Simulation Result 1: $C\sim Exp(0.2)$

Success rate, include non-converged results

Yi

2023-02-22

Table 1: Summary of the estimated SAUC for Biomarker 1 when the true censoring is distributed as Exp(0.2).

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	74.97 (73.45, 76.48) 76.30 (74.33, 78.03) 75.53 (73.34, 77.73) 76.29 (73.91, 78.60) 75.73 (73.47, 77.88)	99.4 99.4 99.4 99.4 99.4	74.78 (73.43, 75.97) 76.51 (74.57, 78.51) 74.66 (72.30, 77.25) 76.27 (73.63, 78.58) 75.23 (73.02, 77.68)	99.2 99.2 99.2 99.2 99.2	74.68 (73.69, 75.66) 77.03 (75.15, 79.14) 73.74 (71.08, 76.28) 75.96 (73.02, 78.95) 74.70 (72.10, 77.02)	98.2 98.2 98.2 98.2 98.2
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	74.79 (73.58, 75.95) 75.89 (74.27, 77.41) 75.27 (73.61, 77.12) 75.66 (74.00, 77.81) 75.38 (73.72, 77.27)	99.7 99.7 99.7 99.7 99.7	74.59 (73.54, 75.58) 76.22 (74.54, 77.85) 74.39 (72.43, 76.43) 75.27 (73.10, 77.53) 74.80 (72.84, 76.69)	99.6 99.6 99.6 99.6 99.6	74.52 (73.76, 75.32) 77.01 (75.42, 78.57) 73.74 (71.64, 76.14) 75.27 (72.85, 77.47) 74.48 (72.28, 76.40)	99.1 99.1 99.1 99.1 99.1
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	74.68 (73.78, 75.58) 75.76 (74.67, 76.93) 75.15 (73.59, 76.57) 75.32 (73.84, 76.85) 75.19 (73.68, 76.58)	100.0 100.0 100.0 100.0 100.0	74.60 (73.73, 75.38) 76.27 (75.06, 77.32) 74.48 (73.00, 75.91) 74.90 (73.30, 76.59) 74.63 (73.16, 76.16)	100.0 100.0 100.0 100.0 100.0	74.52 (73.85, 75.12) 76.79 (75.60, 78.07) 73.78 (71.90, 75.78) 74.45 (72.60, 76.53) 74.21 (72.42, 76.02)	99.9 99.9 99.9 99.9
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	74.54 (73.87, 75.17) 75.53 (74.75, 76.31) 74.83 (73.81, 76.07) 74.96 (73.89, 76.18) 74.88 (73.85, 76.11)	100.0 100.0 100.0 100.0 100.0	74.53 (73.96, 75.05) 76.13 (75.32, 76.94) 74.56 (73.37, 76.02) 74.79 (73.61, 76.24) 74.63 (73.50, 76.13)	100.0 100.0 100.0 100.0 100.0	74.42 (73.93, 74.82) 76.80 (75.93, 77.54) 74.05 (72.62, 75.44) 74.33 (72.99, 75.66) 74.20 (72.92, 75.48)	100.0 100.0 100.0 100.0 100.0
50-300	20	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	75.87 (74.66, 77.07) 76.73 (75.22, 78.36) 75.92 (73.60, 77.91) 76.98 (74.93, 78.66) 76.52 (74.68, 78.10)	99.4 99.4 99.4 99.4	75.73 (74.79, 76.82) 77.29 (75.65, 78.87) 75.45 (72.87, 77.78) 76.96 (74.88, 78.91) 76.35 (74.51, 77.90)	99.6 99.6 99.6 99.6 99.6	75.73 (74.99, 76.53) 77.90 (76.18, 79.45) 73.96 (69.71, 76.45) 76.57 (74.66, 79.21) 75.82 (73.93, 77.37)	98.9 98.9 98.9 98.9 98.9
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	75.85 (74.85, 76.88) 76.77 (75.43, 77.98) 75.96 (74.29, 77.55) 76.66 (75.17, 78.11) 76.47 (75.03, 77.75)	100.0 100.0 100.0 100.0 100.0	75.68 (74.84, 76.53) 77.02 (75.77, 78.34) 75.55 (73.65, 77.53) 76.45 (74.87, 78.35) 76.02 (74.59, 77.53)	99.6 99.6 99.6 99.6 99.6	75.69 (75.03, 76.33) 77.79 (76.19, 79.14) 74.51 (71.58, 76.61) 76.24 (74.59, 78.21) 75.79 (74.15, 77.29)	99.7 99.7 99.7 99.7 99.7
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \end{array}$ Prop_n Prop_o Prop_p	75.76 (74.96, 76.51) 76.51 (75.48, 77.45) 75.88 (74.75, 77.25) 76.25 (75.15, 77.54) 76.12 (75.04, 77.33)	100.0 100.0 100.0 100.0 100.0	75.61 (75.04, 76.22) 76.75 (75.81, 77.69) 75.51 (74.30, 76.84) 75.96 (74.92, 77.23) 75.79 (74.79, 76.96)	100.0 100.0 100.0 100.0 100.0	75.59 (75.08, 76.07) 77.40 (76.36, 78.48) 74.83 (73.01, 76.32) 75.85 (74.57, 77.21) 75.57 (74.42, 76.76)	100.0 100.0 100.0 100.0 100.0
	100	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop}_n \ & \operatorname{Prop}_o \ & \operatorname{Prop}_p \end{aligned}$	75.60 (75.04, 76.11) 76.32 (75.58, 76.95) 75.90 (75.12, 76.74) 76.01 (75.20, 76.82) 75.97 (75.15, 76.78)	100.0 100.0 100.0 100.0 100.0	75.53 (75.10, 75.98) 76.56 (75.92, 77.29) 75.60 (74.79, 76.49) 75.82 (75.04, 76.65) 75.74 (74.96, 76.59)	100.0 100.0 100.0 100.0 100.0	75.49 (75.15, 75.81) 77.10 (76.37, 77.76) 75.03 (74.02, 75.99) 75.44 (74.65, 76.40) 75.35 (74.54, 76.27)	100.0 100.0 100.0 100.0 100.0

