Smoothing and Interpolation

Medical Image Analysis Koen Van Leemput

Example: image registration

Example: image registration

Example: image segmentation

Example: image interpolation

- \mathbf{v} Let $\mathbf{x} = (x_1, \dots, x_D)^{\mathrm{T}}$ denote a spatial position in a D-dimensional space
- $m{arphi}$ Given N measurements $\{t_n\}_{n=1}^N$ at locations $\{\mathbf{x}_n\}_{n=1}^N$, what is t at a new location \mathbf{x} ?

- \mathbf{v} Let $\mathbf{x} = (x_1, \dots, x_D)^T$ denote a spatial position in a D-dimensional space
- $m{arphi}$ Given N measurements $\{t_n\}_{n=1}^N$ at locations $\{\mathbf{x}_n\}_{n=1}^N$, what is t at a new location \mathbf{x} ?

$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_D x_D$$
tunable weights

- \mathbf{v} Let $\mathbf{x} = (x_1, \dots, x_D)^T$ denote a spatial position in a D-dimensional space
- \checkmark Given N measurements $\{t_n\}_{n=1}^N$ at locations $\{\mathbf{x}_n\}_{n=1}^N$, what is t at a new location \mathbf{x} ?

 $m{arphi}$ What are "suitable" values for the weights $\mathbf{w}=(w_0,\ldots,w_{M-1})^{\mathrm{T}}$?

$$m{arphi}$$
 Minimize the energy $E(\mathbf{w}) = \sum_{n=1}^N \left(t_n - \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n)
ight)^2$

- ightharpoonup What are "suitable" values for the weights $\mathbf{w} = (w_0, \dots, w_{M-1})^{\mathrm{T}}$?
- $m{arepsilon}$ Minimize the energy $E(\mathbf{w}) = \sum_{n=1}^N \left(t_n \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n)
 ight)^2$

Task: find w that minimizes $E(w) = (5-4w)^2 + (3-2w)^2$

ightharpoonup What are "suitable" values for the weights $\mathbf{w}=(w_0,\ldots,w_{M-1})^{\mathrm{T}}$?

$$m{arepsilon}$$
 Minimize the energy $E(\mathbf{w}) = \sum_{n=1}^N \left(t_n - \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n)
ight)^2$

Task: find w that minimizes $E(w) = (5-4w)^2 + (3-2w)^2$

$$\frac{dE(w)}{dw} = -8(5 - 4w) - 4(3 - 2w) = -52 + 40w$$

$$\frac{dE(w)}{dw} = 0 \quad \Rightarrow \quad w = 1.3$$

 $m{arphi}$ What are "suitable" values for the weights $\mathbf{w}=(w_0,\ldots,w_{M-1})^{\mathrm{T}}$?

$$m{arphi}$$
 Minimize the energy $E(\mathbf{w}) = \sum_{n=1}^N \left(t_n - \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n)
ight)^2$

- ightharpoonup What are "suitable" values for the weights $\mathbf{w} = (w_0, \dots, w_{M-1})^{\mathrm{T}}$?
- $m{arepsilon}$ Minimize the energy $E(\mathbf{w}) = \sum_{n=1}^N \left(t_n \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n)
 ight)^2$

$$\frac{\partial E(\mathbf{w})}{\partial w_m} = -2\sum_{n=1}^{N} \left(t_n - \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n) \right) \phi_m(\mathbf{x}_n)$$

- What are "suitable" values for the weights $\mathbf{w} = (w_0, \dots, w_{M-1})^{\mathrm{T}}$?
- $m{arepsilon}$ Minimize the energy $E(\mathbf{w}) = \sum_{n=0}^{N} \left(t_n \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n) \right)^2$

$$abla E(\mathbf{w}) = \left(egin{array}{c} rac{\partial E(\mathbf{w})}{\partial w_0} \ dots \ rac{\partial E(\mathbf{w})}{\partial w_0} \end{array}
ight) = -2\mathbf{\Phi}^{\mathrm{T}}\left(\mathbf{t} - \mathbf{\Phi}\mathbf{w}
ight),$$

