Exercise H9.1

Let assume yedit is a positive sample, and Na) - is a negative sample. Then the Euclidean distance between $\chi^{(d)+}$ and $\chi^{(d)-}$ will be , d (xd)+, xd)-) = W (xd)+ xd)-). ox cost is a positive sample, so \underline{W}^{T} . $\underline{\chi}^{(\alpha)} + b = 1$, \underline{W}^{T} . $\underline{\chi}^{(\alpha)} = 1 - b$ of (d) - is a negative sample, so

 W^{T} , $\chi^{(a)} - + b = -1$, W^{T} , $\chi^{(a)} - = -1 - b$. Therefore, d(x(a)+, x(a)-) = W (x(d)+-x(d)-) = IIWII (MX(x)+ - MX(x)-)

 $=\frac{1}{11W11}(1-b-(-1-b))$ $= \frac{2}{||W||} = \frac{1-2}{||W||}$

The number 2 is constant, so our target is to maximize

Exercise H9.1

b). constraints:
$$y_{T}^{(a)}(\underline{w}^{T}, \underline{\chi}^{(a)}_{+b}) - 1 = 0$$
 $target : \frac{1}{2}[|w||^{2}]$
 $L(w, b, \lambda_{a}^{\prime}) = \frac{1}{2}||w||^{2} - \sum_{\Delta=1}^{p} \lambda_{\Delta} \cdot y_{T}^{(a)}(\underline{w}^{T}, \underline{\chi}^{(a)}_{+b}) - 1$
 $\frac{\partial L}{\partial w} = \underline{w} - \sum_{\Delta=1}^{p} \lambda_{\Delta} \cdot y_{T}^{(a)} \cdot \underline{\chi}^{(a)} = 0$
 $\underline{w} = \sum_{\Delta=1}^{p} \lambda_{\Delta} \cdot y_{T}^{(a)} \cdot \underline{\chi}^{(a)}$
 $\frac{\partial L}{\partial b} = -\sum_{\Delta=1}^{p} \lambda_{\Delta} \cdot y_{T}^{(a)} \cdot \underline{\chi}^{(a)}$
 $\frac{\partial L}{\partial b} = -\sum_{\Delta=1}^{p} \lambda_{\Delta} \cdot y_{T}^{(a)} \cdot \underline{\chi}^{(a)}$
 $\frac{\partial L}{\partial b} = \sum_{\Delta=1}^{p} \lambda_{\Delta} \cdot y_{T}^{(a)} \cdot \underline{\chi}^{(a)} \cdot \underline{\chi}^$