Business Analytics Using Computational Statistics

Regression Models

Explaining the relationship of the "error" dependent variable... captures all other explanations we have missed ... to independent variables $mpg = b_0 + b_1 cylinders + b_2 displacement + b_3 horsepower + b_4 weight + b_5 acceleration + b_6 model_year + b_7 origin + \varepsilon$ Regression coefficients capture the degree and direction of relationship Are there other factors we might have missed? Why did we pick these indpendent variables?

Explanatory Models

Why did we pick these independent variables?

mpg, cylinders, displacement, horsepower, weight, acceleration, model_year, origin

Useful

Convenient & Available

Meaningful to Experts

Traditionally Understood/Used

Are there other factors we might have missed?

technologies (e.g., fuelinjection)
aero_dynamic, engine_design, production_quality

Not Useful?

Hard to Measure

Hard to Understand/Interpret

Not Well Understood

What is the purpose of an explanatory "model"

What is the Purpose of Explanatory Models?

Which model is correct?

https://goo.gl/LSNfSA

"All models are wrong but some are useful" --George Box

Explanatory models are meant to be interpretable and useful, not "accurate"

Revisiting Non-Linearity

Raw unit multiple regression

```
regr <- lm(mpg ~ cylinders + displacement + horsepower + weight +</pre>
                  acceleration + model year + factor(origin),
           data=cars)
(Intercept)
                                     -3.839 0.000145 ***
               -1.795e+01 4.677e+00
cvlinders
               -4.897e-01 3.212e-01
                                     -1.524 0.128215
displacement
                2.398e-02 7.653e-03
                                      3.133 0.001863 **
horsepower
               -1.818e-02 1.371e-02 -1.326 0.185488
weight
               -6.710e-03 6.551e-04 -10.243 < 2e-16
acceleration
                7.910e-02 9.822e-02
                                      0.805 0.421101
model vear
                7.770e-01 5.178e-02 15.005
                                            < 2e-16
factor(origin)2 2.630e+00 5.664e-01
                                      4.643 4.72e-06
factor(origin)3 2.853e+00 5.527e-01
                                     5.162 3.93e-07 ***
Multiple R-squared: 0.8242, Adjusted R-squared: 0.8205
```

Log transformed multiple regression

```
cars log <- with(cars, data.frame(log(mpg), log(cylinders),</pre>
                   log(displacement), log(horsepower), log(weight),
                   log(acceleration), model year, origin))
regr log <- lm(</pre>
  log.mpg. ~ log.cylinders. + log.displacement. +
             log.horsepower. + log.weight. + log.acceleration. +
             model year + factor(origin), data=cars log)
(Intercept)
                  7.301938
                             0.361777
                                      20.184 < 2e-16 ***
log.cylinders.
                 -0.081915
                             0.061116
                                      -1.340
                                              0.18094
log.displacement. 0.020387
                             0.058369
                                        0.349 0.72707
log.horsepower.
                 -0.284751
                             0.057945
                                       -4.914 1.32e-06
log.weight.
                 -0.592955
                             0.085165
                                       -6.962 1.46e-11
log.acceleration. -0.169673
                             0.059649
                                      -2.845 0.00469
model year
                  0.030239
                             0.001771 17.078
                                              < 2e-16
factor(origin)2
                  0.050717
                             0.020920
                                        2.424 0.01580
factor(origin)3
                  0.047215
                             0.020622
                                        2.290 0.02259
```

Multiple R-squared: 0.8919, Adjusted R-squared: 0.8897

Different factors are now significant!Notice that many relationships are now more linear

Regressing mpg over weight

regr wt <- lm(mpg ~ weight, data=cars)</pre> summary(regr wt) Estimate Std. Error t value Pr(>|t|) (Intercept) 46.3173644 0.7952452 58.24 weight -0.0076766 0.0002575 -29.81 <2e-16 *** Multiple R-squared: 0.6918, Adjusted R-squared: 0.691 plot(cars\$weight, regr_wt\$residuals) plot(density(regr_wt\$residuals)) abline(h=mean(regr wt\$residuals)) abline(v=mean(regr wt\$residuals)) density.default(x = regr_wt\$residuals) 2000 2500 3000 4000 N = 398 Bandwidth = 0.997

