Lista 5 Algorytmy Kwantowe

Z zeszłego tygodnia

Zadanie 1 [Forrelation]

Trudność: łatwe Punktów: 3

Dla funkcji $f,g:\{0,1\}^n \to \{-1,1\}$ zdefiniujemy miarę forrelacji (korelacji z Fourierem) jako

$$\Psi_{f,g} = \frac{1}{\sqrt{2^n}^3} \sum_{x,y \in [2^n]} f(x) (-1)^{x \cdot y} g(y),$$

gdzie $x \cdot y$ to normalny iloczyn skalarny.

Dostajemy funkcje f i g, o których obiecano nam, że wpadają w jeden z przypadków:

- (1) $\Psi_{f,g} \geqslant \frac{3}{5}$, albo
- (2) $|\Psi_{f,g}| \leq \frac{1}{15}$.

Zaprojektuj obwód kwantowy, który korzysta z O_g^{\pm} oraz O_g^{\pm} po $\mathcal{O}(1)$ razy i pozwala odróżnić te przypadki ze stałym¹ prawdopodobieństwem błędu.

Zadanie 2

Trudność: trudne Punktów: 4

Rozwiązujemy to samo zadanie, co przed chwilą, ale tym razem dysponujemy obwodem CONTROLLED- $O_{f,g}^{\pm}$, który przyjmuje n+1 bitów i aplikuje na n bitach funkcję f lub g w zależności od wartości bitu kontrolnego. Obwód ten możemy wykorzystać tylko jednokrotnie.

Skonstruuj algorytm, który odpowie TAK z prawdopodobieństwem $\frac{1+\Psi_{f,g}}{2}$, a NIE z pozostałym.

Zadanie 3

Trudność: łatwe Punktów: 1

Zmodyfikuj powyższy algorytm tak, by zarówno w przypadku (1) jak i (2) zwracał poprawną odpowiedź z prawdopodobień-stwem 60% (nie zwiększając liczby odpytań obwodu CONTROLLED- $O_{f,g}^{\pm}$).

Luki z wykładu

W najbliższych kilku zadaniach będziemy chcieli zbudować obwód kwantowy realizujący zaprezentowaną na wykładzie Dyskretną Transformatę Fouriera. Czyli chcemy, by nasz obwód realizował operację

$$|x\rangle \stackrel{F_N}{\mapsto} \frac{1}{\sqrt{N}} \sum_{\gamma \in \mathbb{Z}_N} \overline{\chi_{\gamma}}(x) |\gamma\rangle,$$

gdzie $\overline{\chi}_{\nu}(x) = \omega^{-\gamma \cdot x}$ (ω to zespolony pierwiastek z 1 o najmniejszym dodatnim argumencie).

Zadanie 4

Trudność: łatwe Punktów: 1

Jak wygląda macierz F_2 ? A F_4 ? Jak wygląda macierz F_8 ?

Zadanie 5

Trudność: łatwe Punktów: 1

Jak wygląda macierz odwrotna do F_N ?

Zadanie 6

Trudność: łatwe Punktów: 2

W macierzy F_4 zamieńmy drugą i trzecią kolumnę. Uzyskaną tak macierz F_4' wyraź za pomocą macierzy Hadamarda oraz $B = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$. Niech F_N' będzie F_N , w którym przesunęliśmy nieparzyste kolumny na lewo, a parzyste na prawo. Wyraź F_{2N}' za pomocą F_N i B_N , gdzie

$$B_N = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & \omega & 0 & \cdots & 0 \\ 0 & 0 & \omega^2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \omega^{N-1} \end{bmatrix}.$$

¹Tzn. o stałą lepszym od $\frac{1}{2}$.

Zadanie 7 [FFT]

Trudność: średnie Punktów: 3

Jak wykorzystać powyższą zależność do skonstruowania klasycznego algorytmu do aplikowania macierzy F_N ?

Zadanie 8

Trudność: średnie Punktów: 5

Przystępujemy teraz do budowy obwodu realizującego Transformatę Fouriera. Wygodniej będzie odwrócić wyjście obwodu tak,

by najmniej znaczący bit wejścia przechodził na najbardziej znaczący bit wyjścia.

 $F_{N/2}$ jest teraz obwodem, który operuje na liczbach długości n-1 ($N=2^n$). Jak wykorzystać naszą zależność rekurencyjną do zbudowania tego obwodu. Można korzystać z bramek Hadamarda, CCNOT, oraz bramek obracających stan o dowolną fazę (liczbę zespoloną o module 1).

Wskazówka: Przyda nam się operacja CONTROLLED-B, reprezentowana macierzą

$$\begin{bmatrix} I & 0 \\ 0 & B \end{bmatrix}.$$

Musimy uzupełnić jeszcze algorytm rozwiązujęcy problem Simona nad \mathbb{Z}_N . Dostajemy funkcję $f: \mathbb{Z}_N \to \mathbb{Z}_M$, o której wiemy, że jest "różnowartościowa, okresowa", tzn. istnieje jakieś s|N, że na pierwszych s argumentach f daje różne wartości, ale dla każdego $x \in \mathbb{Z}_N$ zachodzi f(x+s) = f(x).

Do obwodu O_f wkładamy stan $\left(\sum_{x \in \mathbb{Z}_N} \frac{1}{\sqrt{N}} |x\rangle\right) \otimes |0\rangle$. Uzyskujemy $|\phi\rangle = \sum_{x \in \mathbb{Z}_N} \frac{1}{\sqrt{N}} |x\rangle |f(x)\rangle$. Po zmierzeniu wyniku funkcji f

uzyskujemy jakąś wartość $c \in \mathbb{Z}_M$, a stan $|\psi\rangle$ kolapsuje do $|\varphi\rangle = \sum_{x:f(x)=c} \frac{\sqrt{s}}{\sqrt{N}} |x\rangle = \sum_{i=0}^{N/s} \frac{\sqrt{s}}{\sqrt{N}} |t+s\cdot i\rangle$, dla jakiegoś t.

Zadanie 9

Trudność: łatwe Punktów: 2

Okazuje się, że

$$\widehat{\varphi}_a = \langle \varphi | \chi_a \rangle = \mathbb{E}_{x \sim \mathbb{Z}_N} \left[\overline{f(x)} \chi_a(x) \right] = \begin{cases} z_a & \text{jeśli } a \text{ jest wielokrotnością } \frac{N}{s}, \\ 0 & \text{wpp.} \end{cases}$$

Ile wynosi z_a (i jak zależy od c — wylosowanego wyniku funkcji)?

Zadanie 10

Trudność: średnie Punktów: 2

Z poprzedniego zadania wynika, że po przepuszczeniu $|\phi\rangle$ przez kwantową transformatę Fouriera dostajemy z jednakowym prawdopodobieństwem jedną z wielokrotności $\frac{N}{s}$.

Niech $m = \frac{N}{s}$. Użyjemy obwodu dwa razy i uzyskamy dwie liczby am i bm. Jeśli gcd(a, b) = 1, to łatwo wyłuskamy s. Czy prawdopodobieństwo, że gcd(a, b) = 1 dla (jednostajnie) losowych $a, b \in \mathbb{Z}_s$ jest mniejsze, czy większe niż $\frac{1}{2}$?

Wskazówka:
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$