Problem Statement

Linear regression by using Deep Neural network: Implement Boston housing price prediction problem by Linear regression using Deep Neural network. Use Boston House price prediction dataset.

```
# Data analysis and visualization
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

# Preprocessing and evaluation
from sklearn.model_selection import train_test_split
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import MinMaxScaler
```

Load Data

Exploratory Data Analysis

Initial Observation

9 0.22438

```
# Checking the data shape and type
(X_{\text{train.shape}}, \text{type}(X_{\text{train}})), (X_{\text{test.shape}}, \text{type}(X_{\text{test}})), (y_{\text{train.shape}}, \text{type}(y_{\text{train}})), (y_{\text{test.shape}}, \text{type}(y_{\text{test}})),
    (((404, 13), numpy.ndarray),
      ((102, 13), numpy.ndarray),
       ((404,), numpy.ndarray),
      ((102,), numpy.ndarray))
# Converting Data to DataFrame
X_train_df = pd.DataFrame(X_train)
y_train_df = pd.DataFrame(y_train)
# Preview the training data
X_train_df.head(10)
₹
                             2
                                               5
                                                                   8
                                                                           9
                                                                               10
                                                                                        11
                                                                                               12
      0 0.09178
                    0.0
                          4.05 0.0 0.510 6.416 84.1 2.6463
                                                                  5.0 296.0 16.6
                                                                                   395.50
                                                                                             9.04
                          6.41 1.0 0.447 6.758 32.9 4.0776
      1 0.05644 40.0
                                                                  4.0 254.0 17.6 396.90
                                                                                             3.53
      2 0.10574
                    0.0 27.74 0.0 0.609 5.983
                                                  98.8 1.8681
                                                                  4.0
                                                                      711.0 20.1
                                                                                    390.11
                                                                                            18.07
      3 0.09164
                    0.0
                        10.81 0.0 0.413 6.065
                                                    7.8 5.2873
                                                                  4.0
                                                                      305.0 19.2
                                                                                   390.91
                                                                                             5.52
      4 5.09017
                    0.0
                        18.10 0.0 0.713 6.297 91.8 2.3682 24.0
                                                                      666.0 20.2
                                                                                   385.09
      5 0.10153
                    0.0
                        12.83 0.0 0.437 6.279 74.5 4.0522
                                                                      398.0 18.7
                                                                                   373.66
      6 0.31827
                          9.90 0.0 0.544 5.914
                                                  83.2 3.9986
                                                                                    390.70 18.33
                    0.0
                                                                  4.0
                                                                      304.0 18.4
      7 0.29090
                        21.89
                               0.0 0.624 6.174
                                                   93.6
                                                        1.6119
                                                                  4.0
                                                                      437.0 21.2
                                                                                    388.08 24.16
                    0.0
      8 4.03841
                    0.0
                        18.10 0.0
                                   0.532 6.229
                                                  90.7 3.0993
                                                                24.0
                                                                      666.0 20.2
                                                                                   395.33
```

6.0 391.0 19.2 396.90 14.33

9.69 0.0 0.585 6.027 79.7 2.4982

```
Next steps: ( Generate code with X_train_df
                                         View recommended plots
                                                                     New interactive sheet
# View summary of datasets
X_train_df.info()
print('_'*40)
y_train_df.info()
<</pre></p
     RangeIndex: 404 entries, 0 to 403
     Data columns (total 13 columns):
     # Column Non-Null Count Dtype
     0
         0
                 404 non-null
                                 float64
     1
         1
                 404 non-null
                                 float64
                 404 non-null
                                 float64
         2
                                float64
                 404 non-null
      4
         4
                 404 non-null
                                 float64
                 404 non-null
                                 float64
                 404 non-null
                                 float64
         6
                                float64
         7
                 404 non-null
      8
         8
                 404 non-null
                                 float64
                 404 non-null
                                 float64
                                float64
      10 10
                 404 non-null
      11 11
                 404 non-null
                                 float64
     12 12
                 404 non-null
                                 float64
     dtypes: float64(13)
     memory usage: 41.2 KB
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 404 entries, 0 to 403
     Data columns (total 1 columns):
     # Column Non-Null Count Dtype
                 -----
     0 0
                 404 non-null
                                float64
     dtypes: float64(1)
     memory usage: 3.3 KB
# distribution of numerical feature values across the samples
```

•	0	1	2	3	4	5	6	7	8	9	10	
count	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	404.000000	40
mean	3.789989	11.568069	11.214059	0.069307	0.554524	6.284824	69.119307	3.792258	9.660891	408.960396	18.481931	35
std	9.132761	24.269648	6.925462	0.254290	0.116408	0.723759	28.034606	2.142651	8.736073	169.685166	2.157322	9
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.137000	1.000000	187.000000	12.600000	
25%	0.081960	0.000000	5.190000	0.000000	0.452000	5.878750	45.475000	2.097050	4.000000	281.000000	17.400000	37
50%	0.262660	0.000000	9.690000	0.000000	0.538000	6.210000	77.500000	3.167500	5.000000	330.000000	19.100000	39
75%	3.717875	12.500000	18.100000	0.000000	0.624000	6.620500	94.425000	5.118000	24.000000	666.000000	20.200000	39
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	39
4												

Preprocessing

X_train_df.describe()

```
# Create column transformer
ct = make_column_transformer(
    (MinMaxScaler(), [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12])
)

# Normalization and data type change
X_train = ct.fit_transform(X_train).astype('float32')
X_test = ct.transform(X_test).astype('float32')
y_train = y_train.astype('float32')
y_test = y_test.astype('float32')

# Distribution of X_train feature values after normalization
pd.DataFrame(X_train).describe()
```

_

Model, Predict, Evaluation

```
# Reserve data for validation

X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=42)

X_train.shape, X_val.shape, y_train.shape, y_val.shape

((363, 12), (41, 12), (363,), (41,))
```

Creating the Model and Optimizing the Learning Rate

learning rate = 0.01, batch_size = 32, dense_layers = 2, hidden_units for Dense_1 layer= 10, hidden_units for Dense_2 layer = 100

```
# Set random seed
tf.random.set_seed(42)
# Build the model
model = tf.keras.Sequential([
    tf.keras.Input(shape=(X_train.shape[1],), name='Input'),
    tf.keras.layers.Dense(10, activation='relu', name='Dense_1'),
    tf.keras.layers.Dense(100, activation='relu', name='Dense_2'),
    tf.keras.layers.Dense(1, name='Prediction')
])
# Compile the model
model.compile(
    loss=tf.keras.losses.MeanSquaredError(),
    optimizer=tf.keras.optimizers.RMSprop(learning rate=0.01),
    metrics=['mse']
)
# Train the model
history = model.fit(
    X_train,
    y_train,
    batch_size=32,
    epochs=50,
    validation_data=(X_val, y_val)
```

- **0s** 7ms/step - loss: 19.4991 - mse: 19.4991 - val_loss: 21.1060 - val_mse: 21.1060

- 0s 7ms/step - loss: 19.3398 - mse: 19.3398 - val_loss: 21.1402 - val_mse: 21.1402

- **0s** 11ms/step - loss: 19.2481 - mse: 19.2481 - val_loss: 21.2756 - val_mse: 21.2756

Model Evaluation

Epoch 48/50 12/12 —

Epoch 49/50 **12/12**

Epoch 50/50

12/12

Model Prediction

```
# Make predictions
y_pred = model.predict(X_test)
```

View the first prediction
y_pred[0]