Khôlles de Mathématiques

Kylian Boyet, George Ober, Hugo Vangilluwen, Félix Rondeau 5 octobre 2024

Résumé

Bienvenue très chers camarades sereins, ce document contient les questions de khôlles de mathématiques de la MP1 de Fermat. Il est coécrit par Kylian Boyet, George Ober, Hugo Vangilluwen (qui maintient la structure du projet, la compilation et le paquet kholles.sty) avec la contribution de Jérémie Menard. Il n'est malheureusement pas exhaustif. Si vous voulez nous aider, lisez CONTRIBUER.md et envoyez-nous votre code LATEX ou plus simplement dites-nous quand vous rencontrez une erreur.

Table des matières

1	Sem	naine 1	1
	1.1	Preuve formelle de la somme des entiers et des termes d'une suite géométrique	1
	1.2	Preuve de la factorisation de $a^n - b^n$ puis de celle de $a^{2m+1} + b^{2m+1} \dots \dots$	2
	1.3	Preuve de la formule du binôme de Newton	2
	1.4	Développement d'une somme	3
	1.5	Montrer que tout entier $n > 2$ admet un diviseur premier $\dots \dots \dots \dots$	4
	1.6	Montrer par récurrence qu'une fonction polynomiale à coefficients réels est nulle si	
		et seulement si tous ses coefficients sont nuls	4
	1.7	Montrer par analyse/synthèse qu'une fonction réelle d'une variable réelle s'écrit de manière unique comme somme d'une fonction paire et d'une fonction impaire	5
	1.8	Illustration graphique de certaines identités trigonométriques	5 5
	1.9	Technique de résolution des équations trigonométriques du type $A \cos x + B \sin x = C$	6
		Étude complète de la fonction tangente, tracé du graphe et en déduire celui de	U
	1.10	cotangente	6
	1 11	Expression de $\sin \theta$, $\cos \theta$, $\tan \theta$ en fonction de $\tan \frac{\theta}{2}$	6
		Preuve des formules du type $\cos p + \cos q = \dots$	7
		Treate des formates du type cosp cosq	·
2	Sem	paine 2	8
	2.1	Montrer qu'une composée d'applications inj/surj/bij est inj/surj/bij	8
	2.2	Montrer que, si u est une application de E dans F , si v est une application de F	
		dans E telle que $v \circ u = \mathrm{Id}_E$ et $u \circ v = \mathrm{Id}_F$ alors u est bijective (v aussi) et sa	
		bijection réciproque est v	8
	2.3	Montrer que $v \circ u$ injective implique u injective $+$ montrer que cela n'implique pas	0
	0.4	v injective.	8
	2.4	Montrer que $v \circ u$ surjective implique v surjective + montrer que cela n'implique	0
	2.5	pas u surjective	9
	2.0	entre $u(A \cap A')$ et $u(A) \cap u(A')$? (On justifiera les réponses aux deux inclusions	
		suggérées par la question)	9
	2.6	Montrer que, si u est une application de E dans F . Si B est une partie de F , alors	J
	2.0	$u^{-1}(F \setminus B) = E \setminus u^{-1}(B)$	9
	2.7	Montrer que, parmi les entiers ne s'écrivant qu'avec des 7, il existe au moins un	
		* / *	10
0	C		1 1
3			11
	3.1	Preuve de l'inégalité triangulaire et de l'inégalité montrant que le module est 1- lipschitzien + dessin et interprétation géométrique	11
	3.2		11 11
	3.3		$\frac{11}{12}$
	$\frac{3.3}{3.4}$		12 13
	J. T	of z_0 est facilité de la fonction porynomiale 1, alors 1 se factorise par $(z-z_0)$	τ0

	3.5	Si z_1, \ldots, z_n sont n racines distinctes de la fonction polynômiale P de degré n , alors
	26	P(z) se factorise en
	$\frac{3.6}{3.7}$	Calculer le module et un argument de $z = 1 + e^{i\theta}$ en fonction de $\theta \in [0, 2\pi[$ 14 Résolution des équations algébriques de degré 2 dans \mathbb{C} et algorithme de recherche
	5.1	d'une racine carrée sous forme cartésienne (sur un exemple explicite)
	3.8	Décrire (avec preuve) l'ensemble des racines n -ièmes de l'unité et les localiser géo-
	2.0	métriquement dans le plan complexe
	3.9 3.10	Somme et Produit des racines n -ièmes
	3.10	[non demandee] Factorisation d due ioniction polynomiale confiaissant p racines
4	Sem	naine 4
	4.1	Montrer que l'ensemble des similitudes directes du plan complexe est un groupe pour
	4.2	la composition (la preuve de la bijectivité des similitudes fait partie de la question). 19 Classifier et interpréter une similitude directe donnée sous la forme $z\mapsto az+b$
		sur un exemple, donner l'expression complexe d'une similitude dont on connaît les
	4.0	éléments caractéristiques
	4.3 4.4	Résolution de $e^z=z_0$ où $z_0\in\mathbb{C}^*$
	4.5	thèses sur la loi à préciser
	4.0	un sous-groupe de (\mathbb{U}, \times)
	4.6	Si φ est un morphisme de groupes de G_1 de neutre e_1 dans G_2 de neutre e_2 , calculer $\varphi(e_1)$ et $\varphi(x^{-1})$
	4.7	Montrer que l'image directe d'un sous-groupe par un morphisme de groupes est un
		sous-groupe du groupe d'arrivée
	4.8	Montrer que l'image réciproque par un morphisme de groupes d'un sous-groupe est
		toujours un sous-groupe du groupe de départ,
	4.9	[non demandée] Montrer que l'ensemble des similitudes directes du plan complexe est un groupe pour la composition (démonstration alternative)
5	Sem	aaine 5
	5.1	Montrer que l'ensemble des similitudes directes du plan complexe est un groupe
		pour la composition
	5.2	Classifier et interpréter une similitude directe donnée sous la forme $z\mapsto az+b$ sur un exemple, donner l'expression complexe d'une similitude dont on connaît les
	E 9	éléments caractéristiques
	5.3	Montrer qu'une combinaison linéaire de deux fonctions bornées (respectivement lipschitziennes) est bornée (resp. lipschitzienne)
6	Sem	paine 6
	6.1	
		Montrer que si f est impaire et bijective, alors f^{-1} est aussi impaire. Donnez un/des exemples
	6.2	
	6.2 6.3	exemples
	6.3	exemples
	6.3	exemples
	6.3 6.4 6.5	exemples
	6.3 6.4 6.5 6.6	exemples
	6.3 6.4 6.5	exemples
	6.3 6.4 6.5 6.6	exemples
7	6.3 6.4 6.5 6.6 6.7 6.8	exemples
7	6.3 6.4 6.5 6.6 6.7 6.8 Sem	Examples
7	6.3 6.4 6.5 6.6 6.7 6.8	Examples
7	6.3 6.4 6.5 6.6 6.7 6.8 Sem	Examples
7	6.3 6.4 6.5 6.6 6.7 6.8 Sem 7.1	Examples
7	6.3 6.4 6.5 6.6 6.7 6.8 Sem 7.1	Limite (et preuve) lorsque x tend vers $+\infty$ de $\frac{(\ln x)^{\alpha}}{x^{\beta}}$ pour $\alpha, \beta \in (\mathbb{R}^*_+)^2$. 26 Limite en 0 de $\frac{1-\cos(x)}{x^2}$ et limite en $+\infty$ suivant n de $\frac{(q^n)^{\alpha}}{(n!)^{\beta}}$ pour $q \in \mathbb{R}$ et $(\alpha, \beta) \in (\mathbb{R}^*_+)^2$. 27 Présentation exhaustive de la fonction arcsin. 28 Présentation exhaustive de la fonction arctan. 29 Présentation exhaustive de la fonction arctan. 30 29 29 29 29 20 20 20 20 20 2

8	Semaine 8		
	8.1	Preuve de l'expression des solutions réelles des EDL homogènes d'ordre 2 à coeffi-	
		cients constants réels dans le cas $\Delta < 0$ (en admettant la connaissance de l'expression	25
	8.2	des solutions à valeurs complexes des EDLH2 à coeff. constants)	35
	0.2	à coefficients constants et second membre continu sur I (cas complexe puis cas réel).	35
	8.3	Les solutions d'une EDL_2 constituent un espace vectoriel	37
	8.4	Formules de Cramer pour les systèmes 2×2	37
	~		
9			40
	9.1	Deux classes d'équivalence sont disjointes ou confondues. Les classes d'équivalence constituent une partition de l'ensemble sur lequel on considère la relation d'équivalence.	40
	9.2	Si A admet un plus grand élément c'est aussi sa borne supérieure. Si A admet une	10
	V	borne supérieure dans A c'est sont plus grand élément	40
	9.3	Théorème de la division Euclidienne dans $\mathbb Z$	41
	9.4	Une suite décroissante et minorée de nombres entiers relatifs est stationnaire	41
10	Com	aine 10	42
10		Caractérisation de la densité d'une partie A de \mathbb{R} dans une partie B de \mathbb{R} la contenant	42
	10.1	avec des ε	42
	10.2	Théorème de la division pseudo-euclidienne dans $\mathbb R$	42
		$\mathbb Q$ est dense dans $\mathbb R$ et $\mathbb R\setminus \mathbb Q$ est aussi dense dans $\mathbb R$	43
		Preuve de l'unicité de la limite d'une suite convergente	43
	10.5	Une suite convergente est bornée	44
11	Som	aine 11	45
11		Caractérisation séquentielle de la densité	45
		Théorème de la convergence monotone	45
		Théorème de Césarò	46
		Théorème de passage à la limite dans une inégalité	47
		Théorème des suites adjacentes	47
		Facultative Théorème de Bolzano-Weierstrass	47
	11.7	Facultative Caractérisation de la convergence par l'unicité d'une valeur d'adhérence pour une suite bornée.	48
		pour une surte bornee	40
12	Sem	aine 12	50
	12.1	Résolution d'une relation de récurrence linéaire d'ordre 1 à coefficients constants et	
		avec second membre	50
	12.2	Résolution d'une relation de récurrence linéaire homogène d'ordre 2 à coefficients	
	10.9	constants dans C lorsque l'équation caractéristique possède un discriminant non nul	50
	12.5	Caractérisation de la convergence par l'unicité d'une valeur d'adhérence pour une suite bornée.	51
	12.4	Monotonie de u et des sous-suites des termes pairs et impairs de la suite $u_{n+1} = f(u_n)$	91
		selon la monotonie de f	52
	12.5	L'intérieur de l'ensemble des rationnels est vide	52
	12.6	Théorème sans nom version continue au voisinage de a	52
12	Som	aine 13	54
19		Théorème de composition des limites	54
		Théorème des valeurs intermédiaires	54
		Théorème de Weierstraß	55
14		aine 14	57
		Expression de dérivées successives	57 57
		Dérivé d'une bijection réciproque	58
		Théorème de Rolle et formule des accroissements finis	58
		Inégalité des accroissements finis	59
		Caractère lipschitzien d'une fonction \mathcal{C}^1 sur un segment	61
		Théorème du prolongement de la propriété de la dérivabilité	61
	14.8	La fonction ζ (pas celle-là une autre) est de classe \mathcal{C}^{∞} sur \mathbb{R}	61

15			63
	15.1	Inégalité de Jensen	63
	15.2	Inégalité arithmético-géométrique	64
	~		
16			65
		Unicité de la partie régulière d'un développement limité	65
		Deux fonctions équivalentes au voisinage de a ont le même signe sur un voisinage de a	65
	16.7	Condition nécessaire et suffisante pour qu'une fonction \mathcal{C}^{∞} admette un extremum	
		local ou un point d'inflexion	66
17			67
	17.4	Théorème de Bézout	67
	17.6	Théorème de Gauss	67
	17.8	Résoudre une équation du type $ax + yb = c$	67
18	Sem	aine 18	69
	18.1	L'ensemble des nombres premiers est infini	69
	18.2	Caractérisation de la valuation p -adique	69
		Caractérisation de $a b$ par les valuations p -adiques et preuve de leur propriété de	
		morphisme.	69
	18 4	Expression du pgcd et du ppcm à partir des décomposition en facteurs premiers de	-
	10.1	$a ext{ et } b$	70
	18.5	Pour p premier, $(a+b)^p \equiv a^p + b^p \mod p$, en déduire le petit Th. de Fermat (2	• •
	10.0	versions), expression du résultat dans $\mathbb{Z}/p\mathbb{Z}$	70
	19.6	$\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier	71
			71
		Les éléments inversibles d'un anneau A forment un groupe multiplicatif noté (A^{\times}, \times)	11
	10.0	L'image directe par un morphisme d'anneau d'un sous-anneau de l'anneau de départ	70
		est un sous anneau de l'anneau d'arrivée. De même pour l'image réciproque	72
10	Som	aine 19	7 3
10	10.1	$(A \times B)^T = B^T \times A^T \dots \dots \dots \dots \dots \dots$	73
		Calculer $E^{i,j} \times E^{k,l}$ en fonction de i, j, k, l et des symboles de Kronecker	
			73
		Les matrices triangulaires supérieures forment un sous-anneau de $\mathcal{M}_n(\mathbb{K})$	74
	19.4	Si A est une matrice d'ordre n et λ un scalaire non nul d'un corps, alors la transposée	
		de A et λA sont inversibles aussi	74
	19.5	Si N est une matrice d'ordre n nilpotente, alors $I_n + \lambda N$ est inversible pour tout λ ,	
		scalaire d'un corps	74
		Caractérisation de l'inversibilité pour les matrices	74
	19.7	Caractérisation des matrices diagonales inversibles	75
	_		
20		aine 20	7 6
		Éléments inversibles de l'anneau $\mathbb{K}[X]$	76
	20.2	Théorème d'interpolation de lagrange	76
	20.3	Formule de Taylor dans $\mathbb{K}[X]$ (caractéristique nulle)	77
		Caractérisation de la multiplicité d'une racine	78
	20.5	Identification de $\mathbb{K}[X]$ à $\mathbb{K}[x]$, par l'injectivité de Φ	79
		Pour $P = (X - x_1)(X - x_2)(X - x_3)$, exprimer $x_1^3 + x_2^3 + x_3^3$ en fonction des fonctions	
		symétriques élémentaires	79
	20.7	Expression de S_2 , S_{-1} et S_{-2} à l'aide des fonctions élémentaires symétriques	80
			-
21	Sem	aine 21	81
		Caractérisation des polynômes irréductibles de degré 1, 2 et 3 dans $\mathbb{K}[X]$	81
		Polynômes irréductibles de $\mathbb{C}[X]$ et de $\mathbb{R}[X]$	81
		X^3-2 est irréductible dans $\mathbb{Q}[X]$	81
		PGCD d'un polynôme de $\mathbb{C}[X]$ et son polynôme dérivé	82
		Justifier la bonne définition de la dérivée d'une fraction rationnelle	82
		Théorème de Gauss-Lucas et interprétation graphique	83
			00
	21.1	Deux expressions du coefficient associé à un pôle simple dans une décomposition en	0.0
	01.0	éléments simples	83
	21.8	Expressions des deux coefficients associés à un pôle double dans une décomposition	· ·
		en éléments simples	84

22	Semaine 22	86
	22.1 Caractérisation d'une famille liée	
	22.2 Caractérisations d'une base	
	22.3 Le noyau et l'image d'une application linéaire sont des sous-espaces vectoriels	
	22.4 L'image par une application linéaire d'une partie génératrice engendre l'image d	
	l'application linéaire	
	22.5 Caractérisation inj/surj/bij d'une application linéaire par l'image d'une base d	e
	l'espace de départ	
	22.6 Caractérisation d'une application linéaire par l'image d'une base	. 89
23	Semaine 23	91
	23.1 L'ensemble des automorphisme d'un espace vectoriel muni de la loi de composition	
	forme un groupe	
	23.2 Caractérisation de la somme directe de p sous-espaces vectoriels \dots	. 91
24	Semaine 24	92
44	24.1 Existence d'un supplémentaire en dimension finie	
	24.1 Existence d'un supplementaire en dimension fine \ldots 24.2 Dimension de $\mathcal{L}_{\mathbb{K}}(E,F)$	
	24.3 Formule de Grassman	
	24.4 Caractérisation injectivité/bijectivité/surjectivité par le rang	
	24.5 Théorème du rang	
	24.6 Rang d'une composition d'applications linéaires	
	24.7 Caractérisation des hyperplans	
	24.8 Proportionnalité des formes linéaires ayant le même noyau	
	24.9 Intersection d'hyperplans	
	24.5 Intersection d hyperplans	. 50
25	Semaine 25	98
	25.1 S'il existe un inverse à droite (ou à gauche) pour une matrice carrée, alors celle c	i
	est inversible	
	25.2 Lien composée des applications linéaires et produit des matrices les représentan	t
	vis-à-vis de certaines bases	
	25.3 Montrer qu'une famille de d vecteurs d'un espace de dimension d est une base si e	t
	seulement si la matrice de ces vecteurs dans une base (donc dans toute) est inversi	ole. 99
	25.4 Preuve de la formule de changement de base pour une application linéaire, ca	S
	particulier d'un endomorphisme lu dans la même base au départ et à l'arrivée	. 99
	25.5 Montrer que la trace de AB est égale à la trace de BA (deux matrices carrées), e	t
	application à la définition de la trace de deux endomorphismes	. 100
	25.6 Égalité rang trace pour un projecteur	. 100
	25.7 Décomposition PJ_rQ	. 100
	25.8 Deux matrices sont équivalentes si et seulement si elles ont le mêmes rangs. Systèm	
	de représentants des classes de la relation d'équivalence "être équivalente à " $$. 102
		400
2 6	Semaine 26	103
27	Semaine 27	104
41	27.1 Norme uniforme d'une fonction continue par morceaux	
	27.2 Lemme d'approximation uniforme d'un fonction continue sur un segment par un	
	fonction en escalier	
	27.3 Définition de l'intégrale de Darboux	
	27.4 Montrer qu'une fonction positive ou nulle, continue sur un segment et d'intégral	
	nulle sur ce segment est identique- ment nulle sur ce segment	
	27.5 Inégalité de Cauchy Schwartz pour les fonctions continues par morceaux	
	27.6 Théorème de convergence des sommes de Riemann	
	27.7 Inégalité triangulaire pour les fonctions continues par morceaux à valeurs complex	
	27.8 Existence et unicité de la primitive de f qui s'annule en a	
	27.9 Formule de Taylor avec reste intégral	
	27.10 Calcul de $\lim_{n\to\infty} \sum_{k=0}^n \frac{(-1)^k}{k} x^k$	110
	$27.10 \odot$ accurate $\lim_{n\to\infty} \sum_{k=0} \frac{1}{n} x^k$. 110

28		aine 28	112
	28.1	Condition nécessaire de convergence de $\sum_{n \geq n_0} u_n$	112
	28.2	Condition nécessaire et suffisante de convergence de $\sum_{n>0} q^n$ pour $q \in \mathbb{C}$ et calcul	
		de la somme et du reste lorsqu'ils existent	112
	28.3	Caractérisation de la convergence des séries de Riemann	112
	28.4	Comparaison série-intégrale	113
	28.5	Pour f continue sur $[n_0, +\infty[$, décroissante et minorée, $\sum_{n \ge n_0} \left(f(n) - \int_n^{n+1} f(u) du \right)$	
		converge. Application au DA en $o(1)$ de la somme partielle de la série harmonique	114
		Théorème des séries alternées	115
		L'absolue convergence implique la convergence	116
	28.8	Décomposition d'une permutation en produit de cycles à supports disjoints puis en	
		produit de transposition et calcul de son ordre	116
29		aine 29	117
	29.1	Définition et cardinal du sous-groupe alternée \mathcal{A}_n	117
	29.2	Caractérisation des bases par le déterminant	117
	29.3	Définition du déterminant d'un endomorphisme	117
	29.4	Le déterminant est un morphisme de $(\mathcal{L}_{\mathbb{K}}(E), \circ)$ dans (\mathbb{K}, \times) , application à la ca-	
		ractérisation des automorphismes	118
	29.5	Produit d'une matrice carrée par la transposée de sa comatrice	119
		Formule de Cramer	120
	29.7	Calcul du déterminant de Vandermonde	121
30	Sem	paine 30	123
	30.1	Inégalité de Cauchy-Schwartz dans un espace préhilbertien réel, cas d'égalité	123
		Isomorphisme entre un espace euclidien et l'espace de ses formes linéaires (Théorème	
		de représentation de Riesz)	123
	30.3	Si F est un sous-espace vectoriel de dimension finie d'un espace préhilbertien réel,	
		F^{\perp} est son supplémentaire orthogonal	124
	30.4	Orthonormalisation de la base canonique de $\mathbb{R}_2[X]$	125
		Distance d'un vecteur à un sous-espace vectoriel de dimension finie	126
		Distance à un sous-espace affine	126
		Dénombrement des surjections de $[1; n]$ dans $[1; 2]$ et dans $[1; 3]$	127
		Lemme des bergers	127
31		aine 31	128
		p-partage d'un ensemble E et leur dénombrement	128
		Une probabilité conditionnelle est une probabilité	128
		Si A et B sont des événements indépendants, alors A et \overline{B} aussi	129
		Formule des probabilités composées	129
		Formule des probabilités totales et formule de Bayes	130
		Loi d'une fonction de X	130
	31.7	Si $X \geqslant 0$ presque sûrement, $\mathbb{E}(X) = 0 \iff X = 0$ presque sûrement	131
		Calcul de l'espérance et la variance d'une variable aléatoire suivant une loi binomiale	e 131

1 Semaine 1

1.1 Preuve formelle de la somme des entiers et des termes d'une suite géométrique

Démonstration. \Diamond Soit $n \in \mathbb{N}$ fq. Posons

$$S_n = \sum_{k=0}^n k$$

En posant la symétrie d'indice i = n - k, on a aussi

$$S_n = \sum_{i=0}^n (n-i) = \sum_{i=0}^n n - \sum_{i=0}^n i = (n \times \operatorname{card}[0, n]) - \sum_{i=0}^n i$$

Or, puisque $\operatorname{card}[\![0,n]\!]=n+1$ et que $\sum_{i=0}^n i=S_n$

$$S_n = n \times (n+1) + S_n$$

Donc

$$S_n = \frac{n(n+1)}{2}$$

 \Diamond Soient $q \in \mathbb{R}$, $k \in \mathbb{N}$ fixés quelconques.

 \star Si q=1,

$$\sum_{i=0}^{k} q^{i} = \sum_{i=0}^{k} 1 = k+1$$

* Sinon, avec l'identité algébrique, on a

$$q^{k+1} - 1^{k+1} = (q-1) \sum_{i=0}^{k} q^i \times 1^{k-i}$$

Ainsi, puisque $q \neq 1$ on a, par multiplication par $(q-1)^{-1}$

$$\sum_{i=0}^{k} q^{i} = \frac{q^{k+1} - 1}{q - 1}$$

Nous avons donc établi que

$$\sum_{i=0}^{k} q^{i} = \begin{cases} \frac{1-q^{k+1}}{1-q} & \text{si } q \neq 1\\ k+1 & \text{sinon} \end{cases}$$

1.2 Preuve de la factorisation de $a^n - b^n$ puis de celle de $a^{2m+1} + b^{2m+1}$

Démonstration. Soient $(a,b) \in \mathbb{C}^2$ et $n \in \mathbb{N}$ fixés quelconques.

$$(a-b)\sum_{k=0}^{m-1} a^k b^{m-1-k} = a\sum_{k=0}^{m-1} a^k b^{m-1-k} - b\sum_{k=0}^{m-1} a^k b^{m-1-k}$$
$$= \sum_{k=0}^{m-1} a^{k+1} b^{m-1-k} - \sum_{k=0}^{m-1} a^k b^{m-k}$$

Si bien qu'en posant le changement d'indice j = k + 1 on reconnait le téléscopage.

$$\sum_{j=1}^{m} a^{j} b^{m-j} - \sum_{k=0}^{m-1} a^{k} b^{m-k} = a^{m} - b^{m}$$

Soit m un entier naturel fixé quelconque. En particularisant la relation pour $n \leftarrow 2m+1$ et $b \leftarrow (-b)$, on obtient

$$a^{2m+1} - (-b)^{2m+1} = a^{2m+1} + b^{2m+1} = (a - (-b)) \sum_{k=0}^{2m} a^k (-b)^{2m-k}$$
$$= (a+b) \sum_{k=0}^{2m} a^k (-1)^{2m} (-1)^{-k} b^{2m-k}$$
$$= (a+b) \sum_{k=0}^{2m} (-1)^k a^k b^{2n-k}$$

1.3 Preuve de la formule du binôme de Newton

Pour tout $(a,b) \in \mathbb{C}^2$, $n \in \mathbb{N}$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Démonstration. Soient $(a, b) \in \mathbb{C}^2$ fixés quelconques. Posons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}$ par

$$\mathcal{P}(n): (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

* Initialisation, $n \leftarrow 0$ D'une part $(a+b)^0 = 0$, même si les deux sont nuls (par convention $0^0 = 0$) D'autre part

$$\sum_{k=0}^{0} {0 \choose k} a^k b^{n-k} = {0 \choose 0} a^0 b^0 = 0$$

Donc $\mathcal{P}(0)$ est vérifée.

 \star Soit $n \in \mathbb{N}$ fixé quel
conque tel que $\mathcal{P}(n)$ est vraie

$$(a+b)^{n+1} = (a+b) \times (a+b)^n$$

$$= (a+b) \times \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

$$= a \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} + b \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

$$= \sum_{k=0}^n \binom{n}{k} a^{k+1} b^{n-k} + \sum_{k=0}^n \binom{n}{k} a^k b^{n+1-k}$$

$$= \sum_{j=1}^{n+1} \binom{n}{j-1} a^j b^{n+1-j} + \sum_{k=0}^n \binom{n}{k} a^k b^{n+1-k}$$
(en posant $j = k+1$) = $a^{n+1} + \sum_{j=1}^n \binom{n}{j-1} a^j b^{n+1-j} + \sum_{k=1}^n \binom{n}{k} a^k b^{n+1-k} + b^{n+1}$

$$= a^{n+1} + \left(\sum_{k=1}^n \binom{n}{k-1} + \binom{n}{k} a^k b^{n+1-k} + b^{n+1}\right)$$
(en utilisant la relation de Pascal) = $a^{n+1} + \sum_{k=1}^n \binom{n+1}{k} a^k b^{n+1-k} + b^{n+1}$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} a^k b^{n+1-k}$$

Donc $\mathcal{P}(n+1)$ est vraie.

1.4 Développement d'une somme

$$\left(\sum_{k=1}^{n} x_{k}\right)^{2} = \sum_{\substack{1 \leq k \leq n \\ 1 \leq j \leq n}} x_{k} x_{j} = 2 \sum_{1 \leq k < j \leq n} x_{k} x_{j} + \sum_{k=1}^{n} x_{i}^{2}$$

Démonstration.

$$\left(\sum_{k=0}^{n} x_k\right)^2 = \left(\sum_{k=1}^{n} x_k\right) \times \left(\sum_{j=1}^{n} x_j\right)$$

$$= \sum_{k=1}^{n} \left[x_k \times \sum_{j=1}^{n} x_j\right]$$

$$= \sum_{k=1}^{n} \left(\sum_{j=1}^{n} x_k \times x_j\right)$$

$$= \sum_{\substack{1 \le k \le n \\ 1 \le j \le n}} x_k x_j$$

On peut aussi séparer cette somme

$$\sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant j \leqslant n}} x_k x_j = \sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant j \leqslant n \\ k < j}} x_k x_j + \sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant j \leqslant n \\ k > j}} x_k x_j$$

$$= \sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant j \leqslant n \\ k > j}} x_k x_j + \sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant j \leqslant n \\ k > j}} x_k x_j$$

$$+ \sum_{\substack{k=1 \\ 1 \leqslant k \leqslant n \\ k > j}} x_k x_j + \sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant j \leqslant n \\ 1 \leqslant j \leqslant n \\ k > j}} x_k x_j$$
somme sur les indices (k, j) tels que $k = j$ $k > j$

On remarque aussi qu'en permutant les indices des deux sommes (les variables sont muettes)

$$\sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant j \leqslant n \\ k \neq j}} x_k x_j = \sum_{\substack{1 \leqslant j \leqslant n \\ 1 \leqslant k \leqslant n \\ k \neq j}} x_j x_k$$

Qui, par commutativité du produit dans $\mathbb C$ nous donne cette égalité

$$\sum_{\substack{1\leqslant k\leqslant n\\1\leqslant j\leqslant n\\k< j}} x_k x_j = \sum_{\substack{1\leqslant k\leqslant n\\1\leqslant j\leqslant n\\k> j}} x_k x_j$$

On a donc bien l'identité attendue :

$$\sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant j \leqslant n}} x_k x_j = 2 \sum_{\substack{1 \leqslant k \leqslant n \\ 1 \leqslant j \leqslant n \\ k < j}} x_k x_j + \sum_{k=1}^n x_k^2$$

1.5 Montrer que tout entier n > 2 admet un diviseur premier

Démonstration. Raisonnons par récurrence forte avec la propriété $\mathcal{P}(\cdot)$ définie pour tout n>2 par

$$\mathcal{P}(n)$$
: « $\forall k \in [2, n], k$ admet un diviseur premier »

- Initialisation : $n \leftarrow 2$
 - Soit $k \in [2, 2]$ fixé quelconque. Nécéssairement, k = 2. or, 2 admet 2 pour diviseur premier. Donc $\forall k \in [2, 2]$, k admet un diviseur premier, ce qui prouve $\mathcal{P}(2)$.
- Hérédité : Soit $n \in \mathbb{N} \setminus \{1,0\}$ fixé quelconque tel que $\mathcal{P}(n)$ est vraie. Pour montrer $\mathcal{P}(n+1)$, il nous faudra montrer que $\forall k \in [2, n+1]$, k admet un diviseur premier Soit $k \in [2, n+1]$ fixé quelconque.
 - \star Si $k \in [2, n]$, alors la véracité de $\mathcal{P}(n)$ nous permet de conclure, et de dire que k admet un diviseur premier.
 - \star Sinon k = n + 1
 - \lozenge Si n+1 est premier, alors il admet k comme diviseur premier
 - \Diamond Sinon, $\exists d \in [2, n] : d \mid n+1$

Mais, puisque $d \in [2, n]$, la véracité de $\mathcal{P}(n)$ nous permet d'affirmer que d admet un diviseur premier p. Donc par transitivité de la relation de divisibilité

$$(p \mid d \text{ et } d \mid n) \implies p \mid n$$

1.6 Montrer par récurrence qu'une fonction polynomiale à coefficients réels est nulle si et seulement si tous ses coefficients sont nuls

Démonstration. Considérons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}$

 $\mathcal{P}(n)$: toute fonction polynômiale identiquement nulle sur $\mathbb R$ a tous ses coefficients nuls

Autrement dit

$$\mathcal{P}(n): \forall (a_0, \dots, a_n) \in \mathbb{R}^{n+1} \left(\forall x \in \mathbb{R}, \sum_{k=0}^n a_k x^k = 0 \right) \implies \forall k \in [0, n], a_k = 0$$

- \Diamond Pour $n \leftarrow 0$ Soit $a_0 \in \mathbb{R}$ fixé quelconque tel que $\forall x \in \mathbb{R}, a_0 x^0 = 0$ Alors $a_0 = 0$
- \Diamond Soit $n \in \mathbb{N}$ fixé quelconque tel que $\mathcal{P}(n)$ est vraie Soient $(a_0, \dots, a_{n+1}) \in \mathbb{R}^{n+2}$ Posons $Q(x) = \sum_{k=0}^{n+1} a_k x^k$ tel que $\forall x \in \mathbb{R}, Q(x) = 0$ D'une part

$$\forall x \in \mathbb{R}, \underbrace{Q(2x)}_{=0} - 2^{n+1} \underbrace{Q(x)}_{=0} = 0$$

D'autre part

$$\forall x \in \mathbb{R}, Q(2x) - 2^{n+1}Q(x) = \sum_{k=0}^{n+1} a_k (2x)^k - 2^{n+1} \sum_{k=0}^{n+1} a_k x^k$$
$$= \sum_{k=0}^{n+1} a_k (2^k - 2^{n+1}) x^k$$

Le terme d'indice n+1 s'annule, si bien que l'on peut écrire

$$\forall x \in \mathbb{R}, Q(2x) - 2^{n+1}Q(x) = \sum_{k=0}^{n} a_k (2^k - 2^{n+1}) x^k$$

Qui est une fonction polynômiale de degré $\leqslant n$, ce qui permet d'appliquer $\mathcal{P}(n)$ pour $(a_k)_{k\in \llbracket 0,n\rrbracket} \leftarrow (a_k(2^k-2^{n+1}))_{k\in \llbracket 0,n\rrbracket}$.

Donc $\forall x \in [0, n]: a_k(2^k - 2^{n+1}) = 0$ et puisque $2^k - 2^{n+1} \neq 0$, on en déduit que

$$\forall k \in [\![0,n]\!], a_k = 0$$

L'expression de Q devient :

$$\forall x \in \mathbb{R}, \underbrace{\sum_{k=0}^{n} a_k x^k}_{=0} + a_{n+1} x^{n+1} = 0$$

Donc en particularisant pour $x \leftarrow 1$, on en déduit que $a_{n+1} = 0$ Donc $\mathcal{P}(n+1)$ est vraie.

1.7 Montrer par analyse/synthèse qu'une fonction réelle d'une variable réelle s'écrit de manière unique comme somme d'une fonction paire et d'une fonction impaire

Démonstration. Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ fixée quelconque.

 \Diamond Analyse: Supposons que $f: \mathbb{R} \to \mathbb{R}$ se décompose de manière unique en f = g + h avec g paire et h impaire (i.e. $\forall x \in \mathbb{R}, g(-x) = g(x)$ et h(-x) = -h(x)). Soit $x \in \mathbb{R}$ fixé quelconque Calculons f(-x):

$$f(-x) = g(-x) + h(-x) = g(x) - h(x)$$

Par demi somme, nous avons donc

$$\begin{cases} 2g(x) = f(x) + f(-x) \\ 2h(x) = f(x) - f(-x) \end{cases}$$

Ainsi, si une telle décomposition existe, c'est

$$\begin{cases} g: x \mapsto \frac{f(x) + f(-x)}{2} \\ h: x \mapsto \frac{f(x) - f(-x)}{2} \end{cases}$$

♦ Synthèse : Posons

$$g \mid \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{f(x) + f(-x)}{2} \quad \text{et } h \mid \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{f(x) - f(-x)}{2}$$

$$(1)$$

Remarquons, d'une part que :

$$\forall x \in \mathbb{R}, g(x) + h(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2} = f(x)$$

Vérifions si les fonctions g et h vérifient les conditions de parité :

$$\forall x \in \mathbb{R}, g(-x) = \frac{f(-x) + f(-(-x))}{2} = \frac{f(x) + f(-x)}{2} = g(x) \text{ ainsi } g \text{ est paire}.$$

$$\forall x \in \mathbb{R}, h(-x) = \frac{f(-x) - f(-(-x))}{2} = -\frac{f(x) - f(-x)}{2} = -h(x)$$
 ainsi h est impaire

1.8 Illustration graphique de certaines identités trigonométriques

 $D\acute{e}monstration.$

1.9 Technique de résolution des équations trigonométriques du type $A\cos x + B\sin x = C$

 $D\acute{e}monstration$. Étudions l'équation d'inconnue x

$$A\cos x + B\sin x = C$$

- \star Si A=0 et B=0
 - \Diamond Si C=0 l'équation admet $\mathbb R$ pour ensemble de solutions
 - ♦ Sinon, l'équation n'admet pas de solutions
- * Sinon,

Factorisons par $\sqrt{A^2 + B^2}$ (ce qui a un sens car $(A, B) \neq (0, 0) \implies \sqrt{A^2 + B^2} \neq 0$)

$$\frac{A}{\sqrt{A^2 + B^2}} \cos x + \frac{B}{\sqrt{A^2 + B^2}} \sin x = \frac{C}{\sqrt{A^2 + B^2}}$$

Le nombre complexe $\frac{A}{\sqrt{A^2+B^2}}+i\frac{B}{\sqrt{A^2+B^2}}$ est de module 1, donc $\exists \varphi \in \mathbb{R}$ tel que

$$e^{i\varphi} = \underbrace{\frac{A}{\sqrt{A^2 + B^2}}}_{\cos \varphi} + i \underbrace{\frac{B}{\sqrt{A^2 + B^2}}}_{\sin \varphi}$$

Ainsi,

$$(\cos\varphi\cos x - \sin\varphi\sin x) = \frac{C}{\sqrt{A^2 + B^2}}$$

donc

$$\cos(\varphi + x) = \frac{C}{\sqrt{A^2 + B^2}}$$

$$\lozenge$$
 Si $\frac{C}{\sqrt{A^2 + B^2}} \leqslant 1$

$$\cos(\varphi + x) = \frac{C}{\sqrt{A^2 + B^2}} \iff \begin{cases} \phi + x \equiv \arccos\frac{C}{\sqrt{A^2 + B^2}}[2\pi] \\ \text{ou} \\ \phi + x \equiv -\arccos\frac{C}{\sqrt{A^2 + B^2}}[2\pi] \end{cases}$$
$$\begin{cases} \arccos\frac{C}{\sqrt{A^2 + B^2}} + 2k\pi \mid k \in \mathbb{Z} \end{cases}$$
$$\Leftrightarrow x \in \cup \\ \left\{ -\arccos\frac{C}{\sqrt{A^2 + B^2}} + 2k\pi \mid k \in \mathbb{Z} \right\}$$

♦ Sinon, l'équation n'admet aucune solution

1.10 Étude complète de la fonction tangente, tracé du graphe et en déduire celui de cotangente.

 $D\acute{e}monstration.$

1.11 Expression de $\sin \theta$, $\cos \theta$, $\tan \theta$ en fonction de $\tan \frac{\theta}{2}$

Démonstration. Soit $\theta \in \mathbb{R} \setminus \pi \mathbb{Z}$. Posons $u = \tan \frac{\theta}{2}$

$$\Diamond \ \tan \theta = \frac{2u}{1 - u^2}$$

En utilisant la formule classique de trigonométrie

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

On obtient, avec $(a,b) \leftarrow (\frac{\theta}{2}, \frac{\theta}{2})$

$$\tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}} = \frac{2u}{1 - u^2}$$

$$\lozenge \ \cos \theta = \frac{1 - u^2}{1 + u^2}$$

$$\cos \theta = 2\cos^2 \frac{\theta}{2} - 1$$

$$= \frac{2}{1 + \tan^2 \frac{\theta}{2}} - 1$$

$$= \frac{2}{1 + u^2} - 1$$

$$= \frac{1 - u^2}{1 + u^2}$$

$$\Diamond \sin \theta \frac{2u}{1+u^2}$$

$$\sin \theta = \cos \theta \tan \theta$$

$$= \frac{1 - u^2}{1 + u^2} \times \frac{2u}{1 - u^2}$$

$$= \frac{2u}{1 + u^2}$$

1.12 Preuve des formules du type $\cos p + \cos q = \dots$

Démonstration. Partons des formules d'addition

$$cos(a + b) = cos a cos b - sin a sin b$$
$$cos(a - b) = cos a cos b + sin a sin b$$

$$\cos(a+b) + \cos(a-b) = 2\cos a \cos b \tag{\spadesuit}$$

Si bien qu'en posant

$$\left\{ \begin{array}{ll} p=a+b \\ q=a-b \end{array} \right. \iff \left\{ \begin{array}{ll} a=\frac{p+q}{2} \\ b=\frac{p-q}{2} \end{array} \right.$$

D'où, en injectant dans ()

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

2 Semaine 2

2.1 Montrer qu'une composée d'applications inj/surj/bij est inj/surj/bij

Démonstration. Soient $u: E \to F$ et $v: F \to G$

 \Diamond Supposons u et v injectives.

Soient $(x_1, x_2) \in E^2$ fq tels que $(v \circ u)(x_1) = (v \circ u)(x_2)$.

Alors $v(u(x_1)) = v(u(x_2))$, mais v est injective donc, $u(x_1) = u(x_2)$ mais u est injective donc $x_1 = x_2$. Ainsi $v \circ u$ est injective.

 \Diamond Supposons u et v surjectives Soit $y \in G$ fixé quelconque.

v est surjective donc $\exists t \in F : v(t) = y$

u est surjective, donc $\exists x \in E : u(x) = t$ Ainsi,

$$(v \circ u)(x) = v(u(x)) = v(t) = y$$

Donc $v \circ u$ est surjective.

 \Diamond Supposons u et v bijectives.

Le fait que $v \circ u$ est une bijection est une conséquence des deux points précédents.

2.2 Montrer que, si u est une application de E dans F, si v est une application de F dans E telle que $v \circ u = \mathrm{Id}_E$ et $u \circ v = \mathrm{Id}_F$ alors u est bijective (v aussi) et sa bijection réciproque est v

Démonstration. Soient $(u, v) \in \mathcal{F}(E, F) \times \mathcal{F}(F, E)$ qui satisfont les conditions de l'énnoncé.

 $\Diamond u$ est injective

Soient $(x_1, x_2) \in E^2$ fixés quelconques tels que $u(x_1) = u(x_2)$. Alors $v(u(x_1)) = v(u(x_2))$. Donc $x_1 = x_2$ puisque $v \circ u = \mathrm{Id}_E$

 $\Diamond\ u$ est surjective Soit $y\in F$ fixé quelconque. Posons t=v(y). Ainsi, u(t)=u(v(y))=y car $u\circ v=\mathrm{Id}_F$

Ainsi, u est bijective, notons u^{-1} sa bijection réciproque

$$u^{-1} \circ (u \circ v) = (u^{-1} \circ u) \circ v$$
$$u^{-1} \circ \operatorname{Id}_F = \operatorname{Id}_E \circ v$$
$$u^{-1} = v$$

2.3 Montrer que $v \circ u$ injective implique u injective + montrer que cela n'implique pas v injective.

Démonstration. Soient $(u, v) \in \mathcal{F}(E, F) \times \mathcal{F}(F, G)$.

Supposons $v \circ u$ est injective Soient $(x_1, x_2) \in E^2$ fixés quelconques tels que $u(x_1) = u(x_2)$. Composons par v à gauche : $v \circ u(x_1) = v \circ u(x_2)$ Puisque $v \circ u$ est injective, cela implique que $x_1 = x_2$.

Ici, $v \circ u$ est injective, on a montré que cela impliquait u injective. Pourtant, v n'est pas injective.

2.4 Montrer que $v \circ u$ surjective implique v surjective + montrer que cela n'implique pas u surjective.

Démonstration. Soient $(u, v) \in \mathcal{F}(E, F) \times \mathcal{F}(F, G)$.

Supposons $v \circ u$ est surjective Soit $y \in G$ fixé quelconque. Puisque $v \circ u$ est surjective, $\exists x \in E : (v \circ u)(x) = y$ Donc v(u(x)) = y. Donc, en posant t = u(x), on a v(t) = y. Ainsi, v est surjective.

Ici, $v \circ u$ est surjective, on a montré que cela impliquait v surjective. Pourtant, u n'est pas surjective.

Remarque : Les deux contre contre-exemples exhibés ici sont les mêmes, mais il y en a bien d'autres où $v \circ u$ n'est pas bijective.

2.5 Soit u une application de E dans F. Si A et A' sont des parties de E, y'a-t-il égalité entre $u(A \cap A')$ et $u(A) \cap u(A')$? (On justifiera les réponses aux deux inclusions suggérées par la question)

Démonstration. Soit $u \in \mathcal{F}(E, F)$ fixée quelconque, $(A, A') \in \mathcal{P}(E)^2$, deux parties de E.

 \Diamond Soit $y \in u(A \cap A')$ fixé quelconque. Par définition $\exists x \in (A \cap A') : u(x) = y$. Ainsi, $x \in A \implies u(x) \in u(A)$ $x \in A' \implies u(x) \in u(A')$

$$\left. \begin{array}{l} u(x) \in u(A) \\ u(x) \in u(A') \end{array} \right\} \implies u(x) \in u(A) \cap u(A')$$

Donc $u(A \cap A') \subset u(A) \cap u(A')$.

 $\Diamond\,$ En revanche l'inclusion réciproque est fausse : considérons

$$\begin{array}{c|cccc} & \{1,2,3,4\} & \rightarrow \{a,b,c,d\} \\ 1 & \mapsto a \\ 2 & \mapsto b \\ 3 & \mapsto a \\ 4 & \mapsto d \end{array}$$

Si on choisit $A = \{1, 2\}$ et $A' = \{2, 3\}$.

Alors,
$$u(A) = \{a, b\}$$
, et $u(A') = \{a, b\}$ $u(A \cap A') = u(\{2\}) = \{b\}$ et $u(A) \cap u(A') = \{a, b\} \not\subset \{b\}$

2.6 Montrer que, si u est une application de E dans F. Si B est une partie de F, alors $u^{-1}(F \setminus B) = E \setminus u^{-1}(B)$.

Démonstration. Soit $x \in u^{-1}(F \setminus B)$. Raisonnons par équivalences.

$$x \in u^{-1}(F \setminus B) \iff u(x) \in F \setminus B$$

 $\iff \operatorname{non}(u(x) \in B)$
 $\iff \operatorname{non}(x \in u^{-1}(B))$
 $\iff x \in E \setminus u^{-1}(B)$

2.7 Montrer que, parmi les entiers ne s'écrivant qu'avec des 7, il existe au moins un multiple de 61.

Démonstration. Posons s la suite des entiers tels que $\forall n \in \mathbb{N}^*, s_n = \underbrace{7 \dots 7}_{n \text{ fois}}$. Considérons les 62 premiers termes de la suite.

Puisqu'il y a 61 classes de congruences modulo 61, le principe des tiroirs de Dirichlet nous permet d'affirmer que $\exists (k,l) \in [\![1,62]\!]^2, k < l : s_k \equiv s_l[61].$

Remarquons maintenant que $s_l - s_k \equiv 0$ [61], autrement dit que 61 | $s_l - s_k$. Cependant,

$$s_l - s_k = \underbrace{7 \dots 7}_{l \text{ fois}} - \underbrace{7 \dots 7}_{k \text{ fois}} = \underbrace{7 \dots 7}_{l - k \text{ fois}} \underbrace{0 \dots 0}_{k \text{ fois}} = s_{l-k} \times 10^k$$

Donc $61 \mid 10^k \times s_{l-k}$, mais $\operatorname{pgcd}(61, 10^k) = 1$ donc le théorème de Gauss donne $61 \mid s_{l-k}$. Ainsi, parmi les entiers ne s'écrivant qu'avec des 7, il existe au moins un multiple de 61.

3 Semaine 3

3.1 Preuve de l'inégalité triangulaire et de l'inégalité montrant que le module est 1-lipschitzien + dessin et interprétation géométrique

Pour tout $(z_1, z_2) \in \mathbb{C}^2$,

(i) $|z_1 + z_2| \leq |z_1| + |z_2|$

$$(ii)$$
 $|z_1| - |z_2|$ $\leq |z_1 - z_2|$

Démonstration. Soient $(z_1, z_2) \in \mathbb{C}^2$ fixés quelconques.

 $\Diamond \ {\rm Si} \ z_2 = 0$ l'inégalité est évidente.

Sinon,
$$z_2 \neq 0$$
 alors $|z_1 + z_2| \leq |z_1| + |z_2| \iff \left| 1 + \frac{z_1}{z_2} \right| \leq 1 + \left| \frac{z_1}{z_2} \right|$.
Posons $u = \frac{z_1}{z_2}$

$$|1+u|^2 - (1+|u|)^2 = (1+u)(\overline{1+u}) - (1+2|u| + |u|^2)$$

$$= (1+u)(1+\overline{u}) - 1 - 2|u| - |u|^2$$

$$= u + \overline{u} - 2|u|$$

$$= 2(\operatorname{Re}(u) - u) \le 0$$

♦ Appliquons l'inégalité triangulaire

$$|z_1| = |z_1 - z_2 + z_2| \le |z_1 - z_2| + |z_2| \implies |z_1| - |z_2| \le |z_1 - z_2|$$

Puisque z_1 et z_2 jouent de rôles symétriques on a aussi

$$|z_2| - |z_1| \le |z_2 - z_1| = |z_1 - z_2|$$

Donc

$$\left| |z_1| - |z_2| \right| \leqslant |z_1 - z_2|$$

Figure 1 – Interprétation géométrique de l'inégalité triangulaire.

3.2 Caractérisation du cas d'égalité de l'inégalité triangulaire dans $\mathbb C$

Démonstration.

- \star (\Longrightarrow) Supposons qu'il y ait égalité dans l'inégalité triangulaire
 - \Diamond Si $z_2 = 0$ alors z_1 et z_2 sont positivement liés
 - \Diamond Sinon, $|1+u|^2-(1+|u|)^2=0$ donc $\operatorname{Re}(u)-|u|=0$. Donc $u\in\mathbb{R}_+$, et comme $z_1=uz_2$, alors z_1 et z_2 sont positivement liés.

 \star (\iff) Supposons que z_1 et z_2 sont positivement liés. Alors il existe $\lambda \in \mathbb{R}_+$ tel que $z_1 = \lambda z_2$. Si $z_1 = \lambda z_2$,

$$|z_1 + z_2| = |(\lambda + 1)z_2| = |\lambda + 1||z_2| = (\lambda + 1)|z_2| = \lambda|z_2| + |z_2| = |\lambda z_2| + |z_2| = |z_1| + |z_2|$$

Donc l'inégalité est une égalité.

Si $z_2=\lambda z_1,$ en échangeant les rôles joués par z_1 et z_2 on obtient que l'inégalité est une égalité.

3.3 Calcul de $\sum_{k=0}^{n} \cos(k\theta)$ pour tout $\theta \in \mathbb{R}$

Démonstration. Soit $\theta \in \mathbb{R}$ fixé quelconque, $n \in \mathbb{N}$ fixé quelconque.

$$\begin{split} C_n(\theta) &= \sum_{k=0}^n \cos(k\theta) = \sum_{k=0}^n \mathrm{Re}(e^{ik\theta}) \\ &= \mathrm{Re}\left(\sum_{k=0}^n e^{ik\theta}\right) \\ &= \mathrm{Re}\left(\sum_{k=0}^n (e^{i\theta})^k\right) \text{ par les formules de moivre} \end{split}$$

Ainsi, si $e^{i\theta} = 1 \iff \theta \equiv 0[2\pi],$

$$C_n(\theta) = \text{Re}\left(\sum_{k=0}^{n} (1)^k\right) = \text{Re}(n+1) = n+1$$

Sinon,

$$C_n(\theta) = \operatorname{Re}\left(\frac{1 - (e^{i\theta})^{n+1}}{1 - e^{i\theta}}\right)$$

Simplifions donc ce quotient.

$$\frac{1 - (e^{i\theta})^{n+1}}{1 - e^{i\theta}} = \frac{1 - e^{i\theta(n+1)}}{1 - e^{i\theta}} = \frac{e^{\frac{i\theta(n+1)}{2}} \left(e^{-\frac{i\theta(n+1)}{2}} - e^{\frac{i\theta(n+1)}{2}}\right)}{e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}}\right)}$$

$$= e^{i\frac{\theta n}{2}} \left(\frac{-2i\sin\left(\frac{\theta(n+1)}{2}\right)}{-2i\sin\frac{\theta}{2}}\right)$$

$$= \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\frac{\theta}{2}} \left(\cos\frac{\theta n}{2} + i\sin\frac{\theta n}{2}\right)$$
(\$\black\$)

En prenant la partie réelle de ce résultat, on a

$$C_n(\theta) = \operatorname{Re}\left[\frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\frac{\theta}{2}}\left(\cos\frac{\theta n}{2} + i\sin\frac{\theta n}{2}\right)\right] = \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\frac{\theta}{2}}\cos\frac{n\theta}{2}$$

Donc

$$C_n(\theta) = \begin{cases} n+1 & \text{si } \theta \equiv 0[2\pi] \\ \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\frac{\theta}{2}}\cos\frac{n\theta}{2} & \text{sinon} \end{cases}$$

Remarque En prenant la partie imaginaire de (\clubsuit), on peut retrouver la somme $S_n(\theta)$:

$$S_n(\theta) = \sum_{k=0}^n \sin(k\theta) = \begin{cases} 0 & \text{si } \theta \equiv 0[2\pi] \\ \frac{\sin\left(\frac{\theta(n+1)}{2}\right)}{\sin\frac{\theta}{2}} \sin\frac{n\theta}{2} & \text{sinon} \end{cases}$$

3.4 Si z_0 est racine de la fonction polynômiale P, alors P se factorise par $(z-z_0)$

Soient $n \in \mathbb{N}$, $(a_0, \dots, a_n) \in \mathbb{C}^{n+1}$ et $z_0 \in \mathbb{C}$ Posons pour tout $z \in \mathbb{C}$, $P(z) = \sum_{k=0}^n a_k z^k$ (i) Si $P(z_0) = 0$, alors $\exists Q \in \mathbb{C}[z] : \forall z \in \mathbb{C}$, $P(z) = (z - z_0)Q(z)$

Démonstration. Soit $z \in \mathbb{C}$ fixé quelconque,

$$P(z) = P(z) - P(z_0)$$

$$= \sum_{k=0}^{n} a_k z^k - \sum_{k=0}^{n} a_k z_0^k$$

$$= \sum_{k=0}^{n} a_k (z^k - z_0^k)$$

$$= \sum_{k=1}^{n} \left(a_k (z - z_0) \left(\sum_{j=0}^{k-1} z^j z_0^{k-1-j} \right) \right)$$

$$= (z - z_0) \sum_{k=1}^{n} a_k \left(\sum_{j=0}^{k-1} z^j z_0^{k-1-j} \right)$$

Donc en posant $Q(z) = \sum_{k=1}^{n} a_k \left(\sum_{j=0}^{k-1} z^j z_0^{k-1-j} \right), \in \mathbb{C}[z]$, on a montré que P se factorise.

3.5 Si z_1, \ldots, z_n sont n racines distinctes de la fonction polynômiale P de degré n, alors P(z) se factorise en ...

Démonstration. Soient $n \in \mathbb{N}$ et $(a_0, \dots, a_n) \in \mathbb{C}^n \times \mathbb{C}^*$ fixés quelconques. Posons, pour tout $z \in \mathbb{C}$,

$$P(z) = \sum_{k=0}^{n} a_k z^k \tag{2}$$

Supposons que $(z_1, \ldots, z_n) \in \mathbb{C}^n$ sont n racines deux à deux distinctes de la fonction polynomiale P. Alors, il existe $Q \in \mathbb{C}[z]$ tel que pour tout $z \in \mathbb{C}$,

$$P(z) = Q(z) \prod_{i=1}^{n} (z - z_i)$$

On note d le degré de Q et $(b_0, b_d) \in \mathbb{C}^d \times \mathbb{C}^*$ ses coefficients. On a alors

$$Q(z) = \sum_{k=0}^{d} b_d z^d$$

Ainsi, P(z) s'écrit

$$P(z) = \sum_{k=0}^{d} b_d z^d \prod_{i=1}^{n} (z - z_i) = b_d z^{n+d} + termes \ de \ degr\'e \ inf\'erieur \ \grave{a} \ n + d. \tag{3}$$

Par unicité des coefficients d'une fonction polynomiale, n+d=n (sinon, z^{n+d} aurait un coefficient b_d non nul à droite mais un coefficient nul à gauche).

Donc d=0 d'où Q est une fonction constante de valeur $b_d=b_0$, et en identifiant les termes en z^n de (2) et (3), on obtient $a_n=b_0$. Ainsi, pour tout $z\in\mathbb{C}$,

$$P(z) = a_n \prod_{i=1}^{n} (z - z_i)$$

3.6 Calculer le module et un argument de $z=1+e^{i\theta}$ en fonction de $\theta\in[0,2\pi[$

Démonstration. Soit $\theta \in [0, 2\pi[$

$$z = 1 + e^{i\theta} = e^{i \times 0} + e^{i\theta} = e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}} \right) = 2\cos\frac{\theta}{2} e^{i\frac{\theta}{2}}$$

Cette dernière notation est une notation exponentielle seulement si $2\cos\frac{\theta}{2}\geqslant 0$.

 \star Si $\theta \in [0, \pi[$,

$$\begin{cases} |z| = 2\cos\frac{\theta}{2} \\ \frac{\theta}{2} \in \operatorname{Arg}(z) \end{cases}$$

- \star Si $\theta = \pi$, z = 0 donc |z| = 0
- \star Si $\theta \in]\pi, 2\pi[$,

$$z = 2\cos\frac{\theta}{2}e^{i\frac{\theta}{2}} = -2\left|\cos\frac{\theta}{2}\right|e^{i\frac{\theta}{2}}$$
$$= -2\left|\cos\frac{\theta}{2}\right|e^{i\left(\frac{\theta}{2} + \pi\right)}$$

Donc

$$\begin{cases} |z| = -2|\cos\frac{\theta}{2}| \\ \frac{\theta}{2} + \pi \in \operatorname{Arg}(z) \end{cases}$$

3.7 Résolution des équations algébriques de degré 2 dans \mathbb{C} et algorithme de recherche d'une racine carrée sous forme cartésienne (sur un exemple explicite).

Considérons l'équation algébrique de degré 2 :

$$az^2 + bz + c = 0$$

Où $z \in L$ est l'inconnue et $(a, b, c) \in \mathbb{C}^* \times \mathbb{C}^2$ sont des paramètres. Posons $\Delta = b^2 - 4ac$ que l'on appelle le discriminant de l'équation.

