Discrete Geometry: First Assignment

§1. PRESENTATION: REVIEW ON LINEAR ALGEBRA

PROBLEM 1. Let V be a vector space over a field \mathbb{F} and let v_1, \ldots, v_n be vectors in V. Prove that $S := \mathbf{LS}(v_1, \ldots, v_n)$ is a subspace of V.

SOLUTION FOR PROBLEM 1. Note that by taking all the scalars in the linear combination to be 0 we establish that $0 \in S$. Let $u, v \in S$, it suffice to show that $\alpha u + \beta v \in S$. Indeed,

$$\alpha u + \beta v = \alpha \sum_{i=1}^{n} \gamma_{i} v_{i} + \beta \sum_{i=1}^{n} \delta_{i} v_{i} = \sum_{i=1}^{n} \left(\underbrace{(\alpha \gamma_{i} + \beta \delta_{i})}_{\in \mathbb{F}} v_{i} \right) \in S.$$

Note that the first inequality follows directly from the definition of **LS**, the second equality yields from elementary algebra, and the third set membership follows (again) from the definition of **LS**.

PROBLEM 2. Is a single vector v_1 **LI** or **LD** (according to Definition 2)?

SOLUTION FOR PROBLEM 2. Note that v_1 is linearly dependent if there exists $\alpha_1 \neq 0$ such that

$$\alpha_1 v_1 = \mathbf{0} \implies \alpha_1 = 0.$$

Therefore, if $v_1 = \mathbf{0}$ then v_1 is linearly dependent. Otherwise, it is linearly independent.

§2. PRESENTATION: AFFINE SPACES

DEFINITION 1. *Points* p_1, \ldots, p_k *are* Affinely Dependent *if one of them is an affine combination of the others.*

DEFINITION 2. *Points* p_1, \ldots, p_k *are* Affinely Dependent *if there exists scalars* $\alpha_1, \ldots, \alpha_k$, *not all zero, such that*

$$\alpha_1 p_1 + \ldots + \alpha_k p_k = \mathbf{0} \text{ and } \alpha_1 + \ldots + \alpha_k = 0. \tag{2.1}$$

PROBLEM 3. Prove that the Definition 1 and Definition 2 are equivalent.

SOLUTION FOR PROBLEM 3.

Definition 1 \Longrightarrow **Definition 2**. Assume w.l.o.g.¹ that p_1 is affinely dependent of the others.

¹Indeed, one can reorder the elements such that it is holds.

That is,

$$p_1 = \sum_{i=2}^k \alpha_i p_i$$
, and $\sum_{i=2}^k \alpha_i = 1 \iff p_1 - \sum_{i=2}^k \alpha_i p_i = \mathbf{0}$, and $1 - \sum_{i=2}^k \alpha_i = 1 - 1 = 0$.

It follows that the Definition 2 is satisfied.

Definition 2 \Longrightarrow **Definition 1.** Suppose that Definition 2 is true, and let $\alpha_1, \ldots, \alpha_k$ satisfy (2.1). As the premise in this definition asserts that not all the coefficient are zero we can assume that $\alpha_1 \neq 0$ and therefore dividing both parts of (2.1) by α_1 yields

$$p_1 + \frac{\alpha_2}{\alpha_1}p_2 + \frac{\alpha_3}{\alpha_1}p_3 + \ldots + \frac{\alpha_k}{\alpha_1}p_k = \mathbf{0} \implies p_1 = -\left(\frac{\alpha_2}{\alpha_1}p_2 + \frac{\alpha_3}{\alpha_1}p_3 + \ldots + \frac{\alpha_k}{\alpha_1}p_k\right),$$

and moreover

$$1 + \frac{\alpha_2}{\alpha_1} + \frac{\alpha_3}{\alpha_1} + \ldots + \frac{\alpha_k}{\alpha_1} = 0 \implies -\left(\frac{\alpha_2}{\alpha_1} + \frac{\alpha_3}{\alpha_1} + \ldots + \frac{\alpha_k}{\alpha_1}\right) = 1.$$

It follows that Definition 1 is satisfied and hence the claim follows.

PROBLEM 4. Prove that d+2 points in \mathbb{R}^d are always **AD**.

LEMMA 5. A set of $k \ge 2$ points $p_1, \ldots, p_k \in \mathbb{R}^n$ is affinely dependent iff $p_2 - p_1, \ldots, p_k - p_1$ are linearly dependent.

