1. Let x, y be integers satisfying $x^4 + x^2 = 8y$. Show that $4 \mid x$.

Consider *x* modulus 4,

$$0 x^4 + x^2 \equiv 0 \bmod 8$$

$$1 x^4 + x^2 \equiv 2 \bmod 8$$

$$x^{2}(x^{2} + 1) = 8y$$
, so $8 \mid x^{2}(x^{2} + 1)$

Claim: x cannot be odd, because 8 does not divide $x^2 + 1$

If
$$x = 2k + 1$$
 then $x^2 + 1 = 4k^2 + 4k + 2 = 4s + 2$

Therefore, $8 \mid x^2$

AFSOC
$$x \equiv 2 \mod 4$$
 then $x = 4k + 2$ so $x^2 = 16k^2 + 16k + 4$

2. Show that if p and $p^2 + 2$ are both primes, so is $p^3 + 2$.

Only prime p = 3 satisfies $p^2 + 2$ is prime.

For any prime $p \neq 3$, $p^2 + 2 \equiv 0 \mod 3$.

3. Show that $n^7 - n$ is divisible by 42 for every positive integer n.

Want to show 42 | $n^7 - n = n(n^6 - 1) = n(n^3 + 1)(n^3 - 1)$

Want to show $2 \mid n^7 - n$ and $3 \mid n^7 - n$ and $7 \mid n^7 - n$

n and n^3+1 must have different parity, so $2\mid n(n^3+1)$

If $n \equiv 1 \mod 3$, then $3 \mid n^3 - 1$; if $n \equiv 2 \mod 3$, then $3 \mid n^3 + 1$

Consider *n* modulus 7,

0
$$7 | n$$

1
$$7 | n^3 - 1$$

2
$$7 \mid n^3 - 1$$

$$3 \qquad 7 \mid n^3 + 1$$

4
$$7 \mid n^3 - 1$$

5
$$7 \mid n^3 + 1$$

6
$$7 \mid n^3 + 1$$

For case
$$n \equiv 1 \mod 7$$
: $n^3 - 1 \equiv 1^3 - 1 \equiv 0 \mod 7$

For case
$$n \equiv 5 \mod 7$$
: $n^3 + 1 \equiv 5^3 + 1 \equiv 125 + 1 \equiv 126 \equiv 0 \mod 7$

Lemma 1.

If
$$x \equiv y \mod n$$
, then $x^k \equiv y^k \mod n$.

Want to show
$$n \mid x^k - y^k = (x - y) \cdot A$$

Lemma 2.

If
$$a \mid n$$
 and $b \mid n$ then $ab \mid n$, only true if $gcd(a, b) = 1$.

$$n = ak$$
, but $b \mid n$ so $b \mid ak$; since b does not divide a , so $b \mid k$, that is $k = bk'$, so $n = abk'$

4. Fix modulus n. Prove or disprove for all integers a, b, q and $q \neq 0 \mod n$ we have $qa \equiv qb \rightarrow a \equiv b$.

$$n\mid qa-qb=q(a-b)\rightarrow n\mid (a-b)$$

Counterexample:
$$a = 5, b = 7, q = 3, n = 6$$

5. Let p be a prime. Find gcd((p-1)! + 1, p!).

Let
$$gcd((p-1)! + 1, p!) = x$$
. Then x does not divide $(p-1)!$

$$p \mid (p-1)! + 1$$
 by Wilson's theorem

Lemma:
$$gcd(n, n + 1) = gcd(n, 1) = 1$$

- 6. Show that $n^5 n$ is divisible by 30 for every positive integer n.
- 7. Show that 4 does not divide $n^2 + 2$ for any positive integer n.

8. Show that for every positive integer n we have $\sum_{i=1}^{n} i^3 \mid 3 \cdot \sum_{i=1}^{n} i^5$.

$$3 \cdot ? \equiv 1 \mod 12$$

$$3 \cdot ? \equiv 1 \mod 13$$

$$13k = 3 \cdot ? -1$$
, that is, $3 \cdot ? +13 \cdot (-k) = 1$

gcd(x, y) = n, then extended Euclidean algorithm gives a, b such that ax + by = n.

9. Find x such that $2x + 9 \equiv 3x + 7 \mod 5$.

 $x \equiv 2 \mod 5$.

$$5 \mid (2x + 9) - (3x + 7)$$
$$5 \mid 2 - x$$

10. Find *x* such that $25x - 4 \equiv 4x + 3 \mod 13$.

 $21x \equiv 7 \mod 13$ (we can also divide both side by 7, so $3x \equiv 1 \mod 13$.)

 $8x \equiv 7 \mod 13$

Want to find 8x - 7 = 13k, that is 8x - 13k = 7

8a + 13b = 1 for some *a*, *b*

a = 5, b = -3. That is, $8 \cdot 5 - 13 \cdot 3 = 1$ so $x = 5 \cdot 7 \equiv 9 \mod 13$.