Joe Crop

cropj@eecs.oregonstate.edu

Sub/Near-Threshold Variation Tolerance and Greater-than-2x Delay Detection

Motivation: Theoretical Throughput

- Slow paths replaced by 2-3 clock delays
- Take advantage of pathactivation probabilities

Conventional Razor Circuits

- Large Area and Power
 - Razor-FF at every output w/64-bit OR tree
- Might not work in sub-threshold
 - Tunable Replica Circuits (TRCs) only good for dynamic variation
 - Max delay can't be greater than 2x

[1] Bowman, K.A.; Tschanz, J.W.; Nam Sung Kim; Lee, J.C.; Wilkerson, C.B.; Lu, S.-L.L.; Karnik, T.; De, V.K.; , "Energy-efficient and metastability-immune timing-error detection and recovery circuits for dynamic variation tolerance," *Integrated Circuit Design and Technology and Tutorial, 2008. ICICDT 2008. IEEE International Conference on*, vol., no., pp.155-158, 2-4 June 2008

Current Sensing Completion Detection

- Completion can be based on current profile
 - Smaller droop = faster operation
 - Computation *always* finished before current settles

Monte Carlo Characteristics (1μm Power-Gate with 16-bit MADD)

- V_{SETTLE} V_{DROOP} is always positive at worst case
- Delay begins to converge as droop decreases linearly

Future Work

- Design robust sub-threshold detector
 - Precise quantizer (< 5mV input sensitivity)
 - Power supply noise cancelation/immunity
 - Analog / Digital synthesis integration
- Fabricate Test Chip
 - 40nm CMOS
 - Pipelined

