ÜBUNGEN ZU "PARTIELLE DIFFERENTIALGLEICHUNGEN" WS 2020 BLATT 12 (17. 12. 2020)

EDUARD NIGSCH, CLAUDIA RAITHEL

1. Sei u eine klassische Lösung der Telegraphengleichung

$$\begin{cases} u_{tt} + du_t - \Delta u = 0 & \text{in } \Omega, t > 0, \\ u = 0 & \text{auf } \partial \Omega, t > 0, \\ u(\cdot, 0) = u_0 & \text{in } \Omega, \\ u_t(\cdot, 0) = u_1 & \text{in } \Omega, \end{cases}$$

wobei d > 0 konstant, $u_0 \in H_0^1(\Omega)$, $u_1 \in L^2(\Omega)$ und $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet mit glattem Rand ist.

- (i) Zeigen Sie durch eine formale Rechnung, dass die Energie $\int_{\Omega} (u_t^2 + |\nabla u|^2) dx$ uniform beschränkt in $t \in (0, \infty)$ ist.
- (ii) Bestimmen Sie formal eine Lösung bzgl. eines geeigneten ONS.
- (iii) Zeigen Sie, dass $||u_t||_{L^2(\Omega)}$ exponentiell schnell für $t \to \infty$ gegen 0 konvergiert, falls $u_1 = 0$. Gilt diese Aussage auch für d = 0?
- **2.** Seien das elektrische Feld $E = (E_1, E_2, E_3)^T$ und das magnetische Feld $B = (B_1, B_2, B_3)^T$ glatte Lösungen der *Maxwell-Gleichungen*

$$E_t = \operatorname{rot} B$$
, $B_t = -\operatorname{rot} E$, $\operatorname{div} E = \operatorname{div} B = 0$

ohne Ladungen und Ströme, wobei $x \in \mathbb{R}^3$ und t > 0.

- (i) Zeigen Sie, dass $u = E_i$ bzw. $u = B_i$, i = 1, 2, 3, die Wellengleichung $u_{tt} \Delta u = 0$ löst.
- (ii) Zeigen Sie, dass die Energiedichte $\frac{1}{2} \int_{\mathbb{R}^3} (|E|^2 + |B|^2) dx$ zeitlich konstant ist.
- **3.** Betrachten Sie die lineare Wellengleichung in $\mathbb{R}^3 \times [0, \infty)$

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{für } (x, t) \in \mathbb{R}^3 \times [0, \infty), \\ u(x, 0) = u_0(x) & \text{für } x \in \mathbb{R}^3, \\ u_t(x, 0) = u_1(x) & \text{für } x \in \mathbb{R}^3. \end{cases}$$

Leiten Sie die Kirchhoffsche Formel

$$u(x,t) = \frac{1}{4\pi t} \int_{\partial B(x,t)} u_1(y) ds(y) + \frac{\partial}{\partial t} \left(\frac{1}{4\pi t} \int_{\partial B(x,t)} u_0(y) ds(y) \right)$$

für die Lösung der Wellengleichung her, wobei B(x,t) die Kugel mit Mittelpunkt x und Radius t ist.

eduard.nigsch@tuwien.ac.at, claudia.raithel@tuwien.ac.at.

Hinweis: Betrachten Sie für eine Lösung $u \in C^2(\mathbb{R}^3 \times [0, \infty))$ die Mittelwerte

$$\begin{split} U(x,r,t) := & \frac{1}{4\pi r^2} \int_{\partial B(x,r)} u(y,t) ds(y), \\ G(x,r) := & \frac{1}{4\pi r^2} \int_{\partial B(x,r)} u_0(y) ds(y), \\ H(x,r) := & \frac{1}{4\pi r^2} \int_{\partial B(x,r)} u_1(y) ds(y). \end{split}$$

Zeigen Sie, dass für $x \in \mathbb{R}^3$ der Mittelwert $U \in C^2([0,\infty) \times [0,\infty))$ die Euler-Poisson-Darboux-Gleichung

$$\begin{cases} U_{tt} - U_{rr} - \frac{2}{r}U_r = 0 & \text{für } (r,t) \in (0,\infty) \times (0,\infty), \\ U(r,0) = G & \text{für } r \in (0,\infty), \\ U_t(r,0) = H & \text{für } r \in (0,\infty), \end{cases}$$

erfüllt und $\tilde{U}:=rU$ die Differentialgleichung

$$\begin{cases} \tilde{U}_{tt} - \tilde{U}_{rr} = 0 & \text{für } (r,t) \in (0,\infty) \times (0,\infty) \,, \\ \tilde{U}(r,0) = rG & \text{für } r \in (0,\infty) \,, \\ \tilde{U}_t(r,0) = rH & \text{für } r \in (0,\infty) \,, \\ \tilde{U}(0,t) = 0 & \text{für } t \in (0,\infty) \,. \end{cases}$$