Practical Engineering with LLMs

Introduction to Retrieval Augmented Generation

TODAY'S SCHEDULE

- Quiz
- Homework presentation
- **Short Recap**
- **Projects**
- Homework for next week

TODAY'S SCHEDULE

- **Quiz**
- Homework presentation
- Short Recap
- Projects
- Homework for next week

QUIZ

https://forms.office.com/r/3KqHTA2CPj

TODAY'S SCHEDULE

- Quiz
- Homework presentation
- Short Recap
- Projects
- Homework for next week

HOMEWORK PRESENTATION

Tasks

- 1. Replace the OpenAI model with a chat model of your choice (e.g. gpt-3.5-turbo, Cohere Chat, etc.).
- 2. Replace the OpenAIEmbeddings with an open-source text embedding model for example from HuggingFace. A list of available embeddings integrations can be found here. A leaderboard of the best (open-source) embedding models can be found here.
- 3. Replace the vector store with a different vector store that either works locally (e.g. Chroma, etc.) or a hosted cloud vector store (e.g. Weaviate, Pinecone, etc.)
- 4. Do further modifications like changing the text splitter or changing the PDF document.

TODAY'S SCHEDULE

- Quiz
- Homework presentation
- Short Recap
- Projects
- Homework for next week

QUICK RECAP: LangChain

Components

Prompts

- Prompt Templates
- Output Parsers: 5+ implementations
 - Retry/fixing logic
- Example Selectors: 5+ implementations

Models

- LLM's: 20+ integrations
- Chat Models
- Text Embedding Models: 10+ integrations

Indexes

- Document Loaders: 50+ implementations
- Text Splitters: 10+ implementations
- Vector stores: 10+ integrations
- Retrievers: 5+ integrations/implementations

Chains

- Can be used as building blocks for other chains
- More application specific chains: 20+ different types

Agents

- Agent Types: 5+ types
 - Algorithms for getting LLMs to use tools
- Agent Toolkits: 10+ implementations
 - Agents armed with specific tools for a specific application

QUICK RECAP: From Docs to Answers

- Loaders deal with the specifics of accessing and converting data
 - Accessing
 - Web Sites
 - Data Bases
 - YouTube
 - arXiv
 - ..
 - Data Types
 - PDF
 - HTML
 - JSON
 - Word, PowerPoint...
- Returns a list of `Document` objects:

metadata

syntax template

```
from langchain.document_loaders import [name of loader]
loader = [name of loader]("[file or url]")
pages = loader.load
```

example: pdfs

```
from langchain.document_loaders import PyPDFLoader
loader = PyPDFLoader("docs/cs229_lectures/MachineLearning-Lecture01.pdf")
pages = loader.load()
```

loader.load() -> list of langchain.Document objects

- metadata: A dictionary containing metadata information about the document.
- text: The text content of the document.
- pages: A list of langchain. Page objects, where each page represents a page of the document.
- **images**: A list of langchain.Image objects, where each image represents an image extracted from the document.

Data Source	Loader
PDF	PyPDFLoader
Websites	WebBaseLoader
Notion	NotionDirectoryLoader
Youtube Videos	GenericLoader
	+ YoutubeAudioLoader
	+ OpenAlWhisperParser
and many more	•••

List of all Loaders:

https://python.langchain.com/docs/integrations/document_loaders

QUICK RECAP: From Docs to Answers

Why split?

context

proprietary documents

previous conversation

query

context window of LLM

How can we split without messing up the content?

•••

on this model. The Toyota Camry has a head-snapping 80 HP and an eight-speed automatic transmission that will

•••

Chunk 1: on this model. The Toyota Camry has a head-snapping

Chunk 2: 80 HP and an eight-speed automatic transmission that will

Question: What are the specifications on the Camry?

Use appropriate chunk sizes and overlap!

example: CharacterTextSplitter

```
langchain.text_splitter.CharacterTextSplitter(
   separator: str = "\n\n"
   chunk_size=4000,
   chunk_overlap=200,
   length_function = < builtin function len>,
Methods:
create_documents() - Create documents from a list of texts.
split_documents() - Split documents.
```

What is a good breakpoint?

- characters
- tokens
- special characters "."
- line breaks \n
- markup headers ###
- ...

langchain.text_splitter.

- CharacterTextSplitter()- Implementation of splitting text that looks at characters.
- MarkdownHeaderTextSplitter() Implementation of splitting markdown files based on specified headers.
- TokenTextSplitter() Implementation of splitting text that looks at tokens.
- SentenceTransformersTokenTextSplitter() Implementation of splitting text that looks at tokens.
- RecursiveCharacterTextSplitter() Implementation of splitting text that looks at characters. Recursively tries to split by different characters to find one that works.
- Language() for CPP, Python, Ruby, Markdown etc
- NLTKTextSplitter() Implementation of splitting text that looks at sentences using NLTK (Natural Language Tool Kit)
- SpacyTextSplitter() Implementation of splitting text that looks at sentences using Spacy

QUICK RECAP: From Docs to Answers

QUICK RECAP: Embeddings

- Embeddings are high-dimensional vectors that store semantic information of the embedded data
- Embeddings can be used to map words, texts, images, audio, etc. to a vector space
 - Similar embedding vectors are in a similar position in the vector space
- Similarity of embeddings can be measured by using a similarity function (e.g. dot product, cosine similarity, etc.)

QUICK RECAP: Embeddings

- Dot product: Calculate the dot product of two vectors
 - Large dot product means high similarity
 - Small or negative dot product means low similarity

- Cosine similarity: Similar to the dot product but only in the range [-1, 1].
 - Cosine similarity close to 1 → very high similarity
 - Cosine similarity close to -1 → very low similarity

QUICK RECAP: Vector Stores

- Database specilized to store and retrieve embeddings
 - Documents are stored along with a vector (embedding) and metadata
 - Usually a much faster retrieval than traditional databases
- Most important part of a Retrieval Augmented Generation pipeline
- Different possibilities of data store:
 - o In-memory
 - o Persistent storage in a file
 - O Persistent storage in a hosted database
- A vector store can have multiple indices to separate documents

QUICK RECAP: Vector Stores

Qdrant

- Open-source vector database by a startup from Berlin
- Many additional features like a recommendation API
- Used by X to retrieve similar posts and current information inside Grok

Weaviate

- Open-source vector database from the Netherlands
- Offer a free cloud hosted version (has to be renewed every two weeks)

• Pinecone

- Proprietary vector database
- Offer a free cloud hosted plan
- Used in a lot of tutorials

QUICK RECAP: Vector Stores

- Other dedicated vector databases
 - Milvus (open-source)
 - o ChromaDB (open-source)
 - o and many more
- Other databases with vector store capabilities
 - Elasticsearch
 - PostgreSQL
 - MongoDB
 - SupaBase
 - o and many more

QUICK RECAP: From Docs to Answers

QUICK RECAP: Retrieval SimSearch vs. MMR


```
texts =
    """The Amanita phalloides has a large and imposing epigeous (aboveground)
    """A mushroom with a large fruiting body is the Amanita phalloides. Some va
    """A. phalloides, a.k.a Death Cap, is one of the most poisonous of all know
smalldb = Chroma.from_texts(texts, embedding=embedding)
question = "Tell me about all-white mushrooms with large fruiting bodies"
smalldb.similarity_search(question, k=2)
[Document(page_content='A mushroom with a large fruiting body is the Amanita p
halloides. Some varieties are all-white.', metadata={}),
 Document(page_content='The Amanita phalloides has a large and imposing epigeo
us (aboveground) fruiting body (basidiocarp).', metadata={})]
smalldb.max_marginal_relevance_search(question, k=2, fetch_k=3)
[Document(page_content='A mushroom with a large fruiting body is the Amanita p
halloides. Some varieties are all-white.', metadata={}),
 Document(page_content='A. phalloides, a.k.a Death Cap, is one of the most poi
sonous of all known mushrooms.', metadata={})]
```

QUICK RECAP: meta data

- There are several situations where the Query applied to the DB is more than just the Question asked.
- One is SelfQuery, where we use an LLM to convert the user question into a query


```
question = "what did they say about regression in the third lecture?"
docs = vectordb.similarity_search(
    question,
    k=3,
    filter={"source":"docs/cs229_lectures/MachineLearning-Lecture03.pdf"})
for d in docs:
    print(d.metadata)
{'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf', 'page': 0}
{'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf', 'page': 14}
{'source': 'docs/cs229_lectures/MachineLearning-Lecture03.pdf', 'page': 4}
from langchain.llms import OpenAI
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo
```

