pur Maximum Score: 30

September 22, 2017

Time: 120 minutes

Mid-semester Examination

1. Indicate whether following statements are true or false. Justify your answer (to justify a claim that a statement is true, a proof is required; to justify a claim that a statement is false, a single counterexample is sufficient.) Note that no credit will be given to a correct guess without any explanation or followed by an incorrect justification. Also make sure that you say true or false before the justification to get credit.

(a) The set
$$([-\sqrt{3}, -\sqrt{2}] \cup [\sqrt{2}, \sqrt{3}]) \cap \mathbb{Q}$$
 is open in \mathbb{Q} .

Solution: True. $A = ([-\sqrt{3}, -\sqrt{2}] \cup [\sqrt{2}, \sqrt{3}]) \cap \mathbb{Q} = ((-\sqrt{3}, -\sqrt{2}) \cup (\sqrt{2}, \sqrt{3})) \cap \mathbb{Q}$ is open in \mathbb{Q}

(b) Let X be an ordered set with order " $<_X$ " and $d: X \times X \to [0, \infty)$ be a distance function. If (x_n) is a bounded and monotonically increasing sequence (that is, $x_n \leq_X x_{n+1}$, and $d(x_n, x) \leq_X C$, for some C > 0, $x \in X$, for all $n \in \mathbb{N}$), then (x_n) converges. [2]

Solution: False. Consider $X = \mathbb{R}^2$ with the $<_X$ as dictionary order. The sequenced ((1-1/n,-n)) is a bounded and monotonically increasing sequence but does not converge.

(c) For
$$x \in \ell_1$$
 and $y \in \ell_\infty$, $\sum_{n=1}^{\infty} |x_n| |y_n| \le ||x||_1 ||y||_\infty$. [2]

Solution: True. Follows from $|x_n||y_n| \leq |x_n|||y||_{\infty}$.

(d) Every bounded sequence in a complete metric space X has a subsequence that converges to a point in X.

Solution: False. Consider the sequence $(e_n)_{n\in\mathbb{N}}\in\ell_2$ where

$$e_n = (0, \dots, \underbrace{1}_{n^{th} \text{ term}}, 0, \dots),$$

that is,

$$e_n(k) = \begin{cases} 1, & k = n, \\ 0, & k \neq n. \end{cases}$$

Clearly, $(e_n)_{n\in\mathbb{N}}$ is a bounded sequence in ℓ_2 but has no convergent subsequence as $d(e_m,e_n)=\sqrt{2}$ for all $m\neq n$.

(e) The Cantor set $C = \bigcap_{n=0}^{\infty} I_n$, where $I_0 = [0,1]$ and for $n \in \mathbb{N}$, $I_n = I_{n-1} \setminus J_{n-1}$ with $J_n = \bigcup_{k=1}^{3^n} ((3k-2)3^{-(n+1)}, (3k-1)3^{-(n+1)})$ is compact. [2]

Solution: True. Clearly, C is a closed and bounded set of $\mathbb R$ and hence compact.

(f) A bounded set in \mathbb{R}^k , $k \ge 1$, is totally bounded. [2]

Solution: True. Consider a bounded set A in \mathbb{R}^k . Clearly, \overline{A} is a closed and bounded $(\operatorname{diam}(\overline{A}) = \operatorname{diam}(A) < \infty)$ in \mathbb{R}^k and hence compact. Thus, \overline{A} is totally bounded, that is, for every $\epsilon > 0$, there exist $x_1, x_2, \ldots, x_n \in \mathbb{R}^k$ such that $\overline{A} \subseteq \bigcup_{i=1}^n N_{\epsilon}(x_i)$. Then, we also have

$$A \subseteq \bigcup_{i=1}^n N_{\epsilon}(x_i),$$

and, therefore, A is totally bounded.

2. (a) Let (X, d) be a metric space. Given a set \tilde{X} and $f : \tilde{X} \to X$, a one-to-one function, let $\tilde{d} : \tilde{X} \times \tilde{X} \to \mathbb{R}$ be given by $\tilde{d}(x, y) = d(f(x), f(y))$. Then, show that (\tilde{X}, \tilde{d}) is a metric space.

Solution:

If
$$x \in \tilde{X}$$
, then $\tilde{d}(x,x) = d(f(x),f(x)) = 0$
If $x,y \in \tilde{X}, x \neq y$, then $\tilde{d}(x,y) = d(f(x),f(y)) > 0$ (as $f(x) \neq f(y)$)
If $x,y \in \tilde{X}$, then $\tilde{d}(x,y) = d(f(x),f(y)) = d(f(y),f(x)) = \tilde{d}(y,x)$
If $x,y,z \in \tilde{X}$, then $\tilde{d}(x,y) = d(f(x),f(y)) + d(f(z),f(y)) = \tilde{d}(x,z) + \tilde{d}(z,y)$

(b) Explain why is (\mathbb{R}, d_0) with $d_0 : \mathbb{R} \times \mathbb{R} \to [0, \infty)$ given by $d_0(x, y) = |\arctan x - \arctan y|$ a metric space. Show that (\mathbb{R}, d_0) is not a complete metric space. [1+2]

Solution: The fact that d_0 is a metric follows from part (a) where $X = X = \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan x$ is a one-to-one function and d(x, y) = |x - y|. Now, let, for $n \in \mathbb{N}$,

$$x_n = \tan\left(\frac{\pi}{2} - \frac{1}{n}\right).$$

Clearly,

$$d_0(x_m, x_n) = \left| \left(\frac{\pi}{2} - \frac{1}{m} \right) - \left(\frac{\pi}{2} - \frac{1}{n} \right) \right| = \left| \frac{1}{n} - \frac{1}{m} \right|$$

Given $\epsilon > 0$, choose $N \in \mathbb{N}$ such that $1/N < \epsilon/2$. Then, for $m, n \geq N$, we have

$$d_0(x_m, x_n) \le \left| \frac{1}{n} - \frac{1}{m} \right| \le \frac{1}{m} + \frac{1}{n} \le \frac{1}{N} + \frac{1}{N} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus, (x_n) is a Cauchy sequence but does not converge (in fact, it is unbounded).

- 3. Let (X, d) be a metric space.
 - (a) Recall that $C \subseteq X$ is disconnected (not-connected) if there exists a pair $E, F \subseteq X$ such that $E \cup F = C$ and $\overline{E} \cap F = \emptyset$, $E \cap \overline{F} = \emptyset$; otherwise C is connected. Prove that C is connected if and only if a pair of nonempty sets A and B, both open in C, with $A \cap B = \emptyset$, $A \cup B = C$ does not exist.

Solution: (\Longrightarrow) Suppose a pair of nonempty sets A and B, both open in C with $A \cap B = \emptyset$, $A \cup B = C$ exists. Let $E = C \setminus A$ and $F = C \setminus B$. Then E and F are closed in C and, therefore, $\operatorname{cl}_C(E) = E$, $\operatorname{cl}_C(F) = F$. We then have,

$$E \cup F = (C \cap A^c) \cup (C \cap B^c) = C \cap (A^c \cup B^c) = C \cap (A \cap B)^c = C \cap X = C, \quad (1)$$

and

$$\operatorname{cl}_C(E) \cap F = E \cap \operatorname{cl}_C(F) = E \cap F = (C \cap A^c) \cap (C \cap B^c) = C \cap (A \cup B)^c = \emptyset.$$
 (2)

Note that

$$\overline{E} = \operatorname{cl}_X(E) = (\operatorname{cl}_X(E) \cap C) \cup (\operatorname{cl}_X(E) \cap C^c) = \operatorname{cl}_C(E) \cup (\operatorname{cl}_X(E) \cap C^c).$$

Similarly,

$$\overline{F} = \operatorname{cl}_C(F) \cup (\operatorname{cl}_X(F) \cap C^c).$$

Thus, we have

$$\overline{E} \cap F = (\operatorname{cl}_C(E) \cap F) \cup (\operatorname{cl}_X(E) \cap C^c \cap F) = \emptyset$$

(follows from (2) and the fact that $F \subseteq C$). Similarly,

$$E \cap \overline{F} = (E \cap \operatorname{cl}_C(F)) \cup (\operatorname{cl}_X(F) \cap C^c \cap E) = \emptyset$$

Thus, C is not connected (disconnected).

 (\longleftarrow) Suppose C is not connected. Then, there exists a pair E, F such that $E \cup F = C$ and $\overline{E} \cap F = \emptyset$, $E \cap \overline{F} = \emptyset$. Consider $U = (\overline{E})^c = X \setminus \overline{E}$ and $V = (\overline{F})^c = X \setminus \overline{F}$. Clearly, U and V are open in X.

$$U\cap V=(\overline{E})^c\cap (\overline{F})^c=(\overline{E}\cup \overline{F})^c=(\overline{C})^c.$$

Also, if $x \in C$, then $x \in E$ or $x \in F$ which implies that $x \notin \overline{F}$ or $x \notin \overline{E}$, that is, $x \in (\overline{F})^c$ or $x \in (\overline{E})^c$. Thus,

$$C \subseteq (\overline{E})^c \cup (\overline{F})^c = U \cup V.$$

Clearly, $A = C \cap U$ and $B = C \cap V$ are open in C with $A \cap B = C \cap U \cap V = C \cap (\overline{C})^c = \emptyset$, $A \cup B = (C \cap U) \cup (C \cap V) = C \cap (U \cup V) = C$.

(b) If C is a connected subset of X and if A and B are disjoint non-empty open sets in X with $C \subseteq A \cup B$, prove that $C \subseteq A$ or $C \subseteq B$.

Solution: We can always write $C = (C \cap A) \cup (C \cap B)$. Since A and B are open in X, the sets $C \cap A$ and $C \cap B$ are open in C. If C is connected, then one of those sets has to be empty. But if $C \cap A = \emptyset$, then $C \cap B = C$, that is, $C \subseteq B$. Similarly, if $C \cap B = \emptyset$, then $C \subseteq A$.

[1]

(c) If E and F are connected subsets of X with $E \cap F \neq \emptyset$, then show that $E \cup F$ is connected.

Solution: Suppose $E \cup F$ is not connected. Then, there exist non-empty open sets A and B such that

$$E \cup F = A \cup B,\tag{3}$$

$$A \cap B = \emptyset. \tag{4}$$

Part (a) and (3) imply that

$$E \subseteq A \text{ or } F \subseteq B, \text{ and } F \subseteq A \text{ or } F \subseteq B.$$

But $E \subseteq A$ and $F \subseteq B$ or $E \subseteq B$ and $F \subseteq A$ contradicts $E \cap F \neq \emptyset$ (because of (4)) whereas $E \subseteq A$ and $F \subseteq A$ or $E \subseteq B$ and $F \subseteq B$ contradicts (3).

- 4. Consider \mathbb{R} with the standard metric. Let $A \subseteq \mathbb{R}$ be a subset which has no limit points.
 - (a) Construct a map $f: A \to \mathbb{Q}$ such that f is one-to-one and then show that it is indeed one-to-one. [2+2]

Solution: Fix $a \in A$. Since a is an isolated point, there exists an $r_a > 0$ such that $N_{r_a}(a) \cap A = \{a\}$. Now, pick an element $q_a \in \mathbb{Q} \cap N_{r_a/2}(a)$. Doing this for each $a \in A$ defines a function

$$f: A \to \mathbb{Q}, \quad f(a) = q_a.$$

Now we show that f is one-to-one. Suppose f(a) = f(b) and let q = f(a). Then, $q = q_a = q_b \in N_{r_a/2}(a) \cap N_{r_b/2}(b)$. Thus,

$$d(a,b) \le d(a,q) + d(q,b) \le r_a/2 + r_b/2 \le \max\{r_a, r_b\},\$$

and therefore, either $a \in N_{r_b}(b)$ or $b \in N_{r_a}(a)$ resulting in a = b.

(b) Explain why is A at most countable.

Solution: From part (a), we see that $A \sim \text{Range}(f) = \{q \in \mathbb{Q} : \text{ there is } a \in A \text{ such that } f(a) = q\} \subseteq \mathbb{Q}$. As subsets of a countable set is countable, we have that A is countable.