

Comprehensive, hands-on training that solves real-world problems

## Red Hat Performance Tuning



DAY ONE DAY TWO DAY THREE **DAY FOUR** Large Memory Hardware Tuning a Introduction **Database Server Workload Tuning Profiling** Software Collecting and **CPU** Intensive Power Usage Graphing **Profiling Workload Tuning Tuning** File Server **Tuning For** Using **General Tuning** SystemTap **Tuning** Virtualization Limiting Small File Comprehensive Resource Usage **Tuning** Review



## Welcome



## Course Objectives and Structure



DAY ONE DAY TWO DAY THREE **DAY FOUR** Large Memory Hardware Tuning a Introduction **Database Server Workload Tuning Profiling** Software Collecting and **CPU** Intensive Power Usage Graphing **Profiling Workload Tuning Tuning** File Server **Tuning For** Using **General Tuning** SystemTap **Tuning** Virtualization Limiting Small File Comprehensive Resource Usage **Tuning** Review



## Orientation to Classroom Network



## Internationalization



#### DAY ONE

#### Introduction

Collecting, Graphing, and Interpreting Data

**General Tuning** 

Limiting Resource Usage

## Chapter 1: Introduction to Performance Tuning

- What is Performance Tuning?
- Performance-level Agreements
- Performing System Changes



#### Goal:

Present a high-level overview of performance tuning and its goals.



## **Objectives:**

- Describe Performance Tuning
- Describe Performance Level Agreements
- Perform system changes.



## What is Performance Tuning?



## Practice: Performance Tuning Techniques



## Performance-level Agreements



## Practice: Service-level Agreement or Performance-level Agreement



## **Performing System Changes**



## Practice: Steps to Take When Applying a Tuning Change



## Lab: Introduction to Performance Tuning



## **Summary**



#### DAY ONE

Introduction

Collecting, Graphing, and Interpreting Data

**General Tuning** 

Limiting Resource Usage

# **Chapter 2:**Collecting, Graphing, and Interpreting Data

- Units and Unit Conversions
- Profiling Tools
- Using awk to Format Data
- Plotting Data
- Performance Co-Pilot



#### Goal:

Collect, graph, and analyze data.



### **Objectives:**

- Convert from one unit to another
- Gather and analyze data using sar, iostat, and vmstat
- Format data with awk
- Utilize common regular expressions with awk
- Graph data with gnuplot
- Gather and display data with Performance Co-Pilot



### **Units and Unit Conversions**



## **Practice: Converting Units**



## **Profiling Tools**



## Practice: Install and Configure sar



## Using awk to Format Data



## Practice: Formatting Data with awk



## **Plotting Data**



## Practice: Plotting Load-Average Data with gnuplot



## **Performance Co-Pilot**















## Practice: Configuring Performance Co-Pilot



## Lab: Collecting, Graphing, and Interpreting Data



## **Summary**



#### DAY ONE

Introduction

Collecting, Graphing, and Interpreting Data

**General Tuning** 

Limiting Resource Usage

# **Chapter 3:**General Tuning

- Queueing Theory
- Configuring System Tunables
- Installing and Enabling tuned
- Creating Custom tuned Profiles



#### Goal:

Describe the basics of performance tuning.



#### **Objectives:**

- Describe the basics of queueing theory
- Configure system tunables
- Deploy the automatic tuning daemon tuned
- Create a customized tuned profile



# **Queueing Theory**







# **Practice: Queueing Theory**



# **Configuring System Tunables**



### Practice: Configuring System Tunables



### Installing and Enabling tuned



# Practice: Installing and Enabling tuned



# **Creating Custom tuned Profiles**



# Practice: Creating Custom tuned Profiles



# **Lab: General Tuning**



### **Summary**



#### DAY ONE

Introduction

Collecting, Graphing, and Interpreting Data

**General Tuning** 

Limiting Resource Usage

# **Chapter 4:** Limiting Resource Usage

- Configuring POSIX Resource Limits
- Understanding Control Groups



#### Goal:

To allocate resources for best perfomance by limiting resource usage.



#### **Objectives:**

- Configure POSIX resource limits
- Describe Linux Control Groups



# **Configuring POSIX Resource Limits**



# Practice: Configuring POSIX resource limits



### **Understanding Control Groups**







#### Practice: Configure systemd CGroup Limits



# Lab: Limiting Resource Usage



### **Summary**



#### DAY/TWO

Hardware Profiling

Software Profiling

Using SystemTap

Small File Tuning

# **Chapter 5:** Hardware Profiling

- Generating a Hardware Profile
- Profiling Storage



#### Goal:

Describe and use tools to generate a hardware profile.



