

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, $P_g =$
(ASCE 7-05, Eq. 7-2)	18.56 psf	Sloped Roof Snow Load, $P_s =$
	1.00	I _s =
	0.82	$C_s =$
	0.90	$C_e =$

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 19.00 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- portou	_	-1 000	applied and from the carract.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S $_{\rm s}$ of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

1.2D + 1.6S + 0.8W

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>736.82</u>	6802.89	k
Compressive Load =	4114.59	<u>5315.44</u>	k
Lateral Load =	<u>13.84</u>	3657.33	k
Moment (Weak Axis) =	0.03	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

S.F. = 1.67

Weight Required = 4347.43 lbs

Minimum Width = 36 in in

Weight Provided = 7177.50 lbs

Sliding
Force = 878.96 lbs

Friction = 0.4
Weight Required = 2197.39 lbs
Resisting Weight = 7177.50 lbs
Additional Weight Required = 0 lbs

 Cohesion
 878.96 lbs

 Sliding Force
 878.96 lbs

 Cohesion
 130 psf

 Area
 33.00 ft²

 Resisting
 3588.75 lbs

 Additional Weight Required
 0 lbs

Footing Reinforcement

Use fiber reinforcing with (3) #5 rebar.

A minimum 132in long x 36in wide x 18in tall ballast foundation is required to resist overturning.

Use a 132in long x 36in wide x 18in tall ballast foundation to resist sliding. Friction is OK.

Use a 132in long x 36in wide x 18in tall ballast foundation. Cohesion is OK.

Shear key is not required.

Bearing Pressure

 $\frac{\text{Ballast Width}}{36 \text{ in}} = \frac{37 \text{ in}}{37 \text{ in}} = \frac{38 \text{ in}}{39 \text{ in}} = \frac{39 \text{ in}}{3776 \text{ lbs}}$ $\frac{7178 \text{ lbs}}{7377 \text{ lbs}} = \frac{7576 \text{ lbs}}{7776 \text{ lbs}} = \frac{7776 \text{ lbs}}{7776 \text{ lbs}} = \frac{7776 \text{ lbs}}{3777 \text{ lbs}} = \frac{7776 \text{$

ASD LC		1.0D ·	+ 1.0S			1.0D+	- 1.0W		1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W				
Width	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in	36 in	37 in	38 in	39 in
FA	1386 lbs	1386 lbs	1386 lbs	1386 lbs	1573 lbs	1573 lbs	1573 lbs	1573 lbs	2090 lbs	2090 lbs	2090 lbs	2090 lbs	-348 lbs	-348 lbs	-348 lbs	-348 lbs
FB	1376 lbs	1376 lbs	1376 lbs	1376 lbs	2268 lbs	2268 lbs	2268 lbs	2268 lbs	2606 lbs	2606 lbs	2606 lbs	2606 lbs	-3265 lbs	-3265 lbs	-3265 lbs	-3265 lbs
F _V	187 lbs	187 lbs	187 lbs	187 lbs	1581 lbs	1581 lbs	1581 lbs	1581 lbs	1310 lbs	1310 lbs	1310 lbs	1310 lbs	-1758 lbs	-1758 lbs	-1758 lbs	-1758 lbs
P _{total}	9940 lbs	10139 lbs	10338 lbs	10538 lbs	11019 lbs	11218 lbs	11418 lbs	11617 lbs	11874 lbs	12073 lbs	12272 lbs	12472 lbs	693 lbs	813 lbs	933 lbs	1052 lbs
M	3679 lbs-ft	3679 lbs-ft	3679 lbs-ft	3679 lbs-ft	4525 lbs-ft	4525 lbs-ft	4525 lbs-ft	4525 lbs-ft	5810 lbs-ft	5810 lbs-ft	5810 lbs-ft	5810 lbs-ft	3547 lbs-ft	3547 lbs-ft	3547 lbs-ft	3547 lbs-ft
е	0.37 ft	0.36 ft	0.36 ft	0.35 ft	0.41 ft	0.40 ft	0.40 ft	0.39 ft	0.49 ft	0.48 ft	0.47 ft	0.47 ft	5.12 ft	4.36 ft	3.80 ft	3.37 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	240.4 psf	239.8 psf	239.2 psf	238.6 psf	259.1 psf	258.0 psf	256.9 psf	255.9 psf	263.8 psf	262.5 psf	261.3 psf	260.2 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	362.0 psf	358.1 psf	354.4 psf	350.9 psf	408.7 psf	403.5 psf	398.6 psf	394.0 psf	455.8 psf	449.4 psf	443.3 psf	437.5 psf	401.0 psf	154.6 psf	115.7 psf	101.4 psf

Maximum Bearing Pressure = 456 psf Allowable Bearing Pressure = 1500 psf Use a 132 ${\it in}$ long x 36 ${\it in}$ wide x 18 ${\it in}$ tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 1177.4 \text{ ft-lbs}$

Resisting Force Required = 784.94 lbs S.F. = 1.67

Weight Required = 1308.24 lbs Minimum Width = 36 in in Weight Provided = 7177.50 lbs A minimum 132in long x 36in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width	36 in			36 in			36 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	245 lbs	635 lbs	245 lbs	797 lbs	2292 lbs	797 lbs	72 lbs	186 lbs	72 lbs	
F _V	1 lbs	0 lbs	1 lbs	5 lbs	0 lbs	5 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	9131 lbs	7178 lbs	9131 lbs	9256 lbs	7178 lbs	9256 lbs	2670 lbs	7178 lbs	2670 lbs	
М	5 lbs-ft	0 lbs-ft	5 lbs-ft	18 lbs-ft	0 lbs-ft	18 lbs-ft	1 lbs-ft	0 lbs-ft	1 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	0.50 ft	
f _{min}	276.4 psf	217.5 psf	276.4 psf	279.4 psf	217.5 psf	279.4 psf	80.9 psf	217.5 psf	80.9 psf	
f _{max}	277.0 psf	217.5 psf	277.0 psf	281.6 psf	217.5 psf	281.6 psf	80.9 psf	217.5 psf	80.9 psf	

Maximum Bearing Pressure = 282 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 36in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 36in wide x 18in tall ballast foundation and fiber reinforcing with (3) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	3.165 k	Maximum Axial Load =	4.601 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>43%</u>	Utilization =	<u>62%</u>
Diagonal Strut			
Maximum Axial Load =	2.432 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	or double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>33%</u>		
		Struts under compression are	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} =$ 46.89 in Allowable Story Drift for All Other Structures, Δ = { 0.020 h_{sx} 0.938 in Max Drift, $\Delta_{MAX} =$ 0.05 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 120 \text{ in}$$

$$J = 0.432$$

$$331.976$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_1 = 27.4 \text{ ksi}$$

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_1 = \varphi b | Bp-1.6Dp*b/t|$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 120 \\ \mathsf{J} &= 0.432 \\ &= 211.117 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_I} &= 28.6 \end{split}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$mDbr$$
 S1 = 36.9

$$S1 = 36.9$$

 $M = 0.65$

$$C_0 = 40.985$$

$$C_0 = 40.303$$
 $C_0 = 41.015$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = \frac{mDbr}{mDbr}$$

$$S2 = \frac{77.5}{100}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$
 $lx = 897074 \text{ mm}^4$

$$2.155 \text{ in}^4$$

y = 41.015 mm

$$Sx = 1.335 \text{ in}^3$$

$$M_{max}St = 2.788 \text{ k-ft}$$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$S1 = 36.9$$

 $m = 0.65$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = \frac{1}{mDbr}$$

$$S2 = \frac{77}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

$$ly = 446476 \text{ mm}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

$$M_{max}Wk = 1.152 k-ft$$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $A = 1215.13 \text{ mm}^2$
 1.88 in^2
 $P_{\text{max}} = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

31.1 ksi

3.4.16.1

 $\phi F_L =$

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 32.544 \text{ mm}$$

$$2.219 \text{ in}^4$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

$$\begin{split} \phi F_L W k &= & 33.3 \text{ ksi} \\ ly &= & 923544 \text{ mm}^4 \\ & & 2.219 \text{ in}^4 \\ x &= & 40 \text{ mm} \\ \text{Sy} &= & 1.409 \text{ in}^3 \\ M_{\text{max}} W k &= & 3.904 \text{ k-ft} \end{split}$$

Compression

3.4.9

$$b/t = 16.2 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = 31.6 \text{ ksi} \\ b/t = 7.4 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = \phi y F c y \\ \phi F_L = 33.3 \text{ ksi} \\ \\ \end{cases}$$

3.4.10

 $P_{max} =$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{16.2}\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$\int Bc - \frac{\theta_y}{\theta_x} Fcy$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 1.0Dp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$1.6Dp$$
 S2 = 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{cases} 1.6Dt \\ 1.1 \end{cases}$$

$$S1 = \begin{cases} 1.1 \\ 1.1 \end{cases}$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$y = 0.672 \text{ in}^4$$

 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

0.621 in³

$$M_{\text{max}}St = 1.460 \text{ k-ft}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$S1 = 36.9$$

 $m = 0.65$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7 λ = 0.57371 0.81 in $S1^* = \frac{Bc - Fcy}{1}$ 1.6Dc* S1* = 0.33515 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ S2* = 1.23671 $\phi cc = 0.87952$ $\phi F_L = \phi cc(Bc-Dc^*\lambda)$

 $\phi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

 $Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$$

$\phi F_L = 28.2 \text{ ksi}$

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

3.4.16.1

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.621 in³

1.460 k-ft

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

1.03 in²

$$P_{\text{max}} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$

$$J = 0.942$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_L =$$

Weak Axis:

$$L_b = 63.42$$

 $J = 0.942$

$$\left(Bc - \frac{\theta_y}{\theta_z}Fcy\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$k_1 Bp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used 0.0 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi \varphi F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$QEW K = 28.2 \text{ ksi}$$

 $\phi F_L St = 28.2 \text{ ksi}$ $lx = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm y = Sx = 0.621 in³ $M_{max}St = 1.460 \text{ k-ft}$

 $\phi F_L = 43.2 \text{ ksi}$

 $\phi F_l Wk =$ 28.2 ksi $ly = 279836 \text{ mm}^4$ 0.672 in⁴ 27.5 mm x =Sy = 0.621 in³ $M_{max}Wk =$ 1.460 k-ft

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.7854 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

3.4.9

9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Y	-46.9	-46 9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-58.278	-58.278	0	0
2	M14	V	-58.278	-58.278	0	0
3	M15	V	-90.067	-90.067	0	0
4	M16	V	-90.067	-90.067	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	132.451	132.451	0	0
2	M14	V	100.663	100.663	0	0
3	M15	V	52.98	52.98	0	0
4	M16	V	52 98	52 98	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E				1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	710.217	2	1253.798	2	.73	1	.004	1	Ó	1	Ó	1
2		min	-885.826	3	-1601.382	3	.035	15	0	15	0	1	0	1
3	N7	max	.037	9	1162.664	1	455	15	0	15	0	1	0	1
4		min	199	2	-147.5	3	-10.643	1	022	1	0	1	0	1
5	N15	max	.028	9	3165.066	1	0	14	0	14	0	1	0	1
6		min	-2.287	2	-566.781	3	0	11	0	12	0	1	0	1
7	N16	max	2594.623	2	4088.802	2	0	11	0	2	0	1	0	1
8		min	-2813.334	3	-5232.996	3	0	15	0	1	0	1	0	1
9	N23	max	.037	9	1162.664	1	10.643	1	.022	1	0	1	0	1
10		min	199	2	-147.5	3	.455	15	0	15	0	1	0	1
11	N24	max	710.217	2	1253.798	2	035	15	0	15	0	1	0	1
12		min	-885.826	3	-1601.382	3	73	1	004	1	0	1	0	1
13	Totals:	max	4012.372	2	11571.472	2	0	2	·				·	
14		min	-4585.564	3	-9297.54	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	108.107	1	465.003	1	-7.267	15	0	3	.258	1	0	1
2			min	4.483	15	-776.817	3	-176.271	1	015	2	.011	15	0	3
3		2	max	108.107	1	325.707	1	-5.59	15	0	3	.085	1	.735	3
4			min	4.483	15	-546.745	3	-135.472	1	015	2	.004	15	439	1
5		3	max	108.107	1	186.412	1	-3.912	15	0	3	0	3	1.215	3
6			min	4.483	15	-316.672	3	-94.674	1	015	2	043	1	724	1
7		4	max	108.107	1	47.116	1	-2.234	15	0	3	004	12	1.439	3
8			min	4.483	15	-86.6	3	-53.875	1	015	2	126	1	854	1
9		5	max	108.107	1	143.472	3	556	15	0	3	006	12	1.407	3
10			min	4.483	15	-92.681	2	-13.076	1	015	2	163	1	828	1
11		6	max	108.107	1	373.544	3	27.722	1	0	3	006	15	1.12	3
12			min	4.483	15	-231.828	2	.375	12	015	2	155	1	649	1
13		7	max	108.107	1	603.616	3	68.521	1	0	3	004	15	.577	3
14			min	4.483	15	-370.975	2	2.052	12	015	2	101	1	314	1
15		8	max	108.107	1	833.688	3	109.32	1	0	3	.001	10	.18	2
16			min	4.483	15	-510.122	2	3.73	12	015	2	004	3	221	3
17		9	max	108.107	1	1063.761	3	150.119	1	0	3	.142	1	.824	2
18			min	4.483	15	-649.363	1	5.407	12	015	2	.003	12	-1.275	3
19		10	max	108.107	1	788.659	1	-7.085	12	.015	2	.331	1	1.623	2
20			min	4.483	15	-1293.833	3	-190.917	1	0	3	.01	12	-2.585	3
21		11	max	108.107	1	649.363	1	-5.407	12	.015	2	.142	1	.824	2
22			min	4.483	15	-1063.761	3	-150.119	1	0	3	.003	12	-1.275	3
23		12	max	108.107	1	510.122	2	-3.73	12	.015	2	.001	10	.18	2
24			min	4.483	15	-833.688	3	-109.32	1	0	3	004	3	221	3
25		13	max	108.107	1	370.975	2	-2.052	12	.015	2	004	15	.577	3
26			min	4.483	15	-603.616	3	-68.521	1	0	3	101	1	314	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	<u>LC</u>
27		14	max	108.107	1	231.828	2	375	12	.015	2	006	15	1.12	3
28			min	4.483	15	-373.544	3	-27.722	1	0	3	155	1	649	1
29		15	max	108.107	1	92.681	2	13.076	1	.015	2	006	12	1.407	3
30			min	4.483	15	-143.472	3	.556	15	0	3	163	1	828	1
31		16	max	108.107	1	86.6	3	53.875	1	.015	2	004	12	1.439	3
32			min	4.483	15	-47.116	1	2.234	15	0	3	126	1	854	1
33		17	max	108.107	1	316.672	3	94.674	1	.015	2	0	3	1.215	3
34			min	4.483	15	-186.412	1	3.912	15	0	3	043	1	724	1
35		18	max	108.107	1	546.745	3	135.472	1	.015	2	.085	1	.735	3
36			min	4.483	15	-325.707	1	5.59	15	0	3	.004	15	439	1
37		19	max	108.107	1	776.817	3	176.271	1	.015	2	.258	1	0	1
38			min	4.483	15	-465.003	1	7.267	15	0	3	.011	15	0	3
39	M14	1	max	50.195	1	493.95	2	-7.492	15	.009	3	.294	1	0	1
40			min	2.084	15	-603.073	3	-181.737	1	011	2	.012	15	0	3
41		2	max	50.195	1	354.803	2	-5.814	15	.009	3	.115	1	.574	3
42			min	2.084	15		3	-140.938	1	011	2	.005	15	472	2
43		3	max	50.195	1	215.656	2	-4.137	15	.009	3	.002	3	.954	3
44			min	2.084	15			-100.139	1	011	2	019	1	788	2
45		4	max	50.195	1	76.509	2	-2.459	15	.009	3	003	12	1.142	3
46			min	2.084	15	-82.393	3	-59.341	1	011	2	107	1	951	2
47		5	max	50.195	1	91.168	3	781	15	.009	3	006	12	1.138	3
48			min	2.084	15	-64.442	1	-18.542	1	011	2	151	1	958	2
49		6	max	50.195	1	264.728	3	22.257	1	.009	3	006	15	.94	3
50			min	2.084	15	-203.738		.159	12	011	2	149	1	812	2
51		7	max	50.195	1	438.288	3	63.056	1	.009	3	004	15	.549	3
52			min	2.084	15	-343.034	1	1.837	12	011	2	101	1	51	2
53		8	max	50.195	1	611.848	3	103.854	1	.009	3	0	10	0	15
54			min	2.084	15	-482.33	1	3.514	12	011	2	008	1	054	2
55		9	max	50.195	1	785.408	3	144.653	1	.009	3	.13	1	.573	1
56			min	2.084	15	-621.626	1	5.192	12	011	2	.002	12	81	3
57		10	max	50.195	1	760.921	1	-6.869	12	.011	2	.313	1	1.341	1
58		10	min	2.084	15		3	-185.452	1	009	3	.009	12	-1.779	3
59		11	max	50.195	1	621.626	1	-5.192	12	.011	2	.13	1	.573	1
60			min	2.084	15	-785.408		-144.653	1	009	3	.002	12	81	3
61		12	max	50.195	1	482.33	1	-3.514	12	.003	2	0	10	0	15
62		12	min	2.084	15		3	-103.854	1	009	3	008	1	054	2
63		13	max	50.195	1	343.034	1	-1.837	12	.003	2	004	15	.549	3
64		13	min	2.084	15			-63.056	1	009	3	101	1	51	2
65		14	max	50.195	1	203.738	1	159	12	.011	2	006	15	.94	3
66		17	min	2.084	15	-264.728	3	-22.257	1	009	3	149	1	812	2
67		15		50.195			1	18.542	1	.011	2	006	12	1.138	3
68		13	min	2.084	15	-91.168	3	.781	15	009	3	151	1	958	2
69		16	max		1	82.393	3	59.341	1	.011	2	003	12	1.142	3
70		10	min	2.084	15	-76.509	2	2.459	15	009	3	003 107	1	951	2
71		17	max	50.195	1	255.953	3	100.139	1	.011	2	.002	3	.954	3
72		17	min	2.084	15	-215.656	2	4.137	15	009	3	019	1	788	2
73		10	max			429.513				.011	_	.115	1		
		10			1		3	140.938	1		2		15	.574	3
74		40	min	2.084	15	-354.803	2	5.814	15	009	3	.005		<u>472</u>	2
75		19	max	50.195	1	603.073	3	181.737	1	.011	2	.294	1	0	1
76	NAA E	4	min	2.084	15	-493.95	2	7.492	15	009	3	.012	15	0	3
77	M15	1	max	-2.193	15	684.714	2	-7.49	15	.012	2	.294	1	0	2
78		0	min	-52.737	1	-317.224	3	-181.716	1	008	3	.012	15	0	15
79		2	max	-2.193 52.727	15	489.053	2	-5.813	15	.012	2	.115	1	.303	3
80		0	min	-52.737	1	-228.434	3	-140.917		008	3	.005	15	<u>652</u>	2
81		3	max	-2.193 52.727	15	293.392	2	-4.135	15	.012	2	.002	3	.508	3
82		A	min	-52.737	1	-139.644	3	-100.118		008	3	019	1	<u>-1.087</u>	2
83		4	max	-2.193	15	97.732	2	-2.457	15	.012	2	003	12	.613	3

: Schletter, Inc. : HCV

Job Number : Model Name : Standard PVN

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

84 min -52.737 1 -50.853 3 -59.32 1008 3108 85 5 max -2.193 15 37.937 3779 15 .012 2006		-1.304	0
85 5 max -2.102 15 37.037 3 770 15 0.12 2 0.04			2
00 0 10 10 31.331 3 119 10 .012 2 000	12	.621	3
86 min -52.737 1 -97.929 2 -18.521 1008 3151	1	-1.304	2
87 6 max -2.193 15 126.728 3 22.278 1 .012 2006	15	.529	3
88 min -52.737 1 -293.59 2 .218 12008 3149	1	-1.086	2
89 7 max -2.193 15 215.518 3 63.076 1 .012 2004	15	.339	3
90 min -52.737 1 -489.25 2 1.895 12008 3101	1	652	2
91 8 max -2.193 15 304.308 3 103.875 1 .012 2 0	10	.05	3
92 min -52.737 1 -684.911 2 3.573 12008 3009) 1	013	1
93 9 max -2.193 15 393.099 3 144.674 1 .012 2 .13	1	.87	2
94 min -52.737 1 -880.571 2 5.25 12008 3 .003	12	337	3
95 10 max -2.193 15 1076.232 2 -6.928 12 .008 3 .313	1	1.958	2
96 min -52.737 1 -481.889 3 -185.473 1012 2 .009	12	823	3
97 11 max -2.193 15 880.571 2 -5.25 12 .008 3 .13	1	.87	2
98 min -52.737 1 -393.099 3 -144.674 1012 2 .003	12	337	3
99 12 max -2.193 15 684.911 2 -3.573 12 .008 3 0	10	.05	3
100 min -52.737 1 -304.308 3 -103.875 1012 2009) 1	013	1
101 13 max -2.193 15 489.25 2 -1.895 12 .008 3004	15	.339	3
102 min -52.737 1 -215.518 3 -63.076 1012 2101	1	652	2
103	15	.529	3
104 min -52.737 1 -126.728 3 -22.278 1012 2149		-1.086	2
105 15 max -2.193 15 97.929 2 18.521 1 .008 3 006	12	.621	3
106 min -52.737 1 -37.937 3 .779 15012 2151	1	-1.304	2
107 16 max -2.193 15 50.853 3 59.32 1 .008 3 003	12	.613	3
108 min -52.737 1 -97.732 2 2.457 15012 2108		-1.304	2
109 17 max -2.193 15 139.644 3 100.118 1 .008 3 .002	3	.508	3
110 min -52.737 1 -293.392 2 4.135 15012 2019) 1	-1.087	2
111 18 max -2.193 15 228.434 3 140.917 1 .008 3 .115	1	.303	3
112 min -52.737 1 -489.053 2 5.813 15012 2 .005	15	652	2
113		0	2
114 min -52.737 1 -684.714 2 7.49 15012 2 .012	15	0	15
115 M16 1 max -4.794 15 655.673 2 -7.274 15 .011 1 .26	1	0	2
116 min -115.477 1 -294.788 3 -176.529 1012 3 .011	15	0	3
117 2 max -4.794 15 460.012 2 -5.597 15 .011 1 .086	1	.278	3
118 min -115.477 1 -205.998 3 -135.73 1012 3 .004	15	62	2
119 3 max -4.794 15 264.352 2 -3.919 15 .011 1 0	12	.458	3
120 min -115.477 1 -117.207 3 -94.931 1012 3042		-1.022	2
121 4 max -4.794 15 68.691 2 -2.241 15 .011 1004	12	.539	3
122 min -115.477 1 -28.417 3 -54.133 1012 3125		-1.207	2
123 5 max -4.794 15 60.373 3563 15 .011 1006		.521	3
124 min -115.477 1 -126.969 2 -13.334 1012 3162		-1.175	2
125 6 max -4.794 15 149.164 3 27.465 1 .011 1006			3
126 min -115.477 1 -322.63 2 .57 12012 3155		925	2
127 7 max -4.794 15 237.954 3 68.263 1 .011 1004		.189	3
128 min -115.477 1 -518.291 2 2.248 12012 3101		458	2
129 8 max -4.794 15 326.744 3 109.062 1 .011 1 0	10	.227	2
130 min -115.477 1 -713.951 2 3.925 12 012 3 003	3	124	3
131 9 max -4.794 15 415.535 3 149.861 1 .011 1 .141	1_	1.129	2
132 min -115.477 1 -909.612 2 5.603 12012 3 .004	12	537	3
133	1	2.248	2
134 min -115.477 1 -504.325 3 -190.66 1011 1 .011	12	-1.048	3
135	1_	1.129	2
136 min -115.477 1 -415.535 3 -149.861 1011 1 .004	12	1	3
137	10	.227	2
138 min -115.477 1 -326.744 3 -109.062 1011 1003		124	3
139			3
140 min -115.477 1 -237.954 3 -68.263 1011 1101	1	458	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]			LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
141		14	max	-4.794	15	322.63	2	57	12	.012	3	006	15	.405	3
142			min	-115.477	1	-149.164	3	-27.465	1	011	_1_	155	1_	925	2
143		15	max	-4.794	15	126.969	2	13.334	1	.012	3	006	12	.521	3
144			min	-115.477	1	-60.373	3	.563	15	011	1	162	1	-1.175	2
145		16	max	-4.794	15	28.417	3	54.133	1	.012	3	004	12	.539	3
146			min	-115.477	1	-68.691	2	2.241	15	011	1	125	1	-1.207	2
147		17	max	-4.794	15	117.207	3	94.931	1	.012	3	0	12	.458	3
148			min	-115.477	1	-264.352	2	3.919	15	011	1	042	1	-1.022	2
149		18	max	-4.794	15	205.998	3	135.73	1	.012	3	.086	1	.278	3
150			min	-115.477	1	-460.012	2	5.597	15	011	1	.004	15	62	2
151		19	max	-4.794	15	294.788	3	176.529	1	.012	3	.26	1	0	2
152			min	-115.477	1	-655.673	2	7.274	15	011	1	.011	15	0	3
153	M2	1		1074.889	2	1.921	4	.697	1	0	5	0	3	0	1
154			min	-1407.797	3	.452	15	.029	15	0	1	0	1	0	1
155		2		1075.317	2	1.864	4	.697	1	0	5	0	<u> </u>	0	15
156		_	min	-1407.476	3	.439	15	.029	15	0	1	0	15	0	4
157		3	max		2	1.807	4	.697	1	0	5	0	1	0	15
158			min	-1407.155	3	.426	15	.029	15	0	1	0	15	001	4
159		4		1076.174	2	1.751	4	.697	1	0	5	0	1	0	15
160			min	-1406.833	3	.412	15	.029	15	0	1	0	15	002	4
161		5		1076.602	2	1.694	4	.697	1	0	5	0	1	0	15
162			min	-1406.512	3	.399	15	.029	15	0	1	0	15	002	4
163		6		1077.031	2	1.637	4	.697	1	0	5	0	1	0	15
164		-0	min	-1406.191	3	.386	15	.029	15	0	1	0	15	003	4
165		7		1077.459		1.58		.697	1		_		15 1	003 0	
				-1405.869	2		4 15			0	<u>5</u>	.001	15	_	15
166		0	min		3	.372		.029	15	0	_	_		003	4
167		8	max		2	1.523	4	.697	1	0	5	.001	1_	0	15
168			min	-1405.548	3	.359	15	.029	15	0	1_	0	15	004	4
169		9		1078.316	2	1.467	4	.697	1	0	5	.002	1_	0	15
170		40	min	-1405.226	3	.346	15	.029	15	0	1_	0	15	004	4
171		10		1078.745	2	1.41	4	.697	1	0	5	.002	1_	001	15
172		44	min	-1404.905	3	.327	12	.029	15	0	<u>1</u>	0	15	004	4
173		11		1079.173	2	1.353	4	.697	1_	0	5	.002	1_	001	15
174		4.0	min	-1404.584	3	.305	12	.029	15	0	1_	0	15	005	4
175		12		1079.602	2	1.296	4	.697	1	0	5_	.002	1_	001	15
176		4.0	min	-1404.262	3	.283	12	.029	15	0	1_	0	15	005	4
177		13	max	1080.03	2	1.24	4	.697	1_	0	5	.002	_1_	001	15
178			min	-1403.941	3	.261	12	.029	15	0	_1_	0	15	006	4
179		14		1080.459	2	1.184	2	.697	1	0	5	.003	_1_	001	15
180			min	-1403.62	3	.238	12	.029	15	0	<u>1</u>	0	15	006	4
181		15		1080.887	2	1.139	2	.697	1	0	<u>5</u>	.003	_1_	001	15
182			min	-1403.298	3	.216	12	.029	15	0	<u>1</u>	0	15	006	4
183		16		1081.316	2	1.095	2	.697	1	0	5	.003	_1_	002	15
184			min		3	.194	12	.029	15	0	1	0	15	007	4
185		17		1081.744	2	1.051	2	.697	1	0	5	.003	_1_	002	15
186			min	-1402.656	3	.172	12	.029	15	0	1	0	15	007	4
187		18		1082.173	2	1.007	2	.697	1	0	5	.003	_1_	002	12
188			min	-1402.334	3	.15	12	.029	15	0	1_	0	15	007	4
189		19		1082.601	2	.962	2	.697	1	0	5	.004	1_	002	12
190			min	-1402.013	3	.128	12	.029	15	0	1	0	15	007	4
191	M3	1	max	623.779	2	7.882	4	.161	1	0	5	0	_1_	.007	4
192			min	-769.989	3	1.853	15	.007	15	0	1	0	15	.002	12
193		2		623.609	2	7.115	4	.161	1	0	5	0	1_	.005	2
194			min	-770.116	3	1.673	15	.007	15	0	1	0	15	0	12
195		3	max		2	6.348	4	.161	1	0	5	0	1	.002	2
196			min		3	1.493	15	.007	15	0	1	0	15	0	3
197		4	max	623.268	2	5.58	4	.161	1	0	5	0	1_	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
198			min	-770.372	3	1.312	15	.007	15	0	1	0	15	002	3
199		5	max		2	4.813	4	.161	1	0	5	0	1	0	15
200			min	-770.5	3	1.132	15	.007	15	0	1	0	15	003	3
201		6	max	622.927	2	4.046	4	.161	1	0	5	0	1	001	15
202			min	-770.627	3	.952	15	.007	15	0	1	0	15	005	4
203		7	max	622.757	2	3.279	4	.161	1	0	5	0	1	002	15
204			min	-770.755	3	.771	15	.007	15	0	1	0	15	007	4
205		8	max	622.587	2	2.511	4	.161	1	0	5	0	1	002	15
206			min	-770.883	3	.591	15	.007	15	0	1	0	15	008	4
207		9	max	622.416	2	1.744	4	.161	1	0	5	0	1	002	15
208			min	-771.011	3	.411	15	.007	15	0	1	0	15	009	4
209		10	max	622.246	2	.977	4	.161	1	0	5	0	1	002	15
210			min	-771.138	3	.227	12	.007	15	0	1	0	15	009	4
211		11	max		2	.345	2	.161	1	0	5	.001	1	002	15
212			min	-771.266	3	124	3	.007	15	0	1	0	15	01	4
213		12	max	621.905	2	13	15	.161	1	0	5	.001	1	002	15
214			min	-771.394	3	572	3	.007	15	0	1	0	15	01	4
215		13	max	621.735	2	311	15	.161	1	0	5	.001	1	002	15
216			min	-771.522	3	-1.325	4	.007	15	0	1	0	15	009	4
217		14	max	621.565	2	491	15	.161	1	0	5	.001	1	002	15
218			min	-771.649	3	-2.092	4	.007	15	0	1	0	15	008	4
219		15	max	621.394	2	672	15	.161	1	0	5	.001	1	002	15
220			min	-771.777	3	-2.859	4	.007	15	0	1	0	15	007	4
221		16	max	621.224	2	852	15	.161	1	0	5	.001	1	001	15
222			min	-771.905	3	-3.626	4	.007	15	0	1	0	15	006	4
223		17	max	621.054	2	-1.032	15	.161	1	0	5	.001	1	001	15
224			min	-772.033	3	-4.394	4	.007	15	0	1	0	15	004	4
225		18	max	620.883	2	-1.213	15	.161	1	0	5	.002	1	0	15
226			min	-772.161	3	-5.161	4	.007	15	0	1	0	15	002	4
227		19	max	620.713	2	-1.393	15	.161	1	0	5	.002	1	0	1
228			min	-772.288	3	-5.928	4	.007	15	0	1	0	15	0	1
229	M4	1	max	1159.597	1	0	1	455	15	0	1	.001	1	0	1
230			min	-149.799	3	0	1	-11.016	1	0	1	0	15	0	1
231		2	max	1159.768	1	0	1	455	15	0	1	0	3	0	1
232			min	-149.672	3	0	1	-11.016	1	0	1	0	1	0	1
233		3	max	1159.938	1	0	1	455	15	0	1	0	15	0	1
234			min	-149.544	3	0	1	-11.016	1	0	1	001	1	0	1
235		4	max	1160.108	1	0	1	455	15	0	1	0	15	0	1
236			min	-149.416	3	0	1	-11.016	1	0	1	003	1	0	1
237		5	max	1160.279	1	0	1	455	15	0	1	0	15	0	1
238			min	-149.288	3	0	1	-11.016	1	0	1	004	1	0	1
239		6	max	1160.449	1	0	1	455	15	0	1	0	15	0	1
240			min	-149.161	3	0	1	-11.016	1	0	1	005	1	0	1
241		7		1160.619	1	0	1	455	15	0	1	0	15	0	1
242			min		3	0	1	-11.016	1	0	1	006	1	0	1
243		8	max	1160.79	1	0	1	455	15	0	1	0	15	0	1
244			min	-148.905	3	0	1	-11.016	1	0	1	008	1	0	1
245		9		1160.96	1	0	1	455	15	0	1	0	15	0	1
246			min	-148.777	3	0	1	-11.016	1	0	1	009	1	0	1
247		10		1161.13	1	0	1	455	15	0	1	0	15	0	1
248			min		3	0	1	-11.016	1	0	1	01	1	0	1
249		11		1161.301	1	0	1	455	15	0	1	0	15	0	1
250				-148.522	3	0	1	-11.016	1	0	1	012	1	0	1
251		12		1161.471	1	0	1	455	15	0	1	0	15	0	1
252		'-		-148.394	3	0	1	-11.016	1	0	1	013	1	0	1
253		13		1161.641	1	0	1	455	15	0	1	0	15	0	1
254				-148.266	3	0	1	-11.016	1	0	1	014	1	0	1
										•	_			_	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			
255 256		14		1161.812 -148.138	<u>1</u> 3	0	1	455 -11.016	<u>15</u> 1	0	<u>1</u> 1	015	15 1	0 0	1
257		15		1161.982	<u> </u>	0	1	455	15	0	+	015	15	0	1
258		13		-148.011	3	0	1	-11.016	1	0	1	017	1	0	1
259		16		1162.152	1	0	1	455	15	0	1	0	15	0	1
260				-147.883	3	0	1	-11.016	1	0	1	018	1	0	1
261		17		1162.323	1	0	1	455	15	0	1	0	15	0	1
262				-147.755	3	0	1	-11.016	1	0	1	019	1	0	1
263		18	max	1162.493	1	0	1	455	15	0	1	0	15	0	1
264			min	-147.627	3	0	1	-11.016	1	0	1	02	1	0	1
265		19	max	1162.664	1	0	1	455	15	0	1	0	15	0	1
266			min	-147.5	3	0	1	-11.016	1	0	1	022	1	0	1
267	<u>M6</u>	1		3454.488	2	2.428	2	0	_1_	0	1	0	1	0	1
268				-4601.367	3	023	3	0	1_	0	1	0	1	0	1
269		2		3454.916	2	2.384	2	0	1_	0	1	0	1	0	3
270			min		3	057	3	0	1_	0	1	0	1	0	2
271		3		3455.345	2	2.34	2	0	1	0	1	0	1	0	3
272		4		-4600.724	3	09	3	0	<u>1</u> 1	0	1	0	1	001	2
273		4	min	3455.773 -4600.403	3	2.296	3	0	1	0	1	0	1	0	3
274 275		5		3456.202	2	123 2.251	2	0	1	0	1	0	1	002 0	3
276		5	min	-4600.082	3	156	3	0	1	0	1	0	1	003	2
277		6		3456.63	2	2.207	2	0	1	0	1	0	1	- <u>003</u> 0	3
278				-4599.76	3	189	3	0	1	0	1	0	1	003	2
279		7		3457.059	2	2.163	2	0	1	0	1	0	1	0	3
280			min		3	222	3	0	1	0	1	0	1	004	2
281		8		3457.487	2	2.119	2	0	1	0	1	0	1	0	3
282				-4599.118	3	256	3	0	1	0	1	0	1	005	2
283		9	max	3457.916	2	2.074	2	0	1	0	1	0	1	0	3
284			min	-4598.796	3	289	3	0	1	0	1	0	1	005	2
285		10	max	3458.344	2	2.03	2	0	1_	0	1	0	1	0	3
286			min	-4598.475	3	322	3	0	1	0	1	0	1	006	2
287		11		3458.773	2	1.986	2	0	_1_	0	1	0	1	0	3
288				-4598.153	3	355	3	0	1_	0	1	0	1	006	2
289		12		3459.201	2	1.942	2	0	_1_	0	1	0	1	0	3
290		40	min		3	388	3	0	1_	0	1_	0	1	007	2
291		13	max		3	1.897 422	3	0	1	0	<u>1</u> 1	0	1	0 008	3
292 293		14	min	3460.058	2	1.853	2	0	1	0	1	0	1	008	3
294		14		-4597.189	3	455	3	0	1	0	1	0	1	008	2
295		15		3460.487	2	1.809	2	0	1	0	1	0	1	.001	3
296		13	min	-4596.868	3	488	3	0	1	0	1	0	1	009	2
297		16		3460.915	2	1.765	2	0	1	0	1	0	1	.001	3
298				-4596.547	3	521	3	0	1	0	1	0	1	009	2
299		17		3461.344	2	1.72	2	0	1	0	1	0	1	.001	3
300			min		3	554	3	0	1	0	1	0	1	01	2
301		18	max	3461.772	2	1.676	2	0	1	0	1	0	1	.002	3
302				-4595.904	3	588	3	0	1	0	1	0	1	01	2
303		19	max	3462.201	2	1.632	2	0	1_	0	1	0	1	.002	3
304			min		3	621	3	0	1	0	1	0	1	011	2
305	M7	1		2329.83	2	7.918	4	0	1	0	1	0	1	.011	2
306			min	-2429.849	3_	1.858	15	0	_1_	0	1	0	1	002	3
307		2	max		2	7.15	4	0	1	0	1	0	1	.008	2
308				-2429.976	3	1.678	15	0	1_	0	1_	0	1	003	3
309		3	max		2	6.383	4 1E	0	1	0	1	0	1	.005	2
310		1	min	-2430.104	3	1.498	<u>15</u>	0		0	1	0	1	005	3
311		4	max	2329.319	2	5.616	4	0	<u>1</u>	0	<u>1</u>	0	1	.003	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