Median with 25th and 75th empirical quartiles (Q1, Q3) of the SAUC at t=2 are reported. N denotes the number of the published studies. Prop denotes the proposed sensitivity analysis method; HZ_P denotes the HZ model using the population (published and unpublished) studies; HZ_O denotes the HZ model using only the observed (published) studies. CR denotes the proportion of successfully convergenced estimates among 1000 repetition. All the entries are multiplied by 100.

Table 2: Summary of the estimated SAUC for Biomarker 2 when the true censoring is distributed as Exp(0.2).

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	57.63 (56.65, 58.68) 59.42 (58.40, 60.65) 58.89 (57.56, 60.17) 59.12 (57.82, 60.40) 58.74 (57.45, 59.85)	98.7 98.7 98.7 98.7 98.7	57.74 (56.91, 58.64) 60.69 (59.44, 61.90) 59.51 (57.62, 61.13) 60.34 (58.50, 61.74) 59.17 (57.54, 60.66)	98.9 98.9 98.9 98.9 98.9	57.68 (57.07, 58.42) 61.96 (60.72, 63.20) 60.07 (57.02, 62.10) 61.49 (59.17, 62.99) 59.64 (57.22, 61.72)	97.8 97.8 97.8 97.8
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	57.79 (56.95, 58.56) 59.64 (58.67, 60.63) 59.13 (57.76, 60.19) 59.29 (58.03, 60.41) 58.79 (57.67, 59.81)	99.6 99.6 99.6 99.6 99.6	57.77 (57.03, 58.42) 60.64 (59.74, 61.60) 59.62 (57.61, 61.07) 60.28 (58.64, 61.39) 59.29 (57.69, 60.63)	99.7 99.7 99.7 99.7 99.7	57.77 (57.23, 58.27) 61.89 (60.92, 62.90) 60.39 (56.93, 62.04) 61.67 (60.12, 62.79) 60.20 (57.32, 61.83)	97.6 97.6 97.6 97.6 97.6
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \end{array}$ Prop_n Prop_o Prop_p	57.74 (57.09, 58.33) 59.59 (58.88, 60.38) 59.14 (58.21, 60.02) 59.27 (58.21, 60.14) 58.79 (57.76, 59.65)	99.9 99.9 99.9 99.9	57.73 (57.16, 58.24) 60.67 (59.98, 61.41) 59.71 (57.55, 60.92) 60.48 (59.44, 61.24) 59.48 (57.61, 60.63)	99.6 99.6 99.6 99.6 99.6	57.73 (57.32, 58.15) 62.00 (61.22, 62.73) 60.86 (56.98, 62.14) 61.84 (60.66, 62.64) 60.56 (57.09, 61.98)	95.8 95.8 95.8 95.8 95.8
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \end{array}$ Prop_o Prop_p	57.71 (57.31, 58.19) 59.63 (59.13, 60.14) 59.45 (58.71, 60.03) 59.44 (58.51, 60.05) 58.99 (57.97, 59.72)	100.0 100.0 100.0 100.0 100.0	57.72 (57.36, 58.10) 60.68 (60.14, 61.21) 59.59 (57.27, 60.72) 60.56 (59.81, 61.14) 59.69 (57.54, 60.69)	99.6 99.6 99.6 99.6 99.6	57.74 (57.44, 58.02) 62.00 (61.44, 62.53) 61.21 (57.19, 62.11) 61.95 (61.30, 62.50) 61.43 (57.61, 62.17)	95.9 95.9 95.9 95.9 95.9
50-300	20	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	57.91 (57.09, 58.64) 59.27 (58.30, 60.07) 58.47 (57.41, 59.46) 58.92 (57.82, 59.91) 58.38 (57.46, 59.23)	97.8 97.8 97.8 97.8	57.90 (57.31, 58.54) 60.07 (59.24, 60.89) 58.91 (57.46, 60.09) 59.66 (58.02, 60.76) 58.35 (57.17, 59.43)	97.8 97.8 97.8 97.8 97.8	57.93 (57.50, 58.38) 61.06 (60.11, 61.99) 59.51 (57.18, 61.26) 60.78 (58.70, 61.94) 57.90 (56.53, 59.14)	94.2 94.2 94.2 94.2 94.2
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	57.95 (57.24, 58.59) 59.34 (58.57, 60.05) 58.42 (57.61, 59.26) 58.82 (57.73, 59.89) 58.32 (57.47, 59.11)	97.4 97.4 97.4 97.4 97.4	57.87 (57.37, 58.37) 60.08 (59.44, 60.82) 58.71 (57.41, 60.03) 59.38 (57.65, 60.60) 58.09 (57.19, 59.03)	97.5 97.5 97.5 97.5 97.5	57.92 (57.52, 58.33) 61.07 (60.30, 61.81) 59.90 (57.25, 61.33) 60.78 (58.83, 61.78) 57.60 (56.63, 58.77)	95.1 95.1 95.1 95.1 95.1
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \end{array}$ Prop_o Prop_p	57.95 (57.47, 58.40) 59.35 (58.82, 59.91) 58.31 (57.62, 59.03) 58.62 (57.72, 59.49) 58.22 (57.61, 58.89)	99.0 99.0 99.0 99.0 99.0	57.95 (57.50, 58.35) 60.11 (59.55, 60.68) 58.50 (57.47, 59.76) 59.22 (57.64, 60.38) 57.98 (57.18, 58.74)	98.3 98.3 98.3 98.3 98.3	57.93 (57.60, 58.23) 61.10 (60.50, 61.64) 60.14 (57.51, 61.22) 60.94 (59.34, 61.58) 57.45 (56.64, 58.30)	95.5 95.5 95.5 95.5 95.5
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	57.89 (57.56, 58.21) 59.27 (58.92, 59.64) 58.02 (57.53, 58.50) 58.17 (57.61, 58.89) 58.00 (57.52, 58.45)	99.1 99.1 99.1 99.1 99.1	57.91 (57.61, 58.18) 60.12 (59.71, 60.53) 58.03 (57.29, 59.57) 58.56 (57.48, 60.04) 57.74 (57.17, 58.29)	99.6 99.6 99.6 99.6 99.6	57.93 (57.68, 58.15) 61.04 (60.66, 61.49) 60.49 (57.42, 61.18) 60.94 (60.03, 61.45) 57.31 (56.69, 57.91)	94.1 94.1 94.1 94.1 94.1

Median with 25th and 75th empirical quartiles (Q1, Q3) of the SAUC at t=2 are reported. N denotes the number of the published studies. Prop denotes the proposed sensitivity analysis method; HZ_P denotes the HZ model using the population (published and unpublished) studies; HZ_O denotes the HZ model using only the observed (published) studies. CR denotes the proportion of successfully convergenced estimates among 1000 repetition. All the entries are multiplied by 100.

Table 3: Summary of the estimated SAUC for Biomarker when the true censoring is distributed as U(1,4), but a misspecified exponential distribution is fitted.

