a. Qu'appelle-t-on une base de vecteurs dans le plan ?

b. Qu'appelle-t-on une base orthonormée ?

c. Quelles sont les coordonnées d'un vecteur dans une base du plan ?

d. Qu'appelle-t-on un repère du plan ?

e. Qu'appele-t-on un repère orthonormé ?

f. Quelles sont les coordonnées d'un point dans un repère du plan ?

Pour chaque vecteur, donnez ses

coordonnées dans la base (\vec{i}, \vec{j}) .

a.
$$ec{u}_1=2ec{i}-7ec{j}$$

b.
$$ec{u}_2=4ec{j}+8ec{i}$$

d. $ec{u}_4=ec{i}-ec{j}$

c.
$$ec{u}_3=2(-2ec{i}+3ec{j})$$

d.
$$ec{ec{u}_{\scriptscriptstyle A}} = ec{ec{i}} - ec{ec{j}}$$

e.
$$ec{u}_5=rac{-ec{i}+ec{j}}{2}$$
g. $ec{u}_7=4ec{j}-7ec{j}$

f.
$$ec{u}_6=2ec{i}+3ec{i}$$

g.
$$ec{u}_7=4ec{j}\stackrel{\scriptscriptstyle Z}{-}7ec{j}$$

h.
$$ec{u}_8=rac{ec{i}}{\sqrt{25}}-rac{3}{15}ec{i}$$

i.
$$ec{u}_9 = rac{4^3 ec{i} + 2^8 ec{j}}{8^2}$$

j.
$$ec{u}_{10}=4(ec{i}-ec{j})+2ec{i}$$

Dans chaque cas, déterminez les

coordonnées du vecteur \vec{u} dans la base (\vec{i}, \vec{j}) .

a.
$$5 \vec{u} + \vec{i} = 2 \vec{j} + 4 \vec{u}$$

b.
$$ec{u}+2ec{i}=ec{j}+3ec{u}$$

c.
$$4(\vec{u}+\vec{j})=-3\vec{i}+3\vec{u}$$

a.
$$5\vec{u} + \vec{i} = 2\vec{j} + 4\vec{u}$$
 b. $\vec{u} + 2\vec{i} = \vec{j} + 3\vec{u}$ c. $4(\vec{u} + \vec{j}) = -3\vec{i} + 3\vec{u}$ d. $\frac{\vec{u} + \vec{i}}{2} = \frac{\vec{j} + \vec{u}}{3}$

a. Placez dans un repère orthonormé les points A(2;1), B(5;1), C(-1;3), D(7;3) et E(2; -2).

b. Déterminer par lecture graphique les coordonnées des vecteurs suivants.

 \overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AD} \overrightarrow{AE} \overrightarrow{BC} \overrightarrow{BD} \overrightarrow{BE} \overrightarrow{CD} \overrightarrow{CE} DE

c. Retrouver les résultats de la question précédente par le calcul.

d. Calculer les coordonnées des vecteurs suivants puis contrôler le résultat avec la figure.

02

a. Quelles sont les coordonnées de la somme de deux vecteurs ?

b. Quelles sont les coordonnées du produit d'un vecteur par un nombre ?

On considère $ec{u}egin{pmatrix}2\\-1\end{pmatrix}$ et $ec{v}egin{pmatrix}1\\2\end{pmatrix}$.

a. Calculez les coordonnées de $3\vec{u}+2\vec{v}$.

b. Calculez les coordonnées de $3\vec{u}-2\vec{v}$.

c. Tracez les vecteurs $3\vec{u}$, $2\vec{v}$ puis contrôlez le résultat précédent.

Q3

a. Comment déterminer la norme d'un vecteur à partir de ses coordonnées ?

b. Que peut-on dire de la norme du produit d'un vecteur $ec{u}$ par un nombre k ?

c. Comment calculer la norme de la somme de deux vecteurs ?

d. Comment déterminer la distance entre deux points à partir de leurs coordonnées ?

Dans chaque cas déterminez la norme du vecteur $ec{u}$. Toutes les coordonnées sont exprimées dans une base orthonormée (\vec{i}, \vec{j}) .

a.
$$ec{u}inom{3}{4}$$
 c. $ec{u}=3ec{i}-4ec{j}$

b.
$$ec{u}inom{-2}{2}$$

$$ec{u} = \overset{
ightharpoonup}{3} ec{i} - 4 ec{j}$$

d.
$$ec{u} = ec{i} + ec{j}$$

e.
$$\vec{u}=\vec{a}-\vec{b}$$
 si $\vec{a}\begin{pmatrix}1\\2\end{pmatrix}$ et $\vec{b}\begin{pmatrix}5\\-1\end{pmatrix}$ f. $\vec{u}=-6\vec{a}$ si $\vec{a}\begin{pmatrix}-3\\-4\end{pmatrix}$

f.
$$ec{u}=-6ec{a}$$
 si $ec{a}inom{-3}{-4}$

g.
$$u=-3ec{a}+4ec{b}$$
 si $ec{a}inom{1}{2}$ et $ec{b}inom{-1}{3}$

lacksquare On considère les points $A(5\,;\,7),\;B(3\,;\,7),\;$ C(-6; -2), D(-6; 3), E(-1; 2), F(3; 1),G(2;5), H(-4;1), I(4;-2), J(-2;5),K(-1; 1), L(1; -2) et M(5; 5).

a. Calculer AB.

b. Calculer CD.

 ${f c.}$ Montrer que EFG est isocèle.

d. Montrer que HIJ n'est pas rectangle.

f e. Montrer que KLM est rectangle.

f. Calculer le périmètre de ABC.

E7 La formule de Héron permet de calculer l'aire d'un triangle :

$$\mathcal{A} = \sqrt{p(p-a)(p-b)(p-c)}$$

où p est le demi-périmètre du triangle et a, b et c sont les longueurs des côtés du triangle. Toutes les coordonnées sont exprimées dans un repère orthonormé (O,i,j). On considère les points A(-1; 3), B(5; 7), C(5; -3) et H(0; 2).

a. Montrer que ABH est rectangle.

b. En déduire un calcul de l'aire du triangle

c. Calculer BC, p, p-a, p-b et p-c.

d. Montrer que $p(p-a)=30\sqrt{2}+30$ et $(p-b)(p-c) = 30\sqrt{2} - 30.$

f e. En déduire l'aire du triangle ABC à l'aide de la formule de Héron.