QUICK RECAP: Compression (with MMR)


```
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
def pretty_print_docs(docs):
    print(f"\n{'-' * 100}\n".join([f"Document {i+1}:\n\n" + d.page_content for
llm = OpenAI(temperature=0)
compressor = LLMChainExtractor.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(
    base_compressor=compressor,
    base_retriever=vectordb.as_retriever()
compression_retriever = ContextualCompressionRetriever(
    base_compressor=compressor,
    base_retriever=vectordb.as_retriever(search_type="mmr")
```

QUICK RECAP -

from langchain.chains import RetrievalQA


```
LangSmith
```

```
import os
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.langchain.plus"
os.environ["LANGCHAIN_API_KEY"] = LCP_API_KEY
```

QUICK RECAP - Memory

ConversationalRetrievalChain

qa = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0),
vectorstore.as_retriever(), memory=memory)

QUICK RECAP - Memory

Modular Components

You can add additional Retriever and compression features as needed

TODAY'S SCHEDULE

- Quiz
- Homework presentation
- Short Recap
- **Projects**
- Homework for next week

Projects

Private and local chatbot

- Christiane Laging
- Dirk Brockhausen
- Kristian Boroz
- Khanh Ho
- Joanne Loader
- Luca Palmieri

Interpret financial data

- Frederik Brinkmann
- Patrick Wagner
- Kristian Boroz

Stoic Companion

- Joanne Loader
- Jonas Gutzke
- Benjamin Müller
- Sandra Schulze
- Adrian Klabunde

<u>LISA</u>

- Anna Dahlhaus
- Anna-Lena Hansen
- Yinghan Zhao

Automation helper for literature review

- Kaan Apaydin
- Dikshyant Acharya
- Luca Palmieri
- Stefan David Horak
- Yorck Zisgen

Extract chain of events from documents

- Abdullah Al Amin
- Mithun Das
- Sarker Miraz Mahfuz

Language Learning App

Benjamin Müller

Private GPT

Dikshyant Acharya

Breakout rooms

- 1. Discuss in your project group what exactly the project should look like! Use the template for this!
- 2. Develop a battle plan in your project group on how you can develop a very rough prototype with LangFlow by next week. Who does what?

Breakout rooms

Discuss in your project group what exactly the project should look like! Use the template for this!

- 1. Working Title: For example, "Chat with Excel"
- 2. Data Sources: For example, Excel tables or text-based tables.
- 3. <u>Functions</u>: For example, users can pose questions and receive graphical and statistical reports in response.
- 4. <u>Use Cases:</u> For instance, a layperson can quickly analyze large datasets.
- 5. <u>Challenges:</u> For example, generating correctly formatted Python code for graphics and statistical analysis.
- 6. People interested: Horst & Elvira

Breakout rooms

Develop a battle plan in your project group on how you can develop a very rough prototype with LangFlow by next week. Who does what?

LangFlow:

https://github.com/logspace-ai/langflow

https://www.youtube.com/watch?v=KJ-ux3hre4s

Alternative 1: Flowise

https://github.com/FlowiseAl/Flowise

Alternative 2: GPTs (ChatGPT Plus required)

https://chat.openai.com/

TODAY'S SCHEDULE

- Quiz
- Homework presentation
- **Short Recap**
- **Projects**
- Homework for next week

Homework Until Next Week

- 1. Watch the course "Large Language Models with Semantic Search"
- 2. Prepare a short presentation (max 5 min per group) with 2 parts:
 - Present your project outline using the template (or improvise)
 - Present a rough prototype (or mockup) using LangFlow

Homework Until Next Week

Project Template

- 1. Working Title: For example, "Chat with Excel"
- 2. Data Sources: For example, Excel tables or text-based tables.
- 3. <u>Functions</u>: For example, users can pose questions and receive graphical and statistical reports in response.
- 4. <u>Use Cases:</u> For instance, a layperson can quickly analyze large datasets.
- 5. <u>Challenges:</u> For example, generating correctly formatted Python code for graphics and statistical analysis.
- 6. People interested: Horst & Elvira

Homework Until Next Week

Use one of the available no-code tools (or, if you prefer, LangChain) to test the feasibility of your idea by creating a first small prototype.

LangFlow: https://github.com/logspace-ai/langflow

Flowise: https://github.com/FlowiseAl/Flowise

GPTs: https://openai.com/blog/introducing-gpts