

CORSO DI FORMAZIONE PER TECNICO SICUREZZA LASER (TSL) E ADDETTO SICUREZZA LASER (ASL) PRINCIPI DI FUNZIONAMENTO DEL LASER

LUISA BIAZZI e ALESSANDRA TOMASELLI (in ricordo)
Milano, febbraio 2023

Risultati della ricerca di maggiore impatto sulla società tecnologica e dell'informazione dal 1950 ad oggi:

• dispositivi a semiconduttore (fine anni 1940)

LASER
 (inizio anni 1960)

Cos'è un LASER?

Un laser è una sorgente di luce speciale che non esiste in natura!

L ight

A mplification by

S timulated

E mission of

R adiation

La luce LASER è un'onda elettromagnetica

Le onde elettromagnetiche sono generate da cariche elettriche in accelerazione (decelerazione) e sono formate da un campo elettrico (E) e un campo magnetico (B) che oscillano sincronizzati nello spazio e nel tempo

unità di misura di λ m, in ottica nm

micro = 10^{-6} nano = 10^{-9} pico = 10^{-12}

Ora fermo lo spazio (osservo un punto fisso)

La frequenza dell'onda è il numero di oscillazioni che l'onda compie in 1 secondo

f = 1 /T si misura in Hertz (Hz)

unità di misura di v Hz, in ottica THz

Mega = 10^6 Giga = 10^9 Tera = 10^{12}


```
velocità = spazio/tempo
velocità onda e.m. = \lambda/T = \lambda v
```

velocità onda e.m. = c = 300000 Km/s c = velocità della luce

Equazione delle onde

$$E = E_0 \sin(2\pi f + 2\pi y/\lambda)$$

Attenuazione

quando le onde vengono assorbite (perdono energia) e la loro ampiezza diminuisce secondo una legge esponenziale

Riflessione

L'onda cambia direzione quando le caratteristiche del mezzo in cui si propaga cambiano

Legge di Snell n1 sin θ_i = n2 sin θ_2

quanto di energia luminosa

- l'onda e.m. trasporta energia
- l'energia è trasportata in pacchetti
- il pacchetto più piccolo è detto quanto
- il quanto di energia luminosa è detto

FOTONE

energia di un fotone

$$E = hv$$

 $h = costante di Plank = 6.6 10^{-34} Js$

nel visibile E= qualche elettronVolt

- L ight
- A mplification by
 - **S** timulated
 - E mission of
 - **R** adiation

interazione radiazione-materia

Amplificazione ottica efficiente

Schema a 4 livelli per ottenere L'INVERSIONE DI POPOLAZIONE ovvero la maggior parte degli atomi allo stato eccitato

A.Tomaselli

Amplificazione ottica

L'oscillazione laser viene innescata dall'emissione spontanea di fotoni lungo l'asse della cavità.

Emissione su modi gaussiani

Caratteristiche del laser

- Lunghezza d'onda
- Coerenza
- Direzionalità Divergenza
- Brillanza
- Grande intensità

Lunghezza d'onda

Monocromaticità

 $\Delta \lambda \sim 100$'s - 1000's nm

 $(\Delta \lambda \sim 10^{-7} - 10^{-6} \text{ m})$

$$\Delta\lambda \sim 10^{-20}$$
 - 10^{-12} m !

Coerenza spaziale e temporale

Caratteristiche principali

Direzionalità e Divergenza

 $\theta \approx \lambda/d$ divergenza in campo lontano proporzionale alla lunghezza d'onda

Brillanza

$$B = \frac{Potenza}{Area \quad Ang.solido} = \frac{P}{\lambda^2 M^2}$$

Grande intensità

$$I_{max} = \frac{2P}{f^2 \Omega}$$

I LASER possono essere divisi secondo diversi schemi:

Mezzo Attivo (amplificatore):

- a stato solido (cristalli/vetri)

- a gas

- a semiconduttore

Durata della luce :

- onda continua
- impulsi lunghi ($t > 10^{-9}$ s)
- impulsi corti $(t < 10^{-9}s)$
- impulsi ultracorti $(t < 10^{-12}s)$

Classe di pericolosità:

- 1 (non pericoloso)
- 2 (rischio basso, P<1mW, VIS)
- 3R (rischio medio, P<5mW, VIS)
- 3B (rischio alto, P<500 mW
- 4 (richio alto anche x fasci diffusi possibilità di incendi)

Applicazioni (e potenza!):

- sensoristica (bassa)
- comunicazioni (media)
- lavorazioni di materiali (alta)

a stato solido: il materiale è un cristallo o vetro con diffusione di atomi attivi

Pompaggio ottico (lampade, diodi laser, altre sorgenti laser):

