Inferential Analysis

1) Replace the NaN values with correct value.

```
dataset.isnull().sum()
sl no
                    0
gender
ssc_p
                    0
                    0
ssc b
hsc_p
                    0
hsc_b
                    0
hsc_s
                    0
degree_p
degree_t
                    0
workex
                   0
etest_p
specialisation
                   0
mba p
status
salary
                   67
dtype: int64
```

<pre>df.fillna(0,inplace = True) df</pre>															
	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p	specialisation	mba_p	status	salar
0	1	М	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech	No	55.0	Mkt&HR	58.80	Placed	270000.
1	2	М	79.33	Central	78.33	Others	Science	77.48	Sci&Tech	Yes	86.5	Mkt&Fin	66.28	Placed	200000.
2	3	M	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgmt	No	75.0	Mkt&Fin	57.80	Placed	250000.
3	4	М	56.00	Central	52.00	Central	Science	52.00	Sci&Tech	No	66.0	Mkt&HR	59.43	Not Placed	0.
4	5	М	85.80	Central	73.60	Central	Commerce	73.30	Comm&Mgmt	No	96.8	Mkt&Fin	55.50	Placed	425000.
210	211	M	80.60	Others	82.00	Others	Commerce	77.60	Comm&Mgmt	No	91.0	Mkt&Fin	74.49	Placed	400000.0
211	212	M	58.00	Others	60.00	Others	Science	72.00	Sci&Tech	No	74.0	Mkt&Fin	53.62	Placed	275000.0
212	213	M	67.00	Others	67.00	Others	Commerce	73.00	Comm&Mgmt	Yes	59.0	Mkt&Fin	69.72	Placed	295000.0
213	214	F	74.00	Others	66.00	Others	Commerce	58.00	Comm&Mgmt	No	70.0	Mkt&HR	60.23	Placed	204000.0
214	215	M	62.00	Central	58.00	Others	Science	53.00	Comm&Mgmt	No	89.0	Mkt&HR	60.22	Not Placed	0.

215 rows × 15 columns

• Replaced null values of salary with zero because the students are not placed yet so not getting salary.

2) How many of them are not placed?

```
: (dataset["status"]=="Not Placed").sum()
: 67
```

3) Find the reason for non placement from the dataset?

```
from scipy.stats import ttest_ind, chi2_contingency
  # Make a copy of dataset
  df = dataset.copy()
  # Identify target
                       # (values: "Placed", "Not Placed")
  target = "status"
  # Split groups
  placed = df[df[target] == "Placed"]
  not placed = df[df[target] == "Not Placed"]
  print("===== Numerical Features (t-test) =====")
  for col in numerical_cols:
      t_stat, p_val = ttest_ind(placed[col], not_placed[col])
result = "Significant" if p_val < 0.05 else "Not Significant"</pre>
      print(f"{col}: p={p_val:.4f} → {result}")
  print("\n===== Categorical Features (Chi-square) =====")
  for col in categorical cols:
      contingency = pd.crosstab(df[col], df[target])
      chi2, p, dof, expected = chi2_contingency(contingency)
      result = "Significant" if p < 0.05 else "Not Significant"
      print(f"{col}: p={p:.4f} → {result}")
```

```
===== Numerical Features (t-test) =====

ssc_p: p=0.0000 → Significant

hsc_p: p=0.0000 → Significant

degree_p: p=0.0017 → Not Significant

etest_p: p=0.0617 → Not Significant

mba_p: p=0.2614 → Not Significant

===== Categorical Features (Chi-square) =====

gender: p=0.2398 → Not Significant

hsc_b: p=0.6923 → Not Significant

hsc_b: p=0.9223 → Not Significant

hsc_s: p=0.5727 → Not Significant

degree_t: p=0.2266 → Not Significant

workex: p=0.0001 → Significant

specialisation: p=0.0004 → Significant
```

From the above ttest, it is noted that 10th,12th,degree are significant and from Chi-square test, work-experience and specialisation are significant

Thus we can make a conclusion that low academic performance at school level and degree marks, no work experience & some specialisation might be the reason for non-placement.

4)What kind of relation between salary and mba_p

lataset.c	taset.corr()								
	al na		bee e	dogram n	atant n	mba a	aalaas		
	sl_no	ssc_p	nsc_p	degree_p	etest_p	moa_p	salary		
sl_no	1.000000	-0.078155	-0.085711	-0.088281	0.063636	0.022327	0.002543		
ssc_p	-0.078155	1.000000	0.511472	0.538404	0.261993	0.388478	0.538090		
hsc_p	-0.085711	0.511472	1.000000	0.434206	0.245113	0.354823	0.452569		
degree_p	-0.088281	0.538404	0.434206	1.000000	0.224470	0.402364	0.408371		
etest_p	0.063636	0.261993	0.245113	0.224470	1.000000	0.218055	0.186988		
mba_p	0.022327	0.388478	0.354823	0.402364	0.218055	1.000000	0.139823		
salary	0.002543	0.538090	0.452569	0.408371	0.186988	0.139823	1.000000		

Correlation between Mba_p and salary is about 13%. Positive Correlation. When the Mba marks increases salary also increases by 13%.

5) Which specialization is getting minimum salary?

		al no	990 P	bee n	dograe n	etest n	mba n	aalan
_		sl_no	ssc_p	hsc_p	degree_p	etest_p	mba_p	salary
C	ount	215.000000	215.000000	215.000000	215.000000	215.000000	215.000000	148.000000
m	nean	108.000000	67.303395	66.333163	66.370186	72.100558	62.278186	288655.405405
	std	62.209324	10.827205	10.897509	7.358743	13.275956	5.833385	93457.452420
	min	1.000000	40.890000	37.000000	50.000000	50.000000	51.210000	200000.000000
	25%	54.500000	60.600000	60.900000	61.000000	60.000000	57.945000	240000.000000
	50%	108.000000	67.000000	65.000000	66.000000	71.000000	62.000000	265000.000000
	75%	161.500000	75.700000	73.000000	72.000000	83.500000	66.255000	300000.000000
	max	215.000000	89.400000	97.700000	91.000000	98.000000	77.890000	940000.000000

```
dataset.loc[dataset["salary"].idxmin(),"specialisation"]
'Mkt&HR'
```

Marketing and HR specialization is getting minimum salary.

6)How many of them getting above 500000 salary?

```
count = (dataset["salary"]>500000).sum()
count

Only 3 Persons are getting above salary of 500000
```

7)Test the Analysis of Variance between etest_p and mba_p at signifiance level 5%.(Make decision using Hypothesis Testing)

H0: There is no difference between etest pass mark and mba pass mark

H1: There is a difference between etest pass mark and mba pass mark

```
import scipy.stats as stats
stats.f_oneway(dataset["etest_p"],dataset["mba_p"])
```

F_onewayResult(statistic=98.64487057324706, pvalue=4.672547689133573e-21)

dataset.cov()

	sl_no	ssc_p	hsc_p	degree_p	etest_p	mba_p	salary
sl_no	3870.000000	-52.641355	-58.106028	-40.413645	52.556168	8.102336	2.449065e+04
ssc_p	-52.641355	117.228377	60.348373	42.897137	37.659225	24.535952	9.017549e+05
hsc_p	-58.106028	60.348373	118.755706	34.819820	35.461678	22.555846	7.633598e+05
degree_p	-40.413645	42.897137	34.819820	54.151103	21.929469	17.272020	4.651315e+05
etest_p	52.556168	37.659225	35.461678	21.929469	176.251018	16.886973	3.842344e+05
mba_p	8.102336	24.535952	22.555846	17.272020	16.886973	34.028376	1.262455e+05
salary	24490.654206	901754.893936	763359.777657	465131.504238	384234.419257	126245.485547	2.395714e+10

pvalue < 0.05 so rejecting Null testing(H0) since there is a difference between the two marks of etest and MBA of about 16%. So Accepting Alternative testing (H1)

8)Test the similarity between the degree_t(Sci&Tech) and specialisation(Mkt&HR) with respect to salary at significance level of 5%.(Make decision using Hypothesis Testing)

```
HO: There is no significant differences in salary between sci&Tech degree and MKT&HR specialisation.
H1: There is a significant differences in salary between sci&Tech degree and MKT&HR specialisation.
```

```
from scipy.stats import ttest_ind
degree = dataset[dataset["degree_t"]=="Sci&Tech"]["salary"]
spec = dataset[dataset["specialisation"]=="Mkt&HR"]["salary"]
ttest_ind(degree,spec)
```

Ttest_indResult(statistic=2.692041243555374, pvalue=0.007897969943471179)

p-value<0.05 so rejecting Null Hypothesis and Accepting Alternate Hypothesis(H1). Thus there is a significant differences between the two groups

9)Convert the normal distribution to standard normal distribution for salary column

```
def SNDgraph(x):
    import seaborn as sns
    std = dataset["salary"].std()
    mean = dataset["salary"].mean()
    z_score = [((dataset["salary"] - mean)/std) ]
    print(z_score)
    sns.distplot(z_score,kde=True)
    sum(z_score)/len(z_score)
```

```
SNDgraph(dataset["salary"])
[0
        0.460636
1
       0.008384
2
       0.331421
3
      -1.283765
4
       1.462051
         ...
210
       1.300533
211
      0.492940
212
      0.622155
213
      0.034227
     -1.283765
Name: salary, Length: 215, dtype: float64]
```


10) What is the probability Density Function of the salary range from 700000 to 900000?

```
|: def get_pdf(dataset,startrange,endrange):
       from matplotlib import pyplot
       from scipy.stats import norm
       import seaborn as sns
       ax = sns.distplot(dataset,kde = True,kde_kws = {'color':'blue'},color='Green')
       pyplot.axvline(startrange,color = 'Red')
       pyplot.axvline(endrange,color = 'Red')
       # generate a sample
       sample = dataset
      # calculate parameters
       s_mean = sample.mean()
       s_std = sample.std()
       print('Mean = %.3f, Standard_deviation = %.3f' %(s_mean, s_std))
       # define the distribution
      dist = norm(s_mean,s_std)
       # probabilities sampling for startrange and endrange
       values = [value for value in range(startrange,endrange)]
       probabilities = [dist.pdf(value) for value in values]
       prob = sum(probabilities)
       print("The area between range ({},{}:{}".format(startrange,endrange,prob))
       return prob
```

```
|: get_pdf(dataset["salary"],700000,900000)
```

Mean = 198702.326, Standard_deviation = 154780.927The area between range (700000,900000:0.0005973310593974868

0.0005973310593974868

11)Test the similarity between the degree_t(Sci&Tech)with respect to etest_p and mba_p at significance level of 5%.(Make decision using Hypothesis Testing)

```
Ho: There is no significant differences between sci&Tech degree of etest pass mark and mba pass mark
H1: There is a significant differences between sci&Tech degree of etest pass mark and mba pass mark

etest = dataset[dataset["degree_t"]=="Sci&Tech"]["etest_p"]
mba = dataset[dataset["degree_t"]=="Sci&Tech"]["mba_p"]
from scipy.stats import ttest_ind
ttest_ind(etest,mba)

Ttest_indResult(statistic=4.532000225151251, pvalue=1.4289217003775636e-05)

pvalue<0.05 so rejecting null hypothesis and accepting Alternate hypothesis.
Thus we cant see any similarity for the sci&Tech degree of two marks.
```

12) Which parameter is highly correlated with salary?

10th mark is highly correlated with salary

13) plot any useful graph and explain it.

sns.pairplot(dataset)

GitHub Link: https://github.com/Geetharani-

CodeAI/DataScience Bivariate Analysis/blob/main/DS Assignment%20.ipynb