— Si $\Delta = 0$, l'équation admet une unique solution dite double qui est $-\frac{b}{2a}$ et la forme factorisée du trinôme est

$$az^2 + bz + c = a\left(z + \frac{b}{2a}\right)^2$$

— Si $\Delta \neq 0$, notons δ une racine carrée de Δ , l'équation admet deux solutions distinctes $\frac{-b-\delta}{2a}$ et $\frac{-b+\delta}{2a}$ dites simples et la forme factorisée du trinôme est

$$az^{2} + bz + c = a\left(z - \frac{-b - \delta}{2a}\right)\left(z - \frac{-b + \delta}{2a}\right)$$

 $D\acute{e}monstration.$ La preuve est immédiate à partir de la forme canonique du trinôme du second degré :

La preuve est immédiate à partir de la forme canonique du trinôme du second degré :

$$az^{2} + bz + c = a \left[\underbrace{z^{2} + \frac{b}{a}z}_{\text{But : Absorber ces termes dans un carr\'e}} + \frac{c}{a} \right] = a \left[z^{2} + 2\frac{b}{2a}z + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} \right]$$
$$= a \left[\left(z + \frac{b}{2a} \right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} \right]$$

$$= a \left[\left(z + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right]$$
$$= a \left[\left(z + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$

— Si
$$\Delta = 0$$

$$az^2 + bz + c = a\left(z - \frac{-b}{2a}\right)^2$$

de sorte que

$$az^2 + bz + c = 0 \iff a\left(z - \frac{-b}{2a}\right)^2 = 0 \iff z = -\frac{b}{2a}$$

— Sinon

$$az^{2} + bz + c = a\left[\left(z + \frac{b}{2a}\right)^{2} - \left(\frac{\delta}{2a}\right)^{2}\right] = a\left(z + \frac{b}{2a} - \frac{\delta}{2a}\right)\left(z + \frac{b}{2a} + \frac{\delta}{2a}\right)$$
$$= a\left(z - \frac{-z + \delta}{2a}\right)\left(z - \frac{-z - \delta}{2a}\right)$$

de sorte que

$$az^{2} + bz + c = 0 \iff a\left(z - \frac{-z + \delta}{2a}\right)\left(z - \frac{-z - \delta}{2a}\right) = 0$$

$$\iff \begin{cases} z - \frac{-z - \delta}{2a} = 0\\ \text{ou}\\ z - \frac{-z + \delta}{2a} = 0\\ \text{ou}\\ z = \frac{-z - \delta}{2a}\\ \text{ou}\\ z = \frac{-z + \delta}{2a} \end{cases}$$

3.8 Décrire (avec preuve) l'ensemble des racines *n*-ièmes de l'unité et les localiser géométriquement dans le plan complexe.

Pour tout $n \in \mathbb{N}^* \setminus \{1\}$,

$$\mathbb{U}_n = \left\{ e^{\frac{2ik\pi}{n}} \mid k \in \llbracket 0, n-1 \rrbracket \right\}$$

 $D\acute{e}monstration.$ — Description de l'ensemble \mathbb{U}_n

$$\begin{cases} z^{n} = 1 \\ z \in \mathbb{C} \end{cases} \iff \begin{cases} z^{n} = 1 \\ z \in \mathbb{C}^{*} \end{cases} \text{ ou } \begin{cases} z^{n} = 1 \\ z = 0 \end{cases}$$

$$\iff \begin{cases} \rho^{n} e^{in\theta} = 1 \\ z = \rho e^{i\theta} \\ (\rho, \theta) \in \mathbb{R}_{+}^{*} \times \mathbb{R} \end{cases}$$

$$\iff \begin{cases} \rho^{n} = 1 \\ n\theta \equiv 0[2\pi] \\ z = \rho e^{i\theta} \\ (\rho, \theta) \in \mathbb{R}_{+}^{*} \times \mathbb{R} \end{cases}$$

$$\iff \begin{cases} \rho = 1 \text{ car } \rho > 0 \\ \theta \equiv 0 \left[\frac{2\pi}{n}\right] \\ z = \rho e^{i\theta} \\ (\rho, \theta) \in \mathbb{R}_{+}^{*} \times \mathbb{R} \end{cases}$$

$$\iff \begin{cases} \rho = 1 \\ \exists k \in \mathbb{Z} : \theta = \frac{2k\pi}{n} \\ z = \rho e^{i\theta} \\ (\rho, \theta) \in \mathbb{R}_{+}^{*} \times \mathbb{R} \end{cases}$$

$$\iff \exists k \in \mathbb{Z} : z = e^{\frac{2ik\pi}{n}}$$

$$\iff z \in \left\{ e^{\frac{2ik\pi}{n}} \mid k \in \mathbb{Z} \right\}$$

L'ensemble des solutions est paramétré par l'entier k qui parcourt un ensemble infini. Toutefois, en représentant graphiquement les solutions, il semblerait que "tous les n", on fait un tour de cercle trigonométrique de plus, en redécrivant les solutions déjà obtenues pour $k \in [0, n-1]$.

Localisation géométrique

- \star \mathbb{U}_3 est l'ensemble des sommets du triangle équilatéral inscrit dans le cercle unité, et dont 1 est l'un des sommets
- * \mathbb{U}_4 est l'ensemble des sommets du carré inscrit dans le cercle unité et dont 1 est l'un des sommets. Le côté du carré vaut $|1-i|=\sqrt{2}$.
- $\star~\mathbb{U}_5$ est l'ensemble des sommets du pentagone régulier inscrit dans le cercle unité et dont 1 est l'un des sommets.

FIGURE 2 – Racines cubiques de l'unité.

FIGURE 3 – Racines 5^{èmes} de l'unité.

3.9 Somme et Produit des racines n-ièmes

Démonstration.

 \Diamond **Méthode 1**: En utilisant les relations coefficients racines. \mathbb{U}_n sont les n racines disctinctes de z^n-1

$$S_n = -\frac{1}{\text{coefficient dominant}} \times (\text{coefficient de } z^{n-1} \text{ dans } z^n - 1) = \begin{cases} -0 & \text{si } n \geq 2 \\ -(-1) & \text{sinon} \end{cases}$$

$$P_n = (-1)^n \frac{\text{coefficient constant}}{\text{coefficient dominant}} = (-1)^n \times \frac{-1}{1} = (-1)^{n+1}$$

♦ Méthode 2 : Manipulation des symboles sommatoires

$$S_n = \sum_{\omega \in \mathbb{U}_n} \omega = \sum_{k=0}^{n-1} \omega_0^k$$

$$= \begin{cases} 1 & \text{si } n = 1 \\ 1 \times \frac{1 - \omega_0^n}{1 - \omega_0} & \text{sinon} \end{cases}$$

Puisqu'on ne peut appliquer la formule de la somme des termes d'une suite géométrique seulement si $\omega_0=1\iff e^{\frac{2i\pi}{n}}=1\iff \frac{2\pi}{n}\equiv 0[2\pi]\iff n=1$ De même

$$P_n = \prod_{\omega \in \mathbb{U}_n} \omega = \prod_{k=0}^{n-1} \omega_0^k = \omega_0^{\sum_{k=0}^{n-1} k} = \omega_0^{\frac{n(n-1)}{2}}$$

$$= \begin{cases} (\omega_0^n)^{\frac{n-1}{2}} = 1^{\frac{n-1}{2}} = 1 & \text{si } n \equiv 1[2] \\ e^{\frac{2i\pi n(n-1)}{2n}} = e^{i\pi(n-1)} = (-1)^{n-1} \\ = (-1)^{n-1} \end{cases}$$

[non demandée] Factorisation d'une fonction polynomiale connais-

Soient $n \in \mathbb{N}$, $(a_0, \dots, a_n) \in \mathbb{C}^{n+1}$ et $z_0 \in \mathbb{C}$. Posons pour tout $z \in \mathbb{C}$, $P(z) = \sum_{k=0}^{n} a_k z^k$.

sant p racines.

(i) Si $\exists p \in \mathbb{N}^* : \exists (z_1, \dots, z_p) \in \mathbb{C}^p$ deux à deux distincts tels que $\forall k \in [1, p], P(z_k) = 0$ alors, $\exists Q \in \mathbb{C}[x] : \forall z \in \mathbb{C}, P(z) = Q(z) \times \prod_{k=1}^p (z - z_k).$

Démonstration. Considérons la propriété $\mathcal{P}(\cdot)$ définie pour tout $p \in \mathbb{N}^*$ par

$$\mathcal{P}(p): \forall P \in \mathbb{C}[z], (\exists (z_1, \dots, z_p) \in \mathbb{C}^p, \ 2 \text{ à } 2 \text{ distincts } : \forall i \in [1, p], P(z_i) = 0)$$

$$\implies \exists Q \in \mathbb{C}[z] : P(z) = Q(z) \prod_{i=1}^{p} (z - z_i)$$

- $\Diamond \mathcal{P}(1)$ est vraie d'après la preuve précédente.
- \Diamond Soit $p \in \mathbb{N}^*$ fixé quelconque tel que $\mathcal{P}(p)$ est vraie. Soit $P \in \mathbb{C}[z]$ fixés quelconques tels que $\exists (z_1, \dots, z_{p+1}) \in \mathbb{C}^{p+1}$ deux à deux distincts tels que $\forall i \in [1, p+1], P(z_i) = 0$.

Appliquons
$$\mathcal{P}(p)$$
 à $P \in \mathbb{C}[z]$ dont (z_1, \ldots, z_p) sont les p racines deux à deux distinctes.

$$\exists Q_1 \in \mathbb{C}[z] : \forall z \in \mathbb{C}, P(z) = Q_1(z) \prod_{i=1}^p (z - z_i)$$

Évaluons cette expression en \boldsymbol{z}_{p+1}

$$\underbrace{P(z_{p+1})}_{=0} = Q_1(z_{p+1}) \prod_{i=1}^{p} \underbrace{(z_{p+1} - z_i)}_{\neq 0 \text{ car distincts}}$$

Donc $Q_1(z_{p+1})=0$, ce qui permet d'appliquer (i) pour $P\leftarrow Q_1,\,z_0\leftarrow z_{p+1}.$

$$\exists Q \in \mathbb{C}[z] : \forall z \in \mathbb{C}, Q_1(z) = (z - z_{p+1})Q(z)$$

 Donc

$$\forall z \in \mathbb{C}, P(z) = (z - z_{p+1})Q(z) \prod_{i=1}^{p} (z - z_i) = Q(z) \prod_{i=1}^{p+1} (z - z_i)$$

Donc $\mathcal{P}(p+1)$ est vraie.

4 Semaine 4

4.1 Montrer que l'ensemble des similitudes directes du plan complexe est un groupe pour la composition (la preuve de la bijectivité des similitudes fait partie de la question).

Démonstration. Soient s et s' deux similitudes directes. Alors, il existe $(a,a',b,b') \in (\mathbb{C}^*)^2 \times \mathbb{C}^2$ tels que

$$s: z \longmapsto az + b$$
 et $s': z \longmapsto a'z + b'$

 $\star \ s \circ s' : z \longmapsto a(a'z+b') + b = \underbrace{aa'}_{\in \mathbb{C}^*} z + \underbrace{ab' + b}_{\in \mathbb{C}} \text{ donc } s \circ s' \text{ est une similitude directe.}$

Ainsi, la composition est une LCI sur l'ensemble des similitudes directes.

- \star La composition est associative
- \star La composition admet $id_{\mathbb{C}}:z\longmapsto 1z+0$ (qui est une similitude) comme neutre.
- ★ Les similitudes directes sont des bijection du plan complexe car si f est une similitude directe $(f:z \longmapsto az + b \text{ avec } (a,b) \in \mathbb{C} * \times \mathbb{C})$, pour tout $u \in \mathbb{C}$, l'équation d'inconnue $z \in \mathbb{C}$

$$f(z) = u \iff az + b = u \iff z = \frac{1}{a}u - \frac{b}{a}$$

admet une unique solution. De plus, la bijection réciproque f^{-1} d'une similitude directe f (vérifiant $f \circ f^{-1} = f^{-1} \circ f = id_{\mathbb{C}}$) est une similitude directe.

Ainsi, toute similitude directe est symétrisable pour la loi de composition.

L'ensemble des similitudes directes du plan complexe muni de la loi de composition est donc bien un groupe. \Box

4.2 Classifier et interpréter une similitude directe donnée sous la forme $z\mapsto az+b$ sur un exemple, donner l'expression complexe d'une similitude dont on connaît les éléments caractéristiques.

 $D\acute{e}monstration.$ Soient $(a,b)\in\mathbb{C}^*$ fixés quelconques. Posons la similitude

$$s \mid \begin{array}{cc} \mathbb{C} & \to \mathbb{C} \\ z & \mapsto az + b \end{array}$$

- $\Diamond \ \, {\rm Si} \,\, a=1,$ c'est la translation de vecteur d'affixe b.
- \Diamond Si $a \neq 1$, s admet un unique point fixe appelé « centre de la similitude » $\omega = \frac{b}{1-a}$
 - \star Si $a \in \mathbb{R}^*$, s est l'homotétie de centre ω et de rapport a.
 - \star Si $a \in (\mathbb{C}^* \setminus \mathbb{R})$, s est la composée de :
 - La rotation de centre ω et d'angle α , où α est un argument de a.
 - L'homotétie de centre ω et de rapport |a|.

On nommera alors |a| le rapport de s et α une mesure de l'angle de s.

Exemple: Prenons la similitude $s: z \mapsto (1-i)z - 1$.

$$s(z) = z \iff (1 - i)z - 1 = z$$
$$\iff -iz = 1$$
$$\iff z = i$$

De plus,

$$(1-i)z - 1 = \sqrt{2}e^{-i\frac{\pi}{4}}z - 1$$

On en déduit que s est la similitude directe de centre d'affixe i, de rapport $\sqrt{2}$, et d'angle $-\frac{\pi}{4}$. \square

4.3 Résolution de $e^z = z_0$ où $z_0 \in \mathbb{C}^*$

L'exponentielle complexe a pour image \mathbb{C}^* et, pour tout $z_0 \in \mathbb{C}^*$,

$$\exp_{\mathbb{C}}^{-1}(\{z_0\}) = \{\ln|z_0| + i\theta_0 + 2ik\pi \mid k \in \mathbb{Z}\}\$$

où $\theta_0 \in \arg(z_0)$

Démonstration. La propriété : $\forall z \in \mathbb{C}$, $|e^z| = |e^{\operatorname{Re}(z)}| > 0$ montre que $0 \notin \exp_{\mathbb{C}}(\mathbb{C})$. $z_0 \neq 0$ donc $\exists \theta_0 \in \arg(z_0) : z_0 = |z_0|e^{i\theta_0}$. Résolvons l'équation d'inconnue $z \in \mathbb{C}$

$$\exp_{\mathbb{C}}(z) = z_0 \iff e^{\operatorname{Re}(z)} e^{i\operatorname{Im}(z)} = |z_0| e^{i\theta_0}$$

$$\iff \begin{cases} e^{\operatorname{Re}(z)} = |z_0| \\ \text{et} \\ \operatorname{Im}(z) \equiv \theta_0[2\pi] \end{cases}$$

$$\iff \begin{cases} \operatorname{Re}(z) = \ln|z_0| \\ \text{et} \\ \operatorname{Im}(z) \equiv \theta_0[2\pi] \end{cases}$$

$$\iff z \in \{\ln|z_0| + i\theta_0 + 2ik\pi \mid k \in \mathbb{Z} \}$$

4.4 Montrer l'unicité de l'élément neutre et du symétrique d'un élément sous des hypothèses sur la loi à préciser.

Démonstration.

♦ Unicité de l'élément neutre bilatère

Soient $(e_1,e_2) \in E^2$ fixés quel conques tels que $\left\{ \begin{array}{l} \forall x \in E, x*e_1 = e_1*x = x \\ \forall x \in E, x*e_2 = e_2*x = x \end{array} \right.$ Particularisons la première relation pour $x \leftarrow e_2$:

$$e_2 * e_1 = e_1 * e_2 = e_2$$

En particularisant de même la deuxième relation pour $x \leftarrow e_1$:

$$e_1 * e_2 = e_2 * e_1 = e_1$$

D'où, par transitivité de l'égalité : $e_1 = e_2$

 \Diamond Unicité du symétrique sous réserve d'existence (LCI associative d'unité e). Soit $a\in E$ symétrisable

$$\exists z \in E: a*z = z*a = e$$

Fixons un tel z pour la suite de la preuve

- L'ensemble $\{y \in E \mid a * y = y * a = e\}$ n'est pas vide puisqu'il contient z.
- Soit $b \in \{y \in E \mid a * y = y * a = e\}$ fixé quelconque. Alors

$$a*b = e \implies z*(a*b) = z*e$$

$$\implies \underbrace{z*a}_{e}*b = z*e \text{ par associativit\'e}$$

$$\implies b = z$$

Donc l'ensemble $\{y \in E \mid a * y = y * a = e\}$ contient au plus un élément neutre, qui est z.

4.5 Preuve de la caractérisation d'un sous-groupe, application au fait que (\mathbb{U}_n, \times) est un sous-groupe de (\mathbb{U}, \times) .

Soit (G,*) un groupe, et H une partie de G

$$H$$
 est un sous-groupe de $G\iff \left\{\begin{array}{l} H\neq\emptyset\\ \forall (x,y)\in H^2, x*y^{-1}\in H \end{array}\right.$

Démonstration.

 \star Supposons que H est un sous-groupe de G. Par définition d'un sous-groupe, $H \neq \emptyset$. Soient $(x,y) \in H^2$ fixés quelconques.

H est un sous-groupe donc y est symétrisable dans $H: y^{-1} \in H$.

De plus, c'est un groupe, donc stable pour la loi *, donc $x * y^{-1} \in H$

П

$$\star \ \text{Supposons que} \ \left\{ \begin{array}{ll} H \neq \emptyset & (1) \\ \forall (x,y) \in H^2, x * y^{-1} \in H & (2) \end{array} \right.$$

- $\Diamond\ H$ est non vide par hypothèse
- \Diamond Puisque $H \neq \emptyset$, $\exists h \in H$.

Ainsi, en appliquant (2) pour $(x,y) \leftarrow (h,h)$, on obtient $h*h^{-1} \in H$ donc H possède un élément neutre e.

 \Diamond Soient $(x,y) \in H^2$ fixés quelconques. $y \in H$ permet d'appliquer (2) pour $(x,y) \leftarrow (y,e)$:

$$e * y^{-1} \in H$$

Donc $y^{-1} \in H$. Ainsi, tout élément est symétrisable dans H

 \Diamond Soient $(x,y) \in H^2$ fixés quelconques. On a montré que y est symétrisable dans H, donc en appliquant (2) pour $x \leftarrow x$ et $y \leftarrow y^{-1}$:

$$x * (y^{-1})^{-1} \in H \implies x * y \in H$$

Donc H est stable pour la loi H.

Donc H est un sous-groupe de G.

Application aux racines n-ièmes de l'unité

Soit $n \in \mathbb{N}^*$ fixé quelconque

- $\star \ \forall z \in \mathbb{U}_n, z^n = 1 \text{ donc } 1 = |z^n| = |z|^n. \text{ Or } |z| \geqslant 0 \text{ donc } |z| = 1, \text{ si bien que } \mathbb{U}_n \subset \mathbb{U}$
- $\star \mathbb{U}_n \neq \emptyset \text{ car } 1 \in \mathbb{U}_n$
- \star Soient $(z_1,z_2)\in \mathbb{U}_n$ fixés quel
conques. Calculons

$$(z_1 z_2^{-1})^n = \left(\frac{z_1}{z_2}\right)^n = \frac{z_1^n}{z_2^n} = \frac{1}{1} = 1$$

Donc $z_1z_2^{-1} \in \mathbb{U}_n$. On a donc montré que $(\mathbb{U}_{n,\times})$ est un sous-groupe de (\mathbb{U},\times) .

4.6 Si φ est un morphisme de groupes de G_1 de neutre e_1 dans G_2 de neutre e_2 , calculer $\varphi(e_1)$ et $\varphi(x^{-1})$

Démonstration.

 \star Soit f un morphisme de groupe de (G_1,\ast_1) dans (G_2,\ast_2)

D'une part $f(e_1 *_1 e_1) = f(e_1)$.

D'autre part, par propriété de morphisme, $f(e_1 *_1 e_1) = f(e_1) *_2 f(e_1)$, donc

$$f(e_1) *_2 f(e_1) = f(e_1)$$

Si l'on compose à gauche par $f(e_1)^{-1}$,

$$f(e_1)^{-1} *_2 f(e_1) *_2 f(e_1) = f(e_1)^{-1} *_2 f(e_1) \implies f(e_1) = e_2$$

 \star Soit $x \in G_1$ fixé quelconque.

$$f(x) *_{2} f(x^{-1}) = f(x *_{1} x^{-1}) = f(e_{1}) = e_{2}$$

Composons les deux membres à gauche par $f(x)^{-1}$:

$$f(x)^{-1} *_2 f(x) *_2 f(x^{-1}) = f(x)^{-1} *_2 *_{e_2}$$

Donc

$$f(x^{-1}) = f(x)^{-1}$$

4.7 Montrer que l'image directe d'un sous-groupe par un morphisme de groupes est un sous-groupe du groupe d'arrivée

Démonstration. Soit f un morphisme de groupe de $(G_1, *_1)$ dans $(G_2, *_2)$. Notons e_1 et e_2 les neutres respectifs de G_1 et G_2 .

Soit H_1 un sous-groupe de G_1 fixé quelconque

- $\star f(H_1)$ est par définition une partie de G_2 .
- * $f(H_1) \neq \emptyset$ car H_1 est un groupe qui contient e_1 et $f(e_1) = e_2$ donc $e_2 \in f(H_1)$.
- * Soient $(g_2, h_2) \in f(H_1)^2$ fixés quelconques, alors $\exists (g_1, h_1) \in H_1 : f(g_1) = g_2$ et $f(h_1) = h_2$. Par conséquent,

$$g_2 *_2 h_2^{-1} = f(g_1) *_2 f(h_1^{-1}) = f(\underbrace{g_1 *_1 h_1^{-1}}_{\in H_1 \text{ car sous-groupe de } G_1})$$

Ainsi, $g_2 *_2 h_2^{-1} \in f(H_1)$ d'où $f(H_1)$ est un sous-groupe de G_2

4.8 Montrer que l'image réciproque par un morphisme de groupes d'un sous-groupe est toujours un sous-groupe du groupe de départ,

Démonstration. Soit f un morphisme de groupe de $(G_1, *_1)$ dans $(G_2, *_2)$. Notons e_1 et e_2 les neutres respectifs de G_1 et G_2 .

Soit H_2 un sous-groupe de G_2 fixé quelconque.

- $\star f^{-1}(H_2)$ est par définition une partie de G_1 .
- * $f(H_2) \neq \emptyset$ car H_2 est un groupe qui contient e_2 et $f(e_1) = e_2$ donc $e_1 \in f^{-1}(H_2)$.
- \star Soient $(g_1,h_1)\in f^{-1}(H_2)^2$ fixés quel
conques, alors $f(g_1)\in H_2$ et $f(h_1)\in H_2$, donc

$$f(g_1 *_1 h_1^{-1}) = \underbrace{f(g_1)}_{\in H_2} *_2 \underbrace{f(h_1)^{-1}}_{\in H_2} \in H_2$$
 car c'est un sous-groupe

Ainsi, $f(g_1 *_1 h_1^{-1}) \in H_2$ d'où $g_1 *_1 h_1^{-1} \in f^{-1}(H_2)$ $f^{-1}(H_2)$ est donc un sous-groupe de G_1 .

- \triangleright **Application 1 :** Le noyau d'un morphisme est un sous-groupe. Le noyau, noté ker f est par définition égal à $f^{-1}(\{e_2\})$ c'est donc un sous-groupe de G_1 .
- \triangleright **Application 2 :** Pour tout $n \in \mathbb{N}$, l'application

$$\phi_n \mid \begin{array}{ccc} (\mathbb{C}^*, \times) & \to (\mathbb{C}^*, \times) \\ z & \mapsto z^n \end{array}$$

est un morphisme de groupes. Son noyau est $\ker \phi_n = \{z \in \mathbb{C}^* | z^n = 1\} = \mathbb{U}_n$.

D'après l'application 1, ker ϕ_n est un sous-groupe de (\mathbb{C}^*, \times) , donc (\mathbb{U}_n, \times) est un sous-groupe de (\mathbb{C}^*, \times) .

4.9 [non demandée] Montrer que l'ensemble des similitudes directes du plan complexe est un groupe pour la composition (démonstration alternative)

Démonstration. Montrons donc que (S, \circ) est un sous-groupe de $(S(\mathbb{C}), \circ)$

- \Diamond D'une part, $S \subset \mathcal{S}(\mathbb{C})$. Or l'ensemble des permutations $(\mathcal{S}(\mathbb{C}), \circ)$ est un groupe. En effet, les similitudes sont des bijections de $\mathbb{C} \to \mathbb{C}$.
- \Diamond De plus, S est non vide, par exemple l'application $\mathrm{Id}(\mathbb{C})$ est une similitude pour $a\leftarrow 1$ et $b\leftarrow 1$.
- \Diamond Prenons finalement a et c dans \mathbb{C}^* puis b et d dans \mathbb{C} , et posons les deux applications suivantes :

$$s \mid \begin{array}{ccc} \mathbb{C} & \to \mathbb{C} \\ z & \mapsto az + b \end{array} \quad \text{et } s' \mid \begin{array}{ccc} \mathbb{C} & \to \mathbb{C} \\ z & \mapsto az + b \end{array}$$

Ainsi, comme toute similitude directe est une bijection, en particulier s' en est une, et

$$s'^{-1} \mid \begin{array}{cc} \mathbb{C} & \to \mathbb{C} \\ z & \mapsto \frac{z}{c} - \frac{d}{c} \end{array}$$

Soit $z \in \mathbb{C}$ fixé quel conque :

$$(s \circ s'^{-1})(z) = s(s'^{-1}(z))$$

$$= s\left(\frac{z}{c} - \frac{d}{c}\right)$$

$$= a\left(\frac{z}{c} - \frac{d}{c}\right) + b$$

$$= \frac{a}{c}z + \left(b - \frac{ad}{c}\right)$$

Qui est une similitude directe, puisque $\frac{a}{c} \neq 0$ donc $s \circ s'^{-1} \in S$. Donc (S, \circ) est bien un sous-groupe de $(S(\mathbb{C}), \circ)$.

5 Semaine 5

5.1 Montrer que l'ensemble des similitudes directes du plan complexe est un groupe pour la composition

Démonstration. Montrons donc que (S, \circ) est un sous groupe de $(S(\mathbb{C}), \circ)$

- \Diamond D'une part, $S \subset \mathcal{S}(\mathbb{C})$. Or l'ensemble des permutations $(\mathcal{S}(\mathbb{C}), \circ)$ est un groupe. En effet, les similitudes sont des bijections de $\mathbb{C} \to \mathbb{C}$.
- \Diamond De plus, S est non vide, par exemple l'application $\mathrm{Id}(\mathbb{C})$ est une similitude pour $a\leftarrow 1$ et $b\leftarrow 1$.
- \Diamond Prenons finalement a et c dans \mathbb{C}^* puis b et d dans \mathbb{C} . et posons les deux applications suivantes :

$$s \mid \begin{array}{ccc} \mathbb{C} & \to \mathbb{C} \\ z & \mapsto az + b \end{array} \quad \text{et } s' \mid \begin{array}{ccc} \mathbb{C} & \to \mathbb{C} \\ z & \mapsto az + b \end{array}$$

Ainsi, comme toute similitude directe est une bijection, en particulier s' en est une, et

$$s'^{-1} \mid \mathbb{C} \to \mathbb{C}$$

$$z \mapsto \frac{z}{c} - \frac{d}{c}$$

Soit $z \in \mathbb{C}$ fixé quel conque :

$$(s \circ s'^{-1})(z) = s(s'^{-1}(z))$$

$$= s\left(\frac{z}{c} - \frac{d}{c}\right)$$

$$= a\left(\frac{z}{c} - \frac{d}{c}\right) + b$$

$$= \frac{a}{c}z + \left(b - \frac{ad}{c}\right)$$

Qui est une similitude directe, puisque $\frac{a}{c} \neq 0$ donc $s \circ s'^{-1} \in S$. Donc (S, \circ) est bien un sous-groupe de $(S(\mathbb{C}), \circ)$.

5.2 Classifier et interpréter une similitude directe donnée sous la forme $z\mapsto az+b$ sur un exemple, donner l'expression complexe d'une similitude dont on connaît les éléments caractéristiques.

Démonstration. Soient $(a,b) \in \mathbb{C}^*$ fixés quelconques. Posons la similitude

$$s \mid \begin{array}{cc} \mathbb{C} & \to \mathbb{C} \\ z & \mapsto az + b \end{array}$$

- \Diamond Si a=1, c'est la translation de vecteur d'affixe b
- \Diamond Si $a \neq 1$, s admet un unique point fixe appelé "centre de la similitude" $\omega = \frac{b}{1-b}$
 - \star Si $a \in \mathbb{R}^*,$ s est l'homotétie de centre ω et de rapport a.
 - \star Si $a \in (\mathbb{C}^* \setminus \mathbb{R}), s$ est la composée de
 - La rotation de centre ω et d'angle α , où α est un argument de a.
 - L'homotétie de centre ω et de rapport |a|.

On nommera alors |a| le rapport de s et α une mesure de l'angle de s.

Exemple: Prenons la similitude $s: z \mapsto (1-i)z - 1$.

$$s(z) = z \iff (1 - i)z - 1 = z$$
$$\iff -iz = 1$$
$$\iff z = i$$

De plus,

$$(1-i)z - 1 = \sqrt{2}e^{-i\frac{\pi}{4}}z - 1$$

On en déduit donc que s est la similitude directe de centre d'affixe i, de rapport $\sqrt{2}$, et d'angle $-\frac{\pi}{4}$.

5.3 Montrer qu'une combinaison linéaire de deux fonctions bornées (respectivement lipschitziennes) est bornée (resp. lipschitzienne)

 $D\acute{e}monstration$. Soit I un intervalle réel.

Soient f et g deux fonctions de I dans \mathbb{R} . Soient $(\lambda, \mu) \in \mathbb{R}^2$

 \Diamond Si f et g sont respectivement bornées par A et par B. Soit $x \in I$.

$$\left| (\lambda . f + \mu . g)(x) \right| = \left| \lambda . f(x) + \mu . g(x) \right|$$

$$\leq \left| \lambda \right| \left| f(x) \right| + \left| \mu \right| \left| g(x) \right|$$

$$\leq \left| \lambda \right| A + \left| \mu \right| B$$

Donc $\lambda . f + \mu . g$ est bornée.

 $\Diamond \mbox{ Si } f$ et g sont respectivement K et L lipschitziennes. Soient $(x,y) \in I^2.$

$$\begin{aligned} \left| (\lambda . f + \mu . g)(x) - (\lambda . f + \mu . g)(y) \right| &= \left| \lambda . f(x) + \mu . g(x) - \lambda . f(y) - \mu . g(y) \right| \\ &= \left| \lambda (f(x) - f(y)) + \mu (g(x) - g(y)) \right| \\ &\leq \left| \lambda \left| \left| f(x) - f(y) \right| + \left| \mu \right| \left| g(x) - g(y) \right| \\ &\leq \left| \lambda \left| K \right| x - y \right| + \left| \mu \left| L \right| x - y \right| \\ &\leq (|\lambda| K + |\mu| L)|x - y| \end{aligned}$$

6 Semaine 6

6.1 Montrer que si f est impaire et bijective, alors f^{-1} est aussi impaire. Donnez un/des exemples.

Démonstration. Soit $f: I \to F$, avec I, F deux parties non-vides de \mathbb{R} , une telle fonction et notons f^{-1} sa bijection réciproque. Si f est impaire sur I, alors pour tout $x \in I$, $-x \in I$, ainsi I est centré en 0 et on a :

$$\forall x \in I, \ f(-x) = -f(x).$$

Ainsi, prenons $y \in F$, alors $-y \in F$ par imparité et bijectivité de f. On a donc :

$$f^{-1}(-y) = f^{-1}(-f(f^{-1}(y)))$$

= $f^{-1}(f(-f^{-1}(y)))$
= $-f^{-1}(y)$.

D'où l'imparité de f^{-1} .

Pour ce qui est de l'exemple, prenons notre fonction bijective impaire préférée, la fonction $\sin | \frac{[-1,1]}{[-\frac{\pi}{2},\frac{\pi}{2}]}$ que l'on notera $\widetilde{\sin}$. Sa bijection réciproque est bien entendu arcsin : $[-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$.

De la même manière que dans la démonstration du cas général, prenons $y \in [-1, 1]$, comme [-1, 1] est centré en $0, -y \in [-1, 1]$, on a dès lors :

$$\begin{array}{rcl} \arcsin(-y) & = & \arcsin(-\widetilde{\sin}(\arcsin(y))) \\ & = & \arcsin(\widetilde{\sin}(-\arcsin(y))) \\ & = & -\arcsin(y). \end{array}$$

6.2 Limite (et preuve) lorsque x tend vers $+\infty$ de $\frac{(\ln x)^{\alpha}}{x^{\beta}}$ pour $\alpha, \beta \in \left(\mathbb{R}_{+}^{*}\right)^{2}$.

Démonstration. Premièrement, posons :

$$\forall (x,\alpha,\beta) \in [1,+\infty[\times \left(\mathbb{R}_+^*\right)^2, \quad f_{\alpha,\beta}(x) = \frac{(\ln x)^\alpha}{r^\beta}.$$

Deuxièmement, montrons que :

$$\frac{\ln(x)}{x^2} \xrightarrow[n \to +\infty]{} 0.$$

Soit $x \in [1, +\infty[$ = \mathcal{A} . Nous savons que la fonction ln est concave sur \mathbb{R}_+^* , donc en particulier sur \mathcal{A} . Ainsi, ln est en dessous de toutes ses tangentes, d'où :

$$\forall x \in \mathcal{A}, \quad 0 \le \ln(x) \le x - 1.$$

Illustration de l'inégalité :

Figure 1. ln en rouge et la première bissectrice en bleu.

On peut alors diviser par x^2 (car $x \neq 0$):

$$\forall x \in \mathcal{A}, \quad 0 \leq \underbrace{\frac{\ln(x)}{x^2}}_{f_{1,2}(x)} \leq \underbrace{\frac{1}{x}}_{x \to +\infty} - \underbrace{\frac{1}{x^2}}_{x \to +\infty}.$$

Donc par théorème d'encadrement $f_{1,2}(x) \xrightarrow[x \to +\infty]{} 0$.

Dernièrement, le cas général. Soit $x \in \mathcal{A}$ et soient $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$. On fait une preuve directe.

$$\frac{(\ln(x))^{\alpha}}{x^{\beta}} = \left(\frac{\ln(x)}{x^{\frac{\beta}{\alpha}}}\right)^{\alpha}$$

$$= \underbrace{\left(\frac{2\alpha}{\beta}\right)^{\alpha}}_{c^{\frac{te}{\alpha}}} \cdot \underbrace{\left[\frac{\ln\left(x^{\frac{\beta}{2\alpha}}\right)}{\left(x^{\frac{\beta}{2\alpha}}\right)^{2}}\right]_{x \to +\infty}^{\alpha}}_{\text{par composition des limites}}.$$

$$\xrightarrow[x \to +\infty]{\text{par produit}}$$

6.3 Limite en 0 de $\frac{1-\cos(x)}{x^2}$ et limite en $+\infty$ suivant n de $\frac{(q^n)^{\alpha}}{(n!)^{\beta}}$ pour $q \in \mathbb{R}$ et $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$.

 $D\'{e}monstration.$

Montrons que $\frac{1-\cos(x)}{x^2} \xrightarrow[x\to 0]{} \frac{1}{2}$.

On fait toujours une preuve directe.

$$\lim_{x \to 0} \ \frac{1 - \cos(x)}{x^2} \quad = \quad \lim_{x \to 0} \ \frac{1 - \cos\left(\frac{2x}{2}\right)}{x^2}$$

$$= \lim_{x \to 0} \frac{1 - \left(1 - 2\sin^2\left(\frac{x}{2}\right)\right)}{x^2}$$

$$= \lim_{x \to 0} \frac{2\sin^2\left(\frac{x}{2}\right)}{4\left(\frac{x}{2}\right)^2}$$

$$= \lim_{x \to 0} \underbrace{\frac{1}{2} \cdot \underbrace{\left(\frac{\sin\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)}\right)^2}_{c^{\frac{te}{2}}} \underbrace{\left(\frac{\sin\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)}\right)^2}_{\text{par composition}}}_{\text{par produit}}$$

$$= \frac{1}{2}$$

Trouvons la limite, sous réserve d'existence, de $\frac{(q^n)^{\alpha}}{(n!)^{\beta}}$ pour $q \in \mathbb{R}$ et $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$ suivant $n \in \mathbb{R}$ et (α, β) en $(-\infty, \beta)$ suivant (α, β) et $(-\infty, \beta)$ suivant $(-\infty, \beta)$

Remarquons que si $q \leq 0$, il est **nécessaire** d'avoir $\alpha \in \mathbb{Z}^*$ sinon l'expression n'a tout simplement **aucun sens**. De fait, on supposera q > 0 tout le long, les cas q < 0 se font naturellement (convergence pour $q \in \mathbb{R}_-$).

Soit donc 0 < q < 1, ce cas est immédiat, $((q^n)^\alpha)_{n \in \mathbb{N}} = ((q^\alpha)^n)_{n \in \mathbb{N}}$, donc il s'agit de la suite géométrique de raison $q^\alpha \in]0,1[$ et de premier terme $q^{\min_I(n)\alpha}$ ($\min_I(n)$, avec I une partie non vide de \mathbb{N} , car la suite ne démarre pas forcément à 0), donc elle converge vers 0.

Si $q \ge 1$, on montre le cas trivial $\alpha = \beta = 1$:

$$\forall n \in \llbracket \lfloor q \rfloor + 1, +\infty \llbracket, \quad 0 \le \frac{q^n}{n!} = \underbrace{\frac{q}{1} \times \frac{q}{2} \times \cdots \times \frac{q}{\lfloor q \rfloor}}_{= \lambda \text{ (une constante)}} \times \underbrace{\frac{q}{\lfloor q \rfloor + 1}}_{\le 1} \times \cdots \times \underbrace{\frac{q}{n-1}}_{\le 1} \times \underbrace{\frac{q}{n}}_{n \to +\infty} \times \underbrace{\frac{q}{n}}_$$

Par théorème d'existence de limite par encadrement, $\left(\frac{q^n}{n!}\right)_{n\in\mathbb{N}}$ converge et sa limite est 0.

Soient $(\alpha, \beta) \in \mathbb{R}_+^*$, montrons le cas général pour $q \geq 1$.

$$\forall n \in \mathbb{N}, \quad \frac{(q^n)^{\alpha}}{(n!)\beta} = \left(\frac{\left(q^{\frac{\alpha}{\beta}}\right)^n}{n!}\right)^{\beta} = \underbrace{\left(\frac{q^{\frac{\alpha}{\beta}}\right)^n}{n!}}_{\substack{n \to +\infty \\ \text{c'est le cas trivial}}\right)^{\beta}}_{\substack{n \to +\infty \\ \text{par composition des limites } (\beta > 0)}$$

6.4 Présentation exhaustive de la fonction arcsin.

 $D\acute{e}monstration$. Premièrement, ladite fonction est la bijection réciproque de la fonction $\widetilde{\sin}$ (voir 1.). D'où :

$$\arcsin = \begin{cases} [-1,1] & \to & [-\frac{\pi}{2}, \frac{\pi}{2}] \\ x & \mapsto & (\widetilde{\sin})^{-1}(x) \end{cases}$$

Ainsi, pour $x \in [-1, 1]$, $\arcsin(x)$ est l'unique solution de l'équation d'inconnue $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\sin(\theta) = x$.

Il découle alors naturellement des propriétés héréditairement acquises de $\widetilde{\sin}$:

- 1. arcsin est impaire.
- 2. \arcsin est strictement croissante sur [-1, 1].
- 3. $\arcsin \in \mathcal{C}^0([-1,1],[-\frac{\pi}{2},\frac{\pi}{2}]).$
- 4. $\arcsin \in \mathcal{D}^1(]-1,1[,]-\frac{\pi}{2},\frac{\pi}{2}[).$
- 5. $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$ pour tout $x \in]-1,1[$.
- 6. arcsin admet deux demi-tangentes verticales en -1 et 1.

Graphe de arcsin :

Figure 2. arcsin en bleu, sin en vert et la première bissectrice en rouge.

On a aussi, grâce au taux d'accroissement en 0 d'arcsin :

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1.$$

Puis finalement (visible sur le graphe):

$$\forall x \in [0, 1], \quad \arcsin(x) \ge x.$$

6.5 Présentation exhaustive de la fonction arccos.

 $D\acute{e}monstration$. Premièrement, ladite fonction est la bijection réciproque de la fonction $\cos \left| {{[1,1]}\atop{[0,\pi]}} \right| := \widetilde{\cos}$. D'où :

$$\arccos = \begin{cases} [-1,1] & \to & [0,\pi] \\ x & \mapsto & (\widetilde{\cos})^{-1}(x) \end{cases}$$

Ainsi, pour $x \in [-1,1]$, $\arccos(x)$ est l'unique solution de l'équation d'inconnue $\theta \in [0,\pi]$, $\cos(\theta) = x$.

Il découle alors naturellement des propriétés héréditairement acquises de cos :

- 1. arccos est strictement décroissante sur [-1, 1].
- 2. $\arccos \in \mathcal{C}^0([-1,1],[0,\pi]).$
- 3. $\operatorname{arccos} \in \mathcal{D}^1(] 1, 1[,]0, \pi[).$
- 4. $\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$ pour tout $x \in]-1,1[$.

5. arccos admet deux demi-tangentes verticales en -1 et 1.

Graphe de arccos :

Figure 3. arccos en vert, $\widetilde{\cos}$ en violet, la première bissectrice en rouge et $y=\frac{\pi}{2}-x$ en rose.

6.6 Présentation exhaustive de la fonction arctan.

Démonstration.

Premièrement, ladite fonction est la bijection réciproque de la fonction $\tan \left|_{]-\frac{\pi}{2},\frac{\pi}{2}[}\right| := \widetilde{\tan}$. D'où :

$$\arctan = \begin{cases} \mathbb{R} & \to & \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\\ x & \mapsto & \left(\widetilde{\tan}\right)^{-1} (x) \end{cases}$$

Ainsi, pour $x \in \mathbb{R}$, $\arctan(x)$ est l'unique solution de l'équation d'inconnue $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, $\tan(\theta) = x$.

Il découle alors naturellement des propriétés héréditairement acquises de tan :

- 1. arctan est impaire.
- 2. $\arctan \in \mathcal{C}^0\left(\mathbb{R}, \left] \frac{\pi}{2}, \frac{\pi}{2}\right[\right)$.
- 3. $\arctan \in \mathcal{D}^1\left(\mathbb{R}, \left] \frac{\pi}{2}, \frac{\pi}{2}\right[\right)$.
- 4. $\arctan'(x) = \frac{1}{1+x^2}$ pour tout $x \in \mathbb{R}$.

Graphe de arctan:

Figure 4. arctan en vert, $\widetilde{\tan}$ en bleu, la première bissectrice en rouge, et les fonctions $y=\pm\frac{\pi}{2}$ et $x = \pm \frac{\pi}{2}$ en noir.

On a aussi (visible sur le graphe):

$$\forall x \in \mathbb{R}_+, \quad \arctan(x) \le x.$$

Et enfin:

$$\forall x \in \mathbb{R}^*, \quad \arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0\\ -\frac{\pi}{2} & \text{si } x < 0. \end{cases}$$

6.72 preuves de $\arcsin(x) + \arccos(x) = \frac{\pi}{2}$ sur [-1, 1], dont une basée sur une interprétation géométrique du cercle trigonométrique.

 $D\acute{e}monstration$. L'interprétation géométrique sur [0,1], celle sur [-1,0] est laissée au lecteur car il s'agit du même principe modulo des détails :

Figure 5.

Preuve formelle:

Soit
$$x \in [-1, 1]$$
. Posons $\varphi = \arcsin(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Ainsi :
$$\arcsin(x) + \arccos(x) = \varphi + \arccos(\sin(\varphi)) = \varphi + \arccos\left(\cos\left(\frac{\pi}{2} - \varphi\right)\right),$$

or $\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc $\frac{\pi}{2} - \varphi \in [0, \pi]$ d'où arccos $\left(\cos\left(\frac{\pi}{2} - \varphi\right)\right) = \frac{\pi}{2} - \varphi$ si bien que :

$$\arcsin(x) + \arccos(x) = \varphi + \frac{\pi}{2} - \varphi = \frac{\pi}{2}.$$

Présentation analytique rapide des fonctions cosh et sinh. 6.8

Démonstration.

• Domaine de définition et symétries. \sinh et cosh sont définies sur \mathbb{R} .

De plus,

(i)
$$\forall x \in \mathbb{R}, -x \in \mathbb{R},$$

$$(ii) \forall x \in \mathbb{R}, \begin{cases} \sinh(-x) &= \frac{e^{-x} - e^x}{2} &= -\frac{e^x - e^{-x}}{2} &= -\sinh(x) \\ \text{et} \\ \cosh(-x) &= \frac{e^{-x} + e^{-(-x)}}{2} &= \frac{e^x + e^{-x}}{2} &= \cosh(x). \end{cases}$$
Donc sinh et cosh sont respectivement impaire et paire.

Nous les étudierons sur \mathbb{R}_+ et pour les obtenir les graphes (\mathcal{C}_{sinh} et \mathcal{C}_{cosh}) de ces fonctions sur \mathbb{R} à partir de ceux $(\mathcal{C}_{\sinh}^+$ et $\mathcal{C}_{\cosh}^+)$ obtenus sur \mathbb{R}_+ , nous le complèterons en traçant les images de ces graphes par la symétrie centrale s de centre O et par la réflexion r d'axe (O, \overrightarrow{j}) :

$$C_{\sinh} = C_{\sinh}^{+} \cup s \left(C_{\sinh}^{+}\right)$$
 et $C_{\cosh} = C_{\cosh}^{+} \cup r \left(C_{\cosh}^{+}\right)$

- Variations : triviales.
- Branches infinies en $+\infty$ et position relative de \mathcal{C}_{sinh} et \mathcal{C}_{cosh} .

$$\frac{\cosh(x)}{x} = \underbrace{\frac{e^x}{x}}_{x \to +\infty} + \underbrace{\frac{e^{-x}}{x}}_{x \to +\infty} \xrightarrow{x \to +\infty} + \infty$$

Donc le graphe de cosh admet une branche parabolique de direction asymptotique (O, \overrightarrow{j}) . On a:

$$\forall x \in \mathbb{R}, \quad \cosh(x) - \sinh(x) = e^{-x} \xrightarrow[x \to +\infty]{} 0^+$$

Donc les graphes des deux fonctions se rapprochent l'un de l'autre arbitrairement près lorsque $x \to +\infty$, et le graphe de cosh est au-dessus de celui de sinh.

• Tangente au graphe de sinh à l'origine et position relative.

Il s'agira d'étudier $g: x \in \mathbb{R}_+ \mapsto \sinh(x) - x$, de remarquer sa dérivabilité d'en étudier les variations puis de conclure, en précisant que cette étude révèle l'inflexion du graphe de sinh en 0.

7.1 Calcul de $\int_0^{2\pi} e^{imt} dt$ en fonction de $m \in \mathbb{Z}$. En Déduire qu'une fonction polynomiale nulle sur un cercle centré en l'origine a tous ses coefficients nuls.

 $D\acute{e}monstration.$ Soit $m \in \mathbb{Z}$ fq. Calculons :

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt$$

Si $m \neq 0$:

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} e^{imt} \mathrm{d}t &= \frac{1}{2\pi} \left[\frac{e^{mt}}{im} \right]_0^{2\pi} \\ &= \frac{1}{2\pi} \left(\frac{1}{im} - \frac{1}{im} \right) = 0 \end{split}$$

Si m = 0:

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt = \frac{1}{2\pi} \int_0^{2\pi} dt = \frac{2\pi}{2\pi} = 1$$

Donc

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt = \begin{cases} 1 \text{ si } m = 0\\ 0 \text{ si } m \neq 0 \end{cases}$$

Soit $n \in \mathbb{N}$ fq

Soient $(a_0, ..., a_n) \in \mathbb{C}^{n+1}$ les coefficients de $P(z) = \sum_{k=0}^n a_k z^k$, et $s \in \mathbb{Z}$, et $r \in \mathbb{R}_+^*$ fq. tels que P soit nulle lorsqu'elle est évaluée sur $\mathscr{C}(0, r)$

$$\frac{1}{2\pi} \int_0^{2\pi} P(re^{it}) e^{-imt} dt = \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{k=0}^n a_k (re^{it})^k \right) e^{-imt} dt$$
$$= \sum_{k=0}^n a_k r^k \underbrace{\int_0^{2\pi} \frac{e^{it(k-s)}}{2\pi} dt}_{L}$$

On remarque que :

— Si $s \notin [0, n], \{k \in [0, n] \mid k = s\} = \emptyset$, Donc

$$\sum_{k \in \llbracket 0, n \rrbracket} a_k s^k I_k = \sum_{\substack{k \in \llbracket 0, n \rrbracket \\ k = s}} a_k r^k = 0$$

— Si $s \in [0, n], \{k \in [0, n] \mid k = s\} = s$, Donc

$$\sum_{k \in \llbracket 0, n \rrbracket} a_k s^k I_k = \sum_{\substack{k \in \llbracket 0, n \rrbracket \\ k - s}} a_k s^k = a_s r^s$$

Or, puisque P s'annule sur le cercle de rayon r et de centre 0, $\mathcal{C}(0,r)$, ces sommes sont aussi nulles. On en déduit, en particularisant pour un $s \in [0,n]$ fixé quelconque que :

$$\sum_{k \in [0, n]} a_k s^k I_k = a_s r^s = 0 \implies a_s = 0$$

Donc

$$(\exists r \in \mathbb{R}_+^* : \forall \theta \in \mathbb{R}, P(re^{i\theta}) = 0) \implies \forall s \in [0, n]$$

Pour la preuve réciproque, soit $n \in \mathbb{N}$ fq. Soient $(a_0,...,a_n) \in \{0\}^{n+1}$ les coefficients nuls de la fonction polynomiale $P \in \mathbb{C}[z]$ définie pour tout $z \in \mathbb{C}$.

En remarquant que $\forall z \in \mathbb{C}, P(z) = 0$, puisque n'importe quel cercle centré en 0 est un sous ensemble de $\mathbb{C}, \exists r \in \mathbb{R}_+^* : \forall z \in \mathscr{C}(0,r), P(z) = 0$.

7.2 Preuve de la Linéarité de la dérivation d'une fonction complexe

Démonstration. Définissons les fonctions f_r et f_i comme les parties réelles et imaginaires de f. Soient $(f,g) \in \mathcal{F}(I,\mathbb{C})^2$, $(\alpha,\beta) \in \mathbb{C}^2$ fixés quelconques.

$$f_r = \operatorname{Re}(f), f_i = \operatorname{Im}(f)$$
 $g_r = \operatorname{Re}(f), g_i = \operatorname{Im}(g)$
 $\alpha_r = \operatorname{Re}(\alpha), \alpha_i = \operatorname{Im}(f)$ $\beta_r = \operatorname{Re}(f), \beta_i = \operatorname{Im}(g)$

$$\operatorname{Re}(\alpha f + \beta g) = \operatorname{Re}((\alpha_r + i\alpha_i)(f_r + if_i) + (\beta_r + i\beta_i)(g_r + ig_i))$$

$$= \underbrace{\alpha_r f_r + \beta_r g_r - \alpha_i f_i - \beta_i g_i}_{\text{Combinaison linéaire de }} \underbrace{(f_r, f_i, g_r, g_i) \in \mathcal{D}^1(I, \mathbb{R})^4}_{\text{car}(f, g) \in \mathcal{D}^1(I, \mathbb{R})^2}$$

Donc, selon le théorème de stabilité par combinaison linéaire des fonctions à valeurs réelles, $\operatorname{Re}(\alpha f + \beta g) \in \mathcal{D}^1(I, \mathbb{R})$ et $\left(\operatorname{Re}(\alpha f + \beta g)\right)' = \alpha_r f_r' + \beta_r g_r' - \alpha_i f_i' - \beta_i g_i'$ On montre de même que $\operatorname{Im}(\alpha f + \beta g) \in \mathcal{D}^1(I, \mathbb{R})$ et $(\alpha f + \beta g)' = \alpha_r f_i' + \alpha f_r' + \beta_r g_i' + \beta_i g_r'$

montre de meme que $\operatorname{Im}(\alpha f + \beta g) \in D^1(I, \mathbb{R})$ et $(\alpha f + \beta g) = \alpha_r f_i^*$ Ainsi,

$$(\alpha f + \beta g)' = (\alpha_r f_r' + \beta_r g_r' - \alpha_i f_i' - \beta_i g_i') + i(\alpha_r f_i' + \alpha f_r' + \beta_r g_i' + \beta_i g_r')$$

$$= \alpha_r (f_r' + i f_i') + \beta_r (g_r' + i g_i') + \alpha_i \underbrace{(-f_i' + i f_i')}_{i(f_r' + i f_i')} + \beta_i \underbrace{(-g_i' + i g_i')}_{i(g_r' + i g_i')}$$

$$= \alpha f' + \beta g'$$

7.3 Dérivée composée d'une fonction à valeurs complexes

Démonstration. Soient $f \in \mathcal{D}^1(J,\mathbb{C})$ et $h \in \mathcal{D}^1(I,J)$ (I et J sont deux intervalles réels) fixés quelconques. Notons f_r et f_i respectivement la partie réelle et imaginaire de f.

$$\left. \begin{array}{l} h \in \mathcal{D}^1(I,J) \\ f_r \in \mathcal{D}^1(J,\mathbb{R}), \ \mathrm{car} \ f \in \mathcal{D}^1(J,\mathbb{C}) \end{array} \right\} \implies f_r \circ h \in \mathcal{D}^1(I,\mathbb{R})$$

On montre de même que $f_i \circ h \in \mathcal{D}^1(I, \mathbb{R})$ donc $f \circ h \in \mathcal{D}^1(I, \mathbb{C})$. De plus,

$$(f \circ h)' = (f_r \circ h)' + i(f_i \circ h)'$$

$$= (f'_r \circ h) \times h' + i((f'_i \circ h) \times h')$$

$$= (f'_r \circ h + if'_i \circ h) \times h'$$

$$= (f' \circ h) \times h'$$

7.4 Caractérisation des fonctions dérivables de dérivée nulle sur un intervalle

Démonstration. Soit $f \in \mathcal{D}^1(I,\mathbb{C})$ où I est un intervalle réel; Posons $f_r = \text{Re}(f)$ et $f_i = \text{Im}(f)$.

$$\forall t \in I, f'(t) = 0 \iff \forall t \in I, f'_r(t) + if'_i(t) = 0$$

$$\iff \begin{cases} \forall t \in I, f'_r(t) = 0 \\ \forall t \in I, f'_i(t) = 0 \end{cases}$$

$$\iff \begin{cases} \exists \lambda_r \in \mathbb{R} : \forall t \in I, f_r(t) = \lambda_r \\ \exists \lambda_i \in \mathbb{R} : \forall t \in I, f_i(t) = \lambda_i \end{cases}$$

$$\iff \exists \lambda \in \mathbb{C} : \forall t \in I, f(t) = \lambda$$

8.1 Preuve de l'expression des solutions réelles des EDL homogènes d'ordre 2 à coefficients constants réels dans le cas $\Delta < 0$ (en admettant la connaissance de l'expression des solutions à valeurs complexes des EDLH2 à coeff. constants).

Démonstration. Notons $\mathcal{S}_{H,\mathbb{C}}$ et $\mathcal{S}_{H,\mathbb{R}}$ les ensembles des solutions complexes et réelles de l'équation différentielle, puisque nous nous plaçons dans le cas $\Delta < 0$ et $\alpha \pm i\beta$ les deux racines complexes conjuguées.

$$\mathcal{S}_{H,\mathbb{C}} = \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{C} \\ t \mapsto \lambda e^{(\alpha + i\beta)t} + \mu e^{(\alpha - i\beta)t} \end{array} \middle| (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

Montrons que $\forall f \in \mathcal{S}_{H,\mathbb{C}}, \operatorname{Re}(f) \in \mathcal{S}_{H,\mathbb{R}}$ Soit $f \in \mathcal{S}_{H,\mathbb{C}}$ fq.

$$f \in \mathcal{D}^2(\mathbb{R}, \mathbb{C}) \implies \operatorname{Re}(f) \in \mathcal{D}^2(\mathbb{R}, \mathbb{R})$$

Et, de plus, par morphisme additif de Re

$$a_2 \text{Re}(f)'' + a_1 \text{Re}(f)' + a_0 \text{Re}(f) = \text{Re}(a_2 f'' + a_1 f' + a_0 f) = 0$$

D'où, avec $f: t \mapsto e^{(\alpha+i\beta)t}$; $\operatorname{Re}(f(t)) = \operatorname{Re}(e^{(\alpha+i\beta)t}) = e^{\alpha t} \cos(\beta t)$. Qui appartient donc à $\mathcal{S}_{H,\mathbb{R}}$ En suivant le même raisonnement pour $\operatorname{Im}(f)$, $(t \mapsto e^{\alpha} \sin(\beta t)) \in \mathcal{S}_{H,\mathbb{R}}$

Ainsi, par combinaison linéaire (qui se base sur le principe de superposition),

$$\left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ t \mapsto \lambda e^{\alpha t} \cos(\beta t) + \mu e^{\alpha t} \sin(\beta t) \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right\} \subset \mathcal{S}_{H, \mathbb{R}}$$

Réciproquement, soit $f \in \mathcal{S}_{H,\mathbb{R}}$ fq. Puisque $\mathbb{R} \subset \mathbb{C}$, $f \in \mathcal{S}_{H,\mathbb{C}}$.

$$\exists (a,b) \in \mathbb{C}^2 : f \mid \begin{array}{c} \mathbb{R} \to \mathbb{C} \\ t \mapsto ae^{(\alpha+i\beta)t} + be^{(\alpha-i\beta)t} \end{array}$$

Or, puisque toutes les valeurs de f sont réelles, en notant (a_r, a_i, b_r, b_i) les parties réelles et imaginaires respectives de a et b.

$$\forall t \in \mathbb{R}, f(t) = \operatorname{Re}(f(t))$$

$$= \operatorname{Re}(ae^{(\alpha+i\beta)t} + be^{(\alpha-i\beta)t})$$

$$= \operatorname{Re}((a_r + ia_i)e^{(\alpha+i\beta)t} + (b_r + ib_i)e^{(\alpha-i\beta)t})$$

$$= a_r \cos(\beta t)e^{\alpha} - a_i \sin(\beta t)e^{\alpha} + b_r \cos(\beta t)e^{\alpha} + b_i \sin(\beta t)e^{\alpha}$$

$$= (a_r + b_r)\cos(\beta t)e^{\alpha} + (b_i - a_i)\sin(\beta t)e^{\alpha}$$

Ainsi,

$$f \in \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ t \mapsto \lambda e^{\alpha t} \cos(\beta t) + \mu e^{\alpha t} \sin(\beta t) \end{array} \middle| (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

Ce qui conclut la preuve par double inclusion.

