I. SISTEME DE NUMERAȚIE ŞI CODURI

- Sistemele numerice prelucrează informație
- Informația este codificată → un anumit tip de reprezentare
- Sistemul de numeraţie = totalitatea regulilor de reprezentare a numerelor cu ajutorul unor simboluri numite cifre
- Sistemele de numerație:
 - poziționale valoarea unei cifre determinată de poziția sa în cadrul numărului
- nepoziționale

Numărul "N", în sistem pozițional, în baza de numerație "b" se reprezintă:

$$N = a_{q-1}b^{q-1} + \dots + a_0b^0 + \dots + a_{-p}b^{-p} = \sum_{i=-p}^{q-1} a_ib^i$$

- baza "b" este număr întreg, > 1
- a_i sunt întregi în gama: 0≤a_i≤b-1
- notația (N)_b = numărul "N" în baza "b"
- dacă baza "b" nu se specifică este implicit 10
- complementul unei cifre "a", notat "a" în baza "b" este definit: $\overline{a} = (b-1) a$

- Sistem de numerație binar baza b=2
 - în sistemul numeric binar avem 2 cifre binare ("biţi"), 0 și 1
 - complementele cifrelor binare: 0 = 1; 1 = 0
- Sistemele numerice folosesc pentru reprezentarea informației şi alte sisteme de numerație → mai uzuale:
 - octal
 - hexazecimal

- Sistem de numerație octal baza b = 8
 - 8 cifre: 0 7
 - reprezentarea pentru echivalentul în binar pe 3 biţi
 - 0 = 000; 1 = 001; 2 = 010; 3 = 011; 4 = 100; 5 = 101; 6 = 110; 7 = 111
- Sistem de numerație hexazecimal baza b = 16
 - 16 semne: 0 9 și A F
 - reprezentarea pentru echivalentul în binar pe 4 biţi
 - 0 = 0000; 1 = 0001; 2 = 0010; 3 = 0011; 4 = 0100; 5 = 0101; 6 = 0110; 7 = 0111; 8 = 1000; 9 = 1001; A = 1010; B = 1011; C = 1100; D = 1101; E = 1110; F = 1111
 - 1 byte (octet) = 8 biţi reprezentare cu 2 semne
 - utilizat pentru reprezentare restrânsă

- Conversia se face din baza "b₁" în baza "b₂"
- În sistemele poziționale conversia se face prin înmulțiri sau împărțiri repetate
- Se disting 2 cazuri de conversie:
 - a) $b_1 < b_2$
 - b) $b_1 > b_2$

- a) $b_1 < b_2$
 - (N)b₁ se exprimă ca un polinom în puterile lui "b₁" și se evaluează polinomul folosind aritmetica în baza "b₂"
 - Exemplu:
 - $b_1 = 3$
 - $b_2 = 10$
 - $(N)_3 = 2120,1$
 - $(N)_{10} = 2 \cdot 3^3 + 1 \cdot 3^2 + 2 \cdot 3^1 + 0 \cdot 3^0 + 1 \cdot 3^{-1} =$
 - = 54+9+6+0+0,3 = 69,3

- **b**) $b_1 > b_2$
 - se utilizează aritmetica în baza "b₁"
 - se face conversia separată a părții întregi și a părții fracționare
 - conversia părții întregi:
 - numărul se împarte la baza "b₂", se obține un cât și un rest
 - se reține restul și se continuă cu împărțirea câtului la baza "b2"
 - algoritmul se oprește când câtul = 0
 - partea întreagă se obține prin scrierea resturilor obținute, în ordine inversă generării lor

- b) $b_1 > b_2$
 - conversia părții fracționare:
 - numărul de înmulțește cu baza "b₂", se obține un număr format dintr-o parte întreagă și una fracționară
 - se reține partea întreagă și se continuă cu înmulțirea cu baza "b₂" a părții fracționare obținute
 - algoritmul se continuă până la obținerea preciziei dorite
 - partea fracționară se obține prin scrierea părților întregi obținute, în ordinea generării lor

- b) $b_1 > b_2$
 - Exemplu:

•
$$b_1 = 10$$

•
$$b_2 = 4$$

$$(N)_{10} = 347,4$$

conversia părții întregi:

$$347:4 = 86 \text{ rest } 3$$

$$86:4 = 21 \text{ rest } 2$$

$$21:4 = 5 \text{ rest } 1$$

$$-1:4 = 0 \text{ rest } 1$$

Partea întreagă =
$$(11123)_4$$
 Curs 1 Proiectare logica

conversia părții fracționare:

$$0.4 \cdot 4 = 1.6 \Rightarrow 1$$

$$0.6 \cdot 4 = 2.4 \Rightarrow 2$$

Partea fracţionară = $(1212...)_4$

Numărul $(N)_4 = (11123, 1212...)_4$

- Conversia numerelor din octal şi hexazecimal în binar şi invers - se bazează pe exprimarea prin 3, respectiv 4 biţi a cifrelor din octal şi hexazecimal
- Exemple:
 - din octal şi hexazecimal în binar
 - $(123,4)_8 = (001\ 010\ 011,\ 100)_2 = (1010011,1)_2$
 - $(2C5F,8)_{16} = (0010\ 1100\ 0101\ 1111,\ 1000)_2 = (10110001011111,1)_2$
 - din binar în octal şi hexazecimal
 - $(1010110,0101)_2 = (001\ 010\ 110,\ 010\ 100)_2 = (126,24)_8$
 - $(10111001101010,10011)_2 = (0010\ 1110\ 0110\ 1010,\ 1001\ 1000)_2 = (2E6A,98)_{16}$

1.3. Coduri binare

- Sistemul zecimal este preferat în interfaţa om sistem de calcul
- Cifrele zecimale se reprezintă prin succesiuni de cifre binare → coduri binare (binar-zecimale)
- 10 cifre zecimale, 0 9, se pot reprezenta pe 4 biţi
- Codurile binare:
 - ponderate
 - neponderate

- La fiecare cifră binară se asociază o pondere
- Pentru fiecare grup de 4 cifre binare din cod suma ponderilor acelor cifre binare care au valoarea 1 = cifra zecimală pe care o reprezintă
- O cifră dintr-un cod ponderat, unde a_i poate lua valoarea 0 sau 1, se scrie:

$$N = \sum_{i=0}^{3} a_i b_i$$

Exemple de coduri binare ponderate

Exemple de coduit offiale poliderate												
Cifră zecimală	b_3	b_2	b_1	b_0	b_3	b_2	b_1	b_0	Pondere negativa			<u>tivă</u>
	8	4	2	1	2	4	2	1	6	4	2	-3
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1	0	1	0	1
2	0	0	1	0	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1	1	0	0	1
4	0	1	0	0	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	1	1	1	0	1	1
6	0	1	1	0	1	1	0	0	0	1	1	0
7	0	1	1	1	1	1	0	1	1	1	0	1
8	1	0	0	0	1	1	1	0	1	0	1	0
9	1	0	0	1	1	1	1	1	1	1	1	1

11.10.2019

Curs 1 Proiectare logica

- Codul BCD (Binary Coded Decimal) = codul binar natural - ponderea 8421 (puterile lui 2!) - fiecare cifră zecimală este convertită în binar
- Codurile 2421 şi cel cu pondere negativă 642-3, sunt coduri ponderate din categoria codurilor autocomplementare → complementul lui "N" este 9-N
- Condiția de cod autocomplementar la codurile ponderate - suma ponderilor să fie egală cu 9

- Au alte reguli de formare
- Codul EXCES 3:
 - format prin adăugarea lui 0011 (reprezentarea în binar a cifrei 3) la fiecare cuvânt de cod din codul ponderat BCD
 - este un cod autocomplementar
 - nu conţine combinaţia 0000, care ar putea fi confundată cu lipsa de informaţie

- Coduri ciclice cuvintele de cod succesive diferă doar printr-o cifră binară
- Coduri reflectate cuvântul de cod de "n" biţi se generează prin reflectarea cuvântului de cod de "n-1" biţi
- Codul GRAY:
 - ciclic
 - reflectat

- Codul Grey pe 3 biţi se obţine prin reflectarea celui pe 2 biţi
- Codul Grey pe 4 biţi se obţine prin reflectarea celui pe 3 biţi

Gray	2 biţi	G	iţi	
0	0	0	0	0
0	1	0	0	1
1	1	0	1	1
1	0	0	1	0
		1	1	0
		1	1	1
		1	0	1
		1	0	0

