www.rgpvonline.com

CS/IT - 304 B.E. III Semester Examination, June 2014 Electronics Devices and Circuit Time: Three Hours Maximum Marks: 70 Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice. ii) All parts of each question are to be attempted at one place. iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks. iv) Except numericals, Derivation, Design and Drawing etc. 1. a) Why does the conductivity of a semiconductor change with the rise in temperature? 2 b) For faster action which transistor is used and why. 2 c) What is a varactor diode? 3 d) Explain the principle of operation of any one type of MOSFET. OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×105 without feedback
B.E. III Semester Examination, June 2014 Electronics Devices and Circuit Time: Three Hours Maximum Marks: 70 Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice. ii) All parts of each question are to be attempted at one place. iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks. iv) Except numericals, Derivation, Design and Drawing etc. 1. a) Why does the conductivity of a semiconductor change with the rise in temperature? 2 b) For faster action which transistor is used and why. 2 c) What is a varactor diode? 3 d) Explain the principle of operation of any one type of MOSFET. OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×10 ⁵ without feedback
Examination, June 2014 Electronics Devices and Circuit Time: Three Hours Maximum Marks: 70 Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice. ii) All parts of each question are to be attempted at one place. iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks. iv) Except numericals, Derivation, Design and Drawing etc. 1. a) Why does the conductivity of a semiconductor change with the rise in temperature? 2 b) For faster action which transistor is used and why. 2 c) What is a varactor diode? 3 d) Explain the principle of operation of any one type of MOSFET. OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×105 without feedback
Electronics Devices and Circuit Time: Three Hours Maximum Marks: 70 Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice. ii) All parts of each question are to be attempted at one place. iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks. iv) Except numericals, Derivation, Design and Drawing etc. 1. a) Why does the conductivity of a semiconductor change with the rise in temperature? 2 b) For faster action which transistor is used and why. 2 c) What is a varactor diode? 3 d) Explain the principle of operation of any one type of MOSFET. OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×10° without feedback
Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice. ii) All parts of each question are to be attempted at one place. iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks. iv) Except numericals, Derivation, Design and Drawing etc. 1. a) Why does the conductivity of a semiconductor change with the rise in temperature? 2 b) For faster action which transistor is used and why. 2 c) What is a varactor diode? 3 d) Explain the principle of operation of any one type of MOSFET. OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×10° without feedback
Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice. ii) All parts of each question are to be attempted at one place. iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks. iv) Except numericals, Derivation, Design and Drawing etc. 1. a) Why does the conductivity of a semiconductor change with the rise in temperature? 2 b) For faster action which transistor is used and why. 2 c) What is a varactor diode? 3 d) Explain the principle of operation of any one type of MOSFET. OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×10 ⁵ without feedback
Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice. ii) All parts of each question are to be attempted at one place. iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks. iv) Except numericals, Derivation, Design and Drawing etc. 1. a) Why does the conductivity of a semiconductor change with the rise in temperature? 2 b) For faster action which transistor is used and why. 2 c) What is a varactor diode? 3 d) Explain the principle of operation of any one type of MOSFET. OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×10° without feedback
compulsory and D part has internal choice. ii) All parts of each question are to be attempted at one place. iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks. iv) Except numericals, Derivation, Design and Drawing etc. 1. a) Why does the conductivity of a semiconductor change with the rise in temperature? 2 b) For faster action which transistor is used and why. 2 c) What is a varactor diode? 3 d) Explain the principle of operation of any one type of MOSFET. OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×10° without feedback
ii) All parts of each question are to be attempted at one place. iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks. iv) Except numericals, Derivation, Design and Drawing etc. 1. a) Why does the conductivity of a semiconductor change with the rise in temperature? b) For faster action which transistor is used and why. c) What is a varactor diode? d) Explain the principle of operation of any one type of MOSFET. OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×105 without feedback
place. iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks. iv) Except numericals, Derivation, Design and Drawing etc. 1. a) Why does the conductivity of a semiconductor change with the rise in temperature? b) For faster action which transistor is used and why. c) What is a varactor diode? d) Explain the principle of operation of any one type of MOSFET. OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? b) An amplifier has a gain of 2×10 ⁵ without feedback
iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks. iv) Except numericals, Derivation, Design and Drawing etc. 1. a) Why does the conductivity of a semiconductor change with the rise in temperature? b) For faster action which transistor is used and why. c) What is a varactor diode? d) Explain the principle of operation of any one type of MOSFET. OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? b) An amplifier has a gain of 2×10 ⁵ without feedback
with the rise in temperature? b) For faster action which transistor is used and why. c) What is a varactor diode? d) Explain the principle of operation of any one type of MOSFET. OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? b) An amplifier has a gain of 2×10 ⁵ without feedback
b) For faster action which transistor is used and why. 2 c) What is a varactor diode? 3 d) Explain the principle of operation of any one type of MOSFET. 7 OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×10 ⁵ without feedback
d) Explain the principle of operation of any one type of MOSFET. 7 OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×10 ⁵ without feedback
d) Explain the principle of operation of any one type of MOSFET. 7 OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×10 ⁵ without feedback
OR Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×10 ⁵ without feedback
Explain the four modes of operation of BJT. 7 2. a) What do you mean by feedback? 2 b) An amplifier has a gain of 2×10 ⁵ without feedback
What do you mean by feedback? An amplifier has a gain of 2×10 ⁵ without feedback
b) An amplifier has a gain of 2×10 ⁵ without feedback
determine the gain if negative feedback is applied given $\beta = 0.02$
Explain the effect of negative feedback on bandwidth. 3 Explain the wein bridge oscillator in detail. 7
OR OR

[2]

		With the neat diagram explain the class B push pu amplifier.	11 7			
3.	a)	Write the applications of clamping circuits.	2			
	b)	Why differential amplifier is necessary?	2			
	c)	Define differential gain and common mode gain.	3			
	d)	Draw and explain Darlington amplifier. OR	7			
		Draw the circuit diagram of a stable multivibrator.	7			
4	a)	Define slew rate.	2			
٠.	b)					
	¢)					
	d)	R_1 Given $RF = 100 \text{ k}$ V_1 V_2 $R_1 = 10 \text{ k}$ Draw and explain OPAMP as an integrator. OR	Ω 7			
		Give the pin connections of IC 555 explain the use each pin.	7			
5.	a)	What is line regulation and load regulation?	2			
	b)					
	c)	Briefly explain the working of zener regulator.	3			
	d)	Draw the block diagram and explain switched mode pov supply.	ver 7			
		OR	7			
	رے	Explain a current limiting circuit.				
		athabat remarkabling com				

www.rgpvonline.com

OR

Evaluate the integral $\int_0^\infty \frac{\cos ax}{x^2 + 1} dx$.

- 2. a) Determine the Newton Raphson iterative formula to find the kth root of N.
 - b) Find a real root of the equation $x \log_{10} x = 1.2$ by regulafalsi method correct to one decimal place. 2
 - c) Find a real root of the equation $3x = \cos x + 1$ by iterative method correct to two decimal places.
 - d) Apply Crout's factorization method to solve the system of equations:

$$x-y=0$$

$$-2x+4y-2z=-1$$

$$-y+2z=1.5$$

OR

Apply Gauss-Seidel iteration method to solve the system of equations:

$$20x + y - 2z = 17$$
$$3x + 20y - z = -18$$
$$2x - 3y + 20z = 1.5$$

- 3. a) Prove that: $e^x = \left(\frac{\Delta^2}{E}\right) e^x \cdot \frac{Ee^x}{\Delta^2 e^x}$
 - b) Derive Newton's forward interpolation formula. 2
 - c) Evaluate the integral $\int_0^{0.6} e^{-x^2} dx$ by Simpson $\frac{1}{3}$ rule.

d) Apply Newton's divided difference formula to find the value of f(9) from the following table: 7

X	5	7	11	13	17				
f(x)	150	392	1452	2368	5202				
OD									

OR

Find $\frac{dy}{dx}$ at x = 1.1 from the following table:

 x
 1.0
 1.2
 1.4
 1.6
 1.8
 2.0

 y
 0
 0.128
 0.544
 1.296
 2.432
 4.000

7

4. a) Find by Taylor's series method the value y(0.1) correct to three decimal places from the differential equation:

$$\frac{dy}{dx} = x^2 y - y, y(0) = 1$$
.

- b) Write the working rule of Runge-Kutta method of fourth order for the numerical solution of differential equation.
- c) If θ is the angle between the two regression lines show that:

$$\tan\theta = \frac{1-r^2}{r} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}.$$

d) Using modified Euler's method, find the value of y (0.3) from the equation:

$$\frac{dy}{dx} = x + y, \ y(0) = 1.$$

BE-401

OR

www.rgpvonline.com