312		Member	Sec		Axial[lb]				z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC		LC
314	312				-2430.232	3	1.317	15				1	0	1	006	3
316			5	max								<u> </u>				
316										_						
318			6													
318						_						-	·			
319			7					_				<u> </u>				
320										•						$\overline{}$
321			8										_			
322												-				
323			9							-						
325														_		
325			10													
326																
327			11	max		2			0	1	0	1	0	1		15
328						_			0			1	0	1		
339			12									1				
330						3			0	•	0	1	0	1		_
331			13	max		2	306		0		0	1	0	1_	002	15
332	330					3	-1.568	3	0	1	0	1	0	1	009	4
15			14	max	2327.616	2	486	15	0	1	0	1	0	1	002	15
334						3		4	0	1	0	1	0	1	008	
335	333		15	max	2327.446	2	666	15	0	1	0	1	0	_1_	002	15
336						3			0	1	0	1	0	1	007	
337	335		16	max	2327.275	2	847	15	0	1	0	1	0	1	001	15
338	336			min	-2431.765	3	-3.591	4	0	1	0	1	0	1	006	4
18 max 2326.935 2 -1.207 15 0 1 0 1 0 1 0 15	337		17	max	2327.105	2	-1.027	15	0	1	0	1	0	1	001	15
340	338			min	-2431.893	3	-4.358	4	0	1	0	1	0	1	004	4
341	339		18	max	2326.935	2	-1.207	15	0	1	0	1	0	1	0	15
342	340			min	-2432.021	3	-5.125	4	0	1	0	1	0	1	002	4
343 M8 1 max 3161.999 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 344 min 569.08 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 345 2 max 3162.17 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 346 min 568.952 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 347 3 max 3162.34 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 348 min 568.825 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 348 min 568.825 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 349 4 max 3162.51 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 350 min 568.697 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 351 5 max 3162.681 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 352 min 568.697 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 353 6 min 568.599 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 353 6 min 568.441 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 355 7 max 3163.022 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 356 6 min 568.314 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 356 6 min 568.314 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 356 6 min 568.314 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 357 8 max 3163.022 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 356 6 min 568.868 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 360 min 568.868 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 360 min 568.868 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 360 min 568.868 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 360 min 568.868 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 360 min 568.058 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 360 min 568.058 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 361 min 568.058 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 366 min 567.803 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 366 min 567.803 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 366 min 567.803 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 366 min 567.803 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 366 min 567.803 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 366 min 567.803 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 366 min 567.803 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 366 min 567.803 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 366 min 567.803 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	341		19	max	2326.764	2	-1.388	15	0	1	0	1	0	1	0	1
344 min -569.08 3 0 1 <th< td=""><td>342</td><td></td><td></td><td>min</td><td>-2432.148</td><td>3</td><td>-5.892</td><td>4</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></th<>	342			min	-2432.148	3	-5.892	4	0	1	0	1	0	1	0	1
345	343	M8	1	max	3161.999	1	0	1	0	1	0	1	0	1	0	1
346 min -568.952 3 0 1 0 1 0 1 0 1 0 1 347 3 max 3162.34 1 0 1	344			min	-569.08	3	0	1	0	1	0	1	0	1	0	1
347 3 max 3162.34 1 0 <th< td=""><td>345</td><td></td><td>2</td><td>max</td><td>3162.17</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></th<>	345		2	max	3162.17	1	0	1	0	1	0	1	0	1	0	1
348 min -568.825 3 0 1 <t< td=""><td>346</td><td></td><td></td><td>min</td><td>-568.952</td><td>3</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></t<>	346			min	-568.952	3	0	1	0	1	0	1	0	1	0	1
349 4 max 3162.51 1 0 <th< td=""><td>347</td><td></td><td>3</td><td>max</td><td>3162.34</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></th<>	347		3	max	3162.34	1	0	1	0	1	0	1	0	1	0	1
350	348			min	-568.825	3	0	1	0	1	0	1	0	1	0	1
351 5 max 3162.681 1 0 1	349		4	max	3162.51	1	0	1	0	1	0	1	0	1	0	1
352	350			min	-568.697	3	0	1	0	1	0	1	0	1	0	1
353 6 max 3162.851 1 0 1	351		5	max	3162.681	1	0	1	0	1	0	1	0	1	0	1
354 min -568.441 3 0 1 0 1 0 1 0 1 0 1 0 1 355 7 max 3163.022 1 0 1 0 1 0 1 0 1 0 1 0 1 356 min -568.314 3 0 1 0 1 0 1 0 1 0 1 0 1 357 8 max 3163.192 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 358 min -568.186 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 359 9 max 3163.362 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 360 min -568.058 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 361 10 max 3163.533 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 362 min -567.93 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 363 11 max 3163.703 1 0 1 0 1 0 1 0 1 0 1 0 1 364 min -567.803 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 365 12 max 3163.873 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 367 13 max 3164.044 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	352			min	-568.569	3	0	1	0	1	0	1	0	1	0	1
354 min -568.441 3 0 1 0 1 0 1 0 1 0 1 0 1 355 7 max 3163.022 1 0 1 0 1 0 1 0 1 0 1 0 1 356 min -568.314 3 0 1 0 1 0 1 0 1 0 1 0 1 357 8 max 3163.192 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 358 min -568.186 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 359 9 max 3163.362 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 360 min -568.058 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 361 10 max 3163.533 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 362 min -567.93 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 363 11 max 3163.703 1 0 1 0 1 0 1 0 1 0 1 0 1 364 min -567.803 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 365 12 max 3163.873 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 367 13 max 3164.044 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1			6	max	3162.851	1	0	1	0	1	0	1	0	1	0	1
356 min -568.314 3 0 1 <t< td=""><td>354</td><td></td><td></td><td>min</td><td>-568.441</td><td>3</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></t<>	354			min	-568.441	3	0	1	0	1	0	1	0	1	0	1
357 8 max 3163.192 1 0 1 0 1 0 1 0 1 0 1 0 1 <td>355</td> <td></td> <td>7</td> <td>max</td> <td>3163.022</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td>	355		7	max	3163.022	1	0	1	0	1	0	1	0	1	0	1
358 min -568.186 3 0 1 <t< td=""><td>356</td><td></td><td></td><td>min</td><td>-568.314</td><td>3</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td></t<>	356			min	-568.314	3	0	1	0	1	0	1	0	1	0	1
359 9 max 3163.362 1 0 1	357		8	max	3163.192	1	0	1	0	1	0	1	0	1	0	1
359 9 max 3163.362 1 0 1	358			min	-568.186	3	0	1	0	1	0	1	0	1	0	1
361			9	max	3163.362	1	0	1	0	1	0	1	0	1	0	1
361 10 max 3163.533 1 0 1 0 1 0 1 0 1 362 min -567.93 3 0 1 0 1 0 1 0 1 363 11 max 3163.703 1 0 1 0 1 0 1 0 1 364 min -567.803 3 0 1 0 1 0 1 0 1 0 1 365 12 max 3163.873 1 0 1 0 1 0 1 0 1 0 1 366 min -567.675 3 0 1 0 1 0 1 0 1 0 1 367 13 max 3164.044 1 0 1 0 1 0 1 0 1						3		1		1		1		1		
362 min -567.93 3 0 1 <td< td=""><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td>0</td><td>1</td></td<>			10					1		1		1		1	0	1
363 11 max 3163.703 1 0 1 0						3		1		1		1		1		1
364 min -567.803 3 0 1 <t< td=""><td></td><td></td><td>11</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td></t<>			11					1		1		1		1		1
365 12 max 3163.873 1 0 1 0 1 0 1 0 1 0 1 366 min -567.675 3 0 1 0 1 0 1 0 1 0 1 367 13 max 3164.044 1 0 1 0 1 0 1 0 1								1		1		1				
366 min -567.675 3 0 1 0 1 0 1 0 1 0 1 367 13 max 3164.044 1 0 1 0 1 0 1 0 1 0 1			12					1		1		1		1		
367 13 max 3164.044 1 0 1 0 1 0 1 0 1 0 1																
			13												_	_

