Algoritmi

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Intr	roduzione	2
	1.1	Confronto tra algoritmi	2
	1.2	Rappresentazione dei dati	2
2	Cal	colo della complessità	2
	2.1	Linguaggi di programmazione	2
		2.1.1 Blocchi iterativi	3
		2.1.2 Blocchi condizionali	3
		2.1.3 Blocchi iterativi	3
	2.2	Esempio	4
	2.3	Ordine di grandezza	4
		2.3.1 Esempi di dimostrazioni	7
3	Stu	dio degli algoritmi	9
	3.1		10
	3.2		11
	3.3		14
	3.4		16
	3.5	8	17
		1	18
		1	$\frac{19}{19}$
	3.6	- T	$\frac{10}{19}$
	3.7		$\frac{10}{20}$
	3.1	-	$\frac{20}{21}$
		0 000000000000000000000000000000000	

1 Introduzione

Un'algoritmo è una sequenza **finita** di **istruzioni** volta a risolvere un problema. Per implementarlo nel pratico si scrive un **programma**, cioè l'applicazione di un linguaggio di programmazione, oppure si può descrivere in modo informale attraverso del **pseudocodice** che non lo implementa in modo preciso, ma spiega i passi per farlo.

Ogni algoritmo può essere implementato in modi diversi, sta al programmatore capire qual'è l'opzione migliore e scegliere in base alle proprie necessità.

1.1 Confronto tra algoritmi

Ogni algoritmo si può confrontare con gli altri in base a tanti fattori, come:

- Complessità: quanto ci vuole ad eseguire l'algoritmo
- Memoria: quanto spazio in memoria occupa l'algoritmo

1.2 Rappresentazione dei dati

Per implementare un algoritmo bisogna riuscire a strutturare i dati in maniera tale da riuscire a manipolarli in modo efficiente.

2 Calcolo della complessità

La complessità di un algoritmo mette in relazione il numero di istruzioni da eseguire con la dimensione del problema, e quindi è una funzione che dipende dalla dimensione del problema.

La dimensione del problema è un insieme di oggetti adeguato a dare un idea chiara di quanto è grande il problema da risolvere, ma sta a noi decidere come misurare il problema.

Ad esempio una matrice è più comoda da misurare come il numero di righe e il numero di colonne, al posto di misurarla come il numero di elementi totali.

La complessità di solito si calcola come il **caso peggiore**, cioè il limite superiore di esecuzione dell'algoritmo.

2.1 Linguaggi di programmazione

Ogni linguaggio di programmazione è formato da diversi blocchi:

- 1. Blocco iterativo: un tipico blocco di codice eseguito sequenzialmente e tipicamente finisce con un punto e virgola.
- 2. Blocco condizionale: un blocco di codice che viene eseguito solo se una condizione è vera.
- 3. Blocco iterativo: un blocco di codice che viene eseguito ripetutamente finché una condizione è vera.

Questi sono i blocchi base della programmazione e se riusciamo a calcolare la complessità di ognuno di questi blocchi possiamo calcolare più facilmente la complessità di un intero algoritmo.

2.1.1 Blocchi iterativi

$$I_1$$
 $c_1(n)$
 I_2 $c_2(n)$
 \vdots \vdots
 I_l $c_l(n)$

Se ogni blocco ha complessità $c_1(n)$, allora la complessità totale è data da:

$$\sum_{i=1}^{l} c_i(n)$$

2.1.2 Blocchi condizionali

IF cond
$$c_{cond}(n)$$

$$I_1 c_1(n)$$
ELSE
$$I_2 c_2(n)$$

La complessità totale è data da:

$$c(n) = c_{cond}(n) + \max(c_1(n), c_2(n))$$

A volte la condizione è un test sulla dimensione del problema e in quel caso si può scrivere una complessità più precisa.

2.1.3 Blocchi iterativi

WHILE cond
$$c_{cond}(n)$$

$$I \qquad c_0(n)$$

Si cerca di trovare un limite superiore m al limite di iterazioni.

Di conseguenza la complessità totale è data da:

$$c_{cond}(n) + m(c_{cond}(n) + c_0(n))$$

2.2 Esempio

Esempio 2.1. Calcoliamo la complessità della moltiplicazione tra 2 matrici:

$$A_{n\times m} \cdot B_{m\times l} = C_{n\times l}$$

L'algoritmo è il seguente:

Partiamo calcolando la complessità del ciclo for più interno. Non ha senso tenere in considerazione tutti i dati, ma solo quelli rilevanti. In questo caso avremo:

$$(m+1+m(4)) = 5m+1$$

Questa complessità contiene informazioni poco rilevanti perchè possono far riferimento alla velocità della cpu e un millisecondo in più o in meno non cambia nulla se teniamo in considerazione solo l'incognita abbiamo:

m

Questo semplifica molto i calcoli, rendendo meno probabili gli errori. Siccome la complessità si calcola su numeri molto grandi, le costanti piccole prima o poi verranno tolte perchè poco influenti.

La complessità totale alla fine sarebbe stata:

$$5nml + 4ml + 2n + n + 1$$

Ma ciò che ci interessa veramente è:

$$5nml + 4ml + 2n + n + 1$$

Se non consideriamo le costanti inutili, la complessità finale è:

nml

Nella maggior perte dei casi ci si concentra soltanto sull'ordine di grandezza della complessità, e non sulle costanti.

2.3 Ordine di grandezza

L'ordine di grandezza è una funzione che approssima la complessità di un algoritmo:

$$f \in O(g)$$

$$\exists c > 0 \; \exists \bar{n} \; \; \forall n \geq \bar{n} \; \; f(n) \leq cg(n)$$

Figura 1: Esempio di funzione $f \in O(g)$

$$f \in \Omega(g)$$

$$\exists c > 0 \ \exists \bar{n} \ \forall n \geq \bar{n} \ f(n) \geq cg(n)$$

$$f \in \Theta(g)$$

$$f \in O(g) \land f \in \Omega(g)$$

Per gli algoritmi:

Definizione 2.1.

$$A \in O(f)$$

So che l'algoritmo A termina entro il tempo definito dalla funzione f. Di conseguenza se un algoritmo termina entro un tempo f allora sicuramente termina entro un tempo g più grande. Ad esempio:

$$A \in O(n) \Rightarrow A \in O(n^2)$$

Questa affermazione è corretta, ma non accurata.

$$A \in \Omega(f)$$

Significa che esiste uno schema di input tale che se g(n) è il numero di passi necessari per risolvere l'istanza n allora:

$$g \in \Omega(f)$$

Quindi l'algoritmo non termina in un tempo minore di f.

Calcolando la complessità si troverà lo schema di input tale che:

$$g \in O(f)$$

cioè il limite superiore di esecuzione dell'algoritmo.

Successivamente ci si chiede se esistono algoritmi migliori e si troverà lo schema di input tale che:

$$g \in \Omega(f)$$

cioè il limite inferiore di esecuzione dell'algoritmo.

Se i due limiti coincidono allora:

$$g \in \Theta(f)$$

abbiamo trovato il tempo di esecuzione dell'algoritmo.

Teorema 2.1 (Teorema di Skolem). Se c'è una formula che vale coi quantificatori esistenziali, allora nel linguaggio si possono aggiungere delle costanti al posto delle costanti quantificate e assumere che la formula sia valida con quelle costanti.

2.3.1 Esempi di dimostrazioni

Esempio 2.2. È vero che $n \in O(2n)$? Se prendiamo c=1 e $\bar{n}=1$ allora:

$$n \leq c2n$$

Quindi è vero

Esempio 2.3. È vero che $2n \in O(n)$? Se prendiamo c=2 e $\bar{n}=1$ allora:

$$2n \leq 2n$$

Quindi è vero

Esempio 2.4. È vero che $f \in O(g) \iff g \in \Omega(f)$? Dimostro l'implicazione da entrambe le parti:

 \bullet $\rightarrow:$ Usando il teorema di Skolem:

$$\forall n \ge \bar{n} \ f(n) \le cg(n)$$

Trasformo la disequazione:

$$\forall n \ge \bar{n} \ \frac{f(n)}{c} \le g(n)$$

$$\forall n \ge \bar{n} \ g(n) \ge \frac{f(n)}{c}$$

$$\forall n \geq \bar{n} \ g(n) \geq \frac{1}{c} f(n) \quad \Box$$

Se la definizione di $\Omega(g)$ è:

$$\exists c' > 0 \ \exists \bar{n}' \ \forall n \geq \bar{n}' \ f(n) \geq c'g(n)$$

sappiamo che:

$$c' = \frac{1}{c}$$

 \bullet
 —: Usando il teorema di Skolem:

$$\forall n \ge \bar{n}' \ g(n) \ge c' f(n)$$

Trasformo la disequazione:

$$\forall n \ge \bar{n}' \ \frac{g(n)}{c'} \ge f(n)$$

$$\forall n \geq \bar{n}' \ f(n) \leq \frac{1}{c'} g(n) \quad \Box$$

Esempio 2.5.

$$f_1 \in O(g)$$
 $f_2 \in O(g) \Rightarrow f_1 + f_2 \in O(g)$

Dimostrazione:

Ipotesi

$$\bar{n}_1 c_1 \ \forall n > n_1 \quad f_1(n) \le c_1 g(n)$$

 $\bar{n}_1 c_2 \ \forall n > n_2 \quad f_2(n) \le c_2 g(n)$

$$f_1(n) + f_2(n) \le (c_1 + c_2)g(n)$$

Quindi:

$$c = (c_1 + c_2)$$
$$\bar{n} = \max(\bar{n}_1, \bar{n}_2)$$

Esempio 2.6. Se

$$f_1 \in O(g_1) \ f_2 \in O(g_2)$$

è vero che:

$$f_1 \cdot f_2 \in O(g_1 \cdot g_2)$$

Dimostrazione:

Ipotesi

$$\bar{n}_1 c_1 \ \forall n > \bar{n}_1 \quad f_1(n) \le c_1 g_1(n)$$

 $\bar{n}_2 c_2 \ \forall n > \bar{n}_2 \quad f_2(n) \le c_2 g_2(n)$

$$f_1(n) \cdot f_2(n) \le (c_1 \cdot c_2)(g_1(n) \cdot g_2(n))$$

Quindi:

$$c = c_1 \cdot c_2$$
$$\bar{n} = \max(\bar{n}_1, \bar{n}_2)$$

3 Studio degli algoritmi

Il problema dell'ordinamento si definisce stabilendo la relazione che deve esistere tra **input** e **output** del sistema.

- Input: Sequenza (a_1, \ldots, a_n) di oggetti su cui è definita una relazione di ordinamento, cioè l'unico modo per capire la differenza tra due oggetti è confrontarli.
- Output: Permutazione (a'_1, \ldots, a'_n) di (a_1, \ldots, a_n) tale che:

$$\forall i < j \ a_i' \le a_i'$$

L'obiettivo è trovare un algoritmo che segua la relazione di ordinamento definita e risolva il problema nel minor tempo possibile.

3.1 Insertion sort

Divide la sequenza in due parti:

- Parte ordinata: Sequenza di elementi ordinati
- Parte non ordinata: Sequenza di elementi non ordinati

Figura 2: Parte ordinata e non ordinata

Pseudocodice:

La complessità di questo algoritmo è:

$$O(n^2)$$

Per capirlo è sufficiente guardare il numero di cicli nidificati e quante volte eseguono il codice all'interno.

Se l'array è già ordinato la complessità è:

$$\Omega(n)$$

Con l'input peggiore possibile la complessità è:

$$\Omega(n^2)$$

di conseguenza, visto che vale $O(n^2)$ e $\Omega(n^2)$ vale:

$$\Theta(n^2)$$

Quanto spazio in memoria utilizza questo algoritmo?

- Variabile j
- Variabile i
- Variabile key

A prescindere da quanto è grande l'array utilizzato, di conseguenza la memoria utilizzata è costante.

- Ordinamento in loco: se la quantità di memoria extra che deve usare non dipende dalla dimensione del problema allora si dice che l'algoritmo è in loco.
- Ordinamento non in loco: se la quantità di memoria extra che deve usare dipende dalla dimensione del problema allora si dice che l'algoritmo è non in loco.
- Stabilità: La posizione relativa di elementi uguali non viene modificata

L'insertion sort ordina in loco ed è stabile.

