

MÓDULO DE ESTADÍSTICA SERIES DE TIEMPO

DIPLOMADO DE MATEMÁTICAS Y ESTADÍSTICA, MIDE

Ruslán Gómez Nesterkín Noviembre 2022

Aviso: Los comentarios y opiniones expresados son solo del autor y no necesariamente reflejan a los del Banco de México.

PLAN DE LA PRESENTACIÓN

PARTE 1

- * ANTECEDENTES: Series determinísticas, variables aleatorias y estimación.
- SERIES DE TIEMPO: Series Determinísticas, Series de Tiempo, Suma de Variables Aleatorias.
- DISTRIBUCIÓN DE SERIES DE TIEMPO: Límite Central, Función Característica, Caminata Aleatoria.
- CARACTERÍSTICAS DE LAS SERIES DE TIEMPO: Autocorrelación, Estacionalidad.

PARTE 2

- **DESCOMPOSICIÓN:** Descomposición de Wold.
- * MODELOS DE SERIES DE TIEMPO: Función de auto-correlación, AR, MA.
- **EJEMPLO:** ¿Predicción al 75%?

PARTE 3

- * MODELOS DE SERIES DE TIEMPO: Función de auto-correlación parcial, ARMA, otras variantes.
- OTRAS CARACTERÍSTICAS: Heteroskedasticidad, Modelo ARCH, Causalidad de Granger, Cointegración.
- PRONÓSTICOS: Durbin-Levinson, Yule-Walker, Burgs, Hannan-Rissanen, Unit Roots, ARAR Algorithm, Holt-Winters, Box-Jenkins, etc.

REFERENCIAS

PRINCIPALES

- Brockwell Peter J, Davis Richard, A.; Introduction to Time Series and Forecasting;
 2nd. Edition; Springer 2002.
- Cochrane John H.; Time Series for Macroeconomics and Finance; Manuscrito 1997.
- Nobel Price in Economic Sciences: Time-series Econometrics: Cointegration and Autoregressive Conditional Heteroskedasticity, 2003. (https://www.nobelprize.org/nobel-prizes/economic-sciences/laureates/2003/advanced-economicsciences2003.pdf)
- Tsay Ruey S.; Analysis of Financial Time Series; Wiley 2010.

REFERENCIAS

COMPLEMENTARIOS PARA CONSULTA

- Billingsley P.; Probability and Measure, 3rd. Edition, Wiley NY 1995.
- Dufour Jean-Marie, Renault Eric; Short Run and Long Run Causality in Time Series: Theory; Econometrica Vol. 66, Issue 5; 1998.
- Embrechts P, Klüpperberg C., Mikosch T.; Modelling Extremal Events for Insurance and Finance; Stochastic Modelling and Applied Probability; Springer-Verlag 1997.
- Kirchgässner Gebhard, Wolters Jürgen, Hassler Uwe; Introduction to Modern Time Series Analysis; 2nd. Edition, Springer 2013.
- Nobel en Ciencias Económicas, "...por métodos para analizar series de tiempo económicas", 2003.
 (https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2003/press.html)
- Nualart David; Cálculo Estocástico; Notas de curso, Barcelona España.
- Panjer Harry H.; Recursive Evaluation of a Family of Compound Distributions; ASTIN Bulletin 12, 1981.
 (http://www.casact.org/library/astin/vol12no1/22.pdf)
- Prasad Chalasani, Somesh Jha; "Steven Shreve: Stochastic Calculus and Finance". Carnegi Mellon University, October 1997.
- Prigent Jean-Luc; Weak convergence of Financial Markets; Springer Finance 2003.
- Sornette D, Andersen J.V.; Increments of Uncorrelated Time Series Can Be Predicted With a Universal 75% Probability of Success. International Journal of Modern Physics C.; Computational Physics and Physical Computation, Vol. 11, Issue 4, Jun/2000.

