Groupe IPESUP Année 2022-2023

DEVOIR MAISON N°3

(Temps: 3 heures)

L'objectif de ce devoir est de vous amener à calculer trois "belles" limites :

$$\Box \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6}$$
 (zêta de Riemann en 2)

$$\Box \lim_{n \to +\infty} \frac{\sqrt{n}}{2^{2n}} \binom{2n}{n} = \frac{1}{\sqrt{\pi}}$$
 (formule de Wallis)

$$\Box \lim_{n \to +\infty} \frac{1}{n!} \left(\frac{n}{e} \right)^n \sqrt{2n\pi} = 1$$
 (formule de Stirling)

I Préliminaires

Pour tout $n \in \mathbb{N}$, on pose : $a_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$

(intégrales de Wallis).

- 1. Calculer a_0 et a_1 , puis montrer que pour tout $n \in \mathbb{N} : a_n > 0$.
- 2. Montrer que pour tout $n \in \mathbb{N}$: $a_{n+2} = \frac{n+1}{n+2}a_n$.

II Calcul de la valeur en 2 de la fonction zêta de Riemann

Pour tout $n \in \mathbb{N}$, on pose : $b_n = \int_0^{\frac{\pi}{2}} t^2 \cos^{2n}(t) dt$.

- 1. (a) Montrer que pour tout $t \in \left[0, \frac{\pi}{2}\right] : t \leqslant \frac{\pi}{2}\sin(t)$.
 - (b) En déduire que pour tout $n \in \mathbb{N} : 0 \leq b_n \leq \frac{\pi^2}{4} (a_{2n} a_{2n+2}).$
 - (c) En déduire enfin la limite : $\lim_{n\to+\infty} \frac{b_n}{a_{2n}} = 0$.
- 2. (a) Montrer que pour tout $n \in \mathbb{N}$: $a_{2n+2} = (2n+2) \int_0^{\frac{\pi}{2}} t \sin(t) \cos^{2n+1}(t) dt$.
 - (b) En déduire que pour tout $n \in \mathbb{N}$: $\frac{a_{2n+2}}{n+1} = (2n+1)b_n (2n+2)b_{n+1}$.
 - (c) En déduire que pour tout $n \in \mathbb{N}$: $2\left(\frac{b_n}{a_{2n}} \frac{b_{n+1}}{a_{2n+2}}\right) = \frac{1}{(n+1)^2}$.
 - (d) En déduire enfin l'existence et la valeur de $\lim_{n\to+\infty}\sum_{k=1}^n\frac{1}{k^2}$, que l'on note également : $\sum_{k=1}^{+\infty}\frac{1}{k^2}$.

III Formule de Wallis

Pour tout $n \in \mathbb{N}$, on pose : $\rho_n = \frac{a_{2n}}{a_{2n+1}}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$: $\rho_n = \frac{(2n+1)\pi}{2^{4n+1}} \binom{2n}{n}^2$.
- 2. (a) Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est décroissante.
 - (b) En déduire un encadrement de ρ_n pour tout $n \in \mathbb{N}$, puis la limite : $\lim_{n \to +\infty} \rho_n = 1$.
 - (c) En déduire la formule de Wallis.

Groupe IPESUP Année 2022-2023

IV Formule de Stirling

On note f la fonction $x \mapsto \left(x + \frac{1}{2}\right) \ln\left(1 + \frac{1}{x}\right)$ et g la fonction $x \mapsto f(x) - \frac{1}{12x} + \frac{1}{12(x+1)}$, toutes deux définies sur \mathbb{R}_+^* .

On pose également pour tout $n \in \mathbb{N}^*$: $u_n = \frac{n^{n+\frac{1}{2}}}{n!e^n}$ et $v_n = \ln{(u_n)}$

- 1. (a) Montrer que pour tout x > 0: $f''(x) = \frac{1}{2x^2(x+1)^2}$, et simplifier de même g'' sur \mathbb{R}_+^* .
 - (b) En déduire que f est minorée par 1 , et g majorée par 1 sur $\mathbb{R}_+^*.$
- 2. (a) Exprimer $v_{n+1} v_n$ à l'aide de la fonction f pour tout $n \in \mathbb{N}^*$.
 - (b) En déduire que la suite $(v_n)_{n\in\mathbb{N}^*}$ est croissante et majorée, puis que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers un réel strictement positif ℓ .
 - (c) Montrer, en étudiant pour tout $n \in \mathbb{N}^*$ le rapport $\frac{u_n^2}{u_{2n}}$, que : $\ell = \frac{1}{\sqrt{2\pi}}$. En déduire la formule de Stirling.