17. Approximate Integration

 \circ Recall: If f is integrable on [a,b], then the definite integral $\int_a^b f(x) dx$ is the net area between f(x) and the x-axis:

▶ We started by approximating such areas using Riemann sums:

 \circ If the limit exists and is independent of our choice of sample points $x_i^* \in [x_{i-1}, x_i]$, then

• FTC 2 gave us an "easy" way to evaluate definite integrals without using the limit of the Riemann sum:

but, FTC 2 requires us to know an antiderivative of the integrand.

- What if we don't know how to find (or it's impossible to find!) an antiderivative for a particular function?!
- Then it's back to approximating with rectangles, or more sophisticated approximations such as using trapezoids, or slices whose tops are parabolas.

^{*} These notes are solely for the personal use of students registered in MAT1320. ©EJM All rights reserved.

RIEMANN SUMS REVISITED

To approximate a definite integral $\int_a^b f(x) dx$ using a Riemann sum:

- \diamond Choose n (the # rectangles).
- \diamond Subdivide the interval [a,b] into n subintervals of equal width:

- \diamond Choose a **sample point** $x_i^* \in [x_{i-1}, x_i]$ in the *i*th subinterval.
- ♦ Typical "good" sample points:

Left endpoint

Right endpoint

MIDPOINT RULE

TRAPEZOIDAL RULE

ERROR BOUNDS

- The actual error might be smaller than these bounds.
- If we know a bound on f''(x) for $a \le x \le b$, then this knowledge gives us a worst-case-scenario error bound. This allows us to choose n sufficiently large to guarantee that the error is no worse than $K(b-a)^3/12n^2$, or $K(b-a)^3/24n^2$, respectively.
- Notice that the error bound on T_n is twice the error bound on M_n (so typically, we have better guarantees from the Midpoint Rule).

Example 17.1. Use T_5 , then M_5 to approximate $\int_1^2 \frac{1}{x} dx$

Example 17.2. How large should n be in order to guarantee that the error using T_n and M_n to
estimate $\int_{1}^{2} \frac{1}{x} dx$, respectively, is within 0.0001?
Simpson's Rule

SIMPSON'S RULE ERROR BOUND

Suppose that $|f^{(4)}(x)| \leq K_4$ for $a \leq x \leq b$. Then

Example 17.3. Compute S_6 to approximate $\int_1^2 \frac{1}{x} dx$, then determine the smallest n needed in order to guarantee that S_n is within 0.0001 of the exact value of $\int_1^2 \frac{1}{x} dx$.

STUDY GUIDE

$$\diamond \left| L_n = \sum_{i=1}^n f(x_{i-1}) \Delta x \right| \qquad (x_i^* = x_{i-1})$$

$$R_n = \sum_{i=1}^n f(x_i) \Delta x \qquad (x_i^* = x_i)$$

 \diamond Midpoint Rule: $M_n = \sum_{i=1}^n f(\overline{x_i}) \Delta x$ $(\overline{x_i} = \frac{1}{2}(x_{i-1} + x_i))$

♦ Trapezoidal Rule:
$$T_n = \frac{\Delta x}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n) \right]$$

♦ Simpson's Rule (n even):

$$S_n = \frac{\Delta x}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right]$$