

Trabajo Práctico Número 2

8 de Abril de 2016

Algoritmos y Estructuras de Datos III

Integrante	LU	Correo electrónico
Ciruelos Rodríguez, Gonzalo	063/14	gonzalo.ciruelos@gmail.com
Costa, Manuel José Joaquín	035/14	manucos94@gmail.com
Gatti, Mathias Nicolás	477/14	mathigatti@gmail.com
Maddonni, Axel Ezequiel	200/14	axel.maddonni@gmail.com

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina

Tel/Fax: (54 11) 4576-3359 http://www.fcen.uba.ar

Índice

1.	Una	Nueva Esperanza	4
	1.1.	Explicación formal del problema	4
	1.2.	Explicación de la solución	4
		1.2.1. Explicación del código	4
		1.2.2. Pseudocódigo	4
		1.2.3. Correctitud	4
		1.2.4. Optimalidad	4
	1.3.	Complejidad del algoritmo	4
		1.3.1. Complejidad en peor caso	4
		1.3.2. Complejidad en mejor caso	4
	1.4.	Performance del algoritmo	4
		1.4.1. Método de experimentación	4
9	TOL T	mperio Contraataca	5
4.	2.1.	Explicación formal del problema	5
	2.1.		5 5
	۷.۷.	Explicación de la solución	5 5
			5 5
		0	
			5
	0.2	2.2.4. Optimalidad	5
	2.3.	Complejidad del algoritmo	5
		2.3.1. Complejidad en peor caso	5
	0.4	2.3.2. Complejidad en mejor caso	5
	2.4.	Performance del algoritmo	5
		2.4.1. Método de experimentación	5
3.	El :	Retorno del que te Jedi	6
	3.1.	Explicación formal del problema	6
	3.2.	Explicación de la solución	6
		3.2.1. Explicación del código	6
		3.2.2. Pseudocódigo	6
		3.2.3. Correctitud	6
		3.2.4. Optimalidad	6

Aalgoritmos v	Estructuras	de Datos	III: TP2
Lui Correiros			111. II

10	cuatrimestre	de	2016

0									٠			٠	٠	•	6
eor caso												•			6
ejor caso												•			(
·														•	6
nentación .															6
															-
1	eor caso nejor caso	eor caso													

1. Una Nueva Esperanza

- 1.1. Explicación formal del problema
- 1.2. Explicación de la solución
- 1.2.1. Explicación del código
- 1.2.2. Pseudocódigo
- 1.2.3. Correctitud
- 1.2.4. Optimalidad
- 1.3. Complejidad del algoritmo
- 1.3.1. Complejidad en peor caso
- 1.3.2. Complejidad en mejor caso
- 1.4. Performance del algoritmo
- 1.4.1. Método de experimentación

2. El Imperio Contraataca

- 2.1. Explicación formal del problema
- 2.2. Explicación de la solución
- 2.2.1. Explicación del código
- 2.2.2. Pseudocódigo
- 2.2.3. Correctitud
- 2.2.4. Optimalidad
- 2.3. Complejidad del algoritmo
- 2.3.1. Complejidad en peor caso
- 2.3.2. Complejidad en mejor caso
- 2.4. Performance del algoritmo
- 2.4.1. Método de experimentación

3. El Retorno del que te Jedi

- 3.1. Explicación formal del problema
- 3.2. Explicación de la solución
- 3.2.1. Explicación del código
- 3.2.2. Pseudocódigo
- 3.2.3. Correctitud
- 3.2.4. Optimalidad
- 3.3. Complejidad del algoritmo
- 3.3.1. Complejidad en peor caso
- 3.3.2. Complejidad en mejor caso
- 3.4. Performance del algoritmo
- 3.4.1. Método de experimentación

4. Apéndice