第一部分: 极限与连续

一、大纲解读

- 1.函数的概念及表示法、简单应用问题的函数关系的建立.
- 2.函数的性质: 有界性、单调性、周期性和奇偶性.
- 3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.
- 4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.
- 5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.
- 6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.
- 7.函数的连续性(含左连续与右连续)、函数间断点的类型.
- 8.连续函数的性质和初等函数的连续性.
- 9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).

二、往届考点分析

章 节	届次	考点及分值
	第一届初赛(15 分)	第二题:幂指函数的极限(5分)
	和 届 的 项 (13 为)	第八题: 等价无穷大量(10分)
	第二届初赛(10分)	第一题;(1)数列极限(5分)
	710 717 72 73 74	第一题: (2) 函数极限 (5分)
	Mr - 17 - 17 (20 1)	第一题: (1) 函数极限 (6分)
	第三届初赛(28分)	第一题: (2) 数列极限 (6分)
		第二题:数列极限(16分)
	第四届初赛(12分)	第一题: (1) 数列极限(6分)
	公工尺边塞(((八))	第一题: (5) 函数极限 (6分)
	第五届初赛(6分)	第一题: (1) 数列极限 (6分) 第一题: (4) 数列极限 (6分)
	第六届初赛(12分)	第一题: (4) 数列极限(6分)
	第七届初赛(6分)	第一题: (1) 数列极限 (6分)
极限与连续		第一题: (1) 数列极限 (6分)
	第八届初赛(12分)	第一题: (2) 函数极限 (6分)
		第一题: (2) 数列极限 (7分)
	第九届初赛(29 分)	第一题: (4) 函数极限 (7分)
		第五题:数列的极限(15分)
	公上尺河 窜(12 八)	第一题: (1) 数列极限 (6分)
	第十届初赛(12 分)	第一题: (4) 函数极限 (6分)
	第十一届初赛(20分)	第一题:(1)函数极限(6分)
	另 I	第五题:数列极限(14分)
		第一题:(1)函数极限(6分)
	第十二届初赛(22分)	第一题: (5)函数极限(6分)
		第二题:数列极限(10分)
	第十三届初赛(26分)	第一题:(1)函数极限(6分)
	/	第一题: (3)函数极限(6分)

	第二题:数列极限(14分)
	第一题:(1)函数极限(6分)
第十四届初赛(18分)	第一题:(2)间断点分类(6分)
	第一题: (3) 数列极限 (6分)

章 节	专 题	内 容
		夹逼准则
		单调有界准则
		定积分定义
	 数列的极限	Stolz 定理
	女又クリロリイス PIC	利用海涅定理
		利用 Lagrange 定理求极限
		利用级数收敛的必要性:这种
		情形极限均为0
		利用两个重要的极限
极限与连续	47	等价无穷小代换
	函数的极限	利用导数的定义求极限
		洛必达法则
		泰勒展开
	间断点	间断点类型判别
	渐近线	渐近线的分类及求法
	VIX.	利用函数在某点处的连续性求
	函数连续性	字母参数的取值
	四级广次工	闭区间上连续函数的性质、介
		值定理

第二部分:一元函数微分学

一、大纲解读

- 1.导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.
- 2.基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.
- 3.复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.
- 4.高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.
- 5.微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.
- 6.洛必达(L'Hospital)法则与求未定式极限.
- 7.函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.
- 8.函数最大值和最小值及其简单应用.
- 9.弧微分、曲率、曲率半径.

