INTEGRAL CALWLUS

QUESTIONS:

MODULE I

1 Evaluate the following double and triple integrals -

(iii)
$$\int_{0}^{1} \int_{1-x^{2}-y^{2}}^{1-x^{2}-y^{2}} \int_{0}^{1} \int_{0$$

2) Evaluate the following integrals by changing the order of uintegration.

(i)
$$\int \int xy dy dx$$
 (ii) $\int \int \frac{x}{x^2 + y^2} dx dy$ (iii) $\int \int xy dy dx$ (iv) $\int \int y^2 dy dx$ (v) $\int \int \frac{x}{x^2 + y^2} dy dx$ (vi) $\int \int \int xy dx dy$

- (3) Evaluate the following integrals by changing into polar coordinates: (i) $\int_{0}^{\pi} \int_{0}^{\sqrt{u^{2}+y^{2}}} \frac{dy}{dy} dx$ (ii) $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} \frac{dy}{dx} dx$.
- (4) @ Find the orea between the parabolas $y^2 = 4a\pi \ 2\pi^2 = 4ay$.
- (b) Find the area of ellipse by double integration.
- (6) Find the volume of the solid bounded by the plane x=0, y=0, z=0, n+y+z=1 using double integrals.
- (d) By double integration find the area of $n = a(1+\cos\theta)$ between $\theta = 0$ and
- @ Find the area lying inside the circle n = a sind outside the cardoid $n = \alpha(1-\cos\theta).$
- (5) Solve the following Beta Gamma Functions: (i) Prove that $\beta(m_1n) = \frac{\Gamma(m), \Gamma(n)}{\Gamma(m)}$ (ii) Show that $\int_0^{\pi/2} \sqrt{\sin\theta} d\theta \times \int_0^{\pi/2} \sqrt{\sin\theta} d\theta = \pi$

(iii) Show that
$$\int_{0}^{1} \frac{\chi^{2} d\chi}{\sqrt{1-\chi^{4}}} \times \int_{0}^{1} \frac{d\chi}{\sqrt{1+\chi^{4}}} = \frac{\pi}{4\sqrt{2}}$$
(iv) Evaluate
$$\int_{0}^{1} \frac{d\chi}{\sqrt{1-\chi^{4}}}$$
Show that
$$\int_{0}^{\pi/2} \sqrt{\cot \theta} d\theta = \frac{\pi}{\sqrt{2}}$$

$$\sqrt{\frac{\alpha_x}{\sqrt{1-x^4}}}$$

Show that
$$\int_{0}^{\pi/2} \sqrt{\cot \theta} d\theta = \frac{\pi}{\sqrt{a}}$$