PROOF OF LEMMA 5. Note that $p_1 = \alpha_2 p_2 + ... + \alpha_k p_k$ where $\alpha_2 + ... + \alpha_k = 1$ holds iff

$$\underbrace{(\alpha_2 + ... + \alpha_k)}_{=1} p_1 = \alpha_2 p_2 + ... \alpha_k p_k \iff \alpha_2 \cdot (p_2 - p_1) + \alpha_3 (p_3 - p_1) + ... + \alpha_k (p_k - p_1) = \mathbf{0}.$$

As $\alpha_2 + \ldots + \alpha_k = 1$ it follows that not all the scalars are zero and therefore the claim follows.

SOLUTION FOR PROBLEM 4. A well-known theorem in linear algebra states that every d+1 vectors in \mathbb{R}^d are linearly dependent. From Lemma 5 it follows that every d+2 points in \mathbb{R}^d are affinely dependent. Indeed, the r.h.s.² of Lemma 5 is a set of d+1 vectors in \mathbb{R}^d and therefore it is linearly dependent which implies that the set of d+2 points in the l.h.s. is affinely dependent.

PROBLEM 6. Prove that Affinely Dependent points are "unnecessary" for Affine Combination. That is, if $q \in \mathbb{R}^d$ is Affine Combination of $p_1, \ldots, p_k \in \mathbb{R}^d$ and p_1 is an Affine combination of p_2, \ldots, p_k . Then, q is an Affine Combination of p_2, \ldots, p_k .

²Right-hand side with respect to the if and only if logical statement.

SOLUTION FOR PROBLEM 6. It follows from the definition of affine combination that

$$p_1 = \alpha_2 p_2 + ... \alpha_k p_k$$
 , $\alpha_2 + ... + \alpha_k = 1$ (2.2)

$$q = \beta_1 p_1 + ... + \beta_k p_k$$
 , $\beta_1 + ... + \beta_k = 1$. (2.3)

Substitute 1.h.s. of (2.2) in (2.3) yields

$$q = \beta_1 \underbrace{(\alpha_2 p_2 + ... \alpha_k p_k)}_{p_1} + \beta_2 p_2 + ... + \beta_k p_k$$

$$= (\beta_1 \alpha_2 + \beta_2) p_2 + (\beta_1 \alpha_3 + \beta_3) p_3 + ... + (\beta_1 \alpha_k + \beta_k) p_k = \sum_{i=2}^k (\beta_1 \alpha_i + \beta_i) p_i$$

In order to show that the last term is indeed an affine combination it remains to prove that the coefficients of the p_i 's sums up to 1. To that end, note that

$$\sum_{i=2}^{k} (\beta_1 \alpha_i + \beta_i) = \beta_1 \sum_{i=2}^{k} \alpha_i + \sum_{i=2}^{k} \beta_i = \beta_1 \cdot 1 + (1 - \beta_1) = 1,$$

where the second inequality follows from (2.2) and (2.3).

PROBLEM 7. Assume F is an affine subspace of \mathbb{R}^d . Show that F is affinely closed.

PROOF OF PROBLEM 7. Let $p_1, \ldots, p_k \in F$ and let $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ such that $\alpha_1 + \ldots + \alpha_k = 1$. We show that $\sum_{i=1}^k \alpha_i p_i \in F$. The definition of affine subspace establishes the existence of $w \in F$ and a linear subspace F' such that $F = \{v + w | v \in F'\}$. Hence for every $p'_1, \ldots, p'_k \in F'$ it holds that $\sum_{i=1}^k \alpha'_i p'_i \in F'$. In particular, fixing $p'_i = p_i - w$ for every $1 \le i \le k$ yields that

$$\sum_{i=1}^{k} \alpha_{i} p_{i}' = \sum_{i=1}^{k} \alpha_{i} (p_{i} - w) = \sum_{i=1}^{k} \alpha_{i} p_{i} - \sum_{i=1}^{k} \alpha_{i} w = \sum_{i=1}^{k} \alpha_{i} p_{i} - w \cdot \sum_{i=1}^{k} \alpha_{i} = \sum_{i=1}^{k} \alpha_{i} p_{i} - w.$$

It follows that $\sum_{i=1}^k \alpha_i p_i - w \in F'$ and therefore

$$\sum_{i=1}^{k} \alpha_i p_i = \underbrace{\left(\sum_{i=1}^{k} \alpha_i p_i - w\right)}_{\in F'} + w \in F.$$

3