8.2 Existence et unicité d'une solution au problème de Cauchy pour les EDL d'ordre 2 à coefficients constants et second membre continu sur *I* (cas complexe puis cas réel).

Considérons le problème de Cauchy suivant :

$$\begin{cases} a_{2}y'' + a_{1}y' + a_{0}y = b \text{ sur } J \\ y(t_{0}) = \alpha_{0} \\ y'(t_{0}) = \alpha_{1} \end{cases} \text{ où } (\alpha_{0}, \alpha_{1}) \in \mathbb{K}^{2}, t_{0} \in J, (a_{0}, a_{1}, a_{2}) \in \mathbb{K}^{2} \times \mathbb{K}^{*}, b \in \mathcal{F}(J, \mathbb{K})$$

Si b est continu sur J, alors ce problème de Cauchy admet une unique solution définie sur J.

Démonstration. Cas 1. $\mathbb{K} = \mathbb{C}$

Nous savons que sous l'hyphothèse de continuité de b sur J, les solutions de (EDL2) définies sur J constituent le plan affine S:

$$S = \left\{ \lambda f_1 + \mu f_2 + s | (\lambda, \mu) \in \mathbb{C}^2 \right\}$$

où s est une solution particulière de (EDL2), (f_1, f_2) sont deux solutions de (EDLH2) qui engendrent S_h . On a :

$$f: J \to \mathbb{C} \text{ est sol. du pb de Cauchy} \iff \begin{cases} f \text{ sol de (EDL2) sur } J \\ f(t_0) = \alpha_0 \\ f'(t_0) = \alpha_1 \end{cases}$$

$$\iff \begin{cases} f \in S \\ f(t_0) = \alpha_0 \\ f'(t_0) = \alpha_1 \end{cases}$$

$$\iff \exists (\lambda, \mu) \in \mathbb{C}^2 : \begin{cases} f = \lambda f_1 + \mu f_2 + s \\ \lambda f_1(t_0) + \mu f_2(t_0) + s(t_0) = \alpha_0 \\ \lambda f'_1(t_0) + \mu f'_2(t_0) + s'(t_0) = \alpha_1 \end{cases}$$

$$\iff \exists (\lambda, \mu) \in \mathbb{C}^2 : \begin{cases} f = \lambda f_1 + \mu f_2 + s \\ \lambda f_1(t_0) + \mu f'_2(t_0) = \alpha_0 - s(t_0) \\ \lambda f'_1(t_0) + \mu f'_2(t_0) = \alpha_1 - s'(t_0) \end{cases}$$

On en déduit donc que (λ, μ) doit être solution d'un système linéaire (2, 2). On a une unique solution si et seulement si les déterminant de ce système est nul. Explicitons alors le déterminant de ce système, que l'on notera D.

$$D = \begin{vmatrix} f_1(t_0) & f_2(t_0) \\ f'_1(t_0) & f'_2(t_0) \end{vmatrix} = f_1(t_0) \cdot f'_2(t_0) - f_2(t_0) \cdot f'_1(t_0)$$

Notons Δ le discriminant de l'équation caractéristique de (EDL2) $(a_2r^2 + a_1r^1 + a_0 = 0)$. On distingue alors deux cas selon la nullité ou non de Δ . Traitons d'abord le cas $\Delta \neq 0$. On peut choisir :

$$f_1(t_0) = e^{r_1 t_0}$$
 et $f_2(t_0) = e^{r_2 t_0}$
 $f'_1(t_0) = r_1 e^{r_1 t_0}$ et $f'_2(t_0) = r_2 e^{r_2 t_0}$

Donc (en sachant que $\Delta \neq 0 \Rightarrow r_1 \neq r_2$):

$$D = e^{r_1 t_0} \cdot r_2 e^{r_2 t_0} - r_1 e^{r_1 t_0} \cdot e^{r_2 t_0} = (r_2 - r_1) \cdot e^{r_1 t_0 + r_2 t_0} \neq 0$$

Dans le deuxième cas, on a $\Delta = 0$; on peut alors prendre :

$$f_1(t_0) = e^{r_0 t_0}$$
 et $f_2(t_0) = t_0 e^{r_0 t_0}$

Ainsi:

$$D = e^{r_0 t_0} \left(r_0 t_0 e^{r_0 t_0} + e^{r_0 t_0} \right) - r_0 e^{r_0 t_0} \times t_0 e^{r_0 t_0} = e^{2r_0 t_0} \neq 0$$

On remarque alors que, dans les deux cas, $D \neq 0$, donc le système (2,2) étudié admet une unique solution, donc il existe un unique couple (λ, μ) le vérifiant d'où l'unicité et existence d'une solution au problème de Cauchy.

Cas 2.
$$\mathbb{K} = \mathbb{R}$$
 $(a_0, a_1, a_2) \in \mathbb{R}^2 \times \mathbb{R}^*, (\alpha_0, \alpha_1) \in \mathbb{R}^2, b \in C^0(J, \mathbb{R})$

Existence : Puisque $\mathbb{R} \subset \mathbb{C}$, le problème de Cauchy admet, dans \mathbb{R} , une solution à valeurs complexes g. Posons f = Re(g) et montrons que f est une solution réelle du problème de Cauchy.

$$\star g \in \mathcal{D}^2(J, \mathbb{C}) \text{ donc } f \in \mathcal{D}^2(J, \mathbb{R})$$

 $\star g$ vérifie $a_2g'' + a_1g' + a_0g = b$ sur J donc en prenant $\text{Re}(\cdot)$:

$$\operatorname{Re}(a_2 g'' + a_1 g' + a_0 g = b) = \operatorname{Re}(b) \iff a_2 \operatorname{Re}(g'') + a_1 \operatorname{Re}(g') + a_0 \operatorname{Re}(g) = b$$

$$\iff a_2 f'' + a_1 f' + a_0 f = b \operatorname{sur} J$$

- $\star f(t_0) = \operatorname{Re}(g(t_0)) = \operatorname{Re}(\alpha_0) = \alpha_0$
- * $f'(t_0) = \text{Re}(g(t_0))' = \text{Re}(g'(t_0)) = \text{Re}(\alpha_1) = \alpha_1$

Donc f est une solution réelle définie sur J au problème de Cauchy.

Unicité : Soient f_1 et f_2 deux fonctions à valeurs réelles solutions du problème de Cauchy ci-dessus fixées quelconques : puisque $\mathbb{R} \subset \mathbb{C}$, f_1 et f_2 sont des fonctions à valeurs dans \mathbb{C} solutions du même problème de Cauchy ; or il y a unicité de la solution au problème de Cauchy dans les fonctions à valeurs complexes, donc $f_1 = f_2$ dans $\mathcal{F}(J, \mathbb{C})$, donc $f_1 = f_2$ dans $\mathcal{F}(J, \mathbb{R})$.

8.3 Les solutions d'une EDL₂ constituent un espace vectoriel.

Soient $(a,b) \in \mathbb{C}^2$, f et g les solutions, définies sur \mathbb{R} à valeurs dans \mathbb{C} , des problèmes de Cauchy suivants :

$$\begin{cases} y'' + ay' + by = 0 \\ y(3) = 1 \\ y'(3) = 0 \end{cases} \text{ et } \begin{cases} y'' + ay' + by = 0 \\ y(3) = 0 \\ y'(3) = 1 \end{cases}$$

Comment s'exprime la solution définie sur \mathbb{R} de $\begin{cases} y'' + ay' + by = 0 \\ y(3) = \alpha & \text{pour } (\alpha, \beta) \in \mathbb{R}^2 \text{ fixés ?} \\ y'(3) = \beta \end{cases}$

Peut-on affirmer que le plan vectoriel des solutions définies sur $\mathbb R$ à valeurs dans $\mathbb C$ de y'' + ay' + by = 0 est $\{\lambda \cdot f + \mu \cdot g | (\lambda, \mu) \in \mathbb C^2\}$

Démonstration. La solution s'exprime simplement comme combinaison linéaire de f et g, plus précisément, la combinaison linéaire en α et β . En effet, soient de tels scalaires, et soient f et g de telles solutions, on a :

$$(\alpha \cdot f + \beta \cdot g)'' + a(\alpha \cdot f + \beta \cdot g)' + b(\alpha \cdot f + \beta \cdot g) = 0$$
, par définition des espaces vectoriels.

Et de même, $(\alpha \cdot f + \beta \cdot g)'(3) = \alpha \cdot f'(3) + \beta \cdot g'(3) = \alpha$, et $(\alpha \cdot f + \beta \cdot g)''(3) = \alpha \cdot f''(3) + \beta \cdot g''(3) = \beta$. Ce qui suffit par unicité des solutions (de la donc) d'un problème de Cauchy dans le cadre du théorème du cours.

Pour ce qui est du plan vectoriel des solutions, noté Ω , notons aussi Φ l'ensemble proposé. L'inclusion $\Phi \subset \Omega$ est triviale par propriété de linéarité des espaces vectoriels. Finalement, pour $\Omega \subset \Phi$, soit $\omega \in \Omega$, forcément, ω vérifie l' EDL_2 , mais aussi des conditions de Cauchy bien que celles-ci soient non-spécifiées, ainsi posons $\omega'(3) = \delta$ et $\omega''(3) = \theta$, donc en particulier, $\omega = \delta \cdot f + \theta \cdot g$, d'où l'égalité par double inclusion.

8.4 Formules de Cramer pour les systèmes 2×2

Résolution générale des systèmes linéaires à 2 équations et 2 inconnues en fonction du déterminant du systèmes (tous les cas ne sont pas nécessairement à envisager)

Considérons le système linéaire à deux équations et à deux inconnues (x, y):

$$(S) \begin{cases} ax + by = b_1 & (E_1) \\ cx + dy = b_2 & (E_2) \end{cases}$$
 (4)

dont $(a, b, c, d) \in \mathbb{K}^4$ sont les coefficients et $(b_1, b_2) \in \mathbb{K}^2$ sont les seconds membres.

1. (S) admet une unique solution si et seulement si $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \neq 0$. De plus, dans ce cas, la solution est

$$\left(\frac{\begin{vmatrix} b_1 & b \\ b_2 & d \end{vmatrix}}{\begin{vmatrix} a & b_1 \\ c & d \end{vmatrix}}, \frac{\begin{vmatrix} a & b_1 \\ c & b_2 \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}\right)$$
(5)

2. Si ad - bc = 0, alors l'ensemble des solutions est soit vide, soit une droite affine de \mathbb{K}^2 , soit \mathbb{K}^2 .

Démonstration. Procédons par disjonction de cas.

- Supposons que $ad bc \neq 0$.
 - Supposons que $a \neq 0$.

$$(S) \iff \begin{cases} ax + by = b_1 \\ (d - \frac{bc}{a})y = b_2 - \frac{c}{a}b_1 & (L_1 \leftarrow L_1 - \frac{c}{a}L_2) \end{cases}$$

$$\iff \begin{cases} ax + by = b_1 \\ (ad - bc)y = ab_2 - cb_1 & (L_1 \leftarrow aL_1) \end{cases}$$

$$\iff \begin{cases} ax = \frac{1}{a}\left(b_1 - b\frac{ab_2 - cb_1}{ad - bc}\right) = \frac{1}{a}\frac{adb_1 - bcb_1 + abb_2 - bcb_2}{ad - bc}$$

$$y = \frac{ab_2 - cb_1}{ad - bc}$$

$$\iff \begin{cases} ax = \frac{db_1 - bb_2}{ad - bc} = \frac{\begin{vmatrix} b_1 & b \\ b_2 & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}$$

$$\Leftrightarrow \begin{cases} y = \frac{ab_2 - cb_1}{ad - bc} = \frac{\begin{vmatrix} a & b_1 \\ c & b_2 \end{vmatrix}}{\begin{vmatrix} a & b_1 \\ c & d \end{vmatrix}}$$

Donc le système admet une unique solution qui est celle annoncée.

• Supposons que a = 0. L'hypothèse $ad - bc \neq 0$ implique $bc \neq 0$ donc $b \neq 0$ et $c \neq 0$.

$$(S) \iff \begin{cases} by = b_1 \\ cx + dy = b_2 \end{cases}$$

$$\iff \begin{cases} x = \frac{1}{c} \left(b_2 - d \frac{b_1}{b} \right) \\ y = \frac{b_1}{b} \end{cases}$$

$$\iff \begin{cases} ax = \frac{db_1 - bb_2}{-bc} = \frac{\begin{vmatrix} b_1 & b \\ b_2 & d \end{vmatrix}}{\begin{vmatrix} 0 & b \\ c & d \end{vmatrix}}$$

$$y = \frac{-cb_1}{-bc} = \frac{\begin{vmatrix} 0 & b_1 \\ c & b_2 \end{vmatrix}}{\begin{vmatrix} 0 & b_1 \\ c & d \end{vmatrix}}$$

Donc le système admet une unique solution qui est celle annoncée.

ad - bc = 0.

 \bullet Supposons $a \neq 0.$ En reprenant la méthode pivot de Gauss

$$(S) \iff \begin{cases} ax + by = b_1 \\ \left(d - \frac{bc}{a}\right)y = b_2 - \frac{c}{a}b_1 & (L_1 \leftarrow L_1 - \frac{c}{a}L_2) \end{cases}$$

$$\iff \begin{cases} ax + by = b_1 \\ \underbrace{(ad - bc)}_{0}y = ab_2 - cb_1 & (L_1 \leftarrow aL_1) \end{cases}$$

Donc le système est de rang 1 avec une condition de compatibilité. Si $ab_2 - cb_1 \neq 0$, (S) n'admet aucune solution.

Since ab = 0

Sinon $ab_2 - cb_1 = 0$

$$(S) \iff ax + by = b_1 \iff \begin{pmatrix} x \\ y \end{pmatrix} \in \left\{ \begin{pmatrix} \frac{b_1}{a} - b\frac{t}{a} \\ t \end{pmatrix} \mid t \in \mathbb{K} \right\}$$
 (6)

Donc (S) admet un droite affine de solutions.

• Supposons a = 0. Puisque ad - bc = 0, alors bc = 0 donc b ou c est nul.

• Si
$$c = 0$$
,

$$(S) \iff \begin{cases} by = b_1 \\ dy = b_2 \end{cases}$$

• Si b = 0,

$$(S) \iff \left\{ \begin{array}{rcl} by & = & b_1 \\ 0 & = & b_2 \end{array} \right.$$

- Si $b_2 = 0$, (S) n'admet aucune solution.
- Si $b_2 \neq 0$, $(S) \iff dy = b_2$
 - Si d=0, $(S)\iff 0=b_2$. (S) n'admet aucune solution $(b_2\neq 0)$ ou admet \mathbb{K}^2 comme ensemble des solutions $(b_2 = 0)$.
 - Si $d \neq 0$, $(S) \iff y = \frac{b_2}{d} \iff \begin{pmatrix} x \\ y \end{pmatrix} \in \left\{ \begin{pmatrix} t \\ \frac{b_2}{d} \end{pmatrix} \mid t \in \mathbb{K} \right\}$. Donc (S) admet une droite affine de solutions.
- Si $b \neq 0$

$$(S) \iff \begin{cases} y = \frac{b_1}{b} \\ 0 = b_2 - \frac{db_1}{b} \end{cases}$$

- Si $b_2 \frac{db_1}{b} \neq 0$, (S) n'admet aucune solution
- Si $b_2 \frac{db_1}{b} = 0$, $(S) \iff y = \frac{b_1}{b} \iff \begin{pmatrix} x \\ y \end{pmatrix} \in \left\{ \begin{pmatrix} t \\ \frac{b_1}{d} \end{pmatrix} \mid t \in \mathbb{K} \right\}$ donc (S) admet une droite affine de solutions.
- Si $c \neq 0$ alors b = 0

$$(S) \iff \left\{ \begin{array}{rcl} 0 & = & b_1 \\ cx + dy & = & b_2 \end{array} \right.$$

- Si $b_1 \neq 0$, (S) n'admet aucune solution.
- Si $b_1 = 0$, $(S) \iff x = \frac{b_2}{c} \frac{d}{c}y \iff \begin{pmatrix} x \\ y \end{pmatrix} \in \left\{ \begin{pmatrix} \frac{b_2}{c} \frac{d}{c}t \\ t \end{pmatrix} \mid t \in \mathbb{K} \right\}$ donc (S) admet une droite affine de solutions.

Deux classes d'équivalence sont disjointes ou confondues. Les classes d'équivalence constituent une partition de l'ensemble sur lequel on considère la relation d'équivalence.

Soit \mathcal{R} une relation d'équivalence sur E.

Soit $x \in E$.

La classe de x, notée \bar{x} , est l'ensemble des éléments de E en relation avec x.

$$\bar{x} = \{ y \in E \mid x \mathcal{R} y \} \tag{7}$$

Démonstration. Montrons que deux classes d'équivalence sont disjointes ou confondues. Soit $(x,y) \in E^2$ fq.

— Si $\bar{x} \cap \bar{y} = \emptyset$, rien à démontrer.

— Sinon $\bar{x} \cap \bar{y} \neq \emptyset$ donc $\exists z \in \bar{x} \cap \bar{y}$. Fixons un tel z.

Soit $x' \in \bar{x}$ fq.

$$x' \in \bar{x} \implies x\mathcal{R}x' \underset{sym\acute{e}trie}{\Longrightarrow} x'\mathcal{R}x \} \underset{transitivit\acute{e}}{\Longrightarrow} x'\mathcal{R}z \} \underset{transitivit\acute{e}}{\Longrightarrow} x'\mathcal{R}z \} \underset{transitivit\acute{e}}{\Longrightarrow} x'\mathcal{R}z \} \underset{transitivit\acute{e}}{\Longrightarrow} x'\mathcal{R}z \underset{sym\acute{e}trie}{\Longrightarrow} y\mathcal{R}x'$$

Donc $x' \in \bar{y}$ donc $\bar{x} \subset \bar{y}$.

En échangeant les rôles de x et y, on montre la deuxième inclusion $\bar{y} \subset \bar{x}$.

Montrons que les classes d'équivalence de E constituent une partition de E. Soit S un système de représentant des classes fixé quelconque.

- Soit $s \in \mathcal{S}$ fq. $\bar{s} \neq \emptyset$ car $s\mathcal{R}s$ par réflexivité.
- Soit $(s, s') \in S^2$ fq. D'après la démonstration ci-dessus ci-dessus, $\bar{s} \cap \bar{s'} = \emptyset$ ou $\bar{s} = \bar{s'}$. Si $\bar{s} = \bar{s'}$ alors s et s' représente la même classe ce qui est impossible car un système de représentants des classes contient un unique représentant de chaque classe. Par conséquent, \bar{s} et $\bar{s'}$ sont disjoints.
- $\bigcup \bar{s} \subset E \text{ car } \forall s \in \mathcal{S}, \bar{s} \in E \text{ par definition d'une classe d'équivalence.}$

Réciproquement, soit $x \in E$ fq.

Par réflexivité de \mathcal{R} , $x \in \bar{x}$.

Par définition d'un système de classe $\exists ! s_x \in \mathcal{S} : s_x \in \bar{x} \text{ donc } \bar{s_x} = \bar{x}.$ Donc $x \in \bar{s_x} \subset \bigcup_{\bar{s}} \bar{s}.$

Donc $E \subset \bigcup_{s \in \mathcal{S}} \bar{s}$. Par double inclusion, $E = \bigcup_{s \in \mathcal{S}} \bar{s}$.

Ainsi,

$$E = \bigsqcup_{s \in \mathcal{S}} \bar{s} \tag{8}$$

Si A admet un plus grand élément c'est aussi sa borne supérieure. Si 9.2A admet une borne supérieure dans A c'est sont plus grand élément.

Soit (E, \leq) un ensemble ordonné, et A une partie non-vide de E.

Si A admet un plus grand élément alors A admet une borne supérieure et sup $A = \max A$.

Si A admet une borne supérieure appartenant à elle-même alors A admet un plus grand élément et $\max A = \sup A$.

Démonstration. Soient un tel ensemble E et une telle partie A et notons M son plus grand élément. Posons l'ensemble des majorants de A, $M(A) = \{m \in E \mid \forall a \in A, \ a \leq m\}$.

Par définition:

$$\forall m \in M(A), M \leq m,$$

car $M \in A$, mais comme $M \in M(A)$, on a directement que $M = \min M(A) = \sup A$.

Pseudo-réciproquement, soit A une partie de E admettant une borne supérieure dans elle même, notons cette borne S.

Comme $S \in M(A)$, par définition, S est plus grand que tous les éléments de A mais appartient à A, donc de tous les éléments de A, S est le plus grand.

9.3 Théorème de la division Euclidienne dans \mathbb{Z}

$$\forall (a,b) \in \mathbb{Z}^2, \exists ! (q,r) \in \mathbb{Z} \times \mathbb{N} : \begin{cases} a = bq + r \\ r \in [0; |b| - 1] \end{cases}$$

$$\tag{9}$$

Démonstration. Unicité Soient deux tels entiers $(a,b) \in \mathbb{Z}^2$ et deux couples $((q,r),(q',r')) \in (\mathbb{Z} \times \mathbb{N})^2$ tels que

$$\begin{cases} a = bq + r \\ 0 \leqslant r \leqslant |b| - 1 \end{cases} \qquad \begin{cases} a = bq' + r' \\ 0 \leqslant r' \leqslant |b| - 1 \end{cases}$$

Directement,

$$b(q - q') = r' - r,$$

mais comme $-(|b|-1) \le r'-r \le |b|-1$, il vient en divisant par |b| l'inégalité précédente :

$$-1 < q - q' < 1,$$

puisque q et q' sont dans \mathbb{Z} leur différence est obligatoirement 0, ainsi q = q' ce qui implique r = r' et donc on a unicité de ladite écriture de a.

Existence Posons pour $b \ge 1$, $\Omega = \{k \in \mathbb{Z} \mid kb \le a\}$

- $-\Omega \subset \mathbb{Z}$
- non-vide car $-|a| \in \Omega$ (\mathbb{Z} archimédien suffit ...)
- Ω est majoré par |a| car supposons, par l'absurde, que $\exists k \in \Omega : k > |a|$, alors kb > |a|b > a ce qui contradiction avec la définition d' Ω .

Donc Ω admet un plus grand élément, notons-le q.

Posons r = a - bq. Par construction, a = bq + r et comme $q = \max \Omega$ et $\Omega \subset \mathbb{Z}$, $q \in \mathbb{Z}$ donc $r \in \mathbb{Z}$. Par suite, $q \in \Omega$ donc $bq \leqslant a$ d'où $0 \leqslant r$. Et $q = \max \Omega$ donc b(q+1) > a d'où b > r, c'est-à-dire, $r \in [0, |b| - 1]$.

Si b < 1, il suffit de prendre $q \leftarrow -q$ dans la preuve précédente. C'est donc l'existence de ladite écriture de a.

9.4 Une suite décroissante et minorée de nombres entiers relatifs est stationnaire

 $D\acute{e}monstration$. Soit $u \in \mathbb{Z}^{\mathbb{N}}$ une suite décroissante et minorée fixée quelconque. Considérons $A = \{u_n \mid n \in \mathbb{N}\}$ c'est-à-dire l'ensemble des valeurs prises par la suite u. A est :

- une partie de \mathbb{Z} car u est à valeur dans \mathbb{Z}
- non vide car $u_0 \in A$
- minoré car u est minorée

Donc A admet un plus petit élément. Donc $\exists n_0 \in \mathbb{N} : u_{n_0} = minA$. Fixons un tel n_0 . Soit $n \in \mathbb{N}$ fq tq $n \ge n_0$.

$$\left. \begin{array}{l} u_n \in A \implies u_n \geqslant \min A = u_{n_0} \\ u \text{ est décroissante et } n \geqslant n_0 \text{ donc } u_n \leqslant u_{n_0} \end{array} \right\} \implies u_n = u_{n_0}$$

Ainsi, u est stationnaire.

10.1 Caractérisation de la densité d'une partie A de \mathbb{R} dans une partie B de \mathbb{R} la contenant avec des ε .

Soient $(A, B) \in \mathcal{P}(\mathbb{R})^2$ fq. Définition de la densité

$$A \text{ est dense dans } B \text{ si } \begin{cases} A \subset B \\ \text{ et } \\ \forall (u,v) \in \mathbb{R}^2, B \cap]u; v[\neq \emptyset \implies A \cap]u; v[\neq \emptyset \end{cases}$$
 (10)

Caractérisation de la densité par les ε

$$A \text{ est dense dans } B \iff \begin{cases} A \subset B \\ \text{et} \\ \forall b \in B, \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : |b - a| < \varepsilon \end{cases}$$
 (11)

Démonstration. Montrons la caractérisation de la densité Sens Direct Supposons A dense dans B

- Par déf $A \subset B$
- Soit $b \in B$ et $\varepsilon \in \mathbb{R}_+^*$ fq

Appliquons le (ii) de la déf de Densité pour $u \leftarrow b - \varepsilon$ et $v \leftarrow b + \varepsilon$

$$B\cap]b-\varepsilon,b+\varepsilon[\neq\emptyset\implies A\cap]b-\varepsilon,b+\varepsilon[\neq\emptyset$$

Or, $B \cap]b - \varepsilon, b + \varepsilon [\neq \emptyset$ est vraie donc $A \cap]b - \varepsilon, b + \varepsilon [\neq \emptyset$

Ce qui permet de choisir $a \in A \cap]b - \varepsilon, b + \varepsilon[$. Un tel a vérifie $a \in A$ et $a \in]b - \varepsilon, b + \varepsilon[\iff |b - a| < \varepsilon$

 $\begin{array}{l} \textit{Sens r\'eciproque} \; \text{Supposons} \; \left\{ \begin{array}{l} A \subset B \\ \text{et} \\ \forall b \in B, \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : |b-a| < \varepsilon \end{array} \right. \end{array}$

- On a donc $A\subset B$
- Soient $(u, v) \in \mathbb{R}^2$ fq tq $B \cap]u, v \neq \emptyset$

Soit $b \in B \cap]u,v[$ fq. Appliquons l'hypothèse pour $b \leftarrow b$ et $\varepsilon \leftarrow \min\{v-b,b-u\}$, qui est autorisé v-b et b-u sont positifs

Donc $\exists a \in A : |b - a| < \varepsilon$

Fixons un tel a, alors:

$$b - \varepsilon < a < b + \varepsilon$$

Donc

$$\begin{cases} a < b + \varepsilon = b + \underbrace{\min\{v - b, b - u\}}_{\leqslant v - b} \leqslant b + v - b = v \\ \text{et} \\ a > b - \varepsilon = b - \underbrace{\min\{v - b, b - u\}}_{\leqslant b - u} \geqslant b - (b - u) = u \end{cases}$$

Donc $a \in]u, v[$.

Donc $A \cap]u, v \neq \emptyset$

10.2 Théorème de la division pseudo-euclidienne dans \mathbb{R}

$$\forall (a,b) \in \mathbb{R} \times \mathbb{R}^*, \exists ! (q,r) \in \mathbb{Z} \times \mathbb{R} : \begin{cases} a = bq + r \\ r \in [0; |b|] \end{cases}$$
 (12)

Démonstration. Unicité Soient deux tels entiers $(a,b) \in \mathbb{R}^2$ et deux couples $((q,r),(q',r')) \in (\mathbb{Z} \times \mathbb{R})^2$ tels que

$$\begin{cases} a=bq+r \\ r\in [0;|b|[\end{cases} \qquad \begin{cases} a=bq'+r' \\ r'\in [0;|b|[$$

Directement,

$$b(q - q') = r' - r,$$

mais comme -|b| < r' - r < |b|, il vient en divisant par |b| l'inégalité précédente :

$$-1 < q - q' < 1$$
,

puisque q et q' sont dans \mathbb{Z} leur différence est obligatoirement 0, ainsi q = q' ce qui implique r = r' et donc on a unicité de ladite écriture de a.

Existence Posons pour b > 0, $\Omega = \{k \in \mathbb{Z} \mid kb \leq a\}$

- $-\Omega \subset \mathbb{Z}$
- non-vide car $-|a| \in \Omega$ (\mathbb{Z} archimédien suffit ...)
- Ω est majoré par |a| car supposons, par l'absurde, que $\exists k \in \Omega : k > |a|$, alors kb > |a|b > a ce qui contradiction avec la définition d' Ω .

Donc Ω admet un plus grand élément, notons-le q.

Posons r = a - bq. Par construction, a = bq + r et comme $q = \max \Omega$ et $r \in \mathbb{R}$.

Par suite, $q \in \Omega$ donc $bq \leqslant a$ d'où $0 \leqslant r$. Et $q = \max \Omega$ donc b(q+1) > a d'où b > r, c'est-à-dire, $r \in [0, |b|]$.

Si b < 0, il suffit de prendre $q \leftarrow -q$ dans la preuve précédente. C'est donc l'existence de ladite écriture de a.

10.3 $\mathbb Q$ est dense dans $\mathbb R$ et $\mathbb R\setminus\mathbb Q$ est aussi dense dans $\mathbb R$

Démonstration. Soit $x \in \mathbb{R}$ fq. Posons $\forall n \in \mathbb{N}, a_n = \frac{\lfloor 2^n x \rfloor}{2^n}$. Soit $n \in \mathbb{N}$ fq.

 $-a_n \in \mathbb{Q} \text{ car } |2^n x| \in \mathbb{Z} \text{ et } 2^n \in \mathbb{N}.$

$$a_n = \frac{\lfloor 2^n x \rfloor}{2^n} \implies \frac{2^n x - 1}{2^n} \leqslant a_n \leqslant \frac{2^n x}{2^n} \implies x - \frac{1}{2^n} \leqslant a_n \leqslant x$$

Or $1/2^n \xrightarrow[n \to +\infty]{n \to +\infty} 0$ donc d'après le théorème d'existence de limite par encadrement, $a_n \xrightarrow[n \to +\infty]{n \to +\infty} x$.

Donc d'après la caractérisation séquentielle de la densité, $\mathbb Q$ est dense dans $\mathbb R$.

Soit $x \in \mathbb{R}$ fq.

Alors $x + \sqrt{2} \in \mathbb{R}$. D'après la démonstration précédente, $\exists b \in \mathbb{Q}^{\mathbb{N}} : b_n \xrightarrow[n \to +\infty]{} x + \sqrt{2}$.

Fixons un telle suite b. Considérons $c = b - \sqrt{2}$.

Soit $n \in \mathbb{N}$ fq.

 $-c_n \in \mathbb{R} \setminus \mathbb{Q} \text{ car } b_n \in \mathbb{Q} \text{ et } \sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}.$

$$\begin{cases} b_n & \xrightarrow{n \to +\infty} x + \sqrt{2} \\ c_n & = b_n - \sqrt{2} \end{cases} \implies c_n \xrightarrow[n \to +\infty]{} x$$

Donc d'après la caractérisation séquentielle de la densité, $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .

10.4 Preuve de l'unicité de la limite d'une suite convergente

Soit $u \in \mathbb{K}^{\mathbb{N}}$, $(\ell_1, \ell_2) \in \mathbb{K}^2$ Si u converge vers ℓ_1 et ℓ_2 , alors $\ell_1 = \ell_2$

Démonstration. Par l'absurde, supponsons que u converge vers ℓ_1 et ℓ_2 , et $\ell_1 \neq \ell_2$. On prendra $\varepsilon_0 = \varepsilon_1 = \varepsilon_2$ assez petit pour que les tubes soient disjoints. Posons donc $\varepsilon_0 = \frac{|\ell_1 - \ell_2|}{3}$

— Appliquons la définition de la convergence de u vers ℓ_1 , pour $\varepsilon \leftarrow \varepsilon_0$, ce qui est autorisé car $\varepsilon_0 \in \mathbb{R}_+^*$

$$\exists N_1 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N_1 \implies |u_n - \ell_1| \leqslant \varepsilon_0 \tag{13}$$

$$\exists N_2 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N_2 \implies |u_n - \ell_2| \leqslant \varepsilon_0 \tag{14}$$

Fixons de tels N_1 et N_2 .

- Posons $n_0 = N_1 + N_2$
 - $n_0 \geqslant N_1$, donc (17) s'applique : $|u_{n_0} \ell_1| \leqslant \varepsilon_0$
 - $n_0 \geqslant N_2$, donc (14) s'applique : $|u_{n_0} \ell_2| \leqslant \varepsilon_0$

 $\begin{aligned} |\ell_1 - \ell_2| &= |\ell_1 - u_{n_0} + u_{n_0} - \ell_2| \\ &\leqslant \underbrace{|\ell_1 - u_{n_0}|}_{\leqslant \varepsilon_0} + \underbrace{|u_{n_0} - \ell_2|}_{\leqslant \varepsilon_0} \\ &\leqslant 2 \frac{|\ell_1 - \ell_2|}{3} \\ &\Longrightarrow 1 \leqslant \frac{2}{3} \end{aligned}$

Contradiction

10.5 Une suite convergente est bornée

Démonstration. Soit $u \in \mathbb{K}^{\mathbb{N}}$ convergente. Posons $\ell = \lim u$ Appliquons la définition de la convergence pour $\varepsilon \leftarrow 1$

$$\exists N_1 \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N_1 \implies |u_n - \ell| \leqslant 1$$

Fixons un tel N_1 Posons alors $M = \max\{|u_0|, |u_1|, |u_2| \dots |u_{N_1}|, |\ell|+1\}$, qui est bien défini, car toute partie finie, non vide d'un ensemble totalement ordonné (ici (\mathbb{R}, \leq)) admet un pgE.

Soit $n \in \mathbb{N}$ fq.

- Si $n \in [[0, N_1]], |u_n| \in \{|u_0|, |u_1|, |u_2| \dots |u_{N_1}|, |\ell| + 1\}$ donc $|u_n| \leq M$
- Sinon,

$$\begin{array}{ll} n > N_1 \implies |u_n - \ell| \leqslant 1 \\ \implies |u_n| - |\ell| \leqslant 1 \\ \implies |u_n| \leqslant 1 + |\ell| \leqslant M \end{array}$$

Ainsi, $\forall n \in \mathbb{N}, |u_n| \leq M$.

11.1 Caractérisation séquentielle de la densité.

Soient $(A, B) \in (\mathcal{P}(\mathbb{R}) \setminus \{\emptyset\})^2$. Montrons que :

$$A$$
 est dense dans $B \iff \left\{ \begin{array}{l} A \subset B \\ \forall b \in B, \exists (a_n) \in A^{\mathbb{N}} : (a_n) \text{ converge vers } b \end{array} \right.$

Démonstration. Sens indirect : supposons $A \subset B$ et $\forall b \in B, \exists (a_n) \in A^{\mathbb{N}} : (a_n)$ converge vers b :

- $\star A \subset B$ par hypothèse.
- \star Montrons que $\forall b \in B, \forall \varepsilon \in \mathbb{R}_+^*, \exists a \in A : |b-a| < \varepsilon$ (on utilise la caractérisation de la densité avec les ε)

Soient $b \in B$ et $\varepsilon \in \mathbb{R}_+^*$ fixés quelconques :

Par hypothèse appliquée pour $b \leftarrow b : \exists (a_n) \in A^{\mathbb{N}} : a_n \xrightarrow[n \to +\infty]{} b$

Appliquons la définition de la convergence de (a_n) vers b pour $\varepsilon \leftarrow \frac{\varepsilon}{2}$:

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow |a_n - b| \leqslant \frac{\varepsilon}{2}$$

Fixons un tel N:

En particulier, $a_N \in A$ et $|a_N - b| \leqslant \frac{\varepsilon}{2} \leqslant \varepsilon$

Donc A est dense dans B.

Sens direct : supposons A dense dans B :

- \star Par définition, $A \subset B$
- \star Soit $b \in B$ fixé quelconque.

Soit $n \in \mathbb{N}$ fixé quelconque :

Appliquons la caractérisation de la densité par les ε pour $\varepsilon \leftarrow \frac{1}{2^n}$ (autorisé car $\frac{1}{2^n} > 0$), et $b \leftarrow b$:

$$\exists a \in A : |a - b| \leqslant \frac{1}{2^n}$$

Notons a_n un tel élément. Nous venons de construire $(a_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ vérifiant :

 $\forall n \in \mathbb{N}, |a_n - b| \leqslant \frac{1}{2^n}$ Or: $\lim_{n \to +\infty} \frac{1}{2^n} = 0$

Ainsi, d'après le théorème sans nom, $(a_n)_{n\in\mathbb{N}}$ converge vers b.

Théorème de la convergence monotone 11.2

Soit $u \in \mathbb{R}^{\mathbb{N}}$ une suite monotone :

- 1. Si u est croissante
 - (i) Soit u est majorée, et dans ce cas, $\lim u = \sup\{u_k | k \in \mathbb{N}\}\$
 - (ii) Soit u n'est pas bornée, et dans ce cas, u diverge vers $+\infty$.
- 2. Si u est décroissante :
 - (i) Soit u est minorée, et dans ce cas, $\lim u = \inf\{u_k | k \in \mathbb{N}\}\$
 - (ii) Soit u n'est pas bornée, et dans ce cas, u diverge vers $-\infty$.

Démonstration. Soit $u \in \mathbb{R}^{\mathbb{N}}$ monotone fq.

- 1. Supposons que u est croissante.
 - (i) Supposons que u est majorée.

Alors $\exists M \in \mathbb{R} : \forall n \in \mathbb{N}, u_n \leq M$. Fixons un tel M.

 $\Omega = \{u_k | k \in \mathbb{N}\} \text{ est }$

- une partie de \mathbb{R}
- non vide car u_0 y appartient
- majorée par M

donc elle admet un borne supérieure et notons-la σ .

Soit $\epsilon \in \mathbb{R}_+^*$ fq.

 $\sigma - \epsilon < \sigma$ donc $\sigma - \epsilon$ ne majore pas Ω . Donc $\exists N \in \mathbb{N} : u_N > \sigma - \epsilon$. Fixons un tel N.

Soit $n \in \mathbb{N}$ fq tq $n \geqslant N$. Alors $u_n \geqslant u_N \geqslant \sigma - \epsilon$ et $u_n \leqslant \sigma$.

par défintion de σ

Ainsi,

$$\sigma - \epsilon \leqslant u_n \leqslant \sigma \implies -\epsilon \leqslant u_n - \sigma \leqslant 0$$
$$\implies |u_n - \sigma| \leqslant \epsilon$$

Donc $u_n \xrightarrow[n \to +\infty]{} \sigma$.

(ii) Supposons que u n'est pas bornée.

Soit $A \in \mathbb{R}$ fq.

u n'est pas bornée donc $\exists N \in \mathbb{N} : u_N > A$.

Or u est croissante donc $\forall n \in \mathbb{N}, n \geqslant N \implies u_n \geqslant A$.

Donc $u_n \xrightarrow[n \to +\infty]{} +\infty$.

2. Supposons que u est décroissante.

Il suffit dans la preuve ci-dessus de remplacer les inégalités inférieures par des inégalités supérieures et inversement et d'utiliser la notion de borne inférieure plutôt que de borne supérieure.

- $\begin{array}{ll} (i) \ \mbox{Si u est minorée, u_n} & \xrightarrow[n \to +\infty]{} & \inf\{u_k | k \in \mathbb{N}\}. \\ (ii) \ \mbox{Si u n'est pas bornée, u_n} & \xrightarrow[n \to +\infty]{} & -\infty. \end{array}$

Théorème de Césarò 11.3

Soit $u \in \mathbb{R}^{\mathbb{N}}$ qui converge vers $\ell \in \mathbb{R}$.

Alors la moyenne arithmérique des $n \in \mathbb{N}$ premiers termes (appelée moyenne de Césarò) converge vers ℓ .

Démonstration. Soient u une telle suite, $\varepsilon \in \mathbb{R}_+^*$ et $\ell \in \mathbb{R}$ ladite limite de u. Appliquons la définition de la convergence de u pour $\varepsilon \leftarrow \frac{\varepsilon}{2}$:

$$\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \ge N \implies |u_n - \ell| \le \frac{\varepsilon}{2}.$$

Fixons un tel N. Posons $\omega = \sum_{k=0}^{N-1} |u_k - \ell| \in \mathbb{R}$. Soit $n \in \mathbb{N}$ tel que $n \ge N$. Calculons :

$$\left|\frac{1}{n}\sum_{k=0}^{n-1}u_k - \ell\right| = \left|\frac{1}{n}\left(\sum_{k=0}^{n-1}u_k - n\ell\right)\right| = \left|\frac{1}{n}\sum_{k=0}^{n-1}(u_k - \ell)\right| \leq \underbrace{\frac{1}{n}\sum_{k=0}^{N-1}|u_k - \ell|}_{= \ \omega \in \mathbb{R}} + \underbrace{\frac{1}{n}\sum_{k=N}^{n}|u_k - \ell|}_{\leq \frac{\varepsilon}{2}} \leq \underbrace{\frac{\omega}{n}}_{= \frac{\varepsilon}{2}}.$$

Ces majorations sont issues de l'inégalité triangulaire et de la convergence de u. De plus, comme la suite $(v_n)_{n\in\mathbb{N}}=\left(\frac{\omega}{n}\right)_{n\in\mathbb{N}}$ converge vers 0, on écrit sa définition pour $\varepsilon\leftarrow\frac{\varepsilon}{2}$:

$$\exists N' \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \ge N' \implies |v_n| \le \frac{\varepsilon}{2}.$$

On fixe un tel N' et on pose $\Lambda = \max(N, N')$ qui a bien un sens car $\{N, N'\}$ est une partie finie de N. De la même manière qu'auparavant, pour $n \in \mathbb{N}$ tel que $n \geq \Lambda$, on a :

$$\left| \frac{1}{n} \sum_{k=0}^{n-1} u_k - \ell \right| \le \underbrace{\frac{\omega}{n}}_{\le \frac{\varepsilon}{2}} + \frac{\varepsilon}{2} \le \varepsilon.$$

C'est le théorème souhaité.

Théorème de passage à la limite dans une inégalité.

Soient $(u, v) \in \mathbb{R}^{\mathbb{N}}$:

- (i) Si $\begin{vmatrix} \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow u_n \geqslant 0 \\ u \text{ converge} \\ \text{Alors } \lim u \geqslant 0 \end{vmatrix}$
- (ii) Si $\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow u_n \leqslant v_n$ u et v convergent

Démonstration.

(i) L'hypothèse $\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow u_n \geqslant 0$ permet d'affirmer que u et |u| coïncident à partir d'un certain rang.

Par ailleurs, la convergence de u et la continuité de $|\cdot|$ sur $\mathbb R$ donc en $\lim u$ donnent |u|converge vers $|\lim u|$.

Le caractère asymptotique de la limite permet de conclure que u et |u| ont la même limite. Donc $\lim u = |\lim u| \ge 0$

(ii) $\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \Rightarrow u_n \leqslant v_n \Rightarrow v_n - u_n \geqslant 0$ u et v convergent $\Rightarrow v - u$ converge vers $\lim v - \lim u$.

On applique (i) pour $u \leftarrow v - u$, autorisé car u et v convergent.

On obtient $\lim v - \lim u \ge 0$ d'où $\lim u \le \lim v$.

Théorème des suites adjacentes 11.5

Soient u et v deux suites réelles adjacentes. Alors u et v convergent et ont la même limite.

 $D\acute{e}monstration$. Soient u et v de telles suites. Quitte à inverser les rôles desdites suites, prenons ucroissante et v décroissante.

On a donc:

$$\forall n \in \mathbb{N}, \ (u_n \le v_n \le \underbrace{v_0}_{\in \mathbb{R}}) \land (\underbrace{u_0}_{\in \mathbb{R}} \le u_n \le v_n),$$

car la monotonie des suites induit ces inégalités. D'après le théorème de limite monotone, u étant croissante et majorée elle converge, v étant décroissante et minorée elle converge.

Il s'en suit que par définition des suites adjacentes :

$$0 = \lim_{n \to +\infty} (u_n - v_n) \underbrace{=}_{u,v} \lim_{\text{convergent}} \lim_{n \to +\infty} u_n - \lim_{n \to +\infty} v_n.$$

Ainsi, $\lim u = \lim v$.

Facultative Théorème de Bolzano-Weierstrass

Toute suite bornée réelle admet une sous-suite convergente.

L'ensemble des valeurs d'adhérence d'une suite réelle bornée est non vide.

Démonstration. Soit $u \in \mathbb{R}^{\mathbb{N}}$ fq bornée.

Alors $\exists M \in \mathbb{R}_+ : \forall n \in \mathbb{N}, |u_n| \leq M$.

Construisons une suite de segments dans [-M; M] de plus en plus petits par dichotomie.

Posons $a_0 = -M$, $b_0 = M$ et définissons les suites c et I pour tout n dans \mathbb{N} par $c_n = \frac{a_n + b_n}{2}$ et $I_n = [a_n; b_n].$

Soit $n \in \mathbb{N}$ fq. Supposons a_n et b_n construits et $\{k \in \mathbb{N} \mid u_k \in I_n\}$ infini. Construisons les termes

Posons $\begin{vmatrix} I_n^- &= \{k \in \mathbb{N} \mid u_k \in [a_n; c_n]\} \\ I_n^+ &= \{k \in \mathbb{N} \mid u_k \in [c_n; b_n]\} \\ \text{Nous avons } I_n^- \cup I_n^+ = \{k \in \mathbb{N} \mid u_k \in I_n\} \text{ donc } I_n^- \text{ ou } I_n^+ \text{ est infini.}$

— Si
$$I_n^-$$
 est infini, posons $\begin{vmatrix} a_{n+1} &= a_n \\ b_{n+1} &= c_n \end{vmatrix}$
Ainsi $\{k \in \mathbb{N} \mid u_k \in I_{n+1}\} = I_n^-$ est infini.

— Si
$$I_n^+$$
 est infini, posons $\begin{vmatrix} a_{n+1} &= c_n \\ b_{n+1} &= b_n \end{vmatrix}$
Ainsi $\{k \in \mathbb{N} \mid u_k \in I_{n+1}\} = I_n^+$ est infini.

Étudions la suite $(I_n)_{n\in\mathbb{N}}$.

- Nous avons toujours $a_n \leq b_n$ donc $\forall n \in \mathbb{N}, I_n \neq \emptyset$
- Par construction, $\forall n \in \mathbb{N}, I_{n+1} \subset I_n$
- $|I_{n+1}| = |a_{n+1} b_{n+1}| = \frac{1}{2}|a_n b_n| = \frac{1}{2}|I_n|$ donc la suite des cardinaux est une suite géométrique de raison 1/2. Donc $|I_n| \xrightarrow[n \to +\infty]{} 0$.

Donc, d'après le théorème des segments emboîtés, $\exists ! l\ell \in \mathbb{R} : \bigcap_{n \in \mathbb{N}} I_n = \{\ell\}$. Fixons un tel ℓ .

Construisons maintenant une extractrice φ de u.

Posons $\varphi(n) = 0$.

Soit $n \in \mathbb{N}$ fq. Supposons $\varphi(n)$ construite.

$$\varphi(n+1) = \min\{k \in \mathbb{N} | u_k \in I_{n+1} \land k > \varphi(n)\}\$$

 $\varphi(n+1)$ est bien définie car $\{k \in \mathbb{N} | u_k \in I_{n+1}\}$ est une partie de \mathbb{N} non bornée (car infinie).

Ainsi, nous avons construit $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante. Nous pouvons extraire une sous-suite de u. Or $\forall n \in \mathbb{N}, u_{\varphi(n)} \in I_n$ donc

$$\forall n \in \mathbb{N}, \quad \underbrace{a_n}_{n \to +\infty} \ell \leqslant u_{\varphi(n)} \leqslant \underbrace{b_n}_{n \to +\infty} \ell$$

Donc, d'après le théorème d'existence de limite par encadrement, $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} \ell$. Ainsi $\ell \in L_u$.

11.7 Facultative Caractérisation de la convergence par l'unicité d'une valeur d'adhérence pour une suite bornée.

Soit u une suite bornée. u converge si et seulement si il existe $\ell \in \mathbb{K}$ tel que L(u) est le singleton ℓ

 $D\acute{e}monstration$. Traitons le cas réel, celui sur $\mathbb C$ est à adapter sans peine.

Supposons que u converge et posons $\lim u = \ell \in \mathbb{R}$. Toutes les sous-suites de u convergent vers ℓ donc $L(u) = {\ell}$.

Supposons maintenant qu'il existe un unique $\ell \in \mathbb{R}$ tel que $L(u) = \{\ell\}$. Par l'absurde, supposons que u ne converge pas vers ℓ , c'est-à-dire :

$$\exists \varepsilon \in \mathbb{R}_+^* : \forall N \in \mathbb{N}, \ \exists n \in \mathbb{N} : n \ge N \text{ et } |u_n - \ell| > \varepsilon.$$

Fixons un tel ε .

Posons $\varphi(0) = \min \{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon\}$, ce qui a du sens car c'est une partie non-vide de \mathbb{N} . Posons ensuite $\varphi(1) = \min \{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon, \ \varphi(0) < k\}$, ce qui a du sens pour les mêmes raisons. On construit en itérant ce procédé $\varphi(n)$ tel que :

$$\forall n \in \mathbb{N}, \ \varphi(n+1) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon, \ \varphi(n) < k\}.$$

De cette manière, nous venons de construire une extractrice telle que :

$$\forall n \in \mathbb{N}, |u_{\varphi(n)} - \ell| > \varepsilon.$$

Par hypothèse u est bornée, donc il existe $M \in \mathbb{R}_+$ tel que :

$$\forall n \in \mathbb{N}, |u_n| \leq M,$$

donc pour tout n dans \mathbb{N} , $|u_{\varphi(n)}| \leq M$, donc $(u_{\varphi(n)})_{n \in \mathbb{N}}$ est bornée.

Par le théorème de Bolzano-Weierstrass, il existe ψ une extractrice et $\ell' \in \mathbb{R}$, avec $\varphi \circ \psi$ qui est

aussi une extractrice par composition d'applications strictement croissantes, $\operatorname{donc}(u_{\varphi \circ \psi(n)})_{n \in \mathbb{N}}$ est une sous-suite de u et $\ell' \in L(u) = \{\ell\}$.

Par ailleurs, pour tout n dans \mathbb{N} :

$$\underbrace{\frac{\left|u_{\varphi\circ\psi(n)}-\ell\right|}{\sum_{n\to+\infty}\left|\ell'-\ell\right|}}>\varepsilon,$$

donc en passant à la limite dans l'inégalité on a pour tout n dans \mathbb{N} , $|\ell' - \ell| \ge \varepsilon > 0$, ce qui n'est pas possible car ℓ est la seule valeur d'adhérence possible et ici la différence n'est pas nulle. \square

12.1 Résolution d'une relation de récurrence linéaire d'ordre 1 à coefficients constants et avec second membre

Soient $a \in \mathbb{K}$ et $v \in \mathbb{K}^{\mathbb{N}}$ où \mathbb{K} peut être \mathbb{C} ou \mathbb{R} . L'ensemble des solutions de l'équation $\forall n \in \mathbb{N}, u_{n+1} = au_n + v_n$ est la droite affine :

$$\left\{ w + \lambda \left(a^n \right)_{n \in \mathbb{N}} \mid \lambda \in \mathbb{K} \right\} \tag{15}$$

Démonstration. Posons w la suite définie par

$$\begin{cases} w_0 = 1 \\ \forall n \in \mathbb{N}, w_{n+1} = aw_n + v_n \end{cases}$$

w est "évidemment solution de particulière de l'équation"

Maintenant que nous disposons d'une solution particulière, et ayant observé que l'équation est linéaire, mettons en œuvre l'artillerie classique pour exprimer l'ensemble des solutions par l'habituelle technique.

$$\forall n \in \mathbb{N}, u_{n+1} = au_n + v_n \iff \forall n \in \mathbb{N}, u_{n+1} - au_n = v_n$$

$$\iff \forall n \in \mathbb{N}, u_{n+1} - au_n = w_{n+1} - aw_n$$

$$\iff \forall n \in \mathbb{N}, (u - w)_{n+1} = a(u - w)_n$$

$$\iff u - w \in \text{Vect}\left\{(a^n)_{n \in \mathbb{N}}\right\}$$

$$\iff \exists \lambda \in \mathbb{K} : u - w = \lambda (a^n)_{n \in \mathbb{N}}$$

$$\iff \exists \lambda \in \mathbb{K} : \forall n \in \mathbb{N}, u_n = w_n + \lambda a^n$$

$$\iff u \in \left\{(w_n + \lambda a^n)_{n \in \mathbb{N}} \mid \lambda \in \mathbb{K}\right\}$$

12.2 Résolution d'une relation de récurrence linéaire homogène d'ordre 2 à coefficients constants dans $\mathbb C$ lorsque l'équation caractéristique possède un discriminant non nul

Soient $(a,b) \in \mathbb{C}^2$. L'ensemble des solutions S_H de l'équation d'inconnue $u \in \mathbb{C}^{\mathbb{N}}$

$$\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n \tag{16}$$

est le plan vectoriel $\operatorname{Vect}\{(r_1^n)_{n\in\mathbb{N}}, (r_2^n)_{n\in\mathbb{N}}\}$ où r_1 et r_2 sont les racines de l'équation caractéristique $(r^2=ar+b)$ quand $\Delta\neq 0$.

Démonstration. Soient $(a, b) \in \mathbb{C}^2$ fq.

<u>Lemme</u> Soit $r \in \mathbb{C}$. $(r^n)_{n \in \mathbb{N}}$ est solution de l'équation de récurrence si et seulement si $r^2 = ar + b$.

$$(r^n)_{n\in\mathbb{N}}$$
 est solution $\iff \forall n\in\mathbb{N}, r^{n+2} = ar^{n+1} + br^n$
 $\iff \forall n\in\mathbb{N}, r^n\left(r^2 - ar - b\right) = 0$
 $\iff r^2 - ar - b = 0$
En particularisant pour $n\leftarrow 0$

 $\iff r^2 = ar + b$

Considérons le cas où l'équation $r^2 = ar + b$ admet deux racines distinctes $(\Delta \neq 0)$ r_1 et r_2 . D'après le lemme, $(r_1^n)_{n \in \mathbb{N}}$ et $(r_2^n)_{n \in \mathbb{N}}$ sont solutions. Par linéarité de l'équation, toute combinaison linéaire est solution de l'équation homogène. Donc $\text{Vect}\{(r_1^n)_{n \in \mathbb{N}}, (r_2^n)_{n \in \mathbb{N}}\} \subset S_H$.

Réciproquement, soit $u \in \S_H$ fq. Étudions le système à deux inconnues $(\lambda, \mu) \in \mathbb{C}^2$:

$$\begin{cases} \lambda r_1^0 + \mu r_2^0 = u_0 \\ \lambda r_1^1 + \mu r_2^1 = u_1 \end{cases} \iff \begin{cases} \lambda + \mu = u_0 \\ \lambda r_1 + \mu r_2 = u_1 \end{cases}$$

 $\begin{vmatrix} 1 & 1 \\ r_1 & r_2 \end{vmatrix} = r_2 - r_1 \neq 0$ Donc d'après les formules de Cramer, ce système admet une unique solution. Considérons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}$ par :

$$u_n = \lambda r_1^n + \mu r_2^n$$
 et $u_{n+1} = \lambda r_1^{n+1} + \mu r_2^{n+1}$

- $\mathcal{P}(0)$ est vrai par construction de λ et μ .
- Soit $n \in \mathbb{N}$ fq tq $\mathcal{P}(n)$ vrai. D'après $\mathcal{P}(n)$, $u_{n+1} = \lambda r_1^{n+1} + \mu r_2^{n+1}$.

$$u_{n+2} = au_{n+1} + bu_n$$

$$= a \left(\lambda r_1^{n+1} + \mu r_2^{n+1} \right) + b \left(\lambda r_1^n + \mu r_2^n \right) \quad \text{d'après } \mathcal{P}(n)$$

$$= \lambda r_1^n \left(ar_1 + b \right) + \mu r_2^n \left(ar_2 + b \right)$$

$$= \lambda r_1^{n+2} + \mu r_2^{n+2} \quad \text{car } r_1 \text{ et } r_2 \text{ sont racine de } r^2 = ar + b$$

Ainsi $S_H \subset \text{Vect}\{(r_1^n)_{n\in\mathbb{N}}, (r_2^n)_{n\in\mathbb{N}}\}.$ Par double inclusion, $S_H = \text{Vect}\{(r_1^n)_{n\in\mathbb{N}}, (r_2^n)_{n\in\mathbb{N}}\}.$

12.3 Caractérisation de la convergence par l'unicité d'une valeur d'adhérence pour une suite bornée.

Soit u une suite bornée. u converge si et seulement si il existe $\ell \in \mathbb{K}$ tel que L(u) est le singleton ℓ

 $D\acute{e}monstration$. Traitons le cas réel, celui sur $\mathbb C$ est à adapter sans peine.

Supposons que u converge et posons $\lim u = \ell \in \mathbb{R}$. Toutes les sous-suites de u convergent vers ℓ donc $L(u) = {\ell}$.

Supposons maintenant qu'il existe un unique $\ell \in \mathbb{R}$ tel que $L(u) = \{\ell\}$. Par l'absurde, supposons que u ne converge pas vers ℓ , c'est-à-dire :

$$\exists \varepsilon \in \mathbb{R}_+^* : \forall N \in \mathbb{N}, \ \exists n \in \mathbb{N} : \ n \ge N \text{ et } |u_n - \ell| > \varepsilon.$$

Fixons un tel ε .

Posons $\varphi(0) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon\}$, ce qui a du sens car c'est une partie non-vide de \mathbb{N} . Posons ensuite $\varphi(1) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon, \ \varphi(0) < k\}$, ce qui a du sens pour les mêmes raisons. On construit en itérant ce procédé $\varphi(n)$ tel que :

$$\forall n \in \mathbb{N}, \ \varphi(n+1) = \min\{k \in \mathbb{N} \mid |u_k - \ell| > \varepsilon, \ \varphi(n) < k\}.$$

De cette manière, nous venons de construire une extractrice telle que :

$$\forall n \in \mathbb{N}, |u_{\omega(n)} - \ell| > \varepsilon.$$

Par hypothèse u est bornée, donc il existe $M \in \mathbb{R}_+$ tel que :

$$\forall n \in \mathbb{N}, |u_n| < M,$$

donc pour tout n dans \mathbb{N} , $|u_{\varphi(n)}| \leq M$, donc $(u_{\varphi(n)})_{n \in \mathbb{N}}$ est bornée.

