RC4: Rivest Cipher 4

Generalities

System	Туре	Year	
RC2	Block	1987	
RC4	Stream	1987	
RC5	Block	1994	
RC6	Block	1997	

- ► RC4 was certainly the most used cipher : WEP, WPA, XBOX, Skype. . .
- https://www.rc4nomore.com
- ► However, RC4 is weak!

RC4: characteristics

- **Key**: length $40 \le \ell \le 128$ bits.
- Internal state :
 - RC4 work on an array S of 256 bytes.
 - 2 counters.
- \triangleright Initialization function depends on the key K.
- **▶** Key stream generation :
 - Update function f.
 - Filtering function ϕ .
- ➤ To simplify the description, let reduce the array size of RC4 to 8 bytes (and let call it TinyRC4).

TinyRC4 Initialization function

➤ The goal of the initialization function is to set the internal state with a **pseudo-random permutation** which depends on the key and on the positive integers smaller than 8 .

 \blacktriangleright After initialization (example) : $\{0,1,3,7,4,6,5,2\}$

TinyRC4 Initialization function

	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	i = i	\int
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	i	j
I		4			4					

TinyRC4 Initialization function

► Update :

$$-i_{t+1} = i_t + 1$$

$$-j_{t+1} = j_t + S[i_t] + K[i_t] \mod 8$$

$$--\operatorname{swap}(S[i_t],S[j_{t+1}])$$

Keystream generation

▶ If it works for TinyRC4, it will work for RC4.

Keystream generation

Code C of RC4

> A few line!

```
int i = 0, j = 0, x, t;
for (x=0; x < len; ++x)
  i = (i + 1) \% 256;
  j = (j + state[i]) \% 256;
  t = state[i];
  state[i] = state[j];
  state[i] = t;
  out[x] = state[(state[i] + state[j]) \% 256];
```

Code C de RC4

Initialisation

```
int i, j = 0, t;
for (i=0; i < 256; ++i)
  state[i] = i;
for (i=0; i < 256; ++i)
  j = (j + state[i] + key[i \% len]) \% 256;
  t = state[i];
  state[i] = state[j];
  state[j] = t;
```

Cryptanalysis

- ► Key recovery attacks attempt to recover the secret key of the stream cipher from the keystream.
- ► The most powerful attack!

Cryptanalysis

- Initialization recovery attacks attempt to recover the initial state of the stream cipher from the keystream.
- ► Knowing the key is enough to recover the initial state but it is not necessary reciprocity.

Cryptanalysis

ightharpoonup Next bit prediction attacks consist from a keystream of n to predict the next bit of the keystream

➤ **Distinguishing attacks** allow to determine if a keystream of *n* bits can be distinguish from the output of an *ideal random number generator*.

Attacks against stream ciphers

Impact of the attacks

Attacks against RC4

➤ To break a stream ciphers, we focus on 3 kinds of weakness:

- **▶** Properties on the keystream
- **Properties of inversion**
- **Properties on initialization**

Inversion of TinyRC4

and so of RC4

- ► Let assume that we know the internal state after t rounds and the last byte of the keystream.
- ightharpoonup We know S et $i_t=t$.
- ightharpoonup It is easy to recover j_t because :

$$k_t = S[S[i_t] + S[j_t]].$$

We know k_t , i_t et S, we can recover j.

Inversion of TinyRC4

Example

- ► Inversion Function :
 - SWAP(S[i], S[j])
 - $-i_{t-1} = i_t 1 \mod 8$
 - $-j_{t-1} = j_t S[i_{t-1}] \mod 8$

Initialization Property

Roos Biais

ightharpoonup If the initial state of S was computed by a random permutation then we would have :

$$\forall y \in \mathbb{Z}/256\mathbb{Z}, \mathbf{Pr}(S[y] = c) = 1/256$$

with $\forall c \in \mathbb{Z}/256\mathbb{Z}$.

▶ Is the initialization of RC4 behaving like a random permutation?

Initialization property

Roos biais

ightharpoonup We define f_u by :

$$f_y = \sum_{x=0}^{y} K[x] + x$$

$$= \frac{y(y+1)}{2} + \sum_{x=0}^{y} K[x].$$

The most likely value for S[y] at the end of the initialization is $S[y] = f_y$. [Roos 1995]

Initialization property

Roos biais

y	$\mathbf{Pr}(S[y] = f_y)$										
0-7	0.370	0.368	0.362	0.358	0.349	0.340	0.330	0.322			
8-15	0.309	0.298	0.285	0.275	0.260	0.245	0.229	0.216			
16-23	0.203	0.189	0.173	0.161	0.147	0.135	0.124	0.112			
24-31	0.101	0.090	0.082	0.074	0.064	0.057	0.051	0.044			
32-39	0.039	0.035	0.030	0.026	0.023	0.020	0.017	0.014			
40-47	0.013	0.012	0.010	0.009	0.008	0.007	0.006	0.006			

Having noticed that : $\frac{1}{256} = 0.00390625$

Roos biais

► Let assume a key of 40 bits :

$$K = \{106, 59, 220, 65, 34\}$$

y	0	1	2	3	4	5	6	7
f_y	106	166	132	200	238	93	158	129
$S_{256}[y]$	230	166	87	48	238	93	68	239
y	8	9	10	11	12	13	14	15
f_y	202	245	105	175	151	229	21	142
$S_{256}[y]$	202	83	105	147	151	229	35	142

Roos biais

ightharpoonup For S[1] and S[2] we have :

$$\mathbf{Pr}(S[1] = f_1) \approx \left(\frac{256 - 1}{256}\right)^{256}$$
 $\mathbf{Pr}(S[2] = f_2) \approx \left(\frac{256 - 1}{256}\right)^{256}$

$$f_1 = K[0] + K[1] + 1$$

 $f_2 = K[0] + K[1] + K[2] + 3$

▶ We obtain equations on the key from the seed.

Generalization

▶ We have :

$$\mathbf{Pr}(S[y] = f_y) = \left(\frac{256 - y}{256}\right) \cdot \left(\frac{256 - 1}{256}\right)^{\frac{256 + \frac{(y+1)y}{2}}{2}} + \frac{1}{256}$$

Key recovery

ightharpoonup We know S et $K = \{106, 59, 220, 65, 34\}$

y	0	1	2	3	4	5	6	7
f_y	106	166	132	200	238	93	158	129
S[y]	230	166	87	48	238	93	68	239
y	8	9	10	11	12	13	14	15
f_y	202	245	105	175	151	229	21	142
S[y]	202	83	105	147	151	229	35	142

Each time we have $S[y] = f_y$, we obtain an equation on the key and then we can build a system of equations :

Key recovery

$$1 + \sum_{x=0}^{1} K[x] = 166 \tag{1}$$

$$10 + \sum_{x=0}^{4} K[x] = 238 \tag{2}$$

$$15 + \sum_{x=0}^{5} K[x] = 93 \tag{3}$$

$$36 + \sum_{x=0}^{5} K[x] = 202 \tag{4}$$

Sources

- ► RC4 Stream Cipher and Its Variants. P. Goutam et S. Maitra, 2011 CRC Press.
- ➤ Weaknesses in the Key Scheduling Algorithm of RC4. S. R. Fluhrer, I. Mantin et A. Shamir, SAC 2001, Springer-Verlag.
- ► A Class of Weak Keys in the RC4 Stream Cipher.

 Andrew Roos, posté sur sci.crypt, 1995.