Miller-Rabin Primality Test: Step-by-Step Workbook

1 1. Understanding Congruence (Modular Arithmetic)

1.1 1.1 What Does " $a \equiv b \pmod{m}$ " Mean?

We say "a is congruent to b modulo m" when a and b leave the same remainder upon division by m.

- Divide a by m: remainder r_a .
- Divide b by m: remainder r_b .
- If $r_a = r_b$, then $a \equiv b \pmod{m}$.

Equivalently, m divides the difference: $m \mid (a - b)$.

Example: $14 \equiv 2 \pmod{4}$ since both leave remainder 2 when divided by 4.

1.2 Why Addition and Multiplication Work

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then:

- a b = mk and $c d = m\ell$ for some integers k, ℓ .
- Summing: $(a+c)-(b+d)=m(k+\ell)$, so $a+c\equiv b+d\pmod{m}$.
- Multiplying: $ac bd = (a b)c + b(c d) = mck + mb\ell = m(ck + b\ell)$, so $ac \equiv bd \pmod{m}$.

1.3 Lagrange 1.3 Exercises

Exercise 1.1 Find the remainder when 123 is divided by 7, and when 200 is divided by 7. Show that $123 \equiv 200 \pmod{7}$.

Exercise 1.2 Show that if $a \equiv b \pmod{m}$, then for any positive integer $k, a^k \equiv b^k \pmod{m}$.

2 2. Computing Large Powers by Hand

2.1 2.1 Breaking Exponents into Powers of Two

Any exponent k can be written in binary, e.g.

$$45 = 32 + 8 + 4 + 1$$
 $(45_{10} = 101101_2).$

Then

$$a^{45} = a^{32} \times a^8 \times a^4 \times a^1$$
.

We compute each a^{2^i} by successive squaring:

$$a^2 = (a^1)^2$$
, $a^4 = (a^2)^2$, $a^8 = (a^4)^2$, ...

2.2 Worked Example

Compute $3^{17} \mod 23$:

- 1. Write 17 = 16 + 1 (binary 10001_2).
- 2. Compute:

$$3^{1} = 3$$
, $3^{2} = 9$, $3^{4} = 9^{2} = 81 \equiv 12$, $3^{8} = 12^{2} = 144 \equiv 6$, $3^{16} = 6^{2} = 36 \equiv 13$.

3. Multiply: $3^{17} = 3^{16} \times 3^1 \equiv 13 \times 3 = 39 \equiv 16 \pmod{23}$.

2.3 Exercises

Exercise 2.1 Compute 7⁴⁵ mod 1001 by breaking 45 into powers of two and doing successive squaring and multiplication.

Exercise 2.2 Show all steps for 13³⁷ mod 101.

3 3. Fast (Binary) Exponentiation Algorithm

3.1 3.1 Why It Is Faster

Multiplying a by itself k-1 times takes k-1 multiplications. Binary exponentiation uses about $2\log_2 k$ multiplications instead of k.

3.2 Algorithm (Pseudocode)

function binExp(a, k, m):
 result = 1
 base = a mod m
 while k > 0:

```
if (k mod 2 == 1):
    result = (result * base) mod m
base = (base * base) mod m
k = floor(k / 2)
return result
```

3.3 Example Table

Compute $5^{27} \mod 97$ by tracking (k, base, result):

k	base	result
27	5	1
13	25	5
6	$25^2 \bmod 97 = \dots$	

3.4 3.4 Exercises

Exercise 3.1 Finish the table to compute 5²⁷ mod 97._____

Exercise 3.2 Compute 7²⁰²⁵ mod 2027 by binary exponentiation.

4 4. The Miller–Rabin Primality Test

4.1 4.1 Setup

Let n > 2 be odd. Write $n - 1 = 2^{s}d$ where d is odd (pull out factors of two).

4.2 One Test Round

Pick base a with 1 < a < n - 1 and do:

- 1. Compute $x = a^d \mod n$ via binExp.
- 2. If x = 1 or x = n 1, return **PASS**.
- 3. Repeat s-1 times:
 - $x = x^2 \mod n$.
 - If x = n 1, return **PASS**.
- 4. Otherwise return **COMPOSITE**.

4.3 Guided Example

Test n = 561, a = 2:

- 1. $561 1 = 560 = 2^4 \times 35$, so s = 4, d = 35.
- 2. Compute $2^{35} \mod 561$ (use binExp).

- 3. Check if x = 1 or 560; otherwise square up to 3 times checking for 560.
- 4. Conclude **COMPOSITE**.

4.4 4.4 Exercises

Exercise 4.1 Carry out one round of Miller-Rabin on n = 561, a = 2. Fill in each x value.

Exercise 4.2 Test n = 1105, a = 2.

5 5. Why Miller–Rabin Works (Theory)

5.1 Square Roots of 1 Modulo n

A number y with $y^2 \equiv 1 \pmod{n}$ is a square root of unity. For prime p, only $y = \pm 1$. For composite n, there can be more.

5.2 Vitnesses and Non-Witnesses

A base a is a witness if the test returns **COMPOSITE**. Otherwise a non-witness.

5.3 Vitness Property Theorem

Theorem. If n is odd composite, at least 3/4 of $a \in \{2, ..., n-2\}$ are witnesses.

5.4 5.4 Proof Sketch

Non-witnesses force all intermediate x values to be ± 1 . Counting roots of unity shows there are at most 2^{s+1} possibilities, which is $\leq (n-3)/4$ for composite n.

5.5 5.5 Exercises

Exercise 5.1 Explain why for prime p, there are exactly two square roots of unity mod p.

Exercise 5.2 Argue why composite n has at most four such roots if n is not a prime power.