LIN7076 – Foundations of Computational Linguistic

N-gram models

Adèle Hénot-Mortier

30/09/2025

Queen Mary University of London

Generating text

1

The intuition behind n-grams

- You next word depends on the words ou have used before.
- When predicting a word, pick the most likely, given wat was

• Likelihood (the ps) gets approximated by computing statistics over a similar-enough training corpus.

Plan for today

- Understand the *n*-gram **prediction process**.
- Understand how the probabilities used in that process are approximated from a training corpus.
- Understand how the resulting model can be evaluated against a test corpus.
- Explore **fixes/improvements** of shortcomings of the basic model.

The n-gram generation process

Why n-gram?

When predicting a word, pick the **most likely, given wat** was written before within a specific window.

- We want to compute the conditional probability of a word w_i , given a bunch of preceding words $[w_{i-n+1}, ..., w_{i-1}]$, that we call the context, of size n-1.
- The sequence $[w_{i-n+1},...,w_{i-1}]+[w_i]$ is of size n. We call it a n-gram.
- For instance, the sequence [I, had, such, a], is a 4-gram.
- A n-gram model, predicts the next word, given a (n-1)-gram of preceding words.

Refresher on conditional probabilities

 The conditional probability of an event A, given an event B, can be computed using the joint probability of A and B, and B's probability.

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(A \cap B)}{P(B)}$$

• Given any fixed event B, the probabilities $\{P(X|B) \mid X\}$, forms a probability distribution!

5

Rephrasing the n-gram intuition using conditional probabilities

- Our target even A, is that of the word w_i being used. We call this word target.
- Our given event B, is that of the words $[w_{i-n+1}, ..., w_{i-1}]$ being used before. We call this sequence context.
- We want to compute P(A|B), the probability of wi given $[w_{i-n+1}, ..., w_{i-1}]!$

Rephrasing the n-gram intuition using conditional probabilities

• $P(w_i|[w_{i-n+1},...,w_{i-1}])$ depends solely on the context, and the context appended with the target (= the *n*-gram!).

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(w_i|[w_{i-n+1}, ..., w_{i-1}]) = \frac{P([w_{i-n+1}, ..., w_i])}{P([w_{i-n+1}, ..., w_{i-1}])}$$

$$= \frac{P(context + target)}{P(context)}$$

$$P(great|I had such a) = \frac{P(I had such a great)}{P(I had such a)}$$

• What would a unigram model look like?

A 3-gram example with made-up probabilities

• Suppose our sentence starts with the bigram *I had*. Suppose that *such* and *some* are the only 2 possible continuations.

$$P(such|I had) = \frac{P(I had such)}{P(I had)} = .7$$

 $P(some|I had) = \frac{P(I had some)}{P(I had)} = .3$

 Such is more likely so we pick such. Now our sentence is I had such, and our context (bigram) becomes had such. Suppose that now a and good are the only 2 possible continuations.

$$P(a|had such) = \frac{P(had such a)}{P(had such)} = .8$$

$$P(good|had such) = \frac{P(had such good)}{P(had such)} = .2$$

 A is more likely, so we pick a. Now our sentence is I had such a, and our context becomes such a. Etc...

A potential issue with fixed window sizes

When predicting a word, pick the most likely, given wat was written before **within a specific window**.

- Why use a window, especially a short one? Natural language is recursive after all!
- Consider (1), which features center-embedding, in the form of an arbitrary number of nested complementizer phrases, between the main subject and its verb..¹
- (1) The <u>student</u> who Jo said that Ed thinks that ... Al likes ___ ... arbitrarily long, nested relative clauses
- Could a *n*-gram model with a fixed window size correctly predict the number marking on the following verb? Could it even predict that it should be a verb?

¹You can try to do the same with only relative clauses!

Why windows, anyway

- Using a fixed window makes the assumption that most of the time, language generation is oblivious of what was said too long ago. As we've just seen, this is not always true.
- This is known as the Markov assumption, which applies to processes well beyond CompLing! Biology, economy, robotics...
- Even if imperfect, the Markov assumption is computationally more efficient, as it require us to compute n-gram and n - 1-gram occurrences for a fixed n, as we will soon see.
- It will also prevents the model from "memorizing" big chunks of the training data, something known as overfitting.
- Can you think of what shorter/longer windows would on average best capture in terms of syntax/semantics?

A note on sampling

When predicting a word, **pick the most likely**, given wat was written before within a specific window.

- What if two possible targets w_i and w'_i are associated to very close conditional probabilities, e.g. .999 and .1? Should we still pick the most likely, all the time?
- In practice, we **sample**: we pick target words randomly, giving more chances to the more likely ones.
- One simple way to think about it: drawing one ball from a big lottery box such that each target word is assigned a ball color, and gets as many balls as its conditional probability converted to a round percentage (so p = .155 means 16 balls).

Sampling example

 Remember our made up conditional probabilities for such and some, given the context I had?

$$P(such|I had) = \frac{P(I had such)}{P(I had)} = .7$$
 $P(some|I had) = \frac{P(I had some)}{P(I had)} = .3$

- Instead of returning such (presumed most likely) 100% of the time, sampling will return such 70% of the time, and some 30% of the time.
- More generally, any target word w would be picked $(100 \times P(w|I \; had))\%$ of the time.

Approximating conditional

probabilities

From probabilities to counts

- So far we have reasoned about hypothetical probabilities of words or sequences of words. How are these probabilities estimated?
- The probability of a sequence of words S of any fixed length (can be 1, i.e. S is a single word) can be estimated based on a training corpus.
- This is done by counting the number of *S*'s occurrences, and dividing it up by the sum of the counts of all same-length sequences.
- The Google n-gram Viewer actually does this on a very large corpus of books!

From probabilities to counts

$$P(S) = \frac{C(S)}{\sum_{|S'|=|S|} C(S')} \triangleq \alpha C(S)$$

• Suppose now S' is obtained from S by removing S's last word: S = S' + w. If S is a n-gram, S' is a (n-1)-gram. S''s probability can be expressed by summing the probabilities of its immediate continuations...

$$P(S') = \sum_{w} P(S'+w) = \sum_{w} \alpha C(S'+w) = \alpha \sum_{w} C(S'+w) = \alpha C(S')$$

• We have just expressed probabilities of n and (n-1)-grams using their **counts** and the **same normalizing factor** α !

From conditional probabilities to counts

$$P([w_{i-n+1},...,w_i]) = \alpha C([w_{i-n+1},...,w_i])$$

$$P([w_{i-n+1},...,w_{i-1}]) = \alpha C([w_{i-n+1},...,w_{i-1}])$$

 Plugging this into our n-gram prediction formula, the αs eventually cancel out! So we get a conditional probability that solely depends on n-gram counts.

$$P(w_{i}|[w_{i-n+1},...,w_{i-1}]) = \frac{P([w_{i-n+1},...,w_{i}])}{P([w_{i-n+1},...,w_{i-1}])}$$

$$\simeq \frac{C([w_{i-n+1},...,w_{i-1}])}{C([w_{i-n+1},...,w_{i-1}])}$$

$$\simeq \frac{C(context + target)}{C(context)}$$

Dealing with sentence boundaries

$$P(w_i|[w_{i-n+1},...,w_{i-1}]) \simeq \frac{C([w_{i-n+1},...,w_i])}{C([w_{i-n+1},...,w_{i-1}])} = \frac{C(context + target)}{C(context)}$$

- The above equation predicts the next word, given a context of size n-1. But what should we do at the very beginning of a sentence, when the context is empty? And when should we stop?
- To properly initiate and terminate generation, we posit two extra silent "words": <s> ("beginning of sentence") and </s> ("end of sentence").
- For a n-gram model, each sentence in the training corpus gets
 padded with n − 1 <s> at the beginning, and 1 </s> at the
 end. Counts incorporate these extra words.
- To start generating a sentence, we can then assume an initial, silent context made of n-1 < s > symbols!
- And we stop as soon as </s> gets generated.

Estimating conditional probabilities: a worked example

- Let's compute a toy bigram model. We pad with 1 <s> symbol.
- (2) a. $\langle s \rangle$ my dog is nice $\langle /s \rangle$
 - b. <s> my cat is nasty </s>
 - c. <s> your cat hates my cat </s>
- Bigrams: (<s>, my), (my, dog), (dog, is), (is, nice), (nice, </s>), (<s>, my), (my, cat), (cat, is), (is, nasty), (nasty, </s>), (<s>, Your), (Your, cat), (cat, hates), (hates, my), (my, cat), (cat, </s>).
- Unigrams: <s>, my, dog, is, nice, </s>, <s>, my, cat, is, nasty,</s>, <s>, Your, cat, hates, my, cat, </s>.

Estimating conditional probabilities: a worked example

- (3) a. $\langle s \rangle$ my dog is nice $\langle /s \rangle$
 - b. <s> my cat is nasty </s>
 - c. <s> your cat hates my cat </s>

$w_i \rightarrow \downarrow w_{i-1}$	my	dog	is	nice	cat	nasty	your	hates		Total
<s></s>	2	0	0	0	0	0	1	0	0	3
my	0	1	0	0	2	0	0	0	0	3
dog	0	0	1	0	0	0	0	0	0	1
is	0	0	0	1	0	1	0	0	0	2
nice	0	0	0	0	0	0	0	0	1	1
cat	0	0	1	0	0	0	0	1	1	3
nasty	0	0	0	0	0	0	0	0	1	1
your	0	0	0	0	1	0	0	0	0	1
hates	1	0	0	0	0	0	0	0	0	1
Total	3	1	2	1	3	1	1	1	3	

$$P(my|\le >) = \frac{C(\le > my)}{C(\le >)} = \frac{2}{3}$$

$w_i \rightarrow \downarrow w_{i-1}$	my	dog	is	nice	cat	nasty	your	hates		Total
<s></s>	2	0	0	0	0	0	1	0	0	3
my	0	1	0	0	2	0	0	0	0	3
dog	0	0	1	0	0	0	0	0	0	1
is	0	0	0	1	0	1	0	0	0	2
nice	0	0	0	0	0	0	0	0	1	1
cat	0	0	1	0	0	0	0	1	1	3
nasty	0	0	0	0	0	0	0	0	1	1
your	0	0	0	0	1	0	0	0	0	1
hates	1	0	0	0	0	0	0	0	0	1
Total	3	1	2	1	3	1	1	1	3	

$$P(\frac{dog}{my}) = \frac{C(my \, dog)}{C(my)} = \frac{1}{3}$$

$w_i \rightarrow \downarrow w_{i-1}$	my	dog	is	nice	cat	nasty	your	hates		Total
<s></s>	2	0	0	0	0	0	1	0	0	3
my	0	1	0	0	2	0	0	0	0	3
dog	0	0	1	0	0	0	0	0	0	1
is	0	0	0	1	0	1	0	0	0	2
nice	0	0	0	0	0	0	0	0	1	1
cat	0	0	1	0	0	0	0	1	1	3
nasty	0	0	0	0	0	0	0	0	1	1
your	0	0	0	0	1	0	0	0	0	1
hates	1	0	0	0	0	0	0	0	0	1
Total	3	1	2	1	3	1	1	1	3	

$$P(hates|cat) = \frac{C(cat hates)}{C(cat)} = \frac{1}{3}$$

$w_i \rightarrow \downarrow w_{i-1}$	my	dog	is	nice	cat	nasty	your	hates		Total
<s></s>	2	0	0	0	0	0	1	0	0	3
my	0	1	0	0	2	0	0	0	0	3
dog	0	0	1	0	0	0	0	0	0	1
is	0	0	0	1	0	1	0	0	0	2
nice	0	0	0	0	0	0	0	0	1	1
cat	0	0	1	0	0	0	0	1	1	3
nasty	0	0	0	0	0	0	0	0	1	1
your	0	0	0	0	1	0	0	0	0	1
hates	1	0	0	0	0	0	0	0	0	-
Total	3	1	2	1	3	1	1	1	3	

 Can you guess which sentence(s) would be most likely to be generated by this bigram model?

Evaluating n-gram models

Probability of a corpus

- To evaluate how good a n-gram model is, one needs new data: typically a test corpus that is not too different from the training corpus.
- We can then evaluate how likely this whole corpus is to be generated by our n-gram model!
- This is thanks to the chain rule:

$$P(A_{1} \cap A_{2} \cap ... \cap A_{k}) = P(A_{1}) \times \prod_{i=2}^{k} P(A_{i} | A_{1} \cap ... \cap A_{i-1})$$

$$\stackrel{Markov}{=} P(A_{1}) \times \prod_{i=2}^{k} P(A_{i} | A_{i-n+1} \cap ... \cap A_{i-1})$$

$$P([w_{1}...w_{k}]) \stackrel{Markov}{=} P(w_{1}) \times \prod_{i=2}^{k} P(w_{i} | [w_{n-i+1}...w_{i-1}])$$

²Why not test on the training corpus?

From probability to perplexity

- Measuring the performance of a n-gram based on the probability of a test corpus is nice, but depends on the corpus size: bigger corpora will mechanically be less probable (why?).
- To avoid this issue, we use a normalized variant of corpus probability called **perplexity**. The lower the perplexity, the better the model.

$$PPL([w_{1}...w_{k}]) = P([w_{1}...w_{k}])^{-\frac{1}{k}}$$

$$\stackrel{Markov}{=} \left(P(w_{1}) \times \prod_{i=2}^{k} P(w_{i}|[w_{n-i+1}...w_{i-1}])\right)^{-\frac{1}{k}}$$

• If $k \uparrow$, $\frac{1}{k} \downarrow$, $-\frac{1}{k} \uparrow$ and $p^{-\frac{1}{k}} \downarrow$ (with $p \ge 0$). So if two corpora have same probability, the larger one will get a smaller perplexity.