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC	P -	LC		LC
369		14		3164.214	1	0	1	0	<u>1</u> 1	0	1	0	1	0	1
370 371		15	min	<u>-567.419</u> 3164.384	<u>3</u>	0	1	0	1	0	<u>1</u> 1	0	1	0	1
372		13		-567.292	3	0	1	0	1	0	1	0	1	0	1
373		16		3164.555	<u> </u>	0	1	0	1	0	1	0	1	0	1
374		10		-567.164	3	0	1	0	1	0	1	0	1	0	1
375		17		3164.725	1	0	1	0	1	0	1	0	1	0	1
376			min	-567.036	3	0	1	0	1	0	1	0	1	0	1
377		18		3164.895	1	0	1	0	1	0	1	0	1	0	1
378			min	-566.908	3	0	1	0	1	0	1	0	1	0	1
379		19		3165.066	1	0	1	0	1	Ö	1	0	1	0	1
380			min	-566.781	3	0	1	0	1	0	1	0	1	0	1
381	M10	1	max	1074.889	2	1.921	4	029	15	0	1	0	1	0	1
382			min	-1407.797	3	.452	15	697	1	0	5	0	3	0	1
383		2	max	1075.317	2	1.864	4	029	15	0	1	0	15	0	15
384			min	-1407.476	3	.439	15	697	1	0	5	0	1	0	4
385		3	max	1075.746	2	1.807	4	029	15	0	1	0	15	0	15
386			min	-1407.155	3	.426	15	697	1_	0	5	0	1	001	4
387		4		1076.174	2	1.751	4	029	15	0	_1_	0	15	0	15
388			min	-1406.833	3	.412	15	697	1	0	5	0	1	002	4
389		5		1076.602	2	1.694	4	029	<u>15</u>	0	_1_	0	15	0	15
390			min	-1406.512	3	.399	15	697	_1_	0	5	0	1	002	4
391		6		1077.031	2	1.637	4	029	<u>15</u>	0	_1_	0	15	0	15
392		_	min	-1406.191	3	.386	15	697	1_	0	5	0	1_	003	4
393		7		1077.459	2	1.58	4	029	<u>15</u>	0	1	0	15	0	15
394			min	-1405.869	3	.372	15	697	1_	0	5	001	1_	003	4
395		8		1077.888	2	1.523	4	029	<u>15</u>	0	1_	0	15	0	15
396		_	min	-1405.548	3	.359	15	697	1_	0	5	001	1_	004	4
397		9		1078.316 -1405.226	2	1.467	4	029	<u>15</u>	0	1	0	15	0	15
398 399		10	min		3	.346 1.41	<u>15</u>	697 029	<u>1</u> 15	0	<u>5</u> 1	002 0	1 15	004 001	15
400		10	max	-1404.905	3	.327	12	697	1	0	5	002	1	001	4
401		11		1079.173	2	1.353	4	029	15	0	1	0	15	004	15
402		11	min	-1404.584	3	.305	12	697	1	0	5	002	1	005	4
403		12		1079.602	2	1.296	4	029	15	0	1	0	15	003	15
404		12	min	-1404.262	3	.283	12	697	1	0	5	002	1	005	4
405		13	max	1080.03	2	1.24	4	029	15	0	1	0	15	001	15
406		-10	min	-1403.941	3	.261	12	697	1	0	5	002	1	006	4
407		14		1080.459	2	1.184	2	029	15	0	1	0	15	001	15
408				-1403.62	3	.238	12	697	1	0	5	003	1	006	4
409		15		1080.887	2	1.139	2	029	15	0	1	0	15	001	15
410			min	-1403.298	3	.216	12	697	1	0	5	003	1	006	4
411		16	max	1081.316	2	1.095	2	029	15	0	1	0	15	002	15
412				-1402.977	3	.194	12	697	1	0	5	003	1	007	4
413		17	max	1081.744	2	1.051	2	029	15	0	1	0	15	002	15
414			min		3	.172	12	697	1	0	5	003	1	007	4
415		18		1082.173	2	1.007	2	029	15	0	1	0	15	002	12
416				-1402.334	3	.15	12	697	1_	0	5	003	1	007	4
417		19		1082.601	2	.962	2	029	15	0	1	0	15	002	12
418			min	-1402.013	3	.128	12	697	1_	0	5	004	1	007	4
419	<u>M11</u>	1		623.779	2	7.882	4	007	<u>15</u>	0	1	0	15	.007	4
420				-769.989	3	1.853	15	161	1_	0	5	0	1	.002	12
421		2		623.609	2	7.115	4	007	15	0	1	0	15	.005	2
422				-770.116	3	1.673	15	161	1_	0	5	0	1_	0	12
423		3	max		2	6.348	4	007	<u>15</u>	0	1	0	15	.002	2
424				-770.244	3	1.493	15	161	1_	0	5	0	1_	0	3
425		4	max	623.268	2	5.58	4	007	15	0	_1_	0	15	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
426			min	-770.372	3	1.312	15	161	1	0	5	0	1	002	3
427		5	max	623.098	2	4.813	4	007	15	0	1	0	15	0	15
428			min	-770.5	3	1.132	15	161	1	0	5	0	1	003	3
429		6	max	622.927	2	4.046	4	007	15	0	1	0	15	001	15
430			min	-770.627	3	.952	15	161	1	0	5	0	1	005	4
431		7	max	622.757	2	3.279	4	007	15	0	1	0	15	002	15
432			min	-770.755	3	.771	15	161	1	0	5	0	1	007	4
433		8	max	622.587	2	2.511	4	007	15	0	1	0	15	002	15
434			min	-770.883	3	.591	15	161	1	0	5	0	1	008	4
435		9	max	622.416	2	1.744	4	007	15	0	1	0	15	002	15
436			min	-771.011	3	.411	15	161	1	0	5	0	1	009	4
437		10	max	622.246	2	.977	4	007	15	0	1	0	15	002	15
438			min	-771.138	3	.227	12	161	1	0	5	0	1	009	4
439		11	max	622.076	2	.345	2	007	15	0	1	0	15	002	15
440			min	-771.266	3	124	3	161	1	0	5	001	1	01	4
441		12	max	621.905	2	13	15	007	15	0	1	0	15	002	15
442			min	-771.394	3	572	3	161	1	0	5	001	1	01	4
443		13	max	621.735	2	311	15	007	15	0	1	0	15	002	15
444			min	-771.522	3	-1.325	4	161	1	0	5	001	1	009	4
445		14	max	621.565	2	491	15	007	15	0	1	0	15	002	15
446			min	-771.649	3	-2.092	4	161	1	0	5	001	1	008	4
447		15	max	621.394	2	672	15	007	15	0	1	0	15	002	15
448		1	min	-771.777	3	-2.859	4	161	1	0	5	001	1	007	4
449		16	max	621.224	2	852	15	007	15	0	1	0	15	001	15
450		'	min	-771.905	3	-3.626	4	161	1	0	5	001	1	006	4
451		17	max	621.054	2	-1.032	15	007	15	0	1	0	15	001	15
452		1	min	-772.033	3	-4.394	4	161	1	0	5	001	1	004	4
453		18	max	620.883	2	-1.213	15	007	15	0	1	0	15	0	15
454		'0	min	-772.161	3	-5.161	4	161	1	0	5	002	1	002	4
455		19	max	620.713	2	-1.393	15	007	15	0	1	0	15	0	1
456		13	min	-772.288	3	-5.928	4	161	1	0	5	002	1	0	1
457	M12	1		1159.597	1	0.020	1	11.016	1	0	1	0	15	0	1
458	IVIIZ	<u> </u>	min	-149.799	3	0	1	.455	15	0	1	001	1	0	1
459		2		1159.768	1	0	1	11.016	1	0	1	0	1	0	1
460			min	-149.672	3	0	1	.455	15	0	1	0	3	0	1
461		3		1159.938	1	0	1	11.016	1	0	1	.001	1	0	1
462			min	-149.544	3	0	1	.455	15	0	1	0	15	0	1
463		4			1	0	1	11.016	1	0	1	.003	1	0	1
464		-	min	-149.416	3	0	1	.455	15	0	1	0	15	0	1
465		5		1160.279	1	0	1	11.016	1	0	1	.004	1	0	1
466		-		-149.288		0	1	.455	15	0	1	0	15		1
467		6		1160.449		0	1	11.016	1	0	1	.005	1	0	1
468		-	min		3	0	1	.455	15	0	1	.003	15	0	1
469		7		1160.619	_	0	1	11.016	1	0	1	.006	1	0	1
470		'	min			0	1	.455	15	0	1	0	15	0	1
471		8		1160.79	1	0	1	11.016	1	0	1	.008	1	0	1
471		0			3	0	1	.455	15	0	1	0	15	0	1
473		9	min	1160.96	<u> </u>	0	1	11.016	1	0	1	.009	1	0	1
		9			3	0	1		15	0	1	0	15	0	1
474		10		-148.777			1	.455							
475		10		1161.13	1	0		11.016	15	0	1	.01	15	0	1
476		4.4		-148.65	3	0	1	.455		0		0			
477		11		1161.301	1	0	1	11.016	1	0	1	.012	1	0	1
478		40	min		3	0	1	.455	15	0	1	0	15	0	1
479		12		1161.471	1	0	1	11.016	1	0	1	.013	1	0	1
480		40		-148.394	3	0	1	.455	15	0	1	0	15	0	1
481		13		1161.641	1	0	1	11.016	1	0	1	.014	1_	0	1
482			min	-148.266	3	0	1	.455	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14		1161.812	_1_	0	1	11.016	1	0	1	.015	_1_	0	1
484			min	-148.138	3	0	1	.455	15	0	1	0	15	0	1
485		15	max	1161.982	<u>1</u>	0	1	11.016	1	0	1	.017	<u>1</u>	0	1_
486			min	-148.011	3	0	1	.455	15	0	1	0	15	0	1
487		16	max	1162.152	1	0	1	11.016	1	0	1	.018	1	0	1
488			min	-147.883	3	0	1	.455	15	0	1	0	15	0	1
489		17	max	1162.323	1	0	1	11.016	1	0	1	.019	1	0	1
490			min	-147.755	3	0	1	.455	15	0	1	0	15	0	1
491		18	max	1162.493	1	0	1	11.016	1	0	1	.02	1	0	1
492			min	-147.627	3	0	1	.455	15	0	1	0	15	0	1
493		19		1162.664	1	0	1	11.016	1	0	1	.022	1	0	1
494			min	-147.5	3	0	1	.455	15	0	1	0	15	0	1
495	M1	1	max	176.278	1	776.788	3	-4.483	15	0	1	.258	1	0	3
496			min	7.267	15	-463.556	1	-107.974	1	0	3	.011	15	015	2
497		2	max	176.883	1	775.814	3	-4.483	15	0	1	.201	1	.232	1
498			min	7.45	15	-464.854	1	-107.974	1	0	3	.008	15	409	3
499		3	max		3	546.751	2	-4.454	15	0	3	.144	1	.466	1
500			min	-278.133	2	-558.326	3	-107.508	1	0	2	.006	15	802	3
501		4	max		3	545.453	2	-4.454	15	0	3	.087	1	.189	1
502		7	min	-277.528	2	-559.3	3	-107.508	1	0	2	.004	15	508	3
503		5	max		3	544.155	2	-4.454	15	0	3	.031	1	003	15
504		-	min	-276.922	2	-560.273	3	-107.508	1	0	2	.001	15	212	3
505		6	max	475.586	3	542.856	2	-4.454	15	0	3	001	15	.084	3
506		-		-276.317	2	-561.247	3	-107.508	1	0	2	026	1	399	2
507		7	min	476.04				-4.454			3		15	.38	
			max		3	541.558	2		1 <u>5</u>	0	2	003	15 1		3
508		0	min	-275.711	2	-562.221	3	-107.508		0		083		685	
509		8	max	476.494	3	540.26	2	-4.454	15	0	3	006	<u>15</u>	.677	2
510			min	-275.106	2	-563.194	3	-107.508	1_	0	2	14	1_	97	
511		9	max		3	48.044	2	-6.538	15	0	9	.082	1_	.792	3
512		40	min	-201.396	2	.395	15		1_	0	3	.003	15	-1.111	2
513		10	max		3	46.746	2	-6.538	15	0	9	0	<u>15</u>	.77	3
514		4.4	min	-200.79	2	.004	15	-157.744	1_	0	3	001	1_	-1.136	2
515		11	max	490.271	3	45.448	2	-6.538	15	0	9	003	<u>15</u>	.749	3
516		40	min	-200.185	2	-1.588	4	-157.744		0	3	084	1_	-1.16	2
517		12	max	503.047	3_	359.792	3	-4.346	15	0	2	.138	1_	.652	3
518		40	min	-126.447	2	-639.35	2	-105.058	1_	0	3	.006	<u>15</u>	-1.028	2
519		13	max		3_	358.819	3	-4.346	15	0	2	.082	1_	.463	3
520		4.4	min	-125.842	2	-640.648	2	-105.058	1_	0	3	.003	15	69	2
521		14	max		3	357.845	3	-4.346	15	0	2	.027	1_	.274	3
522		4.5	min	-125.236	2	-641.946	2	-105.058	1_	0	3	.001	15	352	2
523		15	1	504.41	3_	356.871	3	-4.346	15	0	2	001	<u>15</u>	.085	3
524		40	min		2	-643.244	2	-105.058		0	3	029	1_	036	1
525		16	max		3_	355.898	3	-4.346	15	0	2	003	15	.327	2
526		4-		-124.026	2	-644.543	2	-105.058		0	3	084	1_	103	3
527		17		505.318	3_	354.924	3	-4.346	15	0	2	006	<u>15</u>	.667	2
528		1.0	min		2	-645.841	2	-105.058		0	3	139	1_	291	3
529		18	max		<u>15</u>	657.536	2	-4.794	15	0	3	008	<u>15</u>	.336	2
530			min	-177.129	_1_	-293.885	3	-115.606		0	2	199	_1_	144	3
531		19	max		15	656.238	2	-4.794	15	0	3	011	15	.012	3
532			min		1_	-294.859	3	-115.606		0	2	26	1_	011	1
533	<u>M5</u>	1		381.821	1_	2587.574	3	0	1	0	1	0	_1_	.029	2
534			min	14.171	12	-1572.973	2	0	1_	0	1	0	1_	0	3
535		2	max		1_	2586.6	3	0	1	0	1	0	_1_	.859	2
536			min		12	-1574.271	2	0	1	0	1	0	1_	-1.366	3
537		3		1525.357	3_	1657.476	2	0	1	0	1	0	1_	1.652	2
538				-971.948	2	-1792.048	3	0	1	0	1	0	1_	-2.678	3
539		4	max	1525.811	3_	1656.178	2	0	1	0	_1_	0	_1_	.803	1

Model Name

Schletter, Inc. HCV

. псv :

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
540			min	-971.343	2	-1793.021	3	0	1	0	1	0	1	-1.732	3
541		5	max	1526.265	3_	1654.88	2	0	1	0	1	0	1_	.008	9
542			min	-970.737	2	-1793.995	3	0	1	0	1	0	1	785	3
543		6	max	1526.719	3	1653.582	2	0	1	0	1	0	1	.161	3
544			min	-970.132	2	-1794.969	3	0	1	0	1	0	1	969	2
545		7	max	1527.173	3	1652.283	2	0	1	0	1	0	1	1.109	3
546			min	-969.527	2	-1795.942	3	0	1	0	1	0	1	-1.841	2
547		8	max	1527.627	3	1650.985	2	0	1	0	1	0	1	2.057	3
548			min	-968.921	2	-1796.916	3	0	1	0	1	0	1	-2.713	2
549		9	max	1548.545	3	160.556	2	0	1	0	1	0	_1_	2.369	3
550			min	-816.207	2	.392	15	0	1	0	1	0	1	-3.088	2
551		10	max	1548.999	3	159.257	2	0	1	0	1	0	1	2.291	3
552			min	-815.601	2	0	15	0	1	0	1	0	1	-3.173	2
553		11	max	1549.453	3	157.959	2	0	1	0	1	0	1	2.214	3
554			min	-814.996	2	-1.449	4	0	1	0	1	0	1	-3.257	2
555		12	max	1570.556	3	1141.509	3	0	1	0	1	0	1	1.944	3
556			min	-662.336	2	-1976.503	2	0	1	0	1	0	1	-2.914	2
557		13	max	1571.01	3	1140.536	3	0	1	0	1	0	1	1.342	3
558			min	-661.731	2	-1977.801	2	0	1	0	1	0	1	-1.871	2
559		14	max	1571.464	3	1139.562	3	0	1	0	1	0	1	.74	3
560			min	-661.125	2	-1979.099	2	0	1	0	1	0	1	827	2
561		15	_	1571.918	3	1138.588	3	0	1	0	1	0	1	.218	2
562		1	min	-660.52	2	-1980.398	2	0	1	0	1	0	1	004	13
563		16		1572.372	3	1137.615	3	0	1	0	1	0	1	1.263	2
564			min	-659.914	2	-1981.696	2	0	1	0	1	0	1	461	3
565		17	max		3	1136.641	3	0	1	0	1	0	1	2.309	2
566		1 '	min	-659.309	2	-1982.994	2	0	1	0	1	0	1	-1.062	3
567		18	max	-14.862	12	2215.03	2	0	1	0	1	0	1	1.19	2
568		10	min	-381.935	1	-1008.089	3	0	1	0	1	0	1	556	3
569		19	max	-14.56	12	2213.732	2	0	1	0	1	0	1	.022	1
570		13	min	-381.33	1	-1009.063	3	0	1	0	1	0	1	023	3
571	M9	1	max	176.278	1	776.788	3	107.974	1	0	3	011	15	0	3
572	IVIO		min	7.267	15	-463.556	1	4.483	15	0	1	258	1	015	2
573		2	max	176.883	1 1	775.814	3	107.974	1	0	3	008	15	.232	1
574			min	7.45	15	-464.854	1	4.483	15	0	1	201	1	409	3
575		3	max		3	546.751	2	107.508	1	0	2	006	15	.466	1
576		-	min	-278.133	2	-558.326	3	4.454	15	0	3	144	1	802	3
577		4	max	474.678	3	545.453	2	107.508	1	0	2	004	15	.189	1
578		4	_	-277.528	2	-559.3	3	4.454	15	0	3	087	1	508	3
579		5	min		3	544.155	2	107.508	1	0	2		15	003	15
		5	max	-276.922				4.454				001		212	
580		G			2	<u>-560.273</u> 542.856		107.508	1 <u>5</u>	0	3	031 .026	1	.084	3
581 582		6	max		3		2		15	0	3	.026	1 15	399	2
		7	min		2	-561.247	3	4.454							
583			1	476.04	3	541.558	2	107.508	1	0	2	.083	1	.38	3
584		0	min		2	-562.221	3	4.454	15	0	3	.003	15	685	2
585		8		476.494	3_	540.26	2	107.508	1	0	2	.14	1_	.677	3
586		_	min		2	-563.194	3	4.454	15	0	3	.006	15	97	2
587		9		489.363	3_	48.044	2	157.744	1	0	3	003	15	.792	3
588		10		-201.396	2	.395	15		15	0	9	082	1_	-1.111	2
589		10	max		3	46.746	2	157.744	1_	0	3	.001	1_	.77	3
590			min		2	.004	15		15	0	9	0	15	-1.136	2
591		11		490.271	3	45.448	2	157.744	1	0	3	.084	1	.749	3
592			min		2	-1.588	4	6.538	15	0	9	.003	15	-1.16	2
593		12		503.047	3_	359.792	3	105.058	1	0	3	006	15	.652	3
594			min		2	-639.35	2	4.346	15	0	2	138	1_	-1.028	2
595		13		503.501	3_	358.819	3	105.058	1	0	3	003	15	.463	3
596			min	-125.842	2	-640.648	2	4.346	15	0	2	082	1	69	2

