Point Estimation and Sampling Distribution

Miaoyan Wang

Department of Statistics UW Madison

Topics

- Sample and Population
- Point estimation
 - Methods of Moments
 - Maximum Likelihood Estimation (next lecture)
- Sampling Distribution

Introduction

- A demanding course. Requires a general ability to do rigorous mathematical proofs and hands-on data analyses.
- Most students already have:
 - strong preparation in probability
 - linear algebra and analysis
 - basic statistics theory
 - hands on experience modeling data in R

With hard work, you can make up one or one and a half deficits. More than that, you will feel lost.

- The course assumes a significant level of mathematical maturity. The minimal levels of math preparation can be found in the book "Plane Answers to Complex Questions" (on canvas).
 - Linear Algebra: Appendix B1-B4 and B7
 - Probability: Appendix C, D

POPULATION

parameters (unknown)

POPULATION

parameters (unknown)

Sample

statistics (from data)

Population vs. Sample

- Population attributes
 - ▶ *X*, *Y*,... (capital letters): **random variable** following some probability model or data generating process
 - $m{ heta}, \mu, \sigma, ...$ (Greek letters): intrinsic **population parameters** in some probability model
- Sample attributes
 - $x_1, x_2, \bar{x}, s, ...$ (small letters): (a function of) the **observed** values/outcome of r.v.'s in a particular data set.
 - $\hat{\theta}, \hat{\mu}, \hat{\sigma}, ...$ ("hat"): **estimated parameter/estimate** from a particular data set.
- Example: A survey conducted by a research in art education found that 17% of those surveyed had taken one course in dance in their life.
 Q: Is the number 17% a sample attribute or a population attribute?
 What is its standard error?

Sample and Statistics

- Let $(X_1, ..., X_n)$ be a random sample of size n. Any random variable $T = f(X_1, ..., X_n)$ as a function of $(X_1, ..., X_n)$ is called a **statistic**.
 - ▶ If we treat each X_i as a random variable, T is called an **estimator**.
 - ▶ If we plug X_i by the observed value from a particular sample, T is called an **estimate**.
- Dance Survey Problem: Is the 17% an estimate, estimator, or parameter? What is the statistics in this setting?
- Example:
 - ► The sample mean, defined by $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$, is a **statistics**.
 - ▶ The sample variance, defined by $S^2 = \sum_{i=1}^n \frac{(X_i \bar{X})^2}{n-1}$, is a **statistics**.
 - Why capital letter?
- Note: A statistic/estimator/estimate cannot involve any unknown parameter in its expression. For example, $\bar{X}-\mu$ is not a statistic if the population mean μ is unknown.

Sample and Statistics

- Key: A statistic (a function from sample) can be viewed as a **random variable** varying from sample to sample.
- How to infer the population attributes (parameter) from the sample statistic?
- Point estimate
 - ▶ Objective: obtain an "good" guess of a population parameter.
 - ▶ Methods: methods of moment, least sum of squares, MLE, etc.
- Interval estimate.
 - Objective: obtain an "good" interval in which the population parameter will most likely lie on.
 - Methods: Sampling distribution of statistics.

Point estimation (Method of moments)

- Use the data you have to calculate sample moments or centered sample moments.
- To fit a certain distribution, use relation to moments formula:
 - Option 1:

$$\mathbb{E}(X^k) = \hat{\mu}_k \equiv \frac{1}{n} \sum_{i=1}^n x_i^k$$

where $\mathbb{E}(X^k)$ is k-th population moments and $\hat{\mu}_k$ is k-th sample moment (from data);

▶ Option 2:

$$\mathbb{E}\left[\left(X - \mathbb{E}X\right)^{k}\right] \stackrel{\text{``="}}{=} \hat{\mu}'_{k} \equiv \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{k}$$

where $\mathbb{E}\left[\left(X-\mathbb{E}X\right)^k\right]$ is k-th centered population moments and $\hat{\mu}_k'$ is k-th centered sample moment.

Example: Method of Moments

• Suppose Michale recorded the temperatures $({}^{o}F)$ at noon for recent 10 days

50	60	45	52	67	76	80	68	75	82

• Sample Mean:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 65.5$$

Sample Variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = 173.83$

So 2nd centered sample moment:

$$\hat{\mu}_2' = \frac{n-1}{n}s^2 = 173.83 \times 9/10 = 156.45.$$

- ullet Note: $2^{
 m nd}$ centered sample moment μ_2' is different from sample variance s^2
- Question: why n-1 nor n in sample variance?

Example: Method of Moments

Temperature: 50 60 45 52 67 76 80 68 75 82

• Model 1: Suppose we want to fit an i.i.d. uniform U(a,b) model

$$f_X(x) = \frac{1}{b-a}$$
 $a \le x \le b$.

What is the estimate of a and b?

Recall that
$$E(X)=\frac{(a+b)}{2}$$
, and $Var(X)=\frac{(b-a)^2}{12}$. Now use "relation to moment" formula
$$\frac{(a+b)}{2}=E(X)$$
 "=" $\bar{x}=65.6$,

$$\frac{(b-a)^2}{12} = Var(X)$$
"=" $\hat{\mu}_2 = 156.45$.

