Class 08: Breast cancer mini project

Vidisha Marwaha (PID: A16677246)

About

In todays lab we will work with fine needle aspiration (FNA) of a breast mass from University of Wisconsin.

Data Import

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.df)</pre>
```

	diagnosis :	radius_mean	texture_mean	perimeter_mea	n area_mea	n
842302	M	17.99	10.38	122.8	1001.	0
842517	M	20.57	17.77	132.9	0 1326.	0
84300903	M	19.69	21.25	130.0	0 1203.	0
84348301	M	11.42	20.38	77.5	8 386.	1
84358402	M	20.29	14.34	135.1	0 1297.	0
843786	M	12.45	15.70	82.5	7 477.	1
	smoothness	_mean compa	ctness_mean co	oncavity_mean	concave.po	ints_mean
842302	0.	11840	0.27760	0.3001		0.14710
842517	0.0	08474	0.07864	0.0869		0.07017
84300903	0.	10960	0.15990	0.1974		0.12790
84348301	0.	14250	0.28390	0.2414		0.10520
84358402	0.	10030	0.13280	0.1980		0.10430
843786	0.	12780	0.17000	0.1578		0.08089
	symmetry_m	ean fractal	_dimension_mea	n radius_se t	exture_se	perimeter_se
842302	0.2	419	0.0787	1.0950	0.9053	8.589
842517	0.18	812	0.0566	0.5435	0.7339	3.398
84300903	0.20	069	0.0599	0.7456	0.7869	4.585
84348301	0.2	597	0.0974	14 0.4956	1.1560	3.445
84358402	0.18	809	0.0588	0.7572	0.7813	5.438

area_se smoothness_se compactness_se concavity_se concave.points_se 842302 153.40 0.006399 0.04904 0.05373 0.01587	
842302 153 40 0 006399 0 04904 0 05373 0 01587	
0.01007 0.00000 0.010010 0.00000	
842517 74.08 0.005225 0.01308 0.01860 0.01340	
84300903 94.03 0.006150 0.04006 0.03832 0.02058	
84348301 27.23 0.009110 0.07458 0.05661 0.01867	
84358402 94.44 0.011490 0.02461 0.05688 0.01885	
843786 27.19 0.007510 0.03345 0.03672 0.01137	
symmetry_se fractal_dimension_se radius_worst texture_worst	
842302 0.03003 0.006193 25.38 17.33	
842517 0.01389 0.003532 24.99 23.41	
84300903 0.02250 0.004571 23.57 25.53	
84348301 0.05963 0.009208 14.91 26.50	
84358402 0.01756 0.005115 22.54 16.67	
843786 0.02165 0.005082 15.47 23.75	
<pre>perimeter_worst area_worst smoothness_worst compactness_worst</pre>	
842302 184.60 2019.0 0.1622 0.6656	
842517 158.80 1956.0 0.1238 0.1866	
84300903 152.50 1709.0 0.1444 0.4245	
84348301 98.87 567.7 0.2098 0.8663	
84358402 152.20 1575.0 0.1374 0.2050	
843786 103.40 741.6 0.1791 0.5249	
<pre>concavity_worst concave.points_worst symmetry_worst</pre>	
842302 0.7119 0.2654 0.4601	
842517 0.2416 0.1860 0.2750	
84300903 0.4504 0.2430 0.3613	
84348301 0.6869 0.2575 0.6638	
84358402 0.4000 0.1625 0.2364	
843786 0.5355 0.1741 0.3985	
fractal_dimension_worst	
842302 0.11890	
842517 0.08902	
84300903 0.08758	
84348301 0.17300	
84358402 0.07678	
843786 0.12440	

Q1. How many observations are in this dataset?

nrow(wisc.df)

[1] 569

```
Q2. How many of the observations have a malignant diagnosis?
  sum(wisc.df$diagnosis=="M")
[1] 212
  table(wisc.df$diagnosis)
 В
      Μ
357 212
     Q3. How many variables/features in the data are suffixed with _mean?
  ncol(wisc.df)
[1] 31
  colnames(wisc.df)
 [1] "diagnosis"
                                 "radius_mean"
 [3] "texture_mean"
                                 "perimeter_mean"
 [5] "area_mean"
                                 "smoothness_mean"
 [7] "compactness_mean"
                                 "concavity_mean"
 [9] "concave.points_mean"
                                 "symmetry_mean"
[11] "fractal_dimension_mean"
                                 "radius_se"
[13] "texture_se"
                                 "perimeter_se"
                                 "smoothness se"
[15] "area_se"
                                 "concavity_se"
[17] "compactness_se"
[19] "concave.points_se"
                                 "symmetry_se"
[21] "fractal_dimension_se"
                                 "radius_worst"
[23] "texture_worst"
                                 "perimeter_worst"
[25] "area_worst"
                                 "smoothness_worst"
[27] "compactness_worst"
                                 "concavity_worst"
[29] "concave.points_worst"
                                 "symmetry_worst"
[31] "fractal_dimension_worst"
```

Initial Analysis

Before analysis I want to take out the expert diagnoses column (aka. the answer) from the dataset

