determined by the eigenvectors $\xi^{(2)}$ and $\xi^{(3)}$ corresponding to the two negative eigenvalues. Thus solutions that start in this plane approach the origin as $t \to \infty$, while all other solutions become unbounded.

If some of the eigenvalues occur in complex conjugate pairs, then there are still n linearly independent solutions of the form (23), provided that all the eigenvalues are different. Of course, the solutions arising from complex eigenvalues are complex-valued. However, as in Section 3.4, it is possible to obtain a full set of real-valued solutions. This is discussed in Section 7.6.

More serious difficulties can occur if an eigenvalue is repeated. In this event the number of corresponding linearly independent eigenvectors may be smaller than the algebraic multiplicity of the eigenvalue. If so, the number of linearly independent solutions of the form ξe^n will be smaller than n. To construct a fundamental set of solutions, it is then necessary to seek additional solutions of another form. The situation is somewhat analogous to that for an nth order linear equation with constant coefficients; a repeated root of the characteristic equation gave rise to solutions of the form e^n , t^2e^n , The case of repeated eigenvalues is treated in Section 7.8.

Finally, if A is complex, then complex eigenvalues need not occur in conjugate pairs, and the eigenvectors are normally complex-valued even though the associated eigenvalue may be real. The solutions of the differential equation (1) are still of the form (23), provided that the eigenvalues are distinct, but in general all the solutions are complex-valued.

PROBLEMS

In each of Problems 1 through 6 find the general solution of the given system of equations and describe the behavior of the solution as $t \to \infty$. Also draw a direction field and plot a few trajectories of the system.

$$\mathbf{x}' = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix} \mathbf{x}$$

$$\mathbf{x}' = \begin{pmatrix} 3 & -2 \\ 2 & -4 \end{pmatrix} \mathbf{x}$$

$$\mathbf{x}' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \mathbf{x}$$

$$\mathbf{x}' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \mathbf{x}$$

$$\mathbf{x}' = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \mathbf{x}$$

$$\mathbf{x}' = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \mathbf{x}$$

$$\mathbf{x}' = \begin{pmatrix} \frac{5}{4} & \frac{3}{4} \\ \frac{3}{2} & \frac{5}{2} \end{pmatrix} \mathbf{x}$$

In each of Problems 7 and 8 find the general solution of the given system of equations. Also draw a direction field and a few of the trajectories. In each of these problems the coefficient matrix has a zero eigenvalue. As a result, the pattern of trajectories is different from those in the examples in the text.

7.
$$\mathbf{x}' = \begin{pmatrix} 4 & -3 \\ 8 & -6 \end{pmatrix} \mathbf{x}$$
8. $\mathbf{x}' = \begin{pmatrix} 3 & 6 \\ -1 & -2 \end{pmatrix} \mathbf{x}$

In each of Problems 9 through 14 find the general solution of the given system of equations.

9.
$$\mathbf{x}' = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \mathbf{x}$$
 10. $\mathbf{x}' = \begin{pmatrix} 2 & 2 + i \\ -1 & -1 - i \end{pmatrix} \mathbf{x}$

11.
$$\mathbf{x}' = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \mathbf{x}$$

12. $\mathbf{x}' = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix} \mathbf{x}$
13. $\mathbf{x}' = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ -8 & -5 & -3 \end{pmatrix} \mathbf{x}$
14. $\mathbf{x}' = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix} \mathbf{x}$

In each of Problems 15 through 18 solve the given initial value problem. Describe the behavior of the solution as $t \to \infty$.

19. The system tx' = Ax is analogous to the second order Euler equation (Section 5.5). Assuming that $x = \xi t'$, where ξ is a constant vector, show that ξ and r must satisfy $(A - rI)\xi = 0$ in order to obtain nontrivial solutions of the given differential equation.

Referring to Problem 19, solve the given system of equations in each of Problems 20 through 23. Assume that t > 0.

20.
$$t\mathbf{x}' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \mathbf{x}$$
 21. $t\mathbf{x}' = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} \mathbf{x}$ 22. $t\mathbf{x}' = \begin{pmatrix} 4 & -3 \\ 8 & -6 \end{pmatrix} \mathbf{x}$ 23. $t\mathbf{x}' = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix} \mathbf{x}$

In each of Problems 24 through 27 the eigenvalues and eigenvectors of a matrix A are given. Consider the corresponding system x' = Ax.