3.2 Fattoriale

```
1 Fatt(n)
2    if n = 0
3    ret 1
4    else
5    ret n * Fatt(n - 1)
```

L'argomento della funzione ci fa capire la complessità dell'algoritmo:

$$T(n) = \begin{cases} 1 & \text{se } n = 0 \\ T(n-1) + 1 & \text{se } n > 0 \end{cases}$$

Con problemi ricorsivi si avrà una complessità con funzioni definite ricorsivamente. Questo si risolve induttivamente:

$$T(n) = 1 + T(n - 1)$$

$$= 1 + 1 + T(n - 2)$$

$$= 1 + 1 + 1 + T(n - 3)$$

$$= \underbrace{1 + 1 + \dots + 1}_{i} + T(n - i)$$

La condizione di uscita è: n-i=0 n=i

$$=\underbrace{1+1+\ldots+1}_{n}+T(n-n)$$
$$=n+1=\Theta(n)$$

Questo si chiama passaggio iterativo.

Esempio 3.1.

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$

Questa funzione si può riscrivere come:

$$T(n) = \begin{cases} \text{Costante} & \text{se } n < a \\ 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n & \text{se } n \ge a \end{cases}$$

Se la complessità fosse già data bisognerebbe soltanto verificare se è corretta. Usando il metodo di sostituzione:

$$T(n) = cn \log n$$

sostituiamo nella funzione di partenza:

$$T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$

$$\leq 2c\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \log\left\lfloor \frac{n}{2} \right\rfloor + n$$

$$\leq 2c\frac{n}{2}\log\frac{n}{2} + n$$

$$= cn\log n - cn\log 2 + n$$

$$\stackrel{?}{\leq} cn\log n \quad \text{se } n - cn\log 2 \leq 0$$

$$c \geq \frac{n}{n\log 2} = \frac{1}{\log 2}$$

Il metodo di sostituzione dice che quando si arriva ad avere una disequazione corrispondente all'ipotesi, allora la soluzione è corretta se soddisfa una certa ipotesi.

Esempio 3.2.

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1 \quad \in O(n)$$

$$T(n) \le cn$$

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1$$

$$\le c\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + c\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1$$

$$= c\left(\left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil\right) + 1$$

$$= cn + 1 \stackrel{?}{\le} cn$$

Il metodo utilizzato non funziona perchè rimane l'1 e non si può togliere in alcun modo. Per risolvere questo problema bisogna risolverne uno più forte:

$$T(n) \le cn - b$$

$$\begin{split} T(n) &= T\left(\left\lfloor\frac{n}{2}\right\rfloor\right) + T\left(\left\lceil\frac{n}{2}\right\rceil\right) + 1 \\ &\leq c\left(\left\lfloor\frac{n}{2}\right\rfloor\right) - b + c\left(\left\lceil\frac{n}{2}\right\rceil\right) - b + 1 \\ &= c\left(\left\lfloor\frac{n}{2}\right\rfloor + \left\lceil\frac{n}{2}\right\rceil\right) - 2b + 1 \\ &= cn - 2b + 1 \stackrel{?}{\leq} cn - b \\ &= \underbrace{cn - b}_{\leq 0} + \underbrace{1 - b}_{\leq 0} \leq cn - b \quad \text{se } b \geq 1 \end{split}$$

Se la proprietà vale per questo problema allora vale anche per il problema iniziale perchè è meno forte.

Esempio 3.3.

$$T(n) = 3T\left(\left\lfloor \frac{n}{4} \right\rfloor\right) + n$$

$$= n + 3T\left(\left\lfloor \frac{n}{4} \right\rfloor\right)$$

$$= n + 3\left(\left\lfloor \frac{n}{4} \right\rfloor + 3T\left(\left\lfloor \frac{\lfloor \frac{n}{4} \rfloor}{4} \right\rfloor\right)\right)$$

$$= n + 3\left\lfloor \frac{n}{4} \right\rfloor + 3^2T\left(\left\lfloor \frac{n}{4^2} \right\rfloor\right)$$

$$\leq n + 3\left\lfloor \frac{n}{4} \right\rfloor + 3^2\left(\left\lfloor \frac{n}{4^2} \right\rfloor + 3T\left(\left\lfloor \frac{\lfloor \frac{n}{4^2} \rfloor}{4} \right\rfloor\right)\right)$$

$$= n + 3\left\lfloor \frac{n}{4} \right\rfloor + 3^2\left\lfloor \frac{n}{4^2} \right\rfloor + 3^3T\left(\left\lfloor \frac{n}{4^3} \right\rfloor\right)$$

$$= n + 3\left\lfloor \frac{n}{4} \right\rfloor + \dots + 3^{i-1}\left\lfloor \frac{n}{4^{i-1}} \right\rfloor + 3^iT\left(\left\lfloor \frac{n}{4^i} \right\rfloor\right)$$

