Table 1. Hypotheses for covariates affecting landings. S_t is quarter 3 (July-September) catch in the current season, S_{t-1} is quarter 3 catch in the previous season. N_t is the post-monsoon October-March catch in the current season and N_{t-1} is the October-March catch in the prior season. Because the fishing season is July-June, N_t spans two calendar years. DD = hypotheses related to effects of past abundance (landings) on current abundance. S = hypotheses related to spawning. L = hypotheses related to larval and juvenile growth and survival. A = hypotheses affecting all ages.

Hypothesis	Resp.	Covariates
DD1. S_t is dominated by age 2+ fish, thus abundance of the 1-yr	S_t	N_{t-1}
and 2-yr ages in the prior season (Oct-Mar catch) should be		
correlated with the abundance of mature fish this year.		
DD2. Abundance of 1-yr and 2-yr fish should be correlated with	$S_t and N$	t S_{t-1} and S_{t-2}
strength of the cohorts from the previous two seasons.		
DD3. Because age 2 fish appear in the post-monsoon catch, we	N_t	N_{t-1}
expect the post-monsoon catch (dominated by age 1 and 2) in the		
previous season to be correlated with the post-monsoon catch in the		
current season.		
S1. The onset of monsoon precipitation triggers movement of adults	S_t	Jun-Jul
from offshore to spawning areas due to changes in salinity, turbulence		precipitation in
or noise. Spent adults migrate inshore and are exposed to the fishery.		year t
S2. The level of precipitation in pre-monsoon months predicts	S_t	Apr-May
spawning strength.		precipitation in
		year t
S3. Precipitation initiates and supports spawning. Spawning affects	N_t	Apr-May and
post-monsoon catch in current and future seasons.		Jun-Jul
		precipitation in
		year t and $t-1$
S4. Extremely high upwelling brings poorly oxygenated water and	S_t	Jun-Sep upwelling
very low temperatures to the surface causing mature fish to avoid		index in year t
nearshore areas and leads to lower exposure to the fishery.		
S5. Extreme heat events in the pre-spawning months cause mature	S_t and	Nearshore
fish to move offshore away from productive feeding areas leading to	N_t	Mar-May SST in
poor spawning condition. Poor recruitment leads to few 0-age in		year t and $t-1$
post-monsoon catch and few 1-age fish in next season catch.		

Table 1. Continued.

Hypothesis	Resp.	Covariates
L1. Larval growth and survival is highest in an intermediate	N_t	Nearshore SST
temperature window. The prior year post-monsoon larval survival	and S_t	during Oct-Dec in
and growth is associated with higher current year biomass.		year t-1
L2. Upwelling is associated with higher productivity and higher	N_t	Jun-Sep upwelling
density of zooplankton, which leads to better larval and juvenile	and S_t	index in year $t-1$
growth and survival. The strength of summer upwelling should be		and t
associated with higher biomass in future years and the appearance of		
0-age fish in post-monsoon catch. However, extremely strong		
upwelling brings poorly oxygenated water to the surface causing		
larval mortality and offshore advection and causes mature fish to		
move offshore.		
L3. Chlorophyll blooms are signatures of high productivity from	N_t	Chl-a density
nutrient influx either due to upwelling or coastal inputs. The	and S_t	Jun-Sep in year
monsoon bloom intensity should be associated with 0-year fish		$t-1$ and t (for N_t)
abundance in year t and future sardine biomass.		
A1. The multi-year average SST is associated with a variety of	N_t	3-year average SST
factors which affect spawning and early survival and has been found	and S_t	
to correlate with sardine recruitment (Checkley et al. 2017) and thus		
future biomass available to the fishery.		
A2. The changes brought about by the El Niño/Southern Oscillation	N_t	ONI in year t-1
(ENSO) cycle have a variety of effects on environmental parameters	and S_t	
(precipitation, SST, thermal fronts, wind) which impacts spawning		
and early survival with a 1-year lag.		