```
diagnosis <- as.factor(wisc.df$diagnosis)
head(diagnosis)

[1] M M M M M M
Levels: B M

wisc.data <- wisc.df[,-1]</pre>
```

Clustering

We can try a kmeans() clustering first

```
km <- kmeans(wisc.data, centers = 2)
km$cluster</pre>
```

84458202	844359	843786	84358402	84348301	84300903	842517	842302
2	1	2	1	2	1	1	1
84799002	84667401	846381	846226	84610002	845636	84501001	844981
2	2	2	1	1	2	2	2

848406	84862001	849014	8510426	8510653	8510824	8511133	851509
2	1	1	2	2	2	2	1
852552	852631	852763	852781	852973	853201	853401	853612
1	1	2	1	1	1	1	2
85382601	854002	854039	854253	854268	854941		
1	1	1		2			
855167	855563		856106			85713702	
2	2	1		2	1		
857155		857343				857438	
2	2	2		2	1		2
857637			858477				859196
1	2	2					
85922302							859711
2	2			2			2
859717			8610404				
	2	2					
1 861103		8611555		8612080			86135502
		0011000			0012399		
2	2	_					
			861799				
2	2	2	2	2	2		
86211			862548				
2	2	2		2			_
862989			863270				
2	2	2		1	2		_
86409		864496	864685	864726			865128
2	2	2		_	2		1
865137			865432		86561	866083	
2	1	1	2	2	2	2	1
866458	866674	866714	8670	86730502	867387	867739	868202
2	1	2	2	2	2	1	2
868223	868682	868826	868871	868999	869104	869218	869224
2	2	2	2	2	1	2	2
869254	869476	869691	86973701	86973702	869931	871001501	871001502
2	2	2	2	2	2	2	2
8710441	87106	8711002	8711003	8711202	8711216	871122	871149
2	2	2	2	1	2	2	2
8711561	8711803	871201	8712064	8712289	8712291	87127	8712729
2	1	1	2	1	2	2	1
8712766	8712853	87139402	87163	87164	871641	871642	872113
1	2	2	2	2	2	2	2
872608	87281702		873586	873592	873593	873701	873843
2	2						
			874373				
-		•	- · -	-	-		

2	2	1	2	2	2	2	2
875099	875263	87556202					877500
2	2	2	2	2	1	1	2
877501	877989	878796	87880	87930	879523	879804	879830
2	1	1	2	2	2	2	1
8810158	8810436	881046502	8810528	8810703	881094802	8810955	8810987
2	2	1	2	1	2	2	2
8811523	8811779	8811842	88119002	8812816	8812818	8812844	8812877
2	2	1	1	2	2	2	2
8813129	88143502	88147101	88147102	88147202	881861	881972	88199202
2	2	2	2	2	2	1	2
88203002	88206102	882488	88249602	88299702	883263	883270	88330202
2	1	2	2	1	1	2	1
88350402	883539	883852	88411702	884180	884437	884448	884626
2	2	2	2	1	2	2	2
88466802	884689	884948	88518501	885429	8860702	886226	886452
2	2	1	2	1	1	1	2
88649001	886776	887181	88725602	887549	888264	888570	889403
1	2	1	2	1	1	1	2
889719	88995002	8910251	8910499	8910506	8910720	8910721	8910748
1	1	_	2	2			2
8910988	8910996	8911163	8911164	8911230	8911670	8911800	8911834
1	2	_		2	1		2
8912049	8912055	89122			8912521		
1	2	1	_	2	2	2	2
8913049		89143602					
2	2	_	2	2		2	
891936	892189		892399	892438	892604	89263202	
2	2	_	2	1	2	1	2
89296	893061				893548		
2	2	_	2	2	2	2	2
89382602		894047			894326		
2	2		2	2			2
		894855					
2	1			2			
		896839					
2	2				2		1
	897630				898143		
2	1		1			2	
		898678					
2	2				2		2
	9010018				901028		
1	2	2	2	2	2	2	2

901034302	901041	9010598			901088	9011494	9011495
2	2	2		2			2
9011971	9012000	9012315		9012795			901303
1	_	2	2			2	
901315	9013579	9013594	9013838	901549		90250	90251
2	2	2	2				_
902727	90291	902975	902976	903011	90312	90317302	903483
2	2	2	2				
903507	903516	903554	903811	90401601	90401602	904302	904357
1	1	2	2	2	2	2	2
90439701	904647	904689	9047		904971	905189	905190
1	2	2	2	2	2	2	2
90524101	905501	905502	905520	905539	905557	905680	905686
1	2	2	2	2	2	2	2
905978	90602302	906024	906290	906539	906564	906616	906878
2	1	2	2	2	2	2	2
907145	907367	907409	90745	90769601	90769602	907914	907915
2	2	2	2	2	2	2	2
908194	908445	908469	908489	908916	909220	909231	909410
1	1	2	2	2	2	2	2
909411	909445	90944601	909777	9110127	9110720	9110732	9110944
2	1	2	2	1	2	1	2
911150	911157302	9111596	9111805	9111843	911201	911202	9112085
2		2	1				
9112366	9112367	9112594	9112712	911296201	911296202	9113156	911320501
2	2	2	2	1	1	2	2
911320502	9113239	9113455	9113514	9113538	911366	9113778	9113816
2	2	2	2	1	2	2	2
911384	9113846	911391	911408	911654	911673	911685	911916
2		2		2		2	
912193	91227	912519	912558	912600	913063	913102	
2		2	2			2	
913512	913535					914102	914333
2		2	1			2	
					91504		
2		1					1
					915460		
2					2		
	915940						917080
2		2	2		1		
					91805		
917092					2		
					91930402		
918192	918465	91858	91903901	91903902	91930402	919537	919555

2	2	2	2	2	1	2	1
91979701	919812	921092	921362	921385	921386	921644	922296
2	2	2	2	2	2	2	2
922297	922576	922577	922840	923169	923465	923748	923780
2	2	2	2	2	2	2	2
924084	924342	924632	924934	924964	925236	925277	925291
2	2	2	2	2	2	2	2
925292	925311	925622	926125	926424	926682	926954	927241
2	2	2	1	1	1	2	1
92751							
2							

table(km\$cluster)

1 2 131 438

Cross-table