Per trovare il caso base poniamo l'argomento di T molto piccolo:

$$\frac{n}{4^{i}} < 1$$

$$4^{i} > n$$

$$i > \log_{4} n$$

L'equazione diventa:

$$\leq n+3\left|\frac{n}{4}\right|+\ldots+3^{\log_4 n-1}\left|\frac{n}{4^{\log_4 n-1}}\right|+3^{\log_4 n}c$$

Si può togliere l'approssimazione per difetto per ottenere un maggiorante:

$$\leq n \left(1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \ldots + \left(\frac{3}{4}\right)^{\log_4 n - 1}\right) + 3^{\log_4 n} c$$

$$\leq n \left(\sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i\right) + c3^{\log_4 n}$$

Per capire l'ordine di grandezza di $3^{\log_4 n}$ si può scrivere come:

$$3^{\log_4 n} = n^{\left(\log_n 3^{\log_4 n}\right)} = n^{\log_4 n \cdot \log_n 3} = n^{\log_4 3}$$

Quindi la complessità è:

$$= O(n) + O(n^{\log_4 3})$$

Si ha che una funzione è uguale al termine noto della funzione originale e l'altra che è uguale al logaritmo dei termini noti. Se usassimo delle variabili uscirebbe:

$$\begin{split} T(n) &= aT\left(\frac{n}{b}\right) + f(n) \\ &= O(f(n)) + O(n^{\log_b a}) \end{split}$$

3.3 Teorema dell'esperto

Teorema 3.1 (Teorema dell'esperto o Master theorem). Per un'equazione di ricorrenza del tipo:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Si distinguono 3 casi:

- $f(n) \in O(n^{\log_b a \varepsilon})$ allora $T(n) \in \Theta(n^{\log_b a})$
- $f(n) \in \Theta(n^{\log_b a})$ allora $T(n) \in \Theta(f(n) \log n)$
- $f(n) \in \Omega(n^{\log_b a + \varepsilon})$ allora $T(n) \in \Theta(f(n))$

Esempio 3.4.

$$T(n) = 9T\left(\frac{n}{3}\right) + n$$

Applico il teorema dell'esperto:

$$a = 9$$

$$b = 3$$

$$n^{\log_b a} = n^{\log_3 9} = n^2$$

Verifico se esiste un ε tale che:

$$n \in O(n^{2-\varepsilon})$$

prendo $\varepsilon = -\frac{1}{2}$ e verifico:

$$n \in O(n^2 \cdot n^{-\frac{1}{2}})$$

Quindi ho trovato il caso 1 del teorema dell'esperto.

$$T(n) \in \Theta(n^2)$$

Esempio 3.5.

$$T(n) = T\left(\frac{2n}{3}\right) + 1$$

Applico il teorema dell'esperto:

$$a = 1$$
$$b = \frac{3}{2}$$
$$f(n) = n^0$$

$$n^{\log_b a} = n^{\log_{\frac{3}{2}} 1} = n^0$$

Si nota che le due funzioni hanno lo stesso ordine di grandezza, quindi siamo nel secondo caso del teorema dell'esperto.

$$T(n) \in \Theta(\log n)$$

Esempio 3.6.

$$T(n) = 3T\left(\frac{n}{4}\right) + n\log n$$

Applico il teorema dell'esperto:

$$a = 3$$

$$b = 4$$

$$f(n) = n \log n$$

$$n^{\log_b a} = n^{\log_4 3}$$

$$n\log n \in \Omega(n^{\log_4 3})$$

Esiste un ε tale che:

$$n \log n \in \Omega(n^{\log_4 3 + \varepsilon})$$

perchè basta che sia compreso tra $\log_4 3$ e 1.

