М. Н. Леонтьева

БУЛЕВЫ АЛГЕБРЫ ЭЛЕМЕНТАРНОЙ ХАРАКТЕРИСТИКИ (1,0,1) С ВЫЧИСЛИМЫМИ МНОЖЕСТВОМ АТОМОВ И ИДЕАЛОМ АТОМНЫХ ЭЛЕМЕНТОВ*

Задача, решаемая в данной работе, является в какой-то степени более общей, чем исследование связи n-вычислимости и разрешимости булевых алгебр элементарной характеристики (n,0,1), которое полностью завершено. В работе рассматриваются вычислимые булевы алгебры элементарной характеристики (1,0,1) с вычислимыми множеством атомов и идеалом атомных элементов. Приводится доказательство того, что такие алгебры имеют сильно вычислимые изоморфные копии. Результат обобщается на случай булевых алгебр элементарной характеристики (n,0,1).

Kлючевые слова: булевы алгебры, вычислимое множество, вычислимая модель, сильно вычислимая модель, n-вычислимость, элементарная характеристика булевой алгебры, идеал Ершова—Тарского, идеал Фреше.

§ 1. Предварительные сведения и история вопроса

Модель называется вычислимой, если ее носитель — вычислимое множество, операции — вычислимые функции, и отношения вычислимы. Вычислимая булева алгебра называется n-вычислимой, если существует алгоритм, определяющий по конечной Σ_n -формуле и набору элементов, истинна ли эта формула на этом наборе. Сильно вычислимая модель — та, для которой подобный алгоритм существует для всех формул исчисления предикатов. Булева алгебра разрешима, если у нее существует сильно вычислимая изоморфная копия. В качестве источника предварительных сведений по теории булевых алгебр будем использовать [3].

На булевых алгебрах стандартным образом определяется порядок: $x\leqslant y\Leftrightarrow x\cdot y=x,\ x< y\Leftrightarrow (x\leqslant y)\ \&\ (x\neq y).$ Пусть $\mathfrak A$ — булева алгебра. Ненулевой элемент $a\in \mathfrak A$ называется amomom, если $\forall b\ (b< a\to b=0).$ Множество атомов булевой алгебры $\mathfrak A$ обозначим $\operatorname{At}(\mathfrak A)$. Элемент $a\in \mathfrak A$ называется amomnum, если $\forall x\leqslant a(x\neq 0\to (\exists y\leqslant x(y\in\operatorname{At}(\mathfrak A)))).$ Атомные элементы образуют идеал, который мы будем обозначать как $\operatorname{Atm}(\mathfrak A)$. Элемент $a\in \mathfrak A$ называется besting amomnum, если $\forall x\leqslant a\ (x\notin At(\mathfrak A)).$ Безатомные элементы также образуют идеал, и он обозначается $\operatorname{Als}(\mathfrak A)$. Через $\operatorname{F}(\mathfrak A)$ обозначим $u\partial ean$ degan degan

В работе рассматриваются булевы алгебры элементарной характеристики (1,0,1), т. е. такие булевы алгебры, что $\mathfrak{A}/\mathrm{E}(\mathfrak{A})$ — ненулевая безатомная булева алгебра. Счетные булевы алгебры иногда для краткости будем называть алгебрами.

^{*}Работа частично поддержана грантом Президента РФ для молодых докторов наук МД-3377.2008.1 и грантом Президента РФ для молодых докторов наук МД-2666.2010.1.

Сильная вычислимость влечет n-вычислимость для любого $n \in \omega$. Исследования свойств сильно вычислимых булевых алгебр было начато в [6], в [4] для каждого n был построен пример n-вычислимой булевой алгебры, у которой нет (n+1)-вычислимой изоморфной копии, т.е. из n-вычислимости в классе всех булевых алгебр не следует разрешимость. Но при фиксированной элементарной характеристике булевой алгебры ситуация становится иной.

Пусть $\mathfrak A$ — вычислимая булева алгебра. В [3] было доказано, что 2-конструктивность такой алгебры эквивалентна вычислимости $\mathrm{Als}(\mathfrak A)$ и $\mathrm{At}(\mathfrak A)$.

