Honeywell HX6656

Definicije signala

- A: 0-14 Address input pins which select a particular eight-bit word within the memory array.
- Q: 0-7 Data Output Pins.
- NCS Negative chip select, when at a low level allows normal read operation. When at a high level NCS forces the ROM to a precharge condition, holds the data output drivers in a high impedance state and disables all input buffers except CE. If this signal is not used it must be connected to VSS.
- NOE Negative output enable, when at a high level holds the data output drivers in a high impedance state. When at a low level, the data output driver state is defined by NCS and CE. If this signal is not used it must be connected to VSS.
- CE Chip enable, when at a high level allows normal operation. When at a low level CE forces the ROM to a precharge condition, holds the data output drivers in a high impedance state and disables all the input buffers except the NCS input buffer. If this signal is not used it must be connected to VDD.

Truth table

NCS	CE	NOE	MODE	Q
L	Н	L	Read	Data Out
Н	Х	XX	Deselected	High Z
X	L	XX	Disabled	High Z

Read cycle timing

Timing characteristics

			Worst 0	Case (3)	
Symbol	Parameter	Typical (2)	-55 to Min	125°C Max	Units
TAVAVR	Address Read Cycle Time		25		ns
TAVQV	Address Access Time			25	ns
TAXQX	Address Change to Output Invalid Time		3		ns
TSLQV	Chip Select Access Time			25	ns
TSLQX	Chip Select Output Enable Time		5		ns
TSHQZ	Chip Select Output Disable Time			10	ns
TEHQV	Chip Enable Access Time (4)			25	ns
TEHQX	Chip Enable Output Enable Time (4)		5		ns
TELQZ	Chip Enable Output Disable Time (4)			10	ns
TGLQV	Output Enable Access Time			9	ns
TGLQX	Output Enable Output Enable Time		0		ns
TGHQZ	Output Enable Output Disable Time			9	ns

Honeywell HX6408

Definicije signala

- A: 0-18 Address input pins, which select a particular eight-bit word within the memory array.
- DQ: 0-7 Bidirectional data pins, which serve as data outputs during a read operation and as data inputs during a write operation.
- NCS Negative chip select, when at a low level allows normal read or write operation. When at a high level NCS forces the SRAM to a precharge condition, holds the data output drivers in a high impedance state. If this signal is not used it must be connected to VSS.
- **NWE** Negative write enable, when at a low level activates a write operation and holds the data output drivers in a high impedance state. When at a high level NWE allows normal read operation.
- **NOE** Negative output enable, when at a high level holds the data output drivers in a high impedance state. When at a low level, the data output driver state is defined by NCS, NWE and NSL. This signal is asynchronous.
- NSL Not sleep, when at a high level allows normal operation. When at a low level NSL forces the SRAM to a precharge condition, holds the data output drivers in a high impedance state and disables all the input buffers except the NCS and NOE input buffers. If this signal is not used it must be connected to VDD. This signal is asynchronous. The HX6408 may be ordered without the sleep mode option and pin 36 is then a NC.

Truth table

NCS	NSL	NWE	NOE	MODE	DQ
L	Н	Н	L	Read	Data Out
L	Н	L	Χ	Write	Data In
Н	X	Χ	X	Deselected	Nigh Z
Χ	L	Χ	Χ	Sleep	High Z

Write cycle timing

Timing characteristics

Symbol	Parameter	Typical	Worst C	Unit		
			(2)	Min	Max	
TAVAVW	Write Cycle Time (4)	300KRad		20		ns
		1MRad		25		
TWLWH	Write Enable Write Pulse Width	300KRad		15		ns
		1MRad		20		
TSLWH	Chip Select to End of Write Time	300KRad		16		ns
		1MRad		20		
TDVWH	Data Valid to End of Write Time	300KRad		12		ns
		1MRad		15		
TAVWH	Address Valid to End of Write Time	300KRad		20		ns
_		1MRad		25		
TWHDX	Data Hold after End of Write Time			0		ns
TAVWL	Address Valid Setup to Start of Write T	ime		0		ns
TWHAX	Address Valid Hold after End of Write T	Time		0		ns
TWLQZ	Write Enable to Output Disable Time				7	ns
TWHQX	Write Disable to Output Enable Time			4		ns
TWHWL	Write Disable to Write Enable Pulse Wi	idth (5)		5		ns

Zadatak

Na 8-bitni mikroprocesor sa 16-bitnom adresnom magistralom treba priključiti RAM

- a) Kapaciteta 4KB
- b) Kapaciteta 24KB.

Na raspolaganju su RAM čipovi 2114. Razmotriti linearni izbor čipova i izbor dekodiranjem adrese. Koje su gornje granice kapaciteta memorije sa zadatim čipovima pri korišćenju linearnog izbora čipa odnosno primenom dekodiranja adrese?

M1		M2	M3	M4	
A15 A14 A13 A12 A11 A10 1 1 1 1 1 0	$\left\{egin{matrix} 00 \\ 11 \end{smallmatrix}\right.$	A15 A14 A13 A12 A11 A10 1 1 1 1 0 1	{ 00 11	111011	110111
F800-FBFF		F400-F7FF		EC00-EFFF	DC00-DFFF

Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0
1	1	1	1	1	1	1	0
1	1	1	1	1	1	0	1
1	1	1	1	1	0	1	1
1	1	1	1	0	1	1	1
1	1	1	0	1	1	1	1
1	1	0	1	1	1	1	1
1	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1

A15	A14	A13	A12	A11	A10	A9		 A0			
0	0	0	0	0	0	, 0	0	 0	1	M1	0000 03FF
									,		03FF
				0	1	, 0	0	 0	•	142	0400 07FF
						1	1	1	5	1012	07FF
				1	0	10	0	 0	•	1/12	0800 0BFF
						1	1	1	5	1013	0BFF
				1	1	, 0	0	 0	1	N/4	0C00 0FFF
						1	1	1	5	1014	OFFF

b) 24 x (1K x 8)

A15	A14	A13	A12	A11	A10	A9		 $\mathbf{A0}$			
0	0	0	0	0	0	, 0	0	 0	1	M1	
						1	1	 1	5	IVII	_
					2						
											DEK1
			1	1	1	0 ر	0	 0	}	M8	DERI
						1	1	1	5		
0	0	1	0	0	0	$\begin{cases} 0\\1 \end{cases}$	0	 0	j	M9	
						1	1	 1	5		•
											>
											DEK2
			1	1	1	0 ر	0	 0	}	M16	•
P						1	1	1	5		
0	1	0	0	0	0	0 ر	0	 0	?	M17	
						1	1	 1	5		•
											> DEF.
											DEK3
			1	1	1	$\begin{cases} 0\\1 \end{cases}$	0	 0	?	M24	•
						1	1	1	5		

	DEK1	DEK2	DEK3
A13	0	1	0
A14	0	0	1
E1	A13	A15	A13
E1 E2	A14	A14	A15
E3	1	A13	A14
,			

24 čipa po 1K smestiti od 2000 do 7FFF

A15	A14	A13	A12	A11	A10	A9		 $\mathbf{A0}$				
0	0	1	0	0	0	, 0	0	 0	}	M1		
						1	1	 1	5	IVII		
											(1	DEK1
			1	1	1	1 0	0	 0	}	M8	•	
<u> </u>						1 1	1	1	5			
0	1	0	0	0	0	0 ر	0	 0	}	M9		
						1	1	 1	5		•	
			v								> -	NETZ O
											T	DEK2
			1	1	1	0 ر	0	 0	}	M16	•	
						1	1	1	5			
0	1	1	0	0	0	$\begin{cases} 0\\1 \end{cases}$	0	 0	}	M17		
						1	1	 1	5		•	
											> .	
											1	DEK3
			1	1	1	0 ر	0	 0	}	M24	•	
						1	1	1	5			

24 čipa po 1K smestiti od 2000 do 7FFF

<u> </u>	DEK1	DEK2	DEK3
A13	1	0	1
A14	0	1	1
E l	A14	A13	A15
$\overline{\mathrm{E2}}$	A15	A15	A15
E3	A13	A14	A14 * A13

န္နေ čipa po 1K izbor u dva nivoa dekodiranja

7xRAM 4Kx8b od 0000 do 6FFFF H 3xEPROM 8Kx8bn od 7000 do CFFF H

		A15	A14	A13	A12
RAM1	H'0000 – 0FFF	0	0	0	0
RAM2	H'1000 – 1FFF	0	0	0	1
RAM3	H'2000 – 2FFF	0	0	1	0
RAM4	H'3000 – 3FFF	0	0	1	1
RAM5	H'4000 – 4FFF	0	1	0	0
RAM6	H'5000 – 5FFF	0	1	0	1
RAM7	H'6000 – 6FFF	0	1	1	0
EPROM1	H'7000 – 8FFF	0	1	1	1
EFROMI	П /000 — 8ГГГ	1	0	0	0
EPROM2	H'9000 – AFFF	1	0	0	1
EFRONIZ	H 9000 - AFFF	1	0	1	0
EPROM3	H'b000 – CFFF	1	0	1	1
EFROMS	n 0000 - CFFF	1	1	0	0