- (a) Sketch a phase portrait of the system.
- (b) Sketch the trajectory passing through the initial point (2,3).
- (c) For the trajectory in part (b) sketch the graphs of x_1 versus t and of x_2 versus t on the same set of axes.

24.
$$r_1 = -1$$
, $\xi^{(1)} = \begin{pmatrix} -1\\2 \end{pmatrix}$; $r_2 = -2$, $\xi^{(2)} = \begin{pmatrix} 1\\2 \end{pmatrix}$
25. $r_1 = 1$, $\xi^{(1)} = \begin{pmatrix} -1\\2 \end{pmatrix}$; $r_2 = -2$, $\xi^{(2)} = \begin{pmatrix} 1\\2 \end{pmatrix}$
26. $r_1 = -1$, $\xi^{(1)} = \begin{pmatrix} -1\\2 \end{pmatrix}$; $r_2 = 2$, $\xi^{(2)} = \begin{pmatrix} 1\\2 \end{pmatrix}$
27. $r_1 = 1$, $\xi^{(1)} = \begin{pmatrix} 1\\2 \end{pmatrix}$; $r_2 = 2$, $\xi^{(2)} = \begin{pmatrix} 1\\-2 \end{pmatrix}$

28. Consider a 2 × 2 system $\mathbf{x}' = \mathbf{A}\mathbf{x}$. If we assume that $r_1 \neq r_2$, the general solution is $\mathbf{x} = c_1 \xi^{(1)} e^{r_1 t} + c_2 \xi^{(2)} e^{r_2 t}$, provided that $\xi^{(1)}$ and $\xi^{(2)}$ are linearly independent. In this problem we establish the linear independence of $\xi^{(1)}$ and $\xi^{(2)}$ by assuming that they are linearly dependent, and then showing that this leads to a contradiction.

- (a) Note that $\xi^{(1)}$ satisfies the matrix equation $(\mathbf{A} r_1 \mathbf{I})\xi^{(1)} = \mathbf{0}$; similarly, note that $(\mathbf{A} - r_2 \mathbf{I}) \xi^{(2)} = 0.$
- (b) Show that $(\mathbf{A} r_2 \mathbf{I})\xi^{(1)} = (r_1 r_2)\xi^{(1)}$.
- (c) Suppose that $\xi^{(1)}$ and $\xi^{(2)}$ are linearly dependent. Then $c_1\xi^{(1)}+c_2\xi^{(2)}=0$ and at least one of c_1 and c_2 is not zero; suppose that $c_1 \neq 0$. Show that $(\mathbf{A} - r_2\mathbf{I})(c_1\xi^{(1)} + c_2\xi^{(2)}) = 0$, and also show that $(\mathbf{A} - r_2\mathbf{I})(c_1\xi^{(1)} + c_2\xi^{(2)}) = c_1(r_1 - r_2)\xi^{(1)}$. Hence $c_1 = 0$, which is a contradiction. Therefore $\xi^{(1)}$ and $\xi^{(2)}$ are linearly independent.
- (d) Modify the argument of part (c) if we assume that $c_2 \neq 0$.
- (e) Carry out a similar argument for the case in which the order n is equal to 3; note that the procedure can be extended to an arbitrary value of n.
- 29. Consider the equation

$$ay'' + by' + cy = 0, (i)$$

where a, b, and c are constants with $a \neq 0$. In Chapter 3 it was shown that the general solution depended on the roots of the characteristic equation

$$ar^2 + br + c = 0. (ii)$$

- (a) Transform Eq. (i) into a system of first order equations by letting $x_1 = y, x_2 = y'$. Find the system of equations x' = Ax satisfied by $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.
- (b) Find the equation that determines the eigenvalues of the coefficient matrix ${\bf A}$ in part
- (a). Note that this equation is just the characteristic equation (ii) of Eq. (i).
- 20. The two-tank system of Problem 22 in Section 7.1 leads to the initial value problem

$$\mathbf{x}' = \begin{pmatrix} -\frac{1}{10} & \frac{3}{40} \\ \frac{1}{10} & -\frac{1}{5} \end{pmatrix} \mathbf{x}, \qquad \mathbf{x}(0) = \begin{pmatrix} -17 \\ -21 \end{pmatrix},$$

where x_1 and x_2 are the deviations of the salt levels Q_1 and Q_2 from their respective equilibria.

