

2.1 Domínio & Imagem

1. Dê o domínio e esboce o gráfico de cada uma das funções abaixo.

(a)
$$f(x) = 3x$$

(b)
$$q(x) = -x$$

(c)
$$h(x) = -x + 1$$

(d)
$$f(x) = \frac{1}{3}x + \frac{5}{3}$$

(e)
$$g(x) - \frac{1}{2}x$$

(f)
$$g(x) = |x - 1|$$

(g)
$$h(x) = \begin{cases} x, \text{ se } x \le 2 \\ 3, \text{ se } x > 2 \end{cases}$$

(g)
$$h(x) = \begin{vmatrix} x, & \sin x \le 2 \\ 3, & \sin x > 2 \end{vmatrix}$$
 (h) $h(x) = \begin{vmatrix} 2x, & \sin x \le -1 \\ -x+1, & \sin x > -1 \end{vmatrix}$ (i) $h(x) = \frac{x^2 - 2x + 1}{x - 1}$

(i)
$$h(x) = \frac{x^2 - 2x + 1}{x - 1}$$

(j)
$$f(x) = |x+2| + 1$$

(j)
$$f(x) = |x+2| + 1$$
 (k) $h(x) = \frac{|2x+1|}{2x+1}$ (l) $h(x) = |x+2|$ (m) $f(x) = \frac{|x|}{x}$ (n) $g(x) = \frac{|x-1|}{x-1}$ (o) $g(x) = \frac{x^2-1}{x+1}$

(1)
$$h(x) = |x+2|$$

(m)
$$f(x) = \frac{|x|}{x}$$

(n)
$$g(x) = \frac{|x-1|}{x-1}$$

(o)
$$g(x) = \frac{x^2 - 1}{x + 1}$$

2. Considere a função $f:\mathbb{R}\to\mathbb{R},$ definida por $f\left(x\right)=\left|x-1\right|+\left|x-2\right|.$ Mostre que:

$$f(x) = \begin{vmatrix} -2x + 3, & \sin x \le 1 \\ 1, & \sin 1 < x < 2 \\ 2x - 3, & \sin x \ge 2 \end{vmatrix}$$

e esboce o gráfico de f.

3. Determine o domínio das funções indicadas abaixo.

(a)
$$f(x) = \frac{1}{x-1}$$

(b)
$$y = \frac{x}{x^2 - 1}$$

(b)
$$y = \frac{x}{x^2 - 1}$$
 (c) $s(t) = \sqrt{t^2 - 1}$ (d) $y = \frac{x}{x + 2}$

(d)
$$y = \frac{x}{x+2}$$

(e)
$$h(x) = \sqrt{x+2}$$

(f)
$$q(x) = \frac{x+1}{x^2+x}$$

(e)
$$h(x) = \sqrt{x+2}$$
 (f) $q(x) = \frac{x+1}{x^2+x}$ (g) $r(x) = \sqrt{\frac{x-1}{x+1}}$ (h) $y = \sqrt[4]{\frac{x}{x+3}}$

$$(h) y = \sqrt[4]{\frac{x}{x+3}}$$

(i)
$$g(x) = \sqrt[3]{x^2 - x}$$

$$(j) y = \sqrt{x(2-3x)}$$

(i)
$$g(x) = \sqrt[3]{x^2 - x}$$
 (j) $y = \sqrt{x(2 - 3x)}$ (k) $f(x) = \sqrt{\frac{2x - 1}{1 - 3x}}$ (l) $y = \sqrt[6]{\frac{x - 3}{x + 2}}$

(1)
$$y = \sqrt[6]{\frac{x-3}{x+2}}$$

(m)
$$g(x) = \frac{2x}{x^2 + 1}$$
 (n) $y = \frac{\sqrt{x}}{\sqrt[3]{x - 1}}$ (o) $y = \sqrt{4 - x^2}$ (p) $y = \sqrt{5 - 2x^2}$

$$(n) y = \frac{\sqrt{x}}{\sqrt[3]{x-1}}$$

(o)
$$y = \sqrt{4 - x^2}$$

(p)
$$y = \sqrt{5 - 2x^2}$$

(q)
$$y = \sqrt{x-1} + \sqrt{3-x}$$
 (r) $y = \sqrt{1-\sqrt{x}}$ (s) $y = \sqrt{x} - \sqrt{5-2x}$ (t) $y = \sqrt{x-\sqrt{x}}$

