(PP 292 8HEd) (PP 286 7HEd HRD)

Determie i(t).

$$\dot{z}(t) = \dot{z}_f + \dot{z}_n$$

To determine 2n:

we know in= Ke

So
$$\gamma = \frac{L}{Re_1} = \frac{3}{2/16} = \frac{3}{12} = \frac{24}{12} = 2 \text{ Sec}$$

Thus $\hat{z}_h = K e^{-0.5t}$ angues

Now $\hat{z}(t) = \hat{i}_f + \hat{z}_h$

So $\hat{z}(t) = 50 + K e^{-0.5t}$

So i(+) = 50 + K =0.5+

Note: Initial condition applies to the complete response.

Therefore to find value of K, we calculate 2(0) -?

Contra

Now the circuit for determine
$$2(0)$$
 is:

 $1 < 0$

Now the circuit for determine $2(0)$ is:

 $1 < 0$

So $2(0) = \frac{50}{2} = 25$ A

Hence $2(1) = 50 + 160$

or $1 < 0 = 25$

Thusford $2(1) = 50 - 250$

To complete the solution,

 $2(1) = 25$ A $1 < 0$

This can be written as a single expression:

 $2(1) = 25 + 25(1 - 0 = 1)$ M(1)

A

The shell is:

 $2(1) = 25 + 25(1 - 0 = 1)$ M(1)

 $2(1) = 25 + 25(1 - 0 = 1)$ M(1)

A

The shell is:

 $2(1) = 25 + 25(1 - 0 = 1)$ M(1)

 $2(1) = 25 + 25(1 - 0 = 1)$ M(1)

 $2(1) = 25 + 25(1 - 0 = 1)$ M(1)

The shell is:

 $2(1) = 25 + 25(1 - 0 = 1)$ M(1)

 $2(1) = 25 + 25(1 - 0 = 1)$ M(1)

The shell is:

 $2(1) = 25 + 25(1 - 0 = 1)$ M(1)

 $2(1) = 25 + 25(1 - 0 = 1)$ M(1)

The shell is:

 $2(1) = 25 + 25(1 - 0 = 1)$ M(1)

 $2(1) = 25 + 25(1 - 0 = 1)$ M(2)

 $2(1) = 25 + 25(1 - 0 = 1)$ M(2)