

PY32F002B 数据手册

32 位 ARM® Cortex®-M0+ 微控制器

Puya Semiconductor (Shanghai) Co., Ltd

PY32F002B 系列

32 位 ARM® Cortex®-M0+ 微控制器

产品特性

- 内核
 - 32 位 ARM® Cortex® M0+
 - -- 最高 24 MHz 工作频率
- 存储器
 - 24 Kbytes Flash 存储器
 - 3 Kbytes SRAM
- 时钟系统
 - 内部 24 MHz RC 振荡器 (HSI)
 - 内部 32.768 KHz RC 振荡器 (LSI)
 - 32.768 KHz 低速晶体振荡器 (LSE)
 - 外部时钟输入
- 电源管理和复位
 - 工作电压: 1.7 V ~ 5.5 V
 - 低功耗模式: Sleep/Stop
 - 上电/掉电复位 (POR/PDR)
 - 掉电检测复位 (BOR)
- 通用输入输出 (I/O)
 - 一多达 18 个 I/O,均可作为外部中断
 - 驱动电流 8 mA
- 1 x 12 位 ADC
 - 一支持最多8个外部输入通道,2个内部通道
 - VADC-REF 内部 1.5 V, VCC
- 定时器
 - 1 个 16 位高级控制定时器 (TIM1)
 - 1 个通用的 16 位定时器 (TIM14)
 - 1 个低功耗定时器 (LPTIM),支持从 stop 模式唤醒
 - 1 个独立看门狗定时器 (IWDT)
 - 1 个 SysTick timer
- 通讯接口
 - 1 个串行外设接口 (SPI)

- 1 个通用同步/异步收发器 (USART),支持自动波特率检测
- 1 个 I²C 接口,支持标准模式 (100 KHz)、快速模式 (400 KHz),支持 7 位寻址模式
- 硬件 CRC-32 模块
- 2路比较器
- 唯一 UID
- 串行单线调试 (SWD)
- 工作温度: -40~85°C
- 封装 TSSOP20, QFN20, SOP16, SOP14

目录

7	品特性		. 2
1.	简介	`	. 5
2.	功能	概述	. 7
	2.1.	Arm® Cortex®-M0+ 内核	. 7
	2.2.	存储器	. 7
	2.3.	Boot 模式	. 7
	2.4.	时钟系统	. 8
	2.5.	电源管理	. 9
	2.5.	1. 电源框图	. 9
	2.5.2	2. 电源监控	. 9
	2.5.3	3. 电压调节器	10
	2.5.4	4. 低功耗模式	10
	2.6.	复位	10
	2.6.	1. 电源复位	10
	2.6.2	2. 系统复位	11
	2.7.	通用输入输出 GPIO	11
	2.8.	中断	11
	2.8.	1. 中断控制器 NVIC	11
	2.8.2	2. 扩展中断 EXTI	11
	2.9.	模数转换器 ADC	12
	2.10.	比较器(COMP)	12
	2.10).1. COMP 主要特性	12
	2.11.	定时器	12
	2.11	l.1. 高级定时器	13
	2.11	l.2. 通用定时器	13
	2.11	l.3. 低功耗定时器	13
	2.11	I.4. IWDG	13
	2.11	1.5. SysTick timer	14
	2.12.	I ² C 接口	14
	2.13.	通用同步异步收发器 USART	15
	2.14.	串行外设接口 SPI	15
	2.15.	SWD	16
3.	引脚	配置	17
	3.1.	端口 A 复用功能映射	22
	3.2.	端口 B 复用功能映射	22
	3.3.	端口 C 复用功能映射	22
4.	存储	背器映射	23
5.	电气	特性	28

5	.1.	则试条件	
	5.1.1.		
	5.1.2.	· · · · · · · · · · · · · · · · · · ·	
5		· 对最大额定值	
5	.3. Д	_作条件	29
	5.3.1.	· _ · · · · · · · · · · · · · · · · · · ·	
	5.3.2.	上下电工作条件	29
	5.3.3.	内嵌复位模块特性	29
	5.3.4.	工作电流特性	30
	5.3.5.	低功耗模式唤醒时间	31
	5.3.6.	外部时钟源特性	31
	5.3.7.	内部高频时钟源 HSI 特性	33
	5.3.8.	内部低频时钟源 LSI 特性	33
	5.3.9.	存储器特性	34
	5.3.10). EFT 特性	34
	5.3.11	. ESD & LU 特性	34
	5.3.12	端口特性	35
	5.3.13	. NRST 引脚特性	35
	5.3.14	. ADC 特性	36
	5.3.15	. 比较器特性	36
	5.3.16	i. 温度传感器特性	37
	5.3.17	. 内置参考电压特性	37
	5.3.18	3. ADC 内置参考电压特性	37
	5.3.19). COMP 内置参考电压特性(4 位 DAC)	37
	5.3.20). 定时器特性	38
	5.3.21	. 通讯口特性	38
6.	封装信	息	42
6	.1. C	NFN20 封装尺寸	42
6	.2. T	SSOP20 封装尺寸	43
6	.3. S	OP16 封装尺寸	44
6	.4. S	OP14 封装尺寸	45
7.	订购信	息	46
8.	版本历	速	47

1. 简介

PY32F002B 系列微控制器采用高性能的 32 位 ARM® Cortex®-M0+内核, 宽电压工作范围的 MCU。嵌入 24 Kbytes Flash 和 3 Kbytes SRAM 存储器,最高工作频率 24 MHz。包含多种不同封装类型产品。芯片集成 I²C、SPI、USART 等通讯外设,1 路 12 位 ADC,2 个 16 位定时器,以及 2 路比较器

PY32F002B 系列微控制器的工作温度范围为-40°C ~ 85°C,工作电压范围 1.7 V ~ 5.5 V。芯片提供 sleep/stop 低功耗工作模式,可以满足不同的低功耗应用。

PY32F002B 系列微控制器适用于多种应用场景,例如控制器、手持设备、PC 外设、游戏和 GPS 平台、工业应用等。

表 1-1 PY32F002B 系列产品规划及特征

		後 -	HH, 20, 63, 20, 1, 2, 122						
	外设	PY32F002BF15 PY32F002BW15 PY32F002BD15							
Flash n	nemory (Kbytes)	24							
SR	AM (Kbytes)	3							
	高级定时器		1 (16-bit)						
흐마묘	通用定时器		1 (16-bit)						
定时器	低功耗定时器		1						
	SysTick	1							
	Watchdog	1							
	SPI	1							
通讯口	I ² C	1							
	USART	1							
	通用端口	18	14	12					
А	.DC 通道数								
(夕	卜部 + 内部)	8+2	7+2	5+2					
比较器最高主频		2							
		24 MHz							
工作电压		1.7 V ~ 5.5 V							
	封装	TSSOP20, QFN20	SOP14						

图 1-1 功能模块

2. 功能概述

2.1. Arm® Cortex®-M0+ 内核

Arm® Cortex®- M0+ 是一款为广泛的嵌入式应用设计的入门级 32 位 Arm Cortex 处理器。它为开发人员提供了显著的好处,包括:

- 结构简单,易于学习和编程
- 超低功耗,节能运行
- 精简的代码密度等

Cortex-M0+ 处理器是 32 位内核,面积和功耗优化高,为 2 级流水的冯诺伊曼架构。处理器通过精简但强大的指令集和广泛优化的设计,提供高端处理硬件,包含单周期乘法器,提供了 32 位架构计算机所期望的卓越性能,比其他 8 位和 16 位微控制器具有更高的代码密度。

Cortex-M0+与一个嵌套的矢量中断控制器(NVIC)紧密耦合。

2.2. 存储器

片内集成 SRAM。通过 byte (8 位)、half-word (16 位)或者 word (32 位)的方式可访问 SRAM。 片内集成 Flash,包含 2 个不同的物理区域组成:

- Main Flash 区域,它包含应用程序和用户数据
- 可配置大小的 Load Flash 区域,用于存放客户 ISP/IAP 引导程序
- Information 区域,768 bytes,它包括以下部分:
 - Option bytes
 - UID bytes
 - Factory Configuration bytes
 - USER OTP memory

对 Flash main memory 的保护包括以下几种机制:

- write protection (WRP)控制,以防止不想要的写操作(由于程序存储器指针 PC 的混乱)。写保护的最小保护单位为 4 Kbytes。
- Option byte 写保护,专门的解锁设计。

2.3. Boot 模式

通过配置位 nBOOT0/ nBOOT1(存放于 Option bytes 中),可选择三种不同的启动模式,如下表所示:

Boot mode configuration Mode nBOOT1 bit nBOOT0 bit Boot memory size == 0 Boot memory size != 0 Χ 0 Main flash 启动 Main Flash 启动 0 1 SRAM 启动 SRAM 启动 1 1 N/A Load Flash 启动

