Lecture 3 R

These slides are the property of Dr. Wendy Rummerfield ©

our agenda

Announcements	Canvas updates, hw 1, other resources available soon (e.g., Git)		
Mini-lecture	Let's get comfy with R terms		
RStudio	Open RStudio on your desktop or on posit cloud and let's get coding!		
Wrap-up	Any questions? Reminders for the weekend		

R Variables

objects in R that make it easier for us to refer to them in the code

name <- stuff

name your variables something descriptive

assignment operator (save the stuff on the right using the name on the left)

- Number
- Word
- Equation/Formula
- Vector: list of numbers
- Dataframe: what R calls at dataset

R Variables

objects in R that make it easier for us to refer to them in the code

Examples

```
x <- 3

y <- 4

z <- (2*x - 3*y) / 5

name <- "Wendy"
```

More Examples

```
ages <- c(18, 35, 24)
weight <- ChickWeight$weight
avg_weight <- mean(weight)
med_weight <- median(weight)</pre>
```

The do's & don'ts of naming variables

Rule of thumb: name your variables and datasets something meaningful

Do:

- use *unique* names for different objects
 - > x < -3 and y < -4
- use CamelCase or under_scores
 - > MeanAge <- mean(ages)</pre>
- use names that make sense
 - > mean_age <- mean(ages)</pre>

Don't:

- use the same name for different objects
 - > x < -3 and x < -4
- leave any spaces
 - > mean age <- mean(ages)</pre>
- use only numbers or symbols
 - > 3 <- 4
- use function names
 - > mean <- mean(ages)</pre>

dataframes & tibbles (datasets)

dataframes and tibbles (yes, that's a real word): they are just fancy names for datasets

dataframe\$colname

name of the dataset

how to access the columns in the dataframe column name (make sure you type it EXACTLY as it is written)

ChickWeight\$weight

Untitled1* × ChickWeight × Filter							
_	weight	Time 🗦	Chick [‡]	Diet [‡]			
1	42	0	1	1			
2	51	2	1	1			
3	59	4	1	1			
4	64	6	1	1			
5	76	8	1	1			
6	93	10	1	1			
- Chawing	1 to 7 of 578	antrias 1 t	atal column				

Showing 1 to 7 of 578 entries, 4 total columns

functions

Function: a block of code that performs something and outputs a result

function(arg1, arg2,...)

name of the function

type of input

another type of input

function examples

Some functions work right away any time you want to use RStudio Other function work only after you install and load an R package.

```
Examples
```

```
mean(x)
```

*where x = any numeric R object

More Examples

- > median(x)
- $> \min(x)$
- $> \max(x)$
- > range(x)
- > sd(x)
- > var(x)

comments

Think of comments as a way for us to write notes to explain what our code is doing.

```
# this is a comment

# comments with a "#"

*Comments are ignored by R so
they don't run like regular code.

Example

ignored by R!

> mean(1:5)

# calculate the mean

[1] 3
```

Let's try it!

Open RStudio or go to posit.cloud

Exploratory Data Analysis (EDA)

obtaining descriptive statistics and using data visualization to learn about your dataset before modeling

Summarizing Categorical Variables

Frequency

A count (must be a whole number)

Relative Frequency

The count *relative* to a total (can be a fraction, decimal, or percentage)

Bar plots

A visual way to represent categorical data (height of bars is frequency or relative frequency)

Tables

		homeownership			
		rent	mortgage	own	Total
app_type	individual	3496	3839	1170	8505
	joint	362	950	183	1495
	Total	3858	4789	1353	10000

Figure 2.17: A contingency table for app_type and homeownership.

homeownership	Count
rent	3858
mortgage	4789
own	1353
Total	10000

Figure 2.18: A table summarizing the frequencies of each value for the homeownership variable.

Bar plots

Making tables

Input: 1 or more categorical (factor) variables

e.g.,
table(ChickWeight\$Diet)

addmargins()

Input: a table
e.g.,
addmargins(table(ChickWeight\$diet))

prop.table()

Input: a table
e.g.,
prop.table(table(ChickWeight\$diet))

Distribution

A function/table that shows all the possible values for a **variable** and how often they occur

Summarizing quantitative variables

Center

roughly speaking, the middle of the data

- mean
- median
- mode

Spread

the amount of variability in the data

- standard deviation
- variance
- range (max min)

Shape

the literal shape of a
 histogram/dot
plot/density plot

- modality (peaks)
- skewness

(Stacked) Dot plots

Distribution of Annual Household Income

Histogram

Percentage of time spent taking notes versus doing activities in class

* Each bin contains all the data points that fall within the interval

* Bin widths must be the **same** for all bins

Shape (of histograms)

Modality

Skewness

Modality

Skewness

Measures of center

Mean

The "balancing point" of a distribution (the arithmetic average)

 \bar{x}, μ

Median

the "middle" of a distribution 50% below, 50% above

med or median

Mode

the highest point of a distribution (number that occurs most often)

m or mode

Measures of center

Calculating the 3 m's

mean

add up all the numbers and divide by the total

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

median

order data values from smallest to largest and pick the number in the middle (if there are two numbers, take the average)

mode

See which value occurs the most often or what is the highest point in the distribution

Calculating the 3 m's

mean

mean()

median

median()

mode

Less obvious in R... I would just look at a plot

Measures of spread

Range

distance between the minimum and maximum value of a set of numbers

range = max - min

Variance

average squared deviations from the mean

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

Standard Deviation

square root of variance

$$s = \sqrt{s^2}$$

Visualizing Variance

Calculating by hand

$$\bar{x} = 6.71$$

$$n = 217$$

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

$$s^{2} = \frac{(5 - 6.71)^{2} + (9 - 6.71)^{2} + \dots + (7 - 6.71)^{2}}{217 - 1} = 4.11 \text{ hours}^{2}$$

$$s = \sqrt{4.11} = 2.03$$
 hours

Calculating in R

Range range ()

Variance

var()

Standard Deviation

sd()

Enough lecturing

Let's keep coding!