Math 20250 Abstract Linear Algebra

Cong Hung Le Tran April 9, 2023 Course: MATH 20250: Abstract Linear Algebra

Section: 44

Professor: Zijian Yao

At: The University of Chicago

Quarter: Spring 2023

Course materials: Linear Algebra by Hoffman and Kunze (2nd Edition), Linear Algebra Done

Wrong by Treil

Disclaimer: This document will inevitably contain some mistakes, both simple typos and serious logical and mathematical errors. Take what you read with a grain of salt as it is made by an undergraduate student going through the learning process himself. If you do find any error, I would really appreciate it if you can let me know by email at conghungletran@gmail.com.

Contents

Lecture 5: Span, Linear Independence, Basis

1

Lecture 5

Span, Linear Independence, Basis

06 Apr 2023

Recall. Linear Combination: Let $V = \mathbb{K}$ -vector space with $v_1, v_2, \ldots, v_r \in V$ then

$$\mathbb{K}\langle v_1, v_2, \dots, v_r \rangle := \{ w \in W \mid = w = a_1v_1 + \dots + a_rv_r; a_i \in \mathbb{K} \} \subseteq V \text{ (is a subspace of } V \text{)}$$

Definition 5.1 (Span).

$$\{v_1, v_2, \dots, v_r\}$$
 span V if

$$\mathbb{K}\langle v_1, v_2, \dots, v_r \rangle = V$$

i.e. equality is achieved: every vector in V can be written as linear combinations of $\{v_1, v_2, \dots, v_r\}$

Connecting to the previous lecture, let $\psi: \mathbb{K}^r \to V$ then $\psi \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^r, V) \xrightarrow{\sim} V^{\oplus r}$, i.e. ψ corresponds to (v_1, v_2, \ldots, v_r) in V.

In particular, $(v_1, v_2, \dots, v_r) \in V^{\oplus r}$ determines the map:

$$\psi: (1,0,\ldots,0) \in \mathbb{K}^r \to v_1$$

$$(0,1,\ldots,0) \in \mathbb{K}^r \to v_2$$

$$\vdots$$

$$(0,0,\ldots,1) \in \mathbb{K}^r \to v_r$$

$$(\alpha_1,\alpha_2,\ldots,\alpha_r) \in \mathbb{K}^r \to \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_r v_r$$

Lemma 5.1.

1. Let $\psi: \mathbb{K}^r \to V$ be a linear transformation determined by $v_1, v_2, \dots, v_r \in V$, i.e. $\psi(\alpha_1, \alpha_2, \dots, \alpha_r) \coloneqq \sum_{i=1}^r \alpha_i v_i$, then $\operatorname{im}(\psi) = \mathbb{K}\langle v_1, v_2, \dots, v_r \rangle$

$$\operatorname{im}(\psi) = \mathbb{K}\langle v_1, v_2, \dots, v_r \rangle$$

is a subspace of V 2. $\{v_1, v_2, \dots, v_r\}$ span $V \Leftrightarrow \psi$ is surjective i.e. a surjection $\mathbb{K}^r \to V$ corresponds to r vectors $v_1, v_2, \dots, v_r \in V$ that span V

Remark. V is finite dimensional when \exists surjection $\mathbb{K}^d \to V$

 $\Leftrightarrow \exists d \text{ vectors } v_1, v_2, \dots, v_r \text{ that span } V.$

Recall: dim $V = \min\{r \in \mathbb{Z}_{\geq 0} \text{ such that } \exists \text{ surjective } \mathbb{K}^r \to V\}.$

Next, what does it mean for ψ to be injective?

Definition 5.2 (Linear Independence).

 $v_1, v_2, \ldots, v_r \in V$ are linearly independent if

$$a_1v_1 + a_2v_2 + \dots + a_rv_r = 0; a_i \in \mathbb{K} \Rightarrow a_1 = a_2 = \dots = a_r = 0$$

i.e. there doesn't exist non-trivial relations between the vectors.

Example. In \mathbb{R}^2 , (0, 1) and (0, 2) are not linearly independent because

$$(-2)(0,1) + (0,2) = (0,0)$$

But (0, 1) and (1,0) are linearly independent.

Consequentially, they are **linearly dependent** otherwise, i.e.

$$\exists a_i \text{ not all } 0 \text{ such that } \sum a_i v_i = 0$$

Lemma 5.2. Given $\psi : \mathbb{K}^r \to V$ corresponds to v_1, v_2, \dots, v_r then v_1, v_2, \dots, v_r are linearly independent if and only if ψ is injective

In order to prove the lemma above, we shall make use of a more convenient test for whether a map $\varphi : \mathbb{K}^r \to V$ is injective.

Lemma 5.3. Let $\varphi:V\to W$ be a linear transformation then φ is injective if and only if

$$\ker(\varphi) = \{0\} \subseteq V$$

Proof (Lemma 5.3).

