

SOFTWARE TESTING

USAMA MUSHARAF

LECTURER (Department of Computer Science)
FAST-NUCES PESHAWAR

CONTENT

Software Testing
Testing Principles
Types of Testing

- Black Box
 - Black Box Testing Techniques
- White Box

Introduction

Testing has been described as the process of executing a program with the intention of finding errors.

Testing = process of searching for software errors

Software Testing (Definition)

Software testing is a formal process carried out by a specialized testing team in which a software unit, several integrated software units or an entire software package are examined by running the programs on a computer. All the associated tests are performed according to approved test procedures on approved test cases.

Example

Α	b	Expected result
"cat"	"dog"	False
6637	6677	True
"hen"	"hen"	True
"hen"	"heN"	False
6637	6675	False
6637	"ball"	False
"cat"	6675	False
"HEN"	"hen"	False
"rat"	"door"	False
66 33	CC 33	True

Example

```
bool isStringsEqual(char a[], char b[]) {
     bool result;
     if (strlen(a) != strlen(b))
       result = false;
     else {
         for (int i = 0; i < strlen(a); i++)
               if (a[i] == b[i])
              { result = true; }
               else
               { result = false; }
   return result;
```

A Strategy for Testing Software

Testing Principles

1. All tests should be traceable to customer requirements

- The objective of software testing is to find defects. It follows that the most severe defects are those that cause systems to fail to meet their requirements
- 2. Tests should be planned long before testing begins.
 - Test planning can begin as soon as the requirements model is complete
- 3. The Pareto (80-20) principle applies to software testing
 - 80% of all defects found will likely be traced to 20% of modules. These error-prone modules should be isolated and tested thoroughly.

Testing Principles

- 4. The testing should begin "in the small" and progress toward testing "in the large".
 - The first tests planned and executed focus on individual components. As testing progresses, focus shifts to integrated clusters of components.
- 5. Exhaustive testing is not possible.
 - It is impossible to execute every combination of paths during testing. It is possible, however, to adequately cover program logic and to ensure that all conditions in the component-level design have been exercised.

Levels of Specifications

There are usually at least three levels of software specification documents in large systems:

- 1. Functional specifications (or requirements) give a precise description of the required behavior of the system what the software should do, not how it should do it may also describe constraints on how this can be achieved.
- **2. Design specifications** describe the architecture of the design to implement the functional specification the components of the software and how they are to relate to one another.
- 3. **Detailed design specifications** describe how each component of the architecture is to be implemented down to the individual code units.

TYPES OF SOFTWARE TESTING

Manual vs Automation

In manual testing (as the name suggests), test cases are executed manually (by a human, that is) without any support from tools or scripts.

But with automated testing, test cases are executed with the assistance of tools, scripts, and software.

Static vs Dynamic

Static Testing is a type of software testing in which software application is tested without code execution. Manual reviews of code, requirement documents and document design are done in order to find the errors.

The main objective of static testing is to improve the quality of software applications by finding errors in early stages of software development process.

Static Testing

To avoid the errors, we will execute Static testing in the initial stage of development because it is easier to identify the sources of errors, and it can fix easily.

We can do some of the following important activities while performing static testing:

- Business requirement review (functional requirement, Use case reviews)
- Design review (architecture + design) (non-functional requirements)
- The test documentation review

Static Testing

In static testing, reviews can be divided into four different parts, which are as follows:

Informal reviews

In informal review, the document designer place the contents in front of viewers, and everyone gives their view; therefore, bugs are acknowledged in the early stage.

Walkthrough

Generally, the walkthrough review is used to performed by a skilled person or expert to verify the bugs. Therefore, there might not be problem in the development or testing phase.

Static Testing

Peer review

In Peer review, we can check one another's documents to find and resolve the bugs, which is generally done in a team.

Inspection

In review, the inspection is essentially verifying the document by the higher authority, for example, the verification of SRS [software requirement specifications] document.

BLACK BOX TESTING

Black Box Testing

- A strategy in which testing is based on requirements and specifications.
- In this method, tester selects a function and gives input value to examine its functionality, and checks whether the function is giving expected output or not. If the function produces correct output, then it is passed in testing, otherwise failed.

- No knowledge of internal design or code required.
- Tests are data driven.

BLACK BOX TESTING TECHNIQUES

Black Box Testing Techniques

- Exhaustive testing
- Equivalence class testing (Equivalence Partitioning)
- Boundary value analysis
- Decision table testing
- State-Transition testing

1. Exhaustive testing

Definition: testing with every member of the input value space

Input value space: the set of all possible input values to the program

Consider an application in which a password field that accepts 3 characters, with no consecutive repeating entries. Hence, there are 26 * 26 * 26 input permutations for alphabets only. Including special characters and standard characters, there are much more combinations. So, there are 256 * 256 * 256 input combinations.

2. Equivalence Class Testing/ Portioning

Equivalence Class Testing is when you have a number of test items (e.g. values) that you want to test but because of cost (time/money) you do not have time to test them all.

Therefore you group the test item into class where all items in each class are suppose to behave exactly the same.

The theory is that you only need to test one of each item to make sure the system works.

3. Boundary Value Analysis

Maximum Defects occurs on Boundaries

1.Identify the **Equivalence Classes** and Identify the boundaries of each **Equivalence Class.**

2.Create test cases for each boundary value by choosing one point on the boundary, one point just below the boundary, and one point just above the boundary.

Why to go with Boundary Value Analysis?

Consider an example where a developer writes code for an amount text field which will accept and transfer values only from 100 to 5000.

The test engineer checks it by entering 99 into the amount text field and then clicks on the transfer button. It will show an error message as 99 is an invalid test case, because the boundary values are already set as 100 and 5000.

Since 99 is less than 100, the text field will not transfer the amount.

4. Decision Table Testing

An tool for capturing certain kinds of system requirements and documenting internal system design.

Record complex business rules that a system must implement.

Also can serve as a guide to creating test cases.

4. Decision Table Testing

Condition

- Condition describe the conditions or factors that will affect the decision or policy.
- They are listed in the upper section of the decision table.

Action

- Action describe, in the form of statements, the possible policy actions or decisions
- They are listed in the lower section of the decision table.

Rules

Rules describe which actions are to be taken under a specific combination of conditions.

4. Decision Table Testing

Most of us use an email account, and when you want to use an email account, for this you need to enter the email and its associated password.

 If both email and password are correctly matched, the user will be directed to the email account's homepage; otherwise, it will come back to the login page with an error message specified with "Incorrect Email" or "Incorrect Password."

Email (condition1)	Т	Т	F	F
Password (condition2)	T	F	Т	F
Expected Result (Action)	Account Page	Incorrect password	Incorrect email	Incorrect email

4. Decision Table

	Rule 1	Rule 2	Rule 3	Rule 4
Condition-1	Т	F	F	F
Condition-2	Т	Т	F	Т
Condition-3	Т	F	T	Т
Action-1		_	X	(s)
Action-2	X		X	
Action-3		Х		X

Decision Table Vs Test Case Table

A decision table converted to a test case.

Decision Table – Triangle Program

- A program with three input integers, a, b, and c
- If a triangle then integers a, b, and c must satisfy:

Decision Table – Triangle Program

	Rule 1	Rule 2	Rule 3	Rule 4	Rule 5	Rule 6	Rule 7	Rule 8	Rule 9
C1: a, b, c form a triangle?	N								
C2: a = b?	-								
C3: a = c?	-								
C4: b = c?	-								
A1: Not a triangle	X								
A2: Scalene									
A3: Isosceles									
A4: Equilateral									
A5: Impossible									

Decision Table – Triangle Program

	Rule 1	Rule 2	Rule 3	Rule 4	Rule 5	Rule 6	Rule 7	Rule 8	Rule 9
C1: a, b, c form a triangle?	N	Y	Y	Y	Y	Y	Y	Y	Y
C2: a = b?	-	Y	Y	Y	Y	N	N	N	N
C3: a = c?	-	Y	Y	N	N	Y	Y	N	N
C4: b = c?	-	Y	N	Y	N	Y	N	Y	N
A1: Not a triangle	Х								
A2: Scalene									X
A3: Isosceles					Х		Х	Х	
A4: Equilateral		Х							
A5: Impossible			Х	Х		Х			

