AEEM 3042 – Integrated Aircraft Engineering

Aircraft Performance Flight Envelope

Flight Envelope

Stall Speed

$$C_L = \frac{n W}{q S} = \frac{n W}{\frac{1}{2} \rho V^2 S}$$

$$C_{L_{max}} = \frac{n W}{\frac{1}{2} \rho V_{stall}^2 S} \longrightarrow V_{stall} = \sqrt{\frac{2}{\rho} \frac{W}{S} \frac{n}{C_{L_{max}}}}$$

$$\longrightarrow$$
 $M_{stall} = V_{stall} / a$

Stall Speed – Flight Envelope

Stall Speed – V-n Diagram

Limit Speed

Maximum Mach Number (Max M = X.YY)

Maximum dynamic pressure $(q_{max} = X.Y lb/ft^2)$

Maximum KEAS (Max KEAS = X.Y NM/hr or kts)

At any altitude, an aircraft's maximum velocity is constrained to the least of these speeds

$$V_{maxq} = \sqrt{rac{2}{
ho}} \; q_{max}$$
 - or - $V_{maxM} = M_{max} \; a$

Limit Speed

Maximum Mach Number (Max M = X.YY)

Maximum dynamic pressure $(q_{max} = X.Y lb/ft^2)$

Maximum KEAS (Max KEAS = X.Y NM/hr or kts)

$$q_{max} = \left(\frac{q}{M^2}\right)_{SL} \left(\frac{Max \ KEAS}{a_{SL}}\right)^2 \longrightarrow V_{maxq} = \sqrt{\frac{2}{\rho}} \ q_{max}$$

- or -
$$M_{\text{maxq}} = \sqrt{\frac{q_{\text{max}}}{\left(\frac{q}{M^2}\right)}}$$

Limit Speed – Flight Envelope

Limit Speed – V-n Diagram

Limit Speed – Flight Envelope

Max KEAS = 305 NM / hr

 $Max q = 315 lb/ft^2$

Max M = 0.88

$$\text{Max } \mathbf{q} = \left(\frac{\mathbf{q}}{\mathbf{M}^2}\right)_{\text{SL}} \left(\frac{\text{Max KEAS}}{a_{\text{SL}}}\right)^2$$

Limit Mach = $MIN(M_{maxq}, M_{max})$

Altitude	rho	а	QMS	g's	CLmax	Vel	Mach	Max q	Max Mach	Max Mach	Limit Mach
(ft)		(ft/sec)				(ft/sec)		(lb/ft^2)	(max q)		
0	0.00237688	1116.45	1481.4	1.00	1.20	232.1	0.2079	315.0	0.4611	0.88	0.4611
5,000	0.00204808	1097.09	1232.6	1.00	1.20	250.1	0.2279	315.0	0.5055	0.88	0.5055
10,000	0.00175527	1077.39	1018.7	1.00	1.20	270.1	0.2507	315.0	0.5560	0.88	0.5560
15,000	0.00149561	1057.31	836.0	1.00	1.20	292.6	0.2768	315.0	0.6138	0.88	0.6138
20,000	0.00126642	1036.85	680.7	1.00	1.20	318.0	0.3067	315.0	0.6802	0.88	0.6802
25,000	0.00106511	1015.98	549.7	1.00	1.20	346.8	0.3413	315.0	0.7570	0.88	0.7570
30,000	0.00088926	994.67	439.9	1.00	1.20	379.5	0.3815	315.0	0.8462	0.88	0.8462
32,000	0.00082551	986.02	401.3	1.00	1.20	393.9	0.3995	315.0	0.8859	0.88	0.8800
35,000	0.00073652	972.89	348.6	1.00	1.20	417.0	0.4286	315.0	0.9506	0.88	0.8800
36,000	0.00070856	968.48	332.3	1.00	1.20	425.1	0.4390	315.0	0.9736	0.88	0.8800
40,000	0.00058512	968.08	274.2	1.00	1.20	467.8	0.4833	315.0	1.0718	0.88	0.8800
45,000	0.00046012	968.08	215.6	1.00	1.20	527.6	0.5450	315.0	1.2087	0.88	0.8800
50,000	0.00036183	968.08	169.5	1.00	1.20	594.9	0.6146	315.0	1.3630	0.88	0.8800

G-IV Flight Envelope

G-IV V-n Diagram

AEEM 3042 – Integrated Aircraft Engineering

Aircraft Performance Equations of Motion Range & Endurance

Range & Endurance

$$C_D = C_{D_0} + K C_L^2$$

Gulfstream IV

twin-turbofan biz jet:

$$C_{D_0} = 0.0150 \text{ K} = 0.08$$

$$W = 73,000 \text{ lb}$$

$$h = 20,000 ft$$

$$c (20k) = 0.720 lb_{fuel}/hr/lb_{t}$$

Range Factor(NM) =
$$\frac{V}{c_t} \frac{L}{D}$$

Endurance Factor(hr) =
$$\frac{1}{c_t} \frac{L}{D}$$

c @ altitude = c (SL) * a_{alt}/a_{SL}

Maximum Endurance Calculations

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2} = 529.4 \text{ ft/sec}$$

Max
$$\frac{C_L}{C_D} = \sqrt{\frac{1}{4 C_{D_0} K}} = 14.43$$

$$EF = \frac{1}{c_t} \frac{L}{D} = 20.0 \text{ hr}$$

$$E = EF \, ln \frac{W_0}{W_1} \quad \mbox{= 0.84 hr} \\ \mbox{burning 3,000 lb} \label{eq:energy}$$

Maximum Range Calculations

Calculate V:

$$V_{L/D_{max}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{W}{S}\right)^{1/2}$$

= 529.4 ft/sec

for Max R

$$V_{(D/V)_{min}} = 1.3161 V_{L/D_{max}}$$

= 696.7 ft/sec

Calculate C₁:

$$C_L = \frac{W n}{\frac{1}{2} \rho V^2 S} = \frac{W n}{(q/M^2) M^2 S} = 0.2500$$

Calculate C_D:

$$C_D = C_{D_0} + K C_L^2 = 0.0200$$

Calculate RF:

$$RF = \frac{V}{c_t} \frac{L}{D} = 7167.0 \text{ NM}$$

Calculate R:

$$R = RF \ln \frac{W_0}{W_1} = 831.9 \text{ NM}$$
burning 8,000 lb "Cine"

Questions?