Regressing log(mpg) over log(weight)

cars_log\$log.weight

```
regr wt log <- lm(log.mpg. ~ log.weight., data=cars log)</pre>
summary(regr wt log)
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.5219
                             0.2349
                                       49.06
                                                 <2e-16
log.weight. -1.0583
                             0.0295 -35.87
                                                 <2e-16 ***
Multiple R-squared: 0.7647,
                                      Adjusted R-squared: 0.7641
plot(cars_log$log.weight., regr_wt_log$residuals) plot(density(regr_wt_log$residuals))
abline(h=mean(regr_wt_log$residuals))
                                               abline(v=mean(regr wt log$residuals))
                                              density.default(x = regr_wt_log$residuals)
9.0
0.4
                                          1.5
                                                    -0.2
                                                        0.0
                                                           0.2
```

N = 398 Bandwidth = 0.0418

Log transformation improved:

- the distribution of residuals around 0
- the independence of IV and errors
- the variance explained (R^2) of model

Deeper look at: Multicollinearity

Let's see how multicollinearity affects the linear algebra of regression:

$$\hat{y} = X\hat{\beta}; \qquad \hat{y} = Hy$$

$$\hat{y} = X(X^TX)^{-1}X^Ty$$

$$X = X(X^TX)^{-1}X^Ty$$

log.weight. log.acceleration.
8.161660 2.484907
8.214194 2.442347

X = 8.142063 2.397895
8.141190 2.484907
8.145840 2.351375
8.375860 2.302585

The "Dot Product":

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = \sum_{i} a_i b_i$$

Scalar that tells us the **similarity of two vectors**

8501.307 \longrightarrow cosine normalizes this to [-1,1]

The "Gram Matrix": $X^T X$

Matrix of dot-products of all column vectors

Log.weight. Log.acceleration.
Log.weight. 24863.547 8501.307
Log.acceleration. 8501.307 2928.969

 $(X^TX)^{-1}$

 $\textbf{Inverse} \ of \ Gram \ Matrix-\textbf{reverses} \ the \ transformation \ by \ Gram \ Matrix$

solve(gram(X))

log.weight. log.acceleration. log.weight. **0.005** -**0.015** log.acceleration. -**0.015 0.045**

We can only solve for the inverse if X^TX is non-singular: $det(X^TX) \neq 0$

det(gram(X1)) 552322.2

Let's look at just the X variables log-weight and log-acceleration

```
log.weight. log.acceleration.
X1 <- as.matrix(na.omit(cars power)[,4:5])</pre>
                                                                             Log.weight.
                                                                                                    24863.547
                                                                                                                         8501.307
                                                                     X^T X
gram(X1)
                                                                             log.acceleration.
                                                                                                     8501.307
                                                                                                                         2928.969
solve(gram(X1))
# Determinant
                                                                                                 log.weight. log.acceleration.
det(gram(X1)) # 552322.2
                                                                           -1 log.weight.
  log.acceleration.
                                                                                                        0.005
                                                                                                                           -0.015
                                                                                                       -0.015
                                                                                                                            0.045
```

Let's add a "highly collinear" variable to X

```
noise <- rnorm(nrow(X1), mean=0, sd=0.001)
X2 <- cbind(X1, collinear = X1[, 'log.weight.'] + noise)
gram(X2)
solve(gram(X2))
# Determinant</pre>
```

```
det(gram(X2)) # 220.5415
```

```
Log.weight. Log.acceleration. collinear

X<sup>T</sup>X
Log.weight. 24863.547
Log.acceleration. 8501.307
2028.969 8501.218
collinear 24863.288
8501.218 24863.029
```

```
log.weight. log.acceleration. collinear (X<sup>T</sup>X) -1 log.weight. 2504.398 -0.094 -2504.391 log.acceleration. collinear -0.094 0.045 0.079 collinear -2504.391 0.079 2504.391
```

