வணிகக் கணிதம்

மேல்நிலை – முதலாம் ஆண்டு

தமிழ்நாடு அரசு இலவசப் பாடநூல் வழங்கும் திட்டத்தின்கீழ் வெளியிடப்பட்டது (விற்பனைக்கு அன்று)

தீண்டாமை ஒரு பாவச்செயல் தீண்டாமை ஒரு பெருங்குற்றம் தீண்டாமை மனிதத்தன்மையற்ற செயல்

தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்

கல்லூரிச் சாலை, சென்னை – 600 006.

© தமிழ்நாடு அரசு முதற்பதிப்பு – 2004 மறுபதிப்பு – 2017

குழுத்தலைவர்

திரு. **வை**. **திருஞான சம்பந்தம்,** ஓய்வு பெற்ற கணிதவியல் விரிவுரையாளர் அரசு ஆடவர் கலைக் கல்லூரி நந்தனம், சென்னை – **35**.

மேலாய்வாளர்கள்

திரு. **ந. ரமேஷ்**, தோவநிலை விரிவுரையாளா் கணிதத்துறை அரசு ஆடவா் கலைக் கல்லூரி நந்தனம், சென்னை – **35**. முனைவா். **மா.ரெ. சீனிவாசன்,** இணைப் பேராசிரியா் புள்ளியியல் துறை சென்னைப் பல்கலைக் கழகம் சென்னை – 5.

திரு. **செ. குணசேகரன்,** தலைமை ஆசிரியர் அரசினர் மகளிர் மேல்நிலைப் பள்ளி திருச்செங்கோடு, நாமக்கல் மாவட்டம்.

நூலாசிரியர்கள்

திரு. **சு. இராமச்சந்திரன்,** முதுகலைப் பட்டதாரி ஆசிரியர் சிந்தாதிரிப்பேட்டை மேனிலைப் பள்ளி சிந்தாதிரிப்பேட்டை, சென்னை – 2.

திரு**. சங். திவே. பத்மநாபன்** முதுகலைப் பட்டதாரி ஆசிரியர் இந்து மேனிலைப்பள்ளி திருவல்லிக்கேணி, சென்னை – **5**. திரு. **சா. இராமன்,** முதுகலைப் பட்டதாரி ஆசிரியர் ஜெயகோபால் கரோடியா தேசிய மேனிலைப் பள்ளி கிழக்கு தாம்பரம், சென்னை – **59**.

> திருமதி. **கி. மீனாட்சி,** முதுகலைப் பட்டதாரி ஆசிரியை இராமகிருஷ்ணா மிஷன் மேனிலைப் பள்ளி (மையம்), தி.நகா், சென்னை – **1**7.

திரு. **வேணு. பிரகாஷ்**, புள்ளியியல் விரிவுரையாளர் (மு.நி.) மாநிலக் கல்லூரி சென்னை – 5.

வിலை: ரூ.

பாடங்கள் தயாரிப்பு : தமிழ்நாடு அரசுக்காக பள்ளிக் கல்வி இயக்ககம், தமிழ்நாடு

இந்நூல் 60 ஜி.எஸ்.எம். தாளில் அச்சிடப்பட்டுள்ளது.

ஆப்செட் முறையில் அச்சிட்டோர் :

முகவுரை

மேல் நிலை முதலாமாண்டு வகுப்புக்குரிய வணிகக் கணிதப் பாடத்திட்டம் புதிய சூழலுக்கேற்றார்போல் மாற்றப்பட்டு வெளி வருகிறது.

வணிகமயமாகி வரும் இக்கால சூழ்நிலையைக் கருத்தில் கொண்டு மாணவாகள் தங்களைத் தயாா்படுத்திக் கொள்ளவும் எதிா்காலத் தேவைகளை நிறைவு செய்து கொள்ளவும், இப்புத்தகம் தயாாிக்கப்பட்டுள்ளது.

கணிதத்தின் அடிப்படை அறிவை வணிகவியல் மாணவா்களுக்குப் பயன்பட செய்வதே இந்தப் பாடப் புத்தகத்தின் நோக்கமாகும்.

வரையறைகள், தேற்றங்கள் மற்றும் உட்கருத்துக்களைத் தொடர்ந்து எடுத்துக்காட்டுக் கணக்குகளும், படித்தரமான தீர்வுகளும் இப்புத்தகத்தில் இடம் பெற்றுள்ளன.

மாணவாகளின் படைப்பாற்றலை ஊக்குவிக்கும் வகையில் இந்நூல் இயற்றப்பட்டுள்ளது.

இப்பாடநூலில் உள்ள எடுத்துக்காட்டுகள் மற்றும் பயிற்சி வினாக்கள் மட்டுமே தேர்வுக்குரிய வினாக்களாகக் கருதக்கூடாது.

மேலும் பாடப்புத்தகத்தில் இடம்பெற்றுள்ள கருத்துருக்கள் அனைத்தும் வினாக்களில் இடம்பெறும் வாய்ப்புக்களை முழுவதுமாகப் பெற்றுள்ளன.

இப்புத்தகத்தை மேலும் செம்மைப்படுத்த கல்வியாளா்கள், ஆசிாியா்கள் மற்றும் மாணவா்களிடமிருந்து மதிப்பு மிக்க ஆலோசனைகள் வரவேற்கப்படுகின்றன.

இப்புத்தகம் உருவாக எல்லா வகையிலும் உதவிய நெஞ்சங்களுக்கு மனமார்ந்த நன்றியைத் தெரிவித்துகொள்கிறோம்.

> தலைவர் பாடநூல் குழு

பாடத்திட்டம்

1) அணிகளும், அணிக்கோவைகளும்

(15 வகுப்புகள்)

அணியின் வாிசை – அணியின் வகைகள் – அணிகளின் கூட்டல், கழித்தல் மற்றும் அணி திசையிலி பெருக்கல் – அணிகளின் பெருக்கல் – இரண்டு மற்றும் மூன்று வாிசைகளைக் கொண்ட அணிக் கோவையின் மதிப்பு – அணிக் கோவைகளின் பண்புகள் – பூஜ்ஜியக் கோவை அணி – அணிக் கோவைகளின் பெருக்கல்.

2) இயற்கணிதம்

(20 வகுப்புகள்)

பகுதி பின்னம் — ஒன்றாம் படியில் அமைந்த மீண்டும் மீண்டும் வரும், வராத காரணிகள் — காரணிப்படுத்த இயலாத ஈருறுப்புக் கோவை — வரிசை மாற்றங்கள் — பயன்பாடுகள் — பலமுறை வரும் பொருட்களின் வரிசை மாற்றங்கள் — வட்ட வரிசை மாற்றங்கள் — சேர்வுகளின் பயன்பாடுகள் கணிதத் தொகுத்தறிதல் — Σn , Σn^2 மற்றும் Σn^3 என்பனவற்றைப் பயன்படுத்தி தொடர்களின் கூடுதல் காணல் — மிகை முழு எண் அடுக்குகளுக்கான ஈருறுப்புத் தேற்றம் — ஈருறுப்புக் கெழுக்கள்.

3) தொடரினங்கள் மற்றும் தொடர்கள்

(20 வகுப்புகள்)

இசை உறவுத் தொடர் – இரு மிகை மெய் எண்களின் சராசரிகள் – A.M., G.M. மற்றும் H.M. இவைகளுக்கிடையே உள்ள தொடர்பு – தொடரினங்களின் பொதுக்கோட்பாடு ஒரு தொடரினத்தை ஒருவிதியால் வரையறுத்தல் மற்றும் ஒன்றிலிருந்து மற்றொன்று வரும் உறவால் குறித்தல் – கூட்டு வட்டி – ஒப்பு வட்டி வீதம் மெய் வட்டி வீதம் தவணைப் பங்கீட்டுத் தொகைகள் – உடனடி தவணைப் பங்கீட்டுத் தொகை, காத்திருக்க வேண்டிய தவணைப் பங்கீட்டுத் தொகை.

4) பகுமுறை வடிவ கணிதம்

(30 வகுப்புகள்)

இயங்குவரை — நோக்கோடுகள் — செங்குத்து வடிவம், சமச்சீர் வடிவம் — ஒரு புள்ளியிலிருந்து ஒரு கோட்டிற்கு வரையப்படும் செங்குத்து வடிவம், சமச்சீர் வடிவம் — ஒரு புள்ளியிலிருந்து ஒரு கோட்டிற்க்கு வரையப்படும் செங்குத்துக் கோட்டின் நீளம் — இரு கோடுகளுக்கு இடைப்பட்ட கோணத்தின் இருசம வெட்டியின் சமன் பாடு — செங்குத்துக் கோடுகள் மற்றும் இணை கோடுகள் — ஒரு புள்ளி வழிக் கோடுகள் — வட்டம் — மைய, ஆர வடிவம் — விட்ட வடிவம் — பொது வடிவ சமன்பாடு — ஒரு புள்ளியிலிருந்து வட்டத்திற்கு வரையப்படும் தொடு கோட்டின் நீளம் — தொடுகோட்டின் சமன் பாடு — தொடு கோடுகளின் தொடு நாண்.

5) திரிகோணமிதி

(25 வகுப்புகள்)

திரிகோணமிதி விகிதங்களின் தொடர்புகள் — முற்றொருமைகள் — குறிகள் — கலவைக் கோணங்கள் — கூட்டல் வாய்பாடுகள் — மடங்கு கோணங்கள் — பெருக்கல் சூத்திரங்கள் — முதன்மைத் தீர்வு — திரிகோண மிதி சமன்பாடுகளின் அமைப்புகள் $\sin \theta = \sin \alpha$, $\cos \theta = \cos \alpha$ மற்றும் $\tan \theta = \tan \alpha$ - நேர்மாறு திரி கோண மிதி சார்புகள்.

6) சார்புகளும் அவற்றின் வரைபடங்களும்

(15 வகுப்புகள்)

மெய்மதிப்புச் சாா்புகள் — மாறிகளும் மாறிலிகளும் — அண்மையகம் — சாா்புகளைக் குறிக்கும் முறைகள் — சாா்புகளின் அட்டவணைக் குறியீடு மற்றும் வரைபடம் — சாா்புகளுக்கான செங்குத்துக்கோட்டுச் சோதனை — நேரியல்சாா்பு — சாய்வு காணல் — அடுக்குசாா்பு — 2^x மற்றும் e^x வட்டச்சாா்புகள் — சாா்புகளின் வரைபடங்கள் — சாா்புகளின் மீதான கணித அடிப்படைச் செயலிகள் — மட்டுச்சாா்பு — படிச்சாா்பு — சாா்புகளின் நோ்மாறு — ஒற்றைப்படை, இரட்டைப்படைச் சாா்புகள் — கலப்புச் சாா்புகள்.

7) வகை நுண்கணிதம்

(30 வகுப்புகள்)

சார்பின் எல்லை – எல்லைகளின் முக்கிய வாய்பாடுகள் –

$$\underset{x \to a}{Lt} \frac{x^n - a^n}{x - a} \underset{x \to 0}{Lt} \left(1 + \frac{1}{x} \right)^x \underset{x \to 0}{Lt} \frac{e^x - 1}{x} \underset{x \to 0}{Lt} \frac{\log(1 + x)}{x}$$

$$\underset{x \to 0}{\operatorname{Lt}} \, \frac{\sin \theta}{\theta}$$
 (நிரூபணம் அவசியமில்லை) —

சாா்புகளின் தொடா்ச்சி – வரைபட விளக்கம் – வகைக்கெழு காணுதல் – வடிவ கணித விளக்கம் – அடிப்படை கோட்பாடுகளிலிருந்து வகைக்கெழு காணுதல் – வகைக்கெழு காணலின் விதிமுறைகள் – சங்கிலி விதி – மடக்கையைப் பயன்படுத்தி வகைக்கெழு காணல் – உள்ளிடைச் சாா்புகளின் வகைக்கெழு காணல் – துணையலகு சாா்புகள் – இரண்டாம்படி வகைக்கெழுக்கள்.

8) தொகை நுண்கணிதம்

(25 வகுப்புகள்)

தொகையிடல் – தொகையீட்டின் நுணுக்கங்கள் – ஈடு செய்முறை – முக்கிய தொகையீடுகள் – பகுதி தொகையீடு, திட்டமான தொகையீடு – வரையறுத்தத் தொகையைக் கூட்டலின் எல்லையாகக் காணல் (நிரூபணம் அவசியமில்லை)

9) சரக்கு முதல்கள், பங்குகள் மற்றும் கடன் பத்திரங்கள்

(15 வகுப்புகள்)

அடிப்படைக்கொள்கைகள் – பங்குகளுக்கும் கடன் பத்திரங்களுக்கும் உள்ள வேறுபாடுகள் – பங்குகளை வாங்கல் மற்றும் விற்றல் என்பனவற்றுள் உள்ள கணிதவியல் நுட்பங்கள் – ஒப்பு வீதம் கொண்ட கடன் பத்திரங்கள்.

10) புள்ளியியல்

(15 வகுப்புகள்)

தொடர்நிகழ்வின் பரவலுக்கான மையப் போக்களவைகள் சராசரி, இடைநிலை, முகடு – பெருக்கல் சராசரி மற்றும் இசைச் சராசரி – தொடர் நிகழ்வெணுக்கான பரவல் அளவைகள் – வீச்சு, திட்டவிலக்கம் மாறுபாட்டுக் கெழு – நிகழ்தகவு – அடிப்படைக் கருத்துருக்கள் – வெளிப்பாட்டு உண்மை அணுகுமுறை – நிகழ்தகவின் ஆரம்பகால வரையறை – அடிப்படைத் தேற்றங்கள் – கூட்டல் தேற்றம் (நிரூபணம் அவசியமில்லை) – நிபந்தனை நிகழ்தகவு – பெருக்கல் தேற்றம் (நிரூபணம் அவசியமில்லை) – பேயீஸ் தேற்றம் (நிரூபணம் அவசியமில்லை) – எளிய கணக்குகள்.

பொருளடக்கம்

		பக்கம்
1.	அணிகளும், அணிக்கோவைகளும்	1
2.	இயற்கணிதம்	24
3.	தொடரினங்களும், தொடர்களும்	52
4.	பகுமுறை வடிவ கணிதம்	86
5.	திரிகோணமிதி	110
6.	சாா்புகளும் அவற்றின் வரைபடங்களும்	153
7.	வகை நுண்கணிதம்	189
8.	தொகை நுண்கணிதம்	227
9.	சரக்குமுதல்கள், பங்குகள் மற்றும் கடன் பத்திரங்கள்	252
10.	பள்ளியியல்	274

அணிகளும், அணிக்கோவைகளும் (MATRICES AND DETERMINANTS)

1.1 அணி இயற்கணிதம்

இங்கிலாந்தை சார்ந்த சர். ஆர்தர் கெய்லி (1821–1895) என்ற கணிதவியலார் முதன் முதலில் அணிகள் என்கிற பதத்தை 1858ஆம் ஆண்டில் அறிமுகப்படுத்தினார். தற்காலத்தில் பயன்பாட்டு கணிதவியலில், அணிகளைக் குறியீடாகக் கொண்டு, ஒருபடிச் சமன்பாடுகளை செம்மையான முறையில் பல இடங்களில் குறிக்கின்றோம்.

பொருளியியல், உளவியல் மற்றும் செயலியின் ஆய்வு ஆகிய துறைகளில் அணியியல் பயன்படுத்தப்படுகிறது. மேலும் இவற்றின் பயன்பாடுகள் பொறியியல், உடலியல் மற்றும் சமூக அறிவியல், வணிக மேலாண்மை, புள்ளியியல், மற்றும் நவீன கட்டுபாட்டு அமைப்பு ஆகிய துறைகளில் இன்றியமையாததாக உள்ளன.

1.1.1 அணி வரையறை

எண்கள் மற்றும் சாா்புகளை, செவ்வக அமைப்பில் பின்வருமாறு குறிப்பிடுவதை அணி (matrix) என்கிறோம்.

$$\begin{pmatrix} a_{11} & a_{12} & \dots a_{1n} \\ a_{21} & a_{22} & \dots a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots a_{mn} \end{pmatrix}$$

மேற்கண்ட அமைப்பில் உள்ள எண்கள் மற்றும் சாா்புகளை குறிக்கும் a_{ij} –யை மூலகங்கள் என்கிறோம். அம்மூலகங்கள் மெய்யெண்கள் அல்லது சிக்கலெண்கள் ஆக இருக்கலாம். மிகை முழு எண்களான $m,\ n$ மேற்கண்ட அமைப்பில் நிரல், நிரைகளின் எண்ணிக்கையைக் குறிக்கின்றன.

எடுத்துக்காட்டாக,

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, B = \begin{pmatrix} x^2 & \sin x \\ \sqrt{x} & \frac{1}{x} \end{pmatrix}$$
 ஆகியவை அணிகள்

1.1.2 அணியின் வரிசை

 $\mathbf m$ நிரைகளையும், $\mathbf n$ நிரல்களையும் உடைய அணியின் வரிசை $\mathbf m imes \mathbf n$ எனப்படுகிறது.

 $A=(a_{ij})_{m imes n}$ என்ற குறியீட்டில், **1** முதல் m வரை செல்லக் கூடிய i நிரைகளையும், **1** முதல் n வரை செல்லக்கூடிய i நிரல்களையும் குறிக்கின்றது.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 என்கிற அணியின் வரிசை 2×3 ஆகும்.

$$\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
 என்கிற அணியின் வரிசை 2×2 ஆகும்.

$$C = \begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & \sin \theta \end{pmatrix}$$
 என்கிற அணியின் வரிசை 2×2 ஆகும்.

$$D = \begin{pmatrix} 0 & 22 & 30 \\ -4 & 5 & -67 \\ 78 & -8 & 93 \end{pmatrix}$$
 என்கிற அணியின் வரிசை 3×3 ஆகும்.

1.1.3 அணிகளின் வகைகள்

(i) சதுர அணி (Square Matrix)

ஓா் அணியில் உள்ள நிரைகளின் எண்ணிக்கையும், நிரல்களின் எண்ணிக்கையும் சமமாக இருப்பின் அவ்வணி சதுர அணி எனப்படும்.

எடுத்துக்காட்டாக

$$A = \begin{pmatrix} 5 & 7 \\ 6 & 3 \end{pmatrix}$$
 வரிசை **2**–ஐ உடைய சதுர அணி ஆகும்.

$$B = \begin{pmatrix} 3 & 1 & 5 \\ 4 & 1 & 6 \\ 2 & 4 & 9 \end{pmatrix}$$
 வரிசை **3**–ஐ உடைய சதுர அணி ஆகும்.

$$C = \begin{pmatrix} \sin \alpha & \sin \beta & \sin \delta \\ \cos \alpha & \cos \beta & \cos \delta \\ \csc \alpha & \csc \beta & \csc \delta \end{pmatrix}$$
 வரிசை 3–ஐ உடைய சதுர அணி ஆகும்.

(ii) நிரை அணி (Row Matrix)

ஒரே ஒரு நிரையை உடைய அணி நிரை அணி எனப்படும்.

எடுத்துக்காட்டாக

$$A = [2\ 0\ 1]$$
 என்பது $1\ x\ 3$ நிரை அணி ஆகும்.

$$B = [1 \ 0]$$
 என்பது $1 \ x \ 2$ நிரை அணி ஆகும்.

(iii) நிரல் அணி (Column Matrix)

ஒரே ஒரு நிரல் உடைய அணி நிரல் அணி எனப்படும்.

$$\mathbf{A} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$
 என்பது 3×1 வரிசை நிரல் அணி ஆகும்.

$$\mathbf{B} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 என்பது 2×1 நிரல் அணி ஆகும்.

(iv) பூஜ்ஜிய அணி (Zero Or Null Matrix)

ஓா் அணியில் உள்ள மூலகங்கள் அனைத்தும் பூஜ்ஜியமாக இருப்பின், அவ்வணி பூஜ்ஜிய அணி என்றழைக்கப்படுகிறது. மேலும் அவ்வணி 0 என குறிக்கப்படும்.

எடுத்துக்காட்டாக

$$\mathbf{O} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 என்பது 2×2 வரிசையுள்ள பூஜ்ஜிய அணி ஆகும்.

$$O = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 என்பது 2×3 வரிசையுள்ள பூஜ்ஜிய அணி ஆகும்.

(v) மூலைவிட்ட அணி (Diagonal Matrix)

ஒரு சதுர அணியில் முதன்மை மூலை விட்ட மூலகங்களைத் தவிர்த்து, மற்ற மூலகங்களின் மதிப்பு பூஜ்ஜியமாக இருப்பின் அவ்வணி மூலைவிட்ட அணி எனப்படும்.

எடுத்துக்காட்டாக

$$A = \begin{pmatrix} 5 & 0 \\ 0 & 9 \end{pmatrix}$$
 என்பது வரிசை **2**–ஐ உடைய மூலைவிட்ட அணி

மேலும்
$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 என்பது வரிசை **3**—ஐ உடைய மூலைவிட்ட அணி ஆகும்.

$$A = \begin{pmatrix} 1 & 3 & 7 \\ 5 & -2 & -4 \\ 3 & 6 & 5 \end{pmatrix}$$
 என்ற சதுர அணியில்,

1, -2, 5 ஆகியவை முதன்மை மூலவிட்ட மூலகங்களாகும். 3, -2, 7 ஆகியவை துணை மூலவிட்ட மூலகங்களாகும்.

(vi) திசையிலி அணி (Scalar Matrix)

ஒரு மூலைவிட்ட அணியின் அனைத்து மூலைவிட்ட உறுப்புகளும் K–க்கும் சமமாக இருப்பின் அவ்வணி திசையிலி அணி எனப்படும்.

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 என்ற அணி வரிசை 3 —ஐ உடைய திசையிலி அணியாகும்.

இங்கு
$$K = 2$$
.

(vii) அலகு அணி (Unit Matrix)

ஒரு திசையிலி அணியின் அனைத்து மூலைவிட்ட மூலகங்களின் மதிப்பு 1 என்று இருக்கும் போது அவ்வணி அலகு அணி எனப்படும். இவ்வணி I என குறிப்பிடப்படுகிறது.

எடுத்துக்காட்டாக

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 என்பது வரிசை **2**–ஐ உடைய அலகு அணியாகும்.

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 என்பது வரிசை 3 —ஐ உடைய அலகு அணியாகும்.

1.1.4 ஓர் அணியை திசையிலி கொண்டு பெருக்குதல் (Multiplication of a matrix by a scalar)

அணி $A=(a_{ij})$ எனில், K என்பது ஒரு திசையிலி எனில், KA என்கிற திசையிலியால் பெருக்கப்பட்ட அணி பின்வருமாறு வரையறுக்கப்படுகிறது.

$$KA=(Ka_{ii})$$
 அனைத்து i, j க்களுக்கும்

 $A=(a_{ij})$ என்கிற அணியை K (திசையிலி) என்ற எண்ணால் பெருக்குதல் என்பது, அவ்வணியில் உள்ள அனைத்து மூலகங்களையும் K—ஆல் பெருக்குவதற்கு ஒப்பாகும்.

1.1.5 அணியின் எதிர்மறை (Negative of a matrix)

 $A=(a_{ij})_{m\times n}$ என்ற அணியின் எதிா்மறையை, - $A=(-a_{ij})_{m\times n}$ என்று வரையறுக்கப்படுகிறது. அதாவது அவ்வணியில் உள்ள அனைத்து மூலகங்களின் குறியீடுகள் + லிருந்து - ஆகவும், - லிருந்து + ஆகவும் மாற்றப்படுகிறது.

எடுத்துக்காட்டாக

$$A = \begin{pmatrix} 2 & -5 & 7 \\ 0 & 5 & 6 \end{pmatrix}$$
எனில்
$$-A = \begin{pmatrix} -2 & 5 & -7 \\ 0 & -5 & -6 \end{pmatrix}$$

1.1.6 அணிகளின் சமத்துவம்

இரண்டு அணிகள் பின்வரும் நிபந்தனைக்கு உட்பட்டால் இவ்விரண்டு அணிகளும் சமஅணிகள் எனப்படும்.

- (i) இரண்டு அணிகளின் வரிசைகளும் சமமாக இருத்தல்
- (ii) ஒத்த இடத்தில் அமைந்த முலகங்களின் மதிப்புக்கள் சமமாக இருத்தல்

1.1.7 அணிகளின் கூட்டல்

இரண்டு அணிகளின் வரிசைகள் சமமாக இருப்பின் (கூட்டலுக்கு உகந்தது) அவற்றின் ஒத்த மூலங்களை கூட்டி பெறப்பட்ட அணி, மேற்குறிப்பிட்ட அணிகளின் கூட்டலாகும்.

1.1.8 அணிகளின் கூட்டல் பண்புகள்

 $A,\ B$ மற்றும் C ஒரே வரிசையுடைய அணிகளாகக் கருதவும். அணிகளின் கூட்டல் பின்வரும் விதிகளுக்கு உட்பட்டது.

- (i) மாற்று விதி Commutative law : A + B = B + A
- (ii) சேர்ப்பு விதி Associative law : A + (B + C)= (A + B) + C
- (iii) பங்கீட்டு விதி Distributive law : K(A+B) = KA+KB, (K எண்ணைக் குறிக்கிறது)

1.1.9 அணிகளின் கழித்தல்

இரு அணிகள் ஒரே வரிசையாக அமையும்போது மட்டுமே அவற்றின் கழித்தல் வரையறுக்கப்படுகிறது.

 $A,\,B$ ஆகிய அணிகள் ஒரே வரிசையுடையதாகக் கருதவும். A - B என்பது, B அணியின் மூலகங்களை, A அணியின் ஒத்த மூலகங்களிலிருந்து கழித்து பெறப்படுவதாகும்.

1.1.10 அணிகளின் பெருக்கல்

முதல் அணியின் (A) நிரல்களின் எண்ணிக்கையும், இரண்டாம் அணியின் (B) நிரைகளின் எண்ணிக்கையும் சமமாக இருக்கும்போது மட்டுமே (பெருக்கலுக்கு உகந்தது) இவ்விரு அணிகளின் பெருக்கல் A B வரையறுக்கப்படுகிறது.

 $A=(a_{ij})$ என்கிற அணி m imes p வரிசையுடையதாகவும்,

 $\mathbf{B}=(\mathbf{b}_{ii})$ என்கிற அணி $\mathbf{p} imes \mathbf{n}$ வரிசையுடையதாகவும் கருதவும்.

பின்பு இவற்றின் பெருக்கல் AB என்பது $m \times n$ தரமுடைய $C = (c_{ij})$ என்ற அணியாகும். இங்கு $C_{ij} = A$ –ன் i ஆம் நிறையின் மூலகங்களையும், B –ன் j ஆம் நிரலின் மூலகங்களையும் முறையே பெருக்கி பின்பு அவற்றைக் கூட்டி பெற்ற மதிப்பாகும்.

எடுத்துக்காட்டாக

$$A = \begin{pmatrix} 3 & 5 \\ 2 & -1 \\ 6 & 7 \end{pmatrix}_{3 \times 2}$$
 $B = \begin{pmatrix} 5 & -7 \\ -2 & 4 \end{pmatrix}_{2 \times 2}$ எனில்

$$AB = \begin{pmatrix} 3 & 5 \\ 2 & -1 \\ 6 & 7 \end{pmatrix} \begin{pmatrix} 5 & -7 \\ -2 & 4 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \times 5 + 5 \times (-2) & 3 \times (-7) + 5 \times (5) \\ 2 \times 5 + (-1) \times (-2) & 2 \times (-7) + (-1) \times (4) \\ 6 \times 5 + 7 \times (-2) & 6 \times (-7) + 7 \times (4) \end{pmatrix}$$

$$= \begin{pmatrix} 5 & -1 \\ 12 & -18 \\ 16 & -14 \end{pmatrix}$$

1.1.11 அணிகளின் பெருக்கல் பற்றிய பண்புகள்

- (i) அணிகளின் பெருக்கல் பொதுவாக மாற்று விதிக்கு உட்பட்டதல்ல. அதாவது A, B என்ற இரு அணிகளுக்கு $AB \neq BA$.
- (ii) அணிகளின் பெருக்கல் சேர்ப்பு விதிக்கு உட்பட்டது. அதாவது (AB) C = A(BC)
- (iii) அணிகளின் பெருக்கல் கூட்டலின் அடிப்படையில் அமைந்த பங்கீட்டு விதிக்கு உட்பட்டது. அதாவது, A என்பதை $m \times n$ வரிசையுள்ள தரமுள்ள அணியாகவும், B மற்றும் C ஆகியவற்றை $n \times k$ வரிசையுள்ள அணிகளாகவும் கொண்டால், A(B+C) = AB + AC
- (iv) A என்பது n வரிசையுள்ள சதுர அணியாகவும், I என்பது அதே வரிசையுள்ள அலகு அணியாகவும் இருப்பின்,

$$AI = A = IA$$

(v) AB = O, என அமையும்பொழுது, A அல்லது B இரண்டு அணிகளுமே பூஜ்ஜிய அணிகளாக இருக்க வேண்டிய அவசியமில்லை.

எடுத்துக்காட்டாக

$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}_{2 \times 2}$$
 $B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}_{2 \times 2}$ என்க

$$AB = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

இங்கு A, B இரு அணிகளும் பூஜ்ஜிய அணிகள் அல்ல. ஆனால் அவற்றின் பெருக்கல் அணி AB ஒரு பூஜ்ஜிய அணி ஆகும்.

1.1.12 பரிமாற்று அணி (Transpose of a matrix)

 $A=(a_{ij})$ என்பதை $m\ge n$ வரிசையுள்ள அணியாக கருதவும். இவ்வணியின் நிரைகளை, நிரல்களாகவும் அல்லது நிரல்களை, நிரைகளாகவும் மாற்றி பெறப்படும் அணி A ன் பரிமாற்று அணி எனப்படும். $n\ge m$ வரிசையுள்ள இப்பரிமாற்ற அணி, A^T எனக் குறிக்கப்படுகிறது.

$$A^{T} = \begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 & 6 \end{pmatrix}_{2\times 3}$$
, stoothoù $A^{T} = \begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 & 6 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 5 & 6 \end{pmatrix}$

1.1.13 பரிமாற்று அணியின் பண்புகள்

 $A^T,\ B^T$ என்பன A மற்றும் B —க்களின் பரிமாற்ற அணிகளாகவும், lpha என்பதை ஒர் எண்ணாகவும் கருதும் பொழுது

(i)
$$(A^T)^T = A$$

(ii)
$$(A + B)^T = A^T + B^T$$

(iii)
$$(\alpha A)^T = \alpha A^T$$

$$(iv) (AB)^T = B^T A^T (A, B பெருக்கலை அனுசரிக்கும் பொழுது)$$

எடுத்துக்காட்டு 1

$$A = \begin{pmatrix} 5 & 9 & 6 \\ 6 & 2 & 10 \end{pmatrix}, B = \begin{pmatrix} 6 & 0 & 7 \\ 4 & -8 & -3 \end{pmatrix}$$

எனில் A+B, A-B –யைக் காண்க

தீர்வு :

$$A + B = \begin{pmatrix} 5+6 & 9+0 & 6+7 \\ 6+4 & 2+(-8) & 10+(-3) \end{pmatrix} = \begin{pmatrix} 11 & 9 & 13 \\ 10 & -6 & 7 \end{pmatrix}$$
$$A - B = \begin{pmatrix} 5-6 & 9-0 & 6-7 \\ 6-4 & 2-(-8) & 10-(-3) \end{pmatrix} = \begin{pmatrix} -1 & 9 & -1 \\ 2 & 10 & 13 \end{pmatrix}$$

எடுத்துக்காட்டு 2

$$A = \begin{pmatrix} 3 & 6 \\ 9 & 2 \end{pmatrix}$$
 எனில் (i) $3A$ (ii) $-\frac{1}{3}A$ –யைக் காண்க

தீர்வு:

(i)
$$3A = 3\begin{pmatrix} 3 & 6 \\ 9 & 2 \end{pmatrix} = \begin{pmatrix} 9 & 18 \\ 27 & 6 \end{pmatrix}$$

(ii)
$$-\frac{1}{3}A = -\frac{1}{3} \begin{pmatrix} 3 & 6 \\ 9 & 2 \end{pmatrix} = \begin{pmatrix} -1 & -2 \\ -3 & -\frac{2}{3} \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 5 \\ 4 & 7 & 9 \\ 1 & 6 & 4 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 3 & 1 & 2 \\ 4 & 2 & 5 \\ 6 & -2 & 7 \end{pmatrix}$$

எனில் 5 (A + B) = 5A + 5B என்பதை நிறுவுக.

தீர்வு:

$$A + B = \begin{pmatrix} 5 & 4 & 7 \\ 8 & 9 & 14 \\ 7 & 4 & 11 \end{pmatrix} \therefore 5(A + B) = \begin{pmatrix} 25 & 20 & 35 \\ 40 & 45 & 70 \\ 35 & 20 & 55 \end{pmatrix}$$

$$5A = \begin{pmatrix} 10 & 15 & 25 \\ 20 & 35 & 45 \\ 5 & 30 & 20 \end{pmatrix} \quad 5B = \begin{pmatrix} 15 & 5 & 10 \\ 20 & 10 & 25 \\ 30 & -10 & 35 \end{pmatrix}$$

$$\therefore 5A + 5B = \begin{pmatrix} 25 & 20 & 35 \\ 40 & 45 & 70 \\ 35 & 20 & 55 \end{pmatrix} \therefore 5(A + B) = 5A + 5B$$

எடுத்துக்காட்டு 4

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} \text{ stable} B = \begin{pmatrix} -1 & -2 & -4 \\ -1 & -2 & -4 \\ 1 & 2 & 4 \end{pmatrix}$$

AB மற்றும் BA யைக் காண்க மற்றும் $AB \neq BA$ என்பதை நிறுவுக.

தீர்வு :

$$AB = \begin{pmatrix} 1(-1) + 2(-1) + 3(1) & 1(-2) + 2(-2) + 3 \times 2 & 1(-4) + 2(-4) + 3 \times 4 \\ 2(-1) + 4(-1) + 6(1) & 2(-2) + 4(-2) + 6(2) & 2(-4) + 4(-4) + 6 \times 4 \\ 3(-1) + 6(-1) + 9(1) & 3(-2) + 6(-2) + 9(2) & 3(-4) + 6(-4) + 9 \times 4 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}_{3 \times 3}$$

இது போன்றே
$$BA = \begin{pmatrix} -17 & -34 & -51 \\ -17 & -34 & -51 \\ 17 & 34 & 51 \end{pmatrix}$$

 $\therefore AB \neq BA$

$$A = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix}$$
 எனில் $A^2 - 5A + 3I$ –யைக் கணக்கிடுக. தீர்வு :

$$A^{2} = A \cdot A = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix}$$

$$= \begin{pmatrix} -5 & 6 \\ -9 & 10 \end{pmatrix}$$

$$5A = 5 \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix} = \begin{pmatrix} 5 & -10 \\ 15 & -20 \end{pmatrix}$$

$$3I = 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

$$\therefore A^{2} - 5A + 3I = \begin{pmatrix} -5 & 6 \\ -9 & 10 \end{pmatrix} - \begin{pmatrix} 5 & -10 \\ 15 & -20 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} -10 & 16 \\ -24 & 30 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} -7 & 16 \\ -24 & 33 \end{pmatrix}$$

எடுத்துக்காட்டு 6

 \therefore (AB)^T = B^TA

பின்வரும் அணிகளைக் கொண்டு $(AB)^T = B^TA^T$ என்பதை நிறுவுக.

$$A = \begin{pmatrix} 1 & -4 & 2 \\ 4 & 0 & 1 \end{pmatrix}_{2\times 3} B = \begin{pmatrix} 2 & -3 \\ 0 & 1 \\ -4 & -2 \end{pmatrix}_{3\times 2}$$

$$AB = \begin{pmatrix} 1 & -4 & 2 \\ 4 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ 0 & 1 \\ -4 & -2 \end{pmatrix}$$

$$= \begin{pmatrix} 1\times 2 + (-4)\times 0 + 2(-4) & 1\times (-3) + (-4)\times 1 + 2\times (-2) \\ 4\times 2 + 0\times 0 + 1\times (-4) & 4\times (-3) + 0\times 1 + 1\times (-2) \end{pmatrix}$$

$$= \begin{pmatrix} 2 + 0 - 8 & -3 - 4 - 4 \\ 8 + 0 - 4 & -12 + 0 - 2 \end{pmatrix} = \begin{pmatrix} -6 & -11 \\ 4 & -14 \end{pmatrix}$$

$$\therefore (AB)^{T} = \begin{pmatrix} -6 & -11 \\ 4 & -14 \end{pmatrix}^{T} = \begin{pmatrix} -6 & -11 \\ 4 & -14 \end{pmatrix}$$

$$B^{T}A^{T} = \begin{pmatrix} 2 & 0 & -4 \\ -3 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ -4 & 0 \\ 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -6 & 4 \\ -11 & -14 \end{pmatrix}$$

ஒரு நிறுவனம் A, B, C ஆகிய மூன்று வகை வானொலிப் பெட்டிகளை உற்பத்தி செய்கிறது. A, B மற்றும் C வகைகளில் முறையே 500, 1000 மற்றும் 200 எண்ணிக்கைகளில் ஏற்றமதி செய்யப்படவுள்ளது. இதற்குரிய பொருட்கள் மற்றும் உழைப்பின் அளவு (பொருத்தமான அலகுகளில்) கீழ்வரும் பட்டியலில் கொடுக்கப்பட்டுள்ளது.

வகை
$$A \begin{pmatrix} 10 & 20 \\ 8 & 5 \\$$
வகை $C \begin{pmatrix} 12 & 9 \end{pmatrix}$

அணிகளின் பெருக்கலைப் பயன்படுத்தி, மேற்குறிப்பிட்டுள்ள ஏற்றுமதிக்குத் தேவையான பொருட்கள் மற்றும் உழைப்பின் மொத்த அளவைக் காண்க.

தீர்வு :

மேற்கண்ட பட்டியலில் உள்ள விவரங்களை P என்ற அணியைக் கொண்டு குறிப்போம்.

$$\mathrm{P}=egin{pmatrix} ext{QUITING off} & \mathbf{e}. ext{org} \dot{u}_{i} \ & \mathbf{10} & \mathbf{20} \ & \mathbf{8} & \mathbf{5} \ & \mathbf{12} & \mathbf{9} \end{pmatrix}$$
 வகை A

 $A,\ B$ மற்றும் C வகைகளுக்கான ஏற்றமதி எண்ணிக்கையை E என்ற அணியால் குறிப்பிடுவோம்.

A B C
$$E = (500\ 1000\ 200)$$

 \therefore பொருட்கள் மற்றும் உழைப்பின் மொத்தம் $= E \times P$

= (500 1000 200)
$$\begin{pmatrix} 10 & 20 \\ 8 & 5 \\ 12 & 9 \end{pmatrix}$$

= (5000 + 8000 + 2400 10000 + 5000 + 1800)
பொருட்கள் உழைப்பு
= (15,400 16,800)

எடுத்துக்காட்டு 8

விற்பனையாளர் ${f A}$ மற்றும் ${f B}$ யில் உள்ள மூன்று வகை குழல் விளக்குகளின் பட்டியல் கீழே கொடுக்கப்பட்டுள்ளது.

	பெயர்				
கடை	பஜாஜ்	பிலிப்ஸ்	சூர்யா		
A	43	62	36		
В	24	18	60		

விற்பனையாளர் A, 30 பஜாஜ், 30 பிலிப்ஸ் மற்றும் 20 சூர்யா வகை குழல் விளக்குகளையும், விற்பனையாளர் B மேற்கூறிய வகைகளில் முறையே 10, 6, 4 எண்ணிக்கைகளிலும் பெறுவதற்கு உற்பத்தியாளரிடம் வேண்டியுள்ளனர். ஒரு சில காரணங்களால் அவர்கள் கோரிய எண்ணிக்கைகளில் பாதி அளவே உற்பத்தியாளர்களிடமிருந்து பெற முடிந்தது. மேற்கூறிய மூன்று வகை குழல் விளக்குகளின் விலைகள் முறையே ரூ. 42, ரூ. 38 மற்றும் ரூ.36 ஆகும். பின்வரும் விவரங்களை அணியின் மூலம் குறிப்பிடுக. (i) சரக்குகளின் தொடக்க இருப்பு (ii) உற்பத்தியாளர்களிடம் கோரப்பட்ட எண்ணிக்கை (iii) உற்பத்தியாளர்களிடமிருந்து பெறப்பட்ட விளக்குகளின் எண்ணிக்கை (iv) சரக்குகளின் இறுதி இருப்பு (v) விளக்குகளின் விலை நிரல் அணியாகக் கொண்டு) (vi) கடையிலிலுள்ள இறுதி சரக்கின் மொத்த மதிப்பு

தீர்வு:

(i) தொடக்க இருப்பு அணி
$$P = \begin{pmatrix} 43 & 62 & 36 \\ 24 & 18 & 60 \end{pmatrix}$$

(ii) சரக்கு கோரல் அணி
$$Q = \begin{pmatrix} 30 & 30 & 20 \\ 10 & 6 & 40 \end{pmatrix}$$

(iii) சரக்கு வழங்கீடு அணி
$$R = \frac{1}{2}Q = \begin{pmatrix} 15 & 15 & 10 \\ 5 & 3 & 20 \end{pmatrix}$$

$$(iv)$$
 சரக்குகளின் இறுதி இருப்பு அணி $S = P + R = \begin{pmatrix} 58 & 77 & 46 \\ 29 & 21 & 80 \end{pmatrix}$

$$(v)$$
 விளக்குகளின் விலை அணி $C = \begin{pmatrix} 42 \\ 38 \\ 36 \end{pmatrix}$

(vi) கடையிலுள்ள இறுதி சரக்கின் மொத்த மதிப்பு.

$$T = SC = \begin{pmatrix} 58 & 77 & 46 \\ 29 & 21 & 80 \end{pmatrix} \begin{pmatrix} 42 \\ 38 \\ 36 \end{pmatrix}$$
$$= \begin{pmatrix} 2436 + 2926 + 1656 \\ 1218 + 798 + 2880 \end{pmatrix} = \begin{pmatrix} 7018 \\ 4896 \end{pmatrix}$$

பயிற்சி 1.1

$$A = \begin{pmatrix} 5 & 3 \\ 7 & 2 \end{pmatrix}, B = \begin{pmatrix} 3 & 2 \\ 4 & 6 \end{pmatrix}$$
 எனில், பின்வருவனவற்றை நிறுவுக. (i) $A + B = B + A$ (ii) $(A^T)^T = A$

2)
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 4 & 9 & 8 \\ 2 & 5 & 6 \end{pmatrix} B = \begin{pmatrix} 9 & 2 & 5 \\ 0 & 3 & -1 \\ 4 & -6 & 2 \end{pmatrix}$$
 statloi,

- (i) A + B (ii) B + A (iii) 5A, 2B
- (iv) 5A + 2B ஆகியவற்றின் மதிப்பைக் காண்க.
- 3) $A = \begin{pmatrix} 1 & -2 \\ 3 & 5 \end{pmatrix} B = \begin{pmatrix} 2 & 4 \\ -3 & 0 \end{pmatrix} \text{ and } \hat{\mathbf{o}},$

AB மற்றும் BA –யின் மதிப்பைக் காண்க.

4) கீழ்க்காணும் அணிகளுக்கு AB மற்றும் BA –யின் மதிப்பைக் காண்க.

$$A = \begin{pmatrix} -3 & 1 & -5 \\ -1 & 5 & 2 \\ -2 & 4 & -3 \end{pmatrix} B = \begin{pmatrix} -2 & 4 & 5 \\ 0 & 2 & 1 \\ -1 & 6 & 3 \end{pmatrix}$$

5)
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & -2 \end{pmatrix} B = \begin{pmatrix} 1 & 5 \\ 7 & 3 \\ 5 & -2 \end{pmatrix}$$
 எனில்

AB மற்றும் BA –யின் மதிப்பைக் காண்க.

6)
$$A = \begin{pmatrix} 3 & 4 \\ 1 & 1 \\ 2 & -1 \end{pmatrix} B = \begin{pmatrix} -2 & 1 \\ 3 & -2 \end{pmatrix}$$
 எனில்

 $(AB)^T = B^T A^T$ என்பதை சரிபார்க்க.

7)
$$A = \begin{pmatrix} 2 & -1 & 4 \\ 3 & 0 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -5 \end{pmatrix}$ எனில், $3(A + B) = 3A + 3B$ என நிறுவுக.

8)
$$A = \begin{pmatrix} 12 & 11 \\ 9 & -7 \end{pmatrix}$$
 $\alpha = 3$, $\beta = -7$ simplify,

 $(\alpha + \beta) A = \alpha A + \beta A$ என நிறுவுக.

9)
$$\alpha = 3, A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 0 & 2 \\ 4 & 3 & 5 \end{pmatrix} B = \begin{pmatrix} 5 & 3 & -1 \\ 7 & 2 & 4 \\ 3 & 1 & 2 \end{pmatrix}$$
 stwining

 $(A + B) = \alpha A + \alpha B$ என்பதை சரிபார்க்க.

10)
$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} B = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$$
 எனில்

 $(i)\,AB=BA$ என்பதை நிறுவுக.

$$(ii) (A + B)^2 = A^2 + B^2 = 2AB$$
 என்பதை சரிபார்க்க.

$$A = \begin{pmatrix} 3 & 5 & 6 \end{pmatrix}_{1 \times 3}$$
 , $B = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}_{3 \times 1}$ எனில் AB மற்றும் BA –யைக் காண்க.

12)
$$A = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}, B = \begin{pmatrix} \frac{1}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac{1}{8} \end{pmatrix}$$
 எனில் AB, BA யைக் கணக்கிடுக.

13) A, B என இரு குடும்பங்கள் உள்ளன. A குடும்பத்தில் 4 ஆண்கள், 2 பெண்கள் மற்றும் 1 குழந்தைகளும், B குடும்பத்தில் 2 ஆண்கள், 3 பெண்கள் மற்றும் 2 குழந்தைகளும் உள்ளன. அவர்களுக்கு தினந்தோறும் பரிந்துரைக்கப்பட்ட கலோரிகள் மற்றும் புரதங்கள் பின்வருமாறு. கலோரிகள் : ஆண்கள் 2000, பெண்கள் 1500, குழந்தைகள் 1200 புரதங்கள்: ஆண்கள் 50 கிராம், பெண்கள் 45 கிராம் குழந்தைகள் 30 கிராம்

மேற்குறிப்பிட்டுள்ள தகவல்களை அணியாக எழுதவும். அணிகளின் பெருக்கல் விதியை பயன்படுத்தி, ஒவ்வொரு குடும்பத்திற்கும் தேவைப்படும் மொத்த கலோரிகள் மற்றும் மொத்த புரதங்கள் ஆகியவைகளைக் கண்டுபிடிக்கவும்.

14) கீழ்கண்டவற்றின் கூடுதல் காண்க.

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 7 & 10 & 12 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 0 & 1 \\ 2 & 2 & 4 \end{pmatrix},$$

$$(15)$$
 $X + \begin{pmatrix} 5 & 6 \\ 7 & 0 \end{pmatrix} = 2I_2 + 0_2 X$ –ன் மதிப்பைக் காண்க.

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
 எனில் $(A - I) (A - 4I) = 0$ என்க.

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$
 மற்றும் $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ எனில்

(i)
$$(A + B) (A - B) \neq A^2 - B^2$$

$$(ii)~(A+B)^2 \neq A^2 + 2AB + B^2$$
 எனக் காட்டுக.

$$18)$$
 $3A + \begin{pmatrix} 4 & -1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 2 \\ 1 & 4 \end{pmatrix}$ எனில், A என்ற அணியைக் கண்டுபிடிக்கவும்.

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 எனில், $A^2 = -I$ என நிறுவுக.

20)
$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 எனில்,

$$A^2 = \begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix}$$
 என நிறுவுக.

$$A = \begin{pmatrix} 3 & 4 \\ -2 & -3 \end{pmatrix}$$
 எனில், A^2 , A^4 ஆகியவை ஓரலகு அணிகள் எனக் காட்டுக.

22)
$$A = \begin{pmatrix} 7 & 1 \\ 0 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}, D = \begin{pmatrix} 5 & 2 \\ -1 & 3 \end{pmatrix}$$
 எனில்

$$(i) (A + B) (C + D)$$
 $(ii) (C + D) (A + B)$ $(iii) A^2 - B^2$ $(iv) C^2 + D^2$ ஆகியவற்றைக் காண்க.

23) வணிகக் கணிதம், பொருளியியல், கணிப்பொறி அறிவியல் மற்றும் புள்ளியியல் பயிலும் மாணவர்களின் எண்ணிக்கை கீழே கொடுக்கப்பட்டுள்ளது.

வகுப்பு	வணிகக்	னிகக் பொருளியல் கணிப்பொறி		புள்ளியியல்	
	கணிதம்		அறிவியல்		
XI வகுப்பு	45	60	55	30	
XII வகுப்பு	58	72	40	80	

- (i) மேற்குறிப்பிட்ட தகவல்களை அணி வடிவில் எழுதவும்.
- (ii) அணியின் தரத்தை எழுதவும்.
- (iii) வகுப்பு வாரியாக மாணவாகளின் எண்ணிக்கையை நிரல் அணியாகவும், பாட வாரியாக மாணவாகளின் எண்ணிக்கையை நிரை அணியாகவும் எழுதவும்.
- (iv) (i) மற்றும் (iii) ஆகியவற்றுக்கு இடையில் உள்ள தொடர்பு என்ன ?

1.2 அணிக்கோவைகள்

(DETERMINANTS)

சதுர அணிக்கு வரையறுக்கப்பட்ட அணிக்கோவைகள் அணி இயற்கணிதத்தின் ஒரு முக்கிய பகுதியாக அமைகின்றன. அணிக் கோவைகளின் கருத்துக்கள் குறிப்பிடத்தக்க அளவிற்கு அணி இயற்கணிதத்தில் பயன்படுத்தப்படுகிறது.

1.2.1 அணிக்கோவை

சதுர அணி $\mathbf{A}=(\mathbf{a}_{\mathbf{i}\mathbf{j}})$ –ன் தொடா்புடைய அணிக்கோவையின் மதிப்பு ஓா் எண்ணாக அமையும். அவ்வெண், மெய்யெண்ணாகவோ, சிக்கெலண்ணாகவோ மற்றும் மிகை

எண்ணாகவோ அல்லது குறை எண்ணாகவோ அல்லது பூஜ்ஜியமாகவோ அமையலாம். ஒரு அணியின் அணிக்கோவையை $\mid A \mid$ எனக் குறிப்பிடுகிறோம். அணி என்பது உறுப்புகளின் செவ்வக வடிவமைப்பு (array) ஆகும். ஆனால் அணிக்கோவை என்பது ஒர் எண் அளவு (numerical value) ஆகும்.

எடுத்துக்காட்டாக

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 எனில் A –யின் அணிக்கோவை $|A| = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ –இன் மதிப்பு $= ad - bc$

எடுத்துக்காட்டு 9

தீர்வு:

$$\begin{vmatrix} 1 & -1 \\ 3 & -2 \end{vmatrix}$$
= 1×(-2)-3×(-1) = -2+3=1

எடுத்துக்காட்டு 10

$$\begin{vmatrix} 2 & 0 & 4 \\ 5 & -1 & 1 \\ 9 & 7 & 8 \end{vmatrix} = 2 \begin{vmatrix} -1 & 1 \\ 7 & 8 \end{vmatrix} - 0 \begin{vmatrix} 5 & 1 \\ 9 & 8 \end{vmatrix} + 4 \begin{vmatrix} 5 & -1 \\ 9 & 7 \end{vmatrix}$$

$$= 2(-1 \times 8 - 1 \times 7) - 0(5 \times 8 - 9 \times 1) + 4(5 \times 7 - (-1) \times 9)$$

$$= 2(-8 - 7) - 0(40 - 9) + 4(35 + 9)$$

$$= -30 - 0 + 176 = 146$$

1.2.2 அணிக்கோவைகளின் பண்புகள்

- ஒர் அணிகோவையின் நிரைகளை, நிரல்களாகவோ அல்லது நிரல்களை, (i) நிரைகளாகவோ மாற்றும்பொழுது, அவ்வணிக் கோவையின் மதிப்பு மாறாதிருக்கும்.
- ஓர் அணிக்கோவையில் இரண்டு நிரல்கள் (நிறைகள்) இடமாற்றம் செய்யப்படும் (ii) பொழுது, அவ்வணிக்கோவை மதிப்பின் குறி மாறும்.
- (iii) ஒர் அணிக்கோவையில் இரண்டு நிரல்கள் (நிரைகள்) சமமாக இருப்பின், அவ்வணிக்கோவை மதிப்பு பூஜ்ஜியமாகும்.

- (iv) ஓா் அணிக்கோவையின் ஏதேனும் ஒரு நிரலின் (நிரையின்) உறுப்புகள் ஓா் எண்ணால் (k) பெருக்கப்பட்டால் அவ்வணிக் கோவையின் மதிப்பும் அவ்வெண்ணால் பெருக்கப்படுகிறது.
- (v) ஒரு நிரையில் அல்லது நிரலிலுள்ள ஒவ்வொரு உறுப்புடனும் மற்றொரு நிரலின் அல்லது நிறையின் முறையான உறுப்புகளை ஓர் அளவையால் (Scalar) பெருக்கிக் கூட்டினால் அணிக்கோவையின் மதிப்பு மாறாது.
- (vi) ஒரு நிரலில் அல்லது ஒரு நிரையில் உள்ள ஒவ்வொரு உறுப்பும், இரண்டு அல்லது அதற்கு மேற்பட்ட உறுப்புகளின் கூடுதலாக இருப்பின், அந்த அணிக்கோவை இரண்டு அல்லது அதற்கு மேற்பட்ட அணிக்கோவைகளின் கூடுதலாக அமையும்.
- (vii) இரண்டு நிரல்கள் (நிரைகள்) விகித சமத்தில் இருப்பின், அவ்வணிக் கோவையின் மதிப்பு பூஜ்ஜியமாகும்.

1.2.3 அணிக்கோவைகளின் பெருக்கல்

இரண்டு அணிக்கோவைகள் சம வரிசையில் இருக்கும்பொழுது மட்டுமே, அவற்றை பெருக்க இயலும், மேலும் |AB|=|A| . |B|

எடுத்துக்காட்டு 11

$$\mathbf{A} = egin{bmatrix} 3 & 1 \\ 5 & 6 \end{bmatrix} \mathbf{B} = egin{bmatrix} 5 & 2 \\ 1 & 3 \end{bmatrix}$$
 எனில் $|\mathbf{A}| \times |\mathbf{B}|$ யின் மதிப்பைக் காண்க.

தீர்வு:

நிரையொடு நிரலைப் பெருக்கினால்

$$|A||B| = \begin{vmatrix} 3 & 1 & 5 & 2 \\ 5 & 6 & 1 & 3 \end{vmatrix}$$

$$= \begin{vmatrix} 3 \times 5 + 1 \times 1 & 3 \times 2 + 1 \times 3 \\ 5 \times 5 + 6 \times 1 & 5 \times 2 + 6 \times 3 \end{vmatrix}$$

$$= \begin{vmatrix} 15 + 1 & 6 + 3 \\ 25 + 6 & 10 + 18 \end{vmatrix} = \begin{vmatrix} 16 & 9 \\ 31 & 28 \end{vmatrix} = 448 - 279$$

$$= 169$$

எடுத்துக்காட்டு 12

සංගෝස්ස්බලිස
$$\begin{vmatrix} 2 & 1 & 3 & 2 & 0 & 0 \ 3 & 0 & 5 & 0 & 0 & 3 \ 1 & 0 & -4 & 0 & 2 & 0 \ \end{vmatrix}$$
.

தீர்வு :

நிரையொடு நிரலைப் பெருக்கினால்

$$\begin{vmatrix} 2 & 1 & 3 & 2 & 0 & 0 \\ 3 & 0 & 5 & 0 & 0 & 3 \\ 1 & 0 & -4 & 0 & 2 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} 2 \times 2 + 1 \times 0 + 3 \times 0 & 2 \times 0 + 1 \times 2 + 3 \times 2 & 2 \times 0 + 1 \times 3 + 3 \times 0 \\ 3 \times 2 + 0 \times 0 + 5 \times 0 & 3 \times 0 + 0 \times 0 + 5 \times 2 & 3 \times 0 + 0 \times 3 + 5 \times 0 \\ 1 \times 2 + 0 \times 0 - 4 \times 0 & 1 \times 0 + 0 \times 0 - 4 \times 2 & 1 \times 0 + 0 \times 3 - 4 \times 0 \end{vmatrix}$$

$$= \begin{vmatrix} 4 & 6 & 3 \\ 6 & 10 & 0 \\ 2 & -8 & 0 \end{vmatrix}$$

$$= 4(0 + 0) - 6(0 - 0) + 3(-48 - 20)$$

$$= 3(-68) = -204$$

1.2.4 பூஜ்ஜியக்கோவை அணி (Singular Matrix)

A என்ற சதுர அணியின் அணிக்கோவையின் மதிப்பு பூஜ்ஜியமெனில் அவ்வணி பூஜ்ஜியக்கோவை அணி ஆகும் அவ்வாறில்லையெனில், பூஜ்ஜியமற்ற கோவை அணி எனப்படும்.

எடுத்துக்காட்டு 13

$$\left(egin{array}{cc} 1 & 2 \ 2 & 4 \end{array}
ight)$$
 –ஐ பூஜ்ஜியக்கோவை அணி எனக் காட்டுக.

தீர்வு :

$$\begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 4 - 4 = 0$$
 கொடுக்கப்பட்ட அணி பூஜ்ஜியக்கோவை அணி ஆகும்.

எடுத்துக்காட்டு 14

$$egin{pmatrix} 2 & 5 \ 9 & 10 \end{pmatrix}$$
 –ஐ பூஜ்ஜியமற்ற கோவை அணி எனக் காட்டுக.

தீர்வு:

$$\begin{vmatrix} 2 & 5 \\ 9 & 10 \end{vmatrix} = 20 - 45 = -25 \neq 0$$

எனவே கொடுக்கப்பட்ட அணி பூச்சியமற்ற கோவை அணியாகும்.

எடுத்துக்காட்டு 15

$$\begin{vmatrix} 1 & x & -4 \\ 5 & 3 & 0 \\ -2 & -4 & 8 \end{vmatrix} = 0$$
 எனில் x –இன் மதிப்பைக் காண்க.

தீர்வு:

முதல் நிரை வழி விரிவு செய்திட

$$\begin{vmatrix} 1 & x & -4 \\ 5 & 3 & 0 \\ -2 & -4 & 8 \end{vmatrix} = 1 \begin{vmatrix} 3 & 0 \\ -4 & 8 \end{vmatrix} - x \begin{vmatrix} 5 & 0 \\ -2 & 8 \end{vmatrix} + (-4) \begin{vmatrix} 5 & 3 \\ -2 & -4 \end{vmatrix}$$
$$= 1(24) - x(40) - 4(-20 + 6)$$
$$= 24 - 40x + 56 = -40x + 80$$
$$\Rightarrow -40x + 80 = 0$$
$$\therefore x = 2$$

$$\begin{vmatrix} 1 & b+c & b^2+c^2 \\ 1 & c+a & c^2+a^2 \\ 1 & a+b & a^2+b^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$
 என நிறுவுக.

தீர்வு:

$$\begin{vmatrix} 1 & b+c & b^2+c^2 \\ 1 & c+a & c^2+a^2 \\ 1 & a+b & a^2+b^2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & b+c & b^2+c^2 \\ 0 & a-b & a^2-b^2 \\ 0 & a-c & a^2-c^2 \end{vmatrix} \xrightarrow{R_2 \to R_2 - R_1} \xrightarrow{R_3 \to R_3 - R_1}$$

$$= \begin{vmatrix} 1 & b+c & b^2+c^2 \\ 0 & a-b & (a+b)(a-b) \\ 0 & a-c & (a+c)(a-c) \end{vmatrix}$$

 R_2 –விலிருந்து (a-b) மற்றும் R_3 –யிலிருந்து (a-c) ஆகியவற்றை பொதுவாக எடுக்கவும்.

$$=(a-b)(a-c)$$
 $\begin{vmatrix} 1 & b+c & b^2+c^2 \\ 0 & 1 & a+b \\ 0 & 1 & a+c \end{vmatrix}$ $=(a-b)(a-c)[a+c-a-b]$ (நிரல் 1–ன் மூலம் விரிவுபடுத்துகையில்) $=(a-b)(a-c)(c-b)=(a-b)(b-c)(c-a)$

பயிற்சி 1.2

1) மதிப்பிடுக (i)
$$\begin{vmatrix} 4 & 6 \\ -2 & 3 \end{vmatrix}$$
 (ii) $\begin{vmatrix} 3 & 2 \\ 4 & 5 \end{vmatrix}$ (iii) $\begin{vmatrix} -2 & -4 \\ -1 & -6 \end{vmatrix}$.

2)
$$\begin{vmatrix} 1 & 2 & 0 \\ 3 & -1 & 4 \\ 1 & 2 & 4 \end{vmatrix}$$
 –ன் மதிப்பைக் காண்க.

3)
$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
 –ன் மதிப்பைக் காண்க.

கீழ்க்கண்ட அணி பூஜ்ஜியக் கோவை அணியா அல்லது பூஜ்ஜியமற்ற கோவை அணியா 4) என்பதனை ஆராய்க.

$$A = \begin{pmatrix} 7 & 4 & 3 \\ 3 & 2 & 1 \\ 5 & 3 & 2 \end{pmatrix}$$

பின்வரும் அணி பூஜ்ஜியக் கோவை அணியா என ஆராய்க. 5)

$$A = \begin{pmatrix} 1 & -2 & 3 \\ -2 & -1 & 0 \\ 4 & -2 & 5 \end{pmatrix}$$

8)
$$\begin{vmatrix} 2 & 3 & 5 \\ 4 & 1 & 0 \\ 6 & 2 & 7 \end{vmatrix} = -60$$
 எனில், $\begin{vmatrix} 2 & 6 & 5 \\ 4 & 2 & 0 \\ 6 & 4 & 7 \end{vmatrix}$ –ன் மதிப்பைக் காண்க.

10) நிறுவுக
$$\begin{vmatrix} 2+4 & 6+3 \\ 1 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 6 \\ 1 & 5 \end{vmatrix} + \begin{vmatrix} 4 & 3 \\ 1 & 5 \end{vmatrix}$$

11)
$$\begin{vmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix} = 0$$
 என நிறுவுக.

$$\begin{vmatrix} b+c & a & 1 \\ c+a & b & 1 \\ a+b & c & 1 \end{vmatrix} = 0$$
 என நிறுவுக.

13)
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix} = xy$$
 எனக் காட்டுக.

பயிற்சி 1.3

ஏற்புடைய விடையைத் தெரிவு செய்க.

- 1) [0 0 0] என்பது
 - (a) அலகு அணி
- (b) திசையிலி அணி
- (c) பூஜ்ஜிய அணி
- (d) இதில் ஏதுமில்லை
- [6 2 -3] என்ற அணியின் வரிசை 2)
 - (a) 3×3
- (b) 3×1
- (c) 1×3
- (d) இதில் ஏதுமில்லை

- $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ என்பது
 - (a) அலகு அணி

- (b) 2 × 2 வரிசை பூஜ்ஜிய அணி
- $(c) \ 2 \times 2$ வரிசையுள்ள அலகு அணி (d) இதில் ஏதுமில்லை

$$A = \begin{pmatrix} 3 & -3 \\ 2 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}$, $A + B$ என்பது

- (a) $\begin{pmatrix} 4 & 5 \\ 3 & 4 \end{pmatrix}$ (b) $\begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix}$ (c) $\begin{pmatrix} 4 & -1 \\ 1 & 4 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

5)
$$A = \begin{pmatrix} 8 & 9 \\ -3 & -1 \end{pmatrix}$$
 $B = \begin{pmatrix} -1 & 3 \\ 0 & -2 \end{pmatrix}$ எனில், $A - B$ என்பது

- a) $\begin{pmatrix} 7 & 6 \\ -3 & -3 \end{pmatrix}$ (b) $\begin{pmatrix} 9 & 6 \\ -3 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 7 & 6 \\ 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

- 6) $A = \begin{pmatrix} 2 & 4 \\ -3 & -3 \end{pmatrix}$ எனில் -3A என்பது
 - $(a) \begin{pmatrix} -6 & -12 \\ -9 & 15 \end{pmatrix}$ $(b) \begin{pmatrix} -6 & -12 \\ 9 & 15 \end{pmatrix}$ $(c) \begin{pmatrix} -6 & 12 \\ 9 & 15 \end{pmatrix}$ (d) இதில் ஏதுமில்லை
- 7) $A = \begin{pmatrix} 2 & 3 & 4 \\ 1 & -1 & 0 \\ 5 & -3 & 1 \end{pmatrix} I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ எனில், A + 2I என்பது
 - (a) $\begin{pmatrix} 4 & 3 & 4 \\ 1 & 1 & 0 \\ 5 & -3 & 3 \end{pmatrix}$ (b) $\begin{pmatrix} 3 & 3 & 4 \\ 1 & 0 & 0 \\ 5 & -3 & 2 \end{pmatrix}$ (c) $\begin{pmatrix} 4 & 3 & 4 \\ 1 & -1 & 0 \\ 5 & -3 & 2 \end{pmatrix}$ (d) இதில் ஏதுமில்லை
- 8) $\begin{pmatrix} 3 & 5 & 6 \\ -2 & 1 & 6 \end{pmatrix} \times \begin{pmatrix} 5 & -1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$
 - (a) $\begin{pmatrix} 15 & 12 \\ -4 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} -3 & 15 \\ 8 & -3 \end{pmatrix}$
 - (c) பெருக்கல் சாத்தியமில்லை (d) இதில் ஏதுமில்லை
- $\begin{vmatrix} 1 & -1 \\ 0 & 0 \end{vmatrix}$ ன் மதிப்பு
 - (a) 4 (b) 14 (c) 14 (d) இதில் ஏதுமில்லை
- 10) $\begin{vmatrix} 1 & -1 \\ 0 & 0 \end{vmatrix}$ –ன் மதிப்பு
 - $(a) \ 0 \qquad \qquad (b) -1 \qquad \qquad (c) \ 1 \qquad \qquad (d)$ இதில் ஏதுமில்லை
- 11) $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2$, எனில் $\begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}$ ன் மதிப்பு
- 12) | AB | = ?
 - (a) |A| + |B| (b) |B| + |A|
 - $(c) \mid A \mid \times \mid B \mid$ (d) இதில் ஏதுமில்லை
- 13) 2வது நிரை மற்றும் 2வது நிரலில் உள் ஒர் உறுப்பை குறிப்பது
 - (a) a_{12} (b) a_{32} (c) a_{22} (d) a_{11}
- $A = [a_{ij}]_{3 \times 3}$ என்ற அணியின் தரம்
 - (a) 2×3 (b) 3×3 (c) 1×3 (d) 3×1

15)	ஓர் அணியின் நிரைகளின் எண்ணிக்கையும் நிரல்களின் எண்ணிக்கையும் சமமாக இருந்தால், அவ்வணி						
	(a) சதுர அணி	(b) நிரை அணி	(c) நிரல் அ	ळ्गी	(d) இதில் ஏதுப	ில்லை	
16)	ஓா் அணியில் அனைத்து உறுப்புக்களும் பூஜ்ஜியம் எனில் அது						
	(a) அலகு அணி	(b) நிரல் அணி	(c) பூஜ்ஜிய	அணி	(d) இதில் ஏது	பில்லை	
17)	மூலைவிட்ட அணியில் முதன்மை மூலைவிட்ட உறுப்புக்கள் அனைத்து சமமெனில்						
	(a) மூலவரை அணி	(b) நிரல் அணி	(c) அலகு <i>உ</i>	அணி	(d) இதில் ஏது	மில்லை	
18)	ஒரு அணிக்கோவையில் ஏதேனும் இரு நிரைகள் அல்லது இரு நிரல்கள் சமம் எனில் அந்த அணிக்கோவையின் மதிப்பு						
	(a) 1 (b) 0	(c)-1	(d) மாற்றமி	ນໍ່ເວັນ			
19)	ஒரு அணியில் ஒரே	ஒரு நிரல் மட்டும் இருக	க்குமெனில் அ	บ้อเ	9		
	(a) நிரை அணி	(b) நிரல் அணி	(c) சதுர அ	ळ्टी	(d) செவ்வச	5 அணி	
20)	அணிகளின் கூடுதல்						
	(a) மாற்று விதிக்குப்	(b) மாற்று வ	(b) மாற்று விதிக்கு உட்பட்டது				
	(c) சோ்ப்பு விதிக்கு	<u>்</u> பட்டதல்ல	(d) பங்கீட்டு	(d) பங்கீட்டு விதிக்கு உட்பட்டது			
21)	ஒரு சதுர அணி பூஜ்ஜிய கோவை அணி எனில்						
	(a) $ A \neq 0$	(b) $ A = 0$	(c) A = 0		(d) இதில் ஏதுமி	ல்லை	
22)	$\begin{vmatrix} 1 & \mathbf{x} \\ 5 & 3 \end{vmatrix} = 0$ எனில், \mathbf{x} —ன் மதிப்பு						
	(a) $\frac{5}{3}$	(b) $\frac{3}{5}$	(c) 0	(d)	இதில் ஏதுமில்ன	າຎ	
23)	$\begin{vmatrix} 4 & 8 \\ -9 & 4 \end{vmatrix} = 88 \text{ simfle}$	$ \dot{\mathbf{n}} \begin{vmatrix} 8 & 4 \\ 4 & -9 \end{vmatrix} $ –ன் மதிப்பு					
	(a) - 88	(b) 88	(c) 80	(d)	இதில் ஏதுமில்ன	າຎ	
24)	$\begin{vmatrix} 3 & 2 \\ 3 & 2 \end{vmatrix}$ –ன் மதிப்பு						
	(a) 0	(b) - 1	(c) 1	(d)	இதில் ஏதுமில்ன	າຎ	
25)	$\begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix} = -2$ எனில்	$\begin{vmatrix} 2 & 6 \\ 2 & 4 \end{vmatrix}$ –ன் மதிப்பு					
	(a) - 2	(b) 2	(c) - 4	(d)	இதில் ஏதுமில்ன	າຎ	

- $(A + B) (A B) = A^2 B^2$ மற்றும் A, B ஆகியவை சதுர அணிகள் எனில்
 - (a) $(AB)^T = AB$

- (b) AB = BA
- (c) $(A + B)^T = B^T + A^T$
- (d) இதில் ஏதுமில்லை

- $\begin{pmatrix} 10 & 10 \\ 10 & 10 \end{pmatrix}$ என்பது
 - (a) செவ்வக அணி

(b) மூலைவிட்ட அணி

(c) அலகு அணி

(d) இதில் ஏதுமில்லை

- - (a) சதுர அணி

- (b) நிரை அணி
- (c) மூலைவிட்ட அணி
- (d) நிரல் அணி
- A = I எனில், A^2 –ன் மதிப்பு 29)
 - (a) I^2 (b) 1
- (c) 0 (d) இதில் ஏதுமில்லை
- $A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ மற்றும் $B = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ எனில் AB ன் வரிசை
 - (a) 1×1 (b) 1×3 (c) 3×1 (d) 3×3

2.1 பகுதி பின்னம்

(PARTIAL FRACTION)

பின்ன கோவைகளின் கூட்டல் கழித்தல் பற்றி முன் வகுப்புகளில் படித்திருக்கின்றோம். இப்பகுதியில் ஒரு பின்ன கோவையை இரண்டு அல்லது மூன்று பின்ன கோவைகளின் கூட்டல், கழித்தல் அமைப்பில் எழுதும் முறையைப் பற்றி படிக்கப் போகிறோம். இம்முறையே பகுதி பின்ன முறை எனப்படும்.

(i) ஒவ்வொரு p/q வடிவிலுள்ள பின்ன விகிதமுறு பின்ன கோவையில் q என்பது ஒரு தடவைக்கு மேல் திரும்ப வராத ax+b, cx+d, என்றவாறு உள்ள ஒரு படி காரணிகளின் பெருக்கல் எனில் இப்பின்னக் கோவையை $\dfrac{M}{ax+b}+\dfrac{N}{cx+d}$ என எழுதலாம். இங்கு M, N என்பன மதிப்பு காண வேண்டிய மாறிலிகள்.

எடுத்துக்காட்டாக :

$$\frac{2x}{(x-1)(2x+3)} = \frac{A}{x-1} + \frac{B}{2x+3}$$
 என எழுதலாம். இங்கு A, B

என்பன மதிப்பு காண வேண்டிய மாறிலிகள்.

(ii) ஒவ்வொரு p/q வடிவிலுள்ள பின்ன விகிதமுறு பின்ன கோவையில் q என்பது a n முறை திரும்பத் திரும்ப (ax + b) என்றவாறு அமையும். வடிவ காரணிகள் எனில் பின்ன கோவையை

$$\frac{A_1}{(ax+b)} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_n}{(ax+b)^n}$$
 என்ற வடிவில் எழுதலாம்

எடுத்துக்காட்டாக :
$$\frac{1}{(x-1)(x-2)^2} = \frac{A}{(x-1)} + \frac{B}{(x-2)} + \frac{C}{(x-2)^2}$$

(iii) ஒவ்வொரு p/q வடிவிலுள்ள பின்ன விகிதமுறு பின்ன கோவையில் q என்பது காரணிப்படுத்த இயலாத இருபடிக் கோவை எனில் p/q என்ற பின்ன கோவையை

$$\frac{Ax+B}{ax^2+bx+c}$$
 என்று எழுதலாம்.

எடுத்துக்காட்டாக :

$$\frac{2x+7}{(3x^2+5x+1)(4x+3)} = \frac{Ax+B}{3x^2+5x+1} + \frac{C}{4x+3}$$
 என எழுதலாம்.

$$\frac{4x+1}{(x-2)(x+1)}$$
 – ஐ பகுதி பின்னங்களாக மாற்றுக.

தீர்வு :

படி 1:
$$\frac{4x+1}{(x-2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+1}$$
 என்க ------(1)

படி 2 : R.H.S. க்கு மீ.சி.ம. எடுத்து சுருக்குக.

$$\frac{4x+1}{(x-2)(x+1)} = \frac{A(x+1) + B(x-2)}{(x-2)(x+1)}$$

படி 3 : இருபுறமும் தொகைகளை சமப்படுத்த

$$4x + 1 = A(x + 1) + B(x - 2)$$
$$= Ax + A + Bx - 2B$$
$$= (A + B)x + (A - 2B)$$

படி 4: ஒத்த உறுப்புகளை சமப்படுத்த

$$A + B = 4$$
 -----(2)

$$A - 2B = 1$$
 ----(3)

படி 5: சமன்பாடுகள் **(2)**, **(3)** ஐத் தீர்த்து காணப்பட்ட A, B க்களின் மதிப்பு A=3 and B=1

படி 6: A, B யின் மதிப்புகளை **(1)**-ல் பிரதியிட

$$\frac{4x+1}{(x-2)(x+1)} = \frac{3}{x-2} + \frac{1}{x+1}$$

எடுத்துக்காட்டு 2

 $\frac{1}{(x-1)(x+2)^2}$ ஐ பகுதி பின்னங்களாக மாற்றுக.

தீர்வு :

படி
$$1:$$
 $\frac{1}{(x-1)(x+2)^2} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$ என்க.

படி 2 : R.H.S. க்கு மீ.சி.ம. எடுக்க.

$$\frac{1}{(x-1)(x+2)^2} = \frac{A(x+2)^2 + B(x-1)(x+2) + C(x-1)}{(x-1)(x+2)^2}$$

$$1 = A(x+2)^2 + B(x-1)(x+2) + C(x-1)$$

படி 4:
$$x = -2$$
 என பிரதியிட $C = -\frac{1}{3}$

படி 5:
$$x = 1$$
 என பிரதியிட $A = \frac{1}{9}$

படி
$$6$$
: $x = 0$ என பிரதியிட்டு A, C யின் மதிப்புகளை படி 3 ல் பிரதியிட

$$B = -\frac{1}{9}$$

الم 7:
$$\frac{1}{(x-1)(x+2)^2} = \frac{1}{9(x-1)} - \frac{1}{9(x+2)} - \frac{1}{3(x+2)^2}$$

$$\frac{x^2+1}{x(x+1)^2}$$
 ஐ பகுதி பின்னங்களாக்குக.

தீர்வு:

படி 1 :
$$\frac{x^2+1}{x(x+1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$$
 என்க.

$$\frac{x^2 + 1}{x(x+1)^2} = \frac{A(x+1)^2 + Bx(x+1) + Cx}{x(x+1)^2}$$

$$x^2 + 1 = A(x + 1)^2 + Bx(x + 1) + Cx$$

படி
$$4$$
: $x = 0$ என பிரதியிட $A = 1$

படி 5:
$$x = -1$$
 என பிரதியிட $C = -2$

படி
$$6$$
: $x=2$ மற்றும் $A,\,C$ யின் மதிப்புகளை படி ${\bf 3}$ ல் பிரதியிட $B=0$

$$1 = \frac{x^2 + 1}{x(x+1)^2} = \frac{1}{x} + \frac{0}{x+1} - \frac{2}{(x+1)^2} = \frac{1}{x} - \frac{2}{(x+1)^2}$$

எடுத்துக்காட்டு 4

$$\frac{x^2-2x-9}{(x^2+x+6)(x+1)}$$
 – ஐ பகுதி பின்னங்களாக மாற்றுக.

தீர்வு :

படி 1:
$$\frac{x^2 - 2x - 9}{(x^2 + x + 6)(x + 1)} = \frac{Ax + B}{x^2 + x + 6} + \frac{C}{x + 1}$$
 என்க.

 $(\because x^2 + x + 6$ காரணிப்படுத்த இயலாது)

படி 2 : R.H.S. க்கு மீ.சி.ம. எடுக்க

$$\frac{x^2 - 2x - 9}{(x^2 + x + 6)(x + 1)} = \frac{(Ax + B)(x + 1) + C(x^2 + x + 6)}{(x^2 + x + 6)(x + 1)}$$

படி 3 : தொகுதியைச் சமப்படுத்த

$$x^2 - 2x - 9 = (Ax + B)(x + 1) + C(x^2 + x + 6)$$

படி 4: x = -1 என பிரதியிட C = -1

படி 5: x = 0 மற்றும் C யின் மதிப்பை பிரதியிட B = -3

படி 6: x = 1 மற்றும் B, C யின் மதிப்புகளை படி 3ல் பிரதியிட A = 2

Lily 7:
$$\frac{x^2 - 2x - 9}{(x^2 + x + 6)(x + 1)} = \frac{2x - 3}{x^2 + x + 6} - \frac{1}{x + 1}$$

எடுத்துக்காட்டு 5

 $\frac{1}{(x^2+4)(x+1)}$ ஐ பகுதி பின்னங்களாக்குக.

தீர்வு :

படி 1:
$$\frac{1}{(x^2+4)(x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+4}$$
 என்க.

படி 2 : R.H.S. க்கு மீ.சி.ம. எடுக்க.

$$\frac{1}{(x^2+4)(x+1)} = \frac{A(x^2+4) + (Bx-c)(x+1)}{(x+1)(x^2+4)}$$

படி 3 : தொகுதியைச் சமப்படுத்த

$$1 = A(x^2 + 4) + (Bx + C)(x + 1)$$

படி 4: x = -1 என பிரதியிட $A = \frac{1}{5}$

படி 5: $\mathbf{x} = \mathbf{0}$ மற்றும் \mathbf{A} ன் மதிப்பை பிரதியிட

$$C = \frac{1}{5}$$

படி 6: x=1 மற்றும் A, C யின் மதிப்புகளை படி 3ல் பிரதியிட

$$B = -\frac{1}{5}$$

الم 7:
$$\frac{1}{(x^2+4)(x+1)} = \frac{1}{5(x+1)} + \frac{-\frac{1}{5}x + \frac{1}{5}}{x^2+4}$$

பயிற்சி 2.1

பின்வருவனவற்றை பகுதி பின்னங்களாக்குக.

1)
$$\frac{x+1}{x^2-x-6}$$

2)
$$\frac{2x-15}{x^2+5x+6}$$

3)
$$\frac{1}{x^2-1}$$

1)
$$\frac{x+1}{x^2-x-6}$$
 2) $\frac{2x-15}{x^2+5x+6}$ 3) $\frac{1}{x^2-1}$ 4) $\frac{x+4}{(x^2-4)(x+1)}$

5)
$$\frac{x+1}{(x-2)^2(x+3)}$$

6)
$$\frac{1}{(x-1)(x+2)^2}$$

5)
$$\frac{x+1}{(x-2)^2(x+3)}$$
 6) $\frac{1}{(x-1)(x+2)^2}$ 7) $\frac{x}{(x-1)(x+1)^2}$ 8) $\frac{2x^2+7x+23}{(x-1)(x+3)^2}$

8)
$$\frac{2x^2 + 7x + 23}{(x-1)(x+3)^2}$$

9)
$$\frac{7x^2 - 25x + 6}{(x^2 - 2x - 1)(3x - 2)}$$
 10) $\frac{x + 2}{(x - 1)(x^2 + 1)}$

10)
$$\frac{x+2}{(x-1)(x^2+1)}$$

2.2 வரிசை மாற்றங்கள்

(PERMUTATIONS)

இப்பகுதியில் உண்மையிலேயே எண்ணிக்கையை செய்யாமல் எண்ணிக்கையை காணும் புதிய கணித யுத்தி கையாளப்படுகிறது. அதாவது கொடுக்கப்பட்டுள்ள சில நிபந்தனைகளுடன் தேவையான வழிகளின் எண்ணிக்கையை இப்பகுதியில் காண இயலுகிறோம்.

வரிசை மாற்றங்கள் என்பது கொடுக்கப்பட்டுள்ள பொருட்களை ஒன்று அல்லது அதற்கு அதிகப்படியாக எடுத்து வரிசைப்படுத்துதலைக் குறிக்கும் எடுத்துக்காட்டாக $\{a,b,c\}$ என்ற உறுப்புகள் வரிசைப்படுத்தப்படும் முறைகள்.

(i) ஒவ்வொன்றாக எடுக்கப்பட்டால் :

$$\{a\}, \{b\}, \{c\}$$

..... 3 வழிகள்

(ii) இரண்டிரண்டாக எடுக்கப்பட்டால் :

$$\{a,b\}, \{b,a\}, \{b,c\}, \{c,b\}, \{a,c\}, \{c,a\}$$

..... 6 வழிகள்

(iii) மூன்று முன்றாக எடுக்கப்பட்டால் :

2.2.1 எண்ணுதல் அடிப்படை விதி

கூட்டல், பெருக்கல் விதிகளைப் பொறுத்து எண்ணுதலில் இரண்டு அடிப்படைக் கொள்கைகள் உள்ளன. ஒன்று ஒன்றையொன்று சாராத நிகழ்ச்சிகள் ஒன்றன்பின் ஒன்றாக நிகழும்போதும் மற்றொன்று இரண்டும் சேர்ந்து நடைபெறும் போதும் பயன்படுத்தப்படுகிறது. சில சமயங்களில் இரண்டு விதிகளும் சேர்த்துப் பயன்படுத்துமாறும் கணக்குகள் அமையும்.

2.2.2 எண்ணுதலின் அடிப்படைக் கொள்கை

நம் அன்றாட வாழ்க்கையிலிருந்து ஒரு உதாரணத்தை எடுத்துக் கொள்வோம்.

சேகா் என்ற மாணவனுக்குத் தோ்வு எழுதுவதற்காக தோ்வு எண் வழங்கப்பட்டது. ஆனால் அவன் அந்த எண்ணை மறந்துவிட்டான். அவன் நினைவில் இருந்ததெல்லாம் அந்த எண் ஒரு இரண்டிலக்க ஒற்றை எண் என்பதாகும்.

கிடைக்கப்பெறும் எண்களாவன:

11	21	31	41	51	61	71	81	91
13	23	33	43	53	63	73	83	93
15	25	35	45	55	65	75	85	95
17	27	37	47	57	67	77	87	97
19	29	39	49	59	69	79	89	99

கிடைக்கப்பெறும் இரண்டிலக்க ஒற்றை எண்கள் $= 9 \times 5 = 45$

இதற்கு மாற்று முறை உள்ளதா என நாம் காண முயலுவோம். ஒன்று ஸ்தான இடத்தில் அமையப்பெறும் எண்கள் 1,3,5,7,9 ஏனெனில் நாம் காண வேண்டியது ஒற்றை எண், **10** ஸ்தானத்தில் அமையும் எண் (1,2,3,4,5,6,7,8,9) 9 எண்களில் ஏதேனும் ஒன்றாக அமையலாம்.

எனவே 1 ஸ்தான இடத்தை நிரப்ப 5 வழிகளும் 10 ஸ்தான இடத்தை நிரப்ப 9 வழிகளும் உள்ளன. இரண்டிலக்க ஒற்றை எண்களின் எண்ணிக்கை = 9 x 5 = 45. இந்த எடுத்துக்காட்டு பின்வரும் கொள்கையை விளக்குகிறது.

(i) பெருக்கல் கொள்கை (Multiplication principle)

ஒரு நிகழ்ச்சியை ''m'' வழிகளிலும் அடுத்து இரண்டாவது நிகழ்ச்சியை ''n'' வழிகளிலும் செய்ய முடியுமெனில் தொடர்ந்து இரு நிகழ்ச்சிகளையும் 'm x n' அதாவது mn வழிகளில் செய்யக் கூடும். இதுவே பெருக்கல் கொள்கையாகும்.

(ii) கூட்டல் கொள்கை (Addition Principle)

ஒரு நிகழ்ச்சியை 'm' வழிகளிலும் இரண்டாவது நிகழ்ச்சியை 'n' வழிகளிலும் செய்ய முடியுமெனில் இவை இரண்டில் ஏதேனும் ஒரு நிகழ்ச்சியை m+n வழிகளில் செய்ய முடியும். இதுவே கூட்டல் கொள்கை எனப்படும்.

மேலும் {a,b,c,d} என்ற கணத்தை எடுத்துக் கொள்க.

இக்கணத்திலிருந்து இரண்டு உறுப்புகளைத் தோ்ந்தெடுத்து வரிசைப்படுத்த வேண்டும். இதைப் பின்வரும் வழிகளில் செய்யலாம்.

கிடைக்கப்பெறும் மொத்த வரிசைகள்

(a,b), (a,c), (a,d)

(b,a), (b,c), (b,d)

(c,a), (c,b), (c,d)

(d,a), (d,b), (d,c)

மொத்த வரிசைகளின் எண்ணிக்கை $4 \times 3 = 12$

மேலே குறிப்பிட்டுள்ள வரிசை மாற்றங்களில் (a,b) என்ற வரிசைச் சோடியும் (b,a) என்ற வரிசைச் சோடியும் (b,a) என்ற வரிசைச் சோடியும் வெவ்வேறானவை.... எனவே a,b,c,d என்ற நான்கு எழுத்துகளிலிருந்து இரண்டு எழுத்துகளை தேர்ந்தெடுத்து வரிசைப்படுத்தும் வழிகளின் எண்ணிக்கை = 12

(அ.து) '4' லிருந்து '2' ஐ தேர்ந்தெடுத்து வரிசைப்படுத்தும் முறைகளின் எண்ணிக்கை 12 பொதுவாக $^{n}p_{r}$ என்பது 'n' பொருட்களிலிருந்து ஒவ்வொரு முறையும் 'r' பொருட்களை தேர்ந்தெடுத்து அவற்றை வரிசைப்படுத்தும் வழிகளின் எண்ணிக்கை.

[இங்கு 'n', 'r' ஆகியவை மிகை முழு எண்கள் மேலும் $r \le n$]

$2.2.3~^{ m n}{ m p}_{ m r}$ ன் மதிப்பைக் காணல்

'n' பொருட்களிலிருந்து 'r' பொருட்களை தேர்ந்தெடுத்து வரிசைப்படுத்துவது என்பது 'r' காலி இடங்களை 'n' பொருட்களைக் கொண்டு நிரப்புவதாகும்.

முதல் இடத்தை 'n' பொருட்களிலிருந்து எவையேனும் ஒரு பொருளைக் கொண்டு 'n' வழிகளில் நிரப்பலாம்.

இரண்டாவது இடத்தை மீதியுள்ள (n-1) பொருட்களிலிருந்து எவையேனும் ஒரு பொரு—னைக் கொண்டு (n-1) வழிகளில் நிரப்பலாம்.

எனவே முதல் இரண்டு இடங்களையும் அடிப்படைக் கொள்கையின் படி $\mathbf{n}(\mathbf{n}-1)$ வழிகளில் நிரப்பலாம்.

அடுத்து மூன்றாவது இடத்தை மீதியுள்ள (n-2) பொருட்களிலிருந்து எவையேனும் ஒரு பொருளைக் கொண்டு (n-2) வழிகளில் நிரப்பலாம்.

முதல் மூன்று இடங்களையும் அடிப்படைக் கொள்கைப்படி $n\ (n-1)\ (n-2)$ வழிகளில் நிரப்பலாம். தொடர்ந்து அடிப்படைக் கொள்கைப்படி பொதுவாக 'r' இடங்களை

$$n(n-1)(n-2)$$
 $(n-3)....[n-(r-1)]$ வழிகளில் நிரப்பலாம்.

 \therefore $^{n}p_{r}=n(n-1)\,(n-2)\,(n-3)...(n-r+1)$ இச்சூத்திரத்தை எளிமைப்படுத்த நாம் காரணீயப் பெருக்கத்தை அறிமுகப்படுத்தலாம்.

2.2.4 காரணீயப் பெருக்கம் :

முதல் 'n' இயல் எண்களின் தொடர் பெருக்கத்தை 'n' ன் காரணீயப் பெருக்கம் என்போம். இது n ! என்ற குறியீடு மூலம் குறிக்கப்படும்.

எடுத்துக்காட்டாக :

$$5! = 5 \times 4 \times 3 \times 2 \times 1$$

$$4! = 4 \times 3 \times 2 \times 1$$

$$...$$
 5! = 5 × 4!

$$5! = 5 \times 4 \times 3!$$

பொதுவாக
$$n! = n (n-1) (n-2)...3.2.1$$

$$n! = n\{(n-1)!\}$$

$$= n (n-1)(n-2)!$$
இங்கு $^np_r = n (n-1)(n-2).....(n-r+1)$

$$= \frac{n(n-1)(n-2).....(n-r+1)(n-r)!}{(n-r)!} = \frac{n!}{(n-r)!}$$

 $\{(n-r)!$ ஆல் பெருக்கி வகுக்க $\}$

$$\therefore {}^{n}p_{r} = \frac{n!}{(n-r)!}$$

உட்கருத்து :

(i)
$$0! = 1$$

(ii)
$${}^{n}p_{0} = \frac{n!}{(n-0)!} = \frac{n!}{n!} = 1$$

(iii)
$${}^{n}p_{1} = \frac{n!}{(n-1)!} = \frac{n(n-1)!}{(n-1)!} = n$$

(iv)
$${}^{n}p_{n} = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$$

(அ.து) 'n' பொருட்களிலிருந்து 'n' பொருட்களை தோ்ந்தெடுத்து வரிசைப்படுத்தும் முறைகளின் எண்ணிக்கை n! ஆகும்.

(அ.து) 'n' பொருட்களை அவற்றுகிடையே n! விதங்களில் வரிசைப்படுத்தலாம்.

2.2.5 பலமுறை வரும் பொருட்களில் வரிசை மாற்றங்கள் :

'n' பொருட்களில் 'm' பொருட்கள் ஒரே வகையாகவும் எஞ்சிய (n-m) பொருட்கள் மற்றொரு வகையாகவும் இருப்பின் இவற்றிலிருந்து ஒன்றுக்கொன்று வெவ்வேறான பிரித்தறியக் கூடியவாறு அமைக்கப்பெறும் வரிசை மாற்றங்களின் எண்ணிக்கை

$$=\frac{n!}{m!(n-m)!}$$

மேலும், $m_1+m_2+\ldots +m_r=n$ என்றவாறு முதல் வகையில் m_1 பொருட்களும் இரண்டாவது வகையில் m_2 பொருட்களும் \ldots r –வது வகையில் m_r பொருட்களும் உள்ளன எனக் கொள்க. பின்னர் இந்த 'n' பொருட்களின் வரிசை மாற்றங்களின் எண்ணிக்கை

$$=\frac{n!}{m_1!m_2!....m_r!}$$
 ஆகும்.

2.2.6 வட்ட வரிசை மாற்றங்கள் :

கொடுக்கப்பட்டுள்ள பொருட்களை ஒரு நேர்கோட்டின் வடிவில் வரிசை மாற்றங்களை அமைப்பது பற்றி படித்தோம். நேர்கோடு வடிவத்திற்குப் பதிலாக வட்ட வடிவத்தில் பொருட்களை வரிசைப்படுத்துதல் வட்ட வடிவ வரிசை மாற்றங்கள் எனப்படும்.

A,B,C,D என்ற நான்கு எழுத்துக்களை எடுத்துக் கொள்க. இந்த நான்கு எழுத்துக்களையும் ஒரு நேர்கோட்டில் 4! விதத்தில் வரிசைப்படுத்தலாம். இவற்றில் ABCD, BCDA, CDAB, DABC என்பன வட்டத்தில் குறிப்பிடப்படும் போது ஒரே விதத்தில் உள்ளன.

எனவே 4 பொருட்களின் வட்ட வடிவ வரிசை மாற்றங்கள் $\frac{4!}{4} = 3!$

பொதுவாக 'n' பொருட்களின் வட்ட வடிவ வரிசை மாற்றங்களின் எண்ணிக்கை (n-1)! ஆகும்.

எடுத்துக்காட்டு 6

மதிப்புகளைக் காண்க : (i) 10 p₁, (ii) 7 p₄, (iii) 11 p₀

தீர்வு:

i)
10
p₁ = 10

ii)
$${}^{7}p_{4} = \frac{\boxed{7}}{\boxed{7-4}} = \frac{\boxed{7}}{\boxed{3}} = \frac{7 \times 6 \times 5 \times 4 \times 3!}{3!} = 7 \times 6 \times 5 \times 4 = 840$$

iii)
$$^{11}p_0 = 1$$

எடுத்துக்காட்டு 7

சென்னையிலிருந்து மதுரைக்குச் சென்று திரும்ப 4 இரயில்கள் உள்ளன. ஒருவர் எத்தனை வழிகளில் சென்னையிலிருந்து மதுரைக்குச் சென்று வேறு ஒரு இரயிலில் திரும்ப முடியும் ?

தீர்வு:

சென்னையிலிருந்து மதுரைக்குச் செல்ல

4 இரயில்களிலிருந்து ஒரு இரயிலை

தோ்ந்தெடுக்கும் வழிகளின் எண்ணிக்கை $= {}^4p_1 = 4$ வழிகள்

மதுரையிலிருந்து சென்னைத் திரும்ப மீதமுள்ள

முன்று இரயிலிருந்து ஒரு இரயிலை தேர்ந்தெடுக்கும்

வழிகளின் எண்ணிக்கை $= {}^3p_1 = 3$ வழிகள்

் பயணத்தை மேற்கொள்ள எடுக்கும் வழிகளின் எண்ணிக்கை

 $= 4 \times 3 = 12$ வழிகள்

எடுத்துக்காட்டு 8

ஒரு எண் பூட்டு 3 வளையங்களைக் கொண்டுள்ளது. ஒவ்வொரு வளையத்திலும் நான்கு எழுத்துக்கள் குறிக்கப்பட்டுள்ளன. அப்பூட்டைத் திறக்க அதிகபட்சமாக எத்தனை தேவையற்ற முயற்சிகள் மேற்கொள்ளப்படும் ?

தீர்வு :

பூட்டைத் திறக்க :

முதல் வளையத்தில் எழுத்துக்கள் பொருத்தப்படும்

முறைகளின் எண்ணிக்கை $= {}^4p_1 = 4$

இரண்டாவது வளையத்தில் எழுத்துக்கள்

பொருத்தப்படும் முறைகளின் எண்ணிக்கை $= {}^4p_1 = 4$

மூன்றாவது வளையத்தில் எழுத்துக்கள்

பொருத்தப்படும் முறைகளின் எண்ணிக்கை $=4p_1 = 4$ $= 4 \times 4 \times 4 = 64$ ் மொத்த முயற்சிகள் இவற்றுள் ஒரே ஒரு வழியில் தான் பூட்டு திறக்கப்படும் ் அதிகப்படியான தேவையான முயற்சிகள் = 64 - 1 = 63எடுத்துக்காட்டு 9 0,1,2,.......9 முடிய உள்ள இலக்கங்களைப் பயன்படுத்தி வெவ்வேறான இலக்கங்களைக் கொண்ட நான்கு இலக்க எண்கள் எத்தனை அமைக்கலாம் ? தீர்வு : ஆயிரம் இலக்க இடத்தை நிரப்ப பயன்படும் வழிகளின் எண்ணிக்கை (ஏனெனில் ''0'' ஆயிரமாவது இடத்தில் வர இயலாது) 100, 10, 1 இலக்க இடங்களை மீதமுள்ள 9 இலக்கங்களை $= {}^{9}p_{3} = 504$ கொண்டு நிரப்பும் வழிகளின் எண்ணிக்கை $= 9 \times 504 = 4536$ ் எனவே மொத்த நான்கு இலக்க எண்களின் எண்ணிக்கை எடுத்<u>து</u>க்காட்டு 10 இரண்டு மாணவிகள் அடுத்தடுத்து அமராதவாறு 6 மாணவர்கள் 4 மாணவிகளை எத்தனை விதமாக ஒரு நேர்கேட்டில் வரிசைப்படுத்தலாம் ? தீர்வு: 6 மாணவாகளை ஒரு கோட்டில் வரிசைப்படுத்தும் முறைகளின் எண்ணிக்கை 6!. பின்னா் 4 மாணவிகளுக்கு கொடுக்கப்பட்டுள்ள நிபந்தனைகளின் கீழ் கிடைக்கும் இடங்கள் 7 B B В В В В எனவே அந்த 4 மாணவிகளை மேலே உள்ள 7 இடங்களில் வரிசைப்படுத்தும் வழிகள் = 7 p₄ \therefore மொத்த வழிகளின் எண்ணிக்கை $= 6! \times {}^{7}p_{4}$ $=720 \times 7 \times 6 \times 5 \times 4$ =604800எடுத்துக்காட்டு 11 ஒரு குடும்பத்தில் உள்ள 4 சகோதரராகள் 3 சகோதரிகளை சகோதரிகள் ஒன்றாக இருக்குமாறு எத்தனை விதங்களில் வரிசைப்படுத்த முடியும் ? தீர்வு:

3 சகோதரிகளை ஓர் அலகு எனக் கொள்க. மொத்தம் உள்ளவர்கள் 4+1=5 அலகுகள். இவர்களை 5! வழிகளில் வரிசைப்படுத்தலாம். பின்னர் 3 சகோதரிகளை 3! வழிகளில் வரிசைப்படுத்தலாம்.

 \therefore மொத்தம் மேற்கொள்ளப்படும் வழிகள் $= 5! \times 3! = 720$

2, 3, 4, 5 என்ற இலக்கங்களை ஒரே ஒரு முறை பயன்படுத்தி கிடைக்கும் நான்கிலக்க எண்களின் கூடுதல் காண்க.

தீர்வு:

2, 3, 4, 5 என்ற இலக்கங்களை ஒரே ஒரு முறை பயன்படுத்திக் கிடைக்கும் நான்கிலக்க எண்களின் எண்ணிக்கை = 4! = 24. இவற்றுள் 2, 3, 4, 5 என்ற ஒவ்வொரு இலக்கமும் ஒவ்வொரு இடத்திலும் **6** முறை அமையும். எனவே **1**வது இடத்தில் உள்ள அனைத்து இலக்கங்களின் கூடுதல்

$$= 6 [2 + 3 + 4 + 5] = 6 \times 14 = 84$$

இதே போல 10வது இடத்தில் உள்ள இலக்கங்களின் கூடுதல் = 84 100வது இடத்தில் உள்ள இலக்கங்களின் கூடுதல் = 84 மற்றும் 1000மாவது இடத்தில் உள்ள இலக்கங்களின் கூடுதல் = 84

் மொத்த 4 இலக்க எண்களின் கூடுதல்

$$= 84 \times 1000 + 84 \times 100 + 84 \times 10 + 84 \times 1$$

$$= 84 (1000 + 100 + 10 + 1) = 84 \times 1111$$

$$= 93324$$

எடுத்துக்காட்டு 13

CONTAMINATION என்றவார்த்தையில் உள்ள எழுத்துக்களை எத்தனை விதங்களில் வரிசைப்படுத்தலாம் ?

தீர்வு:

CONTAMINATION என்ற வார்த்தையில் உள்ள எழுத்துக்களின் எண்ணிக்கை = 13 இவற்றை 13! வழிகளில் வரிசைப்படுத்தலாம்.

இவற்றுள் O எழுத்து 2 தடவைகளும்
N எழுத்து 3 தடவைகளும்
T எழுத்து 2 தடவைகளும்
A எழுத்து 2 தடவைகளும்
I எழுத்து 2 தடவைகளும்

 \therefore கிடைக்கும் வழிகளின் எண்ணிக்கை = $\frac{13!}{2! \ 3! \ 2! \ 2! \ 2!}$

பயிற்சி 2.2

- n p₅ = (42) n p₃ எனில் n –ன் மதிப்பு காண்க.
- $6[^{n}p_{3}] = 7^{(n-1)}p_{3}$ எனில் n –ன் மதிப்பு காண்க.
- 3) i) ENTERTAINMENT ii) MATHEMATICS iii) MISSISSIPPI என்ற சொற்களில் உள்ள எல்லா எழுத்துகளையும் ஒரே சமயத்தில் பயன்படுத்தி வேறுபட்ட சொற்கள் மொத்தம் எத்தனை பெறலாம் ?

- 4) 1,2,3,....9 ஆகிய எண்களைப் பயன்படுத்தி வெவ்வேறான 4 இலக்க எண்கள் எத்தனை பெறலாம் ?
- 5) 3,4,5,6,7 என்ற எண்களை ஒரே முறை பயன்படுத்திக் கிடைக்கும் **5** இலக்க எண்களின் கூடுதல் காண்க.
- 7 மாணவர்களும் 4 மாணவிகளும்
 i) எல்லா மாணவிகளும் அடுத்தடுத்து ii) எந்த இரு மாணவிகளும் சேர்ந்து அமராமல் ஒரு வரிசையில் எத்தனை விதங்களில் அமர்த்தப்படுவர்.
- 7) STRANGE என்ற வார்த்தையிலுள்ள எழுத்துக்களை உயிர் எழுத்துக்கள் ஒற்றையிடத்தில் வருமாறு எத்தனை வழிகளில் வரிசைப்படுத்தலாம் ?
- 8) 5 ஆண்களையும் 3 பெண்களையும் எந்த இரு பெண்களும் சேர்ந்து அமராமல் ஒரு வட்ட மேஜையில் எத்தனை வழிகளில் அமரச் செயலாம் ?
- 9) FATHER. என்ற வார்த்தையில் உள்ள எழுத்துக்களைக் கொண்டு எத்தனை சொற்கள் அமைக்க முடியும் ? அவற்றுள் எத்தனை வார்த்தைகள் F –ல் ஆரம்பித்து R –ல் முடியும் ?

2.3 சேர்வுகள்

(COMBINATIONS)

சோ்வுகள் என்பது தோ்ந்தெடுப்பதாகும். அதாவது மொத்த பொருட்களிலிருந்து தே—ை வயான பொருட்களைத் தோ்ந்தெடுப்பது மட்டுமேயாகும்.

எடுத்துக்காட்டாக $\{a,b,c\}$ என்ற மூன்று உறுப்புகள் கொண்ட கணத்திலிருந்து பின்வரும் சோ்வுகளைப் பெறலாம்.

i) ஒரு உறுப்பு மட்டும் : $\{a\}, \{b\}, \{c\}$

ii) இரண்டு உறுப்புகள் : $\{a,b\}$, $\{b,c\}$, $\{c,a\}$

iii) மூன்று உறுப்புகள் : {a,b,c}

n பொருட்களிலிருந்து r பொருட்களை தேர்ந்தெடுக்கும் வழிகளின் எண்ணிக்கை nc_r என குறிக்கப்படுகிறது. இதை $c\ (n,\,r),\, \binom{n}{r}$ எனவும் குறிக்கலாம். இங்கு n மற்றும் r ஆகியவை மிகை முழு எண்கள் மற்றும் $(r\leq n)$

$2.3.1~^{\mathrm{n}}\mathrm{c_r}$ ன் மதிப்பைக் காணல் :

'n' பொருட்களிலிருந்து 'r' பொருட்களை

தேர்வு செய்யும் வழிகளின் எண்ணிக்கை

 $= {}^{n}c_{r}$

'n' பொருட்களிலிருந்து 'r' பொருட்களை

தோ்வு செய்து வாிசைப்படுத்தும் வழிகளின் எண்ணிக்கை

 $= {}^{n}p_{r}$

'r' பொருட்களை வரிசைப்படுத்தும் வழிகளின் எண்ணிக்கை

= r!

'r' பொருட்களைக் கொண்ட ஒவ்வொரு சேர்வும் r! வரிசை மாற்றங்களைத் தரும்.

$$\therefore {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

உட்கருத்து :

(i)
$${}^{n}C_{0} = \frac{n!}{0!(n-0)!} = \frac{n!}{n!} = 1$$

(ii)
$${}^{n}C_{n} = \frac{n!}{n!(n-n)!} = \frac{n!}{r!0!} = 1$$

$$(iii)$$
 ${}^{n}C_{r}$ $=$ ${}^{n}C_{n-r}$

$$(iv)$$
 ${}^{n}c_{x} = {}^{n}c_{y}$ எனில், $x = y$ அல்லது $x + y = n$

$$(v) \quad {^{n}C_{r}} \quad = \quad \frac{{^{n}p_{r}}}{r!}$$

எடுத்துக்காட்டு 14

 $^8\mathrm{p}_3$ மற்றும் $^8\mathrm{c}_3$ இவற்றை மதிப்பிடுக.

தீர்வு :

$${}^{8}p_{3} = \frac{8!}{(8-3)!} = \frac{8!}{5!} = \frac{8 \times 7 \times 6 \times 5!}{5!} = 8 \times 7 \times 6 = 336$$

$${}^{8}c_{3} = \frac{8!}{3!(8-3)!} = \frac{8!}{3!} = \frac{8 \times 7 \times 6 \times 5!}{3!} = \frac{8 \times 7 \times 6}{3 \times 2 \times 1} = 56$$

எடுத்துக்காட்டு 15

மதிப்பிடுக $^{10}\mathrm{c_8}$

$$\mathring{\mathcal{S}}\dot{\eta}$$
 $\dot{\alpha}$: ${}_{10}c_8 = {}^{10}c_2 = \frac{10 \times 9}{2 \times 9} = 45$

எடுத்துக்காட்டு 16

 $^{n}c_{8}=^{n}c_{6}$ எனில் $^{n}c_{2}$ ஐக் காண்க.

தீர்வு :

$$^{n}c_{8}=^{n}c_{6}$$
 (கொடுக்கப்பட்டுள்ளது)

$$\Rightarrow$$
 n = 8 + 6 = 14

$$c_1 = c_2 = c_1 = c_2 = \frac{14 \times 13}{2 \times 1} = 91$$

$$\binom{100}{r} = \binom{100}{4r}$$
, எனில் 'r' ன் மதிப்பு காண்.

தீர்வு :

$$^{100}c_{r} = ^{100}c_{4r}$$

$$\Rightarrow$$
 r + 4r = 100

எடுத்துக்காட்டு 18

7 மெய்யெழுத்துக்கள் 4 உயிரெழுத்துக்களைக் கொண்டு 3 மெய்யெழுத்துக்கள் 2 உயிரெழுத்துக்கள் உடைய வார்த்தைகள் எத்தனை அமைக்கலாம் ?

தீர்வு :

7 மெய்யெழுத்துக்களிலிருந்து 3 மெய்யெழுத்துக்களை

= 7 c₃ வழிகள் தோ்வு செய்யும் வழிகளின் எண்ணிக்கை

4 உயிரெழுத்துக்களிலிருந்து 2 உயிரெழுத்துக்களை

 $={}^{4}c_{2}$ សម្រាស់ $={}^{7}c_{3}\times{}^{4}c_{2}$ தேர்வு செய்யும் வழிகளின் எண்ணிக்கை

். கிடைக்கும் மொத்த வார்த்தைகளின் எண்ணிக்கை

$$= \frac{7 \times 6 \times 5}{3 \times 2 \times 1} \times \frac{4 \times 3}{2 \times 1}$$

$$\therefore = 35 \times 6 = 210$$

எடுத்துக்காட்டு 19

ஒரு விருந்தில் 13 பேர் உள்ளனர். ஒவ்வொருவரும் மற்றவரோடு கை குலுக்கிக் கொண்டால் அங்கு எத்தனை கை குலுக்கல்கள் ஏற்பட்டிருக்கும் ?

தீர்வு:

13 பேரிலிருந்து இருவரைத் தேர்ந்தெடுக்கும் முறைகளின் எண்ணிக்கை

். அங்கு ஏற்பட்ட மொத்த கை குலுக்கல்கள்

$$= {}^{13}c_2$$
$$= {}^{13}c_2 = \frac{13 \times 12}{2 \times 1} = 78$$

எடுத்துக்காட்டு 20

எந்த 3 புள்ளிகளும் ஒரே நேர்கோட்டில் அமையாத 10 புள்ளிகளைக் கொண்டு எத்தனை கோடுகள் அமைக்கலாம் ?

தீர்வு :

ஒரு கோடு வரைய குறைந்தது இரண்டு புள்ளிகள் தேவை. எனவே 10 புள்ளிகளிலிருந்து **2** புள்ளிகளைத் தேர்வு செய்யும் வழிகளின் எண்ணிக்கை $^{10}\mathrm{c}_{\gamma}$

$$\therefore$$
 வரையப்படும் கோடுகளின் எண்ணிக்கை $={}^{10}\mathrm{c}_2=rac{10 imes 9}{2 imes 1}=45$.

ஒரு வினாத்தாள் A, B என்ற இரண்டு பகுதிகளை உடையது. ஒவ்வொரு பகுதியிலும் 10 வினாக்கள் உள்ளன. ஒரு மாணவன் பகுதி A யிலிருந்து 8 வினாக்களும், பகுதி B யிலிருந்து 5 வினாக்களும் தேர்வு செய்ய வேண்டுமெனில் அவன் வினாக்களை எத்தனை விதங்களில் தெரிவு செய்வான் ?

தீர்வு:

பகுதி A யில் உள்ள வினாக்கள் = 10

தேர்வு செய்ய வேண்டிய வினாக்கள் = 8

தோவு செய்யும் வழிகளின் எண்ணிக்கை ${}^{10}\mathrm{c_8} = {}^{10}\mathrm{c_2}$

பகுதி B யில் உள்ள வினாக்கள் = 10

பகுதி B யில் தெரிவு செய்ய வேண்டிய வினாக்கள் = 5

- \therefore தேர்வு செய்யும் வழிகளின் எண்ணிக்கை = $^{10}\mathrm{c_5}$
- \therefore தோ்வு செய்யும் வழிகளின் எண்ணிக்கை = $^{10}c_8 \times ^{10}c_5 = 45 \times 252 = 11340$

எடுத்துக்காட்டு 22

6 மாணவாகள், 5 மாணவிகளிலிருந்து 7 போ் அடங்கிய ஒரு குழு அமைக்கப்படுகிறது. குழுவில் மாணவா் பெரும்பான்மையினராய் இருக்கும் படி எத்தனை விதங்களில் குழுவை அமைக்கலாம் ?

தீர்வு :

குழுவில் இருக்க வேண்டியவாகளின் எண்ணிக்கை =7

<u>மாணவர்கள்</u> = 6

மாணவிகள் = 5

6

4

குழுவானது பின்வருமாறு அமைக்கப்படுகிறது

(G) மாணவிகள் (5)

5 2

இவர்களைத் தேர்வு செய்யும் முறைகள் $\binom{6}{6}\binom{5}{1}$ (அ) $\binom{6}{5}\binom{5}{2}$ (அ) $\binom{6}{4}\binom{5}{3}$

1

3

். அமைக்கப்படும் குழுக்களின் எண்ணிக்கை

$$= {}^{6}c_{6} \times {}^{5}c_{1} + {}^{6}c_{5} \times {}^{5}c_{2} + {}^{6}c_{4} \times {}^{5}c_{3}$$
$$= 1 \times 5 + 6 \times 10 + 15 \times 10 = 215$$

2.3.2 பாஸ்கலின் முக்கோணம்

பொதுவாக $n=0,\,1,\,2,\,3,\,4,\,5\,\dots$ எனில் பின்வரும் விவரத்தை ஒரு முக்கோண வடிவில் அமைக்கலாம். இம் முக்கோணம் பாஸ்கலின் முக்கோணம் எனப்படும்.

மதிப்புகளைப் பிரதியிட

பிரான்சு நாட்டு கணிதமேதை பாஸ்கலின் பெயரால் அழைக்கப்படும் இம் முக்கோண வடிவ விவரங்களில் நாம் காண்பது : ஒரு வரிசையில் உள்ள ஓர் உறுப்பின் மதிப்பு அந்த வரிசைக்கு முன் வரிசையில் அக்குறிப்பிட்ட உறுப்பின் இருபுறமும் உள்ள இரு உறுப்புகளின் கூட்டுத் தொகைக்குச் சமம். இந்த உண்மையைப் பொதுப்படுத்தக் கிடைப்பது.

$$\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$$
 என்ற பாஸ்கல் விதியாகும்.

$$2.3.3$$
 n c $_{r}$ சூத்திரத்தைப் பயன்படுத்தி $\binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r}$ என நிறுவுக. நிரூபணம் :

$$\begin{split} & \text{L.H.S} = \, ^{\text{n}} c_{\text{r}} + ^{\text{n}} c_{\text{r-1}} \\ & = \frac{n!}{r!(n-r)!} + \frac{n!}{(r-1!) \left[n - (r-1) \right]!} \\ & = \frac{n!}{r!(n-r)!} + \frac{n!}{(r-1!)(n-r+1)!} \\ & = \frac{n![n-r+1] + n!(r)}{r!(n+1-r)!} \\ & = \frac{n![n-r+1] + n!(r)}{r!(n-r+1)!} = \frac{n!(n+1)}{r!(n-r+1)!} \\ & = \frac{(n+1)!}{r!(n-r+1)!} = \frac{(n+1)!}{r!(n+1-r)!} \\ & = \frac{^{\text{n+1}} c_{\text{r}} = \text{R.H.S}}{\text{median}} \end{split}$$

பயிற்சி 2.3

- 1) மதிப்பிடுக (i) $^{10}c_{6}$ (ii) $^{15}c_{13}$
- 36 c $_{\rm n}$ = 36 c $_{\rm n+4}$ எனில் 'n' ன் மதிப்பு காண்க.
- 3) $n^{+2}c_n = 45$, எனில் n = ?
- 4) வினாத்தாள் ஒன்றில் இரண்டு பிரிவுகள் உள்ளன. ஒவ்வொரு பிரிவிலும் 6 வினாக்கள் உள்ளன. ஒவ்வொரு பிரிவிலிருந்தும் அதிகபட்சமாக 5 கேள்விகளுக்கு மிகாமல் 7 வினாக்களுக்கு விடையளிக்க வேண்டுமாயின் ஒரு மாணவன் 7 வினாக்களை எத்தனை வழிகளில் தெரிவு செய்வான் ?
- 5) 9 பெண்கள் 8 ஆண்கள் கொண்ட குழுவிலிருந்து 5 பேர் கொண்ட ஒரு குழு அமைக்கப்படுகிறது. குழுவில் பெண்கள் பெரும்பான்மையாயிருக்கும் படி அக்குழுவை எத்தனை விதங்களில் அமைக்கலாம் ?
- 6) ஒரு வகுப்பிலுள்ள **15** மாணவாகளில் **10** போகள் ஒரு சுற்றுலா செல்ல தோவு செய்யப்படுகின்றனா். அவற்றில் **3** மாணவா்கள் அடங்கிய குழு பங்கேற்குமாறு அல்லது பங்கேற்காதவாறு அவா்கள் எத்தனை விதங்களில் தோ்வு செய்யப்படுவாா்கள் **?**
- 7) ஒரு அறுங்கோணத்திலுள்ள மூலை விட்டங்களின் எண்ணிக்கையைக் காண்க.
- 8) 6 பந்து வீச்சாளர்கள் 3 விக்கெட் கீப்பர்கள் இருக்குமாறு 11 ஆட்டக்காரர்களை 20 பேர் உள்ள குழுவிலிருந்து தேர்வு செய்ய வேண்டும். தேர்வு செய்யப்படும் குழுவில் அதிகபட்சம் 2 விக்கெட் கீப்பர்களும் குறைந்தது 4 பந்து வீச்சாளர்களும் இருக்கும்படி எத்தனை விதங்களில் அக்குழு தேர்வு செய்யப்படுகிறது.

2.4 கணிதத் தொகுத்தறிதல்

(MATHEMATICAL INDUCTION)

பல கணிதத் தேற்றங்களும், விதிகளும் நேரான நிரூபணத்தின் மூலம் சுலபமாக நிரூபிக்க இயலாத போது பயன்படுத்தப்படும் முறையே கணிதத் தொகுத்தறிதல் முறை எனப்படும். இதில் மூன்று படிகள் உள்ளன.

- (i) n = 1க்கு தேற்றம் நிரூபிக்கப்பட வேண்டும். அதாவது p(1) மெய்யென்று நிரூபிக்கப்பட வேண்டும்.
- (ii) k ஒரு மிகை முழு எண்ணாக P(k) மெய்யாக இருப்பின் $p\ (k+1)$ —ம் மெய் என நிறுவ வேண்டும்.
- (iii) எனவே எல்லா இயல் எண் n—க்கும் p(n) மெய்யென்று நிரூபிக்கப்படுகிறது.

2.4.1 தொகுத்தறிதலின் விதி :

ஒவ்வொரு இயல் எண் n —க்கு ஏற்ப P(n) ஒரு கூற்று என்க. (i) P(1) மெய்யென்றும் மற்றும் (ii) P(k+1), k ஒரு மிகை முழு எண் ஆக P(k) மெய்யாக இருப்பின் P(k+1) ம் மெய்யானால் P(n) கூற்று மெய்யாகும்.

கணிதத் தொகுத்தறிதல் விதியைப் பயன்படுத்தி

$$1+2+3+...n=rac{n(n+1)}{2}\,$$
 $n\!\in\!N$ என நிரூபி.

தீர்வு :

$$P(n) = \frac{n(n+1)}{2}$$
 என்க.
L.H.S -ல் $n=1$, $P(1)=1$
R.H.S -ல் $p(1) = \frac{1(1+1)}{2} = 1$ எனவே $n=1$ க்கு L.H.S = R.H.S

.: P(1) மெய்யென நிரூபிக்கப்பட்டது.

P(k) மெய் என்க.

அ.து.
$$1+2+3+.....+k=\frac{k\,(k+1)}{2}$$
 என்ற கூற்று மெய் p $(k+1)$ மெய் என நிறுவ வேண்டும்.

 \Rightarrow p(k) மெய்யென்றால் p(k+1) மெய்யாகும்.

எடுத்துக்காட்டு 24

தொகுத்தறிதல் விதியைக் கொண்டு 3^{2n} –1 என்பது 8 ஆல் வகுபடும் எண் என நிறுவுக. $n\!\in\! N$.

தீர்வு :

$$P(n) = 3^{2n} - 1$$
 என்க

$$p(1) = 3^2 - 1 = 9 - 1 = 8$$
 என்பது 8 –ஆல் வகுபடும்.

∴ p(1) மெய்யாகிறது.

p(k) மெய் எனக் கொள்க.

$$ie., 3^{2k}$$
- 1 என்பது 8 –ஆல் வகுபடும்.

p(k+1) மெய் என நிறுவ வேண்டும்.

இப்போது
$$p(k+1)$$
 $= 3^{2(k+1)} - 1 = 3^{2k} \times 3^2 - 1$ $= 9(3^{2k}) - 1$ $= 9(3^{2k}) - 9 + 8$ $= 9[3^{2k} - 1] + 8$ இது 8 –ஆல் வகுபடும்.

எனவே P(k) மெய்யெனில் P(k+1) மெய் என நிறுவப்பட்டது.

 \therefore தொகுத்தறிதலின் விதிப்படி n –ன் இயல் மதிப்புக்கும் p(n) மெய் என நிறுவப்பட்டது.

பயிற்சி 2.4

தொகுத்தறிதல் விதிப்படி பின்வருவனவற்றை நிறுவுக.

1)
$$1+3+5+....(2k-1)=k^2$$

2)
$$4 + 8 + 12 + \dots + 4n = 2n(n + 1)$$

3)
$$1.2 + 2.3 + 3.4 + \dots + n (n+1) = \frac{n(n+1)(n+2)}{3}$$

4)
$$1^3 + 2^3 + \dots n^3 = \frac{n^2(n+1)^2}{4}.$$

5)
$$1^2 + 2^2 + \dots n^2 = \frac{n(n+1)(2n+1)}{6}.$$

6)
$$1 + 4 + 7 + 10 + \dots (3n - 2) = \frac{n}{2} (3n - 1)$$

7) $2^{3n}-1$ என்பது 7 –ஆல் வகுபடும்.

2.4.2 தொடர்களின் கூடுதல்

$$1+2+3+\dots+n=\sum n=\frac{n(n+1)}{2}.$$

$$1^2+2^2+3^2+\dots+n^2=\sum n^2=\frac{n(n+1)(2n+1)}{6}.$$

$$1^3+2^3+3^3+\dots+n^3=\sum n^3=\left\{\frac{n(n+1)}{2}\right\}^2.$$

$$\mathbf{n}=\frac{n(n+1)}{2}$$

$$\mathbf{n}^2=\frac{n(n+1)(2n+1)}{6}$$

$$\mathbf{n}^3=\left\{\frac{n(n+1)}{2}\right\}^2$$

மேலே கூறப்பட்டுள்ள சூத்திரங்களைப் பயன்படுத்தி ஒரு தொடரின் n–வது உறுப்பு கொடுக்கப்படின் அத்தொடரின் கூடுதல் காணும் முறையைக் காண்போம்.

n –வது உறுப்பு n(n+1)(n+4) ஆக உள்ள தொடரின் கூடுதல் காண்க.

தீர்வு :

$$t_{n} = n(n+1) (n+4)$$

$$= n^{3} + 5n^{2} + 4n$$

$$\therefore S_{n} = \sum t_{n} = \sum (n^{3} + 5n^{2} + 4n)$$

$$= \sum n^{3} + 5 \sum n^{2} + 4\sum n$$

$$= \left\{ \frac{n(n+1)}{2} \right\}^{2} + 5 \left\{ \frac{n(n+1)(2n+1)}{6} \right\} + 4 \left\{ \frac{n(n+1)}{2} \right\}$$

$$= \frac{n(n+1)}{12} [3n^{2} + 23n + 34]$$

எடுத்துக்காட்டு 26

 $1^2.3 + 2^2.5 + 3^2.7 +$ ன் n உறுப்புகளின் கூடுதல் காண்க.

தீர்வு :

$$t_n = n^2(2n+1) = 2n^3 + n^2$$

$$\therefore S_n = \sum (2n^3 + n^2) = 2\sum n^3 + \sum n^2$$

$$= \frac{2n^2(n+1)^2}{4} + \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{n(n+1)}{2} \left[n(n+1) + \frac{2n+1}{3} \right]$$

$$= \frac{n(n+1)}{2} \left(\frac{3n^2 + 3n + 2n + 1}{3} \right)$$

$$= \frac{n(n+1)}{6} [3n^2 + 5n + 1]$$

எடுத்துக்காட்டு 27

2+5+10+17+...ன் n உறுப்புகளின் கூடுதல் காண்க.

தீர்வு :

$$2 + 5 + 10 + 17 +$$

$$= (1+1)+(1+4)+(1+9)+(1+16)+\dots$$

$$= (1+1+1+\dots n \text{ terms})+(1^2+2^2+\dots n^2)$$

$$= n + \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{n}{6}[6+2n^2+3n+1]$$

$$= \frac{n}{6}[2n^2+3n+7]$$

பயிற்சி 2.5

பின்வரும் தொடர்களின் n உறுப்புகளின் கூடுதல் காண்க.

- 1) $1.2.3 + 2.3.4 + 3.4.5 + \dots$
- 2) $1.2^2 + 2.3^2 + 3.4^2 + \dots$
- 3) $2^2 + 4^2 + 6^2 + \dots (2n)^2$
- 4) $2.5 + 5.8 + 8.11 + \dots$
- 5) $1^2 + 3^2 + 5^2 + \dots$
- 6) $1 + (1+2) + (1+2+3) + \dots$

2.5 ஈருறுப்புத் தேற்றம்

(BINOMIAL THEOREM)

2.5.1 தேற்றம்

n ஓர் இயல் எண் எனில்

$$(x+a)^n = {^nC}_0 \; x^n + \ {^nC}_1 \; x^{n\text{--}1} \; a + \ {^nC}_2 \; x^{n\text{--}2} \; a^2 + \ldots \ldots + \ {^nC}_r \; x^{n\text{--}r} \; a^r + \ldots \quad {^nC}_n \; a^n$$

நிரூபணம் :

இத்தேற்றம் கணிதத் தொகுத்தறிதல் முறையில் நிரூபிக்கப்படுகிறது.

$$\begin{split} P(n) \ : \ & (x+a)^n = {}^nC_0 \ x^n + \ {}^nC_1 \ x^{n-1} \ a + \ {}^nC_2 \ x^{n-2} \ a^2 + \\ & + \ {}^nC_{\overline{r-1}} \ x^{n+1-r} \ a^{r-1} + {}^nC_r \ x^{n-r} \ a^r + + {}^nC_n \ a^n \end{split}$$

n = 1 என்க LHS P(1) = x + a

RHS
$$P(1)$$
 - $\dot{\omega}$ = 1 . $x + 1$. $a = x + a = P(1)$ $\dot{\omega}$ L.H.S.

∴ P (1) மெய்யாகிறது.

 $\therefore P(k)$ மெய்யெனக் கொள்க $k \in N$

அ.து. P(k):

$$(x + a)^{k} = {}^{k}C_{0} x^{k} + {}^{k}C_{1} x^{k-1} a + {}^{k}C_{2} x^{k-2} a^{2} + \dots$$

$$+ {}^{k}C_{r-1} x^{k+1-r} a^{r-1} + {}^{k}C_{r} x^{k-r} a^{r} + \dots + {}^{k}C_{k} a^{k} \qquad \dots \dots (1)$$

மெய்யென்க.

P(k+1) என்ற கூற்று மெய் என நிரூபிக்க.

$$\begin{split} \text{i.e., } & (\mathbf{x}+\mathbf{a})^{k+1} = {}^{k+1}C_0 \, \mathbf{x}^{k+1} + {}^{k+1}C_1 \, \mathbf{x}^k \, \mathbf{a} \\ & + {}^{k+1}C_2 \, \mathbf{x}^{k-1} \, \mathbf{a}^2 + \ldots + {}^{k+1}C_r \, \mathbf{x}^{k+1-r} \, \mathbf{a}^r + \ldots + \ldots + {}^{k+1}C_{k+1} \, \mathbf{a}^{k+1} \, \mathsf{Guniu}. \\ & (\mathbf{x}+\mathbf{a})^{k+1} = (\mathbf{x}+\mathbf{a}) \, (\mathbf{x}+\mathbf{a})^k \\ & = (\mathbf{x}+\mathbf{a}) \, \big[{}^kC_0 \, \mathbf{x}^k + {}^kC_1 \, \mathbf{x}^{k-1} \, \mathbf{a} + {}^kC_2 \, \mathbf{x}^{k-2} \, \mathbf{a}^2 + \ldots + {}^kC_{r-1} \, \mathbf{x}^{k+1-r} \, \mathbf{a}^{r-1} \\ & + {}^kC_r \, \mathbf{x}^{k-r} \, \mathbf{a}^r + \ldots + {}^kC_k \, \mathbf{a}^k \big] \, (1) - \mathsf{grid} \, \mathsf{uui} \mathsf{difful} \mathsf{difful} \\ & = {}^kC_0 \, \mathbf{x}^{k+1} + {}^kC_1 \, \mathbf{x}^k \, \mathbf{a} + {}^kC_2 \, \mathbf{x}^{k-1} \, \mathbf{a}^2 + \ldots + {}^kC_r \, \mathbf{x}^{k+1-r} \, \mathbf{a}^r + \ldots + {}^kC_k \, \mathbf{x} \, \mathbf{a}^k \\ & + {}^kC_0 \, \mathbf{x}^k \, \mathbf{a} + {}^kC_1 \, \mathbf{x}^{k-1} \, \mathbf{a} + \ldots \, {}^kC_{r-1} \, \mathbf{x}^{k+1-r} \, \mathbf{a}^r + \ldots + {}^kC_k \, \mathbf{a}^{k+1} \\ & = {}^kC_0 \, \mathbf{x}^{k+1} + ({}^kC_1 + {}^kC_0) \, \mathbf{x}^k \, \mathbf{a} + ({}^kC_2 + {}^kC_1) \, \mathbf{x}^{k-1} \, \mathbf{a}^2 + \ldots \ldots \\ & \dots \dots \dots + ({}^kC_r + {}^kC_{r-1}) \, \mathbf{x}^{k+1-r} \, \mathbf{a}^r + \ldots + {}^kC_k \, \mathbf{a}^{k+1} \\ & \text{ algorith} \, {}^kC_r + {}^kC_{r-1} = {}^{k+1}C_r \\ & \mathbf{r} = 1, 2, \ldots \, \mathsf{argorid} \, \, \mathsf{liffglull} \\ & {}^kC_1 + {}^kC_0 = {}^{k+1}C_1, {}^kC_2 + {}^kC_1 = {}^{k+1}C_2 \, \ldots \ldots \\ & {}^kC_0 = 1 = {}^{k+1}C_0, {}^kC_k = 1 = {}^{k+1}C_{k+1} \\ & \therefore \, (\mathbf{x} + \mathbf{a})^{k+1} = {}^{k+1}C_0 \, \mathbf{x}^{k+1} + {}^{k+1}C_1 \, \mathbf{x}^k \, \mathbf{a} + {}^{k+2}C_2 \, \mathbf{x}^{k-1} \, \mathbf{a}^2 + \ldots \ldots \\ & + {}^{k+1}C_r \, \mathbf{x}^{k+1-r} \, \mathbf{a}^r + \ldots + {}^{k+1}C_{k+1} \, \mathbf{a}^{k+1} \\ \end{split}$$

எனவே P(k) மெய்யெனில் P(k+1) மெய்யாகும்.

 \therefore கணிதத் தொகுத்தறிதல் விதிப்படி P(n) என்ற கூற்று மெய்யாகும் $n\in N$. எனவே $n\in N$ –க்கு ஈருறுப்புத் தேற்றம் நிரூபிக்கப்பட்டது.

உட்கருத்து :

- (i) $(x+a)^n$ என்ற விரிவில் (n+1) உறுப்புகள் உள்ளன.
- (ii) பொது உறுப்பு $t_{r+1} = {}^{n}C_{r} x^{n-r} a^{r}$.
- (iii) (x + a)ⁿ ன் விரிவில் 'x' –ன் படி ஒவ்வொன்றாகக் குறைந்து a–யின் படி ஒவ்வொன்றாகப் பெருக ஒவ்வொரு உறுப்பிலும் இவற்றின் படிகளின் கூடுதல் n–க்குச் சமம்.
- (iv) முதலிலிருந்தும் கடைசியிலிருந்து சமதூரத்தில் உள்ள உறுப்புகளின் கெழுக்கள் சமம்.

$$(v)$$
 $(x+a)^n$ விரிவில் உள்ள உறுப்புகளின் எண்ணிக்கை $(n+1)$ இதை 'n' எனக் கொள்க.

$$a)\ N$$
 ஒற்றை எண் எனில் நடு உறுப்பு $\ t_{rac{N+1}{2}}$.

b) N ஒரு இரட்டை எண் எனில் நடு உறுப்புகள்
$$\,t_{\frac{N}{2}}^{}$$
 , $t_{\frac{N}{2}+1}^{}$

(vi) ஈருப்புக் கெழுக்களை C_0, C_1, C_2 , எனவும் குறிக்கலாம்.

2.5.2 ஈருறுப்புக் கெழுக்களும் அவற்றின் பண்புகளும்

எடுத்துக்காட்டு 28

$$\left(x+\frac{1}{x}\right)^4$$
 -कं விரிவு காண்க.

தீர்வு :

$$\begin{split} \left(x + \frac{1}{x}\right)^4 &= 4C_0x^4 + 4C_1x^3\left(\frac{1}{x}\right) + 4C_2x^2\left(\frac{1}{x}\right)^2 + 4C_3x\left(\frac{1}{x}\right)^3 + 4C_4\left(\frac{1}{x}\right)^4 \\ &= x^4 + 4x^2 + 6 + \frac{4}{x^2} + \frac{1}{x^4} \end{split}$$

எடுத்துக்காட்டு 29

$$(x + 3y)^4$$
 –ன் விரிவு காண்க.

தீர்வு :

$$(x + 3y)^4 = 4C_0 x^4 + 4C_1 x^3(3y) + 4C_2 x^2 (3y)^2 + 4C_3 x(3y)^3 + 4C_4(3y)^4$$

= $x^4 + 4x^3(3y) + 6x^2(9y^2) + 4x(27y^3) + 81y^4$
= $x^4 + 12x^3y + 54x^2y^2 + 108xy^3 + 81y^4$

 $(2x-3y)^7$ என்ற விரிவில் 5வது உறுப்பு காண்க.

தீர்வு :

$$t_{r+1} = 7C_r (2x)^{7-r} (-3y)^r$$

$$t_5 = t_{4+1} = 7C_4 (2x)^{7-4} (-3y)^4$$

$$= 7C_3 (2x)^3 (3y)^4$$

$$= \frac{7 \times 6 \times 5}{3 \times 2 \times 1} (8x^3) (81y^4)$$

$$= (35)(8x^3)(81y^4) = 22680x^3y^4$$

எடுத்துக்காட்டு 31

$$\left(x-\frac{2}{x}\right)^{11}$$
 ல் நடு உறுப்புகளைக் காண்க.

தீர்வு :

$$n = 11$$

$$\therefore n + 1 = 12 = N =$$
இரட்டை எண்

நடு உறுப்பு
$$=$$
 $t_{\frac{N}{2}}$ மற்றும் $t_{\left(\frac{N}{2}+1\right)}$ (அ.து.) t_6 மற்றும் t_7 .

(i) Now
$$t_6 = t_{5+1}$$
 = $11C_5 x^{11-5} \left(-\frac{2}{x}\right)^5$
= $11C_5 x^6 \frac{(-2)^5}{x^5}$
= $-11C_5 \frac{x^6 2^5}{x^5}$
= $-11C_5 2^5 x = (-11C_5)(32x)$

(ii)
$$t_7 = t_{6+1}$$
 = $11C_6 x^{11-6} \left(-\frac{2}{x}\right)^6$
= $11C_6 x^5 \frac{(-2)^6}{x^6}$
= $11C_6 \frac{x^5 2^6}{x^6}$
= $11C_6 \left(\frac{64}{x}\right)$

$$\left(2x^2 - \frac{3}{x}\right)^{11}$$
 என்ற விரிவில் x^{10} –ன் கெழுவைக் காண்.

தீர்வு :

பொது உறுப்பு
$$= t_{r+1} = 11C_r (2x^2)^{11-r} \left(-\frac{3}{x}\right)^r$$
 $= 11C_r 2^{11-r} (x^2)^{11-r} \frac{(-3)^r}{x^r}$ $= 11C_r 2^{11-r} x^{22-2r} (-3)^r x^{-r}$ $= 11C_r 2^{11-r} (-3)^r x^{22-3r}$

 x^{10} –ன் கெழுவைக் காண x–ன் அடுக்கை 10–க்கு சமப்படுத்த,

=>
$$22-3r = 10$$

 $22-10 = 3r$
∴ $r = 4$

$$x^{10}$$
 –ன் கெழு = $11C_4 2^{11-4} (-3)^4 = 11C_4 (2^7) (3^4)$

எடுத்துக்காட்டு 33

 $\left(\frac{4x^2}{3} - \frac{3}{2x}\right)$ என்ற விரிவில் x இல்லாத உறுப்பைக் காண்க.

தீர்வு :

பொது உறுப்பு
$$= t_{r+1} = 9C_1 \left(\frac{4x^2}{3}\right)^{9-r} \left(\frac{-3}{2x}\right)^r$$
 $= 9C_r \frac{4^{9-r}}{3^{9-r}} \times \frac{(-3)^r}{2^r} \times (x^2)^{9-r} \frac{1}{x^r}$ $= 9C_r \frac{4^{9-r}}{3^{9-r}} \times \frac{(-3)^r}{2^r} x^{18-2r} x^{-r}$ $= 9C_r \frac{4^{9-r}}{3^{9-r}} \frac{(-3)^r}{2^r} x^{18-3r}$

 \mathbf{x} இல்லாத உறுப்பு $=\mathbf{x}^0$ –ன் கெழு

$$=> 18-3r = 0$$

$$\therefore r = 6$$

$$\therefore$$
 r = 6
x இல்லாத உறுப்பு = 9C₆ $\frac{4^{9-6}}{3^{9-6}} \frac{(-3)^6}{2^6}$

$$=9C_3 \frac{4^3}{3^3} \frac{(3)^6}{(2)^6}$$

$$=\frac{9\times8\times7}{3\times2\times1}\times\frac{64}{3^3}\times\frac{3^6}{64}$$

$$=(84)(3^3)=84\times27=2268$$

பயிற்சி 2.6

 $\left(x - \frac{2}{x}\right)^{11}$ விரிவில் உள்ள நடு உறுப்புகளைக் காண்க.

$$\left(x - \frac{2}{x}\right)^{20}$$
 –ல் x^{-8} ன்கெழுவைக் காண்க.

 $\left(x^2 - \frac{4}{x^3}\right)^{10}$ –ல் x இல்லாத உறுப்பைக் காண்க.

$$\left(2x + \frac{1}{y}\right)^9$$
 –ல் 8 –வது உறுப்பைக் காண்க.

5) $\left(3x - \frac{x^3}{6}\right)^9$ –ல் நடு உறுப்பைக் காண்க.

6)
$$\left(2x^2 + \frac{1}{x}\right)^{12}$$
 –ல் உள்ள x இல்லாத உறுப்பைக் காண்க.

 $(1+x)^{2n}$ ன் விரிவில் நடு உறுப்பு $\frac{1.3.5....(2n-1)2^n \cdot x^n}{n!}$ எனக் காட்டுக.

8)
$$\left(x+\frac{1}{2x}\right)^{2n}$$
 –ன் விரிவில் நடு உறுப்பு $\frac{1.3.5....(2n-1)}{n!}$ எனக் காட்டுக.

பயிற்சி 2.7

ஏற்புடைய விடையைத் தெரிவு செய்க.

n! = 24 எனில் n –ன் மதிப்பு 1)

- (b) 3
- (c) 4!

(d) 1

3! + 2! + 1! + 0! –ன் மதிப்பு 2)

- (b) 6
- (c) 7

(d) 9

 $\frac{1}{4!} + \frac{1}{3!}$ –ன் மதிப்பு 3)

- (a) $\frac{5}{20}$ (b) $\frac{5}{24}$ (c) $\frac{7}{12}$ (d) $\frac{1}{7}$

6 பேர்களை ஒரு வட்ட வடிவ மேஜையில் வரிசைப்படுத்தும் மொத்த வழிகள் 4)

- (a) 6
- (b) 5
- (c) 6!

(d) 5!

5) x(x-1) (x-2)! –ன் மதிப்பு

- (a) x!
- (b) (x-1)!
- (c) (x-2)!

(d) (x+1)!

6)	இருவா் 7 இடங்களை ஏற்கும் வழிகளின் எண்ணிக்கை			
	(a) 42	(b) 14	(c) 21	(d) 7
7)	$^{8}\mathrm{p}_{3}$ –ன் மதிப்பு			
	(a) $8 \times 7 \times 6$	(b) $\frac{8\times7\times6}{3\times2\times1}$	(c) 8 × 7	(d) 3 × 21
8)	$^8\mathrm{C}_0$ –ன் மதிப்பு			
	(a) 8	(b) 1	(c) 7	(d) 0
9)	$^{10}\mathrm{C}_9$ –ன் மதிப்பு			
	(a) 9	(b) 1	(c) ${}^{10}C_1$	(d) 0
10)	3 புள்ளிகள் ஒரே கோட்டில் அமையாதவாறு உள்ள 5 புள்ளிகளிலிருந்து வரையப் கோடுகளின் எண்ணிக்கை			
	(a) 10	(b) 20	(c) 5	(d) 1
11)	$\binom{5}{x} + \binom{5}{4} = \binom{6}{5}$ எனில் x –ன் மதிப்பு			
	(a) 5	(b) 4	(c) 6	(d) 0
12)	$^{10}\mathrm{c_{r}}$ $^{=10}\mathrm{c_{4r}}$ எனில் r —ன் மதிப்பு			
	(a) 2	(b) 4	(c) 10	(d) 1
13)	ஈருப்புக் கெழுக்களின் கூடுதல்			
	(a) 2 ⁿ	(b) b ⁿ	(c) 2 ⁿ	(d) n
14)	$(x+b)^n$ –ல் உள்ள கடைசி உறுப்பு			
	(a) x ⁿ	(b) b ⁿ	(c) n	(d) 1
15)	$(2x+5)^7$ விரிவில் உள்ள உறுப்புகளின் எண்ணிக்கை			
	(a) 2	(b) 7	(c) 8	(d) 14
16)	(x+a) ⁸ ல் உள்ள நடு உறுப்பு			
	(a) t ₄	(b) t ₅	(c) t ₆	(d) t ₃
17)	$(\mathbf{x}+\mathbf{a})^{\mathbf{n}}$ உள்ள பொது உறுப்பு			
	(a) t _n	(b) t _r	(c) t _{r-1}	$(d) t_{r+1}$

தொடரினங்கள் மற்றும் தொடர்கள் (SEQUENCES AND SERIES)

இயல் எண்கள் கணம் N –இல் இருந்து அல்லது அதன் ஓர் உட்கணத்தில் இருந்து மெய் எண்கள் கணம் R –க்கு வரையறுக்கப்படும் ஒரு சார்பு தொடரினம் ஆகும். ஒரு தொடரினத்தின் மதிப்பகம் N அல்லது N –இன் உட்கணம் ஆகும். அதன் துணை மதிப்பகம் R ஆகும்.

N என்ற இயல் எண்ணின் பிம்பத்தை t_n என்ற குறியீட்டால் குறிக்கின்றோம். $\{t_n\}$ அல்லது $< t_n>$ —ஐத் தொடரினத்தைக் குறிக்கப் பயன்படுத்துகிறோம். மேலும் $t_1,\,t_2,\,t_3,...$ என்பன தொடரினத்தின் உறுப்புகள் (terms) என்று அழைக்கப்படும். முடிவுடைய எண் உறுப்புகளைக் கொண்ட தொடரினம் முடிவுறு தொடரினமாகும் (finite sequence). முடிவிலா எண் உறுப்புகளைக் கொண்ட தொடரினம் முடிவுறா தொடரினமாகும் (infinite sequence).

முடிவுறு தொடரினங்களுக்கான எடுத்துக்காட்டுகள்

$$\begin{array}{ll} \hbox{(i)} & t_n = \frac{n}{n+3}, \ n < 10 \\ & \text{இதன் மதிப்பகம்} & \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \\ & \text{ மற்றும் வீச்சகம்} & \left\{\frac{1}{4}, \frac{2}{5}, \frac{3}{6}, \frac{4}{7}, \frac{5}{8}, \frac{6}{9}, \frac{7}{10}, \frac{8}{11}, \frac{9}{12}\right\}$$
 ஆகும்.
$$\hbox{(ii)} & t_n = 2 + (-1)^n \\ \end{array}$$

இதன் மதிப்பகம்
$$\{1,2,3,......\}$$

மற்றும் வீச்சகம் $\{1,3\}$ ஆகும்.

முடிவுறா தொடரினங்களுக்கான எடுத்துக்காட்டுகள்

(i) $t_n = n$ ஆவது பகா எண்

$$(ii)$$
 $t_n = +\sqrt{n}$ இன் முழு எண் பகுதி

தொடரினங்களின் உறுப்புகளுக்கிடையே ஒரு திட்டமான உறவோ அல்லது கட்டுப்பாடோ இருக்க வேண்டிய அவசியமில்லை. மேலும் ஒரு தொடரினத்தின் பொது உறுப்பு ஒரு சூத்திர வடிவில் எழுதக் கூடியதாக இருக்க வேண்டுமென்பதில்லை. ஒரு தொடரினத்தின் உறுப்புகள் ஒரு திட்டமான விதியைப் பின்பற்றுமானால், அந்த தொடரினத்திற்கு உறவுத் தொடர் (progression) என்று பெயர். எல்லா உறவுத் தொடர்களும் தொடரினங்கள் தான். ஆனால் எல்லா தொடரினங்களும் உறவுத் தொடர்கள் ஆகமாட்டா. உறவுத் தொடர்களுக்கான எடுத்துக்காட்டுகள்.

(i) 5, 10, 15, 20, 25,

(ii) 1, -1, 1, -1, 1,

(iii)
$$\frac{1}{2}$$
, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$,.....

- (iv) 1, 1, 2, 3, 5, 8, 13,
- (v) 2, 6, 3, 9, 4, 12, இன்ன பிற.

ஒரு தொடரினத்தின் உறுப்புகளின் கூடுதல் ஒரு தொடர் (series) எனப்படும். எடுத்துக்காட்டாக $\frac{3}{2} + \frac{5}{3} + \frac{7}{4} + \dots$ என்பது $\frac{3}{2}, \frac{5}{3}, \frac{7}{4}, \dots$ என்ற தொடரினத்திற்கு நிகரான தொடர் ஆகும்.

தொடரினங்களைப் பற்றி நாம் பின்னர் ஆராய இருக்கிறோம். தற்போது இரண்டு உறவுத் தொடர்களை நினைவு கூறலாம்.

- (i) கூட்டு உறவுத் தொடர் (A.P.)
- (ii) பெருக்கு உறவுத் தொடர் (G.P.)

கூட்டு உறவுத் தொடர் (Arithmetic Progression - A.P.)

ஒரு தொடரினத்தின் உறுப்புகள் தொடர்ந்து ஒரு நிலையான எண்ணால் கூடுமானால் அல்லது குறையுமானால் அந்த தொடரினம் கூட்டு உறவுத் தொடர் ஆகும்.

ஓர் A.P. இன் திட்ட அமைப்பை a, a+d, a+2d, a+3d,... என்று எடுத்துக் கொள்ளலாம். இதில் 'a' என்பது முதல் உறுப்பு 'd' என்பது பொது வித்தியாசம் ஆகும். அதன் 'n' ஆவது உறுப்பு அல்லது பொது உறுப்பு $t_n=a+(n-1)$ d ஆகும்.

அதன் 'n' உறுப்புகளின் கூடுதல்
$$S=rac{n}{2}\,\left[2a+(n-1)\;d
ight]$$
 ஆகும்.

மேலும் a,b,c என்ற மூன்று எண்கள் A.P. இல் இருப்பின் $b=\frac{a+c}{2}$

பெருக்கு உறவுத் தொடர் (Geometric Progression - G.P.)

ஓா் உறுப்பிற்கும் அதன் முன் உறுப்புக்கும் உள்ள விகிதம் மாறிலியாக இருக்கும் தொடரினம் பெருக்கு உறவுத் தொடா் ஆகும்.

ஒரு G.P. இன் திட்ட அமைப்பை a, ar, ar², ar³,... என்று எடுத்துக் கொள்ளலாம்.

இதில் 'a' என்பது முதல் உறுப்பு, 'r' என்பது பொது விகிதம் ஆகும். 'n' ஆவது உறுப்பு அல்லது பொது உறுப்பு $t_n=ar^{n-1}$ ஆகும்.

'n' உறுப்புகளின் கூடுதல்
$$S=a$$
 $\frac{(1-r^n)}{1-r}$ ஆகும்.

மேலும் a, b, c என்ற மூன்று எண்கள் G.P. இல் இருப்பின் $b^2 = ac.$

3.1 இசை உறவுத் தொடர்

HARMONIC PROGRESSION (H.P.)

ஒரு A.P. இன் உறுப்புகளின் தலைகீழிகள் ஒரு H.P. ஐ அமைக்கும்.

அதாவது
$$a_1, a_2, a_3, ..., a_n$$
,... ஒரு A.P. எனில் $\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \frac{1}{a_n},$ ஒரு H.P. ஆகும்.

மேலும் a,b,c என்ற மூன்று எண்கள் H.P. இல் இருப்பின் $\frac{1}{a},\frac{1}{b},\frac{1}{c}$ என்பன ஒரு A.P. இல் அமையும்.

$$\therefore \frac{1}{b} = \frac{\frac{1}{a} + \frac{1}{c}}{2} \text{ i.e. } b = \frac{2ac}{a+c}$$

எடுத்துக்காட்டு 1

 $\frac{1}{5}, \frac{1}{9}, \frac{1}{13}, \dots$ என்ற H.P. இன் ஏழாவது உறுப்பைக் காண்.

தீர்வு :

கொடுக்கப்பட்ட H.P. க்கு நிகரான A.P. 5, 9, 13,

$$t_n = a + (n - 1) d$$

$$t_7 = 5 + (7 - 1) 4 = 29$$

 \therefore கொடுக்கப்பட்ட H.P. இன் ஏழாவது உறுப்பு $\frac{1}{29}$

எடுத்துக்காட்டு 2

a, b, c என்பன H.P. இல் இருப்பின் $\frac{b+a}{b-a} + \frac{b+c}{b-c} = 2$ என்று நிரூபி.

தீர்வு :

a, b, c என்பன H.P இல் உள்ளன.

$$\therefore b = \frac{2ac}{a+c} \qquad \dots (1)$$

i.e.
$$\frac{b}{a} = \frac{2c}{a+c}$$

$$\frac{b+a}{b-a} = \frac{2c+a+c}{2c-a-c}$$
i.e. $\frac{b+a}{b-a} = \frac{3c+a}{c-a}$ (2)

மேலும் (1) இல் இருந்து

$$\frac{b}{c} = \frac{2a}{a+c}$$

$$\frac{b+c}{b-c} = \frac{2a+a+c}{2a-a-c}$$
i.e. $\frac{b+a}{b-c} = \frac{3a+c}{a-c}$ (3)

$$(2) + (3) \Rightarrow$$

$$\frac{b+a}{b-a} + \frac{b+c}{b-c}$$

$$= \frac{3c+a}{c-a} + \frac{3a+c}{a-c}$$

$$= \frac{3c+a}{c-a} - \frac{3a+c}{c-a} = 2$$

 ${\bf a}^{x}={\bf b}^{y}={\bf c}^{z}$ மேலும் ${\bf a},\,{\bf b},\,{\bf c}$ என்பன ${\bf G}.P.$ இல் உள்ளன எனில் $x,\,y,\,z$ என்பன ஒரு ${\bf H}.P.$ இல் அமையும் என நிரூபி.

தீர்வு :

கொடுக்கப்பட்டுள்ளது $a^x = b^y = c^z = k$ (என்க)

$$\therefore a = k^{\frac{1}{x}}, b = k^{\frac{1}{y}}, c = k^{\frac{1}{z}}$$
(1)

மேலும் கொடுக்கப்பட்டுள்ளது a, b, c, G.P. இல் உள்ளன.

:.
$$b^2 = ac$$
(2)

(1) ஐ (2) இல் பயன்படுத்தினால்

$$(K^{\frac{1}{y}})^2 = (K^{\frac{1}{x}})(K^{\frac{1}{z}})$$

i.e.
$$k^{\frac{2}{y}} = k^{\frac{1}{x} + \frac{1}{z}}$$

i.e.
$$\frac{2}{y} = \frac{1}{x} + \frac{1}{z}$$

i.e.
$$\frac{2}{y} = \frac{z + x}{xz}$$

i.e.
$$\frac{y}{2} = \frac{xz}{x+z}$$

i.e.
$$y = \frac{2xz}{x+z}$$

 \therefore x, y, z என்பன ஒரு H.P. இல் அமையும்.

பயிற்சி 3.1

- 1. $\frac{1}{2}$, $\frac{4}{13}$, $\frac{2}{9}$, என்ற H.P. இன் **4**வது மற்றும் **7**வது உறுப்புகளைக் காண்க.
- 2. ஓர் H.P. –ன் **9**–வது உறுப்பு $\frac{1}{465}$ மற்றும் **20**வது உறுப்பு $\frac{1}{388}$ எனில் அதன் **40**வது உறுப்பைக் காண்க.
- \log_{3}^{2} , \log_{6}^{2} மற்றும் \log_{12}^{2} என்பன ஒரு H.P. இல் அமையும் எனக் காட்டுக.
- a, b, c என்பன ஒரு G.P. இல் இருப்பின் $\log_a{}^m, \log_b{}^m$ மற்றும் $\log_c{}^m$ என்பன ஒரு H.P. இல் அமையும் எனக் காட்டுக.
- 5. $\frac{1}{2}$ (x+y), y, $\frac{1}{2}$ (y+z) என்பன ஒரு H.P. இல் இருப்பின் x, y, z என்பன ஒரு G.P. இல் அமையும் என்று காட்டுக.
- 6. x, y, z என்பன A.P. யிலும் மேலும் H.P. யிலும் இருக்கின்றன எனில் அவை G.P. யிலும் இருக்கும் என நிறுவுக.
- 7. a, b, c என்ற மூன்று எண்கள் ஒரு H.P. இல் இருப்பின் $\frac{a}{c} = \frac{a-b}{b-c}$ என்று நிறுவுக.
- 8. ஒரு H.P. இன் 'p' ஆவது உறுப்பு q மற்றும் 'q' ஆவது உறுப்பு 'p' எனில் அதன் (pq) ஆவது உறுப்பு 1 என நிறுவுக.
- 9. a, b, c என்பன A.P. யிலும் b, c, a என்பன G.P. யிலும் இருப்பின் c, a, b என்பன H.P. இல் இருக்கும் என்று காட்டுக.

3.2 இரு மிகை மெய் எண்களின் சராசரிகள்

(MEANS OF TWO POSITIVE REAL NUMBERS)

வரையறைகள் 'a', 'b' என்பன இரு மிகை மெய் எண்களெனில் அவற்றின்

கூட்டுச்சராசரி
$$A.M.=rac{a+b}{2}$$

பெருக்கல் சராசரி $G.M.=+\sqrt{ab}$

இசைச் சராசரி $H.M. = \frac{2ab}{a+b}$.

எடு<u>த்து</u>க்காட்டு 4

- a) 15, 25 இவற்றின் A.M. காண்க.
- b) 9, 4 இவற்றின் G.M. காண்க.
- c) 5, 45 இவற்றின் H.M காண்க.

தீர்வு :

a) A.M. =
$$\frac{a+b}{2} = \frac{15+25}{2} = \frac{40}{2} = 20$$

b) G.M. =
$$+\sqrt{ab} = +\sqrt{9 \times 4} = 6$$

c) H.M. =
$$\frac{2ab}{a+b} = \frac{2 \times 5 \times 45}{5+45} = \frac{450}{50} = 9$$

எடுத்துக்காட்டு 5

5–க்கும் 6–க்கும் இடையில் நான்கு கூட்டுச் சராசரிகளைக் காண்க.

தீர்வு :

 $5, x_1, x_2, x_3, x_4, 6$ என்பன A.P. இல் இருக்கட்டும்.

$$\therefore t_6 = 6$$

$$5 + 5d = 6$$

$$d = \frac{1}{5}$$

எனவே
$$x_1 = 5 + \frac{1}{5} = \frac{26}{5}$$

$$x_2 = \frac{26}{5} + \frac{1}{5} = \frac{27}{5}$$

$$x_3 = \frac{27}{5} + \frac{1}{5} = \frac{28}{5}$$

மேலும்
$$x_4 = \frac{28}{5} + \frac{1}{5} = \frac{29}{5}$$

தேவையான கூட்டுச் சராசரிகள் $\frac{26}{5}, \, \frac{27}{5}, \frac{28}{5}, \, \frac{29}{5}$.

எடுத்<u>து</u>க்காட்டு 6

 $rac{4}{3}$ க்கும் $rac{3}{4}$ க்கும் இடையில் மூன்று பெருக்கல் சராசரிகளைக் காண்க.

தீர்வு :

$$\frac{4}{3}\,,\,{\bf x}_1,\,{\bf x}_2,\,{\bf x}_3,\,\frac{3}{4}$$
 என்பன G.P. இல் இருக்கட்டும்

$$\therefore t_5 = \frac{3}{4}$$

i.e.
$$\frac{4}{3}$$
 r⁴ = $\frac{3}{4}$

$$\therefore \qquad r = \frac{\sqrt{3}}{2}$$

எனவே
$$x_1 = \frac{4}{3} \times \frac{\sqrt{3}}{2} = \frac{2}{\sqrt{3}}$$

$$x_2 = \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{2} = 1$$

மேலும்
$$x_3 = 1 \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$

தேவையான பெருக்கல் சராசரிகள் $\frac{2}{\sqrt{3}}$, 1, $\frac{\sqrt{3}}{2}$.

எடுத்துக்காட்டு 7

 $rac{1}{9}$ க்கும் $rac{1}{10}$ க்கும் இடையில் நான்கு இசைச் சராசரிகளைக் காண்.

தீர்வு :

$$\frac{1}{9} \; {\bf x}_1, \, {\bf x}_2, \, {\bf x}_3, \, {\bf x}_4, \,$$
என்பன $\frac{1}{10} \;$ இன் H.P. இல் இருக்கட்டும்.

$$\therefore 9, \frac{1}{x_1}, \frac{1}{x_2}, \frac{1}{x_3}, \frac{1}{x_4}, 10$$
 என்பன A.P. இல் அமையும்.

$$t_6 = 10$$

i.e.
$$9 + 5d = 10$$
 $\therefore d = \frac{1}{5}$

எனவே
$$\frac{1}{x_1} = 9 + \frac{1}{5} = \frac{46}{5}$$

 $\frac{1}{x_2} = \frac{46}{5} + \frac{1}{5} = \frac{47}{5}$

$$\frac{1}{x_3} = \frac{47}{5} + \frac{1}{5} = \frac{48}{5}$$

மேலும்
$$\frac{1}{x_4} = \frac{48}{5} + \frac{1}{5} = \frac{49}{5}$$

தேவையான இசைச் சராசரிகள்
$$\frac{5}{46}$$
, $\frac{5}{47}$, $\frac{5}{48}$, $\frac{5}{49}$.

பயிற்சி 3.2

- 1. 5–க்கும் 29–க்கும் இடையில் 3 கூட்டுச் சராசரிகளைக் காண்க.
- 2. 5–க்கும் 3645–க்கும் இடையில் 5 பெருக்கல் சராசரிகளைக் காண்க.
- 3. $\frac{1}{5}$ க்கும் $\frac{1}{20}$ க்கும் இடையில் 4 இசைச் சராசரிகளைக் காண்க.
- 4. இரு எண்களின் கூட்டுச் சராசரி **34.** அவற்றின் பெருக்கல் சராசரி **16** எனில் அவ்வெண்களைக் காண்க.
- 5. $x^2 2ax + b^2 = 0$ என்ற சமன்பாட்டின் மூலங்களின் கூட்டுச் சராசரி $x^2 2bx + a^2 = 0$ என்ற சமன்பாட்டின் மூலங்களின் பெருக்கல் சராசரி ஆகும் என்றும் இரண்டாம் சமன்பாட்டின் மூலங்களின் கூட்டுச் சராசரி முதன் சமன்பாட்டின் மூலங்களின் பெருக்கல் சராசரி ஆகும் என்றும் காட்டுக.

3.3 A.M.,G.M. மற்றும் H.M. இவைகளுக்கிடையே உள்ள தொடர்பு (RELATION BETWEEN A.M.,G.M. AND H.M.)

எந்த இரு வெவ்வேறான மிகை மெய் எண்களை எடுத்துக் கொண்டாலும் அவற்றின்

i) A.M > G.M > H.M ii) G.M. =
$$\sqrt{(A.M.) \times (H.M.)}$$

நிரூபணம்:

'a' மற்றும் 'b' என்ற இரு வெவ்வேறான மிகை மெய் எண்களின் A.M., G.M., மற்றும் H.M. இவற்றை முறையே A, G, H எனக் குறித்தால்

$$A = \frac{a+b}{2}, G = \sqrt{ab}, H = \frac{2ab}{a+b}$$

இப்போது

$$A - G = \frac{a + b}{2} - \sqrt{ab} = \frac{a + b - 2\sqrt{ab}}{2}$$
$$= \frac{a + b - 2\sqrt{a}\sqrt{b}}{2} = \frac{(\sqrt{a} - \sqrt{b})^2}{2} > 0$$

$$\therefore A > G$$
(1)

மேலும்

$$G - H = \sqrt{ab} - \frac{2ab}{a+b} = \frac{\sqrt{ab}(a+b) - 2ab}{a+b}$$
$$= \frac{\sqrt{ab}(a+b) - 2\sqrt{ab}\sqrt{ab}}{a+b}$$
$$= \frac{\sqrt{ab}(a+b - 2\sqrt{ab})}{a+b}$$
$$= \frac{\sqrt{ab}(\sqrt{a} - \sqrt{b})^2}{a+b} > 0$$

.....(2)

(1), (2) இல் இருந்து

மேலும்

A.H. =
$$\left(\frac{a+b}{2}\right)\left(\frac{2ab}{a+b}\right)$$

= ab
= $(\sqrt{ab})^2$
= G^2
 $\therefore G = \sqrt{(A)(H)}$

எனவே நிரூபிக்கப்பட்டது.

உட்கருத்து :

- (i) A.M., G.M., H.M. இவை ஒரு குறையும் G.P. ஐ உருவாக்குகின்றன.
- (ii) இரு சமமான மிகை எண்கள் ஒவ்வொன்றையும் 'a' எனக் கொண்டால்A.M. = G.M = H.M. a ஆகும்.

எடுத்துக்காட்டு 8

25க்கும் 4க்கும் இடையேயான A.M., G.M. H.M. இவை ஒரு குறையும் G.P. ஐ அமைக்கும் என்ற கூற்றைச் சரிபார்க்கவும்.

தீர்வு :

$$A = \frac{a+b}{2} = \frac{25+4}{2} = \frac{29}{2}$$

$$G = \sqrt{ab} = \sqrt{25 \times 4} = 10$$

$$H = \frac{2ab}{a+b} = \frac{2 \times 25 \times 4}{25+4} = \frac{200}{29}$$

இப்போது

$$A - G = \frac{29}{2} - 10 = \frac{29 - 10}{2} = \frac{9}{2} > 0$$

மேலும்

$$G - H = 10 - \frac{200}{29} = \frac{290 - 200}{29} = \frac{90}{29} > 0$$

(1), (2) இல் இருந்து

மேலும்

$$AH = \left(\frac{29}{2}\right) \left(\frac{200}{29}\right)$$
$$= 100 = (10)^2$$
$$= G^2.$$

எனவே A, G, H என்பன ஒரு குறையும் GP. ஐ உருவாக்கும் என்பது சரிபார்க்கப்பட்டது. \mathbf{a} \mathbf{b} $\mathbf{$

A.M, G.M. மற்றும் H.M. இவற்றை வடிவ கணித முறையில் குறித்து அதன் வாயிலாக அவை ஒரு குறையும் G.P. ஐ உருவாக்கும் என்று காட்டுக.

தீர்வு :

 OX எண் கோட்டிலிருந்து $\mathrm{OA} = a$ அலகுகள் $\mathrm{OB} = b$ அலகு வெட்டவும்.

 ${
m AB}$ ஐ விட்டமாகக் கொண்டு ஓர் அரை வட்டம் வரைக.

வட்டத்திற்கு தொடுகோடு OT வரைக. $\operatorname{TM} \perp \operatorname{AB}$ வரையவும்.

C என்பது அரைவட்டத்தின் மையம் என்க.

இதில்,

$$\frac{a+b}{2} = \frac{OA + OB}{2} = \frac{OC - AC + OC + CB}{2} = \frac{2OC}{2} = OC$$
 (∵ AC, CB ஆரங்கள்)

∴ OC என்பது a, b –க்கு இடையேயான A.M. ஆகும்.

இப்போது

$$OT^2 = OA.OB = ab$$

(: OT தொடுகோடு, OAB வெட்டுக்கோடு)

i.e.
$$OT = \sqrt{ab}$$

இப்போது

OT என்பது a, b-க்கு இடையேயான G.M ஆகும்.

 $OT^2 = OM.OC (:: \Delta OTC ||| \Delta OMT)$

i.e.
$$OM = \frac{OT^2}{OC} = \frac{ab}{\frac{a+b}{2}} = \frac{2ab}{a+b}$$

∴ OM என்பது a, b –க்கு இடையேயான H.M. ஆகும்.

செங்கோண Δ OTC இல் இருந்து

i.e.
$$A > G$$

----(1)

செங்கோண 🛮 OTM இல் இருந்து

OT > OM

i.e.
$$G > H$$

----(2)

(1), (2) இல் இருந்து

----(3)

மேலும்

$$OT^2 = OM.OC$$

∴ OC, OT மற்றும் OM ஒரு G.P. ஐ அமைக்கும்.

i.e. A, G, H ஒரு G.P. ஐ அமைக்கும்

----(4)

(3), (4) இல் இருந்து

A.M., G.M., H.M. ஒரு குறையும் G.P. ஐ உருவாக்கும்.

 $x,\,y,\,z$ என்பன வெவ்வேறான மிகை மெய் எண்கள் எனில் $(x+y)\,(y+z)\,(z+x)>8xyz$ என்று நிரூபி.

தீர்வு :

x, y ஐ எடுத்துக் கொள்வோம். A.M. > G.M என அறிவோம்.

$$\therefore \frac{x+y}{2} > \sqrt{xy} \quad i.e.(x+y) > 2\sqrt{xy} \quad \dots (1)$$

இதே போல்
$$(y+z) > 2\sqrt{yz}$$
(2)

மற்றும்
$$(z+x) > 2\sqrt{zx}$$
(3)

(1), (2), (3) –ஐச் செங்குத்தாகப் பெருக்கினால்

$$(x + y) (y + z) (z + x) > \left[2\sqrt{xy}\right] \left[2\sqrt{yz}\right] \left[2\sqrt{zx}\right]$$

i.e.
$$(x + y) (y + z) (z + x) > 8xyz$$

பயிற்சி 3.3

- 1) 25, 36 என்ற எண்களுக்கு சராசரிகளின் சமனிலி உறவைச் சரிபார்க்கவும்.
- 2) a, b, c என்பன H.P. இல் அமையும் மூன்று வெவ்வேறான மிகை எண்கள் எனில் $a^2+c^2>2b^2$ என்று நிரூபிக்க.
- $x \ (\neq 1)$ என்பது ஓர் மிகை மெய் எண் எனில், $x + \frac{1}{x} > 2$ என்று காட்டுக.

3.4 தொடரினங்களின் பொதுக்கோட்பாடு

(GENERAL CONCEPT OF SEQUENCES)

ஒரு தொடரினத்தை

(i) ஒரு விதியாலும் (rule) (ii) ஒன்றிலிருந்து மற்றொன்று வரும் உறவாலும் (Recursive relation) குறிக்கலாம்.

3.4.1 ஒரு தொடரினத்தை ஒரு விதியால் வரையறுத்தல்

இம்முறையில் t_n இன் சூத்திரம் கொடுக்கப்படும். அதிலிருந்து எந்த ஒரு குறிப்பிட்ட உறுப்பையும் கண்டுபிடிக்க முடியும்.

எடுத்துக்காட்டு 11

பின்வரும் தொடரினங்கள் ஒவ்வொன்றின் முதல் நான்கு உறுப்புகளைக் காண்க.

a)
$$t_n = 3n - 2$$
 b) $t_n = \frac{n^2 + 1}{n}$ c) $t_n = \frac{2n + 1}{2n - 1}$ d) $t_n = \frac{2^n}{n^2}$

e)
$$<\frac{1+(-1)^n}{2}>$$

e)
$$<\frac{1+(-1)^n}{2}>$$
 f) $<\frac{n+1}{n-1}>$, $n>1$

தீர்வு :

a) 1, 4, 7, 10 b)
$$2, \frac{5}{2}, \frac{10}{3}, \frac{17}{4}$$
 c) $3, \frac{5}{3}, \frac{7}{5}, \frac{9}{7}$ d) $2, 1, \frac{8}{9}, 1$

c)
$$3, \frac{5}{3}, \frac{7}{5}, \frac{9}{7}$$

d) 2, 1,
$$\frac{8}{9}$$
, 1

f) 3, 2,
$$\frac{5}{3}$$
, $\frac{3}{2}$

எடுத்துக்காட்டு 12

பின்வரும் தொடரினங்கள் ஒவ்வொன்றின் வீச்சகத்தைக் காண்க.

b)
$$< 2n - 1 >$$

c)
$$< 1 + (-1)^n >$$
 d) $< (-1)^n >$

$$(-1)^n >$$

e)
$$< (-1)^{n-1} >$$

தீர்வு :

- a) இரட்டைப்படை மிகை முழுக்களின் கணம் $\{2, 4, 6, \dots\}$
- b) ஒற்றைப்படை மிகை முழுக்களின் கணம் $\{1,3,5,\dots\}$
- c) $\{0, 2\}$
- d) {-1, 1}
- e) {-1, 1}

எடுத்<u>து</u>க்காட்டு 13

பின்வரும் தொடரினத்தின் வீச்சகத்தைப் பற்றி நீவிர் யாது கூறுவீர் : $\mathbf{t_n} = \mathbf{n^2} - \mathbf{n} + 41,$ $n \leq 40$?

தீர்வு :

வீச்சகம்

இது 41 முதல் 1601 வரையிலான அனைத்து பகா எண்களின் கணம் ஆகும்.

எடுத்துக்காட்டு 14

பின்வரும் தொடரினங்களின் n ஆவது உறுப்பின் பொது வடிவ அமைப்பைக் காண்க.

a)
$$1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots$$
 b) $\frac{3}{2}, \frac{5}{4}, \frac{7}{6}, \frac{9}{8}, \dots$ c) $3, 15, 35, 63, \dots$

b)
$$\frac{3}{2}$$
, $\frac{5}{4}$, $\frac{7}{6}$, $\frac{9}{8}$,

e)
$$\frac{1}{2}$$
, $-\frac{2}{3}$, $\frac{3}{4}$, $-\frac{4}{5}$,....

தீர்வு :

a)
$$t_n = \frac{1}{n^2}$$

b)
$$t_n = \frac{2n+1}{2n}$$
 c) $t_n = 4n^2 - 1$ d) $t_n = 4n^2 + 1$

c)
$$t_n = 4n^2 - 1$$

d)
$$t_n = 4n^2 + 1$$

e)
$$t_n = (-1)^{n+1} \frac{n}{n+1}$$
 f) $t_n = \frac{(-1)^n}{n^2 + n}$

f)
$$t_n = \frac{(-1)^n}{n^2 + n}$$

3.4.2 ஒரு தொடரினத்தை ஒன்றிலிருந்து மற்றொன்று வரும் உறவால் குறித்தல்

இம்முறையில் தொடரினத்தின் சில துவக்க உறுப்புகளும் ஓர் உறவும் கொடுக்கப்படும் அவைகளைப் பயன்படுத்தி அதன் எந்த ஓர் உறுப்பையும் கண்டுபிடிக்க முடியும்.

எடுத்துக்காட்டு 15

 $a_1=1,\, a_2=0,\, a_n=2a_{n-1}$ - $a_{n-2},\, n>2$ என்ற உறவால் குறிக்கப்படும் தொடரினத்தின் முதல் ஏழு உ<u>ற</u>ுப்புகளைக் காண்க.

தீர்வு:

$$a_3 = 2a_2 - a_1 = 0 - 1 = -1$$

$$a_4 = 2a_3 - a_2 = -2 - 0 = -2$$

$$a_5 = 2a_4 - a_3 = -4 + 1 = -3$$

$$a_6 = 2a_5 - a_4 = -6 + 2 = -4$$

$$a_7 = 2a_6 - a_5 = -8 + 3 = -5$$

முதல் ஏழு உறுப்புகள் 1, 0, -1, -2, -3, -4, -5

எடுத்துக்காட்டு 16

 $a_1=1,\ a_2=1,\ a_{n+1}=a_n+a_{n-1},\ n>2$ என்ற தொடரினத்தின் முதல் 10 உறுப்புகளைக் காண்க.

தீர்வு :

$$a_3 = a_2 + a_1 = 1 + 1 = 2$$

$$a_4 = a_3 + a_2 = 2 + 1 = 3$$

$$a_5 = a_4 + a_3 = 3 + 2 = 5$$

$$a_6 = a_5 + a_4 = 5 + 3 = 8$$

$$a_7 = a_6 + a_5 = 8 + 5 = 13$$

$$a_8 = a_7 + a_6 = 13 + 8 = 21$$

$$a_9 = a_8 + a_7 = 21 + 13 = 34$$

$$a_{10} = a_9 + a_8 = 34 + 21 = 55$$

முதல் பத்து உறுப்புகள் 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

உட்கருத்து :

இது போன்ற தொடரினம் ஃபிபினாசி (Febinacci) தொடரினம் என்றழைக்கப்படுகிறது. **எடுத்துக்காட்டு 17**

(i) $t_n=2^{n+1}$ - 3 (ii) $a_1=1,\,a_n=2a_{n-1}+3,\,n\geq 2$ என்பன ஒரே தொடரினத்தைத் தான் குறிக்கின்றன என்று காட்டுக.

தீர்வு :

(i)
$$t_n = 2^{n+1} = 3$$

$$t_1 = 2^2 - 3 = 1$$

$$t_2 = 2^3 - 3 = 5$$

$$t_3 = 2^4 - 3 = 13$$

$$t_4 = 2^5 - 3 = 29$$

$$t_5 = 2^6 - 3 = 61$$
 @ன்ன பிற.

தொடரினம் 1, 5, 13, 29, 61

(ii)
$$a_1=1$$

$$a_n=2a_{n-1}+3,\, n\geq 2$$

$$a_2=2a_1+3=2+3=5$$

$$a_3=2a_2+3=10+3=13$$

$$a_4=2a_3+3=26+3=29$$

$$a_5=2a_4+3=58+3=61$$
 இன்ன பிற. தொடரினம் $1,\, 5,\, 13,\, 29,\, 61,\, \ldots$

இரு தொடரினங்களும் ஒன்றே தான்.

உட்கருத்து :

சில தொடரினங்கள் எந்த ஒரு சூத்திரத்தாலும் குறிக்க இயலாமலும் இருக்கலாம். எடுத்துக்காட்டாக பகா எண்களின் தொடரினம்

கணித வல்லுனா்கள் பகா எண்கள் அனைத்தையும் கொடுக்கக்கூடிய ஒரு பொதுவான சூத்திரத்தைப் பெறும் பெருமுயற்சியில் இன்னமும் ஈடுபட்டுள்ளனா். அவா்களின் முயற்சி இதுகாறும் வெற்றியடையவில்லை.

பயிற்சி 3.4

1) பின்வரும் தொடரினங்கள் ஒவ்வொன்றின் முதல் 5 உறுப்புகளைக் காண்க.

(a)
$$<\frac{n+1}{n!}>$$

(b)
$$< \frac{(-1)^{n-1}}{n+1}$$

$$(c) < \frac{1}{n^n} >$$

(a)
$$<\frac{n+1}{n!}>$$
 (b) $<\frac{(-1)^{n-1}}{n+1}>$ (c) $<\frac{1}{n^n}>$ (d) $<\frac{1-(-1)^n}{n+1}>$

(e)
$$< n 2^{2n-1} >$$

(e)
$$< n \ 2^{2n-1}>$$
 (f) $< (-1)^n >$ (e) $< 6n-1>$

$$(e) < 6n - 1 >$$

 $t_n = egin{cases} rac{n+3}{2}, & \text{'n'} & \mbox{gri g-jnmp} & \mbox{srim armho} \mbox{srim armho}$ 2)

என்ற தொடரினத்தின் முதல் 7 உறுப்புகளைக் காண்க.

பின்வரும் தொடரினங்கள் ஒவ்வொன்றின் வீச்சகத்தைக் காண்க. 3)

(a)
$$< 1 + (-1)^{n+1} >$$

(b)
$$< (-1)^{n+1} >$$

பின்வரும் தொடரினங்கள் ஒவ்வொன்றின் பொது உறுப்பினைக் காண்க. 4)

(e)
$$\frac{10}{3}$$
, $\frac{20}{9}$, $\frac{30}{27}$, $\frac{40}{81}$,

ஒன்றிலிருந்து மற்றொன்று வரும் உறவால் குறிக்கப்பட்ட பின்வரும் தொடரினங்கள் 5) ஒவ்வொன்றின் முதல் 6 உறுப்புகளைக் காண்க.

(a)
$$a_1 = 1$$
, $a_n = \frac{a_{n-1}}{2}$, $n > 1$

(b)
$$a_1 = 5$$
, $a_n = -2a_{n-1}$, $n > 1$

(c)
$$a_1 = 1$$
, $a_n = 3a_{n-1} + 1$, $n > 1$

(d)
$$a_1 = 2$$
, $a_n = 2a_{n-1} + n$, $n > 1$

(e)
$$a_1 = 1$$
, $a_n = a_{n-1} + n^2$, $n > 1$

(f)
$$a_1 = 2$$
, $a_2 = 1$, $a_n = a_{n-1} - 1$, $n > 2$

(g)
$$a_1 = 1$$
, $a_2 = 1$ $a_n = (a_{n-1})^2 + 2$, $n > 2$

(g)
$$a_1 = 1$$
, $a_2 = 1$ $a_n = (a_{n-1})^2 + 2$, $n > 2$
 (h) $a_1 = 1$, $a_2 = -1$, $a_n = a_{n-2} + 2$, $n > 2$

3.5 கூட்டுவட்டி

(COMPOUND INTEREST)

குறிப்பிட்ட கால இடைவெளியில் அவ்வப்போது கிடைக்கும் வட்டி அந்தந்த அசல்களுடன் கூட்டப்பட்டு அடுத்த காலத்திற்கான வட்டி கணக்கிடப்படும். அதாவது கிடைக்கும் வட்டி, மறுமுதலீடு செய்யப்பட்டு, வட்டிக்கு வட்டி தருவது கூட்டு வட்டியாகும்.

கூட்டு வட்டிப்படி கூடுதல் காண சூத்திரம்

$$A = P(1+i)^n$$
, இதில் $i = \frac{r}{100}$

இங்கு P = அசல் (தற்போதைய மதிப்பு)

A = கூடுதல்

r= வட்டி வீதம்

i = ஓராண்டுக்கு ஓரலகு பணத்திற்கு வட்டி

மேலும் தற்போதைய மதிப்பு $P = \frac{A}{(1+i)^n}$

உட்கருத்து :

- (i) கூட்டுவட்டியில் கூடுதல் தொகைகள் ஒரு G.P. –ஐ உருவாக்கும்.
- (ii) வட்டி ஆண்டுக்கு ஒரு தடவைக்கு மேல் கொடுக்கப்பட்டால் அதற்கு ஒப்பு வட்டி என்று பெயர்.
- (iii) வட்டி ஆண்டுக்கு k தடவைகள் சேர்க்கப்பட்டால் i -ஐ $\frac{i}{k}$ என்றும் n -ஐ nk என்றும் மாற்ற வேண்டியிருக்கும்.
- (iv) ஓர் அசல் T வருடங்களில் N மடங்கானால் T imes n வருடங்களில் N^n மடங்காகும்.

எடுத்துக்காட்டு 18

ரூ. $1{,}000$ க்கு 5% வட்டி வீதத்தில் 10 ஆண்டுகளில் கிடைக்கும் கூட்டு வட்டியைக் காண்க.

தீர்வு:

$$A = P (1 + i)^n$$
 $= 1000 (1 + 0.05)^{10}$
 $= 1000 (1.05)^{10}$
 $= Rs. 1629$
கூட்டு வட்டி $= A - P$
 $= 1629 - 1000$
 $= ett. 629$.

$$\log 1.05 = 0.0212$$

$$0.2120$$

$$\log 1000 = 3.0000 + 3.2120$$
Antilog 3.2120
$$= 1629$$

ரூ. $1{,}000$ க்கு 4% வட்டி வீதத்தில் 10 ஆண்டுகளில் கிடைக்கும் கூட்டு வட்டியைக் காண்க.

தீர்வு :

$$A = P (1 + i)^n$$
 $= 1000 (1 + 0.01)^{40}$
 $= Rs. 1486$
கூட்டு வட்டி $= A - P$
 $= 1486 - 1000$
 $= eg. 486.$

மடக்கைக் கணக்கிடுகள்
 $log 1.01 = 0.0043$
 $\frac{40}{0.1720} \times \frac{40}{0.1720} \times \frac{40}$

எடுத்துக்காட்டு 20

குழந்தையின் பிறந்த நாளன்று அதன் பெயரில் ஒருவர் ரூ. 10,000 முதலீடு செய்கிறார். ஆண்டு வட்டி 12% வட்டி மாதந்தோறும் கூட்டப்பட்டால் 20ஆவது வயதில் பெறப்படுவது எவ்வளவு ?

தீர்வு :

$$A = P (1 + i)^n$$
 $= 10000 (1 + 0.01)^{240}$ $= 10000 (1.01)^{240}$ $= 1.0320$ $= 1.07,600$ $= 1.07,600$ $= 1.07,600$ $= 1.07,600$ $= 1.07,600$

எடுத்துக்காட்டு 21

1987 ஆம் ஆண்டு ஒரு நகரின் ஜனத்தொகை 50,000 ஆகும். ஜனத்தொகை ஆண்டுக்கு 5% கூடுகிறது எனில் 1997 ஆம் ஆண்டு அந்த நகரின் ஜனத்தொகையைக் காண்க.

தீர்வு:

A = P
$$(1 + i)^n$$

= $50000 (1 + 0.05)^{10}$
= $50000 (1.05)^{10}$
= $81,470$
Log $1.05 = 0.0212$
 0.2120
 0.2120
Antilog 4.9110
= $81,470$

ஓர் இயந்திரம் ஆண்டு ஒன்றுக்கு 10% வீதம் அதன் மதிப்பில் குறைகிறது. இயந்திரம் ரூ. 10,000 க்கு வாங்கப்பட்டது எனில் 10 வருட முடிவில் அதன் மதிப்பைக் காண்க.

தீர்வு :

$$A = P (1-i)^n$$
 படக்கைக் கணக்கீடுகள் $\log 0.9 = \overline{1.9542}$ $= 10000 (0.9)^{10}$ $= 6$. $3,483$ $\log 10000 = 4.0000 + \frac{3.5420}{3.5420}$ Antilog 3.5420 $= 3,483$

எடுத்துக்காட்டு 23

5% கூட்டு வட்டியில் 5 ஆண்டுகள் கழித்து ரூ.12,000 ஆகும் தொகையின் தற்போதைய மதிப்பைக் கண்டுபிடி.

தீர்வு :

$$P = \frac{A}{(1+i)^n}$$
 $\log 1.05 = 0.0212$ $\log 1.05 = 0.0212$ $\log 1.05 = 0.0212$ $\log 1.05 = 0.0212$ $\log 12000 = 4.0792$ $\log 12000 = 4.0$

எடுத்துக்காட்டு 24

எந்த அசல் 13 ஆண்டுகளில் ஆண்டுக்கு 10% கூட்டுவட்டியில் ரூ. 5,525 கூடுதல் கொடுக்கும்?

தீர்வு :

$$P = \frac{A}{(1+i)^n}$$
 $\log 1.1 = 0.0414$ $\log 5525$ $\log 5525 = 3.7423$ $\log 5525 = 3.7423$ $\log 5525 = 3.2041$ $\log 1.1 = 0.0414$ $\log 5525 = 3.7423$ $\log 5525$ $\log 5525$

அரையாண்டுக்கு ஒரு முறை வட்டி கூட்டப்படும் போது எந்த வட்டி வீதத்தில் 3 ஆண்டுகளில் அசல் ரூ.2000, கூடுதல் ரூ.3,000 ஆக மாறும் ?

தீர்வு :

A = P
$$(1 + i)^n$$

 $3000 = 2000 \left(1 + \frac{i}{2}\right)^{3 \times 2}$
= $2000 \left(1 + \frac{i}{2}\right)^6$
 $\Rightarrow \left(1 + \frac{i}{2}\right)^6 = \frac{3000}{2000}$
 $\Rightarrow \left(1 + \frac{1}{2}\right) = (1.5)^{\frac{1}{6}} = 1.07$
 $\Rightarrow \frac{i}{2} = 0.07$
i.e. $\frac{r}{100} = 0.14$
 $\therefore r = 14\%$

படக்கைக் கணக்கீடுகள்

$$\log 1.5 = 0.1761 \\ \frac{\div 6}{0.02935}$$

Antilog
$$0.02935$$

= 1.07

எடுத்துக்காட்டு 26

13% கூட்டு வட்டி வீதத்தில் எவ்வளவு காலத்தில் ஓர் அசல் மும்மடங்காகும் ?

தீர்வு :

$$A = P(1+i)^n$$

$$3P = P(1 + 0.13)^n$$

i.e.
$$3 = (1.13)^n$$

log 3 = n log 1.13
i.e. n =
$$\frac{\log 3}{\log 1.13} = \frac{0.4771}{0.0531}$$

மடக்கைக் கணக்கீடுகள்

$$\log 0.4771 = \overline{1}.6786$$

$$\log 0.0531 = \overline{2}.7251 - 0.9535$$

Antilog
$$0.9535$$

= 8.984

3.5.1 மெய் வட்டி வீதம் :

ஆண்டுக்கு ஒரு முறைக்கு மேல் வட்டியானது அசலுடன் கூட்டப்படுமானால் அந்த வட்டி வீதம் ஒப்பு வட்டி வீதமாகும்.

மெய் வட்டி வீதம் > ஒப்பு வட்டி வீதம் என்பது வெளிப்படையாகும்.

ஆண்டுக்கு k தடவைகள் வட்டி கூட்டப்படும் போது ஓரலகு பணத்திற்கு ஆண்டு வட்டி i என்க. j என்பது நிகரான மெய் வட்டி என்க.

$$P(1+j) = P\left(1+\frac{i}{k}\right)^{k}$$
i.e.
$$j = \left(1+\frac{i}{k}\right)^{k} - 1$$

எடுத்துக்காட்டு 27

அரையாண்டுக்கு ஒருமுறை வட்டி சேர்க்கப்படும்போது 15% வட்டி வீதத்தின் மெய் வட்டி வீதம் காண்க.

தீர்வு :

எடுத்துக்காட்டு 28

இரு மாதங்களுக்கு ஒரு முறை வட்டி சேர்க்கப்படும்போது 16% வட்டி சதவீதத்தின் மெய் வட்டி வீதம் காண்க.

कुंग्रंथ :

$$\begin{array}{ll} \mathbf{j} &= \left(1 + \frac{\mathbf{i}}{\mathbf{k}}\right)^{\mathbf{k}} - 1 & \mathbf{log} 1.027 = 0.0116 \\ &= \left(1 + \frac{0.16}{6}\right)^{6} - 1 & \frac{6}{0.0696} \\ &= (1 + 0.027)^{6} - 1 & \mathbf{Antilog} \ 0.0696 \\ &= (1.027)^{6} - 1 & = 1.174 - 1 \\ &= 0.174 \\ &= 17.4\% \end{array}$$

ஒரு நிதி நிறுவனம் 16% ஆண்டு வட்டி அளிக்கிறது. ஒரு கடன் பத்திரம் மாதந்தோறும் வட்டி சேர்த்து 15% வட்டி தருகிறது. இவற்றில் எது சிறப்பானது என ஆராய்க.

தீர்வு :

15% ஒப்பு வட்டியின் மெய் வட்டி சதவீதம் காண்போம்.

$$j = \left(1 + \frac{i}{k}\right)^k - 1$$

$$= \left(1 + \frac{0.15}{12}\right)^{12} - 1$$

$$= (1 + 0.0125)^{12} - 1$$

$$= (1.0125)^{12} - 1$$

$$= 1.164 - 1$$

$$= 0.164$$

$$= 16.4\%$$

$$ul. imb & s. imb & s$$

மாதந்தோறும் வட்டி சேர்க்கும் 15% வட்டி சிறப்பானது.

பயிற்சி 3.5

- 1) ஆண்டு வட்டி 12% இல் 15 ஆண்டுகளில் ரூ. 5,000 எவ்வளவு கூடுதலைக் கொடுக்கும் ?
- 2) வட்டி i) ஆண்டுக்கொருமுறை ii) அரையாண்டுக்கு ஒருமுறை சேர்க்கப்படும்போது ரூ.4,800க்கு ஆண்டுக்கு 4% வட்டி வீதத்தில் கூட்டு வட்டியைக் காண்க.
- 3) ஒருவர் ரூ. 2,000 ஐ 15% வட்டி வீதத்தில் முதலீடு செய்கிறார். வட்டி மாதந்தோறும் சேர்க்கப்பட்டால் 5 ஆண்டுகள் முடிவில் அவருக்குக் கிடைக்கும் தொகை எவ்வளவு ?
- 4) ஓர் இயந்திரம் ஒவ்வொரு ஆண்டும் ஆண்டு துவக்க மதிப்பில் 10% மதிப்பிறக்கமடைகிறது. அது ரூ.20,000க்கு வாங்கப்பட்டது எனில், நான்காம் ஆண்டு முடிவில் அதன் மதிப்பைக் காண்க.
- 5) 4% கூட்டு வட்டி வீதத்தில் 4 ஆண்டுகள் கழித்து வரவேண்டிய ரூ.2,000 இன் தற்போதைய மதிப்பைக் காண்க.
- 6) திருமதி. கல்பனா அவர்கள் ஒரு குறிப்பிட்ட தொகையை 10% வட்டி வீதத்தில் 5 ஆண்டுகள் நிரந்தர வைப்பில் போட்டு வைத்து ரூ.4888 கூட்டு வட்டியாகப் பெறுகிறார். அவர் போட்ட தொகையைக் காண்க.
- 7) காலாண்டுக்கு ஒரு முறை வட்டி சேர்க்கப்படும்போது 5 ஆண்டுகளில் ரூ. 5000 முதல் ரூ.9035 கூடுதல் ஆகிறது. கூட்டு வட்டி சதவீதத்தைக் காண்க.

- 8) ஆண்டுக்கு ஒருமுறை வட்டி சேர்க்கப்படும்போது 5% கூட்டு வட்டியில் எத்தனை ஆண்டுகளில் ஒரு அசல் மும்மடங்காகும் ?
- காலாண்டுக்கு ஒருமுறை வட்டி சேர்க்கும்போது 15% ஒப்பு வட்டி வீதத்தின் மெய் வட்டி வீதம் காண்க.
- 10) அரையாண்டுக்கொருமுறை வட்டி சோ்க்கப்படும்போது 12% ஒப்பு வட்டிவீதத்தின் மெய்வட்டி வீதம் காண்க.

3.6 தவணைப் பங்கீட்டுத் தொகைகள்

(ANNUITIES)

ஒரு மாறாத தொகை, தொடர்ந்து, ஒரு குறிப்பிட்ட இடைவெளியில் செலுத்தப்படுவது தவணைப் பங்கீட்டுத் தொகை ஆகும். ஒவ்வொரு கால இடைவெளியின் இறுதியிலும் பணம் செலுத்தப்படுவது உடனடி தவணை பங்கீட்டுத் தொகை (immediate annuity) அல்லது சாதா தவணை பங்கீட்டுத் தொகை (ordinary annuity) எனப்படும். ஒவ்வொரு கால இடைவெளியின் துவக்கத்திலும் பணம் செலுத்தப்படுவது காத்திருக்க வேண்டிய தவணைப் பங்கீட்டுத் தொகை (annuity due) ஆகும். தவணைப் பங்கீட்டு தொகை என்பது பொதுவாக சாதா தவணைப் பங்கீட்டுத் தொகையைக் குறிக்கும்.

3.6.1 உடனடி தவணைப் பங்கீட்டுத் தொகை (Immediate Annuity)

n ஆண்டுகளுக்கு ஒவ்வொரு ஆண்டு முடிவிலும் 'a' பணம் செலுத்தப்பட்டால்

$$A = \frac{a}{i}[(1+i)^n - 1]$$

மேலும் தற்கால மதிப்பு

$$P = \frac{a}{i} [1 - (1+i)^{-n}]$$

3.6.2 காத்திருக்க வேண்டிய தவணைப் பங்கீட்டுத் தொகை (Annuity Due)

n ஆண்டுகளுக்கு ஒவ்வொரு ஆண்டு துவக்கத்திலும் 'a' பணம் செலுத்தப்பட்டால்

$$A = \frac{a}{i}(1+i)[(1+i)^{n} - 1]$$

மேலும் தற்கால மதிப்பு

$$P = \frac{a}{i}(1+i) [1-(1+i)^{-n}]$$

எடுத்துக்காட்டு 30

ஆண்டுக்கு 10% வட்டி சேர்க்கப்படும் போது ஒவ்வொரு ஆண்டின் இறுதியிலும் ரூ.2,000 வீதம் 4 ஆண்டுகளுக்கு செலுத்தப்படும் தவணைப் பங்கீட்டுத் தொகையின் மொத்தத் தொகையைக் காண்க.

தீர்வு :

$$A = \frac{a}{i}[(1+i)^n - 1]$$
 $\log 1.1 = 0.0414$ $\log 1.1 = 0.$

எடுத்துக்காட்டு 31

12% ஆண்டு வட்டியில் மாதந்தோறும் வட்டி சேர்க்கப்படும் போது ஒவ்வொரு மாதமும் ரூ.1,000 வீதம் 12 மாதங்களுக்கு செலுத்தப்படும் சாதா தவணைப் பங்கீட்டுத் தொகையின் மொத்தத்தைக் காண்க.

தீர்வு :

ஒரு வங்கி காலாண்டுக்கு ஒருமுறை வட்டி சேர்த்து 8% வட்டி கொடுக்கிறது. ஒவ்வொரு காலாண்டு முடிவிலும் எவ்வளவு தொகை செலுத்தினால் 3 ஆண்டுகள் முடிவில் ரூ.3,000 கிடைக்கும் ?

தீர்வு :

்.e.
$$3000 = \frac{a}{0.02}[(1.02)^{12} - 1]$$

$$\Rightarrow 60 = a [1.2690 - 1]$$

$$\Rightarrow 60 = a [0.2690]$$
∴ $a = \frac{60}{0.2690}$

$$= etc. 223$$
Log 1.02 = 0.0086

$$\frac{12}{0.1032} \times \frac{12}{0.1032} \times \frac{12}{0.1032}$$

எடுத்துக்காட்டு 33

ஒவ்வொரு ஆண்டு முடிவிலும் ரூ.750 வீதம் 5 ஆண்டுகளுக்கு 15% கழிவு வீதத்தில் செலுத்தப்படும் தவணைப் பங்கீட்டு தொகையின் தற்போதைய மதிப்பு யாது ?

தீர்வு 🗅

எடுத்துக்காட்டு 34

ஒரு கருவி தவணை முறையில் வாங்கப்படுகிறது. வாங்கும் சமயம் ரூ.5000 செலுத்தி பின்னர் முதல், இரண்டாம், மூன்றாம், நான்காம் வருட முடிவில் ஒவ்வொரு முறையும் ரூ.3,000 தவணை செலுத்தப்படுகிறது. ஆண்டு வட்டி வீதம் 5% எனில் கருவியின் கொள்முதல் வி—ைலயைக் காண்க.

தீர்வு :

P =
$$\frac{a}{i}[1-(1+i)^{-n}]$$

= $\frac{3000}{0.05}[1-(1.05)^{-4}]$
= $\frac{3000}{\frac{5}{100}}[1-0.8226]$
= $\frac{300000}{5}[0.1774]$
= $60000[0.1774]$
= 60.10644

படக்கைக் கணக்கீடுகள்

 \therefore கொள்முதல் விலை = ரூ. (5000 + 10644) = ரூ. 15,644

எடுத்துக்காட்டு 35

ஒருவா் அரையாண்டுக்கு ஒருமுறை வட்டி சோ்த்து கொடுப்பதாய் 8% ஆண்டு வட்டி வீதத்தில் ரூ.5000 கடன்பெற்று அதனை 10 சமமான தவணைகளில் ஒவ்வொரு ஆறு மாதங்கள் முடிவிலும் கொடுப்பதாக ஒப்புக்கொண்டால் அவா் செலுத்த வேண்டிய தவணைப் பணத்தைக் காண்க.

தீர்வு :

எடுத்துக்காட்டு 36

இயந்திரம் X இன் விலை ரூ. 15,000. இயந்திரம் Y இன் விலை ரூ. 20,000. அவற்றிலிருந்து கிடைக்கும் ஆண்டு வருவாய் முறையே ரூ. 4,000 மற்றும் ரூ.7,000 ஆகும். இயந்திரம் X –இன் ஆயுட்காலம் 4 ஆண்டுகள் Y –இன் ஆயுட்காலம் 7 ஆண்டுகள் எனில் எந்த இயந்திரத்தை வாங்குவது சிறந்தது ? (ஆண்டுக்கு 8% கழிவு வீதம் எனக் கொள்க).

தீர்வு :

இயந்திரம் X:

இயந்திரம் வாங்க செலவு = ரூ. 15,000

ஒவ்வொரு ஆண்டு வருமானத்தின் தற்போதைய மொத்த மதிப்பு

$$= \frac{a}{i} [1 - (1+i)^{-n}]$$

$$= \frac{4000}{0.08} [1 - (1.08)^{-4}]$$

$$= \frac{400000}{8} [1 - 0.7352]$$

$$\mathbf{L}$$
ចំនេះ \mathbf{L} \mathbf{L}

தற்போதைய வரவு தற்போதைய செலவைவிடக் குறைவாய் உள்ளது.

<u>இயந்திரம் Y</u>

இயந்திரம் வாங்க செலவு = ரூ. 20,000

ஒவ்வொரு ஆண்டு வருமானத்தின் தற்போதைய மொத்த மதிப்பு

$$= \frac{a}{i} [1 - (1+i)^{-n}]$$

$$= \frac{7000}{0.08} [1 - (1.08)^{-7}]$$

$$= \frac{7000}{8} [1 - 0.5837]$$

$$= \frac{700000}{8} [0.4163]$$

$$= 87500 [0.4163]$$

$$= 65. 36,420$$

தற்போதைய வரவு தற்போதைய செலவை விட அதிகமாக உள்ளது.

∴ இயந்திரம் Y ஐ வாங்கலாம்.

நான் ஆண்டுக்கு 5% கூட்டு வட்டி தரும் வங்கியில் ஒவ்வொரு ஆண்டும் ரூ.500 வீதம் 10 ஆண்டுகள் செலுத்தினால் 10 ஆண்டுகள் முடிவில் நான் பெறும் தொகையைக் காண்க.

தீர்வு :

A =
$$\frac{a}{i}(1+i)[(1+i)^n - 1]$$

= $\frac{500}{0.05}(1.05)[(1.05)^{10} - 1]$
= $\frac{525}{0.05}[1.629 - 1]$
= $\frac{525}{\frac{5}{100}}[0.629]$
= $\frac{52500}{5}[0.629]$
= 10500 [0.629]
= ets. 6604.50

படக்கைக் கணக்கீடுகள்

$$log1.05 = 0.0212$$

$$\frac{10}{0.2120} \times Antilog 0.2120$$

$$= 1.629$$

எடுத்துக்காட்டு 38

காலாண்டுக்கு ஒருமுறை வட்டியைச் சேர்த்து 8% வட்டியளிக்கும் ஒரு S.B. கணக்கில் ஒவ்வொரு காலாண்டு துவக்கத்திலும் ரூ.1,000 வீதம் செலுத்ததினால் 3 ஆண்டு முடிவில் கணக்கில் சேகரமாகும் தொகை எவ்வளவு ?

தீர்வு :

A =
$$\frac{a}{i}(1+i)[(1+i)^n - 1]$$

= $\frac{1000}{0.02}(1.02)[(1.02)[(1.02)^{12} - 1]$
= $\frac{1020}{0.02}[1.269 - 1]$
= $\frac{1020}{\frac{2}{100}}[0.269]$
= $\frac{102000}{2}[0.269]$
= 51000 [0.269]
= etc. 13.719

படக்கைக் கணக்கீடுகள்

$$\log 1.02 = 0.0086$$

$$\frac{12}{0.1032} \times \frac{1}{0.1032}$$
Antilog 0.1032
$$= 1.269$$

ஆண்டுக்கு 15% வீதம் மாதந்தோறும் வட்டி சேர்க்கப்படும் போது ஒவ்வொரு மாதத் துவக்கத்திலும் எவ்வளவு சமமான தொகை செலுத்தினால் 3 ஆண்டுகளில் ரூ. 4,00,000 சேகரமாகும் ?

தீர்வு :

எடுத்துக்காட்டு 40

ஆண்டுக்கு 4% வட்டி வீதப்படி 2 ஆண்டுகளுக்கு ஆண்டுக்கு ரூ.200 செலுத்தும் காத்திருக்கும் தவணைப் பங்கீட்டுப் பணத்தின் தற்போதைய மதிப்பு யாது ?

தீர்வு:

$$P = \frac{a}{i}(1+i)[1-(1+i)^{-n}]$$

$$= \frac{200}{0.04}(1.04)(1-(1.04)^{-2}]$$

$$= \frac{208}{\frac{4}{100}}[1-0.9247]$$

$$= \frac{20800}{4}[0.0753]$$

$$= 5,200[0.0753]$$

$$= 6.391.56$$

பயிற்சி 3.6

- 1) ஆண்டுக்கு 7% வட்டி வீதத்தில் வருடத்திற்கு ஒரு முறை வட்டி சேர்க்கப்படும் போது வருடத்திற்கு ரூ.1,000 வீதம் 5 ஆண்டுகளுக்கு செலுத்தப்படும் சாதாரண தவணைப் பங்கீட்டுத் தொகையின் எதிர்கால மதிப்பைக் காண்.
- 2) அரையாண்டுக்கு ஒருமுறை வட்டி சேர்த்து 8% வட்டியளிக்கும் வங்கியில் ஒருவர் ஒவ்வொரு ஆறுமாத முடிவிலும் ரூ.75 வீதம் 10 ஆண்டுகள் பணம் செலுத்துகிறார். பத்து ஆண்டுகளின் முடிவில் அவர் கணக்கில் எவ்வளவு இருக்கும் ?
- 3) ஆண்டுக்கு 8% வீதம் ஆறு மாதங்களுக்கு ஒருமுறை வட்டி சோ்க்கப்படும் போது ஒவ்வொரு ஆறுமாத முடிவிலும் ரூ. **1200** வீதம் **3** ஆண்டுகள் செலுத்தப்படும் தவணை பங்குப் பணத்தின் தற்போதைய மதிப்பைக் கண்டுபிடி.
- 4) ஒவ்வொரு ஆண்டும் ரூ.500 வீதம் 10 ஆண்டுகளுக்கு ஆண்டுக்கு 10% கழிவு வீதத்தில் பெறப்படும் தவணைப் பங்கு பணத்தின் தற்போதைய மதிப்பென்ன?
- 5) 6% வட்டி வீதம் மாதந்தோறும் வட்டி சேர்க்கப்படும் போது ஒவ்வொரு மாத முடிவிலும் ரூ.250 வீதம் 5 ஆண்டுகளுக்கு செலுத்தப்படும் தவணைப் பங்கு பணத்தின் தற்போதைய மதிப்பென்ன ?
- 6) இயந்திரம் A இன் விலை ரூ.25,000. இயந்திரம் B இன் விலை ரூ.40,000. அவற்றிலிருந்து கிடைக்கும் ஆண்டு வருமானம் முறையே ரூ.8,000 மற்றும் ரூ.10,000 ஆகும். இயந்திரம் A இன் ஆயுட்காலம் 5 ஆண்டுகள் B இன் ஆயுட்காலம் 7 ஆண்டுகள். கழிவு வீதம் ஆண்டுக்கு 10% எனில் எந்த இயந்திரத்தை வாங்குவது சிறந்தது ?
- 7) ஒருவா் 3 ஆண்டுகள் கழித்து தான் தீா்க்க வேண்டிய கடன் ரூ.3,783ஐ மூன்று சம– மான ஆண்டுத் தவணைகளில் செலுத்தி அடைத்து விட விரும்புகிறாா். 5% வட்டி ஆண்டுக்கொரு முறை சோ்க்கப்பட்டால் அவா் செலுத்த வேண்டிய தவணைப் பணத்தைக் காண்க.
- 8) ஒருவர் ரூ.98,000 மதிப்புள்ள வீட்டைத் தவணை முறையில் வாங்குகிறார். ரூ.50,000-ஐ வீட்டை வாங்கும்போது கொடுக்கிறார். மீதியை ஒவ்வொரு ஆண்டு முடிவிலும் தவணை முறையில் 20 சமமான தவணைகள் செலுத்துகிறார். 16% வட்டி வருடம் தோறும் சேர்க்கப்படுமானால் அவர் செலுத்த வேண்டிய ஒரு தவணைத் தொகையை காண்க.
- 9) 5% கூட்டு வட்டி கொடுக்கும் வங்கியில் வருடம்தோறும் ரூ.1,000 வீதம் 5 ஆண்டுகளுக்கு நான் செலுத்தினால் 5 ஆண்டு முடிவில் சேகரமாகியிருக்கும் தொகை எவ்வளவு ?
- 10) ஆண்டுக்கு 6% வட்டி வருடம்தோறும் சேர்க்கப்படுகிறது. ஒவ்வொரு ஆண்டுத் துவக்கத்திலும் ரூ.500 வீதம் செலுத்தப்பட்டால் 10 ஆண்டு முடிவில் எவ்வளவு தொகை கிடைக்கும் ?
- 11) ஒரு நிறுவனம் ஓர் இயந்திரத்தைத் தவணை முறையில் வாங்குகிறது. ஒவ்வொரு ஆண்டின் துவக்கத்திலும் ரூ. 1,000 வீதம் 8 ஆண்டுகளுக்கு தவணை செலுத்தப்படின் 20% வீதத்தில் அவற்றின் தற்போதைய மொத்த மதிப்பு என்ன ?

- 12) ஒரு வங்கி ஆண்டுக்கு 8% வீதத்தில் காலாண்டுக்கு ஒருமுறை வட்டி சேர்த்துக் கொடுக்கிறது. அந்த வங்கியில் ஒவ்வொரு காலாண்டுத் துவக்கத்திலும் எவ்வளவு தொகை செலுத்தினால் 5 ஆண்டுகளில் அது மொத்தம் ரூ.1,000 ஆகும் ?
- 13) ரூ.60,000 மதிப்புள்ள இயந்திரத்தைத் தவணை முறையில் வாங்கும்போது ஆண்டுக்கு ஒரு

	முறை 5% வட்டி சேர்க்கப்பட்டால் 10 ஆண்டுகளுக்கு ஒவ்வொரு ஆண்டு துவக்கத்திலும் எவ்வளவு செலுத்த வேண்டும் ?								
பயிற்சி 3.7									
ஏற்புடைய விடையைத் தெரிவு செய்க.									
1)	ஒரு H.P. இன் உறுப்புகளின் தலைகீழிகள் உருவாக்குவது								
	(a) A.P.	(b) G.P.	(c) H.P.	(d) இதில் ஏதுமில்லை					
2)	$\frac{1}{8}$, x, $\frac{3}{2}$ என்ப6	$\frac{1}{8}$, x , $\frac{3}{2}$ என்பன H.P. இல் இருப்பின் x இன் மதிப்பு							
	(a) $\frac{3}{13}$	(b) $\frac{4}{13}$	(c) $\frac{5}{13}$	(d) $\frac{6}{13}$					
3)	a, b இவற்றிற்கிடையேயான கூட்டுச் சராசரி								
	(a) $\frac{ab}{2}$	(b) $\frac{a+b}{2}$	(c) \sqrt{ab}	(d) $\frac{a-b}{2}$					
4)	3, 27 இவற்றிற்க	3, 27 இவற்றிற்கிடையேயான பெருக்கல் சராசரி							
	(a) 15	(b) 12	(c) 19	(d) இதில் ஏதுமில்லை					
5)	10, 15 இவற்றிற்கிடையேயான இசைச் சராசரி								
	(a) 12	(b) 25	(c) 150	(d) 12.5					
6)	$\mathbf{x}^2 - \mathbf{b}\mathbf{x} + \mathbf{c} = 0$ என்ற சமன்பாட்டின் மூலகங்களின் இசைச் சராசரி								
	(a) $\frac{2b}{c}$	(b) $\frac{2c}{b}$	(c) $\frac{2bc}{b+c}$	(d) இதில் ஏதுமில்லை					
7)	ஓா் இருபடிச் சமன்பாட்டின் மூலங்களின் கூட்டுச் சராசரி $\dfrac{3}{2}$ இசைச் சராசரி $\dfrac{4}{3}$ எனில் அந்தச் சமன்பாடு								
	(a) $x^2 + 3x + 2 = 0$ (b) $x^2 - 3x + 2 = 0$ (c) $x^2 - 3x - 4 = 0$ (d) $x^2 + 2x + 3 = 0$								
8)	இரு வெவ்வேறா	இரு வெவ்வேறான மிகை எண்களின் ${ m A.M.,G.M.,H.M.}$ ஆகியவை உருவாக்குவது							
	(a) G.P.	(b) A.P.	(c) H.P.	(d) இதில் ஏதுமில்லை					
9)	இரு வெவ்வேறா	ரு வெவ்வேறான மிகை எண்களின் $A.M.,G.M.,H.M$ முறையே A,G,H எனில்							
	(a) A > G > H	(b) A < G > H	(c) A < G < H	(d) A > G < H					

10)	இரு வெவ்வேறான மிகை எண்களின் $A.M.,G.M.,H.M.$ முறையே A,G,H எனில்						
	(a) $A = G^2H$	(b) $G^2 = AH$	(c) $A^2 = GH$	(d) A = GH			
11)	இரு மிகை மெய் எண்களின் ${ m G.M.}=300,{ m H.M.}=180$ அவற்றின் ${ m A.M.}$ இன் மதிப்பு						
	(a) 100	(b) 300	(c) 200	(d) 500			
12)	இரு மிகை மெய் எண்களின் $A.M.=4,G.M.=2$ எனில் அவற்றின் $H.M.$ இன் மதிப்பு						
	(a) 1		(c) 3	(d) 4			
13)	11	ர் ற தொடரினத்தின் ஐ					
	(a) $\frac{1}{5}$	(b) $-\frac{1}{5}$	(c) $\frac{1}{4}$	$(d) - \frac{1}{4}$			
14)	$1000,\ 995,\ 990,\ \dots$ என்ற தொடரினத்தில் n இன் எம்மதிப்பிற்கு t_n என்பது முதல் குறைப்பாக இருக்கும் ?						
	(a) 201	(b) 204	(c) 202	(d) 203			
15)	<2+(-1)n > ត ់	<2+(-1)n > என்ற தொடரினத்தின் வீச்சகம்					
	(a) N	(b) R	(c) {3, 4}	(d) {1, 3}			
16)	தனிவட்டிப்படி ஓர் அசலுக்கு ஒரு வருடத்திற்கான கூடுதல், இரு வருடத்திற்கான கூடுதல் மற்றும் 3 ஆண்டுகளுக்கான கூடுதல் உருவாக்குவது						
	(a) A.P.	(b) G.P.	(c) H.P.	(d) இதில் ஏதுமில்லை			
17)	ஓா் அசலுக்கு உருவாக்குவது	கூட்டு வட்டிப்படி	அடுத்தடுத்த ஆண்	ருகளுக்கான கூடுதல்கள்			
	(a) A.P.	(b) a G.P.	(c) H.P.	(d) இதில் ஏதுமில்லை			
18)	அசல் ரூ. P –க்கு	ரூ. P –க்கு T வருடங்களில் ஆண்டுக்கு $R\%$ வட்டி வீதத்தில் கூட்டு வட்டி					
	(a) etc. P [(1 + -	$(\frac{R}{100})^{T} + 1$	(b) etg. $P[(1+\frac{R}{100})^7]$	^г – 1]			
	(c) ரூ. P [(1 +	$\frac{R}{100}$) ^T – 100]	(d) ரூ. P [(1 + R 100) ²	$^{\Gamma} + 100$]			
19)	5% வீதம் ஆண் கூட்டு வட்டி	டுக்கு ஒரு முறை வட்டி	. சேர்க்கும் போது ரூ. 4	00க்கு 2 ஆண்டுகளுக்கான			
	(a) ரூ. 45	(b) ரூ. 41	(c) ரூ. 20	(d) ரூ. 10			
20)	ரூ. $24{,}000$ க்கு 5% வட்டி வீதத்தில் $f 3$ ஆண்டுகளுக்கான கூட்டு வட்டி						
	(а) ரூ. 3,783	(b) ரூ. 3,793	(с) ரூ. 4,793	(d) ரூ. 4,783			

21)	ஓா் அசலுக்கு ஆண்(வட்டிக்கும் தனி வட்டிக்		தில் இரண்டு ஆண் ம் ரூ. 25 எனில் அந்த அ				
	(a) ரூ. 10,000 (b) ரூ.	. 8,000 (c) ரூ	. 9,000 (d) ரூ	. 2,000			
22)	ஆண்டுக்கு 4% கூட்டு வட்டி வீதத்தில் பெற்ற ரூ.7,500 கடனை 2 ஆண்டுகளில் அடைக்கத் தேவையான தொகை						
	(a) ரூ. 8,082	(b) ரூ. 7,800	(c) ரூ. 8,100	(d) ரூ. 8,112			
23)	ஆண்டுக்கு 5% கூட்டு வட்டி வீதத்தில் ரூ.800 அசல் ரூ.882 கூடுதல் தொகையாக மாற ஆகும் காலம்.						
	(a) 1 ஆண்டு	(b) 2 ஆண்டுகள்	(c) 3 ஆண்டுகள்	(d) 4 ஆண்டுகள்			
24)	ஓர் அசல் 4% கூட்டு வட்டியில் இரண்டு ஆண்டுகளில் ரூ.1352 ஆகிறது எனில் அந்த அசல்						
	(а) ரூ. 1300	(b) ரூ. 1250	(c) ரூ. 1260	(d) ரூ. 1200			
25)	ஆண்டுக்கு 10% கூட் அசல்	.டு வட்டியில் இரண்ட	.ாம் ஆண்டுக்கு ரூ.13	2 வட்டி கொடுக்கும்			
	(a) ரூ. 1000 (b) ரூ.	. 1200 (c) ரூ	. 1320 (d) (a)	தில் ஏதுமில்லை			
26)	கூட்டு வட்டியில் 5 ஆண்டுகளில் ரூ.12,000 என்ற அசல் இரு மடங்கானால் 20 ஆண்டுகளில் அது எவ்வளவாகும் ?						
	(a) ரூ. 1,20,000	(b) ரூ. 1,92,000	(c) ரூ. 1,24,000	(d) ரூ. 96,000			
27)	ஓர் அசல் 3 ஆண்டுகளில் ரூ.10,648–ம் இரண்டாண்டுகளில் ரூ.9,680–ம் ஆகிறது. கூட்டு வட்டி சதவீதம்						
	(a) 5%	(b)10%	(c) 15%	(d) 20%			
28)	ஓா் இயந்திரத்தின் மதிப்பு ஒவ்வொரு வருடமும் அந்த வருடத் துவக்க மதிப்பில் 1 குறைகிறது. அதன் தற்போதைய மதிப்பு ரூ.729 எனில் 3 ஆண்டுகளுக்கு முன்னா் அவ மதிப்பு						
	(a) ளூ. 947.10	(b) ரூ. 800	(c) ரூ. 1000	(d) ரூ. 750.87			
29)	கூட்டு வட்டியில் ஓர் அசல் n ஆண்டுகளில் இரு மடங்கானால் நான்கு மடங்காக ஆகும் காலம்.						
	(a) 2n ² ஆண்டுகள்	$(b) n^2$ ஆண்டுகள்	(c) 4n ஆண்டுகள்	(d) 2n ஆண்டுகள்			
30)	ஓா் அசல் கூட்டு வட்டியில் 5 ஆண்டுகளில் இரு மடங்காகிறது. அது 8 மடங்காக ஆகும் காலம்.						
	(a) 15 ஆண்டுகள்	(b) 9 ஆண்டுகள்	(c) 16 ஆண்டுகள்	(d) 18 ஆண்டுகள்			

- 31) கூட்டு வட்டியில் ஓர் அசல் மூன்று ஆண்டுகளில் மூன்று மடங்காகிறது. அது 9 மடங்காக ஆகும் காலம்.
 - (a) 9 ஆண்டுகள்
- (b) 6 ஆண்டுகள்
- (c) 12 ஆண்டுகள்
- (d) 15 ஆண்டுகள்
- $\it i$ என்பது ஓரலகு பணத்திற்கு ஓராண்டிற்கான வட்டி, வட்டி ஆண்டுக்கு $\it k$ தடவைகள் சேர்க்கப்படுகிறது எனக் கொண்டால் ஓரலகு பணத்திற்கு ஓராண்டுக்கு மெய் வட்டி வீதம்

 - $(a)\left(1+\frac{k}{i}\right)^i-1 \qquad \qquad (b)\left(1+\frac{k}{i}\right)^{\frac{1}{k}}-1 \qquad \qquad (c)\left(1+\frac{i}{k}\right)^k-1 \qquad (d) \text{ இதில் ஏதுமில்லை}$
- i என்பது ஓரலகு பணத்திற்கு ஓராண்டிற்கான வட்டி, வட்டி ஆண்டுக்கு ${f k}$ மாதங்களுக்கு ஒரு முறை சேர்க்கப்படுகிறது எனக் கொண்டால் ஓரலகு பணத்திற்கு ஓராண்டுக்கு மெய் வட்டிவீதம்
 - (a) $\left(1 + \frac{12}{k}i\right)^{\frac{\kappa}{12}} 1$
- (b) $\left(1 + \frac{ki}{12}\right)^{\frac{12}{k}} 1$ (c) $\left(1 + \frac{ki}{12}\right)^{\frac{12}{k}} + 1$

(d) இதில் ஏதுமில்லை

பகுமுறை வடிவ கணிதம் (ANALYTICAL GEOMETRY)

4

"GEOMETRY" என்ற சொல்லானது கிரேக்க மொழியின் "geo" மற்றும் "metron" என்ற சொற்களிலிருந்து வருவிக்கப்பட்டது. "geo" என்றால் பூமி என்றும் "metron" என்றால் அளப்பது என்றும் பொருளாகும்.

இயற்கணித முறையை வடிவியலில் பயன்படுத்தும் கணிதத்தின் பகுதியே பகுமுறை வடிவ கணிதமாகும்.

4.1 இயங்குவரை

(LOCUS)

ஒரு புள்ளி குறிப்பிட்ட ஒரு வடிவ கணித விதிக்கு இணங்க இயங்குமாயின் அப்புள்ளியின் பாதை இயங்குவரை எனப்படும்.

இயங்குவரையின் சமன்பாடு :

இயங்குவரையில் உள்ள அனைத்துப் புள்ளிகளின் கூறுகளால் ஈடு செய்யப்படும் எந்த ஒரு தொடர்பும் இயங்குவரைச் சமன்பாடு எனப்படும்.

எடுத்துக்காட்டாக

- (i) கொடுக்கப்பட்ட கோடுகளிலிருந்து சம தொலைவில் உள்ள புள்ளியின் இயங்கு வரையானது கொடுக்கப்பட்டுள்ள கோடுகளுக்கு இணையாகவும் அவற்றிற்கு நடுவிலும் உள்ள நேர் கோடாகும்.
- (ii) நிலைத்த புள்ளியிலிருந்து எப்பொழுதும் சம தூரத்தில் உள்ள புள்ளியின் இயங்குவரை அப்புள்ளியை மையமாக உடைய வட்டமாகும்.
- (iii) A, B என்ற இரு புள்ளிகளிலிருந்து சம தூரத்தில் உள்ள புள்ளியின் இயங்கு வரை AB –க்கு மையக் குத்துக்கோடாகும்.

எடுத்<u>து</u>க்காட்டு 1

(2, 5) என்ற புள்ளியிலிருந்து எப்பொழுதும் 7 அலகு தூரத்திலிருக்கும் புள்ளியின் இயங்குவரையின் சமன்பாடு காண்க.

தீர்வு :

P(x,y) என்பது நகரும் புள்ளி என்க. A(2,5) என்பது ஒரு புள்ளி.

இப்பொழுது
$$PA = 7$$

$$\therefore$$
 PA² = 7² = 49

(அ.து.)
$$(x-2)^2 + (y-5)^2 = 49$$

 $x^2 - 4x + 4 + y^2 - 10y + 25 - 49 = 0$

 $x^2 + y^2 - 4x - 10y - 20 = 0$ என்பது இயங்குவரையின் சமன்பாடாகும்.

எடுத்துக்காட்டு 2

(2,-3), (4,7) என்ற புள்ளிகளிலிருந்து சமதூரத்தில் நகரும் புள்ளியின் இயங்குவரையைக் காண்க.

தீர்வு:

P(x, y) என்பது நகரும் புள்ளி என்க. A(2, -3), B(4, 7) என்பன கொடுக்கப்பட்டுள்ள புள்ளிகள்.

PA = PB
$$\therefore$$
 PA² = PB²
 $(x-2)^2 + (y+3)^2 = (x-4)^2 + (y-7)^2$
(.91.51.) $x + 5y - 13 = 0$

எடுத்துக்காட்டு 3

P என்ற புள்ளி நகரும் போது P மற்றும் A(1,-6), B(2,5) என்ற புள்ளிகளும் ஒரே நேர்கோட்டில் உள்ளதெனில் P-யின் இயங்குவரையின் சமன்பாடு காண்க.

தீர்வு :

 $P\left({x,y} \right)$ என்பது நகரும் புள்ளி என்க. P,A,B என்பன ஒரு கோட்டுப் புள்ளிகள்.

$$\therefore \Delta {
m PAB}$$
 —யின் பரப்பளவு $=0$

(அ.து.)
$$\frac{1}{2} [x(-6-5)+1(5-y)+2(y+6)]=0$$

 \therefore 11x – y – 17 = 0 என்பது இயங்குவரையின் சமன்பாடாகும்.

பயிற்சி 4.1

- (2,3),(-2,0) என்ற புள்ளிகளிலிருந்து சமதூரத்தில் நகரும் புள்ளியின் இயங்குவரையைக் காண்க.
- 2) A(2, 3), B(4, -5) என்பன இரு புள்ளிகள் P என்ற புள்ளியானது PA = PB என்றவாறு நகர்ந்தால், அப்புள்ளி P –யின் இயங்குவரையைக் காண்க.
- 3) (-1, 0) என்ற புள்ளியிலிருந்து உள்ள தூரம், (0, 2) என்ற புள்ளியிலிருந்து உள்ள தூரத்தைப் போல் மும்மடங்காக அமையுமாறு நகரும் புள்ளியின் இயங்கு வரையின் சமன்பாட்டைக் காண்க.
- 4) (3, 7) என்ற புள்ளியிலிருந்து எப்பொழுதும் **2** அலகு தூரத்திலிருக்கும் புள்ளியின் இயங்குவரையின் சமன்பாடு காண்க.
- 5) A(-2,3), B(4,-5) என்பன இரு புள்ளிகள். $PA^2 PB^2 = 20$ என்றவாறு உள்ள நகரும் புள்ளி P –யின் இயங்குவரையின் சமன்பாட்டைக் காண்க.
- 6) (0, 1) என்ற புள்ளியிலிருந்து உள்ள தூரம் x அச்சிலிருந்து உள்ள தூரத்தைப் போல இரு மடங்காக அமையுமாறு நகரும் புள்ளியின் இயங்குவரையின் சமன்பாட்டைக் காண்க.
- 7) (2, 3), (3, 4) என்ற புள்ளிகளை இணைக்கும் கோட்டின் மையக்குத்துக் கோட்டின் சமன்பாட்டைக் காண்க.
- 8) ஆதியிலிருந்து ஒரு புள்ளியின் தொலைவு அதன் y-அச்சுத் தொலைவை விட ஐந்து மடங்கெனில் அப்புள்ளியின் இயங்குவரையைக் காண்க.
- 9) (1,2),(0,-1) என்ற புள்ளிகளிலிருந்து 2:1 என்ற விகிதத்தில் நகரும் புள்ளியின் இயங்கு வரையைக் காண்க.
- 10) P என்ற புள்ளி நகரும் போது P மற்றும் (2, 3), (1, 5) என்ற புள்ளிகளும் ஒரே நேர்கோட்டில் உள்ளதெனில் அப்புள்ளி P –யின் இயங்குவரையின் சமன்பாடு காண்க.

4.2 நேர்கோடுகளின் சமன்பாடுகள்

(EQUATION OF LINES)

நினைவு கூர்க :

AB என்ற நேர்கோடு x, y அச்சுகளை முறையே D, C–யில் வெட்டுகிறது. θ என்பது AB என்ற கோடு x அச்சுடன் ஏற்படுத்தும் கோணம் என்க.

 $\tan \theta = AB$ -யின் சாய்வு = m. OD என்பது x வெட்டுத்துண்டு OC என்பது y வெட்டுத்துண்டு.

புள்ளி சாய்வு வடிவம் :

கொடுக்கப்பட்ட சாய்வு (m) மற்றும் புள்ளி (x_1,y_1) வழிச் செல்லும் நேர் கோட்டின் சமன்பாடு $y-y_1=m\;(x-x_1)$

சாய்வு வெட்டுத் துண்டு வடிவம்:

ஒரு நேர்கோட்டின் சாய்வு (m) மற்றும் y வெட்டுத்துண்டு (c) எனில் அக்கோட்டின் சமன்பாடு y=mx+c.

இரு புள்ளி வடிவம் :

 $(x_1,y_1),(x_2,y_2)$ என்ற புள்ளிகள் வழியாகச் செல்லும் நேர் கோட்டின் சமன்பாடு

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

 $(\mathbf{x}_1,\,\mathbf{y}_1),\,(\mathbf{x}_2,\,\mathbf{y}_2)$ என்ற புள்ளிகளை இணைக்கும் கோட்டின் சாய்வு

$$\frac{y_2 - y_1}{x_2 - x_1}$$

வெட்டுத்துண்டு வடிவம் :

x வெட்டுத்துண்டு a மற்றும் y வெட்டுத்துண்டு b என உடைய நேர்கோட்டின் சமன்பாடு

$$\frac{x}{a} + \frac{y}{b} = 1$$

பொது வடிவம் :

x, y இவற்றில் முதல் படியில் உள்ள சமன்பாடு Ax + By + C = 0 எனும் பொது வடிவம் ஒரு ரேர்கோட்டைக் குறிக்கும் இக்கோட்டின் சாய்வு

$$m = -\left(\frac{A}{B}\right)$$
.

ஆதியிலிருந்து ஒரு நேர்கோட்டிற்கு வரையப்படும் செங்குத்துக் கோட்டின் நீளம் p மற்றும் அச்செங்குத்துக்கோடு x – அச்சுடன் ஏற்படுத்தும் கோணம் α எனில் அக்கோட்டின் சமன்பாடு

$$x \cos \alpha + y \sin \alpha = p$$

நிரூபணம் :

AB என்ற கோடு x – அச்சை A –யிலும் y – அச்சை B –யிலும் வெட்டுகிறது.

OM ஆனது AB –க்கு செங்குத்து

$$OM = p$$
, $XOM = \alpha$ என்க.

x, y வெட்டுத்துண்டுகள் a, b எனில் அக்கோட்டின் சமன்பாடு

$$\frac{x}{a} + \frac{y}{b} = 1$$
(1)

செங்கோண முக்கோணம் OAM –யிலிருந்து $\frac{a}{p}=\sec{\alpha}\Rightarrow\alpha=p\,\sec{\alpha}$ ΔOBM –யிலிருந்து $\frac{b}{p}=Sec~(90^o-\alpha)\Rightarrow b=p\,\csc{\alpha}$

$$\triangle OBM$$
 –யிலிருந்து $\frac{b}{p} = Sec (90^{\circ} - \alpha) \Rightarrow b = p \csc \alpha$

$$\therefore (1) \Rightarrow \frac{x}{p \sec \alpha} + \frac{y}{p \csc \alpha} = 1$$

(அ.து.) $x \cos \alpha + y \sin \alpha = p$ என்பது கோட்டின் செங்குத்து வடிவம் ஆகும்.

4.2.2 சமச்சீர் வடிவம் / துணை அலகு வடிவம்

A என்ற நிலையான புள்ளி வழிச் செல்லும் கோடு x - அச்சுடன் ஏற்படுத்தும் கோணம் hetaமற்றும் A-யிலிருந்து r அலகு தொலைவிலுள்ள புள்ளி $P\left(x,y\right)$ எனில் அக்கோட்டின் சமன்பாடு

$$\frac{x - x_1}{\cos \theta} = \frac{y - y_1}{\sin \theta} = r$$

நிரூபணம் :

 $A(x_1,y_1)$ என்பது கொடுக்கப்பட்டுள்ள புள்ளி மற்றும் P(x,y) என்பது ஏதேனும் ஒரு புள்ளி என்க.

$$AP = r$$
,

$$PAL = \theta$$

 $\mathrm{PM} \perp \mathrm{OX}$ மற்றும் x - அச்சுக்கு இணையாக AL வரைக.

$$\therefore$$
 cos θ = $\frac{AL}{AP} = \frac{x - x_1}{r}$ μάμμι sin θ = $\frac{PL}{AP} = \frac{y - y_1}{r}$

$$\Rightarrow \frac{x-x_1}{\cos \theta} = \frac{y-y_1}{\sin \theta} = r$$
 என்பது தேவையான சமன்பாடாகும்.

உட்கருத்து :

 $P(x_1,y_1)$ என்ற புள்ளியிலிருந்து ax+by+c=0 என்ற கோட்டிற்கு வரையப்படும் கோட்டின் நீளம்

$$PN = \pm \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$$

(ii) ஆதியிலிருந்து ax + by + c = 0 க்கு வரையப்படும் செங்குத்துக்கோட்டின் நீளம் $= \pm \frac{c}{\sqrt{a^2 + b^2}}$;

(iii) ax + by + c = 0 மற்றும் $a_1x + b_1y + c_1 = 0$ என்ற இரு கோடுகளுக்கு இடைப்பட்ட கோணத்தின் இருசம வெட்டியின் சமன்பாடு $\frac{ax + by + c}{\sqrt{a^2 + b^2}} = \pm \frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}}$ எடுத்துக்காட்டு 4

x-அச்சின் மிகை திசையுடன் 120° கோணத்தை ஏற்படுத்தும் செங்குத்துக் கோட்டின் நீளம் ஆதியிலிருந்து 5 அலகுகள் எனில் அக்கோட்டின் சமன்பாட்டினைக் காண்க.

தீர்வு :

ஒரு நேர்கோட்டின் செங்குத்து வடிவம்
$$x\cos\alpha+y\sin\alpha=p$$
 இங்கு $\alpha=120^{\circ}$ மற்றும் $p=5$ எனவே நேர்கோட்டின் சமன்பாடு $x\cos120^{\circ}+y\sin120^{\circ}=5$ (அ.து.) $x-y\sqrt{3}$ $+10=0$

எடுத்துக்காட்டு 5

 $(3,\ 2)$ என்ற புள்ளியிலிருந்து 3x+2y+1=0 என்ற நேர்கோட்டிற்கு வரையப்படும் செங்குத்துக் கோட்டின் நீளத்தைக் காண்க.

தீர்வு :

(3,2) என்ற புள்ளியிலிருந்து 3x+2y+1=0 என்ற கோட்டிற்கு வரையப்படும் செங்குத்துக் கோட்டின் நீளம்

$$\pm \frac{3(3)+2(2)+1}{\sqrt{3^2+2^2}} = \frac{14}{\sqrt{13}}$$

எடுத்துக்காட்டு 6

3x + 4y + 3 = 0 மற்றும் 4x + 3y + 1 = 0 என்ற கோடுகளுக்கு இடைப்பட்ட கோணங்களின் இரு சமவெட்டிகளின் சமன்பாடுகளைக் காண்க.

தீர்வு :

இரு சமவெட்டிகளின் சமன்பாடுகள்
$$\frac{3x+4y+3}{\sqrt{9+16}}=\pm\frac{4x+3y+1}{\sqrt{16+9}}$$
 (அ.து.) $3x+4y+3=\pm(4x+3y+1)$ (அ.து.) $x-y-2=0$ மற்றும் $7x+7y+4=0$

பயிற்சி 4.2

- 1) ஒரு நோ்கோட்டின் அச்சுகளுக்கிடையே உள்ள பகுதியை இருசமக்கூறிடும் புள்ளி (-3,2). எனில் அக்கோட்டின் சமன்பாட்டைக் காண்க.
- 2) ஆதியிலிருந்து ஒரு கோட்டிற்கு உள்ள செங்குத்துத் தொலைவு **5** செ.மீ. அதன் சாய்வு **–1** எனில் அக்கோட்டின் சமன்பாட்டினைக் காண்க.

- 3) வெட்டுத்துண்டுகளின் கூடுதல் 9 உடையதும் (2,2) என்ற புள்ளியின் வழியாகச் செல்வதுமான நேர்கோட்டின் சமன்பாட்டைக் காண்க.
- 4) ஆதியிலிருந்து 4x–3y+7=0 என்ற கோட்டிற்கு வரையப்படும் செங்குத்துக் கோட்டின் நீளத்தைக் காண்க.
- 5) (– 1, k) என்ற புள்ளியிலிருந்து 5x–12y+13=0 என்ற நேர்கோட்டிற்கு வரையப்படும் செங்குத்துக் கோட்டின் நீளம் 2 எனில் k–யின் மதிப்பென்ன ?
- 6) ஆதியிலிருந்து வரையப்படும் செங்குத்துக்கோட்டின் நீளம் 4 அலகு. அச்செங்குத்துக் கோடு x-அச்சுடன் ஏற்படுத்தும் கோணம் α = 135° எனில் அக்கோட்டின் சமன்பாட்டைக் காண்.
- 7) (-2, 3) என்ற புள்ளி வழியாகச் செல்லும் நேர்கோடானது x—அச்சுடன் ஏற்படுத்தும் கோணம் 30° எனில் அக்கோட்டின் சமன்பாட்டைக் காண்க.
- 5x + 12y 7 = 0 மற்றும் 4x 3y + 1 = 0 என்ற கோடுகளுக்கு இடைப்பட்ட கோணத்தின் இருசமவெட்டியின் சமன்பாடுகளைக் காண்க.

4.3 நேர்கோடுகளின் குடும்பம்

(FAMILY OF LINES)

4.3.1. இரு நேர்கோடுகளின் குடும்பம்

இரு நேர்கோடுகள் வெட்டும் புள்ளியைக் காண அக்கோடுகளின் சமன்பாடுகளைத் தீர்க்க வேண்டும்.

4.3.2 ஒரு புள்ளி வழிக் கோடுகள்

மூன்று அல்லது அதற்கு மேற்பட்ட கோடுகள் ஒரு புள்ளிவழிச் செல்லுமாயின் அவை ஒரு புள்ளிவழிக் கோடுகள் எனப்படும்.

$$a_1x + b_1y + c_1 = 0$$
(i) $a_2x + b_2y + c_2 = 0$ (ii)

 $a_3 x + b_3 y + c_3 = 0$ (iii) என்ற நேர்கோடுகள் ஒரு புள்ளி வழிச் செல்வதற்கான நிபந்தனை

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

4.3.3 இருகோடுகளுக்கு இடைப்பட்ட கோணம்

படத்தில் ϕ என்பது $m_1=\tan \, \theta_1$ மற்றும் $m_2=\tan \, \theta_2$ என்ற சாய்வுகளையுடைய கோடுகளுக்கு இடைப்பட்ட கோணமெனில்

$$\tan \phi = \left| \frac{\mathbf{m}_1 - \mathbf{m}_2}{1 + \mathbf{m}_1 \mathbf{m}_2} \right|$$

$$\therefore \phi = \tan^{-1} \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

உட்கருத்து :

- $m_1=m_2$ எனில் கொடுக்கப்பட்டுள்ள கோடுகள் இணைகோடுகள் அதாவது இருகோடுகள் இணையானது எனில் அவற்றின் சாய்வுகள் சமம்.
- $m_1m_2=-1$ எனில் கொடுக்கப்பட்டுள்ள கோடுகள் செங்குத்துக் கோடுகள். அதாவது கொடுக்கப்பட்டுள்ள கோடுகள் செங்குத்துக் கோடுகளெனில் அவற்றின் சாய்வுகளின் பெருக்கற்பலன் -1.

எடுத்துக்காட்டு 7

 $3x+4y=13,\ 2x-7y+1=0$ மற்றும் 5x - y=14 என்ற கோடுகள் ஒரு புள்ளிவழிச் செல்லும் என நிறுவுக.

தீர்வு :

$$3x + 4y - 13 = 0$$

$$2x - 7y + 1 = 0$$

5x - y - 14 = 0 என்ற கோடுகள் ஒரு புள்ளி வழிச் செல்வதற்கான கட்டுப்பாடு

$$\begin{vmatrix} 3 & 4 & -13 \\ 2 & -7 & 1 \\ 5 & -1 & -14 \end{vmatrix} = 0$$

இங்கு

$$\begin{vmatrix} 3 & 4 & -13 \\ 2 & -7 & 1 \\ 5 & -1 & -14 \end{vmatrix}$$

$$= 3 (98+1) - 4 (-28-5) - 13 (-2+35)$$

$$= 297 + 132 - 429$$

$$= 429 - 429 = 0$$

⇒ கொடுக்கப்பட்டுள்ள கோடுகள் ஒரு புள்ளிவ<u>ழி</u>ச் செல்<u>ல</u>ும்.

எடுத்துக்காட்டு 8

சாய்வு 5 அலகுகளுள்ள 3x + 4y = 7, x + y - 2 = 0 ஆகிய கோடுகள் சந்திக்கும் புள்ளியின் வழியாகச் செல்லும் நேர்கோட்டின் சமன்பாட்டைக் காண்க.

தீர்வு :

$$3x + 4y = 7$$
(1)

$$x + y = 2$$
(2)

சமன்பாடுகள் (1), (2) ஐத் தீர்க்க (1, 1) என்பது வெட்டும் புள்ளியாகும்.

(அ.து.)
$$(x_1, y_1) = (1, 1)$$
 மற்றும் $m = 5$

 \therefore கோட்டின் சமன்பாடு y - 1 = 5 (x - 1)

$$5x - y - 4 = 0$$

எடுத்துக்காட்டு 9

5x+6y=20 மற்றும் 18x-15y=17 என்ற கோடுகள் செங்குத்துக் கோடுகள் என நிறுவுக.

தீர்வு :

கொடுக்கப்பட்டுள்ள கோடுகள்

$$5x + 6y = 20$$
(1) மற்றும்

$$18x - 15y = 17$$
(2)

$$m_1 = (1)$$
–ன் சாய்வு $= -\left(\frac{5}{6}\right) = -\frac{5}{6}$

$$m_2 = (2)$$
)-ன் சாய்வு = $-\left(\frac{18}{-15}\right) = \frac{18}{15} = \frac{6}{5}$

 $m_1 m_2 = \frac{-5}{6} \times \frac{6}{5} = -1$ \therefore கொடுக்கப்பட்டுள்ள கோடுகள் செங்குத்துக் கோடுகளாகும்.

4x + 3y - 5 = 0 என்ற கோட்டிற்கு இணையாக (2, -5) என்ற புள்ளி வழிச்செல்லும் கோட்டின் சமன்பாட்டைக் காண்க.

தீர்வு:

$$4x + 3y - 5 = 0$$
 –ன் சாய்வு $-\frac{4}{3} = m$

். இக்கோட்டிற்கு இணையான கோட்டின் சாய்வு $=-\frac{4}{3}$ மேலும் அக்கோடு $(x_1, y_1)=(2,-5)$ வழிச் செல்கிறது.

∴ தேவையான கோட்டின் சமன்பாடு

$$y + 5 = -\frac{4}{3}(x - 2)$$
$$\Rightarrow 4x + 3y + 7 = 0$$

எடுத்துக்காட்டு 11

4x-3y-8=0, 3x-4y+6=0 மற்றும் x+y-9=0 ஆகிய நேர்கோடுகளை பக்கங்களாகக் கொண்ட முக்கோணம் ஓர் இருசமபக்க முக்கோணம் எனக் காட்டுக.

தீர்வு :

$$4x-3y-8=0$$
 என்ற கோட்டின் சாய்வு $=m_1=-\left(rac{4}{-3}
ight)$ $m_1=rac{4}{3}$

$$3x - 4y + 6 = 0$$
 என்ற கோட்டின் சாய்வு $= m_2 = -\left(\frac{3}{-4}\right)$ $m_2 = \frac{3}{4}$

$$x + y - 9 = 0$$
 என்ற கோட்டின் சாய்வு $= m_3 = -\left(\frac{1}{1}\right) = -1$

கோடுகள் (1), (3) –க்கு இடைப்பட்ட கோணம் lpha எனில்

$$\therefore \tan \alpha = \left| \frac{m_1 - m_3}{1 + m_1 m_3} \right| = \left| \frac{\frac{4}{3} + 1}{1 + \frac{4}{3} (-1)} \right| = \left| \frac{\frac{7}{3}}{\frac{-1}{3}} \right| = 7$$

$$\therefore \qquad \alpha = \tan^{-1}(7)$$

 $(2),\,(3)$ –க்கு இடைப்பட்ட கோணம் β எனில்

$$\tan \beta = \left| \frac{m_2 - m_3}{1 + m_2 m_3} \right| = \left| \frac{\frac{3}{4} + 1}{1 + \frac{3}{4} (-1)} \right| = \left| \frac{\frac{7}{4}}{\frac{1}{4}} \right| = 7$$

$$\beta = \tan^{-1}(7)$$

lpha=eta எனவே கொடுக்கப்பட்டுள்ள முக்கோணம் ஓர் இருசமபக்க முக்கோணம் ஆகும்.

100 பொருட்களின் நிலையான விலை ரூ. 700 மற்றும் அதன் தோராயமான விலை ரூ. $1{,}800$ எனில் x பொருட்களின் மொத்த விலையைக் காண்க.

தீர்வு:

$$y = Ax + B$$
 என்பது x, y –ல் உள்ள பொதுவான ஒருபடிச் சமன்பாடு என்க.

இங்கு y = மொத்தவிலை

x = தயாரிக்கப்படும் பொருட்களின் எண்ணிக்கை

A, B மாறிலிகள்

x = 0 எனில், y = நிலையான விலை

(அ.து)
$$y = 700 \Rightarrow O+B = 700$$

$$B = 700$$

x = 100 எனில், y = 1800

$$\Rightarrow$$
 1800 = 100A + 700

$$\therefore$$
 A = 11

். x பொருட்கள் தயாரிப்பதற்கான மொத்தவிலை

$$y = 11x + 700$$

எடுத்துக்காட்டு 13

தயாரிக்கப்படும் பொருட்களின் எண்ணிக்கை 500–லிருந்து 1000 –மாக உயரும் போது தயாரிப்பு செலவு ரூ. 6,000 –லிருந்து ரூ. 9,000–மாக உயருகிறது. x,y –க்கு இடைப்பட்ட தொடர்பு ஓர் ஒருபடிச் சார்பெனில் செலவு (y) மற்றும் தயாரிக்கப்படும் பொருட்களின் எண்ணிக்கை (x) இவற்றுக்கிடைப்பட்ட தொடர்பினைக் காண்க.

தீர்வு:

$$y = Ax + B$$
 இங்கு

B= நிலையான விலை, X= தயாரிக்கப்படும் பொருட்களின் எண்ணிக்கை

மற்றும் y = மொத்த விலை

$$x = 500$$
 எனில், $y = 6,000$

$$\Rightarrow$$
 500A + B = 6,000 ----(1)

$$x = 1000$$
 எனில், $y = 9,000$

$$\Rightarrow$$
 1000A + B = 9,000 -----(2)

$$(1), (2)$$
 –ஐத் தீர்க்க $A = 6, B = 3,000$

எனவே x, y –க்கு இடைப்பட்ட தொடர்பு $y = 6x + 3{,}000$

பயிற்சி 4.3

- 4x + 3y = 10, 3x 4y = -5 மற்றும் 5x + y = 7 என்ற கோடுகள் ஒரு புள்ளி வழிக் கோடுகள் என நிறுவுக.
- 3x-4y=7, 4x-5y=11 மற்றும் 2x+3y+k=0 என்ற கோடுகள் ஒரு புள்ளி வழிச் சென்றால் k –யின் மதிப்பைக் காண்க.
- x + 2y + 3 = 0 மற்றும் 3x + y + 7 = 0 என்ற கோடுகள் சந்திக்கும் புள்ளி வழியாகவும் 3y 4x = 0 என்ற கோட்டிற்கு இணையாகவும் உள்ள நேர்கோட்டின் சமன்பாட்டைக் காண்க.
- 4) x + 2y = 6 மற்றும் y = x என்ற கோடுகள் சந்திக்கும் புள்ளி வழியாகவும் 3x + y 1 = 0 என்ற கோட்டிற்கு செங்குத்தாகவும் உள்ள நேர்கோட்டின் சமன்பாட்டைக் காண்க.
- 5) முக்கோணம் ABC –யின் முனைப்புள்ளிகள் முறையே A(1,2), B(-1,-3) மற்றும் C(5,-1). A வழியாக BC –க்கு வரையப்படும் செங்கோட்டின் சமன்பாட்டைக் காண்க.
- 6) x பொருட்கள் தயாரிப்பதற்கான மொத்த செலவு (y) ஆனது 3x-4y+600 = 0 என்ற சமன்பாட்டினால் பெறப்படுகிறது. நிலையான தொழிலை நடத்துவதற்கான செலவு மற்றும் தயாரிக்கப்படும் ஒவ்வொரு அதிகப்படியான பொருளுக்கு ஆகும் கூடுதல் செலவையும் காண்க.
- 7) 100 பொருட்கள் தயாரிப்பதற்கான தோராயமான செலவு ரூ. 1,200 மற்றும் நிலையான செலவு ரூ. 500 எனில் x அலகுகள் தயாரிப்பதற்கு ஆகும் மொத்த செலவினைக் காண்க. (x, y –க்கு இடைப்பட்ட தொடர்பு ஓர் ஒருபடிச் சார்பு)
- 8) தயாரிக்கப்படும் பொருட்களின் எண்ணிக்கை 5000 –லிருந்து 7000 ஆக உயரும் போது அதற்கான மொத்த செலவு ரூ. 26,000 லிருந்து ரூ. 34,000 மாக உயருகிறது. x, y –க்கு இடைப்பட்ட தொடர்பு ஓர் ஒருபடிச் சார்பெனில் செலவு (y) மற்றும் தயாரிக்கப்படும் பொருட்களின் எண்ணிக்கை (x) இவற்றுக்கிடைப்பட்ட தொடர்பினைக் காண்க.
- 9) தயாரிக்கப்படும் பொருட்களின் எண்ணிக்கை 60000 –லிருந்து ரூ. 8000 ஆக உயரும் போது அதற்கான செலவு ரூ. 33,000 –லிருந்து ரூ. 40,000 ஆக உயருகிறது. x, y –க்கு இடைப்பட்ட தொடர்பு ஓர் ஒருபடிச் சார்பெனில் செலவு (y) மற்றும் தயாரிக்கப்படும் பொருட்களின் எண்ணிக்கை (x) இவற்றுக்கிடைப்பட்ட தொடர்பினைக் காண்க.

4.4 வட்டத்தின் சமன்பாடு

(EQUATION OF CIRCLE)

ஒரு தளத்தில் நிலையான ஒரு புள்ளியிலிருந்து ஒரு மா– றாத தூரத்தில் நகரும் புள்ளியின் இயங்குவரை வட்டம் ஆகும். அந்த நிலையான புள்ளி வட்டத்தின் மையமெனவும், மாறாத தூரம் அதன் ஆரம் எனவும் கூறப்படும். படத்தில் O என்பது வட்ட மையம் மேலும் OP = r என்பது வட்டத்தின் ஆரமாகும்.

4.4.1 மையம், ஆரம் கொடுக்கப்படின் வட்டத்தின் சமன்பாடு

வட்டத்தின் மையம் C (h, k) எனவும் ஆரம் 'r' எனவும் கொள்க.

P(x, y) என்பது வட்டத்தின் மேலுள்ள ஏதேனும் ஒரு புள்ளி என்க.

$$CP = r \Rightarrow CP^2 = r^2$$

(அ.து.) $(x-h)^2 + (y-k)^2 = r^2$ என்பது வட்டத்தின் சமன்பாடாகும்.

உட்கருத்து :

'r' அலகு ஆரமாகவும், ஆதியை மையமாகவும் உடைய வட்டத்தின் சமன்பாடு

$$x^2 + y^2 = r^2$$

$4.4.2~(x_1,\ y_1),\ (x_2,\ y_2)$ என்ற புள்ளிகளை இணைக்கும் கோட்டினை விட்டமாகக் கொண்ட வட்டத்தின் சமன்பாடு

C –ஐ மையமாகக் கொண்ட வட்டத்தின் ஒரு விட்டத்தின் முனைப் புள்ளிகள் $A\left(x_1,\,y_1\right)$, $B\left(x_2,\,y_2\right)$ என்க.

 $P(x,\,y)$ என்பது வட்டப்பரிதியின் மேலுள்ள ஒரு புள்ளி என்க.

 $\triangle APB$ = அரை வட்டத்தில் உள்ள கோணம் = 90° . எனவே AP –யும் BP –யும் ஒன்றுக்கொன்று செங்குத்தாக அமையும்.

99

$$AP$$
 —யின் சாய்வு = $\frac{y-y_1}{x-x_1} = m_1$ என்க.

$${
m BP}$$
 –யின் சாய்வு = ${y-y_2\over x-x_2}=m_2$ என்க.

 $AP \perp BP$ எனவே $m_1 m_2 \stackrel{\sim}{=} -1$.

$$\Rightarrow \frac{y - y_1}{x - x_1} \frac{y - y_2}{x - x_2} = -1$$

 \Rightarrow $(x-x_1)$ $(x-x_2)+(y-y_1)$ $(y-y_2)=0$ இதுவே தேவையான வட்டத்தின் சமன்பாடாகும்.

4.4.3 ஒரு வட்டத்தின் பொது வடிவ சமன்பாடு

 $x^2 + y^2 + 2gx + 2fy + c = 0$ என்ற சமன்பாட்டை எடுத்துக் கொள்க.

(இங்கு g, f,c என்பன மாறிலிகள்) -----(1)

ie.,
$$(x^2 + 2gx) + (y^2 + 2fy) = -c$$

ie.,
$$(x^2 + 2gx + g^2 - g^2) + (y^2 + 2fy + f^2 - f^2) = -c$$

$$\Rightarrow$$
 $(x^2 + 2gx + g^2) + (y^2 + 2fy + f^2) = g^2 + f^2 - c$

ie.,
$$(x+g)^2 + (y+f)^2 = g^2 + f^2 - c$$

$$[x-(-g)]^2 + [y-(-f)]^2 = \left\{ \sqrt{g^2 + f^2 - c} \right\}^2$$

இச்சமன்பாட்டை $(x-h)^2+(y-k)^2=r^2$ என்ற வட்டத்தின் சமன்பாட்டுடன் ஒப்பிட சமன்பாடு **(1)**, மையம் (-g,-f) ஆரம் $\sqrt{g^2+f^2-c}$ உடைய ஒரு வட்டத்தைக் குறிக்கிறது.

உட்கருத்து :

- (i) இது x, y –ல் ஓர் இருபடிச் சமன்பாடு
- (ii) x^2 மற்றும் y^2 ன் குணகங்கள் சமம்
- (iii) சமன்பாட்டில் xy உறுப்பு இல்லை.
- (iv) $g^2 + f^2 c > 0$ எனில் வட்டம் மெய்யானது.
- (v) $g^2 + f^2 c = 0$ எனில் வட்டம் ஒரு புள்ளி வட்டமாகும்.
- (vi) $g^2 + f^2 c < 0$ எனில் வட்டம் கற்பைனயான வட்டமாகும்.
- (vii) இரண்டு அல்லது அதற்கு மேற்பட்ட வட்டங்கள் ஒரே மையத்தைப் பெற்றிருந்தால் அவை பொது மையவட்டங்கள் எனப்படும்.

(3, 5)ஐ மையமாகக் கொண்ட வட்டத்தின் ஆரம் 4 அலகுகளெனில் அவ்வட்டத்தின் சமன்பாட்டைக் காண்க.

தீர்வு :

(h, k)–ஐ மையமாகவும் 'r' ஐ ஆரமாகவும் உடைய வட்டத்தின் சமன்பாடு

$$(x-h)^2 + (y-k)^2 = r^2$$

இங்கு
$$(h, k) = (3, 5), r = 4$$

எனவே வட்டத்தின் சமன்பாடு $(x-3)^2 + (y-5)^2 = 16$

$$\Rightarrow x^2 + y^2 - 6x - 10y + 18 = 0$$

எடுத்துக்காட்டு 15

(2,3) ஐ மையமாக கொண்டுள்ள ஒரு வட்டம் (1,4) வழிச் செல்கிறது. அவ்வட்டத்தின் சமன்பாட்டினைக் காண்க.

தீர்வு :

(2, 3), (1, 4) இவற்றுக்கிடைப்பட்ட தூரம் ஆரமாகும்.

(அ.து.)
$$r = \sqrt{(1-2)^2 + (4-3)^2} = \sqrt{1+1} = \sqrt{2}$$

மையம்
$$= (2, 3)$$

∴வட்டத்தின் சமன்பாடு

$$(x-2)^{2} + (y-3)^{2} = \sqrt{2}^{2}$$

$$\Rightarrow x^{2} + y^{2} - 4x - 6y + 11 = 0$$

எடுத்துக்காட்டு 16

 $x^2 + y^2 - 6x + 8y - 24 = 0$ என்ற வட்டத்தின் மையத்தையும் ஆரத்தையும் காண்க.

தீர்வு :

$$x^2 + y^2 - 6x + 8y - 24 = 0$$
 என்றதை வட்டத்தின் பொதுச் சமன்பாடு

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 –வுடன் ஒப்பிட

$$2g = -6$$
; $2f = 8$;

$$g = -3$$
; $f = 4$; $c = -24$

$$\therefore$$
 வட்டமையம் = $(-g, -f) = (3, -4)$

மற்றும் ஆரம் =
$$\sqrt{g^2 + f^2 - c} = \sqrt{9 + 16 - (-24)} = 7$$

(3, 2), (-7, 8) என்ற புள்ளிகளை இணைக்கும்கோட்டினை விட்டமாகக் கொண்ட வட்டத்தின் சமன்பாட்டைக் காண்க.

தீர்வு:

 $(x_1,\ y_1),\ (x_2,\ y_2)$ என்ற புள்ளிகளை வட்டத்தின் முனைப் புள்ளிகளாகக் கொண்ட வட்டத்தின் சமன்பாடு

$$(x-x_1) \ (x-x_2) + (y-y_1) \ (y-y_2) = 0$$
 இங்கு $(x_1,y_1) = (3,2)$
$$(x_2,y_2) = (-7,8)$$
 ∴ வட்டத்தின் சமன்பாடு

$$(x-3)(x+7) + (y-2)(y-8) = 0$$

$$x^2 + y^2 + 4x - 10y - 5 = 0$$

எடுத்துக்காட்டு 18

(-3,2) ஐ மையமாகவும் 8π அலகை சுற்றளவாகவும் கொண்ட வட்டத்தின் சமன்பாட்டைக் காண்க.

தீர்வு :

சுற்றளவு
$$=2\pi$$
 $r=8\pi$ \Rightarrow $r=4$ மையம் $=(-3,2)$ $r=4$

எனவே வட்டத்தின் சமன்பாடு

$$(x+3)^2 + (y-2)^2 = 4^2$$

(.9).5) $x^2 + y^2 + 6x - 4y - 3 = 0$

எடுத்துக்காட்டு 19

(1, 1), (2, -1), (2, 3) ஆகிய புள்ளிகள் வழிச் செல்லும் வட்டத்தின் சமன்பாட்டைக் காண்க.

தீா்வு :

தேவையான வட்டத்தின் சமன்பாடு

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 -----(1)

வட்டம் (1) ஆனது (1,1),(2,-1),(2,3) ஆகிய புள்ளிகள் வழிச் செல்கிறது.

តាតា
$$a$$
 1 + 1 + 2g + 2f + c = 0

(அ.து.)
$$2g + 2f + c = -2$$
 -----(2)

$$4 + 1 + 4g - 2f + c = 0$$

(அ.து.)
$$4g - 2f + c = -5$$
 ------(3)

$$4 + 9 + 4g + 6f + c = 0$$

(அ.து.)
$$4g + 6f + c = -13$$
 -----(4)

சமன்பாடுகள் (2), (3), (4) ஐத் தீர்க்க

$$g = -\frac{7}{2}$$
, $f = -1$, மற்றும் $c = 7$.

இம்மதிப்புகளை (1) –ல் பிரதியிட

 $x^2 + y^2 - 7x - 2y + 7 = 0$ என்பது தேவையான வட்டம் ஆகும்.

பயிற்சி 4.4

- 1) வட்டமையம் (-4, -2) ஆகவும், ஆரம் **6** அலகுகளையும் உடைய வட்டத்தின் சமன்பாட்டைக் காண்க.
- 2) (-2,0) வழியாகச் செல்லும் வட்டத்தின் மையம் (2,3) எனில் அவ்வட்டத்தின் சமன்பாட்டைக் காண்க.
- $x^2 + y^2 2x + 5y + 7 = 0$ என்ற வட்டத்தின் சுற்றளவு மற்றும் பரப்பளவு காண்க.
- (5,4) என்ற புள்ளியின் வழியாகச் செல்லும் வட்டம் $x^2 + y^2 + 8x 12y + 15 = 0$ என்ற வட்டத்தின் மையத்தை பொது மையமாகக் கொண்டால் அவ்வட்டத்தின் சமன்பாட்டைக் காண்க.
- 5) (2, 7), (6, 5) என்ற புள்ளிகளை இணைக்கும் கோட்டினை விட்டமாகக் கொண்ட வட்டத்தின் சமன்பாடு காண்க.
- 6) (5, 2), (2, 1), (1, 4) ஆகிய புள்ளிகள் வழியாகச் செல்லும் வட்டத்தின் சமன்பாட்டைக் காண்க.
- 7) (4,1),(6,5) என்ற புள்ளிகளின் வழியாகவும் 4x+y=16 என்ற கோட்டின் மீது மையத்தையும் உடைய வட்டத்தின் சமன்பாட்டைக் காண்க.
- 8) ஆரம் 5 எனவும் x + 3y = 17, 3x y = 3 ஆகிய விட்டங்களையும் கொண்ட வட்டத்தின் சமன்பாட்டைக் காண்க.
- 9) 3x 2y 1 = 0, 4x + y 27 = 0 என்ற கோடுகள் வெட்டும் புள்ளியின் வழியாகச் செல்லும் வட்டத்தின் மையம் (2,3) எனில் அவ்வட்டத்தின் சமன்பாட்டைக் காண்க.

4.5 தொடுகோடுகள்

(TANGENTS)

4.5.1 தொடுகோட்டின் சமன்பாடு

வட்டத்தின் சமன்பாடு $x^2 + y^2 + 2gx + 2fy + c = 0$ என்க.

 $P\left(x_{1},\;y_{1}\right)$ என்பது கொடுக்கப்பட்டுள்ள புள்ளி P –யில் வரையப்படும் தொடுகோடு PT என்க.

வட்ட மையம் C(-g, -f).

P வழிச் செல்லும் வட்டத்தின் ஆரம் = CP.

P வழிச் செல்லும் தொடுகோடு = PT

$$CP$$
 –யின் சாய்வு = $\frac{y_1 + f}{x_1 + g}$

$$\therefore$$
 PT —யின் சாய்வு = $\left(\frac{x_1 + g}{y_1 + f}\right)$ { \because PT \perp CP}

எனவே தொடுகோடு PT –யின் சமன்பாடு

$$y - y_1 = \left(\frac{x_1 + g}{y_1 + f}\right) (x - x_1)$$

$$\Rightarrow yy_1 + f(y - y_1) - y_1^2 + xx_1 + g(x - x_1) - x_1^2 = 0 \qquad -----(1)$$

 (x_1, y_1) வட்டத்தின் மேலுள்ள ஒரு புள்ளி

តថាមីល
$$x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c = 0$$
 -----(2)

 $(1)+(2)\Rightarrow xx_1+yy_1+g\ (x+x_1)+f\ (y+y_1)+c=0$ என்பதே தொடுகோட்டின் தேவையான சமன்பாடாகும்.

உட்கருத்து :

- (i) கொடுக்கப்பட்டுள்ள வட்டத்தின் சமன்பாட்டிலுள்ள \mathbf{x}^2 ஐ $\mathbf{x}\mathbf{x}_1$ எனவும், \mathbf{y}^2 ஐ $\mathbf{y}\mathbf{y}_1$ எனவும் $\mathbf{x} \ \mathbb{E} \ \frac{\mathbf{x}+\mathbf{x}_1}{2} \ \text{ எனவும்} \ \mathbf{y} \ \mathbb{E} \ \frac{\mathbf{y}+\mathbf{y}_1}{2} \ \text{ எனவும்} \ \text{ மாறிலியை } \mathbf{c} \ \text{ யாகவும் பதிலிட} \ (\mathbf{x}_1,\ \mathbf{y}_1) \mathbf{\dot{o}} \ \text{ வரையப்படும் தொடுகோட்டின் சமன்பாடு (அ.து.)} \ \mathbf{x}\mathbf{x}_1 + \mathbf{y}\mathbf{y}_1 + \mathbf{g} \ (\mathbf{x}+\mathbf{x}_1) + \mathbf{f} \ (\mathbf{y}+\mathbf{y}_1) + \mathbf{c} = 0$ கிடைக்கிறது.
- (ii) $x^2 + y^2 = a^2$ என்ற வட்டத்திற்கு (x_1, y_1) வரையப்படும் தொடுகோட்டின் சமன்பாடு $xx_1 + yy_1 = a^2$.
- $(iii) \qquad (x_1,y_1)\, \text{என்ற புள்ளியிலிருந்து}\, x^2+y^2+2gx+2fy+c=0\, \text{என்ற வட்டத்திற்கு வரையப்படும்}$ தொடுகோட்டின் நீளம் $\sqrt{{x_1}^2+{y_1}^2+2g{x_1}+2f{y_1}+c}$.

(iv) புள்ளி $P(x_1,y_1)$ ஆனது $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c \stackrel{\geq}{=} 0$ என்பதைப் பொறுத்து $x^2 + y^2 + 2gx + 2fy + c = 0$ என்ற வட்டத்திற்கு வெளியிலோ, வட்டப் பரிதி மீதோ அல்லது வட்டத்திற்குள்ளேயோ அமையும்.

$x^2+y^2=a^2$ என்ற வட்டத்திற்கு y=mx+c என்ற நேர்கோடு தொடுகோடாக அமைவதற்கான கட்டுப்பாடு $c^2=a^2\ (1+m^2)$

y=mx+c (அ.து.) mx-y+c=0 என்ற கோடு வட்டத்திற்கு தொடுகோடாக அமைந்தால், வட்ட மையத்திலிருந்து அத்தொடுகோட்டிற்கு வரையப்படும் செங்குத்துக் கோட்டின் நீளம் அந்த வட்டத்தின் ஆரத்திற்கு சமமாக இருக்கும். (அ.து) $\pm \frac{c}{\sqrt{1+m^2}}=a$

இருபுறமும் வாக்கப்படுத்த $c^2 = a^2 (1 + m^2)$ இதுவே தேவையான கட்டுப்பாடாகும்.

4.5.3 தொடுகோடுகளின் தொடுநாண்

ஒரு வட்டத்திற்கு வெளியே உள்ள ஒரு புள்ளியிலிருந்து அவ்வட்டத்திற்கு வரையப்படும் இரண்டு தொடுகோடுகளின் தொடுபுள்ளிகளைச் சேர்க்கும் கோடு தொடுகோடுகளின் தொடுநாண் எனப்படும்.

தொடுநாணின் சமன்பாடு

வட்டத்தின் சமன்பாடு

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 என்க.

 $P_{-}(x_{1},\ y_{1})$ என்ற புள்ளியிலிருந்து வட்டத்திற்கு $PQ,\ PR$ என்ற தொடுகோடுகள் வரையப்படுகின்றன. QR என்ற நாண் தொடுகோடுகளின் தொடுநாண் ஆகும்.

 $Q(x_2,y_2),\,R(x_3,y_3)$ என்ற புள்ளிகளில் வரையப்படும் தொடுகோடுகளின் சமன்பாடுகள்

$$xx_2 + yy_2 + g(x + x_2) + f(y + y_2) + c = 0$$
 -----(1)

$$xx_3 + yy_3 + g(x + x_3) + f(y + y_3) + c = 0$$
 -----(2)

இவ்விரு தொடுகோடுகளும் (x_1, y_1) வழிச் செல்வதால் (1), (2) –லிருந்து

$$x_1x_2 + y_1y_2 + g(x_1 + x_2) + f(y_1 + y_2) + c = 0$$
 -----(3)

$$x_1x_3 + y_1y_3 + g(x_1 + x_3) + f(y_1 + y_3) + c = 0$$
 -----(4)

ஆனால் (3), (4) –லிருந்து (x_2, y_2) , (x_3, y_3) என்ற புள்ளிகள்

$$xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$$
 ----(5)

என்ற கோட்டின் மேல் அமைகின்றன எனவே சமன்பாடு (5) ஆனது QR–ன் சமன்பாடாகும்.

தொடுகோடுகளின் தொடுநாணின் சமன்பாடு

$$xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$$

எடுத்துக்காட்டு 20

 $x^2+y^2-26x+12y+105=0$ என்ற வட்டத்திற்கு (7,2) ல் வரையப்படும் தொடுகோட்டின் சமன்பாட்டைக் காண்க.

தீர்வு:

 $\mathbf{x}^2+\mathbf{y}^2-26\mathbf{x}+12\mathbf{y}+105=0$ என்ற வட்டத்திற்கு (7,2) ல் வரையப்படும் தொடுகோட்டின் சமன்பாடு

$$x(7) + y(2) - 13(x + 7) + 6(y + 2) + 105 = 0$$

(.១).ភ្ស.) $3x - 4y - 13 = 0$

எடுத்துக்காட்டு 21

 ${
m x}^2+{
m y}^2-64=0$ என்ற வட்டத்திற்கு $3{
m x}+4{
m y}-{
m p}=0$ என்ற கோடு தொடுகோடெனில் p - யின் மதிப்பைக் காண்க.

தீர்வு :

$$y = mx + c$$
 என்ற கோடு

$$\mathbf{x}^2+\mathbf{y}^2=\mathbf{a}^2$$
 என்ற வட்டத்திற்கு தொடுகோடாக அமைவதற்கான கட்டுப்பாடு

$$c^2 = a^2 (1 + m^2)$$
 -----(1)

$$3x + 4y = p$$
 –யில்

$$m = -\frac{3}{4}$$
 and $c = \frac{p}{4}$

$$x^2 + y^2 = 64 - \dot{\omega}$$

 $a = \sqrt{64} = 8$

$$(1) \Rightarrow \left(\frac{p}{4}\right)^2 = 64 \left[(1 + \left(\frac{-3}{4}\right)^2 \right]$$
$$p^2 = 16 \times 100 = 1600$$
$$\therefore \qquad p = \pm \sqrt{1600} = \pm 40$$

(-1,-3) என்ற புள்ளியிலிருந்து $x^2+y^2+x+2y+6=0$ என்ற வட்டத்திற்கு வரையப்படும் தொடுகோட்டின் நீளம் காண்க.

தீர்வு:

(-1,-3) என்ற புள்ளியிலிருந்து $\mathbf{x}^2+\mathbf{y}^2+\mathbf{x}+2\mathbf{y}+6=0$ என்ற வட்டத்திற்கு வரையப்படும் தொடுகோட்டின் நீளம்

$$\sqrt{(-1)^2 + (-3)^2 + (-1) + 2(-3) + 6} = 3$$
 அலகுகள்.

பயிற்சி 4.5

- $x^2 + y^2 = 10$ என்ற வட்டத்திற்கு (1, 3) ல் வரையப்படும் தொடுகோட்டின் சமன்பாடு காண்க.
- $x^2 + y^2 + 2x 3y 8 = 0$ என்ற வட்டத்திற்கு (2, 3) –ல் வரையப்படும் தொடுகோட்டின் சமன்பாடு காண்க.
- 3) (2, -3) –லிருந்து $x^2 + y^2 8x 9y + 12 = 0$ என்ற வட்டத்திற்கு வரையப்படும் தொடுகோட்டின் நீளம் காண்க.
- 4) lx + my + n = 0 என்ற கோடு $x^2 + y^2 = a^2$ –க்கு தொடுகோடாக அமைவதற்கான கட்டுப்பாடு யாது ?
- 5) $x^2 + y^2 = 169$ என்ற வட்டத்திற்கு (5, 12) மற்றும் (12, -5) –ல் வரையப்படும் தொடுகோடுகள் ஒன்றுக்கொன்று செங்குத்தாக அமையும் என நிறுவுக.
- 6) (-2,3) –லிருந்து $2x^2 + 2y^2 = 3$ –க்கு வரையப்படும் தொடுகோட்டின் நீளம் காண்க.

பயிற்சி 4.6

ஏற்புடைய விடையைத் தெரிவு செய்க.

P, Q, R என்பன ஒரு கோட்டுப் புள்ளிகள் மேலும் PQ வின் சாய்வு $=\frac{2}{3}$ எனில் QR ன் சாய்வு

(a)
$$\frac{2}{3}$$
 (b) $-\frac{2}{3}$ (c) $\frac{3}{2}$ (d) $-\frac{3}{2}$

2)	x+y+7=0 என்ற கோ	ான்ற கோடு x அச்சுடன் மிகை திசையில் ஏற்படுத்தும் கோணம்.							
	(a) 45°	(b) 135°	(c) 210°	(d) 60°					
3)	3x - 5y + 8 = 0 எனுப்	-	~	~					
	(a) $\frac{3}{5}$	(b) $-\frac{3}{5}$	(c) $\frac{5}{3}$	$(d) - \frac{5}{3}$					
4)	ஒரு கோட்டின் சாய்வு	< 0 எனில் அக்கோடு	x - அச்சுடன் ஏற்	ற்படுத்தும் கோணம்					
	(a) குறுங்கோணம்	(b) விரிகோன	னம் (c) 90°	o (d) 0°					
5)	தேவை விதியின் வன	ளவரையின் சாய்வு							
	(a) மிகை எண்	(b) குறை எண்	(c) 0	$(d) \infty$					
6)	ax + by + c = 0 மற்று	ம் $px + qy + r = 0$ எனுப்	ம் கோடுகள் செ	ங்குத்துக் கோடுகளெனில்					
	(a) $\frac{a}{p} = \frac{b}{a}$	(b) $\frac{a}{b} = \frac{q}{p}$	(c) $\frac{a}{b} = -\frac{p}{q}$	(d) $\frac{a}{b} = -\frac{q}{p}$					
7)		செங்குத்தாக உள்ள சே	-	-					
	$(a)-\frac{a}{b}$	$(b) - \frac{b}{a}$	(c) $\frac{b}{a}$	(d) $\frac{a}{b}$					
8)	o .	•	•	ள் இணையெனில் 'a' –யின்					
	(a) 2	(b) - 2	(c) 1	(d) 6					
9)	2x+3y-7 = 0 மற்றும் 'a'-யின் மதிப்பு	் 3x+ay+5 = 0 எனுப்	் கோடுகள் செ	சங்குத்துக் கோடுகளெனில்					
	(a) 2	(b) - 2	(c) 3	(d) - 3					
10)	$x^2 + y^2 + 6y - 9 = 0$	ான்ற வட்டத்தின் மைய	ம்						
	(a) (0, 3)	(b) $(0, -3)$	(c)(3,0)	(d)(-3,0)					
11)	மையம் $(0,0)$ மற்றும்	ஆரம் 3 அலகுடைய வ	்டத்தின் சமன்ப	பாடு					
	(a) $x^2 + y^2 = 3$	(b) $x^2 + y^2 = 9$	(c) $x^2 + y^2 = x^2$	$\sqrt{3}$ (d) $x^2 + y^2 = 3\sqrt{3}$					
12)	வட்ட மையம் $(1,2)$ ம	ற்றும் வட்டப் பரிதியிலு	តាំតា புតាំ តា (5, 5)) எனில் விட்டத்தின் நீளம்					
	(a) 5	(b) $\sqrt{45}$	(c) 10	(d) $\sqrt{50}$					
13)	$x^2 + y^2 + ax + by + 9$	$x^2 + y^2 + ax + by + 9 = 0$ என்ற வட்டத்தின் மையம் $(1, -3)$ எனில் ஆரம்							
	(a) $\sqrt{10}$	(b) 1	(c) 5	(d) $\sqrt{19}$					
14)	$(x-2)^2 + (y-4)^2 = 2$	25 என்ற வட்டத்தின் பர	ரப்பளவு						
	(a) 25	(b) 5	(c) 10	(d) 25 π					

$x^2 + y^2 = 5$ –க்கு $(1, 2)$ –ல் வரையப்படும் தொடு

- (a) x + y = 5 (b) x + 2y = 5 (c) x y = 5 (d) x 2y = 5
- $\mathbf{x}^2+\mathbf{y}^2-4\mathbf{x}+6\mathbf{y}-1=0$ என்ற வட்டத்திற்கு (3,4) –லிருந்து வரையப்படும் தொடுகோட்டின் 16) நீளம்
 - (a) 7
- (b) 6
- (c) 5
- (d) 8

$$x^2+y^2=5$$
 என்ற வட்டத்திற்கு $y=2x+c$ ஒரு தொடுகோடெனில் c - யின் மதிப்பு

- (a) $\pm \sqrt{5}$
- (b) ± 25
- $(c) \pm 5$
- $(d) \pm 2$

திரிகோணமிதி (TRIGONOMETRY)

இந்தியா்களும், கிரேக்கா்களும் வானவியலைப் பற்றி அறிவதற்காக திாிகோணமிதியை ஒரு கருவியாகப் பயன்படுத்தினா். திாிகோணமிதி என்ற வாா்த்தை கிரேக்க வாா்த்தைகளான 'டிாிகோணா' (Trigona) மற்றும் 'மெட்ரான்' (Metron) என்ற இரு வாா்த்தைகளினால் உருவாக்கப்பட்டது. இதன்பொருள் ஒரு முக்கோணத்தின் கோண அளவீடுகளாகும். ஆரம்பக் காலத்தில் இதற்காக மட்டுமே திாிகோணமிதி பயன்படுத்தப்பட்டது. இப்பாடப்பகுதி குறிப்பிடும் வகையில் மேம்படுத்தப்பட்டு, தற்போது இதன் பயன்பாடு விாிவுபடுத்தப்பட்டுள்ளது.

டாலமி என்பவரால்தான் இரண்டாம் நூற்றாண்டு காலத்தில் முதன்முதலாக திரிகோணமிதி புத்தகம் எழுதப்பட்டது. ஜார்ஜ் ரெட்டிக்கஸ் (1514–1577) என்பவர் தான் முதன் முதலாக திரிகோணமிதி சார்புகளை செங்கோணங்களின் மூலம் வரையறை செய்தார். இதன் மூலமாக, திரிகோணமிதி கணிதத்தின் மிகப்பழமையான அங்கம் எனவும், உயர்கணிதத்தில் மிகவும் சக்தி வாய்ந்த கருவியாக விளங்குகிறது என்பதையும் அறியலாம்.

முந்தய வகுப்புகளில் படித்தறிந்த திரிகோணமிதி கருத்துருக்கள் சிலவற்றை நினைவு கூர்வோம்

நினைவு கூர்க :

1. கோணத்தின் அளவை (பாகைமாணி முறை)

- (a) ஒரு செங்கோணம் = 90° (பாகைகள்)
- (b) ஒரு பாகை (1°) = 60' (கலைகள்)
- (c) ஒரு கலை (1') = 60'' (விகலைகள்)

2. சுழல்முறை அளவீடு (அ) ஆரையன் அளவீடு

ஆரையன் :

ஆரத்திற்கு சமமான வட்டவில் வட்டத்தின் மையத்தில் தாங்கும் கோணம் ஒரு ஆரையன் எனப்படும். இதை $1^{\rm c}$ என்று குறிப்பிடலாம். பொதுவாக "c" என்ற குறியீடு இல்லாமலும் எழுதலாம்.

