

TIMBER ENGINEERING - VSM196

LECTURE 11 –

JOINTS – AXIALLY LOADED NAILS/SCREWS

SLS DESIGN

SPRING 2020

Topic

- Joints axially loaded nails/screws
- Mechanical and glued connections, SLS design
- [DoTS: Chapter 4]

Content

- Axially loaded fasteners
- Moment resisting connections
- Design for SLS
- Design examples H3

Intended Learning Outcomes of this lecture

- You know different fasteners with for axial load-transfer
- You can calculate the axial load-carrying capacity of different fasteners
- You can determine the actions on fasteners in moment resisting connections
- You can calculate the deformation and slip of connections

Overview

- We talk about the tensile (anchorage) capacity of fasteners.
- Tensile capacity of fasters can be provided by using:
 - Annular rings

- We talk about the tensile (anchorage) capacity of fasteners.
- Tensile capacity of fasters can be provided by using:
 - Annular rings
 - Threading (screws)
 - a) coach screw
 - b) countersunk head screw
 - c) round head screw

Typical wood screws: (a) coach screw (b) countersunk head (c) round head.

- We talk about the tensile (anchorage) capacity of fasteners.
- Tensile capacity of fasters can be provided by using:
 - Annular rings
 - Threading (screws)
 - Nuts and washers on the head side
 - · Nuts and washers on the point side

Throughout **bolts** with washers and nuts

Diameter 6 - 30 mm Length up to 500 mm

- We talk about the tensile (anchorage) capacity of fasteners.
- Tensile capacity of fasters can be provided by using:
 - Annular rings
 - Threading (screws)
 - · Nuts and washers on the head side
 - Nuts and washers on the point side
 - Bonded-in rods

Source: Henkel AG

Screws

Screws - general

- *d* Diameter; Outer thread diameter
- *d*₁ Inner thread diameter
- d_s Diameter of the shaft part
- d_h Head diameter of screws
- *l* Length
- l_a Length of the threaded part
- l_s Length of the shaft

EN 14592

 $2.4 \text{ mm} \leq d \leq 24 \text{ mm}$

Screws – production method

Lag screws

Thread cut into the wire (DIN 7998):

$$d_s = d$$

 $d_1/d = 0.7 - 0.75$

Mostly low carbonated steel

Self-tapping screw

Thread forged or rolled from the wire:

$$d_s \approx d_1$$

0.6 \le d_1/d \le 0.6

- Large diversity of screw heads, thread, screw tip etc.
- Mostly high carbonated steel

Self-tapping screws

Failure modes situations

- Axial failure modes
 - Withdrawal

Head pull-trough

Tension

Buckling

- Lateral failure modes (Johansen theory, European Yield Model)
 - Embedment failure

Combined failure

Ductile failure

Withdrawal

Withdrawal capacity

$$F_{ax,k,Rk} = f_{ax,k} dl_{ef}$$

• Withdrawal parameter (EN 1382)

$$f_{ax} = \frac{F_{\text{max}}}{dl_{ef}}$$

CHALMERS

Withdrawal

- · Withdrawal resistance
 - EN 1995-1-1(2008)
 - General values for $\alpha \ge 30^{\circ}$
 - Effective penetration depth $l_{ef} \ge 6d$
 - $6 \text{ mm} \le d \le 12 \text{ mm}$
 - $0.6 \le d_1/d \le 0.75$

$$F_{ax,k,Rk} = \frac{n_{ef} f_{ax,k} dl_{ef} k_d}{1.2 \cos^2 \alpha + \sin^2 \alpha}$$
$$f_{ax,k} = 0.52 d^{-0.5} l_{ef}^{-0.1} \rho_k^{0.8}$$

 $k_d = \min \begin{cases} d/8 \\ 1 \end{cases}$

Product specific values

$$F_{ax,\alpha,Rk} = \frac{n_{ef} f_{ax,k} dl_{ef}}{1.2 \cos^2 \alpha + \sin^2 \alpha} \left(\frac{\rho_k}{\rho_a}\right)^{0.8}$$

Bejtka, I and Blaß, H. J. (2002), CIB-W18/39-7-2.

 $n_{ef} = n^{0.9}$

Withdrawal failure

- Case 1
- Screw parallel to the grain

- Case 2
- Screw perpendicular to the grain

Withdrawal failure

- Case 1
- Screw parallel to the grain

- Case 2
- Screw perpendicular to the grain

Head pull-through resistance

• EN 1995-1-1 (2008)

$$F_{ax,\alpha,Rk} = n_{ef} f_{head,k} d_h^2 \left(\frac{\rho_k}{\rho_a}\right)^{0.8}$$

- d_h diameter of the screw head
- ρ_k , ρ_a char. und reference density for $f_{head.k}$ according to EN 14592

• the characteristic pull-through parameter $f_{head,k}$ strongly depends on the shape of the screw head!

For higher head pull-trough resistance use whashers or plate heads!

Tensile failure of the screw

- EN 1995-1-1 (2008)
 - characteristic tensile resistance (head tear-off or tensile capacity of shank)

$$F_{t,Rk} = n_{ef} f_{tens,k}$$

• $f_{tens.k}$ characteristic tensile capacity

Influence of the screw inclination

- 🖒 Incline screw to achieve
 - High strength
 - High stiffness

- Self-tapping screws with inclination
- Shear connection

· Bejtka and Blass:

$$R = R_{ax}(\mu \sin \alpha + \cos \alpha) + R_{lat}(\sin \alpha - \mu \cos \alpha)$$

- · Joint stiffness
 - · Tomasi et al.

$$K_{ser} = K_{ax} \cos \alpha (\cos \alpha + \mu \sin \alpha) + K_{lat} \sin \alpha (\sin \alpha - \mu \cos \alpha)$$

Spacing and distances of screws

Table 8.6 - Minimum spacings and end and edge distances for axially loaded screws

Minimum screw spacing in a plane parallel to the grain	Minimum screw spacing perpendicular to a plane parallel to the grain	Minimum end distance of the centre of gravity of the threaded part of the screw in the member	Minimum edge distance of the centre of gravity of the threaded part of the screw in the member $a_{2,CG}$	
a ₁	a ₂	a _{1,CG}		
7 <i>d</i> 5 <i>d</i>		10 <i>d</i>	4 d	

Spacing and distances of screws

Table 8.6 - Minimum spacings and end and edge distances for axially loaded screws

Minimum screw spacing in a plane parallel to the grain	Minimum screw spacing perpendicular to a plane parallel to the grain	Minimum end distance of the centre of gravity of the threaded part of the screw in the member	Minimum edge distance of the centre of gravity of the threaded part of the screw in the member $a_{2,CG}$	
a ₁	a ₂	a _{1,CG}		
7 <i>d</i>	5 <i>d</i>	10 <i>d</i>	4 d	

Applications

Source: Wiehag

Buckling

• Pushing-in of the screws

• Buckling of the screws

Screws under compression loading

Buckling with elastic bedding

$$F_{ax,c,Rk} = k_c f_{y,k} \pi \frac{d_1^2}{4}$$

· buckling factor

$$k_c = \frac{1}{k + \sqrt{k^2 - \lambda_{rel}^2}} \le 1$$

$$k = 0.5 \big[1 + 0.49 (\lambda_{rel} - 0.2) + \lambda_{rel}^2 \big]$$

relative slenderness

$$\lambda_{rel} = \sqrt{\frac{N_{pl,k}}{N_{ki,k}}}$$

plastic and critical load

$$N_{pl,k} = f_{y,k} \pi \frac{d_1^2}{4}$$
 $N_{ki,k} = (1 \sim 2) \sqrt{c_h E_k \pi \frac{d_1^4}{64}}$

bedding coefficient
$$c_h = \frac{(0.22 + 0.014d)\rho}{1.17 \sin \alpha^2 + \cos \alpha^2}$$

Nails

Axial capacity of nails

- The tensile capacity depends on:
 - The roughness along the nail, f_{ax}
 - The anchorage capacity of nail head, f_{head}
- For smooth nails

$$f_{ax,k} = 20 \cdot 10^{-6} \rho_k^2$$
 ρ_k [kg/m³] f_{ax} , f_{head} , [N/mm²]

- Minimum penetration of 8d
- Providing that the penetration length is at least 12d, if less it is multiplied by $\left(t_{pen}/4d-2\right)$

Axial capacity of nails

- $D \begin{vmatrix} d_k \\ d_k \end{vmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ \end{bmatrix}$
- The tensile capacity depends on:
 - The roughness along the nail, f_{ax}
 - The anchorage capacity of nail head, f_{head}
- · For annular ring shanked nails

$$f_{ax,k} = 65 \cdot 10^{-6} \rho_k^2$$

$$\rho_k$$
 [kg/m³]
 f_{ax} [N/mm²]
 $L_1 = 2/3 L_n$

- Minimum penetration of 6d
- Providing that the penetration length is at least 8d, if less it is multiplied by $\left(t_{pen}/2d-3\right)$

Axial capacity of nails

· Other than smooth nails

$$F_{ax} = \min \begin{cases} f_{ax,k} \cdot d \cdot t_{pen} \\ f_{head,k} \cdot d_{head}^2 \end{cases}$$

EC5, Eq. 8.23

Smooth nails

$$F_{ax} = \min \begin{cases} f_{ax,k} \cdot d \cdot t_{pen} \\ f_{ax,k} \cdot d \cdot t_{headside} + f_{head,k} \cdot d_{head}^2 \end{cases}$$

EC5, Eq. 8.24

Axially loaded nails

• Penetration length l should be as a minimum 12d for smooth nails and 8d for other nails

Axially loaded nails

· Slant nailing

Do not trust smooth nails in tension! Timber might dry, shrink, crack

Bolts

Bolts – axial capacity

 The withdrawal capacity depends on anchorage capacity of washers and nuts and the strength of bolt

$$F_{ax,washer,k} = 3 \cdot f_{c,90,k} \cdot A_{washer}$$

Strength class

Bolt class	4.6	5.6	6.8	8.8	10.9
$f_{\rm yb}~({ m N/mm}^2)$	240	300	480	640	900
f _{ub} (N/mm ²)	400	500	600	800	1000

Bolts – axial capacity

- (1) The axial load-bearing capacity and withdrawal capacity of a bolt should be taken as the lower value of:
- the bolt tensile capacity;
- the load-bearing capacity of either the washer or (for steel-to-timber connections) the steel plate.
- (2) The bearing capacity of a washer should be calculated assuming a characteristic compressive strength on the contact area of $3.0f_{c.90.k}$.
- (3) The bearing capacity per bolt of a steel plate should not exceed that of a circular washer with a diameter which is the minimum of:
- 12t, where t is the plate thickness;
- 4d, where d is the bolt diameter.

General

Combined loading

- If the fastener is subjected to combined effect of shear and tension then:
- Smooth nails

$$\frac{F_{ax,Ed}}{F_{ax,Rd}} + \frac{F_{v,Ed}}{F_{v,Rd}} \le 1$$
 Eq. 8.27

Other than smooth nails and screws

$$\left(\frac{F_{ax,Ed}}{F_{ax,Rd}}\right)^2 + \left(\frac{F_{v,Ed}}{F_{v,Rd}}\right)^2 \le 1$$
 Eq. 8.28

Moment resisting connections

Moment resisting connections

Force diagrams on the fasteners in moment-resisting joints.

Moment resisting connections - Procedure

- 1. Translate the force to center of gravity of joint
- 2. The vertical component of the force will be equally taken by each fastener, $F_{vi} = F/n$
- 3. The force due to moment in each fastener will be

$$I_{P} = \sum r_{i}^{2} = \sum (x_{i}^{2} + y_{i}^{2}) \qquad F_{mi} = K \cdot \alpha \cdot r_{i} = \frac{M \cdot r_{i}}{I_{p}}$$
$$F_{mxi} = -\frac{M \cdot y_{i}}{I_{p}} \qquad F_{myi} = -\frac{M \cdot x_{i}}{I_{p}}$$

4. Vector summation gives

$$F_i = \sqrt{(F_{xi} + F_{mxi})^2 + (F_{yi} + F_{myi})^2}$$

 Which should be compared with strength of a single fastener

Moment resisting connections

Moment resisting connections

• Examples:

Bonded-in rods/ Glued-in rods

Materials

- Timber
 - Glued laminated timber Glulam
 - Laminated veneer lumber LVL
 - Cross laminated timber CLT
- Adhesive
 - Tested according to prEN 17334
 - PUR
 - Epoxy
- Rods
 - Metric Threaded Rods
 - Ribbed Rods

Failure modes:

- tension failure of the rod
- · compression (buckling) failure of the rod
- failure of the adhesive in the bondline and its bond to rod and timber
- shear failure of the timber adjacent to the bondline
- splitting of the timber departing from the Bonded-in-rods
- timber failure of the member in the surrounding of the glued-in-rod

Axial resistance of the bonded-in rod

$$F_{ax,Rd} = min \begin{cases} F_{ax,rod,Rd} \\ F_{ax,b,Rd} \end{cases}$$

with

$$F_{ax,rod,Rd} = \min \begin{cases} \frac{1}{\gamma_{M,0}} A_s f_{y,k} \\ \frac{1}{\gamma_{M,2}} 0.9 A_s f_{u,k} \end{cases}$$
 Resistance of the rod

$$F_{ax,b,Rd} = \frac{k_{mod}}{\gamma_M} \pi dl_{b,eff} f_{k,1,k}$$

Resistance of the bondline

- Failure modes

 - Adhesive high variability

Examples

- Examples
 - Frame corners

Examples

Production

- Check steel strength of rods!
- Follow requirements and processing guidelines of the adhesive producers!
- Check excess or loss of adhesive during bonding process
- Clean cut surface of pre-drilled holes. Not burned!
- Clean pre-drilled holes from saw dust and drilling chips
- · Use spacers to insured centering of the rods in the holes
- Tighten nuts uniformly for connections with several bonded-on rods
- Use torque-limiting wrench for tightening of the nuts to limit the tensile load applied to the rods

Production

Source: R. Wiedmann, R. Steiger

• Possible errors!

Source: R. Wiedmann, R. Steiger

Serviceability limit states/ Stiffness of joints

Typical load-slip curves of connections

The stiffness of timber joints depends on:

- Type of joint
- Strength and quality of the parts
- Grain direction
- Load level
- Load duration and creep

Typology of the load-deformation curve

Derivation of EC5 equations

· Stiffness according to EN 26891

$$K_{ser} = \frac{0.4 F_{max}}{\frac{4}{3} (v_{04} - v_{01})}$$

Deformation according to EC5

$$u_{inst} = \frac{F_d}{K_{ser}}$$

Slip-Modulus of fasteners

Type of fastener	K _{ser}
Nails:	
- Without pre-drilling	$ ho_m^{1,5} d^{0,8}/30$
- With pre-drilling	$ ho_m^{1,5}d/23$
 Screws 	$ ho_m^{1,5}d/23$
 Bolts 	$ ho_m^{1,5}d/23$
• Dowels	$ ho_m^{1,5} d/23$

Calculation of deformation of connections

7.1 Joint slip

(1) For joints made with dowel-type fasteners the slip modulus $K_{\rm ser}$ per shear plane per fastener under service load should be taken from Table 7.1 with $\rho_{\rm m}$ in kg/m³ and d or $d_{\rm c}$ in mm. For the definition of $d_{\rm c}$, see EN 13271.

NOTE: In EN 26891 the symbol used is k_s instead of K_{ser} .

Table 7.1 – Values of K_{ser} for fasteners and connectors in N/mm in timber-to-timber and wood-based panel-to-timber connections

Fastener type	$K_{ m ser}$
Dowels Bolts with or without clearance ^a Screws Nails (with pre-drilling)	$\rho_{\rm m}^{-1.5} d/23$
Nails (without pre-drilling)	$\rho_{\rm m}^{1,5} d^{0,8}/30$
Staples	$\rho_{\rm m}^{1,5} d^{0,8}/80$
Split-ring connectors type A according to EN 912 Shear-plate connectors type B according to EN 912	$\rho_{\rm m} d_{\rm c} / 2$
Toothed-plate connectors:	
 Connectors types C1 to C9 according to EN 912 	$1.5 \rho_{\rm m} d_{\rm c} / 4$
 Connectors type C10 and C11 according to EN 912 	$\rho_{\rm m} d_{\rm c} I 2$
^a The clearance should be added separately to the deformation.	

(2) If the mean densities $\rho_{\rm m,1}$ and $\rho_{\rm m,2}$ of the two jointed wood-based members are different then $\rho_{\rm m}$ in the above expressions should be taken as

$$\rho_{\rm m} = \sqrt{\rho_{\rm m,1}\rho_{\rm m,2}} \tag{7.1}$$

(3) For steel-to-timber or concrete-to-timber connections, K_{ser} should be based on ρ_{m} for the timber member and may be multiplied by 2,0.

Example: combined beam

- initial deformation (self-weight)
 - · slip of the connections

 K_{ser} of linear-elastic range between 10% and 40% of ultimate load

- ultimate limit state (ULS)
 - $K_u := 2/3K_{ser}$

Look back in history: Collapse due to low connection stiffness

Collapse of the Sandö-Bridge formwork in 1939

Examples H3

CHALMERS UNIVERSITY OF TECHNOLOGY