AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Currently Amended) A method for synthesizing a compound represented by Formula [2]:

$$R_3$$
 O O R_2 O O R_2 O O O R_2 O O O R_2

wherein R_2 and R_3 each independently represent a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group or a hydroxyl group; and B_2 and B_3 each independently represent a nucleic acid base,

or a salt thereof from a compound represented by Formula [1]:

wherein R₁ represents a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group, or a hydroxyl group substituted with a hydroxyl protective group; and B₁ represents a nucleic acid base which may be protected, said method comprising preparing a condensation product of the compound represented by Formula [1] and forming the compound of Formula [2] from the condensation product.

2. (Currently Amended) A method for synthesizing a compound represented by Formula [2]:

wherein R_2 , R_3 , B_2 and B_3 have the same meanings as defined for R_2 , R_3 , B_2 and B_3 of Formula [2] in claim 1 above R_2 and R_3 each independently represent a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group or a hydroxyl group; and B_2 and B_3 each independently represent a nucleic acid base,

or a salt thereof from a compound represented by Formula [3]:

$$R_{6}O$$
 R_{4}
 $R_{5}O$
 R_{7}
 R_{8}
 R_{8}
 R_{1}

wherein R₄ represents a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group, or a hydroxyl group substituted with a hydroxyl protecting group; B₄ represents a nucleic acid base which may be protected; R₅ represents an allyl group or a 2-cyanoethyl group; R₆ represents a hydroxyl protecting group; and R₇ and R₈ each independently represent an alkyl group having 1 to 4 carbon atoms, or R₇ and R₈ may be bonded to form a ring containing a nitrogen atom,

or a compound represented by Formula [4]:

wherein R_4 , R_5 , R_6 and B_4 have the same meanings as defined for R_4 , R_5 , R_6 and B_4 of Formula [3] above,

and from a compound represented by Formula [1]:

wherein R₁-and B₁ have the same meanings as defined for R₁-and B₁ of Formula [1] in claim 1 above R₁ represents a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group, or a hydroxyl group substituted with a hydroxyl protective group; and B₁ represents a nucleic acid base which may be protected, said method comprising preparing a condensation product from the compound of Formula [1] and the compound of Formula [3], oxidizing the condensation product and preparing the compound of Formula [2] from the oxidized condensation product or comprising preparing a condensation product from the compound of Formula [1] and the compound of Formula [4] and preparing the compound of Formula [2] from the condensation product.

3. (Currently Amended) The method according to claim [[1 or]] 2, wherein the compound of Formula [2] is prepared via a [[the]] synthetic intermediate which is a compound represented by Formula [5]:

wherein R_1 and R_4 each independently represent a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group, or a hydroxyl group substituted with a hydroxyl protecting group; B_1 and B_4 each independently represent a nucleic acid base which may be protected; and R_5 is an allyl group or a 2-cyanoethyl group.

4. (Currently Amended) The method according to claim [[1 or]] 2, wherein the compound of Formula [2] is prepared via a [[the]] synthetic intermediate which is a compound represented by Formula [6]:

wherein R_1 , R_4 , R_5 , B_1 and B_4 have the same meanings as defined for R_1 , R_4 , R_5 , B_4 and B_4 of Formula [5] in the previous claim R_1 and R_4 each independently represent a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group, or a hydroxyl group substituted with a hydroxyl protecting group; B_1 and B_4 each independently represent a nucleic acid base which may be protected; and R_5 is an allyl group or a 2-cyanoethyl group.

- 5. (Original) The method according to claim 1, wherein with respect to Formula [1], R₁ is a hydrogen atom, a fluorine atom, a methoxy group, a 2-methoxyethoxy group or a t-butyldimethylsilyloxy group; and with respect to Formula [2], R₂ and R₃ each independently represent a hydrogen atom, a fluorine atom, a methoxy group, a 2-methoxyethoxy group or a hydroxyl group.
- 6. (Original) The method according to claim 2, wherein with respect to Formulas [1], [3] and [4], R₁ and R₄ each independently represent a hydrogen atom, a fluorine atom, a methoxy group, a 2-methoxyethoxy group or a t-butyldimethylsilyloxy group; and with respect to Formula [2], R₂ and R₃ each independently represent a hydrogen atom, a fluorine atom, a methoxy group, a 2-methoxyethoxy group or a hydroxyl group.
 - 7. (Currently Amended) A compound represented by Formula [1]:

wherein R₁ has the same meaning as defined for R₁-of-Formula [1] in claim 1 above represents a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group, or a hydroxyl group substituted with a hydroxyl protective group; and B₁ represents a nucleic acid base which may be protected.

8. (Currently Amended) A compound represented by Formula [5]:

wherein R_4 , R_4 , R_5 , B_4 and B_4 have the same meanings as defined for R_4 , R_4 , R_5 , B_4 and B_4 of Formula [5] in claim 3 above R_1 and R_4 each independently represent a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group, or a hydroxyl group substituted with a hydroxyl protecting group; B_1 and B_4 each independently represent a nucleic acid base which may be protected; and R_5 is an allyl group or a 2-cyanoethyl group.