表 2-1 Boot 配置

Boot loader 程序存储在 Load Flash,用于通过 USART 接口下载 Flash 程序。

2.4. 时钟系统

CPU 启动后默认系统时钟频率为 HSI 24 MHz,在程序运行后可以重新配置系统时钟频率和系统时钟源。可以选择的高频时钟有:

- 24 MHz 可配置的内部高精度 HSI 时钟。
- 一个 32.768 KHz 可配置的内部 LSI 时钟。
- 4 MHz ~ 32 MHz 外部输入时钟
- 32.768 KHz LSE 时钟。

AHB 时钟可以基于系统时钟分频,APB 时钟可以基于 AHB 时钟分频。AHB 和 APB 时钟频率最高为 24 MHz。

图 2-1 系统时钟结构图

2.5. 电源管理

2.5.1. 电源框图

图 2-2 电源框图

表 2-2 电源框图

编号	电源	电源值	描述				
1	1 Vcc 1.7 V ~ 5.5 V 通过电源管脚为芯片提供电源,其供电模块为:部分模拟电路						
2	Vcca	1.7 V ~ 5.5 V	给大部分模拟模块供电,来自于 Vcc PAD(也可设计单独电源 PAD)。				
3	Vccio	1.7 V ~ 5.5 V	给 IO 供电,来自于 Vcc PAD				

2.5.2. 电源监控

2.5.2.1. 上下电复位(POR/PDR)

芯片内设计 Power on reset (POR)/Power down reset (PDR)模块,为芯片提供上电和下电复位。该模块在各种模式之下都保持工作。

2.5.2.2. 欠压复位(BOR)

除了 POR/PDR 外,还实现了 BOR (brown out reset)。BOR 仅可以通过 option byte 进行使能和关闭操作。

当 BOR 被打开时,BOR 的阈值可以通过 Option byte 进行选择,且上升和下降检测点都可以被单独配置。

图 2-3 POR/PDR/BOR 阈值

2.5.3. 电压调节器

芯片设计两个电压调节器:

- MR (Main regulator)在芯片正常运行状态时保持工作。
- LPR (low power regulator)在 stop 模式下,提供更低功耗的选择。

2.5.4. 低功耗模式

芯片在正常的运行模式之外,有3个低功耗模式:

- Sleep mode: CPU 时钟关闭 (NVIC, SysTick 等工作),外设可以配置为保持工作。(建议只使能必须工作的模块,在模块工作结束后关闭该模块)
- **Stop mode**:该模式下 SRAM 和寄存器的内容保持,高速时钟 PLL、HSI 和 HSE 关闭。GPIO,IWDG, nRST, COMP output, LPTIM 可以唤醒 stop 模式。

2.6. 复位

芯片内设计两种复位,分别是:电源复位和系统复位。

2.6.1. 电源复位

电源复位在以下几种情况下产生:

- 上下电复位 (POR/PDR)
- 欠压复位 (BOR)

2.6.2. 系统复位

当产生以下事件时,产生系统复位:

- NRST pin 的复位
- 独立看门狗复位 (IWDG)
- SYSRESETREQ 软件复位
- option byte load 复位 (OBL)
- 电源复位 (POR/PDR、BOR)

2.7. 通用输入输出 GPIO

每个 GPIO 都可以由软件配置为输出 (push-pull 或者 open drain),输入 (floating, pull-up/down, analog), 外设复用功能, 锁定机制会冻结 I/O 口配置功能。

2.8. 中断

PY32F002B 通过 Cortex-M0+ 处理器内嵌的矢量中断控制器 (NVIC) 和一个扩展中断/事件控制器 (EXTI) 来处理异常。

2.8.1. 中断控制器 NVIC

NVIC 是 Cortex-M0+ 处理器内部紧耦合 IP。NVIC 可以处理来自处理器外部的 NMI (不可屏蔽中断)和可屏蔽外部中断,以及 Cortex-M0+ 内部异常。NVIC 提供了灵活的优先级管理。

处理器核心与 NVIC 的紧密耦合大大减少了中断事件和相应中断服务例程(ISR)启动之间的延迟。ISR 向量列在一个向量表中,存储在 NVIC 的一个基地地址。要执行的 ISR 的向量地址是由向量表基址和用作偏移量的 ISR 序号组成的。

如果高优先级的中断事件发生,而低优先级的中断事件刚好在等待响应,稍后到达的高优先级的中断事件将首先被响应。另一种优化称为尾链(tail-chaining)。当从一个高优先级的 ISR 返回时,然后启动一个挂起的低优先级的 ISR,将跳过不必要的处理器上下文的压栈和弹栈。这减少了延迟,提高了电源效率。

NVIC 特性:

- 低延时中断处理
- 4级中断优先级
- 支持1个NMI中断
- 支持 18 个可屏蔽外部中断
- 支持 10 个 Cortex-M0+ 异常
- 高优先级中断可打断低优先级中断响应
- 支持尾链(tail-chaining)优化
- 硬件中断向量检索

2.8.2. 扩展中断 EXTI

EXTI 增加了处理物理线事件的灵活性,并在处理器从 stop 模式唤醒时产生唤醒事件。

EXTI 控制器有多个通道,包括最多 18 个 GPIO, 2 个 COMP 输出,以及 LPTIM 唤醒信号。其中GPIO,COMP 可以配置上升沿、下降沿或双沿触发。任何 GPIO 信号通过选择信号配置为 EXTI0~7通道。

每个 EXTI line 都可以通过寄存器独立屏蔽。

EXTI 控制器可以捕获比内部时钟周期短的脉冲。

EXTI 控制器中的寄存器锁存每个事件,即使是在 stop 模式下,处理器从停止模式唤醒后也能识别唤醒的来源,或者识别引起中断的 GPIO 和事件。

2.9. 模数转换器 ADC

芯片具有 1 个 12 位的 SARADC。该模块共有最多 10 个要被测量的通道,包括 8 个外部通道和 2 个内部通道。参考电压可选择片内精准电压 1.5V 或 VCC 电源。

各通道的转换模式可以设定为单次、连续、扫描、不连续模式。转换结果存储在左对齐或者右对齐的 16 位数据寄存器中。

模拟 watchdog 允许应用检测是否输入电压超出了用户定义的高或者低阈值。

ADC 实现了在低频率下运行,可获得很低的功耗。

在采样结束,转换结束,连续转换结束,模拟 watchdog 时转换电压超出阈值时产生中断请求。

2.10. 比较器(COMP)

芯片内集成通用比较器 (general purpose comparators) COMP, 也可以与 timer 组合在一起使用。比较器可以被如下使用:

- 被模拟信号触发,产生低功耗模式唤醒功能
- 模拟信号调节
- 当与来自 timer 的 PWM 输出连接时,Cycle by cycle 的电流控制回路

2.10.1. COMP 主要特性

- 每个比较器有可配置的正或者负输入,以实现灵活的电压选择
 - ─ 多路 I/O pin
 - 电源 VCC 和通过分压提供的 15 个分数值(1/16、2/16 ... 15/16)
 - 内部参考电压 1.5 V,和通过分压提供的 15 个分数值(1/16、2/16 ... 15/16)
- 输出可以连接到 I/O 或者 timer 的输入作为触发
 - OCREF_CLR 事件 (cycle by cycle 的电流控制)
 - 一 为快速 PWM shutdown 的刹车

每个 COMP 具有中断产生能力,用作芯片从低功耗模式 (sleep 和 stop 模式) 的唤醒 (通过 EXTI)

2.11. 定时器

PY32F002B 不同定时器的特性如下表所示:

表 2-3 定时器特性

类型	Timer	位宽	计数方向	预分频	DMA	捕获/比较通道	互补输出
高级定时器	TIM1	16 位	上,下, 中央对齐	1 ~ 65536	支持	4	3
通用定时器	TIM14	16-位	上	1 ~ 65536	-	1	-

2.11.1. 高级定时器

高级定时器(TIM1)由 16 位被可编程分频器驱动的自动装载计数器组成。它可以被用作各种场景,包括:输入信号(输入捕获)的脉冲长度测量,或者产生输出波形(输出比较、输出 PWM、带死区插入的 互补 PWM)。

TIM1包括4个独立通道,用作:

- 输入捕获
- 输出比较
- PWM产生(边缘或者中心对齐模式)
- 单脉冲模式输出

如果 TIM1 配置为标准的 16 位计时器,则它具有与 TIMx 计时器相同的特性。如果配置为 16 位 PWM 发生器,则具有全调制能力(0 - 100%)。