Determinant drops in size; inverse of Gram matrix changes dramatically

Let's add a "perfectly collinear" variable to X

```
X3 <- cbind(X1, collinear = X1[, 'log.weight.'])
gram(X3)
solve(gram(X3))</pre>
```

```
# Determinant
det(gram(X3)) # 0
```

Log.weight. Log.acceleration. collinear

X^TX
Log.weight. 24863.547
Log.acceleration. 8501.307
24863.547
24863.547
8501.307
24863.547
8501.307
24863.547

 $(X^TX)^{-1}$ Error in solve.default(dot_products(X3)):

<u>LAPACK</u> routine dgesv: system is <u>exactly singular</u>

Determinant becomes zero; inverse of Gram matrix cannot be solved

Multicollinearity: Stepwise VIF Selection

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
               7.301938 0.361777 20.184 < 2e-16
log.cylinders.
              -0.081915 0.061116 -1.340 0.18094
log.displacement. 0.020387 0.058369 0.349 0.72707
log.horsepower. -0.284751 0.057945 -4.914 1.32e-06
log.weight.
              -0.592955 0.085165 -6.962 1.46e-11
model year
               0.030239
                        0.001771 17.078 < 2e-16 ***
factor(origin)2 0.050717
                        0.020920 2.424 0.01580 *
factor(origin)3
               0.047215
                        0.020622 2.290 0.02259 *
```

Multiple R-squared: 0.8919, Adjusted R-squared: 0.8897

Stepwise removal:

- Displacement
- Horsepower
- Cylinders

Model Fit: 0.8919 → 0.8856

- R² does not drop by much
- We prefer the simpler explanation

vif(regr_log)

log.cylinders.	GV1F 10.456738 29.625732	First candidate
log.horsepower. log.weight. log.acceleration.	12.132057 17.575117 3.570357	for removal
model_year factor(origin)	1.303738 2.656795	

$$VIF_j = \frac{1}{1 - R_i^2}$$

VIF = 1 *implies no multicollinearity*

 $VIF \ge 5$ requires $R^2 \ge 0.8$

VIF \geq 10 requires $R^2 \geq 0.9$

"Principle of Parsimony"

Given similar model fit (explanatory power), we favor **simpler explanations** over complex ones

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	7.431155			< 2e-16	***
log.weight.	-0.876608	0.028697	-30.547	< 2e-16	***
log.acceleration.	0.051508	0.036652	1.405	0.16072	
model_year	0.032734	0.001696	19.306	< 2e-16	***
factor(origin)2	0.057991	0.017885	3.242	0.00129	**
factor(origin)3	0.032333	0.018279	1.769	0.07770	

Multiple R-squared: 0.8856, Adjusted R-squared: 0.8841

vif(regr_log_refined)

	GVIF
log.weight.	1.926377
log.acceleration.	1.303005
model_year	1.167241
factor(origin)	1.692320

Is it reasonable to drop explanatory variables? Is the regression model still useful?

Residuals of Regression

а

The same is true in a larger model (higher dimensions)

```
log.mpg = b_0 + b_1(log.weight) + b_2(log.acceleration) \\ + b_3(model\_year) + b_4(origin) + \varepsilon refined\_data\_residuals <- \\ with(cars\_log, \\ data.frame(log.mpg., log.weight., \\ log.acceleration., model\_year, origin, \\ resdiuals = regr\_log\_refined\$residuals)) round(cor(refined\_data\_residuals), 2) log.mpg
```


Contingency Perspective

The effect of weight on mpg depends on origin of car