В [1] доказана следующая

Теорема 1 [1]. Если $\mathfrak A$ — 2-вычислимая булева алгебра элементарной характеристики (1, 0, 1), т. е. вычислимая алгебра, в которой множества $At(\mathfrak A)$ и $Als(\mathfrak A)$ вычислимы, то $\mathfrak A$ — разрешима.

В [6] было доказано, что если в некотором представлении вычислимая булева алгебра характеристики (1,0,1) имеет вычислимыми 4 отношения: $At(\mathfrak{A}), Als(\mathfrak{A}), Atm(\mathfrak{A}), E(\mathfrak{A}),$ то это представление будет сильно вычислимым. После чего появился вопрос о том, как можно ослабить эти условия, чтобы булева алгебра характеристики (1,0,1) была при этом разрешима.

В [3] построен пример вычислимой атомной булевой алгебры \mathfrak{A} , у которой нет разрешимого представления, и тем самым доказано, что без условия на вычислимость множества атомов мы не можем утверждать разрешимость булевой алгебры. В [2] построен пример неразрешимой булевой алгебры, имеющей вычислимое множество атомов. Таким образом, не рассмотренными остались 2 случая:

- 1) Вычислимы $At(\mathfrak{A})$ и $Atm(\mathfrak{A})$.
- 2) Вычислимы $At(\mathfrak{A})$ и $E(\mathfrak{A})$.

В данной работе приведено доказательство того, что в первом случае булева алгебра будет разрешима. Этот результат также обобщается естественным образом на случай булевых алгебр элементарной характеристики (n, 0, 1). В [7] строится пример, показывающий, что во втором случае разрешимость, вообще говоря, отсутствует.

§ 2. Случай алгебр характеристики (1,0,1) с вычислимыми At и Atm

В работе рассматриваются вычислимые булевы алгебры как модели языка $\Sigma_{BA} = \{0,1,+,\cdot,-\}$, где «+» соответствует объединению элементов, «·» — пересечению и «-» означает дополнение. В работе также будут использоваться алгебры Ершова, модели языка $\{0,+,\cdot,-\}$, в котором «-» означает разность элементов.

Если L — идеал булевой алгебры \mathfrak{A} , то L-атом — это такой $x \in \mathfrak{A}$, что x/L — атом в фактор-алгебре \mathfrak{A}/L , аналогично определяются L-атомные и L-безатомные элементы. Тот факт, что H является идеалом в \mathfrak{A} будем обозначать как $H \lhd \mathfrak{A}$.

Теорема 2. Пусть \mathfrak{B} — вычислимая булева алгебра элементарной характеристики (1,0,1). Если вычислимы $At(\mathfrak{B})$ и $Atm(\mathfrak{B})$, то \mathfrak{B} изоморфна \mathfrak{B}' , где \mathfrak{B}' — сильно вычислимая булева алгебра.

ДОКАЗАТЕЛЬСТВО. В основе нашего рассуждения будет лежать схема доказательства теоремы 4 из [1].

Напомним, что множество называется Δ_n^0 -вычислимым, если оно вычислимо с оракулом $\emptyset^{(n-1)}$, и Σ_n^0 -вычислимо, если оно вычислимо перечислимо с оракулом $\emptyset^{(n-1)}$. Множество называется Π_n^0 -вычислимым, если его дополнение Σ_n^0 -вычислимо. Предварительные сведения по теории вычислимости можно найти в [5].

По условию множества $\mathrm{At}(\mathfrak{B})$ и $\mathrm{Atm}(\mathfrak{B})$ вычислимы, следовательно, модель $(\mathfrak{B}, \mathrm{At}(\mathfrak{B}), \mathrm{F}(\mathfrak{B}), \mathrm{Als}(\mathfrak{B}), \mathrm{Atm}(\mathfrak{B}))$ можно рассматривать как Δ_2^0 -вычислимую структуру, так как $F = \Sigma_1^0$ -вычислимый идеал, а $\mathrm{Als} = \Pi_1^0$ -вычислимый идеал.

