定义3.1 (部分函数) 如果从集合 X 到 Y 的二元关系 f 是 "单值"的,即 f 满足以下条件:

若 $\langle x, y_1 \rangle \in f$ 且 $\langle x, y_2 \rangle \in f$,则 $y_1 = y_2$, 就称 f 为从 X 到 Y 的部分函数。

定义3.2 设f为从集合 X 到集合 Y 的 部分函数。

- 1) 若 dom(f) = X,则称 f 为从 X 到 Y 的全函数,简称 f 为 从 X 到 Y 的函数,记为 $f: X \rightarrow Y$ 。
- 2) 若 $dom(f) \subset X$,则称 f 为从 X 到 Y 的严格部分函数。
- 3) 若 ran(f) = Y,则称 f 为从 X 到 Y 上的部分函数。
- 4) 若 $ran(f) \subset Y$,则称 f 为从 X 到 Y 内的部分函数。
- 5) 若对任意的 x_1 , x_2 ∈ dom (f),

当 $x_1 \neq x_2$ 时,皆有 $f(x_1) \neq f(x_2)$,

则称 f 为从 X 到 Y 的 1-1 部分函数。

(即: 当 $f(x_1) = f(x_2)$ 时, 皆有 $x_1 = x_2$)

定义7.3(函数 f 的限制): 设函数 $f: X \rightarrow Y$, $A \subseteq X$,则 $f \cap (A \times Y)$ 是 从 A 到 Y 的函数,称为 f 在 A上的限制 , 记作 $f|_{\Delta}$, 又称 f 为 $f|_{\Delta}$ 到 X 的 延拓 。 $f|_{\Delta}$ 可表示为:

$$f|_{A} = \{\langle x, y \rangle | \langle x, y \rangle \in f \land x \in A\}$$

定义.设A和B为任意两个集合,记A到B的全函数的集 合为 $\mathbf{B}^{\mathbf{A}}$: $\mathbf{B}^{\mathbf{A}} = \{f \mid f : \mathbf{A} \rightarrow \mathbf{B}\}$.

例: \mathcal{W} X = {a,b,c}, Y = {0,1},

 $X \times Y = \{ \langle a, 0 \rangle, \langle b, 0 \rangle, \langle c, 0 \rangle, \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle \},$

并且X×Y有26个可能的子集

然而只有如下23个子集定义了从X到Y的全函数:

$$f_0 = \{ \langle a, 0 \rangle, \langle b, 0 \rangle, \langle c, 0 \rangle \}$$

$$f_1 = \{ \langle a, 0 \rangle, \langle b, 0 \rangle, \langle c, 1 \rangle \}$$

$$f_2 = \{ \langle a, 0 \rangle, \langle b, 1 \rangle, \langle c, 0 \rangle \}$$

$$f_3 = \{ \langle a, 0 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle \}$$

$$f_4 = \{ \langle a, 1 \rangle, \langle b, 0 \rangle, \langle c, 0 \rangle \}$$

$$f_5 = \{ \langle a, 1 \rangle, \langle b, 0 \rangle, \langle c, 1 \rangle \}$$

$$f_6 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 0 \rangle \}$$

$$f_7 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle \}$$

从X到Y的每个全函数恰有 | X| 个有序偶, X中的每一个x 的函数值可有 | Y| 种不同的取法, 故从X到Y 的函数个数为 | Y^X| = |Y| | X| 。

- 例: 设A和B为有限集, n(A)=m, 且n(B)=p。
- (1) 有多少个从A到B的1-1函数?
- (2) 有多少个从A到B上的函数?

例: (1) 显然,当m>p时,不存在从A到B的1-1函数。

当m≤p时,从A到B的1-1函数个数为从B中选m个元素构成的排列个数,即

$$P_p^m = \frac{p !}{(p-m) !}$$

(2) 当m < p时,不存在从A到B上的函数;

当p = 0且 $m \neq 0$, 0个; p = 0且m = 0, 1个;

当 $m \ge p \ge 1$ 时,从A到B上的一个函数对应集合A的一

个包含p个子集的划分,而一个划分对应p!个函数

因此从A到B上的函数个数等于s(m, p) p!其中,集合A

的包含p个子集的划分个数。

3.2 函数的合成

重点:

□ 函数的合成(复合)运算

定义(关系的合成)设R是X到Y的关系,S是Y到Z的关系,则

 $\mathbf{R} \circ \mathbf{S} = \{ \langle \mathbf{x}, \mathbf{z} \rangle \mid \exists \mathbf{y} \in \mathbf{Y} (\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbf{R} \land \langle \mathbf{y}, \mathbf{z} \rangle \in \mathbf{S}) \}$ 为 X 到 Z 的关系, 称为 R 和 S 的合成关系。

定理 (部分函数的合成) 设 f 为从 X 到 Y 的部分函数, g 为从 Y 到 Z 的部分函数, 则复合关系 $f \circ g$ 为从 X 到 Z 的部分函数。

证明: 若<x, z_1 >,<x, z_2 > \in f \circ g,则有 y_1 , y_2 \in Y 使 <x, y_1 >, <x, y_2 > \in f 且<y₁, z_1 >, <y₂, z_2 > \in g 。 因为 f,g是部分函数,所以 y_1 = y_2 且 z_1 = z_2 ,因此f \circ g 是一个从 X 到 Z 的部分函数。 定义.设f为从X到Y的部分函数,g为从Y到Z的部分函数,则称复合关系 $f \circ g$ 为f与g的合成(复合)函数,用 $g \circ f$ 表示,即

 $g \circ f = \{ \langle x, z \rangle \mid x \in X \land z \in Z \land \exists y (y \in Y \land y = f(x) \land z = g(y)) \}$

□ 合成函数 g∘f 与合成关系 f∘g 表示同一个集合。

这种表示上的差异是历史形成的,具有其方便之处:

- $\bullet \quad (g \circ f)(x) = g(f(x))$
- 当 $\langle x, z \rangle$ ∈ f \circ g 时,必有 y ∈ Y 使 $\langle x, y \rangle$ ∈ f 且 $\langle y, z \rangle$ ∈ g

定理:设f为从X到Y的部分函数,g为从Y到Z的部分函数,

- 则 (1) dom ($g \circ f$) = f^{-1} [dom g] 且 ran ($g \circ f$) = g [ran f] 。
 - (2) 若f和g都是全函数,则g of 也是全函数。

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

证明: (1) 若 $\mathbf{x} \in \operatorname{dom}(g \circ f)$, 则有 $\mathbf{z} \in \mathbf{Z} \notin \langle \mathbf{x}, \mathbf{z} \rangle \in g \circ f$, 因此, 必有 $\mathbf{y} \in \mathbf{Y} \notin \langle \mathbf{x}, \mathbf{y} \rangle \in f \, \mathbf{L} \langle \mathbf{y}, \mathbf{z} \rangle \in g$ 。 但由 $\langle \mathbf{y}, \mathbf{z} \rangle \in g \, \text{可知}\mathbf{y} \in \operatorname{dom} g$,由 $\langle \mathbf{x}, \mathbf{y} \rangle \in f \, \mathbf{p} \in \mathbf{g} \times f \, \mathbf{m} \, \mathbf{g}$ 。 另一方面,若 $\mathbf{x} \in \mathbf{f}^{-1} [\operatorname{dom} g]$,则有 $\mathbf{y} \in \operatorname{dom} g \notin \langle \mathbf{x}, \mathbf{y} \rangle \in f$ 。 但由 $\mathbf{y} \in \operatorname{dom} g \, \mathbf{m} \, \mathbf{f} \, \mathbf{z} \in \mathbf{Z} \notin \langle \mathbf{y}, \mathbf{z} \rangle \in g$,故 $\langle \mathbf{x}, \mathbf{z} \rangle \in g \circ f$,这表明 $\mathbf{x} \in \operatorname{dom}(g \circ f)$ 。

同理可证: $ran(g \circ f) = g[ran f]$ 。
(2)若 f 和 g 都是全函数,则 $f^{-1}[Y] = X$ 且 dom g = Y,因此 $dom(g \circ f) = f^{-1}[dom g] = f^{-1}[Y] = X$ 。
这表明 $g \circ f$ 也是 全函数。

例. 设 $X = \{1, 2, 3\}$, f, g, h 是从 X 到 X 的函数,它们分别 定义为:

解:
$$f \circ g = \{ <1, 3>, <2, 2>, <3, 1> \}$$

 $g \circ f = \{ <1, 1>, <2, 3>, <3, 2> \}$
 $f \circ g \circ h = \{ <1, 3>, <2, 2>, <3, 3> \}$

