Statistique Inférentielle Avancée

Durée: 3 heures.

Documents autorisés : notes manuscrites.

Les résultats vus en cours ou en TD peuvent être utilisés sans être redémontrés.

Les deux parties sont indépendantes.

Barème indicatif - Partie 1:12 pts, Partie 2:8 pts.

Première partie

On considère un échantillon de taille n de la loi uniforme sur $[\theta, 2\theta]$, avec $\theta > 0$. On a vu en TD que (X_1^*, X_n^*) est une statistique exhaustive et que l'estimateur de maximum de vraisemblance de θ est $X_n^*/2$.

1. Montrer que les densités de X_1^* et X_n^* sont respectivement :

$$f_{X_1^*}(x) = \frac{n}{\theta^n} (2\theta - x)^{n-1} \mathbb{1}_{[\theta, 2\theta]}(x)$$
 et $f_{X_n^*}(x) = \frac{n}{\theta^n} (x - \theta)^{n-1} \mathbb{1}_{[\theta, 2\theta]}(x)$.

- 2. Calculer la densité du couple (X_1^*, X_n^*) .
- 3. Calculer l'espérance de la loi uniforme sur $[\theta, 2\theta]$. En déduire l'estimateur de θ par la méthode des moments. Montrer qu'il est sans biais.
- 4. Calculer $E[X_1^*]$. En déduire un estimateur sans biais de θ ne dépendant que de X_1^* .
- 5. Calculer $E[X_n^*]$. En déduire un estimateur sans biais de θ ne dépendant que de X_n^* . Vérifier que l'estimateur de maximum de vraisemblance est biaisé mais asymptotiquement sans biais.
- 6. Montrer que la statistique exhaustive n'est pas complète.
- 7. On cherche un estimateur de θ de la forme $a_n X_1^* + b_n X_n^*$. Calculer son espérance et en déduire une condition reliant a_n et b_n pour que cet estimateur soit sans biais.
- 8. Calculer cet estimateur dans le cas où $a_n = b_n$.
- 9. On admet que $Var(X_1^*)=Var(X_n^*)=\frac{n\theta^2}{(n+1)^2(n+2)}$ et que $Cov(X_1^*,X_n^*)=\frac{\theta^2}{(n+1)^2(n+2)}.$

Calculer le meilleur estimateur sans biais de θ de la forme $a_n X_1^* + b_n X_n^*$.

Deuxième partie

Soient X_1, \ldots, X_n n variables aléatoires réelles indépendantes et de même loi, de variance $Var[X] = \mu_2$, de fonction de répartition F et telle que $E[X^4] < \infty$. On a vu en cours que :

$$\sqrt{n} \frac{S_n'^2 - \mu_2}{\sqrt{\mu_4 - \mu_2^2}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1),$$

où $\mu_4 = E[(X - E[X])^4]$, ce qui permet de montrer qu'un intervalle de confiance asymptotique de seuil α pour μ_2 est :

$$[S'_{n}^{2} - \frac{u_{\alpha}}{\sqrt{n}}\sqrt{\mu_{4}^{e} - S'_{n}^{4}}, S'_{n}^{2} + \frac{u_{\alpha}}{\sqrt{n}}\sqrt{\mu_{4}^{e} - S'_{n}^{4}}].$$

où
$$\mu_4^e = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}_n)^4$$
.

Quand n est trop petit, il est possible que la borne inférieure de cet intervalle soit négative, ce qui pose problème puisque la quantité à estimer, la variance, est positive. Pour résoudre ce problème, on utilise la variante de la méthode delta suivante.

Si $\{Y_n\}_{n\geq 1}$ est une suite de variables aléatoires réelles telle que

$$\sqrt{n} (Y_n - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2),$$

alors pour toute fonction dérivable φ , on a

$$\sqrt{n} \left[\varphi(Y_n) - \varphi(\theta) \right] \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2 \varphi'(\theta)^2).$$

- 1. Déterminez la loi asymptotique de $\sqrt{n} \left(\ln S'_n^2 \ln \mu_2 \right)$.
- 2. Montrer que $\frac{{S'}_n^2}{\sqrt{\mu_4^e-{S'}_n^4}}$ converge en probabilité vers $\frac{\mu_2}{\sqrt{\mu_4-\mu_2^2}}$.
- 3. En utilisant les 2 résultats précédents et le théorème de Slutsky, donnez un nouvel intervalle de confiance asymptotique de seuil α pour μ_2 , dont la borne inférieure est toujours positive.
- 4. De même, un intervalle de confiance asymptotique de seuil α pour F(x) est

$$\left[\mathbb{F}_n(x) - \frac{u_{\alpha}}{\sqrt{n}}\sqrt{\mathbb{F}_n(x)(1 - \mathbb{F}_n(x))}, \mathbb{F}_n(x) + \frac{u_{\alpha}}{\sqrt{n}}\sqrt{\mathbb{F}_n(x)(1 - \mathbb{F}_n(x))}\right]$$

Il peut arriver que la borne inférieure de cet intervalle soit négative et que la borne supérieure soit supérieure à 1.

En utilisant la méthode delta avec la fonction logit $\varphi(p) = \ln \frac{p}{1-p}$, construire un nouvel intervalle de confiance asymptotique de seuil α pour F(x). Montrer que les bornes de cet intervalle sont forcément comprises entre 0 et 1.