Job No.:
 SB 057 Judd Shed - 1
 Address:
 389 Big Stone Road, Kuri Bush, Dunedin, New Zealand
 Date:
 31/10/2024

 Latitude:
 -45.965487
 Longitude:
 170.27353
 Elevation:
 102.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N5	Ground Snow Load	0.9 KPa	Roof Snow Load	0.63 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	D
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4.756 m
Wind Region	NZ2	Terrain Category	3.0	Design Wind Speed	46.69 m/s
Wind Pressure	1.31 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Very High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = 0.6581

For roof CP,e from 0 m To 4.38 m Cpe = -0.9 pe = -0.81 KPa pnet = -1.52 KPa

For roof CP,e from 4.38 m To 8.76 m Cpe = -0.5 pe = -0.45 KPa pnet = -1.16 KPa

For wall Windward Cp, i = 0.6581 side Wall Cp, i = -0.5721

For wall Windward and Leeward $\,$ CP,e $\,$ from 0 m $\,$ To 9 m $\,$ Cpe = 0.7 $\,$ pe = 0.82 KPa $\,$ pnet = 1.52 KPa

For side wall CP,e from 0 m To 4.38 m Cpe = pe = -0.77 KPa pnet = -0.07 KPa

Maximum Upward pressure used in roof member Design = 1.52 KPa

Maximum Downward pressure used in roof member Design = 0.85 KPa

Maximum Wall pressure used in Design = 1.52 KPa

Maximum Racking pressure used in Design = 1.41 KPa

Design Summary

Rafter Design Internal

Internal Rafter Load Width = 5000 mm Internal Rafter Span = 8850 mm Try Rafter 2x400x63 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

 $K1 \; Short \; term = 1 \qquad K1 \; Medium \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 1.00$

K8 Upward = 1.00 S1 Downward = 6.26 S1 Upward = 6.26

Shear Capacity of timber =5.3 MPa Bending Capacity of timber =48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	16.52 Kn-m	Capacity	73.78 Kn-m	Passing Percentage	446.61 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	56.29 Kn-m	Capacity	98.38 Kn-m	Passing Percentage	174.77 %
$M_{0.9D\text{-W}nUp}$	-63.39 Kn-m	Capacity	-122.98 Kn-m	Passing Percentage	194.01 %
V _{1.35D}	7.47 Kn	Capacity	85.9 Kn	Passing Percentage	1149.93 %

Second page

 $V_{1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ 25.44 Kn Capacity 114.54 Kn Passing Percentage 450.24 % $V_{0.9D-WnUp}$ -28.65 Kn Capacity -143.18 Kn Passing Percentage 499.76 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 15.6 mm Deflection under Dead and Service Wind = 26.725 mm Limit by Woolcock et al, 1999 Span/240 = 37.50 mm Limit by Woolcock et al, 1999 Span/100 = 90.00 mm

Reactions

Maximum downward = 25.44 kn Maximum upward = -28.65 kn

Rafter to Pole Connection check

Bolt Size = M16 Number of Bolts = 3

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 80 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 126 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 77.63 Kn > -28.65 Kn

Girt Design Front and Back

Girt's Spacing = 0 mm Girt's Span = 2500 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.86 S1 Downward = 9.63 S1 Upward = 16.05

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mw $_{\text{ind+Snow}}$ 0.00 Kn-m Capacity 1.80 Kn-m Passing Percentage Infinity % $V_{0.9D\text{-W}nUp}$ 0.00 Kn Capacity 12.06 Kn Passing Percentage Infinity %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 0.00 mm Limit by Woolcock et al, 1999 Span/100 = 25.00 mm

Sag during installation = 2.37 mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 0 mm Girt's Span = 2250 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.89 S1 Downward = 9.63 S1 Upward = 15.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	0.00 Kn-m	Capacity	1.87 Kn-m	Passing Percentage	Infinity %
V _{0.9D-WnUp}	0.00 Kn	Capacity	12.06 Kn	Passing Percentage	Infinity %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 0.00 mm Limit by Woolcock et al. 1999 Span/100 = 22.50 mm

Sag during installation =1.55 mm

Reactions

Maximum = 0.00 kn

Middle Pole Design

Geometry

250 SED H5 (Minimum 275 dia. at Floor Level)	Dry Use	Height	4456 mm
Area	54091 mm2	As	40568.5546875 mm2
Ix	232952248 mm4	Zx	1774874 mm3
Iy	232952248 mm4	Zx	1774874 mm3
Lateral Restraint	1300 mm c/c		

Loads

Total Area over Pole = 22.5 m^2

Dead	5.63 Kn	Live	5.63 Kn
Wind Down	19.13 Kn	Snow	14.18 Kn
Moment wind	29.83 Kn-m	Moment snow	5.34 Kn-m
Phi	0.8	K8	1.00
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling Steaming Normal Dry Use

4/6

fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	778.92 Kn	PhiMnx Wind	51.54 Kn-m	PhiVnx Wind	96.07 Kn
PhiNcx Dead	467.35 Kn	PhiMnx Dead	30.93 Kn-m	PhiVnx Dead	57.64 Kn
PhiNcx Snow	623.13 Kn	PhiMnx Snow	41.23 Kn-m	PhiVnx Snow	76.85 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.62 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.37 < 1 OK$

Deflection at top under service lateral loads = 41.18 mm < 44.56 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

K0 = $(1-\sin(30))/(1+\sin(30))$ $(1+\sin(30))/(1-\sin(30))$ Kp =

Geometry For Middle Bay Pole

 $D_S =$ 0.6 mm Pile Diameter

2100 mm Pile embedment length

f1 =3567 mm Distance at which the shear force is applied Distance of top soil at rest pressure

f2 =0 mm

Loads

Moment Wind =	29.83 Kn-m	Moment Snow =	Kn-m
Shear Wind =	8.36 Kn	Shear Snow =	5.34 Kn

Pile Properties

0.55 Safety Factory

Hu= 14.56 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu =31.50 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.95 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(2100) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(2100)

Skin Friction = 35.62 Kn

Weight of Pile + Pile Skin Friction = 39.84 Kn

Uplift on one Pile = 29.14 Kn

Uplift is ok