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	75.07 (73.54, 76.47) 76.29 (74.13, 78.10) 76.43 (74.01, 78.84) 77.15 (74.91, 79.43) 76.47 (74.27, 78.62)	99.9 99.9 99.9 99.9 99.9	74.95 (73.75, 76.05) 76.81 (74.77, 78.67) 75.37 (72.79, 77.89) 77.37 (74.61, 79.83) 75.88 (73.57, 77.99)	100 100 100 100 100	75.01 (74.04, 75.88) 77.66 (75.62, 79.53) 73.79 (71.39, 76.53) 77.27 (73.85, 80.34) 75.18 (72.99, 77.49)	100.0 100.0 100.0 100.0 100.0
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	75.05 (73.89, 76.20) 76.24 (74.85, 77.58) 76.19 (74.35, 78.33) 76.90 (74.82, 79.14) 76.27 (74.64, 78.23)	100.0 100.0 100.0 100.0 100.0	74.92 (73.98, 75.91) 76.76 (75.36, 78.17) 75.32 (73.20, 77.59) 76.73 (74.40, 79.05) 75.76 (73.92, 77.63)	100 100 100 100 100	74.88 (74.06, 75.66) 77.27 (75.80, 78.85) 73.61 (71.47, 75.97) 76.41 (73.55, 79.17) 74.85 (72.72, 76.92)	100.0 100.0 100.0 100.0 100.0
	50	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	74.94 (73.92, 75.78) 75.95 (74.84, 77.03) 75.86 (74.36, 77.53) 76.23 (74.65, 78.08) 75.94 (74.50, 77.38)	100.0 100.0 100.0 100.0 100.0	74.81 (74.04, 75.59) 76.31 (75.05, 77.39) 74.92 (73.09, 76.49) 75.76 (73.70, 77.91) 75.09 (73.51, 76.59)	100 100 100 100 100	74.80 (74.21, 75.36) 76.98 (75.87, 78.08) 73.40 (71.84, 75.31) 75.09 (73.05, 77.74) 74.43 (72.73, 76.17)	100.0 100.0 100.0 100.0 100.0
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	74.81 (74.14, 75.41) 75.81 (74.98, 76.59) 75.55 (74.46, 76.75) 75.68 (74.51, 77.01) 75.54 (74.48, 76.72)	100.0 100.0 100.0 100.0 100.0	74.77 (74.27, 75.28) 76.32 (75.54, 77.10) 74.86 (73.64, 76.24) 75.24 (74.01, 76.66) 74.98 (73.85, 76.25)	100 100 100 100 100	74.76 (74.30, 75.19) 77.03 (76.18, 77.76) 73.62 (72.32, 74.97) 74.72 (73.23, 76.53) 74.34 (73.01, 75.60)	100.0 100.0 100.0 100.0 100.0
50-300	20	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	76.22 (75.28, 77.32) 77.13 (75.76, 78.71) 77.23 (74.27, 80.09) 78.04 (75.16, 80.72) 77.43 (75.14, 79.55)	99.9 99.9 99.9 99.9 99.9	76.13 (75.17, 77.04) 77.74 (76.27, 79.15) 76.84 (73.69, 79.38) 78.19 (75.32, 81.35) 76.91 (74.83, 78.65)	100 100 100 100 100	75.97 (75.20, 76.64) 78.24 (76.68, 79.81) 75.25 (71.38, 77.56) 78.01 (74.75, 81.51) 76.05 (74.26, 77.71)	99.9 99.9 99.9 99.9
	30	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	76.08 (75.08, 76.99) 76.99 (75.62, 78.19) 76.70 (74.55, 79.18) 77.29 (75.08, 79.86) 76.96 (75.11, 78.73)	100.0 100.0 100.0 100.0 100.0	75.98 (75.14, 76.71) 77.50 (76.27, 78.79) 76.56 (73.80, 78.95) 77.38 (74.93, 80.52) 76.55 (74.86, 78.17)	100 100 100 100 100	75.82 (75.30, 76.36) 78.15 (76.64, 79.48) 75.33 (72.40, 77.26) 77.18 (74.52, 80.73) 76.04 (74.49, 77.57)	100.0 100.0 100.0 100.0 100.0
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \end{array}$ Prop_n Prop_o Prop_p	75.97 (75.23, 76.61) 76.72 (75.82, 77.63) 76.51 (74.95, 78.27) 76.74 (75.36, 78.82) 76.63 (75.38, 78.08)	100.0 100.0 100.0 100.0 100.0	75.93 (75.36, 76.50) 77.31 (76.24, 78.24) 76.14 (74.18, 77.92) 76.73 (75.00, 78.84) 76.44 (75.08, 77.62)	100 100 100 100 100	75.82 (75.34, 76.26) 77.80 (76.50, 79.06) 75.03 (72.96, 76.79) 76.16 (74.46, 78.70) 75.64 (74.52, 76.95)	100.0 100.0 100.0 100.0 100.0
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	75.86 (75.31, 76.34) 76.51 (75.79, 77.16) 76.21 (75.25, 77.34) 76.33 (75.39, 77.43) 76.32 (75.47, 77.20)	100.0 100.0 100.0 100.0 100.0	75.80 (75.37, 76.19) 76.84 (76.15, 77.60) 75.66 (74.52, 76.81) 76.15 (75.17, 77.16) 76.01 (75.11, 76.89)	100 100 100 100 100	75.75 (75.40, 76.05) 77.37 (76.62, 78.16) 74.65 (73.27, 75.74) 75.37 (74.40, 76.49) 75.30 (74.47, 76.16)	100.0 100.0 100.0 100.0 100.0

