Избранные главы дискретной математики. Весна 2024г

Решения этих задач будут обсуждаться на следующем занятии. Внятно записанные (а лучше затеханные) решения нужно присылать на почту georgmikheenkov@gmail.com , до 24:00 четверга перед следующим занятием.

Задание с 3 занятия.

- (1) а) (Аналог 4 и 5 задач прошлого задания.) Докажите, что любой инволютивный линейный оператор f на векторном пространстве V (т.е. такой, что $f^2 = \mathrm{Id}_V$) над полем \mathbb{K} , таким, что сhar $\mathbb{K} \neq 2$, есть зеркальная симметрия относительно некоторого подпространства, т.е. существует такое разложение V в прямую сумму подпространств $V = U \oplus W$, так что любой вектор $v \in V$ однозначно представляется в виде v = u + w, $u \in U$, $w \in W$, и тогда действие оператора f состоит в том, что f(v) = u w.
 - б) К какому стандартному виду можно привести инволютивный линейный оператор f на векторном пространстве V над полем \mathbb{K} в случае char $\mathbb{K}=2$? (Можно при необходимости считать V конечномерным, ответ можно формулировать как в геометрической форме, так и в матричной.)

Пусть A — некоторое кольцо (коммутативное, ассоциативное и с единицей). В следующих трех задачах обсуждается отображение

$$v: A[t] \to A^A, \tag{1}$$

сопоставляющее многочлену $P(t) \in A[t]$ функцию $\varphi_P : A \to A$, сопоставляющую каждому $\alpha \in A$ значение многочлена $P(\alpha) \in A$ (т.е. $\varphi_P(\alpha) = P(\alpha)$).

- (2) Докажите, что если $\mathbb{A} = \mathbb{K}$ конечное поле, то отображение v из (1) сюръективно.
- (3) Пусть \mathbb{K} конечное поле, состоящее из q элементов. Найдите многочлен наименьшей положительной степени, задающий нулевую функцию из \mathbb{K} в \mathbb{K} . (Другими словами, нужно найти многочлен наименьшей положительной степени из $\operatorname{Ker} v$).
- (4) Покажите, что если конечное кольцо A содержит делители нуля, то отображение v из (1) не сюръективно. (Если не получается общий случай, решите эту задачу для $A = \mathbb{Z}/n$, где n составное, или хотя бы для $A = \mathbb{Z}/4$ или $A = \mathbb{Z}/6$.)