Abstract Algebra Notes

Definition. A <u>map</u> $f : A \to B$ is a subset $f \subset A \times B$ such that for all $a \in A$, there exists a $b \in B$ such that b is unique with $(a, b) \in f$.

Definition. We write f(a) = b if $(a, b) \in f$. A is the **domain** of f and B is the **codomain**.

Definition. A **binary operation** on A is a map $\star : A \times A \to A$ such that $\star(a_1, a_2) = a_1 \star a_2$ for $a_1, a_2 \in A$.

Definition. A binary operation \star is **associative** on A if for all $a, b, c \in A$, $a \star (b \star c) = (a \star b) \star c$.

Definition. An element $e \in A$ is an **identity** element of \star if for each $a \in A$, $e \star a = a \star e = a$.

Definition. An element $a \in A$ has an <u>inverse</u> under \star if there exists a $b \in A$ such that $a \star b = b \star a = e$.

Definition. A set A with an associative binary operation \star is a **group** if A has an identity element under \star and every $a \in A$ has an inverse.

Definition

A group is a pair (G, \star) where G is a set and \star is a binary operation on G such that

- 1. For all $a, b, c \in A$, $a \star (b \star c) = (a \star b) \star c$.
- 2. There exists an $e \in G$ such that $a \star e = e \star a = a$ for all $a \in G$.
- 3. For all $a \in G$, there exists a $b \in G$ such that $a \star b = b \star a = e$.

Definition. A group (G, \star) is **abelian** or commutative if for all $g, h \in G$, $g \star h = h \star g$.

Theorem

Let (G, \star) be a group.

- 1. *e* is unique.
- 2. g^{-1} is unique.
- 3. $\forall g \in G, (g^{-1})^{-1} = g$.
- 4. $\forall g, h \in G, (g \star h)^{-1} = h^{-1} \star g^{-1}.$

We may prove each part separately.

1. Suppose e, e' are identity elements. Then for all $a \in G$,

$$a \star e = e \star a = a \tag{i}$$

$$a \star e' = e' \star a = a \tag{ii}$$

By (i), $e' = e \star e'$ and by (ii), $e = e \star e'$. Therefore, e = e'.

2. Supposed $a \star b = b \star a = e$, then

$$b = b \star e$$

$$= b \star (a \star a^{-1})$$

$$= (b \star a) \star a^{-1}$$

$$= e \star a^{-1}$$

$$= a^{-1}$$

Thus, $b = a^{-1}$.

3.
$$g^{-1} \star (g^{-1})^{-1} = e = g^{-1} \star g$$
. By (ii), $g = (g^{-1})^{-1}$.

4. Consider $(a \star b) \star (b^{-1} \star a^{-1})$.

$$(a \star b) \star (b^{-1} \star a^{-1}) = a \star (b \star b^{-1}) \star a^{-1}$$
$$= a \star e \star a^{-1}$$
$$= a \star a^{-1}$$
$$= e$$

Thus,
$$(b^{-1} \star a^{-1}) = (a \star b)^{-1}$$
.

Definition. Let $[n] = \{1, 2, ..., n\}$. The **symmetric group** denoted S_n of degree n is the set of all bijections on [n] under the operation of composition.

$$S_n = {\sigma : [n] \rightarrow [n] \mid \sigma \text{ is a bijection}}$$

Definition. The <u>order</u> of (G, \star) is the number of elements in G denoted |G|.

Definition. Let $n \ge 2$. The **dihedral group** of index n is the group of all symmetries of a regular polygon P_n with n vertices in the Euclidean plane.

Symmetries of P_n consist of rotations and reflections.

Choose a vertex v. Let L_0 be the line from the center of P_n through v. Let L_k be L_0 rotated by $\frac{\pi k}{n}$ for $1 \le k \le n$. Let σ_k be a reflection about L_k . Let ρ_k be a rotation about $\frac{2\pi k}{n}$, $1 \le k \le n$.

Definition. A subset $S \subseteq G$ of a group (G, \star) is a set of **generators**, denoted $\langle S \rangle = G$, if and only if every element of G can be written as a finite product of elements of S and their inverses.

Definition. Any equation satisfied by generators is called a <u>relation</u>.

Definition. A **presentation** of G, denoted $\langle S \mid R \rangle$, is a set of generators of G and relations such that any other relation can be derived by those given.

Example.

$$D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} \rangle$$

Definition. The cycles $\sigma = (\sigma_1 \ \sigma_2 \ \dots \ \sigma_n)$ and $\tau = (\tau_1 \ \tau_2 \ \dots \ \tau_n)$ are **disjoint** if $\sigma_i \neq \tau_j$ for $1 \leq i \leq n$ and $1 \leq j \leq m$.

Definition. A cycle of length 2 is called a **transposition**.

Definition. An expression of the form $(a_1 \ a_2 \ \dots \ a_m)$ is called a **cycle of length m** or an **m-cycle**.

Proposition. Let $\alpha = (a_1 \ a_2 \ \dots \ a_m)$ and $\beta = (b_1 \ b_2 \ \dots \ b_n)$. If $a_i \neq b_j$ for any i, j, then $\alpha \beta = \beta \alpha$.

Proposition. Every permutation can be written as a product of disjoint cycles.

Proposition. A cycle of length *n* has order *n*.

Proposition. Let $\alpha_1, \alpha_2, \dots, \alpha_n$ be disjoint cycles. Then,

$$|\alpha_1\alpha_2...\alpha_n| = \text{lcm}(|\alpha_1|, |\alpha_2|, ..., |\alpha_n|)$$

Proposition. Every permutation is S_n is a product of 2-cycles (which are not necessarily disjoint).

Proposition. If $\alpha = \beta_1 \beta_2 \dots \beta_r = \gamma_1 \gamma_2 \dots \gamma_s$ where β_i, γ_j are transpositions, then r and s have the same parity.

Definition. If r and s are both odd, α is called an **odd permutation**. If r and s are both even, α is called an **even permutation**.

Definition. The set of even permutations in S_n form a group called the <u>alternating group</u>, denoted A_n .

Note. $|A_n| = \frac{n!}{2}$ for n > 1.

Definition

Let (G, \star) and (G', *) be groups. A map of sets $\varphi : G \to G'$ is a **group homomorphism** if for all $a, b \in G$,

$$\varphi(a \star b) = \varphi(a) * \varphi(b)$$

Example. The following are two very simple examples of homomorphisms.

Trivial Homomorphism

$$\varphi: G \to G', \varphi(g) = e, \forall g \in G$$

Identity Homomorphism

$$\varphi: G \to G', \varphi(g) = g, \forall g \in G$$

Definition. If $\varphi : G \to G'$ is a homomorphism, the **domain** of φ is $Dom(\varphi) = G$, the **codomain** of φ is $Codom(\varphi) = G'$, the **range** or **image** of φ is $\varphi(G) = \{\varphi(g) : g \in G\} \subseteq G'$ denoted $Range(\varphi)$ or $Im(\varphi)$.

Definition

A homomorphism which is bijective is called an **isomorphism**.

 $\varphi: G \to G'$ is an isomorphism if and only if there exists $\psi: G' \to G$ such that ψ is a homomorphism and $\varphi \circ \psi = 1_{G'}$, $\psi \circ \varphi = 1_{G}$, i.e. ψ is an inverse homomorphism to φ . We say G is isomorphic to G' by $G \cong G'$ or $\varphi: G \xrightarrow{\sim} G'$.

Definition

Let (G, \star) be a group. A subset $H \subseteq G$ is a **subgroup** if (H, \star) is also a group.

If $H \neq \emptyset$ and $H \subseteq G$, $H \leq G$ or H is a subgroup of G if and only if

- 1. *H* is closed under \star ($\forall h_1, h_2 \in H, h_1 \star h_2 \in H$).
- 2. *H* is closed under inverses $(h \in H \Rightarrow h^{-1} \in H)$.

Note. The following is notation for arbitrary and abelian groups.

$$x \star y \rightarrow xy$$
 for arbitrary G , $x + y$ for abelian G $e \rightarrow 1$ for arbitrary G , 0 for abelian G

For an arbitrary subset $A \subseteq G$, and $g \in G$,

$$gA = \{ga : a \in A\}$$
 $Ag = \{ag : a \in A\}$ $gAg^{-1} = \{gag^{-1} : a \in A\}$

Theorem (Subgroup Criterion)

Let $\emptyset \neq H \subseteq G$, $H \leq G$ if and only if $\forall x, y \in H$, $xy^{-1} \in H$.

Definition. Let $A \subseteq G$ be any subset. The <u>centralizer</u> of A in G is $C_G(A) = \{g \in G : gag^{-1} = a\}$ and it is the set of elements in G which commute with all elements of A.

Proposition.
$$C_G(A) \leq G$$

Proof. First we show that the centralizer is not empty. 1a = a1 = a, $\forall a \in A \Rightarrow 1 \in C_G(A) \Rightarrow C_G(A) \neq 0$ so the centralizer of A is not empty. Let $x, y \in C_G(A)$. We want to show that $xy^{-1} \in C_G(A)$ or that $xy^{-1} \in C_G(A)$. We do this by showing that $(xy^{-1}) a (xy^{-1})^{-1} = a$.

$$(xy^{-1}) a (xy^{-1})^{-1} = xy^{-1}ayx^{-1}$$

$$= x (y^{-1}ay) x^{-1}$$

$$= xax^{-1} \qquad (y \in C_G(A))$$

$$= a \qquad (x \in C_G(A))$$

Since this subset satisfies the Subgroup Criterion, the centralizer $C_G(A)$ is a subgroup of G.

Definition. The <u>center</u> of a group G is denoted $Z(G) = \{g \in G : gx = xg, \forall x \in G\}$. $Z(G) = C_G(G) \leq G$. Z(G) is the set of elements of G which commute with all elements in G. If G is abelian, Z(G) = G.

Definition. The <u>normalizer</u> of A in G is $N_G(A) = \{g \in G : gAg^{-1} = A\}$ or $\{g \in G : gag^{-1} = a' \in A\}$.

Proposition. $C_G(A) \leq N_G(A) \leq G$

Definition. A **group action** of a group G on a set A is a map $G \times A \to A$ such that $(g_1g_2) \cdot a = g_1 \cdot (g_2 \cdot a)$, $\forall g_1, g_2 \in G$, $\forall a \in A$ and $1 \cdot a = a$, $\forall a \in A$. It is denoted $G \circlearrowleft A$.

Definition. Suppose $G \circlearrowleft A$, the stabilizer of $a \in A$ in G is $G_a = \{g \in G : g \cdot a = a\}$. $G_a \leq G$.

Definition

An **equivalence relation** \mathcal{E} on a set S is a subset $\mathcal{E} \subseteq S \times S$ which is reflexive, symmetric, and transitive. We write $(a,b) \in \mathcal{E} \Leftrightarrow a \mathcal{E} b$ or $a \sim b$.

- 1. $a \sim a$
- 2. $a \sim b \Leftrightarrow b \sim a$
- 3. $a \sim b$, $b \sim c \Rightarrow a \sim c$

Definition. The **equivalence class** of $a \in S$ is $[a] = \{b \in S : a \sim b\}$

Definition. The **quotient set** of *S* under \sim is $S/\sim = \{[a] : a \in S\}$.

Example. $\mathbb{Q} = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} : b \neq 0\} / \sim, (a,b) \sim (c,d) \Rightarrow ad = bc.$

Definition. The quotient set comes equipped with the **projection map** $\pi: S \to S/\sim$ where $a \mapsto [a] = \pi(a)$. This map is surjective by definition.

Definition

A group G' is a **quotient group** of a group G if

- 1. $G' = G/\sim$, G' is the quotient set of G under an equivalence relation \sim .
- 2. The projection map $\pi: G \to G' = G/\sim$ is a group homomorphism.

Definition. Let $\varphi : G \to G'$ be a homomorphism and let $g' \in G'$. The <u>fiber</u> over g' is $\varphi^{-1}(g') = \{g \in G : \varphi(g) = g'\}$.

Proposition

All quotient groups come from subgroups.

Let $\varphi: G \to G'$ be a homomorphism, then φ induces an equivalence relation on G. Let $x \sim y \Leftrightarrow \varphi(x) = \varphi(y)$. But φ is a group homomorphism, so $\varphi(x) = \varphi(y) \Leftrightarrow \varphi(x) \varphi(y)^{-1} = 1_{G'} \Leftrightarrow \varphi(x) \varphi(y^{-1}) = 1 \Leftrightarrow \varphi(xy^{-1}) = 1$. So $x \sim y \Leftrightarrow \varphi(xy^{-1}) = 1$. Let $K = \{g \in G : \varphi(g) = 1\}$. Then $x \sim y \Leftrightarrow xy^{-1} \in K$. Recall $K = \operatorname{Ker}(\varphi) \leq G$.

Let G' be a quotient group of G. Then $x \sim y \Leftrightarrow [x] = [y] \Leftrightarrow \pi(x) = \pi(y)$ where $\pi: G \to G'$ is the projection. But $\pi(x) = \pi(y) \Leftrightarrow xy^{-1} \in \text{Ker}(\varphi)$.

Definition. The **right coset** of a subgroup H of a group G by the element $x \in G$ is $Hx = \{hx : h \in H\}$. The **left coset**, denoted xH is denoted similarly.

Proposition. Let $\varphi : G \to G'$ be a homomorphism and $K = \text{Ker}(\varphi)$. Then $xKx^{-1} \subseteq K$, $\forall x \in G$.

Proof. We must show $\varphi(xkx^{-1}) = 1_{G'}$ for $x \in G$, $k \in K$. Then, $\varphi(xkx^{-1}) = \varphi(x)\varphi(k)\varphi(x^{-1}) = \varphi(x)\varphi(x)^{-1} = 1_{G'}$.

Definition

The subgroup $N \le G$ is <u>normal</u> if $xNx^{-1} \subseteq N$ for all $x \in G$. It is denoted $N \le G$.

Proposition. Ker(φ) \leq *G* for any homomorphism φ : $G \rightarrow G'$.

Theorem

Let $N \leq G$. Then the following are equivalent.

- 1. $N \subseteq G$ $(xNx^{-1} \subseteq N, \forall x \in G)$
- 2. $xNx^{-1} = N$
- 3. xN = Nx
- 4. $\forall x, y \in G, xy^{-1} \in N \Leftrightarrow y^{-1}x \in N$

(1) \Rightarrow (2) Assume $\forall x \in G$, $xNx^{-1} \subseteq N$. We want to show $xNx^{-1} = N$. We do this by showing $N \subseteq xNx^{-1}$. Let $x \in G$, $n_0 \in N$. We show $n_0 \in xNx^{-1}$. Note that $x \in G \Rightarrow x^{-1} \in G$. Thus, $x^{-1}N\left(x^{-1}\right)^{-1} \subseteq N$ since $N \subseteq G$. Thus there exists n such that $x^{-1}nx = n_1 \in N$. $n_0 = x\left(x^{-1}n_0x\right)x^{-1} = xn_1x^{-1} \in xNx^{-1}$.

