- 1. (Evans §2.5, #12) Suppose u is smooth and solves $u_t \Delta u = 0$ in $\mathbb{R}^n \times (0, \infty)$.
 - (a) Show that $u_{\lambda}(x,t) = u(\lambda x, \lambda^2 t)$ also solves the heat equation for each $\lambda \in \mathbb{R}$.
 - (b) Use (a) to show $v(x,t) = x \cdot Du(x,t) + 2tu_t(x,t)$ solves the heat equation as well. Hint: Differentiate u_{λ} with respect to λ .
- 2. (Evans §2.5, #13) Assume n = 1 and $u(x,t) = v(\frac{x}{\sqrt{t}})$.
 - (a) Show

$$u_t = u_{xx}$$

if and only if

$$(*) \quad v'' + \frac{z}{2}v' = 0.$$

Show that the general solution of (*) is

$$v(z) = c \int_0^z e^{-s^2/4} ds + d.$$

(b) Differentiate $u(x,t) = v(\frac{x}{\sqrt{t}})$ with respect to x and select the constant c properly, to obtain the fundamental solution Φ for n=1. Explain why this procedure produces the fundamental solution.

Hint: What is the initial condition for u?

3. (Evans $\S 2.5, \# 14$) Write down an explicit formula for a solution of

$$\begin{cases} u_t - \Delta u + cu = f & \text{in } \mathbb{R}^n \times (0, \infty) \\ u = g & \text{on } \mathbb{R}^n \times \{t = 0\}, \end{cases}$$

where $c \in \mathbb{R}$.

Hint: Try a solution of the form $u(x,t) = v(x,t)e^{-ct}$.