例. 设对于 $x \in R$, f(x) = x+2, g(x) = x-2, h(x) = 3x, R 是实数集合。求 $g \circ f$, $f \circ g$, $g \circ$

$$g \circ f = \{ \langle x, x \rangle | x \in R \}$$

$$f \circ g = \{ \langle x, x \rangle | x \in R \} = g \circ f$$

$$f \circ f = \{ \langle x, x \rangle | x \in R \}$$

$$g \circ g = \{ \langle x, x \rangle | x \in R \}$$

$$f \circ h = \{ \langle x, 3x \rangle | x \in R \}$$

$$h \circ g = \{ \langle x, 3x \rangle | x \in R \}$$

$$h \circ f = \{ \langle x, 3x \rangle | x \in R \}$$

$$(f \circ h) \circ g = \{ \langle x, 3x \rangle | x \in R \}$$

$$f \circ (h \circ g) = \{ \langle x, 3x \rangle | x \in R \} = f \circ (h \circ g)$$

例 设 $f: N \to N$, $g: N \to N$, 且 g(x) = 2x, $f(x) = \begin{cases} x/2 & x \neq x \\ 0 & x \neq x \end{cases}$

求: $f \circ g$, $g \circ f$

解: (1) $f \circ g: N \to N$, $(f \circ g)(x) = f(g(x)) = f(2x) = x$, (2) $g \circ f: N \to N$

若 x 是 偶数: $(g \circ f)(x) = g(f(x)) = g(x/2) = x$

若 x 是 奇数: $(g \circ f)(x) = g(f(x)) = g(0) = 0$

所以, $(g \circ f)(x) = \begin{cases} x & \text{当 x} 是偶数 \\ 0 & \text{当 x} 是奇数 \end{cases}$

函数复合运算的性质:

恒等函数:集合 X上的恒等关系 $I_X = \{\langle x, x \rangle | x \in X \}$ 为 X 到 X 的恒等函数。

定理: 函数 $f: X \to Y$, I_X 和 I_Y 是恒等函数,则 $f \circ I_X = I_Y \circ f = f$

证明: 对任意 $x, y \in X$, 有 $< x, x > \in I_X$, 且 $< y, y > \in I_Y$, 所以 $< x, y > \in f \Leftrightarrow < x, x > \in I_X \land < x, y > \in f$ $\Leftrightarrow < x, y > \in f \circ I_X$ 又 $< x, y > \in f \Leftrightarrow < x, y > \in f \land < y, y > \in I_Y$ $\Leftrightarrow < x, y > \in I_Y \circ f$

定理: 若f是X到Y的部分函数,g是Y到Z的部分函数,h是Z到W的部分函数,则 $\mathbf{h} \cdot (\mathbf{g} \cdot \mathbf{f}) = (\mathbf{h} \cdot \mathbf{g}) \cdot \mathbf{f}$

证明:由题设, $h \circ g$, $g \circ f$, $h \circ (g \circ f)$,($h \circ g$) $\circ f$ 均有定义,又因为f, g, h是关系,由关系的复合运算满足结合律,可知上式成立。

定义: 若函数 $f: X \to X$,则 f 的 n 次幂,记为 f^n ,可归纳定义如下:

$$1) \quad f^0 = \mathbf{I}_{\mathbf{X}}$$

$$2) \quad f^{\mathbf{n}+1} = f \circ f^{\mathbf{n}}$$

即: 1)
$$f^0(a) = I_X(a) = a$$
;

2)
$$f^{n+1}(a) = f(f^n(a))$$

- 定义: 若 $f: X \to Y$,
- (1) 若ran f = Y, 则称f为满射;

$$\mathbb{P} \forall y (y \in Y \to \exists x (x \in X \land f(x) = y))$$

(2) 若f是1-1的,则称f是内射;

(3) 若f既是满射,又是内射,则称f为双射。

例: 若R为集合A上的等价关系,则 $\varphi = \{\langle x, [x]_R \rangle | x \in A\}$ 是从A到A/R的满射,并称 φ 为自然映射或正则映射。