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	503.956	3	357.845	3	105.058	1	0	3	001	15	.274	3
598			min	-125.236	2	-641.946	2	4.346	15	0	2	027	1	352	2
599		15	max	504.41	3	356.871	3	105.058	1	0	3	.029	1	.085	3
600			min	-124.631	2	-643.244	2	4.346	15	0	2	.001	15	036	1
601		16	max	504.864	3	355.898	3	105.058	1	0	3	.084	1	.327	2
602			min	-124.026	2	-644.543	2	4.346	15	0	2	.003	15	103	3
603		17	max	505.318	3	354.924	3	105.058	1	0	3	.139	1	.667	2
604			min	-123.42	2	-645.841	2	4.346	15	0	2	.006	15	291	3
605		18	max	-7.457	15	657.536	2	115.606	1	0	2	.199	1	.336	2
606			min	-177.129	1	-293.885	3	4.794	15	0	3	.008	15	144	3
607		19	max	-7.274	15	656.238	2	115.606	1	0	2	.26	1	.012	3
608			min	-176.523	1	-294.859	3	4.794	15	0	3	.011	15	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.115	2	.008	3 9.484e-3	2	NC	1_	NC	1
2			min	0	15	017	3	004	2 -1.552e-3	3	NC	1	NC	1
3		2	max	0	1	.351	3	.04	1 1.091e-2	2	NC	5	NC	2
4			min	0	15	095	1	0	10 -1.581e-3	3	652.183	3	6094.732	1
5		3	max	0	1	.649	3	.097	1 1.233e-2	2	NC	5	NC	3
6			min	0	15	252	1	.004	15 -1.61e-3	3	360.338	3	2494.648	1
7		4	max	0	1	.83	3	.146	1 1.376e-2	2	NC	5	NC	3
8			min	0	15	34	1	.006	15 -1.638e-3	3	283.305	3	1651.597	1
9		5	max	0	1	.873	3	.171	1 1.518e-2	2	NC	5	NC	3
10			min	0	15	346	1	.007	15 -1.667e-3	3	269.858	3	1407.984	1
11		6	max	0	1	.779	3	.165	1 1.66e-2	2	NC	5	NC	3
12			min	0	15	272	1	.007	15 -1.695e-3	3	301.594	3	1460.636	1
13		7	max	0	1	.578	3	.129	1 1.803e-2	2	NC	5	NC	3
14			min	0	15	135	1	.006	10 -1.724e-3	3	403.678	3	1867.966	1
15		8	max	0	1	.322	3	.074	1 1.945e-2	2	NC	4	NC	2
16			min	0	15	0	15	002	10 -1.752e-3	3	708.34	3	3265.668	1
17		9	max	0	1	.204	2	.027	3 2.087e-2	2	NC	4	NC	1
18			min	0	15	.005	15	008	10 -1.781e-3	3	2245.833	3	NC	1
19		10	max	0	1	.271	2	.026	3 2.23e-2	2	NC	3	NC	1
20			min	0	1	015	3	018	2 -1.809e-3	3	1545.403	2	NC	1
21		11	max	0	15	.204	2	.027	3 2.087e-2	2	NC	4	NC	1
22			min	0	1	.005	15	008	10 -1.781e-3	3	2245.833	3	NC	1
23		12	max	0	15	.322	3	.074	1 1.945e-2	2	NC	4	NC	2
24			min	0	1	0	15	002	10 -1.752e-3	3	708.34	3	3265.668	1
25		13	max	0	15	.578	3	.129	1 1.803e-2	2	NC	5	NC	3
26			min	0	1	135	1	.006	10 -1.724e-3	3	403.678	3	1867.966	1
27		14	max	0	15	.779	3	.165	1 1.66e-2	2	NC	5	NC	3
28			min	0	1	272	1	.007	15 -1.695e-3	3	301.594	3	1460.636	1
29		15	max	0	15	.873	3	.171	1 1.518e-2	2	NC	5	NC	3
30			min	0	1	346	1	.007	15 -1.667e-3	3	269.858	3	1407.984	1
31		16	max	0	15	.83	3	.146	1 1.376e-2	2	NC	5	NC	3
32			min	0	1	34	1	.006	15 -1.638e-3	3	283.305	3	1651.597	1
33		17	max	0	15	.649	3	.097	1 1.233e-2	2	NC	5	NC	3
34			min	0	1	252	1	.004	15 -1.61e-3	3	360.338	3	2494.648	1
35		18	max	0	15	.351	3	.04	1 1.091e-2	2	NC	5	NC	2
36			min	0	1	095	1	0	10 -1.581e-3	3	652.183	3	6094.732	1
37		19	max	0	15	.115	2	.008	3 9.484e-3	2	NC	1	NC	1
38			min	001	1	017	3	004	2 -1.552e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.235	3	.008	3 5.624e-3	2	NC	1	NC	1
40			min	0	15	371	2	004	2 -4.212e-3	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
41		2	max	0	1	.588	3	.028	1	6.743e-3	2	NC	5	NC	2
42			min	0	15	699	2	0	10	-5.134e-3	3	680.709	3	8956.613	
43		3	max	0	1	.886	3	.078	1	7.862e-3	2	NC	_5_	NC	3
44			min	0	15	983	2	.003	15		3	368.934	3	3116.873	
45		4	max	0	1	1.092	3	.125	1	8.981e-3	2	NC	<u>15</u>	NC	3
46		_	min	0	15	<u>-1.191</u>	2	.005	15		3	280.198	3	1931.611	1
47		5	max	0	1	1.188	3	.152	1	1.01e-2	2	NC 050.047	15	NC 4500.050	3
48		<u> </u>	min	0	15	-1.307	2	.007	15	-7.9e-3	3	252.047	3	1588.353	
49		6	max	0	1	1.173	3	.15	1	1.122e-2	2	NC	15	NC 1010.01	3
50		7	min	0	15	-1.33	2	.006	15	-8.822e-3	3	250.29	2	1610.34	1
51		7	max	0	1	1.069	3	.12	1	1.234e-2	2	NC OCE 545	15	NC	3
52		0	min	0	15	-1.275	2	.005	15	-9.744e-3	3	265.545	2	2025.902	1
53		8	max	0	1	.912	3	.07	1	1.346e-2	2	NC 200,000	<u>15</u>	NC	2
54			min	0	15	<u>-1.171</u>	2	001		-1.067e-2	3	299.998	2	3492.614	
55		9	max	0	15	.76	2	.024	3	1.458e-2	2	NC 346.726	5	NC NC	1
56		10	min			<u>-1.063</u>		008	10		3		2		•
57		10	max	0	1	.689	2	.024	2	1.569e-2 -1.251e-2	2	NC 374.894	5	NC NC	1
58		11	min	0		-1.011	3	016			3	NC	2	NC NC	1
59			max	0	15	.76		.024	3	1.458e-2 -1.159e-2	2	346.726	<u>5</u>	NC NC	1
60 61		12	min	0	15	<u>-1.063</u> .912	3	008 .07	10	1.346e-2	2	NC	15	NC NC	2
62		12	max	0	1	-1.171	2	001	10	-1.067e-2	3	299.998	2	3492.614	1
63		13		0	15	1.069	3	.12	1	1.234e-2	2	NC	15	NC	3
64		13	max	0	1	-1.275	2	.005		-9.744e-3	3	265.545	2	2025.902	1
65		14		0	15	1.173	3	.15	1	1.122e-2	2	NC	15	NC	3
66		14	max min	0	1	-1.33	2	.006	15	-8.822e-3	3	250.29	2	1610.34	1
67		15	max	0	15	1.188	3	.152	1	1.01e-2	2	NC	15	NC	3
68		13	min	0	1	-1.307	2	.007	15	-7.9e-3	3	252.047	3	1588.353	
69		16	max	0	15	1.092	3	.125	1	8.981e-3	2	NC	15	NC	3
70		10	min	0	1	-1.191	2	.005	15	-6.978e-3	3	280.198	3	1931.611	1
71		17	max	0	15	.886	3	.078	1	7.862e-3	2	NC	5	NC	3
72		1,	min	0	1	983	2	.003	15	-6.056e-3	3	368.934	3	3116.873	1
73		18	max	0	15	.588	3	.028	1	6.743e-3	2	NC	5	NC	2
74		1.0	min	0	1	699	2	0	10	-5.134e-3	3	680.709	3	8956.613	
75		19	max	0	15	.235	3	.008	3	5.624e-3	2	NC	1	NC	1
76		10	min	0	1	371	2	004	2	-4.212e-3	3	NC	1	NC	1
77	M15	1	max	0	15	.241	3	.007	3	3.566e-3	3	NC	1	NC	1
78			min	0	1	37	2	004	2	-5.846e-3	2	NC	1	NC	1
79		2	max	0	15	.459	3	.028	1	4.352e-3	3	NC	5	NC	2
80			min	0	1	789	2	0	10	-7.013e-3	2	573.111		8912.972	1
81		3	max	0	15	.649	3	.078	1	5.138e-3		NC	5		3
82			min	0	1	-1.145	2	.003		-8.181e-3		309.508		3107.598	
83		4	max	0	15	.79	3	.126	1	5.924e-3	3	NC	15	NC	3
84			min	0	1	-1.397	2	.005	15	-9.348e-3	2	233.602	2	1926.952	1
85		5	max	0	15	.871	3	.153	1	6.709e-3	3	NC	15	NC	3
86			min	0	1	-1.523	2	.007	15	-1.051e-2	2	208.086	2	1584.707	1
87		6	max	0	15	.893	3	.151	1	7.495e-3	3	NC	15	NC	3
88			min	0	1	-1.523	2	.006	15	-1.168e-2	2	208.085	2	1606.288	1
89		7	max	0	15	.863	3	.12	1	8.281e-3	3	NC	15	NC	3
90			min	0	1	-1.419	2	.005	15	-1.285e-2	2	228.851	2	2019.255	1
91		8	max	0	15	.801	3	.07	1	9.067e-3	3	NC	15	NC	2
92			min	0	1	-1.252	2	0	10	-1.402e-2	2	272.106	2	3472.689	1
93		9	max	0	15	.735	3	.023	3	9.853e-3	3	NC	5	NC	1
94			min	0	1	-1.087	2	007	10	-1.518e-2	2	334.659	2	NC	1
95		10	max	0	1	.703	3	.022	3	1.064e-2	3	NC	5	NC	1
96			min	0	1	-1.009	2	015	2	-1.635e-2	2	375.385	2	NC	1
97		11	max	0	1	.735	3	.023	3	9.853e-3	3	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					LC
98			min	0	15	-1.087	2	007	10 -1.518e-2	2	334.659	2	NC	1
99		12	max	0	1	.801	3	.07	1 9.067e-3	3	NC	15	NC	2
100			min	0	15	<u>-1.252</u>	2	0	10 -1.402e-2	2	272.106	2	3472.689	
101		13	max	0	1	.863	3	12	1 8.281e-3	3	NC	<u>15</u>	NC	3
102		4.4	min	0	15	<u>-1.419</u>	2	.005	15 -1.285e-2	2	228.851	2	2019.255	1
103		14	max	0	1	.893	3	.151	1 7.495e-3	3	NC	<u>15</u>	NC 1000 000	3
104		4.5	min	0	15	<u>-1.523</u>	2	.006	15 -1.168e-2	2	208.085	2	1606.288	
105		15	max	0	1	.871	3	.153	1 6.709e-3	3	NC	15	NC 4504.707	3
106		40	min	0	15	<u>-1.523</u>	2	.007	15 -1.051e-2	2	208.086	2	1584.707	1
107		16	max	0	1	.79	3	.126	1 5.924e-3	3	NC coo coo	<u>15</u>	NC 4000 050	3
108		4-7	min	0	15	-1.397	2	.005	15 -9.348e-3	2	233.602	2	1926.952	1
109		17	max	0	1	<u>.649</u>	3	.078	1 5.138e-3	3	NC	5	NC	3
110		10	min	0	15	<u>-1.145</u>	2	.003	15 -8.181e-3	2	309.508	2	3107.598	
111		18	max	0	1	<u>.459</u>	3	.028	1 4.352e-3	3	NC	5	NC NC	2
112		4.0	min	0	15	789	2	0	10 -7.013e-3	2	573.111	2	8912.972	1
113		19	max	0	1	.241	3	.007	3 3.566e-3	3	NC	<u>1</u>	NC	1
114			min	0	15	37	2	004	2 -5.846e-3	2	NC	<u>1</u>	NC	1
115	<u>M16</u>	1	max	0	15	.103	2	.006	3 6.364e-3	3	NC	1_	NC	1
116			min	001	1	079	3	003	2 -7.974e-3	2	NC	1_	NC	1
117		2	max	0	15	.041	3	.04	1 7.509e-3	3	NC	5_	NC	2
118			min	0	1	188	2	.002	10 -9.04e-3	2	824.231	2	6132.255	
119		3	max	0	15	.134	3	.097	1 8.654e-3	3_	NC	5	NC	3
120			min	0	1	42	2	.004	15 -1.011e-2	2	458.528	2	2500.949	
121		4	max	0	15	.184	3	.146	1 9.8e-3	3	NC	5	NC	3
122			min	0	1	554	2	.006	15 -1.117e-2	2	365.144	2	1652.287	1
123		5	max	0	15	.181	3	.172	1 1.095e-2	3	NC	5	NC	3
124			min	0	1	572	2	.007	15 -1.224e-2	2	355.748	2	1405.939	
125		6	max	0	15	.129	3	.166	1 1.209e-2	3	NC	5	NC	3
126			min	0	1	476	2	.007	15 -1.33e-2	2	414.744	2	1455.085	1
127		7	max	0	15	.037	3	.13	1 1.324e-2	3	NC	5_	NC	3
128			min	0	1	291	2	.006	15 -1.437e-2	2	609.373	2	1853.256	
129		8	max	0	15	.008	9	.076	1 1.438e-2	3	NC	3	NC	2
130			min	0	1	072	3	0	10 -1.544e-2	2	1446.332	2	3205.88	1
131		9	max	0	15	.154	1	.021	1 1.553e-2	3	NC	4	NC	1
132			min	0	1	168	3	006	10 -1.65e-2	2	2700.536	3	NC	1
133		10	max	0	1	.232	2	.019	3 1.667e-2	3	NC	4	NC	1
134			min	0	1	211	3	014	2 -1.757e-2	2	1821.62	1	NC	1
135		11	max	0	1	.154	1	.021	1 1.553e-2	3	NC	4	NC	1
136			min	0	15	168	3	006	10 -1.65e-2	2	2700.536	3	NC	1
137		12	max	0	1	.008	9	.076	1 1.438e-2	3	NC	3	NC	2
138			min	0	15	072	3	0	10 -1.544e-2	2	1446.332	2	3205.88	1
139		13	max	0	1	.037	3	.13	1 1.324e-2	3	NC	5	NC	3
140			min	0	15	291	2	.006	15 -1.437e-2	2	609.373	2	1853.256	1
141		14	max	0	1	.129	3	.166	1 1.209e-2	3	NC	5	NC	3
142			min	0	15	476	2	.007	15 -1.33e-2	2	414.744	2	1455.085	1
143		15	max	0	1	.181	3	.172	1 1.095e-2	3	NC	5	NC	3
144			min	0	15	572	2	.007	15 -1.224e-2	2	355.748	2	1405.939	1
145		16	max	0	1	.184	3	.146	1 9.8e-3	3	NC	5	NC	3
146			min	0	15	554	2	.006	15 -1.117e-2	2	365.144	2	1652.287	
147		17	max	0	1	.134	3	.097	1 8.654e-3	3	NC	5	NC	3
148			min	0	15	42	2	.004	15 -1.011e-2	2	458.528	2	2500.949	
149		18	max	0	1	.041	3	.04	1 7.509e-3	3	NC	5	NC	2
150			min	0	15	188	2	.002	10 -9.04e-3	2	824.231	2	6132.255	
151		19	max	.001	1	.103	2	.002	3 6.364e-3	3	NC	1	NC	1
152			min	0	15	079	3	003	2 -7.974e-3	2	NC	1	NC	1
153	M2	1	max	.007	2	.007	2	.008	1 -9.517e-6		NC	1	NC	2
154			min	008	3	012	3	0	15 -2.298e-4	1	9039.916	2	7501.287	
107			10001	.000	J	.012	J	U	10 2.2306-4		5000.010		7001.207	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

