数值分析第五次作业参考答案

一、(15分)用幂法求下列矩阵的主特征值及对应的特征向量:

$$A = \begin{bmatrix} 7 & 3 & -2 \\ 3 & 4 & -1 \\ -2 & -1 & 3 \end{bmatrix}$$

当特征值有 3 位小数稳定时迭代终止。要求:写出计算公式,将计算过程数据填入表中。解:设主特征值为 λ_1 ,取 $V^{(0)}=(1,1,1)^T$ 根据幂法公式(初始向量 1 分)

$$\begin{cases} u^{(0)} = V^{(0)} \\ V^{(k)} = Au^{(k)} \\ m_k = \max\{V^{(k)}\} \\ u^{(k)} = V^{(k)} / m_k \end{cases}, \quad \sharp \vdash \max\{V^{(k)}\} = \left\|V^{(k)}\right\|_{\infty} = \max\left|V^{(k)}_i\right| \tag{5 $\%$}$$

那么有

$$\lim_{k \to \infty} m_k = \lambda_1, \lim_{k \to \infty} u^{(k)} = \frac{x^{(1)}}{\max\{x^{(1)}\}} \ .$$

对矩阵 A 计算如下: (7 分, 每行 1 分)

k	$\left(u^{(k)}\right)^T$ (规范化向量)(保留四位小数)	$m_k = \max\{V^{(k)}\}$
0	(1,1,1)	
1	(1.0000, 0.7500,0)	8
2	(1.0000, 0.6486, -0.2973)	9.25
3	(1.0000, 0.6176, -0.3711	9.5405
4	(1.0000, 0.6088, -0.3888)	9.5949
5	(1.0000, 0.6064, -0.3931)	9.6041
6	(1.0000, 0.6058, -0.3941)	9.6054
7	(1.0000, 0.6056, -0.3944)	9.6056

根据题意, 当特征值有 3 位小数稳定时, 迭代终止, 故有

$$\lambda_1 \approx 9.6056$$
, 取 $(u^{(7)}) \approx (1.0000, 0.6056, -0.3944)^T$ 为相应的特征向量. $(2 分, 每个 1 分)$

(根据特征值和特征向量的定义,可以验证有: $Au^{(7)} \approx \lambda u^{(7)}$)

二、(20 分)给出 $f(x) = \ln x$ 的数值表

\boldsymbol{x}	0.4	0.5	0.6
$\ln x$	-0.916 291	- 0.693 147	- 0.510 826
\boldsymbol{x}	0.7		0.8
$\ln x$	- 0.356675		- 0. 223144

用拉格朗日线性插值和二次插值计算 ln 0.54 的近似值,并估计截断误差。

(1) 线性插值

因为 0.5 < 0.54 < 0.6,所以取 $x_0 = 0.5, x_1 = 0.6$ 作为插值点的横坐标。根据拉格朗日插值,可得一次插值多项式为(取初始值 1 分)

$$L_1(x) = \frac{x - 0.6}{0.5 - 0.6} \times (-0.693147) + \frac{x - 0.5}{0.6 - 0.5} \times (-0.510826)$$
 (3 $\%$)

从而,

$$\ln 0.54 \approx L_1(0.54) = \frac{-0.06}{-0.1} \times (-0.693147) + \frac{0.04}{0.1} \times (-0.510826) \approx -0.620219$$
 (3 $\%$)

截断误差 $|R_1(x)| \le \frac{M_2}{2!} |(x-x_0)(x-x_1)|$, 其中 $M_2 = \max_{x_0 \le x \le x_1} |f''(x)|$ 。 因为 $f(x) = \ln x$,

$$f''(x) = -\frac{1}{x^2}$$
,所以可取 $M_2 = \max_{x_0 \le x \le x_1} \left| \frac{1}{x^2} \right| = \frac{1}{x_0^2} = \frac{1}{0.5^2} = 4$,从而有

$$|R_1(0.54)| \le 2 \times |(0.54 - 0.5)(0.54 - 0.6)| = 0.0048$$
. (3 分)