二、往届考点分析

r		
章 节	届次	考点及分值
	数 日知宝 (20 八)	第一题: (4) 隐函数求二阶导数 (5分)
	第一届初赛(20分)	第三题:由定义求点导数并判定连续性(15分)
	公一尺加第(20 八)	第二题:证明方程根的个数问题(15分)
	第二届初赛(30分)	第三题:参数方程二阶导求原函数(15分)
	第三届初赛(15 分)	第三题: Taylor 中值定理(15 分)
	第四届初赛(12分)	第四题:导数的应用(12分)
	第五届初赛(6分)	第一题: (3) 隐函数的极值 (6分)
	公→尼加第(20 八)	第一题: (3) 隐函数求导数 (6分)
	第六届初赛(20分)	第三题:利用 Taylor 展开证明不等式(14 分)
一元函数微分学	第七届初赛(12分)	第三题:证明函数的可导性(12分)
	第八届初赛(20分)	第一题: (4) 莱布尼茨公式计算高阶导数 (6分)
		第五题: 微分中值定理(14分)
	第十届初赛(6分)	第一题: (2) 参数方程求导数 (6分)
	第十一届初赛(28 分)	第三题:利用导数的性质证明等式(14分)
		第六题:利用导数的性质证明不等式(14分)
		第一题: (2) 高阶导数的莱布尼茨公式 (6分)
	第十二届初赛(22 分)	第一题: (3) 利用隐函数求导求切线问题 (6分)
		第三题:介值定理与微分中值定理(10分)
	第十四届初赛(14分)	第三题:利用导数的性质证明不等式(14分)

章 节	专 题	内 容
		由定义求函数在一点处的导数
一元函数微分学	导数与微分的计算	隐函数求导
		对数求导法则

	I	T
		参数方程求导
		高阶导数(Leibniz 公式)
		微分的计算
		Rolle 定理
		Lagrange 定理
	微分中值定理	Cauchy 定理
		Taylor 定理
		讨论中介值的存在性与渐近性
	利用导数研究函数的性态	单调性与极值点、凹凸性与拐
		点、最值
		利用导数证明等式
		利用导数证明不等式
		判断零点(或方程的根)的个数
		曲率与曲率圆、弧微分

第三部分:一元函数积分学

一、大纲解读

- 1.原函数和不定积分的概念.
- 2.不定积分的基本性质、基本积分公式.
- 3.定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.
- 4.不定积分和定积分的换元积分法与分部积分法.
- 5.有理函数、三角函数的有理式和简单无理函数的积分.
- 6.广义积分.

7.定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.

二、往届考点分析

章 节	届次	考点及分值
	第一届初赛(15 分)	第一题: (2) 一元函数定积分计算(5分)
		第六题:旋转体体积的综合问题(10分)
	第二届初赛(5分)	第一题: (3) 广义积分的计算(5分)
	第三届初赛(15 分)	第四题:射线对质点的引力问题(15分)
	第四届初赛(22分)	第二题:广义积分的计算(10分)
	为四曲仍负(22 刀)	第五题:积分不等式(12分)
		第一题: (2) 广义积分敛散性(6分)
	第五届初赛(36 分)	第一题: (4) 定积分几何应用求面积(6分)
	为丑油仍负(30 九)	第二题:定积分的计算(12分)
		第四题:积分不等式证明(12分)
	第六届初赛(27分)	第二题:定积分的计算(12分)
	知八面勿焚(27万)	第五题:积分等式的应用(15分)
 一元函数积分学	第七届初赛(22分)	第一题:(5)广义积分的化简(6分)
九四奴仆刀子		第五题: 定积分等式与不等式证明(16分)
	第八届初赛(28 分)	第二题:积分不等式证明(14分)
		第四题: 定积分的"加边"问题(14分)
	第九届初赛(22 分)	第一题: (5) 不定积分的计算(7分)
		第四题:积分不等式的证明(15分)
		第一题: (3) 不定积分的计算(6分)
	第十届初赛(34 分)	第三题:积分不等式证明(14分)
		第六题:积分不等式证明(14分)
	第十一届初赛(12分)	第一题:(2)利用参数方程求积分(6分)
	ル 一 四 八 八 八 八 八 八 八 八 八	第一题:(3)利用对称性求积分(6分)
	第十二届初赛(12分)	
	第十三届初赛(14分)	第五题: 定积分的"加边"问题(14分)
	第十四届初赛(14分)	第四题:拆分区间证明积分不等式(14分)

