Herstein Topics in Algebra Exercise Solutions

Gaurish Sharma

October 25, 2023

Contents

L	\mathbf{Set}	Theory	3
	1.1	Question 1	3
	1.2	Question 9	:

1 Set Theory

1.1 Question 1

- 1. If A is a subset of B and B is a subset of C, prove that A is a subset of C.
- 2. If $B \subset A$, prove that $A \cup B = A$, and conversely.
- 3. If $B \subset A$, prove that for any set C both $B \cup C \subset A \cup C$ and $B \cap C \subset A \cap C$.

1.2 Question 9

Let S be a set and let S^* be the set whose elements are the various subsets of S. In S^* we define an addition and multiplication as follows: If $A, B \in S^*$ (remember, this means that they are substes of S):

- 1. $A + B = (A B) \cup (B A)$.
- $2. \ A \cdot B = A \cap B.$

Prove the following laws that governs these operations:

1.
$$(A+B)+C=A+(B+C)$$
.

$$2. A \cdot (B+C) = A \cdot B + A \cdot C.$$

- 3. $A \cdot A = A$.
- 4. $A + A = \emptyset$.
- 5. If A + B = A + C then B = C.

(The system described is an example of a boolean algebra.)

Solution. We first show the following lemma,

$$(A+B) + C = ((A-B) \cup (B-A)) + C$$

= $(((A-B) \cup (B-A)) - C) \cup (C - ((A-B) \cup (B-A)))$.

Now we expand the RHS,

$$A + (B + C) = A + ((B - C) \cup (C - B))$$

= $(A - ((B - C) \cup (C - B))) \cup (((B - C) \cup (C - B)) - A) ...$

Using lemma 1 we get,

now we using bi directional containment relation technique.