An issue with perplexity

$$PPL([w_1...w_k]) \stackrel{Markov}{=} \left(P(w_1) \times \prod_{i=2}^k P(w_i | [w_{n-i+1}...w_{i-1}]) \right)^{-\frac{1}{k}}$$

- Looking at the above product of probabilities, we notice that if only one probability is 0, the whole product is $\frac{1}{0} = +\infty$!
- This would happen if the test corpus contains one n-gram that the training corpus does not have – which is far from unlikely!
- So perplexity is unlikely to distinguish good from bad n-gram models, as we defined them. Both kinds will likely get an infinite perplexity.
- More generally, probabilities learned from a finite training corpus will
 necessarily be 0 for many perfectly reasonable n-grams...bringing us
 to the competence-performance distinction.

A solution: smoothing

• To prevent perplexity from vanishing, we can simply add a small increment to all our *n*-gram counts!

$w_i \rightarrow \downarrow w_{i-1}$	<s></s>	my	dog	is	nice	cat	nasty	your	hates		Total
<s></s>	ϵ	2+€	ϵ	ϵ	ϵ	ϵ	ϵ	$1+\epsilon$	ϵ	ϵ	3+10 €
my	ϵ	ϵ	$1+\epsilon$	ϵ	ϵ	$2+\epsilon$	ϵ	ϵ	ϵ	ϵ	3+10€
dog	ϵ	ϵ	ϵ	$1+\epsilon$	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	$1+10\epsilon$
is	ϵ	ϵ	ϵ	ϵ	$1+\epsilon$	ϵ	$1+\epsilon$	ϵ	ϵ	ϵ	2+10€
nice	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	$1+\epsilon$	$1+10\epsilon$
cat	ϵ	ϵ	ϵ	$1+\epsilon$	ϵ	ϵ	ϵ	ϵ	$1+\epsilon$	$1+\epsilon$	3+10€
nasty	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	$1+\epsilon$	$1+10\epsilon$
your	ϵ	ϵ	ϵ	ϵ	ϵ	$1+\epsilon$	ϵ	ϵ	ϵ	ϵ	$1+10\epsilon$
hates	ϵ	$1+\epsilon$	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	$1+10\epsilon$
	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	ϵ	-
Total	-	3+10€	$1+10\epsilon$	$2+10\epsilon$	$1+10\epsilon$	3+10 €	$1+10\epsilon$	$1+10\epsilon$	$1+10\epsilon$	3+10€	

ullet How do you think increasing/decreasing ϵ will affect training set perplexity? Test set perplexity?

How smoothing affects conditional probabilities

$$P(w_{i}|[w_{i-n+1},...,w_{i-1}]) \simeq \frac{C_{smooth}([w_{i-n+1},...,w_{i}])}{C_{smooth}([w_{i-n+1},...,w_{i-1}])}$$
$$\simeq \frac{C([w_{i-n+1},...,w_{i}]) + \epsilon}{C([w_{i-n+1},...,w_{i-1}]) + \epsilon|L|}$$

- With |L| the size of the lexicon (=set of unigrams).
- Why do we get $\epsilon |L|$ in the denominator and not just ϵ ?
- Recall that the number of occurrences of a (n-1)-gram can be expressed as the number of occurrences of n-gram continuations.

$$C_{smooth}([w_{i-n+1},...,w_{i-1}]) = \sum_{w \in L} C_{smooth}([w_{i-n+1},...,w_{i-1},w])$$

$$= \sum_{w \in L} (C([w_{i-n+1},...,w_{i-1},w]) + \epsilon)$$

$$= \sum_{w \in L} C([w_{i-n+1},...,w_{i-1},w]) + \epsilon |L|$$

$$= C([w_{i-n+1},...,w_{i-1}]) + \epsilon |L|$$

Another solution: stupid backoff

- Instead of messing with all the n-gram counts, one can revert to lower-order n-gram models, just in case the n-gram probability is 0.
- If for instance P(great|I had such a) is 0, then maybe
 P(great|had such a) is not? And if it is 0 too, then let's try
 P(great|such a)! Etc.
- This kind of hybrid model can be expressed in the following, recursive³ way (λ being some discounting factor).

$$SB(w_i|[w_{i-n+1},...,w_{i-1}]) = \begin{cases} P(w_i|[w_{i-n+1},...,w_{i-1}]) \text{ if } > 0 \\ \lambda SB(w_i|[w_{i-n+2},...,w_{i-1}]) \text{ otherwise} \end{cases}$$

- This model is no longer a proper probability distribution.
 Additionally, it requires us to compute k-gram occurrences for potentially every k < n!
- But unlike the smoothing solution, it may assign different probabilities to unlikely vs. super unlikely sequences.

³Notice how the "otherwise" case calls SB on a smaller context.