 π ஆரையன் = 180° , 1 ஆரையன் = 57° 17' 45''

ரேடியன்	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$3\frac{\pi}{2}$	2π
பாகை	30°	45°	60°	90°	180°	270°	360°

3. கீழ் வகுப்புகளில் படித்ததைப் போல்கோணங்கள் 90°யுடன் நின்றுவிடாமல் எந்த அளவாகவும் இருக்கலாம். கோணங்கள் கடிகாரம் மற்றும் நிலைக்கு எதிர்திசையில் அளக்கப்பட்டால் மிகைக் கோணமாகும். கோணங்கள் கடிகாரம் சுற்றும் திசையில் அளக்கப்பட்டால் குறைக் கோணமாகும்.

5.1 திரிகோணமிதி விகிதங்களின் தொடர்புகள் (TRIGONOMETRIC IDENTITIES)

வட்டமையம் \mathbf{O} (0,0) ஆரம் \mathbf{r} அலகு கொண்ட வட்டம் ஒன்றை வரைக. வட்டத்தின் மீது $\mathbf{P}(\mathbf{x},\mathbf{y})$ என்பது ஏதேனும் ஒரு புள்ளி எனக்கொள். $\mathbf{P}\mathbf{M} \perp \mathbf{O}\mathbf{X}$ என்றிருக்குமாறு வரைக. தற்போது முக்கோணம் $\Delta\mathbf{O}\mathbf{M}\mathbf{P}$ ஒரு செங்கோண முக்கோணமாகும். இக்கோணத்தின் ஒரு முனை ஆயத்திலும், இன்னொரு முனை \mathbf{X} —அச்சின் மிகைப் \mathbf{v} \mathbf{y}^1 பகுதியிலும் அடுத்த முனை, \mathbf{P} வட்டத்தின் மீதான ஒரு புள்ளியாகவும் அமைகிறது.

$$XOP = \theta$$
 என வை.

$$\Delta {
m OMP}$$
 யிலிருந்து, ${
m OM}={
m x}=\theta$ —விற்கு அடுத்துள்ள பக்கம் ${
m MP}={
m y}=\theta$ —விற்கு எதிரேயுள்ள பக்கம் ${
m OP}={
m r}=\Delta {
m OMP}$ கா்ணத்தின் நீளம்

வரையறை

Sine சார்பு :
$$\sin \theta = \frac{\theta - \omega \dot{\eta}$$
கு எதிர் பக்கத்தின் நீளம் $= \frac{y}{r}$ Cosine சார்பு : $\cos \theta = \frac{\theta - \omega \dot{\eta}$ கு அடுத்துள்ள பக்கத்தின் நீளம் $= \frac{x}{r}$ Tangent சார்பு : $\tan \theta = \frac{\theta - \omega \dot{\eta}$ கு எதிர் பக்கத்தின் நீளம் $= \frac{y}{r}$

cosecant, secant மற்றும் cotangant சார்புகள் யாவும், முறையே sine, cosine மற்றும் tangent சார்புகளின் தலைகீழிகளாகும்.

i.e.
$$\cos e c \theta = \frac{1}{\sin \theta} = \frac{r}{y}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{r}{x}$$

$$\cot \theta = \frac{1}{\tan \theta} = \frac{x}{y}$$

உட்கருத்து :

(i)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
; $\cot \theta = \frac{\cos \theta}{\sin \theta}$

ஓரலகு ஆர வட்டம் எனில் ${\bf r}=1$, எனவே (ii)

$$\sin \theta = y$$
; $\csc \theta = \frac{1}{y}$ $\cos \theta = x$; $\sec \theta = \frac{1}{x}$ என்று அமையும்

(iii)	சார்பு	இணைச் சார்பு
	sine	cosine
	tangent	cotangent
	secant	cosecant

 $(\sin \theta)^2$, $(\sec \theta)^3$, $(\tan \theta)^4$, ... மற்றும் பொதுவாக $(\sin \theta)^n$ என்பவற்றை எளிமைக்காக (iv) முறையே $\sin^2\theta$, $\sec^3\theta$, $\tan^4\theta$, ..., $\sin^n\theta$ என்று எழுதுதல் மரபு. ஆனால் $(\cos x)^{-1}$ என்பதை $\cos^{-1}x$ என்று எழுதுதல் கூடாது. ஏனெனில் $\cos^{-1}x$ என்பதன் பொருள் வேறுபட்டதாகும். (இது ஒரு கோணமாகும்)

5.1.1 திரிகோணமிதி முற்றொருமைகள்

(i)
$$\sin^2\theta + \cos^2\theta = 1$$

 $ரிரூபணம் : செங்கோண முக்கோணம் <math>\Delta ext{ OMP}$ யிலிருந்து (படம் 5.1)

$$x^{2} + y^{2} = r^{2}$$
$$\cos^{2}\theta + \sin^{2}\theta = 1 \ (\because r = 1)$$

(ii)
$$1 + \tan^2\theta = \sec^2\theta$$

စိုက္ပေတာက် :
$$1 + \tan^2 \theta = 1 + \frac{y^2}{x^2}$$

$$= \frac{x^2 + y^2}{x^2} = \frac{r^2}{x^2} = \frac{1}{x^2} = \left(\frac{1}{x}\right)^2 = \sec^2 \theta$$

(iii)
$$1 + \cot^2\theta = \csc^2\theta$$

தீஞபணம்:
$$1 + \cot^2\theta = 1 + \frac{x^2}{y^2}$$

$$= \frac{y^2 + x^2}{y^2} = \frac{r^2}{y^2} = \frac{1}{y^2} = \left(\frac{1}{y}\right)^2 = \csc^2\theta$$

எனவே

(i)
$$\sin^2\theta + \cos^2\theta = 1$$

(ii)
$$1 + \tan^2 \theta = \sec^2 \theta$$

(ii)
$$1 + \tan^2 \theta = \sec^2 \theta$$

(iii) $1 + \cot^2 \theta = \csc^2 \theta$

$$\cos^4 A - \sin^4 A = 1 - 2\sin^2 A$$
 என நிரூபி.

தீர்வு :

$$cos4A - sin4A = (cos2A + sin2A) (cos2A - sin2A)$$
$$= cos2A - sin2A$$
$$= 1 - sin2A - sin2A$$
$$= 1 - 2sin2A$$

எடுத்துக்காட்டு 2

$$(\sin A + \cos A) (1 - \sin A \cos A) = \sin^3 A + \cos^3 A$$
 என நிறுவுக.

தீர்வு:

R.H.S. =
$$\sin^3 A + \cos^3 A$$

= $(\sin A + \cos A) (\sin^2 A + \cos^2 A - \sin A \cos A)$
= $(\sin A + \cos A) (1 - \sin A \cos A) = L.H.S.$

எடுத்துக்காட்டு 3

$$\sec^4 A - 1 = 2\tan^2 A + \tan^4 A$$
 எனக் காண்பி.

தீர்வு :

L.H.S. =
$$Sec^{4}A - 1$$

= $(sec^{2}A + 1) (sec^{2}A - 1)$
= $(1 + tan^{2}A + 1) (1 + tan^{2}A - 1)$
= $(2 + tan^{2}A) tan^{2}A$
= $2tan^{2}A + tan^{4}A = R.H.S$.

எடுத்துக்காட்டு 4

$$\frac{1+\tan^2 A}{1+\cot^2 A} = \frac{\sin^2 A}{\cos^2 A} = \tan^2 A$$
 என நிறுவுக

தீர்வு :

$$\frac{1+\tan^2 A}{1+\cot^2 A} = \frac{\sec^2 A}{\csc^2 A} = \frac{\left(\frac{1}{\cos^2 A}\right)}{\left(\frac{1}{\sin^2 A}\right)} = \frac{\sin^2 A}{\cos^2 A} = \tan^2 A$$

$$\frac{1}{\sec\theta - \tan\theta} = \sec\theta + \tan\theta$$
 என நிறுவுக

தீர்வு :

$$L.H.S = \frac{1}{\sec \theta - \tan \theta}$$

பகுதி, விகுதி இவ்விரண்டையும் ($\sec \theta + \tan \theta$) வினால் பெருக்கினால்

$$= \frac{\sec \theta + \tan \theta}{(\sec \theta - \tan \theta) (\sec \theta + \tan \theta)}$$
$$= \frac{\sec \theta + \tan \theta}{\sec^2 \theta - \tan^2 \theta} = \sec \theta + \tan \theta = R.H.S$$

எடுத்துக்காட்டு 6

$$\frac{\cot A + \tan B}{\cot B + \tan A} = \cot A \tan B$$
 என நிறுவுக.

தீர்வு:

L.H.S =
$$\frac{\cot A + \tan B}{\cot B + \tan A} = \frac{\cot A + \tan B}{\frac{1}{\tan B} + \frac{1}{\cot A}}$$

= $\frac{\cot A + \tan B}{\left(\frac{\cot A + \tan B}{\cot A \tan B}\right)}$

 $= \cot A \tan B = R.H.S.$

எடுத்துக்காட்டு 7

$$(\sin\theta+\csc\theta)^2+(\cos\theta+\sec\theta)^2=\tan^2\theta+\cot^2\theta+7$$
 என நிறுவுக.

தீர்வு:

L.H.S =
$$(\sin\theta + \csc\theta)^2 + (\cos\theta + \sec\theta)^2$$

= $\sin^2\theta + \csc^2\theta + 2\sin\theta\csc\theta + \cos^2\theta + \sec^2\theta + 2\cos\theta\sec\theta$
= $(\sin^2\theta + \cos^2\theta) + (1 + \cot^2\theta) + 2 + (1 + \tan^2\theta) + 2$
= $1 + 6 + \tan^2\theta + \cot^2\theta$
= $\tan^2\theta + \cot^2\theta + 7 = R.H.S.$

$$(1 + \cot A + \tan A) (\sin A - \cos A) = \frac{\sec A}{\csc^2 A} - \frac{\csc A}{\sec^2 A}$$
 என நிறுவுக

L.H.S =
$$(1 + \cot A + \tan A) (\sin A - \cos A)$$

= $\sin A - \cos A + \cot A \sin A - \cot A \cos A + \tan A \sin A - \tan A \cos A$
= $\sin A - \cos A + \cos A - \frac{\cos^2 A}{\sin A} + \frac{\sin^2 A}{\cos A} - \sin A$
= $\frac{\sin^2 A}{\cos A} - \frac{\cos^2 A}{\sin A}$
= $\frac{\sec A}{\csc^2 A} - \frac{\csc A}{\sec^2 A}$

நினைவு கூர்க :

θ	00	30°	45°	60°	90°
sin θ	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	8

எடுத்துக்காட்டு 9

 $A=45^{o}$ எனில், (i) $\sin 2A=2\sin A\,\cos A$ (ii) $\cos 2A=1-2\sin^2 A$ என்பனவற்றை சரிபார்க்கவும்.

தீர்வு :

(i) L.H.S. =
$$\sin 2A$$

= $\sin 90^\circ = 1$
R.H.S. = $2\sin A \cos A = 2\sin 45^\circ \cos 45^\circ$
= $2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)$
= 1

சரிபார்க்கப்பட்டது.

(ii) L.H.S. =
$$\cos 2A = \cos 90^{\circ} = 0$$

R.H.S. = $1 - 2\sin^2 A = 1 - 2\sin^2 45^{\circ}$
= $1 - 2\left(\frac{1}{\sqrt{2}}\right)^2$
= $1 - 1 = 0$

சரிபார்க்கப்பட்டது.

எடுத்துக்காட்டு 10

$$4\cot^2 45^\circ - \sec^2 60^\circ + \sin^3 30^\circ = \frac{1}{8}$$
 என நிரூபி.

தீர்வு:

L.H.S =
$$4\cot^2 45^\circ - \sec^2 60^\circ + \sin^3 30^\circ$$

= $4(1)^2 - (2)^2 + \left(\frac{1}{2}\right)^3$
= $\frac{1}{8}$ = R.H.S.

பயிற்சி 5.1

- $a\sin^2\theta + b\cos^2\theta = c$ எனில், $\tan^2\theta = \frac{c-b}{a-c}$ எனக் காட்டுக.
- $\frac{1}{\cot A + \tan A} = \sin A \cos A$ என நிரூபி.
- $\frac{1-\tan A}{1+\tan A} = \frac{\cot A 1}{\cot A + 1}$ என நிரூபி.
- 4) $\frac{1}{1-\sin\theta} + \frac{1}{1+\sin\theta} = 2\sec^2\theta$ என நிரூபி.
- $\cos^4 A \csc^2 A = \cot^2 A + \cot^4 A$ என நிரூபி.
- $\frac{\operatorname{cosec A}}{\operatorname{cosec A} 1} + \frac{\operatorname{cosec A}}{\operatorname{cosec A} + 1} = 2 \operatorname{sec}^2 \operatorname{A}$ என நிரூபி.
- 7) $(1 + \cot A \csc A) (1 + \tan A + \sec A) = 2$ என நிரூபி.
- 8) $\frac{\cos A}{1-\tan A} + \frac{\sin A}{1-\cot A} = \sin A + \cos A$ என நிரூபி.
- 9) $\frac{\tan \theta}{1 \cot \theta} + \frac{\cot \theta}{1 \tan \theta} = 1 + \csc \theta \sec \theta$ எனக் காட்டுக.
- $3 (\sin x \cos x)^4 + 6 (\sin x + \cos x)^2 + 4 (\sin^6 x + \cos^6 x) = 13$ எனக் காட்டுக.

 $A = 30^{\circ}$ எனில் கீழ்வருவனவற்றை சரிபார்க்கவும்.

(i)
$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

(ii)
$$\sin 2A = 2\sin A \cos A$$

(iii)
$$\cos 3A = 4\cos^3 A - 3\cos A$$

(iv)
$$\sin 3A = 3\sin A - 4\sin^3 A$$

(v)
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$
.

$$\frac{4}{3}\cot^2 30^{\circ} + 2\sin^2 60^{\circ} - 2\csc^2 60^{\circ} - \frac{3}{4}\tan^2 30^{\circ}$$
 யின் மதிப்பைக் காண்க.

$$4\cot^2 45^{\circ} - \sec^2 60^{\circ} + \sin^3 30^{\circ}$$
 யின் மதிப்பைக் காண்க.

$$\cos \frac{\pi}{4} \cos \frac{\pi}{3} - \sin \frac{\pi}{4} \sin \frac{\pi}{3}$$
 யின் மதிப்பைக் காண்க.

$$15$$
) $\sec A + \tan A = \frac{3}{2}$ எனில், $\tan A = \frac{5}{12}$ என நிறுவுக.

$$4 \tan A = 3$$
 எனில், $\frac{5 \sin A - 2 \cos A}{\sin A + \cos A} = 1$ எனக் காண்பி.

$$a\cos\theta + b\sin\theta = c$$
 மற்றும் $b\cos\theta - a\sin\theta = d$ எனில் $a^2 + b^2 = c^2 + d^2$ எனக் காண்பி.

$$\tan \theta = \frac{1}{\sqrt{7}}$$
 எனில் $\frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta}$ யின் மதிப்பு காண்க.

19)
$$\sec^2\theta = 2 + 2 \tan \theta$$
 எனில், $\tan \theta$ வைக் காண்க.

20)
$$x = \sec \theta + \tan \theta$$
 எனில், $\sin \theta = \frac{x^2 - 1}{x^2 + 1}$ எனக் காண்பி.

5.2 திரிகோணமிதி விகிதங்களின் குறிகள்

(SIGNS OF TRIGONOMETRIC RATIOS)

$5.2.1 \quad 0^0$ கோண வீச்சிலிருந்து 360^0 கோண வீச்சு வரையில் திரிகோணமிதி விகிதங்களில் ஏற்படும் குறிகளின் மாற்றங்கள்.

ஆர அலகு \mathbf{r} , வட்ட மையம் $\mathbf{O}(0,0)$ என்ற வட்டத்தை வரைக. $P(\mathbf{x},\,\mathbf{y})$ என்ற புள்ளியை வட்டத்தின்மீது எடுத்துக்கொள்க.

சுழற்கோடு $\mathrm{OP} = \mathrm{r}, \ \mathrm{OX}$ —டன் கோண அளவு θ —வை ஏற்படுத்துமாறு கொள்க.

நிலை (1) $heta^o$ முதல் கால் பகுதியில் இருக்கையில் i.e. $0^o < heta < 90^o$

வரைபடம் 5.2(a)யிலிருந்து, இங்கு x, y இவையிரண்டும் மிகையாகும். எனவே எல்லா திரிகோணமிதி விகிதங்களும் மிகைக் குறியுடையதாகும்.

நிலை (2) heta இரண்டாம் கால்பகுதியில் இருக்கையில் i.e. $90^{\circ} < heta < 180^{\circ}$

வரைபடம் 5.2(b) யிலிருந்து, இங்கு x – குறை மேலும் y –மிகை. எனவே $\sin \theta$ மி—ை கயாகவும், $\cos \theta$ மற்றும் $\tan \theta$ குறையாகவும் இருக்கும்.

நிலை (3) heta மூன்றாம் கால்பகுதியில் இருக்கையில் i.e. $180^{\rm o} < heta < 270^{\rm o}$

வரைபடம் 5.2(c) யிலிருந்து, x, y இவையிரண்டும் குறையாகும். எனவே $\sin\theta$ மற்றும் $\cos\theta$ குறையாகவும் $\tan\theta$ மிகையாகவும் இருக்கும்.

நிலை (4) heta நான்காம் கால்பகுதியில் இருக்கையில் i.e. $270^{ m o} < heta < 360^{ m o}$

வரைபடம் 5.2(d) யிலிருந்து, x–மிகை மேலும் y–குறை. எனவே $\sin\theta$ மற்றும் $\tan\theta$ குறை மேலும் $\cos\theta$ மிகை.

எனவே,

கால் பகுதி	sin θ	cos θ	tan θ	cosec θ	sec θ	cot θ
I	+	+	+	+	+	+
II	+	_	_	+	_	_
III	_	_	+	-	_	+
IV	_	+	_	_	+	_

திரிகோணமிதி சார்புகளின் குறிகளை இந்த அட்டவணையின் மூலம் நினைவு கூறலாம்.

- I ஆம் கால்பகுதியில் எல்லா (All) திரிகோணமிதி விகிதங்களும் மிகை மதிப்புடையனவாகும்.
- II ஆம் கால்பகுதியில் Sin heta மேலும் Cosec heta மட்டுமே மிகை மதிப்புடையனவாகும் பிற அனைத்தும் குறை மதிப்புடையனவாகும்.
- III ஆம் கால்பகுதியில் Tanθ மற்றும் Cotθ மட்டுமே மிகை மதிப்புடையனவாகும். பிற அனைத்தும் குறை மதிப்புடையனவாகும்.
- IV ஆம் கால்பகுதியில் Cos θ மேலும் Sec θ மட்டுமே மிகை மதிப்புடையனவாகும். பிற அனைத்தும் குறை மதிப்புடையனவாகும்.

5.2.2 கொடுக்கப்பட்ட கோணம் அமையும் கால்பகுதியை நிர்ணயித்தல்

 $\theta < 90^{\rm o}$ எனக் கொள். பின்ப

 $(90^{\circ} - \theta)$ முதல் கால்பகுதியிலும் $(270^{\circ} - \theta)$ முன்றாம் கால்பகுதியிலும்

 $(90^{\circ} + \theta)$ இரண்டாம் கால்பகுதியிலும் $(270^{\circ} + \theta)$ நான்காம் கால்பகுதியிலும்

 $(180^{\circ} - \theta)$ இரண்டாம் கால்பகுதியிலும் $(360^{\circ} - \theta)$ நான்காம் கால்பகுதியிலும்

 $(180^{\circ} + \theta)$ முன்றாம் கால்பகுதியிலும் $(360^{\circ} + \theta)$ முதல் கால்பகுதியில் அமைவனவாகும்

உட்கரு<u>த்து</u> :

- (i) 90° I (அ) II ஆம் கால்பகுதியில் அமைவதாகக்கொள்ளலாம்
- 180° II (அ) III ஆம் கால்பகுதியில் அமைவதாகக்கொள்ளலாம் (ii)
- 270° III (அ) IV ஆம் கால்பகுதியில் அமைவதாகக்கொள்ளலாம் (iii)
- 360° IV (அ) I ஆம் கால்பகுதியில் அமைவதாகக்கொள்ளலாம் (iv)

எடுத்துக்காட்டு 11

கீழ்வரும் கோணங்கள் எந்த கால்பகுதிகளில் அமையும் என்பதை நிர்ணயிக்கவும்.

(iii) 745°

படம் 5.3(a)

படம் 5.3(b)

படம் 5.3(c)

படம் 5.3(a) விலிருந்து	படம் 5.3(b) விலிருந்து	படம் 5.3(c) விலிருந்து
$210^{\circ} = 180^{\circ} + 30^{\circ}$	$315^{\circ} = 270^{\circ} + 45^{\circ}$	745° = இரு முழு
$180^{ m o}+ heta^{ m o}$ என்ற	$270^{o}+ heta ^{o}$ என்ற	சுழற்சி மேலும் 25°
வடிவில் உள்ளது	வடிவில் உள்ளது	$745^{\circ} = 2 \times 360^{\circ} + 25^{\circ}$
். 210º மூன்றாம்	். 315° நான்காம்	∴ 745° முதலாம்
கால்பகுதியில் அமையும்	கால்பகுதியில் அமையும்	கால்பகுதியில் அமையும்

5.2.3 எக்கோணத்திற்குமான திரிகோணமிதியின் விகிதங்கள்

90°க்கு மேற்பட்ட கோணங்களின் திரிகோணமிதி சார்பு மதிப்புகளைக் காண சில பயனுள்ள வழிமுறைகளாவன.

- (1) கொடுக்கப்பட்ட கோண அளவு எந்த கால்பகுதியில் அமைகிறது என கண்டறியவும்.
- (2) கொடுக்கப்பட்ட கோண அளவை $k\frac{\pi}{2}\pm\theta$, (k ஒருரு மிகை முழு) என்ற வடிவில் எழுதவும்.
- (3) $\frac{S \mid A}{T \mid C}$ அட்டவணையைப் பயன்படுத்தி திரிகோணமிதி சார்பின் குறியை $\frac{S \mid A}{T \mid C}$ அக்குறிப்பிட்ட கால்பகுதியில் காண்.
- (4) k ஒரு இரட்டைப் படை எண்ணாக இருக்குமாயின் கோணங்களுக்கு முன் உள்ள திரிகோணமிதி சார்புகளின் பெயரில் மாற்றம் இல்லை.
- (5) k ஒரு ஒற்றைப்படை எண்ணாக இருக்குமாயின் கோணங்களுக்கு முன் உள்ள திரிகோணமிதி சாா்புகள் கோசாா்புகளாக மாறும். இதே போன்று கோசாா்புகள் வெறுமனே சாா்புகளாக மாறும்.

உட்கருத்து :

படம்
$$(5.4)$$
 லிருந்து "- $\theta^{\rm o}$ " என்பதும்
$$(360^{\rm o}-\theta^{\rm o})$$
 என்பதும் ஒன்றேயாகும்.

$$\sin(-\theta) = \sin(360^{\circ} - \theta) = -\sin\theta$$
$$\cos(-\theta) = \cos\theta$$

$$\tan(-\theta) = -\tan\theta$$

$$\csc(-\theta) = -\csc\theta$$

$$\sec(-\theta) = \sec\theta$$

$$\cot(-\theta) = -\cot\theta$$
.

கோணங்கள் சார்புகள்	- θ	90°-0	90°+0	180°-θ	180°+ θ	270°-0	270°+ θ	360°-0	360°+0
sine	-sinθ	cosθ	$\cos\theta$	sinθ	-sinθ	-cosθ	-cosθ	-sinθ	sinθ
cos	$\cos\theta$	sinθ	-sinθ	-cosθ	-cosθ	-sinθ	$\sin\theta$	$\cos\theta$	cosθ
tan	-tanθ	cotθ	-cotθ	-tanθ	tanθ	cotθ	-cotθ	-tanθ	tanθ
cosec	-cosecθ	secθ	secθ	cosecθ	-cosecθ	-secθ	-secθ	-cosecθ	cosecθ
sec	secθ	cosecθ	-cosecθ	-secθ	-secθ	-cosecθ	cosecθ	secθ	secθ
cot	-cotθ	tanθ	-tanθ	-cotθ	cotθ	tanθ	-tanθ	-cotθ	cotθ

கீழ்வருவனவற்றின் மதிப்புகளைக் காண்க.

- (i) $\sin (120^{\circ})$
- (ii) tan(-210°)
- (iii) sec(405°)
- (iv) cot(300°)

- $(v) \cos(-330^{\circ})$
- (vi) cosec(135°)
- vii) tan 1145°

தீர்வு :

(i)
$$120^{\circ} = 90^{\circ} + 30^{\circ}$$

இது $90^{\rm o}+\theta^{\rm o}$ வடிவில் உள்ளது. $\therefore 120^{\rm o}$ இரண்டாம் கால்பகுதியில் அமையும்

$$\sin(120^{\circ}) = \sin(90^{\circ} + 30^{\circ})$$
$$= \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

(ii)
$$\tan(-210^{\circ}) = -\tan(210^{\circ})$$

$$= -\tan(180^{\circ} + 30^{\circ})$$
$$= -\tan 30^{\circ} = -\frac{1}{\sqrt{3}}$$

(iii)
$$\sec (405^\circ) = \sec[360^\circ + 45^\circ] = \sec45^\circ = \sqrt{2}$$

(iv)
$$\cot(300^{\circ}) = \cot(360^{\circ} - 60^{\circ})$$

$$=-\cot 60^{\circ} = -\frac{1}{\sqrt{3}}$$

(v)
$$\cos(-330^{\circ}) = \cos(330^{\circ})$$

$$= \cos (270^{\circ} + 60^{\circ})$$
$$= \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

(vi)
$$\csc(135^{\circ}) = \csc(90^{\circ} + 45^{\circ})$$

= $\sec 45^{\circ} = \sqrt{2}$

(vii)
$$\tan (1145^{\circ}) = \tan (12 \times 90^{\circ} + 65^{\circ})$$

= $\tan 65^{\circ} = \tan (90^{\circ} - 25^{\circ}) = \cot 25^{\circ}$

கீழ்வருவனவற்றின் மதிப்புகளைக் காண்க :

(i) sin843° (ii) cosec(-757°) (iii) cos(-928°)

தீர்வு:

(i)
$$\sin 843^{\circ} = \sin(9 \times 90^{\circ} + 33^{\circ})$$

= $\cos 33^{\circ}$

(ii)
$$\operatorname{cosec}(-757^{\circ}) = -\operatorname{cosec}(757^{\circ})$$

= $-\operatorname{cosec}(8 \times 90^{\circ} + 37^{\circ}) = -\operatorname{cosec} 37^{\circ}$

(iii)
$$\cos(-928^{\circ}) = \cos(928^{\circ})$$

= $\cos(10 \times 90^{\circ} + 28^{\circ}) = -\cos 28^{\circ}$

உட்கருத்து :

கோணங்கள் சார்புகள்	180°	270°	360°
sin	0	- 1	0
cos	-1	0	1
tan	0	$-\infty$	0
cosec	∞	-1	∞
sec	-1	∞	1
cot	∞	0	∞

பயிற்சி 5.2

- $\sin 420^{\circ} \cos 390^{\circ} \cos(-300^{\circ}) \sin(-330^{\circ}) = \frac{1}{2}$ என நிரூபி.
- 2) A, B, C என்பவை ஒரு முக்கோணத்தின் கோணங்களாயின்

(i)
$$\sin(A+B) = \sin C$$
 (ii) $\cos(A+B) + \cos C = 0$ (iii) $\cos\left(\frac{A+B}{2}\right) = \sin\frac{C}{2}$ எனக் காண்க.

- A என்ற கோணம் 270° மற்றும் 360° இவற்றுக்கு இடைப்பட்டதாயின் மேலும் $\cot A = -\frac{24}{7}$ எனில், $\cos A$ மற்றும் $\csc A$ இவற்றைக் காண்க.
- $\sin\theta = \frac{11}{12}$ எனில், $\sec(360^{\circ} \theta)\tan(180^{\circ} \theta) + \cot(90^{\circ} + \theta)\sin(270^{\circ} + \theta)$ வின் மதிப்பைக் காண்க.
- 5) sin300° tan330° sec420° –யின் மதிப்பு காண்க.

6) கருக்குக :
$$\frac{\sin\left(\frac{\pi}{2} - A\right)\cos(\pi - A)\tan(\pi + A)}{\sin\left(\frac{\pi}{2} + A\right)\sin(\pi - A)\tan(\pi - A)}$$

- 7) $\sin 1140^{\circ} \cos 390^{\circ} \cos 780^{\circ} \sin 750^{\circ} = \frac{1}{2}$ என நிறுவுக.
- 8) மதிப்பு காண் : (i) sec 1327^o (ii) cot (– 1054^o)

5.3 கலவைக் கோணங்கள்

(COMPOUND ANGLES)

 $90^{\circ}\pm\theta, 180^{\circ}\pm\theta, \dots$ என்ற ஒருமைக் கோணங்களுக்கான திரிகோணமிதி விகிதங்களைக் கண்டுள்ளோம். இங்கு கலவைக் கோணங்களைக் காண்போம்.

ஒரு கோணமானது, இரண்டு அல்லது இரண்டிற்கு மேற்பட்டகோணங்களின் கூடுதலாக உருவாக்கப்படுமாயின் அக்கோணம் கலவைக் கோணம் என்று அழைக்கப்படுகிறது. எடுத்துக்காட்டாக $A\pm B$, A+B+C, A-2B+3C என்பன கலவைக் கோணங்களாகும்.

5.3.1 கூட்டல் மற்றும் கழித்தல் வாய்பாடுகள்

- (i) sin(A + B) = sinAcosB + cosAsinB
- (ii) sin(A B) = sinAcosB cosAsinB
- (iii) cos(A + B) = cosAcosB sinAsinB
- (iv) cos(A B) = cosAcosB + sinAsinB
- (v) $\tan(A+B) = \frac{\tan A + \tan B}{1 \tan A \tan B}$
- (vi) $\tan (A B) = \frac{\tan A \tan B}{1 + \tan A \tan B}$

5.3.2 வடிவ கணித விளக்கத்தின் மூலம்

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$
 என நிரூபித்தல்

நிருபணம் : O(0,0) வை வட்ட மையமாகவும், ஆரம் 1 அலகும் கொண்ட வட்டத்தை வரைக.

P(1,0) என்ற புள்ளியை இவ்வட்டத்தின் மீது எடுத்துக்கொள்.

|A மற்றும்| B என்ற இரு கோணங்களை திட்டநிலையில் எடுத்துக் கொள்.

 $\underline{f A}$ மற்றும் $\underline{f B}$ இவற்றின் முடிவுப் பக்கங்களின் மீது முறையே ${f Q},\ {f R}$ என்ற புள்ளிகளைக் குறி.

படம் 5.5(a) விலிருந்து $Q(\cos A, \sin A)$ மற்றும் $R(\cos B, \sin B)$ என அறியலாம். மேலும் $\angle ROQ = A - B$ என அமையும்.

Q மற்றும் R என்ற இருபுள்ளிகளை வட்டத்தின் மீது நகர்த்தி S மற்றும் P என்ற புள்ளிகளை SP = RQ என்ற அமைப்பில் சென்றடையுமாறு செய்யவும். எனவே படம் 5.5(b) யிலிருந்து POS = ROQ = A - B எனக் காண்கிறோம்.

மேலும்
$$PS^2 = RQ^2$$

இரு புள்ளிகளுக்கு இடையே உள்ள தூரம் காணல் முறையில்

$$\begin{aligned} \{\cos(A-B)-1\}^2 + \sin^2(A-B) &= (\cos A - \cos B)^2 + (\sin A - \sin B)^2 \\ \cos^2(A-B) - 2\cos(A-B) + 1 + \sin^2(A-B) &= \cos^2 A - 2\cos A \cos B + \\ \cos^2 B + \sin^2 A - 2\sin A \sin B + \sin^2 B \end{aligned}$$

$$2-2\cos(A-B) = 2 - (2\cos A\cos B + 2\sin A\sin B)$$

$$\therefore$$
 cos(A-B) = cosAcosB + sinAsinB.

துணை முடிவு (i)

$$cos(A+B) = cos[A-(-B)]$$

$$= cosAcos(-B) + sinA sin(-B)$$

$$= cosAcosB + sinA {-sinB}$$

 \therefore $\cos(A+B) = \cos A \cos B - \sin A \sin B$

துணை முடிவு (ii)

$$\begin{aligned} \sin(A+B) &= \cos\left[\frac{\pi}{2} - (A+B)\right] \\ &= \cos\left[\left(\frac{\pi}{2} - A\right) - B\right] \\ &= \cos\left(\frac{\pi}{2} - A\right) \cos B + \sin\left(\frac{\pi}{2} - A\right) \sin B \end{aligned}$$

$$\therefore \sin(A+B) = \sin A \cos B + \cos A \sin B$$

துணை முடிவு (iii)

$$sin(A - B) = sin[A + (-B)]$$
$$= sinAcos(-B) + cosAsin(-B)$$

$$\therefore \sin(A - B) = \sin A \cos B - \cos A \sin B$$

துணை முடிவு (iv)

$$tan(A + B) = \frac{\sin(A + B)}{\cos(A + B)}$$

$$= \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$

$$= \frac{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}}{1 - \left(\frac{\sin A}{\cos A}\right) \left(\frac{\sin B}{\cos B}\right)}$$

$$\therefore \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

துணை முடிவு (v)

$$tan(A - B) = tan[A + (-B)]$$
$$= \frac{tan A + tan(-B)}{1 - tan A tan (-B)}$$

$$\therefore \tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

எடுத்துக்காட்டு 14

பின்வருவனவற்றின் மதிப்புகளைக் காண் :

(i) cos15° (ii) tan75°

தீர்வு:

(i)
$$\cos 15^{\circ}$$
 = $\cos (45^{\circ} - 30^{\circ})$
= $\cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$
= $\frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \frac{1}{2} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$

(ii)
$$\tan 75^{\circ}$$
 = $\tan (45^{\circ} + 30^{\circ})$

$$= \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \tan 30^{\circ}}$$
$$= \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}$$

 $A,\ B$ என்பன குறுங்கோணங்களாக இருந்து $\cos A=rac{5}{13}$ மேலும் $\sin B=rac{3}{5}$ என இருக்குமாயின் $\cos{(A-B)}$ யின் மதிப்புக் காண்க.

தீா்வு :

கொடுக்கப்பட்டது
$$\cos A = \frac{5}{13}$$
 $\therefore \sin A = \sqrt{1 - \frac{25}{169}}$ $= \sqrt{\frac{169 - 25}{169}} = \frac{12}{13}$ கொடுக்கப்பட்டது $\sin B = \frac{3}{5}$ $\therefore \cos B = \sqrt{1 - \frac{9}{25}} = \frac{4}{5}$ $\therefore \cos (A - B) = \cos A \cos B + \sin A \sin B$ $= \frac{5}{13} + \frac{4}{5} + \frac{12}{13} + \frac{3}{5} = \frac{56}{65}$

எடுத்துக்காட்டு 16

 $\sin A = \frac{1}{3}$, $\cos B = -\frac{3}{4}$ மற்றும் A, B இவையிரண்டும் இரண்டாம் கால்பகுதி கோணங்களாயின் பின்வருவனவற்றின் மதிப்பு காண். (i) $\sin(A+B)$, (ii) $\cos(A+B)$, (iii) $\tan(A+B)$ மேலும் கோணம் A+B எந்த கால்பகுதியில் அமைகிறது என்பதை நிர்ணயிக்க. $\mathring{\mathcal{S}}\mathring{\sigma}$ வு :

$$\cos A = \sqrt{1 - \sin^2 A} = -\frac{2\sqrt{2}}{3}$$

(கோணம் A இரண்டாம் கால்பகுதியில் இருப்பதால் $\cos A$ குறைக்குறியுடையதாகும்)

$$\sin B = \sqrt{1 - \cos^2 B}$$

$$\sin B = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4}$$

(கோணம் B இரண்டாம் கால்பகுதியில் இருப்பதால் $\sin B$ மிகைக் குறியுடையதாகும்)

$$\therefore \tan A = \frac{\sin A}{\cos A} = \frac{\left(\frac{1}{3}\right)}{\left(\frac{-2\sqrt{2}}{3}\right)} = -\frac{\sqrt{2}}{4}$$

$$\tan B = \frac{\sin B}{\cos B} = \frac{\left(\frac{\sqrt{7}}{4}\right)}{\left(\frac{-3}{4}\right)} = \frac{-\sqrt{7}}{3}$$

 $\sin (A+B) = \sin A \cos B + \cos A \sin B$

$$= \frac{1}{3} \left(\frac{-3}{4} \right) + \left(\frac{-2\sqrt{2}}{3} \right) \left(\frac{\sqrt{7}}{4} \right)$$
$$= -\frac{1}{4} - \frac{2\sqrt{14}}{12} = -\left(\frac{1}{4} + \frac{2\sqrt{14}}{12} \right)$$

cos (A + B) = cos A cos B - sin A sin B

$$= \left(\frac{-2\sqrt{2}}{3}\right) \left(\frac{-3}{4}\right) - \frac{1}{3} \frac{\sqrt{7}}{4}$$
$$= \frac{6\sqrt{2} - \sqrt{7}}{12}$$
 இது மிகையெண்ணாகும்.

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$= \frac{\frac{-1}{4}\sqrt{2} - \frac{1}{3}\sqrt{7}}{1 - \left\{ \left(\frac{-1}{4}\sqrt{2}\right)\left(\frac{-1}{3}\sqrt{7}\right) \right\}}$$

$$= -\left(\frac{3\sqrt{2} + 4\sqrt{7}}{12 - \sqrt{14}}\right)$$

 $\sin(A+B) < 0$ ஆகவும், மேலும் $\cos(A+B) > 0$ வாக இருப்பதாலும் (A+B) நான்காம் கால்பகுதியில் அமையும்.

எடுத்துக்காட்டு 17

 $A+B=45^{o}$ எனில் (1+ an A)~(1+ an B)=2 என நிறுவுக. மேலும் இதன் மூலம் $an 22rac{1}{2}^{o}$ -ன் மதிப்பை வருவி.

தீர்வு :

கொடுத்தது :
$$A + B = 45^{\circ}$$

:.
$$tan (A + B) = tan 45^{\circ} = 1$$

$$\frac{\tan A + \tan B}{1 - \tan A \tan B} = 1$$

 $\tan A + \tan B + \tan A \tan B = 1$

இருபுறமும் 1–யை கூட்டுவதால்

$$\Rightarrow$$
 1 + tan A + tan B + tan A tanB = 1 + 1 = 2

i.e.
$$(1 + \tan A) (1 + \tan B) = 2$$
 ------(1)
$$A = B = 22 \frac{1}{2}^{0}$$
 என (1) –ல் பிரதியிட $(1 + \tan 22 \frac{1}{2}^{0})^{2} = 2$ என கிடைக்கிறது.
$$\Rightarrow 1 + \tan 22 \frac{1}{2}^{0} = \pm \sqrt{2}$$

$$\therefore 1 + \tan 22 \frac{1}{2}^0 = \sqrt{2} \left[22 \frac{1}{2}^0 \right]$$
 முதல் கால்பகுதியில் இருப்பதால்

$$(1 + \tan 22 \frac{1}{2}^0 > 0)$$
 ஆகும்]

$$\therefore \tan 22 \frac{1}{2}^0 = \sqrt{2} - 1$$

எடுத்துக்காட்டு 18

$$\cos (60^{\circ} + A) \cos (30^{\circ} - A) - \sin (60^{\circ} - A) \sin (30^{\circ} - A) = 0$$
 என நிறுவுக.

ദിപ്രവങ്ങൾ :

$$\alpha = 60^{\circ} + A$$

$$\beta = 30^{\circ} - A$$
 எனக்கொள்க

எனவே கொடுக்கப்பட்டகேள்வி $\cos(\alpha+\beta)$ என்ற வடிவில் அமைகிறது.

(அ.து.)
$$\cos[(60^{\circ} + A) + (30^{\circ} - A)]$$

= $\cos(60^{\circ} + 30^{\circ})$
= $\cos90^{\circ}$
= 0

பயிற்சி 5.3

1) (i)
$$\sin (A + B) \sin (A - B) = \sin^2 A - \sin^2 B$$

(ii)
$$\cos (A + B) \cos (A - B) = \cos^2 A - \sin^2 B$$
 எனக் காண்பி.

$$\sin (A - 45^{\circ}) + \cos (45^{\circ} + A) = 0$$
 என நிரூபி

$$\tan 75^{\circ} + \cot 75^{\circ} = 4$$
 என நிரூபி.

4)
$$\tan \theta = \frac{1}{2}$$
, $\tan \phi = \frac{1}{3}$ எனில், $\theta + \phi = \frac{\pi}{4}$ எனக் காண்பி.

$$\frac{\sin(A-B)}{\sin A \sin B} + \frac{\sin(B-C)}{\sin B \sin C} + \frac{\sin(C-A)}{\sin C \sin A} = 0$$
 என நிரூபி.

7)
$$\frac{\cos(x+y)}{\cos(x-y)} = \frac{1-\tan x \tan y}{1+\tan x \tan y}$$
 என நிரூபி.

8)
$$\cos A = -\frac{12}{13}$$
, $\cos B = \frac{24}{25}$ எனில் மற்றும் A –விரிகோணம், B –குறுங்கோணமாயின் (i) $\sin (A + B)$ (ii) $\cos (A - B)$ இவற்றின் மதிப்புகளைக் காண்க.

9)
$$\sin A + \sin (120^{\circ} + A) + \sin (240^{\circ} + A) = 0$$
 என நிரூபி.

$$10$$
) $\cot 15^{\circ} + \cot 75^{\circ} + \cot 135^{\circ} = 3$ என காண்பி.

$$\tan A + \tan B = a$$
; $\cot A + \cot B = b$ எனில், $\cot (A + B) = \frac{1}{a} - \frac{1}{b}$ என காண்பி.

5.3.3 மடங்கு கோணங்கள் (Multiple angles)

இப்பிரிவில் 2A, 3A –விற்கான திரிகோணமிதிச் சார்பு சூத்திரங்களைக் காண்போம். தொகை நுண்கணிதத்தின் பலபகுதிகளில் இச்சூத்திரங்களின் பயன்பாடு முக்கிய அங்கம் வகிக்கிறது.

 $\sin (A + B) = \sin A \cos B + \cos A \sin B$ என்ற சூத்திரத்தில் A = B என இருப்பின் $\sin 2A = \sin A \cos A + \cos A \sin A$

$$\therefore$$
 sin2A = 2sinAcosA

இதே போன்று,

 $\cos{(A+B)} = \cos{A}\cos{B} - \sin{A}\sin{B}$ என்ற சூத்திரத்தில் A=B என இருப்பின் $\cos{2A} = \cos{A}\cos{A} - \sin{A}\sin{A}$

$$\cos 2A = \cos^2 A - \sin^2 A$$

பேலும்,
$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= (1 - \sin^2 A) - \sin^2 A$$

$$= 1 - 2 \sin^2 A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= \cos^2 A - (1 - \cos^2 A)$$

$$= 2\cos^2 A - 1$$

$$\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
 என்ற சூத்திரத்தில் $\mathbf{A} = \mathbf{B}$ என இருப்பின்
$$\tan 2\mathbf{A} = \frac{2\tan A}{1 - \tan^2 A}$$

மேலும் கீழ்வருவனவற்றை நிருபிக்கலாம்

(i)
$$\sin 2A = \frac{2 \tan A}{1 + \tan^2 A}$$

(ii)
$$\cos 2A = \frac{1-\tan^2 A}{1+\tan^2 A}$$

ർപ്രവങ്ങൾ :

(i)
$$\sin 2A = 2\sin A \cos A$$
$$= 2\tan A \cos^2 A$$
$$= \frac{2\tan A}{\sec^2 A} = \frac{2\tan A}{1 + \tan^2 A}$$
(ii)
$$\cos 2A = \frac{\cos^2 A - \sin^2 A}{\cos^2 A + \sin^2 A} \cos^2 A - \sin^2 A$$
$$= (\because 1 = \cos^2 A + \sin^2 A)$$
$$\cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

உட்கருத்து :

(i)
$$\sin^2 A = \frac{1-\cos 2A}{2}$$

(ii)
$$\cos^2 A = \frac{1 + \cos 2A}{2}$$

(iii)
$$\tan^2 A = \frac{1-\cos 2A}{1+\cos 2A}$$

5.3.4 sin3A, cos3A மற்றும் tan3A ஆகியவற்றிற்கு A–வின் வாயிலாக வாய்பாடு காணல்

(i)
$$\sin 3A$$
 = $\sin(2A+A)$
= $\sin 2A \cos A + \cos 2A \sin A$
= $2\sin A \cos^2 A + (1 - 2\sin^2 A) \sin A$
= $2\sin A (1 - \sin^2 A) + (1 - 2\sin^2 A) \sin A$

$$\sin 3A = 3\sin A - 4\sin^3 A$$

(ii)
$$\cos 3A = \cos(2A+A)$$

$$= \cos 2A \cos A - \sin 2A \sin A$$

$$= (2\cos^2 A - 1) \cos A - 2\sin^2 A \cos A$$

$$= (2\cos^2 A - 1) \cos A - 2(1 - \cos^2 A) \cos A$$

$\cos 3A = 4\cos^3 A - 3\cos A$

(iii)
$$\tan 3A = \tan(2A+A)$$

$$= \frac{\tan 2A + \tan A}{1 - \tan A \tan 2A}$$

$$= \frac{\frac{2 \tan A}{1 - \tan^2 A} + \tan A}{1 - \tan A \left(\frac{2 \tan A}{1 - \tan^2 A}\right)}$$

$$= \frac{2 \tan A + \tan A(1 - \tan^2 A)}{1 - \tan^2 A - 2 \tan^2 A}$$

$$\tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}$$

5.3.5 கீழ்மடங்கு கோணங்களின் வாய்பாடுகள் (Sub multiple angle)

$$\sin A = \sin\left(2\frac{A}{2}\right) = 2\sin\frac{A}{2}\cos\frac{A}{2}$$

$$\cos A = \cos\left(2\frac{A}{2}\right) = \cos^2\frac{A}{2} - \sin^2\frac{A}{2}$$

$$= 2\cos^2\frac{A}{2} - 1$$

$$= 1 - 2\sin^2\frac{A}{2}$$

 $\tan A = \tan\left(2\frac{A}{2}\right) = \frac{2\tan\frac{A}{2}}{1 - \tan^2\frac{A}{2}}$

(i)
$$\sin A = \frac{2\tan\frac{A}{2}}{1+\tan^2\frac{A}{2}}$$

(ii)
$$\cos A = \frac{1-\tan^2 \frac{A}{2}}{1+\tan^2 \frac{A}{2}}$$

(iii)
$$\sin^2 \frac{A}{2} = \frac{1-\cos A}{2}$$

(iv)
$$\cos^2 \frac{A}{2}$$
 = $\frac{1+\cos A}{2}$

(v)
$$\tan^2 \frac{A}{2} = \frac{1-\cos A}{1+\cos A}$$

$$\frac{\sin 2A}{1-\cos 2A} = \cot A$$
 என நிறுவுக.

தீர்வு:

L.H.S. =
$$\frac{\sin 2A}{1 - \cos 2A} = \frac{2 \sin A \cos A}{2 \sin^2 A}$$
$$= \frac{\cos A}{\sin A}$$
$$= \cot A = \text{R.H.S.}$$

எடுத்துக்காட்டு 20

கீழ்வருவனவற்றின் மதிப்புகளை காண்க.

(i)
$$\sin 22 \frac{1}{2}^0$$
 (ii) $\cos 22 \frac{1}{2}^0$ (iii) $\tan 22 \frac{1}{2}^0$

தீர்வு:

(i)
$$\sin^2 \frac{A}{2} = \frac{1-\cos A}{2}$$

 $\sin^2 \frac{45}{2} = \frac{1-\cos 45^\circ}{2} = \frac{1-\frac{1}{\sqrt{2}}}{2} = \frac{2-\sqrt{2}}{4}$
 $\sin 22 \frac{1}{2}^\circ = \frac{\sqrt{2-\sqrt{2}}}{2}$
(ii) $\cos^2 \frac{A}{2} = \frac{1+\cos A}{2}$
 $\therefore \cos 22 \frac{1}{2}^\circ = \frac{\sqrt{2+\sqrt{2}}}{2}$
(iii) $\tan^2 \frac{A}{2} = \frac{1-\cos A}{1+\cos A}$
 $\tan^2 \frac{45}{2} = \frac{1-\cos 45^\circ}{1+\cos 45^\circ}$
 $= \frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}$
 $= (\sqrt{2}-1)^2$

 $\therefore \tan 22 \frac{1}{2}^{\circ} = \sqrt{2} - 1$

எடுத்<u>து</u>க்காட்டு 21

$$an A = rac{1}{3}$$
 , $an B = rac{1}{7}$ எனில் $2A + B = rac{\pi}{4}$ என நிறுவுக.

தீர்வு:

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A} = \frac{2\left(\frac{1}{3}\right)}{1 - \left(\frac{1}{3}\right)^2} = \frac{3}{4}$$

$$\tan(2A + B) = \frac{\tan 2A + \tan B}{1 - \tan 2A \tan B} = \frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} + \frac{1}{7}} = 1$$

$$\Rightarrow 2A + B = \frac{\pi}{4} (\because \tan 45^\circ = 1)$$

எடுத்துக்காட்டு 22

A,B குறுங்கோணம் மற்றும் $an A=rac{1-\cos B}{\sin B}$ எனில், an 2A= an B, என நிறுவுக. agreenightsupersection :

கொடுக்கப்பட்டது
$$\tan A = \frac{1-\cos B}{\sin B}$$

$$= \frac{2\sin^2\frac{B}{2}}{2\sin\frac{B}{2}\cos\frac{B}{2}} = \tan\frac{B}{2}$$

$$\therefore \quad \tan A = \tan \frac{B}{2}$$

$$\Rightarrow A = \frac{B}{2}$$
i.e. $2A = B$

$$\therefore \tan 2A = \tan B$$

எடுத்துக்காட்டு 23

 $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{16}$ எனக் காண்பி.

தீர்வு :

L.H.S. =
$$\sin 60^{\circ} \cdot \sin 20^{\circ} \cdot \sin (60^{\circ} - 20^{\circ}) \cdot \sin (60^{\circ} + 20^{\circ})$$

= $\frac{\sqrt{3}}{2} \sin 20^{\circ} [\sin^2 60^{\circ} - \sin^2 20^{\circ}]$
= $\frac{\sqrt{3}}{2} \sin 20^{\circ} \left[\frac{3}{4} - \sin^2 20^{\circ} \right]$

$$= \frac{\sqrt{3}}{2} \frac{1}{4} [3 \sin 20^{\circ} - 4 \sin^{3} 20^{\circ}]$$

$$= \frac{\sqrt{3}}{2} \frac{1}{4} \sin 60^{\circ}$$

$$= \frac{\sqrt{3}}{2} \frac{1}{4} \frac{\sqrt{3}}{2} = \frac{3}{16} = \text{R.H.S.}$$

sin18º மற்றும் cos36º இவையிரண்டின் மதிப்புகளைக் காண்க.

தீர்வு:

$$heta=18^{
m o}$$
 என இருப்பின் $5 heta=5 imes18=90^{
m o}$ ஆகும்.

$$3\theta + 2\theta = 90^{\circ}$$

$$\therefore 2\theta = 90^{\circ} - 3\theta$$

$$\therefore \sin 2\theta = \sin(90^{\circ} - 3\theta) = \cos 3\theta$$

$$2\sin\theta\cos\theta = 4\cos^3\theta - 3\cos\theta$$
 இருபுறமும் $\cos\theta$ –வினால் வகுக்க

$$2\sin\theta = 4\cos^2\theta - 3 \qquad (\because \cos\theta \neq 0)$$

$$2\sin\theta = 4(1-\sin^2\theta) - 3$$

$$2\sin\theta = 1 - 4\sin^2\theta$$

 \therefore $4\sin^2\theta + 2\sin\theta - 1 = 0$, என்பது $\sin\theta$ –விலான ஒரு இருபடிச் சமன்பாடு.

$$\therefore \sin \theta = \frac{-2 \pm \sqrt{4 + 16}}{8}$$
$$= \frac{-1 \pm \sqrt{5}}{4}$$

 $\theta=18^{\rm o}$ ஒரு குறுங்கோணம் என்பதால், $\sin\!\theta \geq 0$

$$\therefore \sin 18^{\circ} \qquad = \frac{\sqrt{5} - 1}{4}$$

$$\cos 36^{\circ}$$
 = 1 - 2 sin² 18° = 1 - 2 $\left(\frac{\sqrt{5} - 1}{4}\right)^2 = \frac{\sqrt{5} + 1}{4}$

எடுத்துக்காட்டு 25

$$\frac{\cos 3A}{\cos A} + \frac{\sin 3A}{\sin A} = 4 \cos 2A$$
 என நிறுவுக.

L.H.S. =
$$\frac{\cos 3A}{\cos A} + \frac{\sin 3A}{\sin A}$$

= $\frac{\sin A \cos 3A + \cos A \sin 3A}{\cos A \sin A} = \frac{\sin(A + 3A)}{\sin A \cdot \cos A}$
= $\frac{\sin 4A}{\sin A \cos A}$
= $\frac{2 \sin 2A \cdot \cos 2A}{\sin A \cdot \cos A}$
= $\frac{2 \cdot 2 \sin A \cos A \cos 2A}{\sin A \cos A}$
= $4 \cos 2A = R.H.S.$

$$\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta}=\tan\frac{\theta}{2}$$
 என நிறுவுக.

தீர்வு:

L.H.S. =
$$\frac{1 + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} - \left(1 - 2\sin^2\frac{\theta}{2}\right)}{1 + 2\sin\frac{\theta}{2}\cos\frac{\theta}{2} + 2\cos^2\frac{\theta}{2} - 1}$$
$$= \frac{2\sin\frac{\theta}{2}\left(\cos\frac{\theta}{2} + \sin\frac{\theta}{2}\right)}{2\cos\frac{\theta}{2}\left(\sin\frac{\theta}{2} + \cos\frac{\theta}{2}\right)}$$
$$= \tan\frac{\theta}{2} = \text{R.H.S.}$$

பயிற்சி 5.4

- 1) tanA + cotA = 2cosec2A என நிறுவுக
- $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \frac{1}{8}$ என நிரூபி.
- 3) $\tan \theta = \frac{1}{7}$, $\tan \phi = \frac{1}{3}$ எனில், $\cos 2\theta = \sin 4\phi$ என நிரூபி.
- $4) 2\cos\theta = x + \frac{1}{x}$ எனில்
 - (i) $\cos 2\theta = \frac{1}{2} \left(x^2 + \frac{1}{x^2} \right)$
 - (ii) $\cos 3\theta = \frac{1}{2} \left(x^3 + \frac{1}{x^3} \right)$ என நிறுவுக.

$$\frac{\sin 3A + \sin^3 A}{\cos^3 A - \cos 3A} = \cot A$$
 என நிரூபி.

6)
$$\frac{1+\sin 2A}{1-\sin 2A} = \tan^2(45^\circ + A)$$
 எனக் காட்டு.

7) If
$$\tan \frac{A}{2} = t$$
 எனில்,

(i)
$$\sin A + \tan A = \frac{4t}{1-t^4}$$

(ii)
$$\sec A + \tan A = \frac{(1+t)^2}{1-t^2}$$
 என நிரூபி.

8)
$$\cos^2 36^\circ + \sin^2 18^\circ = \frac{3}{4}$$
 எனக் காட்டு.

9)
$$\sec 72^{\circ} - \sec 36^{\circ} = 2$$
 எனக் காட்டு.

$$\frac{1-\cos 3A}{1-\cos A} = (1+2\cos A)^2$$
 என நிரூபி.

$$\frac{\cos 2A}{1 + \sin 2A} = \tan (45^{\circ} - A)$$
 என நிரூபி.

12)
$$\left(\sin\frac{A}{2} - \cos\frac{A}{2}\right)^2 = 1 - \sin A$$
 என நிரூபி.

13)
$$\frac{1-\tan^2(45^\circ - \theta)}{1+\tan^2(45^\circ - \theta)} = \sin 2\theta$$
 என காட்டு.

14)
$$\sin A = \frac{3}{5}$$
 எனில் $\sin 3A$, $\cos 3A$ மற்றும் $\tan 3A$ –வின் மதிப்புகளைக் காண்க.

$$\frac{\cos 3A}{\cos A} = 2\cos 2A - 1$$
 எனக் காட்டு

$$\sec^2 A (1 + \sec 2A) = 2\sec 2A$$
 என நிருபி.

5.3.6 திரிகோணமிதிச் சார்புகளின் பெருக்கலை அச்சார்புகளின் கூட்டல் அல்லது கழித்தலாக மாற்றம் செய்தல் (Transformation of products into sums or differences)

$$sin(A - B) = sinA cosB - cosA sinB$$
(2)

(1)+(2)

$$sin(A + B) + sin(A - B) = 2sinA cosB \qquad \dots (a)$$

(1)-(2)

மேலும்

$$\cos(A + B) = \cos A \cos B - \sin A \sin B \qquad(3)$$

$$cos(A - B) = cosAcosB + sinAsinB$$
(4)

(3)+(4)

$$\cos(A+B) + \cos(A-B) = 2\cos A \cos B \qquad \dots (c)$$

(4)-(3)

$$cos(A - B) - cos(A + B) = 2sinA.sinB \qquad(d)$$

எடுத்துக்காட்டு 27

பின்வருவனவற்றை கூட்டல் அல்லது கழித்தலாக எழுதுக

- (i) $2\sin 3\theta \cos \theta$
- (ii) $2\cos 2\theta \cos \theta$
- (iii) 2sin3x sinx
- (iv) $\cos 9\theta \cos 7\theta$

(v)
$$\cos 7 \frac{A}{2} \cos 9 \frac{A}{2}$$
 (vi) $\cos 5\theta \sin 4\theta$

(vii) 2 cos11A sin 13A

தீர்வு :

(i)
$$2\sin 3\theta \cos \theta = \sin (3\theta + \theta) + \sin (3\theta - \theta)$$

$$= \sin 4\theta + \sin 2\theta$$

(ii)
$$2\cos 2\theta \cos \theta = \cos(2\theta + \theta) + \cos(2\theta - \theta)$$

$$=\cos 3\theta + \cos \theta$$

(iii)
$$2\sin 3x \sin x = \cos(3x - x) - \cos(3x + x)$$

$$=\cos 2x - \cos 4x$$

(iv)
$$\cos 9\theta \cos 7\theta = \frac{1}{2} \left[\cos (9\theta + 7\theta) + \cos (9\theta - 7\theta) \right]$$

$$=\frac{1}{2}\left[\cos 16\theta + \cos 2\theta\right]$$

(v)
$$\cos 7 \frac{A}{2} \cos 9 \frac{A}{2} = \frac{1}{2} \left[\cos \left(7 \frac{A}{2} + 9 \frac{A}{2} \right) + \cos \left(7 \frac{A}{2} - 9 \frac{A}{2} \right) \right]$$

$$=\frac{1}{2} [\cos 8A + \cos (-A)]$$

$$= \frac{1}{2} \left[\cos 8A + \cos A \right]$$

(vi)
$$\cos 5\theta \sin 4\theta = \frac{1}{2} [\sin 9\theta - \sin \theta]$$

(vii)
$$2\cos 11A \sin 13A = \sin (11A + 13A) - \sin (11A - 13A)$$

$$= \sin 24A + \sin 2A$$
.

 $4\cos\alpha\cos(120^{\circ}-\alpha)\cos(120^{\circ}+\alpha)=\cos 3\alpha$ எனக் காண்பி.

தீர்வு:

L.H.S. =
$$2\cos\alpha \ 2\cos(120^{\circ} - \alpha) \cos(120^{\circ} + \alpha)$$

= $2\cos\alpha.\{\cos(120^{\circ} - \alpha + 120^{\circ} + \alpha) + \cos(120^{\circ} - \alpha - 120^{\circ} - \alpha)\}$
= $2\cos\alpha\{\cos240^{\circ} + \cos(-2\alpha)\}$
= $2\cos\alpha\{\cos240^{\circ} + \cos2\alpha\}$
= $2\cos\alpha\{-\frac{1}{2} + 2\cos^{2}\alpha - 1\}$
= $4\cos^{3}\alpha - 3\cos\alpha$
= $\cos^{3}\alpha = \text{R.H.S.}$

5.3.7 திரிகோணமிதிச் சார்புகளின் கூட்டல் அல்லது கழித்தலை, பெருக்கலாக மாற்றுதல் (Transformation of sums or differences into products)

C = A + B மேலும் D = A - B என, $5.3.6 - \dot{\omega}$ உள்ள (a), (b), (c) மற்றும் (d) சமன்பாடுகளில் பிரதியிட

(i)
$$\sin C + \sin D = 2 \sin \frac{C+D}{2} \cos \frac{C-D}{2}$$

(ii)
$$\sin C - \sin D = 2\cos \frac{C+D}{2} \sin \frac{C-D}{2}$$

(iii)
$$\cos C + \cos D = 2\cos \frac{C+D}{2} \cos \frac{C-D}{2}$$

(iv)
$$\cos C - \cos D = -2\sin\frac{C+D}{2}\sin\frac{C-D}{2}$$

என கிடைக்கப் பெறலாம்

எடுத்துக்காட்டு 29

பின்வருவனவற்றை பெருக்கலாக எழுதவும்

(i)
$$\sin 7A + \sin 5A$$
 (ii) $\sin 5\theta - \sin 2\theta$

(iv)
$$\cos 2\alpha - \cos 4\alpha$$

(v)
$$\cos 10^{\circ} - \cos 20^{\circ}$$
 (vi) $\cos 55^{\circ} + \cos 15^{\circ}$ (vii) $\cos 65^{\circ} + \sin 55^{\circ}$

தீர்வு :

(i)
$$\sin 7A + \sin 5A = 2\sin\left(\frac{7A + 5A}{2}\right)\cos\left(\frac{7A - 5A}{2}\right)$$

= $2\sin 6A\cos A$

(ii)
$$\sin 5\theta - \sin 2\theta = 2\cos\left(\frac{5\theta + 2\theta}{2}\right)\sin\left(\frac{5\theta - 2\theta}{2}\right)$$
$$= 2\cos\frac{7\theta}{2}\sin\frac{3\theta}{2}$$

(iii)
$$\cos 6A + \cos 8A = 2\cos\left(\frac{6A + 8A}{2}\right)\cos\left(\frac{6A - 8A}{2}\right)$$

$$= 2\cos 7A\cos(-A) = 2\cos 7A\cos A$$

(iv)
$$\cos 2\alpha - \cos 4\alpha = 2\sin\left(\frac{4\alpha + 2\alpha}{2}\right)\sin\left(\frac{4\alpha - 2\alpha}{2}\right)$$

$$= 2 \sin 3\alpha \sin \alpha$$

(v)
$$\cos 10^{\circ} - \cos 20^{\circ} = 2 \sin \left(\frac{20^{\circ} + 10^{\circ}}{2} \right) \sin \left(\frac{20^{\circ} - 10^{\circ}}{2} \right)$$

$$= 2\sin 15^{\circ} \sin 5^{\circ}$$

(vi)
$$\cos 55^{\circ} + \cos 15^{\circ} = 2\cos\left(\frac{55^{\circ} + 15^{\circ}}{2}\right)\cos\left(\frac{55^{\circ} - 15^{\circ}}{2}\right)$$

$$= 2\cos 35^{\circ}\cos 20^{\circ}$$

(vii)
$$\cos 65^{\circ} + \sin 55^{\circ} = \cos 65^{\circ} + \sin (0^{\circ} - 35^{\circ})$$

 $= \cos 65^{\circ} + \cos 35^{\circ}$
 $= 2\cos \left(\frac{65^{\circ} + 35^{\circ}}{2}\right) \cos \left(\frac{65^{\circ} - 35^{\circ}}{2}\right)$
 $= 2\cos 50^{\circ} \cos 15^{\circ}$

$$(\cos \alpha + \cos \beta)^2 + (\sin \alpha - \sin \beta)^2 = 4\cos^2\left(\frac{\alpha + \beta}{2}\right)$$
 என நிரூபி.

தீர்வு:

$$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)$$
(1)

$$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \sin \left(\frac{\alpha - \beta}{2} \right)$$
(2)

$$(1)^2 + (2)^2$$

$$(\cos \alpha + \cos \beta)^2 + (\sin \alpha - \sin \beta)^2$$

$$= 4\cos^{2}\left(\frac{\alpha+\beta}{2}\right)\cos^{2}\left(\frac{\alpha-\beta}{2}\right) + 4\cos^{2}\left(\frac{\alpha+\beta}{2}\right)\sin^{2}\left(\frac{\alpha-\beta}{2}\right)$$

$$= 4\cos^{2}\left(\frac{\alpha+\beta}{2}\right)\left\{\cos^{2}\left(\frac{\alpha-\beta}{2}\right) + \sin^{2}\left(\frac{\alpha-\beta}{2}\right)\right\}$$

$$= 4\cos^{2}\left(\frac{\alpha+\beta}{2}\right)$$

$$\cos^2 A + \cos^2 (60^\circ + A) + \cos^2 (60^\circ - A) = \frac{3}{2}$$
 எனக் காண்பி.

தீர்வு:

$$\cos^{2} A = \frac{1 + \cos 2A}{2} \qquad \dots (1)$$

$$\cos^{2}(60^{\circ} + A) = \frac{1 + \cos 2(60^{\circ} + A)}{2} \qquad \dots (2)$$

$$\cos^2(60^{\circ} - A) = \frac{1 + \cos 2(60^{\circ} - A)}{2} \qquad \dots (3)$$

$$(1) + (2) + (3)$$

$$\cos^{2}A + \cos^{2}(60^{\circ} + A) + \cos^{2}(60^{\circ} - A)$$

$$= \frac{1}{2}[3 + \cos 2A + \{\cos(120^{\circ} + 2A) + \cos(120^{\circ} - 2A)\}]$$

$$= \frac{1}{2}[3 + \cos 2A + 2\cos 120^{\circ} \cdot \cos 2A]$$

$$= \frac{1}{2}[3 + \cos 2A + 2\left(-\frac{1}{2}\right)\cos 2A = \frac{3}{2}$$

பயிற்சி 5.5

- 1) பின்வருவனவற்றை கூட்டல் அல்லது கழித்தல் வடிவில் எழுதுக :
 - (i) $\sin \frac{A}{4} \sin \frac{3A}{4}$ (ii) $\sin (B + C) \sin (B C)$ (iii) $\sin (60^{\circ} + A) \cdot \sin (120^{\circ} + A)$ (iv) $\cos \frac{5A}{3} \cos \frac{4A}{3}$
- 2) பின்வருவனவற்றை பெருக்கல் வடிவில் எழுதுக :
 - (i) $\sin 52^{\circ} \sin 32^{\circ}$ (ii) $\cos 6A \cos 2A$ (iii) $\sin 50^{\circ} + \cos 80^{\circ}$
- $\cos 20^{\circ}\cos 40^{\circ}\cos 60^{\circ}\cos 80^{\circ} = \frac{1}{16}$ என நிரூபி.
- $\sin(A-B)\sin C+\sin(B-C)\sin A+\sin(C-A)\sin B=0$ என நிரூபி.

$$\frac{\cos B - \cos A}{\sin A - \sin B} = \tan \frac{A + B}{2}$$
 என நிரூபி.

$$\sin 50^{\circ} - \sin 70^{\circ} + \cos 80^{\circ} = 0$$
 என நிரூபி.

$$\cos 18^{\circ} + \cos 162^{\circ} + \cos 234^{\circ} + \cos 306^{\circ} = 0$$
 என நிரூபி.

8)
$$(\cos\alpha - \cos\beta)^2 + (\sin\alpha - \sin\beta)^2 = 4\sin^2\left(\frac{\alpha - \beta}{2}\right)$$
 என நிரூபி.

9)
$$(\cos\alpha + \cos\beta)^2 + (\sin\alpha + \sin\beta)^2 = 4\cos^2\left(\frac{\alpha - \beta}{2}\right)$$
 என நிரூபி.

$$\cos 40^{\circ} + \cos 80^{\circ} + \cos 160^{\circ} = 0$$
 என நிரூபி.

$$\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$$
 என நிரூபி.

$$\sin A + \sin B = x$$
, $\cos A + \cos B = y$ எனில், $\sin(A + B) = \frac{2xy}{x^2 + y^2}$ எனக் காண்பி.

13)
$$\frac{\cos 2A - \cos 3A}{\sin 2A + \sin 3A} = \tan \frac{A}{2}$$
 என நிறுவுக.

5.4 திரிகோணமிதி சமன்பாடுகள்

(TRIGONOMETRIC EQUATIONS)

திரிகோணமிதி சாா்புகளை உள்ளடக்கிய சமன்பாடு திரிகோணமிதி சமன்பாடு எனப்படும்.

எடுத்துக்காட்டாக : $2\sin\theta=1$; $\sin^2\theta+\cos\theta-3=0$; $\tan^2\theta-1=0$ என்பன திரிகோணமிதி சமன்பாடுகளாகும்.

கோணம் 'θ'–வின் எம்மதிப்புகள் கொடுக்கப்பட்ட சமன்பாட்டை நிறைவு செய்கின்றனவோ அம்மதிப்புகள் அச்சமன்பாட்டின் தீர்வுகளாகும்.

5.4.1 முதன்மைத் தீர்வு

சமன்பாட்டின் அனைத்துத் தீர்வுகளில் sine சார்புக்கு $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ விலும் tangent சார்புக்கு $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ யிலும் மற்றும் cosine சார்புக்கு $[0,\pi]$ யிலும் உள்ள தீர்வு அச்சமன்பாட்டின் முதன்மை தீர்வு $(principal\ solution)$ ஆகும்.

எடுத்துக்காட்டு 32

பின்வரும் சமன்பாடுகளின் முதன்மைத் தீர்வுகளைக் காண்க.

(i)
$$\cos\theta = -\frac{\sqrt{3}}{2}$$
 (ii) $\tan\theta = \sqrt{3}$ (iii) $\sin\theta = -\frac{1}{2}$

தீர்வு :

(i)
$$\cos\theta = -\frac{\sqrt{3}}{2} < 0$$

 \therefore θ இரண்டு அல்லது மூன்றாம் கால்பகுதியில் அமையும்.

ஆனால் $\theta \in [0, \pi]$ எனவே முதன்மைத் தீர்வு இரண்டாம் கால்பகுதியில் அமையும்.

$$\therefore \cos\theta = -\frac{\sqrt{3}}{2} = \cos(180^{\circ} - 30^{\circ})$$

 $= \cos 150^{\circ}$

 \therefore முதன்மைத் தீர்வு $\theta = 5\frac{\pi}{6}$ ஆகும்.

(ii)
$$\tan\theta = \sqrt{3} > 0$$

∴ θ முதல் அல்லது மூன்றாம் கால்பகுதியில் அமையும்.

$$\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

். தீர்வு முதல் கால்பகுதியில் அமையும்.

$$\tan\theta = \sqrt{3} = \tan \frac{\pi}{3}$$
$$\frac{\pi}{3} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

 \therefore முதன்மைத் தீர்வு $\theta = \frac{\pi}{3}$ ஆகும்.

(iii)
$$\sin \theta = -\frac{1}{2} < 0$$

 \therefore θ மூன்றாம் அல்லது நான்காம் கால்பகுதியில் அமையும்.

$$\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 \therefore முதன்மைத் தீர்வு நான்காம் கால்பகுதியில் அமையும் மேலும் $\theta = -\frac{\pi}{6}$.

5.4.2 திரிகோணமிதி சார்புகளின் பொதுத் தீர்வுகள்

(i)
$$\sin \theta = \sin \alpha$$
 ឥតទាំស់ ; $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$ $\theta = n\pi + (-1)^n \alpha$; $n \in \mathbb{Z}$

(ii)
$$\cos \theta = \cos \alpha$$
 எனில் ; $0 \le \alpha \le \pi$

$$\theta = 2n\pi \pm \alpha$$
; $n \in \mathbb{Z}$

(iii)
$$an \theta = an \alpha$$
 எனில் ; $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$ $\theta = an \pi + \alpha$; $\mathbf{n} \in \mathbf{Z}$

எடுத்துக்காட்டு 33

பின்வரும் சமன்பாடுகளின் பொதுத்தீர்வுகளைக் காண்க.

(i)
$$\sin\theta = \frac{1}{2}$$
 (ii) $\cos\theta = -\frac{1}{2}$ (iii) $\tan\theta = \sqrt{3}$ (iv) $\tan\theta = -1$ (v) $\sin\theta = -\frac{\sqrt{3}}{2}$.

தீர்வு :

(i)
$$\sin\theta = \frac{1}{2} \implies \sin\theta = \sin 30^\circ = \sin \frac{\pi}{6}$$

இது $\sin\!\theta = \sin\!\alpha$ என்ற அமைப்பில் உள்ளது.

எனவே
$$\alpha = \frac{\pi}{6}$$

எனவே பொதுத் தீர்வு $\theta=n\pi+(-1)^n$ α ; $n\in Z$

i.e.
$$\theta = n\pi + (-1)^n \frac{\pi}{6}$$
; $n \in \mathbb{Z}$

(ii)
$$\cos\theta = -\frac{1}{2} \Rightarrow \cos\theta = \cos 120^\circ = \cos \frac{2\pi}{3}$$

$$\therefore \theta = 2n\pi \pm 2\frac{\pi}{3} ; n \in \mathbb{Z}$$

(iii)
$$\tan \theta = \sqrt{3} \implies \tan \theta = \tan 60^{\circ} = \tan \frac{\pi}{3}$$

$$\therefore \theta = n\pi + \frac{\pi}{3}; n \in \mathbb{Z}$$

(iv)
$$\tan \theta = -1 \Rightarrow \tan \theta = \tan -\frac{\pi}{4}$$
.

$$\Rightarrow \theta = n\pi - \frac{\pi}{4} \quad ; n \in Z$$

(v)
$$\sin \theta = -\frac{\sqrt{3}}{2} \Rightarrow \sin \theta = \sin \left(-\frac{\pi}{3}\right)$$

$$\Rightarrow \theta = n\pi + (-1)^n \cdot (-\frac{\pi}{3}) ; n \in \mathbb{Z}$$

ie
$$\theta = n\pi - (-1)^n$$
. $\frac{\pi}{3}$; $n \in \mathbb{Z}$

எடுத்துக்காட்டு 34

பின்வரும் சமன்பாடுகளின் பொதுத்தீர்வுகளைக் காண்க

(i)
$$\sin^2\theta = 1$$
 (ii) $\cos^2\theta = \frac{1}{4}$

(i)
$$\sin^2\theta = 1$$
 (ii) $\cos^2\theta = \frac{1}{4}$ (iii) $\csc^2\theta = \frac{4}{3}$ (iv) $\tan^2\theta = \frac{1}{3}$

தீர்வு :

(i)
$$\sin^2\theta = 1 : \sin\theta = \pm 1 \Rightarrow \sin\theta = \sin(\pm \frac{\pi}{2})$$

$$\therefore \theta = n\pi + (-1)^n \left(\pm \frac{\pi}{2}\right)$$

i.e.
$$\theta = n\pi \pm \frac{\pi}{2}$$
; $n \in \mathbb{Z}$

(ii)
$$\cos^2\theta = \frac{1}{4} \Rightarrow 1 - \sin^2\theta = \frac{1}{4} \Rightarrow \sin^2\theta = \frac{3}{4}$$
 $\therefore \sin\theta = \pm \frac{\sqrt{3}}{2}$

$$\therefore \sin\theta = \sin\left(\pm \frac{\pi}{3}\right)$$

$$\Rightarrow \theta = n\pi \pm \frac{\pi}{3}$$
; $n \in \mathbb{Z}$.

(iii)
$$\csc^2\theta = \frac{4}{3}$$
 : $\csc\theta = \pm \frac{2}{\sqrt{3}} \Rightarrow \sin\theta = \pm \frac{\sqrt{3}}{2}$

$$\therefore \theta = n\pi \pm \frac{\pi}{3} \ ; n \in Z.$$

(iv)
$$an^2\theta = \frac{1}{3}$$
 : $an\theta = \pm \frac{1}{\sqrt{3}}$
 $\Rightarrow an\theta = an (\pm 30^\circ)$
 $\Rightarrow an\theta = an (\pm \frac{\pi}{6})$
எனவே பொதுத் தீர்வு $\theta = an \pm \frac{\pi}{6}$; $n \in \mathbb{Z}$

பயிற்சி 5.6

பின்வருவனவற்றின் முதன்மைத் தீர்வுகளைக் காண்க. 1)

(i)
$$\csc\theta = 2$$

(ii)
$$\sec\theta = -\frac{2}{\sqrt{3}}$$

(ii)
$$\sec\theta = -\frac{2}{\sqrt{3}}$$
 (iii) $\cos\theta = -\frac{1}{\sqrt{2}}$

(iv)
$$\tan\theta = \frac{1}{\sqrt{3}}$$

(iv)
$$\tan\theta = \frac{1}{\sqrt{3}}$$
 (v) $\cot\theta = -1$ (vi) $\sin\theta = \frac{1}{\sqrt{2}}$

தீர்வு காண்க : 2)

(i)
$$\cot^2\theta = \frac{1}{3}$$
 (ii) $\sec^2\theta = 4$ (iii) $\csc^2\theta = 1$ (iv) $\tan^2\theta = 3$.

(ii)
$$\sec^2\theta = 4$$

(iii)
$$\csc^2\theta = 1$$

(iv)
$$tan^2\theta = 3$$
.

5.5 நேர்மாறு திரிகோணமிதி சார்புகள்

(INVERSE TRIGONOMETRIC FUNCTIONS)

 $\sin^{-1}x$, $\cos^{-1}x$, $\tan^{-1}x$ etc., என்பன நேர்மாறு திரிகோணமிதி சார்புகளாகும்.

 $\sin\theta = x$ எனில், $\theta = \sin^{-1}x$ ஆகும். எனவே $\sin^{-1}x$ எனும் குறியீடு குறிக்கின்ற கோணத்தின் sine மதிப்பு x ஆகும்.

 $\sin \theta = x$ என்பதும் மேலும் $\theta = \sin^{-1}x$ என்பது ஒரே பொருள்படும்

(குறிப்பு :
$$\sin^{-1}x \neq (\sin x)^{-1}$$
)

எடுத்துக்காட்டாக, $\sin\theta=\frac{1}{2}$ என்பதும் $\theta=\sin^{-1}(\frac{1}{2})$ என்பதும் சமம்

எனவே $\tan^{-1}(1) = \frac{\pi}{4}$, $\sin^{-1}(\frac{1}{2}) = \frac{\pi}{6}$ என எழுதலாம்.

5.5.1 நேர்மாறு சார்புகளின் சில முக்கிய பண்புகள்

1) (i)
$$\sin^{-1}(\sin\theta) = \theta$$

(iv)
$$\csc^{-1}(\csc\theta) = \theta$$

(ii)
$$\cos^{-1}(\cos\theta) = \theta$$
 (v) $\sec^{-1}(\sec\theta) = \theta$

$$(v) \sec^{-1}(\sec \theta) = \theta$$

(iii)
$$tan^{-1}(tan\theta) = \theta$$
 (vi) $cot^{-1}(cot\theta) = \theta$

$$(vi) \cot^{-1}(\cot \theta) = \theta$$

2) (i)
$$\sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1}x$$
 (iv) $\csc^{-1}\left(\frac{1}{x}\right) = \sin^{-1}x$

(ii)
$$\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}x$$
 (v) $\sec^{-1}\left(\frac{1}{x}\right) = \cos^{-1}x$

(iii)
$$\tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1}x$$
 (vi) $\cot^{-1}\left(\frac{1}{x}\right) = \tan^{-1}x$

3) (i)
$$\sin^{-1}(-x) = -\sin^{-1}x$$
 (ii) $\cos^{-1}(-x) = \pi - \cos^{-1}x$

(iii)
$$tan^{-1}(-x) = -tan^{-1}x$$
 (iv) $cosec^{-1}(-x) = -cosec^{-1}x$

4) (i)
$$\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$$

(ii)
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right)$$

(iii)
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$$

கீழ்வருவனவற்றை மதிப்பிடுக

(i)
$$\sin(\cos^{-1}\frac{3}{5})$$
 (ii) $\cos(\tan^{-1}\frac{3}{4})$

தீர்வு :

(i)
$$\cos^{-1}\frac{3}{5} = \theta$$
(1) என கொள்க. $\therefore \cos\theta = \frac{3}{5}$ $\sin\theta = \sqrt{1-\cos^2\theta} = \frac{4}{5}$ $\sin(\cos^{-1}\frac{3}{5}) = \sin\theta$, (1) யைப் பயன்படுத்தி $=\frac{4}{5}$

(ii)
$$\tan^{-1}\left(\frac{3}{4}\right) = \theta$$
......(1) எனக் கொள் ∴ $\tan\theta = \frac{3}{4}$

$$an heta = rac{3}{4} \Rightarrow \cos heta = rac{4}{5}$$
 என நிரூபிக்கலாம்

$$\cos{(\tan^{-1}\frac{3}{4})}=\cos{\theta}$$
 (1) யைப் பயன்படுத்தி $=\frac{4}{5}$

(i)
$$\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \tan^{-1}\left(\frac{2}{9}\right)$$
 என நிரூபி.
(ii) $\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{3}{5} = \tan^{-1}\frac{27}{11}$ என நிரூபி.

நிரூபணம்:

(i)
$$\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \tan^{-1}\left[\frac{\frac{1}{7} + \frac{1}{13}}{1 - \frac{1}{7} \cdot \frac{1}{13}}\right]$$

$$= \tan^{-1}\left[\frac{20}{90}\right] = \tan^{-1}\left(\frac{2}{9}\right)$$

(ii)
$$\cos^{-1}\left(\frac{4}{5}\right) = \theta$$

$$\therefore \cos\theta = \frac{4}{5} \Rightarrow \tan\theta = \frac{3}{4}$$

$$\therefore \cos^{-1}\left(\frac{4}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right)$$

$$\therefore \cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\frac{3}{4} + \tan^{-1}\frac{3}{5}$$

$$= \tan^{-1}\left[\frac{\frac{3}{4} + \frac{3}{5}}{1 - \frac{3}{4} \cdot \frac{3}{5}}\right] = \tan^{-1}\left(\frac{27}{11}\right)$$

எடுத்துக்காட்டு 37

(i)
$$\sin^{-1}(3x - 4x^3) = 3\sin^{-1}x$$
 என நிரூபி.

(ii)
$$\cos^{-1}(4x^3 - 3x) = 3\cos^{-1}x$$
 என நிரூபி.

நிரூபணம் :

$$\sin^{-1}(3x - 4x^3)$$
 $x = \sin\theta$ எனக் கொள் $\therefore \theta = \sin^{-1}x$. $3x - 4x^3 = 3\sin\theta - 4\sin^3\theta = \sin3\theta$ (1) $\sin^{-1}(3x - 4x^3) = \sin^{-1}(\sin 3\theta)$, (1) யைப் பயன்படுத்தி $= 3\theta$ $= 3\sin^{-1}x$

ii)
$$\cos^{-1}(4x^3 - 3x)$$
 $x = \cos\theta$ $\therefore \theta = \cos^{-1}x$ $4x^3 - 3x = 4\cos^3\theta - 3\cos\theta = \cos3\theta$ (1) $\cos^{-1}(4x^3 - 3x) = \cos^{-1}(\cos3\theta), (1)$ யைப் பயன்படுத்தி $= 3\theta$ $= 3\cos^{-1}x$

தீர்வு காண் :
$$tan^{-1} \left(\frac{x-1}{x-2} \right) + tan^{-1} \left(\frac{x+1}{x+2} \right) = \frac{\pi}{4}$$

தீர்வு:

L.H.S. =
$$\tan^{-1} \left(\frac{x-1}{x-2} \right) + \tan^{-1} \left(\frac{x+1}{x+2} \right)$$

= $\tan^{-1} \left[\frac{x-1}{x-2} + \frac{x+1}{x+2} \right]$
 $1 - \frac{x^2 - 1}{x^2 - 4}$

$$= \tan^{-1} \left[\frac{\frac{(x-1)(x+2) + (x+1)(x-2)}{x^2 - 4}}{\frac{x^2 - 4 - x^2 + 1}{x^2 - 4}} \right] = \tan^{-1} \left[\frac{2x^2 - 4}{-3} \right]$$

$$\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$$
, என்பதால்

$$\tan^{-1}\left(\frac{2x^2-4}{-3}\right) = \frac{\pi}{4}$$
 And i.e. $\tan^{-1}\left(\frac{2x^2-4}{-3}\right) = \tan^{-1}(1)$

ஆகையால்
$$\frac{2x^2 - 4}{-3} = 1$$

 $\Rightarrow 2x^2 - 4 = -3$
 $\Rightarrow 2x^2 - 1 = 0$
 $\Rightarrow x^2 = \frac{1}{2}$
 $\therefore x = \pm \frac{1}{\sqrt{2}}$

பயிற்சி 5.7

$$\cot^{-1}x + \cot^{-1}y = \cot^{-1}\left[\frac{xy-1}{x+y}\right]$$
 எனக் காண்பி.

2)
$$\tan^{-1}x + \tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{\pi}{4}$$
 எனக் காண்பி.

3)
$$\tan^{-1}(5) - \tan^{-1}(3) + \tan^{-1}\left(\frac{7}{9}\right) = n\pi + ; n \in \mathbb{Z}$$
 என நிரூபி.

4)
$$2\tan^{-1}x = \cos^{-1}\left[\frac{1-x^2}{1+x^2}\right]$$
 என நிரூபி. [குறிப்பு : $x = \tan\theta$ எனக் கொள்]

$$2\sin^{-1}x = \sin^{-1}\left[2x\sqrt{1-x^2}\right]$$
 என நிறுவுக. [குறிப்பு : $x = \sin\theta$ எனக் கொள்]

6) தீர்வு காண்க :
$$tan^{-1}2x + tan^{-1}3x = \frac{\pi}{4}$$

7) தீர்வு காண்க :
$$tan^{-1}(x+1) + tan^{-1}(x-1) = tan^{-1}\left(\frac{4}{7}\right)$$

8)
$$\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\frac{3}{5} = \tan^{-1}\frac{27}{11}$$
 என நிருபி

9) மதிப்பிடுக :
$$\cos \left[\sin^{-1} \frac{3}{5} + \sin^{-1} \frac{5}{13} \right]$$
 [குறிப்பு : $A = \sin^{-1} \frac{3}{5}$ $B = \sin^{-1} \frac{5}{13}$ எனக் கொள்க].

$$\tan^{-1}\left(\frac{4}{3}\right) - \tan^{-1}\left(\frac{1}{7}\right) = \frac{\pi}{4}$$
 என நிறுவுக.