(2) 二次插值

因为 0.5 < 0.54 < 0.6,所以对于二次插值,插值节点可以在 0.4, 0.5, 0.6 或者 0.5, 0.6, 0.7 之间进行选择。因为 $f(x) = \ln x$,所以 $f^{(3)}(x) = \frac{2}{x^3}$ 。令 $M_3 = \max_{x_0 \le x \le x_2} |f^{(3)}(x)|$ 。如果选择 $x_0 = 0.4$, $x_1 = 0.5$, $x_2 = 0.6$,那么采用拉格朗日插值时的截断误差限为(计算截断误差 3分)

$$\frac{M_3}{3!} |(x - x_0)(x - x_1)(x - x_2)| = \frac{2}{6 \times 0.4^3} |(0.54 - 0.4)(0.54 - 0.5)(0.54 - 0.6)|$$

$$= \frac{1}{3 \times 0.4^3} |0.14 \times 0.04 \times 0.06| = 0.00175$$

若选择 $x_0 = 0.5, x_1 = 0.6, x_2 = 0.7$,则采用拉格朗日插值时的误差限为

$$\frac{M_3}{6} |(x - x_0)(x - x_1)(x - x_2)| = \frac{2}{6 \times 0.5^3} |(0.54 - 0.5)(0.54 - 0.6)(0.54 - 0.7)|$$

$$= \frac{1}{3 \times 0.5^3} |0.04 \times 0.06 \times 0.16| = 0.001024$$

比较两个误差限可知,选取 $x_0 = 0.5, x_1 = 0.6, x_2 = 0.7$ 作为插值点时的误差限更小。(选哪三个点 2 分)

从而用二次拉格朗日插值多项式得到 ln 0.54 的估计值为

$$\begin{split} &\ln 0.54 \approx L_2(0.54) = \frac{(0.54 - 0.6)(0.54 - 0.7)}{(0.5 - 0.6)(0.5 - 0.7)} \times (-0.693147) \\ &+ \frac{(0.54 - 0.5)(0.54 - 0.7)}{(0.6 - 0.5)(0.6 - 0.7)} \times (-0.510826) \\ &+ \frac{(0.54 - 0.5)(0.54 - 0.6)}{(0.7 - 0.5)(0.7 - 0.6)} \times (-0.356675) \approx -0.616838 \end{split}$$

三、(20分)当工业风扇在以下列出的温度运转时,预期使用寿命如表1所示。

表 1								
温度(摄氏度)	小时(×1000)	温度(摄氏度)	小时(×1000)					
25	95	50	63					
40	75	60	54					

用牛顿插值法估计工业风扇在温度为70摄氏度时的使用寿命。

(1) 用抛物线; (2) 用三次多项式。

差商表(3分,每个0.5分)

温度	小时(×1000)	一阶差商	二阶差商	三阶差商
25	95	-1.333333	0.005333	0.000276
40	75	-1.2	0.015	
50	63	<mark>-0.90</mark>		
60	54			

(1) 用抛物线进行牛顿插值时,选 $x_0 = 40, x_1 = 50, x_2 = 60, y_0 = 75, y_1 = 63, y_2 = 54$ 。 (选哪三个点,1 分)

根据差商表中第二行,有

$$N_2(x) = 75 - 1.2(x - x_0) + 0.015(x - x_0)(x - x_1)$$
 (给出迭代多项式, 5分)

从而可得 $N_2(70) = 48$ 。 (3 分)

(2) 用三次牛顿插值多项式时,选

$$x_0 = 25, x_1 = 40, x_2 = 50, x_3 = 60, y_0 = 95, y_1 = 75, y_2 = 63, y_3 = 54$$

根据差商表中第一行可得

$$N_3(x) = 95 - 1.333333(x - x_0) + 0.0053333(x - x_0)(x - x_1) + 0.000276(x - x_0)(x - x_1)(x - x_2)$$

(给出迭代多项式, 5分)

从而有 $N_3(70) \approx 50$ 。(计算结果, 3分)

四、(25分)估计的地球大气中的平均二氧化碳浓度如下表所示,单位是(ppm),即一百万体积的空气中所含二氧化碳的体积数。

 表 2							
 年份	CO ₂ (ppm)	年份	CO ₂ (ppm)				
1800	280	1900	291				
1850	283	2000	370				

分别用直线模型、二次曲线模型和三次曲线模型拟合上述数据,并计算拟合的 RMSE。在每个模型中,估计 1950 年的 CO₂浓度,哪个模型给出最优的估计?

