§2. Решение произвольных систем линейных алгебраических уравнений

Выше рассматривались, в основном, квадратные системы линейных уравнений, число неизвестных в которых совпадает с числом уравнений. В настоящем параграфе исследуются системы, в которых число уравнений и число неизвестных произвольны. Такие системы будем называть произвольными системами линейных уравнений.

Пусть дана система из m линейных уравнений с n неизвестными $x_1, x_2, ..., x_n$:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\
\vdots & \vdots & \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m,
\end{cases} (2.1)$$

где m и n — произвольные натуральные числа. Через A и A^* обозначим матрицу коэффициентов системы и её расширенную матрицу,

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, \qquad A^* = \begin{pmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix}. \tag{2.2}$$

Выполнив конечное число элементарных преобразований, матрицу A^* всегда можно привести к ступенчатой матрице A_1^* (см. теорему 1.2 гл. 1):

$$A^* \rightarrow A_1^* = \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1r}^{(1)} & a_{1,r+1}^{(1)} & \cdots & a_{1n}^{(1)} & b_1^{(1)} \\ 0 & a_{22}^{(1)} & \cdots & a_{2r}^{(1)} & a_{2,r+1}^{(1)} & \cdots & a_{2n}^{(1)} & b_2^{(1)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{rr}^{(1)} & a_{r,r+1}^{(1)} & \cdots & a_{rn}^{(1)} & b_r^{(1)} \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & b_{r+1}^{(1)} \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

$$(2.3)$$

Можно считать, что ни один из элементов $a_{11}^{(l)},...,a_{rr}^{(l)}$ матрицы A_1^* не равен нулю, в противном случае этого можно добиться перестановкой столбцов матрицы A^* , изменив при этом нумерацию неизвестных.

Первые π столбцов матрицы A_1^* соответствуют матрице A_1 , получающейся при указанных преобразованиях из матрицы \mathbf{A} . При r < m матрица A_1 имеет \mathbf{r} ненулевых строк, а в матрице A_1^* число таких строк равно (r+1) или \mathbf{r} , в зависимости от величины её элемента $b_{r+1}^{(1)}$. При r=m число ненулевых строк в матрицах \mathbf{A}_I и A_1^* одинаково и равно \mathbf{r} .

Случай 1. r < m, $b_{r+1}^{(1)} \neq 0$, число ненулевых строк в матрицах A_1 и A_1^* различно и равно \mathbf{r} и (r+1) соответственно.

 ${\it Mampuцa}\ A_1^*$ является расширенной матрицей следующей системы

линейных уравнений:

$$\begin{cases} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1r}^{(1)}x_r + a_{1,r+1}^{(1)}x_{r+1} + \dots + a_{1n}^{(1)}x_n = b_1^{(1)}, \\ a_{22}^{(1)}x_2 + \dots + a_{2r}^{(1)}x_r + a_{2,r+1}^{(1)}x_{r+1} + \dots + a_{2n}^{(1)}x_n = b_2^{(1)}, \\ \vdots & \vdots & \vdots & \vdots \\ a_{rr}^{(1)}x_r + a_{r,r+1}^{(1)}x_{r+1} + \dots + a_{rn}^{(n)}x_n = b_r^{(1)}, \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots \\ 0 \cdot x_1 + 0 \cdot x_2 + \vdots & \vdots$$

Система (2.4) несовместна, поскольку ее (r+1)-е уравнение не имеет решений. Так как, в силу теоремы 1.1 главы 1, системы (2.1) и (2.4) равносильны, то несовместной оказывается и система (2.1).

