_	г	
L.	Іроменливотоков	MOCT

Васил	Николов	

Теоретична обосновка

Променливотоковият Уитстонов мост се използва за мерене на неизвестни импеданси чрез използване на нулев прибор, в случая осцилоскоп. Принципът му на работа е еквивалентен на принципа на работа на постояннотоков Уитстонов мост.

Условието за балансиран мост е

$$\frac{Z_1}{Z_2} = \frac{R_1}{R_2}$$

Обикновено за R_1 и R_2 се използва реохорд, Z_1 е неизвестен импеданс, а Z_2 е известен такъв. В общия случай Z_1 и Z_2 са комплексни числа. Затова те трябва да са един и същи вид елемент, например ако изследваме кондензатор, трябва да сложим известен кондензатор за еталонен импеданс, а ако мерим индуктивност - трябва да сложим еталонна намотка и резистор на мястото на Z_2 , защото често пъти намотките имат значимо съпротивление за ниски честоти.

Мерене на неизвестен капацитет на кондензатор

Правят се измервания за три честоти и се настройва реохордът така, че осцилоскопът да показва минимална амплитуда на напрежението. Данните са представени в таблицата:

f, Hz	L_1, cm	C_x, uF
220	49.4	9.76
970	50.1	10.04
970	50.1	10.04

Средната стойност на пресметнатият капацитет е $C_x = (9.95 \pm 0.2) uF$

Мерене на неизвестна индуктивност

При мерене на неизвестна индуктивност трябва да вземем под внимание, че намотките имат значително съпротивление при малки честоти. Това значи, че съпротивлението им R може да е сравнимо с реактивният им импеданс $Z_L = \omega L$. Затова, последователно на неизвестната и еталонната намотка слагаме еталонни съпротивления, които можем да променяме докато не се получи оптимален баланс на моста.

По горната схема правим измервания докато мостът не е оптимално балансиран, и осредняваме резултатите.

f II.	Т	QE
f, Hz	L_1, cm	C_x, uF
220	48.1	9.76
970	48.6	10.04
970	47.8	10.04

Средната стойност на пресметнатата индуктивност е $L_x = (102 \pm 2) mH$

Проверяване на правилата за еквивалентен капацитет и индуктивност

При свързване на кондензатори успоредно капацитетите им се събират:

$$C_{eq} = \sum_{i} C_{i}$$

Докато при последователно свързване е вярно

$$\frac{1}{C_{eq}} = \sum_{i} \frac{1}{C_{i}}$$

При свързване на индуктивности е обратното: при последователно свързване еквивалентната индуктивност е сума от индуктивности

$$L_{eq} = \sum_{i} L_{i}$$

а при успоредно свързване е вярно

$$\frac{1}{L_{eq}} = \sum_{i} \frac{1}{L_{i}}$$

Ще проверим като свържем няколко кондензатора и намотки последователно и след това успоредно, и премерим техните капацитети/индуктивности първо поотделно, после заедно.

$\overline{C_1, uF}$	C_2, uF	C_s, uF	C_p, uF
30.47	19.99	12.06	50.56

Виждаме, че премерените стойности са достатъчно близо до теоретичните, следователно законите за кондензатори са изпълнени.

$\overline{L_1, mH}$	L_2, mH	L_s, mH	L_p, mH
101.7	10.08	111.7	9.157

Отново, измерениет стойности са в добро съгласие с теоретично пресметнатите.