data.head(10)

\Box		Hours	Scores	7
	0	2.5	21	
	1	5.1	47	
	2	3.2	27	
	3	8.5	75	
	4	3.5	30	
	5	1.5	20	
	6	9.2	88	
	7	5.5	60	
	8	8.3	81	
	9	2.7	25	

```
import matplotlib.pyplot as plt
Hours = [2.5,5.1,3.2,8.5,3.5,1.5,9.2,5.5,8.3,2.7,7.7,5.9,4.5,3.3,1.1,8.9,2.5,1.9,6.1,7.4,2.7,5.5cores = [21,47,27,75,30,20,88,60,81,25,85,62,41,42,17,95,30,24,67,69,30,54,35,76,86]
plt.scatter(Hours, Scores, c = "blue")

# To show the plot
plt.title('Hours vs Percentage')
plt.xlabel('Hours Studied')
plt.ylabel('Percentage Score')
plt.show()
```

```
Hours vs Percentage
        90
        80
      Percentage Score
        70
        60
        40
        30
X = data.iloc[:, :-1].values
y = data.iloc[:, 1].values
                             Hours acquired
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
                              test_size=0.2, random_state=0)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
     LinearRegression()
# Plotting the regression line
line = regressor.coef_*X+regressor.intercept_
# Plotting for the test data
plt.scatter(X, y)
plt.plot(X, line);
plt.show()
```



```
print(X_test)
y_pred = regressor.predict(X_test)
```

```
[[1.5]
[3.2]
[7.4]
[2.5]
[5.9]]
```

```
# Comparing Actual vs Predicted
df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
df
```

	Actual	Predicted	77
0	20	16.884145	
1	27	33.732261	
2	69	75.357018	
3	30	26.794801	
4	62	60.491033	

Mean Absolute Error: 4.183859899002982