Immune System & Engineering

BME2105

Immune Cells attacking Invaders

Overview: Recognition and Response

- Pathogens, agents that cause disease, infect a wide range of animals, including humans
- The immune system recognizes foreign bodies and responds with the production of immune cells and proteins
- All animals have innate immunity, a defense active immediately upon infection
- Vertebrates also have adaptive immunity

Immunity: Two Intrinsic Defense Systems

- Innate (nonspecific) system responds quickly and consists of:
 - First line of defense intact skin and mucosae prevent entry of microorganisms
 - Second line of defense antimicrobial proteins, phagocytes, and other cells
 - Inhibit spread of invaders throughout the body
 - Inflammation is its hallmark and most important mechanism

Immunity: Two Intrinsic Defense Systems

- Adaptive (specific) defense system
 - Third line of defense mounts attack against particular foreign substances
 - Takes longer to react than the innate system
 - Works in conjunction with the innate system

neutrophil

NEUTROPHIL

- multi-lobed nucleus.
- ▶ 50-70% of circulating WBC (higher numbers suggestive of bacterial infection).
- Phagocytosis and killing of ingested microorganisms.
- The phagosome fuses with granules to destroy internalized bacteria, oxygen dependent respiratory burst.
- DO NOT function as APCs.
- Neutrophils are the 1st cells to arrive. A number of substances produced during an inflammatory response recruit neutrophils to a site of inflammation.

lymphocyte

LYMPHOCYTES

- responsible for the specific immune response. Represent 20-40% of circulating WBC in blood extravasate and enter the tissues return 99% of cells in lymph
- small 6µm, contain a single nucleus, little visible cytoplasm around their nucleus.
- T lymphocytes and B lymphocytes and natural killer cells.
- T and B lymphocytes are small, motile, nonphagocytic cells which cannot be distinguished from each other morphologically.
- Once stimulated with antigen enlarges 15µm into a blast cell. Lymphoblasts further differentiate into effector cells or memory cells. [Plasma cells, T-helper cells, T-cytotoxic cells].
- The memory cells are long-lived cells that reside in the Go phase of the cell cycle until activated by a secondary encounter with antigen.
- Different lineages or different maturational stages of lymphocytes can be distinguished by their expression of membrane CD molecules (<u>Cluster of Differentiation (CD)</u>

T and B Lymphocytes

- T cells respond to antigens. Some of them (CD4+) secrete lymphokines which act on other cells involved in the immune response. Others (CD8+, cytotoxic) are able to cause lysis of infected cells.
- The major function of B lymphocytes is the production of antibodies in response to foreign proteins of bacteria, viruses, and tumor cells.
- Antibodies are specialized proteins that specifically recognize and bind to one particular protein that specifically recognize and bind to one particular protein.
- Antibody production and binding to a foreign substance or antigen, often is critical as a means of signaling other cells to engulf, kill or remove that substance from the body.

Dendritic Cells

- originate in the bone marrow
- function as antigen presenting cells (APC).
- found in the structural compartment of the lymphoid organs
- found in the bloodstream and other tissues of the body
- capture antigen or bring it to the lymphoid organs where an immune response is initiated.

Pathogens (such as bacteria, fungi, and viruses)

INNATE IMMUNITY (all animals)

- Recognition of traits shared by broad ranges of pathogens, using a small set of receptors
- Rapid response

Barrier defenses:

Skin

Mucous membranes Secretions

Internal defenses:

Phagocytic cells
Natural killer cells
Antimicrobial proteins
Inflammatory response

ADAPTIVE IMMUNITY (vertebrates only)

- Recognition of traits specific to particular pathogens, using a vast array of receptors
- Slower response

Humoral response:

Antibodies defend against infection in body fluids.

Cell-mediated response:

Cytotoxic cells defend against infection in body cells.