Quindi siamo nel terzo caso del teorema dell'esperto.

$$T(n) \in \Theta(n \log n)$$

Esempio 3.7.

$$T(n) = 2T\left(\frac{n}{2}\right) + n\log n$$

Applico il teorema dell'esperto:

$$a = 2$$

$$b = 2$$

$$f(n) = n \log n$$

$$n^{\log_b a} = n^{\log_2 2} = n$$

$$n \log n \in \Omega(n)$$

Verifico se esiiste un ε , quindi divido per n:

$$\log n \in \Omega(n^{\varepsilon})$$

Quindi si nota che questa proprietà non è verificata, quindi non si può applicare il teorema dell'esperto.

3.4 Merge sort

Questo algoritmo di ordinamento è basato sulla tecnica divide et impera:

- Divide: Dividi il problema in sottoproblemi più piccoli
- Impera: Risolvi i sottoproblemi in modo ricorsivo
- Combina: Unisci le soluzioni dei sottoproblemi per risolvere il problema originale

Questo algoritmo divide la sequenza in due parti uguali e le ordina separatamente, successivamente le unisce in modo ordinato. La complessità, comsiderando il merge con complessità lineare, risulta:

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Applicando il teorema dell'esperto si ottiene:

$$a = 2$$

$$b = 2$$

$$f(n) = n$$

$$n^{\log_b a} = n$$

$$n \in \Theta(n)$$

Quindi siamo nel secondo caso del teorema dell'esperto:

$$T(n) \in \Theta(n \log n)$$

Definizione del merge sort:

```
1 // A: Array da ordinare
2 // P: Indice di partenza
3 // q: Indice di mezzo
4 // r: Indice di arrivo
5 merge(A, p, q, r)
    j <- p
    k <- q + 1
// Ordina gli elementi di A in B
     while (j \le q \text{ and } k \le r)
10
       if j <= q and (k > r or A[j] <= A[k]) //
11
12
         B[i] <- A[j]
         j++
                                                   //
13
                                                        | O(n)
14
       else
         B[i] <- A[k]
15
16
         k++
17
       i++
18
    // Copia gli elementi di B in {\tt A}
19
     for i \leftarrow 1 to r - p + 1
                                                   // -|
20
      A[p + i - 1] <- B[i]
                                                   // - | 0(n)
```

L'algoritmo è stablie perchè non vengono scambiati elementi uguali e non è in loco perchè utilizza un array di appoggio.

3.5 Heap

È un albero semicompleto (ogni nodo ha 2 figli ad ogni livello tranne l'ultimo che è completo solo fino ad un certo punto) in cui i nodi contengono oggetti con relazioni di ordinamento.

Figura 3: Heap con l'indice di un array associato ai nodi

3.5.1 Proprietà

 \forall nodo il contenuto del nodo è \geq del contenuto dei figli. Per calcolare il numero di nodi di un albero binario si usa la formula:

$$N = 2^{0} + 2^{1} + 2^{2} + \ldots + 2^{h-1} = \frac{1-2^{h}}{1-2} = 2^{h} - 1$$

dove h è l'altezza dell'albero. Il numero di foglie di un albero sono la metà dei nodi.

Definiamo una funzione che "aggiusta" i figli di un nodo per mantenere la proprietà di heap:

```
heapify(A, i) // O(n)

l <- left[i] // Indice del figlio sinistro (2i)

r <- right[i] // Indice del figlio destro (2i+1)

if l < H.heap_size and H[1] > H[i]

largest <- l

else

largest <- i

if r < H.heap_size and H[r] > H[largest]

largest <- r

largest <- r

largest != i

swap(H[i], H[largest])

heapify(H, largest)</pre>
```

Ora si vuole definire una funzione che costruisce un heap da un array:

```
build_heap(A) // O(n)
heapsize(a) <- length[A]
for i <- floor(length[A]/2) downto 1
heapify(A, i)</pre>
```

Una volta definito un heap si possono fare diverse operazioni, come ad esempio estrarre il nodo massimo:

```
extract_max(A)

H[1] <- H[H.heap_size]

H.heap_size <- H.heap_size - 1
heapify(H,1)</pre>
```

3.5.2 Heap sort

Heap sort è un algoritmo di ordinamento basato su heap.

```
heap_sort(A) // O(n log n)
build_heap(A) // n
for i <- length[A] downto 2
scambia(A[1], A[i])
heapsize(A)--
heapify(A, 1) // log i</pre>
```

La complessità dell'algoritmo è $O(n \log n)$, ma più precisamente:

$$\sum_{i=1}^{n} \log i = \log \prod_{i=1}^{n} i = \log n! = \Theta(\log n^n) = \Theta(n \log n)$$

Per la formula di Stirling n! ha ordine di grandezza n^n . Questo algoritmo è in loco e stabile.

