

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	(11) International Publication Number: WO 00/05367
C12N 15/12, C07K 14/705, C12N 5/10 A2	(43) International Publication Date: 3 February 2000 (03.02.00)
(21) International Application Number: PCT/JP99/039 (22) International Filing Date: 22 July 1999 (22.07.	IMP Building, 3–7, Shiromi 1–chome, Chuo–ku, Osaka–shi,
(30) Priority Data: 10/208820 24 July 1998 (24.07.98) 10/224105 7 August 1998 (07.08.98) 10/238116 25 August 1998 (25.08.98) 10/254736 9 September 1998 (09.09.98) 10/275505 29 September 1998 (29.09.98) (71) Applicants (for all designated States except US): SAGA CHEMICAL RESEARCH CENTER [JP/JP]; ANISHI-Ohnuma 4-chome, Sagamihara-shi, Kanaga 229-0012 (JP). PROTEGENE INC. [JP/JP]; 2-20 Naka-cho, Meguro-ku, Tokyo 153-0065 (JP).	ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI wa patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR,
(72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seishi [JP/. 3-46-50, Wakamatsu, Sagamihara-shi, Kanagi 229-0014 (JP). KIMURA, Tomoko [JP/JP]; 302, 4-1- Nishiikuta, Tama-ku, Kawasaki-shi, Kanagawa 214-0 (JP).	wa upon receipt of that report. 18,

(54) Title: HUMAN PROTEINS HAVING HYDROPHOBIC DOMAINS AND DNAS ENCODING THESE PROTEINS

(57) Abstract

The present invention provides human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as eucaryotic cells expressing these DNAs.

3

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	lT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

DESCRIPTION

Human Proteins Having Hydrophobic Domains and DNAs Encoding These Proteins

5

10

15

20

25

30

TECHNICAL FIELD

The present invention relates to human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as eucaryotic cells expressing these DNAs. The proteins of the present invention can be employed as pharmaceuticals or as antigens for preparing antibodies against these proteins. The human cDNAs of the present invention can be utilized as probes for the genetic diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be utilized as gene sources for large-scale production of the proteins encoded by these cDNAs. Cells into which these genes are introduced to express secretory proteins and membrane proteins in large amounts can be utilized for detection of the corresponding receptors and ligands, screening of novel low-molecular pharmaceuticals, and so on.

BACKGROUND ART

Cells secrete many proteins outside the cells. These secretory proteins play important roles for the proliferation control, the differentiation induction, the material transportation, the biological protection, etc. in the cells. Different from intracellular proteins, the secretory proteins exert their actions outside the cells, whereby they can be administered in the intracorporeal manner such as the injection or the drip, so that there are

2

hidden potentialities as medicines. In fact, a number of human secretory proteins such as interferons, interleukins, thrombolytic agents, etc. have erythropoietin, In addition, currently employed as medicines. secretory proteins other than those described above have undergoing clinical trials to develop as pharmaceuticals. Because it has been conceived that the human cells still produce many unknown secretory proteins, availability of these secretory proteins as well as genes coding for them is expected to lead to development of novel pharmaceuticals utilizing these proteins.

5

10

15

20

25

30

On the other hand, membrane proteins play important roles, as signal receptors, ion channels, transporters, etc. material transportation and the transmission through the cell membrane. Examples thereof include receptors for a variety of cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion, etc., transporters for saccharides and amino acids, and so on, where the genes for many of them have been cloned already. It has been clarified that abnormalities of these membrane proteins are associated with a number of hithertocryptogenic diseases. Therefore, discovery of a new membrane protein is anticipated to lead to elucidation of the causes of many diseases, so that isolation of a new gene coding for the membrane protein has been desired.

Heretofore, owing to difficulty in the purification from human cells, these secretory proteins and membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises introduction of a cDNA library into eucaryotic cells to express cDNAs and then screening of the cells secreting, or expressing on the surface of membrane,

3

the objective active protein. However, this method is applicable only to cloning of a gene for a protein with a known function.

In general, secretory proteins and membrane proteins possess at least one hydrophobic domain inside the proteins, wherein, after synthesis thereof in the ribosome, this domain works as a secretory signal or remains in the phospholipid membrane to be trapped in the membrane. Accordingly, the evidence of this cDNA for encoding a secretory protein and a membrane protein is provided by determination of the whole base sequence of a full-length cDNA followed by detection of highly hydrophobic domain(s) in the amino acid sequence of the protein encoded by this cDNA.

15

20

10

5

OBJECTS OF THE INVENTION

The main object of the present invention is to provide novel human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as transformed eucaryotic cells that are capable of expressing these DNAs. This object as well as other objects and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the accompanying drawings.

25

30

BRIEF DESCRIPTION OF DRAWINGS

- Fig. 1 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01550.
- Fig. 2 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02593.
 - Fig. 3 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10195.

4 .

- Fig. 4 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10423.
- Fig. 5 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10506.
- Fig. 6 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10507.

5

10

15

20

25

30

- Fig. 7 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10548.
- Fig. 8 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10566.
- Fig. 9 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10567.
- Fig. 10 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10568.
- Fig. 11 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01426.
- Fig. 12 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02515.
- Fig. 13 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02575.
- Fig. 14 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10357.
- Fig. 15 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10447.
- Fig. 16 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10477.
 - Fig. 17 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10513.
- Fig. 18 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10540.
- Fig. 19 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10557.

10

15

20

25

30

Fig. 20 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10563.

Fig. 21 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01467.

Fig. 22 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01956.

Fig. 23 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02545.

Fig. 24 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02551.

Fig. 25 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02631.

Fig. 26 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02632.

Fig. 27 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10488.

Fig. 28 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10538.

Fig. 29 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10542.

Fig. 30 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10571.

Fig. 31 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01470.

Fig. 32 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02419.

Fig. 33 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02631.

Fig. 34 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02695.

Fig. 35 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10031.

10

15

20

25

30

- Fig. 36 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10530.
- Fig. 37 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10541.
- Fig. 38 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10550.
- Fig. 39 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10590.
- Fig. 40 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10591.
- Fig. 41 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01462.
- Fig. 42 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02485.
- Fig. 43 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP02798.
- Fig. 44 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10041.
- Fig. 45 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10246.
- Fig. 46 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10392.
- Fig. 47 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10489.
- Fig. 48 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10519.
- Fig. 49 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10531.
- Fig. 50 illustrates the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10574.

PCT/JP99/03929

the result of intensive studies, the present inventors have been successful in cloning of cDNAs coding for proteins having hydrophobic domains from the human fulllength cDNA bank, thereby completing the present invention. words, the present invention provides hydrophobic domains, proteins having namely proteins comprising any of the amino acid sequences represented by SEQ ID Nos. 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130. Moreover, the present invention provides DNAs coding for the above-mentioned proteins, exemplified by cDNAs comprising any of the base sequences represented by SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140, as well as expression vectors that are capable of expressing any of these DNAs by in vitro translation or in eucaryotic cells and transformed eucaryotic cells that are capable of expressing these DNAs and of producing the abovementioned proteins.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

The proteins of the present invention can be obtained, for example, by a method for isolation from human organs, cell lines, etc., a method for preparation of peptides by the chemical synthesis, or a method for production with the recombinant DNA technology using the DNAs coding for the hydrophobic domains of the present invention, among which the method for production with the recombinant DNA technology is employed preferably. For instance, in vitro expression of the proteins can be achieved by preparation of an RNA by in vitro transcription from a vector having one of the cDNAs of the present invention, followed by in vitro translation using this RNA as a template. Also, introduction of the translated region into a suitable expression vector

8

by the method known in the art leads to expression of a large amount of the encoded protein in prokaryotic cells such as *Escherichia coli*, *Bacillus subtilis*, etc., and eucaryotic cells such as yeasts, insect cells, mammalian cells, etc.

5

10

15

20

25

30

In the case where one of the proteins of the present invention is produced by expressing the DNA by in vitro translation, the protein of the present invention can be produced in vitro, when the translated region of this cDNA introduced into a vector having an RNA polymerase promoter, followed by addition of the vector to an in vitro translation system such as a rabbit reticulocyte lysate or a extract, containing an RNA polymerase corresponding to the promoter. RNA polymerase promoters are exemplified by T7, T3, SP6, and the like. The vectors containing these RNA polymerase promoters are exemplified by pKA1, pCDM8, pT3/T7 18, pT7/3 19, pBluescript II, and so on. Furthermore, the protein of the present invention can be expressed as the secreted form or the form incorporated into the microsome membrane, when a canine pancreas microsome or the like is added to the reaction system.

In the case where one of the protein of the present expressing the invention is produced by DNA microorganism such as Escherichia coli etc., a recombinant expression vector bearing the translated region of the cDNA of the present invention is constructed in an expression vector having an origin which can be replicated in the microorganism, a promoter, a ribosome-binding site, a cDNAcloning site, a terminator etc. and, after transformation of the host cells with this expression vector, the resulting transformant is incubated, whereby the protein encoded by said cDNA can be produced on a large scale

9

microorganism. In this case, a protein fragment containing any region can be obtained by carrying out the expression with inserting an initiation codon and a termination codon in front of and behind the selected translated region. Alternatively, a fusion protein with another protein can be expressed. Only the portion of the protein encoded by this cDNA can be obtained by cleavage of this fusion protein with a suitable protease. The expression vector for Escherichia coli is exemplified by the pUC series, pBluescript II, the pET expression system, the pGEX expression system, and so on.

5

10

15

20

25

30

In the case where one of the proteins of the present invention is produced by expressing the DNA in eucaryotic cells, the protein of the present invention can be produced as a secretory protein or as a membrane protein on the cellmembrane surface, when the translated region of this cDNA is introduced into an expression vector for eucaryotic cells that has a promoter, a splicing region, a poly(A) addition site, etc., followed by introduction into the eucaryotic The expression vector is exemplified by pKA1, pED6dpc2, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, and so on. Examples of eucaryotic cells to be used in general include mammalian cultured cells such as simian kidney cells COS7, Chinese hamster ovary cells CHO, etc., budding yeasts, fission yeasts, silkworm cells, Xenopus oocytes, and so on, but any eucaryotic cells may be used, provided that they are capable of expressing the proteins of the present invention. The expression vector can be introduced into the eucaryotic cells by methods known in the art such as the electroporation method, the calcium phosphate method, the liposome method, the DEAE-dextran method, and so on.

After one of the proteins of the present invention is

WO 00/05367

5

10

15

20

25

30

10

PCT/JP99/03929

expressed in prokaryotic cells or eucaryotic cells, the objective protein can be isolated from the culture and purified by a combination of separation procedures known in the art. Such examples include treatment with a denaturing agent such as urea or a detergent, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and so on.

The proteins of the present invention include peptide fragments (5 amino acid residues or more) containing any partial amino acid sequence in the amino acid sequences represented by SEQ ID Nos. 1. to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130. These peptide fragments can be utilized as antigens for preparation of antibodies. Hereupon, among the proteins of the present invention, those having the signal sequences are secreted in the form of mature proteins, after the signal sequences are removed. Therefore, these mature proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the mature proteins can be easily determined by using the method for the determination of cleavage site of a signal Furthermore, sequence ſJP 8-187100 A]. some proteins undergo the processing on the cell surface to be converted to the secretory forms. Such proteins or peptides in the secretory forms shall come within the scope of the present invention. In the case where sugar chain-binding sites are present in the amino acid sequences, expression in appropriate eucaryotic cells affords proteins to which sugar chains are attached. Accordingly, such proteins or peptides to which sugar chains are attached shall come within the

scope of the present invention.

5

10

15

20

25

30

The DNAs of the present invention include all the DNAs coding for the above-mentioned proteins. These DNAs can be obtained by using a method by chemical synthesis, a method by cDNA cloning, and so on.

The cDNAs of the present invention can be cloned, for example, from cDNA libraries derived from the human cells. These cDNAs are synthesized by using as templates poly(A)* RNAs extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the cultured cells. The cDNAs can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)], as exemplified in Examples, in order to obtain a full-length clone in an effective manner. In addition, commercially available, human cDNA libraries can be utilized. Cloning of the cDNAs of the present invention from the cDNA libraries can be carried out by synthesis of an oligonucleotide on the basis of base sequences of any portion in the cDNA of the present invention, followed by screening using this oligonucleotide as the probe according to the colony or plaque hybridization by a method known in the art. In addition, the cDNA fragments of the present invention can be prepared by synthesis of oligonucleotides which hybridize with both termini of the objective cDNA fragment, followed by the usage of these oligonucleotides as the primers for the RT-PCR method using an mRNA isolated from human cells.

The cDNAs of the present invention are characterized by

12

comprising either of the base sequences represented by SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140 or the base sequences represented by SEQ ID Nos. 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150. Table 1 summarizes the clone number (HP number), the cells from which the cDNA was obtained, the total base number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

5

Table 1					
SEQ ID No.	HP number	Cells	Base number	Number of amino acid residues	
1, 11, 21	HP01550	Stomach cancer	510	125	
2, 12, 22	HP02593	Saos-2	697	131	
3, 13, 23	HP10195	HT-1080	1619	242	
4, 14, 24	HP10423	U-2 OS	1066	264	
5, 15, 25	HP10506	Stomach cancer	618	112	
6, 16, 26	HP10507	Stomach cancer	1021	146	
7, 17, 27	HP10548	Stomach cancer	1432	344	
8, 18, 28	HP10566	Stomach cancer	601	97	
9, 19, 29	HP10567	Stomach cancer	585	124	
10, 20, 30	HP10568	Stomach cancer	1100	327	
31, 41, 51	HP01426	Stomach cancer	1065	313	
32, 42, 52	HP02515	Saos-2	937	229	
33, 43, 53	HP02575	Saos-2	1678	467	
34, 44, 54	HP10357	Stomach cancer	467	99	
35, 45, 55	HP10447	Liver	875	189	
36, 46, 56	HP10477	Liver	1256	363	
37, 47, 57	HP10513	Stomach cancer	884	249	
38, 48, 58	HP10540	Saos-2	589	98	
39, 49, 59	HP10557	Stomach cancer	673	172	
40, 50, 60	HP10563	Saos-2	1425	120	
61, 71, 81	HP01467	HT-1080	1436	307	
62, 72, 82	HP01956	Liver	997	183	
63, 73, 83	HP02545	Saos-2	1753	327	
64, 74, 84	HP02551	Saos-2	1117	223	
65, 75, 85	HP02631	Saos-2	1380	48	
66, 76, 86	HP02632	HT-1080	1503	371	
67, 77, 87	HP10488	Liver	733	90	
68, 78, 88	HP10538	Saos-2	3768	499	
69, 79, 89	HP10542	Stomach cancer	770	106	
70, 80, 90	HP10571	Stomach cancer	1229	152	

WO 00/05367 PCT/JP99/03929

91, 101, 111	HP01470	Stomach cancer	1619	358	
92, 102, 112	HP02419	Stomach cancer	2054	226	
93, 103, 113	HP02631	Saos-2	1380	195	
94, 104, 114	HP02695	Stomach cancer	1292	339	
95, 105, 115	HP10031	Saos-2	2168	487	
96, 106, 116	HP10530	Saos-2	1357	393	
97, 107, 117	HP10541	Stomach cancer	711	196	
98, 108, 118	HP10550	Stomach cancer	651	107	
99, 109, 119	HP10590	HT-1080	1310	350	
100, 110, 120	HP10591	HT-1080	1400	107	
121, 131, 141	HP01462	HT-1080	2050	483	
122, 132, 142	HP02485	Stomach cancer	2746	334	
123, 133, 143	HP02798	HT-1080	1136	267	
124, 134, 144	HP10041	Saos-2	619	106	
125, 135, 145	HP10246	кв	864	224	
126, 136, 146	HP10392	U-2 OS	1527	258	
127, 137, 147	HP10489	Stomach cancer	659	110	
128, 138, 148	HP10519	Stomach cancer	710	91	
129, 139, 149	HP10531	Saos-2	2182	344	
130, 140, 150	HP10574	Stomach cancer	2773	428	

Hereupon, the same clones as the cDNAs of the present invention can be easily obtained by screening of the cDNA libraries constructed from the human cell lines or human tissues utilized in the present invention by the use of an oligonucleotide probe synthesized on the basis of the cDNA base sequence described in any of SEQ ID Nos. 11 to 30, 41 to 60, 71 to 90, 101 to 120, and 131 to 150.

5

10

In general, the polymorphism due to the individual difference is frequently observed in human genes. Accordingly, any cDNA in which one or plural nucleotides are inserted, deleted and/or substituted with other nucleotides in SEQ ID Nos. 11 to 30, 41 to 60, 71 to 90, 101 to 120, and

131 to 150 shall come within the scope of the present invention.

In a similar manner, any protein in which one or plural amino acids are inserted, deleted and/or substituted with other amino acids shall come within the scope of the present invention, as far as the protein possesses the activity of any protein having the amino acid sequences represented by SEQ ID Nos. 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130.

5

10

15

20

25

30

The cDNAs of the present invention include cDNA fragments (10 bp or more) containing any partial base sequence in the base sequences represented by SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140 or in the base sequences represented by SEQ ID Nos. 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150. Also, DNA fragments consisting of a sense strand and an anti-sense strand shall come within this scope. These DNA fragments can be utilized as the probes for the genetic diagnosis.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant

10

15

20

25

30

PCT/JP99/03929

protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) identify chromosomes or to map related gene positions; to DNA sequences compare with endogenous in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene other support, including for examination of expression patterns; to raise anti-protein antibodiesusing DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-liqand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine

PCT/JP99/03929

levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

5

10

15

20

25

30

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be

administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

5

10

15

20

25

30

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. J. 137:3494-3500, 1986; Bertagnolli et al., Immunol. Bertagnolli et al., 145:1706-1712, 1990; Cellular

10

15

20

25

30

Immunology 133:327-341, 1991; Bertagnolli, et al., J.
Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol.
152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ , Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of include, without hematopoietic and lymphopoietic cells limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991: Moreau et al., Nature 336:690-692, Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 -Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp.

6.13.1, John Wiley and Sons, Toronto. 1991.

5

10

15 .

20

25

30

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without those described in: Current Protocols limitation, Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. 77:6091-6095, 1980; Weinberger et al., Eur. J. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including immunodeficiency severe combined (SCID)), e.q., regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial orfungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp.

and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

5

10

15

20

25

30

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic rheumatoid arthritis, autoimmune erythematosus, pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia graft-versus-host disease and autoimmune gravis, Such a protein of the present inflammatory eye disease. invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. conditions, in which immune suppression desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. regulation may be in the form of inhibiting or blocking an already in progress or response may preventing the induction of an immune response. activated T cells may be inhibited functions of cell responses or by inducing specific suppressing T Immunosuppression of T cell tolerance in T cells, or both. generally an active, non-antigen-specific, responses is process which requires continuous exposure of the T cells to Tolerance, which involves inducing the suppressive agent. non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigenspecific and persists after exposure to the tolerizing agent

10

15

20

25

30

WO 00/05367 PCT/JP99/03929

22

has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will useful in situations of tissue, skin transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in in tissue reduced tissue destruction transplantation. tissue transplants, rejection Typically, in transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the without transmitting the corresponding cells immune Blocking B lymphocyte costimulatory signal. function in this matter prevents cytokine synthesis immune cells, such as T cells, and thus acts as immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by lymphocyte antigen-blocking reagents may avoid necessity of repeated administration of these blocking To achieve sufficient immunosuppression reagents.

5

10

15

20

25

30

tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

23

efficacy of particular blocking reagents preventing organ transplant rejection or GVHD can assessed using animal models that are predictive of efficacy Examples of appropriate systems which can be in humans. allogeneic cardiac grafts in include xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Iq fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate Administration of reagents which block disease symptoms. costimulation of T cells by disrupting receptor:ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. efficacy of blocking reagents in preventing or alleviating

24

autoimmune disorders can be determined using a number of of well-characterized animal models human autoimmune Examples include murine experimental autoimmune diseases. encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr hybrid mice, murine autoimmune collagen mice or NZB arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

5

10

15

20

25

30

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating also be useful responses, may in therapy. immune Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the

10

15

20

25

30

transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antiquen function (preferably B lymphocyte antiquen function) may be useful in the induction of tumor immunity. sarcoma, melanoma, lymphoma, (e.g., leukemia. neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. tumor cells obtained from a patient can be example, transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessarv costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and , microglobulin protein or an MHC class

chain protein and an MHC class II chain protein to II thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific Thus, the induction of a T cell mediated immune immunity. response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

5

10

15

20

25

30

The activity of a protein of the invention may, among other means, be measured by the following methods:

for thymocyte Suitable assays orsplenocyte cytotoxicity include, without limitation, those described Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J.

Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

5

10

15

20

25

30

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965,

1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell Journal 66:233-243, 1991; Zacharchuk, of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

5

10

15

20

25

30

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, treatment of myeloid or lymphoid cell deficiencies. marginal biological activity in support of colony forming factor-dependent cell lines indicates cells or of involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to

10

15

20

25

30

stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation granulocytes as of mveloid cells such and (i.e., traditional monocytes/macrophages CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting growth and proliferation of megakaryocytes consequently of platelets thereby allowing prevention or treatment of various platelet disorders such thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the abovementioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without aplastic limitation, anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo in conjunction with bone (i.e., marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and

10

15

20

25

30

30

Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. 1992; Primitive hematopoietic colony USA 89:5907-5911, forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is

31

not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

5

10

15

20

25

30

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair Such agents may provide an environment to processes. attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of boneforming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair blocking inflammation or processes of by destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and

32

in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendonligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

5

10

15

20

25

30

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head

PCT/JP99/03929

trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

5

10

15

20

25

30

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon);

International Patent Publication No. W095/05846 neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

5

10

15

20

25

30

A protein of the present invention may also exhibit inhibin-related activities. Inhibins activinor characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of family, may be useful as a contraceptive based the inhibin on the ability of inhibins to decrease fertility in female and decrease spermatogenesis in male mammals. mammals Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among

other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

5

10

15

20

25

30

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for including, for mammalian cells, example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. attraction of lymphocytes, monocytes example, neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among

10

15

20

25

30

other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (includinghereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include,

without limitation, those described in: Linet et al., J. 1986; Clin. Pharmacol. 26:131-140, Burdick et al.. 1987; Thrombosis Res. 45:413-419, Humphrey al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474. 1988.

Receptor/Ligand Activity

5

10

15

20

25

30

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their (including without limitation, cellular adhesion molecules selectins, integrins and their ligands) receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral Receptors and ligands are also useful immune responses). for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. the present invention protein of (including, without limitation, fragments of receptors and ligands) receptor/ligand themselves be useful as inhibitors of interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in:Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22),

Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

5

10

15

20

25

30

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cellcell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of ytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A

15

20

25

30

protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

10 Other Activities

A protein of the invention may also exhibit one or more additional activities of following or inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body as, shape (such for example, breast size or augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects: effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or component(s); other nutritional factors or effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of

embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

Examples

5

10

15

20

25

30

The present invention is specifically illustrated in more detail by the following Examples, but Examples are not intended to restrict the present invention. The basic operations with regard to the recombinant DNA and the enzymatic reactions were carried out according to the literature ["Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restrictive enzymes and a variety of modification enzymes to be used were those available from Takara Shuzo. The buffer compositions and the reaction conditions for each of the enzyme reactions were as described in the manufacturer's instructions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Selection of cDNAs Encoding Proteins Having Hydrophobic Domains

The cDNA library of fibrosarcoma cell line HT-1080 (WO98/11217), the cDNA library of osteosarcoma cell line Saos-2 (WO97/33993), the cDNA library of osteosarcoma cell line U-2 OS (WO98/21328), the cDNA library of epidermoid

41

carcinoma cell line KB (WO98/11217), the cDNA library of tissues of stomach cancer delivered by the operation (WO98/21328), the cDNA library of liver tissue delivered by the operation (WO98/21328), and were used for the cDNA libraries. Full-length cDNA clones were selected respective libraries and the whole base sequences thereof were determined to construct a homo-protein cDNA consisting of the full-length CDNA clones. The hydrophobicity/hydrophilicity profiles were determined for proteins encoded by the full-length cDNA clones registered in the homo-protein cDNA bank by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Biol. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. Any clone that has a hydrophobic region being putative as a secretory signal or a transmembrane domain in the amino acid sequence of the encoded protein was

(2) Protein Synthesis by In Vitro Translation

selected as a clone candidate.

5

10

15

20

25

30

The plasmid vector bearing the cDNA of the present invention was used for in vitro transcription/translation with a T_NT rabbit reticulocyte lysate kit (Promega). In this case, [^{15}S]methionine was added to label the expression product with a radioisotope. Each of the reactions was carried out according to the protocols attached to the kit. Two micrograms of the plasmid was subjected to the reaction at 30°C for 90 minutes in the reaction solution of a total volume of 25 μ l containing 12.5 μ l μ of T_NT rabbit reticulocyte lysate, 0.5 μ l of a buffer solution (attached to the kit), 2 μ l of an amino acid mixture (without methionine), 2 μ l of [^{35}S]methionine (Amersham) (0.37 MBq/ μ l), 0.5 μ l of T7 RNA polymerase, and 20 U of RNasin. Also, an experiment in the presence of a membrane system was carried

out by adding to this reaction system 2.5 μ l of a canine pancreas microsome fraction (Promega). To 3 μ l of the resulting reaction solution was added 2 μ l of the SDS sampling buffer (125 mM Tris-hydrochloric acid buffer, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting mixture was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis. The molecular weight of the translation product was determined by carrying out the autoradiography.

(3) Expression by COS7

5

10

15

20

25

30

Escherichia coli cells bearing the expression vector for the protein of the present invention was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing $100~\mu\text{g/ml}$ of ampicillin, the helper phage M13K07 ($50~\mu$ 1) was added, and the incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in $100~\mu\text{l}$ of 1 mM Tris-0.1 mM EDTA, pH 8 (TE).

The cultured cells derived from simian kidney, COS7, were incubated at 37°C in the presence of 5% CO₂ in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% fetal calf serum. Into a 6-well plate (Nunc, well diameter: 3 cm) were inoculated with 1 x 10^5 COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO₂. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and then washed again with DMEM containing 50 mM Trishydrochloric acid (pH 7.5) (TDMEM). To the resulting cells was added a suspension of 1 μ l of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 μ l of

10

15

20

25

30

TRANSFECTAMTM (IBF) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO2. After the sample solution was removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf serum was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO2. After the culture replaced by a culture medium containing [35S]cystine or [35S]methionine, the incubation was carried out for one hour. After the culture medium and the cells were separated by centrifugation, proteins in the culture the cell-membrane fraction medium fraction and subjected to SDS-PAGE.

(4) Clone Examples <HP01550> (SEQ ID Nos. 1, 11, and 21)

Determination of the whole base sequence of the cDNA insert of clone HP01550 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 65-bp 5'-untranslated region, a 378-bp ORF, and a 67-bp 3'untranslated region. The ORF codes for a protein consisting of 125 amino acid residues and there existed one putative domain. Figure 1 depicts the transmembrane hydrophobicity/hydrophilicity profile, obtained by the Kytethe present protein. Doolittle method, of translation resulted in formation of a translation product of 15 kDa that was almost identical with the molecular weight of 13,825 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein F45G2.c (GenBank Accession No. Z93382). Table 2 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C.

elegans hypothetical protein F45G2.c (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.5% in the entire region.

Table 2

20

25

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA338859) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02593> (SEQ ID Nos. 2, 12, and 22)

30

Determination of the whole base sequence of the cDNA insert of clone HP02593 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 103-bp 5'-untranslated region, a 396-bp ORF,

and a 198-bp 3'-untranslated region. The ORF codes for a protein consisting of 131 amino acid residues and there existed four putative transmembrane domains at the C-terminus. Figure 2 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of a high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to a human OB-R gene-related protein (EMBL Accession No. Y12670). Table 3 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human OB-R gene-related protein (OB). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 67.9% in the entire region.

20

5

10

15

Table 3

10

15

20

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA306490) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10195> (SEQ ID Nos. 3, 13, and 23)

Determination of the whole base sequence of the cDNA insert of clone HP10195 obtained from cDNA library of human fibrosarcoma HT-1080 revealed the structure consisting of a 286-bp 5'-untranslated region, a 729-bp ORF, and a 604-bp The ORF codes for a 3'-untranslated region. consisting of 242 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 3 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 32 kDa that was somewhat larger than the molecular weight of 27,300 predicted from the ORF. When expressed in COS7 cells, an expression product of about 21 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein has revealed the registration of sequences that were similar to the Aplysia VAP-33 (SWISS-PROT Accession No. P53173). Table 4 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the Aplysia VAP-33 (AP). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the

present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 46.5% in the entire region.

5

Table 4

HP MAKHEQILVLDPPTDLKFKGPFTDVVTTNLKLRNPSDRKVCFKVKTTAPRRYCVRPNSGI 10 AP MASHEQALILEPAGELRFKGPFTDVVTADLKLSNPTDRRICFKVKTTAPKRYCVRPNSGI HP IDPGSTVTVSVMLQPFDYDPNEKSKHKFMVQTIFAPPNTSD-MEAVWKEAKPDELMDSKL AP LEPKTSIAVAVMLQPFNYDPNEKNKHKFMVQSMYAPDHVVESQELLWKDAPPESLMDTKL HP RCVFEMPNENDKLNDMEPSK-----AVPLNASKQDGPMPKP-HSVSLNDTE 15 AP RCVFEMPDGSHQAPASDASRATDAGAHFSESALEDPTVASRKTETQSPKRVGAVGSAGED HP TRKLMEECKRLOGEMMKLSEENRHLRDEGLRLRKVAHSD--KPGSTSTASFRDNVTSPLP AP VKKLOHELKKAOSEITSLKGENSOLKDEGIRLRKVAMTDTVSPTPLNPSPAPAAAVRAFP 20 HP SLLVVIAAIFIGFFLGKFIL ... *.***..*..*** AP PVVYVVAAIILGLIIGKFLL

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA447905) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10423> (SEQ ID Nos. 4, 14, and 24)

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10423 obtained from cDNA library of human osteosarcoma cell line U-2 OS revealed the structure consisting of a 64-bp 5'-untranslated region, a 795-bp ORF, and a 207-bp 3'-untranslated region. The ORF codes for a protein consisting of 264 amino acid residues and there existed a secretory signal at the N-terminus and one putative transmembrane domain at the N-terminus. Figure 4 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 30 kDa that was almost identical with the molecular weight of 29,377 predicted from the ORF. When expressed in COS7 cells, an expression product of about 31 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D80116) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10506> (SEQ ID Nos. 5, 15, and 25)

Determination of the whole base sequence of the cDNA insert of clone HP10506 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 53-bp 5'-untranslated region, a 339-bp ORF, and a 226-bp 3'-untranslated region. The ORF codes for a protein consisting of 112 amino acid residues and there existed one putative transmembrane domain. Figure 5 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-

Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,821 predicted from the ORF. When expressed in COS7 cells, an expression product of about 13 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA282544) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

15 <HP10507> (SEQ ID Nos. 6, 16, and 26)

5

10

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10507 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 412-bp 5'-untranslated region, a 441-bp ORF, and a 168-bp 3'untranslated region. The ORF codes for a protein consisting of 146 amino acid residues and there existed a secretory signal at the N-terminus and one putative transmembrane at C-terminus. Figure 6 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 19 kDa that was somewhat larger than the molecular weight of 16,347 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA424759) in ESTs, but, since they

50

are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5 <HP10548> (SEQ ID Nos. 7, 17, and 27)

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10548 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 330-bp 5'-untranslated region, a 1035-bp ORF, and a 67-bp 3'untranslated region. The ORF codes for a protein consisting of 344 amino acid residues and there existed four putative Figure 7 depicts transmembrane domains. the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, the present protein. of translation resulted in formation of a translation product of a high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA143152) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10566> (SEQ ID Nos. 8, 18, and 28)

Determination of the whole base sequence of the cDNA insert of clone HP10566 obtained from cDNA library of the human stomach cancer revealed the structure consisting of a 61-bp 5'-untranslated region, a 294-bp ORF, and a 246-bp 3'-untranslated region. The ORF codes for a protein consisting of 97 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 8 depicts the

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,452 predicted from the ORF. When expressed in COS7 cells, an expression product of about 12 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W79821) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

15

20

25

30

10

5

<HP10567> (SEQ ID Nos. 9, 19, and 29)

Determination of the whole base sequence of the cDNA insert of clone HP10567 obtained from cDNA library of the human stomach cancer revealed the structure consisting of a 77-bp 5'-untranslated region, a 375-bp ORF, and a 133-bp 3'-untranslated region. The ORF codes for a protein consisting of 124 amino acid residues and there existed one putative transmembrane domain at the C-terminus. Figure 9 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 14 kDa that was almost identical with the molecular weight of 14,484 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA428475) in ESTs, but, since they

52

are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10568> (SEQ ID Nos. 10, 20, and 30)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10568 obtained from cDNA library of the human stomach cancer revealed the structure consisting of a 56-bp 5'-untranslated region, a 984-bp ORF, and a 60-bp 3'untranslated region. The ORF codes for a protein consisting of 327 amino acid residues and there existed a secretory signal at the N-terminus and one putative transmembrane the C-terminus. Figure 10 depicts domain at hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 36.5 kDa that was almost identical with the molecular weight of 34,326 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 40 kDa which is considered to have a sugar chain being In addition, there exist in the amino acid attached. sequence of this protein two sites at which N-glycosylation may occur (Asn-Leu-Thr at position 138 and Asn-Leu-Ser at position 206). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from valine at position 24. When expressed in COS7 cells, an expression product of about 31 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein has revealed that the protein was similar to the human cell-surface A33 antigen

53

(SWISS-PROT Accession No. Q99795). Table 5 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human cell-surface A33 antigen (A3). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 30.0% in the N-terminal region of 243 residues.

10

5

Table 5

HP MAELPGPFLCGALLGFLCLSGLAVEVKVPTEPLSTPLGKTAELTCTYSTSVGDSFAL-EW *..*..* . *... **...*.*** **.... .* .* ${\tt MVGKMWPVLWTLCAVRVTVDAISVETPQDVLRASQGKSVTLPCTYHTSTSSREGLIQW}$ 15 **A3** HP SFVOPGKPISESHPILYFTNGHLYPTGSKSKRVSLLQNPPTVGVATLKLTDVHPSDTGTY . .*. * *.* . * *. *. A3 DKLL--LTHTERVVIWPFSNKN-YIHGELYKNRVSISNNAEQSDASITIDQLTMADNGTY HP LCQVNNPPDFYTNGLGLINLTVLVPPSNPLCSQSGQTSVGGSTALRCSSSEGAPKPVYNW 20 A3 ECSVSLMSDLEGNTKSRVRLLVLVPPSKPECGIEGETIIGNNIOLTCOSKEGSPTPOYSW HP VRLGTFPTPSPGSMVQDEVSGQLILTNLSLTSSGTYRCVATNQMGSASCELTLSVTEPS-A3 KRYNILNOEOP--LAOPASGOPVSLKNISTDTSGYYICTSSNEEGTQFCNITVAVRSPSM 25 HP -OGRVAGALIGVLLGVLLLSVAAFCLVRFQKERGKKPKETYGGSDLREDAIAPGISEHTC .**.* A3 NVALYVGIAVGVVAALIIIGIIIYCCCCRGKDDNTEDKEDARPNREAYEEPPEQLRELSR HP MRADSSKGFLERPSSASTVTTTKSKLPMVV 30 A3 EREEEDDYRQEEQRSTGRESPDHLDQ

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration

of sequences that shared a homology of 90% or more (for example, Accession No. T24595) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01426> (SEQ ID Nos. 31, 41, and 51)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP01426 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 1-bp 5'-untranslated region, a 942-bp ORF, and a 122-bp 3'untranslated region. The ORF codes for a protein consisting of 313 amino acid residues and there existed a putative 11 depicts Figure signal. secretory hydrophobicity/hydrophilicity profile, obtained by the Kyteprotein. the present method. of translation resulted in formation of a translation product of 36 kDa that was almost identical with the molecular weight of 34,955 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 38 kDa which is considered to have a sugar chain being attached after secretion. In addition, there exists in the amino acid sequence of this protein one site at which Nglycosylation may occur (Asn-Ser-Ser at position 163). Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from tryptophan at position 17. When expressed in COS7 cells, an expression product of about 39 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the

10

protein was similar to the Xenopus laevis cortical granule lectin (EMBL Accession No. X82626). Table 6 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the X. laevis cortical granule lectin (XL). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 67.9% in the region other than the N-terminal region.

Table 6

HP MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRT ******* . * **.* * . 15 XL MLVHILLLLVTGGLSQSCEPVVIVASKNMVKQLDCDKFRSCKEIKDSNEEAQDGIYTLTS HP ENGVIYOTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANY ..*. ********..**************** XL SDGISYQTFCDMTTNGGGWTLVASVHENNMAGKCTIGDRWSSQQGNRADYPEGDGNWANY 20 HP NTFGSAEAATSDDYKNPGYYDIOAKDLGIWHVPNKSPMQHWRNSSLLRYRTDTGFLQTLG ****** . ********** . * . **. ***** . * . ***** ****..*. * XL NTFGSAGGATSDDYKNPGYYDIEAYNLGVWHVPNKTPLSVWRNSSLQRYRTTDGILFKHG HP HNLFGIYQKYPVKYGEGKCWTDNGPVIPVVYDFGDAQKTASYYSPYGQREFTAGFVOFRV 25 XL GNLFSLYRIYPVKYGIGSCSKDSGPTVPVVYDLGSAKLTASFYSPDFRSQFTPGYIOFRP HP FNNERAANALCAGMRVTGCNTEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSS ******* XL INTEKAALALCPGMKMESCNVEHVCIGGGGYFPEADPRQCGDFAAYDFNGYGTKKFNSAG HP REITEAAVLLFYR 30 ***** XL IEITEAAVLLFYL

10

15

20

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R06009) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02515> (SEQ ID Nos. 32, 42, and 52)

Determination of the whole base sequence of the cDNA insert of clone HP02515 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 176-bp 5'-untranslated region, a 690-bp ORF, and a 71-bp 3'-untranslated region. The ORF codes for a protein consisting of 229 amino acid residues and there existed a putative secretory signal at N-terminus and one putative transmembrane domain at the C-terminus. Figure 12 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was almost identical with the molecular weight of 26,000 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 25.5 kDa from which the secretory signal is considered to have been cleaved. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from phenylalanine at position 28.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human T1/ST2 receptor binding protein (GenBank Accession No. U41804). Table 7 shows the

comparison between amino acid sequences of the human protein of the present invention (HP) and the human T1/ST2 receptor binding protein (T1). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 55.8% in the entire region.

10

15

20

5

Table 7

T1 AFEARDRNLQEGNLERVNFWSAVNVAVLLLVAVLQVCTLKRFFQDKRPVPT

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA381943) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

10

15

20

25

30

WO 00/05367 PCT/JP99/03929

58

<HP02575> (SEQ ID Nos. 33, 43, and 53)

Determination of the whole base sequence of the cDNA insert of clone HP02575 obtained from cDNA library of human line Saos-2 revealed osteosarcome cell the consisting of a 55-bp 5'-untranslated region, a 1404-bp ORF, and a 219-bp 3'-untranslated region. The ORF codes for a protein consisting of 467 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 13 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 52 kDa that was almost identical with the molecular weight of 54,065 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 57 kDa which is considered to have a sugar chain being attached afetr secretion. In addition, there exist in the amino acid sequence of this protein three sites at which N-qlycosylation may occur (Asn-Arg-Thr at position 171, Asn-Ser-Thr at position 239 and Asn-Asp-Thr at position 377). Application of the (-3,-1)rule, a method predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from histidine at position 29. When expressed in COS7 cells, an expression product of about 55 kDa was observed in the supernatant fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human α -L-fucosidase (SWISS-PROT Accession No. P04066). Table 8 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human α -L-fucosidase (FC). Therein,

the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.8% in the entire region.

Table 8

	HP	MRPQELPRLAFPLLLLLLLPPPPC-PAHSATRFDPTWESLDARQLPAWFDQAKFGIFI
10		****** *
	FC	MRSRPAGPALLLLLLFLGAAESVRRAQPPRRYTPDWPSLDSRPLPAWFDEAKFGVFI
	HP	HWGVFSVPSFGSEWFWWYWQKEKIPKYVEFMKDNYPPSFKYEDFGPLFTAKFFNANQWAD
		******* ****** * * * * * * * * * * * * *
	FC	${\tt HWGVFSVPAWGSEWFWWHWQGEGRPQYQRFMRDNYPPGFSYADFGPQFTARFFHPEEWAD}$
15	HP	IFQASGAKYIVLTSKHHEGFTLWGSEYSWNWNAIDEGPKRDIVKELEVAIRNRTDLRFGL
		.***.***.***.***
	FC	LFQAAGAKYVVLTTKHHEGFTNWPSPVSWNWNSKDVGPHRDLVGELGTALRKR-NIRYGL
	HP	YYSLFEWFHPLFLEDESSSFHKRQFPVSKTLPELYELVNNYQPEVLWSDGDGGAPDQYWN
		*.**.***** ** .**.********* .**.***
20	FC	YHSLLEWFHPLYLLDKKNGFKTQHFVSAKTMPELYDLVNSYKPDLIWSDGEWECPDTYWN
	HP	STGFLAWLYNESPVRGTVVTNDRWGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDK
		..**.** * *** *
	FC	STNFLSWLYNDSPVKDEVVVNDRWGQNCSCHHGGYYNCEDKFKPQSLPDHKWEMCTSIDK
	HP	${\tt LSWGYRREAGISDYLTIEELVKQLVETVSCGGNLLMNIGPTLDGTISVVFEERLRQMGSWarder}$
25		.**********.** *** *.**** **
	FC	${\tt FSWGYRRDMALSDVTEESEIISELVQTVSLGGNYLLNIGPTKDGLIVPIFQERLLaVGKW}$
	HP	${\tt LKVNGEAIYETHTWRSQNDTVTPDVWYTSKPKEKLVYAIFLKWPTSGQLFLGHPKAILGA}$
		******** * ****** ******.**.
	FC	${\tt LSINGEAIYASKPWRVQWEKNTTSVWYTSKGSAVYAIFLHWPENGVLNLESPITT-ST}$
30	HP	TEVKLLGHGQPLNWISLEQNGIMVELPQLTIHQMPCKWGWALALTNVI
		*** *.*******
	FC	TKITMLGIQGDLKWSTDPDKGLFISLPQLPPSAVPAEFAWTIKLTGVK

60

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N28668) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10357> (SEQ ID Nos. 34, 44, and 54)

Determination of the whole base sequence of the cDNA insert of clone HP10357 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 113-bp 5'-untranslated region, a 300-bp ORF, and a 54-bp 3'untranslated region. The ORF codes for a protein consisting of 99 amino acid residues and there existed two putative transmembrare domains. Figure 14 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyteof Doolittle method, the present protein. In translation resulted in formation of a translation product of 11 kDa that was almost identical with the molecular weight of 10,923 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA477156) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

30

25

5

10

15

20

<HP10447> (SEQ ID Nos. 35, 45, and 55)

Determination of the whole base sequence of the cDNA

10

15

20

25

30

insert of clone HP10447 obtained from cDNA library of human liver revealed the structure consisting of a 271-bp 5'untranslated region, a 570-bp ORF, and a 34-bp untranslated region. The ORF codes for a protein consisting of 189 amino acid residues and there existed five putative domains. Figure 15 depicts transmembrare hydrophobicity/hydrophilicity profile, obtained by the Kyteof Doolittle method, the present protein. translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA296976) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10477> (SEQ ID Nos. 36, 46, and 56)

Determination of the whole base sequence of the cDNA insert of clone HP10477 obtained from cDNA library of human liver revealed the structure consisting of a 149-bp 5'-untranslated region, a 1092-bp ORF, and a 15-bp 3'-untranslated region. The ORF codes for a protein consisting of 363 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 16 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,884 predicted from the ORF.

The search of the protein data base using the amino

62

acid sequence of the present protein revealed that the protein was similar to the human peptidoglycan recognition protein (GenBank Accession No. AF076483). Table 9 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human peptidoglycan recognition protein (PG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 54.8% in the entire region.

Table 9

HP MVDSLLAVTLAGNLGLTFLRGSQTQSHPDLGTEGCWDQLSAPRTFTLLDPKASLLTKAFL
HP NGALDGVILGDYLSRTPEPRPSLSHLLSQYYGAGVARDPGFRSNFRRQNGAALTSASILA
HP QQVWGTLVLLQRLEPVHLQLQCMSQEQLAQVAANATKEFTEAFLGCPAIHPRCRWGAAPY

.. ** * * ...

PG SECAQHLSLPLRYVVVSHT--AGSSCNTPASCQQQARNVQHYHMKTLGWCDVGYNFLIGE

HP DGYVYEGRGWHWVGAHTLGH-NSRGFGVAIVGNYTAALPTEAALRTVRDTLPSCAVRAGL

PG DGLVYEGRGWNFTGAHSGHLWNPMSIGISFMGNYMDRVPTPQAIRAAQGLL-ACGVAQGA

HP LRPDYALLGHRQLVRTDCPGDALFDLLRTWPHFTATVKPRPARSVSKRSRREPPPRTLPA

..*.* *.. ** .**..*..*..**

PG LRSNYVLKGHRDVQRTLSPGNQLYHLIQNWPHYRSP

30

25

5

10

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration

of sequences that shared a homology of 90% or more (for example, Accession No. AA424759) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10513> (SEQ ID Nos. 37, 47, and 57)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10513 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 134-bp 5'-untranslated region, a 750-bp ORF, and a 0-bp 3'-untranslated region. The ORF codes for a protein consisting of 249 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 17 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 29 kDa that was almost identical with the molecular weight of 27,373 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human hypothetical protein KIAA0512 (GenBank Accession No. AB011084). Table 10 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human hypothetical protein KIAA0512 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 31.6% in the C-terminal region of 196 amino acid residues.

Table 10

HP MGGPRGAGWVAAGLLLGAGACYCIYRLTRGRRRG 5 KI RGRGRRPVAMOKRPFPYEIDEILGVRDLRKVLALLQKSDDPFIQQVALLTLSNNANYSCN HP DRELGIRSSKSAEDLTDGSYDDVLNAEQLQKLLYLLESTEDPVIIERALITLGNNAAFSV ** . * *. *.. KI OETIRKLGGLPIIANMINKTDPHIKEKALMAMNNLSENYENQGRLQVYMNKVMDDIMASN 10 HP NOAIIRELGGIPIVANKINHSNOSIKEKALNALNNLSVNVENQIKIKVQVLKLLLNLSEN*... * KI LNSAVQVVGLKFLTNMTITNDYQHLLVNSIANF--FRLLSQGGGKIKVEILKILSNFAEN HP PAMTEGLLRAQVDSSFLSLYDSHVAKEILLRVLTLFQNIKNCLKIEGHLAVQPTFTEGSL 15 KI PDMLKKLLSTOVPASFSSLYNSYVESEILINALTLFEIIYDNLRAE--VFNYREFNKGSL HP FFL-LHGEECAOKIRALVDHHDAEVKEKVVTIIPKI . * ***** ** ** ** ** ** KI FYLCTTSGVCVKKIRALANHHDLLVKVKVIKLVNKF

20

25

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N92228) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10540> (SEQ ID Nos. 38, 48, and 58)

30

Determination of the whole base sequence of the cDNA insert of clone HP10540 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure

10

15

20

consisting of a 47-bp 5'-untranslated region, a 297-bp ORF, and a 245-bp 3'-untranslated region. The ORF codes for a protein consisting of 98 amino acid residues and there existed two putative transmembrane domains. Figure 18 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the similar the Caenorhabditis protein was to hypothetical protein CEF49C12.12 (GenBank Accession Z68227). Table 11 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein CEF49C12.12 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 36.1% in the entire region.

Table 11

²⁵ HP M-ASLLCCGPKLAACGIVLSAWGVIMLIMLGIFFNVHSAVLIEDVPFTEKDFENGPQNIY

CE MGKICPLMGPKMSAFCMVMSVWGVIFLGLLGVFFYIQAVTLFPDLHF-EGHGKVPSSVID HP NLYEQVSYNCFIAAGLYLLLGGFSFCQVRLNKRKEYMVR

^{* * ***** * * **}

³⁰ CE AKYNEKATQCWIAAGLYAVTLIAVFWQ---NKYNTAQIF

66

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA420715) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

10 <HP10557> (SEQ ID Nos. 39, 49, and 59)

5

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10557 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 24-bp 5'-untranslated region, a 519-bp ORF, and a 130-bp 3'untranslated region. The ORF codes for a protein consisting of 172 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 19 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 32 kDa that was larger than the molecular weight of 18,844 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 39 kDa is considered to have been subjected to some which modification after secretion. In addition, there exist in the amino acid sequence of this protein no site at which Nglycosylation may occur. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 32. When expressed in COS7 cells, an expression product of about 20 kDa was observed in the supernatant fraction and the membrane fraction.

10

30

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human progesterone binding protein (EMBL Accession No. AJ002030). Table 12 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human progesterone binding protein (PG). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 30.5% in the C-terminal region of 151 amino acid residues.

Table 12

15 HP **MVGPAP** PG MAAGDGDVKLGTLGSGSESSNDGGSESPGDAGAAAEGGGWAAAALALLTGGGEMLLNVAL HP RRRLRPLAALALVLALAPGLPTARAGQTPRPAERGPPV--RLFTEEELARYGGEEEDOPI 20 PG VALVLLGAYRLWVRWGRRGLGAGAGAGEESPATSLPRMKKRDFSLEQLRQYDG-SRNPRI HP YLAVKGVVFDVTSGKEFYGRGAPYNALTGKDSTRGVAKMSLDPADLTHDTTGLTAKELEA ***.* *****.*..***...**...**...** ..* PG LLAVNGKVFDVTKGSKFYGPAGPYGIFAGRDASRGLATFCLDKDALRDEYDDLSDLNAVQ 25 HP LDEV--FTKVYKAKYPIVGYTARRILNEDGSPNLDFKPEDQPHFDIKDEF ...**.** .*.. *.*. ...*. ... *.... . *.. PG MESVREWEMQFKEKY---DYVG-RLLKPGEEPS-EYTDEEDTKDHNKQD

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

68

example, Accession No. AA101709) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5

10

15

20

25

30

<HP10563> (SEQ ID Nos. 40, 50, and 60)

Determination of the whole base sequence of the cDNA insert of clone HP10563 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 126-bp 5'-untranslated region, a 363-bp ORF. and a 936-bp 3'-untranslated region. The ORF codes for a protein consisting of 120 amino acid residues and there existed two putative transmembrane domains. depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 18.5 kDa that was larger than the molecular weight of 13,180 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Arabidopsis thaliana hypothetical protein F27F23.15 (GenBank Accession No. AC003058). Table 13 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the A. thaliana hypothetical protein F27F23.15 (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.5% in the entire region.

Table 13

HP MMPSRTNLATGIPSSKVKYSRLSSTDDGYIDLQFKKTPPKIPYKAIALATVLFLIGAFLI *..* *. * *.*. * * . . . * MAYVDHAFSISDEDLMIGTSY-TVSNRPPVKEISLAVGLLVFGTLGI AT HP IIGSLLLSGYISKGGADRAVPVLIIGILVFLPGFYHLRIAYYASKGYRGYSYDDIPDFDD ..* *.* *.*.*** ***** ***.*.** AT VLGFFMAYNRVG-GDRGHGIFFIVLGCLLFIPGFYYTRIAYYAYKGYKGFSFSNIPSV

10

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA083574) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01467> (SEQ ID Nos. 61, 71, and 81)

20

25

30

15

Determination of the whole base sequence of the cDNA insert of clone HP01467 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 65-bp 5'-untranslated region, a 924-bp ORF, and a 447-bp 3'-untranslated region. The ORF codes for a protein consisting of 307 amino acid residues and there existed three putative transmembrane domains. Figure 21 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino

acid sequence of the present protein revealed that the protein was similar to the rat Sec22 homologue (GenBank Accession No. U42209). Table 14 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat Sec22 homologue (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 94.6% in the N-terminal region of 241 amino acid residues. The protein of the present invention was longer by 53 amino acids at the C-terminus than the rat Sec22 homologue.

15

10

5

Table 14

HP MSMILSASVIRVRDGLPLSASTDYEQSTGMQECRKYFKMLSRKLAQLPDRCTLKTGHYNI ********************* RN MSMILSASVVRVRDGLPLSASTDCEQSAGVQECRKYFKMLSRKLAOFPDRCTLKTGRHNI 20 HP NFISSLGVSYMMLCTENYPNVLAFSFLDELQKEFITTYNMMKTNTAVRPYCFIEFDNFIQ ************ RN NFISSLGVSYMMLCTENYPNVLAFSFLDELQKEFITTYNMMKTNTAVRPYCFIEFDNFIO HP RTKQRYNNPRSLSTKINLSDMQTEIKLRPPYQISMCELGSANGVTSAFSVDCKGAGKISS ************ 25 RN RTKQRYNNPRSLSTKINLSDMQMEIKLRPPYQIPMCELGSANGVTSAFSVDCKGAGKISS HP AHQRLEPATLSGIVGFILSLLCGALNLIRGFHAIESLLQSDGDDFNYIIAFFLGTAACLY ********** RN AHQRLEPATLSGIVAFILSLLCGALNLIRGFHAIESLLQSDGEDFSYMIAFFLGTAACLY HP QCYLLVYYTGWRNVKSFLTFGLICLCNMYLYELRNLWQLFFHVTVGAFVTLQIWLRQAQG 30

RN QMICLCLQGRKERT

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA421925) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01956> (SEQ ID Nos. 62, 72, and 82)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP01956 obtained from cDNA library of human liver revealed the structure consisting of a 86-bp 5'untranslated region, a 552-bp ORF, and a 359-bp 3'untranslated region. The ORF codes for a protein consisting of 183 amino acid residues and there existed one putative 22 depicts transmembrane domain. Figure hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 20.5 kDa that was almost identical with the molecular weight of 20,073 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the yeast hypothetical protein 21.5 kDa (SWISS-PROT Accession No. P53073). Table 15 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the yeast hypothetical protein 21.5 kDa (SC). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology

of 34.3% in the C-terminal region of 108 amino acid residues.

Table 15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA159753) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02545> (SEQ ID Nos. 63, 73, and 83)

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP02545 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 133-bp 5'-untranslated region, a 984-bp ORF, and a 636-bp 3'-untranslated region. The ORF codes for a

73

protein consisting of 327 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain at the C-terminus. Figure 23 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein.

5

10

15

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the rat embigin (EMBL Accession No. AJ009698). Table 16 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat embigin (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 65.4% in the entire region.

Table 16

HP MRALPGLLEARARTPRLLLLQCLLAAARPSSADGSAPDSPFTSPPLREEIMAN--NFSLE 5 RN MRSHTGLRALVAPGCSLLLL-YLLAATRPDRAVGDPADSAFTSLPVREEMMAKYANLSLE HP SHNISLTEHSSMPVEKNITLERPSNVNLTCQFTTSGDLNAVNVTWKKDGEQLE--NNYLV ..*****.... *.*******...*. ..*. ..** RN TYNISLTEQTRVS-EQNITLERPSHLELECTFTATEDVMSMNVTWKKDDALLETTDGFNT HP SATGSTLYTQYRFTIINSKQMGSYSCFFREEKEQRGTFNFKVPELHGKNKPLISYVGDST 10 . *.***.****..****..** ***** . . * * . . * * * * * * * . * * * * * * RN TKMGDTLYSQYRFTVFNSKQMGKYSCFLGEE--LRGTFNIRVPKVHGKNKPLITYVGDST HP VLTCKCQNCFPLNWTWYSSNGSVKVPVGVQM-NKYVINGTYANETKLKITOLLEEDGESY ************ RN VLKCECQNCLPLNWTWYMSNGTAQVPIDVHVNDKFDINGSYANETKLKVKHLLEEDGGSY 15 HP WCRALFQLGESEEHIELVVLSYLVPLKPFLVIVAEVILLVATILLCEKYTOKKKKHSDEG RN WCRAAFPLGESEEHIKLVVLSFMVPLKPFLAIIAEVILLVAIILLCEVYTOKKKNDPDDG HP KEFEQIEQLKSDDSNGIENNVPRHRKNESLGQ *************** 20 RN KEFEQIEQLKSDDSNGIENNVPRYRKTDSGDQ

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the reqistration of sequences that shared a homology of 90% or more (for example, Accession No. AA312629) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

30

25

<HP02551> (SEQ ID Nos. 64, 74, and 84)

Determination of the whole base sequence of the cDNA insert of clone HP02551 obtained from cDNA library of human

5

10

15

20

25

30

75

line Saos-2 revealed the structure osteosarcoma cell consisting of a 61-bp 5'-untranslated region, a 672-bp ORF, and a 384-bp 3'-untranslated region. The ORF codes for a protein consisting of 223 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 24 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 27 kDa that was somewhat larger than the molecular weight of 24,555 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 26 kDa from which the secretory signal is considered to have been cleaved. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glutamine at position 20.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse FGF binding protein (GenBank Accession No. U49641). Table 17 comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse FGF binding protein (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 21.2% in the entire region other than the N-terminal region. In particular, all the eight cysteine residues contained in the both proteins were conserved.

Table 17

MKFVPCLLLVTLSCLGTLGQAPRQKQGST HP ..**. . .* 5 MM MRLHSLILLSFLLLATQAFSEKVRKRAKNAPHSTAEEGVEGSAPSLGKAQNKORSRTSKS HP GEEFHFQTGGRDSCTMRPSSLGQGAGEVWLRVDCRNTDQTYWCEYRGQPSMCOAFAADPK .. .* ** *.*.* ..**.. * . *.*. * MM LTHGKFVTKDQATC---RWAVTEEEQGISLKVQCTQADQEFSCVFAGDPTDCLKHDKD-O HP SYWNQALQELRRLHHACQGA-PVLRPSVCREAGPQAHMQQVTSSLKGSPEPNOOPEAGTP 10 MM IYWKQVARTLRKQKNICRDAKSVLKTRVCRKRFPESNLKLVNPNARGNTKPRKEKAEVSA HP SLRPKATVKLTEATQLGKDSMEELGKAKPTTRPTAKPTQPGPRPGGNEEAKKKAWEHCWK *... .*. * . *. * MM REHNKVQEAVSTEPNRIKEDI-TLNPAATQTM-TIRDPECLEDPDVLNQ-RKTALEFCGE 15 HP PFQALCAFLISFFRG MM SWSSICTFFLNMLQATSC

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA317400) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02631> (SEQ ID Nos. 65, 75, and 85)

30

Determination of the whole base sequence of the cDNA insert of clone HP02631 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 42-bp 5'-untranslated region, a 147-bp ORF,

77

and a 1191-bp 3'-untranslated region. The ORF codes for a protein consisting of 48 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 25 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa or less.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA156969) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

15

20

25

30

10

5

<HP02632> (SEQ ID Nos. 66, 76, and 86)

Determination of the whole base sequence of the cDNA insert of clone HP02632 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 50-bp 5'-untranslated region, a 1116-bp ORF, and a 337-bp 3'-untranslated region. The ORF codes for a protein consisting of 371 amino acid residues and there existed eight putative transmembrane domains. Figure 26 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein CELC2H12 (GenBank Accession No. U23169). Table 18 shows the comparison between amino acid sequences

of the human protein of the present invention (HP) and the C. elegans hypothetical protein CELC2H12 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 51.4% in the entire region.

Table 18

10 HP MAWTKYQLFLAGLMLVTGSINTLSAKWADNFMAEGCGGSKEHSFQHPFLQAVGMFLGEFS MVAFAVIISVMMVVTGSLNTICAKWADSIKAD-----GVPFNHPFLQATCMFFGEFL CE HP CLAAFYL-----LRCRAAGQSDS-----SVDPQQPFNPLLFLPPALCDMTGTSL 15 * ...*.*.* . . **** ** ***** *** CE CLVVFFLIFGYKRYVWNRANVQGESGSVTEITSEEKPTLPPFNPFLFFPPALCDILGTSI HP MYVALNMTSASSFQMLRGAVIIFTGLFSVAFLGRRLVLSQWLGILATIAGLVVVGLADLL **..**.*.*.*.*********** CE MYIGLNLTTASSFQMLRGAVIIFTGLLSVGMLNAQIKPFKWFGMLFVMLGLVIVGVTDIY 20 HP SKHDSQHKLSEVITGDLLIIMAQIIVAIQMVLEEKFVYKHNVHPLRAVGTEGLFGFVILS CE YDDDPLDDKNAIITGNLLIVMAQIIVAIQMVYEQKYLTKYDVPALFAVGLEGLFGMVTLS HP LLLVPMYYIPAG-SFSGNPRGTLEDALDAFCQVGQQPLIAVALLGNISSIAFFNFAGISV 25 CE ILMIPFYYIHVPRTFSTNPEGRLEDVFYAWKEITEEPTIALALSGTVVSIAFFNFAGVSV HP TKELSATTRMVLDSLRTVVIWALSLALGWEAFHALQILGFLILLIGTALYNGLHRPLLGR CE TKELSATTRMVLDSVRTLVIWVVSIPLFHEKFIAIQLSGFAMLILGTLIYNDILIGPWFR HP LSRGRPLAEESEQERLLGGTRTPINDAS 30 CE RNILPNLSSHANCARCWLCICGGDSELIEYEQEDQEHLMEA

10

15

20

25

30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. N50907) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10488> (SEQ ID Nos. 67, 77, and 87)

Determination of the whole base sequence of the cDNA insert of clone HP10488 obtained from cDNA library of human liver revealed the structure consisting of a 39-bp 5'-untranslated region, a 273-bp ORF, and a 421-bp 3'-untranslated region. The ORF codes for a protein consisting of 90 amino acid residues and there existed one putative transmembrane domain at the N-terminus. Figure 27 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 10,151 predicted from the ORF. When expressed in COS7 cells, an expression product of about 6 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H73534) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

Determination of the whole base sequence of the cDNA insert of clone HP10538 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 357-bp 5'-untranslated region, a 1500-bp ORF, and a 1911-bp 3'-untranslated region. The ORF codes for a protein consisting of 499 amino acid residues and there existed at least four putative transmembrane domains. Figure 28 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the mouse pore-forming K⁺ channel subunit (GenBank Accession No. AF056492). Table 19 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the mouse pore-forming K⁺ channel subunit (MM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 32.4% in the N-terminal region of 241 amino acid residues.

25

30

81

Table 19

HP MVDRGPLLTSAIIFYLAIGAAIFEVLEEPHWKEAKKNYYTQKLHLLKEFPCLGOEGLDK ***. ** .*..** ..*.*. . ..*.. **..*..*. 5 MM MRSTTLLALLALVLLYLVSGALVFQALEQPHEQQAQKKMDHGRDQFLRDHPCVSOKSLED HP ILEVVSDAAGOG----VAITGNOTFNNWNWPNAMIFAATVITTIGYGNVAPKTPAGRLF* * *** .*..*.******* . . . * ***** MM FIKLLVEALGGGANPETSWTNSSNHSSAWNLGSAFFFSGTIITTIGYGNIVLHTDAGRLF HP CVFYGLFGVPLCLTWISALGKFFGGRAKR----LGQFLTKRGVSLRKAQITCTVIFIVWG 10 *.**.* *.***. .*. .* *. *. MM CIFYALVGIPLFGMLLAGVGDRLGSSLRRGIGHIEAIFLKWHVPPGLVRSLSAVLFLLIG HP VLVHLVIPPFVFMVTEGWNYIEGLYYSFITISTIGFGDFVAGVNPSANYHALYRYFVEI.W *. ...*.** *.*. .*..*. ..*.*.*.* *. .*. MM CLLFVLTPTFVFSYMESWSKLEAIYFVIVTLTTVGFGDYVPG-DGTGQNSPAYQPLVWFW 15 HP IYLGLAWLSLFVNWKVSMFVEVHKAIKKRRRRKESFESSPHSRKALQVKGSTASKDVNI * .***... MM ILFGLAYFASVLTTIGNWLRAVSRRTRAEMGGLTAQAASWTGTVTARVTQRTGPSAPPPE

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R25184) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10542> (SEQ ID Nos. 69, 79, and 89)

Determination of the whole base sequence of the cDNA insert of clone HP10542 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 23-bp 5'-untranslated region, a 321-bp ORF, and a 426-bp 3'-

WO 00/05367

5

10

15

20

25

30

PCT/JP99/03929

untranslated region. The ORF codes for a protein consisting of 106 amino acid residues and there existed one putative transmembrane domain. Figure 29 depicts hydrophobicity/hydrophilicity profile, obtained by the Kytemethod, of the present protein. Doolittle translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,724 predicted from the ORF. When expressed in COS7 cells, an expression product of about 13 kDa was observed in the membrane fraction.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA029683) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10571> (SEQ ID Nos. 70, 80, and 90)

Determination of the whole base sequence of the cDNA insert of clone HP10571 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 95-bp 5'-untranslated region, a 459-bp ORF, and a 675-bp 3'untranslated region. The ORF codes for a protein consisting of 152 amino acid residues and there existed one putative transmembrane 30 domain. Figure depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, the present protein. of In vitro translation resulted in formation of a translation product of 20 kDa that was larger than the molecular weight of 17,062 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 23 kDa

PCT/JP99/03929

which is considered to have a sugar chain being attached after secretion. In addition, there exists in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Ile-Thr at position 10).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA105822) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP01470> (SEQ ID Nos. 91, 101, and 111)

5

10

15

20

25

30

Determination of the whole base sequence of the CDNA insert of clone HP01470 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 157-bp 5'-untranslated region, a 1077-bp ORF, and a 385-bp 3'untranslated region. The ORF codes for a protein consisting of 358 amino acid residues and there existed one putative 31 transmembrane domain. Figure depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of present the protein. translation resulted in formation of a translation product of 43 kDa that was somewhat larger than the molecular weight of 40,489 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 40 kDa from which the secretory signal is considered to have been cleaved and a product of 43.5 kDa which is considered to have been subjected to some modification. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 23. When

84

expressed in COS7 cells, an expression product of about 44 kDa was observed in the supernatant fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the to the was similar Caenorhabditis protein hypothetical protein 39.9 kDa (SWISS-PROT Accession No. Q10005). Table 20 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein 39.9 kDa (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 58.9% in the entire region.

5

10

15

85

Table 20

HP MAPQNLSTFCLLLLYLIGAVIAGRDFYKILGVPRSASIKDIKKAYRKLALQLHPDRNPDD *. * ********* ******* . ***** 5 CE MRILNVSLLVLASSLVAFVECGRDFYKILGVAKNANANQIKKAYRKLAKELHPDRNODD HP PQAQEKFQDLGAAYEVLSDSEKRKQYDTYGEEGL--KDGHQSSHGDIFSHFFGDFGFMFG *.***** ... ***** ** .*** ... CE EMANEKFQDLSSAYEVLSDKEKRAMYDRHGEEGVAKMGGGGGGGHDPFSSFFGDF-FG-G HP GTPRQQDRNIPRGSDIIVDLEVTLEEVYAGNFVEVVRNKPVARQAPGKRKCNCROEMRTT 10 CE GGGHGGEEGTPKGADVTIDLFVTLEEVYNGHFVEIKRKKAVYKQTSGTRQCNCRHEMRTE HP QLGPGRFQMTQEVVCDECPNVKLVNEERTLEVEIEPGVRDGMEYPFIGEGEPHVDGEPGD CE OMGOGRFOMFOVKVCDECPNVKLVOENKVLEVEVGADNGHOOIFHGEGEPHIEGDPGD 15 HP LRFRIKVVKHPIFERRGDDLYTNVTISLVESLVGFEMDITHLDGHKVHISRDKITRPGAK CE LKFKIRIQKHPRFERKGDDLYTNVTISLQDALNGFEMEIQHLDGHIVKVORDKVTWPGAR HP LWKKGEGLPNFDNNNIKGSLIITFDVDFPKEQLTEEAREGIKQLLKQGSVO-KVYNGLOG *.**.**.*....** ** *...***...*...*... * ...*...*.. * ...*... 20 CE LRKKDEGMPSLEDNNKKGMLVVTFDVEFPKTELSDEQKAQIIEILQONTVKPKAYNGL

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA282838) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

30 <HP002419> (SEQ ID Nos. 92, 102, and 112)

Determination of the whole base sequence of the cDNA insert of clone HP02419 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 253-bp

5'-untranslated region, a 681-bp ORF, and a 1120-bp 3'-untranslated region. The ORF codes for a protein consisting of 226 amino acid residues and there existed four putative transmembrane domains. Figure 32 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human hypothetical protein KIAA0108 (SWISS-PROT Accession No. Q15012). Table 21 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human hypothetical protein KIAA0108 (KI). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 43.9% in the entire region.

25

30

Table 21

ΗP MKMVAPWTRFYSNSCCLCCHVRTGTILLGVWYLIINAVVLLILLSALADPD---OY ****..* ********.**...* ...* KI MVSMSFKRNRSDRFYSTRCCGCCHVRTGTIILGTWYMVVNLLMAILLTVEVTHPNSMPAV 5 HP NFSSELGGDFEF-MDDANMCIAIAISLLMILICAMATYGAYKQRAAWIIPFFCYQIFDF KI NIOYEVIGNYYSSERMADNACVLFAVSVLMFIISSMLVYGAISYQVGWLIPFFCYRLFDF HP ALNMLVAITVLIYPNSIQEYIRQLPPNFPYRDDVMSVNPTCLVLIILLFISIILTFKGYL 10 KI VLSCLVAISSLTYLPRIKEYLDQL-PDFPYKDDLLALDSSCLLFIVLVFFALFIIFKAYL HP ISCVWNCYRYINGRNSSDVLVYVT-SNDTTVLLPPYDDATVNGAAKEPPPPYVSA KI INCVWNCYKYINNRNVPEIAVYPAFEAPPQYVLPTY-EMAVKMPEKEPPPPYLPA 15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA173214) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02631> (SEQ ID Nos. 93, 103, and 113)

Determination of the whole base sequence of the cDNA insert of clone HP02631 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 42-bp 5'-untranslated region, a 588-bp ORF, and a 750-bp 3'-untranslated region. Although the 49th amino acid residue is encoded by a stop codon, it is likely that this codon encodes selenocysteine from the molecular weight

WO 00/05367

5

10

15

20

25

30

88

PCT/JP99/03929

of the translation product and the sequence comparison data with the Caenorhabditis elegans homologue. The ORF codes for a protein consisting of 195 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the intermediate region. Figure 33 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 58 kDa. In this case, the addition of a microsome led to the formation of a product of 56 kDa from which the secretory signal is considered to have been cleaved. Since both of these products are larger than the molecular weight of 22 kDa predicted from the ORF, it is likely that the protein interacts with another protein.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Caenorhabditis elegans hypothetical protein C35C5.3 (EMBL Accession No. 278417). Table 22 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein C35C5.3 (CE). U at position 49 in the amino acid sequence of the protein of the present invention represents selenocysteine. Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.9% in the entire region other than the Nterminal region. Cystein was found in the sequence of the C. elegans protein at the posistion corresponding to position 49 encoded by the stop codon (selenocysteine) of the protein of the present invention.

Table 22

HP MRLLLL 5 CE MRIHDELQKQDMSRFGVFIIGVLFFMSVCDVLRTEEHSHDENHVHEKDDFEAEFGDETDS HP LLVAASAMVRSEASANLGGVPSKRLKMQYATGPLLKFQICVSUGYRRVFEEYMRVISQRY CE OSFSOGTEEDHIEVREOSSFVKPTAVHAKDLPTLRIFYCVSCGYKQAFDOFTTFAKEKY HP PDIRIEGENYLPQPIYRHIASFLSVFKLVLIGLIIVGKDPFAFFGMQAPSIWQWGQENKV 10 ... ** *... *.. * .**. **. * * * ... **. *...***.*. * CE PNMPIEGANFAPVLWKAYVAQALSFVKMAVLVLVLGGINPFERFGLGYPQILQHAHGNKM HP YACMMVFFLSNMIENQCMSTGAFEITLNDVPVWSKLESGHLPSMQQLVQILDNEMKLNVH CE SSCMLVFMLGNLVEQSLISTGAFEVYLGNEQIWSKIESGRVPSPQEFMQLIDAQLAVLGK 15 HP MDSIPHHRS CE APVNTESFGEFOOTV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA156969) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02695> (SEQ ID Nos. 94, 104, and 114)

30

Determination of the whole base sequence of the cDNA insert of clone HP02695 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 112-bp 5'-untranslated region, a 1020-bp ORF, and a 160-bp 3'-

90

untranslated region. The ORF codes for a protein consisting of 339 amino acid residues and there existed three putative transmembrane domains. Figure 34 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kytemethod, of the present protein. translation resulted in formation of a translation product of 38 kDa that was almost identical with the molecular weight of 38,274 kDa predicted from the ORF.

5

10

15

20

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the rat hypertension-induced protein S-2 fragment (PIR Accession No. 539959). Table 23 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the rat hypertension-induced protein S-2 fragment (RN). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 74.3% in the entire region.

Table 23

HP MNWELLLWLLVLCALLLLLVOLLRFLRADGDLTLLWAEWQGRRPEWELTDMVVWVTGASS

HP GIGEELAYQLSKLGVSLVLSARRVHELERVKRRCLENGNLKEKDILVLPLDLTDTGSHEA

RN VKRRSLENGNLKEKDILVLPLDLADTSSHDI

HP ATKAVLQEFGRIDILVNNGGMSQRSLCMDTSLDVYRKLIELNYLGTVSLTKCVLPHMIER

RN ATKTVLQEFGRIDILVNNGGVAHASLVENTNMDIFKVLIEVNYLGTVSLTKCFLPHMMER

HP KQGKIVTVNSILGIISVPLSIGYCASKHALRGFFNGLRTELATYPGIIVSNICPGPVQSN

RN NQGKIVVMKS

.****...*

15

10

5

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. T84331) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10031> (SEQ ID Nos. 95, 105, and 115)

25

30

20

Determination of the whole base sequence of the cDNA insert of clone HP10031 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 55-bp 5'-untranslated region, a 1464-bp ORF, and a 649-bp 3'-untranslated region. The ORF codes for a protein consisting of 487 amino acid residues and there existed eleven putative transmembrane domains. Figure 35 depicts the hydrophobicity/hydrophilicity profile, obtained

92

by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight. When expressed in COS7 cells, an expression product of about 55 kDa was observed in the membrane fraction.

5

10

15

The search of the protein data base using the amino acid sequence of the present protein revealed that the the Caenorhabditis was similar to protein hypothetical protein CELK07H8 (GenBank Accession AF047659). Table 24 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein CELK07H8 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 44.2% in the entire region.

Table 24

MDGTETRQRRLDSCGKPGELGLPHPLSTGGLPVAS HP 5 CE MKGGGGIGDGKKDYQSAVHEGLTTFDQLGIALEDVGKSMDAETATPGGSLFSRVIFRFRN HP EDGALRAPESQSVTPKPLETEPSRETAWSIGLQVTVPFMFAGLGLSWAGMLLDYFQHWPV . . *... . .** ** ****. .**..*. CE ENSSLKSRTYDHSNDLVNMSVIPAESSYVLFFQVLFPFAVAGLGMVFAGLVLSIVVTWPL HP FVEVKDLLTLVPPLVGLKGNLEMTLASRLSTAANTGQIDDPQEQHRVISSNLALIQVQAT 10 CE FEEIPEILILVPALLGLKGNLEMTLASRLSTLANLGHMDSSKQRKDVVIANLALVQVQAT HP VVGLLAAVAALLLGVVSREEVDVAKVELLCASSVLTAFLAAFALGVLMVCIVIGARKLGV CE VVAFLASAFAAALAFIPSGDFDWAHGALMCASSLATACSASLVLSLLMVVVIVTSRKYNI 15 HP NPDNIATPIAASLGDLITLSILALVSSFFYR-HKDSRYLTPLVCLSFAALTPVWVLIAKO ********************* CE NPDNVATPIAASLGDLTTLTVLAFFGSVFLKAHNTESWLNVIVIVLFLLLLPFWIKIANE HP SPPIVKILKFGWFPIILAMVISSFGGLILSKTVSKOOYKGMAIFTPVICGVGGNLVAIOT 20 CE NEGTOETLYNGWTPVIMSMLISSAGGFILETAV--RRYHSLSTYGPVLNGVGGNLAAVOA HP SRISTYLHMWSAPGVLPLO--MKKFWPNPCSTFCTSEINSMSARVLLLLVVPGHLIF-FY CE SRLSTYFHKAGTVGVLPNEWTVSRF-TSVORAFFSKEWDSRSARVLLLLVVPGHICFNFL HP I-IYLVEGOSVINSO--TFVVLYLLAGLIOVTILLYLAEVMVRLTWHOALDPDNHCIPYL 25 CE IQLFTLTSKNNVTPHGPLFTSLYMIAAIIQVVILLFVCQLLVALLWKWKIDPDNSVIPYL HP TGLGDLLGTGLLALCFFTDWLLKSKAELGGISELASGPP *.******* CE TALGDLLGTGLLFIVFLTTDHFDPKELTSS 30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

94

example, Accession No. AA334000) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5

10

15

20

25

30

<HP10530> (SEQ ID Nos. 96, 106, and 116)

Determination of the whole base sequence of the cDNA insert of clone HP10530 obtained from cDNA library of human Saos-2 revealed osteosarcoma cell line the structure consisting of a 80-bp 5'-untranslated region, a 1182-bp ORF, and a 95-bp 3'-untranslated region. The ORF codes for a protein consisting of 393 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 36 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 46 kDa that was somewhat larger than the molecular weight of 44,912 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 45.5 kDa from which the secretory signal is considered to have been cleaved. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine at position 23. When expressed in COS7 cells, an expression product of about 43 kDa was observed in the supernatant fraction and the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Arabidopsis thaliana hypothetical protein IG002N01 (GenBank Accession No. AF007269). Table 25 shows the comparison between amino acid sequences of the

human protein of the present invention (HP) and the A. thaliana hypothetical protein IG002N01 (AT). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 27.0% in the N-terminal region of 355 amino acid residues.

Table 25

HP MRTLFNLLWL 5 AT MELTSFQKSPSSNDVVSFSVSLVRNSMARRRRSSAAESLKRRNDGYESLCQVVQQDSDRR HP ALACSPVHTTLSKSDAKKAASKTLLEKSQFSDKPVQDRGLVVTDLKAESVVLEHRSYCSA AT LITIFVIFFIVIPAVSIAVYKVKFADRVIQTESSIRQKGIVKTDINFQEILTEHSK--AS HP KARDRHFAGDVLGYVTPWNSHGYDVTKVFGSKFTQISPVWLQ-LKRRGREMFEVTGLHDV 10 AT ENSTRHYDYPVLAYITP--CQGSGL--VLEGR-HNADKGWIQELRSRGNALSASKGLPKL HP DOGWMRAVRKHAKGLHIVPRLLFEDWTYDDFRNVLDSEDEIEELSKTVVQVAKNQHFDGF * . . . * . ** . . . * . * AT ---YNSCIFHALKRMNFFTLELVNFNTYLVIMFALNS-REMEYNGIVLESWSRWAAYGVL 15 HP VVEVWNQLLSQKRVGLIHMLTHLAEALHQARLLALLVIPPAITPGTDQLGMFTHKEFEQL * . * *. *. *. *... * AT HDPDLRKMALKFVKQLGDALHSTSSPRNNQQHMQFMYVVGPPRSEKLQMYDFGPEDLQFL HP APVLDGFSLMTYDYSTAHQPGPNAPLSWVRACVQ-VLDPKSK----WRSKILLGLNFYGM ******* 20 AT KDSVDGFSLMTYDFSNPQNPGPNAPVKWIDLTLKLLLGSSNNIDSNIARKVLLGINFYGN HP DYATSKDAREPVVGARYIQTLKDHRPRMVWDSQASEHFFEYKKSRSGRHVVFYPTLKSLQ *...** *.. *..* . **....**.* *.... . . *.*****.*. AT DFVISGGGGGAITGRDYLALLOKHKPTFRWDKESGEHLFMYRDDKNIKHAVFYPTLMSIL HP VRLELARELGVGVSIWELGQGLDYFYDLL 25 AT LRLENARLWGIGISIWEIGODKGHFGKYAEASLEASSIFSGHTFDMQFRTNPRQLSRNGS

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA302913) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the

WO 00/05367

5

10

15

20

25

30

97

protein of the present invention.

<HP10541> (SEQ ID Nos. 97, 107, and 117)

Determination of the whole base sequence of the cDNA insert of clone HP10541 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 7-bp 5'-untranslated region, a 591-bp ORF, and a 113-bp 3'untranslated region. The ORF codes for a protein consisting of 196 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 37 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kytemethod, of the present protein. Doolittle translation resulted in formation of a translation product of 23 kDa that was somewhat larger than the molecular weight of 21,553 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of 20 kDa from which the secretory signal is considered to have been cleaved and a product of 23 kDa which is considered to have a sugar chain being attached. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from glycine at position 41. In addition, there exists in the amino acid sequence of this protein one site at which N-glycosylation may occur (Asn-Leu-Thr at position 185).

PCT/JP99/03929

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human zymogen membrane protein (GenBank Accession No. AF056492). Table 26 comparison between amino acid sequences of the human protein of the present invention (HP) and the human zymogen membrane protein (ZM). Therein, the marks of -, *, and . represent a

98

gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 37.6% in the C-terminal region of 133 amino acid residues.

Table 26

HP MWRVPGTTRRPVTGESPGMHRPEAMLLLLTLALLGGPTWAGKMYGPGGGKYFS-TTEDYD 10 **.*** ** . . . * MLTVALLALLCASASGNAIQARSSSYSGEYGSGGGKRFSHSGNOLD ZM HP HEITGLRVSVGLLLVKSVQVKLGDSWDVKLGALGGNTQEVTLQPGEYITKVFVAFQAFLR ZM GPITALRVRVNTYYIVGLQVRYGKVWSDYVGGRNGDLEEIFLHPGESVIQVSGKYKWYLK 15 HP GMVMYTSKDRYFYFGKLDGQISSAYPSQEGQVLVGIYGQYQLLGIKSIGFEWN-YPLEEP .*. *.*.**. *** .* . . ** * *. * *..**..*. ** ZM KLVFVTDKGRYLSFGKDSGTSFNAVPLHPNTVLRFISGRSGSL-IDAIGLHWDVYPTSCS HP TTEPPVNLTYSANSPVGR 20 ZM RC

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA340605) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

25

30

5

<HP10550> (SEQ ID Nos. 98, 108, and 118)
Determination of the whole base sequence of the cDNA

10

15

20

25

30

insert of clone HP10550 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 241-bp 5'-untranslated region, a 324-bp ORF, and a 86-bp 3'-untranslated region. The ORF codes for a protein consisting of 107 amino acid residues and there existed one putative transmembrane domain. Figure 38 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA348310) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10590> (SEQ ID Nos. 99, 109, and 119)

Determination of the whole base sequence of the cDNA insert of clone HP10590 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 77-bp 5'-untranslated region, a 1053-bp ORF, and a 180-bp 3'-untranslated region. The ORF codes for a protein consisting of 350 amino acid residues and there existed one putative transmembrane domain. Figure 39 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 40 kDa that was almost identical with the molecular weight of 39,285 predicted from the ORF. In this case, the addition of a microsome led to the formation of a product of

10

15

20

25

30

43 kDa which is considered to have a sugar chain being attached. In addition, there exist in the amino acid sequence of this protein two sites at which N-glycosylation may occur (Asn-Asn-Ser at position 144 and Asn-Leu-Thr at position 328).

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA461346) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10591> (SEQ ID Nos. 100, 110, and 120)

Determination of the whole base sequence of the cDNA insert of clone HP10591 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 232-bp 5'-untranslated region, a 324-bp ORF, and a 844-bp 3'-untranslated region. The ORF codes for a protein consisting of 107 amino acid residues and there existed one putative transmembrane domain. Figure 40 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 11,328 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H09424) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein

of the present invention.

5

10

15

20

25

30

<HP01462> (SEQ ID Nos. 121, 131, and 141)

Determination of the whole base sequence of the cDNA insert of clone HP01462 obtained from cDNA library of human line HT-1080 revealed the structure fibrosarcoma cell consisting of a 121-bp 5'-untranslated region, a 1452-bp ORF, and a 477-bp 3'-untranslated region. The ORF codes for a protein consisting of 483 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 41 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 72 kDa that was larger than the 55,838 predicted molecular weight of from the Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from lysine at position 21.

The search of the protein data base using the amino acid sequence of the present protein revealed that the to the Caenorhabditis similar was hypothetical protein ZK1058.4 (EMBL Accession No. Z35604). Table 27 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein ZK1058.4 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.6% in the entire region.

Table 27

HP MKAFHTFCVVLLVFGSVSEAKFDDFEDEEDIVEYDDNDFAEFEDVMEDSVTESPORVIIT 5 CE MKIVWIFLIFFIGFAIST HP EDDE-DETTVELEGODENOEGDFEDADTQEGDTESEPYDDEEFEGYEDKP-----D .*.* .* . *. * ...*.*.*. CE DDNEFAEFEDEFVGSSATOAPEIOREGEPPVLKQKDDFEEEDFGVVEEEPEEAEKVREAD HP TSSSKNKDPITIVDVPAHLONSWESYYLEILMVTGLLAYIMNYIIGKNKNSRLAQAWFNT 10 CE SDDAAPAQPLKFADVPAHFRSNWASYQVEGIVVLIILIYMTNYLIGKTTNASIAQTIFDM HP HRELLESNFTLVGDDGTNKEATSTGKLNQENEHIYNLWCSGRVCCEGMLIQLRFLKRQDL * **..*..***** CE CRPTLEEQFAVVGDDGTTDLDKMIPSLKHDTDSTFSAWCTGRVNVNSLFLQMKMVKRQDV HP LNVLARMMRPVSDQVQIKVTMN-DEDMDTYVFAVGTRKALVRLQKEMQDLSEFCSDKPKS 15 .. . * . * . * * * . . * * * . . * CE VSRIMEMFTPSGDKMTIKASLETTNDTDPLIFAVGEKKIASKYFKEMLDLNSFASERKOA HP GAKYGLPDSLAILSEMGEVTDGMMDTKMVHFLTHYADKIESVHFSDQFSGPKIMQEEGQP 20 CE AOOFNLPASWOVYADONEVVFSILDPGVVSLLKKHEDAIEFIHISDQFTGPKPAEGESYT HP LKLPDTKRTLLFTFNVPGSGNTYPKDMEALLPLMNMVIYSIDKAKKFRLNREGKQKADKN .**... * .* *... ..*.* ****.*..* ... * **... CE -RLPEAORYMFVSLNLOYLG----QDEESVMEILNLVFYLIDKARKMKLSKDAKVKAERR HP RARVEENFLKLTHVOROEAAOSRREEKKRAEKERIMNEEDPEKQRRLEEAALRREQKKLE 25 CE RKEFEDAFLKQTHQFRQEAAQARREEKTRERKQKLMDESDPERQKRLEAKELKREAKA--HP KKOMKMKOIKVKAM * **** *** CE -KSPKMKOLKVK 30

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for

103

example, Accession No. AA307793) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

5

10

15

20

25

30

<HP02485> (SEQ ID Nos. 122, 132, and 142)

Determination of the whole base sequence of the cDNA insert of clone HP02485 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 69-bp 5'-untranslated region, a 1005-bp ORF, and a 1672-bp 3'untranslated region. The ORF codes for a protein consisting of 334 amino acid residues and there existed one putative transmembrane domain. Figure 42 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. translation resulted in formation of a translation product of 36 kDa that was almost identical with the molecular weight of 38,171 predicted from the ORF. When expressed in COS7 cells, an expression product of about 23 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the similar to the Caenorhabditis was hypothetical protein W01A11.2 (GenBank Accession No. U64852). Table 28 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein W01A11.2 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 45.5% in the entire region.

Table 28

HP MVEFAPLFMPWERRLQTLAVLQFVFSFLALAEICT-V .***..**.***** *.* *. *. 5 CE MRLRLSSISGKAKLPDKEICSSVSRILAPLLVPWKRRLETLAVMGFIFMWVILPIMDLWV HP GFIALLFTRFWLLTVLYAAWWYLDRDKPROGGRHIQAIRCWTIWKYMKDYFPISLVKTAE * .*. **.*. ***.* * *.*...* . * . ***. .**..*. CE PFHVLFNTRWWFLVPLYAVWFYYDFDTPKKASRRWNWARRHVAWKYFASYFPLRLIKTAD 10 HP LDPSRNYIAGFHPHGVLAVGAFANLCTESTGFSSIFPGIRPHLMMLTLWFRAPFFRDYIM * ..*** * ****...**.*...*.. ****.. * * * * * * . . . CE LPADRNYIIGSHPHGMFSVGGFTAMSTNATGFEDKFPGIKSHIMTLNGQFYFPFRREFGI HP SAGLVTSEKESAAHILNRKGGGNLLGIIVGGAQEALDARPGSFTLLLRNRKGFVRLALTH * .. .*** ...*. * *. .*.*** ***.*.*. ** * **.** . **. 15 CE MLGGIEVSKESLEYTLTKCGKGRACAIVIGGASEALEAHPNKNTLTLINRRGFCKYALKF HP GAPLVPIFSFGENDLFDQIPNSSGSWLRYIQNRLQKIMGISLPLFHGRGVF-QYSFGLIP CE GADLVPMYNFGENDLYEOYENPKGSRLREVQEKIKDMFGLCPPLLRGRSLFNQYLIGLLP HP YRRPITTVVGKPIEVOKTLHPSEEEVNOLHQRYIKELCNLFEAHKLKFNIPADQHLEFC .*.*.**.*.* * .* .*. *....* ..* .*****..* 20 CE FRKPVTTVMGRPIRVTQTDEPTVEQIDELHAKYCDALYNLFEEYKHLHSIPPDTHLIFQ

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D25664) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP02798> (SEQ ID Nos. 123, 133, and 143)

25

30

Determination of the whole base sequence of the cDNA

105

insert of clone HP02798 obtained from cDNA library of human fibrosarcoma cell line HT-1080 revealed the structure consisting of a 31-bp 5'-untranslated region, a 804-bp ORF, and a 301-bp 3'-untranslated region. The ORF codes for a protein consisting of 267 amino acid residues and there existed four putative transmembrane domains. Figure 43 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 29 kDa that was almost identical with the molecular weight of 30,778 predicted from the ORF. When expressed in COS7 cells, an expression product of about 26 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the human DHHC-containing cysteinerich protein (GenBank Accession No. U90653). Table 29 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human DHHCcontaining cysteine-rich protein (DH). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 35.0% in the intermediate region of 100 amino The positions of seven cysteines were acid residues. conserved between the two proteins. The protein of the present invention also had the DHHC (Asp-His-His-Cys) sequence.

5

10

15

20

25

PCT/JP99/03929

WO 00/05367

106

Table 29

HP MAPWALLSPGVLVRTGHTVLTWGI 5 DH MYKMNICNKPSNKTAPEKSVWTAPAQPSGPSPELQGQRSRRNGWSWPPHPLQIVAWLLYL HP TLVLFLHDTELRQWEEQGELLLPLTFLLLVLGSLLLYLAVSLMDPGYVNVQPQP-QEELK * *...*.. .**. .**. . . . * DH FFAVIGFGILVPLLPHHWVPAGYACMGAIFAGHLVVHLTAVSIDPADDNVRDKSYAGPLP HP EEQTAMVPPAIPLRRCRYCLVLQPLRARHCRECRRCVRRYDHHCPWMENCVGERNHPLFV 10 .*. * * . *..**..** .*** *..******..**. DH IFNRSOHAHVIEDLHCNLCNVDVSARSKHCSACNKCVCGFDHHCKWLNNCVGERNYRLFL HP VYLALQLVVLLWGLYLAWSGLRFFQPWGLWLRSSGLLFATFLLLSLFSLVASLLLVSHLY .* .*. .* DH HSVASALLGVLLLVLGGHICLRGVLCQPHASAHQPTL 15

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. D79050) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10041> (SEQ ID Nos. 124, 134, and 144)

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10041 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 12-bp 5'-untranslated region, a 321-bp ORF, and a 286-bp 3'-untranslated region. The ORF codes for a protein consisting of 106 amino acid residues and there existed one putative transmembrane domain. Figure 44 depicts

the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 12 kDa that was almost identical with the molecular weight of 12,060 predicted from the ORF. When expressed in COS7 cells, an expression product of about 13 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the similar to the Caenorhabditis protein was elegans hypothetical protein K10B2.4 (GenBank Accession No. U28730). Table 30 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the C. elegans hypothetical protein K10B2.4 (CE). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The both proteins shared a homology of 62.1% in the entire region.

20

25

5

10

15

Table 30

HP MSTNNMSDPRRPNKVLRYKP---PPSECNPALDDPTPDYMNLLGMIFSMCGLMLKLKWCA

CE MQQNGDPRTTNRIVRYKPLDSTANQQQAISEDPLPEYMNVLGMIFSMCGLMIRMKWCS

HP WVAVYCSFISFANSRSSEDTKOMMSSFMLSISAVVMSYLQNPQPMTPPW

CE WLALVCSCISFANTRTSDDAKQIVSSFMLSVSAVVMSYLQNPSPIIPPWVTLLQS

30

Furthermore, the search of the GenBank using the base

PCT/JP99/03929

sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H20098) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10246> (SEQ ID Nos. 125, 135, and 145)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10246 obtained from cDNA library of human epidermoid carcinoma cell line KB revealed the structure consisting of a 110-bp 5'-untranslated region, a 675-bp ORF, and a 79-bp 3'-untranslated region. The ORF codes for a protein consisting of 224 amino acid residues and there existed five putative transmembrane domains. Figure 45 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 23 kDa that was somewhat smaller than the molecular weight of 25,244 predicted from the ORF. When expressed in COS7 cells, an expression product of about 21 kDa was observed in the membrane fraction.

The search of the protein data base using the amino acid sequence of the present protein revealed that the similar protein was to the human putative transmembrane domain protein (GenBank Accession No. Y18007). Table 31 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and the human putative seven transmembrane domain protein (TM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that

PCT/JP99/03929

109

of the protein of the present invention, respectively. The both proteins shared a homology of 93.3% in the entire region.

5

WO 00/05367

Table 31

20

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA453931) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10392> (SEQ ID Nos. 126, 136, and 146)

30

25

Determination of the whole base sequence of the cDNA insert of clone HP10392 obtained from cDNA library of human osteosarcoma cell line U-2 OS revealed the structure

10

15

20

25

30

consisting of a 24-bp 5'-untranslated region, a 777-bp ORF, and a 726-bp 3'-untranslated region. The ORF codes for a protein consisting of 258 amino acid residues and there existed a putative secretory signal at the N-terminus. Figure 46 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 34 kDa that was somewhat larger than the molecular weight of 29,623 predicted from the ORF. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from leucine at position 49.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. H15999) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention. In addition, partial identity with the hypothetical protein KIAA0384 (Accession No. AB002382) was observed, although the hypothetical protein had a different ORF.

<HP10489> (SEQ ID Nos. 127, 137, and 147)

Determination of the whole base sequence of the cDNA insert of clone HP10489 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 137-bp 5'-untranslated region, a 333-bp ORF, and a 189-bp 3'-untranslated region. The ORF codes for a protein consisting of 110 amino acid residues and there existed two putative transmembrane domains. Figure 47 depicts the

hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of 19 kDa that was somewhat larger than the molecular weight of 12,010 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA262162) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10519> (SEQ ID Nos. 128, 138, and 148)

5

10

15

20

25

30

Determination of the whole base sequence of the cDNA insert of clone HP10519 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 67-bp 5'-untranslated region, a 276-bp ORF, and a 367-bp 3'untranslated region. The ORF codes for a protein consisting of 91 amino acid residues and there existed one putative transmembrane domain. Figure 48 depicts hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, the present protein. of translation resulted in formation of a translation product of 10 kDa that was almost identical with the molecular weight of 10,275 predicted from the ORF.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. W16639) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein

of the present invention.

5

10

15

20

25

30

<HP10531> (SEQ ID Nos. 129, 139, and 149)

Determination of the whole base sequence of the cDNA insert of clone HP10531 obtained from cDNA library of human osteosarcoma cell line Saos-2 revealed the structure consisting of a 55-bp 5'-untranslated region, a 1035-bp ORF, and a 1092-bp 3'-untranslated region. The ORF codes for a protein consisting of 344 amino acid residues and there existed five putative transmembrane domains. Figure 49 depicts the hydrophobicity/hydrophilicity profile, obtained by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight.

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. R50695) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

<HP10574> (SEQ ID Nos. 130, 140, and 150)

Determination of the whole base sequence of the cDNA insert of clone HP10574 obtained from cDNA library of human stomach cancer revealed the structure consisting of a 210-bp 5'-untranslated region, a 1287-bp ORF, and a 1276-bp 3'-untranslated region. The ORF codes for a protein consisting of 428 amino acid residues and there existed a putative secretory signal at the N-terminus and one putative transmembrane domain in the intermediate region. Figure 50 depicts the hydrophobicity/hydrophilicity profile, obtained

113

by the Kyte-Doolittle method, of the present protein. In vitro translation resulted in formation of a translation product of high molecular weight. Application of the (-3,-1) rule, a method for predicting the cleavage site of the secretory signal sequence, allows to expect that the mature protein starts from serine at position 36.

5

10

15

20

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was similar to the Drosophila melanogaster GOLIATH protein (SWISS-PROT Accession No. Q06003). Table 32 shows the comparison between amino acid sequences of the human protein of the present invention (HP) and melanogaster GOLIATH protein (DM). Therein, the marks of -, *, and . represent a gap, an amino acid residue identical with that of the protein of the present invention, and an amino acid residue similar to that of the protein of the present invention, respectively. The intermediate region of 169 amino acids of the protein of the present invention shared a homology of 41.4% with the N-terminal region of the D. melanogaster GOLIATH protein.

Table 32

HP MGPPPGAGVSCRGGCGFSRLLAWCFLLALSPQAPGSRGAEAVWTAYLNVSWRVPHTGVNR HP TVWELSEGVYGODSPLEPVAGVLVPPDGPGALNACNPHTNFTVPTVWGSTVOVSWLALT 5 HP QRGGGCTFADKIHLAYERGASGAVIFNFPGTRNEVIPMSHPGAVDIVAIMIGNLKGTKIL DM MQLEKMQIKGKTRNIAAVITYONIGODLS HP OSIORGIOVTMVIEVGKK---HGPWVNHYSIFFVSVSFFIITAATVGYFIFYSARRLRNA* .**. * *.. . .*. *..***.* **.*** .*.* 10 DM LTLDKGYNVTISIIEGRRGVRTISSLNRTSVLFVSIS-FIV-DDILCWLIFYYIQRFRYM HP RAQSRKQRQLKADAKKAIGRLQLRTLKQGDKEIGPDGDSCAVCIELYKPNDLVRILTCNH .*... *.* . .**** * .* . * .*.** *** ***.* .***.* DM QAKDQQSRNLCSVTKKAIMKIPTKTGKFSD-EKDLDSDCCAICIEAYKPTDTIRILPCKH HP IFHKTCVDPWLLEHRTCPMCKCDILKALGIEVDVEDGSVSLQVPVSNEISNSASSHEEDN 15 ***.*.******** *.** * *. DM EFHKNCIDPWLIEHRTCPMCKLDVLKFYGYVVGDOIYOTPSPOHTAPIASIEEVPVIVVA HP RSETASSGYASVQGTDEPPLEEHVQSTNESLQLVNHEANSVAVDVIPHVDNPTFEEDETP DM VPHGPQPLQPLQASNMSSFAPSHYFQSSRSPSSSVQQQLAPLTYQPHPQQAASERGRRNS 20 HP NOETAVREIKS DM APATMPHAITASHQVTDV

Furthermore, the search of the GenBank using the base sequences of the present cDNA has revealed the registration of sequences that shared a homology of 90% or more (for example, Accession No. AA155685) in ESTs, but, since they are partial sequences, it can not be judged whether or not any of these sequences codes for the same protein as the protein of the present invention.

INDUSTRIAL APPLICABILITY

25

The present invention provides human proteins having hydrophobic domains, DNAs coding for these proteins, and expression vectors for these DNAs as well as eucaryotic cells expressing these DNAs. All of the proteins of the present invention are secreted or exist in the cell membrane, so that they are considered to be proteins controlling the proliferation and/or the differentiation of the cells. Accordingly, the proteins of the present invention can be employed as pharmaceuticals such as carcinostatic agents which act to control the proliferation and/or the differentiation of the cells, or as antigens for preparing antibodies against these proteins. The DNAs of the present invention can be utilized as probes for the genetic diagnosis and gene sources for the gene therapy. Furthermore, the DNAs can be utilized for large-scale expression of these proteins. Cells into which these genes are introduced to express these proteins, can be utilized for detection of the corresponding receptors and ligands, screening of novel lowmolecular pharmaceuticals, and so on.

5

10

15

20

25

30

herein.

to the polynucleotide sequences disclosed "Corresponding genes" are the regions of the genome that are transcribed to produce the mRNAs from which polynucleotide sequences are derived and may contiguous regions of the genome necessary for the regulated expression of such genes. Corresponding genes may therefore include but are not limited to coding sequences, 5' and 3' untranslated regions, alternatively spliced exons, introns, promoters, enhancers, and silencer or suppressor elements. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed

Such methods include the preparation of probes or

The present invention also provides genes corresponding

116

primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. An "isolated gene" is a gene that has been separated from the adjacent coding sequences, if any, present in the genome of the organism from which the gene was isolated.

5

10

15

20

25

30

Organisms that have enhanced, reduced, or modified qene(s) expression of the corresponding to the polynucleotide sequences disclosed herein are provided. The desired change in gene expression can be achieved through the use of antisense polynucleotides or ribozymes that bind and/or cleave the mRNA transcribed from the gene (Albert and Sci. 1994, Trends Pharmacol. 15(7): 250-254; Morris, Lavarosky et al., 1997, Biochem. Mol. Med. 62(1): 11-22; and Hampel, 1998, Proq. Nucleic Acid Res. Mol. Biol. 58: 1-39; of which are incorporated by reference herein). Transgenic animals that have multiple copies of the gene(s) corresponding to the polynucleotide sequences disclosed herein, preferably produced by transformation of cells with genetic constructs that are stably maintained within the transformed cells and their progeny, are provided. modified genetic Transgenic animals that have regions that increase or reduce gene expression levels, or that change temporal or spatial patterns of gene expression, are also provided (see European Patent No. 0 649 464 Bl, incorporated by reference herein). In addition, organisms are provided in which the gene(s) corresponding to the disclosed polynucleotide sequences herein have been partially or completely inactivated, through insertion of extraneous sequences into the corresponding gene(s) through deletion of all or part of the corresponding gene(s). Partial or complete gene inactivation can be accomplished

10

15

20

25

30

117

through insertion, preferably followed by imprecise excision, of transposable elements (Plasterk, 1992, Bioessays 14(9): 629-633; Zwaal et al., 1993, Proc. Natl. Acad. Sci. USA 90(16): 7431-7435; Clark et al., 1994, Proc. Natl. Acad. Sci. 91(2): 719-722; all of which are incorporated by reference herein), or through homologous recombination, preferably detected by positive/negative genetic selection strategies (Mansour et al., 1988, Nature 336: 348-352; U.S. Patent Nos. 5,464,764; 5,487,992; 5,627,059; 5,631,153; 5,614, 396; 5,616,491; and 5,679,523; all of which are incorporated by reference herein). These organisms with altered gene expression are preferably eukaryotes and more Such organisms are useful for the preferably are mammals. development of non-human models for the study of disorders involving the corresponding gene(s), and for the development of assay systems for the identification of molecules that interact with the protein product(s) of the corresponding gene(s). Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. intracellular and transmembrane domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

Proteins and protein fragments of the present invention include proteins with amino acid sequence lengths that are at least 25%(more preferably at least 50%, and most preferably at least 75%) of the length of a disclosed protein and have at least 60% sequence identity (more

10

15

20

25

30

preferably, at least 75% identity; most preferably at least 90% or 95% identity) with that disclosed protein, where sequence identity is determined by comparing the amino acid sequences of the proteins when aligned so as to maximize overlap and identity while minimizing sequence gaps. Also included in the present invention are proteins and protein fragments that contain a segment preferably comprising 8 or more (more preferably 20 or more, most preferably 30 or more) contiguous amino acids that shares at least 75% sequence identity (more preferably, at least 85% identity; most preferably at least 95% identity) with any such segment of any of the disclosed proteins.

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. As "species homologue" is a protein herein, а polynucleotide with a different species of origin from that of a given protein or polynucleotide, but with significant sequence similarity to the given protein or polynucleotide, as determined by those of skill in the art. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous, or related to that encoded by the polynucleotides.

The invention also includes polynucleotides with sequences complementary to those of the polynucleotides disclosed herein.

The present invention also includes polynucleotides

119

capable of hybridizing under reduced stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table 33 below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

10

Table 33

Stringency	Polynucleotide	Hybrid	Hybridization Temperature	Wash
Condition	Hybrid	Length	and Buffer†	Temperature
		(bp) [‡]		and Buffer [†]
A	DNA : DNA	≥50	65°C; 1×SSC -or-	65°C; 0.3×SSC
			42°C; 1×SSC,50% formamide	
В	DNA : DNA	<50	T _B *; 1×SSC	T _B *; 1×SSC
C	DNA: RNA	≥50	67°C; 1×SSC -or-	67°C; 0.3×SSC
			45°C; 1×SSC,50% formamide	
D	DNA : RNA	<50	T _D *; 1×SSC	Tp*; 1×SSC
E	RNA: RNA	≥50	70°C; 1×SSC -or-	70°C; 0.3×SSC
			50°C; 1×SSC,50% formamide	
F	RNA: RNA	<50	T _F *; 1×SSC	T _F *; 1×SSC
G	DNA : DNA	≥50	65°C; 4×SSC -or-	65°C; 1×SSC
			42°C; 4×SSC,50% formamide	
Н	DNA : DNA	<50	T _H *; 4×SSC	T _H *; 4×SSC
I	DNA : RNA	≥50	67°C; 4×SSC -or-	67℃; 1×SSC
			45°C; 4×SSC,50% formamide	
J	DNA : RNA	<50	T _J *; 4×SSC	T _J *; 4×SSC
K	RNA: RNA	≥50	70°C; 4×SSC -or-	67°C; 1×SSC
ļ			50℃; 4×SSC,50% formamide	
L	RNA: RNA	<50	T _L *; 2×SSC	T _L *; 2×SSC
M	DNA : DNA	≥50	50°C; 4×SSC -or-	50°C; 2×SSC
			40°C; 6×SSC,50% formamide	
N	DNA : DNA	<50	T _N *; 6×SSC	T _N *; 6×SSC
0	DNA: RNA	≥50	55°C; 4×SSC -or-	55°C; 2×SSC
			42℃; 6×SSC,50% formamide	
P	DNA: RNA	<50	T _P *; 6×SSC	T _P *; 6×SSC
Q	RNA: RNA	≥50	60°C; 4×SSC -or-	60°C; 2×SSC
	·		45°C; 6×SSC,50% formamide	
R	RNA: RNA	<50	T _R *; 4×SSC	T _R *; 4×SSC

- ‡: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.
- \dagger : SSPE (1×SSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH7.4) can be substituted for SSC (1×SSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.
 - ${}^{\star}T_{B}$ T_{R} : The hybridization temperature for hybrids anticipated to be less than

50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, $T_m(^{\circ}C)=2(\#of\ A+T\ bases)+4(\#of\ G+C\ bases)$. For hybrids between 18 and 49 base pairs in length, $T_m(^{\circ}C)=81.5+16.6(\log_{10}[Na^+])+0.41$ (%G+C) - (600/N), where N is the number of bases in the hybrid, and $[Na^+]$ is the concentration of sodium ions in the hybridization buffer ($[Na^+]$ for 1×SSC=0.165M).

5

10

15

20

25

Additional examples of stringency conditions for polynucleotide hybridization are provided in Sambrook, J., E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, chapters 9 and 11, and Current Protocols in Molecular Biology, 1995, F.M. Ausubel et al., eds., John Wiley & Sons, Inc., sections 2.10 and 6.3-6.4, incorporated herein by reference.

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

122

CLAIMS

1. A protein comprising any one of an amino acid sequence selected from the group consisting of SEQ ID Nos. 1 to 10, 31 to 40, 61 to 70, 91 to 100, and 121 to 130.

5

10

- 2. An isolated DNA coding for the protein according to Claim 1.
- 3. An isolated cDNA comprising any one of a base sequence selected from the group consisting of SEQ ID Nos. 11 to 20, 41 to 50, 71 to 80, 101 to 110, and 131 to 140.
- 4. The cDNA according to Claim 3 consisting of any one of a base sequence selected from the group consisting of SEQ ID Nos. 21 to 30, 51 to 60, 81 to 90, 111 to 120, and 141 to 150.
- 5. An expression vector that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 by in vitro translation or in eucaryotic cells.
 - 6. A transformed eucaryotic cell that is capable of expressing the DNA according to any one of Claim 2 to Claim 4 and of producing the protein according to Claim 1.

Fig. 2

Fig. 3

Fig. 4

Fig. 7

Fig. 8

Fig. 10

Fig. 11

Fig. 12

F18. 13

Fig. 14

Fig. 15

Fig. 16

Fig.1 /

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24

Fig. 25

Fig. 26

Fig. 27

Fig. 28

Fig. 29

Fig. 30

Fig. 31

Fig.32

Fig. 33

Fig. 34

Fig. 35

Fig. 36

Fig.37

Fig. 38

Fig. 39

Fig. 40

Fig. 41

Fig.42

Fig. 43

Fig. 44

Fig. 45

FIg. 46

Fig.47

Fig. 48

FIg. 49

Fig. 50

1/177

Sequence listing

<110> Sagami Chemical Research Center; Protegene Inc.

5 <120> Human Proteins Having Hydrophobic Domains And DNAs Encoding These Proteins

<130> 661102

10 <150> JP 10-208820

<151> 1998-07-24

<150> JP 10-224105

<151> 1998-08-07

15

<150> JP 10-238116

<151> 1998-08-25

<150> JP 10-254736

20 <151> 1998-09-09

<150> JP 10-275505

<151> 1998-09-29

25 <160> 150

<170> Windows 95 (Word 98)

<210> 1

30 <211> 125

<212> PRT

<213> Homo sapiens

<400> 1

35 Met Ala Lys Tyr Leu Ala Gln Ile Ile Val Met Gly Val Gln Val Val

	1				5					10					15	
	Gly	Arg	Ala	Phe	Ala	Arg	Ala	Leu	Arg	Gln	Glu	Phe	Ala	Ala	Ser	Arg
				. 20					25					30		
	Ala	Ala	Ala	Asp	Ala	Arg	Gly	Arg	Ala	Gly	His	Arg	Ser	Ala	Ala	Ala
5			35					40					45			
	Ser	Asn	Leu	Ser	Gly	Leu	Ser	Leu	Gln	Glu	Ala	Gln	Gln	Ile	Leu	Asn
		50					55					60				
	Val	Ser	Lys	Leu	Ser	Pro	Glu	Glu	Val	Gln	Lys	Asn	Tyr	Glu	His	Leu
	65					70					75					80
10	Phe	Lys	Val	Asn	Asp	Lys	Ser	Val	Gly	Gly	Ser	Phe	Tyr	Leu	Gln	Ser
					85					90					95	
	Lys	Val	Val	Arg	Ala	Lys	Glu	Arg	Leu	Asp	Glu	Glu	Leu	Lys	Ile	Gln
				100					105					110		
	Ala	Gln	Glu	Asp	Arg	Glu	Lys	Gly	Gln	Met	Pro	His	Thr			
15			115					120					125			
	<210> 2															
	<211> 131															
	<212	2> PE	RT													
20	<213	3> Ho	omo s	sapie	ens											
	<400)> 2														
	Met	Ala	Gly	Ile	Lys	Ala	Leu	Ile	Ser	Leu	Ser	Phe	Gly	Gly	Ala	Ile
	1				5					10					15	
25	Gly	Leu	Met		Leu	Met	Leu	Gly	Cys	Ala	Leu	Pro	Ile	Tyr	Asn	Lys
				20					25					30		
	Tyr	Trp		Leu	Phe	Val	Leu	Phe	Phe	Tyr	Ile	Leu	Ser	Pro	Ile	Pro
			35					40					45			
	Tyr		Ile	Ala	Arg	Arg	Leu	Val	Asp	Asp	Thr	_	Ala	Met	Ser	Asn
30		50					55					60				
		Cys	Lys	Glu	Leu	Ala	Ile	Phe	Leu	Thr	Thr	Gly	Ile	Val	Val	Ser
	65					70					75					80
	Ala	Phe	Gly	Leu	Pro	Ile	Val	Phe	Ala	Arg	Ala	His	Leu	Ile	Glu	Trp
					85					90					95	
35	Gly	Ala	Cys	Ala	Leu	Val	Leu	Thr	Gly	Asn	Thr	Val	Ile	Phe	Ala	Thr

				100					105					110		
	Ile	Leu	Gly	Phe	Phe	Leu	Val	Phe	Gly	Ser	Asn	Asp	Asp	Phe	Ser	Tr
			115					120					125			
	Gln	Gln	Trp													
5		130														
	<21	0> 3					•									
	<21	1> 2	42													
	<21	2> P	RT													
10	<21	3> H	omo	sapi	ens											
										٠						
	<40	0> 3														
	Met	Ala	Lys	His	Glu	Gln	Ile	Leu	Val	Leu	Asp	Pro	Pro	Thr	Asp	Leu
	1				5					10					15	
15	Lys	Phe	Lys	Gly	Pro	Phe	Thr	Asp	Val	Val	Thr	Thr	Asn	Leu	Lys	Leu
				20					25					30		
	Arg	Asn	Pro	Ser	Asp	Arg	Lys	Val	Cys	Phe	Lys	Val	Lys	Thr	Thr	Ala
			35					40					45			
	Pro	Arg	Arg	Tyr	Cys	Val	Arg	Pro	Asn	Ser	Gly	Ile	Ile	Asp	Pro	Gly
20		50					55					60				
	Ser	Thr	Val	Thr	Val	Ser	Val	Met	Leu	Gln	Pro	Phe	Asp	Tyr	Asp	Pro
	65					70					75					80
	Asn	Glu	Lys	Ser	Lys	His	Lys	Phe	Met	Val	Gln	Thr	Ile	Phe	Ala	Pro
					85					90					95	
25	Pro	Asn	Thr	Ser	Asp	Met	Glu	Ala	Val	Trp	Lys	Glu	Ala	Lys	Pro	Asp
				100					105					110		
	Glu	Leu	Met	Asp	Ser	Lys	Leu	Arg	Cys	Val	Phe	Glu	Met	Pro	Asn	Glu
			115					120					125			
	Asn	Asp	Lys	Leu	Asn	Asp	Met	Glu	Pro	Ser	Lys		Val	Pro	Leu	Asn
30		130					135					140				
	Ala	Ser	Lys	Gln	Asp	Gly	Pro	Met	Pro	Lys	Pro	His	Ser	Val	Ser	Leu
	145					150					155					160
	Asn	Asp	Thr	Glu		Arg	Lys	Leu	Met		Glu	Суѕ	Lys	Arg	Leu	Gln
					165					170	•				175	
35	Gly	Glu	Met	Met	Lys	Leu	Ser	Glu	Glu	Asn	Arg	His	Leu	Arg	Asp	Glu

				180					185					190)	
	Gly	Leu	Arg	Leu	Arg	Lys	Val	Ala	His	Ser	Asp	Lys	Pro	Gly	Ser	Thi
			195					200					205	•		
	Ser	Thr	Ala	Ser	Phe	Arg	Asp	Asn	Val	Thr	Ser	Pro	Leu	Pro	Ser	Let
5		210					215					220				
	Leu	Val	Val	Ile	Ala	Ala	Ile	Phe	Ile	Gly	Phe	Phe	Leu	Gly	Lys	Phe
	225					230					235					240
	Ile	Leu														
10	<21	0> 4														
	<21	1> 20	64													
	<21	2> PI	RT													
	<21	3> H	omc	sapi	ens											
15		0> 4				_			_							
		Phe	Val	Pro	_	Gly	Glu	Ser	Ala		Asp	Leu	Ala	Gly		Thr
	1			_	5	-	_			10		01	~ 3	_	15	
	Leu	Leu	Met			Val	Ser	Val	_	Asn	Val	GTÀ	GIn		Ala	Met
20	>	.	-1	20		-1		_	25	0	.	~ 1_	01	30		
20	Asp	Leu		TTE	ser	Thr	Leu		Met	ser	гла	TTE		Tyr	Pne	туг
	ωρ~) cn	35	Tou	1707	Dwa	Mot	40	C1	A cn	λcn	Pro	45	פות	Mh ∽	mb ~
	THE	Asp 50	Cys	Leu	vai	PIO	55	val	GTÀ	ASII	ASII	60	ıyı	MIG	THE	Thr
	Glu	Gly	Δen	Sor	መከም	Clu		Sar	Tla	Acn	αſΔ		Val.	ጥኒታዮ	Ser	Ton
25	65	GLY	ASII	Jer	1111	70	neu	Der	110	71311	75	O.Lu	741	- 7.		80
		Ser	Ara	Lvs	Leu		Ala	Leu	Gln	Leu		Ser	Ile	Phe	Ile	
			5	-,-	85					90	,				95	-,,-
	Tyr	Lys	Ser	Lvs		Phe	Cvs	Glu	Lvs		Leu	Ser	Trp	Val		Ser
	•	•		100			-1-		105					110		
30	Ser	Gly	Cys		Arq	Val	Ile	Val		Ser	Ser	Ser	His	Ser	Tyr	Gln
		-	115		•			120					125		•	
	Arg	Asn		Leu	Gln	Leu	Arq		Thr	Pro	Phe	Arg		Leu	Leu	Thr
	-	130	•				135					140	-			
	Pro	Ser	Met	Gln	Lys	Ser	Val	Gln	Asn	Lys	Ile	Lys	Ser	Leu	Asn	Trp
35	145				-	150				-	155	_				160

	GIU	GIU	Met	GIU			Arc	J Cys	: 116			ıııe	ASP	Asp		GIT
	-1		-1.		165					170		_	-1	_	175	
	Pne	cys	116			Pro	GIY	GIY			Thr	г туѕ	Thr		_	Asp
-		_	a	180		-1			185		1	_	_	190		•
5	GIU	Ser	•		гÀв	GIu	. 116			: Ala	Va1	Leu		-	Phe	Val
	•	01	195		•			200		•	a 1.	-	205		_	_
	ser			Asp	ASN	Tie		_	Ala	Leu	Gly		vaı	GIU	Tyr	Leu
	3.00	210		T	01 =	T1-	215		D	T	C	220	3	D	mh	**-7
10	225		ттр	Leu	GIII	230		гì	PLO	reu		Asp	Asp	PIO	Thr	
10			Sar	λra	W			Dro	e	· Cor	235	N ===	T ou	T 011	Dh.	240
	ser	ALG	SEL	ALG	245	гу	TTE	PIO	ser	250	тър	Arg	rea	Leu	Phe	GIA
	Sar	Gly	I.eu	Dro		פומ	Len	Phe		250					255	
	Der	GLY	neu	260	FIO	ATG	Den	FIIG								
15				200												
10	<21	0> 5														
	<210> 5 <211> 112															
	<211> 112 <212> PRT															
	<213> Homo sapiens															
20																
	<40	0> 5														
		_	Ser	Arg	Leu	Ser	Gln	Pro	Phe	Glu	Ser	Tyr	Ile	Thr	Ala	Pro
	1	_			5					10		_			15	
	Pro	Gly	Thr	Ala	Ala	Ala	Pro	Ala	Lys	Pro	Ala	Pro	Pro	Ala	Thr	Pro
25				20					25					30		
	Gly	Ala	Pro	Thr	Ser	Pro	Ala	Glu	His	Arg	Leu	Leu	Lys	Thr	Сув	Trp
			35					40					45			
	Ser	Cys	Arg	Val	Leu	Ser	Gly	Leu	Gly	Leu	Met	Gly	Ala	Gly	Gly	Tyr
		50					55					60				
30	Val	Tyr	Trp	Val	Ala	Arg	Lys	Pro	Met	Lys	Met	Gly	Tyr	Pro	Pro	Ser
	65					70					75					80
	Pro	Trp	Thr	Ile	Thr	Gln	Met	Val	Ile	Gly	Leu	Ser	Ile	Ala	Thr	Trp
					85					90					95	
	Gly	Ile	Val	Val	Met	Ala	Asp	Pro	Lys	Gly	Lys	Ala	Tyr	Arg	Val	Val
35				100					105					110		

6/177

<210> 6 <211> 146 <212> PRT 5 <213> Homo sapiens <400> 6 Met Leu Ala Gly Ala Gly Arg Pro Gly Leu Pro Gln Gly Arg His Leu 1 10 15 10 Cys Trp Leu Leu Cys Ala Phe Thr Leu Lys Leu Cys Gln Ala Glu Ala 25 Pro Val Glu Glu Lys Leu Ser Ala Ser Thr Ser Asn Leu Pro Cys 40 Trp Leu Val Glu Glu Phe Val Val Ala Glu Glu Cys Ser Pro Cys Ser 15 50 55 Asn Phe Arg Ala Lys Thr Thr Pro Glu Cys Gly Pro Thr Gly Tyr Val 70 75 Glu Lys Ile Thr Cys Ser Ser Ser Lys Arg Asn Glu Phe Lys Ser Cys . 90 95 85 20 Arg Ser Ala Leu Met Glu Gln Arg Leu Phe Trp Lys Phe Glu Gly Ala 105 Val Val Cys Val Ala Leu Ile Phe Ala Cys Leu Val Ile Ile Arg Gln 125 115 120 Arg Gln Leu Asp Arg Lys Ala Leu Glu Lys Val Arg Lys Gln Ile Glu 25 140 130 135 Ser Ile 145 <210> 7 30 <211> 344 <212> PRT <213> Homo sapiens <400> 7 35 Met Asp Phe Leu Val Leu Phe Leu Phe Tyr Leu Ala Ser Val Leu Met

	1				5					10)				15	,
	Gly	Leu	Val	Leu	Ile	Cys	Val	Cys	Ser	Lys	Thr	His	Ser	Leu	Lys	Gly
				20					25	i				30		
	Leu	Ala	Arg	Gly	Gly	Ala	Gln	Ile	Phe	Ser	Cys	Ile	Ile	Pro	Glu	Cys
5			35		,			40					45			
	Leu	Gln	Arg	Ala	Val	His	Gly	Leu	Leu	His	Tyr	Leu	Phe	His	Thr	Arg
		50					55					60				
	Asn	His	Thr	Phe	Ile	Val	Leu	His	Leu	Val	Leu	Gln	Gly	Met	Val	Туг
	65					70					75					80
10	Thr	Glu	Tyr	Thr	Trp	Glu	Val	Phe	Gly	Tyr	Cys	Gln	Glu	Leu	Glu	Lev
					85					90					95	
	Ser	Leu	His	Tyr	Leu	Leu	Leu	Pro	Tyr	Leu	Leu	Leu	Gly	Val	Asn	Leu
				100					105					110		
	Phe	Phe	Phe	Thr	Leu	Thr	Cys	Gly	Thr	Asn	Pro	Gly	Ile	Ile	Thr	Lys
15			115					120					125			
	Ala	Asn	Glu	Leu	Leu	Phe	Leu	His	Val	Tyr	Glu	Phe	Asp	Glu	Val	Met
		130					135					140				
		Pro	Lys	Asn	Val	Arg	Cys	Ser	Thr	Суз	_	Leu	Arg	Lys	Pro	Ala
	145					150					155					160
20	Arg	Ser	Lys	His	_	Ser	Val	Суѕ	Asn		Cys	Val	His	Arg		Asp
					165					170					175	
	His	His	Cys		Trp	Val	Asn	Asn	_	Ile	Gly	Ala	Trp	Asn	Ile	Arg
				180		_			185			_		190		
05	Tyr	Phe		Ile	Tyr	Val	Leu		Leu	Thr	Ala	Ser		Ala	Thr	Val
25	_ =		195	_				200	-	•	_		205		_	
	ALA		Vai	Ser	Thr	Thr		Leu	Val	Hls	Leu		val	Met	Ser	Asp
	T	210	01	- 1	m1		215	•	•	•	01	220	•	•••	••- 1	
		туг	GIN	GIU	Thr	_	TTE	Asp	Asp	Leu		HIS	Leu	His	vaı	
30	225	mh.∽	1701	Dh.	T	230	0 3-		T	Dha	235	mh ==	Dha	Dwa	N	240
00	wsb	THE	Val	Pne		TTe	GTU	TYE	Leu	250	Leu	THE	rne	Pro	•	TTE
	7757	Dho	Mot	T	245	Dh.a	17-3	*** 1	₹ 7		C02	nho	T 011	T ou	255	a 1
	Val	PIIE	Mec		стА	Pne	val	val		Ten	ser	PHE	Leu	Leu	стА	GIY
	٠٠ د کيل	T.eu	Leu	260	t7⇔1	T C''	m~	Leu	265	בות	πb∽) en	Gl n	270	መኮ~	N ~~
35	- År			LIIE	val	n⇔n	TAT		MIG	мла	TIIL	UĐII		Thr	THE	asn
JU			275					280					285			

8/177

Glu Trp Tyr Arg Gly Asp Trp Ala Trp Cys Gln Arg Cys Pro Leu Val 295 Ala Trp Pro Pro Ser Ala Glu Pro Gln Val His Arg Asn Ile His Ser 305 310 315 5 His Gly Leu Arg Ser Asn Leu Gln Glu Ile Phe Leu Pro Ala Phe Pro 325 330 335 Cys His Glu Arg Lys Lys Gln Glu 340 10 <210> 8 <211> 97 <212> PRT <213> Homo sapiens 15 <400> 8 Met Thr Lys Lys Lys Arg Glu Asn Leu Gly Val Ala Leu Glu Ile Asp 10 Gly Leu Glu Glu Lys Leu Ser Gln Cys Arg Arg Asp Leu Glu Ala Val 25 30 20 20 Asn Ser Arg Leu His Ser Arg Glu Leu Ser Pro Glu Ala Arg Arg Ser 40 Leu Glu Lys Glu Lys Asn Ser Leu Met Asn Lys Ala Ser Asn Tyr Glu 55 60 Lys Glu Leu Lys Phe Leu Arg Gln Glu Asn Arg Lys Asn Met Leu Leu 25 70 75 Ser Val Ala Ile Phe Ile Leu Leu Thr Leu Val Tyr Ala Tyr Trp Thr 85 90 95 Met 30 <210> 9 <211> 124 <212> PRT <213> Homo sapiens

35

<400> 9

	Met	Ala	Thr	Ser	Ser	Met	Ser	Lys	Gly	Cys	Phe	Val	Phe	Lys	Pro	Asn
	1				5				•	10					15	
	Ser	Lys	Lys	Arg	Lys	Ile	Ser	Leu	Pro	Ile	Glu	Asp	Tyr	Phe	Asn	Lys
				20					25					30		
5	Gly	ГЛа	Asn	Glu	Pro	Glu	Asp	Ser	Lys	Leu	Arg	Phe	Glu	Thr	Tyr	Gln
			35					40					45			
	Leu	Ile	Trp	Gln	Gln	Met	Lys	Ser	Glu	Asn	Glu	Arg	Leu	Gln	Glu	Glu
		50					55					60				
		Asn	Lys	Asn	Leu	Phe	Asp	Asn	Leu	Ile		Phe	Leu	Gln	Lys	Ser
10	65					70					75					80
	His	Ser	Gly	Phe		Lys	Asn	Ser	Arg	_	Leu	Gly	Gly	Gln		Lys
			_		85					90		_			95	
	Leu	Arg	Glu		Pro	Thr	Ala	Ala		Val	Leu	Gly	Ile		Ala	Tyr
15		_	_	100			_		105		_	_,		110		
15	Val	Cys		Cys	Met	His	Leu	_	Val	Phe	Arg	Phe				
			115					120								
	-21	0> 10	n													
		1> 32														
20		2> PI														
20		2> F1 3> Ho		anie	on e											
		- 11		upic	-110											
	<400	0> 10)													
	Met	Ala	Glu	Leu	Pro	Gly	Pro	Phe	Leu	Cys	Gly	Ala	Leu	Leu	Gly	Phe
25	1				5	_				10					15	
	Leu	Cys	Leu	Ser	Gly	Leu	Ala	Val	Glu	Val	Lys	Val	Pro	Thr	Glu	Pro
				20					25					30		
	Leu	Ser	Thr	Pro	Leu	Gly	Lys	Thr	Ala	Glu	Leu	Thr	Cys	Thr	Tyr	Ser
			35					40					45			
30	Thr	Ser	Val	Gly	Asp	Ser	Phe	Ala	Leu	Glu	Trp	Ser	Phe	Val	Gln	Pro
		50					55					60				
	Gly	Lys	Pro	Ile	Ser	Glu	Ser	His	Pro	Ile	Leu	Tyr	Phe	Thr	Asn	Gly
	65					70					75					80
	His	Leu	Tyr	Pro	Thr	Gly	Ser	Lys	Ser	Lys	Arg	Val	Ser	Leu	Leu	Gln
35					85					90					95	

	Asn	Pro	Pro	Thr	Val	Gly	Val	Ala	Thr	Leu	Lys	Leu	Thr	Asp	Val	His
				100					105					110		
	Pro	Ser	Asp	Thr	Gly	Thr	Tyr	Leu	Cys	Gln	Val	Asn	Asn	Pro	Pro	Asp
			115					120					125			
5	Phe	Tyr	Thr	Asn	Gly	Leu	Gly	Leu	Ile	Asn	Leu	Thr	Val	Leu	Val	Pro
		130					135					140				
	Pro	Ser	Asn	Pro	Leu	Cys	Ser	Gln	Ser	Gly	Gln	Thr	Ser	Val	Gly	Gly
	145					150					155					160
	Ser	Thr	Ala	Leu	Arg	Cys	Ser	Ser	Ser	Glu	Gly	Ala	Pro	Lys	Pro	Val
10					165					170					175	
	Tyr	Asn	Trp	Val	Arg	Leu	Gly	Thr	Phe	Pro	Thr	Pro	Ser	Pro	Gly	Ser
				180					185					190		
	Met	Val		Asp	Glu	Val	Ser	Gly	Gln	Leu	Ile	Leu	Thr	Asn	Leu	Ser
			195					200					205			
15	Leu		Ser	Ser	Gly	Thr	_	Arg	Cys	Val	Ala	Thr	Asn	Gln	Met	Gly
		210					215					220				
		Ala	Ser	Cys	Glu		Thr	Leu	Ser	Val		Glu	Pro	Ser	Gln	-
	225				_	230					235					240
20	Arg	Val	Ala	Gly		Leu	Ile	Gly	Val		Leu	Gly	Val	Leu		Leu
20			_	_	245					250					255	
	Ser	Val	Ala		Phe	Cys	Leu	Val	_	Phe	Gln	Lys	Glu	_	Gly	Lys
	_	_	_	260		_	~ 1		265		•		-1	270		
	тÀг	Pro	_	GIU	Thr	Tyr	GIÀ	-	ser	Asp	Leu	Arg		Asp	Ala	Пф
og.	.1-	S	275	- 1.		~ 3	••• <u>-</u>	280	a		3	. 1 -	285	0		_
25		290	GIY	TTE	ser	GIU	н15 295	THE	Сув	Met	Arg	Ala 300	Asp	ser	ser	ьуs
			T 011	~1	7	Dro		Cor		602	mh-		mh⊷	mb ==	mhm	T
	305	rne	Leu	GIU	Arg	310	ser	ser	ATG	Ser	315	Val	1111	TIII	THE	_
		Tue	Lon	Dro	Met		TeV				212					320
30	DEL	пåз	neu	PIO	325	Vai	Val									
00					323											
	<210	> 11														
	<211															
	<211															
35			mos	anie	ns											
30	40	- 110	5	~PTC												

	<400> 11						
	atggccaagt	acctggccca	gatcattgtg	atgggcgtgc	aggtggtggg	cagggccttt	60
	gcacgggcct	tgcggcagga	gtttgcagcc	agccgggccg	cagetgatge	ccgaggacgc	120
5	gctggacacc	ggtctgcagc	cgcttccaac	ctctccggcc	tcagcctcca	ggaggcacag	180
	cagattctca	acgtgtccaa	gctgagccct	gaggaggtcc	agaagaacta	tgaacactta	240
	tttaaggtga	atgataaatc	cgtgggtggc	tecttetace	tgcagtcaaa	ggtggtccgc	300
	gcaaaggagc	gcctggatga	ggaactcaaa	atccaggccc	aggaggacag	agaaaaaggg	360
	cagatgcccc	atacg					375
10							
	<210> 12						
	<211> 393						
	<212> DNA						
	<213> Homo	sapiens					
15							
	<400> 12						
	atggcaggca	tcaaagcttt	gattagtttg	tcctttggag	gagcaatcgg	actgatgttt	60
	ttgatgcttg	gatgtgccct	tccaatatac	aacaaatact	ggcccctctt	tgttctattt	120
	ttttacatcc	tttcacctat	tccatactgc	atagcaagaa	gattagtgga	tgatacagat	180
20	gctatgagta	acgcttgtaa	ggaacttgcc	atctttctta	caacgggcat	tgtcgtgtca	240
	gcttttggac	tccctattgt	atttgccaga	gcacatctga	ttgagtgggg	agcttgtgca	300
	cttgttctca	caggaaacac	agtcatcttt	gcaactatac	taggettttt	cttggtcttt	360
	ggaagcaatg	acgacttcag	ctggcagcag	tgg			393
25	<210> 13						
	<211> 726						
	<212> DNA						
	<213> Homo	sapiens					
00							
30	<400> 13						
					cagacctcaa		60
					atccatcgga		120
					tgaggcccaa		180
0.5					agccctttga	_	240
35	aatgaaaaga	gtaaacacaa	gtttatggta	cagacaattt	ttgctccacc	aaacacttca	300

	gatatggaag	ctgtgtggaa	agaggcaaaa	cctgatgaat	taatggattc	caaattgaga	360
	tgcgtatttg	aaatgcccaa	tgaaaatgat	aaattgaatg	atatggaacc	tagcaaagct	420
	gttccactga	atgcatctaa	gcaagatgga	cctatgccaa	aaccacacag	tgtttcactt	480
	aatgataccg	aaacaaggaa	actaatggaa	gagtgtaaaa	gacttcaggg	agaaatgatg	540
5	aagctatcag	aagaaaatcg	gcacctgaga	gatgaaggtt	taaggctcag	aaaggtagca	600
	catteggata	aacctggatc	aacctcaact	gcatccttca	gagataatgt	caccagtcct	660
	cttccttcac	ttcttgttgt	aattgcagcc	attttcattg	gattctttct	agggaaattc	720
	atcttg						726
10	<210> 14						
	<211> 792						
	<212> DNA	٠					
	<213> Homo	sapiens					
15	<400> 14						
	atgttcgttc	cctgcgggga	gteggeeeee	gaccttgccg	gcttcaccct	cctaatgcca	60
	gcagtatctg	ttggaaatgt	tggccagctt	gcaatggatc	tgattatttc	tacactgaat	120
	atgtctaaga	ttggttactt	ctataccgat	tgtcttgtgc	caatggttgg	aaacaatcca	180
	tatgcgacca	cagaaggaaa	ttcaacagaa	cttagcataa	atgctgaagt	gtattcattg	240
20	ccttcaagaa	agctggtggc	tctacagtta	agatccattt	ttattaagta	taaatcaaag	300
	ccattctgtg	aaaaactgct	ttcctgggtg	aaaagcagtg	gctgtgccag	agtcattgtt	360
	ctttcgagca	gtcattcata	tcagcgtaat	gatctgcagc	ttcgtagtac	tecetteegg	420
	tacctactta	caccttccat	gcaaaaaagt	gttcaaaata	aaataaagag	ccttaactgg	480
	gaagaaatgg	aaaaaagccg	gtgcattcct	gaaatagatg	attccgagtt	ttgtatccgc	540
25	attccgggag	gaggtatcac	aaaaacactc	tatgatgaaa	gctgttctaa	agaaatccaa	600
	atggcagttc	tgctgaaatt	tgtttcagaa	ggggacaaca	tcccagatgc	attaggtctt	660
	gttgagtatc	ttaatgagtg	gcttcagata	ctcaaaccac	ttagcgatga	ccccacagta	720
	tctgcctcac	ggtggaaaat	accaagttct	tggagattac	tctttggcag	tggtcttccc	780
	cctgcacttt	tc					792
30							
	<210> 15						
	<211> 336						
	<212> DNA						
	<213> Homo	sapiens					
35							

	<400> 15						
	atggggtctc	ggttgtccca	gccttttgag	tcctatatca	ctgcgcctcc	: cggtaccgcc	60
	geegegeeeg	ccaaacctgc	gcccccagct	acacccggag	cgccgacctc	cccagcagaa	120
	caccgcctgt	tgaagacctg	ctggagctgt	cgcgtgcttt	ctgggttggg	gctgatgggg	180
5	gegggegggt	acgtgtactg	ggtggcacgg	aagcccatga	agatgggata	ccccccgagt	240
	ccatggacca	ttacgcagat	ggtcatcggc	ctcagcattg	ccacctgggg	tatcgttgtc	300
	atggcagacc	ccaaagggaa	ggcctaccgc	gttgtt			336
	<210> 16				•		
10	<211> 438						
	<212> DNA						
	<213> Homo	sapiens					
	<400> 16						
15	atgettgegg	gtgccgggag	gcctggcctc	ccccagggcc	gccacctctg	ctggttgctc	60
	tgtgctttca	ccttaaagct	ctgccaagca	gaggeteeeg	tgcaggaaga	gaagetgtea	120
	gcaagcacct	caaatttgcc	atgctggctg	gtggaagagt	ttgtggtagc	agaagagtgc	180
	tctccatgct	ctaatttccg	ggctaaaact	acccctgagt	gtggtcccac	aggatatgta	240
20				aatgagttca			300
20				ggggctgtcg			360
			tcagcgacaa	ttggacagaa	aggetetgga	aaaggteegg	420
	aagcaaatcg	agtccata					438
	2010 5 17						
25	<210> 17						
20	<211> 1032 <212> DNA						
	<212> DNA <213> Homo	caniona					
	VZ 137 HORRO	adhtena					
	<400> 17						
30	atggactttc	taateetett	cttattetae	ctaactteaa	tactaataaa	tettattett	60
	atctgcgtct						120
	ttttcctgta					-	180
	ttccatacga	-					240
	actgagtaca						300
35	cttcttctgc						360

	accaatcctg	gcattataac	aaaagcaaat	gaattattat	ttcttcatgt	ttatgaattt	420
	gatgaagtga	tgtttccaaa	gaacgtgagg	tgctctactt	gtgatttaag	gaaaccagct	480
	cgatccaagc	actgcagtgt	gtgtaactgg	tgtgtgcacc	gtttcgacca	tcactgtgtt	540
	tgggtgaaca	actgcatcgg	ggcctggaac	atcaggtact	tcctcatcta	cgtcttgacc	600
5	ttgacggcct	cggctgccac	cgtcgccatt	gtgagcacca	cttttctggt	ccacttggtg	660
	gtgatgtcag	atttatacca	ggagacttac	atcgatgacc	ttggacacct	ccatgttatg	720
	gacacggtct	ttcttattca	gtacctgttc	ctgacttttc	cacggattgt	cttcatgctg	780
	ggetttgteg	tggttctgag	cttcctcctg	ggtggctacc	tgttgtttgt	cctgtatctg	840
	geggeeacea	accagactac	taacgagtgg	tacagaggtg	actgggcctg	gtgccagcgt	900
10	tgtccccttg	tggcctggcc	tccgtcagca	gagccccaag	tccaccggaa	cattcactcc	960
	catgggcttc	ggagcaacct	tcaagagatc	tttctacctg	cctttccatg	tcatgagagg	1020
	aagaaacaag	aa					1032
	<210> 18		•				
15	<211> 291						
	<212> DNA						
	<213> Homo	sapiens					
00	<400> 18						
20						gctagaggag	60
	_					cagccgggag	120
					acagcctaat		180
			-		accggaagaa		240
25	tctgtggcca	tetttateet	cetgaegete	gtetatgeet	actggaccat	g	291
20	<210> 19						
	<211> 372			•			
	<212> DNA						
	<213> Homo	sapiens					
30							•
	<400> 19						
	atggctacgt	cctcgatgtc	taagggttgc	tttgttttta	agccaaactc	caaaaagaga	60
	aagatetete			•	-		120
	aagcttcgat						180
35	ctacaagagg a	aattaaataa	aaacttgttt	gacaatctga	ttgaatttct	gcaaaaatca	240

	cattctggat t	ccagaagaa	ttcaagagac	ttgggcggtc	aaataaaact	cagagaaatt	300
	ccaactgctg c	ctcttgttct	tggtatatat	gegtatgttt	gttcatgcat	gcatctctgt	360
	gtatttcgtt t						372
5	<210> 20						
	<211> 981						
	<212> DNA						
	<213> Homo s	apiens					
10	<400> 20				•		
	atggeegage t	cccggggcc	ctttctctgc	ggggccctgc	taggcttcct	gtgcctgagt	60
	gggetggeeg t	ggaggtgaa	ggtacccaca	gagccgctga	gcacgcccct	ggggaagaca	120
	gccgagctga c	ctgcaccta	cagcacgtcg	gtgggagaca	gcttcgccct	ggagtggagc	180
	tttgtgcagc c	tgggaaacc	catctctgag	tcccatccaa	tcctgtactt	caccaatggc	240
15	catctgtatc c	aactggttc	taagtcaaag	cgggtcagcc	tgcttcagaa	ccccccaca	300
	gtgggggtgg c	cacactgaa	actgactgac	gtccacccct	cagatactgg	aacctacctc	360
	tgccaagtca a	caacccacc	agatttctac	accaatgggt	tggggctaat	caaccttact	420
	gtgctggttc c	ccccagtaa	tcccttatgc	agtcagagtg	gacaaacctc	tgtgggaggc	480
	tetactgcac to	gagatgcag	ctcttccgag	ggggctccta	agccagtgta	caactgggtg	540
20	cgtcttggaa c	ttttcctac	accttctcct	ggcagcatgg	ttcaagatga	ggtgtctggc	600
	cageteatte to	caccaacct	ctccctgacc	tectegggea	cctaccgctg	tgtggccacc	660
	aaccagatgg g	cagtgcatc	ctgtgagctg	accetetetg	tgaccgaacc	ctcccaaggc	720
	cgagtggccg ga	agctctgat	tggggtgctc	ctgggcgtgc	tgttgctgtc	agttgctgcg	780
	ttctgcctgg to	caggttcca	gaaagagagg	gggaagaagc	ccaaggagac	atatgggggt	840
25	agtgacette g	ggaggatgc	categeteet	gggatctctg	agcacacttg	tatgagggct	900
	gattctagca ag	ggggtteet	ggaaagaccc	tcgtctgcca	gcaccgtgac	gaccaccaag	960
	tecaagetee et	tatggtcgt	g				981
	<210> 21						
30	<211> 510						
	<212> DNA						
	<213> Homo sa	apiens					
	<220>						
	<221> CDS						
35	<222> (66)	(443)					

	<400> 21	
	acgettgate eceggeegeg gggeeaggaa gteggagttt gageeeegga ggeagagegg	60
	ctgcc atg gcc aag tac ctg gcc cag atc att gtg atg ggc gtg cag gtg	110
5	Met Ala Lys Tyr Leu Ala Gln Ile Ile Val Met Gly Val Gln Val	
	1 5 10 15	
	gtg ggc agg gcc ttt gca cgg gcc ttg cgg cag gag ttt gca gcc agc	158
	Val Gly Arg Ala Phe Ala Arg Ala Leu Arg Gln Glu Phe Ala Ala Ser	
	20 25 30	
10	egg gee gea get gat gee ega gga ege get gga eac egg tet gea gee	206
	Arg Ala Ala Ala Asp Ala Arg Gly Arg Ala Gly His Arg Ser Ala Ala	
	35 40 45	
	get tee aac ete tee gge ete age ete eag gag gea eag eat ete	254
	Ala Ser Asn Leu Ser Gly Leu Ser Leu Gln Glu Ala Gln Gln Ile Leu	
15	50 55 60	
	aac gtg tcc aag ctg agc cct gag gag gtc cag aag aac tat gaa cac	302
	Asn Val Ser Lys Leu Ser Pro Glu Glu Val Gln Lys Asn Tyr Glu His	
	65 70 75	
	tta ttt aag gtg aat gat aaa too gtg ggt ggo too tto tac etg cag	350
20	Leu Phe Lys Val Asn Asp Lys Ser Val Gly Gly Ser Phe Tyr Leu Gln	
	80 85 90 95	
	tea aag gtg gte ege gea aag gag ege etg gat gag gaa ete aaa ate	398
	Ser Lys Val Val Arg Ala Lys Glu Arg Leu Asp Glu Glu Leu Lys Ile	
	100 105 110	
25	cag gcc cag gag gac aga gaa aaa ggg cag atg ccc cat acg tgactgctc	450
	Gin Ala Gin Glu Asp Arg Glu Lys Gly Gin Met Pro His Thr	
	115 120 125	
	getececcg ceeaccege egectetaat ttatagettg gtaataaatt tettttetge	510
30	<210> 22	
	<211> 697	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
35	<221> CDS	

17/177

<222> (104)...(499)

	<400> 22	
	actteegggt gttgtetgge egeegtageg egtettgggt eteeeggetg eegetgetge	60
5	egeegeegee tegggtegtg gageeaggag egaegteace gee atg gea gge atc	115
	Met Ala Gly Ile	
	. 1	
	aaa get ttg att agt ttg tee ttt gga gga gea ate gga etg atg ttt	163
	Lys Ala Leu Ile Ser Leu Ser Phe Gly Gly Ala Ile Gly Leu Met Phe	
10	5 10 15 20	
	ttg atg ctt gga tgt gcc ctt cca ata tac aac aaa tac tgg ccc ctc	211
	Leu Met Leu Gly Cys Ala Leu Pro Ile Tyr Asn Lys Tyr Trp Pro Leu	
	25 30 35	
	ttt gtt eta ttt ttt tac atc ett tea eet att eea tae tge ata gea	259
15	Phe Val Leu Phe Phe Tyr Ile Leu Ser Pro Ile Pro Tyr Cys Ile Ala	
	40 45 50	
	aga aga tta gtg gat gat aca gat gct atg agt aac gct tgt aag gaa	307
	Arg Arg Leu Val Asp Asp Thr Asp Ala Met Ser Asn Ala Cys Lys Glu	
	55 60 65	
20	ctt gee ate ttt ett aca acg gge att gte gtg tea get ttt gga ete	355
	Leu Ala Ile Phe Leu Thr Thr Gly Ile Val Val Ser Ala Phe Gly Leu	
	70 75 80	
	cct att gta ttt gcc aga gca cat ctg att gag tgg gga gct tgt gca	403
	Pro Ile Val Phe Ala Arg Ala His Leu Ile Glu Trp Gly Ala Cys Ala	
25	85 90 95 100	
	ctt gtt ctc aca gga aac aca gtc atc ttt gca act ata cta ggc ttt	451
	Leu Val Leu Thr Gly Asn Thr Val Ile Phe Ala Thr Ile Leu Gly Phe	
	105 110 115	
	ttc ttg gtc ttt gga agc aat gac gac ttc agc tgg cag cag tgg tgaa	500
30	Phe Leu Val Phe Gly Ser Asn Asp Asp Phe Ser Trp Gln Gln Trp	
	120 125 130	
	aagaaattac tgaactattg tcaaatggac ttcctgtcat ttgttggcca ttcacgcaca	560
	caggagatgg ggcagttaat gctgaatggt atagcaagcc tcttgggggt attttaggtg	620
	ctcccttctc acttttattg taagcatact attttcacag agacttgctg aaggattaaa	680
35	aggattttct cttttgg	697

	<210> 23	
	<211> 1619	
	<212> DNA	
5	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (287)(1015)	
10	<400> 23	
	gcagaggccg teacgtgggt egecgagget egeaagtgeg egtggeegtg geggetggtg	60
	tggggttgag tcagttgtgg gacccggagc tgctgaccca gcgggtggcc caccgaaccg	120
	gtgacacage ggcaggegtt agggeteggg ageegegage etggeetegt eetagagete	180
	ggeegageeg tegeegeegt egteeceege ecceagteag caaacegeeg eegegggege	240
15	geceeegete tgegetgtet eteegatgge gteegeetea ggggee atg geg aag	295
	Met Ala Lys	
	1	
	cac gag cag atc ctg gtc ctc gat ccg ccc aca gac ctc aaa ttc aaa	343
	His Glu Gln Ile Leu Val Leu Asp Pro Pro Thr Asp Leu Lys Phe Lys	
20	5 10 15	
	ggc ccc ttc aca gat gta gtc act aca aat ctt aaa ttg cga aat cca	391
	Gly Pro Phe Thr Asp Val Val Thr Thr Asn Leu Lys Leu Arg Asn Pro	
	20 25 30 35	
	tcg gat aga aaa gtg tgt ttc aaa gtg aag act aca gca cct cgc cgg	439
25	Ser Asp Arg Lys Val Cys Phe Lys Val Lys Thr Thr Ala Pro Arg Arg	
	40 45 50	
	tac tgt gtg agg ccc aac agt gga att att gac cca ggg tca act gtg	487
	Tyr Cys Val Arg Pro Asn Ser Gly Ile Ile Asp Pro Gly Ser Thr Val	
	55 60 65	
30	act gtt tca gta atg cta cag ccc ttt gac tat gat ccg aat gaa aag	535
	Thr Val Ser Val Met Leu Gln Pro Phe Asp Tyr Asp Pro Asn Glu Lys	
	70 75 80	
	agt aaa cac aag ttt atg gta cag aca att ttt gct cca cca aac act	583
	Ser Lys His Lys Phe Met Val Gln Thr Ile Phe Ala Pro Pro Asn Thr	-
35	85 90 95	

	tca	gat	atg	gaa	gct	gtg	tgg	aaa	gag	gca	aaa	cct	gat	gaa	tta	atg	631
	Ser	Asp	Met	Glu	Ala	Val	Trp	Lys	Glu	Ala	Lys	Pro	Asp	Glu	Leu	Met	
	100					105					110					115	
	gat	tcc	aaa	ttg	aga	tgc	gta	ttt	gaa	atg	ccc	aat	gaa	aat	gat	aaa	679
5	Asp	Ser	Lys	Leu	Arg	Cys	Val	Phe	Glu	Met	Pro	Asn	Glu	Asn	Asp	Lys	
					120					125					130		
	ttg	aat	gat	atg	gaa	cct	agc	aaa	gct	gtt	cca	ctg	aat	gca	tct	aag	727
	Leu	Asn	Asp	Met	Glu	Pro	Ser	Lys	Ala	Val	Pro	Leu	Asn	Ala	Ser	Lys	
				135					140					145			
10	caa	gat	gga	cct	atg	cca	aaa	cca	cac	agt	gtt	tca	ctt	aat	gat	acc	775
	Gln	Asp	Gly	Pro	Met	Pro	Lys	Pro	His	Ser	Val	Ser	Leu	Asn	Asp	Thr	
			150					155					160				
	gaa	aca	agg	aaa	cta	atg	gaa	gag	tgt	aaa	aga	ctt	cag	gga	gaa	atg	823
	Glu	Thr	Arg	Lys	Leu	Met	Glu	Glu	Cys	Lys	Arg	Leu	Gln	Gly	Glu	Met	
15		165					170					175					
	atg	aag	cta	tca	gaa	gaa	aat	cgg	cac	ctg	aga	gat	gaa	ggt	tta	agg	871
	Met	Lys	Leu	Ser	Glu	Glu	Asn	Arg	His	Leu	Arg	Asp	Glu	Gly	Leu	Arg	
	180					185					190					195	
	ctc	aga	aag	gta	gca	cat	tcg	gat	aaa	cct	gga	tca	acc	tca	act	gca	919
20	Leu	Arg	Lys	Val	Ala	His	Ser	Asp	Lys	Pro	Gly	Ser	Thr	Ser	Thr	Ala	
					200					205					210		
	tcc	ttc	aga	gat	aat	gtc	acc	agt	cct	ctt	cct	tca	ctt	ctt	gtt	gta	967
	Ser	Phe	Arg	Asp	Asn	Val	Thr	Ser	Pro	Leu	Pro	Ser	Leu	Leu	Val	Val	
				215					220					225			
25	att	gca	gcc	att	ttc	att	gga	ttc	ttt	cta	ggg	aaa	ttc	atc	ttg		1012
	Ile .	Ala .	Ala	Ile	Phe	Ile	Gly	Phe	Phe	Leu	Gly	Lys	Phe	Ile	Leu		
			230					235					240				
	taga	gtga	ag c	atge	agag	t gc	tgtt	tctt	ttt	tttt	ttt	ttct	cttg	ac c	agaa	aaa	1070
	gatt	tgtt	ta c	ctac	catt	t ca	ttgg	tagt	atg	gccc	acg	gtga	ccat	tt t	tttg	tgtgt	1130
30	acag	cgtc	at a	tagg	cttt	g cc.	ttta	atga	tct	ctta	cgg	ttag	aaaa	ca c	aata	aaaac	1190
	aaac	tgtt	cg g	ctac	tgga	c ag	gttg	tata	tta	ccag	atc	atca	ctag	ca g	atgt	cagtt	1250
	gcac	attg	ag t	cctt	tatg	a aa	ttca	taaa	taa	agaa	ttg	ttct	ttct	tt g	tggt	tttaa	1310
	taaga	agtt	ca a	gaat	tgtt	c age	agtc	ttgt	aaa	tgtt	att"	ttaa	taat	aa at	ttta	aattt	1370
	tatc	tgtt	gc t	gtta	cctc	t tga	aaata	atga	ttt	attt	aga '	ttgc	taat	cc c	actc	attca	1430
35	ggaaa	atgc	ca a	gagg	tatt	c cti	gggg	gaaa	tggi	tgcci	tct ·	taca	gtgt	aa at	ttt	tcctc	1490

	ctttaccttt gctaatatca tggcagaatt tttcttatcc cttgtgaggc agttgttgac	1550
	tgagtttttc atccttacaa tcctgtccca tggtatttaa cataaaaaaa aataaaactg	1610
	ttaacagat	1619
5	<210> 24	
	<211> 1066	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
10	<221> CDS	
	<222> (65)(859)	
	<400> 24	
	cttettgetg cectegttet tgeeggggee geggttagte cetgetggee acceeactge	60
15	gace atg tte gtt ecc tge ggg gag teg gee ecc gae ett gee gge tte	109
	Met Phe Val Pro Cys Gly Glu Ser Ala Pro Asp Leu Ala Gly Phe	
	1 5 10 15	
•	acc etc eta atg eca gea gta tet gtt gga aat gtt gge eag ett gea	157
	Thr Leu Leu Met Pro Ala Val Ser Val Gly Asn Val Gly Gln Leu Ala	
20	20 25 30	
	atg gat ctg att att tct aca ctg aat atg tct aag att ggt tac ttc	205
	Met Asp Leu Ile Ile Ser Thr Leu Asn Met Ser Lys Ile Gly Tyr Phe	
	35 40 45	
	tat acc gat tgt ctt gtg cca atg gtt gga aac aat cca tat gcg acc	253
25	Tyr Thr Asp Cys Leu Val Pro Met Val Gly Asn Asn Pro Tyr Ala Thr	
	50 55 60	
	aca gaa gga aat tca aca gaa ctt agc ata aat gct gaa gtg tat tca	301
	Thr Glu Gly Asn Ser Thr Glu Leu Ser Ile Asn Ala Glu Val Tyr Ser	
	65 70 75	
30	ttg cct tca aga aag ctg gtg gct cta cag tta aga tcc att ttt att	349
	Leu Pro Ser Arg Lys Leu Val Ala Leu Gln Leu Arg Ser Ile Phe Ile	
	80 85 90 95	
	aag tat aaa toa aag ooa tto tgt gaa aaa otg ott too tgg gtg aaa	397
	Lys Tyr Lys Ser Lys Pro Phe Cys Glu Lys Leu Leu Ser Trp Val Lys	
35	100 105 110	

	ago	agt	ggc	tgt	gcc	aga	gtc	att	gtt	ctt	tcg	agc	agt	cat	tca	tat	445
	Ser	Ser	Gly	Cys	Ala	Arg	Val	Ile	Val	Leu	Ser	Ser	Ser	His	Ser	Tyr	
				115	•				120					125			•
	cag	cgt	aat	gat	ctg	cag	ctt	cgt	agt	act	ccc	ttc	cgg	tac	cta	ctt	493
5	Gln	Arg	Asn	Asp	Leu	Gln	Leu	Arg	Ser	Thr	Pro	Phe	Arg	Tyr	Leu	Leu	
			130					135					140				
				_	caa		-	•					_	-			541
	Thr			Met	Gln	Lys		Val	Gln	Asn	Lys		Lys	Ser	Leu	Asn	
10		145					150					155					
10					gaa									_	_		589
			Glu	Met	Glu		Ser	Arg	Cys	Ile		Glu	Ile	Asp	Asp		
	160					165					170					175	
					cgc				-								637
15	GIU	FIIE	cys	TTE	Arg 180	TTE	PIO	СТА	GIY	185	116	THE	гуѕ	Thr	190	Tyr	
10	gat	саа	agg	tat	tet	222	raa.	atc	C22		aca	a++	cta	ata		+++	605
					Ser									_			685
				195		_,_			200		****	,	204	205	275	riie	
	gtt	tca	gaa		gac	aac	atc	cca		qca	tta	aat	ctt		gag	tat	733
20					Asp				_	-				-			755
			210	_	_			215	-			-	220			•	
	ctt	aat	gag	tgg	ctt	cag	ata	ctc	aaa	cca	ctt	agc	gat	gac	ccc	aca	781
	Leu	Asn	Glu	Trp	Leu	Gln	Ile	Leu	Lys	Pro	Leu	Ser	Asp	Asp	Pro	Thr	
		225					230					235					
25	gta	tct	gcc	tca	cgg	tgg	aaa	ata	cca	agt	tct	tgg	aga	tta	ctc	ttt	829
	Val	Ser	Ala	Ser	Arg	Trp	Lys	Ile	Pro	Ser	Ser	Trp	Arg	Leu	Leu	Phe	
	240					245					250					255	
	ggc	agt	ggt	ctt	ccc	cct	gca	ctt	ttc	tgat	ctaa	tt t	ctgt	ttta	t ac	ct	880
	Gly	Ser	Gly	Leu	Pro	Pro .	Ala	Leu	Phe								
30					260												
								_	_							tgtat	940
								_				-	-			gtete	1000
			gc t	tttc	atca	t at	gcac	caaa	tgt	aaat	ttt	gtac	aata	aa a	tttt	atttc	1060
0.5	ctaa	ıgt															1066
35																	

	<210> 25	
	<211> 618	
	<212> DNA	
	<213> Homo sapiens	
5	<220>	
	<221> CDS	
	<222> (54)(392)	
	<400> 25	
10	gtttacgcca gtttgaacca aagacgccca aggttgaggc cgagttccag agc atg	56
	Met	
	1	
	ggg tet egg ttg tee eag eet ttt gag tee tat ate aet geg eet eee	104
	Gly Ser Arg Leu Ser Gln Pro Phe Glu Ser Tyr Ile Thr Ala Pro Pro	
15	5 10 . 15	
	ggt acc gcc gcg ccc gcc aaa cct gcg ccc cca gct aca ccc gga	152
	Gly Thr Ala Ala Pro Ala Lys Pro Ala Pro Pro Ala Thr Pro Gly	
	20 25 30	
20	geg eeg ace tee eea gea gaa eac ege etg ttg aag ace tge tgg age	200
20	Ala Pro Thr Ser Pro Ala Glu His Arg Leu Leu Lys Thr Cys Trp Ser 35 40 45	
	tgt cgc gtg ctt tct ggg ttg ggg ctg atg ggg gcg ggc ggg tac gtg Cys Arg Val Leu Ser Gly Leu Gly Leu Met Gly Ala Gly Gly Tyr Val	248
	50 55 60 65	
25	tac tgg gtg gca cgg aag ccc atg aag atg gga tac ccc ccg agt cca	296
	Tyr Trp Val Ala Arg Lys Pro Met Lys Met Gly Tyr Pro Pro Ser Pro	250
	70 75 80	
	tgg acc att acg cag atg gtc atc ggc ctc agc att gcc acc tgg ggt	344
	Trp Thr Ile Thr Gln Met Val Ile Gly Leu Ser Ile Ala Thr Trp Gly	
30	85 90 95	
	atc gtt gtc atg gca gac ccc aaa ggg aag gcc tac cgc gtt gtt t	390
	Ile Val Val Met Ala Asp Pro Lys Gly Lys Ala Tyr Arg Val Val	
	100 105 110	
	gaaagtacca ccagtgaatc tgtettetgt etetgteeet tteecegtga cacacacage	450
35	aggcatggaa tttaatgggt gttctggaca gacacttgta catggacaga catcactact	510

	gtggatacta caagactgag aagaaaatcg tatgttgtca ttctctggct atggagtgtt	57
	tgtggccttc acagatttca caggaaccaa taaatccctc agagaagt	61
	<210> 26	
5	<211> 1021	
	<212> DNA	
	<213> Homo sapiens	•
	<220>	
	<221> CDS	
10	<222> (413)(853)	
	<400> 26	
	aagactataa gccccagcgg gcgacgaccg aacgcccccg ggaacaccgg gccccgagct	60
	cggtcccgcg cccgaggatc ctccacgggg ctagatggct gcgtcggggg cgggagcgga	120
15	ggtgageggg egetagggee gegageeeee geeggeeett eeteeagege eetgeggaee	180
	cegeagaagg egetegeete eetageeege aaaaacatat egatttttet egetgtggea	240
	acggggacgt cctgatagat cctctgctcc aataggcaac tccggccttc cctgccctga	300
	cctggaacet etgggaggge tgeagagtaa gtgccgccte tgegeteega eggaggcaeg	360
00	aggeetgtgg agtaggteee tetgtteega caggtgegae aettggeget ee atg ett	418
20	Met Leu	
	1	
	geg ggt gee ggg agg eet gge ete eee eag gge ege eae ete tge tgg	466
	Ala Gly Ala Gly Arg Pro Gly Leu Pro Gln Gly Arg His Leu Cys Trp	
25	5 10 15	
20	ttg ctc tgt gct ttc acc tta aag ctc tgc caa gca gag gct ccc gtg	514
	Leu Leu Cys Ala Phe Thr Leu Lys Leu Cys Gln Ala Glu Ala Pro Val 20 25 30	
		560
	cag gaa gag aag etg tea gea age ace tea aat ttg eea tge tgg etg	562
30	Gln Glu Glu Lys Leu Ser Ala Ser Thr Ser Asn Leu Pro Cys Trp Leu 35 40 45 50	
00		610
	gtg gaa gag ttt gtg gta gca gaa gag tgc tct cca tgc tct aat ttc	610
	Val Glu Glu Phe Val Val Ala Glu Glu Cys Ser Pro Cys Ser Asn Phe	
	55 60 65	650
35	egg get aaa act ace eet gag tgt ggt eee aca gga tat gta gag aaa	658
50	Arg Ala Lys Thr Thr Pro Glu Cys Gly Pro Thr Gly Tyr Val Glu Lys	

	70	75	80	
	atc aca tgc agc tca tct aag aga	aat gag ttc	aaa agc tgc cgc tca	706
	Ile Thr Cys Ser Ser Ser Lys Arg	Asn Glu Phe	Lys Ser Cys Arg Ser	
	85 90		95	
5	gct ttg atg gaa caa cgc tta ttt	tgg aag ttc	gaa ggg gct gtc gtg	754
	Ala Leu Met Glu Gln Arg Leu Phe	Trp Lys Phe	Glu Gly Ala Val Val	
	100 105		110	
	tgt gtg gcc ctg atc ttc gct tgt	ctt gtc atc	att cgt cag cga caa	802
	Cys Val Ala Leu Ile Phe Ala Cys I	Leu Val Ile	Ile Arg Gln Arg Gln	
10	115 120	125	130	
	ttg gac aga aag gct ctg gaa aag g	gtc cgg aag	caa atc gag tcc ata	850
	Leu Asp Arg Lys Ala Leu Glu Lys V	Val Arg Lys	Gln Ile Glu Ser Ile	
	135	140	145	
	tagetacatt ccaccettgt atcetgggte	ttagagaccc	tatctcagac agtgaaagtg	910
15	aaatggactg atttgcactc ttggttcttt	ggagccttgt	ggtggaatcc ccttttcccc	970
	atcttcttct ttcagatcat taatgagcag	aataaaaaga	gtaaaatggt t	1021
	<210> 27			
	<211> 1432			
20	<212> DNA			
	<213> Homo sapiens			
	<220>			
	<221> CDS			
	<222> (331)(1365)			
25				
	<400> 27			
	ategegeeeg ggaggegeeg gageeeageg	gctggcgggc	cgccgtccca cccccacctc	60
	gecegagtee ggggeggeee eggtgteeee	tccgagcctg	ctgcactcca cgtcccccta	120
	ccagggetec agececeagg gaaateteeg	accaggcccg	cccaggagcc agatccaggc	180
30	teetggaaga accatgteeg geagetactg	gtcatgccag	gcacacactg ctgcccaaga	240
	ggagetgetg tttgaattat etgtgaatgt	tgggaagagg	aatgeeagag etgeeggetg	300
	aaaattaccc aaccaagaga aatctgcagg			354
		Met Asp Phe	Leu Val Leu Phe Leu	
		1	5	
35	tte tae etg get teg gtg etg atg g	gt ctt gtt	ctt atc tgc gtc tgc	402

	Phe	Tyr	Leu	Ala	Ser	Val	Leu	Met	Gly	Leu	Val	Leu	Ile	Cys	. Val	. Cys	
		10					15					20					
	tcg	aaa	acc	cat	agc	ttg	aaa	ggc	ctg	gcc	agg	gga	gga	gca	cag	ata	450
	Ser	Lys	Thr	His	Ser	Leu	Lys	Gly	Leu	Ala	Arg	Gly	Gly	Ala	Gln	Ile	
5	25					30					35					40	
	ttt	tcc	tgt	ata	att	cca	gaa	tgt	ctt	cag	aga	gcc	gtg	cat	gga	ttg	498
	Phe	Ser	Cys	Ile	Ile	Pro	Glu	Cys	Leu	Gln	Arg	Ala	Val	His	Gly	Leu	
					45					50					55		
	ctt	cat	tac	ctt	ttc	cat	acg	aga	aac	cac	acc	ttc	att	gtc	ctg	Cac	546
10	Leu	His	Tyr	Leu	Phe	His	Thr	Arg	Asn	His	Thr	Phe	Ile	Val	Leu	His	
				60					65					70			
	ctg	gtc	ttg	caa	ggg	atg	gtt	tat	act	gag	tac	acc	tgg	gaa	gta	ttt	594
	Leu	Val	Leu	Gln	Gly	Met	Val	Tyr	Thr	Glu	Tyr	Thr	Trp	Glu	Val	Phe	
			75					80					85		,		
15	ggc	tac	tgt	cag	gag	ctg	gag	ttg	tcc	ttg	cat	tac	ctt	ctt	ctg	ccc	642
	Gly	Tyr	Cys	Gln	Glu	Leu	Glu	Leu	Ser	Leu	His	Tyr	Leu	Leu	Leu	Pro	
		90					95					100					
	tat	ctg	ctg	cta	ggt	gta	aac	ctg	ttt	ttt	ttc	acc	ctg	act	tgt	gga	690
	Tyr	Leu	Leu	Leu	Gly	Val	Asn	Leu	Phe	Phe	Phe	Thr	Leu	Thr	Cys	Gly	
20	105					110					115					120	
	acc	aat	cct	ggc	att	ata	aca	aaa	gca	aat	gaa	tta	tta	ttt	ctt	cat	738
	Thr	Asn	Pro	Gly	Ile	Ile	Thr	Lys	Ala	Asn	Glu	Leu	Leu	Phe	Leu	His	
					125					130					135		
	gtt	tat	gaa	ttt	gat	gaa	gtg	atg	ttt	cca	aag	aac	gtg	agg	tgc	tct	786
25	Val	Tyr	Glu		Asp	Glu	Val	Met	Phe	Pro	Lys	Asn	Val	-	Cys	Ser	
				140					145					150			
		_	_					gct	-		_		_	_		=	834
	Thr	Cys		Leu	Arg	Lys	Pro	Ala	Arg	Ser	Lys	His		Ser	Val	Cys	
			155					160					165				
30			_			-		gac			-	-					882
	Asn	_	Cys	Val	His	Arg		Asp	His	His	Cys		Trp	Val	Asn	Asn	
		170					175					180					
				_				agg						•	-		930
		Ile	Gly	Ala	Trp	Asn	Ile	Arg	Tyr	Phe	Leu	Ile	Tyr	Val	Leu	Thr	
35	185					190					195					200	

	ttg	acg	gcc	tcg	gct	gcc	acc	gtc	gcc	att	gtg	agc	acc	act	ttt	ctg	978
	Leu	Thr	Ala	Ser	Ala	Ala	Thr	Val	Ala	Ile	Val	Ser	Thr	Thr	Phe	Leu	
					205					210					215		
	gtc	cac	ttg	gtg	gtg	atg	tca	gat	tta	tac	cag	gag	act	tac	atc	gat	1026
5	Val	His	Leu	Val	Val	Met	Ser	Asp	Leu	Tyr	Gln	Glu	Thr	Tyr	Ile	Asp	
				220			•		225					230			
	gac	ctt	gga	cac	ctc	cat	gtt	atg	gac	acg	gtc	ttt	ctt	att	cag	tac	1074
	Asp	Leu	Gly	His	Leu	His	Val	Met	Asp	Thr	Val	Phe	Leu	Ile	Gln	Tyr	
			235					240					245				
10	ctg	ttc	ctg	act	ttt	cca	cgg	att	gtc	ttc	atg	ctg	ggc	ttt	gtc	gtg	1122
	Leu	Phe	Leu	Thr	Phe	Pro	Arg	Ile	Val	Phe	Met	Leu	Gly	Phe	Val	Val	
		250					255					260					
	GTT	CTG	AGC	TTC	CTC	CTG	GGT	GGC	TAC	CTG	TTG	TTT	GTC	CTG	TAT	CTG	1170
	Val	Leu	Ser	Phe	Leu	Leu	Gly	Gly	Tyr	Leu	Leu	Phe	Val	Leu	Tyr	Leu	
15	265					270					275					280	
	gcg	gcc	acc	aac	cag	act	act	aac	gag	tgg	tac	aga	ggt	gac	tgg	gcc	1218
	Ala	Ala	Thr	Asn	Gln	Thr	Thr	Asn	Glu	Trp	Tyr	Arg	Gly	Asp	Trp	Ala	
					285					290					295		
	tgg	tgc	cag	cgt	tgt	ccc	ctt	gtg	gcc	tgg	cct	ccg	tca	gca	gag	ccc	1266
20	Trp	Cys	Gln	Arg	Cys	Pro	Leu	Val	Ala	Trp	Pro	Pro	Ser	Ala	Glu	Pro	
				300					305					310			
	caa	gtc	cac	cgg	aac	att	cac	tcc	cat	ggg	ctt	cgg	agc	aac	ctt	caa	1314
	Gln	Val	His	Arg	Asn	Ile	His	Ser	His	Gly	Leu	Arg	Ser	Asn	Leu	Gln	
			315					320					325				
2 5						gcc			_				_			-	1362
	Glu		Phe	Leu	Pro	Ala	Phe	Pro	Cys	His	Glu	Arg	Lys	Lys	Gln	Glu	
		330					335					340					
				_	tgcc	t tt	gago	tgta	gtt	cccg	ttt	attt	acac	at g	tgga	tcc	1420
	tegt	tttc	ca a	g													1432
30																	
		> 28															
		> 60															
		> DN															
	<213	> Ho	mo s	apie	ns												
35	<220	>															

27/177

	<221> CDS	
	<222> (62)(355)	
	<400> 28	
5	atgegeacat agegaettgg tgggegegte eagtgatgae tggggggatee eggeaagtaa	60
	c atg act aaa aag aag egg gag aat etg gge gte get eta gag ate gat	109
	Met Thr Lys Lys Lys Arg Glu Asn Leu Gly Val Ala Leu Glu Ile Asp	
	1 - 5 10 15	
	ggg cta gag gag aag ctg tee eag tgt egg aga gae etg gag gee gtg	157
10	Gly Leu Glu Glu Lys Leu Ser Gln Cys Arg Arg Asp Leu Glu Ala Val	
	20 25 30	
	aac tee aga ete cae age egg gag etg age eea gag gee agg agg tee	205
	Asn Ser Arg Leu His Ser Arg Glu Leu Ser Pro Glu Ala Arg Arg Ser	
	35 40 45	
15	ctg gag aag gag aaa aac agc cta atg aac aaa gcc tcc aac tac gag	253
	Leu Glu Lys Glu Lys Asn Ser Leu Met Asn Lys Ala Ser Asn Tyr Glu	
	50 55 60	
	aag gaa ctg aag ttt ctt cgg caa gag aac cgg aag aac atg ctg ctc	301
	Lys Glu Leu Lys Phe Leu Arg Gln Glu Asn Arg Lys Asn Met Leu Leu	
20	65 70 75 80	
	tet gtg gee ate ttt ate ete etg acg ete gte tat gee tac tgg ace	349
	Ser Val Ala Ile Phe Ile Leu Leu Thr Leu Val Tyr Ala Tyr Trp Thr	
	85 90 95	
	atg tgageetgge actteeceae aaccageaea ggetteeaet tggeecet	400
25	Met	
	tgatcaggat caagcaggca cttcaagcct caataggacc aaggtgctgg ggtgttcccc	460
	teccaaceta gtgtteaage atggetteet ggeggeeeag geettgeete eetggeetge	520
00	tggggggttc cgggtctcca gaaggacatg gtgctggtcc ctcccttagc ccaagggaga	580
30	ggcaataaag acacaaagct g	601
	<210> 29	
	<211> 585	
	<212> DNA	

35

<213> Homo sapiens

	<220>	
	<221> CDS	
	<222> (78)(452)	
5	<400> 29	
	actaacetet geeetgeage egegaggeg egegggaaat eeegagtgea tetggaatae	60
	gcagagtcag taagacc atg gct acg tcc tcg atg tct aag ggt tgc ttt	110
	Met Ala Thr Ser Ser Met Ser Lys Gly Cys Phe	
	1 5 10	•
10	gtt ttt aag cca aac tcc aaa aag aga aag atc tct ctg cca ata gag	158
	Val Phe Lys Pro Asn Ser Lys Lys Arg Lys Ile Ser Leu Pro Ile Glu	
	15 20 25	
	gac tat ttt aac aaa ggg aaa aat gag cct gag gac agt aag ctt cga	206
	Asp Tyr Phe Asn Lys Gly Lys Asn Glu Pro Glu Asp Ser Lys Leu Arg	
15	30 35 40	
	ttc gaa act tat cag ttg ata tgg cag cag atg aaa tct gaa aat gag	254
	Phe Glu Thr Tyr Gln Leu Ile Trp Gln Gln Met Lys Ser Glu Asn Glu	
	45 50 55	•
	cga cta caa gag gaa tta aat aaa aac ttg ttt gac aat ctg att gaa	302
20	Arg Leu Gln Glu Glu Leu Asn Lys Asn Leu Phe Asp Asn Leu Ile Glu	
	60 65 70 75	
	ttt ctg caa aaa tca cat tct gga ttc cag aag aat tca aga gac ttg	350
	Phe Leu Gln Lys Ser His Ser Gly Phe Gln Lys Asn Ser Arg Asp Leu	
	80 85 90	
25	ggc ggt caa ata aaa ctc aga gaa att cca act gct gct ctt gtt ctt	398
	Gly Gly Gln Ile Lys Leu Arg Glu Ile Pro Thr Ala Ala Leu Val Leu	
	95 100 105	
	ggt ata tat gcg tat gtt tgt tca tgc atg cat ctc tgt gta ttt cgt	446
	Gly Ile Tyr Ala Tyr Val Cys Ser Cys Met His Leu Cys Val Phe Arg	
30	110 115 120	
	ttt taaatttttt tttattgttg agaatagtgg aaggacctgt tttgatgage c	500
	Phe	
	tattttgtct ctcttatttg tacaattaaa ccaactatag tttatattac atattttcaa	560
35	aaaccaataa aaattootta tottt	585

	<21	0> 3	0														
	<21	1> 1	100														
	<21	2> D	NA														
5	<21	3> H	omo	sapi	ens												
	<220)>															
	<22	1> C	DS														
	<222	2> (57).	(1	040)												
10	<400)> 3(0														
	agad	ccga	cct :	tgac	cgcc	ca c	ctgg	cagg	a gc	agga	cagg	acg	gccg	gac	gcgg	cc atg	59
																Met	
																1	
	gcc	gag	ctc	ccg	ggg	ccc	ttt	ctc	tgc	ggg	gcc	ctg	cta	ggc	ttc	ctg	107
15	Ala	Glu	Leu	Pro	Gly	Pro	Phe	Leu	Cys	Gly	Ala	Leu	Leu	Gly	Phe	Leu	
				5					10					15			
							gtg										155
	Cys	Leu		Gly	Leu	Ala	Val	Glu	Val	Lys	Val	Pro		Glu	Pro	Leu	
			20					25					30				
20							aca	_	-								203
	Ser		Pro	Leu	Gly	Lys	Thr	Ala	Glu	Leu	Thr	Cys	Thr	Tyr	Ser	Thr	
		35					40					45					
							gcc										251
o r		Val	Gly	Asp	Ser	Phe	Ala	Leu	Glu	Trp	Ser	Phe	Val	Gln	Pro	Gly	
25	50					55					60					65	
							cat			_					-		299
	Lys	Pro	Ile	Ser		Ser	His	Pro	Ile		Tyr	Phe	Thr	Asn	_	His	
					70					75					80		
no.							aag										347
30	Leu	Tyr	Pro		Gly	Ser	Lys	Ser	_	Arg	Val	Ser	Leu		Gin	Asn	
				85					90					95			
							gee										395
	Pro	Pro		Val	Gly	Val	Ala		Leu	Lys	Leu	Thr	_	Val	His	Pro	
o E	.		100					105					110				
35	tca	gat	act	gga	acc	tac	ctc	tgc	caa	gtc	aac	aac	cca	cca	gat	ttc	443

	Ser	Asp	Thr	Gly	Thi	Tyr	Leu	Cys	Gln	Val	. Asn	Asn	Pro	Pr	o Asj	p Phe	
		115					120	ı				125	;				
	tac	acc	aat	999	ttç	agg	cta	ato	aac	ctt	act	gtg	cto	g gti	t cc	ccc	491
	Tyr	Thr	Asn	Gly	Leu	Gly	Leu	Ile	Asn	Leu	Thr	Val	Let	va.	l Pro	Pro	
5	130					135					140					145	
	agt	aat	ccc	tta	tgo	agt	cag	agt	gga	caa	acc	tct	gto	gga	a ggo	tot	539
	Ser	Asn	Pro	Leu	Cys	Ser	Gln	Ser	Gly	Gln	Thr	Ser	Val	Gl	Gly	/ Ser	
					150					155					160)	
	act	gca	ctg	aga	tgc	agc	tct	tcc	gag	ggg	gct	cct	aag	CC	gto	, tac	587
10	Thr	Ala	Leu	Arg	Cys	Ser	Ser	Ser	Glu	Gly	Ala	Pro	Lys	Pro	Val	Tyr	
				165					170					175	•		
	aac	tgg	gtg	cgt	ctt	gga	act	ttt	cct	aca	cct	tct	cct	ggo	ago	atg	635
	Asn	Trp	Val	Arg	Leu	Gly	Thr	Phe	Pro	Thr	Pro	Ser	Pro	Gly	Ser	Met	
			180					185					190				
15					-			_								ctg	683
	Val		Asp	Glu	Val	Ser	Gly	Gln	Leu	Ile	Leu	Thr	Asn	Leu	Ser	Leu	
		195					200					205					
						tac	-	_		-			_	_		-	731
00		Ser	Ser	Gly	Thr	Tyr	Arg	Cys	Val	Ala		Asn	Gln	Met	Gly	Ser	
20	210					215					220					225	
					_	acc					_					-	779
	Ala	Ser	Cys	Glu		Thr	Leu	Ser	Val		Glu	Pro	Ser	Gln	_	Arg	
					230					235					240		
25				_	_	att				-			_	_	-		827
20	val	ATa	GIY		Leu	Ile	Gly	Val		Leu	Gly	Val	Leu		Leu	Ser	
				245					250					255			
						ctg -										_	875
	Val	AId	260	Pne	Cys	Leu			Pne	GIN	гÀг	GIU		GTÀ	гуѕ	Lys	
30	cca	224						265					270				
00						ggg										_	923
		ப்த 275	GIU	THE	Tyr	Gly		ser	Asp	Leu			Asp	ATa	TTE	Ala	
			-+-				280					285					
						cac								-	_		971
35		атЛ	тте	ser	GTII	His	TUL	cys	met .			Asp	ser	ser	гàг	-	
UU	290					295					300					305	

	tte etg gaa aga eee teg tet gee age ace gtg acg acc acc aag tec	1019
	Phe Leu Glu Arg Pro Ser Ser Ala Ser Thr Val Thr Thr Lys Ser	
	310 315 320	
	aag ete eet atg gte gtg tgaettetee egateeetga gggeggtgag ggg	1070
5	Lys Leu Pro Met Val Val	
	325	
	gaatatcaat aattaaagtc tgtgggtacc	1100
10	<210> 31	
10	<211> 313	
	<212> PRT <213> Homo sapiens	
	12137 HOMO Saptems	
	<400> 31	
15	Met Asn Gln Leu Ser Phe Leu Leu Phe Leu Ile Ala Thr Thr Arg Gly	
	1 5 10 15	
	Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr Cys Ser	
	20 25 30	
	Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys Asp Glu Cys	
20	35 40 45	
	Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr Glu Asn Gly Val	
	50 55 60	
	Ile Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly Gly Gly Trp Thr	
	65 70 75 80	
25	Leu Val Ala Ser Val His Glu Asn Asp Met Arg Gly Lys Cys Thr Val	
	85 90 95	
	Gly Asp Arg Trp Ser Ser Gln Gln Gly Ser Lys Ala Asp Tyr Pro Glu 100 105 110	
	100 105 110 Gly Asp Gly Asn Trp Ala Asn Tyr Asn Thr Phe Gly Ser Ala Glu Ala	
30	115 120 125	
	Ala Thr Ser Asp Asp Tyr Lys Asn Pro Gly Tyr Tyr Asp Ile Gln Ala	
	130 135 140	
	Lys Asp Leu Gly Ile Trp His Val Pro Asn Lys Ser Pro Met Gln His	
	145 150 155 160	
35	Trp Arg Asn Ser Ser Leu Leu Arg Tyr Arg Thr Asp Thr Gly Phe Leu	

					165					170					175	
	Gln	Thr	Leu	Gly	His	Asn	Leu	Phe	Gly	Ile	Tyr	Gln	Lys	Tyr	Pro	Val
				180					185					190		
	Lys	Tyr	Gly	Glu	Gly	Lys	Cys	Trp	Thr	Asp	Asn	Gly	Pro	Val	Ile	Pro
5			195					200					205			
	Val	Val	Tyr	Asp	Phe	Gly	Asp	Ala	Gln	Lys	Thr	Ala	Ser	Tyr	Tyr	Ser
		210					215					220				
	Pro	Tyr	Gly	Gln	Arg	Glu	Phe	Thr	Ala	Gly	Phe	Val	Gln	Phe	Arg	Val
	225					230					235					240
10	Phe	Asn	Asn	Glu	Arg	Ala	Ala	Asn	Ala	Leu	Cys	Ala	Gly	Met	Arg	Val
					245					250					255	
	Thr	Gly	Cys	Asn	Thr	Glu	His	His	Cys	Ile	Gly	Gly	Gly	Gly	Tyr	Phe
				260					265					270		
	Pro	Glu	Ala	Ser	Pro	Gln	Gln	Cys	Gly	Asp	Phe	Ser	Gly	Phe	Asp	Trp
15			275					280					285			
	Ser	Gly	Tyr	Gly	Thr	His	Val	Gly	Tyr	Ser	Ser	Ser	Arg	Glu	Ile	Thr
		290					295					300				
	Glu	Ala	Ala	Val	Leu	Leu	Phe	Tyr	Arg							
	305					310										
20																
	<210	> 32	:													
	<211	> 22	9													
	<212	> PF	T													
	<213	> Ho	mo s	apie	ens											
2 5																
	<400	> 32	!													
	Met	Gly	Asp	Lys	Ile	Trp	Leu	Pro	Phe	Pro	Val	Leu	Leu	Leu	Ala	Ala
	1				5					10					15	
	Leu	Pro	Pro	Val	Leu	Leu	Pro	Gly	Ala	Ala	Gly	Phe	Thr	Pro	Ser	Leu
30				20					25					30		
	Asp	Ser	Asp	Phe	Thr	Phe	Thr	Leu	Pro	Ala	Gly	Gln	Lys	Glu	Cys	Phe
			35					40					45			
	Tyr	Gln	Pro	Met	Pro	Leu	Lys	Ala	Ser	Leu	Glu	Ile	Glu	Tyr	Gln	Val
		50					55					60				
35	Leu	Asp	Gly	Ala	Gly	Leu	Asp	Ile	Asp	Phe	His	Leu	Ala	Ser	Pro	Glu

	65					70					75					80
	Gly	Lys	Thr	Leu	Val	Phe	Glu	Gln	Arg	Lys	Ser	Asp	Gly	Val	His	Thr
					85					90					95	
	Val	Glu	Thr	Glu	Val	Gly	Asp	Tyr	Met	Phe	Cys	Phe	Asp	Asn	Thr	Phe
5				100					105					110		
	Ser	Thr	Ile	Ser	Glu	Lys	Val	Ile	Phe	Phe	Glu	Leu	Ile	Leu	Asp	Asn
			115					120					125			
	Met	Gly	Glu	Gln	Ala	Gln	Glu	Gln	Glu	Asp	Trp	Lys	Lys	Tyr	Ile	Thr
		130					135					140				
10	Gly	Thr	Asp	Ile	Leu	Asp	Met	Lys	Leu	Glu	Asp	Ile	Leu	Glu	Ser	Ile
	145					150					155					160
	Asn	Ser	Ile	Lys	Ser	Arg	Leu	Ser	Lys	Ser	Gly	His	Ile	Gln	Ile	Leu
					165					170					175	
	Leu	Arg	Ala	Phe	Glu	Ala	Arg	Asp	Arg	Asn	Ile	Gln	Glu	Ser	Asn	Phe
15				180					185					190		
	Asp	Arg	Val	Asn	Phe	Trp	Ser	Met	Val	Asn	Leu	Val	Val	Met	Val	Val
			195					200					205			
	Val	Ser	Ala	Ile	Gln	Val	Tyr	Met	Leu	Lys	Ser	Leu	Phe	Glu	Asp	Lys
		210					215					220				
20	Arg	Lys	Ser	Arg	Thr											
	225															
	<21	0> 33	3													
	<21	1> 46	5 7													
25	<21	2> PI	RT													
	<21	3> Ho	omo s	sapie	ens											
	<40	0> 33	3													
	Met	Arg	Pro	Gln	Glu	Leu	Pro	Arg	Leu	Ala	Phe	Pro	Leu	Leu	Leu	Leu
30	1				5					10					15	
	Leu	Leu	Leu	Leu	Leu	Pro	Pro	Pro	Pro	Cys	Pro	Ala	His	Ser	Ala	Thr
				20					25					30		
	Arg	Phe	Asp	Pro	Thr	Trp	Glu	Ser	Leu	Asp	Ala	Arg	Gln	Leu	Pro	Ala
			35					40					45			
35	Trp	Phe	Asp	Gln	Ala	Lys	Phe	Gly	Ile	Phe	Ile	His	Trp	Gly	Val	Phe

		50)				55	5				6	0			
	Ser	Val	Pro	Ser	Phe	Gly	, Sei	Glu	Tr	Phe	Tr	Tr	р Ту	r Trj	Glr	Lys
	65					70)				75	5				80
	Glu	Lys	Ile	Pro	Lys	Туг	' Val	Glu	Phe	e Met	Lys	As _l	Ası	1 Туз	Pro	Pro
5					85					90)				95	į.
	Ser	Phe	Lys	Туг	Glu	Asp	Phe	Gly	Pro	Leu	Phe	Thi	Ala	Lys	Phe	Phe
				100	l				105	i				110)	
	Asn	Ala			Trp	Ala	Asp	Ile	Phe	Gln	Ala	Ser	Gly	' Ala	Lys	Tyr
			115					120					125			
10	Ile			Thr	Ser	Lys			Glu	Gly	Phe	Thr	Leu	Trp	Gly	Ser
		130					135					140				
		Tyr	Ser	Trp	Asn		Asn	Ala	Ile	Asp		Gly	Pro	Lys	Arg	Asp
	145	**- 7	T	a 1	_	150					155					160
15	TTE	val	гуѕ	GIU		Glu	Val	Ala	Ile		Asn	Arg	Thr	Asp	Leu	Arg
10	Dhe	Gly	Lou	Maran.	165	Car	T	Dh.	03	170	n	••••	D		175	_
	rne	GIŞ	Dea	180	TÄT	ser	Leu	Pne		Trp	Pne	HIS	Pro		Phe	Leu
	Glu	Asp	Glu		Ser	Ser	Dhe	Uic	185	λνα	Gln	Dho	Bro	190	Ser	T
			195	DCI	DCI	Ser	FIIC	200	пуъ	ALG	GIII	Pne	205	val	ser	гàг
20	Thr	Leu		Glu	Leu	Tvr	Glu		Val	Asn	Asn	ጥህጕ		Pro	Glu	Va 1
		210				-1-	215	200	•	11011		220		110	014	VG1
	Leu	Trp	Ser	Asp	Gly	asp		Glv	Ala	Pro	asA		Tvr	Tro	Asn	Ser
	225	_		-	•	230	•	•			235		2			240
	Thr	Gly	Phe	Leu	Ala	Trp	Leu	Tyr	Asn	Glu	Ser	Pro	Val	Arg	Gly	
25					245					250					255	
	Val	Val	Thr	Asn	Asp	Arg	Trp	Gly	Ala	Gly	Ser	Ile	Cys	Lys	His	Gly
				260					265					270		
	Gly	Phe	Tyr	Thr	Cys	Ser	Asp	Arg	Tyr	Asn	Pro	Gly	His	Leu	Leu	Pro
			275					280					285			
30	His	Lys	Trp	Glu	Asn	Cys	Met	Thr	Ile	Asp	Lys	Leu	Ser	Trp	Gly	Tyr
		290					295					300				
	Arg	Arg	Glu	Ala	Gly	Ile	Ser	Asp	Tyr	Leu	Thr	Ile	Glu	Glu	Leu	Val
	305					310					315					320
	Lys	Gln	Leu	Val	Glu	Thr	Val	Ser	Cys	Gly	Gly .	Asn	Leu	Leu	Met .	Asn
3 5					325					330					335	

	Ile	Gly	Pro		Leu	Asp	Gly	Thi	r Ile	e Se	r Va	l Vai	l Phe	e Glu	ı Glı	ı Arg
				340					345					350		
	Leu	Arg	Gln	Met	Gly	Ser	Tr	Leu	ı Lys	s Val	l Ası	n Gly	/ Glu	ı Ala	a Ile	e Tyr
			355					360)				365	5		
5	Glu	Thr	His	Thr	Trp	Arg	Ser	Glr	Asr	a Asp	Thi	val	Thr	Pro	Asp	Val
		370					375	;				380)			
	Trp	Tyr	Thr	Ser	Lys	Pro	Lys	Glu	Lys	Let	ı Va]	LTyr	Ala	Ile	Phe	Leu
	385					390					395	;				400
	Lys	Trp	Pro	Thr	Ser	Gly	Gln	Leu	Phe	Leu	Gly	His	Pro	Lys	Ala	Ile
10					405					410)				415	
	Leu	Gly	Ala	Thr	Glu	Val	Lys	Leu	Leu	Gly	His	Gly	Gln	Pro	Leu	Asn
				420					425					430		
	Trp	Ile	Ser	Leu	Glu	Gln	Asn	Gly	Ile	Met	Val	Glu	Leu	Pro	Gln	Leu
			435					440					445			
15	Thr	Ile	His	Gln	Met	Pro	Cys	Lys	Trp	Gly	Trp	Ala	Leu	Ala	Leu	Thr
		450					- 455	-	-	-	-	460				
	Asn	Val	Ile													
	465															
20	<210)> 34	1													
		l> 99														
		?> PF														
			omo s	apie	ns											
				upic	-110											
25	<400	> 34	ļ													
	Met	Asp	Asn '	Val	Gln	Pro	Lys	Ile	Lys	His	Arg	Pro	Phe	Cys	Phe	Ser
	1				5					10					15	
	Val	Lys	Gly :	His '	Val	Lys	Met	Leu	Arg	Leu	Asp	Ile	Ile	Asn	Ser	Leu
				20					25					30		
30	Val	Thr	Thr '	Val :	Phe .	Met	Leu	Ile	Val	Ser	Val	Leu	Ala	Leu	Ile	Pro
			35					40					45			
	Glu	Thr	Thr :	Thr I	Leu '	Thr	Val	Glv	Glv	Glv	Val	Phe		Leu	Val	Thr
		50					55	1	- 3	-		60				
	Ala		Cys (Cvs 1	Leu :	Ala .		Glv	Ala	Leu	Ile		Ara '	I.vs '	Len	ī.en
35	65			. .		70	F	,		-	75	-y- ·		_, _ .		80

	Phe	Asn	Pro	Ser	Gly	Pro	Туг	Glr	Gln	Lys	Pro	Val	. His	Glu	Lys	Lys
					85	•				90)				95	
	Glu	Val	Leu													
5	<21	0> 3	5													
	<21	1> 1	89													
	<21	2> P	RT													
	<21	3> н	ото	sapi	ens											
10	<40	0> 3	5													
	Met	Glu	Glu	Gly	Gly	Asn	Leu	Gly	Gly	Leu	Ile	Lys	Met	Val	His	Leu
	1				5			-	-	10		-			15	
	Leu	Val	Leu	Ser	Gly	Ala	Trp	Gly	Met	Gln	Met	Trp	Val	Thr	Phe	Val
				20			-	-	25			-		30		
15	Ser	Gly	Phe	Leu	Leu	Phe	Arg	Ser	Leu	Pro	Arg	His	Thr	Phe	Gly	Leu
			35				_	40			•		45		-	
	Val	Gln	Ser	Lys	Leu	Phe	Pro	Phe	Tyr	Phe	His	Ile	Ser	Met	Gly	Cys
		50					55		-			60			-	-
	Ala	Phe	Ile	Asn	Leu	Cys	Ile	Leu	Ala	Ser	Gln	His	Ala	Trp	Ala	Gln
20	65					70					75					80
	Leu	Thr	Phe	Trp	Glu	Ala	Ser	Gln	Leu	Tyr	Leu	Leu	Phe	Leu	Ser	Leu
					85					90					95	
	Thr	Leu	Ala	Thr	Val	Asn	Ala	Arg	Trp	Leu	Glu	Pro	Arg	Thr	Thr	Ala
				100					105					110		
25	Ala	Met	Trp	Ala	Leu	Gln	Thr	Val	Glu	Lys	Glu	Arg	Gly	Leu	Gly	Gly
			115					120					125			
	Glu	Val	Pro	Gly	Ser	His	Gln	Gly	Pro	Asp	Pro	Tyr	Arg	Gln	Leu	Arg
		130					135					140				
	Glu	Lys	Asp	Pro	Lys	Tyr	Ser	Ala	Leu	Arg	Gln	Asn	Phe	Phe	Arg	Tyr
30	145					150					155					160
	His	Gly	Leu	Ser	Ser	Leu	Cys	Asn	Leu	Gly	Cys	Val	Leu	Ser	Asn	Gly
					165					170	-				175	•
	Leu	Cys	Leu	Ala	Gly	Leu	Ala	Leu	Glu	Ile	Arg	Ser	Leu			
				180	-				185							

	<21	0> 3	16													
	<21	1> 3	63													
	<21	2> P	RT													
	<21	3> H	iomo	sapi	ens											
5																
	<40	0> 3	6													
	Met	Val	Asp	Ser	Leu	Leu	Ala	Val	Thr	Leu	Ala	Gly	Asn	Leu	Gly	Leu
	1				5					10					15	
	Thr	Phe	Leu	Arg	Gly	Ser	Gln	Thr	Gln	Ser	His	Pro	Asp	Leu	Gly	Thr
10				20					25			•		30		
	Glu	Gly	Cys	Trp	Asp	Gln	Leu	Ser	Ala	Pro	Arg	Thr	Phe	Thr	Leu	Leu
			35					40					45			
	Asp	Pro	Lys	Ala	Ser	Leu	Leu	Thr	Lys	Ala	Phe	Leu	Asn	Gly	Ala	Leu
		50					55					60				
15	Asp	Gly	Val	Ile	Leu	Gly	Asp	Tyr	Leu	Ser	Arg	Thr	Pro	Glu	Pro	Arg
	65					70					75					80
	Pro	Ser	Leu	Ser	His	Leu	Leu	Ser	Gln	Tyr	Tyr	Gly	Ala	Gly	Val	Ala
					85					90					95	
	Arg	Asp	Pro	Gly	Phe	Arg	Ser	Asn	Phe	Arg	Arg	Gln	Asn	Gly	Ala	Ala
20				100					105					110		
	Leu	Thr	Ser	Ala	Ser	Ile	Leu	Ala	Gln	Gln	Val	Trp	Gly	Thr	Leu	Val
			115					120					125			
	Leu		Gln	Arg	Leu	Glu	Pro	Val	His	Leu	Gln	Leu	Gln	Cys	Met	Ser
		130					135					140				
2 5		Glu	Gln	Leu	Ala	Gln	Val	Ala	Ala	Asn	Ala	Thr	Lys	Glu	Phe	Thr
	145					150					155					160
	Glu	Ala	Phe	Leu	Gly	Cys	Pro	Ala	Ile	His	Pro	Arg	Суѕ	Arg	_	Gly
					165					170					175	
00	Ala	Ala	Pro	_	Arg	Gly	Arg	Pro	-	Leu	Leu	Gln	Leu		Leu	Gly
30	_,			180					185					190		
	Phe	Leu	Tyr	Val	His	His	Thr	-	Val	Pro	Ala	Pro		Cys	Thr	Asp
		_,	195			_		200				_	205			
	Fue		Arg	Cys	Ala	Ala		Met	Arg	Ser	Met		Arg	Tyr	His	Gln
25		210			_		215			_	_	220				
35	Asp	TUL	Gln	Gly	Trp	Gly	Asp	Ile	GLY	Tyr	ser	Phe	Val	Val	Glv	Ser

	225					230					235					240
	Asp G	ly	Tyr	Val	Tyr	Glu	Gly	Arg	Gly	Trp	His	Trp	Val	Gly	Ala	His
					245					250					255	
	Thr I	eu	Gly	His	Asn	Ser	Arg	Gly	Phe	Gly	Val	Ala	Ile	Val	Gly	Asn
5				260					265					270		
	Tyr T	hr	Ala	Ala	Leu	Pro	Thr	Glu	Ala	Ala	Leu	Arg	Thr	Val	Arg	Asp
			275					280					285			
	Thr I	eu	Pro	Ser	Cys	Ala	Val	Arg	Ala	Gly	Leu	Leu	Arg	Pro	Asp	Tyr
	2	90					295					300				
10	Ala I	eu	Leu	Gly	His	Arg	Gln	Leu	Val	Arg	Thr	Asp	Cys	Pro	Gly	Asp
	305					310					315					320
	Ala L	eu	Phe	Asp	Leu	Leu	Arg	Thr	Trp	Pro	His	Phe	Thr	Ala	Thr	Val
					325					330					335	
	Lys P	ro	Arg	Pro	Ala	Arg	Ser	Val	Ser	Lys	Arg	Ser	Arg	Arg	Glu	Pro
15				340					345					350		
	Pro P	ro	Arg	Thr	Leu	Pro	Ala	Thr	Asp	Leu	Gln					
			355					360								
	<210>	37	,													
20	<211>	24	9													
	<212>	PR	T													
	<213>	Но	mo s	sapie	ens											
	<400>	37														
25	Met G	ly	Gly	Pro	Arg	Gly	Ala	Gly	Trp	Val	Ala	Ala	Gly	Leu	Leu	Leu
	1				5					10					15	
	Gly A	.la	Gly	Ala	Cys	Tyr	Cys	Ile	Tyr	Arg	Leu	Thr	Arg	Gly	Arg	Arg
				20					25					30		
	Arg G	ly	Asp	Arg	Glu	Leu	Gly	Ile	Arg	Ser	Ser	Lys	Ser	Ala	Glu	Asp
30			35					40					45			
	Leu T	hr.	Asp	Gly	Ser	Tyr	Asp	Asp	Val	Leu	Asn	Ala	Glu	Gln	Leu	Gln
		50					55					60				
	Lys L	eu	Leu	Tvr	Leu	Leu	Glu	Ser	Thr	Glu	Asp	Pro	Val	Ile	Ile	Glu
				- 4												
	65			3		70					75					80

					85					90					95	
	Ala	Ile	Ile	Arg	Glu	Leu	Gly	Gly	Ile	Pro	Ile	Val	Ala	Asn	Lys	Ile
				100					105					110		
	Asn	His	Ser	Asn	Gln	Ser	Ile	Lys	Glu	Lys	Ala	Leu	Asn	Ala	Leu	Asn
5			115		•			120					125			
	Asn	Leu	Ser	Val	Asn	Val	Glu	Asn	Gln	Ile	Lys	Ile	Lys	Val	Gln	Val
		130					135					140				
	Leu	Lys	Leu	Leu	Leu	Asn	Leu	Ser	Glu	Asn	Pro	Ala	Met	Thr	Glu	Gly
	145					150					155					160
10	Leu	Leu	Arg	Ala	Gln	Val	Asp	Ser	Ser	Phe	Leu	Ser	Leu	Tyr	Asp	Ser
					165					170					175	
	His	Val	Ala	Lys	Glu	Ile	Leu	Leu	Arg	Val	Leu	Thr	Leu	Phe	Gln	Asn
				180					185					190		
	Ile	Lys	Asn	Cys	Leu	Lys	Ile	Glu	Gly	His	Leu	Ala	Val	Gln	Pro	Thr
15			195					200					205			
	Phe	Thr	Glu	Gly	Ser	Leu	Phe	Phe	Leu	Leu	His	Gly	Glu	Glu	Cys	Ala
		210					215					220				
	Gln	Lys	Ile	Arg	Ala	Leu	Val	Asp	His	His	Asp	Ala	Glu	Val	Lys	Glu
	225					230					235					240
20	Lys	Val	Val	Thr	Ile	Ile	Pro	Lys	Ile							
					245											
	<210)> 38	}													
	<21	1> 98	3													
25	<212	2> PF	TS													
	<213	3> Hc	omo s	sapie	ens											
)> 38														
	Met	Ala	Ser	Leu	Leu	Cys	Cys	Gly	Pro	Lys	Leu	Ala	Ala	Cys	Gly	Ile
30	. 1				5					10					15	
	Val	Leu	Ser	Ala	Trp	Gly	Val	Ile	Met	Leu	Ile	Met	Leu	Gly	Ile	Phe
				20					25					30		
	Phe	Asn	Val	His	Ser	Ala	Val	Leu	Ile	Glu	Asp	Val	Pro	Phe	Thr	Glu
			35					40					45			
35	Lys	Asp	Phe	Glu	Asn	Gly	Pro	Gln	Asn	Ile	Tyr	Asn	Leu	Tyr	Glu	Gln

		50					55					60				
	Val	Ser	Tyr	Asn	Cys	Phe	Ile	Ala	Ala	Gly	Leu	Tyr	Leu	Leu	Leu	Gly
	65	*				70					75					80
	Gly	Phe	Ser	Phe	Cys	Gln	Val	Arg	Leu	Asn	Lys	Arg	Lys	Glu	Tyr	Met
5					85					90					95	
	Val	Arg														
	<210	> 39	9													
	<21	1> 17	72													
10		2> PI														
	<213	3> Ho	omo s	sapi	ens											
)> 39			_					_	_	_	_	_ ~		
15		Val	Gly	Pro		Pro	Arg	Arg	Arg		Arg	Pro	Leu	Ala		Leu
15	1	_	•	_	5	_		_	-1	10			.1.	.	15	
	Ala	Leu	Val		Ala	Leu	Ala	Pro	_	Leu	Pro	Thr	Ala	_	ATa	GIĀ
	61 -	Mh sa	D	20	D		~ 1	3	25	Dwo	Dro	1701	2 ~~	30	Dho	Mh w
	GIN	Thr		Arg	Pro	ATa	Glu	Arg 40	стй	PIO	PIO	vai	45	neu	Pne	THE
20	Glu	Gln.	35	Ton	777	2 20	Tyr		Clv	Glu	Glu	Glu		Gln	Dro	Tlo
20	GIU	50	GIU	red	мта	Arg	55	GTÅ	GTĀ	Giu	GIU	60	nap	GIII	FLO	116
	Tvr		Ala	Val	Lvs	Glv	Val	Val	Phe	Asp	Val		Ser	Glv	Lvs	Glu
	65			• • • •	_,_	70	***				75			1	-,,-	80
		Tvr	Glv	Ara	Glv		Pro	Tvr	Asn	Ala	Leu	Thr	Gly	Lvs	qzA	
25		•		J	85			•		90			-	-	95	
	Thr	Arg	Gly	Val	Ala	Lys	Met	Ser	Leu	Asp	Pro	Ala	Asp	Leu	Thr	His
			_	100		-			105					110		
	Asp	Thr	Thr	Gly	Leu	Thr	Ala	Lys	Glu	Leu	Glu	Ala	Leu	Asp	Glu	Val
			115					120					125			
30	Phe	Thr	Lys	Val	Tyr	Lys	Ala	Lys	Tyr	Pro	Ile	Val	Gly	Tyr	Thr	Ala
		130					135					140				
	Arg	Arg	Ile	Leu	Asn	Glu	Asp	Gly	Ser	Pro	Asn	Leu	Asp	Phe	Lys	Pro
	145					150					155					160
	Glu	Asp	Gln	Pro	His	Phe	Asp	Ile	Lys	Asp	Glu	Phe				
35					165					170						

	<210> 40	
	<211> 120	
	<212> PRT	
5	<213> Homo sapiens	
	<400> 40	
	Met Met Pro Ser Arg Thr Asn Leu Ala Thr Gly Ile Pro Ser Ser Lys	
	1 5 10 15	
10	Val Lys Tyr Ser Arg Leu Ser Ser Thr Asp Asp Gly Tyr Ile Asp Leu	
	20 25 30	
	Gln Phe Lys Lys Thr Pro Pro Lys Ile Pro Tyr Lys Ala Ile Ala Leu	
	35 40 45	
. =	Ala Thr Val Leu Phe Leu Ile Gly Ala Phe Leu Ile Ile Gly Ser	
15	50 55 60	
	Leu Leu Leu Ser Gly Tyr Ile Ser Lys Gly Gly Ala Asp Arg Ala Val	
	65 70 75 80	
	Pro Val Leu Ile Ile Gly Ile Leu Val Phe Leu Pro Gly Phe Tyr His	
20	85 90 95	
20	Leu Arg Ile Ala Tyr Tyr Ala Ser Lys Gly Tyr Arg Gly Tyr Ser Tyr	
	100 105 110	
	Asp Asp Ile Pro Asp Phe Asp Asp	
	115 120	
25	<210> 41	
	<211> 939	
	<212> DNA	
	<213> Homo sapiens	
30	<400> 41	
	atgaaccaac teagetteet getgtttete atagegacca ceagaggatg gagtacagat	60
	gaggetaata ettaetteaa ggaatggace tgttettegt etceatetet geccagaage	120
	tgcaaggaaa tcaaagacga atgtcctagt gcatttgatg gcctgtattt tctccgcact	180
	gagaatggtg ttatctacca gaccttctgt gacatgacct ctggggggtgg cggctggacc	240
35	ctggtggcca gcgtgcatga gaatgacatg cgtgggaagt gcacggtggg cgatcgctgg	300

	tccagtcagc	agggcagcaa	agcagactac	ccagaggggg	acggcaactg	ggccaactac	360
	aacacctttg	gatctgcaga	ggcggccacg	agcgatgact	acaagaacco	tggctactac	420
	gacatecagg	ccaaggacct	gggcatctgg	cacgtgccca	ataagtcccc	catgcagcac	480
	tggagaaaca	getecetget	gaggtaccgc	acggacactg	gcttcctcca	. gacactggga	540
5	cataatctgt	ttggcatcta	ccagaaatat	ccagtgaaat	atggagaagg	aaagtgttgg	600
	actgacaacg	gcccggtgat	ccctgtggtc	tatgattttg	gcgacgccca	gaaaacagca	660
	tcttattact	caccctatgg	ccagcgggaa	ttcactgcgg	gatttgttca	gttcagggta	720
	tttaataacg	agagagcagc	caacgccttg	tgtgctggaa	tgagggtcac	cggatgtaac	780
	actgagcacc	actgcattgg	tggaggagga	tactttccag	aggccagtcc	ccagcagtgt	840
10	ggagattttt	ctggttttga	ttggagtgga	tatggaactc	atgttggtta	cagcagcagc	900
	cgtgagataa	ctgaggcage	tgtgcttcta	ttctatcgt			939
	<210> 42						
	<211> 687						
15	<212> DNA						
	<213> Homo	sapiens					
	<400> 42						
00		agatetgget					60
20	ctgctgcctg	gggeggeegg	cttcacacct	tccctcgata	gcgacttcac	ctttaccctt	120
		agaaggagtg	_	_			180
		ttttagatgg				_	240
		tagtttttga	_				300
0.5		acatgttctg					360
25		taatcctgga					420
		ctggcacaga	-				480
		agtccagact	· ·				540
		atcgaaacat					600
00		tggtcatggt		gccattcaag	tttatatgct	gaagagtctg	660
30	tttgaagata	agaggaaaag	tagaact				687
	<210× 42						
	<210> 43						
	<211> 1401						
25	<212> DNA						
35	<213> Homo	sapiens					

43/177

<400> 43

	atgeggeece	aggagetece	caggetegeg	ttcccgttgc	tgctgttgct	gttgctgctg	60
	ctgccgccgc	cgccgtgccc	tgcccacagc	gccacgcgct	tcgaccccac	ctgggagtcc	120
5	ctggacgccc	gccagctgcc	cgcgtggttt	gaccaggcca	agttcggcat	cttcatccac	180
	tggggagtgt	tttccgtgcc	cagetteggt	agcgagtggt	tctggtggta	ttggcaaaag	240
	gaaaagatac	cgaagtatgt	ggaatttatg	aaagataatt	accctcctag	tttcaaatat	300
	gaagattttg	gaccactatt	tacagcaaaa	ttttttaatg	ccaaccagtg	ggcagatatt	360
	tttcaggcct	ctggtgccaa	atacattgtc	ttaacttcca	aacatcatga	aggctttacc	420
10	ttgtgggggt	cagaatattc	gtggaactgg	aatgccatag	atgaggggcc	caagagggac	480
	attgtcaagg	aacttgaggt	agccattagg	aacagaactg	acctgcgttt	tggactgtac	540
	tattcccttt	ttgaatggtt	tcatccgctc	ttccttgagg	atgaatccag	ttcattccat	600
	aagcggcaat	ttccagtttc	taagacattg	ccagagctct	atgagttagt	gaacaactat	660
	cagcctgagg	ttctgtggtc	ggatggtgac	ggaggagcac	cggatcaata	ctggaacagc	720
15	acaggettet	tggcctggtt	atataatgaa	agcccagttc	ggggcacagt	agtcaccaat	780
	gatcgttggg	gagctggtag	catctgtaag	catggtggct	tctatacctg	cagtgatcgt	840
	tataacccag	gacatctttt	gccacataaa	tgggaaaact	gcatgacaat	agacaaactg	900
	teetgggget	ataggaggga	agctggaatc	tctgactatc	ttacaattga	agaattggtg	960
	aagcaacttg	tagagacagt	ttcatgtgga	ggaaatcttt	tgatgaatat	tgggcccaca	1020
20	ctagatggca	ccatttctgt	agtttttgag	gagcgactga	ggcaaatggg	gtcctggcta	1080
	aaagtcaatg	gagaagctat	ttatgaaacc	catacctggc	gatcccagaa	tgacactgtc	1140
	accccagatg	tgtggtacac	atccaagcct	aaagaaaaat	tagtctatgc	catttttctt	1200
	aaatggccca	catcaggaca	gctgttcctt	ggccatccca	aagctattct	gggggcaaca	1260
	gaggtgaaac	tactgggcca	tggacagcca	cttaactgga	tttctttgga	gcaaaatggc	1320
2 5	attatggtag	aactgccaca	gctaaccatt	catcagatgc	cgtgtaaatg	gggctgggct	1380
	ctagccctga	ctaatgtgat	c				1401
	<210> 44						
	<211> 297						
30	<212> DNA						
	<213> Homo	sapiens					
	<400> 44						
		tgcagccgaa	aataaaaaat	cacccettat	acttceatat	Casadocec	60
35		tgcggctgga					120
50	gryddydryc	cycyyclyya	Luctateade	ccaccyycaa	Jacobytatt	Jacquidate	120

	gtatctgtgt	tggcactgat	accagaaacc	acaacattga	cagttggtgg	aggggtgttt	180
	gcacttgtga	cagcagtatg	ctgtcttgcc	gacggggccc	ttatttaccg	gaagcttctg	240
	ttcaatccca	geggteetta	ccagcaaaag	cctgtgcatg	aaaaaaaga	agttttg	297
5	<210> 45						
	<211> 567						
	<212> DNA						
	<213> Homo	sapiens					
10	<400> 45						
	atggaggaag	gcgggaacct	aggaggcctg	attaagatgg	tccatctact	ggtcttgtca	60
	ggtgcctggg	gcatgcaaat	gtgggtgacc	ttcgtctcag	getteetget	tttccgaagc	120
	cttccccgac	ataccttcgg	actagtgcag	agcaaactct	teceetteta	cttccacatc	180
	tecatggget	gtgccttcat	caacctctgc	atcttggctt	cacagcatgc	ttgggctcag	240
15	ctcacattct	gggaggccag	ccagctttac	ctgctgttcc	tgagccttac	gctggccact	300
	gtcaacgccc	gctggctgga	accccgcacc	acagetgeea	tgtgggccct	gcaaaccgtg	360
	gagaaggagc	gaggcctggg	tggggaggta	ccaggcagcc	accagggtcc	cgatccctac	420
	cgccagctgc	gagagaagga	ccccaagtac	agtgetetee	gccagaattt	cttccgctac	480
	catgggctgt	cctctctttg	caatctgggc	tgcgtcctga	gcaatgggct	ctgtctcgct	540
20	ggccttgccc	tggaaataag	gagcete				567
	<210> 46					·	
	<211> 1089						
	<212> DNA					-	
25	<213> Homo	sapiens					
	<400> 46						
	atggtggaca	gcctcctggc	agtcaccctg	gctggaaacc	tgggcctgac	cttcctccga	60
	ggttcccaga	cccagagcca	tccagacctg	ggaactgagg	gctgctggga	ccagetetet	120
30	gcccctcgga	cctttacgct	tttggacccc	aaggcatctc	tgttaaccaa	ggccttcctc	180
	aatggegeee	tggatggggt	catccttgga	gactacctga	gccggactcc	tgagccccgg	240
	ccatccctca	gccacttgct	gagccagtac	tatggggctg	gggtggccag	agacccaggg	300
	ttccgcagca	acttccgacg	gcagaacggt	gctgctctga	cttcagcctc	catcctggcc	360
	cagcaggtgt	ggggaaccct	tgtccttcta	cagaggctgg	agccagtaca	cctccagctt	420
35	cagtgcatga	gccaagaaca	gctggcccag	gtggctgcca	atgctaccaa	ggaattcact	480

	gaggcettee	tgggatgccc	ggccatccac	ccccgctgcc	gctggggagc	ggcgccttat	540
	eggggeegee	cgaagctgct	gcagctgccg	ctgggattct	tgtacgtgca	tcacacctac	600
	gtgcctgcac	caccctgcac	ggacttcacg	cgctgcgcag	ccaacatgcg	ctccatgcag	660
	cgctaccacc	aggacacgca	aggctgggga	gacatcggct	acagtttcgt	ggtgggeteg	720
5	gacggctacg	tgtacgaggg	acgcggctgg	cactgggtgg	gcgcccacac	geteggeeae	780
	aactcccggg	getteggegt	ggccatagtg	ggcaactaca	ccgcggcgct	gcccaccgag	840
	geegetetge	gcacggtgcg	cgacacgete	ccgagttgtg	eggtgegege	cggcctcctg	900
	cggccagact	acgcgctgct	gggccaccgc	cagctggtgc	gcaccgactg	ccccggcgac	960
	gegetetteg	acctgctgcg	cacctggccg	cacttcaccg	cgactgttaa	gccaagacct	1020
10	gccaggagtg	tctctaagag	atccaggagg	gagecacece	caaggaccct	gccagccaca	1080
	gacctccaa						1089
	<210> 47						
	<211> 747						
15	<212> DNA						
	<213> Homo	sapiens					
	<400> 47						
	atgggtggcc	cccggggcgc	gggctgggtg	geggegggee	tgctgctcgg	cgcgggcgcc	60
20	tgctactgca	tttacaggct	gacccggggt	cggcggcggg	gcgaccgcga	gctcgggata	120
	cgctcttcga	agtccgcaga	agacttaact	gatggttcat	atgatgatgt	tctaaatgct	180
	gaacaacttc	agaaactcct	ttacctgctg	gagtcaacgg	aggatectgt	aattattgaa	240
	agagctttga	ttactttggg	taacaatgca	gccttttcag	ttaaccaagc	tattattcgt	300
	gaattgggtg	gtattccaat	tgttgcaaac	aaaatcaacc	attccaacca	gagtattaaa	360
25	gagaaagctt	taaatgcact	aaataacctg	agtgtgaatg	ttgaaaatca	aatcaagata	420
	aaggtgcaag	ttttgaaact	gcttttgaat	ttgtctgaaa	atccagccat	gacagaagga	480
	cttctccgtg	cccaagtgga	ttcatcattc	ctttcccttt	atgacagcca	cgtagcaaag	540
	gagattette	ttcgagtact	tacgctattt	cagaatataa	agaactgcct	caaaatagaa	600
	ggccatttag	ctgtgcagcc	tactttcact	gaaggttcat	tgtttttcct	gttacatgga	660
30	gaagaatgtg	cccagaaaat	aagagcttta	gttgatcacc	atgatgcaga	ggtgaaggaa	720
	aaggttgtaa	caataatacc	caaaatc				747
	<210> 48						
	<211> 294						
35	<212> DNA						

46/177

<213> Homo sapiens

	<400> 48						
	atggcgtcgc	tectgtgetg	tgggccgaag	ctggccgcct	geggeategt	cctcagcgcc	60
5	tggggagtga	tcatgttgat	aatgctcgga	atattttca	atgtccattc	cgctgtgttg	120
	attgaggacg	tteectteac	ggagaaagat	tttgagaatg	gccccagaa	catatacaac	180
	ctttacgago	aagtcagcta	caactgtttc	atcgctgcag	geetttacet	cctcctcgga	240
	ggcttctctt	tctgccaagt	tcggctcaat	aagcgcaagg	aatacatggt	gege	294
10	<210> 49						
	<211> 516						
	<212> DNA						
	<213> Homo	sapiens					
15	<400> 49						
	atggtgggcc	ccgcgccgcg	geggeggetg	cggccgctgg	cagcgctggc	cctggtcctg	60
	gcgctggccc	cggggctgcc	cacageeegg	gccgggcaga	caccgcgccc	tgccgagcgg	120
	gggcccccag	tgcggctttt	caccgaggag	gagetggeee	gctatggcgg	ggaggaggaa	180
	gatcagccca	tctacttggc	agtgaaggga	gtggtgtttg	atgtcacctc	cggaaaggag	240
20	ttttatggac	gaggagcccc	ctacaatgcc	ttgacgggga	aggactccac	tagaggggta	300
	gccaagatgt	ccttggatcc	tgcagacctc	acccatgaca	ctacgggtct	cacggccaag	360
	gaactggagg	ccctggatga	ggtcttcacc	aaagtgtaca	aagccaaata	ccccatcgtc	420
	ggctacactg	cccggagaat	tctcaatgag	gatggcagcc	ctaacctgga	cttcaagcct	480
	gaagaccagc	cccattttga	catcaaggat	gagttc			516
25							
	<210> 50						
	<211> 360						
	<212> DNA						
00	<213> Homo	sapiens					
30							
	<400> 50						
			cctggctact				60
			tggctacatt			_	120
0=			acttgccact				180
35	attatagget	ccctcctgct	gtcaggctac	atcagcaaag	ggggggcaga	ccgggccgtt	240

	ccagtgctga tcattggcat tctggtgttc ctacccggat tttaccacct gcgcatcgct	30
	tactatgcat ccaaaggcta ccgtggttac tcctatgatg acattccaga ctttgatgac	36
	42105 F1	
5	<210> 51	
อ	<211> 1065 <212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
10	<222> (2)(943)	
	(2)(323)	
	<400> 51	
	a atg aac caa ctc agc ttc ctg ctg ttt ctc ata gcg acc acc aga gga	49
	Met Asn Gln Leu Ser Phe Leu Leu Phe Leu Ile Ala Thr Thr Arg Gly	
15	1 5 10 15	
	tgg agt aca gat gag get aat act tac tte aag gaa tgg acc tgt tet	97
	Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr Cys Ser	
	20 25 30	
	tog tot coa tot otg coo aga ago tgo aag gaa ato aaa gao gaa tgt	145
20	Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys Asp Glu Cys	
	35 40 45	
	cct agt gca ttt gat ggc ctg tat ttt ctc cgc act gag aat ggt gtt	193
	Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr Glu Asn Gly Val	
0.5	50 55 60	
25	ate tac cag ace the tgt gac atg ace tet ggg ggt ggc ggc tgg ace	241
	Ile Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly Gly Gly Trp Thr	
	65 70 75 80	
	ctg gtg gcc agc gtg cat gag aat gac atg cgt ggg aag tgc acg gtg	289
30	Leu Val Ala Ser Val His Glu Asn Asp Met Arg Gly Lys Cys Thr Val	
50	85 90 95	227
	gge gat ege tgg tee agt eag eag gge age aaa gea gae tae eea gag	337
	Gly Asp Arg Trp Ser Ser Gln Gln Gly Ser Lys Ala Asp Tyr Pro Glu 100 105 110	
	ggg gac ggc aac tgg gcc aac tac aac acc ttt gga tct gca gag gcg	385
35	Gly Asp Gly Asn Trp Ala Asn Tyr Asn Thr Phe Gly Ser Ala Glu Ala	363
30	and only use the ure use the use the only set ure did will	

			115					120					125				
	gcc	acg	agc	gat	gac	tac	aag	aac	cct	ggc	tac	tac	gac	atc	cag	gcc	433
	Ala	Thr	Ser	Asp	Asp	Tyr	Lys	Asn	Pro	Gly	Tyr	Tyr	Asp	Ile	Gln	Ala	
		130					135					140					
5	aag	gac	ctg	ggc	atc	tgg	cac	gtg	ccc	aat	aag	tcc	ccc	atg	cag	cac	481
	Lys	Asp	Leu	Gly	Ile	Trp	His	Val	Pro	Asn	Lys	Ser	Pro	Met	Gln	His	
	145					150					155					160	
	tgg	aga	aac	agc	tcc	ctg	ctg	agg	tac	cgc	acg	gac	act	ggc	ttc	ctc	529
	Trp	Arg	Asn	Ser	Ser	Leu	Leu	Arg	Tyr	Arg	Thr	Asp	Thr	Gly	Phe	Leu	
10					165					170					175		
	cag	aca	ctg	gga	cat	aat	ctg	ttt	ggc	atc	tac	cag	aaa	tat	cca	gtg	577
	Gln	Thr	Leu	Gly	His	Asn	Leu	Phe	Gly	Ile	Tyr	Gln	Lys	Tyr	Pro	Val	
				180					185					190			
	aaa	tat	gga	gaa	gga	aag	tgt	tgg	act	gac	aac	ggc	ccg	gtg	atc	cct	625
15	Lys	Tyr	Gly	Glu	Gly	Lys	Cys	Trp	Thr	Asp	Asn	Gly	Pro	Val	Ile	Pro	
			195					200					205				
	gtg	gtc	tat	gat	ttt	ggc	gac	gcc	cag	aaa	aca	gca	tct	tat	tac	tca	673
	Val	Val	Tyr	Asp	Phe	Gly	Asp	Ala	Gln	Lys	Thr	Ala	Ser	Tyr	Tyr	Ser	
		210					215					220					
20	ccc	tat	ggc	cag	cgg	gaa	ttc	act	gcg	gga	ttt	gtt	cag	ttc	agg	gta	721
	Pro	Tyr	Gly	Gln	Arg	Glu	Phe	Thr	Ala	Gly	Phe	Val	Gln	Phe	Arg	Val	
	225					230					235					240	
	ttt	aat	aac	gag	aga	gca	gcc	aac	gcc	ttg	tgt	gct	gga	atg	agg	gtc	769
	Phe	Asn	Asn	Glu	Arg	Ala	Ala	Asn	Ala	Leu	Cys	Ala	Gly	Met	Arg	Val	
25					245					250					255		
	acc	gga	tgt	aac	act	gag	cac	cac	tgc	att	ggt	gga	gga	gga	tac	ttt	817
	Thr	Gly	Cys	Asn	Thr	Glu	His	His	Cys	Ile	Gly	Gly	Gly	Gly	Tyr	Phe	
				260					265					270			
	cca	gag	gcc	agt	ccc	cag	cag	tgt	gga	gat	ttt	tct	ggt	ttt	gat	tgg	865
30	Pro	Glu	Ala	Ser	Pro	Gln	Gln	Cys	Gly	Asp	Phe	Ser	Gly	Phe	qzA	Trp	
			275					280					285				
	agt	gga	tat	gga	act	cat	gtt	ggt	tac	agc	agc	agc	cgt	gag	ata	act	913
	Ser	Gly	Tyr	Gly	Thr	His	Val	Gly	Tyr	Ser	Ser	Ser	Arg	Glu	Ile	Thr	
		290					295					300					
35	gag	gca	gct	gtg	ctt	cta	ttc	tat	cgt	tgag	agtt	tt g	rtggg	raggg	ja		960

	Glu Ala Ala Val Leu Leu Phe Tyr Arg												
	305 310												
	acccagacet etecteceaa ceatgagate ecaaggatgg agaacaactt acccagtage	1020											
	tagaatgtta atggcagaag agaaaacaat aaatcatatt gactc	1065											
5													
	<210> 52												
	<211> 937												
	<212> DNA												
	<213> Homo sapiens												
10	<220>												
	<221> CDS												
	<222> (177)(866)												
	<400> 52												
15	cttttggaga actgegette tettteggag ggagtgtteg eegeegeege ggeegeeaee	60											
	tggagtttet teagaeteea gattteeetg teaaceacga ggagteeaga gaggaaacge	120											
	ggageggaga caacagtace tgaegeetet tteageeegg gategeeeea geaggg	176											
	atg ggc gac aag atc tgg ctg ccc ttc ccc gtg ctc ctt ctg gcc gct	224											
	Met Gly Asp Lys Ile Trp Leu Pro Phe Pro Val Leu Leu Ala Ala												
20	1 5 10 15												
	ctg cct ccg gtg ctg ctg cct ggg gcg gcc ggc ttc aca cct tcc ctc	272											
	Leu Pro Pro Val Leu Leu Pro Gly Ala Ala Gly Phe Thr Pro Ser Leu												
	20 25 30												
	gat ago gao tto acc ttt acc ctt ccc gcc ggc cag aag gag tgc ttc	320											
25	Asp Ser Asp Phe Thr Phe Thr Leu Pro Ala Gly Gln Lys Glu Cys Phe												
	35 40 45												
	tac cag ccc atg ccc ctg aag gcc tcg ctg gag atc gag tac caa gtt	368											
	Tyr Gln Pro Met Pro Leu Lys Ala Ser Leu Glu Ile Glu Tyr Gln Val												
	50 55 60												
30	tta gat gga gca gga tta gat att gat ttc cat ctt gcc tct cca gaa	416											
	Leu Asp Gly Ala Gly Leu Asp Ile Asp Phe His Leu Ala Ser Pro Glu												
	65 70 75 80												
	ggc aaa acc tta gtt ttt gaa caa aga aaa tca gat gga gtt cac act	464											
	Gly Lys Thr Leu Val Phe Glu Gln Arg Lys Ser Asp Gly Val His Thr												
35	85 90 95												

	gta	gag	act	gaa	gtt	ggt	gat	tac	atg	ttc	tgo	ttt	gac	aat	aca	ttc	512
	Val	Glu	Thr	Glu	Val	Gly	Asp	туг	Met	Phe	Cys	Phe	Asp	Asn	Thr	Phe	
				100	•				105					110			
	agc	acc	att	tct	gag	aag	gtg	att	ttc	ttt	gaa	tta	atc	ctg	gat	aat	560
5	Ser	Thr	Ile	Ser	Glu	Lys	Val	Ile	Phe	Phe	Glu	Leu	Ile	Leu	Asp	Asn	
			115					120					125				
	atg	gga	gaa	cag	gca	caa	gaa	caa	gaa	gat	tgg	aag	aaa	tat	att	act	608
	Met	Gly	Glu	Gln	Ala	Gln	Glu	Gln	Glu	Asp	Trp	Lys	Lys	Tyr	Ile	Thr	
		130					135					140					
10					_	-	-		ctg	_	_		_	-			656
	Gly	Thr	Asp	Ile	Leu	Asp	Met	Lys	Leu	Glu	Asp	Ile	Leu	Glu	Ser	Ile	
	145					150					155					160	
	aac	agc	atc	aag	tcc	aga	cta	agc	aaa	agt	ggg	cac	ata	caa	att	ctg	704
	Asn	Ser	Ile	Lys	Ser	Arg	Leu	Ser	Lys	Ser	Gly	His	Ile	Gln	Ile	Leu	
15					165					170					175		
	ctt	aga	gca	ttt	gaa	gct	cgt	gat	cga	aac	ata	caa	gaa	agc	aac	ttt	752
	Leu	Arg	Ala	Phe	Glu	Ala	Arg	Asp	Arg	Asn	Ile	Gln	Glu	Ser	Asn	Phe	
				180					185					190			
00		_	_					-	gtt				_	_		-	800
20	Asp	Arg		Asn	Phe	Trp	Ser	Met	Val	Asn	Leu	Val	Val	Met	Val	Val	
			195					200					205				
			-			•		_	ctg	_	_	_		_	_	•	848
			Ala	Ile	Gln	Val	-	Met	Leu	Lys	Ser		Phe	Glu	Asp	Lys	
or.		210					215					220					
25			_	-		taaa	acto	ca a	acta	ıgagt	a co	taac	attg	aaa	aato	3	900
		Lys	Ser	Arg	Thr												
	225																
	aggo	ataa	laa a	itgca	ataa	a ct	gtta	cagt	caa	gaco	!						937
30	-010																
อบ	<210																
	<211																
	<212			_													
	<213		mo s	apie	ns												
or	<220																
35	<221	> CD	S														

51/177

<222> (56)...(1459)

<400> 53

agegeteceg aggeegeggg ageetgeaga gaggacagee ggeetgegee gggae atg egg ecc eag gag etc ecc agg etc geg tte eeg ttg etg etg ttg Met Arg Pro Gln Glu Leu Pro Arg Leu Ala Phe Pro Leu Leu Leu ctg ttg ctg ctg ccg ccg ccg ccg tgc cct gcc cac agc gcc acg Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser Ala Thr ege tte gae eee ace tgg gag tee etg gae gee ege eag etg eee geg Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln Leu Pro Ala tgg ttt gac cag gcc aag ttc ggc atc ttc atc cac tgg gga gtg ttt Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His Trp Gly Val Phe tee gtg eee age tte ggt age gag tgg tte tgg tgg tat tgg caa aag Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp Trp Tyr Trp Gln Lys gaa aag ata ccg aag tat gtg gaa ttt atg aaa gat aat tac cct cct Glu Lys Ile Pro Lys Tyr Val Glu Phe Met Lys Asp Asn Tyr Pro Pro agt ttc aaa tat gaa gat ttt gga cca cta ttt aca gca aaa ttt ttt Ser Phe Lys Tyr Glu Asp Phe Gly Pro Leu Phe Thr Ala Lys Phe Phe aat gcc aac cag tgg gca gat att ttt cag gcc tct ggt gcc aaa tac Asn Ala Asn Gln Trp Ala Asp Ile Phe Gln Ala Ser Gly Ala Lys Tyr att gtc tta act tcc aaa cat cat gaa ggc ttt acc ttg tgg ggg tca Ile Val Leu Thr Ser Lys His His Glu Gly Phe Thr Leu Trp Gly Ser gaa tat tog tgg aac tgg aat goc ata gat gag ggg coc aag agg gac Glu Tyr Ser Trp Asn Trp Asn Ala Ile Asp Glu Gly Pro Lys Arg Asp att gtc aag gaa ctt gag gta gcc att agg aac aga act gac ctg cgt

	Ile	Val	Lys	Glu	Leu	Glu	Val	Ala	Ile	Arg	Asn	Arg	Thr	Asp	Leu	Arg	
					165					170					175		
	ttt	gga	ctg	tac	tat	tcc	ctt	ttt	gaa	tgg	ttt	cat	ccg	ctc	ttc	ctt	631
	Phe	Gly	Leu	Tyr	Tyr	Ser	Leu	Phe	Glu	Trp	Phe	His	Pro	Leu	Phe	Leu	
5				180					185			•		190			
	gag	gat	gaa	tcc	agt	tca	ttc	cat	aag	cgg	caa	ttt	cca	gtt	tct	aag	679
	Glu	Asp		Ser	Ser	Ser	Phe		Lys	Arg	Gln	Phe		Val	Ser	Lys	
			195					200					205				
10				_	ctc								_			-	727
10	Thr		Pro	Glu	Leu	Tyr		Leu	Val	Asn	Asn	_	Gln	Pro	Glu	Val	
		210					215					220					
					ggt											_	775
		Trp	Ser	Asp	Gly	_	GIY	GIÀ	Ala	Pro	_	Gin	Tyr	Trp	Asn		
15	225					230	A. A				235					240	222
10				_	gcc					_	-		-				823
	THE	GTÀ	Pne	ren	Ala 245	тгр	ren	туг	ASN	250	Ser	PIO	vai	Arg		Thr	
	σta	ata	200	+	gat	aat	+~~	~~	aat		200	atc	+ ~+	227	255	er ertr	871
					Asp	=			_		-		-	_			0/1
20	•	, uz	1	260	nsp	nry	ırp	Gly	265	Gry	DCI	110	cys	270	1173	Gly	
	aac	ttc	tat		tge	agt	gat	cat		aac	cca	aaa	cat		tta	CCA	919
					Cys	_	_	_							_		313
	•		275		-1-			280	-,,-			2	285				
	cat	aaa		qaa	aac	tac	atq		ata	gac	aaa	ctg		taa	aac	tat	967
25				-	Asn	-	_			_		_					
		290	-			•	295			-	-	300		•	•	-	
	agg	agg	gaa	gat	gga	atc	tct	gac	tat	ctt	aca	att	gaa	gaa	ttg	gtg	·1015
	Arg	Arg	Glu	Ala	Gly	Ile	Ser	Asp	Tyr	Leu	Thr	Ile	Glu	Glu	Leu	Val	
	305					310					315					320	
30	aag	caa	ctt	gta	gag	aca	gtt	tca	tgt	gga	gga	aat	ctt	ttg	atg	aat	1063
	Lys	Gln	Leu	Val	Glu	Thr	Val	Ser	Cys	Gly	Gly	Asn	Leu	Leu :	Met	Asn	
					325					330					335		
	att	ggg	ccc	aca	cta	gat	ggc	acc	att	tct	gta	gtt	ttt	gag	gag	cga	1111
	Ile	Gly	Pro	Thr	Leu	Asp	Gly	Thr	Ile	Ser	Val	Val	Phe	Glu	Glu	Arg	
35				340					345					350			

	ctg	agg	caa	atg	ggg	tcc	tgg	cta	aaa	gtc	aat	gga	gaa	gct	att	tat	1159
	Leu	Arg	Gln	Met	Gly	Ser	Trp	Leu	Lys	Val	Asn	Gly	Glu	Ala	Ile	Tyr	
			355					360					365				
	gaa	acc	cat	acc	tgg	cga	tcc	cag	aat	gac	act	gtc	acc	cca	gat	gtg	1207
5	Glu '	Thr	His	Thr	Trp	Arg	Ser	Gln	Asn	Asp	Thr	Val	Thr	Pro	Asp	Val	
		370					375					380					
	tgg	tac	aca	tcc	aag	cct	aaa	gaa	aaa	tta	gtc	tat	gcc	att	ttt	ctt	1255
	Trp	Tyr	Thr	Ser	Lys	Pro	Lys	Glu	Lys	Leu	Val	Tyr	Ala	Ile	Phe	Leu	
	385					390					395					400	
10	aaa	tgg	ccc	aca	tca	gga	cag	ctg	ttc	ctt	ggc	cat	ccc	aaa	gct	att	1303
	Lys :	Trp	Pro	Thr	Ser	Gly	Gln	Leu	Phe	Leu	Gly	His	Pro	Lys	Ala	Ile	
					405					410					415		
	ctg	999	gca	aca	gag	gtg	aaa	cta	ctg	ggc	cat	gga	cag	cca	ctt	aac	1351
	Leu (Gly	Ala	Thr	Glu	Val	Lys	Leu	Leu	Gly	His	Gly	Gln	Pro	Leu	Asn	
15				420					425					430			
	tgg a	att	tct	ttg	gag	caa	aat	ggc	att	atg	gta	gaa	ctg	cca	cag	cta	1399
	Trp	Ile	Ser	Leu	Glu	Gln	Asn	Gly	Ile	Met	Val	Glu	Leu	Pro	Gln	Leu	
			435					440					445				
	acc a	att	cat	cag	atg	ccg	tgt	aaa	tgg	ggc	tgg	gct	cta	gcc	ctg	act	1447
20	Thr	Ile	His	Gln	Met	Pro	Cys	Lys	Trp	Gly	Trp	Ala	Leu	Ala	Leu	Thr	
	•	450					455					460					
	aat o	gtg	atc	taaa	ıgtgo	ag c	agag	rtggo	t ga	tgct	gcaa	gtt	atgt	cta	aggo	:	1500
	Asn 1	Val	Ile														
	465																
25	tagga	aact	at c	aggt	gtct	a ta	attg	tago	aca	tgga	gaa	agca	aatg	ta a	aact	ggata	1560
	-				•		-									aaatt	1620
	accca	atgt	aa c	catt	ttaa	c tc	tcca	gtgc	act	ttgc	cat	taaa	gtct	ct t	caca	ttg	1678
	<210>																
30	<211>																
	<212>																
	<213>		mo s	apie	ns												
	<220>																
	<221>	> CD	S														
35	<222>	(1	14).	(4	13)												

	<400> 54													
	aggggaggge ggtgeteege egeggtggeg gttgetateg ettegeagaa eetaeteagg													
	cagecagetg agaagagttg agggaaagtg etgetgetgg gtetgeagae geg atg	116												
5	Met ·													
	1													
	gat aac gtg cag ccg aaa ata aaa cat cgc ccc ttc tgc ttc agt gtg	164												
	Asp Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe Ser Val													
	5 10 15													
10	aaa ggc cac gtg aag atg ctg cgg ctg gat att atc aac tca ctg gta	212												
	Lys Gly His Val Lys Met Leu Arg Leu Asp Ile Ile Asn Ser Leu Val													
	20 25 30													
	aca aca gta ttc atg ctc atc gta tct gtg ttg gca ctg ata cca gaa	260												
	Thr Thr Val Phe Met Leu Ile Val Ser Val Leu Ala Leu Ile Pro Glu													
15	35 40 45													
	acc aca aca ttg aca gtt ggt gga ggg gtg ttt gca ctt gtg aca gca	308												
	Thr Thr Thr Leu Thr Val Gly Gly Val Phe Ala Leu Val Thr Ala													
	50 55 60 65													
	gta tgc tgt ctt gee gae ggg gee ctt att tae egg aag ett etg tte	356												
20	Val Cys Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu Phe													
	70 75 80													
	aat ccc agc ggt cct tac cag caa aag cct gtg cat gaa aaa aaa gaa	404												
	Asn Pro Ser Gly Pro Tyr Gln Gln Lys Pro Val His Glu Lys Lys Glu													
05	85 90 95													
25	gtt ttg taattttata ttacttttta gtttgatact aagtattaaa	450												
	Val Leu													
	catatttetg tattett	467												
30	23105 FF													
3 U	<210> 55													
	<211> 875													
	<212> DNA													
	<213> Homo sapiens													
25	<220>													
35	<221> CDS													

55/177

60

120

180

240

292

<222> (272)...(841)

5

10

25

<400> 55
attggttggg ggaaacccac gaggggacgc ggccgaggag ggtcgctgtc cacccggggg
cgtggggatg aggtaccaga ttcagcccat ttggccccga cgcctctgtt ctcggaatcc
gggtgctgcg gattgaggtc ccggttccta acgaatctct gctggattgg ccgtaaccct
gtccccgagc gggctcacag ggtctgaagg ccacgcatga ggcaaaggta aagttctgag
ccacccggtg cctccttccc aggactgcaa g atg gag gaa ggc ggg aac cta

Met Glu Glu Gly Asn Leu

gga ggc ctg att aag atg gtc cat cta ctg gtc ttg tca ggt gcc tgg 340
Gly Gly Leu Ile Lys Met Val His Leu Leu Val Leu Ser Gly Ala Trp

10 15 20

1

ggc atg caa atg tgg gtg acc ttc gtc tca ggc ttc ctg ctt ttc cga 388

Gly Met Gln Met Trp Val Thr Phe Val Ser Gly Phe Leu Leu Phe Arg

25 30 35

age ett eec ega eat ace tte gga eta gtg eag age aaa ete tte eec 436

Ser Leu Pro Arg His Thr Phe Gly Leu Val Gln Ser Lys Leu Phe Pro
40 45 50 55

20 ttc tac ttc cac atc tcc atg ggc tgt gcc ttc atc aac ctc tgc atc

484

Phe Tyr Phe His Ile Ser Met Gly Cys Ala Phe Ile Asn Leu Cys Ile

60 65 70

ttg get tea eag eat get tgg get eag ete aca tte tgg gag gee age 532

Leu Ala Ser Gln His Ala Trp Ala Gln Leu Thr Phe Trp Glu Ala Ser
75 80 85

cag ctt tac ctg ctg ttc ctg agc ctt acg ctg gcc act gtc aac gcc 580
Gln Leu Tyr Leu Leu Phe Leu Ser Leu Thr Leu Ala Thr Val Asn Ala

90 95 100

cgc tgg ctg gaa ccc cgc acc aca gct gcc atg tgg gcc ctg caa acc 628

Arg Trp Leu Glu Pro Arg Thr Thr Ala Ala Met Trp Ala Leu Gln Thr

105 110 115

gtg gag aag gag cga ggc ctg ggt ggg gag gta cca ggc agc cac cag

Val Glu Lys Glu Arg Gly Leu Gly Glu Val Pro Gly Ser His Gln

120

125

130

135

ggt ccc gat ccc tac cgc cag ctg cga gag aag gac ccc aag tac agt 724

	Gly Pro Asp Pro Tyr Arg Gln Leu Arg Glu Lys Asp Pro Lys Tyr Ser	
	140 145 150	
	get etc ege cag aat tte tte ege tae eat ggg etg tee tet ett tge	77:
	Ala Leu Arg Gln Asn Phe Phe Arg Tyr His Gly Leu Ser Ser Leu Cys	,,,
5	155 160 165	
Ū	aat ctg ggc tgc gtc ctg age aat ggg ctc tgt ctc gct ggc ctt gcc	820
	Asn Leu Gly Cys Val Leu Ser Asn Gly Leu Cys Leu Ala Gly Leu Ala	021
	170 175 180	
	ctg gaa ata agg age ete tageatggge eetgeatget aataaatget tetteag	875
10	Leu Glu Ile Arg Ser Leu	
	185	
	<210> 56	
	<211> 1256	
15	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (150)(1241)	
20		
	<400> 56	
	atgtaagage cacctectee eeaggaetea gggatggete teeagatgte accaetgeag	60
	atattggage caacacteca gatgetacaa aaggetgtee agatgtecaa getteettge	120
	cagatgccaa agccaagtcc ccaccgacc atg gtg gac agc ctc ctg gca gtc	173
25	Met Val Asp Ser Leu Leu Ala Val	
	1 5	
	acc etg get gga aac etg gge etg acc tte ete ega ggt tee eag acc	221
	Thr Leu Ala Gly Asn Leu Gly Leu Thr Phe Leu Arg Gly Ser Gln Thr	
	10 15 20	
30	cag ago cat oca gao otg gga act gag ggo tgo tgg gao cag oto tot	269
	Gln Ser His Pro Asp Leu Gly Thr Glu Gly Cys Trp Asp Gln Leu Ser	
	25 30 35 40	
	gcc cct cgg acc ttt acg ctt ttg gac ccc aag gca tct ctg tta acc	317
	Ala Pro Arg Thr Phe Thr Leu Leu Asp Pro Lys Ala Ser Leu Leu Thr	
35	45 50 55	

	aag	gcc	ttc	ctc	aat	ggc	gco	ctg	gat	ggg	gto	ato	ctt	gga	gad	tac	365
	Lys	Ala	Phe	Leu	Asn	Gly	Ala	Leu	Asp	Gly	Val	Ile	Leu	Gly	Asp	Tyr	
				60					65					70)		
	ctg	agc	cgg	act	cct	gag	ccc	cgg	cca	tcc	ctc	agc	cac	ttg	ctg	agc	413
5	Leu	Ser	Arg	Thr	Pro	Glu	Pro	Arg	Pro	Ser	Leu	Ser	His	Leu	Leu	Ser	
			75					80					85				
	cag	tac	tat	ggg	gct	ggg	gtg	gcc	aga	gac	cca	ggg	ttc	cgc	ago	aac	461
	Gln	Tyr	Tyr	Gly	Ala	Gly	Val	Ala	Arg	Asp	Pro	Gly	Phe	Arg	Ser	Asn	
		90					95					100					
10	ttc	cga	cgg	cag	aac	ggt	gct	gct	ctg	act	tca	gcc	tcc	atc	ctg	gcc	509
	Phe	Arg	Arg	Gln	Asn	Gly	Ala	Ala	Leu	Thr	Ser	Ala	Ser	Ile	Leu	Ala	
	105					110					115					120	
	cag	cag	gtg	tgg	gga	acc	ctt	gtc	ctt	cta	cag	agg	ctg	gag	cca	gta	557
	Gln	Gln	Val	Trp	Gly	Thr	Leu	Val	Leu	Leu	Gln	Arg	Leu	Glu	Pro	Val	
15					125					130					135		
	cac	ctc	cag	ctt	cag	tgc	atg	agc	caa	gaa	cag	ctg	gcc	cag	gtg	gct	605
	His	Leu	Gln	Leu	Gln	Cys	Met	Ser	Gln	Glu	Gln	Leu	Ala	Gln	Val	Ala	
				140					145					150			
	gcc	aat	gct	acc	aag	gaa	ttc	act	gag	gcc	ttc	ctg	gga	tgc	ccg	gcc	653
20	Ala	Asn	Ala	Thr	Lys	Glu	Phe	Thr	Glu	Ala	Phe	Leu	Gly	Cys	Pro	Ala	
			155					160					165				
	atc	cac	ccc	cgc	tgc	cgc	tgg	gga	gcg	gcg	cct	tat	cgg	ggc	cgc	ccg	701
	Ile	His	Pro	Arg	Cys	Arg	Trp	Gly	Ala	Ala	Pro	Tyr	Arg	Gly	Arg	Pro	
		170					175					180					
2 5	aag	ctg	ctg	cag	ctg	ccg	ctg	gga	ttc	ttg	tac	gtg	cat	cac	acc	tac	749
	Lys	Leu	Leu	Gln	Leu	Pro	Leu	Gly	Phe	Leu	Tyr	Val	His	His	Thr	Tyr	
	185					190					195					200	
	gtg	cct	gca	cca	ccc	tgc	acg	gac	ttc	acg	cgc	tgc	gca	gcc	aac	atg	7 97
	Val	Pro	Ala	Pro	Pro	Cys	Thr	Asp	Phe	Thr	Arg	Cys	Ala	Ala	Asn	Met	
30					205					210					215		
	cgc	tcc	atg	cag	cgc	tac	cac	cag	gac	acg	caa	ggc	tgg	gga	gac	atc	845
	Arg	Ser	Met	Gln	Arg	Tyr	His	Gln	Asp	Thr	Gln	Gly	Trp	Gly	Asp	Ile	
				220					225					230			
	ggc	tac	agt	ttc	gtg	gtg	ggc	tcg	gac	ggc	tac	gtg	tac	gag	gga	cgc	893
35	Gly	Tyr	Ser	Phe	Val	Val	Gly	Ser	Asp	Gly	Tyr	Val	Tyr	Glu	Gly	Arg	

			235					240					245				
	ggc	tgg	cac	tgg	gtg	ggc	gcc	cac	acg	ctc	ggc	cac	aac	tcc	cgg	ggc	94
	Gly	Trp	His	Trp	Val	Gly	Ala	His	Thr	Leu	Gly	His	Asn	Ser	Arg	Gly	
		250					255					260					
5	ttc	ggc	gtg	gcc	ata	gtg	ggc	aac	tac	acc	gcg	gcg	ctg	ccc	acc	gag	989
	Phe	Gly	Val	Ala	Ile	Val	Gly	Asn	Tyr	Thr	Ala	Ala	Leu	Pro	Thr	Glu	
	265					270					275					280	
	gcc	gct	ctg	aga	acg	gtg	cgc	gac	acg	ctc	ccg	agt	tgt	gcg	gtg	cgc	1037
	Ala	Ala	Leu	Arg	Thr	Val	Arg	Asp	Thr	Leu	Pro	Ser	Cys	Ala	Val	Arg	
10					285					290					295		
	gcc	ggc	ctc	ctg	cgg	cca	gac	tac	gcg	ctg	ctg	ggc	cac	cgc	cag	ctg	1085
	Ala	Gly	Leu	Leu	Arg	Pro	Asp	Tyr	Ala	Leu	Leu	Gly	His	Arg	Gln	Leu	
				300					305					310			
	gtg	ege	acc	gac	tgc	ccc	ggc	gac	gcg	ctc	ttc	gac	ctg	ctg	cgc	acc	1133
15	Val	Arg	Thr	Asp	Cys	Pro	Gly	Asp	Ala	Leu	Phe	Asp	Leu	Leu	Arg	Thr	
			315					320					325				
	tgg	ccg	cac	ttc	acc	gcg	act	gtt	aag	cca	aga	cct	gcc	agg	agt	gtc	1181
	Trp	Pro	His	Phe	Thr	Ala	Thr	Val	Lys	Pro	Arg	Pro	Ala	Arg	Ser	Val	
		330					335					340					
20	tct	aag	aga	tcc	agg	agg	gag	cca	ccc	cca	agg	acc	ctg	cca	gcc	aca	1229
	Ser	Lys	Arg	Ser	Arg	Arg	Glu	Pro	Pro	Pro	Arg	Thr	Leu	Pro	Ala	Thr	
	345					350					355					360	
	gac	ctc	caa	taaa	agaca	age a	atgga	aac									1256
	Asp	Leu	Gln														
25																	
	<210)> 57	7														
		1> 88	_														
		2> Di															
	<213	3> Ho	omo s	apie	ens												
30	<220																
		i> CI															
	<222	?> (1	135).	. , (8	184)												
	<400)> 57	7														
35	catt	tcct	tt c	tcca	cato	c aç	gtca	ggtg	geg	rtttg	ctg	tggc	ggct	ag g	cccg	cgtgc	60

	gct	ggag	acc	teeg	cgct	gg c	cccc	gcga	g cc	tcct	gccc	tgg	cccg	gcg	ctgo	ggctct	120
	gcc	gcgg	cgg	cagc	atg	ggt	ggc	ccc	cgg	ggo	gcg	ggc	tgg	gto	geg	geg	170
					Met	Gly	Gly	Pro	Arg	Gly	Ala	Gly	Trp	Val	. Ala	Ala	
					1				5					10	,		
5	ggc	ctg	ctg	ctc	ggc	gcg	ggc	gcc	tgc	tac	tgc	att	tac	agg	ctg	acc	218
	Gly	Leu	Leu	Leu	Gly	Ala	Gly	Ala	Cys	Tyr	Cys	Ile	Tyr	Arg	Leu	Thr	
			15					20					25				
	cgg	ggt	cgg	cgg	cgg	ggc	gac	cgc	gag	ctc	ggg	ata	cgc	tct	tcg	aag	266
	Arg	Gly	Arg	Arg	Arg	Gly	Asp	Arg	Glu	Leu	Gly	Ile	Arg	Ser	Ser	Lys	
10		30					35					40					
	tcc	gca	gaa	gac	tta	act	gat	ggt	tca	tat	gat	gat	gtt	cta	aat	gct	314
	Ser	Ala	Glu	Asp	Leu	Thr	Asp	Gly	Ser	Tyr	Asp	Asp	Val	Leu	Asn	Ala	
	45					50					55					60	
	gaa	caa	ctt	cag	aaa	ctc	ctt	tac	ctg	ctg	gag	tca	acg	gag	gat	cct	362
15	Glu	Gln	Leu	Gln	Lys	Leu	Leu	Tyr	Leu	Leu	Glu	Ser	Thr	Glu	Asp	Pro	
					65					70					75		
	gta	att	att	gaa	aga	gct	ttg	att	act	ttg	ggt	aac	aat	gca	gcc	ttt	410
	Val	Ile	Ile	Glu	Arg	Ala	Leu	Ile	Thr	Leu	Gly	Asn	Asn	Ala	Ala	Phe	
				80					85					90			
20	tca	gtt	aac	caa	gct	att	att	cgt	gaa	ttg	ggt	ggt	att	cca	att	gtt	458
	Ser	Val	Asn	Gln	Ala	Ile	Ile	Arg	Glu	Leu	Gly	Gly	Ile	Pro	Ile	Val	
			95					100					105				
	gca	aac	aaa	atc	aac	cat	tcc	aac	cag	agt	att	aaa	gag	aaa	gct	tta	506
	Ala	Asn	Lys	Ile	Asn	His	Ser	Asn	Gln	Ser	Ile	Lys	Glu	Lys	Ala	Leu	
25		110					115					120					
	aat	gca	cta	aat	aac	ctg	agt	gtg	aat	gtt	gaa	aat	caa	atc	aag	ata	554
	Asn	Ala	Leu	Asn	Asn	Leu	Ser	Val	Asn	Val	Glu	Asn	Gln	Ile	Lys	Ile	
	125					130					135					140	
	aag	gtg	caa	gtt	ttg	aaa	ctg	ctt	ttg	aat	ttg	tct	gaa	aat	cca	gcc	602
30	Lys	Val	Gln	Val	Leu	Lys	Leu	Leu	Leu	Asn	Leu	Ser	Glu	Asn	Pro	Ala	
					145					150					155		
	atg	aca	gaa	gga	ctt	ctc	cgt	gcc	caa	gtg	gat	tca	tca	ttc	ctt	tee	650
	Met	Thr	Glu	Gly	Leu	Leu	Arg	Ala	Gln	Val	Asp	Ser	Ser	Phe	Leu	Ser	
				160					165					170			
35	ctt	tat	gac	agc	cac	gta	gca	aag	gag	att	ctt	ctt	cga	gta	ctt	acg	698

	Leu Ty	_		His	Val	Ala	Lys	Glu	Ile	Leu	Leu			. Leu	Thr	
		175					180					185				
	cta tt	_			_		_				_					746
-	Leu Pho		Asn	Ile	Lys		-	Leu	Lys	Ile		Gly	His	Leu	Ala	
5	19					195					200					
	gtg ca					-	• •		_							794
	Val Gl	n Pro	Thr	Phe		Glu	GIŸ	Ser	Leu		Phe	Leu	Leu	His	-	
	205				210					215					220	0.40
10	gaa gaa	_	_	_			_	-		_	-			_	-	842
10	Glu Gli	ı Cys	AIA	225	ьув	116	Arg	Ala	230	vaı	Asp	HIS	HIS	Asp 235		
	gag gt	aaq	gaa		att	gta	aca	ata		ccc	aaa	atc	tga			884
	Glu Val	_	_	_	-	_							_			
		•	240	•				245			•					
15																
	<210> 5	8														
	<211> 5	89														
	<212> I	NA														
	<213> I	omo	sapi	ens												
20	<220>															
	<221> 0	DS														
	<222>	48).	(3	44)												
	<400> 5	8														
25	gettte	gag	cccg	ettgo	ea co	teg	gegat	t ccc	cgac	etcc	ctto	ttt	atg	gcg	teg	56
													Met	Ala	Ser	
													1			
	ctc ctc		_		_	_		-							-	104
00	Leu Leu	-	Cys	Gly	Pro	_	Leu	Ala	Ala	Cys		Ile	Val	Leu	Ser	
30	5					10					15					
	gee tge				_	_		-							_	152
	Ala Trp	Gly	Val	Ile		Leu	Iie	Met	Leu	_	He	Phe	Phe	Asn		
	20				25					30					35	
95	cat too	-		_			_	_			-			-		200
35	His Ser	Ala	val	Leu	ITE	GLU	Asp	va⊥	PTO	Lue	rnr	GIU	ьys	Asp	Phe	

	40 45 50	
	gag aat ggc ccc cag aac ata tac aac ctt tac gag caa gtc agc tac	248
	Glu Asn Gly Pro Gln Asn Ile Tyr Asn Leu Tyr Glu Gln Val Ser Tyr	
	55 60 65	
5	aac tgt ttc atc gct gca ggc ctt tac ctc ctc ctc gga ggc ttc tct	296
	Asn Cys Phe Ile Ala Ala Gly Leu Tyr Leu Leu Leu Gly Gly Phe Ser	
	70 75 80	
	tte tge caa gtt egg ete aat aag ege aag gaa tae atg gtg ege	341
	Phe Cys Gln Val Arg Leu Asn Lys Arg Lys Glu Tyr Met Val Arg	
10	85 90 95	
	tagggeece ggegegttte ecegeteeag eceeteetet atttaaagae teeetgeace	400
	gtgtcaccca ggtcgcgtcc cacccttgcc ggcgccctct gtgggactgg gtttcccggg	460
	cgagagactg aatcccttct cccatctctg gcatccggcc cccgtggaga gggctgaggc	520
	tggggggctg ttccgtctct ccacccttcg ctgtgtcccg tatctcaata aagagaatct	580
15	getetette	589
	<210> 59	
	<211> 673	
	<212> DNA	
20	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (25)(543)	•
25	<400> 59	
	cttgeettge getgegeget cace atg gtg gge eee geg eeg egg egg	51
	Met Val Gly Pro Ala Pro Arg Arg	
	1 5	
	ctg egg eeg etg gea geg etg gee etg gte etg geg etg gee eeg ggg	99
30	Leu Arg Pro Leu Ala Ala Leu Ala Leu Val Leu Ala Leu Ala Pro Gly	
	10 15 20 25	
	ctg ccc aca gcc cgg gcc ggg cag aca ccg cgc cct gcc gag cgg ggg	147
	Leu Pro Thr Ala Arg Ala Gly Gln Thr Pro Arg Pro Ala Glu Arg Gly	
	30 35 40	
35	ccc cca gtg cgg ctt ttc acc gag gag gag ctg gcc cgc tat ggc ggg	195

	Pro	Pro	Val	Arg	Leu	Phe	Thr	Glu	Glu	Glu	Leu	Ala	Arg	Tyr	Gly	Gly	
				45					50					55			
	gag	gag	gaa	gat	cag	acc	atc	tac	ttg	gca	gtg	aag	gga	gtg	gtg	ttt	243
	Glu	Glu	Glu	Asp	Gln	Pro	Ile	Tyr	Leu	Ala	Val	Lys	Gly	Val	Val	Phe	
5			60					65					70				
	gat	gtc	acc	tec	gga	aag	gag	ttt	tat	gga	cga	gga	gcc	ccc	tac	aat	291
	Asp	Val	Thr	Ser	Gly	Lys	Glu	Phe	Tyr	Gly	Arg	Gly	Ala	Pro	Tyr	Asn	
		75					80					85					
	gcc	ttg	acg	ggg	aag	gac	tcc	act	aga	ggg	gta	gcc	aag	atg	tcc	ttg	339
10	Ala	Leu	Thr	Gly	Lys	Asp	Ser	Thr	Arg	Gly	Val	Ala	Lys	Met	Ser	Leu	
	90					95					100					105	
	gat	cct	gca	gac	ctc	acc	cat	gac	act	acg	ggt	ctc	acg	gcc	aag	gaa	387
	Asp	Pro	Ala	Asp	Leu	Thr	His	Asp	Thr	Thr	Gly	Leu	Thr	Ala	Lys	Glu	
					110					115					120		
15	ctg	gag	gcc	ctg	gat	gag	gtc	ttc	acc	aaa	gtg	tac	aaa	gcc	aaa	tac	435
	Leu	Glu	Ala	Leu	Asp	Glu	Val	Phe	Thr	Lys	Val	Tyr	Lys	Ala	Lys	Tyr	
				125					130					135			
	ccc	atc	gtc	ggc	tac	act	gcc	cgg	aga	att	ctc	aat	gag	gat	ggc	agc	483
	Pro	Ile	Val	Gly	Tyr	Thr	Ala	Arg	Arg	Ile	Leu	Asn	Glu	Asp	Gly	Ser	
20			140					145					150				
	cct	aac	ctg	gac	ttc	aag	cct	gaa	gac	cag	ccc	cat	ttt	gac	atc	aag	531
	Pro	Asn	Leu	Asp	Phe	Lys	Pro	Glu	Asp	Gln	Pro	His	Phe	Asp	Ile	Lys	
		155					160					165					
	gat	gag	ttc	tgat	gtto	ecc c	ctgo	agga	ag ca	iggtt	ctt	g gga	igcgt	gag			580
2 5	Asp	Glu	Phe														
	170																
	gca	ggaa	gac a	actag	gtgo	t ga	atct	ccto	, cas	aact	ggc	tgcc	tgga	igg c	ecto	jagcca	640
	CCC	agato	ctg a	aataa	aaca	ig at	gett	acco	: tgg	I							673
30	<210	0> 60)														
	<21	1> 14	125														
	<212	2> Di	AI														
	<213	3> Ho	omo s	sapie	ens												
	<220	0>															
3 5	<22	1> CI	os														

63/177

<222> (127)...(489)

95

	<40	0> 6	0															
	tcc	cgcc	tgg	ggcc	ggct	ga g	tggc	actt	a ag	cggg	ccat	geo	atgo	aac	cttg	ggcgci	t	60
5	gcc	aacc	gtg	ggcg	agct	ct g	ggtg	tgcg	g gc	ggcc	tggc	geg	gaga	tcc	gatg	rtgtca	g 1	20
	cgt	gtt	atg	atg	ccg	tcc	cgt	acc	aac	ctg	gct	act	gga	atc	ccc	agt	1	68
		1	Met	Met	Pro	Ser .	Arg	Thr	Asn	Leu	Ala	Thr	Gly	Ile	Pro	Ser		
			1				5					10						
	agt	aaa	gtg	aaa	tat	tca	agg	ctc	tcc	agc	aca	gac	gat	ggc	tac	att	2	16
10	Ser	Lys	Val	Lys	Tyr	Ser	Arg	Leu	Ser	Ser	Thr	Asp	Asp	Gly	Tyr	Ile		
	15					20					25					30		
	gac	ctt	cag	ttt	aag	aaa	acc	cct	cct	aag	atc	cct	tat	aag	gcc	atc	20	64
	Asp	Leu	Gln	Phe	Lys	Lys	Thr	Pro	Pro	Lys	Ile	Pro	Tyr	Lys	Ala	Ile		
					35					40					45			
15	gca	ctt	gcc	act	gtg	ctg	ttt	ttg	att	ggc	gcc	ttt	ctc	att	att	ata	31	12
	Ala	Leu	Ala	Thr	Val	Leu	Phe	Leu	Ile	Gly	Ala	Phe	Leu	Ile	Ile	Ile		
				50					55					60				
	ggc	tcc	ctc	ctg	ctg	tca	ggc	tac	atc	agc	aaa	ggg	ggg	gca	gac	cgg	36	50
	Gly	Ser	Leu	Leu	Leu	Ser	Gly	Tyr	Ile	Ser	Lys	Gly	Gly	Ala	Asp	Arg		
20			65					70					75					
	gcc	gtt	cca	gtg	ctg	atc	att	ggc	att	ctg	gtg	ttc	cta	ccc	gga	ttt	40	8(
	Ala	Val	Pro	Val	Leu	Ile	Ile	Gly	Ile	Leu	Val	Phe	Leu	Pro	Gly	Phe		
		80					85					90						
	tac	cac	ctg	cgc	atc	gct	tac	tat	gca	tcc	aaa	ggc	tac	cgt	ggt	tac	45	6
25	Tyr	His	Leu	Arg	Ile	Ala	Tyr	Tyr	Ala	Ser	Lys	Gly	Tyr	Arg	Gly	Tyr		

Ser Tyr Asp Asp Ile Pro Asp Phe Asp Asp 115 120 30 tagetgagga ggagteacag tggaactgte ceagetttaa gatatetage agaaactata 560 gctgaggact aaggaattet gcagettgca gatgtttaag aaaataatgg ccagattttt 620 tgggtccttc ccaaagatgt taagtgaacc tacagttagc taattaggac aagctctatt 680 tttcatccct gggccctgac aagtttttcc acaggaatat gtatcatgga agaatagagg 740 ttattctgta atggaaaagt gttgcctgcc accaccctct gtagagctga gcatttcttt 800 35 taaatagtot toattgocaa tttgttottg tagcaaatgg aacaatgtgg tatggotaat 860

105

110

500

100

tcc tat gat gac att cca gac ttt gat gac tagcacccac ccca

	ttcttattat taagtagttt attttaaaaa tatctgagta tattatcctg tacacttatc	920
	cctaccttca tgttccagtg gaagacctta gtaaaatcaa agatcagtga gttcatctgt	980
	aatatttttt ttacttgctt tcttactgac agcaaccagg aatttttta tcctgcagag	1040
	caagttttca aaatgtaaat acttcctctg tttaacagtc cttggaccat tctgatccag	1100
5	ttcaccagta ggttggacag catataattt gcatcatttt gtcccttgta aatcaagatg	1160
	ttctgcagat tattccttta acggccggac ttttggctgt ttcctaatga aacatgtagt	1220
	ggttattatt tagagtttat ageogtattg ctageacett gtagtatgte atcattetge	1280
	tcatgattcc aaggatcagc ctggatgcct agaggactag atcaccttag tttgattcta	1340
	ttttttagct tgcaaaaagt gacttatatt ccaaagaaat taaaatgttg aaatccaaat	1400
10	cctagaaata aaatgagtta acttc	1425
	<210> 61	
	<211> 307	
	<212> PRT	
15	<213> Homo sapiens	
	<400> 61	
	Met Ser Met Ile Leu Ser Ala Ser Val Ile Arg Val Arg Asp Gly Leu	
90	1 5 10 15	
20	Pro Leu Ser Ala Ser Thr Asp Tyr Glu Gln Ser Thr Gly Met Gln Glu 20 25 30	
	20 25 30 Cys Arg Lys Tyr Phe Lys Met Leu Ser Arg Lys Leu Ala Gln Leu Pro	
	35 40 45	
	Asp Arg Cys Thr Leu Lys Thr Gly His Tyr Asn Ile Asn Phe Ile Ser	
25	50 55 60	
	Ser Leu Gly Val Ser Tyr Met Met Leu Cys Thr Glu Asn Tyr Pro Asn	
	65 70 75 80	
	Val Leu Ala Phe Ser Phe Leu Asp Glu Leu Gln Lys Glu Phe Ile Thr	
	85 90 95	
30	Thr Tyr Asn Met Met Lys Thr Asn Thr Ala Val Arg Pro Tyr Cys Phe	
	100 105 110	
	Ile Glu Phe Asp Asn Phe Ile Gln Arg Thr Lys Gln Arg Tyr Asn Asn	
	115 120 125	
	Pro Arg Ser Leu Ser Thr Lys Ile Asn Leu Ser Asp Met Gln Thr Glu	
35	130 135 140	

	Ile	Lys	Leu	Arg	Pro	Pro	Tyr	Gln	Ile	Ser	Met	Cys	Glu	Leu	Gly	/ Sei
	145					150					155					160
	Ala	Asn	Gly	Val	Thr	Ser	Ala	Phe	Ser	Val	Asp	Cys	Lys	Gly	Ala	Gly
					165					170					175	;
5	Lys	Ile	Ser	Ser	Ala	His	Gln	Arg	Leu	Glu	Pro	Ala	Thr	Leu	Ser	Gly
				180					185					190		
	Ile	Val	Gly	Phe	Ile	Leu	Ser	Leu	Leu	Cys	Gly	Ala	Leu	Asn	Leu	Ιle
			195					200					205			
	Arg	Gly	Phe	His	Ala	Ile	Glu	Ser	Leu	Leu	Gln	Ser	Asp	Gly	Asp	Asp
10		210					215					220				
	Phe	Asn	Tyr	Ile	Ile	Ala	Phe	Phe	Leu	Gly	Thr	Ala	Ala	Сув	Leu	Tyr
	225					230					235					240
	Gln	Cys	Tyr	Leu	Leu	Val	Tyr	Tyr	Thr	Gly	Trp	Arg	Asn	Val	Lys	Ser
					245					250					255	
15	Phe	Leu	Thr	Phe	Gly	Leu	Ile	Cys	Leu	Cys	Asn	Met	Tyr	Leu	Tyr	Glu
				260					265					270		
	Leu	Arg	Asn	Leu	Trp	Gln	Leu	Phe	Phe	His	Val	Thr	Val	Gly	Ala	Phe
			275					280					285			
	Val	Thr	Leu	Gln	Ile	Trp	Leu	Arg	Gln	Ala	Gln	Gly	Lys	Ala	Pro	Asp
20		290					295					300				
	Tyr	Asp	Val													
	305															
	<210	> 62	!													
25	<211	> 18	3													•
	<212	> PR	T													
	<213	> Ho	mo s	apie	ns											
	<400	> 62														
30	Met	Thr	Ala	Gln	Gly	Gly	Leu	Val	Ala	Asn	Arg	Gly	Arg	Arg	Phe	Lys
	1				5					10					15	
	Trp	Ala	Ile	Glu	Leu	Ser	Gly	Pro	Gly	Gly	Gly	Ser	Arg	Gly	Arg	Ser
				20					25					30		
	Asp .	Arg	Gly	Ser	Gly	Gln	Gly .	Asp	Ser	Leu	Tyr	Pro	Val	Gly	Tyr	Leu
35			35					40					45			

	Asp	Lys	Gln	Val	Pro	Asp	Thr	Ser	Val	Gln	Glu	Thr	Asp	Arg	Ile	Leu
		50					55					60				
	Val	Glu	Lys	Arg	Суз	Trp	Asp	Ile	Ala	Leu	Gly	Pro	Leu	Lys	Gln	Ile
	65					70					75					80
5	Pro	Met	Asn	Leu	Phe	Ile	Met	Tyr	Met	Ala	Gly	Asn	Thr	Ile	Ser	Ile
					85					90					95	
	Phe	Pro	Thr	Met	Met	Val	Cys	Met	Met	Ala	Trp	Arg	Pro	Ile	Gln	Ala
				100					105					110		
	Leu	Met	Ala	Ile	Ser	Ala	Thr	Phe	Lys	Met	Leu	Glu	Ser	Ser	Ser	Gln
10			115					120					125			
	Lys	Phe	Leu	Gln	Gly	Leu	Val	Tyr	Leu	Ile	Gly	Asn	Leu	Met	Gly	Leu
		130					135					140				
	Ala	Leu	Ala	Val	Tyr	Lys	Сув	Gln	Ser	Met	Gly	Leu	Leu	Pro	Thr	His
	145					150					155					160
15	Ala	Ser	Asp	Trp	Leu	Ala	Phe	Ile	Glu	Pro	Pro	Glu	Arg	Met	Glu	Phe
					165					170					175	
	Ser	Gly	Gly	Gly	Leu	Leu	Leu									
				180												
20	<210)> 63	3													
	<211	l> 32	27													
	<212	?> PF	TS													
	<213	3> Ho	omo s	apie	ens											
0.5																
25)> 63							_							
		Arg	Ala	Leu	Pro	Gly	Leu	Leu	Glu		Arg	Ala	Arg	Thr		Arg
	_	_	_		5				_	10			_	_	15	
	Leu	Leu	Leu		Gln	Cys	Leu	Leu		Ala	Ala	Arg	Pro		Ser	Ala
00	_		_	20					25		_		_	30	_	
30	Asp	Gly		Ala	Pro	Asp	Ser		Phe	Thr	Ser	Pro		Leu	Arg	Glu
			35					40					45			
	G1u		Met	Ala	Asn	Asn		Ser	Leu	Glu	Ser		Asn	Ile	Ser	Leu
		50					55	_	_	_		60	_			
0.5		Glu	His	Ser	Ser		Pro	Val	Glu	Lys		Ile	Thr	Leu	Glu	_
35	65					70					75					80

67/177

	Pro	Ser	Asn	Val	Asn	Leu	Thr	Cys	Gln	Phe	Thr	Thr	Ser	Gly	Asp	Le
					85					90					95	
	Asn	Ala	Val	Asn	Val	Thr	Trp	Lys	Lys	Asp	Gly	Glu	Gln	Leu	Glu	Ası
				100					105					110		
5	Asn	Tyr	Leu	Val	Ser	Ala	Thr	Gly	Ser	Thr	Leu	Tyr	Thr	Gln	Tyr	Arg
			115					120					125			
	Phe	Thr	Ile	Ile	Asn	Ser	Lys	Gln	Met	Gly	Ser	Tyr	Ser	Cys	Phe	Phe
		130					135					140				
	Arg	Glu	Glu	Lys	Glu	Gln	Arg	Gly	Thr	Phe	Asn	Phe	Lys	Val	Pro	Glu
10	145					150					155					160
	Leu	His	Gly	Lys	Asn	Lys	Pro	Leu	Ile	Ser	Tyr	Val	Gly	Asp	Ser	Thi
					165					170					175	
	Val	Leu	Thr	Cys	Lys	Cys	Gln	Asn	Cys	Phe	Pro	Leu	Asn	Trp	Thr	Tr
				180					185					190		
15	Tyr	Ser	Ser	Asn	Gly	Ser	Val	Lys	Val	Pro	Val	Gly		Gln	Met	Asr
			195					200					205			
	Lys	Tyr	Val	Ile	Asn	Gly	Thr	Tyr	Ala	Asn	Glu	Thr	Lys	Leu	Lys	Ile
		210					215					220				
	Thr	Gln	Leu	Leu	Glu	Glu	Asp	Gly	Glu	Ser	Tyr	Trp	Cys	Arg	Ala	Leu
20	225					230					235					240
	Phe	Gln	Leu	Gly	Glu	Ser	Glu	Glu	His	Ile	Glu	Leu	Val	Val	Leu	Ser
					245					250					255	
	Tyr	Leu	Val		Leu	Lys	Pro	Phe		Val	Ile	Val	Ala		Val	Ile
				260					265					270		
25	Leu	Leu	Val	Ala	Thr	Ile	Leu		Cys	Glu	Lys	Tyr		Gln	Lys	Lys
	_		275					280					285			
	Lys		His	Ser	Asp	Glu		Lys	Glu	Phe	Glu		Ile	Glu	Gln	Leu
		290					295					300				
0.0		Ser	Asp	Asp			Gly	Ile	Glu			Val	Pro	Arg		
30	305					310					315					320
	Lys	Asn	Glu	Ser		Gly	Gln									
					325											

<210> 64 <211> 223

35

68/177

<212> PRT
<213> Homo sapiens
<400> 64

Met Lys Phe Val Pro

10

20

30

Met Lys Phe Val Pro Cys Leu Leu Leu Val Thr Leu Ser Cys Leu Gly

1 5 10 15

Thr Leu Gly Gln Ala Pro Arg Gln Lys Gln Gly Ser Thr Gly Glu Glu

20 25 30

Phe His Phe Gln Thr Gly Gly Arg Asp Ser Cys Thr Met Arg Pro Ser

35 40 45

Ser Leu Gly Gln Gly Ala Gly Glu Val Trp Leu Arg Val Asp Cys Arg
50 55 60

Asn Thr Asp Gln Thr Tyr Trp Cys Glu Tyr Arg Gly Gln Pro Ser Met
65 70 75 80

15 Cys Gln Ala Phe Ala Ala Asp Pro Lys Ser Tyr Trp Asn Gln Ala Leu 85 90 95

Gln Glu Leu Arg Arg Leu His His Ala Cys Gln Gly Ala Pro Val Leu 100 105 110

Arg Pro Ser Val Cys Arg Glu Ala Gly Pro Gln Ala His Met Gln Gln
115 120 125

Val Thr Ser Ser Leu Lys Gly Ser Pro Glu Pro Asn Gln Gln Pro Glu 130 135 140

Ala Gly Thr Pro Ser Leu Arg Pro Lys Ala Thr Val Lys Leu Thr Glu

145 150 155 160

25 Ala Thr Gln Leu Gly Lys Asp Ser Met Glu Glu Leu Gly Lys Ala Lys
165 170 175

Pro Thr Thr Arg Pro Thr Ala Lys Pro Thr Gln Pro Gly Pro Arg Pro 180 185 190

Gly Gly Asn Glu Glu Ala Lys Lys Lys Ala Trp Glu His Cys Trp Lys
195 200 205

Pro Phe Gln Ala Leu Cys Ala Phe Leu Ile Ser Phe Phe Arg Gly 210 215 220

<210> 65

35 <211> 48

69/177

<212> PRT <213> Homo sapiens <400> 65 5 Met Arg Leu Leu Leu Leu Leu Val Ala Ala Ser Ala Met Val Arg 10 15 Ser Glu Ala Ser Ala Asn Leu Gly Gly Val Pro Ser Lys Arg Leu Lys 25 Met Gln Tyr Ala Thr Gly Pro Leu Leu Lys Phe Gln Ile Cys Val Ser 10 40 45 <210> 66 <211> 371 <212> PRT 15 <213> Homo sapiens <400> 66 Met Ala Trp Thr Lys Tyr Gln Leu Phe Leu Ala Gly Leu Met Leu Val 1 5 10 20 Thr Gly Ser Ile Asn Thr Leu Ser Ala Lys Trp Ala Asp Asn Phe Met 20 Ala Glu Gly Cys Gly Gly Ser Lys Glu His Ser Phe Gln His Pro Phe 40 Leu Gln Ala Val Gly Met Phe Leu Gly Glu Phe Ser Cys Leu Ala Ala 25 50 60 55 Phe Tyr Leu Leu Arg Cys Arg Ala Ala Gly Gln Ser Asp Ser Ser Val Asp Pro Gln Gln Pro Phe Asn Pro Leu Leu Phe Leu Pro Pro Ala Leu 85 90 95 30 Cys Asp Met Thr Gly Thr Ser Leu Met Tyr Val Ala Leu Asn Met Thr 100 105 Ser Ala Ser Ser Phe Gln Met Leu Arg Gly Ala Val Ile Ile Phe Thr 120

Gly Leu Phe Ser Val Ala Phe Leu Gly Arg Arg Leu Val Leu Ser Gln

140

135

35

130

	Trp	Leu	Gly	Ile	Leu	Ala	Thr	Ile	Ala	Gly	Leu	Val	Val	Val	Gly	Leu
	145					150					155					160
	Ala	Asp	Leu	Leu	Ser	Lys	His	Asp	Ser	Gln	His	Lys	Leu	Ser	Glu	Val
					165					170					175	
5	Ile	Thr	Gly	Asp	Leu	Leu	Ile	Ile	Met	Ala	Gln	Ile	Ile	Val	Ala	Ile
				180					185					190		
	Gln	Met	Val	Leu	Glu	Glu	Lys	Phe	Val	Tyr	Lys	His	Asn	Val	His	Pro
			195					200					205			
	Leu	Arg	Ala	Val	Gly	Thr	Glu	Gly	Leu	Phe	Gly	Phe	Val	Ile	Leu	Ser
10		210					215					220				
	Leu	Leu	Leu	Val	Pro	Met	Tyr	Tyr	Ile	Pro	Ala	Gly	Ser	Phe	Ser	Gly
	225					230					235					240
	Asn	Pro	Arg	Gly	Thr	Leu	Glu	Asp	Ala	Leu	Asp	Ala	Phe	Cys	Gln	Val
					245					250					255	
15	Gly	Gln	Gln	Pro	Leu	Ile	Ala	Val	Ala	Leu	Leu	Gly	Asn	Ile	Ser	Ser
				260					265					270		
	Ile	Ala	Phe	Phe	Asn	Phe	Ala	Gly	Ile	Ser	Val	Thr	Lys	Glu	Leu	Ser
			275					280					285			
	Ala	Thr	Thr	Arg	Met	Val	Leu	Asp	Ser	Leu	Arg	Thr	Val	Val	Ile	Trp
20		290					295					300				
	Ala	Leu	Ser	Leu	Ala	Leu	Gly	Trp	Glu	Ala	Phe	His	Ala	Leu	Gln	Ile
	305					310					315					320
	Leu	Gly	Phe	Leu	Ile	Leu	Leu	Ile	Gly	Thr	Ala	Leu	Tyr	Asn	Gly	Leu
					325					330					335	
25	His	Arg	Pro	Leu	Leu	Gly	Arg	Leu	Ser	Arg	Gly	Arg	Pro	Leu	Ala	Glu
				340					345					350		
	Glu	Ser	Glu	Gln	Glu	Arg	Leu	Leu	Gly	Gly	Thr	Arg	Thr	Pro	Ile	Asn
			355					360					365			
	Asp	Ala	Ser													
30		370														
	<210	> 67	1													
	<211	.> 90	ı													
	<212	> PR	T													
35	<213	> Ho	mo s	apie	ns					,						

	<40	0> 6	7													
	Met	Phe	His	Gln	Ile	Trp	Ala	Ala	Leu	Leu	Tyr	Phe	Tyr	Gly	Ile	Ile
	1				5					10					15	
5	Leu	Asn	Ser	Ile	Tyr	Gln	Cys	Pro	Glu	His	Ser	Gln	Leu	Thr	Thr	Leu
				20					25					30		
	Gly	Val	Asp	Gly	Lys	Glu	Phe	Pro	Glu	Val	His	Leu	Gly	Gln	Trp	Tyr
			35					40					45			
	Phe	Ile	Ala	Gly	Ala	Ala	Pro	Thr	Lys	Glu	Glu	Leu	Ala	Thr	Phe	Asp
10		50					55					60				
	Pro	Val	Asp	Asn	Ile	Val	Phe	Asn	Met	Ala	Ala	Gly	Ser	Ala	Pro	Met
	65					70					75					80
	Gln	Leu	His	Leu	Arg	Ala	Thr	Ile	Arg	Met						
					85					90						
15																
	<21	0> 61	В													
	<211> 499															
	<21	2> P1	RT													
	<21	3> H	omo s	sapie	ens											
20																
	<40	0> 68	8													
	Met	Val	Asp	Arg	Gly	Pro	Leu	Leu	Thr	Ser	Ala	Ile	Ile	Phe	Tyr	Leu
	1				5					10					15	
	Ala	Ile	Gly	Ala	Ala	Ile	Phe	Glu	Val	Leu	Glu	Glu	Pro	His	Trp	Lys
25				20					25					30		
	Glu	Ala	_	Lys	Asn	Tyr	Tyr		Gln	Lys	Leu	His		Leu	Lys	Glu
			35					40					45			
	Phe		Cys	Leu	Gly	Gln	Glu	Gly	Leu	Asp	Lys		Leu	Glu	Val	Val
00	_	50					55					60				
30		Asp	Ala	Ala	Gly		Gly	Val	Ala	Ile		Gly	Asn	Gln	Thr	
	65					70					75					80
	Asn	Asn	Trp	Asn	_	Pro	Asn	Ala	Met		Phe	Ala	Ala	Thr		Ile
					85			_	_	90					95	
0.5	Thr	Thr	Ile	Gly	Tyr	Gly	Asn	Val		Pro	Lys	Thr			Gly	Arg
35				100					105					110		

	Leu	Phe	Cys	Val	Phe	Tyr	Gly	Leu	Phe	Gly	Val	Pro	Leu	Cys	Leu	Thr
			115					120					125			
	Trp	Ile	Ser	Ala	Leu	Gly	Lys	Phe	Phe	Gly	Gly	Arg	Ala	Lys	Arg	Leu
		130					135					140				
5	Gly	Gln	Phe	Leu	Thr	Lys	Arg	Gly	Val	Ser	Leu	Arg	Lys	Ala	Gln	Ile
	145					150					155					160
	Thr	Cys	Thr	Val	Ile	Phe	Ile	Val	Trp	Gly	Val	Leu	Val	His	Leu	Val
					165					170					175	
	Ile	Pro	Pro	Phe	Val	Phe	Met	Val	Thr	Glu	Gly	Trp	Asn	Tyr	Ile	Glu
10				180					185					190		
	Gly	Leu	Tyr	Tyr	Ser	Phe	Ile	Thr	Ile	Ser	Thr	Ile	Gly	Phe	Gly	Asp
			195					200					205			
	Phe	Val	Ala	Gly	Val	Asn	Pro	Ser	Ala	Asn	Tyr	His	Ala	Leu	Tyr	Arg
		210					215					220				
15	Tyr	Phe	Val	Glu	Leu	Trp	Ile	Tyr	Leu	Gly	Leu	Ala	Trp	Leu	Ser	Leu
	225					230					235					240
	Phe	Val	Asn	Trp	Lys	Val	Ser	Met	Phe	Val	Glu	Val	His	Lys	Ala	Ile
					245					250					255	
	Lys	Lys	Arg	Arg	Arg	Arg	Arg	Lys	Glu	Ser	Phe	Glu	Ser	Ser	Pro	His
20				260					265					270		
	Ser	Arg	Lys	Ala	Leu	Gln	Val	Lys	Gly	Ser	Thr	Ala	Ser	Lys	Asp	Val
			275					280					285			
	Asn		Phe	Ser	Phe	Leu	Ser	Lys	Lys	Glu	Glu	Thr	Tyr	Asn	Asp	Leu
		290					295					300				
25		Lys	Gln	Ile	Gly	Lys	Lys	Ala	Met	Lys	Thr	Ser	Gly	Gly	Gly	Glu
	305					310					315					320
	Thr	Gly	Pro	Gly	Pro	Gly	Leu	Gly	Pro	Gln	Gly	Gly	Gly	Leu	Pro	Ala
					325					330					335	
	Leu	Pro	Pro	Ser	Leu	Val	Pro	Leu	Val	Val	Tyr	Ser	Lys	Asn	Arg	Val
30				340					345					350		
	Pro	Thr	Leu	Glu	Glu	Val	Ser	Gln	Thr	Leu	Arg	Ser	Lys	Gly	His	Val
			355					360					365			
	Ser	Arg	Ser	Pro	Asp	Glu	Glu	Ala	Val	Ala	Arg	Ala	Pro	Glu	Asp	Ser
		370					375					380				
35	Ser	Pro	Ala	Pro	Glu	Val	Phe	Met	Asn	Gln	Leu	Asp .	Arg	Ile	Ser	Glu

	385					390					395					400
	Glu	Cys	Glu	Pro	Trp	Asp	Ala	Gln	Asp	Tyr	His	Pro	Leu	Ile	Phe	Gln
					405					410					415	
	Asp	Ala	Ser	Ile	Thr	Phe	Val	Asn	Thr	Glu	Ala	Gly	Leu	Ser	Asp	Glu
5				420					425					430		
	Glu	Thr	Ser	Lys	Ser	Ser	Leu	Glu	Asp	Asn	Leu	Ala	Gly	Glu	Glu	Ser
			435					440					445			
	Pro	Gln	Gln	Gly	Ala	Glu	Ala	Lys	Ala	Pro	Leu	Asn	Met	Gly	Glu	Phe
		450					455					460				
10	Pro	Ser	Ser	Ser	Glu	Ser	Thr	Phe	Thr	Ser	Thr	Glu	Ser	Glu	Leu	Ser
	465					470					475					480
	Val	Pro	Tyr	Glu	Gln	Leu	Met	Asn	Glu	Tyr	Asn	Lys	Ala	Asn	Ser	Pro
					485					490					495	
	Lys	Gly	Thr													
15																
	<210)> 69	•													
	<211	l> 10)6													
	<212	?> PF	P.T													
20	<213	3> Ho	omo s	sapie	ens											
)> 69														
	Met	Ala	Ser	Ser	Gly	Ala	Gly	Asp	Pro	Leu	Asp	Ser	Lys	Arg	Gly	Glu
	1				5					10					15	
2 5	Ala	Pro	Phe	Ala	Gln	Arg	Ile	Asp	Pro	Thr	Arg	Glu	Lys	Leu	Thr	Pro
				20					25					30		
	Glu	Gln	Leu	His	Ser	Met	Arg	Gln	Ala	Glu	Leu	Ala	Gln	Trp	Gln	Lys
			35					40					45			
	Val	Leu	Pro	Arg	Arg	Arg	Thr	Arg	Asn	Ile	Val	Thr	Gly	Leu	Gly	Ile
30		50					55					60				
	Gly	Ala	Leu	Val	Leu	Ala	Ile	Tyr	Gly	Tyr	Thr	Phe	Tyr	Ser	Ile	Ser
	65					70					75					80
	Gln	Glu	Arg	Phe	Leu	Asp	Glu	Leu	Glu	Asp	Glu	Ala	Lys	Ala	Ala	Arg
					85					90					95	
35	Ala	Arg	Ala	Leu	Ala	Arg	Ala	Ser	Gly	Ser						

74/177

100 105 <210> 70 <211> 152 5 <212> PRT <213> Homo sapiens <400> 70 Met Asp Tyr Val Cys Cys Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp 10 5 10 15 Glu Thr His Phe Thr Val Ile Ile Thr Ser Val Gly Leu Glu Lys Leu 25 20 Ala Gln Lys Gly Lys Ser Leu Ser Pro Leu Ala Ser Ile Thr Gly Ile 40 15 Ser Leu Phe Leu Ile Ile Ser Met Cys Leu Leu Phe Leu Trp Lys Lys 50 55 60 Tyr Gln Pro Tyr Lys Val Ile Lys Gln Lys Leu Glu Gly Arg Pro Glu 70 Thr Glu Tyr Arg Lys Ala Gln Thr Phe Ser Gly His Glu Asp Ala Leu 20 85 90 Asp Asp Phe Gly Ile Tyr Glu Phe Val Ala Phe Pro Asp Val Ser Gly 100 105 Val Ser Arg Ile Pro Ser Arg Ser Val Pro Ala Ser Asp Cys Val Ser 120 25 Gly Gln Asp Leu His Ser Thr Val Tyr Glu Val Ile Gln His Ile Pro 140 130 135 Ala Gln Gln Asp His Pro Glu 145 150 30 <210> 71 <211> 921 <212> DNA <213> Homo sapiens

35

<400> 71

75/177

	atgtctatga	ttttatctgc	ctcagtcatt	cgtgtcagag	atggactgcc	actttctgct	60
	tctactgatt	atgaacaaag	cacaggaatg	caggagtgca	gaaagtattt	taaaatgctt	120
	tcgaggaaac	ttgctcaact	teetgataga	tgtacactga	aaactggaca	ttataacatt	180
	aattttatta	gctctctggg	agtgagctac	atgatgttgt	gcactgaaaa	ttacccaaat	240
5	gttctcgcct	tetettteet	ggatgagctt	cagaaggagt	tcattactac	ttataacatg	300
	atgaagacaa	atactgctgt	cagaccatac	tgtttcattg	aatttgataa	cttcattcag	360
	aggaccaagc	agcgatataa	taatcccagg	tctctttcaa	caaagataaa	tctttctgac	420
	atgcagacgg	aaatcaagct	gaggcctcct	tatcaaattt	ccatgtgcga	actggggtca	480
	gccaatggag	tcacatcagc	attttctgtt	gactgtaaag	gtgctggtaa	gatttcttct	540
10	gctcaccagc	gactggaacc	agcaactctg	tcagggattg	taggatttat	ccttagtctt	600
	ttatgtggag	ctctgaattt	aattcgaggc	tttcatgcta	tagaaagtct	cctgcagagt	660
	gatggtgatg	attttaatta	catcattgca	tttttccttg	gaacagcagc	ctgcctttac	720
	cagtgttatt	tacttgtcta	ctacaccggc	tggcggaatg	tcaaatcttt	tttgactttt	780
	ggcttaatct	gtctatgcaa	catgtatctc	tatgaactgc	gcaacctctg	gcagcttttc	840
15	tttcatgtga	ctgtgggagc	atttgttaca	ctacagatct	ggctaaggca	agcccagggc	900
	aaggctcccg	attatgatgt	C				921
	<210> 72						
	<211> 549						
20	<212> DNA						
	<213> Homo	sapiens				•	
	<400> 72						
0.5				egaggeegge			60
25				cgaagtgacc			120
				caagtgcctg			180
				gacatcgcct			240
				ggcaatacta			300
				caggcactta			360
30	aagatgttag	aaagttcaag	ccagaagttt	cttcagggtt	tggtctatct	cattgggaac	420
				4	A A A		
				tgccagtcca			480
				tgccagtcca cctgagagaa			480 540 549

35 <210> 73

<211> 981

	~212\ DNA				•	
	<212> DNA					
	<213> Homo sap:	iens				
_						
5	<400> 73					
	atgegegeee tee	ceggeet getggaggee	agggcgcgta	cgccccggct	gctcctcctc	60
	cagtgccttc tcg	ctgeege gegeeeaage	teggeggaeg	gcagtgcccc	agattegeet	120
	tttacaagtc cac	ctctcag agaagaaata	atggcaaata	acttttcctt	ggagagtcat	180
	aacatatcac tgad	etgaaca ttetagtatg	r ccagtagaaa	aaaatatcac	tttagaaagg	240
10	ccttctaatg taas	ateteae atgecagtte	acaacatctg	gggatttgaa	tgcagtaaat	300
	gtgacttgga aaas	agatgg tgaacaactt	gagaataatt	atcttgtcag	tgcaacagga	360
	agcaccttgt atac	ccaata caggttcacc	atcattaata	gcaaacaaat	gggaagttat	420
	tettgtttet tteg	gagagga aaaggaacaa	aggggaacat	ttaatttcaa	agtecetgaa	480
	cttcatggga aaaa	acaagee attgatetet	tacgtagggg	attctactgt	cttgacatgt	540
15	aaatgtcaaa atto	sttttcc tttaaattgg	acctggtaca	gtagtaatgg	gagtgtaaag	600
	gttcctgttg gtgt	tcaaat gaataaatat	gtgatcaatg	gaacatatgc	taacgaaaca	660
	aagctgaaga taac	acaact tttggaggaa	gatggggaat	cttactggtg	ccgtgcacta	720
	ttccaattag gcga	ngagtga agaacacatt	gagettgtgg	tgctgagcta	tttggtgece	780
	ctcaaaccat ttct	tgtaat agtggctgag	gtgattcttt	tagtggccac	cattetgett	840
20	tgtgaaaagt acac	acaaaa gaaaaagaag	cactcagatg	aggggaaaga	atttgagcag	900
	attgaacage tgaa	atcaga tgatagcaat	ggtatagaaa	ataatgtccc	caggcataga	960
	aaaaatgagt ctct	gggcca g				981
	<210> 74					
25	<211> 669					
	<212> DNA					
	<213> Homo sapi	ens				
	<400> 74					
30	atgaagttcg tccc	ctgcct cctgctggtg	accttgtcct	gcctggggac	tttgggtcag	60
	gccccgaggc aaaa	gcaagg aagcactggg	gaggaattcc	atttccagac	tggagggaga	120
	gattcctgca ctat	gegtee cageagettg	gggcaaggtg	ctggagaagt	ctggcttcgc	180
	gtcgactgcc gcaa	cacaga ccagacctac	tggtgtgagt	acagggggca	gcccagcatg	240
	tgccaggctt tege	tgctga ccccaaatct	tactggaatc a	aagccctgca	ggagctgagg	300
35	cgccttcacc atgc	gtgcca gggggccccg	gtgcttaggc	catccgtgtg	cagggaggct	360

	ggaccccagg	cccatatgca	gcaggtgact	tecageetea	agggcagcco	agageceaac	420
						actcacagaa	480
	gcaacacagc	tgggaaagga	ctcgatggaa	gagctgggaa	aagccaaacc	caccacccga	540
	cccacagcca	aacctaccca	gcctggaccc	aggcccggag	ggaatgagga	agcaaagaag	600
5	aaggcctggg	aacattgttg	gaaacccttc	caggccctgt	gegeetttet	catcagette	660
	ttccgaggg						669
•	<210> 75						
	<211> 144						
10	<212> DNA						
	<213> Homo	sapiens					
	<400> 75						
	atgaggette	tgctgcttct	cctagtggcg	gegtetgega	tggtccggag	cgaggcctcg	60
15	gccaatctgg	geggegtgee	cagcaagaga	ttaaagatgc	agtacgccac	ggggccgctg	120
	ctcaagttcc	agatttgtgt	ttee				144
	<210> 76						
	<211> 1113						
20	<212> DNA	•					•
	<213> Homo	sapiens					
	<400> 76						
0.5			gctgttcctg				60
25			ggcggacaat				120
			cttcctccag				180
			cctccgatgc				240
		-	ccctcttctt				300
90		-	ggctctgaac				360
30		-	cactggcctg			-	420
		-	catcctagcc				480
			cgacagtcag				540
			gatcatcgtt			-	600
0.5		-	cccactgcgg				660
35	gtgatcctct	ccctgctgct	ggtgcccatg	tactacatcc	ccgccggctc	cttcagcgga	720

	aaccctcgtg	ggacactgga	ggatgcattg	gacgccttct	gccaggtggg	ccagcagccg	780
	ctcattgccg	tggcactgct	gggcaacatc	agcagcattg	ccttcttcaa	cttcgcaggc	840
	atcagcgtca	ccaaggaact	gagegeeace	accegeatgg	tgttggacag	cttgcgcacc	900
	gttgtcatct	gggcactgag	cctggcactg	ggctgggagg	ccttccatgc	actgcagatc	960
5	cttggcttcc	tcatactcct	tataggcact	gccctctaca	atgggctaca	cegteegetg	1020
	ctgggccgcc	tgtccagggg	ceggecectg	gcagaggaga	gcgagcagga	gagactgctg	1080
	ggtggcaccc	gcactcccat	caatgatgcc	agc			1113
	<210> 77						
10	<211> 270						
	<212> DNA						
	<213> Homo	sapiens					
	<400> 77						
15			agctctgctc				60
			tcaactgaca				120
			gtactttatc				180
	gcaacttttg	accctgtgga	caacattgtc	ttcaatatgg	ctgctggctc	tgccccgatg	240
	cagctccacc	ttcgtgctac	catccgcatg				270
20							
	<210> 78						
	<211> 1497						
	<212> DNA				•		
05	<213> Homo	sapiens					
25	44005 70						
	<400> 78				+a+=a+aa	antaggggg	60
			gctcacctcg				60 120
			ggagccacac				180
30			ggagttcccg				240
อบ			tgcaggacag				300
			tgcaatgatt				
			gacccccgcc				360 430
			gacgtggatc				420
25			ccttaccaag				480
35	acgtgcacag	tcatcttcat	cgtgtggggc	greeragree	acctggtgat	CCCACCCTTC	540

79/177

	gtattcatgg	tgactgaggg	gtggaactac	atcgagggcc	tctactactc	cttcatcacc	600
	atctccacca	teggettegg	tgactttgtg	gccggtgtga	accccagcgc	caactaccac	660
	gccctgtacc	gctacttcgt	ggagctctgg	atctacttgg	ggetggeetg	gctgtccctt	720
	tttgtcaact	ggaaggtgag	catgtttgtg	gaagtccaca	aagccattaa	gaagcggcgg	780
5	cggcgacgga	aggagtcctt	tgagagctcc	ccacactccc	ggaaggccct	gcaggtgaag	840
	gggagcacag	cctccaagga	cgtcaacatc	ttcagctttc	tttccaagaa	ggaagagacc	900
	tacaacgacc	tcatcaagca	gatcgggaag	aaggccatga	agacaagcgg	gggtggggag	960
	acgggcccgg	gcccagggct	ggggcctcaa	ggcggtgggc	teccageact	geceettee	1020
	ctggtgcccc	tggtagtcta	ctccaagaac	cgggtgccca	ccttggaaga	ggtgtcacag	1080
10	acactgagga	gcaaaggcca	cgtatcaagg	tececagatg	aggaggctgt	ggcacgggcc	1140
	cctgaagaca	gctcccctgc	ccccgaggtg	ttcatgaacc	agctggaccg	catcagcgag	1200
	gaatgcgagc	catgggacgc	ccaggactac	cacccactca	tcttccagga	cgccagcatc	1260
	accttcgtga	acacggaggc	tggcctctca	gacgaggaga	cctccaagtc	ctcgctagag	1320
	gacaacttgg	caggggagga	gagcccccag	cagggggctg	aagccaaggc	gcccctgaac	1380
15	atgggcgagt	tecceteete	ctccgagtcc	accttcacca	gcactgagtc	tgagetetet	1440
	gtgccttacg	aacagctgat	gaatgagtac	aacaaggcta	acagccccaa	gggcaca	1497
	<210> 79						
	<211> 318						
20	<212> DNA						
	<213> Homo	sapiens					
	<400> 79						
	atggcgtctt	cgggagctgg	tgaccetetg	gattctaagc	gtggagaggc	cccgttcgct	60
25	cagegtateg	accegacteg	ggagaagctg	acacccgagc	aactgcattc	catgcggcag	120
	gcggagcttg	cccagtggca	gaaggtccta	ccacggcggc	gaacccggaa	categtgace	180
	ggcctaggca	teggggeeet	ggtgttggct	atttatggtt	acaccttcta	ctcgatttcc	240
	caggagcgtt	tcctagatga	gctagaagac	gaggccaaag	ctgcccgagc	ccgagctctg	300
	gcaagggcgt	cagggtcc					318
30							
	<210> 80						
	<211> 456						
	<212> DNA						
	<213> Homo	sapiens					

35

	<400> 80	
	atggactatg tgtgctgtgc ttacaacaac ataaccggca ggcaagatga aactcatttc	60
	acagttatca tcacttccgt aggactggag aagcttgcac agaaaggaaa atcattgtca	120
	cctttagcaa gtataactgg aatatcacta tttttgatta tatccatgtg tcttctcttc	180
5	ctatggaaaa aatatcaacc ctacaaagtt ataaaacaga aactagaagg caggccagaa	240
	acagaataca ggaaagetea aacattttea ggeeatgaag atgetetgga tgaettegga	300
	atatatgaat ttgttgcttt tecagatgtt tetggtgttt ceaggatece aageaggtet	360
	gttccagcct ctgattgtgt atcggggcaa gatttgcaca gtacagtgta tgaagttatt	420
	cagcacatce etgeccagea geaagaceat ecagag	456
10		
	<210> 81	
	<211> 1436	
	<212> DNA	
	<213> Homo sapiens	
15	<220>	
	<221> CDS	
	<222> (66)(989)	
00	<400> 81	
20	gcactteggg gegegteact eggageggeg ggteeegtet egaeaggtet tetetgttgg	60
	ttgaa atg tet atg att tta tet gee tea gte att egt gte aga gat	107
	Met Ser Met Ile Leu Ser Ala Ser Val Ile Arg Val Arg Asp	
	1 5 10	
25	gga ctg cca ctt tct gct tct act gat tat gaa caa agc aca gga atg	155
20	Gly Leu Pro Leu Ser Ala Ser Thr Asp Tyr Glu Gln Ser Thr Gly Met 15 20 25 30	
	- -	202
	cag gag tgc aga aag tat ttt aaa atg ctt tcg agg aaa ctt gct caa	203
	Gln Glu Cys Arg Lys Tyr Phe Lys Met Leu Ser Arg Lys Leu Ala Gln	
30	35 40 45	251
30	ctt cct gat aga tgt aca ctg aaa act gga cat tat aac att aat ttt	251
	Leu Pro Asp Arg Cys Thr Leu Lys Thr Gly His Tyr Asn Ile Asn Phe	
	50 55 60	000
	att age tet etg gga gtg age tae atg atg ttg tge act gaa aat tae	299
95	Ile Ser Ser Leu Gly Val Ser Tyr Met Met Leu Cys Thr Glu Asn Tyr	
35	65 70 75	

	cca	aat	gtt	ctc	gcc	ttc	tct	ttc	ctg	gat	gag	ctt	cag	aag	gag	ttc	347
	Pro	Asn	Val	Leu	Ala	Phe	Ser	Phe	Leu	Asp	Glu	Leu	Gln	Lys	Glu	Phe	
		80					85					90					
	att	act	act	tat	aac	atg	atg	aag	aca	aat	act	gct	gtc	aga	cca	tac	395
5	Ile	Thr	Thr	Tyr	Asn	Met	Met	Lys	Thr	Asn	Thr	Ala	Val	Arg	Pro	Tyr	
	95					100					105					110	
	tgt	tte	att	gaa	ttt	gat	aac	ttc	att	cag	agg	acc	aag	cag	cga	tat	443
	Суз	Phe	Ile	Glu	Phe	Asp	Asn	Phe	Ile	Gln	Arg	Thr	Lys	Gln	Arg	Tyr	
					115					120					125		
10	aat	aat	ccc	agg	tct	ctt	tca	aca	aag	ata	aat	ctt	tct	gac	atg	cag	491
	Asn	Asn	Pro	Arg	Ser	Leu	Ser	Thr	Lys	Ile	Asn	Leu	Ser	Asp	Met	Gln	
				130					135					140			
	acg	gaa	atc	aag	ctg	agg	cct	cct	tat	caa	att	tcc	atg	tgc	gaa	ctg	539
	Thr	Glu	Ile	Lys	Leu	Arg	Pro	Pro	Tyr	Gln	Ile	Ser	Met	Cys	Glu	Leu	
15			145					150					155				
	ggg	tca	gcc	aat	gga	gtc	aca	tca	gca	ttt	tct	gtt	gac	tgt	aaa	ggt	587
	Gly	Ser	Ala	Asn	Gly	Val	Thr	Ser	Ala	Phe	Ser	Val	Asp	Суз	Lys	Gly	
		160					165					170					
	gct	ggt	aag	att	tct	tct	gct	cac	cag	cga	ctg	gaa	cca	gca	act	ctg	635
20	Ala	Gly	Lys	Ile	Ser	Ser	Ala	His	Gln	Arg	Leu	Glu	Pro	Ala	Thr	Leu	
	175					180					185					190	
	tca	999	att	gta	gga	ttt	atc	ctt	agt	ctt	tta	tgt	gga	gct	ctg	aat	683
	Ser	Gly	Ile	Val	Gly	Phe	Ile	Leu	Ser	Leu	Leu	Cys	Gly	Ala	Leu	Asn	
					195					200					205		
25	tta	att	cga	ggc	ttt	cat	gct	ata	gaa	agt	ctc	ctg	cag	agt	gat	ggt	731
	Leu	Ile	Arg	Gly	Phe	His	Ala	Ile	Glu	Ser	Leu	Leu	Gln	Ser	Asp	Gly	
				210					215					220			
	gat	gat	ttt	aat	tac	atc	att	gca	ttt	ttc	ctt	gga	aca	gca	gcc	tgc	779
	Asp	Asp	Phe	Asn	Tyr	Ile	Ile	Ala	Phe	Phe	Leu	Gly	Thr	Ala	Ala	Cys	
30			225					230					235				
	ctt	tac	cag	tgt	tat	tta	ctt	gtc	tac	tac	acc	ggc	tgg	cgg	aat	gtc	827
	Leu	Tyr	Gln	Cys	Tyr	Leu	Leu	Val	Tyr	Tyr	Thr	Gly	Trp	Arg	Asn	Val	
		240					245					250					
	aaa	tct	ttt	ttg	act	ttt	ggc	tta	atc	tgt	cta	tgc	aac	atg	tat	ctc	875
35	Lys	Ser	Phe	Leu	Thr	Phe	Gly	Leu	Ile	Cys	Leu	Cys	Asn	Met	Tyr	Leu	

	255 260 265 270	
	tat gaa ctg cgc aac ctc tgg cag ctt ttc ttt cat gtg act gtg gga	923
	Tyr Glu Leu Arg Asn Leu Trp Gln Leu Phe Phe His Val Thr Val Gly	
	275 280 285	
5	gca ttt gtt aca cta cag atc tgg cta agg caa gcc cag ggc aag gct	971
	Ala Phe Val Thr Leu Gln Ile Trp Leu Arg Gln Ala Gln Gly Lys Ala	
	290 295 300	
	ccc gat tat gat gtc tgacaccatc cttcagatct attgccttgg cttc	1020
	Pro Asp Tyr Asp Val	
10	305	
	agggggataa ggagggaaca tatcataact gcactgtgat gaagaagctg ttccccacag	1080
	aggagaaget etgetttett teteteeaac ttteetttt taaaateage atgatgtgee	1140
	tgtgagcatg gaagagtcct ctcagaagaa tgttggccat gagactatca ttcagaggag	1200
	gaggggattt etetetteaa ggecataaca gtggaagaac agteatatge cattggaagt	1260
15	cttggccagc agtcctgaat ccttcctgaa gagttcagaa aatagatgtg gtattgctct	1320
	gaggaccagg caggaggaac tetacaacet gagtttgeet ttgtgaggea ttagtataga	1380
	ccaaataaaa agctgcagaa attggaaagt ttatgtttta aataaatgac tgtgat	1436
	<210> 82	
20	<211> 997	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
25	<222> (87)(638)	
	<400> 82	
	gagacaaagc ggagaacgct ggtgggcctg ttgtggagta cgctttggac tgagaagcat	60
	cgaggetata ggaegeaget gttgee atg acg gee cag ggg gge etg gtg	110
30	Met Thr Ala Gln Gly Gly Leu Val	
	1 5	
	gct aac cga ggc cgg cgc ttc aag tgg gcc att gag cta agc ggg cct	158
	Ala Asn Arg Gly Arg Arg Phe Lys Trp Ala Ile Glu Leu Ser Gly Pro	
	10 15 20	
35	gga gga ggc agc agg ggt cga agt gac cgg ggc agt ggc cag gga gac	206

	Gly	Gly	Gly	Ser	Arg	Gly	Arg	Ser	Asp	Arg	Gly	Ser	Gly	Gln	Gly	Asp	
	25					30					35					40	
	tcg	ctc	tac	cca	gtc	ggt	tac	ttg	gac	aag	caa	gtg	cct	gat	acc	agc	254
	Ser	Leu	Tyr	Pro	Val	Gly	Tyr	Leu	Asp	Lys	Gln	Val	Pro	Asp	Thr	Ser	
5					45					50					55		
	gtg	caa	gag	aca	gac	cgg	atc	ctg	gtg	gag	aag	cgc	tgc	tgg	gac	atc	302
	Val	Gln	Glu	Thr	Asp	Arg	Ile	Leu	Val	Glu	Lys	Arg	Cys	Trp	Asp	Ile	
				60					65					70			
	_	-					cag										350
10	Ala	Leu	Gly	Pro	Leu	Lys	Gln	Ile	Pro	Met	Asn	Leu		Ile	Met	Tyr	
			75					80					85				
	_						tcc										398
	Met		Gly	Asn	Thr	Ile	Ser	Ile	Phe	Pro	Thr		Met	Val	Cys	Met	
1.5		90					95					100					
15	_	-		_			cag	-									446
		Ala	Trp	Arg	Pro		Gln	Ala	Leu	Met		TTE	ser	ATa	Thr		
	105					110					115					120	404
				_	-		agc										494
90	ьys	Met	Leu	GIu		Ser	Ser	GIN	гуѕ		Leu	GIN	стх	Leu	135	Tyr	
20					125					130			+				E 4 7
					_	-	ggt	-									542
	Tierr	TTE	стА	140	ьеи	met	Gly	Ten	145	Tierr	VIG	val	TYL	150	Cys	GIII	
	taa	2+4	~~		++-	aat	aca	ast		tea	σa†	taa	tta		tta	att	590
25		_		_			Thr										330
20	Der	nec	155	пеп	ьец	FIO	1111	160	MIU	DCI	p		165				
	gag	ccc		gag	aga	ato	gag		agt	aat	aga	gga		ctt	tta	tgaac	640
							Glu									3	
		170			5		175				•	180					
30	atga		age a	aggg	etac	nt co		gtat	tto	rggto	tta	ttta	cato	ct t	cttt	aagcc	700
				-												gactc	760
				_												acaca	820
																ttcca	880
																ctgct	940
35	aaat	caag	gaa c	tgtt	gcag	c at	ctcc	tttc	aat	aaat	taa	atgg	ttga	ga a	caat	gc	997

	<210> 83	
	<211> 1753	
	<212> DNA	
5	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (134)(1117)	
10	<400> 83	
	tetteagegt cetaceegeg geactggetg egagegeegg gecacetgeg agtgtgegea	60
	gggaetetgg acaccegegg eggegagetg agggageagt etccaegagg acceaggegg	120
	accetetgge gee atg ege gee ete eee gge etg etg gag gee agg geg	169
	Met Arg Ala Leu Pro Gly Leu Leu Glu Ala Arg Ala	
15	1 5 10	
	egt acg ecc egg etg etc etc etc eag tge ett etc get gec geg ege	217
	Arg Thr Pro Arg Leu Leu Leu Gln Cys Leu Leu Ala Ala Arg	
	15 20 25	265
20	cca age teg geg gae gge agt gee eea gat teg eet tit aca agt eea	265
20	Pro Ser Ser Ala Asp Gly Ser Ala Pro Asp Ser Pro Phe Thr Ser Pro 30 35 40	
	cet ete aga gaa ata atg gea aat aac ttt tee ttg gag agt cat	313
	Pro Leu Arg Glu Glu Ile Met Ala Asn Asn Phe Ser Leu Glu Ser His	313
	45 50 55 60	
25	aac ata tca ctg act gaa cat tct agt atg cca gta gaa aaa aat atc	361
	Asn Ile Ser Leu Thr Glu His Ser Ser Met Pro Val Glu Lys Asn Ile	001
	65 70 75	
	act tta gaa agg cet tet aat gta aat ete aca tge cag tte aca aca	409
	Thr Leu Glu Arg Pro Ser Asn Val Asn Leu Thr Cys Gln Phe Thr Thr	
30	80 85 90	
	tet ggg gat ttg aat gea gta aat gtg act tgg aaa aaa gat ggt gaa	457
	Ser Gly Asp Leu Asn Ala Val Asn Val Thr Trp Lys Lys Asp Gly Glu	
	95 100 105	
	caa ctt gag aat aat tat ctt gtc agt gca aca gga agc acc ttg tat	505
35	Gln Leu Glu Asn Asn Tyr Leu Val Ser Ala Thr Gly Ser Thr Leu Tyr	

		110					115					120					
	acc	caa	tac	agg	ttc	acc	atc	att	aat	agc	aaa	caa	atg	gga	agt	tat	553
	Thr	Gln	Tyr	Arg	Phe	Thr	Ile	Ile	Asn	Ser	Lys	Gln	Met	Gly	Ser	Tyr	
	125					130					135					140	
5	tct	tgt	ttc	ttt	cga	gag	gaa	aag	gaa	caa	agg	gga	aca	ttt	aat	ttc	601
	Ser	Cys	Phe	Phe	Arg	Glu	Glu	Lys	Glu	Gln	Arg	Gly	Thr	Phe	Asn	Phe	
					145					150					155		
	aaa	gtc	cct	gaa	ctt	cat	ggg	aaa	aac	aag	cca	ttg	atc	tct	tac	gta	649
	Lys	Val	Pro	Glu	Leu	His	Gly	Lys	Asn	Lys	Pro	Leu	Ile	Ser	Tyr	Val	
10				160					165				٠	170		•	
	ggg	gat	tct	act	gtc	ttg	aca	tgt	aaa	tgt	caa	aat	tgt	ttt	cct	tta	697
	Gly	Asp	Ser	Thr	Val	Leu	Thr	Суз	Lys	Cys	Gln	Asn	Cys	Phe	Pro	Leu	
			175					180					185				
						agt											745
15	Asn	Trp	Thr	Trp	Tyr	Ser	Ser	Asn	Gly	Ser	Val	Lys	Val	Pro	Val	Gly	
		190					195					200					
			_			tat											793
	Val	Gln	Met	Asn	Lys	Tyr	Val	Ile	Asn	Gly	Thr	Tyr	Ala	Asn	Glu	Thr	٠
	205					210					215					220	
20		-	_			caa											841
	Lys	Leu	Lys	Ile	Thr	Gln	Leu	Leu	Glu	Glu	Asp	Gly	Glu	Ser	Tyr	Trp	
					225					230					235		
	_	_	-			caa			-	_							889
	Cys	Arg	Ala	Leu	Phe	Gln	Leu	Gly		Ser	Glu	Glu	His		Glu	Leu	
25				240					245					250			
			_	_		ttg											937
	Val	Val		Ser	Tyr	Leu	Val		Leu	Lys	Pro	Phe		Val	Ile	Val	
			255					260					265				
00						tta	-										985
30	Ala		Val	Ile	Leu	Leu		Ala	Thr	Ile	Leu		Суѕ	Glu	Lys	Tyr	
		270					275					280					
			_		_	aag											1033
		Gln	Lys	Lys	Lys	Lys	His	Ser	Asp	Glu		Lys	Glu	Phe	Glu		
	285					290					295					300	
35	att	gaa	cag	ctg	aaa	tca	gat	gat	agc	aat	ggt	ata	gaa	aat	aat	gtc	1081

	ile Gid Gin Led Lys Ser Asp Asp Ser Ash Giy ile Gid Ash Ash Vai	
	305 310 315	
	ccc agg cat aga aaa aat gag tct ctg ggc cag tgaatacaaa acatca	.1130
	Pro Arg His Arg Lys Asn Glu Ser Leu Gly Gln	
5	320 325	
	tgtcgagaat cattggaaga tatacagagt tcgtatttca gctttattta tccttcctgt	1190
	taagageete tgagttttta gttttaaaag gatgaaaage ttatgeaaca tgeteageag	1250
	gagetteate aacgatatat gteagateta aaggtatatt tteattetgt aattatgtta	1310
	cataaaagca atgtaaatca gaataaatat gttagaccag aataaaatta attatattet	1370
10	ggtcttcaaa ggacacacag aacagatatc agcagaatca cttaatactt catagaacaa	1430
	asatcactca asacctgttt ataaccasag sattcatgas asagsasgcc tttgccattt	1490
•	gtcttagaaa gttattttt taaaaaaaat catacttact attagtatct atggaagtat	1550
	atgtaacaat ttttatgtaa aggtcatctt tctgtgatag tgaaaaaata tgtctttact	1610
	aagttgaaat gaatactttc tgcctttgct catgatagtt attctacaat ctccacaaga	1670
15	aaaatatacc ttttatccgg aaatattggt ttaaggcaaa taaataaaac tgtgcttgct	1730
	ctaaagctct gcactacaaa agc	1753
	<210> 84	
	<211> 1117	
20	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (62)(733)	
25		
	<400> 84	
	cgtcccactt gtgttctctc tcctggtgca gagttgcaag caagtttatc ggagtatcgc	60
	c atg aag ttc gtc ccc tgc ctc ctg ctg gtg acc ttg tcc tgc ctg	106
	Met Lys Phe Val Pro Cys Leu Leu Leu Val Thr Leu Ser Cys Leu	
30	1 5 10 15	
	ggg act ttg ggt cag gcc ccg agg caa aag caa gga agc act ggg gag	154
	Gly Thr Leu Gly Gln Ala Pro Arg Gln Lys Gln Gly Ser Thr Gly Glu	
	20 25 30	
	gaa tto cat tto cag act gga ggg aga gat too tgc act atg cgt ccc	202
35	Glu Phe His Phe Gln Thr Gly Gly Arg Asp Ser Cys Thr Met Arg Pro	

				35					40					45			
	agc	agc	ttg	ggg	caa	ggt	gct	gga	gaa	gtc	tgg	ctt	cgc	gtc	gac	tge	250
	Ser	Ser	Leu	Gly	Gln	Gly	Ala	Gly	Glu	Val	Trp	Leu	Arg	Val	Asp	Cys	
			50					55					60				
5	cgc	aac	aca	gac	cag	acc	tac	tgg	tgt	gag	tac	agg	999	cag	ccc	agc	298
	Arg	Asn	Thr	Asp	Gln	Thr	Tyr	Trp	Cys	Glu	Tyr	Arg	Gly	Gln	Pro	Ser	
		65					70					75					
	atg	tgc	cag	gct	ttc	gct	gct	gac	ccc	aaa	tct	tac	tgg	aat	caa	gcc	346
	Met	Суз	Gln	Ala	Phe	Ala	Ala	Asp	Pro	Lys	Ser	Tyr	Trp	Asn	Gln	Ala	
10	80					85					90					95	
	ctg	cag	gag	ctg	agg	cgc	ctt	cac	cat	gcg	tgc	cag	ggg	gcc	ccg	gtg	394
	Leu	Gln	Glu	Leu	Arg	Arg	Leu	His	His	Ala	Cys	Gln	Gly	Ala	Pro	Val	
					100					105					110		
	ctt	agg	cca	tee	gtg	tgc	agg	gag	gct	gga	ccc	cag	gcc	cat	atg	cag	442
15	Leu	Arg	Pro	Ser	Val	Cys	Arg	Glu	Ala	Gly	Pro	Gln	Ala	His	Met	Gln	
				115					120					125			
	cag	gtg	act	tcc	agc	ctc	aag	ggc	agc	cca	gag	ccc	aac	cag	cag	cct	490
	Gln	Val	Thr	Ser	Ser	Leu	Lys	Gly	Ser	Pro	Glu	Pro	Asn	Gln	Gln	Pro	
			130					135					140				
20	gag	gct	ggg	acg	cca	tct	ctg	agg	CCC	aag	gcc	aca	gtg	aaa	ctc	aca	538
	Glu	Ala	Gly	Thr	Pro	Ser	Leu	Arg	Pro	Lys	Ala	Thr	Val	Lys	Leu	Thr	
		145					150					155					
	gaa	gca	aca	cag	ctg	gga	aag	gac	tcg	atg	gaa	gag	ctg	gga	aaa	gee	586
	Glu	Ala	Thr	Gln	Leu	Gly	Lys	Asp	Ser	Met	Glu	Glu	Leu	Gly	Lys	Ala	
25	160					165					170					175	
						ccc											634
	Lys	Pro	Thr	Thr	Arg	Pro	Thr	Ala	Lys	Pro	Thr	Gln	Pro	Gly	Pro	Arg	
					180					185					190		
						gaa											682
30	Pro	Gly	Gly	Asn	Glu	Glu	Ala	Lys	Lys	Lys	Ala	Trp	Glu	His	Cys	Trp	
				195					200					205			
						ctg											730
	Lys	Pro	Phe	Gln	Ala	Leu	Cys	Ala	Phe	Leu	Ile	Ser	Phe	Phe	Arg	Gly	
			210					215					220				
35	tgac	aggt	ga a	agad	ccct	a ca	gato	tgac	cto	tccc	tga	caga	caac	ca t	ctct	tttta	790

	tattatgccg ctttcaatcc aacgttctca cactggaaga agagagtttc taatcagatg	850
	caacggccca aattottgat ctgcagcttc tctgaagttt ggaaaagaaa ccttcctttc	910
	tggagtttgc agagttcagc aatatgatag ggaacaggtg ctgatgggcc caagagtgac	970
	aagcatacac aactacttat tatctgtaga agttttgctt tgttgatctg agccttctat	1030
5	gaaagtttaa atatgtaacg cattcatgaa tttccagtgt tcagtaaata gcagctatgt	1090
	gtgtgcaaaa taaaagaatg atttcag	1117
	<210> 85	
	<211> 1380	
10	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (43)(189)	
15		
	<400> 85	
	gcagtctgtc tgagggcggc cgaagtggct ggctcattta ag atg agg ctt ctg	54
	Met Arg Leu Leu	
	1	
20	ctg ctt ctc cta gtg geg geg tet geg atg gtc egg age gag gee teg	102
	Leu Leu Leu Val Ala Ala Ser Ala Met Val Arg Ser Glu Ala Ser	
	5 10 15 20	
	gcc aat ctg ggc ggc gtg ccc agc aag aga tta aag atg cag tac gcc	150
	Ala Asn Leu Gly Gly Val Pro Ser Lys Arg Leu Lys Met Gln Tyr Ala	
25	25 30 35	
	acg ggg ccg ctg ctc aag ttc cag att tgt gtt tcc tgag	190
	Thr Gly Pro Leu Lys Phe Gln Ile Cys Val Ser	
	40 45	
	gttataggeg ggtgtttgag gagtacatge gggttattag ceageggtae ceagacatee	250
30	gcattgaagg agagaattac ctccctcaac caatatatag acacatagca tetttectgt	310
	cagtetteaa actagtatta ataggettaa taattgttgg caaggateet tttgetttet	370
	ttggcatgca ageteetage atetggcagt ggggccaaga aaataaggtt tatgcatgta	430
	tgatggtttt ettettgage aacatgattg agaaccagtg tatgtcaaca ggtgcatttg	490
	agataacttt aaatgatgta cctgtgtggt ctaagctgga atctggtcac cttccatcca	550
35	tgcaacaact tgttcaaatt cttgacaatg aaatgaagct caatgtgcat atggattcaa	610

	toccacacca togatcatag caccacctat cagcactgaa aactcttttg cattaaggga	670
	teattgeaag ageagegtga etgaeattat gaaggeetgt aetgaagaea geaagetgtt	730
	agtacagace agatgettte ttggcagget egttgtacet ettggaaaac etcaatgeaa	790
	gatagtgttt cagtgctggc atattttgga attctgcaca ttcatggagt gcaataatac	850
5	tgtatagett tecceacete ecacaaaate acceagttaa tgtgtgtgtg tgtttttttt	910
	tttaaggtaa acattactac ttgtaacttt ttttcttagt catatttgaa aaagtagaaa	970
	attgagttac aatttgattt tttttccaaa gatgtctgtt aaatctgttg tgcttttata	1030
	tgaatatttg ttttttatag tttaaaattg atcetttggg aatceagttg aagttcccaa	1090
	atactttata agagtttatc agacatctct aatttggcca tgtccagttt atacagttta	1150
10	caaaatatag cagatgcaag attatggggg aaatcctata ttcagagtac tctataaatt	1210
	tttgtgtatg tgtgtatgtg cgtgtgatta ccagagaact actaaaaaaa ccaactgctt	1270
	tttaaatcet attgtgtagt taaagtgtca tgeettgace aatetaatga attgattaat	1330
	taactgggcc tttatactta actaaataaa aaactaagca gatatgagtt	1380
15	<210> 86	
	<211> 1503	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
20	<221> CDS	
	<222> (51)(1166)	
	<400> 86	
	gtgaegggge ceggegeege taactggage gaaceeeage gteegeegae atg gee	56
25	Met Ala	
	1	
	tgg acc aag tac cag ctg ttc ctg gcc ggg ctc atg ctt gtt acc ggc	104
	Trp Thr Lys Tyr Gln Leu Phe Leu Ala Gly Leu Met Leu Val Thr Gly	
	5 10 15	
30	tcc atc aac acg ctc tcg gca aaa tgg gcg gac aat ttc atg gcc gag	152
	Ser Ile Asn Thr Leu Ser Ala Lys Trp Ala Asp Asn Phe Met Ala Glu	
	20 25 30	
	ggc tgt gga ggg agc aag gag cac agc ttc cag cat ccc ttc ctc cag	200
	Gly Cys Gly Gly Ser Lys Glu His Ser Phe Gln His Pro Phe Leu Gln	
35	35 40 45 50	

	gca	gtg	ggc	atg	ttc	ctg	gga	gaa	ttc	tcc	tgc	ctg	gct	gcc	ttc	tac	248
	Ala	Val	Gly	Met	Phe	Leu	Gly	Glu	Phe	Ser	Сув	Leu	Ala	Ala	Phe	Tyr	
					55					60					65		
	ctc	ctc	cga	tgc	aga	gct	gca	ggg	caa	tca	gac	tcc	agc	gta	gac	CCC	296
5	Leu	Leu	Arg	Cys	Arg	Ala	Ala	Gly	Gln	Ser	Asp	Ser	Ser	Val	Asp	Pro	
				70					75					80			
	cag	cag	ccc	ttc	aac	cct	ctt	ctt	ttc	ctg	ccc	cca	gcg	ctc	tgt	gac	344
	Gln	Gln	Pro	Phe	Asn	Pro	Leu	Leu	Phe	Leu	Pro	Pro	Ala	Leu	Cys	Asp	
			85					90					95				
10	atg	aca	ggg	acc	agc	ctc	atg	tat	gtg	gct	ctg	aac	atg	acc	agt	gcc	392
	Met	Thr	Gly	Thr	Ser	Leu	Met	Tyr	Val	Ala	Leu	Asn	Met	Thr	Ser	Ala	
		100					105					110					
		_		_	-	ctg			_								440
	Ser	Ser	Phe	Gln	Met	Leu	Arg	Gly	Ala	Val	Ile	Ile	Phe	Thr	Gly	Leu	
15	115					120					125	•				130	
						ctg											488
	Phe	Ser	Val	Ala	Phe	Leu	Gly	Arg	Arg	Leu	Val	Leu	Ser	Gln	Trp	Leu	
					135					140					145		
						atc											536
20	Gly	Ile	Leu	Ala	Thr	Ile	Ala	Gly	Leu	Val	Val	Val	Gly		Ala	Asp	
				150					155					160			
			_	_		gac											584
	Leu	Leu		Lys	His	Asp	Ser		His	Lys	Leu	Ser		Val	Ile	Thr	
~=			165					170					175				
25		-	-	-		atc	_	-	-								632
	Gly	-	Leu	Leu	Ile	Ile		Ala	Gln	Ile	Ile		Ala	Ile	GIn	Met	
		180					185					190					
						ttc											680
00		Leu	Glu	Glu	Lys	Phe	Val	Tyr	Lys	His		Val	His	Pro	Leu		
30	195					200					205					210	=20
						ggc											728
	Ala	Val	Gly	Thr		Gly	Leu	Phe	Gly		Val	He	Leu	ser		Leu	
					215					220					225		
0.5				-		tac											776
35	Leu	Val	Pro	Met	Tyr	Tyr	Ile	Pro	Ala	Gly	Ser	Phe	Ser	GTA	Asn	Pro	

91/177

				230					235					240			
	cgt	999	aca	ctg	gag	gat	gca	ttg	gac	gcc	ttc	tgc	cag	gtg	ggc	cag	824
	Arg	Gly	Thr	Leu	Glu	Asp	Ala	Leu	Asp	Ala	Phe	Cys	Gln	Val	Gly	Gln	
			245					250					255				
5	cag	ccg	ctc	att	gcc	gtg	gca	ctg	ctg	ggc	aac	atc	agc	agc	att	gcc	872
	Gln	Pro	Leu	Ile	Ala	Val	Ala	Leu	Leu	Gly	Asn	Ile	Ser	Ser	Ile	Ala	
		260					265					270					
	ttc	ttc	aac	ttc	gca	ggc	atc	agc	gtc	acc	aag	gaa	ctg	agc	gcc	acc	920
	Phe	Phe	Asn	Phe	Ala	Gly	Ile	Ser	Val	Thr	Lys	Glu	Leu	Ser	Ala	Thr	
10	275					280					285					290	
	acc	cgc	atg	gtg	ttg	gac	agc	ttg	cgc	acc	gtt	gtc	atc	tgg	gca	ctg	968
	Thr	Arg	Met	Val	Leu	Asp	Ser	Leu	Arg	Thr	Val	Val	Ile	Trp	Ala	Leu	
					295					300					305		
	agc	ctg	gca	ctg	ggc	tgg	gag	gee	ttc	cat	gca	ctg	cag	atc	ctt	gge	1016
15	Ser	Leu	Ala	Leu	Gly	Trp	Glu	Ala	Phe	His	Ala	Leu	Gln	Ile	Leu	Gly	
				310					315					320			
	ttc	ctc	ata	ctc	ctt	ata	ggc	act	gcc	ctc	tac	aat	ggg	cta	cac	cgt	1064
	Phe	Leu	Ile	Leu	Leu	Ile	Gly	Thr	Ala	Leu	Tyr	Asn	Gly	Leu	His	Arg	
			325					330					335				
20	ccg	ctg	ctg	ggc	cgc	ctg	tcc	agg	ggc	cgg	ccc	ctg	gca	gag	gag	agc	1112
	Pro	Leu	Leu	Gly	Arg	Leu	Ser	Arg	Gly.	Arg	Pro	Leu	Ala	Glu	Glu	Ser	
		340					345					350					
	gag	cag	gag	aga	ctg	ctg	ggt	ggc	acc	cgc	act	ccc	atc	aat	gat	gee	1160
	Glu	Gln	Glu	Arg	Leu	Leu	Gly	Gly	Thr	Arg	Thr	Pro	Ile	Asn	Asp	Ala	
25	355					360					365					370	
	agc	tgag	gtto	ecc t	ggag	gctt	c ta	ctgo	cacc	cgg	gtgo	etcc	ttct	ccc			1210
	Ser																
	tgaç	jacto	gag g	ccac	acag	g ct	ggtg	ggcc	ccg	aatg	laca	tato	ccca	ag g	cctc	accct	1270
30	gtco	cato	cc t	geag	aacc	c co	aggg	cago	tgc	tgcc	aca	gaag	ataa	ca a	cacc	caagt	1330
																agtgc	1390
																agttg	1450
			iga a														1503
			-			_	_										

35 <210> 87

	<211> 733	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
5	<221> CDS	
	<222> (40)(312)	
	<400> 87	
	gttaaggcac acagagcacc agctccctcc tgcctgaag atg ttc cac caa att	54
10	Met Phe His Gln Ile	
	. 1 5	
	tgg gca gct ctg ctc tac ttc tat ggt att atc ctt aac tcc atc tac	102
	Trp Ala Ala Leu Leu Tyr Phe Tyr Gly Ile Ile Leu Asn Ser Ile Tyr	
	10 15 20	
15	cag tgc cct gag cac agt caa ctg aca act ctg ggc gtg gat ggg aag	150
	Gln Cys Pro Glu His Ser Gln Leu Thr Thr Leu Gly Val Asp Gly Lys	
	25 30 35	
	gag ttc cca gag gtc cac ttg ggc cag tgg tac ttt atc gca ggg gca	198
	Glu Phe Pro Glu Val His Leu Gly Gln Trp Tyr Phe Ile Ala Gly Ala	
20	40 45 50	
	get eec ace aag gag gag ttg gea act ttt gac eet gtg gac aac att	246
	Ala Pro Thr Lys Glu Glu Leu Ala Thr Phe Asp Pro Val Asp Asn Ile	
	55 60 65	
	gtc ttc aat atg gct gct ggc tct gcc ccg atg cag ctc cac ctt cgt	294
25	Val Phe Asn Met Ala Ala Gly Ser Ala Pro Met Gln Leu His Leu Arg	
	70 75 80 85	
	gct acc atc cgc atg tgagtggaaa gatgggctct gtgtgccccg g	340
	Ala Thr Ile Arg Met	
	90	
30	aaatggatet accaeetgae tgaagggage acagatetea gaactgaagg eegeeetgae	400
	atgaagactg agetetttte eageteatge eeaggtggaa teatgetgaa tgagaeagge	460
	cagggttace agegetttet cetetacaat egeteaceae atecteeega aaagtgtgtg	520
	gaggaattea agteeetgae tteetgeetg gaeteeaaag cettettatt gaeteetagg	580
	aatcaagagg cctgtgagct gtccaataac tgacctgtaa cttcatctaa gtccccagat	640
35	gggtacaatq qqaqctqaqt tqttqqaqqq aqaagctqqa qacttccaqc tccaqctccc	700

	actcaagata ataaagataa tttttcaatc ctc	733
	<210> 88	
	<211> 3768	
5	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (358)(1857)	
10		
	<400> 88	
	gctagtggcg cgcggaggag cgacgcgtgg agaagcggcc cacgtgtctg cccagagtca	60
	agteetgtgt tetteeeget eettaegeat eegeggteea gggegeeett teageeeege	120
	tggtgttege ceaceceggg cegegtgagt ggggeeeeae geageteeee geacteegtg	180
15	ggccaacttg gccaagcaac tctgtccggg gagcggtgct tgcgggggggt gagtaccggg	240
	cactgcgcat gcggagctcc aaattcaaac agctgttttc agaggctgga gggcggggg	300
	actggtagca gctggggcta ggagaggctt tetetaggag gcggccgctc gggagcc	357
20		
20	atg gtg gac egg gge eet etg ete ace teg gee ate ate tte tae etg	405
	Met Val Asp Arg Gly Pro Leu Leu Thr Ser Ala Ile Ile Phe Tyr Leu 1 5 10 15	
	23	450
	gcc atc ggg gcg gcg atc ttc gaa gtg ctg gag gag cca cac tgg aag Ala Ile Gly Ala Ala Ile Phe Glu Val Leu Glu Glu Pro His Trp Lys	453
25	20 25 30	
	gag gcc aag aaa aac tac tac aca cag aag ctg cat ctg ctc aag gag	501
	Glu Ala Lys Lys Asn Tyr Tyr Thr Gln Lys Leu His Leu Leu Lys Glu	301
	35 40 45	
	tte eeg tge etg ggt eag gag gge etg gae aag ate eta gag gtg gta	549
30	Phe Pro Cys Leu Gly Gln Glu Gly Leu Asp Lys Ile Leu Glu Val	
	50 55 60	
	tet gat get gea gga cag ggt gtg gee ate aca ggg aac cag ace tte	597
	Ser Asp Ala Ala Gly Gln Gly Val Ala Ile Thr Gly Asn Gln Thr Phe	
	65 70 75 80	
35	aac aac tgg aac tgg ccc aat gca atg att ttt gca gcg acc gtc att	645

	Asn	Asn	Trp	Asn	Trp	Pro	Asn	Ala	Met	Ile	Phe	Ala	Ala	Thr	Val	Ile	
					85					90					95		
	acc	acc	att	gga	tat	ggc	aat	gtg	gct	CCC	aag	acc	ccc	gcc	ggt	ege	693
	Thr	Thr	Ile	Gly	Tyr	Gly	Asn	Val	Ala	Pro	Lys	Thr	Pro	Ala	Gly	Arg	
5				100					105					110			
	ctc	ttc	tgt	gtt	ttc	tat	ggt	ctc	ttc	ggg	gtg	ccg	ctc	tgc	ctg	acg	741
	Leu	Phe	Cys	Val	Phe	Tyr	Gly	Leu	Phe	Gly	Val	Pro	Leu	Сув	Leu	Thr	
			115					120					125				
			-	-	-		-		ttc								789
10	Trp		Ser	Ala	Leu	Gly	_	Phe	Phe	Gly	Gly		Ala	Lys	Arg	Leu	
		130					135					140					
		•				_		-	gtg								837
	_	Gln	Phe	Leu	Thr		Arg	Gly	Val	Ser		Arg	Lys	Ala	GIn		
	145					150					155					160	005
15	_	-		-				-	tgg -		_		_				885
	Thr	Cys	Thr	Val		Phe	He	Val	Trp		vaı	Leu	vaı	HIS		vai	
				4. 4	165		_ #			170				+	175		022
					-		_		act								933
90	He	Pro	Pro		vaı	Pne	Met	vaı	Thr 185	GIU	СТА	ттр	Asn	191 190	TTG	GIU	
20				180	+	++0	a ta	200	atc	taa	200	ata	aaa		aat	asc	981
									Ile								701
	GIĀ	Leu	195	туг	Ser	Pne	116	200	TTE	Ser	THE	TTE	205	FIIC	GIY	Asp	
	+++	a+a		aat	ata	aac	ccc		gcc	aac	tac	cac		cta	tac	cac	1029
25			-						Ala								2025
20	1110	210	23.2.4	O ₁ y	741	11011	215				-1-	220			-1-		
	tac		ata	gag	ctc	taa		tac	ttg	aaa	cta	qcc	taa	ctq	tcc	ctt	1077
									Leu								
	225					230		-2-			235		•			240	
30		qtc	aac	taa	aaq		agc	atg	ttt	gtg	gaa	gtc	cac	aaa	gcc	att	1125
		-			_		_	_	Phe	-		_					
				•	- 245					250				_	255		
	aaq	aaq	cqq	cgg	cgg	cga	cgg	aag	gag	tcc	ttt	gag	agc	tcc	cca	cac	1173
	-	_							Glu								
35	-	-	•	260	_	-	_		265					270			

	tcc	cgg	aag	gcc	ctg	cag	gtg	aag	ggg	ago	aca	gco	tcc	aac	gad	gtc	1221
	Ser	Arg	Lys	Ala	Leu	Gln	Val	Lys	Gly	Ser	Thr	Ala	Ser	Lys	Asp	Val	
			275					280					285				
	aac	ato	ttc	agc	ttt	ctt	tcc	aag	aag	gaa	gag	acc	tac	aac	gac	ctc	1269
5	Asn	Ile	Phe	Ser	Phe	Leu	Ser	Lys	Lys	Glu	Glu	Thr	Tyr	Asn	Asp	Leu	
		290					295					300					
	atc	aag	cag	atc	ggg	aag	aag	gcc	atg	aag	aca	agc	ggg	ggt	ggg	gag	1317
	Ile	Lys	Gln	Ile	Gly	Lys	Lys	Ala	Met	Lys	Thr	Ser	Gly	Gly	Gly	Glu	
	305					310					315					320	
10	acg	ggc	ccg	ggc	cca	999	ctg	ggg	cct	caa	ggc	ggt	ggg	ctc	cca	gca	1365
	Thr	Gly	Pro	Gly	Pro	Gly	Leu	Gly	Pro	Gln	Gly	Gly	Gly	Leu	Pro	Ala	
					325					330					335		
	ctg	ccc	cct	tcc	ctg	gtg	ccc	ctg	gta	gtc	tac	tcc	aag	aac	cgg	gtg	1413
	Leu	Pro	Pro	Ser	Leu	Val	Pro	Leu	Val	Val	Tyr	Ser	Lys	Asn	Arg	Val	
15				340					345					350			
	ccc	acc	ttg	gaa	gag	gtg	tca	cag	aca	ctg	agg	agc	aaa	ggc	cac	gta	1461
	Pro	Thr	Leu	Glu	Glu	Val	Ser	Gln	Thr	Leu	Arg	Ser	Lys	Gly	His	Val	
			355					360					365				
	tca	agg	tcc	cca	gat	gag	gag	gct	gtg	gca	cgg	gcc	cct	gaa	gac	agc	1509
20	Ser	Arg	Ser	Pro	Asp	Glu	Glu	Ala	Val	Ala	Arg	Ala	Pro	Glu	Asp	Ser	
		370					375					380					
	tcc	cct	gcc	ccc	gag	gtg	ttc	atg	aac	cag	ctg	gac	cgc	atc	agc	gag	1557
	Ser	Pro	Ala	Pro	Glu	Val	Phe	Met	Asn	Gln	Leu	Asp	Arg	Ile	Ser	Glu	
	385					390					395					400	
25	gaa	tgc	gag	cca	tgg	gac	gcc	cag	gac	tac	cac	cca	ctc	atc	ttc	cag	1605
	Glu	Суѕ	Glu	Pro	Trp	Asp	Ala	Gln	Asp	Tyr	His	Pro	Leu	Ile	Phe	Gln	
					405					410					415		
	gac	gcc	agc	atc	acc	ttc	gtg	aac	acg	gag	gct	ggc	ctc	tca	gac	gag	1653
	Asp	Ala	Ser	Ile	Thr	Phe	Val	Asn	Thr	Glu	Ala	Gly	Leu	Ser	Asp	Glu	
30				420					425					430			
	gag	acc	tcc	aag	tcc	tcg	cta	gag	gac	aac	ttg	gca	ggg	gag	gag	agc	1701
	Glu	Thr	Ser	Lys	Ser	Ser	Leu	Glu	Asp	Asn	Leu	Ala	Gly	Glu	Glu	Ser	
			435					440					445				
	ccc	cag	cag	ggg	gct	gaa	gcc	aag	gcg	ccc	ctg	aac	atg	ggc	gag	ttc	1749
35	Pro	Gln	Gln	Gly	Ala	Glu	Ala	Lys	Ala	Pro	Leu	Asn	Met	Gly	Glu	Phe	

	450	455	460	
	ccc tcc tcc tcc gag t	cc acc ttc acc agc act	t gag tot gag oto tot	1797
	Pro Ser Ser Ser Glu S	er Thr Phe Thr Ser Th	r Glu Ser Glu Leu Ser	
	465 4	70 475	5 480	
5	gtg cct tac gaa cag c	tg atg aat gag tac aad	c aag gct aac agc ccc	1845
	Val Pro Tyr Glu Gln L	eu Met Asn Glu Tyr Ası	n Lys Ala Asn Ser Pro	
	485	490	495	
	aag ggc aca tgaggcagg	g ceggetecee accecacet	tt tgatgg	1890
	Lys Gly Thr			
10				
	cctcttcccc cctcacccta	gggtgtcccg agatgaccgg	g gacgcctggc ccctggtggg	1950
	ggggcagcct cggaactggg	agtggggggc caggggcctt	cctaacette cateateece	2010
	agctagatgt atgcccggga	cagggeetet gttetecage	tgaaccatac cctggctgtg	2070
	ggggcatetg teetgagett	ggetggtgta teteacaate	g caaagacatg ctggctggcg	2130
15	ggacaggtgg gcaggactga	ccctgaggag gccttgcctg	g cagggtettt gteecaccat	2190
	ttggtggagt atcacacggt	tetetgaggt ceggggcete	agetgtttaa gtttaceggt	2250
	attactgage teggeatttg	gagagggage tetgaagtgt	ctggggaggt accgctgtgc	2310
	gtggggtcag gtgtttccgt	accacageag gageagggee	c cgcccgcatc ccagctgtgg	2370
	gcctgccggt caggtcgggc	acctactaca aaccgtagto	g gggtggaggc tgctggaggt	2430
20	gggagtgagg agatgagggc	agggteteaa acagteetga	a ctcacagggc ctggaaacaa	2490
	gtcctatgtg ggcctggggc	ctggggtcct catcctcctt	gttggtctac tcaggcccag	2550
	cccagagetg tgttccctgt	ctcaggtcaa gcagtggcag	g acgcaagget ttetgtggge	2610
	ccccaagtgg taggaggag	agtagcagag catgggttac	tggaagccgg gactgctagg	2670
	gctggtggcc agggagctgc	aagagtgagg ctcagctctg	g getggttetg ceettacece	2730
25	tcctgcccgc cggagaactg	cacaccctgc ccgctggccc	caggacetge acteceaate	2790
			actgecegee tteceeteee	2850
			cttggcccac aaatgggtga	2910
			r tttgatgtgc acgtgtgtgt	2970
	gcacagtgcg tgtgtgcaca	cgcacacctg tgcactcgtg	g tgtgtttaag aaaggaaagg	3030
30	atttgggctg gggagcaaaa	gataatgtga aactgttggt	ggactctctg gtgaggggtg	3090
	ggcagaactt gctgctacta	gagttettgg gttetccatg	atgttcaccc tggggctggc	3150
			ttttaaacaa actgctgttt	3210
			ttaaagagca gggtcccaag	3270
	gattgggaga tctagtgtct	gccctcctgc cctgcaactc	aattgggcct ttttcggtga	3330
35	cctcatccaa ggccatgatg	tcaagggcca tgtccccaag	cagaggtgga gaaggggaca	3390

	·	
	ctgaggtgag caaaagcagg aaggggcate caetgegggt gaetggagge egggeaggaa	3450
	gcaagtcatc agageegete ageteegtte aetetetgee ttetgeeeea etaetgtggg	3510
	gcagtggggc cagagcccac ctccccaaca tgtgaagaca gtgatgggca cgtgcccaca	3570
	ccccacttc tetageogtt tgeagaggee gecacccage aggggeetga aaaggageag	3630
5	cetegtattt ttetgtgaaa tgttttaatg aaceatgttg ttgetggttg teetggeate	3690
	gegeaeactg tatgtaeata etggeaaega tgteaaatgt aatttatttt aacattttta	3750
	caataaaaca tgaggtgg	3768
	<210> 89	
10	<211> 770	
	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
15	<222> (24)(344)	
	<400> 89	
	accgcgaagg gaggagtggc aac atg gcg tet teg gga get ggt gac cet etg	53
00	Met Ala Ser Ser Gly Ala Gly Asp Pro Leu	
20	1 5 10	101
	gat tet aag egt gga gag gee eeg tte get eag egt ate gae eeg act	101
	Asp Ser Lys Arg Gly Glu Ala Pro Phe Ala Gln Arg Ile Asp Pro Thr 15 20 25	
	<u></u> -	149
25	cgg gag aag ctg aca ccc gag caa ctg cat tcc atg cgg cag gcg gag Arg Glu Lys Leu Thr Pro Glu Gln Leu His Ser Met Arg Gln Ala Glu	143
20	30 35 40	
	ctt gee eag tgg eag aag gte eta eea egg egg ega ace egg aac ate	197
	Leu Ala Gln Trp Gln Lys Val Leu Pro Arg Arg Arg Thr Arg Asn Ile	
	45 50 55	
30	gtg ace ggc cta ggc atc ggg gcc ctg gtg ttg gct att tat ggt tac	245
	Val Thr Gly Leu Gly Ile Gly Ala Leu Val Leu Ala Ile Tyr Gly Tyr	
	60 65 70	
	acc ttc tac tcg att tcc cag gag cgt ttc cta gat gag cta gaa gac	293
	Thr Phe Tyr Ser Ile Ser Gln Glu Arg Phe Leu Asp Glu Leu Glu Asp	
35	Thr Phe Tyr Ser Ile Ser Gln Glu Arg Phe Leu Asp Glu Leu Glu Asp 75 80 85 90	

	gag gee aaa get gee ega gee ega get etg gea agg geg tea ggg tee	341
	Glu Ala Lys Ala Ala Arg Ala Arg Ala Leu Ala Arg Ala Ser Gly Ser	
	95 100 105	
	taatetgga tgggtattga teatgteeaa eetgetggag eeeetteaca tggtggatga	400
5	tgccccatga ccctgtagaa attgaatcct gctcacaaca ttgttggcct tcttactaac	460
	cttggaccgt gattgagccc aagaaaccag ggacttacgc atttggccaa tgtcaaaaga	520
	acagaacttt geccaetgea eaettgetgt gtacaatgae tgagecettt ettgtagttt	580
	gttteettgt ttgagaggtg tgeatgegae egtggetttt eeeaaagttt etgaetttgt	640
	ggtttacccc cttcaccttc cagggacgca gttgttacga ggttagacgt ggcagctctg	700
10	tgcagtgttt gagcctacag tgggatacat agggtcaaat tgagaataat aaactgagtc	760
	atteteetgg	770
	<210> 90	
	<211> 1229	
15	<212> DNA	
	<213> Homo sapiens	
	<220>	
	<221> CDS	
	<222> (96)(554)	
20		
	<400> 90	
	cctactcctg gattaggagg actgacaata ctacatatat cattaagcat gggcctcgct	60
	tagaagttgc atctgagaaa gtagcccaga agaca atg gac tat gtg tgc tgt	113
	Met Asp Tyr Val Cys Cys	
25	1 5	
	gct tac aac aac ata acc ggc agg caa gat gaa act cat ttc aca gtt	161
	Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp Glu Thr His Phe Thr Val	
	10 15 20	
	atc atc act tcc gta gga ctg gag aag ctt gca cag aaa gga aaa tca	209
30	Ile Ile Thr Ser Val Gly Leu Glu Lys Leu Ala Gln Lys Gly Lys Ser	
	25 30 35	
	ttg tca cct tta gca agt ata act gga ata tca cta ttt ttg att ata	257
	Leu Ser Pro Leu Ala Ser Ile Thr Gly Ile Ser Leu Phe Leu Ile Ile	
	40 45 50	
35	tcc atg tgt ctt ctc ttc cta tgg aaa aaa tat caa ccc tac aaa gtt	305
	· · · · · · · · · · · · · · · · ·	

99/177

	Ser Me	et Cys	Leu	Leu	Phe	Leu	Trp	Lys	Lys	Tyr	Gln	Pro	Tyr	Lys	Val	
	55				60					65					70	
	ata aa	a cag	aaa	cta	gaa	ggc	agg	cca	gaa	aca	gaa	tac	agg	aaa	get	353
	Ile Ly	s Gln	Lys	Leu	Glu	Gly	Arg	Pro	Glu	Thr	Glu	Tyr	Arg	Lys	Ala	
5				75					80					85		
	caa ac	a ttt	tca	ggc	cat	gaa	gat	gct	ctg	gat	gac	ttc	gga	ata	tat	401
	Gln Th	r Phe	Ser	Gly	His	Glu	Asp	Ala	Leu	Asp	Asp	Phe	Gly	Ile	Tyr	
			90					95					100			
	gaa tt	t gtt	gct	ttt	cca	gat	gtt	tct	ggt	gtt	tcc	agg	atc	cca	agc	449
10	Glu Ph	e Val	Ala	Phe	Pro	Asp	Val	Ser	Gly	Val	Ser	Arg	Ile	Pro	Ser	
		105					110					115				
	agg to	t gtt	cca	gcc	tct	gat	tgt	gta	tcg	ggg	caa	gat	ttg	cac	agt	497
	Arg Se	r Val	Pro	Ala	Ser	Asp	Cys	Val	Ser	Gly	Gln	Asp	Leu	His	Ser	
	12	0				125					130					
15	aca gt	g tat	gaa	gtt	att	cag	cac	atc	cct	gcc	cag	cag	caa	gac	cat	545
	Thr Va	l Tyr	Glu	Val	Ile	Gln	His	Ile	Pro	Ala	Gln	Gln	Gln	Asp	His	
	135				140					145					150	
	cca ga	g tga	actti	ca t	gggc	taaa	ac ag	rtaca	ttc	gagt	gaaa	ttc	tgaa	agaaa	ac .	600
	Pro Gl	u														
20																
	atttta	agga	aaaac	agto	gg aa	aagt	atat	taa	itctg	gaa	tcaç	rtgaa	iga a	acca	agacc	660
	aacacc	tctt	actca	ttat	t co	ttta	cato	cag	gaata	ıgag	gcat	ttat	ge a	aatt	gaact	720
	gcaggt	tttt	cagca	atata	c ac	aato	jtctt	gtg	caac	aga	aaaa	catg	rtt g	ggga	aatat	780
	tcctca	gtgg :	agagt	cgtt	c to	atgo	tgac	ggg	gaga	acg	aaag	rtgac	ag g	ggtt	teete	840
25	ataagt	tttg	tatge	aata	t ct	ctac	aaac	cto	aatt	agt	tcta	ctct	ac a	ettt	cacta	900
	tcatca	acac	tgage	ctat	c ct	gtct	cacc	tac	aaat	gtg	gaaa	cttt	ac a	ttgt	tcgat	960
	ttttca	gcag i	acttt	gttt	t at	taaa	tttt	tat	tagt	gtt	aaga	atgo	ta a	agtt	tcaat	1020
	tttatt	tcca a	aattt	ctat	c tt	gtta	tttg	tac	aaca	aag	taat	aagg	nat g	gttg	rtcaca	1080
	aaaaca	aaac 1	tatgo	cttc	t ct	tttt	tttc	aat	cacc	agt	agta	tttt	tg a	ıgaag	acttg	1140
30	tgaaca	ctta a	aggaa	atga	c ta	ttaa	agtc	tta	tttt	tat	tttt	ttca	ag g	aaag	atgga	1200
	ttcaaa	taaa 1	tatt	ctgt	t tt	tgct	ttt									1229

<210> 91

<211> 358

35 <212> PRT

100/177

<213> Homo sapience

	<40	0> 9	1													
	Met	Ala	Pro	Gln	Asn	Leu	Ser	Thr	Phe	Cys	Leu	Leu	Leu	Leu	Tyr	Leu
5	1				5					10					15	
	Ile	Gly	Ala	Val	Ile	Ala	Gly	Arg	Asp	Phe	Tyr	Lys	Ile	Leu	Gly	Val
				20					25					30		
	Pro	Arg	Ser	Ala	Ser	Ile	Lys	Asp	Ile	Lys	Lys	Ala	Tyr	Arg	Lys	Leu
			35					40					45			
10	Ala	Leu	Gln	Leu	His	Pro	Asp	Arg	Asn	Pro	Asp	Asp	Pro	Gln	Ala	Gln
		50					55					60				
	Glu	Lys	Phe	Gln	Asp	Leu	Gly	Ala	Ala	Tyr	Glu	Val	Leu	Ser	Asp	Ser
	65					70					75					80
	Glu	Lys	Arg	Lys	Gln	Tyr	Asp	Thr	Tyr	Gly	Glu	Glu	Gly	Leu	Lys	Asp
15					85					90					95	
	Gly	His	Gln	Ser	Ser	His	Gly	Asp	Ile	Phe	Ser	His	Phe	Phe	Gly	Asp
				100					105					110		
	Phe	Gly	Phe	Met	Phe	Gly	Gly	Thr	Pro	Arg	Gln	Gln	Asp	Arg	Asn	Ile
			115					120					125			
20	Pro	Arg	Gly	Ser	Asp	Ile		Val	Asp	Leu	Glu		Thr	Leu	Glu	Glu
		130					135					140				
		Tyr	Ala	Gly	Asn		Val	Glu	Val	Val	_	Asn	Lys	Pro	Val	
	145	_		,		150					155		_	_		160
0.5	Arg	Gln	Ala	Pro	_	Lys	Arg	Lys	Cys		Cys	Arg	Gln	Glu		Arg
25				_	165	_		_		170					175	
	Thr	Thr	GIn		Gly	Pro	GIÀ	Arg		GIn	Met	Thr	GIN		Val	Val
	0	•	0 3	180	-	•	••- •	•	185	••-1	.	01	01	190	m\-	
	Cys	Asp		Cys	PIO	ASN	vaı	_	Ten	vaı	Asn	GIU		Arg	Thr	Leu
30	~ 1	12n1	195	- 1-	a 1	D	a 1	200	N	3	~ 1	Mot	205	M	D==	nh
JU	GIU	Val	GIU	шe	GIU	PIO	-	vaı	Arg	Asp	GTĀ	220	GIU	туг	PIO	Pne
	Tlo	210	<u>را، د</u>	~ 1	a1	D=0	215	37 m 7	7	C1v	C1		C1++	3 am	T	3
		Gly	GIU	стА			uts	val	Asp		235	PLO	отЛ	чар		-
	225	Arg	Tla	T 120		230	Tvc	ui ~	Dro			Gl:	Dr.	A ~~		240
35	File	vra	116	_	245	val	nya	นาร		250	r ne	GIU	мц	лгу	G1y 255	изр
5 0					27J					~~0					~~	

	Asp	Leu	Tyr	Thr	Asn	Val	Thr	Ile	Ser	Leu	Val	Glu	Ser	Leu	Val	Gly
				260					265					270		
	Phe	Glu	Met	Asp	Ile	Thr	His	Leu	Asp	Gly	His	Lys	Val	His	Ile	Ser
			275					280					285			
5	Arg	Asp	Lys	Ile	Thr	Arg	Pro	Gly	Ala	Lys	Leu	Trp	Lys	Lys	Gly	Glu
		290					295					300				
	Gly	Leu	Pro	Asn	Phe	Asp	Asn	Asn	Asn	Ile	Lys	Gly	Ser	Leu	Ile	Ile
	305					310					315					320
	Thr	Phe	Asp	Val	Asp	Phe	Pro	Lys	Glu	Gln	Leu	Thr	Glu	Glu	Ala	Arg
10					325					330					335	
	Glu	Gly	Ile	Lys	Gln	Leu	Leu	Lys	Gln	Gly	Ser	Val	Gln	Lys	Val	Tyr
				340					345					350		
	Asn	Gly	Leu	Gln	Gly	Tyr										
			355													
15																
	<210)> 92	2													
	<211	l> 22	26													
	<212	?> PI	TS													
	<213	8> Ho	omo s	sapie	ence											
20																
	<400	> 92	2													
	Met	Lys	Met	Val	Ala	Pro	Trp	Thr	Arg	Phe	Tyr	Ser	Asn	Ser	Cys	Cys
	1				5					10					15	
	Leu	Сув	Cys	His	Val	Arg	Thr	Gly		Ile	Leu	Leu	Gly	Val	Trp	Tyr
25				20					25					30		
	Leu	Ile	Ile	Asn	Ala	Val	Val	Leu	Leu	Ile	Leu	Leu	Ser	Ala	Leu	Ala
			35					40					45			
	Asp		Asp	Gln	Tyr	Asn		Ser	Ser	Ser	Glu	Leu	Gly	Gly	Asp	Phe
00		50					55					60				
30		Phe	Met	Asp	Asp	Ala	Asn	Met	Cys	Ile		Ile	Ala	Ile	Ser	
	65					70					75					80
	Leu	Met	Ile	Leu	Ile	Cys	Ala	Met	Ala		Tyr	Gly	Ala	Tyr	_	Gln
					85					90					95	
.=	Arg	Ala	Ala	-	Ile	Ile	Pro	Phe		Cys	Tyr	Gln			Asp	Phe
35				100					105					110		

	Ala	Leu	Asn	Met	Leu	Val	Ala	Ile	Thr	Val	Leu	Ile	Tyr	Pro	Asn	Ser
			115					120					125			
	Ile	Gln	Glu	Tyr	Ile	Arg	Gln	Leu	Pro	Pro	Asn	Phe	Pro	Tyr	Arg	Asp
		130					135					140				
5	Asp	Val	Met	Ser	Val	Asn	Pro	Thr	Cys	Leu	Val	Leu	Ile	Ile	Leu	Leu
	145					150					155					160
	Phe	Ile	Ser	Ile	Ile	Leu	Thr	Phe	Lys	Gly	Tyr	Leu	Ile	Ser	Cys	Val
					165					170					175	
	Trp	Asn	Cys	Tyr	Arg	Tyr	Ile	Asn	Gly	Arg	Asn	Ser	Ser	Asp	Val	Leu
10				180					185					190		
	Val	Tyr	Val	Thr	Ser	Asn	Asp	Thr	Thr	Val	Leu	Leu	Pro	Pro	Tyr	Asp
			195					200					205			
	Asp		Thr	Val	Asn	Gly	Ala	Ala	Lys	Glu	Pro		Pro	Pro	Tyr	Val
		210					215					220				
15		Ala														
	225															
	-210	·														
)> 93 l> 19														
20		!> 15 !> PF														
20		3> Hc		anie	nce											
		- 110	Z.I.O L	Jupic												
	<400)> 93	3													
	Met	Arg	Leu	Leu	Leu	Leu	Leu	Leu	Val	Ala	Ala	Ser	Ala	Met	Val	Arg
25	1				5					10					15	
•	Ser	Glu	Ala	Ser	Ala	Asn	Leu	Gly	Gly	Val	Pro	Ser	Lys	Arg	Leu	Lys
				20					25					30		
	Met	Gln	Tyr	Ala	Thr	Gly	Pro	Leu	Leu	Lys	Phe	Gln	Ile	Cys	Val	Ser
			35					40					45			
30	Xaa	Gly	Tyr	Arg	Arg	Val	Phe	Glu	Glu	Tyr	Met	Arg	Val	Ile	Ser	Gln
		50					55					60				
	Arg	Tyr	Pro	Asp	Ile	Arg	Ile	Glu	Gly	Glu	Asn	Tyr	Leu	Pro	Gln	Pro
	65					70					75					80
	Ile	Tyr	Arg	His	Ile	Ala	Ser	Phe	Leu	Ser	Val	Phe	Lys	Leu	Val	Leu
35					85					90					95	

	Ile	Gly	Leu	Ile	Ile	Val	Gly	Lys	Asp	Pro	Phe	Ala	Phe	Phe	Gly	Met
				100					105					110		
	Gln	Ala	Pro	Ser	Ile	Trp	Gln	Trp	Gly	Gln	Glu	Asn	Lys	Val	Tyr	Ala
			115					120					125			
5	Cys	Met	Met	Val	Phe	Phe	Leu	Ser	Asn	Met	Ile	Glu	Asn	Gln	Cys	Met
		130					135					140				
	Ser	Thr	Gly	Ala	Phe	Glu	Ile	Thr	Leu	Asn	Asp	Val	Pro	Val	Trp	Ser
	145					150					155					160
	Lys	Leu	Glu	Ser	Gly	His	Leu	Pro	Ser	Met	Gln	Gln	Leu	Val	Gln	Ile
10					165					170					175	
	Leu	Asp	Asn	Glu	Met	Lys	Leu	Asn	Val	His	Met	Asp	Ser	Ile	Pro	His
				180					185					190		
	His	Arg	Ser													
			195													
15																
	<210)> 94	1													
	<211	l> 33	39													
	<212	?> PI	TS													
	<213	3> Ho	omo s	sapie	ence											
20																
	<400	> 94	ŀ													
	Met	Asn	Trp	Glu	Leu	Leu	Leu	Trp	Leu	Leu	Val	Leu	Cys	Ala	Leu	Leu
	1				5					10					15	
	Leu	Leu	Leu	Val	Gln	Leu	Leu	Arg	Phe	Leu	Arg	Ala	Asp	Gly	Asp	Leu
25				20					25					30		
	Thr	Leu	Leu	Trp	Ala	Glu	Trp	Gln	Gly	Arg	Arg	Pro	Glu	Trp	Glu	Leu
			35					40					45			
	Thr	qeA	Met	Val	Val	Trp	Val	Thr	Gly	Ala	Ser	Ser	Gly	Ile	Gly	Glu
		50					55					60				
30	Glu	Leu	Ala	Tyr	Gln	Leu	Ser	Lys	Leu	Gly	Val	Ser	Leu	Val	Leu	Ser
	65					70					75					80
	Ala	Arg	Arg	Val	His	Glu	Leu	Glu	Arg	Val	Lys	Arg	Arg	Cys	Leu	Glu
					85					90					95	
	Asn	Gly	Asn	Leu	Lys	Glu	Lys	Asp	Ile	Leu	Val	Leu	Pro	Leu	Asp	Leu
35				100					105					110		

104/177

	Thr	Asp	Thr	Gly	Ser	His	Glu	Ala	Ala	Thr	Lys	Ala	Val	Leu	Gln	Glu
			115					120					125			
	Phe	Gly	Arg	Ile	Asp	Ile	Leu	Val	Asn	Asn	Gly	Gly	Met	Ser	Gln	Arg
		130					135					140				
5	Ser	Leu	Cys	Met	Asp	Thr	Ser	Leu	Asp	Val	Tyr	Arg	Lys	Leu	Ile	Glu
	145					150					155					160
	Leu	Asn	Tyr	Leu	Gly	Thr	Val	Ser	Leu	Thr	Lys	Cys	Val	Leu	Pro	His
					165					170					175	
	Met	Ile	Glu	Arg	Lys	Gln	Gly	Lys	Ile	Val	Thr	Val	Asn	Ser	Ile	Leu
10				180					185					190		
	Gly	Ile	Ile	Ser	Val	Pro	Leu	Ser	Ile	Gly	Tyr	Cys	Ala	Ser	Lys	His
			195					200					205			
	Ala	Leu	Arg	Gly	Phe	Phe	Asn	Gly	Leu	Arg	Thr	Glu	Leu	Ala	Thr	Tyr
		210					215					220				
15	Pro	Gly	Ile	Ile	Val	Ser	Asn	Ile	Cys	Pro	Gly	Pro	Val	Gln	Ser	Asn
	225					230					235					240
	Ile	Val	Glu	Asn	Ser	Leu	Ala	Gly	Glu	Val	Thr	Lys	Thr	Ile	Gly	Asn
					245					250					255	
	Asn	Gly	Asp	Gln	Ser	His	Lys	Met	Thr	Thr	Ser	Arg	Cys	Val	Arg	Leu
20				260					265					270		
	Met	Leu	Ile	Ser	Met	Ala	Asn	Asp	Leu	Lys	Glu	Val	_	Ile	Ser	Glu
			275					280					285			
	Gln		Phe	Leu	Leu	Val		Tyr	Leu	Trp	Gln		Met	Pro	Thr	Trp
0.5		290					295					300	_	_		
25		Trp	Trp	Ile	Thr		Lys	Met	Gly	Lys	-	Arg	Ile	Glu	Asn	
	305	_				310					315	_			_	320
	Lys	Ser	Gly	Val	Asp	Ala	Asp	Ser	Ser		Phe	Lys	IIe	Phe		Thr
	_	•	_		325					330					335	
20	Lys	His	Asp													
30	40.1.0															
		> 95														
		> 48														
		> PR														
25	<213	> Ho	mo s	apie	nce											

35

	<40	0> 9	5													
	Met	Asp	Gly	Thr	Glu	Thr	Arg	Gln	Arg	Arg	Leu	Asp	Ser	Cys	Gly	Lys
	1				5					10					15	
	Pro	Gly	Glu	Leu	Gly	Leu	Pro	His	Pro	Leu	Ser	Thr	Gly	Gly	Leu	Pro
5				20					25					30		
	Val	Ala	Ser	Glu	Asp	Gly	Ala	Leu	Arg	Ala	Pro	Glu	Ser	Gln	Ser	Val
			35					40					45			
	Thr	Pro	Lys	Pro	Leu	Glu	Thr	Glu	Pro	Ser	Arg		Thr	Ala	Trp	Ser
10	_	50					55					60				
10		Gly	Leu	Gln	Val		Val	Pro	Phe	Met		Ala	Gly	Leu	Gly	
	65	_				70 -	_	_		7 1	75			5		80
	ser	Trp	Ala	GIĄ		Leu	Leu	Asp	туг	90	GIN	HIS	ттр	PIO		Pne
	1751	Glu	ו בעז	T +10	85	Lon	T ou	mh.	Lou	-	Pro	Pro	Len	Val.	95	Tou
15	Val	Giu	Vai	100	vsħ	Цец	пеп	TIIL	105	Vul	110	110	Tiệu	110	GIŞ	neu
10	Lvs	Gly	Asn		Glu	Met.	Thr	Leu		Ser	Ara	Leu	Ser		Ala	Ala
	-1-	~-,	115					120					125			
	Asn	Thr		Gln	Ile	Asp	Asp		Gln	Glu	Gln	His	Arg	Val	Ile	Ser
		130	-			-	135					140				
20	Ser	Asn	Leu	Ala	Leu	Ile	Gln	Val	Gln	Ala	Thr	Val	Val	Gly	Leu	Leu
	145					150					155					160
	Ala	Ala	Val	Ala	Ala	Leu	Leu	Leu	Gly	Val	Val	Ser	Arg	Glu	Glu	Val
					165					170					175	
	Asp	Val	Ala	Lys	Val	Glu	Leu	Leu	Cys	Ala	Ser	Ser	Val	Leu	Thr	Ala
25				180					185					190		
	Phe	Leu		Ala	Phe	Ala	Leu	_	Val	Leu	Met	Val	-	Ile	Val	Ile
	_		195					200				_	205			
	Gly	Ala	Arg	Lys	Leu	Gly		Asn	Pro	Asp	Asn		Ala	Thr	Pro	Ile
20	• • •	210	_	_		_	215	_,	- m1	•		220		- 1		
30		Ala	ser	Leu	GIĄ	_	Leu	ше	TNE			ше	ren	Ala	Leu	
	225	C	Dh.	n		230	***	T	7 am		235	Mess	7 011	mh ==	D===	240
	PGT	Ser	FIIE		1yr 245	wed	ute	nys	vab	250	ALG	TYL	nen		255	ned
	Val	Cys	ĭ.eu			Ala	Ala	T.eu	ጥኮኮ		Val	Tro	Val			Ala
35		-, -		260					265	-		r		270		

	Lys	Gln	Ser	Pro	Pro	Ile	Val	Lys	Ile	Leu	Lys	Phe	Gly	Trp	Phe	Pro
			275					280					285			
	Ile	Ile	Leu	Ala	Met	Val	Ile	Ser	Ser	Phe	Gly	Gly	Leu	Ile	Leu	Ser
		290					295					300				
5	Lys	Thr	Val	Ser	Lys	Gln	Gln	Tyr	Lys	Gly	Met	Ala	Ile	Phe	Thr	Pro
	305					310					315					320
	Val	Ile	Cys	Gly	Val	Gly	Gly	Asn	Leu	Val	Ala	Ile	Gln	Thr	Ser	Arg
					325					330					335	
	Ile	Ser	Thr	Tyr	Leu	His	Met	Trp	Ser	Ala	Pro	Gly	Val	Leu	Pro	Leu
10				340					345					350		
	Gln	Met	Lys	Lys	Phe	Trp	Pro	Asn	Pro	Cys	Ser	Thr	Phe	Суз	Thr	Ser
			355					360					365			
	Glu	Ile	Asn	Ser	Met	Ser	Ala	Arg	Val	Leu	Leu	Leu	Leu	Val	Val	Pro
		370					375					380				
15	Gly	His	Leu	Ile	Phe	Phe	Tyr	Ile	Ile	Tyr	Leu	Val	Glu	Gly	Gln	Ser
	385					390					395					400
	Val	Ile	Asn	Ser	Gln	Thr	Phe	Val	Val	Leu	Tyr	Leu	Leu	Ala	Gly	Leu
					405					410					415	
	Ile	Gln	Val	Thr	Ile	Leu	Leu	Tyr	Leu	Ala	Glu	Val	Met	Val	Arg	Leu
20				420					425					430		
	Thr	Trp		Gln	Ala	Leu	Asp	Pro	Asp	Asn	His	Cys	Ile	Pro	Tyr	Leu
			435					440					445			
	Thr	_	Leu	Gly	Asp	Leu		Gly	Thr	Gly	Leu		Ala	Leu	Cys	Phe
		450					455					460				
25		Thr	Asp	Trp	Leu		Lys	Ser	Lys	Ala		Leu	Gly	Gly	Ile	
	465					470					475					480
	Glu	Leu	Ala	Ser	Gly	Pro	Pro									
					485											
00																
30)> 96														
		l> 39														
		?> PF														
	<213	s> Hc	omo s	apie	nce											
35	<400	> 96	i													

	Met	Arg	Thr	Leu	Phe	Asn	Leu	Leu	Trp	Leu	Ala	Leu	Ala	Cys	Ser	Pro
	1				5					10					15	i
	Val	His	Thr	Thr	Leu	Ser	Lys	Ser	Asp	Ala	Lys	Lys	Ala	Ala	Ser	Lys
				20					25					30		
5	Thr	Leu	Leu	Glu	Lys	Ser	Gln	Phe	Ser	Asp	Lys	Pro	Val	Gln	Asp	Arg
			35					40					45			
	Gly	Leu	Val	Val	Thr	Asp	Leu	Lys	Ala	Glu	Ser	Val	Val	Leu	Glu	His
		50				_	55	_				60				
	Arg	Ser	Tyr	Cys	Ser	Ala	Lys	Ala	Arg	Asp	Arg	His	Phe	Ala	Gly	Asp
10	65					70					75					80
	Val	Leu	Gly	Tyr	Val	Thr	Pro	Trp	Asn	Ser	His	Gly	Tyr	Asp	Val	Thr
					85					90					95	
	Lys	Val	Phe	Gly	Ser	Lys	Phe	Thr	Gln	Ile	Ser	Pro	Val	Trp	Leu	Gln
				100					105					110		
15	Leu	Lys	Arg	Arg	Gly	Arg	Glu	Met	Phe	Glu	Val	Thr	Gly	Leu	His	Asp
			115					120					125			
	Val	Asp	Gln	Gly	Trp	Met	Arg	Ala	Val	Arg	Lys	His	Ala	Lys	Gly	Leu
		130					135					140				
	His	Ile	Val	Pro	Arg	Leu	Leu	Phe	Glu	Asp	Trp	Thr	Tyr	Asp	Asp	Phe
20	145					150					155					160
	Arg	Asn	Val	Leu	Asp	Ser	Glu	Asp	Glu	Ile	Glu	Glu	Leu	Ser	Lys	Thr
					165					170					175	
	Val	Val	Gln	Val	Ala	Lys	Asn	Gln	His	Phe	Asp	Gly	Phe	Val	Val	Glu
				180					185					190		
25	Val	Trp	Asn	Gln	Leu	Leu	Ser	Gln	Lys	Arg	Val	Gly	Leu	Ile	His	Met
			195					200					205			
	Leu	Thr	His	Leu	Ala	Glu	Ala	Leu	His	Gln	Ala	Arg	Leu	Leu	Ala	Leu
		210					215					220				
	Leu	Val	Ile	Pro	Pro	Ala	Ile	Thr	Pro	Gly	Thr	Asp	Gln	Leu	Gly	Met
30	225					230					235					240
	Phe	Thr	His	Lys	Glu	Phe	Glu	Gln	Leu	Ala	Pro	Val	Leu	Asp	Gly	Phe
					245					250					255	
	Ser	Leu	Met	Thr	Tyr	Asp	Tyr	Ser	Thr	Ala	His	Gln	Pro	Gly	Pro	Asn
				260	-	-	-		265					270		
35	Ala	Pro	Leu	Ser	Trp	Val	Arg	Ala		Val	Gln	Val	Leu	Asp	Pro	Lys

			275					280	l				285			
	Ser	Lys	Trp	Arg	Ser	Lys	Ile	Leu	Leu	Gly	Leu	Asn	Phe	Tyr	Gly	Met
		290					295					300				
	Asp	Tyr	Ala	Thr	Ser	Lys	Asp	Ala	Arg	Glu	Pro	Val	Val	Gly	Ala	Arg
5	305					310					315					320
	Tyr	Ile	Gln	Thr	Leu	Lys	Asp	His	Arg	Pro	Arg	Met	Val	Trp	Asp	Ser
					325					330					335	
	Gln	Ala	Ser	Glu	His	Phe	Phe	Glu	Tyr	Lys	Lys	Ser	Arg	Ser	Gly	Arg
				340					345					350		
10	His	Val	Val	Phe	Tyr	Pro	Thr	Leu	Lys	Ser	Leu	Gln	Val	Arg	Leu	Glu
			355					360					365			
	Leu	Ala	Arg	Glu	Leu	Gly	Val	Gly	Val	Ser	Ile	Trp	Glu	Leu	Gly	Gln
		370					375					380				
	Gly	Leu	Asp	Tyr	Phe	Tyr	Asp	Leu	Leu							
15	385					390										
	<21	0> 9 [.]	7													
	<21	1> 1	96													
	<21	2> P1	RT													
20	<21	3> H	omo s	apie	ence											
	<40	0> 91	7													
	Met	Trp	Arg	Val	Pro	Gly	Thr	Thr	Arg	Arg	Pro	Val	Thr	Gly	Glu	Ser
	1				5					10					15	
25	Pro	Gly	Met	His	Arg	Pro	Glu	Ala	Met	Leu	Leu	Leu	Leu	Thr	Leu	Ala
				20					25					30		
	Leu	Leu	Gly	Gly	Pro	Thr	Trp	Ala	Gly	Lys	Met	туr	Gly	Pro	Gly	Gly
			35					40					45			
	Gly	Lys	Tyr	Phe	Ser	Thr	Thr	Glu	Asp	Tyr	Asp	His	Glu	Ile	Thr	Gly
30		50					55					60				
	Leu	Arg	Val	Ser	Val	Gly	Leu	Leu	Leu	Val	Lys	Ser	Val	Gln	Val	Lys
	65					70					75					80
	Leu	Gly	Asp	Ser	Trp	Asp	Val	Lys	Leu	Gly	Ala	Leu	Gly	Gly	Asn	Thr
					85					90					95	
35					_		_				-1-	-1	T	Val		

109/177

				100					105					110		
	Ala	Phe	Gln	Ala	Phe	Leu	Arg	Gly	Met	Val	Met	Tyr	Thr	Ser	Lys	Asj
			115					120					125			
	Arg	Tyr	Phe	Tyr	Phe	Gly	Lys	Leu	Asp	Gly	Gln	Ile	Ser	Ser	Ala	ту
5		130					135					140				
	Pro	Ser	Gln	Glu	Gly	Gln	Val	Leu	Val	Gly	Ile	Tyr	Gly	Gln	Tyr	Gli
	145					150					155					160
	Leu	Leu	Gly	Ile	Lys	Ser	Ile	Gly	Phe	Glu	Trp	Asn	Tyr	Pro	Leu	Glu
					165					170					175	
10	Glu	Pro	Thr	Thr	Glu	Pro	Pro	Val	Asn	Leu	Thr	Tyr	Ser	Ala	Asn	Ser
				180					185					190		
	Pro	Val	Gly	Arg												
			195													
15		0> 91														
		1> 10														
		2> PI														
	~ 21.	3> H	e omc	sapı	ence											
20	<40	0> 98	8													
	Met	Glu	Gln	Lys	Leu	Val	Glu	Glu	Ile	Leu	Gln	Ala	Ile	Thr	Met	Ser
	1				5					10					15	
	Thr	Asp	Thr	Gly	Val	Ser	Leu	Pro	Ser	Tyr	Glu	Glu	Asp	Gln	Gly	Ser
				20					25					30		
25	Lys	Leu	Ile	Arg	Lys	Ala	Lys	Glu	Ala	Pro	Phe	Val	Pro	Val	Gly	Ile
			35					40					45			
	Ala	Gly	Phe	Ala	Ala	Ile	Val	Ala	Tyr	Gly	Leu	Tyr	Lys	Leu	Lys	Ser
		50					55					60				
	Arg	Gly	Asn	Thr	Lys	Met	Ser	Ile	His	Leu	Ile	His	Met	Arg	Val	Ala
30	65					70					75					80
	Ala	Glu	Gly	Phe	Val	Val	Gly	Ala	Met	Thr	Val	Gly	Met	Gly	Tyr	Ser
					85					90					95	
	Met	Tyr	Arg		Phe	Trp	Ala	Lys		Lys	Pro					
				100					105							

35

	<21	0> 9	9													
	<21	1> 3	50													
	<21	2> P	RT													
	<21	3> H	omo :	sapi	ence											
5																
	<40	0> 99	9													
	Met	Ser	Glu	Val	Lys	Ser	Arg	Lys	Lys	Ser	Gly	Pro	Lys	Gly	Ala	Pro
	1				5					10					15	
	Ala	Ala	Glu	Pro	Gly	Lys	Arg	Ser	Glu	Gly	Gly	Lys	Thr	Pro	Val	Ala
10				20					25					30		
	Arg	Ser	Ser	Gly	Gly	Gly	Gly	Trp	Ala	Asp	Pro	Arg	Thr	Cys	Leu	Ser
			35					40					45			
	Leu	Leu	Ser	Leu	Gly	Thr	Cys	Leu	Gly	Leu	Ala	Trp	Phe	Val	Phe	Gln
		50					55					60				
15	Gln	Ser	Glu	Lys	Phe	Ala	Lys	Val	Glu	Asn	Gln	Tyr	Gln	Leu	Leu	Lys
	65					70					75					80
	Leu	Glu	Thr	Asn	Glu	Phe	Gln	Gln	Leu	Gln	Ser	Lys	Ile	Ser	Leu	Ile
					85					90					95	
	Ser	Glu	Lys	Trp	Gln	Lys	Ser	Glu	Ala	Ile	Met	Glu	Gln	Leu	Lys	Ser
20				100					105					110		
	Phe	Gln	Ile	Ile	Ala	His	Leu	Lys	Arg	Leu	Gln	Glu	Glu	Ile	Asn	Glu
			115					120					125			
	Val	Lys	Thr	Trp	Ser	Asn	Arg	Ile	Thr	Glu	Lys	Gln	Asp	Ile	Leu	Asn
		130					135					140				
25	Asn	Ser	Leu	Thr	Thr	Leu	Ser	Gln	Asp	Ile	Thr	Lys	Val	Asp	Gln	Ser
	145					150					155					160
	Thr	Thr	Ser	Met	Ala	Lys	Asp	Val	Gly	Leu	Lys	Ile	Thr	Ser	Val	Lys
					165					170					175	
	Thr	Asp	Ile	Arg	Arg	Ile	Ser	Gly	Leu	Val	Thr	Asp	Val	Ile	Ser	Leu
30				180					185					190		
	Thr	Asp	Ser	Val	Gln	Glu	Leu	Glu	Asn	Lys	Ile	Glu	Lys	Val	Glu	Lys
			195					200					205			
	Asn	Thr	Val	Lys	Asn	Ile	Gly	Asp	Leu	Leu	Ser	Ser	Ser	Ile	Asp	Arg
		210					215					220				
35	Thr	Ala	Thr	Leu	Arg	Lys	Thr	Ala	Ser	Glu	Asn	Ser	Gln	Arg	Ile	Asn

	225					230					235					240
	Ser	Val	Lys	Lys	Thr	Leu	Thr	Glu	Leu	Lys	Ser	Asp	Phe	Asp	Lys	His
					245					250					255	
	Thr	Asp	Arg	Phe	Leu	Ser	Leu	Glu	Gly	Asp	Arg	Ala	Lys	Val	Leu	Lys
5				260					265					270		
	Thr	Val	Thr	Phe	Ala	Asn	Asp	Leu	Lys	Pro	Lys	Val	Tyr	Asn	Leu	Lys
			275					280					285			
	Lys	Asp	Phe	Ser	Arg	Leu	Glu	Pro	Leu	Val	Asn	Asp	Leu	Thr	Leu	Arg
		290					295					300				
10	Ile	Gly	Arg	Leu	Val	Thr	Asp	Leu	Leu	Gln	Arg	Glu	Lys	Glu	Ile	Ala
	305					310					315					320
	Phe	Leu	Ser	Glu	Lys	Ile	Ser	Asn	Leu	Thr	Ile	Val	Gln	Ala	Glu	Ile
					325					330					335	
	Lys	Asp	Ile	Lys	Asp	Glu	Ile	Ala	His	Ile	Ser	Asp	Met	Asn		
15				340					345					350		
	<210)> 10	00													
	<21	l> 10)7													
	<212	2> PI	TS													
20	<213	3> Ho	omo s	apie	ence											
)> 10														
		Ser	Ser	Ala	_	Thr	Ala	Thr	Pro		Glu	Met	Asp	His	Lys	Leu
05	1	_			5					10	_				15	
25	Thr	Ser	Gln		Gly	Arg	Pro	Ser		Tyr	Cys	Asn	Ser	_	His	Ser
		•		20	_	1		_	25	_,	_	_,	_	30	_	
	Ile	Val	_	Ser	Ser	His	Gln		GIY	Phe	Trp	Phe		His	Leu	Glu
		_	35	_	_	•		40		_	_	_	45		_	
20	Ser		СТĀ	Leu	Lys	Val		GIn	Val	Ser	Leu		cys	Glu	Cys	Val
30	.	50	5	ml	•	- 1 -	55		••	••- 1	•	60	-			
		ren	PIO	Tnr	Arg		ATA	ser	var	vaı		ser	ren	Met	Ser	
	65	17-7	173	01	a 1	70	D	7 7-	m	~ 1	75	C	T	T	•	80
	теп	val	vaT	стА		ИТЯ	LT.O	ИТЯ	ттр		отА	ser	теп	ьeu	Arg	σтλ
35	N	D	n T -	~1	85	7 7	*** ~	T ~	C	90	3 7-				95	
OU	arg	PLO	Ala	етй	етЛ	VT 9	urs	∟eu	cys	WIG	wrg					

112/177

100 105 <210> 101 <211> 1074 5 <212> DNA <213> Homo Sapience <400> 101 atggeteege agaacetgag cacettttge etgttgetge tataceteat eggggeggtg 60 10 attgccggac gagatttcta taagatcttg ggggtgcctc gaagtgcctc tataaaggat 120 attaaaaagg cctataggaa actagccctg cagcttcatc ccgaccggaa ccctgatgat 180 ccacaagccc aggagaaatt ccaggatctg ggtgctgctt atgaggttct gtcagataqt 240 gagaaacgga aacagtacga tacttatggt gaagaaggat taaaaagatgg tcatcagagc 300 teccatggag acatttttte acaettettt ggggattttg gttteatgtt tggaggaace 360 15 cctcgtcagc aagacagaaa tattccaaga ggaagtgata ttattgtaga tctagaagtc 420 actttggaag aagtatatgc aggaaatttt gtggaagtag ttagaaacaa acctgtggca 480 aggeaggete etggeaaacg gaagtgeaat tgteggeaag agatgeggae eacceagetg 540 600 ggccctgggc gcttccaaat gacccaggag gtggtctgcg acgaatgccc taatgtcaaa ctaqtqaatq aaqaacqaac qctqqaaqta qaaatagagc ctggggtgag agacqqcatq 660 20 gagtacccct ttattqqaqa aqqtqaqcct cacqtqqatq qggagcctqq aqatttacqq 720 780 ttccqaatca aaqttqtcaa qcacccaata tttqaaaqga gaggagatga tttqtacaca aatqtqacaa totoattaqt tqaqtoactq qttqqctttq agatqgatat taotoacttq 840 gatggtcaca aggtacatat ttcccgggat aagatcacca ggccaggagc gaagctatgg 900 aagaaagggg aagggcteee caaetttgae aacaacaata teaagggete tttgataate 960 25 1020 acttttgatg tggattttcc aaaagaacag ttaacagagg aagcgagaga aggtatcaaa 1074 cagctactga aacaagggtc agtgcagaag gtatacaatg gactgcaagg atat <210> 102 <211> 678 30 <212> DNA <213> Homo Sapience <400> 102 atgaagatgg tegegeeetg gaegeggtte tactecaaca getgetgett gtgetgeeat 60 35 gtccqcaccq qcaccatcct qctcqqcqtc tggtatctga tcatcaatgc tgtqqtactq 120

	ttgattttat tgagtgccct ggctgatccg gatcagtata acttttcaag ttctg	aactg 180
	ggaggtgact ttgagttcat ggatgatgcc aacatgtgca ttgccattgc gattt	ctctt 240
	ctcatgatcc tgatatgtgc tatggctact tacggagcgt acaagcaacg cgcag	cctgg _, 300
	atcatcccat tettetgtta ccagatettt gaetttgece tgaacatgtt ggttg	caatc 360
5	actgtgctta tttatccaaa ctccattcag gaatacatac ggcaactgcc tccta	atttt 420
	ccctacagag atgatgteat gteagtgaat cctacetgtt tggteettat tatte	ttctg 480
	tttattagca ttatcttgac ttttaagggt tacttgatta gctgtgtttg gaact	gctac 540
	cgatacatca atggtaggaa ctcctctgat gtcctggttt atgttaccag caatg	acact 600
	acggtgctgc tacccccgta tgatgatgcc actgtgaatg gtgctgccaa ggagc	caccg 660
10	ccaccttacg tgtctgcc	678
	<210> 103	
	<211> 585	
	<212> DNA	
15	<213> Homo Sapience	
	<400> 103	
	atgaggette tgetgettet eetagtggeg gegtetgega tggteeggag egagge	_
20	gccaatctgg geggegtgee cagcaagaga ttaaagatge agtaegeeae ggggee	gctg 120
20	ctcaagttcc agatttgtgt ttcctgaggt tataggcggg tgtttgagga gtacat	gegg 180
	gttattagec ageggtacec agacateege attgaaggag agaattacet eeetea	
	atatatagac acatagcatc tttcctgtca gtcttcaaac tagtattaat aggctt	
	attgttggca aggateettt tgetttettt ggeatgeaag eteetageat etggea	
0.5	ggccaagaaa ataaggttta tgcatgtatg atggttttet tettgageaa catgat	
25	aaccagtgta tgtcaacagg tgcatttgag ataactttaa atgatgtacc tgtgtg	
	aagctggaat ctggtcacct tccatccatg caacaacttg ttcaaattct tgacaa	-
•	atgaagotca atgtgcatat ggattcaatc ccacaccatc gatca	585
	4910- 404	
30	<210> 104	
30	<211> 1017	
	<212> DNA	
	<213> Homo Sapience	
	<400> 104	
35	atgaactggg agetgetget gtggetgetg gtgetgtgeg egetgeteet getette	gata 60
		,,,,,

	cagetgetge get	teetgag gget	gaegge gae	ctgacgc tac	ctatgggc (cgagtggcag	120
	ggacgacgcc cag	gaatggga gctg	gactgat atg	gtggtgt ggg	gtgactgg a	agcctcgagt	180
	ggaattggtg agg	gagetgge ttac	cagttg tct	aaactag gag	gtttetet	tgtgctgtca	240
	gccagaagag tgc	catgaget ggaa	agggtg aaa	agaagat gcc	ctagagaa 1	tggcaattta	300
5	aaagaaaaag ata	stacttgt tttg	eccett gac	ctgaccg aca	actggttc (ccatgaagcg	360
	gctaccaaag ctg	gtteteca ggag	tttggt aga	atcgaca ttc	etggtcaa o	caatggtgga	420
	atgtcccagc gtt	ctctgtg cat	gatacc agc	ttggatg tct	acagaaa q	gctaatagag	480
	cttaactact tag	ggacggt gtcc	ttgaca aaa	tgtgttc tgc	ectcacat o	gategagagg	540
	aagcaaggaa aga	ittgttac tgtg	maatage atco	ctgggta tca	atatotgt a	acctctttcc	600
10	attggatact gtg	gctagcaa gcat	getete egg	ggttttt tta	atggcct t	tcgaacagaa	660
	cttgccacat acc	caggtat aata	gtttct aac	atttgcc cag	gacctgt d	gcaatcaaat	720
	attgtggaga att	ccctagc tgga	gaagtc aca	aagacta tag	gcaataa t	tggagaccag	780
	teccacaaga tga	caaccag tcgt	tgtgtg cgg	ctgatgt taa	itcagcat q	ggccaatgat	840
	ttgaaagaag ttt	ggatete agaa	caacct ttc	ttgttag taa	catattt c	gtggcaatac	900
15	atgecaacet ggg	ectggtg gata	accaac aaga	atgggga aga	aaaggat t	tgagaacttt	960
	aagagtggtg tgg	yatgcaga ctct	tcttat ttta	aaatct tta	agacaaa a	acatgac	1017
	<210> 105						
	<211> 1461						
20	<212> DNA						
	<213> Homo Sap	ience					
	<400> 105						
	atggatggga cag	agacccg gcag	cggagg ctg	gacaget gtg	gcaagee a	aggggagetg	60
25	gggcttcctc acc	ccctcag caca	ggagga ctco	ectgtag cct	cagaaga t	tggagetete	120
	agggcccctg aga	gccaaag cgtg	accccc aago	ccactgg aga	ctgagcc t	cagcagggag	180
	accgcctggt cca	taggcct tcag	gtgacc gtgo	eccttca tgt	ttgcagg c	ectgggaetg	240
	tectgggeeg gea	tgettet ggae	tatttc cago	actggc ctg	tgtttgt g	ggaggtgaaa	300
	gaccttttga cat	tggtgcc gccc	ctggtg ggcd	tgaagg gga	acctgga g	gatgacactg	360
30	gcatccagac tct	ccacagc tgcc	aacact ggad	aaattg atg	accccca g	gagcagcac	420
	agagtcatca gca	gcaacct ggcc	ctcatc cago	stgcagg cca	ctgtcgt g	gggctcttg	480
	getgetgtgg etg	egetget gttg	ggcgtg gtgt	ctcgag agg	aagtgga t	gtcgccaag	540
	gtggagttge tgt	gtgccag cagt	gteete acto	geettee ttg	cagcctt t	gecetgggg	600
	gtgctgatgg tct	gtatagt gatt	ggtgct cgaa	ageteg ggg	tcaaccc a	igacaacatt	660
35	gecaegecea ttg	cagecag cetg	ggagac ctca	itcacac tgto	ccattct g	getttggtt	720

	agcagettet tetacagaca caaagatagt eggtatetga egeegetggt etgeeteage	780
	tttgeggete tgacceeagt gtgggteete attgccaage agageeeace categtgaag	840
	atcctgaagt ttggctggtt cccaatcate ctggccatgg tcatcagcag tttcggagga	900
	ctcatcttga gcaaaaccgt ttctaaacag cagtacaaag gcatggcgat atttaccccc	960
5	gtcatatgtg gtgttggtgg caatctggtg gccattcaga ccagccgaat ctcaacctac	1020
	ctgcacatgt ggagtgcace tggcgtcctg cccctccaga tgaagaaatt ctggcccaac	1080
	cogtgttcta ctttctgcac gtcagaaatc aattccatgt cagctcgagt cctgctcttg	1140
	ctggtggtcc caggccatct gattttcttc tacatcatct acctggtgga gggtcagtca	1200
	gtcataaaca gccagacett tgtggtgete tacetgctgg caggcetgat ccaggtgaca	1260
10	atcctgctgt acctggcaga agtgatggtt cggctgactt ggcaccaggc cctggatcct	1320
	gacaaccact gcatccccta cettacaggg ctgggggacc tgctcggtac tggcctcctg	1380
	geactetget tttteactga etggetactg aagageaagg cagagetggg tggeatetea	1440
	gaactggcat ctggacctcc c	1461
15	<210> 106	
	<211> 1179	
	<212> DNA	
	<213> Homo Sapience	
20	<400> 106	
	atgcggacac tetteaacet cetetggett gecetggeet geagecetgt teacactace	60
	ctgtcaaagt cagatgccaa aaaagccgcc tcaaagacgc tgctggagaa gagtcagttt	120
	teagataage eggtgeaaga eeggggtttg gtggtgaegg aceteaaage tgagagtgtg	180
	gttettgage ategeageta etgeteggea aaggeeeggg acagacaett tgetggggat	240
25	gtactgggct atgtcactcc atggaacagc catggctacg atgtcaccaa ggtctttggg	300
	agcaagttca cacagatete acceptetgg etgeagetga agagaegtgg eegtgagatg	360
	tttgaggtca cgggcctcca cgacgtggac caagggtgga tgcgagctgt caggaagcat	420
	gccaagggcc tgcacatagt gcctcggctc ctgtttgagg actggactta cgatgatttc	480
	cggaacgtct tagacagtga ggatgagata gaggagctga gcaagaccgt ggtccaggtg	540
30	gcaaagaacc agcatttcga tggcttcgtg gtggaggtct ggaaccagct gctaagccag	600
	aagegegtgg geeteateea catgeteace eacttggeeg aggetetgea eeaggeeegg	660
	etgetggeee teetggteat ecegeetgee ateaceeeeg ggaeegaeea getgggeatg	720
	ttcacgcaca aggagtttga gcagctggcc cccgtgctgg atggtttcag cctcatgacc	780
35	tacgactact ctacagegea teageetgge cetaatgeae ecetgteetg ggttegagee	840

tacatccaga cactgaagga ccacaggccc cggatggtgt gggacagca ggcctcagag licacttottc gagtacaagaa gagcccagt gggaggcag tcgtcttcta cccaaccctg licacttctcg aggtgggcc ggggtgggc cgggagggggggggg								
cacttottog agtacaagaa gagocgoagt gggaggacg tegtetteta occaaccetg laaagtecetge aggtgeget ggagetggee egggagetgg gegttggggt etetatotgg li sagcetggee agggeetgga etaettetae gacetgete li <pre></pre>		ttctatggta	tggactacgc	gacctccaag	gatgcccgtg	agcctgttgt	cggggccagg	960
aagteeetge aggtgegget ggagetgge eggagaetgg gegttggggt etetatetgg 1: gagetgggee agggeetgga etaettetae gaeetgete 1: <210> 107 <211> 588 <212> DNA 10 <213> Homo Sapience <400> 107 atgtggaggg tgeeeggeae aaceagaege eeagteacag gegagageee tgggatgeae eggeeagagg ceatgetget getgeteaeg ettgeeetee tggggggeee eaeetgggea 1: ggaagatgt atggeeetgg aggaggeaag tattteagea eeaetggaga ettggagtgeae ettggagaet eettggaggt geataeaeg gegaaagtee eaeetgggaa eettggagaet eettggagaet eettggaggeee eaeetgggga eettggagaet eettggagaet eettggaggeg geataeggg ggaataeaee ggaagteaee ettggagegg geataegg ggaataeee ggaagteaee ettggagegg geataegg ggaataeee ggaagteaee ettggageet eetetggageg geettaggtg ggaataeee ggaagteaee ettggageegg gegaataeee ettggagegg gegaataeee ettggagegg ggaataeee gagaggeagg ggagaataeee eteettggaa teaeeggaag ggaeggag gtgetggtgg geatetatgg eeagtateaa eteettggaa teaagagaat tggetttgaa tggaagttga tggeeagaeee gagageeaeea gageegaate teaeteagaga aacteaeeeg tgggtege 5: <210> 108 25 <211> 321 <212> DNA <213> Homo Sapience <400> 108 30 atggageaga agettgtgga ggagattett eaageaatea etatgteaae agacaeaggt gttteeette etteatatga ggaagateag ggateaaaae teattegaaa agetaaagag geaeeatteg taeeegtgg aataegaggt ttttgeageaa ttgttgeata tggattatat 1: aaaetgaaga geaggggaaa taetaaaaatg teeatteate tgateeaat gegtgtggea geeeaagget ttgttgtaga ageaatgaet gttggtatag getatteeat ggatgtggaa geeeaagget ttgttgtaga ageaatgaet gttggtatgg getatteeat ggatgagaa geeeaagget ttgttgtaga ageaaagaet gttggtagg getatteeat gtateggaa geeeaagget ttgttgtaga ageaatgaet gttggtatgg getatteeat gtateggaa geeeaaggeeeaaggeeeaaggeeeaaggagaagaaaga		tacatccaga	cactgaagga	ccacaggccc	cggatggtgt	gggacagcca	ggcctcagag	. 1020
5 gagctgggcc agggcctgga ctacttctac gacctgctc 1: <210> 107 <211> 588 <212> DNA 10 <213> Homo Sapience <400> 107 atgtggaggg tgcccggcac aaccagacgc ccagtcacag gcgagagccc tgggatgcac cggccagagg ccatgctgct gctgctacag cttgccctcc tggggggccc cacctgggca 2: gggaagatgt atggccctgg aggaggcaag tatttcagca ccactgaaga ctacgaccat 2: gaaatcacag ggctgcgggt gtctgtaggt cttctcctgg tgaaaagtgt ccaggtgaa 2: cttggagact cctgggacgt gaaactggga gccttaggtg ggaatacca ggaagtcacc ctggagcac acctggagac tttgtaggac tttgtcgcct tccaagcttt cctccggggt atggccagagac atggccagag cttgagcagac atggccagag cttgcagacag ggacgaatacat ttcattttg ggaagcttg tggccagatc atggtcatgt acaccagcaa agaggggcag gtgtggtggtgg gcatctatgg ccagtatcaa accccatgagaa ttacaccagaga gtgctggtgg gcatcatag ccagtatcaa accccttggca tcaagagcat tggctttgaa tggaattatc cactagagga gccgaccact gagccaccag ttaatctcac atactcagca aactcacccg tgggtcgc 5: <210> 108 25 <211> 321 <212> DNA <213> Homo Sapience <400> 108 30 atggagcaga agcttgtgga ggaagatcat caagcaatca ctattgaaa agctaaagag gcaccattcg tacccgttgg aatagcgggt tttgcagaa ttgttgcata tggattatat 11 aaactgaaga gcaggggaaa tactaaaatg tcattcatc tgatcacat gcgttgtgca gccaaggct ttgttgtagg gccaaggct ttgttgtagg gccaaggct ttgttgtagg gccaaggct ttgttgtagg gccaaggct ttgttgtagg gccaaggct ttgttgtagg gccaaggcg gcccaaggcg ttgttgtgaga gccaaggcgaa ttgttgtagga gccaaggcgaa gccaaggggaa ttgttgtagga gccaaggggaa gccaaggggaa ttgttgtgaa tggttaccact gcgtgtggca gccaaggccaaggccaaggggaacaacagggt tttgtgaaga gccaaggggaa ttgttgtgaa ggcaaatgact gttgtgtagg gccaaggggaa gccaaggggaa ttgttgtgaa ggccaaggggaa gccaaggggaa ttgtgtgaagggaagg		cacttcttcg	agtacaagaa	gagccgcagt	gggaggcacg	tegtetteta	cccaaccctg	1080
<pre><210> 107 <211> 588 <212> DNA 10 <213> Homo Sapience <400> 107 atgtggaggg tgcccggcac aaccagacge ccagtcacag gcgagagccc tgggatgcac cggccagagg ccatgctgct gctgctcacag cttgcctce tggggggcc cacctgggca cggcagagtg atgccctgg aggaggcaag tatttcagca ccactgaaga ctacgaccat gaaatcacag ggctgcgggt gtctgtaggt cttctcctgg tgaaaagtgt ccaggtgaaa cttggaagct cctgggacgt gaaactggga gccttaggtg ggaatacaca ggaagtcaca ctggaagcc accacagaaga ctacgacgaag cttggcagag cttggaagct tttgtcgcct tccaagctt cctcggggt atggtcatgt acacaaaagte tttgtcgcct tccaagctt cctccggggt atggtcatgt acaccaagcaa ggaccgctat ttctattttg ggaagcttga tggccagatc ccctcttggca tcaagagaag tggctggtgg gcatcatagg ccagtatcaa ctccttggca tcaagagcat tggctttgaa tggaattatc cactagagga gccgaccact gagccaccag ttaatctcac atactcagca aactcacccg tgggtcgc <210> 108 25 <211> 321 <212> DNA <213> Homo Sapience <400> 108 30 atggagcaga agcttgtgga ggagattct caagcaatca ctattgaaa agctaaagag gcaccattcg tacccgttgg aatagcggt tttgcagaa ttgttgcata tggattatat 1 aaactgaaga gcaggggaaa tactaaaadg tccattcatc tgatcacat gggttggca gccaagggt ttgttgtagg gcaaggtt ttgttgtagt ggctattccat ggatgtagaa gccaaggggaa gccaaggggaaa tactaaaadg tccattcatc tgatcacat gcgtgtggca gccaaggccaaggct ttgttgtaga ggaaatgact gttggtatgg gctattccat gtatcggaa gccaaggca ttgttgtaga gccaaggcat ttgttgtaga ggccaaggggaa gccaagggaa ttgttgtaga gccaaggggaa gccaaggggaa gccaaggagaac gttgtggaag gccaaggggaa gccaaggggaa gccaaggagaa ttgttgcaat tggattatat 1 aaactgaaga gccaaggggaa gcaagagaagaagaac gttgtggaa gccaaggggaa gccaaggggaa gccaagagagaagaagagagaagagaagagaagagaagagaagaagag</pre>		aagtccctgc	aggtgcggct	ggagetggee	cgggagctgg	gcgttggggt	ctctatctgg	1140
<211> 588 <212> DNA 10 <213> Homo Sapience <400> 107 atgtggaggg tgcccggcac aaccagacgc ccagtcacag gcgagagccc tgggatgcac cggccagagg ccatgctgct gctgctcacg ettgccctce tggggggccc cacctgggaa gaaatcacag ggctggggt gtctgtaggt ettctcctgg tgaaaagtgt ccaggtgaaa cttggagact cctggagact cctggagact gaaactggga gcttagggt ggaatacca ggaagtcac gaaactgga gcgaatacat cacaaaagtc tttgtcgcct tccaagcttt cctccggggt atggcagaa atggtcatgt aacgcaagaa ggacgcaat ttctattttg ggaagcttga tggccagatc atggtcatgt acaccagcaa ggacgctat ttctattttg ggaagcttga tggccagatc atccttggca tcaagagaa taggtcatga ggatggggag gtgtgggg gcatctatgg ccagtatcaa ctccttggca tcaagagaat tggcttgaa tggaattac cactagagga gcgacaccat gagccaccag ttaatctcac atactcagca aactcaccg tgggtcgc <210	5	gagetgggee	agggcctgga	ctacttctac	gacctgctc			1179
<211> 588 <212> DNA 10 <213> Homo Sapience <400> 107 atgtggaggg tgcccggcac aaccagacgc ccagtcacag gcgagagccc tgggatgcac cggccagagg ccatgctgct gctgctcacg ettgccctce tggggggccc cacctgggaa gaaatcacag ggctggggt gtctgtaggt ettctcctgg tgaaaagtgt ccaggtgaaa cttggagact cctggagact cctggagact gaaactggga gcttagggt ggaatacca ggaagtcac gaaactgga gcgaatacat cacaaaagtc tttgtcgcct tccaagcttt cctccggggt atggcagaa atggtcatgt aacgcaagaa ggacgcaat ttctattttg ggaagcttga tggccagatc atggtcatgt acaccagcaa ggacgctat ttctattttg ggaagcttga tggccagatc atccttggca tcaagagaa taggtcatga ggatggggag gtgtgggg gcatctatgg ccagtatcaa ctccttggca tcaagagaat tggcttgaa tggaattac cactagagga gcgacaccat gagccaccag ttaatctcac atactcagca aactcaccg tgggtcgc <210								
<212> DNA 10 <213> Homo Sapience <400> 107 atgtggaggg tgcccggcac aaccagacgc ccagtcacag gcgagagccc tgggatgcac cggccagagg ccatgctgct gctgctcacg cttgccctcc tggggggccc cacctgggca ggagacgatg atggcctgg aggaggcaag tattcagca ccactgaaga ctacgaccat gaaatcacag ggctgcgggt gtctgtaggt cttctcctgg tgaaaagtgt ccaggtgaag cttggaagct ccttggagact ccttggagact ccttggagact gccttaggtg ggaatacca ggaagtcacc ctgcagccag gcgaatacat cacaaaagtc tttgtcgcct tccaagcttt cctccggggt atggtcatgt acaccagcaa ggaccgctat ttctattttg ggaagcttga tggccagatc atggtcatgt acaccagcaa gagagggcag gtgtggtgg gcatctatgg ccagtatcaa ctccttggca tcaagagcat tggctttgaa tggaattatc cactagagga gccgaccact gagccaccag ttaatctcac atactcagca aactcacccg tgggtcgc <210		<210> 107						
400		<211> 588						
<pre> <400> 107 atgtggaggg tgcccggcac aaccagacgc ccagtcacag gcgagagccc tgggatgcac cggccagagg ccatgctgct gctgctcacg cttgccctcc tggggggccc cacctgggca gggaagatgt atggccctgg aggaggcaag tatttcagca ccactgaaga ctacgaccat gaaatcacag ggctgcgggt gtctgtaggt cttctcctgg tgaaaagtgt ccaggtgaaa cttggagact cctgggacgt gaaactggga gccttaggtg ggaataccca ggaagtcacc ctgcagccag gcgaatacat cacaaaagtc tttgtcgcct tccaagcttt cctccggggt atggtcatgt acaccagcaa ggaccgctat ttctattttg ggaagcttga tggccagatc tccttggca tcaagagcat tggctttgaa tggaattacc cactagagga gccgaccact gagccaccag ttaatctcac atactcagca aactcacccg tgggtcgc </pre> <pre></pre>		<212> DNA						
atgtggaggg tgcccggcac aaccagacgc ccagtcacag gcgagagccc tgggatgcac cggccagagg ccatgctgct gctgctcacg cttgccctcc tggggggccc cacctgggca 15 gggaagatgt atggccctgg aggaggcaag tattcagac ccactgaaga ctacgaccat gaaatcacag ggctgcgggt gtctgtaggt cttctcctgg tgaaaagtgt ccaggtgaaa cttggaagact cctggagact gaaactggga gccttaggtg ggaatacca ggaagtcacc ctggagcaag gcgaatacat cacaaaagtc tttgtcgcct tccaagettt cctccggggt atggtcatgt acaccagcaa ggaccgctat ttctattttg ggaagcttga tggccagatc atggtcatgt acaccagcaa agaggggcag gtgctggtgg gcatctatgg ccagtatcaa ctccttggca tcaagagcat tggcttgaa tggaattatc cactagagga gccgaccact gaagccaccag ttaatctcac atactcagca aactcacceg tgggtcgc	10	<213> Homo	Sapience					
atgtggaggg tgcccggcac aaccagacgc ccagtcacag gcgagagccc tgggatgcac cggccagagg ccatgctgct gctgctcacg cttgccctcc tggggggccc cacctgggca 15 gggaagatgt atggccctgg aggaggcaag tattcagac ccactgaaga ctacgaccat gaaatcacag ggctgcgggt gtctgtaggt cttctcctgg tgaaaagtgt ccaggtgaaa cttggaagact cctggagact gaaactggga gccttaggtg ggaatacca ggaagtcacc ctggagcaag gcgaatacat cacaaaagtc tttgtcgcct tccaagettt cctccggggt atggtcatgt acaccagcaa ggaccgctat ttctattttg ggaagcttga tggccagatc atggtcatgt acaccagcaa agaggggcag gtgctggtgg gcatctatgg ccagtatcaa ctccttggca tcaagagcat tggcttgaa tggaattatc cactagagga gccgaccact gaagccaccag ttaatctcac atactcagca aactcacceg tgggtcgc								
eggecagagg ceatgetget getgeteaeg ettgecetce tggggggece cacetgggea gggaagatgt atggecetgg aggaggeaag tattteagea ceaetgaaga etaegaceat gaaaatcacaag ggetgegggt gtetgtaggt etteteetgg tgaaaagtgt eeaggtgaaa ettggaagact eetggaaget gaaactggga geettaggtg ggaataceae ggaagteaee etggaageag gegaatacat eacaaaagte tttgtegeet teeaagettt eeteeggggt atggteatgt acaceageaa ggacegetat ttetattttg ggaagettga tggecagate etcetetggea teeaegagea aggagggaag gtgetggtgg geatetatgg eeagtateaa etcettggea teaagageat tggetttgaa tggaattate eactagagga geegaeeaet gagecaceag ttaateteae ataeteagea aacteaeeg tgggtege etcettggea teaagageat tggetttgaa tggaattate eactagagga geegaeeaet gagecaceag ttaateteae ataeteagea aacteaeeg tgggtege etcettgas tggatgas gaagatea etcettgaa tggatgas ggagateatea etaetgaa ageaeaggt gttteeette etteatatga ggaagateat eagaeaaea etcattegaaa ageaeaaggt gttteeette etteatatga ggaagateag ggateaaaae teattgaaa ageaeaagga geecaateg taeeegttgg aatagegggt tttgeageaa ttgttgeata tggattatat aaaetgaaga geaggggaaa taetaaaatg teeatteate tgateeaea gegtgtggea geecaagget ttgttgtagg ageaatgaet gttggtatgg getatteeat gtateggaa 3		<400> 107						
ggaagatgt atggccctgg aggaggcaag tatttcagca ccactgaaga ctacgaccat gaaatcacag ggctgcgggt gtctgtaggt cttctcctgg tgaaaagtgt ccaggtgaaa cttggagact cctgggacgt gaaactggga gccttaggtg ggaataccca ggaagtcacc ctgcagccag gcgaatacat cacaaaagtc tttgtcgcct tccaagcttt cctccggggt atggtcatgt acaccagcaa ggaccgctat ttctattttg ggaagcttga tggccagatc ctccttggca tcaagagcat tggcttgaa tggaattatc cactagagga gccgaccact gagccaccag ttaatctcac atactcagca aactcacccg tgggtcgc <210> 108 <211> 321 <212> DNA <213> Homo Sapience <400> 108 30 atggagcaga agcttgtgga ggaagatcat caagcaatca ctatgcaac agcacaggt gtttccctc cttcatatga ggaagatcag ggatcaaaac tcattcgaaa agctaaagag gcaccattcg tacccgttgg aatagcggt tttgcagcaa ttgttgcata tggattatat aaactgaaga gcaggggaaa tactaaaaatg tccattcatc tgatccacat gcgtgtggca gcccaaggct ttgttgtagg agcaatgact gttggtatgg gctattccat gtatcgggaa 33 34 35 36 37 38 39 30 30 30 30 30 30 30 30 30		atgtggaggg	tgcccggcac	aaccagacgc	ccagtcacag	gcgagagccc	tgggatgcac	60
gaaatcacag ggctgcgggt gtctgtaggt cttctcctgg tgaaaagtgt ccaggtgaaa cttggagact cctgggacgt gaaactggga gccttaggtg ggaataccac ggaagtcacc ctgcagccag gcgaatacat cacaaaagtc tttgtcgcct tccaagcttt cctccggggt atggtcatgt acaccagcaa ggaccgctat ttctattttg ggaagcttga tggccagatc ctccttggca tcaagagcat tggcttgaa tggaagttga tggccagatc ctccttggca tcaagagcat tggcttgaa tggaattatc cactagagga gccgaccact gagccaccag ttaatctcac atactcagca aactcacccg tgggtcgc cagtaccact gagccaccag ttaatctcac atactcagca aactcacccg tgggtcgc cactaccaccag taatcaccaccag taatcaccaccag taatcaccaccag taatcaccaccag tgggtcgc cactaccaccag tgggtcgc cactaccaccag tgggtcgc cactaccaccaccag taatcaccaccag taatcaccaccag tgggtcgc cactaccaccag tgggtcgc cactaccaccaccag tgggtcgc cactaccaccaccaggt gtttcccttc cttcatatga ggaagatcat caagcaaaca ctattgtcaac agaccacaggt gcaccattcg tacccgttgg aatagcgggt tttgcagacaa ttgttgcata tggattatat aaactgaaga gcaggggaaa tactaaaaatg tccattcatc tgatccacat gcgtgtggca gcccaaggct ttgttgtagag agcaatgact gttggtatgg gctattccat gtatcgggaa 3		cggccagagg	ccatgctgct	gctgctcacg	cttgccctcc	tggggggccc	cacctgggca	120
cttggagact cctgggacgt gaaactggga gccttaggtg ggaataccca ggaagtcacc ctgcagccag gcgaatacat cacaaaagte tttgtcgcet tecaagcttt cctccggggt atggtcatgt acaccagcaa ggaccgctat ttctattttg ggaagcttga tggccagate ctccttggca tcaagagcat tggcttgaa tggaattate cactagagga gccgaccact gagccaccag ttaatctcac atactcagca aactcacccg tgggtcgc cagtaccact caccagagcaccag ttaatctcac atactcagca aactcacccg tgggtcgc caccact caccagagcaccac ttaatctcac atactcagca aactcacccg tgggtcgc caccact caccagagcaccac caccag ttaatctcac atactcagca aactcacccg tgggtcgc caccact caccaccaccaccaccaccaccaccaccaccaccaccac	15	gggaagatgt	atggccctgg	aggaggcaag	tatttcagca	ccactgaaga	ctacgaccat	180
ctgcagccag gcgaatacat cacaaaagtc tttgtcgcct tccaagcttt cctccggggt atggtcatgt acaccagcaa ggaccgctat ttctattttg ggaagcttga tggccagatc tcctctgcct accccagcca agaggggcag gtgctggtgg gcatctatgg ccagtatcaa ctccttggca tcaagagcat tggctttgaa tggaattatc cactagagga gccgaccact gagccaccag ttaatctcac atactcagca aactcacccg tgggtcgc <210> 108 25 <211> 321 <212> DNA <213> Homo Sapience <400> 108 30 atggagcaga agcttgtgga ggagattctt caagcaatca ctatgtcaac agacacaggt gtttcccttc cttcatatga ggaagatcag ggatcaaaac tcattcgaaa agctaaagag gcaccattcg tacccgttgg aatagcgggt tttgcagcaa ttgttgcata tggattatat aaactgaaga gcaggggaaa tactaaaaatg tccattcatc tgatccacat gcgtgtggca gcccaaggct ttgttgtagg agcaatgact gttggtatgg gctattccat gtatcggaa gcccaaggct ttgttgtagg agcaatgact gttggtatgg gctattccat gtatcggaa 33		gaaatcacag	ggctgcgggt	gtctgtaggt	cttctcctgg	tgaaaagtgt	ccaggtgaaa	240
atggtcatgt acaccagcaa ggaccgctat ttetattttg ggaagcttga tggccagate 4 20 teetetgcet accccagca agaggggaag gtgctggtgg gcatctatgg ccagtatcaa 6 ctccttggca tcaagagcat tggctttgaa tggaattate cactagagga gccgaccact gagccaccag ttaatctcac atactcagca aactcacccg tgggtcgc 5 <210> 108 25 <211> 321		cttggagact	cctgggacgt	gaaactggga	gccttaggtg	ggaataccca	ggaagtcacc	300
teetetgeet accecageca agaggggaag gtgctggtgg gcatctatgg ccagtateaa ctcettggca teaagagcat tggcttgaa tggaattate cactagagga gccgaccact gagccaccag ttaateteac atactcagea aactcacccg tgggtege 5 <210> 108 25 <211> 321 <212> DNA <213> Homo Sapience <400> 108 30 atggagcaga agcttgtgga ggagattett caagcaatca ctatgtcaac agacacaggt gtttecette etteatatga ggaagatcag ggatcaaaac teattegaaa agctaaagag geaccatteg tacccgttgg aatagegggt tttgcageaa ttgttgeata tggattatat aaactgaaga geaggggaaa tactaaaatg tecattcate tgatcacat gegtgtggca geccaagget ttgttgtagg agcaatgact gttggtatgg getattecat gtatcggaa 3		ctgcagccag	gcgaatacat	cacaaaagtc	tttgtcgcct	tccaagcttt	cctccggggt	360
ctccttggca tcaagagcat tggctttgaa tggaattatc cactagagga gccgaccact gagccaccag ttaatctcac atactcagca aactcacccg tgggtcgc <210> 108 25		atggtcatgt	acaccagcaa	ggaccgctat	ttctattttg	ggaagcttga	tggccagatc	420
gagccaccag ttaatctcac atactcagca aactcacccg tgggtcgc <210> 108 25	20	tectetgeet	accccagcca	agaggggcag	gtgctggtgg	gcatctatgg	ccagtatcaa	480
<pre> <210> 108 25</pre>		ctccttggca	tcaagagcat	tggctttgaa	tggaattatc	cactagagga	gccgaccact	540
25 <211> 321 <212> DNA <213> Homo Sapience 400> 108 30 atggagcaga agcttgtgga ggagattett caagcaatca ctatgtcaac agacacaggt gtttecette etteatatga ggaagateag ggatcaaaac teattegaaa agctaaagag geaccatteg taccegttgg aatagegggt tttgcagcaa ttgttgcata tggattatat 1 aaactgaaga geaggggaaa tactaaaatg tecatteate tgatcacat gegtgtggea geceaagget ttgttgtagg agcaatgact gttggtatgg getattecat gtategggaa 3		gagccaccag	ttaatctcac	atactcagca	aactcacccg	tgggtege		588
25 <211> 321 <212> DNA <213> Homo Sapience 400> 108 30 atggagcaga agcttgtgga ggagattett caagcaatca ctatgtcaac agacacaggt gtttecette etteatatga ggaagateag ggatcaaaac teattegaaa agctaaagag geaccatteg taccegttgg aatagegggt tttgcagcaa ttgttgcata tggattatat 1 aaactgaaga geaggggaaa tactaaaatg tecatteate tgatcacat gegtgtggea geceaagget ttgttgtagg agcaatgact gttggtatgg getattecat gtategggaa 3								
<pre><212> DNA <213> Homo Sapience <400> 108 30 atggagcaga agcttgtgga ggagattett caagcaatca etatgtcaac agacacaggt gtttcccttc cttcatatga ggaagatcag ggatcaaaac tcattcgaaa agctaaagag 1 gcaccattcg tacccgttgg aatagcgggt tttgcagcaa ttgttgcata tggattatat 1 aaactgaaga gcaggggaaa tactaaaatg tccattcatc tgatccacat gcgtgtggca 2 gcccaaggct ttgttgtagg agcaatgact gttggtatgg gctattccat gtatcggaa 3</pre>		<210> 108						
<213> Homo Sapience <400> 108 30 atggagcaga agcttgtgga ggagattett caagcaatca ctatgtcaac agacacaggt gtttecette etteatatga ggaagateag ggatcaaaac teattegaaa agctaaagag 1 geaceatteg taecegttgg aatagegggt tttgeageaa ttgttgeata tggattatat 1 aaactgaaga geaggggaaa tactaaaatg tecatteate tgatceacat gegtgtggea geceaagget ttgttgtagg agcaatgact gttggtatgg getattecat gtategggaa 3	2 5	<211> 321						
<400> 108 30 atggagcaga agcttgtgga ggagattett caagcaatea etatgteaac agacacaggt gttteeette etteatatga ggaagateag ggatcaaaac teattegaaa agctaaagag 1 geaceatteg taecegttgg aatagegggt tttgeagcaa ttgttgeata tggattatat 1 aaactgaaga geaggggaaa taetaaaatg teeatteate tgatceacat gegtgtggea geecaagget ttgttgtagg agcaatgaet gttggtatgg getatteeat gtategggaa 3								
atggagcaga agcttgtgga ggagattett caagcaatca ctatgtcaac agacacaggt gtttecette etteatatga ggaagateag ggatcaaaac teattegaaa agctaaagag 1 geaceatteg taecegttgg aatagegggt tttgeagcaa ttgttgeata tggattatat 1 aaactgaaga geaggggaaa taetaaaatg teeatteate tgatceacat gegtgtggea 2 geecaagget ttgttgtagg ageaatgaet gttggtatgg getatteeat gtategggaa 3		<213> Homo	Sapience					
atggagcaga agcttgtgga ggagattett caagcaatca ctatgtcaac agacacaggt gtttecette etteatatga ggaagateag ggatcaaaac teattegaaa agctaaagag 1 geaceatteg taecegttgg aatagegggt tttgeagcaa ttgttgeata tggattatat 1 aaactgaaga geaggggaaa taetaaaatg teeatteate tgatceacat gegtgtggea 2 geecaagget ttgttgtagg ageaatgaet gttggtatgg getatteeat gtategggaa 3								
gtttecette etteatatga ggaagateag ggateaaaac teattegaaa agetaaagag 1 geaceatteg taccegttgg aatagegggt tttgeageaa ttgttgeata tggattatat 1 aaactgaaga geaggggaaa tactaaaatg teeatteate tgateeacat gegtgtggea 2 geecaagget ttgttgtagg ageaatgaet gttggtatgg getatteeat gtategggaa 3		<400> 108						
geaceatteg taccegttgg aatagegggt tttgeageaa ttgttgeata tggattatat 1 aaactgaaga geaggggaaa tactaaaatg tecatteate tgateeacat gegtgtggea 2 geecaagget ttgttgtagg ageaatgaet gttggtatgg getatteeat gtategggaa 3	30	atggagcaga	agcttgtgga	ggagattett	caagcaatca	ctatgtcaac	agacacaggt	60
aaactgaaga gcaggggaaa tactaaaatg tccattcatc tgatccacat gcgtgtggca 2 gcccaaggct ttgttgtagg agcaatgact gttggtatgg gctattccat gtatcgggaa 3		gtttecette	cttcatatga	ggaagatcag	ggatcaaaac	tcattcgaaa	agctaaagag	120
geecaagget ttgttgtagg ageaatgaet gttggtatgg getatteeat gtategggaa 3		gcaccattcg	tacccgttgg	aatagegggt	tttgcagcaa	ttgttgcata	tggattatat	180
		aaactgaaga	gcaggggaaa	tactaaaatg	tccattcatc	tgatccacat	gcgtgtggca	240
35 ttetgggeaa aacetaagee t 3		gcccaaggct	ttgttgtagg	agcaatgact	gttggtatgg	gctattccat	gtatcgggaa	300
	35	ttctgggcaa	aacctaagcc	t				321

	<210> 109						
	<211> 1050						
	<212> DNA						
5	<213> Homo	Sapience					
	<400> 109						
	atgtctgagg	tgaagagccg	gaagaagtcg	gggcccaagg	gagcccctgc	tgcggagccc	60
	gggaagcgga	gcgagggcgg	gaagaccccc	gtggcccgga	gcagcggagg	cgggggctgg	120
10	gcagaccccc	gaacgtgcct	gagcctgctg	tegetgggga	cgtgcctggg	cctggcctgg	180
	tttgtatttc	agcagtcaga	aaaatttgca	aaggtggaaa	accaatacca	gttactgaaa	240
	ctagaaacca	atgaattcca	acaacttcaa	agtaaaatca	gtttaatttc	agaaaagtgg	300
	cagaaatctg	aagctatcat	ggaacaattg	aagtcttttc	aaataattgc	tcatctaaag	360
	cgtctacagg	aagaaattaa	tgaggtaaaa	acttggtcca	ataggataac	tgaaaaacag	420
15	gatatactga	acaacagtct	gacgacgctt	tctcaagaca	ttacaaaagt	agaccaaagt	480
	acaacttcca	tggcaaaaga	tgttggtctc	aagattacaa	gtgtaaaaac	agatatacga	540
	cggatttcag	gtttagtaac	tgatgtaata	tcattgacag	attctgtgca	agaactagaa	600
	aataaaatag	agaaagtaga	aaaaaataca	gtaaaaaata	taggtgatct	tctttcaagc	660
	agtattgatc	gaacagcaac	gctccgaaag	acagcatctg	aaaattcaca	aagaattaac	720
20	tctgttaaga	agacgctaac	cgaactaaag	agtgacttcg	acaaacatac	agatagattt	780
	ctaagcttag	aaggtgacag	agccaaagtt	ctgaagacag	tgacttttgc	aaatgatcta	840
	aaaccaaagg	tgtataatct	aaagaaggac	ttttcccgtt	tagaaccatt	agtaaatgat	900
	ttaacactac	gcattgggag	attggttacc	gacttactac	aaagagagaa	agaaattgct	960
	ttcttaagtg	aaaaaatatc	taatttaaca	atagtccaag	ctgagattaa	ggatattaaa	1020
25	gatgaaatag	cacacatttc	agatatgaat				1050
	<210> 110						
	<211> 321						
	<212> DNA						
30	<213> Homo	Sapience					
	<400> 110						
	atgtcctcag	caggcacagc	aacccctctg	gaaatggatc	acaaactcac	ttctcagcca	60
	ggcaggccaa	gcttctattg	taacagtagg	cacagtatag	tcggatcatc	acatcagctg	120
35	ggtttttggt	ttagtcatct	agagtcgtct	ggactaaagg	tctttcaggt	ctccttgccc	180

ctggtggtgg gccaggcccc tgcatgggaa gggagcctgc tgcggggcag gccagctggg ggtgctcacc tatgcgcagc a 5		tgtgagtgcg tgaaceteec caceegaatt geeteagttg teetgageet eatgtetete	240
5 <210> 111 <211> 1619 <212> DNA <213> Homo Sapience <220> 10 <221> CDS <222> (158)(1234) <400> 111 agaagagggg gctagctagc tgtctctggg gaccagggag acccccgggc ccccccggtg gaggagtgt tgagacagga ccggggaga aggacca atg gct ccg cag aac ctg Met Ala Pro Gln Asn Leu 1 5 age acc ttt tgc ctg ttg ctg cta tac ctc atc ggg gcg gtg att gcc Ser Thr Phe Cys Leu Leu Leu Tyr Leu Ile Gly Ala Val Ile Ala 10 15 20 gga cga gat ttc tat aag atc ttg ggg gtg cct cga agt gcc tct ata Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile 25 30 35 25 aag gat att aaa aag gcc tat agg aaa cta gcc ctg cag ctc cac Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac cgg aac cct gat gat cca caa gcc cag gag aaa ttc cag gat ctg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat		ctggtggtgg gccaggcccc tgcatgggaa gggagcctgc tgcggggcag gccagctggg	300
<pre></pre>		ggtgctcacc tatgcgcagc a	321
<pre></pre>			
<pre></pre>	5	<210> 111	
		<211> 1619	
<pre></pre>		<212> DNA	
10		<213> Homo Sapience	
<pre><222> (158)(1234) <pre><400> 111</pre></pre>		<220>	
<pre><400> 111 agaagagggg getagetage tgtetetgeg gaceagggag accecegege cececeggtg tgaggagtgtg tggaacagga cecgggacag aggacegae geggeggegg aggaggetgt gaggagtgtg tggaacagga cecgggacag aggace atg get eeg cag aac etg Met Ala Pro Gln Asn Leu 1 5 age ace ttt tge etg ttg etg eta tac ete ate ggg geg gtg att gee 20 Ser Thr Phe Cys Leu Leu Leu Leu Tyr Leu Ile Gly Ala Val Ile Ala 10 15 20 gga ega gat tte tat aag ate ttg ggg gtg eet ega agt gee tet ata Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile 25 30 35 25 aag gat att aaa aag gee tat agg aaa eta gee etg eag ett eat eec Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac egg aac eet gat gat eea eaa gee eag gag aaa tte eag gat etg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt get get tat gag gtt etg tea gat agt gag aaa eegg aaa eag tae Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt eat eag agc tee cat</pre>	10	<221> CDS	
agaagagggg getagetage tytetetggg gaccagggag accecegege ecceceggtg tgaggagtgt tgagaacagga eccegggacag aggagecgac geggeggegg aggaggetgt gaggagtgtg tggaacagga eccegggacag aggaacc atg get ecg cag aac etg Met Ala Pro Gln Asn Leu 1 5 age ace ttt tge etg ttg etg eta tac etc ate ggg geg gtg att gee Ser Thr Phe Cys Leu Leu Leu Tyr Leu Ile Gly Ala Val Ile Ala 10 15 20 gga ega gat tte tat aag ate ttg ggg gtg ect ega agt gee tet ata Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile 25 30 35 25 aag gat att aaa aag gee tat agg aaa eta gee etg eag ett eat ece Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac egg aac eet gat gat eea eaa gee eag gag aaa tte eag gat etg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt get get tat gag gtt etg tea gat agt gag aaa egg aac eag tae Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gag tta aaa gat ggt eat eag age tee eat		<222> (158)(1234)	
agaagagggg getagetage tytetetggg gaccagggag accecegege ecceceggtg tgaggagtgt tgagaacagga eccegggacag aggagecgac geggeggegg aggaggetgt gaggagtgtg tggaacagga eccegggacag aggaacc atg get ecg cag aac etg Met Ala Pro Gln Asn Leu 1 5 age ace ttt tge etg ttg etg eta tac etc ate ggg geg gtg att gee Ser Thr Phe Cys Leu Leu Leu Tyr Leu Ile Gly Ala Val Ile Ala 10 15 20 gga ega gat tte tat aag ate ttg ggg gtg ect ega agt gee tet ata Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile 25 30 35 25 aag gat att aaa aag gee tat agg aaa eta gee etg eag ett eat ece Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac egg aac eet gat gat eea eaa gee eag gag aaa tte eag gat etg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt get get tat gag gtt etg tea gat agt gag aaa egg aac eag tae Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gag tta aaa gat ggt eat eag age tee eat			
tgaggaggcc tcacagggcc gggtgggctg gcgagccgac gcggcggcgg aggaggctgt gaggaggtgt tggaacagga cccgggacag aggagcc atg gct ccg cag aac ctg Met Ala Pro Gln Asn Leu 1 5 agc acc ttt tgc ctg ttg ctg cta tac ctc atc ggg gcg gtg att gcc 20 Ser Thr Phe Cys Leu Leu Leu Leu Tyr Leu Ile Gly Ala Val Ile Ala 10 15 20 gga cga gat ttc tat aag atc ttg ggg gtg cct cga agt gcc tct ata Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile 25 30 35 25 aag gat att aaa aag gcc tat agg aaa cta gcc ctg cag ctt cat ccc Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac cgg aac cct gat gat cca caa gcc cag gag aaa ttc cag gat ctg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa ggt gct cat cag agc tcc cat		<400> 111	
gaggagtgtg tggaacagga cccgggacag aggaacc atg gct ccg cag aac ctg Met Ala Pro Gln Asn Leu 1 5 agc acc ttt tgc ctg ttg ctg cta tac ctc atc ggg gcg gtg att gcc 20 Ser Thr Phe Cys Leu Leu Leu Leu Tyr Leu Ile Gly Ala Val Ile Ala 10 15 20 gga cga gat ttc tat aag atc ttg ggg gtg cct cga agt gcc tct ata Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile 25 30 35 25 aag gat att aaa aag gcc tat agg aaa cta gcc ctg cag ctt cat ccc Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac cgg aac cct gat gat cca caa gcc cag gag aaa ttc cag gat ctg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat		agaagagggg getagetage tgtetetgeg gaccagggag acceeegege eeeceeggtg	60
Met Ala Pro Gln Asn Leu 1 5 3 4 4 4 4 4 4 4 4 4	15	tgaggeggee teacagggee gggtgggetg gegageegae geggeggegg aggaggetgt	120
1		gaggagtgtg tggaacagga cccgggacag aggaacc atg gct ccg cag aac ctg	175
20 Ser Thr Phe Cys Leu Leu Leu Leu Tyr Leu Ile Gly Ala Val Ile Ala 10 15 20 gga cga gat ttc tat aag atc ttg ggg gtg cct cga agt gcc tct ata Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile 25 30 35 25 aag gat att aaa aag gcc tat agg aaa cta gcc ctg cag ctt cat ccc Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac cgg aac cct gat gat cca caa gcc cag gag aaa ttc cag gat ctg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat		Met Ala Pro Gln Asn Leu	
20 Ser Thr Phe Cys Leu Leu Leu Leu Tyr Leu Ile Gly Ala Val Ile Ala 10 15 20 gga cga gat ttc tat aag atc ttg ggg gtg cct cga agt gcc tct ata Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile 25 30 35 25 aag gat att aaa aag gcc tat agg aaa cta gcc ctg cag ctt cat ccc Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac cgg aac cct gat gat cca caa gcc cag gag aaa ttc cag gat ctg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat		1 5	
9ga cga gat ttc tat aag atc ttg ggg gtg cct cga agt gcc tct ata Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile 25 30 35 25 aag gat att aaa aag gcc tat agg aaa cta gcc ctg cag ctt cat ccc Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac cgg aac cct gat gat cca caa gcc cag gag aaa ttc cag gat ctg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat		age ace ttt tgc ctg ttg ctg cta tac ctc atc ggg gcg gtg att gcc	223
gga cga gat ttc tat aag atc ttg ggg gtg cct cga agt gcc tct ata Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile 25 30 35 25 aag gat att aaa aag gcc tat agg aaa cta gcc ctg cag ctt cat ccc Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac cgg aac cct gat gat cca caa gcc cag gag aaa ttc cag gat ctg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat	20	Ser Thr Phe Cys Leu Leu Leu Tyr Leu Ile Gly Ala Val Ile Ala	
Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile 25 30 35 25 aag gat att aaa aag gcc tat agg aaa cta gcc ctg cag ctt cat ccc Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac cgg aac cct gat gat cca caa gcc cag gag aaa ttc cag gat ctg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat		10 15 20	
25 aag gat att aaa aag gcc tat agg aaa cta gcc ctg cag ctt cat ccc Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac cgg aac cct gat gat cca caa gcc cag gag aaa ttc cag gat ctg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat		gga cga gat ttc tat aag atc ttg ggg gtg cct cga agt gcc tct ata	271
25 aag gat att aaa aag gcc tat agg aaa cta gcc ctg cag ctt cat ccc Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac cgg aac cct gat gat cca caa gcc cag gag aaa ttc cag gat ctg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat		Gly Arg Asp Phe Tyr Lys Ile Leu Gly Val Pro Arg Ser Ala Ser Ile	
Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro 40 45 50 gac cgg aac cct gat gat cca caa gcc cag gag aaa ttc cag gat ctg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat		25 30 35	
gac cgg aac cct gat gat cca caa gcc cag gag aaa ttc cag gat ctg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat	25	aag gat att aaa aag gcc tat agg aaa cta gcc ctg cag ctt cat ccc	319
gac cgg aac cct gat gat cca caa gcc cag gag aaa ttc cag gat ctg Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat		Lys Asp Ile Lys Lys Ala Tyr Arg Lys Leu Ala Leu Gln Leu His Pro	
Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu 30 55 60 65 70 ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat		40 45 50	
30 55 60 65 70 ggt get get tat gag gtt etg tea gat agt gag aaa egg aaa eag tae Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat eag age tee eat		gac egg aac eet gat gat eea eaa gee eag gag aaa tte eag gat etg	367
ggt get get tat gag gtt etg tea gat agt gag aaa egg aaa eag tae Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat eag age tee eat		Asp Arg Asn Pro Asp Asp Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu	
Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr 75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat	30	55 60 65 70	
75 80 85 gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat		ggt gct gct tat gag gtt ctg tca gat agt gag aaa cgg aaa cag tac	415
gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat		Gly Ala Ala Tyr Glu Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr	
		75 80 85	
		gat act tat ggt gaa gaa gga tta aaa gat ggt cat cag agc tcc cat	463
	35	Asp Thr Tyr Gly Glu Glu Gly Leu Lys Asp Gly His Gln Ser Ser His	

				90					95					100			
	gga	gac	att	ttt	tca	cac	ttc	ttt	9 99	gat	ttt	ggt	ttc	atg	ttt	gga	511
	Gly	Asp	Ile	Phe	Ser	His	Phe	Phe	Gly	Asp	Phe	Gly	Phe	Met	Phe	Gly	
			105					110					115				
5	gga	acc	cct	cgt	cag	caa	gac	aga	aat	att	cca	aga	gga	agt	gat	att	559
	Gly	Thr	Pro	Arg	Gln	Gln	Asp	Arg	Asn	Ile	Pro	Arg	Gly	Ser	Asp	Ile	
		120					125					130					
	att	gta	gat	cta	gaa	gtc	act	ttg	gaa	gaa	gta	tat	gca	gga	aat	ttt	607
	Ile	Val	Asp	Leu	Glu	Val	Thr	Leu	Glu	Glu	Val	Tyr	Ala	Gly	Asn	Phe	
10	135					140					145					150	
	gtg	gaa	gta	gtt	aga	aac	aaa	cct	gtg	gca	agg	cag	gct	cct	ggc	aaa	655
	Val	Glu	Val	Val	Arg	Asn	Lys	Pro	Val	Ala	Arg	Gln	Ala	Pro	Gly	Lys	
					155					160					165		
					tgt												703
15	Arg	Lys	Cys	Asn	Cys	Arg	Gln	Glu	Met	Arg	Thr	Thr	Gln		Gly	Pro	
				170					175					180			
		-			atg		_										751
	Gly	Arg		Gln	Met	Thr	Gln		Val	Val	Cys	Asp		Cys	Pro	Asn	
			185					190					195				
20					aat												799
	Val		Leu	Val	Asn	Glu		Arg	Thr	Leu	GIu		Glu	He	Glu	Pro	
		200					205					210					
				-	ggc												847
05		Val	Arg	Asp	Gly		Glu	Tyr	Pro	Phe		GIĄ	GIU	GIÀ	GIu		
25	215					220					225					230	505
					gag												895
	His	Val	Asp	GTÀ	Glu	Pro	сту	qaA	Leu		Pne	Arg	TTE	гÀг		Val	
					235					240					245		, 043
20	_				ttt	-		_		-							943
30	гàа	HIS	Pro		Phe	GIU	Arg	Arg		Asp	Asp	Leu	TYL		ASI	var	
		_ 4		250				_4	255					260		-	001
					gtt												991
	Thr	TTE		Leu	Val	GIU	ser		vaI	GТĀ	rne	GIU		wab	тте	TNT	
n e		. .	265					270	-4-	-	~~ -	 .	275	n+-			1000
35	cac	ttg	gat	ggt	cac	aag	gta	cat	att	TCC	cgg	gat	aag	atc	acc	agg	1039

	His Leu Asp Gly His Lys Val His Ile Ser Arg Asp Lys Ile Thr Arg	
	280 285 290	
	cca gga gcg aag cta tgg aag aaa ggg gaa ggg ctc ccc aac ttt gac	108
	Pro Gly Ala Lys Leu Trp Lys Lys Gly Glu Gly Leu Pro Asn Phe Asp	•
5	295 300 305 310	
	aac aac aat atc aag ggc tct ttg ata atc act ttt gat gtg gat ttt	1135
	Asn Asn Asn Ile Lys Gly Ser Leu Ile Ile Thr Phe Asp Val Asp Phe	
	315 320 325	
	cca aaa gaa cag tta aca gag gaa gcg aga gaa ggt atc aaa cag cta	1183
10	Pro Lys Glu Gln Leu Thr Glu Glu Ala Arg Glu Gly Ile Lys Gln Leu	
	330 335 340	
	ctg aaa caa ggg tca gtg cag aag gta tac aat gga ctg caa gga tat	1231
	Leu Lys Gln Gly Ser Val Gln Lys Val Tyr Asn Gly Leu Gln Gly Tyr	
	345 350 355	
15	tgagagtga ataaaattgg actttgttta aaataagtga ataagcgata tttattatct	1290
	gcaaggtttt tttgtgtgtg tttttgtttt tattttcaat atgcaagtta ggcttaattt	1350
	ttttatctaa tgatcatcat gaaatgaata agagggetta agaatttgte catttgcatt	1410
	cggaaaagaa tgaccagcaa aaggtttact aatacctctc cctttgggga tttaatgtct	1470
	ggtgctgccg cctgagtttc aagaattaaa gctgcaagag gactccagga gcaaaagaaa	1530
20	cacaatatag agggttggag ttgttagcaa tttcattcaa aatgccaact ggagaagtct	1590
	gtttttaaat acattttgtt gttattttt	1619
	·	
	<210> 112	
	<211> 2054	
25	<212> DNA	
	<213> Homo Sapience	
	<220>	
	<221> CDS	
20	<222> (254)(934)	
30		
	<400> 112	
	cacatggcca agtocgcccc gccccctccc cgtccccgcc gctgcagcgg tcgccttcgg	60
	agcgaagggt accgacccgg cagaagctcg gagctctcgg ggtatcgagg aggcaggccc	120
05	gegggegeae gggegagegg geegggagee ggageggegg aggageegge ageageggeg	180
35	eggegggete caggegagge ggtegaeget cetgaaaaet tgegegegeg etegegeeae	240

	tgc	gccc	gga	gcg	atg	aag	atg	gtc	gcg	ccc	tgg	acg	cgg	ttc	tac	tcc	289
					Met	Lys	Met	Val	Ala	Pro	Trp	Thr	Arg	Phe	Tyr	Ser	
					1				5					10			
																ctc	337
5	Asn	Ser	Cys	Cys	Leu	Cys	Cys	His	Val	Arg	Thr	Gly	Thr	Ile	Leu	Leu	
			15					20					25				*
																ttg	385
	Gly	Val	Trp	Tyr	Leu	Ile			Ala	Val	. Val			Ile	Leu	Leu	
		30					35					40					
10	-			-	=											ctg	433
		Ala	Leu	Ala	Asp			Gln	Tyr	Asn			Ser	Ser	Glu	Leu	
	45					50					55					60	
			-				-	-	_							att	481
1.5	Gly	Gly	Asp	Phe		Phe	Met	Asp	Asp			Met	Cys	Ile		Ile	
15					65					70					75		
						_		_								gga	529
	Ala	Ile	Ser		Leu	Met	Ile	Leu		Cys	Ala	Met	Ala		Tyr	Gly	
				80					85					90			
20					_											cag	577
20	Ala	Tyr	_	Gln	Arg	Ala	Ala	_	Ile	Ile	Pro	Phe			Tyr	Gln	
			95					100					105				
•					-				ttg								625
	Ile		Asp	Phe	Ala	Leu		Met	Leu	Val	Ala		Thr	Val	Leu	Ile	
05		110					115					120					
25						_	-		ata			-					673
	_	Pro	Asn	Ser	Ile		Glu	Tyr	Ile	Arg		Leu	Pro	Pro	Asn		
	125					130					135					140	
				_	_	-			gtg								721
20	Pro	Tyr	Arg	Asp		Val	Met	Ser	Val		Pro	Thr	Cys	Leu		Leu	
30					145					150					155		=60
				-			_		atc	-			-			-	769
	Ile	Ile	Leu		Phe	Ile	Ser	Ile	Ile	Leu	Thr	Phe	Lys		Tyr	Leu	
				160			_		165			_	_	170			
0.5		-	-	-			-		cga								817
35	Ile	Ser	Cys	Val	Trp	Asn	Cys	Tyr	Arg	Tyr	Ile	Asn	Gly	Arg	Asn	Ser	

	175	180	185	
	tct gat gtc ctg gtt	tat gtt acc agc aat gac	act acg gtg ctg cta	865
	Ser Asp Val Leu Val	Tyr Val Thr Ser Asn Asp	Thr Thr Val Leu Leu	
	190	195	200	
5	ccc ccg tat gat gat	gee act gtg aat ggt get	gcc aag gag cca ccg	913
	Pro Pro Tyr Asp Asp	Ala Thr Val Asn Gly Ala	Ala Lys Glu Pro Pro	
	205	210 215	220	
	cca cct tac gtg tct	gec taageettea agtgggeg	ga gctgagggc	960
	Pro Pro Tyr Val Ser	Ala		
10	225			
	agcagettga etttgeaga	c atctgagcaa tagttctgtt	atttcacttt tgccatgagc	1020
	ctctctgage ttgtttgtt	g ctgaaatgct actttttaaa	atttagatgt tagattgaaa	1080
	actgtagttt tcaacatat	g ctttgctgga acactgtgat	agattaactg tagaattctt	1140
	cctgtacgat tggggatat	a atgggettea etaacettee	ctaggcattg aaacttcccc	1200
15	caaatctgat ggacctaga	a gtctgctttt gtacctgctg	ggccccaaag ttgggcattt	1260
	ttetetetgt teeetetet	t ttgaaaatgt aaaataaaac	caaaaataga caacttttc	1320
	ttcagccatt ccagcatag	a gaacaaaacc ttatggaaac	aggaatgtca attgtgtaat	1380
		a tagaagtcct tatgtatgtg		1440
	acateettta tgaetgaag	t tcaatgacag tttgtgtttg	gtggtaaagg attttctcca	1500
20	tggcctgaat taagaccat	t agaaagcacc aggccgtggg	agcagtgacc atctgctgac	1560
	tgttettgtg gatettgtg	t ccagggacat ggggtgacat	gcctcgtatg tgttagaggg	1620
		g ctgcatggga tctggtgccc		1680
		t tactaagtgt tctgccctag		1740
		g aattgggata tatttgatat		1800
25		t gcaagctaca tectactgct		1860
	_	a acattttcag aaaaatgagg		1920
		a attgcaaggg attttatat		1980
		a ttattgaatg tgctgtaaat	taagttgttt gcaattaaaa	2040
00	caaggtttge ccac			2054
30				
	<210> 113			
	<211> 1380			
	<212> DNA			
	<213> Homo Sapience			
35	<220>			

123/177

	<221> CDS																
	<22	2> (43).	(6	30)												
	<40	0> 1	13														
5	gca	gtct	gtc	tgag	ggcg	gc c	gaag	tggc	t gg	ctca	ttta	ag	atg	agg	ctt	ctg	54
													Met .	Arg	Leu	Leu	
													1				
	ctg	ctt	ctc	cta	gtg	gcg	gcg	tct	gcg	atg	gtc	cgg	agc	gag	gcc	tcg	102
	Leu	Leu	Leu	Leu	Val	Ala	Ala	Ser	Ala	Met	Val	Arg	Ser	Glu	Ala	Ser	
10	5					10					15					20	
	gcc	aat	ctg	ggc	ggc	gtg	ccc	agc	aag	aga	tta	aag	atg	cag	tac	gcc	150
	Ala	Asn	Leu	Gly	Gly	Val	Pro	Ser	Lys	Arg	Leu	Lys	Met	Gln	Tyr	Ala	
					25					30					35		
	acg	ggg	ccg	ctg	ctc	aag	ttc	cag	att	tgt	gtt	tcc	tga	ggt	tat	agg	198
15	Thr	Gly	Pro	Leu	Leu	Lys	Phe	Gln	Ile	Cys	Val	Ser	Xaa	Gly	Tyr	Arg	
				40					45					50			
	cgg	gtg	ttt	gag	gag	tac	atg	cgg	gtt	att	agc	cag	cgg	tac	cca	gac	246
	Arg	Val	Phe	Glu	Glu	Tyr	Met	Arg	Val	Ile	Ser	Gln	Arg	Tyr	Pro	Asp	
			55					60					65				
20	atc	cgc	att	gaa	gga	gag	aat	tac	ctc	cct	caa	cca	ata	tat	aga	cac	294
	Ile	Arg	Ile	Glu	Gly	Glu	Asn	Tyr	Leu	Pro	Gln	Pro	Ile	Tyr	Arg	His	
		70					75					80					
	ata	gca	tct	ttc	ctg	tca	gtc	ttc	aaa	cta	gta	tta	ata	ggc	tta	ata	342
	Ile	Ala	Ser	Phe	Leu	Ser	Val	Phe	Lys	Leu	Val	Leu	Ile	Gly	Leu	Ile	
25	85					90					95					100	
	att	gtt	ggc	aag	gat	cct	ttt	gct	ttc	ttt	ggc	atg	caa	gct	cct	agc	390
	Ile	Val	Gly	Lys	Asp	Pro	Phe	Ala	Phe	Phe	Gly	Met	Gln	Ala	Pro	Ser	
					105					110					115		
	atc	tgg	cag	tgg	ggc	caa	gaa	aat	aag	gtt	tat	gca	tgt	atg	atg	gtt	438
30	Ile	Trp	Gln	Trp	Gly	Gln	Glu	Asn	Lys	Val	Tyr	Ala	Суз	Met	Met	Val	
				120					125					130			
	ttc	ttc	ttg	agc	aac	atg	att	gag	aac	cag	tgt	atg	tca	aca	ggt	gca	486
	Phe	Phe	Leu	Ser	Asn	Met	Ile	Glu	Asn	Gln	Суз	Met	Ser	Thr	Gly	Ala	
			135					140					145				

ttt gag ata act tta aat gat gta cct gtg tgg tct aag ctg gaa tct 534

35

	Phe Glu Ile Thr Leu Asn Asp Val Pro Val Trp Ser Lys Leu Glu Ser	
	150 155 160	
	ggt cac ctt cca tcc atg caa caa ctt gtt caa att ctt gac aat gaa	582
	Gly His Leu Pro Ser Met Gln Gln Leu Val Gln Ile Leu Asp Asn Glu	
5	165 170 175 180	
	atg aag ete aat gtg cat atg gat tea ate eea cae cat ega tea	627
	Met Lys Leu Asn Val His Met Asp Ser Ile Pro His His Arg Ser	
	185 190 195	
	tag caccacctat cagcactgaa aactcttttg cattaaggga tcattgcaag	680
10	agcagcgtga ctgacattat gaaggcctgt actgaagaca gcaagctgtt agtacagacc	740
	agatgettte ttggcagget egttgtaeet ettggaaaac etcaatgeaa gatagtgttt	800
	cagtgctggc atattttgga attctgcaca ttcatggagt gcaataatac tgtatagett	860
	toccoacete ccacaaaate acceagttaa tgtgtgtgtg tgtttttttt tttaaggtaa	920
	acattactac ttgtaacttt ttttcttagt catatttgaa aaagtagaaa attgagttac	980
15	aatttgattt tttttccaaa gatgtctgtt aaatctgttg tgcttttata tgaatatttg	1040
	ttttttatag tttaaaattg atcctttggg aatccagttg aagttcccaa atactttata	1100
	agagtttate agacatetet aatttggeea tgteeagttt ataeagttta caaaatatag	1160
	cagatgcaag attatggggg aaatcctata ttcagagtac tctataaatt tttgtgtatg	1220
	tgtgtatgtg cgtgtgatta ccagagaact actaaaaaaa ccaactgctt tttaaatcct	1280
20	attgtgtagt taaagtgtca tgccttgacc aatctaatga attgattaat taactgggcc	1340
	tttatactta actaaataaa aaactaagca gatatgagtt	1380
	<210> 114	
	<211> 1292	
25	<212> DNA	
	<213> Homo Sapience	
	<220>	
	<221> CDS	
	<222> (113)(1132)	
30		
	<400> 114	
	aaaagtgegg etetgggetg geegaagggg tggegetgeg ateeegeagg geagegaege	60
	gactetggtg egggeegtet tetteceee gagetgggeg tgegeggeeg ea atg aac	118
	Met Asn	
35	1	

	tgg	gag	ctg	ctg	ctg	tgg	ctg	ctg	gtg	ctg	tgc	gcg	ctg	ctc	ctg	ctc	166
	Trp	Glu	Leu	Leu	Leu	Trp	Leu	Leu	Val	Leu	Cys	Ala	Leu	Leu	Leu	Leu	
			5					10					15				
	ttg	gtg	cag	ctg	ctg	cgc	ttc	ctg	agg	gct	gac	ggc	gac	ctg	acg	cta	214
5	Leu	Val	Gln	Leu	Leu	Arg	Phe	Leu	Arg	Ala	Asp	Gly	Asp	Leu	Thr	Leu	
		20					25					30					
•			-	gag		-		_	-		_			_		_	262
		Trp	Ala	Glu	Trp	Gln	Gly	Arg	Arg	Pro	Glu	Trp	Glu	Leu	Thr	Asp	
	35					40					45					50	
10	_			tgg												_	310
	Met	Val	Val	Trp		Thr	Gly	Ala	Ser		Gly	Ile	Gly	Glu		Leu	
					55					60					65		
	-		_	ttg -					_							_	358
15	Ala	Tyr	Gln	Leu	Ser	Lys	Leu	GTÀ		ser	Leu	Val	Leu		Ala	Arg	
15				70					75			.		80			405
	_			gag	_	_											406
	Arg	vaı		Glu	Leu	GIU	Arg		гуя	Arg	Arg	cys	95	GIU	ASII	GIÀ	
	-	++-	85	gaa	222	ant.	a+ a	90	~++	++~	000	att		ata	200	~ 20	454
20				Glu		-											474
20	VOII	100	пуъ	GIU	пуъ	Asp	105	Leu	vai	neu	FIO	110	тор	Leu	1111	vah	
	act		taa	cat	gaa	aca		acc	aaa	act.	att		cag	gag	ttt	aat.	502
				His													
	115	1				120			-1-		125					130	
25		atc	qac	att	ctq	qtc	aac	aat	ggt	qqa		tcc	cag	cgt	tct	ctq	550
				Ile													
			_		135				_	140					145		
	tgc	atg	gat	acc	agc	ttg	gat	gtc	tac	aga	aag	cta	ata	gag	ctt	aac	598
	Cys	Met	Asp	Thr	Ser	Leu	Asp	Val	Tyr	Arg	Lys	Leu	Ile	Glu	Leu	Asn	
30				150					155					160			
	tac	tta	ggg	acg	gtg	tcc	ttg	aca	aaa	tgt	gtt	ctg	cct	cac	atg	atc	646
	Tyr	Leu	Gly	Thr	Val	Ser	Leu	Thr	Lys	Cys	Val	Leu	Pro	His	Met	Ile	
			165					170					175				
	gag	agg	aag	caa	gga	aag	att	gtt	act	gtg	aat	agc	atc	ctg	ggt	atc	694
35	Glu	Arg	Lys	Gln	Gly	Lys	Ile	Val	Thr	Val	Asn	Ser	Ile	Leu	Gly	Ile	

126/177

		180					185					190					
	ata	tct	gta	cct	ctt	tcc	att	gga	tac	tgt	gct	agc	aag	cat	gct	ctc	742
	Ile	Ser	Val	Pro	Leu	Ser	Ile	Gly	Tyr	Cys	Ala	Ser	Lys	His	Ala	Leu	
	195					200					205					210	
5	cgg	ggt	ttt	ttt	aat	ggc	ctt	cga	aca	gaa	ctt	gcc	aca	tac	cca	ggt	790
	Arg	Gly	Phe	Phe	Asn	Gly	Leu	Arg	Thr	Glu	Leu	Ala	Thr	Tyr	Pro	Gly	
					215					220					225		
	ata	ata	gtt	tct	aac	att	tgc	cca	gga	cct	gtg	caa	tca	aat	att	gtg	838
	Ile	Ile	Val	Ser	Asn	Ile	Cys	Pro	Gly	Pro	Val	Gln	Ser	Asn	Ile	Val	
10				230					235					240			
	gag	aat	tcc	cta	gct	gga	gaa	gtc	aca	aag	act	ata	ggc	aat	aat	gga	886
	Glu	Asn	Ser	Leu	Ala	Gly	Glu	Val	Thr	Lys	Thr	Ile	Gly	Asn	Asn	Gly	
			245					250					255				
	gac	cag	tcc	cac	aag	atg	aca	acc	agt	cgt	tgt	gtg	cgg	ctg	atg	tta	934
15	Asp	Gln	Ser	His	Lys	Met	Thr	Thr	Ser	Arg	Cys	Val	Arg	Leu	Met	Leu	
		260					265					270					
	atc	agc	atg	gcc	aat	gat	ttg	aaa	gaa	gtt	tgg	atc	tca	gaa	caa	cct	982
	Ile	Ser	Met	Ala	Asn	Asp	Leu	Lys	Glu	Val	Trp	Ile	Ser	Glu	Gln	Pro	
	275					280					285					290	
20	ttc	ttg	tta	gta	aca	tat	ttg	tgg	caa	tac	atg	cca	acc	tgg	gcc	tgg	1030
	Phe	Leu	Leu	Val	Thr	Tyr	Leu	Trp	Gln	Tyr	Met	Pro	Thr	Trp	Ala	Trp	
					295					300					305		
	tgg	ata	acc	aac	aag	atg	ggg	aag	aaa	agg	att	gag	aac	ttt	aag	agt	1078
	Trp	Ile	Thr	Asn	Lys	Met	Gly	Lys	Lys	Arg	Ile	Glu	Asn	Phe	Lys	Ser	
25				310					315					320			
													aag				1126
	Gly	Val	qaA	Ala	Asp	Ser	Ser	Tyr	Phe	Lys	Ile	Phe	Lys	Thr	Lys	His	
			325					330					335				
	gac	tgaa	aaga	igc a	atct	gtact	t tt	caac	jccac	: tgg	gagg	gaaa	aato	gaaa	ac a	ì	1180
30	Ąsp																
			_													acttt	
	ttaa	ataga	ata t	gact	ttgo	t to	caac	atgo	aat	gaaa	itaa	aaaa	taag	jta a	it		1292

35 <210> 115

	<211>	216	88														
	<212>	DNA	Ā														
	<213>	Hon	no S	Sapie	ence												
	<220>	•															
5	<221>	CDS	3														
	<222>	(56	5)	. (15	519)												
	•																
	<400>	115	j														
	tttcc	gccg	gc c	gcct	ggg	ag g	ggac	ccgg	g ct	gcca	ggcg	ccc	agct	gtg	ccca	g	55
10	atg g	jat g	199	aca	gag	acc	cgg	cag	cgg	agg	ctg	gac	agc	tgt	ggc	aag	103
	Met A	sp G	ly	Thr	Glu	Thr	Arg	Gln	Arg	Arg	Leu	Asp	Ser	Суз	Gly	Lys	
	1				5					10					15		
	cca g	igg g	jag	ctg	9 99	ctt	cct	cac	ccc	ctc	agc	aca	gga	gga	ctc	cct	151
	Pro G	ly G	: 1u	Leu	Gly	Leu	Pro	His	Pro	Leu	Ser	Thr	Gly	Gly	Leu	Pro	
15				20					25					30			
	gta g	ec t	ca	gaa	gat	gga	gct	ctc	agg	gcc	cct	gag	agc	caa	agc	gtg	199
	Val A	la S	er	Glu	Asp	Gly	Ala	Leu	Arg	Ala	Pro	Glu	Ser	Gln	Ser	Val	
			35					40					45				
	acc c	cc a	ag	cca	ctg	gag	act	gag	cct	agc	agg	gag	acc	gcc	tgg	tcc	247
20	Thr P	ro L	ys	Pro	Leu	Glu	Thr	Glu	Pro	Ser	Arg	Glu	Thr	Ala	Trp	Ser	
		50					55					60					
	ata g																295
	Ile G	ly L	eu	Gln	Val	Thr	Val	Pro	Phe	Met	Phe	Ala	Gly	Leu	Gly	Leu	
	65					70					75					80	
25	tcc t																343
	Ser T	rp A	la	Gly	Met	Leu	Leu	Asp	Tyr		Gln	His	Trp	Pro		Phe	
					85					90					95		
	gtg g		_		-		_										391
	Val G	lu V		-	Asp	Leu	Leu	Thr		Val	Pro	Pro	Leu		Gly	Leu	
30				100					105					110			
	aag g			-		_		•	-						-	_	439
	Lys G	_		Leu	Glu	Met	Thr		Ala	Ser	Arg	Leu		Thr	Ala	Ala	
			15					120					125				
0.5	aac a	_	_														487
35	Asn T	hr G	ly	Gln	Ile	Asp	Asp	Pro	Gln	Glu	Gln	His	Arg	Val	Ile	Ser	

		130					135					140					
	agc	aac	ctg	gcc	ctc	atc	cag	gtg	cag	gcc	act	gto	gtg	999	ctc	ttg	535
	Ser	Asn	Leu	Ala	Leu	Ile	Gln	Val	Gln	Ala	Thr	Val	Val	Gly	Leu	Leu	
	145					150					155					160	
5	gct	gct	gtg	gct	gcg	ctg	ctg	ttg	ggc	gtg	gtg	tct	cga	gag	gaa	gtg	583
	Ala	Ala	Val	Ala	Ala	Leu	Leu	Leu	Gly	Val	Val	Ser	Arg	Glu	Glu	Val	
					165					170					175		
	gat	gtc	gcc	aag	gtg	gag	ttg	ctg	tgt	gcc	agc	agt	gtc	ctc	act	gcc	631
	Asp	Val	Ala	Lys	Val	Glu	Leu	Leu	Суз	Ala	Ser	Ser	Val	Leu	Thr	Ala	
10				180					185					190			
	tte	ctt	gca	gcc	ttt	gcc	ctg	9 99	gtg	ctg	atg	gtc	tgt	ata	gtg	att	679
	Phe	Leu	Ala	Ala	Phe	Ala	Leu	Gly	Val	Leu	Met	Val	Cys	Ile	Val	Ile	
			195					200					205				
		-	_	-			_	aac		_							727
15	Gly		Arg	Lys	Leu	Gly		Asn	Pro	Asp	Asn		Ala	Thr	Pro	Ile	
		210					215					220					
				_		-		atc									775
		Ala	Ser	Leu	Gly	_	Leu	Ile	Thr	Leu		Ile	Leu	Ala	Leu		
00	225					230					235					240	
20	_	_				_		aaa	_	_			-	_	_	_	823
	Ser	Ser	Phe	Phe	_	Arg	His	Lys	Asp		Arg	Tyr	Leu	Thr		Leu	
					245					250					255		
		-		-			•	ctg -			_					-	871
25	vaı	Cys	Leu		Pne	ATA	Ата	Leu		PIO	vaı	Trp	vaı		116	ATa	
20				260					265					270			010
		_	_					aag									919
	гуя	GIN		PIO	PIO	116	vai	Lys	TTE	ьеи	гуз	Pne		Trp	Pne	PIO	
	eta	nta	275			a+a	250	280 agc	a ert	++0	<i>aa</i> a	~~=	285	sta	++~	200	967
30			_	-	•	-		Ser	_						_	-	307
00	116	290	Leu	AId	Met	vai	295	ser	ser	Pile	дту	300	Leu	116	теп	Ser	
	888		a++	tat	222	020		tan	222	aac	ata		ata	+++	900	aca	1015
			_			_	_	tac									1013
	305	THE	val	ser	пур		GTII	Tyr	nys	дту	315	via	TTG	T.IIC	TIIL		
35		n+-				310			_+-	~+~		s++		200	96-	320	1062
υυ	gcc	ata	cgc	ggt	gtt	ggt	ggc	aat	crg	gug	gcc	att	cag	acc	agc	ega	1063

	Val	Ile	Cys	Gly	Val	Gly	Gly	Asn	Leu	Val	Ala	Ile	Gln	Thr	Ser	Arg	
					325					330					335		
	ato	tca	acc	tac	ctg	cac	atg	tgg	agt	gca	cct	ggc	gtc	ctg	ccc	ctc	1111
	Ile	Ser	Thr	Tyr	Leu	His	Met	Trp	Ser	Ala	Pro	Gly	Val	Leu	Pro	Leu	
5				340					345					350			
	cag	atg	aag	aaa	ttc	tgg	ccc	aac	ccg	tgt	tct	act	ttc	tgc	acg	tca	1159
	Gln	Met	Lys	Lys	Phe	Trp	Pro	Asn	Pro	Cys	Ser	Thr	Phe	Суз	Thr	Ser	
			355					360					365				
	gaa	atc	aat	tcc	atg	tca	gct	cga	gtc	ctg	ctc	ttg	ctg	gtg	gtc	cca	1207
10	Glu	Ile	Asn	Ser	Met	Ser	Ala	Arg	Val	Leu	Leu	Leu	Leu	Val	Val	Pro	
		370					375					380					
	ggc	cat	ctg	att	ttc	ttc	tac	atc	atc	tac	ctg	gtg	gag	ggt	cag	tca	1255
	Gly	His	Leu	Ile	Phe	Phe	Tyr	Ile	Ile	Tyr	Leu	Val	Glu	Gly	Gln	Ser	
	385					390					395					400	
15	gtc	ata	aac	agc	cag	acc	ttt	gtg	gtg	ctc	tac	ctg	ctg	gca	ggc	ctg	1303
	Val	Ile	Asn	Ser	Gln	Thr	Phe	Val	Val	Leu	Tyr	Leu	Leu	Ala	Gly	Leu	
					405					410					415		
	atc	cag	gtg	aca	atc	ctg	ctg	tac	ctg	gca	gaa	gtg	atg	gtt	cgg	ctg	1351
	Ile	Gln	Val	Thr	Ile	Leu	Leu	Tyr	Leu	Ala	Glu	Val	Met	Val	Arg	Leu	
20				420					425					430			
	act	tgg	cac	cag	gcc	ctg	gat	cct	gac	aac	cac	tgc	atc	ccc	tac	ctt	1399
	Thr	Trp	His	Gln	Ala	Leu	Asp	Pro	Asp	Asn	His	Cys	Ile	Pro	Tyr	Leu	
			435					440					445				
	aca	ggg	ctg	999	gac	ctg	ctc	ggt	act	ggc	ctc	ctg	gca	ctc	tge	ttt	1447
25	Thr	Gly	Leu	Gly	Asp	Leu	Leu	Gly	Thr	Gly	Leu	Leu	Ala	Leu	Cys	Phe	
		450					455					460					
	ttc	act	gac	tgg	cta	ctg	aag	agc	aag	gca	gag	ctg	ggt	ggc	atc	tca	1495
	Phe	Thr	Asp	Trp	Leu	Leu	Lys	Ser	Lys	Ala	Glu	Leu	Gly	Gly	Ile	Ser	
	465					470					475					480	
30	gaa	ctg	gca	tct	gga	cct	ccc	taac	tggg	rcc c	cgct	ggto	с са	tttg	ctca	ttag	1550
	Glu	Leu	Ala	Ser	Gly	Pro	Pro										
					485												
	aati	ttcct	tet d	acat	cagt	g gg	atac	agaa	tto	agtt	tct	ccct	tgcc	ag g	tect	tggga	1610
	tgg	ttgad	eac c	tgcc	etctg	c ag	tago	cttt	tgt	gagt	ctg	ctaa	ggta	gc t	ctca	cacac	1670
35	ctc	ggata	etg g	ggtt	gata	.c ct	gage	ctgc	aat	agag	ccc	tgaa	atca	ag a	gcat	ggctt	1730

	gagtgtgtga atatgatg	ftg tgcacatgct	taatgagcgt gcaagt	gtgc acacgtttgt 179
	ggagaggagg gtgttctg	gc ctgagaagct	aaagaagagg catgto	cagt atgetttgea 185
	gggtgtgttt getettt	cc atgcccatgc	aacccagatt ggggtg	gagc aggaaggagc 191
	tetttetgt teccaage	ct cagaactctt	gagetgtgge ttactt	gctg tcttcaccag 197
5	gttcaagctc cgtgggcc	ac actgctgctg	tgccaagaag gtgtac	agcc tecceaggat 203
	ggggcctcat acaaccct	te atetgeacte	aacatttaat cgtgtc	cttg ctgtcttttt 209
	attttccttt ttgttagc	aa aaacctctat	ttagatttca ataatc	agag aagtgtaaaa 215
	taaaacagat tatattgt	:		216
10	<210> 116			
	<211> 1357			
	<212> DNA			
	<213> Homo Sapience	1		
	<220>			
15	<221> CDS			
	<222> (81)(1262)			
	<400> 116			
	cgtgcgtttg tggccgtc	cg geeteeetga	catgcagccc tctggad	eccc gaggttggac 60
20	cctactgtga cacaccta	cc atg cgg aca	ctc ttc aac ctc o	tc tgg ctt 110
		Met Arg Thr	Leu Phe Asn Leu I	eu Trp Leu
		1	5	10
	gcc ctg gcc tgc agc	cct gtt cac a	ct acc ctg tca aag	tca gat gcc 158
	Ala Leu Ala Cys Ser	Pro Val His T	hr Thr Leu Ser Lys	Ser Asp Ala
25	. 15		20	25
	aaa aaa gee gee tea	aag acg ctg c	tg gag aag agt cag	ttt tca gat 203
	Lys Lys Ala Ala Ser	Lys Thr Leu L	eu Glu Lys Ser Gln	Phe Ser Asp
	30		35	40
	aag ccg gtg caa gac	egg ggt ttg g	tg gtg acg gac cto	aaa gct gag 254
30	Lys Pro Val Gln Asp	Arg Gly Leu V	al Val Thr Asp Leu	Lys Ala Glu
	45	50	55	
	agt gtg gtt ctt gag	cat cgc agc t	ac tgc tcg gca aag	gee egg gae 302
	Ser Val Val Leu Glu	His Arg Ser T	yr Cys Ser Ala Lys	Ala Arg Asp
	60	65	70	
35	aga cac ttt get ggg	gat gta ctg g	ge tat gtc act cca	tgg aac agc 350

	Arg	His	Phe	Ala	Gly	Asp	Val	Leu	Gly	Tyr	Val	Thr	Pro	Trp	Asn	Ser	
	75					80					85					90	
	cat	ggc	tac	gat	gtc	acc	aag	gtc	ttt	ggg	agc	aag	ttc	aca	cag	atc	398
	His	Gly	Tyr	Asp	Val	Thr	Lys	Val	Phe	Gly	Ser	Lys	Phe	Thr	Gln	Ile	
5					95					100					105		
	tca	ccc	gtc	tgg	ctg	cag	ctg	aag	aga	cgt	ggc	cgt	gag	atg	ttt	gag	446
	Ser	Pro	Val	Trp	Leu	Gln	Leu	Lys	Arg	Arg	Gly	Arg	Glu	Met	Phe	Glu	
				110					115					120			
	gtc	acg	ggc	ctc	cac	gac	gtg	gac	caa	ggg	tgg	atg	cga	gct	gtc	agg	494
10	Val	Thr	Gly	Leu	His	Asp	Val	Asp	Gln	Gly	Trp	Met	Arg	Ala	Val	Arg	
			125					130					135				
			_	_								ctc				-	542
	Lys		Ala	Lys	Gly	Leu		Ile	Val	Pro	Arg	Leu	Leu	Phe	Glu	Asp	
		140					145					150					
15				_	_				-		_	agt		-			590
	-	Thr	Tyr	Asp	Asp		Arg	Asn	Val	Leu	_	Ser	Glu	Asp	Glu		
	155					160		_			165					170	
			_	-	-			•	-		_	aag		_			638
20	GIU.	GIU	Leu	ser	_	Thr	val	vaı	GIN		Ala	Lys	ASN	GIN		Pne	
20	ast.	<i>aa</i> a	++-		175	~~~	~+-	+~~	222	180	at a	at a	200	ana	185		686
							-					cta		_	_	_	000
	Jan	СТУ	rne	190	vai	GIU	Val	тър	195	GIII	Deu	Leu	PET	200	пуъ	Arg	
	ata	aac	ctc		CAC	ato	ctc	acc		tta	acc	gag	act		Cac	can	734
25												Glu					,,,
			205	110				210					215				
	gcc	caa		cta	acc	ctc	cta		atc	ccq	cct	gee		acc	ccc	aga	782
	_		-	_	-		_	_		-		Ala					
		220					225					230				•	
30	acc	gac	cag	ctg	ggc	atg	ttc	acg	cac	aag	gag	ttt	gag	cag	ctg	gcc	830
	Thr	Asp	Gln	Leu	Gly	Met	Phe	Thr	His	Lys	Glu	Phe	Glu	Gln	Leu	Ala	
	235					240					245					250	
	ccc	gtg	ctg	gat	ggt	ttc	agc	ctc	atg	acc	tac	gac	tac	tct	aca	geg	878
	Pro	Val	Leu	Asp	Gly	Phe	Ser	Leu	Met	Thr	Tyr	Asp	Tyr	Ser	Thr	Ala	
35					255					260					265		

	cat	cag	cct	ggc	cct	aat	gca	ccc	ctg	tcc	tgg	gtt	cga	gcc	tgc	gtc	926
	His	Gln	Pro	Gly	Pro	Asn	Ala	Pro	Leu	Ser	Trp	Val	Arg	Ala	Cys	Val	
				270					275					280			
	cag	gtc	ctg	gac	ccg	aag	tcc	aag	tgg	cga	agc	aaa	atc	ctc	ctg	ggg	974
5	Gln	Val	Leu	Asp	Pro	Lys	Ser	Lys	Trp	Arg	Ser	Lys	Ile	Leu	Leu	Gly	
			285					290					295				
	ctc	aac	ttc	tat	ggt	atg	gac	tac	gcg	acc	tcc	aag	gat	gcc	cgt	gag	1022
	Leu	Asn	Phe	Tyr	Gly	Met	Asp	Tyr	Ala	Thr	Ser	Lys	Asp	Ala	Arg	Glu	
		300					305					310					
10	cct	gtt	gtc	ggg	gcc	agg	tac	atc	cag	aca	ctg	aag	gac	cac	agg	ccc	1070
	Pro	Val	Val	Gly	Ala	Arg	Tyr	Ile	Gln	Thr	Leu	Lys	Asp	His	Arg	Pro	
	315					320					325					330	
	cgg	atg	gtg	tgg	gac	agc	cag	gcc	tca	gag	cac	ttc	ttc	gag	tac	aag	1118
	Arg	Met	Val	Trp	Asp	Ser	Gln	Ala	Ser	Glu	His	Phe	Phe	Glu	Tyr	Lys	
15					335					340					345		
	-			_				gtc	_					_	_		1166
	Lys	Ser	Arg	Ser	Gly	Arg	His	Val	Val	Phe	Tyr	Pro	Thr	Leu	Lys	Ser	
				350					355					360			
			-		-	-	_	gcc							-		1214
20	Leu	Gln		Arg	Leu	Glu	Leu	Ala	Arg	Glu	Leu	Gly		Gly	Val	Ser	
			365					370					375				
	_		_	-	-			ctg			_					t	1260
	Ile		Glu	Leu	Gly	Gln		Leu	Asp	Tyr	Phe		Asp	Leu	Leu		
05		380					385					390					
25												taaç	ccat	:gg a	igtga	ıgtgag	1320
	cag	grgr	gaa a	ataca	aggeo	et co	acto	egtt	: tgc	tgtg	ı						1357
	J211	1 11	17														
		0> 13 1> 73															
30		2> DN															
00				oni.													
	<220	3> Ho >-	onio s	apre	snce												
		l> ci	ng.														
		!> C! !> (8		/509	2 1												
35	-246	(6	,,	(330	,,												

133/177

	<400	0> 1	17														
	aaa	ggcg	atg	tgg	agg	gtg	ccc	ggc	aca	acc	aga	cgc	cca	gtc	aca	ggc	49
			Met	Trp	Arg	Val	Pro	Gly	Thr	Thr	Arg	Arg	Pro	Val	Thr	Gly	
			1				5					10					
5	gag	agc	cct	ggg	atg	cac	cgg	cca	gag	gcc	atg	ctg	ctg	ctg	ctc	acg	97
	Glu	Ser	Pro	Gly	Met	His	Arg	Pro	Glu	Ala	Met	Leu	Leu	Leu	Leu	Thr	
	15					20					25					30	
	ctt	gcc	ctc	ctg	ggg	ggc	ccc	acc	tgg	gca	999	aag	atg	tat	ggc	cct	145
	Leu	Ala	Leu	Leu	Gly	Gly	Pro	Thr	Trp	Ala	Gly	Lys	Met	Tyr	Gly	Pro	
10					35					40					45		
				_	tat		_										193
	Gly	Gly	Gly	Lys	Tyr	Phe	Ser	Thr	Thr	Glu	Asp	Tyr	Asp	His	Glu	Ile	
				50					55					60			
			_		gtg											_	241
15	Thr	Gly		Arg	Val	Ser	Val	_	Leu	Leu	Leu	Val		Ser	Val	Gln	
			65					70					75				
					gac												289
	Val		Leu	Gly	qaA	Ser		Asp	Val	Lys	Leu		Ala	Leu	Gly	Gly	
		80					85					90					
20			_	_	gtc												337
		Thr	Gln	Glu	Val		Leu	Gln	Pro	Gly		Tyr	Ile	Thr	Lys		
	95					100					105					110	
		_	_		caa	-										-	385
0.5	Phe	Val	Ala	Phe	Gln	Ala	Phe	Leu	Arg	_	Met	Val	Met	туг		Ser	
25					115					120					125		
	_	_	-		ttc												433
	Lys	Asp	Arg	_	Phe	Tyr	Phe	GTĀ		Leu	Asp	GTÀ	GIN		Ser	Ser	
				130					135					140			401
20	_			•	caa			_		_						-	481
30	ALA	Tyr		Ser	Gln	GIU	GIĀ		vaı	Leu	vaı	GIY		туг	GIÀ	GIn	
			145					150					155	- 4-	A		500
					ggc		_	-									529
	Tyr		Leu	Leu	Gly		_	Ser	Пе	GTÀ	rne		Trp	Asn	Tyr	Pro	
		160					165					170					

cta gag gag ccg acc act gag cca cca gtt aat ctc aca tac tca gca

577

35

	Led Gid Gid Pro Thr Thr Gid Pro Pro Val Ash Led Thr Tyr Ser Ala	
	175 180 185 ,190	
	aac tca ccc gtg ggt cgc tagggtgggg tatggggcca tccgagctga ggcca	630
	Asn Ser Pro Val Gly Arg	
5	195	
	tetgtgtggt ggtggetgat ggtaetggag taactgagte gggaegetga atetgaatee	690
	accaataaat aaagcttctg c	711
	<210> 118	
10	<211> 651	
	<212> DNA	
	<213> Homo Sapience	
	<220>	
	<221> CDS	
15	<222> (242)(565)	
	<400> 118	
	aaagaaacaa geegggggae tgegageeag ggaeteggge egeggggegg gaagaagtgg	60
	ggcagcgctt ggccaggccg aaaggacttt gggggtgggg gctgggagtc cgtgtctcga	120
20	atgagggagg agaggtggag ttgeegggge teaggeeegg eetegageat gggeggatga	180
	gaggagtegg gageegagge etagggteet tegggtgagg ggagaeggag ceagegagga	240
	g atg gag cag aag ctt gtg gag gag att ctt caa gca atc act atg	286
	Met Glu Gln Lys Leu Val Glu Glu Ile Leu Gln Ala Ile Thr Met	
	1 5 10 15	
25	tca aca gac aca ggt gtt tcc ctt cct tca tat gag gaa gat cag gga	334
	Ser Thr Asp Thr Gly Val Ser Leu Pro Ser Tyr Glu Glu Asp Gln Gly	
	20 25 30	
	tca aaa ctc att cga aaa gct aaa gag gca cca ttc gta ccc gtt gga	382
	Ser Lys Leu Ile Arg Lys Ala Lys Glu Ala Pro Phe Val Pro Val Gly	
30	35 40 45	
	ata geg ggt ttt gea gea att gtt gea tat gga tta tat aaa etg aag	430
	Ile Ala Gly Phe Ala Ala Ile Val Ala Tyr Gly Leu Tyr Lys Leu Lys	
	50 55 60	
	age agg gga aat act aaa atg tee att eat etg ate eac atg egt gtg	478
35	Ser Arg Gly Asn Thr Lys Met Ser Ile His Leu Ile His Met Arg Val	

	65 70 75	
	gea gee caa gge ttt gtt gta gga gea atg act gtt ggt atg gge tat	526
	Ala Ala Gln Gly Phe Val Val Gly Ala Met Thr Val Gly Met Gly Tyr	
•	80 85 90 95	
5	tee atg tat egg gaa tte tgg gea aaa eet aag eet tagaagaa	570
	Ser Met Tyr Arg Glu Phe Trp Ala Lys Pro Lys Pro	
	100 105	
	gagatgctgt cttggtcttg ttggaggagc ttgctttagt tagatgtctt attattaaag	630
	ttacctatta ttgttggaaa t	651
10		
	<210> 119	
	<211> 1310	
	<212> DNA	
	<213> Homo Sapience	
15	<220>	
	<221> CDS	
	<222> (78)(1130)	
	<400> 119	
20	cgaacgccaa ggcggccacg teetgeteee eetggtgaag aagetgeeet gggettgteg	60
	toctagggto tocagae atg tot gag gtg aag ago ogg aag aag tog ggg	110
	Met Ser Glu Val Lys Ser Arg Lys Lys Ser Gly	
	1 5 10	
	ccc aag gga gcc cct gct gcg gag ccc ggg aag cgg agc gag ggc ggg	158
25	Pro Lys Gly Ala Pro Ala Ala Glu Pro Gly Lys Arg Ser Glu Gly Gly	
	15 20 25	
	aag acc ccc gtg gcc cgg agc agc gga ggc ggg ggc tgg gca gac ccc	206
	Lys Thr Pro Val Ala Arg Ser Ser Gly Gly Gly Trp Ala Asp Pro	
	30 35 40	
30	cga acg tgc ctg agc ctg ctg tcg ctg ggg acg tgc ctg ggc ctg gcc	254
	Arg Thr Cys Leu Ser Leu Ser Leu Gly Thr Cys Leu Gly Leu Ala	
	45 50 55	
	tgg ttt gta ttt cag cag tca gaa aaa ttt gca aag gtg gaa aac caa	302
	Trp Phe Val Phe Gln Gln Ser Glu Lys Phe Ala Lys Val Glu Asn Gln	
35	60 65 70 75	

	tac	cag	tta	ctg	aaa	cta	gaa	acc	aat	gaa	LLC	caa	caa	CLL	caa	agt	350
	Tyr	Gln	Leu	Leu	Lys	Leu	Glu	Thr	Asn	Glu	Phe	Gln	Gln	Leu	Gln	Ser	
					80					85					90		
	aaa	atc	agt	tta	att	tca	gaa	aag	tgg	cag	aaa	tct	gaa	gct	atc	atg	398
5	Lys	Ile	Ser	Leu	Ile	Ser	Glu	Lys	Trp	Gln	Lys	Ser	Glu	Ala	Ile	Met	
				95					100					105			
	gaa	caa	ttg	aag	tct	ttt	caa	ata	att	gct	cat	cta	aag	cgt	cta	cag	446
	Glu	Gln	Leu	Lys	Ser	Phe	Gln	Ile	Ile	Ala	His	Leu	Lys	Arg	Leu	Gln	
			110					115		•			120				
10	gaa	gaa	att	aat	gag	gta	aaa	act	tgg	tcc	aat	agg	ata	act	gaa	aaa	494
	Glu	Glu	Ile	Asn	Glu	Val	Lys	Thr	Trp	Ser	Asn	Arg	Ile	Thr	Glu	Lys	
		125					130					135					
	cag	gat	ata	ctg	aac	aac	agt	ctg	acg	acg	ctt	tct	caa	gac	att	aca	542
	Gln	Asp	Ile	Leu	Asn	Asn	Ser	Leu	Thr	Thr	Leu	Ser	Gln	Asp	Ile	Thr	
15	140					145					150					155	
	aaa	gta	gac	caa	agt	aca	act	tcc	atg	gca	aaa	gat	gtt	ggt	ctc	aag	590
	Lys	Val	Asp	Gln	Ser	Thr	Thr	Ser	Met	Ala	Lys	Asp	Val	Gly	Leu	Lys	
					160					165					170		
	att	aca	agt	gta	aaa	aca	gat	ata	cga	cgg	att	tca	ggt	tta	gta	act	638
20	Ile	Thr	Ser	Val	Lys	Thr	Asp	Ile	Arg	Arg	Ile	Ser	Gly	Leu	Val	Thr	
				175					180					185			
	gat	gta	ata	tca	ttg	aca	gat	tct	gtg	caa	gaa	cta	gaa	aat	aaa	ata	686
	Asp	Val	Ile	Ser	Leu	Thr	Asp	Ser	Val	Gln	Glu	Leu	Glu	Asn	Lys	Ile	
			190					195					200				
25	gag	aaa	gta	gaa	aaa	aat	aca	gta	aaa	aat	ata	ggt	gat	ctt	ctt	tca	734
	Glu	Lys	Val	Glu	Lys	Asn	Thr	Val	Lys	Asn	Ile	Gly	Asp	Leu	Leu	Ser	
		205					210					215				•	
	agc	agt	att	gat	cga	aca	gca	acg	ctc	cga	aag	aca	gca	tct	gaa	aat	782
	Ser	Ser	Ile	Asp	Arg	Thr	Ala	Thr	Leu	Arg	Lys	Thr	Ala	Ser	Glu	Asn	
30	220					225					230					235	
	tca	caa	aga	att	aac	tct	gtt	aag	aag	acg	cta	acc	gaa	cta	aag	agt	830
	Ser	Gln	Arg	Ile	Asn	Ser	Val	Lys	Lys	Thr	Leu	Thr	Glu	Leu	Lys	Ser	
					240					245					250		
	gac	ttc	gac	aaa	cat	aca	gat	aga	ttt	cta	agc	tta	gaa	ggt	gac	aga	878
35	Asp	Phe	Asp	Lys	His	Thr	Asp	Arg	Phe	Leu	Ser	Leu	Glu	Gly	Asp	Arg	

	255 260 265	
	gcc aaa gtt ctg aag aca gtg act ttt gca aat gat cta aaa cca aag	926
	Ala Lys Val Leu Lys Thr Val Thr Phe Ala Asn Asp Leu Lys Pro Lys	
	270 275 280	
5	gtg tat aat cta aag aag gac ttt tcc cgt tta gaa cca tta gta aat	974
	Val Tyr Asn Leu Lys Lys Asp Phe Ser Arg Leu Glu Pro Leu Val Asn	
	285 290 295	
	gat tta aca cta cgc att ggg aga ttg gtt acc gac tta cta caa aga	1022
	Asp Leu Thr Leu Arg Ile Gly Arg Leu Val Thr Asp Leu Leu Gln Arg	
10	300 305 310 315	
	gag aaa gaa att gct ttc tta agt gaa aaa ata tct aat tta aca ata	1070
	Glu Lys Glu Ile Ala Phe Leu Ser Glu Lys Ile Ser Asn Leu Thr Ile	
	320 325 330	
	gtc caa gct gag att aag gat att aaa gat gaa ata gca cac att tca	1118
15	Val Gln Ala Glu Ile Lys Asp Ile Lys Asp Glu Ile Ala His Ile Ser	
	335 340 345	
	gat atg aat tagtttgaca ttattgagat tagactaagg taatttttt aat	1170
	Asp Met Asn	
	350	
20	gggacetete atgagaagae tggtaaatea aaaataatga tattttggag caaaagteat	1230
	tttatattta atcctatttt gtacagtaaa aataaaactt taaaacaggt tgattttcca	1290
	aaataaatat gctaaaacct	1310
	<210> 120	
25	<211> 1400	
	<212> DNA	
	<213> Homo Sapience	
	<220>	
	<221> CDS	
30	<222> (233)(556)	
	<400> 120	
	tggctgtatg ctattggagg gtggaaatca catctcctgt ttatccgtgt gcttgttagg	60
	tgtcagccgc caccccccc ccatatgcag atttactcgg catggtagtg gccagcttct	120
35	aacacagetg gtattteaag teteetggga eeteacteag gaatgatace eeeteagtag	180

	aagcagcagg tgatcttaac teettteaaa gagcaggeet gtetgggaag ee atg	235
	Met	
	1	
	tee tea gea gge aca gea ace eet etg gaa atg gat eac aaa etc act	283
5	Ser Ser Ala Gly Thr Ala Thr Pro Leu Glu Met Asp His Lys Leu Thr	
	5 10 15	
	tot cag coa ggo agg coa ago tto tat tgt aac agt agg cac agt ata	331
	Ser Gln Pro Gly Arg Pro Ser Phe Tyr Cys Asn Ser Arg His Ser Ile	
	20 25 30	
10	gtc gga tca tca cat cag ctg ggt ttt tgg ttt agt cat cta gag tcg	379
	Val Gly Ser Ser His Gln Leu Gly Phe Trp Phe Ser His Leu Glu Ser	
	35 40 45	
	tet gga eta aag gte ttt eag gte tee ttg eee tgt gag tge gtg aac	427
	Ser Gly Leu Lys Val Phe Gln Val Ser Leu Pro Cys Glu Cys Val Asn	
15	50 55 60 65	
	ctc ccc acc cga att gcc tca gtt gtc ctg agc ctc atg tct ctc ctg	475
	Leu Pro Thr Arg Ile Ala Ser Val Val Leu Ser Leu Met Ser Leu Leu	
	70 75 80	
	gtg gtg ggc cag gcc cct gca tgg gaa ggg agc ctg ctg cgg ggc agg	523
20	Val Val Gly Gln Ala Pro Ala Trp Glu Gly Ser Leu Leu Arg Gly Arg	
	85 90 95	
	cca get ggg ggt get cac eta tge gea gea tgaagttatt gaaggae	570
	Pro Ala Gly Gly Ala His Leu Cys Ala Ala	
	100 105	
25	tggttgttga tgttggtgag egtateette atggeeageg egaagtegge eaggteagee	630
	aggtgctgcc agcgctctct ctcggacttg tcttcctgtg ccaggggacc gtggagaaag	690
	tgtcaggggc cgctcactgc agcagcctgc tctgctgcct tccctggcag tgttctgggg	750
	gtggattccc tacacctaga tgttcaaggc cttacttttc ctcccacaaa ggagtcgcag	810
	ccacgctage tetgaettge cactgtgaca aagtteaegt ageaggteta ggeaaagaet	870
30	gggcaattga gcagaggaga cggacctgtg agtctgacca cgaggcggac cccttcacct	930
	tggctgggcc tggtcctggt ccttaggttt tgtcaggttg tccttgtttg gatccctcaa	990
	ctaggtgata agcactggag ggggatgace egeettggae gtgtttettt aaceteatee	1050
	atataatagg gccgtgggat ggttgtagag gtaaagcagg atgatggtgt tttaagacca	1110
	gagettggga ecagggetee tacacetaat ttteteteet ggtagetgaa caaaggteta	1170
35	aattagetta acaaaagaac aggetgeegt eageeagagt tetgaaggee atgettteag	1230

	tttccc	ttgt	tgac	aatt	gc t	ctcc	agtt	c ct	atga	aagc	aca	gagc	ctt	aggg	ggcctg	1290
	gccaca	gaac	acaa	ccat	ct t	aggc	ctga	g ct	gtga	acag	cag	gggg	ttg	tgtg	tctgtt	1350
	ctgttt	ctct	gctt	gccg	aa c	tttc	tcaa	t aa	accc	tatt	tct	tatt	tat			1400
5	<210>	121														
	<211>	483														
	<212>	PRT														
	<213>	Homo	sapi	ence												
10	<400>	121														
	Met Ly	s Ala	Phe	His	Thr	Phe	Cys	Val	Val	Leu	Leu	Val	Phe	Gly	Ser	
	1			5					10					15		
	Val Se	r Glu	Ala	Lys	Phe	Asp	Asp	Phe	Glu	Asp	Glu	Glu	Asp	Ile	Val	
			20					25					30			
15	Glu Ty	r Asp	Asp	Asn	Asp	Phe	Ala	Glu	Phe	Glu	Asp	Val	Met	Glu	Asp	
		35					40					45				
	Ser Va	l Thr	Glu	Ser	Pro	Gln	Arg	Val	Ile	Ile	Thr	Glu	Asp	Asp	Glu	
	50)				55					60					
	Asp Glu	ı İhr	Thr	Val	Glu	Leu	Glu	Gly	Gln	Asp	Glu	Asn	Gln	Glu	Gly	
20	65				70					75					80	
	Asp Phe	e Glu	Asp	Ala	Asp	Thr	Gln	Glu	Gly	Asp	Thr	Glu	Ser	Glu	Pro	
				85					90					95		
	Tyr Ası	qaA q	Glu	Glu	Phe	Glu	Gly	Tyr	Glu	Asp	Lys	Pro	Asp	Thr	Ser	
			100					105					110			
25	Ser Ser	Lys	Asn	Lys	Asp	Pro	Ile	Thr	Ile	Val	Asp	Val	Pro	Ala	His	
		115					120					125				
	Leu Gli	n Asn	Ser	Trp	Glu	Ser	Tyr	Tyr	Leu	Glu	Ile	Leu	Met	Val	Thr	
	130)				135					140					
	Gly Let	ı Leu	Ala	Tyr	Ile	Met	Asn	Tyr	Ile	Ile	Gly	Lys	Asn	Lys	Asn	
30	145				150					155					160	
	Ser Arg	j Leu	Ala	Gln	Ala	Trp	Phe	Asn	Thr	His	Arg	Glu	Leu	Leu	Glu	
				165					170					175		
	Ser Ası	n Phe	Thr	Leu	Val	Gly	Asp	Asp	Gly	Thr	Asn	Lys	Glu	Ala	Thr	
			180					185					190			
35	Ser Thi	Gly	Lys	Leu	Asn	Gln	Glu	Asn	Glu	His	Ile	Tyr	Asn	Leu	Trp	

			195					200					205			
	Cys	Ser	Gly	Arg	Val	Cys	Cys	Glu	Gly	Met	Leu	Ile	Gln	Leu	Arg	Phe
		210					215					220				
	Leu	Lys	Arg	Gln	Asp	Leu	Leu	Asn	Val	Leu	Ala	Arg	Met	Met	Arg	Pro
5	225					230					235					240
	Val	Ser	Asp	Gln	Val	Gln	Ile	Lys	Val	Thr	Met	Asn	Asp	Glu	Asp	Met
					245					250					255	
	Asp	Thr	Tyr	Val	Phe	Ala	Val	Gly	Thr	Arg	Lys	Ala	Leu	Val	Arg	Leu
				260					265					270		
10	Gln	Lys	Glu	Met	Gln	Asp	Leu	Ser	Glu	Phe	Cys	Ser	Asp	Lys	Pro	Lys
			275					280					285			
	Ser	Gly	Ala	Lys	Tyr	Gly	Leu	Pro	Asp	Ser	Leu	Ala	Ile	Leu	Ser	Glu
		290					295					300				
	Met	Gly	Glu	Val	Thr	Asp	Gly	Met	Met	Asp	Thr	Lys	Met	Val	His	Phe
15	305					310					315					320
	Leu	Thr	His	Tyr	Ala	Asp	Lys	Ile	Glu	Ser	Val	His	Phe	Ser	Asp	Gln
					325					330					335	
	Phe	Ser	Gly	Pro	Lys	Ile	Met	Gln	Glu	Glu	Gly	Gln	Pro	Leu	Lys	Leu
•				340					345					350		
20	Pro	Asp	Thr	Lys	Arg	Thr	Leu	Leu	Phe	Thr	Phe	Asn	Val	Pro	Gly	Ser
			355					360					365			
	Gly	Asn	Thr	Tyr	Pro	Lys	Asp	Met	Glu	Ala	Leu	Leu	Pro	Leu	Met	Asn
		370					375					380				
		Val	Ile	Tyr	Ser		Asp	Lys	Ala	Lys	_	Phe	Arg	Leu	Asn	Arg
25	385					390					395					400
	Glu	Gly	Lys	Gln	-	Ala	Asp	Lys	Asn	•	Ala	Arg	Val	Glu		Asn
					405					410					415	
	Phe	Leu	Lys		Thr	His	Val	Gln		Gln	Glu	Ala	Ala		Ser	Arg
00	_			420					425		_			430		
30	Arg			Lys	Lys	Arg	Ala	Glu	Lys	Glu	Arg	Ile		Asn	GLu	Glu
			435				_	440	_,	~ 3		- 1	445	_	_	
	_		GIu	Lys	Gln	Arg	_	Leu	GIU	GIU	ATa		Leu	Arg	Arg	GLu
		450	_	_		_	455	-1		T	.	460	a 3:	~1		
25		гÀг	rys	Leu	GIu	_	гуs	Gln	Met	гÀв		гла	GIN	TTE	_	
35	465					470					475					480

	Lys	Ala	Met													
		-														
	<21	0> 1	22													
	<21	1> 3	34													
5	<21	2> P1	RT													
	<21	3> H		sapi	ence											
	<400)> 1:	22													
	Met	Val	Glu	Phe	Ala	Pro	Leu	Phe	Met	Pro	Trp	Glu	Arg	Arg	Leu	Gln
10	1				5					10					15	
	Thr	Leu	Ala	Val	Leu	Gln	Phe	Val	Phe	Ser	Phe	Leu	Ala	Leu	Ala	Glu
				20					25					30		
	Ile	Cys	Thr	Val	Gly	Phe	Ile	Ala	Leu	Leu	Phe	Thr	Arg	Phe	Trp	Leu
			35					40					45			
15	Leu	Thr	Val	Leu	Tyr	Ala	Ala	Trp	Trp	Tyr	Leu	Asp	Arg	Asp	Lys	Pro
		50					55					60				
	Arg	Gln	Gly	Gly	Arg	His	Ile	Gln	Ala	Ile	Arg	Cys	Trp	Thr	Ile	Trp
	65					70					75					80
	Lys	Tyr	Met	Lys	Asp	Tyr	Phe	Pro	Ile	Ser	Leu	Val	Lys	Thr	Ala	Glu
20					85					90					95	
	Leu	Asp	Pro	Ser	Arg	Asn	Tyr	Ile	Ala	Gly	Phe	His	Pro	His	Gly	Val
				100					105					110		
	Leu	Ala	Val	Gly	Ala	Phe	Ala	Asn	Leu	Cys	Thr	Glu	Ser	Thr	Gly	Phe
			115					120					125			
25	Ser	Ser	Ile	Phe	Pro	Gly	Ile	Arg	Pro	His	Leu	Met	Met	Leu	Thr	Leu
		130					135					140				
	Trp	Phe	Arg	Ala	Pro	Phe	Phe	Arg	Asp	Tyr	Ile	Met	Ser	Ala	Gly	Leu
	145					150					155					160
	Val	Thr	Ser	Glu	Lys	Glu	Ser	Ala	Ala	His	Ile	Leu	Asn	Arg	Lys	Gly
30					165					170					175	
	Gly	Gly	Asn	Leu	Leu	Gly	Ile	Ile	Val	Gly	Gly	Ala	Gln	Glu	Ala	Leu
				180					185					190		
	Asp	Ala	Arg	Pro	Gly	Ser	Phe	Thr	Leu	Leu	Leu	Arg	Asn	Arg	Lys	Gly
			195					200					205			
35	Phe	Val	Arg	Leu	Ala	Leu	Thr	His	Gly	Ala	Pro	Leu	Val	Pro	Ile	Phe

		210					215					220				
	Ser	Phe	Gly	Glu	Asn	Asp	Leu	Phe	Asp	Gln	Ile	Pro	Asn	Ser	Ser	Gl
	225					230			•		235					24
	Ser	Trp	Leu	Arg	Tyr	Ile	Gln	Asn	Arg	Leu	Gln	Lys	Ile	Met	Gly	Il
5					245					250					255	
	Ser	Leu	Pro	Leu	Phe	His	Gly	Arg	Gly	Val	Phe	Gln	Tyr	Ser	Phe	Gl
				260					265					270		
	Leu	Ile	Pro	Tyr	Arg	Arg	Pro	Ile	Thr	Thr	Val	Val	Gly	Lys	Pro	Ile
			275					280					285			
10	Glu	Val	Gln	Lys	Thr	Leu	His	Pro	Ser	Glu	Glu	Glu	Val	Asn	Gln	Le
		290					295					300				
	His	Gln	Arg	Tyr	Ile	Lys	Glu	Leu	Cys	Asn	Leu	Phe	Glu	Ala	His	Ly
	305					310					315					320
	Leu	Lys	Phe	Asn	Ile	Pro	Ala	Asp	Gln	His	Leu	Glu	Phe	Cys		
15					325					330						
	<210)> 12	23													
	<21	l> 26	57													
	<212	2> PI	RT													
20	<213	3> Ho	omo s	sapie	ence											
	<400)> 12	23													
	Met	Ala	Pro	Trp	Ala	Leu	Leu	Ser	Pro	Gly	Val	Leu	Val	Arg	Thr	Gly
	1				5					10					15	
25	His	Thr	Val	Leu	Thr	Trp	Gly	Ile	Thr	Leu	Val	Leu	Phe	Leu	His	Asp
				20					25					30		
	Thr	Glu	Leu	Arg	Gln	Trp	Glu	Glu	Gln	Gly	Glu	Leu	Leu	Leu	Pro	Leu
			35					40					45			
	Thr	Phe	Leu	Leu	Leu	Val	Leu	Gly	Ser	Leu	Leu	Leu	Tyr	Leu	Ala	Val
30		50					55					60				
	Ser	Leu	Met	qaA	Pro	Gly	Tyr	Val	Asn	Val	Gln	Pro	Gln	Pro	Gln	Glu
	65					70					75					80
	Glu	Leu	Lys	Glu	Glu	Gln	Thr	Ala	Met	Val	Pro	Pro	Ala	Ile	Pro	Leu
					85					90					95	
35	Arg	Arg	Cys	Arg	Tyr	Cys	Leu	Val	Leu	Gln	Pro	Leu	Arg	Ala	Arg	His

		100)				105					110		
	Cys Arg (Glu Cys	Arg	Arg	Cys	Val	Arg	Arg	Tyr	Asp	His	His	Cys	Pro
	:	115				120					125			
	Trp Met (Glu Asr	Cys	Val	Gly	Glu	Arg	Asn	His	Pro	Leu	Phe	Val	Val
5	130				135					140				
	Tyr Leu A	Ala Leu	Gln	Leu	Val	Val	Leu	Leu	Trp	Gly	Leu	Tyr	Leu	Ala
	145			150					155					160
	Trp Ser (Gly Leu	Arg	Phe	Phe	Gln	Pro	Trp	Gly	Leu	Trp	Leu	Arg	Ser
			165					170					175	
10	Ser Gly I	Leu Leu	Phe	Ala	Thr	Phe	Leu	Leu	Leu	Ser	Leu	Phe	Ser	Leu
		180					185					190		
	Val Ala S	Ser Leu	Leu	Leu	Val	Ser	His	Leu	Tyr	Leu	Val	Ala	Ser	Asn
	1	195				200					205			
	Thr Thr T	Thr Trp	Glu	Phe	Ile	Ser	Ser	His	Arg	Ile	Ala	Tyr	Leu	Arg
15	210				215					220				
	Gln Arg F	Pro Ser	Asn	Pro	Phe	Asp	Arg	Gly	Leu	Thr	Arg	Asn	Leu	Ala
	225			230					235					240
	His Phe F	Phe Cys	Gly	Trp	Pro	Ser	Gly	Ser	Trp	Glu	Thr	Leu	Trp	Ala
			245					250					255	
20	Glu Glu G	Glu Glu	Glu	Gly	Ser	Ser	Pro	Ala	Val					
		260					265							
	<210> 124													
	<211> 106	5												
25	<212> PRT													
	<213> Hom	no sapi	ence											
	<400> 124							_	_	_	_	_		_
00	Met Ser T	hr Asn		Met	Ser	Asp	Pro		Arg	Pro	Asn	гÀз		Leu
30	1		5		_			10	_		_		15	_
	Arg Tyr L	-	Pro	Pro	Ser	Glu	_	Asn	Pro	Ala	Leu		Asp	Pro
		20		_			25	M - L	+ 1 -	Dh -	0	30	a -	a 1-
	Thr Pro A		Met	Asn	Leu		GTÀ	Met	тте	rve		Met	cys	GTÀ
25		35	_		_	40		m	17 - T	.	45		0	0 - · ·
35	Leu Met L	eu Lys	Leu	гЛs	Trp	Cys	Ala	тrр	val	ALA	vaı	Tyr	Cys	ser

		50					55					60				
	Phe	Ile	Ser	Phe	Ala	Asn	Ser	Arg	Ser	Ser	Glu	Asp	Thr	Lys	Gln	Met
	65					70					75					80
	Met	Ser	Ser	Phe	Met	Leu	Ser	Ile	Ser	Ala	Val	Val	Met	Ser	Tyr	Leu
5					85					90					95	
	Gln	Asn	Pro	Gln	Pro	Met	Thr	Pro	Pro	Trp						
				100					105							
	<210)> 1	25													
10	<21	1> 2:	24													
	<212	2> P	RT													
	<213	3> H	omo :	sapie	ence											
)> 1											_			
15		Thr	Leu	Phe		Phe	Gly	Asn	Cys		Ala	Leu	Ala	Tyr		Pro
	1				5		_			10	_		_	_	15	_,
	Tyr	Phe	Ile		Tyr	Lys	Cys	Ser		Leu	Ser	GIu	Tyr		A1a	Phe
r	_	_	_	20					25		•	n l	**-1	30	7	0
90	ırp	гàг		Val	Gin	Ala	GIY	Val	Thr	туг	Leu	Pne	45	GIN	ьeu	Cys
20	T	Vot	35	nh a	T 011	3 7.0	mh ~	40 Phe	Dho	Bro	mh r	ሞም		Glw	Glv	Tlo
	тÃ2	50	reu	Pne	ьeu	Ald	55	Pile	Pne	PIO	1111	60	GIU	Gly	GIY	116
	ጥ ህጉ		Phe	Tlo	Glv	Glu		Met	Lvs	Ala	Ser		geA	Val	Ala	Asp
	65	p	1110	110	U-1	70	1 110	1100	275		75		<u>-</u> -			80
25		Ile	Glv	Leu	Asn		Val	Met	Ser	Arq		Ala	Gly	Lys	Gly	
			2		85					90			•	•	95	
	Tyr	Lys	Ile	Met	Val	Ala	Ala	Leu	Gly	Trp	Ala	Thr	Ala	Glu	Leu	Ile
	_	_		100					105					110		
	Met	Ser	Arg	Cys	Ile	Pro	Leu	Trp	Val	Gly	Ala	Arg	Gly	Ile	Glu	Phe
30			115					120					125			
	Asp	Trp	Lys	Tyr	Ile	Gln	Met	Ser	Ile	Asp	Ser	Asn	Ile	Ser	Leu	Val
		130					135					140				
	His	Tyr	Ile	Val	Ala	Ser	Ala	Gln	Val	Trp	Met	Ile	Thr	Arg	Tyr	Asp
	145					150					155					160
35	Leu	Tyr	His	Thr	Phe	Arg	Pro	Ala	Val	Leu	Leu	Leu	Met	Phe	Leu	Ser

					165					170					175	
	Val	Tyr	Lys	Ala	Phe	Val	Met	Glu	Thr	Phe	Val	His	Leu	Cys	Ser	Leu
				180					185					190		
	Gly	Ser	Trp	Ala	Ala	Leu	Leu	Ala	Arg	Ala	Val	Val	Thr	Gly	Leu	Leu
5			195					200					205			
	Ala	Leu	Ser	Thr	Leu	Ala	Leu	Tyr	Val	Ala	Val	Val	Asn	Val	His	Ser
		210					215					220				
	<21	0> 12	26													
10	<21	1> 2!	58													
	<21	2> P1	RT													
	<21	3> H	omo :	sapie	ence											
	<40	0> 13	26													
15	Met	Ala	Val	Leu	Ala	Pro	Leu	Ile	Ala	Leu	Val	Tyr	Ser	Val	Pro	Arg
	1				5					10					15	
	Leu	Ser	Arg	Trp	Leu	Ala	Gln	Pro	Tyr	Tyr	Leu	Leu	Ser	Ala	Leu	Leu
				20					25					30		
	Ser	Ala	Ala	Phe	Leu	Leu	Val	Arg	Lys	Leu	Pro	Pro	Leu	Cys	His	Gly
20			35					40					45			
	Leu	Pro	Thr	Gln	Arg	Glu	Asp	Gly	Asn	Pro	Суѕ	Asp	Phe	Asp	Trp	Arg
		50					55					60				
	Glu	Val	Glu	Ile	Leu	Met	Phe	Leu	Ser	Ala		Val	Met	Met	Lys	
	65					70					75					80
25	Arg	Arg	Ser	Met	Phe	Leu	Met	Thr	Cys		Pro	Pro	Leu	Tyr		Gly
					85					90		_			95	
	Pro	Glu	Tyr		Lys	Tyr	Phe	Asn		Lys	Thr	Ile	Asp		Glu	Leu
				100					105	_				110		
	Glu	Arg	_	Lys	Arg	Val	Thr	_	Ile	Val	Glu	Phe		Ala	Asn	Trp
30			115					120		_		_	125	_	_	_
	Ser	Asn	Asp	Cys	Gln	Ser		Ala	Pro	Ile	Tyr		Asp	Leu	Ser	Leu
		130					135			_		140				
	_	Tyr	Asn	Cys	Thr		Leu	Asn	Phe	Gly		Val	Asp	Val	Gly	
	145					150					155			_	_	160
35	Tyr	Thr	Asp	Val	Ser	Thr	Arg	Tyr	Lys	Val	Ser	Thr	Ser	Pro	Leu	Thr

146/177

					165					170					175	
	Lys	Gln	Leu	Pro	Thr	Leu	Ile	Leu	Phe	Gln	Gly	Gly	Lys	Glu	Ala	Met
				180					185					190		
	Arg	Arg	Pro	Gln	Ile	Asp	Lys	Lys	Gly	Arg	Ala	Val	Ser	Trp	Thr	Phe
5			195					200					205			
	Ser	Glu	Glu	Asn	Val	Ile	Arg	Glu	Phe	Asn	Leu	Asn	Glu	Leu	Tyr	Gln
		210					215					220				
	Arg	Ala	Lys	Lys	Leu	Ser	Lys	Ala	Gly	Asp	Asn	Ile	Pro	Glu	Glu	Gln
	225					230					235					240
10	Pro	Val	Ala	Ser	Thr	Pro	Thr	Thr	Val	Ser	Asp	Gly	Glu	Asn	Lys	Lys
					245					250					255	
	Asp	Lys														
15		0> 12														
15		1> 1:														
		2> P1	omo s	ani	maa											
	~21.)~ N		apre	siice											
	<40	0> 12	27													
20			Ala	Val	Val	Ala	Lys	Arg	Glu	Gly	Pro	Pro	Phe	Ile	Ser	Glu
	1				5		•	•		10					15	
	Ala	Ala	Val	Arg	Gly	Asn	Ala	Ala	Val	Leu	Asp	Tyr	Cys	Arg	Thr	Ser
				20					25					30		
	Val	Ser	Ala	Leu	Ser	Gly	Ala	Thr	Ala	Gly	Ile	Leu	Gly	Leu	Thr	Gly
25			35					40					45			
	Leu	Tyr	Gly	Phe	Ile	Phe	Tyr	Leu	Leu	Ala	Ser	Val	Leu	Leu	Ser	Leu
		50					55					60				
	Leu	Leu	Ile	Leu	Lys	Ala	Gly	Arg	Arg	Trp	Asn	Lys	Tyr	Phe	ГÀа	Ser
	65					70					75					80
30	Arg	Arg	Pro	Leu	Phe	Thr	Gly	Gly	Leu	Ile	Gly	Gly	Leu	Phe	Thr	Tyr
					85					90					95	
	Val	Leu	Phe	Trp	Thr	Phe	Leu	Tyr		Met	Val	His	Val			
				100					105					110		

35 <210> 128

147/177

<211> 91 <212> PRT <213> Homo sapience 5 <400> 128 Met Val Tyr Ile Ser Asn Gly Gln Val Leu Asp Ser Arg Ser Gln Ser 10 Pro Trp Arg Leu Ser Leu Ile Thr Asp Phe Phe Trp Gly Ile Ala Glu 25 20 10 Phe Val Val Leu Phe Phe Lys Thr Leu Leu Gln Gln Asp Val Lys Lys 40 Arg Arg Ser Tyr Gly Asn Ser Ser Asp Ser Arg Tyr Asp Asp Gly Arg 55 Gly Pro Pro Gly Asn Pro Pro Arg Arg Met Gly Arg Ile Asn His Leu 80 15 65 70 Arg Gly Pro Ser Pro Pro Pro Met Ala Gly Gly 90 85 <210> 129 20 <211> 344 <212> PRT <213> Homo sapience <400> 129 25 Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro Leu Ser Lys Ser Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu Ala Leu 30 25 20 Leu Leu Pro His Cys Gln Lys Leu Phe Val Tyr Asp Leu His Ala Val 30 40 Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile Ile Cys 55 Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr Asn Phe 75 80 65 70

Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser Phe Leu

35

148/177

					85					90					95	
	Leu	Gly	Ser	Trp	Val	Leu	Ser	Ala	Leu	Phe	Asp	Phe	Leu	Leu	Ile	Glu
				100					105					110		
	Ala	Met	Gln	Tyr	Phe	Phe	Gly	Ile	Thr	Ala	Ala	Ser	Asn	Leu	Pro	Ser
5			115					120					125			
	Gly	Phe	Leu	Ala	Pro	Val	Phe	Ala	Leu	Phe	Val	Pro	Phe	Tyr	Сув	Ser
		130					135					140				
	Ile	Pro	Arg	Val	Gln	Val	Ala	Gln	Ile	Leu	Gly	Pro	Leu	Ser	Ile	Thr
	145					150					155					160
10	Asn	Lys	Thr	Leu	Ile	Tyr	Ile	Leu	Gly	Leu	Gln	Leu	Phe	Thr	Ser	Gly
					165					170					175	
	Ser	Tyr	Ile	Trp	Ile	Val	Ala	Ile	Ser	Gly	Leu	Met	Ser	Gly	Leu	Cys
				180					185					190		
	Tyr	Asp		Lys	Met	Phe	Gln		His	Gln	Val	Leu		Ile	Pro	Ser
15			195					200					205	_		
	Trp		Ala	Lys	Phe	Phe		Trp	Thr	Leu	Glu		Ile	Phe	Ser	Ser
		210					215					220		1	_	_
		Glu	Pro	Thr	Ser		Ala	Arg	Ile	GIY		GTÀ	Ala	Thr	Leu	_
90	225	a 1	3	01	0 1	230		01	T	T 011	235	7. 20.00	<i>(</i> 15	T 011	Mot	240
20	TTE	GIN	Arg	GIN	245	Arg	Met	GIU	Leu	250	Asp	Arg	GIII	Leu	255	PHE
	Ser	Cln.	Dho	71.5		Cly	Ara	Ara.	Gln		Gln	Gln	Gln	Gly		Mot
	per	GIII	FIIE	260	GIII	GIY	Arg	мц	265	Arg	GIII	GIII	O.III	270	OLY	Hec
	Tle	Asn	Tro		Ara	Leu	Phe	Pro		Leu	Ara	Gln	Ara	Gln	Asn	Val
25			275		• 9			280			,		285			
	Asn	Tyr		Gly	Glv	Arq	Gln		Glu	Pro	Ala	Ala		Pro	Leu	Glu
		290		•	•	_	295					300				
	Val	Ser	Glu	Glu	Gln	Val	Ala	Arg	Leu	Met	Glu	Met	Gly	Phe	Ser	Arg
	305					310		_			315					320
30	Gly	Asp	Ala	Leu	Glu	Ala	Leu	Arg	Ala	Ser	Asn	Asn	Asp	Leu	Asn	Val
					325					330					335	
	Ala	Thr	Asn	Phe	Leu	Leu	Gln	His								
				340												

35 <210> 130

	<211	J 42	20														
	<212	2> PF	TS														
	<213	3> Hc	omo s	sapie	ence												
5	<400)> 13	30														
	Met	Gly	Pro	Pro	Pro	Gly	Ala	Gly	Val	Ser	Cys	Arg	Gly	Gly	Cys	Gly	
	1				5					10					15		
	Phe	Ser	Arg	Leu	Leu	Ala	Trp	Суз	Phe	Leu	Leu	Ala	Leu	Ser	Pro	Gln	
				20					25					30			
10	Ala	Pro	Gly	Ser	Arg	Gly	Ala	Glu	Ala	Val	Trp	Thr	Ala	Tyr	Leu	Asn	
			35					40					45				
	Val	Ser	Trp	Arg	Val	Pro	His	Thr	Gly	Val	Asn	Arg	Thr	Val	Trp	Glu	
		50					5 5					60					
	Leu	Ser	Glu	Glu	Gly	Val	Tyr	Gly	Gln	Asp	Ser	Pro	Leu	Glu	Pro	Val	
15	65					70					75					80	
	Ala	Gly	Val	Leu	Val	Pro	Pro	Asp	Gly	Pro	Gly	Ala	Leu	Asn	Ala	Cys	
					85					90					95		
	Asn	Pro	His	Thr	Asn	Phe	Thr	Val	Pro	Thr	Val	Trp	Gly	Ser	Thr	Val	
				100					105					110			
20	Gln	Val	Ser	Trp	Leu	Ala	Leu	Ile	Gln	Arg	Gly	Gly	Gly	Суз	Thr	Phe	
			115					120					125				
	Ala	Asp	Lys	Ile	His	Leu	Ala	Tyr	Glu	Arg	Gly	Ala	Ser	Gly	Ala	Val	
		130					135					140					
	Ile	Phe	Asn	Phe	Pro	Gly	Thr	Arg	Asn	Glu	Val	Ile	Pro	Met	Ser	His	
25	145					150					155					160	
	Pro	Gly	Ala	Val	Asp	Ile	Val	Ala	Ile	Met	Ile	Gly	Asn	Leu	Lys	Gly	
					165					170					175		
	Thr	Lys	Ile	Leu	Gln	Ser	Ile	Gln	Arg	Gly	Ile	Gln	Val	Thr	Met	Val	
				180					185					190			
30	Ile	Glu	Val	Gly	Lys	Lys	His	Gly	Pro	Trp	Val	Asn	His	Tyr	Ser	Ile	
			195					200					205				
	Phe	Phe	Val	Ser	Val	Ser	Phe	Phe	Ile	Ile	Thr	Ala	Ala	Thr	Val	Gly	
		210					215					220					
	Tyr	Phe	Ile	Phe	Tyr	Ser	Ala	Arg	Arg	Leu	Arg	Asn	Ala	Arg	Ala	Gln	
35	225					230					235					240	

	Ser	Arg	Lys	Gln	Arg	Gln	Leu	Lys	Ala	Asp	Ala	Lys	Lys	Ala	Ile	Gly	
					245					250					255		
	Arg	Leu	Gln	Leu	Arg	Thr	Leu	Lys	Gln	Gly	Asp	Lys	Glu	Ile	Gly	Pro	
				260					265					270			
5	Asp	Gly	Asp	Ser	Cys	Ala	Val	Cys	Ile	Glu	Leu	Tyr	Lys	Pro	Asn	Asp	
			275					280					285				
	Leu	Val	Arg	Ile	Leu	Thr	Суз	Asn	His	Ile	Phe	His	Lys	Thr	Cys	Val	
		290					295					300					
	Asp	Pro	Trp	Leu	Leu	Glu	His	Arg	Thr	Cys	Pro	Met	Cys	Lys	Cys	Asp	
10	305					310					315					320	
	Ile	Leu	Lys	Ala	Leu	Gly	Ile	Glu	Val	Asp	Val	Glu	Asp	Gly	Ser	Val	
					325					330					335		
	Ser	Leu	Gln	Val	Pro	Val	Ser	Asn	Glu	Ile	Ser	Asn	Ser	Ala	Ser	Ser	
				340					345					350			
15	His	Glu	Glu	Asp	Asn	Arg	Ser	Glu	Thr	Ala	Ser	Ser	Gly	Tyr	Ala	Ser	
			355					360					365				
	Val	Gln	Gly	Thr	Asp	Glu	Pro	Pro	Leu	Glu	Glu	His	Val	Gln	Ser	Thr	
		370					375					380					
	Asn	Glu	Ser	Leu	Gln	Leu	Val	Asn	His	Glu	Ala	Asn	Ser	Val	Ala	Val	
20	385					390					395					400	
	Asp	Val	Ile	Pro	His	Val	Asp	Asn	Pro	Thr	Phe	Glu	Glu	Asp	Glu	Thr	
					405					410					415		
	Pro	Asn	Gln	Glu	Thr	Ala	Val	Arg	Glu	Ile	Lys	Ser					
				420					425								
25																	
	<210)> 13	31														
	<211	l> 14	149														
		2> Di															
	<213	3> Ho	omo s	sapie	ence												
30																	
)> 13															
	_	_						-								gaagee	60
																teget	120
																tcact	180
35	gaag	gatga	atg a	agat	gaga	C CE	ctgt	ggaç	, ttc	gaag	iggc	agga	tgaa	aa c	caaç	gaagga	240

	gattttgaag atgcagatac ccaggaggga gatactgaga gtgaaccata tgatgatgaa	300
	gaatttgaag gttatgaaga caaaccagat acttcttcta gcaaaaataa agacccaata	360
	acgattgttg atgttcctgc acacctccag aacagctggg agagttatta tctagaaatt	420
	ttgatggtga ctggtctgct tgcttatatc atgaattaca tcattgggaa gaataaaaac	480
5	agtogoottg cacaggootg gtttaacact catagggago ttttggagag caactttact	540
	ttagtggggg atgatggaac taacaaagaa gccacaagca caggaaagtt gaaccaggag	600
	aatgagcaca totataacot gtggtgttot ggtcgagtgt gctgtgaggg catgcttatc	660
	cagetgaggt teeteaagag acaagaetta etgaatgtee tggeeeggat gatgaggeea	720
	gtgagtgatc aagtgcaaat aaaagtaacc atgaatgatg aagacatgga tacctacgta	780
10	tttgctgttg gcacacggaa agccttggtg cgactacaga aagagatgca ggatttgagt	840
	gagttttgta gtgataaacc taagtctgga gcaaagtatg gactgccgga ctctttggcc	900
	atcctgtcag agatgggaga agtcacagac ggaatgatgg atacaaagat ggttcacttt	960
	cttacacact atgetgacaa gattgaatet gttcattttt cagaccagtt ctctggtcca	1020
	aaaattatgc aagaggaagg tcagccttta aagctacctg acactaagag gacactgttg	1080
15	tttacattta atgtgeetgg etcaggtaae aettaceeaa aggatatgga ggcaetgeta	1140
	cccctgatga acatggtgat ttattctatt gataaagcca aaaagttccg actcaacaga	1200
	gaaggcaaac aaaaagcaga taagaaccgt gcccgagtag aagagaactt cttgaaactg	1260
	acacatgtgc aaagacagga agcagcacag teteggeggg aggagaaaaa aagagcagag	1320
	aaggagegaa teatgaatga ggaagateet gagaaacage geaggetgga ggaggetgea	1380
20	ttgaggcgtg agcaaaagaa gttggaaaag aagcaaatga aaatgaaaca aatcaaagtg	1440
	aaagccatg	1449
	<210> 132	
	<211> 1002	
25	<212> DNA	
	<213> Homo sapience	
	<400> 132	
	atggtagagt tegegeeett gtttatgeeg tgggagegea ggetgeagae aettgetgte	60
30	ctacagtttg tetteteett ettggeactg geegagatet geactgtggg etteatagee	120
	ctcctgttta caagattctg gctcctcact gtcctgtatg cggcctggtg gtatctggac	180
	cgagacaagc cacggcaggg gggccggcac atccaggcca tcaggtgctg gactatatgg	240
	aagtacatga aggactattt ceccateteg etggteaaga etgetgaget ggaceeetet	300
	cggaactaca ttgcgggctt ccaccccat ggagtcctgg cagtcggagc ctttgccaac	360
35	ctgtgcactg agagcacagg cttctcttcg atcttccccg gtatccgccc ccatctgatg	420

152/177

	atgetgacet tgtggtteeg ggeeeeette tteagagatt acateatgte tgeagggttg	480
	gtcacatcag aaaaggagag tgctgctcac attctgaaca ggaagggtgg cggaaacttg	540
	etgggeatea ttgtaggggg tgeeeaggag geeetggatg eeaggeetgg atcetteaeg	600
	etgttaetge ggaacegaaa gggettegte aggetegeee tgacacaegg ggcacecetg	660
5	gtgccaatct teteettegg ggagaatgae etatttgaee agatteeeaa etettetgge	720
	teetggttae getatateea gaateggttg eagaagatea tgggeatete ceteceaete	780
	ttteatggee gtggtgtett ceagtacage tttggtttaa taccetaceg eeggeecate	840
	accactgtgg tggggaagcc catcgaggta cagaagacgc tgcatccctc ggaggaggag	900
	gtgaaccagc tgcaccagcg ttatatcaaa gagctgtgca acctcttcga ggcccacaaa	960
10	ettaagttea acateeetge tgaceageae ttggagttet ge	1002
	<210> 133	
	<211> 801	
	<212> DNA	
15	<213> Homo sapience	
	<400> 133	
	atggegeeet gggegeteet eagecetggg gteetggtge ggaeegggea eacegtgetg	60
	acctggggaa teacgetggt getetteetg cacgataceg agetgeggea atgggaggag	120
20	cagggggage tgetcctgcc cctcaccttc ctgctcctgg tgctgggctc cctgctgctc	180
	tacetegetg tgtcactcat ggaccetgge tacgtgaatg tgcagececa geetcaggag	240
	gageteaaag aggageagae ageeatggtt ceteeageea teeetetteg gegetgeaga	300
	tactgeetgg tgetgeagee cetgaggget eggeactgee gtgagtgeeg eegttgegte	360
	egeogetacg accaccactg eccetggatg gagaactgtg tgggagageg caaccacca	420
25	ctetttgtgg tetacetgge getgeagetg gtggtgette tgtggggeet gtacetggea	480
	tggtcaggcc tccggttctt ccagccctgg ggtctgtggt tgcggtccag cgggctcctg	540
	ttegecacet teetgetget gtecetette tegttggtgg ceagectget cetegteteg	600
	cacctotacc tggtggccag caacaccacc acctgggaat tcatctcctc acaccgcatc	660
	gootatotoo gooagegeee cageaaceee ttegacegag gootgaceeg caacetggee	720
30	cacttettet gtggatggee eteagggtee tgggagaeee tetgggetga ggaggaggaa	780
	gagggcagca geecagetgt t	801
	2-3333 33-3-	
	J. J	
	<210> 134	

35

<212> DNA

153/177

<213> Homo sapience

	<400> 134	
	atgtccacta acaatatgtc ggacccacgg aggccgaaca aagtgctgag gtacaagccc	60
5	cegeegageg aatgtaacee ggeettggae gaceegaege eggaetacat gaacetgetg	120
	ggeatgatet teageatgtg eggeeteatg ettaagetga agtggtgtge ttgggteget	180
	gtctactgct ccttcatcag ctttgccaac tctcggagct cggaggacac gaagcaaatg	240
	atgagtaget teatgetgte catetetgee gtggtgatgt cetatetgea gaateeteag	300
	cccatgacgc ccccatgg	318
10		
	<210> 135	
	<211> 672	
	<212> DNA	
	<213> Homo sapience	
15		
	<400> 135	
	atgaccetgt tteacttegg gaactgette getettgeet actteceeta etteateace	60
	tacaagtgca gcggcctgtc cgagtacaac gccttctgga aatgcgtcca ggctggagtc	120
	acctacetet ttgtccaact etgcaagatg etgttettgg ecaetttett teccaeetgg	180
20	gaaggeggea tetatgaett eattggggag tteatgaagg ceagegtgga tgtggeagae	240
	ctgataggtc taaaccttgt catgtcccgg aatgccggca agggagagta caagatcatg	300
	gttgetgeec tgggetggge eactgetgag ettattatgt eccgetgeat teccetatgg	360
	gteggageee ggggeattga gtttgaetgg aagtacatee agatgageat agaeteeaae	420
	atcagtctgg tecattacat egtegegtet geteaggtet ggatgataac aegetatgat	480
25	etgtaceaea eetteeggee agetgteete etgetgatgt teeteagtgt etacaaggee	540
	tttgttatgg agacettegt ceacetetge tegetgggea gttgggeage tetaetggee	600
	egageagtgg taaegggget getggeeete ageaetttgg eeetgtatgt egeegttgte	660
	aatgtgeact ce	672
00		
30	<210> 136	
	<211> 774	
	<212> DNA	
	<213> Homo sapience	
25		
35	<400> 136	

	atggeggtet	tggcacctct	aattgctctc	gtgtattcgg	tgccgcgact	ttcacgatgg	60
	ctcgcccaac	cttactacct	tetgteggee	ctgctctctg	ctgccttcct	actcgtgagg	120
	aaactgccgc	cgctctgcca	cggtctgccc	acccaacgcg	aagacggtaa	cccgtgtgac	180
	tttgactgga	gagaagtgga	gatcctgatg	tttctcagtg	ccattgtgat	gatgaagaac	240
5	cgcagatcca	tgttcctgat	gacgtgcaaa	cccccctat	atatgggccc	tgagtatatc	300
	aagtacttca	atgataaaac	cattgatgag	gaactagaac	gggacaagag	ggtcacttgg	360
	attgtggagt	tctttgccaa	ttggtctaat	gactgccaat	catttgcccc	tatctatgct	420
	gacctctccc	ttaaatacaa	ctgtacaggg	ctaaattttg	ggaaggtgga	tgttggacgc	480
	tatactgatg	ttagtacgcg	gtacaaagtg	agcacatcac	ccctcaccaa	gcaactccct	540
10	accctgatcc	tgttccaagg	tggcaaggag	gcaatgcggc	ggccacagat	tgacaagaaa	600
	ggacgggctg	tctcatggac	cttctctgag	gagaatgtga	tccgagaatt	taacttaaat	660
	gagctatacc	agegggeeaa	gaaactatca	aaggctggag	acaatatccc	tgaggagcag	720
	cctgtggctt	caacccccac	cacagtgtca	gatggggaaa	acaagaagga	taaa	774
15	<210> 137						
	<211> 330						
	<212> DNA						
	<213> Homo	sapience					
20	<400> 137						
	atggccgcgg	tggtggccaa	gcgggaaggg	ccgccgttca	tcagcgaggc	ggccgtgcgg	60
					cagcgctgtc		120
	gccggcatcc	teggeeteae	cggcctctac	ggcttcatct	tctacctgct	egeeteegte	180
		•			ggaacaaata		240
25	cggagacctc	tctttacagg	aggcctcatc	gggggcctct	tcacctacgt	cctgttctgg	300
	acgttcctct	acggcatggt	gcacgtctac				330
	<210> 138						
20	<211> 273						
30	<212> DNA						
	<213> Homo	sapience					
	.444						
	<400> 138		,				
0.5				-	gtcagtctcc		60
35	tctttgataa	cagatttctt	ctggggaata	gctgagtttg	tggttttgtt	tttcaaaact	120

155/177

	ctgcttcagc	aagatgtgaa	aaaaagaaga	agctatggaa	actcatctga	ttccagatat	180
	gatgatggaa	`gagggccacc	aggaaaccct	ccccgaagaa	tgggtagaat	caatcatctg	240
	cgtggcccta	gtaccactac	aatggctggt	gga			273
			•				
5	<210> 139						
	<211> 1032						
	<212> DNA						
	<213> Homo	sapience					
10	<400> 139						
	atgttcacca	geaccggete	cagtgggctc	tacaaggcgc	ctctgtcgaa	gageettetg	60
	ctggtcccca	gtgccctctc	cctcctgctc	gecetectec	tgcctcactg	ccagaagete	120
	tttgtgtatg	accttcacgc	agtcaagaac	gacttccaga	tttggaggtt	gatatgtgga	180
	agaataattt	gccttgattt	gaaagatact	ttctgcagta	gtctgcttat	ttataatttt	240
15	aggatatttg	aaagaagata	tggaagcaga	aaatttgcat	cctttttgct	gggttcctgg	300
	gttttgtcag	ccttatttga	ctttctcctc	attgaagcta	tgcagtattt	ctttggcatc	360
	actgcagcta	gtaatttgcc	ttctggattc	ctggcacctg	tgtttgctct	gtttgtacca	420
	ttttactgct	ccataccaag	agtccaagtg	gcacaaattc	tgggtccgtt	gtccatcaca	480
	aacaagacat	tgatttatat	attgggactg	cagcttttca	cctctggttc	ctacatctgg	540
20	attgtagcca	taagtggact	tatgtccggt	ctgtgctacg	acagcaaaat	gttccaggtg	600
	catcaggtgc	tctgcatccc	cagctggatg	gcaaaattct	tttcttggac	acttgaaccc	660
	atcttctctt	cttcagaacc	caccagcgaa	gccagaattg	ggatgggagc	cacgctggac	720
	atccagagac	agcagagaat	ggagctgctg	gaccggcagc	tgatgttete	tcagtttgca	780
	caagggaggc	gacagagaca	gcagcaggga	ggaatgatca	attggaatcg	tctttttcct	840
25	cctttacgtc	agcgacaaaa	cgtaaactat	cagggcggtc	ggcagtctga	gccagcagcg	900
	cccctctag	aagtttctga	ggaacaggtc	gcccggctca	tggagatggg	attttccaga	960
	ggtgatgctt	tggaagccct	gagagcttca	aacaatgacc	tcaatgtcgc	caccaacttc	1020
	ctgctgcagc	ac					1032
30	<210> 140						
	<211> 1284						
	<212> DNA	•					
	<213> Homo	sapience					

35

<400> 140

	atggggccgc cgcctggggc cggggtctcc tgccgcggtg gctgcggctt ttccagattg	60
	ctggcatggt gcttcctgct ggccctgagt ccgcaggcac ccggttcccg gggggctgaa	120
	geagtgtgga cegegtacet caaegtgtee tggegggtte egeacaeggg agtgaaeegt	180
	acggtgtggg agctgagcga ggagggcgtg tacggccagg actcgccgct ggagcctgtg	240
5	getggggtee tggtacegee egaegggeee ggggegetta aegeetgtaa eeegeacaeg	300
	aattteaegg tgeceaeggt ttggggaage aeegtgeaag tetettggtt ggeeeteate	360
	caacgeggeg ggggetgeac ettegeagae aagateeate tggettatga gagagggeg	420
	tetggageeg teatetttaa etteeeeggg accegeaatg aggteateee catgteteae	480
	ccgggtgcag tagacattgt tgcaatcatg atcggcaatc tgaaaggcac aaaaattctg	540
10	caatctattc aaagaggcat acaagtgaca atggtcatag aagtagggaa aaaacatggc	600
	cettgggtga ateactatte aattttttte gtttetgtgt cetttttat tattaeggeg	660
	gcaactgtgg gctattttat cttttattct gctcgaaggc tacggaatgc aagagctcaa	720
	agcaggaagc agaggcaatt aaaggcagat gctaaaaaag ctattggaag gcttcaacta	780
	cgcacactga aacaaggaga caaggaaatt ggccctgatg gagatagttg tgctgtgtgc	840
15	attgaattgt ataaaccaaa tgatttggta cgcatcttaa cgtgcaacca tattttccat	900
	aagacatgtg ttgacccatg gctgttagaa cacaggactt gccccatgtg caaatgtgac	960
	atactcaaag ctttgggaat tgaggtggat gttgaagatg gatcagtgtc tttacaagtc	1020
	cctgtatcca atgaaatatc taatagtgcc tcctcccatg aagaggataa tcgcagcgag	1080
	accgcatcat ctggatatgc ttcagtacag ggaacagatg aaccgcctct ggaggaacac	1140
20	gtgcagtcaa caaatgaaag tetacagetg gtaaaccatg aagcaaatte tgtggcagtg	1200
	gatgttatte etcatgttga caacccaace tttgaagaag acgaaactce taatcaagag	1260
	actgctgttc gagaaattaa atct	1284
	<210> 141	
25	<211> 2050	
	<212> DNA	
	<213> Homo sapience	
	<220>	
	<221> CDS	
30	<222> (122)(1573)	
	<400> 141	
	aaaaaaccgc tgcgatcgcg gaggcggcgg ccaggccgag aggcaggccg ggcaggggtg	60
	teggaegeag ggegetggge egggtttegg etteggeeae agetttttt eteaaggtge	120
35	a atg aaa gcc ttc cac act ttc tgt gtt gtc ctt ctg gtg ttt ggg	166

	M	et L	ys A	la P	he H	is T	hr P	he C	ys V	al V	al L	eu L	eu V	al P	he G	ly	
		1				5					10					15	
	agt	gtc	tct	gaa	gcc	aag	ttt	gat	gat	ttt	gag	gat	gag	gag	gac	ata	214
	Ser	Val	Ser	Glu	Ala	Lys	Phe	Asp	Asp	Phe	Glu	Asp	Glu	Glu	Asp	Ile	
5					20					25					30		
	gta	gag	tat	gat	gat	aat	gac	ttc	gct	gaa	ttt	gag	gat	gtc	atg	gaa	262
	Val	Glu	Tyr	Asp	Asp	Asn	Asp	Phe	Ala	Glu	Phe	Glu	Asp	Val	Met	Glu	
				35					40					45			
	gac	tct	gtt	act	gaa	tct	cct	caa	cgg	gtc	ata	atc	act	gaa	gat	gat	310
10	Asp	Ser	Val	Thr	Glu	Ser	Pro	Gln	Arg	Val	Ile	Ile	Thr	Glu	Asp	Asp	
			50					55					60				
	gaa	gat	gag	acc	act	gtg	gag	ttg	gaa	ggg	cag	gat	gaa	aac	caa	gaa	358
	Glu	Asp	Glu	Thr	Thr	Val	Glu	Leu	Glu	Gly	Gln	Asp	Glu	Asn	Gln	Glu	
		65					70					75					
15	gga	gat	ttt	gaa	gat	gca	gat	acc	cag	gag	gga	gat	act	gag	agt	gaa	406
	Gly	Asp	Phe	Glu	Asp	Ala	Asp	Thr	Gln	Glu	Gly	Asp	Thr	Glu	Ser	Glu	
	80					85					90					95	
			_	_	_	_		_	ggt								454
	Pro	Tyr	Asp	Asp	Glu	Glu	Phe	Glu	Gly	Tyr	Glu	Asp	Lys	Pro	Asp	Thr	
20					100					105					110		
			_						ata								502
	Ser	Ser	Ser	_	Asn	Lys	Asp	Pro	Ile	Thr	Ile	Val	Asp		Pro	Ala	
				115					120					125			
0.5									tat								550
25	His	Leu		Asn	Ser	Trp	Glu		Tyr	Tyr	Leu	Glu		Leu	Met	Val	
			130					135					140				
					-			_	aat								598
	Tnr	-	Leu	Leu	Ala	Tyr		Met	Asn	туг	TIE		GIÀ	ьys	Asn	гÀг	
20		145					150	.				155				***	616
30		-	_		-	_	_		ttt								646
		Ser	Arg	Leu	Ala		Ala	Trp	Phe	ASD		HIS	Arg	GIU	ren		
	160					165			4 -		170					175	604
		-							gat	-						_	694
0.5	GLu	Ser	Asn	Phe		Leu	vaI	GIY	Asp	_	ΑТĀ	rnr	ASN	гÀг		ATG	
35					180					185					190		

	aca	agc	aca	gga	aag	ttg	aac	cag	gag	aat	gag	cac	atc	tat	aac	ctg	742
	Thr	Ser	Thr	Gly	Lys	Leu	Asn	Gln	Glu	Asn	Glu	His	Ile	Tyr	Asn	Leu	
				195					200					205			
	tgg	tgt	tct	ggt	cga	gtg	tgc	tgt	gag	ggc	atg	ctt	atc	cag	ctg	agg	790
5	Trp	Cys	Ser	Gly	Arg	Val	Cys	Cys	Glu	Gly	Met	Leu	Ile	Gln	Leu	Arg	
			210					215					220				
	ttc	ctc	aag	aga	caa	gac	tta	ctg	aat	gtc	ctg	gcc	cgg	atg	atg	agg	838
	Phe	Leu	Lys	Arg	Gln	Asp	Leu	Leu	Asn	Val	Leu	Ala	Arg	Met	Met	Arg	
		225					230					235					
10	cca	gtg	agt	gat	caa	gtg	caa	ata	aaa	gta	acc	atg	aat	gat	gaa	gac	886
	Pro	Val	Ser	Asp	Gln	Val	Gln	Ile	Lys	Val	Thr	Met	Asn	Asp	Glu	Asp	
	240					245					250					255	
	atg	gat	acc	tac	gta	ttt	gct	gtt	ggc	aca	cgg	aaa	gcc	ttg	gtg	cga	934
	Met	Asp	Thr	Tyr	Val	Phe	Ala	Val	Gly	Thr	Arg	Lys	Ala	Leu	Val	Arg	
15					260					265					270		
	cta	cag	aaa	gag	atg	cag	gat	ttg	agt	gag	ttt	tgt	agt	gat	aaa	cct	982
	Leu	Gln	Lys	Glu	Met	Gln	Asp	Leu	Ser	Glu	Phe	Cys	Ser	Asp	Lys	Pro	
				275					280					285			
												ttg					1030
20	Lys	Ser	Gly	Ala	Lys	Tyr	Gly	Leu	Pro	Asp	Ser	Leu	Ala	Ile	Leu	Ser	
			290					295					300				
	gag	atg	gga	gaa	gtc	aca	gac	gga	atg	atg	gat	aca	aag	atg	gtt	cac	1078
	Glu	Met	Gly	Glu	Val	Thr	Asp	Gly	Met	Met	Asp	Thr	Lys	Met	Val	His	
		305					310					315					
25												gtt					1126
	Phe	Leu	Thr	His	Tyr	Ala	Asp	Lys	Ile	Glu	Ser	Val	His	Phe	Ser	_	
	320					325					330					335	
												ggt					1174
	Gln	Phe	Ser	Gly	Pro	Lys	Ile	Met	Gln	Glu	Glu	Gly	Gln	Pro	Leu	Lys	
30					340					345					350		
			_									ttt					1222
	Leu	Pro	Asp	Thr	Lys	Arg	Thr	Leu	Leu	Phe	Thr	Phe	Asn		Pro	Gly	
				355					360					365			
												ctg					1270
35	Ser	Gly	Asn	Thr	Tyr	Pro	Lys	Asp	Met	Glu	Ala	Leu	Leu	Pro	Leu	Met	

159/177

	370		375	380	
	aac atg gtg a	tt tat tot att	gat aaa gcc aaa a	ag ttc cga ctc aac	1318
	Asn Met Val I	le Tyr Ser Ile	Asp Lys Ala Lys L	ys Phe Arg Leu Asn	
	385	390	3	95	
5	aga gaa ggc a	aa caa aaa gca	gat aag aac cgt g	occ cga gta gaa gag	1366
	Arg Glu Gly I	ys Gln Lys Ala	Asp Lys Asn Arg A	la Arg Val Glu Glu	
	400	405	410	415	
	aac ttc ttg a	aa ctg aca cat	gtg caa aga cag g	aa gca gca cag tct	1414
	Asn Phe Leu L	ys Leu Thr His	Val Gln Arg Gln G	du Ala Ala Gln Ser	
10		420	425	430	
		_		ga atc atg aat gag	1462
	Arg Arg Glu G	lu Lys Lys Arg	Ala Glu Lys Glu A	rg Ile Met Asn Glu	
		35	440	445	
	_	-		ct gca ttg agg cgt	1510
15		lu Lys Gln Arg		la Ala Leu Arg Arg	
	450		455	460	
				tg aaa caa atc aaa	1558
				et Lys Gln Ile Lys	
20	465	470		75	1610
20		-	cagagattt gagttct	gat gecacetyta	1610
	Val Lys Ala M 480	et			
		acaddaaa catdaa	naac gccagtccat t	tctcaacct taaatttcag	1670
				tetgtttgg ggtttggggt	1730
25				gaattttt tttccagata	1790
				aaatctgtg taggttttaa	1850
				acttcagtg tttaaagaaa	1910
				tgtttaaac caagcagttg	1970
				taatgattg gaattgcaca	2030
30	ataaacattg ct	tgatgttt			2050
	<210> 142				
	<211> 2746				
	<212> DNA				

35

<213> Homo sapience

	<220>				
	<221> CDS				
	<222> (70)	(1074)			
5	<400> 142				
	aaaacctgtg	ggtgcctcag a	ccacagcag ag	ctcacaga acctgcggga gccaggctga	60
	cccgccagc a	atg gta gag t	tc gcg ccc t	tg ttt atg ccg tgg gag cgc	108
	.N	Met Val Glu P	he Ala Pro L	eu Phe Met Pro Trp Glu Arg	
		1	5	10	
10	agg ctg cag	g aca ctt gct	gtc cta cag	ttt gtc ttc tcc ttc ttg gca	156
	Arg Leu Gln	n Thr Leu Ala	Val Leu Gln	Phe Val Phe Ser Phe Leu Ala	
	15		20	25	
	ctg gcc gag	g atc tgc act	gtg ggc ttc	ata gee ete etg ttt aca aga	204
	Leu Ala Glu	lle Cys Thr	Val Gly Phe	Ile Ala Leu Leu Phe Thr Arg	
15	30	35		40 45	
	ttc tgg ctc	ctc act gtc	ctg tat gcg	gcc tgg tgg tat ctg gac cga	252
	Phe Trp Leu	Leu Thr Val	Leu Tyr Ala	Ala Trp Trp Tyr Leu Asp Arg	
		50		55 60	
	gac aag cca	cgg cag ggg	ggc cgg cac	atc cag gcc atc agg tgc tgg	300
20	Asp Lys Pro	Arg Gln Gly	Gly Arg His	Ile Gln Ala Ile Arg Cys Trp	
		65	70	75	
	act ata tgg	aag tac atg	aag gac tat	ttc ccc atc tcg ctg gtc aag	348
	_			Phe Pro Ile Ser Leu Val Lys	
0.5	80		85	90	
25				tac att gcg ggc ttc cac ccc	396
		Leu Asp Pro	-	Tyr Ile Ala Gly Phe His Pro	
	95		100	105	
	_			gcc aac ctg tgc act gag agc	444
20			Gly Ala Phe	Ala Asn Leu Cys Thr Glu Ser	
30	110	115		120 125	400
		~		atc cgc ccc cat ctg atg atg	492
	int Gly Phe		Phe Pro Gly	Ile Arg Pro His Leu Met Met	
	nta see the	130	700 0ca ++-	135 140	E 4 0
35	_		_	Pho Arg Agn War Ilo Mot Sor	540
UU	ner tir ren	TTD FUG WLd	TTO LIG	Phe Arg Asp Tyr Ile Met Ser	

				145	•				150					155			
	gca	999	ttg	gtc	aca	tca	gaa	aag	gag	agt	gct	gct	cac	att	ctg	aac	588
	Ala	Gly	Leu	Val	Thr	Ser	Glu	Lys	Glu	Ser	Ala	Ala	His	Ile	Leu	Asn	
			160					165					170				
5	agg	aag	ggt	ggc	gga	aac	ttg	ctg	ggc	atc	att	gta	ggg	ggt	gcc	cag	636
	Arg	Lys	Gly	Gly	Gly	Asn	Leu	Leu	Gly	Ile	Ile	Val	Gly	Gly	Ala	Gln	
		175					180					185					
	gag	gcc	ctg	gat	gcc	agg	cct	gga	tcc	ttc	acg	ctg	tta	ctg	cgg	aac	684
	Glu	Ala	Leu	Asp	Ala	Arg	Pro	Gly	Ser	Phe	Thr	Leu	Leu	Leu	Arg	Asn	
10	190					195					200					205	
	cga	aag	ggc	ttc	gtc	agg	ctc	gcc	ctg	aca	cac	ggg	gca	ccc	ctg	gtg	732
	Arg	Lys	Gly	Phe	Val	Arg	Leu	Ala	Leu	Thr	His	Gly	Ala	Pro	Leu	Val	
					210					215					220		
	cca	atc	ttc	tcc	ttc	ggg	gag	aat	gac	cta	ttt	gac	cag	att	ccc	aac	780
15	Pro	Ile	Phe	Ser	Phe	Gly	Glu	Asn	Asp	Leu	Phe	Asp	Gln	Ile	Pro	Asn	
				225					230					235			
	tct	tct	ggc	tcc	tgg	tta	cgc	tat	atc	cag	aat	cgg	ttg	cag	aag	atc	828
	Ser	Ser	Gly	Ser	Trp	Leu	Arg	Tyr	Ile	Gln	Asn	Arg	Leu	Gln	Lys	Ile	
			240					245					250				
20	atg	ggc	atc	tcc	ctc	cca	ctc	ttt	cat	ggc	cgt	ggt	gtc	ttc	cag	tac	876
	Met	Gly	Ile	Ser	Leu	Pro	Leu	Phe	His	Gly	Arg	Gly	Val	Phe	Gln	Tyr	
		255					260					265					
	agc	ttt	ggt	tta	ata	ccc	tac	cgc	cgg	ccc	atc	acc	act	gtg	gtg	ggg	924
	Ser	Phe	Gly	Leu	Ile	Pro	Tyr	Arg	Arg	Pro	Ile	Thr	Thr	Val	Val	Gly	
25	270					275					280					285	
	aag	ccc	atc	gag	gta	cag	aag	acg	ctg	cat	ccc	tcg	gag	gag	gag	gtg	972
	Lys	Pro	Ile	Glu	Val	Gln	Lys	Thr	Leu	His	Pro	Ser	Glu	Glu	Glu	Val	
					290					295					300		
	aac	cag	ctg	cac	cag	cgt	tat	atc	aaa	gag	ctg	tgc	aac	ctc	ttc	gag	1020
30	Asn	Gln	Leu	His	Gln	Arg	Tyr	Ile	Lys	Glu	Leu	Cys	Asn	Leu	Phe	Glu	
				305					310					315			
	gcc	cac	aaa	ctt	aag	ttc	aac	atc	cct	gct	gac	cag	cac	ttg	gag	ttc	1068
	Ala	His	Lys	Leu	Lys	Phe	Asn	Ile	Pro	Ala	Asp	Gln	His	Leu	Glu	Phe	
			320					325					330				
35	tgc	tgaç	jecca	a ag	ggca	gggc	caa	catt	agg	gage	ccag	ca g	gagg	tgct	g		1120

	Cys					
	tgctgagaag acttc	ctgga ggtgtttgt:	gaacatatct	gcagagcctt	cccagactcc	1180
	tgcaaatcca accca	tatca ggctgtaagt	cagagcaggc	aatgcagaag	aggagaccag	1240
	accaaggggt cagct	ggggc taggacagt	g agggetgeta	gaggggctgg	gcctctcttt	1300
5	gcacatggac actgg	gcccc tctctatatt	gagtggtctg	ttaacattca	ttggtggctg	1360
	attccaaaag atgag	ageca aagetgeace	gactcgagtc	ctaggctgca	cacctcacaa	1420
	gcatctcttc tactg	cattc tgttggtcga	agcaagtcac	aacccagcag	attcaaggag	1480
	taaggaatag gatcc	ccctc tggatgggag	gagcagcaat	gtcatattac	aaaagggtgt	1540
	ggacacatgc aggga	ttett actgeegtet	ttgcaaacaa	tccaccaaaa	cttaaaaact	1600
10	aaaagcctga agcac	aagca ctctccacco	caggcacaca	caccctggaa	ttccctgtgt	1660
	gaccatggta ccacca	actgt gtgtcccgag	gateceaget	cagetttgca	tegetgeeet	1720
	atetecetet egete	teece tgttgateec	tcatgcacag	ccacagcgag	ctgtctaaaa	1780
	cacaaagctg accgc	gccat ttcctactca	gcatccttcc	atgaccctcc	attgctccta	1840
	ggatagggtt tggac	cagte tgaatecaga	ggatcaggat	ccagcaggaa	ccagaggata	1900
15	atttgaggag ggttt	aaaaa ggaaccattt	tttgaggtgt	gtgcactgtt	tccaccctga	1960
	ggcctggaag gatga	atgga agcagcagtt	cctgaaccag	gaagactcat	gtgtgggggc	2020
	cattgctggt caagg	ggcac gaacaggtct	ggtgaccctg	caagggagga	gccaggagca	2080
	agcattccca cttcac	cette etecatteag	tctgctgcca	agttccccac	tgcctgagcc	2140
	caactagaag ctggag	gggaa ggagggcctg	tggctgcagt	ccaggcatgt	aggeeteetg	2200
20	ggaaagggag aatgg	caaag acaggcagag	tggatctgga	ggggtcaacg	gaagacggaa	2260
	catgtccact tccag	geeeg agetteteag	cctgccgttt	gccactctcc	agcatctggc	2320
	ccagcetgte cateet	teate tetetteete	ccttactccg	tgctcccatc	actcggaacc	2380
	atttgcattt ctttgt	tetca getatattgt	ctcacctctg	agtttttgcc	catgatgttg	2440
	gatgccatgg aatgc	catat cctccccatt	atctccccct	tgtctggata	attcctactc	2500
2 5	atcctacaat actgat	tttta tctgtgcaaa	gaagtcttcc	ccagtgcctc	tggttgacag	2560
	gggtttcctc tggctt	tetee agaetttetg	ttcctccacc	acagccctta	gcaccctggg	2620
	gaggaggtgt tgctgt	tccag gtaaatgctg	cgccaatgcc	cctgcctcta	gtgcactccc	2680
	tccagcctac ccacaa	aacag gacctgcatc	ctgtctcaca	aataaaactg	aactcttgaa	2740
	atggtg					2746
30						
	<210> 143					
	<211> 1136					
	<212> DNA					
	<213> Homo sapier	nce				
35	<220>					

163/177

<221> CDS <222> (32)...(835)

	<40	0> 1	43														
5	att	cttc	cgg	gtgg	ggcc	cc g	ggcc	gagg	c g	atg	gcg	ccc	tgg	gcg	ctc	ctc	52
										Met	Ala	Pro	Trp	Ala	Leu	Leu	
										1			·	5			
				_		-										gga	100
	Ser	Pro	Gly	Val	Leu	Val	Arg	Thr	Gly	His	Thr	Val	Leu	Thr	Trp	Gly	
10			10					15					20				
	atc	acg	ctg	gtg	ctc	ttc	ctg	cac	gat	acc	gag	ctg	cgg	Caa	tgg	gag	148
	Ile	Thr	Leu	Val	Leu	Phe	Leu	His	Asp	Thr	Glu	Leu	Arg	Gln	Trp	Glu	
		25					30					35					
		_			_		_							_		ctg	196
15	Glu	Gln	Gly	Glu	Leu	Leu	Leu	Pro	Leu	Thr	Phe	Leu	Leu	Leu	Val	Leu	
	40					45					50					55	
	ggc	tcc	ctg	ctg	ctc	tac	ctc	gct	gtg	tca	ctc	atg	gac	cct	ggc	tac	244
	Gly	Ser	Leu	Leu	Leu	Tyr	Leu	Ala	Val	Ser	Leu	Met	Asp	Pro	Gly	Tyr	
					60					65					70		
20	gtg	aat	gtg	cag	CCC	cag	cct	cag	gag	gag	ctc	aaa	gag	gag	cag	aca	292
	Val	Asn	Val	Gln	Pro	Gln	Pro	Gln	Glu	Glu	Leu	Lys	Glu	Glu	Gln	Thr	
				75					80					85			
	gcc	atg	gtt	cct	cca	gcc	atc	cct	ctt	cgg	cgc	tgc	aga	tac	tgc	ctg	340
	Ala	Met	Val	Pro	Pro	Ala	Ile	Pro	Leu	Arg	Arg	Cys	Arg	Tyr	Cys	Leu	
25			90					95					100				
	gtg	ctg	cag	ccc	ctg	agg	gct	cgg	cac	tgc	cgt	gag	tgc	cgc	cgt	tgc	388
	Val	Leu	Gln	Pro	Leu	Arg	Ala	Arg	His	Cys	Arg	Glu	Cys	Arg	Arg	Cys	
		105					110					115					
	gtc	cgc	cgc	tac	gac	cac	cac	tgc	CCC	tgg	atg	gag	aac	tgt	gtg	gga	436
30	Val	Arg	Arg	Tyr	Asp	His	His	Cys	Pro	Trp	Met	Glu	Asn	Cys	Val	Gly	
	120					125					130					135	
	gag	cgc	aac	cac	cca	ctc	ttt	gtg	gtc	tac	ctg	gcg	ctg	cag	ctg	gtg	484
	Glu	Arg	Asn	His	Pro	Leu	Phe	Val	Val	Tyr	Leu	Ala	Leu	Gln	Leu	Val	
					140					145					150		
35	gtg	ctt	ctg	tgg	ggc	ctg	tac	ctg	gca	tgg	tca	ggc	ctc	cgg	ttc	ttc	532

	Val Leu Leu Trp Gly Leu Tyr Leu Ala Trp Ser Gly Leu Arg Phe Phe	
	155 160 165	
	cag ece tgg ggt etg tgg ttg egg tee age ggg ete etg tte gee aee	580
_	Gln Pro Trp Gly Leu Trp Leu Arg Ser Ser Gly Leu Leu Phe Ala Thr	
5	170 175 180	
	tte etg etg etg tee ete tte teg ttg gtg g	628
	Phe Leu Leu Ser Leu Phe Ser Leu Val Ala Ser Leu Leu Val	
	185 190 195	
	teg eac etc tac etg gtg gee age aac acc acc tgg gaa ttc atc	676
10	Ser His Leu Tyr Leu Val Ala Ser Asn Thr Thr Thr Trp Glu Phe Ile	
	200 205 210 215	
	tee tea eac ege ate gee tat ete ege eag ege ece age aac eec tte	724
	Ser Ser His Arg Ile Ala Tyr Leu Arg Gln Arg Pro Ser Asn Pro Phe	
_	220 225 230	
15	gac ega ggc etg acc ege aac etg gec eac tte tte tgt gga tgg ecc	772
	Asp Arg Gly Leu Thr Arg Asn Leu Ala His Phe Phe Cys Gly Trp Pro	
	235 240 245	
	tca ggg tcc tgg gag acc ctc tgg gct gag gag gaa gag ggc agc	820
	Ser Gly Ser Trp Glu Thr Leu Trp Ala Glu Glu Glu Glu Glu Gly Ser	
20	250 255 260	
	age cea get gtt tagggttget ggaggeeggg ctacegtett gtgeetga	870
	Ser Pro Ala Val	
	265	
	aaaccacggg gcctgtcccc agctggggtg agcgctcaga gggcctgggg ccctcactcc	930
25	tgcccacgcc teccagaccc cagaacggag ettcaagtca gacagatecc tgccttggtg	990
	ggcagttctg ccttccaagg aagaagggga agaaaaggac ctgtgggtgg ctcaggccca	1050
	agcagacece gggetecace ecageceege ecaggetget gecagtgeac acttttacaa	1110
	atttaatata aagcaagtcc agtctt	1136
30	<210> 144	
	<211> 619	
	<212> DNA	
	<213> Homo sapience	
	<220>	
35	<221> CDS	

165/177

<222> (13)...(333)

	<400> 144	
	cttegacteg et atg tee act aac aat atg teg gac eea egg agg eeg	48
5	Met Ser Thr Asn Asn Met Ser Asp Pro Arg Arg Pro	
	1 5 10	
	aac aaa gtg ctg agg tac aag ccc ccg ccg agc gaa tgt aac ccg gcc	96
	Asn Lys Val Leu Arg Tyr Lys Pro Pro Pro Ser Glu Cys Asn Pro Ala	
	15 20 25	
10	ttg gac gac eeg aeg eeg gac tac atg aac etg etg gge atg ate tte	144
	Leu Asp Asp Pro Thr Pro Asp Tyr Met Asn Leu Leu Gly Met Ile Phe	
	30 35 40	
	age atg tgc ggc etc atg ett aag etg aag tgg tgt get tgg gtc get	192
	Ser Met Cys Gly Leu Met Leu Lys Leu Lys Trp Cys Ala Trp Val Ala	
15	45 50 55 60	
	gte tac tgc tec tte ate age ttt gec aac tet egg age teg gag gae	240
	Val Tyr Cys Ser Phe Ile Ser Phe Ala Asn Ser Arg Ser Ser Glu Asp	
	65 70 75	
	acg aag caa atg atg agt agc ttc atg ctg tcc atc tct gcc gtg gtg	288
20	Thr Lys Gln Met Met Ser Ser Phe Met Leu Ser Ile Ser Ala Val Val	
	80 85 90	
	atg tee tat etg cag aat eet cag eee atg aeg eee eea tgg	340
	Met Ser Tyr Leu Gln Asn Pro Gln Pro Met Thr Pro Pro Trp	•
0.5	95 100 105	
25	tgataccage ctagaagggt cacattttgg accetgteta tecactagge etgggetttg	390
	gctgctaaac ctgctgcctt cagctgccat cctggacttc cctgaatgag gccgtctcgg	450
	tgcccccage tggatagagg gaacetggcc ctttcctagg gaacacccta ggcttacccc	510
	teetgeetee etteeeetge etgetgetgg gggagatget gteeatgttt etaggggtat	570
30	teatttgett tetegttgaa acetgttgtt aataaagttt tteaeteag	619
	<210> 145	
	<211> 864	
	<212> DNA	
	<213> Homo sapience	
35	<220>	

166/177

<221> CDS <222> (111)...(785) <400> 145 5 aggtgggtgc caggccctgg ccgtggcgaa agagccggcg gagccggaga cccgctcccq 60 gagacgccgc ctcgcgatcc ccgcgcgggc gggaccgggc ggccggcatc atg acc 116 Met Thr 1 ctg ttt cac ttc ggg aac tgc ttc gct ctt gcc tac ttc ccc tac ttc 164 10 Leu Phe His Phe Gly Asn Cys Phe Ala Leu Ala Tyr Phe Pro Tyr Phe 5 10 ate ace tae aag tge age gge etg tee gag tae aae gee tte tgg aaa 212 Ile Thr Tyr Lys Cys Ser Gly Leu Ser Glu Tyr Asn Ala Phe Trp Lys 20 25 15 tge gte cag get gga gte ace tac ete ttt gte caa ete tge aag atg 260 Cys Val Gln Ala Gly Val Thr Tyr Leu Phe Val Gln Leu Cys Lys Met 35 40 ctg ttc ttg gcc act ttc ttt ccc acc tgg gaa ggc ggc atc tat gac 308 Leu Phe Leu Ala Thr Phe Phe Pro Thr Trp Glu Gly Gly Ile Tyr Asp 20 55 60 ttc att ggg gag ttc atg aag gcc agc gtg gat gtg gca gac ctg ata 356 Phe Ile Gly Glu Phe Met Lys Ala Ser Val Asp Val Ala Asp Leu Ile 70 ggt cta aac ctt gtc atg tcc cgg aat gcc ggc aag gga gag tac aag 404 25 Gly Leu Asn Leu Val Met Ser Arg Asn Ala Gly Lys Gly Glu Tyr Lys 90 ate atg gtt get gee etg gge tgg gee act get gag ett att atg tee 452 Ile Met Val Ala Ala Leu Gly Trp Ala Thr Ala Glu Leu Ile Met Ser 100 105 110 30 cgc tgc att ccc cta tgg gtc gga gcc cgg ggc att gag ttt gac tgg 500 Arg Cys Ile Pro Leu Trp Val Gly Ala Arg Gly Ile Glu Phe Asp Trp 115 120 130 aag tac atc caq atg agc ata gac tcc aac atc agt ctg gtc cat tac 548 Lys Tyr Ile Gln Met Ser Ile Asp Ser Asn Ile Ser Leu Val His Tyr

140

135

145

35

	ate gte geg tet get cag gte tgg atg ata aca ege tat gat etg tae	296
	Ile Val Ala Ser Ala Gln Val Trp Met Ile Thr Arg Tyr Asp Leu Tyr	
	150 155 160	
	cac acc ttc cgg cca gct gtc ctc ctg ctg atg ttc ctc agt gtc tac	644
5	His Thr Phe Arg Pro Ala Val Leu Leu Met Phe Leu Ser Val Tyr	
	165 170 175	
	aag gee ttt gtt atg gag ace tte gte cae ete tge teg etg gge agt	692
	Lys Ala Phe Val Met Glu Thr Phe Val His Leu Cys Ser Leu Gly Ser	
	180 185 190	
10	tgg gca gct cta ctg gcc cga gca gtg gta acg ggg ctg ctg gcc ctc	740
	Trp Ala Ala Leu Leu Ala Arg Ala Val Val Thr Gly Leu Leu Ala Leu	
	195 200 205 210	
	age act ttg gee etg tat gte gee gtt gte aat gtg cae tee taggettg	790
	Ser Thr Leu Ala Leu Tyr Val Ala Val Val Asn Val His Ser	
15	215 220	
	gtgtctcaga cattgatgta cettttccct gcctcgctcc aggttttagt gaagtaaaca	850
	gtatttggaa agtt	864
	<210> 146	
20	<211> 1527	
	<212> DNA	
	<213> Homo sapience	
	<220>	
	<221> CDS	
25	<222> (25)(801)	
	<400> 146	
	gcagtggccg ttacggccga aaag atg gcg gtc ttg gca cct cta att gct	51
	Met Ala Val Leu Ala Pro Leu Ile Ala	
30	1 5	
	ctc gtg tat tcg gtg ccg cga ctt tca cga tgg ctc gcc caa cct tac	99
	Leu Val Tyr Ser Val Pro Arg Leu Ser Arg Trp Leu Ala Gln Pro Tyr	
	10 15 20 25	
	tac ctt ctg tcg gcc ctg ctc tct gct gcc ttc cta ctc gtg agg aaa	147
35	Tyr Leu Leu Ser Ala Leu Leu Ser Ala Ala Phe Leu Leu Val Arg Lys	

					30					35					40		
	ctg	ccg	ccg	ctc	tgc	cac	ggt	ctg	ccc	acc	caa	cgc	gaa	gac	ggt	aac	195
	Leu	Pro	Pro	Leu	Cys	His	Gly	Leu	Pro	Thr	Gln	Arg	Glu	Asp	Gly	Asn	
				45				•	50					55			
5	ccg	tgt	gac	ttt	gac	tgg	aga	gaa	gtg	gag	atc	ctg	atg	ttt	ctc	agt	243
	Pro	Cys	Asp	Phe	Asp	Trp	Arg	Glu	Val	Glu	Ile	Leu	Met	Phe	Leu	Ser	
			60					65					70				
	gcc	att	gtg	atg	atg	aag	aac	cgc	aga	tcc	atg	ttc	ctg	atg	acg	tgc	291
	Ala	Ile	Val	Met	Met	Lys	Asn	Arg	Arg	Ser	Met	Phe	Leu	Met	Thr	Cys	
10		75					80					85					
	aaa	ccc	ccc	cta	tat	atg	ggc	cct	gag	tat	atc	aag	tac	ttc	aat	gat	339
	Lys	Pro	Pro	Leu	Tyr	Met	Gly	Pro	Glu	Tyr	Ile	Lys	Tyr	Phe	Asn	Asp	
	90					95					100					105	
	aaa	acc	att	gat	gag	gaa	cta	gaa	cgg	gac	aag	agg	gtc	act	tgg	att	387
15	Lys	Thr	Ile	Asp	Glu	Glu	Leu	Glu	Arg	Asp	Lys	Arg	Val	Thr	Trp	Ile	
					110					115					120		
	gtg	gag	ttc	ttt	gcc	aat	tgg	tct	aat	gac	tgc	caa	tca	ttt	gcc	cct	435
	Val	Glu	Phe	Phe	Ala	Asn	Trp	Ser	Asn	Asp	Cys	Gln	Ser	Phe	Ala	Pro	
				125					130					135			
20	atc	tat	gct	gac	ctc	tcc	ctt	aaa	tac	aac	tgt	aca	ggg	cta	aat	ttt	483
	Ile	Tyr	Ala	Asp	Leu	Ser	Leu	Lys	Tyr	Asn	Cys	Thr	Gly	Leu	Asn	Phe	
			140					145					150				
•	999	aag	gtg	gat	gtt	gga	cgc	tat	act	gat	gtt	agt	acg	cgg	tac	aaa	531
	Gly	Lys	Val	Asp	Val	Gly	Arg	Tyr	Thr	Asp	Val	Ser	Thr	Arg	Tyr	Lys	
25		155					160					165					
	gtg	agc	aca	tca	ccc	ctc	acc	aag	caa	ctc	cct	acc	ctg	atc	ctg	ttc	579
	Val	Ser	Thr	Ser	Pro	Leu	Thr	Lys	Gln	Leu	Pro	Thr	Leu	Ile	Leu	Phe	
	170					175					180					185	
	caa	ggt	ggc	aag	gag	gca	atg	cgg	cgg	cca	cag	att	gac	aag	aaa	gga	627
30	Gln	Gly	Gly	Lys	Glu	Ala	Met	Arg	Arg	Pro	Gln	Ile	Asp	Lys	Lys	Gly	
					190					195					200		
	cgg	gct	gtc	tca	tgg	acc	ttc	tct	gag	gag	aat	gtg	atc	cga	gaa	ttt	675
	Arg	Ala	Val	Ser	Trp	Thr	Phe	Ser	Glu	Glu	Asn	Val	Ile	Arg	Glu	Phe	
				205					210					215			
35	aac	tta	aat	gag	cta	tac	cag	cgg	gcc	aag	aaa	cta	tca	aag	gct	gga	723

	Asn Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly	
	220 225 230	
	gae aat ate eet gag gag eag eet gtg get tea ace eee ace aca gtg	771
	Asp Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val	
5	235 240 245	
	tca gat ggg gaa aac aag aag gat aaa taagateete ac	810
	Ser Asp Gly Glu Asn Lys Lys Asp Lys	
	250 255	
	tttggeagtg etteetetee tgteaattee aggetettte cataaccaca agcetgagge	870
10	tgeageettt tatttatgtt tteeetttgg etgtgaetgg gtgggggage atgeagette	930
	tgattttaaa gaggcatcta gggaattgtc aggcacccta caggaaggcc tgccatgctg	990
	tggccaactg tttcactgga gcaagaaaga gatctcatag gacggagggg gaaatggttt	1050
	ccctccaagc ttgggtcagt gtgttaactg cttatcagct attcagacat ctccatggtt	1110
	totocatgaa actotgtggt ttoatcatto ottottagtt gacotgcaca gottggttag	1170
15	acctagattt aaccctaagg taagatgctg gggtatagaa cgctaagaat tttcccccaa	1230
	ggactettge tteettaage cettetgget tegtttatgg tetteattaa aagtataage	1290
	ctaactttgt cgctagtcct aaggagaaac ctttaaccac aaagttttta tcattgaaga	1350
	caatattgaa caacccccta ttttgtgggg attgagaagg ggtgaataga ggcttgagac	1410
	tttcctttgt gtggtaggac ttggaggaga aatcccctgg actttcacta accctctgac	1470
20	atactececa cacceagitg atggetttee gtaataaaaa gattgggatt teetttt	1527
	<210> 147	
	<211> 659	•
	<212> DNA	
25	<213> Homo sapience	
	<220>	
	<221> CDS	•
	<222> (138)(470)	
30	<400> 147	
50		60
	agtetteega geaagatgge geegegggea tttetteeae tgeeegtetg agggaaeget	
	aagtagtgtg teeggegeeg tgtteeaget eegegttgtt eegegagaaa gegagaggee	120
	gageceggge tggtgeg atg gee geg gtg gtg gee aag egg gaa ggg eeg	170
25	Met Ala Ala Val Val Ala Lys Arg Glu Gly Pro	
35	1 5 10	

	ccg	ttc	atc	agc	gag	gcg	gcc	gtg	cgg	ggc	aac	gcc	gcc	gtc	ctg	gat	218
	Pro	Phe	Ile	Ser	Glu	Ala	Ala	Val	Arg	Gly	Asn	Ala	Ala	Val	Leu	Asp	
				15					20					25			
	tat	tgc	cgg	acc	tcg	gtg	tca	gcg	ctg	tcg	ggg	gcc	acg	gcc	ggc	atc	266
5	Tyr	Cys	Arg	Thr	Ser	Val	Ser	Ala	Leu	Ser	Gly	Ala	Thr	Ala	Gly	Ile	
			30					35					40				
	ctc	ggc	ctc	acc	ggc	ctc	tac	ggc	ttc	atc	ttc	tac	ctg	ctc	gcc	tee	314
	Leu	Gly	Leu	Thr	Gly	Leu	Tyr	Gly	Phe	Ile	Phe	Tyr	Leu	Leu	Ala	Ser	
		45					50					55					
10	gtc	ctg	ctc	tcc	ctg	ctc	ctc	att	ctc	aag	gcg	gga	agg	agg	tgg	aac	362
	Val	Leu	Leu	Ser	Leu	Leu	Leu	Ile	Leu	Lys	Ala	Gly	Arg	Arg	Trp	Asn	
	60					65					70					75	
	aaa	tat	ttc	aaa	tca	cgg	aga	cct	ctc	ttt	aca	gga	ggc	ctc	atc	aaa	410
	Lys	Tyr	Phe	Lys	Ser	Arg	Arg	Pro	Leu	Phe	Thr	Gly	Gly	Leu	Ile	Gly	
15					80					85					90		
	ggc	ctc	ttc	acc	tac	gtc	ctg	ttc	tgg	acg	ttc	ctc	tac	ggc	atg	gtg	458
	Gly	Leu	Phe	Thr	Tyr	Val	Leu	Phe	Trp	Thr	Phe	Leu	Tyr	Gly	Met	Val	
				95					100					105			
	cac	gtc	tac	tgaa	atgg	igg g	lacad	19999	ja ct	tttt	taaa	aaa	ì				500
20	His	Val	Tyr														
			110														
							-									taagt	560
	ggtt	gaat	tc g	getge	ttgt	t ct	gtaa	cgtt	ata	aata	att	tata	itctg	aa g	jacgo	agage	620
~=	ctgt	aata	itt c	ttca	igatt	a aa	tgaa	ıgcgt	gag	acac	tt						659
25																	
	<210		-														
	<211																
	<212																
20	<213		omo s	apie	nce												
30	<220		_						-								
	<221																
	<222	> (6	8)	. (34	3)												
	<400	> 14	8														
35	agag	ggag	at a	caga	aacc	g ac	aggg	gcca	ggc	gccc	ggt	ggct	ccga	ag c	gg gg	aagtg	60

	ggacaag atg gtt tac atc tcg aac gga caa gtg ttg gac agc cgg agt	109
	Met Val Tyr Ile Ser Asn Gly Gln Val Leu Asp Ser Arg Ser	
	1 5 10	
	cag tot coa tgg aga tta tot ttg ata aca gat tto tto tgg gga ata	157
5	Gln Ser Pro Trp Arg Leu Ser Leu Ile Thr Asp Phe Phe Trp Gly Ile	
	15 20 25 30	
	got gag ttt gtg gtt ttg ttt tto aaa act ctg ctt cag caa gat gtg	205
	Ala Glu Phe Val Val Leu Phe Phe Lys Thr Leu Leu Gln Gln Asp Val	
	35 40 45	
10	aaa aaa aga aga agc tat gga aac tca tct gat tcc aga tat gat gat	253
	Lys Lys Arg Arg Ser Tyr Gly Asn Ser Ser Asp Ser Arg Tyr Asp Asp	
	50 55 60	
	gga aga ggg cca cca gga aac cct ccc cga aga atg ggt aga atc aat	301
	Gly Arg Gly Pro Pro Gly Asn Pro Pro Arg Arg Met Gly Arg Ile Asn	
15	65 70 75	
	cat ctg cgt ggc cct agt ccc cct cca atg gct ggt gga tgaggaaggt	350
	His Leu Arg Gly Pro Ser Pro Pro Pro Met Ala Gly Gly	
	80 85 90	410
20	aaatgtetge tetaagaage agacaacegg acatgegeat teatageaga aggaaaceat	410
20	caagaagtgg aaggetgace atgatgagea gtagatgaat gtgtatgtet aaacaaggac	470
	tgctctgtgt cctcacagat gaatgaggte atgctgggaa ttccctctgc agggaactgg	530 590
	cotgactgac atgeagttec ataaatgeag atgtttgtet cattacettt ttgtatagtt	650
	tattaaagta ttaatatagt tttaataagt aaatattttt aggttgcaga atggactcct catctttata ttcacgaaaa agcaatctga agaaaacaaa taaaagcctg tgtatttagc	710
25	caterrata recatgada ageaacerga agaaaacaaa raaaageerg rytateeage	710
20	<210> 149	
	<211> 2182	
	<212> DNA	
	<213> Homo sapience	
30	<220>	
	<221> CDS	
	<222> (56)(1090)	
	<400> 149	
35	geactteage tteccetece eeggegeect etggggetee gageeeggeg ggace	58

Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro Leu Ser 1	tcg 103
aag age ctt ctg ctg gte cee agt gee ctt ctc ctc ctg cte gee cte Lys Ser Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu Ala Leu 20 25 30 ctc ctg cct cac tge cag aag ctc ttt gtg tat gac ctt cac gca gte Leu Leu Pro His Cys Gln Lys Leu Phe Val Tyr Asp Leu His Ala Val 35 40 45 10 aag aac gac ttc cag att tgg agg ttg ata tgt gga aga ata at	Ser
1	
20 25 30 30 30 30 30 30 30 3	ctc 151
Ctc ctg cct cac tgc cag aag ctc ttt gtg tat gac ctt cac gca gtg CLeu Leu Leu Pro His Cys Gln Lys Leu Phe Val Tyr Asp Leu His Ala Val 35	Leu
Leu Leu Pro His Cys Gln Lys Leu Phe Val Tyr Asp Leu His Ala Val 35 40 45 10 aag aac gac ttc cag att tgg agg ttg ata tgt gga aga ata at	
10	-
10	Val
Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile Ile Cys 50	
S	- ,
ctt gat ttg aaa gat act ttc tgc agt agt ctg ctt att tat aat ttt Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr Asn Phe 15 65 70 75 80 agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc ttt ttg Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser Phe Leu 85 90 95 ctg ggt tcc tgg gtt ttg tca gcc tta ttt gac ttt ctc ctc att gaa 20 Leu Gly Ser Trp Val Leu Ser Ala Leu Phe Asp Phe Leu Leu Ile Glu 100 105 110 gct atg cag tat ttc ttt ggc atc act gca gct agt aat ttg cct tct Ala Met Gln Tyr Phe Phe Gly Ile Thr Ala Ala Ser Asn Leu Pro Ser 115 120 125 25 gga ttc ctg gca cct gtg ttt gct ctg ttt gt cca cca ttt tac tgc tcc Gly Phe Leu Ala Pro Val Phe Ala Leu Phe Val Pro Phe Tyr Cys Ser 130 135 140 ata cca aga gtc caa gtg gca caa att ctg ggt ccg ttg tcc atc aca Ile Pro Arg Val Gln Val Ala Gln Ile Leu Gly Pro Leu Ser Ile Thr 30 145 150 155 160 aac aag aca ttg att tat ata ttg gga ctg cag ctt ttc acc tct ggt Asn Lys Thr Leu Ile Tyr Ile Leu Gly Leu Gln Leu Phe Thr Ser Gly 165 170 175 tcc tac atc tgg att gta gca ata agt gga ctt atg tcc ggt ctg tcg tcg ttg	Cys
Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr Asn Phe 15 65 70 70 75 75 80 agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc ttt ttg Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser Phe Leu 85 90 95 95 ctg ggt tcc tgg gtt ttg tca gcc tta ttt gac ttt ctc ctc att gga 20 Leu Gly Ser Trp Val Leu Ser Ala Leu Phe Asp Phe Leu Leu Ile Glu 100 105 110 110 110 110 110 110 110 110	
15 65 70 75 75 80 agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc ttt ttg Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser Phe Leu 85 90 95 ctg ggt tcc tgg gtt ttg tca gcc tta ttt gac ttt ctc ctc att gaa 20 Leu Gly Ser Trp Val Leu Ser Ala Leu Phe Asp Phe Leu Leu Ile Glu 100 105 110 gct atg cag tat ttc ttt ggc atc act gca gct agt aat ttg cct tct Ala Met Gln Tyr Phe Phe Gly Ile Thr Ala Ala Ser Asn Leu Pro Ser 115 120 125 25 gga ttc ctg gca cct gtg ttt gct ctg ttt gta cca ttt tac tgc tcc Gly Phe Leu Ala Pro Val Phe Ala Leu Phe Val Pro Phe Tyr Cys Ser 130 135 140 ata cca aga gtc caa gtg gca caa att ctg ggt cg ttg tcc atc aca Ile Pro Arg Val Gln Val Ala Gln Ile Leu Gly Pro Leu Ser Ile Thr 30 145 150 155 160 aac aag aca ttg att tat ata ttg gga ctg cag ctt ttc acc tct ggt Asn Lys Thr Leu Ile Tyr Ile Leu Gly Leu Gln Leu Phe Thr Ser Gly 165 170 175 tcc tac atc tgg att gta gcc ata agt gga ctt atg tcc gtg ctg tcg ttg	
agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc ttt ttg Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser Phe Leu 85	
Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser Phe Leu 85 90 95 95 ctg ggt tcc tgg gtt ttg tca gcc tta ttt gac ttt ctc ctc att gaa 20 Leu Gly Ser Trp Val Leu Ser Ala Leu Phe Asp Phe Leu Leu Ile Glu 100 105 110 gct atg cag tat ttc ttt ggc atc acc gca gct agt aat ttg cct tct Ala Met Gln Tyr Phe Phe Gly Ile Thr Ala Ala Ser Asn Leu Pro Ser 115 120 125 25 gga ttc ctg gca cct gtg ttt gct ctg ttt gta cca ttt tac tgc tcc Gly Phe Leu Ala Pro Val Phe Ala Leu Phe Val Pro Phe Tyr Cys Ser 130 135	
20 Leu Gly Ser Trp Val Leu Ser Ala Leu Phe Asp Phe Leu Leu Ile Glu gct atg cag tat ttc ttt ggc atc act gca gct agt agt aat ttg cct tct Ala Met Gln Tyr Phe Phe Phe Gly Ile Thr Ala Ala Ser Asn Leu Pro Ser 115 120 125 25 gga ttc ctg gca cct gtg ttt gct ctg ttt gta cca ttt tac tgc tcc Gly Phe Leu Ala Pro Val Phe Ala Leu Phe Val Pro Phe Tyr Cys Ser 130 135 140 ata cca aga gtc caa gtg gca caa att ctg ggt ccg ttg tcc atc Ile Pro Arg Val Gln Val Ala Gln Ile Leu Gly Pro Leu Ser Ile Thr 30 145 150 150 155 160 Asn Lys Thr Leu Ile Tyr Ile Leu Gly Leu Gln Leu Phe Thr Ser Gly Leu tac tac atc tg gat gt gca at agt gga ct atg tt atg atc atg ggt ccg ttg tcc acc tt gt gt tcc acc acc acc acc acc acc acc acc ac	_
20 Leu Gly Ser Trp Val Leu Ser Ala Leu Phe Asp Phe Leu Leu Ile Glu 100 105 110 get atg cag tat ttc ttt ggc atc act gca gct agt aat ttg cct tct Ala Met Gln Tyr Phe Phe Gly Ile Thr Ala Ala Ser Asn Leu Pro Ser 115 120 125 25 gga ttc ctg gca cct gtg ttt gct ctg ttt gta cca ttt tac tgc tcc Gly Phe Leu Ala Pro Val Phe Ala Leu Phe Val Pro Phe Tyr Cys Ser 130 135 140 ata cca aga gtc caa gtg gca caa att ctg ggt ccg ttg tcc atc aca Ile Pro Arg Val Gln Val Ala Gln Ile Leu Gly Pro Leu Ser Ile Thr 30 145 150 5 155 160 aac aag aca ttg att tat ata ttg gga ctg cag ctt ttc acc tct ggt Asn Lys Thr Leu Ile Tyr Ile Leu Gly Leu Gln Leu Phe Thr Ser Gly tcc tac atc atc ggt ctg att gtc gcc ata agt gga ctt atg tcc ggt ctg tcg ttg tcc	Leu
20 Leu Gly Ser Trp Val Leu Ser Ala Leu Phe Asp Phe Leu Leu Ile Glu 100 105 110 gct atg cag tat ttc ttt ggc atc act gca gct agt aat ttg cct tct Ala Met Gln Tyr Phe Phe Gly Ile Thr Ala Ala Ser Asn Leu Pro Ser 115 120 125 25 gga ttc ctg gca cct gtg ttt gct ctg ttt gta cca ttt tac tgc tcc Gly Phe Leu Ala Pro Val Phe Ala Leu Phe Val Pro Phe Tyr Cys Ser 130 135 140 ata cca aga gtc caa gtg gca caa att ctg ggt ccg ttg tcc atc aca Ile Pro Arg Val Gln Val Ala Gln Ile Leu Gly Pro Leu Ser Ile Thr 30 145 150 155 166 aac aag aca ttg att tat ata ttg gga ctg cag ctt ttc acc tct ggt Asn Lys Thr Leu Ile Tyr Ile Leu Gly Leu Gln Leu Phe Thr Ser Gly 165 170 170 175 tcc tac atc tgg ctg ctg ttg tcc ggt ctg tcc	201
100 105 310	_
get atg cag tat ttc ttt ggc atc act gca gct agt aat ttg cct tct Ala Met Gln Tyr Phe Phe Gly Ile Thr Ala Ala Ser Asn Leu Pro Ser 115	GIU
Ala Met Gln Tyr Phe Phe Gly Ile Thr Ala Ala Ser Asn Leu Pro Ser 115 120 125 125 25 gga ttc ctg gca cct gtg ttt gct ctg ttt gta cca ttt tac tgc tcc Gly Phe Leu Ala Pro Val Phe Ala Leu Phe Val Pro Phe Tyr Cys Ser 130 135 140 ata cca aga gtc caa gtg gca caa att ctg ggt ccg ttg tcc atc aca Ile Pro Arg Val Gln Val Ala Gln Ile Leu Gly Pro Leu Ser Ile Thr 30 145 150 155 160 aac aag aca ttg att tat ata ttg gga ctg cag ctt ttc acc tct ggt Asn Lys Thr Leu Ile Tyr Ile Leu Gly Leu Gln Leu Phe Thr Ser Gly 165 170 175 tcc tac atc tgg att gta gcc ata agt gga ctt atg tcc ggt ctg tgc	tct 439
25 gga ttc ctg gca cct gtg ttt gct ctg ttt gta cca ttt tac tgc tcc Gly Phe Leu Ala Pro Val Phe Ala Leu Phe Val Pro Phe Tyr Cys Ser 130 135 140 ata cca aga gtc caa gtg gca caa att ctg ggt ccg ttg tcc atc aca Ile Pro Arg Val Gln Val Ala Gln Ile Leu Gly Pro Leu Ser Ile Thr 30 145 150 155 160 aac aag aca ttg att tat ata ttg gga ctg cag ctt ttc acc tct ggt Asn Lys Thr Leu Ile Tyr Ile Leu Gly Leu Gln Leu Phe Thr Ser Gly tcc tac atc tgg att gta gcc ata agt gga ctt atg tcc ggt ctg tgc	
gga ttc ctg gca cct gtg ttt gct ctg ttt gta cca ttt tac tgc tcc Gly Phe Leu Ala Pro Val Phe Ala Leu Phe Val Pro Phe Tyr Cys Ser 130 135 140 ata cca aga gtc caa gtg gca caa att ctg ggt ccg ttg tcc atc aca Ile Pro Arg Val Gln Val Ala Gln Ile Leu Gly Pro Leu Ser Ile Thr 30 145 150 155 160 aac aag aca ttg att tat ata ttg gga ctg cag ctt ttc acc tct ggt Asn Lys Thr Leu Ile Tyr Ile Leu Gly Leu Gln Leu Phe Thr Ser Gly 165 170 175 tcc tac atc tgg att gta gcc ata agt gga ctt atg tcc ggt ctg tgc	001
Gly Phe Leu Ala Pro Val Phe Ala Leu Phe Val Pro Phe Tyr Cys Ser 130	tcc 487
130	
ata cca aga gtc caa gtg gca caa att ctg ggt ccg ttg tcc atc aca Ile Pro Arg Val Gln Val Ala Gln Ile Leu Gly Pro Leu Ser Ile Thr 150 155 155 160 aac aag aca ttg att tat ata ttg gga ctg cag ctt ttc acc tct ggt Asn Lys Thr Leu Ile Tyr Ile Leu Gly Leu Gln Leu Phe Thr Ser Gly 165 170 170 175 175 tcc tac atc tgg att gta gcc ata agt gga ctt atg tcc ggt ctg tgc	
Ile Pro Arg Val Gln Val Ala Gln Ile Leu Gly Pro Leu Ser Ile Thr 10 145 150 150 155 160 aac aag aca ttg att tat ata ttg gga ctg cag ctt ttc acc tct ggt Asn Lys Thr Leu Ile Tyr Ile Leu Gly Leu Gln Leu Phe Thr Ser Gly 165 170 170 175 tcc tac atc tgg att gta gcc ata agt gga ctt atg tcc ggt ctg tgc	aca 535
150 155 160 aac aag aca ttg att tat ata ttg gga ctg cag ctt ttc acc tct ggt Asn Lys Thr Leu 11e Tyr 11e Leu Gly Leu Gln Leu Phe Thr Ser Gly 165 170 170 175 tcc tac atc tgg att gta gcc ata agt gga ctt atg tcc ggt ctg tgc	
Asn Lys Thr Leu Ile Tyr Ile Leu Gly Leu Gln Leu Phe Thr Ser Gly 165 170 175 tcc tac atc tgg att gta gcc ata agt gga ctt atg tcc ggt ctg tgc	
Asn Lys Thr Leu Ile Tyr Ile Leu Gly Leu Gln Leu Phe Thr Ser Gly 165 170 175 tcc tac atc tgg att gta gcc ata agt gga ctt atg tcc ggt ctg tgc	ggt 583
165 170 175 tee tae ate tgg att gta gee ata agt gga ett atg tee ggt etg tge	Gly
	-
	tgc 631
35 Ser Tyr Ile Trp Ile Val Ala Ile Ser Gly Leu Met Ser Gly Leu Cys	-

				180					185					190			
	tac	gac	agc	aaa	atg	ttc	cag	gtg	cat	cag	gtg	ctc	tgc	atc	ccc	agc	679
	Tyr	Asp	Ser	Lys	Met	Phe	Gln	Val	His	Gln	Val	Leu	Суз	Ile	Pro	Ser	
			195					200					205				
5	tgg	atg	gca	aaa	ttc	ttt	tct	tgg	aca	ctt	gaa	ccc	atc	ttc	tct	tct	727
	Trp	Met	Ala	Lys	Phe	Phe	Ser	Trp	Thr	Leu	Glu	Pro	Ile	Phe	Ser	Ser	
		210					215					220					
	tca	gaa	CCC	acc	agc	gaa	gcc	aga	att	9 99	atg	gga	gcc	acg	ctg	gac	775
	Ser	Glu	Pro	Thr	Ser	Glu	Ala	Arg	Ile	Gly	Met	Gly	Ala	Thr	Leu	Asp	
10	225					230					235					240	
	atc	cag	aga	cag	cag	aga	atg	gag	ctg	ctg	gac	cgg	cag	ctg	atg	ttc	823
	Ile	Gln	Arg	Gln	Gln	Arg	Met	Glu	Leu	Leu	Asp	Arg	Gln	Leu	Met	Phe	
					245					250					255		
	tet	cag	ttt	gca	caa	99 9	agg	cga	cag	aga	cag	cag	cag	gga	gga	atg	871
15	Ser	Gln	Phe	Ala	Gln	Gly	Arg	Arg	Gln	Arg	Gln	Gln	Gln	Gly	Gly	Met	
				260					265					270			
	atc	aat	tgg	aat	cgt	ctt	ttt	cct	cct	tta	cgt	cag	cga	caa	aac	gta	919
	Ile	Asn	Trp	Asn	Arg	Leu	Phe	Pro	Pro	Leu	Arg	Gln	Arg	Gln	Asn	Val	
			275					280					285				
20			_				_		-						cta		967
	Asn	Tyr	Gln	Gly	Gly	Arg	Gln	Ser	Glu	Pro	Ala	Ala	Pro	Pro	Leu	Glu	
		290					295					300					•
	_			-	_	_	_								tcc	-	1015
	Val	Ser	Glu	Glu	Gln	Val	Ala	Arg	Leu	Met	Glu	Met	Gly	Phe	Ser	Arg	
25	305					310					315					320	
		-	-	•	-	-	_	-	-				_		aat	_	1063
	Gly	Asp	Ala	Leu	Glu	Ala	Leu	Arg	Ala	Ser	Asn	Asn	Asp	Leu	Asn	Val	
					325					330					335		
	gcc	acc	aac	ttc	ctg	ctg	cag	cac	tgat	agto	cc a	ggcc	aaca	ic to	ıa		1110
30	Ala	Thr	Asn	Phe	Leu	Leu	Gln	His									
				340													
	gaco	ggac	cg g	gcago	cgag	t ga	cagt	gcgt	ggt	cccc	acc	atca	gato	ag c	ccgg	ggacc	1170
	gago	atct	ct g	gtgc	tgat	g tt	cttg	tggg	aag	aggg	agg	ttcc	accg	ca c	ccct	gccct	1230
	caac	cgca	ag a	ctgt	tgcc	g tt	ttag	tgtg	gag	ataa	gtt	tgcc	atta	ca t	tage	atgta	1290
35	tttt	ctat	ct a	tatt	tttt	a tt	gggc	attt	tcc	ctag	gtt	ggag	agtc	ag c	actc	gtttt	1350

	gaatgtgttt aaaatgcatt aaaatggaag atttctgcag gcagttgaat ggcactccag	1410
	atggggaatt gctgtaaccc tcttactgta acatgtcatc tcctgcgtcg tgatggggag	1470
	agggtaatgt tacttcacaa aggacatgtc agateettet teatggactt ttttagttac	1530
	tgttttttct ctcaaacttg ttttcgaatc teetgggagt gagggagaaa cagggagetg	1590
5	aatcetecce caagetgtte caggecagag gastetgeag tacettetes tacatetagt	1650
	aacaaagaat ggtgataacc atgcactggt tcaaggttet ggagttetee atgaaacttg	1710
	ggttaatttt geteagagta teeggagtta geeactagge tgegggtgaa atgggatgga	1770
	gtagaacaac agcaggette etggageeac atgggetgae tagggeacte tgtggetgge	1830
	ctggcacggg ctcagcccag gaagaggaga aacgatccct tgcctgcccc tccctgtggc	1890
10	agggctaact geetggeeet cetggetege agecagecag ecceetggea geaggttete	1950
	ctcagggctt gggtcttcaa cctgtggcga caggaggcag ggcagactgt ggaggacagg	2010
	atgcaggtca gggagaggga aggcaggggt ggaccgccat gagcatgaaa agacccgaag	2070
	caagttgact cttgcaatgt gcaactgtta tgttctgcaa aatgagcaac gatgtatcaa	2130
	attgatgcaa atttagatgt tgatacttac aataaagttt ttaatgtgtt tt	2182
15		
	<210> 150	
	<211> 2773	
	<212> DNA	
	<213> Homo sapience	
20	<220>	
	<221> CDS	
	<222> (211)(1497)	
	<400> 150	
25	gtageggaga agaetggage teegaggage tgeatetgeg geaacetgtg tgetgaeget	60
	acgtgcctcc tggctccgac gtagctcgca gctccccagt ctcactccat tccttcccca	120
	cctggcgcgc acctgctcaa gaccagggtc ctgccaagcg ctaggagggc gcgtgccagg	180
	ggegetaggg aactgeggag egegegee atg ggg eeg eet ggg gee	231
00	Met Gly Pro Pro Gly Ala	
30	1 5	070
	ggg gte tee tge ege ggt gge tge gge ttt tee aga ttg etg gea tgg	279
	Gly Val Ser Cys Arg Gly Gly Cys Gly Phe Ser Arg Leu Ala Trp	
	10 15 20	205
0.5	tge tte etg etg gee etg agt eeg eag gea eee ggt tee egg ggg get	327
35	Cys Phe Leu Leu Ala Leu Ser Pro Gln Ala Pro Gly Ser Arg Gly Ala	

		25					30					35					
	gaa	gca	gtg	tgg	acc	gcg	tac	ctc	aac	gtg	tcc	tgg	cgg	gtt	ccg	cac	375
	Glu	Ala	Val	Trp	Thr	Ala	Tyr	Leu	Asn	Val	Ser	Trp	Arg	Val	Pro	His	
	40					45					50					55	
5	acg	gga	gtg	aac	cgt	acg	gtg	tgg	gag	ctg	agc	gag	gag	ggc	gtg	tac	423
	Thr	Gly	Val	Asn	Arg	Thr	Val	Trp	Glu	Leu	Ser	Glu	Glu	Gly	Val	Tyr	
		•			60					65					70		
	ggc	cag	gac	tcg	ccg	ctg	gag	cct	gtg	gct	ggg	gtc	ctg	gta	ccg	CCC	471
	Gly	Gln	Asp	Ser	Pro	Leu	Glu	Pro	Val	Ala	Gly	Val	Leu	Val	Pro	Pro	
10				75					80					85			
	gac	ggg	ccc	ggg	gcg	ctt	aac	gcc	tgt	aac	ccg	cac	acg	aat	ttc	acg	519
	Asp	Gly	Pro	Gly	Ala	Leu	Asn	Ala	Cys	Asn	Pro	His	Thr	Asn	Phe	Thr	
			90					95					100				
	gtg	ccc	acg	gtt	tgg	gga	agc	acc	gtg	caa	gtc	tct	tgg	ttg	gcc	ctc	567
15	Val	Pro	Thr	Val	Trp	Gly	Ser	Thr	Val	Gln	Val	Ser	Trp	Leu	Ala	Leu	
		105					110					115					
	atc	caa	cgc	ggc	ggg	ggc	tgc	acc	ttc	gca	gac	aag	atc	cat	ctg	gct	615
	Ile	Gln	Arg	Gly	Gly	Gly	Cys	Thr	Phe	Ala	Asp	Lys	Ile	His	Leu	Ala	
	120					125					130					135	
20			aga														663
	Tyr	Glu	Arg	Gly	Ala	Ser	Gly	Ala	Val	Ile	Phe	Asn	Phe	Pro	Gly	Thr	
					140					145					150		
	-		gag	_			_										711
	Arg	Asn	Glu	Val	Ile	Pro	Met	Ser	His	Pro	Gly	Ala	Val	Asp	Ile	Val	
25				155					160					165			
			atg														759
	Ala	Ile	Met	Ile	Gly	Asn	Leu	Lys	Gly	Thr	Lys	Ile		Gln	Ser	Ile	
			170		,			175					180				
			gge			-				•							807
30	Gln	_	Gly	Ile	Gln	Val		Met	Val	Ile	Glu		Gly	Lys	Lys	His	
		185					190					195					
			tgg														855
	_	Pro	Trp	Val	Asn		Tyr	Ser	Ile	Phe		Val	Ser	Val	Ser		
	200					205					210					215	
35	ttt	att	att	acg	gcg	gca	act	gtg	ggc	tat	ttt	atc	ttt	tat	tct	gct	903

	Phe Ile Il	e Thr Ala Ala T	hr Val Gly Tyr	r Phe Ile Phe Tyr S	er Ala
		220	225	5 2	30
	cga agg ct	a cgg aat gca a	iga gct caa ago	e agg aag cag agg c	aa tta 951
	Arg Arg Le	u Arg Asn Ala A	rg Ala Gln Ser	Arg Lys Gln Arg G	ln Leu
5		235	240	245	•
	aag gca ga	t gct aaa aaa g	ct att gga agg	g ctt caa cta cgc a	ca ctg 999
	Lys Ala As	p Ala Lys Lys A	la Ile Gly Arg	J Leu Gln Leu Arg T	hr Leu
	25		255	. 260	
				gga gat agt tgt g	
10	Lys Gln Gl	y Asp Lys Glu I	le Gly Pro Asp	Gly Asp Ser Cys A	la Val
	265		70	275	
	_	_		g gta ege ate tta a	
	_		ro Asn Asp Leu	ı Val Arg Ile Leu T	
	280	285		290	295
15				cca tgg ctg tta g	
	Asn His Ile	_	_	Pro Trp Leu Leu G	
		300	305	-	10
		- -		ctc aaa gct ttg g	
00	Arg Thr Cy			e Leu Lys Ala Leu G	TÀ 116
20		315	320	325	h- h 1020
				tta caa gtc cct g	
		_		Leu Gln Val Pro V	ai Ser
	33(335	340	1207
25	-			gaa gag gat aat c	
20			ia ser ser mis	Glu Glu Asp Asn A 355	rd per
	345	•		cag gga aca gat g	aa ccq 1335
				. Gln Gly Thr Asp G	
	360	a ser ser Gry 1	yr Aia ser var	370	375
30			ar tea aca aat	gaa agt cta cag c	
00				Glu Ser Leu Gln L	
	110 Dea Oil	380	385	_	90
	aac cat ca:			gtt att cct cat g	
				Val Ile Pro His V	
35	INN HES GE	395	400	405	
90	•	333	300	303	

	aac cca acc ttt gaa gaa gac gaa act cct aat caa gag act gct gtt	1479
	Asn Pro Thr Phe Glu Glu Asp Glu Thr Pro Asn Gln Glu Thr Ala Val	
	410 415 420	
	cga gaa att aaa tot taaaatotgt gtaaatagaa aacttgaacc attagt	1530
5	Arg Glu Ile Lys Ser	
	425	
	aataacagaa ctgccaatca gggcctagtt tctattaata aattggataa atttaataaa	1590
	ataagagtga tactgaaagt gctcagatga ctaatattat gctatagtta aatggcttaa	1650
	aatatttaac ctgttaactt ttttccacaa actcattata atattttca taggcaagtt	1710
10	tecteteagt agtgataaca acatttttag acatteaaaa etgtetteaa gaagteaegt	1770
	ttttcattta taacaatttt cttataaaaa catgttgctt ttaaaatgtg gagtagctgt	1830
	aatcacttta ttttatgata gtatettaat gaaaaatact acttetttag ettgggetac	1890
	atgtgtcagg gtttttctcc aggtgcttat attgatctgg aattgtaatg taaaaagcaa	1950
	tgcaaactta ggcgagtact tottgaaatg totatttaag ctgctttaag ttaatagaaa	2010
15	agattaaagc aaaatattca tttttacttt ttcttatttt taaaattagg ctgaatgtac	2070
	ttcatgtgat ttgtcaacca tagtttatca gagattatgg acttaattga ttggtatatt	2130
	agtgacatca acttgacaca agattagaca aaaaattcct tacaaaaata ctgtgtaact	2190
	atttctcaaa cttgtgggat ttttcaaaag ctcagtatat gaatcatcat actgtttgaa	2250
	attgctaatg acagagtaag taacactaat attggtcatt gatcttcgtt catgaattag	2310
20	tctacagaaa aaaaatgttc tgtaaaatta gtctgttgaa aatgttttcc aaacaatgtt	2370
	actttgaaaa ttgagtttat gtttgaccta aatgggctaa aattatatta gataaactaa	2430
	aattotgtoo gtgtaactat aaattttgtg aatgcatttt cotggtgttt gaaaaagaag	2490
	ggggggagaa ttccaggtgc cttaatataa agtttgaagc ttcatccacc aaagttaaat	2550
	agagetattt aaaaatgeae tttatttgta etetgtgtgg ettttgtttt agaattttgt	2610
25	tcaaattata gcagaattta ggcaaaaata aaacagacat gtatttttgt ttgctgaatg	2670
	gatgaaacca ttgcattctt gtacactgat ttgaaatgct gtaaatatgt cccaatttgt	2730
	attgattete tttaaatata aaatgtaaat aaaatattee aat	2773