RELATÓRIO PARCIAL

Processos atencionais e aprendizado de máquina para sistemas robóticos

Aluno: Erik de Godoy Perillo Orientadora: Profa. Dra. Esther Luna Colombini

> Instituto de Computação Universidade Estadual de Campinas

1 Introdução

A capacidade de percepção e construção de um modelo da realidade ao seu redor é fundamental para que sistemas robóticos interajam com o ambiente e executem tarefas diversas e complexas que podem ter as mais variadas utilidades para os humanos. Um componente fundamental para isso é a habilidade de dar foco apenas ao relevante, evitando assim o processamento desnecessário de enormes quantias de dados.

A atenção é um processo que faz parte do dia a dia de diversos seres vivos em diversas maneiras e é razoável inspirar-se nela para a construção de mecanismos semelhantes para a construção de sistemas de inteligência artificial em máquinas. Tal área tem sido foco de estudo há anos, resultando em diversas teorias em psicologia sobre a atenção humana que inspiraram a implementação de modelos computacionais bem sucedidos.

Neste trabalho, objetivamos construir um modelo atencional eficiente. Com base no modelo, implementaremos um framework atencional para robôs móveis que permita o uso da seleção em tempo real dos estímulos mais relevantes para as mais diversas tarefas que o robô possa executar. No trabalho atual focamos na atenção visual, mas o objetivo final do sistema é que ele funcione para outros sensores. O framework também contará com um módulo de reconhecimento de objetos que poderá ser substituído.

1.1 Objetivos da primeira parte do projeto

Os objetivos principais para o primeiro semestre do trabalho eram:

- Revisão bibliográfica sobre teorias sobre a atenção e diversos modelos.
- Escolha das técnicas mais adequadas para o processo atencional e o reconhecimento de objetos.
- Implementação de um modelo atencional.

Há uma quantidade surpreendente de avanços recentes na área de modelos de saliência visual. Entender os avanços mais relevantes é importante para a obtenção de um sistema atencional eficiente, então foi requerido mais tempo que o previsto para essa parte. Assim, todas as etapas previstas tiveram avanço, com exceção da parte de reconhecimento de objetos, a qual optamos por deixar para mais tarde pois a mesma serve como um complemento para nosso trabalho e é de menor relevância que o componente atencional. As atividades desenvolvidas são mais detalhadas a seguir.

2 Resumo das atividades

2.1 Revisão Bibliográfica

Dois dos conceitos importantes para o entendimento da literatura do meio são:

- features: Características básicas que formam entidades visuais, como cor (verde, azul), orientação (horizontal, vertical), contraste, tamanho.
- Bottom-up vs. Top-down: Por componente bottom-up de atenção entendese saliências instintivas percebidas por mudanças e/ou contrastes muito grandes em uma cena. O componente top-down é aquele que dá saliência variável às features de acordo com a meta do agente do momento.

A maioria dos modelos computacionais baseia-se em teorias formadas na psicologia. Duas das mais famosas são a *Filter Integration Theory* (FIT) e a *Guided Search*. Ambas provêm contribuiões importantes para o entendimento dos processos de saliência visual. Diversos modelos computacionais foram criados baseando-se em ideias delas. Começou-se então por elas.

A FIT indica basicamente que se a busca de um objeto de interesse em uma cena for por apenas uma *feature*, a localização é feita em tempo instantâneo. Entretanto, se o objeto de interesse for composto por múltiplas *features* a serem buscadas (e.g. uma linha horizontal verde), a localização do objeto é feita em tempo linear.

Já Guided Search diz que buscas por conjunções de *features* são na verdade mais rápidas pois a combinação das features gera um sinal de saliência mais forte no campo visual humano.

O VOCUS é um modelo atencional computacional para a detecção de saliências visuais. A maioria dos seus componentes é feita com base nas ideias da FIT. Nesta primeira etapa, exploramos seu componente bottomup. Ele lida com as features: cor, intensidade, orientação. Seus mapas de saliência são calculados com base nessas features e em diversas dimensões da imagem.

2.2 Modelo atencional

A carga teórica adquirida foi útil para a concepção do nosso modelo, chamado de *att*. Muitos mecanismos foram inspirados no VOCUS, lidando com as mesmas *features* e em múltiplas dimensões da imagem.