Decision Table vs Test Case Table

	Rule	1	Rule 2	Rule 3	Rule 4	Rule 5	Rule 6	Rule 7	Rule 8	Rule 9
C1: a, b, c form a triangle?										
	-									
	-									
	_									
	X									
Test Cas	e ID	ID a b		С	Expected	Output				
DT1		4	1	2	Not a Tria	angle				
DT2							1			
DT3				+			1			
DT4							1			
DT5	5						1			
DT6							1			
DT7							1			
DT8							1			
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	Test Cas DT1 DT2 DT3 DT4 DT5 DT6 DT7	triangle? F	Test Case ID a DT1 4 DT2 DT3 DT4 DT5 DT6 DT7	Test Case ID a b DT1 4 1 DT2 DT3 DT4 DT5 DT6 DT7	Test Case ID a b c DT1 4 1 2 DT2 DT3 DT4 DT5 DT6 DT7	Test Case ID a b c Expected DT1 4 1 2 Not a Tria DT2 DT3 DT4 DT5 DT6 DT7	triangle? F - - - - X X DT1 4 1 2 Not a Triangle DT2 DT3 DT4 DT5 DT6 DT7	triangle? F - - - X Test Case ID a b c Expected Output DT1 4 1 2 Not a Triangle DT2 DT3 DT4 DT5 DT6 DT7 DT6 DT7	Test Case ID a b c Expected Output DT1 4 1 2 Not a Triangle DT2 DT3 DT4 DT5 DT6 DT7	Test Case ID a b c Expected Output DT1 4 1 2 Not a Triangle DT2 DT3 DT4 DT5 DT6 DT7

Decision Table vs Test Case Table

		Rule	1	Rule 2	Rule 3	Rule 4	Rule 5	Rule 6	Rule 7	Rule 8	Rule 9		
C1: a, b, c form a triangle?		F		T	Т	Т							
C2: a = b?		_		F	Т	т							
C3: a = c?		_		-	F	Т							
C4: b = c?		_		_	_	Т							
A1: Not a triangle	gle X			X	X								
A2: Scalene													
A3: Isosceles													
A4: Equilateral						X							
A5: Impossible	Test Cas	e ID	а	b	С	Expected	Output						
	DT1		4	1	2	Not a Tria	Not a Triangle						
	DT2		1	1	1	1 4	2	Not a Tria	ingle	1			
	DT3		1 2		4	Not a Triangle		1					
	DT4		5	5	5	Equilateral		1					
	DT5]					
	DT6]					
	DT7												

Applicability

Decision table testing can be used whenever the system must implement complex business rules when these rules can be represented as a combination of conditions and when these conditions have discrete actions associated with them.

5. State Transition Testing

State Transition Testing is a black box testing technique in which changes made in input conditions cause state changes or output changes in the Application under Test.

State transition testing helps to analyze behavior of an application for different input conditions.

Testers can provide positive and negative input test values and record the system behavior.

Models each state a system can exist in

- Models each state transition
- States
 - Start State
 - Input
 - Output
 - Finish State

State -

Represented by a circle or oval shape.

- A state is a condition in which a system is waiting for one or more events.
- States "remember" inputs the system has received in the past and define how the system should respond to subsequent events when they occur.
- These events may cause state-transitions and/or initiate actions.

Transition

- Represented by an arrow
- A transition represents a change from one state to another caused by an event

Entry Point

 The entry point on the diagram is shown by a black dot

Exit Point

The exit point is shown by a bulls-eye symbol

Action

An action is an operation initiated because of a state change.

Often these actions cause something to be created that are outputs of the system.

Actions occur on transitions between states

TYPES OF BLACK BOX TESTING

Types of black box testing

- 1. Functional testing
- 2. System testing
- 3. End-to-end testing
- 4. Sanity testing
- 5. Regression testing
- 6. Acceptance testing
- 7. Load testing
- 8. Stress testing
- 9. Install/uninstall testing
- 10. Recovery testing
- 11. Compatibility testing
- 12. Comparison testing
- 13. Alpha testing
- 14. Beta testing
- 15. Mutation testing

Functional testing

Black box type testing geared to functional requirements of an application.

System testing

Black box type testing that is based on overall requirements specifications; covering all combined parts of the system.

End-to-end testing

Similar to system testing; involves testing of a complete application environment in a situation that mimics real-world use.

Sanity testing

Initial effort to determine if a new software version is performing well enough to accept it for a major testing effort.

Regression testing

Re-testing after fixes or modifications of the software or its environment.

Acceptance testing

Final testing based on specifications of the end-user or customer.

Load testing

- Testing an application under heavy loads.
- Eg. Testing of a web site under a range of loads to determine, when the system response time degraded or fails.

Stress Testing

- Testing under unusually heavy loads, heavy repetition of certain actions or inputs, input of large numerical values, large complex queries to a database etc.
- Term often used interchangeably with 'load' and 'performance' testing.

Performance testing

Testing how well an application complies to performance requirements

Install/uninstall testing

Testing of full, partial or upgrade install/uninstall process.

Recovery testing

Testing how well a system recovers from crashes, HW failures or other problems.

Compatibility testing

Testing how well software performs in a particular HW/SW/OS/NW environment.

Comparison testing

Comparing SW strengths and weakness to competing products.

Alpha testing

Testing done when development is nearing completion; minor design changes may still be made as a result of such testing.

Beta-testing

Testing when development and testing are essentially completed and final bugs and problems need to be found before release.

Mutation testing

- To determining if a set of test data or test cases is useful, by deliberately introducing various bugs.
- Re-testing with the original test data/cases to determine if the bugs are detected.

WHITE BOX TESTING

White box testing / Structural testing

Based on knowledge of internal logic of an application's code

Based on coverage of code statements, branches, paths, conditions.

Tests are logic driven.

Control Flow Testing

Based on the flow of control in the program.

- Logical decisions
- Loops
- Execution paths

Coverage metrics

Measure of how complete the test cases are.

Control Flow Graph

Given a program written in an imperative programming language, its program graph is a directed graph in which nodes are statement fragments, and edges represent flow of control.

Directed Graph

Control Flow Graph

Steps to Draw Control Flow Graph

- 1. Number all the statements of a program.
- 2. Numbered statements: represent nodes of the control flow graph.
- 3. An edge from one node to another node exists: if execution of the statement representing the first node can result in transfer of control to the other node.

Program flow graph Basic Control Flow Graph

```
class IfStatement {
public static void main(String[] args) {
  int number = 10;
    if (number > 0) {
       System.out.println("The number is positive.");
    else {
       System.out.println("The number is negative.");
      System.out.println("Statement outside if block");
```

Coverage:

Statement Coverage:

In this scheme, statements of the code are tested for a successful test that checks all the statements lying on the path of a successful scenario.

Branch Coverage:

In this scheme, all the possible branches of decision structures are tested. Therefore, sequences of statements following a decision are tested.

Path Coverage:

In path coverage, all possible paths of a program from input instruction to the output instruction are tested. An exhaustive list of test cases is generated and tested against the code.

Statement Coverage

Execute each statement at least once

```
Begin
if ( y >= 0)
then y = 0; abs = y;
end;
```

100% statement coverage!

```
test case-1(yes):
input: y = ?
expected result: ?
actual result: ?
```

```
begin

y >= 0

yes

no

y = 0
```

```
test case-1(yes):
input: y = 0
expected result: 0
actual result: 0
```

Decision/Branch Coverage

Every statement in the program has been executed at least once, and every decision in the program has taken all possible outcomes at least once.

- Execute each edge in the CFG at least once
- Begin
- •if (y >= 0)
- •then y = 0;
- •abs = y;
- •end;

```
test case-1(yes):
input: y = 0
expected result: 0
actual result: 0
```



```
test
case-2(no): -5
input: y = 5
expected result: -5
actual result:
```

Decision/Condition Coverage

Each condition in each decision must be both true and false

```
Begin
•if (x < 10 \&\& y > 20) {
\bullet z = foo(x, y);
•else
•z =fie (x, y);
•}
            test case-1(T,F):
•end;
            • input: x = -4; y = 12
            expected result: ?
            •actual result: ?
```


test case-2(F,T): input: x = 12; y =30 expected result: ? actual result: ?