$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$

$$\nabla E(\mathbf{w}) = \begin{pmatrix} \frac{\partial E(\mathbf{w})}{\partial w_0} \\ \vdots \\ \frac{\partial E(\mathbf{w})}{\partial w_{M-1}} \end{pmatrix} = -2\mathbf{\Phi}^{\mathrm{T}} \left(\mathbf{t} - \mathbf{\Phi} \mathbf{w} \right), \qquad \mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \dots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \dots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \dots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

$$\mathbf{t} = (t_1, \dots, t_N)^{\mathrm{T}}$$

Smoothing

Let's concentrate on one-dimensional (1D) "images":

- ho Functions of the form $y(x,\mathbf{w})=\sum_{m=0}^\infty w_m\phi_m(x),$ where the location x is a scalar
- \checkmark Measurement points are defined on a regular grid: $x_1 = 0, x_2 = 1, \dots x_N = N-1$

"Denoising":

- \checkmark The measurements $t_n, n = 1, \dots, N$ are noisy observations
- $m{arepsilon}$ Recover the underlying signal $\hat{t}_n=y(x_n,{f w})$ at the locations x_n

Smoothing

- $m{ ilde{v}}$ We aim to recover $\ \hat{f t}=(\hat{t}_1,\ldots,\hat{t}_N)^{
 m T}$ from $\ {f t}=(t_1,\ldots,t_N)^{
 m T}$
- $m{v}$ Since $\mathbf{\hat{t}} = m{\Phi} \mathbf{w}$ and $\mathbf{w} = \left(m{\Phi}^{\mathrm{T}} m{\Phi}\right)^{-1} m{\Phi}^{\mathrm{T}} \mathbf{t}$:

$$\mathbf{\hat{t}} = \mathbf{S}\mathbf{t}$$
 with $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}$

Example o.s.

0.02

0.01

0.00

-0.01

20

60

40

100

80

0.10

- 0.05

0.00

80

100

M=7 basis functions

60 -

100 -

20

Example of our control of the contro

0.10

100

100

M=28 basis functions

40 -

Example

-0.05

100 -

Consider the case $\mathbf{t} = (2, 1, 3)^T$ and $\mathbf{\Phi} = (1, 1, 1)^T$

Task 1: what is
$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$
?

Task 2: what are
$$\, {f \hat{t}} = {f St} \,$$
 and $\, {f S} = {f \Phi} \left({f \Phi}^{
m T} {f \Phi}
ight)^{-1} {f \Phi}^{
m T} \,$?

Task 3: same as task 2 but when
$$\Phi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$

Consider the case $\mathbf{t}=(2,1,3)^T$ and $\mathbf{\Phi}=(1,1,1)^T$

Task 1: what is
$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$
?

Task 2: what are
$$\hat{\mathbf{t}} = \mathbf{S}\mathbf{t}$$
 and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}$?

Task 3: same as task 2 but when
$$\Phi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$

Consider the case $\mathbf{t} = (2,1,3)^T$ and $\mathbf{\Phi} = (1,1,1)^T$

Task 1: what is
$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$
?

$$\mathbf{w} = 3^{-1}6 = 2$$

Task 2: what are
$$\hat{\mathbf{t}} = \mathbf{S}\mathbf{t}$$
 and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}$?

Task 3: same as task 2 but when
$$\Phi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$

Consider the case $\mathbf{t}=(2,1,3)^T$ and $\mathbf{\Phi}=(1,1,1)^T$

Task 1: what is
$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$
?

Task 2: what are
$$\mathbf{\hat{t}} = \mathbf{St}$$
 and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}$?

Task 3: same as task 2 but when
$$\Phi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$

Consider the case $\mathbf{t} = (2,1,3)^T$ and $\mathbf{\Phi} = (1,1,1)^T$

Task 1: what is
$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$
?

Task 2: what are
$$\, {f \hat{t}} = {f St} \,$$
 and $\, {f S} = {f \Phi} \left({f \Phi}^{
m T} {f \Phi}
ight)^{-1} {f \Phi}^{
m T} \,$?

Task 3: same as task 2 but when
$$\Phi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$

$$\hat{\mathbf{t}} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$

$$\mathbf{S} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot 3^{-1} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$$

Consider the case $\mathbf{t} = (2,1,3)^T$ and $\mathbf{\Phi} = (1,1,1)^T$

Task 1: what is
$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$
?

Task 2: what are
$$\, \hat{\mathbf{t}} = \mathbf{St} \,$$
 and $\, \mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \,$?