- **Лемма 1.** (1) Пусть $\mathfrak{A} \Delta_2^0$ -вычислимая алгебра, $H_0, H, H_1 \lhd \mathfrak{A}$, $H_0 \subseteq H \subseteq H_1$, при этом H_0 Δ_2^0 -вычислим, а H лежит в классе Σ_2^0 . Предположим, что $(\mathfrak{C}, M) \Delta_2^0$ -вычислимая алгебра с Δ_2^0 -вычислимым идеалом, и существует Δ_3^0 -вычислимый изоморфизм H_0 из (\mathfrak{C}, M) на $(\mathfrak{A}/H, H_1/H)$. Тогда $(\mathfrak{A}, H_0, H, H_1) \cong (\mathfrak{B}, L_0, L, L_1)$, где последняя модель Δ_2^0 -вычислимая алгебра с Δ_2^0 -вычислимыми идеалами;
- (2) при этом можно считать, что между моделями (H, H_0) и (L, L_0) , рассматриваемыми как алгебры Ершова с выделенным идеалом, существует Δ_2^0 -вычислимый изоморфизм.

Утверждение данной леммы получается с помощью стандартного приема релятивизации предложения 1 из [1] относительно оракула \emptyset' .

Применим лемму 1 к нашим объектам.

Возьмем $\mathfrak{A} = \mathfrak{B}$, $H_0 = \{0\}$, $H = \mathrm{E}(\mathfrak{A})$, $H_1 = \mathfrak{A}$. Тогда H_0 — вычислимый идеал, $H - \Sigma_2^0$ -идеал, так как $x \in \mathrm{E} \Leftrightarrow \exists x_1, x_2[(x_1 \in \mathrm{Als}, x_2 \in \mathrm{Atm})\&(x = x_1 + x_2)]$. Значит, $\mathfrak{A}/H - \Delta_3^0$ -вычислимая безатомная алгебра.

Лемма 2. Пусть $\mathfrak{A} - \Delta_3^0$ -вычислимая безатомная булева алгебра. Тогда существует Δ_3^0 -вычислимый изоморфизм между \mathfrak{A} и вычислимой безатомной алгеброй.

ДОКАЗАТЕЛЬСТВО. Утверждение леммы является следствием теоремы 3.6.3 из [3], которая говорит о том, что безатомная булева алгебра (как и любая булева алгебра с конечным числом атомов) является автоустойчивой (вычислимо категоричной).

В частности, это означает, что между любыми двумя вычислимыми представлениями безатомной булевой алгебры существует вычислимый изоморфизм. В силу релятивизации этой теоремы относительно оракула \emptyset'' существует Δ^0_3 -вычислимый изоморфизм между $\mathfrak A$ и вычислимой безатомной алгеброй. Лемма доказана.

По этой лемме существует Δ^0_3 -вычислимый изоморфизм между \mathfrak{A}/H и вычислимой безатомной алгеброй \mathfrak{C} . Положим $M=\mathrm{E}(\mathfrak{C})=\mathfrak{C}$. В силу леммы 1 $(\mathfrak{B},\mathrm{E}(\mathfrak{B}))\cong \mathfrak{B}'$ и $\mathrm{E}(\mathfrak{B}')$ Δ^0_2 -вычислимы.

Из пункта (2) леммы 1 также следует, что между алгебрами Ершова $E(\mathfrak{B})$ и $E(\mathfrak{B}')$ существует Δ_2^0 -вычислимый изоморфизм. Поскольку предикаты F, Als, Atm, At являются подмножествами E, сохраняются при этом изоморфизме и являются Δ_2^0 -вычислимыми в \mathfrak{B} , они будут Δ_2^0 -вычислимыми и в \mathfrak{B}' (их характеристические функции будут композицией характеристических функций в \mathfrak{B} и изоморфизма). Тем самым (\mathfrak{B}' , $E(\mathfrak{B}')$, $F(\mathfrak{B}')$, Als(\mathfrak{B}'), Atm(\mathfrak{B}'), Atm(\mathfrak{B}'), Atm(\mathfrak{B}')) — Δ_2^0 -вычислимая структура.

Для формулировки следующей теоремы необходимо ввести ряд обозначений.

