A:

【1】垂直向下	【2】水平向西	[3] V _H / 2	[4] -V _H
[5] $2 \times 10^{-7} \left(\frac{49}{25}, \frac{-32}{25} \right) T$	[6] $\left(\frac{32}{11},0\right)$	[7] 0	[8] $\frac{\mu_0 I}{2\pi r}$
[9] 0	[10] $\frac{\mu_0 l}{2\pi} \ln \frac{b}{a}$	[11] $BlA\sqrt{\frac{2k}{m}}\sin(\sqrt{\frac{2k}{m}}t)$	[12] $BlA\sqrt{\frac{2k}{m}}$
[13] unextended point	[14] E/B ₁	【15】 r/3	

B:

$11 \ 2 \times 10^{-7} \left(\frac{49}{25}, \frac{-32}{25}\right) T$		【3】垂直向下	【4】水平向西
[5] 0	[6] $\frac{\mu_0 I}{2\pi r}$	[7] 0	[8] $\frac{\mu_0 l}{2\pi} \ln \frac{b}{a}$
(9) V _H /2	[10] -V _H	[11] E/B ₁	【12】 r/3
[13] $BlA\sqrt{\frac{2k}{m}}\sin(\sqrt{\frac{2k}{m}}t)$	[14] $BlA\sqrt{\frac{2k}{m}}$	[15] unextended point	

1. (a)
$$B_x = \int_{-w/2}^{w/2} \frac{\mu_0 t J dx}{2\pi \sqrt{D^2 + x^2}} \frac{D}{\sqrt{D^2 + x^2}} = \frac{\mu_0 t J}{\pi} \tan^{-1} \frac{w}{2D}$$

(b)
$$\tan^{-1} \infty = \frac{\pi}{2}$$
, therefore $B = \frac{\mu_0 t J}{2}$,
or $\mu_0(Lt)J = 2BL$, therefore $B = \frac{\mu_0 t J}{2}$

2. (a)
$$R = \frac{\rho 2\pi r \frac{X}{2a}}{\pi a^2} = \frac{\rho r X}{a^3}$$

(b)
$$B = \mu_0 \frac{X/(2a)}{X} I = \frac{\mu_0 I}{2a}$$

$$N\Phi = \frac{X}{2a} \pi r^2 \frac{\mu_0 I}{2a} = LI \rightarrow L = \frac{\pi r^2 \mu_0 X}{4a^2}$$

(c)
$$\tau = \frac{L}{R} = \frac{\frac{\pi r^2 \mu_0 X}{4a^2}}{\frac{\rho r X}{a^3}} = \frac{\mu_0 \pi a r}{4\rho}$$

3.(a)
$$B = \mu_0 nI = \mu_0 n(4+5t^2)$$
 $\therefore \oint E \cdot dl = \frac{d\Phi}{dt} = \frac{d}{dt} [\mu_0 n(4+5t^2)L^2] = 10\mu_0 ntL^2$

(b)
$$\Delta V = \frac{10\mu_0 ntL^2}{4} = 2.5\mu_0 ntL^2$$

4. (a)
$$\mu = \int_0^R \pi r^2 \frac{dq}{T} = \int_0^R \pi r^2 \frac{2\pi r \sigma(r) dr}{2\pi / \omega} = \int_0^R \sigma_0 \omega \pi r^4 dr = \frac{1}{5} \sigma_0 \omega \pi R^5$$

(b)
$$\vec{\tau} = \vec{\mu} \times \vec{B}$$
, and $\vec{\mu} \perp \vec{B} :: \tau = \mu B = \frac{1}{5} \sigma_0 \omega \pi R^5 B$