- (a) Find the solution of the given initial value problem.
- (b) Plot x_1 versus t and x_2 versus t on the same set of axes.
- (c) Find the time T such that $|x_1(t)| \le 0.5$ and $|x_2(t)| \le 0.5$ for all $t \ge T$.
- 31. Consider the system

$$\mathbf{x}' = \begin{pmatrix} -1 & -1 \\ -\alpha & -1 \end{pmatrix} \mathbf{x}.$$

- (a) Solve the system for $\alpha = 0.5$. What are the eigenvalues of the coefficient matrix? Classify the equilibrium point at the origin as to type.
- (b) Solve the system for $\alpha = 2$. What are the eigenvalues of the coefficient matrix? Classian sify the equilibrium point at the origin as to type.
- (c) In parts (a) and (b) solutions of the system exhibit two quite different types of behavior. Find the eigenvalues of the coefficient matrix in terms of α and determine the value of α between 0.5 and 2 where the transition from one type of behavior to the other occurs.

Electric Circuits. Problems 32 and 33 are concerned with the electric circuit described by the system of differential equations in Problem 21 of Section 7.1:

$$\frac{d}{dt} \begin{pmatrix} I \\ V \end{pmatrix} = \begin{pmatrix} -\frac{R_1}{L} & -\frac{1}{L} \\ \frac{1}{C} & -\frac{1}{CR_2} \end{pmatrix} \begin{pmatrix} I \\ V \end{pmatrix}. \tag{i}$$

- 32. (a) Find the general solution of Eq. (i) if $R_1 = 1$ ohm, $R_2 = \frac{3}{5}$ ohm, L = 2 henrys, and $C = \frac{2}{3}$ farad.
 - (b) Show that $I(t) \to 0$ and $V(t) \to 0$ as $t \to \infty$ regardless of the initial values I(0) and V(0).
- 33. Consider the preceding system of differential equations (i).
 - (a) Find a condition on R_1 , R_2 , C, and L that must be satisfied if the eigenvalues of the coefficient matrix are to be real and different.
 - (b) If the condition found in part (a) is satisfied, show that both eigenvalues are negative. Then show that $I(t) \to 0$ and $V(t) \to 0$ as $t \to \infty$ regardless of the initial conditions.
 - (c) If the condition found in part (a) is not satisfied, then the eigenvalues are either complex or repeated. Do you think that $I(t) \to 0$ and $V(t) \to 0$ as $t \to \infty$ in these cases as well?

Hint: In part (c) one approach is to change the system (i) into a single second order equation. We also discuss complex and repeated eigenvalues in Sections 7.6 and 7.8.

7.6 Complex Eigenvalues

In this section we consider again a system of n linear homogeneous equations with constant coefficients

$$\mathbf{x}' = \mathbf{A}\mathbf{x},\tag{1}$$

where the coefficient matrix **A** is real-valued. If we seek solutions of the form $\mathbf{x} = \xi e^{rt}$, then it follows, as in Section 7.5, that r must be an eigenvalue and ξ a corresponding eigenvector of the coefficient matrix **A**. Recall that the eigenvalues r_1, \ldots, r_n of **A** are the roots of the equation

$$\det(\mathbf{A} - r\mathbf{I}) = 0, (2)$$

and that the corresponding eigenvectors satisfy

$$(\mathbf{A} - r\mathbf{I})\boldsymbol{\xi} = \mathbf{0}. (3)$$

If **A** is real, then the coefficients in the polynomial equation (2) for r are real, and any complex eigenvalues must occur in conjugate pairs. For example, if $r_1 = \lambda + i\mu$, where λ and μ are real, is an eigenvalue of **A**, then so is $r_2 = \lambda - i\mu$. Further, the corresponding eigenvectors $\xi^{(1)}$ and $\xi^{(2)}$ are also complex conjugates. To see that this is so, suppose that r_1 and $\xi^{(1)}$ satisfy

$$(\mathbf{A} - r_1 \mathbf{I}) \boldsymbol{\xi}^{(1)} = \mathbf{0}. \tag{4}$$

PROBLEMS

In each of Problems 1 through 8 express the general solution of the given system of equations in terms of real-valued functions. In each of Problems 1 through 6 also draw a direction field, sketch a few of the trajectories, and describe the behavior of the solutions as $t \to \infty$.

