A2 Phys T1 MS

Monday, July 28, 2025 12:25 AN

,,,	i) $T = 24 \text{ hours}$ $\omega = 2\pi / (24 \times 3600) \text{ or } 2\pi / T$ $= 7.27 \times 10^{-5} \text{ rad s}^{-1}$ ii) $mr\omega^2 = GMm/r^2$ $r^3 = 7.55 \times 10^{22}$ $r = 4.23 \times 10^7 \text{ m}$	C1 A1 C1	[3]
(a) (i) (ii)	angle subtended at centre of circle	B1 M1	[2] - [1]
(b) (i)	or acceleration of free fall is centripetal acceleration	M1 A0 C1 C1 C1	[2] [4]
(b)	 (ii) angle swept out per unit time / rate of change of angle by the string friction provides / equals the centripetal force 0.72 W = mdω² 0.72 mg = m × 0.35ω² ω = 4.49 (rad s⁻¹) n = (ω/2π) × 60 = 43 min⁻¹ (allow 42) 	M1 A1 B1 C1 C1 B1 A1	[2] [5]
	either <u>centripetal</u> force increases as r increases or <u>centripetal</u> force larger at edge so flies off at edge first ($F = mr\omega^2$ so edge first – treat as special case and allow one mark)	M1 A1	[2]

(b)	(i)	point S shown below C	E	31	[1]
(ii)	(m	nax) force / tension = weight + centripetal force	C1		
` ′			C1		
			C1		
	ω	$= 7.6 \text{ rad s}^{-1}$	Α1	[4]	
(a	ı) (i)	rate of change of angle / angular displacement		M1	
		swept out by radius		A1	[2]
	/:::	$\omega \times T = 2\pi$		D1	[4]
	(11)	$\omega \times 1 - 2\pi$		B1	[1]
(b) ce	entripetal force is provided by the gravitational force		В1	
`	ei	ther $mr(2\pi/T)^2 = GMm/r^2$ or $mr\omega^2 = GMm/r^2$		M1	
	r^3	$3 \times 4\pi^2 = GM \times T^2$		Α1	
	G	$M/4\pi^2$ is a constant (c)		Α1	
	T	$^{2}=cr^{3}$		Α0	[4]
10	. (i)	either $T^2 = (45/1.08)^3 \times 0.615^2$ or $T^2 = 0.30 \times 45^3$		C1	
,,	·) (i	T = 165 years		A1	[2]
		7 - 100 yours		, · ·	[-]
	(ii)) speed = $(2\pi \times 1.08 \times 10^8) / (0.615 \times 365 \times 24 \times 3600)$		C1	
	` '	$= 35 \text{ km s}^{-1}$		Α1	[2]
(2)	(i)	$F = R \cos \theta$	N	11	
(a)	(1)	$W = R \sin \theta$		11	
		dividing, $W = F \tan \theta$		۸0	[2]
		(max. 1 if derivation to final line not shown)	•		[-]
		,,			
	(ii)	provides the centripetal force	Е	31	[1]
/1- \	- 141				
(a)		$mer F = mv^2/r \text{ and } W = mg$		١1	
		$r^2 = rg/\tan \theta$ = (14 × 10 ⁻² × 9.8)/tan 28°		21 21	
		= (14 × 10 × 9.8)/tail 28 = 2.58	_	, ,	
		$= 1.6 \mathrm{m s^{-1}}$	Δ	\1	[3]
	•		,	••	[~]