```
# subset cars dataset by origin
cars us <- subset(cars log, origin==1)</pre>
cars_eu <- subset(cars_log, origin==2)</pre>
cars jp <- subset(cars log, origin==3)</pre>
# separate regressions of log.mpg ~ log.weight by origin
wt_regr_us <- lm(log.mpg. ~ log.weight., data=cars_us)</pre>
wt regr eu <- lm(log.mpg. ~ log.weight., data=cars eu)
wt regr jp <- lm(log.mpg. ~ log.weight., data=cars jp)
# plot points colorized by origin
origin_colors = c("darkgray", "blue", "red")
with(cars log,
     plot(log.weight., log.mpg.,
          pch=origin, col=origin_colors[origin], lwd=2))
# plot separate regression lines colorized by origin
abline(wt regr us, col=origin colors[1], lwd=2)
abline(wt regr eu, col=origin colors[2], lwd=2)
abline(wt regr jp, col=origin colors[3], lwd=2)
```


Is it normal for a relationship between two variables to depend on the level of a third variable?

Can regression model different levels of a relationship between two factors?

Contingency Perspective of Causal Science

Perspective that one set of rules does not universally apply

Outcome depends on situational factors

Path Diagrams and Causal Modeling

Direct Relationships: Anxiety Example (fictional!)

anxiety How anxious (worried, nervous) a person is feeling

anxfreedays How many days since person last felt anxious

depression How depressed a person feels right now

Concepts of interest

Path Diagram: A graphical representation of researcher's causal model

- Measured concepts are shown as boxes
- Causal relationships are shown as arrows between boxes

Depression depends on the level of **anxiety** a subject feels and the number of **anxiety-free-days**.

 $depression = b_0 + b_1(anxiety) + b_2(anxfreedays) + \varepsilon$

lm(depression ~ anxiety + anxfreedays)

Moderation and Interaction

Moderated Relationships

The effect of an **independent** variable on a **dependent** variable is contingent on a **moderator**.

The effect of **anxiety** on **depression** is contingent on **anxiety-free-days**.

Moderation modeled in regression using an interaction term

anxiety × anxfreedays
product of independent variables

Interaction terms twist the regression surface

14

 $depression = b_0 + b_1(anxiety) + b_2(anxfreedays) + b_3(anxiety \cdot anxfreedays) + \varepsilon$

lm(depression ~ anxiety + anxfreedays + anxiety*anxfreedays)

Multicollinearity in Interactions

dep <- read.table("depression_intxn.txt", header=TRUE)</pre>

Modeling Direct Effects

lm(depression ~ anxiety + anxfreedays, data=dep)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.1871157 0.2759032 7.927 1.40e-11 ***

anxiety 0.3651384 0.0807465 4.522 2.19e-05 ***

anxfreedays -0.0006942 0.0008024 -0.865 0.39
```

Multiple R-squared: 0.2126, Adjusted R-squared: 0.1922

Adding the interaction

lm(depression ~ anxiety + anxfreedays + anxiety*anxfreedays, data=dep)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.9141605 0.2978311 6.427 1.03e-08 ***

anxiety 0.8231915 0.2266133 3.633 0.000507 ***

anxfreedays 0.0001731 0.0008812 0.196 0.844791

anxiety:anxfreedays -0.0014553 0.0006749 -2.156 0.034231 *
```

Multiple R-squared: 0.258, Adjusted R-squared: 0.2287

Symptoms of Multicollinearity:

- Change in size of estimates
- Inflation in standard error (variance inflation)
- Change in significance of estimates

Correlations between interaction and independent variables

Even weakly correlated independent variables can produce highly correlated interactions

Variance inflation with interactions

vif(dep_regr_intxn)
anxiety anxfreedays anxiety:anxfreedays
8.281544 1.268106 8.714156

Dropping the interaction term is not an optionWe need way to improve the interpretability of coefficients

Mean-centered Interactions

Mean Centering

$$X_{mc} = X - \bar{X}$$

anxiety_mc <- scale(dep\$anxiety, center=TRUE, scale=FALSE)
anxfreedays mc <- scale(dep\$anxfreedays, center=TRUE, scale=FALSE)</pre>

Mean-Centered Correlation

