Mars Surface and Curiosity Image Classification Using a Convolutional Neural Network

Project Presentation

By Zachary Pruessner

Mars, our nearest planetary neighbor. Potential cradle of extraterrestrial life. Its explorer, Curiosity. A technological feat that provides scientists with valuable data. Curiosity generates raw images that are.

- Uncategorized
- Differing size
- Not easily accessed

These images provide information about Mars, but they need to be labeled and sorted to be used optimally.

Problem Statement Solution And Success Metrics

Problem - Large amount of uncategorized images capable of providing insight.

Solution - Build a Convolutional Neural Network to label all images so that they can be searched for in a dataset based on their label.

Success Metrics - This project will be considered successful if the model achieves 98% accuracy or better.

Sample of images from dataset

Kiri L. Wagstaff, You Lu, Alice Stanboli, Kevin Grimes, Thamme Gowda, and Jordan Padams. "Deep Mars: CNN Classification of Mars Imagery for the PDS Imaging Atlas." Proceedings of the Thirtieth Annual Conference on Innovative Applications of Artificial Intelligence, 2018.

Data Wrangling

- 1. Visual inspection
- 2. Pathing correction
- 3. Merging of csv files
- 4. Map label names to numbers

Exploring the Data

Distribution of labels in dataset. Note the imbalance due to label 8.

Preprocessing

Transformations performed during preprocessing

- → Image resize to 128x128
- → Image normalization
- → One hot encoding of labels

Convolutional Neural Networks

Ideal model for images

Models

Model 1	Model 2	Model 3
Conv2d	Conv2d	Conv2d
MaxPooling2D	MaxPooling2D	MaxPooling2D
Dropout	Conv2d	Conv2d
Flatten	MaxPooling2D	MaxPooling2D
		Conv2d
Dense	Dropout	MaxPooling2D
Dense	Flatten	Dropout
	Dense	Flatten
	Dense	Dense
		Dense

Analysis

Model 1 history in accuracy and loss

loss: 0.0661 - accuracy: 0.9830 - mae: 0.0034 - val_loss: 0.1383 - val_accuracy: 0.9718 - val_mae: 0.0046

Model 2 history in accuracy and loss

loss: 0.0729 - accuracy: 0.9790 - mae: 0.0029 - val_loss: 0.1557 - val_accuracy: 0.9685 - val_mae: 0.0034

Model 3 history in accuracy and loss

loss: 0.1166 - accuracy: 0.9668 - mae: 0.0042 - val_loss: 0.1517 - val_accuracy: 0.9735 - val_mae: 0.0030

Recommendation

Based on the results, model 3 is likely to perform best when applied to the labeling of images.

This conclusion is based on its performance on the validation set.