#### **Objectives:**

- Generate a hardware profile
- Profile a storage system



### Generating a Hardware Profile



## Practice: Generating a Hardware Profile



# **Profiling Storage**











# **Practice: Profiling Storage**



# Lab: Hardware Profiling



### **Summary**



#### DAY/TWO

Hardware Profiling

Software Profiling

Using SystemTap

Small File Tuning

# **Chapter 6:**Software Profiling

- CPU Scheduling
- Tracing System and Library Calls
- Profiling CPU Cache Usage



#### Goal:

To describe and use the basic tools for generating a software performance profile.



## **Objectives:**

- Describe and influence CPU scheduling
- Trace system and library calls for a process
- Profile how the various CPU caches are used by applications



## **CPU Scheduling**









# Practice: CPU Scheduling



## Tracing System and Library Calls



## Practice: Tracing System and Library Calls



## Profiling CPU Cache Usage





L2: 4 MiB 15 cycles 64 lines / 16-way

Main: 160 cycles 4 GiB



CORE O CORE 1 Latency HT HT HT HT L<sub>1</sub> d L<sub>1</sub> d L1 i **L1:** 32 kiB 32 kiB 32 kiB 32 kiB 4 cycles 32 lines / 4-way 64 lines / 8-way 64 lines / 8-way 32 lines / 4-way **L2 L2** 2 MiB 2 MiB L2: 64 lines / 8-way 64 lines / 8-way 11 cycles L3 8 MiB L3: 39 cycles 64 lines / 16-way **Main Memory** Main: 24 GiB 107 cycles























### Cache

## Main memory

Cache line 0 Cache line 1





## Cache

## Main memory

Cache line O Cache line 1 Cache line 2 Cache line 3



## Practice: Profiling CPU Cache Usage



## Lab: Software Profiling



## **Summary**



#### DAY/TWO

Hardware Profiling

Software Profiling

Using SystemTap

Small File Tuning

# **Chapter 7:** Using SystemTap

- Introduction to SystemTap
- Running SystemTap Scripts
- Deploying SystemTap Instrumentation Modules



#### Goal:

Provide experience building and running SystemTap instrumentation modules.



### **Objectives:**

- Install software required to compile and run SystemTap modules.
- Use the stap and staprun commands to compile and run SystemTap modules.
- Provide additional permissions to users to run compiled SystemTap modules.



## Introduction to SystemTap



## Practice: Installing SystemTap



## Running SystemTap Scripts



## Practice: Running SystemTap Scripts



# Deploying SystemTap Instrumentation Modules



# Practice: Deploying SystemTap Instrumentation Modules



## Lab: Using SystemTap



## **Summary**



#### DAY/TWO

Hardware Profiling

Software Profiling

Using SystemTap

Small File Tuning

# **Chapter 8:**Small File Tuning

- Analyzing a Small File Workload
- Selecting a File System
- Tuning for a Mail Server



#### Goal:

Analyze a workload involving frequent reads and writes to small files.



### **Objectives:**

- Analyze a workload involving frequent reads and writes to small files.
- Select a file system based on performance criteria.
- Tune specific settings for a mail server.



## Analyzing a Small File Workload















# Practice: Analyzing a Small File Workload



# Selecting a File System



## Practice: Selecting a File System



## Tuning for a Mail Server



#### **Quiz: Tuning for a Mail Server**



#### Lab: Tuning for Small File Workload



#### **Summary**



#### DAY/I/HREE

#### Large Memory Workload Tuning

CPU Intensive Workload Tuning

File Server Tuning

# Chapter 9:

# Large Memory Workload Tuning

- Memory Management
- Finding Memory Leaks
- Tuning Swap
- Managing Memory Reclamation
- Managing Non-Uniform Memory Access



#### Goal:

To tune a server for a large memory workload.



#### **Objectives:**

- Describe how the Linux kernel manages memory.
- Investigate memory leaks.
- Tune swap usage of a system.
- Configure how the Linux kernel reclaims unused memory.
- Manage NUMA for optimal memory speeds.



## Memory Management

















## Practice: Memory Management



## Finding Memory Leaks



# Practice: Finding Memory Leaks



## **Tuning Swap**



#### **Practice: Tuning Swap**



## **Managing Memory Reclamation**



#### PHYSICAL ADDRESS SPACE (12 GiB)



This example system has 12 GiB of physical RAM installed. A different system may have a larger or smaller amount of physical address space.





This example system has 2 GiB of physical RAM installed. A different system may have a larger or smaller amount of physical address space.



