CmSc 250 Intro to Algorithms

Graph Algorithms - Topological Sort

- 1. Introduction
- 2. Algorithm
- 3. Example
- 4. Improved algorithm
- 5. Complexity

<u>Learning Goals</u> <u>Exam-like questions</u>

1. Introduction

Topological sort: an ordering of the vertices in a directed acyclic graph, such that:

If there is a path from \boldsymbol{u} to \boldsymbol{v} , then \boldsymbol{v} appears after \boldsymbol{u} in the ordering.

Types of graphs:

The graphs should be **directed:** otherwise for any edge (u,v) there would be a path from \boldsymbol{u} to \boldsymbol{v} and also from \boldsymbol{v} to \boldsymbol{u} , and hence they cannot be ordered.

The graphs should be **acyclic**: otherwise for any two vertices \boldsymbol{u} and \boldsymbol{v} on a cycle \boldsymbol{u} would precede \boldsymbol{v} and \boldsymbol{v} would precede \boldsymbol{u} .

The ordering may not be unique:

V1, V2, V3, V4 and V1, V3, V2, V4 are legal orderings

Degree of a vertex U: the number of edges (U,V) - outgoing edges **Indegree** of a vertex U: the number of edges (V,U) - incoming edges

The algorithm for topological sort uses "indegrees" of vertices.

2. Algorithm

- 1. Compute the indegrees of all vertices
- 2. Find a vertex **U** with indegree 0 and print it (store it in the ordering)

If there is no such vertex then there is a cycle and the vertices cannot be ordered. Stop.

- 3. Remove **U** and all its edges **(U,V)** from the graph.
- 4. Update the indegrees of the remaining vertices.
- 5. Repeat steps 2 through 4 while there are vertices to be processed.

3. Example

2 de 5 23/03/2017 00:10

1. Compute the indegrees:

V1: 0

V2: 1

V3: 2

V4: 2

V5: 2

- 2. Find a vertex with indegree 0: V1
- 3. Output V1, remove V1 and update the indegrees:

Sorted: V1

Remove edges: (V1,V2), (V1,V3) and (V1,V4)

Updated indegrees:

V2: 0

V3: 1

V4: 1 V5: 2

The process is depicted in the following table:

	Indegree					
Sorted à		V1	V1,V2	V1,V2,V4	V1,V2,V4,V3	V1,V2,V4,V3,V5

V1	0					
V2	1	0				
V3	2	1	1	0		
V4	2	1	0			
V5	2	2	1	0	0	

One possible sorting: V1, V2, V4, V3, V5

Another sorting: V1, V2, V4, V5, V3

Complexity of this algorithm: $O(|V|^2)$, |V| - the number of vertices.

To find a vertex of indegree 0 we scan all the vertices - |V| operations.

We do this for all vertices: $|V|^2$

4. Improved algorithm

After the initial scanning to find a vertex of degree 0, we need to scan only those vertices whose updated indegrees have become equal to zero.

- 1. Store all vertices with indegree 0 in a queue
- 2. get a vertex U and place it in the sorted sequence (array or another queue).
- 3. For all edges (U,V) update the indegree of V, and **put** V in the queue if the updated indegree is 0.
- 4. Perform steps 2 and 3 while the queue is not empty.

5. Complexity

The number of operations is O(|E| + |V|), where |V| - number of vertices, |E| - number of edges. How many operations are needed to compute the indegrees?

4 de 5 23/03/2017 00:10

Depends on the representation:

Adjacency lists: O(|E|)

Matrix: $O(|V|^2)$

Note that if the graph is complete $|E| = O(|V|^2)$

Learning Goals

- Be able to explain the basic idea of topological sort
- Be able to explain the improved version, using a queue and its complexity.
- Be able to run the improved algorithm on paper.

Exam-like questions

- 1. What is the complexity of topological sort using queues?
- 2. In what case the complexity of the improved version is $O(|V|^2)$?
- 3. What types of graphs can be subjected to topological sort?
- 4. Given a graph, run the algorithm on paper

Back to Contents page

Created by Lydia Sinapova

5 de 5 23/03/2017 00:10