Il caso pessimo è un array ordinato al contrario.

3.6 Quick sort

Il concetto di questo algoritmo è quello di mettere prima in disordine l'algoritmo e poi ordinarlo. L'algoritmo divide l'array in 2 parti e ordina ricorsivamente le due parti; a quel punto l'array è ordinato.

```
// A: Array da ordinare
// p: Indice di partenza
// r: Indice di arrivo
quick_sort(A, p, r)
if p < r // Ordina solo se l'array ha piu' di un elemento
q <- partition(A, p, r) // Dividi l'array in due parti
quick_sort(A, p, q) // Ordina sinistra
quick_sort(A, q + 1, r) // Ordina destra</pre>
```

```
partition(A, p, r)
  x <- A[p] // Elemento perno (o pivot)</pre>
      i <- p - 1
      j <- r + 1
       while true
         repeat // Ripete finche' la condizione non e' soddisfatta
6
           j-- // n/2
         until A[j] <= x // Trova un elemento che non puo' stare a
      destra
9
         repeat
           i++
                // n/2
10
         until A[i] >= x // Trova un elemento che non puo' stare a
      sinistra
         if i < j
           swap(A[i], A[j]) // n/2
13
14
           return j // alla fine j puntera' all'ultimo elemento di
15
      sinistra
```

Questo algoritmo è in loco e non è stabile. La sua complessità nel caso peggiore è:

$$T(n) = T(\text{partition}) + T(q) + T(n - q)$$

$$= n + T(q) + T(n - q)$$

$$= n + T(1) + T(n - 1)$$

$$= n + T(n - 1)$$

$$= \Theta(n^2)$$

Il caso peggiore è un array già ordinato.

Mediamente ci si aspetta che l'array venga diviso in 2 parti molto simili, quindi la complessità è $O(n \log n)$ perchè:

La complessità è la media di tutte le complessità con probabilità $\frac{1}{n}$

$$T(n) = n + \frac{1}{n} \left(T(1) + T(n-1) \right) + \frac{n-1}{n} \left(T(2) + T(n-2) \right)$$

$$+ \dots + \frac{1}{n} \left(T(n-1) + T(1) \right)$$

$$T(n) = n + \frac{1}{n} \sum_{i} \left(T(i) + T(n-i) \right)$$

$$= n + \frac{2}{n} \sum_{i} T(i)$$

3.7 Algoritmi di ordinamento non per confronti

Si possono avere algoritmi di ordinamento con complessità $< n \log n$?

Qualsiasi algoritmo che ordina per confronti deve fare almeno $n \log n$ confronti nel caso pessimo

Figura 4: Heap con l'indice di un array associato ai nodi

Le foglie rappresentano ogni singola combinazione possibile. Il numero di foglie è n! e l'altezza sarà sempre

$$h \ge \log_2 n! = n \log n$$

3.7.1 Counting sort

Si vogliono ordinare n numeri con valori da 1 a k. L'idea di questo algoritmo è quella di creare un'array che contiene il numero di occorrenze di un certo valore (rappresentato dall'indice).

```
counting_sort(A, k)
     for i <- 1 to k // k C[i] <- 0 // Inizializzazione di un array a 0
     for j <- 1 to length[A] // n</pre>
       C[A[j]]++ // Conteggio delle occorrenze
6
       or i <- 2 to k // In ogni indice metto il numero di C[i] <- C[i] + C[i-1] // elementi minori o uguali
     for i <- 2 to k
9
10
                                  // al numero dell'indice
     // Alla fine l'array C conterra' l'ultima posizione di occorrenza
12
        per ogni elemento
13
     14
       B[C[A[j]]] <- A[j] // Inserimento dell'elemento in posizione C[A[j]]-- // Decremento della posizione di occorrenza
15
16
```

La complessità di questo algoritmo è O(n+k) e siccome sappiamo che k è una costante fissata a priori la complessità è O(n). Non è in loco, ma è stabile