

Julia Klein, <u>Tatjana Petrov</u>, Alberto d'Onofrio *Presentation only* Accepted at ISoLA Conference 2024

Swarms (collectives)

molecular signaling

social insects

stampede

cellular differentiation

coordinated animal groups

traffic jam

groupthink

pandemics outbreak

→ How do swarms agree on decisions?

robotic swarms

Collective decision making

- Group needs to collectively decide between 2 or more options
- Individuals interact and convince (infect) peers
- → Consensus is ideally achieved with certain speed and accuracy

Exploring Consensus Robustness

→ What happens in presence of disruptive (asocial) individuals?

Example: Voter model

Voter Model

$$\longrightarrow X + Y \xrightarrow{q_y} Y + Y$$

$$Y + X \xrightarrow{q_x} X + X$$

Swarm state evolves as a continuous-time Markov chain

Voter model

Voter Model

$$\begin{array}{ccc} --> & X+Y \xrightarrow{q_y} Y+Y \\ & Y+X \xrightarrow{q_x} X+X \end{array}$$

Swarm state evolves as a continuous-time Markov chain

Voter model

Voter Model

$$X + Y \xrightarrow{q_y} Y + Y$$
 $\longrightarrow Y + X \xrightarrow{q_x} X + X$

Exploring Consensus Robustness

Swarm state evolves as a continuous-time Markov chain

Voter model

Voter Model

$$X + Y \xrightarrow{q_y} Y + Y$$
$$Y + X \xrightarrow{q_x} X + X$$

Exploring Consensus Robustness

Swarm state evolves as a continuous-time Markov chain

Stable consensus

Voter model with zealots

Voter Model

$$-> X + Y \xrightarrow{q_y} Y + Y$$
$$Y + X \xrightarrow{q_x} X + X$$

Voter model with zealots

Voter Model

$$X + Y \xrightarrow{q_y} Y + Y$$
$$Y + X \xrightarrow{q_x} X + X$$

Voter model with zealots

Voter Model

$$X + Y \xrightarrow{q_y} Y + Y$$
$$Y + X \xrightarrow{q_x} X + X$$

Exploring Consensus Robustness

Swarm state with stubborn individuals (zealots)

2% zealots → permanent indecision

Voter model with contrarians

Voter Model

$$X + Y \xrightarrow{q_y} Y + Y$$
$$Y + X \xrightarrow{q_x} X + X$$

Swarm state with hipster individuals (contrarians)

Voter model with contrarians

Voter Model

$$-> X + Y \xrightarrow{q_y} Y + Y$$
$$Y + X \xrightarrow{q_x} X + X$$

Swarm state with hipster individuals (contrarians)

Voter model with contrarians

Voter Model

$$\xrightarrow{q_y} Y + Y \xrightarrow{q_x} Y + Y$$
$$Y + X \xrightarrow{q_x} X + X$$

Exploring Consensus Robustness

Swarm state with hipster individuals (contrarians)

