TECHNICKÉ VYBAVENÍ POČÍTAČŮ

Pojetí vyučovacího předmětu:

Obecné cíle

Předmět technické vybavení počítačů rozvíjí základní znalosti a dovednosti žáků, které získaly v rámci předmětu informační a komunikačních technologie a obzvláště mikroprocesorová technologie, do hloubky i šířky. Předmětem zájmu je hardwarová stránka počítače, a její klíčové komponenty. Žáci mají dobrou technickou povědomost o klíčových technických součástech osobního počítače, o jejich integraci do celku a získávají praktické dovednosti s výběrem, stavbou, konfigurací a údržbou počítače. V oblasti síťových technologií vykazují základní orientaci v oboru.

Charakteristika učiva

Učivo je rozloženo do dvou let vzdělávání. Ve třetím ročníku je probírán počítač a jeho klíčové periferie, ve čtvrtém ročníku jsou řešeny hardwarové aspekty periferií a jejich integrace do celků jako například vložené systémy. V rámci první části vzdělávání je největší část výuky věnována centrálnímu procesoru. Rozlišovací úroveň je od obecných principů celku postupně zvyšována k dílčím složkám procesorového systému, jako je procesor, operační paměť a vyrovnávací paměť a konkrétní RISC procesory. Síťové technologie jsou orientovány na problematiku klíčových LAN, WAN a internetových technologií v kontextu vícevrstvého systémového modelu ISO/OSI.

Pojetí výuky

Ve třetím ročníku je předmět vyučován formou tří hodin teoretické přípravy v učebně (z toho minimálně jedna hodina v učebně s připojením na internet a s projekční technikou) a jedné hodiny v počítačové učebně / laboratoři kde si žák doplní vlastní částečně vypracovaná témata pomocí otázek k vyučujícímu. Žáci mají prostor pro individualizaci výběru komponenty, na které chtějí dané téma studovat.

Cvičení jsou v plném rozsahu realizována v učebnách výpočetní techniky, které jsou vybaveny projekční technikou a připojením do lokální počítačové sítě a internetu. Cvičení jsou typicky zahajována prezentací jednoho až dvou žáků, kteří z pomoci projekční techniky informují zbytek skupiny o některém z řešených témat (procesory, grafické karty, základní desky, čipové sady, paměti, sběrnice atd.).

Mezipředmětové vztahy: informační a komunikační technologie, elektronika, základy elektrotechniky, číslicová technika, mikroprocesorová technika, programové vybavení počítačů.

Ročník	1.	2.	3.	4.	Celkem
Hodinová dotace	0	0	3	4	7

Rozpis učiva – 3. ročník		
Výsledky vzdělávání a kompetence	Tematické celky	Hodinová
v ysicuky vzdelavani a kompetence	I chilaticke celky	dotace

Ž/1		7/1.1.1.//11.1 £. 1 ' ' ' '	10
Žák: - - - - -	popíše základní činnosti při běhu programu; formuluje význam řadiče a ALU; ukáže základní skladebnost strojové instrukce (operand, operandy); srovnává RISC a CISC architektury; zakresluje a popisuje princip a vlastnosti architektur von Neumann a Harvard; vysvětlí význam a princip kompatibility;	Základní náhled na funkci počítače: - motivace vzniku počítače, - informace ve výpočetní technice - počítačové architektury číslicových strojů - strojový kód, - řadič, - strojový cyklus, - strojová instrukce, - ALU, - RISC / CISC čipy, - architektura von Neumann a Harvardská;	12
-	vyhledává, srovnává a diskutuje výběr vhodných komponent základní jednotky počítače; optimalizuje výběr procesoru z technického a bezpečnostního hlediska; vysvětlí jak sestavit, otestovat a provést základní profylaxi počítačové sestavy; zálohuje, přerozděluje, instaluje a klonuje pevný disk; vyjmenuje základní komunikační rozhraní PC; vybírá, připojuje a konfiguruje základní počítačové periferie;	Přenos a zpracování informace pomocí CPU - vnitřní komponenty počítače; - návrh počítačové sestavy, výběr a cenová / výkonnostní optimalizace; - diagnostika počítačové sestavy; - instalace operačního systému; - připojování a konfigurace základních periferií.	16
	popíše problematiku kompatibility na úrovni strojového kódu, zdrojového kódu a jazyka symbolických adres; vybavuje si význam a princip mikrokódu; popíše princip emulace a simulace v oblasti technického vybavení; uvede způsoby měření výkonu CPU; orientuje se ve výkonnostních testech prováděných v počítačových časopisech;	Centrální procesorová jednotka – obecná část: - ideový popis výroby cpu; - strojový kód cílového procesoru a virtuálního procesoru; - mikrokód; - emulace a simulace; - optimalizace programu a vliv na výkon cpu; - hodnocení výkonu procesoru.	8
-	shrne vlastnosti a vhodnost paralelní a sériové komunikace; zakreslí a popisuje základní druhy komunikace více zařízení po sběrnici – přidělování sběrnice; identifikuje základní druhy a parametry systémové sběrnice; zakreslí blokové schéma základní desky počítače kategorie PC; diskutuje význam, uvádí výrobce a některé příklady čipových sad;	Sběrnice - paralelní a sériová komunikace – opakování a rozšíření problematiky; - princip a rozdělení sběrnic, hierarchie systémových sběrnic; - obvody pro přidělování sběrnice; - Front Side Bus, evoluce čipových sad a integrace do CPU; - přehled sběrnic pro připojení diskových a periferních zařízení v počítačích kategorie PC (stolní / mobilní); - čipová sada.	6
- - - -	zakresluje jednobitovou bistabilní paměť a její řízení z hlediska zápisu a čtení dat v matici; zakresluje a diskutuje význam dynamické paměti; uvede základní parametry operační paměti; vybere vhodnou operační paměť pro stolní počítač; načrtne schémata skládání pamětí do vyšších celků; svými slovy popisuje význam paměti cache v systému; zakresluje a srovnává jednotlivé mapovací techniky paměti cache;	Paměťový podsystém - jednobitová paměť - statická a dynamická realizace –revize znalostí; - skládání jednobitové buňky – matice, řadič, dekodér paměti; - parametry operační paměti – frekvence a latence, přehled pamětí na současném trhu; - skládání paměťových bloků do vyšších celků – za účelem	12

 uvádí princip paměti write back a write through; zakresluje a popisuje základní techniky pro uvolňování dat z paměti cache; diskutuje souvislosti mezi virtuální pamětí a pamětí cache; 	navýšení šířky adres / dat / výkonu; - princip paměti cache, organizace, princip funkce - systémová cache, hierarchie pamětí - write back a write through cache - základní mapovací a uvolňovací techniky; - asociativní cache; - virtuální paměť, virtuální adresa.	
 diskutuje výhody a nevýhody a škálování výkonu procesoru kategorie SISD; zakresluje princip pipeline procesoru; charakterizuje náběhový, běhový a doběhový výkon pro jednoduché modelové případy pipeline CPU; diskutuje problematiku nevyvážené dekompozice a riziko konfliktů při vykonávání kódu na pipeline CPU; uvede důvody pro existenci SIMD procesorových extenzí; vysvětlí základní způsoby vykonávání více úloh na procesoru s jedním a více jádry; 	Procesorové struktury - Procesory kategorie Single Instruction Single Data — opakování; - pipeline struktura (Multiple Instruction Single Data) — princip, užití, stav, trendy; - datový a skokový konflikt pipeline CPU a jejich řešení; - struktura s více datovými toky (Single Instruction Multiple Data) — princip, užití, stav, trendy; - vícejádrové procesory a víceprocesorové struktury; - multitasking — preemptivní a nepreemptivní; - symetrický a nesymetrický multiprocessing.	12
 zakresluje blokové schéma procesoru Atmel ATmega; rozliší programátorský a HW model CPU; vyjmenuje a popisuje význam jednotlivých registrů CPU; diskutuje souvislosti vzniku a provozu segmentace; shrne význam sestupné a vzestupné kompatibility; vlastními slovy popíše princip chráněného režimu, ochrany paměti; diskutuje význam znalosti HW pro programátora v jazyku symbolických adres; 	Procesory RISC Atmel - systém ochran, přepínání procesů, přerušení; - struktura, adresace, registry, obsluha přerušení, I/O komunikace, adresovací techniky (úvod); - moderní procesory firem Intel, AMD a dalších z oblasti PC – bloková schémata, princip, využití, trendy; - energeticky úsporné čipy – přehled trhu.	24
 vyhledává, prezentuje a diskutuje problematiku moderních trendů v oblasti procesorů a personálních počítačů; 	Moderní trendy v oblasti stolních a mobilních procesorů a PC - přehled, diskuse, referáty.	9