Par le théorème de Bolzano-Weierstrass, il existe ψ une extractrice et $\ell' \in \mathbb{R}$, avec $\varphi \circ \psi$ qui est aussi une extractrice par composition d'applications strictement croissantes, donc $(u_{\varphi \circ \psi(n)})_{n \in \mathbb{N}}$ est une sous-suite de u et $\ell' \in L(u) = \{\ell\}$.

Par ailleurs, pour tout n dans \mathbb{N} :

$$\underbrace{\frac{|u_{\varphi \circ \psi(n)} - \ell|}{|u_{\varphi \circ \psi(n)} - \ell|}}_{n \to +\infty} > \varepsilon,$$

donc en passant à la limite dans l'inégalité on a pour tout n dans \mathbb{N} , $|\ell' - \ell| \ge \varepsilon > 0$, ce qui n'est pas possible car ℓ est la seule valeur d'adhérence possible et ici la différence n'est pas nulle.

12.4 Monotonie de u et des sous-suites des termes pairs et impairs de la suite $u_{n+1} = f(u_n)$ selon la monotonie de f

Soient $f: \mathcal{D} \to \mathbb{R}$ et $I \subset \mathcal{D}_f$ une intervalle f-stable.

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ la suite récurrente associée à la fonction f c'est-à-dire $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$.

— Si f est croissante sur I.

Si $u_1 \geqslant u_0$ alors u est croissante.

Si $u_1 \leq u_0$ alors u est décroissante.

— Si f est décroissante sur I.

Les sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotone et ont une monotonie opposée (utiliser les premiers termes pour trouver leur monotonie respectives).

 $D\acute{e}monstration$. Soient de tels f, I et u.

— Supposons que f est croissante sur I. Supposons $u_1 \geqslant u_0$. Considérons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}$ par

$$\mathcal{P}(n)$$
: " $u_{n+1} \geqslant u_n$ "

Par hypothèse, $u_1 \geqslant u_0$ donc $\mathcal{P}(0)$ est vrai.

Soit $n \in \mathbb{N}$ fq tq $\mathcal{P}(n)$ vrai.

$$u_{n+1} \geqslant u_n \underset{f \text{ est croissante sur } I}{\Longrightarrow} f(u_{n+1}) \geqslant f(u_n) \implies u_{n+2} \geqslant u_{n+1}$$

Donc $\mathcal{P}(n+1)$ est vrai.

Si $u_1 \leqslant u_0$, il suffit de changer \geqslant par \leqslant dans la récurrence ci-dessus.

— Supposons que f est décroissante sur I.

Donc $\forall n \in \mathbb{N}, u_{2(n+1)} = f \circ f(u_{2n})$ et $u_{2(n+1)+1} = f \circ f(u_{2n+1})$. Or $f \circ f$ est croissante, donc $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$ sont monotones.

Supposons que $(u_{2n})_{n\in\mathbb{N}}$ est croissante. Soit $n\in\mathbb{N}$ fq. Alors

$$u_{2n} \leqslant u_{2(n+1)} \underset{f \text{ est décroissante sur } I}{\Longrightarrow} f(u_{2n}) \geqslant f(u_{2(n+1)}) \implies u_{2n+1} \geqslant u_{2(n+1)+1}$$

Donc $(u_{2n+1})_{n\in\mathbb{N}}$ est décroissante.

De même, si $(u_{2n})_{n\in\mathbb{N}}$ est décroissante alors $(u_{2n+1})_{n\in\mathbb{N}}$ est croissante.

12.5 L'intérieur de l'ensemble des rationnels est vide.

Montrons que : $\mathring{\mathbb{Q}} = \emptyset$

Démonstration. Par l'absurde, supposons que Q possède au moins un point intérieur.

Fixons $r_0 \in \mathbb{Q}$. Par définition d'un point intérieur, il existe $\varepsilon \in \mathbb{R}_+^* :]r_0 - \varepsilon$, $r_0 + \varepsilon [\subset \mathbb{Q}]$. Or, par densité des irrationnels dans \mathbb{R} , il existe $\alpha \in \mathbb{R} \setminus \mathbb{Q}$: $r_0 - \varepsilon < \alpha < r_0 + \varepsilon$. On en déduit que $\alpha \in]r_0 - \varepsilon$, $r_0 + \varepsilon [$, or $]r_0 - \varepsilon$, $r_0 + \varepsilon [\subset \mathbb{Q}]$ donc $\alpha \in \mathbb{Q}$ ce qui contredit le choix de $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Ainsi, $\mathbb{Q} = \emptyset$

12.6 Théorème sans nom version continue au voisinage de a

Soient $f, g : \mathcal{D} \to \mathbb{R}$, $\ell \in \mathbb{R}$ et $a \in \overline{\mathcal{D}}$ tels que $|f(x) - \ell| \leq g(x)$ au voisinage de a et g tend vers 0 en a. Alors f tend vers ℓ en a.

Démonstration. On traite le cas $a \in \mathbb{R}$. Par définition de $|f(x) - \ell| \leq g(x)$ au voisinage de a,

$$\exists \eta \in \mathbb{R}_+^* : \forall x \in \mathcal{D}, |x - a| \le \eta \implies |f(x) - \ell| \le g(x).$$

Fixons un tel η .

Soit $\omega \in \mathbb{R}_+^*$. Appliquons la définition de $\lim_{x\to a} g(x) = 0$ pour $\varepsilon \leftarrow \omega$:

$$\exists \eta' \in \mathbb{R}_+^* : \forall x \in \mathcal{D}, |x - a| \le \eta' \implies |g(x)| \le \omega.$$

Fixons un tel η' .

Posons $\Omega = \min \{ \eta, \eta' \}.$

Soit $x \in \mathcal{D}$ tel que $|x - a| \le \Omega$.

$$|f(x) - \ell| \le g(x) \le \omega,$$

car la définition de Ω permet de remplir les conditions des deux propriétés.

Théorème de composition des limites 13.1

Soient g une fonction définie sur $\mathcal{D}_g \subset \mathbb{R}$ et f une fonction définie sur $\mathcal{D}_f \subset \mathbb{R}$ telle que $f(\mathcal{D}_f) \subset \mathcal{D}_g$. $\left. \begin{array}{l} g \text{ admet une limite } \ell \in \overline{\mathbb{R}} \text{ en } b \in \overline{\mathcal{D}_g} \\ f \text{ admet } b \text{ comme limite en } a \in \overline{\mathcal{D}_f} \end{array} \right\} \text{ alors } g \circ f \text{ admet } \ell \text{ comme limite en } a.$

Démonstration. Traitons le cas où $\ell \in \mathbb{R}$, $a \in \mathbb{R}$ et $b \in \mathbb{R}$.

Soit $\varepsilon \in \mathbb{R}_+^*$ fq.

Appliquons la définition de $g(y) \xrightarrow[y \to b]{} \ell$ pour cet ε :

$$\exists \eta_q \in \mathbb{R}_+^* : \forall y \in \mathcal{D}_q, |y - b| \leqslant \eta_q \implies |g(y) - \ell| \leqslant \varepsilon$$

Appliquons la définition de $f(x) \xrightarrow[x \to a]{} b$ pour cet η_g :

$$\exists \eta_f \in \mathbb{R}_+^* : \forall x \in \mathcal{D}_f, |x - a| \leqslant \eta_f \implies |f(x) - b| \leqslant \eta_g$$

Posons $\eta = \eta_f$.

Soit $x \in \mathcal{D}_{g \circ f}$ fq tq $|x - a| \leq \eta$. Or $f(\mathcal{D}_f) \subset \mathcal{D}_g$ donc $\mathcal{D}_{g \circ f} = \mathcal{D}_f$. Ainsi, $x \in \mathcal{D}_f$ et $|x - a| \leq \eta_f$ d'où $|f(x) - b| \leq \eta_g$ d'où $|g(f(x)) - \ell| \leq \varepsilon$. Donc

$$g \circ f \xrightarrow[x \to a]{} \ell$$

13.2 Théorème des valeurs intermédiaires

Soit une fonction continue $f : [a, b] \to \mathbb{R}$ avec $(a, b) \in \mathbb{R}^2$ et a < b.

Si $f(a)f(b) \leq 0$ alors $\exists c \in [a;b] : f(c) = 0$.

On rencontre aussi : $Si\ f(a)f(b) < 0\ alors\ \exists c \in]a;b[:f(c) = 0.$

Démonstration. La démonstration repose sur la technique de la dichotomie.

Soient a,b,f de tels objets. Procédons à la construction des suites $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}, (c_n)_{n\in\mathbb{N}}$. Posons $a_0=a,\ b_0=b$ et $c_0=\frac{a+b}{2}$ (le milieu du segment [a;b]). Nous avons, par hypothèse

Soit $n \in \mathbb{N}$ fq. Supposons les trois suites construites au rang n telles que $f(a_n)f(b_n) \leq 0$ et $c_n = \frac{a_n + b_n}{2}$ (milieu de $[a_n; b_n]$).

- Si $f(a_n)f(b_n) \le 0$, posons $\begin{vmatrix} a_{n+1} &= a_n \\ b_{n+1} &= c_n \\ c_{n+1} &= \frac{a_{n+1}+b_{n+1}}{2} \end{vmatrix}$

— Sinon $f(a_n)f(b_n) > 0$. Or $f(a_n)f(b_n) \le 0$, donc $f(a_n)^2 f(b_n)f(c_n) \le 0$. Donc $f(b_n)f(c_n) \le 0$.

Posons
$$\begin{vmatrix} a_{n+1} &=& c_n \\ b_{n+1} &=& b_n \\ c_{n+1} &=& \frac{a_{n+1}+b_{n+1}}{2} \end{vmatrix}$$

Ainsi, nous avons bien construits $a_{n+1}, b_{n+1}, c_{n+1}$ telles que $f(a_{n+1})f(b_{n+1}) \leq 0$ et $c_{n+1} = \frac{a_{n+1} + b_{n+1}}{2}$ (milieu de $[a_{n+1}; b_{n+1}]$).

Par récurrence immédiate, $(a_n)_{n\in\mathbb{N}}$ est croissante, $(b_n)_{n\in\mathbb{N}}$ est décroissante et $\forall n\in\mathbb{N}, b_n-a_n=\frac{b-a}{2^n}$ d'où $b_n-a_n\xrightarrow[n\to+\infty]{}$ 0. Donc les suites a et b sont adjacentes. D'après le théorème des suites adjacentes, elles convergent vers la même limite. Notons la c.

D'après le bonus de ce même théorème, $\forall n \in \mathbb{N}, a_n \leqslant c \leqslant b_n$ donc pour $n = 0, a \leqslant c \leqslant b$. Ainsi,

$$c \in [a; b]$$

Par ailleurs, $\forall n \in \mathbb{N}, f(a_n)f(b_n) \leq 0$. Par continuité de f sur [a;b] donc en c, $f(a_n) \xrightarrow[n \to +\infty]{} f(c)$ et $f(b_n) \xrightarrow[n \to +\infty]{} f(c)$. Par passage à limite dans l'inégalité,

$$f(c) \times f(c) \leqslant 0$$

Or $f(c)^2 \geqslant 0$, d'où $f(c)^2 = 0$. Ainsi,

$$f(c) = 0$$

Donc c est un point fixe.

13.3 Théorème de Weierstraß

L'image d'un segment par une fonction continue sur ce segment est un segment : soient $(a, b) \in \mathbb{R}^2$ tels que a < b et $f : [a, b] \to \mathbb{R}$. Si $f \in \mathcal{C}^0([a, b], \mathbb{R})$ alors $\exists (x_1, x_2) \in \mathbb{R}^2 : f([a, b]) = [f(x_1), f(x_2)]$

Démonstration. — Étape 1 Montrons que f([a,b]) est majoré.

Par l'absurde, supposons que f([a,b]) n'est pas majoré

Alors

$$\forall A \in \mathbb{R}, \exists x \in [a, b] : f(x) > A \tag{17}$$

Soit $n \in \mathbb{N}$ fq. Appliquons (17) pour $A \leftarrow n : \exists x \in [a,b] : f(x) > n$, et fixons un tel x que l'on note x_n Nous venons de créer la suite $(x_n)_{n \in \mathbb{N}} \in [a,b]^{\mathbb{N}}$ qui vérifie :

$$\left. \begin{array}{l} \forall n \in \mathbb{N}, f(x_n) \geqslant n \\ \lim_{n \to \infty} n = +\infty \end{array} \right\} \underset{\text{th\'eor\`eme de divergence par minoration}}{\Longrightarrow} f(x_n) \xrightarrow[n \to +\infty]{} +\infty$$

 $(x_n)_{n\in\mathbb{N}}$ est bornée (à valeurs dans [a,b]) donc, selon le théorème de Bolzanno-Weierstraß:

$$\exists \ell \in \mathbb{R}: \exists \varphi: \mathbb{N} \to \mathbb{N}: \text{strict. croissante tel que } (x_{\varphi(n)})_{n \in \mathbb{N}} \text{ tend vers } \ell$$

Donc, en passant à la limite : $\forall n \in \mathbb{N}, a \leqslant x_{\varphi(n)} \leqslant b \implies a \leqslant \ell \leqslant b \implies \ell \in [a,b]$ Par continuité de f sur [a,b], donc en ℓ , $(f(x_{\varphi(n)}))_{n \in \mathbb{N}}$ converge vers $f(\ell)$. Or

$$\begin{cases} (f(x_{\varphi(n)}))_{n\in\mathbb{N}} \text{ est une sous suite de } (f(x_n))_{n\in\mathbb{N}} \\ f(x_n) \xrightarrow[n \to +\infty]{} +\infty \end{cases}$$

donc $(f(x_{\varphi(n)}))_{n\in\mathbb{N}}$, tend vers $+\infty$, ce qui est absurde, donc f est majorée.

On fait de même pour la minoration.

— Étape 2: Montrons que f([a,b]) admet un pge et un ppe.

Montrons donc que f([a,b]) admet une borne sup, qui, puisque c'est une valeur atteinte, deviendra un max.

$$f([a,b])$$
 est
$$\begin{cases} & \text{une partie de } \mathbb{R} \\ & \text{non vide car contient } f(a) \\ & \text{majorée d'après l'étape 1} \end{cases}$$

f([a,b]) admet donc une borne supérieure σ .

Appliquons la caractérisation séquentielle de la borne supérieure :

$$\exists (y_n)_{n\in\mathbb{N}}, \in f([a,b])^{\mathbb{N}} : (y_n) \text{ converge vers } \sigma$$

$$\forall n \in \mathbb{N}, y_n \in f([a,b]) \implies \exists x_n \in [a,b] : f(x_n) = y_n$$

Fixons un tel x_n pour tout y_n . On a donc construit $(x_n)_{n\in\mathbb{N}}\in[a,b]^{\mathbb{N}}:f(x_n)\xrightarrow[n\to+\infty]{}\sigma$

De plus, (x_n) est bornée (à valeurs dans [a,b]) donc, selon le théorème de Bolzanno-Weierstraß :

$$\exists \ell \in \mathbb{R} : \exists \varphi : \mathbb{N} \to \mathbb{N} : \text{strict. croissante tel que } (x_{\varphi(n)})_{n \in \mathbb{N}} \text{ tend vers } \ell$$

Donc, en passant à la limite : $\forall n \in \mathbb{N}, a \leqslant x_{\varphi(n)} \leqslant b \implies a \leqslant \ell \leqslant b \implies \ell \in [a,b]$ Par continuité de f sur [a,b], donc en ℓ , $(f(x_{\varphi(n)}))_{n \in \mathbb{N}}$ converge vers $f(\ell)$.

$$\begin{cases} (f(x_{\varphi(n)}))_{n\in\mathbb{N}} \text{ est une sous suite de } (f(x_n))_{n\in\mathbb{N}} \\ f(x_n) \xrightarrow[n \to +\infty]{} \sigma \end{cases}$$

Par unicité de la limite, $\sigma = f(\ell)$.

On montre de même qu'il existe $\ell' \in [a, b] : f(\ell') = \inf f([a, b])$

Ainsi,
$$f(\ell) = \max f([a, b])$$
 et $f(\ell') = \min f([a, b])$

— Étape 3 : Montrons que $f([a,b]) = [f(\ell'), f(\ell)]$.

Par la construction précédente, $\forall y \in f([a,b]), y \in [f(\ell'),f(\ell)].$

Ainsi, $f([a,b]) \subset [f(\ell'), f(\ell)].$

Réciproquement, l'image par la fonction continue f du segment [a,b] qui est un intervalle est un intervalle :

$$\left. \begin{array}{l} f([a,b]) \text{ est un intevalle} \\ f(\ell) \in f([a,b]) \\ f(\ell') \in f([a,b]) \end{array} \right\} \implies [f(\ell'),f(\ell)] \subset f([a,b])$$

D'où $[f(\ell'), f(\ell)] = f([a, b])$

Expression de dérivées successives 14.1

Soit
$$f \mid_{x \mapsto \frac{\ln x}{x}}^{\mathbb{R}^*}$$
.

Soit $f \begin{vmatrix} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto \frac{\ln x}{x} \end{vmatrix}$. Exprimer $f^{(n)}$ pour tout $n \in \mathbb{N}$.

Démonstration. Soit $x \in \mathcal{D}_f$.

Considérons le prédicat $P(\cdot)$ définit pour $n \in \mathbb{N}$ par :

$$P(n)$$
: " $f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}} \left[\ln(x) - \sum_{k=1}^n \frac{1}{k} \right]$ "

Initialisation:

Pour n=0,

$$f^{(0)}(x) = f(x) = \frac{\ln(x)}{x} = \frac{(-1)^0 0!}{x^{0+1}} \left[\ln(x) - \sum_{k=1}^{0} \frac{1}{k} \right],$$

donc P(0) est vrai.

Hérédité:

Soit $n \in \mathbb{N}$ tel que P(n). On a,

$$f^{(n+1)}(x) = (f^{(n)}(x))' = \left(\frac{(-1)^n n!}{x^{n+1}} \left[\ln(x) - \sum_{k=1}^n \frac{1}{k} \right] \right)'$$

par véracité de P(n). Ainsi,

$$f^{(n+1)}(x) = \frac{(-1)^n n! x^n - (-1)^n (n+1)! x^n \left[\ln(x) - \sum_{k=1}^n \frac{1}{k}\right]}{x^{2(n+1)}}$$

$$= \frac{(-1)^{n+1} (n+1)! \ln(x) - (-1)^{n+1} (n+1)! \sum_{k=1}^{n+1} \frac{1}{k}}{x^{n+2}}$$

$$= \frac{(-1)^{n+1} (n+1)!}{x^{n+2}} \left[\ln(x) - \sum_{k=1}^{n+1} \frac{1}{k}\right]$$

c'est l'expression recherchée, donc P(n+1) est vrai.

Par théorème de récurrence sur \mathbb{N} , P(n) est vraie pour tout $n \in \mathbb{N}$.

Dérivé d'une bijection réciproque 14.2

Soit $f:I\to f(I)\subset\mathbb{R}$ continue, strictement monotone sur I et dérivable en $a\in I$. Si $f'(a)\neq 0$ alors f est bijective, f^{-1} est dérivable en f(a) et $f^{-1}(f(a)) = \frac{1}{f'(a)}$.

Démonstration. Soient de tels objets.

Rappelons le lemme inattendu. Soit $g:J\to\mathbb{R}$ monotone (où J est un intervalle). Nous avons l'équivalence suivante :

$$f(J)$$
 est un intervalle \iff f est continue sur J

Par définition, f est surjective. Comme elle est strictement monotone, f est injective. Ainsi f est

D'après le lemme inattendu, f(I) est un intervalle. Nous avons $f^{-1}: f(I) \to I$ avec f(I) et I des intervalles donc f^{-1} est continue sur f(I).

Calculons la limite du taux d'accroissement de f^{-1} en f(a):

$$\forall x \in f(I), \tau_{f^{-1}, f(a)} = \frac{f^{-1}(x) - f^{-1}(f(a))}{x - f(a)}$$

Posons $u = f^{-1}(x)$. D'où :

$$\tau_{f^{-1},f(a)} = \frac{u-a}{f(u) - f(a)}$$

De plus, par continuité de f^{-1} , $u \xrightarrow[x \to f(a)]{} f^{-1}(f(a)) = a$. Par dérivabilité en a et par continuité

de
$$x \mapsto x^{-1}$$
 en $f(a) \neq 0$, $\frac{u-a}{f(u)-f(a)} \xrightarrow[u\to a]{} \frac{1}{f('(a))}$.
Ainsi, f^{-1} est dérivable en $f(a)$ et $f^{-1}(f(a)) = \frac{1}{f'(a)}$.

Dérivée d'un extremum local intérieur au domaine de définition

Soit $f: I \to \mathbb{R}$. Si f admet un extremum local en $a \in \overset{\circ}{I}$ et si f est dérivable en a alors f'(a) = 0

Démonstration. Soient de tels objets.

 $a \in \overset{\circ}{I} \implies \exists \eta_1 \in \mathbb{R}_+^* : [a - \eta_1; a + \eta_1] \subset I$ Fixons un tel η_1 . Calculons le taux d'accroissement en a.

$$\forall x \in [a - \eta_1; a + \eta_1], \tau_{f,a}(x) = \frac{f(x) - f(a)}{x - a},$$

Or f est dérivable en a donc $\tau_{f,a}(x)$ admet une limite lorsque $x \to a$. Traitons le cas où a est maximum local. Par définition:

$$\exists \eta_2 \in \mathbb{R}_+^* : \forall x \in [a - \eta_2; a + \eta_2], f(x) \leqslant f(a)$$

Fixons un tel η_2 . Soit $x \in [a - \eta_2; a + \eta_2] \setminus \{a\}$ fq.

Alors $f(x) - f(a) \le 0$.

Si x > a, x - a > 0. Alors $\frac{f(x) - f(a)}{x - a} \le 0$. Donc $\lim_{x \to a} \tau_{f,a}(x) \le 0$. Sinon x < a, x - a < 0. Alors $\frac{f(x) - f(a)}{x - a} \ge 0$. Donc $\lim_{x \to a} \tau_{f,a}(x) \ge 0$.

Ainsi $0 \leqslant \lim_{x \to a} \tau_{f,a}(x) \leqslant 0$. Donc f'a) = 0.

Théorème de Rolle et formule des accroissements finis 14.4

Soient $(a, b) \in \mathbb{R}^2$ tels que a < b. Soit I le segment a, b.

Soit $f:I\to\mathbb{R}$ continue sur ledit segment et dérivable sur l'ouvert associé.

(i) Théroème de Rolle :

Si
$$f(a) = f(b)$$
, alors $\exists c \in \overset{\circ}{I}$ tel que $f'(c) = 0$

FIGURE 4 - Théorème de Rolle

(ii) Formule des accroissements finis :

$$\exists c \in \overset{\circ}{I} : f'(c) = \frac{f(b) - f(a)}{b - a}.$$

FIGURE 5 – Formule des accroissements finis

Démonstration. Soient de tels objets.

Prouvons (i), donc supposons f(a) = f(b).

f est continue sur I donc par le théorème de Weierstraß, elle est bornée et atteint ses bornes sur ce segment :

$$\exists (x_m, x_M) \in I^2 : (f(x_m) = \min f(I)) \land (f(x_M) = \max f(I))$$

donc, si $(x_m, x_M) \in \{a, b\}^2$, alors,

$$\forall x \in I, \ f(a) = f(x_m) \le f(x) \le f(x_M) = f(a)$$

donc $\forall x \in I, f(x) = f(a)$ c'est-à-dire que f est constante et donc tous les points intermédiaires à I sont des c valides.

Sinon, $(x_m \notin \{a, b\}) \lor (x_M \notin \{a, b\})$, quitte à prendre l'autre valeur, supposons que $x_M \notin \{a, b\}$, ainsi, $x_M \in \mathring{I}$ et $f(x_M)$ est un maximum global donc, f étant dérivable sur \mathring{I} elle est dérivable en x_M donc $f'(x_M) = 0$, on pose $c = x_M$, ce qui conclut.

Prouvons (ii).

Posons $d: I \to \mathbb{R}$, $x \mapsto f(x) - \left(\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right)$. d est continue sur I et dérivable sur I comme combinaison linéaire de telles fonctions. On a d(a) = 0 et d(b) = 0 donc d(a) = 0 = d(b). On peut alors appliquer le Théorème de Rolle pour $f \leftarrow d, a \leftarrow a$ et $b \leftarrow b$: il existe $c \in I$ tel que d'(c) = 0, c'est le résultat.

14.5 Inégalité des accroissements finis

Soit $f \in \mathcal{C}^0(I,\mathbb{R}) \cap \mathcal{D}^1(\overset{\circ}{I},\mathbb{R})$ et $x_0 \in I$, posons $X_- =]-\infty; x_0]$ la demi-droite fermée en x_0 et vers $-\infty$, de même $X_+ = [x_0; +\infty[$ la demi-droite fermée en x_0 et vers $+\infty$.

$$(i) \star \operatorname{Si} \exists \ m \in \mathbb{R} \ : \ \forall x \in \overset{\circ}{I}, \ m \leq f'(x), \ \operatorname{alors}, \\ \forall x \in I \cap X_+, \ f(x_0) + m(x - x_0) \leq f(x) \\ \text{et} \\ \forall x \in I \cap X_-, \ f(x) \leq f(x_0) + m(x - x_0) \\ \star \operatorname{Si} \exists \ M \in \mathbb{R} \ : \ \forall x \in \overset{\circ}{I}, \ f'(x) \leq M, \ \operatorname{alors}, \\ \forall x \in I \cap X_+, \ f(x) \leq f(x_0) + M(x - x_0) \\ \text{et} \\ \forall x \in I \cap X_-, \ f(x_0) + M(x - x_0) \leq f(x) \\ \end{cases}$$

$$\star$$
 Si $\exists \ (m,M) \in \mathbb{R}^2 \ : \ \forall x \in \overset{\circ}{I}, \ m \leq f'(x) \leq M,$ alors,

$$\forall x \in I \cap X_+, \ f(x_0) + m(x - x_0) \le f(x) \le f(x_0) + M(x - x_0)$$

 et

$$\forall x \in I \cap X_{-}, \ f(x_0) + M(x - x_0) \le f(x) \le f(x_0) + m(x - x_0)$$

(ii) Si $\exists M \in \mathbb{R} : \forall x \in \overset{\circ}{I}, |f'(x)| \leq M, \text{ alors},$

$$\forall (x,y) \in I^2, |f(y) - f(x)| \le M|y - x|$$

FIGURE 6 – Interprétation géométrique des accroissements finis

Démonstration. (i) Soit $x \in I$ et posons S le segment d'extrémités x et x_0 .

 \star Si $x \neq x_0$, f est continue sur S et dérivable sur $\overset{\circ}{S}$, la formule des accroissements finis donne alors l'existence d'un c appartenant à $\overset{\circ}{S}$ tel que

$$f(x) - f(x_0) = (x - x_0)f'(c)$$

Si $x > x_0$, $x - x_0 > 0$, or $m \le f'(c) \le M$ donc

$$m(x-x_0) \le (x-x_0)f'(c) \le M(x-x_0)$$

si bien que

$$m(x-x_0) \le f(x) - f(x_0) \le M(x-x_0)$$

d'où

$$f(x_0) + m(x - x_0) \le f(x) \le f(x_0) + M(x - x_0).$$

Si $x < x_0$, il suffit de retourner l'inégalité lors de la première multiplication et (i) est prouvé.

(ii) Soit $y \in I$.

L'hypothèse $\forall x \in \overset{\circ}{I}, |f'(x)| \leq M$ équivaut à $\forall x \in \overset{\circ}{I}, -M \leq f'(x) \leq M$, donc on peut appliquer (i) pour $x_0 \leftarrow y, M \leftarrow M$ et $m \leftarrow -M$:

$$\forall x \in I \cap [y, +\infty[, f(y) - M(x - y) \le f(x) \le f(y) + M(x - y)$$

Or x - y > 0 donc $|f(x) - f(y)| \le M|x - y|$. Et

$$\forall x \in I \cap]-\infty, y], \ f(y) + M(x-y) \le f(x) \le f(y) - M(x-y)$$

Or
$$x - y < 0$$
 donc $|f(x) - f(y)| \le M|x - y|$.
Par conséquent, $\forall (x, y) \in I^2$, $|f(y) - f(x)| \le M|y - x|$.

Caractère lipschitzien d'une fonction C^1 sur un segment

Soit $f \in \mathcal{C}^1(I,\mathbb{R})$, I le segment a,b. Alors f est $||f'||_{\infty,I}$ -lipschitzienne sur I.

Démonstration. Soient de tels objets.

- $\star f \in \mathcal{C}^1(I, \mathbb{R}) \text{ donc } f \in \mathcal{C}^0(I, \mathbb{R}).$
- * $f \in \mathcal{C}^1(I,\mathbb{R})$ donc $f \in \mathcal{D}^1(\overset{\circ}{I},\mathbb{R})$. * $f \in \mathcal{C}^1(I,\mathbb{R})$ donc f' est continue sur I donc le réel $||f'||_{\infty,I}$ est bien défini et

$$\forall x \in \overset{\circ}{I}, |f'(x)| \le ||f'||_{\infty,I}.$$

Ces propriétés permettent d'appliquer le corollaire du TAF qui conclut que f est $||f'||_{\infty,I}$ -lipschitzienne.

Théorème du prolongement de la propriété de la dérivabilité 14.7

Soit $f \in \mathcal{F}(I, \mathbb{R})$ et $a \in I$.

$$\begin{array}{c} \textit{Lemme}: \\ \text{Si} \left\{ \begin{array}{c} f \text{ est d\'erivable sur } I \backslash \{a\} \\ f \text{ est continue en } a \\ f'_{|I \backslash \{a\}} \text{ admet une limite } \ell \in \overline{\mathbb{R}} \text{ en } a \end{array} \right., \text{ alors } \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \ell$$

$$Th\acute{e}or\grave{e}me: \\ Si \left\{ \begin{array}{c} f \text{ est d\'erivable sur } I\backslash\{a\} \\ f \text{ est continue en } a \\ f'_{|I\backslash\{a\}} \text{ admet une limite finie } \ell\in\mathbb{R} \text{ en } a \end{array} \right., \\ alors \left\{ \begin{array}{c} f \text{ est d\'erivable en } a \\ f'(a) = \ell \text{ (donc } f' \text{ est continue en } a) \end{array} \right.$$

Démonstration. Prouvons le lemme pour $\ell \in \mathbb{R}$, c'est le cas qui nous intéresse. Soient de tels objets. Soit $\varepsilon \in \mathbb{R}_+^*$. Appliquons la définition de $\lim_{x \to a \atop x \neq a} f'_{|I \setminus \{a\}}(x) = \ell$ pour $\varepsilon \leftarrow \varepsilon$:

$$\exists \ \eta \in \mathbb{R}_+^* \ : \ \forall x \in I \backslash \{a\}, \ |x - a| \leq \eta \ \implies \ |f'_{|I \backslash \{a\}}(x) - \ell| \leq \varepsilon.$$

Fixons un tel η .

Soit $x \in I \setminus \{a\}$ tel que $|x - a| \le \eta$.

La fonction f est continue sur I donc f est continue sur le segment d'extrémités a et x qui est par ailleurs inclus dans I par convexité d'un intervalle.

La fonction f est dérivable sur I donc f est dérivable sur l'intervalle ouvert a, x qui est aussi inclus dans \tilde{I} par convexité.

L'égalité des accroissements finis s'applique à f sur l'intervalle a et x:

$$\exists c_x \in]a, x[\cup]x, a[: \frac{f(x) - f(a)}{x - a} = f'(c_x)$$

Or $|c_x - a| \le |x - a| \le \eta$ donc ladite définition de la limite s'applique pour $x \leftarrow c_x : |f'(c_x) - \ell| \le \varepsilon$ si bien que

$$\left|\frac{f(x) - f(a)}{x - a} - \ell\right| \le \varepsilon.$$

D'où le lemme.

Prouvons alors le théorème.

Sous ces hypothèses, le lemme s'applique donc $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = \ell$, or $\ell \in \mathbb{R}$, donc le taux d'accroissement de f en a admet une limite finie en a ce qui prouve la dérivabilité de f en a et $f'(a) = \ell$.

14.8 La fonction ζ (pas celle-là une autre) est de classe \mathcal{C}^{∞} sur \mathbb{R}

Posons
$$\zeta \mid_{x \mapsto \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ 0 & \text{si } x \leq 0 \\ \mathrm{e}^{-\frac{1}{x}} & \text{si } x > 0 \end{cases}}$$
. Montrons que $\zeta \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

Démonstration.

- * $\zeta_{]-\infty;0[}$ est constante donc $\zeta \in \mathcal{C}^{\infty}(]-\infty;0[,\mathbb{R}).$
- * $x \mapsto -\frac{1}{x} \in \mathcal{C}^{\infty}(]0; +\infty[,] -\infty; 0[)$ et $\exp \in \mathcal{C}^{\infty}(]-\infty; 0[,\mathbb{R})$ donc, par stabilité de \mathcal{C}^{∞} par composition, $\zeta \in \mathcal{C}^{\infty}(]0; +\infty[,\mathbb{R})$.

Considérons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}$:

$$\mathcal{P}: \text{``} \exists P_n \in \mathbb{R}[x]: \forall x \in \mathbb{R}^*, \ \zeta^{(n)} = \begin{cases} 0 & \text{si } x < 0 \\ \frac{P_n(x)}{x^{2n}} e^{-\frac{1}{x}} & \text{si } x > 0 \end{cases}$$
(18)

- $\star \mathcal{P}(0)$ est vrai par définition de ζ en posant $P_0(x)=1$
- * Soit $n \in \mathbb{N}^*$ fixé quelconque tel que \mathcal{P} est vrai. D'une part, $\forall x \in]-\infty; 0[,\zeta^{(n)}(x)=0$ donc

$$\forall x \in]-\infty; 0[, \zeta^{(n+1)}(x) = 0$$

D'autre part, $\forall x \in]0; +\infty[, \zeta^{(n)}(x) = \frac{P_n(x)}{x^{2n}} e^{-\frac{1}{x}}$ ce qui est un produit de trois expressions dérivables. D'où :

$$\forall x \in]-\infty; 0[, \zeta^{(n+1)}(x) = \left(P'_n(x)\frac{1}{x^{2n}} + P_n(x)\frac{-2n}{x^{2n+1}} + \frac{P_n(x)}{x^{2n}}\frac{1}{x^2}\right) e^{-\frac{1}{x}}$$
$$= \frac{x^2 P'_n(x) - 2nx P_n(x) + P_n(x)}{x^{2(n+1)}} e^{-\frac{1}{x}}$$

Si bien qu'en posant $P_{n+1}(x) = x^2 P'_n(x) - 2nx P_n(x) + P_n(x) \in \mathbb{R}[x]$, on obtient :

$$\forall x \in]0; +\infty[, \zeta^{(n+1)}(x) = \frac{P_{n+1}(x)}{r^{2(n+1)}} e^{-\frac{1}{x}}$$

Par conséquent, $\mathcal{P}(x)$ est vrai.

Appliquons maintenant le théorème de prolongement du caractère \mathcal{C}^{∞} .

- * Nous avons montré que $\zeta \in \mathcal{C}^{\infty}(\mathbb{R} \setminus \{0\}, \mathbb{R})$.
- \star Calculons les limites à gauche et à droite de 0. Soit $k \in \mathbb{N}$ fixé quelconque.
 - ** $\zeta^{(k)}$ est nulle sur $]-\infty;0[,\zeta^{(k)}\xrightarrow[x\to 0^-]{}0.$
 - ** De plus, $\exists P_n \in \mathbb{R}[x] : \forall x \in]0; +\infty[, \zeta^{(k)}(x) = \frac{P_k(x)}{x^{2k}} e^{-\frac{1}{x}}$. Posons $u = \frac{1}{x}$, ainsi $\zeta^{(k)}(x) = u^{2k} P_k(\frac{1}{u}) e^{-\frac{1}{x}}$ et $u \xrightarrow[x \to 0^+]{} +\infty$.

Le théorème des croissances comparées donne $u^{2k}P_k(\frac{1}{u})\mathrm{e}^{-u} \xrightarrow[u\to+\infty]{} 0$ donc $\zeta^{(k)}(x) \xrightarrow[x\to0^+]{} 0$.

Donc $\zeta \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

15.1 Inégalité de Jensen

Soit $f: I \to \mathbb{R}$ convexe sur I.

Soit $n \in \mathbb{N}^*$. Soient $x \in I^n$, $\lambda \in [0,1]^n$ telle que $\sum_{k=1}^n \lambda_k = 1$.

$$\sum_{k=1}^{n} \lambda_k x_k \in I \wedge f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \leqslant \sum_{k=1}^{n} \lambda_k f\left(x_k\right) \tag{19}$$

Démonstration. Considérons le prédicat $\mathcal{P}(\cdot)$ défini pour tout $n \in \mathbb{N}^*$ par :

$$\mathcal{P}(n): \text{``}\forall x \in I^n, \forall \lambda \in [0;1]^n, \sum_{k=1}^n \lambda_k = 1 \implies \sum_{k=1}^n \lambda_k x_k \in I \land f\left(\sum_{k=1}^n \lambda_k x_k\right) \leqslant \sum_{k=1}^n \lambda_k f\left(x_k\right) \text{'`}$$

* Soient $x \in I^1$ et $\lambda \in [0;1]^1$ tel que $\sum_{k=1}^1 \lambda_k = 1$. Alors $\lambda_1 = 1$. Trivialement, $\sum_{k=1}^1 \lambda_k x_k = \lambda_1 x_1 = x_1 \in I$. De plus, $f\left(\sum_{k=1}^1 \lambda_k x_k\right) = f\left(\lambda_1 x_1\right) = f\left(x_1\right) = \lambda_1 f\left(x_1\right) = \sum_{k=1}^1 \lambda_k f\left(x_k\right)$. Donc $\mathcal{P}(1)$ vrai.

* Soit $n \in \mathbb{N}^*$ tel que $\mathcal{P}(n)$ vrai. Soient $x \in I^{n+1}$ et $\lambda \in [0;1]^{n+1}$ tel que $\sum_{k=1}^{n+1} \lambda_k = 1$. $\{x_k \mid k \in [1;n+1]\}$ est une partie non vide $(n \ge 1)$ d'un ensemble totalement ordonnée (\mathbb{R}, \le) . Posons $a = \min\{x_k \mid k \in [1;n+1]\}$ et $b = \max\{x_k \mid k \in [1;n+1]\}$. D'où

$$a \underbrace{=}_{k=1} \sum_{k=1}^{n+1} \lambda_k a \underbrace{\leqslant}_{a \leqslant x_k} \sum_{k=1}^{n+1} \lambda_k x_k \underbrace{\leqslant}_{x_k \leqslant b} \sum_{k=1}^{n+1} \lambda_k b \underbrace{=}_{n+1} b$$

$$\sum_{k=1}^{n+1} \lambda_k = 1$$

Or $\{x_k \mid k \in [1; n]\} \subset I \text{ (car } x \in I^n) \text{ donc } a \in I \land b \in I. \text{ Donc } a \in I \land b \in I.$

$$\sum_{k=1}^{n+1} \lambda_k x_k \in [a;b] \qquad \qquad \bigcup$$
 par convexité de l'intervalle I

 $\sum_{k=1}^{n+1} \lambda_k = 1 \text{ donc } \exists i_0 \in [[1; n+1]]: \lambda_{i_0} \neq 1 \text{ (sinon } \sum_{k=1}^{n+1} \lambda_k = n+1 \neq 1 \text{ car } n \neq 0).$ Fixons un tel i_0 .

$$f\left(\sum_{k=1}^{n+1} \lambda_k x_k\right) = f\left(\sum_{k=1}^{n+1} \lambda_k x_k + \lambda_{i_0} x_{i_0}\right)$$

$$= f\left(\lambda_{i_0} x_{i_0} + (1 - \lambda_{i_0}) \sum_{k=1}^{n+1} \frac{\lambda_k}{1 - \lambda_{i_0}} x_k\right)$$

$$\underset{\text{Par convexit\'e}}{\leq} \lambda_{i_0} f(x_{i_0}) + (1 - \lambda_{i_0}) f\left(\sum_{k=1}^{n+1} \frac{\lambda_k}{1 - \lambda_{i_0}} x_k\right)$$

Or
$$\forall i \in \llbracket 1; n+1 \rrbracket \lambda_i \leqslant \sum_{\substack{k=1 \\ k \neq i_0}}^{n+1} \lambda_k = 1 - \lambda_{i_0} \text{ Donc } \frac{\lambda_i}{1-\lambda_{i_0}} \in [0;1] \text{ et } \sum_{\substack{k=1 \\ k \neq i_0}}^{n+1} \frac{\lambda_k}{1-\lambda_{i_0}} = 1. \text{ Nous }$$

pouvons appliquer $\mathcal{P}(n)$ pour $\lambda_i \to \frac{\lambda_i}{1-\lambda_{i_0}}$:

$$f\left(\sum_{k=1}^{n+1} \lambda_k x_k\right) \leqslant \lambda_{i_0} f(x_{i_0}) + (1 - \lambda_{i_0}) \sum_{k=1}^{n+1} \frac{\lambda_k}{1 - \lambda_{i_0}} f(x_k)$$

$$\leqslant \lambda_{i_0} f(x_{i_0}) + \sum_{k=1}^{n+1} \lambda_k f(x_k)$$

$$\leqslant \sum_{k=1}^{n+1} \lambda_k f(x_k)$$

$$\leqslant \sum_{k=1}^{n+1} \lambda_k f(x_k)$$

Donc $\mathcal{P}(n+1)$ vrai.

15.2 Inégalité arithmético-géométrique

Soit $n \in \mathbb{N}^*$. Soit $x \in \mathbb{R}_+^{*n}$.

$$\left(\prod_{k=1}^{n} x_k\right)^{1/n} \leqslant \frac{1}{n} \sum_{k=1}^{n} x_k \tag{20}$$

Démonstration. Soit de tels objets. Posons $\forall k \in [1; n], \lambda_k = 1/n$.

Sachant que l'exponentielle est convexe, appliquons l'inégalité de Jensen pour $x_k \leftarrow ln(x_k)$ (autorisé car $x_k \in \mathbb{R}_+^*$) :

$$\exp\left(\sum_{k=1}^{n} \frac{1}{n} \ln\left(x_{k}\right)\right) \leqslant \sum_{k=1}^{n} \frac{1}{n} \exp\left(\ln\left(x_{k}\right)\right)$$

L'exponentielle est la bijection réciproque du logarithme népérien et est un morphisme additif. Nous obtenons ainsi l'inégalité recherchée. $\hfill\Box$

16.1 Unicité de la partie régulière d'un développement limité

Démonstration. Soit f une fonction admettant un $DL_n(x_0)$ avec $n \in \mathbb{N}$ et $x_0 \in \mathcal{D}_f$. Supposons que f admette deux développements limités. C'est-à-dire qu'il existe $a \in \mathbb{C}^{n+1}$ et $b \in \mathbb{C}^{n+1}$ tels que :

$$f(x) = \sum_{x \to x_0}^{n} a_k (x - x_0)^k + o((x - x_0)^n)$$
$$f(x) = \sum_{x \to x_0}^{n} b_k (x - x_0)^k + o((x - x_0)^n)$$

Posons $u = x - x_0$ et $\tilde{f}(u) = f(x_0 + u)$ de sorte que les hypothèses sur f se traduise par l'existence d'un $DL_n(0)$ pour \tilde{f} :

$$f(x) = \sum_{k=0}^{n} a_k u^k + o(u^n)$$
 et $f(x) = \sum_{k=0}^{n} b_k u^k + o(u^n)$

Appliquons la définition d'un $DL_n(0)$. Il existe deux fonctions ε_1 et ε_2 définies sur $\mathcal{D}_{\tilde{f}}$ tels que

$$\forall u \in \mathcal{D}_{\tilde{f}}, \ \tilde{f}(u) = \sum_{k=0}^{n} a_k u^k + u^n \varepsilon_1$$
$$\forall u \in \mathcal{D}_{\tilde{f}}, \ \tilde{f}(u) = \sum_{k=0}^{n} b_k u^k + u^n \varepsilon_2$$
$$\lim_{u \to 0} \varepsilon_1(u) = 0 \text{ et } \lim_{u \to 0} \varepsilon_2(u) = 0$$

Donc

$$\forall u \in \mathcal{D}_{\tilde{f}}, \ \sum_{k=0}^{n} (a_k - b_k) u^k = u^n \left(\varepsilon_2(u) - \varepsilon_1(u) \right)$$

Par l'absurde, supposons que $\exists k_0 \in [0; n] : a_{k_0} \neq b_{k_0}$. Posons k_1 le plus petit entier dont les coefficients a et b sont différents :

$$k_1 = \min \{ k \in [0; n] \mid a_k \neq b_k \}$$

Nous obtenons alors

$$\forall u \in \mathcal{D}_{\tilde{f}}, \sum_{k=0}^{k_1-1} \underbrace{(a_k - b_k)}_{=0} u^k + (a_{k_1} - b_{k_1}) u^{k_1} + \sum_{k=k_1+1}^n (a_k - b_k) u^k = u^n \left(\varepsilon_2(u) - \varepsilon_1(u)\right)$$

Multiplions par u^{-k_1} puis calculons la limite en $u \to 0$. D'un coté, pour $k > k_1$, nous avons $k - k_1 \leqslant 1$ donc $(a_k - b_k)u^{k-k_1} \xrightarrow[u \to 0]{} 0$. De l'autre coté, u^{n-k_1} tend vers 0 ou 1 selon si $k_1 < n$ ou $k_1 = n$. Et, par hypothèse, $\varepsilon_2(u) - \varepsilon_1(u) \xrightarrow[u \to 0]{} 0$. Par unicité de la limite, $a_{k_1} - b_{k_1} = 0$. Ce qui contredit la définition de k_1 .

Par conséquent $\forall k \in [0; n]$, $a_k = b_k$. Ainsi, la partie régulière d'un DL est unique.

16.6 Deux fonctions équivalentes au voisinage de a ont le même signe sur un voisinage de a

Démonstration. Soient $f: \mathcal{D} \to \mathbb{R}$ et $g: \mathcal{D} \to \mathbb{R}$ telles que $f(x) \underset{x \to a}{\sim} g(x)$ avec $a \in \mathcal{D}$. Appliquons la définition de l'équivalence pour $\varepsilon \leftarrow \frac{1}{2}$, il existe un voisinage V de a tel que :

$$\forall x \in V \cap \mathcal{D}, |f(x) - g(x)| \le \frac{1}{2}|g(x)|$$

Fixons un tel voisinage V. Nous obtenons :

$$\forall x \in V \cap \mathcal{D}, \underbrace{g(x) - \frac{1}{2}|g(x)|}_{\text{du signe de } g(x)} \leqslant f(x) \leqslant \underbrace{g(x) + \frac{1}{2}|g(x)|}_{\text{du signe de } g(x)}$$

Ainsi f(x) et g(x) ont le même signe sur $V \cap \mathcal{D}$.

16.7 Condition nécessaire et suffisante pour qu'une fonction C^{∞} admette un extremum local ou un point d'inflexion

Soient $f \in \mathcal{C}^{\infty}(\mathcal{D}, \mathbb{R})$ et $a \in \overset{\circ}{\mathcal{D}}$. Supposons que $E_0 = \{p \in \mathbb{N}^* \setminus \{1\} \mid f^{(p)}(a) \neq 0\}$ est non vide. Posons $p_0 = \min E_0$.

f admet un extremum local en a si et seulement si f'(a) = 0 et p_0 est pair.

f admet un point d'inflexion en a si et seulement si p_0 est impair.

Démonstration. Soient de tels objets. Traitons le cas de l'extremum local. $f \in \mathcal{C}^{\infty}$ donc, la formule Taylor-Young donne un $DL_{p_0}(a)$ de f:

$$f(x) = \sum_{k=0}^{p_0} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^{p_0})$$

En développant :

$$f(x) \underset{x \to a}{=} f(a) + \underbrace{f'(a)(x-a)}_{=0} + \underbrace{\dots + \frac{f^{(p_0-1)}(a)}{(p_0-1)!}(x-a)^{p_0-1}}_{=0 \text{ par defintion de } p_0} + \underbrace{\frac{f^{(p_0)}(a)}{p_0!}(x-a)^{p_0}}_{=0} + o\left((x-a)^{p_0}\right)$$

Ainsi (car $f^{(p_0)}(a) \neq 0$)

$$f(x) - f(a) \underset{x \to a}{\sim} \frac{f^{(p_0)}(a)}{p_0!} (x - a)^{p_0}$$
 (21)

Au voisinage de a, f(x) - f(a) et $\frac{f^{(p_0)}(a)}{p_0!}(x-a)^{p_0}$ ont le même signe.

Supposons que f admette un extremum local en a. Or $a \in \overset{\circ}{\mathcal{D}}$ et f est dérivable en 0, donc f'(a)=0. Comme f admette un extremum local en a, f(x)-f(a) est de signe constant au voisinage de a. Donc $\frac{f^{(p_0)}(a)}{p_0!}(x-a)^{p_0}$ est de signe constant au voisinage de a. Par conséquent, p_0 est pair.

Réciproquement, supposons que f'(a) = 0 et que p_0 est pair. $\frac{f^{(p_0)}(a)}{p_0!}(x-a)^{p_0}$ est de signe constant au voisinage de a. Donc f(x) - f(a) est de signe constant au voisinage de a. Ainsi, a est un extremum local de f.

Traitons le cas du point d'inflexion. La formule de Taylor-Young donne :

$$f(x) - \underbrace{(f(a) + (x - a)f'(a))}_{\text{tangente en } (a, f(a))} \sim_{x \to a} \frac{f^{(p_0)}(a)}{p_0!} (x - a)^{p_0}$$
(22)

Le signe de l'écart courbe/tangente en a est donc celui de $\frac{f^{(p_0)}(a)}{p_0!}(x-a)^{p_0}$. Ce qui conclut de la même manière que l'extremum local.

17.4 Théorème de Bézout

Soient $a, b \in \mathbb{N}^*$ et $c \in \mathbb{Z}$. Il existe des entiers $x, y \in \mathbb{Z}$ tels que ax + yb = c si et seulement si c est multiple du pgcd de a et b.

Démonstration. Soient $a, b \in \mathbb{N}^*$. On suppose l'algorithme d'Euclide réalisé pour a, b, ainsi à la fin de ce dernier on a un entier naturel r_n tel que $r_n = a \wedge b$. Comme l'algorithme est terminé, on peut remonter chaque ligne de proche en proche, on aurait, à titre d'exemple, pour une première itération, $r_n = r_{n-2} - q_n \cdot r_{n-1}$. En réalisant toutes les étapes nécessaires, on obtient une relation entre r_n et a, b, cette relation s'écrit :

$$\exists (x_0, y_0) \in (\mathbb{Z}^*)^2 : a \wedge b = r_n = ax_0 + y_0 b.$$

Si c est un multiple de $a \wedge b$, alors il existe $k \in \mathbb{Z}^*$ tel que $c = k(a \wedge b)$, donc en multipliant le résultat montré au dessus par k, on a le sens indirect. Si pour $c \in \mathbb{Z}$, il existe des entiers $x, y \in \mathbb{Z}$ tels que ax + yb = c, alors le pgcd de a et b divise le membre de gauche et donc par égalite le membre de droite aussi donc c est multiple de $a \wedge b$, ce qui suffit.

17.6 Théorème de Gauss

Soient a, b, c trois entiers naturels non nuls. Si c est premier avec a et divise le produit ab, alors il divise b.

 $D\acute{e}monstration$. Soient a, b, c des entiers naturels vérifiant les hypothèses.

Comme c est premier avec a on écrit une relation de Bézout pour 1, leur pgcd et on multiplie le tout par b:

$$\exists (u, v) \in (\mathbb{N}^*)^2 : au + vc = 1 \implies abu + vbc = b,$$

or c divise ab et lui-même donc aussi le membre de gauche donc par égalité, le membre droite, c'est le théorème.

17.8 Résoudre une équation du type ax + yb = c

Soient $a, b, c \in \mathbb{Z}$. Résoudre l'équation

$$ax + yb = c,$$

d'inconnues x et y dans \mathbb{Z} .

Démonstration. Soient $a,b,c \in \mathbb{Z}$ et une telle équation, notée (i), en lesdites inconnues. Si $a \wedge b \not\mid c$, alors le théorème de Bézout, affirme que l'équation n'a pas de solution. Supposons le contraire. Posons $d=a \wedge b$. Le lemme technique affirme l'existence de a' et b' dans

Supposons le contraire. Posons $d = a \wedge b$. Le lemme technique affirme l'existence de a' et b' dans \mathbb{Z} , tels que a'd = a, b'd = b et $a' \wedge b' = 1$. Donc, comme d divise c, il existe c' tel que c = c'd. On réécrit l'équation, notée (ii):

$$a'x + yb' = c'.$$

On sait d'après le théorème de Bézout qu'il existe des solutions, en particulier grâce à l'algorithme d'Euclide on construit (x_0, y_0) , une solution de la nouvelle équation, puis on l'injecte et on raisonne par équivalence, on note ω l'ensemble des solutions de (ii) et Ω celui de (i):

$$(x,y) \in \Omega \iff (x,y) \in \omega$$

$$\Leftrightarrow a'x + yb' = c'$$

$$\Leftrightarrow a'x + yb' = a'x_0 + y_0b'$$

$$\Leftrightarrow a'(x - x_0) = b'(y_0 - y)$$

$$\Leftrightarrow \exists k \in \mathbb{Z} : \begin{cases} a'(x - x_0) &= b'(y_0 - y) \\ y_0 - y &= a'k \end{cases}$$

$$\Leftrightarrow \exists k \in \mathbb{Z} : \begin{cases} a'(x - x_0) &= b'(y_0 - y) \\ y_0 - y &= a'k \end{cases}$$

$$\Leftrightarrow \exists k \in \mathbb{Z} : \begin{cases} a'(x - x_0) &= b'(y_0 - y) \\ y &= y_0 - a'k \end{cases}$$

$$\Leftrightarrow \exists k \in \mathbb{Z} : \begin{cases} x &= x_0 + b'k \\ y &= y_0 - a'k \end{cases}$$

$$\Leftrightarrow (x, y) \in \{(x_0 + b'k, y_0 - a'k) \mid k \in \mathbb{Z}\}$$

La première ligne découle de la divisibilité des coefficients par d, la deuxième est la définition d'appartenance à ω , la troisième est une réécriture du fait que (x_0,y_0) soit solution de (ii), la quatrième est une factorisation banale, la cinquième une utilisation du théorème de Gauss pour le sens direct et le sens indirect ne pose pas de problème, la sixième est une réécriture de la deuxième relation, la septième découle de l'expression de y pour le sens direct et le sens indirect s'obtient en multipliant avec parcimonie l'équation, la huitième est une réécriture de la septième qui ne pose pas de problème. C'est Ω , par équivalence.

L'ensemble des nombres premiers est infini 18.1

Démonstration. Notons l'ensemble des nombres premiers $\mathcal{P} = \{n \in \mathbb{N} \mid |\mathcal{D}(n) \cup \mathbb{N}| = 2\}$ Par l'absurde, supposons que \mathcal{P} est fini.

Posons
$$m = 1 + \prod_{p \in \mathcal{P}} p \in \mathbb{N}$$
.

Comme $2 \in \mathcal{P}$, $m \geqslant 2$. Donc m admet un diviseur premier, $\exists q \in \mathcal{P} : q \mid m$. Donc $q \land m = q$.

Par ailleurs,
$$m = 1 + q \left(\prod_{\substack{p \in \mathcal{P} \\ p \neq q}} p \right)$$
. Donc $m - q \left(\prod_{\substack{p \in \mathcal{P} \\ p \neq q}} p \right) = 1$. D'après le théorème de Bézout,

 $q \wedge m = 1$.

Donc q = 1 ce qui est une contradiction avec $q \in \mathcal{P}$.

Caractérisation de la valuation p-adique

Soit $n \in \mathbb{N}^*, p \in \mathcal{P}, k_0 \in \mathbb{N}$.

$$\nu_p(n) = k_0 \iff \exists m \in \mathbb{Z} : \begin{cases} n = p^{k_0} m \\ m \land p = 1 \end{cases}$$
 (23)

 $D\acute{e}monstration. \implies \text{Supposons que } \nu_p(n) = k_0.$

Par définition de la valuation p-adique, $p^{\nu_p(n)} \mid n$ donc $p^{k_0} \mid n$. Notons $m \in \mathbb{Z}$ le quotient de la division euclidienne de n par p^{k_0} . Nous avons $n = p^{k_0}m$.

Comme $m \wedge p \in \mathcal{D}(p) \cap \mathbb{N}$, $m \wedge p \in \{1, p\}$. Par l'absurde, supposons que $m \wedge p = p$.

$$p \mid m \implies \exists m' \in \mathbb{Z} : m = pm'$$

$$\implies \exists m' \in \mathbb{Z} : n = pp^{k_0}m' = p^{k_0+1}m'$$

$$\implies k_0 + 1 \in \{k \in \mathbb{N} \mid p^k \mid n\}$$

$$\implies k_0 + 1 \leqslant \max\{k \in \mathbb{N} \mid p^k \mid n\} = \nu_p(n) = k_0$$

Ce qui est une contradiction donc
$$m \wedge p = 1$$
.
 \iff Supposons $\exists m \in \mathbb{Z} : \begin{cases} n = p^{k_0}m \\ m \wedge p = 1 \end{cases}$

Par définition de la valuation p-adique, $p^{\nu_p(n)} \mid n$ donc $p^{\nu_p(n)} \mid p^{k_0} m$. Or $m \land p = 1$ donc $m \land p^{\nu_p(n)} = 1$ 1. D'après le théorème de Gauss, $p_{\nu_p(n)} \mid p^{k_0}$. Donc $\exists \alpha \in \mathbb{Z} : \alpha p_{\nu_p(n)} = p^{k_0}$

$$\begin{split} \alpha p_{\nu_p(n)} &= p^{k_0} \implies p^{k_0} - \alpha p_{\nu_p(n)} = 0 \\ &\implies p^{k_0} \left(1 - \alpha p^{\nu_p(n) - k_0} \right) = 0 \text{ car } k_0 \leqslant \nu_p(n) \\ &\implies \alpha p^{\nu_p(n) - k_0} = 1 \text{ car } \mathbb{Z} \text{ est intègre} \\ &\implies p^{\nu_p(n) - k_0} \in \mathcal{D}(1) \cap \mathbb{N} \\ &\implies p^{\nu_p(n) - k_0} = 1 \\ &\implies \nu_p(n) - k_0 = 0 \\ &\implies \nu_p(n) = k_0 \end{split}$$

18.3 Caractérisation de a|b par les valuations p-adiques et preuve de leur propriété de morphisme.

$$\forall (a,b) \in \mathbb{Z}^2, \ a|b \iff \forall p \in \mathcal{P}, \ \nu_n(a) \le \nu_n(b) \tag{24}$$

Démonstration. Premièrement, montrons que la valuation p-adique est un morphisme de (\mathbb{Z}^*,\times) dans $(\mathbb{N}, +)$.

Soient de tels entiers relatifs a, b.

$$\exists \ m,n \in (\mathbb{Z}^*)^2 \ : \ \left(\left(a=p^{\nu_p(a)}m\right) \ \land \ \left(m \land p=1\right)\right) \ \land \ \left(\left(b=p^{\nu_p(b)}n\right) \ \land \ \left(n \land p=1\right)\right),$$

donc $ab = p^{\nu_p(a) + \nu_p(b)} mn$ et $mn \wedge p = 1$, par la réciproque de la caractérisation des valuations p-adiques :

$$\nu_p(ab) = \nu_p(a) + \nu_p(b).$$

Prouvons le sens réciproque de la susdite caractérisation. Supposons le membre de droite. D'après le théorème de décomposition en facteurs premiers,

$$|b| = \prod_{p \in \mathcal{P}} p^{\nu_p(b)} = \prod_{p \in \mathcal{P}} p^{\nu_p(a)}(p^{\nu_p(b) - \nu_p(a)}) = \prod_{p \in \mathcal{P}} p^{\nu_p(a)} \prod_{p \in \mathcal{P}} p^{\nu_p(b) - \nu_p(a)} = |a| \prod_{p \in \mathcal{P}} p^{\nu_p(b) - \nu_p(a)},$$

la première manipulation se justifie par hypothèse et la seconde peut se justifier par le calcul. Ainsi, |a|||b| donc a|b.

Prouvons le sens direct. Supposons le membre de gauche.

Soit $p \in \mathcal{P}$. Il existe $k \in \mathbb{Z}$ tel que ak = b car a|b. Ainsi,

$$\nu_p(b) = \nu_p(ak) = \nu_p(a) + \nu_p(k) \ge \nu_p(a).$$

Ce qui suffit.

18.4 Expression du pgcd et du ppcm à partir des décomposition en facteurs premiers de a et b.

Le pgcd comme produit des p à la puissance du minimum des ν_p et le ppcm comme le produit des p à la puissance du maximum des ν_p .

$$a \wedge b = \prod_{p \in \mathcal{P}} p^{\min(\nu_p(a), \nu_p(b))}$$

$$a \vee b = \prod_{p \in \mathcal{P}} p^{\max(\nu_p(a), \nu_p(b))}$$
(25)

Démonstration. Prouvons la formule du pgcd et déduisons-en la formule du ppcm.

Soient $(a,b) \in (\mathbb{Z}^*)^2$. Soit $p \in \mathcal{P}$. Il faut et il suffit de montrer que $\nu_p(a \wedge b) = \min(\nu_p(a), \nu_p(b))$ pour obtenir le résultat. On a $a \wedge b | a$ et $a \wedge b | b$ donc d'après la caractérisation de la divisibilité par les valuations p-adiques, $\nu_p(a \wedge b) \leq \nu_p(a)$ et $\nu_p(a \wedge b) \leq \nu_p(b)$ donc $\nu_p(a \wedge b) \leq \min(\nu_p(a), \nu_p(b))$. Posons $m = \min(\nu_p(a), \nu_p(b))$. On a

$$|a| = \prod_{q \in \mathcal{P}} q^{\nu_q(a)} = p^m \left((p^{\nu_p(a) - m}) \prod_{q \in \mathcal{P} \setminus \{p\}} q^{\nu_q(a)} \right),$$

car par définition, $m \leq \nu_p(a)$, donc $p^m|a$, on montrerait de même que $p^m|b$, donc par définition, $p^m|a \wedge b$, donc une nouvelle fois en appliquant la caractérisation de la divisibilité par les valuations p-adiques, $m \leq \nu_p(a \wedge b)$. Finalement, $\nu_p(a \wedge b) = m$.

On en déduit la formule du ppcm :

$$|a||b| = (a \wedge b)(a \vee b) \implies a \vee b = \prod_{p \in \mathcal{P}} p^{\nu_p(a) + \nu_p(b) - \min(\nu_p(a), \nu_p(b))} = \prod_{p \in \mathcal{P}} p^{\max(\nu_p(a), \nu_p(b))}$$

18.5 Pour p premier, $(a+b)^p \equiv a^p + b^p \mod p$, en déduire le petit Th. de Fermat (2 versions), expression du résultat dans $\mathbb{Z}/p\mathbb{Z}$.

Petit Th. de Fermat :

- (i) $\forall a \in \mathbb{Z}, \ a^p \equiv a \mod p$ $\forall x \in \mathbb{Z}/p\mathbb{Z}, \ x^p = x$
- $\begin{array}{ccc} (ii) \ \forall a \in \mathbb{Z}, \ p \not | a, &\Longrightarrow a^{p-1} \equiv 1 \mod p \\ \forall x \in \mathbb{Z}/p\mathbb{Z}, \ x^{p-1} = 1 \end{array}$

Démonstration. Soient a, b de tels entiers relatifs et soit p un nombre premier. Calculons,

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} a^{p-k} b^k = a^p + b^p + \sum_{k=1}^{p-1} \binom{p}{k} a^{p-k} b^k \equiv a^p + b^p \mod p,$$

car $\forall k \in [1, p-1], \ p|\binom{p}{k}$ (élémentaire), d'où le résultat. Dans $\mathbb{Z}/p\mathbb{Z}$, ce résultat s'énonce comme suit :

$$\forall (x,y) \in \mathbb{Z}/p\mathbb{Z}^2, \ (x+y)^p = x^p + y^p.$$

En guise d'application, démontrons le petit Th. de Fermat énoncé plus haut. Démonstration du (i). Considérons le prédicat $\mathcal{P}(\cdot)$ défini sur $\mathbb N$ par :

$$\mathcal{P}(a)$$
: " $a^p \equiv a \mod p$ ".

Initialisation : Pour a = 0, rien à faire, donc $\mathcal{P}(0)$ est vrai.

Hérédité : Soit $a \in \mathbb{N}$ tel que $\mathcal{P}(a)$. Calculons,

$$(a+1)^p \equiv a^p + 1 \mod p \stackrel{\mathcal{P}(a)}{\equiv} a + 1 \mod p,$$

donc $\mathcal{P}(a+1)$ vrai.

Par Th. de récurrence sur \mathbb{N} , $\mathcal{P}(a)$ est vrai pour tout $a \in \mathbb{N}$.

Il faut maintenant étendre le résultat à \mathbb{Z} . Soit $p \in \mathcal{P} \setminus \{2\}$, ainsi p est impair. Soit $a \in \mathbb{Z} \setminus \mathbb{N}$. Calculons,

$$a^p \equiv (-|a|)^p \mod p \equiv -|a|^p \mod p \stackrel{\text{Th. de Fermat}}{\equiv} -|a| \mod p \equiv a \mod p.$$

Si p=2, $a^2\equiv |a|^2 \mod 2\equiv |a| \mod 2\equiv -|a| \mod 2\equiv a \mod 2$. Le (ii), soit $a\in\mathbb{Z}$ tel que $p\not|a$.

$$(p \nmid a) \land (p \in \mathcal{P}) \implies p \land a = 1,$$

d'après le (i), $p|a^p-a \implies p|a(a^{p-1}-1) \stackrel{\text{Th. de Gauss}}{\Longrightarrow} p|a^{p-1}-1 \implies a^{p-1} \equiv 1 \mod p$. Les écritures dans $\mathbb{Z}/p\mathbb{Z}$ ne posent pas de problème.s, ce qui conclut.

18.6 $\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier.

Démonstration. Montrons le sens réciproque, supposons $n \in \mathcal{P}$.

Soit $x \in \mathbb{Z}/n\mathbb{Z}$ tel que $x \neq \overline{0}$.

 $\exists a \in [0, p-1]$: $c = \overline{a}, I = [0, p-1]$ étant un système de représentant des classes.

Comme $a \in I$, $n \not| a$, or $n \in \mathcal{P}$, donc $n \wedge a = 1$. Par Bezout, il existe $u, v \in \mathbb{Z}^2$ tels que au + nv = 1, donc u est l'inverse de a modulo n donc $a \in \mathbb{Z}/n\mathbb{Z}^{\times}$, dès lors, tout élément non nul de $\mathbb{Z}/n\mathbb{Z}$ est inversible, or c'est un anneau commutatif, donc c'est un corps.

Montrons le sens direct en raisonnant par contraposition, supposons $n \notin \mathcal{P}$.

Comme n n'est pas premier et est plus grand que 2, il admet un diviseur, d, dans $I \setminus \{0,1\} = J$. Notons d' le quotient de la division euclidienne de n par d, on a alors a = dd' et $d' \in J$. Donc $\overline{dd'} = \overline{0}$ et comme $d, d' \in J$, on a $d, d' \neq 0$, donc \overline{d} est un diviseur de zéro de $\mathbb{Z}/n\mathbb{Z}$, donc \overline{d} est un élément non nul de $\mathbb{Z}/n\mathbb{Z}$ non inversible, donc $\mathbb{Z}/n\mathbb{Z}$ n'est pas un corps. En contraposant ce que nous venons de démontrer on a le résulat. Ce qui conclut.

18.7 Les éléments inversibles d'un anneau A forment un groupe multiplicatif noté (A^{\times}, \times)

Démonstration. Soit $(A, +, \times)$ un anneau.

Un élément inversible (ou unité) est un élément de A symétrisable pour la loi \times . Posons l'ensemble des éléments inversibles $A^{\times} = \{a \in A \mid \exists b \in A : a \times b = b \times a = 1_A\}$.

★ Montrons que la LCI × se restreint bien à A^{\times} en un LCI $\times_{A^{\times}}$. Soient $(a_1, a_2) \in A^{\times 2}$. Par défintion de A^{\times} , $\exists (b_1, b_2) \in A^2 : a_1 \times b_1 = b_1 \times a_1 = 1_A$ et $a_2 \times b_2 = b_2 \times a_2 = 1_A$.

$$(a_1 \times a_2) \times (b_2 \times b_1) = a_1 \times \underbrace{a_2 \times b_2}_{= 1_A} \times b_1 = a_1 \times b_1 = 1_A$$

$$(b_2 \times b_1) \times (a_1 \times a_2) = b_2 \times \underbrace{b_1 \times a_1}_{= 1_A} \times a_2 = b_2 \times a_2 = 1_A$$

Donc $(a_1 \times a_2) \in A^{\times}$.

- \star La loi × est associative donc la loi × $_{A^\times}$ l'est aussi.
- * 1_A vérifie $1_A \times 1_A = 1_A$ donc $1_A \in A^{\times}$. De plus, $\forall a \in A^{\times}, 1_A \times_{A^{\times}} a = a \times_{A^{\times}} 1_A = a$ donc $\times_{A^{\times}}$ admet 1_A comme élément neutre.
- * Soit $a \in A^{\times}$. Par définition de A^{\times} , $\exists b \in A : a \times b = b \times a = 1_A$. D'où $b \in A^{\times}$. En pensant les égalités ci-dessus dans A^{\times} ,

$$a \times_{A^{\times}} b = b \times_{A^{\times}} a = 1_A$$

Donc a est inversible dans A^{\times} .

Ainsi, $(A^{\times}, \times_{A^{\times}})$ est un groupe.

18.8 L'image directe par un morphisme d'anneau d'un sous-anneau de l'anneau de départ est un sous anneau de l'anneau d'arrivée. De même pour l'image réciproque.

Démonstration. Soient $(A, +, \times)$ et $(B, +, \times)$ deux anneaux et $f: A \to B$ un morphisme d'anneau. Soit A' un sous-anneau de A. Montrons que f(A') est un sous-anneau de B.

- * Par définition de $f, f(A') \subset B$ et $(B, +, \times)$ est un anneau.
- * Soient $(u, v) \in f(A')^2$. Alors $\exists (a, b) \in A'^2 : f(a) = u$ et f(b) = v. f est un morphisme d'anneau donc un morphisme de groupe de (A, +) dans (B, +) donc

$$u - v = f(a) - f(b) = f(a - b)$$

Comme A' est un sous-anneau, $a - b \in A'$. Donc $u - v \in f(A')$.

De même, f est un morphisme d'anneau donc un morphisme de monoïde de (A, \times) dans (B, \times) donc

$$u \times v = f(a) \times f(b) = f(a \times b)$$

Comme A' est un sous-anneau, $a \times b \in A'$. Donc $u \times v \in f(A')$.

* f est un morphisme d'anneau donc $1_B = f(1_A)$. Or A' est un sous-anneau donc $1_A \in A'$. D'où $1_B \in f(A')$.

Soit B' un sous-anneau de B. Montrons que $f^{-1}(B')$ est un sous-anneau de A.

- * Par définition de f, $f^{-1}(B') \subset A$ et $(A, +, \times)$ est un anneau.
- ★ Soient $(a, b) \in f^{-1}(B')^2$. f est un morphisme d'anneau donc un morphisme de groupe de (A, +) dans (B, +) donc

$$f(a-b) = \underbrace{f(a)}_{\in B'} - \underbrace{f(b)}_{\in B'} \in B'$$

Donc $a - b \in f^{-1}(B')$.

De même, f est un morphisme d'anneau donc un morphisme de monoïde de (A, \times) dans (B, \times) donc

$$f(ab) = \underbrace{f(a)}_{\in B'} \underbrace{f(b)}_{\in B'} \in B'$$

Donc $ab \in f^{-1}(B')$.

 \star f est un morphisme d'anneau donc $1_B = f(1_A)$. Or B' est un sous-anneau donc $1_B \in B'$. D'où $1_A \in f^{-1}(B')$.

$$19.1 \quad (A \times B)^T = B^T \times A^T$$

Pour une matrice $A \in \mathcal{M}_{(n,p)}(\mathbb{K})$, la matrice transposée est définie :

$$\forall (k,l) \in [1,p] \times [1,n], [A^T]_{kl} = A_{lk}$$

Formellement, la transposition est une application de $\mathcal{M}_{(n,p)}(\mathbb{K})$ dans $\mathcal{M}_{(p,n)}(\mathbb{K})$.

Démonstration. Soit $(A, B) \in \mathcal{M}_{(n,p)}(\mathbb{K}) \times \mathcal{M}_{(p,q)}(\mathbb{K})$. $(A \times B)^T \in \mathcal{M}_{(q,n)}(\mathbb{K})$. Soit $(i,j) \in [1,q] \times [1,n]$.

$$\begin{split} \left[\left(A \times B \right)^T \right]_{i,j} &= \left[A \times B \right]_{j,i} \\ &= \sum_{k=1}^p A_{j,k} \times_{\mathbb{K}} B_{k,i} \\ &= \sum_{k=1}^p B_{k,i} \times_{\mathbb{K}} A_{j,k} \\ &= \sum_{k=1}^p \left[B^T \right]_{i,k} \times_{\mathbb{K}} \left[A^T \right]_{k,j} \\ &= \left[\left(B^T \right) \times \left(A^T \right) \right]_{i,j} \end{split}$$

19.2 Calculer $E^{i,j} \times E^{k,l}$ en fonction de i, j, k, l et des symboles de Kronecker

Le symbole de Kronecker est défini de la manière suivante :

$$\forall (x,y) \in \mathbb{R}^2, \delta_{xy} = \begin{cases} 0 \text{ si } x \neq y \\ 1 \text{ si } x = y \end{cases}$$

La matrice $E^{i,j} \in \mathcal{M}_{(n,p)}(\mathbb{K})$ avec $(i,j) \in [1,n] \times [1,p]$ ne possède que des coefficients nuls sauf le coefficient de la i^e ligne et j^e colonne qui vaut 1. Formellement :

$$\forall (r,s) \in [1,n] \times [1,p], \ [E^{i,j}]_{rs} = \delta_{ir}\delta_{js}$$

Démonstration. Calculons $E^{i,j}(n,p) \times E^{k,l}(p,q)$. Soient $(r,s) \in [1,n] \times [1,q]$ fq

$$\begin{split} \left[E^{i,j} \times E^{k,l}\right]_{rs} &= \sum_{t=1}^{n} E^{i,j}_{r,t} E^{k,l}_{t,s} \\ &= \sum_{t=1}^{n} \delta_{ir} \delta_{jt} \delta_{kt} \delta_{ls} \\ &= \delta_{jk} \delta_{ir} \delta_{ls} \\ &= \delta_{jk} \left[E^{i,l}\right]_{rs} \end{split}$$

Donc $E^{i,j} \times E^{k,l} = \delta_{jk} E^{i,l}$.

Ainsi, pour le calcul de $(E^{i,j})^2$, $q \leftarrow n, k \leftarrow i, l \leftarrow j$.

$$(E^{i,j})^2 = \delta_{ji} E^{i,j} = \begin{cases} E^{i,j} & \text{si } i = j \\ 0_{n,p} & \text{si } i \neq j \end{cases}$$

19.3 Les matrices triangulaires supérieures forment un sous-anneau de $\mathcal{M}_n(\mathbb{K})$

Démonstration. $\mathcal{T}_n^+(\mathbb{K}) \subset (M)_n(\mathbb{K})$ et $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est un anneau. $\mathcal{T}_n^+(\mathbb{K}) \neq \emptyset$ car $I_n \in \mathcal{T}_n^+(\mathbb{K})$ $(I_n$ est le neutre multiplicatif de $\mathcal{M}_n(\mathbb{K})$). Soient $(A, B) \in \mathcal{T}_n^+(\mathbb{K})^2$. Soient $(i, j) \in [1, n]^2$ tels que i > j.

$$(A - B)_{i,j} = \underbrace{A_{i,j}}_{=0 \text{ car } A \in \mathcal{T}_n^+(\mathbb{K})} - \underbrace{B_{i,j}}_{=0 \text{ car } B \in \mathcal{T}_n^+(\mathbb{K})} = 0$$

Donc, $A - B \in \mathcal{T}_n^+(\mathbb{K})$.

$$(A \times B)_{i,j} = \sum_{k=1}^{n} A_{i,k} \times_{\mathbb{K}} B_{k,j}$$

$$= \sum_{k=1}^{j} \underbrace{A_{i,k}}_{=0 \text{ car } i > j \geqslant k \text{ et } A \in \mathcal{T}_{n}^{+}(\mathbb{K})} \times_{\mathbb{K}} B_{k,j} + \sum_{k=j+1}^{n} A_{i,k} \times_{\mathbb{K}} \underbrace{B_{k,j}}_{=0 \text{ car } k > j \text{ et } B \in \mathcal{T}_{n}^{+}(\mathbb{K})}$$

$$= 0$$

Donc, $A \times B \in \mathcal{T}_n^+(\mathbb{K})$.

19.4 Si A est une matrice d'ordre n et λ un scalaire non nul d'un corps, alors la transposée de A et λA sont inversibles aussi.

Démonstration. Soient $A, \lambda \in \mathcal{GL}_n(\mathbb{K}) \times \mathbb{K}^*$, avec \mathbb{K} un corps. Par définition, il existe $B \in \mathcal{GL}_n(\mathbb{K})$ tel que $AB = BA = I_n$. Ainsi :

$$(AB)^T = I_n^T \iff B^T A^T = I_n,$$

donc A^T admet un inverse à gauche, B^T , donc un inverse tout court et donc A^T est inversible (on notera que A^T reste dans les matrices d'ordre n). De même,

$$\lambda AB = \lambda I_n \iff (\lambda A)B = \lambda I_n \iff (\lambda A)\left(\frac{1}{\lambda}B\right) = I_n,$$

car les scalaires commutent avec toutes les matrices. Ainsi, λA admet un inverse à droite, donc un inverse tout court, donc est inversible, d'inverse $\frac{1}{\lambda}B$. Concluant la preuve.

19.5 Si N est une matrice d'ordre n nilpotente, alors $I_n + \lambda N$ est inversible pour tout λ , scalaire d'un corps.

Démonstration. Soient N une matrice d'ordre n à coefficient dans \mathbb{K} , un corps, nilpotente, d'indice de nilpotence k (un entier naturel donc) et $\lambda \in \mathbb{K}$. Calculons :

$$I_n^{2k+1} + (\lambda N)^{2k+1} = I_n^{2k+1} - (-\lambda N)^{2k+1} = (I_n + \lambda N) \sum_{i=0}^{2k} (-\lambda N)^i = (I_n + \lambda N) \sum_{i=0}^{k-1} (-\lambda N)^i,$$

car λN commute avec I_n , or le membre de gauche est égal à I_n car 2k+1>k, donc $I_n+\lambda N$ est inversible à droite, donc inversible tout court, d'inverse $\sum_{i=0}^{k-1} (-\lambda N)^i$. Ce qui conclut la preuve.

19.6 Caractérisation de l'inversibilité pour les matrices

 $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement si pour tout $Y \in \mathcal{M}_{n,1}(\mathbb{K})$, l'équation AX = Y d'inconnue $X \in \mathcal{M}_{n,1}$ admet une unique solution.

$$\forall A \mathcal{M}_n(\mathbb{K}), A \in \mathcal{GL}_n(\mathbb{K}) \iff \forall Y \in \mathcal{M}_{n,1}(\mathbb{K}), \exists ! X \in \mathcal{M}_{n,1} : AX = Y$$
 (26)

Démonstration. Supposons que $A \in \mathcal{GL}_n(\mathbb{K})$. Soit $Y \in \mathcal{M}_{n,1}(\mathbb{K})$ fixé quelconque. $AX = Y \iff A^{-1}AX = A^{-1}Y \iff X = A^{-1}Y$ donc l'équation AX = Y d'inconnue $X \in \mathcal{M}_{n,1}$ admet une unique solution.

Supposons maintenant que $\forall Y \in \mathcal{M}_{n,1}(\mathbb{K}), \exists ! X \in \mathcal{M}_{n,1} : AX = Y$. Pour $i \in [1, n]$, notons X_i la solution de $AX = E^{i,1}$.

Posons
$$B = \begin{bmatrix} X_1 & X_2 & \dots & X_n \end{bmatrix}$$
.

Calculons $AB = \begin{bmatrix} AX_1 & AX_2 & \dots & AX_n \end{bmatrix} = \begin{bmatrix} E^{1,1} & E^{2,1} & \dots & E^{n,1} \end{bmatrix} = I_n$.

Ainsi A est inversible à droite donc $A \in \mathcal{GL}_n(\mathbb{K})$ et $A^{-1} = B$.

19.7 Caractérisation des matrices diagonales inversibles

Une matrice diagonale est inversible si et seulement si tous ses coefficients diagonaux sont non nuls.

$$\forall D = diag(d_1, d_2, \dots, d_n) \in \mathcal{D}_n(\mathbb{K}), D \in \mathcal{GL}_n(\mathbb{K}) \iff \prod_{i=1}^n d_i \neq 0$$
 (27)

Démonstration. Soit $D \in \mathcal{D}_n(\mathbb{K})$ de coefficients diagonaux $d_1, d_2, \dots, d_n \in \mathbb{K}^n$.

Soit
$$Y = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix} \in \mathcal{M}_{n,1}(\mathbb{K})$$
. Étudions l'équation $DX = Y$ d'inconnue $X = \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} \in \mathcal{M}_{n,1}(\mathbb{K})$.

$$DX = Y \iff \begin{cases} d_1 x_1 & = y_1 \\ d_2 x_2 & = y_2 \\ \vdots & = y_n \\ d_n x_n & = y_n \end{cases}$$

- Si $\exists i_0 \in [1; n] : d_{i_0} = 0$, la i_0 -ème ligne du système ci-dessus deviens une condition de compatibilité $0 = y_{i_0}$ qui ne sera pas respecté pour $Y = E^{i_0,1}$. Donc $D \notin \mathcal{GL}_n(\mathbb{K})$.
- Sinon $\forall i \in [1; n] : d_i \neq 0$, le système est donc triangulaire à coefficients diagonaux non nuls. Il admet donc une unique solution. Ainsi $D \in \mathcal{GL}_n(\mathbb{K})$.

$$DX = Y \iff \begin{cases} x_1 & = d_1^{-1}y_1 \\ x_2 & = d_2^{-1}y_2 \\ & \ddots & = d_2^{-1}y_2 \\ & & x_n & = d_2^{-1}y_2 \end{cases}$$

Ainsi $D^{-1} = diag(d_1^{-1}, d_2^{-1}, \dots, d_n^{-1}).$

20.1 Éléments inversibles de l'anneau $\mathbb{K}[X]$

$$\mathbb{K}[X]^{\times} = \left\{ \lambda X^{0}, \lambda \in \mathbb{K}^{*} \right\}$$
 (28)

Démonstration. Soit P un élément inversible de $\mathbb{K}[X]$. Alors $\exists Q \in \mathbb{K}[X] : P \cdot Q = Q \cdot P = 1_{\mathbb{K}[X]}$. En prenant les degrés des polynômes, deg $P + \deg Q = 0$.

Or deg : $\mathbb{K}[X] \to \mathbb{N}$ donc deg $P = \deg Q = 0$. Donc $\exists \lambda \in \mathbb{K}^* : P = \lambda$.

Ainsi $\mathbb{K}[X]^{\times} \subset \{\lambda X^{0}, \lambda \in \mathbb{K}^{*}\}.$ Soit $\lambda \in \mathbb{K}^{*}$. Considérons $P = \lambda$. Posons $Q = \lambda^{-1}$ (car \mathbb{K} est un corps). $P \cdot Q = \lambda \lambda^{-1} = 1$ et $Q \cdot P = \lambda^{-1}\lambda = 1$ donc P est inversible. Ainsi $\{\lambda X^0, \lambda \in \mathbb{K}^*\} \subset \mathbb{K}[X]^{\times}$.

Théorème d'interpolation de lagrange 20.2

Le problème d'interpolation de Lagrange est, pour $n \in \mathbb{N}$ avec $a \in \mathbb{K}^{n+1}$ et $b \in \mathbb{K}^{n+1}$, l'ensemble des polynômes passant par tous les points de coordonnée (a_i, b_i) . C'est-à-dire l'ensemble des $P \in \mathbb{K}[X]$ vérifiant :

$$\forall i \in [0; n], P(a_i) = b_i \tag{29}$$

Il existe une unique solution P de degré $\leq n$ au problème d'interpolation de lagrange, et elle s'exprime de la manière suivante en posant

$$L_{i} = \prod_{\substack{j=0\\j\neq i}}^{n} \frac{X - a_{j}}{a_{i} - a_{j}} \tag{30}$$

$$P = \sum_{i=0}^{n} b_i L_i \tag{31}$$

Démonstration. Unicité

Supposons qu'il existe $(P,Q) \in \mathbb{K}_n[X]^2$ solutions du problème d'interpolation.

Alors $\forall i \in [0, n], \tilde{P}(a_i) = \tilde{Q}(a_i) = b_i$

Posons H = P - Q, alors, $\forall i \in [0, n], \tilde{H}(a_i) = \tilde{P}(a_i) - \tilde{Q}(a_i) = 0$.

De plus, $\deg H = \deg(P - Q) \leq \max \{\deg P, \deg Q\}$

Donc H est un polynôme de degré $\leq n$ avec |[0, n]| = n + 1 racines.

Donc H est le polynôme nul.

Existence Soit $i \in [0, n]$ fq Notons L_i une solution de degré $\leq n$ au problème Pb_i suivant :

$$(Pb_i) \begin{cases} \tilde{P}(a_0) = 0 \\ \vdots \\ \tilde{P}(a_{i-1}) = 0 \\ \tilde{P}(a_i) = 1 \\ \tilde{P}(a_n) = 0 \\ \vdots \\ \tilde{P}(a_n) = 0 \end{cases}$$

On remarque que $(a_0, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$ sont n racines deux à deux distinctes de L_i . Or L_i est de degré $\leq n$ et n'est pas le polynôme nul (car $L_i(a_i) = 0$) donc $(a_0, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$ sont les seules racines de L_i , toutes simples.

Dès lors,

$$\exists c \in \mathbb{K}^* : L_i = c \prod_{\substack{j=0\\ i \neq i}}^n (X - a_j)$$

Pour trouver le c, remarquons que

$$\tilde{L}_i(a_i) = 1 \iff c \prod_{\substack{j=0\\j \neq i}}^n (a_i - a_j) = 1$$

$$\iff c = \prod_{\substack{j=0\\j \neq i}}^n \left(\frac{1}{a_i - a_j}\right)$$

Ainsi, s'il existe une solution au problème Pb_i c'est nécéssairement

$$L_i = \prod_{\substack{j=0\\ i \neq i}}^n \left(\frac{X - a_j}{a_i - a_j} \right)$$

Réciproquement, cette solution est correcte puisque

$$\forall k \in [0, n], k \neq i, \tilde{L}_i(a_k) = \prod_{\substack{j=0 \ j \neq i}}^n \left(\frac{a_k - a_j}{a_i - a_j} \right) = 0$$

Et

$$\tilde{L}_i(a_i) = \prod_{\substack{j=0\\j\neq i}}^n \left(\frac{a_i - a_j}{a_i - a_j}\right) = \prod_{\substack{j=0\\j\neq i}}^n 1 = 1$$

Posons donc $P = \sum_{i=0}^{n} b_i Li$. Alors, par construction,

$$\forall k \in [0, n], \tilde{P}(a_k) = \sum_{i=0}^{n} \left(b_i \prod_{\substack{j=0 \ j \neq i}}^{n} \left(\frac{a_k - a_j}{a_i - a_j} \right) \right) = \sum_{i=0}^{n} \left(b_i \delta_{ki} \right) = b_k \delta_{kk} = b_k$$

Nous avons donc construit une solution unique au problème d'interpolation de Lagrange

20.3 Formule de Taylor dans $\mathbb{K}[X]$ (caractéristique nulle)

Soient P à coefficients dans \mathbb{K} et $a \in \mathbb{K}$. On a :

$$P = \sum_{n \in \mathbb{N}} \frac{\widetilde{P^{(n)}}(a)}{n!} (X - a)^n \tag{32}$$

 $D\acute{e}monstration$. Considérons le prédicat $\mathcal{P}(\cdot)$ défini sur \mathbb{N} par :

$$\mathcal{P}(n)$$
: " $\forall P \in \mathbb{K}_n[X], P = \sum_{k=0}^n \frac{\widetilde{P^{(k)}}(a)}{k!} (X-a)^k$ "

Initialisation : pour n = 0, soit $P \in \mathbb{K}_0[X]$.

$$\exists p_0 \in \mathbb{K} : P = p_0 X^0 \text{ et } \sum_{k=0}^0 \frac{\widetilde{P^{(k)}(a)}}{k!} (X - a)^k = \frac{\widetilde{P^{(0)}(a)}}{1} X^0 = p_0 X^0, \text{ donc } \mathcal{P}(0) \text{ vrai.}$$

Hérédité : Soit $n \in \mathbb{N}$ tel que $\mathcal{P}(n)$. Soit $P \in \mathbb{K}_{n+1}[X]$. On a donc $\deg P' = \deg P - 1 \leq n$ donc $\mathcal{P}(n)$ s'applique à P' :

$$P' = \sum_{k=0}^{n} \frac{\widetilde{P'^{(k)}(a)}}{k!} (X - a)^k = \left(\sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}(a)}}{k!} \frac{(X - a)^{k+1}}{k+1} \right)',$$

donc:

$$\left(P - \sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}}(a)}{k!} \frac{(X-a)^{k+1}}{k+1}\right)' = 0 \implies \exists \ \mu \in \mathbb{K} : \ P - \sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}}(a)}{k!} \frac{(X-a)^{k+1}}{k+1} = \mu,$$

ainsi:

$$P = \sum_{k=0}^{n} \frac{\widetilde{P^{(k+1)}(a)}}{(k+1)!} (X-a)^{k+1} + \mu = \sum_{k=1}^{n+1} \frac{\widetilde{P^{(k)}(a)}}{k!} (X-a)^k + \mu,$$

donc en a par φ_a :

$$\widetilde{P}(a) = \mu \implies P = \sum_{k=1}^{n+1} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k + \widetilde{P}(a) = \sum_{k=0}^{n+1} \frac{\widetilde{P^{(k)}}(a)}{k!} (X - a)^k,$$

donc $\mathcal{P}(n+1)$ vrai. Ainsi par théorème de récurrence sur \mathbb{N} , $\mathcal{P}(n)$ est vrai pour tout $n \in \mathbb{N}$. \square

20.4 Caractérisation de la multiplicité d'une racine

Soit $P \in \mathbb{K}[X]$. Soit $a \in \mathbb{K}$.

$$a$$
 est une racine de P de multiplicité au moins $m \iff \begin{cases} P(a) = 0 \\ P'(a) = 0 \\ \dots \\ P^{(m-1)}(a) = 0 \end{cases}$ (33)

$$a \text{ est une racine de } P \text{ de multiplicit\'e d'exactement } m \iff \begin{cases} P(a) = 0 \\ P'(a) = 0 \\ \dots \\ P^{(m-1)}(a) = 0 \\ P^m(a) \neq 0 \end{cases}$$
 (34)

Démonstration. • Supposons que a est une racine de P de multiplicité au moins m. Alors $\exists Q \in \mathbb{K}[X] : P = (X - a)^m Q$. D'après la formule de Leibniz, pour tout $k \in [0; m - 1]$,

$$\begin{split} P^{(k)} &= \sum_{i=0}^{k} \binom{k}{i} \left((X-a)^{m} \right)^{(k-i)} Q^{(i)} \\ &= \sum_{i=0}^{k} \binom{k}{i} \frac{m!}{(m-(k-i))!} (X-a)^{m-(k-i)} Q^{(i)} \\ &= \underbrace{(X-a)^{(m-k)}}_{\text{c'est un bien un polynôme}} \sum_{i=0}^{k} \binom{k}{i} \frac{m!}{(m-(k-i))!} (X-a)^{i} Q^{(i)} \end{split}$$

Donc $\forall k \in [0; m-1], P^{(k)}(a) = 0.$

• Supposons que $\forall k \in [0; m-1], P^{(k)}(a) = 0$. Appliquons la formule de Taylor a.

$$P = \sum_{n \in \mathbb{N}} \frac{P^{(n)}(a)}{n!} (X - a)^n$$

$$= \sum_{n=0}^{m-1} \underbrace{\frac{P^{(n)}(a)}{n!}}_{=0} (X - a)^n + \sum_{\substack{n \in \mathbb{N} \\ n \geqslant m}} \frac{P^{(n)}(a)}{n!} (X - a)^n$$

$$= (X - a)^m \sum_{\substack{n \in \mathbb{N} \\ n \geqslant m}} \frac{P^{(n)}(a)}{n!} \underbrace{(X - a)^{n-m}}_{\in \mathbb{K}[X] \ car \ n - m \in \mathbb{N}}$$

Donc $(X-a)^m|P$. Donc a est racine de P de multiplicité au moins m.

- Supposons que a est une racine de P de multiplicité exactement m. Nous pouvons appliquer le point précédent car la multiplicité est supérieur à $m: \forall k \in$ $[0; m-1], P^{(k)}(a) = 0.$
 - Par l'absurde, si $P^{(m)}(a) = 0$ alors le point précédent donne que a a une multiplicité supérieur à m+1 donc $m \ge m+1$ ce qui est une contradiction.

Par conséquent, $P^{(m)}(a) \neq 0$.

• Supposons $\forall k \in [0; m-1], P^{(k)}(a) = 0 \text{ et } P^{(m)}(a) \neq 0.$ En reprenant le calcul précédent, pour k=m, en sachant que $(X-a)^{(m-k)}=X^0$,

$$P^{(m)} = {m \choose 0} \frac{m!}{0!} (X - a)^0 P + \sum_{i=1}^m {m \choose i} \frac{m!}{i!} (X - a)^i Q^{(i)}$$

D'où $P^{(m)}(a)=m!$ Q(a) donc $Q(a)=\frac{P^{(m)}(a)}{m!}$. Donc $Q(a)\neq 0$. Par l'absurde, supposons que $(X-a)^{m+1}|P$. Alors $\exists R\in\mathbb{K}[X]:P=(X-a)^{m+1}R$. Donc $(X-a)^{m+1}R=(X-a)^mQ$ d'où Q=(X-a)R. Nous obtenons Q(a)=0 ce qui est une contradiction avec Q(a) = 0.

Donc a est une racine de P de multiplicité strictement inférieur à m+1 et, d'après le point précédent, supérieur à m. Donc a est une racine de P de multiplicité exactement m.

Identification de $\mathbb{K}[X]$ à $\mathbb{K}[x]$, par l'injectivité de Φ 20.5

 $D\acute{e}monstration$. Montrons que l'application Φ définie comme suit est injective :

$$\Phi: \left| \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathcal{F}(\mathbb{K},\mathbb{K}) \\ P & \longmapsto & \widetilde{P} \end{array} \right..$$

Soit donc $P \in \ker \Phi$, on a:

$$\Phi(P) = \widetilde{0} \implies \widetilde{P} = \widetilde{0} \text{ sur } \mathbb{K} \implies P = 0_{\mathbb{K}[X]},$$

donc $\ker \Phi \subset \{0_{\mathbb{K}[X]}\}.$

Réciproquement, on calcule l'image du polynôme nul par Φ :

$$\Phi(0_{\mathbb{K}[X]}) = \widetilde{0},$$

donc $0_{\mathbb{K}[X]} \in \ker \Phi$, ainsi on a l'égalité ensembliste et donc cela suffit.

Pour $P = (X - x_1)(X - x_2)(X - x_3)$, exprimer $x_1^3 + x_2^3 + x_3^3$ en fonction des fonctions symétriques élémentaires

Les fonctions symétriques élémentaires $(\sigma_k)_{k \in [0;n]}$ pour une famille $(x_k)_{k \in [1;n]}$ sont définies par

$$\sigma_k = \sum_{1 \leqslant i_1 < \dots < i_k \leqslant n} \prod_{j=1}^k x_{i_j} \tag{35}$$

Démonstration. Sous forme développée, $P = X^3 - (x1 + x_2 + x_3)X^2 + (x_1x_2 + x_1x_3 + x_2x_3)X$ $x_1x_2x_3 = X^3 - \sigma_1X^2 + \sigma_2X - \sigma_3$. Comme x_1, x_2, x_3 sont racines de P, nous avons les trois égalité suivantes:

$$0 = P(x_1) = x_1^3 - \sigma_1 x_1^2 + \sigma_2 x_1 - \sigma_3$$

$$0 = P(x_1) = x_2^3 - \sigma_1 x_2^2 + \sigma_2 x_2 - \sigma_3$$

$$0 = P(x_1) = x_3^3 - \sigma_1 x_3^2 + \sigma_2 x_3 - \sigma_3$$

En sommant ces trois équation,

$$0 = x_1^3 + x_2^3 + x_3^3 - \sigma_1(x_1^2 + x_2^2 + x_3^2) + \sigma_2(x_1 + x_2 + x_3) - 3\sigma_3$$

Cherchons la somme des carrés.

$$(x_1 + x_2 + x_3)^2 = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$

$$\implies x_1^2 + x_2^2 + x_3^2 + x_1x_2 = \sigma_1^2 - 2\sigma_2$$

Ainsi

$$x_1^3 + x_2^3 + x_3^3 = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3$$

20.7 Expression de S_2 , S_{-1} et S_{-2} à l'aide des fonctions élémentaires symétriques.

Les sommes de Newton $(S_k)_{k \in \mathbb{Z}^*}$ pour une famille $(x_k)_{k \in \mathbb{N}^*}$ sont définies par (sous réserve d'existence pour k < 0):

$$S_k = \sum_{i=1}^n x_i^k \tag{36}$$

Démonstration.

$$\sigma_{1}^{2} = \left(\sum_{i=1}^{n} x_{i}\right)^{2}$$

$$= \sum_{i=1}^{n} x_{i}^{2} + 2 \sum_{1 \leq i < j \leq n} x_{i} x_{j}$$

$$\implies S_{2} = \sigma_{1}^{2} - 2\sigma_{2}$$

$$S_{-1} = \sum_{i=1}^{n} \frac{1}{x_{i}} = \frac{\sum_{i=1}^{n} \prod_{j=1}^{n} x_{j}}{\prod_{j \neq i}^{n} x_{i}} = \frac{\sigma_{n-1}}{\sigma_{n}}$$

$$S_{-2} = \sum_{i=1}^{n} \frac{1}{x_{i}^{2}}$$

$$= \left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)^{2} - 2 \sum_{1 \leq i < j \leq n} \frac{1}{x_{i}} \frac{1}{x_{j}}$$

$$= \frac{\sigma_{n-1}^{2}}{\sigma_{n}^{2}} - 2 \frac{\sum_{1 \leq i < j \leq n} \prod_{\substack{k=1 \\ k \notin \{i,j\}}} \frac{1}{x_{j}}}{\sigma_{n}}$$

$$= \frac{\sigma_{n-1}^{2} - 2\sigma_{n-2}\sigma_{n}}{\sigma_{n}^{2}}$$

21.1 Caractérisation des polynômes irréductibles de degré 1, 2 et 3 dans $\mathbb{K}[X]$.

Tous les polynômes de degré 1 sont irréductibles, les polynômes irréductibles de degré 2 ou 3 sont les polynômes sans racine.s dans le corps de base.

 $D\acute{e}monstration$. Un polynôme de degré 1 ne peut s'écrire comme produit de 2 polynômes de degré > 1 donc il est irréductible.

Soit $P \in \mathbb{K}[X]$ un polynôme irréductible de degré 2 ou 3.

Par définition, P n'a pas de racine.s dans \mathbb{K} , donc la première inclusion.

Soit $P \in \mathbb{K}[X]$ tel que deg P = 2.

Montrons que si P n'a pas de racine dans \mathbb{K} alors P est irréductible. Montrons la contraposée. Supposons P non-irréductible.

$$\exists A, B \in \mathbb{K}[X] : P = AB \text{ et deg } A, \deg B \ge 1,$$

On a alors, $P = AB \implies 2 = \deg A + \deg B \implies \deg A$, $\deg B = 1$ donc:

$$\exists \alpha, \gamma \in \mathbb{K}^* \times \mathbb{K} : A = \alpha X + \gamma,$$

ainsi, $P = (\alpha X + \gamma)B = \alpha \left(X + \frac{\gamma}{\alpha}\right)B$, donc P admet $-\frac{\gamma}{\alpha} \in \mathbb{K}$ comme racine, ce qui montre la contraposée.

Soit $P \in \mathbb{K}[X]$ tel que deg P = 3.

Montrons, de même, la contraposée. Supposons P non-irréductible. De même, on a :

$$\exists\ A,\ B\in\mathbb{K}[X]\ :\ P=AB\ \mathrm{et}\ \deg A,\ \deg B\geq 1,$$

Puis encore, $P = AB \implies 3 = \deg A + \deg B \implies \deg A$, $\deg B \in \{2,1\}$ (l'un n'étant pas l'autre). Donc l'un des deux est de degré 1 donc P admet une racine dans \mathbb{K} , donc encore une fois cela montre la contraposée, ce qui démontre l'inclusion réciproque.

21.2 Polynômes irréductibles de $\mathbb{C}[X]$ et de $\mathbb{R}[X]$.

Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1 et ceux de $\mathbb{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 de discriminant strictement négatif.

Démonstration. Le premier point est immédiat, les polynômes irréductibles d'un corps contiennent les polynômes de degré 1 et par le théorème de D'Alembert-Gauss, tout polynôme de $\mathbb{C}[X]$ (deg ≥ 2) est scindé dans $\mathbb{C}[X]$, donc non-irréductible.

Pour le second point, le cas du degré 1 est réglé. Soit P un polynôme irréductible de $\mathbb{R}[X]$.

Supposons que P soit de degré supérieur ou égal à 3. Si son degré est impair, le TVI conclut quant à l'existence d'une racine, donc non-irréductible. Si son degré est pair, par D'Alembert-Gauss, on obtient deg P couples de racines possiblement égaux.

Or, $P \in \mathbb{R}[X]$ donc $\forall z \in \mathbb{C}$, $P(z) = 0 \implies P(\overline{z}) = 0$ donc les racines se rassemblent 2 à 2 pour former un polynôme scindé dans \mathbb{R} , donc non-irréductible. Ainsi, deg P = 2, immédiatement, si le discriminant de P est positif ou nul, P admet une ou deux racines dans \mathbb{R} , donc non irréductible. Enfin, son discriminant est alors négatif, de cette manière P n'admet pas de racine dans \mathbb{R} et est donc irréductible. Ce qui achève la preuve.

21.3 $X^3 - 2$ est irréductible dans $\mathbb{Q}[X]$.

Il s'agit donc de montrer que racine cubique de 2 n'est pas un rationnel.

Démonstration. Supposons, par l'absurde, qu'il existe $r \in \mathbb{Q}$ tel que $r^3-2=0$. Prenons $p,q \in \mathbb{Z} \times \mathbb{N}^*$ le représentant irréductible de r dans \mathbb{Q} . On a alors, $p^3=2q^3$ donc $2\mid p^3$ or $2\in \mathcal{P}$ donc $2\mid p$ ainsi, il existe $k\in \mathbb{Z}$ tel que p=2k. Par conséquent, $2(2k^3)=q^3$ donc $2\mid q^3$ or $2\in \mathcal{P}$ donc $2\mid q$ donc ceci contredit p et q premiers entre eux, par définition d'un représentant irréductible. Ainsi, $P=X^3-2$ n'admet pas de racine dans \mathbb{Q} , c'est donc un polynôme irréductible. □

21.4 PGCD d'un polynôme de $\mathbb{C}[X]$ et son polynôme dérivé

Pour $P = \prod_{k=1}^{p} (X - z_k)^{m_k} \in \mathbb{C}[X] \setminus \{0_{\mathbb{C}[X]}\}$ avec $m_k \in \mathbb{N}^*$ pour tout $k \in [1, p]$, on a

$$P \wedge P' = \prod_{k=1}^{p} (X - z_k)^{m_k - 1} \tag{37}$$

C'est une conséquence de la définition du pgcd de deux polynômes $P \wedge Q = \prod_{i \in I} P_i^{\min\{m_i, p_i\}}$, où les P_i sont les facteurs irréductibles de P et Q dans leur décomposition.

Démonstration. Soit P un tel polynôme et p un entier naturel non nul. Naturellement, P' hérite de P, deg P-p racines, lesquelles sont les z_k pour $k \in [1, p]$, de multiplicité $m_k - 1$. Ainsi,

$$\exists B \in \mathbb{C}[X] : \left[P' = \left(\prod_{k=1}^p (X - z_k)^{m_k - 1} \right) B \right] \land \left[\deg B = p \right],$$

de cette manière on peut écrire :

$$P' = \left(\left(\prod_{k=1}^{p} (X - z_k)^{m_k - 1} \right) B \right) P^0 \text{ et } P = \left(\prod_{k=1}^{p} (X - z_k)^{m_k} \right) (P')^0,$$

de façon à faire apparaître dans les deux décompositions les mêmes facteurs, possiblement avec une puissance 0, histoire de coller à la définition de manière explicite. Ceci fait, il ne reste plus qu'à appliquer la définition du pgcd et de remarquer que seuls les $(X - z_k)^{m_k - 1}$ subsistent. Notons \Im l'ensemble des facteurs de leur décomposition, on a alors :

$$P \wedge P' = \prod_{D \in \mathfrak{I}} D^{\min\{\nu_D(P),\nu_D(P')\}} = \prod_{k=1}^p (X - z_k)^{m_k - 1},$$

où $\nu_D(\cdot)$ est la valuation D-adique au sens des polynômes irréductibles. Ce qui conclut.

21.5 Justifier la bonne définition de la dérivée d'une fraction rationnelle.

Il s'agit là de vérifier que la définition que l'on souhaiterait le plus, c'est-à-dire la même que pour la dérivée d'une fraction de fonctions, s'applique effectivement aux fractions rationnelles, c'est-à-dire que cette définition ne dépend pas du représentant choisi.

Démonstration. Montrons que pour $A,\ B\in\mathbb{K}[X]\times\mathbb{K}[X]\backslash\{0_{\mathbb{K}[X]}\},$ on a :

$$\left(\frac{A}{B}\right)' = \frac{A'B - B'A}{B^2}.$$

Soient A et B de tels polynômes et C, $D \in \mathbb{K}[X] \times \mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\}$ tels que AD = BC, en dérivant on obtient A'D + D'A = B'C + C'B. Calculons :

$$\begin{array}{rcl} (A'B-B'A)D^2 & = & D(A'BD-(AD)B') \\ & = & D(A'BD-BCB') \\ & = & BD(A'D-CB') \\ & = & BD(C'B-D'A) \\ & = & B(C'BD-(AD)D') \\ & = & B^2(C'BD-BCD') \\ & = & B^2(C'D-D'C), \end{array}$$

ce qui prouve que le résultat ne dépend pas du représentant, par définition de $\mathbb{K}(X)$ comme structure quotient.

21.6 Théorème de Gauss-Lucas et interprétation graphique.

Les racines du polynôme dérivée sont dans l'enveloppe convexe des racines du polynôme. Soit $P \in \mathbb{C}[X]$ de degré au moins 2 et notons z_1, \ldots, z_n ses racines répétées avec multiplicité. Soit u une racine de P'. Alors :

$$\exists (c_1, \dots, c_n) \in \mathbb{R}_+^* : \sum_{k=1}^n c_k z_k = u \text{ et } \sum_{k=1}^n c_k = 1.$$
 (38)

Démonstration. Pour ce qui est de l'interprétation graphique, elle n'est pas prévue à l'heure qu'il est dans ce pdf, pour la faire soi-même dessiner des points et les "clôturer" dans un polygone convexe, ou même faire ceci avec un cas concret.

 \rightarrow Si u est une racine de P alors noter k_0 son indice et utiliser le symbole de Kronecker. $\sum_{k=1}^{n} \delta_{k,k_0} z_k = u$ et $\sum_{k=1}^{n} \delta_{k,k_0} = 1$.

 \rightarrow Sinon, u n'appartient pas aux racines de P, donc u n'est pas pôle de $\frac{P'}{P}$ ce qui permet de prendre l'image par le morphisme d'évaluation en u de cette même fraction rationnelle :

$$0_{\mathbb{K}} = \frac{P'(u)}{P(u)} = \sum_{k=1}^{n} \frac{1}{u - z_k} = \sum_{k=1}^{n} \frac{\overline{u} - \overline{z_k}}{|u - z_k|^2} = \sum_{k=1}^{n} \frac{\overline{u}}{|u - z_k|^2} - \sum_{k=1}^{n} \frac{\overline{z_k}}{|u - z_k|^2}.$$

Donc en passant la seconde somme à gauche et en prenant le conjugué :

$$\sum_{k=1}^{n} \frac{u}{|u-z_{k}|^{2}} = \sum_{k=1}^{n} \frac{z_{k}}{|u-z_{k}|^{2}} \implies u = \frac{\sum_{k=1}^{n} \frac{z_{k}}{|u-z_{k}|^{2}}}{\sum_{k=1}^{n} \frac{1}{|u-z_{k}|^{2}}} = \sum_{k=1}^{n} \underbrace{\frac{1}{|u-z_{k}|^{2}}}_{= c_{k}} \underbrace{z_{k}}_{= c_{k}} \underbrace{z_{k}}_{= c_{k}}$$

ce qui démontre la première partie du résultat, il est immédiat de vérifier que $\sum_{k=1}^{n} c_k = 1$, vérification laissée aux lecteurs. Ce qui achève la preuve.

 $P = (X+4)^3(X+1-3i)(X-2-2i)^2(X-3-i)(X-1+i)(X+1+2i)^2$ Les racines de P' sont dans le polygone bleu.

21.7 Deux expressions du coefficient associé à un pôle simple dans une décomposition en éléments simples.

 $D\acute{e}monstration$. Soient $(P,Q) \in \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\})$ tels que la fraction rationnelle $\frac{P}{Q}$ soit irréductible et en prenant $\deg P < \deg Q$. En appliquant le théorème de décomposition en éléments simples, on obtient un expression de la forme :

$$\exists \ R \in \mathbb{K}(X) \ : \ \frac{P}{Q} = \sum_{k=1}^{n} \frac{a_k}{X - z_k} + R,$$

П

où les z_k pour $k \in [1, n]$ sont racines de Q. Ainsi, en prenant $k_0 \in [1, n]$ tel que z_{k_0} soit racine simple,

$$\frac{P(X - z_{k_0})}{Q} = a_{k_0} + \sum_{k=0 \text{ et } k \neq k_0} \frac{a_k(X - z_{k_0})}{X - z_{k_0}} + R(X - z_{k_0}),$$

une première expression se trouvera en notant $\widetilde{Q} = \prod_{\substack{k=1\\k\neq k_0}}^n (X-z_k)^{\nu_{(X-z_k)}(Q)}$, on a alors :

$$\frac{P(z_{k_0})}{\widetilde{Q}(z_{k_0})} = a_{k_0}.$$

Une autre expression est possible en explicitant \widetilde{Q} . Pour ce faire, remarquons plutôt :

$$Q' = \sum_{k=1}^{n} \nu_{(X-z_k)}(Q)(X-z_k)^{\nu_{(X-z_k)}(Q)-1} \prod_{\substack{i=1\\i\neq k}}^{n} (X-z_i)^{\nu_{(X-z_i)}(Q)},$$

donc en prenant l'image par le morphisme d'évaluation en z_{k_0} on obtient :

$$Q'(z_{k_0}) = \prod_{\substack{i=1\\i\neq k_0}}^n (z_{k_0} - z_i)^{\nu_{(X-z_i)}(Q)},$$

il s'agit exactement de $\widetilde{Q}(z_{k_0})$. Ainsi,

$$\frac{P(z_{k_0})}{Q'(z_{k_0})} = a_{k_0},\tag{39}$$

ce qui suffit. \Box

21.8 Expressions des deux coefficients associés à un pôle double dans une décomposition en éléments simples.

 $D\acute{e}monstration$. Soient $(P,Q) \in \mathbb{K}[X] \times (\mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\})$ tels que la fraction rationnelle $\frac{P}{Q}$ soit irréductible et en prenant $\deg P < \deg Q$. En appliquant le théorème de décomposition en éléments simples on obtient un expression de la forme suivante en considérant z_{k_0} , une racine double de Q:

$$\exists R \in \mathbb{K}(X) : \frac{P}{Q} = \frac{a_1}{X - z_{k_0}} + \frac{a_2}{(X - z_{k_0})^2} + R \qquad (\star)$$

puis de même,

$$\frac{P(X - z_{k_0})^2}{Q} = a_2 + \left(\frac{a_1}{X - z_{k_0}} + R\right) (X - z_{k_0})^2,$$

donc en notant $\widetilde{Q} = \prod_{\substack{k=1\\k\neq k_0}}^n (X-z_k)^{\nu_{(X-z_k)}(Q)}$, on a :

$$\frac{P(z_{k_0})}{\widetilde{Q}(z_{k_0})} = a_2,$$

c'est une première expression. Pour la suivante, encore une fois, explicitons $\widetilde{Q}.$ Remarquons que :

$$\exists A \in \mathbb{K}[X] : \left[Q'' = 2 \prod_{\substack{k=1 \ k \neq k_0}}^n (X - z_k)^{\nu_{(X - z_k)}(Q)} + A \right] \land [A(z_{k_0}) = 0],$$

donc, en remarquant que :

$$2\widetilde{Q}(z_{k_0}) = Q''(z_{k_0}),$$

on a finalement:

$$\frac{2P(z_{k_0})}{Q''(z_{k_0})} = a_2.$$

Pour récupérer a_1 , on multiplie (\star) par $(X-z_{k_0})^2$ puis on dérive :

$$\left(\frac{P(X-z_{k_0})^2}{Q}\right)' = a_1 + R'(X-z_{k_0})^2 + 2R(X-z_{k_0}),$$

soit,

$$\frac{((P'(X-z_{k_0})^2+2P(X-z_{k_0}))Q-Q'P(X-z_{k_0})^2}{Q^2}=a_1+R'(X-z_{k_0})^2+2R(X-z_{k_0})$$

Pour cette semaine, $\mathbb K$ désigne un corps commutatif, E et F des $\mathbb K$ -espaces vectoriels, E' et F'des sous-espaces vectoriels respectivement de E et de F, I un ensemble quelconque non vide.

22.1Caractérisation d'une famille liée

Une famille est liée si et seulement si l'un de ses vecteurs est une combinaison linéaires d'autres vecteurs de la famille.

$$(x_i)_{i \in I}$$
 est liée $\iff \exists i_0 \in I : \exists (\lambda_i)_{i \in I \setminus \{i_0\}} \in \mathbb{K}^{(I \setminus \{i_0\})} : x_{i_0} = \sum_{\substack{i \in I \\ i \neq i_0}} \lambda_i . x_i$ (40)

 $D\acute{e}monstration$. Supposons que $(x_i)_{i\in I}$ est liée.

Par définition,
$$\exists (\mu_i)\mathbb{K}^{(I)}: \left\{ \begin{array}{l} \sum_{i\in I} \mu_i x_i = 0_E \\ (\mu_i)_{i\in I} \neq (0_{\mathbb{K}})_{i\in I} \end{array} \right.$$

Donc $\exists i_0 \in I: \mu_{i_0} \neq 0_{\mathbb{K}}$. Fixons un tel i_0 .
 $\mu_{i_0} x_{i_0} + \sum_{i\in I\setminus\{i_0\}} \mu_i x_i = 0_E$

$$\mu_{i_0} x_{i_0} + \sum_{i \in I \setminus \{i_0\}} \mu_i x_i = 0_E$$

Or
$$\mu_{i_0} \neq 0$$
, donc $x_{i_0} = \sum_{i \in I \setminus \{i_0\}} (\mu_{i_0}^{-1} \times (-\mu_i)) \cdot x_i$.

En posant
$$\lambda_i = \mu_{i_0}^{-1} \times (-\mu_i)$$
, on obtient $x_{i_0} = \sum_{i \in I \setminus \{i_0\}} \lambda_i \cdot x_i$.

Supposons maintenant que
$$\exists i_0 \in I : \exists (\lambda_i)_{i \in I \setminus \{i_0\}} \in \mathbb{K}^{(I \setminus \{i_0\})} : x_{i_0} = \sum_{\substack{i \in I \\ i \neq i_0}} \lambda_i \cdot x_i$$
.

Alors
$$-x_{i_0} + \sum_{\substack{i \in I \\ i \neq i_0}} \lambda_i \cdot x_i = 0_E$$
. Posons $\mu_{i_0} = -1_{\mathbb{K}}$ et $\forall i \in I \setminus \{i_0\}, \mu_i = \lambda_i$. Ainsi, $(\mu_i)_{i \in I} \in \mathbb{K}^{(I)}$ et $\sum_{\substack{i \in I \\ i \neq i_0}} \mu_i \cdot x_i = 0_{\mathbb{K}}$. Or $\mu_{i_0} \neq 0_{\mathbb{K}}$ donc $(\mu_i)_{i \in I} \neq (0_{\mathbb{K}})_{i \in I}$.

$$\sum_{i \in I} \mu_i . x_i = 0_{\mathbb{K}}. \text{ Or } \mu_{i_0} \neq 0_{\mathbb{K}} \text{ donc } (\mu_i)_{i \in I} \neq (0_{\mathbb{K}})_{i \in I}.$$

$$\text{Donc } (\mu_i)_{i \in I} \text{ est liée.}$$

Caractérisations d'une base 22.2

Soit \mathcal{F} une famille de vecteurs de E. Les propositions suivantes sont équivalentes :

- (i) \mathcal{F} est une base.
- (ii) Tout vecteur de E se décompose de manière unique dans \mathcal{F} .
- (iii) \mathcal{F} est génératrice minimale (au sens de l'inclusion)
- (iv) \mathcal{F} est libre maximale (au sens de l'inclusion)

Démonstration. Notons $(e_i)_{i\in I}$ la famille \mathcal{F} .

 $(i) \implies (ii)$ Supposons que \mathcal{F} est une base de E.

Soit $x \in E$ fixé quelconque. Montrons que x s'écrit de manière unique comme une combinaison linéaire des vecteurs de \mathcal{F} .

 \mathcal{F} est une base donc elle est une famille génératrice et libre de E. La propriété génératrice donne, par définition, l'existence d'une telle écriture tandis que la propriété libre donne l'unicité d'une telle écriture.

 $(ii) \implies (iii)$ Supposons que tout vecteur de E s'écrit de manière unique comme une combinaison linéaire de vecteurs de \mathcal{F} .

L'existence d'un telle décomposition permet d'affirmer que \mathcal{F} est génératrice.

Supposons que \mathcal{F} ne soit pas génératrice minimale c'est-à-dire qu'il existe une famille \mathcal{F}' de vecteurs de E telle que $\mathcal{F}' \subsetneq \mathcal{F}$ et \mathcal{F}' engendre E.

Alors $\exists i_0 \in I : e_{i_0} \notin \mathcal{F}'$. Comme \mathcal{F}' est génératrice, $\exists (\lambda_i)_{i \in I \setminus \{i_0\}} \in \mathbb{K}^{(I \setminus \{i_0\})} : e_{i_0} = \sum_{\substack{i \in I \\ i \neq i_0}} \lambda_i \cdot e_i$.

Donc

$$e_{i_0} = 0_{\mathbb{K}} \cdot e_{i_0} + \sum_{\substack{i \in I \\ i \neq i_0}} \lambda_i \cdot e_i$$
$$e_{i_0} = 1_{\mathbb{K}} \cdot e_{i_0} + \sum_{\substack{i \in I \\ i \neq i_0}} 0_{\mathbb{K}} \cdot e_i$$

 e_{i_0} peut donc s'écrire de deux manières différentes au moins comme combinaison linéaire de vecteurs de \mathcal{F} ce qui contredit le caractère libre de \mathcal{F} .

Par conséquent, \mathcal{F} est génératrice et minimale parmi les familles génératrices.

 $(iii) \Longrightarrow (iv)$ Supposons que \mathcal{F} est une famille génératrice minimale. Par l'absurde, supposons que \mathcal{F} est liée. Alors il existe un $i_0 \in I$ tel que e_{i_0} s'écrit comme une combinaison linéaire d'autres vecteurs de \mathcal{F} donc $(e_i)_{i \in I \setminus \{i_0\}}$ est génératrice de E. Or cette famille est strictement incluse dans \mathcal{F} ce qui contredit la propriété de génératrice minimale.

Donc \mathcal{F} est libre.

Par l'absurde, supposons que \mathcal{F} n'est pas libre maximale c'est-à-dire qu'il existe une famille \mathcal{F}' de vecteurs de E telle que $\mathcal{F} \subseteq \mathcal{F}'$ et \mathcal{F}' est libre.

Alors $\exists x \in \mathcal{F}' : x \notin \mathcal{F}$. Or \mathcal{F} est génératrice d'où :

$$\exists (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)} : x = \sum_{i \in I} \lambda_i \cdot x_i = 0_{\mathbb{K}} \cdot x + \sum_{i \in I} \lambda_i \cdot x_i + \sum_{\substack{y \in \mathcal{F}' \\ y \notin \mathcal{F} \\ y \neq x}} 0_{\mathbb{K}} \cdot y$$

Puisque $x \in \mathcal{F}'$,

$$\exists (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)} : x = 1_{\mathbb{K}}. x + \sum_{i \in I} 0_{\mathbb{K}}. x_i + \sum_{\substack{y \in \mathcal{F}' \\ y \notin \mathcal{F} \\ y \neq x}} 0_{\mathbb{K}}. y$$

Donc x s'écrit de deux manières différentes au moins comme combinaison linéaire de vecteurs \mathcal{F}' , ce qui contredit la liberté de \mathcal{F}' .

Par conséquent, \mathcal{F} est libre maximale.

 $(iv) \implies (i)$ Supposons que \mathcal{F} est une famille libre maximale.

Par hypothèse même, \mathcal{F} est libre. Par l'absurde, supposons que \mathcal{F} n'est pas génératrice. Alors il existe $x \in E$ tel que $x \notin \text{Vect } \mathcal{F}$. Donc $\mathcal{F} \wedge \{x\}$ est libre et contient strictement \mathcal{F} , ce qui contredit la propriété de liberté maximale.

Par conséquent, \mathcal{F} est aussi génératrice, donc une base.

$$\begin{array}{ccc} (i) & \Longrightarrow & (ii) \\ \uparrow & & \downarrow \\ (iv) & \Longleftarrow & (iii) \end{array}$$

22.3 Le noyau et l'image d'une application linéaire sont des sous-espaces vectoriels

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$.

$$\ker f = \{x \in E \mid f(x) = 0_F\} = f^{-1}(\{0_F\})$$

$$\operatorname{Im} f = \{y \in F \mid \exists x \in E : f(x) = y\}$$
(41)

Nous démontrerons le résultat plus général suivant :

- (i) f(E') est un sous-espace vectoriel de F.
- (ii) $f^{-1}(F')$ est un sous-espace vectoriel de E.

Démonstration. (i) $0_E \in E'$ et $f(0_E) = 0_F$ donc $0_F \in f(E')$ d'où $f(E') \neq \emptyset$ Soit $(\alpha, \beta, y, y') \in \mathbb{K}^2 \times f(E')^2$ fixés quelconques. Par définition, $\exists (x, x') \in E'^2 : f(x) = y \land f(x') = y$.

$$\begin{aligned} \alpha y + \beta y' &= \alpha f(x) + \beta f(x') \\ &= f(\alpha x + \beta x') \quad \text{car } f \in \mathcal{L}_{\mathbb{K}}(E, F) \\ &\in f(E') \quad \text{car } \alpha x + \beta x' \in E' \text{ puisque } E' \text{ est un sous-espace vectoriel} \end{aligned}$$

Donc f(E') est un sous-espace vectoriel .

(ii) $0_F \in F'$ et $f(0_E) = 0_F$ donc $0_E \in f^{-1}(F')$ d'où $f(F') \neq \emptyset$ Soit $(\alpha, \beta, x, x') \in \mathbb{K}^2 \times f^{-1}(F')^2$ fixés quelconques. Par définition, $\exists (y, y') \in F'^2 : f(x) = y \land f(x') = y$. Or F' est sous-espace vectoriel donc $\alpha y + \beta y' \in F'$. $f \in \mathcal{L}_{\mathbb{K}}(E, F)$ d'où $f(\alpha x + \beta x') = \alpha y + \beta y'$. Donc $\alpha x + \beta x' \in f^{-1}(F')$.

Ainsi, $f^{-1}(F')$ est un sous-espace vectoriel .

En appliquant pour E'=E et $F'=\{0_F\}$, nous obtenons que $\ker f$ et $\mathrm{Im} f$ sont des sous-espaces vectoriels .

22.4 L'image par une application linéaire d'une partie génératrice engendre l'image de l'application linéaire

Soient (E, F) deux K-espaces vectoriels $f \in \mathcal{L}_{\mathbb{K}}(E, F)$, $\mathcal{F} = (x_i)_{i \in I}$ une base de E.

$$\operatorname{Vect} \underbrace{f(\mathcal{F})}_{\{f(x_i)|i \in I\}} = f(\operatorname{Vect} \mathcal{F})$$
(42)

Démonstration. Soit $y \in \text{Vect} f(\mathcal{F})$ Alors $\exists (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)}$ tel que $y = \sum_{i \in I} \lambda_i f(x_i)$ Mais

$$y = \sum_{i \in I} \lambda_i f(x_i)$$
$$= f\left(\sum_{i \in I} \lambda_i x_i\right) \implies y \in f(\text{Vect}\mathcal{F})$$

Réciproquement soit $y \in f(\text{Vect}\mathcal{F})$ fq.

$$\exists x \in \text{Vect}\mathcal{F} : f(x) = y \implies \exists (x_i)_{i \in I} : x = \sum_{i \in I} \lambda_i x_i$$

Donc:

$$y = f(x) = f\left(\sum_{i \in I} \lambda_i x_i\right)$$
$$= \sum_{i \in I} \lambda_i f(x_i) \in \text{Vect} f(\mathcal{F})$$

22.5 Caractérisation inj/surj/bij d'une application linéaire par l'image d'une base de l'espace de départ.

Nous donnerons les caractérisations au fur et à mesure de la démonstration.

Démonstration. Soient donc pour la suite, $f \in \mathcal{L}_{\mathbb{K}}(E,F)$, $\mathcal{B} = (e_i)_{i \in I}$ une base de E, $\mathcal{B}' = (e'_i)_{i \in I}$ une base de F, $\mathcal{F} = (x_i)_{i \in I}$ une famille libre de E et $\mathcal{G} = (y_i)_{i \in I}$ une famille génératrice de E, ces objets servent ici de notation et seront utilisés indépendamment lors de la preuve.

Montrons que l'image d'une base \mathcal{B} par une application injective est une famille libre \mathcal{F} . Supposons f injective, donc pour $(\lambda_i)_{i\in I}\in\mathbb{K}^{(I)}$,

$$0_F = \sum_{i \in I} \lambda_i f(e_i) = f\left(\sum_{i \in I} \lambda_i e_i\right) \stackrel{f \text{ inj}}{\Longrightarrow} \sum_{i \in I} \lambda_i e_i = 0_E \stackrel{\mathcal{B} \text{ base donc libre}}{\Longrightarrow} (\lambda_i)_{i \in I} = \widetilde{0_{\mathbb{K}}},$$

donc $f(\mathcal{B}) = \mathcal{F}$ libre.

Supposons qu'il existe $\mathcal B$ telle que $f(\mathcal B)$ soit libre, montrons qu'alors f est injective. Soit $x\in\ker f$:

$$\exists \ (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)} \ : \ 0_F = f(x) = f\left(\sum_{i \in I} \lambda_i e_i\right) = \sum_{i \in I} \lambda_i f(e_i) \overset{f(\mathcal{B}) \text{ libre}}{\Longrightarrow} \ (\lambda_i)_{i \in I} = \widetilde{0_{\mathbb{K}}},$$

donc $x = 0_E$ donc $\ker f = \{0_E\}$ et f injective.

Montrons que l'image d'une base $\mathcal B$ par une application surjective est une famille génératrice $\mathcal G$.

Supposons f surjective. Ainsi, Im f = F, or \mathcal{B} est une base donc est génératrice donc :

Vect
$$f(\mathcal{B}) = f(\text{Vect } \mathcal{B}) = f(E) = \text{Im} f = F$$
,

donc $f(\mathcal{B}) = \mathcal{G}$ est génératrice.

Supposons qu'il existe \mathcal{B} telle que $f(\mathcal{B})$ soit génératrice, montrons que f est surjective. On a ainsi,

$$F = \text{Vect } f(\mathcal{B}) = f(\text{Vect } \mathcal{B}) = f(E) = \text{Im} f,$$

donc f surjective.

Montrons que l'image d'une base \mathcal{B} par un isomorphisme est une base \mathcal{B}' .

Supposons que f soit un isomorphisme. f est injective et \mathcal{B} est une base donc $f(\mathcal{B})$ est libre. f est surjective et \mathcal{B} est une base donc $f(\mathcal{B})$ est génératrice. Ainsi, $f(\mathcal{B}) = \mathcal{B}'$ est une base.

Réciproquement, supposons qu'il existe \mathcal{B} telle que $f(\mathcal{B}) = \mathcal{B}'$ soit une base, montrons que f est un isomorphisme.

 \mathcal{B}' est une base donc est libre donc f est injective. \mathcal{B}' est une base donc est génératrice donc f est surjective. Ainsi, f est un isomorphisme.

22.6 Caractérisation d'une application linéaire par l'image d'une base

Il existe une unique application linéaire de E dans F qui envoie une base donnée de E sur une famille de F imposée.

Soient $(e_i)_{i\in I}$ une base de E et $(y_i)_{i\in I}$ une famille de F.

$$\exists ! f \in \mathcal{L}_{\mathbb{K}}(E, F) : \forall i \in I, f(e_i) = y_i \tag{43}$$

Nous pouvons expliciter une telle application :

$$f \left| \begin{array}{ccc} E & \to & F \\ \sum_{i \in I} \lambda_i \cdot e_i & \mapsto & \sum_{i \in I} \lambda_i \cdot y_i \end{array} \right. \tag{44}$$

Démonstration.

Analyse Supposons qu'il existe $f \in \mathcal{L}_{\mathbb{K}}(E, F)$ tel que $\forall i \in I, f(e_i) = y_i$.

Tout vecteur de E peut se décomposer de manière unique dans la base $(e_i)_{i \in I}$, ce qui détermine son image. Ainsi, f est unique.

Synthèse Posons une telle application f.

- $(e_i)_{i\in I}$ est une base donc $(\lambda_i)_{i\in I}$ est presque nulle et unique donc $\sum_{i\in I} \lambda_i$. y_i existe et unique. Ainsi, f est bien définie.
- Soient $(\alpha, \beta, x, x') \in \mathbb{K}^2 \times E^2$ fixés quelconques. Notons $(\lambda_i)_{i \in I}$ et $(\lambda'_i)_{i \in I}$ les coordonnées de x et x' dans $(e_i)_{i \in I}$.

$$f(\alpha x + \beta x') = f\left(\alpha \sum_{i \in I} \lambda_i \cdot e_i + \beta \sum_{i \in I} \lambda'_i \cdot e_i\right)$$

$$= f\left(\sum_{i \in I} (\alpha \lambda_i + \beta \lambda'_i) \cdot e_i\right)$$

$$= \sum_{i \in I} (\alpha \lambda_i + \beta \lambda'_i) \cdot y_i \quad \text{par d\'efiniton de } f$$

$$= \alpha \sum_{i \in I} \lambda_i y_i + \beta \sum_{i \in I} \lambda'_i y_i$$

$$= \alpha f(x) + \beta f(x')$$

Donc f est linéaire.

— Soit $j \in I$ fixé quelconque.

$$f(e_j) = f\left(\sum_{i \in I} \delta_{i,j} \cdot e_i\right)$$
$$= \sum_{i \in I} \delta_{i,j} \cdot y_i$$
$$= y_j$$

Pour cette semaine, \mathbb{K} désigne un corps commutatif, E et F des \mathbb{K} -espaces vectoriels, E' et F' des sous-espaces vectoriels respectivement de E et de F, I un ensemble quelconque non vide.

23.1 L'ensemble des automorphisme d'un espace vectoriel muni de la loi de composition forme un groupe

Démonstration. Montrons que $(\mathcal{GL}_{\mathbb{K}}(E), \circ)$ est un sous-groupe de $(\mathcal{S}(E), \circ)$.

- $\mathcal{GL}_{\mathbb{K}}(E) \subset \mathcal{S}(E)$ et $(\mathcal{S}(E), \circ)$ est bien un groupe.
- $\mathcal{GL}_{\mathbb{K}}(E) \neq \emptyset$ puisque $Id_E \in \mathcal{GL}_{\mathbb{K}}$.
- Soit $(f,g) \in \mathcal{GL}(E)$. Montrons que $f \circ g^{-1} \in \mathcal{GL}(E)$. Soit $(\alpha, \beta, x, y) \in \mathbb{K}^2 \times E^2$ fixés quelconques.

$$(f \circ g^{-1}) (\alpha x + \beta y) = f (g^{-1} (\alpha x + \beta y))$$

$$= f (g^{-1} (\alpha g^{-1} (g(x)) + \beta g^{-1} (g(y))))$$

$$= f (g^{-1} (\alpha g (g^{-1}(x)) + \beta g (g^{-1}(y))))$$

$$= f (g^{-1} (g (\alpha g^{-1}(x) + \beta g^{-1}(y)))) \quad \text{car } g \text{ est linéaire}$$

$$= f (\alpha g^{-1}(x) + \beta g^{-1}(y))$$

$$= \alpha f (g^{-1}(x)) + \beta f (g^{-1}(y))$$

$$= \alpha (f \circ g^{-1}) (x) + \beta (f \circ g^{-1}) (y)$$

23.2 Caractérisation de la somme directe de p sous-espaces vectoriels

Soit $(E_i)_{i \in \llbracket 1;p \rrbracket} \in E^p$ p sous-espace vectoriel de E avec $p \in \mathbb{N}^*$ fixé quelconque. Par définition, cette famille est en somme directe si tout vecteur de $E_1 + E_2 + \ldots + E_p$ peut s'écrire comme une somme unique d'élément de $E_1 \times E_2 \times \ldots \times E_p$. Formellement :

$$\forall x \in \sum_{i=1}^{p} E_i, \exists! x \in \underset{i=1}{\times} E_i : x = \sum_{i=1}^{p} x_i$$
 (45)

Nous allons démontrer que E_1, E_2, \ldots et E_p sont en somme directe si et seulement si

$$\forall x \in \underset{i=1}{\overset{p}{\times}} E_i, \left(\sum_{i=1}^p x_i = 0_E \implies \forall i \in [1; p], x_i = 0_E\right)$$

$$(46)$$

Démonstration. Supposons que $E_1, E_2, \dots E_p$ sont en somme directe.

Soient $x \in \mathop{\times}_{i=1}^{r} E_i$ fixés quelconquestels que $x_1 + x_2 + \ldots + x_p = 0_E$.

Or $0_E = \underbrace{0_E}_{\in E_1} + \underbrace{0_E}_{\in E_2} + \ldots + \underbrace{0_E}_{\in E_p}$. Par unicité de l'écriture de x comme somme d'éléments de $\overset{p}{\underset{i=1}{\times}} E_i$,

Supposons maintenant l'équation de la caractérisation.

Soit $x \in \underset{i=1}{\overset{p}{\times}} E_i$ tel quex puisse s'écrire comme somme de $x' \in \underset{i=1}{\overset{p}{\times}} E_i$ et somme de $x'' \in \underset{i=1}{\overset{p}{\times}} E_i$. Montrons que x' = x''.

$$\sum_{i=1}^{p} x_i' = x = \sum_{i=1}^{p} x_i''$$

Donc

$$\sum_{i=1}^{p} (x_i'' - x_i'') = 0_E$$

D'après l'équation de la caractérisation, $\forall i \in [1; p], x'_i - x''_i = 0_E$. Donc $\forall i \in [1; p], x'_i = x''_i$

Pour cette semaine, \mathbb{K} désigne un corps commutatif, E et F des \mathbb{K} -espaces vectoriels, E' et F'des sous-espaces vectoriels respectivement de E et de F.

Nous rappelors que $\dim\{0_E\} = 0$ et que $\{0_E\} = \text{Vect }\emptyset$.

24.1Existence d'un supplémentaire en dimension finie

Pour tout sous-espace vectoriel de E, il existe un sous-espace vectoriel complémentaire.

 $D\'{e}monstration.$

Théorème de la base incomplète (admis ici mais démontré dans le cours) : pour toute famille libre de E, nous pouvons y adjoindre une partie d'une famille quelconque génératrice de E (généralement une base, la base canonique si elle a un sens) pour en faire une base de E.

Posons $n = \dim E$ et $p = \dim E'$. Ainsi, il existe (e_1, \ldots, e_p) base de E'. Appliquons le théorème de la base incomplète pour cette famille. Il existe (e_{p+1},\ldots,e_n) n-p vecteurs de E tel $que(e_1,\ldots,e_n)$ est un base de E. Posons $E''=\mathrm{Vect}\ \{e_{p+1},\ldots,e_n\}$ et vérifions qu'il est supplé-

Par définition de Vect, E'' est un sous-espace vectoriel. Trivialement, E'+E''=E. $\{0_E\}\subset E'\cap A$ E'' car E' et E'' sont deux sous-espaces vectoriels . Soit $x \in E' \cap E''$. $X \in E' \implies \exists (\lambda_1, \dots, \lambda_p) \in \mathbb{K}^p : x = \sum_{i=p+1}^p \lambda_i e_i$ et $X \in E'' \implies \exists (\lambda_{p+1}, \dots, \lambda_n) \in \mathbb{K}^{n-p} : x = \sum_{i=p+1}^n \lambda_i e_i$. Par différence, $\sum_{i=1}^{p} \lambda_i e_i + \sum_{i=p+1}^{n} (-\lambda_i) e_i = 0_E. \text{ Or } (e_i)_{i \in \llbracket 1; n \rrbracket} \text{ est une base de } E \text{ donc } \forall i \in \llbracket 1; p \rrbracket, \lambda_i = 0_{\mathbb{K}}. \text{ donc } (-\lambda_i) e_i = 0_{\mathbb{K}}.$ $x = 0_E$. Ainsi, $E' \cap E'' = \{0_E\}$.

24.2 Dimension de $\mathcal{L}_{\mathbb{K}}(E,F)$

 $\mathcal{L}_{\mathbb{K}}(E,F)$ est dimension finie et

$$\dim \mathcal{L}_{\mathbb{K}}(E, F) = \dim E \times \dim F \tag{47}$$

Démonstration. Notons $n = \dim E$ et $(e_i)_{i \in [1,n]}$ une base de E. Considérons

$$\varphi \mid \begin{array}{ccc} \mathcal{L}_{\mathbb{K}}(E,F) & \to & F^{n} \\ f & \mapsto & \left(f(e_{i}) \right)_{i \in \llbracket 1,n \rrbracket} \end{array}$$

 φ est linéaire et, d'après le théorème de création des applications linéaires, bijective. Ainsi, $\mathcal{L}_{\mathbb{K}}(E,F)$ et F^n sont isomorphes. F^n est de dimension finie, ce qui conclut.

24.3 Formule de Grassman

Supposons E de dimension finie.

Soient E_1 et E_2 deux sous-espaces vectoriels. Alors $E_1 + E_2$ est de dimension finie et

$$\dim E_1 + E_2 = \dim E_1 + \dim E_2 - \dim E_1 \cap E_2 \tag{48}$$

Démonstration. Commençons par prouver une version simplifier de la somme directe. Supposons que E_1 et E_2 sont en somme directe.

Fixons \mathcal{B}_1 et \mathcal{B}_2 deux bases de E_1 et E_2 . Alors $(\mathcal{B}_1, \mathcal{B}_2)$ engendre $E_1 + E_2$. Or $(\mathcal{B}_1, \mathcal{B}_2)$ est finie donc $E_1 + E_2$ est de dimension finie.

Posons $n = \dim E_1$ et $p = \dim E_2$. Notons $(e_i)_{i \in [\![1:n]\!]}$ la base \mathcal{B}_1 et $(f_i)_{i \in [\![1:n]\!]}$ la base \mathcal{B}_2 .

Soient
$$\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_p$$
) $\in \mathbb{K}^{n+p}$ fixés quelconques tels que $\sum_{i=1}^n \lambda_i e_i + \sum_{i=1}^p \mu_i f_i = 0_E$. Alors $\sum_{i=1}^n \lambda_i e_i = \sum_{i=1}^p (-\mu_i) f_i$. Or $\sum_{i=1}^n \lambda_i e_i \in E_1$ et $\sum_{i=1}^n (-\mu_i) e_i \in E_2$ donc $\sum_{i=1}^n \lambda_i e_i \in E_1 \cap E_2 = \{0_E\}$. Donc $\lambda = 0$. De même, $\mu = 0$. Donc $(\mathcal{B}_1, \mathcal{B}_2)$ est libre.

Ainsi $(\mathcal{B}_1, \mathcal{B}_2)$ est une base de $E_1 \oplus E_2$ Donc dim $E_1 \oplus E_2 = |(\mathcal{B}_1, \mathcal{B}_2)| = |\mathcal{B}_1| + |\mathcal{B}_2| + |\mathcal{B}_2| + |\mathcal{B}_3| + |\mathcal{B}$

Ainsi, $(\mathcal{B}_1, \mathcal{B}_2)$ est une base de $E_1 \oplus E_2$. Donc dim $E_1 \oplus E_2 = |(\mathcal{B}_1, \mathcal{B}_2)| = |\mathcal{B}_1| + |\mathcal{B}_2| = |(\mathcal{B}_1, \mathcal{B}_2)|$

 $\dim E_1 + \dim E_2.$

Enlevons l'hypothèse que E_1 et E_2 sont en somme directe. $E_1 \cap E_2$ est un sous-espace vectoriel de E_2 . Comme E_2 et un \mathbb{K} -espace vectoriel de dimension finie, il existe E'_2 sous-espace vectoriel de E_2 tel que $E_2 = (E1 \cap E_2) \oplus E'_2$.

Montrons que $E_1 + E_2 = E_1 \oplus E_2'$

$$E_1 \cap E_2' = E_1 \cap (E_2' \cap E_2)$$
 car $E_2' \subset E_2$
= $(E_1 \cap E_2) \cap E_2'$ car \cap est associative et commutative
= 0_E car E_1 et E_2 sont en somme directe et E_2' sev

Donc E_1 et E_2' sont en somme directe.

 $E_2' \subset E_2$ donc $E_1 + E_2' \subset E_1 + E_2$. Soit $x \in E_1 + E_2$. Alors $\exists (x_1, x_2) \in E_1 \times E_2 : x = x_1 + x_2$. Or $E_2 = (E_1 \cap E_2) \oplus E_2'$ donc $\exists (x_{21}, x_2') \times E_2' : x_2 = x_{21} + x_2'$. D'où $x = x_1 + x_{21} + x_2'$. Or $x_1 + x_{21} \in E_1$ et $x_2' \in E_2$ donc $x \in E_1 + E_2'$.

Ainsi, E_1 et E_2' étant des sous-espace vectoriel de dimension finie, $\dim E_1 \oplus E_2' = \dim E_1 + \dim E_2'$. De plus, $\dim E_2 = \dim(E_1 \cap E_2) \oplus E_2' = \dim E_1 \cap E_2 + \dim E_2'$. Donc $\dim E_1 + E_2 = \dim E_1 + \dim E_2 - \dim E_1 \cap E_2$.

24.4 Caractérisation injectivité/bijectivité/surjectivité par le rang

Soit $f \in \mathcal{L}_{\mathbb{K}}(E, F)$.

(i) Si E est de dimension finie

$$f \text{ injective } \iff \operatorname{rg} f = \dim E$$
 (49)

(ii) Si F est de dimension finie

$$f \text{ surjective } \iff \operatorname{rg} f = \dim F$$
 (50)

(iii) Si E et F sont de même dimension finie

$$f$$
 bijective $\iff f$ injective $\iff f$ sujective

C'est l'accident de la dimension finie!

 $D\'{e}monstration.$

(i) Supposons E de dimension finie, fixons (e_1, \ldots, e_n) une base de E (avec $n = \dim E$) Supposons f injective:

$$\operatorname{rg} f = \dim \operatorname{Im} f = \dim \operatorname{Vect} \{ f(e_1) \dots f(e_n) \}$$

Donc $(f(e_1), \dots f(e_n))$ est génératrice. $(f(e_1), \dots f(e_n))$ est de plus libre car f est injective. Donc c'est une base, donc

$$\dim \operatorname{Vect} \{ f(e_1) \dots f(e_n) \} = n = \dim E$$

donc $\operatorname{rg} f = \dim E.$ Réciproquement, supposons que $\operatorname{rg} f = \dim E = n.$ Alors

$$n = \operatorname{rg} f = \dim \operatorname{Vect} \{ f(e_1), \dots, f(e_n) \}$$

Donc $(f(e_1), \ldots f(e_n))$ est génératrice de cardinal n, égal à la dimension du sous-espace vectoriel engendré. C'est donc une base du sous-espace vectoriel engendré. Donc $(f(e_1), \ldots, f(e_n))$ est libre, donc f est injective.

(ii) Supposons F de dimension finie

$$f \text{ surjective } \iff \operatorname{Im} f = F \iff \dim \operatorname{Im} f = \dim F$$

(iii) Supposons E et F de même dimension finie

$$f$$
 injective \iff rg $f = \dim E \iff$ rg $f = \dim F \iff f$ surjective

D'où la bijectivité.

24.5 Théorème du rang

Si E est de dimension finie alors pour toute $f \in \mathcal{L}_{\mathbb{K}}(E,F)$ application linéaire,

$$\dim E = \operatorname{rg} f + \dim \ker f \tag{51}$$

Démonstration. Démontrons d'abord le lemme suivant. Soient $f \in \mathcal{L}_{\mathbb{K}}(E, F)$ et H un supplémentaire de $\ker f$ dans E. Alors $f_{|H}^{|\mathrm{Im}f}$ est un isomorphisme de H sur $\mathrm{Im}f$.

Notons \hat{f} un telle restriction et corestriction. Cette application est bien définie (car $f(H) \subset \text{Im} f$) et $\hat{f} \in \mathcal{L}_{\mathbb{K}}(H, \text{Im} f)$.

Calculons son noyau. $\ker \hat{f} = \{x \in H \mid \hat{f}(x) = 0_E\} = \{x \in H \mid x \in \ker f\} = H \cap \ker f = \{0_E\}$ car H et $\ker f$ sont complémentaire. Donc \hat{f} est injective.

Soit $y \in \text{Im} f$. D'où $\exists x \in E : y = f(x)$. Décomposons x dans $E = H \oplus \ker f$, $\exists (x_H, x_k) \in H \times \ker f : x = x_H + x_k$. Ainsi, $y = f(x) = f(x_H) + f(x_k) = f(x_H)$ car $x_k \in \ker f$. Donc y admet un antécédent par \hat{f} (qui est x_H). Donc \hat{f} est surjective.

Donc $f_{|H}^{|\text{Im}f}$ est un isomorphisme de H sur Imf.

Supposons maintenant que E est de dimension finie. Soit $f \in \mathcal{L}_{\mathbb{K}}(E,F)$. D'après le théorème d'existence d'un supplémentaire en dimension finie, $\ker f$, étant un sous-espace vectoriel de E, admet un supplémentaire H c'est-à-dire $E = H \oplus \ker f$. En prenant la dimension sur cette égalité, $\dim E = \dim \ker f + \dim H$. D'après le lemme précédent, $\dim H = \dim \operatorname{Im} f = \operatorname{rg} f$. D'où $\dim E = \operatorname{rg} f + \dim \ker f$.

24.6 Rang d'une composition d'applications linéaires

Soit G un \mathbb{K} -espace vectoriel et $(u,v) \in \mathcal{L}_{\mathbb{K}}(E,F) \times \mathcal{L}_{\mathbb{K}}(F,G)$. Si E et F sont de dimension finie alors

$$\operatorname{rg} u = \operatorname{rg} v \circ u + \dim \ker v \cap \operatorname{Im} u \tag{52}$$

Démonstration. Considérons que E et F sont de dimension finie. Soient de tels objets. Appliquons le théorème du rang à $v_{|\text{Im}u}$ ce qui est autorisé puisque $v_{|\text{Im}u}$ est une application linéaire et Imu est un \mathbb{K} -espace vectoriel de dimension finie (car sev de F).

$$\dim \operatorname{Im} u = \operatorname{rg} \, v_{|\operatorname{Im} u} + \dim \ker v_{|\operatorname{Im} u}$$

Ainsi, $\ker v_{|\operatorname{Im} u} = \{y \in \operatorname{Im} u \mid v(y) = 0_G\} = \{y \in \operatorname{Im} u \mid y \in \ker v\} = \operatorname{Im} u \cap \ker v \text{ et } \operatorname{Im} v_{|\operatorname{Im} u} = v(\operatorname{Im} u) = \operatorname{Im} v \circ u \text{ (cette égalité est vraie pour deux fonctions de } E \text{ dans } F \text{ et de } F \text{ dans } G \text{ quelconques, pas forcément linéaires). Ce qui conclut.}$

24.7 Caractérisation des hyperplans

Soit H un sous-espace vectoriel de E. Les conditions suivantes sont équivalentes :

- (i) H est un hyperplan de $E: \exists \varphi \in E^*: H = \ker \varphi$
- (ii) H admet une droite vectorielle comme supplémentaire : $\exists a \in E \setminus \{0_E\} : H \oplus \text{Vect } \{a\} = E$

Démonstration. (i) \Longrightarrow (ii) Supposons que H est un hyperplan de E. Appliquons la définition de l'hyperplan, $\exists \varphi \in E^* : H = \ker \varphi$. Par l'absurde, supposons que $E \setminus H = \emptyset$. Or $H \subset E$ donc E = H. Donc $\varphi = 0_{E^*}$ ce qui est une contradiction.

Ainsi fixons $a \in E \setminus H$ quelconque. Montrons que $E = H \oplus \text{Vect } \{a\}$. Trivialement, $\{0_E\} \subset H \cap \text{Vect } \{a\}$. Soit $x \in H \cap \text{Vect } \{a\}$. $x \in \text{Vect } \{a\}$ donc $\exists \lambda \in \mathbb{K} : x = \lambda$. De plus, $x \in H = \ker \varphi$ donc $0_{\mathbb{K}} = \varphi(x) = \lambda \varphi(a)$. Si $\lambda \neq 0_{\mathbb{K}}$, alors $a \in \ker \varphi$ ce qui est impossible car $a \notin H$. Donc $\lambda = 0_{\mathbb{K}}$, d'où $x = 0_E$. Ainsi, $H \cap \text{Vect } \{a\} = \{0_E\}$. H et $\text{Vect } \{a\}$ sont en somme directe.

Trivialement, $H + \text{Vect } \{a\} \subset E$. Soit $x \in E$ fixé quelconque. $a \notin H$ donc $\varphi(a) \neq 0_{\mathbb{K}}$. $\varphi(a)$ est inversible dans \mathbb{K} d'où :

$$\varphi(x) = \frac{\varphi(x)}{\varphi(a)} \cdot \varphi(a) = \varphi\left(\frac{\varphi(x)}{\varphi(a)} \times a\right)$$

Donc $x - \frac{\varphi(x)}{\varphi(a)} \cdot a \in H$. D'où

$$x = \underbrace{x - \frac{\varphi(x)}{\varphi(a)} \cdot a}_{\in H} + \underbrace{\frac{\varphi(x)}{\varphi(a)} \cdot a}_{\in \text{Vect } \{a\}}$$

Ainsi, $E = H + \text{Vect } \{a\}.$

 $(ii) \implies (i)$ Supposons maintenant que H soit un sous-espace vectoriel tel que $\exists a \in E \setminus \{0_E\}$: $E = H \oplus \text{Vect } \{a\}$. Posons $\varphi : E = H \oplus \text{Vect } \{a\} \to \mathbb{K}$ Montrons que φ est une forme linéaire non triviale dont H est le noyau.

 φ est bien définie (car h_x et λ_x sont uniques), linéaire, à valeur dans le corps de base $\mathbb K$ donc φ est un forme linéaire. $\varphi \neq 0_{E^*}$ car $\varphi(a) = 1_{\mathbb{K}} \neq 0_{\mathbb{K}}$. Soit $x \in E$ fixé quelconque. Alors $\exists (h_x, \lambda_x) \in H \times \mathbb{K} : x = h_x + \lambda_x \cdot a.$

$$x \in \ker \varphi \iff \varphi(x) = 0_{\mathbb{K}} \iff \lambda_x = 0_{\mathbb{K}} \iff x \in H$$

donc $\ker \varphi = H$. Donc H est un hyperplan de E.

Si E est de dimension finie, alors les deux conditions sont équivalentes à

- (iii) H est de codimension 1 c'est-à-dire de dimension n-1.
- $(ii) \implies (iii)$ Il faut prendre la dimension de l'égalité $H \oplus \text{Vect } \{a\}$.
- $(iii) \implies (ii)$ Supposons que dim H = n 1. Comme E est de dimension finie, H admet un supplémentaire I dans $E: H \oplus I = E$. En prenant la dimension, dim I = 1. Donc I est une droite vectorielle. D'où $\exists a \in E : I = \text{Vect } \{a\}. \ a \notin H \text{ car sinon } I \subset H \text{ ce qui contradit } I \cap H = \{0_E\} \ (I \cap H)$ et H sont en somme directe).

24.8 Proportionnalité des formes linéaires ayant le même noyau

Lemme fondamental dans l'étude des formes linéaires Soit $\varphi \in E^* \setminus \{0_{E^*}\}.$

Tout vecteur de E n'appartenant pas au noyau de φ engendre une droite qui est supplémentaire au noyau de φ dans E.

$$\forall a \in E \setminus \ker \varphi, \ E = \ker \varphi \oplus \text{Vect } \{a\}$$
 (53)

Deux formes linéaires non nulles φ et ψ ont le même noyau si est seulement si elles sont proportionnelles ce qui revient à dire que la famille (φ, ψ) est liée.

$$\forall (\varphi, \psi) \in (E^* \setminus \{0_{E^*}\})^2, \ker \varphi = \ker \psi \iff \exists \lambda \in \mathbb{K}^* : \varphi = \lambda \cdot \psi$$
 (54)

Démonstration. Commençons par prouver le lemme. Soit $a \in E \setminus \ker \varphi$.

Soit $x \in E$ fixé quelconque. Exhibons la décomposition unique de x dans ker φ + Vect $\{a\}$.

Analyse Supposons qu'il existe $(x_k, \lambda) \in \ker \varphi \times \mathbb{K}$ tel que $x = x_k + \lambda a$. Puisque $x_k \in \ker \varphi$, $\varphi(x) = \lambda \cdot \varphi(a)$. Or $\varphi(a) \neq 0_{\mathbb{K}}$ (car $a \notin \ker \varphi$) donc $\varphi(a)$ est inversible dans \mathbb{K} . D'où $\lambda = \frac{\varphi(x)}{\varphi(a)}$ et $x_k = x - \frac{\varphi(x)}{\varphi(a)} \cdot a$.

Ainsi, sous réserve d'existence,
$$\lambda$$
 et x_k sont uniques.
$$Synth\`ese \text{ Posons} \begin{cases} \lambda &=& \frac{\varphi(x)}{\varphi(a)} \\ x_k &=& x - \frac{\varphi(x)}{\varphi(a)} \end{cases} \text{ Nous avons bien } x = x_k + \lambda \cdot a, \lambda \cdot a \in \text{Vect } \{a\} \text{ (car } \lambda \in \mathbb{K}) \end{cases}$$
 et $x_k \in \ker \varphi \text{ (car } \varphi(x_k) = \varphi(x) - \varphi \left(\frac{\varphi(x)}{\varphi(a)}a\right) = \varphi(x) - \frac{\varphi(x)}{\varphi(a)}\varphi(a) = 0_{\mathbb{K}} \text{). Ainsi } E = \ker \varphi \oplus \text{Vect } \{a\}.$

et
$$x_k \in \ker \varphi \ (\operatorname{car} \varphi(x_k) = \varphi(x) - \varphi \left(\frac{\varphi(x)}{\varphi(a)}a\right) = \varphi(x) - \frac{\varphi(x)}{\varphi(a)}\varphi(a) = 0_{\mathbb{K}})$$
. Ainsi $E = \ker \varphi \oplus \operatorname{Vect} \ \{a\}$.

Soient $(\varphi, \psi) \in (E^* \setminus \{0_{E^*}\})^2$ fixés quelconques.

Sens direct Supposons que $\ker \varphi = \ker \psi$. $\varphi \neq 0_{E^*}$ donc $\ker \varphi \neq E$ donc $\exists a \in E : a \notin \ker \varphi$. Appliquons la lemme ci-dessus :

$$E = \begin{cases} \ker \varphi \\ \ker \psi \end{cases} \oplus \operatorname{Vect} \{a\} \to \mathbb{K}$$

$$\varphi : x = \left(x - \frac{\varphi(x)}{\varphi(a)} \cdot a\right) + \frac{\varphi(x)}{\varphi(a)} \cdot a \mapsto \varphi(x)$$

$$\psi : x = \left(x - \frac{\varphi(x)}{\varphi(a)} \cdot a\right) + \frac{\varphi(x)}{\varphi(a)} \cdot a \mapsto \psi(x)$$

 $\operatorname{Or}\left(x-\frac{\varphi(x)}{\varphi(a)}\cdot a\right)\in \ker\psi \text{ donc } \psi(x)=\frac{\psi(a)}{\varphi(a)}\varphi(x). \text{ Ainsi, } \psi=\frac{\psi(a)}{\varphi(a)}\varphi. \text{ Donc } \varphi \text{ et } \psi \text{ sont proportion-}$

Sens réciproque Supposons que φ et ψ sont proportionnelles. Alors $\exists \lambda \in \mathbb{K}^* : \varphi = \lambda \psi$. $\varphi =$ $\lambda \psi \implies \ker \psi \subset \ker \varphi$ et $\psi = \lambda^{-1} \varphi \implies \ker \varphi \subset \ker \psi$. Ce qui donne l'égalité.

24.9 Intersection d'hyperplans

Soit $\varphi \in E^*$ une forme linéaire non nulle. Soit F un sous-espace vectoriel de E de dimension finie $p \in \mathbb{N}$, alors

$$\dim_{\mathbb{K}} F \cap \ker \varphi = \begin{cases} p & \text{si } F \subset \ker \varphi \\ p - 1 & \text{sinon} \end{cases}$$
 (55)

En particulier, on a toujours $\dim_{\mathbb{K}} F \cap \ker \varphi \geqslant p-1$

Supposons que E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$. Soient $m \in \mathbb{N}^*$ et $(H_i)_{n \in [\![1,m]\!]}$, m hyperplans de E. Alors

$$\dim_{\mathbb{K}} \bigcap_{i=1}^{m} H_i \geqslant n - m \tag{56}$$

Démonstration. Si $F \subset \ker \varphi$, $F \cap \ker \varphi = F$ donc dim $F \cap \ker \varphi = p$ Sinon, il existe $a \in F$ tel que $a \notin \ker \varphi$. Ainsi,

$$\operatorname{Vect}\left\{a\right\} \oplus \ker \varphi = E$$

Montrons alors que $F = \text{Vect}\{a\} \oplus (F \cap \ker \varphi)$.

$$\operatorname{Vect}\left\{a\right\}\cap\left(F\cap\ker\varphi\right)=\underbrace{\operatorname{Vect}\left\{a\right\}\cap F}_{=\operatorname{Vect}\left\{a\right\}}\cap\ker\varphi=\operatorname{Vect}\left\{a\right\}\cap\ker\varphi=\left\{0_{E}\right\}$$

car les deux espaces sont supplémentaires donc en somme directe.

Par double inclusion, montrons que $\mathrm{Vect}\,\{a\} + (F\cap\ker\varphi) = F$. Pour l'inclusion directe, remarquons que $a\in F$ donc $\mathrm{Vect}\,\{a\}\subset F$ or $F\cap\ker\varphi\subset F$ donc leur somme est bien incluse $\mathrm{Vect}\,\{a\} + (F\cap\ker\varphi)\subset F$. Réciproquement, soit $x\in F$ fixé quelconque. Puisque $\mathrm{Vect}\,\{a\}\oplus\ker\varphi = F$

$$\exists (\lambda, x_K) \in \mathbb{K} \times \ker \varphi : x = \lambda . a + x_K$$

De plus, $x_K = x - \lambda . a \in F$ car $(a, x) \in F^2$ donc

$$x = \underbrace{\lambda.a}_{\in \operatorname{Vect}\{a\}} + \underbrace{x_K}_{\in F \cap \ker \varphi} \in \operatorname{Vect}\{a\} + (F \cap \ker \varphi)$$

D'où l'inclusion réciproque.

Donc $F = \text{Vect}\{a\} \oplus (F \cap \ker \varphi)$. En passant à la dimension :

$$\underline{\dim F} = \underline{\dim \operatorname{Vect} \{a\}} + \dim(F \cap \ker \varphi)$$

Donc $\dim(F \cap \ker \varphi) = p - 1$.

Considérons la propriété $\mathcal{P}(\cdot)$ définie pour tout $m \in \mathbb{N}^*$ par :

$$\mathcal{P}(m)$$
: "pour tous H_1, \ldots, H_m hyperplans de $E, \dim_{\mathbb{K}} \bigcap_{i=1}^m H_i \geqslant n-m$ "

Soit H_1 un hyperplan de E fixé quelconque. D'après la caractérisation des hyperplans en dimension finie,

$$\dim_{\mathbb{K}} \bigcap_{i=1}^{1} H_i = \dim_{\mathbb{K}} H_1 = n - 1 \geqslant n - 1$$

Donc $\mathcal{P}(1)$ est vraie.

Soit $m \in \mathbb{N}^*$ fixé quelconque tel que $\mathcal{P}(m)$ est vraie. Soient H_1, \ldots, H_m et H_{m+1} m+1 hyperplans de E. D'après la définition d'un hyperplan, il existe $\varphi \in E^*$ non nulle telle que $H_{m+1} = \ker \varphi$.

Appliquons donc le lemme précédent pour $F \leftarrow \bigcap_{i=1}^m H_i$ (autorisé car c'est un sous espace de l'espace E, qui est de dimension finie, donc ses sous espaces les sont aussi) et $\varphi \leftarrow \varphi$ (autorisé car c'est une forme linéaire non nulle) :

$$\dim_{\mathbb{K}} \underbrace{\left(\bigcap_{i=1}^{m} H_{i}\right) \cap \ker \varphi}_{=\left(\bigcap_{i=1}^{m} H_{i}\right) \cap H_{m+1}} \geqslant \dim_{\mathbb{K}} \left(\bigcap_{i=1}^{m} H_{i}\right) - 1 \underset{\text{en appliquant } \mathcal{P}(m) \text{ pour } H_{1}, \dots, H_{m}}{\geqslant n - m - 1}$$

Donc par associativité de l'intersection, $\dim_{\mathbb{K}} \bigcap_{i=1}^{m+1} H_i \geqslant n - (m+1)$. Donc $\mathcal{P}(m+1)$ est vraie.

25.1 S'il existe un inverse à droite (ou à gauche) pour une matrice carrée, alors celle ci est inversible

Soit $A \in \mathcal{M}_n(\mathbb{K})$

- S'il existe $B \in \mathcal{M}_n(\mathbb{K}) : A \times B = I_n$, alors $A \in GL_n(\mathbb{K})$ et $A^{-1} = B$
- S'il existe $B \in \mathcal{M}_n(\mathbb{K}) : B \times A = I_n$, alors $A \in GL_n(\mathbb{K})$ et $A^{-1} = B$

Démonstration. Supposons $\exists B \in \mathcal{M}_n(\mathbb{K}) : A \times B = I_n$. Notons $(\hat{a}, \hat{b}) \in \mathcal{L}(\mathbb{K}^n)$ les endomorphismes canoniquement associés à A et à B.

$$\begin{split} \Phi_{\mathcal{B}_{\operatorname{can}} \, \mathbb{K}^{n}}(\hat{a} \circ \hat{b}) &= \operatorname{mat}(\hat{a} \circ \hat{b}, \mathcal{B}_{\operatorname{can} \, \mathbb{K}^{n}}, \mathcal{B}_{\operatorname{can} \, \mathbb{K}^{n}}) \\ &= \operatorname{mat}(\hat{a}, \mathcal{B}_{\operatorname{can} \, \mathbb{K}^{n}}, \mathcal{B}_{\operatorname{can} \, \mathbb{K}^{n}}) \times_{\mathcal{M}_{\backslash}(\mathbb{K})} \operatorname{mat}(\hat{b}, \mathcal{B}_{\operatorname{can} \, \mathbb{K}^{n}}, \mathcal{B}_{\operatorname{can} \, \mathbb{K}^{n}}) \\ &= A \times B \\ &= I_{n} \\ &= \operatorname{mat}(\operatorname{Id}_{\mathbb{K}^{n}}, \mathcal{B}_{\operatorname{can} \, \mathbb{K}^{n}}, \mathcal{B}_{\operatorname{can} \, \mathbb{K}^{n}}) = \Phi_{\mathcal{B}_{\operatorname{can} \, \mathbb{K}^{n}}}(\operatorname{Id}_{\mathbb{K}^{n}}) \end{split}$$

D'où, par injectivité de $\Phi_{\mathcal{B}_{\operatorname{can}} \mathbb{K}^n}$, $\hat{a} \circ \hat{b} = \operatorname{Id}_{\mathbb{K}^n}$.

Ainsi, $\hat{a} \circ \hat{b}$ est surjective, donc \hat{a} est surjective, mais par l'accident de la dimension finie, \hat{a} est bijective, donc c'est un automorphisme, donc toutes ses matrices associées sont inversibles. On effectue un même raisonnement pour l'inversibilité à gauche, en utilisant cette fois l'injectivité.

25.2 Lien composée des applications linéaires et produit des matrices les représentant vis-à-vis de certaines bases

Soient E, F, G, trois \mathbb{K} -espaces vectoriels de dimension finie $(p, q, r) \in (\mathbb{N}^*)^3$ $\mathcal{B}_E, \mathcal{B}_F, \mathcal{B}_G$ des bases respectives de ces trois espaces vectoriels, et $u \in \mathcal{L}_{\mathbb{K}}(E, F)$ $v \in \mathcal{L}_{\mathbb{K}}(F, G)$.

Alors

$$mat(v \circ u, \mathcal{B}_E, \mathcal{B}_G) = mat(v, \mathcal{B}_F, \mathcal{B}_G) \times mat(u, \mathcal{B}_E, \mathcal{B}_F)$$
(57)

Démonstration. Posons $W = \max(v \circ u, \mathcal{B}_E, \mathcal{B}_G) \in \mathcal{M}_{r,p}(\mathbb{K}), \ V = \max(v, \mathcal{B}_F, \mathcal{B}_G) \in \mathcal{M}_{r,q}(\mathbb{K}), \ U = \max(u, \mathcal{B}_E, \mathcal{B}_F) \in \mathcal{M}_{q,p}(\mathbb{K})$

Donc $V \times U$ a un sens et $V \times U \in \mathcal{M}_{r,p}(\mathbb{K})$

Pour montrer l'égalité matricielle, nous allons utiliser la propriété suivante :

Soient $(M, M') \in \mathcal{M}_{r,p}(\mathbb{K})^2$ telles que $\forall X \in \mathcal{M}_{p,1}(\mathbb{K}) : MX = M'X$, alors M = M'. (Cela se prouve facilement en particularisant pour les matrices de la base canonique de $\mathcal{M}_{p,1}(\mathbb{K})$)

Soit $X \in \mathcal{M}_{p,1}(\mathbb{K})$, montrons que $W \times X = V \times U \times X$. Posons $x \in E$ de sorte que $X = \max(x, \mathcal{B}_E)$.

$$\begin{split} WX &= \mathrm{mat}(v \circ u, \mathcal{B}_E, \mathcal{B}_G) \times \mathrm{mat}(x, \mathcal{B}_E) \\ &= \mathrm{mat}((v \circ u)(x), \mathcal{B}_G) \\ &= \mathrm{mat}(v(u(x)), \mathcal{B}_G) \\ &= \mathrm{mat}(v, \mathcal{B}_F, \mathcal{B}_G) \times \mathrm{mat}(u(x), \mathcal{B}_F) \\ & \mathrm{d'après\ l'expression\ matricielle\ de\ l'image\ d'un\ vecteur\ par\ une\ application\ linéaire} \\ &= V \times \mathrm{mat}(u, \mathcal{B}_E, \mathcal{B}_F) \times \mathrm{mat}(x, \mathcal{B}_E) \\ &= V \times U \times X \end{split}$$

Ce qui prouve l'égalité matricielle

25.3 Montrer qu'une famille de d vecteurs d'un espace de dimension d est une base si et seulement si la matrice de ces vecteurs dans une base (donc dans toute) est inversible.

Soit H un \mathbb{K} -espace vectoriel de dimension $d \in \mathbb{N}^*$. \mathcal{B}_H , une base de H et (h_1, \ldots, h_d) , d vecteurs de H.

$$(h_1, \dots, h_d)$$
 base de $H \iff \max((h_1, \dots, h_d), \mathcal{B}_H) \in GL_n(\mathbb{K})$ (58)

Démonstration. Notons (e_1, \ldots, e_d) la base de H Cherchons à interpréter $\operatorname{mat}((h_1, \ldots, h_d), \mathcal{B}_H)$ comme la matrice d'une application linéaire. Notons u l'unique endomorphisme de H dans H tel que $\forall i \in [1, d], u(e_i) = h_i$

$$mat(u, \mathcal{B}_H) = \left[\begin{array}{c|c} mat(u(e_1), \mathcal{B}_H) & mat(u(e_2), \mathcal{B}_H) & \dots & mat(u(e_d), \mathcal{B}_H) \end{array} \right] \\
= \left[\begin{array}{c|c} mat(h_1, \mathcal{B}_H) & mat(h_2, \mathcal{B}_H) & \dots & mat(h_d, \mathcal{B}_H) \end{array} \right] \\
= mat((h_1, \dots, h_d), \mathcal{B}_H)$$

Si bien que

$$(h_1, \ldots, h_d)$$
 base de $H \iff (u(e_1), \ldots, u(e_d))$ base de H
 $\iff u \in \mathcal{GL}_{\mathbb{K}}(H)$
 $\iff \max(u, \mathcal{B}_H) \in GL_d(\mathbb{K})$
 $\iff \max((h_1, \ldots, h_d), \mathcal{B}_H) \in GL_d(\mathbb{K})$

25.4 Preuve de la formule de changement de base pour une application linéaire, cas particulier d'un endomorphisme lu dans la même base au départ et à l'arrivée.

Soient (E, F) deux \mathbb{K} -espaces vectoriels de dimension finie, $u \in \mathcal{L}_{\mathbb{K}}(E, F)$, \mathcal{B}_E et \mathcal{B}'_E deux bases de E, \mathcal{B}_F et \mathcal{B}'_F deux bases de F

Posons
$$U = \max(u, \mathcal{B}_E, \mathcal{B}_F)$$
 et $U' = \max(u, \mathcal{B}'_E, \mathcal{B}'_F)$, $P = \mathcal{P}(\mathcal{B}_E \to \mathcal{B}'_E)$, et $Q = \mathcal{P}(\mathcal{B}_F \to \mathcal{B}'_F)$
Alors

$$U' = Q^{-1}UP \tag{59}$$

Démonstration. Soit $X \in \mathcal{M}_{n,1}(\mathbb{K})$, où dim E = n. Posons $x = \Psi_{\mathcal{B}_E}^{-1}(X)$ et $Y = \Psi_{\mathcal{B}_F}(u(x))$. Puisque $U = \max(u, \mathcal{B}_E, \mathcal{B}_F)$, Y = UX

Posons $X' = \Psi_{\mathcal{B}'_E}(x)$ et $Y' = \Psi_{\mathcal{B}'_F}(u(x))$. La formule pour le changement de base pour les vecteurs donne X = PX' et Y = QY' Donc, puisque $U' = \text{mat}(u, \mathcal{B}'_E, \mathcal{B}'_F)$

$$Y' = U'X'$$

$$\implies Q^{-1}Y = U'P^{-1}X$$
puisque $Y = UX$

$$\implies Q^{-1}UX = U'P^{-1}X$$
en particularisant pour I_n

$$\implies Q^{-1}U = U'P^{-1}$$

$$\implies U' = Q^{-1}UP$$

25.5 Montrer que la trace de AB est égale à la trace de BA (deux matrices carrées), et application à la définition de la trace de deux endomorphismes

Démonstration. Soient $(A, B) \in \mathcal{M}_{n,p}(\mathbb{K}) \times \mathcal{M}_{p,n}(\mathbb{K})$. Alors $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$

♦ Preuve de l'égalité de la trace

$$\operatorname{Tr}(AB) = \sum_{i=1}^{n} [A \times B]_{i,i} = \sum_{i=1}^{n} \sum_{k=1}^{p} A_{i,k} B_{k,i} = \sum_{k=1}^{p} \sum_{i=1}^{n} B_{k,i} A_{i,k} = \sum_{k=1}^{p} [B \times A]_{kk} = \operatorname{Tr}(BA)$$

 \Diamond Soit E un espace vectoriel de dimension finie $u \in \mathcal{L}_{\mathbb{K}}(E)$. Soit \mathcal{B}_0 une base de E fixée quelconque Posons $\lambda = \text{Tr}(\text{mat}(u, \mathcal{B}_0))$ Soit \mathcal{B} une autre base de E fixée quelconque, considérons $P = \mathcal{P}(\mathcal{B}_0 \to \mathcal{B})$ la matrice de passage de \mathcal{B}_0 à \mathcal{B} . D'après la formule de changement de base

$$mat(u, \mathcal{B}) = P^{-1} \times mat(u, \mathcal{B}_0) \times P$$

donc

$$\begin{aligned} \operatorname{Tr}(\operatorname{mat}(u,\mathcal{B})) &= \operatorname{Tr}(P^{-1}\operatorname{mat}(u,\mathcal{B}_0)P) \\ &= \operatorname{Tr}(\operatorname{mat}(u,\mathcal{B}_0)PP^{-1}) \text{ d'après la preuve précédente} \\ &= \operatorname{Tr}(\operatorname{mat}(u,\mathcal{B}_0)) \end{aligned}$$

D'où l'existence de la trace λ commune à toutes les matrices représentant u dans la même base au départ et à l'arrivée. On a évidemment unicité de ce scalaire, que l'on apelle la trace de l'endomorphisme u.