156		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
157	155		2	max	.006	2	.006	2	.008	1	-8.929e-6	<u>15</u>	NC		NC	2
158																
159			3													
160												•				
161			4													
162														_		
163			5													
164														•		
166			6													_
166												•		_		
167																
168																
169			8									<u>15</u>				1
1710												1_				1
171			9													
172			10									_		_		•
173			10													
174			4.4									_ •		•		
175			11				-		_							
176			40											_		
177			12													
178			40													
14 max			13													
180			4.4													•
181			14													
182			15											_		•
183			15													
184			16													
185			10													_
186			17									•		_		
187			17													
188			1Ω													
189			10						-							
190			10													
191 M3			13			-		-								
192		M3	1			•								_		•
193		IVIO							-							
194 min 0 2 002 4 0 15 6.435e-7 15 NC 1 NC 1 195 3 max 0 3 0 15 0 1 3.971e-5 1 NC 1 NC 1 196 min 0 2 004 4 0 15 1.641e-6 15 NC 1 NC 1 197 4 max .001 3 001 15 0 1 6.386e-5 1 NC 1 NC 1 198 min 0 2 006 4 0 15 2.638e-6 15 NC 1 NC 1 199 5 max .001 3 002 15 0 1 8.802e-5 1 NC 1 NC 1 201 6 max .002 3 002 15 <t< td=""><td></td><td></td><td>2</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td>•</td><td></td><td></td></t<>			2		-							+		•		
195 3 max 0 3 0 15 0 1 3.971e-5 1 NC 1 NC 1 196 min 0 2 004 4 0 15 1.641e-6 15 NC 1 NC 1 197 4 max .001 3 001 15 0 1 6.386e-5 1 NC 1 NC 1 198 min 0 2 006 4 0 15 2.638e-6 15 NC 1 NC 1 199 5 max .001 3 002 15 0 1 8.802e-5 1 NC 1 NC 1 200 min 001 2 007 4 0 15 3.635e-6 15 NC 1 NC 1 201 6 max .002 3 002 15												15				_
196 min 0 2 004 4 0 15 1.641e-6 15 NC 1 NC 1 197 4 max .001 3 001 15 0 1 6.386e-5 1 NC 1 NC 1 198 min 0 2 006 4 0 15 2.638e-6 15 NC 1 NC 1 199 5 max .001 3 002 15 0 1 8.802e-5 1 NC 1 NC 1 200 min 001 2 007 4 0 15 3.635e-6 15 NC 1 NC 1 201 6 max .002 3 002 15 0 1 1.122e-4 1 NC 1 NC 1 202 min 002 2 003 15 .001<			3											_		
197 4 max .001 3 001 15 0 1 6.386e-5 1 NC 1 NC 1 198 min 0 2 006 4 0 15 2.638e-6 15 NC 1 NC 1 199 5 max .001 3 002 15 0 1 8.802e-5 1 NC 1 NC 1 200 min 001 2 007 4 0 15 3.635e-6 15 NC 1 NC 1 201 6 max .002 3 002 15 0 1 1.122e-4 1 NC 1 NC 1 202 min 002 2 009 4 0 15 4.633e-6 15 NC 1 NC 1 203 7 max .002 3 003 15<																
198 min 0 2 006 4 0 15 2.638e-6 15 NC 1 NC 1 199 5 max .001 3 002 15 0 1 8.802e-5 1 NC 1 NC 1 200 min 001 2 007 4 0 15 3.635e-6 15 NC 1 NC 1 201 6 max .002 3 002 15 0 1 1.122e-4 1 NC 1 NC 1 202 min 002 2 009 4 0 15 4.633e-6 15 NC 1 NC 1 203 7 max .002 3 003 15 .001 1 1.363e-4 1 NC 1 NC 1 204 min 002 2 011 4 <td< td=""><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			4													
199 5 max .001 3 002 15 0 1 8.802e-5 1 NC 1 NC 1 200 min 001 2 007 4 0 15 3.635e-6 15 NC 1 NC 1 201 6 max .002 3 002 15 0 1 1.122e-4 1 NC 1 NC 1 202 min 002 2 009 4 0 15 4.633e-6 15 NC 1 NC 1 203 7 max .002 3 003 15 .001 1 1.363e-4 1 NC 1 NC 1 204 min 002 2 011 4 0 15 5.63e-6 15 8606.418 4 NC 1 205 8 max .003 3 003																
200 min 001 2 007 4 0 15 3.635e-6 15 NC 1 NC 1 201 6 max .002 3 002 15 0 1 1.122e-4 1 NC 1 NC 1 202 min 002 2 009 4 0 15 4.633e-6 15 NC 1 NC 1 203 7 max .002 3 003 15 .001 1 1.363e-4 1 NC 1 NC 1 204 min 002 2 011 4 0 15 5.63e-6 15 8606.418 4 NC 1 205 8 max .003 3 003 15 .001 1 1.605e-4 1 NC 1 NC 1 206 min 002 2 012 4			5													
201 6 max .002 3 002 15 0 1 1.122e-4 1 NC 1 NC 1 202 min 002 2 009 4 0 15 4.633e-6 15 NC 1 NC 1 203 7 max .002 3 003 15 .001 1 1.363e-4 1 NC 1 NC 1 204 min 002 2 011 4 0 15 5.63e-6 15 8606.418 4 NC 1 205 8 max .003 3 003 15 .001 1 1.605e-4 1 NC 1 NC 1 206 min 002 2 012 4 0 15 6.627e-6 15 7726.846 4 NC 1 207 9 max .003 3 003										15				1		
202 min 002 2 009 4 0 15 4.633e-6 15 NC 1 NC 1 203 7 max .002 3 003 15 .001 1 1.363e-4 1 NC 1 NC 1 204 min 002 2 011 4 0 15 5.63e-6 15 8606.418 4 NC 1 205 8 max .003 3 003 15 .001 1 1.605e-4 1 NC 1 NC 1 206 min 002 2 012 4 0 15 6.627e-6 15 7726.846 4 NC 1 207 9 max .003 3 003 15 .002 1 1.846e-4 1 NC 2 NC 1 208 min 002 2 013 <			6											1		1
203 7 max .002 3 003 15 .001 1 1.363e-4 1 NC 1 NC 1 204 min 002 2 011 4 0 15 5.63e-6 15 8606.418 4 NC 1 205 8 max .003 3 003 15 .001 1 1.605e-4 1 NC 1 NC 1 206 min 002 2 012 4 0 15 6.627e-6 15 7726.846 4 NC 1 207 9 max .003 3 003 15 .002 1 1.846e-4 1 NC 2 NC 1 208 min 002 2 013 4 0 15 7.625e-6 15 7206.791 4 NC 1 209 10 max .003 3														1		
204 min 002 2 011 4 0 15 5.63e-6 15 8606.418 4 NC 1 205 8 max .003 3 003 15 .001 1 1.605e-4 1 NC 1 NC 1 206 min 002 2 012 4 0 15 6.627e-6 15 7726.846 4 NC 1 207 9 max .003 3 003 15 .002 1 1.846e-4 1 NC 2 NC 1 208 min 002 2 013 4 0 15 7.625e-6 15 7206.791 4 NC 1 209 10 max .003 3 003 15 .002 1 2.088e-4 1 NC 2 NC 1 210 min 003 2 013			7													
205 8 max .003 3 003 15 .001 1 1.605e-4 1 NC 1 NC 1 206 min 002 2 012 4 0 15 6.627e-6 15 7726.846 4 NC 1 207 9 max .003 3 003 15 .002 1 1.846e-4 1 NC 2 NC 1 208 min 002 2 013 4 0 15 7.625e-6 15 7206.791 4 NC 1 209 10 max .003 3 003 15 .002 1 2.088e-4 1 NC 2 NC 1 210 min 003 2 013 4 0 15 8.622e-6 15 6955.651 4 NC 1														4		_
206 min 002 2 012 4 0 15 6.627e-6 15 7726.846 4 NC 1 207 9 max .003 3 003 15 .002 1 1.846e-4 1 NC 2 NC 1 208 min 002 2 013 4 0 15 7.625e-6 15 7206.791 4 NC 1 209 10 max .003 3 003 15 .002 1 2.088e-4 1 NC 2 NC 1 210 min 003 2 013 4 0 15 8.622e-6 15 6955.651 4 NC 1			8											•		-
207 9 max .003 3 003 15 .002 1 1.846e-4 1 NC 2 NC 1 208 min 002 2 013 4 0 15 7.625e-6 15 7206.791 4 NC 1 209 10 max .003 3 003 15 .002 1 2.088e-4 1 NC 2 NC 1 210 min 003 2 013 4 0 15 8.622e-6 15 6955.651 4 NC 1																
208 min 002 2 013 4 0 15 7.625e-6 15 7206.791 4 NC 1 209 10 max .003 3 003 15 .002 1 2.088e-4 1 NC 2 NC 1 210 min 003 2 013 4 0 15 8.622e-6 15 6955.651 4 NC 1			9													
209 10 max .003 3 003 15 .002 1 2.088e-4 1 NC 2 NC 1 210 min 003 2 013 4 0 15 8.622e-6 15 6955.651 4 NC 1										15						
210 min003 2013 4 0 15 8.622e-6 15 6955.651 4 NC 1			10						.002					2		1
										15		15				
	211		11	max	.004	3	003	15	.003	1	2.329e-4	-	NC	2	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
212			min	003	2	013	4	0	15	9.619e-6	15		4	NC	1
213		12	max	.004	3	003	15	.003	1	2.571e-4	1_	NC	2	NC	1
214			min	003	2	013	4	0	15	1.062e-5	15	7151.541	4	NC	1
215		13	max	.004	3	003	15	.004	1	2.813e-4	1	NC	1	NC	1
216			min	004	2	012	4	0	15	1.161e-5	15	7645.555	4	NC	1
217		14	max	.005	3	003	15	.004	1	3.054e-4	1_	NC	1	NC	1
218			min	004	2	011	4	0	15	1.261e-5	15	8528.309	4	NC	1
219		15	max	.005	3	002	15	.005	1	3.296e-4	1	NC	1	NC	1
220			min	004	2	01	4	0	15	1.361e-5	15	NC	1	NC	1
221		16	max	.006	3	002	15	.006	1	3.537e-4	1	NC	1	NC	1
222			min	005	2	008	4	0	15	1.461e-5	15	NC	1	NC	1
223		17	max	.006	3	001	15	.006	1	3.779e-4	1	NC	1	NC	1
224			min	005	2	006	1	0	15	1.56e-5	15	NC	1	NC	1
225		18	max	.006	3	0	15	.007	1	4.02e-4	1	NC	1	NC	1
226			min	005	2	004	1	0	15	1.66e-5	15	NC	1	NC	1
227		19	max	.007	3	0	15	.008	1	4.262e-4	1	NC	1	NC	1
228			min	005	2	003	1	0	15	1.76e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.005	2	0	15	6.039e-5	1	NC	1	NC	3
230			min	0	3	007	3	008	1	2.507e-6	15	NC	1	3112.323	1
231		2	max	.003	1	.005	2	0	15	6.039e-5	1	NC	1	NC	3
232			min	0	3	006	3	007	1	2.507e-6	15	NC	1	3383.834	1
233		3	max	.002	1	.004	2	0	15	6.039e-5	1	NC	1	NC	3
234			min	0	3	006	3	007	1	2.507e-6	15	NC	1	3707.009	1
235		4	max	.002	1	.004	2	0	15	6.039e-5	1	NC	1	NC	2
236			min	0	3	006	3	006	1	2.507e-6	15	NC	1	4095.262	1
237		5	max	.002	1	.004	2	0	15	6.039e-5	1	NC	1	NC	2
238			min	0	3	005	3	005	1	2.507e-6	15	NC	1	4566.824	1
239		6	max	.002	1	.004	2	0	15	6.039e-5	1	NC	1	NC	2
240			min	0	3	005	3	005	1	2.507e-6	15	NC	1	5146.978	
241		7	max	.002	1	.003	2	0	15	6.039e-5	1	NC	1	NC	2
242			min	0	3	005	3	004	1	2.507e-6	15	NC	1	5871.612	1
243		8	max	.002	1	.003	2	0	15	6.039e-5	1	NC	1	NC	2
244			min	0	3	004	3	004	1	2.507e-6	15	NC	1	6793.064	1
245		9	max	.002	1	.003	2	0	15	6.039e-5	1	NC	1	NC	2
246			min	0	3	004	3	003	1	2.507e-6	15	NC	1	7990.129	
247		10	max	.001	1	.002	2	0	15	6.039e-5	1	NC	1	NC	2
248			min	0	3	003	3	003	1	2.507e-6	15	NC	1	9585.974	1
249		11	max	.001	1	.002	2	0	15	6.039e-5	1	NC	1	NC	1
250			min	0	3	003	3	002	1	2.507e-6	15	NC	1	NC	1
251		12	max	.001	1	.002	2	0	15	6.039e-5	1	NC	1	NC	1
252			min	0	3	003	3	002		2.507e-6	15	NC	1	NC	1
253		13	max	0	1	.002	2	0		6.039e-5	1	NC	1	NC	1
254			min	0	3	002	3	001	1	2.507e-6	15	NC	1	NC	1
255		14	max	0	1	.001	2	0	15	6.039e-5	1	NC	1	NC	1
256			min	0	3	002	3	0	1	2.507e-6	15	NC	1	NC	1
257		15	max	0	1	.001	2	0	15	6.039e-5	1	NC	1	NC	1
258			min	0	3	002	3	0	1	2.507e-6	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	6.039e-5	1	NC	1	NC	1
260		'	min	0	3	001	3	0	1	2.507e-6	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	6.039e-5	1	NC	1	NC	1
262			min	0	3	0	3	0	1	2.507e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	6.039e-5	1	NC		NC	1
264		10	min	0	3	0	3	0	1	2.507e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	6.039e-5	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	2.507e-6	15	NC NC	1	NC	1
267	M6	1	max	.021	2	.026	2	0	1	0	1 <u>1</u>	NC NC	4	NC	1
268	IVIO	++	min	028	3	037	3	0	1	0	1	1676.308	3	NC	1
200			1111111	020	J	031	J	U		U		1070.300	J	INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	1		(n) L/y Ratio L			1
269		2	max	.02	2	.024	2	0	1	0	1		4_	NC	1
270			min	026	3	035	3	0	1	0	<u>1</u>		3	NC	1
271		3	max	.019	2	.022	2	0	1	0	_1_		4	NC	1
272			min	025	3	033	3	0	1	0	1_		3	NC	1
273		4	max	.017	2	.02	2	0	1	0	_1_		4_	NC	1
274		_	min	023	3	031	3	0	1	0	1_		3	NC	1
275		5	max	.016	2	.018	2	0	1	0	1		4	NC	1
276			min	022	3	029	3	0	1	0	1_		3	NC	1
277		6	max	.015	2	.016	2	0	1	0	1		4	NC	1
278		_	min	02	3	027	3	0	1	0	1_		3	NC	1
279		7	max	.014	2	.014	2	0	1	0	<u>1</u>		1_	NC	1
280			min	019	3	025	3	0	1	0	<u>1</u>		3	NC	1
281		8	max	.013	2	.012	2	0	1	0	_1_		1	NC	1
282			min	017	3	022	3	0	1	0	1_		3	NC	1
283		9	max	.012	2	.01	2	0	1	0	_1_		1_	NC	1
284			min	015	3	02	3	0	1	0	1_		3	NC	1
285		10	max	.01	2	.008	2	0	1	0	1		1_	NC	1
286			min	014	3	018	3	0	1	0	1		3	NC	1
287		11	max	.009	2	.007	2	0	1	0	1		1	NC	1
288		4.0	min	012	3	016	3	0	1	0	1		3	NC	1
289		12	max	.008	2	.005	2	0	1	0	1		1_	NC NC	1
290			min	011	3	014	3	0	1	0	<u>1</u>		3	NC	1
291		13	max	.007	2	.004	2	0	1	0	_1_		1	NC	1
292			min	009	3	012	3	0	1	0	1_		3	NC	1
293		14	max	.006	2	.003	2	0	1	0	_1_		1_	NC	1
294			min	008	3	01	3	0	1	0	1_		3	NC	1
295		15	max	.005	2	.002	2	0	1	0	1		1	NC	1
296			min	006	3	008	3	0	1	0	1_		3	NC	1
297		16	max	.003	2	.001	2	0	1	0	1_		1	NC	1
298			min	005	3	006	3	0	1	0	_1_		1	NC	1
299		17	max	.002	2	0	2	0	1	0	1		1	NC	1
300			min	003	3	004	3	0	1	0	1_		1	NC	1
301		18	max	.001	2	0	2	0	1	0	1		1	NC	1
302			min	002	3	002	3	0	1	0	1_		1	NC	1
303		19	max	0	1	0	1	0	1	0	1		1_	NC	1
304			min	0	1	0	1	0	1	0	1_	110	1	NC	1
305	<u>M7</u>	1	max	0	1	0	1	0	1	0	1		1	NC	1
306			min	0	1	0	1	0	1	0	1_		1	NC	1
307		2	max	.001	3	0	2	0	1	0	1_		1_	NC	1
308			min	001	2	003	3	0	1	0	1_	110	1	NC	1
309		3	max	.002	3	0	2	0	1	0	1_	NC	1	NC NC	1
310		-	min	002	2	005	3	0	1	0	1_		1_	NC	1
311		4	max	.004	3	001	15	0	1	0	1		1_	NC NC	1
312		_	min	003	2	008	3	0	1	0	1_		1_	NC	1
313		5_	max	.005	3	002	15	0	1	0			1_	NC NC	1
314			min	005	2	01	3	0	1	0	1_	110	1_	NC NC	1
315		6	max	.006	3	002	15	0	1	0	1		1	NC	1
316			min	006	2	012	3	0	1	0	1		3	NC	1
317		7	max	.007	3	003	15	0	1	0	1		1_	NC	1
318			min	007	2	013	3	0	1	0	1		3	NC	1
319		8	max	.008	3	003	15	0	1	0	1		1_	NC	1
320			min	008	2	014	3	0	1	0	1_		3	NC	1
321		9	max	.009	3	003	15	0	1	0	1		1_	NC	1
322			min	009	2	015	3	0	1	0	1_		3	NC	1
323		10	max	.011	3	003	15	0	1	0	1		1_	NC	1
324			min	01	2	015	3	0	1	0	1_		3	NC	1
325		11	max	.012	3	003	15	0	1	0	_1_	NC	1_	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
326			min	011	2	015	3	0	1	0	1	7061.862	4	NC	1
327		12	max	.013	3	003	15	0	1	0	1_	NC	1_	NC	1
328			min	012	2	015	3	0	1	0	1	7274.835	4	NC	1
329		13	max	.014	3	003	15	0	1	0	_1_	NC	_1_	NC	1
330			min	014	2	014	3	0	1	0	1	7771.963	4	NC	1
331		14	max	.015	3	003	15	0	1	0	1_	NC	1_	NC	1
332			min	015	2	013	3	0	1	0	1	8664.305	4	NC	1
333		15	max	.016	3	002	15	0	1	0	_1_	NC	1_	NC	1
334			min	016	2	012	3	0	1	0	1	NC	1	NC	1
335		16	max	.018	3	002	15	0	1	0	<u>1</u>	NC	1_	NC	1
336			min	017	2	01	3	0	1	0	1	NC	1_	NC	1
337		17	max	.019	3	001	15	0	1	0	_1_	NC	_1_	NC	1
338			min	018	2	009	3	0	1	0	1_	NC	1_	NC	1
339		18	max	.02	3	0	15	0	1	0	_1_	NC	1_	NC	1_
340			min	019	2	007	3	0	1	0	1	NC	1	NC	1
341		19	max	.021	3	0	15	0	1	0	1_	NC	1_	NC	1
342			min	02	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.019	2	0	1	0	1	NC	1	NC	1
344			min	001	3	022	3	0	1	0	1	NC	1	NC	1
345		2	max	.007	1	.018	2	0	1	0	1	NC	1	NC	1
346			min	001	3	02	3	0	1	0	1	NC	1	NC	1
347		3	max	.007	1	.017	2	0	1	0	1	NC	1	NC	1
348			min	001	3	019	3	0	1	0	1	NC	1	NC	1
349		4	max	.006	1	.016	2	0	1	0	1	NC	1	NC	1
350			min	001	3	018	3	0	1	0	1	NC	1	NC	1
351		5	max	.006	1	.015	2	0	1	0	1	NC	1	NC	1
352			min	001	3	017	3	0	1	0	1	NC	1	NC	1
353		6	max	.005	1	.014	2	0	1	0	1	NC	1	NC	1
354			min	0	3	016	3	0	1	0	1	NC	1	NC	1
355		7	max	.005	1	.013	2	0	1	0	1	NC	1	NC	1
356			min	0	3	014	3	0	1	0	1	NC	1	NC	1
357		8	max	.005	1	.012	2	0	1	0	1	NC	1	NC	1
358			min	0	3	013	3	0	1	0	1	NC	1	NC	1
359		9	max	.004	1	.011	2	0	1	0	1	NC	1	NC	1
360			min	0	3	012	3	0	1	0	1	NC	1	NC	1
361		10	max	.004	1	.01	2	0	1	0	1	NC	1	NC	1
362			min	0	3	011	3	0	1	0	1	NC	1	NC	1
363		11	max	.003	1	.008	2	0	1	0	1	NC	1	NC	1
364			min	0	3	01	3	0	1	0	1	NC	1	NC	1
365		12	max	.003	1	.007	2	0	1	0	1	NC	1	NC	1
366			min	0	3	008	3	0	1	0	1	NC	1	NC	1
367		13	max	.003	1	.006	2	0	1	0	1	NC	1	NC	1
368			min	0	3	007	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
370			min	0	3	006	3	0	1	0	1	NC	1	NC	1
371		15	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
372			min	0	3	005	3	0	1	0	1	NC	1	NC	1
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
374			min	0	3	004	3	0	1	0	1	NC	1	NC	1
375		17	max	0	1	.002	2	0	1	0	1	NC	1	NC	1
376			min	0	3	002	3	0	1	0	1	NC	1	NC	1
377		18	max	0	1	.001	2	0	1	0	1	NC	1	NC	1
378			min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.007	2	.007	2	0	15	2.298e-4	1	NC	1	NC	2
382			min	008	3	012	3	008	1	9.517e-6	15	9039.916	2	7501.287	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
383		2	max	.006	2	.006	2	0	15	2.156e-4	1	NC	1	NC	2
384			min	008	3	011	3	008	1	8.929e-6	15	NC	1	8182.687	1
385		3	max	.006	2	.005	2	0	15	2.014e-4	<u>1</u>	NC	<u>1</u>	NC	2
386			min	008	3	011	3	007	1	8.342e-6	15	NC	1_	8995.066	1
387		4	max	.005	2	.004	2	0	15	1.872e-4	_1_	NC	_1_	NC	2
388			min	007	3	01	3	006	1	7.754e-6	<u>15</u>	NC	1	9973.234	1
389		5	max	.005	2	.003	2	0	15	1.73e-4	1_	NC	1	NC	1
390			min	007	3	01	3	006	1_1	7.166e-6	<u>15</u>	NC NC	1_	NC NC	1
391 392		6	max	.005 006	3	.003 009	3	0 005	15	1.588e-4 6.578e-6	<u>1</u> 15	NC NC	1	NC NC	1
393		7	min max	.004	2	.002	2	<u>005</u> 0	15	1.445e-4	1 <u>1</u>	NC NC	1	NC NC	1
394			min	006	3	009	3	004	1	5.99e-6	15	NC	1	NC	1
395		8	max	.004	2	.001	2	<u>.004</u>	15	1.303e-4	1	NC	1	NC	1
396			min	005	3	008	3	004	1	5.402e-6	15	NC	1	NC	1
397		9	max	.004	2	0	2	0	15	1.161e-4	1	NC	1	NC	1
398			min	005	3	008	3	003	1	4.814e-6	15	NC	1	NC	1
399		10	max	.003	2	0	2	0	15	1.019e-4	1	NC	1	NC	1
400			min	004	3	007	3	003	1	4.227e-6	15	NC	1	NC	1
401		11	max	.003	2	0	2	0	15	8.773e-5	1	NC	1	NC	1
402			min	004	3	007	3	002	1	3.639e-6	15	NC	1	NC	1
403		12	max	.003	2	0	2	0	15	7.352e-5	1_	NC	_1_	NC	1
404			min	003	3	006	3	002	1	3.051e-6	15	NC	1_	NC	1
405		13	max	.002	2	0	15	0	15	5.932e-5	1_	NC	_1_	NC	1
406			min	003	3	005	3	<u>001</u>	1	2.463e-6	15	NC	1_	NC	1
407		14	max	.002	2	0	15	0	15	4.511e-5	1_	NC	1	NC NC	1
408		4.5	min	002	2	004	3	0	1_1_	1.875e-6	<u>15</u>	NC NC	1_	NC NC	1
409		15	max	.001 002	3	0 004	15	0	1 <u>5</u>	3.091e-5 1.287e-6	<u>1</u> 15	NC NC	<u>1</u> 1	NC NC	1
411		16	max	.002	2	004 0	15	<u> </u>	15	1.67e-5	1 <u>15</u> 1	NC NC	+	NC NC	1
412		10	min	001	3	003	3	0	1	6.995e-7	15	NC	1	NC	1
413		17	max	0	2	<u>005</u>	15	0	15	2.497e-6	1	NC	1	NC	1
414			min	0	3	002	3	0	1	1.117e-7	15	NC	1	NC	1
415		18	max	0	2	0	15	0	15	-3.407e-7	12	NC	1	NC	1
416			min	0	3	001	4	0	1	-1.171e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-1.064e-6	15	NC	1	NC	1
418			min	0	1	0	1	0	1	-2.591e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	8.603e-6	<u>1</u>	NC	_1_	NC	1
420			min	0	1	0	1	0	1	3.537e-7	15	NC	1	NC	1
421		2	max	0	3	0	15	0	15	-6.435e-7	15	NC	1	NC	1
422			min	0	2	002	4	0	1_	-1.555e-5	1_	NC	1_	NC	1
423		3	max		3	0	15	0		-1.641e-6			1	NC NC	1
424		4	min	0	2	004	4	0	1	-3.971e-5	1_	NC NC	1_	NC NC	1
425 426		4	max min	.001 0	3	001 006	15 4	0	1	-2.638e-6 -6.386e-5	1 <u>1</u>	NC NC	<u>1</u> 1	NC NC	1
427		5	max	.001	3	008	15	0		-3.635e-6		NC NC	+	NC NC	1
428		5	min	001	2	002	4	0	1	-8.802e-5	1	NC	1	NC	1
429		6	max	.002	3	002	15	0			•	NC	-	NC	1
430			min	002	2	009	4	0	1	-1.122e-4	1	NC	1	NC	1
431		7	max	.002	3	003	15	0	15	-5.63e-6	15	NC	1	NC	1
432			min	002	2	011	4	001	1	-1.363e-4	1	8606.418	4	NC	1
433		8	max	.003	3	003	15	0	15		15	NC	1	NC	1
434			min	002	2	012	4	001	1	-1.605e-4	1	7726.846	4	NC	1
435		9	max	.003	3	003	15	0	15	-7.625e-6	15	NC	2	NC	1
436			min	002	2	013	4	002	1	-1.846e-4	1	7206.791	4	NC	1
437		10	max	.003	3	003	15	0		-8.622e-6		NC	2	NC	1
438			min	003	2	013	4	002	1	-2.088e-4	1_	6955.651	4	NC	1
439		11	max	.004	3	003	15	0	15	-9.619e-6	15	NC	2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

