

— Type Formation rules –

- Substitution -

$$X[X/S] = S$$

 $Y[X/S] = Y$
 $I[X/S] = I$
 $T_1 \oplus T_2[X/S] = T_1[X/S] \oplus T_2[X/S]$
 $T_1 \otimes T_2[X/S] = T_1[X/S] \otimes T_2[X/S]$
 $T_1 \multimap T_2[X/S] = T_1[X/S] \multimap T_2[X/S]$
 $\mu Y.T[X/S] = \mu Y.(T[X/S])$

Variable $\cfrac{\Gamma}{x:T\vdash x:T} = \cfrac{\Gamma_2,\Gamma_1\vdash t:T}{\Gamma_1,\Gamma_2\vdash t:T}$ Exchange $I_L \cfrac{\Gamma\vdash t:T}{\Gamma,():I\vdash t:T} = \cfrac{\Gamma\vdash ():I}{\Gamma} I_R$

 $\oplus_{L_l} \frac{\Gamma, t_1: T_1 \vdash t: T}{\Gamma, \operatorname{inl} t_1: T_1 \oplus T_2 \vdash t: T} \quad \frac{\Gamma \vdash t_1: T_1}{\Gamma \vdash \operatorname{inl} t_1: T_1 \oplus T_2} \oplus_{R_l}$

 $\oplus_{L_r} \ \frac{\Gamma, t_2: T_2 \ \vdash \ t: T}{\Gamma, \operatorname{inr} \ t_2: T_1 \oplus T_2 \ \vdash \ t: T} \quad \frac{\Gamma \ \vdash \ t_2: T_2}{\Gamma \ \vdash \ \operatorname{inr} \ t_2: T_1 \oplus T_2} \oplus_{R_r}$

 $\otimes_L \frac{\Gamma, t_1: T_1, t_2: T_2 \vdash t: T}{\Gamma, t_1 \times t_2: T_1 \otimes T_2 \vdash t: T} \quad \frac{\Gamma_1 \vdash t_1: T_1 \quad \Gamma_2 \vdash t_2: T_2}{\Gamma_1, \Gamma_2 \vdash t_1 \times t_2: T_1 \otimes T_2} \otimes_R$

 $\multimap_L \frac{\Gamma_1 \vdash t_1 : T_1}{\Gamma_1, \Gamma_2, t_1 \mapsto t_2 : T_1 \multimap T_2 \vdash t : T} \quad \frac{\Gamma, t_1 : T_1 \vdash t_2 : T_2}{\Gamma \vdash t_1 \mapsto t_2 : T_1 \multimap T_2} \multimap_R$

 $\mu_L \, \frac{\Gamma,\, u:\, U[X/\mu\, X.\, U] \, \vdash \, t:\, T}{\Gamma,\, \mathrm{fold} \,\, u:\, \mu\, X.\, U \, \vdash \, t:\, T} \quad \frac{\Gamma \, \vdash \, t:\, T[X/\mu\, X.\, T]}{\Gamma \, \vdash \, \mathrm{fold} \,\, t:\, \mu\, X.\, T} \, \mu_R$

 $\text{Linearity}_{L} \ \frac{\Gamma, t_1 : U \vdash t : T \qquad \Gamma, t_2 : U \vdash t : T}{\Gamma, t_1 + t_2 : U \vdash t : T} \quad \frac{\Gamma \vdash t_1 : T \qquad \Gamma \vdash t_2 : T}{\Gamma \vdash t_1 + t_2 : T} \ \text{Linearity}_{R}$

 $\operatorname{Trace}_{L} \frac{[]\Gamma, u : S \vdash t : T[\Lambda]}{[l : S]\Gamma, l \; u : U \vdash t : T[\Lambda]} \quad \frac{[\Lambda]\Gamma \vdash t : U[]}{[\Lambda]\Gamma \vdash l \; t : T[l : U]} \operatorname{Trace}_{R}$

Expression Typing rules —

Application
$$\frac{\vdash f: T_1 \multimap T_2 \qquad \vdash t: T_2}{\vdash f: t: T_1} \qquad \frac{\vdash f: T_1 \multimap T_2 \qquad \vdash g: T_2 \multimap T_3}{\vdash f: g: T_1 \multimap T_3}$$
 Composition

$$\text{Match-unit} \frac{t=u \iff [x \to t]}{0=0 \iff [1]} \frac{(x \to t)[x \iff t]}{(10 \iff 0)} \text{Subst-unit}$$

$$\text{Match-inl} \frac{t=u \iff [\Xi]}{\text{inl } t=\text{inl } u \iff [\Xi]} \frac{(\Xi]t \iff t'}{(\Xi]\text{ inl } t \iff inl } \frac{t \iff t'}{u} \text{Subst-inl}$$