$$\begin{cases} 1. \ \mathbf{x}' = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix} \mathbf{x} \\ & & \\ 2. \ \mathbf{x}' = \begin{pmatrix} -1 & -4 \\ 1 & -1 \end{pmatrix} \mathbf{x} \\ & & \\ 3. \ \mathbf{x}' = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix} \mathbf{x} \\ & & \\ 3. \ \mathbf{x}' = \begin{pmatrix} 2 & -\frac{5}{2} \\ \frac{9}{5} & -1 \end{pmatrix} \mathbf{x} \\ & & \\ 3. \ \mathbf{x}' = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix} \mathbf{x} \\ & & \\ 7. \ \mathbf{x}' = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{pmatrix} \mathbf{x} \\ & & \\ 8. \ \mathbf{x}' = \begin{pmatrix} -3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0 \end{pmatrix} \mathbf{x} \\ & & \\ 8. \ \mathbf{x}' = \begin{pmatrix} -3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0 \end{pmatrix} \mathbf{x} \\ \end{cases}$$

In each of Problems 9 and 10 find the solution of the given initial value problem. Describe the behavior of the solution as $t \to \infty$.

9.
$$\mathbf{x}' = \begin{pmatrix} 1 & -5 \\ 1 & -3 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
10. $\mathbf{x}' = \begin{pmatrix} -3 & 2 \\ -1 & -1 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

In each of Problems 11 and 12:

- (a) Find the eigenvalues of the given system.
- (b) Choose an initial point (other than the origin) and draw the corresponding trajectory in the x_1x_2 -plane.
- (c) For your trajectory in part (b) draw the graphs of x_1 versus t and of x_2 versus t.
- (d) For your trajectory in part (b) draw the corresponding graph in three-dimensional tx_1x_2 -space.

(2) 11.
$$\mathbf{x}' = \begin{pmatrix} \frac{3}{4} & -2\\ 1 & -\frac{5}{4} \end{pmatrix} \mathbf{x}$$
 (2) 12. $\mathbf{x}' = \begin{pmatrix} -\frac{4}{5} & 2\\ -1 & \frac{6}{5} \end{pmatrix} \mathbf{x}$

In each of Problems 13 through 20 the coefficient matrix contains a parameter α . In each of these problems:

- (a) Determine the eigenvalues in terms of α .
- (b) Find the critical value or values of α where the qualitative nature of the phase portrait for the system changes.
- (c) Draw a phase portrait for a value of α slightly below, and for another value slightly above, each critical value.

$$20. \mathbf{x}' = \begin{pmatrix} 4 & \alpha \\ 8 & -6 \end{pmatrix} \mathbf{x}$$

In each of Problems 21 and 22 solve the given system of equations by the method of Problem 19 of Section 7.5. Assume that t > 0.

21.
$$t\mathbf{x}' = \begin{pmatrix} -1 & -1 \\ 2 & -1 \end{pmatrix} \mathbf{x}$$

$$22. t \mathbf{x}' = \begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix} \mathbf{x}$$

In each of Problems 23 and 24:

- (a) Find the eigenvalues of the given system.
- (b) Choose an initial point (other than the origin) and draw the corresponding trajectory in the x_1x_2 -plane. Also draw the trajectories in the x_1x_3 - and x_2x_3 -planes.
- (c) For the initial point in part (b) draw the corresponding trajectory in $x_1x_2x_3$ -space.

$$23. \mathbf{x}' = \begin{pmatrix} -\frac{1}{4} & 1 & 0 \\ -1 & -\frac{1}{4} & 0 \\ 0 & 0 & -\frac{1}{4} \end{pmatrix}$$

- 25. Consider the electric circuit shown in Figure 7.6.6. Suppose that $R_1 = R_2 = 4$ ohms, $C = \frac{1}{2}$ farad, and L = 8 henrys.
 - (a) Show that this circuit is described by the system of differential equations

$$\frac{d}{dt}\begin{pmatrix} I\\V \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{8}\\2 & -\frac{1}{2} \end{pmatrix}\begin{pmatrix} I\\V \end{pmatrix},\tag{i}$$

where I is the current through the inductor and V is the voltage drop across the capacitor. Hint: See Problem 19 of Section 7.1.

- (b) Find the general solution of Eqs. (i) in terms of real-valued functions.
- (c) Find I(t) and V(t) if I(0) = 2 amperes and V(0) = 3 volts.
- (d) Determine the limiting values of I(t) and V(t) as $t \to \infty$. Do these limiting values depend on the initial conditions?

FIGURE 7.6.6 The circuit in Problem 25.

26. The electric circuit shown in Figure 7.6.7 is described by the system of differential equations

$$\frac{d}{dt} \begin{pmatrix} I \\ V \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{L} \\ -\frac{1}{C} & -\frac{1}{RC} \end{pmatrix} \begin{pmatrix} I \\ V \end{pmatrix}, \tag{i}$$

where I is the current through the inductor and V is the voltage drop across the capacitor. These differential equations were derived in Problem 19 of Section 7.1.

- (a) Show that the eigenvalues of the coefficient matrix are real and different if $L > 4R^2C$; show that they are complex conjugates if $L < 4R^2C$.
- (b) Suppose that R=1 ohm, $C=\frac{1}{2}$ farad, and L=1 henry. Find the general solution of the system (i) in this case.
- (c) Find I(t) and V(t) if I(0) = 2 amperes and V(0) = 1 volt.
- (d) For the circuit of part (b) determine the limiting values of I(t) and V(t) as $t \to \infty$. Do these limiting values depend on the initial conditions?

FIGURE 7.6.7 The circuit in Problem 26.

- 27. In this problem we indicate how to show that $\mathbf{u}(t)$ and $\mathbf{v}(t)$, as given by Eqs. (9), are linearly independent. Let $r_1 = \lambda + i\mu$ and $\tilde{r}_1 = \lambda i\mu$ be a pair of conjugate eigenvalues of the coefficient matrix \mathbf{A} of Eq. (1); let $\boldsymbol{\xi}^{(1)} = \mathbf{a} + i\mathbf{b}$ and $\overline{\boldsymbol{\xi}}^{(1)} = \mathbf{a} i\mathbf{b}$ be the corresponding eigenvectors. Recall that it was stated in Section 7.3 that if $r_1 \neq \tilde{r}_1$, then $\boldsymbol{\xi}^{(1)}$ and $\overline{\boldsymbol{\xi}}^{(1)}$ are linearly independent.
 - (a) First we show that a and b are linearly independent. Consider the equation $c_1 \mathbf{a} + c_2 \mathbf{b} = \mathbf{0}$. Express a and b in terms of $\xi^{(1)}$ and $\overline{\xi}^{(1)}$, and then show that $(c_1 ic_2)\xi^{(1)} + (c_1 + ic_2)\overline{\xi}^{(1)} = \mathbf{0}$.
 - (b) Show that $c_1 ic_2 = 0$ and $c_1 + ic_2 = 0$ and then that $c_1 = 0$ and $c_2 = 0$. Consequently, a and b are linearly independent.
 - (c) To show that $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are linearly independent, consider the equation $c_1\mathbf{u}(t_0) + c_2\mathbf{v}(t_0) = 0$, where t_0 is an arbitrary point. Rewrite this equation in terms of \mathbf{a} and \mathbf{b} , and then proceed as in part (b) to show that $c_1 = 0$ and $c_2 = 0$. Hence $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are linearly independent at the arbitrary point t_0 . Therefore they are linearly independent at every point and on every interval.
- 28. A mass m on a spring with constant k satisfies the differential equation (see Section 3.8)

$$mu'' + ku = 0,$$

where u(t) is the displacement at time t of the mass from its equilibrium position.

(a) Let $x_1 = u, x_2 = u'$, and show that the resulting system is

$$\mathbf{x}' = \begin{pmatrix} 0 & 1 \\ -k/m & 0 \end{pmatrix} \mathbf{x}.$$

- (b) Find the eigenvalues of the matrix for the system in part (a).
- (c) Sketch several trajectories of the system. Choose one of your trajectories, and sketch the corresponding graphs of x_1 versus t and of x_2 versus t. Sketch both graphs on one set of axes.
- (d) What is the relation between the eigenvalues of the coefficient matrix and the natural frequency of the spring-mass system?

- 29. Consider the two-mass, three-spring system of Example 3 in the text. Instead of converting the problem into a system of four first order equations, we indicate here how to proceed directly from Eqs. (22).
 - (a) Show that Eqs. (22) can be written in the form

$$\mathbf{x}'' = \begin{pmatrix} -2 & 3/2 \\ 4/3 & -3 \end{pmatrix} \mathbf{x} = \mathbf{A}\mathbf{x}.\tag{i}$$

(b) Assume that $\mathbf{x} = \boldsymbol{\xi} e^{rt}$ and show that

$$(\mathbf{A} - r^2 \mathbf{I})\xi = \mathbf{0}.$$

Note that r^2 (rather than r) is an eigenvalue of A corresponding to an eigenvector ξ .

- (c) Find the eigenvalues and eigenvectors of A.
- (d) Write down expressions for x_1 and x_2 . There should be four arbitrary constants in these expressions.
- (e) By differentiating the results from part (d), write down expressions for x'_1 and x'_2 . Your results from parts (d) and (e) should agree with Eq. (31) in the text.
- 30. Consider the two-mass, three-spring system whose equations of motion are Eqs. (22) in the text. Let $m_1 = 1$, $m_2 = 4/3$, $k_1 = 1$, $k_2 = 3$, and $k_3 = 4/3$.
 - (a) As in the text, convert the system to four first order equations of the form y' = Ay. Determine the coefficient matrix A.
 - (b) Find the eigenvalues and eigenvectors of A.
 - (c) Write down the general solution of the system.
 - (d) Describe the fundamental modes of vibration. For each fundamental mode draw graphs of y_1 versus t and y_2 versus t. Also draw the corresponding trajectories in the y_1y_3 -and y_2y_4 -planes.
 - (e) Consider the initial conditions $y(0) = (2,1,0,0)^T$. Evaluate the arbitrary constants in the general solution in part (c). What is the period of the motion in this case? Plot graphs of y_1 versus t and y_2 versus t. Also plot the corresponding trajectories in the y_1y_3 and y_2y_4 -planes. Be sure you understand how the trajectories are traversed for a full period.
 - (f) Consider other initial conditions of your own choice, and plot graphs similar to those requested in part (e).
- 31. Consider the two-mass, three-spring system whose equations of motion are Eqs. (22) in the text. Let $m_1 = m_2 = 1$ and $k_1 = k_2 = k_3 = 1$.
 - (a) As in the text, convert the system to four first order equations of the form y' = Ay. Determine the coefficient matrix A.
 - (b) Find the eigenvalues and eigenvectors of A.
 - (c) Write down the general solution of the system.
 - (d) Describe the fundamental modes of vibration. For each fundamental mode draw graphs of y_1 versus t and y_2 versus t. Also draw the corresponding trajectories in the y_1y_3 -and y_2y_4 -planes.
 - (e) Consider the initial conditions $y(0) = (-1, 3, 0, 0)^T$. Evaluate the arbitrary constants in the general solution in part (c). Plot y_1 versus t and y_2 versus t. Do you think the solution is periodic? Also draw the trajectories in the y_1y_3 and y_2y_4 -planes.
 - (f) Consider other initial conditions of your own choice, and plot graphs similar to those requested in part (e).

series (see Problems 19 through 21). To obtain a fundamental matrix for the original system we now form the product

$$\Psi(t) = \mathbf{T} \exp(\mathbf{J}t) = \begin{pmatrix} e^{2t} & te^{2t} \\ -e^{2t} & -e^{2t} - te^{2t} \end{pmatrix}, \tag{35}$$

which is the same as the fundamental matrix given in Eq. (25).

PROBLEMS

In each of Problems 1 through 6 find the general solution of the given system of equations. In each of Problems 1 through 4 also draw a direction field, sketch a few trajectories, and describe how the solutions behave as $t \to \infty$.

$$\begin{array}{lll}
\text{2. } x' = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} x \\
\text{3. } x' = \begin{pmatrix} -\frac{3}{2} & 1 \\ -\frac{1}{4} & -\frac{1}{2} \end{pmatrix} x \\
\text{5. } x' = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} x \\
\text{6. } x' = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} x
\end{array}$$

In each of Problems 7 through 10 find the solution of the given initial value problem. Draw the trajectory of the solution in the x_1x_2 -plane and also draw the graph of x_1 versus t.

$$7. \mathbf{x}' = \begin{pmatrix} 1 & -4 \\ 4 & -7 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$8. \mathbf{x}' = \begin{pmatrix} -\frac{5}{2} & \frac{3}{2} \\ -\frac{3}{2} & \frac{1}{2} \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

$$9. \mathbf{x}' = \begin{pmatrix} 2 & \frac{3}{2} \\ -\frac{3}{2} & -1 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$10. \mathbf{x}' = \begin{pmatrix} 3 & 9 \\ -1 & -3 \end{pmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

In each of Problems 11 and 12 find the solution of the given initial value problem. Draw the corresponding trajectory in $x_1x_2x_3$ -space and also draw the graph of x_1 versus t.

In each of Problems 13 and 14 solve the given system of equations by the method of Problem 19 of Section 7.5. Assume that t > 0.