Пусть $E_0(\mathfrak{A}) = \{0\}$, $E_{n+1}(\mathfrak{A}) = \{x \in A \mid x/E_n \in E(\mathfrak{A}/E_n)\}$ для $n \in \omega$, $\mathrm{Als}_n(\mathfrak{A})$ — идеал E_n -безатомных элементов, $\mathrm{Atm}_n(\mathfrak{A})$ — идеал E_n -атомных элементов, $\mathrm{At}_n(\mathfrak{A})$ — множество E_n -атомов, $F_n(\mathfrak{A})$ — идеал, образованный конечными суммами E_n -атомов и элементов E_n . Ясно, что $\mathrm{Als}_0(\mathfrak{A}) = \mathrm{Als}(\mathfrak{A})$ и $\mathrm{Atm}_0(\mathfrak{A}) = \mathrm{Atm}(\mathfrak{A})$.

Пусть $\Sigma_0 = \{E_0\}$, $\Sigma_{\lambda} = \Sigma_0 \cup \{At_0, Als_0, Atm_0, E_1, \dots, At_{\lambda-1}, Als_{\lambda-1}, Atm_{\lambda-1}, E_{\lambda}\}$, $\Sigma_{\lambda}^* = \Sigma_{\lambda} \cup \{F_0, F_1, \dots, F_{\lambda-1}\}$ для $\lambda \geqslant 1$. Если \mathfrak{A} — булева алгебра (т. е. модель языка Σ_{BA}), то через $\mathfrak{A}^{\Sigma_{\lambda}}$ будем обозначать такое обогащение \mathfrak{A} до $\Sigma_{BA} \cup \Sigma_{\lambda}$, в котором все символы из Σ_{λ} интерпретируются в соответствии со своими определениями. То же самое относится к обозначению $\mathfrak{A}^{\Sigma_{\lambda}^*}$.

Теорема 3 [1]. Пусть $\lambda \geqslant 1$. Пусть \mathfrak{C} — булева алгебра, причем \mathfrak{C}/E_{λ} — либо двухэлементная, либо ненулевая безатомная. Модель $\mathfrak{C}^{\Sigma_{\lambda}}$ обладает вычислимым представлением тогда и только тогда, когда $\mathfrak{C}^{\Sigma_{\lambda}^*}$ обладает Δ_2^0 -вычислимым представлением.

В силу того, что $(\mathfrak{B}')^{\Sigma_1} = (\mathfrak{B}', E(\mathfrak{B}'), Als(\mathfrak{B}'), Atm(\mathfrak{B}'), At(\mathfrak{B}'))$, а $(\mathfrak{B}')^{\Sigma_1^*} = (\mathfrak{B}', E(\mathfrak{B}'), F(\mathfrak{B}'), Als(\mathfrak{B}'), Atm(\mathfrak{B}'), Atm(\mathfrak{B}'), Atm(\mathfrak{B}'), Atm(\mathfrak{B}'))$, по теореме 3 получаем, что модель $(\mathfrak{B}, E(\mathfrak{B}), Als(\mathfrak{B}), Atm(\mathfrak{B}), Atm(\mathfrak{B}), At(\mathfrak{B}))$ обладает вычислимым представлением. В [6] доказано, что вычислимость всех предикатов из Σ_{λ} в вычислимой булевой алгебре характеристики $(\lambda, 0, 1)$ влечет ее сильную вычислимость. Следовательно, \mathfrak{B} разрешима.

Теорема 2 доказана.

\S 3. Случай булевых алгебр характеристики (n,0,1)

Теперь сформулируем обобщение теоремы 2 для случая булевых алгебр характеристики (n, 0, 1).

Теорема 4. Пусть $\lambda \in \omega$, \mathfrak{B} — вычислимая булева алгебра элементарной характеристики ($\lambda + 1$, 0, 1). Если \mathfrak{B} является ($4\lambda + 1$)-вычислимой и при этом вычислим идеал $Atm_{\lambda}(\mathfrak{B})$, то \mathfrak{B} изоморфна \mathfrak{B}' , где \mathfrak{B}' — сильно вычислимая булева алгебра.

ДОКАЗАТЕЛЬСТВО. В [3] доказано, что вычислимая булева алгебра является $(4\lambda+1)$ -вычислимой тогда и только тогда, когда все предикаты из $\Sigma_{\lambda} \cup \{At_{\lambda}\}$ вычислимы. В данных условиях $(\mathfrak{B}^{\Sigma_{\lambda}^{*}}, At_{\lambda}(\mathfrak{B}), F_{\lambda}(\mathfrak{B}), Als_{\lambda}(\mathfrak{B}), Atm_{\lambda}(\mathfrak{B}))$ можно рассматривать как Δ_{2}^{0} -вычислимую булеву алгебру, так как $F_{n} - \Sigma_{1}^{0}$ -идеал для всех $n \in [0, \lambda]$, а $Als_{\lambda} - \Pi_{1}^{0}$ -идеал.