ENCUESTAS

- A fin de tener una mayor interacción durante las presentaciones...
- Se realizarán algunas encuestas de opinión durante las sesiones...
- A través de la aplicación de celular: Telegram
- Favor de adherirse al grupo: MIDE_DIP_MATS_2022
- Liga directa: <u>https://t.me/MIDE_DIP_MATS_2022</u>

PARTE 1 SERIES

PLAN DE LA PRESENTACIÓN

PARTE 1

- ANTECEDENTES
- SERIES DE TIEMPO
- DISTRIBUCIÓN DE SERIES DE TIEMPO
- **CARACTERÍSTICAS DE LAS SERIES DE TIEMPO**

PARTE 2

- DESCOMPOSICIÓN
- MODELOS DE SERIES DE TIEMPO
- EJEMPLO

PARTE 3

- MODELOS DE SERIES DE TIEMPO
- OTRAS CARACTERÍSTICAS
- PRONÓSTICOS

Motivación...

Series de tiempo y predicción

Sornette D. y Andersen J.V.; International Journal of Modern Physics, junio/2000.

"El signo del incremento de series de tiempo nocorrelacionadas puede predecirse con una probabilidad de éxito universal del 75%"

https://arxiv.org/pdf/cond-mat/0001324.pdf

11

Series determinísticas

• Una serie es la **suma de elementos reales de una sucesión** $\{a_1, a_2, ..., a_n, ...\}$, la cual queda representada de la siguiente manera:

$$S_n = a_1 + a_2 + \dots + a_n$$

La misma serie S_n también se denota así:

$$S_n = \sum_{i=1}^n a_i$$

Ejemplo: Consideremos la descomposición decimal del número real $x=\frac{1}{3}$,

$$x = \frac{1}{3} = 0.33333333 \dots =$$

$$= 3 \times 10^{-1} + 3 \times 10^{-2} + \dots + 3 \times 10^{-n} + \dots$$

Entonces la serie

$$S_n = \sum_{i=1}^n 3 \times 10^{-i}$$

converge a $S=\frac{1}{3}$ cuando $n\to\infty$:

$$S_1 = 0.3,$$
 $S_2 = 0.33,$..., $S = 0.33333333... = \frac{1}{3}$

Independencia de Variables Aleatorias

- **Definición:** Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilidad. Decimos que dos conjuntos $A \in \mathcal{F}$ y $B \in \mathcal{F}$ son **independientes** si $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$.
- **Observación:** Si $A \in \mathcal{F}$ y $B \in \mathcal{F}$ son eventos independientes, entonces la probabilidad condicionada de A dado B cumple que

$$\mathbb{P}[A|B] = \mathbb{P}[A]$$

siempre y cuando $\mathbb{P}[B] \neq 0$, siendo $\mathbb{P}[A|B] \coloneqq \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$ la probabilidad condicional de que ocurra el evento A dado que se materialice el evento B.

Ejemplo...

Independencia de Variables Aleatorias

...Ejemplo:

 Supóngase el experimento del lanzamiento de una moneda en dos ocasiones consecutivas. La probabilidad de que en cada lanzamiento caiga cara (Head) es

$$\mathbb{P}[H] = p$$
 y de que caiga *águila* (Tail) es $\mathbb{P}[T] = q = 1 - p$ (con $0).$

Resulta que:

$$\mathbb{P}[HH] = p^2$$
, $\mathbb{P}[HT] = \mathbb{P}[TH] = pq$, $\mathbb{P}[TT] = q^2$.

Sea $A = \{HH, HT\}$ aquel conjunto en el que resulte **sol** <u>siempre en el primer lanzamiento</u> y $B = \{HT, TH\}$ aquel en el que cae **águila** <u>en alguno de los dos lanzamientos</u>:

$$\mathbb{P}[A] = p^2 + pq = p \quad \text{y} \quad \mathbb{P}[B] = pq + pq = 2pq$$

Dado que $A \cap B = \{HT\}$, tenemos que

$$\mathbb{P}[A \cap B] = \mathbb{P}[HT] = pq \quad \text{y} \quad \mathbb{P}[A]\mathbb{P}[B] = 2p^2q$$

Entonces los eventos A y B son independientes si $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$, en otras palabras si $pq = 2p^2q$, lo cual <u>solo</u> sucede cuando se **usan monedas justas** $(p = q = \frac{1}{2})$.

