Cryptography Lecture 18

Arkady Yerukhimovich

October 30, 2024

Outline

- 1 Lecture 17 Review
- 2 A Brief Intro to Group Theory (Chapter 8.1)
- ${\color{red} oldsymbol{3}}$ The Group \mathbb{Z}_N^* and the Chinese Remainder Theorem
- 4 Modular Arithmetic Without a Calculator

Lecture 17 Review

- Modern Crypto Approach
- A Little Number Theory
- Today: A Tiny Bit of Group Theory

Outline

- 1 Lecture 17 Review
- 2 A Brief Intro to Group Theory (Chapter 8.1)
- ${\color{red} oldsymbol{3}}$ The Group \mathbb{Z}_N^* and the Chinese Remainder Theorem
- 4 Modular Arithmetic Without a Calculator

Group Theory

Definition of a Group

A group is a set G with a binary operation (\cdot) such that:

- Closure: $\forall g, h, \in G, g \cdot h \in G$
- ullet Identity: \exists element $1_{\mathcal{G}} \in \mathcal{G}$ s.t. $\forall g \in \mathcal{G}, 1_{\mathcal{G}} \cdot g = g \cdot 1_{\mathcal{G}} = g$
- Inverse: $\forall g \in G, \exists h \in G \text{ s.t. } g \cdot h = h \cdot g = 1_G$
- Associativity: $\forall g_1, g_2, g_3 \in G, (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$

Additional definitions:

- G is abelian if commutativity holds: $\forall g, h \in G, g \cdot h = h \cdot g$
- ullet |G| order of G (number of elements in G) For us $|G|<\infty$

Examples:

- ullet The integers, \mathbb{Z} , form an abelian group under addition
- The integers, \mathbb{Z} , are not a group under multiplication (no inverses)
- ullet $\mathbb{Z}_{N}=\{1,\ldots,N-1\}$ is a group under addition ullet \mathbb{Z}_{N}

Arkady Yerukhimovich Cryptography October 30, 2024 6 / 15

- Proof:
 - $ac = bc \implies (ac)c^{-1} = (bc)c^{-1} \implies a(cc^{-1}) = b(cc^{-1})$ $\implies a \cdot 1_G = b \cdot 1_G \implies a = b$

Arkady Yerukhimovich Cryptography October 30, 2024 6 / 15

- 2 Let |G| = m, $\forall g \in G, g^m = 1$

Arkady Yerukhimovich Cryptography October 30, 2024 6/15

- \bullet $\forall a, b, c \in G$, if ac = bc, then a = b
- **2** Let |G| = m, $\forall g \in G, g^m = 1$
 - Proof (for abelian groups): Consider $(gg_1), (gg_2), \ldots, (gg_m)$ where $g_1, \ldots, g_m \in G$ Since $(gg_i) = (gg_j)$ iff $g_i = g_j$ (by [1]), each of the (gg_i) is distinct Now, we have that

$$g_1 \cdot g_2 \cdots g_m = (gg_1) \cdot (gg_2) \cdots (gg_m) = g^m \cdot (g_1 \cdot g_2 \cdots g_m)$$

First equality holds because the (gg_i) are all possible values in G. So, $g^m=1$

- \bigcirc $\forall a, b, c \in G$, if ac = bc, then a = b
- 2 Let |G| = m, $\forall g \in G$, $g^m = 1$
- **1** Let |G| = m, then for any $g \in G$ and any $x \in \mathbb{Z}$, $g^x = g^{[x \mod m]}$

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ りへ○

- **2** Let |G| = m, $\forall g \in G, g^m = 1$
- **1** Let |G| = m, then for any $g \in G$ and any $x \in \mathbb{Z}$, $g^x = g^{[x \mod m]}$
 - Proof:

Let x = qm + r where $q, r \in \mathbb{Z}$ and $r = [x \mod m]$

$$g^{x} = g^{qm+r} = g^{qm} \cdot g^{r} = (g^{m})^{q} \cdot g^{r} = 1_{G}^{q} \cdot g^{r} = g^{r}$$

- 2 Let |G| = m, $\forall g \in G$, $g^m = 1$
- **3** Let |G| = m, then for any $g \in G$ and any $x \in \mathbb{Z}$, $g^x = g^{[x \mod m]}$
- Let |G| = m, and let $e > 0 \in \mathbb{Z}$. Define $f_e : G \to G$ by $f_e(g) = g^e$. If gcd(e, m) = 1, then f_e is a permutation over G. If $d = e^{-1} \mod m$, then $f_d = f_e^{-1}$.