25.6 Égalité rang trace pour un projecteur

Démonstration. Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$, et p un projecteur de E. Puisque p est un projecteur, on peut l'expliciter selon son image et son noyau

$$p \begin{vmatrix} E & = & \operatorname{Im}(p) & \oplus & \operatorname{Ker}(p) & \to & E \\ x & = & x_I & + & x_K & \mapsto & x_I \end{vmatrix}$$

Notons donc $r = \dim \operatorname{Im}(p) = \operatorname{rg}(p)$. Le théorème d'existence de base assure l'existence de (e_1, \ldots, e_r) base de $\operatorname{Im}(p)$, de même, en notant (e_{r+1}, \ldots, e_n) une base de $\operatorname{Ker}(p)$, puisque les espaces sont supplémentaires, on sait que $\mathcal{B} = (e_1, \ldots, e_r, e_{r+1}, \ldots, e_n)$ est une base de E.

Ainsi

$$\max(p, \mathcal{B}) = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ \hline 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix} = \begin{bmatrix} I_r & 0_{r,n-r} \\ \hline 0_{n-r,r} & 0_{n-r,n-r} \end{bmatrix} = J_r(n,n)$$

Donc $Tr(p) = Tr(mat(p, \mathcal{B})) = r = rg(p)$

25.7 Décomposition PJ_rQ

Soit $(n,p) \in (\mathbb{N}^*)^2$. Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. Posons $r = \operatorname{rg} A$.

$$\exists (P,Q) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K}) : A = PJ_rQ$$
(60)

où J_r (avec $r \in [0; \min(n, p)]$) est la notation raccourcie de $J_r(n, p)$ définie par

$$J_r(n,p) = \begin{bmatrix} I_r & 0_{r,p-r} \\ \hline 0_{n-r,r} & 0_{n-r,p-r} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \hline 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ \hline 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \hline 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix}$$

Démonstration. Commençons par démontrer le lemme suivant, $\forall r \in [0; \min(n, p)], \operatorname{rg}(J_r(n, p)) = r$

$$\operatorname{rg}(J_r(n,p)) = \dim \operatorname{Vect} \left\{ \begin{bmatrix} 1\\0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\0\\0\\0 \end{bmatrix}, \dots, \begin{bmatrix} 0\\1\\0\\0\\0\\0 \end{bmatrix}, 0_{n,1}, \dots, 0_{n,1} \right\} = \dim \operatorname{Vect} \underbrace{\left\{ E^{1,1}, E^{2,1}, \dots, E^{r,1} \right\}}_{\text{sous-famille de la base canonique de}} = r$$

Notons \hat{a} l'application linéaire de \mathbb{K}^p dans \mathbb{K}^n canoniquement associée à A de sorte que $A = \max(\hat{a}, \mathcal{B}_{c,\mathbb{K}^p}, \mathcal{B}_{c,\mathbb{K}^n})$. Nous devons chercher deux bases \mathcal{B}_1 de \mathbb{K}^p et \mathcal{B}_2 de \mathbb{K}^n telles que

$$\operatorname{mat}(\hat{a}, \mathcal{B}_{1}, \mathcal{B}_{2}) = \begin{bmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ \hline 0 & \dots & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & 0 & \dots & 0 \end{bmatrix} = J_{r}$$

Le théorème du rang appliqué à \hat{a} donne dim $\mathbb{K}^p = \operatorname{rg} \hat{a} + \dim \ker \hat{a}$. Or $\operatorname{rg} \hat{a} = \operatorname{rg} A = r$. Donc dim $\ker \hat{a} = p - r$. Fixons E_1 un sous-espace de \mathbb{K}^p supplémentaire de $\ker \hat{a}$ ainsi $\mathbb{K}^p = E_1 \oplus \ker \hat{a}$ et dim $E_1 = \dim \mathbb{K}^p - \dim \ker \hat{a} = p - (p - r) = r$.

Choisissons (f_1, \ldots, f_r) une base de E_1 et (f_{r+1}, \ldots, f_p) une base ker \hat{a} . Posons $\mathcal{B}_1 = (f_1, \ldots, f_r, f_{r+1}, \ldots, f_p)$ ce qui est bien une base car E_1 et ker \hat{a} sont supplémentaires.

$$\operatorname{Im} \hat{a} = \operatorname{Vect} \left\{ \hat{a}(f_1), \dots, \hat{a}(f_r), \underbrace{\hat{a}(f_{r+1})}_{=0_{\mathbb{K}^n}}, \dots, \underbrace{\hat{a}(f_p)}_{=0_{\mathbb{K}^n}} \right\} = \operatorname{Vect} \left\{ \hat{a}(f_1), \dots, \hat{a}(f_r) \right\}. \operatorname{Donc} \left(\hat{a}(f_1), \dots, \hat{a}(f_r) \right)$$

est un famile génératrice de cardinal r de $\operatorname{Im} \hat{a}$ qui est un espace de dimension r. Donc $(\hat{a}(f_1), \ldots, \hat{a}(f_r))$ est une base de $\operatorname{Im} \hat{a}$.

D'après le théorème de la base incomplète dans \mathbb{K}^n , il existe une famille $(g_{r+1},\ldots,g_n) \in (\mathbb{K}^n)^{n-r}$ telle que $(\hat{a}(f_1),\ldots,\hat{a}(f_r),g_{r+1},\ldots,g_n)$ est une base de \mathbb{K}^n que l'on notera \mathcal{B}_2 .

Ainsi

$$\operatorname{mat}(\hat{a}, \mathcal{B}_1, \mathcal{B}_2) = \left[\begin{array}{c|c} I_r & 0_{r,p-r} \\ \hline 0_{n-r,r} & 0_{n-r,p-r} \end{array} \right] = J_r(n, p)$$

Posons $P = \mathcal{P}\left(\mathcal{B}_{c,\mathbb{K}^n} \to \mathcal{B}_2\right) \in GL_n(\mathbb{K})$ et $Q = \mathcal{P}\left(\mathcal{B}_2 \to \mathcal{B}_{c,\mathbb{K}^p}\right) \in GL_p(\mathbb{K})$. Appliquons la formule de changement de base : $\operatorname{mat}(\hat{a}, \mathcal{B}_{c,\mathbb{K}^p}, \mathcal{B}_{c,\mathbb{K}^n}) = \mathcal{P}\left(\mathcal{B}_{c,\mathbb{K}^n} \to \mathcal{B}_2\right) \times \operatorname{mat}(\hat{a}, \mathcal{B}_1, \mathcal{B}_2) \times \mathcal{P}\left(\mathcal{B}_1 \to \mathcal{B}_{c,\mathbb{K}^p}\right)$. Ainsi

$$A = P \times J_r(n, p) \times Q$$

25.8 Deux matrices sont équivalentes si et seulement si elles ont le mêmes rangs. Système de représentants des classes de la relation d'équivalence "être équivalente à"

Soient $(A, B) \in \mathcal{M}_{n,p}(\mathbb{K})^2$. A est équivalente à B s'il existe $(P, Q) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K})$ tels que $B = Q^{-1}AP$.

Montrons que deux matrices sont équivalentes si et seulement si elles ont le mêmes rangs, que "être équivalente à" est une relation d'équivalence, qu'il y a $\min(n,p) + 1$ classes et que $(J_r(n,p))_{r \in [0:\min(n,p)]}$ est un système de représentants de classes.

Démonstration. Notons \sim la relation "être équivalente à". \sim est :

- réflexive car $\forall A \in \mathcal{M}_{n,p}(\mathbb{K}), A = I_n^{-1}AI_p$ et $(I_n, I_p) \in Gl_n(\mathbb{K}) \times Gl_p(\mathbb{K})$.
- symétrique car soit $(A, B) \in \mathcal{M}_{n,p}(\mathbb{K})^2$ telles que $A \sim B$. Alors $\exists (Q, P) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K}) : B = Q^{-1}AP$. D'où $A = QBP^{-1}$. Donc $A = (Q^{-1})^{-1}Bp^{-1}$. Or $(Q^{-1}, P^{-1}) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K})$. Ainsi $B \sim A$.
- transitive car soient $A,B,C) \in \mathcal{M}_{n,p}(\mathbb{K})^3$ telles que $A \sim B$ et $B \sim C$. Alors $\exists (P,Q) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K}) : B = Q^{-1}AP$ et $\exists (S,R) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K}) : C = S^{-1}BR$. D'où $C = S^{-1}\left(Q^{-1}AP\right)R = (QS)^{-1}A(PR)$. Or $(QS,PR) \in GL_n(\mathbb{K}) \times GL_p(\mathbb{K})$. Donc $A \sim C$.

Soient $(A, B) \in \mathcal{M}_{n,p}(\mathbb{K})^2$ telles que $\operatorname{rg}(A) = \operatorname{rg}(B) = r$. La multiplication par une matrice à droite et à gauche par des matrices inversibles ne modifie pas le rang donc, d'après la décomposition PJ_rQ , $J_r \sim A$ et $J_r \sim B$. Par symétrie et par transitivité, $A \sim B$.

Ainsi, $(J_r(n,p))_{r\in \llbracket 0; \min(n,p)\rrbracket}$ est bien un système de représentants de classes. Cette famille a pour cardinal $\min(n,p)+1$.

26 Semaine 26

La semaine décimée

Sous les cieux printaniers de mai, Vient la semaine tant attendue, Où l'Ascension, d'un souffle léger, Réduit les cours, moments suspendus.

Les classes prépas, si intensives, Prennent une pause, presque inédite, Les jours se parent de l'harmonie, D'une trêve aux heures décrépites.

Trois jours, juste une poignée, Suffisent à briser la cadence, Les esprits se libèrent, apaisés, De l'ordinaire lourde exigence.

On appelle cette semaine, décimée, Une parenthèse dans la rigueur, Où les horloges semblent arrêter, Le temps, éphémère douceur.

Les étudiants, d'un souffle profond, Respirent la clémence du printemps, Ils laissent de côté leurs crayons, Pour goûter à l'instant présent.

Oh, douce pause, lumineuse évasion, Dans la frénésie de l'éducation, Tu offres un repos bien mérité, Avant de replonger dans la densité.

Que chaque année revienne encore, Cette semaine au charme éthéré, Bénie par l'Ascension d'alors, Une oasis dans l'immensité.

27 Semaine 27

27.1 Norme uniforme d'une fonction continue par morceaux

Soit $f \in \mathcal{CM}([a;b],\mathbb{R})$.

L'ensemble $\{|f(t)| \mid t \in [a;b]\}$ admet une borne supérieur notée $||f||_{\infty,[a;b]}$.

 $D\acute{e}monstration$. Montrons que sur chaque morceau, f est bornée.

Soit $\sigma=(x_i)_{0\leqslant i\leqslant N}\in\mathcal{S}([a;b])$ adaptée à f. Soit $i\in[0;N-1]$. Posons $f_i=f_{|]x_i;x_{i+1}}[.$ f étant continue par morceaux, $\exists (l_i^+,l_{i-1}^-)\in\mathbb{R}^2: \lim_{x\to x_i^+}f_i(x)=l_i^+\wedge \lim_{x\to x_{i+1}^-}f_i(x)=l_{i+1}^-$. Nous pouvons

donc prolonger f_i en \tilde{f}_i par continuité en x_i et en x_{i+1} . Comme $f \in \mathcal{C}^0([a;b],\mathbb{R})$, le théorème de Weierstrass s'applique : Im \tilde{f}_i est bornée (donc f_i aussi). Ainsi $||f_i||_{\infty,[a;b]}$ est bien défini. $\{|f(t)| \mid t \in [a;b]\}$ est:

- une partie de \mathbb{R}
- non vide car contenant |f(x)|.
- majorée par $\max \left(\{ ||f_i||_{\infty,[a;b]} | i \in [0;N-1] \} \cup \{ ||f_i||_{\infty,[a;b]} | i \in [0;N-1] \} \right)$ (ensemble address) mettant bien un plus grand élément puisque fini)

Donc $||f||_{\infty,[a;b]}$ est bien définie.

FIGURE 7 – $||f||_{\infty,[a;b]}$ peut ne pas être atteinte

27.2 Lemme d'approximation uniforme d'un fonction continue sur un segment par une fonction en escalier

Soit $f \in \mathcal{C}^0([a;b],\mathbb{R})$.

(i)
$$\forall \varepsilon \in \mathbb{R}_+^*$$
, $\exists \chi \in \mathcal{E}([a;b],\mathbb{R}) : ||f - \chi||_{\infty,[a;b]} \leqslant \varepsilon$

(i)
$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \ \exists \chi \in \mathcal{E}([a;b],\mathbb{R}) : ||f - \chi||_{\infty,[a;b]} \leqslant \varepsilon$$

(ii) $\forall \varepsilon \in \mathbb{R}_{+}^{*}, \ \exists (\varphi, \psi) \in \mathcal{E}([a;b],\mathbb{R})^{2} : \begin{cases} \varphi \leqslant f \leqslant \psi \\ ||\psi - \varphi||_{\infty,[a;b]} \leqslant \varepsilon \end{cases}$

Démonstration. Soit $f \in \mathcal{C}^0([a;b],\mathbb{R})$. Soit $\varepsilon \in \mathbb{R}_+^*$ fixé quelconque.

(i) D'après le théorème de Heine, $f \in \mathcal{C}^0_u([a;b],\mathbb{R})$. Écrivons la définition de uniformément continue pour ε :

$$\exists \eta \in \mathbb{R}_+^* : \ \forall (x,y) \in [a;b]^2, \ |x-y| \leqslant \eta \implies |f(x) - f(y)| \leqslant \varepsilon$$

Figure 8 – Fonction en escalier "approximant" une fonction continue

Cherchons N tel que $\frac{b-a}{N} \leqslant 2\eta$. C'est-à-dire $N \geqslant \frac{b-a}{2\eta}$. Posons donc $N = \lceil \frac{b-a}{2\eta} \rceil$ et $\eta' = \frac{b-a}{N}$ de sorte que $\eta' \leqslant 2\eta$.

Définissons $\chi \in \mathcal{E}([a;b],\mathbb{R})$ par

$$\chi \left| \begin{array}{ccc} [a;b] & \to & \mathbb{R} \\ x & \mapsto & \left\{ \begin{array}{ccc} f(x) & \text{si } \exists n \in \mathbb{N}: \ x = a + n\eta' \\ f\left(a + \eta'\left(\lfloor \frac{x-a}{\eta'} \rfloor + 1/2\right)\right) & \text{sinon} \end{array} \right. \right.$$

Ceci est bien une fonction en escalier car $(a + k\eta')_{0 \le k \le N}$ est une subdivision adaptée. En effet,

 $\forall k \in [0; N-1], \ f_{|]a+k\eta';a+(k+1)\eta'[} = f\left(a+\eta'\left(\lfloor\frac{x-a}{\eta'}\rfloor+1/2\right)\right) \cdot \widetilde{1}_{]a+k\eta';a=(k+1)\eta'[}.$ Soit $x \in [a;b]$. Si $\exists n \in \mathbb{N}: \ x=a+n\eta' \ \text{alors} \ |f(x)-\chi(x)|=0$. Sinon $0 \leqslant \frac{x-a}{\eta'}-\lfloor\frac{x-a}{\eta'}\rfloor \leqslant 1$. D'où $0 \leqslant (x-a) - \eta' \lfloor \frac{x-a}{\eta'} \rfloor \leqslant \eta'$. Donc, en enlevant $\eta'/2$, $-\frac{\eta'}{2} \leqslant a + \eta' \left(\lfloor \frac{x-a}{2\eta} \rfloor + 1/2 \right) \leqslant \frac{\eta'}{2}$. Par définition de η' , $-\eta \leqslant a + \eta' \left(\lfloor \frac{x-a}{2\eta} \rfloor + 1/2 \right) \leqslant \eta$. Par définition de η , on a $|f(x) - f\left(a + 2\eta \left(\lfloor \frac{x-a}{2\eta} \rfloor + 1/2 \right) \right)| \leqslant \varepsilon$. Ainsi, nous avons bien $||f - \chi||_{\infty,[a;b]} \leqslant \varepsilon$.

(ii) Écrivons la définition de uniformément continue pour ε :

$$\exists \eta \in \mathbb{R}_{+}^{*}: \ \forall (x,y) \in [a;b]^{2}, \ |x-y| \leqslant \eta \implies |f(x)-f(y)| \leqslant \varepsilon$$

Définissons $\varphi \in \mathcal{E}([a;b],\mathbb{R})$ par

$$\begin{bmatrix} [a;b] & \to & \mathbb{R} \\ x & \mapsto & \left\{ \inf f\left(\left[a + \eta \left\lfloor \frac{x-a}{\eta'} \right\rfloor; a + \eta \left(\left\lfloor \frac{x-a}{\eta'} \right\rfloor + 1 \right) \right] \right) & \text{sinon} \end{bmatrix}$$

Définissons $\psi \in \mathcal{E}([a;b],\mathbb{R})$ par

$$\begin{bmatrix} [a;b] & \to & \mathbb{R} \\ x & \mapsto & \begin{cases} f(x) & \text{si } \exists n \in \mathbb{N} : \ x = a + n\eta \\ \sup f\left(\left.\right] a + \eta \left\lfloor \frac{x-a}{\eta'} \right\rfloor; a + \eta \left(\left\lfloor \frac{x-a}{\eta'} \right\rfloor + 1\right) \right[\right) & \text{sinon} \end{cases}$$

Ces deux fonctions sont bien définies car $f_{||a+\eta|\lfloor \frac{x-a}{\eta'}\rfloor;a+\eta\left(\lfloor \frac{x-a}{\eta'}\rfloor+1\right)|}$ est continue donc, d'après le théorème de Weiertraß, son image admet une borne inférieure et une borne supérieure. Elle sont bien en escalier.

Par définition des bornes inférieures et supérieures, nous avons $\varphi \leqslant f \leqslant \psi$. De plus, pour $x \in$ [a;b] fixé quelconque, $f_{|]a+\eta\lfloor\frac{x-a}{n'}\rfloor;a+\eta\left(\lfloor\frac{x-a}{n'}\rfloor+1\right)[}$ se prolonge par continuité et, d'après le théorème de Weiertraß, atteint ses bornes. Notons f_i et f_s les antécédents respectifs des bornes. $(f_i, f_s) \in$ $|a+\eta\lfloor\frac{x-a}{\eta'}\rfloor; a+\eta\left(\lfloor\frac{x-a}{\eta'}\rfloor+1\right)[^2 \text{ donc } |f_i-f_s|\leqslant \eta. \text{ D'où } |f(f_i)-f(f_s)|\leqslant \varepsilon.$ Ainsi, nous avons bien $||\psi-\varphi||_{\infty,[a;b]}\leqslant \varepsilon.$

Ainsi, nous avons bien
$$||\psi - \varphi||_{\infty,[a;b]} \leq \varepsilon$$
.

27.3Définition de l'intégrale de Darboux

Soit $f \in \mathcal{CM}([a,b],\mathbb{R})$ Posons

$$\mathcal{E}^{-}(f) = \{ \varphi \in \mathcal{E}([a, b], \mathbb{R}) \mid \varphi \leqslant f \}$$

$$\mathcal{E}^{+}(f) = \{ \varphi \in \mathcal{E}([a, b], \mathbb{R}) \mid \varphi \geqslant f \}$$

et

$$I^{-}(f) = \left\{ \int_{a}^{b} \varphi(u) \, \mathrm{d}u \middle| \varphi \in \mathcal{E}^{-}(f) \right\} \qquad I^{+}(f) = \left\{ \int_{a}^{b} \varphi(u) \, \mathrm{d}u \middle| \varphi \in \mathcal{E}^{+}(f) \right\}$$

Alors $\sup I^-(f) = \inf I^+(f)$ que l'on notera $\int_a^b f(u) \, \mathrm{d} u$

 $D\acute{e}monstration.$ \Diamond Bonne définition des objets

- $\star~I^-(f)$ est une partie de $\mathbb R$
- \star Non vide car :

$$\forall x \in [a,b], f(x) \geqslant -\|f\|_{\infty,[a,b]} \implies \left(\int_a^b -\|f\|_{\infty,[a,b]} \, \mathrm{d}t\right) \in I^-(f)$$

 \star majorée : soit $\varphi \in \mathcal{E}^-(f)$ fixé quel
conque.

$$\forall x \in [a, b], \varphi(x) \leqslant f(x) \leqslant ||f||_{\infty, [a, b]}$$

$$\implies \varphi \leqslant ||f||_{\infty, [a, b]}$$

$$\implies \int_a^b \varphi(u) \, \mathrm{d}u \leqslant \int_a^b ||f||_{\infty, [a, b]} \, \mathrm{d}t$$

On procède de la même manière pour la borne inf de $I^+(f)$

 \Diamond De plus, sup $I^-(f) \leqslant \inf I^+(f)$ Soient $(\varphi, \psi) \in \mathcal{E}^-(f) \times \mathcal{E}^+(f)$ fixés quelconques

$$\begin{split} \forall x \in [a,b], \varphi(x) \leqslant f(x) \leqslant \psi(x) \\ \implies \forall \varphi \in \mathcal{E}^-(f), \varphi \leqslant \psi & \implies \psi \text{ majore } \mathcal{E}^-(f) \\ \implies \int_a^b \psi(u) \, \mathrm{d}u \text{ majore } I^- \\ \implies \sup I^- \leqslant \int_a^b \psi(u) \, \mathrm{d}u \\ \implies \forall \psi \in \mathcal{E}^+(f), \sup I^- \leqslant \int_a^b \psi(u) \, \mathrm{d}u & \implies \sup I^- \text{ minore } I^- \\ \implies \sup I^- \leqslant \inf I^+ \end{split}$$

 \Diamond Soit $\varepsilon > 0$ fixé quelconque. Appliquons le lemme d'approximation uniforme d'une fonction continue par morceaux par une fonction en escalier pour $\varepsilon \leftarrow \frac{\varepsilon}{b-a}$ quelconque :

$$\exists (\varphi, \psi) \in \mathcal{E}([a, b], \mathbb{R})^2 : \left\{ \begin{array}{l} \varphi \leqslant f \leqslant \psi \\ \|\varphi - \psi\|_{\infty, [a, b]} \leqslant \frac{\varepsilon}{b - a} \end{array} \right.$$

Cela implique nécessairement que $\varphi \in \mathcal{E}^-(f)$ et $\psi \in \mathcal{E}^+(f)$.

$$\left\{ \begin{array}{l} \varphi \in \mathcal{E}^{-}(f) \\ \psi \in \mathcal{E}^{+}(f) \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} \int_{a}^{b} \varphi(u) \, \mathrm{d}u \leqslant \sup I^{-} \\ \int_{a}^{b} \psi(u) \, \mathrm{d}u \geqslant \inf I^{+} \end{array} \right.$$

Donc

$$\int_{a}^{b} \varphi(u) \, \mathrm{d}u \leqslant \sup I^{-} \leqslant \inf I^{+} \leqslant \int_{a}^{b} \psi(u) \, \mathrm{d}u$$

$$\implies 0 \leqslant \inf I^{+} - \sup I^{-} \leqslant \int_{a}^{b} \psi(u) \, \mathrm{d}u - \int_{a}^{b} \varphi(u) \, \mathrm{d}u$$

$$\implies 0 \leqslant \inf I^{+} - \sup I^{-} \leqslant \int_{a}^{b} \psi(u) - \varphi(u) \, \mathrm{d}u$$

$$\implies 0 \leqslant \inf I^{+} - \sup I^{-} \leqslant \int_{a}^{b} \frac{\varepsilon}{b - a} \, \mathrm{d}u$$

$$\implies 0 \leqslant \inf I^{+} - \sup I^{-} \leqslant \frac{(b - a)\varepsilon}{b - a} = \varepsilon$$

Donc en passant à la limite, on retrouve inf I^+ – sup I^+ = 0, d'où l'égalité attendue.

27.4 Montrer qu'une fonction positive ou nulle, continue sur un segment et d'intégrale nulle sur ce segment est identique- ment nulle sur ce segment

Démonstration. Par l'absurde supposons qu'il existe $f \in \mathcal{C}^0([a,b],\mathbb{R})$ telle que $\int_a^b f(u) \, \mathrm{d}u = 0$ et $f \geqslant 0$ sur [a,b] et $f \neq \tilde{0}$ Alors $\exists x_0 \in [a,b]: f(x_0) \neq 0 \implies f(x_0) > 0$ Appliquons la définition de la continuité de f en x_0 pour $\varepsilon \leftarrow \frac{f(x_0)}{2}$

$$\exists \eta > 0 : \forall x \in [a, b] \cap [x_0 - \eta, x_0 + \eta], |f(x) - f(x_0)| \leqslant \frac{f(x_0)}{2}$$

donc

$$\forall x \in [a, b] \cap [x_0 - \eta, x_0 + \eta], f(x) \geqslant \frac{f(x_0)}{2} > 0$$

— Ainsi, si $x_0 \in]a, b[$

$$\int_{a}^{b} f(u) du = \underbrace{\int_{a}^{x_{0} - \eta} f(u) du}_{\geqslant 0} + \int_{x_{0} - \eta}^{x_{0} + \eta} f(u) du + \underbrace{\int_{x_{0} + \eta}^{b} f(u) du}_{\geqslant 0}$$

$$\geqslant \int_{x_{0} - \eta}^{x_{0} + \eta} f(u) du \geqslant \int_{x_{0} - \eta}^{x_{0} + \eta} \frac{f(x_{0})}{2} du \geqslant 2\eta \frac{f(x_{0})}{2} \geqslant \eta f(x_{0}) > 0$$

— Si $x_0 \in \{a, b\}$ on effectue le même raisonnement

$$\int_{a}^{a+\eta} f(u) \, \mathrm{d}u \geqslant \frac{\eta f(x_0)}{2} > 0$$

27.5 Inégalité de Cauchy Schwartz pour les fonctions continues par morceaux

Démonstration. Soient $(f,g) \in \mathcal{CM}([a,b],\mathbb{R})^2$ Posons

$$\forall t \in \mathbb{R}, P(t) = \int_{a}^{b} (f + tg)^{2}(u) du$$

$$P(t) = \int_{a}^{b} (f(u) + t \times g(u))^{2} du = \int_{a}^{b} f(u)^{2} + 2tg(u)f(u) + t^{2}g(u)^{2} du$$
$$= \int_{a}^{b} f(u)^{2} du + 2t \int_{a}^{b} f(u)g(u) du + t^{2} \int_{a}^{b} g(u)^{2} du$$

- \Diamond Si $\int_a^b g(u)^2 du = 0$, P est un polynôme affine de signe positif (intégrale d'une fonction positive) donc sa pente est nulle, donc $\int_a^b f(u)g(u) du = 0$ donc l'inégalité de cauchy schwartz est vraie
- \Diamond Sinon P est un polynôme de degré 2, positif ou nul, donc le discriminant $\Delta \leqslant 0$ et $\int_a^b g(u)^2 du \geqslant 0$ donc

$$4\left(\int_{a}^{b} g(u)f(u) \, du\right)^{2} - 4\int_{a}^{b} f^{2}(u) \, du \int_{a}^{b} g^{2}(u) \, du \leqslant 0$$

Ce qui prouve l'égalité attendue.

♦ Supposons qu'il y a égalité dans l'inégalité de Cauchy-Schwartz, alors

— Si
$$\int_a^b g^2(u) du \neq 0$$

$$\Delta = 4 \left(\int_a^b g(u) f(u) \, du \right)^2 - 4 \int_a^b f^2(u) \, du \int_a^b g^2(u) \, du = 0$$

Donc P est un polynôme de degré 2 de discriminant nul : il admet une racine double t_0 Ainsi,

$$P(t_0) = 0 \implies \int_a^b (f + t_0 g)^2(u) du = 0$$

Mais, $(f + t_0 g)^2$ est une fonction positive, et continue sur [a, b], donc elle est nulle sur [a, b]. Donc $f + t_0 g = \tilde{0}$ dong (f, g) est liée.

- Sinon, si $\int_a^b g^2(u) du = 0$, en remarquant que $g^2 \ge 0$ sur [a,b] et que g^2 est continue, on retrouve que $g = \tilde{0}$ et donc que (f,g) est liée
- ♦ Un calcul simple montre que s'il existe une relation de liaison entre deux fonctions continues par morceaux, il y a égalité dans l'inégalité.

27.6 Théorème de convergence des sommes de Riemann

Démonstration. $f \in C^0([a, b], \mathbb{C})a \leq b$ En notant $S(f, \sigma, \pi)$ la somme de Riemann de f pour la subdivision pointée (σ, π) .

$$\forall \varepsilon > 0, \exists \eta > 0 : \forall \left\{ \begin{array}{l} \sigma = (x_i)_{0 \leqslant i \leqslant N} \in \mathcal{S}([a,b]) \\ \pi = (x_i')_{0 \leqslant i \leqslant N-1} : x_i' \in [x_i, x_{i+1}] \end{array} \right., \delta(\sigma) \leqslant \eta \implies \left| S(f,\sigma,\pi) - \int_a^b f(u) \, \mathrm{d}u \right| \leqslant \varepsilon$$

Soit $\sigma=(x_j)_{0\leqslant j\leqslant N}\in\mathcal{S}([a,b])$ et $\pi=(x_i')_{0\leqslant i\leqslant N-1}$ une famille vérifiant $\forall i\in \llbracket 0,N-1\rrbracket,x_i'\in \llbracket x_i,x_{i+1}\rrbracket$

$$\left| S(f, \sigma, \pi) - \int_{a}^{b} f(t) dt \right| = \left| \sum_{i=0}^{N-1} f(x'_{i})(x_{i+1} - x_{i}) - \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} f(t) dt \right|$$

$$= \left| \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} (f(x'_{i}) - f(t)) dt \right|$$

$$\leqslant \sum_{i=0}^{N-1} \left| \int_{x_{i}}^{x_{i+1}} (f(x'_{i}) - f(t)) dt \right|$$

$$\leqslant \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} |f(x'_{i}) - f(t)| dt$$

Soit $\varepsilon > 0$ fixé quelconque, appliquons la continuité uniforme de f pour $\varepsilon \leftarrow \frac{\varepsilon}{b-a}$

$$\exists \eta > 0 : \forall (x, y) \in [a, b], |x - y| \leqslant \eta \implies |f(x) - f(y)| \leqslant \frac{\varepsilon}{b - a}$$

Fixons un tel η . Soit (σ, π) une subdivision pointée de [a, b] fixée quelconque telle que $\delta(\sigma) \leq \eta$. Soit $i \in [0, N-1]$ fixé quelconque.

$$\forall t \in [x_i, x_{i+1}], |x_i' - t| \underset{x_i \leqslant x_i' \leqslant x_{i+1}}{\leqslant} |x_i - x_{i+1}| \leqslant \delta(\sigma) \leqslant \eta \implies |f(x_i') - f(t)| \leqslant \frac{\varepsilon}{b - a}$$

donc,

$$\int_{x_i}^{x_{i+1}} |f(x_i') - f(t)| dt \leqslant \int_{x_i}^{x_{i+1}} \frac{\varepsilon}{b - a} dt = \frac{\varepsilon}{b - a} (x_{i+1} - x_i)$$

done

$$\left| S(f, \sigma, \pi) - \int_a^b f(t) \, \mathrm{d}t \right| \leqslant \sum_{i=0}^{N-1} \int_{x_i}^{x_{i+1}} |f(x_i') - f(t)| \, \mathrm{d}t \leqslant \sum_{i=0}^{N-1} \frac{\varepsilon}{b-a} (x_{i+1} - x_i) = \underbrace{\frac{\varepsilon}{b-a}}_{b-a} \underbrace{\sum_{i=0}^{N-1} (x_{i+1} - x_i)}_{b-a} = \varepsilon$$

donc

$$\left| S(f, \sigma, \pi) - \int_{a}^{b} f(t) \, \mathrm{d}t \right| \leqslant \varepsilon$$

27.7 Inégalité triangulaire pour les fonctions continues par morceaux à valeurs complexes

Démonstration. Soit $f \in \mathcal{CM}([a,b],\mathbb{C})$ cela implique donc que $|f| \in \mathcal{CM}([a,b],\mathbb{C})$ D'après le lemme d'approximation uniforme d'une fonction par une fonction uniforme

$$\exists (\chi_k)_{k \in \mathbb{N}} \in (\mathcal{E}([a,b],\mathbb{R}))^{\mathbb{N}} : \begin{cases} \forall k \in \mathbb{N}, \|f - \chi_k\|_{\infty,[a,b]} \leqslant \frac{1}{2^k} \\ \int_a^b \chi_k(u) \, \mathrm{d}u \xrightarrow[k \to \infty]{} \int_a^b f(u) \, \mathrm{d}u \end{cases}$$

$$\forall k \in \mathbb{N}, \forall x \in [a, b], ||\chi_k(x)| - |f(x)|| \leqslant |f(x) - \chi_k(x)| \leqslant \frac{1}{2^k}$$

donc

$$|||f| - |\chi_k||_{\infty} \leqslant \frac{1}{2^k} \implies \int_a^b |\chi_k|(u) \, \mathrm{d}u \xrightarrow[k \to \infty]{} \int_a^b |f|(u) \, \mathrm{d}u$$

Donc, d'après l'inégalité triangulaire continue pour les fonctions en escalier appliquée aux χ_k

$$\underbrace{\left| \int_{a}^{b} \chi_{k}(u) \, \mathrm{d}u \right|}_{k \to \infty} \leqslant \underbrace{\int_{a}^{b} |\chi_{k}|(u) \, \mathrm{d}u}_{k \to \infty}$$

donc par passage à la limite dans l'inégalité

$$\left| \int_{a}^{b} f(u) \, \mathrm{d}u \right| \le \int_{a}^{b} |f(u)| \, \mathrm{d}u$$

27.8 Existence et unicité de la primitive de f qui s'annule en a

 $D\acute{e}monstration.$ \Diamond Notons d'abord que

$$F_a \left| \begin{array}{cc} I & \to \mathbb{C} \\ t & \mapsto \int_a^x f(u) \, \mathrm{d}u \end{array} \right|$$

est bien définie :

$$f \in \mathcal{C}^0(I, \mathbb{C}) \implies f \in \mathcal{CM}(I, \mathbb{C})$$

$$\forall t \in I, [a, t] \subset I \text{ ou } [t, a] \subset I$$

$$\implies \int_a^b f(u) \, \mathrm{d}u \text{ est bien définie}$$

 \Diamond Montrons que $F_a \in \mathcal{D}^1(I,\mathbb{C})$ et $F_a' = f$

$$\left| \frac{F_a(t) - F_a(t_0)}{t - t_0} - f(t_0) \right| = \left| \frac{1}{t - t_0} \int_{t_0}^t f(u) \, \mathrm{d}u - f(t_0) \right|$$

$$\leq \left| \frac{1}{|t - t_0|} \int_{t}^{t_0} |f(u) - f(t_0)| \, \mathrm{d}u \right|$$

Soit $\varepsilon>0$ fixé que l
conque. Appliquons la définition de la continuité de f en
 t_0

$$\exists \eta > 0 : \forall t \in I, |t - t_0| \leq \eta \implies |f(t) - f(t_0)| \leq \varepsilon$$

Soit $t \in I$ tel que $|t - t_0| \leq \eta$, alors $\forall u \in [t_0, t] \cup [t, t_0], |f(u) - f(t_0)| \leq \varepsilon$

$$\star$$
 Si $t_0 \leqslant t$

$$0 \leqslant \int_{t_0}^t |f(u) - f(t_0)| \, \mathrm{d}u \leqslant \int_{t_0}^t \varepsilon \, \mathrm{d}u = \varepsilon |t - t_0|$$

 \star Si $t \leq t_0$

$$0 \leqslant -\int_{t_0}^t |f(u) - f(t_0)| \, \mathrm{d}u \leqslant \int_t^{t_0} \varepsilon \, \mathrm{d}u = \varepsilon |t - t_0|$$

Ainsi, on a montré que

$$\left| \frac{F_a(t) - F_a(t_0)}{t - t_0} - f(t_0) \right| \leqslant \varepsilon$$

d'où la convergence du taux d'accroissement. Donc $F_a \in \mathcal{D}^1(I,\mathbb{C})$, et $F'_a = f$ Donc F_a est une primitive de f et $F_a(a) = \int_a^a f(u) \, \mathrm{d}u = 0$

 \Diamond Soit H une primitive qui s'annule en a. $H-F_a\in\mathcal{D}^1(I,\mathbb{C})$ et $(H-F_a)'=H'-F_a'=f-f=\tilde{0}$ Ainsi, la dérivée de $H-F_a$ est nulle sur I, qui est un intervalle, donc

$$\exists c \in \mathbb{C} : \forall t \in I, H(t) - F_a(t) = c$$

et en particularisant en a, on montre que $H(a)-F_a(a)=0-0=0$. Donc $H-F_a=\tilde{0}$ donc $H=F_a$, ce qui montre l'unicité.

27.9 Formule de Taylor avec reste intégral

Démonstration. Posons

$$\mathcal{H}_n: \forall f \in \mathcal{C}^{n+1}(I, \mathbb{C}), f(x) = \sum_{k=0}^n \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-u)^n}{n!} f^{(n+1)}(u) du$$

 \Diamond Initialisation $n \leftarrow 0$

$$f(x) = f(a) + \int_{a}^{x} f'(u) du$$

est effectivement vrai d'après le théorème fondamental du calcul intégral

 \Diamond Hérédité : soit $n \in \mathbb{N}$ tel que \mathcal{H}_n est vraie.

Soit $f \in \mathcal{C}^{n+2}$, f est en particulier de classe \mathcal{C}^{n+1} donc en appliquant la propriété de récurrence :

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-u)^n}{n!} f^{(n+1)}(u) du$$

Intégrons le reste intégral par parties, les fonctions $u: t \mapsto f^{(n+1)}(t)$ et $v: t \mapsto -\frac{(b-t)^{n+1}}{(n+1)!}$ sont de classe \mathcal{C}^1 sur I, avec $u'(t) = f^{(n+2)}(t)$ et $v'(t) = \frac{(x-t)^n}{n!}$

$$\int_{a}^{x} \frac{(x-u)^{n}}{n!} f^{(n+1)}(u) du = \left[-\frac{(x-u)^{n+1}}{(n+1)!} f^{(n+1)}(u) \right]_{a}^{x} - \int_{a}^{x} -\frac{(x-u)^{n+1}}{(n+1)!} f^{(n+2)}(u) du$$
$$= \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(a) + \int_{a}^{x} \frac{(x-u)^{n+1}}{(n+1)!} f^{(n+2)}(u) du$$

donc

$$f(x) = \sum_{k=0}^{n+1} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-u)^{n+1}}{(n+1)!} f^{(n+2)}(u) du$$

donc \mathcal{H}_{n+1} est vérifiée.

27.10 Calcul de $\lim_{n\to\infty}\sum_{k=0}^n \frac{(-1)^k}{k} x^k$

Démonstration. Appliquons la formule de Taylor, avec reste intégral pour

$$\begin{cases} f \leftarrow (x \mapsto \ln(1+x)) \in \mathcal{C}^{\infty} \\ n \leftarrow n \\ a \leftarrow 0 \end{cases}$$

$$\left| \ln(1+x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (x-0)^{k} \right| = \left| \int_{0}^{x} \frac{(x-t)^{n}}{n!} f(t) \, dt \right|$$

Puisque
$$f^{(n)}(t) = \frac{(-1)^{n+1}}{(t+1)^n}(n-1)!$$
, on en déduit que $f^{(n)}(0) = (-1)^{n+1}(n-1)!$ et $\frac{f^{(n)}(0)}{n!} = \frac{(-1)^{n+1}}{n}$ donc

$$\left| \ln(1+x) - \sum_{k=0}^{n} \frac{(-1)^{k+1}}{k} x^{k} \right| = \left| \int_{0}^{x} \frac{(x-t)^{n}}{\varkappa!} \times \frac{(-1)^{n} \times \varkappa!}{(t+1)^{n+1}} \, \mathrm{d}x \right|$$

$$\leqslant \int_{0}^{x} \left| \frac{(x-t)^{n}}{(t+1)^{n+1}} \right| \, \mathrm{d}t$$

$$\leqslant \left\| \frac{1}{t+1} \right\|_{\infty} \int_{0}^{x} (x-t) \, \mathrm{d}t$$

$$\leqslant \frac{x^{n+1}}{n+1} \xrightarrow[x \to \infty]{} 0$$

Ce qui prouve la convergence de la série $\sum_{n\geqslant 0}\frac{(-1)^n}{n}x^n$, et $\sum_{n=0}^{\infty}\frac{(-1)^n}{n}x^n=\ln(1+x)$

28 Semaine 28

28.1 Condition nécessaire de convergence de $\sum_{n\geqslant n_0} u_n$

Démonstration. Soit $u \in \mathbb{K}^{[n_0,+\infty[]}$. Si la série $\sum_{n\geqslant n_0} u_n$ converge, alors la suite u converge vers 0. Supposons que la série converge. Notons $(S_n)_{n\geqslant n_0}$ la suite des sommes partielles.

$$\forall n \in [n_0 + 1, +\infty[, u_n = S_n - S_{n-1}]$$

Puisque S converge, on en déduit que u converge vers 0.

28.2 Condition nécessaire et suffisante de convergence de $\sum_{n\geqslant 0} q^n$ pour $q\in\mathbb{C}$ et calcul de la somme et du reste lorsqu'ils existent.

$$\forall q \in \mathbb{C}, \ \sum_{n \geqslant 0} q^n \text{ cv.} \iff |q| < 1$$
 (61)

Dans ce cas $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$ et $R_n = \frac{q^{n+1}}{1-q}$.

Démonstration. $\star \text{ Si } |q| < 1$

$$\forall n \in \mathbb{N}, S_n = \sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

De plus,
$$|q^{n+1}| = |q|^{n+1} = \begin{cases} 0 \text{ si } q = 0 \\ e^{(n+1)\ln|q|} \text{ si } q \neq 0 \end{cases}$$

$$\left\{ \begin{array}{ll} 0 & \\ e^{(n+1)\ln|q|} & \xrightarrow[n\to\infty]{} \left\{ \begin{array}{ll} 0 \\ 0 \end{array} \right. \right.$$

Ainsi, $\sum_{n\geqslant 0}q^n$ converge et $\sum_{n=0}^{+\infty}q^n=\frac{1}{1-q}$

$$S_n = \frac{1 - q^{n+1}}{1 - q} \implies R_n = S_n - \sum_{n=0}^{+\infty} q^n = \frac{q^{n+1}}{1 - q}$$

 \star Si |q|=1

$$\forall n \in \mathbb{N}, |q|^n = 1^n = 1 \xrightarrow[n \to \infty]{} 1$$

Ainsi, $|q|^n$ ne converge pas vers 0 donc $(q^n)_{n\geqslant 0}$ ne converge pas vers 0, donc la série est grossièrement divergente.

* Si |q| > 1 $|q|^n = \exp(n \ln |q|) \xrightarrow[n \to +\infty]{} +\infty$ Donc $(q^n)_{n\geqslant 0}$ ne converge pas vers 0. Donc la série est grossièrement divergente.

28.3 Caractérisation de la convergence des séries de Riemann

Soit $\alpha \in \mathbb{R}$.

La série
$$\sum_{n\geqslant 1} \frac{1}{n^{\alpha}}$$
 converge $\iff \alpha > 1$ (62)

Démonstration. \Diamond Supposons $\alpha < 0$ alors, $\frac{1}{n^{\alpha}} = n^{|\alpha|} \xrightarrow[n \to +\infty]{} +\infty$ donc la série est grossièrement divergente.

 $\Diamond \ \ \text{Supposons} \ \alpha=0 \ \text{alors} \ \frac{1}{n^\alpha}=1 \xrightarrow[n\to\infty]{} 1 \ \text{donc la série est grossièrement divergente.}$

 \Diamond Supposons $\alpha > 0$ Cherchons un équivalent de

$$\frac{1}{(n+1)^{\beta}} - \frac{1}{n^{\beta}}$$

en fonction de $\beta \in \mathbb{R}^*$

$$\frac{1}{(n+1)^{\beta}} - \frac{1}{n^{\beta}} = \frac{1}{n^{\beta}} \left(\frac{1}{\left(1 + \frac{1}{n}\right)^{\beta}} - 1 \right)$$
$$= \frac{1}{n^{\beta}} \left[\left(1 + \frac{1}{n}\right)^{-\beta} - 1 \right]$$
$$\approx \frac{1}{n^{\beta}} \times \left(-\frac{\beta}{n}\right)$$
$$\approx -\frac{\beta}{n^{\beta+1}}$$

* Pour $\alpha \in]0, +\infty[\setminus \{1\}$ Appliquons le calcul ci-dessus pour $\beta \leftarrow \alpha - 1$ (autorisé car $\alpha \neq 1 \implies \alpha - 1 \neq 0$)

$$\frac{1}{(n+1)^{\alpha-1}} - \frac{1}{n^{\alpha-1}} \sim -\frac{\alpha-1}{n^{\alpha}}$$

De plus, $\left(-\frac{\alpha-1}{n^{\alpha}}\right)_{n\geqslant 1}$ est de signe constant donc, d'après le critère d'équivalence, $\sum_{n\geqslant 1}\frac{-(\alpha-1)}{n^{\alpha}}$ est de même nature que la série télescopique $\sum_{n\geqslant 1}\left(\frac{1}{(n+1)^{\alpha-1}}-\frac{1}{n^{\alpha-1}}\right)$. Or, la série télescopique est de même nature que $\left(\frac{1}{n^{\alpha-1}}\right)_{n\geqslant 1}$.

Donc par transitivité, puisque $\sum_{n\geqslant 1}\frac{1}{n^{\alpha}}$ est de même nature que $\sum_{n\geqslant 1}\frac{-(\alpha-1)}{n^{\alpha}}$, la série de Riemann est de même nature que $\left(\frac{1}{n^{\alpha-1}}\right)_{n\geqslant 1}$ Or, $\left(\frac{1}{n^{\alpha-1}}\right)_{n\geqslant 1}$ converge pour $\alpha>1$ et diverge pour $\alpha\in]0,1[$.

* Si $\alpha = 1$ Appliquons la comparaison série intégrale pour $f \leftarrow (x \mapsto \frac{1}{x})$ $\begin{cases} \in \mathcal{C}^0([1, +\infty[, \mathbb{R}) \\ \text{décroissante sur } [1, +\infty[$

$$\forall n \in \mathbb{N}^*, \int_1^{n+1} \frac{\mathrm{d}u}{u} \leqslant \sum_{k=1}^n \frac{1}{k}$$

Ainsi,

$$\forall n \in \mathbb{N}^*, \ \underbrace{\ln(n+1)}_{n \to +\infty} \leqslant \sum_{k=1}^n \frac{1}{k}$$

Donc la série diverge.

28.4 Comparaison série-intégrale

Soit $n_0 \in \mathbb{N}$. Soit $f : [n_0, +\infty[\to \mathbb{R}$ une fonction continue et décroissante. Nous avons l'encadrement suivant :

$$\int_{n_0}^{n+1} f(t) dt \leqslant \sum_{k=n_0}^{n} f(k) \leqslant f(n_0) + \int_{n_0}^{n} f(t) dt$$
 (63)

Démonstration. Soit $k \in [n_0, +\infty]$ fixé quelconque.

$$\forall t \in [k, k+1], \ f(k+1) \leqslant f(t) \leqslant f(k)$$

$$\int_{k}^{k+1} f(k+1) \, \mathrm{d}t \leqslant \int_{k}^{k+1} f(t) \, \mathrm{d}t \leqslant \int_{k}^{k+1} f(k) \, \mathrm{d}t$$

$$f(k+1) \leqslant \int_{k}^{k+1} f(t) \, \mathrm{d}t \leqslant f(k)$$

Ainsi

$$\sum_{k=n_0}^{n} \int_{k}^{k+1} f(t) dt \leqslant \sum_{k=n_0}^{n} f(t)$$
$$\int_{n_0}^{n+1} f(t) dt \leqslant \sum_{k=n_0}^{n} f(k)$$

De même,

$$\forall k \in [n_0 + 1, +\infty[, f(k)] \le \int_{k-1}^k f(t) dt$$

$$\sum_{k=n_0+1}^n f(k) \le \sum_{k=n_0+1}^n \int_{k-1}^k f(t) dt$$

$$\sum_{k=n_0}^n f(k) \le f(n_0) + \int_{n_0}^n f(t) dt$$

D'où l'encadrement.

28.5 Pour f continue sur $[n_0, +\infty[$, décroissante et minorée, $\sum_{n \geqslant n_0} \left(f(n) - \int_n^{n+1} f(u) \, \mathrm{d}u \right)$ converge. Application au DA en o(1) de la somme partielle de la série harmonique

Soit $n_0 \in \mathbb{N}$ et $f : [n_0, +\infty[\to \mathbb{R}$ une fonction continue, décroissante et minorée par $m \in \mathbb{R}$. Alors la série de terme général

$$\left(f(n) - \int_{n}^{n+1} f(u) \, \mathrm{d}u\right)_{n \geqslant n_0}$$

est à termes positifs ou nuls et converge.

Démonstration. Montrons que la suite $(S_n)_{n\geqslant n_0}$ est majorée, et que la suite est à termes $\geqslant 0$ La décroissance de f donne l'encadrement suivant

$$\forall n \in [n_0, +\infty[, f(n) - \int_n^{n+1} f(t) dt \ge 0]$$

La comparaison série intégrale s'applique donc à f qui est décroissante et continue et donne

$$\forall n \in [n_0, +\infty][f(n+1)] \leqslant \int_n^{n+1} f(t) \, \mathrm{d}t \leqslant f(n) \implies -f(n+1) \geqslant -\int_n^{n+1} f(t) \, \mathrm{d}t$$

$$\implies f(n) - f(n+1) \geqslant f(n) - \int_n^{n+1} f(t) \, \mathrm{d}t \geqslant 0$$

En sommant sur $k \in [n_0, n]$

$$\sum_{k=n_0}^{n} (f(k) - f(k+1)) \geqslant \sum_{k=n_0}^{n} \left(f(k) - \int_{k}^{k+1} f(t) \, \mathrm{d}t \right) = S_n$$

En reconnaissant un phénomène télescopique

$$S_n \leqslant f(n_0) - f(n+1) \leqslant f(n_0) - n$$

Donc $(S_n)_{n\geqslant n_0}$ est majorée, et croissante, elle converge donc.

Application au DA en o(1) de la somme partielle de la série harmonique. Appliquons ce qui précède pour $f = x \mapsto 1/x$ et $n_0 = 1$. f est bien continue, décroissante et minorée (par 0). sur $[1; +\infty[$. Donc $\sum_{n\geqslant 1} \left(\frac{1}{n} - \int_n^{n+1} \frac{\mathrm{d}u}{u}\right)$ converge.

Notons
$$\gamma$$
 sa somme. Ainsi $\sum_{k=1}^n \left(\frac{1}{k} - \int_k^{k+1} \frac{\mathrm{d}u}{u}\right) \underset{n \to +\infty}{=} \gamma + o(1)$.

Remarquons que, pour tout
$$n \in \mathbb{N}$$
,
$$\sum_{k=1}^{n} \left(\frac{1}{k} - \int_{k}^{k+1} \frac{\mathrm{d}u}{u} \right) = H_n - \sum_{k=1}^{n} \left(\ln(k+1) - \ln(k) \right) = \frac{1}{n} \left(\ln(k+1) - \ln(k) \right)$$

$$H_n - \ln(n+1) + \ln 1 = H_n - \ln(n+1)$$

$$H_n - \ln(n+1) + \ln 1 = H_n - \ln(n+1).$$

Donc $H_n = \ln(n+1) + \gamma + o(1) = \ln n + \ln(1 + 1/n) + \gamma + o(1).$

$$H_n = \lim_{n \to +\infty} \ln n + \gamma + o(1)$$

La constante γ est appelé la constante d'Euler-Mascheroni et vaut environ 0,5772156649.

28.6 Théorème des séries alternées

Soit $(a_n)_{n \geq n_0} \in \mathbb{R}^{[n_0, +\infty[]}$ une suite réelle. Si

$$\left\{ \begin{array}{l} \forall n \in [\![n_0, +\infty [\![, a_n \geqslant 0 \\ (a_n)_{n \geqslant n_0} \text{ est d\'ecroissante} \\ \lim_{n \to \infty} a_n = 0 \end{array} \right.$$

alors $\sum_{n \geq n_0} (-1)^n a_n$

 \Diamond Traitons le cas $n_0 \equiv 0[2]$ il existe $p_0 \in \mathbb{N} : n_0 = 2p_0$

* Les suites $(S_{2p})_{p\geqslant p_0}$ et $(S_{2p+1})_{p\geqslant p_0}$ sont adjacentes :

$$\forall p \in \llbracket p_0, +\infty \llbracket, S_{2(p+1)} - S_{2p} = S_{2p+2} - S_{2p}$$

$$= \sum_{k=2p_0}^{2p+2} (-1)^k a_k + \sum_{k=2p_0}^{2p} (-1)^k a_k$$

$$= -a_{2p+1} + a_{2p+2} \leqslant 0 \text{ car } a \downarrow$$

$$S_{2(p+1)+1} - S_{2p+1} = S_{2p+3} - S_{2p+1} = (-1)^{2p+2} a_{2p+2} + (-1)^{2p+3} a_{2p+3} = a_{2p+2} - a_{2p+3} \geqslant 0 \text{ car } a \downarrow 0$$

Donc (S_{2p}) est décroissante et (S_{2p+1}) est croissante. De plus

$$S_{2p+1} - S_{2p} = (-1)^{2p+2} a_{2p+1} = \underbrace{-a_{2p+1}}_{\substack{p \to \infty \\ p \to 0}} \leqslant 0 \text{ car a positive}$$

Ainsi $(S_{2p})_{p\geqslant p_0}$ et $(S_{2p+1})_{p\geqslant p_0}$ sont adjacentes.

- * Donc d'après le théorème des suites adjacentes, (S_{2p}) et (S_{2p+1}) convergent vers une même limite ℓ , si bien que (S_n) converge vers ℓ .
- \star De plus, les suites $(S_{2p})_{p\geqslant p_0}$ et $(S_{2p+1})_{p\geqslant p_0}$ étant adjacentes, pour $n\geqslant n_0$ posons $R_n = \ell - S_n$
 - Si $n \equiv 0[2], \exists p \in [p_0, +\infty[: n = 2p \text{ donc}, \text{ puisque } (S_{2p}) \text{ est décroissante et } (S_{2p+1})$ est croissante, on a

$$S_{2n+1} \leqslant \ell \leqslant S_{2n} \implies S_{2n+1} - S_{2n} \leqslant \ell - S_{2n} \leqslant 0 \implies |R_{2n}| = |\ell - S_{2n}| \leqslant a_{2n+1}$$

- Si $n \equiv 1[2] \exists p \in \llbracket p_0, +\infty \rrbracket$: n = 2p + 1

$$S_{2p+1} \leqslant \ell \leqslant S_{2p+2} \implies 0 \leqslant \ell - S_{2p+1} \leqslant S_{2p+2} - S_{2p+1} = (-1)^{2p+2} a_{2p+2} = a_{2p+2}$$

donc
$$|R_{2p+1}| = |\ell - S_{2p+1}| \le a_{2p+2}$$

Bonus, par croissance de (S_{2p+1}) qui converge vers ℓ , $S_{2p+1} \leqslant \ell$ donc $a_{2p_0} - a_{2p_0+1} \leqslant \ell$ Donc $\ell \geqslant 0$ qui est bien le signe du premier terme de la série $(-1)^{n_0}a_{n_0}$ car $n_0 \equiv 0$ [2].

 \Diamond Le cas $n_0 \equiv 1[2]$ se traite de la même manière

28.7 L'absolue convergence implique la convergence

Soit $u \in \mathbb{K}^{[n_0,+\infty[}$ Si la série $\sum_{n\geqslant n_0} u_n$ est absolument convergente, alors la série $\sum_{n\geqslant n_0} u_n$ est convergente.

Démonstration. \Diamond Supposons que u est le terme général réel d'une série absolument convergente. Posons, pour tout $n \in \llbracket n_0, +\infty \rrbracket$, $u_n^+ = \max(u_n, 0)$ et $u_n^- = -\min(u_n, 0)$ Avec ces notations, $u_n^+ - u_n^- = u_n$ et $u_n^+ + u_n^- = |u_n|$.

$$\forall n \in [n_0, +\infty[, u_n^+ \geqslant 0 \text{ et } u_n^- \geqslant 0]$$

$$\forall n \geqslant n_0, 0 \leqslant u_n^+ \leqslant |u_n| = u_n^+ + u_n^-$$

$$\sum_{n \geqslant n_0} u_n \text{ est ACV} \Longrightarrow \sum_{n \geqslant n_0} |u_n| \text{ CV}$$

$$\forall n \geqslant n_0, u_n^+ \geqslant 0 \text{ et } |u_n| \geqslant 0$$

On montre de même que $\sum_{n\geqslant n_0}u_n^-$ converge, donc, par structure vectorielle de l'ensemble des termes généraux de suites convergentes, $\sum_{n\geqslant n_0}(u_n^+-u_n^-)=\sum_{n\geqslant n_0}u_n$ converge

♦ Cas d'une série complexe,

Posons, $\forall n \ge n_0, x_n = \text{Re}(u_n)$ et $y_n = \text{Im}(u_n)$ Alors,

$$\begin{array}{l} \forall n \geqslant n_0, |x_n| \leqslant |\mathrm{Re}(u_n)| \leqslant |u_n| \\ \forall n \geqslant n_0, |x_n| \geqslant 0 \text{ et } |u_n| \geqslant 0 \\ \sum_{n \geqslant n_0} u_n \text{ ACV} \implies \sum_{n \geqslant n_0} |u_n| \text{ CV} \end{array} \right\} \implies \sum_{n \geqslant n_0} |x_n| \text{ converge}$$

Donc d'après le cas réel, $\sum_{n\geqslant n_0} x_n$ converge On montre de même que $\sum_{n\geqslant n_0} y_n$ converge Donc, par structure vectorielle, $\sum_{n\geqslant n_0} (x_n+iy_n)$ converge. Donc u_n est le terme général d'une série convergente.

