Deep Learning for Computer Vision

iMaterialist Challenge

Group 6
Francesca Mazzetti
Gaia Vaccarezza
Michele Scarnera
Michelle Luijten

Agenda

- Data Description
- Multi-Task Learning
- Explanation of different models
- Results

Apparel Classes

Shoe

14 tasks

Dress

11 tasks

Pants

10 tasks

Outerwear

10 tasks

Distributions of the classes in the dataset

42 029 images → 24642 images

8 432 images → 3000 images

Common tasks among the apparel classes

Material

70 labels

Color

68 labels

Gender

2 labels

Age

3 labels

The number of labels for *color* and *material* are reduced by grouping labels that only occurred < 1%

Multi-Task Learning

Information contained in other tasks could help predicting the apparel class.

Improve learning efficiency and prediction accuracy

Share hidden layers while keeping task-specific output layers

- Reduce risk of overfitting
- Focus on features that matter
- Pattern recognition

The Karate Kid

Two different models for predicting multiple tasks

Data Preprocessing

Rotation

45 degrees

Height shift

0.25 of the size

Horizontal flipping

half of the images

Zoom

0.2

Width shift

0.25 of the size

Training

Train each model 5 times

First apparel only, then apparel and one other task

Batch size = 128, number of epochs = 20

Early Stopping Method

When validation loss has a change of < 0.001 for more than int(max([6, 1+ $\sqrt{}$ epochs])) epochs

Configuration of the model with public layers

More details on the model with public layers

Input

Convolution and Max Pooling

3x

8, 16, 32 filters

Kernel size (4, 4)

ReLU activation

Pooling size (4, 4)

Flatten

Dropout Layer

dropout rate = 50%

Model on all tasks performs best when using Public Layers and 3 million parameters

tanh activation

ReLU activation

softmax activation

Optimizing Loss

Use of stochastic gradient descent method Adam

Apparel class has the highest weight, as it is marked most important

Usage of Sparse Categorical Cross Entropy function

Comparing validation loss and training loss

Validation loss of the different models

Examining validation accuracy

Validation accuracy of the different models

Apparel Baseline model 0.715

Apparel and Material 0.680

Apparel and Color 0.614

Apparel and Gender 0.656

Apparel and Age 0.653

Using precision and recall measures to evaluate the model

Precision

Of all images that we predicted as dresses, how many actually dresses?

Recall

Of all the images that dress, how many did we label as dresses?

Apparel-only

Baseline model

Using F1 scores to evaluate the models

Precision	0.70-0.78	0.64-0.75	0.54-0.73	0.58-0.75	0.61-0.74
Recall	0.64-0.84	0.63-0.78	0.45-0.65	0.58-0.81	0.52-0.83
F1-score	0.72	0.67	0.61	0.63	0.64

The apparel-only model with 3 million parameters and public layers performs best.

Multi-task learning did not improve the goodness of fit of the model.

Future Research

Perform hyperparameter selection

Adding regularization, pruning or pre-trained models

Grouping labels using an auto-encoder

Thank you!

Are there any questions?