Name:	

MASTERY QUIZ DAY 8

Math 237 – Linear Algebra

Version 2

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x + 3y - 4z = 5$$
$$3x + 9y + z = 0$$

$$x - z = 1$$

Solution:

$$\begin{bmatrix} 1 & 3 & -4 & 5 \\ 3 & 9 & 1 & 0 \\ 1 & 0 & -1 & 1 \end{bmatrix}$$

E3. Solve the system of linear equations.

$$2x + y - z + w = 5$$

$$3x - y - 2w = 0$$

$$-x + 5z + 3w = -1$$

Solution:

RREF
$$\left(\begin{bmatrix} 2 & 1 & -1 & 0 & 5 \\ 3 & -1 & 0 & -2 & 0 \\ -1 & 0 & 5 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & -\frac{1}{12} & 1 \\ 0 & 1 & 0 & \frac{7}{4} & 3 \\ 0 & 0 & 1 & \frac{7}{12} & 0 \end{bmatrix}$$

So the solutions are

$$\left\{ \begin{bmatrix} 1+a\\ 3-21a\\ -7a\\ 12a \end{bmatrix} \mid a \in \mathbb{R} \right\}$$

E4. Find a basis for the solution set of the system of equations

$$x + 2y + 3z + w = 0$$

$$3x - y + z + w = 0$$

$$2x - 3y - 2z = 0$$

Solution:

RREF
$$\left(\begin{bmatrix} 1 & -2 & 3 & 1 \\ 3 & -1 & 1 & 1 \\ 2 & -3 & -2 & 0 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & \frac{5}{7} & \frac{3}{7} \\ 0 & 1 & \frac{8}{7} & \frac{2}{7} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then the solution set is

$$\left\{ \begin{bmatrix} -\frac{5}{7}a - \frac{3}{7}b \\ -\frac{8}{7}a - \frac{2}{7}b \\ a \\ b \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

So a basis for the solution set is $\left\{ \begin{bmatrix} -\frac{5}{7} \\ -\frac{8}{7} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{3}{7} \\ \frac{2}{7} \\ 0 \\ 1 \end{bmatrix} \right\}$, or $\left\{ \begin{bmatrix} 5 \\ 8 \\ -7 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 0 \\ -7 \end{bmatrix} \right\}$.

V1. Let V be the set of all points on the line x + y = 2 with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2 - 1)$$

 $c \odot (x_1, y_1) = (cx_1 - (c - 1), cy_1 - (c - 2))$

Determine if V is a vector space or not.

Solution:

- 1) Since real addition is associative, \oplus is associative.
- 2) Since real addition is commutative, \oplus is commutative.
- 3) $(x_1, y_1) \oplus (1, 1) = (x_1, y_1)$, so (1, 1) is an additive identity element.
- 4) $(x_1, y_1) \oplus (2 x_1, 2 y_1) = (1, 1)$, so $(2 x_1, 2 y_1)$ is the additive inverse of (x_1, y_1) .

5)

$$\begin{split} c\odot(d\odot(x_1,y_1)) &= c\odot(dx_1-(d-1),dy_1-(d-1))\\ &= (c(dx_1-(d-1))-(c-1),c(dy_1-(d-1)))\\ &= (cdx_1-cd+c-(c-1),cdy_1-cd+c-(c-1))\\ &= (cdx_1-(cd-1),cdy_1-(cd-1))\\ &= (cd)\odot(x_1,y_1) \end{split}$$

6)
$$1 \odot (x_1, y_1) = (x_1 - (1 - 1), y_1 - (1 - 1)) = (x_1, y_1)$$

$$\begin{split} c\odot((x_1,y_1)\oplus(x_2,y_2)) &= c\odot(x_1+y_1-1,x_2+y_2-1)\\ &= (c(x_1+y_1-1)-(c-1),c(x_2+y_2-1)-(c-1))\\ &= (cx_1+cx_2-2c+1,cy_1+cy_2-2c+1)\\ &= (cx_1-(c-1),cy_1-(c-1))\oplus(cx_2-(c-1),cy_2-(c-1))\\ &= c\odot(x_1,y_1)\oplus c\odot(x_2,y_2) \end{split}$$

$$(c+d)\odot(x_1,y_1) = ((c+d)x_1 - (c+d-1), (c+d)y_1 - (c+d-1))$$

= $(cx_1 - (c-1), cy_1 - (c-1)) \oplus (dx_1 - (d-1), dy_1 - (d-1))$
= $c\odot(x_1, y_1) \oplus c\odot(x_2, y_2)$

E4:

V1:

E2: