

Práctica 3

Asignatura: Sistemas Concurrentes y Paralelos

Alumno: Sergio Beltrán Guerrero (49259651E) Martí Serratosa Sedó (48139505E)

1. Decisiones relacionadas con la implementación

a. Uso de mutex

En esta practica, hemos usado los mutex en varios sitios de la implementación para poder controlar que no se produzcan condiciones de carrera.

En el *MapReduce* hemos usado los mutex para poder comprobar que es el primer hilo que entra en la etapa para así poder imprimir las estadísticas iniciales. También los usamos en la etapa del Split, para poder guardar los mapas en el vector Mappers.

En la etapa de Reduce, usamos los mutex para guardar en el multimap Input las cuentas de las palabras (palabra, número de veces que aparece)

b. Uso de barreras

Las barreras las usamos para suplir al join que teníamos entre las 3 primeras etapas (Split, Map y Suffle) y el Reducer.

Por lo tanto, una vez el padre crea los hilos pasa a estado "wait" hasta que todos los hilos acaben. Lo mismo pasa dentro de los hilos, una vez acaba el hilo de hacer las tres primeras etapas pasa a estado "wait" hasta que todos acaben.

c. Uso de variables de condición

Las variables de condición las hemos usado para imprimir los resultados finales de las estadísticas.

Al final de cada etapa, los hilos envían una señal al proceso padre. Una vez el padre ha recibido tantas señales como hilos tiene, procede a imprimir por pantalla los resultados de la etapa.

2. Estadísticas y Log

Para la implementación de las estadísticas, hemos creado dos clases. La clase *Statistics* y la clase *Logger*. La funcionalidad de la clase *Statistics* es ir almacenando todas las estadísticas que nos pide el enunciado de cada etapa.

La clase *Logger* sirve para imprimir los resultados por pantalla con la fecha. Además, estos resultados se guardan en la carpeta /log que crea la propia clase.

3. Análisis de resultados

Para realizar el análisis de resultados hemos hecho las pruebas en tres máquinas distintas. Las máquinas en cuestión son:

Ordenador 1		
Marca	Msi	
Sistema Operativo	Linux (Ubuntu 20.04)	
Chip	Intel Core i5-8600K	
Nucleos	6 core	
Memoria	16GB	

Ordenador 2			
Marca	Apple Macbook Pro 14"		
Sistema Operativo	MacOS 12.0.1		
Chip	Apple M1 Pro		
Nucleos	8(6 de rendimiento y 2 de eficiencia		
Memoria	16 GB		

Ordenador 3			
Marca	Apple MacBook Air		
Sistema Operativo	MacOS 12.0.1		
Chip	Apple M1		
Nucleos	8 (4 rendiment i 4 eficiència)		
Memoria	16 GB		

3.1 Resultados de Prácticas comparados entre los ordenadores

A continuación, hacemos una breve recopilación de los datos recogidos en la primera práctica.

Podemos observar que el ordenador Msi con Linux mejora los tiempos notablemente. Aún así, los tiempos siguientes ejecutados con código concurrente son mucho mejores.

Podemos observar que los tiempos de la práctica 3 son todos mayores que la práctica 1 al tener que hacer más cálculos. Aún así, queremos comentar que **a medida que aumentamos el número de reducers los tiempos empeoran comparativamente.** Con dos reducers la diferencia entre la práctica 1 y 3 de media en los tres ordenadores es de 1-2 segundos mientras que con 64 reducers la diferencia ya se ha elevado a 4 segundos aproximadamente.

Después de debatirlo creemos que **la ejecución de la práctica 3 con 8 reducers es la mejor** opción en los tres ordenadores al optimizar el tiempo de la mejor manera sin usar demasiados recursos

3.2 Resultados de Ordenadores comparados entre las prácticas

En esta sección compararemos los resultados de las prácticas ejecutadas en cada ordenador.

