

Программный комплекс для скрытой передачи данных в потоковом видео

Выполнил: **Рудь И.В.** (гр. 5811)

Научный руководитель: Пойманова Е.Д. (доцент, к.т.н.)

Актуальность

На данный момент существуют сервисы по однократному сокрытию данных в статических файлах, а также чаты, использующие хранящееся на сервере статическое изображение в качестве скрытого канала связи.

OpenPuff

Steganography-Chat

Цели и задачи

Целью данной выпускной квалификационной работы является разработка сервиса, позволяющего обмениваться сообщениями, используя в качестве скрытого канала передачи непрерывный поток видеокадров.

Задачи:

- Организация потоковой передачи видеокадров
- Реализация стеганографического модуля
- Разработка архитектуры программного комплекса
- Реализация многопользовательского режима

Структурная схема решения

Потоковая передача

Потоковая передача данных в настоящем программном комплексе реализована с помощью протокола AMQP (англ. *Advanced Message Queuing Protocol*). В качестве брокера используется RabbitMQ.

Определяющими характеристиками AMQP-протокола являются:

- Ориентирование сообщений;
- Организация очереди на стороне сервера;
- Гарантия доставки и целостности.

Стеганографический модуль

- LSB (наименее значимый бит)
- Метод псевдослучайного интервала

Архитектура программного комплекса

Сервер

- Язык разработки: **Python 3.9**
- Работа с видеопотоком: **OpenCV**
- Кодирование видеокадров: **Base64**
- Организация передачи: RabbitMQ (AMQP-протокол)

Интерфейс пользователя

- Язык разработки: **Python 3.9**
- Система управления базой данных: PostgreSQL
- Работа с базой данных: **psycopg2**
- Шифрование сообщений: cryptocode (AES)
- Организация передачи: **RabbitMQ (AMQP-протокол)**

База данных

В разработанном программном комплексе предусмотрено хранение параметров пользователей в базе данных, поддерживаемой системой управления PostgreSQL.

Название поля	Тип данных	Описание
user_id	Number (число)	Уникальный идентификатор пользователя
login	String (строка)	Имя пользователя
password	String(строка)	Пароль пользователя. Хранится не сам пароль в открытом виде, а его
		хэш-код
Key	String(строка)	Ключ пользователя. Используется для шифрования сообщений. Сгенерирован автоматически с помощью хэш-функции

user_id	1	3
login	1	ruddi
password	1	bcb41ccdc4363c6848a1d760f26c28a0
key	1	00c5fbfe94a538875a747023cd9fc727

Получатель

- Язык разработки: **Python 3.9**
- Система управления базой данных: PostgreSQL
- Работа с базой данных: psycopg2
- Декодирование видеокадров: **Base64**
- Организация передачи: RabbitMQ (AMQPпротокол)

Визуализатор

- Язык разработки: **Python 3.9**
- Веб-сервер: Flask
- Декодирование видеокадров: **Base64**
- Организация передачи: **RabbitMQ (AMQP-протокол)**

Оценка производительности

- Процессор: Apple Silicon M1 (8 ядер, 3.2ГГц)
- Оперативная память: 8 Гб
- Длина сообщения: 512 символов

кадров в секунд, частота кадров исходного видеопотока

кадров в секунд, частота кадров выходного видеопотока

показатель потери кадров

секунд, среднее время обработки кадра

Нагрузочное тестирование

1000 символов ≈ 170 слов

Анализ трафика

размер пакета в программном комплексе

средний размер пакета в стандартном мессенджере

Заключение

- Разработана архитектура программного комплекса
- Разработан и реализован стеганографический модуль
- Организован процесс потоковой передачи данных
- Реализован многопользовательский режим
- Проведен экспериментальный анализ

Программный комплекс для скрытой передачи данных в потоковом видео

Выполнил: **Рудь И.В.** (гр. 5811)

Научный руководитель: Пойманова Е.Д. (доцент, к.т.н.)