பயிற்சி 5.8

ஏற்புடைய விடையைத் தெரிவு செய்க :

- 1) p $\csc\theta = \cot 45^{\circ}$ எனில் p ன் மதிப்பு
 - (a) cos45°
- (b) tan45°
- (c) sin45°
- (d) $\sin\theta$

2)
$$\sqrt{1-\cos^2\theta} \times \sqrt{1-\sin^2\theta} - \left(\frac{\cos\theta}{\csc\theta}\right) =$$

(a) (

- (b) 1
- (c) $\cos^2\theta \sin^2\theta$
- d) $\sin^2\theta \cos^2\theta$

- 3) $(\sin 60^{\circ} + \cos 60^{\circ})^2 + (\sin 60^{\circ} \cos 60^{\circ})^2 =$
 - (a) 3
- (b) 1
- (c) 2
- (d) 0

4)
$$\frac{1}{\sec 60^{\circ} - \tan 60^{\circ}} =$$

(a)
$$\frac{\sqrt{3}+2}{2\sqrt{3}}$$

(a)
$$\frac{\sqrt{3}+2}{2\sqrt{3}}$$
 (b) $\frac{\sqrt{3}-2}{2\sqrt{3}}$ (c) $\frac{1+\sqrt{3}}{2}$

$$(c) \frac{1+\sqrt{3}}{2}$$

(d)
$$\frac{1-\sqrt{3}}{2}$$

5)
$$x = a\cos^3\theta$$
; $y = b\sin^3\theta$ எனில் $\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}}$ ன் மதிப்பு

(a)
$$2\cos^3\theta$$

(b)
$$3b\sin^3\theta$$

(d)
$$absin^2\theta cos^2\theta$$

$$\frac{1}{\sec(-60^{\circ})}$$
 ன் மதிப்பு

(a)
$$\frac{1}{2}$$

$$(b) - 2$$

$$(d) - \frac{1}{2}$$

7)
$$\sin(90^{\circ} + \theta) \sec(360^{\circ} - \theta) =$$

(a)
$$cosec\theta$$

$$(c) - 1$$

(d)
$$\cos\theta$$

8)
$$\sec(\theta - \pi) =$$

(a)
$$\sec\theta$$

$$(b) - \csc\theta$$

(c)
$$\csc\theta$$

$$(d) - \sec \theta$$

9)
$$\sin A = \frac{1}{\sqrt{2}}$$
 என இருந்தால் 0° மற்றும் 360° க்கு இடைப்பட்ட) A –வின் இருமதிப்புகளாவன

(a)
$$60^{\rm o}$$
 மற்றும் $135^{\rm o}$ (b) $135^{\rm o}$ மற்றும் $45^{\rm o}$ (c) $135^{\rm o}$ மற்றும் $175^{\rm o}$ (d) $45^{\rm o}$ மற்றும் $225^{\rm o}$

$$cos(2n\pi + \theta) = sin\alpha$$
 எனில்,

(a)
$$\theta - \alpha = 90^{\circ}$$

(b)
$$\theta = 0$$

(c)
$$\theta + \alpha = 90^{\circ}$$
 (d) $\alpha - \theta = 90^{\circ}$

(d)
$$\alpha - \theta = 90^{\circ}$$

$$\frac{\tan 15^{\circ} - \tan 75^{\circ}}{1 + \tan 15^{\circ} \tan 75^{\circ}} = \underline{\qquad \qquad}$$

(a)
$$\frac{1+\sqrt{3}}{1-\sqrt{3}}$$

(a)
$$\frac{1+\sqrt{3}}{1-\sqrt{3}}$$
 (b) $\frac{1+2\sqrt{3}}{1-2\sqrt{3}}$

(c)
$$-\sqrt{3}$$

(d)
$$\sqrt{3}$$

(a)
$$\frac{1+\sqrt{3}}{1-\sqrt{3}}$$

(a)
$$\frac{1+\sqrt{3}}{1-\sqrt{3}}$$
 (b) $\frac{1+\sqrt{3}}{\sqrt{3}-1}$

(c)
$$\frac{\sqrt{3}-1}{1-\sqrt{3}}$$

(b)
$$\frac{\sqrt{3}+1}{4}$$

(c) sin75°

(d) sin15°

(a) 0 (b)
$$\frac{\sqrt{3}+1}{4}$$
14) $\tan \left(\frac{\pi}{4} + x\right) = \underline{\qquad}$

(a)
$$\frac{1 + \tan x}{1 - \tan x}$$
 (b) 1 + tan x

(b)
$$1 + \tan x$$

(d)
$$\tan \frac{\pi}{4}$$

15)	முக்கோணம் ABC -	-လံ $\cot (A + B) = 1$ 6	ானில் tan C =	
	(a) 0	(b) 1	(c) ∞	(d) - 1
16)	sinA = 1 எனில் sin	2A வின் மதிப்பு		
	(a) 2	(b) 1	(c) 0	(d) - 1
17)	sin54º ன் மதிப்பு			
	(a) $\frac{1-\sqrt{5}}{4}$	(b) $\frac{\sqrt{5}-1}{4}$	(c) $\frac{\sqrt{5}+1}{4}$	$(d) \frac{-\sqrt{5}-1}{4}$
18)	$\frac{1 - \cos 15^{\circ}}{1 + \cos 15^{\circ}} = \dots$			0
	(a) sec30°	(b) $\tan^{-1} \left(\frac{15}{2} \right)$	(c) tan30°	(d) $\tan^2 7 \frac{1}{2}^0$
19)	$\sin^2 40^{\circ} - \sin 210^{\circ} =$			
	(a) sin80°	(b) $\frac{\sqrt{3}}{2}$	$(c) \sin^2 30^{\circ}$	$(d) \frac{\sin 50^{\circ}}{2}$
20)	$\frac{3\tan\frac{\pi}{4}-\tan^3\frac{\pi}{4}}{1-3\tan^2\frac{\pi}{4}} \text{all}$	ன் மதிப்பு		
	(a) - 1	(b) 1	(c) 0	(d) ∞
21)	4sin18º cos 36º மதிப்			_
	(a) 0	(b) $\frac{\sqrt{3}}{2}$	(c) 1	$(d) - \frac{\sqrt{3}}{2}$
22)	cos x = 1 என்ற சமன்	பாட்டின் முதன்மைத் தீ	ர்வு	
	(a) $x = 1$	(b) $x = 0$	(c) $x = 0^{\circ}$	(d) $x = 360^{\circ}$
23)	sinx = 0 எனில் தீர்வுக	எளில் ஒன்றானது ,		
	$(a) x = 3\frac{\pi}{2}$	(b) $x = 4\frac{\pi}{3}$	(c) $x = 5\pi$	$(d) x = 5\frac{\pi}{2}$
24)	$\cos x = 0$ எனில், தீர்வ	புகளில் ஒன்றானது,		
	(a) $x = 2\pi$	(b) $x = 14 \frac{\pi}{3}$	(c) $x = 21 \frac{\pi}{2}$	(d) $x = 180^{\circ}$
25)	an x = 0 எனில், தீர்வ	களில் ஒன்றானது,		
	(a) $x = 0^{\circ}$	(b) $x = \frac{\pi}{2}$	$(c) x = \frac{\pi}{18}$	$(d) x = -2\frac{\pi}{3}$
26)	$\sin x = k$ எனில், இடைவெளியானது,	மேலும், $-1 \le k$	≤ 1 x−ன் முதன்பை	மத் தீா்வு அமையும்
	(a) $[0, \frac{\pi}{2}]$	(b) $[-\infty, -\pi]$	(c)(0,1)	$(d) \left(\frac{\pi}{2}, \infty\right)$

27)	cos x = k, எனில் இடைவெளியானது	, மேலும் – 1 ≤ k	≤ 1 x−ன் முதன்ன	மத் தீா்வு அமையும்
	(a) $\left[-\infty, -\frac{\pi}{2}\right]$	(b) $\left[\frac{\pi}{2},\pi\right]$	(c)(-1,1)	(d) (π, ∞)
28)	$\tan \theta = k, k > 0$ என்	_ ற சமன்பாட்டின் தீா்வுக	ளின் எண்ணிக்கை	
	(a) பூஜ்ஜியம்	(b) ஒன்றே ஒன்று	(c) பல தீா்வுகள்	(d) இரண்டு
29)	sin ⁻¹ (1) + sin ⁻¹ (0)	ர் மதிப்பு		
	(a) $\frac{\pi}{2}$	(b) 0	(c) 1	(d) π
30)	$\sin^{-1}(3\frac{x}{2}) + \cos^{-1}(3\frac{x}{2})$	$\left(\frac{x}{2}\right) =$		
	(a) $3\frac{\pi}{2}$	(b) 6x	(c) 3x	(d) $\frac{\pi}{2}$
31)	$\tan^{-1}x + \cot^{-1}x =$			2
	(a) 1	$(b) - \pi$	(c) $\frac{\pi}{2}$	(d) π
32)	$\sin^{-1} x - \cos^{-1} (-x) =$		_	
	$(a)-\frac{\pi}{2}$	(b) $\frac{\pi}{2}$	$(c) - 3\frac{\pi}{2}$	(d) $3\frac{\pi}{2}$
33)	$\sec^{-1}\left(\frac{2}{3}\right) + \csc^{-1}\left(\frac{2}{3}\right)$	$\left(\frac{2}{3}\right) =$		
	$(a)-\frac{\pi}{2}$	(b) $\frac{\pi}{2}$	(c) π	$(d) - \pi$
34)	$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$	/		
	(a) $\sin^{-1}(\frac{1}{\sqrt{2}})$	(b) $\sin^{-1}(\frac{1}{2})$	(c) $\tan^{-1}(\frac{1}{2})$	$(d) \tan^{-1}(\frac{1}{\sqrt{3}})$
35)	$\cos^{-1}(-1) + \tan^{-1}(\infty)$	$+\sin^{-1}(1) =$		
	$(a) - \pi$	(b) $3\frac{\pi}{2}$	(c) 30°	(d) 2π
36)	_			
	(a) $1 + \frac{\sqrt{3}}{2}$	(b) $1 - \frac{1}{\sqrt{2}}$	(c) 1	(d) 0
37)	$A = 120^{\circ}$ எனில் $\tan A$	$A + \cot A = \dots$		
	$(a) - \frac{4}{\sqrt{3}}$	(b) $\frac{1}{\sqrt{3}}$	(c) $\frac{4}{\sqrt{3}}$	$(d) - \frac{1}{\sqrt{3}}$
38)	$\frac{\sin 5A - \sin 3A}{\cos 3A - \cos 5A}$ யின்	r மதிப்பு		
	(a) cot4A	(b) tan4A	(c) sin4A	(d) sec4A

 $\sec A \sin(270^{\circ} + A)$ வின் மதிப்பு 39)

- (a) 1
- (b) $\cos^2 A$ (c) $\sec^2 A$
- (d) 1

 $\cos\theta = \frac{4}{5}$ எனில் $\tan\theta \, \sin\theta \, \sec\theta \, \csc\theta \, \cos\theta$ - வின் மதிப்பு 40)

- (a) $\frac{4}{3}$ (b) $\frac{3}{4}$
- (d) $\frac{12}{5}$

சார்புகளும் அவற்றின் வரைபடங்களும் (FUNCTIONS AND THEIR GRAPHS)

நுண் கணிதத்தின் கருத்துக்களுள், சாா்பின் கருத்து ஒரு மிக முக்கியமான கருத்துருவாகும். அன்றாட வாழ்க்கையில் சாா்பின் கருத்து பயன்படுத்தப்படுகிறது. உதாரணமாக, "அண்ணாப் பல்கலைக் கழகத்தில் பி.டெக். படிப்பு பயிலும் ஒவ்வொரு மாணவனுக்கும் படிப்பின் முடிவில் தோ்ச்சிக் குறியீடு வழங்கப்படுகிறது," என்ற வாக்கியம் ஒரு சாா்பைக் குறிக்கும். இந்த வாக்கியத்தை ஆராய்கையில், சாா்பிற்கான தேவையுள்ள உட்கருத்துக்களைக் காணலாம்.

இவ்வாக்கியத்திலிருந்து நாம் அறிவது என்னவெனில், மாணவாகளை முதல் கணமாகவும், வரையறுக்கப்பட்ட தோ்ச்சிக் குறியீடுகள் இரண்டாவது கணமாகவும், முதல் கணத்தில் இருக்கும் ஒவ்வொரு உறுப்பினையும் இரண்டாம் கணத்தில் தனித்தனியே ஒரே ஒா் உறுப்புடன் ஒரு விதிப்படி உறவுபடுத்தப்படுகிறது.

இதே போன்று, கடையில் இருக்கும் ஒவ்வொரு விற்பனைப் பொருளுக்கும் தனித்தனியே ஒரு விலை இருப்பதைக் காணலாம். பொருளாதார பாடத்தில், இதே போன்று மொத்த செலவு மற்றும் உற்பத்தி இவையிரண்டின் தொடர்பை சார்பு எனக் கருதலாம்.

ஆகையால் இரு உறுப்புக்களை, முதல்உறுப்பின் மதிப்பிற்கேற்றவாறு இரண்டாவது உறுப்பிற்கு நிச்சய மதிப்பு இருக்குமாறு ஒரு விதியை ஏற்படுத்தும்போது இரண்டாவது உறுப்பு, முதலாம் உறுப்பின் சார்புமதிப்பு என அறியப்படுகிறது.

6.1. மெய் மதிப்பின் சார்புகள் (FUNCTION OF A REAL VALUE)

(i) மாறிலி (Constant) :

கணிதத்தில், எந்த ''ஒன்று'' தன்னுடைய மதிப்பை, கணக்கீடுகளின்போது மாற்றாமல் வைத்துள்ளதோ அதற்கு மாறிலி என்று பெயா். இதை a,b,c என்ற எழுத்துக்களால் குறிப்பது மரபு.

எடுத்துக்காட்டாக : ஒரு ஆரையன் என்பது மாறிலி கோணமாகும். ஒரு மெய்யெண் மாறிலியாகும்.

(ii) மாறி (Variable):

கணக்கீட்டின்போது எந்த "ஒன்று" பன்மதிப்பு கொண்டதாக அமைகிறதோ அது மாறி என்றழைக்கப்படுகிறது. இதை x, y, z என்ற எழுத்துக்களால் குறிப்பது மரபு.

எடுத்துக்காட்டாக:4x+3y=1 என்ற சமன்பாட்டில் "x" மற்றும் "y" இவையிரண்டும் மாறிகளாகும். இவையிரண்டும் 4x+3y=1 என்ற நேர்கோட்டின் மீது அமையும் புள்ளிகளுள் ஒன்றாகும். ஆகையால் கோட்டின்மீதுள்ள வெவ்வேறு புள்ளிகளை குறிப்பிடுகையில், x, y இவையிரண்டும் வெவ்வேறு மதிப்பைப் பெறும்.

மாறிகள் இரு வகைப்படும்:

(i) சாரா மாறி (ii) சார்ந்த மாறி

ஒரு மாறி தன்னிச்சையாக எந்த ஒரு மதிப்பையும் பெறக்கூடியதாயின் அம்மாறி **சாரா மாறி** என்றழைக்கப்படும்.

ஒரு மாறி, தன்னுடைய மதிப்பை மற்றொரு மாறியின் மதிப்பை பொறுத்து பெறுமாயின் அம்மாறி **சார்ந்த மாறி** என அழைக்கப்படும்.

இவ்வகையில் $y=5x^2-2x+3$ என்ற சமன்பாட்டில் "x" என்பது சாரா மாறியாகவும், "y" என்பது சார்ந்த மாறியாகவும் மற்றும் "3" என்பதை மாறிலியாகவும் அறியப்படுகிறது. மேலும் "x" என்பதை மதிப்பகம் என்றும் "y" என்பதை வீச்சகம் என்றும் கூறலாம்.

6.1.1 மூடிய மற்றும் திறந்த இடைவெளிகள்

 $A,\ B$ என்பன முறையே $a,\ b$ என்ற மெய்யெண்களைக் குறிக்கட்டும். இங்கு $a < b.\ A,\ B$ க்கு இடையில் அமைகின்ற எல்லா புள்ளிகளுக்குரிய மெய்யெண்கள் பெறும் மதிப்பு $x.\ a,\ b$ க்கு இடையில் a < x < b என்றவாறு மதிப்பு பெறும்.

இதன் முழு நிலையையும் கீழ்க்கண்ட முறையில் ஆய்வு செய்யலாம்.

(i) திறந்த இடைவெளி

 $\{x: a \le x \le b\}$ என்ற கணம் திறந்த இடைவெளி என அழைக்கப்படுகிறது. இது (a,b) என குறிக்கப்படுகிறது.

இந்த இடைவெளியில் முடிவுப் புள்ளிகள் சேர்க்கப்படவில்லை (உட்படவில்லை).

$$-\infty$$
 a $b \infty$

எடுத்துக்காட்டாக : (4, 6) என்ற இடைவெளியில் 3 ஒரு உறுப்பு இல்லை. ஆனால் 5.9 ஒரு உறுப்பாகும். (4, 6) –ல் 4–ம், 6–ம் உறுப்புகள் அல்ல.

(ii) மூடிய இடைவெளி

 $\{x: a \leq x \leq b\}$ என்ற கணம் மூடிய இடைவெளி என அழைக்கப்படுகிறது. [a, b] எனக் குறிக்கப்படுகிறது.

[a, b] இடைவெளியில் முடிவுப் புள்ளிகள் உட்படுத்தப்பட்டுள்ளது.

எடுத்துக்காட்டாக [4, 6] என்ற இடைவெளியில் 4–ம் 6–ம் உறுப்புக்கள் ஆகும்.

மேலும், பாதி மூடிய, பாதி திறந்த இடைவெளிகளைப் பற்றி நாம் இங்கு குறிப்பிட வேண்டியுள்ளது.

மேலும் $(a,\ b]=\{x:a< x\leq b\}$ என்பது இடப்புறம் (இடது) திறந்த இடைவெளி எனப்படுகிறது.

மேலும் $[a,\ b)=\{x:a\le x< b\}$ என்பது வலப்புறம் (வலது) திறந்த இடைவெளி எனப்படுகிறது.

சீராக எல்லா நிலைகளிலும் b-a=h என்பதை இடைவெளியின் நீளம் என அழைக்கப்படுகிறது.

6.1.2 ஒரு புள்ளியின் அண்மையகம் (Neighbourhood of a point)

а என்பதை ஏதேனும் ஒரு மெய்யெண் எனக்கொள்வோம். $\in >0$ என்பதை ஒரு மிக மிகச்சிறிய மெய்யெண்ணாக எடுத்துக்கொள்வோம். $(a-\in, a+\in)$ என்ற திறந்த இடைவெளி, புள்ளி "a" –வின் " \in " அண்மையகம் என அழைக்கப்படும். இதை $N_{a,\in}$ என்ற குறியீட்டால் குறிக்கலாம்.

எடுத்துக்காட்டாக
$$N_3, \frac{1}{4} = \left(3 - \frac{1}{4}, 3 + \frac{1}{4}\right)$$

$$= \left\{x : \frac{11}{4} < x < \frac{13}{4}\right\}$$

$$N_2, \frac{1}{5} = \left(2 - \frac{1}{5}, 2 + \frac{1}{5}\right)$$

$$= \left\{x : \frac{9}{5} < x < \frac{11}{5}\right\}$$

6.1.3 சார்புகள்

வரையறை

கணம் A யிலிருந்து கணம் B க்கு வரையறுக்கப்பட்ட சார்பு என்பது 'A' ல் உள்ள ஒவ்வொரு உறுப்பையும் "B" ல் உள்ள ஒரே ஒரு உறுப்புடன் தொடர்புபடுத்தும் விதியாகும். A என்ற கணம் சார்பின் மதிப்பகம் எனவும் B என்பது துணை மதிப்பகம் எனவும் அழைக்கப்படுகிறது.

A –யிலிருந்து B–க்கு வரையறுக்கப்பட்ட சார்பை $f:A \to B$ என நாம் எழுதுகிறோம். f–ஐ தவிர, F, g, ϕ மற்றும் பிற குறியீடுகளையும், சார்பைக் குறிப்பிட பயன்படுத்துகிறோம்.

A–யில் உள்ள ஒரு உறுப்பு 'a' –ஐ 'B' –ல் உள்ள எந்த ஒரே ஒரு உறுப்புடன் f னால் தொடர்புபடுத்தப்படுகிறதோ அது 'a' யிடத்து 'f' –ன் மதிப்பு அல்லது 'f' –ன் கீழ் 'a' –வின் பிம்பம் என்று அழைக்கப்படுகிறது.

நாம் சார்புகளை கீழ்க்கண்டவாறு படம் மூலம் குறிப்பிடலாம்.

$$f:A \rightarrow B$$

 ${f x}$ என்பதை மதிப்பகம் ${f A}$ –யின் ஏதேனும் ஓர் உறுப்பாகவும் ${f x}$ –ற்கான ${f f}$ –ன் மதிப்பை ${f y}$ " எனவும் குறிப்பிடலாம்.

y=f(x) என்று எழுதலாம். "y" -யானது x–ன் சார்பு" என்று படிக்கலாம். மதிப்பகத்தில் உள்ள ஒவ்வொரு புள்ளியிடத்தும் சார்பின் மதிப்பானது, சார்பு விதியால் பெறப்படும். எப்பொழுதும் சார்பானது ஒரு வாய்ப்பாடாகவோ, வரிசைச் சோடியாகவோ, அட்டவணையாகவோ அல்லது அறிவுறுத்தலின் கணமாகவோ இருக்கலாம்.

ஒரு சாா்பு இயந்திரத்தைப் போன்றதே. அதில் மதிப்பகத்தில் உள்ள ஒரு உறுப்பைப் போடும் பொழுது வீச்சகத்தில் உள்ள அதற்கு ஒத்த மதிப்பாக வெளி வருகிறது.

 $f(x) = x^3$ என்ற சார்பைக் கருதுக.

கீழ்க்கண்ட சமன்பாடுகளைக் கருதலாம்.

(i)
$$y = x^2 - 4x + 3$$

(ii)
$$y = \sin 2x$$

(iii)
$$y = mx + c$$

(iv)
$$V = \frac{\pi r^2 h}{3}$$

(v)
$$s = ut + \frac{at^2}{2}$$

(i) y –யானது x –ன் சார்பு என கூறுகிறோம்.

$$(ii), (iii)$$
 –ல் y, x –ன் சாா்பு $(m, c$ என்பவை மாறிலிகள்)

(iv) V-யானது r, h –ல் சாா்பு (இரு மாறிலிகள்)

(v) S – ஆனது u,t மற்றும் a –ல் ஒரு சார்பு (மூன்று மாறிகள்)

6.1.4 சார்பின் அட்டவணைக் குறியீடு

அட்டவணைப்படுத்தப்பட்ட சோதனை முடிவானது, அளக்கப்பட்ட அளவீடுகளுக்கிடையிலாக சாா்பின் தொடா்பினை வெளிப்படுத்துகிறது.

எடுத்துக்காட்டாக, வானிலை அறிக்கை மையத்தில் ஒரு குறிப்பிட்ட நாளில், பெறப்பட்ட வெப்பநிலை அளவீடு T (டிகிரி) என்பது நேரம் t (மணி) யைச் சார்ந்தது.

t	1	2	3	4	5	6	7	8	9	10
T	22	21	20	20	17	23	25	26	26.5	27.3

இந்த அட்டவணை T –யானது t –ல் ஒரு சாா்பு என வரையறுகிறது. மேலும் இதை $T=\mathbf{f}(t)$ யால் குறிக்கலாம்.

இதே போன்று திரிகோணமிதி சாா்புகளின் அட்டவணை, மடக்கைகளின் அட்டவணை, மேலும் பல சாா்புகளை அட்டவணை வடிவில் காணப்படும்.

6.1.5 சார்பின் வரைபட விளக்கம்

சாராத மாறி x–ன் மதிப்புகளை, x–அச்சு தொலைவாகவும், சாா்பின் மூலம் அம்மதிப்புகளுக்கு ஒத்த 'y' ன் மதிப்புகளை y – அச்சு தொலைவாகவும் பெற்று (x, y) என்ற புள்ளிகளின் தொகுப்பை xy தளத்தில் குறிப்பிடும் முறைக்கு "சாா்பின் வரைபடம் விளக்கம்" என்று அழைக்கப்படுகிறது.

6.1.6 சார்புகளின் செங்குத்து கோடு சோதனை

x ஆய தொலை சமமாகவும், வேறுபட்ட y ஆய தொலைவுகளைப் பெற்ற இரு வரிசை சோடிகளைக் கருதுவோம். இவ்விரு வரிசைச் சோடிகளின் வரைபடப் புள்ளிகள் ஒரு செங்குத்துக் கோட்டில் அமையும். இம்முறையானது ஒரு வரைபடம், சார்பின் வரைபடத்தைக் குறிக்கிறதா என அறியலாம்.

சோதனை:

ஒரு செங்குத்துக்கோடு ஒரு வரைபடத்தை ஒன்றிற்கு மேற்பட்ட புள்ளிகளில் வெட்டுமானால் அவ்வரைபடம், ஒரு சார்பின் வரைபடம் அல்ல.

கீழ்க்கண்ட வரைபடங்கள் சார்பின் வரைபடங்கள் அல்ல

படங்கள் (6.3), (6.4), (6.5) லிருந்து செங்குத்துக் கோடுகள் வளை வரையை ஒன்றிற்கு மேற்பட்ட புள்ளிகளில் வெட்டுவதை காண முடிகிறது. எனவே இவ்வரைபடங்கள் சார்பின் வரைபடத்தைக் குறிக்காது.

படம் (6.6), (6.7) –ல் எந்த ஒரு குத்துக்கோடும் வளைவரையை ஒன்றிற்கு மேற்பட்ட புள்ளிகளில் வெட்டவில்லை எனவே இது செங்குத்துக்கோட்டுச் சோதனையை நிறைவு செய்வததால் சார்புகளில் வரைபடங்களாகும்.

எடுத்துக்காட்டு 1

- (i) $3.5 \le x \le 7.5$ என்ற இடைவெளியின் நீளம் என்ன ?
- (ii) $H = \{x : 3 \le x \le 5\}$ எனில் $4.7 \in H$ என இருக்க முடியுமா ?
- (iii) $H = \{x : -4 \le x < 7\}$ எனில் $-5 \in H$ என இருக்க முடியுமா ?
- (iv) $-3 \in (-3, 0)$ என்பது சாத்தியமாகுமா ?

தீர்வு :

- (i) இங்கு இடைவெளி [a, b] = [3.5, 7.5]∴ இடைவெளியின் நீளம் = b−a = 7.5 − 3.5 = 4
- (ii) ஆம், ஏனெனில் 4.7, என்பது **3**–ற்கும் **5**–ற்கும் இடையில் உள்ள ஒரு புள்ளியாகும்.
- (iii) இல்லை, ஏனெனில் -5 என்பது கொடுக்கப்பட்ட இடைவெளிக்கு வெளியில் உள்ளது.
- (iv) சாத்தியமல்ல ஏனெனில் திறந்த இடைவெளியில் முடிவுப்புள்ளிகள் சேர்க்கப்படமாட்டாது எனவே $-3 \notin (-3, 0)$

எடுத்துக்காட்டு 2

f(x) = 3x-1 என்ற சார்பின் வரைபடம் வரைக.

தீர்வு:

y = f(x) என்க.

y = 3x-1 என்ற சார்பை நாம் வரைய வேண்டும். 'x' —க்கு பதிலாக ஏதேனும் ஒரு எண்ணைப் பிரதியிட்டு அதற்கு தகுந்த 'y' —ன் மதிப்பைக் காண வேண்டும். எனவே இவ்வாறு அட்டவணையைப் பெறலாம்.

X	0	1	2	- 1	-2
у	-1	2	5	-4	-7

இவ்வட்டவணையில் உள்ள புள்ளிகளை x,y தளத்தில் குறித்து, புள்ளிகளை இணைத்தால் நேர்கோடு கிடைக்கும்.

எடுத்துக்காட்டு 3

 $f(x) = x^2 - 5$ என்ற சார்பின் வரைபடம் வரைக.

தீர்வு :

நாம் 'x' –க்கு சில எண்களைத் தேர்வு செய்வோம் அதற்கு ஒத்த y–ற்கு y மதிப்புகளைக் காண்போம்.

அட்டவணை (0, -5), (-1, 4) மற்றும் பல வரிசைச் சோடிகளைத் தருகிறது. இத்தகைய புள்ளிகளை xy தளத்தில் குறித்து இணைப்பதன் மூலம் வரைபடம் கிடைக்கிறது.

X	0	1	2	3	-1	-2	-3
у	-5	-4	-1	4	-4	-1	4

எடுத்துக்காட்டு 4

 $\mathbf{f}(\mathbf{x}) = \mathbf{x}^2 - \mathbf{x} + \mathbf{1}$ என்று கொடுக்கப்பட்ட சார்பில்

(i)
$$f(0)$$
 (ii) $f(-1)$ (iii) $f(x+1)$ காண்.

தீர்வு:

$$f(x) = x^2 - x + 1$$

(i)
$$f(0) = 0^2 - 0 + 1 = 1$$

(ii)
$$f(-1) = (-1)^2 - (-1) + 1 = 3$$

(iii)
$$f(x+1) = (x+1)^2 - (x+1) + 1$$
$$= x^2 + 2x + 1 - x - 1 + 1$$
$$= x^2 + x + 1$$

$$f: R \rightarrow R \ f(x) =$$
 $\begin{cases} x^2 - 4x \ \text{if} \ x \ge 2 \\ x + 2 \ \text{if} \ x < 2 \end{cases}$ என வரையறுக்கப்படின்

i) f(-3) ii) f(5) iii) f(0) இவற்றைக் காண்க.

தீர்வு:

$$x = -3$$
 ; எனும் பொழுது $f(x) = x + 2$ $\therefore f(-3) = -3 + 2 = -1$

$$f(x) = x + 2$$

$$f(-3) = -3 + 2 = -1$$

$$x = 5$$
; எனும் பொழுது $f(x) = x^2 - 4x$ $\therefore f(5) = 25 - 20 = 5$

$$f(x) = x^2 - 4x$$

$$\therefore$$
 f (5) = 25 - 20 = 5

$$x=0$$
 ; எனும் பொழுது $f(x)=x+2$ $\therefore f(0)=0+2=2$

$$f(x) = x + 2$$

$$f(0) = 0 + 2 = 2$$

எடுத்துக்காட்டு 6

$$f(x) = \sin x$$
; $g(x) = \cos x$ எனில் $f(\alpha + \beta) = f(\alpha)$ $g(\beta) + g(\alpha)$ $f(\beta)$ என நிறுவுக.

நிரூபணம்:

$$f(x) = \sin x$$

$$\therefore f(\alpha + \beta) = \sin(\alpha + \beta)$$

$$f(\alpha) = \sin \alpha$$
; $f(\beta) = \sin \beta$

$$\int g(x) = \cos x$$

இப்பொழுது

$$f(\alpha) \cdot g(\beta) + g(\alpha) \cdot f(\beta)$$

= $\sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$
= $\sin (\alpha + \beta)$ -----(2

(1), (2) லிருந்து நாம் பெறுவது

$$f(\alpha + \beta) = f(\alpha) g(\beta) + g(\alpha) \cdot f(\beta)$$

எடுத்துக்காட்டு 7

 $A = \{-2, -1, 0, 1, 2\}, f : A \rightarrow R f(x) = x^2 + 3$ என வரையறுக்கப்படின் சார்பு f ன் வீச்சகம் காண்.

தீர்வு :

$$f(x) = x^2 + 3$$

$$f(-2) = (-2)^2 + 3 = 4 + 3 = 7$$

$$f(-1) = (-1)^2 + 3 = 1 + 3 = 4$$

$$f(0) = 0 + 3 = 3$$

$$f(1) = 1^2 + 3 = 4$$

$$f(2) = 2^2 + 3 = 7$$

எனவே வீச்சகம் {3, 4, 7}

எடுத்துக்காட்டு 8

$$f(x) = \frac{1-x}{1+x}$$
 எனில் $f(-x) = \frac{1}{f(x)}$ எனக் காண்க.

தீர்வு:

$$f(x) = \frac{1-x}{1+x}$$

$$\therefore f(-x) = \frac{1-(-x)}{1+(-x)} = \frac{1+x}{1-x} = \frac{1}{f(x)}$$

எடுத்துக்காட்டு 9

 $f(x, y) = ax^2 + bxy^2 + cx^2y + dy^3$ எனில் பின்வருவனவற்றைக் காண்க

(i)
$$f(1, 0)$$
 (ii) $f(-1, 1)$

தீர்வு:

$$f(x, y) = ax^2 + bxy^2 + cx^2y + dy^3$$
 -----(1)

f(1,0) காண்பதற்கு ; $x=1,\,y=0$ என (1) –ல் பிரதியிடுவோம்.

$$\therefore$$
 f(1,0) = a(1)² + 0 + 0 + 0 = a

f(-1, 1) யைக் காண ; x = -1 மற்றும் y = 1 என சமன்பாடு (1) ல் பிரதியிட

$$f(-1, 1) = a(-1)^2 + b(-1)(1)^2 + c(-1)^2(1) + d(1)^3$$

$$f(-1, 1) = a - b + c + d$$

எடுத்துக்காட்டு 10

$$f(x) = x^2 + 3$$
 எனில் $-3 \le x \le 3$, $x \in R$ என்ற எல்லையில்

(i) x –ன் எம்மதிப்பிற்கு f(x) = 4 என இருக்கும் ?

(ii) f –ன் மதிப்பகம் யாது **?**

தீர்வு ::

(i) f(x) = 4 என கொடுக்கப்பட்டது

$$\therefore x^2 + 3 \qquad = 4 \Rightarrow x^2 = 1 \Rightarrow x = \pm 1$$

 $\mathbf{x} = -1$ மற்றும் 1 என்ற இரு மதிப்புகளுக்கு $\mathbf{f}(\mathbf{x}) = 4$ என இருக்கும்.

(ii) f –ன் மதிப்பகம் $\{x: -3 \le x \le 3, x \in R\}$

$$f(x) = \frac{x-4}{x+5}$$
 என்ற சார்பின் மதிப்பகம் யாது ?

தீர்வு :

$$x = -5$$
 -க்கு ; $f(x) = \frac{-5 - 4}{0} = \frac{-9}{0}$ ஆகும்.

0–வினால் வகுக்கவியலாததால் x=-5 ஏற்புடையதல்ல

எனவே x=-5 f –ன் மதிப்பகத்தில் இருக்காது

எனவே f–ன் மதிப்பகமானது $\{x: x \in R \; ; \, x \neq -5\}$

எடுத்துக்காட்டு 12

நாற்பத்தைந்து பேர் அமரக்கூடிய பேருந்து ஒன்றை மாணவர் குழு ஒன்று கல்விச் சுற்றுலாவிற்காக வாடகைக்கு அமர்த்த விரும்பியது. பேருந்து நிறுவனம், குறைந்தது 30 நபர்களாவது இருந்தால்தான் பேருந்தை வாடகைக்கு விடும். முதல் 40 பேர் வரையில் தலைக்கு ரூபாய் 100 கட்டணமாகும். 40 பேருக்கு மேற்படின், பேருந்து கட்டணம் 40 பேருக்கு மேற்பட்ட ஒவ்வொரு நபருக்கும் ரூ.100லிருந்து, 40–க்கு மேற்பட்ட எண்ணிக்கையில் $\frac{1}{5}$ பாகத்தை கழித்து கட்டணமாக வசூலிக்கும். மொத்த செலவை சுற்றுலாச் செல்லும் மாணவர்களின் எண்ணிக்கை வாயிலாக ஒரு சார்பாக காணவும். மேலும் இதன் மதிப்பகத்தைக் காண்க.

தீர்வு:

சுற்றுலாச் செல்லும் மாணவாகளின் எண்ணிக்கை x எனக் கொள்க.

 $\therefore 30 \le x \le 45$; x ஒரு மிகை முழு எண்ணாகும்.

மொத்த செலவு = (ஒரு மாணவனுக்கான கட்டணம்) × (மாணவாகளின் எண்ணிக்கை)

30 மற்றும் 40–க்கு இடையில் மாணவாகளின் எண்ணிக்கையெனில், தலைக்கு ரூ.100 கட்டணமாகும்.

∴ மொத்த செலவு y = 100x

மாணவா்களின் எண்ணிக்கை **41**–லிருந்து **45** வரையெனில் ஒரு மாணவனுக்கான கட்டணம் ரூ. $\{100-\frac{1}{5}~(x-40)\}=108-\frac{x}{5}$

மொத்த செலவு
$$y=\left(108-\frac{x}{5}\right)x=108x-\frac{x^2}{5}$$
 எனவே சார்பு விதியானது $y=\begin{cases}100x&;30\leq x\leq 40\\108x-\frac{x^2}{5};41\leq x\leq 45\end{cases}$ x ஒரு மிகை முழு எண் மதிப்பகம் $\{30,31,\ldots,45\}$

 $f(x) = \log_{10}(1+x)$ என்ற சார்பின் மதிப்பகம், வீச்சகம் இவற்றைக் காண்க.

தீர்வு:

குறை மெய்யெண்ணிற்கு மடக்கை மதிப்பு வரையறுக்கப்படாதது என்பதை நாம் அறிவோம். மேலும் $\log 0 = -\infty$ என்பதையும் அறிவோம்.

$$\therefore$$
 $(1+x) < 0$ —விற்கு $\log_{10}(1+x)$ மெய் மதிப்பு பெறாது. $x \to -1$ என இருக்கையில் $\log (1+x) \to -\infty$ என அமையும் எனவே f —ன் மதிப்பகம் $(-1,\infty)$

(அ.து.) -1—க்கு அதிகமான மெய்யெண்கள். இச்சாா்பின் வீச்சகம் ${
m R}^+$ (மிகை மெய்யெண்களின் கணமாகும்).

எடுத்துக்காட்டு 14

 $f\left(x
ight)=\sqrt{x^{2}$ -7x+12 என்ற சாா்பின் மதிப்பகம் காண்.

தீர்வு ::

$$f(x) = \sqrt{(x-3)(x-4)}$$

(x-3) (x-4)>0 என்ற எல்லையில் மட்டும் f(x) ஒரு மெய்மதிப்புச் சார்பாகும். அதாவது '3' –க்கும் '4' –க்கும் வெளியில் x இருக்கையில்

f(x) –ன் மதிப்பகம் x > 4 மற்றும் x < 3 (அ.து.) $[-\infty, 3)$ மற்றும் $(4, \infty]$ ஆகும்.

பயிற்சி 6.1

- y=3 என்ற நேர்கோட்டின் வரைபடம் வரைக.
- $f(x) = \tan x$ மற்றும் $f(y) = \tan y$ எனில் $f(x y) = \frac{f(x) f(y)}{1 + f(x) f(y)}$ என நிறுவுக.
- $f(x) = \frac{x + \tan x}{x + \sin x}$ எனில் $f\left(\frac{\pi}{4}\right) = \frac{\pi + 4}{\pi + 2\sqrt{2}}$ என நிறுவுக.
- 4) $f(x) = \frac{1 + x^2 + x^4}{x^2}$ எனில் $f(\frac{1}{x}) = f(x)$ யைக் காண்க
- $f(x) = x^2 3x + 7$ எனில் $\frac{f(x+h) f(x)}{h}$ என நிறுவுக.
- 6) $f(x) = \sin x + \cos x$, எனில் $f(0) + f(\frac{\pi}{2}) + f(\pi) + f(3\frac{\pi}{2})$ –ன் மதிப்பைக் காண்க.
- 7) $g(x) = \sqrt{1 \frac{1}{x}}$ –ன் மதிப்பகம் காண்க.

- 8) சுற்றுலா நிறுவனம், ஒரு சுற்றுலாவை ஏற்பாடு செய்கிறது. சுற்றுலா செல்பவர்களின் எண்ணிக்கை 25–க்கு குறைவு எனில், நபர் ஒன்றுக்கு ரூ.100 கட்டணமாகும். 25 நபர் அல்லது அதற்கு அதிகமாக அதிகபட்சம் 110 நபர்கள் வரை செல்வார்கள் எனில், செல்லும் நபர்களின் எண்ணிக்கையில் $\frac{1}{5}$ மடங்கை 110–லிருந்து கழித்து ஒரு நபருக்கான கட்டணமாக வசூலிக்கப்படுகிறது. சுற்றுலா செல்லும் நபர்களின் எண்ணிக்கை "n" மூலம் மொத்த செலவுச் சார்பிற்கான விதியைப் பெறுக. ஒவ்வொரு விதிக்கும் மதிப்பகம் காண்க.
- 9) $f(x) = \sqrt{x^2 5x + 6}$ என்ற சாா்பின் மதிப்பகம் காண்க.
- 10) பின்வரும் வரைபடங்களுள் எவை ஒரு சார்பின் வரைபடமாகாது ?

- $f(x) = \sin x$; $g(x) = \cos x$ எனில் $f(\alpha \beta) = f(\alpha) \ g \ (\beta) g(\alpha) \ . \ f(\beta) \ ; \ \alpha, \ \beta, \ x \in R \$ என நிறுவுக.
- $f(x) = \frac{x-1}{3x+5}$ எனில், $f\left(\frac{1}{x}\right)$ மற்றும் $\frac{1}{f(x)}$ இவற்றினை எழுதுக.
- $f(x) = \sqrt{x^2 + 4}$ எனில், f(2x) மற்றும் f(0) இவற்றைக் காண்க.
- f(x) = 5x 6 என்ற சாா்பின் வரைபடம் வரைக.
- $f(x) = x^2$ மற்றும் $g(x) = 2x^2$ என்ற சார்புகளின் வரைபடங்களை வரைக.
- $f(x) = x^2 4$ எனில் f(x), 2f(x) மற்றும் -f(x) என்பனவற்றின் வரைபடங்களை வரைக.

6.2. மாறிலிச்சார்பு மற்றும் நேரியியல் சார்பு

CONSTANT FUNCTION AND LINEAR FUNCTION

6.2.1. மாறிலிச்சார்பு (Constant function)

ஒரு சாா்பின் வீச்சகம் ஒரே ஒரு உறுப்பினைக் கொண்டதாயின் அச்சாா்பு மாறிலிச் சாா்பு என்றழைக்கப்படும். இதை f(x)=a, என்ற மாறிலியாக, மதிப்பகத்தில் உள்ள எல்லா x –ற்கும் இருக்கும்.

f(x) = 2 மற்றும் f(x) = -3 என்பன மாறிலிச் சார்புகளாகும்.

படம் 6.8 ஒரு மாறிலிச் சார்பைக் குறிக்கும்.

f(x) = c என்ற மாறிலிச் சாா்பின் வரைப்படத்தை நாம் வரையலாம்.

படம் **(6.9)** மூலம் நாம் அறிவது யாதெனில் மாறிலிச் சாா்பின் வரைபடம் x–அச்சிற்கு இணையாகச் செல்லும் ஒரு நோ்கோடாகும்.

உட்கருத்து :

உறவுக்கணம் H = [(1, 5), (2, 5), (3, 5), (4, 5)] ஒரு மாறிலிச் சார்பாகும்.

6.2.2 நேரியியல் சார்பு (Linear function)

ஒரு சாா்பின் விதி $f(x)=ax+b,\,a\neq 0$ மற்றும் $a,\,b\,$ இவையிரண்டும் மெய்யெண்களாயின் அச்சாா்பு நேரியியல் சாா்பு எனப்படும்.

நேரியியல் சார்பின் வரைபடம் ஒரு நேர்க்கோடாகும்.

$6.2.3\ l$ – என்ற நேர்கோட்டின் சாய்வு விகிதம் (Slope of the line l)

செங்குத்தல்லாத l என்ற நேர்க்கோட்டின் மீது $P(\mathbf{x}_1,\ \mathbf{y}_1)$ மற்றும் $Q(\mathbf{x}_2,\ \mathbf{y}_2)$ என்பன இரு வெவ்வேறு புள்ளிகளாயின், இந்நேர்க்கோட்டின் சாய்வு விகிதத்தை \mathbf{m} என்ற எழுத்தால் குறிப்பது மரபு.

$$m=rac{y_2-y_1}{x_2-x_1}=rac{y-$$
புள்ளிகளின் வித்தியாசம் என அறியலாம் $x-$ புள்ளிகளின் வித்தியாசம்

எனவே f(x) = ax + b, $(a \neq 0)$ என்ற நேரியியல் சார்பை f(x) = mx + c என்றும் எழுதலாம். இங்கு m சாய்வு விகிதத்தையும் c, y அச்சின் வெட்டுத்துண்டையும் குறிக்கும்.

உட்கருத்து :

- (i) m ஒரு மிகையெண் எனில், நோ்க்கோடு வலப்புறமாக மேல்நோக்கிச் செல்லும்.
- (ii) m ஒரு குறையெண் எனில், நேர்க்கோடு வலப்புறமாக கீழ்நோக்கிச் செல்லும்.
- (iii) m=0 எனில் நேர்க்கோடு கிடைபட்டமாக இருக்கும்.
- (iv) m வரையறுக்கப்படவில்லையெனில், நேர்க்கோடு செங்குத்தாகச் செல்லும்.

6.2.4 ஒரு நோக்கோட்டை குறிக்கும் நேரியியல் சார்பினை கீழ்வரும் மாறுபட்ட வடிவங்களில் குறிக்கலாம்.

- y = mx + c, (சாய்வு விகிதம் வெட்டுத்துண்டு வடிவம்)
- (ii) $y y_1 = m(x x_1)$: (சாய்வு விகிதம் புள்ளி வடிவம்)
- (iii) $\frac{x}{a} + \frac{y}{b} = 1$; (வெட்டுத்துண்டு வடிவம்)

$$(iv)$$
 $\frac{x-x_1}{x_1-x_2} = \frac{y-y_1}{y_1-y_2}$; (இரு புள்ளி வடிவம்)

இச்சமன்பாடுகளில் உள்ளமாறிகளின் படி ஒன்றுக்கு மேற்பட்டதல்ல. இத்தகைய உறவுகளைக் குறிக்கும் சமன்பாடுகள் முதல்படிச் சமன்பாடுகள் அல்லது நேரியியல் சமன்பாடுகள் என அழைக்கப்படுகின்றன.

6.2.5 நேரியியல் சார்புகளின் பயன்பாடுகள்

- (i) ஊழியர் ஒருவரின் ஊதிய விகிதத்தை, காலத்தைப் பொருத்தச் சார்பாக கருதலாம்.
- (ii) ஆண் (அ) பெண் வாக்கத்தின் ஆயுட்திறனை, காாலத்தின் சாா்பாக எழுதலாம்.
- (iii) பொருள் மற்றும் விலை இவையிரண்டையும் நேரியியல் சார்பாக வெளிப்படுத்தலாம்.

எடுத்துக்காட்டு 15

ஊழியா் ஒருவரின் சம்பளம் 2002–ஆம் வருடத்தில் ரூ.7,500 ஆகும். 2004–ஆம் வருடத்தில் ரூ.7,750 என இருக்கும். சம்பளத்தை காலத்தின் (வருடம்) வாயிலாக சாா்பு வடிவத்தில் காண். மேலும் 2005–ஆம் வருடத்திற்கான சம்பளத்தை இச்சாா்பு மூலம் காண்.

தீர்வு :

S – சம்பளத்தையும் (ரூ), t – வருடத்தையும் குறிக்கட்டும்

2004 (
$$t_2$$
) 7,750 (S_2)
2005 (t) ? (S)

சம்பளத்தை வருடத்தின் வாயிலாக குறிக்கும் நேரியியல் சார்பானது

$$S-S_1 = \frac{S_2 - S_1}{t_2 - t_1}(t - t_1)$$

$$S-7500 = \frac{7750 - 7500}{2004 - 2002}(t - 2002)$$

$$S-7500 = \frac{250}{2}(t - 2002)$$

$$S = 7,500 + 125(t - 2002)$$

$$t = 2005$$

$$S = 7500 + 125(2005 - 2002)$$

$$= 7500 + 125(3)$$

$$= 7500 + 375$$

$$= 7875$$

2005 –ஆம் வருடத்திலான சம்பளம் ரூ. 7,875.

எடுத்துக்காட்டு 16

(1,2) மற்றும் (3,6) என்ற புள்ளிகளைக் கொண்ட நேர்க்கோட்டின் சாய்வு விகிதம் காண். $g\dot{\gamma}$

(1,2) மற்றும் (3,6) என்ற புள்ளிகளை xy தளத்தில் குறித்து இரண்டையும் சேர்க்க

சாய்வு
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{3 - 1} = 2$$

6.3. அடுக்குச் சாார்பு

(POWER FUNCTION)

6.3.1 அடுக்குச் சார்பு

ஒரு சாா்பின் வடிவம் $f(x)=ax^n$, a மற்றும் n இவையிரண்டும் பூஜ்ஜியம் அல்லா மாறிலிகளாயின், இச்சாா்பு அடுக்குச் சாா்பு எனப்படும்.

எடுத்துக்காட்டாக $f(x)=x^4$, $f(x)=\frac{1}{x^2}$ மற்றும் $f(x)=3x^{\frac{1}{2}}$ என்பன அடுக்குச் சார்புகளாகும்.

6.3.2 a^x –ன் சார்பு (Exponential function)

a > 0 என இருக்கையில், a –யை அடிமானமாகக் கொண்ட a^x சார்பு.

 $f(x)=a^x$ என குறிக்கப்படும். இங்கு a ஒரு மிகையெண்ணாகும். a –யின் வெவ்வேறு மதிப்புகளுக்கு $f(x)=a^x$ என்ற சாா்பு (மற்றும் இதன் வரைபடம்) வெவ்வேறு தனித்தன்மையுடையதை பின்வருவனவற்றின் மூலம் அறியலாம்.

6.3.3 $f(x) = a^x$, a > 1 ன் வரைபடம்

2^{x} –ன் வரைபடத்தைப் பற்றி அறிதல்

$$f(x) = a^x$$
 –ல் $a = 2$ எனில், $f(x) = 2^x$ ஆகும்

 ${f x}$ ன் வெவ்வேறு மதிப்புகளுக்கு ${f 2}^{f x}$ –ன் வெவ்வேறு மதிப்புகளைக் கண்டு அட்டவணைப் படுத்துக.

X	-3	-2	-1	0	1	2	3
2 ^x	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8

உட்கருத்து :

- 2^{x} –ன் வரைபடம் ஏறுமுகம் உடையது. இடது புறத்தில் x– அச்சு வரைபடத்தின் கற்பனைத் (i) தொடுகோடாக அமையும்.
- 2^{x} –ன் வரைபடம் இடப்புறம் x–அச்சை தொடும் வகையில் கீழ்நோக்கி வரும். (ii)
- (iii) இச்சார்பு, வளர்ச்சியை குறிக்கும் சார்பாகும்.
- 6.3.4 $f(x) = a^x$, a < 1 ன் வரைபடம்

$$\left(rac{1}{2}
ight)^{x}$$
 வரைபடத்தைப் பற்றி அறிதல்

$$\left(rac{1}{2}
ight)^x$$
 வரைபடத்தைப் பற்றி அறிதல் $f(x)=a^x$; எனில் ; $a=rac{1}{2}$ $\therefore f(x)=\left(rac{1}{2}
ight)^x$ ஆகும்.

x	-3	-2	-1	0	1	2	3
$\left(\frac{1}{2}\right)^{x}$	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$

உட்கருத்து :

- (i) இவ்வரைபடம் இறங்குமுகம் உடையது.
- வரைபடம் x அச்சின் மிகைப் பகுதியில் நெருங்கிச் செல்கிறது. (ii)
- (iii) a –வின் வெவ்வேறு மதிப்புகளுக்கு ஏற்ற வகையில் வரைபடம் ஏறுமுகம், இறங்கு முகம் உடையதாகும்.

- a > 1 எனில், $0 < \frac{1}{a} < 1$ ஆகும். $y = a^x$ வரைபடமும் $y = \left(\frac{1}{a}\right)^x$ –ன் வரைபடமும் yஅச்சைப் பொறுத்து ஒன்று மற்றொன்றின் பிரதிபலிப்பாகும்.
- a=1 எனில், $f(x)=a^x$ –ன் வரைபடம் கிடைமட்ட நேர்க்கோடாகும். (v)
- $f(x)=a^x$ –ன் மதிப்பகம் மற்றும் வீச்சகம் முறையே R மற்றும் $(0,\infty)$ ஆகும். (vi)

6.3.5 $f(x) = e^x$ - ன் வரைபடம்

அடுக்குச் சார்புகளில் அதிகமாகப் பயன்படுத்தப்படும் சார்புகளில் மிக முக்கிய சார்பு e^x –ன் சார்பாகும். இங்கு e ஒரு விகிதமுறா எண்ணாகும். e –ன் மதிப்பு 2–க்கும் 3–க்கும் இடைப்பட்டதாகும். (e = 2.718 தோராயமாக). எனவே e^x –ன் வரைபடம் $y = 2^x$ –ன் வரைபடத்தைப் போன்று அமைகிறது.

படம் 6.12

6.3.6 மடக்கைச் சார்பு (Logarithmic Functions)

0 < a < 1 or a > 1 எனில் $a^y = x$ என்பதை $\log_a x = y$ என மடக்கை வடிவில் குறிக்கலாம். $f(x) = \log_a x$ என்ற சார்பு x–ன் எல்லா மதிப்புகளுக்கும் வரையறை செய்யப்படாதது. a – ஒரு மிகையெண், எனவே ${
m a}^{
m y}$ –யும் மிகையாகும். ஆகையால், ${
m x}={
m a}^{
m y}$ என இருக்கையில், $0 < {
m a} < 1$ அல்லது a>1 எனக் கொண்டு $\log_a x$ யை x>0 –விற்கு வரையறை செய்யப்படுகிறது.

$$0 < a < 1$$
 அல்லது $a > 1$ எனில் (i) $\log_a a = 1$ மற்றும் (ii) $\log_a 1 = 0$

படம் **6.13**–ல் $f(x) = \log_a x$ –ன் வரைபடம் காண்பிக்கப்பட்டுள்ளது. a > 1 எனில் வரைபடம் ஏறுமுகமுடையது. 0 < a < 1 எனில் வரைபடம் இறங்குமுகமுடையது.

உட்கரு<u>த்து</u> :

- $\log_{\mathbf{a}} 1 = 0$ என இருப்பதால் $\mathbf{y} = \log_{\mathbf{a}} \mathbf{x}$ —ன் வரைபடம் \mathbf{x} அச்சை $\mathbf{x} = 1$ என்ற இடத்தில் (i) வெட்டும்.
- y அச்சின் கீழ்ப்பகுதிக்கு மிக நெருக்கமான முறையில் வரைபடம் அமையும். (ii)
- a ன் வெவ்வேறு மதிப்புகளுக்கு வரைபடம் ஏறு மற்றும் இறங்கு முகம் உடையதாகும். (iii)
- $y = \log_a x$ –ன் மதிப்பகம் $(0, \infty)$, வீச்சகம் R ஆகும். (iv)

- $f(x) = a^x$ மற்றும் $g(x) = \log_a x$ இவையிரண்டின் வரைபடங்கள். y = x என்ற கோட்டிற்கு சமச்சீராக அமையும்.
- (vi) சமச்சீர் கோட்பாட்டின்படி $\log_{e}x$ –ன் வரைபடம் y = x என்ற நேர்க்கோட்டைப் பொறுத்து e^{x} வரைபடத்தின் பிரதிபலிப்பின் மூலம் வரையலாம். இதையே படம் **6.14**ல் காட்டப்பட்டுள்ளது.

படம் 6.14

6.4. திரிகோணமிதி சுழல் சார்புகள்

(CIRCULAR FUNCTIONS)

6.4.1 சீர் சுழல் சார்பு (Periodic Functions)

திரிகோணமிதி சுழல் சாா்புகளில் உள்ள மாறி ' θ ' —விற்கு பதிலாக ' θ + α ' என மாற்றம் செய்தும், சாா்பின் மதிப்பு மாறாமல் இருந்தால் இச்சாா்பு சுழல் தன்மை வாய்ந்த சீா்சுழல் சாா்பு எனவும், மற்றும் மீச்சிறு மிகை மதிப்புடைய " α " —வை சுழல்வீச்சு என்றும் அழைப்பா்.

 $\sin(\theta+2\pi)=\sin\theta$, $\cos(\theta+2\pi)=\cos\theta$ என்பதிலிருந்து $\sin\theta$, $\cos\theta$ என்பன 2π –யை சுழல் வீச்சாகக் கொண்ட சீர் சுழல் சார்பு என்று நாம் கூறலாம். மேலும் $\tan(\theta+\pi)=\tan\theta$ என்பதால் $\tan\theta$ என்பது π –யை சுழல் வீச்சாகப் பெற்ற சீர்சுழல் சார்பாகும்.

இப்பொழுது 2π நீளம் கொண்ட இடைவெளியில், sine, cosine சார்புகளின் வரைபடம் மட்டுமே நமக்கு தேவை. $0 \le \theta \le 2\pi$ அல்லது $-\frac{\pi}{2} \le \theta \le 3\frac{\pi}{2}$ எனக்கொள். மேலும் $f(\theta + 2\pi) = f(\theta)$ என்பதை பயன்படுத்தும்பொழுது இவற்றின் வரைபடங்கள் நமக்குக் கிடைக்கும் வட்டச்சார்புகளாக இருப்பதால் இவ்வரைபடம் வரையப்படுவது எளிதாக உள்ளது என்பதைக் காணலாம்.

6.4.2 $\sin x$ –ன் வரைபடம், $0 \le x \le 2\pi$ –ல் $\sin e$ சார்பைக் கருதுக.

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$
sinx	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{2}}$	$-\frac{1}{2}$

உட்கருத்து :

- (i) வரைபடம் மிக நீளமாக அதிகமாக வரைய வேண்டியிருப்பதால் x, y அளவுத் திட்டங்கள் ஒன்றுக்கொன்று வேறுபட்டவை.
- (ii) sinx–ன் வரைபடம் தடையின்றி இருப்பதால் இது ஒரு தொடர் சார்பாகும்.
- $\sin x$ –ன் மீப்பெரு, மீச்சிறு மதிப்புகள் முறையே **1** மற்றும் –**1** என அறியலாம். அதாவது $\sin x$ சார்பின் வரைபடம் y=1 மற்றும் y=-1 என்ற இருகோடுகளுக்கு இடையில் அமையும்.
- (iv) ஒவ்வொரு 2π இடைவெளியிலும் மதிப்புகள் திரும்ப வரும். அதாவது இச்சாா்பின் சுழல்வீச்சு கோணம் 2π ஆகும்.

$6.4.3 \, f(x) = \cos x$ –ன் வரைபடம்

 $0 \le x \le 2\pi$ என்ற இடைவெளியில் $\cos x$ சார்பை கருத்தில் கொள்க.

X	-π	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π	$3\frac{\pi}{2}$	2π	$\frac{5\pi}{2}$	3π
cos x	-1	0	1	0	-1	0	1	0	-1

உட்கருத்து :

- (i) y = cosx ன் வரைபடம் தடையின்றி இருப்பதால் இச்சார்பு தொடர் சார்பாகும்.
- (ii) வரைபடத்திலிருந்து $\cos x$ ன் மீப்பெரு, மீச்சிறு மதிப்புகள் முறையே 1, -1 என்பது தெளிவாகின்றன. அதாவது இவ்வரைபடம் y=1 மற்றும் y=-1 என்ற இரு இணை கோடுகளின் இடையில் அமையும்.

- (iii) இவ்வரைபடம் y–அச்சைப் பொறுத்து சமச்சீரானது.
- (iv) இச்சாா்பு 2π ஐ சுழல் வீச்சாக உடைய சீா் சுழல் சாா்பு ஆகும்.

6.4.4 tanx –ன் வரைபடம்

0 ஆல் வகுபடுவது வரையறுக்கப்படவில்லை என்பதால் $\tan\frac{\pi}{2}$ ன் மதிப்பு காண முடியாது. $\tan x$ –ல் மாறியானது எந்த ஒரு மெய்யெண்ணையும் குறிக்கும். x=0 எனும் பொழுது மதிப்பு y=0 என்பதையும் $\frac{\pi}{2}$ வை அதிகரிக்கும் போது y அதிகரிப்பதையும் காண்க.

 $an \ x$ சாா்பின் மதிப்பு x=0 என்ற இடத்தில் 0 ஆகும். $an \ x$ சாா்பின் மதிப்பு 0 —விலிருந்து $\frac{\pi}{2}$ —வை நெருங்குகையில் மிக அதிகரிக்கும். மதிப்புகள் எல்லையின்றி அதிகரிப்பதைக் காணலாம். புள்ளியிட்ட கோடுகள் வரைபடத்தின் அங்கமல்ல. இவை யாவும் தொலைத் தொடுகோடுகளாகும். இவ்வரைபடம் ஒவ்வொரு தொலைதொடுகோட்டையும் தொடாமல் செல்லும் இதற்கு காரணம் என்னவெனில், $\frac{\pi}{2}$, $\frac{3\pi}{2}$ என்ற இடங்களில் $an \ x$ சாா்பிற்கு மதிப்புகள் கிடையாது.

உட்கருத்து :

- (i) $\tan x$ சாா்பின் வரைபடம் $x=\pm\frac{\pi}{2}\,,\pm\frac{3\pi}{2}\,,\pm\frac{5\pi}{2}\,,\,...$ ஆகிய புள்ளிகளிடத்து தொடா்ச்சியற்றவை.
- (ii) tan x சார்பு குறை அல்லது மிகை எண் மதிப்பைப் பெறும்.
- (iii) tan x சாா்பின் சுழல் வீச்சு π ஆகும்.

எடுத்துக்காட்டு 17

tan x ஒரு சீர் சுழல் சார்பா ? அவ்வாறாயின் அதன் சுழல் வீச்சு யாது ? அதன் மதிப்பகம் மற்றும் வீச்சகம் யாவை ?

தீர்வு:

 $y=\tan x$ (படம் 6.17), வரைபடத்தில், $-\frac{\pi}{2}$ முதல் $\frac{\pi}{2}$ வரையில் உள்ள வரைபடம் $\frac{\pi}{2}$ –விலிருந்து $\frac{3\pi}{2}$ வரையில் திரும்பக் கிடைக்கிறது. இதன் வாயிலாக $\tan x$ சுழல் வீச்சு π உடைய சீர் சுழல் சார்பு என அறிகிறோம்.

மதிப்பகம்
$$\{x \; ; \; x \neq \frac{\pi}{2} \; + k\pi, \; k$$
 ஒரு முழு எண் $\}$ வீச்சகம் R (மெய்யெண்களின் கணம்)

secant சார்பின் மதிப்பகம் யாது ?

தீா்வு :

secant, cosine சார்புகள் ஒன்றுக்கொன்று தலைகீழிகள். $\cos x=0$ என்ற $\frac{\pi}{2}x-\dot{m}$ மதிப்புகளுக்கு secant சார்பு வரையறுக்க முடியாது எனவே secant சார்பின் மதிப்பகம் $\frac{\pi}{2}+k\pi$, (k ஒரு முழு எண்) —யைத் தவிர அனைத்து மெய்யெண்களின் கணம். அதாவது $\{x: x\neq \frac{\pi}{2}+k\pi, k$ ஒரு முழு எண் $\}$

எடுத்துக்காட்டு 19

கீழ்க்கண்ட சார்பின் சுழல் வீச்சு யாது ?

தீர்வு :

சாா்பின் வரைபடத்தில், சாா்பு மதிப்பானது ஒவ்வொரு **4** அலகுகளுக்கும் திரும்ப மாறாமல் கிடைக்கிறது. எனவே f(x) = f(x+4) அனைத்து x-ற்கும் மேலும் வரைபடமானது **4** அலகுகள் வலப்புறத்திலும் மற்றும் இடப்புறத்திலும் வரையப்பட்டுள்ளது. எனவே இதன் சுழல் வீச்சு **4** ஆகும்.

6.5. சாா்புகளின் மீதான கணித அடிப்படைச் செயலிகள்

(ARITHMETIC OF FUNCTION)

6.5.1 இயற்கணித சார்புகள் (Algebraic functions)

சாராத மாறிகளின் அடுக்குகள் மற்றும் வா்க்க மூலமாகவோ மேலும் நான்கு அடிப்படைச் செயலிகளான கூட்டல், கழித்தல், பெருக்கல், வகுத்தல் இவற்றைக் கொண்டு அமையப் பெறும் முடிவுறு எண்ணிக்கையுள்ள உறுப்புகளை கொண்ட சாா்பிற்கு இயற்கணித சாா்பு என்று பெயா். எடுத்துக்காட்டாக, $\sqrt{3x+5}$, $\sqrt[7]{x}$, $4x^2-7x+3$, 3x-2, $2x^{-3}$ மற்றும் பிற சார்புகள் இயற்கணித சார்புகள் ஆகும்.

மேலும், விகிதமுறு சாா்புகளையும் அல்லது பல்லுறுப்புக் கோவையையும் உள்ளடக்கியது இயற்கணித சாா்புகள்.

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$

இங்கு $a_0, a_1, a_2, \ldots, a_n$ என்பன கெழுக்கள் என்றும் குறை மதிப்பற்ற n என்ற எண் முழு பல்லுறுப்புக் கோவையின் படியாகும். இது x –ன் அனைத்து மதிப்புகளுக்கும் வரையறுக்கப்பட்டது என்பத தெரிந்ததே.

6.5.2 சார்புகளின் மீதான கணக்கீட்டுச் செயலிகள்

D–யைமதிப்பகமாகக் கொண்ட மெய்மதிப்புச் சாா்புகளை கருத்தில் கொள். இச்சாா்புகளின் கணத்தை E எனக் குறியிடுக.

 $f,g\in E$ எனக் கொள்.

 $f\pm g,\,fg,\,f\div g$ என்பன கீழ்காணும் முறைகளில் வரையறுக்கப்படுகின்றன.

$$(f+g)(x) = f(x) + g(x), \forall x \in D$$

$$(f-g)(x) = f(x) - g(x),$$

$$(fg)(x) = f(x) g(x),$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}; g(x) \neq 0$$

உட்கருத்து :

- (i) $f+g,\ f-g,\ fg$ என்ற சார்புகளின் மதிப்பகம் f–க்கும் g –க்கும் பொதுவான D என்ற மதிப்பகமாகும்.
- (ii) f மற்றும் g —க்கு பொதுவான மதிப்பகம் D —ல் g(x)=0 என்ற வகையிலான x —ன் மதிப்புகளைத் தவிர்த்து வரும் கணம், $\frac{f}{g}$ சார்பின் மதிப்பகமாகும்.
- (iii) f^2 என்ற சார்பு f என்ற சார்பை f-ல் பெருக்குவதாலும் f^n என்ற சார்பு, f யை n மடங்கு f ஆல் பெருக்குவதால் கிடைக்கும். இங்கு n ஒரு இயல் எண்ணாகும்.

6.5.3 சார்புகளின் கூட்டல்

(i) எடுத்துக்காட்டாக f(x) = 3x + 4; g(x) = 5x - 2 என்ற நேரியியல் சார்புகளை கருத்தில் கொள்க இவற்றின் கூடுதல் (f+g)(x)

$$f(x) = 3x + 4$$

$$g(x) = 5x - 2$$

$$f(x) + g(x) = (3x + 5x) + (4 - 2)$$

$$f(x) + g(x) = 8x + 2 = (f + g)(x)$$

(ii) $f(x) = 3x^2 - 4x + 7$ மற்றும் $g(x) = x^2 - x + 1$ என்ற இருபடிச் சமன்பாடுகளை கருத்தில் கொள்க. இவற்றின் கூடுதல்

$$f(x) + g(x) = (3x^2 - 4x + 7) + (x^2 - x + 1)$$
$$= (3x^2 + x^2) + (-4x - x) + (7 + 1)$$

$$f(x) + g(x) = 4x^2 - 5x + 8 = (f + g)(x)$$

- $f(x) = \log_e x$; $g(x) = \log_e (5x)$ என்ற மடக்கைச் சார்புகளை கருத்தில் கொள்க. இவற்றின் கூடுதல் $f(x) + g(x) = \log_e x + \log_e 5x = \log_e 5x^2$.
 - $f(x) + f(y) \neq f(x + y)$ என்பதைக் காண்.
- (iv) $f(x) = e^x$ மற்றும் $f(y) = e^y$ என்ற அடுக்குச் சார்புகளை கருத்தில் கொள்க. இவற்றின் கூடுதல் f(x) + f(y) என்பது $e^x + e^y$.
- $f(x) = \sin x$, $g(x) = \tan x$ எனில் f(x) + g(x) –யானது $\sin x + \tan x$

6.5.4 சார்புகளின் கழித்தல்

- (i) $f(x) = 4x^2 3x + 1$ மற்றும் $g(x) = 2x^2 + x + 5$ என்ற சார்புகளுக்கு (f g)(x)= f(x) - g(x) is $(4x^2 - 2x^2) + (-3x - x) + (1 - 5) = 2x^2 - 4x - 4$
- (ii) $f(x) = e^{3x}$ மற்றும் $g(x) = e^{2x}$ எனில்

(f-g) (x) =
$$f(x) - g(x)$$

= $e^{3x} - e^{2x}$

(iii) $f(x) = \log_e^{5x}$ மற்றும் $g(x) = \log_e^{3x}$ எனில்

(f-g)(x) என்பது $f(x) - g(x) = log_e 5x - log_e 3x$

$$= \log_e^{\left(\frac{5x}{3x}\right)} = \log_e^{\frac{5}{3}}$$

6.5.5 சார்புகளின் பெருக்கல்

- (i) f(x) = x+1, g(x) = x-1 சார்புகளின் பெருக்கல் f(x) g(x), (x+1) $(x-1) = x^2-1$
- (ii) $f(x) = (x^2 x + 1)$ Longmit g(x) = x + 1

சார்புகளின் பெருக்கல் f(x) g(x) is

$$(x^2 - x + 1) (x + 1)$$
 = $x^3 - x^2 + x + x^2 - x + 1$
= $x^3 + 1$

(iii)
$$f(x) = \log_a x$$
 மற்றும் $g(x) = \log_a 3x$ எனில் $(fg)x = f(x) g(x) = \log_a x \log_a 3x$

(iv)
$$f(x) = e^{3x}$$
; $g(x) = e^{5x} f(x) g(x)$ –யானது $e^{3x} e^{5x} = e^{3x+5x} = e^{8x}$

6.5.6 சார்புகளின் வகுத்தல்

$$(i)$$
 $f(x) = e^{4x}$ மற்றும் $g(x) = e^{3x}$

எனில்
$$\frac{f(x)}{g(x)}$$
 என்பது $\frac{e^{4x}}{e^{3x}} = e^{4x-3x} = e^x$

(ii)
$$f(x) = x^2 - 5x + 6$$
; $g(x) = x - 2$ எனில்

$$\frac{f(x)}{g(x)} = \frac{x^2 - 5x + 6}{(x - 2)}$$

$$= \frac{(x-3)(x-2)}{x-2} = x-3.$$

எடுத்துக்காட்டு 20

$$f(x) = x^3$$
 மற்றும் $g(x) = 2x + 1$ எனில்

$$(i) (f+g) (1)$$
 $(ii) (f-g) (3)$ $(iii) (fg) (0)$ $(iv) (f \div g) (2)$ இவற்றைக் காண்க.

தீா்வு :

$$(i)$$
 $(f+g)(x)=f(x)+g(x)$ என்பதை அறிவோம்

$$\therefore (f+g)(1) = f(1) + g(1)$$
$$= (1)^3 + 2(1) + 1 = 4$$

$$(\mathrm{ii})$$
 $(\mathrm{f}-\mathrm{g})\,(\mathrm{x})$ $=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$ என்பதை அறிவோம்

$$\therefore (f-g)(3) = f(3) - g(3)$$
$$= (3)^3 - 2(3) - 1 = 20$$

$$(iii)$$
 $(fg)(x) = f(x) g(x)$ என்பதை அறிவோம்

$$fg(0) = f(0) g(0)$$
$$= (0^3) (2 \times 0 + 1) = 0$$

$$(iv)$$
 $(f \div g)(x) = f(x)$, $g(x)$ என்பதை அறிவோம்

$$\therefore (f \div g) (2) = f(2), g(2)$$

$$= 2^{3} \div 2(2) + 1$$

$$= 2^{3} \div 5 = \frac{8}{5}$$
177

6.6. சில சிறப்புச் சார்புகள்

(SOME SPECIAL FUNCTIONS)

6.6.1 மட்டுச் சார்பு f(x) = |x|

x –ன் ஒவ்வொரு மெய்யெண்ணிற்கும் x –ன் எண்ணானவை |x| என்க. அதாவது மதிப்பகம் மெய்யெண்களின் கணம் அதன் வீச்சம் மிகை மெய்யெண்கள்.

வரைபடம் இரு பகுதிகளை உடையது.

$$x \ge 0$$
 எனில் $f(x) = x$

$$x < 0$$
 តាត្រាំ $f(x) = -x$

படம் 6.19

உட்கருத்து :

- (i) வரைபடம் y–அச்சைப் பொறுத்து சமச்சீருடையது.
- (ii) x=0 விற்கு இச்சாா்பு மீச்சிறு மதிப்பைப் பெறுகிறது.

6.6.2 குறிச்சார்பு (Signum function)

படம் 6.20

குறிச்சாா்பு f(x) –ன் வரைபடத்தை வரையலாம்.

$$f(x) = \begin{cases} \frac{|x|}{x} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$$

அல்லது
$$f(x) = \begin{cases} \frac{x}{x} = 1 \text{ for } x > 0 \\ 0 \text{ for } x = 0 \\ -\frac{x}{x} = -1 \text{ for } x < 0 \end{cases}$$

x>0 எனும் பொழுது y=1 என்ற சாா்பின் வரைபடம் x—அச்சிற்கு இணையாக மேற்புறம் ஒரு அலகு தூரத்தில் உள்ள ஒரு கோடாகும். x=0 எனில் y=0 ஒரு புள்ளி (0,0) கிடைக்கிறது. x<0 எனும் பொழுது y=-1 என்ற சாா்பின் வரைபடம் x-அச்சிற்கு இணையான 1 அலகு தூரத்தில் கீழே உள்ள கோடாகும். இவ்வரைபடத்தில் x=0 ற்கு ஒத்த புள்ளி விடப்பட்டுள்ளது.

6.6.3 படிச் சார்பு (Step function)

மீப்பெரு முழு எண் சாா்பு f(x) = [x] —ல் x —ஐ விட மிகைப்படாத மீப்பெரு முழு எண்களைக் குறிக்கிறது.

பொதுவாக,

$$0 \le x < 1$$
 -ல் $f(x) = [x] = 0$
 $1 \le x < 2$ -ல் $f(x) = [x] = 1$
 $2 \le x < 3$ -ல் $f(x) = [x] = 2$
 $-2 \le x < -1$ -ல் $f(x) = [x] = -2$
 $-5 \le x < -4$ -ல் $f(x) = [x] = -5$ இவ்வாறாக மற்றும் பல

குறிப்பாக
$$[4.5] = 4, [-1] = -1, [-3.9] = -4$$
 ஆகும்.

இரு முழுக்களுக்கு இடையில் அமையும் x –க்கு இதே வடிவமைப்பைப் பயன்படுத்தி வரையும்பொழுது எல்லா மெய்யெண்களுக்கான வரைபடம் மேற்கண்டவாறு கிடைக்கிறது.

6.7. நேர்மாறு சார்பு

(INVERSE OF A FUNCTION)

6.7.1 ஒன்று – ஒன்று சார்பு (One-one function)

மதிப்பகத்தில் உள்ள இரு வேறுபட்ட உறுப்புக்களை வீச்சகத்தில் உள்ள இரு வெவ்வேறு உறுப்புக்களுடன் தொடர்புபடுத்தும் சார்பு 1 –1 சார்பு எனப்படும்.1 – 1 சார்பு படம் 6.22 காட்டப்பட்டுள்ளது.

6.7.2 மேல்முழுச் சார்பு (Onto function)

 $f:A \to B$ என்ற சாா்பில் B-யானது வீச்சகம் எனில் ' f ' ஒரு மேல் முழுச் சாா்பு ஆகும். படம் 6.22.

6.7.3 நேர்மாறு சார்பு (Inverse function)

் f் என்பது **1 – 1** மற்றும் மேல்முழுச் சாா்பு எனில் f^{-1} : $B \to A$ என்பது f(a) = b அவ்வாறு $b \in B$ உறுப்பை $a \in A$ என்ற உறுப்புடன் தொடா்புபடுத்தும் சாா்பு நோ்மாறு சாா்பு ஆகும். அது $f: A \to B$ –ன் நோ்மாறு சாா்பு ஆகும்.

படம் (6.24)ல் $f(x_1)=y_1$ மற்றும் பிற படம் (6.25)ல் $f^{-1}(y_1)=x_1$ மற்றும் பிற

உட்கருத்து :

- (i) $f: A \to B$ 1 1, மேல் முழுச் சார்பு எனில் $f^{-1}: B \to A$ 1 1, மேல் முழுச் சார்பு ஆகும்.
- (ii) $f: A \rightarrow B$ என்ற 1 1, மேல் முழுச் சாா்பு எனில், அதன் நோ்மாறு சாா்பு ஒருமைத்தன்மை வாய்ந்தது.
- (iii) f -ன் மதிப்பகம், f^{-1} -ன் வீச்சாகவும் f^{-1} -ன் மதிப்பகம் f -ன் வீச்சாகவும் அமைகிறது.
- (iv) f –ன் தொடர்ச்சியானது எனில் f^{-1} தொடர்ச்சியானது.
- (v) வரிசைப்படுத்தப்பட்ட சோடியில் முதல் எண்ணையும், இரண்டாவது எண்ணையும் ஒன்றுக்கொன்று இடம் மாற்றம் செய்யும் பொழுது x அச்சு, y அச்சு ஒன்றுக்கொன்று இடம் மாற்றம் விளைவைக் கொடுக்கும். x = y என்ற மூலைவிட்டக் கோட்டைப் பொறுத்து பிரதிபலிப்பின் விளைவால், x, y இடம் மாறும்.

f(x) = 2x + 1 எனில் $f^{-1}(x)$ –ன் சமன்பாட்டைக் காண்க.

தீா்வு :

$$y = 2x + 1$$
, x மற்றும் y –யை இடம் மாற்ற

$$\therefore$$
 $x = 2y + 1 \Rightarrow y = \frac{x - 1}{2}$
எனவே $f^{-1}(x) = \frac{x - 1}{2}$

6.7.4 நேர்மாறு திரிகோணமிதி சார்புகள் (Inverse Trignometric functions)

sinx, cosx, tanx ஆகியவற்றின் நேர்மாறுகள் முறையே

 $\sin^{-1}x, \cos^{-1}x, \tan^{-1}x$ ஆகும்.

 $\sin^{-1}x: -1 \le x \le 1$ என இருக்குமானால் $x = \sin y$ என இருந்தால் மட்டுமே $y = \sin^{-1}x$ ஆகும். மேலும் $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

 $\cos^{-1}x$: $-1 \le x \le 1$ எனில் $x = \cos y$ மற்றும் $0 \le y \le \pi$ என இருந்தால் மட்டுமே $y = \cos^{-1}x$ என இருக்கும்.

 $an^{-1}x$: x ஒரு மெய்யெண் எனில், x= any மற்றும் $-\frac{\pi}{2} < y < \frac{\pi}{2}$ என இருந்தால் மட்டுமே $y= an^{-1}x$ என அமையும்.

 $\mathrm{cosec^{-1}x:}\mid x\mid\geq 1,\; x=\mathrm{cosec}\;\;y\;$ மற்றும் $-\frac{\pi}{2}\leq y\leq \frac{\pi}{2}\;,\; y\neq 0$ என இருந்தால் மட்டுமே $y=\mathrm{cosec^{-1}x}$ என அமையும்.

 $\sec^{-1}x$: $\mid x\mid \geq 1, \ x=\sec y$ மற்றும் $0\leq y\leq \pi \ y\neq \frac{\pi}{2}$ என இருந்தால் மட்டுமே $y=\sec^{-1}x$ என அமையும்.

 $\cot^{-1}x$: x ஒரு மெய்யெண் எனில், $x=\cot y$ மற்றும் $0< y<\pi$ இருந்தால் மட்டுமே $y=\cot^{-1}x$.

ஒருகோட்டைப்பொறுத்துஇருபுள்ளிகள் சமச்சீா் உடையன எனில் அவை அக்கோட்டினைப் பொறுத்து ஒன்றுக்கொன்று பிரதிபலிப்புகள் ஆகும். அக்கோடானது சமச்சீா்கோடு என்று அழைக்கப்படும்.

படம் 6.26

- (i) படம் **6.26** லிருந்து y=x என்ற கோட்டைப் பொறுத்து $y=\sin x$ வரை படத்தின் பிரதிபலிப்பு $y=\sin^{-1}x$ என்பதை காணலாம்.
- (ii) $y = \cos x$ மற்றும் $y = \cos^{-1}x$ வரைபடங்கள் 6.27 மேலும் 6.28 ல் குறிக்கப்பட்டுள்ளன.

6.7. பலதரப்பட்ட சார்புகள்

(MISCELLANEOUS FUNCTIONS)

6.8.1 ஒற்றைச் சார்பு (Odd Function)

f(x) என்ற சாா்பு f(-x) = -f(x) என எல்லா x –ற்கும் இருக்குமானால் f(x) என்ற சாா்பு ஒற்றைச் சாா்பு என்று அழைக்கப்படுகிறது.

எ.கா :
$$1.$$
 $f(x) = \sin x$ என்க.
$$f(-x) = \sin(-x) = -\sin x = -f(x)$$
 என்பதால்
$$f(x) = ஒற்றைச் சார்பு ஆகும்.$$

எ.கா :
$$2$$
. $f(x)=x^3$ என்க.
$$f(-x)=(-x)^3=-x^3=-f(x)$$
 எனவே
$$f(x)=$$
ஒரு ஒற்றைச் சார்பு ஆகும்.

6.8.2 இரட்டைச் சார்பு (Even function)

எல்லா x –ற்கும் f(-x) = f(x) எனில் f(x) ஆனது இரட்டைச் சார்பு என்று அழைக்கப்படும்.

எ.கா :
$$1$$
. $f(x) = \cos x$ என்க.
$$f(-x) = \cos(-x) = \cos x = f(x)$$
 எனவே
$$f(x) =$$
ஒரு இரட்டைச் சார்பு

2.
$$f(-x) = (-x)^2 = x^2 = f(x)$$
 என்பதால் $f(x)$ ஒரு இரட்டைச் சார்பு

உட்கருத்து :

- f(x) என்பது இரட்டைச் சாா்பு எனில் f(x) ன் வரைபடம் y–அச்சைப் பொறுத்து சமச்சீா் உடையது.
- (ii) ஒரு சாா்பு இரட்டைச் சாா்பாகவோ அல்லது ஒற்றைச் சாா்பாகவோ இல்லாமல் இருப்பதற்கு வாய்ப்புகள் உள்ளன.
- (iii) f(x) என்பது ஒற்றை சாா்பு எனில் அது ஆதியைப் பொறுத்து சமச்சீருடையது.

6.8.3 கலப்புச் சார்பு (சார்பினது சார்பு) – Composite Function (Function of a function)

 $f:A \rightarrow B$ மேலும் $g:B \rightarrow C$ என்பன இரு சார்புகள் எனில் $gof:A \rightarrow C$ –யானது (gof)(x)=g[f(x)] எல்லா $x \in A$, என்பது f,g–ன் கலப்புச் சார்பு எனப்படுகிறது.

i.e; z = g(y) = g[f(x)] என அறிவோம்.

உட்கருத்து :

- (i) (gof) என்ற செயலியில் முதலில் f –ஐ செயல்படுத்திய பிறகு g ஐ செயல்படுத்த வேண்டும்.
- (ii) பொதுவாக $fog \neq gof$
- (iii) fo(goh) = (fog)oh
- (iv) $(fof^{-1})(x) = x$, இங்கு f^{-1} என்பது 'f'-ன் நேர்மாறு ஆகும்.
- (v) f –ம் g–ம் தனித்தனியாக மேல் முழுச் சாா்பாக இருக்கும் போது மட்டுமே gof மேல் முழுச் சாா்பாகும்.

எடுத்துக்காட்டு 22

f(x) = |x| என்பது ஒரு இரட்டைச் சார்பு என நிறுவுக.

நிரூபணம் :

$$f(x) = |x|$$

$$f(-x) = |-x| = |x| = f(x)$$

$$\Rightarrow$$
 $f(-x) = f(x)$

எனவே f(x) = |x| என்பது இரட்டைச் சார்பாகும்.

f(x) = |x - 4| என்ற சாா்பு ஒற்றையும் அல்ல இரட்டையும் அல்ல என நிறுவுக.

நிரூபணம்:

$$f(x) = |x-4|$$
 :: $f(-x) = |-x-4|$
:: $= |-(x+4)|$
 $= |x+4|$

 $f(-x) \neq f(x)$ Logington $f(-x) \neq -f(x)$

f(x) = |x - 4| என்ற சார்பு ஒற்றையும் அல்ல, இரட்டையும் அல்ல.

எடுத்துக்காட்டு 24

 $f(x) = e^x - e^{-x}$ என்பது ஒரு ஒற்றைச் சார்பு என நிறுவுக.

நிரூபணம் :

$$f(x) = e^{x} - e^{-x}$$

$$f(-x) = e^{-x} - e^{-(-x)}$$

$$= e^{-x} - e^{x} = -[e^{x} - e^{-x}]$$

$$= -f(x)$$

எனவே $f(x) = e^x - e^{-x}$ ஒரு ஒற்றைச் சார்பாகும்.

எடுத்துக்காட்டு 25

f(x) = 1 - x; $g(x) = x^2 + 2x$ எனில் $f \circ g \neq g \circ f$ என்பதை சரிபார்க்கவும்.

தீர்வு :

L.H.S. (fog)x =
$$f(x^2 + 2x)$$

= $1 - (x^2 + 2x)$
= $1 - 2x - x^2$
R.H.S. (gof)x = $g(1 - x)$
= $(1 - x)^2 + 2(1 - x)$
= $3 - 4x + x^2$

 $L.H.S. \neq R.H.S.$

តាខាល $fog \neq gof$

f(x) = 1 - x, $g(x) = x^2 + 2x$ மற்றும் h(x) = x + 5 எனில் (fog) oh –ன் மதிப்பு காண்.

தீர்வு :

$$g(x) = x^{2} + 2x : (fog) x = f [g(x)]$$
 R.H.S. $g\{f(x)\}$

$$= f(x^{2} + 2x)$$
 $g\{f(x)\} = g (2x + 7)$

$$= 1 - 2x - x^{2}$$
 $= 3 (2x + 7) + b$

$$\{(fog) oh\} (x) = (fog) (x + 5)$$
 $= 6x + 21 + b$

$$= 1 - 2 (x + 5) - (x + 5)^{2}$$

$$= -34 - 12x - x^{2}$$

எடுத்துக்காட்டு 27

f(x) = |x|, g(x) = 2x எனில் (i) f(g(-5)) (ii) g(f(-6)) இவைகளின் மதிப்பு காண்.

தீர்வு :

(i)
$$f\{g(-5)\}\$$

 $g(x) = 2x : g(-5) = 2x(-5) = -10$
 $f((g(-5)) = f(-10) = |-10| = 10$

(ii)
$$g\{f(-6)\}$$

$$f(x) = |x|$$

$$f(-6) = |-6| = 6$$

$$g\{f(-6)\} = g(6) = 2 \times 6 = 12$$

எடுத்துக்காட்டு 28

f(x)=2x+7 மற்றும் g(x)=3x+b எனில் $f\{g(x)\}=g\{f(x)\}$ என்ற வகையில் "b" –யின் மதிப்பு காண்.

L.H.S.
$$f\{g(x)\}$$

 $f\{g(x)\}=f\{3x+b\}$
 $=2(3x+b)+7$
 $=6x+2b+7$
 $f\{g(x)\}=g\{f(x)\}$
 $6x+(2b+7)=6x+(b+21)$
 $\therefore 2b+7=b+21$
 $b=21-7$
 $b=14$

பயிற்சி 6.2

(i) $f(x) = x^2 + 12x + 36$ என்ற சார்பு ஒற்றையும் அல்ல, இரட்டை அல்ல என நிரூபி. 1)

(ii) $f(x) = 2x^3 + 3x$ என்பது ஒற்றைச்சார்பு என நிருபி.

2) f(x) = tanx, எனில்

 $f(2x) = \frac{2f(x)}{1 - \{f(x)\}^2}$ என்பதை சரிபார்க்கவும்.

 $\phi(x) = \log \frac{1-x}{1+x}$ எனில் $\phi(a) + \phi(b) = \phi\left(\frac{a+b}{1+ab}\right)$ என்பதை சரிபார்க்கவும். 3)

 $f(x) = \log x$; $g(x) = x^3$, எனில் கீழ்வருவனவற்றை காண்க. 4)

a) $f\{g(2)\}$

b) $g\{f(2)\}$

 $f(x) = x^3$ மற்றும் g(x) = 2x + 1 எனில் கீழ்வருவனவற்றைக் காண்க. 5)

(i) (f + g)(0) (ii) (f + g)(-2) (iii) (f - g)(-2) (iv) $(f - g)(\sqrt{2})$

(v) $f(g) (1 - \sqrt{2})$ (vi) (fg) (0.5) (vii) $(f \div g) (0)$

(viii) $(f \div g)$ (-2) $f \div g$ –ன் மதிப்பகத்தைக் காண்க.

 $f(x) = \sin x$, $g(x) = \cos x$ எனில் கீழ்வருவனவற்றைக் கணக்கிடுக. 6)

(i) (f + g) (0) மற்றும் (f + g) ($\frac{\pi}{2}$)

(ii) (f-g) $(-\frac{\pi}{2})$ மற்றும் (f-g) (π)

(iii) (fg) $(\frac{\pi}{4})$ மற்றும் (fg) $(-\frac{\pi}{4})$

(iv) $(f \div g)$ (0) மற்றும் $(f \div g)$ (π) ; மேலும் $(\frac{f}{-})$ ன் மதிப்பகம் காண்க.

கீழ்வரும் சார்புகளின் மதிப்பகங்களைக் காண்க. 7)

(i) $\frac{1}{1+\cos x}$ (ii) $\frac{x}{1-\cos x}$ (iii) $\frac{1}{\sin^2 x - \cos^2 x}$

(iv) $\frac{|x|}{|x|+1}$ (v) $\frac{1+\cos x}{1-\cos x}$ (vi) $\tan x$

1975ம் வருடம் ஒரு தொழிலாளியின் ஊதியம் ரூ.1200; 1977ல் அவர் ஆண்டு ஊதியம் 8) ரு.1350. அவரது ஊதியத்தை காலத்தின் நேரியல் சார்பாக எழுதுக. மேலும் 1978ன் ஊதியம் காண்.

9) ஒரு நாட்டில் மனிதனின் சராசரி வாழ்நாள் வயது 2003–ல் 70 வருடங்கள், 1978–ல் அது 60 ஆக இருந்தது. வாழ்நாள் எதிர்பார்ப்பை நேரத்தின் ஒருபடிச் சார்பாக (நேரியியல்) கருதுக. அந்நாட்டில் 2013ம் வருடம் வாழ்க்கை எதிர்பார்ப்பு எத்தனை வருடங்கள் என யூகிக்கலாம் ?

10)	நேரியல் சாா்பிற்கு $f(-1)=3$ மற்றும் $f(2)=4$ எனில்					
	(i) f –யைக் காண்க (ii) f(3) –யைக் காண்க					
	(iii) f(a) = 100 என்ற எ	വകെധിல் a - வைக் கா	ண்க.			
		பயிற்சி 6	.3			
ஏற்புடை	டய விடையைத் தெரிவ	பு செய்க.				
1)	(3, 5] இடைவெளியில்	் உள்ள ஒரு புள்ளியான	ரது			
	(a) 3	(b) 5.3	(c) 0	(d) 4.35		
2)	பூஜ்ஜியம் அல்லாத இ	டைவெளி				
	(a) $(-\infty, \infty)$	$(b) - 3 \le x \le 5$	$(c)-1 \le x \le 1$ என்ற வகையில் இருக்	$(d) [-\infty, -1]$		
3)	கீழ்வரும் சார்புகளில் எ	எந்த சாா்பு $f(x) = f(\frac{1}{x})$	என்ற வகையில் இருக்	கும்.		
	(a) $f(x) = \frac{x^2 + 1}{x}$	(b) $f(x) = \frac{x^2 - 1}{x}$	(c) $f(x) = \frac{1-x^2}{x}$ மெய் மதிப்பற்ற சார்பா	(d) f(x) = x		
4)	x –ன் எம் மதிப்பிற்கு ந	$f(x) = \sqrt{\frac{x}{2}}$ என்ற சார்பு	மெய் மதிப்பற்ற சார்பா	கும் ?		
	(a) $x < 0$		(c) $x < 2$	(d) $x \le 2$		
5)	$f(x) = \frac{x-4}{x+3}$ என்ற சா					
	(a) $\{x / x \neq -3\}$	(b) $\{x / x \ge -3\}$	(c) { }	(d) R		
6)	$f(x) = \sin x$ என்ற சார்	பின் சுழல் வீச்சு 2π எனி	ில் $g(x) = 3\sin x$ –ன் சூ	_		
	(a) 3π	(b) 6π	(c)2π	(d) $\frac{\pi}{3}$		
7)	cot x சாா்பின் சுழல் வீ	·ச்சானது		π		
	(a) 2π	(b) π	(c) 4π	(d) $\frac{\pi}{2}$		
8)	sin x மற்றும் cosx சார்	1	புகளுக்கு சுழல் வீச்சால	2		
	(a) π	(b) $\frac{1}{2\pi}$	(c) 2π	(d) $\frac{2}{\pi}$		
9)	f(x) = -2x + 4 எனில்	_				
	(a) $2x - 4$	(b) $-\frac{x}{2} + 2$	(c) $-\frac{1}{2}x + 4$	(d) $4 - 2x$		
10)	$f(x) = \log_5 x$ மற்றும் g($f(x) = \log_x 5$ எனில், $f(g)$	(x) யானது			
	(a) $\log_{25} x^2$	(b) $\log_{x}225$	(c) 1	(d) 0		
11)	$f(x) = 2^x$ மற்றும் $g(x)$	$=(\frac{1}{2})^{x} f(x) . g(x)$ ன் ம	திப்பானது			
	(a) 4 ^x	(b) 0	(c) 1 ^x	(d) 1		

12)	ஒரு சாா்பில் சாரா மாறி அடுக்குக் குறியாக செயல்படின் அச்சாா்பு						
	(a) அடுக்குச் சாா்பு		(b) மடக்கைச் சாா்பு				
	(c) திரிகோணமிதி சார்பு		(d) நேர்மாறு சார்பு				
13)	f(x) = x —ன் மீச்சிறு	மதிப்பு					
	(a) 0	(b) 1	(c) - 1	(d) $\frac{1}{2}$			
14)	$f(x) = \frac{ x }{x}$; $x > 0$ என்ற சாா்பின் வரைபடத்திற்கான சாய்வு						
	(a) $m = 1$	(b) $m = 0$	(c) $m = -1$				
	(d) m வரையறுக்கப்பட	_ாதது					
15)	$f(x) = [x]$ என்ற மீப்பெரு முழு எண் சார்பின் வீச்சகம் $3 \leq x < 4$ எனில் $f(x)$ ன் மதிப்						
	(a) 1	(b) 3	(c) 4	(d) 2			

வகை நுண்கணிதம் (DIFFERENTIAL CALCULUS)

7

கணிதத்தின் ஒரு பகுதியான நுண்கணிதம் என்பது ஓர் அளவீடு மற்றொரு அளவீட்டைப் பொறுத்து மாறும் வீதத்தைப் பற்றி கூறுவதாகும். நுண்கணிதத்திற்கு வித்திட்டவர்கள் ஐசக் நியூட்டனும் காட்பிரைடு வில்ஹெல்ம் ஃபான் லிபினிட்சும் ஆவார்கள்.

நுண் கணிதமானது வகை நுண்கணிதம், தொகை நுண் கணிதம் என இரு வகைகளாகப் பிரிக்கப்பட்டுள்ளது. இந்த பாடத்தில் நாம் வகைக்கெழுவைப் பற்றியும் அதைக் காணும் முறையையும் கற்க உள்ளோம்.

7.1 சார்பின் எல்லை

(LIMIT OF A FUNCTION)

7.1.1 តល់តាលយ៉ាត់ សម្រាប្រាក្សា (Limiting Process):

வகை நுண்கணிதத்தின் பரிமாண வளர்ச்சிக்கு 'எல்லையின் கருத்துரு' இன்றியமையாததாகும்.

கீழ்வரும் எடுத்துக்காட்டின் மூலம் 'எல்லையின் வழிமுறையை தெளிவுப்படுத்துவோம்.'

ஓரலகு ஆரமுள்ள வட்டத்தினுள் 'n' பக்கங்களைக் கொண்ட ஒழுங்கு பல கோணம் ஒன்று வரையப்பட்டுள்ளது என்க. அலகு வட்டத்தின் பரப்பளவைக் காட்டிலும் (π சதுர அலகுகள்). பல கோணத்தின் பரப்பளவு குறைவானது என்பதை நாம் அறிவோம். பல கோணத்தின் பக்கங்களை அதிகரிக்க, அதிகரிக்க பலகோணத்தின் பரப்பளவும் அதிகமாகிறது. ஆனால் அதன் பரப்பளவு எப்பொழுதும் அலகு வட்டத்தின் பரப்பளவைக் காட்டிலும் குறைவாகவே உள்ளது. எனவே பல கோணத்தின் பக்கங்கள் அதிகரிக்க அதிகரிக்க பல கோணத்தின் பரப்பளவானது அலகு வட்டத்தின் பரப்பளவை நோக்கி அணுகுகிறது எனலாம்.

