Boolean Analysis of Gene Expression in Breast Cancer Relapse

Abstract

In this project, we applied Boolean logic to analyze gene expression patterns in the GSE2034 breast cancer dataset. Our aim was to identify genes with binary ON/OFF states that are differentially expressed in patients who experienced bone relapse versus those who did not. Using mean-based thresholding, we converted gene expression values into binary states and discovered 62 genes that were ON in >=60% of relapse samples and OFF in <=40% of non-relapse samples. Pathway enrichment analysis using KEGG databases revealed significant involvement in prion disease, toxoplasmosis, and estrogen signaling pathways. These findings provide a basis for future exploration of relapse-specific gene signatures and support further validation studies to refine predictive biomarkers.

Method Summary

- Dataset: GSE2034 (286 breast cancer samples)
- Preprocessing: Normalized and thresholded using gene-wise mean
- Binary Logic: Converted expression to ON (1) / OFF (0)
- Group Comparison: Bone relapse = YES vs NO
- Marker Selection: Genes ON in >=60% of relapse & OFF in <=40% of non-relapse
- Enrichment: KEGG pathway analysis via gseapy

Key Results

- Marker Genes Identified: 62
- Top Pathways: Prion disease (adj. p = 0.0035), Toxoplasmosis (adj. p = 0.028), Parkinson disease (adj. p = 0.05)
- Estrogen signaling pathway also enriched (adj. p = 0.128)

Conclusion

Boolean analysis enabled the identification of discrete gene expression signatures linked to breast cancer relapse. The involvement of neurodegenerative and hormone-related pathways highlights new angles for biomarker discovery. Future work will include validation across additional datasets and integration with clinical outcomes.