Path coverage

- A path is a sequence of branches, or conditions.
- A path corresponds to a test case, or a set of inputs.
- In code coverage testing, branches have more importance than the blocks they connect.
- Bugs are often sensitive to branches and conditions

McCabe's Complexity Metric

Cyclomatic Complexity is a software metric that provides a Quantitative measure of the logical complexity of a program.

McCabe's Complexity Metric

The cyclomatic complexity of the program is computed from its control flow graph (CFG) using the formula:

$$V(G) = Edges - Nodes + 2$$

or by counting the conditional statements and adding 1

This measure determines the basis set of linearly independent paths and tries to measure the complexity of a program.

Cyclomatic Complexity

$$V(G) = Edges - Nodes + 2$$

$$V(G) = 6 - 6 + 2 = 2$$

$$V(G) = conditional statements + 1$$

$$= 1 + 1 = 2$$

Two linearly independent paths:

$$V(G) = Edges - Nodes + 2$$

$$V(G) = 16 - 14 + 2 = 4$$

$$= 3 + 1 = 4$$

four linear independent paths

Cyclomatic Complexity

V(G)	Risk	
1 – 10	easy program, low risk	
11 – 20	complex program, tolerable risk	
21 – 50	complex program, high risk	
>50	impossible to test, extremely high risk	

Applicability and limitation

Control flow testing is the basis of unit testing.

It should be used for all modules of code that cannot be tested sufficiently through reviews and inspections.

Its limitation are that the tester must have sufficient programming skill to understand the code and its control flow

Control flow testing can be very time consuming.

Test Document

Test Document

Testing documentation involves the documentation of artifacts which should be developed before or during the testing.

Documentation for Software testing helps in estimating the testing effort required, test coverage, requirement tracking/tracing etc.

This section includes the description of some commonly used documented artifacts related to Software testing such as:

- Test Plan
- Test Scenario
- Test Case
- Traceability Matrix

Requirement Traceability

Requirements						
\rightarrow	R1	R2	R3	R4	R5	R6
Test Cases ↓						
TC-001		×				
TC-002	×					
TC-003						
TC-004				×		
TC-005		×				×
TC-006					×	
TC-007						×
TC-008				×	×	

Test Case Template

Functio	nality					
Test Ca	se ID					
Team						
Date						
Descrip	tion					
Serial No	Requirement ID	Test Step Description	Input Values	Expected Results	Actual Results	Status(P/F)

Test Requirements

- 1. Functional Requirements
- 2. Non -Functional Requirements
 - ✓ Performance
 - ✓ Scalability
 - ✓ Reliability

Scenarios for NFRs

Scenarios are a technique developed at the SEI to find out issues concerning an architecture through manual evaluation and testing.

Scenarios are related to architectural concerns such as quality attributes, and they aim to highlight the consequences of the architectural decisions that are encapsulated in the design.

Scenario Types

- Use case scenarios reflect the normal state or operation of the system.
- **Growth scenarios** are anticipated changes to the system (e.g., double the message traffic, change message format.
- **Exploratory scenarios** are extreme changes to the system. These changes are not necessarily anticipated or even desirable situations (e.g., message traffic grows 100 times, replace the operating system).

Utility Tree Example

Utility Tree Example

Quality	Stimulus	Response
Attribute		70
Modifiability	The Customer System	The Validate component must
	packaged application is	be rewritten to interface to the
	updated to an Oracle data-	Oracle system.
	base.	
Availability	The email server fails.	Messages build up in the Or-
		derQ until the email server re-
		starts. Messages are then sent by
		the SendEmail component to
		remove the backlog. Order
		processing is not affected.
Reliability	The Customer or Order	If either fails, order processing
•	systems are unavailable.	halts and alerts are sent to sys-
		tem administrators so that the
		problem can be fixed.

HAVE A GOOD DAY!