7.1.2 சார்பின் எல்லை (Limit of a function)

 $f:R \to R$ ஓர் சாா்பு என்க. x கொடுக்கப்பட்ட 'a' என்ற மெய் எண்ணை அணுகும்பொழுது, f(x)—யை மதிப்பாகக் கொண்ட f என்ற சாா்பு அணுகும் மெய் எண் l —யைக் காண நாம் முயல்வோம்.

எடுத்துரைத்தல் 1

 $f: R \rightarrow R, f(x) = 2x + 1, x \rightarrow 3$ என ஓர் சார்பு வரையறுக்கப்பட்டுள்ளது என்க.

$x \rightarrow 3^+$	3.1	3.01	3.001	3.0001	3.00001	
f(x) = 2x + 1	7.2	7.02	7.002	7.0002	7.00002	
f(x) - 7	0.2	0.02	0.002	0.0002	0.00002	

மேற்கண்ட அட்டவணையிலிருந்து $x \rightarrow 3^+$ (அ.து. 3–ன் வலது பக்கத்திலிருந்து $x \rightarrow 3$ $f(x) \rightarrow 7$ என்பதை நாம் உற்று நோக்குவோம். இங்கு f(x)–ன் $(x \rightarrow 3^+)$ வலது பக்க எல்லை 7 ஆகும்.

மேலும்

$x \rightarrow 3^-$	2.9	2.99	2.999	2.9999	2.99999	
f(x) = 2x + 1	6.8	6.98	6.998	6.9998	6.99998	
f(x) - 7	0.2	0.02	0.002	0.0002	0.00002	

மேற்கண்ட அட்டவணையிலிருந்து $x \rightarrow 3^+$ (அ.து. 3–ன் இடது பக்கத்திலிருந்து $x \rightarrow 3$ $f(x) \rightarrow 7$ என்பது தெளிவாகிறது. இங்கு f(x)–ன் $(x \rightarrow 3^+)$ இடது பக்க எல்லை **7** ஆகும்.

ஆகவே x, மூன்றை நோக்கி $(x\rightarrow 3)$ இருபுறமும் அணுகும்பொழுது $f(x)\rightarrow 7$ –ன் மதிப்பை நாம் 3–க்கு மிக அருகாமையில் எடுத்துக் கொண்டாலும் f(x) 7 –க்கு அருகாமையில் உள்ளது என இதன் மூலம் தெளிவாகிறது.

|f(x)-7| இன் வித்தியாசத்தைக் குறைப்பதற்கு ஏற்றாற்போல் நாம் x–ன் மதிப்பை 3–க்கு மிக மிக அருகாமையில் கொண்டு செல்லலாம்.

இதனை $\underset{x\to 3}{\operatorname{Lt}} f(x) = 7$ என்று குறிக்கலாம்.

எடுத்துரைத்தல் 2

$$f: R - \{2\} \rightarrow R, \ \frac{x^2 - 4}{x - 2} \ x \rightarrow 2$$
 என ஓர் சார்பு வரையறுக்கப்பட்டுள்ளது என்க.

X	1.9	1.99	1.999	1.9999	2	2.0001	2.001	2.01	2.1
f(x)	3.9	3.99	3.999	3.999	-	4.0001	4.001	4.01	4.1
f(x) - 4	0.1	0.01	0.001	0.0001	-	0.0001	0.001	0.01	0.1

மேற்கண்ட அட்டவணையிலிருந்து இடது மற்றும் வலது புறங்களிலிருந்து x இரண்டை நோக்கி $(x \rightarrow 2)$ அணுகும்பொழுது $f(x) \rightarrow 4$ என தெளிவாகிறது. அதாவது |f(x) - 4|—ன் வித்தியாசத்தைக் குறைப்பதற்கு ஏற்றாற் போல் நாம் x—ன் மதிப்பை 2—க்கு மிகமிக அருகாமையில் கொண்டு செல்லலாம்.

அ.து.
$$Lt_{x\to 2} f(x) = 4$$

x –ன் மதிப்பை a–க்கு மிக அருகாமையில் கொண்டு செல்லும் பொழுது (ஆனால் a –க்கு சமம் இல்லை) $\mid f(x) - l \mid$ –ன் வித்தியாசத்தைக் குறைப்பதற்கு ஏற்றாற் போல் l என்ற ஒரு மெய் எண் உள்ளது என மேற்கண்ட இரண்டு எடுத்துரைத்தல்கள் தெளிவுபடுத்துகின்றன. இந்த ' l ' –யை நாம் x, a –யை அணுகும் பொழுது f(x) –ன் எல்லை என்கிறோம்.

இதை $\underset{x\to a}{\operatorname{Lt}} f(x) = I$ என குறிக்கலாம்.

உட்கருத்து :

- f(x) $-\dot{\mathfrak{o}}$ x=a என பிரதியிடும் பொழுது நமக்கு சார்பின் மதிப்பு f(x) கிடைக்கிறது. (i) பொதுவாக $f(a) \neq I$. f(a) வரையறுக்கப்படவில்லை என்றாலும் f(x) –ன் எல்லை $l, x \to a$ என்பது ஒரு முடிவுறு எண்ணாக வரையறுக்கப்படலாம்.
- $\mathop{Lt}_{x o a^+} f(x) \, , \, \mathop{Lt}_{x o a^-} f(x)$ ஆகியன நிலைபெற்று சமமானால் (ii) $\underset{x\to a}{\operatorname{Lt}} f(x)$ நிலைபெறும்

7.1.3 எல்லையின் அடிப்படை தேற்றங்கள்

(i)
$$\underset{x \to a}{\text{Lt}} [f(x) + g(x)] = \underset{x \to a}{\text{Lt}} f(x) + \underset{x \to a}{\text{Lt}} g(x)$$

(i)
$$\underset{x \to a}{\text{Lt}} [f(x) + g(x)] = \underset{x \to a}{\text{Lt}} f(x) + \underset{x \to a}{\text{Lt}} g(x)$$
(ii)
$$\underset{x \to a}{\text{Lt}} [f(x) - g(x)] = \underset{x \to a}{\text{Lt}} f(x) - \underset{x \to a}{\text{Lt}} g(x)$$

(iii)
$$\underset{x \to a}{\text{Lt}} [f(x).g(x)] = \underset{x \to a}{\text{Lt}} f(x). \underset{x \to a}{\text{Lt}} g(x)$$

(iv)
$$\underset{x \to a}{\text{Lt}} [f(x)/g(x)] = \underset{x \to a}{\text{Lt}} f(x)/\underset{x \to a}{\text{Lt}} g(x), \text{ } \underset{x \to a}{\text{Lt}} g(x) \neq 0$$

(v)
$$\underset{x \to a}{\text{Lt}} [cf(x)] = c \underset{x \to a}{\text{Lt}} f(x)$$

7.1.4 எல்லைகளின் முக்கிய வாய்பாடுகள்

$$(i)$$
 $Lt \frac{x^n - a^n}{x - a} = n \ a^{n-1}, n$ ஒரு விகிதமுறு எண் என்க.

$$(ii)$$
 $Lt \frac{\sin \theta}{\theta} = 1, \theta$ ஆரையன் எனில்

(iii) Lt
$$\underset{x\to 0}{\text{Lt}} \frac{a^x - 1}{x} = \log_e a$$
.

(iv)
$$Lt \frac{e^x - 1}{x} = 1$$

(v)
$$Lt \atop n \to \infty} (1 + 1/n)^n = e$$

(vi)
$$\underset{x\to 0}{\text{Lt}} (1+x)^{1/x} = e$$

(vii)
$$Lt \frac{\log(1+x)}{x} = 1$$

மதிப்பிடுக
$$\underset{x\to 2}{\text{Lt}} \frac{x^2 - 4x + 6}{x + 1}$$
.

தீர்வு :

$$Lt_{x\to 2} \frac{x^2 - 4x + 6}{x + 1} = \frac{Lt_{x\to 2} (x^2 - 4x + 6)}{Lt_{x\to 2} (x + 1)}$$

$$= \frac{(2)^2 - 4(2) + 6}{2 + 1}$$

$$= 2/3$$

எடுத்துக்காட்டு 2

மதிப்பிடுக
$$\lim_{x\to\pi/4} \frac{3\sin 2x + 2\cos 2x}{2\sin 2x - 3\cos 2x}$$
.

தீர்வு :

$$\frac{\text{Lt }_{x \to \pi/4} 3\sin 2x + 2\cos 2x}{\text{Lt }_{x \to \pi/4} 2\sin 2x - 3\cos 2x} = \frac{3\sin(\pi/2) + 2\cos(\pi/2)}{2\sin(\pi/2) - 3\cos(\pi/2)}$$
$$= \frac{3}{2}$$

எடுத்துக்காட்டு 3

மதிப்பிடுக
$$\lim_{x\to 5} \frac{x^2-25}{x-5}$$
.

தீர்வு :

$$Lt_{x\to 5} \frac{x^2 - 25}{x - 5} = Lt_{x\to 5} \frac{(x+5)(x-5)}{(x-5)}$$

$$= Lt_{x\to 5} (x+5) = 10$$

எடுத்துக்காட்டு 4

மதிப்பிடுக
$$\lim_{x\to 0} \frac{\sqrt{2+3x}-\sqrt{2-5x}}{4x}$$
 .

$$Lt_{x\to 0} \frac{\sqrt{2+3x} - \sqrt{2-5x}}{4x}$$

$$= Lt_{x\to 0} \left\{ \frac{\left(\sqrt{2+3x} - \sqrt{2-5x}\right)\left(\sqrt{2+3x} + \sqrt{2-5x}\right)}{4x\left(\sqrt{2+3x} + \sqrt{2-5x}\right)} \right\}$$

$$= Lt_{x\to 0} \frac{(2+3x) - (2-5x)}{4x\left(\sqrt{2+3x} + \sqrt{2-5x}\right)}$$

$$= \text{Lt}_{x \to 0} \frac{8x}{4x(\sqrt{2+3x} + \sqrt{2-5x})}$$

$$= \text{Lt}_{x \to 0} \frac{2}{\sqrt{2+3x} + \sqrt{2-5x}}$$

$$= \frac{2}{\sqrt{2} + \sqrt{2}} = \frac{1}{\sqrt{2}}$$

மதிப்பிடுக
$$\lim_{x\to a} \frac{x^{3/5}-a^{3/5}}{x^{1/3}-a^{1/3}}$$
.

தீர்வு :

$$Lt_{x \to a} \frac{x^{3/5} - a^{3/5}}{x^{1/3} - a^{1/3}} = Lt_{x \to a} \left\{ \frac{x^{3/5} - a^{3/5}}{x - a} \div \frac{x^{1/3} - a^{1/3}}{x - a} \right\}$$

$$= \frac{3}{5} a^{-2/5} \div \frac{1}{3} a^{-2/3} = \frac{9}{5} a^{-2/5 + 2/3} = \frac{9}{5} a^{4/15}$$

எடுத்துக்காட்டு 6

மதிப்பிடுக
$$\lim_{x\to 0} \frac{\sin 5x}{\sin 3x}$$
 .

தீர்வு :

$$Lt_{x\to 0} \frac{\sin 5x}{\sin 3x} = Lt_{x\to 0} \left\{ \frac{5x \times \frac{\sin 5x}{5x}}{3x \times \frac{\sin 3x}{3x}} \right\}$$

$$= \frac{5}{3} Lt_{x\to 0} \left\{ \frac{\frac{\sin 5x}{5x}}{\frac{5x}{3x}} \right\} = \frac{5}{3}$$

எடுத்துக்காட்டு 7

LHS =
$$\underset{x \to 1}{\text{Lt}} \frac{x^4 - 1}{x - 1} = 4$$

RHS = Lt
$$x = \frac{x^3 - a^3}{x^2 - a^2}$$

$$=\frac{\operatorname{Lt}_{x\to a} \frac{x^3 - a^3}{x - a}}{\operatorname{Lt}_{x\to a} \frac{x^2 - a^2}{x - a}} = \frac{3a^2}{2a} = \frac{3a}{2}$$

$$\therefore 4 = \frac{3a}{2}$$

$$\therefore a = \frac{8}{3}$$

மதிப்பிடுக
$$\lim_{x\to\infty} \frac{6-5x^2}{4x+15x^2}$$
 .

தீர்வு :

Lt
$$_{x\to\infty}$$
 $\frac{6-5x^2}{4x+15x^2} = Lt \underset{x\to\infty}{\text{Lt}} \frac{\frac{6}{x^2}-5}{\frac{4}{x}+15}$

$$y = \frac{1}{x}$$
 என்க. $x \to \infty$ எனில் $y \to 0$

Lt
$$_{x\to\infty}$$
 $\frac{6-5x^2}{4x+15x^2} =$ Lt $_{y\to0}$ $\frac{6y^2-5}{4y+15}$ $= -5/15 = -1/3.$

எடுத்துக்காட்டு 9

ந்துவுக: Lt
$$\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3} = \frac{1}{3}$$

$$\begin{split} \text{Lt}_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3} &= \text{Lt}_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^3} \\ &= \text{Lt}_{n \to \infty} \frac{1}{6} \bigg[\bigg(\frac{n}{n} \bigg) \bigg(\frac{n+1}{n} \bigg) \bigg(\frac{2n+1}{n} \bigg) \bigg] \\ &= \text{Lt}_{n \to \infty} \frac{1}{6} \bigg[1 \bigg(1 + \frac{1}{n} \bigg) \bigg(2 + \frac{1}{n} \bigg) \bigg] \\ y &= 1/n, \, n \to \infty \text{ stable } y \to 0 \\ &= \text{Lt}_{y \to 0} \frac{1}{6} [(1)(1)(2)] \\ &= \frac{1}{n} \end{split}$$

பயிற்சி 7.1

1) கீழ்வருவனவற்றை மதிப்பிடுக.

(i) Lt
$$\underset{x\to 2}{\text{Lt}} \frac{x^3+2}{x+1}$$

(ii) Lt
$$\underset{x \to \pi/4}{\text{Lt}} \frac{2\sin x + 3\cos x}{3\sin x - 4\cos x}$$

(iii) Lt
$$x \to 2$$
 $\frac{x^2 - 5x + 6}{x^2 - 7x + 10}$

(iv) Lt
$$\underset{x\to 0}{\text{Lt}} \frac{\sqrt{2-x}-\sqrt{2+x}}{x}$$

(v) Lt
$$\left(\frac{x}{x \to 3} - \frac{9}{x^2 - 3x}\right)$$

(vi) Lt
$$\frac{\tan \theta}{\theta}$$

(vii) Lt
$$x \to a$$
 $\frac{x^{5/8} - a^{5/8}}{x^{1/3} - a^{1/3}}$

(viii) Lt
$$\frac{\sin 5x}{3x}$$

(ix) Lt
$$\frac{x-1}{x\to\infty}$$
 $\frac{x-1}{x+1}$

(x) Lt
$$\frac{\tan 8x}{\sin 2x}$$

(xi) Lt
$$\underset{x\to\infty}{\text{Lt}} \frac{(3x-1)(4x-2)}{(x+8)(x-1)}$$

(xii) Lt
$$\underset{x\to\infty}{\text{Lt}} \frac{5x^2 + 3x - 6}{2x^2 - 5x + 1}$$

$$\lim_{x\to 2} \frac{x^n-2^n}{x-2} = 80$$
 எனில் n–யைக் காண்க. (n ஒரு மிகை முழு எண்).

3) Lt
$$\lim_{x \to 0} \frac{(1+x)^n - 1}{x} = n$$
 என நிறுவுக.

$$f(x) = \frac{x^7 - 128}{x^5 - 32}$$
 எனில், $\lim_{x \to 2} f(x)$ மேலும் $f(2)$ என்பன நிலைபெறுமாயின் அவைகளைக் காண்க.

5)
$$f(x) = \frac{px+q}{x+1}$$
, $\frac{Lt}{x\to 0}$ $f(x) = 2$ மேலும் $\frac{Lt}{x\to \infty}$ $f(x) = 1$ எனில், $f(-2) = 0$ என நிறுவுக.

7.2 தொடர் சார்பு

(CONTINUITY OF A FUNCTION)

7.2.1 தொடர்ச்சி (Continuity)

பொதுவாக, f(x) என்ற ஒரு சார்பு x=a –இல் தொடர்ச்சியாக உள்ளது. எனில் அதன் வரைபடத்தில் x=a எனும் புள்ளியில் முறிவு எதும் இல்லை என்பதாகிறது. x=a –இல் ஏதேனும் முறிவு இருக்குமாயின், நாம் அந்த சார்பை x=a –இல் தொடர்ச்சியாக இல்லை எனக் கூறலாம். ஒரு குறிப்பிட்ட இடைவெளியில் ஒரு சார்பு தொடர்ச்சியாக இருக்க வேண்டும் எனில் அந்த சார்பு அந்த இடைவெளியில் உள்ள அனைத்து புள்ளிகளிலும் தொடர்ச்சியாக இருக்க வேண்டும்.

எடுத்துரைத்தல் 1

மேற்கண்ட வரைபடத்திலிருந்து $y=x^2$ என்ற வரைபடத்திற்கு எந்த வித முறிவும் இல்லை என அறிய முடிகிறது. ஆகையால் x –ன் எல்லா மதிப்புகளுக்கும் அது தொடர்ச்சியாக உள்ளது.

எடுத்துரைத்தல் 2

 $y = \frac{1}{\left(x-2\right)^2}$ என்ற வரைபடத்திற்கு x = 2–ல் முறிவு உள்ளது என அறிய முடிகிறது. எனவே அந்த சாா்பு x = 2 –ல் தொடா்ச்சியாக இல்லை என்று கூறப்படுகிறது.

வரையறை

 $\mathbf{f}(\mathbf{x})$ என்ற ஒரு சார்பு $\mathbf{x}=\mathbf{a}$ –ல் தொடர்ச்சியாக இருக்க வேண்டும் எனில்

- (i) $f\left(a
 ight)$ காணத்தக்கதாகவும்
- (ii) $extstyle{Lt}{x
 ightarrow a} f(x)$ காணத்தக்கதாகவும்
- (iii) $\underset{x \to a}{Lt} f(x) = f(a)$ எனவும் இருத்தல் வேண்டும்.

உட்கருத்து :

மேற்கூறிய நிபந்தனைகளில் ஒன்று அல்லது அதற்கு மேற்பட்ட கூற்றுக்கள் f(x) என்ற சாா்புக்கு x=a–ல் பொருந்தவில்லை எனில் அந்த சாா்பு x=a–ல் தொடா்ச்சியாக இல்லை எனப்படுகிறது.

7.2.2 தொடர் சார்புகளின் பண்புகள் :

f(x) மேலும் g(x) என்ற இரு சார்புகள் x=a –ல் தொடர்ச்சியாக உள்ளது எனில்

- f(x) + g(x), x = a –ல் தொடர்ச்சியானது.
- f(x) g(x), x = a –ல் தொடர்ச்சியானது.
- (iii) $f(x) \cdot g(x), x = a \hat{\mathbf{o}}$ தொடர்ச்சியானது.
- (iv) $\frac{f(x)}{g(x)}$ x = a –ல் தொடர்ச்சியானது $g(a) \neq 0$.
- f(x) at x=a –ல் தொடர்ச்சியானது, மேலும் $f(a)\neq 0$ எனில் $\dfrac{1}{f(x)},\ x=a$ –ல் தொடர்ச்சியாக உள்ளது.
- (vi) f(x), $x=a-\dot{\omega}$ தொடர்ச்சியானது, எனில் |f(x)|, $x=a-\dot{\omega}$ தொடர்ச்சியாக உள்ளது.

உட்கருத்து :

- (i) ஒவ்வொரு பல்<u>லுறு</u>ப்பு சார்பும் தொடர்ச்சி சார்பாகும்.
- (ii) ஒவ்வொரு விகிதமுறு சார்பும் தொடர்ச்சி சார்பாகும்.
- (iii) மாறிலி சார்பு தொடர்ச்சி சார்பாகும்.
- (iv) முற்றொருமை சார்பு தொடர்ச்சி சார்பாகும்.

எடுத்துக்காட்டு 10

$$f(x) = \begin{cases} \frac{\sin 3x}{x} ; & x \neq 0 \\ 1 & ; & x = 0 \end{cases}$$

x = 0–ல் இந்த சார்பு தொடர்ச்சி சார்பாக உள்ளதா என சோதனை செய்க.

தீர்வு :

 $\mathbf{x}=0$ –ல் மேற்கூறிய சாா்பு தொடா்ச்சியாக உள்ளதா என்பதற்கு மூன்று நிபந்தனைகள் பொருந்துகின்றனவா என சோதிப்போம்.

- (i) x = 0 & f(a) = f(0) = 1
- (ii) $\underset{x\to 0}{\text{Lt}} f(x) = \underset{x\to 0}{\text{Lt}} \frac{\sin 3x}{x} = 3.$

(iii) Lt
$$f(x) = 3 \neq f(0) = 1$$
.

நிபந்தனை (iii) –யை திருப்தி செய்யவில்லை.

எனவே கொடுக்கப்பட்டுள்ள சார்பு x=0–ல் தொடர்ச்சியாக இல்லை.

$$\frac{x^2 + 6x + 8}{x^2 - 5x + 6}$$
 என்ற சார்பில் தொடர்ச்சியின்மையை ஏற்படுத்தும் புள்ளிகளைக் காண்க.

தீர்வு :

தொடா்ச்சியின்மையைக் காண சாா்பின் பகுதியை பூஜ்ஜியத்திற்கு சமப்படுத்த வேண்டும்.

i.e.,
$$x^2 - 5x + 6 = 0$$

$$\Rightarrow (x - 3) (x - 2) = 0$$

$$\Rightarrow x = 3; x = 2.$$

x=3 மேலும் x=2 எனும் புள்ளிகளில் கொடுக்கப்பட்டுள்ள சாா்பு தொடா்ச்சியாக இல்லை.

எடுத்துக்காட்டு 12

ரூ. 10,000-ஐ மூன்று மாதத்திற்கு ஒரு சேமிப்பு கணக்கில் 12% கூட்டு வட்டி வீதத்தில் போடப்படுகிறது. வட்டியானது அசலுடன் மாதாமாதம் கூட்டப்படுகிறது. நிலுவைத் தொகை, காலம் இதனை விளக்கும் வரைபடம் வரைந்து தொடர்ச்சியின்மை புள்ளிகளைக் காண்க.

தீர்வு :

முதல் மாத முடிவில் நிலுவைத் தொகை

$$10,000 + 10,000 (.01) = eth. 10,100.$$

இரண்டாவது மாத முடிவில் நிலுவைத் தொகை

$$10,100 + 10,100(.01) =$$
егь. $10,201$.

மூன்றாவது மாத முடிவில் நிலுவைத் தொகை

(அ.து.)

X (காலம்)	1	2	3
Y (நிலுவைத் தொகை)	10,100	10,201	10,303.01

நிலுவைத் தொகை – காலம் வரைபடம்

 $t=1,\;t=2,\;t=3$ எனும் புள்ளிகளில் வரைபடம் தொடர்ச்சி இல்லாது இருப்பதை காண்கிறோம்.

ஆகவே $t=1,\,t=2,\,t=3$ ஆகிய புள்ளிகளில் வரைபடம் தொடர்ச்சி பெறவில்லை.

உட்கரு<u>த்து</u> :

ஒவ்வொரு மாதக் கடைசியிலும் வட்டியைக் கணக்கிட்டு நிலுவைத் தொகையோடு கூட்டும் நேரத்தில் தொடர்ச்சியின்மை காணப்படுகிறது.

பயிற்சி 7.2

- 1) cos x ஓர் தொடர் சார்பு என நிறுவுக.
- 2) $\frac{2x^2 + 6x 5}{12x^2 + x 20}$ என்ற சார்புக்கு தொடர்ச்சியின்மை புள்ளிகளைக் காண்க.
- 3) மாறிலி சார்பு ஒரு தொடர்ச்சியான சார்பு எனக்காட்டுக.
- f(x) = |x| என்பது ஆதியில் தொடர்ச்சியானது என நிறுவுக.
- 5) $f(x) = \frac{x+2}{x-1} x = 1$ –ல் தொடர்ச்சியற்ற சார்பு என நிறுவுக.
- $\frac{x+2}{(x-3)(x-4)}$ என்ற சார்புக்கு தொடர்ச்சியற்ற புள்ளிகளைக் காண்க.

7.3 வகையிடலின் கருத்துரு

CONCEPT OF DIFFERENTIATION

7.3.1 வகைக்கெழு (Differential coefficient)

y=f(x) என்ற சாா்பில் 'x'-ல் ஏற்படும் மிகச் சிறிய மாற்றம் அதனை ஒத்த மாற்றத்தை y-யிலும் ஏற்படுத்தும் இவ்வாறாக x -ன் சிறிய மாறும் வீதம் Δx எனவும் y-ன் மாறும் வீதத்தை Δy எனவும் கொள்க.

$$y = f(x)$$

$$y + \Delta y = f(x + \Delta x)$$

$$\Delta y = f(x + \Delta x) - f(x)$$

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

 $\frac{\Delta y}{\Delta x}$ என்பது மாறும் வீதத்தின் விகிதம் என அழைக்கப்படும்.

 $\mathop{Lt}_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ என்பது x–ஐ பொறுத்த y–ன் வகைக்கெழு எனப்படும். இதனை $\frac{\mathrm{d}y}{\mathrm{d}x}$ என குறிப்பிடுவோம்.

$$\therefore \frac{\mathrm{dy}}{\mathrm{dx}} = \operatorname{Lt}_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

இவ்வாறு வகைக்கெழுவை பெறும் முறையை வகையிடல் என்கிறோம். இதனை $y_1,\,f'(x),\,D'(f'(x))$ என குறியீட்டின் மூலம் குறிக்கலாம்.

7.3.2 வகைக்கெழு காணலின் வடிவ கணித விளக்கம்.

 $P\left(a\;,\,f\left(a\right)\right)$ மேலும் $Q\left(\;a+h\;,\,f\left(a+h\right)\;\right)$ என்பன $y=f\left(x\right)$ என்ற வளைவரையின் மீதுள்ள இரண்டு புள்ளிகள் என்க.

PL, QM என்பவை x–அச்சுக்கு வரையப்பட்ட குத்துக்கோடுகள் MQ–க்கு செங்குத்தாக PR–யை வரைக.

$$PR$$
 = LM = h
பேலும் QR = MQ - LP
= f (a + h) - f (a)
$$\frac{QR}{PR} = \frac{f(a+h) - f(a)}{h}$$

Q புள்ளி P–யை நோக்கி நகரும்பொழுது $h \rightarrow 0$ ஆகவும், எல்லையின் முடிவாக PQ என்ற நாண் P –ல் அந்த வளைவரைக்கு PT என்ற தொடுகோடாக அமையும்.

தொடுகோடு
$$\operatorname{PT}$$
 –யின் சாய்வு = $\displaystyle \mathop{Lt}_{Q o P}$ (PQ –வின் சாய்வு) = $\displaystyle \mathop{Lt}_{h o 0} \frac{f(a+h) - f(a)}{h}$

 \therefore f(x) –ன் வகைக்கெழு என்பது y=f(x) என்ற வளைவரையின் $(a,\ f(a))$ புள்ளியில் வரையப்பட்ட தொடுகோடு ஆகும்.

7.3.3 அடிப்படை முறை மூலம் வகைக்கெழு காணும் வீதம்

y=f(x) என்ற சாா்பின் வகைக்கெழுவை வகைக்காணலின் வரையறையின் மூலம் காணும் முறையே அடிப்படை முறை மூலம் வகைக் காணும் விதமாகும். இதை ab- initio என்றும் கூறுவா். இந்த அடிப்படை முறையானது பின்வரும் ஐந்து நிலைகளைக் கொண்டதாக அமைகிறது.

- **படி** (i) கொடுக்கப்பட்டுள்ள சார்பை y–க்கு சமப்படுத்திட y = f(x) என ஆகும்.
- **படி** (ii) கொடுக்கப்பட்டுள்ள சாா்பில் x–யை $x + \Delta x$ மாற்றி $y + \Delta y$ –ன் புதிய மதிப்பைக் காண்க.
- படி (iii) $\Delta y = f(x + \Delta x) f(x)$ என்ற வடிவில் எழுதி Δy –யை சுருக்குக.
- **படி** (iv) $\frac{\Delta y}{\Delta x}$ –யை மதிப்பிடுக.
- படி (\mathbf{v}) $\mathbf{Lt}_{\Delta \mathbf{x} \to 0} \frac{\Delta \mathbf{y}}{\Delta \mathbf{x}}$ –யை காண்க.

7.3.4 அடிப்படை முறை மூலம் திட்ட சார்புகளின் வகை காணல்

(i) xⁿ –ன் வகை கெழு (n ஓர் விகிதமுறு எண் என்க.)

நிரூபணம் :

$$y = x^n$$
 என்க.

$$y + \Delta y = (x + \Delta x)^{n}$$

$$\Delta y = (x + \Delta x)^{n} - y$$

$$= (x + \Delta x)^{n} - x^{n}$$

$$\frac{\Delta y}{\Delta x} = \frac{(x + \Delta x)^{n} - x^{n}}{\Delta x}$$

$$\therefore \frac{dy}{dx} = \frac{Lt}{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$= \frac{Lt}{\Delta x \to 0} \frac{(x + \Delta x)^{n} - x^{n}}{\Delta x}$$

$$= \frac{Lt}{\Delta x \to 0} \frac{(x + \Delta x)^{n} - x^{n}}{(x + \Delta x) - x}$$

$$\therefore \frac{dy}{dx} = \frac{Lt}{(x + \Delta x) \to x} \frac{(x + \Delta x)^{n} - x^{n}}{(x + \Delta x) - x} \quad \Delta x \to 0 \text{ similarioù}, \ x + \Delta x \to x$$

$$= n \ x^{n-1} (\because \ Lt \ \frac{x^{n} - a^{n}}{x - a} = na^{n-1})$$

$$\frac{d}{dx} (x^{n}) = nx^{n-1}$$

(ii) sinx சார்பின் வகைக்கெழு

$$y = \sin x$$

 Δx , Δy என்பன முறையே x, y களில் ஏற்படும் மிகச் சிறி மாற்றங்கள் என்க.

Then
$$y + \Delta y = \sin(x + \Delta x)$$

$$\Delta y = \sin(x + \Delta x) - y$$

$$= \sin(x + \Delta x) - \sin x$$

$$\frac{\Delta y}{\Delta x} = \frac{\sin(x + \Delta x) - \sin x}{\Delta x}$$

$$= \frac{2\cos\left(x + \frac{\Delta x}{2}\right)\sin\frac{\Delta x}{2}}{\Delta x}$$

$$= \cos\left(x + \frac{\Delta x}{2}\right).\frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}$$

$$\therefore \frac{dy}{dx} = \frac{Lt}{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$= \frac{Lt}{\Delta x \to 0} \cos(x + \Delta x / 2). \frac{Lt}{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}$$

$$= \cos x \frac{Lt}{\frac{\Delta x}{2} \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}$$

$$= (\cos x).1 \qquad \left(\because \frac{Lt}{\theta \to 0} \frac{\sin\theta}{\theta} = 1\right)$$

$$= \cos x$$

$$\frac{d}{dx}(\sin x) = \cos x$$

(iii) e^x - ன் வகைக்கெழு

$$y = e^x$$

$$y + \Delta y = e^{x + \Delta x}$$

$$\Delta y = e^{x + \Delta x} - y$$

$$\Delta y = e^{x + \Delta x} - e^{x}$$

$$= e^{x} (e^{\Delta x} - 1)$$

$$\frac{\Delta y}{\Delta x} = \frac{e^{x}(e^{\Delta x} - 1)}{\Delta x}$$

$$\therefore \frac{dy}{dx} = Lt \frac{\Delta y}{\Delta x}$$

$$= Lt \frac{e^{x}(e^{\Delta x} - 1)}{\Delta x}$$

$$= e^{x} Lt \frac{e^{\Delta x} - 1}{\Delta x}$$

$$= e^{x} Lt \frac{(e^{\Delta x} - 1)}{\Delta x}$$

$$= e^{x} (since Lt \frac{(e^{h} - 1)}{h} = 1)$$

$$= e^{x}$$

$$\therefore \frac{dy}{dx}(e^{x}) = e^{x}$$

(iv) log x - ன் வகைக்கெழு

$$y = log x$$

$$y + \Delta y = \log (x + \Delta x)$$

$$\Delta y = \log (x + \Delta x) - y$$

$$= \log (x + \Delta x) - \log x$$

$$\Delta y = \log_e \left(\frac{x + \Delta x}{x}\right)$$

$$= \log_e \left(1 + \frac{\Delta x}{x}\right)$$

$$\frac{\Delta y}{\Delta x} = \frac{\log_e \left(1 + \frac{\Delta x}{x}\right)}{\Delta x}$$

$$\therefore \frac{dy}{dx} = Lt \frac{\Delta y}{\Delta x}$$

$$= Lt \frac{\log_e \left(1 + \frac{\Delta x}{x}\right)}{\Delta x}$$

$$\frac{\Delta x}{x} = h$$
 என்க

 \therefore $\Delta x = hx$ என்க. $\Delta x \to 0$, எனில் $h \to 0$

$$\therefore \frac{dy}{dx} = \underset{h \to 0}{Lt} \frac{\log(1+h)}{hx}$$

$$= \frac{1}{x} \underset{h \to 0}{Lt} \frac{\log(1+h)}{hx}$$

$$= \frac{1}{x} \underset{h \to 0}{Lt} \log(1+h)^{\frac{1}{h}}$$

$$= \frac{1}{x} 1$$

$$= \frac{1}{x} (\because \underset{h \to 0}{Lt} \log(1+h)^{\frac{1}{h}} = 1)$$

$$\therefore \frac{d}{dx} (\log x) = \frac{1}{x}$$

உட்கருத்து :

$$\frac{d}{dx}(\log x) = \frac{1}{x} \frac{Lt}{h \to 0} \log(1+h)^{\frac{1}{h}}$$
$$= \frac{1}{x} \log_e e$$

(v) மாறிலியின் வகைக் கெழு

மாறிலியை k எனக் கொண்டால் y=k ஆகும்.

$$y + \Delta y = k$$

$$\Delta y = k - y$$

$$= k - k$$

$$\Delta y = 0$$

$$\therefore \frac{\Delta y}{\Delta x} = 0$$

$$\therefore \frac{dy}{dx} = Lt \frac{\Delta y}{\Delta x \to 0} = 0$$

$$\therefore \frac{\mathrm{d}}{\mathrm{d}x}$$
 (மாறிலி) = 0

7.3.5 வகைக்கெழுவின் பொது விதிகள்

விதி 1: கூட்டல் விதி

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$$
, u , v என்பன x –ன் சார்புகள் என்க.

 $y + \Delta y = (u + \Delta u) + (v + \Delta v)$

நிரூபணம் :

y=u+v என்க. $\Delta x,\,\Delta u,\,\Delta v,\,\Delta y$ என்பன முறையே $x,\,u,\,v,\,y$ களில் ஏற்படும் மிகச் சிறு மாற்றங்கள் என்க.

$$\Delta y = (u + \Delta u) + (v + \Delta v) - y$$

$$= u + \Delta u + v + \Delta v - u - v.$$

$$\Delta y = \Delta u + \Delta v$$

$$\therefore \frac{\Delta y}{\Delta x} = \frac{\Delta u}{\Delta x} + \frac{\Delta v}{\Delta x}$$

$$\therefore \frac{dy}{dx} = \frac{Lt}{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$= \frac{Lt}{\Delta x \to 0} \left(\frac{\Delta u}{\Delta x} + \frac{\Delta v}{\Delta x}\right)$$

$$= \frac{Lt}{\Delta x \to 0} \frac{\Delta u}{\Delta x} + \frac{Lt}{\Delta x \to 0} \frac{\Delta v}{\Delta x}$$

$$= \frac{du}{dx} + \frac{dv}{dx}$$

$$\therefore \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

$$\therefore \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

உட்கருத்து :

இந்த விதியை x–ல் உள்ள முடிவுறு சார்புகளின் கூட்டல்களுக்கு நீட்டிக்கலாம்.

விதி 2 : கழித்தல் விதி

 $\mathbf{u},\,\mathbf{v}$ என்பன $\mathbf{x},\,\mathbf{y}$ –ல் வகைக்கான தக்க சாா்புகள். மேலும் $\mathbf{y}=\mathbf{u}-\mathbf{v}$ எனில்

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{du}}{\mathrm{dx}} - \frac{\mathrm{dv}}{\mathrm{dx}}$$

விதி 3 : பெருக்கல் விதி

$$\dfrac{d}{dx}(uv)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\,,\,u,\,v$$
 என்பன x –ன் தனிப்பட்ட சார்புகள் என்க.

நிரூபணம் :

y=uv என்க u மேலும் v என்பன x –ன் தனிப்பட்ட சாா்புகள் என்க.

 $\Delta x,\,\Delta u,\,\Delta v,\,\Delta y$ என்பன $x,\,u,\,v,\,y$ களில் ஏற்படும் மிகச்சிறு மாற்றங்கள் என்க.

$$y + \Delta y = (u + \Delta u)(v + \Delta v)$$
$$\Delta y = (u + \Delta u)(v + \Delta v) - y$$
$$= (u + \Delta u)(v + \Delta v) - uv$$
$$= u. \Delta v + v \Delta u + \Delta u \Delta v$$

உட்கருத்து : பெருக்கல் விதியின் நீட்டிப்பு

y = uvw எனில்

$$\frac{dy}{dx} = uv \frac{d}{dx}(w) + wu \frac{d}{dx}(v) + wv \frac{d}{dx}(u)$$

விதி 4 : வகுத்தல் விதி

$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}, u \text{ மேலும் } v \text{ என்பன } x - \text{ன் சார்புகள்.}$$

நிரூபணம்:

$$y=rac{u}{v}$$
 என்க u மேலும் v என்பன x –ன் தனிப்பட்ட சார்புகள் w

 $\Delta x,\,\Delta u,\,\Delta v,\,\Delta y$ என்பன முறையே $x,\,u,\,v,\,y$ களில் ஏற்படும் மிகச்சிறு மாற்றங்கள் என்க.

$$y + \Delta y = \frac{u + \Delta u}{v + \Delta v}$$

$$\Delta y = \frac{u + \Delta u}{v + \Delta v} - y$$

$$= \frac{v + \Delta u}{v + \Delta v} - \frac{u}{v}$$

$$= \frac{v(u + \Delta u) - u(v + \Delta v)}{v(v + \Delta v)}$$

$$= \frac{v\Delta u - u\Delta v}{v(v + \Delta v)}$$

$$\frac{\Delta y}{\Delta x} = \frac{v \cdot \frac{\Delta u}{\Delta x} - u \cdot \frac{\Delta v}{\Delta x}}{v^2 + v\Delta v}$$

$$\therefore \frac{dy}{dx} = Lt \frac{\Delta y}{\Delta x \to 0}$$

$$= Lt \frac{v \cdot \frac{\Delta u}{\Delta x} - u \cdot \frac{\Delta v}{\Delta x}}{v^2 + v \Delta v}$$

$$= \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2 + 0} \text{ (Since } \Delta x \to 0, \ \Delta v = 0)$$

$$\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$$

விதி 5 : பெருக்கு சார்பலனின் வகைக்கெழு :

$$\frac{\mathrm{d}}{\mathrm{d}x}[\mathrm{cf}(x)] = \mathrm{c}\,\frac{\mathrm{d}}{\mathrm{d}x}[\mathrm{f}(x)]\,,\,\mathrm{c}$$
 என்பது மாறிலி.

நிரூபணம் :

$$y = c f(x)$$
 என்க.

 Δx என்பது x–ல் ஏற்படக் கூடிய மிகச்சிறிய மாற்றம். Δy என்பது y –ல் ஏற்படும் மிகச்சிறு மாற்றம் என்க.

$$y + \Delta y = cf(x + \Delta x)$$

$$\Delta y = cf(x + \Delta x) - y$$

$$\Delta y = cf(x + \Delta x) - c f(x)$$

$$= c(f(x + \Delta x) - f(x))$$

$$\frac{\Delta y}{\Delta x} = \frac{c(f(x + \Delta x) - f(x))}{\Delta x}$$

$$\therefore \frac{dy}{dx} = \underset{\Delta x \to 0}{\text{Lt}} \frac{\Delta y}{\Delta x}$$

$$= \underset{\Delta x \to 0}{\text{Lt}} \frac{c(f(x + \Delta x) - f(x))}{\Delta x}$$

$$= c f'(x)$$

$$\therefore \frac{d}{dx}(cf(x)) = c f'(x)$$

வாய்பாடுகள் :

(i)
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

(ii)
$$\frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}$$

(iii)
$$\frac{d}{dx}(x) = 1$$

(iv)
$$\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}$$

$$(v) \qquad \frac{d}{dx}(kx) = k$$

(vi)
$$\frac{d}{dx}(\sin x) = \cos x$$

(vii)
$$\frac{d}{dx}(\cos x) = -\sin x$$

(viii)
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

(ix)
$$\frac{d}{dx}$$
(cosecx) = -cot x.cosecx

(x)
$$\frac{d}{dx}(\sec x) = \sec x \cdot \tan x$$

(xi)
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

(xii)
$$\frac{d}{dx}(e^x) = e^x$$

(xiii)
$$\frac{d}{dx}(e^{ax+b}) = a e^{ax+b}$$

(xiv)
$$\frac{d}{dx}(\log x) = \frac{1}{x}$$

$$(xv) \quad \frac{d}{dx}[\log(x+a)] = \frac{1}{x+a}$$

$$(xvi)$$
 $\frac{d}{dx}$ (மாறிலி) = 0.

$$6x^4 - 7x^3 + 3x^2 - x + 8$$
 –யை x –ஐப் பொறுத்து வகையிடுக.

தீர்வு :

$$y = 6x^{4} - 7x^{3} + 3x^{2} - x + 8$$

$$\frac{dy}{dx} = \frac{d}{dx}(6x^{4}) - \frac{d}{dx}(7x^{3}) + \frac{d}{dx}(3x^{2}) - \frac{d}{dx}(x) + \frac{d}{dx}(8)$$

$$= 6\frac{d}{dx}(x^{4}) - 7\frac{d}{dx}(x^{3}) + 3\frac{d}{dx}(x^{2}) - \frac{d}{dx}(x) + \frac{d}{dx}(8)$$

$$= 6(4x^{3}) - 7(3x^{2}) + 3(2x) - (1) + 0$$

$$\frac{dy}{dx} = 24x^{3} - 21x^{2} + 6x - 1$$

எடுத்துக்காட்டு 14

 $3x^{2/3} - 2\log_{e}x + e^{x}$ –யை x–யைப் பொறுத்து வகைக்கெழு காண்க.

தீர்வு:

y =
$$3x^{2/3} - 2\log_e x + e^x$$
 sides.

$$\frac{dy}{dx} = 3\frac{d}{dx}(x^{2/3}) - 2\frac{d}{dx}(\log_e x) + \frac{d}{dx}(e^x)$$

$$= 3(2/3)x^{-1/3} - 2(1/x) + e^x$$

$$= 2x^{-1/3} - 2/x + e^x$$

எடுத்துக்காட்டு 15

$$y = \cos x + \tan x$$
 எனில், $\frac{dy}{dx}$ யை $x = \frac{\pi}{6}$ –ல் காண்க.

$$y = \cos x + \tan x$$

$$\frac{dy}{dx} = \frac{d}{dx}(\cos x) + \frac{d}{dx}(\tan x)$$

$$= -\sin x + \sec^2 x$$

$$\frac{dy}{dx}(\operatorname{at} x = \frac{\pi}{6}) = -\sin\frac{\pi}{6} + (\sec \pi/6)^2$$

$$= -\frac{1}{2} + \frac{4}{3} = \frac{5}{6}$$

cosx . logx, x–யைப் பொறுத்து வகையிடுக.

தீர்வு :

Let
$$y = \cos x \cdot \log x$$

$$\frac{dy}{dx} = \cos x \frac{d}{dx} (\log x) + \log x \frac{d}{dx} (\cos x)$$

$$= \cos x \frac{1}{x} + (\log x)(-\sin x)$$

$$= \frac{\cos x}{x} - \sin x \log x$$

எடுத்துக்காட்டு 17

 $x^2 e^x \log x$ —ஐ x —யைப் பொறுத்து வகையிடுக.

தீர்வு :

$$y = x^2 e^x \log x$$
 என்க.

$$\frac{dy}{dx} = x^{2} e^{x} \frac{d}{dx} (\log x) + x^{2} \log x \frac{d}{dx} (e^{x}) + e^{x} \log x \frac{d}{dx} (x^{2})$$

$$= (x^{2} e^{x}) (1/x) + x^{2} \log x (e^{x}) + e^{x} \log x (2x)$$

$$= x e^{x} + x^{2} e^{x} \log x + 2x e^{x} \log x$$

$$= x e^{x} (1 + x \log x + 2 \log x)$$

எடுத்<u>து</u>க்காட்டு 18

$$\frac{x^2 + x + 1}{x^2 - x + 1}$$
 x-யைப் பொறுத்து வகையிடுக.

$$\begin{split} y &= \frac{x^2 + x + 1}{x^2 - x + 1} \text{ signs.} \\ \frac{dy}{dx} &= \frac{(x^2 - x + 1) \frac{d}{dx} (x^2 + x + 1) - (x^2 + x + 1) \frac{d}{dx} (x^2 - x + 1)}{(x^2 - x + 1)^2} \\ &= \frac{(x^2 - x + 1)(2x + 1) - (x^2 + x + 1)(2x - 1)}{(x^2 - x + 1)^2} \\ &= \frac{2(1 - x^2)}{(x^2 - x + 1)^2} \end{split}$$

பயிற்சி 7.3

1) அடிப்படை முறை மூலம் பின்வரும் சார்புகளை வகையிடுக.

- (i) cosx
- (ii) tanx
- (iii) cosecx
- (iv) \sqrt{x}

2) x –யைப் பொறுத்து வகையிடுக.

- (i) $3x^4 2x^3 + x + 8$
- (ii) $\frac{5}{x^4} \frac{2}{x^3} + \frac{5}{x}$

(iii) $\sqrt{x} + \frac{1}{\sqrt[3]{x}} + e^x$

(iv) $\frac{3+2x-x^2}{x}$

(v) $\tan x + \log x$

 $(vi) x^3 e^x$

 $(vii) \ \frac{3x^3 - 4x^2 + 2}{\sqrt{x}}$

- (viii) $ax^n + \frac{b}{x^n}$
- $(ix)(x^2+1)(3x^2-2)$
- $(x)(x^2+2)\sin x$

(xi) secx tanx

- (xii) $x^2 \sin x + 2x \sin x + e^x$
- $(xiii)(x^z x + 1)(x^2 + x + 1)$
- (xiv) xⁿ log x
- (xv) $x^2 \tan x + 2x \cot x + 2$
- (xvi) \sqrt{x} . sec x

(xvii) $\frac{e^x}{1+e^x}$

(xviii) $\frac{1-\cos x}{1+\cos x}$

 $(xix) \quad \frac{3-5x}{3+5x}$

- (xx) $\log \left(e^x \left(\frac{x-2}{x+2} \right)^{3/4} \right)$
- (xxi) $\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2$
- $(xxii) x^2 \log x$
- (xxiii) x tan x + cos x
- (xxiv) $\frac{e^x}{(1+x)}$

7.3.6 சார்பின் சார்புக்கு வகைக்கெழு காணல் – சங்கிலி விதி

y –ஆனது u–ன் சாா்பு. மேலும் u – ஆனது x–ன் சாா்பு எனில்

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

y – ஆனது u –ன் சார்பு, u – ஆனது v –ன் சார்பு மேலும் v – ஆனது x –ன் சார்பு எனில்,

 $rac{dy}{dx} = rac{dy}{du} \; rac{du}{dv} \; rac{dv}{dx}$ என விரிவு செய்து வகைக்கெழு காணலாம்.

x–யைப் பொறுத்து வகையிடுக.

(i)
$$\sqrt{(\sin x)}$$
 (ii) $e^{\sqrt{x}}$

தீர்வு :

(i)
$$y = \sqrt{(\sin x)}$$
 $\sin x = u$ என்க. $y = \sqrt{u}$ $\frac{dy}{du} = \frac{1}{2} u^{-1/2}$ பேலும் $\frac{du}{dx} = \cos x$ $\therefore \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$ $= \frac{1}{2} u^{-1/2} \cos x$ $= \frac{\cos x}{2\sqrt{(\sin x)}}$

(ii)
$$y = e^{\sqrt{x}}$$
$$\frac{dy}{dx} = \frac{d}{dx}(e^{\sqrt{x}})$$
$$= e^{\sqrt{x}} \frac{d}{dx}(\sqrt{x})$$
$$= \frac{e^{\sqrt{x}}}{2\sqrt{x}}$$

எடுத்துக்காட்டு 20

 $\log \, rac{{
m e}^{x} + {
m e}^{-x}}{{
m e}^{x} - {
m e}^{-x}} \,$ –ஐ x–யைப் பொறுத்து வகையிடுக.

$$y = \log \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}} \text{ sroits.}$$

$$y = \log(e^{x} + e^{-x}) - \log(e^{x} - e^{-x})$$

$$\frac{dy}{dx} = \frac{d}{dx} \{ \log(e^{x} + e^{-x}) \} - \frac{d}{dx} \{ \log(e^{x} - e^{-x}) \}$$

$$= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} - \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}$$

$$= \frac{(e^{x} - e^{-x})^{2} - (e^{x} + e^{-x})^{2}}{(e^{x} + e^{-x})(e^{x} - e^{-x})}$$

$$= \frac{e^{2x} - 2 + e^{-2x} - e^{2x} - 2 - e^{-2x}}{e^{2x} - e^{-2x}}$$

$$= \frac{-4}{e^{2x} - e^{-2x}}$$

log (log x) –ஐ x–யைப் பொறுத்து வகையிடுக.

தீர்வு :

$$y = \log(\log x)$$
 என்க.
 $\frac{dy}{dx} = \frac{d}{dx} \{ \log(\log x) \}$

$$= \frac{1}{\log x} \frac{d}{dx} (\log x)$$

$$= \frac{1}{\log x} \frac{1}{x}$$

$$\frac{dy}{dx} = \frac{1}{x \log x}$$

எடுத்துக்காட்டு 22

 $\mathrm{e}^{4x} \sin 4x$ -ஐ x -யைப் பொறுத்து வகையிடுக.

தீர்வு :

$$y = e^{4x} \sin 4x$$

$$\frac{dy}{dx} = e^{4x} \frac{d}{dx} (\sin 4x) + \sin 4x \frac{d}{dx} (e^{4x})$$

$$= e^{4x} (4\cos 4x) + \sin 4x (4 e^{4x})$$

$$= 4 e^{4x} (\cos 4x + \sin 4x)$$

பயிற்சி 7.4

x–யைப் பொறுத்து வகையிடுக.

1)	$\sqrt{3x^2 - 2x + 2}$	2) (8 –	$(5x)^{2/3}$
3)	$\sin(e^x)$	4)	e ^{sec x}
5)	log sec x	6)	e^{x^2}
5)	log sec x	6)	e ^x

7)
$$\log(x + \sqrt{(x^2 + 1)})$$
 8) $\cos(3x - 2)$

9)
$$\log \cos x^2$$
 10) $\log \{e^{2x} \sqrt{(x-2)/(x+2)}\}$

$$11) \qquad e^{\sin x + \cos x} \qquad \qquad 12) \qquad e^{\cot x}$$

13)
$$\log \{(e^x / (1 + e^x))\}$$
 14) $\log (\sin^2 x)$

$$15) e^{\sqrt{\tan x}} 16) \sin x^2$$

17)
$$\{\log (\log (\log x)\}^n$$
 18) $\cos^2 x$

19)
$$e^{-x} \log (e^x + 1)$$

20) $\log \{(1+x^2)/(1-x^2)\}$

21)
$$\sqrt[3]{x^3 + x + 1}$$

 $22) \quad \sin(\log x)$

23)
$$x^{\log(\log x)}$$

24) $(3x^2+4)^3$

7.3.7 தலைகீழி சார்பின் வகையிடல்

 $y=f\left(x
ight)$ என்பது x–ல் உள்ள வகையிடத்தக்க சாா்பாக இருந்து, அதன் தலைகீழி சாா்பு $x=f^{-1}\left(y
ight)$ என வரையறுக்கப்பட்டிருந்தால்

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}, \ \frac{dy}{dx} \neq 0$$
 எனக் கொள்ளலாம்.

வாய்பாடுகள்

(i)
$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}$$

(ii)
$$\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}$$

(iii)
$$\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$$

(iv)
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$(v) \qquad \frac{d}{dx}(\csc^{-1}x) \qquad = \frac{-1}{x\sqrt{x^2 - 1}}$$

(vi)
$$\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{(1+x^2)}$$

எடுத்துக்காட்டு 23

 $\cos^{-1} \left(\ 4x^3 - 3x \ \right)$ –ஐ x–யைப் பொறுத்து வகையிடுக.

$$y = \cos^{-1}(4x^3 - 3x)$$
 என்க.

$$x = \cos \theta$$
 என்க.

$$y = \cos^{-1} \left(4 \cos^3 \theta - 3 \cos \theta \right)$$

$$=\cos^{-1}(\cos 3\theta)$$

$$y = 3\theta$$

$$\therefore \qquad y \qquad = 3 \cos^{-1} x$$

$$\frac{dy}{dx} = \frac{-3}{\sqrt{1-x^2}}$$

$$\tan^{-1}\!\left(rac{1-x}{1+x}
ight)$$
 -ஐ x -யைப் பொறுத்து வகையிடுக.

தீா்வு :

$$y = \tan^{-1}\left(\frac{1-x}{1+x}\right)$$
 என்க. $x = \tan \theta$ என்க.

$$\therefore y = \tan^{-1}\left(\frac{1-\tan\theta}{1+\tan\theta}\right)$$

$$= \tan^{-1}\left(\frac{\tan\pi/4 - \tan\theta}{1+\tan\pi/4 \tan\theta}\right)$$

$$= \tan^{-1}\left(\tan\left(\frac{\pi}{4} - \theta\right)\right)$$

$$y = \frac{\pi}{4} - \theta$$

$$y = \frac{\pi}{4} - \tan^{-1}x$$

$$\therefore \frac{dy}{dx} = -\frac{1}{1+x^2}$$

7.3.8 மடக்கை சார்புகளின் வகையிடல்

 $y=f\left(x\right)$ என்பது ஒர் சார்பு என்க. இருபுறமும் மடக்கை எடுத்து அந்த சார்புக்கு வகை காணும் முறையை மடக்கை சார்புகளின் வகையிடல் என்கிறோம்.

எடுத்துக்காட்டு 25

$$\frac{(2x+1)^3}{(x+2)^2(3x-5)^5}$$
–ஐ x –யைப் பொறுத்து வகையிடுக.

தீா்வு :

$$y = \frac{(2x+1)^3}{(x+2)^2 (3x-5)^5}$$
 என்க.
$$\log y = \log \left\{ \frac{(2x+1)^3}{(x+2)^2 (3x-5)^5} \right\}$$

$$= 3 \log (2x+1) - 2 \log (x+2) - 5 \log (3x-5)$$
 x -யைப் பொறுத்து வகைக் காண,

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{3}{2x+1}(2) - 2\frac{1}{x+2}(1) - 5\frac{1}{3x-5} \cdot 3$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{6}{2x+1} - \frac{2}{x+2} - \frac{15}{3x-5}$$

$$\frac{dy}{dx} = y \left[\frac{6}{2x+1} - \frac{2}{x+2} - \frac{15}{3x-5} \right]$$

$$= \frac{(2x+1)^3}{(x+2)^2 (3x-5)^5} \left[\frac{6}{2x+1} - \frac{2}{x+2} - \frac{15}{3x-5} \right]$$

(sin x)^{cos x} –ஐ x–யைப் பொறுத்து வகையிடுக.

தீர்வு :

$$y = (\sin x)^{\cos x}$$
 என்க.

இருபுறமும் மடக்கை எடுக்க,

$$\log y = \cos x \log \sin x$$

x –யைப் பொறுத்து வகை காண

$$\frac{1}{y} \cdot \frac{dy}{dx} = \cos x \frac{d}{dx} (\log \sin x) + \log \sin x \cdot \frac{d}{dx} (\cos x)$$

$$= \cos x \frac{1}{\sin x} \cdot \cos x + \log \sin x (-\sin x)$$

$$= \frac{\cos^2 x}{\sin x} - \sin x \log \sin x$$

$$\frac{dy}{dx} = y [\cot x \cos x - \sin x \log \sin x]$$

$$= (\sin x)^{\cos x} [\cot x \cos x - \sin x \log \sin x]$$

பயிற்சி 7.5

x–யைப் பொறுத்து வகையிடுக.

1)
$$\sin^{-1}(3x - 4x^3)$$
 2) $\tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)$
3) $\cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)$ 4) $\sin^{-1}\frac{2x}{1 + x^2}$

5)
$$\tan^{-1} \frac{2x}{1-x^2}$$
 6) $\tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right)$

7)
$$\cot^{-1} \sqrt{1 + x^2} - x$$
 8) $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}$

9)
$$x^{x} 10) (\sin x)^{\log x}$$

11)
$$x \sin^{-1} x$$
 12) $(3x-4)^{x-2}$ 216

$$e^{X^{X}}$$

$$14)$$
 $x^{\log x}$

$$15) \qquad \sqrt{\frac{4+5x}{4-5x}}$$

16)
$$(x^2+2)^5 (3x^4-5)^4$$

$$17) \qquad x^{\frac{1}{x}}$$

$$(\tan x)^{\cos x}$$

$$19) \qquad \left(1 + \frac{1}{x}\right)^x$$

$$20) \qquad \sqrt{\frac{1+x^2}{1-x^2}}$$

$$21) \qquad \frac{x^3 \sqrt{x^2 + 5}}{(2x + 3)^2}$$

23)
$$x^{\sqrt{x}}$$

$$(\sin x)^x$$

7.3.9 உட்படு சார்புகளின் வகைக் காணல்

 $y=f\left(x
ight)$ என்ற வடிவில் உள்ள சாா்புகள் வெளிப்படைச் சாா்புகள் ஆகும். $f\left(x,\,y\right)=c,$ (c என்பது மாறிலி) என்ற அமைப்பில் உள்ள சாா்புகள் உட்படு சாா்புகள் ஆகும்.

எடுத்துக்காட்டு 27

$$x^m y^n = (x + y)^{m+n}$$
 எனில், $\frac{dy}{dx} = \frac{y}{x}$ என நிறுவுக.

தீர்வு :

$$x^m y^n = (x + y)^{m+n}$$

இருபுறமும் மடக்கை காண,

 $m \log x + n \log y = (m+n) \log (x+y)$

x –யை பொறுத்து வகையிட

$$\frac{m}{x} + \frac{n}{y} \frac{dy}{dx} = \left(\frac{m+n}{x+y}\right) \left(1 + \frac{dy}{dx}\right)$$

$$\Rightarrow \frac{m}{x} + \frac{n}{y} \frac{dy}{dx} = \frac{m+n}{x+y} + \frac{m+n}{x+y} \cdot \frac{dy}{dx}$$

$$\Rightarrow \frac{n}{y} \cdot \frac{dy}{dx} - \frac{m+n}{x+y} \frac{dy}{dx} = \frac{m+n}{x+y} - \frac{m}{x}$$

$$\Rightarrow \frac{dy}{dx} \left[\frac{n}{y} - \frac{m+n}{x+y}\right] = \frac{m+n}{x+y} - \frac{m}{x}$$

$$\Rightarrow \frac{dy}{dx} \left[\frac{nx+ny-my-ny}{y(x+y)}\right] = \frac{mx+nx-mx-my}{x(x+y)}$$

$$\Rightarrow \frac{dy}{dx} \left[\frac{nx-my}{y}\right] = \frac{nx-my}{x}$$

$$\therefore \frac{dy}{dx} = \left(\frac{nx-my}{x}\right) \left(\frac{y}{nx-my}\right)$$

$$= \frac{y}{x}$$

பயிற்சி 7.6

 $\frac{dy}{dx}$ –யைக் காண்க.

1)
$$y^2 = 4ax$$

2)
$$x^2 + y^2 = 9$$

3)
$$xy = c^2$$

4)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

5)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

6)
$$ax^2 + 2hxy + by^2 = 0$$

7)
$$x^2 - 2xy + y^2 = 16$$

8)
$$x^4 + x^2y^2 + y^4 = 0$$

9)
$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$

$$10) x^y = y^x$$

11)
$$x^2 + y^2 + x + y + \lambda = 0$$

12)
$$y = \cos(x + y)$$

13)
$$x^y = e^{x-y}$$

14)
$$(\cos x)^y = (\sin y)^x$$

15)
$$x^2 - xy + y^2 = 1$$

7.3.10 துணை அலகு சார்புகளின் வகைக் காணல்

 $x,\,y$ என்ற இரு மாறிகளுமே வேறொரு மூன்றாவது மாறியின் மூலம் அமையப் பெறுவது துணையலகு சார்பாகும். மூன்றாவது மாறியை நீக்காமல் $\dfrac{dy}{dx}$ —யை காணலாம்.

$$x = f(t)$$
; $y = g(t)$ តល់ត.

$$\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt}$$

எடுத்துக்காட்டு 28

$$x=a\;(\theta-sin\theta)\;;\;y=a\;(1-cos\theta\;)$$
 எனில் $\displaystyle \frac{dy}{dx}$ —யைக் காண்க.

$$\frac{dx}{d\theta} = a(1 - \cos\theta) \quad ; \quad \frac{dy}{d\theta} = a(\sin\theta)$$

$$\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$$

$$= \frac{a\sin\theta}{a(1 - \cos\theta)}$$

$$= \frac{2\sin\theta/2\cos\theta/2}{2\sin^2\theta/2}$$

$$= \cot\theta/2$$

பயிற்சி 7.7

 $\frac{\mathrm{d}y}{\mathrm{d}x}$ – யைக் காண்க.

$$) x = a \cos\theta, y = b \sin\theta$$

2) x = ct, y = $\frac{c}{1}$

3)
$$x = a \sec \theta, y = b \tan \theta$$

4) $3x = t^3 = 2y = t^2$

5)
$$x = a \cos^3 \theta, y = a \sin^3 \theta$$

6) $x = \log t$, $y = \sin t$

7)
$$x = e^{\theta}(\sin\theta + \cos\theta); y = e^{\theta}(\sin\theta - \cos\theta)$$
 8) $x = \sqrt{t}, y = t + \frac{1}{t}$

8)
$$x = \sqrt{t}, y = t + \frac{1}{t}$$

9)
$$x = \cos(\log t); y = \log(\cos t)$$

10)
$$x = 2\cos^2\theta$$
; $y = 2\sin^2\theta$

11)
$$x = at^2, y = 2at$$

7.3.11 தொடர் வகையிடல்

y=f(x) என்ற சாா்பின் வகைக்கெழு $\frac{\mathrm{d}y}{\mathrm{d}x}$ அதாவது f'(x) என்பதும் x–ன் சாா்பாக அமையலாம். f'(x) –யை மீண்டும் வகைப்படுத்தலாம். இதனை மீண்டும் வகைப்படுத்த இரண்டாம் வகைக்கெழுவைப் பெறுகிறோம். இதனை $\frac{d^2y}{dx^2}$ அல்லது y_2 என எழுதலாம். $\frac{d^2y}{dx^2}$ —யையும் இதேபோல் தொடர்ந்து வகைப்படுத்தலாம். அதை மூன்றாம் வகைகெழு என்போம். இதனை $\frac{\mathrm{d}}{\mathrm{dx}} \left(\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{dx}^2} \right) = \frac{\mathrm{d}^3 \mathrm{y}}{\mathrm{dx}^3}$ என்போம். இரண்டு மற்றும் அதற்கு மேலும் வகையிடுதலை உயர் வகையிடுதல் என்றும் இதனைக் காணும் முறையை தொடர் வகையிடல் என்றும் அழைக்கிறோம்.

எடுத்துக்காட்டு 29

 $y = e^x \log x$ எனில் y_2 –யைக் காண்க.

$$y = e^{x} \log x$$

$$y_{1} = e^{x} \frac{d}{dx} (\log x) + \log x \frac{d}{dx} (e^{x})$$

$$= \frac{e^{x}}{x} + \log x (e^{x})$$

$$y_{1} = e^{x} \left(\frac{1}{x} + \log x\right)$$

$$y_{2} = e^{x} \frac{d}{dx} \left(\frac{1}{x} + \log x\right) + \left(\frac{1}{x} + \log x\right) \frac{d}{dx} (e^{x})$$

$$y_{2} = e^{x} \left\{-\frac{1}{x^{2}} + \frac{1}{x}\right\} + \left(\frac{1}{x} + \log x\right) e^{x}$$

$$= e^{x} \left\{-\frac{1}{x^{2}} + \frac{1}{x} + \frac{1}{x} + \log x\right\}$$

$$= e^{x} \left\{\left(\frac{2x - 1}{x^{2}}\right) + \log x\right\}$$

$$x=a\;(t+\sin\,t)$$
 மேலும் $y=a(1-\cos\,t),$ எனில் $\frac{d^2y}{dx^2}$ யை $t=\frac{\pi}{2}$ –ல் காண்க.

தீர்வு :

$$x = a(t + \sin t); y = a(1 - \cos t)$$

$$\frac{dx}{dt} = a(1 + \cos t); \frac{dy}{dt} = a \sin t$$

$$= 2a \cos^2 t / 2; = 2a \sin t / 2 \cos t / 2$$

$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$$

$$= \frac{2a \sin t / 2 \cos t / 2}{2a \cos^2 t / 2}$$

$$= \tan t / 2$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$$

$$= \frac{1}{2} \sec^2 t / 2 \frac{dt}{dx}$$

$$= \frac{1}{2} \sec^2 t / 2 \frac{1}{2a \cos^2 t / 2}$$

$$= \frac{1}{4a} \sec^4 t / 2$$

$$\left(\frac{d^2y}{dx^2}\right)_{t=\pi/2} = \frac{1}{4a} (\sec \pi / 4)^4$$

$$= \frac{1}{4a} 4 = \frac{1}{a}$$

எடுத்துக்காட்டு 31

$$y = \left(x + \sqrt{1 + x^2}\right)^m$$
 எனில் ($1 + x^2$) $y_2 + xy_1 - m^2y = 0$ என நிரூபி.

$$\begin{split} y &= (x + \sqrt{1 + x^2})^m \\ y_1 &= m (x + \sqrt{1 + x^2})^{m-1} \left\{ 1 + \frac{2x}{2\sqrt{1 + x^2}} \right\} \\ &= m (x + \sqrt{1 + x^2})^{m-1} \left(\frac{\sqrt{1 + x^2} + x}{\sqrt{1 + x^2}} \right) \\ &= \frac{m \left(x + \sqrt{1 + x^2} \right)^m}{\sqrt{1 + x^2}} \\ y_1 &= \frac{my}{\sqrt{1 + x^2}} \end{split}$$

$$\Rightarrow$$
 (1 + x²) (y₁)² = m²y²

x –யை பொறுத்து வகைக் காண, கிடைப்பது

$$(1 + x^2)$$
. $2(y_1)(y_2) + (y_1)^2(2x) = 2m^2y y_1$

2y₁ –ஆல் இருபுறமும் வகுக்க

$$(1 + x^2) y_2 + x y_1 = m^2 y$$

$$\Rightarrow$$
 $(1 + x^2) y_2 + x y_1 - m^2 y = 0$

எடுத்துக்காட்டு 32

 $\mathbf{x} = \mathbf{t} + rac{1}{\mathbf{t}}$ மேலும் $\mathbf{y} = \mathbf{t} - rac{1}{\mathbf{t}}$ எனில் ; $\left(rac{\mathbf{d}^2\mathbf{y}}{\mathbf{d}\mathbf{x}^2}
ight)$ –ன் மதிப்பை $\mathbf{t} = \mathbf{2}$ என்ற புள்ளியில் காண்க.

தீா்வு :

$$x = t + \frac{1}{t}; \quad y = t - \frac{1}{t}$$

$$\frac{dx}{dt} = 1 - t^{2}; \quad \frac{dy}{dt} = 1 + \frac{1}{t^{2}}$$

$$\frac{dx}{dt} = \frac{t^{2} - 1}{t^{2}} \quad \frac{dy}{dt} = \frac{t^{2} + 1}{t^{2}}$$

$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$$

$$= \frac{t^{2} + 1}{t^{2}} \cdot \frac{t^{2}}{t^{2} - 1} = \frac{t^{2} + 1}{t^{2} - 1}$$

$$\left(\frac{d^{2}y}{dx^{2}}\right) = \frac{d}{dx} \left(\frac{dy}{dx}\right)$$

$$= \frac{d}{dx} \left(\frac{t^{2} + 1}{t^{2} - 1}\right)$$

$$= \left\{\frac{(t^{2} - 1)2t - (t^{2} + 1)(2t)}{(t^{2} - 1)^{2}}\right\} \frac{dt}{dx}$$

$$= \left\{\frac{-4t}{(t^{2} - 1)^{2}}\right\} \frac{t^{2}}{(t^{2} - 1)}$$

$$= \frac{-4t^{3}}{(t^{2} - 1)^{3}}$$

$$\left(\frac{d^{2}y}{dx^{2}}\right) \text{at } t = 2 = \frac{-4(2)^{3}}{(4 - 1)^{3}}$$

$$= \frac{-32}{27}$$

பயிற்சி 7.8

1)
$$y = (4x - 1)^2$$
 எனில் $\frac{d^2y}{dx^2}$ –யைக் காண்க.

$$y = e^{-ax}$$
 எனில், $\frac{d^2y}{dx^2}$ –யைக் காண்க.

3)
$$y = \log (x + 1)$$
 எனில், $\frac{d^2y}{dx^2}$ –யைக் காண்க.

$$x = at^2$$
, $y = 2at$ எனில், y_2 –யைக் காண்க.

$$x = a \cos\theta$$
, $y = b \sin\theta$ எனில் y_2 –யைக் காண்க.

$$x = a \cos^3 \theta$$
, $y = a \sin^3 \theta$, என்பன துணையலகு சமன்பாடுகள் எனில் $\frac{d^2 y}{dx^2}$ –யைக் காண்க.

$$y = Ae^{ax} - Be^{-ax}$$
 எனில் $\frac{d^2y}{dx^2} = a^2y$ என நிறுவுக.

8)
$$y = x^2 \log x$$
 எனில் $\frac{d^2y}{dx^2} = 3 + 2 \log x$ என நிறுவுக.

9)
$$y = e^{\sin^{-1} x}$$
 எனக் கொண்டு $(1 - x^2) y_2 - x y_1 - y = 0$ என நிறுவுக.

$$y = a \cos(\log x) + b \sin(\log x)$$
 எனில் $x^2 y_2 + x y_1 + y = 0$, if என நிறுவுக.

11)
$$y = \log x$$
 எனில் $\frac{d^2y}{dx^2}$ –யைக் காண்க.

பயிற்சி 7.9

ஏற்புடைய விடையைத் தெரிவு செய்க.

1)
$$\underset{x\to 2}{\text{Lt}} \frac{2x^2 + x + 1}{x + 2} =$$
(a) $\frac{1}{2}$ (b) 2 (c) $\frac{11}{4}$ (d) 0

2)
$$Lt \underset{x\to 2}{\text{Lt}} \frac{2x^2 - x - 1}{x^2 + x - 1} =$$
(a) 0 (b) 1 (c) 5 (d) 2

$$\frac{1}{x}$$
 Lt $\frac{x^m-1}{x^n-1}$ ஆனது (a) mn (b) m+n (c) m-n (d) $\frac{m}{n}$

4)
$$Lt_{x\to\infty} \frac{(x-2)(x+4)}{x(x-9)} =$$
(a) 1 (b) 0 (c) 9 (d) -4

5)	$\mathop{\rm Lt}_{{\rm x}\to\infty} \left[(1/{\rm x}) + 2 \right] =$					
	(a) ∞	(b) 0	(c) 1	(d) 2		
6)	Lt $_{x\to\infty} \frac{1+2+3+}{2n^2+6}$	+ n — ஆனது				
		(b) 6	(c) $\frac{1}{4}$	(d) $\frac{1}{2}$		
7)	$\underset{x \to \pi/2}{\text{Lt}} \frac{\sin x}{x} =$					
	(a) π	(b) $\frac{\pi}{2}$	(c) $\frac{2}{\pi}$	(d) இதில் ஏதுமில்லை		
8)	$f(x) = rac{x^2 - 36}{x - 6}$ எனில் x –ன் எம்மதிப்பிற்கு தவிர $f(x)$ ஆனது எல்லா மெய்யெண்கள் மீத வரையறுக்கப்பட்டுள்ளது.					
	(a) 36	(b) 6	(c) 0	(d) இதில் ஏதுமில்லை		
9)	$\frac{2x^2-8}{x-2}$ எனும் சார்பின் தொடர்ச்சியின்மை புள்ளியானது					
	(a) 0	(b) 8	(c) 2	(d) 4		
10)	$f(x)$ எனும் சார்பு $x=a$ –ல் தொடர்ச்சியாக இருக்க வேண்டுமெனில் $\displaystyle \mathop{Lt}_{x o a} f(x) =$					
	(a) f (a)	(b) f (- a)	(c) 2 f (a)	(d) $f(1/a)$		
11)	$2\sqrt{\mathrm{x}}$ $-$ ல் வகைக்கெழு x $-$ யை பொறுத்து					
	(a) \sqrt{x}	(b) $1/2 \sqrt{x}$	(c) $1/\sqrt{x}$	(d) $1/4\sqrt{x}$		
12)	$\frac{\mathrm{d}}{\mathrm{dx}} \left(\frac{1}{\mathrm{x}} \right) =$					
	(a) log x	(b) $1/x^2$	$(c) - (1/x^2)$	(d) - (1/x)		
13)	$y = 2^x$ எனில் $\frac{dy}{dx} =$					
	(a) $2^x \log 2$	(b) 2 ^x	(c) $\log 2^x$	(d) x log 2		
14)	$f(x) = x^2 + x + 1$ எனில் $f'(0) =$					
	(a) 0	(b) 3	(c) 2	(d) 1		
15)	$\frac{\mathrm{d}}{\mathrm{dx}} \left(\frac{1}{\mathrm{x}^3} \right) =$					
	(a) $-\frac{3}{x^4}$	(b) $-(1/x^3)$	$(c) - (1/x^4)$	$(d) - (2/x^2)$		
16)	$f(x) = \cos x + 5$ எனில் $f'(\pi/2) =$					

(c) 1

(d) 0

(b) - 1

(a) 5

17)
$$y = 5e^x - 3 \log x$$
 எனில் $\frac{dy}{dx} =$

- (a) $5e^x 3x$ (b) $5e^x 3/x$ (c) $e^x 3/x$
- (d) $5e^{x} 1/x$

$$18) \qquad \frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{e}^{\log x}) =$$

- (a) log x
- (b) $e^{\log x}$
- (c) 1/x
- (d) 1

19)
$$y = \sqrt{\sin x}$$
 எனில் $\frac{dy}{dx} =$

- (a) $\frac{\cos x}{2\sqrt{\sin x}}$ (b) $\frac{\sin x}{2\sqrt{\cos x}}$ (c) $\frac{\cos x}{\sqrt{\sin x}}$

- (d) $\frac{\cos x}{\sin \sqrt{x}}$

$$20) \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{e}^{4x}) =$$

- (a) e^{4x}
- (b) $4e^{4x}$
- (c) e^x
- (d) $4e^{4x-1}$

$$21) \qquad \frac{d}{dx}(\sin^2 x) =$$

- (a) 2 sin x
- (b) sin 2x
- (c) 2 cos x
- (d) $\cos 2x$

22)
$$\frac{d}{dx}(\log \sec x) =$$

- (b) 1/sec x
- (c) tan x
- (d) sec x tan x

$$y = 2^{-x}$$
 எனில் $\frac{dy}{dx} =$

- (b) $2^{-x} \log 2$
- (c) $2^{-x}\log(1/2)$
- (d) $2^{-x} \log 4$

$$24) \qquad \frac{d}{dx} \left(\tan^{-1} 2x \right) =$$

- (a) $\frac{1}{1+x^2}$ (b) $\frac{2}{1+4x^2}$
- (c) $\frac{2x^2}{1+4x^2}$
- (d) $\frac{1}{1+4x^2}$

$$y = e^{ax^2}$$
 எனில் $\frac{dy}{dx} =$

- (a) 2axy
- (b) 2ax
- (c) $2ax^2$
- (d) 2ay

26)
$$\frac{d}{dx} (1 + x^2)^2 =$$

- (a) $2x (1 + x^2)$ (b) $4x (1 + x^2)$ (c) $x (1 + x^2)^3$
- (d) $4x^2$

27)
$$f(x) = \frac{\log x}{x}$$
 எனில் f'(e) =

- (a) 1/e
- (b) 1
- (c) 0
- (d) $\frac{1}{a^2}$

28)
$$\frac{d}{dx}(x \log x) =$$

- (a) log x
- (b) 1
- $(c) 1 + \log x$
- (d) $\frac{\log x}{x}$

(a) $\sec^2 x$ (b) $\tan x$ (c) $\sec x \tan x$ 36) $y = e^{3x}$ எனில், $\frac{d^2 y}{dx^2}$ –ன் மதிப்பு x = 0 எனும்பொழுது,

(a) 3 (b) 9 (c) 0

 $y = x \log x$ எனில் $y_2 =$ (a) 1 (b) $\log x$ (c) 1/x (d) x

 $y = \log (\sin x)$ எனில், $\frac{d^2y}{dx^2} =$ (a) $\tan x$ (b) $\cot x$ (c) $\sec^2 x$ (d) $-\csc^2 x$

(d) 1

 $y = x^4$ எனில், $y_3 =$ (a) $4x^3$ (b) $12x^2$ (c) 0 (d) 24x

 $y = \log x$ எனில், $y_2 =$ (a) 1/x (b) $-1/x^2$ (c) e^x (d) 1

- 41) $y^2 = x$ எனில், $\frac{dy}{dx} =$
 - (a) 1
- (b) 1/2x
- (c) 1/2y
- (d) 2y

- 42) $\frac{\mathrm{d}}{\mathrm{d}x}(x^a), \quad (a \neq 0)$ –ன் மதிப்பு
 - (a) a x^{a-1}
- (b) ax
- (c) 0
- (d) x^{a-1}

- 43) $\frac{\mathrm{d}}{\mathrm{d}x}(\mathrm{a}^\mathrm{a}), \ \ (\mathrm{a} \neq 0)$ –ன் மதிப்பு
 - (a) 0
- (b) a a^{a-1}
- (c) 1
- (d) a log a

- $44) \qquad \frac{\mathrm{d}}{\mathrm{d}x}(\log\sqrt{x}) =$
 - (a) $1/\sqrt{x}$ (b) 1/2x
- (c) 1/x
- (d) $1/2 \sqrt{x}$

தொகை நுண்கணிதம் (INTEGRAL CALCULUS)

8

நுண் கணிதத்தின் இரண்டாவது பகுதியான தொகை நுண் கணிதத்தைப் பற்றி நாம் அறிந்து கொள்ள முயல்வோம். தொகை நுண்கணிதத்தின் பங்கு அறிவியல், தொழில் நுட்பம் போன்றவற்றின் செயல்பாட்டிலும், மேலும் பொருளாதாரம், வணிகவியல் என்ற மற்ற பிரிவுகளின் செயல்பாட்டிலும் அளவிட முடியாதது ஆகும்.

8.1 தொகை நுண் கணிதத்தின் கருத்துரு

(CONCEPT OF INTEGRATION)

நாம் 7–வது பாடத்தில் f(x) என்ற சாா்புக்கு வகைக்கெழு காண்பதைப் பற்றி ஆராய்ந்தோம். பொதுவாக f'(x) என்பது x –யை சாா்ந்த மற்றொரு சாா்பாகும். இந்த பாடத்தில் வகையிடலின் "தலைகீழ் மாற்று முறை" என்ற செயலைப் பற்றி ஆராய ஆயத்தமாவோம். இந்த செயலை நாம் "தலைகீழ் வகையீடு காணல்" அல்லது "தொகை காணல்" என்போம்.

$$\frac{d}{dx}[F(x)] = f(x)$$
 ឥថាាំលំ

F(x) —யை f(x) —ன் தொகை என கூறலாம். இதைக் கீழ்க்கண்டவாறு குறியீட்டில் குறிப்பிடலாம்.

$$F(x) = \int f(x) dx$$

" \int " என்ற குறியீட்டிற்கு தொகைக் குறியீடு என்று பெயர். f(x) –யை தொகுக்கப்படும் சார்பு என்றும் dx ஆனது x –ஐ தொகையிடலின் மாறி என்பதையும் உணர்த்துகிறது. f(x) dx என்பதை தொகை உறுப்பு என்றும் கூறுவர்.

பொதுவாக $\int f(x) dx = F(x) + C$, இதில் C என்பது தொகை காணலின் மாறிலி ஆகும். எனவே $\int f(x) dx$ என்பதை வரையறுக்கப்படாத தொகைக் காணல் என கூறுவது வழக்கம்.

8.2 தொகையீட்டின் நுணுக்கங்கள்

(INTEGRATION TECHNIQUES)

திட்ட முடிவுகள்

(i)
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$$

(ii)
$$\int \frac{1}{x^n} dx = \frac{x^{-n+1}}{-n+1} + C, n \neq 1$$

(iii)
$$\int \frac{1}{x} dx = \log x + C$$

(iv)
$$\int \frac{dx}{x+a} = \log(x+a) + C$$

(v)
$$\int k.f(x) dx = k \int f(x) dx + C$$

(vi)
$$\int k. dx = kx + C$$

(vii)
$$\int e^x dx = e^x + C$$

(viii)
$$\int a^x dx = \frac{a^x}{\log_e a} + C$$

(ix)
$$\int \sin x \, dx = -\cos x + C$$

$$(x) \qquad \int \cos x \, dx \qquad = \sin x + C$$

(xi)
$$\int \sec^2 x \, dx = \tan x + C$$

(xii)
$$\int \sec x \tan x \, dx = \sec x + C$$

(xiii)
$$\int \csc^2 x \, dx = -\cot x + C$$

(xiv)
$$\int \cot x \csc x dx = -\csc x + C$$

(xv)
$$\int [f_1(x) \pm f_2(x)] dx = \int f_1(x) dx \pm \int f_2(x) dx$$

$$(xvi) \int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x + C$$

(xvii)
$$\int \frac{dx}{1+x^2} = \tan^{-1}x + C$$

(xviii)
$$\int \frac{dx}{x\sqrt{x^2 - 1}} = \sec^{-1}x + C$$

(xix)
$$\int \frac{f'(x)}{f(x)} dx = \log f(x) + C$$

(xx)
$$\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1} + C$$

மதிப்பிடுக
$$\int \left(x - \frac{1}{x}\right)^2 dx$$

தீர்வு:

$$\int \left(x - \frac{1}{x}\right)^2 dx = \int \left(x^2 - 2 + \frac{1}{x^2}\right) dx$$
$$= \int (x^2 - 2 + x^{-2}) dx$$
$$= \frac{x^3}{3} - 2x - \frac{1}{x} + C$$

எடுத்துக்காட்டு 2

மதிப்பிடுக
$$\int \frac{e^x - 2x^2 + xe^x}{x^2e^x} dx$$

தீர்வு:

$$\int \frac{e^{x} - 2x^{2} + xe^{x}}{x^{2}e^{x}} dx = \int \left(\frac{e^{x}}{x^{2}e^{x}} - \frac{2x^{2}}{x^{2}e^{x}} + \frac{xe^{x}}{x^{2}e^{x}}\right) dx$$

$$= \int \frac{1}{x^{2}} dx - \int \frac{2}{e^{x}} dx + \int \frac{1}{x} dx$$

$$= \int x^{-2} dx - 2 \int e^{-x} dx + \int \frac{1}{x} dx$$

$$= \frac{x^{-2+1}}{-2+1} + 2e^{-x} + \log x + c$$

$$= -\frac{1}{x} + 2e^{-x} + \log x + c$$

எடுத்துக்காட்டு 3

மதிப்பிடுக
$$\int \frac{x+1}{\sqrt{x+2}} dx$$

தீர்வு:

$$\int \frac{x+1}{\sqrt{x+2}} dx = \int \frac{x+2}{\sqrt{x+2}} dx - \int \frac{dx}{\sqrt{x+2}}$$

(தொகுதியில் 1– யை கூட்டி கழிக்க)

$$= \int \sqrt{x+2} \, dx - \int \frac{dx}{\sqrt{x+2}}$$
$$= \int (x+2)^{\frac{1}{2}} dx - \int (x+2)^{-\frac{1}{2}} dx$$
$$= \frac{2}{3} (x+2)^{\frac{3}{2}} - 2(x+2)^{\frac{1}{2}} + C$$

$$= 2(x+2)^{\frac{1}{2}} \left[\frac{(x+2)}{3} - 1 \right] + C$$
$$= \frac{2}{3}(x+2)^{\frac{1}{2}}(x-1) + C$$

மதிப்பிடுக
$$\int \sqrt{1+\sin 2x} \ dx$$

தீர்வு :

$$\int \sqrt{1+\sin 2x} \, dx = \int \sqrt{\sin^2 x + \cos^2 x + 2\sin x \cos x} \, dx$$
$$= \int \sqrt{(\sin x + \cos x)^2} \, dx$$
$$= \int (\sin x + \cos x) \, dx$$
$$= (\sin x - \cos x) + C$$

பயிற்சி 8.1

பின்வருவனவற்றை மதிப்பிடுக.

$$1) \quad \int (4x^3 - 1) \, dx$$

$$2) \qquad \int (5x^4 + \sqrt{x} - \frac{7}{\sqrt{x}}) \, dx$$

3)
$$\int (2x^3 + 8x + \frac{5}{x} + e^x) dx$$

4)
$$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 dx$$

5)
$$\int \left(x + \frac{1}{x}\right)^3 dx$$

6)
$$\int (5\sec x \cdot \tan x + 2\csc^2 x) \, dx$$

7)
$$\int \left(\frac{x^{7/2} + x^{5/2} + 1}{x} \right) dx$$

8)
$$\int \left(\frac{x^3 + 3x^2 + 4}{\sqrt{x}} \right) dx$$

9)
$$\int \left(3e^x + \frac{2}{x\sqrt{x^2 - 1}}\right) dx$$

$$10) \qquad \int \left(\frac{x^3 + 1}{x^4}\right) dx$$

11)
$$\int (3-2x)(2x+3) dx$$

$$12) \quad \int \sqrt{x} (1 + \sqrt{x})^2 \, dx$$

13)
$$\int \left(\frac{1}{\sqrt[3]{x}} + 3\cos x - 7\sin x \right) dx$$

14)
$$\int \frac{1-x}{\sqrt{x}} dx$$

$$15) \quad \int \frac{x+2}{\sqrt{x+3}} \, \mathrm{d}x$$

$$16) \quad \int \frac{x+3}{\sqrt{x+1}} \, \mathrm{d}x$$

17)
$$\int \frac{x^2 - 1}{x^2 + 1} \, dx$$

$$18) \quad \int \frac{x^2}{1+x^2} dx$$

$$19) \quad \int \sqrt{1-\sin 2x} \, dx$$

$$20) \quad \int \frac{\mathrm{d}x}{1 + \cos x} \, \mathrm{d}x$$

21)
$$\int (x^{-4} - e^{-x}) dx$$

$$22) \quad \int \frac{e^x - x}{xe^x} \ dx$$

23)
$$\int (x^{-1} - x^{-2} + e^x) dx$$

24)
$$\int (3x+2)^2 dx$$

25)
$$\int (x^{-2} + e^{-2x} + 7) dx$$

$$26) \quad \int \frac{1}{1-\sin x} dx$$

8.2.1. ஈடு செய்முறை (பிரதியிடல் முறை) மூலம் தொகை காணல் எடுத்துக்காட்டு 5

மதிப்பிடுக
$$\int \frac{\mathrm{d}x}{\sqrt{x} + x}$$
 .

தீர்வு :

$$\sqrt{x} + x = \sqrt{x}(1 + \sqrt{x})$$

$$(1+\sqrt{x})=t$$
 என்க

$$\frac{1}{2\sqrt{x}}dx = dt$$

$$\therefore \int \frac{dx}{\sqrt{x} + x} = \int \frac{dx}{\sqrt{x}(1 + \sqrt{x})}$$
$$= \int \frac{2}{t} dt$$

 $= 2 \log t + C = 2 \log (1 + \sqrt{x}) + C$

எடுத்துக்காட்டு 6

மதிப்பிடுக
$$\int \frac{1}{x^2} e^{-1/x} dx$$

$$\frac{-1}{x} = t$$
 என்க

$$\frac{1}{x^2} dx = dt$$

$$\therefore \int \frac{1}{x^2} e^{-1/x} dx = \int e^t dt$$

$$= e^t + C$$

$$= e^{-1/x} + C$$

மதிப்பிடுக $\int \sec x \ dx$

தீர்வு :

$$\int \sec x \, dx = \int \frac{\sec x (\sec x + \tan x)}{(\sec x + \tan x)} \, dx$$
$$= \int \frac{\sec^2 x + \sec x \tan x}{(\sec x + \tan x)} \, dx$$

 $\sec x + \tan x = t$ என்க

 $(\sec x \tan x + \sec^2 x) dx = dt$

$$\therefore \int \sec x \, dx = \int \frac{dt}{t}$$
$$= \log t + C$$

எனவே $\int \sec x \, dx = \log(\sec x + \tan x) + C$

பயிற்சி 8.2

பின்வருவனவற்றை மதிப்பிடுக.

1)
$$\int (2x-3)^{-5} dx$$

$$2) \qquad \int \frac{\mathrm{dx}}{\left(3-2\mathrm{x}\right)^2}$$

3)
$$\int \sqrt[5]{4x+3} \, dx$$

4)
$$\int e^{4x+3} dx$$

5)
$$\int \frac{x^2}{(x-1)^{3/2}} dx$$

6)
$$\int (3x^2 + 1)(x^3 + x - 4) dx$$

$$\int x \sin(x^2) dx$$

8)
$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$

9)
$$\int \frac{(\log x)^2}{x} \, dx$$

$$10) \qquad \int (2x+1)\sqrt{x^2+x} \ dx$$

$$11) \qquad \int \frac{x}{\sqrt{x^2 + 1}} \, dx$$

12)
$$\int (x+1)(x^2+2x)^3 dx$$

13)
$$\int \frac{2x+3}{x^2+3x+5} \, dx$$

$$14) \qquad \int \frac{x^2}{4+x^6} \, \mathrm{d}x$$

15)
$$\int \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \, dx$$

$$16) \qquad \int \frac{\mathrm{d}x}{x \log x}$$

17)
$$\int \frac{\sec^2(\log x)}{x} \, dx$$

18)
$$\int \frac{1}{(2x+1)^3} dx$$

$$19) \qquad \int \frac{\mathrm{d}x}{x \log x \, \log(\log x)}$$

$$20) \qquad \int \frac{\sec^2 x}{\left(1 - 2\tan x\right)^4} \, \mathrm{d}x$$

21)
$$\int \cot x \, dx$$

22)
$$\int \csc x \, dx$$

$$23) \qquad \int \frac{\mathrm{dx}}{x (1 + \log x)}$$

24)
$$\int \frac{x \tan^{-1} x^2}{1 + x^4} dx$$

$$25) \qquad \int \frac{\sqrt{3 + \log x}}{x} \, \mathrm{d}x$$

$$26) \qquad \int \frac{\mathrm{dx}}{x(x^4+1)}$$

$$27) \qquad \int \frac{\sec^2 \sqrt{x} \tan \sqrt{x}}{\sqrt{x}} \, dx$$

$$28) \qquad \int \sqrt{2x+4} \, dx$$

29)
$$\int (x^2 - 1)^4 .2x \, dx$$

30)
$$\int (2x+1)\sqrt{x^2+x+4} \, dx$$

31)
$$\int \frac{\sec^2 x}{a + b \tan x} dx$$

32)
$$\int \tan x \, dx$$

8.2.2. முக்கிய தொகையீடுகள்

(i)
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$$

(ii)
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left(\frac{x - a}{x + a} \right) + C$$

(iii)
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left(\frac{a + x}{a - x} \right) + C$$

(iv)
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \left(\frac{x}{a}\right) + C$$

(v)
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log\left(x + \sqrt{x^2 + a^2}\right) + C$$

(vi)
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log\left(x + \sqrt{x^2 - a^2}\right) + C$$

மேற்கண்ட வாய்பாடுகளை பயன்படுத்தி தொகையிடுதலின் தீர்வுகளை காணும் முறையை பின்வரும் கணக்குகளில் நாம் கற்க உள்ளோம்.

