MA1100 - Discrete Mathematics Suggested Solutions

(Semester 1, AY2022/2023)

Written by: Gao Tianlu Audited by: James Liu Jiayu

Question 1

Claim: $\bigcup_{n=1}^{\infty} A_n = \mathbb{Z}^+$.

 (\subseteq) Let $l \in \bigcup_{n=1}^{\infty} A_n$. Then $\exists k \in \mathbb{Z}^+$ such that $l \in A_k$. Since $A_k = \{j \in \mathbb{Z}^+ | k \le j \le 2k\} \subseteq \mathbb{Z}^+$, so $l \in \mathbb{Z}^+$ and $\bigcup_{n=1}^{\infty} A_n \subseteq \mathbb{Z}^+$.

(2) Let $n \in \mathbb{Z}^+$, then $n \in A_n$ and $n \in \bigcup_{n=1}^{\infty} A_n$. So $\mathbb{Z}^+ \subseteq \bigcup_{n=1}^{\infty} A_n$. Hence, $\bigcup_{n=1}^{\infty} A_n = \mathbb{Z}^+$ as desired.

Claim: $\bigcap_{n=1}^{\infty} A_n = \emptyset$.

Since $\emptyset \subseteq \bigcap_{n=1}^{\infty} A_n$, we only need to show $\bigcap_{n=1}^{\infty} A_n \subseteq \emptyset$. By definition, $\bigcap_{n=1}^{\infty} A_n \subseteq A_1$ and $\bigcap_{n=1}^{\infty} A_n \subseteq A_3$. Then $\bigcap_{n=1}^{\infty} A_n \subseteq A_1 \cap A_3$. So $\bigcap_{n=1}^{\infty} A_n = \emptyset$ as desired.

Question 2

(i) Let $x_1, x_2 \in \mathbb{R} - \{2\}$ such that $f(x_1) = f(x_2)$. Then

$$f(x_1) = f(x_2)$$

$$1 + \frac{1}{x_1 - 2} = 1 + \frac{1}{x_2 - 2}$$

$$x_1 - 2 = x_2 - 2 \text{ since } x_1, x_2 \neq 2$$

$$x_1 = x_2.$$

So f is injective as desired.

(ii) Claim: $R(f) = \mathbb{R} - \{1\}$. Let $y \in R(f)$. Then $\exists a \in \mathbb{R} - \{2\}$ such that f(x) = y. Since $y = 1 + \frac{1}{a-2} \neq 1$, so $y \in \mathbb{R} - \{1\}$. Let $y \in \mathbb{R} - \{1\}$. Take $a = 2 + \frac{1}{y-1}$, where $a \neq 2$. Then

$$f(a) = 1 + \frac{1}{a-2}$$

$$= 1 + \frac{1}{2 + \frac{1}{y-1} - 2}$$

$$= 1 + y - 1$$

$$= y.$$

So $y \in R(f)$. Hence, $R(f) = \mathbb{R} - \{1\}$ as desired.

(iii) Claim: f is not invertible.

To show f is not invertible is equivalent to show f is not bijective. Since $R(f) = \mathbb{R} - \{1\} \neq \mathbb{R}$, f is not surjective and hence not bijective. So f is not invertible.

Question 3

(a)

$$f[X] = \{f(x)|x \in X\}$$
$$= \{f(-1), f(0), f(1)\}$$
$$= \{0, 1\}$$

$$f^{-1}[Y] = \{x \in \mathbb{R} | f(x) \in Y\}$$
$$= \{\pm 1, \pm 2\}$$

(b) (\subseteq) Let $y \in g[\bigcup_{i \in I} C_i]$. Then $\exists x \in \bigcup_{i \in I} C_i$ such that g(x) = y. So $\exists i \in I$ such that $x \in C_i$ and $g(x) = y \in g[C_i]$. Hence, $y \in \bigcup_{i \in I} g[C_i]$.

(⊇) Let $y \in \bigcup_{i \in I} g[C_i]$. Then $\exists i \in I$ such that $y \in g[C_i]$ and $\exists x \in C_i$ such that g(x) = y. So $x \in C_i$, $x \in \bigcup_{i \in I} C_i$ and $g(x) = y \in g[\bigcup_{i \in I} C_i]$.

