Course Outline

Dept. Computer Science

Outcome

Distribution

About this course

Contents

Assessment References Methodology

Chapter 0 Course Outline

Data Structures and Algorithms

Dept. Computer Science

Faculty of Computer Science and Engineering Ho Chi Minh University of Technology, VNU-HCM

Overview

Dept. Computer Science

Course Outline

Outcome

Distribution

About this course

Contents

Assessment

References Methodology

1 Outcome Distribution

2 About this course

3 Contents

Assessment References

Learning outcome

By completing this course, students are able to:

- USE fundamental data structures like list, stack, queue, tree, graph, and hash table for programming and particular problems
- UNDERSTAND ways to implement an efficient algorithm
- EXPRESS algorithms using pseudocode as well as using C++
- ANALYZE the computational complexity of algorithms associated with these data structures.

Course Outline

Dept. Computer Science

Outcome

Distribution

About this course

Contents

Course learning outcomes

L.O.1	Determine the complexity of simple algorithms (polynomial time - nested loop - no recursive)
L.O.1.1	Give definition of Big-O notation
L.O.1.2	Determine complexity of simple polynomial algorithms
L.O.2	Manipulate basic data structures such as list, tree and graph
L.O.2.1	Describe and present basic data structures such as: array, linked list, stack, queue, tree, and graph
L.O.2.2	Implement basic methods for each of basic data structures: array, linked list, stack, queue, tree, and graph
L.O.3	Implement basic sorting and searching algorithms
L.O.3.1	Illustrate how searching algorithms work on data structures: array, linked list, stack, queue, tree, and graph
L.O.3.2	Illustrate how sorting algorithms work on an array
L.O.3.3	Implement necessary methods and proposed algorithms on a given data structure for problem solving

Course Outline

Dept. Computer Science

Outcome

Distribution

About this course

Contents

Distribution

Course credit: 4

Lectures: 30 period units (12 weeks)

• Lab: 30 period units (10 weeks)

- Teaching from 01/2022 to 04/2022
- Final exam: in?

Course Outline

Dept. Computer Science

Outcome

Distribution

About this course

Contents

Structure

- Lectures: course contents in class, QAs and quiz
- Readings: course contents (books and references) and course videos at home
- Lab: coding practice
- Assignments: small projects

Course Outline

Dept. Computer Science

Outcome Distribution

About this course

Contents

Contents and Schedule

Course Outline

Dept. Computer Science

Outcome

Distribution

About this course

Contents

References Methodology

No	Topics	Quiz	Assignment
1	Course outline, C/C++ Review	Quiz	7 toolgiment
2	Recursion, complexity	Q0	
3	List (Part 1)	Q1	
4	List (Part 2)	Q2	
5	Sorting	Q3	
6	Tree concept	Q4	
7	Advanced tree + Heap	Q5	
	Midterm test		
8	Searching + Hash	Q6	
9	Graph	Q7	
10	Algorithmic toolbox	Q8	
11, 12	Advanced topics in DSA	Q9	

Labs Schedule

Week	Topics
1, 2, 3	C/C++ Review (Online)
4	ArrayList, Singly Linked List
5	Doubly Linked List, Stack,
J	Queue
6	Sorting
7	-
8 Tree concept	
9	Balanced tree + Heap
10	Balanced tree + Heap
11	Searching + Hash
12	Graph
13	Algorithmic toolbox
14	Final test for lab

Course Outline

Dept. Computer Science

Outcome Distribution

About this course

Content

Assessment

Midterm: 10% (80 mins, 30 MC + 1 Writing)

• Lab: 10%

• Assignment: 30% (A1:15%, A2:15%)

$$X_i = \frac{2 \times A_i \times B_i}{A_i + B_i}$$

 A_i : scored by testcases grading B_i : scored by some questions in midterm or final test.

 Final Exam: 50% (Open book, 1 A4 paper, 120 mins, 15 - 20 MC + 4 Writing) **Course Outline**

Dept. Computer Science

About this course

Outcome Distribution

Distribution

Contents

Assessment

References Methodology

References

1 "Data Structures and Algorithm Analysis" - Clifford A. Shaffer (Edition 3.2).

2 "Data Structures: a Pseudocode Approach with C++", R.F.Gilberg and B.A. Forouzan, Thomson Learning Inc., 2001.

3 "Data Structures and Algorithms in C++", A. Drozdek, Thomson Learning Inc., 2005.

4 "C/C++: How to Program", 7th Ed. – Paul Deitel and Harvey Deitel, Prentice Hall, 2012.

5 Internet.

Course Outline

Dept. Computer Science

Outcome

Distribution

About this course

Contents

Assessment

References

Website

- BK E-learning
 - http: //e-learning.hcmut.edu.vn/login/index.php

- Any question:
 - Using BKeL forum, DO NOT send email.

Course Outline

Dept. Computer Science

Outcome

Distribution

About this course

Contents

Contents

Assessment

References

Preparation for the course

Course Outline

Dept. Computer Science

• Materials:

- Slides of this course
- E-book: Data Structures and Algorithm Analysis -Clifford A. Shaffer (Edition 3.2).

http://people.cs.vt.edu/~shaffer/Book/

Outcome

Distribution

About this course

Contents

Assessment

References

Methodology

- Outside of lecture room
 - Read slides, books
 - Do exercises, labs, assignments
 - Check BK-Elearning

- During lectures:
 - Listen & Discuss

Course Outline

Dept. Computer Science

Outcome

Distribution

About this course

Contents

Assessment

References