Therefore we have $\hat{a} = 43.93, \hat{b} = 87.26$.

Example

Temperature: 50 60 45 52 67 76 80 68 75 82

• Model 2: Suppose we want to fit with an i.i.d. $N(\mu, \sigma)$ model

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2 \right].$$

i.e. what is the estimate of μ and σ ?

Remember $E(X) = \mu$, and $Var(X) = \sigma^2$. Now use "relation to moment" formula

$$\mu = E(X)$$
 "=" $\bar{x} = 65.6$,

$$\sigma^2 = Var(X)$$
"=" $\hat{\mu}_2 = 156.5$.

Solving the above gives $\hat{\mu}=65.6$ and $\hat{\sigma}=12.6$.

Generalization: method of moments

In general, estimate m parameters, need m sample moments

Exponential- (λ) Distribution

Sample Mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Population Mean

$$E(X) = 1/\lambda$$

• Parameter Estimate:

$$\hat{\lambda} = 1/\bar{x}$$

Possion(λ) Distribution

Sample Mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Population Mean

$$E(X) = \lambda$$

Parameter Estimate:

$$\hat{\lambda} = \bar{x}$$

Generalization: method of moments

Aren't there other estimators?

Exponential- (λ) Distribution

2nd centered sample moment

$$\mu_2' \equiv \frac{n-1}{n} s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - x)^2$$

Population Variance

$$Var(X) = 1/\lambda^2$$

Parameter Estimate:

$$\hat{\lambda} = \sqrt{1/\mu_2'} = \sqrt{\mathit{ns}^2/(\mathit{n}-1)}$$

Poisson(λ) Distribution

2nd centered sample moment

$$\mu_2' \equiv \frac{n-1}{n} s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - x)^2$$

Population Variance

$$Var(X) = \lambda$$

Parameter Estimate:

$$\hat{\lambda} = \mu_2' = \frac{n-1}{n} s^2$$

Method of Moments

- Advantages
 - Simple to calculate
 - Asymptotically normal (convergence to normal in distribution as the sample size $n \to \infty$)
- Disadvantages:
 - Inconsistent results (more than one estimator equation)
 - Could be biased

Sampling Distribution

Sampling Distribution: the probability distribution of a sample statistic under an assumed model.

Let (X_1, X_2, \dots, X_n) be an **i.i.d.** sample drawn from $N(\mu, \sigma^2)$.

Parameter	Estimator	Distribution	Property
(Population)	(Sample)	(do we need $n \to \infty$?)	
mean μ	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$rac{ar{X}-\mu}{\sigma/\sqrt{n}} o extcolor{N}(0,1)$	Unbiased
variance σ^2	$\hat{\sigma}^2(=S^2) = \frac{1}{(n-1)} \sum_{i=1}^n (X_i - \bar{X})^2$	$rac{(n-1)\hat{\sigma}^2}{\sigma^2} ightarrow \chi^2(n-1)$	Unbiased

ullet An estimator $\hat{ heta}$ for a parameter heta is called **unbiased estimator** if

$$\mathbb{E}(\hat{\theta}) = \theta$$

• Overestimate: $\mathbb{E}(\hat{\theta}) > \theta$; Underestiamte: $\mathbb{E}(\hat{\theta}) < \theta$.

Bias of Variance Estimator in MOM

Bias of variance estimator in MOM

Suppose X_1, \ldots, X_n are i.i.d. r.v.'s sampled from $N(\mu, \sigma^2)$. Let $\hat{\sigma}_{\text{MOM}}$ be the MOM estimator of σ . Show that the $\hat{\sigma}_{\text{MOM}}$ underestimates σ^2 .

Proof.

Recall that $\hat{\sigma}^2_{\text{MOM}} = \frac{1}{n} \sum_i (X_i - \bar{X})^2$, where $\bar{X} = \frac{1}{n} \sum_i X_i$. Then under the model $X_i \sim_{\text{i.i.d}} N(\mu, \sigma^2)$, we have

$$\mathbb{E}(n\hat{\sigma}_{\mathsf{MOM}}^2) = \sum_{i} X_i^2 - n(\bar{X})^2 = n(\mu^2 + \sigma^2) - n(\mu^2 + \frac{\sigma^2}{n}) = (n-1)\sigma^2.$$

Therefore,
$$\mathbb{E}(\hat{\sigma}_{\mathsf{MOM}}^2) = \frac{n-1}{n}\sigma^2 \leq \sigma^2$$
.

Exercise: Prove that $Var(\bar{X}) = \frac{\sigma^2}{n}$. What is the statistical implication? How is it different from $Var(X_i) = \sigma^2$, for all i = 1, ..., n.

Sampling Distribution of Estimators/Statistics

In general, let $\hat{\theta}$ be an estimator. How to find its bias?

- Express the estimator $\hat{\theta}$ as a function of sample $(X_1,...,X_n)$. (hint: don't plug in the numerical value associated with a particular sample.)
- Treat each component $X_1, ..., X_n$ as a random variable with the population distribution.
- Use the properties of expectation and variance to calculate the expectation of $\hat{\theta}$.
- Compare $\mathbb{E}(\hat{\theta})$ with the real population parameter θ .