Summary: Lecture 5

Summary for the chapters X and X. [1]

Title

Content

Reduction

 \bullet reduction explained

TODO

Questions:

Reduction HAMILTONIAN PATH to SATISFIABLE

- instance: Graph *G* question: Is there a path in *G* that visits each node one?
- log space reduction from HP to S
- demonstrates HP not significantly harder that SAT
- write a logical formular that only becomes true when it is HP
- 4, 3, 1, 2 as path $x_{1,4} = T, x_{2,3} = T, x_{3,1} = T, x_{4,2} = T,$
- slide is not quite correct
- $(notx_{1,1}ornotx_{2,1})$ and $(notx_{1,1}ornotx_{3,1})$ and $(notx_{1,1}ornotx_{4,1})$ and $(notx_{2,1}ornotx_{3,1})$ and $(notx_{2,1}ornotx_{4,1})$ and $(notx_{3,1}ornotx_{4,1})$ and ... first index: step, second: node

TODO

Questions:

Boolean Circuits

TODO

Questions:

Reduction REACHABILITY PATH to CIRCUIT VALUE

TODO

Questions:

Further examples

TODO

Questions:

CLosedness under Composition

TODO

Questions:

References

[1] Christos H. Papadimitriou. *Computational Complexity*. Addison-Wesley Publishing Company, 1994.