எடுத்துக்காட்டு 8

மதிப்பிடுக
$$\int \frac{dx}{\sqrt{4-x^2}}$$

தீர்வு:

$$\int \frac{dx}{\sqrt{4-x^2}} = \int \frac{dx}{\sqrt{(2)^2 - x^2}} = \sin^{-1}\left(\frac{x}{2}\right) + c$$

எடுத்துக்காட்டு 9

மதிப்பிடுக
$$\int \frac{\mathrm{d}x}{5+x^2}$$

தீர்வு:

$$\int \frac{dx}{5+x^2} = \int \frac{dx}{(\sqrt{5})^2 + x^2}$$
$$= \frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{x}{\sqrt{5}}\right) + C$$

எடுத்துக்காட்டு 10

மதிப்பிடுக
$$\int \frac{\mathrm{d}x}{x^2-7}$$

$$\int \frac{\mathrm{dx}}{x^2 - 7} = \int \frac{\mathrm{dx}}{x^2 - (\sqrt{7})^2}$$
$$= \frac{1}{2\sqrt{7}} \log \left(\frac{x - \sqrt{7}}{x + \sqrt{7}} \right) + C$$

மதிப்பிடுக
$$\int \frac{\mathrm{d}x}{\sqrt{4x^2-9}}$$

தீர்வு:

$$\int \frac{dx}{\sqrt{4x^2 - 9}} = \int \frac{dx}{\sqrt{4(x^2 - \frac{9}{4})}}$$

$$= \frac{1}{2} \int \frac{dx}{\sqrt{x^2 - (3/2)^2}}$$

$$= \frac{1}{2} \log \left(x + \sqrt{x^2 - (3/2)^2} \right) + C$$

8.2.3 $\int \frac{dx}{ax^2 + bx + c}$ என்ற அமைப்பில் உள்ள தொகையீடுகளைக் காணும் முறை

பகுதியில் உள்ள தொகுக்கப்படும் சார்பை காரணிபடுத்த முடியுமானால் அதை பகுதி பின்னங்களாகப் பிரித்து கொள்ளலாம். இல்லையெனில், பகுதியில் உள்ள தொகுக்கப்படும் சார்பை வர்க்கங்களின் கூடுதல் அல்லது வித்தியாசமாக மாற்றி அமைத்து பிறகு தொகையிட வேண்டும்.

எடுத்துக்காட்டு 12

மதிப்பிடுக
$$\int \frac{dx}{7+6x-x^2}$$

தீர்வு:

$$7 + 6x - x^{2} = 7 - (x^{2} - 6x)$$

$$= 7 - (x^{2} - 6x + 9 - 9)$$

$$= 7 + 9 - (x - 3)^{2}$$

$$= 16 - (x - 3)^{2}$$

$$\therefore \int \frac{dx}{7 + 6x - x^{2}} = \int \frac{dx}{(4)^{2} - (x - 3)^{2}}$$

$$= \frac{1}{2 \times 4} \log \left(\frac{4 + (x - 3)}{4 - (x - 3)} \right) + C$$

$$= \frac{1}{8} \log \left(\frac{x + 1}{7 - x} \right) + C$$

எடுத்துக்காட்டு 13

மதிப்பிடுக
$$\int \frac{\mathrm{d}x}{x^2 + 3x + 2}$$
.

தீர்வு :

$$x^{2} + 3x + 2 = (x + 1) (x + 2)$$

$$\frac{1}{x^{2} + 3x + 2} = \frac{A}{x + 1} + \frac{B}{x + 2} \text{ signs.}$$

$$\Rightarrow 1 = A (x + 2) + B (x + 1)$$

$$x = -1 \text{ signs.} A = 1$$

$$x = -2 \text{ signs.} B = -1$$

$$\therefore \int \frac{dx}{x^{2} + 3x + 2} = \int \frac{dx}{x + 1} - \int \frac{dx}{x + 2}$$

$$= \log(x + 1) - \log(x + 2) + C$$

$$= \log \frac{x + 1}{x + 2} + C$$

8.2.4 $\int \frac{px+q}{ax^2+bx+c} dx$ என்ற அமைப்பில் உள்ள தொகையீடுகளைக் காணும் முறை

$$ax^2+bx+c$$
 –யை காரணிபடுத்த முடியாமல் இருந்தால் $\dfrac{px+q}{ax^2+bx+c}$ –யை $px+q=A\dfrac{d}{dx}(ax^2+bx+c)+B$ எனக் கொள்க.

px + q = A(2ax + b) + B எனும் வடிவில் எழுதி, A மற்றும் B –ன் மதிப்புகளைக் காண வேண்டும். பிறகு வழக்கமான முறையில் தொகை காண வேண்டும்.

எடுத்துக்காட்டு 14

மதிப்பிடுக
$$\int \frac{2x+7}{2x^2+x+3} dx$$
.

தீர்வு:

$$2x + 7 = A \frac{d}{dx} (2x^2 + x + 3) + B$$
 என்க $2x + 7 = A (4x + 1) + B$

x –ன் குணகத்தை சமபடுத்த கிடைப்பது

$$4A = 2 ; A + B = 7$$

$$\Rightarrow A = 1/2 ; B = 13/2$$

$$\therefore \int \frac{2x+7}{2x^2+x+3} dx = \int \frac{1/2(4x+1)+13/2}{2x^2+x+3} dx$$

$$= \frac{1}{2} \int \frac{4x+1}{2x^2+x+3} dx + \frac{13}{2} \int \frac{dx}{2x^2+x+3}$$

$$\begin{split} I_1 &= \frac{1}{2} \int \frac{4x+1}{2x^2+x+3} dx \quad \text{Ginguin} \quad I_2 = \frac{13}{2} \int \frac{dx}{2x^2+x+3} \\ I_1 &= \frac{1}{2} \log (2x^2+x+3) + C_1 \\ I_2 &= \frac{13}{2} \int \frac{dx}{2x^2+x+3} = \frac{13}{4} \int \frac{dx}{(x+1/4)^2 + (3/2-1/16)} \\ &= \frac{13}{4} \int \frac{dx}{(x+1/4)^2 + (\sqrt{23}/4)^2} \\ &= \frac{13}{4} \times \frac{4}{\sqrt{23}} \tan^{-1} \left(\frac{x+1/4}{\sqrt{23}/4} \right) + C_2 \\ \therefore \int \frac{2x+7}{2x^2+x+3} dx = \frac{1}{2} \log (2x^2+x+3) + \frac{13}{\sqrt{23}} \tan^{-1} \left(\frac{x+1/4}{\sqrt{23}/4} \right) + C \end{split}$$

8.2.5 $\int \frac{\mathrm{dx}}{\sqrt{\mathrm{ax}^2 + \mathrm{bx} + \mathrm{c}}}$ என்ற அமைப்பில் உள்ள தொகையீடுகளைக் காணும் முறை

 $ax^2 + bx + c$ —யை வாக்கங்களின் கூடுதல் அல்லது வித்தியாசமாக மாற்றி அமைத்து உரிய வாய்ப்பாடுகளைப் பயன்படுத்தி தொகை காண வேண்டும்.

எடுத்துக்காட்டு 15

மதிப்பிடுக
$$\int \frac{\mathrm{d}x}{\sqrt{5+4x-x^2}}$$

தீர்வு:

$$5 + 4x - x^{2} = -(x^{2} - 4x - 5)$$

$$= -(x^{2} - 4x + 4 - 4 - 5)$$

$$= -[(x - 2)^{2} - 9]$$

$$= 9 - (x - 2)^{2}$$

$$\int \frac{dx}{\sqrt{5 + 4x - x^{2}}} = \int \frac{dx}{\sqrt{9 - (x - 2)^{2}}}$$

$$= \int \frac{dx}{\sqrt{3^{2} - (x - 2)^{2}}}$$

$$= \sin^{-1}\left(\frac{x - 2}{3}\right) + C$$

எடுத்துக்காட்டு 16

மதிப்பிடுக
$$\int \frac{dx}{\sqrt{4x^2 + 16x - 20}}$$

தீர்வு:

$$4x^{2} + 16 - 20 = 4(x^{2} + 4x - 5)$$

$$= 4[x^{2} + 4x + 4 - 4 - 5]$$

$$= 4[(x + 2)^{2} - 9]$$

$$\int \frac{dx}{\sqrt{4x^{2} + 16x - 20}} = \int \frac{dx}{\sqrt{4[(x + 2)^{2} - 9]}}$$

$$= \frac{1}{2} \int \frac{dx}{\sqrt{(x + 2)^{2} - 3^{2}}}$$

$$= \frac{1}{2} \log \left\{ (x + 2) + \sqrt{x^{2} + 4x - 5} \right\} + C$$

8.2.6 $\int \frac{\mathbf{p}\mathbf{x}+\mathbf{q}}{\sqrt{a\mathbf{x}^2+b\mathbf{x}+\mathbf{c}}} \ d\mathbf{x}$ என்ற அமைப்பில் உள்ள தொகையீடுகளை காணும் முறை

தொகுதியை, பகுதியின் வகைக்கெழு மற்றும் மாறிலியின் வாயிலாக இருக்கும்படி கீழ்க்கண்டவாறு எழுத முடியும்.

$$px + q = A \frac{d}{dx} (ax^2 + bx + c) + B$$

A மற்றும் B -ன் மதிப்புகளைக் கண்டுபிடித்து பிறகு வழக்கமான முறையில் தொகை காண வேண்டும்.

எடுத்துக்காட்டு 17

மதிப்பிடுக
$$\int \frac{2x+1}{\sqrt{x^2+2x-1}} dx$$

தீர்வு:

$$2x + 1 = A \frac{d}{dx} (x^2 + 2x - 1) + B$$
 என்க.
 $2x + 1 = A (2x + 2) + B$

உறுப்புகளின் குணகத்தைச் சமப்படுத்த

$$2A = 2 ; 2A + B = 1$$

$$\Rightarrow A = 1 ; B = -1$$

$$\therefore \int \frac{2x+1}{\sqrt{x^2 + 2x - 1}} dx = \int \frac{1 \cdot (2x+2) - 1}{\sqrt{x^2 + 2x - 1}} dx$$

$$= \int \frac{(2x+2)}{\sqrt{x^2 + 2x - 1}} dx - \int \frac{dx}{\sqrt{x^2 + 2x - 1}}$$

$$I_1 = \int \frac{(2x+2)}{\sqrt{x^2 + 2x - 1}} dx$$
 என்க

$$\begin{array}{rcl} x^2 + 2x - 1 &= t^2 \text{ signs.} \\ (2x + 2) \, dx &= 2t \, dt \\ & \therefore I_1 &= \int \frac{2t}{\sqrt{t^2}} \, dt = 2 \int dt \\ &= 2t \\ &= 2\sqrt{x^2 + 2x - 1} + C_1 \\ I_2 &= -\int \frac{dx}{\sqrt{x^2 + 2x - 1}} \, & \text{ signs.} \\ &= -\int \frac{dx}{\sqrt{(x+1)^2 - (\sqrt{2})^2}} = -\log \left((x+1) + \sqrt{x^2 + 2x - 1} \right) + C_2 \\ & \therefore \int \frac{2x + 1}{\sqrt{x^2 + 2x - 1}} \, dx = 2\sqrt{x^2 + 2x - 1} - \log \left((x+1) + \sqrt{x^2 + 2x - 1} \right) + C \end{array}$$

பயிற்சி 8.3

கீழ்க்கண்டவைகளை மதிப்பீடு செய்க

$$1) \int \frac{1}{3+x^2} dx$$

$$2) \int \frac{\mathrm{dx}}{2x^2 + 1}$$

3)
$$\int \frac{dx}{x^2 - 4}$$

4)
$$\int \frac{dx}{5-x^2}$$

5)
$$\int \frac{dx}{\sqrt{9x^2-1}}$$

$$6) \quad \int \frac{\mathrm{dx}}{\sqrt{25 + 36x^2}}$$

7)
$$\int \frac{dx}{\sqrt{9-4x^2}}$$

8)
$$\int \frac{dx}{x^2 + 2x + 3}$$

9)
$$\int \frac{\mathrm{dx}}{9x^2 + 6x + 5}$$

$$10) \quad \int \frac{\mathrm{dx}}{\sqrt{x^2 + 4x + 2}}$$

$$11) \quad \int \frac{\mathrm{dx}}{\sqrt{3-x+x^2}}$$

12)
$$\int \frac{x+1}{x^2+4x-5} dx$$

13)
$$\int \frac{7x - 6}{x^2 - 3x + 2} dx$$

14)
$$\int \frac{x+2}{x^2-4x+3} \, dx$$

15)
$$\int \frac{4x+1}{\sqrt{2x^2+x-3}} dx$$

16)
$$\int \frac{2x+4}{\sqrt{x^2+2x-1}} dx$$

8.2.7 பகுதி தொகையீடு

 ${f u}, {f v}$ என்பன ${f x}$ —ல் உள்ள வகைக்கெழு காணத்தக்க சாா்புகள் எனில் ${f u} \ {f dv} = {f u} {f v} - {f f} {f v} \ {f du} \ {f r}$ என்பது பகுதி தொகையீட்டு வாய்பாடாகும்.

உட்கரு<u>த்து</u> :

- (i) தொகுக்கப்படும் சார்பு பெருக்கல் பலனாக இருந்தால் அதனை சுருக்கி, கூட்டல் மேலும் கழித்தல் விதிகளை பயன்படுத்தி தொகையைக் காணலாம். இல்லையெனில் நாம் பகுதி தொகையீடு முறையைப் பயன்படுத்தி தொகையீடு செய்தல் வேண்டும்.
- (ii) பகுதி தொகையீடு முறையை பயன்படுத்தும் பொழுது நாம் 'ILATE' எழுத்துகளின் வரிசைப்படி u என்ற சார்பை நிர்ணயம் செய்ய வேண்டும்.

இங்கு $I \rightarrow \mathsf{ghf}$ கோணமிதியின் நேர்மாறு சார்பு

 $ext{L}
ightarrow ext{ மடக்கைச் சார்பு}$

 $A \rightarrow \mathbb{Q}$ шற் சார்பு

T
ightarrow gliftenset glifte

 $\mathrm{E} \, o \,$ அடுக்குத் தொடர் சார்பு

எடுத்துக்காட்டு 18

மதிப்பிடுக
$$\int x \cdot e^x dx$$

தீர்வு :

Let
$$u = x$$
, $dv = e^x dx$ என்க $du = dx$, $v = e^x$
$$\int x \cdot e^x dx = x e^x - \int e^x dx$$
$$= x e^x - e^x + C$$
$$= e^x (x - 1) + C$$

எடுத்துக்காட்டு 19

மதிப்பிடுக
$$\int \frac{\log x}{(1+x)^2} dx$$

$$u = \log x$$
 ; $dv = \frac{dx}{(1+x^2)}$ என்க $du = \frac{1}{x}$; $v = -\frac{1}{(1+x)}$

$$\begin{split} \int \frac{\log x}{(1+x^2)} dx &= -(\log x) \left(\frac{1}{1+x}\right) - \int -\frac{1}{1+x} \cdot \frac{1}{x} \ dx \\ &= -\left(\frac{1}{1+x}\right) (\log x) \ + \ \int \frac{1}{x(1+x)} \ dx \\ &= -\left(\frac{1}{1+x}\right) (\log x) \ + \ \int \left(\frac{1}{x} - \frac{1}{1+x}\right) \ dx \\ &\qquad \qquad \text{(பகுதி பின்னங்களாக எழுத)} \\ &= -\frac{1}{(1+x)} (\log x) + \log x - \log(1+x) + C \\ &= -\frac{1}{(1+x)} (\log x) + \log \frac{x}{1+x} + C \end{split}$$

மதிப்பிடுக $\int x \cdot \sin 2x \ dx$

தீர்வு:

$$u = x$$
, $\sin 2x dx = dv$ என்க

$$du = dx, \qquad \frac{-\cos 2x}{2} = v$$

$$\int x \cdot \sin 2x \quad dx = \frac{-x \cos 2x}{2} + \int \frac{\cos 2x}{2} dx$$

$$= \frac{-x \cos 2x}{2} + \frac{1}{2} \cdot \frac{\sin 2x}{2}$$

$$= \frac{-x \cos 2x}{2} + \frac{\sin 2x}{4} + C$$

எடுத்துக்காட்டு 21

மதிப்பிடுக $\int x^n \log x \ dx, \, n \neq -1$.

$$u = \log x$$
, $dv = x^n dx$ என்க

$$du = \frac{1}{x} dx, \quad v = \frac{x^{n+1}}{n+1}$$

$$\int x^n \log x dx = \frac{x^{n+1}}{n+1} \log x - \int \frac{x^{n+1}}{n+1} \frac{1}{x} dx$$

$$= \frac{x^{n+1}}{n+1} \log x - \frac{1}{n+1} \int x^n dx$$

$$= \frac{x^{n+1}}{n+1} \log x - \frac{1}{n+1} \frac{x^{n+1}}{n+1} + C$$

$$= \frac{x^{n+1}}{n+1} \left(\log x - \frac{1}{n+1} \right) + C$$

பயிற்சி 8.4

கீழ்க்கண்டவைகளை மதிப்பீடு செய்க

1)
$$\int x e^{-x} dx$$

2)
$$\int x \log x \, dx$$

3)
$$\int \log x \, dx$$

4)
$$\int x a^x dx$$

5)
$$\int (\log x)^2 dx$$
 6) $\int \frac{\log x}{x^2} dx$

6)
$$\int \frac{\log x}{x^2} dx$$

7)
$$\int x \cos 2x \ dx$$

8)
$$\int x \sin 3x \, dx$$

9)
$$\int \cos^{-1} x \, dx$$

10)
$$\int \tan^{-1} x \, dx$$

11)
$$\int x \sec x \tan x dx$$

12)
$$\int x^2 e^x dx$$

8.2.8 திட்ட தொகையீடுகள்

(i)
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + C$$

(ii)
$$\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log(x + \sqrt{x^2 + a^2}) + C$$

(iii)
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + C$$

எடுத்துக்காட்டு 22

மதிப்பிடுக
$$\int \sqrt{49-x^2} \ dx$$

தீர்வு:

$$\int \sqrt{49 - x^2} \, dx = \int \sqrt{(7)^2 - x^2} \, dx$$
$$= \frac{x}{2} \sqrt{49 - x^2} + \frac{49}{2} \sin^{-1} \left(\frac{x}{7}\right) + C$$

எடுத்துக்காட்டு 23

மதிப்பிடுக
$$\int \sqrt{16x^2+9} \ dx$$

$$\int \sqrt{16x^2 + 9} \, dx = \int \sqrt{16\left(x^2 + \frac{9}{16}\right)} \, dx$$
$$= 4\int \sqrt{x^2 + \left(\frac{3}{4}\right)^2} \, dx$$
242

$$= 4 \left\{ \frac{x}{2} \sqrt{x^2 + \left(\frac{3}{4}\right)^2} + \frac{(\frac{3}{4})^2}{2} \log\left(x + \sqrt{x^2 + \left(\frac{3}{4}\right)^2}\right) \right\} + C$$

$$= \frac{x}{2} \sqrt{16x^2 + 9} + \frac{9}{8} \log\left(4x + \sqrt{16x^2 + 9}\right) + C$$

மதிப்பிடுக $\int \sqrt{x^2-16} \ dx$.

தீர்வு:

$$\int \sqrt{x^2 - 16} \, dx = \int \sqrt{x^2 - (4)^2} \, dx$$

$$= \frac{x}{2} \sqrt{x^2 - 16} - \frac{16}{2} \log \left(x + \sqrt{x^2 - 16} \right) + C$$

$$= \frac{x}{2} \sqrt{x^2 - 16} - 8 \log \left(x + \sqrt{x^2 - 16} \right) + C$$

பயிற்சி 8.5

கீழ்க்கண்டவைகளை மதிப்பீடு செய்க

1)
$$\int \sqrt{x^2 - 36} \, dx$$
 2) $\int \sqrt{16 - x^2} \, dx$ 3) $\int \sqrt{25 + x^2} \, dx$

4)
$$\int \sqrt{x^2 - 25} \ dx$$
 5) $\int \sqrt{4x^2 - 5} \ dx$ 6) $\int \sqrt{9x^2 - 16} \ dx$

8.3 திட்டமான தொகையீடு

(DEFINITE INTEGRAL)

 $\mathbf{x}=\mathbf{a}$ மேலும் $\mathbf{x}=\mathbf{b}$ எல்லையில் $\mathbf{f}(\mathbf{x})$ என்ற தொடர்ச்சி சார்பின் திட்டமான தொகையீடானது,

 $\int_a^b f(x) dx = [F(x)]_a^b = F(b) - F(a)$ இதில் a, b இரண்டும் முறையே கீழ் எல்லை, மேல் எல்லை எனப்படும்.

திட்டமான தொகையீட்டைக் காண நாம் முதலில் கொடுக்கப்பட்ட சார்புக்கு வழக்கம் போல் தொகை காண வேண்டும். பிறகு x—க்கு மேல் எல்லையைப் பிரதியிட்டு கிடைத்த மதிப்பிற்கும் கீழ் எல்லையைப் பிரதியிட்டு கிடைத்த மதிப்பிற்கும் இடையேயுள்ள வித்தியாசத்தைக் காணல் வேண்டும்.

எடுத்துக்காட்டு 25
$$_{2}$$
 மதிப்பிடுக $\int_{1}^{2} (4x^{3} + 2x + 1) \; \mathrm{d}x$

தீர்வு :

$$\int_{1}^{2} (4x^{3} + 2x + 1) dx = \left[4\frac{x^{4}}{4} + 2\frac{x^{2}}{2} + x \right]_{1}^{2}$$

$$= (2^{4} + 2^{2} + 2) - (1 + 1 + 1)$$

$$= (16 + 4 + 2) - 3$$

$$= 19$$

எடுத்துக்காட்டு
$$\mathbf{26}$$
 மதிப்பிடுக $\int\limits_2^3 \frac{2x}{1+x^2} \; \mathrm{d}x$

தீர்வு :

$$\int_{2}^{3} \frac{2x}{1+x^{2}} dx = \int_{5}^{10} \frac{dt}{t}$$
 $1+x^{2}=t$ តាស់ $t=5$
 $2x dx = dt$
 $x = 2$ តាសាស់ $t = 5$
 $x = 3$ តាសាស់ $t = 10$
 $= [\log t]_{5}^{10} = \log 10 - \log 5$
 $= \log_{e} \frac{10}{5}$
 $= \log_{e} 2$

எடுத்துக்காட்டு 27
$$\sqrt{e}$$
 மதிப்பிடுக $\int\limits_{1}^{\sqrt{e}}x\log x\ dx$ தீர்வு :

$$\int x \log x \, dx$$

$$u = \log x$$
 $dv = x dx$ என்க

$$du = \frac{1}{x} dx \qquad v = \frac{x^2}{2}$$

$$\int x \log x \, dx = \frac{x^2}{2} \log x - \int \frac{x^2}{2} \frac{1}{x} dx$$

$$= \frac{x^2}{2} \log x - \frac{1}{2} \int x \, dx$$

$$= \frac{x^2}{2} \log x - \frac{1}{2} \frac{x^2}{2}$$

$$\int_{1}^{e} x \log x \, dx = \left[\frac{x^2}{2} \log x - \frac{x^2}{4} \right]_{1}^{\sqrt{e}}$$

$$= \left\{ \frac{e}{2} \log \sqrt{e} - \frac{e}{4} \right\} - \left\{ 0 - \frac{1}{4} \right\}$$

$$= \frac{e}{2} \times \frac{1}{2} - \frac{e}{4} + \frac{1}{4}$$

மதிப்பிடுக
$$\int\limits_0^{\frac{\pi}{2}}\sin^2 x \ dx$$
.

தீர்வு:

$$\int \sin^2 x \, dx = \int \left(\frac{1 - \cos 2x}{2}\right) \, dx$$
$$= \frac{x}{2} - \frac{\sin 2x}{4}$$

$$\int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx = \left[\frac{x}{2} - \frac{\sin 2x}{4}\right]_{0}^{\frac{\pi}{2}}$$
$$= \frac{\pi}{4}$$

எடுத்துக்காட்டு 29

மதிப்பிடுக
$$\int\limits_0^\infty x e^{-x^2} \ dx$$
.

$$\int xe^{-x^2} dx$$
 என்பதில் $x^2 = t$ என்க

$$2x dx = dt$$

$$x = 0$$
 எனில் $t = 0$
$$x = \infty ; \quad t = \infty$$

$$\int_0^\infty x e^{-x^2} dx = \int_0^\infty \frac{1}{2} e^{-t} dt$$

$$= \frac{1}{2} [-e^{-t}]_0^\infty$$

$$= \frac{1}{2} [0+1]$$

$$= \frac{1}{2} [0+1]$$

பயிற்சி 8.6

கீழ்க்கண்டவைகளை மதிப்பீடு செய்க

1)
$$\int_{1}^{2} (x^2 + x + 1) dx$$
 2) $\int_{0}^{2} \frac{5}{2 + x} dx$ 3) $\int_{0}^{1} \frac{dx}{1 + x^2}$

4)
$$\int_{0}^{1} 2^{x} dx$$
 5) $\int_{0}^{3} e^{\frac{x}{3}} dx$ 6) $\int_{0}^{1} xe^{x^{2}} dx$

7)
$$\int_{0}^{1} \frac{e^{x}}{1 + e^{2x}} dx$$
 8) $\int_{0}^{\frac{\pi}{4}} \tan^{2} x dx$ 9) $\int_{0}^{1} \frac{x}{1 + x^{4}} dx$

10)
$$\int_{0}^{1} \frac{1-x^2}{1+x^2} dx$$
 11) $\int_{1}^{2} \log x dx$ 12) $\int_{0}^{4} \sqrt{2x+4} dx$

13)
$$\int_{0}^{\frac{\pi}{2}} \cos^{2} x \, dx$$
 14)
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{(1+\sin x)(2+\sin x)} \, dx$$
 15)
$$\int_{0}^{\frac{\pi}{2}} \sqrt{1+\cos 2x} \, dx$$

16)
$$\int_{1}^{e^{2}} \frac{dx}{x(1+\log x)^{2}}$$
 17)
$$\int_{0}^{3} \frac{dx}{\sqrt{9-x^{2}}}$$
 18)
$$\int_{0}^{1} x^{3} \cdot e^{x^{4}} dx$$

8.3.1 வரையறுத்தத் தொகையைக் கூட்டலின் எல்லையாகக் காணல்

தேற்றம் :

மூடிய இடைவெளி $[a,\ b\]$ யானது n சம பகுதிகளாகப் பிரிக்கப்பட்டு, அதன் ஒவ்வொன்றின் அகலம் h எனக் கொள்வோம். $\therefore nh = b - a$ பின்னர்

$$\int_{a}^{b} f(x) dx = Lt \underset{h \to 0}{\text{Lt}} h[f(a+h) + f(a+2h) + \dots + f(a+nh)]$$

a + h , a + 2h , a + 3h, . . . a + nh என்பன [a , b] எனும் இடைவெளியை n சம பகுதிகளாகப் பிரிக்கும் புள்ளிகள் ஆகும். ஒவ்வொரு பகுதியின் அகலம் h ஆகும். [நிரூபணம் தேவையில்லை].

எடுத்துக்காட்டு 30

வரையறுத்தத் தொகையை கூட்டலின் எல்லையாகக் கொண்டு $\int\limits_1^2 {{
m X}^2} {
m d}{
m x}$ மதிப்பைக் காண்க.

தீர்வு:

$$\int_{a}^{b} f(x) dx = \underset{h \to 0}{\text{Lt}} h[f(a+h) + f(a+2h) + \dots + f(a+nh)]$$

$$\int_{a}^{b} x^{2} dx = \underset{h \to 0}{\text{Lt}} h\{[(a+h)^{2} + (a+2h)^{2} + \dots + (a+nh)^{2}]\}$$

$$= \underset{h \to 0}{\text{Lt}} h\left\{(a^{2} + 2ah + h^{2}) + (a^{2} + 4ah + 4h^{2}) + \dots + (a^{2} + 2ah + n^{2}h^{2})\right\}$$

$$= \underset{h \to 0}{\text{Lt}} h\left\{na^{2} + 2ah(1 + 2 + 3 + \dots + n) + h^{2}(1^{2} + 2^{2} + 3^{2} + \dots + n^{2})\right\}$$

$$= \underset{h \to 0}{\text{Lt}} h\left\{na^{2} + 2ah\frac{n(n+1)}{2} + \frac{h^{2}}{6}n(n+1)(2n+1)\right\}$$

a = 1; h = 1 என்பதால்,

$$\int_{1}^{2} x^{2} dx = \operatorname{Lt}_{n \to \infty} \frac{1}{n} \left(n + \frac{1}{n} \cdot n(n+1) + \frac{n(n+1)(2n+1)}{6n^{2}} \right)$$

$$= \operatorname{Lt}_{n \to \infty} \left(1 + \frac{n+1}{n} + \frac{n(n+1)(2n+1)}{6n^{3}} \right)$$

$$= \operatorname{Lt}_{\frac{1}{n} \to 0} \left(1 + 1 + \frac{1}{n} + \frac{n^{3} \left(1 + \frac{1}{n} \right) \left(2 + \frac{1}{n} \right)}{6n^{3}} \right)$$

$$= \operatorname{Lt}_{\frac{1}{n} \to 0} \left(2 + \frac{1}{n} + \frac{\left(1 + \frac{1}{n} \right) \left(2 + \frac{1}{n} \right)}{6} \right)$$

$$= 2 + \frac{2}{6} = \frac{7}{3}$$

பயிற்சி 8.7

வரையறுத்தத் தொகையை கூட்டலின் எல்லையாகக் கொண்டு கீழ்க்கண்ட தொகைகளின் மதிப்பு காண்.

1)
$$\int_{1}^{2} x \ dx$$

$$\int_{0}^{1} e^{x} dx$$

3)
$$\int_{1}^{2} x^{3} dx$$

1)
$$\int_{1}^{2} x \, dx$$
 2) $\int_{0}^{1} e^{x} \, dx$ 3) $\int_{1}^{2} x^{3} \, dx$ 4) $\int_{0}^{1} x^{2} \, dx$

பயிற்சி 8.8

ஏற்புடைய விடையைத் தெரிவு செய்க.

 $c = 5x^4$ ன் தலைகீழ் வகைக்கெழுவானது 1)

(a)
$$x^4$$

(b)
$$x^5$$

(c)
$$4x^5 + c$$

(d)
$$5x^4$$

$$\int 3 \, dx =$$

(b)
$$x + C$$

(d)
$$3x + c$$

$$\int \frac{10}{x} dx =$$

(a)
$$\frac{1}{x}$$

(a)
$$\frac{1}{x}$$
 (b) $-\frac{1}{x^2}$

(c)
$$10 \log x + C$$
 (d) $\log x + C$

(d)
$$\log x + C$$

$$\int e^{-x} dx =$$

(a)
$$-e^{-x} + C$$
 (b) $e^{-x} + C$ (c) $e^{x} + C$

(b)
$$e^{-x} + C$$

(c)
$$e^x + C$$

$$(d) - e^x + C$$

$$\int 21\sqrt{x} dx =$$

(a)
$$21x\sqrt{x}$$

(a)
$$21x\sqrt{x}$$
 (b) $14x\sqrt{x} + C$ (c) $x\sqrt{x} + C$ (d) $\sqrt{x} + C$

(c)
$$x\sqrt{x} + C$$

(d)
$$\sqrt{x} + C$$

$$\int e^{5x} dx =$$

(a)
$$5x + C$$

(b)
$$e^{5x} + C$$

(a)
$$5x + C$$
 (b) $e^{5x} + C$ (c) $\frac{1}{5}e^{5x} + C$ (d) $\frac{1}{5}e^{5x}$

(d)
$$\frac{1}{5} e^{5x}$$

$$\int \sin ax \, dx =$$

(a)
$$\frac{-1}{a}\cos ax + C$$
 (b) $\frac{1}{a}\cos ax + C$ (c) $\sin ax + C$

(b)
$$\frac{1}{a} \cos ax + C$$

(c)
$$\sin ax + C$$

(d)
$$\cos ax + C$$

8)
$$\int x^{-2} dx =$$

(a)
$$\frac{1}{x}$$
 + C

$$(b) - \frac{1}{x} + C$$

$$(c)\frac{1}{x^2} + C$$

(a)
$$\frac{1}{x} + C$$
 (b) $-\frac{1}{x} + C$ (c) $\frac{1}{x^2} + C$ (d) $-\frac{1}{x^2} + C$

9)
$$\int \frac{1}{2x} dx =$$

(a)
$$\log \sqrt{x} + C$$

(b)
$$\frac{1}{2} \log x$$

(c)
$$\log x + C$$

(a)
$$\log \sqrt{x} + C$$
 (b) $\frac{1}{2} \log x$ (c) $\log x + C$ (d) $\frac{1}{\sqrt{2}} \log x + C$

$$10) \qquad \int e^{x+4} \, dx =$$

(a)
$$e^x + C$$

(b)
$$e^{x+4} + 0$$

(b)
$$e^{x+4} + C$$
 (c) $\frac{e^{x+4}}{4} + C$ (d) $e^{4x} + C$

$$(d) e^{4x} + C$$

$$11) \qquad \int 2 \sec^2 x \, dx =$$

(a)
$$2 \tan x + C$$

(b)
$$\sec^2 x \tan x + C$$
 (c) $\tan^2 x + C$

(c)
$$tan^2x + C$$

(d)
$$\tan x + C$$

12)
$$\int 2^{x} \cdot 3^{-x} dx =$$

(a)
$$\frac{2}{3}\log x + C$$

(a)
$$\frac{2}{3} \log x + C$$
 (b) $\frac{(\frac{2}{3})^x}{\log_e \frac{2}{3}} + C$ (c) $\frac{(\frac{2}{3})x}{\log_e \frac{2}{3}}$

(c)
$$\frac{(\frac{2}{3})x}{\log_e \frac{2}{3}}$$

(d)
$$\log\left(\frac{2}{3}\right)^x$$

$$13) \qquad \int \frac{2}{x+1} \, dx =$$

(a)
$$2 \log (x + 1) + C$$
 (b) $2 \log (x + 1) + C$

(b)
$$2 \log (x + 1) + C$$

(c)
$$4 \log (x + 1) + C$$
 (d) $\log (x + 1) + C$

(d)
$$\log (x + 1) + C$$

14)
$$\int (x+1)^8 \, dx =$$

(a)
$$\frac{(x+1)^9}{9} + C$$

(a)
$$\frac{(x+1)^9}{9} + C$$
 (b) $\frac{(x+1)^7}{7} + C$ (c) $(x+1)^8 + C$ (d) $(x+1)^4 + C$

(c)
$$(x+1)^8 + C$$

(d)
$$(x+1)^4 + C$$

15)
$$\int \frac{4x^3}{x^4 + 1} \, dx =$$

(a)
$$\log (x^4 + 1)$$

(b)
$$4 \log (x^4 + 1) + C$$
 (c) $\log (x^4 + 1) + C$

(c)
$$\log (x^4 + 1) + C$$

(d) இதில் ஏதுமில்லை

16)
$$\int \csc x \, dx =$$

(a)
$$\log (\tan x/2) + C$$
 (b) $\log \csc x + C$

(b)
$$\log \csc x + C$$

(c)
$$\log \tan x + C$$

(d) $\log(\csc x + \tan x)$

17)
$$\int \frac{x^4}{1+x^5} \, dx =$$

(a)
$$\log (1 + x^5)$$

(b)
$$\log (1 + x^4) + C$$

(c)
$$\log (1 + x^5) + C$$

(d)
$$\frac{1}{5} \log (1 + x^5) + C$$

$$18) \qquad \int \frac{\mathrm{dx}}{\mathrm{x}^2 + \mathrm{a}^2} =$$

(a)
$$\tan^{-1} \frac{x}{a} + C$$

(b)
$$\frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

(c)
$$\tan^{-1} \frac{a}{x} + C$$

(a)
$$\tan^{-1} \frac{x}{a} + C$$
 (b) $\frac{1}{a} \tan^{-1} \frac{x}{a} + C$ (c) $\tan^{-1} \frac{a}{x} + C$ (d) $\frac{1}{a} \sin^{-1} \frac{x}{a} + C$

19)
$$\int e^{x} [f(x) + f'(x)] dx =$$

(a)
$$e^x f(x) + C$$

(a)
$$e^x f(x) + C$$
 (b) $e^x f'(x) + C$ (c) $e^x + C$

(c)
$$e^{x} + 0$$

(d)
$$e^{-x} + C$$

$$\int e^{x} (\sin x + \cos x) dx =$$

(a)
$$e^x \cos x + C$$

(b)
$$e^x \sin x \cos x + C$$

(c)
$$e^x + C \cos x$$

(d)
$$e^x \sin x + C$$

$$21) \qquad \int \frac{\mathrm{d}x}{1+4x^2} =$$

(a)
$$\frac{1}{2} \tan^{-1} 2x + C$$

(b)
$$\frac{1}{2} \tan^{-1} x + C$$

(a)
$$\frac{1}{2} \tan^{-1} 2x + C$$
 (b) $\frac{1}{2} \tan^{-1} x + C$ (c) $\frac{1}{2} \tan^{-1} (x + C)$ (d) $\tan^{-1} (2x) + C$

(d)
$$tan^{-1}(2x) + C$$

22)
$$\int (2x+3)^3 \, dx =$$

(a)
$$\frac{(2x+3)^4}{4} + C$$
 (b) $\frac{(2x+3)^3}{8} + C$ (c) $\frac{(2x+3)^4}{8} + C$ (d) $\frac{(2x+3)^2}{16} + C$

(b)
$$\frac{(2x+3)^3}{8} + C$$

(c)
$$\frac{(2x+3)^4}{8} + C$$

(d)
$$\frac{(2x+3)^2}{16}$$
 + C

$$23) \qquad \int_{1}^{2} \frac{1}{x} dx - \dot{\omega} \text{ மதிப்பு}$$

24)
$$\int_{1}^{1} x^{2} dx - \dot{\omega} \text{ மதிப்பு}$$
(a) $\frac{1}{3}$ (b) $-\frac{1}{3}$

$$\frac{^{-1}}{(a)} \frac{1}{3}$$

(b)
$$-\frac{1}{3}$$

(c)
$$-\frac{2}{3}$$

(d)
$$\frac{2}{3}$$

$$\int_{-1}^{0} x^4 dx$$
 —ன் மதிப்பு

$$(b) -1$$

(c)
$$\frac{1}{5}$$

$$(d) - \frac{1}{5}$$

$$\int_{0}^{1} (x^2 + 1) dx -$$
ன் மதிப்பு

(a)
$$\frac{4}{3}$$

(b)
$$\frac{2}{3}$$

(c)
$$\frac{1}{3}$$

$$(d) - \frac{4}{3}$$

27)
$$\int_{0}^{1} \frac{x}{1+x^2} dx$$
 –ன் மதிப்பு

(c)
$$\log \frac{1}{2}$$

(d)
$$\log \sqrt{2}$$

$$\int_{1}^{4} x \sqrt{x} dx - \vec{\omega}$$
 மதிப்பு

(a)
$$\frac{62}{5}$$
 (b) $\frac{32}{5}$

(b)
$$\frac{32}{5}$$

(c)
$$\frac{15}{4}$$

(d)
$$\frac{31}{5}$$

$$\int_{0}^{\frac{\pi}{3}} \tan x \, dx - \vec{\omega} \, \text{மதிப்பு}$$

(a)
$$\log \frac{1}{2}$$
 (b) $\log 2$

(d)
$$\log \sqrt{2}$$

- $\int_{0}^{\pi} \sin x \, dx \dot{\omega}$ மதிப்பு
 - (a) 1
- (b) 0
- (c) 2
- (d) 2

- $\frac{\pi}{2}$ 31) $\int_{0}^{\pi} \cos x \, dx$ –ன் மதிப்பு
 - (a) 0

(b) 1

- (c) 1
- (d) 2

- 32) $\int_{0}^{0} \frac{e^{x}}{1+e^{x}} dx \dot{\omega}$ மதிப்பு
 - (a) 0
- (b) 1
- (c) $\frac{1}{2} \log 2$ (d) $\log 2$

- $\int_{0}^{\infty} e^{-x} dx$ –ன் மதிப்பு
 - (a) 1
- (b) 0
- $(c) \infty$
- (d) 1

- 34) $\int_{0}^{4} \frac{dx}{\sqrt{16-x^2}}$ –ன் மதிப்பு
 - (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{3}$
- (c) $\frac{\pi}{6}$
- (d) $\frac{\pi}{2}$

- 35) $\int_{-1}^{1} \frac{dx}{1+x^2}$ –ன் மதிப்பு
- (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $-\frac{\pi}{4}$
- (d) π

சரக்கு முதல்கள், பங்குகள் மற்றும் கடன் பத்திரங்கள் (STOCKS, SHARES AND DEBENTURES)

9

ஒரு வா்த்தகத்திற்கு தேவைப்படும் மூலதனம் மிக அதிகமாக இருப்பின் அம் மூலதனத்தைத் திரட்டும் பொருட்டு ஒரு கூட்டுப் பங்கு நிறுவனம் (Joint Stock Company) துவங்கப்படும். அதற்கானப் பூா்வாங்க ஆயத்த வேலைகளைச் செய்பவா் அந்நிறுவனத்தின் கா்த்தா (Promoters) என்றழைக்கப்படுவாா். இவ்விதம் துவக்கப்படும் நிறுவனமானது சரக்கு முதல்கள், பங்குகள் மற்றும் கடன் பத்திரங்கள் வெளியிடுதல் மூலமாகத் தனக்குத் தேவையான நிதியைத் திரட்டும். பத்திரங்களில் குறிப்பிடப்படும் மதிப்பு அவற்றின் முக மதிப்பு (Face Value) (அல்லது) ஒப்பு மதிப்பு (Nominal Value) (அல்லது) சம மதிப்பு (Par Value) எனப்படும்.

9.1 அடிப்படைக் கொள்கைகள்

(BASIC CONCEPTS)

9.1.1 பங்குகள் (Shares)

நிறுவனத்திற்குத் தேவைப்படும் மொத்த மூலதனம் பல சிறிய அலகுகளாகப் பிரிக்கப்படும். அவை **பங்குகள்** எனப்படும். எடுத்துக்காட்டாக, ஒரு நிறுவனத்திற்குத் தேவைப்படும் மொத்த மூலதனம் ரூ.5,00,000 என்றும் அது ஒவ்வொன்றும் ரூ.10 மதிப்புள்ள அலகுகளாகப் பிரிக்கப்பட்டிருப்பதாகவும் கொண்டால் ஒவ்வொரு அலகும் ரூ.10 முக மதிப்புள்ள பங்கு ஆகும். மூலதனத்தின் அளவையும், அது எத்தனை அலகுகளாகப் பிரிக்கப்படுகிறது என்பதையும் பொருத்து பங்குகளின் முக மதிப்பு அமையும். பங்குகளை வாங்கியவர்கள் பங்குதாரர்கள் (Share holders) எனப்படுவர். பங்குகளை முழு எண் மடங்குகளில் தான் வாங்கவோ விற்கவோ முடியும்.

9.1.2 சரக்கு முகல்கள் (Stocks)

ஒரு நிறுவனத்தின் பங்குகள் முழுமையாகவோ பகுதியாகவோ செலுத்தப்பட்டிருக்கலாம். நிறுவனமானது முழுமையாக பணம் செலுத்தப்பட்ட பங்குகளைத் தொகுத்து ஒரு **சரக்கு** முதலாக (Stock) மாற்றலாம். சரக்கு முதல் என்பது தொகுக்கப்பட்ட மூலதன பங்கு என்பதால் அவற்றை பின்ன அளவிலும் வாங்க விற்க முடியும்.

9.1.3. கடன் பத்திரங்கள் (Debentures)

இவை ஒரு நிறுவனம் பொது மக்களிடமிருந்து பெறும் கடன் ஆகும். நிறுவனம் பெறும் கடனுக்கு குறிப்பிட்ட வட்டி சதவீதத்தில் வட்டி குறிப்பிட்ட கால இடைவெளிகளில் கொடுக்கப்படும். மேலும் குறிப்பிட்ட கால முடிவில் கடன் திருப்பிக் கொடுக்கப்படும்.

9.1.4 பங்கு வீதம் (Dividend)

பங்குதாரருக்கு இடையே பிரித்துக் கொடுக்கப்படும் நிறுவனத்தின் இலாபம் **பங்கு வீதம்** எனப்படும். பங்குதாரா் ஒவ்வொருவரும் அவா் வாங்கியுள்ள பங்குகளின் முகமதிப்பின் மொத்த மதிப்பிற்கேற்ப விகிதாச் சார அடிப்படையில் பங்கு வீதம் பெறுவா். பங்கு வீதம் பொதுவாக சதவீதத்தில் குறிக்கப்படும்.

9.1.5 பங்குச் சந்தை (Stock Exchange)

சரக்கு முதல்கள், பங்குகள், கடன் பத்திரங்கள் இவற்றின் வர்த்தக பரிவர்த்தனைகள் பங்குச் சந்தையில் நடைபெறும். அங்கு அவை எந்த விலைக்குக் கிடைக்கிறதோ அந்த விலையை அவற்றின் சந்தை விலை என்கிறோம். சந்தை விலையானது முக மதிப்பிற்கு சமமாக, அதிகமாக, குறைவாக இருந்தால் முறையே **சமவிலை** (at par) **அதிக விலை** (at premium) **கழிவு விலை** (at discount) என்றழைக்கப்படும்.

9.1.6 வருமான வீதம் (Yield or Return)

ஒருவா் ரூ.100ஐ பங்குச் சந்தையில் முதலீடு செய்து வாங்கும் ஒரு நிறுவனத்தின் சரக்கு முதலுக்கு அந்த நிறுவனத்திலிருந்து அவா் பெறும் ஆண்டு வருமானம் அந்தச் சரக்கு முதலின் வருமான வீதம் ஆகும். இது பொதுவாக சதவீதத்தில் குறிக்கப்படும்.

9.1.7 தரகு (Brokerage)

சரக்கு முதல்கள், பங்குகள், கடன் பத்திரங்கள் இவற்றின் வாங்கல் விற்றல் பரிவர்த்தனைகள் அதற்கான தரகர்கள் மூலமாக நடைபெறும். அவர் தம் சேவைக்கானக் கட்டணம் தரகு ஆகும். தரகர் பெறும் தரகானது முகமதிப்பின் அடிப்படையில் கணக்கிடப்படும். இது பொதுவாக சதவீதமாக குறிக்கப்படும். சரக்கு முதல் வாங்கப்படும் போது தரகு, சந்தை விலையுடன் கூட்டப்படும். விற்கப்படும் போது தரகு, சந்தை விலையில் கழிக்கப்படும்.

9.1.8 பங்குகளின் வகைகள்

முக்கியமாக பங்குகள் இரு வகைப்படும்.

- (i) முன்னுரிமைப் பங்குகள் (Preference shares)
- (ii) சாதாப் பங்குகள் (Equity or ordinary shares)

முன்னுரிமைப் பங்குதாரர்களுக்குரிய தனி உரிமைகள் :

- (i) சாதாப் பங்குதாரா்களுக்கு பங்கு வீதம் அளிப்பதற்கு முன்னரே, ஒரு குறிப்பிட்ட நிலையான வீதத்தில் தங்களின் பங்கு வீதம் பெறலாம்.
- (ii) நிறுவனத்தைக் கலைக்கும் நிலை ஏற்பட்டால் முன்னுரிமைப் பங்குதாராகள் நிறுவனத்தின் ஆஸ்தியில் முன் உரிமையுடன் தமது மூலதனத்தைத் திரும்பப் பெறலாம்.

9.1.9 சரக்கு முதல்களின் நிலவரத்தைச் சுருங்கக் கூறும் முறை

'120 இல் உள்ள 15% சரக்கு முதல்' எனில் சம்மந்தப்பட்ட சரக்கு முதலின் முகமதிப்பு ரூ. 100, சந்தை விலை ரூ. 120 பங்கு வீதம் 15% எனக் கொள்வோம்.

9.1.10 பங்குகளுக்கும் கடன் பத்திரங்களுக்கும் உள்ள வேறுபாடுகள்

கீழ்க்கண்டவை முக்கியமான வேறுபாடுகள் ஆகும்.

	பங்குகள்	கடன் பத்திரங்கள்			
1.	பங்குப் பணம் என்பது நிறுவன	1.	கடன் பத்திரங்கள், கடன்கள்		
	மூலதனத்தின் ஓர் அங்கமாகும்.		மட்டுமே. அவற்றை வாங்கியவா்கள்		
	பங்குதாரா்களைஓரளவிற்குநிறுவனத்தின்		நிறுவனத்திற்குக் கடன் கொடுத்தவா்		
	சொந்தக்காராகள் எனலாம்.		ஆவா்.		
2.	பங்குதாரா்களுக்கு நிறுவனத்தின்	2.	நிறுவனத்திற்கு இலாபம்		
	இலாபத்தில் பங்கு கிடைக்கும். இலாபம்		கிடைத்தாலும், கிடைக்காவிட்டாலும்		
	போதுமானதாக இல்லாமலோ அல்லது		கடன் பத்திரதாரா்களுக்கு ஒத்துக்		
	முற்றிலும் இல்லாமல் போனாலோ		கொள்ளப்பட்ட வட்டி கிடைத்து விடும்.		
	அவா்களுக்கு ஏதும் கிடைக்காமல்				
	போகலாம்.				
3.	கடன் பத்திரதாராகளுக்குக் கொடுக்க	3.	கடன் பத்திரதாராகள் தங்களின் வட்டியை		
	வேண்டிய வட்டி முதலில் கொடுக்கப்பட்டு		முன்னுரிமையுடன் பெற்றுக் கொள்வா்.		
	விடும்.எஞ்சியதுதான்பங்குதாரர்களுக்குப்				
	பங்குவீதமாகத் தரப்படும்.	_			
4.	பங்குதாராகளுக்கான பங்கு வீதம்	4.	கடன் பத்திரதாராகளுக்கான வட்டி வீதம்		
	நிறுவனம் ஈட்டும் இலாப அளவைச்		முன்னரே தீா்மானிக்கப்பட்டு விடுகிறது.		
_	சார்ந்திருக்கும்.	_	00		
5.	நிறுவனம் தன் பங்குகளை திரும்பப் பெற்று	5.	குறிப்பிட்ட கால முடிவில் கடன்		
	பணம் தராது.		பத்திரதாரா்களுக்கு அவா்தம் முதலீடு		
6.	நிறுவனம் மூடப்படுமானால் பங்குதாராகள்	ء ا	திரும்பக் கொடுக்கப்படும்.		
0.	தமது பங்கு பணத்தை ஒரளவு அல்லது	0.	முதலீடு திரும்பக் கிடைத்துவிடும்.		
	முற்றிலும் இழக்க நேரிடலாம்.		முதல்ரு தாரும்பக் கிரைட்ததுவரும்.		
7.	பங்குகளில் முதலீடு செய்வது ஊகத்தின்	7	ஊறு உண்டாகும் வாய்ப்பு குறைவு.		
ļ".	அடிப்படையிலானது. எனவே பணத்திற்கு	ļ [*]	உளு உண்டாடும் வாய்ப்பு குண்றவு.		
	ஊறு உண்டாகும் வாய்ப்பு உண்டு.				
8.	நிறுவனத்தின் பங்குதாரர்களின்	8.	அது போன்ற உரிமை ஏதும் கடன்		
	கூட்டங்களில் கலந்து கொண்டு		பத்திரதாரா்களுக்கு கிடையாது.		
	ஓட்டளிக்கும் உரிமை பங்குதாரர்களுக்கு		لــــــــــــــــــــــــــــــــــــ		
	உண்டு.				

சரக்கு முதல்கள், பங்குகள், கடன் பத்திரங்கள் இவற்றின் வாங்கல் விற்றல் நடவடிக்கைகளில் அடங்கியுள்ள கணிதவியல் நுட்பங்களைப் பின்வரும் எடுத்துக்காட்டுகள் விளக்கும்.

எடுத்துக்காட்டு 1

7% சரக்கு முதலின் ரூ. 100 முகமதிப்புள்ள 120 பங்குகளின் ஒராண்டு வருமானத்தைக் கண்டுபிடி.

தீர்வு:

முகமதிப்பு (ரு.) ஆண்டு வருமானம் (ரு.)
$$100$$
 7 120×100 $?$ ஆண்டு வருமானம் $=\frac{120 \times 100}{100} \times 7$ $= Rs.840$

எடுத்துக்காட்டு 2

ஆண்டு வருமானம் ரூ. 80 கிடைக்கும் 8% சரக்கு முதலின் தொகையைக் காண்க.

தீர்வு:

வருமானம் (ரு.) சரக்கு முதல் (ரு.)
$$8$$
 100 80 ? $?$ சரக்கு முதல் $=\frac{80}{8}\times100$ $= Rs.1,000$

எடுத்துக்காட்டு 3

ரூ. 100 முகமதிப்புள்ள பங்குகளைக் கொண்ட 6% சரக்குமுதல், ஆண்டு வருமானம் ரூ.360 கொடுப்பின் வாங்கப்பட்ட பங்குகளின் எண்ணிக்கையைக் காண்க.

தீர்வு:

வருமானம் (ரு.) சரக்கு முதல் (ரு.)
$$6$$
 100 360 ? $?$ சரக்கு முதல் $=\frac{360}{6}\times 100=$ ரூ. $6,000$ \therefore பங்குகளின் எண்ணிக்கை $=\frac{6000}{100}=60$.

எடுத்துக்காட்டு 4

ரூ.100 முகமதிப்புள்ள 150 பங்குகளின் ஆண்டு வருமானம் ரூ.1200 எனில் பங்கு வீதம் காண்க.

தீர்வு :

வருமானம்
$$=\frac{100}{150\times100}=1200$$

 $=\mathrm{Rs.8}$
பங்கு வீதம் $=8\%$.

70 இல் உள்ள 7% சரக்கு முதல் ரூ. 8,400–க்கு எவ்வளவு வாங்க முடியும் என்று கண்டுபிடி.

தீர்வு:

முதலீடு (ரு.) சரக்கு முதல் (ரு.) 70 100 8400 ? சரக்கு முதல் =
$$\frac{8,400}{70} \times 100$$
 = ரு. 12,000

எடுத்துக்காட்டு 6

10% கழிவில் உள்ள சரக்குமுதலை ரூ. 9000க்கு ஒருவர் வாங்குகிறார். பங்கு வீதம் 20% எனில் அவர் தம் வருமானத்தைக் காண்க.

தீர்வு:

முதலீடு (ரு.) வருமானம் (ரு.) 90 20 9000 ? வருமானம் =
$$\frac{9,000}{90} \times 20$$
 = ரு. 2,000

எடுத்துக்காட்டு 7

4% கழிவில் உள்ள $8\frac{3}{4}\%$ சரக்கு முதல் மதிப்பு ரூ. 9300 எனில் அதன் அடக்க விலையைக் காண்க.

தீர்வு:

சரக்கு முதல் (ரு.) அடக்கவிலை (ரு.)
$$100 \qquad (100-4)=96$$

$$9300 \qquad ?$$
 அடக்கவிலை $=\frac{9,300}{100}\times96$ $=$ ரூ. $8,928$

முதலீட்டிற்கு 8% கிடைக்கும் 9% சரக்குமுதலின் அடக்கவிலையைக் காண்க.

தீர்வு:

எடுத்துக்காட்டு 9

ரூ. 7200 க்கு 6% சரக்குமுதலின் ரூ. 100 முகமதிப்பு பங்குகளை சரளா வாங்கினார். அவருக்கு ரூ. 540 வருமானம் கிட்டியது எனில் ஒரு பங்கின் அடக்கவிலையைக் காண்க.

தீர்வு :

வருமானம் (ரூ.) அடக்கவிலை (ரூ.) 7200 6 ? அடக்கவிலை =
$$\frac{6}{540} \times 7200$$
 = ரூ. 80

எடுத்துக்காட்டு 10

80 இல் உள்ள 20% சரக்குமுதலின் வருமான வீதம் காண்க.

தீர்வு:

முதலீடு (ரு.) வருமானம் (ரு.)
$$80$$
 20 100 $?$ வருமானம் வீதம் $=\frac{100}{80}\times20$ $=25\%$

25% கழிவில் உள்ள 20% சரக்குமுதலின் வருமானம் வீதம் காண்க.

தீர்வு:

முதலீடு (ரு.) வருமானம் (ரு.)
$$(100-25) = 75$$
 20 100 $?$ வருமான வீதம் $= \frac{100}{75} \times 20$ $= 26\frac{2}{3}\%$

எடுத்துக்காட்டு 12

20% அதிக விலையில் உள்ள 20% சரக்குமுதலின் வருமான வீதம் காண்க.

தீர்வு :

முதலீடு (ரு.) வருமானம் (ரு.)
$$120$$
 20 100 $?$ வருமான வீதம் $=\frac{100}{120}\times20$ $=16\frac{2}{3}\%$ எடுத்துக்காட்டு 13

ரூ. 15 முகமதிப்புள்ள 10% சரக்குமுதலின் பங்குகள் ரூ. 10 க்கு கிடைக்குமானால் அதன் வருமான வீதம் காண்க.

தீர்வு :

முதலீடு (ரு.) முகமதிப்பு (ரு.)
$$15$$
 100 $?$ 15 100 $? 15 100 15 15 100 15 15 100 15 $150$$

இப்பொழுது

வருமான வீதம்
$$= \frac{150}{100} \times 10$$

 $= 15\%$

எது சிறந்த முதலீடு ? : 80 இல் உள்ள 7% சரக்கு முதல் அல்லது 96 இல் உள்ள 9% சரக்கு முதல்.

தீர்வு :

ஒவ்வொரு சரக்கு முதலிலும் ரூ. (80 x 96) முதலீடு செய்வதாய் கொள்வோம்.

<u>7% சரக்கு முதல்</u>

<u>9% சரக்கு முதல்</u>

முதலீடு (ரு.) வருமானம் (ரு.)
96 9
80 × 96 ?
வருமானம் =
$$\frac{80 \times 96}{96} \times 9$$
= ரு. 720

ஒரே முதலீட்டிற்கு 9% சரக்கு முதலில் 7% சரக்குமுதலை விட அதிக ஆண்டு வருமானம் கிட்டுகிறது.

். 96 இல் உள்ள 9% சரக்கு முதல் சிறந்தது.

எடுத்துக்காட்டு 15

எது சிறந்த முதலீடு ?:140 இல் உள்ள 20% சரக்குமுதல் அல்லது 70 இல் உள்ள 10% சரக்குமுதல்.

தீர்வு :

ஒவ்வொரு சரக்கு முதலிலும் ரூ. (140 × 70) முதலீடு செய்வதாய் கொள்வோம்.

<u>20% சரக்கு முதல்</u>

வருமானம்
$$=\frac{140 \times 70}{140} \times 20$$

= ரூ. 1,400

10% சரக்கு முதல்

ஒரே முதலீட்டிற்கு இரு சரக்கு முதல்களும் சமமான வருமானம் தருகின்றன.

். அவை சமான சரக்கு முதல்களாகும்.

எடுத்துக்காட்டு 16

92இல் உள்ள ரூ. 12,000 மதிப்புள்ள 6% சரக்குமுதலை ஒருவர் வாங்கி விலை 96 ஆகும்போது விற்கிறார். அவர் அடையும் இலாபம் காண்க.

தீர்வு:

சரக்குமுதல் (ரூ) இலாபம் (ரூ) 100 (96-92) = 4 12000 ? இலாபம் =
$$\frac{12000}{100} \times 4$$
 = ரூ. 480

எடுத்துக்காட்டு 17

105இல் வாங்கிய ரூ. 4250 மதிப்புள்ள சரக்குமுதலை ஒருவர் 87இல் விற்கிறார். அவர் அடையும் நஷ்டம் எவ்வளவு ?

தீர்வு:

சரக்கு முதல் (ரூ) நஷ்டம் (ரூ)
$$100 \hspace{1.5cm} (105-87) = 18$$

$$4250 \hspace{1.5cm} ?$$
 நஷ்டம்
$$= \frac{4250}{100} \times 18$$

$$= ரூ. 765$$

ரூ. 25 முகமதிப்புள்ள 400 பங்குகளை $\frac{1}{2}$ % தரகு கொடுத்துவிற்கும் போது இராமன் கொடுக்கும் மொத்த தரகுத் தொகையைக் காண்க.

தீர்வு :

முகமதிப்பு (ரூ)
$$\frac{1}{2}$$
 தரகு (ரூ) $\frac{1}{2}$ தரகு $=\frac{400\times25}{100}\times\frac{1}{2}$ $=$ ரூ. 50

எடுத்துக்காட்டு 19

ரூ. 100 முக மதிப்புள்ள 70 பங்குகளை ஒருவர் வாங்கிய வகையில் தரகாகக் கொடுத்தது ரூ. 105 எனில் தரகு வீதம் காண்க.

தீர்வு :

முகமதிப்பு (ரு.) தரகு (ரு.)
$$70 \times 100$$
 105 100 $?$ தரகு வீதம் $=\frac{100}{70 \times 100} \times 105$ $=1\frac{1}{2}\%$ எடுத்துக்காட்டு 20

ரு. $5{,}000$ மதிப்புள்ள சரக்கு முதலை $9\frac{1}{2}\,\%$ கழிவு விலையில் $\frac{1}{2}\,\%$ தரகு கொடுத்து ஒருவர் வாங்குகிறார். அந்த சரக்கு முதலின் அடக்க விலையைக் காண்க.

தீர்வு :

முகமதிப்பு (ரூ) அடக்கவிலை (ரூ)
$$100 \qquad \qquad (100-9\frac{1}{2}+\frac{1}{2})=91$$

$$5000 \qquad \qquad ?$$
 அடக்கவிலை $=\frac{5000}{100}\times 91=$ ரூ. $4,550$

எடுத்துக்காட்டு 21

2% தரகு கொடுத்து, ரூ. $20{,}000$ முக மதிப்புள்ள சரக்குமுதலை ஒருவர் 44% அதிக விலையில் விற்கிறார். விற்று கிடைக்கும் தொகை எவ்வளவு ?

தீர்வு :

முகமதிப்பு (ரூ) விற்றுக் கிடைக்கும் தொகை (ரூ)
$$100 \qquad \qquad (100+44-2)=142$$

$$20,000 \qquad \qquad ?$$
 விற்றுக்கிடைக்கும் தொகை
$$=\frac{20000}{100}\times142$$

$$=$$
 ரூ. $28,400$

எடுத்துக்காட்டு 22

ரூ. 7,500க்கு 15% சரக்குமுதலை 18% அதிக விலையில் 2% தரகு கொடுத்து ஒருவர் வாங்குகிறார். வாங்கிய சரக்குமுதலின் முகமதிப்பையையும் பங்கு லாபத் தொகையையும் காண்க.

தீர்வு :

அடக்கவிலை (ரூ) முகமதிப்பு (ரூ)
$$(100+18+2)=120 \qquad 100$$
$$7,500 \qquad ?$$
 முகமதிப்பு = $\frac{7500}{120} \times 100$
$$= ரூ. 6,250$$

மேலும்

முகமதிப்பு (ரூ) இலாப பங்கு (ரூ) 100 15 6,250 ? இலாப பங்கு =
$$\frac{6250}{100} \times 15$$
 = ரூ. 937.50

எடுத்துக்காட்டு 23

இராமன் ரூ. 5,400க்கு 9% சரக்கு முதலை 11%கழிவில் வாங்கினார் 1% தரகு கொடுத்தார் எனில் அவர் தம் வருமான சதவீதம் காண்க.

தீர்வு :

90 இல் உள்ள $9\frac{1}{2}$ % சரக்கு முதலில் இருந்து ரூ. 1938 வருமானம் கிடைக்கத் தேவையான முதலீட்டுத் தொகை எவ்வளவு ? (தரகு 1%)

தீர்வு :

வருமானம் (ரூ) முதலீடு (ரூ)
$$9\frac{1}{2}$$
 $(90+1)=91$ 1938 ? 91 $=\frac{1938}{\frac{19}{2}}\times 91$ $=1938\times \frac{2}{19}\times 91$ $= 6$ %, $18,564$

எடுத்துக்காட்டு 25

80இல் உள்ள ரூ. 9,000 மதிப்புள்ள 7% சரக்கு முதலை கமல் என்பவர் விற்று அதன்மூலம் கிடைத்த பணத்தை 120இல் உள்ள 15% சரக்கு முதலில் முதலீடு செய்கிறார். அவரது வருமானத்தில் ஏற்படும் மாற்றத்தைக் காண்க.

தீர்வு ::

<u>7% சரக்கு முதல்</u>

மேலும்

சரக்கு முதல் (ரூ) விற்றுக் கிடைக்கும் தொகை (ரூ) 100 80 9000 ? விற்றுக் கிடைக்கும் தொகை =
$$\frac{9000}{100} \times 80$$
 = ரூ. 7,200 263

15% சரக்கு முதல்

(1), (2) இவற்றை ஒப்பிட்டு நாம் முடிவு செய்வது என்னவெனில் வருமான மாற்றம் (அதிகரிப்பு) ரூ. 270 ஆகும் என்பதாகும்.

எடுத்துக்காட்டு 26

முகமதிப்பு ரூ. 5000 உள்ள 20% சரக்கு முதலை ஒருவர் 62% அதிக விலைக்கு விற்கிறார். விற்று வந்த பணத்தைக் கொண்டு 22% கழிவில் உள்ள 15% சரக்குமுதலை வாங்குகிறார். அவர்தம் வருமான மாற்றம் காண்க. (தரகு 2%).

தீர்வு:

20% சரக்கு முதல்

முகமதிப்பு (ரூ) வருமானம் (ரூ) 100 20 5,000 ? வருமானம் =
$$\frac{5000}{100} \times 20$$
 = ரூ. 1,000(1)

மேலும்

முகமதிப்பு (ரூ) விற்றுக் கிடைக்கும் தொகை (ரூ)
$$100 \hspace{1.5cm} (162-2)=160$$

$$5,000 \hspace{1.5cm} ?$$
 விற்றுகிடைக்கும் தொகை $\hspace{1.5cm} = \frac{5000}{100} \times 160$ $\hspace{1.5cm} =$ ரூ. $8,000$

15% சரக்குமுதல்

வருமானம்
$$=\frac{8000}{80}\times15$$

= ரூ. 1,500(2)

(1), (2) இவற்றை ஒப்பிட்டு நாம் முடிவு செய்வது என்னவெனில் வருமான மாற்றம் (அதிகரிப்பு) ரூ.500 ஆகும் என்பதாகும்.

எடுத்துக்காட்டு 27

89இல் உள்ள 12% சரக்கு முதலிலும் 95இல் உள்ள 8% சரக்கு முதலிலும் சமமான தொகைகள் முதலீடு செய்யப்படுகின்றன. (இரு நடவடிக்கைகளிலும் 1% தரகு) 12% சரக்கு முதலில் இருந்து மற்றதைக் காட்டிலும் ரூ. 120 அதிக வருமானம் கிடைக்குமானால் ஒவ்வொரு சரக்கு முதலிலும் முதலீடு செய்யப்பட்ட தொகைகளைக் காண்க.

தீர்வு:

ஒவ்வொரு சரக்கு முதலிலும் முதலீடு செய்யப்பட்ட தொகை ரூ. x என்க.

12% சரக்கு முதல்

முதலீடு (ரூ) வருமானம் (ரூ)
$$(89+1)=90$$
 12 x ? $=\frac{x}{90}\times12$ $=$ eரு. $\frac{2x}{15}$

<u>8% சரக்கு முதல்</u>

முதலீடு (ரூ) வருமானம் (ரூ)
$$(95+1)=96$$
 8 x $?$ வருமானம் $=\frac{x}{96}\times 8$ $=$ еரு. $\frac{x}{12}$

கணக்கின்படி,

$$\frac{2x}{15} - \frac{x}{12} = 120$$

15, 12 இவற்றின் மீ.சி.ம. 60 ஆல் பெருக்குக

ie.
$$8x - 5x = 7200$$

ie.
$$3x = 7200$$

ie.
$$x = erg. 2,400$$

திருமதி பிரேமா அவர்கள் 96இல் உள்ள ரூ.8,000 மதிப்புள்ள 7% சரக்கு முதலை விற்பதன் மூலம் கிடைத்த தொகையை ரூ. 100 முகமதிப்புடைய பங்குகளைக் கொண்ட 10% சரக்கு முதலில் முதலீடு செய்ததால் அவரது வருமானம் ரூ.80 அதிகரித்தது எனில் 10% சரக்கு முதலின் ஒரு பங்கின் அடக்க விலையைக் காண்க.

தீர்வு:

<u>7% சரக்கு முதல்</u>

சரக்கு முதல் (ரூ) வருமானம் (ரூ)
$$100$$
 7 $8,000$? $\frac{8,000}{100} \times 7$ $=$ ரூ. 560

மேலும்

சரக்கு முதல் (ரூ) விற்றுக் கிடைக்கும் தொகை (ரூ)
$$100 96$$

$$8,000 ?$$
விற்றுக் கிடைக்கும் தொகை = $\frac{8000}{100} \times 96$
= ரூ. 7,680

10% சரக்கு முதல்

வருமானம் = ரூ.
$$(560 + 80)$$
 = ரூ. 640 .

வருமானம் (ரூ) அடக்க விலை (ரூ)

 640 7680
 10 ?

அடக்கவிலை = $\frac{10}{640} \times 7680$

= ரூ. 120

எடுத்துக்காட்டு 29

ஒரு நிறுவனத்தின் மொத்த முதல் ரூ. 5,00,000 ஆகும். இது 6% பங்குவீதமும் ரூ. 100 முக மதிப்பும் உள்ள 1000 முன்னுரிமைப் பங்குகளாகவும் ரூ. 100 முகமதிப்புள்ள 4000 சாதாப் பங்குகளாகவும் அமைந்துள்ளன. அந்த நிறுவனத்தின் வருட இலாபம் ரூ.40,000 எனில் 100 முன்னுரிமை பங்குகளையும் 200 சாதாப் பங்குகளையும் வாங்கியுள்ள திரு. கோபால் அவர்களின் வருமானம் காண்க.

தீர்வு :

முன்னுரிமைப் பங்குகள்
$$=$$
 ரூ. $(1,000 \times 100)$

$$=$$
 erg. $1,00,000$

சாதாப் பங்குகள்
$$=$$
 ரூ. $(4,000 \times 100)$

6

$$=$$
 eூ. $4,00,000$

முன்னுரிமைப் பங்குகளுக்கான இலாபம்

100

1,00,000 ?

சாதாப் பங்குகளுக்குப் பங்குலாபம்

$$=$$
 егь. $34,000$

முன்னுரிமைப் பங்குகளிலிருந்து கோபால் பெறும் வருமானம்

1,00,000 6,000

100 × 100 ?

லாப பங்கு
$$=\frac{100 \times 100}{100000} \times 6,000$$

= ers. 600

சாதாப் பங்குகளிலிருந்து கோபால் பெறும் வருமானம்

4,00,000 34,000

200 × 100 ?

லாப பங்கு $=\frac{200\times100}{400000}\times34,000$ = ரூ. 1,700

கோபால் பெறும் மொத்த வருமானம்

$$=$$
 eђ. $(600 + 1700)$

ஒரு நிறுவனத்தின் மூலதனம் 16% பங்குவீதம் கொண்ட 50,000 முன்னுரிமைப் பங்குகளையும் 25,000 சாதாப் பங்குகளையும் கொண்டதாக உள்ளது. முன்னுரிமை மற்றும் சாதாப் பங்குகள் ஒவ்வொன்றின் முகமதிப்பு ரூ. 10 ஆகும். அந்த நிறுவனத்திற்குக் கிடைத்த மொத்த இலாபம் ரூ. 1,60,000இல் இருந்து ரூ. 20,000 சேமிப்பு நிதிக்காகவும் ரூ. 10,000 மதிப்பிறக்க நிதிக்காகவும் ஒதுக்கப்படுகிறது எனில் சாதாப் பங்குதாரர்களுக்குக் கொடுக்கப்படும் பங்குவீதம் காண்க.

தீர்வு :

முன்னுரிமைப் பங்குகளுக்கான இலாபம்

பங்கு (ரூ) பங்கு இலாபம் (ரூ)

100 16

5,00,000 ?
லாபப்பங்கு =
$$\frac{500000}{100} \times 16$$
= ரூ. 80,000

சாதாப் பங்குகளுக்கான இலாபப் பங்கு

சாதாப் பங்குகளுக்கு

பங்கு (ரூ) இலாப பங்கு (ரூ) 2,50,000 50,000 ? பங்கு வீதம் =
$$\frac{100}{250000} \times 50,000$$
 = 20%

9.2 ஒப்புவீதம் (NOMINAL RATE) கொண்ட கடன் பத்திரங்களின் மெய் வருமான வீதம்

(EFFECTIVE RATE OF RETURN)

கடன் பத்திரங்களுக்கான வட்டியானது ஓர் ஆண்டில் ஒரு தடவைக்கு மேல் கொடுக்கப்பட்டால் அதற்கு ஒப்பு வீதம் உள்ளது என்போம். அந்த ஒப்பு வீதத்திற்கான மெய்யான வருமான வீதத்தை பின்வரும் சூத்திரம் மூலம் காணலாம்.

$$E = \frac{F}{M} \left[\left(1 + \frac{i}{k} \right)^k - 1 \right]$$

இதில்,

E = மெய்வருமான வீதம்

F = கடன் பத்திர முகமதிப்பு

M = கடன் பத்திரத்தின் முகமதிப்பிற்கு நிகரான சந்தை மதிப்பு

i = ஆண்டுக்கு ஓரலகு பணத்திற்கான ஒப்பு வட்டி

k = ஓராண்டுக்கு வட்டி அளிக்கப்படும் தடவைகள்.

எடுத்துக்காட்டு 31

ரூ. 100 முக மதிப்புள்ள 15% கடன் பத்திரம் 2% அதிக விலையில் கிடைக்கிறது வட்டியானது காலாண்டுக்கு ஒருமுறை அளிக்கப்படின் மெய் வருமான வீதம் காண்க.

தீர்வு :

$$E = \frac{F}{M} \left[\left(1 + \frac{i}{k} \right)^{k} - 1 \right]$$

$$= \frac{100}{102} \left[\left(1 + \frac{0.15}{4} \right)^{4} - 1 \right]$$

$$= \frac{100}{102} \left[\left(1 + 0.0375 \right)^{4} - 1 \right]$$

$$= \frac{100}{102} \left[\left(1 + 0.0375 \right)^{4} - 1 \right]$$

$$= \frac{100}{102} \left[\left(1.0375 \right)^{4} - 1 \right]$$

$$= \frac{100}{102} \left[\left(1.0375 \right)^{4} - 1 \right]$$

$$= \frac{100}{102} \left[1.160 - 1 \right]$$

$$= \frac{100}{102} \left[0.160 \right]$$

$$= 0.1569 = 15.69\%$$
Log 100

$$= \frac{2.0000}{1.2041} + \frac{1.2041}{1.2041}$$

$$= \frac{1.1955}{1.1955}$$

$$= 0.1569$$

ரூ. 1000 முகமதிப்புள்ள 16% நீர் வாரிய பத்திரங்கள் ரூ.990க்கு வெளியிடப்படுகின்றன. வட்டியானது அரையாண்டுக்கு ஒரு முறை அளிக்கப்படின் மெய் வருமான வீதம் காண்க.

தீர்வு:

$$E = \frac{F}{M} \left[\left(1 + \frac{i}{k} \right)^k - 1 \right]$$

$$= \frac{1000}{990} \left[\left(1 + \frac{0.16}{2} \right)^2 - 1 \right]$$

$$= \frac{100}{99} \left[(1 + 0.08)^2 - 1 \right]$$

$$= \frac{100}{99} [(1.08)^2 - 1]$$

$$= \frac{100}{99} [1.166]$$

$$= \frac{100}{99} [0.166]$$

$$= 0.1677$$

$$= 16.77\%$$

$$\lim \text{dispass s. som is s.$$

பயிற்சி 9.1

- 1) ரூ. **25** முகமதிப்புள்ள 10% சரக்குமுதலின் **300** பங்குகளின் ஆண்டு வருமானத்தைக் காண்க.
- 2) ரூ. **90** ஆண்டு வருமானம் தரும் 9% சரக்குமுதலின் சரக்குமுதல் தொகையைக் கண்டுபிடி.
- 3) ரூ. **100** முக மதிப்புள்ள, ரூ. **900** ஆண்டு வருமானம் தரும் சரக்கு முதலின் பங்குகளின் எண்ணிக்கையைக் காண்க.
- 4) ரூ. 6480க்கு 90இல் உள்ள 9% சரக்குமுதல் எவ்வளவு வாங்கலாம் ?
- 5) 112ல் உள்ள $7\frac{1}{2}$ % சரக்கு முதலில் ரூ. **22,400** முதலீடு செய்வதால் கிடைக்கும் ஆண்டு வருமானம் யாது **?**
- 6) 4% அதிக விலையில் உள் ரூ. **9,000** மதிப்புள்ள 8% சரக்கு முதலின் அடக்க விலை யாது **?**
- 7) **120**இல் உள்ள 8% சரக்குமுதலில் முதலீடு செய்வதால் கிடைக்கும் வருமான வீதம் காண்க.
- 8) 80இல் உள்ள 12% சரக்குமுதலில் கிருஷ்ணா முதலீடு செய்தார். வருமான வீதம் காண்க.

- 9) 120இல் உள்ள 15% சரக்கு முதலின் வருமான வீதம் காண்க.
- 10) 10% கழிவில் உள்ள 18% சரக்கு முதலின் வருமான வீதம் காண்க.
- 11) 4% அதிக விலையில் உள்ள 8% சரக்கு முதலின் வருமான வீதம் காண்க.
- 12) எது சிறந்த முதலீடு **?** : **120**இல் உள்ள 6% சரக்கு முதல் அல்லது **95**இல் உள்ள 5% சரக்குமுதல்.
- 13) எது சிறந்த முதலீடு : 10% அதிக விலையில் உள்ள 18% சரக்கு, முதல் 4% கழிவில் உள்ள 12% சரக்கு முதல் ?
- 14) ரூ.**70** முகமதிப்புள்ள 12% கடன் பத்திரம் 10% கழிவில் கிடைக்கிறது எனில் அதன் வருமான வீதம் காண்க.
- 90இல் உள்ள ரூ. 100 முகமதிப்புள்ள 18% கடன்பத்திரத்தில் எவ்வளவு முதலீடு செய்தால் ஆண்டுக்கு ரூ. 8,100 வருமானம் கிட்டும் ?
- 16) ரூ. **8,000** ஐ பங்குச் சந்தையில் முதலீடு செய்து 10% முகமதிப்பு ரூ. **100** உள்ள பங்குகளைக் கொண்ட சரக்கு முதலை ஒருவா் வாங்கினாா். அவருக்கு ரூ. **500** வருமானம் கிட்டுகிறது எனில் வாங்கப்பட்ட பங்கு ஒன்றின் அடக்கவிலையைக் காண்க.
- 17) திரு. சா்மா அவா்கள் ரூ. **3900**க்கு 5% சரக்கு முதல் வாங்கினாா். அவருக்கு ரூ. **150** ஆண்டு வருமானம் கிடைத்தது எனில் வாங்கிய சரக்கு முதலின் அடக்கவிலையைக் காண்க.
- 18) **105**இல் வாங்கிய ரூ. **4,500** மதிப்புள்ள சரக்கு முதலை **90**இல் விற்பதால் ஒருவர் அடையும் நஷ்டம் எவ்வளவு **?**
- 19) ரூ. **100** முகமதிப்புள்ள தனது **350** பங்குகளை $1\frac{1}{2}$ % தரகு வீதத்தில் திரு. கணேஷ் விற்கும் போது அவர் கொடுக்கும் தரகுத் தொகை காண்க.
- 20) ரூ. **10** முகமதிப்புள்ள **500** பங்குகளை வாங்க திரு. ரமேஷ் ரூ. **100** தரகு பணம் கொடுத்தாரெனில் தரகு வீதம் காண்க.
- 21) ரூ. **6050**க்கு 1% தரகு கொடுத்து 9% அதிக விலையுள்ள 8% சரக்கு முதல் எவ்வளவு மதிப்புக்கு வாங்கலாம் **?**
- 22) 14% அதிக விலையில் ரூ. **1,035**க்கு 10% சரக்கு முதலை 1% தரகு கொடுத்து ஒருவர் வாங்குகிறார், முகமதிப்பையும் பங்குத் தொகையையும் காண்க.
- 23) **102**இல் உள்ள ரூ. **10,000** முகமதிப்புள்ள 20% சரக்கு முதலை திரு. ஜேம்ஸ் விற்கிறார். விற்று வந்த பணத்தைக் கொண்டு 12% கழிவில் உள்ள 15% சரக்கு முதலை வாங்குகிறார். தரகு 2% எனில் அவரின் வருமான மாற்றத்தைக் காண்க.
- 24) **80**இல் உள்ள ரூ. **9,000** மதிப்புள்ள 7% சரக்கு முதலை திருமதி. சுவாதி விற்கிறார். விற்று வந்த பணத்தை 15% சரக்கு முதலில் முதலீடு செய்தால் அவரது வருமானம் ரூ. **270** அதிகமானால் 15% சரக்கு முதலின் ஒரு பங்கின் அடக்க விலையைக் காண்க.

- 25) திரு. பாஸ்கர் ரூ. 34,000ஐ 80இல் உள்ள 8% சரக்கு முதலில் ஒரு பகுதியையும் மீதியை 90இல் உள்ள $7\frac{1}{2}$ % சரக்கு முதலில் முதலீடு செய்கிறார். அவரது ஆண்டு வருமானம் ரூ. 3,000 எனில் ஒவ்வொரு வகை சரக்கு முதலிலும் அவர் முதலீடு செய்தது எவ்வளவு ?
- 26) ஒரு நிறுவனத்தின் மொத்த மூலதனம் ரூ. 3,00,000, இதில் உள்ளது 10% பங்குவீதம் கொண்ட 1,000 முன்னுரிமைப் பங்குகள், மற்றது சாதாப் பங்குகள். ஓர் ஆண்டில் அந்த நிறுவனம் ரூ. 20,000 இலாப பங்குத் தொகை கொடுக்க முடிவு செய்தது. எல்லா பங்குகளின் முகமதிப்பும் தலா ரூ. 100 எனில் சாதாப் பங்குகளின் பங்குவீதம் காண்க.

	முகமதாபும் தலா ரூ.	100 என்ன சாதாப் பங்கு	அள்ள பங்குறத்	தய காணக்.				
27)	ஒரு 16% பங்கு பத்திரம் 5% கழிவில் வெளியிடப்படுகிறது. வட்டி ஆண்டுக்கு இருமுறை அளிக்கப்படுமானால் மெய் வருமான வீதத்தைக் காண்க.							
		பயிற்சி 9	9.2					
ஏற்பு	டைய விடையைத் தெரி	வு செய்க.						
1)	100 முகமதிப்புள்ள சர	க்குமுதல் அதிக விலை	றயில் விற்கப்படு	கிறது. அதன் சந்தை விலை				
	(a) 90	(b) 120	(c) 100	(d) இதில் ஏதுமில்லை				
2)	ரூ. 100 முகமதிப்புள்ள பங்கின் அடக்க வினை	_	னயாகிறது 1% <u>த</u>	நரகு கொடுக்கப்பட்டால் ஒரு				
	(a) 109	(b) 111	(c) 100	(d) இதில் ஏதுமில்லை				
3)	100 முகமதிப்புள்ள பங்கு 110க்கு விற்கப்படுகிறது 1% தரகு அளிக்கப்படுமானால் ஒரு பங்கு விற்று வந்த பணம்							
	(a) 109	(b) 111	(c) 100	(d) இதில் ஏதுமில்லை				
4)	பங்கு வீதம் கணக்கிட	_ அடிப்படையாகக் கொ	ள்ளப்படுவது					
	(a) முக மதிப்பு	(b) சந்தை மதிப்பு	(c) மூலதனம்	(d) இதில் ஏதுமில்லை				
5)	108இல் உள்ள சரக்கு சரக்கு முதல்	முதலை வாங்க ரூ. 8	100 முதலீடு செ	ரம்யப்படுகிறது. வாங்கப்பட்ட -				
	(a) ரூ. 7,500	(b) ரூ. 7,000	(c) ரூ. 7,300	(d) ரூ. 7,800				
6)	102இல் உள்ள ரூ. 5,000 மதிப்புள்ள சரக்கு முதலை வாங்கத் தேவையான முதலீடு							
	(a) ரூ. 6,000	(b) ரூ. 5,300	(c) ரூ. 5,200	(d) ரூ. 5,100				
7)	ரூ. 10,000 சரக்குமுத	ரூ. $10,000$ சரக்குமுதலை 10% அதிக விலையில் விற்பதால் கிடைக்கும் தொகை						
	(a) ரூ. 12,000	(b) ரூ. 11,000	(c) ரூ. 6,000	(d) ரூ. 12,500				
8)	90இல் உள்ள 9% சரச்	க்கு முதலின் வருமான எ	வீதம்					
	(a) 10%	(b) 9%	(c) 6%	(d) 8%				

9)) சமமதிப்பில் உள்ள ரூ. $f 200$ முகமதிப்புள்ள $14%$ கடன்பத்திரத்தின் வருமான வீதம்					
	(a) 14%	(b) 15%	(c) 7%	(d) 28%		
10)	ரூ. 100 முகமதிப்புடைய பங்குகளைக் கொண்ட 10% சரக்கு முதலை வாங்க திரு. ராபங்குச் சந்தையில் ரூ.8,000 முதலீடு செய்கிறார். அவருக்கு ரூ.200 வருமானம் கிடைத்தா அவர் வாங்கிய பங்கு ஒன்றின் அடக்க விலை					
	(a) ரூ. 280	(b) ரூ. 250	(c) ரூ. 260	(d) ரூ. 400		
11)	90இல் உள்ள 9% சரக்டு	த முதலின் வருமான வ	ீ தம்			
	(a) 6%	(b) 10%	(c) 6.75%	(d) 6.5%		
12)	3% சரக்கு முதலில் 4%	வருமான வீதம் எனில்	அதன் சந்தைவிலை			
	(a) еҧ. 75	(b) еҧ. 133	(с) еҧ. 80	(d) eரு. 120		

10.1 மையப் போக்களவைகள்

(MEASURES OF CENTRAL TENDENCY)

''சராசரி என்பது மொத்த விவரங்களின் பிரதிநிதித்துவ மதிப்பு ஆகும்''

- முர்ரே R. ஸ்பிகல் (Murray R.Speiegel)

சராசரிகள் எனப்படும் மையப்போக்களவைகள், மொத்த விவரங்களையும் பிரதிபலிக்கின்ற ஒற்றை மதிப்பை தருகின்றன. மொத்த விவரங்களும் சமமான அல்லது சமமற்ற மதிப்புகளை உடையதாக இருக்கும்.

மையப் போக்களவைகள், இடஅளவீடுகள் (Measures of Location) என்றும் வழங்கப்படுகிறது.

பொதுவாக ஓர் மாறியின் கண்டறிந்த விவரங்கள் (observation) அவ்விவரங்களில் உள்ள ஏதேனும் ஒரு மைய மதிப்பை நோக்கி நகர்ந்து குவிகிறது என்பது கண்டறியப்படுகிறது. உதாரணமாக, மாணவர்களின் உயரம் (செ.மீ.) அடங்கிய விவரத்தில் பெரும்பான்மையான மதிப்புகள் 160 செ.மீட்டரை சுற்றி அமைவதை உணரலாம். இம்மாதிரியான, ஏதேனும் மைய மதிப்பை எல்லா விவரங்களும் சுற்றி குவிகின்ற போக்கிற்கு மையப்போக்கு என்று பெயர். இம்மைய மதிப்பை மதிப்பிட மையப்போக்களவைகள் முயலுகின்றன.

சராசரி அளவைகளில் பலவகைகள் உண்டு அவையாவன

- (i) கூட்டுச் சராசரி (Arithmetic Mean)
- (ii) இடைநிலை (Median)
- (iii) முகடு (Mode)
- (iv) பெருக்குச் சராசரி (Geometric Mean)
- (v) இசைச் சராசரி (Harmonic Mean)

புள்ளியியலில் சராசரிகள் முக்கியமானதாகும். டாக்டர். A.L.பௌலி (Bowley) "புள்ளியலைச் சராசரிகளின் அறிவியல் என்று குறிப்பிடுவது மிகவும் பொருத்தமானதாக இருக்கும்" என்று கூறி சராசரிகளின் முக்கியத்துவத்தை விளக்கியுள்ளார்.

மீள்பார்வை : சீர்படா விவரங்கள் (Raw Data)

 $\mathbf{x}_1,\,\mathbf{x}_2,\!\dots\,\mathbf{x}_n$ என்கிற தனித்த கண்டறிந்த மதிப்புக்களுக்கு

$$(i)$$
 கூட்டுச்சராசரி $= \overline{X} = \frac{\sum X}{n}$

(ii) இடைநிலை = 'n' ஒற்றைப்படை எண் எனில், நடு உறுப்பின் மதிப்பு

= 'n' இரட்டைப் படை எண் எனில்,

இரு நடு உறுப்புகளின் சராசரி

(iii) முகடு = பெரும்பான்மையாக நிகழக்கூடிய மதிப்பு

கீழ்க்கண்ட விவரங்களுக்கு, சராசரி, இடைநிலை, முகடு ஆகியவை காண்க.

தீர்வு :

$$\text{egneff} = \overline{X} = \frac{\sum x}{n}$$

$$= \frac{3+6+7+.....+4+10+6}{14} = 5.14$$

இடைநிலை:

மேற்குறிப்பிட்டுள்ள மதிப்புகளை ஏறுவரிசையில் (இறங்கு வரிசையில்) அமைக்கவும்.

இங்கு n = 14, என்பது இரட்டைப்படை எண்.

். இடைநிலை = இரு நடு உறுப்புள்ளிகளின் சராசரி = 6

முகடு = 6 (∵6 என்ற மதிப்பு கொடுக்கப்பட்டுள்ள விவரங்களில் 5 முறை நிகழ்வதால்)

தொகுக்கப்பட்ட விவரங்கள் (தனித்த)

நிகழ்வெண்களைக் கொண்ட ஒரு தொகுப்பில் உள்ள $\mathbf{x}_1,\ \mathbf{x}_2,\ ...\ \mathbf{x}_n$ என்கிற மதிப்புகளுக்கு

- (i) கூட்டுச்சராசரி $= \overline{X} = \frac{\sum fx}{N}\,,$ இங்கு $N = \sum f$
- (ii) இடைநிலை $= rac{N}{2}$ க்கு சற்று மிகையான குவிவு அலைவெண்ணுக்கு தொடர்புடைய x —ன் மதிப்பு
- (iii) முகடு = மிகையான நிகழ்வெண்ணுக்கு இணையான x–ன் மதிப்பு.

எடுத்துக்காட்டு 2

கீழ்கண்ட விவரங்களுக்கு சராசரி, இடைநிலை, முகடு ஆகியவை காண்.

மதிப்பு (x)	0	1	2	3	4	5
நிகழ்வெண் (f)	8	10	11	15	21	25

தீர்வு :

X	0	1	2	3	4	5	
f	8	10	11	15	21	25	$N = \sum f = 90$
fx	0	10	22	48	80	125	\sum fx = 285
cf	8	18	29	44	65	90	

$$\therefore \text{ eigenfill} = \frac{\sum fx}{N}$$
$$= 3.17$$

இடைநிலை :

$$N = \sum f = 90$$

$$\frac{N}{2} = \frac{90}{2} = 45$$

 ${N \over 2} = 45$ -க்கு சற்று மிகையான குவிவு நிகழ்வெண் 65 ஆகும்.

