MATH 2161: Matrices and Vector Analysis

Md. Kawsar Ahmed Asif
Lecturer in Mathematics
Department of General Education
Canadian University of Bangladesh
Former Lecturer, World University of Bangladesh

Lecture Outline

Elementary Row Operations

Row Echelon Form

Application of Elementary Row Operations

Solution of System of Linear Equations

Elementary Row Operations

Interchange of Two Rows

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 5 & 5 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 5 & 5 & 1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 5 & 5 & 1 & 0 \\ 2 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 5 & 1 & 0 \\ 2 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

Multiply Each Element in a Row by a Non-Zero Number

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 5 & 5 & 1 & 0 \end{bmatrix} \cdot 3$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 5 & 5 & 1 & 0 \end{bmatrix} \cdot 3 \qquad \begin{bmatrix} R_2 \to 3 \times R_2 \\ R_2 \to 3 \times R_2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 6 & 3 & 6 & 9 \\ 5 & 5 & 1 & 0 \end{bmatrix}$$

Multiply a Row by a Non-Zero Number and Add the Result to Another Row

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 5 & 5 & 1 & 0 \end{bmatrix} \cdot \frac{2}{2}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 5 & 5 & 1 & 0 \end{bmatrix} \cdot \frac{2}{R_3 \to R_3 + 2R_1} \qquad \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 7 & 9 & 7 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 7 & 9 & 7 & 8 \end{bmatrix}$$

Effect on Determinant due to Row Operation

Row Operation	Effect on Determinant
Interchange two rows	Change the sign
Multiply a row by a constant	Multiply by the constant
Add a multiple of a row to another row	No change

Row Echelon Form (REF)

A matrix is said to be in row echelon form if:

- 1) First non-zero element in each row, called the leading entry, is 1.
- 2) Each leading entry is in a column to the right of the leading entry in the previous row.
- 3) Rows with all zero elements, if any, are below rows having a non-zero element.

Example: The following matrices are in row echelon form.

$$A_{\text{ref}} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 \diamond Row operations used to convert A into A_{ref} is called as Gaussian Elimination.

More Examples:
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 4 & -3 & 7 \\ 0 & 1 & 6 & 2 \\ 0 & 0 & 1 & 5 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 2 & 6 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Application of Elementary Row Operations

Rank of Matrix (Using Elementary Row Transformations)

The number of *linearly independent rows* of a matrix is called the *rank* of the matrix. That is, the number of *non-zero rows in echelon form* is called the *rank* of a matrix. It is denoted by ρ .

Problem: Find the rank of matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix}$$
 by elementary row operations.

Solution: The rank of the matrix is equal to the number of *non-zero rows* in the matrix after reducing it to the *row echelon form* using elementary transformations over the rows of the matrix.

Application of Elementary Row Operations

Matrix A	Elementary Transformation
$ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix} $	
$ \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 3 & 5 & 7 \end{bmatrix} $	$R_2' \rightarrow R_2 - 2 \times R_1$
$ \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & -1 & -2 \end{bmatrix} $	$R_3' \rightarrow R_3 - 3 \times R_1$
$ \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & 0 & 0 \end{bmatrix} $	$R_3' \rightarrow R_3 - 1 \times R_2$

The above matrix is in *echelon form* and the number of *non-zero rows* are 2. Hence the rank of the matrix A is $\rho(A) = 2$.

Application of Elementary Row Operations

Example. Find the rank of matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 0 & 5 \end{bmatrix}$$
 by using the row echelon form.

Solution: Now we will apply elementary transformations.

Given,
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 0 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -2 \\ 0 & -6 & -4 \end{bmatrix}$$

$$R_2' \to R_2 - 2 \times R_1$$

$$R_3' \to R_3 - 3 \times R_1$$

$$R_3' \to R_3 - 2 \times R_2$$

$$R_3' \to R_3 - 2 \times R_2$$

$$R_1 \to R_2' \to R_2 \to R_2$$

$$R_2' \to R_2 \to R_2$$

The above matrix is in row echelon form and the number of non-zero rows are 2. Hence the rank of the matrix A is $\rho(A) = 2$.

Solution of System of Linear Equations (Using Cramer's Rule)

One of the application of the *determinants* is to solve a system of linear equations in which number of variables are equal to the number of equations and the *coefficient matrix* of the system of equations is non-singular. This method enables us to determine solution *directly* without computing the *inverse* of the matrix.

Let us consider the following linear equations:

$$\begin{array}{rcl} a_1x + b_1y & = & c_1 \\ a_2x + b_2y & = & c_2 \end{array} \text{ Or, } \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

Let *D* be the determinant of the *co-efficient* of the variables *x* and *y* such that

$$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

Further, let $D_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}$ and $D_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$ be the determinant obtained from D by replacing the *first* column by the elements c_1 , c_2 and replacing the second column by the elements c_1 , c_2 respectively. Thus the values of x and y can be expressed in the form of determinant as:

$$\frac{x}{D_x} = \frac{y}{D_y} = \frac{1}{D}$$
 $\therefore x = \frac{D_x}{D} \text{ and } y = \frac{D_y}{D}, \quad \text{provided } D \neq 0$

Solution of System of Linear Equations (Using Cramer's Rule)

Example: Use Cramer's rule to solve the following system of linear equations:

$$5x - 6y + 4z = 15$$

 $7x + 4y - 3z = 19$
 $2x + y + 6z = 46$

Solution: The above system of linear equations can be written in matrix form as:

$$\begin{bmatrix} 5 & -6 & 4 \\ 7 & 4 & -3 \\ 2 & 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 15 \\ 19 \\ 46 \end{bmatrix} \Rightarrow AX = B$$

where,
$$A = \begin{bmatrix} 5 & -6 & 4 \\ 7 & 4 & -3 \\ 2 & 1 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 15 \\ 19 \\ 46 \end{bmatrix}$ and $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

$$D = |A| = \begin{vmatrix} 5 & -6 & 4 \\ 7 & 4 & -3 \\ 2 & 1 & 6 \end{vmatrix} = +5(24 - (-3)) - (-6)(42 - (-6)) + 4(7 - 8) = 419$$

Since $D \neq 0$, we can apply Cramer's rule and the system is consistent with unique solution.

Solution of System of Linear Equations (Using Cramer's Rule)

$$D_{x} = \begin{vmatrix} 15 & -6 & 4 \\ 19 & 4 & -3 \\ 46 & 1 & 6 \end{vmatrix} = 15\{24 - (-3)\} - (-6)\{114 - (-138)\} + 4(19 - 184) = 1257$$

$$D_{y} = \begin{vmatrix} 5 & 15 & 4 \\ 7 & 19 & -3 \\ 2 & 46 & 6 \end{vmatrix} = 5\{114 - (-138)\} - 15\{42 - (-6)\} + 4(322 - 38) = 1676$$

$$A = \begin{bmatrix} 5 & -6 & 4 \\ 7 & 4 & -3 \\ 2 & 1 & 6 \end{bmatrix}, B = \begin{bmatrix} 15 \\ 19 \\ 46 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & -6 & 4 \\ 7 & 4 & -3 \\ 2 & 1 & 6 \end{bmatrix}, B = \begin{bmatrix} 15 \\ 19 \\ 46 \end{bmatrix}$$

$$D_z = \begin{vmatrix} 5 & -6 & 15 \\ 7 & 4 & 19 \\ 2 & 1 & 46 \end{vmatrix} = 5(184 - 19) - (-6)(322 - 38) + 15(7 - 8) = 2514$$

Therefore,

$$x = \frac{D_x}{D} = \frac{1257}{419} = 3$$
, $y = \frac{D_y}{D} = \frac{1676}{419} = 4$, $z = \frac{D_z}{D} = \frac{2514}{419} = 6$

: Solution of the given system: x = 3, y = 4 and z = 6.

Next Lecture

- Linear Equations
- System of Linear Equations
- Solution of System of Linear Equations
- Solution of Linear Systems by Matrix Method
- Characteristic Vector and Characteristic Root