JEE MAINS 2024 April 8 - Shift 1

1

EE24BTECH11061 - Rohith Sai

SINGLE CORRECT

1)	Let $f(x)$ be a positive function such that the area bounded by $y = f(x)$, $y = 0$ from
	$x = 0$ to $x = a > 0$ is $e^{-a} + 4a^2 + a - 1$. Then the differential equation, whose general
	solution is $y = c_1 f(x) + c_2$, where c_1 and c_2 are arbitrary constants, is

a)
$$(8e^x + 1) \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

b) $(8e^x + 1) \frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$
c) $(8e^x + 1) \frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$
d) $(8e^x + 1) \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$

2) The number of critical points of the function $f(x) = (x-2)^{\frac{2}{3}}(2x+1)$ is

a) 0

b) 1
 d) 2
 3) Let the sum of two positive integers be 24. If the probability, that their product is

c) 3

- not less than $\frac{3}{4}$ times their greatest possible product, is $\frac{m}{n}$, where gcd(m,n)=1, then n-m equals
 - a) 11 c) 9 b) 10 d) 8

4) Let $H: \frac{-x^2}{a^2} + \frac{y^2}{b^2} = 1$ be the hyperbola, whose eccentricity is $\sqrt{3}$ and the length of the latus rectum is $4\sqrt{3}$. Suppose the point $(\alpha, 6)$, $\alpha > 0$ lies on H. If β is the product of the focal distances of the point $(\alpha, 6)$, then $\alpha^2 + \beta$ is equal to

a) 169 b) 171 c) 170 d) 172

5) The sum of all the solutions of the equation $8^{2x} - 16.8^x + 48 = 0$ is: