Unit 5

???

5.1 Lecture 18: Olefin Polymerization

5/10: • Another huge industrial-scale reaction

- The Great Pacific Garbage Patch is largely composed of plastics made by this process.
 - Plastics get a bad rep, but they are a remarkable material.
 - We can melt them, form them, and they have durability properties.
 - However, because of their environmental impact, a big thing in chemistry is the pursuit of materials
 with similar properties that are biodegradable.
 - Inorganic chemistry plays a large role in their synthesis.
 - In 2008, the US alone made 58.3 million metric tons of polyethylene and 17 million metric tons of polypropylene.
- General form:

$$R \xrightarrow{\operatorname{cat}} \left(\begin{array}{c} \\ \\ \\ \end{array} \right)_{n}$$

Figure 5.1: The general form of olefin polymerization.

- If R = H, we have polyethylene.
- If R = Me, we have polypropylene.
- This is a thermodynamically favorable, exothermic reaction since π bonds are weaker than σ bonds.
- The catalyst is typically Ti, Zr, Hf, Cr (early Group 4 transition metals). Sometimes we use Fe, Co, Ni, and Pd (these are a bit more specific).
- Most of the materials that mediate this catalysis are called Ziegler-Natta catalysts.
 - These are heterogeneous, even though they operate via the same kind of catalytic cycle that homogeneous systems use.
 - Nobel prize (1963).
- Polymer terms:
- Number averaged molecular weight: The quantity $\frac{\sum N_x M_x}{\sum N_x}$, where N_x is the number of chains with molecular weight x and M_x is ?. Also known as M_N .

- Weight averaged molecular weight: The quantity $\frac{\sum N_x M_x^2}{\sum N_x M_x}$. Also known as M_w .
- Molecular weight distribution: The quantity $\frac{M_w}{M_N}$. Also known as polydispersity index, PDI.
 - 1 is perfect. This means that you only have one type of chain.
 - 1.1 is good.
 - Above 1.5 is getting ill-defined.
- Stereochemistry:
 - Normally, the methyl groups in polypropylene all insert on the same side, but if one misinserts, then it faces the other direction.
 - If the catalyst corrects itself and continues on inserting in the original direction, this is site control.
- Site control: The catalyst controls the insertion.
 - More specifically, the direction the methyl groups point is controlled by the catalyst.
- Chain end control: One misinsertion causes the ensuing insertions to face the same way as the last inserted methyl group.
 - More specifically, the direction the methyl groups point is controlled by the last inserted methyl group.
- Mechanism:

$$L_nMR_2 \xrightarrow[-LAR^-]{LA} L_nMR^+ \xrightarrow{||} L_nM---R \longrightarrow L_nM-H$$

- The three steps are activation, growth, and termination.
- LA stands for Lewis acid. The lewis acid activates the catalyst by abstracting an anionic Lewis acid species.
- Olefin insertion grows the polymer.
- $-\beta$ -H elimination is the simplest way to terminate the chain, even though there are several possibilities.
- Activation:

$$- L_nMCl_2 \xrightarrow{AlR_3/MAO} L_nMMe_2 \xrightarrow{AlR_3/MAO} L_nMe^+.$$

$$- \operatorname{L}_n \operatorname{MCl}_2 \xrightarrow{\operatorname{AlR}_{3/}\operatorname{MAO}} \operatorname{L}_n \operatorname{MMe}_2 \xrightarrow[-\operatorname{MeBAr}^F_4^-]{\operatorname{BAr}^F_4^-} \operatorname{L}_n \operatorname{Me}^+.$$

$$- \operatorname{L}_n \operatorname{MCl}_2 \xrightarrow{\operatorname{AlR}_{3/}\operatorname{MAO}} \operatorname{L}_n \operatorname{MMe}_2 \xrightarrow{\operatorname{HBAr}^F_4} \operatorname{L}_n \operatorname{Me}^+.$$

- MAO is methylated aluminum oxide.
 - An ill defined, amorphous gunk with some oxygens created by adding a pinch of water to AlMe₃.
 - A cheap reagent that people chuck into their catalyst mixture.
 - **■** Functions:
 - 1. Alkylating agent.
 - 2. Activator (pulls off methyls to generate cationic species).
 - 3. Scavenger for water (primarily) and oxygen.
- The fluorinated aryl borates are really good because they're very weakly coordinating, and we really want an open coordination site.

