Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>	
22/03/2023	11 – Bases des graphes	Cours	

Informatique

11 Bases des graphes

Résumé

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
22/03/2023	11 – Bases des graphes	Cours

Bases des Graphes

	Défin	itions	
Graphe	- 1	nts (sommets) et de liens (arêtes, arcs) entre eux	
D'ordre n	Composé de n sommets		
Non orienté	Compos	sé d'arêtes (parcours dans les 2 sens)	
Orienté	· ·	imposé d'arcs (flèches) orientés	
Sommets adjacents		Reliés par une arête ou un arc	
Sommet isolé		Sommet relié à aucun autre	
Degré d'un sommet $d(s)$	Nombre d'arêtes/a	arcs (quel que soit leur sens) auxquels il est relié	
Degré entrant	Nombre	d'arcs arrivant/partant d'un sommet	
$d_{-}(s)$ /sortant $d_{+}(s)$		$d(s) = d_{-}(s) + d_{+}(s)$	
Graphe complet	Tous le	s sommets sont adjacents entre eux	
Chaine/Chemin de	Succession de n arêtes/ars telle que l'extrémité de chacune est		
longueur n	l'origine de la suivante, sauf la dernière		
Graphe non orienté	Il existe une chaine entre n'importe quelle paire de sommets distincts		
connexe	du graphe		
Chaine/Chemin fermé	Chaine/un chemin qui possède le même sommet de départ et		
		d'arrivée	
Cycle/Circuit	Chaine/Chemin fermé(e) est composé(e) d'arêtes/arcs distincts		
Graphe pondéré	Graphe pour	lequel chaque arête/arc possède un poids	
	,	N Nombre d'arcs/sommets	
Propriét	ce .	$\sum d(s_i) = 2N$	
	Notations		
Arêtes	$A = \{\{s_i, s_j\}, s_i \in S, s_j \in S\}$ $A = \{(s_i, s_j), s_i \in S, s_j \in S\}$		
Arcs	$A = \{(s_i, s_i), s_i \in S, s_i \in S\}$		
Graphe non pondéré		G = (S, A)	
Cranha nandárá		$G = (S, A)$ $G = (S, A, \omega)$	
Grapne pondere	Graphe pondéré Pondération des arêtes/arcs : $\omega(s_i, s_j)$		

Exemples					
Graphe non orienté d'ordre 4	Graphe orienté	Graphe pondéré			
A B C Chaine ADCB D Cycle ADBA	A B C Chemin ADCB D Circuit BDCB	D 1 1 1 3 A B C D 1 1 3 A B C 2 4 C			

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>	
22/03/2023	11 – Bases des graphes	Cours	

Matrices d'adjacence

A tout graphe G d'ordre p, de sommets notés s_i , on peut associer une matrice carrée d'ordre p: $M=\left(m_{ij}\right)$ où m_{ij} est le nombre d'arcs/arêtes reliant les sommets s_i à s_j . Cette matrice est appelée matrice d'adjacence associée à G

			Destin	ation	
		Α	B	С	D
щ	\boldsymbol{A}	[0	1	0	1]
IANC	В	1	0	1	1
PROVENANCE	$\boldsymbol{\mathcal{C}}$	0	1	0	1
R	D	1	1	1	0

				M	atrices de	es distances
		Destin	ation			
	Α	В	С	D		
$_{\tt L}$ A	[0	2	0	1]		ш
$\frac{8}{8}B$	2	0	4	1		IANC
PROVENANCE D	0	4	0	3		PROVENANCE
$^{\frac{\kappa}{2}}D$	1	1	3	0		P.

On introduit alors la notion de **poids d'une chaine**, comme somme de toutes les pondérations des arêtes/arcs composant la chaine (ex : dans le graphe orienté, le poids de la chaine ADCB vaut 8)

Liste d'adjacence

Sous forme de liste	Sous forme de dictionnaire
>>> S = ["A","B","C","D"]	
>>> L = [["B","D"],["A","C","D "],["B","D"],["A","B","C"]] >>> s = "B"	>>> D = {"A":["B","D"],"B":["A ","C","D"],"C":["B","D"],"D":["A","B","C"]}
>>> i = S.index(s)	>>> D["B"] ['A', 'C', 'D']
>>> i	Avec des pondérations :
1	>>> D["B"] [['A', 2], ['C', 4], ['D', 1]]
>>> L[i]	
['A', 'C', 'D']	

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
22/03/2023	11 – Bases des graphes	Cours

