Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.

Invariant. Algorithm maintains $a[lo] \le value \le a[hi]$.

Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.

Invariant. Algorithm maintains $a[lo] \le value \le a[hi]$.

Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.

Invariant. Algorithm maintains $a[lo] \le value \le a[hi]$.

Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.

Invariant. Algorithm maintains $a[lo] \le value \le a[hi]$.

Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.

Invariant. Algorithm maintains $a[lo] \le value \le a[hi]$.

Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.

Invariant. Algorithm maintains $a[lo] \le value \le a[hi]$.

Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.

Invariant. Algorithm maintains $a[lo] \le value \le a[hi]$.

Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.

Invariant. Algorithm maintains $a[lo] \le value \le a[hi]$.

Binary search. Given value and sorted array a[], find index i such that a[i] = value, or report that no such index exists.

Invariant. Algorithm maintains $a[lo] \le value \le a[hi]$.

