Mélységi keresés és alkalmazásai (<u>fellépő éltípusok</u>, mélységi- és befejezési számozásból az éltípus meghatározása, irányított kör létezésének eldöntése DFS-sel).

• Depth First Search (DFS)

(A mélységi bejárás avagy DFS alatt olyan gráfbejárást értünk, amikor mindig a legutolsónak elért csúcsból kerül elérésre a soron következőnek elért csúcs. Az elérési illetve befejezési sorrendből adódik minden v csőcshoz egy m(v) mélységi ill. b(v) befejezési szám.)

"Mélységi bejárás (DFS): A bejárás során mindig a legutolsónak elért csúcsot választjuk az $\boxed{1.}$ esetben. Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megj: A BFS konkrét megvalósításában szükség van arra, hogy az elért csúcsokat úgy tároljuk, hogy könnyű legyen kiválasztani az elért csúcsok közül a legkorábban elértet. Erre egy célszerű adatstruktúra a sor (avagy FIFO lista). Ha a BFS megvalósításában ezt az adatstruktúrát veremre (más néven FIFO listára) cseréljük, akkor a DFS egy megvalósítása adódik.

Megf: Tegyük fel, hogy a G gráf éleit DFS után osztályoztuk.

(1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).

Biz: v-t u-ból értük el, ezért m(u) < m(v). A v elérésekor u és v elért állapotúak. A DFS szerint v-t u elptt fejezzük be. \square

(2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).

Biz: u-ból v-be faéleken keresztül vezet irányított út. (1) miatt az út mentén a mélységi szám növekszik, befejezési csökken. \square

(3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).

Biz: v-ből u-ba faéleken keresztül vezet irányított út. (1) miatt az út mentén a mélységi szám növekszik, a befejezési csökken. \square

Biz: m(u) < m(v) esetén a DFS miatt v az u leszármazottja lenne. Ezért m(u) > m(u). Ha u-t a v befejezése előtt érnénk el, akkor u a v leszármazottja lenne. Ezért az alábbi sorrendben történik u és v evolúciója: v elérése, v befejezése, v befejezése, v befejezése. v befejezése. v befejezése előtt érnénk v befejezése előtt érnénk el, akkor v befejezése előtt érnénk el, akkor v befejezése előtt érnénk el, akkor v befejezése. v befejezése előtt érnénk el, akkor v befejezése előtt érnénk el, akkor v befejezése. v befejezése előtt érnénk el, akkor v befejezése előtt érnénk el, akkor v befejezése. v befejezése előtt érnénk el, akkor v befejezése előtt érnénk el, akkor v befejezése.

(5) Irányítatlan gráf DFS bejárása után nincs keresztél.

Biz: Indirekt. Ha uv keresztél, akkor (4) miatt m(u) > m(v), továbbá vu is keresztél, ezért m(v) > m(u). Ellentmondás. \square

(6) Ha DFS után van visszaél, akkor G tartalmaz irányított kört.

Biz: A DFS fa visszaélhez tartozó alapköre a G egy irányított köre. \square

(7) Ha DFS után nincs visszaél, akkor G-ben nincs irányított kör.

Biz: Bmely irányított körnek van olyan uv éle, amire b(u) < b(v). Ez az él csak visszaél lehet. \square

A mélységi bejárás lépésszáma lineáris, azaz van olyan c konstans, hogy tetszőleges u csúcsú, m élű gráf DFS-éhez legfeljebb c(n+m) lépés szükséges.

• Direct Acyclic Graphs

Def: A G = (V, E) irányított gráf aciklikus (más néven **DAG**), ha G nem tartalmaz irányított kört.

Példa: DAG-ot úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különbözőszámmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Ha ugyanis lenne az így megirányított gráfban irányított kör, akkor az élei mentén a számok végig növekednének, ami lehetetlen. Azt fogjuk ihazolni, hogy a fenti példa minden DAG-ot leír.

Def: A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba. $(V = \{v_1, v_2, \dots, v_n\}, v_i v_j \in E \Rightarrow i < j)$

Tétel: (G irányított gráf DAG) \Leftrightarrow (V(G)-nek \exists topologikus sorrendje).

Biz: Tegyük fel, hogy \exists toplogikus sorrend. Láttuk, hogy G ekkor DAG. \checkmark

Biz: Most tegyük fel, hogy G DAG, és futtassunk rajra egy DFS-t. Láttuk, hogy a DFS után nem lesz visszaél, ezért minden uv irányított élre b(u) > b(v) teljesül. Ezért a csúcsok befejezési sorrendjének megfordítása a G csúcsainak egy topologikus sorrendje. \square

Köv: Irányított gráf aciklikussága DFS-sel gyorsan eldönthető: ha van visszaél, akkor a visszaél DFS-fabeli alapköre G egy irányított köre, így G nem DAG. Ha pedig nincs visszaél, akkor a fordított befejezési sorrend a G egy topologikus sorrendje, G tehát DAG.

Megj: DAG-ban topologikus sorrendet forráskeresések és forrástörlések alkalmazásával is találhatunk.