Übungsblatt LA 1

Computational and Data Science FS2025

Mathematik 2

Lernziele:

- ➤ Sie kennen die Begriffe komplexe Zahl, Realteil, Imaginärteil, Betrag und komplex konjugiert und deren wichtigste Eigenschaften.
- > Sie kennen die elementaren Rechenregeln für die komplexe Konjugation.
- Sie können für jede komplexe Zahl ihren Realteil, Imaginärteil, Betrag und ihre komplex Konjugierte bestimmen.
- Sie können Summe, Differenz, Produkt und Quotient von komplexen Zahlen berechnen.
- > Sie können einfache Brüche und Potenzen von komplexen Zahlen durch Anwenden der Rechenregeln vereinfachen.

1. Aussagen über komplexe Zahlen

Welche der folgenden Aussagen sind wahr und welche falsch?

Welche der lolgenden Aussagen sind wahl und welche laisch?						
	wahr	falsch				
a) Es gilt: $\sqrt{2} \notin \mathbb{C}$.						
b) Es gilt: $\sqrt{-1} \in \mathbb{C}$.						
c) Es gilt: ℚ ⊈ ℂ.						
d) Das Produkt von zwei reellen Zahlen ist eine komplexe Zahl.						
e) Die komplexen Zahlen bestehen aus allen reellen Zahlen und						
der imaginären Einheit i.						
f) Jede komplexe Zahl kann durch zwei reelle Zahlen dargestellt						
werden.						
g) Für alle $z \in \mathbb{C}$ gilt: $Im(z) \in \mathbb{R}$.						
h) $z = 0$ gilt genau dann, wenn $ z = 0$.						
i) $z_1^* = z_2^*$ gilt genau dann, wenn $z_1 = z_2$.						
j) Es gibt ein $z \in \mathbb{C}$, so dass $z^2 = -2$.						
k) Es gilt $ Re(z) \le z $ und $ Im(z) \le z $ für alle $z \in \mathbb{C}$.						

2. Real- und Imaginärteil und komplex Konjugierte

	Z	Z*	Re(z)	lm(z)	z
a)	0				
b)	1				
c)	İ				
d)	3+4i				
e)		-5+12i			
f)			8	-6	
g)	3i				
h)		5i			
i)			-π	0	
j)			0	$\sqrt{2}$	

3. Elementares Rechnen mit komplexen Zahlen

Berechnen Sie jeweils die Summe z₁ + z₂, die Differenz z₁ - z₂, das Produkt z₁ • z₂ und den Quotienten z₁/z₂ der gegebenen komplexen Zahlen.

a)
$$z_1 = 3$$
, $z_2 = i$

b)
$$z_1 = i$$
, $z_2 = 3$

c)
$$z_1 = 2 + 3i$$
, $z_2 = 2 + 3i$

d)
$$z_1 = 3 + 4i$$
, $z_2 = 3 - 4i$

e)
$$z_1 = -3 + 4i$$
, $z_2 = -3 - 4i$

f)
$$z_1 = 4 + 9i$$
, $z_2 = 3 + 7i$

g)
$$z_1 = 6 + i$$
, $z_2 = 1 - i$

h)
$$z_1 = -2 - 2i$$
, $z_2 = -3 + i$

i)
$$z_1 = 7i$$
, $z_2 = 9i$

j)
$$z_1 = 1 + \sqrt{3}i, z_2 = 1 - \sqrt{3}i$$

4. Rechenregeln der komplexen Konjugation

Zeigen Sie, dass für die komplexen Zahlen die folgenden Rechenregeln für die komplexe Konjugation gelten.

a)
$$(z_1 + z_2)^* = z_1^* + z_2^*$$

b)
$$(z_1 - z_2)^* = z_1^* - z_2^*$$

c)
$$(z_1 \cdot z_2)^* = z_1^* \cdot z_2^*$$

d)
$$(\frac{z_1}{z_2})^* = \frac{z_1^*}{z_2^*} \text{ mit } z_2 \neq 0$$

5. Brüche mit komplexen Zahlen

Vereinfachen Sie den gegebenen Bruch soweit wie möglich mit Hilfe der Rechenregeln für komplexe Zahlen.

a)
$$\frac{1}{i}$$

b)
$$\frac{1}{-4+3i}$$

c)
$$2 + 5\left(\frac{1}{2+i}\right) + 3(3-i)$$

b)
$$\frac{1}{-4+3i}$$

d) $\frac{(3-2i)(6-8i)}{3+i}$
f) $\frac{1+i}{1-i}$

e)
$$\frac{7+3i}{(1+i)(1-i)}$$

f)
$$\frac{1+i}{1-i}$$

6. Potenzen mit komplexen Zahlen

Vereinfachen Sie den gegebenen Term soweit wie möglich mit Hilfe der Rechenregeln für komplexe Zahlen.

a)
$$i^3$$

b)
$$i^4$$

c)
$$(-i)^2$$

d)
$$(-i)^3$$

e)
$$(2i)^7 + (7i)^2$$

d)
$$(-i)^3$$

f) $(-\sqrt{2}i)^8 + (3i)^4$