MTH302: INTEGERS, POLYNOMIALS AND MATRICES LECTURE 6, September 3, 2020

VARADHARAJ R. SRINIVASAN

Keywords: Ideals, Matrix rings, Division rings.

1. BASIC PROPERTIES OF IDEALS

Let *R* be a ring with 1 and *I* be a left ideal of *R*. Then the following are equivalent.

- (1) I = R.
- (2) $1 \in I$.
- (3) *I* contains a unit.
- (4) *I* contains an element which has a left inverse.

The proof is straightforward. A similar equivalent statements can be obtained for right ideals and two-sided ideals.

Let $(x)_l, (x)_r$ and (x) denote the left, right and the two-sided ideals generated by $x \in R$ respectively. Even for a ring R with 1 there may be elements $x \in R$ having no left or right inverses and that the ideal generated by x equals R. To see this, let $R = M_2(\mathbb{R})$ and let

$$x := E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Then

(1.1)
$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = x + E_{21} \cdot x \cdot E_{12} \in (x).$$

and thus (x) = R. However, since x is a left as well as a right zero-divisor, x has neither a left inverse nor a right inverse.

Theorem 1.1. For a ring R with 1, the following statements are equivalent.

- (1) R is a division ring.
- (2) (0) and R are the only left ideals.
- (3) (0) and R are the only right ideals.

Proof. Let R be a division ring and I be a left ideal of R. If $0 \neq x \in I$ then there is a $y \in R$ such that $y \cdot x = 1$ and thus $1 = y \cdot x \in (x)_l$. This implies $(x)_l = R$ and we have shown that $(1) \Longrightarrow (2)$. Let (2) hold and $0 \neq x \in R$. Since $(x)_l = R$, we have $y \cdot x = 1$ for some $y \in R$ and since $(y)_l = R$, for some $z \in R$, we have $z \cdot y = 1$. It follows that z = x and thus x is a unit. Thus R is a division ring and this proves $(2) \Longrightarrow 1$. Use similar arguments to prove $1 \Longleftrightarrow 3$.

Corollary 1.2. Let R be a commutative ring with 1. Then R is a field if and only if (0) and R are the only ideals of R.

Remark 1.3. If R is a division ring then clearly, (0) and R are the only two-sided ideals of R. However, the converse is not true. For example, consider $R = M_2(\mathbb{R})$. Then R is not a division ring (why?). However, for any nonzero two-sided ideal I of R and

$$0 \neq x = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in I, \quad \text{say } c \neq 0,$$

observe that $E_{11} = c^{-1}E_{12} \cdot x \cdot E_{11} \in I$. But we have already noted in Equation 1.1 that if $E_{11} \in I$ then $(x) \supseteq (E_{11}) = R$.

Theorem 1.4. Let R be a ring with a nontrivial multiplication. That is, $x \cdot y \neq 0$ for some $x, y \in R$. Then R is a division ring if and only if (0) and R are the only left ideals.

Proof. In view of Theorem 1.1, we only need to show that if (0) and R are the only left ideals then R has 1. Let (0) and R be the only left ideals of R and $x,y\in R$ be such that $x\cdot y\neq 0$. Then $Ry:=\{r\cdot y\mid r\in R\}$ is a nonzero left ideal and therefore Ry=R. Therefore, there is an element $e\in R$ such that $e\cdot y=y$. Then, $y=e\cdot y=e^2\cdot y$ and thus $(e^2-e)\cdot y=0$.

Let $L(Ann(y)) := \{z \in R \mid z \cdot y = 0\}$ be the set of all *left annihilators* of y. It is easy to see that L(Ann(y)) is a left ideal of R. Since $x \cdot y \neq 0$, $L(Ann(y)) \neq R$ and thus L(Ann(y)) = (0). This shows that $e^2 = e$, that is, e is an idempotent.

Let $I = \{a \cdot e - a \mid a \in R\}$. Since $0 = 0 \cdot e - 0 \in I$, we have I is a nonempty subset of R. It is easy to see that I is a left ideal (check). Now since $(a \cdot e - a) \cdot y = a \cdot e \cdot y - a \cdot y = a \cdot y - a \cdot y = 0$, we see that $I \subseteq L(Ann(y)) = (0)$. Thus $a \cdot e = a$ for all $a \in R$ and this proves that e = a is a right identity of R.

Let $J=\{e\cdot a-a\mid a\in R\}$. It is easy to see that $0\in J$ and that J is a left ideal of R. Then J=(0) or J=R. If J=R then $y=e\cdot a-a$ for some $a\in R$ and we have $x\cdot y=x\cdot (e\cdot a-a)=x\cdot a-x\cdot a=0$, a contradiction. Thus J=(0) and we obtain $e\cdot a=a$ for all $a\in R$. Hence e is an identity of R.