11.1.3 Merging and Splitting Poisson Processes

Merging Independent Poisson Processes:

Let $N_1(t)$ and $N_2(t)$ be two independent Poisson processes with rates λ_1 and λ_2 respectively. Let us define $N(t)=N_1(t)+N_2(t)$. That is, the random process N(t) is obtained by combining the arrivals in $N_1(t)$ and $N_2(t)$ (Figure 11.5). We claim that N(t) is a Poisson process with rate $\lambda=\lambda_1+\lambda_2$. To see this, first note that

Figure 11.5 - Merging two Poisson processes $N_1(t)$ and $N_2(t)$.

Next, since $N_1(t)$ and $N_2(t)$ are independent and both have independent increments, we conclude that N(t) also has independent increments. Finally, consider an interval of length τ , i.e, $I=(t,t+\tau]$. Then the numbers of arrivals in I associated with $N_1(t)$ and $N_2(t)$ are $Poisson(\lambda_1\tau)$ and $Poisson(\lambda_2\tau)$ and they are independent. Therefore, the number of arrivals in I associated with N(t) is $Poisson((\lambda_1+\lambda_2)\tau)$ (sum of two independent Poisson random variables).