1% contrarians → permanent indecision

Voter Model

$$X + Y \xrightarrow{q_y} Y + Y$$
$$Y + X \xrightarrow{q_x} X + X$$

Cross-Inhibition Model

$$X + Y \xrightarrow{q_x} X + U$$

$$\longrightarrow X + Y \xrightarrow{q_y} Y + U$$

$$X + U \xrightarrow{q_x} 2X$$

$$Y + U \xrightarrow{q_y} 2Y$$

Swarm state

Voter Model

$$X + Y \xrightarrow{q_y} Y + Y$$
$$Y + X \xrightarrow{q_x} X + X$$

Cross-Inhibition Model

$$X + Y \xrightarrow{q_x} X + U$$

$$X + Y \xrightarrow{q_y} Y + U$$

$$X + U \xrightarrow{q_x} 2X$$

$$\longrightarrow Y + U \xrightarrow{q_y} 2Y$$

Swarm state

Voter Model

$$X + Y \xrightarrow{q_y} Y + Y$$
$$Y + X \xrightarrow{q_x} X + X$$

Cross-Inhibition Model

$$X + Y \xrightarrow{q_x} X + U$$

$$X + Y \xrightarrow{q_y} Y + U$$

$$X + U \xrightarrow{q_x} 2X$$

$$\longrightarrow Y + U \xrightarrow{q_y} 2Y$$

Swarm state

Voter Model

$$X + Y \xrightarrow{q_y} Y + Y$$
$$Y + X \xrightarrow{q_x} X + X$$

Cross-Inhibition Model

$$--> X + Y \xrightarrow{q_x} X + U$$

$$X + Y \xrightarrow{q_y} Y + U$$

$$X + U \xrightarrow{q_x} 2X$$

$$Y + U \xrightarrow{q_y} 2Y$$

Swarm state

Voter Model

$$X + Y \xrightarrow{q_y} Y + Y$$
$$Y + X \xrightarrow{q_x} X + X$$

Cross-Inhibition Model

$$X + Y \xrightarrow{q_x} X + U$$

$$\longrightarrow X + Y \xrightarrow{q_y} Y + U$$

$$X + U \xrightarrow{q_x} 2X$$

$$Y + U \xrightarrow{q_y} 2Y$$

Voter Model

$$\begin{array}{c} X+Y \xrightarrow{q_y} Y+Y \\ Y+X \xrightarrow{q_x} X+X \end{array}$$

Cross-Inhibition Model

$$X + Y \xrightarrow{q_x} X + U$$

$$\longrightarrow X + Y \xrightarrow{q_y} Y + U$$

$$X + U \xrightarrow{q_x} 2X$$

$$Y + U \xrightarrow{q_y} 2Y$$

Voter Model

$$\begin{array}{c} X+Y \xrightarrow{q_y} Y+Y \\ Y+X \xrightarrow{q_x} X+X \end{array}$$

Cross-Inhibition Model

$$X + Y \xrightarrow{q_x} X + U$$

$$\longrightarrow X + Y \xrightarrow{q_y} Y + U$$

$$X + U \xrightarrow{q_x} 2X$$

$$Y + U \xrightarrow{q_y} 2Y$$

Cross-Inhibition Model

Exploring Consensus Robustness

consensus

→ the swarm demonstrates resilience against relatively high levels of asocial behaviour

Reina, A., Zakir, R., De Masi, G., Ferrante, E.: Cross-inhibition leads to group consensus despite the presence of strongly opinionated minorities and asocial behaviour. Communications Physics 6(1), 236 (2023)

Inspiration

Voter Model

-1.08.0

0.75 3.3e-01 0.50 0.25 0.00 0.00 0.50 3.3e-02 3.3e-03 -0.753.3e-04

asocial behavior $z_x + z_y$

→ in presence of asocial individuals, the swarm gets quickly locked into an indecision state

0.8

1.0

Exploring Consensus Robustness

Cross-Inhibition Model

→ the swarm demonstrates resilience against relatively high levels of asocial behaviour

Reina, A., Zakir, R., De Masi, G., Ferrante, E.: Cross-inhibition leads to group consensus despite the presence of strongly opinionated minorities and asocial behaviour. Communications Physics 6(1), 236 (2023)

Research Questions

➤ How does the amount of disruptive individuals affect consensus reaching? → robustness analysis

Exploring Consensus Robustness

➤ How does the combination of zealots and contrarians affect consensus reaching? → combined effect

Approach

Statistical Model Checking of properties in Bounded Linear Temporal Logic (BLTL)

STEP 1: Formally describe stable consensus and switching consensus in BLTL

- Five parameters: majority m, distance d, reaching time t, holding time h, switching time s

$$F_{\leq t}(G_{\leq h}(((x + Z_x + C_x \geq min_m) \land ((x + Z_x + C_x) - (y + Z_y + C_y) \geq d)) \lor ((y + Z_y + C_y \geq min_m) \land ((y + Z_y + C_y) - (x + Z_x + C_x) \geq d)))))$$

$$F_{\leq t}((((x + Z_x + C_x) - (y + Z_y + C_y) \geq d) \land$$

$$(true \ U_{\leq s}((y+Z_y+C_y)-(x+Z_x+C_x)\geq d))) \lor (((y+Z_y+C_y)-(x+Z_x+C_x)\geq d) \land (true \ U_{\leq s}((x+Z_x+C_x)-(y+Z_y+C_y)\geq d))))$$