Пример 2.1. Решить систему уравнений

$$\begin{cases} 2x_1 + 3x_2 - 2x_3 = 1, \\ x_1 - x_2 + x_3 = 0, \\ 3x_1 + 2x_2 - x_3 = 2. \end{cases}$$

▶ Рассмотрим расширенную матрицу этой системы

$$A^* = \begin{pmatrix} 2 & 3 - 2 & 1 \\ 1 & -1 & 1 & 0 \\ 3 & 2 & -1 & 2 \end{pmatrix}.$$

Первые три столбца этой матрицы образуют матрицу A — матрицу коэффициентов системы. Подвергнем A* следующим элементарным преобразованиям. Переставим первую и вторую строки, затем последовательно умножим первую строку на (-2) и на (-3) и сложим со второй и третьей строками, после чего из третьей строки вычтем вторую:

$$A^* \to \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & 3 & -2 & 1 \\ 3 & 2 & -1 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 5 & -4 & 1 \\ 0 & 5 & -4 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 5 & -4 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = A_1^*.$$

Матрица A при этом преобразуется в матрицу A_1 , составленную из первых трёх столбцов матрицы A_1^* . Матрице A_1^* соответствует

система
$$\begin{cases} x_1 - x_2 + x_3 = 0, \\ 5x_2 - 4x_3 = 1, \\ 0 \cdot x_3 = 1, \end{cases}$$
 которая является несовместной, так как её

последнее уравнение не имеет решений. Поэтому несовместна и равносильная ей исходная система. ◀

Случай 2.
$$r < m, \ b_{r+1}^{(1)} = 0$$
 или $r = m$. Число ненулевых строк в матрицах A_1 и A_1^* одинаково и равно r .

 ${\it B}$ этом случае матрице A_1^* сопоставляется следующая система:

$$\begin{cases}
a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1r}^{(1)}x_r + a_{1,r+1}^{(1)}x_{r+1} + \dots + a_{1n}^{(1)}x_n = b_1^{(1)}, \\
a_{22}^{(1)}x_2 + \dots + a_{2r}^{(1)}x_r + a_{2,r+1}^{(1)}x_{r+1} + \dots + a_{2n}^{(1)}x_n = b_2^{(1)}, \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{rr}^{(1)}x_r + a_{r,r+1}^{(1)}x_{r+1} + \dots + a_{rn}^{(1)}x_n = b_r^{(1)},
\end{cases}$$
(2.5)

равносильная системе (2.1), в силу теоремы 1.1 из главы 1.

Система (2.5) (а следовательно, и система (2.1)) будет иметь различное число решений в зависимости от соотношения между числами r и n.

2.1. r = n. Система (2.5) имеет вид

$$\begin{cases}
a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1n}^{(1)}x_n = b_1^{(1)}, \\
a_{22}^{(1)}x_2 + \dots + a_{2n}^{(1)}x_n = b_2^{(1)}, \\
\vdots \\
a_{nn}^{(1)}x_n = b_n^{(1)}.
\end{cases} (2.6)$$

и является крамеровской (она квадратная и ее определитель $\Delta \neq 0$),

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \vdots & a_{rr} \end{vmatrix} = a_{11}a_{22} \cdot \dots \cdot a_{rr} \neq 0.$$
 (2.7)

Система (2.6) имеет единственное решение, которое можно найти по формулам Крамера (1.5), но естественнее и проще выполнить обратный ход метода Гаусса, который заключается в том, что сначала из последнего уравнения системы (2.6) находят $x_n = b_n^{(1)}/a_{nn}^{(1)}$, потом из предпоследнего уравнения находят x_{n-1} после подстановки в него найденного значения x_n . Аналогичные операции производят до тех пор, пока из первого уравнения не будет найдено x_1 .

Пример 2.2. Решить систему уравнений

$$\begin{cases} x_1 - x_2 + x_3 = -2, \\ 2x_1 + x_2 - 3x_3 = 7, \\ x_1 - 2x_2 + x_3 = -4, \\ 4x_1 - 2x_2 - x_3 = 1. \end{cases}$$

ightharpoonup Выпишем расширенную матрицу этой системы A^*

$$A^* = \begin{pmatrix} 1 & -1 & 1 & -2 \\ 2 & 1 & -3 & 7 \\ 1 & -2 & 1 & -4 \\ 4 & -2 & -1 & 1 \end{pmatrix}$$

