Differential Equations Methods

Abigail Tan

December 23, 2020

This quick-reference document summarises methods only without derivations, and excludes most content found in the A level course.

Contents

1	\mathbf{Par}	Partial Derivatives 2			
	1.1	Multivariate Chain Rule			
	1.2	Classifying Stationary Points			
2	Solving Ordinary Differential Equations 2				
	2.1	Exact Equations (nonlinear 1st order)			
	2.2	Reduction of Order (linear homogeneous 2nd order)			
	2.3	Abel's Identity (linear homogeneous 2nd order)			
	2.4	Equidimensional Equations (2nd order)			
	2.5	Dirac Delta Function Forcing (2nd order)			
	2.6	Heaviside Step Function Forcing (2nd order)			
	2.7	Series Solutions - Method of Frobenius (linear homogeneous 2nd order)			
	2.8	Matrix Methods (systems of linear ODEs)			
3	Perturbation Analysis				
	3.1	Stability of Fixed Points			
	3.2	Autonomous Differential Equations - Stability			
	3.3	Fixed Points in Discrete Equations - Stability			
	3.4	Fixed Points in Systems of ODEs - Stability			
4	Fin	Finding Particular Integrals			
	4.1	Guesswork			
	4.2	Variation of Parameters			
5	Solving Difference Equations				
	5.1	Inhomogeneous Equations (second order)			
6	Solv	Solving Partial Differential Equations			
	6.1	Unforced First Order Wave Equation			
	6.2	Forced First Order Wave Equation			
	6.3	Second Order Wave Equation			
	6.4	Diffusion Equation			

1 Partial Derivatives

1.1 Multivariate Chain Rule

Given f(x(t), y(t)) we have the standard form

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}$$

which generalises to a larger number of variables. We also have the differential form

$$\mathrm{d}f = \frac{\partial f}{\partial x} \mathrm{d}x + \frac{\partial f}{\partial y} \mathrm{d}y.$$

Application. Given f(x, y, z(x, y)) = c, using the multivariate chain rule we can obtain the following.

$$\frac{\partial z}{\partial x}\Big|_{y} = \frac{-\frac{\partial f}{\partial x}\Big|_{yz}}{\frac{\partial f}{\partial z}\Big|_{xy}}$$

1.2 Classifying Stationary Points

Let $f(x_1, x_2, ..., x_n)$ be a function of n variables. Then the following matrix defines the Hessian matrix.

$$H = \begin{pmatrix} f_{x_1x_1} & f_{x_1x_2} & \dots & f_{x_1x_n} \\ f_{x_2x_1} & f_{x_2x_2} & \dots & f_{x_2x_n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1} & f_{x_nx_2} & \dots & f_{x_nx_n} \end{pmatrix}$$

We write H_k for the $k \times k$ matrix obtained by taking the top left $k \times k$ grid from H, so for example

$$H_1 = f_{x_1 x_1}, H_2 = \begin{pmatrix} f_{x_1 x_1} & f_{x_1 x_2} \\ f_{x_2 x_1} & f_{x_2 x_2} \end{pmatrix}, \dots, H_n = H.$$

We write the *signature* of H as $|H_1|, |H_2|, \ldots, |H_{n-1}|$. The following signatures correspond to the following stationary points.

- $+, +, +, \dots$ minimum
- \bullet -,+,-,... maximum
- Otherwise it is a saddle point.

2 Solving Ordinary Differential Equations

2.1 Exact Equations (nonlinear 1st order)

For a nonlinear first order ODE

$$Q(x,y)\frac{\mathrm{d}y}{\mathrm{d}x} + P(x,y) = 0,$$

this is an exact equation iff

$$\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x}.$$

If this holds, then the solution takes the form f(x,y)=c for some function f satisfying

$$\frac{\partial f}{\partial x} = P(x, y)$$
 and $\frac{\partial f}{\partial y} = Q(x, y)$.

Solve this by integrating.

2.2 Reduction of Order (linear homogeneous 2nd order)

Suppose we have one solution $y_1(x)$ for the following homogeneous 2nd order linear ODE with non-constant coefficients:

$$y'' + p(x)y' + q(x)y = 0.$$

To find a second linearly independent solution, we try a solution of the form $y_2(x) = v(x)y_1(x)$. We obtain v(x) using the following method. Set u(x) = v'(x), then u is the solution of the first order ODE

$$u'y_1 + u(2y_1' + py_1) = 0.$$

Then integrate to find v(x) and hence obtain $y_2(x)$.

2.3 Abel's Identity (linear homogeneous 2nd order)

(A special case of) Abel's identity states that for a homogeneous 2nd order linear ODE with non-constant coefficients

$$y'' + p(x)y' + q(x)y = 0,$$

we have

$$W(x) = W(x_0) e^{-\int_{x_0}^x p(u) \, du}$$

where W(x) is the Wronskian. Let y_1 and y_2 be linearly independent solutions to the ODE. Since $W(x) = y_1y_2' - y_2y_1'$, if we know one solution y_1 then

$$y_1 y_2' - y_2 y_1' = W_0 e^{-\int_{x_0}^x p(u) du}$$

gives a first order ODE that we can solve to obtain the second solution y_2 .

2.4 Equidimensional Equations (2nd order)

An ODE is equidimensional if the differential operator is unaffected by a multiplicative scaling. The general form for second order is

$$ax^2y'' + bxy' + cy = f(x).$$

To solve, try $y = x^k$ which gives a quadratic in k:

$$ak(k-1) + bk + c = 0.$$

Then solve this to find the two roots k_1 and k_2 . If $k_1 \neq k_2$ then we have complementary function

$$y_c = Ax^{k_1} + Bx^{k_2}$$

and if $k_1 = k_2 = k$ then

$$y_c = Ax^k + Bx^k \ln x.$$

2.5 Dirac Delta Function Forcing (2nd order)

For this it may be easier to refer to a worked example, but the basic information is summarised here.

Consider the second order ODE

$$y'' + p(x)y + q(x)y = \delta(x).$$

First solve the homogeneous equation for both x < 0 and x > 0 (replace x by $x - x_0$ if that's the form the equation is given in). This should give 4 unknown constants. To find these constants, use the following jump conditions.

1. y(x) is continuous at x = 0:

$$\lim_{\epsilon \to 0} [y]_{x=-\epsilon}^{x=\epsilon} = 0$$

2. y'(x) has a jump of 1 at x=0:

$$\lim_{\epsilon \to 0} \left[y' \right]_{-\epsilon}^{\epsilon} = 1$$

2.6 Heaviside Step Function Forcing (2nd order)

Consider the ODE

$$y'' + p(x)y' + q(x)y = H(x - x_0).$$

First solve the equations

$$y'' + py' + qy = 0 \qquad (x < x_0)$$

and

$$y'' + py' + qy = 1 (x > x_0).$$

Then to find the unknown constants, use the following jump conditions, which come from y and y' both being continuous at x_0 .

$$\lim_{\epsilon \to 0} \left[y \right]_{x_0 - \epsilon}^{x_0 + \epsilon} = 0$$

$$\lim_{\epsilon \to 0} \left[y' \right]_{x_0 - \epsilon}^{x_0 + \epsilon} = 0$$

2.7 Series Solutions - Method of Frobenius (linear homogeneous 2nd order)

We might want to find a power series solution (expanded about $x = x_0$) for the equation

$$p(x)y'' + q(x)y' + r(x)y = 0.$$

First, classify the point $x = x_0$. This is:

- an ordinary point if the Taylor series for q/p and r/p converge around x_0
- a regular singular point if q/p has a pole/singularity up to order 1 at x_0 and r/p has a pole up to order 2 at x_0
- an irregular singular point otherwise.

Ordinary points. There are 2 linearly independent solutions of the form

$$y = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Write

$$y = \sum_{n=0}^{\infty} a_n (x - x_0)^n, \ y' = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}, \ y'' = \sum_{n=2}^{\infty} n (n-1) a_n (x - x_0)^{n-2}$$

and substitute back into the ODE (multiplying up by a power of x if necessary). Then equate the coefficients of $(x - x_0)^n$ for $n \ge 2$ (setting them equal to 0) to obtain a recurrence for a_n , which can be solved to find the coefficients in the series.

Regular singular points. There is at least one solution of the following form, where $a_0 \neq 0$ and $\sigma \in \mathbb{R}$:

$$y = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+\sigma}.$$

Again, write y, y' and y'' in series form, substitute back into the ODE, and equate coefficients of $(x - x_0)^{n+\sigma}$ to find a recurrence for a_n . Then to find σ , equate the coefficients of the lowest power of $x - x_0$ (usually $(x - x_0)^{\sigma}$) to obtain the indicial equation for σ . We can then use these values of σ to solve the recurrences for a_n .

There are special cases of the indicial equation.

Case 1. $\sigma_1 - \sigma_2$ not an integer: 2 linearly independent solutions

$$y = (x - x_0)^{\sigma_1} \sum_{n=0}^{\infty} a_n (x - x_0)^n + (x - x_0)^{\sigma_2} \sum_{n=0}^{\infty} b_n (x - x_0)^n$$

Case 2. $\sigma_1 - \sigma_2$ is an integer: linearly independent solutions take the following forms (c may be 0).

$$y_1 = (x - x_0)^{\sigma_2} \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

$$y_2 = (x - x_0)^{\sigma_1} \sum_{n=0}^{\infty} b_n (x - x_0)^n + cy_1 \ln(x - x_0).$$

Case 3. $\sigma_1 = \sigma_2$: same as above but with $\sigma = \sigma_1 = \sigma_2$ and $c \neq 0$.

2.8 Matrix Methods (systems of linear ODEs)

We can write

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

to represent n solutions to an nth order ODE in vector form. Then the equation

$$\dot{\mathbf{Y}} = M\mathbf{Y} + \mathbf{F}$$

represents a system of n linear ODEs (where M is a matrix and \mathbf{F} is a forcing term).

First solve the homogeneous equation $\dot{\mathbf{Y}} = M\mathbf{Y}$ to find the complementary function. We try the form $\mathbf{Y}_c = \mathbf{v}e^{\lambda t}$ where \mathbf{v} and λ are the eigenvectors and corresponding eigenvalues for M. We can then write \mathbf{Y}_c as a linear combination of the solutions we obtain.

We then find the particular integral using the form of F (same ideas as in section 4 apply). For example if

$$\mathbf{F} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} e^t$$

then we may try

$$\mathbf{Y}_p = \binom{u_1}{u_2} e^t$$

and plug into the equation to solve for u_1 and u_2 . The general solution is then $\mathbf{Y} = \mathbf{Y}_c + \mathbf{Y}_p$.

3 Perturbation Analysis

3.1 Stability of Fixed Points

A fixed point of

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y,t)$$

is a value y = a such that f(a, t) = 0 for all t.

To check whether it's a stable or unstable fixed point, let $\epsilon(t)$ be the solution to the first order ODE

$$\frac{\mathrm{d}\epsilon}{\mathrm{d}t} = \epsilon \, \frac{\partial f}{\partial y}(a, t).$$

If $\lim_{t\to\infty} \epsilon = 0$ then it's a stable fixed point.

If $\lim_{t\to\infty}^{t\to\infty} \epsilon = \pm \infty$ then it's an unstable fixed point.

3.2 Autonomous Differential Equations - Stability

This is a special case of subsection 3.1 where

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y)$$

i.e. f is a function independent of t. In this case, if f'(a) < 0 then it is a stable fixed point, and if f'(a) > 0 then it is an unstable fixed point.

3.3 Fixed Points in Discrete Equations - Stability

For a first order discrete equation of the form

$$x_{n+1} = f(x_n)$$

a fixed point x_f is the value of x_n where $x_{n+1} = x_n$. Then

$$\left| \frac{\mathrm{d}f}{\mathrm{d}x} \right|_{x_f} \right| < 1 \implies x_f \text{ is stable and}$$

$$\left| \frac{\mathrm{d}f}{\mathrm{d}x} \right|_{x_f} > 1 \implies x_f \text{ is unstable.}$$

3.4 Fixed Points in Systems of ODEs - Stability

Consider an autonomous system of two nonlinear first order ODEs. (Note f, g are nonlinear functions which are independent of t).

$$\dot{x} = f(x, y)$$

$$\dot{y} = g(x, y)$$

Given a fixed point (x_0, y_0) with \dot{x} and \dot{y} both zero at this point, let

$$M = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} \Big|_{x_0, y_0}$$

and then the eigenvalues λ_1, λ_2 of M determine the type of fixed point as follows.

- λ_1, λ_2 real and $\lambda_1 \lambda_2 < 0$: saddle node
- λ_1, λ_2 real and $\lambda_1 \lambda_2 > 0$:
 - $-\lambda_1, \lambda_2 < 0$: stable node
 - $-\lambda_1, \lambda_2 > 0$: unstable node
- λ_1, λ_2 a complex conjugate pair:
 - $\operatorname{Re}(\lambda_1, \lambda_2) < 0$: stable spiral
 - $\operatorname{Re}(\lambda_1, \lambda_2) > 0$: unstable spiral
 - $-\operatorname{Re}(\lambda_1,\lambda_2)=0$: centre

4 Finding Particular Integrals

4.1 Guesswork

Given a forcing function f(x) on one side of a second order inhomogeneous ODE, there are some forms that we can guess for the particular integral.

6

Form of $f(x)$	Form of $y_p(x)$
e^{mx}	Ae^{mx}
$\sin kx, \cos kx$	$A\sin kx + B\cos kx$
$x^n, P_n(x)$ (polynomial)	$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$

4.2 Variation of Parameters

We use this to find the particular integral y_p given that we know the complementary function. For 2nd order, suppose $y_1(x)$ and $y_2(x)$ are two linearly independent complementary functions, with W(x) the determinant of their fundamental matrix. Then (with f(x) the forcing function) we have

$$y_p = y_2 \int^x \frac{y_2(t)f(t)}{W(t)} dt - y_1 \int^x \frac{y_2(t)f(t)}{W(t)} dt.$$

5 Solving Difference Equations

5.1 Inhomogeneous Equations (second order)

Consider the difference equation

$$a_2y_{n+2} + a_1y_{n+1} + a_0y_n = f_n.$$

To find the complementary function $y_c(n)$, we try $y_n = k^n$ for some k, which leads to the quadratic

$$a_2k^2 + a_1k + a_0 = 0.$$

This can be solved for roots k_1 and k_2 which leads to

$$y_c(n) = \begin{cases} Ak_1^n + Bk_2^n & \text{if } k_1 \neq k_2 \\ Ak^n + Bnk^n & \text{if } k_1 = k_2 = k. \end{cases}$$

The following table gives the common forms for particular integrals.

Form of
$$f_n$$
 Form of $y_n(p)$

$$\begin{array}{c|cc}
k^n & Ak^n \text{ for } k \neq k_1, k_2 \\
k_1^n, k_2^n & Ank_1^n + Bnk_2^n \\
n^p & An^p + Bn^{p-1} + \dots + Cn + D
\end{array}$$

6 Solving Partial Differential Equations

6.1 Unforced First Order Wave Equation

Given y(x,t) where

$$\frac{\partial y}{\partial t} - c \frac{\partial y}{\partial x} = 0,$$

subject to the initial condition y(x,0) = f(x) we have that the general solution is y = f(x+ct).

6.2 Forced First Order Wave Equation

Here we have

$$\frac{\partial y}{\partial t} - c \frac{\partial y}{\partial x} = f(t)$$

subject to y(x,0) = g(x). Using the multivariate chain rule, we can see that along paths where dx/dt = -c (giving $x = x_0 - ct$) we have dy/dt = f(t).

Then integrate f(t) to find an expression for y. To find the "constant", use the initial conditions $x = x_0$ and y(x,0) = g(x), taking care to write $x_0 = x + ct$ in the final expression to consider all possible such paths.

6.3 Second Order Wave Equation

This is

$$\frac{\partial^2 y}{\partial t^2} - c^2 \frac{\partial^2 y}{\partial x^2} = 0.$$

Here the solution takes the general form

$$y = f(x + ct) + g(x - ct)$$

for some functions f and g, which can be found using the initial conditions.

6.4 Diffusion Equation

This equation takes the form

$$\frac{\partial y}{\partial t} = \kappa \frac{\partial^2 y}{\partial x^2}$$

subject to initial/boundary conditions.

We first define the similarity variable

$$\beta = \frac{x^2}{4\kappa t}$$

and then look for solutions of the form

$$y = t^{-\alpha} f(\beta).$$

We can plug this into the original PDE, which leads to the following ODE for $f(\beta)$:

$$\alpha f + \beta f' + \beta f'' + \frac{f'}{2} = 0$$

or equivalently

$$\beta \frac{\mathrm{d}}{\mathrm{d}\beta}(f+f') + \frac{1}{2}(f'+2\alpha f) = 0$$

and since α is arbitrary, we can choose $\alpha = 1/2$ and set F = f + f' to give

$$\beta \frac{\mathrm{d}F}{\mathrm{d}\beta} + \frac{F}{2} = 0.$$

We can then just solve this to find F = f + f' and then use the initial/boundary conditions to find the "constant" that arises and hence the general solution for y.