Varianza, Covarianza y Autocorrelación

Varianza: La varianza de una variable aleatoria se define como:

$$Var(X) = \mathbb{E}[(X - \mathbb{E}X)^2]$$

Covarianza: La covarianza entre las variables aleatorias X y Y se define como:

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)]$$

Coeficiente de Correlación: Si la varianza de X y Y es diferente de cero, entances su coeficiente de correlación queda dado por:

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

Autocorrelación de un proceso estocástico
$$\{X_t\}_{t\geq 0}$$
 con rezago $\tau>0$:
$$\rho_{\tau}(X) = \frac{\widehat{\operatorname{Cov}(X_t, X_{t-\tau})}}{\sqrt{\operatorname{Var}(X_t)\operatorname{Var}(X_{t-\tau})}}$$

https://carolina2010.files.wordpress.com/2010/05/pendulo1.gif http://www.art-saloon.ru/big/item_4261.jpg

Algunas propiedades de varianza y covarianza

- $\mathbb{E}[aX + Y] = a\mathbb{E}[X] + \mathbb{E}[Y]$
- $Var(aX + b) = a^2 Var(X) + 0$
- Var(X + Y) = Var(X) + Var(Y) 2Cov(X, Y)
- $Cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $Var(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$
- El coeficiente de correlación $\rho(X,Y)$ cumple que $-1 \le \rho(X,Y) \le 1$.
- Si X y Y son independientes, entonces Cov(X,Y) = 0.
- El coeficiente de correlación sin rezago ρ_0 coincide con el coeficiente de correlación $\rho: \rho_0(X) = \rho(X, X)$.

Adicionalmente:

 \blacksquare Si A y B son eventos independientes, entonces la probabilidad condicionada de A dado B cumple:

$$\mathbb{P}[A|B] := \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} = \mathbb{P}[A]$$

Estimación en el caso de series de datos empíricos

Sean $A = \{x_1, x_2, ..., x_N\}$ y $B = \{y_1, y_2, ..., y_N\}$ dos muestras observadas de valores reales.

Esperanza de una muestra: El estimador para el valor esperado de la muestra $oldsymbol{A}$ es:

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

lacktrians Varianza de una muestra: Un estimador insesgado de la varianza de la muestra $m{A}$ está dado por:

$$\hat{\sigma}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Covarianza: La covarianza puede ser estimada mediante:

$$\widehat{\text{Cov}}(A, B) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \widehat{\mu_x}) (y_i - \widehat{\mu_y})$$

Ejercicio en clase 1 de 2: ¿Qué estimadores usar para el coeficiente de correlación $\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$?

$$\mathbf{A:}\ \widehat{\rho}(A,B) = \frac{\frac{1}{N-1}\sum_{i=1}^{N}(x_i-\widehat{\mu_{\mathcal{X}}})(y_i-\widehat{\mu_{\mathcal{Y}}})}{\sqrt{\left(\frac{1}{N-1}\sum_{i=1}^{N}(x_i-\widehat{\mu_{\mathcal{X}}})^2\right)\left(\frac{1}{N-1}\sum_{i=1}^{N}(y_i-\widehat{\mu_{\mathcal{Y}}})^2\right)}},\ \mathbf{B:}\ \widehat{\rho}(A,B) = \frac{\widehat{\mathrm{Cov}}(A,B)}{\sqrt{\widehat{\sigma}^2(A)\ \widehat{\sigma}^2(B)}},\ \mathbf{C:}\ \mathrm{Ninguna}\ \mathrm{de}\ \mathrm{ellas.}$$

Responder encuesta en el grupo MIDE_DIP_MATS de TELEGRAM (5 MINUTOS).

