Systemy wbudowane

Sprawozdanie z laboratorium 2

Mariusz Jędrzejewski / 128059 / 27.10.2019r

W trakcie laboratorium wykorzystywana była płytka z wyświetlaczem "STM32F429ZI".

Spis przydatnych słów / poleceń używanych w kodzie pliku main.c:

#include "stm32f429i_discovery_lcd.h" – implementacja biblioteki wymagana do pracy z wyświetlaczem LCD na płytce.

BSP_LCD_Init – funkcja inicjująca działanie wyświetlacza LCD.

BSP_LCD_LayerDefaultInit(LAYER, BUFFER)

BSP_LCD_Clear(LCD_COLOR_RED) – określenie koloru tła na wyświetlaczu

BSP_LCD_DisplayStringAtLine(0, (uint8_t*)"Hello World!") – wyświetlenie linijki tekstu

BSP_LCD_DisplayStringAtLine(1, (uint8_t*)"Test plytki") – wyświetlenie linijki tekstu

uint8_t - 8bitowy int bez znaku (unsigned int 8 bytes)

```
/* Infinite Loop */
114
       /* USER CODE BEGIN WHILE */
115
116
       BSP LCD Init();
       BSP LCD LayerDefaultInit(LCD BACKGROUND LAYER, LCD FRAME BUFFER);
117
       BSP LCD Clear(LCD COLOR RED);
118
       BSP_LCD_DisplayStringAtLine(0, (uint8_t*)"Hello World! ");
119
       BSP_LCD_DisplayStringAtLine(1, (uint8_t*)"Testowanie plytki");
120
121
       while (1)
```

Funkcja BSP_LCD_Init(); inicjuje włączenie wyświetlacza do pracy z użytkownikiem. Następna funkcja wraz z argumentami, tzn. BSP_LCD_LayerDefaultInit(LCD_BACKGROUND_LAYER, LCD_FRAME_BUFFER); służy do wybrania odpowiedniej warstwy z której będziemy korzystać oraz bufor. BSP_LCD_Clear(LCD_COLOR_RED); posłużyło jako ustawienie koloru który jest tłem wyświetlacza LCD.

Aby wybrać linijkę wykorzystamy funkcję *BSP_LCD_DisplayStringAtLine*. Za jej pomocą możemy jako pierwszy argument wybrać w której linii na wyświetlaczu ma pojawić się tekst. Drugi argument określa typ zmiennej wykorzystywany do utworzenia napisu po czym w cudzysłowie zamieszczamy pożądany przez nas tekst. Gdy tekst będzie zbyt długi to nie pomieści się na wyświetlaczu i trzeba przejść do następnej linijki.

Cały kod umieszczany jest w sekcji /* USER CODE BEGIN WHILE */ ale nie zawiera się w pętli while.

Do wykonania zadania wymagane było ustawienie pewnych opcji w środowisku STM32CubeMX:

Display Type: RGB666 (18 bits) / LTDC Active Width: 240 pixels

FMC: Clock and chip enable – SDCKE1+SDNE1 / Internal bank number – 4 banks / Address – 12 bits / Data – 16 bits 16-bit byte enable / I2C / SPI5: Mode – Full-Duplex Master / Hardware NSS Signal – Disable / DMA2D: Activated Color Mode: RGB565

Konfiguracja zegarów: RCC: High Speed Clock (HSE) – Crystal/Ceramic Resonator

Efekty naszej pracy wyświetlane są na wyświetlaczu LCD umieszczonym na płytce. Gdy tekst jest za długi nie wyświetli się całkowicie, dlatego wymagane jest utworzenie trzeciej linii tekstu by to pomieścić.

