EXAMEN DE FUNDAMENTO DE COMPUTADORES INGENIERÍA TÉCNICA EN INFORMÁTICA DE SISTEMAS Grupos A y B FEBRERO DE 2010

Problema 1 (1 punto)

- a) Expresa (0AF13)₁₆ en binario y octal.
- b) Expresa (139)₁₀ en octal, binario y hexadecimal.
- c) Expresa (4573)₈ en binario y decimal.

Problema 2 (1 punto)

- Si A=10 y B=-14, haz las operaciones que aparecen a continuación operando en complemento a dos y utilizando el menor número de bits posible. Indica en cada caso si hay desbordamiento y acarreo razonándolo.
- a) A + B
- b) A B
- c) A + B
- d) -A B

Problema 3

Sea un sistema que tiene como entrada las señales de datos {A,B} y la señal de control S. El sistema tiene que reconocer la secuencia de datos BAB de manera que si S=0 el reconocedor es sin solapamiento y si S=1 el reconocedor es con solapamiento.

- 1) Utilizando una máguina de Mealy (4 puntos)
 - a) Diagrama de estados
 - b) Tabla de verdad
 - c) implementa la salida Z con el menor número de puertas lógicas
 - d) implementa la función *siguiente estado* con decodificadores de tamaño mínimo representando el sistema secuencial final teniendo en cuenta la función obtenida en c)
- 2) Suponiendo una máquina de Moore (4 puntos)
 - a) Diagrama de estados
 - b) Tabla de verdad
 - c) Implementa la salida Z mediante multiplexores que utilicen como señal de control las entradas de datos y de control del sistema reconocedor.
 - d) Implementa la función siguiente estado mediante multiplexores con tantas señales de control como variables tengan las funciones
 - d) implementa y representa todo el sistema utilizando una ROM

```
Soluciones
Problema 1
```

```
(00001010111100010011)_2
00-001-010-111-100-010-011=(0127423)8
b)
(10001011)_2
10-001-011=(213)8
1000-1011=(8B)<sub>16</sub>
100101111011)2
Problema 2
10→01010; -14 →10010
A+B=01010+10010=11100; no hay acarreo, no hay desbordamiento
b)
A-B=A+(-B)
-B=01110 \rightarrow A+(-B)=01010+01110=11000; no hay acarreo, pero hay desbordamiento (la
suma de dos números positivos no puede dar un número negativo)
-A= 10110; -A +B = 10110+10010=101000; hay acarreo y hay desbordamiento
-A + (-B)= 10110+01110= 100100; hay acarreo pero no desbordamiento
```

Problema 3

1) MAQUINA DE MEALY

a) Estados del sistema

S0→nada

S1→ B

S2→BA

Diagrama de estados

b) Tablas de verdad Codificación:

estados				
	E1	EO		
S0	0	0		
S1	0	1		
S2	1	0		
S 3	1	1		

Fijarse que en Mealy el estado S3 no se da nunca, luego provocara don't cares en las tablas de verdad.

entrada de datos	Χ
Α	0
В	1

Tablas de verdad:

entr	adas	estado	actual	siguiente estado		salida
S	Χ	E1	E0	e1	e0	Z
0	0	0	0	0	0	0
0	0	0	1	1	0	0
0	0	1	0	0	0	0
0	0	1	1	d	d	d
0	1	0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	d	d	d
1	0	0	0	0	0	0
1	0	0	1	1	0	0
1	0	1	0	0	0	0
1	0	1	1	d	d	d
1	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	1	0	0	1	1
1	1	1	1	d	d	d

Siendo:

- S la señal cambia el tipo de reconocedor
- E1,E0 el estado actual almacenado en los biestables
- e1,e0 el siguiente estado
- Z la salida del sistema

c) implementa la salida Z con el menor número de puertas lógicas Para usar el menor número de puertas hay que aplicar diagramas de k.

		E1 E0				
		00	01	11	10	
SX	00	(0)	(1)	D ⁽³⁾	(2)	
	01	(4)	(5)	D ⁽⁷⁾	1 (6)	
	11	(12)	(13)	D ⁽¹⁵⁾	1 (14)	
	10	(8)	(9)	D ⁽¹¹⁾	(10)	

Z= X+E1

2) MAQUINA DE MOORE

a)

Estados:

SO→NADA

S1→B

S2→BA

S3→BAB

diagrama de estados

b) tabla de verdad

entr	adas	estado	actual	siguiente estado		salida
S	Χ	E1	E0	e1	e0	Z
0	0	0	0	0	0	0
0	0	0	1	1	0	0
0	0	1	0	0	0	0
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	1	1	0
0	1	1	1	0	1	1
1	0	0	0	0	0	0
1	0	0	1	1	0	0
1	0	1	0	0	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	1	0	1	1	0
1	1	1	1	1	1	1

c) En moore la salida no depende de las entradas (en este caso S y X), sólo del estado actual (E1,E0), por lo tanto no se puede implementar el circuito con las especificaciones del enunciado