и подвергнем её элементарным преобразованиям. Умножим первую строку на числа 2, 1, 4 и вычтем её последовательно из второй, третьей и четвёртой строк. После этого поменяем местами вторую и третью строки, а затем умножим вторую строку на числа 3, 2 и сложим её последовательно с третьей и четвёртой строками:

$$A^* \to \begin{pmatrix} 1 & -1 & 1 & 2 \\ 0 & 3 & -5 & 11 \\ 0 & -1 & 0 & -2 \\ 0 & 2 & -5 & 9 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 1 & -2 \\ 0 & -1 & 0 & -2 \\ 0 & 3 & -5 & 11 \\ 0 & 2 & -5 & 9 \end{pmatrix} \to \begin{pmatrix} 1 & -1 & 1 & -2 \\ 0 & -1 & 0 & -2 \\ 0 & 0 & -5 & 5 \\ 0 & 0 & -5 & 5 \end{pmatrix}.$$

Наконец, умножим вторую строку на (-1), третью строку вычтем из четвёртой,

после чего умножим третью строку на (-1/5):

$$A^* \to A_1^* = \begin{pmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Матрице A_1^* соответствует система $\begin{cases} x_1-x_2+x_3=-2, \\ x_2=2, \\ x_3=-1, \end{cases}$ которая является

крамеровской, так как её главный определитель $\Delta = \begin{vmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$. Она имеет единственное решение $x_1 = 1, x_2 = 2, x_3 = -1$.

2.2. r < n. Перенесём члены с неизвестными $x_{r+1},...,x_n$ в правые части уравнений системы (2.5), получим

$$\begin{cases}
a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1r}^{(1)}x_r = b_1^{(1)} - a_{1,r+1}^{(1)}x_{r+1} - \dots - a_{1n}^{(1)}x_n, \\
a_{22}^{(1)}x_2 + \dots + a_{2r}^{(1)}x_r = b_2^{(1)} - a_{2,r+1}^{(1)}x_{r+1} - \dots - a_{2n}^{(1)}x_n, \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{rr}^{(1)}x_r = b_r^{(1)} - a_{r,r+1}^{(1)}x_{r+1} - \dots - a_{rn}^{(1)}x_n.
\end{cases} (2.8)$$

Относительно неизвестных $x_1,...,x_r$ система (2.8) является крамеровской, (число её уравнений равно числу неизвестных, и её определитель Δ отличен от нуля (см. (2.7)). Поэтому из системы (2.8) можно единственным образом выразить неизвестные $x_1,...,x_r$ через неизвестные $x_{r+1},...,x_n$ по формулам Крамера или, осуществив обратный ход метода Гаусса:

$$\begin{cases} x_{1} = \beta_{1} + \alpha_{1} x_{r+1} + \dots + \alpha_{1,n-r} x_{n}, \\ x_{2} = \beta_{2} + \alpha_{2} x_{r+1} + \dots + \alpha_{2,n-r} x_{n}, \\ \dots & \dots & \dots \\ x_{r} = \beta_{r} + \alpha_{r} x_{r+1} + \dots + \alpha_{r,n-r} x_{n}. \end{cases}$$
(2.9)

Числа β_i , α_{ij} (i=1,...,r, j=1,...,n-r) получаются в результате арифметических операций над коэффициентами и свободными членами системы (2.8) в процессе вычислений. Для них можно записать и явные выражения в виде:

$$\beta_i = \Delta_i / \Delta, \quad \alpha_{ij} = -\Delta_{ij} / \Delta, \quad j = 1, ..., n - r,$$

$$(2.10)$$

где через Δ_i , Δ_{ij} обозначены определители, полученные из Δ путём замены его i-го столбца на столбцы $(b_1^{(1)},...,b_r^{(1)})^T$ и $(a_{1,j}^{(1)},...,a_{r,j}^{(1)})^T$, j=1,...,n-r. Равенства (2.10) являются следствием формул Крамера и свойств определителей.