Task 3: same as task 2 but when
$$\Phi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$

Consider the case $\mathbf{t}=(2,1,3)^T$ and $\mathbf{\Phi}=(1,1,1)^T$

Task 1: what is
$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$
?

Task 2: what are
$$\hat{\mathbf{t}} = \mathbf{S}\mathbf{t}$$
 and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}$?

Task 3: same as task 2 but when
$$\Phi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$

Consider the case $\mathbf{t}=(2,1,3)^T$ and $\mathbf{\Phi}=(1,1,1)^T$

Task 1: what is
$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$
?

Task 2: what are
$$\hat{\mathbf{t}} = \mathbf{S}\mathbf{t}$$
 and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}$?

Task 3: same as task 2 but when
$$\Phi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$

$$\mathbf{\hat{t}} = \mathbf{t} = \begin{pmatrix} \mathbf{\hat{t}} \\ \mathbf{\hat{t}} \end{pmatrix}^{-1} = \mathbf{\Phi}^{-1} \begin{pmatrix} \mathbf{\hat{t}} \\ \mathbf{\hat{t}} \end{pmatrix}^{-1} \mathbf{\hat{t}}$$

$$\mathbf{\hat{t}} = \mathbf{t} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Consider the case $\mathbf{t}=(2,1,3)^T$ and $\mathbf{\Phi}=(1,1,1)^T$

Task 1: what is
$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$
?

Task 2: what are
$$\hat{\mathbf{t}} = \mathbf{S}\mathbf{t}$$
 and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}$?

Can you explain (e.g., draw) what's happening?

Task 3: same as task 2 but when
$$\Phi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$$

When M=N, no smoothing is applied!

Meet the B-spline family:

$$m{arphi} \; eta^0(x) = \left\{ egin{array}{ll} 1, & -rac{1}{2} < x < rac{1}{2} & & {}^{0.6} \ rac{1}{2}, & |x| = rac{1}{2} & & {}^{0.4} \ 0, & {
m otherwise}, & & {}_{0.2} \end{array}
ight.$$

$$\beta \widehat{p}(x) = \underbrace{\left(\beta^0 * \beta^0 * \cdots * \beta^0\right)}_{(p+1) \text{ times}} (x) \quad \text{where} \quad \left(f * g\right)(x) = \int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau$$

$$\widehat{p}(x) = \underbrace{\left(\beta^0 * \beta^0 * \cdots * \beta^0\right)}_{(p+1) \text{ times}} (x) \quad \text{where} \quad \left(f * g\right)(x) = \int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau$$

$$\widehat{p}(x) = \underbrace{\left(\beta^0 * \beta^0 * \cdots * \beta^0\right)}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x-\tau) \mathrm{d}\tau}_{(p+1) \text{ times}} (x) \quad \widehat{p}(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau=-\infty}^{\infty} f(\tau)g(x) = \underbrace{\int_{\tau=-\infty}^{\infty} f(\tau)g(x) + \int_{\tau$$

Use M=N basis functions: $\phi_m(x)=\beta^p(x-m), \quad m=0,\ldots,N-1$

 $m{v}$ $y(x, \mathbf{w})$ will pass exactly through t_n at the integer locations x_n

Order 0: "nearest neighbor" interpolation (almost)

Use
$$M=N$$
 basis functions: $\phi_m(x)=\beta^p(x-m), \quad m=0,\ldots,N-1$

 $m{v}$ $y(x, \mathbf{w})$ will pass exactly through t_n at the integer locations x_n

Order 1: "linear" interpolation

Use
$$M=N$$
 basis functions: $\phi_m(x)=\beta^p(x-m), \quad m=0,\ldots,N-1$

 $m{v}$ $y(x, \mathbf{w})$ will pass exactly through t_n at the integer locations x_n

Order 3: "cubic" interpolation

Going to higher dimensions

Re-arrange pixels in 2D images of size $N_1 \times N_2$ into 1D signals of length $N = N_1 N_2$

Vectorize the image to be smoothed or interpolated

$$\mathbf{T} = \left(egin{array}{ccccc} t_{1,1} & t_{1,2} & \cdots & t_{1,N_2} \ t_{2,1} & t_{2,2} & \cdots & t_{2,N_2} \ dots & dots & \ddots & dots \ t_{N_1,1} & t_{N_1,2} & \cdots & t_{N_1,N_2} \end{array}
ight)$$
 $\mathbf{t} = \mathrm{vec}(\mathbf{T}) = \left(egin{array}{ccccc} t_{1,1} & dots \ t_{N_1,1} & t_{1,2} & dots \ t_{N_1,2} & dots \ dots \ t_{N_1,N_2} \end{array}
ight)$ by vectorize each of the 2D basis functions

