Dimensions of Specht modules

Ziqing Xiang

University of Georgia

July 26, 2017

Specht module

For each partition $\lambda \vdash n$, we have a Specht module S^{λ} .

Specht module

For each partition $\lambda \vdash n$, we have a Specht module S^{λ} .

For a fixed n, they form a complete set of nonisomorphic simple $k\Sigma_n$ -modules when characteristic is 0.

Standard Young tableau

A standard Young tableau of shape (4, 2, 1):

1	4	5	7
2	6		
3			

Standard Young tableau

A standard Young tableau of shape (4, 2, 1):

1	4	5	7
2	6		
3			

 $\dim S^{\lambda} = \text{number of standard Young tableaux of shape } \lambda.$

Standard Young tableaux of shape (3,2)

Standard Young tableaux of shape (3, 2)

4 5 3 5 3 4 2 5 2 4	1	2	3	1	2	4	1	2	5	1	3	4	1	3	5
	4	5		3	5		3	4		2	5		2	4	

 $\dim S^{(3,2)} = 5.$

Standard Young tableaux of shape (3,2,1)

1	2	3		1	2	3	1	2	4	1	2	4
4	5		•	4	6		3	5		3	6	
6				5			6		•	5		
1	2	5		1	2	5	1	2	6	1	2	6
3	4			3	6		3	4		3	5	
6		•		4			5		•	4		
1	3	4		1	3	4	1	3	5	1	3	5
2	5			2	6		2	4		2	6	
6				5			6			4		
1	3	6		1	3	6	1	4	5	1	4	6
2	4			2	5		2	6		2	5	
5		•		4			3		•	3		•

Standard Young tableaux of shape (3, 2, 1)

1	2	3	1	2	3	1	2	4	1	2	4
4	5		4	6		3	5		3	6	
6			5			6			5		
1	2	5	1	2	5	1	2	6	1	2	6
3	4		3	6		3	4		3	5	
6			4		•	5			4		
1	3	4	1	3	4	1	3	5	1	3	5
2	5		2	6		2	4		2	6	
6			5			6			4		
1	3	6	1	3	6	1	4	5	1	4	6
2	4		2	5		2	6		2	5	
5			4			3			3		

 $\dim S^{(3,2,1)} = 16.$

A hook of length 8:

A hook of length 8:

Theorem 1 (Frame-Robinson-Thrall)

Let λ be a partition. Then,

$$\dim S^{\lambda} = \frac{\prod_{i=1}^{|\lambda|} i}{\prod_{i \in \lambda} h_i},$$

where h_i is the hook length of the hook i.

Example: (3, 2) and (3, 2, 1)

Example: (3,2) and (3,2,1)

Example: (3,2) and (3,2,1)

Example: (3, 2) and (3, 2, 1)

4	3	1
2		

Example: (3,2) and (3,2,1)

4	3	1
2	1	

Example: (3,2) and (3,2,1)

4	3	1
2	1	

$$\dim S^{(3,2)} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 1 \cdot 2 \cdot 1} = 5.$$

Example: (3, 2) and (3, 2, 1)

4	3	1
2	1	

$$\dim S^{(3,2)} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 1 \cdot 2 \cdot 1} = 5.$$

$$\dim S^{(3,2,1)} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 3 \cdot 1 \cdot 3 \cdot 1 \cdot 1} = 16.$$

A question

What is the prime factorization of

$$\dim S^{\lambda} = \frac{\prod_{i=1}^{|\lambda|} i}{\prod_{i \in \lambda} h_i}?$$

Definition 2

Let I be a natural number. The I-core of a partition λ is obtained by repeatedly removing I-hooks from λ .

Example: $(7, 5, 3, 2) \vdash 17$ and l = 4

$$\mathrm{core}_4(7,5,3,2) = (3,1,1)$$

q-integer

$$[n]_q:=\frac{1-q^n}{1-q}.$$

q-integer

$$[n]_q:=\frac{1-q^n}{1-q}.$$

$$[n]_1 = n.$$

Graded dimension

Definition 3

For a partition λ , let

$$\dim_q S^{\lambda} := \frac{\prod_{i=1}^{|\lambda|} [i]_q}{\prod_{i \in \lambda} [h_i]_q},$$

where h_i is the hook length of the hook i.

Graded dimension

Definition 3

For a partition λ , let

$$\dim_q S^{\lambda} := \frac{\prod_{i=1}^{|\lambda|} [i]_q}{\prod_{i \in \lambda} [h_i]_q},$$

where h_i is the hook length of the hook i.

$$\dim_{\mathbf{1}} S^{\lambda} = \dim S^{\lambda}.$$

Factorization of graded dimension

Theorem 4 (Nakano-X.)

Let λ be a partition. Then,

$$\dim_q S^{\lambda} = \prod_I \Phi_I(q)^{\operatorname{wt}_I |\operatorname{core}_I \lambda|},$$

where Φ_l is the l-th cyclotomic polynomial and $\operatorname{wt}_l n := \lfloor n/l \rfloor$.

Factorization of graded dimension

Theorem 4 (Nakano-X.)

Let λ be a partition. Then,

$$\dim_q S^{\lambda} = \prod_I \Phi_I(q)^{\operatorname{wt}_I |\operatorname{core}_I \lambda|},$$

where Φ_I is the I-th cyclotomic polynomial and $\operatorname{wt}_I n := \lfloor n/I \rfloor$.

Corollary 5

$$\dim S^{\lambda} = \prod_{p,r} p^{\operatorname{wt}_{p^r}|\operatorname{core}_{p^r}\lambda|}.$$

An application in representation theory

Proposition 6

Let k be an algebraically closed field of characteristic p and $G := \Sigma_p^m$. If a kG module M is projective, then

 $p^m | \dim M$.

An application in representation theory

Proposition 6

Let k be an algebraically closed field of characteristic p and $G := \Sigma_p^m$. If a kG module M is projective, then

 p^m | dim M.

Theorem 7 (Nakano-X.)

Let k be an algebraically closed field of characteristic p, $G:=\Sigma_p^m$ and λ be a partition. If S^λ is projective as kG-module, then

$$m \leq \sum_{r} \operatorname{wt}_{p^r} |\operatorname{core}_{p^r} \lambda|.$$

An application in representation theory

Proposition 6

Let k be an algebraically closed field of characteristic p and $G := \Sigma_p^m$. If a kG module M is projective, then

$$p^m$$
 | dim M .

Theorem 7 (Nakano-X.)

Let k be an algebraically closed field of characteristic p, $G:=\Sigma_p^m$ and λ be a partition. If S^λ is projective as kG-module, then

$$m \leq \sum_{r} \operatorname{wt}_{p^r} |\operatorname{core}_{p^r} \lambda|.$$

Thank you for your attention.