# 1.3.6

## AI25BTECH11027 - NAGA BHUVANA

#### **Question:**

Show that the points A(6,2), B(2,1), C(1,5) and D(5,6) are vertices of a square.

#### **Solution:**

Given that

$$\mathbf{A} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$$
 (1)

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} 2 - 6 \\ 1 - 2 \end{pmatrix} = \begin{pmatrix} -4 \\ -1 \end{pmatrix} \tag{2}$$

$$\mathbf{C} - \mathbf{D} = \begin{pmatrix} 1 - 5 \\ 5 - 6 \end{pmatrix} = \begin{pmatrix} -4 \\ -1 \end{pmatrix} \tag{3}$$

$$\mathbf{B} - \mathbf{A} = \mathbf{C} - \mathbf{D} \tag{4}$$

By the above property we can say that ABCD is a parallelogram. Consider the sides

$$\mathbf{A} - \mathbf{D} = \begin{pmatrix} 6 - 5 \\ 2 - 6 \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \end{pmatrix} \tag{5}$$

$$(\mathbf{B} - \mathbf{A})^T = \begin{pmatrix} -4 & -1 \end{pmatrix} \tag{6}$$

$$\|\mathbf{B} - \mathbf{A}\| = \sqrt{17} \tag{7}$$

$$\|\mathbf{A} - \mathbf{D}\| = \sqrt{17} \tag{8}$$

(9)

Consider the angle  $\theta$  between the sides  $\mathbf{B} - \mathbf{A}$  and  $\mathbf{A} - \mathbf{D}$  of the parallelogram

$$\cos \theta = \frac{\left(B - A\right)^{T} \left(A - D\right)}{\|\mathbf{B} - \mathbf{A}\|\|\mathbf{A} - \mathbf{D}\|}$$
(10)

$$\cos \theta = \frac{\left(-4 - 1\right) \left(\frac{1}{-4}\right)}{\sqrt{17}\sqrt{17}}$$

$$\cos \theta = \frac{(-4)(1) + (-1)(-4)}{17}$$
(12)

$$\cos \theta = \frac{(-4)(1) + (-1)(-4)}{17} \tag{12}$$

(13)

$$\cos \theta = 0 \tag{14}$$

(15)

$$\theta = 90^{\circ}$$

### **Property:**

A parallelogram with one angle 90° is a rectangle Hence the parallelogram is a rectangle

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} 5 \\ -3 \end{pmatrix} \tag{16}$$

$$\implies (\mathbf{A} - \mathbf{C})^T = \begin{pmatrix} 5 & -3 \end{pmatrix} \tag{17}$$

$$\mathbf{B} - \mathbf{D} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} \tag{18}$$

Let the angle between the diagonals of the rectangle be  $\alpha$ Now Consider the inner product of the diagonals of rectangle  $\mathbf{A} - \mathbf{C}$  and  $\mathbf{B} - \mathbf{D}$ 

$$\cos \alpha = \frac{\left(A - C\right)^{T} \left(B - D\right)}{\|\mathbf{A} - \mathbf{C}\| \|\mathbf{B} - \mathbf{D}\|} = \frac{\left(5 - 3\right) \begin{pmatrix} -3\\ -5 \end{pmatrix}}{\sqrt{34}\sqrt{34}}$$
(19)

$$\cos \alpha = 0 \tag{20}$$

$$\cos \alpha = 90^{\circ} \tag{21}$$

#### **Property:**

Rectangle with diagonals at right angle is a square Hence given points forms a square



[H] Graphical Representation