(r)
$$y = \sqrt{1 - \sqrt{x}}$$

(s)
$$y = \sqrt{x} - \sqrt{5 - 2x}$$

(t)
$$y = \sqrt{x - \sqrt{x}}$$

4. Utilizando o procedimento indicado no Exercício 2, esboce o gráfico das funções definidas abaixo.

(a)
$$f(x) = |x| - 1$$

(b)
$$g(x) = ||x| - 1|$$

(a)
$$f(x) = |x| - 1$$
 (b) $g(x) = ||x| - 1|$ (d) $h(x) = |x + 1| - |x|$ (d) $y = |x^2 - 1|$.

(d)
$$y = |x^2 - 1|$$

- 5. Uma pequena indústria fabrica termômetros e estima que o lucro semanal, em reais, pela fabricação e venda de x unidades/semana é de $R(x) = (-0.001)x^2 + 8x 5000$. Qual o lucro da empresa em uma semana que foram fabricados 1.000 termômetros?
- 6. Determine o domínio da função $f\left(x\right)=\sqrt{4-\left|\frac{3-2x}{2+x}\right|}$.
- 7. Considere a função f definida em [-3,2] por $f(x) = |x^3 2x^2 + 3x 4|$. Determine dois números reais $m \in M$ tais que $m \le f(x) \le M$, seja qual for o valor de x no intervalo [-3,2].
- 8. Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2 + 4x + 5$.
 - (a) Verifique que $f(x) = (x+2)^2 + 1$.
 - (b) Esboce o gráfico de f.
 - (c) Calcule o menor valor de f(x) e para qual x esse valor é assumido.
- 9. Verifique que $\sqrt{1+x^2}-|x|=\frac{1}{|x|+\sqrt{1+x^2}}$ e, então, conclua que a medida que x cresce, o valor da diferença $\sqrt{1+x^2}-|x|$ aproxima-se de zero.
- 10. Seja y = f(x) a função dada a partir da equação $x^2 + y^2 = 4$, para $y \ge 0$.
 - (a) Determine uma fórmula que defina explicitamente y como função de x.
 - (b) Determine o domínio de f.
 - (c) Esboce o gráfico de f.
- 11. Uma caixa retangular sem tampa, com volume de $2m^3$, tem uma base quadrada. Expresse a área S da superfície da caixa como uma função do comprimento x de um lado da base.
- 12. À medida que o ar seco move-se para cima, ele se expande e esfria. Sabendo-se que a temperatura do solo é de $20^{0}C$ e que a temperatura a 1km de altura é de $10^{0}C$, expresse a temperatura T, em ^{0}C , como uma variável dependente da altura h, medida em km, supondo que um modelo baseado em uma função a fim seja apropriado. Qual a temperatura a uma altura de 2,5km?
- 13. Suponha que a figura 2.1 abaixo representa graficamente uma função $y=f\left(x\right)$.

- (a) Determine f(-1).
- (b) É correta a estimativa 2 < f(2) < 3?
- (c) Para quais valores de x tem-se f(x) = 2?
- (d) Para quantos valores de x tem-se f(x) = 0?
- (e) Qual o domínio de f?
- (f) Qual a imagem de f?

- 14. Considere as funções f e g, cujos gráficos são representados na figura abaixo.
 - (a) Obtenha os valores de f(-4) e g(3).
 - (b) Para quais valores de x, f(x) = g(x)?
 - (c) Estabeleça o domínio e a imagem de f.
 - (d) Estabeleça o domínio e a imagem de g.
 - (e) Para quantos valores de x, f(x) = 0?
 - (f) Para quantos valores de x, g(x) = 0?

2.2 Classificando uma Função Real

- FUNÇÃO PAR & FUNÇÃO ÍMPAR Uma função f, definida em um intervalo simétrico [-a,a], denomina-se $função\ par$ se satisfaz f(x) = f(-x), para todo x em seu domínio. Se f satisfaz f(x) = -f(-x), para todo x em seu domínio, então f é denominada $função\ impar$.
- FUNÇÃO MONÓTONA Com relação ao crescimento, as funções reais se classificam em: crescente, decrescente, não crescente ou não decrecente. Em qualquer desses casos, a função recebe a denominação de Função Monótona. Temos:
- (a) Uma função f é crescente em um intervalo I, se dados $x_1, x_2 \in I$, com $x_1 < x_2$, tem-se $f(x_1) < f(x_2)$. Se $f(x_1) \le f(x_2)$, para $x_1 \le x_2$, então f é dita não-decrescente em I.
- (b) Uma função f é decrescente em um intervalo I, se dados $x_1, x_2 \in I$, com $x_1 < x_2$, tem-se $f(x_1) > f(x_2)$. Se $f(x_1) \ge f(x_2)$, para $x_1 \le x_2$, então f é dita não-crescente em I.

FUNÇÃO LIMITADA Uma função $f:D\to\mathbb{R}$ denomina-se limitada inferiormente quando existir uma constante m, tal que

$$m \le f(x)$$
, para todo x no domínio D . (2.1)

Uma tal constante m denomina-se cota inferior de f. Quando existir uma constante M, tal que

$$f(x) \le M$$
, para todo x no domínio D , (2.2)

diremos que a função f é limitada superiormente e cada constante M que satisfaz (2.2) leva o nome de cota superior de f. Diremos que f é limitada quando o for superior e inferiormente. Neste caso existirá uma constante C > 0, tal que

$$|f(x)| \le C, \quad \forall \ x \in D. \tag{2.3}$$

- **FUNÇÃO COMPOSTA** Considere duas funções f e g, tais que a imagem de f seja um subbconjunto do domínio de g, isto é, Im $(f) \subset \text{Dom}(g)$. Denominamos de composta de g e f, e anotamos $g \circ f$, a função cujo domínio coincide com Dom(f) e definida por $(g \circ f)(x) = g(f(x))$, com $x \in \text{Dom}(f)$.
- CONSTRUINDO O GRÁFICO DE |f(x)| A partir do gráfico da função y = f(x), é simples construir o gráfico da função g(x) = |f(x)|. Para isto basta refletir para cima a parte do gráfico de f que se encontra abaixo do eixo x. Esta regra prática decorre da definição de módulo de um número real. De fato, temos

$$g(x) = \begin{vmatrix} f(x), & \text{se } f(x) > 0 \\ -f(x), & \text{se } f(x) < 0 \end{vmatrix}.$$

Veja a ilustração na figura abaixo.

■ ESCREVENDO PARA APRENDER

1. Em cada caso, verifique se a função é par ou ímpar.

(a)
$$f(x) = x^3$$
 (b) $g(x) = x^2$ (c) $h(x) = 2x - x^2$ (d) $k(x) = 1 - x^4$ (e) $f(x) = |x|$.

- 2. Dada uma função f, definida em \mathbb{R} ou em um intervalo [-a,a], mostre que g(x) = f(x) + f(-x) é uma função par e que h(x) = f(x) f(-x) é uma função ímpar. Deduza a partir daí que qualquer função f, definida em um intervalo [-a,a], pode ser expressa como soma de uma função par com uma função ímpar.
- 3. Estabeleça as seguintes regras sobre funções pares e impares:
 - (a) Se f e g são funções pares, então f + g e $f \cdot g$ são funções pares.
 - (b) Se f e g são funções ímpares, então f+g é ímpar e $f\cdot g$ é par.
 - (c) Se f é uma função par e g é uma função ímpar, então $f \cdot g$ é ímpar.
- 4. As funções $f:A\to B$ e $g:A'\to B'$ são iguais quando $A=A',\ B=B'$ e, além disso, $f(x)=g(x),\ \forall x\in A$. Em cada caso, decida se f e g são iguais ou não.
 - (a) $f(x) = \sqrt{x}\sqrt{x-1} e g(x) = \sqrt{x^2-x}$.
 - (b) $f(x) = x^2 e g(x) = |x|^2$.
 - (c) $f(x) = \frac{x^2 1}{x 1} e g(x) = x + 1$.
 - (d) $f(x) = x e g(x) = \sqrt{x^2}$.
- 5. Uma função do tipo $f(x) = ax^2 + bx + c$, com $a \neq 0$, recebe o nome de Função Quadrática. Determine a função quadrática f que satisfaz f(0) = 5, f(-1) = 10 e f(1) = 6.
- 6. Verifique onde a função $f(x) = x^2$ é crescente e onde ela é decrescente. Idem para a função g(x) = |x 1| + 2.
- 7. Uma função do tipo f(x) = ax + b recebe o nome de Função $Afim^1$. Mostre que a função afim f(x) = ax + b é crescente, se a > 0, e decrescente, se a < 0.
- 8. Com relação ao gráfico apresentado no Exercício 13 da seção 1.1, identifique o conjunto no qual f é uma função crescente.
- 9. Nos casos a seguir, verifique que $\operatorname{Im}(f) \subset \operatorname{Dom}(g)$ para, assim, determinar a função composta $h = g \circ f$.
 - (a) $f(x) = x^2$ e $g(x) = \sqrt{x}$.
 - (b) $f(x) = x^2 + 3$ e $g(x) = \frac{x+1}{x-2}$.
 - (c) $f(x) = -\sqrt{x}$ e $g(x) = \sqrt{2-x}$.

¹Por que e denominação "função afim"?

(d)
$$f(x) = \frac{x}{x+1}$$
 e $g(x) = \frac{x+1}{x-1}$.

10. Determine a função f de modo que $(g \circ f)(x) = x$, $\forall x \in D(f)$, onde:

(a)
$$g(x) = \frac{x+2}{x+1}$$
 (b) $g(x) = x^2 - 2x$, definida para $x \ge 1$.

- 11. Considere f uma função par e seja $h = g \circ f$. Mostre que h é uma função par. E se f for uma função ímpar, pode-se afirmar que h também o será?
- 12. Classifique as funções abaixo quanto a limitação.

(a)
$$f(x) = x^2$$
 (b) $f(x) = x^2$, $0 \le x \le 2$ (c) $g(x) = x^3$, $-1 \le x \le 2$ (d) $f(x) = 1/x$, $x < 0$.

- 13. Construa uma função $f: \mathbb{R} \to \mathbb{R}$ limitada apenas inferiormente e uma função $g: (-1,1) \to \mathbb{R}$ não limitada nem superior nem inferiormente.
- 14. Construa os gráficos da seguintes funções:

(a)
$$g(x) = |x^3|, -1 \le x < 2.$$

(b)
$$g(x) = |1/x|, -2 \le x < 4$$
.

(c)
$$g(x) = |x^2 - 1|, -3 \le x < 2.$$

2.3 Invertendo uma Função Real

- **FUNÇÃO INJETORA** Diz-se que uma função f é injetora (ou injetiva) se dado $y \in \text{Im}(f)$, existe um único $x \in D(f)$ tal que y = f(x). Isto é equivalente a: $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$.
- **FUNÇÃO SOBREJETORA** Diz-se que $f:D(f) \to B$ é sobrejetora (ou sobrejetiva) se Im (f) = B, isto é, dado $y \in B$, existe $x \in D(f)$ tal que y = f(x).
- FUNÇÃO BIJETORA Diz-se que uma função f é bijetora (ou bijetiva) quando for, simultaneamente, injetora e sobrejetora. Neste caso, temos:

$$f: D(f) \longrightarrow \operatorname{Im}(f)$$

 $x \longmapsto f(x) = y$

e podemos definir a função $g: \operatorname{Im}(f) \longrightarrow D(f)$, inversa de f, do modo seguinte:

$$y = f(x) \Leftrightarrow x = g(y)$$
.

A função g, inversa de f, é caracterizada por: $(f \circ g)(y) = y$ e $(g \circ f)(x) = x$. É comum representar a função inversa de f por f^{-1} .

- 1. Verifique que a função $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = 3x + 5 é bijetora e determine sua inversa.
- 2. Considere a função do exercício precedente e determine a inversa da função $f \circ f^{-1}$.
- 3. Dê domínio e contra-domínio adequados à função $f(x) = x^2$, de modo que a mesma seja invertível e determine a sua inversa.
- 4. Considere a função f(x) = k/x, onde k é uma constante. É necessário impor alguma restrição à constante k para que f seja invertível? Quem é f^{-1} ?
- 5. Considere $f: [1/2, +\infty) \to [b, +\infty)$ definida por $f(x) = x^2 x + 1$. Qual o valor de b que torna f invertível? Quem é f^{-1} ? Esboce o gráfico de f^{-1} .

RESPOSTAS & SUGESTÕES

EXERCÍCIOS & COMPLEMENTOS 2.1

- 1. As funções apresentadas em (a), (b), (c), (d), (e), (f), (g), (h), (j) e (l) têm para domínio o conjunto ℝ dos numeros reais. Por outro lado, temos:
 - (i) $\mathbb{R} \{1\}$ e h(x) = x + 1, se $x \neq 1$.
 - (k) $\mathbb{R} \{-1/2\}$.
 - (m) $\mathbb{R} \{0\}$.
 - (n) $\mathbb{R} \{1\}$.
 - (o) $\mathbb{R} \{-1\}$ e g(x) = x 1, se $x \neq -1$.
- 2. Considere as possibilidades:
 - $x \le 1$, onde tem-se |x-1| + |x-2| = (-x+1) + (-x+2) = -2x + 3.
 - 1 < x < 2, onde tem-se |x 1| + |x 2| = x 1 + (-x + 2) = 1.
 - $x \ge 2$, onde tem-se |x-1| + |x-2| = x 1 + x 2 = 2x 3.

Veja o gráfico na figura abaixo.

- 3. Nas descrições abaixo, anotamos $\mathbb{R}-\{a\}$ para indicar o conjunto $\{x\in\mathbb{R}:x\neq a\}$.
 - (a) $\mathbb{R} \{1\}$ ou $(-\infty, 1) \cup (1, +\infty)$ ou $\{x \in \mathbb{R} : x \neq 1\}$.
 - (b) $\mathbb{R} \{-1, 1\} = \{x \in \mathbb{R} : x \neq -1 \text{ e } x \neq 1\}.$
 - (c) $(-\infty, -1] \cup [1, +\infty) = \{x \in \mathbb{R} : x \le -1 \text{ ou } x \ge 1\}$.
 - (d) $\mathbb{R} \{-2\}$ ou $(-\infty, -2) \cup (-2, +\infty)$.
 - (e) $[-2, +\infty) = \{x \in \mathbb{R} : x \ge -2\}$.
 - (f) $\mathbb{R} \{-1, 0\} = \{x \in \mathbb{R} : x \neq -1 \text{ e } x \neq 0\}.$
 - (g) $(-\infty, -1) \cup [1, +\infty)$.
 - (h) $(-\infty, -3) \cup [0, +\infty)$.
 - (i) \mathbb{R} ou $(-\infty, +\infty)$.
 - (j) [0, 2/3].
 - (k) (1/3, 1/2].
 - (1) $(-\infty, -2) \cup [3, +\infty)$.
 - (m) $(-\infty, +\infty) = \mathbb{R}$.
 - (n) [-2, 2].
 - (o) $(-\infty, -1) \cup (-1, +\infty) = \{x \in \mathbb{R} : x \neq -1\}.$
 - (p) $\left\{ x \in \mathbb{R} : -\sqrt{5/2} \le x \le \sqrt{5/2} \right\} = [-\sqrt{5/2}, \sqrt{5/2}].$
 - (q) [1,3].
 - (r) [0,1].
 - (s) [0, 5/2].

- (t) $[1, +\infty) \cup \{0\}$.
- 4. Fazer.
- 5. R\$ 2.000,00.
- 6. $D(f) = (-\infty, -11/2] \cup [-5/6, +\infty)$.
- 7. No intervalo $-3 \le x \le 2$, temos

$$0 \le \left| x^3 - 2x^2 + 3x - 4 \right| \le \left| x \right|^3 + \left| 2x^2 - 3x + 4 \right| \le 27 + 31 = 58.$$

- (a) $x^2 + 4x + 5 = (x^2 + 4x + 4) + 1 = (x + 2)^2 + 1$
- (b) Uma parábola com vértice no ponto V(-2,1)
- (c) O menor valor de f é 1 e ocorre em x = -2.
- 8. Fazer.

9. (a)
$$y = \sqrt{4 - x^2}$$
 (b) $[-2, 2]$.

10.
$$S(x) = x^2 + 8/x$$
.

11.
$$T(h) = -10h + 20$$
; $T(2,5) = -5^{0}C$.

12. Leitura do gráfico.

(a)
$$-4$$
 (b) $\tilde{\text{nao}}$ (c) $x = -3$, $x = 1$ e $x = 3$ (d) Para dois valores (e) $[-3,3]$ (f) $[-4,4]$.

13. Leitura do gráfico.

(a)
$$f(-4) = -4$$
; $q(3) = 3$.