章 节	专 题	内 容
		凑微分法
		换元积分法: 三角代换、根式代
		换、倒代换、二项代换
	不定积分的计算	分部积分法: 回归法、拆项法、
		递推法
		部分分式法: 裂项
		万能公式代换法
		定积分的换元法
		定积分的分部积分法
	定积分的计算	计算分段函数的定积分
		利用定积分的性质计算定积
		分:周期性、奇偶性、固有结论
一元函数积分学		变上限函数的应用
		积分中值定理
	 定积分的理论应用	证明积分等式:定积分的"加
	走	边"问题
		证明积分不等式: Cauchy-
		Schwartz 不等式重点掌握
	广义积分	无穷限积分
		瑕积分
	定积分的几何应用	平面图形的面积
		旋转体的体积和侧面积
		平面曲线的弧长
	定积分的物理应用	变力做功
	是仍为10700星应用	引力及侧压力问题

第四部分: 常微分方程

一、大纲解读

- 1.常微分方程的基本概念: 微分方程及其解、阶、通解、初始条件和特解等.
- 2.变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.
- 3.可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程: $y^{(n)} = f(x)$, y'' = f(x, y'), y'' = f(y, y').
- 4.线性微分方程解的性质及解的结构定理.
- 5.二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.
- 6.简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积
- 7.欧拉(Euler)方程.
- 8.微分方程的简单应用

二、往届考点分析

章 节	届次	考点及分值
	第一届初赛(10分)	第五题: 高阶微分方程解的结构(10分)
	第六届初赛(6分)	第一题: (1) 由微分方程的解确定方程(6分)
	第九届初赛(7分)	第一题: (1) 积分方程转化为微分方程(7分)
	第十一届初赛(6分)	第一题: (4) 全微分方程(6分)
	第十三届初赛(14分)	第三题: 微分方程解的有界性(14分)
	第十四届初赛(6分)	第一题: (4) 微分方程的解(6分)

章 节	专 题	内 容
	一阶微分方程的解法	可分离变量微分方程
		齐次方程
		一阶线性微分方程(伯努利方
· /	例 成为 为 牲口州村	程)
		全微分方程
		变量代换法求解微分方程
		可降阶的微分方程(三种形式)
常微分方程		高阶微分方程解的结构
	高阶微分方程	二阶常系数齐次微分方程
		二阶常系数非齐次微分方程:
		非齐次项共两种形式
		Euler 方程
	微分方程的应用	积分方程转为微分方程求函数
		利用微分方程求解几何问题
		利用微分方程求解应用问题

第五部分: 向量代数与空间解析几何

一、大纲解读

- 1.向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.
- 2.两向量垂直、平行的条件、两向量的夹角.
- 3.向量的坐标表达式及其运算、单位向量、方向数与方向余弦.
- 4.曲面方程和空间曲线方程的概念、平面方程、直线方程.
- 5.平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.
- 6.球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图 形.
- 7.空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.

二、往届考点分析

章 节	届次	考点及分值
	第二届初赛(5分)	第一题:(5)异面直线间的距离计算(5分)
台里 伊斯上旁间 <i>园</i> 托	第四届初赛(6分)	第一题: (2) 平面東方程 (6分)
向量代数与空间解析	第七届初赛(12分)	第二题:求圆锥面方程(12分)
/ L1 ¹ 	第十三届初赛(6分)	第一题: (4) 圆柱面方程的确定(6分)
	第十四届初赛(14分)	第二题:向量及其运算(14分)

章 节	专 题	内 容
	向量代数	向量的基本运算
		证明向量等式或者化简
		利用向量求解几何问题:面积、
		体积、长度
		直线与平面的位置关系
		直线与直线的位置关系
	空间中直线与平面	点到直线距离、点到平面距离、
向量代数与空间解析几何		异面直线间的距离
阿里(数一上间解初 <i>)</i> 。		直线在平面内的投影
		空间曲线在坐标面上的投影曲
	空间曲线	线方程
		空间曲线绕坐标轴旋转的曲面
		方程
	曲面与方程	二次曲面及其方程
		旋转曲面及其方程
		空间中柱面方程的确定

第六部分: 多元函数微分学

一、大纲解读

- 1.多元函数的概念、二元函数的几何意义.
- 2.二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.
- 3.多元函数偏导数和全微分、全微分存在的必要条件和充分条件.
- 4.多元复合函数、隐函数的求导法.
- 5.二阶偏导数、方向导数和梯度.
- 6.空间曲线的切线和法平面、曲面的切平面和法线.
- 7.二元函数的二阶泰勒公式.
- 8.多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.

二、往届考点分析

章 节	届次	考点及分值
	第一届初赛(5分)	第一题: (3) 几何应用之切平面(5分)
	第二届初赛(5分)	第一题: (4) 二阶偏导数计算(5分)
	第三届初赛(15分)	第五题: 多元复合函数导数及高阶导数(15分)
	第四届初赛(6分)	第一题: (3) 二元函数偏导数计算(6分)
	第六届初赛(6分)	第一题: (2) 多元微分学几何应用切平面(6分)
	第七届初赛(6分)	第一题: (2) 多元复合函数求偏导数 (6分)
	第八届初赛(12分)	第一题: (3) 偏积分法求函数 (6分)
 多元函数微分学	第八曲例簽(I2 分)	第一题: (5) 几何应用之切平面(6分)
多儿 <u>图</u> 数侧分子	公共尼加塞(21 八)	第一题: (3) 多元复合函数求偏导(7分)
	第九届初赛(21分)	第二题:二元函数的极值问题(14分)
	第十届初赛(14分)	第五题: 多元函数 Taylor 展开 (14 分)
	第十一尺初第(124)	第一题:(4)全微分方程求原函数(6分)
	第十一届初赛(12分)	第一题: (5) 几何应用之切平面 (6分)
	第十二届初赛(12分)	第四题: 多元复合函数求偏导(12分)
	第十三届初赛(6分)	第一题: (2) 隐函数求偏导 (6分)
	第十四届初赛(14分)	第五题: 二元函数的 Taylor 展开(14 分)

章 节	专 题	内容
	二元函数的极限	证明二元函数极限不存在
		求二元函数的极限:夹逼法、极
		坐标法、变量代换法
	多元函数微分法	函数连续性、偏导存在性、可微
夕元 函粉 他 八 学		性、偏导连续性之间的关系
多元函数微分学		多元复合函数的链式法则
		多元隐函数的偏导数
		高阶偏导数
		全微分
		方向导数与梯度

		空间曲面的切平面与法线
		空间曲线的切线与法平面
	多元微分法的应用	多元函数的极值与条件极值、
		最值
		二元函数的二阶泰勒公式

第七部分: 多元函数积分学

一、大纲解读

- 1.二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).
- 2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.
- 3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.
- 4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.
- 5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.
- 6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、 质心、转动惯量、引力、功及流量等)

