Smart Plant Monitoring System

A PROJECT REPORT

Submitted by

Name	Id
Prianka Mondal	21225103145
Md Tariful Islam	21225103521
Md Rabbi Hasan	21225103162
Md Atik Hasan	21225103168
Mohiuddin Murad	21225103160

In partial fulfillment of the requirements for the degree

of

BACHELOR OF SCIENCE

IN

COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BANGLADESH UNIVERSITY OF BUSINESS AND TECHNOLOGY (BUBT)

DHAKA-1216

23 May, 2025

IoT-Based Smart Plant Monitoring System

Project Title:

IoT-Based Smart Plant Monitoring System

1. Introduction:

With the advancement of the Internet of Things (IoT), agriculture and gardening processes can be automated and optimized. This project, "Nature of Plant", is a smart plant monitoring based on the ESP8266 microcontroller. The system monitors environmental parameters like soil moisture, temperature, and humidity, and controls a water pump automatically or manually via a smartphone app (Blynk platform).

2. Objectives:

- To continuously monitor soil moisture, temperature, and humidity.
- To display real-time data on an LCD and send it to a mobile app.
- To automate water pumping based on soil moisture levels.
- To provide manual control of the pump through the Blynk app.
- To optimize water usage and ensure plant health.

3. Components Used:

Component	Description
ESP8266 NodeMCU	Wi-Fi enabled microcontroller used for IoT applications.
DHT11 Sensor	Measures temperature and humidity.
Soil Moisture Sensor	Measures the volumetric water content of soil.
Relay Module	Controls the water pump (ON/OFF).
Water Pump	Pumps water to the plant.
16x2 I2C LCD	Displays real-time sensor data.
Blynk App	Mobile application for remote monitoring and control.

4. System Architecture:

- Sensors (DHT11 and soil moisture) collect environmental data.
- Data is processed by the ESP8266, which sends it to the Blynk App over Wi-Fi.

- Based on the moisture level, the pump is turned ON/OFF automatically.
- Users can also control the pump manually using a virtual button (V3) in the Blynk App.
- All real-time data is displayed on an LCD screen.

5. Working Principle:

- The soil moisture sensor provides analog readings which are mapped to a percentage scale.
- When the moisture level falls below the defined threshold (40%), the pump is activated for a maximum of 30 seconds to avoid overwatering.
- The pump can also be controlled manually via the Blynk App.
- Temperature and humidity are read using the DHT11 sensor and sent to the app.
- A 16x2 LCD displays current values and pump status locally.

6. Software Used:

- Arduino IDE Programming and uploading code to the ESP8266.
- **Blynk App** Mobile interface for monitoring and controlling the system.
- Libraries DHT.h, Wire.h, LiquidCrystal 12C.h, BlynkSimpleEsp8266.h

7. Features:

- Real-time monitoring of plant environment.
- Dual mode control (automatic and manual).
- User-friendly mobile interface (Blynk).
- LCD display for local feedback.
- Smart irrigation to conserve water.
- Automatic shutdown of pump after 30 seconds to prevent overwatering.

8. Future Enhancements:

- Add rain detection to prevent irrigation during rain.
- Include multiple soil sensors for large-scale fields.
- Implement data logging and analytics.
- Power the system using solar energy for sustainability.

9. Conclusion:

This IoT-based plant monitoring system effectively integrates environmental sensing with smart irrigation, making plant care efficient and intelligent. It is highly suitable for home gardens, greenhouses, and urban farming setups.