Chapter 6: Trigonometric Functions

Section: 6.1 Angles and Their Measures

How to measure angles?

Examples of positive and negative angles:

Example:1 Draw each of the following angles:

(c)
$$-135^{\circ}$$

(g)
$$-645^{\circ}$$

(b)
$$645^{\circ}$$

(d)
$$-765^{\circ}$$

(f)
$$-450^{\circ}$$

Relation between "Radian" and "Degree":

1) 1 Revolution =
$$360^{\circ} = 2\pi$$
 radians

2)
$$180^{\circ} = \pi$$
 radians

3) 1 degree =
$$\frac{\pi}{180}$$
 radians

4) 1 radian =
$$\frac{180}{\pi}$$
 degrees

Note:

- a) To convert an angle from degrees to radian, you multiply the angle by $\frac{\pi}{180}$ [relation (3)]
- b) To convert an angle from radians to degrees, you multiply the angle by $\frac{180}{\pi}$ [relation (4)]

Example: 2

i) Converts from degrees to radians:
$$80^{\circ}$$
, 47° , -71°

ii) Converts from radians to degrees:
$$\frac{3\pi}{8}$$
 $-\frac{4\pi}{7}$ $\frac{9\pi}{11}$

Convert between Decimals and Degrees, Minutes, Seconds Measures for Angles

1 counterclockwise revolution = 360°

$$1^{\circ} = 60'$$
 that is $(\frac{1}{60})^{\circ} = 1'$

$$1' = 60''$$
 that is $(\frac{1}{60})' = 1''$

Example 3: (a) Convert the angle 86.45° to degrees, minutes, and seconds.

(b) Convert the angle $42^{\circ}9'12''$ to a decimal in degrees.

How to find the length and the area of an Arc of a circle?

Arc Length: For a circle of radius r, a central angle of θ radians subtends an arc whose length s is given by $s=r\theta$

<u>Sector Area:</u> The area $\ A$ of the sector of a circle of radius $\ r$ formed by a central angle of $\ \theta$ radian is $\ A=\frac{1}{2}r^2\theta$

Note: To find the length of an Arc s or the area of a Sector A, you MUST convert the angle θ to radians if it is given in degrees.

Example: 4

- (a) Find the length of the arc of a circle of radius 7 meters subtended by a central angle of 2.25 radians.
- (b) Find the length of the arc of a circle of radius $\,5\,$ feet subtended by a central angle of $\,74^{\circ}$.

(c) Find the length of the arc of a circle of radius 16 inches subtended by a central angle of 25° .

Example:5

- (a) Find the area of the sector of a circle of radius $\,7$ feet formed by an angle of $\,30^{\circ}$. Round the answer to two decimal places.
- (b) Find the area of the sector of a circle of radius $23\ meters$ formed by an angle of 60° . Round the answer to two decimal places.

Right Triangle Trigonometry

<u>**Definition:**</u> The six ratios of the lengths of the sides of a right triangle are called **trigonometric functions of acute angles** and are defined as follows:

Functions Name Abbreviation		Functions Name Abbreviation		
sine of $ heta$	$\sin heta$	cosecant of $ heta$	$\csc heta$	
cosine of $ heta$	$\cos heta$	secant of $ heta$	$\sec heta$	
tangent of $ heta$	an heta	cotangent of $ heta$	$\cot heta$	

From a right triangle, the six **trigonometric functions of acute angles a**re defined as follows:

$\sin \theta =$	$\cos\theta =$	$tan \theta =$
$csc\theta =$	$sec\theta =$	$\cot \theta =$

Example:1 Find the value of each of the trigonometric functions of the angle $\,\theta$ in the figure given below

$\sin\theta =$	$\cos\theta =$	$tan\theta =$
$csc\theta =$	$\sec\theta =$	$\cot \theta =$

Example:2 Find the value of each of the trigonometric functions of the angle $\,\theta$ in the figure given below

$\sin\theta = \frac{opposite}{hypotenuse}$	$\cos\theta = \frac{adjacent}{hypotenuse}$	$ an heta = rac{opposite}{adjacent}$
$\csc\theta = \frac{hypotenuse}{opposite}$	$\sec\theta = \frac{hypotenuse}{adjacent}$	$\cot \theta = rac{adjacent}{opposite}$

Example:3 Find the value of each of the trigonometric functions of the angle $\,\theta\,$ in the figure given below

$\sin\theta = \frac{opposite}{hypotenuse}$	$\cos\theta = \frac{adjacent}{hypotenuse}$	$ an heta=rac{opposite}{adjacent}$
$\csc\theta = \frac{hypotenuse}{opposite}$	$\sec \theta = \frac{hypotenuse}{adjacent}$	$\cot \theta = \frac{adjacent}{opposite}$

Example: 4 If $\sin \theta = \frac{3}{7}$, then find all trigonometric functions of the angle θ .

Example: 5 If $\cot \theta = \frac{2}{5}$, then find all trigonometric functions of the angle θ .

Fundamental Identities:

Reciprocal Identities: Identities:

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\csc \theta = \frac{1}{\sin \theta}$$

$$\cot \theta = \frac{1}{\tan \theta}$$

Quotient Identities:

$$an \theta = \frac{\cos \theta}{\cos \theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Pythagorean

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$\cot^2 \theta + 1 = \csc^2 \theta$$

Proof of Pythagorean Identities:

Pythagorean Theorem: $a^2 + b^2 = c^2$

$$\sin \theta = \frac{b}{c} \quad and \quad \cos \theta = \frac{a}{c}$$

$$\sin^2 \theta + \cos^2 \theta = \left(\frac{b}{c}\right)^2 + \left(\frac{a}{c}\right)^2 = \frac{b^2}{c^2} + \frac{a^2}{c^2} = \frac{b^2 + a^2}{c^2} = \frac{c^2}{c^2} = 1$$

$$\frac{\sin^2\theta + \cos^2\theta = 1}{\cos^2\theta + \frac{\cos^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta} \quad (\div\cos^2\theta)}$$

$$\frac{\sin^2\theta + 1 = \sec^2\theta}{\tan^2\theta + 1 = \sec^2\theta}$$

$$\frac{\sin^2\theta + \frac{\cos^2\theta}{\sin^2\theta} = \frac{1}{\sin^2\theta}}{\sin^2\theta} \quad (\div\sin^2\theta)$$

$$\frac{1 + \cot^2\theta = \csc^2\theta}{\sin^2\theta}$$

Even-Odd Identities:

$$\sin(-\theta) = -\sin \theta$$
 $\cos(-\theta) = \cos \theta$ $\tan(-\theta) = -\tan \theta$
 $\csc(-\theta) = -\csc \theta$ $\sec(-\theta) = \sec \theta$ $\cot(-\theta) = -\cot \theta$

Example: 6 Given $\sin \theta = \frac{\sqrt{3}}{2}$, $\cos \theta = \frac{1}{2}$. Use identities to find the exact value of each of the four remaining trigonometric functions of the acute angle θ .

Example: 7 Given $\sin \theta = \frac{2}{3}$, $\cos \theta = \frac{\sqrt{5}}{3}$. Use identities to find the exact value of each of the four remaining trigonometric functions of the acute angle θ .

Example: 8 Given $\sin \theta = \frac{5}{7}$, $\cos \theta = \frac{-2\sqrt{6}}{7}$. Use identities to find the exact value of each of the four remaining trigonometric functions of the angle θ .

Example: 9 Given $\cos \theta = \frac{1}{3}$. Use identities to find the exact value of each of the four remaining trigonometric functions of the acute angle θ .

Example :10 Use the fundamental identities to find the exact values of the followings:

(a)
$$sin^2 31^{\circ} + cos^2 31^{\circ} =$$

(b)
$$sec^2 12^{\circ} - tan^2 12^{\circ} =$$

(c)
$$tan 31^{\circ} - \frac{sin 31^{\circ}}{cos 31^{\circ}} =$$

<u>Definition: Complementary Angle:</u> Two acute angles are called complementary if their sum is a right angle, or 90° .

<u>Complementary Angle Theorem:</u> Co-functions of complementary angles are equal.

θ in Degrees:

$$cos(90^{\circ} - \theta) = sin \theta$$
 $sin(90^{\circ} - \theta) = cos \theta$
 $cot(90^{\circ} - \theta) = tan \theta$ $tan(90^{\circ} - \theta) = cot \theta$
 $csc(90^{\circ} - \theta) = sec \theta$ $sec(90^{\circ} - \theta) = csc \theta$

 θ in Radians: 90° degrees $=\frac{\pi}{2}$ Radians

$$\cos\left(\frac{\pi}{2}-\theta\right) = \sin\theta \qquad \tan\left(\frac{\pi}{2}-\theta\right) = \cot\theta$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$
 $\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$

$$\cot\left(\frac{\pi}{2}-\theta\right) = \tan\theta$$
 $\sec\left(\frac{\pi}{2}-\theta\right) = \csc\theta$

For example:

$$\sin \theta = \cos (90^{\circ} - \theta)$$
 $\rightarrow \sin 40^{\circ} = \cos 50^{\circ}$
 $\cos \theta = \sin (90^{\circ} - \theta)$ $\rightarrow \cos 15^{\circ} = \sin 75^{\circ}$
 $\tan \theta = \cot (90^{\circ} - \theta)$ $\rightarrow \tan 30^{\circ} = \cot 60^{\circ}$