(3) \Rightarrow (4) Assume $\forall x \in G$, xN = Nx. Let $x, y \in G$. We want to show $xy^{-1} \in N \Leftrightarrow y^{-1}x \in N$. So we must show this is true in both directions. Suppose $xy^{-1} \in N$. Then there exists an $n_1 \in N$ such that $xy^{-1} = n_1$. Thus, $x = n_1y \in Ny = yN$ by assumption. So $x \in yN$. Thus there exists $n_2 \in N$ such that $x = yn_2 \Rightarrow y^{-1}x = n_2 \in N$. Thus, $xy^{-1} \in N \Rightarrow y^{-1}x \in N$. Similarly, $y^{-1}x \in N \Rightarrow xy^{-1} \in N$.

Proposition. Let $H \leq G$. Then, $x \sim y \Leftrightarrow y^{-1}x \in H$ is an equivalence relation on G.

Proof. We want to show \sim is reflexive, symmetric, and transitive.

1.
$$x \sim x$$
: $x^{-1}x = 1 \in H$

2.
$$x \sim y \Rightarrow y \sim x$$
: $x \sim y \Leftrightarrow y^{-1}x \in H \Rightarrow x^{-1}y \in H \Leftrightarrow y \sim x$

3.
$$x \sim y$$
, $y \sim z \Rightarrow x \sim z$: $y^{-1}x \in H$, $z^{-1}y \in H \Rightarrow (z^{-1}y)(y^{-1}x) = z^{-1}x \in H \Leftrightarrow x \sim z$

Thus, \sim is an equivalence relation on *G*.

Any subgroup gives an equivalence relation.

Definition. An equivalence relation on a set *S* is the same as a **partition** of *S*. $P = \{A_1, A_2, ...\}$, $A_i \subseteq S$ such that $S \cup_{i \in \mathbb{N}} A_i$, $A_i \cap A_j = \emptyset$, $i \neq j$. $a \sim b \Leftrightarrow a, b \in A_i$.

Proposition. For $H \le G$, $x \sim y \Leftrightarrow y^{-1}x \in H \Leftrightarrow xH = yH$ (Hx = Hy).

Proof. Suppose $y^{-1}x \in H$. We want to show that xH = yH or $xH \subseteq yH$ and $yH \subseteq xH$. $y^{-1}x \in H$ implies that there exists a $h_1 \in H$ such that $y^{-1}x = h_1$. Thus, $x = yh_1 \Rightarrow x \in yH$. $y^{-1}x \in H \Leftrightarrow x^{-1}y \in H$ which implies that there exists a $h_2 \in H$ such that $x^{-1}y = h_2 \Rightarrow y = xh_2 \in xH$.

Note. [x] = xH.

Proposition. For $N \le G$, let $G/N = \{xN : x \in G\}$. Define $xN \cdot yN = (xy)N$. Then G/N is a group if and only if $N \le G$.

$$G/N = G/\sim (x \sim y \Leftrightarrow xN = yN)$$

Every quotient group is G/N for some N.

$$\pi: G \to G/\sim$$
, $\operatorname{Ker}(\pi) \triangleleft G$, $G/\sim = G/\operatorname{Ker}(\pi)$.

Proposition. If $H \leq G$ and G is abelian, then $H \leq G$.

If *G* is a group and \sim is an equivalence relation on *G*, then the quotient set G/\sim is a quotient group if and only if the projection map $\pi: G \to G/\sim$, $\pi(x) = [x]$ is a homomorphism.

If $N \subseteq G$, then G/N is a quotient group, where $G/N = \{xN : x \in G\}$ and $xN \cdot yN = (xy)N$.

These notions of quotient groups are equivalent.

Proposition. If \sim is an equivalence relation and G/\sim is a quotient group, then there exists a homomorphism $\pi: G \to G/\sim$ and $\operatorname{Ker}(\pi) \unlhd G$.

Proof.
$$x \sim y \Leftrightarrow \pi(x) = \pi(y) \Leftrightarrow \pi(y^{-1}x) = 1 \Leftrightarrow y^{-1}x \in \text{Ker}(\pi) \Leftrightarrow x\text{Ker}(\pi) = y\text{Ker}(\pi).$$

If $N \le G$, define $x \sim y \Leftrightarrow xN = yN \Leftrightarrow y^{-1}x \in N$. Then, $G/\sim = G/N$, [x] = xN, $\pi : G \to G/N$, $\pi(x) = xN$, $\text{Ker}(\pi) = N$.

Proposition. Every subgroup of an abelian group is a normal subgroup.

Definition.
$$S^n \subseteq \mathbb{R}^{n+1}$$
, $S^n = \{(x_1, x_2, ..., x_{n+1}) : \sum x_i^2 = 1\}$

For $H \le G$, the relation $x \sim y \Leftrightarrow xH = yH \Leftrightarrow y^{-1}x \in H$ is an equivalence relation and thus partitions G into equivalence classes.

$$G = \bigcup_{x \in G} [x], [x] \cap [y] = \emptyset, [x] \neq [y]$$
$$G = \bigcup_{x \in G} xH, xH \cap yH = \emptyset, x \nsim y$$

Proposition. Let $H \leq G$. The number of right cosets of H equals the number of left cosets of H.

Proof. Let $R = \{Hx : x \in G\}$ and $L = \{xH : x \in G\}$. We construct a bijection $L \to R$. Define $f : R \to L$ by $f(Hx) = x^{-1}H$, and define $g : L \to R$ by $g(xH) = Hx^{-1}$. Then f and g are mutually inverse. Hence $R \leftrightarrow L$.

Definition. The number of distinct left cosets of H in G is called the <u>index</u> of H in G, and is denoted [G:H].

Theorem (Lagrange's Theorem)

If *H* is a subgroup of *G*, |G| = |H|[G:H].

Corollary. In a finite group, the order of every element divides the order of the group.

Corollary. A group of prime order is cyclic.

Corollary. Let *G* be a finite group and let $a \in G$. Then, $a^{|G|} = 1$.

Let $\varphi : G \to G'$ be a homomorphism. How far is φ from an isomorphism? How can φ fail to be an isomorphism?

- 1. φ could fail to be injective. (Ker(φ) \neq {1})
- 2. φ could fail to be surjective.

Theorem (First Isomorphism Theorem)

Let $\varphi : G \to G'$ be a homomorphism. Then $Ker(\varphi) \subseteq G$, $Im(\varphi) \subseteq G'$ and

$$G/\operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi)$$

Proposition. There exists an isomorphism $\theta : G/\text{Ker}(\varphi) \to \text{Im}(\varphi)$ such that

The curved arrow in the middle means the diagram is commutative, i.e. $\varphi = \iota \cdot \theta \cdot \pi$. The curved arrow means it is injective.

Proof. Define
$$\theta$$
 : $G/\text{Ker}(\varphi) \to \text{Im}(\varphi)$ by $\theta(x\text{Ker}(\varphi)) = \varphi(x)$.