在 MCU debug 模式, TIM1 可以冻结计数。

具有相同架构的 timer 特性共享,因此 TIM1 可以通过计时器链接功能与其他计时器一起工作,以实现同步或事件链接。

2.11.2. 通用定时器

- 通用定时器 TIM14 由可编程预分频器驱动的 16 位自动装载计数器构成。
- TIM14 具有 1 个独立通道用于输入捕获/输出比较, PWM 或者单脉冲模式输出。
- 在 MCU debug 模式, TIM14 可以冻结计数。

2.11.3. 低功耗定时器

- LPTIM 为 16 位向上计数器,包含 3 位预分频器。只支持单次计数。
- LPTIM 可以配置为 stop 模式唤醒源。
- 在 MCU debug 模式, LPTIM 可以冻结计数值。

2.11.4. IWDG

芯片内集成了一个 Independent watchdog(简称 IWDG),该模块具有高安全级别、时序精确及灵活使用的特点。IWDG 发现并解决由于软件失效造成的功能混乱,并在计数器达到指定的 timeout 值时触发系统复位。

- IWDG 由 LSI 提供时钟,这样即使主时钟 Fail,也能保持工作。
- IWDG 最适合需要 watchdog 作为主应用之外的独立过程,并且无很高的时序准确度限制的应用。

- 通过 option byte 的控制,可以使能 IWDG 硬件模式。
- IWDG 是 stop 模式的唤醒源,以复位的方式唤醒 stop 模式。
- 在 MCU debug 模式,IWDG 可以冻结计数值。

2.11.5. SysTick timer

SysTick 计数器专门用于实时操作系统(RTOS),但也可以用作标准的向下计数器。

SysTick 特性:

- 24位向下计数
- 自装载能力
- 计数器记到 0 时可产生中断(可屏蔽)

2.12. I²C 接口

I²C(inter-integrated circuit)总线接口连接微控制器和串行 I²C 总线。它提供多主机功能,控制所有 I²C 总线特定的顺序、协议、仲裁和时序。支持标准(Sm)、快速(Fm)。

I²C 特性:

- Slave 和 master 模式
- 多主机功能:可以做 master, 也可以做 slave
- 支持不同通讯速度
 - 标准模式(Sm): 高达 100 KHz快速模式(Fm): 高达 400 KHz
- 作为 Master
 - 一 产生 Clock
 - Start 和 Stop 的产生
- 作为 slave
 - 一 可编程的 I2C 地址检测
 - 一 Stop 位的发现
- 7位寻址模式
- 通用广播(General call)
- 状态标志位
 - 一 发送/接收模式标志位
 - 一 字节传输完成标志位
 - I2C busy 标志位
- 错误标志位
 - Master arbitration loss
 - 一 地址/数据传输后的 ACK failure
 - Start/Stop 错误
 - Overrun/Underrun (时钟拉长功能 disable)
- 可选的时钟拉长功能
- 软件复位
- 模拟噪声滤波功能

2.13. 通用同步异步收发器 USART

通用同步异步收发器(USART)提供了一种灵活的方法与使用工业标准NRZ异步串行数据格式的外部设备之间进行全双工数据交换。USART利用分数波特率发生器提供宽范围的波特率选择。

它支持同步单向通信和半双工单线通信、它还允许多处理器通信。

支持自动波特率检测。

USART特性:

- 全双工异步通信
- NRZ 标准格式
- 可配置 16 倍或者 8 倍过采样,增加在速度和时钟容忍度的灵活性
- 发送和接收共用的可编程波特率,最高达 4.5Mbit/s
- 自动波特率检测
- 可编程的数据长度8位或者9位
- 可配置的停止位(1或者2位)
- 同步模式和为同步通讯的时钟输出功能
- 单线半双工通讯
- 独立的发送和接收使能位
- 硬件流控制
- 检测标志
 - 接收 buffer 满
 - 一 发送 buffer 空
 - 一 传输结束
- 奇偶校验控制
 - 一 发送校验位
 - 一 对接收数据进行校验
- 带标志的中断源
 - CTS 改变
 - 一 发送寄存器空
 - 一 发送完成
 - 一 接收数据寄存器满
 - 一 检测到总线空闲
 - 一 溢出错误
 - 一 帧错误
 - 一 噪音操作
 - 一 检测错误
- 多处理器通信
 - 一 如果地址不匹配,则进入静默模式
- 从静默模式唤醒:通过空闲检测和地址标志检测

2.14. 串行外设接口 SPI

串行外设接口(SPI)允许芯片与外部设备以半双工、全双工、单工同步的串行方式通信。此接口可以被配置成主模式,并为外部从设备提供通信时钟(SCK)。接口还能以多主配置方式工作。

SPI特性如下:

- Master 或者 slave 模式
- 3线全双工同步传输
- 2线半双工同步传输(有双向数据线)
- 2线单工同步传输(无双向数据线)
- 8 位或者 16 位传输帧选择
- 支持多主模式
- 8 个主模式波特率预分频系数(最大为 12M)
- 从模式频率(最大为 1.5M)
- 主模式和从模式下均可以由软件或硬件进行 NSS 管理: 主/从操作模式的动态改变
- 可编程的时钟极性和相位
- 可编程的数据顺序,MSB 在前或 LSB 在前
- 可触发中断的专用发送和接收标志
- SPI 总线忙状态标志
- Motorola 模式
- 可引起中断的主模式故障、过载
- 2个32位Rx和TxFIFOs

2.15. SWD

ARM SWD接口允许串口调试工具连接到PY32F002B。

3. 引脚配置

图 3-1 TSSOP20 Pinout1 PY32F002BF15P

图 3-2 QFN20 Pinout1 PY32F002BF15U

图 3-3 SOP16 Pinout1 PY32F002BW15S

图 3-4 SOP14 Pinout1 PY32F002BD15S

表 3-1 引脚定义的术语和符号

类	·····································	符号	定义						
	-	S	Supply pin						
		G	Ground pin						
端口类型		I/O	Input/output pin						
		NC	定义						
		СОМ	正常 5 V 端口,支持模拟输入输出功能						
端口结构		RST							
Notes			除非有其他说明,不然所有端口都被在复位之前和之后,作为模拟输入						
)	复用功能		通过 GPIOx_AFR 寄存器选择的功能						
端口功能	附加功能		通过外设寄存器直接选择或使能的功能						

表 3-2 QFN20/TSSOP20 引脚定义

封装	类型		ᆲ	ক		站	治口功能
QFN20 F1	TSSOP20 F1	复位	在 案口樂	端口结构	Notes	复用功能	附加功能
						USART_CK	
18	1	PA5	I/O	COM		TIM1_CH1	
						TIM14_CH1	
						SPI_NSS	ADC_IN3
19	2	PA6	I/O	COM		USART_TX	External_clock_in
						EVENTOUT	
						SPI_MOSI	
						USART_TX	
20	3	PA7	I/O	COM		USART_RX	ADC_IN4
						TIM1_CH4	
						MCO	
						SWDIO	NRST
1	4	PC0-NRST	I/O	RST	(1)	TIM1_CH1N	ADC_IN5
						EVENTOUT	

