1 Постановка задачи

Задана выборка $\mathcal{X} = \{(X_1, y_1), ..., (X_K, y_K)\}$, состоящая из объектов сложной структуры $X_1, ..., X_K$ и экспертных ответов $y_1, ..., y_k \in Y$.

Решается задача прогнозирования объекта сложной структуры: поиска отображения $g(X)\mapsto y,$ минимизирующего функцию ошибки для всех объектов:

$$\sum_{i=1}^{K} S(X_i, y_i, g) \to \min(g). \tag{1}$$

Рассматривается конечное множество значений отображения $g: g \in G = g_1, ..., g_r$. Рассматривается задача определения по каждому объекту X_i оптимальной функции его прогнозирования $g_i(X_i), f: X_i \mapsto g_i$, такой, что

$$\sum_{i=1}^{K} S(X_i, y_i, f(X_i)) \to \min.$$
 (2)

таким образом, в отличие от (1), в постановке (2) для объекта X_i используется функция прогнозирования $f(X_i) = g_i$, вид которой определяется самим объектом X_i .

Формализация задачи прогнозирования отображения. Для того, чтобы определить класс функций f, возвращающих для объекта X его оптимальную прогнозирующую функцию g, введем метаописание объекта X. Поставим в соответствие объекту X его признаковое описание $\mathbf{x} \in \mathbb{R}^n$. Каждая из компонент этого вектора является значением некоторой элементарной функции от X.

Кроме того, поставим в соответствие каждому объекту X и его метаописанию \mathbf{x} вектор \mathbf{s} длины r, являющийся вектором значений ошибки S на объекте X для функций $g_1, ..., g_r$:

$$s_k = S(X, y, g_k).$$

Используя введенные обозначения, будем искать отображение $f: X \mapsto g$ в виде отображения $f: \mathbb{R}^n \to \mathbb{R}^r$, ставящего в соответствие метаописанию x вектор оценок значений функций $g_1, ..., g_r$ на объекте X.

Задача классификации структуры. Для построения отображения в качестве обучающей информации используется выборка векторов $\{(\mathbf{x}_i, \boldsymbol{\alpha}_i)\}_{i=1}^K$, где $\boldsymbol{\alpha}_i$ является бинарным вектором, содержащим единицу на месте, соответствующем минимальному значению вектора \mathbf{s}_i ,

$$\alpha_i(j) = [\mathbf{s}_i(j) = \min(\mathbf{s}_i)].$$

В этом случае решается задача многоклассовой классификации $f:\mathbb{R}^n o \{1,...,r\}.$

Задача прогнозирования структуры. В отличие от предыдущего случая, в этом параграфе рассматривается структура на множестве функций прогнозирования G.

Предполагается, что каждая функция g_i является суперпозицией базисных функций $h_1,...,h_m$. Предполагается, что эта суперпозиция описывается деревом суперпозиций Γ , с бинарной матрицей инцидентности \mathbf{Z} . Будем искать отображение f, ставящее в соответствие метаописанию объекта \mathbf{x} оптимальный граф суперпозиции $\hat{\Gamma}$.

Таким образом, схема прогнозирования сложного объекта выглядит следующим образом.

$$X \xrightarrow{meta} \mathbf{x} \xrightarrow{f} \hat{\mathbf{Z}}, \hat{\Gamma} \to \hat{g}_i \to \hat{g}_i(X).$$

Основной задачей данной работы является построение отображения $f: \mathbf{x} \mapsto \Gamma$ по заданной выборке $\{(\mathbf{x}_i, \mathbf{s}_i, \Gamma_i)\}_{i=1}^K$, где Γ_i — граф суперпозиции, соответствующей минимальному индексу вектора ошибок \mathbf{s}_i .