 $\mathrm{At}_{\lambda}(\mathfrak{B})$ и $\mathrm{Atm}_{\lambda}(\mathfrak{B})$ вычислимы по условию теоремы.

Применим лемму 1, возьмем $\mathfrak{A} = \mathfrak{B}$, $H_0 = \{0\}$, $H = \mathrm{Als}_{\lambda}(\mathfrak{B}) + \mathrm{Atm}_{\lambda}(\mathfrak{B}) = \mathrm{E}_{\lambda+1}(\mathfrak{B})$, $H_1 = \mathfrak{A}$. Тогда H_0 — вычислимый идеал, а $H - \Sigma_2^0$ -идеал.

Вновь $\mathfrak{A}/H - \Delta_3^0$ -вычислимая безатомная алгебра, так как $H - \Delta_3^0$ -вычислимый идеал. По лемме 2 существует Δ_3^0 -вычислимый изоморфизм между \mathfrak{A}/H и вычислимой безатомной алгеброй \mathfrak{C} . В силу леммы 1 имеем $(\mathfrak{B}, E_{\lambda+1}(\mathfrak{B})) \cong (\mathfrak{B}', E_{\lambda+1}(\mathfrak{B}'))$, где \mathfrak{B}' и $E_{\lambda+1}(\mathfrak{B}') - \Delta_2^0$ -вычислимы.

Из пункта (2) леммы 1 следует, что между алгебрами Ершова $E_{\lambda+1}(\mathfrak{B})$ и $E_{\lambda+1}(\mathfrak{B}')$ существует Δ^0_2 -вычислимый изоморфизм. Поскольку предикаты из $\Sigma^*_{\lambda+1}$ являются под-

множествами $E_{\lambda+1}$, сохраняются при этом изоморфизме и являются Δ_2^0 -вычислимыми в \mathfrak{B} , они будут Δ_2^0 -вычислимыми и в \mathfrak{B}' . Тем самым $(\mathfrak{B}')^{\Sigma_{\lambda+1}^*} - \Delta_2^0$ -вычислимая алгебра. По теореме 3 получаем, что $\mathfrak{B}^{\Sigma_{\lambda+1}}$ обладает вычислимым представлением, а значит, \mathfrak{B} — разрешима.

Теорема 4 доказана.

Автор бесконечно признателен д-ру физ.-мат. наук П. Е. Алаеву за чуткое научное руководство, постановку задачи и поддержку в ходе ее решения.

Список литературы

- 1. *Алаев П. Е.* Сильно конструктивные булевы алгебры // Алгебра и логика. 2005. Т. 7, № 1. С. 3–23.
- 2. Власов В. Н. Конструктивизируемость булевых алгебр элементарной характеристики (1,0,1) // Алгебра и логика. 1998. Т. 37, № 5. С. 499–521.
- 3. *Гончаров С. С.* Счетные булевы алгебры и разрешимость. Новосибирск: Научная книга (НИИ МИОО НГУ), 1996.
- 4. Гончаров С. С. Ограниченные теории конструктивных булевых алгебр // Сиб. мат. журн. 1976. Т. 17, № 4. С. 797–812.
- $5.\ Pod > cepc$ X. Теория рекурсивных функций и эффективная вычислимость. M: Мир, 1972.
- 6. *Ершов Ю. Л.* Разрешимость элементарной теории дистрибутивных структур с относительными дополнениями и теории фильтров // Алгебра и логика. 1964. Т. 3, № 3. С. 17–38.
- 7. Леонтьева М. Н. Булевы алгебры элементарной характеристики (1,0,1) с вычислимыми множеством атомов и идеалом Ершова—Тарского // Алгебра и логика. 2010. (в печати).

Материал поступил в редколлегию 26.06.2009

Адрес автора

ЛЕОНТЬЕВА Маргарита Николаевна Новосибирский государственный университет ул. Пирогова, 2, Новосибирск, 630090, Россия e-mail: Margarita.Leontyeva@gmail.com