```
cor(anxiety_mc, anxiety_mc*anxfreedays_mc)
[1,] -0.1050647
```

Mean-centered Regression with Interaction

summary(lm(dep\$depression ~ anxiety_mc + anxfreedays_mc + anxiety_mc*anxfreedays_mc))

```
| Estimate Std. Error t value Pr(>|t|) | (Intercept) | 2.0431974 | 0.0771099 | 26.497 | < 2e-16 *** | anxiety_mc | 0.3427213 | 0.0795806 | 4.307 | 4.89e-05 *** | anxiety_mc:anxfreedays_mc | -0.0001321 | 0.0008262 | -0.160 | 0.8734 | anxiety_mc:anxfreedays_mc | -0.0014553 | 0.0006749 | -2.156 | 0.0342 *
```

Adjusted R-squared: 0.2287

Recall our original correlation and direct effects

Mean-centering makes it easier to interpret coefficients despite multicollinearity

Fully standardized Interactions

Multiple R-squared: 0.258,

Fully Standardized Correlation

$$X_{std} = \frac{X - \bar{X}}{s_{x}}$$

with(as.data.frame(scale(dep)),
 cor(anxiety, anxiety*anxfreedays))
[1,] -0.1050647

Fully Standardized Regression with Interaction

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.01109 0.09832 0.113 0.9105 0.09986 4.307 4.89e-05 *** anxiety s 0.43004 anxfreedays s -0.01669 0.10433 -0.160 0.8734 anxiety s:anxfreedays s -0.18082 0.08386 -2.156 0.0342 *

Multiple R-squared: 0.258, Adjusted R-squared: 0.2287

NOTE: We cannot statistically remove multicollinearity We can only improve interpretability of coefficients

There is no change in significances or R^2

Standardizing data requires mean-centering, so it **has the same effect on multicollinearity** as mean-centering

Orthogonalized Interaction Terms

Consider an interaction between weakly correlated variables:

Even weakly correlated variables can produce highly correlated interaction terms

set.seed(53) x = round(rnorm(100, mean=30, sd=5))z = round(rnorm(100, mean=55, sd=7))cor(x, z)
[1] 0.08 xz = x*zcor(cbind(x, z, xz)) x 1.00 0.08 0.82

z 0.08 1.00 0.62 xz 0.82 0.62 1.00

Use **regression** to remove collinearity between interaction and its original variables: $xz = \beta_1 x + \beta_2 z + \varepsilon$

The portions of $x \times z$ explained by x and by z*are heavily correlated (variabilities overlap!)*

Residuals are the portion of $x \times z$ that is not explained by x or by z

orthogonalized interaction

a pure interaction term uncorrelated with its main variables!

oregr <- 1m(xz ~ x + z)
xz_o <- oregr\$residuals
<pre>cor(cbind(x, z, xz_o))</pre>

		Х	Z	XZ O
Χ		1.00	0.08	0.00
Z		0.08	1.00	0.00
ΧZ	0	0.00	0.00	1.00

Orthogonalized Moderation

We use the residual of the interaction as the interaction of the dependent

```
anxiety \cdot anxfreedays = b_0 + b_1(anxiety) + b_2(anxfreedays) + \varepsilon_{intxn}depression = b_0 + b_1(anxiety) + b_2(anxfreedays) + b_3\varepsilon_{intxn} + \varepsilon
```

Residuals of interaction's regression

```
anx_x_anxfree <- dep$anxiety * dep$anxfreedays
interaction_regr <- lm(anx_x_anxfree ~ dep$anxiety + dep$anxfreedays)
interaction ortho <- interaction regr$residuals</pre>
```

Correlation of residual

round(cor(cbind(dep, interaction_ortho)), 2)

	depression	anxiety	anxfreedays	interaction_ortho
depression	1.00	0.45	-0.06	-0.21
anxiety	0.45	1.00	0.06	0.00
anxfreedays	-0.06	0.06	1.00	0.00
interaction_ortho	-0.21	0.00	0.00	1.00

Regression Model with Residual

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.1871157 0.2695889 8.113 6.70e-12 ***

anxiety 0.3651384 0.0788986 4.628 1.49e-05 ***

anxfreedays -0.0006942 0.0007840 -0.885 0.3787

interaction_ortho -0.0014553 0.0006749 -2.156 0.0342 *
```

Multiple R-squared: 0.258, Adjusted R-squared: 0.2287

Precall our original direct effects

lm(depression ~ anxiety + anxfreedays, data=dep)

Coefficients:

Estimate Std. Error (Intercept) 2.1871157 0.2759032 anxiety 0.3651384 0.0807465 anxfreedays -0.0006942 0.0008024

Multiple R-squared: 0.2126

Orthogonalization gives us the most interpretable coefficients

NOTE: orthogonalization still does not statistically remove multicollinearity

Interpreting Interactions

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.1871157 ***
anxiety 0.3651384 ***
anxfreedays -0.0006942
anx_free_regr$residuals -0.0014553 *
```


Levels of a moderator

```
# Find subsets of data at different levels of the moderator
dep_low_anxfree <- subset(dep, scale(anxfreedays) < -1)
dep_high_anxfree <- subset(dep, scale(anxfreedays) > 1)
```

Unscaled Interaction plot

```
# Conduct unscaled regressions at different levels of anxfreedays
dep_regr <- with(dep, lm(depression ~ anxiety + anxfreedays))
dep_low_regr <- with(dep_low_anxfree, lm(depression ~ anxiety))
dep_high_regr <- with(dep_high_anxfree, lm(depression ~ anxiety))

# Plot unscaled low and high points based on anxfreedays
with(dep_low_anxfree, plot(anxiety, depression))
with(dep_high_anxfree, points(anxiety, depression, pch=19))

# Draw unscaled low-med-high regression lines based on anxfreedays
abline(dep_low_regr, lty="dotted")
abline(dep_regr, lty="dotted")
abline(dep_high_regr, lty="solid")</pre>
```

Fully Scaled Interaction plot

```
# Plot low and high points based on anxfreedays
with(dep_low_anxfree, plot(scale(anxiety), scale(depression)))
with(dep_high_anxfree, points(scale(anxiety), scale(depression), pch=2))
# Draw low-med-high regression lines based on anxfreedays
with(dep_low_anxfree, abline(lm(scale(depression)~scale(anxiety)), lty="dotted"))
with(dep, abline(lm(scale(depression)~scale(anxiety)), lty="dashed"))
with(dep_high_anxfree, abline(lm(scale(depression)~scale(anxiety)), lty="solid"))
```

subset(dep, scale(anxfreedays) < -1)</pre>

Get subset of data that where **anxfreedays** is 1 standard deviation or more below the mean

How do these plots compare to the 3D visualization of moderation we saw?

Uses of Regression in Modeling

Explanatory Modeling: explaining relationship between dependent and independent variables

Regress dependent variable over independent variables

$$Y = \beta_0 + \beta_1 X_2 + \cdots + \beta_k X_k + \varepsilon$$

Focus on coefficients and compute \mathbb{R}^2

Variance Explained: measuring variance shared by set of independent variables

Regress independent variable over other independent variables to compute VIF

$$X_j = \beta_0 + \beta_2 X_2 + \cdots + \beta_k X_k + \varepsilon$$
 $VIF_j = \frac{1}{1 - R_j^2}$
Only compute R^2

Orthogonalization: removing collinearity in data

Regress interaction term over its main variables

$$X_i X_j = \beta_0 + \beta_1 X_i + \beta_2 X_j + \varepsilon$$

Chain of Effects

A mechanic points out that the *direct reason* for **repairs costs** to be high is the total *repair time* it takes for mechanics to fix any issues.

However, another mechanic quickly points out that the **months passed** is an *indirect* explanation, because more things break over the months and so the **repair time** goes up, which *directly* affects **repair cost**.

Calculating Indirect Effects

We can model an *indirect effect* between antecedent and outcome:

Bootstrapped Confidence Interval of Indirect Effects

We can *bootstrap the significance* of the indirect effect:

