



# Algoritmos y Estructuras de Datos

Cursada 2015

Prof. Alejandra Schiavoni Prof. Catalina Mostaccio

Facultad de Informática – UNLP

# GRAFOS

Algoritmos y Estructuras de Datos



# Agenda - Grafos

- Caminos de costo mínimo
- Árbol de expansión mínimo
- Data Structures and Algorithm Analysis in Java; 2nd Ed. Mark Allen Weiss (Capítulo 9)
- Estructuras de datos y algoritmos; Mark Allen Weiss. (Capítulo 9)



# Agenda - Grafos

- Caminos de costo mínimo
- Árbol de expansión mínimo



# Agenda – Grafos

- Caminos de costo mínimo
  - Definición
  - Algoritmos para el cálculo del camino mínimo desde un origen en:
    - Grafos sin peso
    - Grafos con pesos positivos
      - Algortimo de Dijkstra: dos implementaciones
    - Grafos con pesos positivos y negativos
    - Grafos acíclicos
  - Algoritmo para el cálculo de los caminos mínimos entre todos los pares de vértices



#### Camino de costo mínimo Definición

Sea G=(V,A) un grafo dirigido y pesado, el costo c(i,j) está asociado a la arista v(i,j).

Dado un camino:  $v_1, v_2, v_3, \ldots, v_{\mathcal{N}}$ 

El costo del camino es:

$$C = \sum_{i=1}^{N-1} c(i, i+1)$$

Este valor también se llama longitud del camino pesado. La longitud del camino no pesado es la cantidad de aristas



# Camino de costo mínimo Definición (cont.)

El camino de costo mínimo desde un vértice  $v_i$  a otro vértice  $v_j$  es aquel en que la suma de los costos de las aristas es mínima.

#### Esto significa que:

$$C = \sum_{i=1}^{N-1} c(i, i+1)$$
 es mínima



#### Camino de costo mínimo

#### Ejemplos:





Ciudades conectadas por Rutas con distancias

**Personas** conectadas a través de las redes sociales



#### Camino de costo mínimo

#### Ejemplo:



Caminos posibles desde el vértice 1 al vértice 2



40



#### Algoritmos de Caminos mínimos

- Grafos sin peso
- Grafos con pesos positivos
- Grafos con pesos positivos y negativos
- Grafos dirigidos acíclicos



#### Algoritmos de Caminos mínimos

Los algoritmos calculan los caminos mínimos desde un vértice origen s a **todos** los restantes vértices del grafo

# M

### Algoritmos de Caminos mínimos Grafos sin peso

#### **Ejemplos**

#### > Seis grados de separación

Se le llama seis grados de separación a la hipótesis que intenta probar que cualquiera en la Tierra puede estar conectado a cualquier otra persona del planeta a través de una cadena de conocidos que no tiene más de cinco intermediarios (conectando a ambas personas con sólo seis enlaces)



Ilana

Harry

#### Número de Erdős

Es un modo de describir la distancia colaborativa, en lo relativo a trabajos matemáticos entre un autor y Paul Erdős (matemático húngaro considerado uno de los escritores más prolíficos de trabajos matemáticos)



Si la **mujer de rojo** colabora directamente con Erdős en un trabajo, y luego el **hombre de azul** colabora con ella; entonces el hombre de azul tiene un número de Erdős con valor 2, y está "a dos pasos" de Paul Erdős (asumiendo que nunca ha colaborado directamente con éste).

➤ El número de Bacon es una aplicación de la misma idea en la industria fílmica- un cálculo que conecta actores que han aparecido junto al actor *Kevin Bacon* en alguna película.

Cathy



### Algoritmos de Caminos mínimos Grafos sin peso

Estrategia: Recorrido en amplitud (BFS)

#### Pasos:

- Avanzar por niveles a partir del origen, asignando distancias según se avanza (se utiliza una cola)
- ► Inicialmente, es  $D_w = \infty$ . Al inspeccionar w se reduce al valor correcto  $D_w = D_v + 1$
- Desde cada v, visitamos a todos los nodos adyacentes a v



### Algoritmos de Caminos mínimos Grafos sin peso (cont.)



## Ŋė.

### Algoritmos de Caminos mínimos Grafos sin peso (cont.)



Valores iniciales de la tabla

| V <sub>i</sub> | $D_{v}$  | $P_{\rm v}$ | Conoc |
|----------------|----------|-------------|-------|
| $V_0$          | $\infty$ | 0           | 0     |
| $V_1$          | 8        | 0           | 0     |
| $V_2$          | 0        | 0           | 0     |
| $V_3$          | $\infty$ | 0           | 0     |
| $V_4$          | $\infty$ | 0           | 0     |
| $V_5$          | $\infty$ | 0           | 0     |
| $V_6$          | $\infty$ | 0           | 0     |



#### Algoritmo Caminos mínimos basado en BFS

```
Camino min GrafoNoPesadoG,s) {
       para cada vértice v \in V
(1)
           D_v = \infty; P_v = 0; Conoc_v = 0;
(2)
       D_s = 0; Encolar (Q,s); Conoc_v = 1;
(3)
       Mientras (not esVacio(Q)){
(4)
          Desencolar (0,u);
(5)
(6)
          Marcar u como conocido;
         para c/vértice \mathbf{w} \in V adyacente a u \in V
(7)
              si (w no es conocido) {
(8)
                        D_{w} = D_{u} + 1;
(9)
                        P_{w} = u;
(10)
                        Encolar(Q,w); Conoc_w = 1;
(11)
(12)
(13)
(14)
```

# Ŋė.

#### Algoritmo Caminos mínimos basado en BFS

```
Camino min GrafoNoPesadoG,s) {
       para cada vértice v \in V
(1)
            D_{x} = \infty; P_{x} = 0; Conoc<sub>x</sub> = 0;
(2)
       D_s = 0; Encolar (Q,s); Conoc<sub>v</sub> = 1;
(3)
       Mientras (not esVacio(Q)) {
(4)
           Desencolar (0,u);
(5)
          Marcar u como conocido:
(6)
         para c/vértice \mathbf{w} \in V adyacente a u \in V
(7)
               si (w no es conocido) {
(8)
                         D_{w} = D_{u} + 1;
(9)
                         P_{w} = u;
(10)
                         Encolar(Q,w); Conoc_w = 1;
(11)
(12)
(13)
(14)
```

### Algoritmos de Caminos mínimos Grafos sin peso (cont.)



Valores iniciales de la tabla

| V <sub>i</sub> | $D_{v}$  | $P_{\rm v}$ | Conoc |
|----------------|----------|-------------|-------|
| $V_0$          | $\infty$ | 0           | 0     |
| $V_1$          | 8        | 0           | 0     |
| $V_2$          | 0        | 0           | 0     |
| $V_3$          | $\infty$ | 0           | 0     |
| $V_4$          | $\infty$ | 0           | 0     |
| $V_5$          | $\infty$ | 0           | 0     |
| $V_6$          | 8        | 0           | 0     |



### Algoritmos de Caminos mínimos Grafos sin peso (cont.)



| $V_{i}$ | $D_{v}$  | $P_{\rm v}$ |
|---------|----------|-------------|
| $V_0$   | $\infty$ | 0           |
| $V_1$   | 8        | 0           |
| $V_2$   | 0        | 0           |
| $V_3$   | $\infty$ | 0           |
| $V_4$   | $\infty$ | 0           |
| $V_5$   | $\infty$ | 0           |
| $V_6$   | $\infty$ | 0           |

Valores iniciales de la tabla



#### Algoritmo Caminos mínimos basado en BFS

```
Camino_min_GrafoNoPesadoG,s) {
       para cada vértice v \in V
(1)
           D_v = \infty; P_v = 0;
(2)
       D_s = 0; Encolar (Q,s);
(3)
       Mientras (not esVacio(Q)) {
(4)
          Desencolar(Q,u);
(5)
          para c/vértice \mathbf{w} \in V adyacente a u \in V
(6)
              si (D_w = \infty) 
(7)
                        D_w = D_u + 1;
(8)
                        P_w = u;
(9)
                        Encolar(Q, w);
(10)
(11)
(12)
(13)
```

#### Algoritmos de Caminos mínimos

#### Grafos con pesos positivos – Algoritmo de Dijkstra



Encontrar los caminos más cortos desde Casita a cada una de las librerías Encontrar la ruta aérea más corta desde Buenos Aires a Asunción



#### Algoritmos de Caminos mínimos

Grafos con pesos positivos – Algoritmo de Dijkstra

Estrategia: Algoritmo de Dijkstra

#### Pasos:

- Dado un vértice origen s, elegir el vértice v que esté a la menor distancia de s, dentro de los vértices no procesados
- ➤ Marcar v como procesado
- Actualizar la distancia de w adyacente a v



#### Algoritmo de Dijkstra (cont.)

- ➤ Para cada vértice v mantiene la siguiente información:
  - $\triangleright$  D<sub>v</sub>: distancia mínima desde el origen (inicialmente ∞ para todos lo vértices excepto el origen con valor 0)
  - > P<sub>v</sub>: vértice por donde paso para llegar
  - Conocido: dato booleano que me indica si está procesado (inicialmente todos en 0)



#### Algoritmo de Dijkstra (cont.)

La actualización de la distancia de los adyacentes w se realiza con el siguiente criterio:



Distancia de s a w (sin pasar por v)

Distancia de s a w, pasando por v

 $\triangleright$  Se actualiza si  $D_w > D_v + c(v, w)$ 



### Algoritmo de Dijkstra Ejemplo



| V | $D_{v}$  | $P_{v}$ | Conoc. |
|---|----------|---------|--------|
| 1 | 0        | 0       | 0      |
| 2 | 8        | 0       | 0      |
| 3 | 8        | 0       | 0      |
| 4 | $\infty$ | 0       | 0      |
| 5 | $\infty$ | 0       | 0      |
| 6 | $\infty$ | 0       | 0      |

Valores iniciales de la tabla

# M



| V | $D_{v}$ | $P_{v}$ | Conoc. |
|---|---------|---------|--------|
| 1 | 0       | 0       | 1      |
| 2 | 8       | 0       | 0      |
| 3 | 40      | 1       | 0      |
| 4 | 8       | 0       | 0      |
| 5 | 10      | 1       | 0      |
| 6 | 5       | 1       | 0      |

- •Valores al seleccionar el vértice 1
- •Actualiza la distancia de 3, 5 y 6





| V | $D_{v}$ | P <sub>v</sub> | Conoc. |
|---|---------|----------------|--------|
| 1 | 0       | 0              | 1      |
| 2 | 8       | 0              | 0      |
| 3 | 40      | 1              | 0      |
| 4 | 8       | 0              | 0      |
| 5 | 10      | 1              | 0      |
| 6 | 5       | 1              | 0)     |

Próximo vértice a elegir

# M



| <ul> <li>Valores al</li> </ul> | CA  | leccionar | 1م | vértice 6 | 5 |
|--------------------------------|-----|-----------|----|-----------|---|
| valuics ar                     | SC. | icccionai | C1 | vertice ( | , |

- •Actualiza la distancia de 2
- La distancia de 5 es mayor que la de la tabla (no se actualiza)

  Algoritmos y Estructuras de Datos

| V | $D_{v}$  | P <sub>v</sub> | Conoc. |
|---|----------|----------------|--------|
| 1 | 0        | 0              | 1      |
| 2 | 25       | 6              | 0      |
| 3 | 40       | 1              | 0      |
| 4 | $\infty$ | 0              | 0      |
| 5 | 10       | 1              | 0      |
| 6 | 5        | 1              | 1      |





| V | $D_{v}$ | $P_{v}$ | Conoc. |
|---|---------|---------|--------|
| 1 | 0       | 0       | 1      |
| 2 | 25      | 6       | 0      |
| 3 | 40      | 1       | 0      |
| 4 | 8       | 0       | 0      |
| 5 | 10      | 1       |        |
| 6 | 5       | 1       | 1      |

# M



| V | $D_{v}$ | $P_{v}$ | Conoc. |
|---|---------|---------|--------|
| 1 | 0       | 0       | 1      |
| 2 | 25      | 6       | 0      |
| 3 | 40      | 1       | 0      |
| 4 | 30      | 5       | 0      |
| 5 | 10      | 1       | 1      |
| 6 | 5       | 1       | 1      |

- •Valores al seleccionar el vértice 5
- •Actualiza la distancia de 4





| V | $D_{v}$ | $P_{\rm v}$ | Conoc. |
|---|---------|-------------|--------|
| 1 | 0       | 0           | 1      |
| 2 | 25      | 6           | 0      |
| 3 | 40      | 1           | 0      |
| 4 | 30      | 5           | 0      |
| 5 | 10      | 1           | 1      |
| 6 | 5       | 1           | 1      |





| <b>T.7.1</b>                | - 1 | 1 .          | - 1 |           |
|-----------------------------|-----|--------------|-----|-----------|
| <ul> <li>Valores</li> </ul> | al  | seleccionar  | el  | vérfice 2 |
| V CLI OI OB                 |     | Dolocolollar |     | VOI CICO  |

• La distancia de 4 es igual que la de la tabla (no se actualiza)

| V | $D_{v}$ | $P_{\rm v}$ | Conoc. |
|---|---------|-------------|--------|
| 1 | 0       | 0           | 1      |
| 2 | 25      | 6           | 1      |
| 3 | 40      | 1           | 0      |
| 4 | 30      | 5           | 0      |
| 5 | 10      | 1           | 1      |
| 6 | 5       | 1           | 1      |



Los próximos vértices a elegir son: 2, 4 y 3 en ese orden.

| 1 | Ü  | U | 1 |
|---|----|---|---|
| 2 | 25 | 6 | 1 |
| 3 | 35 | 4 | 1 |
| 4 | 30 | 5 | 1 |
| 5 | 10 | 1 | 1 |
|   |    |   |   |

 $P_{v}$ 

Conoc.

El resultado final es:



#### Algoritmo de Dijkstra

```
Dijkstra(G, w, s)
       para cada vértice v \in V
(1)
            D_{v} = \infty; \qquad P_{v} = 0;
(2)
   D_{s} = 0;
(3)
   para cada vértice v \in V {
(4)
(5)
           u = vérticeDesconocidoMenorDist;
(6)
           Marcar u como conocido;
           para cada vértice w \in V adyacente a u
(7)
              si (w no está conocido)
(8)
                  si (D_w > D_u + c(u, w)) 
(9)
                      D_{w} = D_{u} + c(u,w);
(10)
(11)
                      P_{w} = u;
(12)
(13)
(14)
```



### Algoritmo de Dijkstra Tiempo de ejecución (I)

- El bucle *para* de la línea (4) se ejecuta para todos los vértices
  - $\rightarrow$  |V| iteraciones
- La operación *vérticeDesconocidoMenorDist* es O(|V|) y dado que se realiza |V| veces
  - $\rightarrow$  el costo total de *vérticeDesconocidoMenorDist* es  $O(|V|^2)$
- El bucle *para* de la línea (7) se ejecuta para los vértices adyacentes de cada vértice. El número total de iteraciones será la cantidad de aristas del grafo.
  - → |E| iteraciones
- $\triangleright$  El costo total del algoritmo es ( $|V|^2 + |E|$ ) es O( $|V|^2$ )



### Algoritmo de Dijkstra Tiempo de ejecución (II)

Optimización: la operación *vérticeDesconocidoMenorDist* es más eficiente si almacenamos las distancias en una heap.

- La operación *vérticeDesconocidoMenorDist* es O(log|V|) y dado que se realiza |V| veces
  - → el costo total de *vérticeDesconocidoMenorDist* es O(|V| log |V|)
- ➤ El bucle *para* de la línea (7) supone modificar la prioridad (distancia) y reorganizar la heap. Cada iteración es O(log|V|)
  - $\rightarrow$  realiza|E| iteraciones, O(|E| log|V|)
- $\triangleright$  El costo total del algoritmo es (|V| log|V|+ |E| log|V|) es O(|E| log|V|)



### Algoritmo de Dijkstra Tiempo de ejecución (III)

Variante: usando heap la actualización de la línea (10) se puede resolver insertando w y su nuevo valor  $D_w$  cada vez que éste se modifica.

- El tamaño de la heap puede crecer hasta |E|. Dado que  $|E| \le |V|^2$ ,  $\log |E| \le 2 \log |V|$ , el costo total del algoritmo no varía
- $\triangleright$  El costo total del algoritmo es  $O(|E| \log |V|)$



### Algoritmos de Caminos mínimos Grafos con pesos positivos y negativos

#### **Ejemplos:**

- > Simulaciones científicas
- > Redes de flujo
- > Protocolos de ruteo basados en vector de distancias







### Algoritmos de Caminos mínimos Grafos con pesos positivos y negativos

> Estrategia: Encolar los vértices

Si el grafo tiene aristas negativas, el algoritmo de Dijkstra puede dar un resultado erróneo.



| V | $\mathbf{D_{v}}$ | $\mathbf{P_{v}}$ | Conoc. |
|---|------------------|------------------|--------|
| S | 0                | 0                | 1      |
| u | -5               | S                | 1      |
| V | 2                | S                | 1      |

Error!!

La distancia mínima de s a u es -8



### Algoritmos de Caminos mínimos

Grafos con pesos positivos y negativos (cont.)

#### Pasos:

- Encolar el vértice origen s.
- Procesar la cola:
  - > Desencolar un vértice.
  - $\triangleright$  Actualizar la distancia de los adyacentes  $D_w$  siguiendo el mismo criterio de Dijkstra.
  - ➤ Si w no está en la cola, encolarlo.

El costo total del algoritmo es O(|V| |E|)



#### Algoritmos de Caminos mínimos

Grafos con pesos positivos y negativos (cont.)

```
Camino_min_GrafoPesosPositivosyNegativosG,s) {
       D_s = 0; Encolar (Q,s);
(1)
(2) Mientras (not esVacio(Q)) {
           Desencolar(Q, u);
(3)
           para c/vértice \mathbf{w} \in V adyacente a u \in V
(4)
               \mathbf{si} \ (D_{w} > D_{u} + c(u, w)) \ 
(5)
                       D_{w} = D_{u} + C(u, w);
(6)
(7)
                       P_{w} = u;
                       si (w no está en 0)
(8)
                           Encolar(O, w);
(9)
(10)
(11)
(12)
```



- Encontrar la ganancia máxima en un período de tiempo
- Determinar el tiempo requerido para completar una tarea





- Estrategia: Orden Topológico
  - Optimización del algoritmo de Dijkstra
  - La selección de cada vértice se realiza siguiendo el orden topológico
  - Esta estrategia funciona correctamente, dado que al seleccionar un vértice *v*, no se va a encontrar una distancia *dv* menor, porque ya se procesaron todos los caminos que llegan a él

El costo total del algoritmo es O(|V| + |E|)



```
Camino_min_GrafoDirigidoAcíclico(G,s){
      Ordenar topológicamente los vértices de G;
      Inicializar Tabla de Distancias(G, s);
      para c/vértice u del orden topológico
         para c/vértice w \in V adyacente a u
              si (D_w > D_u + c(u,w)) 
                    D_{w} = D_{u} + c(u,w);
                    P_{w} = u;
```



```
Camino_min_GrafoDirigidoAcíclico(G,s) {
     Calcular el grado_in de todos los vértices;
     Encolar en Q los vértices con grado in = 0;
     para cada vértice \mathbf{v} \in V
         D_{v} = \infty; P_{v} = 0;
    D_{s} = 0;
    Mientras (!esVacio(Q)){
         Desencolar(0,u);
         para c/vértice w \in V advacente a u \in V
            Decrementar grado de entrada de w
            si (grado_in[w] = 0)
                Encolar(O,w);
            \mathbf{si} (D_n != \infty)
                  \mathbf{si} \ D_{w} > D_{n} + c(u,w) \ \{
                      D_{w} = D_{u} + c(u,w);
                      P_{w} = u;
```



# Caminos mínimos entre todos los pares de vértices

- Estrategia: Algoritmo de Floyd
  - ➤ Lleva dos matrices D y P, ambas de |V| x |V|

Matriz de costos mínimos

Matriz de vértices intermedios

El costo total del algoritmo es  $O(|V|^3)$ 



#### Algoritmo de Floyd

```
Toma cada vértice como intermedio, para calcular los caminos

para k=1 hasta cant_Vértices(G)

para i=1 hasta cant_Vértices(G)

para j=1 hasta cant_Vértices(G)

si (D[i,j] > D[i,k] + D[k,j]) {

D[i,j] = D[i,k] + D[k,j]; Distancia entre los vértices i y j, pasando por k
```



# Agenda - Grafos

- Caminos de costo mínimo
- Árbol de expansión mínimo



# Agenda – Grafos

- Árbol de expansión mínimo
  - Definición
  - > Aplicaciones
  - Algoritmo de Prim
  - Algoritmo de Kruskal



### Árbol de expansión mínima Definición

Dado un grafo G=(V, E) no dirigido y conexo

El árbol de expansión mínima es un árbol formado por las aristas de G que conectan todos los vértices con un costo total mínimo.







### Árbol de expansión mínima Aplicaciones

- Construcción de tendidos eléctricos
- Diseño de redes de tuberías
- Cableado de redes de comunicaciones
- Diseño de redes de logística y transporte
- Taxonomías
- **>** .....



# Árbol de expansión mínima

#### Ejemplo:



Bakery 10m

Thomas' Farm

Brewery

Inn

Library

5m

Dry

Cleaner

City Hall

Conectar todas las computadoras con el menor costo total

Conectar todas las ciudades con el menor costo total



# Árbol de expansión mínima Algoritmo de Prim

- Construye el árbol haciéndolo crecer por etapas
- En cada etapa:
  - elige un vértice como raíz
  - le agrega al árbol una arista y un vértice asociado
- Selecciona la arista (u,v) de mínimo costo que cumpla:  $u \in \text{ árbol y } v \notin \text{ árbol}$



Construye el árbol haciéndolo crecer por etapas

#### Ejemplo:



#### 1° Paso



Se agrega la arista (1,3) y el vértice 3



#### 2° Paso



Se agrega la arista (3,6) y el vértice 6

#### 3° Paso



Se agrega la arista (6,4) y el vértice 4

#### 4° y 5° Pasos



- Se agrega la arista (3,2) y el vértice 2
- Se agrega la arista (2,5) y el vértice 5



### Algoritmo de Prim Implementación

- La implementación es muy similar al algoritmo de Dijkstra
- > Se modifica la forma de actualizar la distancia de los adyacentes:
  - Se compara  $D_w$  con c(v,w)Distancia mínima a w (sin tener en cuenta v)

    Distancia de v a w
    - $\triangleright$  Se actualiza si  $D_w > c(v,w)$



### Algoritmo de Prim Tiempo de Ejecución

- > Se hacen las mismas consideraciones que para el algoritmo de Dijkstra
  - > Si se implementa con una tabla secuencial:
    - $\rightarrow$  El costo total del algoritmo es  $O(|V|^2)$
  - > Si se implementa con heap:
    - $\rightarrow$  El costo total del algoritmo es  $O(|E| \log |V|)$



- Selecciona las aristas en orden creciente según su peso y las acepta si no originan un ciclo
- El invariante que usa me indica que en cada punto del proceso, dos vértices pertenecen al mismo conjunto si y sólo sí están conectados
- Si dos vértices u y v están en el mismo conjunto, la arista (u,v) es rechazada porque al aceptarla forma un ciclo



- Inicialmente cada vértice pertenece a su propio conjunto
  - → |V| conjuntos con un único elemento
- Al aceptar una arista se realiza la Unión de dos conjuntos
- Las aristas se organizan en una heap, para ir recuperando la de mínimo costo en cada paso



#### Ejemplo:





Inicialmente cada vértice está en su propio conjunto



Se agrega la arista (1,2)





Se agrega la arista (4,6)



Se agrega la arista (2,6)

Se agrega la arista (3,5)







#### Algoritmo de Kruskal Tiempo de Ejecución

- Se organizan las aristas en una heap, para optimizar la recuperación de la arista de mínimo costo
- El tamaño de la heap es |E|, y extraer cada arista lleva O(log |E|)
- El tiempo de ejecución es O(|E |log|E|)
- $\triangleright$  Dado que  $|E| \le |V|^2$ ,  $\log |E| \le 2 \log |V|$ ,
  - $\rightarrow$  el costo total del algoritmo es  $O(|E|\log|V|)$



# **Grafos Conclusiones**

- ➤ Podemos utilizar grafos para modelar problemas de la "vida real".
- Los grafos son una herramienta fundamental en resolución de problemas.
- > Representación:
  - Tamaño reducido: matrices de adyacencia.
  - Tamaño grande y grafo "disperso": listas de adyacencia.



# **Grafos Conclusiones**

- Existen muchos algoritmos "clásicos" para resolver diferentes problemas sobre grafos.
- ➤ Nuestro trabajo: saber modelar los problemas de interés usando grafos y encontrar el algoritmo adecuado para la aplicación que se requiera.
- Es importante el estudio de problemas genéricos sobre grafos.
- La búsqueda primero en profundidad (DFS) y búsqueda en amplitud (BFS) son herramientas básicas, subyacentes en muchos de los algoritmos estudiados

Problema de interés

Problema con grafos

Algoritmo genérico con grafos

Algoritmo para el problema de interés