28.8 Décomposition d'une permutation en produit de cycles à supports disjoints puis en produit de transposition et calcul de son ordre

Démonstration. Prenons pour illustrer la décomposition

$$\sigma = \begin{pmatrix} 1 & \mapsto & 6 \\ 2 & \mapsto & 4 \\ 3 & \mapsto & 3 \\ 4 & \mapsto & 2 \\ 5 & \mapsto & 1 \\ 6 & \mapsto & 5 \end{pmatrix} \in \mathcal{S}_6$$

Il faut réaliser un "graphe des images". Chaque sommet est un nombre de [1;6] et pointe vers son image.

Nous pouvons voir que $\sigma = (1,6,5) \circ (2,4)$. De plus, $(1,6,5) = (1,6) \circ (6,5) \circ (5,1)$. Donc $\sigma = (1,6) \circ (6,5) \circ (5,1) \circ (2,4)$.

L'ordre d'une permutation est définit par $p(\sigma) = \min\{n \in \mathbb{N}^* \mid \sigma^n = Id\}$. $p(\sigma)$ est aussi le PPCM des ordres des permutations de sa décomposition en produit de cycles à supports disjoints. Ici, $p(\sigma) = 2 \vee 3 = 6$.

29 Semaine 29

29.1 Définition et cardinal du sous-groupe alternée A_n

Le noyau d'un morphisme de groupe étant toujours un sous-groupe du groupe de départ, le groupe alterné d'indice $n \in \mathbb{N}^*$ est le sous groupe de (S_n, \circ) obtenu en considérant le noyau du morphisme signature.

$$\mathcal{A}_n = \ker \varepsilon$$

 \mathcal{A}_n est de cardinal $\frac{n!}{2}$.

Démonstration. Fixons $\tau = (1, 2)$ Considérons

$$\Phi \left| \begin{array}{cc} \mathcal{A}_n & \to \mathcal{S}_n \setminus \mathcal{A}_n \\ \sigma & \mapsto \sigma \circ \tau \end{array} \right.$$

- Φ est bien définie : soit $\sigma \in \mathcal{A}_n$ fixée quelconque. Par propriété de morphisme de la signature, $\varepsilon(\sigma \circ \tau) = \varepsilon(\sigma) \times \varepsilon(\tau) = 1 \times (-1) = -1$ donc $\sigma \circ \tau \notin \mathcal{A}_n$ donc $\Phi(\sigma) \in \mathcal{S}_n \setminus \mathcal{A}_n$
- De plus, Φ est bijective en considérant

$$\Psi \left| \begin{array}{cc} \mathcal{S}_n \setminus \mathcal{A}_n & \to \mathcal{A}_n \\ \sigma & \mapsto \sigma \circ \tau \end{array} \right.$$

 $\Psi \circ \Phi = \mathrm{Id}_{\mathcal{A}_n} \text{ et } \Phi \circ \Psi = \mathrm{Id}_{\mathcal{S}_n \setminus \mathcal{A}_n}$

Ainsi,

$$|\mathcal{A}_n| = |\mathcal{S}_n \setminus \mathcal{A}_n| = |\mathcal{S}_n| - |\mathcal{A}_n|$$

D'où $|\mathcal{A}_n| = \frac{|\mathcal{S}_n|}{2} = \frac{n!}{2}$

29.2 Caractérisation des bases par le déterminant

 $D\'{e}monstration.$

* Supposons que la famille $\mathcal{B}' = (u_1, \dots, u_n) \in E^n$ est une base de E.

$$\det_{\mathcal{B}} \mathcal{B}' \times \det_{\mathcal{B}'} \mathcal{B} = 1 \implies \det_{\mathcal{B}} \mathcal{B}' \neq 0$$

* Supposons qu'il existe une base \mathcal{B} telle que $\det_{\mathcal{B}} \mathcal{B}' \neq 0$ Si \mathcal{B}' était liée, le déterminant serait nul, donc en contraposant, \mathcal{B}' n'est pas liée, et est de cardinal n, c'est une base.

29.3 Définition du déterminant d'un endomorphisme

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $F \in \mathcal{L}_{\mathbb{K}}(E)$

$$\exists! \lambda \in \mathbb{K} : \forall \mathcal{B} \text{ base de } E, \forall (u_1, \dots, u_n) \in E^n, \ \det_{\mathcal{B}}(f(u_1), \dots, f(u_n)) = \lambda \times \det_{\mathcal{B}}(u_1, \dots, u_n)$$

On appelle ce λ <u>le</u> déterminant de l'endomorphisme f.

 $D\acute{e}monstration.$ \Diamond Existence

Soit $\mathcal{B}_0 = (e_1, \dots, e_n)$ une base de E fixée. L'application

$$\varphi \mid E^n \longrightarrow \mathbb{K}$$

 $(u_1, \dots, u_n) \mapsto \det_{\mathcal{B}_0} (f(u_1), \dots, f(u_n))$

est

— Une forme n-linéaire : soient $(u_1, \ldots, u_n) \in E^n$ fixés quelconques $(u, v, \lambda) \in E^2 \times \mathbb{K}$

$$\varphi(v + \lambda.w, u_2, \dots, u_n) = \det_{\mathcal{B}_0} (f(v + \lambda.w), f(u_2), \dots, f(u_n))$$

$$= \det_{\mathcal{B}_0} (f(v) + \lambda.f(w), f(u_2), \dots, f(u_n)) \text{ par linéarité de } f$$

$$= \det_{\mathcal{B}_0} (f(v), f(u_2), \dots, f(u_n)) + \lambda \times \det_{\mathcal{B}_0} (f(w), f(u_2), \dots, f(u_n))$$
par linéarité de $\det_{\mathcal{B}_0}$

$$= \varphi(v, u_2, \dots, u_n) + \lambda \times \varphi(w, u_2, \dots, u_n)$$

Par conséquent, φ est linéaire en son premier argument. On prouve de même que φ est linéaire en ses n-1 autres arguments, ce qui montre sa n-linéarité.

— Alternée Soient $(u_1, \ldots, u_n) \in E^n$ tels qu'il existe $(i, j) \in [1, n]^2$ tels que $i \neq j$ et $u_i = u_j$ alors on a aussi $f(u_i) = f(u_j)$, si bien que le caractère alterné de $\det_{\mathcal{B}_0}$

$$\varphi(u_1,\ldots,u_n)=\det_{\mathcal{B}_0}(f(u_1),\ldots,f(u_n))=0$$

Donc $\varphi \in \wedge_{\mathbb{K}}^n = \text{Vect}\{\det_{\mathcal{B}_0}\}$

Donc

$$\exists \lambda_{\mathcal{B}_0} \in \mathbb{K} : \varphi = \lambda_{\mathcal{B}_0} \cdot \det_{\mathcal{B}}$$

d'où,

$$\forall (u_1,\ldots,u_n) \in E^n, \det_{\mathcal{B}_0}(f(u_1),\ldots,f(u_n)) = \lambda_{\mathcal{B}_0} \times \det_{\mathcal{B}_{\ell}}(u_1,\ldots,u_n)$$

Soit $\mathcal B$ une base de E fixée quelconque. Nous savons que

$$\det_{\mathcal{B}} = \det_{\mathcal{B}} \mathcal{B}_0. \det_{\mathcal{B}_0}$$

Donc en multipliant la relation précédente par $\det_{\mathcal{B}} \mathcal{B}_0$,

$$\forall (u_1, \dots, u_n) \in E^n, \underbrace{\det_{\mathcal{B}_0} \times \det_{\mathcal{B}_0} (f(u_1), \dots, f(u_n))}_{\det_{\mathcal{B}} (f(u_1), \dots, f(u_n))} = \lambda_{\mathcal{B}_0} \times \underbrace{\det_{\mathcal{B}_0} \times \det_{\mathcal{B}_0} (u_1, \dots, u_n)}_{\det_{\mathcal{B}} (u_1, \dots, u_n)}$$

Par conséquent, $\lambda_{\mathcal{B}_0}$ convient pour toute base \mathcal{B} .

 $\Diamond \ \underline{\text{Unicit\'e}} \ \text{Soit} \ \lambda \in \mathbb{K} \ \text{tel que}$

$$\forall \mathcal{B} \text{ base de } E, \forall (u_1, \dots, u_n) \in E^n, \det_{\mathcal{B}}(f(u_1), \dots, f(u_n)) = \lambda \times \det_{\mathcal{B}}(u_1, \dots, u_n)$$

Particularisons pour $\mathcal{B} \leftarrow \mathcal{B}_0$ et $(u_1, \dots, u_n) \leftarrow \mathcal{B}_0$

$$\det_{\mathcal{B}_0}(f(e_1),\ldots,f(e_n)) = \lambda \times \det_{\mathcal{B}_0} \mathcal{B}_0 = \lambda \times 1$$

Donc $\lambda = \det_{\mathcal{B}_0}(f(e_1), \dots, f(e_n))$ Or, en particularisant la relation définissant $\lambda_{\mathcal{B}_0}$ pour $(u_1, \dots, u_n) \leftarrow \mathcal{B}_0$

$$\lambda_{\mathcal{B}_0} = \det_{\mathcal{B}_0}(f(e_1), \dots, f(e_n))$$

donc $\lambda = \lambda_{\mathcal{B}_0}$

29.4 Le déterminant est un morphisme de $(\mathcal{L}_{\mathbb{K}}(E), \circ)$ dans (\mathbb{K}, \times) , application à la caractérisation des automorphismes

- $(i) \ \forall (f,g) \in \mathcal{L}_{\mathbb{K}}(E)^2, \ \det(f \circ g) = \det f \times \det g$
- (ii) $\forall f \in \mathcal{L}_K(E), f \in \mathcal{GL}_{\mathbb{K}}(E) \iff \det f \neq 0$

Démonstration. Fixons $\mathcal{B} = (e_1, \dots, e_n)$ une base de E

1. Soient $(f,g) \in \mathcal{L}_{\mathbb{K}}(E)^2$ fixés quelconques.

$$\begin{split} \det(f\circ g) &= \det_{\mathcal{B}}((f\circ g)(e_1),\dots,(f\circ g)(e_n)) \\ &= \det_{\mathcal{B}}(f(g(e_1)),\dots,f(g(e_n))) \\ &= \det f \times \det_{\mathcal{B}}(g(e_1),\dots,g(e_n)) \text{ par d\'efinition du d\'eterminant d'un endomorphisme} \\ &= \det f \times \det g \times \det_{\mathcal{B}}(e_1,\dots,e_n) \\ &= \det f \times \det g \end{split}$$

- 2. Soit $f \in \mathcal{L}_{\mathbb{K}}(E)$
 - Supposons $f \in \mathcal{GL}_{\mathbb{K}}(E)$ Appliquons la relation de morphisme pour $g \leftarrow f^{-1}$

$$\underbrace{\det(f \circ f^{-1})}_{=\det \mathrm{Id}_E} = \det f \times \det f^{-1}$$

Or, $\det \operatorname{Id}_E = \det_{\mathcal{B}}(e_1,\dots,e_n) = 1$ si bien que $\det f \times \det f^{-1} = 1$ on en déduit que $\det f \neq 0$ et d'autre part que $\det(f^{-1}) = \frac{1}{\det f}$

— Supposons que det $f \neq 0$ Par définition du déterminant d'un endomorphisme

$$\det_{\mathcal{B}}(f(e_1),\ldots,f(e_n)) = \det f \times \det_{\mathcal{B}}(e_1,\ldots,e_n) = \det f$$

Donc $\det_{\mathcal{B}}(f(e_1),\ldots,f(e_n))\neq 0$ si bien que $(f(e_1),\ldots,f(e_n))$ est une base de E, donc f envoie une base sur une base : c'est un automorphisme.

29.5 Produit d'une matrice carrée par la transposée de sa comatrice.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

$$A \times (\text{com}A)^T = (\text{com}A)^T \times A = \det A \times I_n$$
(64)

Démonstration. \Diamond Montrons que $A \times (\text{com} A)^T = \det A \times I_n$ Soient $(i,j) \in [\![1,n]\!]$ fixés quelconques

$$[A \times (\text{com}A)^{T}]_{i,j} = \sum_{k=1}^{n} A_{i,k} [(\text{com}A)^{T}]_{k,j}$$
$$= \sum_{k=1}^{n} A_{i,k} (\text{com}A)_{j,k}$$
$$= \sum_{k=1}^{n} A_{i,k} \times (-1)^{k+j} \Delta_{j,k}$$

 \star Supposons que i = j nous obtenons

$$[A \times (\text{com}A)^T]_{i,i} = \sum_{k=1}^n A_{i,k} \times (-1)^{k+i} \Delta_{i,k} = \det A$$

D'après la formule du développement du déterminant de A selon la i-ième ligne.

 \star Supposons que $i \neq j$ La formule peut être interprétée comme le développement selon la i-ième ligne du déterminant de la matrice obtenue à partir de A en remplaçant sa j-ième ligne par sa i-ième ligne :

$$[A \times (\text{com}A)^T]_{i,j} = \sum_{k=1}^n A_{i,k} \times (-1)^{k+j} \Delta_{j,k}$$

$$= \begin{vmatrix} L_1 \\ \vdots \\ L_{i-1} \\ L_i \\ \vdots \\ L_{j-1} \\ \vdots \\ L_{i+1} \\ \vdots \\ L_{i+1} \\ \vdots \\ L_n \end{vmatrix}$$

$$= 0$$

Car les lignes d'indice i et j sont identiques. Ainsi, pour tout $(i, j) \in [1, n]^2$, $[A \times (\text{com} A)^T]_{i,j} = \delta_{i,j} \times \det A$ Donc

$$[A \times (\text{com}A)^T]_{i,j} = \det A \times I_n$$

♦ On montre de même le produit dans l'autre sens.

29.6 Formule de Cramer

Le système linéaire AX = B d'inconnue $X \in \mathcal{M}_{n,1}(\mathbb{K})$ et de paramètre $B \in \mathcal{M}_{n,1}(\mathbb{K})$ est dit "de Cramer" s'il admet une unique solution, à savoir si A est une matrice inversible. Dans ce cas, la solution peut être exprimée explicitement par la formule $A^{-1}B$ qui donne la formule dite de Cramer :

$$\left(\frac{\left|B\mid C_{2}\mid \cdots\mid C_{n}\right|}{\det A}, \dots, \frac{\left|C_{1}\mid \cdots\mid C_{i-1}\mid B\mid C_{i+1}\mid \cdots\mid C_{n}\right|}{\det A}, \dots, \frac{\left|C_{1}\mid C_{2}\mid \cdots\mid B\right|}{\det A}\right) \tag{65}$$

où $(C_1, \ldots, C_n) \in \mathcal{M}_{n,1}(\mathbb{K})^n$ sont les colonnes de A.

Démonstration. Partons de l'expression de l'inverse avec la comatrice :

$$X = A^{-1}B = \frac{1}{\det A}(\operatorname{com} A)^T B$$

Soit $i \in [1, n]$.

$$X_{i,1} = \frac{1}{\det A} [(\cos A)^T B]_{i,j}$$

$$= \frac{1}{\det A} \sum_{k=1}^n [(\cos A)^T]_{i,k} B_{k,1}$$

$$= \frac{1}{\det A} \sum_{k=1}^n (\cos A)_{k,i} B_{k,1}$$

$$= \frac{1}{\det A} \sum_{k=1}^n (-1)^{k+i} \Delta_{k,i} B_{k,1}$$

qui s'interprète comme le développement selon la i-ième colonne de la matrice

$$= \frac{1}{\det A} \left| C_1 \right| \dots \left| C_{i-1} \right| B \left| C_{i+1} \right| \dots \left| C_n \right|$$

29.7 Calcul du déterminant de Vandermonde

$$\forall n \in \mathbb{N}, \forall a \in \mathbb{K}^{\mathbb{N}}, \ V(a_0, a_1, \dots, a_n) = \begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ a_0 & a_1 & a_2 & \dots & a_n \\ a_0^2 & a_1^2 & a_2^2 & \dots & a_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_0^n & a_1^n & a_2^n & \dots & a_n^n \end{vmatrix} = \prod_{0 \leqslant i < j \leqslant n} (a_j - a_i)$$
 (66)

Démonstration. Posons

$$\mathcal{P}(n): \forall (a_0, \dots, a_n) \in \mathbb{K}^{n+1}, V(a_0, \dots, a_n) = \prod_{0 \le i < j \le n} (a_j - a_i)$$

 \Diamond Initialisation $n \leftarrow 2$ Soient $(a_0, a_1) \in \mathbb{K}^2$

$$\begin{vmatrix} 1 & 1 \\ a_0 & a_1 \end{vmatrix} = a_1 - a_0$$

- \Diamond <u>Hérédité</u>, soit $n \in \mathbb{N}^*$ fixé quelconque tel que $\mathcal{P}(n)$ est vraie. Soient $(a_0, a_1, \dots, a_{n+1}) \in \mathbb{K}^{n+2}$ fixés quelconques.
 - Supposons que les éléments de $\{a_0, \ldots, a_{n+1}\}$ ne sont pas tous deux à deux distincts. Alors le déterminant à calculer possède deux colonnes identiques donc il est nul, et la formule avec laquelle il doit coïncider s'annule également, donc $\mathcal{P}(n+1)$ est vraie dans ce cas
 - Supposons que les éléments de $\{a_0,\ldots,a_{n+1}\}$ sont tous distincts. Notons

$$Q(X) = \begin{vmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ a_0 & a_1 & a_2 & \dots & a_n & X \\ a_0^2 & a_1^2 & a_2^2 & \dots & a_n^2 & X^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_0^n & a_1^n & a_2^n & \dots & a_n^n & X^n \\ a_0^{n+1} & a_1^{n+1} & a_2^{n+1} & \dots & a_n^{n+1} & X^{n+1} \end{vmatrix}$$

Sachant que le déterminant d'une matrice est une somme de produits de coefficients de la matrice, puisque tous les coefficients du déterminant Q(X) sont des polynômes en X, $Q(X) \in \mathbb{K}[X]$ (car $\mathbb{K}[X]$ est un anneau et donc stable par produit). De plus, en développant le déterminant Q(X) selon sa dernière colonne, on observe d'une part que deg $Q \leq n+1$ et d'autre part que le coefficient de X^{n+1} est le cofacteur de X^{n+1} qui est, d'après $\mathcal{P}(n)$

$$\prod_{0 \leqslant i < j \leqslant n} (a_j - a_i)$$

Et, comme tous les a_i sont distincts, ce coefficient est non-nul, donc $\deg Q=n+1$ De plus, $Q(a_0)=0, Q(a_1)=0, \ldots, Q(a_n)=0$ car le déterminant présente dans chacun des calculs deux colonnes égales. Nous en déduisons que Q admet au moins (n+1) racines deux à deux distinctes, or son degré est exactement n+1 donc - il n'y a aucune autre racine - elles sont toutes simples

La forme factorisée de Q est donc

$$Q(X) = \left(\prod_{0 \leqslant i < j \leqslant n} (a_j - a_i)\right) \times \prod_{k=0}^{n} (X - a_k)^1$$
coefficient dominant
$$n+1 \text{ racines simples}$$

Donc

$$V(a_0, a_1, \dots, a_{n+1}) = Q(a_{n+1})$$

$$= \left(\prod_{0 \le i < j \le n} (a_j - a_i)\right) \times \prod_{k=0}^{n} (a_{n+1} - a_k)$$

$$= \left(\prod_{0 \le i < j \le n} (a_j - a_i)\right) \prod_{\substack{0 \le i < j \\ j = n+1}}^n (a_j - a_k)$$
$$= \prod_{0 \le i < j \le n+1} (a_j - a_i)$$

Donc $\mathcal{P}(n+1)$ est vraie

30 Semaine 30

30.1 Inégalité de Cauchy-Schwartz dans un espace préhilbertien réel, cas d'égalité

$$\forall (x,y) \in E^2, \ |\langle x|y\rangle| \leqslant ||x|| ||y|| \tag{67}$$

Il y a égalité si et seulement si x et y sont liés.

Démonstration. Soit E un R-espace vectoriel, et $\langle \cdot | \cdot \rangle$ un produit scalaire sur E. Soient $(x,y) \in E^2$

- 1. \star Si y=0, l'inégalité est une égalité et est évidente
 - * Sinon, posons

$$P: \left| \begin{array}{ll} \mathbb{R} & \to \mathbb{R} \\ t & \mapsto \langle x+t.y|x+t.y \rangle = t^2 \|y\|^2 + 2t \, \langle x|y \rangle + \|x\|^2 \end{array} \right|$$

Puisque $\|y\|^2 \neq 0$, P est un polynôme de degré 2 à coefficients réels et positif d'après le caractère positif du produit scalaire (on a donc $\forall t \in \mathbb{R}, P(t) \geq 0$) Le discriminant de cette fonction polynômiale est $\Delta = 4 \langle x|y \rangle^2 - 4\|x\|^2 \|y\|^2$, qui est obligatoirement négatif ou nul puisque P admet au mieux une racine double. Donc $\langle x|y \rangle^2 - \|x\|^2 \|y\|^2 \leq 0$ donc en prenant la racine carrée $|\langle x|y \rangle| \leq \|x\| \|y\|$.

2. \star Supposons que (x,y) est liée, sans perte de généralité, supposons $y=\lambda .x$ alors

$$|\langle x|\lambda.x\rangle| = |\lambda| \langle x|x\rangle = |\lambda| ||x||^2 = ||x|| ||\lambda.x||$$

Donc l'inégalité est une égalité.

- \star Réciproquement, supposons que $|\langle x|y\rangle|=\|x\|\|y\|$
 - Si y = 0 alors (x, y) est liée
 - Sinon, $\Delta = 4(\langle x|y\rangle^2 ||x|||y||) = 0$ P est un polynôme de degré 2 de discriminant nul : il admet une racine double λ Ainsi

$$P(\lambda) = 0 \implies \langle x + \lambda . y | x + \lambda . y \rangle = 0$$

Donc $x + \lambda y = 0_E$ d'après le caractère défini du produit scalaire.

30.2 Isomorphisme entre un espace euclidien et l'espace de ses formes linéaires (Théorème de représentation de Riesz)

L'application

$$\chi \left| \begin{array}{ccc} E & \to E^* \\ x & \mapsto \left(\begin{array}{ccc} E & \to \mathbb{R} \\ y & \mapsto \langle x|y \rangle \end{array} \right) \right.$$
(68)

est un isomorphisme d'espaces vectoriels. χ est appelé l'isomorphisme canonique entre un espace vectoriel euclidien et son espace dual.

 $\begin{array}{ll} \textit{D\'{e}monstration.} & \star \ \chi \text{ est bien d\'{e}finie car, } \forall x \in E, \text{ par lin\'earit\'e du produit scalaire en sa seconde} \\ & \text{variable, } \chi(x) : \left| \begin{array}{cc} E & \to \mathbb{R} \\ y & \mapsto \langle x|y \rangle \end{array} \right. \text{ est une forme linaire sur } E. \end{array}$

* Soient $(x, x') \in E^2$ et $\lambda \in \mathbb{R}$ fixés quelconques

$$\forall y \in E, \chi(x + \lambda.x')(y) = \langle x + \lambda.x' | y \rangle$$

$$= \langle x | y \rangle + \lambda \times \langle x' | y \rangle$$

$$= \chi(x)(y) + \lambda \times \chi(x')(y)$$

$$= (\chi(x) + \lambda.\chi(x'))(y)$$

Donc $\chi(x + \lambda x') = \chi(x) + \lambda \cdot \chi(x')$, donc χ est linéaire.

* Soit $x \in \ker \chi$ fixé quelconque. Alors $\chi(x) = 0_{E^*}$

$$\forall y \in E, \langle x|y \rangle = 0$$

Donc $x \in E^{\perp} = \{0_E\}$ donc $x = 0_E$ Donc χ est injective, or E et E^* sont de même dimension, donc χ est bijective. Donc χ est un isomorphisme.

30.3 Si F est un sous-espace vectoriel de dimension finie d'un espace préhilbertien réel, F^{\perp} est son supplémentaire orthogonal

Démonstration. Soient $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien réel, et F un sous espace vectoriel de dimension finie. Alors F et F^{\perp} sont supplémentaires orthogonaux, i.e.

$$E = F \stackrel{\perp}{\oplus} F^{\perp} \tag{69}$$

En notant $r = \dim F$, fixons une base orthonormale (e_1, \ldots, e_r) de F, possible car F est un espace euclidien (dimension finie et muni du produit scalaire induit par E).

♦ Analyse

Soit $x \in E$ fixé quelconque, supposons que $\exists (x_{/\!\!/}, x_{\perp}) \in F \times F^{\perp} = x_{/\!\!/} + x_{\perp}$ D'abord

$$x_{/\!\!/} \in F \implies \exists (\lambda_1, \dots, \lambda_r) \in \mathbb{R}^r : x_{/\!\!/} = \sum_{i=1}^r \lambda_i . e_i$$

Soit $j \in [1, r]$ fixé quelconque

$$\begin{split} \langle x|e_j\rangle &= \left\langle \sum_{i=1}^r \lambda_i.e_i + x_\perp \middle| e_j \right\rangle \\ &= \sum_{i=1}^r \lambda_i \times \underbrace{\langle e_i|e_j\rangle}_{\delta_{ij}} + \underbrace{\langle x_\perp \middle| e_j\rangle}_{\in F^\perp} \\ &= \lambda_j \end{split}$$

Ainsi,

$$\begin{cases} x_{/\!\!/} &= \sum_{i=1}^r \lambda_i.e_i = \sum_{i=1}^r \left\langle x|e_i \right\rangle.e_i \\ x_{\perp} &= x - x_{/\!\!/} \end{cases}$$

♦ Synthèse

Posons donc

$$\begin{cases} x_{\#} &= \sum_{i=1}^{r} \langle x | e_i \rangle . e_i \\ x_{\perp} &= x - x_{\#} \end{cases}$$

- $\star~(e_1,\ldots,e_r)$ est une base de F donc $x_{/\!\!/}\in F$
- $\star x_{/\!/} + x_{\perp} = x_{/\!/} + (x x_{/\!/}) = x$
- * Soit $j \in [1, r]$ fixé quelconque. Calculons $\langle x_{\perp} | e_j \rangle$

$$\langle x_{\perp}|e_{j}\rangle = \langle x|e_{j}\rangle - \left\langle \sum_{i=0}^{r} \langle x|e_{i}\rangle .e_{i} \middle| e_{j} \right\rangle$$
$$= \langle x|e_{j}\rangle - \sum_{i=0}^{r} \langle x|e_{i}\rangle \underbrace{\langle e_{i}|e_{j}\rangle}_{\delta_{ij}}$$
$$= \langle x|e_{j}\rangle - \langle x|e_{j}\rangle = 0$$

Donc $x_{\perp} \in \{e_1, \dots, e_r\}^{\perp}$ Donc $x_{\perp} \in \text{Vect}\{e_1, \dots, e_r\}^{\perp} = F^{\perp}$

Ainsi, F et F^{\perp} sont supplémentaires orthogonaux.

De plus

$$\forall x \in E, x = \underbrace{\sum_{i=1}^{r} \left\langle x | e_i \right\rangle . e_i}_{\in F} + \underbrace{x - \sum_{i=1}^{r} \left\langle x | e_i \right\rangle . e_i}_{\in F^{\perp}}$$

Donc

$$p_F^{\perp}(x) = \sum_{i=1}^r \langle x | e_i \rangle . e_i$$

30.4 Orthonormalisation de la base canonique de $\mathbb{R}_2[X]$

On utilisera le produit scalaire

$$\langle P|Q\rangle = \int_0^1 P(u)Q(u)\,\mathrm{d}u$$

Démonstration. Partons de la base canonique de $\mathbb{R}_2[X]$.

- $\star P_1 = X^0$ est un vecteur unitaire avec ce produit scalaire
- \star Calcul du second vecteur

$$P_2' = X - \langle X|1 \rangle .1 = X - \left(\int_0^1 u \, du\right) .1 = X - \frac{1}{2}$$

$$P_2 = \frac{P_2'}{1 + 2} = \frac{$$

$$P_2 = \frac{P_2'}{\|P_2'\|} = \frac{P_2'}{\sqrt{\langle P_2'|P_2'\rangle}} = \frac{P_2'}{\sqrt{\int_0^1 \left(u - \frac{1}{2}\right)^2 du}} = \frac{P_2'}{\sqrt{\frac{1}{12}}} = \sqrt{12}P_2'$$

Ce qui donne

$$P_2' = 2\sqrt{3}X - \sqrt{3}$$

* Enfin,

$$\begin{split} P_3' &= X^2 - \left\langle X^2 | 2\sqrt{3}X - \sqrt{3} \right\rangle . (2\sqrt{3}X - \sqrt{3}) - \left\langle X^2 | 1 \right\rangle . 1 \\ &= X^2 - \left(\int_0^1 2\sqrt{3}u^3 - \sqrt{3}u^2 \, \mathrm{d}u \right) . (2\sqrt{3}X - \sqrt{3}) - \left(\int_0^1 u^2 \, \mathrm{d}u \right) . 1 \\ &= X^2 - \frac{\sqrt{3}}{6} (2\sqrt{3}X - \sqrt{3}) - \frac{1}{3} \\ &= X^2 - X + \frac{1}{6} \end{split}$$

$$P_3 = \frac{P_3'}{\|P_3'\|} = \frac{P_3'}{\sqrt{\langle P_3 | P_3 \rangle}} = \frac{P_3'}{\sqrt{\int_0^1 \left(u^2 - u + \frac{1}{6}\right)^2 du}} = \frac{P_3'}{\sqrt{\frac{1}{180}}} = 6\sqrt{5}P_3' = 6\sqrt{5}\left(X^2 - X + \frac{1}{6}\right)$$

Donc une base orthonormée de $\mathbb{R}_2[X]$ muni de ce produit scalaire est

$$\left(1, \ 2\sqrt{3}X - \sqrt{3}, \ 6\sqrt{5}\left(X^2 - X + \frac{1}{6}\right)\right)$$

30.5 Distance d'un vecteur à un sous-espace vectoriel de dimension finie

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien Réel. Soient F un sous espace vectoriel de dimension finie de E, et $x \in E$.

L'ensemble $\{||x-z|| \mid z \in F\}$ admet une borne inférieure appelée distance de x à F et notée d(x,F), qui est un plus petit élément, atteinte uniquement pour pour $z=p_F^{\perp}(x)$

Démonstration. $\{\|x-z\| \mid z \in F\}$ est une partie de \mathbb{R} , non vide car elle contient $\|x\|$ pour $z \leftarrow 0_F$ d'éléments positifs ou nuls. Elle admet donc une borne inférieure

E est un espace euclidien, donc $E=F\stackrel{\perp}{\oplus} F^{\perp}$ donc x se décompose selon ces supplémentaires orthogonaux

$$x = \underbrace{p_F^{\perp}(x)}_{\in F} + \underbrace{x - p_F^{\perp}(x)}_{\in F^{\perp}}$$

si bien que, pour tout $z \in F$

$$\|x - z\|^2 = \|p_F^{\perp}(x) - z + x - p_F^{\perp}(x)\|^2$$

= $\|p_F^{\perp}(x) - z\|^2 + \|x - p_F^{\perp}(x)\|^2$ d'après le théorème de Pythagore
 $\geqslant \|x - p_F^{\perp}(x)\|^2$

En prenant la racine carrée,

$$\forall z \in F, \|x - z\| \geqslant \|x - p_F^{\perp}(x)\|$$

D'où $||x-p_F^{\perp}(x)||$ minore $\{||x-z|| \mid z \in F\}$ et donc sa borne inférieure.

Or, en remonant le calcul précédent, il y a égalité pour $z=p_F^\perp(x)$ si bien que la borne inférieure est un plus petit élément, et vaut $d(x,F)=\|x-p_F^\perp(x)\|$

De plus, si $z' \in F$ atteint ce plus petit élément on a

$$||x - z'||^2 = ||p_F^{\perp}(x) - z' + x - p_F^{\perp}(x)||^2$$
$$||x - p_F^{\perp}(x)||^2 = ||p_F^{\perp}(x) - z'||^2 + ||x - p_F^{\perp}(x)||^2$$
$$0 = ||p_F^{\perp}(x) - z'||^2$$

Si bien que $p_F^{\perp}(x) - z' = 0_E$ d'après le caractère défini du produit scalaire. Donc le plus petit élément $d(x, F) = \min\{||x - z|| \mid z \in F\}$ est uniquement atteint pour $z = p_F^{\perp}(x)$.

30.6 Distance à un sous-espace affine

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace vectoriel euclidien, $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormée de E. Soit $u = \sum_{i=1}^n u_i.e_i$ un vecteur de E. Soient $(a_1, \dots, a_n) \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$, $\alpha \in \mathbb{R}$ et H_α l'hyperplan affine d'équation

$$\sum_{i=1}^{n} a_i x_i = \alpha$$

Démonstration. Posons $a = \sum_{i=1}^{n} a_i.e_i \ H_0$ est un hyperplan vectoriel et, $H_0 = a^{\perp}$ et $H_0^{\perp} = \operatorname{Vect}\{a\}$ Introduisons $h_{\alpha} \in a^{\perp}$ tel que $H_{\alpha} = h_{\alpha} + H_0$ et souvenons nous que $h_{\alpha} = \frac{\alpha}{\|a\|^2}.a$

Observons que l'égalité $H_{\alpha} = h_{\alpha} + H_0$ donne

$$\{\|u - z\| \mid z \in H_{\alpha}\} = \{\|u - (h_{\alpha} + z')\| \mid z' \in H_{0}\} = \{\|(u - h_{\alpha}) - z'\| \mid z' \in H_{0}\}$$

or, d'après la caractérisation de la distance à un sous-espace quelconque, on a

- * L'ensemble $\{\|(u-h_{\alpha})-z'\| \mid z' \in H_0\}$ admet une borne inférieure donc $\{\|u-z\| \mid z \in H_{\alpha}\}$ aussi qui vaut $d(u-h_{\alpha},H_0)$, ce qui prouve que $d(u,H_{\alpha})$ est bien définie
- * $\inf\{\|(u-h_{\alpha})-z'\|\mid z'\in H_0\}$ est un plus petit élément atteint pour l'unique valeur $z'=p_{H_0}^{\perp}(u-h_{\alpha})=p_{H_0}^{\perp}(u)$ car $h_{\alpha}\in H_0^{\perp}=\ker p_{H_0}^{\perp}$, donc $\mathrm{d}(u,\mathrm{H}_{\alpha})=\inf\{\|u-z\|\mid z\in H_{\alpha}\}$ est un plus petit élément atteint pour l'unique valeur $z=h_{\alpha}+p_{H_0}^{\perp}(u-h_{\alpha})=h_{\alpha}+p_{H_0}^{\perp}(u)$

$$d(u, H_{\alpha}) = ||u - h_{\alpha} - p_{H_0}^{\perp}(u)||$$

Or $u - p_{H_0}^{\perp}(u) = (\text{Id} - p_{H_0}^{\perp})(u) = p_{H_0^{\perp}}^{\perp}(u) = \left\langle u | \frac{a}{\|a\|} \right\rangle \cdot \frac{a}{\|a\|}$ car $H_0^{\perp} = \text{Vect}\{a\}$ d'où, sachant aussi que $h_{\alpha} = \frac{\alpha}{\|a\|^2} . a$

$$d(u, H_{\alpha}) = \|p_{H_0^{\perp}}^{\perp}(u) - h_{\alpha}\| = \left\| \left\langle a | \frac{a}{\|a\|} \right\rangle \cdot \frac{a}{\|a\|} - \frac{\alpha}{\|a\|^2} \cdot a \right\|$$

30.7 Dénombrement des surjections de [1; n] dans [1; 2] et dans [1; 3]

 $\begin{array}{ll} \textit{D\'{e}monstration.} \text{ Soit } n \in \mathbb{N}^*. \\ \text{Il y a } |[\![1;2]\!]|^{|[\![1;n]\!]|} = 2^n \text{ applications de } [\![1;n]\!] \text{ dans } [\![1;2]\!]. \text{ Seules les applications constantes } \widetilde{1}. \end{array}$ et $\widetilde{2}$ ne sont pas surjectives. Il y a donc 2^n-2 surjections de [1;n] dans [1;2].

Il y a $|[1;3]|^{|[1;n]|} = 3^n$ applications de [1;n] dans [1;3]. Les applications non surjectives sont celles dont l'image n'est pas [1; 3]. C'est-à-dire, celles dont l'image est de cardinal 1 (les fonctions constantes $\widetilde{1}$, $\widetilde{2}$ et $\widetilde{3}$) et celles dont l'image est de cardinal 2. Ces dernières sont les surjections de [1;n] dans [1;2], $\{1;3\}$ et $\{2;3\}$. Comme ces trois ensembles ont la même taille, il y a $3\times(2^n-2)$ (voir résultat précédent) applications de [1;n] dans [1;3] dont l'image est de cardinal 2. Ainsi, le nombre de surjections de [1; n] dans [1; 3] est $3^n - 3 - 3(2^n - 2) = 3^n - 3 \times 2^n + 3$.

30.8 Lemme des bergers

Soient E, F deux ensembles finis non vides et $f: E \to F$ telle que tout élément de F possède le même nombre $k \in \mathbb{N}^*$ d'antécédents par f. Alors $|F| = \frac{|E|}{k}$

"Pour compter les moutons, il faut compter les pattes puis diviser par quatre."

 $D\acute{e}monstration$. Considérons la relation binaire définie sur E par :

$$\forall (x,y) \in E^2, x \sim y \iff f(x) = f(y)$$

Elle est réflexive, transitive et symétrique donc c'est bien une relation d'équivalence. Donc les classes d'équivalence réalise une partition de E. Nous avons $E = \bigcup_{i=1}^{n} C_i$ donc, en passant aux

cardinaux, $|E| = \sum_{C \in E/\sim} |C|$.

Soit $x \in E$ fixé quelconque. Alors $\bar{x} = \{y \in E \mid f(x) = f(y)\} = f^{-1}(f(\{x\}))$. Par hypothèse, tous les éléments de F ont le même nombre k d'antécédents, or f(x) est un singleton d'élément de

 $F \text{ donc } |\bar{x}| = k. \text{ Ainsi } \forall C \in E/\sim, |C| = k.$ Posons $\varphi \mid E/\sim F \mid F \mid C \rightarrow f(x)$ où $x \in C$. φ est bien défini car si $(x,y) \in E$ vérifie $\bar{x} = \bar{y}$ alors f(x) = f(y) donc l'image par φ ne dépend pas du représentant de classe choisi. φ est surjective car soit $z \in F$, f est surjective donc $\exists x_z \in E : f(x_z) = z$ et alors $\varphi(\bar{x_z}) = f(x_z) = z$. φ est injective car soient $(C,C') \in (E/\sim)^2$, $\varphi(C) = \varphi(C')$ alors $\exists (x,x') \in C \times C' : x \sim x'$, comme deux classes

d'équivalence sont confondues ou disjointes,
$$C=C'$$
. Ainsi φ est une bijection donc $|F|=|E'|$. Ainsi $|E|=\sum_{C\in E/\sim}|C|=\sum_{C\in E/\sim}k=|E'|$. \square

31 Semaine 31

Pour cette semaine, E est un ensemble fini de cardianl $n \in \mathbb{N}^*$ et (Ω, \mathbb{P}) désigne un espace probabilisé fini.

31.1 p-partage d'un ensemble E et leur dénombrement

Soit $p \in \mathbb{N}^*$. Un p-partage de E est un p-liste $(A_1, \ldots, A_p) \in \mathcal{P}(E)^p$ de parties de E (éventuellement vide), deux à deux disjointes qui recouvrent E c'est-à-dire telles que t:

$$\forall (i,j) \in [1;p], i \neq j \implies A_i \cap A_j = \emptyset \qquad \text{et} \qquad \bigcup_{i=1}^p A_i = E$$
 (70)

Soient $(n_1, \dots n_p) \in \mathbb{N}^p$ tels que $n = n_1 + \dots + n_p$ est un p-partage de E tel que

$$\forall (i,j) \in [1;p], |A_i| = n_i$$

Le nombre de p-partage de type (n_1, \ldots, n_p) est :

$$\frac{n!}{\prod_{i=1}^{p} n_i!} \tag{71}$$

Démonstration. Considérons les p-partages de type (n_1, \ldots, n_p) et appliquons le principe des choix successifs :

$$\begin{pmatrix}
A_1, & A_2, & A_3, & \dots, & A_p \\
\binom{n}{n_1} \operatorname{choix} & \binom{n}{n_2} \operatorname{choix} & \binom{n}{n_3} \operatorname{choix} & \binom{n}{n_n} \operatorname{choix}
\end{pmatrix}$$

donc il y a

$$\frac{n!}{n_1!(n-n_1)!} \frac{(n-n_1)!}{n_2!(n-n_1-n_2)!} \frac{(n-n_1-n_2)!}{n_2!(n-n_1-n_2-n_3)!} \cdots \frac{(n-(n_1+\ldots+n_{p-1})!}{n_p!(n_1+\ldots+n_p)!}$$

Donc, au total, il y a $\frac{n!}{n_1!n_2!\dots n_p!}$ p-partages.

31.2 Une probabilité conditionnelle est une probabilité

Soit B un évènement de probabilité non nulle. L'application \mathbb{P}_B

$$\mathbb{P}_{B} \left| \begin{array}{ccc} \mathcal{P}(\Omega) & \mapsto & [0;1] \\ A & \to & \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \end{array} \right. \tag{72}$$

est une probabilité sur sur Ω .

Démonstration.

- Soit $A \in \mathcal{P}(\Omega)$ fixé quelconque. On a $\emptyset \subset A \cap B \subset B$ donc par croissance de la probabilité, $0 = \mathbb{P}(\emptyset) \leqslant \mathbb{P}(A \cap B) \leqslant \mathbb{P}(B)$. En divisant par $\mathbb{P}(B) \neq 0$, $0 \leqslant \mathbb{P}_B(A) \leqslant 1$. Donc \mathbb{P}_B est bien définie.
- $\mathbb{P}_B(\Omega) = \frac{\mathbb{P}(\Omega \cup B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1$
- Soient $(A, A') \in \mathcal{P}(\Omega)^2$ fixés quelconques tels que A et A' sont incompatibles.

$$\mathbb{P}_{B}(A \sqcup A') = \frac{\mathbb{P}(B \cap (A \sqcup A'))}{\mathbb{P}(B)} \\
= \frac{\mathbb{P}((B \cap A) \sqcup (B \cap A'))}{\mathbb{P}(B)} \operatorname{car} (B \cap A) \cap (B \cap A') \subset A \cap A' = \emptyset \\
= \frac{\mathbb{P}(B \cap A) + \mathbb{P}(B \cap A')}{\mathbb{P}(B)} \\
= \mathbb{P}_{B}(A) + \mathbb{P}_{B}(A')$$
(73)

Ainsi, \mathbb{P}_B est bien une probabilité sur Ω .

31.3 Si A et B sont des événements indépendants, alors A et \overline{B} aussi

Démonstration. Supposons donc que $0 \leq \mathbb{P}(A) \leq 1$ et $0 \leq \mathbb{P}(B) \leq 1$. D'une part, $\{B, \bar{B}\}$ constitue un système complet donc

$$\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap \bar{B})$$

$$\iff \mathbb{P}(A) = \mathbb{P}(A)\mathbb{P}(B) + \mathbb{P}(A \cap \bar{B})$$

$$\iff \mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B) = \mathbb{P}(A \cap \bar{B})$$

$$\iff \mathbb{P}(A)(1 - \mathbb{P}(B)) = \mathbb{P}(A \cap \bar{B})$$

$$\iff \mathbb{P}(A)\mathbb{P}(\bar{B}) = \mathbb{P}(A \cap \bar{B})$$

Donc A et \bar{B} sont indépendants

31.4 Formule des probabilités composées

$$\forall n \in \mathbb{N}^*, \ \forall A \in \mathcal{P}(\Omega)^n, \ \mathbb{P}\left(\bigcap_{i=1}^k A_i\right) = \mathbb{P}(A_1)\mathbb{P}_{A_1}(A_2)\mathbb{P}_{A_1 \cap A_2}(A_3)\dots\mathbb{P}_{A_1 \cap \dots \cap A_{n-1}}(A_n)$$
 (74)

Démonstration. Procédons par récurrence. Soient (A_1, \ldots, A_n) , n événements tels que $\mathbb{P}\left(\bigcap_{i=1}^n A_i\right) \neq 0$. Pour tout $k \in [\![2,n]\!]$, posons

$$\mathcal{H}_k: "\mathbb{P}\left(\bigcap_{i=1}^k A_i\right) = \mathbb{P}(A_1)\mathbb{P}_{A_1}(A_2)\mathbb{P}_{A_1\cap A_2}(A_3)\mathbb{P}_{A_1\cap A_2\cap A_3}(A_4)\dots\mathbb{P}_{A_1\cap \dots\cap A_{k-1}}(A_k)"$$

* Initialisation, $k \leftarrow 2$ d'une part, $\bigcap_{i=1}^n A_i \subset A_1$, donc par croissance de \mathbb{P} ,

$$0 < \mathbb{P}\left(\bigcap_{i=1}^{n} A_i\right) \leqslant \mathbb{P}(A_1)$$

Si bien que $\mathbb{P}(A_1) \neq 0$ donc la probabilité conditionnelle \mathbb{P}_{A_1} a un sens. D'où, par définition d'une probabilité conditionnelle :

$$\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1)\mathbb{P}_{A_1}(A_2)$$

Donc \mathcal{H}_2 est vérifiée.

* Hérédité, Soit $k \in [2, n-1]$ fixé quelconque tel que \mathcal{H}_k est vérifiée. D'abord, remarquons que $\bigcap_{i=1}^n A_i \subset \bigcap_{i=1}^k A_i$ donc par croissance de \mathbb{P} ,

$$0 < \mathbb{P}\left(\bigcap_{i=1}^{n} A_i\right) \leqslant \mathbb{P}\left(\bigcap_{i=1}^{k} A_i\right)$$

Si bien que $\mathbb{P}\left(\bigcap_{i=1}^k A_i\right) \neq 0$ donc la probabilité conditionnelle $\mathbb{P}_{A_1 \cap \dots \cap A_k}$ a un sens.

$$\mathbb{P}\left(\bigcap_{i=1}^{k+1} A_i\right) = \mathbb{P}\left(\left(\bigcap_{i=1}^k A_i\right) \cap A_{k+1}\right)$$

$$= \mathbb{P}\left(\bigcap_{i=1}^k A_i\right) \mathbb{P}_{\bigcap_{i=1}^k A_i}(A_{k+1})$$

$$= \mathbb{P}(A_1) \mathbb{P}_{A_1}(A_2) \mathbb{P}_{A_1 \cap A_2}(A_3) \dots \mathbb{P}_{A_1 \cap \dots \cap A_{k-1}}(A_k) \mathbb{P}_{A_1 \cap \dots \cap A_k}(A_{k+1})$$

Donc \mathcal{H}_{k+1} est aussi vérifiée

31.5 Formule des probabilités totales et formule de Bayes

Démonstration. Formule des probabilités totales

Soit $(A_1, \ldots \overline{A_n})$ un système complet d'événements. Comme ils sont incompatibles

$$\mathbb{P}\left(\bigsqcup_{k=1}^{n} A_{k}\right) = \sum_{k=1}^{n} \mathbb{P}(A_{k})$$

Le système est de plus complet donc $\bigsqcup_{k=1}^n A_k = \Omega$. Donc $\sum_{k=1}^n \mathbb{P}(A_k) = 1$.

 (A_1, \ldots, A_n) sont aussi deux à deux incompatibles, donc $(B \cap A_1, \ldots B \cap A_n)$ aussi. De plus $B = B \cap \Omega = B \cap (\bigsqcup_{k=1}^n A_k) = \bigsqcup_{k=1}^n (B \cap A_k)$. Donc

$$\mathbb{P}(B) = \mathbb{P}\left(\bigsqcup_{k=1}^{n} (B \cap A_k)\right) = \sum_{k=1}^{n} \mathbb{P}(B \cap A_k)$$

De plus, en passant aux probabilités conditionnelles $(\mathbb{P}_{A_i})_{1 \leq i \leq n}$ on a

$$\mathbb{P}(B) = \sum_{k=1}^{n} \mathbb{P}(A_k) \mathbb{P}_{A_k}(B)$$
 (75)

Formule de Bayes

Soient \overline{A} et \overline{B} deux événements de probabilité non nulle, on a alors :

$$\mathbb{P}(A)\mathbb{P}_A(B) = \mathbb{P}(A \cap B) = \mathbb{P}(B)\mathbb{P}_B(A)$$

donc

$$\mathbb{P}_A(B) = \frac{\mathbb{P}(B)\mathbb{P}_B(A)}{\mathbb{P}(A)} \tag{76}$$

31.6 Loi d'une fonction de X

Soit X une variable alétoire sur Ω et g une fonction définie sur $X(\Omega)$. La loi de probabilité Y=g(X) est donnée par $Y(\Omega)=g(X(\Omega))$ et

$$\forall y \in Y(\Omega), \mathbb{P}_Y(\{y\}) = \mathbb{P}(Y = y) = \sum_{x \in g^{-1}(\{y\})} \mathbb{P}(X = x) = \sum_{\substack{x \in X(\Omega) \\ g(x) = y}} \mathbb{P}(X = x)$$
 (77)

Démonstration. Utilisons le système complet $(X=x)_{x\in X(\Omega)}$ associé à la variable aléatoire X et la formule des probabilités totales

$$\begin{split} \mathbb{P}_Y(\{y\}) &= \mathbb{P}(Y=y) = \sum_{x \in X(\Omega)} \mathbb{P}((Y=y) \cap (X=x)) \\ &= \sum_{\substack{x \in X(\Omega) \\ g(x) = y}} \mathbb{P}((g(X)=y) \cap (X=x)) + \sum_{\substack{x \in X(\Omega) \\ g(x) \neq y}} \mathbb{P}((g(X)=y) \cap (X=x)) \end{split}$$

Remarquons ainsi que

 $\star \operatorname{Si} g(x) = y$

$$\omega \in (X = x) \implies X(\omega) = x \implies g(X(\omega)) = g(x) \implies \omega \in (g(X) = y)$$

D'où
$$(X = x) \subset (g(X) = y)$$
 donc $(g(X) = y) \cap (X = x) = (X = x)$

 \star Sinon, si $g(x) \neq y$

$$\omega \in (X = x) \implies X(\omega) = x \implies g(X(\omega)) = g(x) \neq y \implies \omega \not\in (g(X) = y)$$

Dans ce cas,
$$(q(X) = y) \cap (X = x) = \emptyset$$

Ainsi,

$$\begin{split} \mathbb{P}_y(\{y\}) &= \sum_{\substack{x \in X(\Omega) \\ g(x) = y}} \mathbb{P}(\underbrace{(g(X) = y) \cap (X = x)}_{=(X = x)}) + \underbrace{\sum_{\substack{x \in X(\Omega) \\ g(x) \neq y}}}_{=(X = x)} \mathbb{P}((g(X) = y) \cap (X = x)) \\ &= \sum_{\substack{x \in X(\Omega) \\ g(x) = y}} \mathbb{P}(X = x) \\ &= \sum_{\substack{x \in g^{-1}(\{y\})}} \mathbb{P}(X = x) \end{split}$$

31.7 Si $X \geqslant 0$ presque sûrement, $\mathbb{E}(X) = 0 \iff X = 0$ presque sûrement

 $D\acute{e}monstration$. Soit $X \geqslant 0$ presque sûrement

— Supposons que $\mathbb{E}(X) = 0$ Par hypothèse, l'évènement (X < 0) est négligeable donc

$$\begin{split} \mathbb{E}(X) &= \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}) \\ &= \sum_{\omega \in (X=0)} \underbrace{X(\omega)}_{=0} \mathbb{P}(\{\omega\}) + \sum_{\omega \in (X<0)} X(\omega) \underbrace{\mathbb{P}(\{\omega\})}_{=0} + \sum_{\omega \in (X>0)} X(\omega) \mathbb{P}(\{\omega\}) \\ &= \sum_{\omega \in (X>0)} X(\omega) \mathbb{P}(\{\omega\}) \end{split}$$

Soit $\omega_0 \in (X > 0)$ fixé quelconque La nullité de l'espérance donne

$$0 \leqslant X(\omega_0) \mathbb{P}(\{\omega_0\}) \leqslant \sum_{\omega \in (X > 0)} X(\omega) P(\{\omega\}) = \mathbb{E}(X) = 0$$

donc $X(\omega_0)\mathbb{P}(\{\omega_0\}) = 0$, or $X(\omega_0) > 0$ donc $\mathbb{P}(\{\omega_0\}) = 0$ donc

$$\mathbb{P}(X > 0) = \sum_{\omega_0 \in (X > 0)} \mathbb{P}(\{\omega_0\}) = 0$$

Donc (X > 0) est négligeable, mais (X < 0) est négligeable aussi, donc

$$0 \le \mathbb{P}((X > 0) \cup (X < 0)) \le \mathbb{P}(X > 0) + \mathbb{P}(X < 0) = 0$$

Ainsi l'évènement contraire de $(X > 0) \cup (X < 0)$, qui est (X = 0) est certain.

— Supposons X = 0 presque sûrement.

$$\begin{split} \mathbb{E}(X) &= \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}) \\ &= \sum_{\omega \in (X=0)} \underbrace{X(\omega)}_{=0} \mathbb{P}(\{\omega\}) + \sum_{\omega \in (X \neq 0)} X(\omega) \underbrace{\mathbb{P}(\{\omega\})}_{=0} \\ &= 0 \end{split}$$

31.8 Calcul de l'espérance et la variance d'une variable aléatoire suivant une loi binomiale

Démonstration. Soit $n \in \mathbb{N}^*$ et $p \in [0,1]$. Supposons que $X \hookrightarrow \mathcal{B}(n,p)$.

$$\mathbb{E}(X) = \sum_{\omega \in X(\Omega)} \omega \mathbb{P}(X = \omega)$$

$$\begin{split} &= \sum_{k=0}^{n} k \mathbb{P}(X=k) \\ &= \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} \\ &= \sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k} \\ &= n \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} p^{k} (1-p)^{n-k} \\ &= n \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k} (1-p)^{n-k} \\ &= n \sum_{j=0}^{n-1} \binom{n-1}{j} p^{j+1} (1-p)^{n-1-j} \\ &= n p \sum_{j=0}^{n-1} \binom{n-1}{j} p^{j} (1-p)^{n-1-j} \\ &= n p (p+(1-p))^{n-1} = n p \end{split}$$

Pour la variance, calculons d'abord $\mathbb{E}(X^2)$

$$\begin{split} \mathbb{E}(X^2) &= \sum_{k=0}^n k^2 \mathbb{P}(X=k^2) \\ &= \sum_{k=1}^n k \underbrace{k \binom{n}{k}} p^k (1-p)^{n-k} \\ &= n \sum_{k=1}^n \underbrace{k}_{(k-1)+1} \binom{n-1}{k-1} p^k (1-p)^{n-k} \\ &= n \sum_{k=1}^n (k-1) \binom{n-1}{k-1} p^k (1-p)^{n-k} + n \sum_{k=1}^n \binom{n-1}{k-1} p^k (1-p)^{n-k} \\ &= n \sum_{k=2}^n (k-1) \binom{n-1}{k-1} p^k (1-p)^{n-k} + n \sum_{k=1}^n \binom{n-1}{k-1} p^k (1-p)^{n-k} \\ &= n \sum_{k=2}^n \underbrace{(k-1) \binom{n-1}{k-1}} p^k (1-p)^{n-k} + n \sum_{k=1}^n \binom{n-1}{k-1} p^k (1-p)^{n-k} \\ &= n(n-1) \sum_{i=0}^{n-2} \binom{n-2}{i} p^{i+2} (1-p)^{(n-2)-i} + n \sum_{i=0}^{n-1} \binom{n-1}{i} p^{i+1} (i-p)^{(n-1)-i} \\ &= n(n-1) p^2 (p+(1-p))^{n-2} + n p (p+(1-p))^{n-1} \\ &= n(n-1) p^2 + n p \\ &= n p ((n-1) p + 1) \end{split}$$

D'où,

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = np((n-1)p+1) - n^2p^2 = np(1-p)$$

Calcul alternatif de $\mathbf{E^2}$ En utilisant la formule de transfert pour $f \leftarrow \begin{pmatrix} X(\Omega) = \llbracket 0; n \rrbracket & \to & \llbracket 0; n(n-1) \rrbracket \\ x & \mapsto & x(x-1) \end{pmatrix}$

$$\mathbb{E}(X(X-1)) = \sum_{k=0}^{n} k(k-1)\mathbb{P}(X=k)$$

$$\begin{split} &= \sum_{k=0}^{n} k(k-1) \binom{n}{k} p^k (1-p)^{n-k} \\ &= n(n-1) \sum_{k=2}^{n} \binom{n-2}{k-2} p^k (1-p)^{n-k} \\ &= n(n-1) p^2 \sum_{j=0}^{n-2} \binom{n-2}{j} p^j (1-p)^{n-2-j} \\ &= n(n-1) p^2 (p+(1-p))^{n-2} \\ &= n(n-1) p^2 \end{split}$$

Donc en remarquant que

$$\mathbb{E}(X^2) = \mathbb{E}(X(X-1) + X) = \mathbb{E}(X(X-1)) + \mathbb{E}(X) = n(n-1)p^2 + np$$

Donc

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = n(n-1)p^2 + np - n^2p^2 = np(1-p)$$