LXC

Florent Gluck - Florent.Gluck@hesge.ch

April 1, 2022

What is LXC?

- LXC = Linux Containers
 - low-level Linux container runtime
- Run multiple isolated Linux systems on a single host
- Provide OS level virtualization (not an hypervisor!)
 - provide virtual OS with own CPU, memory, I/O and filesystem
- Provide a user space API
- Use kernel-based isolation mechanisms (capabilities, namespaces, cgroups, seccomp)
- Containers share the same kernel as the host kernel!

LXC components

- LXC is very minimalistic: thin layer over Linux kernel features
 - Only the following components are installed in a typical LXC installation:
 - Set of userspace tools
 - Templates
 - Libraries
 - Language bindings
- Make sure to use LXC version ≥ 2.0

Templates

- LXC uses templates to create different OS containers
- Templates = scripts to bootstrap specific OS
- Each Linux distribution supported by LXC has a script dedicated to it
- A generic script, download, allows to install various distributions using images of root file systems
- Check out https://images.linuxcontainers.org for available images

```
// API available at https://github.com/lxc/lxc
#include <lxc/lxccontainer.h>
#include <err.h>
int main() {
    struct lxc_container *c = lxc_container_new("apicontainer", NULL);
   if (!c) errx(1, "Failed to setup lxc container struct"):
   if (c->is_defined(c)) errx(1, "Container already exists");
   if (!c->createl(c, "download", NULL, LXC_CREATE_QUIET, "-d", "ubuntu",
          "-r", "focal", "-a", "amd64", NULL)) errx(1, "Failed to create
         container rootfs");
   if (!c->start(c, 0, NULL)) errx(1, "Failed to start the container");
    printf("Container state and PID: %s %d\n", c->state(c), c->init_pid(c));
   if (!c->shutdown(c, 30)) {
        printf("Failed to cleanly shutdown the container, forcing.\n");
        if (!c->stop(c)) errx(1, "Failed to kill the container");
    if (!c->destroy(c)) errx(1, "Failed to destroy the container");
   return EXIT SUCCESS:
```

Installation on Ubuntu

- Packages to install: lxc, lxc-templates
- Available commands:

lxc-autostart	lxc-freeze
lxc-attach	lxc-info
lxc-cgroup	lxc-ls
lxc-checkconfig	<pre>lxc-monitor</pre>
lxc-checkpoint	lxc-snapshot
lxc-config	lxc-start
lxc-console	lxc-stop
lxc-copy	lxc-top
lxc-create	lxc-unfreeze
lxc-destroy	lxc-unshare
lxc-device	lxc-wait
lxc-execute	lxc-usernsexec
<pre>lxc-update-config</pre>	

Kernel support?

```
~ $ 1xc-checkconfig
LXC version 4.0.6
Kernel configuration not found at /proc/config.gz; searching...
Kernel configuration found at /boot/config-5.10.0-1029-oem
--- Namespaces ---
Namespaces: enabled
Utsname namespace: enabled
Ipc namespace: enabled
Pid namespace: enabled
User namespace: enabled
Network namespace: enabled
--- Control groups ---
Cgroups: enabled
Cgroup v1 mount points:
/sys/fs/cgroup/systemd
/sys/fs/cgroup/devices
/sys/fs/cgroup/cpu,cpuacct
/sys/fs/cgroup/cpuset
/sys/fs/cgroup/net_cls,net_prio
/sys/fs/cgroup/hugetlb
/sys/fs/cgroup/perf_event
/svs/fs/cgroup/rdma
```

Basic commands

lxc-create	create a container from a template script
lxc-start	start running a container
lxc-ls	list containers on the system
lxc-attach	start a process inside a running container
lxc-console	launch a console (login) for the specified container
lxc-stop	stop a running container
lxc-destroy	destroy a container

Command failure?

- LXC commands might fail without displaying any error message
- Most commands provide logging options often exposed as:

```
Common options :

-o, --logfile=FILE Output log to FILE instead

of stderr

-1, --logpriority=LEVEL Set log priority to LEVEL
```

 The logfile will contain detailed messages according to the detail level specified in logpriority

LXC container life cycle

Container files and configuration

- Templates script found in: /usr/share/lxc/templates/
- Default configuration file: /etc/lxc/default.conf
- Container files in: /var/lib/lxc/<container_name>/
- Container configuration in: /var/lib/lxc/<container_name>/config
- LXC configuration parameters: man lxc.container.conf

Creating containers

- Creating a container from a template
 - Available templates found in /usr/share/lxc/templates/

| lxc-create -n <name> -t <template> -- -r <release>

- Creating a container from an image
 - Must use the download template which installs distributions from root filesystem images
 - Available images listed at https://images.linuxcontainers.org

lxc-create -n <name> -t download -- -d <distrib> -r <release> -a <
 arch>

NOTE: on Ubuntu 20.04, the following env. var. is necessary:

export DOWNLOAD_KEYSERVER="hkp://keyserver.ubuntu.com"

Privileged containers

LXC allows creating privileged containers

- Created by root and running as root
- UID 0 in container mapped to UID 0 outside of container
- Dangerous: someone escaping the container will be root on the host!

Unprivileged containers (1/2)

LXC allows creating unprivileged¹ containers started by root

- Created by root, started by root, but not running as root
- Accomplished by using user namespaces
- UID 0 in container not mapped to UID 0 outside of container
- E.g. UID 0 \rightarrow 65536 in container mapped to 100000 \rightarrow 165536 on host
- Much safer than privileged containers!

¹only download template can be used with unprivileged containers!

Unprivileged containers (2/2)

LXC allows creating unprivileged containers

- Created by non-root user and running as non-root user
- Requires a bit of system configuration
- The safest way of running containers, albeit with more limitations

Creating unprivileged containers as root

 Allocate UID and GID ranges to root in /etc/subuid and /etc/subgid, e.g.:

```
root:100000:65536
```

Specify the range in /etc/lxc/default.conf using lxc.idmap, e.g.:

```
lxc.idmap = u 0 100000 65536
lxc.idmap = g 0 100000 65536
```

this tells LXC to map UID 0 to UID 100000, etc.

Allows everyone to go through /var/lib/lxc

```
chmod +x /var/lib/lxc
```

Limiting resources

- To limit resources at runtime (temporarily): lxc-cgroup -n <container> <state-object> <value>
- To limit resources persistently:
 - edit container's configuration /var/lib/lxc/<container>/config
- Examples:

Snapshots

LXC support various types of snapshots through lxc-copy:

- Full copy snapshots
- Copy-on-write snapshots where only differences are written
 - requires a filesystem that supports it: btrfs, lvm, overlay, zfs
- Ephemeral snapshots are automatically destroyed on shutdown

Resources

- Man pages:
 - man lxc
 - man lxc.container.conf
- Linux container and virtualization tools https://linuxcontainers.org/
- Practical LXC and LXD "Linux Containers for Virtualization and Orchestration", Senthil Kumaran S., Apress 2017