ELL201 Lab Project

Saket Kandoi

 $2021\mathrm{MT}60265$

Sequence to be generated: $\{1,1,0,1,0,1\}$

Mealy FSM

Idle state: A (000) Unused state: A (000)

Minimum number of flip-flops needed = $\lceil \log_2 6 \rceil = 3$

A	000
В	001
C	010
D	011
E	100
F	101

Truth table

Cu	Current State Input Output Next State		e	[Flipflop	S				
\mathbf{Q}_{2}	$\mathbf{Q_1}$	Q_0	X	Υ	$\mathbf{Q_2}^{+}$	Q_1^+	Q_0^+	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	1	0	0	1
0	0	1	0	1	0	1	0	0	1	0
0	0	1	1	1	0	1	0	0	1	0
0	1	0	0	0	0	1	1	0	1	1
0	1	0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	1	0	0
0	1	1	1	1	1	0	0	1	0	0
1	0	0	0	0	1	0	1	1	0	1
1	0	0	1	0	1	0	1	1	0	1
1	0	1	0	1	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Note: Any stray states are redirected to idle state.

States are represented by $Q_2Q_1Q_0.D_0$ is the LSB and D_2 is the MSB.

Karnaugh Maps

$$D_0 = Q_2 Q_1' Q_0' + Q_2' Q_1 Q_0' + X Q_2' Q_0'$$

$$D_1 = Q_2' Q_1' Q_0 + Q_2' Q_1 Q_0'$$

$$D_2 = Q_2' Q_1 Q_0 + Q_2 Q_1' Q_0'$$

$$Y = Q_2'Q_0 + Q_2'Q_1'X + Q_2Q_1Q_0'$$

$Q_2Q_1\backslash Q_0X$	00	01	11	10
00	0	1	0	0
01	1	1	0	0
11	0	0	0	0
10	1	1	0	0

Figure 1: K-map for D_0

$Q_2Q_1\backslash Q_0X$	00	01	11	10
00	0	0	0	0
01	0	0	1	1
11	0	0	0	0
10	1	1	0	0

Figure 3: K-map for D_2

$Q_2Q_1\backslash Q_0X$	00	01	11	10
00	0	0	1	1
01	1	1	0	0
11	0	0	0	0
10	0	0	0	0

Figure 2: K-map for D_1

$Q_2Q_1\backslash Q_0X$	00	01	11	10
00	0	1	1	1
01	0	0	1	1
11	1	1	0	0
10	0	0	0	0

Figure 4: K-map for Y

D Flipflop

Positive edge triggered

FSM Implementation

Using 3 D Flipflops (code for simulation)

```
module FSM(
  input x,
  input clk,
  output y);
  wire D2,D1,D0;
  wire [2:0] Q;

assign y = (~Q[2] & Q[0])|(~Q[2] & ~Q[1] & x)|(Q[2] & Q[1] & ~Q[0]);
  assign D2 = (~Q[2] & Q[1] & Q[0])|(Q[2] & ~Q[1] & ~Q[0]);
  assign D1 = (~Q[2] & ~Q[1] & Q[0])|(~Q[2] & Q[1] & ~Q[0]);
```

Testbench Code

```
'timescale 1ns / 1ps
module testbench();
   reg clk;
   reg x;
   wire y;
   FSM f(x,clk,y);
   initial begin
      clk = 1'b0;
       forever #1 clk = ~clk;
   end
   initial begin
      x = 1,b0;
       #20
      x = 1'b1;
       #20
      x = 1,b0;
      #2
      x = 1'b1;
      #2
      x = 1'b1;
   end
endmodule
```

Output on Terminal

Output Waveform