140	Member	Sec	i	x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
440		12	min	003	3	013	15	003 0	15	-2.329e-4	<u>1</u> 15	6936.43 NC	4	NC NC	1
441		12	max	.004 003	2	003 013	4	003	1	-1.062e-5 -2.571e-4		7151.541	4	NC NC	1
442		13	min	.003	3	013 003	15	003 0	15	-2.57 1e-4 -1.161e-5	<u>1</u> 15	NC	_ 4 _	NC NC	1
		13	max		2				1			7645.555			1
444		14	min	004 .005	3	012 003	15	004	15	-2.813e-4	<u>1</u> 15	NC	<u>4</u> 1	NC NC	1
446		14	max	004	2	003 011	4	0 004	1	-1.261e-5 -3.054e-4	1	8528.309	4	NC NC	1
447		15		.005	3	002	15	_ 004 0	15		15	NC	1	NC NC	1
448		15	max	004	2	002 01	4	005	1	-3.296e-4	1	NC NC	1	NC NC	1
449		16		.006	3	002	15	005 0	15	-3.296e-4 -1.461e-5		NC NC	1	NC NC	1
450		10	max min	005	2	002	4	006	1	-1.461e-5	<u>15</u> 1	NC NC	1	NC NC	1
451		17		.005	3	008 001	15	006 0	15	-3.537e-4 -1.56e-5	15	NC NC	1	NC NC	1
452		17	max	005	2	001	1	006	1	-3.779e-4	1	NC NC	1	NC NC	1
453		18	min	.005	3	<u>006</u> 0	15	<u>006</u> 0	15	-3.779e-4 -1.66e-5	15	NC NC	1	NC NC	1
454		10	max	005	2	004	1	007	1	-4.02e-4	1	NC NC	1	NC NC	1
455		19		.005	3	004 0	15	007 0	15	-4.02e-4 -1.76e-5	15	NC NC	1	NC NC	1
456		19	max	005	2	003	1	008	1	-4.262e-4	1	NC NC	1	NC NC	1
457	M12	1	min	.003	1	005 .005	2	.008	1	-4.202e-4 -2.507e-6	15	NC NC	1	NC NC	3
	IVIIZ	<u> </u>	max	.003	3	005 007	3	<u>.008</u>	15	-6.039e-5	1	NC NC	1		1
458		2	min	•						-6.039e-5 -2.507e-6			1	3112.323	
459		 	max	.003	3	.005	3	.007	1	-2.507e-6	<u>15</u>	NC NC	1	NC 3383.834	3
460		2	min	.002		006	2	0	15		1_	NC NC	_	NC	
461 462		3	max	0	3	.004 006		<u>.007</u> 0	1	-2.507e-6	<u>15</u>	NC NC	1		3
		1	min				3		15	-6.039e-5	1_			3707.009	
463		4	max	.002	1	.004	2	.006	1	-2.507e-6	<u>15</u>	NC NC	1	NC 400F aca	2
464		-	min	0	3	006	3	0	15	-6.039e-5	1_	NC NC	_	4095.262	1
465		5	max	.002	1	.004	2	.005	1	-2.507e-6	<u>15</u>	NC NC	1	NC 4FCC 004	2
466			min	0	3	005	3	0	15	-6.039e-5	1_	NC NC	1_	4566.824	1
467		6	max	.002	1	.004	2	.005	1	-2.507e-6	<u>15</u>	NC NC	1_	NC	2
468		-	min	0	3	005	3	0	15	-6.039e-5	1_	NC NC	1_	5146.978	1
469		7	max	.002	3	.003	2	.004	1	-2.507e-6	<u>15</u>	NC NC	<u>1</u> 1	NC 5871.612	2
470		0	min	0		005	3	0	15	-6.039e-5	1_	NC NC	•		1
471 472		8	max	.002	3	.003	2	.004	1	-2.507e-6	<u>15</u>	NC NC	1	NC	2
			min	0		004	3	0	15	-6.039e-5	1_	NC NC		6793.064	1
473		9	max	.002	1	.003	2	.003	1	-2.507e-6	<u>15</u>	NC NC	1	NC 7000 400	2
474		10	min	0	3	004	3	0	15	-6.039e-5 -2.507e-6	1_	NC NC	1	7990.129 NC	2
475		10	max	.001	3	.002	3	.003	1		<u>15</u>	NC NC	1		2
476 477		11	min	.001	1	003 .002	2	<u> </u>	1 <u>5</u>	-6.039e-5	1_	NC NC	1	9585.974 NC	1
477			max	.001	3		3	<u></u> 0	15	-2.507e-6	<u>15</u>	NC NC	1		1
		12	min	•	1	003				-6.039e-5	_		1	NC NC	
479 480		12	max min	.001	3	.002 003	3	<u>.002</u> 0	1 15	-2.507e-6 -6.039e-5	1	NC NC	1	NC NC	1
481		13	max	0	1	003 .002	2	.001	1	-0.039e-5 -2.507e-6		NC NC	1	NC NC	1
482		13	min	0	3	002	3	0		-6.039e-5	1	NC NC	1	NC NC	1
483		14	max	0	1	002 .001	2	0	1	-6.039e-5 -2.507e-6	•	NC NC	1	NC NC	1
484		14	min	0	3	001	3	0		-6.039e-5	1	NC NC	1	NC NC	1
484		15	max	0	1	002 .001	2	0	1	-6.039e-5 -2.507e-6	15	NC NC	1	NC NC	1
486		15	min	0	3	002	3	0	15		1	NC	1	NC	1
487		16	max	0	1	<u>002</u> 0	2	0	1	-2.507e-6		NC	1	NC	1
488		10	min	0	3	001	3	0	15		10	NC NC	1	NC NC	1
		17		-							15		1		1
489 490		17	max min	0	3	<u> </u>	3	<u> </u>	15	-2.507e-6 -6.039e-5	1	NC NC	1	NC NC	1
491		18		0	1	0	2	0	1	-6.039e-5 -2.507e-6	•	NC NC	1	NC NC	1
491		10	max	0	3	0	3	0		-6.039e-5	1	NC NC	1	NC NC	1
492		19	max	0	1	0	1	0	1	-6.039e-5 -2.507e-6	•	NC NC	1	NC NC	1
494		19	min	0	1	0	1	0	1	-6.039e-5	1 <u>1</u>	NC NC	1	NC NC	1
494	M1	1		.008	3	.115	2	.001	1	1.558e-2	1	NC NC	1	NC NC	1
495	IVI I		max	004	2	017	3	<u>.001</u>		-2.863e-2		NC NC	1	NC NC	1
430			1111111	004		017	J	U	IJ	-2.0036-2	J	INC		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio Lo		
497		2	max	.008	3	.055	2	0	15	7.566e-3	_1_	NC 4		1
498			min	004	2	006	3	006	1	-1.416e-2	3	1911.484 2		1
499		3	max	.008	3	.012	3	0	15	3.078e-5	10	NC 5		1
500			min	004	2	01	2	008	1	-1.588e-4	1_	920.072 2		1
501		4	max	.008	3	.046	3	0	15	4.688e-3	2	NC 5		1
502			min	004	2	083	2	008	1	-5.158e-3	3	579.753 2		1
503		5	max	.008	3	.09	3	0	15	9.373e-3	2	NC 5		1
504			min	004	2	16	2	005	1	-1.018e-2	3	417.774 2		1
505		6	max	.008	3	.138	3	0	15	1.406e-2	2	NC 1		1
506			min	004	2	235	2	002	1	-1.52e-2	3	328.649 2		1
507		7	max	.008	3	.185	3	0	1_	1.874e-2	2	NC 1	5 NC	1
508			min	004	2	302	2	0	12	-2.022e-2	3	276.092		1
509		8	max	.008	3	.223	3	0	1	2.343e-2	2	9177.069 1		1
510			min	004	2	355	2	0	15	-2.524e-2	3	245.028 2		1
511		9	max	.007	3	.248	3	0	15	2.661e-2	2	8576.816 1	5 NC	1
512			min	004	2	388	2	0	1	-2.528e-2	3	228.868 2	NC NC	1
513		10	max	.007	3	.258	3	0	1	2.881e-2	2	8393.974 1	5 NC	1
514			min	004	2	399	2	0	12	-2.203e-2	3	224.121 2	NC	1
515		11	max	.007	3	.252	3	0	1	3.1e-2	2	8576.53 1	5 NC	1
516			min	004	2	388	2	0	15	-1.877e-2	3	229.602	NC	1
517		12	max	.007	3	.23	3	0	15	2.995e-2	2	9176.467 1	5 NC	1
518			min	004	2	353	2	001	1	-1.557e-2	3	247.27 2		1
519		13	max	.007	3	.196	3	0	15	2.402e-2	2	NC 1		1
520			min	004	2	298	2	0	1	-1.247e-2	3	281.563 2		1
521		14	max	.007	3	.153	3	.002	1	1.809e-2	2	NC 1		1
522			min	004	2	229	2	0	15	-9.359e-3	3	340.362		1
523		15	max	.006	3	.104	3	.005	1	1.217e-2	2	NC 5		1
524			min	004	2	152	2	0	15	-6.252e-3	3	441.925 2		1
525		16	max	.006	3	.053	3	.007	1	6.238e-3	2	NC 5		1
526		10	min	004	2	076	2	0	15	-3.144e-3	3	630.778 2		1
527		17	max	.006	3	.004	3	.008	1	5.596e-4	1	NC 5		1
528		- ' '	min	003	2	006	2	0	15	-3.682e-5	3	1036.059 2		1
529		18	max	.006	3	.052	2	.006	1	1.131e-2	2	NC 4		1
530		10	min	003	2	039	3	0	15	-4.626e-3	3	2207.309 2		1
531		19	max	.006	3	.103	2	0	15	2.271e-2	2	NC 1		1
532		19	min	003	2	079	3	001	1	-9.396e-3	3	NC 1		1
533	M5	1	max	.026	3	.271	2	0	1	0	<u> </u>	NC 1		1
534	IVIO			018	2	015	3	0	1	0	1	NC 1		1
		2	min						1		+			
535		2	max	.026	3	.128	2	0	-	0	1	NC 5		1
536		2	min	018		001	3	0	1	0	1	809.914 2		1
537		3	max	.026	3	.04	3	0	1	0	1	NC 5		1
538		4	min	018	2	032	2	0	1	0	1	381.577 2		1
539		4	max	.026	3	.131	3	0	1	0	1	9975.764 1		1
540		-	min	018	2	223	2	0	1	0	1_	233.973 2		1
541		5_	max	.025	3	.257	3	0	1	0	1	6981.383 1		1
542			min	017	2	429	2	0	1	0	1_	164.918 2		1
543		6	max	.025	3	.398	3	0	1	0	1	5375.232 1		1
544			min	<u>017</u>	2	<u>633</u>	2	0	1	0	1	127.61 2		1
545		7	max	.024	3	.537	3	0	1	0	1	4447.635 1		1
546			min	017	2	818	2	0	1	0	<u>1</u>	105.94 2		1
547		8	max	.024	3	.653	3	0	1	0	1	3908.267 1		1
548			min	016	2	966	2	0	1	0	1_	93.288 2		1
549		9	max	.023	3	.727	3	0	1_	0	1	3631.66 1		1
550			min	016	2	-1.06	2	0	1	0	1	86.781 2		1
551		10	max	.023	3	.754	3	0	1	0	_1_	3548.326 1		1
552			min	016	2	-1.091	2	0	1	0	1	84.874 2		1
553		11	max	.022	3	.736	3	0	1	0	1	3631.764 1	5 NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
554			min	016	2	-1.06	2	0	1	0	1	87.069	2	NC	1
555		12	max	.022	3	.672	3	0	1	0	1_	3908.512	15	NC	1
556			min	015	2	962	2	0	1	0	1	94.231	2	NC	1
557		13	max	.021	3	.57	3	0	1	0	1_	4448.138	15	NC	1
558			min	015	2	806	2	0	1	0	1	108.38	2	NC	1
559		14	max	.021	3	.441	3	0	1	0	_1_		15	NC	1
560			min	015	2	613	2	0	1	0	1	133.094	2	NC	1
561		15	max	.02	3	.297	3	0	1	0	<u>1</u>		15	NC	1
562			min	015	2	404	2	0	1	0	1_	176.828	2	NC	1
563		16	max	.02	3	.151	3	0	1	0	_1_		15	NC	1
564			min	014	2	198	2	0	1	0	1_	260.757	2	NC	1
565		17	max	.019	3	.013	3	0	1	0	_1_	NC	5	NC	1
566			min	014	2	018	2	0	1	0	1_	447.172	2	NC	1
567		18	max	.019	3	.119	1	0	1	0	1_	NC	5	NC	1
568			min	014	2	105	3	0	1	0	1	986.783	2	NC	1
569		19	max	.019	3	.232	2	0	1	0	1_	NC	1	NC	1
570			min	014	2	211	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.008	3	.115	2	0	15	2.863e-2	3	NC	1	NC	1
572			min	004	2	017	3	001	1	-1.558e-2	1	NC	1	NC	1
573		2	max	.008	3	.055	2	.006	1	1.416e-2	3	NC	4	NC	1
574			min	004	2	006	3	0	15	-7.566e-3	1	1911.484	2	NC	1
575		3	max	.008	3	.012	3	.008	1	1.588e-4	1	NC	5	NC	1
576			min	004	2	01	2	0	15	-3.078e-5	10	920.072	2	NC	1
577		4	max	.008	3	.046	3	.008	1	5.158e-3	3	NC	5	NC	1
578			min	004	2	083	2	0	15	-4.688e-3	2	579.753	2	NC	1
579		5	max	.008	3	.09	3	.005	1	1.018e-2	3	NC	5	NC	1
580			min	004	2	16	2	0	15	-9.373e-3	2	417.774	2	NC	1
581		6	max	.008	3	.138	3	.002	1	1.52e-2	3	NC	15	NC	1
582			min	004	2	235	2	0	15	-1.406e-2	2	328.649	2	NC	1
583		7	max	.008	3	.185	3	0	12	2.022e-2	3	NC	15	NC	1
584			min	004	2	302	2	0	1	-1.874e-2	2	276.092	2	NC	1
585		8	max	.008	3	.223	3	0	15	2.524e-2	3	9177.069	15	NC	1
586			min	004	2	355	2	0	1	-2.343e-2	2	245.028	2	NC	1
587		9	max	.007	3	.248	3	0	1	2.528e-2	3	8576.816	15	NC	1
588			min	004	2	388	2	0	15	-2.661e-2	2	228.868	2	NC	1
589		10	max	.007	3	.258	3	0	12	2.203e-2	3		15	NC	1
590			min	004	2	399	2	0	1	-2.881e-2	2	224.121	2	NC	1
591		11	max	.007	3	.252	3	0	15	1.877e-2	3	8576.53	15	NC	1
592			min	004	2	388	2	0	1	-3.1e-2	2	229.602	2	NC	1
593		12	max	.007	3	.23	3	.001	1	1.557e-2	3		15	NC	1
594			min		2	353	2	0	15	-2.995e-2		247.27	2	NC	1
595		13	max	.007	3	.196	3	0	1	1.247e-2	3		15	NC	1
596			min	004	2	298	2	0	15	-2.402e-2	2	281.563	2	NC	1
597		14	max	.007	3	.153	3	0	15		3	NC	15	NC	1
598			min	004	2	229	2	002	1	-1.809e-2	2	340.362	2	NC	1
599		15	max	.006	3	.104	3	0	15	6.252e-3	3	NC	5	NC	1
600			min	004	2	152	2	005	1	-1.217e-2	2	441.925	2	NC	1
601		16	max	.006	3	.053	3	0	15	3.144e-3	3	NC	5	NC	1
602	_	T.	min	004	2	076	2	007	1	-6.238e-3	2	630.778	2	NC	1
603		17	max	.006	3	.004	3	0	15	3.682e-5	3	NC	5	NC	1
604			min	003	2	006	2	008	1	-5.596e-4	1	1036.059	2	NC	1
605		18	max	.006	3	.052	2	0	15	4.626e-3	3	NC	4	NC	1
606			min	003	2	039	3	006	1	-1.131e-2	2	2207.309	2	NC	1
607		19	max	.006	3	.103	2	.001	1	9.396e-3	3	NC NC	1	NC	1
608		T.,	min	003	2	079	3	0		-2.271e-2	2	NC	1	NC	1
					_	1010	_				_		_		4