- Chain growth:
 - $-MR(||) \longrightarrow M---R \xrightarrow{\ ||\ } M(||)(---R) \longrightarrow M---R \longrightarrow \ \longrightarrow \ .$
 - This is called the Cossee Arlman mechanism.
 - Sterics determine the rates: Ethylene > propylene > substituted olefins > disubstituted olefins ≈ geminal disubstituted olefins >>> trisubstituted or tetrasubstituted olefins.
- Termination:
 - How you get variability in chain lengths.
 - Control it by adding a chain-transfer reagent (a specific terminating reagent). Examples include...
 - H_2 : $L_nM-pl \xrightarrow{H_2} L_nM-H+H-pl$, where pl is a polymer^[1].
 - β -H elimination: $L_nM -pl \longrightarrow L_nM(H)(||pl) \longrightarrow L_nM H + = -pl$.
 - \blacksquare β -H abstraction: $M(||)(--pl) \longrightarrow M(Et)(||pl) \longrightarrow MEt + = -pl.$
- The relative rates of growth vs. determination dictate the type of material we get.
 - $-K_p$ is the rate of growth/propogation; K_t is the rate of termination.
 - $-K_p$ vs. K_t dictates the product.
 - $-K_p >>> K_t$ yields high molecular weight polymers.
 - $-K_p \approx K_t$ (within the same order of magnitude) yields oligomers.
 - The geometric weight distribution of oligomers is called a **Schultz-Flory distribution**.
 - $-K_t >> K_p$ yields dimers exclusively.
 - This can be valuable if you just want to transform ethylene into butadiene (a higher value product), for instance.
- Types of polyethylene.

Figure 5.2: Polyethylene-type catalysts.

- A perfect zig-zag chain is HDPE (high density polyethylene).
 - High melting point.
 - Crystalline.
 - Example uses: Helmets for army soldiers, bulletproof plastics.
 - Usually formed with Ziegler-Natta catalysis:
 - $TiCl_x + AlR_x \longrightarrow$ a heterogeneous catalyst that's super active (> 10^9 kg of polymer per gram of catalyst).
 - \blacksquare Note that x = 3 or 4.
 - Alternate catalysts: $\operatorname{Cr}^{\operatorname{III}} + \operatorname{silica} \xrightarrow{\operatorname{O}_2, \Delta} \operatorname{CrO}_4 \xrightarrow{||} \operatorname{reduced} \operatorname{Cr} \operatorname{center}$ (the active catalyst).

 $^{^{1}\}mathrm{Be}$ aware that Anderson uses a capital P in a circle.

Unit 5 (???) CHEM 20200

- A mess with a ton of branching is LDPE (low density polyethylene).
 - Lower melting point.
 - Often made by radical processes.
 - Also made by late transition metal catalysts, where there's less control over chain growth:
 - Square planar, d^8 , $16e^-$ species.
 - Example metal centers: Ni, Pd.
 - High rates of β -H elimination leads to chain walking and branching.
- Longer chain with a few branches is linear low-density polyethylene (LLDPE).
 - Transition metal catalyzed.
 - Formed from a mixture of ethylene and substituted olefins or a controlled rate of branching from catalysts.
 - Catalysts:
 - Constrained geometry catalysts.
 - Example metal centers: Ti, Zr, Hf.
- Polyethylene gives a single chain, but polypropylene can be chiral depending on the orientation of the methyl groups. The orientation defines **tacticity**.
- Isotactic (polypropylene): All methyl groups are pointed in the same direction.
 - The most crystaline, highest melting point material.
- Atactic (polypropylene): Every methyl group is random.
 - The least crystaline, lowest melting point material.
- Syndiotactic (polypropylene): Every methyl group alternates.
 - Pretty highly ordered.
- **Hemiisotactic** (polypropylene): Every other methyl group points the same direction; the remaining ones are random.
- Stereoblock (polypropylene): Alternating blocks of isotactic polypropylene.
- \bullet Controlling stereochemistry:
 - Relies on the fact that propylene is pro-chiral.
 - Si (pro-S) and Re (pro-R) faces.
 - Catalyst symmetry controls tacticity.
- Catalyst types:

Figure 5.3: Polypropylene-type catalysts.