Rubino (potenza) λ = 694 nm Neodimio (potenza, cw e impulsato) λ = 0.9, 1, 1.3 e 1.4 um ... Vibronici (mode-locking) larga banda In fibra (telecom, potenza) λ = 1, 1.3 e 1.55 um λ = 0.55, 1.55 e 2.9 um

a gas: il mezzo attivo è costituito da un gas di ioni, atomi o molecole, in tubo sigillato o in flusso

Pompaggio a scarica elettrica (kV):

He-Ne (metrologia) $\lambda = 632.8 \text{ nm}$

CO2 (potenza, cw e impulsato) $\lambda = 10.6$ um

Eccimeri (potenza) varie UV (400-200 nm)

Ionici Kr, Ar (potenza) $\lambda = 514,488,674 \text{ nm}$

Vapori di Cu (potenza) $\lambda = 510 \text{ nm}$

a colorante (dye): coloranti in flusso o a stato solido (rodammina 6G, fluorescina, cumarina, stilbene, umbelliferone, tetracene, verde malachite).

Pompaggio ottico (lampade, diodi laser, altre sorgenti laser)

Rodamina 6G (Mode locking) $\lambda = da 580 a 650 nm$

Rodamina 6G + cicloottatetraene → 1.4 kilowatt a 585 nm

Tipi di laser

a semiconduttore (diodi laser): luce generata dalla ricombinazione elettrone-lacuna in una complicata struttura a eterogiunzione (i diodi laser rappresentano la fascia più ampia di laser sul mercato).

Pompaggio elettrico

AlGaAs, ZnSe, GaN, InP λ = da 420 nm a 2 um (Telecomunicazioni, metrologia, potenza)

Tipi di laser

Quali tipi

In base alla durata di emissione, vengono classificati in:

Laser continui Laser impulsati

- -impulsi giganti (QS) ns
- -impulsi ultracorti (ML) ps, fs

Regimi di funzionamento

Free running

L'oscillatore genera azione laser in risposta al pompaggio liberamente.

Q-switching: alta energia, ns

mode-locking: alta intensità, ps e fs

Impulsi ultracorti (fs)

Ordini di grandezza:

1 femtosecondo=10⁻¹⁵s

Alla velocità della luce: in 1 s, 300000 km, 11 190 fs, 30 μm

Alla velocità del suono: in 1 s, 300 m; in 100 fs, 0.3 A

0

Le tre qualità degli impulsi al fs:

durata ultracorta

studio dei fenomeni ultrarapidi

 (Energia/durata)=Potenza elevata fisica delle alte intensità

 effetti nonlineari importanti generazione di nuove lunghezze d'onda, processi multifotonici

sorgenti continue

Sorgenti miniaturizzate a Nd: YVO4 duplicate intracavità

- Emissione 532 nm
 - Pmax=10W
 - Utilizzo diretto o come pompa di Ti:zaffiro
- Emissione 671 nm
 - Pmax= 5W
 - Utilizzo diretto o come pompa di Cr:Lisaf
- Emissione 456 nm
 - Pmax= 200 mW
 - Utilizzo diretto

A.Tomaselli 46

Come si propagano

- 1-Propagazione diretta
- 2-Dopo un sistema ottico
- 3-Da fibra
- 4-Dopo riflessione fissa o mobile
- 5-Dopo diffusione

1-propagazione diretta

2-dopo un sistema ottico

 $d_0 \approx F\lambda/D$ F = focale della lente

3-da fibra

Fibra multi-modo

D=2r(AN)/1.7

 $AN = \sin(\varphi/2)$

Fibra mono-modo

 $D = 2\sqrt{2r}\lambda/a$

a = diametro del campo modale

4-dopo riflessione fissa o mobile

5-dopo diffusione

riflessione diffusione

• Riflessione speculare

- $\theta_r = \theta_i$
- raggi e normale sullo stesso piano

Riflessione mista

Sovrapposizione componente speculare e diffusa

 Diffusione Lambertiana

- Intensità radiante che varia con il coseno
- Radianza costante

riflessione diffusione

Dipendenza dalla rugosità superficiale e dalla λ:

 Riflessione speculare rugosità superficiale < λ

Riflessione diffusa
 rugosità superficiale > λ

L'occhio e il laser

 Differenza tra sorgente estesa e sorgente puntiforme

Concetto di sorgente apparente

Sorgente puntiforme-1

una sorgente altamente collimata genera un'immagine puntiforme sulla retina (20-25 µm).

Sorgente puntiforme-2

una sorgente <u>divergente</u> genera un' immagine puntiforme sulla retina se il diametro apparente α è minore di α_{min}.

Sorgente estesa

se l'immagine non è puntiforme la sorgente è estesa

• grazie