	Parcours d'un graphe		
Un outil aux	<pre>from collections import deque</pre>		
opérations de	f = deque() # Création une « dèque » vide		
complexité	<pre>f.append(x) # Ajoute l'objet x à droite f.appendleft(x) # Ajoute l'objet x à gauche</pre>		
O(1) pour	x = f.pop() # Enlève l'élément à droite		
créer des files	x = f.popleft() # Enlève l'élément à gauche		
(et des piles)	t = len(f) # Nombre d'éléments de f		
	Mettre le nœud de départ dans une file et le marquer comme visité		
Parcours en	Tant que la file n'est pas vide :		
largeur	- Retirer le premier sommet de la file pour le traiter		
	- Mettre tous ses voisins non visités à la fin de la file et les marquer visités		
	Fonction récursive d'exploration Explorer(s) :		
	- Marquer le sommet s comme visité		
Parcours en	o Pour tout voisin v de s non marqué :		
profondeur	Explorer(v)		
proronacu.	Le parcours total est alors réalisé ainsi :		
	- Pour tout sommet s non marqué du graphe :		
	o Explorer(s)		
	Que le graphe soit orienté ou non, le parcours en largeur au départ de s / une seule		
	exécution de la fonction Explorer(s) du parcours en profondeur permet de trouver		
	tous les sommets accessibles depuis s (sommets en orange ci-dessous)		
	A B C E Départ		
	D Départ D Départ		
	$A \longrightarrow B \longrightarrow C \longrightarrow E$		
	G G		
	Pour un graphe non orienté connexe, on obtient alors tous les sommets de G (et		
	donc tous les sommets accessibles depuis s).		
	Un parcours en largeur depuis s / une seule exécution de Explorer(s) pour un		
	graphe non orienté permet de déterminer les composantes connexes (sous graphe		
Remarques	connexe), c'est-à-dire toutes les stations reliées ensembles.		
1101110119100	D Départ F		
	A B C E		
	Départ		
	G		
	Si le résultat du parcours ne contient pas toutes les stations du graphe, le graphe		
	n'est pas connexe.		
	Selon l'ordre de sélection des voisins, les parcours peuvent se comporter quelque		
	peu différemment.		
	Dans le cas du parcours en largeur, comme les sommets sont explorés par distance		
croissante au sommet de départ, on trouve le plus court chemin au sens « n			
	de sommets » depuis le départ. L'algorithme de Dijkstra abordé plus tard dans c		
	cours peut être vu comme une extension de cette méthode pour les graphes		
	pondérés		

Dernière mise à jour	Informatique	Denis DEFAUCHY – <u>Site web</u>
22/03/2023	11 – Bases des graphes	Cours

Plus court chemin d'un graphe pondéré

Soient un graphe pondéré $G(S,A,\omega)$ et les sommets de début s_{deb} et de fin s_{fin} . L'algorithme se déroule ainsi :

- $\underline{P} = \emptyset$ ou $\underline{Q} = S$
- Initialisation de *Predecesseur*
- $d[s] = +\infty \ \forall s \in S$
- $d[s_{deb}] = 0$
- Tant qu'il existe <u>un sommet hors de P</u> ou <u>un sommet dans Q</u>
 - Choisir s_i hors de P tel que $d[s_i] = \min(d[s_k])$, $s_k \in \overline{P}$
 - o $\underline{P+=s_i}$ ou $\underline{Q-=s_i}$
 - o Pour chaque sommet $\underline{v_i \in \overline{P}}$ ou $\underline{v_i \in Q}$ voisin de s_i (ie. $\omega(s_i, v_i) \neq 0$)
 - Si $d[s_i] + \omega(s_i, v_i) < d[v_i]$
 - $d[v_i] = d[s_i] + \omega(s_i, v_i)$
 - $Predecesseur[v_j] = s_i$

Fin Pour

Fin Tant que

- Si $d[s_{fin}] \neq 0$
 - \circ Le plus court chemin vaut $d[s_{fin}]$
 - \circ Remonter le chemin à l'envers par succession des prédécesseurs de s_{fin} à s_{deb}

Dijkstra

Amélioration via condition « Tant que $s_i \neq s_{fin}$ » si une exécution doit donner le résultat au plus vite. Sinon, on trouve tous les chemins depuis s_{deb} , à utiliser ensuite quel que soit s_{fin} sans relancer l'algorithme

Travailler avec P est légèrement plus intéressant qu'avec Q si on ajoute la condition $s_i \neq s_{fin}$ vis-à-vis de la recherche du minimum car P est vide au départ et se rempli, contrairement à Q

Amélioration via condition « Tant que $d[s_i] \neq \infty$ » si s_{fin} ne peut être atteint

La recherche « Pour chaque sommet [...] voisin de s_i » peut être réalisée au préalable en créant une liste d'adjacente, ou alors dans la boucle de résolution à l'aide d'une matrice d'adjacence. Quel que soit l'endroit où elle est placée, elle présentera un même cout de calculs.

Le choix de s (premier ou dernier minimum), et l'inégalité stricte ou non du test $d[s_i] + \omega(s_i, v_i) < d[v_i]$ peuvent changer la solution retenue (à distances finales égales).

Il est possible de réaliser une version de l'algorithme de Dijkstra qui améliore son temps d'exécution avec un objet contenant les seuls sommets voisins des sommets déjà traités sans aucun sommet déjà traité. On recherche alors le minimum dans un objet toujours petit (contrairement à \overline{P} ou Q).

Encore mieux, on peut ne pas filtrer les sommets déjà traités lors de la mise à jour des voisins.

Heuristique h(s) telle que : f(s) = g(s) + h(s)

- g(s) le coût réel du chemin optimal partant du sommet initial jusqu'à s
- h(s) le coût estimé du reste du chemin partant de n jusqu'à un état satisfaisant du but

A* A star A étoile Exemple de chemin sur une image : $f(s) = d(s) + d'(s, s_{fin})$

Avec pour heuristique $d'(s, s_{fin})$ la distance à vol d'oiseau entre s et s_{fin}

Changer la ligne de Dijkstra :

Choisir s hors de P tel que $d[s] = \min(\mathbf{d}[s_i])$, $s_i \in \bar{P}$

Par

Choisir s hors de P tel que $d[s] = \min(f[s_i])$, $s_i \in \bar{P}$