13.
$$t\mathbf{x}' = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \mathbf{x}$$
 14. $t\mathbf{x}' = \begin{pmatrix} 1 & -4 \\ 4 & -7 \end{pmatrix} \mathbf{x}$

(15.) Show that all solutions of the system

$$\mathbf{x}' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mathbf{x}$$

approach zero as $t \to \infty$ if and only if a + d < 0 and ad - bc > 0. Compare this result with that of Problem 38 in Section 3.5,

16. Consider again the electric circuit in Problem 26 of Section 7.6. This circuit is described by the system of differential equations

$$\frac{d}{dt} \begin{pmatrix} I \\ V \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{L} \\ -\frac{1}{C} & -\frac{1}{RC} \end{pmatrix} \begin{pmatrix} I \\ V \end{pmatrix}.$$

- (a) Show that the eigenvalues are real and equal if $L = 4R^2C$.
- (b) Suppose that R = 1 ohm, C = 1 farad, and L = 4 henrys. Suppose also that
- I(0) = 1 ampere and V(0) = 2 volts. Find I(t) and V(t).

Eigenvalues of Multiplicity 3. If the matrix A has an eigenvalue of algebraic multiplicity 3, then there may be either one, two, or three corresponding linearly independent eigenvectors. The general solution of the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ is different, depending on the number of eigenvectors associated with the triple eigenvalue. As noted in the text, there is no difficulty if there are three eigenvectors, since then there are three independent solutions of the form $\mathbf{x} = \xi e^{rt}$. The following two problems illustrate the solution procedure for a triple eigenvalue with one or two eigenvectors, respectively.

17. Consider the system

$$\mathbf{x}' = \mathbf{A}\mathbf{x} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ -3 & 2 & 4 \end{pmatrix} \mathbf{x}.$$
 (i)

(a) Show that r=2 is an eigenvalue of algebraic multiplicity 3 of the coefficient matrix A and that there is only one corresponding eigenvector, namely

$$\xi^{(1)} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

- (b) Using the information in part (a), write down one solution $x^{(1)}(t)$ of the system (i). There is no other solution of the purely exponential form $x = \xi e^{rt}$.
- (c) To find a second solution assume that $x = \xi t e^{2t} + \eta e^{2t}$. Show that ξ and η satisfy the equations

$$(\mathbf{A} - 2\mathbf{I})\boldsymbol{\xi} = \mathbf{0}, \qquad (\mathbf{A} - 2\mathbf{I})\boldsymbol{\eta} = \boldsymbol{\xi}.$$

Since ξ has already been found in part (a), solve the second equation for η . Neglect the multiple of $\xi^{(1)}$ that appears in η , since it leads only to a multiple of the first solution $\mathbf{x}^{(1)}$. Then write down a second solution $\mathbf{x}^{(2)}(t)$ of the system (i).

(d) To find a third solution assume that $x = \xi(t^2/2)e^{2t} + \eta te^{2t} + \zeta e^{2t}$. Show that ξ , η , and ζ satisfy the equations

$$(\mathbf{A} - 2\mathbf{I})\boldsymbol{\xi} = \mathbf{0}, \qquad (\mathbf{A} - 2\mathbf{I})\boldsymbol{\eta} = \boldsymbol{\xi}, \qquad (\mathbf{A} - 2\mathbf{I})\boldsymbol{\zeta} = \boldsymbol{\eta}.$$

The first two equations are the same as in part (c), so solve the third equation for ζ , again neglecting the multiple of $\xi^{(1)}$ that appears. Then write down a third solution $\mathbf{x}^{(3)}(t)$ of the system (i).

- (e) Write down a fundamental matrix $\Psi(t)$ for the system (i).
- (f) Form a matrix **T** with the eigenvector $\xi^{(1)}$ in the first column and the generalized eigenvectors η and ζ in the second and third columns. Then find \mathbf{T}^{-1} and form the product $\mathbf{J} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}$. The matrix **J** is the Jordan form of **A**.
- 18. Consider the system

$$\mathbf{x}' = \mathbf{A}\mathbf{x} = \begin{pmatrix} 5 & -3 & -2 \\ 8 & -5 & -4 \\ -4 & 3 & 3 \end{pmatrix} \mathbf{x}.$$
 (i)

(a) Show that r = 1 is a triple eigenvalue of the coefficient matrix **A** and that there are only two linearly independent eigenvectors, which we may take as

$$\xi^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \qquad \xi^{(2)} = \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}.$$
 (ii)

Find two linearly independent solutions $x^{(1)}(t)$ and $x^{(2)}(t)$ of Eq. (i).