$$\text{Match-tensor} \frac{t=u_1 \iff [\Xi]}{t_1 \times t_2 = u_1 \times u_2} \iff [\Xi], \quad \frac{t=u_1 \iff [\Xi]}{t_1 \times t_2 = u_1 \times u_2} \iff [\Xi], \quad \frac{t=u_1 \iff [\Xi]}{t_1 \times t_2 = u_1 \times u_2} \iff [\Xi], \quad \frac{t=u_1 \iff [\Xi]}{t_1 \times t_2 = u_1 \times u_2} \iff [\Xi], \quad \frac{t=u_1 \iff [\Xi]}{t_1 \times t_2 = u_1 \times u_2} \iff [\Xi], \quad \frac{t=u_1 \iff [\Xi]}{t_1 \times t_2 = u_1 \times u_2} \iff [\Xi], \quad \frac{t=u_1 \iff [\Xi]}{t_1 \times t_2} \iff \frac{t=u_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_1 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2} \implies \frac{t'_2 \iff [\Xi]}{t_1 \times t_2}$$

Flip—trace $\frac{t^{\dagger} \quad \hookrightarrow \quad t'}{(t \text{ where } l :: T)^{\dagger} \quad \hookrightarrow \quad t' \text{ where } l :: T}$

Type Interpretation

V is Compact Closed Category with Finite Biproduct.

 Π_i is projection functor.

 K_I is constant I functor.

[-,-] is internal hom functor.

(-)* is contravariant anafunctor. Using Axiom of Choice, we can define it on strict functor (see https://ncatlab.org/nlab/show/ rigid+monoidal+category#remarks).

Id is identity functor.

$$\begin{split} \llbracket \Theta \vdash T \rrbracket : \mathbf{V}^{|\Theta|} \rightarrow & \mathbf{V} \\ \llbracket \Theta \vdash X_i \rrbracket &= \Pi_i \\ \llbracket \Theta \vdash I \rrbracket &= K_I \\ \llbracket \Theta \vdash T_1 \oplus T_2 \rrbracket &= \oplus \circ \langle \llbracket \Theta \vdash T_1 \rrbracket, \llbracket \Theta \vdash T_2 \rrbracket \rangle \\ \llbracket \Theta \vdash T_1 \otimes T_2 \rrbracket &= \otimes \circ \langle \llbracket \Theta \vdash T_1 \rrbracket, \llbracket \Theta \vdash T_2 \rrbracket \rangle \\ \llbracket \Theta \vdash T_1 \multimap T_2 \rrbracket &= \otimes \circ \llbracket (-)^*, Id \rrbracket \circ \langle \llbracket \Theta \vdash T_1 \rrbracket, \llbracket \Theta \vdash T_2 \rrbracket \rangle \\ \llbracket \Theta \vdash \mu X.T \rrbracket &= \llbracket \Theta, X \vdash T \rrbracket^\sharp \end{split}$$

- Denotational Semantics -

V(A, B) is morphism which Domain and Codomain are $A \in Obj(V)$ and $B \in Obj(V)$, respectively.

 id_T is identity morphism of Object T.

 $0_{A,B}$ is zero morphism of V(A,B).

 ι_i is injection morphism.

 $\nabla_T: T \oplus T \to T$

 π_i is projection morphism.

$$\begin{aligned} \pi_i &= \iota_i^{-1} \\ \pi_i &\circ \iota_j = id \text{ if } i = j \\ \pi_i &\circ \iota_j = 0 \text{ otherwise} \\ unfold_{\mu X.T} &= fold_{\mu X.T}^{-1} \\ f &\circ (g \oplus h) = (f \circ g) \oplus (f \circ h) \\ (f \oplus g) &\circ h = (f \circ h) \oplus (g \circ h) \\ id_A \otimes id_B &= id_{A \otimes B} \\ (f \otimes g) &\circ (h \otimes k) = (f \circ h) \otimes (g \circ k) \\ f^{**} &= f \\ (f \otimes g)^* &= f^* \otimes g^* \\ \Delta_T : T \to T \oplus T \end{aligned}$$

 $\text{Linearity}_{L} \, \, \frac{\Gamma, \, t_1 : \, U \, \vdash \, t : \, T \, \triangleright \, \Gamma' \qquad \Gamma, \, t_2 : \, U \, \vdash \, t : \, T \, \triangleright \, \Gamma' }{\Gamma, \, t_1 + t_2 : \, U \, \vdash \, t : \, T \, \triangleright \, \Gamma' } \quad \frac{\Gamma \, \vdash \, t_1 : \, T \, \triangleright \, \Gamma' \qquad \Gamma \, \vdash \, t_2 : \, T \, \triangleright \, \Gamma' }{\Gamma \, \vdash \, t_1 + t_2 : \, T \, \triangleright \, \Gamma' } \, \, \text{Linearity}_{R}$

 $\operatorname{Trace}_L \frac{[l:S]\Gamma, u:S + t:T \triangleright \Gamma'}{[l:S]\Gamma, l\; u:U + t:T \triangleright \Gamma'} \quad \frac{[l:U]\Gamma + t:U \triangleright \Gamma'}{[l:U]\Gamma + l\; t:T \triangleright \Gamma'} \operatorname{Trace}_R$