一、参考资料

机器人算法:

(备份) (备份) 机器人学 机器视觉与控制 MATLAB算法基础(带书签).pdf

机器人建模和控制.pdf

机器人学.蔡自兴.pdf

第三版

Robotics Toolbox for MATLAB 版本 10.4 函数 fkine() 及 ikine()源码

DSP 库:

安富莱_STM32-V5开发板_第2版DSP数字信号处理教程(V2.7).pdf

二、算法实现

1. 对机械臂进行参数辨识,DH 参数,机械臂结构等 (本例程基于 PUMA560 6 转动关节 无偏置量);

2. 根据步骤 1 所得参数依次算出每个连杆变换矩阵 TN; C 语言中采用结构体,如下图所示。(书中公式有误,红色笔迹已更正)

$$n_{x} = c_{1} [c_{23}(c_{4}c_{5}c_{6} - s_{4}s_{6}) - s_{23}s_{5}c_{6}] + s_{1}(s_{4}c_{5}c_{6} + c_{4}s_{6})$$

$$n_{y} = s_{1} [c_{23}(c_{4}c_{5}c_{6} - s_{4}s_{6}) - s_{23}s_{5}c_{6}] - c_{1}(s_{4}c_{5}c_{6} + c_{4}s_{6})$$

$$n_{x} = -s_{23}(c_{4}c_{5}c_{6} - s_{4}s_{6}) - c_{23}s_{5}c_{6}$$

$$o_{x} = c_{1} [c_{23}(-c_{4}c_{5}s_{6} - s_{4}c_{6}) + s_{23}s_{5}s_{6}] + s_{1}(c_{4}c_{6} - s_{4}c_{5}s_{6})$$

$$o_{y} = s_{1} [c_{23}(-c_{4}c_{5}s_{6} - s_{4}c_{6}) + s_{23}s_{5}s_{6}] - c_{1}(c_{4}c_{6} - s_{4}c_{5}s_{6})$$

$$o_{x} = -s_{23}(-c_{4}c_{5}s_{6} - s_{4}c_{6}) + c_{23}s_{5}s_{6}$$

$$a_{x} = -c_{1}(c_{23}c_{4}s_{5} + s_{23}c_{5}) - s_{4}s_{5}$$

$$a_{y} = -s_{1}(c_{23}c_{4}s_{5} + s_{23}c_{5}) + c_{1}s_{4}s_{5}$$

$$a_{x} = s_{23}c_{4}s_{5} - c_{23}c_{5}$$

$$p_{x} = c_{1}[a_{2}c_{2} + a_{3}c_{23} - d_{4}s_{23}] - d_{2}s_{1}$$

$$p_{y} = s_{1}[a_{2}c_{2} + a_{3}c_{23} - d_{4}s_{23}] + d_{2}c_{1}$$

$$p_{x} = -a_{3}s_{23} - a_{2}s_{2} - d_{4}c_{23}$$

3. 将连杆矩阵此次相乘得到最终各元素的表达式;三角函数采用 dsp 库 arm_cos_f32、arm_sin_f32.

```
*/
void fkine(mat *T0, float *q6, float32_t *inter_value)
{
    inter_value[0] = arm_cos_f32(q6[0]) * ( arm_cos_f32(q6[1] + q6[2]) * ( arm_cos_f32(q6[3]) * arm_cos_f32(q6[4]) * arm_cos_f32(q6[5]) - arm_sin_inter_value[1] = arm_cos_f32(q6[0]) * ( arm_cos_f32(q6[1] + q6[2]) * ( -arm_cos_f32(q6[3]) * arm_cos_f32(q6[4]) * arm_sin_f32(q6[5]) - arm_sin_inter_value[2] = -arm_cos_f32(q6[0]) * ( arm_cos_f32(q6[1] + q6[2]) * arm_cos_f32(q6[3]) * arm_sin_f32(q6[4]) * arm_sin_f32(q6[1] + q6[2]) * arm_tos_f32(q6[1]) + q6[2]) * arm_cos_f32(q6[1]) + q6[2]) * arm_cos_f32(q6[1] + q6[2]) * arm_sin_f32(q6[1] + q6[2]) * arm_cos_f32(q6[1]) + q6[2]) * arm_cos_f32(q6[1]) * arm_cos_f32(q6[1]) * arm_cos_f32(q6[1]) * arm_cos_f32(q6[1]) * arm_cos_f32(q6[1]) * arm_sin_f32(q6[1]) * arm_sin_f32(q6[1]
```

4. 逆解部分理论基础见蔡自兴《机器人学》P57-60页;按照公式依次写出 4 组可能解得表达式,最后使机器人臂腕关节翻转得到另外四组解;

如果机械结构、DH 参数不同于 PUMA560, 重新建立各连杆矩阵, 再依次相乘得到各关节角未知数所对应的含未知数变换矩阵。利用矩阵各元素相等, 建立关节角与已知量的函数关系, 再采用双变量反正切函数求得关节角。(不采用反正弦或反余弦函数原因详见 蔡自兴《机器人学》P50页)

```
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| **
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| **
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
| ***
|
```

(dsp 求解 sin cos 函数使用 SIN COS 宏替代)