(b) To find a third solution assume that $x = \xi te^t + \eta e^t$; then show that ξ and η must satisfy

$$(\mathbf{A} - \dot{\mathbf{I}})\boldsymbol{\xi} = \mathbf{0},\tag{iii}$$

$$(\mathbf{A} - \mathbf{I})\eta = \xi. \tag{iv}$$

- (c) Show that $\xi = c_1 \xi^{(1)} + c_2 \xi^{(2)}$, where c_1 and c_2 are arbitrary constants, is the most general solution of Eq. (iii). Show that in order for us to solve Eq. (iv), it is necessary that $c_1 = c_2$.
- (d) It is convenient to choose $c_1 = c_2 = 2$. For this choice, show that

$$\xi = \begin{pmatrix} 2\\4\\-2 \end{pmatrix}, \qquad \eta = \begin{pmatrix} 0\\0\\-1 \end{pmatrix}, \tag{v}$$

where we have dropped the multiples of $\xi^{(1)}$ and $\xi^{(2)}$ that appear in η . Use the results given in Eqs. (v) to find a third linearly independent solution $x^{(3)}(t)$ of Eq. (i).

- (e) Write down a fundamental matrix $\Psi(t)$ for the system (i).
- (f) Form a matrix T with the eigenvector $\xi^{(1)}$ in the first column and with the eigenvector ξ and the generalized eigenvector η from Eqs. (v) in the other two columns. Find T^{-1} and form the product $J = T^{-1}AT$. The matrix J is the Jordan form of A.

19. Let
$$J = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$
, where λ is an arbitrary real number.

- (a) Find J^2 , J^3 , and J^4 .
- (b) Use an inductive argument to show that $J^n = \begin{pmatrix} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{pmatrix}$.
- (c) Determine $\exp(\mathbf{J}t)$.
- (d) Use $\exp(\mathbf{J}t)$ to solve the initial value problem $\mathbf{x}' = \mathbf{J}\mathbf{x}, \mathbf{x}(0) = \mathbf{x}^0$.

20. Let

$$\mathbf{J} = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix},$$

where λ is an arbitrary real number.

- (a) Find J^2 , J^3 , and J^4 .
- (b) Use an inductive argument to show that

$$\mathbf{J}^n = \begin{pmatrix} \lambda^n & 0 & 0 \\ 0 & \lambda^n & n\lambda^{n-1} \\ 0 & 0 & \lambda^n \end{pmatrix}.$$

- (c) Determine exp(Jt).
- (d) Observe that if you choose $\lambda = 1$, then the matrix **J** in this problem is the same as the matrix **J** in Problem 18(f). Using the matrix **T** from Problem 18(f), form the product **T** exp(**J**t) with $\lambda = 1$. Is the resulting matrix the same as the fundamental matrix $\Psi(t)$ in Problem 18(e)? If not, explain the discrepancy.
- 21. Let

$$\mathbf{J} = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix},$$

where λ is an arbitrary real number.

- (a) Find J^2 , J^3 , and J^4 .
- (b) Use an inductive argument to show that

$$\mathbf{J}^{n} = \begin{pmatrix} \lambda^{n} & n\lambda^{n-1} & [n(n-1)/2]\lambda^{n-2} \\ 0 & \lambda^{n} & n\lambda^{n-1} \\ 0 & 0 & \lambda^{n} \end{pmatrix}.$$

- (c) Determine $\exp(\mathbf{J}t)$.
- (d) Observe that if you choose $\lambda = 2$, then the matrix **J** in this problem is the same as the matrix **J** in Problem 17(f). Using the matrix **T** from Problem 17(f), form the product **T** exp(**J**t) with $\lambda = 2$. Observe that the resulting matrix is the same as the fundamental matrix $\Psi(t)$ in Problem 17(e).

7.9 Nonhomogeneous Linear Systems

In this section we turn to the nonhomogeneous system

$$\mathbf{x}' = \mathbf{P}(t)\mathbf{x} + \mathbf{g}(t),\tag{1}$$

where the $n \times n$ matrix P(t) and $n \times 1$ vector g(t) are continuous for $\alpha < t < \beta$. By the same argument as in Section 3.6 (see also Problem 16 in this section), the general solution of Eq. (1) can be expressed as

$$\mathbf{x} = c_1 \mathbf{x}^{(1)}(t) + \dots + c_n \mathbf{x}^{(n)}(t) + \mathbf{v}(t), \tag{2}$$