注释: 设
$$\delta = (\delta_1, \delta_2, \dots, \delta_n)$$
, 则 $RMSE = \sqrt{\left(\sum_{k=1}^n \delta_k^2\right)/n}$

解:本题做法不唯一,此解法仅供参考。

做对照表(用于手工计算),

X	1800	1850	1900	2000
t	-2	-1	0	2

可得x与t的对应关系为 $t = \frac{1}{50}(x-1800)-2$

(1) 直线模型

令
$$\phi(t) = a_0 + a_1 t = a_0 \phi_0(t) + a_1 \phi_1(t) \Rightarrow \phi_0(t) = 1, \phi_1(t) = t$$
 , 可得法方程为

$$\begin{pmatrix} (\phi_0, \phi_0) & (\phi_0, \phi_1) \\ (\phi_1, \phi_0) & (\phi_1, \phi_1) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} (\phi_0, y) \\ (\phi_1, y) \end{pmatrix} \Rightarrow$$

$$\begin{pmatrix}
\sum_{k=1}^{4} \phi_{0}(t_{k})\phi_{0}(t_{k}) & \sum_{k=1}^{4} \phi_{0}(t_{k})\phi_{1}(t_{k}) \\
\sum_{k=1}^{4} \phi_{1}(t_{k})\phi_{0}(t_{k}) & \sum_{k=1}^{4} \phi_{1}(t_{k})\phi_{1}(t_{k})
\end{pmatrix}
\begin{pmatrix}
a_{0} \\
a_{1}
\end{pmatrix} = \begin{pmatrix}
\sum_{k=1}^{4} \phi_{0}(t_{k})y(t_{k}) \\
\sum_{k=1}^{4} \phi_{1}(t_{k})y(t_{k})
\end{pmatrix}$$
(3 \(\frac{\frac{1}{2}}{2}\)

$$\Rightarrow \begin{pmatrix} 4 & -1 \\ -1 & 9 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} 1224 \\ -103 \end{pmatrix} \Rightarrow a_0 = 311.8, a_1 = 23.2.$$

 $\phi(t) = 311.8 + 23.2t \Rightarrow$

$$s(x) = 311.8 + 23.2 \times \left(\frac{1}{50}(x - 1800) - 2\right) = 0.464x - 569.8$$
 (2 $\%$)

$$s(1800) = 265, s(1850) = 289, s(1900) = 312, s(2000) = 358$$

$$s(1800) = 265, s(1850) = 289, s(1900) = 312, s(2000) = 358$$

$$rmse1 = \sqrt{\left[\left(280 - 265\right)^2 + \left(283 - 289\right)^2 + \left(291 - 312\right)^2 + \left(370 - 358\right)^2\right]/4} \approx 14 (3 \%)$$

估计的 1950 年的 CO2 浓度约为 335ppm

(2) 二次曲线模型

令 $\phi(t) = a_0 + a_1 t + a_2 t^2 = a_0 \phi_0(t) + a_1 \phi_1(t) + a_2 \phi_2(t) \Rightarrow \phi_0(t) = 1, \phi_1(t) = t, \phi_2(t) = t^2$,可得法

$$\begin{pmatrix} 4 & -1 & 9 \\ -1 & 9 & -1 \\ 9 & -1 & 33 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 1224 \\ -103 \\ 2883 \end{pmatrix} \Rightarrow a_0 = 293.62, a_1 = 22.06, a_2 = 7.95 \text{ (3 }\%)$$

$$\phi(t) = 293.62 + 22.06t + 7.95t^2 \Rightarrow s(x) = 0.0032x^2 - 11.65x + 1094$$
 (2 $\%$)

$$s(1800) \approx 281, s(1850) \approx 280, s(1900) \approx 294, s(2000) \approx 370$$
,

rmse2 ≈ 2,估计的 1950 年的 CO₂ 浓度约为 323ppm (3分)

(3) 三次曲线模型

$$\diamondsuit \phi(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 = a_0 \phi_0(t) + a_1 \phi_1(t) + a_2 \phi_2(t) + a_3 \phi_3(t) ,$$

$$\Rightarrow \phi_0(t) = 1, \phi_1(t) = t, \phi_2(t) = t^2, \phi_3(t) = t^3$$
,可得法方程为

$$\begin{pmatrix} 4 & -1 & 9 & -1 \\ -1 & 9 & -1 & 33 \\ 9 & -1 & 33 & -1 \\ -1 & 33 & -1 & 129 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 1224 \\ -103 \\ 2883 \\ 437 \end{pmatrix} \Rightarrow a_0 = 291, a_1 = 14.5, a_2 = 8.5, a_3 = 2 \ (3 \ \%)$$

$$\phi(-2) = 280, \phi(-1) = 283, \phi(0) = 291, \phi(2) = 370$$

rmse3 = 0.估计的 1950 年的 CO_2 浓度约为 316ppm. (3分)