Adaptive immunity defends against infection of body fluids and body cells

- Acquired immunity has two branches: the humoral immune response and the cellmediated immune response
- In the humoral immune response antibodies help neutralize or eliminate toxins and pathogens in the blood and lymph
- In the cell-mediated immune response specialized T cells destroy affected host cells

Helper T Cells: A Response to Nearly All Antigens

- A type of T cell called a helper T cell triggers both the humoral and cellmediated immune responses
- Signals from helper T cells initiate production of antibodies that neutralize pathogens and activate T cells that kill infected cells
- Antigen-presenting cells have class I and class II MHC molecules on their surfaces

- Class II MHC molecules are the basis upon which antigen-presenting cells are recognized
- Antigen receptors on the surface of helper T cells bind to the antigen and the class II MHC molecule; then signals are exchanged between the two cells
- The helper T cell is activated, proliferates, and forms a clone of helper T cells, which then activate the appropriate B cells

Cytotoxic T Cells: A Response to Infected Cells

- Cytotoxic T cells are the effector cells in the cell-mediated immune response
- Cytotoxic T cells recognize fragments of foreign proteins produced by infected cells and possess an accessory protein that binds to class I MHC molecules
- The activated cytotoxic T cell secretes proteins that disrupt the membranes of target cells and trigger apoptosis

Cell-mediated Immunity

Animation: Cytotoxic T Cells Right-click slide / select "Play"

© 2011 Pearson Education, Inc.

B Cells and Antibodies: A Response to Extracellular Pathogens

The humoral response is characterized by secretion of antibodies by B cells

Activation of B Cells

- Activation of the humoral immune response involves B cells and helper T cells as well as proteins on the surface of pathogens
- In response to cytokines from helper T cells and an antigen, a B cell proliferates and differentiates into memory B cells and antibody- secreting effector cells called plasma cells

© 2011 Pearson Education, Inc.

Antibody Function

- Antibodies do not kill pathogens; instead they mark pathogens for destruction
- In neutralization, antibodies bind to viral surface proteins preventing infection of a host cell
- Antibodies may also bind to toxins in body fluids and prevent them from entering body cells

- In opsonization, antibodies bind to antigens on bacteria creating a target for macrophages or neutrophils, triggering phagocytosis
- Antigen-antibody complexes may bind to a complement protein—which triggers a cascade of complement protein activation
- Ultimately a membrane attack complex forms a pore in the membrane of the foreign cell, leading to its lysis

Flow of water

Pore

and ions

Neutralization

Opsonization

Activation of complement system and pore formation

Summary of the Humoral and Cell-Mediated Immune Responses

- Both the humoral and cell-mediated responses can include primary and secondary immune response
- Memory cells enable the secondary response

Active and Passive Immunization

- Active immunity develops naturally when memory cells form clones in response to an infection
- It can also develop following immunization, also called vaccination
- In immunization, a nonpathogenic form of a microbe or part of a microbe elicits an immune response to an immunological memory

- Passive immunity provides immediate, short-term protection
- It is conferred naturally when IgG crosses the placenta from mother to fetus or when IgA passes from mother to infant in breast milk
- It can be conferred artificially by injecting antibodies into a nonimmune person

Figure 43.20

Antibodies as Tools

- Antibody specificity and antigen-antibody binding have been harnessed in research, diagnosis, and therapy
- Polyclonal antibodies, produced following exposure to a microbial antigen, are products of many different clones of plasma cells, each specific for a different epitope
- Monoclonal antibodies are prepared from a single clone of B cells grown in culture

Antigenic Variation

- Through antigenic variation, some pathogens are able to change epitope expression and prevent recognition
- The human influenza virus mutates rapidly, and new flu vaccines must be made each year
- Human viruses occasionally exchange genes with the viruses of domesticated animals
- This poses a danger as human immune systems are unable to recognize the new viral strain

Cancer and Immunity

- The frequency of certain cancers increases when adaptive immunity is impaired
- 20% of all human cancers involve viruses
- The immune system can act as a defense against viruses that cause cancer and cancer cells that harbor viruses
- In 2006, a vaccine was released that acts against human papillomavirus (HPV), a virus associated with cervical cancer

Engineering the Immune System

