6-1. Add the following in binary. Check your results by doing the addition in decimal.

8-lit =
$$2^8 = 276$$
 m/es. $2^8 = 276$ m/es. $2^$

Unsigned		8-bit	Signed	
Number		Binary	Number	
	^ 0	<mark>0</mark> 000 0000	+0	The upper half is
2. = 256 noes.	1	<mark>0</mark> 000 0001	+1	used for representing positive numbers.
	2	<mark>0</mark> 000 0010	+2	
	3	<mark>0</mark> 000 0011	+3	
	:	<u> </u>	:	(This half is same as
	125	<mark>0</mark> 111 1101	+125	unsigned numbers.)
	126	<mark>0</mark> 111 1110	+126	
	127	<mark>0</mark> 111 1111 ←	<u>+1</u> 27 🗲	— + (2 ⁻¹)
	128	1000 0000 -	- -128 놎	
	129	1000 0001	-127	The lower half is used for representing negative numbers.
	130	1000 0010	-126	
	:	: :	:	
	252	1 111 1100	-4	
	253	<mark>1</mark> 111 1101	-3	
	254	<mark>1</mark> 111 1110	-2	
	255	1111 1111	-1	(-1 at the bottom)

(Signed numbers which are positive have same values as their unsigned number equivalent.)

→ 6-3. Each of the following numbers represents a signed decimal number in the 2's-complement system. Determine the decimal value in each case. (Hint: Use negation to convert negative numbers to positive.) (f) $10000000 \rightarrow Pattern for: biggest -ve <math>(-2 = -128)$ (a) 01101 (b) 11101 (g) 11111111 → Pattern for: -Which of (c) 01111011 (h) 10000001 them are negative? (d) 10011001 (i) 01100011 (j) 11011001 (e) 01111111 Pattern for: biggest +ve (+27-1 = +127)

6-7. What is the range of unsigned decimal values that can be represented in 10 bits? What is the range of signed decimal values using the same number of bits?

ie min. to max.

imber of bits?

$$10 - bit \Rightarrow 2 = 1024 \text{ noes.} \Rightarrow 512 + ve$$

For unsigned too signed noes noes.

Unsighed no. range: 0 to 1023

Signed no. range: +ve: 0 to +511 } ve

(ie. -512 to +511)