DEA em concessionárias de energia elétrica aplicada em R

Guilherme Ventura

1 O que é o DEA?

A DEA(Data Envelopment Analysis ou Análise Envoltória de Dados), é uma metodologia de análise de eficiência que compara um grupo de DMUs(Decision Making Units) e seus planos de produção, e por programação matemática, maximiza, considerando os recursos de que se dispõe (inputs) com os resultados alcançados (outputs), e identifica aquelas empresas cujo plano de produção, dado os pesos, não pode ser superado pelo plano de nenhuma outra empresa. Dita eficiente e se tornando referencia para as outras.

Todo modelo é baseado nas empresas analisadas, se caso haja uma modificação do conjunto das DMUs, modifica-se o resultado, apresentando outras empresas referências e outros scores do benchmark.

Empresas que são ditas eficientes, compõem uma chamada Fronteira de eficiência, que é a linha traçada juntando todas as empresas referências. As empresas que se situam abaixo desta linha, são empresas com planos de produção dominados. É também de feitio deste método gerar uma medida da ineficiência para cada unidade fora da fronteira (uma distância à fronteira que representa a potencialidade de crescimento da produtividade);

Humes diz que DEA é a condição necessária para que uma empresa A seja relativamente eficiente é que sua operação seja 'melhor' que as demais consideradas se A tiver o poder de definir os preços.

Existem três tipos de DEA:

1.1 Modelo CCR

O modelo CCR, desenvolvido por Charnes, Cooper e Rhodes, permite uma avaliação objetiva da eficiência global e identifica as fontes e estimativas de montantes das ineficiências identificadas. Tem o objetivo minimizar insumos para produzir no mínimo o nível de produção dado.

É um modelo também conhecido como CRS (Constant Returns to Scale) que trabalha com retornos constantes de escala, ou seja, qualquer variação nos insumos leva a uma variação proporcional nos produtos.

A formulação matemática é dada por:

$$\theta = \underset{u,v}{Max} \sum_{i=1}^{m} u_i y_{i,j0}$$
 subject to
$$\sum_{i=1}^{s} v_i x_{i,j0} = 1$$

$$\sum_{i=1}^{m} u_i y_{ij} - \sum_{i=1}^{s} v_i x_{ij} \leq 0 \forall j = 1, ..., j0, ...N$$

$$u_i \geq 0 \forall i = 1, m$$

$$v_i \geq 0 \forall i = 1, s$$

$$(1)$$

1.2 Modelo BBC

O modelo BCC (Banker, Charnes e Cooper, 1984), também conhecido como VRS (Variable Return Scale), pressupõe que as DMU's avaliadas apresentem retornos variáveis de escala e identificando se estão presentes ganhos de escala crescentes, decrescentes e constantes, para futura exploração.

A formulação matemática é dada por:

$$\theta = \underset{u,v}{Max} \sum_{r=1}^{m} u_r y_{r,k} - u_k$$
 subject to
$$\sum_{r=1}^{n} v_i x_{ik} = 1$$

$$\sum_{r=1}^{m} u_r y_{rj} - \sum_{i=1}^{n} v_i x_{ij} - u_k \le 0 \forall j = 1, ..., j0, ...N$$

$$u_r \ge 0 \forall i = 1, m$$

$$v_i \ge 0 \forall i = 1, s$$

$$(2)$$

2 Aplicação em R com exemplo

A aplicação em R é feita por meio do pacote chamado Benchmarking.

2.1 Eficiência

Usando um exemplo de um dataset fictício de hospitais:

	Hospital	Médicos	Enfermeiros	Pacientes alta
1	A	20	151	100
2	В	19	131	150
3	\mathbf{C}	25	160	160
4	D	27	168	180
5	\mathbf{E}	22	158	94
6	\mathbf{F}	55	255	230
7	G	33	235	220
8	Η	31	206	152
9	I	30	244	190
10	J	50	268	250
11	K	53	306	260
12	L	38	284	250

Então, como primeiro passo, selecionaremos quais varáveis serão os inputs e os outputs:

```
#Importando a base de dados
hospitais <- read.csv2("~/series_temporais/hospitais.csv")</pre>
```

```
#Setando inputs e outputs
inp <- as.matrix(hospitais[,2:3])
out <- hospitais[,4]</pre>
```

Logo depois disto, já conseguimos visualizar a fronteira de eficiência, usaremos então:

```
library(Benchmarking)

## Loading required package: lpSolveAPI

## Loading required package: ucminf

#Plor da fronteira de eficiência
dea.plot.frontier(inp, out, RTS = "drs", txt=hospitais$Hospital)
```


Podemos perceber que há seis empresas em cima da fronteira de eficiência. Para sabermos exatamente quais são e os seus scores, useremos os comandos:

```
#Resultado
result_dea <- dea(inp, out)</pre>
summary(result_dea)
## Summary of efficiencies
## VRS technology and input orientated efficiency
## Number of firms with efficiency==1 are 6 out of 12
## Mean efficiency: 0.932
##
                         %
##
     Eff range
##
     0.6 \le E < 0.7
                    1 8.3
##
     0.7 \le E < 0.8
                    0.0
##
     0.8<= E <0.9
                    3 25.0
##
     0.9<= E <1
                    2 16.7
```

```
## E ==1 6 50.0

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.6479 0.8935 0.9750 0.9319 1.0000 1.0000

eff(result_dea)

## [1] 0.9500000 1.0000000 0.8958333 1.0000000 0.8636364 0.9389356 1.0000000

## [8] 0.6478964 0.8866667 1.0000000 1.0000000 1.0000000
```

Assim fica o resultado da eficiência de cada hospital:

	Hospital	Médicos	Enfermeiros	Pacientes alta	Eficiência
1	A	20	151	100	0.95
2	В	19	131	150	1.00
3	\mathbf{C}	25	160	160	0.90
4	D	27	168	180	1.00
5	\mathbf{E}	22	158	94	0.86
6	F	55	255	230	0.94
7	G	33	235	220	1.00
8	H	31	206	152	0.65
9	I	30	244	190	0.89
10	J	50	268	250	1.00
11	K	53	306	260	1.00
12	L	38	284	250	1.00

Ou seja, podemos ver que o hospital B, D, G, J, K e L são eficiêntes, sendo assim, dado os recursos que utilizam, conseguem ter o máximo de paciêntes com alta. Se tornando hospitais de referência para os outros.

Conseguimos também calcular a folga para cada hospital, ou seja, o quanto precisa para cada empresa não eficiênte ser empurrada para eficiência:

```
#Resultado
dea_folga <- dea(inp,out,SLACK=TRUE)
dea_folga_table <- data.frame(dea_folga$sx,dea_folga$sy)
names(dea_folga_table) <- c("Folga Insumo 1", "Folga Insumo 2", "Folga Output")</pre>
```

	Folga Insumo 1	Folga Insumo 2	Folga Output
1	0.00	12.45	50.00
2	0.00	0.00	0.00
3	0.73	0.00	0.00
4	0.00	0.00	0.00
5	0.00	5.45	56.00
6	8.21	0.00	0.00
7	0.00	0.00	0.00
8	0.55	0.00	0.00
9	0.00	24.15	0.00
10	0.00	0.00	0.00
11	0.00	0.00	0.00
12	0.00	0.00	0.00

2.2 Distância Euclidiana e Clusters

Podemos também recuperar a distância euclidiana e com isso separar os hospitais por clusters, precisamos apenas de alguns comandos do ${\bf R}$ base para isto:

```
dist <- round(dist(hospitais), 2)</pre>
## Warning in dist(hospitais): NAs introduzidos por coerção
dist
                                             6
                                                    7
##
          1
                                                                         10
## 2
       62.19
## 3
       70.29 36.09
       94.78 55.77 24.98
## 4
      10.89 71.87 76.32 100.14
     196.44 175.39 140.59 120.29 196.62
      169.80 145.66 111.29 90.37 170.98 36.22
## 7
## 8 88.32 87.73 54.36 54.70 87.55 109.92 85.39
```

```
## 9 149.88 139.00 103.16 88.58 149.11
                                          55.93
                                                  36.33 62.06
## 10 222.38 199.10 164.88 143.43 222.77
                                                  55.11 135.69
                                          28.14
                                                                78.11
## 11 260.04 241.88 206.88 186.62 259.28
                                          68.36
                                                  96.89 171.84 111.19
                                                                       45.50
## 12 232.42 212.19 177.56 156.96 232.29
                                          45.17
                                                  66.59 144.85 83.78
                                                                       23.09
##
          11
## 2
## 3
## 4
## 5
## 6
## 7
## 8
## 9
## 10
## 11
## 12
       32.84
```

E para o cluster:

Cluster Dendrogram

dist hclust (*, "complete")

Sendo que para para 1, seria equivalente ao hospital A.