Real Analysis (MA 403)

Instructor: Prof.Sourav Pal
Problem set 1

- 1. If $a \ge 0$ and if $|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$ then prove that $|x| \le a$ if and only if $-a \le x \le a$. (Here we are in real number system and $x \le a \le a$ and $x \le a \le a \le a$.)
- 2. Assuming $\sqrt{2}$ to be irrational prove that $\sqrt{2} + \sqrt{3}$ and $\sqrt{6}$ are irrational numbers.
- 3. Let E be a nonempty subset of an ordered set; suppose α is a lower bound of E and β is an upper bound of E. Prove that $\alpha \leq \beta$. When does $\alpha = \beta$ hold?
- 4. Let A be a nonempty subset or real numbers which is bounded below. Let $-A = \{-x : x \in A\}$. Prove that

$$\inf A = -\sup -A.$$

5. Assuming the fact that for every real number x > 0 and every natural number n there is a unique real number y such that $y^n = x$ prove that

$$(ab)^{1/n} = a^{1/n}b^{1/n} \,,$$

where a, b are positive real numbers and n is a positive integer. (When $y^n = x$, the number y is written $x^{1/n}$.)

- 6. With the hypothesis of Question 5 fix b > 1.
 - (i) If m, n, p, q are integers, n > 0, q > 0 and r = m/n = p/q, prove that $(b^m)^{1/n} = (b^p)^{1/q}$. Hence it makes sense to define $b^r = (b^m)^{1/n}$. (If m is a negative integer $b^m = \frac{1}{b^{-m}}$.)
 - (ii) Prove that $b^{r+s} = b^r b^s$ if r and s are rational numbers.
 - (iii) If x is real, define B(x) to be the set of all numbers b^t , where t is rational and $t \leq x$. Prove that

$$b^r = \sup B(r) \,,$$

when r is rational. Hence it makes sense to define

$$b^x = \sup B(x) \,,$$

for every real number x.

- (iv) Prove that $b^{x+y} = b^x b^y$ when x and y are real numbers.
- 7. Prove that in a field the axioms for addition imply the following statements.
 - (i) If x + y = x + z then y = z.
 - (ii) If x + y = x then y = 0.
 - (iii) If x + y = 0 then y = -x.
 - (iv) -(-x) = x.
- 8. Prove that in a field the axioms for multiplication imply the following statements.

1

- (i) If $x \neq 0$ and xy = xz then y = z.
- (ii) If $x \neq 0$ and xy = x then y = 0.
- (iii) If $x \neq 0$ and xy = 1 then y = 1/x.
- (iv) If $x \neq 0$ then 1/(1/x) = x.
- 9. Prove that in a field the following statements are true.
 - (i) If 0x = 0.
 - (ii) If $x \neq 0$ and $y \neq 0$ then $xy \neq 0$.
 - (iii) (-x)y = -(xy) = x(-y).
 - (iv) (-x)(-y) = xy.
- 10. Consider the ordered field $(\mathbb{R}, <, +, .)$. Prove that if $x, y \in \mathbb{R}$ and x < y then there exists a rational number q such that x .
- 11. If S is an infinite set prove that S contains a proper countable subset.
- 12. Let f be a real-valued function defined on the closed interval [0,1]. Suppose there is a positive number M having the following property: for every finite number of points x_1, x_2, \ldots, x_n in [0,1],

$$|f(x_1) + f(x_2) + \ldots + f(x_n)| \le M$$
.

Let $S = \{x \in [0,1] : f(x) \neq 0\}$. Prove that S is at most countable.