LØST OPPGAVE 5.306

5.306

Arne, som står i ro, ser en vogn i ro 8,0 m foran seg. Han løper så fort han kan – med akselerasjonen 1,0 m/s² – bort til vogna og hopper på den. Arne har selv massen 75 kg, mens vognmassen er 25 kg.

Hvor stor fart har vogna rett etter at Arne har hoppet på?

Løsning:

Vi tegner av oppgavefiguren og setter på opplysninger:

Noen andre størrelser vi vil bruke i løsningen:

Arnes startfart: $v_{A0} = 0$

Arnes masse: $m_A = 75 \text{ kg}$

Fellesmassen: Arne + vogn: $m_{\rm f} = 100 \, \rm kg$

Arnes akselerasjon før han hopper på vogna: $a = 1.0 \text{ m/s}^2$

Vi finner først farten v_A som Arne oppnår rett før han hopper på vogna.

Bevegelseslikningen $v^2 - {v_0}^2 = 2as$, der $v_0 = 0$ i vårt tilfelle, gir:

$$v_{\rm A} = \sqrt{2as}$$

= $\sqrt{2 \cdot 1,0 \text{ m/s}^2 \cdot 8,0 \text{ m}} = 4,000 \text{ m/s}$

Bevaringsloven for bevegelsesmengde gir oss så:

$$p_{\text{etter}} = p_{\text{før}}$$

$$m_{\text{f}} v_{\text{f}} = m_{\text{A}} v_{\text{A}} + 0$$

$$v_{\text{f}} = \frac{m_{\text{A}}}{m_{\text{f}}} v_{\text{A}}$$

$$= \frac{75 \text{ kg}}{100 \text{ kg}} \cdot 4,000 \text{ kg} = \underline{3,0 \text{ m/s}}$$