First we show that θ is well-defined. Suppose $x \text{Ker}(\varphi) = y \text{Ker}(\varphi)$. Then,

$$x\mathrm{Ker}(\varphi) = y\mathrm{Ker}(\varphi) \Leftrightarrow y^{-1}x\mathrm{Ker}(\varphi) = \mathrm{Ker}(\varphi)$$

$$\Leftrightarrow y^{-1}x \in \mathrm{Ker}(\varphi)$$

$$\Leftrightarrow \varphi(y^{-1}x) = 1$$

$$\Leftrightarrow \varphi(y)^{-1}\varphi(x) = 1$$

$$\Leftrightarrow \varphi(x) = \varphi(y)$$

$$\Leftrightarrow \theta(x\mathrm{Ker}(\varphi)) = \theta(y\mathrm{Ker}(\varphi))$$

Thus, θ is well-defined.

Then, we show that θ is a homomorphism. Let $K = \text{Ker}(\varphi)$.

$$\theta(xKyK) = \theta(xyK)$$

$$= \varphi(xy)$$

$$= \varphi(x)\varphi(y)$$

$$= \theta(xK)\theta(yK)$$

Thus, θ is a homomorphism.

Then, we show that θ is injective.

$$\theta(xK) = \theta(yK) \Leftrightarrow \varphi(x) = \varphi(y)$$

$$\Leftrightarrow \varphi(y)^{-1}\varphi(x) = 1$$

$$\Leftrightarrow \varphi(y^{-1}x) = 1$$

$$\Leftrightarrow y^{-1}x \in K$$

$$\Leftrightarrow xK = yK$$

Thus, θ is injective.

Then, we show that θ is surjective. Let $y \in \text{Im}(\varphi)$. There exists $xK \in G/K$ such that $\theta(xK) = y$. We know there exists an $x \in G$ such that $\varphi(x) = y$. $\theta(xK) = \varphi(x) = y$. Thus, θ is surjective and θ is an isomorphism.

Proposition. Let $a \in G$. If $|a| = \infty$, then $\langle a \rangle \cong (\mathbb{Z}, +)$. If |a| = n, then $\langle a \rangle = \mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$.

Proof. Consider $\mathbb{Z} \xrightarrow{\pi} G$ defined by $\pi(k) = a^k$.

Definition. Let (A, \star) and (B, *) be groups. The <u>direct product</u> or <u>direct sum</u> of A and B is $A \oplus B = \{(a, b) : a \in A, b \in B\}$ where $(a_1, b_1) \cdot (a_2, b_2) = (a_1 \star a_2, b_1 * b_2) \in A \oplus B$.

Definition. In a group G, define $a \sim b \Leftrightarrow \exists x \in G$ such that $b = xax^{-1}$. This is an equivalence relation and a and b are **conjugates**.

Definition. For any $x \in G$, the <u>inner automorphism</u> of G induced by x is $T_x : G \to G$ defined by $T_x(g) = xgx^{-1}$.

Definition. The set of all inner automorphisms of *G* is a group, called the <u>inner automorphism group</u>, and is denoted $Inn(G) = \{T_x : G \to G \mid x \in G\}$.

Proposition. $G/Z(G) \cong Inn(G)$

Proof. Consider $\psi : G \to \text{Inn}(G)$ defined by $x \mapsto T_x$. Then, ψ is surjective, i.e. $\text{Im}(\psi) = \text{Inn}(G)$. We then determine the kernel of the homomorphism.

$$Ker(\psi) = \{x \in G : \psi(x) = 1_G\}$$

$$= \{x \in G : T_x(g) = g, \forall g \in G\}$$

$$= \{x \in G : xgx^{-1} = g, \forall g \in G\}$$

$$= \{x \in G : xg = gx, \forall g \in G\}$$

$$= Z(G)$$

By the first isomorphism theorem, $G/Z(G) \cong Inn(G)$.

Theorem (Third Isomorphism Theorem)

Let *G* be a group. Let $A \subseteq G$, $B \subseteq G$. If $A \subseteq B$, then $A \subseteq B$, $B/A \subseteq G/A$, and

$$(G/A)/(B/A) \cong (G/B)$$

First we establish $A \subseteq B$. $A \subseteq B$ because $A \subseteq G$ and $A \subseteq B$.

$$A \leq B \Leftrightarrow bAb^{-1} \subseteq A, \forall b \in B$$

$$A \triangleleft G \Leftrightarrow xAx^{-1} \subseteq A, \ \forall x \in G$$

But $B \subseteq G$ so $b \in G$. Thus, $bAb^{-1} \subseteq A$, $\forall b \in B$ and $A \subseteq B$. Thus, $A \subseteq B$ and we may construct B/A.

We first show $B/A \le G/A$. It is closed under multiplication since $(b_1A)(b_2A) = (b_1b_2)A \in B/A$ because B is a group. It is also closed under inverses since $(bA)^{-1} = b^{-1}A \in B/A$.

We then show $B/A \subseteq G/A$ by showing $x(B/A)x^{-1} \subseteq B/A$, $\forall x \in G/A$. Let $x \in G/A \Leftrightarrow yA$, $y \in G$. We want to show $(yA)(B/A)(yA)^{-1} \subseteq B/A$. Let $z \in (yA)(B/A)(yA)^{-1}$. Then, there exist $a_1, a_2 \in A$, $b_1 \in B$ such that

$$z = (ya_1)(b_1A)(y^{-1}a_2)$$

= $y(a_1b_1)Ay^{-1}a_2$
= $y(a_1b_1)y^{-1}Aa_2$

We know $a_2 \in A \Rightarrow Aa_2 = A$ and $A \subseteq B \Rightarrow a_1 \in A \subseteq B \Rightarrow a_1 \in A \Rightarrow a_1b_1 \in B$. Thus, there exists $b_2 \in B$ such that $a_1b_1 = b_2$. We substitute these in to get

$$z = yb_2y^{-1}A$$

We know $B \subseteq G \Rightarrow yBy^{-1} \subseteq B$. Thus, there exists a $b_3 \in B$ such that $yb_2y^{-1} = b_3 \in B$. We then get $z = b_3A$. Since $z = b_3A \in B/A$, $B/A \subseteq G/A$.

Now we prove $(G/A)/(B/A) \cong (G/B)$. We define the homomorphism $\omega : G/A \to G/B$ such that $\omega(xA) = xB$. We show that ω is well-defined. If xA = yA, then

$$xA = yA \Leftrightarrow y^{-1}x \in A \subseteq B$$
$$\Rightarrow y^{-1}x \in B$$
$$\Leftrightarrow xB = yB$$
$$\Leftrightarrow \omega(xA) = \omega(yA)$$

We may then determine the kernel and image of the homomorphism.

$$Im(\omega) = \{xB : x \in G\} = G/B$$

$$Ker(\omega) = \{xA : \omega(xA) = B\} = \{xA : xB = B\} = \{xA : x \in B\} = B/A$$

By the first isomorphism theorem, $(G/A)/\mathrm{Ker}(\omega) \cong \mathrm{Im}(\omega)$ so $(G/A)/(B/A) \cong (G/B)$.

Proposition. There is an isomorphism $\theta: (G/A)/(B/A) \to G/B$ such that this diagram com-

mutes.

Theorem (Second Isomorphism Theorem)

Let *G* be a group, $A \subseteq G$, and $N \subseteq G$. Then $AN \subseteq G$, $N \subseteq AN$, and $A \cap N \subseteq A$. Also,

$$(AN)/N \cong A/(A \cap N)$$

Proof

Let $\varphi : A \to AN/N$ such that $a \mapsto aN$. Then by the first isomorphism theorem, $(AN)/N \cong A/(A \cap N)$.

