Machine Learning Theory & Practice

Module 3: Linear Regression

Lecture 2: Performance Tuning for Linear Regression

Lecture Outline

Topic 1: R-squared and Adjusted R-squared

Topic 2: Regularization

Topic 1: R-Squared and Adjusted R-Squared:

These are performance metrics that show how much of the output variation is explained by a LR model

Variation in Response

Coefficient of Determination: R-Squared - R²

Variances:

- Total variance in actual response: $SS_{total} = \sum_{i=1...n} (y_i \bar{y})^2$
- Error: $SS_{residual} = \sum_{i=1...n} (y_i \hat{y}_i)^2$
- Variance in response given by Model: $SS_{reg-model} = \sum_{i=1...n} (\hat{y}_i \bar{y})^2$
- $R^2 = \frac{SS_{reg_model}}{SS_{total}}$: proportion of the variation in actual response that is explained by the LR model
- OR, 1- $\frac{SS_{residual}}{SS_{total}}$: 1- proportion of unexplained variation (error) in response

Issues with R-squared

lacktriangle

$$R^{2} = 1 - \frac{SS_{residual}}{SS_{total}} = 1 - \frac{\sum_{i} (y_{i} - (w_{0} + w_{1}x_{1} + \cdots))^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

- It is biased: By adding many regressors, and by increasing training time, we get apparently better R²
- May add insignificant predictors
- May start modelling noise
- Model overfits, and hence will be unable to generalize

Adjusted-R Squared \bar{R}^2

Mean Variances

• $MS_{total} = \frac{\sum_{i=1...n} (y_i - \bar{y})^2}{n-1}$, n: No. of samples, n-1 : degree of freedom df

• MS_{regression-model} =
$$\frac{\sum_{i=1...n} (\hat{y}_i - \bar{y})^2}{p}$$
, df=p, p= no of regressors (1 for SLR)

• MS_{residual=} =
$$\frac{\sum_{i=1...n} (y_i - \hat{y}_i)^2}{n-p-1}$$
, Note: dftotal= df_{regression-model}+df_{residual}

•
$$\bar{R}^2 = 1 - \frac{MS_{residual}}{MS_{total}} = 1 - \frac{SS_{residual}}{SS_{total}} \frac{(n-1)}{(n-p-1)}$$

Relationship between $R^2 \& \bar{R}^2$

\mathbb{R}^2 Versus \bar{R}^2

- LR: $R^2 = 1-SS_{res}/SS_{tot}$
- R² Always increases as more regressors are added.
- R² is biased estimate
- R² Does not penalize non-significant terms
- R² Is always positive
- R² is not suitable for statistical test of significance of weights

- LR: $\bar{R}^2 = 1$ -MS_{res}/MS_{tot}
- \bar{R}^2 increases ONLY if an added regressor is significant.
- \bar{R}^2 is unbiased estimate
- \bar{R}^2 penalizes non-significant variables
- \bar{R}^2 can be negative, is always less than R^2
- \bar{R}^2 is suitable for statistical test of significance of weights

Topic 2: Regularization methods

REGULARIZATION: PROCESS OF MAKING THE LEARNING MODEL SIMPLER

Regularization with Validation

- Make a hierarchy of regressors (X) in terms of their relative importance.
- Add Regressors, one/few at a time, in order of importance.
- Generate an optimized model for each set of regressors using cross validation, and monitor \overline{R}^2
- The point at which \overline{R}^2 reaches a maximum gives the ideal combination of regressors.

Example: Cost of House

Regressors:

- 1. Floor Area
- 2. No of bedrooms
- 3. No of balconies
- 4. Type of locality
- 5. Green cover
- 6. Front door facing which direction
- 7. Educational background of neighbourhood

Regularization with Modified Loss Functions

- Augment Ordinary Least Squares with regularization term:

 - Elastic Net Regularization

Least Absolute Shrinkage & Selection Operator(LASSO): L1 Regularization

Minimize cost function:

1) Ordinary Least Squares

2) Regularization Term

Minimize
$$\left\{ \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \frac{\lambda \sum_{j=0}^{p} |w_j|}{\sum_{j=0}^{p} |w_j|} \right\}$$

Forcing For some
$$t > 0$$
, $\sum_{j=0}^{p} |w_j| < t$

- L1 penalizes regressors by shrinking their weights
- Regressors that contribute little to error reduction are more penalized
- λ is the weighting factor for regularization to tune overfit \longleftrightarrow underfit

Sum of squares of Residuals/

$$\sum_{i} (y_i - (w_1 x_{1,i} + w_2 x_{2,i}))^2$$

L1 can lead to some zero coefficients.
 especially if λ is large

$$W_1$$

$$|w_1| + |w_2| \le \mathsf{t}$$

- L1 not only reduces overfitting but also helps eliminate insignificant features
- LASSO selects only significant regressors

Multicollinear Regressors

- The following regressors are highly positively correlated and each apparently impacts property cost.
 - Total Area
 - Number of rooms
 - Free areas: balconies and corridors
 - Size of rooms
- Without regularization, all coefficients would be inflated
- L1 retains only one of them and eliminates the rest

Ridge Regression: L2 Regularization

Minimize cost function: 1) Ordinary Least Squares 2) Regularization Term

Minimize
$$\left\{ = \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} w_j^2 \right\}$$

Forcing, For some c > 0, $\sum_{j=0}^{p} w_j^2 < c$

• L2 handles multiple correlated regressors better

Elastic Net Regularization

- Combines L1 and L2 Regularization
- Each has its own weighting factor

•
$$OF = Minimize \left\{ \sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{m} w_j x_{j,i} \right)^2 + \lambda_1 \sum_{j=0}^{m} \left| w_j \right| \right\} + \lambda_2 \sum_{j=0}^{m} w_j^2 \right\}$$

- λ_1 and λ_2 allow:
 - A balance of attribute elimination ability and handling multiple correlated regressors
 - A proper tuning of overfitted model (both 0) to underfitted model (both large)

Constraint Regions in Ridge, LASSO & Elastic Net Regularization

Recap

- Adjusted Coefficient of Determination \bar{R}^2 indicates the proportion of normalized variation in response that is explained in an unbiased manner, by a LR model
- ightharpoonup LASSO regression employs L1 regularization by adding "sum of absolute weights" term in Cost function, with weighting factor λ
- \triangleright If λ is 0, there is no regularization and the model may overfit giving poor generalization
- \triangleright If λ is large, most weights shrink and the model may underfit

Recap

- $\hfill\square$ Ridge regression employ L2 regularization by adding "sum of squares of weights" to OLS, with weight factor λ
- ☐ L2 regularization cannot eliminate any regressor but can appropriately shrink insignificant ones
- ☐ Ridge regression handles multiple correlated features by diminishing or enhancing them simultaneously, instead eliminating all but one (as in L1)
- ☐ Elastic Net regularization employs a mix of L1 and L2 with their own weighting factors to create a balanced model

Balance is a sense of harmony....