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 14-42 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 36	Inch Wid	lth
Address:		•	
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	2718.0	1678.0	0.0	1678.0	
2	2718.0	1678.0	0.0	1678.0	
Sum	5436.0	3356.0	0.0	3356.0	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5436 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	Nc / A_{Nco}) $\Psi_{ec,N}$ Ψ_{ec}	$_{d,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 36	Inch Wic	lth
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	a) ^{0.2} √ d aλ√ f ′c C a1 ^{1.9}	⁵ (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	vc/Avco) Yec, v Ye	$_{\text{ed,V}} \varPsi_{\text{c,V}} \varPsi_{\text{h,V}} V_{\text{bx}}$	(Sec. D.4.1 & Ed	դ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
648.00	648.00	1.000	0.961	1.000	1.000	15593	0.70	10490

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	15.66	23247		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V} \Psi_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
845.64	1103.56	1.000	1.000	1.000	23247	0.70	24939

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n kcpNag; kcpN	$_{cbg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\varPsi_{ ho,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2718	6071	0.45	Pass
Concrete breakout	5436	10231	0.53	Pass
Adhesive	5436	8093	0.67	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1678	3156	0.53	Pass (Governs)
T Concrete breakout x+	3356	10490	0.32	Pass
Concrete breakout y-	1678	24939	0.07	Pass
Pryout	3356	20601	0.16	Pass
Interaction check Nua	/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 36 Inch Width				
Address:					
Phone:					
E-mail:					

	Sec. D.7.3	0.67	0.53	120.3 %	1.2	Pass
--	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.