4□ > 4□ > 4 = > 4 = > = 90

- \bullet $\forall a, b, c \in G$, if ac = bc, then a = b
- 2 Let |G| = m, $\forall g \in G, g^m = 1$
- **1** Let |G| = m, then for any $g \in G$ and any $x \in \mathbb{Z}$, $g^x = g^{[x \mod m]}$
- **1** Let |G| = m, and let $e > 0 \in \mathbb{Z}$. Define $f_e : G \to G$ by $f_e(g) = g^e$. If gcd(e, m) = 1, then f_e is a permutation over G. If $d = e^{-1} \mod m$, then $f_d = f_e^{-1}$.
 - Proof: Enough to prove that f_d is inverse of f_e For any $g \in G$, we have:

$$f_d(f_e(g)) = f_d(g^e) = (g^e)^d = g^{ed} = g^{[ed \mod m]} = g^1 = g$$

- 2 Let |G| = m, $\forall g \in G$, $g^m = 1$
- **1** Let |G| = m, then for any $g \in G$ and any $x \in \mathbb{Z}$, $g^x = g^{[x \mod m]}$
- Let |G| = m, and let $e > 0 \in \mathbb{Z}$. Define $f_e : G \to G$ by $f_e(g) = g^e$. If gcd(e, m) = 1, then f_e is a permutation over G. If $d = e^{-1} \mod m$, then $f_d = f_e^{-1}$.

4□ > 4□ > 4 = > 4 = > = 90

Notation: Let G be a group such that |G| = m

Arkady Yerukhimovich Cryptography October 30, 2024

Notation: Let G be a group such that |G| = m

ullet For $g \in \mathcal{G}$, define $< g >= \{g^0, g^1, \ldots\}$ — the items generated by g

Arkady Yerukhimovich Cryptography October 30, 2024 7/

Notation: Let G be a group such that |G| = m

- ullet For $g \in {\mathcal G}$, define $< g >= \{ g^0, g^1, \ldots \}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- ullet < g >= $\{g^0,\ldots,g^{i-1}\}$ is a *subgroup* of G

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- $\langle g \rangle = \{g^0, \dots, g^{i-1}\}$ is a subgroup of G
 - $g^x = g^{[x \mod i]}$

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- ullet < g >= $\{g^0,\ldots,g^{i-1}\}$ is a subgroup of G
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- ullet $< g >= \{g^0, \dots, g^{i-1}\}$ is a *subgroup* of G
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is *cyclic* if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- $\langle g \rangle = \{g^0, \dots, g^{i-1}\}$ is a *subgroup* of G
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is *cyclic* if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

• g is called the generator of G

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- $\langle g \rangle = \{g^0, \dots, g^{i-1}\}$ is a subgroup of G
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is *cyclic* if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

ullet g is called the generator of G

Useful property: If |G| is prime, then G is cyclic. Moreover, all $g \in G$ except 1 are generators

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- ullet $< g >= \{g^0, \dots, g^{i-1}\}$ is a *subgroup* of G
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is *cyclic* if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

ullet g is called the generator of G

Useful property: If |G| is prime, then G is cyclic. Moreover, all $g \in G$ except 1 are generators

Examples:

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- ullet $< g >= \{g^0, \dots, g^{i-1}\}$ is a subgroup of G
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is *cyclic* if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

ullet g is called the generator of G

Useful property: If |G| is prime, then G is cyclic. Moreover, all $g \in G$ except 1 are generators

Examples:

Z_N

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- ullet $< g >= \{g^0, \dots, g^{i-1}\}$ is a *subgroup* of G
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is *cyclic* if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

ullet g is called the generator of G

Useful property: If |G| is prime, then G is cyclic. Moreover, all $g \in G$ except 1 are generators

Examples:

• $\mathbb{Z}_{N} = <1>$

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- $\bullet < g >= \{g^0, \dots, g^{i-1}\}$ is a subgroup of G
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is *cyclic* if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

• g is called the generator of G

Useful property: If |G| is prime, then G is cyclic. Moreover, all $g \in G$ except 1 are generators

Examples:

- $\mathbb{Z}_{N} = <1>$
- $\bullet \mathbb{Z}_p^*$

Notation: Let G be a group such that |G| = m

- ullet For $g \in G$, define $\langle g \rangle = \{g^0, g^1, \ldots\}$ the items generated by g
- order of $g \in G$ is smallest $i \leq m$ such that $g^i = 1$ (Note that i|m)
- ullet < g >= $\{g^0,\ldots,g^{i-1}\}$ is a *subgroup* of G
 - $g^x = g^{[x \mod i]}$
 - $g^x = g^y$ iff $x = y \mod i$

Cyclic Group

A group G is *cyclic* if $\exists g \in G$ s.t. order(g) = |G|. I.e., $\langle g \rangle = G$.