Rozpis učiva – 4. ročník			
Výsledky vzdělávání a kompetence	Tematické celky	Hodinová dotace	
 Žák: rozliší analogový a digitální charakter dat; klasifikuje přenosová média používaná v oblasti počítačových sítí; definuje základní druhy komunikací po síti; formuluje myšlenku nelineárního zkreslení; 	Teorie přenosu informace - klasifikace dat; - signály; - přenosová cesta (parametry); - přenosová médium (druhy, parametry, použití); - druhy přenosu informace; - zkreslení;	16	

 uvede příklady norem v oblasti sítí; shrne význam strukturované kabeláže; diskutuje význam systémového přístupu při studiu sítí; 	 druhy komunikace po síti – frekvenční a časový náhled; druhy komunikace po síti – logický náhled (unicast, broadcast, multicast); vzorkovací teorém, zkreslení signálu, A/D a D/A převodníky; digitální a analogový přenos hlasu. časový multiplex, frekvenční multiplex; Normalizace komunikací (obecně): význam a druhy normalizace; ISO/OSI-přehled; komunikace v kontextu ISO/OSI (rámec, datagram, paket); TIA/EIA – přehled; strukturovaná kabeláž; 	12
 Vyjmenuje a zakreslí druhy a vlastnosti síťových topologií; vyvozuje závěry o jejich použitelnosti; 	- RFC – přehled; - IANA. Síťová topologie - Sítě s přepínáním okruhů a paketů – algoritmus přístupu k médiu - idea;	12
 vysvětlí princip přepínaného ethernetu; srovnává výhody přepínaných technologií a sběrnicového přístupu; 	 kruhové sítě Token Ring; stochastické sítě - Ethernet; ATM sítě. Ethernet Rozbočování a přepínání na druhé vrstvě ISO/OSI; 	8
 uvádí důvody a základní princip STP; definuje význam segmentu; navrhuje a diskutuje použití síťových prvků; zakreslí a definuje princip IP adresy a síťové masky; 	- switching; - spanning tree protokol. Základní síťový hardware: - Hub, přepínač, most, směrovač; - bezdrátový standardy třídy 802.11;	12
- diskutuje o WIFI; - Fresnelova zóna;	 bluetooth; síťová adresa; maska; CIDR standard. 	12
 uvádí složení vstupů a výstupů procesoru; posuzuje elektrické vlastnosti vstupů a výstup vysvětlí vstupně výstupní multiplex. 	Vstupy a výstupy procesoru: - koncept portu a jeho registry; - spínání silových prvků procesorem; - ošetření analogových a digitálních vstupů a výstupů	12
 definuje význam zobrazovací jednotky; navrhuje a diskutuje vhodnost a užití více segmentového LED znaku; definuje princip řádkových LCD; vysvětlí RGB princip barev. 	Grafické systémy: - display a jeho řadič; - led; - OLED; - grafická karta; - přenos, filtrace, uložení obrazu.	12
diskutuje význam protokolů čtvrté vrstvy ISO/OSI modelu- definuje význam systému řízeného procesorem - diskutuje o RAID; - zakreslí a vysvětlí zpětnovazební smyčku; - diskutuje o existujících a reálných příkladech systémů řízených procesorem.	Speciální a vložené systémy: - autopilot; - mikrovlná trouba. - termostat	12

 rozlišuje použití výpočetních technologií v 	Témata spojená s návrhem vloženého	16
kontextu jejich historického vývoje;	systému:	
 vysvětlí funkci PID regulátoru; 	 mechanické nároky; 	
 definuje význam rušení, hazardů, napájení; 	 regulace a nároky na CPU; 	
 uvádí způsob návrhu tištěných spojů; 	 integrita signálu; 	
 diskutuje o zásadách rozmístění součástek; 	- návrh PCB;	
 řeší postupy při prototypování. 	- výroba PCB;	
		112