Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №1

Схемотехника ЭВМ «Полупроводниковый диод»

Проверил:	Выполнил:
	Студент группы Р3455
«»2021г.	Федюкович С. А
Оценка	

Цель

Изучить полупроводниковой диод:

- 1. Исследовать напряжение и силу тока диода при прямом и обратном смещении p-n перехода.
- 2. Построить и исследовать вольтамперную характеристику (ВАХ) для полупроводникового диода.
- 3. Исследовать сопротивление диода при прямом и обратном смещении по вольтамперной характеристике.
- 4. Провести анализ сопротивления диода (прямое и обратное смещение) на переменном и постоянном токе.

Задачи

Эксперимент 1

- 1. Построить схему, изображенную на Рис. 1, в программе Multisim.
- 2. Измерить напряжение на диоде при прямом смещении.
- 3. Перевернуть диод, чтобы получилась схема, как на Рис. 2.
- 4. Измерить напряжение на диоде при обратном смещении.
- 5. Вычислить силу тока диода при прямом и обратном смещении.

Эксперимент 2

- 1. Построить схему, изображенную на Рис. 1, в программе Multisim.
- 2. Измерить силу тока на диоде при прямом смещении.
- 3. Перевернуть диод, чтобы получилась схема, как на Рис. 2.
- 4. Измерить силу тока на диоде при обратном смещении.

Эксперимент 3

- 1. Построить схему, изображенную на Рис. 1, в программе Multisim.
- 2. Измерить силу тока и напряжение на диоде при прямом смещении на разных значениях ЭДС (0; 0,5; 1; 2; 3; 4; 5), занести данные в таблицу и построить график.
- 3. Перевернуть диод, чтобы получилась схема, как на Рис. 2.
- 4. Измерить силу тока на диоде при обратном смещении на разных значениях ЭДС (0; 0.5; 1; 2; 3; 4; 5), занести данные в таблицу и построить график.

Схемы

Рис. 1: Схема 1

Рис. 2: Схема 2

Выводы

Эксперимент 1

В ходе работы были получены следующие данные:

$$U_{\text{o6}} = 9V; I_{\text{o6}} = \frac{E - U_{\text{o6}}}{R} = \frac{9 - 9}{100} = 0A$$

$$U_{\text{np}} = 769.17 mV; I_{\text{np}} = \frac{E - U_{\text{np}}}{R} = \frac{9 - 0,76917}{100} = 0,0823083A$$

Эксперимент 2

В ходе работы были получены следующие данные:

$$I_{\text{of}} = 18.010 pA$$

$$I_{\rm np} = 82.308 mA$$

Эксперимент 3

В ходе работы при прямом смещении были получены следующие данные:

E, V	$U_{\rm np}, mV$	$I_{\rm np}, mA$
0,000	0,000	0,000
0,500	499,750	0,002
1,000	684,790	3,152
2,000	721,020	12,790
3,000	735,790	22,642
4,000	745,180	32,548
5,000	752,060	42,479

При обратном смещении были получены следующие данные:

E, V	$U_{\text{обр}}, V$	$I_{\text{обр}}, pA$
0,0	0,0	0,0
0,500	-0,500	-1,010
1,000	-1,000	-2,010
2,000	-2,000	-4,010
3,000	-3,000	-6,010
4,000	-4,000	-8,010
5,000	-5,000	-10,010