9. (Currently Amended) A compound represented by Formula [6]:

wherein R_1 , R_4 , R_5 , B_1 and B_4 have the same meanings as defined for R_1 , R_4 , R_5 , B_1 and B_4 of Formula [6] in claim 4 above R_1 and R_4 each independently represent a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group, or a hydroxyl group substituted with a hydroxyl protecting group; B_1 and B_4 each independently represent a nucleic acid base which may be protected; and R_5 is an

allyl group or a 2-cyanoethyl group.

10. (New) The method according to claim 1, wherein the compound of Formula [2] is prepared via a synthetic intermediate which is a compound represented by Formula [5]:

wherein R_1 and R_4 each independently represent a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group, or a hydroxyl group substituted with a hydroxyl protecting group; B_1 and B_4 each independently represent a nucleic acid base which may be protected; and R_5 is an allyl group or a 2-cyanoethyl group.

11. (New) The method according to claim 1, wherein the compound of Formula [2] is prepared via a synthetic intermediate which is a compound represented by Formula [6]:

wherein R₁ and R₄ each independently represent a hydrogen atom, a halogen atom,

a methoxy group, a 2-methoxyethoxy group, or a hydroxyl group substituted with a hydroxyl protecting group; B_1 and B_4 each independently represent a nucleic acid base which may be protected; and R_5 is an allyl group or a 2-cyanoethyl group.

12. (New) A method for synthesizing a compound represented by Formula [2]:

wherein R_2 and R_3 each independently represent a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group or a hydroxyl group; and B_2 and B_3 each independently represent a nucleic acid base,

or a salt thereof, from a compound represented by Formula [1]:

wherein R₁ represents a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group, or a hydroxyl group substituted with a hydroxyl protective group; and B₁ represents a nucleic acid base which may be protected;

through the following steps (1) to (3):

(1) synthesizing a compound represented by Formula [5]:

wherein R_1 and R_4 each independently represent a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group, or a hydroxyl group substituted with a hydroxyl protecting group; B_1 and B_4 each independently represent a nucleic acid base which may be protected; and R_5 is an allyl group or a 2-cyanoethyl group;

through the following step (1-1) or (1-2),

(1-1) condensing the compound represented by Formula [1] with a compound represented by Formula [3]:

$$R_{6}O$$
 R_{4}
 $R_{5}O$
 $N-R_{7}$
 R_{8}
 R_{8}
 R_{1}

wherein R_4 represents a hydrogen atom, a halogen atom, a methoxy group, a 2-methoxyethoxy group, or a hydroxyl group substituted with a hydroxyl protecting group; B_4 represents a nucleic acid base which may be protected; R_5 represents an allyl group or a 2-cyanoethyl group; R_6 represents a hydroxyl protecting group; and R_7 and R_8 each independently represent an alkyl group having 1 to 4 carbon atoms, or R_7 and R_8 may be bonded to form a ring containing a nitrogen atom,

oxidizing the condensation product, and removing the R6 group from the oxidized product,

(1-2) condensing the compound represented by Formula [1] with a compound represented by Formula [4]:

wherein R_4 , R_5 , R_6 and B_4 have the same meanings as defined for R_4 , R_5 , R_6 and B_4 of Formula [3] above, and

removing the R₆ group from the oxidized product,

(2) synthesizing a compound represented by Formula [6]:

wherein R_1 , R_4 , R_5 , B_1 and B_4 have the same meanings as defined for R_1 , R_4 , R_5 , B_1 and B_4 of Formula [5] above,

from the compound represented by Formula [5] through the following step (2-1) or (2-2),

- (2-1) carrying out a cyclization reaction after removing an allyl group of the compound represented by Formula [5] when R_5 group of the compound represented by Formula [5] is a 2-cyanoethyl group,
- (2-2) carrying out a cyclization reaction after removing a 2-cyanoethyl group of the compound represented by Formula [5] when R₅ group of the compound represented by Formula [5] is an allyl group,

Attorney's Docket No. <u>1034232-000006</u>
Application No.
Page 12

- (3) removing any protective groups from B_1 , B_4 , R_1 , R_4 and R_5 of the compound represented by Formula [6].
- 13. (New) The method according to claim 12, wherein with respect to Formula [1], R₁ is a hydrogen atom, a fluorine atom, a methoxy group, a 2-methoxyethoxy group or a t-butyldimethylsilyloxy group; and with respect to Formula [2], R₂ and R₃ each independently represent a hydrogen atom, a fluorine atom, a methoxy group, a 2-methoxyethoxy group or a hydroxyl group.
- 14. (New) The method according to claim 12, wherein with respect to Formulas [1], [3] and [4] R_1 and R_4 each independently represent a hydrogen atom, a fluorine atom, a methoxy group, a 2-methoxyethoxy group or a t-butyldimethylsilyloxy group; and with respect to Formula [2], R_2 and R_3 each independently represent a hydrogen atom, a fluorine atom, a methoxy group, a 2-methoxyethoxy group or a hydroxyl group.