

## ESC201: Introduction to Electronics

### MODULE 5: AMPLIFIERS



Dr. Shubham Sahay,
Assistant Professor,
Department of Electrical Engineering,
IIT Kanpur

# Power supply: block diagram



# Comparison

|                                      | Half Wave<br>Rectifier                              | Full Wave<br>Rectifier         | Bridge<br>Rectifier                                 |
|--------------------------------------|-----------------------------------------------------|--------------------------------|-----------------------------------------------------|
| Number of diodes                     | 1                                                   | 2                              | 4                                                   |
| Ripple Voltage $V_{\rm r}$           | $V_r \cong \frac{V_M}{fR_LC}$                       | $V_r \cong \frac{V_M}{2fR_LC}$ | $V_r \cong \frac{V_M}{2fR_LC}$                      |
| Peak Diode Current $i_{\text{DMAX}}$ | $\omega C \times \sqrt{2V_r V_M} + \frac{V_M}{R_L}$ |                                | $\omega C \times \sqrt{2V_r V_M} + \frac{V_M}{R_L}$ |
| Peak Inverse<br>Voltage <i>PIV</i>   | $V_{ m M}$                                          | $2V_{ m M}$ - $V_{ m \gamma}$  | $V_{ m M}$ - $V_{ m \gamma}$                        |





#### **Example**

Design a voltage reference circuit



Design Problem: Determine  $R_i$  and Zener diode specifications such that output voltage is +12V, load current can vary between 0 to 0.1A. The input voltage may vary between 18 to 15.5V.  $I_{Zmax}/I_{Zmin}$ =10.

#### **Example (continued)**

#### **Design Equations**





$$I_{i} = \frac{V_{PS} - V_{Z}}{R_{i}} = I_{Z} + I_{L}$$

$$I_Z = \frac{V_{PS} - V_Z}{R_i} - I_L$$

$$I_{Z\max} = \frac{V_{PS\max} - V_{Z}}{R_i} - I_{L\min}$$

$$I_{Z\min} = \frac{V_{PS\min} - V_Z}{R_i} - I_{L\max}$$

$$\frac{I_{z\max}}{I_{z\min}} \cong 10$$

$$R_{i} = \frac{V_{PS \min} - 0.1V_{PS \max} - 0.9V_{Z}}{I_{L \max} - 0.1I_{L \min}}$$

#### **Example (continued)**

Design Problem: Determine R<sub>i</sub> and zener diode specifications such that output voltage is +12V, load current can vary between 0 to 0.1A. The input voltage may vary between 18 to 15.5V.

$$R_{i} = \frac{V_{PS\min} - 0.1V_{PS\max} - 0.9V_{Z}}{I_{L\max} - 0.1I_{L\min}} = 29\Omega$$

$$I_{Z \max} = \frac{V_{PS \max} - V_{Z}}{R_{i}} - I_{L \min} = 0.207A$$

$$I_{Z\min} = \frac{V_{PS\min} - V_{Z}}{R_{i}} - I_{L\max} = 0.0207$$

$$P_{Z\max} = V_Z I_{Z\max} = 2.48W$$

### Abstractions

An abstract representation is a simplified representation that has appropriate level of detail for the problem being addressed.



### Limitation of Single Port Network



How do we build a simplified representation of only this portion of the circuit?

Thevenin's or Norton's Theorem are not Sufficient

### Analysis of Elements Occurring In Circuits



How do we analyze circuits containing new components?

### Two-Port Networks



- Port: A pair of terminals through which a signal can enter/leave the network
- Constraints on analysis:
  - 1. Linear elements only (R,L,C, dependent sources,..)
  - 2. No independent sources or stored energy inside the network

No matter how complicated is the circuit inside the two-port network, it can be represented by only <u>four</u> elements!

## Popular Forms of Two Port Network

- Z (Impedance) Parameters
- Y (Admittance) Parameters
- H (Hybrid) Parameters
- G (Inverse Hybrid) Parameters

## Z or Impedance Parameters



$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix}$$



### Z Parameter Determination

$$V_1 = z_{11}I_1 + z_{12}I_2$$

$$V_1 = z_{11}I_1 + z_{12}I_2 \qquad V_2 = z_{21}I_1 + z_{22}I_2$$



$$z_{11} = \frac{V_1}{I_1} \bigg|_{I_2 = 0}$$

$$z_{12} = 0$$
  $z_{11} = \frac{V_1}{I_1} \Big|_{I_2 = 0}$   $z_{21} = \frac{V_2}{I_1} \Big|_{I_2 = 0}$ 



$$z_{22} = \frac{V_2}{I_2} \bigg|_{I_1 = 0}$$

$$Z_{12} = \frac{V_1}{I_2} \bigg|_{I_1 = 0}$$

### Y or Admittance Parameters



$$I_1 = y_{11}V_1 + y_{12}V_2$$

$$I_1 = y_{11}V_1 + y_{12}V_2$$
  $I_2 = y_{21}V_1 + y_{22}V_2$ 

$$\begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$$



#### For comparison



## H or Hybrid Parameters



$$\begin{pmatrix} V_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \begin{pmatrix} I_1 \\ V_2 \end{pmatrix}$$



# G or Inverse Hybrid Parameters



$$I_1 = g_{11}V_1 + g_{12}I_2$$

$$I_1 = g_{11}V_1 + g_{12}I_2$$
  $V_2 = g_{21}V_1 + g_{22}I_2$ 

$$\begin{pmatrix} I_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} V_1 \\ I_2 \end{pmatrix}$$



#### Representation of Complex Elements Within Circuits



Two port network allows transistor representation in terms of familiar elements.



# Why amplify?

Key to analog and digital processing



Active Device: supplies power

### Noise tolerance

Amplification is the key to noise tolerance during communication



### Noise tolerance



# Simple voltage amplifier



$$V_o = G V_i$$
Gain
 $G > 1$ 

• Equivalent representation



Note:  $V_i$  depends on  $I_1$  but does not depend on  $I_o$ 

 $V_o$  depends on  $I_1$  and  $I_o$ 

# Voltage amplifier parameters



$$I_o = g_m V_i + g_o V_o$$

$$R_i = \frac{V_i}{I_i}$$

Input resistance

$$g_m = \frac{I_o}{V_i} \bigg|_{V_o = 0}$$

Trans-conductance

$$g_o = \frac{1}{r_o} = \frac{I_o}{V_o} \bigg|_{V_i = 0}$$

Output conductance

Large

Large

Small

# Amplifier circuits



Dr. Shubham Sahay ESC201

25

## Voltage gain



$$V_o = -g_m V_i \times r_o \| R_L$$

$$A_V = \frac{V_O}{V_S} = -g_m r_O \times \frac{R_L}{r_O + R_L} \times \frac{R_i}{R_i + R_S}$$

Necessary Condition for Voltage Amplification

$$|A_V| \le g_m \times r_0$$
$$g_m \times r_0 > 1$$

$$R_i$$
 Large

$$g_m$$
 Large

$$r_o$$
 Large

# High voltage gain

$$g_m r_o >> 1$$

$$g_m >> \frac{1}{r_o} = g_o$$

Trans-conductance >> Output Conductance Trans-resistance << Output resistance

i.e. current  $I_O$  is much more sensitive to  $V_{IN}$  than  $V_O$ 



# High voltage gain



i.e. current  $I_O$  is much more sensitive to  $V_{IN}$  than  $V_O$ 

- Can be used for voltage amplification
- Can be used as a switch
- Implement logic

• . . .