Section Sect	封装类型			斯 접			端口功能		
2	QFN20 F1	TSSOP20 F1	复位	第二类	端口结	Notes	复用功能	附加功能	
3			PC1-OSCIN	I/O	СОМ		SPI_MISO	OSCIN	
4	3	6	PB7-OSCOUT	I/O	СОМ			OSCOUT	
SPI_MISO	4	7	VSS	S					
Second S	-	-		<u> </u>					
Second S	_		(0,1,1_10)						
SWDIO Sigital power supply SPI_NSS USART_RX TIM1_CH3 TIM1_CH4 TIM1_CH4 TIM1_CH4 TIM1_CH4 TIM1_CH4 TIM1_CH3 TIM1_CH4 TIM1_CH4 TIM1_CH3 TIM1_CH4 TIM1_CH4 TIM1_CH3 TIM1_CH4 TIM1_CH3 TIM1_CH4 TIM1_CH4 TIM1_CH3 TIM1_CH4 TIM1_CH3 TIM1_CH4 TIM1_CH4 TIM1_CH3 TIM1_CH4 TIM1_CH4 TIM1_CH3 TIM1_CH4 T	5	8	PB6(SWDIO)	I/O	COM			ADC_IN6	
The column The									
The color of the	6	9	VCC	S			Digital p	ower supply	
TIM1_CH3								• • •	
B	7	40	DDC	1/0	0014		USART_RX		
8	/	10	PB5	1/0	COM		TIM1_CH3		
8							TIM14_CH1		
8							USART_TX		
TIM1_BKIN USART_CK I2C_SCL TIM1_ETR CMP1_OUT	8	11	PB4	I/O	СОМ				
9 12 PB3 I/O COM USART_CK I2C_SCL TIM1_ETR CMP1_OUT SPI_SCK USART_CTS TIM1_CH1N TIM1_CH3 CMP1_INP CMP1_INP CMP1_INP CMP1_INM CMP									
12									
12									
10	9	12	PB3	I/O	COM				
10									
10									
10									
TIM1_CH3	10	13	PB2	I/O	COM				
11									
11								ADC: INO	
11									
12	11	14	PB1	I/O	COM				
12								OWN 1_ITAW	
12								ADC IN7	
12									
TIM1_CH3N 13 16 PA0 I/O COM SPI_MOSI 14 17 PA1 I/O COM SWCLK TIM1_CH1 SPI_MISO TIM1_CH2 USART_RX I2C_SCL SWCLK	12	15	PB0	I/O	COM			J 1	
13 16 PA0 I/O COM SPI_MOSI TIM1_CH1 14 17 PA1 I/O COM SPI_MISO TIM1_CH2 USART_RX I2C_SCL 15 18 PA2(SWCLK) I/O COM SWCLK									
13 16 PA0 I/O COM TIM1_CH1 14 17 PA1 I/O COM SWCLK 15 18 PA2(SWCLK) I/O COM SWCLK									
14 17 PA1 I/O COM SPI_MISO TIM1_CH2 USART_RX I2C_SCL 15 18 PA2(SWCLK) I/O COM SWCLK	13	16	PA0	I/O	СОМ				
14 17 PA1 I/O COM TIM1_CH2 USART_RX I2C_SCL 15 18 PA2(SWCLK) I/O COM SWCLK					_				
USART_RX	14	17	PA1	I/O	СОМ				
15 18 PA2(SWCLK) I/O COM SWCLK									
15 18 PA2(SWCLK) I/O COM SWCLK									
	15	18	PA2(SWCLK)	I/O	СОМ				
, , , , , , , , , , , , , , , , , , ,			.(,				TIM1_CH4		
CMP2_OUT									
ADC IN1								ADC IN1	
16	16	19	PA3	I/O	СОМ		USART_TX		
TIM1_CH2 CMP2_INM	. •			"]		TIM1 CH2		
LISART RX ADC. IN2									
1 17 1 20 1 PAA 1 1/O 1 COM 1	17	20	PA4	I/O	СОМ		TIM1_CH3	CMP2_INM	

封装	类型		괢	ক্ত		站	门 功能
QFN20 F1	TSSOP20 F1	复位	端口类型	端口结构	Notes	复用功能	附加功能
						TIM14_CH1	

表 3-3 SOP16/SOP14 引脚定义

封導	美类型		좲	型 逐		端	门功能
SOP16 F1	SOP14 F1	复位	第二米型	端口结构	Notes	复用功能	附加功能
12	10	PA6	I/O	СОМ		SPI_NSS USART_TX EVENTOUT	ADC_IN3 External_clock_in
13	11	PA7	I/O	СОМ		SPI_MOSI USART_TX USART_RX TIM1_CH4 MCO	ADC_IN4
13	13	PC0-NRST	I/O	RST	(1)	SWDIO TIM1_CH1N EVENTOUT	NRST ADC_IN5
14	12	PC1-OSCIN	I/O	COM		SPI_MISO	OSCIN
15	13	PB7-OSCOUT	I/O	СОМ		SPI_MOSI TIM14_CH1	OSCOUT
16	14	VSS	S			Ground	
10	8	PB6(SWDIO)	I/O	СОМ		SPI_MISO USART_TX I2C_SDA SWDIO	ADC_IN6
1	1	VCC	S			Digital _I	power supply
2	-	PB4	I/O	СОМ		USART_TX I2C_SDA TIM1_BKIN	
3	-	PB3	I/O	СОМ		USART_CK I2C_SCL TIM1_ETR CMP1_OUT	
4	2	PB2	I/O	СОМ		SPI_SCK USART_CTS TIM1_CH1N TIM1_CH3	
5	3	PB1	I/O	СОМ		USART_RTS TIM1_CH2N TIM1_CH4 MCO	ADC_IN0 CMP1_INM CMP1_INP
6	4	PB0	I/O	СОМ		SPI_SCK USART_CK	ADC_IN7 CMP1_INM

封導	美类型			্ রে		端口功能																			
SOP16 F1	SOP14 F1	复位	端 二 業 二 業 二 業	端口结构	Notes	复用功能	附加功能																		
						TIM1_CH2																			
						TIM1_CH3N																			
7	5	PA0	I/O	СОМ		SPI_MOSI																			
_ ′	5	FAU	1/0	COIVI		TIM1_CH1																			
8	6	PA1	I/O	СОМ		SPI_MISO																			
0	б	PAI	1/0	COIVI		TIM1_CH2																			
		PA2(SWCLK)	I/O				USART_RX																		
				I/O	I/O	I/O	СОМ	СОМ	СОМ	СОМ	COM	COM	СОМ						I2C_SCL						
11	7																			(2)	SWCLK				
								TIM1_CH4																	
						CMP2_OUT																			
		9 PA4		СОМ		USART_RX	ADC ING																		
9	9		I/O			TIM1_CH3	ADC_IN2 CMP2_INM																		
						TIM14_CH1	OWN Z_NAW																		

- 1. 选择 PC0 或者 NRST/SWDIO 是通过 option bytes 进行配置。
- 2. 复位后(option byte 配置 0/0,0/1,1/0 时), PB6 和 PA2 两个 pin 被配置为 SWDIO 和 SWCLK AF 功能, 前者内部上拉电阻、后者内部下拉电阻被激活。
- 3. 复位后(option byte 配置为 1/1 时), PC0 和 PA2 两个 pin 被配置为 SWDIO 和 SWCLK AF 功能, 前者内部上拉电阻、后者内部下拉电阻被激活

3.1. 端口 A 复用功能映射

表 3-4 端口 A 复用功能映射

端口	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA0	SPI_MOSI	-	TIM1_CH1	-	-	-	-	-
PA1	SPI_MISO	1	TIM1_CH2	1	1	1	•	-
PA2	SWC	USART_RX	TIM1_CH4	1	CMP2_OUT	1	I2C_SCL	-
PA3	-	USART_TX	TIM1_CH2	-	-	1	-	-
PA4	-	USART_RX	TIM1_CH3	-	-	TIM14_CH1	-	-
PA5	-	USART_CK	TIM1_CH1	•	1	TIM14_CH1	1	-
PA6	SPI_NSS	USART_TX	-	-	-	-	-	EVENTOUT
PA7	SPI_MOSI	USART_TX	TIM1_CH4	USART_RX	MCO	-	-	

3.2. 端口 B 复用功能映射

表 3-5 端口 B 复用功能映射

端口	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB0	SPI_SCK	USART_CK	TIM1_CH2	TIM1_CH3N	-	-	-	-
PB1	1	USART_RTS	TIM1_CH2N	TIM1_CH4	MCO	ı	-	-
PB2	SPI_SCK	USART_CTS	TIM1_CH1N	TIM1_CH3	1	1	-	-
PB3	-	USART_CK	TIM1_ETR	-	CMP1_OUT	-	I2C_SCL	-
PB4	-	USART_TX	TIM1_BKIN	-	-	-	I2C_SDA	-
PB5	SPI_NSS	USART_RX	TIM1_CH3	-	-	TIM14_CH1	-	-
PB6	SWD	USART_TX	SPI_MISO	-	-	-	I2C_SDA	-
PB7	SPI_MOSI	-	-	-	-	TIM14_CH1	-	-

3.3. 端口 C 复用功能映射

表 3-6 端口 C 复用功能映射

端口	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PC0-NRST	SWD	-	TIM1_CH1N	-	-	-	-	EVENTOUT
PC1-OSCIN	SPI_MISO	-	-	-	-	-	-	-

4. 存储器映射

图 4-1 存储器映射

表 4-1 存储器地址

Туре	Boundary Address	Size	Memory Area	Description
SRAM	0x2000 C000-0x3FFF FFFF	512 MBytes	Reserved	
SKAIVI	0x2000 0000-0x2000 0BFF	3 KBytes	SRAM	
	0x1FFF 0300-0x1FFF FFFF	4 Kbytes	Reserved	
	0x1FFF 0280-0x1FFF 02FF	128 Bytes	USER OTP memory	存放用户数据
	0x1FFF 0180-0x1FFF 01FF	128 Bytes	Factory Configuration bytes	存放 trimming 数据(含 HSI triming 数据)、上电 读校验码
	0x1FFF 0100-0x1FFF 017F	128 Bytes	Factory Configuration bytes	存放用户用到的 HSI triming 数据、flash 擦写时间配置参数
Code	0x1FFF 0080-0x1FFF 00FF	128 Bytes	Option bytes	芯片软硬件 option bytes 信息
	0x1FFF 0000-0x1FFF 007F	128 Bytes	UID	Unique ID
	0x0800 6000-0x1FFE FFFF	384 MBytes	Reserved	
	0x0800 0000-0x0800 5FFF	24 KBytes	Main flash memory	
	0x0000 6000-0x07FF FFFF	8 MBytes	Reserved	
	0x0000 0000-0x0000 5FFF	24 Kbytes	根据 Boot 配置选择: 1)Main flash memory 2)Load flash 3)SRAM	

1. 上述空间除 0x1FFF 0E00-0x1FFF 0E7F 外,其余标注为 reserved 的空间,无法进行写操作,读为 0,且产生 response error。

表 4-2 外设寄存器地址

Bus	Boundary Address	Size	Peripheral
	0xE000 0000-0xE00F FFFF	1 Mbytes	M0+
	0x5000 1800-0x5FFF FFFF	256 MBytes	Reserved ⁽¹⁾
	0x5000 1400-0x5000 17FF	1 KBytes	Reserved ⁽¹⁾
	0x5000 1000-0x5000 13FF	1 KBytes	Reserved ⁽¹⁾
IOPORT	0x5000 0C00-0x5000 0FFF	1 Kbytes	Reserved ⁽¹⁾
	0x5000 0800-0x5000 0BFF	1 Kbytes	GPIOC
	0x5000 0400-0x5000 07FF	1 Kbytes	GPIOB
	0x5000 0000-0x5000 03FF	1 Kbytes	GPIOA
AHB	0x4002 3400-0x4FFF FFFF		Reserved

Bus	Boundary Address	Size	Peripheral
	0x4002 300C-0x4002		Reserved
	33FF	1 Kbytes	
	0x4002 3000-0x4002 3008		CRC
	0x4002 2400-0x4002 2FFF		Reserved
	0x4002 2000-0x4002 23FF		Flash
	0x4002 1C00-0x4002 1FFF	3 KBytes	Reserved
	0x4002 1900-0x4002		Reserved
	1BFF	1 Kbytes	
	0x4002 1800-0x4002 18FF		EXTI ⁽²⁾
	0x4002 1400-0x4002 17FF	1 Kbytes	Reserved
	0x4002 1080-0x4002 13FF	1 KBytes	Reserved
	0x4002 1000-0x4002 107F	1 NDytes	RCC ⁽²⁾
	0x4002 0C00-0x4002 0FFF	1 KBytes	Reserved
	0x4002 0040-0x4002 03FF	4 KDutas	Reserved
	0x4002 0000-0x4002 003C	1 KBytes	Reserved
	0x4001 5C00-0x4001 FFFF	32 KBytes	Reserved
	0x4001 5880-0x4001 5BFF	1 KBytes	Reserved
	0x4001 5800-0x4001 587F		DBG
	0x4001 4C00-0x4001 57FF	3 KBytes	Reserved
	0x4001 4850-0x4001 4BFF	1 KBytes	Reserved
APB	0x4001 4800-0x4001 484C		Reserved
	0x4001 4450-0x4001 47FF		Reserved
	0x4001 4400-0x4001 404C	1 KBytes	Reserved
	0x4001 3C00-0x4001 43FF	2 KBytes	Reserved
	0x4001 381C-0x4001 3BFF	1 KBytes	Reserved
	0x4001 3800-0x4001 3018		USART1
	0x4001 3400-0x4001 37FF	1 Kbytes	Reserved

Bus	Boundary Address	Size	Peripheral
	0x4001 3010-0x4001 33FF	1 Kbytes	Reserved
	0x4001 3000-0x4001 300C	1 Kbytes	SPI1
	0x4001 2C50-0x4001		Reserved
	2FFF	1 Kbytes	
	0x4001 2C00-0x4001	1 Hoytoo	TIM1
	2C4C		
	0x4001 2800-0x4001 2BFF	1 Kbytes	Reserved
	0x4001 270C-0x4001		Reserved
	27FF	1 Kbytes	
	0x4001 2400-0x4001 2708		ADC
	0x4001 0400-0x4001 23FF	8 Kbytes	Reserved
	0x4001 0220-0x4001 03FF		Reserved
	0x4001 0200-0x4001 021F	1 KBytes	COMP1/2
	0x4001 0000-0x4001 01FF		SYSCFG
	0x4000 B400-0x4000 FFFF	19 KBytes	Reserved
	0x4000 B000-0x4000 B3FF	1 KBytes	Reserved
	0x4000 8400-0x4000 AFFF	11 KBytes	Reserved
	0x4000 7C28-0x4000 7FFF	1 KBytes	Reserved
	0x4000 7C00-0x4000 7C24	1 Kbytes	LPTIM
	0x4000 7400-0x4000 7BFF	2 KBytes	Reserved
	0x4000 7018-0x4000 73FF	1 KBytes	Reserved
	0x4000 7000-0x4000 7014	1 NDyles	PWR ⁽³⁾
	0x4000 5800-0x4000 6FFF	6 KBytes	Reserved
	0x4000 5434-0x4000 57FF	1 KPytos	Reserved
	0x4000 5400-0x4000 5430	1 KBytes	12C
	0x4000 4800-0x4000 53FF	3 KBytes	Reserved
	0x4000 441C-0x4000 47FF	1 KBytes	Reserved

Bus	Boundary Address	Size	Peripheral
	0x4000 4400-0x4000 4418		Reserved
	0x4000 3C00-0x4000	1 KBytes	Reserved
	43FF		
	0x4000 3810-0x4000		Reserved
	3BFF	1 KBytes	
	0x4000 3800-0x4000 380C		Reserved
	0x4000 3400-0x4000 37FF	1 KBytes	Reserved
	0x4000 3014-0x4000 33FF	1 KBytes	Reserved
	0x4000 3000-0x4000 0010	1 NDytes	IWDG
	0x4000 2C0C-0x4000		Reserved
	2FFF	1 KBytes Res	
	0x4000 2C00-0x4000		Reserved
	2C08		
	0x4000 2830-0x4000		Reserved
	2BFF	1 KBytes	
	0x4000 2800-0x4000 282C		Reserved
	0x4000 2420-0x4000 27FF	1 KBytes	Reserved
	0x4000 2400-0x4000 241C	, ,	Reserved
	0x4000 2054-0x4000 23FF	1 KBytes	Reserved
	0x4000 2000-0x4000 0050	1 NDyteo	TIM14
	0x4000 1800-0x4000 1FFF	2 KBytes	Reserved
	0x4000 1400-0x4000 17FF	1 KBytes	Reserved
	0x4000 1030-0x4000 13FF	1 KBytes	Reserved
	0x4000 1000-0x4000 102C	i NDyles	Reserved
	0x4000 0800-0x4000 0FFF	2 KBytes	Reserved
	0x4000 0450-0x4000 07FF	4 Khutaa	Reserved
	0x4000 0400-0x4000 044C	1 Kbytes	Reserved
	0x4000 0000-0x4000 03FF	1 KBytes	Reserved

- 1. 上表 AHB 标注为 Reserved 的地址空间,无法写操作,读回为 0,且产生 hardfault; APB 标注为 Reserved 的地址空间,无法写操作,读回为 0,不会产生 hardfault。
- 2. 不仅支持 32 位 word 访问,还支持 halfword 和 byte 访问。
- 3. 不仅支持 32 位 word 访问,还支持 halfword 访问。

5. 电气特性

5.1. 测试条件

除非特殊说明,所有的电压都以 Vss 为基准。

5.1.1. 最小值和最大值

除非特殊说明,通过在环境温度 $T_A = 25^{\circ}$ C 和 $T_A = T_{A(max)}$ 下进行的芯片量产测试筛选,保证在最坏的环境温度、供电电压和时钟频率条件下达到最小值和最大值。

基于表格下方注解的电特性结果、设计仿真和/或工艺参数的数据,未在生产中进行测试。最小和最大数值参考了样品测试,取平均值再加或者减三倍的标准偏差。

5.1.2. 典型值

除非特殊说明,典型数据是基于 $T_A = 25^{\circ}$ C 和 $V_{CC} = 3.3$ V。这些数据仅用于设计指导未经过测试。 典型的 ADC 精度数值是通过对一个标准批次的采样,在所有温度范围下测试得到,95%的芯片误差小于等于给出的数值。

5.2. 绝对最大额定值

如果加在芯片上超过以下表格给出的绝对最大值,可能会导致芯片永久性的损坏。这里只是列出了所能承受的强度分等,并不意味着在此条件下器件的功能操作无误。长时间工作在最大值条件下可能影响芯片的可靠性。