Also vectorize each of the 2D basis functions

Solve the resulting 1D problem as before

Separable basis functions

Create 2D basis functions from two sets of 1D basis functions

- $m{\nu}$ Kronecker product: $m{\Phi} = m{\Phi}_2 \otimes m{\Phi}_1$, where $m{A} \otimes m{B} = egin{pmatrix} \hline a_{2,1} m{B} & a_{2,2} m{B} & \dots \\ \hline \vdots & \vdots & \ddots \end{pmatrix}$
- $m{arphi}$ Column $m=m_1+m_2M_1$ in $m{\Phi}$ contains a vectorized version of $\phi_m(\mathbf{x})=\phi_{m_1}(x_1)\phi_{m_2}(x_2)$

Separable basis functions

Exploiting separability

m arphi When $m \Phi = m \Phi_2 \otimes m \Phi_1$, we can compute $m c = m \Phi^T m t$ faster as follows:

$$\mathbf{C} = \mathbf{\Phi}_1^{\mathrm{T}} \mathbf{T} \mathbf{\Phi}_2$$
 where $\mathrm{vec}(\mathbf{C}) = \mathbf{c}$

 $m{v}$ As a result, we can also compute $\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$ as:

$$\mathbf{W} = \left(\mathbf{\Phi}_1^{\mathrm{T}}\mathbf{\Phi}_1
ight)^{-1}\mathbf{\Phi}_1^{\mathrm{T}}\mathbf{T}\mathbf{\Phi}_2\left(\mathbf{\Phi}_2^{\mathrm{T}}\mathbf{\Phi}_2
ight)^{-1}$$
 where $\mathrm{vec}(\mathbf{W}) = \mathbf{w}$

Exploiting separability

 $m{arphi}$ When $m{\Phi}=m{\Phi}_2\otimesm{\Phi}_1$, we can compute $m{c}=m{\Phi}^Tm{t}$ faster as follows:

$$\mathbf{C} = \mathbf{\Phi}_1^{\mathrm{T}} \mathbf{T} \mathbf{\Phi}_2$$
 where $\mathrm{vec}(\mathbf{C}) = \mathbf{c}$

 $m{v}$ As a result, we can also compute $\mathbf{w} = \left(m{\Phi}^{\mathrm{T}} m{\Phi} \right)^{-1} m{\Phi}^{\mathrm{T}} \mathbf{t}$ as:

$$\mathbf{W} = \left(\mathbf{\Phi}_1^{\mathrm{T}}\mathbf{\Phi}_1
ight)^{-1}\mathbf{\Phi}_1^{\mathrm{T}}\mathbf{T}\mathbf{\Phi}_2\left(\mathbf{\Phi}_2^{\mathrm{T}}\mathbf{\Phi}_2
ight)^{-1}$$
 where $\mathrm{vec}(\mathbf{W}) = \mathbf{w}$

Example: naively interpolating a 256x256 image (M = 256*256 = 65,536 basis functions in 2D!)

Storing ${f \Phi}^{
m T}{f \Phi}$ takes 32 GB, vs. 1MB to store both ${f \Phi}_1^{
m T}{f \Phi}_1$ and ${f \Phi}_2^{
m T}{f \Phi}_2$

Inverting ${f \Phi}^T{f \Phi}$ is almost ${f 10}$ million times slower than inverting both ${f \Phi}_1^T{f \Phi}_1$ and ${f \Phi}_2^T{f \Phi}_2$

Smoothing in 2D

smoothing in the column-direction

$$\hat{\mathbf{T}} = \mathbf{S}$$

$$\hat{\mathbf{T}} = \mathbf{S}_1 \mathbf{T} \mathbf{S}_2^{\mathsf{T}}$$

$$\mathbf{S}_1 = \mathbf{\Phi}_1 \left(\mathbf{\Phi}_1^{\mathrm{T}} \mathbf{\Phi}_1
ight)^{-1} \mathbf{\Phi}_1^{\mathrm{T}}$$

smoothing in the **row-direction**

Interpolation in 2D

