

- ✓ Recall the different triangle congruence postulates and theorems
- √ Identify statements on triangle congruence
- ✓ Apply the postulates and theorems on triangle congruence to prove statements

ASA CONGRUENCE

AAS CONGRUENCE

HyA CONGRUENCE

HyL CONGRUENCE

LA CONGRUENCE

ASA CONGRUENCE

AAS CONGRUENCE

HyA CONGRUENCE

HyL CONGRUENCE

LA CONGRUENCE

ASA CONGRUENCE

AAS CONGRUENCE

HyA CONGRUENCE

HyL CONGRUENCE

LA CONGRUENCE

ASA CONGRUENCE

AAS CONGRUENCE

HyA CONGRUENCE

HyL CONGRUENCE

LA CONGRUENCE

ASA CONGRUENCE

AAS CONGRUENCE

HyA CONGRUENCE

HyL CONGRUENCE

LA CONGRUENCE

ASA CONGRUENCE

AAS CONGRUENCE

HyA CONGRUENCE

HyL CONGRUENCE

LA CONGRUENCE

ASA CONGRUENCE

AAS CONGRUENCE

HyA CONGRUENCE

HyL CONGRUENCE

LA CONGRUENCE

ASA CONGRUENCE

AAS CONGRUENCE

HyA CONGRUENCE

HyL CONGRUENCE

LA CONGRUENCE

How did you identify the illustration of the given theorem or postulate?

 \checkmark 1. Given: ∠D \cong ∠B

 $\angle DAC \cong \angle BCA$

Prove: $\angle ACD \cong \angle CAB$

Proof:

F1001.	•
Statements	Reasons
1	1. Given
(What are the given statements?)	
2. $\overline{AC} \cong \overline{AC}$	2. Reflexive Property
3. $\Delta ADC \cong \Delta CBA$	
	$\Delta CBA?$)
4. ∠ACD ≅ ∠CAB	4

Solution: (Complete Proof)

Statements	Reasons
1. $\angle D \cong \angle B$	1. Given
$\angle DAC \cong \angle BCA$	
2. $\overline{AC} \cong \overline{AC}$	2. Reflexive Property
3. $\triangle ADC \cong \triangle CBA$	3. AAS Congruence Theorem
4. $\angle ACD \cong \angle CAB$	4. CPCTC

Given: $\overline{DB} \cong \overline{OY}$

∠1 ≅ ∠2

Prove: $\overline{OB} \cong \overline{DY}$

Proof:

	Statements	Reasons
1.		1. Given
	(What are the given statements?)	
2.		2. Reflexive Property
	(Which side of ΔBOY and ΔYDB is	
	common?)	
3.		3. SAS Congruence
	(What are the congruent triangles	Postulate
	based on the previous statements?)	
4.		4. CPCTC
	(What is to be proven?)	

Solution: (Complete Proof)

Statements	Reasons
1. $\overline{DB} \cong \overline{OY}$	1. Given
∠1 ≅ ∠2	
2. $\overline{BY} \cong \overline{BY}$	2. Reflexive Property
3. $\Delta BOY \cong \Delta YDB$	3. SAS Congruence Postulate
$4. \overline{OB} \cong \overline{DY}$	4. CPCTC

Given: $\overline{EY} \cong \overline{AY}$; $\angle 1 \cong \angle 2$

Prove: M is the midpoint of \overline{EA}

Given: $\overline{EY} \cong \overline{AY}$; $\angle 1 \cong \angle 2$

Prove: M is the midpoint of \overline{EA}

Proof:

	Statements	Reasons
1.	$\overline{EY} \cong \overline{AY} \; ; \angle 1 \cong \angle 2$	1. Given
2.		2.
3.		3.
4.		4.
5.		5.

Given: $\overline{EY} \cong \overline{AY}$; $\angle 1 \cong \angle 2$

Prove: M is the midpoint of \overline{EA}

Proof:

	NAME AND ADDRESS OF TAXABLE PARTY.	
	Statements	Reasons
1.	$\overline{EY} \cong \overline{AY} \; ; \angle 1 \cong \angle 2$	1. Given
2.	$\overline{MY} \cong \overline{MY}$	2. Reflexive Property of Congruence
3.	$\Delta YEM \cong \Delta YAM$	3. SAS Congruence Post.
4.		4.
5.		5.

Given: $\overline{EY} \cong \overline{AY}$; $\angle 1 \cong \angle 2$

Prove: M is the midpoint of \overline{EA}

Proof:

	Statements	Reasons
1.	$\overline{EY} \cong \overline{AY} \; ; \angle 1 \cong \angle 2$	1. Given
2.	$\overline{MY} \cong \overline{MY}$	2. Reflexive Property of Congruence
3.	$\Delta YEM \cong \Delta YAM$	3. SAS Congruence Post.
4.	$\overline{EM} \cong \overline{AM}$	4. CPCTC
5.	M is the midpoint of \overline{EA}	5. Midpoint Theorem

Proof:

Statements	Reasons
1. O is the midpoint of \overline{HA}	1. Given

Proof:

Statements	Reasons
1. O is the midpoint of \overline{HA}	1. Given
2. $\overline{HO} \cong \overline{AO}$	2. Midpoint Theorem

Proof:

	Statements	Reasons
1.	O is the midpoint of \overline{HA}	1. Given
2.	$\overline{HO} \cong \overline{AO}$	2. Midpoint Theorem
3.		3. Given

Proof:

	Statements	Reasons
1.	O is the midpoint of \overline{HA}	1. Given
2.	$\overline{HO} \cong \overline{AO}$	2. Midpoint Theorem
3.	∠1 ≅ ∠2	3. Given
4.	$\angle COA \cong \angle SOH$	4. Vertical angles are congruent
5.	$\Delta COA \cong \Delta SOH$	5. ASA Congruence Post.

Proof:

	Statements	Reasons
1.	O is the midpoint of \overline{HA}	1. Given
2.	$\overline{HO} \cong \overline{AO}$	2. Midpoint Theorem
3.	∠1 ≅ ∠2	3. Given
4.	$\angle COA \cong \angle SOH$	4. Vertical angles are congruent
5.	$\Delta COA \cong \Delta SOH$	5. ASA Congruence Post.
6.	∠3 ≅ ∠4	6. CPCTC

Proof:

Statements	Reasons
1. ABC is an isosceles ∆	1. Given
2. $\overline{AB} \cong \overline{AC}$	2. Definition of Isosceles Δ
3. \overline{AD} is the median of $\triangle ABC$	3.
4.	4.
5.	5.
6.	6.
7.	7.
8.	8.

Proof:

Statements	Reasons
1. ABC is an isosceles ∆	1. Given
2. $\overline{AB} \cong \overline{AC}$	2. Definition of Isosceles Δ
3. \overline{AD} is the median of $\triangle ABC$	
$^{4.}$ D is the midpoint of \overline{BC}	4. Definition of Median of a Triangle
5.	5.
6.	6.
7.	7.
8.	8.

Proof:

Statements	Reasons
1. ABC is an isosceles ∆	1. Given
2. $\overline{AB} \cong \overline{AC}$	2. Definition of Isosceles Δ
3. \overline{AD} is the median of $\triangle ABC$	3. Given
$^{4.}$ D is the midpoint of \overline{BC}	4. Definition of Median of a Triangle
5. $\overline{BD} \cong \overline{CD}$	5. Midpoint Theorem
6. $\overline{AD} \cong \overline{AD}$	6. Reflexive Property of Congruence
7.	7.
8.	8.

Proof:

_		
	Statements	Reasons
1.	ABC is an isosceles ∆	1. Given
2.	$\overline{AB} \cong \overline{AC}$	2. Definition of Isosceles Δ
3.	\overline{AD} is the median of $\triangle ABC$	3. Given
4.	D is the midpoint of \overline{BC}	4. Definition of Median of a Triangle
5.	$\overline{BD} \cong \overline{CD}$	5. Midpoint Theorem
6.	$\overline{AD} \cong \overline{AD}$	6. Reflexive Property of Congruence
7.	$\Delta CAD \cong \Delta BAD$	7. SSS Congruence Post.
8.	$\angle CAD \cong \angle BAD$	8. CPCTC

Given: $\overline{EN} \perp \overline{NB}$; $\overline{EA} \perp \overline{AR}$ $\angle 1 \cong \angle 2$; $\overline{EB} \cong \overline{ER}$

Prove: ΔENA is isosceles

Proof:

	Statements	Reasons
1.	$\overline{EN} \perp \overline{NB}$; $\overline{EA} \perp \overline{AR}$	1. Given
2.	∠3 and ∠4 are right angles	2. Perpendicular lines form right angles
3.		3.
4.		4.
5.		5.
6.		6.
7.		7.

Prove: ΔENA is isosceles

Proof:

	Statements	Reasons
1.	$\overline{EN} \perp \overline{NB}$; $\overline{EA} \perp \overline{AR}$	1. Given
2.	∠3 and ∠4 are right angles	2. Perpendicular lines form right angles
3.	Δ BNE and ΔRAE are right triangles	3. Definition of right triangles
4.		4.
5.		5.
6.		6.
7.		7.

Prove: ΔENA is isosceles

Proof:

		The second secon
	Statements	Reasons
1.	$\overline{EN} \perp \overline{NB}$; $\overline{EA} \perp \overline{AR}$	1. Given
2.	∠3 and ∠4 are right angles	Perpendicular lines form right angles
3.	Δ BNE and ΔRAE are right triangles	3. Definition of right triangles
4.	$\angle 1 \cong \angle 2 \; ; \; \overline{EB} \cong \overline{ER}$	4. Given
5.	$rt. \Delta BNE \cong rt. \Delta RAE$	5. HA Congruence Theorem
6.	$\overline{EN} \cong \overline{EA}$	6. CPCTC
7.		7.

Given: $\overline{EN} \perp \overline{NB}$; $\overline{EA} \perp \overline{AR}$ $\angle 1 \cong \angle 2$; $\overline{EB} \cong \overline{ER}$

Prove: ΔENA is isosceles

Proof:

	Statements	Reasons
1.	$\overline{EN} \perp \overline{NB}$; $\overline{EA} \perp \overline{AR}$	1. Given
2.	∠3 and ∠4 are right angles	2. Perpendicular lines form right angles
3.	Δ BNE and ΔRAE are right triangles	3. Definition of right triangles
4.	$\angle 1 \cong \angle 2 \; ; \; \overline{EB} \cong \overline{ER}$	4. Given
5.	$rt. \Delta BNE \cong rt. \Delta RAE$	5. HA Congruence Theorem
6.	$\overline{EN} \cong \overline{EA}$	6. CPCTC
7.	ΔENA is isosceles	7. Def. of Isosceles Triangle

N A

Given: \overline{EA} bisects $\angle LAN$; $\overline{AE} \perp \overline{LN}$ Prove: \(\Delta LAN \) is isosceles

Ī	$\mathbf{p_i}$	7		n	f	b
L	-	5	3	•		u

Pro	Proof:		
	Statements	Reasons	
1.	EA bisects ∠LAN	1. Given	
2.		2.	
3.		3.	
4.		4.	
5.		5.	
6.		6.	
7.		7.	
8.		8.	
9.		9.	

Given: \overline{EA} bisects $\angle LAN$; $\overline{AE} \perp \overline{LN}$ Prove: $\triangle LAN$ is isosceles

Proof:

	Statements	Reasons
1.	EA bisects ∠LAN	1. Given
2.	$\angle LAE \cong \angle NAE$	2. Definition of ∠ Bisector
3.	$\overline{AE} \perp \overline{LN}$	3. Given
4.	∠LEA and ∠NEA are right angles	4. Perpendicular lines form right angles
5.		5.
6.		6.
7.		7.
8.		8.
9.		9.

Given: \overline{EA} bisects $\angle LAN$; $\overline{AE} \perp \overline{LN}$ Prove: $\triangle LAN$ is isosceles

Proof:

	2(11)			
	Statements	Reasons		
1.	EA bisects ∠LAN	1. Given		
2.	$\angle LAE \cong \angle NAE$	2. Definition of ∠ Bisector		
3.	$\overline{AE} \perp \overline{LN}$	3. Given		
4.	∠LEA and ∠NEA are right angles	4. Perpendicular lines form right angles		
5.	Δ LEA and Δ NEA are right Δ 's	5. Def. of right triangles		
6.		6.		
7.		7.		
8.		8.		
9.		9.		

Given: \overline{EA} bisects $\angle LAN$; $\overline{AE} \perp \overline{LN}$ **Prove:** ΔLAN is isosceles

I) 1	ď	1	n	f	٠
	75.			-		

$\mathbf{P}_{\mathbf{Y}}$	001:	
	Statements	Reasons
1.	EA bisects ∠LAN	1. Given
2.	$\angle LAE \cong \angle NAE$	2. Definition of ∠ Bisector
3.	$\overline{AE} \perp \overline{LN}$	3. Given
4.	∠LEA and ∠NEA are right angles	4. Perpendicular lines form right angles
5.	Δ LEA and Δ NEA are right Δ 's	5. Def. of right triangles
6.	$\overline{AE} \cong \overline{AE}$	6. Reflexive Property of Congruence
7.		7.
8.		8.
9.		9.

Given: \overline{EA} bisects $\angle LAN$; $\overline{AE} \perp \overline{LN}$ Prove: $\triangle LAN$ is isosceles

Proof:

TTUUI.			
	Statements	Reasons	
1.	EA bisects ∠LAN	1. Given	
2.	$\angle LAE \cong \angle NAE$	2. Definition of ∠ Bisector	
3.	$\overline{AE} \perp \overline{LN}$	3. Given	
4.	∠LEA and ∠NEA are right angles	4. Perpendicular lines form right angles	
5.	Δ LEA and Δ NEA are right Δ 's	5. Def. of right triangles	
6.	$\overline{AE} \cong \overline{AE}$	6. Reflexive Property of Congruence	
7.	$rt. \Delta LEA \cong rt. \Delta NEA$	7. LA Congruence Theorem	
8.	$\overline{LA} \cong \overline{NA}$	8. CPCTC	
9.	A LAN is isosceles	9. Def. of Isosceles Triangle	

Given: L is the midpoint of \overline{UD} ; $\angle U \cong \angle D$

Prove: $\angle J \cong \angle Y$

Proof:

Statem	ents	Reasons
1. Lis the mid	point of \overline{UD}	1. Given
2. $\overline{UL} \cong \overline{D}$	Ī.	2. Midpoint Theorem
3.		3.
4.		4.
5.		5.
6.		6.

Given: Isosceles ΔSTA with respect to the vertex $\angle T$, $\overline{AR}\cong \overline{SR}$

 $Prove: \angle ATR \cong \angle STR$

Statements	Reasons
1	1. Given
(Which of the given statement will help the	
next statements)	
2	2. Definition of Isosceles Triangle
(Which parts of the given triangle are	
congruent as defined by the isosceles	
triangle?)	
3	3. Reflexive Property
(Which side of $\triangle ATR$ and $\triangle STR$ is common?)	

4	4. Given
(What other statement is given?)	
5	5. SSS Congruence Postulate
(What are the congruent triangles based on the previous statements)	
6	6. CPCTC
(What other corresponding parts of the two triangles are to be proven congruent?)	

