实训周报

15331416 赵寒旭

1. 学习内容

阅读两篇论文,并做了简单的阅读报告。

1) 论文名字

Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton: **ImageNet Classification** with **Deep Convolutional Neural Networks**

Karen Simonyan, Andrew Zisserman: **Very Deep Convolutional Networks for Large-scale Image Recognition**

2) 论文内容简述

	AlexNet	VGGNet
简介	2012年,AlexNet 以显著优势 获得了 IamgeNet 的冠军,训练 了到 2012年为止最大的卷积神 经网络之一,top-5 错误率降低 到了 16.4%,相比于第二名 26.2%的错误率有了巨大的提	研究了卷积网络深度对大型图像识别准确性的影响,主要评估小的卷积核(3×3)同等架构下随着网络深度的增加卷积网络的性能变化,随着网络深度达到16-19层,网络的性能
\ 	升。	也有着显著的提升。
主要贡献	① 介绍了完整的 CNN 架构模型和多种训练技巧; ② 实现了多 GPU 上的训练,加速了大型卷积操作;	① 证明了深度在卷积神经网络中的重要性; ② 说明相比于直接使用大的卷积核,多个小卷积核的堆叠可能会有更好的效果;
数据处理	系统要求固定尺寸256×256输入。 方法:将图像缩放至短边长为256再剪裁中间的256×256区域。 预处理:每个像素点减去RGB的均值。	输入固定尺寸 224×224 图像。 预处理:每个像素点减去 RGB的均值。
网络结构	5个是卷积层, 3个全连接层, 最后一个全连接层输出一个1000维的 softmax 来表达对于1000个类别的预测; 响应归一化层在第一、二个卷积层后面; 最大值池化层跟在响应归一化层和第五个卷积层后面; ReLU 被应用在每个卷积层和全连接层。	所有卷积层的卷积核大小都为 3×3, 共经过 5 个最大池化层, 卷积核数目从 64 开始, 每经过一个池化层卷积核数翻倍直到 512 个时停止。最后跟 3 个全连接层和一个softmax 层,每个隐含层后面都跟一个 ReLU 激活函数进行非线性处理。
训练细节	① 激活函数采用 ReLu,使学习周期大大缩短,提高速度和效率;	① 激活函数为 ReLu ②除了一个网络之外,我们所 有的网络都不含局部响应归一

	② Local Response	化,它不能提升在 ILSVRC 数
	Normalization(局部响应归一	据集上的性能,但会导致内存
	化)模拟生物神经元的侧抑制	消耗和计算时间的增加。
	作用——当前神经元的作用受	③ 采用最大池化: 在2×2的
	附近神经元作用的抑制:	窗口进行,步长为2
	③ 重叠池化: AlexNet 使用的	④ 0 1 1 1 1 1 1 1 1 1
	池化层是可重叠的,池化时每	器(是足够捕获一个区域信息
	次移动的步长 s 小于池化的边	的最小的卷积核) 其中一个配
	长 z ,效果比 $s = z = 2$ 的传统池	置中使用1×1的卷积滤波器
	化效果要好,在产生相同维度	(对输入通道的线性变换),
	的输出时分别将 top-1 和 top-5	这样的卷积不改变输入通道的
	的错误率降低了 0.4%和 0.5%。	维度,且可以提高模型的学习
	观察还发现,采用有重叠的池	能力。
		110/4 0
方法介绍	① 图像平移和水平镜像:测试	①网络权重的初始化很重要,
74.671.68	过程中网络会抽取5个(4角和	因为深层网络中的梯度不稳
	中间)224X224的区块及其水	定,初始化不好可能会导致学
	平镜像进行预测,然后将	习停滞。为此先训练一个深度
	softmax 层对这十个区块做出的	较浅的网络 A,再利用已经训
	预测取平均;	练好的 A 网络权值初始化深
	② RGB 通道的亮度改变:对训	度较深的网络。(迁移学习)
	练集中的每张图片都做主成分	② 输入图像获取: 为了获得
	分析(PCA),得到对应的特	固定大小的224×224的卷积
	征向量和特征值。训练过程	网络输入图像,他们从重新缩
	中,每当这张样本被重复一	放的训练集图像中随机裁剪
	次,我们就对其每一个像素按	(每个 SGD 迭代的每张图像
	照公式进行变换,得到一张	进行一次裁剪);
	"新"样本做下一轮的训练。	(?这里的操作和 Alex 直接
	通过这种方法我们可以获得富	抽取5个区块不同,VGG是
	有多样性的样本;	先缩放再裁剪一块)
	③ Dropout: 每轮迭代时, 网	③ 数据增强的方法: 同 Alex,
	络中每个隐含层的输出节点都	使用随机水平翻转和 RGB 颜
	有一半的可能性被置为 0	色偏移;
观点分歧	在第一、二个卷积层后面跟响	除了一个网络之外,所有的网
	应归一化层。	络都不含局部响应归一化,它
		不能提升在 ILSVRC 数据集上
		的性能,但会导致内存消耗和
		计算时间的增加。

2. 遇到困难以及解决方案,或者学习收获

很多名词和过程刚接触时不能很快理解,通过查找网上的博客和一些深度学习的课程资料建立起了相关概念。

我个人是一边看一边查找资料整理学习报告,速度比较慢,因为平时作业也比较多,两篇文章都放在实训时间阅读,但是两个星期也没有看完,展示之前又另外抽了大半天时间才做完了 VGG 的总结。

论文阅读分享的环节其实也没有来及准备什么,只提供了简单整理的总结做展示,其实也没有做 ppt,之后有机会会努力准备尽量讲清楚一些。

学习收获:基本了解卷积神经网络的结构,但具体细节还需要仔细理解。

3. 下周计划。

继续整理两篇论文的阅读总结。

熟悉 pytorch 框架,并且自己实现 alexnet 的网络结构