядочены между собой строго по возрастанию;
- 4 все номера вершин должны быть объявлены в порядке возрастания;
- 5 в каждой тройке чисел $\alpha_i \beta_i \gamma_i$ должен быть хотя бы один номер вершины, содержащийся в других тройках;
- б для любой совокупности троек должно выполняться условие независимости;
- 7 код должен быть минимальным.

Результаты

	гиперциклы	гипердеревья	гиперлеса				
N	$\sigma = 1$	$\sigma = 2$	$\sigma = 3$	$\sigma = 4$	$\sigma = 5$	$\sigma = 6$	$\sigma = 7$
2	=	1	1	-	-	-	-
3	1	3	3	2	-	-	-
4	3	13	16	10	4	-	-
5	10	72	103	77	31	8	-
6	71	634	952	830	444		19
7	659	7604					
8	8656						

Пример (список всех гипердеревьев с 4 ребрами):

- 1. 1 2 3 1 2 4 1 2 5 1 2 6 8. 1 2 3 1 2 4 1 3 5 4 5 6
- 2. 1 2 3 1 2 4 1 2 5 1 3 6 9. 1 2 3 1 2 4 1 5 6 2 5 6
- 3. 1 2 3 1 2 4 1 2 5 3 4 6 10. 1 2 3 1 2 4 1 5 6 3 4 5
- 4. 1 2 3 1 2 4 1 3 5 1 4 6 11. 1 2 3 1 2 4 1 5 6 3 5 6
- 6. 1 2 3 1 2 4 1 3 5 2 4 6 13. 1 2 3 1 4 5 2 4 6 3 5 6
- 7. 1 2 3 1 2 4 1 3 5 2 5 6

Определение

D – непустое конечное множество. $I\subseteq 2^D$ – непустое семейство подмножеств, называемых nesaeucumumu, из D, удовлетворяющее условиям:

- 1) если $A \subseteq B \in I$, то $A \in I$;
- 2) если $A\in I,\ B\in I$ и |A|=|B|-1, то существует элемент $a\in B\backslash A$ такой, что $A+a\in I.$

Тогда пара $M = \langle I, D \rangle$ называется матроидом.

Цикл $A\in D$ – $A\notin I$, все непустые подмножества независимы. Ранг ho(M) – мощность наибольшего независимого множества из I.

Подходы к связности в матроидах:

- ullet ввод функции ϕ ,
- *n*-связность.

Связь между матроидами и гиперграфами

Функция $\phi: 2^D \to Z$, $\phi(\emptyset) = 0$, такая что:

- 1 ϕ монотонна: если $A\subseteq B\subseteq D$, то $\phi(A)=\phi(B)$;
- 2 ϕ субмодулярна: для любых двух множеств $A,B\subseteq D$ выполнено $\phi(A)+\phi(B)\geq \phi(A\cup B)+\phi(A\cap B);$
- 3 ϕ покрывающая: $I=\{A|(A\subseteq D)\&(\phi(A)\geq |A|)\&(\cup_{A\in I}A=D)\}.$

Если матроид $M=\langle I,D\rangle$, такой что $A\in I\Leftrightarrow \phi(A)\geq |A|$, то с помощью ϕ можно однозначно разбить множество D на компоненты связности $D=D_1+D_2+...+D_n$, так что выполнено:

- 1) $\phi(D_i) = |D_i|$ для любого i = 1:n;
- 2) если $\phi(D')=|D'|$, то найдется такое D_i , что $D'\subseteq D_i$.

 $\phi(A)=|\Gamma A|-q+1\Rightarrow$ с любым гиперграфом $\Gamma=\langle Z,D\rangle$ можно связать матроид $M=\langle I,D\rangle$, получим теорию связности в гиперграфах.

Теория связности Татта

$$M = \langle I, D \rangle$$
 — матроид, $\{S, T\}$ — разбиение D .

Определение

Матроид называется k-разdелимым, если выполнено:

$$\begin{cases} \rho(S) + \rho(T) - \rho(M) + 1 = k \\ \min(|S|, |T|) \ge k \end{cases}$$

 $\min(k) = \lambda(M)$ – связность матроида.

Матроид M называется n-связным, если выполнено $0 \le n \le \lambda(M)$.

Применим эту теорию к гиперграфам:

- $\lambda(M)=1$ для матроидов, построенных на гиперлесах и гипердеревьях.
- $\lambda(M) = 2$ для матроидов, построенных на гиперциклах.
- $\lambda(M) = 3$ см. рис.

Заключение

- Получены способы построения гипердеревьев с количеством ребер < 7.
- Получены схемы гиперциклов, гипердеревьев, гиперлесов.
- Построена таблица количества гиперграфов различных типов.
- Рассмотрена связь между связностью матроидов и связностью гиперграфов.
- Рассмотрено понятие n-связности для матроидов, приведены примеры.

