两级放大器设计实验报告

一、基本要求及参数

1. 实验设计要求

VDD=3.3V GB=1MHz SR>5V/us ICMR=1.25V to 2.5V 60° phase margin 0.5V<Vout range<2.5V Pdiss \leq 2mW Av > 1000

2. MOS 工艺参数

通过对 n33 和 p33 管接入电路进行仿真,通过 Results-Print-Model Parameters 可以得到 以下电路工艺参数

(1) NMOS 管:

Vth(n) = 0.695V $t_{oxe} = 3nm$ $\mu_n = 35 \times 10^{-3} m^2 / V \cdot s$ 求得:

$$K'_n = \mu_n \left(\frac{\varepsilon_{ox}}{t_{oxe}} \right) \approx 402.86 \mu A/V^2$$

式中, $\varepsilon_{\text{ox}} = \varepsilon_{SiO2} = 3.9 \times 8.85 \times 10^{-14} F/cm$

二、放大器理论计算

- (1) 确定米勒电容数值 由于 $C_L = 10pF$,且需要 $C_c > 0.22C_L$, 取米勒补偿电容 $C_c = 10pF$
- (2) 确定 I_5 的值

$$I_5 = SR \cdot C_c$$

由于SR > 5V/us取尾电流 I_5 为50uA

(3) 确定 S_3 取值

其中, 阈值电压的误差值在±0.15V左右

$$S_3 = \frac{I_5}{K_p \cdot (V_{dd} - V_{in_max} - |V_{T03}|_{max} + V_{T1_min})^2}$$

$$S_3 = \frac{50}{106.47 \times (3.3 - 2.5 - (0.672 + 0.15) + (0.695 - 0.15))^2} \approx 1.72$$

由于经过初步尝试,取值 2、3、4 进行整体仿真,但发现以下取值比较合理,所以取 $S_3=4$ 则 $S_4=S_3=4$,栅长取 1um

(4) 验证由 C_{gs3} 和 C_{gs4} 引起的极点不是主极点,即 $p_3 > 10GB$

$$\frac{g_{m3}}{2C_{gs3}} > 10GB$$

因为

$$g_{m3} = \sqrt{K_p S_3 I_5} = \sqrt{106.47 \times 4 \times 50} \approx 145.92 \text{ uS}$$

$$C_{gs3} = 0.67W_3L_3C_{ox} = 0.67W_3L_3\frac{\varepsilon_{ox}}{t_{ox}} = 0.67\times4\times10^{-12}\times\frac{3.9\times8.854\times10^{-12}}{3\times10^{-9}}\approx3.085F$$
 所以

$$p_3 = \frac{g_{m3}}{2C_{as3}} = \frac{145.92 \times 10^{-6}}{2 \times 3.085 \times 10^{-14}} \approx 2.365 \times 10^9 \ rad/s$$

则 p_3 并不是主极点

(5) 设计 S_1 , S_2 来达到期望的 GB 值 这里取GB约为 2MHz

$$g_{m1} = g_{m2} = GB \cdot C_c = 2 \times 2\pi \times 10 = 40\pi \text{ uS}$$

 $S_1 = S_2 = \frac{g_{m2}^2}{K_2 \cdot I_5} = \frac{(40\pi)^2}{402.86 \times 50} \approx 0.784$

取 $S_1 = S_2 = 2$

(6) 由最小输入电压设计S₅

$$V_{DS5(sat)} = V_{in_min} - V_{ss} - \sqrt{\frac{I_5}{K_1 S_1}} - V_{T1_max}$$

$$V_{DS5(sat)} = 1.25 - 0 - \sqrt{\frac{50}{402.86 \times 2}} - (0.695 + 0.15) \approx 0.15589V$$

$$S_5 = \frac{2I_5}{K_5 \cdot V_{DS5(sat)}^2} = \frac{2 \times 50}{402.86 \times 0.15589^2} \approx 10.2$$

取 $S_5 = 10$

(7) 让第二极点(p_2)等于 2.2GB 以确定 S_6 和 I_6

$$g_{m6} = 2.2 g_{m2} \left(\frac{C_L}{C_c}\right)$$

但一般选取 g_{m6} 为 g_{m1} 的十倍来保证足够的相位裕量,则

$$g_{m6} = 10g_{m1} = 400\pi$$
 uS

让 $V_{SG4} = V_{SG6}$ 得到

$$S_6 = S_4 \frac{g_{m6}}{g_{m4}} = 4 \frac{400\pi}{145.92} \approx 34.45$$

取 $S_6 = 34$

知道 g_{m6} 和 S_6 就可以解出

$$I_6 = \frac{g_{m6}^2}{2K_c S_c} = \frac{(400\pi)^2}{2 \times 106.47 \times 34} \approx 218.11 \text{ uA}$$

(8) 选择 S_7 以达到 I_5 和 I_6 之间的电流比

$$S_7 = \frac{I_6}{I_5} S_5 = \frac{218.11}{50} \times 10 \approx 43.622$$

取 $S_7 = 44$

(9) 核对增益和功耗指标

$$A_v = \frac{2g_{m2}g_{m6}}{I_5(\lambda_2 + \lambda_3)I_6(\lambda_6 + \lambda_7)} = \frac{2 \times 40\pi \times 400\pi}{50 \times 218.11 \times (0.09)^2} \approx 3575 > 1000$$

$$P_{diss} = (I_5 + I_6)(V_{dd} + |V_{ss}|) = (50 + 218.11) \times 10^{-6} \times 3.3 \approx 0.885 mW < 2mW$$

则得到初步理论设计参数为:

器件名称	W(um)	L(um)
W1	2	1
W2	2	1

W3	4	1
W4	4	1
W5	10	1
W6	34	1
W7	44	1
Сс	10pF	(最终修正值为 8pF)

三、 电流漏的设计及仿真

文件: Isource_new_model

电流漏的设计参考书上改进过的高摆幅共源共栅电流漏电路:

图 4.3-7 改进的高摆幅共源共栅电路

在此电路中, V_{MIN} 可以被减小到最低值,通过将 M_4 的取值变为其他管子的 $\frac{1}{4}$,而达到此目的,取 M_2 漏端电流为输出电流。由于 M_1 和 M_2 都工作在饱和区,可以得到

$$V_{ON} = \sqrt{\frac{2I_D}{K_n \cdot \frac{W}{L}}}$$

取 $S_{1,2,3,5}=\frac{2I_D}{\kappa_n\cdot V_{ON}^2}=10$,和放大器中的管子进行匹配,且 $S_4=2.5$ 解得 $V_{ON}\approx 0.15755V$ 可得

$$R_{ref1} = \frac{V_{dd} - V_T - 2V_{ON}}{I_D} = \frac{3.3 - 0.695 - 2 \times 0.15755}{50 \times 10^{-6}} = 45.798k$$

$$R_{ref2} = \frac{V_{dd} - (V_T + V_{ON})}{I_D} = \frac{3.3 - 0.695 - 0.15755}{50 \times 10^{-6}} = 48.949k$$

电流漏原理图

对电流漏进行 DC 参数的扫描,get_i 端口电压从 0 变化到 3.3V,可得以下 I-V 曲线图:

电流漏 I-V 特性曲线图

可以得到 VMIN 约为 0.5V, 电流漏可以稳定提供约为 47.15uA 的偏置电流, 基本符合设计

要求。 对电流漏进行封装,get_i 端口接入 Vdd,vcn_in 端口接入 M5 的栅端提供偏置电压

电流漏封装图

	Resul	ts Display Window	
Window Expressions	Info	Help	33
cgd	-3.97333f		
cgdovl	3.83403f		
cgg	40.3165f		
cgs	-32.8255f		
cgsovl	3.83403f		
cjd	7.39244f		
cjs	8.46512f		
csb	-12.6979f		
csd	-117.924a		
csg	-29.5435f		
CSS	42.3594f		
gbd	27.4744a		
gbs	412.19a		
gds	5.63311u		
gm	371. 28u		
gmbs	175.458u		
gmoverid	7.66484		
i1	48.4394u		
i3	-48.4394u		
i4	-16.1145a		
ibd	-16.0796a		
ibs	-34.8987z		-
ibulk	-16.1145a		
id	48.4394u		
ids	48.4394u		
igb	0		
iged	0		
igcs	0		
igd	0		
igidl	0		
igisl	0		
igs	0		
is	-48.4394u		
isub	4.9573a		
pwr	17.4852u		

放大器仿真中 M5 管的 ids 值

在搭建完电路后,使用 DC operating points 查看 M5 管子的电流,ids=48.4394uA,和计算结果基本符合,可以达到工作要求。

四、整体电路实际仿真以及性能测试

1. 放大器电路搭建

文件: OP_AMP_new_model

整体电路图

在原理图中进行初步仿真,发现所有 MOS 管均工作在饱和区,电路设计基本正确。接下来对放大器进行封装,进行各个性能的测试。

2. 开环电压增益测试

文件: Av_new

对 vin-和 vin+分别进行如下设置,

放大器开环增益测试图

第一级差分电路输入参数

瞬态响应截止时间为 10ms,AC 响应从 1Hz 至 1GHz 频段进行扫频,va 差分输入变量取 10uV

瞬态响应和 AC 响应的设置

输出端口瞬态响应曲线

输出端口峰峰值约为254.2mV - 230.1mV = 24.1mV则可以得到放大倍数约为

$$A_{v0} = \frac{24.1 \times 10^{-3}}{20 \times 10^{-6}} \approx 1205$$

 $20\lg(A_{v0})\approx 61.62dB$

同时通过 AC Gain 图可知, 增益约为 62.36dB, 满足设计要求

放大器 AC Gain 曲线

3. 增益带宽积测试

文件: Av_new

可以从图中得到-3dB 处频率约为 1.201kHz,则可以得到 $GB=A_{v0}p_I=1325\times 1.201\times 10^3\approx 1.591MHz>1MHz$ 基本满足设计要求

