Lee at	entamente las siguientes instrucciones:
•	Escribe tu nombre y grupo en el lugar indicado en esta hoja.
•	NO puedes usar calculadora. Desconecta el teléfono móvil (si lo tienes contigo).
-	El examen dura 3 horas.
	Cada una de las seis primeras preguntas es tipo test y tiene una única respuesta correcta. Cada pregunta respondida <i>correctamente</i> puntuará 0,5 puntos . Cada pregunta respondida <i>incorrectamente</i> puntuará -0,15 puntos . Las preguntas sin contestar puntuarán 0 puntos . La puntuación total del test será como mínimo 0, nunca negativa. En cada una de las preguntas a desarrollar aparece la puntuación máxima que puede obtenerse al responderlas.
	La mínima puntuación que puede obtenerse en estas preguntas es 0 .
1.	El conjunto resultado de evaluar la expresión conjuntista $(\emptyset \cup \{ \{\emptyset\}, \{ \{\emptyset\}, \emptyset \} \}) \cap (\{\emptyset\} \cup \{ \{\emptyset\} \})$ es
	$oxed{\Box}$ \emptyset
	\square $\{\emptyset\}$
	$\square \left\{\emptyset, \{\emptyset\}\right\}$
	Ninguna de las anteriores
2.	Sea A un conjunto con $ A =10$ y sea R una relación de equivalencia sobre A . Sean $a,b,c\in A$ con $\Big [a]\Big =3,\Big [b]\Big =5$ y $\Big [c]\Big =1$. El número de clases de equivalencia determinadas por R es
	\square 4
	\square_3
	\square 5
	La función definida por $f(0)=0, f(1)=1, f(2)=2, f(n)=f(n-3),$ para $n\geq 3,$ cumple que para todo $n\in\mathbb{N}$:
	$\square f(n) = n$
	$\prod f$ no está bien definida
4.	Si $a y b$ son enteros positivos tales que $3a - 5b = 27$ entonces
	\square el $mcd(a,b)$ no puede ser 27
	el $mcd(a,b)$ no puede ser 13
	el $mcd(a,b)$ puede ser 14
	Ninguna de las afirmaciones anteriores es cierta
5.	La relación R definida sobre $\mathbb N$ como:
	$xRy \iff (x=y) \lor (x+y \text{ es impar})$
	es
	relación de orden parcial
	relación de orden estricto
	no es ni relación de orden ni relación de equivalencia
	relación de equivalencia

NOMBRE:

☐ El segundo es el único no numerable
El primero y el tercero son no numerables
El tercero es el único numerable

7. (1,5 puntos) Considera la función $f: \mathbb{N} \to \mathbb{N}_1$ definida recursivamente como sigue:

$$f(0) = 1, \ f(1) = 3,$$

$$f(n) = 6 * f(n-1) - 9 * f(n-2) + 3^n \qquad (n \ge 2)$$

Razonando por inducción, demuestra que $f(n) = \frac{3^n}{2}(n^2 - n + 2)$, para todo $n \ge 0$. Indica qué tipo de inducción utilizas y justifica los pasos de tu demostración, en especial **indica cuándo aplicas la** hipótesis de inducción y por qué puedes aplicarla.

8. (1 punto) Sean $a, b, c \in \mathbb{N}_1$. Demuestra que

$$c|a \wedge c|b \iff c \mid \operatorname{mcd}(a,b)$$

(Idea: En uno de los sentidos conviene usar el teorema de Bézout).

9. (0,5 puntos) Demuestra que **no siempre** es cierto que

$$(A \oplus B) \setminus B = B \setminus (A \oplus B)$$

(Recuerda que dados dos conjuntos C y D, $C \oplus D = (C \setminus D) \cup (D \setminus C)$)

- 10. (1,5 puntos) Dado el conjunto $A = \{1, 2, 3\}$
 - a) Define sobre él **dos** relaciones de equivalencia **distintas** que **no sean** ni la identidad $id_A = \{(a, a) / a \in A\}$, ni el total $A \times A$.
 - b) Estudia si es verdadero o falso que la unión de dos relaciones de equivalencia **siempre** sigue siendo una relación de equivalencia.
- 11. (1 punto) Sea $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por $f(x) = 6 + \frac{2}{x}$. Estudia si f es inyectiva y/o suprayectiva.
- 12. (1,5 puntos) Sea la relación R definida sobre \mathbb{N}_1 como:

$$xRy \iff \exists k \in \mathbb{N} \text{ tal que } 5^k \cdot x = y$$

- a) Demuestra que R es una relación de orden parcial.
- b) Dado $S = \{1, 2, 4, 5, 10, 20, 25, 50\}$ dibuja un diagrama de Hasse que represente el orden parcial R restringido a S.
- c) Determina los elementos extremos y extremales en S.