再证抛物线内接三角形的面积公式

广西东兴市东兴中学 (538100) 吴中伟

文[1] 中推导了抛物线内接三角形的面积的两个重要结论:

性质1 已知 $A \setminus B \setminus C$ 是抛物线 $y^2 = 2px(p > 0)$ 上的三点,其纵坐标分别为 y_1, y_2, y_3 ,则 $S_{\Delta ABC} = \frac{1}{4p} | (y_1 - y_2)(y_2 - y_3)(y_3 - y_1)|$;若 $A \setminus B \setminus C$ 是抛物线 $x^2 = 2py(p > 0)$ 上的三点,其横坐标分别为 x_1 , x_2, x_3 ,则 $S_{\Delta ABC} = \frac{1}{4p} | (x_1 - x_2)(x_2 - x_3)(x_3 - x_1)|$.

性质2 已知 $A \setminus B \setminus C$ 是抛物线 $y^2 = 2px(p > 0)$ 上的三点,过 $A \setminus B \setminus C$ 三点作抛物线的切线分别交于 $P \setminus Q \setminus R$ 三点,则 $S_{\Delta ABC} = 2S_{\Delta POR}$.

本文给出了一个更简洁的方法,并且对这一面积公式给出一些举例应用. 现在先给出一个与向量有关的三角形面积公式.

定理:在 $\triangle ABC$ 中,已知 $\overrightarrow{AB}=(x_1,y_1),\overrightarrow{AC}=(x_2,y_2)$,则 $\triangle ABC$ 的面积 $S=\frac{1}{2}\mid x_1y_2-x_2y_1\mid$.

证明: $S = \frac{1}{2} \mid \overrightarrow{AB} \mid \mid \overrightarrow{AC} \mid \sin A = \frac{1}{2} \mid \overrightarrow{AB} \mid \cdot$ $\mid \overrightarrow{AC} \mid \sqrt{1 - \cos^2 A} = \frac{1}{2} \mid \overrightarrow{AB} \mid \mid \overrightarrow{AC} \mid \cdot$

性质 1 的简洁证明: 易知 $A(\frac{y_1^2}{2p}, y_1)$, $B(\frac{y_2^2}{2p}, y_2)$, $C(\frac{y_3^2}{2p}, y_3)$, 则 $\overrightarrow{AB} = (\frac{y_2^2 - y_1^2}{2p}, y_2 - y_1)$, $\overrightarrow{AC} = (\frac{y_3^2 - y_1^2}{2p}, y_3 - y_1)$, 由定理的公式得, $S_{\Delta ABC} =$

$$\frac{1}{2} \left| \frac{y_2^2 - y_1^2}{2p} (y_3 - y_1) - \frac{y_3^2 - y_1^2}{2p} (y_2 - y_1) \right| = \frac{1}{4p} \left| (y_1 - y_2) (y_2 - y_3) (y_3 - y_1) \right|.$$

性质 2 的简洁证明: 设 $A(\frac{y_1^2}{2p}, y_1)$, $B(\frac{y_2^2}{2p}, y_2)$, $C(\frac{y_3^2}{2p}, y_3)$, 易知过 $A \setminus B \setminus C =$ 点的切线方程分别是 $l_A: y_1 y = p(x + \frac{y_1^2}{2p})$, $l_B: y_2 y = p(x + \frac{y_2^2}{2p})$, $l_C: y_3 y = p(x + \frac{y_3^2}{2p})$, 则联立方程可得 $P(\frac{y_1 y_2}{2p}, \frac{y_1 + y_2}{2p})$, $Q(\frac{y_1 y_3}{2p}, \frac{y_1 + y_3}{2})$, $R(\frac{y_2 y_3}{2p}, \frac{y_2 + y_3}{2})$, 从而 $\overrightarrow{PQ} = (\frac{y_1}{2p}(y_3 - y_2), \frac{y_3 - y_2}{2})$, $\overrightarrow{PR} = (\frac{y_2}{2p}(y_3 - y_1), \frac{y_3 - y_1}{2})$, 由定理公式得 $S_{APQR} = \frac{1}{2} | \frac{y_1}{4p}(y_3 - y_2)(y_3 - y_1)| = \frac{1}{8p} | (y_1 - y_2)(y_2 - y_3)(y_3 - y_1)|$. 从而 $S_{AABC} = 2S_{APQR}$.

整个证明过程非常的简洁,省去了文[1] 的采用弦长公式或点到直线的距离公式求长度的步骤.接下来给出一些有关这一面积公式的举例应用.

例1 在平面直角坐标系中,已知抛物线 $C:x^2$ = 4y,点 $P \neq C$ 的准线 l 上的动点,过点 P 作 C 的两条切线,切点分别为 A,B,求 $\triangle AOB$ 面积的最小值.

分析: 由公式 $S_{\Delta AOB} = \frac{1}{4p} | (x_1 - x_2)(x_2 - x_3)(x_3 - x_1)| = \frac{1}{2} \sqrt{(x_1 + x_2)^2 - 4x_1x_2}$, 所以只需找到 $x_1x_2, x_1 + x_2$ 的关系式代入运算即可. 而根据导数的知识可以得到切线 PA, PB 的方程, 再把点 $A(x_1, y_1), B(x_2, y_2)$ 分别代入发现 x_1, x_2 是方程 $x^2 - 2tx - 4 = 0$ 的两个解.

解:设点 $A(x_1,y_1)$, $B(x_2,y_2)$, 准线 $l:y=-1,y'=\frac{1}{2}x$, 故可设点 P(t,-1), 则切线 PA 的方程为 $y+1=\frac{1}{2}x_1(x-t)$, 把点 $A(x_1,y_1)$ 代入上式, 得 $y_1+1=\frac{1}{2}x_1(x_1-t)$, 又因为 $y_1=\frac{1}{4}x_1^2$, 所以有 $x_1^2-2tx_1$

-4=0,同理可得 $x_2^2-2tx_2-4=0$. 故 x_1 , x_2 是方程 $x^2-2tx-4=0$ 的两个解. 由根与系数关系得 , $x_1+x_2=2t$, $x_1x_2=-4$. 由公式 $S_{\Delta AOB}=\frac{1}{4p} | (x_1-x_2)(x_2-x_3)(x_3-x_1)|$ 可得 $S_{\Delta AOB}=\frac{1}{8} | (x_1-0)(0-x_2)(x_2-x_1)|=\frac{1}{8} | x_1x_2(x_2-x_1)|$ = $\frac{1}{2} \sqrt{(x_1+x_2)^2-4x_1x_2}=\frac{1}{2} \sqrt{4t^2+16}$. 所以当 t=0 时,三角形 AOB 的面积取得最小值 2.

例 2 已知点 P(1,1) 为抛物线 $y^2 = x$ 上的一定点,斜率为 $-\frac{1}{2}$ 的直线与抛物线交于 A,B 两点. (1) 求弦 AB 的中点 M 的纵坐标. (2) 若中点 M 的横坐标 $x_0 \in [2,6]$,求三角形 ABP 的面积取得最大值及对应的 x_0 的值.

分析:由公式 $S_{\Delta ABP} = \frac{1}{4p} | (y_1 - y_2)(y_2 - y_3)(y_3 - y_1)| = \frac{1}{2} \sqrt{(y_1 + y_2)^2 - 4y_1y_2} | -y_1y_2 - 1 + y_1 + y_2|$ 知,只需找到 $y_1y_2, y_1 + y_2$ 的关系式代入运算即可. 而 $y_1y_2, y_1 + y_2$ 的关系式可以通过联立方程得到.

解: (1) 设直线方程 $y = -\frac{1}{2}x + b$, 与方程 $y^2 = x$ 联立可得, $y^2 + 2y - 2b = 0$, 设 $A(x_1, y_1)$, $B(x_2, y_2)$, 则 $y_1 + y_2 = -2$, $y_1y_2 = -2b$. $\Delta = 4 + 8b > 0 \Rightarrow b > -\frac{1}{2}$. 所以弦 AB 的中点 M 的纵坐标为 $\frac{y_1 + y_2}{2} = -1$.

(2) 点 $M(x_0, -1)$ 代入方程 $y = -\frac{1}{2}x + b$,得 $b = \frac{1}{2}x_0 - 1$,因为 $x_0 \in [2,6]$,所以 $b \in [0,2]$.由

公式得 $S_{\Delta ABP} = \frac{1}{4p} | (y_1 - y_2)(y_2 - y_3)(y_3 - y_1) |$ 得 $S_{\Delta ABP} = \frac{1}{2} | (y_1 - y_2)(y_2 - 1)(1 - y_1) | = \frac{1}{2} | y_1 - y_2| | - y_1 y_2 - 1 + y_1 + y_2| = \frac{1}{2} \sqrt{(y_1 + y_2)^2 - 4y_1 y_2} | - y_1 y_2 - 1 + y_1 + y_2| = \sqrt{8b^3 - 20b^2 + 6b + 9}.$ $\Leftrightarrow f(x) = 8x^3 - 20x^2 + 6x + 9, 0 \le x \le 2, y$ $f'(x) = 24x^2 - 40x + 6 = 2(2x - 3)(6x - 1), f(x)$ f'(x) = 0 的解为 $x = \frac{1}{6}$ 或 $\frac{3}{2}$. $x \in [0, \frac{1}{6})$ 时 f'(x) > 0 f(x) 单调递增; $x \in [\frac{1}{6}, \frac{3}{2})$ 时 f'(x) < 0, f(x) 单调递减; $x \in [\frac{3}{2}, 2]$ 时 f'(x) > 0 f(x) 单调递减; $x \in [\frac{3}{2}, 2]$ 时 f'(x) > 0 f(x) 单调

点评:根据例 1,2 可以看出,相对于其他方法,利用性质 1 和 2 的面积公式求抛物线内接三角形的面积时更直接.由公式变形直接转化成 x_1x_2,x_1+x_2 (或 y_1y_2,y_1+y_2)的关系式,然后根据条件代入运算就可以得到结果.

参考文献

[1]房增军. 抛物线内接三角形的面积[J]. 中学数学研究 (江西师大),2019(2).

椭圆范围矩形相关点的一个结论及应用*

广东省惠州市实验中学 (516003) 肖志向

在椭圆性质的学习中,我们知道,椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2}$ = 1(a > b > 0) 位于直线 $x = \pm a$ 与 $y = \pm b$ 所围

成的矩形框内,矩形四个顶点是 $(\pm a, \pm b)$,其坐标

^{*} 本文系广东省教育科学规划课题"问题驱动视野下高中数学主干知识的教学设计与实践研究"(课题批准号 2019YQJK288)成果.