[MIDE-ST-P1_a]

Estimación en el caso de series de datos empíricos

Sean $A_{1,N} = \{x_1, x_2, \dots, x_N\}$ y $B_{1,N} = \{y_1, y_2, \dots, y_N\}$ dos muestras observadas de valores reales.

Esperanza de una muestra: El estimador para el valor esperado de la muestra $A_{1,N}$ es:

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Varianza de una muestra: Un estimador insesgado de la varianza de la muestra $A_{1,N}$ está dado por:

$$\hat{\sigma}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu})^2$$

Covarianza: La covarianza puede ser estimada mediante:

$$\widehat{\text{Cov}}(A_{1,N}, B_{1,N}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \widehat{\mu_x}) (y_i - \widehat{\mu_y})$$

Ejercicio en clase 2 de 2: ¿Qué estimadores usar para el coeficiente de autocorrelación $\rho_{\tau}(X) = \frac{\text{Cov}(X_t, X_{t-\tau})}{\sqrt{\text{Var}(X_t)\text{Var}(X_{t-\tau})}}$?

$$\mathbf{D}: \widehat{\rho_{\tau}} \left(A_{1,N} \right) = \frac{\widehat{\operatorname{Cov}} \left(A_{1,N-\tau}, A_{\tau+1,N} \right)}{\sqrt{\widehat{\sigma}^2 \left(A_{1,N-\tau} \right) \widehat{\sigma}^2 \left(A_{\tau+1,N} \right)}}, \quad \mathbf{E}: \widehat{\rho_{\tau}} \left(A_{1,N} \right) = \frac{\widehat{\operatorname{Cov}} \left(B_{1,N-\tau}, B_{\tau+1,N} \right)}{\sqrt{\widehat{\sigma}^2 \left(B_{1,N-\tau} \right) \widehat{\sigma}^2 \left(B_{\tau+1,N} \right)}}, \quad \mathbf{F}: \text{ Ninguna de ellas.}$$

Responder encuesta en el grupo MIDE_DIP_MATS de TELEGRAM (5 MINUTOS).

[MIDE-ST-P1 b]

RECESO

5 minutos ...

PLAN DE LA PRESENTACIÓN

PARTE 1

- ANTECEDENTES
- SERIES DE TIEMPO
- DISTRIBUCIÓN DE SERIES DE TIEMPO
- CARACTERÍSTICAS DE LAS SERIES DE TIEMPO

PARTE 2

- DESCOMPOSICIÓN
- MODELOS DE SERIES DE TIEMPO
- EJEMPLO

PARTE 3

- MODELOS DE SERIES DE TIEMPO
- OTRAS CARACTERÍSTICAS
- PRONÓSTICOS

Modelación incorporando aleatoriedad

SERIES DE TIEMPO COMO ESTÁNDAR EN ECONOMÍA

Trygve Haavelmo

Premio Nobel 1989 en Ciencias Económicas "por su clarificación de los fundamentos de teoría de probabilidad en la econometría y su análisis de estructuras económicas simultáneas."

https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1989/

- Incorporación de procesos estocásticos para modelación económica.
- Incorporación del concepto de cambio de la distribución en el tiempo.
- Abrió la puerta entre otros temas a la modelación en economía (econometría) mediante optimización (equilibrios), valuación de derivados financieros, causalidad y series de tiempo.

Concepto de Serie de Tiempo

a) $X_n = X_{n-1} + Z_n$

Entenderemos por serie de tiempo a la representación de una serie real X_n que varía en el tiempo $n \geq 0$ la cual estaría dada por la combinación de valores anteriores de la serie $X_{n-1}, X_{n-2}, \ldots, X_0$ y alguna variable aleatoria Z:

$$X_n = F(X_{n-1}, X_{n-2}, ..., X_0; Z)$$

Ejemplos:

variable aleatoria. X_0 dado, Z=0.1

Estrictamente hablando,

esta <u>no</u> es una serie de tiempo, ya que **Z**

constant no es una

b)
$$X_n = X_{n-1} + Z_n$$
 $X_0 \, \text{dado}, Z \sim N(0,1)$

c)
$$X_n = a_1 X_{n-1} + a_2 X_{n-2} + \dots + a_{n-1} X_1 + a_n X_0 + Z$$
, $X_0 \, \text{dado}, Z \sim N(\frac{1}{10}, 1)$

d)
$$X_n = a_1 X_{n-1} + a_2 X_{n-2} + \dots + a_{n-1} X_1 + a_n X_0^n + Z_n$$
, X_0 dado, $Z_n \sim N(0.1 + 1/n)$

■ ¿ CÓMO SE EMPLEAN?...

Abuso de notación: Z_n es una variable aleatoria que cambia en el tiempo (Proceso Estocástico)

ENFOQUES: Suma de variables aleatorias

Dado un conjunto de variables aleatorias $X_1, X_2, ..., X_n$ en un espacio de probabilidad $(\Omega, \mathcal{F}, \mathbb{P})$, entonces el promedio de la suma parcial S_n es una variable aleatoria:

$$S_n = \frac{1}{n} \sum_{i=1}^n X_i$$

- PREGUNTA: ¿Cómo analizar la suma de variables aleatorias?
- Ejemplos de aplicaciones:
 - RENDIMIENTO ACUMULADO:

Si X_i representa el monto ganado o perdido en el periodo i, entonces S_n representa el monto acumulado después de n periodos.

RIESGO DE QUIEBRA:

Si X_i representa el costo de un siniestro en el periodo i, entonces S_n representa la suma acumulada de siniestros después de n periodos.

ENFOQUES: Suma de variables aleatorias: Convolución

- Convolución: Es la suma de variables aleatorias.
- La suma de dos variables aleatorias <u>independientes</u> X y Y, cumple que:

$$\mathbb{P}[\mathbf{X} + \mathbf{Y} = z] = \mathbb{P}[\mathbf{X} = z - \mathbf{Y}] =$$

$$= \int_{-\infty}^{\infty} \mathbb{P}[\mathbf{X} = z - y | \mathbf{Y} = y] \, \mathbb{P}[\mathbf{Y} = y] \, dy =$$

$$= \int_{-\infty}^{\infty} \mathbb{P}[\mathbf{X} = z - y] \, \mathbb{P}[\mathbf{Y} = y] \, dy =$$

$$= \int_{-\infty}^{\infty} f_{\mathbf{X}}(z - y) f_{\mathbf{Y}}(y) \, dy = \cdots$$

¡CÁLCULO COMPLICADO Y ENGORROSO!

ENFOQUES: Suma de variables aleatorias: Función Característica

La función característica de una variable aleatoria X es una está dada por la transformación:

$$\varphi_X(t) = \mathbb{E}[e^{itX}] = \int_{-\infty}^{\infty} e^{itx} \, \mathbb{P}[X = x] dx$$

Una propiedad importante de la función característica es que se pueden obtener los momentos de la variable aleatoria X al derivar dicha función y evaluarla en cero:

$$\mathbb{E}[X^n] = \frac{d}{dt} ... \frac{d}{dt} \varphi_X(t) \Big|_{t=0}$$

- La transformación $\varphi_X(t)$ se conoce también como la **Transformada de Fourier**.
- ullet En el caso de la suma de variables aleatorias $oldsymbol{X}$ y $oldsymbol{Y}$ independientes, se observa que

$$\varphi_{X+Y}(t) = \mathbb{E}\left[e^{it(X+Y)}\right] = \mathbb{E}\left[e^{itX}e^{itY}\right] = \mathbb{E}\left[e^{itX}\right]\mathbb{E}\left[e^{itY}\right] = \varphi_X(t)\varphi_Y(t)$$

donde por la independencia entre X y Y sucede que $\mathbb{E}[e^{itX}e^{itY}] = \mathbb{E}[e^{itX}]\mathbb{E}[e^{itY}]$.

iSIGUE SIENDO UN CÁLCULO COMPLICADO Y ENGORROSO!

