The Basic Frameworks for Embodied Al

Hao Su

Based on CVPR 2022 Tutorial on "Building and Working in Environments for Embodied AI"

Outline

- Modeling and approaches for Embodied Al
 - World model
 - Learning-based methods to solve tasks
 - Classic robotics

How do People Model the World?

x Position

$$\dot{x} := dx/dt$$
 Velocity

$$\ddot{x} := d\dot{x}/dt$$
 Acceleration

Newton's second law of motion

$$F = m\ddot{x}$$

How do People Model the World?

If we call (x, \dot{x}) the **state** of the world,

And F an **action** on the world.

Newton's second law models the **transition** of state under action over time.

$$\frac{d}{dt}(x,\dot{x}) = (\dot{x}, \frac{F'}{m})$$

An Embodied Al Example

Task: push block to target location.

States

A **state** is a configuration of the world.

- In this example
 - Joint angles θ1-θ7
 - block position and orientation
 - target position

The collection of all states is called the state space \mathcal{S} .

Actions

An **action** is a robot command.

- For example
 - Motor torque

The collection of all actions is called the action space \mathcal{A} .

Transition

The **transition function** \mathcal{T} describes how the **state** changes over time according to an **action**.

Formally, \mathcal{T} describes the rate of change of the state given the current state and action.

$$\dot{s} := \frac{ds}{dt} = \mathcal{T}(s, a)$$

Transition function: classical mechanics

The Forward Model

The forward model is a 3-tuple $(\mathcal{S}, \mathcal{A}, \mathcal{T})$

 ${\cal S}$: State Space all possible world states

 ${\cal A}$: Action Space all possible control signals

 \mathcal{T} : Transition environment dynamics

Modeling Transition on a Computer

On a computer, things are discrete.

$$\dot{s} = \mathcal{T}(s, a) \xrightarrow{\text{Discretize over time}} s_{t+1} = \hat{\mathcal{T}}(s_t, a_t)$$

We call $1/\Delta t$ as the action frequency

In general, the transition can be stochastic.

$$s_{t+1} \sim \mathcal{T}(\cdot|s_t, a_t)$$

Note: one may model stochasticity in the continuous time case (stochastic differential equations) but it is out of scope in this tutorial.

When is a Task Successful?

- How do we know if a task is complete?
- Idea: define success on states
 - Box xyz is close to target xyz
 - Box velocity is close to 0
 - Robot velocity is close to 0

When is a Task Successful?

• More generally, we can introduce a **reward** function \mathcal{R} to measure how successful the current state/action is.

For example

 The environment gives a reward of 1 when the block is close to the target, 0 otherwise.

When is a Task Successful?

• More generally, we can introduce a **reward** function \mathcal{R} to measure how successful the current state/action is.

• The 4 tuple (S, A, T, R) is formally known as a **Markov Decision Process (MDP)**.

Markov Decision Process

Markov Decision Process is a 4-tuple $(\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R})$

 \mathcal{S} : State Space all possible world states

 ${\cal A}$: Action Space all possible control signals

T: Transition environment dynamics

 \mathcal{R} : Reward how successful is the state/action

How to Solve Embodied Al Tasks

To solve an embodied AI task, the agent needs to know what action to take given the current state.

This is called a policy.

A policy π takes a **state** and outputs an **action** (can be stochastic).

$$a \sim \pi(\cdot|s)$$

A good policy should eventually complete the task (reach a successful state or accumulate a great amount of reward).

How to Solve Embodied Al Tasks

- Imitate an expert.
 - Imitation learning
 - \circ Both ${\mathcal T}$ and ${\mathcal R}$ are not needed
- Learn to accumulate reward in an MDP
 - Reinforcement learning
 - \circ Model-free: $\mathcal T$ is not modeled
 - \circ Model-based: ${\mathcal T}$ is learned in the process
- Design rules based on mechanics
 - Classic robotics
 - \circ \mathcal{T} is modeled in advance (including learned models)

Outline

- Modeling and approaches for Embodied Al
 - World model
 - Learning-based methods to solve tasks
 - Imitation learning, reinforcement learning
 - Classic robotics

Optimal Policy

For a given policy $a \sim \pi(\cdot|s)$

We run the policy on the environment for H steps and collect rewards

$$a_t \sim \pi(\cdot|s_t)$$
 $s_{t+1} \sim \mathcal{T}(\cdot|s_t, a_t)$ $r_{t+1} \sim \mathcal{R}(\cdot|s_t, a_t, s_{t+1})$

An optimal policy is the one that maximizes the expected cumulative reward

$$\mathbb{E}[\sum_{t=1}^{H} r_t]$$

Note: in practice, a discount factor is often used to handle the case H=∞. It is not discussed here for simplicity.

Example of Optimal Policy

The environment gives a reward of 1 when the block is close to the target, 0 otherwise.

Let's also assume the system is terminated when the reward is 1.

An optimal policy is one that moves the block to the target eventually.

Partially-Observable MDP

In practice, the **state** is not always known.

Instead, we get some observation.

E.g., position of the cube vs an image of the cube

- Common observations
 - RGB-D image
 - Position & velocity of objects and robots
 - Task information (e.g. goal)
 - Other sensory readings

OpenAl Gym https://www.gymlibrary.ml/content/api/

Simulating MDP on a Computer

https://www.gymlibrary.ml/

How to get a Good Policy

Now how do we find a good policy?

- Idea 1: assume an expert (e.g., human) has solved the task; mimic this behavior — imitation learning.
- Idea 2: interact with the environment and try to improve the policy with reward —reinforcement learning.

Imitation Learning

- Input: expert demonstrations $\{(s_t, a_t)\}$
- Output: policy $a \sim \pi_{\theta}(\cdot|s)$

Expert

Reinforcement Learning (RL)

- What if we do not have expert data?
- Learn from interaction experience.
 - a. Interact with environment (env.step) to collect experience.
 - b. Use collected experience to improve the current policy.
 - c. Repeat ab.

https://openai.com/blog/solving-rubiks-cube/

Recommended reading:

https://www.deepmind.com/learning-resources/introduction -to-reinforcement-learning-with-david-silver

RL Taxonomy

OpenAl Spinup https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Combining RL and Expert Demonstrations

- "Learning from demonstrations"
 - Offline RL: train RL with given experience without further interactions
 - Augmenting online RL training with demonstrations
 - Dynamic movement primitives
 - Learning transition model from demonstrations

Outline

- Modeling and approaches for Embodied Al
 - World model
 - Learning-based methods to solve tasks
 - Classic robotics

Plan and Control

A popular pipeline in classic robotics is planning and control.

Plan and Control

A popular pipeline in classic robotics is planning and control.

Motion planning generates a trajectory (position, velocity, and acceleration) of the robot.

Plan and Control

A popular pipeline in classic robotics is planning and control.

Motion planning generates a trajectory (position, velocity, and acceleration) of the robot.

Control executes the trajectory.

Task: move a robot from one pose to another

Ratliff N, Zucker M, Bagnell J A, et al. CHOMP: Gradient optimization techniques for efficient motion planning, ICRA 2009 Schulman, John, et al. Finding Locally Optimal, Collision-Free Trajectories with Sequential Convex Optimization, RSS 2013

- Task: move a robot from one pose to another
- Assumptions
 - We know the start and goal pose
 - We can verify if a given pose is valid (usually means collision-free)
 - We can verify whether a pose is reachable from another pose using some simple control strategy

- Task: move a robot from one pose to another
- Assumptions
 - We know the start and goal pose
 - We can verify if a random pose is valid (usually means collision-free)
 - We can verify whether a pose is reachable from another pose using some simple control strategy
- Algorithms
 - Rapidly-exploring random tree (RRT)
 - Probabilistic roadmap method (PRM)

Motion Planning Example: PRM

Motion Planning Example: PRM

- Phase 1: Map construction
 - Randomly sample collision-free configurations
 - Connect every sampled state to its neighbors
 - Connect the start and goal states to the graph

Motion Planning Example: PRM

- Phase 2: Query
 - Run path finding algorithms like Dijkstra

How to Find a Robot Pose For Grasping?

- Some tasks (such as grasping) require moving the gripper to a position.
- How do we find the robot pose of a given gripper pose?

How to Find a Robot Pose For Grasping?

- Some tasks (such as grasping) require moving the gripper to a position.
- How do we find the robot pose of a given gripper pose?
 - Inverse Kinematics (IK)

```
robot_model = robot.create_pinocchio_model()

joint_positions, success, error = robot_model.compute_inverse_kinematics(
    link_idx,
    target_pose,
    active_qmask = joint_mask  # joints with mask value 1 are allowed to move
    max_iterations = 100
)
```


Time Parameterization

- ullet PRM/RRT gives a path with discrete joint positions $\,q_d$
- A time parameterization algorithm converts the path q_d to a joint **trajectory** $(q_d, \dot{q}_d, \ddot{q}_d)$ with time.

• Robotic control executes a given trajectory $(q_d, \dot{q}_d, \ddot{q}_d)$ by controlling the joint torques au

- Robotic control executes a given trajectory $(q_d, \dot{q}_d, \ddot{q}_d)$ by controlling the joint torques τ
 - q represents the joint positions of a robot
- Similar to F=ma , the dynamic model of a robot is known.
 - \circ Forward dynamics: $\ddot{q} = \mathrm{FD}(au; q, \dot{q})$
 - o Inverse dynamics: $\tau = \mathrm{ID}(\ddot{q};q,\dot{q}) = M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q)$

Inertia matrix

Coriolis matrix

Gravity & other forces

- What we have
 - \circ Trajectory $(q_d,\dot{q}_d,\ddot{q}_d)$
 - Inverse dynamics: $\tau = \mathrm{ID}(\ddot{q}; q, \dot{q})$
- Ideally, using au computed from \ddot{q}_d gives a perfect trajectory.
- However, the real world is not perfect. What if there is some error?

$$e = q - q_d$$

 When an RL work says: we use "velocity control" or "position control" as action. What does that mean?

 The action in an MDP can be "target joint velocity" or "target joint position" for a controller.

- The action in an MDP can be "target joint velocity" or "target joint position" for a controller.
- A controller (such as PD) is used to convert this velocity or position signal to joint torques, which are then used to drive the robot.

- The action in an MDP can be "target joint velocity" or "target joint position" for a controller.
- A controller (such as PD) is used to convert this velocity or position signal to joint torques, which are then used to drive the robot.
- Joint velocity/position may be a better choice for MDP action (than torque) due to learnability and sim-to-real transferability.

More About Control

- Control focuses on stability and robustness
- There is a huge literature
 - Optimal control
 - Feedforward/feedback control (including PD)
 - Robust control
 - Self-organized control
 - Stochastic control
 - 0 ...
- Optimal control has a strong connection with RL

Summary

- Embodied Al Approaches
 - Learning-based methods
 - Imitation learning
 - Reinforcement learning
 - **...**
 - Classic robotics
 - Planning
 - Control
 - **...**
- In-depth discussion of these topics

How do we Study Embodied Al Algorithms?

- An environment is required to develop approaches
- Real robot?
 - High costs
 - Safety concerns
- Simulation environment?
 - Physical simulation
 - Camera simulation
 - Assets loading
 - Sim-to-real gaps