

Correction to "Thermodynamics of Ionized Monolayers: Surface Manometry on Very Low Density Spread Monolayers of Sodium Octadecyl Sulfate at the Air/Water Interface and Analysis of Ionic Double Layer Contributions to the Isotherms"

S. R. Middleton, N. R. Pallas, J. Mingins, and B. A. Pethica*

J. Phys. Chem. C 2011, 115 (16), 8056-8063. DOI: 10.1021/jp110677c

In the original manuscript, the first two Figures showing the experimental monolayer isotherms are given with surface pressure scales incorrect by a factor of 10. The surface pressure ranges for Figures 1 and 2 are 0-300 and $0-250~\mu\text{N m}^{-1}$, respectively. The correct surface pressures are uniformly used and discussed in the text. The corrected Figures are given here.

Figure 1. Π – Γ isotherms at 20 °C for dilute monolayers of sodium octadecyl sulfate spread at the interface between water-vapor saturated air and aqueous NaCl solutions at concentrations of 10^{-3} , 10^{-2} , and 10^{-1} M. The straight lines shown for 10^{-2} and 10^{-1} M NaCl are statistical fits through the origin. The curve shown for 10^{-1} M NaCl is to guide the eye. Also shown is the isotherm $\Pi = kT\Gamma$ for an ideal two-dimensional gas.

Figure 2. Π – Γ isotherms at 10 °C for dilute monolayers of sodium octadecyl sulfate spread at the interface between water-vapor saturated air and aqueous NaCl solutions at concentrations 10^{-1} and 10^{-2} M. The straight lines are statistical fits through the origin. Also shown is the isotherm $\Pi = kT\Gamma$ for an ideal two-dimensional gas.