5.如果不需要所有解,可以函数体后面添加筛选解的内容。

三、正确性验证

验证步骤:

1. 输入任意关节角组合 qn【6】得到变换矩阵 TT;

2. 输入步骤 1 所得变换矩阵 TT 和 目标解所存储数组 qi[8][6],得到逆解。观察可以看出 8 组逆解中有一组即为我们在步骤 1 中输入的关节角组合;

ame	Value	Туре
∞ [5]	1	float
qi qi	0x20000438	float[8][6]
⊜ ⁴緣 [0]	0x20000438	array[6] of float
[0]	2.69548845	float
(1]	-0.39500761	float
 ◊ [2]	1.00001526	float
🏈 [3]	2.43046618	float
 ♦ [4]	2.81127691	float
→ [5]	2.30529261	float
□ ⁴ \$ [1]	0x20000450	array[6] of float
[0]	1.00001669	float
 ♦ [1]	-2.74660015	float
··· 🔷 [2]	2.23535013	float
→ (3]	1.63964355	float
··· 🔷 [4]	2.35245585	float
→ [5]	-3.05394435	float
⊟ ⁴\$ [2]	0x20000468	array[6] of float
(0] ♦	2.69548845	float
? [1]	2.14161396	float
··· • [2]	2.23535013	float
→ Ø [3]	2.60888076	float
→ [4]	0.42994526	float
→ [5]	3,06128073	float
⊟ 🤻 [3]	0x20000480	array[6] of float
[0]	1.00001669	float
→ (1]	0.999963641	float
> [2]	1.00001526	float
🏈 [3]	0.999966681	float
··· • [4]	1.00000644	float
№ [5]	1.19317293	float
⊟ 🔧 [4]	0x20000498	array[6] of float
 ◊ [0]	2.69548845	float
→ ◊ [1]	-0.39500761	float
 ◊ [2]	1.00001526	float
→ (3]	-0.711126804	float
···· 🔷 [4]	-2.81127691	float
→ [5]	-0.836300373	float
□ * \$ [5]	0x200004B0	array[6] of float
[0]	1.00001669	float
(1)	-2.74660015	float
··· • [2]	2.23535013	float
→ [3]	-1.50194931	float

如图为第 4 组解 qi[3]

3. 将8组关节角依次代入 正解 fkine 求得每组 关节角对应变化矩阵 tt,观察看出 第四列前三个数据即笛卡尔空间坐标 xyz 基本相同,再将关节角组合输入到 matlab,通过

robot.plot(qi)方法观察姿态,可以观察到输入关节角组合 与 各逆解组合 xyz 轴和位置一致。 注意使用打开两个 matlab 程序观察,用一个时使用 plot 方法所有图窗界面会保持一致。

0x200001F8:	0.922001	0.327066	-0.758999	-0.216727
0x20000208:	-0.36312	0.922797	0.128337	-0.0616043
0x20000218:	0.742436	0.203373	0.638249	-0.201597
0x20000228:	0	0	0	1
0x20000238:	0.263302	0.551929	-0.759014	-0.216723
0x20000248:	-0.751762	0.646737	0.128358	-0.0616109
0x20000258:	0.561741	0.526305	0.638247	-0.201597
x20000268:	0	0	0	1
0x20000278:	0.369939	0.492573	-0.758996	-0.216729
0x20000288:	-0.643891	0.754191	0.128351	-0.0616081
0x20000298:	0.635698	0.434107	0.638249	-0.201591
0x200002A8:	0	0	0	1
0x200002B8:	0.606803	0.363336	-0.759007	-0.216732
0x200002C8:	-0.422955	0.896977	0.12835	-0.0616064
0x200002D8:	0.727476	0.251699	0.638257	-0.201589
0x200002E8:	0	0	0	1
0x200002F8:	0.475303	0.327066	-0.758998	-0.216727
0x20000308:	-0.36312	0.922797	0.128337	-0.0616043
0x20000318:	0.742436	0.203373	0.638249	-0.201597
0x20000328:	0	0	0	1
0x20000338:	-0.382188	0.551929	-0.759014	-0.216723
0x20000348:	-0.751762	0.646736	0.128358	-0.0616109
0x20000358:	0.561741	0.526305	0.638247	-0.201597
0x20000368:	0	0	0	1
0x20000378:	0.105618	0.492573	-0.758996	-0.216729
0x20000388:	-0.643891	0.754191	0.128351	-0.0616081
0x20000398:	0.635698	0.434107	0.638249	-0.201591
0x200003A8:	0	0	0	1
0x200003B8:	0.291967	0.363336	-0.759007	-0.216732
0x200003C8:	-0.422955	0.896977	0.12835	-0.0616064
0x200003D8:	0.727475	0.251699	0.638257	-0.201589
0x200003E8:	0	0	0	1
0x200003F8:	0.489624	0.429034	-0.759008	-0.216733
0x20000408:	-0.533494	0.83593	0.128355	-0.0616089
0x20000418:	0.689603	0.342097	0.638235	-0.201597
0x20000428:	0	0	0	1

图中依次为 qi[7], qi[6], qi[5], qi[4], qi[3], qi[2], qi[1], qi[0], qz 对应的变换矩阵.

Matlab 仿真图:

