

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE CÓMPUTO

NEURAL NETWORKS

PROF.: MARCO ANTONIO MORENO ARMENDÁRIZ

ALUMNO: ORTEGA VICTORIANO IVAN

No. DE LISTA: 29 GRUPO: 3CM2

PERCEPTRÓN MULTICAPA: PRIMERAS PRUEBAS

DE APROXIMACIÓN DE SEÑALES

NOTA: LA GRÁFICA EN COLOR AZUL REPRESENTA EL RESULTADO DE LA RED PARA TODAS LAS GRÁFICAS.

Función para aproximar: $1 + \sin(\frac{\pi n}{4})$, en $n \in [-2, 2]$

MLP: [1-3-1], [2-1]

Configuración: 80-10-10, $\alpha = 0.01$, eit = 0.0000000000001

Resultado:

Función para aproximar: $1+\sin(\frac{\pi n}{2})$, en $\ n\in[-2$, 2]

MLP: [1-3-1], [2-1]

Configuración: 80-10-10, $\alpha = 0.01$, eit = 0.0000000000001

Resultado:

Función para aproximar: $1 + \sin(\pi n)$, en $n \in [-2, 2]$

MLP: [1-3-1], [2-1]

Configuración: 80-10-10, $\alpha = 0.01$, eit = 0.0000000000001

Resultado:

Función para aproximar: $1 + \sin(2\pi n)$, en $n \in [-2, 2]$

MLP: [1-3-1], [2-1]

Configuración: 80-10-10, $\alpha = 0.01$, eit = 0.0000000000001

Resultado:

Función a aproximar: $1+\sin(\frac{6\pi n}{4})$, en $n\in[-2\,,2]$

MLP: [1-2-1], [2-1]

Configuración: 80-10-10, $\alpha = 0.1$, eit = 0.000000000001, itmax = 10000

Resultado:

Función para aproximar: $1+\sin(\frac{6\pi n}{4})$, en $n\in[-2\,,2]$

MLP: [1-3-1], [2-1]

Configuración: 80-10-10, $\alpha=0.1$, eit = 0.000000000001, itmax = 10000

Resultado:

Función para aproximar: $1+\sin(\frac{6\pi n}{4})$, en $\ n\in[-2\ ,2]$

MLP: [1-4-1], [2-1]

Configuración: 80-10-10, $\alpha=0.1$, eit = 0.000000000001, itmax = 10000

Resultado:

Función para aproximar: $1+\sin(\frac{6\pi n}{4})$, en $n\in[-2\,,2]$

MLP: [1-5-1], [2-1]

Configuración: 80-10-10, $\alpha = 0.1$, eit = 0.000000000001, itmax = 10000

Resultado:

Para una mejor visualización de las gráficas y ver los resultados en consola de la salida, visitar el repositorio de Github:

https://github.com/IvanovskyOrtega/Redes-Neuronales/tree/master/MLP/Primeras-Pruebas