表 5-1 电压特性(1)

符号	描述	最小值	最大值	单位
Vcc	外部主供电电源	-0.3	6.25	V
Vin	其他 Pin 的输入电压	-0.3	Vcc+0.3	V

1. 电源 VCC 和地 VSS 引脚必须始终连接到外部允许范围内的供电系统上。

表 5-2 电流特性

符号	描述	最大值	单位
Ivcc	流进 VCC pin 的总电流(供应电流)(1)	80	mA
Ivss	流出 VSS pin 的总电流(流出电流) (1)	80	mA
	所有 IO 的输出灌电流	20	
I _{IO(PIN)}	所有 IO 的拉电流	-20	mA

1. 电源 VCC 和地 VSS 引脚必须始终连接到外部允许范围内的供电系统上。

表 5-3 温度特性

符号	描述	数值	单位
Tstg	存储温度范围	-65 ~ +150	°C
To	工作温度范围	-40 ~ +85	°C

5.3. 工作条件

5.3.1. 通用工作条件

表 5-4 通用工作条件

符号	参数	条件	最小值	最大值	单位
f _{HCLK}	内部 AHB 时钟频率	-	0	48	MHz
f _{PCLK}	内部 APB 时钟频率	-	0	48	MHz
VCC	标准工作电压	-	1.7	5.5	V
VIN	IO 输入电压	-	-0.3	Vcc+0.3	V
T _A	环境温度	-	-40	85	°C
TJ	结温	-	-40	90	°C

5.3.2. 上下电工作条件

表 5-5 上电和掉电工作条件

符号	参数	条件	最小值	最大值	单位
	VCC 上升速率	-	0	8	μs/V
tvcc	VCC 下降速率	-	20	8	

5.3.3. 内嵌复位模块特性

表 5-6 内嵌复位模块特性

符号	参数	条件	最小值	典型值	最大值	单位
VPOR/PDR	上电/下电复位阈值	上升沿	1.5	1.6	1.7	V
VPOR/PDR		下降沿	1.45	1.55	1.65	V
V _{PDRhyst} ⁽¹⁾	PDR 迟滞	-	-	50	1	mV
		BOR_LEV[2:0]=000 (上升沿)	1.7	1.8	1.9	V
		BOR_LEV[2:0]=000 (下降沿)	1.6	1.7	1.8	V
VBOR	DOD 评估中区	BOR_LEV[2:0]=001 (上升沿)	1.9	2	2.1	V
V BOR	BOR 阈值电压	BOR_LEV[2:0]=001 (下降沿)	1.8	1.9	2	V
		BOR_LEV[2:0]=010 (上升沿)	2.1	2.2	2.3	V
		BOR_LEV[2:0]=010 (下降沿)	2	2.1	2.2	V

符号	参数	条件	最小值	典型值	最大值	单位
		BOR_LEV[2:0]=011 (上升沿)	2.3	2.4	2.5	V
		BOR_LEV[2:0]=011 (下降沿)	2.2	2.3	2.4	V
		BOR_LEV[2:0]=100 (上升沿)	2.5	2.6	2.7	V
		BOR_LEV[2:0]=100 (下降沿)	2.4	2.5	2.6	V
		BOR_LEV[2:0]=101 (上升沿)	2.7	2.8	2.9	V
		BOR_LEV[2:0]=101 (下降沿)	2.6	2.7	2.8	V
		BOR_LEV[2:0]=110 (上升沿)	2.9	3	3.1	V
		BOR_LEV[2:0]=110 (下降沿)	2.8	2.9	3	V
		BOR_LEV[2:0]=111 (上升沿)	3.1	3.2	3.3	V
		BOR_LEV[2:0]=111 (下降沿)	3	3.1	3.2	V
V_BOR_hyst	BOR 迟滞	-	-	100	-	mV

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.4. 工作电流特性

表 5-7 运行模式电流

			夕	:件					
符号		T	<u>بر</u>	**IT			典型值(1)	最大值	单位
	系统时钟	频率	代码	运行	外设时钟	FLASH sleep	/		
	HSI	24 MHz			ON	DISABLE	1.1	-	mA
	1101	27 1711 12			OFF	DISABLE	0.9	-	""
I _{DD} (run)	LSI	32.768	While(1)	Flash	ON	DISABLE	160.4	-	
IDD(I'dili)	LOI	KHz	** **********************************	i idon	OFF	DISABLE	159.6	-	μA
-	1.81	32.768			ON	ENABLE	108.3		
		KHz			OFF	ENABLE	107.7	-	μA

1. 数据基于考核结果,不在生产中测试。

表 5-8 sleep 模式电流

			· · · · · · · · · · · · · · · · · · ·				
符号		条件				9 上/士	*
10.2	系统时钟	频率	外设时钟	FLASH sleep	典型值 ⁽¹⁾	最大值	单位
HSI	ЦСІ	24 MHz	ON	DISABLE	0.8	-	m Λ
	ПЭІ		OFF	DISABLE	0.5	-	mA
IDD(alaaa)	1.61	22.760 VU-	ON	DISABLE	159.3	-	
IDD(sleep)	LSI	32.768 KHz	OFF	DISABLE	158.9	-	μA
	1.61	00 700 141	ON	ENABLE	89.3	-	
	LSI 32.768	32.768 KHz	OFF	ENABLE	84.8	-	μA

1. 数据基于考核结果,不在生产中测试。

				1000	OP 1520. 01/10			
	符号		条件				旦十店	单位
		Vcc	MR/LPR	LSI	外设时钟	典型值(1)	最大值	半江
		1.7~5.5 V	MR	-	-	75.3	-	
			7~5.5 V LPR	ON	IWDG+LPTIM	1.7	-	μΑ
	I _{DD} (stop)				IWDG	1.7	-	
	, ,,				LPTIM	1.7	-	
					OFF	No	1.5	-
				OFF	No	1.1	_	

表 5-9 stop 模式电流

1. 数据基于考核结果,不在生产中测试。

5.3.5. 低功耗模式唤醒时间

符号	参数 ⁽¹⁾		参数 ⁽¹⁾		最大 值	单位
T _{WUSLEEP}	Sleep 的唤醒	时间	-	0.6	1	
_	Stop 的唤醒	MR 供电	Flash 中执行程序,HSI(24 MHz)作为系统时 钟	6.4	-	μs
T _{WUSTOP}	时间	LPR 供 电	Flash 中执行程序,HSI 作为系统时钟(24M)	10.6	-	

表 5-10 低功耗模式唤醒时间

- 1. 唤醒时间的测量是从唤醒时间开始至用户程序读取第一条指令。
- 2. 数据基于考核结果,不在生产中测试。

5.3.6. 外部时钟源特性

5.3.6.1. 外部高速时钟

在 HSE 的外部时钟输入模式(RCC_CR 的 HSEEN 置位),相应的 IO 作为外部时钟输入端口。

图 5-1 外部高速时钟时序图

符号	参数 ⁽¹⁾	最小值	典型值	最大值	单位
f _{HSE_ext}	用户外部时钟频率	0	4	32	MHz
V _{HSEH}	输入引脚高电平电压	0.7* cc	-	Vcc	V
VHSEL	输入引脚低电平电压	Vss	-	0.3*Vcc	V
tw(HSEH)	输入高或低的时间	15	-	-	ns
t _{r(HSE)}	输入上升/下降的时间	-	-	20	ns

表 5-11 外部高速时钟特性

1. 由设计保证,不在生产中测试。

5.3.6.2. 外部低速时钟

在 LSE 的 bypass 模式(RCC_BDCR 的 LSEBYP 置位),芯片内的低速起振电路停止工作,相应的 IO 作为标准的 GPIO 使用。

图 5-2 外部低速时钟时序图

符号	参数 ⁽¹⁾	最小值	典型值	最大值	单位
f _{LSE_ext}	用户外部时钟频率	-	32.768	1000	KHz
V _{LSEH}	输入引脚高电平电压	0.7*V _{CC}	1	1	V
V _{LSEL}	输入引脚低电平电压	-	-	0.3*Vcc	V
tw(LSEH) tw(LSEL)	输入高或低的时间	450	-	-	ns
$t_{r(LSE)}$ $t_{f(LSE)}$	输入上升/下降的时间	-	-	50	ns

表 5-12 外部低速时钟特性

1. 由设计保证,不在生产中测试。

5.3.6.3. 外部低速晶体

可以通过外接 32.768 KHz 的晶体/陶瓷谐振器。在应用中,晶体和负载电容应该尽可能靠近管脚,这样可以使输出变形和启动稳定时间最小化。

表 5-13	外部低速晶体特/	4
120 10		

符号	参数	条件(1)	最小值	典型值	最大值	单位
. (4)		LSE_DRIVER [1:0] = 00	•	100	ı	
	LSE 功耗	LSE_DRIVER [1:0] = 01	1	700	1	А
$I_{DD}^{(4)}$		LSE_DRIVER [1:0] = 10	1	1200	ı	nA
		LSE_DRIVER [1:0] = 11	1	1600	ı	
t _{SU(LSE)} (3) (4)	启动时间	-	1	3	-	S