Median with 25th and 75th empirical quartiles (Q1, Q3) of the SAUC at t=2 are reported. N denotes the number of the published studies. Prop denotes the proposed sensitivity analysis method; HZ_P denotes the HZ model using the population (published and unpublished) studies; HZ_O denotes the HZ model using only the observed (published) studies. CR denotes the proportion of successfully convergenced estimates among 1000 repetition. All the entries are multiplied by 100.

Table 4: Summary of the estimated SAUC for Biomarker when the true censoring is distributed as U(1,4), but a misspecified exponential distribution is fitted.

			p = 0.7		p = 0.5		p = 0.3	
Patients	N	Method	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR	Median (Q1, Q3)	CR
50-150	20	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	57.78 (56.84, 58.68) 59.82 (58.64, 60.88) 58.80 (57.30, 60.27) 59.72 (58.21, 60.94) 58.71 (57.60, 59.84)	99.3 99.3 99.3 99.3 99.3	57.80 (56.96, 58.65) 61.09 (59.90, 62.16) 59.43 (57.16, 61.33) 60.78 (59.17, 62.13) 58.83 (57.39, 60.22)	99.6 99.6 99.6 99.6 99.6	57.79 (57.16, 58.39) 62.47 (61.29, 63.67) 60.24 (56.70, 62.73) 62.19 (60.38, 63.62) 58.44 (56.70, 60.35)	99.2 99.2 99.2 99.2 99.2
	30	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	57.72 (56.99, 58.42) 59.79 (58.96, 60.71) 58.80 (57.54, 60.01) 59.60 (58.42, 60.57) 58.58 (57.60, 59.57)	99.3 99.3 99.3 99.3 99.3	57.79 (57.13, 58.40) 61.08 (60.17, 61.93) 59.27 (57.10, 61.18) 60.66 (59.07, 61.74) 58.61 (57.28, 59.96)	99.7 99.7 99.7 99.7 99.7	57.82 (57.29, 58.32) 62.52 (61.65, 63.44) 61.19 (56.81, 62.87) 62.18 (60.11, 63.25) 58.04 (56.56, 60.13)	98.9 98.9 98.9 98.9
	50	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	57.90 (57.27, 58.43) 59.97 (59.30, 60.62) 58.85 (57.69, 60.10) 59.61 (58.39, 60.48) 58.51 (57.77, 59.39)	99.9 99.9 99.9 99.9	57.84 (57.34, 58.29) 61.10 (60.49, 61.76) 59.08 (57.26, 61.16) 60.64 (58.53, 61.55) 58.32 (57.39, 59.55)	99.6 99.6 99.6 99.6 99.6	57.79 (57.37, 58.16) 62.43 (61.72, 63.12) 61.67 (57.00, 62.82) 62.13 (59.47, 63.01) 57.70 (56.48, 59.24)	98.4 98.4 98.4 98.4 98.4
	100	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	57.82 (57.37, 58.21) 59.85 (59.38, 60.32) 58.67 (57.57, 59.89) 59.53 (58.60, 60.14) 58.36 (57.69, 59.07)	99.8 99.8 99.8 99.8 99.8	57.80 (57.47, 58.17) 61.12 (60.64, 61.59) 58.92 (57.23, 61.14) 60.55 (58.17, 61.33) 57.91 (57.24, 58.84)	99.6 99.6 99.6 99.6 99.6	57.81 (57.54, 58.08) 62.45 (61.98, 62.94) 62.19 (57.18, 62.83) 61.96 (57.73, 62.72) 57.26 (56.42, 58.31)	99.6 99.6 99.6 99.6 99.6
50-300	20	HZ_P HZ_O $Prop_n$ $Prop_o$ $Prop_p$	58.01 (57.28, 58.74) 59.52 (58.68, 60.39) 58.59 (57.52, 59.78) 59.47 (58.31, 60.47) 58.40 (57.45, 59.34)	98.1 98.1 98.1 98.1 98.1	57.90 (57.33, 58.50) 60.33 (59.49, 61.11) 58.56 (57.36, 59.97) 60.12 (58.74, 61.12) 58.03 (57.16, 58.98)	98.1 98.1 98.1 98.1 98.1	58.00 (57.50, 58.45) 61.40 (60.52, 62.26) 59.60 (57.22, 61.51) 61.34 (60.08, 62.37) 57.73 (56.65, 58.71)	96.7 96.7 96.7 96.7 96.7
	30	$\begin{array}{c} \operatorname{HZ}_P \\ \operatorname{HZ}_O \\ \operatorname{Prop}_n \\ \operatorname{Prop}_o \\ \operatorname{Prop}_p \end{array}$	57.97 (57.37, 58.56) 59.50 (58.84, 60.14) 58.36 (57.49, 59.34) 59.19 (58.07, 60.01) 58.23 (57.47, 58.98)	98.2 98.2 98.2 98.2 98.2	57.96 (57.43, 58.41) 60.41 (59.66, 61.00) 58.35 (57.33, 59.76) 60.16 (58.58, 61.01) 58.04 (57.23, 58.74)	97.3 97.3 97.3 97.3 97.3	57.91 (57.58, 58.30) 61.33 (60.65, 61.98) 60.02 (57.21, 61.48) 61.23 (60.09, 61.94) 57.56 (56.65, 58.38)	98.9 98.9 98.9 98.9 98.9
	50	$ HZ_P $ $ HZ_O $ $ Prop_n $ $ Prop_o $ $ Prop_p $	57.94 (57.50, 58.43) 59.47 (58.97, 59.99) 58.23 (57.54, 58.99) 58.94 (58.00, 59.77) 58.15 (57.58, 58.79)	98.1 98.1 98.1 98.1 98.1	57.93 (57.51, 58.30) 60.35 (59.83, 60.86) 58.17 (57.32, 59.35) 60.01 (58.07, 60.79) 57.87 (57.19, 58.53)	98.7 98.7 98.7 98.7 98.7	57.94 (57.66, 58.22) 61.36 (60.79, 61.83) 58.92 (56.96, 61.42) 61.20 (59.88, 61.81) 57.42 (56.64, 58.12)	99.3 99.3 99.3 99.3
	100	$egin{aligned} & \operatorname{HZ}_P \ & \operatorname{HZ}_O \ & \operatorname{Prop}_n \ & \operatorname{Prop}_o \ & \operatorname{Prop}_p \end{aligned}$	57.93 (57.63, 58.24) 59.47 (59.11, 59.83) 58.08 (57.65, 58.58) 58.48 (57.86, 59.44) 58.06 (57.65, 58.50)	99.6 99.6 99.6 99.6 99.6	57.92 (57.68, 58.18) 60.32 (59.99, 60.72) 57.94 (57.37, 58.63) 59.93 (57.85, 60.59) 57.79 (57.27, 58.30)	99.6 99.6 99.6 99.6 99.6	57.93 (57.73, 58.13) 61.40 (61.02, 61.75) 60.82 (57.20, 61.58) 61.23 (60.28, 61.67) 57.35 (56.75, 57.93)	99.9 99.9 99.9 99.9

Median with 25th and 75th empirical quartiles (Q1, Q3) of the SAUC at t=2 are reported. N denotes the number of the published studies. Prop denotes the proposed sensitivity analysis method; HZ_P denotes the HZ model using the population (published and unpublished) studies; HZ_O denotes the HZ model using only the observed (published) studies. CR denotes the proportion of successfully convergenced estimates among 1000 repetition. All the entries are multiplied by 100.