Codurile binar-zecimale EXCES 3 şi Gray

Cifră zecimală	Exces 3			Gray				
0	0	0	1	1	0	0	0	0
1	0	1	0	0	0	0	0	1
2	0	1	0	1	0	0	1	1
3	0	1	1	0	0	0	1	0
4	0	1	1	1	0	1	1	0
5	1	0	0	0	0	1	1	1
6	1	0	0	1	0	1	0	1
7	1	0	1	0	0	1	0	0
8	1	0	1	1	1	1	0	0
9	1	1	0	0	1	1	0	1

1.4. Detectarea şi corecţia erorilor

- În sistemele numerice informația se poate altera în procesul de transmitere
- Corectitudinea informației recepționate → se utilizează coduri detectoare și corectoare de erori

1.4.1. Coduri detectoare de erori

- Apariţia unei singure erori transformă un cuvânt de cod valid în cuvânt de cod invalid
- Metode de detecție a erorilor
 - Metoda bitului de paritate
 - se adaugă o cifră binară în plus la fiecare cuvânt de cod al unui cod dat, pentru a face ca numărul de biţi de 1 din fiecare cuvânt să fie impar sau par
 - Exemplu se transmite cuvântul de cod 1011
 - pentru paritate impară se adaugă înainte de cuvânt cifra $0 \rightarrow 0$ 1011
 - pentru paritate pară se adaugă înainte de cuvânt cifra $1 \rightarrow 1$ 1011

1.4.1. Coduri detectoare de erori

- Metode de detecție a erorilor
 - Codul detector de erori "2 din 5"
 - are ponderile 01247, cu excepția cuvântului de cod 0 zecimal

Codul detector de erori "2 din 5"									
Cifra zecimală	0	1	2	4	7				
0	0	0	0	1	1				
1	1	1	0	0	0				
2	1	0	1	0	0				
3	0	1	1	0	0				
4	1	0	0	1	0				
5	0	1	0	1	0				
6	0	0	1	1	0				
7	1	0	0	0	1				
8	0	1	0	0	1				
9	0	0	1	0	1				

1.4.1. Coduri detectoare de erori

- Pentru un cod de detecţie a erorii de "n" biţi nu se pot folosi mai mult de jumătate din cele 2ⁿ combinaţii posibile ale cifrelor binare
 - Pentru 10 cifre sunt necesare cel puţin 5 cifre binare!
- Distanţa minimă a unui cod = cel mai mic număr de biţi prin care diferă 2 coduri
- Un cod este detector de erori dacă distanţa sa minimă este ≥ 2

1.4.2. Coduri corectoare de erori

- Cod corector de eroare dacă întotdeauna cuvântul de cod corect poate fi dedus din cuvântul eronat
- Cele mai cunoscute coduri de corecție codurile Hamming
- Codurile Hamming corectoare de erori singulare (o sigură eroare!) au distanța minimă = 3
- Relaţia lui Hamming număr minim de biţi de control necesari pentru corectarea erorilor singulare:

$$2^k \ge m + k + 1$$

- m = număr de biţi de informaţie utilă
- k = număr de biţi de control

1.4.2. Coduri corectoare de erori

- Exemplu de cod Hamming pentru m=4; mesaj original în cod BCD (4 biţi de informaţie utilă)
 - Din relaţia lui Hamming \Rightarrow k = 3
 - Număr total de biţi: 4 (utili) + 3 (control) = 7
 - Biţii de control apar pe poziţiile corespunzătoare puterilor lui 2

1	2	3	4	5	6	7
c1	c2	b1	c 3	b2	b3	b4

Biţii de control se calculează cu relaţiile:

$$c_1 = b_1 \oplus b_2 \oplus b_4$$

$$c_2 = b_1 \oplus b_3 \oplus b_4$$

$$c_3 = b_2 \oplus b_3 \oplus b_4$$
Curs 1 Projectare logica

1.4.2. Coduri corectoare de erori

Exemplu:

- b₁b₂b₃b₄ = 0100 (cifra 4 din zecimal exprimată în cod BCD)
- biţii de control calculaţi: $c_1 = 1$, $c_2 = 0$, $c_3 = 1$
- secvența de cod de corecție va fi: 1001100