ENFOQUES: Suma de variables aleatorias: Fórmula de Panjer (Modelos de ruina, teoría de riesgo actuarial)

- Fórmula de Panjer: Creada para simplificar los cálculos de sumas de variables aleatorias en modelos actuariales de riesgo colectivo de quiebra (formación de reservas contingentes para seguros)
- Supóngase una suma finita de v.a. independientes e idénticamente distribuidas X_1, \ldots, X_N cuyo tamaño N es otra v.a. independiente que deseamos estimar:

$$S = \sum_{i=1}^{N} X_i$$

La probabilidad de que el número de siniestros (sumandos) N sea igual a k queda dada recursivamente por la siguiente fórmula:

$$\mathbb{P}[N=k] = p_k = \left(a + \frac{b}{k}\right)p_{k-1} \qquad k \ge 1, a+b \ge 0, \sum_{k=0}^{\infty} p_k = 1.$$

Conclusión: Simplifica el cálculo para la convolución. Puede ayudar en el análisis de algunos tipos de series de tiempo y es usada para el cálculo de reservas actuariales, pero no es suficientemente general para modelar muchos de los fenómenos económicos.

PLAN DE LA PRESENTACIÓN

PARTE 1

- ANTECEDENTES
- SERIES DE TIEMPO
- DISTRIBUCIÓN DE SERIES DE TIEMPO
- **CARACTERÍSTICAS DE LAS SERIES DE TIEMPO**

PARTE 2

- DESCOMPOSICIÓN
- MODELOS DE SERIES DE TIEMPO
- EJEMPLO

PARTE 3

- MODELOS DE SERIES DE TIEMPO
- OTRAS CARACTERÍSTICAS
- PRONÓSTICOS

DISTRIBUCIÓN DE SERIES DE TIEMPO

ENFOQUES: Suma de variables aleatorias: Ley de los Grandes Números

Teorema: Sean X_1, X_2, \ldots una sucesión de v.a.'s independientes e idénticamente distribuidas, cada una con valor esperado μ y varianza σ^2 . Defínase la secuencia de promedios:

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n}, \qquad n = 1, 2, \dots$$

entonces S_n converge a μ casi siempre cuando $n \to \infty$.

DISTRIBUCIÓN DE SERIES DE TIEMPO

ENFOQUES: Suma de variables aleatorias: Teorema del Límite Central

Teorema: Sean X_1, X_2, \ldots una sucesión de v.a.'s independientes e idénticamente distribuidas, cada una con valor esperado μ y varianza σ^2 . Defínase la serie de promedios S_N , para $N=1,2,\ldots$, como:

$$S_N = \frac{X_1 + X_2 + \dots + X_N}{N}$$

Entonces $\sqrt{N}(S_N - \mu)$ converge en distribución a $N(0, \sigma^2)$, la distribución normal con media 0 y varianza σ^2 .

DISTRIBUCIÓN DE SERIES DE TIEMPO

ENFOQUES: Suma de variables aleatorias: Aproximación (Teorema de Glivenko-Cantelli)

Teorema:

Sean X_1, X_2, \dots v.a.'s independientes e idénticamente distribuidas.

Entonces la distribución empírica $F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{X_i \leq x\}$ converge a la distribución del promedio:

$$F_n(x) \to \mathbb{E} \mathbb{I} \{X_1 < x\}$$
 cuando $n \to \infty$.

Conclusión: Hay resultados útiles para aproximar la suma de variables aleatorias <u>cuando lo consideramos desde la óptica de las distribuciones</u>, pero sigue siendo complicado de usar para modelar fenómenos de la realidad.

