Shimmer IMU sensors

HARDWARE

Shimmer Device:

- Sensors included in each device:
 - 1. Accelerometer (3D), measures changes in velocity
 - 2. Gyroscope (3D), measures angular velocity
 - 3. Magnetometer (3D), measures strength of the magnetic field

HARDWARE ACCELEROMETER

$$\underline{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} = \begin{bmatrix} a_I \cos(\theta_x) + g \cos(\varphi_x) \\ a_I \cos(\theta_y) + g \cos(\varphi_y) \\ a_I \cos(\theta_z) + g \cos(\varphi_z) \end{bmatrix}$$

Figure 1. Shimmer3 default axis directions

- g Gravitational acceleration, $1 g \approx 9.81 \text{ m/s}2$
- a inertial acceleration, rate of change of velocity due to forces on body
- heta angle that the axis $lpha_{
 m \chi}$, makes with the inertial acceleration vector $\,a_I$
- ϕ angle that the axis α_{χ} , makes with the gravity vector g

HARDWARE GYROSCOPE

$$\underline{\omega} = \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix} = \begin{bmatrix} \omega \cos(\beta_x) \\ \omega \cos(\beta_y) \\ \omega \cos(\beta_z) \end{bmatrix}$$

Figure 2. tri-axial gyroscope rate

Figure 1. Shimmer3 default axis directions

HARDWARE MAGNETOMETER

$$\underline{m} = \begin{bmatrix} m_{x} \\ m_{y} \\ m_{z} \end{bmatrix} = \begin{bmatrix} m \cos(\alpha_{x}) \\ m \cos(\alpha_{y}) \\ m \cos(\alpha_{z}) \end{bmatrix}$$

Figure 2. tri-axial magnetometer rate

Figure 1. Shimmer3 default axis directions

- the magnitude of the magnetic field vector component along the measuring axis of the magnetometer
- the angle between the magnetometer measuring axis and the magnetic field vector

SOFTWARE

The output Y for each sensor (acc/gyr/mag) is:

sensor (acc/gyr/mag) is:
$$\underline{Y} = \begin{bmatrix} Y_x \\ Y_y \\ Y_z \end{bmatrix}$$

$$\underline{Y} = Kr\underline{u} + \underline{b} + \underline{n}$$

$$\underline{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

$$\underline{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

$$\underline{R} = \begin{bmatrix} r_{x'x} & r_{x'y} & r_{x'z} \\ r_{y'x} & r_{y'y} & r_{y'z} \\ r_{z'x} & r_{z'y} & r_{z'z} \end{bmatrix}$$

K	Sensor's scale factor (the change in output per unit of input Volts/g)	Estimated by calibration
r	is the rotation matrix which defines the actual sensor axes	Estimated by calibration
u	value of the sensed phenomenon	Defined in use
b	value of the sensor output when the sensed phenomenon is equal to zero	Estimated by calibration
n	is the noise vector	Defined by manufacturer

SOFTWARE

Data we actually get from each device have this format

TIMESTAMP	AC	CELEROMET	TER (m/s²)		GYROSCOPE	(deg/sec)	MAGNETOMETER (local flux)			
(ms)	X axes Y axes		Z axes	X axes	Y axes	Z axes	X axes	Y axes	Z axes	
1024566650390	-0.6381260517	-0.85463565892	9.99691863372	-1.30603847151	0.77993576999	-1.71018442341	0.61133603238	-0.64372469635	0.72	
1044097900390	-0.6380077624	-0.81825331906	10.0087475664	-1.06992021997	0.84110720293	-1.11508475673	0.61133603238	-0.64372469635	0.72	
1063629150390	-0.5673273650	-0.79494647771	9.93393015842	-0.83719184135	0.91757149411	-0.85897238112	0.61133603238	-0.62348178137	0.72	
3954254150390	0.21909503347	4.72064493121	8.81426530854	1.24207108972	1.66692154763	1.24207108972	0.61740890688	0.02834008097	0.81500000000	
3973785400390	0.23075359958	4.72026912372	8.78964565140	1.79285476800	1.03991435999	1.79285476800	0.61740890688	0.02834008097	0.815000000001	
3993316650390	0.27738063488	4.79104052609	8.69044442106	0.98309672126	0.55054289646	0.98309672126	0.61740890688	0.02834008097	0.81500000000	

Units are in SI (International System of Units)

GESTURE IDENTIFICATION

Objective:

Identify four hand gestures 1. Up

- 2. Down
- 3. Left
- 4. Right

Methodology:

- 1. Construct final dataset by combining all gesture subsets
- 2. Extract features using statistical metrics
- 3. Apply k-means
- 4. Get results

1.DATASET

- Gather many repetitions of each gesture (each repetition is a subset)
- Compose all subsets and create final dataset

rms*: root mean square stdev*: standard deviation

2.FEATURE EXTRACTION

For each subset from dataset, get mean/median/rms*/stdev* statistical metrics from all three sensors and for all dimensions of each

n-by-36 data matrix

n: total number of subsets

36: features (3 dimensions/3 sensors/4 statistical metrics)

		•			36 features											
		mean					rms					std		meadian		
		асс	gyr	mag	acc		gyr		mag	acc		gyr	mag	acc	gyr	mag
		x y z	x y z	x y z	ху	ZX	(y z	×	yz	х	yz	x y z	x y z	x y z	x y z	x y z
1 1																
ets	ິດ															
Total subsets	gestures															
otal s	ม + ซน															
- To																
,																

3.APPLY K-MEANS

Parameters

- Data: n observations by 36 features matrix
- k=4 (clusters)
- Distance metric: cityblock

4.RESULTS

- K-fold for cross validation
- Get average success percentage

Raw data VISUAL REPRESENTATION Feature extraction Test set Train set kmeans Majority of observations in each cluster defines the label Predicted Actual clustering clustering clusters up up Final result down up Classify each Label 2 Label 1 observation down down 71,8% success in a cluster left left Label 3 Label 4 left left right

RESULTS

Size of dataset (subsets for each subject)	Controlled measurements	Left hand involved	Right hand involved	Fixed hand orientation per gesture	results
40	✓	✓	_	✓	96,87%
72	_	✓	✓	✓	89,29%
28	_	_	✓	_	29,28%

Controlled measurements: subject had total awareness about taking measurements Fixed hand orientation per gesture: for all gesture repetitions hand had fixed orientation