STEP 2: Apply model checking tools (PRISM and PlasmaLab) to explore the relevant scenarios:

Varying number of zealots and contrarians to explore robustness

Exploring Consensus Robustness

- Varying number of both to explore combined effect
- Varying total group size to explore group size effect

Robustness of reaching a stable consensus under perturbations of number of disruptive individuals

N = 100 robots, equivalent options X and Y, initially #X = #Y, #U = 0, #Zx = #Zy (#Cx = #Cy)

Exploring Consensus Robustness

Baseline: m=50, d=10, t=35, h=40

Robustness of switching consensus under perturbations of number of disruptive individuals

N = 100 robots, equivalent options X and Y, initially #X=#Y, #U=0, #Zx=#Zy (#Cx=#Cy)

Exploring Consensus Robustness

Baseline: d=10, t=35, s=10

Expected times to reach consensus

#	2	16	30	50	70	80	82	84	86	88	90
Zealots	5.95	7.28	9.02	10.57	12.04	27.82	39.94	64.95	128.85	374.04	2975.68
Contrarians	6.07	7.81	6.89	1.95	0.63	0.52	0.51	0.51	0.49	0.49	0.46

Expected times to hold consensus

#	12	14	16	24	26	28	30	34	50	70	90
Zealots	20686.51	16368.28	13047.85	210.98	47.71	14.13	5.46	1.61	0.48	0.34	0.22
Contrarians	283.57	22.53	4.03	0.37	0.31	0.27	0.25	0.21	0.16	0.15	0.14

Exploring Consensus Robustness

Expected times to reach consensus

#	2	16	30	50	70	80	82	84	86	88	90
Zealots	5.95	7.28	9.02	10.57	12.04	27.82	39.94	64.95	128.85	374.04	2975.68
Contrarians	6.07	7.81	6.89	1.95	0.63	0.52	0.51	0.51	0.49	0.49	0.46

Expected times to hold consensus

#	12	14	16	24	26	28	30	34	50	70	90
Zealots	20686.51	16368.28	13047.85	210.98	47.71	14.13	5.46	1.61	0.48	0.34	0.22
Contrarians	283.57	22.53	4.03	0.37	0.31	0.27	0.25	0.21	0.16	0.15	0.14

Exploring Consensus Robustness

→ Fully symmetric system... what pushes it to one decision or another?

Results: Group size effect

Consensus reaching (zealots)

Consensus switching (zealots)

robust to group size scaling!

... sensitive to group size scaling

Conclusion and outlook

- > A small increase of disruptive individuals can drastically affect consensus dynamics
- Our method with SMC allows to explore consensus beyond mean-field analysis or single simulation.

Stable consensus:

- Cross-inhibition model robust up to certain fraction of zealots/contrarians, then rapid phase transition
- Zealots are less harmful for reaching consensus than contrarians

Switching consensus:

- > Range of zealots for which such trajectories occur with non-negligible probability, but very rare for high number of zealots
- Contrarians promote switching dynamics

Future work

30

- Group size effect: characterisation of a class of stochastic systems for which consensus reaching is robust to scaling
- Asymmetric model what if only one decision is correct?
- Control theory: interventions over individuals for a global outcome (e.g. vaccination policy)

Exploring Consensus Robustness

Universität Konstanz

Julia Klein

Alberto d'Onofrio

Thank you!

Studied Model of Decision-Making

Voter Model

→ in presence of asocial individuals, the swarm gets quickly locked into an indecision state

Exploring Consensus Robustness

No zealots → quick, stable consensus

2% zealots → permanent indecision

Reina, A., Zakir, R., De Masi, G., Ferrante, E.: Cross-inhibition leads to group consensus despite the presence of strongly opinionated minorities and asocial behaviour. Communications Physics 6(1), 236 (2023)

Studied Model with Disruptive Individuals

Cross-Inhibition model with Zealots

- Zealots: stubborn individuals which never change their own opinion
- Four additional reactions, where 'pure' agents interact with zealots & adjust their own states

Cross-Inhibition model with Contrarians

- Contrarians: individuals which counter the opinion of the individual they interact with
- Eight additional reactions, where contrarians influence 'pure' individuals & are influenced by others with the same opinion