- 1. 晶体/陶瓷谐振器特性基于制造商给出的数据手册。
- 2. 由设计保证,不在生产中测试。
- 3. t_{SU(LSE)}是从启用(通过软件)到时钟振荡达到稳定的启动时间,针对标准晶体/谐振器测量的,不同晶体/谐振器可能会有很大差异
- 4. 数据基于考核结果,不在生产中测试。

5.3.7. 内部高频时钟源 HSI 特性

表 5-14 内部高频时钟源特性

符号	参数	条件	最小值	典型值	最大值	单位
ı	HSI 频率	T 25°C V 2.2 V	23.83(2)	24	24.17(2)	MU
f _{HSI}		$T_A = 25^{\circ}C, V_{CC} = 3.3 \text{ V}$	47.66 ⁽²⁾	48	48.34(2)	MHz
Δ Temp(HSI)	HSI 频率温度漂移 24 MHz	$V_{CC} = 2.0V \sim 5.5 V$ $T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	-2 ⁽²⁾	-	2 ⁽²⁾	
		V _{CC} = 1.7 V ~ 5.5 V T _A = 0 °C ~ 85 °C	-2 ⁽²⁾	-	2 ⁽²⁾	%
		$V_{CC} = 1.7 \text{ V} \sim 5.5 \text{ V}$ $T_A = -40 \text{ °C} \sim 85 \text{ °C}$	-4 ⁽²⁾	-	2 ⁽²⁾	
f _{TRIM} ⁽¹⁾	HSI 微调精度	-	-	0.1	-	%
D _{HSI} ⁽¹⁾	占空比	-	45	-	55	%
tStab(HSI)	HSI 稳定时间	-	-	2	4 ⁽¹⁾	μs
I _{DD(HSI)} (2)	HSI 功耗	24 MHz	-	193	-	μA

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.8. 内部低频时钟源 LSI 特性

表 5-15 内部低频时钟特性

符号	参数	条件	最小值	典型值	最大值	单位
f _{LSI}	LSI 频率	$T_A = 25^{\circ}C, V_{CC} = 3.3 \text{ V}$	31.6	32.6	33.6	KHz
$\Delta_{Temp(LSI)}$	LSI 频率温度漂移	$V_{CC} = 1.7 \text{ V} \sim 5.5 \text{ V}$ $T_A = 0^{\circ}\text{C} \sim 85^{\circ}\text{C}$	-10 ⁽²⁾	-	10(2)	%

符号	参数	条件	最小值	典型值	最大值	单位
		$V_{CC} = 1.7 \text{ V} \sim 5.5 \text{ V}$ $T_A = -40 \text{ °C} \sim 85 \text{ °C}$	-20 ⁽²⁾	-	20(2)	
f _{TRIM} ⁽¹⁾	LSI 微调精度	-	-	0.2	1	%
t _{Stab(LSI)} (1)	LSI 稳定时间	-	-	150	-	μs
I _{DD(LSI)} (1)	LSI 功耗	-	-	210	-	nA

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.9. 存储器特性

表 5-16 存储器特性

符号	参数	条件	典型值	最 大值 ⁽¹⁾	单位
t _{prog}	Page program	-	1.0	1.5	ms
terase	Page/sector/mass erase	-	3.5	5.0	ms
	Page programe	-	2.1	2.9	^
IDD	Page/sector/mass erase	-	2.1	2.9	mA

1. 由设计保证,不在生产中测试。

表 5-17 存储器擦写次数和数据保持

符号	参数	条件	最 小值 ⁽¹⁾	单位
N _{END}	擦写次数	T _A = -40 °C ~ 85 °C	100	Kcycle
tret	数据保持期限	10 Kcycle T _A = 55 °C	20	Year

1. 数据基于考核结果,不在生产中测试。

5.3.10. EFT 特性

符号	参数	条件	等级	典型值	单位
EFT to IO	-	IEC61000-4-4	Α	2	KV
EFT to Power	-	IEC61000-4-4	Α	4	KV

5.3.11. ESD & LU 特性

表 5-18 ESD & LU 特性

符号	参数	条件	典型值	单位
V _{ESD(HBM)}	静态放电电压(人体模型)	ESDA/JEDEC JS-001-2017	6	KV
V _{ESD(CDM)}	静态放电电压(充电设备模型)	ESDA/JEDEC JS-002-2018	1	KV

符号	参数	条件	典型值	单位
V _{ESD(MM)}	静态放电电压(机器模型)	JESD22-A115C	200	V
LU	静态 Latch-Up	JESD78E	200	mA

5.3.12. 端口特性

表 5-19 IO 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
ViH	输入高电平电压	Vcc = 1.7 V ~ 5.5 V	0.7*Vcc	-	-	V
VIL	输入低电平电压	V _{CC} = 1.7 V ~ 5.5 V	1	1	0.3*Vcc	V
V _{hys} ⁽¹⁾	斯密特迟滞电压	-	-	200	-	mV
likg	输入漏电流	-	-	-	1	μΑ
R _{PU}	上拉电阻	-	30	50	70	ΚΩ
R _{PD}	下拉电阻	-	30	50	70	ΚΩ
C _{IO} ⁽¹⁾	引脚电容	-	-	5		pF

1. 由设计保证,不在生产中测试。

表 5-20 输出电压特性

符号	参数 ⁽¹⁾	条件	最小值	最大值	单位
V _{OL} ⁽²⁾		I _{OL} = 20 mA, V _{CC} ≥ 5.0 V	ı	0.4	V
Vol	COM IO 输出低电平	I _{OL} = 8 mA, V _{CC} ≥ 2.7 V	-	0.4	V
V _{OL} (2)		I _{OL} = 4 mA, V _{CC} = 1.8 V	-	0.5	V
V _{OH} ⁽²⁾		I _{OH} = 18 mA, V _{CC} ≥ 5.0 V	Vcc-0.6	-	V
Vон	COM IO 输出高电平	I _{OH} = 8 mA, V _{CC} ≥ 2.7 V	Vcc-0.4	-	V
V _{OH} ⁽²⁾		I _{OH} = 4 mA, V _{CC} = 1.8 V	Vcc-0.5	-	V

- 1. IO 类型可参考引脚定义的术语和符号。
- 2. 数据基于考核结果,不在生产中测试。

5.3.13. NRST 引脚特性

表 5-21 NRST 管脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	输入高电平电压	Vcc = 1.7 V ~ 5.5 V	0.7*V _{CC}	-	-	V
VIL	输入低电平电压	V _{CC} = 1.7 V ~ 5.5 V	-	1	0.2*Vcc	٧
V _{hys} ⁽¹⁾	斯密特迟滞电压	-	-	300	-	mV
I _{lkg}	输入漏电流	-	-	-	1	μΑ
R _{PU} ⁽¹⁾	上拉电阻	-	30	50	70	ΚΩ

符号	参数	条件	最小值	典型值	最大值	单位
R _{PD} ⁽¹⁾	下拉电阻	-	30	50	70	ΚΩ
Cıo	引脚电容	-	-	5	-	pF

1. 由设计保证,不在生产中测试。

5.3.14. ADC 特性

表 5-22 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
I _{DD}	功耗	@1 MSPS	-	300	-	uA
C _{IN} ⁽¹⁾	内部采样和保持电容	-	-	5	-	pF
F	转换时钟频率	Vcc = 1.7 V ~ 2.0 V	1	4	8(2)	MHz
F _{ADC}	1354551554	V _{CC} = 2.0 V ~ 5.5 V	1	8	16 ⁽²⁾	MHz
	-	F _{ADC} =8 MHz	0.438	-	29.94	μs
Toomp(1)		Vcc = 1.7 V ~ 2.0 V	3.5	-	239.5	1/F _{ADC}
Tsamp ⁽¹⁾		F _{ADC} =16 MHz	0.219	-	14.97	μs
		$V_{CC} = 2.0 \text{ V} \sim 5.5 \text{ V}$	3.5	-	239.5	1/F _{ADC}
Tconv ⁽¹⁾	-	-	-	12*Tclk	-	-
Teoc ⁽¹⁾	-	-	-	0.5*Tclk	ı	ı
DNL ⁽²⁾	-	-	-	±2	-	LSB
INL ⁽²⁾	-	-	-	±3	-	LSB
Offset ⁽²⁾	-	-	-	±2	ı	LSB

