A Planner for Autonomous Risk-Sensitive Coverage (PARCov) by a Team of Unmanned Aerial Vehicles

 $\underline{\mathsf{Alex}\;\mathsf{Wallar}}^{\;1}$ Erion Plaku 2 Donald Sofge 3

¹School of Computer Science University of St Andrews

²Departement of Electrical Engineering and Computer Science The Catholic University of America

³Naval Center for Applied Research in Artificial Intelligence Naval Research Laboratory

December 12, 2014

Goals

- To allow groups of robots cooperatively provide persistent surveillance of a given area
- To reduce the risk of damage incurred on the robots
- To maximize the quality of sensory information

Motivation

- There are many cases where high quality sensory information is needed from areas where risk of vehicle damage is high
- Examples
 - Disaster relief
 - Covert surveillance
 - Safety critical missions

Maximizing Aerial Coverage

- The experiments conducted consider spotlight sensors
- The sensed area corresponds to an ellipse which is a function of the sensor angle ϕ and the conic aperture α .

Maximizing Aerial Coverage

Maintaining High Sensor Data Quality

- One algorithmic objective is to maintain high sensor data quality
- ullet It is assume that there is an optimal altitude, μ_{sq} , in order to achieve the highest sensor quality
- ullet μ_{sq} varies based on the situation
- ullet The sensor quality is assumed to decrease exponentially as the deviation from μ_{sq} increases

Maintaining High Sensor Data Quality

Sensor Quality

$$SQ(z) = \exp\left(-\left(\frac{z}{\cos\phi} - \mu_{sq}\right)^2/(2\sigma_{sq}^2)\right)$$

Reducing Risk

- While surveying an area, the quadrotors seek the reduce the risk of being detected
- ullet Risk is modelled based on ground level risk, R_0 which indicates the likelihood of a quadrotor being detected at (x,y)

Risk

$$R(x, y, z) = R_0(x, y) \cdot \exp\left(-\frac{z^2}{K \cdot R_0(x, y)^2}\right)$$

Ground-level Risk

- Ground level risk, R_0 , is modelled by centering normal distributions around a set of points given a priori
- The risk decreases exponentially as the distance from a risk point increases

Ground-level Risk

$$R_0(x,y) = \max_{p \in RiskPoints} \exp\left(-\frac{||p - (x,y)||_2}{L}\right)$$

Ground-level Risk

Problem Statement

Given:

- An area to be surveyed
- A sensor quality model
- A risk model
- Initial placements of the quadrotors

Goals:

- Maximize area coverage
- Maintain high sensor data quality
- Ensure persistent coverage
- Reduce the risk incurred by the quadrotors

Method: PARCov

- PARCov seeks to move the quadrotors to areas that have not been covered in a long time
- This simple rule ensures that no part of the search area goes to long a time without being surveyed
- This goal promotes persistent coverage

- Impose grid, G, over the xy bounding box of the area being surveyed
- Use G to keep track of which parts were surveyed and when they were last surveyed

- Sample potential orientations
- For each orientation, sample segments along sensor footprint
- Oetermine the sample with the maximum average uncertainty for each orientation
- Move in the direction of the sample with the maximum uncertainty
- Ohange the orientation to the sampled orientation

- There is a function $WaitTime(\mathcal{G},x,y)$ that given the grid \mathcal{G} , determines the amount of time that has passed since (x,y), has been sensed.
- There is also a function $AvgWaitTime(\mathcal{G},s)$ that returns the average wait time for a set of points, where $s=\{(x_0,y_0),(x_1,y_1),\ldots,(x_n,y_n)\}$ is a segment of points along the sensor footprint.

 The quadrotor will move toward the line segment, s, with the maximum average wait time

•
$$s = \underset{s' \in SampledSegments}{\operatorname{arg max}} AvgWaitTime(\mathcal{G}, s')$$

Formally, the position becomes

Position Update

$$-(q.x,q.y) + \sum_{(x,y) \in \textit{points}(s)} \frac{\textit{WaitTime}(\mathcal{G},x,y)}{\sum\limits_{(x',y') \in \textit{points}(s)} \textit{WaitTime}(\mathcal{G},x',y')}(x,y)$$

Planning to Reduce Risk and Maximize Sensor Quality

- PARCov optimizes an objective function that maximizes the sensor data quality and minimizes the risk
- Nonlinear optimization solvers can be used numerically compute the optimal altitude

Objective Function

$$\underset{z \in [z_m in, z_m ax]}{\arg \max} SQ(z) - R(x, y, z)$$

Trajectories

Experimental Setup

- Three scene dimensions were used for experimentation
- For each scene size, 11 different amounts of randomly placed risk points were used
- The number of quadrotors varied from 1 to 26 with a step of 5
- The metrics that we collected included
 - Average risk
 - Average sensor data quality
 - Average wait time

Real-time Results

Algorithmic Performance

Runtime Performance

Conclusions

- Maximizes sensor coverage
- Maximizes the quality of sensory data
- Minimizes the risk incurred by the quadrotor
- The algorithm is scalable, configurable, and succeeds in all of the areas in which it was designed

Future Work

- Apply the algorithm on real quadrotors in a practical setting
- Take battery life into account when planning and allow the quadrotors to recharge automatically

Questions?

