Euclidean Algorithm

Fact 1: GCD(a,0) = a

Fact 2: GCD(a,b) = gcd(b,r) where r is the remainder of dividing "a" by "b"

Eucliad (a,b)

Step1: $A \leftarrow a; B \leftarrow b;$

Step2: if B=0; return A=GCD(a,b)

Step3: R=A mod B

Step 4: A<-B;

Step5: B<-R

goto Step2

Euclidean Algorithm Contd.

a. Process

$$r_{1} \leftarrow a; \quad r_{2} \leftarrow b;$$
 (Initialization)
while $(r_{2} > 0)$

$$q \leftarrow r_{1} / r_{2};$$

$$r \leftarrow r_{1} - q \times r_{2};$$

$$r_{1} \leftarrow r_{2}; \quad r_{2} \leftarrow r;$$

$$\gcd(a, b) \leftarrow r_{1}$$

b. Algorithm

Find the Greatest Common Divisor of 2740 and 1760


```
(Initialization)
  r_1 \leftarrow a; \quad r_2 \leftarrow b;
while (r_2 > 0)
    q \leftarrow r_1 / r_2;
      r \leftarrow r_1 - q \times r_2;
      r_1 \leftarrow r_2; \quad r_2 \leftarrow r;
 gcd(a, b) \leftarrow r_1
```

q	r_I	r_2	r
1	2740	1760	980
1	1760	980	780
1	980	780	200
3	780	200	180
1	200	180	20
9	180	20	0
_	20	0	

a. Process

b. Algorithm

We have gcd(2740, 1760) = 20.

Find the Greatest Common Divisor of 25 and 60

Find the greatest common divisor of 25 and 60.

Solution

We have gcd(25, 65) = 5.

q	r_1	r_2	r
0	25	60	25
2	60	25	10
2	25	10	5
2	10	5	0
	5	0	

Extended Euclidean Algorithm

Given two integers a and b, we often need to find other two integers, s and t, such that

$$s \times a + t \times b = \gcd(a, b)$$

The extended Euclidean algorithm can calculate the gcd (a, b) and at the same time calculate the value of s and t.

Extended Euclidean Algorithm Contd.

```
r_1 \leftarrow a; \qquad r_2 \leftarrow b;
  s_1 \leftarrow 1; \qquad s_2 \leftarrow 0;
                                                (Initialization)
 t_1 \leftarrow 0; \qquad t_2 \leftarrow 1;
while (r_2 > 0)
   q \leftarrow r_1 / r_2;
    r \leftarrow r_1 - q \times r_2;
                                                          (Updating r's)
     r_1 \leftarrow r_2 \; ; \; r_2 \leftarrow r \; ;
     s \leftarrow s_1 - q \times s_2;
                                                          (Updating s's)
     s_1 \leftarrow s_2; s_2 \leftarrow s;
     t \leftarrow t_1 - q \times t_2;
                                                          (Updating t's)
    t_1 \leftarrow t_2; \ t_2 \leftarrow t;
   \gcd(a, b) \leftarrow r_1; \ s \leftarrow s_1; \ t \leftarrow t_1
```

b. Algorithm

Extended Euclidean Algorithm Contd.

a. Process

Given a = 161 and b = 28, find gcd (a, b) and the values of s and t

```
r_{1} \leftarrow a; \quad r_{2} \leftarrow b;
s_{1} \leftarrow 1; \quad s_{2} \leftarrow 0;
t_{1} \leftarrow 0; \quad t_{2} \leftarrow 1;
while (r_{2} > 0)
{
q \leftarrow r_{1} / r_{2};
r \leftarrow r_{1} - q \times r_{2};
r_{1} \leftarrow r_{2}; \quad r_{2} \leftarrow r;
s \leftarrow s_{1} - q \times s_{2};
s_{1} \leftarrow s_{2}; \quad s_{2} \leftarrow s;
t \leftarrow t_{1} - q \times t_{2};
t_{1} \leftarrow t_{2}; \quad t_{2} \leftarrow t;
ged <math>(a, b) \leftarrow r_{1}; \quad s \leftarrow s_{1}; \quad t \leftarrow t_{1}
(Updating t's)

t \leftarrow t_{1} - q \times t_{2};
t_{1} \leftarrow t_{2}; \quad t_{2} \leftarrow t;
t \leftarrow t_{1} - q \times t_{2};
t_{1} \leftarrow t_{2}; \quad t_{2} \leftarrow t;
t \leftarrow t_{1} \leftarrow t_{2}; \quad t_{2} \leftarrow t;
```

b. Algorithm

q	r_1 r_2	r	s_1 s_2	S	t_1 t_2	t
5	161 28	21	1 0	1	0 1	- 5
1	28 21	7	0 1	-1	1 -5	6
3	21 7	0	1 -1	4	- 5 6	-23
	7 0		-1 4		6 −23	

We get gcd (161, 28) = 7, s = -1 and t = 6

Given a = 17 and b = 0, find gcd (a, b) and the values of s and t

Solution

We get gcd (17, 0) = 17, s = 1, and t = 0.

q	r_1	r_2	r	s_1	s_2	S	t_1	t_2	t
	17	0		1	0		0	1	

Given a=0 and b=45, find gcd(a, b) and the values of s and t

Solution

We get gcd (0, 45) = 45, s = 0, and t = 1.

q	r_1	r_2	r	s_I	s_2	S	t_{I}	t_2	t
0	0	45	0	1	0	1	0	1	0
	45	0		0	1		1	0	