Lecture 23

Simple Linear Regression:

Estimation and Model Assumptions

Text: Chapter 11

STAT 8010 Statistical Methods I April 14, 2020

> Whitney Huang Clemson University

Notes

ar SLR alysis

Agenda

- Simple Linear Regression (SLR)
- 2 Parameter Estimation in SLR
- Residual Analysis

Notes			

What is Regression Analysis?

Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)

We will focus on simple linear regression in the next few lectures

Notes			

Scatterplot: Is Linear Trend Reasonable?

The relationship appears to be linear. What about the **direction** and **strength** of this linear relationship?

> cov(age, maxHeartRate)
[1] -243.9524

> cor(age, maxHeartRate)
[1] -0.9534656

Notes

Simple Linear Regression (SLR)

Y: dependent (response) variable; *X*: independent (predictor) variable

• In SLR we assume there is a linear relationship between *X* and *Y*:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- We need to estimate β_0 (intercept) and β_1 (slope)
- We can use the estimated regression equation to
 - make predictions
 - study the relationship between response and predictor
 - control the response
- Yet we need to quantify our estimation uncertainty regarding the linear relationship (will talk about this next time)

Simple Linear Regression (SLR) Parameter Estimation in SLR

Notes

Regression equation: $Y = \beta_0 + \beta_1 X$

- β_0 : E[Y] when X = 0
- β_1 : $E[\Delta Y]$ when X increases by 1

Simple Linear Regression (SLR) Parameter Estimation in SLR Residual Analysis Notes

Assumptions about the Random Error ε

In order to estimate β_0 and β_1 , we make the following assumptions about $\boldsymbol{\varepsilon}$

- $E[\varepsilon_i] = 0$
- $\bullet \ \operatorname{Var}[\varepsilon_i] = \sigma^2$
- $Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Therefore, we have

$$\mathrm{E}[Y_i] = \beta_0 + \beta_1 X_i, \text{ and }$$

 $\mathrm{Var}[Y_i] = \sigma^2$

The regression line $\beta_0+\beta_1 X$ represents the **conditional expectation curve** whereas σ^2 measures the magnitude of the variation around the regression curve

Notes

Notes

140100			

Estimation: Method of Least Square

For the given observations $(x_i,y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the sum of squared errors:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{(X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

We also need to **estimate** σ^2

$$\hat{\sigma}^2 = rac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}$$
, where $\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i$

Properties of Least Squares Estimates

- Gauss-Markov theorem states that in a linear regression these least squares estimators
 - Are unbiased, i.e.,
 - $\bullet \ E[\hat{\beta}_1] = \beta_1; E[\hat{\beta}_0] = \beta_0$
 - $\bullet \ \mathrm{E}[\hat{\sigma}^2] = \sigma^2$
 - 4 Have minimum variance among all unbiased linear estimators

Note that we do not make any distributional assumption on ε_i

Notes			

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

$$MaxHeartRate = 220 - Age.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset": http://whitneyhuang83.github.io/

http://whitneyhuang83.github.io/
maxHeartRate.csv)

- Compute the estimates for the regression coefficients
- Compute the fitted values
- **Output Output O**

Notes

Notes

Estimate the Parameters β_1 , β_0 , and σ^2

 Y_i and X_i are the Maximum Heart Rate and Age of the \mathbf{i}^{th} individual

- To obtain $\hat{\beta}_1$
 - Occupate $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}, \bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
 - ② Compute $Y_i \bar{Y}$, $X_i \bar{X}$, and $(X_i \bar{X})^2$ for each observation
 - **3** Compute $\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})$ divived by $\sum_{i=1}^{n} (X_i \bar{X})^2$
- $\hat{\beta}_0$: Compute $\bar{Y} \hat{\beta}_1 \bar{X}$
- - Ompute the fitted values: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i, \quad i = 1, \dots, n$
 - **2** Compute the **residuals** $e_i = Y_i \hat{Y}_i, \quad i = 1, \dots, n$
 - © Compute the **residual sum of squares (RSS)** = $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$ and divided by n-2 (why?)

Let's Do the Calculations

$$\bar{X} = \sum_{i=1}^{15} \frac{18 + 23 + \dots + 39 + 37}{15} = 37.33$$

$$\bar{Y} = \sum_{i=1}^{15} \frac{202 + 186 + \dots + 183 + 178}{15} = 180.27$$

X	18	23	25	35	65	54	34	56	72	19	23	42	18	39	37
Y	202	186	187	180	156	169	174	172	153	199	193	174	198	183	178
	-19.33	-14.33	-12.33	-2.33	27.67	16.67	-3.33	18.67	34.67	-18.33	-14.33	4.67	-19.33	1.67	-0.33
	21.73	5.73	6.73	-0.27	-24.27	-11.27	-6.27	-8.27	-27.27	18.73	12.73	-6.27	17.73	2.73	-2.27
	-420.18	-82.18	-83.04	0.62	-671.38	-187.78	20.89	-154.31	-945.24	-343.44	-182.51	-29.24	-342.84	4.56	0.76
	373.78	205.44	152.11	5.44	765.44	277.78	11.11	348.44	1201.78	336.11	205.44	21.78	373.78	2.78	0.11
	195 69	191 70	190 11	182 13	158 20	166.97	182 93	165.38	152 61	194.89	191 70	176 54	195 69	178 94	180 53

•	$\hat{\beta}_1 =$	$\frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$	= -0.7977
		$/_{i=1}(\Lambda_i - \Lambda_i)$	

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X} = 210.0485$$

•
$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{15} (Y_i - \hat{Y}_i)^2}{13} = 20.9563 \Rightarrow \hat{\sigma} = 4.5778$$

1			
V			

Notes

Let's Double Check

```
Simple Linear
Regression:
Estimation and
Model
Assumptions

Simple Linear
Regression (SLR)
Parameter
Estimation in SLR
Residual Analysis
```

Notes

Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis

Notes

Residuals

 The residuals are the differences between the observed and fitted values:

$$e_i = Y_i - \hat{Y}_i,$$

where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

- e_i is NOT the error term $\varepsilon_i = Y_i \mathrm{E}[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on ε_i . Recall
 - $E[\varepsilon_i] = 0$
 - $\bullet \ \operatorname{Var}[\varepsilon_i] = \sigma^2$
 - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Simple Linear Regression: Estimation and Model Assumptions						
CLEMS N						
Residual Analysis						

Notes		

Maximum Heart Rate vs. Age Residual Plot: ε vs. X

Notes			

Interpreting Residual Plots

Figure: Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Simple Linear Regression: Estimation and Model Assumptions
CLEMS N
Residual Analysis
23.17

Notes			

Notes			