- 例: (1) 有限集 X 上 的 满射 必为 单射;
- (2) 有限集 X 上 的 内射 必为 满射。

- - 例:下列函数是否为满射,内射和双射?
- $(1) f: \{1, 2\} \to \{0\}$
- 由于 f 的值域是单元素集,显然 f(1) = f(2) = 0。 函数 f 是满射,而不是单射的。
- (2) *f*:{a,b}→{2,4,6}, *f*(a)=2, *f*(b)=6 *f* 是单射,而不是满射。
- (3) $f: \mathbb{N} \to \mathbb{N}$, f(x) = 2x
- 因 f 的值域是偶整数集,并且 若 $x_1 \neq x_2$,则 $f(x_1) \neq f(x_2)$,所以,函数 f 是单射,而不是满射。
- (4) $f: I \to I$, f(x) = x+1 $f: N \to N$, f(x) = x+1?? 因为若 $x_1 \neq x_2$, 则 $f(x_1) \neq f(x_2)$, 并且对任意 $y \in I$, 都存在 $x = y-1 \in I$, 使得 y = f(x), 故函数 f 是双射。

例:设[a,b]表示实数闭区间,a<b,即

$$[a, b] = \{ x \mid a \le x \le b \}.$$

令 $f: [0,1] \rightarrow [a,b]$ 为: f(x) = (b-a)x + a。 判断f是否为满射,内射和双射?

解: 若 $x_1\neq x_2$,则有

(b-a)
$$x_1$$
+ a-((b-a) x_2 +a)=(b-a)(x_1 - x_2) $\neq 0$, 即 $f(x_1)\neq f(x_2)$, 因此 f是内射。

对任意 y ∈ [a, b] 都有 x = (y-a) /(b-a) ∈ [0, 1],使得 y = f(x), 故函数 f 是满射。

因此 函数 f 是双射。

定理: 设f: X→ Y和g: Y→Z,则

- (1) 若f和g都是满射,则g。f也是满射。
- (2) 若f和g都是内射,则g。f也是内射
- (3) 若f和g都是双射,则g。f也是双射

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

解: (1) 因为f和g都是满射,因此ran(f)=Y, ran(g)=Z。 得 ran (g \circ f) = g(ran(f)) = g(Y)=Z. 因此g \circ f 是满射 (2)若 x₁, x₂ \in X且x₁ \neq x₂, 因为f 单射,因此f (x₁) \neq f (x₂)。 又因为g单射,得g(f(x₁)) \neq g(f(x₂)) 即 (g \circ f)(x₁) \neq (g \circ f)(x₂)

故 g of 为单射

定理 设 $f: X \rightarrow Y$ 和 $g: Y \rightarrow Z$

1) 若 g of 是满射,则 g 是满射;

2) 若 g of 是单射,则 f 是单射; 规则: 左满 右单

3) 若 g of 是双射, 则 g 是满射且 f 是单射。

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

证明: (1) 只需证明 $\operatorname{ran} g = Z$ 。显然 $\operatorname{ran} g \subseteq Z$ 。由 $\operatorname{ran} f \subseteq Y$ 可知: $\operatorname{g}[\operatorname{ran} f] \subseteq \operatorname{g}[Y] = \operatorname{ran} \operatorname{g}$ 而 $\operatorname{g}[\operatorname{ran} f] = \operatorname{ran}(\operatorname{g} \circ f)$ 且 $\operatorname{ran}(\operatorname{g} \circ f) = Z$ ($\operatorname{g} \circ f$ 满射)

所以: $Z \subseteq \operatorname{ran} g$

因此: Z = rang, 即 g 为满射。

定理 设f: $X \rightarrow Y$ 和g: $Y \rightarrow Z$

- 1) 若 g of 是满射,则 g 是满射;
- 2) 若 g ∘f 是单射, 则 f 是单射;
- 3) 若 g ∘f 是双射,则 g 是满射且 f 是单射。

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

(2) 反证法:

假设 f 不是单射,则有 x_1 , $x_2 \in X$ 且 $x_1 \neq x_2$ 使 $f(x_1) = f(x_2)$,

因此 $(g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2)$, 这与 $g \circ f$ 为单射矛盾。

所以假设不成立,即f为单射。

规则: 左满 右单

例:对于下面的函数f,确定

(1) f是否为内射、满射和双射; (2) f的值域; (3) f¹[s]

(a)
$$f:R \rightarrow R$$

 $f(x)=2^x$
 $s=\{1\}$

$$ran(f)=R_{+}$$

 $f^{-1}[s]=\{0\}$

(b)
$$f:N \rightarrow N$$

 $f(n)=2n+1$
 $s=\{2,3\}$

(c)
$$f:[0,1] \rightarrow [0,1]$$

 $f(x)=x/2+1/4$
 $s=[0,1/2]$

$$ran(f)=[1/4, 3/4]$$

 $f^{-1}[s]=[0, 1/2]$