В равенствах (2.9) неизвестные $x_{r+1},...,x_n$ принимают произвольные значения, поэтому их называют *свободными* неизвестными, а неизвестные $x_1,...,x_r$ –

базисными. Используя для свободных неизвестных традиционные обозначения $x_{r+1} = C_1, x_{r+2} = C_2, ..., x_n = C_{n-r}$, перепишем (2.9) в виде

$$\begin{cases} x_{1} = \beta_{1} + \alpha_{11}C_{1} + \dots + \alpha_{1,n-r}C_{n-r}, \\ x_{2} = \beta_{2} + \alpha_{21}C_{1} + \dots + \alpha_{2,n-r}C_{n-r}, \\ \vdots \\ x_{r} = \beta_{r} + \alpha_{r1}C_{1} + \dots + \alpha_{r,n-r}C_{n-r}, \\ x_{r+1} = C_{1} \in \mathbf{R}, \\ \vdots \\ x_{n} = C_{n-r} \in \mathbf{R}. \end{cases}$$
(2.11)

При частных значениях $C_1, C_2, ..., C_{n-r}$ правые части равенств (2.11) определяют все решения системы (2.1).

Замечание 2.1. В равенствах (2.11) под R понимается множество вещественных чисел (см. раздел 4, глава 1, §3).

Определение 2.1. Совокупность правых частей системы равенств (2.11) называется *общим решением* системы (2.1).

Пример 2.3. Найти все решения системы

$$\begin{cases} x_1 - x_2 + x_3 - x_4 = 2, \\ 2x_1 - x_2 + 4x_3 - 3x_4 = 5, \\ 3x_1 - 2x_2 + 5x_3 - 4x_4 = 7, \\ x_2 + 2x_3 - x_4 = 1. \end{cases}$$

▶ Выпишем расширенную матрицу системы

$$A^* = \begin{pmatrix} 1 & -1 & 1 & -1 & 2 \\ 2 & -1 & 4 & -3 & 5 \\ 3 & -2 & 5 & -4 & 7 \\ 0 & 1 & 2 & -1 & 1 \end{pmatrix}.$$

Подвергнем матрицу A^* элементарным преобразованиям. Умножим первую строку на числа (-2) и (-3) и сложим последовательно со второй и третьей строкой, после этого вычтем вторую строку из третьей и четвертой:

Матрице A_1^* соответствует следующая система:

$$\begin{cases} x_1 - x_2 + x_3 - x_4 = 2, \\ x_2 + 2x_3 - x_4 = 1, \end{cases}$$

равносильная данной. Неизвестные x_1, x_2 примем за *базисные*, а неизвестные x_3, x_4 — за *свободные*. Перенесём члены со свободными неизвестными в

правые части уравнений последней системы:
$$\begin{cases} x_1 - x_2 = 2 - x_3 + x_4, \\ x_2 = 1 - 2x_3 + x_4. \end{cases}$$
 Отсюда

имеем
$$\begin{cases} x_2 = 1 - 2x_3 + x_4, \\ x_1 = 2 - x_3 + x_4 + x_2 = 3 - 3x_3 + 2x_4. \end{cases}$$

Приняв обозначения: $x_3 = C_1 \in \mathbf{R}, x_4 = C_2 \in \mathbf{R}$, получаем совокупность всех

решений данной системы в виде:
$$\begin{cases} x_1 = 3 - 3C_1 + 2C_2, \\ x_2 = 1 - 2C_1 + C_2, \\ x_3 = C_1 \in \pmb{R}, \\ x_4 = C_2 \in \pmb{R}. \end{cases}$$

Таким образом, при решении произвольной системы линейных уравнений (т.е. системы (2.1)) реализуется один из следующих случаев(Теорема Кронекера – Капели):

- 1) Система (2.1) не имеет решений (т.е. является несовместной), если не совпадает число ненулевых строк в матрицах A_1 и A_1^* , полученных в результате приведения матрицы системы A и её расширенной матрицы A^* к ступенчатой форме.
- 2) Система (2.1) имеет единственной решение (т.е. является совместной и определённой), если число ненулевых строк в матрицах A_1 и A_1 * одинаково и равно числу неизвестных. В этом случае система (2.1) крамеровская или равносильна такой системе.
- 3) Система (2.1) имеет бесчисленное множество решений (т.е. является совместной и неопределённой), если число ненулевых строк в матрицах A_1 и A_1^* одинаково и меньше числа неизвестных.

Замечание 2.2. Множество решений системы (2.1) может быть либо пустым, либо состоять из одного элемента, либо быть бесконечным. Оно не может состоять из двух, трёх и т. д. элементов.

