ATMIYA UNIVERSITY

Faculty of Science

DSE-Interdisciplinary (Theory) For the students admitted from A.Y. 2023-2024 & onwards			
Offering Department: Mathematics		Offered to: M.C.A.	
Semester – I			
Course Code	Course Title(F)		Course Credit and Hours
23MCAID101	Discrete Mathematic	al Structures	3 Credits - 3 hrs/wk (3 Theory)

Course Description:

This course should cover the basic concepts of mathematics such as set theory, logic, functions and relations etc as well as discrete mathematics, including graph theoretical concepts, which are helpful for the students to apply the knowledge in the field of computer application.

Course Purpose:

The purpose of the course is to have some basic knowledge in mathematics for the learner who wants to be the part of computer application as Mathematics is a fundamental part of computer application. In each application or software, there are many uses of mathematics such as binary number system, statistics, linear algebra, calculus, discrete mathematics etc.

Course Outcomes: Upon completion of this course, the learner will be able to		
CO	CO Statement	Blooms
No.		taxonomy Level
		(K ₁ to K ₆)
CO_1	Understand and demonstrate the concept of Set Theory and Logic.	K1, K2
CO_2	Define and explain the concept of Functions and Relations.	K1, K2
CO ₃	Review and analyse the concept of Permutation and combinations.	K2, K4
CO_4	Develop and interpret the concept of graph theory.	K2,K3
CO ₅	Summarize and apply Algorithms.	K2,K3

Course Contents	
Module-I: Set Theory and Logic	
Basic set theory- terminology and notations	
 Classes of sets and power set 	
• Set operations	
Venn Diagrams	

Mathematical induction	
Propositional logic, Logical equivalence.	
Module-II: Functions and Relations	
Mapping (bijective, surjective, injective),	
Relations-equivalence,	
Poset, Lattice	
Module-III: Permutation and combinations.	8
Permutations (Meaning, formula)	
Permutations of different things	
Permutations of Similar things	
Restricted Permutation	
Combinations (Meaning formula)	
Combinations of things taken some or all at time	
Some Restricted Combinations	
• Examples	
Module-IV: Concepts of Graph Theory.	10
Graphs-Definition and examples.	
Sub-graphs, standard graphs.	
Isomorphism of Graphs.	
 Trees, spanning trees, binary trees. 	
Matrix representation of graphs.	
Module-V: Algorithms in Graph Theory.	
Kruskal's Algorithm,	
Prim's Algorithm,	
Dijkstra's Algorithm,	
Flyod's Algorithm,	
Warshall's Algorithm,	
• DFS, BFS.	

Pedagogic Tools:

- Chalk and Talk
- PPT and Videos.
- Assignment
- Group discussion
- Seminar

Text Books:

- J. L. Mott, Abraham Kandel and T. P. Baker, (2008), Discrete Mathematics for Computer Scientists and Mathematicians, PHI.
- Bhishma Rao, (2006), Discrete Structure and Graph Theory, Scitech Publications.
- S. Arumugam and S. Ramachandran, (2015), Invitation to Graph Theory, Scitech Publications.

Reference Books:

- Stoll R.R. (1979), Set theory and Logic, Dover Publications, New York.
- Lipschutz S. (1988), Set Theory and Related Topics, 2nd edition, Schaum's Outline Series, McGraw Hill.
- J. Clark and D. A. Holton, (1991), A First Look at Graph Theory, World Scientific Publishing Co. Pvt. Ltd.
- J. P. Tremblay and R. Manohar, (2004), Discrete Mathematical Structures with Applications to Computer Science, Tata-McGraw Hill Publishing Company Limited, New Delhi, 21st Reprint.

Suggested reading / E-resources:

- http://www.math.toronto.edu/weiss/set_theory.pdf
- https://www.classcentral.com/classroom/youtube-math-320-set-theory-102494/62fc38196db96

Suggested MOOCs:

- https://www.classcentral.com/subject/set-theory
- https://www.coursera.org/browse/math-and-logic
- https://nptel.ac.in/courses/111107058

Methods of Assessment & Tools:

Components of CIA: 40 marks

Sr.	Component	Content	Duration (if any)	Marks	Sub
No.					Total
A	Test 1	Any 2 units	$1\frac{1}{2}$ hours	5 (Set for 30)	20
	Test 2	Remaining 3 units	$2\frac{1}{2}$ hours	15 (Set for 45)	
В	Assignment			08	20
С	Class activity			12	
				Grand Total	40
Assignment		Hand Boo	ok		
		• Seminars	Seminars		
Class	activity	• Quiz			

•	Class Test
•	Group Discussion

Note: Any other assessment tools or methods can be adopted as per requirement of the course