Example. We look at an example of the third isomorphism theorem. Let $G = \mathbb{Z}$, $A = 12\mathbb{Z}$, and $B = 4\mathbb{Z}$. We observe that $A \subseteq B \subseteq G$ so the conditions for the third isomorphism theorem are satisfied.

$$G/A = \mathbb{Z}/12\mathbb{Z} = \{0, 1, ..., 11\} \pmod{12}$$
 $B/A = 4\mathbb{Z}/12\mathbb{Z} = \{0, 4, 8\} \pmod{12}$
 $(G/A)/(B/A) = \{0, 1, 2, 3\} \pmod{4} = \mathbb{Z}/4\mathbb{Z}$
 $(\mathbb{Z}/12\mathbb{Z})/(4\mathbb{Z}/12\mathbb{Z}) \cong \mathbb{Z}/4\mathbb{Z}$

Example. We look at an example of the second isomorphism theorem. Let $G = \mathbb{Z}$, $N = 12\mathbb{Z}$, and $A = 8\mathbb{Z}$.

$$A \cap N = \{0, (2) \, 4, (4) \, 8, \ldots\} = 24\mathbb{Z}$$

$$AN = \{0, (4), (8), \ldots\} = 4\mathbb{Z}$$

$$AN/A = 4\mathbb{Z}/12\mathbb{Z} = \{0, 4, 8\} \pmod{12}$$

$$A/(A \cap N) = 8\mathbb{Z}/24\mathbb{Z} = \{0, 8, 16\} \pmod{24}$$

$$AN/N \cong \mathbb{Z}/3\mathbb{Z} \cong A/(A \cap N)$$

Definition

A ring $(R, +, \cdot)$ is a set together with two binary operations, called addition and multiplication respectively, satisfying the following three axioms.

- (a) The set (R, +) together with addition is an abelian group.
- (b) The binary operation \cdot is associative on R.
- (c) The distributive law holds in R; for all $a, b, c \in R$,

$$(a+b) \cdot c = (a \cdot c) + (b \cdot c)$$

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

Definition. The ring R is **commutative** if multiplication is commutative.

Definition. The ring R has an <u>identity</u>, or <u>unity</u> or contains a 1 if there is an element $1 \in R$ such that for all $a \in R$, $1 \cdot a = a \cdot 1 = a$.

Note. By abuse of notation, multiplication \cdot may be denoted by simple juxtaposition, i.e. $a \cdot b = ab$.

Note. For a ring with 1, the condition of commutativity under addition is redundant. Note that for any $a, b \in R$,

$$(1+1)(a+b) = 1(a+b) + 1(a+b) = a+b+a+b$$

$$(1+1)(a+b) = (1+1)a + (1+1)b = a+a+b+b$$

Therefore, a + b + a + b = a + a + b + b and therefore a + b = b + a. Thus R is abelian.

Definition. A ring with identity is a <u>division ring</u> if every nonzero element has a multiplicative inverse.

Definition

A **field** is a commutative division ring.

Example. The following are two very simple examples of rings.

The Zero Ring

Let $R = \{0\}$. Then R is a ring and is called the zero ring.

Trivial Rings

For any abelian group (G, +), consider the ring $(G, +, \cdot)$, where multiplication is given by $a \cdot b = 0$ for any $a, b \in G$.

Proposition. Let *R* be a ring, and $a, b \in R$.

(a)
$$0a = a0 = 0$$

(b)
$$(-a)b = a(-b) = -(ab)$$
, where $-(a)$ is the additive inverse of a .

- (c) (-a)(-b) = ab
- (d) If *R* has identity 1, then it is unique and -a = (-1)a.

Definition. A nonzero element element a of a ring R is a **zero divisor** if there is a nonzero $0 \neq b \in R$ such that ab = 0 or ba = 0.

Definition. Let R be a ring with identity. An element a of R is a <u>unit</u> if it has a multiplicative inverse, i.e. there is some $b \in R$ such that ab = ba = 1. The set of units of R is denoted R^{\times} .

Definition

An integral domain is a commutative ring with identity which has no zero divisors.

Proposition. Let *R* be an integral domain, and let $a, b, c \in R$. If ab = ac, then a = 0 or b = c.

Definition. Let *R* be a commutative ring with 1. For any $a_0, a_1, \ldots, a_n \in R$, the expression

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

is a **polynomial** in R with coefficients a_0, a_1, \ldots, a_n . If $a_n \neq 0$, then p(x) has **degree** n. The set of all polynomials in R is denoted R[x] or R adjoin x. R[x] is a ring (called the ring of polynomials in R in one variable) under "usual" addition and multiplication. Let $p(x) = a_0 + a_1x + \ldots + a_nx^n$ and $q(x) = b_0 + b_1x + \ldots + b_mx^m$, and without loss of generality n > m. Then,

$$p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + \ldots + (a_n + b_n)x^n$$

where $b_k = 0$ for k > m and

$$p(x)q(x) = \sum_{k=0}^{m+n} (\sum_{i+j=k} a_i b_j) x^k$$

Note. Polynomials are not determined by their values

The following is a formal construction of the ring of polynomials in *R*.

Let R be a commutative ring with 1. R[x] is the set of all tuples $p(x) = (a_0, a_1, ..., a_n) \in R^{\infty} = \prod_{i \in \mathbb{N}} R = \bigoplus_{i \in \mathbb{N}} R$, i.e. $a_k \in R$ where $\exists n \in \mathbb{N}$ such that $a_k = 0$ for k > n. The smallest such n is the degree of p(x). If $p = (a_0, a_1, ..., a_n, 0, ...)$ and $q = (b_0, b_1, ..., b_m, 0, ...)$, then

$$p+q=(a_0+b_0,a_1+b_1,\ldots,a_n+b_n,0,\ldots)$$

$$pq = (c_0, c_1, \dots, c_k, 0, \dots), c_k = \sum_{i+j=k} a_i b_j$$

Definition. Let R be any ring $M_n(R) = \{n \times n \text{ matrices with entries in } R\}$, $A = (a_{ij})$, $B = (b_{ij})$, $(A + B)_{ij} = a_{ij} + b_{ij}$, $A \cdot B = C$, $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$. This is the ring of $\underline{n \times n \text{ matrices over } R}$ or with entries in R. If R has 1, then

$$I = \begin{bmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{bmatrix} = 1 \in M_n(R)$$

Definition. $GL_n(R)$ is the group of units of $M_n(R)$ and is called the **general linear group**.

Definition. Let R be commutative with 1. Let $G = \{g_1, \dots, g_n\}$ be a finite group. The **group ring** RG of G with coefficients in R is the set of all formal sums

$$a_1g_1 + a_2g_2 + \ldots + a_ng_n$$

where $a_i \in R$,

$$(a_1g_1 + \ldots + a_ng_n) + (b_1g_1 + \ldots + b_ng_n) = (a_1 + b_1)g_1 + \ldots + (a_n + b_n)g_n$$
$$(a_1g_1 + \ldots + a_ng_n) \cdot (b_1g_1 + \ldots + b_ng_n) = c_1g_1 + \ldots + c_ng_n, \text{ where } c_k = \sum_{g_ig_i = g_k} a_ib_j$$

Note. $1 \cdot g_i = g_i, a_i \cdot 1 = a_i, (a_i g_i)(b_i g_j) = (a_i b_j)(g_i g_j)$

Example. $G = S_4$, $R = \mathbb{Z}$.

$$x = 2(12) + (23) + 7(124)$$

$$y = 3(1) + 2(23)$$

$$x + y = 3(1) + 2(12) + 3(23) + 7(124)$$

$$xy = 6(12) + 4(12)(23) + 3(23) + 2(1) + 21(124) + 14(124)(23)$$

$$= 2(1) + 6(12) + 3(23) + 4(123) + 21(124) + 14(1234)$$

Definition

A <u>subring</u> *S* of a ring $(R, +, \cdot)$ is a subgroup $S \leq (R, +)$ which is closed under the multiplicative structure of *R*.

Proposition. A subset *S* of the ring *R* is a subring if and only if *S* is closed under subtraction and multiplication.

Proof. This follows immediately from the fact that a subset H of an abelian group G is a subgroup if and only if H is closed under subtraction.

Definition. The <u>center</u> of a ring A is the set of elements $a \in A$ such that ax = xa for all $x \in A$. The center of A is a subring of A.

Definition

Let *R* and *S* be rings. A <u>ring homomorphism</u> is a map of sets $\varphi : R \to S$ such that for all $a, b \in R$,

$$\varphi(a+b) = \varphi(a) + \varphi(b)$$

 $\varphi(ab) = \varphi(a)\varphi(b)$

Definition. The **kernel** of the homomorphism $\varphi : R \to S$ is given by

$$Ker(\varphi) = \{ r \in R : \varphi(r) = 0 \in S \}$$

Definition. A **ring isomorphism** is a bijective homomorphism.

Definition

A subring I of R is a <u>left ideal</u> of R if I is closed under left multiplication by elements from R, i.e. $rI \subseteq I$ for all $r \in R$. Similarly, I is a <u>right ideal</u> of R if I is closed under right multiplication by elements of R, i.e. $Ir \subseteq I$ for all $r \in R$. A subring which is both a left and right ideal is called a **two sided ideal**, or simply **ideal**.

Definition

The **quotient ring** R/I of the ring R by the ideal $I \subseteq R$ is the quotient group of cosets R/I under the operations

$$(r+I) + (s+I) = (r+s) + I$$
 $(r+I) \cdot (s+I) = (r \cdot s) + I$

a for all $r, s \in R$.

Proposition. For any ring R and ideal I, R/I is a ring.

Proposition. If *I* is any ideal of *R*, the map $\varphi : R \to R/I$ defined by $r \mapsto r + I$ is a surjective ring homomorphism with kernel *I*.

Theorem (First Isomorphism Theorem for Rings). If $\varphi : R \to S$ is homomorphism of rings, then $Ker(\varphi)$ is an ideal of R, $Im(\varphi)$ is a subring of S, and

$$R/\operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi)$$

Theorem (Second Isomorphism Theorem for Rings). Let R be a ring, A a subring and B an ideal of R. Then $A + B = \{a + b : a \in A, b \in B\}$ is a subring of R, $A \cap B$ is an ideal of A and

$$(A+B)/B \cong A/(A \cap B)$$

Theorem (Third Isomorphism Theorem for Rings). Let I and J be ideals of the ring R such that $I \subseteq J$. Then J/I is an ideal of R/I and

$$(R/I)(J/I) \cong (R/J)$$

Theorem (Fourth Isomorphism Theorem for Rings). Let *I* be an ideal of *R*. The correspondence

$$A \longleftrightarrow A/I$$

is an inclusion preserving bijection between the subring A of R containing I and the set of subrings of R/I. Further, a subring A containing I is an ideal of R if and only if A/I is an ideal of R/I.

Definition

Let $A \subseteq R$ be a subset. Then the **ideal generated by** A is the smallest ideal of R containing A, and is denoted (A).

Note. In this context, "smallest" means all other ideals containing A also contain (A). In other words, $A \subseteq J \implies (A) \subseteq J$.

Proposition. (*A*) is the intersection of all ideal *I* containing *A*, or

$$(A) = \bigcap_{A \subseteq I} I$$

Proof. R is an ideal of itself containing A and the intersection of nonempty ideals is an ideal. By definition the intersection contains A. Therefore, $\bigcap_{A\subseteq I} I$ is an ideal containing A. Since (A) is the smallest ideal containing A, $(A)\subseteq\bigcap_{A\subseteq I} I$.

On the other hand, suppose $x \in \bigcap_{A \subseteq I} I$. Then for any ideal I containing A, $x \in I$. But (A) is an ideal containing A. Thus $x \in (A)$. Therefore, $\bigcap_{A \subseteq I} I \subseteq (A)$. Thus, $(A) = \bigcap_{A \subseteq I} I$.

Proposition. If *R* is commutative, then

$$(A) = RA = AR$$

where

$$RA = \{r_1a_1 + r_2a_2 + \ldots + r_na_n : r_i \in R, a_i \in A, n \in \mathbb{Z}\}$$

and AR is define similarly.

Definition. An ideal generated by a single element is called a **principal ideal**.

Definition. An ideal generated by a finite set is called a **finitely generated ideal**.

Definition. An ideal *I* of a ring *R* is **proper** if it is a proper subset, i.e. $I \neq R$ and $I \subseteq R$.

Definition. A proper ideal M of a ring R is $\underline{\mathbf{maximal}}$ if whenever I is an ideal of R and $M \subseteq I \subseteq R$, then M = I or M = R.

Example. Consider $(x-4) \in \mathbb{R}[x]$.

$$(x-4) = (\{x-4\}) = \{f(x)(x-4) : f \in \mathbb{R}[x]\}$$

We claim (x-4) is maximal in $\mathbb{R}[x]$. Suppose $(x-4) \subsetneq I \subseteq R$. We want to show $I=R=\mathbb{R}[x]$. There exists $f(x) \in I$ with $f(x) \notin (x-4)$. Recall polynomial long division. $\forall f(x), g(x) \in \mathbb{R}[x], \exists q(x), r(x) \in \mathbb{R}[x]$ such that

$$f(x) = q(x)g(x) + r(x), \deg r(x) < \deg g(x)$$

In our case, g(x) = (x - 4), with deg r(x) < 1. This implies that $r(x) = r \in \mathbb{R}$ so we can rewrite our expression as

$$f(x) = q(x)(x-4) + r$$

Since $(x-4) \subseteq I$, we know $x-4 \in I$ and $q(x)(x-4) \in I$. Since I is a subring, $f(x) - q(x)(x-4) = r \in I$. Since $f(x) \notin (x-4)$ and $g(x)(x-4) \in (x-4)$, $r \neq 0$. Since $0 \neq r \in \mathbb{R}$, r is a unit in $\mathbb{R}[x]$. If $r \in I$ is a unit, then I = R because r being a unit $\implies u^{-1} \in R \implies u^{-1}u \in I \implies 1 \in I \implies \forall r \in R, r \in I \in I \implies I = R$. Therefore, $I = \mathbb{R}[x]$ and (x-4) is maximal.

Definition. A proper ideal *P* of a commutative ring *R* is **prime** if $ab \in P$ implies $a \in P$ or $b \in P$ for any $a, b \in R$.

Example. Consider $2\mathbb{Z} \subseteq \mathbb{Z}$. We claim $2\mathbb{Z}$ is a prime ideal. Let $a, b \in \mathbb{Z}$. Suppose $ab \in 2\mathbb{Z}$. Then a or b is even, i.e. $a \in 2\mathbb{Z}$ or $b \in 2\mathbb{Z}$. Therefore, $2\mathbb{Z}$ is prime.

Alternate Proof: $ab \in 2\mathbb{Z} \Leftrightarrow \exists n \in \mathbb{Z}$ such that ab = 2n. Using prime factorization, there exist primes $p_1, \ldots, p_l, q_1, \ldots, q_s$ such that $a = p_1 \ldots p_l$ and $b = q_1 \ldots q_s$. Thus, $p_1 \ldots p_l q_1 \ldots q_s = 2n$ and there exists i or j such that $p_i = 2$ or $q_j = 2$. Thus, $a \in 2\mathbb{Z}$ or $b \in 2\mathbb{Z}$ and $2\mathbb{Z}$ is prime.

Theorem

Let *R* be a commutative ring with identity and let $A \subseteq R$ be an ideal. Then R/A is an integral domain if and only if *A* is prime.

Proof

Suppose R/A is an integral domain. Let $a, b \in R$ and suppose that $ab \in A$. We must show $a \in A$ or $b \in A$. We compute (a + A)(b + A) = ab + A = A = 0 + A, which is the additive identity in R/A. But R/A is an integral domain so a + A = A or b + A = A. Therefore, $a \in A$ or $b \in A$.

Conversely, supposed that A is prime and let a + A, $b + A \in R/A$ such that (a + A)(b + A) = ab + A = A. Then $ab \in A$. But A is prime so $a \in A$ or $b \in A$. Thus, $a + A = 0 \in R/A$ or $b + A = 0 \in R/A$ and R/A is an integral domain.

Theorem

Let R be a commutative ring with identity and let A be an ideal of R. Then R/A is a field if and only if A is maximal.

Suppose R/A is a field. Let B be an ideal of R that properly contains A, $A \subseteq B \subseteq R$. We want to show that B = R. There exists $b \in B$ such that $b \notin A$. Then b + A is a nonzero element of R/A. But R/A is a field, hence b + A must have a multiplicative inverse, i.e. there exists $c \in R$ such that (b + A)(c + A) = bc + A = 1 + A. Therefore, $1 - bc \in A \subseteq B$. But $bc \in B$ since B is an ideal so $(1 - bc) + bc = 1 \in B$. Since $1 \in B$, B = R.

Conversely, suppose that A is maximal. We want to show that R/A is a field. Since R is commutative and has an identity, R/A is also commutative and has an identity. We want to show that every nonzero element of R/A has a multiplicative inverse. Every nonzero element of R/A is of the form b+A, $b \in R-A$. Choose and fix such an element b. Consider the subset $B \subseteq R$ such that

$$B = \{br + a : r \in R, a \in A\}$$

We want to show that *B* is an ideal of *R* properly containing *A*. Since

$$(br + a) - (br' + a') = b(r - r') + (a - a') \in B$$

we know that B is a subgroup of (R, +). We also know that is it closed under multiplication since

$$(br + a)(br' + a') = brbr' + bra' + br'a + aa' = b(rbr' + ra' + r'a) + (aa') \in B$$

so *B* is a subring. Also for any $s \in R$,

$$s(br + a) = sbr + sa = b(sr) + (sa)$$

Because A is an ideal, $sa \in A$ so B is an ideal of R. Also for any $a \in A$, $a = b0 + a \in B$ and $b = b1 + 0 \in B - A$ so B is an ideal that properly contains A. However, A is maximal so B = R. Because R contains A, there exists $C \in R$ and $A' \in A$ such that A = bC + A'. If we consider the coset of $A \in A$ this element is in, we see that A = bC + A' + A. Since $A' \in A$, we can rewrite our equation as $A \in A$ is a field.

Proposition. In a commutative ring *R* with identity, every maximal ideal is prime.

Definition. A <u>norm</u> N on the integral domain R is a map of set $N : R \to \mathbb{N} \cup \{0\}$. If N(a) > 0, $\forall a \in R$, we say N is a **positive norm**.

Note. Some texts require for nonzero $a, b \in R$, $N(a) \le N(ab)$. Also, it is not required that $N(a + b) \le N(a) + N(b)$ or $N(ab) \le N(a)N(b)$.

Definition. The integral domain R is called a <u>Euclidean domain</u> if there is a norm N on R such that if $a, b \in R$, $b \ne 0$, then $\exists q, r \in R$ such that a = qb + r where r = 0 or N(r) < N(b). Here, q is the **quotient** and r is the <u>remainder</u>.

Definition. The Euclidean algorithm for two elements a, b in a Euclidean domain R is a list of divisions

$$a = q_0b + r_0$$

$$b = q_1r_0 + r_1$$

$$r_0 = q_2r_1 + r_2$$

$$\dots$$

$$r_{n-1} = q_{n+1}r_n$$

where r_n is the last nonzero remainder. Such an r_n exists as $N(r_1) > N(r_2) > ... > N(r_n) \ge 0$ is a decreasing sequence of nonnegative integers.

Example. If *K* is a field, then K[x] is a Euclidean domain with norm $N(f(x)) = \deg(f(x))$. The division algorithm is polynomial long divison. Let $f, g \in \mathbb{Z}_5[x]$, $f = 3x^4 + x^3 + 2x^2 + 1$, and $g = x^2 + 4x + 2$. Then we have $3x^4 + x^3 + 2x^2 + 1 = (3x^2 + 4x)(x^2 + 4x + 2) + (2x + 1)$.

Example. Gaussian integers $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$, ii = -1, with norm $N(a + bi) = a^2 + b^2$.

Definition. Let $a, b \in R$, $b \neq 0$. Then a is a <u>multiple</u> of b if a = qb for some $q \in R$. We also say b <u>divides</u> a or b is a <u>divisor</u> of a, or b|a.

Definition. The **greatest common divisor** of a and b is a nonzero element $d \in R$ such that

- 1. d|a and d|b.
- 2. If c|a and c|b, then c|d.

Note. Suppose d|d' and d'|d. Then d' = qd and d = q'd'. This becomes d = q'qd or (1 - qq')d = 0. Since this is an integral domain, either d = 0 or qq' = 1, meaning q and q' are units. Thus, GCDs are unique only up to units.

Proposition. If $0 \neq a, b \in R$ and (a, b) = (d), then $d = \gcd(a, b)$.

Definition. An integral domain such that every ideal generated by two elements is principal is called a **Bezout domain**.

Proposition. Let R be an integral domain. If (d) = (d') then there exists a unit $u \in R$ such that d' = ud.

Proposition. Let R be a Euclidean domain and $0 \neq a, b \in R$. Let $d = r_n$ be the last nonzero remainder in the Euclidean algorithm. Then $d = \gcd(a, b)$ and (d) = (a, b).

Proposition. If (d) = (a, b), then there exists $x, y \in R$ such that d = ax + by.

Proposition. Consider $R = \mathbb{Z}$. If ax + by = c, then $c \in (d)$ so c is a multiple of gcd(a, b).

Proposition. Every ideal in a Euclidean domain is principal.

Proof. Let $I \subseteq R$ be an ideal and R a Euclidean domain with norm N. If $I = \{0\}$, then I = (0) is principal. Otherwise, consider $\{N(a): a \neq 0, a \in I\} \subseteq \mathbb{N} \cup \{0\}$ as a subset of nonnegative integers. This set has a least element. Let $d \neq 0$, $d \in I$ be an element of minimal norm. We show (d) = I. First, $d \in I$ implies that $rd \in I$ for all $r \in R$ so $(d) \subseteq I$. We show $I \subseteq (d)$. Let $a \in I$. Since R is a Euclidean domain, there exists q and r such that a = qd + r, with r = 0 or N(r) < N(d). But d has minimal norm so r = 0. Thus, a = qd and $a \in (d)$. Therefore, I = (d) and I is principal.

Definition. A **principal ideal domain** is an integral domain such that every ideal is principal.

Proposition. Every Euclidean domain is a PID. This containment is proper, i.e. not every PID is a Euclidean domain.

Example. \mathbb{Z} is a PID. Every ideal is a subring, hence a subgroup, and hence is cyclic.

Proposition. Let *R* be a PID, $I \subseteq R$ a nonzero ideal. If *I* is prime, then *I* is maximal.

Proof. Suppose $I \subseteq J \subseteq R$ for some ideal J. We show I = J or J = R. Since R is a PID, I and J are principal, so there exists $a, b \in R$ such that I = (a) and J = (b). First, $I \subseteq J$, i.e. $(a) \subseteq (b)$ so $a \in (b)$ and there exists $x \in R$ such that a = bx. Thus, $bx \in (a) = I$. But I is prime, hence $b \in (a)$ or $x \in (a)$. If $b \in (a)$, then $(b) \subseteq (a)$ and (a) = (b), i.e. I = J. If $x \in (a)$, there exists $y \in R$ such that x = ay. Then x = ay = bxy = xby. Thus, x(by - 1) = 0. Since R is an integral domain, x = 0 or by - 1 = 0. If x = 0, then I = 0 but $I \ne 0$ by assumption. Thus, 1 = by and 1 = 0 is a unit. Thus, 1 = by i.e. 1 = ay. Therefore, 1 = ay is maximal.

Proposition. If R[x] is a PID, then R is a field.

Proof. Since $R \subseteq R[x]$, R is also an integral domain. Note that $R[x]/(x) \cong R$ so (x) is prime. Thus, (x) is maximal since R[x] is a PID. Thus, R[x]/(x) is a field. But $R[x]/(x) \cong R$ so R is a field.

Theorem (Ascending Chain Condition). In a PID, any strictly ascending chain of ideals is finite in length, i.e. $I_1 \subsetneq I_2 \subsetneq \dots$ must be finite.

Proof. Let $I = \bigcup_n \in \mathbb{N}I_n$. This is an ideal. We are in a PID, hence I is principal, i.e. there exists $b \in R$ such that I = (b). Thus, $b \in I = \bigcup_n \in \mathbb{N}I_n$. So there exists $k \in \mathbb{N}$ such that $b \in I_k$. Thus, $I_1, I_2, \ldots, I_{k-1} \subseteq I_k$ and $I_{k+1} \subseteq I_k$. Thus our chain is finite.

Definition. Let *R* be an integral domain.

- 1. Let $r \in R$, $r \neq 0$, and r be not a unit. We say r is <u>irreducible</u> in R if r = ab implies a or b is a unit in R. Otherwise, r is **reducible**.
- 2. An element $0 \neq p \in R$ is called <u>**prime**</u> if (p) is a prime ideal of R, i.e. p is not a unit and p|ab implies p|a or p|b.
- 3. *a* and *b* are **associate in** *R* if there exists a unit $u \in R$ such that a = ub.

Proposition. In an integral domain, prime elements are irreducible.

Proof. Let $p \in R$ and (p) be prime. Suppose p = ab where $a, b \in R$. We want to show that a or b is a unit. Note that $p \in (p)$ so $ab \in (p)$ and either $a \in (p)$ or $b \in (p)$. Without loss of generality, let $a \in (p)$. Then there exists $r \in R$ such that a = pr. Thus, p = ab = prb so p(1 - rb) = 0. Since $p \neq 0$ by assumption, 1 = rb since R is an integral domain so b is a unit.

Note. Irreducible elements are not necessarily prime.

Example. Consider $3 \in \mathbb{Z}[\sqrt{-5}]$. Suppose we can factor 3. Let $3 = a(1+b\sqrt{-5})(1+c\sqrt{-5})$. Expanding gives $a(1-5bc)+5abc\sqrt{-5}$ so abc=0 and a-5abc=3. Thus a=3 and bc=0. This means that $1=(1+b\sqrt{-5})(1+c\sqrt{-5})=1-5bc+bc\sqrt{-5}$ and $5bc=bc\sqrt{-5}$ so 3 is not irreducible. However, note that $3|(1+\sqrt{-5})(1-\sqrt{-5})$. Another way to see this is by using norms where $N(a+b\sqrt{-5})=a^2+5b^2$ and $N(3)=9=f^2+5g^2$.

Proposition. In a PID, a nonzero element is prime if and only if it is irreducible.

Proof. The forward direction is trivial so we prove the reverse direction. Let $p \in R$ be irreducible. We want to show that (p) is prime. But in a PID, maximal ideals are prime so we show that (p) is maximal. Suppose $(p) \subseteq M \subseteq R$. Since R is a PID, there exists $m \in R$ such that M = (m). This means that $p \in (m)$ and there exists $p \in R$ such that p = mr. But p is irreducible so p or p is a unit in p. Thus, p is irreducible so p or p is maximal and therefore prime.

Definition. A <u>unique factorization domain</u> is an integral domain R such that for a nonzero nonunit r,

- 1. There exists irreducible elements $p_1, \ldots, p_n \in R$ such that $r = p_1 p_2 \ldots p_n$.
- 2. If $r = q_1q_2 \dots q_m$ for irreducible q_i , then m = n and there exists $\sigma \in S_n$ such that p_i and $q_{\sigma(i)}$ are associate. The p_i are not necessarily distinct.

Example. The following are examples and non-examples of UFDs.

- 1. Fields are UFDs.
- 2. If R is a UFD, then R[x] is a UFD.
- 3. $\mathbb{Z}[2i]$ is not a UFD. Note that $4 = 2 \cdot 2 = (2i)(-2i)$ and $i \notin \mathbb{Z}[2i] = \{a + b2i : a, b \in \mathbb{Z}\}.$

Proposition. PIDs are UFDs.

Proof. Let $r \in R$ be a nonzero nonunit. If r is irreducible then we are done. Otherwise, $r = r_1 r_2$. If r_i is irreducible, we are done. Otherwise, $r = r_{11} r_{12} \dots$ We then have $(r) \subseteq (r_1) \subseteq (r_{11}) \subseteq \dots$ This is an ascending chain of ideals in a PID. Thus, there exists $n \in \mathbb{N}$ such that $I_m = I_n$ for $m \ge n$. Then $r = r_1 \dots r_{1...1}$. Uniqueness can be proved by induction on n.

Corollary (Fundamental Theorem of Arithmetic). **Z** is a UFD.

Note. There is a chain of proper containment of types of rings as follows.

```
field \subsetneq Euclidean domain: \mathbb{Z}
\subsetneq principal ideal domain: \mathbb{Z}[(1+\sqrt{-19})/2]
\subsetneq unique factorization domain: \mathbb{Z}[x]
\subsetneq integral domain: \mathbb{Z}[\sqrt{-5}]
\subsetneq commutative ring with 1: \mathbb{Z}_6
```