```
table(km$cluster, diagnosis)
```

Lets try hclust() the key input required for hclust() is a distance matrix as produced by the dist() function.

```
hc <- hclust(dist(wisc.data))</pre>
```

I can make tree like figure

plot(hc)

Cluster Dendrogram

dist(wisc.data) hclust (*, "complete")

PCA

Do we need to scale?

We can look at the sd of each column

radius_mean	texture_mean	perimeter_mean
4	4	24
area_mean	${\tt smoothness_mean}$	compactness_mean
352	0	0
concavity_mean	concave.points_mean	symmetry_mean
0	0	0
fractal_dimension_mean	radius_se	texture_se
0	0	1
perimeter_se	area_se	smoothness_se
2	45	0
compactness_se	concavity_se	concave.points_se
0	0	0
symmetry_se	fractal_dimension_se	radius_worst
0	0	5

```
texture_worst perimeter_worst area_worst
6 34 569
smoothness_worst concavity_worst
0 0 0
concave.points_worst symmetry_worst fractal_dimension_worst
0 0 0
```

Yes we need to scale. We will run prcomp() with scale=TRUE

```
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427\ 0.6324\ 0.72636\ 0.79239\ 0.84734\ 0.88759\ 0.91010
                                         PC10
                           PC8
                                  PC9
                                                PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                          PC26
                                                                  PC27
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Generate our main PCA plot (score plot, PC1 vs. PC2 plot...)

```
library(ggplot2)
res <- as.data.frame(wisc.pr$x)</pre>
```

```
ggplot(res) +
  aes(PC1, PC2, col=diagnosis) +
  geom_point()
```



```
ggplot(res) +
  aes(PC1, PC4, col=diagnosis) +
  geom_point()
```


Combining methods

Clustering on PCA results

Using the minimum number of principal components required to describe at least 90% of the variability in the data, create a hierarchical clustering model with the linkage method="ward.D2". We use Ward's criterion here because it is based on multidimensional variance like principal components analysis. Assign the results to wisc.pr.hclust.

```
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d, method="ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get my clustering result/membership vector I need to "cut" the tree with the ${\tt cutree}$ () function.

```
grps <- cutree(hc, k=2)

Q. How many patients are in each cluster group?

table(grps)

grps
1 2
203 366

plot(res$PC1, res$PC2, col=grps)</pre>
```


Prediction

We can use our PCA result (model) to do prediction, that is take put new data into our model to predict if cancer is benine or malignant

```
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC5
         PC1
                  PC2
                            PC3
                                       PC4
                                                          PC6
     2.576616 -3.135913
                       1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                              0.8193031
          PC8
                   PC9
                            PC10
                                      PC11
                                               PC12
                                                        PC13
                                                                PC14
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457
                                          0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
                                                   PC19
         PC15
                  PC16
                             PC17
                                        PC18
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
PC22
                             PC23
                                       PC24
                                                  PC25
     0.1228233 \ 0.09358453 \ 0.08347651 \ 0.1223396 \ 0.02124121
[1,]
                                                       0.078884581
```

```
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238

PC27 PC28 PC29 PC30

[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029

[2,] -0.001134152 0.09638361 0.002795349 -0.019015820

plot(res$PC1, res$PC2, col=grps)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], labels=c(1,2), col="white")
```


Summary

Principal component analysis (PCA) is a super useful method for analyzing large datasets. It works by finding new variables (PCs) that capture the most variance from the original variables in your dataset.