Example :11 Use the fundamental identities to find the exact values of the followings:

(a)
$$sin 17^{\circ} - cos 73^{\circ} =$$

(b)
$$\frac{\cos 9^{\circ}}{\sin 81^{\circ}} =$$

(c)
$$\tan 21^{\circ} - \frac{\cos 69^{\circ}}{\sin 69^{\circ}} =$$

Example: 12 Given that $\sin 30^{\circ} = \frac{1}{2}$. Use trigonometric identities to find the exact values of the followings:

(a)
$$\cos 60^{\circ}$$
 (b) $\cos^2 30^{\circ}$

(c)
$$\csc \frac{\pi}{6}$$
 (d) $\sec \frac{\pi}{3}$

Computing the Values of Trigonometric Functions of acute Angles

degrees	radians	sinθ	cos θ	tan θ	csc θ	sec θ	cot 0
O°	0	0	1	0	_	1	_
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	√3
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	<u>π</u> 3	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	1	0	_	1	-	0

Finding exact values of the Trigonometric Functions of $\frac{\pi}{4} = 45^{\circ}$:

Use the right triangle given bellow:

Example: 1 Do not use a Calculator: Find the exact value of the expression

(a)
$$\csc 45^{\circ} - \cos 45^{\circ}$$

(b)
$$\sec 30^{\circ} - \cot 30^{\circ}$$

(c)
$$\sin 30^{0} - \cos 60^{0}$$

Example: 2 Do not use a Calculator: Find the exact value of the expression

(a)
$$\sin \frac{\pi}{3} - \tan \frac{\pi}{3}$$

(b)
$$\csc \frac{\pi}{6} - \sec \frac{\pi}{6}$$

(a)
$$\cos \frac{\pi}{4} - \cot \frac{\pi}{4}$$

Example: 3 Use a Calculator to approximate the value of the expression

(a)
$$\sin \frac{2\pi}{5} - \tan \frac{\pi}{7}$$

(b)
$$sin12^{\circ} + cos12^{\circ} =$$

Example: 4 A 22 —foot extension ladder leaning against a building makes a 70° angle with the ground. How far up the building does the ladder touch?

[Please come to my office if you want to learn how to find the exact values of the Trigonometric Functions of $\frac{\pi}{6}=~30^\circ$ and $\frac{\pi}{3}=~60^\circ$]

Hint: Finding exact values of the Trigonometric Functions of $\frac{\pi}{6}=30^{\circ}$ and $\frac{\pi}{3}=60^{\circ}$

Use the following right Triangle:

Place a triangle next to the triangle above that is congruent to it. The resulting triangle is an equilateral triangle, so each side is of length 2.

For $\frac{\pi}{6} = 30^{\circ}$:

For
$$\frac{\pi}{3} = 60^{\circ}$$
:

Section: 6.4 Graph of Sine and Cosine Functions

The Graph of The Sine function: y = sinx

Properties of the sine function y = sinx:

1. Domain= All real numbers, Range = [-1, 1].

2. The Sine function is an odd function, as the symmetry of the graph with respect to the origin indicates, that is, sin(-x) = -sinx.

3. The Sine function is periodic with period $T=2\pi$.

4. The x -intercepts are \cdots , -3π , -2π , $-\pi$, 0, π , 2π , 3π , \cdots ; and the y -intercept is 0.

5. The maximum value is 1 and occurs at $x=\cdots,-\frac{3\pi}{2},\frac{\pi}{2},\frac{5\pi}{2},\frac{9\pi}{2},\cdots$; and the minimum value is -1 and occurs at $x=\cdots,-\frac{\pi}{2},\frac{3\pi}{2},\frac{7\pi}{2},\frac{11\pi}{2},\cdots$.

Graph Functions of the form: $y = A \sin(\omega x)$

1. The Graph of the Function $y = 2 \sin x$

2. Comparison of the graphs: $y = 2 \sin x$, $y = \sin x$ and $y = \frac{1}{4} \sin x$

3. Comparison of the graphs: $y = \sin x$ and $y = \sin(3x)$

The Graph of The Cosine function: $y = \cos x$

Properties of the sine function $y = \cos x$:

- 1. Domain= All real numbers, Range = [-1, 1].
- 2. The Sine function is an even function, as the symmetry of the graph with respect to the y -axis indicates, that is, cos(-x) = cos x.
- 3. The Cosine function is periodic with period $T = 2\pi$.
- 4. The x -intercepts are \cdots , $-\frac{3\pi}{2}$, $-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$, \cdots ; and the y -intercept is 1.
- 5. The maximum value is $\ 1$ and occurs at are $x=\cdots,-2\pi,\ 0,\ 2\pi,\ 4\pi,\ 6\pi,\cdots$; and the minimum value is -1 and occurs at $x=\cdots,-\pi,\ \pi,\ 3\pi,\ 5\pi,\cdots$..