二、往届考点分析

章 节	届次	考点及分值			
	公 、尼知宝(20八)	第一题: (1) 换元法求解二重积分 (5分)			
	第一届初赛(20分)	第四题: 曲线积分相关证明(15分)			
	公一尺知宝(20 八)	第五题:转动惯量的计算及最值(15分)			
	第二届初赛(30分)	第六题: 闭路径上的曲线积分(15分)			
	第三届初赛(21分)	第一题: (3) 分区域二重积分的计算(6分)			
	第二個例發(21 分)	第六题:第一类曲面积分的证明(15分)			
	第四届初赛(18分)	第一题: (4) 第二类曲线积分(6分)			
	另四曲切负(10 J)	第六题:三重积分(12分)			
	第五届初赛(28分)	第五题:第二类曲面积分与 Gauss 公式(14分)			
	第二曲例 (28 分)	第六题:第二类曲线积分(14分)			
	第六届初赛(14分)	第四题:第二类曲面积分(14分)			
	第七届初赛(22分)	第一题: (3)空间区域的体积计算(6分)			
 多元函数积分学	弗七曲彻券(22 万)	第六题: Schwartz 不等式证明二重积分(16 分)			
夕儿函数你刀子 	第八届初赛(14分)	第三题: 三重积分的计算(14分)			
	第九届初赛(21分)	第一题:(6)三重积分的计算(7分)			
	为几油nn	第三题: 三重积分的计算(14分)			
	第十届初赛(20分)	第二题:积分与路径无关求函数(8分)			
	另「周彻负(20 刀)	第六题:第一类曲面积分的证明(15分) 第一题:(4)第二类曲线积分(6分) 第五题: 三重积分(12分) 第五题:第二类曲面积分与 Gauss 公式(14分) 第二题:第二类曲重积分(14分) 第四题:第二类曲面积分(14分) 第一题:(3)空间区域的体积计算(6分) 第二题: 三重积分的计算(14分) 第三题: 三重积分的计算(7分) 第三题:第二类曲线积分(14分) 第二题:第二类曲线积分(14分) 第二题:积分与路径无关求函数(8分) 第二题:三重积分的计算(12分) 第二题:三重积分的计算(14分) 第二题:三重积分的计算(14分) 第二题:二重积分的计算(14分) 第二题:(4)计算二重积分(6分) 第五题:计算第二类曲线积分(12分) 第二题:计算第二类曲线积分(12分) 第二题:(5)利用对称性计算二重积分(6分) 第四题:利用齐次函数计算曲面积分(14分)			
	第十一届初赛(28分)	第二题: 三重积分的计算(14分)			
	第 I 個別负(20 刀)	第六题: 闭路径上的曲线积分(15 分)第一题: (3) 分区域二重积分的计算(6 分)第六题: 第一类曲面积分的证明(15 分)第二题: (4) 第二类曲线积分(6 分)第五题: 第二类曲面积分与 Gauss 公式(14 分)第四题: 第二类曲面积分(14 分)第一题: (3) 空间区域的体积计算(6 分)第一题: (3) 空间区域的体积计算(6 分)第二题: 三重积分的计算(14 分)第一题: (6) 三重积分的计算(7 分)第三题: 第二类曲线积分(14 分)第二题: 第二类曲线积分(14 分)第二题: 积分与路径无关求函数(8 分)第二题: 三重积分的计算(12 分)第二题: 三重积分的计算(14 分)第二题: 三重积分的计算(14 分)第二题: 三重积分的计算(14 分)第二题: 三重积分的计算(14 分)第二题: 二重积分的计算(14 分)第二题: 计算第二类曲线积分(6 分)第二题: 计算第二类曲线积分(12 分)第二题: 计算第二类曲线积分(12 分)第二题: 计算第二类曲线积分(12 分)第二题: 计算第二类曲线积分(12 分)第二题: 计算第二类曲线积分(12 分)第二题: 计算第二类曲线积分(14 分)第二题: 二重积分、Green 公式与极限(14 分)第三题: 二重积分、Green 公式与极限(14 分)第三题: 二重积分、Green 公式与极限(14 分)			
	第十二届初赛(18分)	第一题: (4) 计算二重积分 (6分)			
	第十二個例分(10 刀) ————————————————————————————————————	第五题: 计算第二类曲线积分(12分)			
	第十三届初赛(20分)	第一题: (5) 利用对称性计算二重积分 (6分)			
	另 I 二川(N)	第六题: Schwartz 不等式证明二重积分(16 分) 第三题: 三重积分的计算(14 分) 第一题: (6) 三重积分的计算(7 分) 第三题: 第二类曲线积分(14 分) 第二题: 积分与路径无关求函数(8 分) 第四题: 三重积分的计算(12 分) 第二题: 三重积分的计算(14 分) 第四题: 二重积分的计算(14 分) 第一题: (4) 计算二重积分(6 分) 第五题: 计算第二类曲线积分(12 分) 第一题: (5) 利用对称性计算二重积分(6 分) 第四题: 利用齐次函数计算曲面积分(14 分)			
	数上Ⅲ尺知窜 / 2 0 八 \	第三题: 二重积分、Green 公式与极限(14分)			
	第十四届初赛(28 分)	第四题: 曲面积分、Gauss 公式与微分方程(14分)			

章 节	专 题	内容
-----	-----	----

		古舟从左至下六块和八为户	
	二重积分	直角坐标系下交换积分次序	
		直角坐标与极坐标的转换	
		利用奇偶性和轮换对称性简化	
		二重积分	
		变量代换法求解二重积分	
		利用直角坐标计算	
	 三重积分	利用柱坐标计算	
		利用求坐标计算	
		变量代换法求解三重积分	
多元函数积分学		第一类曲线积分	
		第二类曲线积分: 做功问题	
		两类曲线积分间的关系	
	曲线积分	Green 公式、积分与路径无关	
		已知二元函数全微分求原函数	
		Stokes 公式、环量和旋度	
		第一类曲面积分	
	曲面积分	第二类曲面积分	
		两类曲面积分间的关系	
		Gauss 公式、通量与散度	
Gauss 公式、			

第八部分: 无穷级数

一、大纲解读

- 1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.
- 2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.
- 3.任意项级数的绝对收敛与条件收敛.
- 4.函数项级数的收敛域与和函数的概念.
- 5.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.
- 6.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.
- 7.初等函数的幂级数展开式.
- 8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlet)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数.

二、往届考点分析

章 节	届次	考点及分值
	第一届初赛(15分)	第七题:数项级数求和(15分)
	第二届初赛(15 分)	第四题: 常数项级数敛散性判别(15分)
	第三届初赛(6分)	第一题: (4) 幂级数的和函数 (6分)
	第四届初赛(14分)	第七题:常数项级数敛散性证明(14分)
	第五届初赛(26分)	第三题:利用函数判断数项级数敛散性(12分)
	第山油彻泰(20 万)	第七题: 判定数项级数敛散性并求和(14分)
	第七届初赛(20分)	第一题: (4) 傅里叶级数收敛定理(6分)
无穷级数	另口細切负(20 九)	第四题:幂级数的收敛域与和函数(14分)
	第八届初赛(14分)	第六题: 傅里叶级数的相关证明(14分)
	第十届初赛(14分)	第七题:常数项级数敛散性证明(14分)
	第十一届初赛(14分)	第五题:幂级数的应用(14分)
	第十二届初赛(14分)	第七题:交错级数的条件收敛(14分)
	第十三届初赛(14分)	第六题: 判定数项级数敛散性并求和(14分)
	第十四届初赛(20分)	第一题: (4) 常数项级数求和 (6分)
	另 四個別分(20 刀)	第六题:级数与广义积分的敛散性关系(14分)

章 节	专 题	内容
		级数收敛的必要条件
	常数项级数的敛散性及判别	等比级数与 p 级数的敛散性
		正项级数判别法:比较判别法、
无穷级数		比值判别法、根值判别法、积分
		判别法
		交错级数判别法
		绝对收敛与条件收敛
	幂级数的收敛域与和函数	Abel 定理
		收敛区间与收敛域

		幂级数的和函数
		函数的幂级数展开:直接展开、
		间接展开
		Fourier 级数的收敛定理
Fourier 级数及其收敛性		Fourier 级数展开式中系数的确
	Fourier 级数及其收敛性	定
		利用 Fourier 级数的展开式求常
		数项级数的和