PLAN DE LA PRESENTACIÓN

PARTE 1

- ANTECEDENTES
- SERIES DE TIEMPO
- DISTRIBUCIÓN DE SERIES DE TIEMPO
- **CARACTERÍSTICAS DE LAS SERIES DE TIEMPO**

PARTE 2

- DESCOMPOSICIÓN
- MODELOS DE SERIES DE TIEMPO
- EJEMPLO

PARTE 3

- MODELOS DE SERIES DE TIEMPO
- OTRAS CARACTERÍSTICAS
- PRONÓSTICOS

Enfoque Mediante Estacionalidad

- La estacionalidad es una característica de las series de tiempo, que consiste en que la distribución de la serie no cambia en el tiempo (invariante respecto al tiempo).
- **Estacionalidad estricta:** Una serie $\{X_t\}_{t\geq 0}$ es estrictamente estacionaria si y solo si para toda $\tau\geq 0$, la distribución conjunta de $\{X_{t_1},\ldots,X_{t_k}\}$ y $\{X_{t_1+\tau},\ldots,X_{t_k+\tau}\}$ es la misma (con $k\in\mathbb{N}$ arbitrario): $\mathbb{P}\big[X_{t_1},\ldots,X_{t_k}\big]=\mathbb{P}\big[X_{t_1+\tau},\ldots,X_{t_k+\tau}\big]$
- **Estacionalidad débil:** Una serie $\{X_t\}_{t\geq 0}$ es débilmente estacionaria si y solo si tanto su media y covarianza entre X_t y $X_{t-\tau}$ son invariantes en el tiempo:
 - a) $\mathbb{E}[X_t] = \mu$ constante para toda t.
 - b) $\operatorname{Cov}[X_t, X_{t-\tau}] = \gamma_{\tau}$ constante para toda t, pero dependiente de τ .

Caminata Aleatoria: Enfoque mediante trayectorias

- Supóngase el lanzamiento de una moneda al aire en sucesivas ocasiones.
- El espacio muestral sería $\Omega = \{\omega_1, \omega_2, \dots\}$, con cada lanzamiento ω_t cuyos posibles resultados serían de **sol**(**H**) o **águila** (**T**).
- Asumimos que los lanzamientos son independientes, con probabilidad $\mathbb{P}[H] = \mathbb{P}[T] = {}^1\!/_2$.
- Definimos a la siguiente v.a.:

$$Y_t = Y_t(\omega_t) = \begin{cases} 1, \text{ cuando } \omega_t = H \\ -1, \text{ cuando } \omega_t = T \end{cases}$$

Para cada t = 1,2,3,..., obtenemos la siguiente serie de tiempo:

$$Z_t = Y_1 + Y_2 + \dots + Y_t$$

Este es un ejemplo de caminata aleatoria (simétrica).

Caminata Aleatoria

En general, supóngase una serie de v.a.'s independientes $\{X_t\}_{t=1,2,\dots}$ con media μ y varianza σ^2 (constantes en el tiempo).

• Caminata aleatoria: Una caminata aleatoria es un proceso estocástico $(Z_n)_{n=1,2,...}$ generado por la suma de las variables aleatorias X_t :

$$Z_n = \sum_{t=1}^n X_t$$

Conclusión: Parecería que este tipo de representación se asemeja más a las fluctuaciones observadas en indicadores económicos e instrumentos financieros.

Comentario: Correlaciones Espurias

- Correlaciones Espurias (espurio ≈ ilusorio): Se trata de fenómenos que no tienen nada en común y que sin embargo presentan sus series un alto grado de correlación.
- Ejemplo 1: El gasto de EE.UU. en ciencia, espacio y tecnología <u>correlacionado</u> con suicidios por ahorcamiento, estrangulación y sofocación.
- Ejemplo 2: Tasa de divorcios en el estado de Maine EE.UU., correlacionado con consumo de margarina per cápita.
- Conclusión: Un criterio más adecuado consiste en usar el concepto de "causalidad" y no el de correlación entre variables aleatorias...
- Revisar ejemplos de correlaciones espurias:
 <u>http://www.tylervigen.com/spurious-correlations</u>

http://sinderiza.com