- Most well worked out for metallocenes.
- In Figure 5.3, boxes are open coordination sites; circles are space-filling ligands.
- Differences help dictate tacticity.
- $-C_2$: Both binding sites are the same.
 - Steric clashing forces the olefin to point in inverted ways; but because the polymer switches sides, this leads to consistency in the direction the methyl is added.
 - Generates isotactic polypropylene.
 - Si-face selective.
 - Example: A diindene metallocene.
- C_s : Binding sites are enantiomers.
 - Generates syndiotactic polypropylene.
 - Two enantiotopic sites will alternate.
 - Example: A metallocene with Cp on top and fluorene on bottom.
- $-C_1$: Binding sites are diastereomers.
 - Generates hemiisotactic polypropylene.
 - Example: A metallocene with Cp−R on top and fluorene on bottom.
- To make this work, the Cp rings are often tethered to prevent rotation.
 - However, rotation can be harnessed to make stereoblock copolymers.
- Note that stereoblock copolymers can also be synthesized with two isotactic catalysts, relying on chain transfer.
- Late-metals: Chain walking.
 - A chain can grow or it can chain walk (do β -H elimination followed by a 2, 1-insertion).
 - If it chain walks, we'll create a branch.
- We see this with late metals.
 - Early metals are terrible backbonders, so they will prefer to be on the alkyl side of the equilibrium.
 - Late metals can backbond, and will more readily form an olefin adduct (a necessary intermediate to chain walking).
- Thus, we use late metals...
 - Because sometimes we want branching, specifically finely tuned branching to a certain degree.
 - Recall that random branching can be achieved via a radical mechanism.
 - SHOP process:
 - We react ethylene with a nickel PO-type catalyst (a nickel catalyst with a bidentate ligand that chelates through a phosphorous and an oxygen), an enolate, or related phosphorous/oxygen based donors.
 - This creates olefin-terminating oligomers. This doesn't use chain walking, but rather the chain transfer process, which is much faster with late metals.
 - Products: C_4 - C_8 (41%), C_{10} - C_{18} (40.5%), and C_{20+} (18.5%).
 - The short ones and the long ones can be combined with Mo₂O_{3/}Al₂O₃ to do olefin metathesis, yielding internal and terminal olefins.
 - Then, throwing in the medium-length ones and treating with HCo(CO)₄ (our hydroformylation catalyst) and syn gas yields terminal aldehydes, which with enough hydrogen can give us terminal alcohols, which are commodity chemicals.

• Oligomerization mechanism:

Figure 5.4: Oligomerization mechanism.

- A metathesis-like process.
- Example with nickel.
- Polar monomer incorporation.
 - One of the standing grand challenges in olefin polymerization.
 - Incorporating vinyl chlorides, vinyl ethers, vinyl esters, vinyl nitriles, etc.
 - We can do this with radical polymerizations, but there's no stereocontrol here.
 - PVC (pipe) is polyvinylchloride (robust, a great material, but opaque).
 - It's melting point would be even higher if we could make it isotactic (and it would be clear, which could potentially have applications).
 - The challenge with early metals is that if you β -Cl eliminate, the M-Cl bond will be too strong to break and reinsert the chloride. This kills the catalysis.
 - Additionally, the groups on the polymer adjacent to the metal center can donate to it, making the polymer a kind of chelating ligand and preventing olefin insertion. This also kills the catalysis.
 - Late metals are less halo/oxo-philic, which makes them better at incorporating these monomers.

5.2 Office Hours (Anderson)

- Chain walking is when the metal bonds to a σ bond, moves to an adjacent carbon, moves to a double bond next, and on and on.
 - The terminal olefins are sterically favored, even though the internal ones are typically thermodynamically favored.
 - Early metals typically make linear polyolefins, while late metals prefer branched ones.
- What is the difference between a Chatt, distal, and alternating mechanism?
 - Chatt and distal mechanisms are the same thing (known as Chatt due to Eurocentrism).

5.3 Discussion Section

- 5/11: HW5 is due 5/21/2021.
 - Discussion recordings will be posted in the Panopto folder from now on, but there may be a delay.
 - Point out dipole on CO in Homework 4.1a.
 - Iron starts from Fe^I.
 - Draws out and discusses the FeMoCO enzyme (which is actually an enzyme, not just iron, molybdenum, and a carbonyl ligand).
 - FeMoCO possibly binds to CO in bidentate fashion through two irons.
 - This could support a Chatt mechanism since it would be easier to delocalize the higher oxidation state across two irons.
 - The iron in the center of FeMoCO that forms six partial bonds and doesn't really make any sense is sometimes called a **Texas iron**.
 - Considers the 4-membered transition state and arrow-pushing for ROMP.
 - It's good to know what the end groups are for the purposes of NMR.
 - Goes over Figure 4.8 and Homework 4.4 in a bit more detail.
 - Goes over Homework 3.