2013 ELMOSL G7

Tristan Shin

25 Mar 2018

Let ABC be a triangle inscribed in circle ω , and let the medians from B and C intersect ω at D and E respectively. Let O_1 be the center of the circle through D tangent to AC at C, and let O_2 be the center of the circle through E tangent to AB at B. Prove that O_1 , O_2 , and the nine-point center of ABC are collinear.

Let O be the center of ω , M, N be the midpoints of AC, AB, and $G = BM \cap CN$ the centroid of $\triangle ABC$. Let ω_1 be the circle with center O_1 passing through C, D, let ω_2 be the circle with center O_2 passing through B, E. Let BD intersect ω_1, ω_2 at B_1, B_2 , let CE intersect ω_1, ω_2 at C_1, C_2 .

Observe that

$$MD \cdot MB_1 = MC^2 = -MC \cdot MA = -MD \cdot MB$$

by Power of a Point and M being midpoint of AC, so B, B_1 are reflections over M. So $ABCB_1$ is a parallelogram. Similarly, $ACBC_2$ is a parallelogram.

Let $P = BC_2 \cap CB_1$. Then

$$\angle C_2 C_1 B_1 = \angle C C_1 B_1 = \angle C D B_1 = \angle C D B$$
$$= \angle C A B = \angle B P C = \angle C_2 P B_1,$$

similarly $\angle B_1B_2C_2 = \angle B_1PC_2$ so $PC_1B_1C_2B_2$ is cyclic. Let its circumcircle be Γ

Next,

$$\angle EBB_1 = \angle EBD = \angle ECD = \angle C_1CD = \angle C_1B_1D = \angle C_1B_1B_1$$

so $EB \parallel B_1C_1$. Then the radical axis of ω , ω_2 is parallel to the radical axis of ω_1 , Γ , so the center line of ω , ω_2 is parallel to the center line of ω_1 , Γ . But ω has center O, ω_2 has center O_2 , ω_1 has center O_1 , Γ has center O_2 , and has center of ΔABC , can be seen by homothety centered at C with factor C_2 , so $C_2 \parallel C_1H$. Similarly, $C_1 \parallel C_2H$. Then C_1HC_2 is a parallelogram, so $C_2 \parallel C_1HC_2$ is the midpoint of C_2HC_2 and C_1C_2 . Hence C_1 , C_2 , and the nine-point center of C_2C_2 are collinear.