

notas notas Create Networks from Adjacency and **Incidence Matrices** Generate Synthetic Networks Measuring Networks Global measures Explore neighborhoods Think in terms of paths Choose the right centralities

Create Networks from Adjacency and Incidence Matrices

Adjacency Matrix

 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$

Incidence Matrix

Adjacency Matrix

- Python way
- Numpy way
- Pandas way

Network type	Adjacency matrix	Interpretation
Simple	Only 0s or 1s, and no 1s on the main diagonal	Absence/presence of an edge
Weighted	At least one floating-point number	Numbers are edge weights
With self-loops	At least one non-zero on the main diagonal	Same as above
Signed	At least one negative number	Same as above
Undirected	Symmetric	Same as above
Multigraph	Not possible	Cannot be represented as an adjacency matrix

A = [[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0],

Adjacency Matrix

Python way

```
[0, 0, 0, 1, 0],
                                                   [0, 0, 0, 0, 1],
                                                   [.1, 0, 0, 0, 0]
# directed graph
G = nx.DiGraph()
# nested list comprehension
edges = [(i,j) for i,row in enumerate(A)
               for j,column in enumerate(row) if A[i][j]]
# add edges
G.add edges from(edges)
[(0, 1, \{\}), (1, 2, \{\}), (2, 3, \{\}), (3, 4, \{\}), (4, 0, \{\})]
```


A = [[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0],

[0, 0, 0, 1, 0],

Adjacency Matrix

Python way

```
[0, 0, 0, 0, 1],
# directed graph
                                                   [.1, 0, 0, 0, 0]
G = nx.DiGraph()
# nested list comprehension
edges = [(i,j, {"weight": A[i][j]}) for i,row in enumerate(A)
         for j,column in enumerate(row) if A[i][j]]
# add edges
G.add edges from(edges)
[(0, 1, {'weight': 1}), (1, 2, {'weight': 1}), (2, 3, {'weight': 1}),
 (3, 4, {'weight': 1}), (4, 0, {'weight': 0.1})]
```


Adjacency Matrix

Numpy way

```
A = [[0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0]]
```


Adjacency MatrixPandas way

df = nx.to pandas adjacency(G)

	Born	Married	Elected Rep	Elected Pres	Died
Born	0.0	1.0	0.0	0.0	0.0
Married	0.0	0.0	1.0	0.0	0.0
Elected Rep	0.0	0.0	0.0	1.0	0.0
Elected Pres	0.0	0.0	0.0	0.0	1.0
Died	0.1	0.0	0.0	0.0	0.0

```
labels = "Born", "Married", "Elected Rep", "Elected Pres", "Died"

# change nodes label inplace
nx.relabel_nodes(G, dict(enumerate(labels)), copy=False)

# create a dataframe from a networkx graph
```

edges = nx.to_pandas_edgelist(G)

	source	target	weight
0	Born	Married	1.0
1	Married	Elected Rep	1.0
2	Elected Rep	Elected Pres	1.0
3	Elected Pres	Died	1.0
4	Died	Born	0.1

Adjacency Matrix

Pandas way

10

Incidence Matrices

```
J = nx.incidence matrix(G, oriented=True).todense()
  matrix([[-1., -1., 0., 0., 0.],
          [1., 0., -1., 0., 0.],
          [0., 0., 0., -1., -1.],
          [ 0., 1., 0., 1., 0.],
          [0., 0., 1., 0., 1.]
import sys
print(sys.getsizeof(nx.incidence matrix(G, oriented=True)))
print(sys.getsizeof(nx.incidence matrix(G, oriented=True).todense()))
56
136
```


SNAP for C++
SNAP for Python
SNAP Datasets
BIOSNAP Datasets
What's new
People
Papers
Projects
Citing SNAP
Links
About
Contact us

Open positions

Open research positions in **SNAP** group are available at undergraduate, graduate and postdoctoral levels.

♣ Enron email network

→ Dataset information

Enron email communication network covers all the email communication within a dataset of around half million emails. This data was originally made public, and posted to the web, by the Federal Energy Regulatory Commission during its investigation. Nodes of the network are email addresses and if an address *i* sent at least one email to address *j*, the graph contains an undirected edge from *i* to *j*. Note that non-Enron email addresses act as sinks and sources in the network as we only observe their communication with the Enron email addresses.

The Enron email data was originally released by William Cohen at CMU.

Dataset statistics	
Nodes	36692
Edges	183831
Nodes in largest WCC	33696 (0.918)
Edges in largest WCC	180811 (0.984)
Nodes in largest SCC	33696 (0.918)
Edges in largest SCC	180811 (0.984)
Average clustering coefficient	0.4970
Number of triangles	727044
Fraction of closed triangles	0.03015
Diameter (longest shortest path)	11
90-percentile effective diameter	4.8

Exercise 1.1.3

 J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney. Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters. Internet Mathematics 6(1) 29--123, 2009.