综上所述, 三次曲线拟合模型给出最优估计。

特别说明:做变换是为了方便计算,避免计算器数据溢出,考试不会有这么复杂的数据。

五、(20分)用指数模型拟合下面的世界汽车供应数据。

表 3 年份 汽车(×10⁶) 年份 汽车(×10⁶) 年份 汽车(×10⁶) 1950 53.05 1965 139.78 1980 320.39 1955 73.04 1970 193.48 1960 98.31 1975 260.20

解: 本题做法不唯一, 此解法仅供参考。

年份 x	1950	1955	1960	1965	1970	1975	1980
汽车y	53.05	73.04	98.31	139.78	193.48	260.20	320.39
lny	3.97	4.29	4.59	4.94	5.27	5.56	5.77

令 $s(x) = ae^{bx}$, 两边取对数可得 $\ln s(x) = \ln a + bx$ 。 (2 分) 再令 $\ln a = A$, $\phi(x) = \ln s(x) = A + bx = A\phi_0(x) + b\phi_1(x) \Rightarrow \phi_0(x) = 1$, $\phi_1(x) = x$ 。 可得法方程为

$$\begin{pmatrix}
(\phi_{0}, \phi_{0}) & (\phi_{0}, \phi_{1}) \\
(\phi_{1}, \phi_{0}) & (\phi_{1}, \phi_{1})
\end{pmatrix}
\begin{pmatrix}
A \\
b
\end{pmatrix} = \begin{pmatrix}
(\phi_{0}, \ln y) \\
(\phi_{1}, \ln y)
\end{pmatrix} \Rightarrow \begin{pmatrix}
7 & \sum_{i=1}^{7} x_{i} \\ \sum_{i=1}^{7} x_{i} & \sum_{i=1}^{7} x_{i}^{2}
\end{pmatrix}
\begin{pmatrix}
A \\
b
\end{pmatrix} = \begin{pmatrix}
\sum_{i=1}^{7} \ln y_{i} \\
\sum_{i=1}^{7} x_{i} \ln y_{i}
\end{pmatrix}$$
(5 \$\frac{\frac{\frac{7}{3}}{3}}{2}}{2} \left(\frac{1}{3} \left(\frac{1} \left(\frac{1}{3} \left(\frac{1}{3} \left(\frac{1}{3} \left(\frac{1}{3} \left(

为了方便手工计算,可仿照第四题作对照表如下:

年份 x	1950	1955	1960	1965	1970	1975	1980
t	-3	-2	-1	0	1	2	3

可得
$$t = \frac{1}{5}(x-1965)$$
 。 (3 分)

$$\begin{pmatrix} 7 & \sum_{i=1}^{7} t_i \\ \sum_{i=1}^{7} t_i & \sum_{i=1}^{7} t_i^2 \end{pmatrix} \begin{pmatrix} A \\ b \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{7} \ln y_i \\ \sum_{i=1}^{7} t_i & \ln y_i \end{pmatrix} \Rightarrow \begin{pmatrix} 7 & 0 \\ 0 & 28 \end{pmatrix} \begin{pmatrix} A \\ b \end{pmatrix} = \begin{pmatrix} 34.39 \\ 8.62 \end{pmatrix} \Rightarrow \begin{pmatrix} A \\ b \end{pmatrix} \approx \begin{pmatrix} 4.91 \\ 0.31 \end{pmatrix}$$

$$\begin{pmatrix} A \\ b \end{pmatrix} \approx \begin{pmatrix} 4.91 \\ 0.31 \end{pmatrix}$$

$$(5 \%)$$

记
$$p(t) = e^{A+bt} = 136e^{0.31t}$$
 (2分),可得

t	-3	-2	-1	0	1	2	3
p(t)	53.66	73.16	99.75	136	185.42	252.81	344.69

$$s(x) = 136e^{0.31 \times \frac{1}{5}(x-1965)} = 136e^{0.062(x-1965)}$$
 (3 $\%$)