• g is called the generator of G

Useful property: If |G| is prime, then G is cyclic. Moreover, all $g \in G$ except 1 are generators

Examples:

- $\mathbb{Z}_N = <1>$
- \mathbb{Z}_p^* Not all $g \in \mathbb{Z}_p^*$ are generators: $\langle 2 \rangle = \{1, 2, 4\} \neq \mathbb{Z}_7^*$ but, $\langle 3 \rangle = \{1, 3, 9 = 2, 6, 4, 5\}$ is a generator.

Arkady Yerukhimovich Cryptography October 30, 2024 7/15

ullet mod N is an equivalence relation that respects add and multiply

8 / 15

Arkady Yerukhimovich Cryptography October 30, 2024

- ullet mod N is an equivalence relation that respects add and multiply
- Euclidean algorithm for finding gcd(a, b)

- mod N is an equivalence relation that respects add and multiply
- Euclidean algorithm for finding gcd(a, b)
- For G, s.t. |G| = m, $\forall g \in G, g^m = 1$

- mod N is an equivalence relation that respects add and multiply
- Euclidean algorithm for finding gcd(a, b)
- For G, s.t. |G|=m, $\forall g\in G, g^m=1$
- For G, s.t. |G| = m, $g^x = g^{[x \mod m]}$ for any $g \in G$ and $x \in \mathbb{Z}$

Outline

- 1 Lecture 17 Review
- 2 A Brief Intro to Group Theory (Chapter 8.1)
- 3 The Group \mathbb{Z}_N^* and the Chinese Remainder Theorem
- 4 Modular Arithmetic Without a Calculator

The Group \mathbb{Z}_N^*

The group of (invertible) Integers mod N under multiplication

$$Z_N^* = \{b \in \{1, \dots, N-1\} | gcd(b, N) = 1\}$$

The Group \mathbb{Z}_N^*

The group of (invertible) Integers mod N under multiplication

$$Z_N^* = \{b \in \{1,\ldots,N-1\} | \textit{gcd}(b,N) = 1\}$$

Question: What is the order of \mathbb{Z}_N^* ?

The Group \mathbb{Z}_N^*

The group of (invertible) Integers mod N under multiplication

$$Z_N^* = \{b \in \{1, \dots, N-1\} | gcd(b, N) = 1\}$$

Question: What is the order of \mathbb{Z}_N^* ?

Euler ϕ function

$$\phi(N) = |\mathbb{Z}_N^*|$$

The group of (invertible) Integers mod N under multiplication

$$Z_N^* = \{b \in \{1, \dots, N-1\} | gcd(b, N) = 1\}$$

Question: What is the order of \mathbb{Z}_N^* ?

Euler ϕ function

$$\phi(N) = |\mathbb{Z}_N^*|$$

• If N is prime, $\phi(N) = N - 1$

Arkady Yerukhimovich

The group of (invertible) Integers mod N under multiplication

$$Z_N^* = \{b \in \{1, \dots, N-1\} | gcd(b, N) = 1\}$$

Question: What is the order of \mathbb{Z}_N^* ?

Euler ϕ function

$$\phi(N) = |\mathbb{Z}_N^*|$$

- If N is prime, $\phi(N) = N 1$
- If $N = p \cdot q$, $\phi(N) = (p-1)(q-1)$

The group of (invertible) Integers $\mod N$ under multiplication

$$Z_{N}^{*} = \{b \in \{1, \dots, N-1\} | gcd(b, N) = 1\}$$

Question: What is the order of \mathbb{Z}_N^* ?

Euler ϕ function

$$\phi(N) = |\mathbb{Z}_N^*|$$

- If N is prime, $\phi(N) = N 1$
- If $N = p \cdot q$, $\phi(N) = (p-1)(q-1)$
- Proof (for N = pq): Start with $\{1, \dots, N-1\}$, and remove all items x s.t., $gcd(x, N) \neq 1$

Remove
$$p, 2p, \ldots, (q-1)p$$
 and $q, 2q, \ldots, (p-1)q$ $\phi(N) = (N-1) - (q-1) - (p-1) = pq - p - q + 1 = (p-1)(q-1)$

The group of (invertible) Integers mod N under multiplication

$$Z_N^* = \{b \in \{1, \dots, N-1\} | gcd(b, N) = 1\}$$

Question: What is the order of \mathbb{Z}_N^* ?

Euler ϕ function

$$\phi(N) = |\mathbb{Z}_N^*|$$

- If N is prime, $\phi(N) = N 1$
- If $N = p \cdot q$, $\phi(N) = (p-1)(q-1)$

The group of (invertible) Integers mod N under multiplication

$$Z_N^* = \{b \in \{1, \dots, N-1\} | gcd(b, N) = 1\}$$

Question: What is the order of \mathbb{Z}_N^* ?

Euler ϕ function

$$\phi(N) = |\mathbb{Z}_N^*|$$

- If N is prime, $\phi(N) = N 1$
- If $N = p \cdot q$, $\phi(N) = (p-1)(q-1)$
- If $N = \prod_i p_i^{e_i}$, $\phi(N) = \prod_i p_i^{e_i-1}(p_i-1)$

Arkady Yerukhimovich

The group of (invertible) Integers $\mod N$ under multiplication

$$Z_N^* = \{b \in \{1, \dots, N-1\} | gcd(b, N) = 1\}$$

Question: What is the order of \mathbb{Z}_N^* ?

Euler ϕ function

$$\phi(N) = |\mathbb{Z}_N^*|$$

- If N is prime, $\phi(N) = N 1$
- If $N = p \cdot q$, $\phi(N) = (p-1)(q-1)$
- If $N = \prod_i p_i^{\mathbf{e}_i}$, $\phi(N) = \prod_i p_i^{\mathbf{e}_i-1}(p_i-1)$

Theorem: $\forall a \in \mathbb{Z}_N^*$, $a^{\phi(N)} = 1 \mod N$

Group Isomorphism

Definition

Groups G and H are isomorphic $(G \simeq H)$ if there exists function $f: G \to H$ such that:

• f is a bijection (i.e., one-to-one and onto)

Group Isomorphism

Definition

Groups G and H are isomorphic $(G \simeq H)$ if there exists function $f: G \to H$ such that:

- f is a bijection (i.e., one-to-one and onto)
- $\forall g_1, g_2 \in G, \ f(g_1 \cdot g_2) = f(g_1) \cdot f(g_2)$
 - n G in

Theorem

Let N = pq, then

$$\mathbb{Z}_{N} \simeq \mathbb{Z}_{p} imes \mathbb{Z}_{q}$$
 and $\mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p}^{*} imes \mathbb{Z}_{q}^{*}$

With isomorphism $f(x) = ([x \mod p], [x \mod q])$

Theorem

Let N = pq, then

$$\mathbb{Z}_{N} \simeq \mathbb{Z}_{p} imes \mathbb{Z}_{q}$$
 and $\mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p}^{*} imes \mathbb{Z}_{q}^{*}$

With isomorphism $f(x) = ([x \mod p], [x \mod q])$

Theorem

Let N = pq, then

$$\mathbb{Z}_{\mathit{N}} \simeq \mathbb{Z}_{\mathit{p}} imes \mathbb{Z}_{\mathit{q}} \qquad ext{ and } \qquad \mathbb{Z}_{\mathit{N}}^* \simeq \mathbb{Z}_{\mathit{p}}^* imes \mathbb{Z}_{\mathit{q}}^*$$

With isomorphism $f(x) = ([x \mod p], [x \mod q])$

•
$$1 \leftrightarrow (1,1)$$
, $2 \leftrightarrow (2,2)$, $7 \leftrightarrow (2,1)$

Theorem

Let N = pq, then

$$\mathbb{Z}_{N} \simeq \mathbb{Z}_{p} imes \mathbb{Z}_{q}$$
 and $\mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p}^{*} imes \mathbb{Z}_{q}^{*}$

With isomorphism $f(x) = ([x \mod p], [x \mod q])$

- $\bullet \ 1 \leftrightarrow (1,1), \ 2 \leftrightarrow (2,2), \ 7 \leftrightarrow (2,1)$
- \bullet Compute 11^{53} mod 15

Theorem

Let N = pq, then

$$\mathbb{Z}_{N} \simeq \mathbb{Z}_{p} imes \mathbb{Z}_{q}$$
 and $\mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p}^{*} imes \mathbb{Z}_{q}^{*}$

With isomorphism $f(x) = ([x \mod p], [x \mod q])$

- $1 \leftrightarrow (1,1)$, $2 \leftrightarrow (2,2)$, $7 \leftrightarrow (2,1)$
- \bullet Compute 11^{53} mod 15

Theorem

Let N = pq, then

$$\mathbb{Z}_{N} \simeq \mathbb{Z}_{p} imes \mathbb{Z}_{q}$$
 and $\mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p}^{*} imes \mathbb{Z}_{q}^{*}$

With isomorphism $f(x) = ([x \mod p], [x \mod q])$

- $1 \leftrightarrow (1,1), 2 \leftrightarrow (2,2), 7 \leftrightarrow (2,1)$
- Compute 11⁵³ mod 15
 - Apply CRT: $11 \leftrightarrow (1,2)$
 - 2 Use modular arithmetic mod 3: $2 = -1 \mod 3$

Theorem

Let N = pq, then

$$\mathbb{Z}_{\mathit{N}} \simeq \mathbb{Z}_{\mathit{p}} imes \mathbb{Z}_{\mathit{q}} \qquad ext{ and } \qquad \mathbb{Z}_{\mathit{N}}^* \simeq \mathbb{Z}_{\mathit{p}}^* imes \mathbb{Z}_{\mathit{q}}^*$$

With isomorphism $f(x) = ([x \mod p], [x \mod q])$

- $1 \leftrightarrow (1,1)$, $2 \leftrightarrow (2,2)$, $7 \leftrightarrow (2,1)$
- Compute 11⁵³ mod 15

 - ② Use modular arithmetic $\mod 3$: $2 = -1 \mod 3$
 - Simplify:

$$11^{53} = (1,2)^{53} = ([1^{53} \mod 5], [(-1)^{53} \mod 3])$$

Theorem

Let N = pq, then

$$\mathbb{Z}_{\mathit{N}} \simeq \mathbb{Z}_{\mathit{p}} imes \mathbb{Z}_{\mathit{q}} \qquad ext{ and } \qquad \mathbb{Z}_{\mathit{N}}^* \simeq \mathbb{Z}_{\mathit{p}}^* imes \mathbb{Z}_{\mathit{q}}^*$$

With isomorphism $f(x) = ([x \mod p], [x \mod q])$

- $1 \leftrightarrow (1,1)$, $2 \leftrightarrow (2,2)$, $7 \leftrightarrow (2,1)$
- Compute 11⁵³ mod 15

 - ② Use modular arithmetic mod 3: $2 = -1 \mod 3$
 - Simplify:

$$11^{53} = (1,2)^{53} = ([1^{53} \mod 5], [(-1)^{53} \mod 3])$$

= $(1, [-1 \mod 3]) = (1,2) = 11$

Outline

- 1 Lecture 17 Review
- 2 A Brief Intro to Group Theory (Chapter 8.1)
- ${\color{red} oldsymbol{3}}$ The Group \mathbb{Z}_N^* and the Chinese Remainder Theorem
- 4 Modular Arithmetic Without a Calculator

To evaluate exponentiation $\mod N$ use the following steps:

Arkady Yerukhimovich Cryptography October 30, 2024 15/15

To evaluate exponentiation $\mod N$ use the following steps:

• If N is not prime, apply the Chinese Remainder Theorem

To evaluate exponentiation $\mod N$ use the following steps:

- If N is not prime, apply the Chinese Remainder Theorem
- Reduce mod $\phi(N)$ in the exponent

15 / 15

To evaluate exponentiation $\mod N$ use the following steps:

- If N is not prime, apply the Chinese Remainder Theorem
- Reduce mod $\phi(N)$ in the exponent
- Reduce mod N in the base

To evaluate exponentiation $\mod N$ use the following steps:

- If N is not prime, apply the Chinese Remainder Theorem
- Reduce mod $\phi(N)$ in the exponent
- Reduce mod N in the base

Useful Hints:

Sometimes useful to use negative numbers

To evaluate exponentiation mod N use the following steps:

- If N is not prime, apply the Chinese Remainder Theorem
- Reduce mod $\phi(N)$ in the exponent
- Reduce mod N in the base

$$a^{\times} = a^{\times} \wedge A \phi(N)$$

Useful Hints:

- Sometimes useful to use negative numbers
- look for things that are easy to compute (e.g., 1^{53})