Assignment 2

Suryaansh Jain cs21btech11057

Question 21(a) A product can be manufactured at a total cost $C(x) = \frac{x^2}{100} + 100x + 40$, where x is the number of units produced. The price at which each unit can be sold is given by $P = 200 - \frac{x}{400}$. Determine the production level x at which the profit is maximum. What is the price per unit and total profit at the level of production?

Solution.

Let the total price p(x) = P.x(1)

$$\Rightarrow \frac{p(x)}{x} = 200 - \frac{x}{400}$$

$$c(x) = \frac{x^2}{100} + 100x + 40$$
(2)

$$c(x) = \frac{x^2}{100} + 100x + 40\tag{3}$$

$$Profit = p(x) - c(x) \tag{4}$$

For maximum profit $\frac{dProfit}{dx} = 0$

$$\implies 100 - \frac{x}{40} = 0 \tag{5}$$

$$\implies x = 4000 \tag{6}$$

The total production level x = 4000.

$$Price \ per \ unit = P(x) = 190 \tag{7}$$

$$Profit = 199960$$

Total profit = 199960

Symbol	Description	Value
P	Price per unit	190
P(x)	Total price	760000
C(x)	Total cost	560040
Profit	Total profit	199960

Fig. 1. Graph shows Total Profit, Total cost, Total profit with x