4. 相位裕量测试

文件: Av_new

使用 AC Gain&Phase 画出输出与输入之比,可得下图:

同时使用计算器工具求解相位裕量:

可以从图中读出, 当增益到达 0dB 点时, 相位为-107.9°, 所以相位裕量即为 180°-107.9°

5. 共模抑制比 (CMRR) 测试

文件: CMRR_new

图 6.6-7 (a) CMRR 的直接仿真结构; (b)模型

CMRR 仿真参考图

共模抑制比测试电路图

vin1 和 vin2 端口的 vam 都设置为 10uV,AC magnitude 设为 1V,利用公式:

$$|\frac{V_{cm}}{V_{out}}| = CMRR$$

所以直接对两个端口进行 AC Gain 曲线的绘制,可以得到 CMRR 的频率响应曲线:

低频时的 CMRR 基本保持在 70dB 左右,符合一般电路需求。

6. 共模输入范围(ICMR)测试

文件: ICMR_new

对输入直流电压从 0 到 3.3V 进行扫描,分析输入输出端口曲线:

ICMR 测试电路图

输入、输出端口曲线图

如图所示,绿色为输入电压曲线,红色为输出电压曲线。可以得到输入电压和输出电压曲线在 319.7mV-3.027V 之前基本保持重合,所以设计指标可以满足共模输入范围在 1.25-2.5V 之间。

7. 压摆率 (SR) 测试

文件: SR_new

如下图是电路压摆率的测试电路,在 vin+端口接入峰峰值为 2、周期为 6us、占空比为 50%的脉冲方波, vin-端口直接连到 vout 端口。

对 vin+端口和 vout 端口波形进行绘制比较。(这里由于之前设计的 Cc 过大,所以直接在最基本的原理图中进行了仿真,方便修改参数)

原来 Cc=10pF 时的压摆率无法满足设计要求,所以逐渐缩小,最终到 Cc 约为 8pF 时可以达到SR>5V/us的设计要求。

对上升沿和下降沿各取两点计算压摆率:

上升沿:

$$SR = \frac{1.6843 - 1.2639}{3.2405 - 3.1679} \approx 5.79 \ V/us$$

下降沿:

$$SR = \frac{1.6324 - 1.474}{6.0877 - 6.1192} \approx -5.03 \ V/us$$

使用计算器求得的压摆率

同时使用计算器对输出电压压摆率进行测试,和计算值相近,可见此设计可以满足SR > 5V/us的要求

8. 电源抑制比 (PSRR) 测试

文件: PSRR_new

图 6.4-1 (a) 计算 PSRR 的方法;(b)模型

PSRR 仿真参考图

由于此电路是单电源供电,所以只需测量 PSRR+即可

$$\mathrm{PSRR} \approx \frac{V_{dd}}{V_{out}}$$

上图为 PSRR+测量电路图,Vin+正输入口接地,vin-负输入口接到 Vout 端口,电源的 AC magnitude 设置为 10mV

从图中可以看出,PSRR+在低频时约有 130.3dB,-3dB 点约在 1.02kHz 左右,可见此设计 电路对电源抑制效果良好

五、实验总结及反思

1. Cc 的修正

一开始选取 10pF 作为米勒电容的选值,但是对压摆率的仿真过程中发现 Cc 的取值过大,所以逐步缩小,最终选择了 8pF。但 SR 也只能勉强在设计要求边缘,所以以后的电路仿真设计的时候取值还是要更加宽松一些。但减小 Cc 之后,相位裕量会略微减小,从原来的 72.1°下降到下图的 70.55°,其他仿真结果几乎没有变化。

米勒电容修正后的相位裕量

2. CMRR 共模抑制比的问题

设计的第一版电路中的共模抑制比非常小,低频时只有 50dB 左右,一直找不到原因。后来对电路中每个 MOS 管的 DC operating points 进行查看后发现,M5 管和 M6 管根本没有工作在饱和区,它们都工作在线性区,显然电路的整体设计就出现了问题。并且在这版电路仿真中,我发现按照理论对电路进行修改提升,得到的仿真结果却和理论不符。最后发现,是由于设计时使用了上一届学长仿真的 MOS 工艺参数(p18、n18 管),而没有自己对 p33、n33 管进行工艺参数的仿真。将 p33 和 n33 的工艺参数得到后再重新对电路进行设计,得到的结果即是报告中的最终结果,并且修改电路仿真基本和理论是相符的。