## Practice: Managing Memory Reclamation



### Managing Non-Uniform Memory Access



# Practice: Managing Non-Uniform Memory Access



#### Lab: Large Memory Workload Tuning



#### **Summary**



#### DAY/I/HREE

Large Memory Workload Tuning

CPU Intensive Workload Tuning

File Server Tuning

### **Chapter 10:** CPU Intensive Workload Tuning

- Limiting CPU Usage with CGroups
- Pinning Processes
- Balancing Interrupts
- Realtime Scheduling



#### Goal:

To tune a server for a CPU intensive workload



#### **Objectives:**

- To limit the amount of CPU available to processes
- To limit on which CPUs a process can run
- To limit which CPUs get used for interrupt handling
- To employ realtime scheduling polcies



## Limiting CPU Usage with CGroups



# Practice: Limiting CPU Usage with CGroups



# **Pinning Processes**



#### **Practice: Pinning Processes**



# **Balancing Interrupts**



#### Practice: Balancing Interrupts



# Realtime Scheduling



# Practice: Realtime Scheduling



### Lab: Tuning for a CPU Intensive Workload



#### **Summary**



#### DAY/THREE

Large Memory Workload Tuning

CPU Intensive Workload Tuning

File Server Tuning

# **Chapter 11:** File Server Tuning

- Selecting a Tuned Profile for a File Server
- File System Performance
- Network Performance Tuning
- Tuning Network Queues
- Bonding and Link Aggregation



#### Goal:

To tune a server for a workload involving network transmission of larger files.



#### **Objectives:**

- Select a tuned profile for a file server workload
- Configure an external ext4 journal
- Measure network performance
- Calculate and implement BDP
- Configure 802.3ad link aggregation



# Selecting a Tuned Profile for a File Server



# Practice: Selecting a Tuned Profile for a File Server



# File System Performance



#### **Practice: File System Performance**



#### **Network Performance Tuning**



# Practice: Network Performance Tuning



# **Tuning Network Queues**



#### **Practice: Tuning Network Queues**



# **Bonding and Link Aggregation**



# Practice: Configuring Network Teaming



# Lab: File Server Tuning



#### **Summary**



#### DAY FOUR

#### Tuning a Database Server

Power Usage Tuning

Tuning For Virtualization

Comprehensive Review

# **Chapter 12:** Tuning a Database Server

- Analyzing a Database Server Workload
- Managing Inter-Process
   Communication
- Managing Hugepages
- Overcommitting Memory



#### Goal:

To tune a server for a database workload.



#### **Objectives:**

- Select a tuned profile to support database usage.
- Examine and tune System V IPC mechanisms.
- Improve memory performance by creating and managing huge pages.
- Adjust memory overcommit, swappiness, and dirty page management.



### Analyzing a Database Server Workload



# Practice: Analyzing a Database Server Workload



### **Managing Inter-Process Communication**



# Practice: Managing Inter-Process Communication



# Managing Hugepages



# Practice: Managing Hugepages



### **Overcommitting Memory**



#### **Practice: Overcommitting Memory**



#### Lab: Database Server Tuning



### **Summary**



#### DAY FOUR

Tuning a Database Server

Power Usage Tuning

Tuning For Virtualization

Comprehensive Review

## **Chapter 13:**Power Usage Tuning

- Power Saving Strategies
- Power Usage Profiling and Tuning



#### Goal:

To tune a server for power-efficient operation.



#### **Objectives:**

- Tuning a system for efficient power usage.
- Profiling and tuning power usage.



### **Power Saving Strategies**



### **Practice: Power Saving Strategies**



## Power Usage Profiling and Tuning



## Practice: Power Usage Profiling and Tuning



### Lab: Power Usage Tuning



### **Summary**



#### DAY/FOUR

Tuning a Database Server

Power Usage Tuning

Tuning for Virtualization

Comprehensive Review

# **Chapter 14:** Tuning for Virtualization

- Tuning Virtualization Hosts
- Tuning Virtual Guests



#### Goal:

To tune virtualization hosts and guests.



#### **Objectives:**

- Configuring tuned profiles
- Pinning guests to use specific host CPUs
- Enabling Kernel Samepage Merging (KSM)
- Assigning resource limits to guests



### **Tuning Virtualization Hosts**



## **Practice: Tuning Virtualization Hosts**



## **Tuning Virtual Guests**



### **Practice: Tuning Virtual Guests**



### Lab: Virtualization Tuning



### **Summary**



#### DAY/FOUR

Tuning a Database Server

Power Usage Tuning

Tuning for Virtualization

Comprehensive Review

## **Chapter 15:**Comprehensive Review

 Red Hat Performance Tuning Comprehensive Review



#### Goal:

To practice and demonstrate knowledge and skills learned in Red Hat Performance Tuning.



#### **Objectives:**

• Review the course chapters to reinforce knowledge and skills.



## Red Hat Performance Tuning Comprehensive Review



# Lab: Red Hat Performance Tuning Comprehensive Review



## Thank you for attending this Red Hat Training Course! To plan your learning path:

https://www.redhat.com/training/paths/linux-development.html





