HKDSE MATH M2 Practice Paper

1. HKDSE Math M2 Practice Paper Q1

Find the coefficient of x^5 in the expansion of $(2-x)^9$. (4 marks)

2. HKDSE Math M2 Practice Paper Q2

Consider the following system of linear equation in x, y, z

$$\begin{cases} x - 7y + 7z = 0 \\ x - ky + 3z = 0 \\ 2x + y + kz = 0 \end{cases}$$
, where k is a real number.

If the system has non-trival solutions, find the two possible values of k. (4 marks)

3. HKDSE Math M2 Practice Paper Q3

Prove by mathematical induction that $4^n + 15n - 1$ is divisible by 9 for all positive integers n. (5 marks)

4. HKDSE Math M2 Practice Paper Q4

- (a) Let $x = \tan \theta$, show that $\frac{2x}{1+x^2} = \sin 2\theta$.
- (b) Using (a), find the greatest value of $\frac{(1+x)^2}{1+x^2}$, where x is real.

(5 marks)

5. HKDSE Math M2 Practice Paper Q5

- (a) It is given that $\cos(x+1) + \cos(x-1) = k \cos x$ for any real x. Find the value of k.
- (b) Without using a calculator, find the value of $\begin{vmatrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 4 & \cos 5 & \cos 6 \\ \cos 7 & \cos 8 & \cos 9 \end{vmatrix}$.

(6 marks)

6. HKDSE Math M2 Practice Paper Q6

Find $\frac{d}{dx}\left(\frac{1}{x}\right)$ from first principles. (4 marks)

7. HKDSE Math M2 Practice Paper Q7

Let $f(x) = e^x(\sin x + \cos x)$.

- (a) Find f'(x) and f''(x).
- (b) Find the value of x such that f''(x) f'(x) + f(x) = 0 for $0 \le x \le \pi$.

(5 marks)

8. HKDSE Math M2 Practice Paper Q8

- (a) Using integration by substitution, find $\int \frac{dx}{\sqrt{4-x^2}}$.
- (b) Using integration by parts, find $\int \ln x \, dx$.

(5 marks)

9. HKDSE Math M2 Practice Paper Q9

Find the equations of the two tangents to the curve $x^2 - xy - 2y^2 - 1 = 0$ which are parallel to the straight line y = 2x + 1.

(6 marks)

10. HKDSE Math M2 Practice Paper Q10

- (a) Find $\int xe^{-x^2} dx$.
- (b) In Figure 1, the shaded region is bounded by the curves $y = \frac{x^2}{2}$ and $y = e^{-x^2}$, where $1 \le x \le 2$. Find the volume of the solid generated by revolving the shaded region about the y-axis.

(6 marks)

11. HKDSE Math M2 Practice Paper Q11

Let $A = \begin{pmatrix} \alpha + \beta & -\alpha\beta \\ 1 & 0 \end{pmatrix}$ where α and β are distinct real numbers. Let I be the 2×2 identity matrix.

- (a) Show that $A^2 = (\alpha + \beta)A \alpha\beta I$. (2 marks)
- (b) Using (a), or otherwise, show that $(A-\alpha I)^2=(\beta-\alpha)(A-\alpha I)$ and $(A-\beta I)^2=(\alpha-\beta)(A-\beta I)$. (3 marks)

- (c) Let $X = s(A \alpha I)$ and $Y = t(A \beta I)$ where s and t are real numbers. Suppose A = X + Y.
 - (i) Find s and t in terms of α and β .
 - (ii) For any positive integer n, prove that $X^n = \frac{\beta^n}{\beta \alpha} (A \alpha I)$ and $Y^n = \frac{\alpha^n}{\alpha \beta} (A \beta I)$.
 - (iii) For any positive integer n, express A^n in the form of pA + qI, where p and q are real numbers. [Note: It is known that for any 2×2 matrices H and K, if $HK = KH = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, then $(H + K)^n = H^n + K^n$ for any positive integer n.]

(9 marks)

12. HKDSE Math M2 Practice Paper Q12

Let $\overrightarrow{OA} = \mathbf{i}$, $\overrightarrow{OB} = \mathbf{j}$ and $\overrightarrow{OC} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ (see Figure 2). Let M and N be points on the straight lines AB and OC respectively such that AM : MB = a : (1 - a) and ON : NC = b : (1 - b), where 0 < a < 1 and 0 < b < 1. Suppose that MN is perpendicular to both AB and OC.

Figure 2

- (a) (i) Show that $\overrightarrow{MN} = (a+b-1)\mathbf{i} + (b-a)\mathbf{j} + b\mathbf{k}$.
 - (ii) Find the values of a and b.
 - (iii) Find the shortest distance between straight lines AB and OC.

(8 marks)

- (b) (i) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.
 - (ii) Let G be the projection of O on the plane ABC, find the coordinates of the intersecting point of the two straight lines OG and MN.

(5 marks)

13. HKDSE Math M2 Practice Paper Q13

(a) Let f(x) be an odd function for $-p \le x \le p$, where p is a positive constant. Prove that $\int_{0}^{2p} f(x-p) dx = 0$. Hence evaluate $\int_0^{2p} [f(x-p)+q] dx$, where q is a constant. (4 marks)

(b) Prove that
$$\frac{\sqrt{3} + \tan\left(x - \frac{\pi}{6}\right)}{\sqrt{3} - \tan\left(x - \frac{\pi}{6}\right)} = \frac{1 + \sqrt{3}\tan x}{2}.$$
(2 marks)

(c) Using (a) and (b), or otherwise, evaluate
$$\int_0^{\frac{\pi}{3}} \ln(1+\sqrt{3}\tan x) dx$$
. (4 marks)

14. HKDSE Math M2 Practice Paper Q14

(a) In Figure 3, the shaded region enclosed by the circle $x^2+y^2=25$, the x-axis and the straight line y=h (where $0 \le h \le 5$) is revolved about the y-axis. Show that the volume of the solid of revolution is $\left(25h-\frac{h^3}{3}\right)\pi$.

(2 marks)

Figure 3

(b) In Figure 4, an empty coffee cup consists of two portions. The lower portion is in the shape of the solid described in (a) with height 4 cm. The upper portion is a frustum of a circular cone. The height of the frustum is 8 cm. The radius of the top of the cup is 6 cm. Hot coffee is poured into the cup to a depth h cm at a rate of 8 cm³s⁻¹, where $0 \le h \le 12$. Let V cm³ be the volume of coffee in the cup.

Figure 4

- (i) Find the rate of increase of the depth of coffee when the depth is 3 cm.
- (ii) Show that $V = \frac{164\pi}{3} + \frac{3\pi}{64}(h+4)^3$ for $4 \le h \le 12$.
- (iii) After the cup is fully filled, suddenly it cracks at the bottom. The coffee leaks at a rate of $2 \text{ cm}^3 \text{s}^{-1}$. Find the rate of decrease of the depth of coffee after 15 seconds of leaking, giving your answer correct to 3 significant figures.

(11 marks)