Recall -> 4 Stops

It Identify the Problem Statement & 9/0

2/2 Dosign the Truth Table

3) Write the Expression in form of Mintern or Moxtern, 4 Simplify using 14-Makes

4) Design the logical Circuit.

Arithmetic Circuit

> Half adder: A circuit which add two bits.

e A half adder in defined as a basic four terminals digital device which add two Binary digits'.

4 Inbut outbuts

255	A	B	A+B	Decimal Olp	Binam Olp	Som	Carry
0	0	0	0+0	0	0	0	0
ı	0	7	0+T	1	1	1 AB	0
2	1	0	7+0	1	1	1 AB	0
3	1	1	L+1	2	10	Ò	1 AB

Som =
$$AB + AB = A \oplus B$$

Carry = AB
AND

Sum = $AB + AB = A \oplus B$ Carry = AB task: -> Make Half Adder
using NAND & NOR
Gate

output

two

Inequality detector A A AB = Sum B 4 AND AB = Carry Holl Adder

Half adder Tequires 5 NAND OR 5 NOR 9 ales

2200	A B		difference	Bouron	
0	0	0	0	0	
1	0	1	1 AB	± AB	
2	4	0	1 AB	0	
3	1	1	0	0	

+ Difference of half subtractor is same as som in a half adder. but in Borrow, we hasto take the Complement of Minvend.

full Adder Concept:

* It has three Inputs of Produce two outputs. first two IlPs are A, B Input prepresented as (out 1 ABC LABC O 1 -> ABC \bigcirc 1 ABT 0 1-> ABC 0

f= ABC+ABC+ ABC+ ABC f(A,B,Cin) = \(\sum (1,2,4,7)\)

for carry: f= ABC+ ABC+ ABC+ ABC $f(A,B,C_{in}) = \sum_{m} (3,5,6,7)$

for (amy Out: f(A, Bc)= \(\Sigma\) m(3,5,6,7) A BC BC BC BC A o BAE 'BC

(at =
$$f = AB + BC + AC$$
 (Simblified) AND-OR
 $f = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$ (Complex) (SOP)
 $C(\overline{AB} + \overline{AB}) + AB(C + \overline{C})$
 $\Rightarrow AB + (A \oplus B) C_{in}$

let y= HOBOC
Revision
Los 3 input xno R Grate is same as 3 input xor operation 3 input XNOR Grate in Rame as 3 -1

X for multiple inputs, XOR Exarches for odd number of 1/2 , 40 000 c

But XNOR gate searches for even number of 0/1 are odd the

O/P= x * for odd number of Inputs Lodd number of 1', will be same as even no. of Zenses XNOR = XOR

* for Even number of Input,

XNOR = XOR

For Som

$$f(A,B,C) = \sum_{m(A,B,C)} m(A,B,C)$$

$$= A \oplus B \oplus C_{in}$$

$$A \oplus B \oplus C_{in}$$

$$A \oplus B \oplus C_{in}$$

$$C_{in}$$

$$A \oplus B \oplus C_{in}$$

$$A \oplus B \oplus C_{in}$$

$$C_{in}$$

$$C_{in}$$

$$C_{in}$$

$$C_{in}$$

$$C_{in}$$

$$C_{in}$$

$$C_{in}$$

$$C_{in}$$

$$C_{in}$$