Fashion Classification

By: Abhinav Sharma, Edgar Leon, Shazia Nooruddin

Fashion Classification Problem

- Task: Classify image data for accurate product representation
- Classes
 - Shirts (1322 images, 27%)
 - Pants (1139 images, 24%)
 - Shoes (1116 images, 23%)
 - Watches (1249 images, 26%)
- Characteristics
 - White background
 - Balanced
 - Variety of colors/patterns
 - Objects of interest are in the center
 - 2–5 KB
 - 60 x 80 pixels
 - Resolution: 96 dpi

Preprocessing

- Resized images
- Images already centered
- PCA or UMAP transformation
- Train, test, validation (70%, 20%, 10%)
- Explored grayscale vs 3-channel RGB images

Feature Selection - Prelim Logit

Feature	Accuracy		
HOG*	97.1%		
HSV (Value) Histogram	45.3%		
Harris Corner	55.7%		
SIFT with BOVW	68.8%		
BRISK*	47%		
RGB Histogram	51%		
ResNet101*	79%		

HOG - Best Feature

Classification

Classification RGB Image

UMAP mapping of RGB train images to 2 dimensions

RGB

1x144000 Vector

LinearSVC

Accuracy: 98.4%
Training time: 818s

Classification Grayscale img

UMAP mapping of Grayscale train images to 2 dimensions

Moving forward we use reduced Grayscale images →

Classification

What if we could use the UMAP mapping for the training Output is size 2 vector UMAP learned architecture on Train data alone - Save it Load saved model, transform Test data on UMAP model

UMAP Visualizations + Classifier

UMAP + Features

Gray and Hog

Short Clam Variet (should be basher)

50% Grayscale, HOG

1x2928 Vector

LinearSVC

Accuracy: 98.2% Training time: 132s

Gray and Hog

Considered face det, but..

Top edge differentiates some Tshirts from some Watches.

Not being taken account of.

Turned images to b&w Sum of Y vector Sum of X vector

Sum X + Sum Y

1x71 Vector

LinearSVC

Accuracy: 90% Training time: 10s

Gray and Hog and Axis Intensity

Gray, Hog, Sum XY

1x2998 Vector

LinearSVC

Accuracy: 99.1% Training time: 344s

Fails because of white Tshirt

Failure unknown

Mislabeled picture.

Labeled as Watch

Classifier identified as Tshirt

This is our best model →

Model on Validation

Validation data: Gray, Hog, Sum XY

1x2998 Vector

Fitted Model

Accuracy: 99.2%

Classification Approach

Grayscale	UMAP	Features	Model	Accuracy
No	No	None	Linear SVC	98%
Yes	No	None	Linear SVC	98%
Yes	Yes	None	Linear SVC	93%
Yes	Yes	None	K-NN	96%
Yes	Yes	HOG, BRISK	Linear SVC	94%
Yes	Yes	HOG, BRISK	K-NN	95%
Yes	No	HOG	Linear SVC	98%
Yes	No	HOG, Avg Intensity	Linear SVC	99%
Yes	Yes	HOG, Avg Intensity	K-NN	25%

Classification Approach - Hyperparameter Tuning w/ GridSearchCV

From C = 0.00001 to 100000:

Grayscale	UMAP	Features	Model	Accuracy	Best Hyperparameters	Training Time	Prediction Time
Yes	No	HOG, Axis Intensity	Linear SVC	99.1%	C=1xe-5	6.73 s	0.025 s

The hyperparameter C in a LinearSVC model controls the trade-off between the margin size and the misclassification error. A larger C means that the model will try to find a smaller margin, but it may also overfit the training data and perform poorly on new data.

Conclusion

Grayscale	UMAP	Features	Model	Accuracy	Hyperparameter	Training Time	Prediction Time
Yes	No	HOG, Axis Intensity	Linear SVC	99.1%	C=1xe-5	6.73 s	0.025 s
RGB	UMAP	Features	Model	Accuracy	Hyperparameter	Training Time	Prediction Time

Conclusion

- Increased accuracy
- Reduced file size
- Improved performance
- Intuitive Approach
- For future experiment more with UMAP

Appendix: Class. Approach 2

- Collab/Google computing
- Hyperparameter tuning with PCA Transformed HOG and RestNet101 with models Logistic Regression and Linear SVC

Features	Model	Accuracy	Best Hyperparameters	Training Time	Prediction Time
HOG	Logistic Regression	98%	C=100, Penalty=L1, Solver=Saga	4.62 s	0.016 s
HOG	Linear SVC	98%	C=10, Gamma=0.01, Kernel=RBF	0.26 s	0.23 s
HOG + ResNet101	Linear SVC	97.8%	C=10, Gamma=auto, Kernel=RBF	0.21 s	0.11 s