

Process Control: Part II- Model Predictive Control (EE6225, AY2019/20, S1)

Dr Xin Zhang

Assistant Professor

Office: NTU S2-B2c-95, Tel: 67905419

Lab: S2.2-B4-03

Email: Jackzhang@ntu.edu.sg

Application of power electronics

TECHNOLOGICAL Future renewable energy sources-based building

OPERATION PRINCIPLE OF THE POWER

[31/10/2019]

- Operation principle of the DC/DC converter
- Operation principle of the DC/AC inverter

OPERATION PRINCIPLE OF THE POWER

CONVERTERS I.V

[31/10/2019]

- Operation principle of the DC/DC converter
- Operation principle of the DC/AC inverter

DC/DC CONVERTER

- Buck converter
- Boost converter
- Buck-Boost converter

DC/DC CONVERTER

- Buck converter
- Boost converter
- **Buck-Boost converter**

BUCK CONVERTER (STEP DOWN DC/DC CONVERTER)

Input voltage — Output voltage

Application of step-down DC/DC power supplies in Laptop

Other applications of step-down DC/DC power

supplies: Aircraft

Other applications of step-down DC/DC power supplies: Electric vehicle

Other applications of step-down DC/DC power supplies: Space station

Other applications of step down DC/DC power supplies: Renewable energy system in the house

BUCK CONVERTER (STEP DOWN DC/DC CONVERTER)

How to design a 12 V to 5 V DC/DC converter

TECHNOLOGICAL How to design step down DC/DC power supply?

Motherboard

Motherboard

Motherboard

Motherboard

Traditional step down DC/DC power supply

Traditional step down DC/DC power supply: Linear voltage regulator

The first linear voltage regulator IC: 7805

The first linear voltage regulator IC: 7805

Advantages of the linear voltage regulator: Take 7805 as an example

Linear voltage regulator 7805

Advantages of Linear voltage regulator 7805

- 1. Cheap price < \$ 0.1;
- 2. Simple circuit;
- 3. Wide input voltage: $6V \sim 40V$ DC.

No need to control it

Disadvantages of the Linear Voltage Regulator: Efficiency Problem

Linear voltage regulator 7805

Advantages of Linear voltage regulator 7805

- 1. Cheap price < \$ 0.1;
- 2. Simple circuit;
- 3. Wide input voltage: $6V \sim 40V$ DC.

Efficiency

$$\eta = \frac{p_o}{p_{in}} = \frac{v_o \cdot i_o}{v_{in} \cdot i_{in}}$$

Disadvantages of the Linear Voltage Regulator: Efficiency Problem

Linear voltage regulator 7805

Efficiency

$$\eta = \frac{p_o}{p_{in}} = \frac{v_o \cdot i_o}{v_{in} \cdot i_{in}}$$

Advantages of Linear voltage regulator 7805

- 1. Cheap price < \$ 0.1;
- 2. Simple circuit;
- 3. Wide input voltage: $6V \sim 40V$ DC.

Disadvantages of the Linear Voltage Regulator: Efficiency Problem

Linear voltage regulator 7805

Efficiency

$$\eta = \frac{p_o}{p_{in}} = \frac{v_o \cdot i_o}{v_{in} \cdot i_{in}}$$

Advantages of Linear voltage regulator 7805

- 1. Cheap price < \$ 0.1;
- 2. Simple circuit;
- 3. Wide input voltage: $6V \sim 40V$ DC.

NOG Disadvantages of the Linear Voltage Regulator: Efficiency Problem

Linear voltage regulator 7805

Efficiency

$$\eta = \frac{p_o}{p_{in}} = \frac{v_o \cdot i_o}{v_{in} \cdot i_{in}} = \frac{v_o \cdot i_e}{v_{in} \cdot i_c} \approx \frac{v_o}{v_{in}}$$

1: If
$$V_{in} = 6 \text{ V}$$
:

$$\eta \approx (5 \text{ V})/(6 \text{ V}) = 83.3\%$$

2: If
$$V_{in} = 40 \text{ V}$$
:
 $\eta \approx (5 \text{ V})/(40 \text{ V}) = 12.5\%$

Advantages of Linear voltage regulator 7805

- 1. Cheap price < \$ 0.1;
- 2. Simple circuit;
- 3. Wide input voltage: $6V \sim 40V$ DC.

Disadvantages of Linear voltage regulator

- 1. Efficiency is low if the input voltage is high;
 - 83% @ 6V 5V;
 - 12.5% @ 40V 5V;
- 2. Large power loss \rightarrow Need large heatsink \rightarrow

Improved step-down DC/DC power supplies: Switch-Mode Power Supplies (Buck converter)

$$p_{in} = p_o + p_{loss} \implies \eta = \frac{p_o}{p_{in}} = \frac{p_o}{p_o + p_{loss}} \implies$$

High efficiency requires low power loss

Improved step-down DC/DC power supplies: Switch-Mode Power Supplies (Buck converter)

$$p_{in} = p_o + p_{loss} \quad \Rightarrow \quad \eta = \frac{p_o}{p_{in}} = \frac{p_o}{p_o + p_{loss}} \quad \Rightarrow \quad \Rightarrow$$

High efficiency requires low power loss

Improved step-down DC/DC power supplies: Switch-Mode Power Supplies (Buck converter)

$$p_{in} = p_o + p_{loss}$$
 \Rightarrow $\eta = \frac{p_o}{p_{in}} = \frac{p_o}{p_o + p_{loss}}$

High efficiency requires low power loss

DC Load

Improved step-down DC/DC power supplies: Switch-Mode Power Supplies (Buck converter)

$$p_{in} = p_o + p_{loss} \quad \Longrightarrow \quad \eta = \frac{p_o}{p_{in}} = \frac{p_o}{p_o + p_{loss}} \quad \Longrightarrow \quad$$

High efficiency requires low power loss

Improved step-down DC/DC power supplies: Switch-Mode Power Supplies (Buck converter)

$$p_{in} = p_o + p_{loss}$$
 \Rightarrow $\eta = \frac{p_o}{p_{in}} = \frac{p_o}{p_o + p_{loss}}$

High efficiency requires low power loss

DC

Load

Buck converter

SMPS

 v_{o1} v_{o1} v_{o1} v_{o1} v_{o1}

Derive the practical circuit of Buck Converter

Derive the practical circuit of Buck Converter

Relationship between v_o and v_{in} : Voltage Transfer Ratio of Buck Converter

 T_s :Switching periold t_{on} :Turn on time

$$D = \frac{t_{on}}{t_{on} + t_{off}}$$
: Duty cycle t_{off} : Turn off time

Derive voltage transfer ratio according to $|\Delta i_L|$:

$$|\Delta i_L \uparrow| = \left(\frac{v_{in} - v_o}{L}\right) \cdot DT_s \qquad |\Delta i_L \downarrow| = \left(\frac{v_o}{L}\right) \cdot (1 - D)T_s$$

$$|\Delta i_L| = |\Delta i_L \uparrow| = |\Delta i_L \downarrow|$$

$$V_o = V_{in} \cdot D$$

Derivation

- Buck converter is in steady state
- Preconditions: i_L keeps continuous

Operation principle of Buck Converter

 T_s :Switching periold t_{on} :Turn on time

$$D = \frac{t_{on}}{t_{on} + t_{off}}$$
:Duty cycle t_{off} :Turn off time

Turn on S: $(t_{on}=DT_s)$

We can control the on/off time

$$v_o = v_{in} \cdot D$$

If input voltage is 12 V,

If output voltage is required to 5 V,

$$D = \frac{5}{12}$$

Comparison between Buck converter and linear voltage regulator

1W = 0.1\$

uxcell

uxcell New BIG-Size Voltage Converter Regulator DC/DC DC 48V Step-Down to DC 12V 30A 360W Buck Transformer Waterproof

★★★★★ ▼ 24

24 customer reviews | 13 answered questions

Price: \$36.76 & FREE Shipping. Details

In Stock.

Sold by uxcell and Fulfilled by Amazon. Gift-wrap available.

Size: 48V to 12V 30A 360W

OPERATION PRINCIPLE OF THE POWER

[31/10/2019]

- > Operation principle of the DC/DC converter
- Operation principle of the DC/AC inverter

Inverter basics: Definition of the inverter

- A device used to convert direct current into alternating current
 - Merriam-Webster Dictionary.

More precisely: inverter is to convert or transfer power from a dc source to an ac load

BEFORE STUDY THE OPERATION OF THE INVERTER, LET US REVISIT THE DC TO DC CONVERTER.

DC-DC buck converter circuit

Average output voltage:

$$\overline{V_{\scriptscriptstyle o}} = D \cdot V_{\scriptscriptstyle in}$$

Where $D = T_{on}/T_s$ is the duty ratio.

Because D < 1, V_o is always less than V_{in}

→ buck converting

 T_s : switching period (unit: s) = $1/f_s$

 f_s : switching frequency (unit: Hz)

How the gate signal generated for the switcher?

Question: Can we change the duty cycle to a sinusoidal AC waveforms?

DC to DC converter

 V_0 cannot be smaller than 0 V due to the diode block

LET US COME BACK TO THE INVERTER

Full bridge circuit can generate both positive and negative voltages

- \triangleright Q_1 - Q_2 and Q_3 - Q_4 pairs are switched complementarily.
- \triangleright The total average output voltage $v_o = \text{average}(v_{ab})$.
- \triangleright Output across a and b looks like a square wave.
- > LC circuit to smooth out the waveform to be sinusoidal.

Bipolar modulation of the single phase DC/AC inverter

switched complementarily.

Review the operation principle of the single phase DC/AC inverter

Single phase inverter to three phase inverter

Single phase inverter to three phase inverter

- ➤ Understand the operation of DC/DC converters
- ➤ Understand the operation of power inverters

Thank you!

Jackzhang@ntu.edu.sg