Comparison of the graphs: $y = 2 \cos x$, $y = \cos x$ and $y = \frac{1}{2} \cos x$

- **1. Definition:** The number |A| is called the **amplitude** of the functions $y = A \sin x$ or $y = A \cos x$
- **2. Definition:** If $\omega > 0$, the **amplitude and period** of the functions $y = A\sin(\omega x)$ or $y = A\cos(\omega x)$ are
- 3. Amplitude = |A| and Period = $T = \frac{2\pi}{\omega}$

Example: 1 Find the Amplitude and the period of the function $y = 3\sin(5x)$.

Example: 2 Find the Amplitude and the period of the function $y = -4\cos(3x)$.

Section: 6.5 Graphs of the Tangent, Cotangent, Cosecant and Secant Functions

1. Graph of the tangent function: $y = \tan x = \frac{\sin x}{\cos x}$

Note: Vertical asymptotes for the graph of the tangent functions are the vertical line where $\cos x=0$, that is, for $x=\cdots,-\frac{3\pi}{2},-\frac{\pi}{2},\frac{\pi}{2},\frac{3\pi}{2},\frac{5\pi}{2}$, \cdots . So, the tangent graph does not intersect the vertical lines given by $\cdots, x=-\frac{3\pi}{2}, \ x=-\frac{\pi}{2}, \ x=\frac{\pi}{2}, \ x=\frac{3\pi}{2}, \ x=\frac{5\pi}{2}, \cdots$.

- 1. Domain = All real numbers, except odd integer multiples of $\frac{\pi}{2}$
- 2. Range = $(-\infty, \infty)$
- 3. Tangent function is an odd function
- 4. Period T = π
- 5. x -intercepts: \cdots , -2π , $-\pi$, 0, π , 2π , \cdots

2. Graph of the Cotangent function: $y = \cot x = \frac{\cos x}{\sin x}$

<u>Note:</u> Vertical asymptotes for the graph of the cotangent functions are the vertical line where $\sin x = 0$, that is, for $x = \cdots, -3\pi, -2\pi, -\pi, 0, \pi, 2\pi, 3\pi, \cdots$. So, the cotangent graph does not intersect the vertical lines given by \cdots , $x = -2\pi$, $x = -\pi$, x = 0, $x = \pi$, $x = 2\pi$, \cdots .

- 1. Domain = All real numbers, except integer multiples of π
- 2. Range = $(-\infty, \infty)$
- 3. Cotangent function is an odd function
- 4. Period T = π
- 5. x -intercepts are $\dots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots$

3. Comparison of the graphs: y = tan x and y = cot x

4. Graph of the Cosecant function: $y = \csc x = \frac{1}{\sin x}$

<u>Note:</u> Vertical asymptotes for the graph of the cosecant functions are the vertical line where $\sin x = 0$, that is, for $x = \cdots, -3\pi, -2\pi, -\pi, 0, \pi, 2\pi, 3\pi, \cdots$. So, the cosecant graph does not intersect the vertical lines given by \cdots , $x = -2\pi$, $x = -\pi$, x = 0, $x = \pi$, $x = 2\pi$, \cdots .

- 1. Domain = All real numbers, except integer multiples of π
- 2. Range = $(-\infty, -1] \cup [1, \infty)$
- Cosecant function is an odd function
- 4. Period T = 2π
- 5. No x —intercepts

5. Graph of the Secant function: $y = \sec x = \frac{1}{\cos x}$

Note: Vertical asymptotes for the graph of the secant functions are the vertical line where $\cos x = 0$, that is, for $x = \cdots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$, \cdots . So, the secant graph does not intersect the vertical lines given by

 $\dots, x = -\frac{3\pi}{2}, \ x = -\frac{\pi}{2}, \ x = \frac{\pi}{2}, \ x = \frac{3\pi}{2}, \ x = \frac{5\pi}{2}, \dots$

- 1. Domain = All real numbers, except odd integer multiples of $\frac{\pi}{2}$
- 2. Range = $(-\infty, -1] \cup [1, \infty)$
- 3. Secant function is an even function
- 4. Period T = 2π
- 5. No x –intercepts

6. Comparison of the graphs:

(a)
$$y = \sin x$$
 and $y = \csc x$

(b) $y = \cos x$ and $y = \sec x$

