Supporting Information

Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics.

Carlos Bernuy-López, a , William Manalastas Jr. a , Juan Miguel Lopez del Amo a , Ainara Aguadero $^{a,\ b}$, Frederic Aguesse a , and John Kilner $^{a,\ b}$

^a CIC Energigune, Parque Tecnológico de Álava, 48, 01510 Miñano, Spain. ^b Department of Materials Imperial College, London, SW7 2AZ, UK.

cbernuy@cicenergigune.com, a.aguadero@imperial.ac.uk, jmlopez@cicenergigune.com (NMR)

Figure S1. X-Ray diffraction patterns for all the LZLGO samples studied in this work exposed to air, for a non-air exposed LZLGO_300 sample (named sealed) at time 0 and after 5 days. It can be observed as the level of air exposure varies the distortion seems to change as well, which may indicate some Li re-ordering in the structure.

Figure S2. Nyquist plot for an LZLGO_200 sample sintered in air at 24 $^{\circ}$ C using Ag-blocking electrodes. It can be seen a single semicircle at higher frequencies which include both bulk and grain boundary processes (R_B+R_{GB}) and a diffusion process at lower frequencies (R_W). Selected frequencies are shown.

Figure S3: ⁷¹Ga spectra of LZLGO in function of Ga content.