Foundation of Cryptography

Session 14

Date: 03 March 2021

Dr. V. K. Pachghare

Number Theory

- Modular Arithmetic
- Euclidean Algorithm
- Prime Numbers
- Fermat's Little Theorem
- Euler Totient Function
- Extended Euclidean Algorithm
- Chinese Remainder Theorem

Fermat's Theorem

Fermat's Theorem

- Fermat's theorem is one of the most important theorems in cryptography.
- It is also known as Fermat's Little theorem.
- It is useful in public key encryption techniques and primality testing

Fermat's Little Theorem

Fermat's theorem states that if p is a prime number and n is a positive integer number which is not divisible by p i.e. GCD(n, p) = 1, then

 $n^{\mathrm{p}} = n \mod p$

Therefore, $n^{p-1} = 1 \mod p$

 $n^{p-1} \mod p = 1$

where p is prime and GCD (n, p) = 1

Fermat's theorem $n^{p-1} \mod p = 1$

Suppose, the prime number p = 7 and a positive integer number n = 3 then fine the value of $3^6 \mod 7$.

We apply Modularity Theorem:

$$3^6 \mod 7 = (3^2)^3$$

- $= (9 \mod 7)^3 \mod 7$
- $= 2^3 \mod 7$
- $= 8 \mod 7$
 - = 1

We know that GCD (7, 3) = 1

So, We can apply Fermat's Little theorem: $n^{p-1} \mod p = 1$

n = 3 and p = 7 therefore

 $3^{7-1} \mod 7 = 3^6 \mod 7$

= 1

Find the smallest positive residue *y* in the following congruence.

$$7^{69} = y \mod 23$$

Here n = 7 and p = 23.

GCD(7, 23) = 1

So, we can apply Fermat's Little theorem to solve this problem.

Here
$$n = 7$$
 and $p = 23$.

$$GCD(7, 23) = 1$$

So, we can apply Fermat's Little theorem to solve this problem.

Fermat's Little theorem is

$$n^{P-1} = 1 \bmod p$$

Or

$$n^{P-1} \mod p = 1$$

By substituting the values of n and p and rewrite the equation:

$$7^{(23-1)} \mod 23 = 1$$

$$7^{(22)} \mod 23 = 1$$

Here
$$n = 7$$
 and $p = 23$.

$$GCD(7, 23) = 1$$

So, we can apply Fermat's Little theorem to solve this problem.

Fermat's Little theorem is

$$n^{P-1} = 1 \mod p$$

 $n^{P-1} \mod p = 1$

Or

By substituting the values of n and p and rewrite the equation:

$$7^{(23-1)} \mod 23 = 1$$

$$7^{(22)} \mod 23 = 1$$

we can write 7^{69} as $(7^{22})^3 * 7^3$

$$7^{69} = y \mod 23$$

can be written as

$$7^{69} = 7^{66} * 7^3$$

Here n = 7 and p = 23.

$$GCD(7, 23) = 1$$

So, we can apply Fermat's Little theorem to solve this problem.

Fermat's Little theorem is

$$n^{P-1} = 1 \mod p$$

Or $n^{P-1} \mod p = 1$

By substituting the values of n and p and rewrite the equation:

$$7^{(23-1)} \mod 23 = 1$$

$$7^{(22)} \mod 23 = 1$$

we can write 7^{69} as $(7^{22})^3 * 7^3$

therefore
$$7^{69} = y \mod 23$$

can be written as

$$7^{69} = 7^{66} * 7^{3}$$
 $7^{69} = (7^{22})^{3} * 7^{3} \mod 23$
 $= (1)^{3} * 7^{3} \mod 23$
 $= 343 \mod 23 = 21$

1. Calculate the GCD of 4 and 11.

$$GCD(4, 11) = 1$$

1. Calculate the GCD of 4 and 11.

$$GCD(4, 11) = 1$$

2. As GCD is 1, find the multiplicative inverse of 4 mod 11 we have to find out the value of "n" such that

$$(4 \text{ n}) \mod 11 = 1$$

The multiplicative inverse of 4 mod 11 (4⁻¹ mod 11) is 3.

$$(As 4 * 3 = 12 \mod 11 = 1)$$

1. Calculate the GCD of 4 and 11.

$$GCD(4, 11) = 1$$

- 2. As GCD is 1, find the multiplicative inverse of 4 mod 11 The multiplicative inverse of 4 mod 11 is 3.
- 3. $4x = 8 \mod 11$ can be rewritten as $x = 8 \times 4^{-1} \mod 11$ $x = 8 * 3 \mod 11$

$$x = 2 \mod 11$$

All the solutions of the given congruence is $x = 2 \mod 11$.

Compute the value of 12345²³⁴⁵⁶⁷⁸⁹ mod 101.

By Fermat's Little theorem $n^{p-1} = 1 \mod p$ where n = 12345 and p = 101. $12345^{(101-1)} \mod 101 = 1$ $12345^{100} \mod 101 = 1$ Therefore, 12345²³⁴⁵⁶⁷⁸⁹ mod 101 $= (12345^{100})^{234567} * 12345^{89} \mod 101$ $= 1 * 12345^{89} \mod 101$

 $= 12345^{89} \mod 101$

19

But

$12345 \mod 101 = 23$

Therefore, 23⁸⁹ mod 101

23 mod 101 = 23
23² mod 101 = 24
23³ mod 101 = 47
23⁴ mod 101 = 71
23⁵ mod 101 = 17
23⁷ mod 101 = 4
23⁸⁹ mod 101 =
$$(23^{7})^{12}$$
 23⁵ mod 101
= 4^{12} * 17 mod 101
= 5 * 17 mod 101
= 85

Therefore, the value of $12345^{23456789} \mod 101 = 85$.