2.2.1 Extração de features

O modelo extrai os seguintes mapas de uma certa imagem: luminância, luminância invertida, vermelho, verde, amarelo, azul, orientações vertical, horizontal, 45°e 135°. Os de luminância e cor podem ser extraídos pela conversão da imagem para o espaço de cor LAB e as orientações são extraídas usando-se filtros de Gabor.

2.2.2 Extração de saliência

Para cada mapa, a saliência é calculada usando-se o mecanismo de *center-surround*: uma operação que basicamente extrai contrastes fortes do mapa, dando intensidades de pixel altas para essas regiões.

Figura 1: À esquerda, a imagem original. No centro, seu mapa de oponência amarelo-azul. À direita, o resultado de *center-surround* no mapa de cor.

2.2.3 Mapas de saliência para cada instância de feature

Para cada feature (e.gvermelho) é calculado o center-surround. Isso é feito na imagem original e em diversas outras dimensões dela, calculando-se a pirâmide da imagem. Geralmente usamos quatro níveis. Isso é importante para capturar saliências nos mais diversos níveis de detalhe da imagem. Uma vez calculados, todos os mapas de uma certa feature são redimensionados para as dimensões originais e somados, formando assim um mapa de feature.

2.2.4 Normalização

Uma vez calculados os mapas para cada feature (vermelho, orientação horizontal etc), é preciso fazer uma normalização nos mesmos. Isso se deve ao fato que, se há grande frequência de picos de saliência no mapa de vermelho, por exemplo, este não é de muito valor, pois o que se quer identificar são

regiões salientes com relação à imagem como um todo. Assim, para cada mapa é calculado um peso de normalização.

São diversos os critérios desenvolvidos, como: número de máximos locais, densidade de máximos locais, espalhamento espacial dos máximos. Uma análise das alternativas não mostrou muitas diferenças no desempenho, então opta-se pelo método mais simples, por padrão, que é o número de máximos locais. Isso pode ser obtido por limiar Otsu, seguido de um algoritmo de componentes conexos para contar os máximos locais.

2.2.5 Mapas de saliência para cada feature

Uma combinação hierárquica dos mapas é feita após as normalizações. No final dessa operação, há três mapas: cor, contraste(luminância) e orientação. Eles são formados simplesmente somando e normalizando suas instâncias: O de cor, por exemplo, é formado somando-se os mapas de saliência de vermelho, verde, amarelo e azul.

Figura 2: Mapas de saliência da figura original 1. Esquerda: mapa de cor. Centro: mapa de contraste. Direita: mapa de orientação.

2.2.6 Combinação final

É dado um peso para cada mapa de saliência (cor, contraste, orientação) e então eles são somados e normalizados. Nos testes feitos, obteve-se melhores resultados dando peso maior para a cor e menor para a orientação. Nos exemplos aqui, os pesos são 2, 1, 0.1 para cor, contraste e orientação, respectivamente.

Figura 3: Mapas de saliência final para uma figura. À esquerda, a imagem original. À direita, o mapa de saliência final.

2.2.7 Implementação

Todas as etapas do modelo descritas aqui foram implementadas. A linguagem utilizada foi Python, usando-se OpenCV e numpy. O código está disponível em (codigo aqui).

2.2.8 Considerações

O modelo implementado foi testado em diversas imagens e dá resultados satisfatórios na maioria dos casos: em regiões intuitivamente mais salientes, o mapa mostra a região como mais clara (como na figura 3). Há muitos hiperparâmetros para o modelo, como: níveis de pirâmide, valores dos filtros de Gabor, método de normalização, pesos para os mapas. Isso exige buscas exaustivas no espaço de alta dimensionalidade dos hiperparâmetros para achar bons valores, o que é muito custoso. Assim, embora o modelo atual dê bons resultados, um ponto negativo seu é a alta quantidade de hiperparâmetros.

2.2.9 Comparações

Métricas. Comparações com modelos no topo.

2.3 Modelos novos

Deep learning everywhere.

3 Produção Científica

Modelo Att. Notas: Estudo de métricas. Estudo de sistemas com Deep Learning.

4 Próximos passos

DeepFix. Vídeo.