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.15. 比较器特性

表 5-23 比较器特性(1)

符号	参数	条件	最小值	典型值	最大值	单位
VIN	Input voltage range	-	0	-	V _{CC} -1.5	V
tSTART	Startup time to reach propagation delay specification	-	-	-	5	μs
40	Droposotion dolor	Output low to high	-	-	200	
tD	Propagation delay	Output high to low	-	ı	150	ns
Voffset	Offset error	-	-	±5	-	mV
Vhys	hysteresis	No hysteresis	-	0	-	mV
I _{DD}	Consumption	-	-	70	-	μA

1. 由设计保证,不在生产中测试。

5.3.16. 温度传感器特性

表 5-24 温度传感器特性

符号	参数		典型值	最大值	单位
T _L ⁽¹⁾	VTS linearity with temperature		±1	±2	°C
Avg_Slope(1)	Average slope	2.3	2.5	2.7	mV/°C
V ₃₀	Voltage at 30 °C (±5 °C)	0.74	0.76	0.78	V
tstart ⁽¹⁾	Start-up time entering in continuous mode	-	70	120	μs
t _{S_temp} (1)	ADC sampling time when reading the temperature	9	-	-	μs

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

5.3.17. 内置参考电压特性

表 5-25 内置参考电压特性

符号	参数	最小值	典型值	最大值	单位
V _{REFINT}	Internal reference voltage	1.17	1.2	1.23	V
T _{start_vrefint}	Start time of internal reference voltage	-	10	15	μs
T _{coeff}	Temperature coefficient	-	-	100(1)	ppm/°C
Ivcc	Current consumption from VCC	-	12	20	μA

1. 由设计保证,不在生产中测试。

5.3.18. ADC 内置参考电压特性

表 5-26 内置参考电压特性

符号	参数	条件	最小值	典型值	最大值	单位
VREF15	Internal 1.5 V reference voltage	T _A = 25 °C V _{CC} = 3.3 V	1.485	1.5	1.515	V
T _{coeff}	Temperature coefficient	T _A = -40 °C ~ 85 °C	-	-	120(1)	ppm/ °C
T _{start_} VREFBUF	Start time of internal reference voltage	-	-	10	15	μs

1. 由设计保证,不在生产中测试。

5.3.19. COMP 内置参考电压特性(4 位 DAC)

表 5-28 内置参考电压特性

符号	参数	条件	最小值	典型值	最大值	单位
ΔV_{abs}	Absolute variation	-	-	-	±0.5	LSB
T _{start_} VREFCMP	Start time of inter- nal reference volt- age	-	-	10	15	μs

1. 由设计保证,不在生产中测试。

5.3.20. 定时器特性

表 5-27 定时器特性

符号	参数	条件	最小值	最大值	单位
t _{res(TIM)}	Timer recolution time	-	1	-	t _{TIMxCLK}
	Timer resolution time	f _{TIMxCLK} = 24 MHz	41.667	-	ns
	Timer external clock	-	-	f _{TIMxCLK} /2	
f _{EXT}	frequency on CH1 to CH4	f _{TIMxCLK} = 24 MHz	-	12	MHz
Restim	Timer resolution	TIM1/14	-	16	bit
	16-bit counter clock	-	1	65536	t _{TIMxCLK}
tcounter	period	f _{TIMxCLK} = 24 MHz	0.041667	2730	μs

表 5-28 LPTIM 特性(时钟选择 LSI)

预分频	PRESC[2:0]	最小溢出值	最大溢出值	单位
/1	0	0.0305	1998.848	
/2	1	0.0610	3997.696	
/4	2	0.1221	8001.9456	
/8	3	0.2441	15997.3376	
/16	4	0.4883	32001.2288	ms
/32	5	0.9766	64002.4576	
/64	6	1.9531	127998.3616	
/128	7	3.9063	256003.2768	

表 5-29 IWDG 特性(时钟选择 LSI)

预分频	PR[2:0]	最小溢出值	最大溢出值	单位
/4	0	0.122	499.712	
/8	1	0.244	999.424	
/16	2	0.488	1998.848	
/32	3	0.976	3997.696	ms
/64	4	1.952	7995.392	
/128	5	3.904	15990.784	
/256	6 or 7	7.808	31981.568	

5.3.21. 通讯口特性

5.3.21.1. I²C 总线接口特性

I²C 接口满足 I²C-bus specification and user manual 的要求:

■ Standard-mode (Sm): 100 Kbit/s

■ Fast-mode (Fm): 400 Kbit/s

时序由设计保证,前提是I2C外设被正确的配置,并且I2C CLK频率大于下表要求的最小值。

表 5-30 最小 I²C CLK 频率

符号		参数		条件	最小值	单位
f _{I2CCLK(min)}	Minimum	I2CCLK	freq	Standard-mode	2	MHz
11200ER(IIIII)	uency			Fast-mode	9	1411 12

I2C SDA 和 SCL 管脚具有模拟滤波功能,参见下表。

表 5-31 I²C 滤波器特性

符号	参数	最小值	最大值	单位
t _{AF}	Limiting duration of spikes suppressed by the filter (Spikers shorter than the limiting duration are suppressed)	50	260	ns

5.3.21.2. 串行外设接口 SPI 特性

表 5-32 SPI 特性

符号	参数	条件	最小值	最大值	单位	
fsck	CDI alcali facerica	Master mode	-	24	N41.1-	
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	12	MHz	
$t_{r(SCK)}$ $t_{f(SCK)}$	SPI clock rise and fall time	Capacitive load: C = 15 pF	-	6	ns	
t _{su(NSS)}	NSS setup time	Slave mode	-	-	ns	
t _{h(NSS)}	NSS hold time	Slave mode	-	-	ns	
t _{su(MI)}	Data in a stant and an time	Master mode, fPCLK = 48 MHz,presc = 4	-	-		
t _{su(SI)}	Data input setup time	Slave mode, fPCLK = 48 MHz,presc = 4	-	-	ns	
t _{h(MI)}	Data input hold time	Master mode	-	-	ns	
$t_{h(SI)}$		Slave mode	-	-		
t _{a(SO)}	Data output access time	Slave mode, presc = 4	-	-	ns	
$t_{ ext{dis}(ext{SO})}$	Data output disable time	Slave mode	-	-	ns	
$t_{v(SO)}$	Data output valid ime	Slave mode (after enable edge), presc = 4	-	-	ns	
$t_{v(MO)}$	Data output valid ime	Master mode (after enable edge)	-	-	ns	
t _{h(SO)}	Data output hold time	Slave mode, presc = 4	-	-	ns	
$t_{h(MO)}$	•	Master mode	-	-		
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	45	55	%	

- 1. Master 在接收沿的前产生 1pclk 接收控制信号。
- 2. Slave 基于 SCK 发送沿最大有 1PCLK delay, 考虑 IO 延时等, 定义 1.5PCLK。
- 3. 在 Master 发送的 SCK 占空比接收沿和发送沿之间宽的情况下,Slave 在发送沿之前就更新数据。

图 5-3 SPI 时序图-slave mode and CPHA=0

图 5-4 SPI 时序图-slave mode and CPHA=1

图 5-5 SPI 时序图-master mode

6. 封装信息

6.1. QFN20 封装尺寸

6.2. TSSOP20 封装尺寸

6.3. SOP16 封装尺寸

6.4. SOP14 封装尺寸

7. 订购信息

8. 版本历史

版本	日期	更新记录
V0.1	2022.12.16	初版
V0.2	2023.01.02	1. 更新表1-1, 表3-1,表3-2
V0.3	2023.02.11	1. 更新表1-1,表3-1,表3-2
V0.4	2023.03.15	1. 更新表1-1,表3-1
V0.5	2023.03.22	1. 更新简介
V0.6	2023.05.10	1. 更新SOP16/SOP14引脚图, 表3-2 2. 更新部分格式

Puya Semiconductor Co., Ltd.

声 明

普冉半导体(上海)股份有限公司(以下简称: "Puya")保留更改、纠正、增强、修改 Puya 产品和/或本文档的权利,恕不另行通知。用户可在下单前获取产品的最新相关信息。

Puya 产品是依据订单时的销售条款和条件进行销售的。

用户对 Puya 产品的选择和使用承担全责,同时若用于其自己或指定第三方产品上的,Puya 不提供服务支持且不对此类产品承担任何责任。

Puya 在此不授予任何知识产权的明示或暗示方式许可。

Puya 产品的转售,若其条款与此处规定不一致,Puya 对此类产品的任何保修承诺无效。

任何带有 Puya 或 Puya 标识的图形或字样是普冉的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代并替换先前版本中的信息。

普冉半导体(上海)股份有限公司 - 保留所有权利