ME 144 A Heat Transfer

Semester Spring 2020 Classroom Lafayette 207 Meeting time 8:30--9:45

Instruction Thor, New Asgard 201 C, drthor@uvm.edu Office hours: T 1:00--2:00 Peter Quill, Earth 512 A, star-lord@uvm.edu Office hours: M 8:00-9:00

TA(s) Loki, Asgard 201 D, iamloki@uvm.edu Office hours: W 1:00--2:00

Bruce Banner, Votey 001F, iamhulk@uvm.edu Office hours: F 8:00--9:00

Prerequisites ME143

Credit hours 3

Textbook Fundamentals of Heat and Mass Transfer 8th Edition

By Bergman et al., Wiley

Software Python 3 (Anaconda distribution)

git

Course description

One- and two-dimensional steady and unsteady thermal conduction; natural and forced internal and external convection; thermal radiation; heat exchangers; boiling and condensation heat transfer

Course objectives

- a) To demonstrate the ability to understand and identify relevant modes of heat transfer in physical problems.
- b) To demonstrate the ability to analyze 1-D and multi-dimensional steady-state heat conduction in bodies with various thermal boundary conditions and with possibly multiple component materials.
- c) To demonstrate the ability to model and solve unsteady 0-D (lumped capacitance method) and 1-D heat transfer problems; effects of thermal boundary conditions.
- d) To demonstrate the ability to model and solve 1D unsteady heat transfer involving phase change (melting, solidification)
- e) To demonstrate the ability to understand the mechanisms of convective heat transfer and to demonstrate the ability to utilize analytical and empirical relations for the solution of engineering heat transfer problems.
- f) To demonstrate the ability to understand and apply basic numerical methods (finite difference, finite volume) to solve steady and unsteady heat transfer problems.

Grade distribution and assessment

Homework	10 %
Quizzes	20 %
Midterm grade	30 %
Project	40 %

Notes: (i) Midterm grade = 0.15 [lowest midterm grade] + 0.85 [highest midterm grade]. (ii) The instructor(s) may assign an individual or team project as a midterm exam

Individual question grading scheme (over 10 points)

10	Correct answer
8	Answer uses the correct physics and/or mathematics but has one small error (e.g. typo)
6	One significant error violating the physics and/or mathematics of the problem.
4	Two significant errors violating the physics and/or mathematics of the problem.
2	An attempt to answer.
0	Self-explanatory.

Letter grade distribution

100.093.00 A	73.0076.99	С
90.0092.99 A-	70.0072.99	C-
87.0089.99 B+	67.0069.99	D+
83.0086.99 B	63.0066.99	D
80.0082.99 B-	60.0062.99	D-
77.0079.99 C+	59.9900.00	F

Policies

Late assignment

Late assignments are bad!

Tentative schedule

Week	Content
1	Thermodynamics, Modes of heat transfer, heat transfer coefficients
2	Conduction, Fourier's law, thermal properties of matter, heat equation, boundary condi-
	tions, temperature distribution
3	1D Conduction, Planar system thermal resistance, composite wall, contact resistance, ther-
	mal energy generation
4	1D conduction, Radial systems, extended surfaces
5	Exam, 2D conduction, Finite volume
6	2D conduction + Transient conduction, Linear Algebra and time-stepping methods, Analyt-
	ical solutions
7	Conduction wrap up
8	Convection, Review of fluid mechanics, intro to convection, External flows
9	Convection, External flows (cont'ed), Internal flows
10	Exam (in class), Convection, Internal flows
11	Convection, Internal flows, Free and forced convection
12	Free convection, Boiling and Condensation
13	Boiling and condensation, Radiation
14	Radiation
15	Review