Podemos observar que en el ordenador de Linux la diferencia entre las prácticas 1 i 3 con 2 reducers es la menor de todos los ordenadores, adjuntos a continuación.

Vemos que a medida que aumentamos los reducers la diferencia entre prácticas también aumenta, siendo inicialmente muy pequeña. Estos son debidos a que a más reducers hay que hacer más cálculos estadísticos. El ordenador 2 tiene el mayor tiempo de ejecución de forma secuencial con una diferencia abismal con el código concurrente.

El ordenador tres es el que presenta peores tiempos de forma concurrente, pero sigue habiendo el patrón de una diferencia pequeña entre prácticas 1 y 3 al inicio que se va aumentado a medida que aumentan los reducers. En este caso al tener menos núcleos de alto rendimiento observamos como con 2 reducers la diferencia no es muy grande en comparación con los otros ordenadores.

4. Bibliografía

- https://www.geeksforgeeks.org/multithreading-in-cpp/
- https://stackoverflow.com/questions/17419893/c11-thread-multiple-threads-waiting-on-a-condition-variable
- https://cppcodetips.wordpress.com/2014/01/02/a-simple-logger-class-in-c/
- https://www.delftstack.com/es/howto/cpp/cpp-create-directory/

5. Annexos

En la página siguiente hay la captura de los cálculos y gráficos hechos en Excel.

Analisisi de Resultados

Ordenador 1		
Marca	Msi	
Sistema Operativo	Linux (Ubuntu 20.04)	
Chip	Intel Core i5-8600K	
Nucleos	6 core	
Memoria	16GB	

Ordenador 2		
Marca	Apple Macbook Pro 14"	
Sistema Operativo	MacOS 12.0.1	
Chip	Apple M1 Pro	
Nucleos	8(6 de rendimiento y 2	
	de eficiencia	
Memoria	16 GB	

Ordenador 3			
Marca	Apple MacBook Air		
Sistema Operativo	MacOS 12.0.1		
Chip	Apple M1		
Nucleos	8 (4 rendiment i 4 eficiència)		
Memoria	16 GB		

Ordenador 1

Numero Reducers	Practica 1	Practica 3	rama Secuend
2	14,301	16,405	26,176
4	9,377	11,612	
8	7,033	9,65	
16	5,799	8,471	
32	5,19	7,924	
64	4.85	7.746	

Ordenador 2

Numero Reducers	Practica 1	Practica 3	rama Secuen	cia
2	24,354	25,75	54,417	
4	16,039	19,506	-	
8	12,722	16,536	-	
16	11,369	15,66	-	
32	10,257	15,282	-	
64	9,484	14,904	-	

Ordenador 3

Numero Reducers	Practica 1	Practica 3
2	39,0315	40,610
4	26,3205	29,034
8	21,0025	24,432
16	18,6495	21,298
32	16,8595	20,511
64	16,4235	20,012

ro	grama Secuer	cia
	51,3895	

Secuencial			
	Ordi. 1	Ordi. 2	Ordi. 3
2	26,176	54,417	51,3895

Practica 1

	Ordi. 1	Ordi. 2	Ordi. 3
2	14,301	24,354	39,0315
4	9,377	16,039	26,3205
8	7,033	12,722	21,0025
16	5, 799	11,369	18,6495
32	5,19	10,257	16,8595
64	4,85	9,484	16,4235

2	14,301	24,354	39,0315
4	9,377	16,039	26,3205
8	7,033	12,722	21,0025
16	5, 799	11,369	18,6495
32	5,19	10,257	16,8595
64	4,85	9,484	16,4235
	<u>-</u>		

Practica 3

Tractica 5					
	Ordi. 1	Ordi. 2	Ordi. 3		
2	16,405	25,75	40,610		
4	11,612	19,506	29,034		
8	9,65	16,536	24,432		
16	8,471	15,66	21,298		
32	7,924	15,282	20,511		
64	7,746	14,904	20,012		

