Recall:

- ullet A vector space is a set V equipped with operations of addition and multiplication by scalars. These operations must satisfy some properties.
- Some examples of vector spaces:
 - 1) \mathbb{R}^n = the vector space of column vectors.
 - 2) $\mathcal{F}(\mathbb{R}) = \text{the vector space of all functions } f : \mathbb{R} \to \mathbb{R}.$
 - 3) $C(\mathbb{R})$ = the vector space of all continuous functions $f: \mathbb{R} \to \mathbb{R}$.
 - 4) $C^{\infty}(\mathbb{R})$ = the vector space of all smooth functions $f: \mathbb{R} \to \mathbb{R}$.
 - 5) $M_{m,n}(\mathbb{R}) = \text{the vector space of all } m \times n \text{ matrices.}$
 - 6) $\mathbb{P}=$ the vector space of all polynomials.
 - 7) \mathbb{P}_n = the vector space of polynomials of degree $\leq n$.

ullet If V, W are vector spaces then a linear transformation is a function $T\colon V\to W$ such that

1)
$$T(u + v) = T(u) + T(v)$$

2)
$$T(cv) = cT(v)$$

Example:

- i) Any linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is given by a matrix multiplication T(v) = Av
- 2) Differentiation of functions is a linear thoursformation:

$$D: C^{\infty}(\mathbb{R}) \longrightarrow C^{\infty}(\mathbb{R})$$

$$f \longmapsto f'$$

- ullet Many problems involving \mathbb{R}^n can be easily solved using row reduction, matrix multiplication etc.
- The same types of problems involving other vector spaces can be difficult to solve.

Next goal:

If V is a finite dimensional vector space then we can construct a $\emph{coordinate}$ $\emph{mapping}$

 $V \to \mathbb{R}^n$

which lets us turn computations in V into computations in \mathbb{R}^n .

Motivation: How to assign coordinates to vectors

Upshot: In order to define a coordinate system in a vector space V we need to select vectors bis..., bp such that any vector veV can be written as $V = c_1 b_1 + c_2 b_2 + ... + c_p b_p$ in a unique way. Then v will have coordinates $\begin{bmatrix} c_2 \\ c_2 \end{bmatrix}$ relative to $\{b_1, ..., b_p\}$.

Definition

If V is a vector space then vector $\mathbf{w} \in V$ is a *linear combination* of vectors $\mathbf{v}_1, \dots \mathbf{v}_p \in V$ if there exist scalars c_1, \dots, c_p such that

$$w = c_1 v_1 + \ldots + c_p v_p$$

Definition

If V is a vector space and v_1, \ldots, v_p are vectors in V then

$$Span(v_1, ..., v_p) = \begin{cases} the set of all \\ linear combinations \\ c_1v_1 + ... + c_pv_p \end{cases}$$

Definition

If V is a vector space and v_1, \ldots, v_p are vectors in V such that

$$V = \operatorname{Span}(v_1, \ldots, v_p)$$

the the set $\{v_1, \ldots, v_p\}$ is called the *spanning set* of V.

Note: If {v,,, vp} is a spanning set on V then every vector weV is a linear combination of v,,, vp:

Example.

or
$$\mathbb{R}^3$$
 the set $\{\begin{bmatrix} 1\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\end{bmatrix}\}$ is

a spanning set since for any vector
$$v = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$
 we have

Pz: the vector space of polynomials of degree { 2 2) Recall: = {aota,t + azt |aieR}

The set
$$\{p_0(t)=1, p_1(t)=t, p_2(t)=t^2\}$$

is a spanning set of \mathbb{F}_2 since if $q(t)=a_0+q_1t+a_2t^2$
is in \mathbb{F}_2 then

3) The set $\{s_1(t) = t^2 + t + 1, s_2(t) = t + 1, s_3(t) = 1\}$ is also a spanning set of Pe since q(t) = a + a, E + azt con be withen as follows:

$$q(t) = a_z (1+t+t^2) + (a_1-a_2)(1+t) + (a_0-a_1) \cdot 1$$

= $a_z s_1(t) + (a_1-a_2) s_z(t) + (a_0-a_1) \cdot s_3(t)$

Definition

If V is a vector space and $v_1, \ldots, v_p \in V$ then the set $\{v_1, \ldots, v_p\}$ is *linearly independent* if the homogenous equation

$$x_1\mathbf{v}_1+\ldots+x_p\mathbf{v}_p=\mathbf{0}$$

has only one, trivial solution $x_1 = 0, ..., x_p = 0$. Otherwise the set is linearly dependent.

Theorem

Let V be a vector space, and let $v_1, \ldots, v_p \in V$. If the set $\{v_1, \ldots, v_p\}$ is linearly independent then the equation

$$x_1\mathbf{v}_1 + \ldots + x_p\mathbf{v}_p = \mathbf{w}$$

has exactly one solution for any vector $\mathbf{w} \in \mathsf{Span}(\mathbf{v}_1, \dots, \mathbf{v}_p)$.

Proof: The same as for vector equations in R" (see p. 43 of these notes)

Example.

Recall: $\mathcal{F}(\mathbb{R})$ = the vector space of all functions $f: \mathbb{R} \to \mathbb{R}$. Let $f, g, h \in \mathcal{F}(\mathbb{R})$ be the following functions:

$$f(t) = \sin(t), \quad g(t) = \cos(t), \quad h(t) = \cos^2(t)$$

Check if the set $\{f, g, h\}$ is linearly independent.