- (b) x = 2, x = -2.
- (c) Dom(f) = [-4, 7/2] e Im(f) = [-4, 2].
- (d) Dom(g) = [-7/2, 7/2] e Im(g) = [-5/2, 7/2].
- (e) Dois valores.
- (f) Dois valores.

- 1. Recorde-se que uma função f definida em um intervalo simétrico será par quando f(x) = f(-x), $\forall x$, e será ímpar quado f(-x) = -f(x), $\forall x$.
 - (a) ímpar (b) par (c) nem par nem ímpar (d) par (e) par.
- 2. Mostre que g(x) = g(-x) e h(-x) = -h(x). Para concluir, observe que

$$f(x) = \frac{1}{2} [g(x) + h(x)].$$

- 3. Mais uma vez tenha em mente os conceitos de função par e função ímpar.
 - (a) Dado que f e g são funções pares, então f(-x) = f(x) e g(-x) = g(x) e, assim,

$$[f+g](-x) = f(-x) + g(-x) = f(x) + g(x) = [f+g](x).$$

(b) Se $f \in g$ são impares, então o produto $f \cdot g$ é par. De fato,

$$[f \cdot g](-x) = f(-x) \cdot g(-x) = [-f(x)] \cdot [-g(x)] = [f \cdot g](x).$$

(c) Se f é par e g é impar, então o produto $f \cdot g$ é impar. De fato,

$$[f \cdot g](-x) = f(-x) \cdot g(-x) = f(x) \cdot [-g(x)] = -[f \cdot g](x).$$

- 4. As funções $f \in g$ são iguais apenas no caso (b).
- 5. $f(x) = 3x^2 2x + 5$.
- 6. Conceito.
- 7. Se a > 0 e $x_1 < x_2$, então $ax_1 + b < ax_2 + b$ e a funão afim é crescente.
- 8. A função f é crescente no intervalo [0,3].
 - (a) $\text{Im}(f) = \text{Dom}(g) = [0, +\infty)$ e h(x) = |x|.
 - (b) $\operatorname{Im}(f) = [3, +\infty) \subset \operatorname{Dom}(g) = \mathbb{R} \{2\}$ e $h(x) = \frac{x^2 + 4}{x^2 + 1}$.
 - (c) $\text{Im}(f) = (-\infty, 0) \subset \text{Dom}(g) = (-\infty, 2]$ e $h(x) = \sqrt{2 + \sqrt{x}}, x > 0$.
 - (d) $\text{Im}(f) = \text{Dom}(g) = \mathbb{R} \{1\}$ e h(x) = -2x 1, $x \neq -1$.
 - (a) $f(x) = \frac{x-2}{1-x}$.
 - (b) $f(x) = 1 + \sqrt{1+x}$.

9. Se f é par, então f(-x) = f(x) e, sendo assim,

$$h(-x) = g(f(-x)) = g(f(x)) = h(x).$$

Logo, h(x) é uma função par. Podemos concluir que h é uma função ímpar, se f e g o forem.

- (a) Limitada inferiormente.
- (b) Limitada.
- (c) Limitada.
- (d) Limitada Superiormente.
- 10. Fazer
- 11. Fazer
- 12. Fazer
- 13. Considere f(x) = 1/x, x > 0, e $g: (-1,1) \to \mathbb{R}$ a função definida por:

$$g(x) = \begin{vmatrix} 1/x, & \text{se } x \neq 0 \\ 0, & \text{se } x = 0. \end{vmatrix}$$

Observe que g(x) assume valores arbitrariamente grandes, quando x é positivo e próximo de zero, e valores arbitrariamente pequenos, quando x é negativo e próximo de zero.

EXERCÍCIOS & COMPLEMENTOS 2.3

- 1. $f^{-1}(x) = \frac{1}{3}(x-5)$.
- 2. $f \circ f^{-1} : \mathbb{R} \to \mathbb{R}$, dada por $(f \circ f^{-1})(x) = x$.
- 3. Considere para domínio e contra-domínio o intervalo $[0, +\infty)$. A inversa é $f^{-1}(x) = \sqrt{x}$.
- 4. $k \neq 0$ e $f^{-1} = f$
- 5. b = 3/4. A inversa é a função $g: [3/4, +\infty) \to [1/2, +\infty)$, definida por $g(y) = \frac{1}{2} + \sqrt{y \frac{3}{4}}$.