Generate Synthetic Networks


```
1 import matplotlib.pyplot as plt
 2 import networkx as nx
  fig, plot = plt.subplots(2, 3, figsize=(15,10))
 5 subplots = plot.reshape(1, 6)[0]
 6
 7 # Generate and draw classic networks
8 | G0 = nx.path graph(20)
 9 G1 = nx.cycle graph(20)
10 G2 = nx.star graph(20)
11 G3 = nx.complete graph(20)
12 G4 = nx.balanced tree(2, 5)
13 G5 = nx.grid 2d graph(5, 4)
14
15 graphs = [G0,G1,G2,G3,G4,G5]
16
  names = ["Linear (Path)", "Ring (Cycle)",
18
            "Star", "Complete", "Balanced Tree", "Mesh (Grid)"]
19
  for graph, title, plot in zip(graphs, names, subplots):
21
     nx.draw networkx(graph, ax=plot)
    plot.set title(title)
22
23
    plot.axis("off")
```

Random Graphs

Erdös-Rényi

a. "binomial graph", contains *N* nodes, but each edges occur with a probability P.

Watts-Strogatz

a. "Six degree of separation", create a illusion of small world.

Barabási-Albert

a. principle of preferential attachment, "celebrity" nodes

Holme-Kim

a. the same as above, plus the probability of adding a triangle for each added edge, making the synthetic network even more clustered and lifelike.

watts_strogatz(50,4,0.25) watts_strogatz(50,4,0.5) watts_strogatz(50,4,1)

watts_strogatz(50,4,0.05)

watts_strogatz(50,4,0)

watts_strogatz(50,4,0.1)

Barabasi Albert (n,k)

Holme Kim (n,k,p)

Characterization of Complex Networks: A Survey of measurements

L. da F. Costa F. A. Rodrigues G. Travieso
P. R. Villas Boas
Instituto de Física de São Carlos, Universidade de São Paulo

Caixa Postal 369, 13560-970, São Carlos, SP, Brazil luciano@ifsc.usp.br

February 2, 2008

Abstract

Each complex network (or class of networks) presents specific topological features which characterize its connectivity and highly influence the dynamics of processes executed on the network. The analysis, discrimination, and synthesis of complex networks therefore rely on the use of measurements capable of expressing the most relevant topological features. This article presents a survey of such measurements. It includes general considerations about complex network characterization, a brief review of the principal models, and the presentation of the main existing measurements. Important related issues covered in this work comprise the representation of the evolution of complex networks in terms of trajectories in several measurement spaces, the analysis of the correlations between some of the most traditional measurements, perturbation analysis, as well as the use of multivariate statistics for feature selection and network classification. Depending on the network

Start with global measures

```
G = nx.read_graphml("cna.graphml")
nx.number_of_nodes(G) #2995
nx.number_of_edges(G) #11817
nx.density(G) #0.00131
```


Explore neighborhoods

Node and edge counts and density are some of the **macroscopic network properties**.

Neighborhoods are responsible for the local properties of network graphs (microscopic level)

- Egocentric network
- Clustering coefficient


```
ego = "Neighbourhood (Graph Theory)"

alters_1 = G[ego] #32

alters_2 = list(nx.all_neighbors(G, ego)) # 61

nx.degree(G,ego) #61
```


Clustering Coefficient

Some social theories consider **triads** essential units of social network analysis.

- the clustering coefficient is the fraction of possible triangles that contain the ego
- Think of the clustering coefficient as a measure of "stardom."

$$c = 1$$

$$c = 1/3$$

$$c = 0$$

Clustering Coefficient

cna.graphml

Think in terms of path

Walk abcdb abcdcbce aecbde

Trail abc aedc abcdea

Path abcde agdef

The shortest paths are called **geodesics**

```
nx.shortest_path(G,ego,"Webgraph")
['Neighbourhood (Graph Theory)',
   'Degree (Graph Theory)',
   'Degree Distribution',
   'Scale-Free Network',
   'Webgraph']
```


Network as a circle

The **eccentricity** is the maximum distance from a node to all other nodes in the network

```
ecc = nx.eccentricity(nx.Graph(G))
ecc[ego] #3
```



```
# diameter = max(ecc)
ecc[max(ecc,key=ecc.get)] #4
# radius = min(ecc)
ecc[min(ecc,key=ecc.get)] #2
# center => set of nodes with ecc equal to radius
[i for i in ecc if ecc[i] == ecc[min(ecc,key=ecc.get)]]
['Complex Network']
# periphery => set of nodes with ecc equal to diameter
len([i for i in ecc if ecc[i] == ecc[max(ecc,key=ecc.get)]]) #2875
```


Counter({2: 1, 3: 119, 4: 2875})

Choose the Right Centralities

One of the goals of social network analysis is to identify actors with outstanding properties (most important)

- Degree centrality
- Closeness Centrality
- Betweenness Centrality
- Eigenvector Centrality

Ulrik Brandes

The Space of All Centralities

Degree Centrality

Degree is a simple centrality measure that counts how many neighbors a node has.

If the network is directed:

- in-degree
- out-degree

$$C(node) = \frac{N-1}{\sum_{1}^{N-1} D(node, v)}$$

Closeness Centrality

It shows how close the node is to the rest of the graph.

- 0 (the node has no neighbors)
- 1 (the node is the hub of the global star and is one hop away from any other node)

A node with a high closeness centrality may be capable of affecting the entire network.

Betweenness Centrality

$$betweenness(v) = \sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

It measures the fraction of all possible geodesics that pass through a node.

If the betweenness is high, the node is potentially a crucial go-between (thus the name) and has a **brokerage capability**.

Eigenvector Centrality

"Tell me who your friends are, and I will tell you who you are."

You can use this measure to locate groups of interconnected nodes with high prestige.

- 0.8

- 0.6

- 0.4

- 0.2

A natural extension of degree centrality is **eigenvector centrality**.