Hence, $g[\bigcup_{i\in I} C_i] = \bigcup_{i\in I} g[C_i]$ as desired.

Question 4

Let $n \in \mathbb{Z}$, we want to show that $n(7n^2 + 5) = 6k$ for some $k \in \mathbb{Z}$. We know $n \equiv r \mod 6$ for some integer r with $0 \le r < 6$. Consider all 6 cases, then

	n	$n(7n^2+5)$
0	$\mod 6$	$0(7(0)^2 + 5) \equiv 0 \mod 6$
1	$\mod 6$	$1(7(1)^2 + 5) \equiv 12 \mod 6 \equiv 0 \mod 6$
2	$\mod 6$	$2(7(2)^2 + 5) \equiv 66 \mod 6 \equiv 0 \mod 6$
3	$\mod 6$	$3(7(3)^2 + 5) \equiv 6(34) \mod 6 \equiv 0 \mod 6$
4	$\mod 6$	$4(7(4)^2 + 5) \equiv 6(78) \mod 6 \equiv 0 \mod 6$
5	$\mod 6$	$5(7(5)^2 + 5) \equiv 36(25) \mod 6 \equiv 0 \mod 6.$

So $n(7n^2 + 5)$ is divisible by 6 as desired.

Question 5

(i)

$$12378 = 4 \times 3054 + 162$$
$$3054 = 18 \times 162 + 138$$
$$162 = 1 \times 138 + 24$$
$$138 = 5 \times 24 + 18$$
$$24 = 1 \times 18 + 6$$
$$18 = 3 \times 6 + 0$$

So gcd(12378, 3054) = 6 as desired.

(ii)

$$6 = 24 - 18$$

$$= 24 - (138 - 5 \times 24)$$

$$= 6 \times 24 - 138$$

$$= 6 \times (162 - 138) - 138$$

$$= 6 \times 162 - 7 \times 138$$

$$= 6 \times 162 - 7 \times (3054 - 18 \times 162)$$

$$= 132 \times 162 - 7 \times 3054$$

$$= 132 \times (12378 - 4 \times 3054) - 7 \times 3054$$

$$= 132 \times 12378 - 535 \times 3054$$

So x = 132, y = -535 as desired.

Question 6

(i) Reflexive: Let $(a,b) \in \mathbb{R}^2$. $b-a^3 = b-a^3 \Leftrightarrow (a,b) \sim (a,b)$. Symmetric: Let $(a,b), (c,d) \in \mathbb{R}^2$ such that $(a,b) \sim (c,d)$, then

$$b - a^3 = d - c^3$$
$$d - c^3 = b - a^3$$
$$(c, d) \sim (a, b).$$

Transitive: Let $(a,b), (c,d), (e,f) \in \mathbb{R}^2$ such that $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. We know $b-a^3=d-c^3$ and $d-c^3=f-e^3$, then $b-a^3=f-e^3$. So $(a,b) \sim (e,f)$. Hence, \sim is an equivalence relation as desired.

- (ii) By definition of the graph of a function, consider the function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^3 + b a^3$.
- (iii) Each partition in the quotient set represents a solution curve $y = x^3 + b a^3$ for some a, b. The quotient set consists of all these curves. Consider the function $g([(x,y)]) = b a^3$, where [(a,b)] is the partition in which (x,y) lies. By definition of a partition, g is injective and surjective, hence a bijection as desired.

Question 7

- (i) To show two sets are equinumerous, it suffices to show there exists a bijection f between the 2 sets. Consider the function f: A → A × {b₀} such that f(a) = (a, b₀).
 Injective: Let a₁, a₂ ∈ A such that f(a₁) = f(a₂). Then (a₁, b₀) = (a₂, b₀) and a₁ = a₂.
 Surjective: Let (a, b₀) ∈ A × {b₀}. Then by definition, for a ∈ A, f(a) = (a, b).
 So f is bijective. Hence A × {b₀} is equinumerous with A as desired.
- (ii) Consider the set $\{b_0\} \subseteq B$, then $A \times \{b_0\} \subseteq A \times B$. Since A is uncountable, and from (i), $A \times \{b_0\}$ is uncountable, hence $A \times B$ is also uncountable as desired.