 \Rightarrow We assume that φ is injective, want to show that $\ker(\varphi) = \{0\}$.

We know that $\varphi(0) = 0 \Rightarrow 0 \in \ker(\varphi)$ but since φ is injective, $\nexists v \neq 0 \in V$ such that $\varphi(v) = 0$. It follows that $\ker(\varphi) = 0$

We want to show that $x, y \in V$ such that $\varphi(x) = \varphi(y) \Rightarrow x = y$ Since $\varphi(x - y) = \varphi(x + (-y)) = \varphi(x) - \varphi(y) = 0$, combined with $\ker(\varphi) = 0$

$$\Rightarrow x - y = 0 \Rightarrow x = y$$

Proof (Lemma 5.2).

Applying Lemma 5.3, we want to show: $\ker(\varphi) = 0$ iff v_1, v_2, \dots, v_r are linearly independent.

 \Rightarrow Suppose $\ker(\varphi) = \{0\}$ then want to show

$$a_1v_1 + a_2v_2 + \dots + a_rv_r = 0 \Rightarrow a_i = 0 \ \forall i$$

But $LHS = \varphi((a_1, a_2, \dots, a_r)) \Rightarrow (a_1, a_2, \dots, a_r) \in \ker(\varphi) \Rightarrow (a_1, a_2, \dots, a_r) = 0.$ Therefore $a_i = 0 \ \forall \ i.$

 \sqsubseteq Suppose that v_1, v_2, \ldots, v_r are linearly independent.

Then for $v \in \ker(\varphi) \Rightarrow \varphi(v) = 0$, with $v = (a_1, a_2, \dots, a_r)$

$$\Rightarrow 0 = \varphi(v)$$

$$= \varphi((a_1, a_2, \dots, a_r))$$

$$= a_1 v_1 + a_2 v_2 + \dots + a_r v_r$$

But since v_1, v_2, \ldots, v_r are linearly independent

$$\Rightarrow a_i = 0 \ \forall \ i \Rightarrow v = 0 \Rightarrow \ker(\varphi) = 0$$

Corollary 5.1. If V has dimension d over \mathbb{K} then there exists isomorphic $\varphi : \mathbb{K}^d \xrightarrow{\sim} V$ i.e. φ is a bijective linear transformation

Proof (Corollary). Since $d = \dim V$, by definition there exists surjective linear transformation $\pi : \mathbb{K}^d \to V$

We then claim that π is also injective.

Proving by contradiction, we suppose that π is not injective.

let v_1, v_2, \ldots, v_d be the d vectors that correspond to π , i.e.

$$\pi((a_1, a_2, \dots, a_d)) = a_1 v_1 + \dots + a_d v_d$$

By Lemma 5.2, π being not injective implies that v_1, v_2, \ldots, v_d are linearly dependent. i.e. there exists $b_1, b_2, \ldots, b_d \in \mathbb{K}$ not identically 0 such that

$$b_1v_1 + b_2v_2 + \cdots + b_dv_d = 0$$

WLOG, assume $b_1 \neq 0$.

$$\Rightarrow b_1 v_1 = -(b_2 v_2 \dots b_d v_d)$$

$$\Rightarrow v_1 = -b^{-1} (b_2 v_2 \dots b_d v_d) (\exists b^{-1} :: b_1 \neq 0)$$

$$= c_2 v_2 + c_3 v_3 + \dots + c_d v_d$$

We already know that since π is surjective, thus v_1, v_2, \ldots, v_d span V. However, the above equality implies that v_2, \ldots, v_d already span V!

It follows that there must exist a surjective linear transformation $\pi' : \mathbb{K}^{d-1} \to V$ $\Rightarrow \Leftarrow$, since $d = \min\{r \mid \exists \text{ surjective } \pi^r : \mathbb{K}^r \to V\}$

Therefore π is injective. It is already surjective, and therefore bijective, making it an isomorphism.

Recall. $\psi: \mathbb{K}^d \to V$ as determined by v_1, v_2, \dots, v_d is

- 1. **injective** when v_1, v_2, \ldots, v_d are linearly independent
- 2. surjective when v_1, v_2, \ldots, v_d span V

This naturally leads to our next definition.

Definition 5.3 (Basis).

 $\{v_1, v_2, \dots, v_r\}$ is called a **basis** of V if they span V and are linearly independent, i.e. $\psi_{(v_1, v_2, \dots, v_r)} : \mathbb{K}^r \to V$ is an isomorphism.

Corollary 5.2. $\dim_{\mathbb{K}} V = d \Leftrightarrow \exists \text{ basis } \{v_1, v_2, \dots, v_d\} \text{ for } V$

Corollary 5.3. If $\{v_1, v_2, \dots, v_d\}$ and $\{w_1, w_2, \dots, v_{d'}\}$ are basis for V then d = d'.