Пример 2.4. Дана система линейных уравнений
$$\begin{cases} (\lambda-2)x_1+x_2+x_3=1,\\ x_1+(\lambda-2)x_2+x_3=1,\\ x_1+x_2+(\lambda-2)x_3=1. \end{cases}$$

При каких значениях параметра λ она: а) не имеет решений? б) имеет единственное решение? в) имеет бесчисленное множество решений?

▶ Рассмотрим матрицы

$$A = \begin{pmatrix} \lambda - 2 & 1 & 1 \\ 1 & \lambda - 2 & 1 \\ 1 & 1 & \lambda - 2 \end{pmatrix} \quad \text{if } A^* = \begin{pmatrix} \lambda - 2 & 1 & 1 & 1 \\ 1 & \lambda - 2 & 1 & 1 \\ 1 & 1 & \lambda - 2 & 1 \end{pmatrix}.$$

Для приведения матрицы A^* (и тем самым матрицы A) к ступенчатой форме A_1^* выполним над A^* следующие элементарные преобразования.

1. Переставим местами первую и третью строки:

$$A^* \to \begin{pmatrix} 1 & 1 & \lambda - 2 & 1 \\ 1 & \lambda - 2 & 1 & 1 \\ \lambda - 2 & 1 & 1 & 1 \end{pmatrix}.$$

2. Последовательно вычтем из второй строки первую и из третьей – первую, умноженную на $(\lambda - 2)$, получим:

$$A^* \to \begin{pmatrix} 1 & 1 & \lambda - 2 & 1 \\ 0 & \lambda - 3 & 3 - \lambda & 0 \\ 0 & 3 - \lambda & -\lambda^2 + 4\lambda - 3 & 3 - \lambda \end{pmatrix}.$$

3. К третьей строке прибавим вторую, имеем

$$A^* \to A_1^* = \begin{pmatrix} 1 & 1 & \lambda - 2 & 1 \\ 0 & \lambda - 3 & 3 - \lambda & 0 \\ 0 & 0 & -\lambda^2 + 3\lambda & 3 - \lambda \end{pmatrix} \Rightarrow A \to A_1 = \begin{pmatrix} 1 & 1 & \lambda - 2 \\ 0 & \lambda - 3 & 3 - \lambda \\ 0 & 0 & -\lambda^2 + 3\lambda \end{pmatrix}.$$

При $-\lambda^2 + 3\lambda \neq 0$ (т. е. $\lambda \neq 0$, $\lambda \neq 3$) матрицы A_1 и A_1^* имеют по три ненулевых строки, причём число ненулевых строк совпадает с числом неизвестных в системе. Таким образом, в этом случае рассматриваемая система является крамеровской и имеет единственное решение.

При
$$\lambda = 0$$
 имеем: $A = \begin{pmatrix} 1 & 1 & -2 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \end{pmatrix}$ и $A_1^* = \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & -3 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$.

Число ненулевых строк в матрицах A_1 и A_1^* различно, поэтому при $\lambda = 0$ система не имеет решений.

При
$$\lambda = 3$$
 имеем: $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ и $A_1^* = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Число ненулевых строк в матрицах A_1 и A_1^* одинаково, оно меньше числа неизвестных, поэтому система имеет бесчисленное множество решений.

Ответ: а) система не имеет решений при $\lambda = 0$;

- б) система имеет единственное решение при $\lambda \neq 0$, $\lambda \neq 3$;
- в) система имеет бесчисленное множество решений при $\lambda = 3$.

Замечание 2.3. Поскольку, в силу теоремы 5.1 гл. 2, число ненулевых строк в матрицах A_1 и A_1^* совпадает с их рангами, и, как было отмечено в §5 главы 2, справедливы равенства rang A_1 = rang A, rang A_1^* = rang A^* , то приведённое выше резюме можно перефразировать следующим образом:

- 1) если rang $A \neq$ rang A^* , то система (2.1) несовместна;
- 2) если rang A= rang A^* =r и r=n, то система (2.1) имеет единственное решение;
- 3) если $\operatorname{rang} A = \operatorname{rang} A^* = r$ и r < n, то система (2.1) имеет бесчисленное множество решений.