Solutioni

We need to find all numbers
$$c_1$$
, c_2 , $c_3 \in \mathbb{R}$
such that $c_1(t) + c_2(t) + c_3(t) = 0$
1. a. $c_1(t) + c_2(t) + c_3(t) + c_3(t) = 0$

plug in t=0:
$$c_1 \cdot \sin 0 + c_2 \cos 0 + c_3 \cos^2 0 = 0$$

So we must have: $c_2 + c_3 = 0$

plug in
$$t=1\overline{t}$$
: $c_1 \sin n\overline{t}$, $+ c_2 \cos n\overline{t}$ $+ c_3 \cos^2 n\overline{t} = 0$

So we must have: $-c_2 + c_3 = 0$

plug in
$$t = \frac{\pi}{2}$$
: $C_1 \sin \frac{\pi}{2} + C_2 \cos \frac{\pi}{2} + c_3 \cos^2 \frac{\pi}{2} = 0$

so we must have $C_1 = 0$

We obtain:
$$\begin{cases}
c_2 + c_3 = 0 \\
-c_2 + c_3 = 0
\end{cases}$$
so:
$$\begin{cases}
c_1 = 0 \\
c_2 = 0
\end{cases}$$
This means that the set $(c_2 = 0) = (c_3 = 0$

Example.

Let $f, g, h \in \mathcal{F}(\mathbb{R})$ be the following functions:

$$f(t) = \sin^2(t), \quad g(t) = \cos^2(t), \quad h(t) = \cos 2t$$

Check if the set $\{f, g, h\}$ is linearly independent.

Solution:

We need to find all numbers $c_1, c_2, c_3 \in \mathbb{R}$ Such that $c_1 \sin^2(t) + c_2 \cos^2(t) + c_3 \cos 2t = 0$

plug in t=0:

$$C_1 \sin^2 O + c_2 \cos^2 O + c_3 \cos O = O$$

plus in to I

$$C_1 \sin^2 \frac{\pi}{2} + C_2 \cos^2 \frac{\pi}{2} + C_3 \cos \pi = 0$$

Thus any such numbers e, ez, cz, cz must sixtisfy

(C1 = C3

(C2 = -C3

Using trigonometry we can verify that $c_3 \sin^2 t - c_3 \cos^2 t + c_3 \cos 2t = 0$

for any value of c3.

This gives that the set {sin2t, cos2t, cos2t} is not linearly independent.

Definition

A basis of a vector space V is an ordered set of vectors

$$\mathcal{B} = \{b_1, \ldots, b_n\}$$

such that

- 1) Span $(\mathbf{b}_1, \ldots, \mathbf{b}_n) = V$
- 2) The set $\{b_1, ..., b_n\}$ is linearly independent.

Example:

In
$$\mathfrak{R}^n$$
 let $\alpha_1 = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$,..., $\alpha_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

The set $\mathcal{E} = \{e_1, e_2, ..., e_n\}$ is a basis of \mathbb{R}^n . This basis is called the standard basis of \mathbb{R}^n .

Example:

In
$$\mathbb{R}^2$$
 take $b_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $b_2 \in \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. The set $\mathbb{B} = \{b_1, b_2\}$.

is a basis of \mathbb{R}^2 . (Check: i) Span(b_1, b_2) = \mathbb{R}^2

2) $\{b_1, b_2\}$ is linearly indep.)

Example:

Let Pn = the vector space of polynomials of degree < n = {ao+a,t+...+anth |a; eR}

The set &= {1, t, t2,..., tn} is a basis of Pn.

This basis is called the standard basis of Pn.

Theorem

A set $\mathcal{B} = \{b_1, ..., b_n\}$ is a basis of a vector space V if any only if for each $v \in V$ the vector equation

$$x_1\mathbf{b}_1 + \ldots + x_n\mathbf{b}_n = \mathbf{v}$$

has a unique solution.

Proof: Since Span (bi,, bnt = V, thus for each ve V the equation

has a solution.

Since the set {b,,, bn} is linearly independent this solution is unique.

Definition

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis of a vector space V. For $\mathbf{v} \in V$ let c_1, \dots, c_n be the unique numbers such that

$$c_1\mathbf{b}_1 + \ldots + c_n\mathbf{b}_n = \mathbf{v}$$

Then the vector

$$\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} \in \mathbb{R}^n$$

is called the *coordinate vector of* \mathbf{v} *relative to the basis* \mathcal{B} and it is denoted by $[\mathbf{v}]_{\mathcal{B}}$.

Example. Let $\mathcal{E} = \{1, t, t^2\}$ be the standard basis of \mathbb{P}_2 , and let

$$p(t) = 3 + 2t - 4t^2$$

Find the coordinate vector $[p]_{\varepsilon}$.

Solution: We have: $p(t) = 3 \cdot 1 + 2 \cdot t + (-4) \cdot t^{2}$ $1^{4} \text{ vector of } \mathbb{E}$ $50: [p]_{g} = \begin{bmatrix} 3 \\ 2 \\ -4 \end{bmatrix}$

Example. Let $\mathcal{B} = \{1, 1+t, 1+t+t^2\}$. One can check that \mathcal{B} is a basis of \mathbb{P}_2 . Let

$$p(t) = 3 + 2t - 4t^2$$

Find the coordinate vector $[p]_{\mathcal{B}}$.

Solution: We have:

$$p(t) = 1 \cdot 1 + 6 \left(1 + t\right) + \left(-4\right) \left(1 + t + t^{2}\right)$$

$$1^{st} \text{ vector } 2^{ml} \text{ vector } 3^{rd} \text{ vector } 4^{rd} \text{ of } 15^{rd}$$

$$50: [p]_{B} = \begin{bmatrix} 1 \\ 6 \\ -4 \end{bmatrix}$$