். குவிவு நிகழ்வெண் 65-க்கு இணையான x –ன் மதிப்பு 4 ஆகும்.

முகடு :

இங்கு மிகையான நிகழ்வெண் 25 ஆகும். மிகையான நிகழ்வெண்ணுக்கு இணையான x –ன் மதிப்பு 5 ஆகும்.

10.1.1 தொடர் அலைவெண் பரவலுக்கான கூட்டுச்சராசரி

இம்முறையில் கூட்டுச்சராசரிக் காண சூத்திரம்.

$$\overline{X} = A + \left(\frac{\sum fd}{N} \times C\right)$$

இங்கு A = ஏதேனும் ஒரு வசதியான மூலப்புள்ளி (பிரிவு அலைவெண்ணின் மைய மதிப்புக்களிலிலுமிருந்தும் தேர்ந்தெடுக்கலாம்).

 $d=rac{x-A}{c}$ என்பது ஒவ்வோர் மைய மதிப்புக்களிலிருந்து எடுக்கப்பட்ட விலக்கம்.

c = பிரிவு இடைவெளி

 $N = \sum f =$ அலைவெண்களின் கூடுதல்

எடுத்துக்காட்டு 3

கீழ்கண்டவற்றிற்கு கூட்டுச்சராசரி காண்

மதிப்பெண்	20-30	30-40	40-50	50-60	60-70	70-80
மாணவர்களின்	5	Q	12	15	6	4
எண்ணிக்கை	3	O	12	13	U	4

தீர்வு :

மதிப்பெண்	மாணவா்களின் எண்ணிக்கை	மைய மதிப்பு x	$d = \frac{x - A}{c}$ $A = 55, c = 10$	fd
20-30	5	25	-3	- 15
30-40	8	35	-2	- 16
40-50	12	45	– 1	– 12
50-60	15	55	0	0
60-70	6	65	1	6
70-80	4	75	2	8
	$N = \sum f = 50$			\sum fd = -29

∴ கூட்டுச்சராசரி

$$\overline{x} = A + \left(\frac{\sum fd}{N} \times c\right)$$
$$= 55 + \left(\frac{-29}{50} \times 10\right) = 49.2$$

எடுத்துக்காட்டு 4

கீழ்கண்டவற்றிற்கு கூட்டுச்சராசரி காண்

ஊதியம் (ரூ.) : 100-119 120-139 140-159 160-179 180-199 தொழிலாளர்களின்

18 21 13 5 3

தீர்வு :

ஊதியம்	தொழிலாளா்களின் எண்ணிக்கை	மைய மதிப்பு	$d = \frac{x - A}{c}$	fd
	f	X	A = 149.5, c = 20	
100-119	18	109.5	-2	-36
120-139	21	129.5	-1	-21
140-159	13	149.5	0	0
160-179	5	169.5	1	5
180-199	3	189.5	2	6
	$N = \sum f = 60$			\sum fd = -46

$$\overline{X} = A + \left(\frac{\sum fd}{N} \times c\right)$$
$$= 149.5 + \left(\frac{-46}{60} \times 20\right) = 134.17$$

10.1.2 தொடர் அலைவெண் பரவலின் இடைநிலை

தொடர் அலைவெண் பரவலின் அதாவது தொகுக்கப்பட்ட விவரங்கள் பிரிவு அலைவெண்களில் இருக்கும் பொழுது, இடைநிலையளவை கீழ்காணும் சூத்திரத்தைப் பயன்படுத்தி பெற முடியும்.

இடைநிலை
$$= l + \left(\frac{N}{2} - m\right) \times c$$

இங்கு l = இடைநிலைப்பிரிவின் கீழ்வரம்பு

m = இடைநிலைப்பிரிவின் சற்றே முந்திய குவிவு அலைவெண்

f = இடைநிலைப்பிரிவில் உள்ள அலைவெண்

c = இடைநிலைப்பிரிவிற்கு ஈடான பிரிவு இடைவெளி

 $N = \sum f =$ அலைவெண்களின் கூடுதல்

எடுத்துக்காட்டு 5

கீழ்காணும் பரவலின் இடைநிலை ஊதியத்தைக் காண்க.

ஊதியம் (ரூ.)	:	20-30	30-40	40-50	50-60	60-70
தொழிலாளர்களின்		3	5	20	10	5
எண்ணிக்கை	:	3	3	20	10	3

தீர்வு :

	தொழிலாளர்கள்	குவிவு அலைவெண்
ஊதியம்	f	c.f.
20-30	3	3
30-40	5	8
40-50	20	28
50-60	10	38
60-70	5	43
	$N = \sum f = 43$	

இங்கு
$$\frac{N}{2} = \frac{43}{2} = 21.5$$

21.5 –க்கு சற்று மிகையான குவிவு அலைவெண் 28 ஆகும். இக்குவிவு அலைவெண்ணிற்கு ஈடான இடைநிலைப் பிரிவு 40-50 ஆகும்.

$$\Rightarrow l = 40, m = 8, f = 20, c = 10$$

$$\therefore$$
 இடைநிலை = $l + \left(\frac{\frac{N}{2} - m}{f}\right) \times c$
= $40 + \left(\frac{21.5 - 8}{20} \times 10\right) = \text{Rs.} 46.75$

எடுத்துக்காட்டு 6

ஓா் அலுவலகத்திலுள்ள நபா்களின் இடைநிலை எடையை கீழ்காணும் விவரங்களிலிருந்து காண்க.

எடை (கி.கி.) : 60-62 63-65 66-68 69-71 72-74 நபர்களின் எண்ணிக்கை : 20 113 138 130 19

தீர்வு :

எடை	நபா்களின் எண்ணிக்கை	குவிவு அலைவெண்				
60-62	20	20				
63-65	113	133				
66-68	138	271				
69-71	130	401				
72-74	19	420				
$\mathbf{N} = \sum \mathbf{f} = 420$						

$$\frac{N}{2} = \frac{420}{2} = 210$$

 $\frac{N}{2} = 210$ —க்கு சற்று மிகையான குவிவு அலைவெண் 271 ஆகும். இக்குவிவு நிகழ்வெண்ணிற்கு ஈடான இடைநிலை பிரிவு 66 - 68 ஆகும். இந்த இடைநிலைப் பிரிவை 65.5 - 68.5 என்று மாற்றம் செய்து கொள்ளவும்.

$$\Rightarrow l = 65.5$$
, m = 133, f = 138, c = 3

$$\therefore$$
 இடைநிலை $= l + \left(\frac{N}{2} - m\right) \times c$ $= 65.5 + \left(\frac{210 - 133}{138} \times 3\right) = 67.2$ கி.கிராம்

10.1.3 தொடர் அலைவெண் பரவலின் முகடு

தொடா் அலைவெண் பரவலுக்கான முகட்டினை கீழ்காணும் சூத்திரத்தைப் பயன்படுத்தி பெறலாம்.

முகடு =
$$l + \left(\frac{f_1 - f_0}{2f_1 - (f_0 + f_2)} \times c \right)$$

இங்கு l = முகடு பிரிவு இடைவெளியின் கீழ்வரம்பு

 \mathbf{f}_1 = முகடு பிரிவின் இடைவெளியில் உள்ள நிகழ்வெண்

f₀ = முகடு பிரிவு இடைவெளிக்கு சற்றே முந்திய இடைவெளிக்கான அலைவெண்

 ${f f}_2$ = முகடு பிரிவு இடைவெளிக்கு சற்றே பிந்திய இடைவெளிக்கான அலைவெண்

c = முகடுப் பிரிவின் இடைவெளித் தூரம் / பிரிவு இடைவெளி.

உட்கருத்து :

சில நேரங்களில் சராசரி மற்றும் இடைநிலை ஆகியவற்றிலிருந்து முகடை கண்டுபிடிக்கலாம். சமச்சீர் பரவலில், சராசரி, இடைநிலை மற்றும் முகடு ஆகிய மூன்றும் பொருந்தி (ஒன்றுபட்டு) இருக்கும். சமச்சீரற்ற பரவலாக இருந்தால், சராசரி, இடைநிலை மற்றும் முகடு ஆகியவை கீழ்காணும் அனுபவ தொடர்பிற்கு உட்பட்டிருக்கும்.

கூட்டுச்சராசரி – முகடு =
$$3$$
(கூட்டுச்சராசரி – இடைநிலை)

$$\Rightarrow$$
 முகடு = 3 இடைநிலை - 2 கூட்டுச்சராசரி

எடுத்துக்காட்டு 7

பின்வரும் விவரங்களுக்கு முகடைக் காண்க.

தினக்கூலி (ரூ.)	:	50-60	60-70	70-80	80-90	90-100
தொழிலாளர்களின்		35	60	78	110	80
எண்ணிக்கை	:	33	O O	70	110	00

தீர்வு :

உச்ச அலைவெண் = 110, இவ்வலைவெண் 80-90 எனும் பிரிவு இடைவெளியில் உள்ளது. ஆக முகடு பிரிவு இடைவெளி 80-90 ஆகும்.

$$\therefore l = 80, f_1 = 110, f_0 = 78; f_2 = 80; c = 10.$$
 முகடு $= l + \left(\frac{f_1 - f_0}{2f_1 - (f_0 + f_2)} \times c\right)$ $= 80 + \left(\frac{110 - 78}{2(110) - (78 + 80)} \times 10\right)$ $= e$ ரு. 85.16

10.1.4 பெருக்குச் சராசரி

(i) n மதிப்புக்களின் பெருக்குச் சராசாியென்பது, n மதிப்புக்களின் பெருக்குத் தொகையின் n – ஆவது வா்க்க மூலமாகும்.

அதாவது ஓர் திரளில் (set) உள்ள $\mathbf{x_1},\,\mathbf{x_2}$ $\mathbf{x_n}$ என்கிற \mathbf{n} தனித்த உறுப்புக்களின் பெருக்குச் சராசரியானது

$$\sqrt[n]{x_1 \cdot x_2 \cdot x_3 \cdot \dots \cdot x_n}$$
 or $(x_1 \ x_2 \ \dots \cdot x_n)^{1/n}$

உட்கருத்து :

$$\log G = \log (x_1, x_2 \dots x_n)^{1/n}$$

$$= \frac{1}{n} \log (x_1, x_2 \dots x_n)$$

$$\log G = \frac{1}{n} \sum_{i=1}^{n} \log x_i$$

$$\Rightarrow \log G = \frac{\sum \log x}{n}$$

$$\therefore$$
 பெருக்குச் சராசரி = $G = Antilog\left(rac{\sum log x}{n}\right)$

எடுத்துக்காட்டு 8

3, 6, 24, 48 ஆகியவற்றின் பெருக்குச்சராசரி காண்க.

தீர்வு :

கொடுக்கப்பட்டுள்ள மதிப்புக்களை x என்க.

X	log x
3	0.4771
6	0.7782
24	1.3802
48	1.6812
	$\sum \log x = 4.3167$

G.M. = 11.99

(ii) தனித்த நிகழ்வெண் பரவலின், அதாவது if $\mathbf{x}_1, \mathbf{x}_2 \mathbf{x}_n$ என்ற \mathbf{n} மாறிகளின் நிகழ்வெண்கள் முறையே $\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_n$ என்றால், அதன் பெருக்குச் சராசாியானது,

$$G = (x_1^{f_1} \ x_2^{f_2} \ \dots \ x_n^{f_n})^{\frac{1}{N}}$$

இதில்
$$N = \sum f = f_1 + f_2 + \dots + f_n$$

உட்கருத்து

$$\begin{split} \log G &= \frac{1}{N} \log \left(x_1^{f_1} \ x_2^{f_2} \ \ x_n^{f_n} \right) \\ &= \frac{1}{N} [f_1 \log x_1 + f_2 \log x_2 + + f_n \log x_n] \\ &= \frac{1}{N} \sum f_i \log x_i \\ \Rightarrow \log G &= \frac{\sum f_i \log x_i}{N} \\ \therefore G &= \text{Antilog} \left(\frac{\sum f_i \log x_i}{N} \right) \end{split}$$

எடுத்துக்காட்டு 9

கீழ்காணும் விவரங்களுக்கு பெருக்குச் சராசரியைக் காண்க.

X	:	10	15	25	40	50
f	:	4	6	10	7	3

தீர்வு :

X	f	log x	f log x
10	4	1.0000	4.0000
15	6	1.1761	7.0566
25	10	1.3979	13.9790
40	7	1.6021	11.2147
50	3	1.6990	5.0970
<u> </u>	$N = \sum f = 30$		$\sum f \log x = 41.3473$

$$\therefore G = \operatorname{Antilog}\left(\frac{\sum f \log x}{N}\right)$$

$$= \operatorname{Antilog}\left(\frac{41.3473}{30}\right)$$

$$= \operatorname{Antilog}\left(1.3782\right)$$

$$= 23.89$$

(iii) தொடர் அலைவெண் பரவலுக்கான பெருக்குச் சராசரி என்பது

$$\therefore G = Antilog\left(\frac{\sum f \log x}{N}\right)$$

இதில் $N=\sum f$ மற்றும் x என்பது பிரிவு இடைவெளிகளின் நடுமதிப்பு.

பின்வரும் விவரங்களுக்கு பெருக்குச் சராசரி காண்க.

மதிப்பெண்கள்	:	0-10	10-20	20-30	30-40	40-50
மாணவர்கள்	:	5	7	15	25	8

தீர்வு :

ره والأول والم	மாணவர்கள்	மைய மதிப்பு	logv	flogv
மதிப்பெண் 	f	X	log x	f log x
0-10	5	5	0.6990	3.4950
10-20	7	15	1.1761	8.2327
20-30	15	25	1.3979	20.9685
30-40	25	35	1.5441	38.6025
40-50	8	45	1.6532	13.2256
	$N = \sum f = 60$			$\sum f \log x = 84.5243$

$$\therefore G = \operatorname{Antilog}\left(\frac{\sum f \log x}{N}\right)$$

$$= \operatorname{Antilog}\left(\frac{84.5243}{60}\right)$$

$$= \operatorname{Antilog}\left(1.4087\right) = 25.63$$

உட்கருத்து :

கொடுக்கப்படும் விவரங்களுக்கு $G.M \leq A.M$. அதாவது, பெருக்குச் சராசரி \leq கூட்டுச்சராசரி

10.1.5 இசைச்சராசரி

(i) பல உறுப்புகளின் இசைச் சராசாியென்பது, அவ்உறுப்புக்களின் தலைகீழ் மதிப்புக்களின் (reciprocals) கூட்டுச்சராசாியின் தலைகீழ் மதிப்பு ஆகும்.

$$x_1, x_2 ... x_n$$
 என்பன உறுப்புக்களாக இருந்தால், $\frac{1}{x_1}, \frac{1}{x_2}, \frac{1}{x_n}$. ஆகியவை

உறுப்புக்களின் தலைகீழ் மதிப்புகளாகும். இத்தலைகீழ் மதிப்புகளின் கூடுதல் $=\sum \left(rac{1}{x}
ight)$

ஆகும் மற்றும் இவற்றின் கூட்டுச்சராசரி = $\frac{\sum \frac{1}{X}}{X}$ ஆகும். எனவே உறுப்புக்களின் தலைகீழ் மதிப்புக்களின் கூட்டுச்சராசரியின் தலைகீழ் மதிப்பு = $\frac{n}{\sum \left(\frac{1}{x}\right)}$

$$\therefore \qquad H = \frac{n}{\sum \left(\frac{1}{x}\right)}$$
283

6, 14, 21, 30 ஆகியவற்றின் இசைச் சராசரியைக் காண்க.

தீர்வு :

x	$\frac{1}{x}$
6	0.1667
14	0.0714
21	0.0476
30	0.0333
	$\sum \frac{1}{x} = 0.3190$

$$H = \frac{n}{\sum \frac{1}{x}} = \frac{4}{0.3190} = 12.54$$

∴ இசைச் சராசரி H = 12.54

(ii) தனித்த அலைவெண் பரவலுக்கு, அதாவது x_1, x_2, \dots, x_n என்கிற மாறிகளின் அலைவெண்கள் முறையே $f_1, \, f_2, \, \dots, f_n$ என்றால், இசைச்சராசரி H என்பது,

$$H = \frac{1}{\frac{f_1}{x_1} + \frac{f_2}{x_2} + \dots + \frac{f_n}{x_n}} = \frac{1}{\frac{1}{N}} \sum \left(\frac{f}{x}\right) = \frac{N}{\sum \left(\frac{f}{x}\right)}$$
 As $N = \sum f$

எடுத்துக்காட்டு 12

பின்வரும் விவரங்களுக்கு இசைச்சராசாியைக் காண்க.

X	:	10	12	14	16	18	20
f	:	5	18	20	10	6	1

தீர்வு :

X	f	$\frac{\mathbf{f}}{\mathbf{x}}$
10	5	0.5000
12	18	1.5000
14	20	1.4286
16	10	0.6250
18	6	0.3333
20	1	0.0500
	$N = \sum f = 60$	$\sum \frac{\mathbf{f}}{\mathbf{x}} = 4.4369$

$$H = \frac{N}{\Sigma \left(\frac{f}{x}\right)}$$
$$= \frac{60}{4.4369} = 13.52$$

(iii) தொடர் நிகழ்வெண் பரவலின் இசைச் சராசரியென்பது $H=rac{N}{\Sigma\left(rac{f}{x}
ight)}$ ஆகும்.

இங்கு $\mathbf{N}=\sum \mathbf{f}$ மற்றும் $\mathbf{x}=$ பிரிவு இடைவெளிகளின் நடுமதிப்பு எடுத்துக்காட்டு 13

பின்வரும் விவரங்களுக்கு இசைச் சராசாியைக் காண்க.

உறுப்புக்களின் அளவு	:	50-60	60-70	70-80	80-90	90-100
உறுப்புகள்	:	12	15	22	18	10

தீர்வு :

அளவு	f	X	$\frac{\mathbf{f}}{\mathbf{x}}$
50-60	12	35	0.2182
60-70	15	65	0.2308
70-80	22	75	0.2933
80-90	18	85	0.2118
90-100	10	95	0.1053
	$N - \nabla f - 77$		$\sum_{i} f = 1.0594$

$$H = \frac{N}{\sum \frac{f}{x}} = \frac{77}{1.0594} = 72.683$$

உட்கருத்து :

கொடுக்கப்படும் விவரங்களுக்கு

- (i) $H.M. \leq G.M. \implies$ இசைச் சராசரி \leq பெருக்குச் சராசரி
- (ii) $H.M. \leq G.M. \leq A.M.$

 \Rightarrow இசைச் சராசரி \leq பெருக்குச் சராசரி \leq கூட்டுச் சராசரி

(iii) $(A.M.) \times (H.M.) = (G.M.)^2$

 \Rightarrow (கூட்டுச் சராசரி) imes (இசைச் சராசரி) = (பெருக்குச் சராசரி) 2

பயிற்சி 10.1

1)	கீழே கொடுக்கப்பட்டுள்ள தொகுப்ப	ில் உள்ள	т உறுப்பு	களுக்கு	௯ஂ௹	ச்சராச	ரி கான்	ாக.
	25, 32, 28, 34, 24, 31, 36, 27, 29, 3	0.						
2)	கீழ்கண்ட விவரங்களுக்கு கூட்டுச்	சராசரி க	ாண்க.					
	வயது	:	8	10	12	15	18	
	தொழிலாளா்களின் எண்ணிக்கை	:	5	7	12	6	10	
3)	கொடுக்கப்பட்டுள்ள ஒரு வீட்டில் உ	ள்ள நபர்	களின் க	௷ட்டுச்ச	ராசரின	ற்ய கால	னக.	
	ஒவ்வொரு வீட்டிலுள்ள							
	நபா்களின் எண்ணிக்கை :	2	3	4	5	6		
	வீடுகளின் எண்ணிக்கை	10	25	30	25	10		
4)	விலக்க முறையைப் பயன்படுத்தி கூ	ட்டுச் சர	ாசரி கா	ண்க.				
	மதிப்பெண்கள்	:	40	50	54	60	68	80
	மாணவா்களின் எண்ணிக்கை	:	10	18	20	39	15	8
5)	கீழே கொடுக்கப்பட்டுள்ள விவ கூட்டுச்சராசரி, இடைநிலை மற்றும்	ரங்களுக் முகடு கா		றுபவத்	தொட	ா்பை	பயன்ப	டுத்தி
	மதிப்பெண்கள் :	0-10	10-20	20-30	30-40	40-50	50-6	0
	மாணவாகளின் எண்ணிக்கை :	5	10	25	30	20	10	
6)	கீழ்காணும் நிகழ்வெண் பரவலுக்கு	௯ட்டுச்	ஈராச ரி, (இடைநின	லை மற்ற	றம் முக	டு கால	ள்க.
	பிரிவு எல்லை : 10-19 20-29				60-69	70-79		9
	நிகழ்வெண் : 5 9	14	20	25	15	8	4	
7)	கீழ்காணும் தொகுப்பில் உள்ள உறு			.நிலை க	ாண்க.			
	37, 32, 45, 36, 39, 31, 46, 57, 27, 3							
8)	இடைநிலை காண்க : 57, 58, 61, 4							
9)	கீழ்காணும் அலைவெண் பரவலுக்கு	த இடைநி	ിതെ ക്ന	ண்க.				
	தினக்கூலி (ரூ.)	5	10	15	20	25	30	
	நபா்களின் எண்ணிக்கை (f) :	7	12	37	25	22	11	
10)	10 மாணவா்கள் பெற்ற மதிப்பெ காண்க.	ண்கள் எ	தீ ழே ெ	காடுக்க	ப்பட்டு	ள்ளன.	இடை	நிலை
	மதிப்பெண்கள் (10 – க்கு)	3 4	5	6	7	8	9	10
	மாணவாகளின் எண்ணிக்கை :	1 5	6	7	10	15	11	5
		286						

: 10-25 25-40 40-55 55-70 70-85 85-100 மதிப்பெண்கள் நிகழ்வெண் : 12) கீழ்காணும் விவரங்களுக்கு இடைநிலை கண்டுபிடிக்கவும். பிரிவு எல்லை :1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 நிகம்வெண் : 3 13) கீழ்காணும் தொகுப்பில் உள்ள விவரங்களுக்கு முகடு காண்க. 41, 50, 75, 91, 95, 69, 61, 53, 69, 70, 82, 46, 69. 14) கீழ்கண்டவற்றிற்கு முகடு காண்க. துணிகளின் அளவுகள் தயாரிக்கப்பட்ட ஜோடிகளின் எண்ணிக்கை 15) கீழ்காணும் பரவலுக்கு முகடு காண்க. அளவு : 10 நிகழ்வெண் : 10 கீழ்காணும் பரவலுக்கு முகடு காண்க. 16) 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 பிரிவு எல்லை நிகழ்வெண் 17) கீழ்கண்ட விவரங்களுக்கு பெருக்குச் சராசரி காண்க. 35, 386, 153, 125, 118, 1246 கீழ்கண்ட விவரங்களுக்கு பெருக்குச் சராசரி காண்க. 18) மதிப்பு நிகழ்வெண் : 19) கீழ்கண்டபரவல்,60 மாணவாகளின் அக்கவுண்டன்சிபாடத்தில் பெற்றமதிப்பெண்களோடு தொடர்பு கொண்டுள்ளது. மதிப்பெண்கள் : 0-10 10-20 20-30 30-40 40-50 50-60 மாணவர்கள்

கீழ்காணும் விவரங்களுக்கு இடைநிலை காண்க.

11)

பெருக்குச் சராசரி காண்க.

20) கீழ்காணும் விவரங்களுக்கு இசைச் சராசரி காண்க.

2, 4, 6, 8 10

21) இசைச் சராசரி காண்க.

அளவுகள் : 6 7 8 9 10 11

நிகழ்வெண் : 4 6 9 5 2 8

22) கீழ்காணும் விவரங்களுக்கு இசைச் சராசரி காண்க.

பிரிவு எல்லை : 10-20 20-30 30-40 40-50 50-60

நிகழ்வெண் : 4 6 10 7 3

10.2 பரவுவகை / சிதறல் அளவுகள்

MEASURES OF DISPERSION

''உறுப்புகளுக்குள் காணப்படுகின்ற வேறுபாட்டின் அளவு பரவுவகை / சிதறலாகும்'' - **A.L.பௌலி**

தனித்தனி உறுப்புகளைக் கொண்ட தொகுப்பில்/பிரிவில், எல்லா உறுப்புகளுக்கும் சமமாக இருக்காது. உறுப்புகளுக்கிடையே வித்தியாசம் அல்லது வேறுபாடு காணப்படும். உதாரணமாக, ஓர் குறிப்பிட்ட பிரிவில் உள்ள மாணவர்கள் பெற்ற மதிப்பெண்களை நாம் நோக்கினால், அம்மெதிப்பெண்களுக்கிடையே உள்ள வித்தியாசத்தை/வேறுபாட்டை எளிதில் காண முடியும்.

சற்று முன்பு நாம் விவாதித்த பொதுச் சராசரிகள் அல்லது மையப் போக்களவைகள், விவரங்களின் பொதுவான அளவை (நிலைப்போக்கை) மட்டுமே குறிக்கின்றன தவிர, ஒரு தொகுப்பில் அல்லது பரவலில் அடங்கியுள்ள தனித்தனி உறுப்புகளுக்கிடையே உள்ள சிதறலின் தன்மையை தெரிவிப்பதில்லை. ஆகையால், உறுப்புகளுக்குள் காணப்படும் வேறுபாட்டின் அளவை மதிப்பீடு (அளத்தல்) செய்வதற்கு, பரவுவகை அளவுகள்/சிதறல் அளவுகள் என்று அழைக்கப்படும், வேறு சில அளவுகள் பயன்படுகின்றன.

குறிப்பாக, கொடுக்கப்பட்ட (பரவு வகை அளவுகள் / சிதறல் அளவுகள்) ஒரு பரவலில் உள்ள தனித்தனி உறுப்புகளுக்கிடையே காணப்படுகின்ற வேறுபாடு அல்லது பரவுவகை / சிதறல் ஆகியவற்றை கண்டுபிடிக்க உதவிபுரிகின்றன. விவரங்களின் (data) வேறுபாட்டை (பரவுவகை / சிதறல்), பரவலில் உள்ள மைய மதிப்பு (பொது சராசரி) அல்லது ஏதேனும் ஒரு வசதியான மூலப்புள்ளி அல்லது ஏதேனும் மற்ற மதிப்பு ஆகியவற்றை பொருத்து தெரிந்து கொள்ளலாம்.

இரண்டு அல்லது அதற்கு மேற்பட்ட பரவல்களுக்கான சராசரி அல்லது இடைநிலை மற்றும் முகடு ஆகியவை சமமாக இருக்கலாம். ஆனால் ஒரு தொடரில் உள்ள தனித்தனி உறுப்புகள் பெரிதும் வேறுபட்டிருக்கும். உதாரணமாக, கீழுள்ள இரு மாணவர்கள் பெற்ற மதிப்பெண்களை எடுத்துக் கொள்வோம்.

மாணவர் I	மாணவர் II
68	82
72	90
63	82
67	21
70	65
340	340
சராசரி 68	சராசரி 68

இரு மாணவா்களும் ஒரே அளவு தோ்ச்சி உடையவா்கள் என்று முடிவு செய்வது தவறாகும். ஏனெனில் மாணவா் — II, ஒரு தாளில் (பாடத்தில்) தோ்ச்சி பெறவில்லை என்பது உண்மை. மேலும், மாணவா் — I ன் மதிப்பெண்களுக்கிடையே உள்ள வேறுபாடு (வித்தியாசம்), மாணவா் — II —ன் மதிப்பெண்களுக்குள் காணப்படும் வேறுபாட்டை விட குறைவு என்பதும் கவனிக்கத்தக்கது. குறைவான வேறுபாடு என்பது சிறப்பான குணாதிசயமாதலால் மாணவா் — I எல்லாப் பாடங்களிலும் சமஅளவு தோ்ச்சி பெற்றவராயிருக்கிறாா்.

இவ்வாறாக, விவரங்களின் உண்மை நிலையையும், முக்கியமான குணாதிசயங்களையும் வெளிக்கொணர்வதற்கு, மையப் போக்களவைகள் போதுமானதாக இல்லை என்பது தெளிவாகிறது. எனவே பரவு வகை அளவுகள் / சிதறல் அளவுகள் என அழைக்கப்படுகின்ற, வேறு சில அளவுகள் தேவையாகின்றன.

10.2.1 வீச்சு

வீச்சு என்பது பெருமத்திற்கும், சிறுமத்திற்கும் இடையேயுள்ள வேறுபாடு ஆகும்.

இங்கு
$$L=$$
 பெருமதிப்பு (பெருமம்)

$$S =$$
 சிறுமதிப்பு (சிறுமம்)

வீச்சுக்கெழு
$$=\frac{L-S}{L+S}$$

எடுத்துக்காட்டு 14

பின்வருவனவற்றிற்கு வீச்சு மற்றும் வீச்சுக்கெழு காண்க.

தீர்வு :

$$S = 5$$
 (சிறுமம்)

வீச்சுக்கெழு =
$$\frac{L-S}{L+S}$$
 = 0.4118

பின்வரும் பரவலுக்கு வீச்சு மற்றும் வீச்சுக்கெழு காண்க.

தீர்வு :

கொடுக்கப்பட்டிருப்பது ஓர் தொடர் பரவலாகும். ஆகவே கீழ்க்கண்ட முறையைப் பின்பற்றுவோம்.

இங்கு L= மேல் பிரிவின் மைய மதிப்பு

$$\therefore L = \frac{32 + 34}{2} = 33$$

 $\mathbf{S}=$ கீழ் பிரிவின் மைய மதிப்பு

$$\therefore S = \frac{20 + 22}{2} = 21$$

$$∴$$
 வீச்சு = $L - S = 12$

வீச்சுக்கெழு =
$$\frac{L-S}{L+S}$$
 = 0.22

10.2.2 திட்டவிலக்கம் / தரவிலக்கம் (Standard Deviation)

மதிப்புக்களின் கூட்டுச்சராசரியிலிருந்து எடுக்கப்பட்ட விலக்கங்களின் சராசரியின் வா்க்கமூலம், திட்டவிலக்கம் ஆகும்.

தி.வி. என்பது திட்டவிலக்கத்தின் சுருக்கமாகவும் σ (சிக்மா) என்ற குறியீட்டை திட்டவிலக்கத்தை குறிக்கவும் பயன்படுத்தப்படுகிறது. திட்டவிலக்கத்தின் வாக்கத்தை, பரவற்படி (variance) σ^2 என்கிற குறியீட்டால் குறிக்கப்படுகிறது.

(i) சீர்படா விவரங்களுக்கு திட்டவிலக்கம் கணக்கிடுதல்

$$\sigma = \sqrt{\frac{\sum d^2}{n}}$$

இங்கு
$$d = x - \overline{X}$$

 $\mathbf{n}=$ உறுப்புக்களின் எண்ணிக்கை

எடுத்துக்காட்டு 16

கீழ்க்காணும் விவரங்களுக்கு திட்டவிலக்கம் காண்க.

X	$\mathbf{d} = \mathbf{x} - \overline{\mathbf{X}}$	d^2
75	1	1
73	-1	1
70	-4	16
77	3	9
72	-2	4
75	1	1
76	2	4
72	-2	4
74	0	0
76	2	4
$\sum \mathbf{x} = 740$	$\sum \mathbf{d} = 0$	$\sum d^2 = 44$

$$\overline{X} = \frac{\sum x}{n} = \frac{740}{10} = 74$$

∴ திட்டவிலக்கம்

$$\sigma = \sqrt{\frac{\sum d^2}{n}} = \sqrt{\frac{44}{10}} = 2.09$$

(ii) சீா்படா விவரங்களுக்கு திட்டவிலக்கம் காணுதல் (கூட்டுச் சராசாியை பயன்படுத்தாமல்)

இம்முறையில் திட்டவிலக்கத்தைக் காணும் சூத்திரம் யாதெனில்

$$\sigma = \sqrt{\left(\frac{\sum x^2}{n}\right) - \left(\frac{\sum x}{n}\right)^2}$$

எடுத்துக்காட்டு 17

கீழ்க்கண்ட திரளில் உள்ள உறுப்புக்களுக்கு திட்டவிலக்கம் காண்க.

தீர்வு :

கொடுக்கப்பட்டுள்ள உறுப்புக்களை x என்க.

X	1	3	5	4	6	7	9	8	10	2
x^2	1	9	25	16	36	49	81	64	100	4

இங்கு
$$\Sigma x = 55$$

$$\Sigma x^2 = 385$$

$$\therefore \sigma = \sqrt{\left(\frac{\sum x^2}{n}\right) - \left(\frac{\sum x}{n}\right)^2}$$
$$= \sqrt{\left(\frac{385}{10}\right) - \left(\frac{55}{10}\right)^2} = 2.87$$

(iii) விலக்க முறையைப் பயன்படுத்தி சீர்படா விவரங்களுக்கு திட்டவிலக்கம் காணுதல்

A என்பதை ஏதேனும் ஒரு வசதியான மூலமாக எடுத்துக் கொண்டால்,

$$\sigma = \sqrt{\left(\frac{\sum d^2}{n}\right) - \left(\frac{\sum d}{n}\right)^2}$$

இங்கு
$$d = x - A$$

A = ஏதேனும் ஒரு உறுதியான மூலம்

 $\sum d^2$ = வா்க்க விலக்கங்களின் கூடுதல்

 \sum d = விலக்கங்களின் கூடுதல்

n = உறுப்புக்களின் எண்ணிக்கை

எடுத்துக்காட்டு 18

கீழே கொடுக்கப்பட்டுள்ள விவரங்களுக்கு, திட்டவிலக்கம் காண்க.

25, 32, 53, 62, 41, 59, 48, 31, 33, 24.

தீர்வு :

A=41 என்று எடுத்துக் கொள்ளவும்

(a) Since
$$\Delta d = -2$$

$$\Delta d^2 = 1748$$

$$\sigma = \sqrt{\left(\frac{\sum d^2}{n}\right) - \left(\frac{\sum d}{n}\right)^2}$$

$$= \sqrt{\left(\frac{1748}{10}\right) - \left(\frac{-2}{10}\right)^2} = 13.21$$

(iv) தொகுக்கப்பட்ட தனித்த விவரங்களுக்கு திட்டவிலக்கம் காணுதல்

இம்முறையில்

$$\sigma = \sqrt{\frac{\sum f d^2}{N}}$$
 இதில் $d = x - \overline{X}$

எடுத்துக்காட்டு 19

பின்வரும் விவரங்களுக்கு திட்டவிலக்கம் காண்க.

x 6 9 12 15 18

f: 7 12 13 10 8

தீர்வு :

X	f	fx	$d = x - \overline{X}$	d^2	fd^2
6	7	42	-6	36	252
9	12	108	-3	9	108
12	13	156	0	0	0
15	10	150	3	9	90
18	8	144	6	36	288
	$N=\sum f=50$	$\sum \mathbf{f} \mathbf{x} = 600$			Σ fd ² = 738

$$\overline{X} = \frac{\sum fx}{N} = \frac{600}{50} = 12$$

$$\sigma = \sqrt{\frac{\sum fd^2}{N}} = \sqrt{\frac{738}{50}} = 3.84$$

(v) தொகுக்கப்பட்ட தொடர் விவரங்களுக்கு தற்கோள் சராசரியை பயன்படுத்தாமல் திட்டவிலக்கம் காணுதல்

இம்முறையில்

$$\sigma = cx\sqrt{\frac{\sum fd^2}{N} - \left(\frac{\sum fd}{N}\right)^2}$$
 இதில் $d = \frac{x - A}{c}$

எடுத்துக்காட்டு 20

பின்வரும் விவரங்களுக்கு திட்டவிலக்கம் காண்க.

பிரிவு இடைவெளி : 0-10 10-20 20-30 30-40 40-50 50-60 60-70

அலையெண் : 8 12 17 14 9 7 4

தீர்வு :

A = 35 என்று எடுத்துக் கொள்ளவும்.

பிரிவு இடைவெளி	நிகழ்வெண் f	மைய மதிப்பு x	$d = \frac{x - A}{c}$	fd	fd ²
0-10	8	5	-3	-24	72
10-20	12	15	-2	-24	48
20-30	17	25	-1	-17	17
30-40	14	A35	0	0	0
40-50	9	45	1	9	9
50-60	7	55	2	14	28
60-70	4	65	3	12	36
	$N=\sum f=71$			Σ fd = -30	$\sum fd^2 = 210$

$$\sigma = cx \sqrt{\frac{\sum fd^2}{N} - \left(\frac{\sum fd}{N}\right)^2}$$
$$= 10 \times \sqrt{\frac{210}{71} - \left(\frac{-30}{71}\right)^2}$$
$$= 16.67$$

10.2.3. மாறுவிகிதக்கெழு / மாறுபாட்டுக்கெழு (Coefficient of variation)

மாறுவிகிதக்கெழு / மாறுபாட்டுக்கெழு C.V. என்று குறிக்கப்பட்டு வழங்கப்படுகிறது.

$$C.V = \left(\frac{\sigma}{\overline{x}} \times 100\right)\%$$

உட்கருத்து :

- (i) மாறுபாட்டுக்கெழு என்பது ஓர் விகிதத்தின் விரிவு ஆகும். இதை பயன்படுத்தி இரண்டு அல்லது அதற்கு மேற்பட்ட பரவலை ஒப்பிடலாம்.
- (ii) மாறுபாட்டுக்கெழு குறைவாக உள்ள பிரிவு மிகவும் பொருத்தமானது அல்லது மிகவும் நிலையானது என்றும், மாறுபாட்டுக்கெழு அதிகமாக உள்ள பிரிவு மிகவும் வேறுபாடுள்ளது அல்லது குறைவான பொருத்தமுள்ளது என்றும் வழங்கப்படுகிறது.

இரண்டு நகரங்களில் காணப்படும் ஓர் குறிப்பிட்ட பொருளின் விலைகள் கீழே கொடுக்கப்பட்டுள்ளது.

நகரம் A : நகரம் B :

எந்த நகரத்தின் விலை மிகவும் நிலையானதாக உள்ளது ?

தீர்வு :

நகரம் A	நகரம் B	$d_x = x - \overline{x}$	$d_y = y - \overline{y}$	$(d_{x}^{2} = x - \overline{x})^{2}$	$(d^2_y = y - \overline{y})^2$
40	52	-21	-10	441	100
80	75	19	13	361	169
70	55	9	-7	81	49
48	60	-13	-2	169	4
52	63	-9	1	81	1
72	69	11	7	121	49
68	72	7	10	49	100
56	51	-5	-11	25	121
64	57	3	-5	9	25
60	66	-1	-4	1	16
$\sum \mathbf{x} = 610$	$\Sigma y = 620$			$\sum d_{x}^{2} = 1338$	$\Sigma d^2_{v} = 634$

$$\overline{X} = \frac{\sum x}{n} = \frac{610}{10} = 61$$

$$\overline{y} = \frac{\sum y}{n} = \frac{620}{10} = 62$$

$$\sigma_x = \sqrt{\frac{1338}{10}} = 11.57$$

$$\sigma_y = \sqrt{\frac{634}{10}} = 7.96$$

$$C.V.(x) = \frac{\sigma_x}{\overline{x}} \times 100$$

$$= \frac{11.57}{61} = 18.97\%$$

$$C.V.(y) = \frac{\sigma_y}{\overline{y}} \times 100$$

$$= \frac{7.96}{62} = 12.84\%$$

முடிவு :

ஒப்பிடுதலில், $C.V.(y) \le C.V(x)$

⇒ நகரம் B –யின் விலை மிகவும் நிலையானதாக உள்ளது.

பயிற்சி 10.2

1)	கீழ்காணும் விவரங்களுக்கு வீச்சு மற்றும் வீச்சுக்கெழு காண்க.										
	a) 12, 8, 9, 10, 4, 14, 15										
	b) 35, 40, 52, 29, 51, 46, 27, 30, 30, 23.										
2)	கீழ்காணும் விவரங்களுக்கு வீச்சு மற்றும் வீச்சுக்கெழு காண்க.										
	அளவுக	கள்	:	60-62	63-65	66-68	69-71	72-74			
	តសាំស	ரிக்கை	:	5	18	42	27	8			
3)	கீழ்கா	ணும் வி	வரங்க	ளுக்கு	வீச்சு மற்	ற்றும் வீக்	ச்சுக்கெ	ழு காண்	க.		
	ക്പഖി (ര	ரு.)		:	35-45	45-55	55-65	65-75	75-85		
		லாளர்க ரிக்கை		:	18	22	30	6	4		
4)	ஒரு தொகுப்பில் உள்ள எண்களுக்கு திட்டவிலக்கம் கண்டுபிடிக்கவும்.										
	3, 8, 6, 10, 12, 9, 11, 10, 12, 7.										
5)	விலக்கு முறையைப் பயன்படுத்தி, கீழ்க்காணும் தொகுப்பில் உள்ள உறுப்புகளுக்கு திட்டவிலக்கம் காண்க.								றுப்புகளுக்கு		
	45, 36,	40, 36	, 39, 42	2, 45, 35	5, 40, 39).					
6)	கீழ்காணும் விவரங்களுக்கு i) கூட்டுச்சராசரி ii) விலக்க முறை iii) நேர்முரை ஆகியவற்றை பயன்படுத்தி திட்டவிலக்கம் காண்க.										
	25, 32,	43, 53	, 62, 59	9, 48, 31	1, 24, 33	3					
7)	கீழ்காணும் விவரங்களுக்கு திட்டவிலக்கம் காண்க.										
	x:	1	2	3	4	5					
	f:	3	7	10	3	2					
8)	திட்டவி	பிலக்கத்	தை க	ாண்க.							
		ட்டத்தி களின் எ	-	-	÷	0	1	2	3	4	5
	ஆட்டா	ங்களின்	ा जर्का	ணிக்கை	Б :	1	2	4	3	0	2
9)	கீழ்காணும் தொடர் பரவலுக்கு திட்டவிலக்கத்தை காண்க.										
	பிரிவு எ	тல்லை	:	4-6	6-8	8-10	10-12	12-14			
	நிகழ்ெ	வண்	:	10	17	32	21	20			

10) கீழ்காணும் பரவலுக்கான திட்டவிலக்கத்தை காண்க.

வருடாந்திர லாபம் (கோடியில்) : 20-40 40-60 60-80 80-100

வங்கிகளின் எண்ணிக்கை : 10 14 25 48

வருடாந்திர லாபம் (கோடியில்) : 100-120 120-140 140-160

வங்கிகளின் எண்ணிக்கை 33 24 16

11) கீழ்கண்டவற்றிற்கு மாறுபாட்டுக் கெழுவை கண்டுபிடிக்க.

40 41 45 49 50 51 55 59 60 60

12) கீழேயுள்ள, ஒரு வாரத்தில் தங்கத்தின் விலையிலிருந்து, எந்த நகரத்தில் விலை மிகவும் நிலையானதாக உள்ளது என்பதை காண்க.

நகரம் A: 498 500 505 504 502 509 நகரம் B: 500 505 502 498 496 505

13) கீழ்காணும் விவரங்களிலிருந்து, எந்த வங்கியின் மதிப்பு மிகவும் நிலையானதாக உள்ளது என்பதைக் கண்டுபிடிக்கவும்.

\mathbf{x} :	55	54	52	53	56	58	52	50	51	49
v.	108	107	105	105	106	107	104	103	104	101

10.3 நிகழ்தகவு

(CONCEPT OF PROBABILITY)

கீழ்கண்ட சோதனைகளை பரிசீலனை செய்யவும்.

- (i) ஒரு பந்தை, குறிப்பிட்ட உயரத்திலிருந்து கீழே போடுதல்
- (ii) ஒரு கோப்பை பாலில், ஒரு தேக்கரண்டி சர்க்கரையை சேர்த்தல்
- (iii) எரிகின்ற நெருப்பில் பெட்ரோலை ஊற்றுதல்

மேற்கூறிய ஒவ்வொரு சோதனையிலும், முடிவு அல்லது விளைவுகள் நிச்சயமானது மற்றும் முன் கூட்டியே கூறக்கூடிய வகையைச் சார்ந்தது. அதாவது, சோதனை (i)–ல் பந்து நிச்சயம் பூமியைத் தொடும் என்பதும், சோதனை (ii)–ல் சர்க்கரை பாலில் நிச்சயம் கரையும் என்பதும், மற்றும் சோதனை (iii)–ல் பெட்ரோல் நிச்சயம் எரிந்து விடும் என்பதும் சோதனைக்கு முன்பே தெரிந்த விளைவுகள் தான்.

அனால் சில சோதனைகளான

- (i) சூதாட்ட சக்கரத்தை சுற்றுதல்
- (ii) சீட்டுக்கட்டிலிருந்து ஓர் சீட்டை எடுத்தல்
- (iii) ஒரு நாணயத்தை சுண்டி விடுதல்
- (iv) ஒரு பகடையை வீசுதல்

போன்றவற்றில் முடிவு அல்லது விளைவுகள் நிச்சயமற்றவை.

உதாரணமாக, ஒரு நாணயத்தை சுண்டும் பொழுது, தலை அல்லது பூ என்ற இரண்டு சாதகமான விளைவுகள் மட்டும் தான் என்பது ஒவ்வொருவருக்கும் தெரியும். ஆனால் இந்த இரண்டு விளைவுகளில், இது தான் நிச்சயம் விளையக்கூடியது என்று எந்த ஒரு நபராலும் முன்கூட்டியே கூற இயலாது. அதைப்போன்றே ஒரு பகடை வீசினால் 1 அல்லது 2 அல்லது 6 என்று ஆறு சாதகமான விளைவுகள் என்பது நிச்சயம் ஆனால் இந்த ஆறு விளைவுகளில் எந்த ஒரு விளைவு, உண்மையிலேயே விளையக்கூடியது என்பதை உறுதியாக நம்மால் கூற இயலாது.

இத்தகைய சோதனைகளில் எல்லாம் தென்படுகிற நிகழ்ச்சி நடப்பதற்குரிய வாய்ப்பை நிகழ்தகவு என அழைக்கிறோம்.

இந்நிகழ்தகவு, நிகழ்ச்சி நடப்பதற்குரிய வாய்ப்பினை ஒரு எண் மூலமாக விவரிக்கிறது.

நிச்சயமற்ற சூழ்நிலையில் நடத்தப்படும் சோதனையின் வெளிப்பாடுகளுக்கு எண்ணுருவைக் கொடுப்பதற்கு நிகழ்தகவுத் தத்துவம் அறிமுகப்படுத்தப்பட்டது.

புள்ளியியலின் அடிப்படைகளுள் ஒன்றான, நிகழ்தகவு ஏழாம் நூற்றாண்டில், பந்தய விளையாட்டுகள் மூலம் ஆரம்பமானது. ஆனால் காலம் செல்ல, செல்ல நிகழ்தகவின் பயன்பாடு அதிகமாக மனித வாழ்வின் எல்லா நிலைகளிலும் முக்கியத்துவம் பெறுவதை அறிவோம்.

10.3.1 அடிப்படை கருத்துருக்கள்

(i) சமவாய்ப்புள்ள சோதனை (Random Experiment)

விளைவுகளை / முடிவுகளை உடைய எந்த ஒரு செயலையும் சோதனை என்கிறோம். சமவாய்ப்புள்ள சோதனை என்பது

- (i) எந்த ஒரு சோதனையின் எல்லா விளைவுகளும் முன்கூட்டியே தெரிந்திருந்தால்
- (ii) குறிப்பிட்ட என்ன விளைவை ஒரு சோதனை ஏற்படுத்தும் என்பது முன் கூட்டியே தெரியாதிருந்தால்
- (iii) ஒரே மாதிரியான நிபந்தனையில், ஒரு சோதனையை திரும்பத் திரும்பச் செய்தால்,

(ii) நிகழ்ச்சி (Event)

ஒரு சோதனையின் எல்லா விளைவுகளையும் நிகழ்ச்சிகள் என்கிறோம்.

(iii) கூறுவெளி (Sample Space)

ஒரு சோதனையில் நிகழக்கூடிய ஒவ்வொரு விளைவின் தொகுப்பை, அச்சோதனையின் கூறுவெளி ஆகும். அக்கூறுவெளி S என்று குறிக்கப்படுகிறது.

(iv) ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகள் (Mutually Exclusive events)

நிகழ்ச்சிகளில், ஏதாவது ஒன்று நிகழும்பொழுது மற்ற நிகழ்ச்சி ஏற்படாதவாறு தடைபடுமேயானால், அந்நிகழ்ச்சிகள் ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகள் எனக் கூறலாம். அதாவது, இரண்டு அல்லது அதற்கு மேற்பட்ட ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகள் ஒரே சமயத்தில் ஒரே சோதனையில் நடைபெறமுடியாது. உதாரணத்திற்கு,

52 சீட்டுக்களைக் கொண்ட கட்டிலிருந்து ஒரு சீட்டை எடுப்பதாக கொள்வோம். இதில் ஏற்படக்கூடிய பின்வரும் நிகழ்ச்சிகளை A மற்றும் B என்று பரிசீலிக்கவும்.

A : ஸ்பேட் சீட்டு என்க.

B : ஹார்ட்டின் சீட்டு என்க.

இந்த இரு A மற்றும் B நிகழ்ச்சிகள் ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகளாகும். ஏனெனில் எடுக்கப்பட்ட சீட்டு ஸ்பேட் ஆகவும், ஹார்ட்டின் ஆகவும் இருக்க முடியாது.

(v) சார்பில்லா நிகழ்ச்சிகள் (Independent events)

நிகழ்ச்சிகளில் (இரண்டு அல்லது மேற்பட்ட), ஏற்படக்கூடிய அல்லது ஏற்பட முடியா நிகழ்ச்சி ஒன்று, மற்ற நிகழ்ச்சிகள் ஒவ்வொன்றும் ஏற்படுவதை தடுக்காமலிருக்குமானால், அந்நிகழ்ச்சிகள் அனைத்தும் சார்பிலா நிகழ்ச்சிகளாகும்.

எடுத்துக்காட்டாக,

ஒரு நாணயத்தை சுண்டும் பொழுது, முதல் சுண்டுதலில் ஏற்படக்கூடிய "தலை" என்கிற நிகழ்ச்சி, இரண்டு, மூன்று மற்றும் அதற்கு மேல் சுண்டுதலில் ஏற்படக்கூடிய "தலை" என்கிற நிகழ்ச்சிக்கு சார்பில்லாமல் இருக்கும்.

(vi) நிரப்பு நிகழ்ச்சி (Complementary Event)

நிகழ்ச்சி A நிகழ்வதும், நிகழ்ச்சிA நிகழாமல் இருப்பதும் நிரப்பு நிகழ்ச்சிகள் என வழங்கப்படுகிறது. நிகழ்ச்சி 'A நிகழாமல் இருப்பதை, A^{C} அல்லது A' அல்லது \overline{A} என்று குறியிட்டு, நிகழ்ச்சி A யின் நிரப்பு நிகழ்ச்சி என்று வாசிக்கப்படுகிறது.

(vii) சமவாய்ப்புடைய நிகழ்ச்சிகள் (Equally likely)

ஒரு சோதனையின் நிகழ்ச்சிகளில் (இரண்டு அல்லது மேற்பட்ட) ஏதேனும் ஒரு நிகழ்ச்சி மற்றவற்றை விட நிகழக்கூடிய வாய்ப்பு அதிகமுள்ளது என்று எதிர்பார்க்க இயலாதெனில், அச்சோதனையின் நிகழ்ச்சிகள் யாவும் சமவாய்ப்புடைய நிகழ்ச்சிகள் என அழைக்கப்படுகிறது.

(viii) சாதகமான நிகழ்ச்சிகள் / வகைகள் (Favourable events or cases)

ஒரு சோதனையில் ஓா் குறிப்பிட்ட நிகழ்ச்சி நிகழ்வதற்கு சாதகமான / காரணமான எல்லா விளைவுகளையும் அல்லது வகைகளையும், அந்நிகழ்ச்சிக்கு சாதகமான நிகழ்ச்சிகள் அல்லது சாதகமான வகைகள் என்கிறோம்.

உதாரணமாக,

இரண்டு பகடைகளை ஒரே சமயத்தில் வீசுதல் என்கிற சோதனையை பரிசீலிக்கவும்.

இச்சோதனையில், இரண்டு பகடையில் காணப்படும் எண்களின் கூடுதல் தொகை 7 ஆக இருப்பதற்குரிய சாதகமான நிகழ்ச்சிகள் யாதெனில்

$$(1,6), (6,1), (5,2), (2,5), (3,4), (4,3).$$

அதாவது, கூடுதல் தொகை 7 ஆக இருப்பதற்கு, இச்சோதனையில் சாதகமாக 6 வகைகள் காணப்படுகிறது.

(ix) தீர்வாய்வான நிகழ்ச்சிகள் (Exhaustive Events)

எந்த ஒரு சோதனையிலும், விளையக்கூடிய சாத்தியமுள்ள அனைத்து விளைவுகளையும், தீர்வாய்வான நிகழ்ச்சிகள் என்கிறோம்.

10.3.2 நிகழ்வினை ஆரம்பகால வரையறை

ஒரு சோதனை, \mathbf{n} தீா்வாய்வான, ஒன்றையொன்று விலக்கும் சமவாய்ப்புடைய விளைவுகளை கொண்டதாகவும், அவற்றில் \mathbf{m} விளைவுகள் A என்னும் நிகழ்ச்சி நிகழ்வதற்கு சாதகமானவையாகவும் இருப்பின், \mathbf{m}/\mathbf{n} என்கிற விகிதம், நிகழ்ச்சி A நடைபெறுவதற்கான நிகழ்தகவு என்று அழைக்கப்படுகிறது. மற்றும் அந்நிகழ்தகவை P(A) என்று குறிக்கப்படுகிறது.

$$\therefore P(A) = \frac{m}{n}$$

உட்கருத்து :

- (i) $0 \le P(A) \le 1$
- (ii) P(A) = 0 எனில் A என்பது ஒரு சாத்தியமற்ற நிகழ்ச்சி ஆகும்.

A என்கிற ஓர் நிகழ்ச்சியின் சாதகமான வகைகள் (m), மொத்த தீர்வாய்வான நிகழ்ச்சிகளுக்கு (n) மிகையாக இருக்க முடியாது.

அதாவது
$$0 \le m \le n$$

$$\Rightarrow 0 \le \frac{m}{n} \le 1$$

(iii) P(S) = 1 எனில், S நிச்சய நிகழ்வு ஆகும்.

எடுத்துக்காட்டு 22

ஒரு பையில் 3 சிவப்பு, 6 வெள்ளை, 7 நீல நிற பந்துகள் உள்ளன. அவற்றிலிருந்து எடுக்கப்படும் இரண்டுபந்துகளில், 1 வெள்ளையாகவும், மற்றொன்று நீலமாகவும் இருப்பதற்கான நிகழ்தகவு என்ன ?

தீர்வு :

மொக்க பந்துகள் = 3 + 6 + 7 = 16

16 பந்துகளில், 2 பந்துகள் ${}^{16}\mathrm{C}_2$ வழிகளில் தேர்ந்தெடுக்கலாம்.

$$\therefore$$
 n = ${}^{16}C_2$ = 120

எடுக்கப்படும் இரண்டு பந்துகளில் 1 வெள்ளையாகவும், 1 நீலமாகவும் இருப்பதற்கான நிகழ்ச்சியை A எனக் கொள்ளவும்.

6 வெள்ளை மற்றும் **7** நீல நிற பந்துகள் இருப்பதால், நிகழ்ச்சி A நடைபெறுவதற்கு சாதகமான மொத்த வகைகள் ${}^6\mathrm{C}_1 \times {}^7\mathrm{C}_1 = 6 \times 7 = 42$ ஆகும்.

அதாவது m = 42

$$\therefore P(A) = \frac{m}{n} = \frac{42}{120} = \frac{7}{20}$$

ஒரு நாணயம் இரண்டு முறை சுண்டப்படுகிறது குறைந்தபட்சம் ஒரு தலை கிடைப்பதற்கான நிகழ்தகவை கண்டுபிடிக்கவும்.

தீர்வு :

இங்கு கூறுவெளி
$$S = \{(H,H), (H,T), (T,H), (T,T)\}$$

 \therefore மொத்த சாத்தியமுள்ள விளைவுகள் n=4

குறைந்தபட்ச ஒரு தலை என்கிற நிகழ்ச்சி ஏற்படுவதற்கு சாதகமான விளைவுகள் (H,H), (H,T), (T,H) ஆகும்.

- ∴ மொத்த சாதகமான விளைவுகள் m = 3
- \therefore P (குறைந்த பட்ச ஒரு தலை பெறுதல்) = $\frac{3}{4}$

எடுத்துக்காட்டு 24

1–லிருந்து 100 வரையுள்ள எண்களிலிருந்து ஓர் எண் தேர்ந்தெடுக்கப்படுகிறது. அந்த எண் i) 5–ன் பெருக்கங்களாகவும் ii) 7–ஆல் வகுபடுபவையாகவும் iii) 70–க்கு மிகையாகவும், இருப்பதற்கான நிகழ்தகவு என்ன ?

தீர்வு :

சாத்தியமுள்ள விளைவுகளின் மொத்த எண்ணிக்கை = 100 C $_1$ = 100

(i) "5–ன் பெருக்கம்" என்கிற நிகழ்ச்சிக்கு, சாதகமான விளைவுகளாவன

$$\therefore$$
 சாதகமான விளைவுகள் = 20 C $_1$ = 20

$$\therefore$$
 P (தேர்ந்தெடுக்கப்பட்ட 5–ன் பெருக்கம்) = $\frac{20}{100}$ = $\frac{1}{5}$

(ii) '7–ஆல் வகுபடுபவை' என்கிற நிகழ்ச்சிக்கு சாதகமான விளைவுகளாவன

$$(7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98)$$

$$\therefore$$
 சாதகமான விளைவுகள் = $^{14}\mathrm{C_1}$ = 14

$$\therefore$$
 P (தேர்ந்தெடுக்கப்பட்ட எண் 7–ஆல் வகுபடுபவை) = $\frac{14}{100} = \frac{7}{50}$

- (iii) '70–க்கு மிகையானது' என்கிற நிகழ்ச்சிக்கு சாதகமான விளைவுகள் =30
 - \therefore P (தேர்ந்தெடுக்கப்படும் எண் 70 க்கு மிகையானது) = $\frac{30}{100}$ = $\frac{3}{10}$

10.3.3 நிகழ்தகவு – நவீன வரையறை

நிகழ்தகவின் நவீன அணுகுமுறை, முழுவதும், உண்மைகளுக்கு (axioms) உட்பட்டது மற்றும் கணவியலை (set theory) அடிப்படையாக கொண்டுள்ளதாகும். உண்மைகளுக்கு உட்பட்ட நிகழ்தகவின் தியாியை படிப்பதற்கு, சில அடிப்படையான concepts வரையறுக்க வேண்டியது அவசியமாகிறது. அவைகள் யாவன

(i) கூறுவெளி (Sample space) :

ஒரே மாதிரியான நிபந்தனையின் கீழ், திரும்பத் திரும்ப நடைபெறும் சோதனையின் ஒவ்வொரு சாத்தியமுள்ள விளைவுகளும், கூறுப்புள்ளி (sample space) என வழங்கப்படுகிறது. எல்லாக் கூறுப்புள்ளிகளின் தொகுப்பை கூறுவெளி என அழைக்கப்பட்டு S என்று குறிக்கப்படுகிறது.

(ii) நிகழ்ச்சி (Event) :

கூறுவெளியின் ஏதாவது ஒரு பகுதிக் கணம் நிகழ்ச்சி என்று அழைக்கப்படுகிறது.

(iii) ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகள் (Mutually Exclusive Events) :

 $A \cap B = \phi$ அதாவது A மற்றும் B என்பன சேராக் கணங்கள் எனில் A மற்றும் B நிகழ்ச்சிகள் ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகளாகும்.

உதாரணமாக,

$$S = \{1,2,3,4,5\}$$
 என்க.
$$A =$$
ஒற்றை எண்களின் தொகுப்பு $= \{1,3,5\}$ மற்றும் $B =$ இரட்டை எண்களின் தொகுப்பு $= \{2,4\}$ பின்பு $A \cap B =$ ϕ

். எனவே A மற்றும் B என்பது ஒன்றை ஒன்று விலக்கும் நிகழ்ச்சிகள் ஆகும்.

உட்கருத்து :

கணத்தின் வாயிலான கூற்றுகள்

- (i) $A \cup B \Rightarrow A, B$ நிகழ்ச்சியில் ஏதேனும் ஒன்று நிகழ்வது
- (ii) $A \cap B \Rightarrow A, B$ நிகழ்ச்சிகள் ஆகிய இரண்டும் ஒருங்கே நிகழ்வது.
- (iii) $\overline{A} \cap \overline{B} \Rightarrow A, B$ நிகழ்ச்சிகள் நிகழ இயலாமை
- $({
 m iv})$ ${
 m A}\cap \overline{
 m B}\Rightarrow$ நிகழ்ச்சி ${
 m A}$ நிகழுவதும், நிகழ்ச்சி ${
 m B}$ நிகழ இயலாததும்

10.3.4 நிகழ்தகவின் வரையறை (வெளிப்படை உண்மைகள் வாயிலாக)

E என்பது ஒரு சோதனை மற்றும் S என்பது அச்சோதனையோடு தொடர்பு கொண்டு ஒரு கூறுவெளியாகும். S என்கிற கூறுவெளியில் உள்ள ஒவ்வொரு நிகழ்ச்சியுடன், P(A) (A –யின் நிகழ்தகவு) என்று குறிக்கப்படுகிற ஒரு மெய்யெண்ணை நாம் தொடர்பு படுத்துவதை, A –யின் நிகழ்தகவு என்று அழைக்கப்படுகிறது. அந்நிகழ்தகவு P(A), பின்வரும் வெளிப்படை உண்மைகளுக்கு உட்பட்டுள்ளது.

வெளிப்படை உண்மை 1.
$$P(A) \ge 0$$

வெளிப்படை உண்மை 2. P(S) = 1

வெளிப்படை உண்மை $A_1, A_2 \dots$ என்பவை S –ல் உள்ள

ஒன்றையொன்று விலக்கும் தொடர் நிகழ்ச்சிகளானால்,

$$P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) +...$$

எடுத்துக்காட்டு 25

 $S = \{w_1, w_2, w_3\}$ என்பது ஒரு கூறுவெளி என்க. பின்வருவனவற்றுள் எவை S கூறுவெளியின் மேல் ஒரு நிகழ்தகவு வெறியை வரையறுக்கிறது?

(i)
$$P(w_1) = 1$$
, $P(w_2) = \frac{2}{3}$ $P(w_3) = \frac{1}{3}$

(ii)
$$P(w_1) = \frac{2}{3}$$
, $P(w_2) = \frac{1}{3}$ $P(w_3) = -\frac{2}{3}$

(iii)
$$P(w_1) = 0$$
, $P(w_2) = \frac{2}{3}$ $P(w_3) = \frac{1}{3}$

தீர்வு :

(i) $P(w_1), P(w_2), P(w_3)$ ஆகியவை குறையெண்ணல்ல.

ie:
$$P(w_1) \ge 0$$
, $P(w_2) \ge 0$, $P(w_3) \ge 0$.

ஆனால்
$$P(w_1) + P(w_2) + P(w_3) \neq 1$$

எனவே **2**–ன் படி, நிகழ்தகவுச் சாா்பின் தொகுப்பு நிகழ்தகவு கூறுவெளியை வரையறுக்கவில்லை.

- (ii) இங்கு $P(w_3)$ குறைமதிப்பு, ஆதலால் உண்மை 1–ன் படி, நிகழ்தகவுச் சாா்பின் தொகுப்பு, நிகழ்தகவு கூறுவெளியை வரையறுக்கவில்லை.
- (iii) இங்கு $P(w_1)$, $P(w_2)$, $P(w_3)$ ஆகியவை குறையெண்ணல்ல. மேலும் $P(w_1)+P(w_2)+P(w_3)=0+\frac{2}{3}+\frac{1}{3}=1$

். எனவே உண்மை 1,2 –ன் படி, நிகழ்தகவுச் சாா்பின் தொகுப்பு நிகழ்தகவு கூறுவெளியை வரையறுக்கிறது.

எடுத்துக்காட்டு 26

P என்பது $S = \{w_1, \, w_2, \, w_3\}$ என்ற கூறுவெளியின் நிகழ்தகவு சார்பலன் என்க.

$$P(w_1) = \frac{1}{3}$$
 மற்றும் $P(w_3) = \frac{1}{2}$ எனில், $P(w_2)$ –ன் மதிப்பைக் காண்க.

தீர்வு :

இங்கு $P(w_1)=\frac{1}{3}$ மற்றும் $P(w_3)=\frac{1}{2}$ ஆகிய இரண்டும் குறையில்லா எண் ஆகும்.

வெளிப்படை உண்மை 2-ன் படி,

$$P(w_1) + P(w_2) + P(w_3) = 1$$
 $\therefore P(w_2) = 1 - P(w_1) - P(w_3)$
 $\therefore P(w_2) = 1 - P(w_1) - P(w_3)$
 $= 1 - \frac{1}{3} - \frac{1}{2}$
 $= \frac{1}{6}$ என்பது ஒரு குறையில்லா எண் ஆகும்.
$$\Rightarrow P(w_2) = \frac{1}{6}$$

10.3.5 நிகழ்ச்சிகளுக்கான நிகழ்தகவின் அடிப்படை தேற்றங்கள்

தேற்றம் : 1

S என்பது ஒரு கூறுவெளி என்க. பின் $P(\phi) = o$. அதாவது சாத்தியமில்லா நிகழ்ச்சியின் நிகழ்தகவு பூஜ்ஜியமாகும்.

நிரூபணம் :

$$S \cup \phi = S$$
 என்பது நாம் அறிந்ததே.
$$\therefore \ P\left(S \cup \phi\right) = P(S)$$
 ie.
$$P(S) + P(\phi) = P(S) \text{ (வெளிப்படை உண்மை 3-ன் படி)}$$

$$\therefore \qquad P(\phi) = 0$$

தேற்றம் : 2

 ${
m S}$ என்பது ஒரு கூறுவெளி மற்றும் ${
m A}$ என்பது அக்கூறுவெளியின் ஒரு நிகழ்ச்சி எனில்

$$P(\overline{A}) = 1 - P(A)$$

நிரூபணம்:

$$A \cup \overline{A} = S$$
 என்பது நாம் அறிந்தது $\therefore P(A \cup \overline{A}) = P(S)$ $P(A) + P(\overline{A}) = 1$ வெளிப்படை (2) மற்றும் (3) –ன் படி $\Rightarrow P(\overline{A}) = 1 - P(A)$

10.3.6 கூட்டல் தேற்றம்

கூற்று: A மற்றும் B ஆகிய ஏதாவது இரு நிகழ்ச்சிகள் எனில்

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

உட்கருத்து :

(i) இரு நிகழ்ச்சிகள் A மற்றும் B ஆகியவை ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகள் எனில் $A \cap B = \phi$

$$\therefore P(A \cap B) = 0$$

$$\Rightarrow$$
 $P(A \cup B) = P(A) + P(B)$

(ii) A,B,C என்கிற ஏதேனும் மூன்று நிகழ்ச்சிகளுக்கும் கூட்டல் தேற்றத்தை விரித்துரைக்கலாம்.

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

எடுத்துக்காட்டு 27

நன்கு குலுக்கப்பட்ட ஒரு சீட்டுக்கட்டிலிருந்து எடுக்கப்படும் ஒரு சீட்டு ஸ்பேட் சீட்டாகவோ, ஏஸ் சீட்டாகவோ இருப்பதற்கான நிகழ்தகவு என்ன ?

தீர்வு :

சீட்டுக்களின் மொத்த எண்ணிக்கை = 52.

எனவே, கூறுவெளியில் **52** கூறுப்புள்ளிகள் காணப்படும், ஒவ்வொரு கூறுப்புள்ளிகளும் சம நிக<u>ழ்</u>தகவை பெற்றிருக்கும்.

எடுக்கப்பட்ட சீட்டு "ஸ்பேட் சீட்டாக" இருப்பதற்கான நிகழ்ச்சியை A என்க.

$$P(A) = P$$
 (எடுக்கப்படும் சீட்டு ஸ்பேட்) = $\frac{^{13}C_1}{^{52}C_1}$ ஏனெனில் நிகழ்ச்சி A –ல் 13 ஸ்பேட் சீட்டுகளை உடையதாக

$$P(A) = \frac{13}{52}$$

எடுக்கப்பட்ட சீட்டு ''ஏஸ் சீட்டாக'' இருப்பதற்கான நிகழ்ச்சியை ${
m B}$ என்க.

$$P(B) = P$$
 (எடுக்கப்படும் சீட்டு "ஏஸ்")
$$= \frac{{}^4C_1}{{}^{52}C_1} \; \; \text{ஏனெனில் நிகழ்ச்சி B-ல் 4 கூறுப்புள்ளிகள் இருக்கும். அதாவது$$

$$=\frac{4}{52}$$

 $(A \cap B)$ என்கிற கலவை நிகழ்ச்சி "ஸ்பேட்-ம்" எஸ்-ம்" என்கிற ஒரே ஒரு கூறுப்புள்ளியை கொண்டிருக்கும்.

எனவே
$$P(A \cap B) = P$$
 (எடுக்கப்படும் சீட்டு "ஸ்பேட் சின்னம் உள்ள ஏஸ் சீட்டு")
$$= \frac{1}{52}$$

ஆகையால் தேவையான நிகழ்தகவு

$$P(A \cup B)$$
 = P (எடுக்கப்பட்ட சீட்டு ஸ்பேட் அல்லது ஏஸ் ஆக இருப்பது)
$$= P(A) + P(B) - P(A \cap B)$$
(கூட்டல் தேற்றத்தின் படி)
$$= \frac{13}{52} + \frac{4}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13}$$

$$\Rightarrow P(A \cup B) = \frac{4}{13}$$

எடுத்துக்காட்டு 28

1–லிருந்து 20 வரை உள்ள எண்களிலிருந்து, ஒரு எண் சமவாய்ப்பு முறையில் தேர்ந்தெடுக்கப்பெற்ற அந்த எண் 3–ன் பெருக்கமாகவோ அல்லது எண் 4–ன் பெருக்கமாகவோ இருப்பதற்கான நிகழ்தகவு என்ன ?

தீர்வு :

சமவாய்ப்பு முறையில் தோ்ந்தெடுக்கப்படும் ஒரு எண்ணை, 20 C $_1$ வழிகளில் தோ்ந்தெடுக்க முடியும். அதாவது கூறுவெளி, S, 20 கூறுப்புள்ளிகளை கொண்டிருக்கும்.

$$\Rightarrow$$
 S = {1,2,3,... 20}

தோ்ந்தெடுக்கப்படும் எண் 3–ன் பெருக்கமாக / மடங்காக இருப்பதற்கான நிகழ்ச்சி A எனில்,

$$A = \{3,6,9,12,15,18\}$$

$$\therefore P(A) = P\{$$
தேர்ந்தெடுக்கப்பெற்ற எண் 3–ன் பெருக்கமாக $\} = \frac{6}{20}$.

தோ்ந்தெடுக்கப்படும் எண் **4**–ன் பெருக்கமாக / மடங்காக இருப்பதற்கான நிகழ்ச்சி B எனில்,

$$B = \{4,8,12,16,20\}$$

$$P(B) = P \{$$
தேர்ந்தெடுக்கப்பட்ட எண் 4–ன் பெருக்கமாக $\} = \frac{5}{20}$

 $A \cap B$ என்ற நிகழ்ச்சியில் **12**, என்ற ஒரே ஒரு கூறுப்புள்ளியை கொண்டிருக்கும் அக்கூறுப்புள்ளி **3**–ன் பெருக்கமாகவும், **4**–ன் பெருக்கமாகவும் இருக்கும்.

$$\Rightarrow$$
 A \cap B = {12}

 $P(A \cap B) = P$ {தேர்ந்தெடுக்கப்பெற்ற எண் **3**–ன் பெருக்கமாகவும் **4**ன் பெருக்கமாகவும் இருப்பதற்கான}

$$=\frac{1}{20}$$

எனவே தேவையான நிகழ்தகவு,

 $P(A \cup B) = P$ (தேர்ந்தெடுக்கப்பெற்ற எண் 3–ன் பெருக்கம் அல்லது எண் 4ன் பெருக்கமாக இருப்பதற்கு)

$$= P(A) + P(B) - P(A \cap B)$$

$$= \frac{6}{20} + \frac{5}{20} - \frac{1}{20} = \frac{10}{20}$$

$$P(A \cup B) = \frac{1}{2}$$

எடுத்துக்காட்டு 29

ஒரு பையில் 6 கருப்பு மற்றும் 5 சிவப்பு பந்துகள் உள்ளன. அவற்றிலிருந்து 2 பந்துகள் சமவாய்ப்பு முறையில் தேர்ந்தெடுக்கப் பெற்றால் அவை இரண்டும் ஒரே நிறத்தில் இருப்பதற்கான நிகழ்தகவு என்ன ?

தீர்வு :

மொத்த பந்துகள் = 11

எடுக்கப்பட்ட பந்துகள் = 2

எனவே தீர்வாய்வான வகைகளின் எண்ணிக்கை = 11 C $_{2}$ = 55

இரு பந்துகளும் கருமை நிறத்தில் பெறுவதற்கான நிகழ்ச்சியை A எனவும், இரு பந்துகளும் சிவப்பு நிறத்தில் பெறுவதற்கான நிகழ்ச்சியை B எனவும் கொள்க.

எனவே நிகழ்தகவின் கூட்டல் தேற்றத்தின் படி, தேவையான நிகழ்தகவு யாதெனில்

P (இரு பந்துகளும் ஒரே நிறத்தில் இருப்பதற்கான) = $P(A \cup B)$

$$= P(A) + P(B)$$

$$= \frac{{}^{6}C_{2}}{{}^{11}C_{2}} + \frac{{}^{5}C_{2}}{{}^{11}C_{2}}$$

$$= \frac{15}{55} + \frac{10}{55} = \frac{25}{55} = \frac{5}{11}$$

எடுத்<u>து</u>க்காட்டு 30

ஒரு பெட்டியில் 6 சிவப்பு, 4 வெள்ளை மற்றும் 5 கருப்பு பந்துகள் உள்ளன. அவற்றிலிருந்து 4 பந்துகளை ஒரு நபர் சமவாய்ப்பு முறையில் எடுக்கிறார். அவ்வாறு எடுக்கப்பட்ட பந்துகளில், ஒவ்வொரு நிறத்திலும் குறைந்தபட்சம் ஒரு பந்து இருப்பதற்கான நிகழ்தகவு என்ன ?

தீர்வு :

மொத்தமுள்ள பந்துகள் = 15

எடுக்கப்பட்ட பந்துகள் =4

தீா்வாய்வான வகைகளின் எண்ணிக்கை = $^{15}\mathrm{c_4}$ = 1365

பெட்டியிலிருந்து சமவாய்ப்பு முறையில் எடுக்கப்பட்ட 4 பந்துகளில், ஒவ்வொரு நிறத்திலும் குறைந்த பட்சம் ஒரு பந்து இருப்பதற்கான E என்ற நிகழ்ச்சி, கீழ்க்கண்ட ஒன்றை ஒன்று விலக்கும் வழிகளில் நடைபெறலாம். சி, வெ, க என்பது சிவப்பு, வெள்ளை, கருப்பு பந்துகளை குறிக்கும்)

$$E = (\mathcal{E} = 1, \Omega = 1, \mathcal{E} = 2) U (\mathcal{E} = 2, \Omega = 1, \mathcal{E} = 1) U (\mathcal{E} = 1, \Omega = 2, \mathcal{E} = 1)$$

எனவே, நிகழ்தகவிற்கான கூடுதல் தேற்றத்தின் படி,

$$\begin{split} &P(E) = P(\text{\'e}\text{I} = 1, \text{ Gol} = 1, \text{ is} = 2) + P(\text{\'e}\text{I} = 2, \text{ Gol} = 1, \text{ is} = 1) + P(\text{\'e}\text{I} = 1, \text{ Gol} = 2, \text{ is} = 1) \\ &= \frac{{}^{6}c_{1} \times {}^{4}c_{1} \times {}^{5}c_{2}}{{}^{15}c_{4}} + \frac{{}^{6}c_{2} \times {}^{4}c_{1} \times {}^{5}c_{1}}{{}^{15}c_{4}} + \frac{{}^{6}c_{1} \times {}^{4}c_{2} \times {}^{5}c_{1}}{{}^{15}c_{4}} \\ &= \frac{1}{{}^{15}c_{4}}[(6 \times 4 \times 10) + (15 \times 4 \times 5) + (6 \times 6 \times 5)] \\ &= \frac{1}{{}^{15}c_{4}}[240 + 300 + 180] = \frac{720}{1365} = \frac{48}{91} \end{split}$$

10.3.7 நிபந்தனைக்கு உட்பட்ட நிகழ்தகவு (Conditional Probability)

ыотшор:

A மற்றும் B ஆகியன, கூறுவெளி S–ல் உள்ள இரு நிகழ்ச்சிகள் என்க. நிகழ்ச்சி A ஏற்கனவே நடந்துள்ள போது, நிகழ்ச்சி B –யின் நிபந்தனைக்கு உட்பட்ட நிகழ்தகவை

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$
, என்று வரையறுக்கப்படுகிறது.
இதில் $P(A) \neq 0$ என இருப்பது அவசியமாகும்.

உட்கருத்து :

- (ii) P(A/B), P(B/A) ஆகியவற்றை நாம் கணக்கிடும் போது, குறைக்கப்பட்ட கூறுவெளியை பொருத்து கணக்கிடுவது அவசியமாகிறது.

எடுத்துக்காட்டு 31

மூன்று நாணயங்கள் சுண்டப்படுகிறது. இவற்றில் முதல் நாணயத்தில் "பூ" தோன்றினால், எல்லாவற்றிலும் "பூ" தோன்றுவதற்கான நிகழ்தகவு என்ன ?

தீர்வு :

இங்கு H= தலை, T= பூ என்பதை குறிப்பதாக கொள்வோம். மூன்று நாணயங்களை கண்டும் சோதனையின் முடிவாக உருவாகும் கூறுவெளி,

$$S = \{(HHH), (HHT), (HTH), (THH), (THT), (HTT), (TTH), (TTT)\}$$

$$\Rightarrow n(S) = 8.$$

நிகழ்ச்சி A = முதல் நாணயத்தில் "பூ" தோன்றுவது

= {(THH), (THT), (TTH), (TTT)}

$$n(A) = 4$$
.
 $P(A) = \frac{n(A)}{n(S)} = \frac{4}{8} = \frac{1}{2}$

அனைத்தும் "பூ" பெறுவதற்கான நிகழ்ச்சியை B என்க. அதாவது (TTT).

 $B \cap A$ என்கிற கலவை நிகழ்ச்சி ஒரே சமயத்தில் அனைத்து நாணயங்களில் "பூ" தோன்றுவது மற்றும் முதல் நாணயத்தில் "பூ" தோன்றுவது ஆகிய இரு நிகழ்ச்சிகளையும் குறிப்பதாக கொள்வோம்.

$$\Rightarrow$$
 :. $B \cap A = \{(TTT)\}$
 $n(B \cap A) = 1$
:. $P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{1}{8}$ (` : $B \cap A = A \cap B$)
எனவே சூத்திரப்படி
 $P(B \mid A) = \frac{P(A \cap B)}{P(A)}$
:. $P(B \mid A) = \frac{\frac{1}{8}}{\frac{1}{2}} = \frac{2}{8} = \frac{1}{4}$

எடுத்துக்காட்டு 32

ஒரு பெட்டியில் 4 சிவப்பு, மற்றும் 6 பச்சை பந்துகள் உள்ளன. இப்பெட்டியிலிருந்து ஒன்றன்பின் ஒன்றாக சமவாய்ப்பு முறையில் இரு பந்துகள் திருப்பிப் போடாமல் எடுக்கப்படுகின்றன. முதலில் எடுக்கப்பட்ட பந்து பச்சை நிறமாக இருக்கும் போது, இரண்டாவதாக எடுக்கப்பட்ட பந்தும் பச்சையாக இருப்பதற்கான நிகழ்தகவு என்ன ?

தீா்வு :

நிகழ்ச்சிகள் A மற்றும் B ஆகியவற்றை கீழ்க்கண்டவாறு வரையறுக்கவும்.

 $A = \{$ எடுக்கப்பட்ட முதல் பந்தின் நிறம் பச்சை $\}$

 $\mathbf{B} = \{$ எடுக்கப்பட்ட இரண்டாவது பந்தின் நிறம் பச்சை $\}$

மொத்த பந்துகளின் எண்ணிக்கை =4+6=10

ஒன்றன் பின் ஒன்றாக, சமவாய்ப்பு முறையில் இரண்டு பந்துகள் எடுக்கப்படுகிறது.

இங்கு நாம் P(B/A) ஐக் கணக்கிட வேண்டும்.

முதல் பந்தை எடுக்கும் போது,

 $P(A) = P(\mu g \dot{0}) \cup \dot{0} \cup$

$$=\frac{{}^{6}\mathrm{C}_{1}}{{}^{10}\mathrm{C}_{1}}=\frac{6}{10}$$

எடுக்கப்பட்ட முதல் ஐந்து (பச்சை) திருப்பிப் போடாமல் இருந்தால், பெட்டியில் உள்ள மொத்த பந்துகளின் எண்ணிக்கை 9 ஆகவும், மற்றும் மொத்தமுள்ள பச்சை நிற பந்துகளின் எண்ணிக்கை 5 ஆகவும் குறைகிறது.

$$\therefore P(A \cap B) = \frac{{}^{6}C_{1}}{{}^{10}C_{1}} \times \frac{{}^{5}C_{1}}{{}^{9}C_{1}} = \frac{6}{10} \times \frac{5}{9} = \frac{1}{3}$$

ஆகையால் P(B/A) = P (எடுக்கப்பட்ட முதல் பந்து பச்சை எனும் பொழுது எடுக்கப்படும் இரண்டாவது பந்து பச்சையாக இருக்கும்)

$$= \frac{P(A \cap B)}{P(A)}$$

$$P(B/A) = \frac{\frac{1}{3}}{\frac{6}{10}} = \frac{1}{3} \times \frac{10}{6} = \frac{5}{9}$$

10.3.8 சார்பற்ற நிகழ்ச்சிகளுக்கான பெருக்கல் தேற்றம்

A மற்றும் B ஆகியன இரு சார்பற்ற நிகழ்ச்சிகள் எனில்

$$P(A \cap B) = P(A) P(B)$$
.

உட்கருத்து :

 $A_1, A_2, \dots A_n$ ஆகியவை n எண்ணிக்கை கொண்ட சார்பற்ற நிகழ்ச்சிகள் எனில்

$$P(A_1 \cap A_2 \cap A_3 \dots \cap A_n) = P(A_1) P(A_2) P(A_3) \dots P(A_n)$$

எடுத்துக்காட்டு 33

துப்பாக்கி சுடும் போட்டி ஒன்றில், இலக்கை எய்வதற்கான A –யின் நிகழ்தகவு $\frac{1}{2}$, B–யின் நிகழ்தகவு $\frac{2}{3}$ C–யின் நிகழ்தகவு $\frac{3}{4}$ ஆகும். A, B, C ஆகிய மூவரும் ஒரே இலக்கை ஒரே சமயத்தில் சுடுகிறார்கள் எனில்,

- (i) மூவரும் இலக்கை எய்வதற்கான
- (ii) ஒரே ஒருவா் மட்டும் இலக்கை எய்வதற்கான
- (iii) குறைந்தபட்சம் யாரேனும் ஒருவா் இலக்கை எய்வதற்கான நிகழ்தகவை கணக்கிடுக.

இங்கு
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{2}{3}$, $P(C) = \frac{3}{4}$
 $P(\overline{A}) = 1 - \frac{1}{2} = \frac{1}{2}$, $P(\overline{B}) = 1 - \frac{2}{3} = \frac{1}{3}$, $P(\overline{C}) = 1 - \frac{3}{4} = \frac{1}{4}$

(i) P (மூவரும் இலக்கை எய்வது) = $P(A \cap B \cap C)$

$$= P(A) P(B) P(C)$$

(: A, B, C சார்பற்று எய்வது)

$$=\frac{1}{2}\frac{2}{3}\frac{3}{4}=\frac{1}{4}$$

நிகழ்ச்சிகளை கீழ்க்கண்டவாறு வரையறுப்போம்.

$$E_1 = \{$$
ஒரே ஒருவர் மட்டும் இலக்கை எய்வது $\}$ = $\{(A \cap \overline{B} \cap \overline{C}) \cup (\overline{A} \cap B \cap \overline{C}) \cup (\overline{A} \cap \overline{B} \cap C)\}$

 ${f E}_2 = \{$ குறைந்த பட்சம் யாரேனும் ஒருவர் இலக்கை எய்வது $\}$ = $\{({f A} \cup {f B} \cup {f C})\}$

இங்கு

(ii)
$$P(E_1) = P(A \cap \overline{B} \cap \overline{C}) + P(\overline{A} \cap B \cap \overline{C}) + P(\overline{A} \cap \overline{B} \cap C)$$
$$= \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{3}{4}$$
$$= \frac{1}{4}$$

(iii)
$$\begin{split} P(E_2) &= P\left(A \cup B \cup C\right) \\ &= P(A) + P(B) + P(C) - P(A \cap C) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C) \\ &= \frac{1}{2} + \frac{2}{3} + \frac{3}{4} - \frac{1}{2} \cdot \frac{2}{3} - \frac{2}{3} \cdot \frac{3}{4} - \frac{1}{2} \cdot \frac{3}{4} + \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \\ &= \frac{1}{2} + \frac{2}{3} + \frac{3}{4} - \frac{1}{3} - \frac{1}{2} - \frac{3}{8} + \frac{1}{4} \\ &= \frac{23}{24} \end{split}$$

எடுத்துக்காட்டு 34

 $A,\,B,\,C$ என்கிற 3 மாணவாகளிடம் ஒரு புள்ளியில் கணக்கு தரப்படுகிது. அக்கணக்கை அவாகள் தீா்ப்பதற்கான நிகழ்தகவு முறையே $\frac{1}{2},\,\frac{1}{3},\,\frac{1}{4}$ எனில், அக்கணக்கை தீா்ப்பதற்கான நிகழ்தகவு என்ன ?

$$P(A) = P($$
கணக்கை A தீர்ப்பதற்கான நிகழ்தகவு $) = \frac{1}{2}$ $P(B) = P($ கணக்கை B தீர்ப்பதற்கான நிகழ்தகவு $) = \frac{1}{3}$ $P(C) = P($ கணக்கை C தீர்ப்பதற்கான நிகழ்தகவு $) = \frac{1}{4}$ A, B, C என்பன சார்பற்ற நிகழ்ச்சிகள் என்பதால்

$$P(A \cap B) = P(A) P(B) = \frac{1}{2} \frac{1}{3}$$

$$P(B \cap C) = P(B) P(C) = \frac{1}{3} \frac{1}{4}$$

$$P(C \cap A) = P(C) P(A) = \frac{1}{4} \frac{1}{2}$$

$$P(A \cap B \cap C) = P(A) P(B) P(C) = \frac{1}{2} \frac{1}{3} \frac{1}{4}$$

 \therefore P(கணக்கை தீர்ப்பதற்கான நிகழ்தகவு) = P(யாரேனும் ஒருவர் கணக்கை தீர்ப்பதற்கான நிகழ்தகவு)

$$= P(A \cup B \cup C)$$

$$= P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$$

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{2} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{1}{4} - \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4}$$

$$= \frac{12 + 8 + 6 - 4 - 2 - 3 + 1}{24} = \frac{18}{24} = \frac{3}{4}$$

10.3.9 பேயிஸ் தேற்றம் (Baye's Theorem)

S என்பதை கூறுவெளி என்க. $A_1,A_2,\dots A_n$ என்பன கூறுவெளி S–ல் உள்ள தொடர்பற்ற நிகழ்ச்சிகளாகவும், $B,P(B)\neq 0$ என்பது கூறுவெளி S –ல் ஏதேனும் ஒரு நிகழ்ச்சியை குறிப்பதாகவும் கொண்டால், பேயிஸ் தேற்றம் கூறுவது யாதெனில்,

$$P(A_r/B) = \frac{P(A_r)P(B/A_r)}{\displaystyle\sum_{r=1}^n P(A_r)P(B/A_r)}$$
 என்பதாகும்.

எடுத்துக்காட்டு 35

ஒரே மாதிரியான இரு பெட்டிகளில், முறையே 4 வெள்ளை மற்றும் 3 சிவப்பு, 3 வெள்ளை மற்றும் 7 சிவப்பு பந்துகள் உள்ளன. சமவாய்ப்பு முறையில் ஒரு பெட்டி தேர்ந்தெடுக்கப்பட்டு, அதிலிருந்து ஒரு பந்து எடுக்கப்படுகிறது. அப்பந்து வெள்ளை நிறமுடையவையாக இருப்பதற்கான நிகழ்தகவை காண்க. அப்பந்து வெள்ளை நிறமுடையவையாக இருக்கும் பட்சத்தில், அப்பந்து முதல் பெட்டியிலிருந்து வருவதற்கான நிகழ்தகவு காண்க ?

 A_1,A_2 என்கிற பெட்டிகளில் முறையே **4** வெள்ளை மற்றும் **3** சிவப்பு, **3** வெள்ளை மற்றும் **7** சிவப்பு ப<u>ந்து</u>கள் உள்ளன.

i.e	A_1	A_2		
	4 வெள்ளை	3 வெள்ளை		
	3 சிவப்பு	7 சிவப்பு		
	மொத்தம் 7 பந்துகள்	மொத்தம் 10 பந்துகள்		

இரு பெட்டிகளில் ஒரு பெட்டி சமவாய்ப்பு முறையில் தேர்ந்தெடுக்கப்படுகிறது.

$$P(A_1) = P(A_2) = \frac{1}{2}$$

தோ்ந்தெடுக்கப்பட்ட பெட்டியிலிருந்து ஒரு பந்து தோ்ந்தெடுக்கப்படுகிறது. அப்பந்து வெள்ளை நிறமுடையதாக இருக்கக் கூடிய நிகழ்ச்சியை B என்க.

 $P(B/A_1) = P(தேர்ந்தெடுக்கப்பட்ட வெள்ளை பந்து முதல் பெட்டியிலிருந்து வருவதற்கான)$

$$P(B/A_1) = \frac{4}{7}$$

 \therefore $P(B/A_2) = P(தேர்ந்தெடுக்கப்பட்ட வெள்ளை பந்து இரண்டாவது பெட்டியிலிருந்து வருவதற்கான)$

$$\Rightarrow$$
 P(B/A₂) = $\frac{3}{10}$

$$P\left(B\right)=P\left($$
 தேர்ந்தெடுக்கப்பட்ட பந்து வெள்ளை நிறத்தில் இருப்பதற்கான)
$$=P(A_1)\ P(B/A_1)+P\left(A_2\right)P(B/A_2)$$

$$=\frac{1}{2}\ \frac{4}{7}+\frac{1}{2}\ \frac{3}{10}$$

$$=\frac{61}{140}$$

பேயிஸ் தேற்றப்படி, வெள்ளைப் பந்து முதல் பெட்டியிலிருந்து வருவதற்கான நிகழ்தகவு யாதெனில்

$$P(B_1 / A) = \frac{P(A_1)P(B / A_1)}{P(A_1)P(B / A_1) + P(A_2)P(B / A_2)}$$
$$= \frac{\frac{1}{2} \frac{4}{7}}{\frac{1}{2} \frac{4}{7} + \frac{1}{2} \frac{3}{10}} = \frac{\frac{4}{7}}{\frac{4}{7} + \frac{3}{10}} = \frac{40}{61}$$

ஒரு தொழிற்சாலை 3 இயந்திரங்கள் $A_1,\,A_2,\,A_3$ முறையே $1000,\,2000,\,3000$ திருகுகள் ஒவ்வொரு நாளும் உற்பத்தி செய்கின்றன. அவற்றில் $A_1\,\,1\%$ –ம், $A_2\,\,1.5\%$ –ம், $A_3\,\,2\%$ –ம், குறையுள்ளவற்றை உற்பத்தி செய்கின்றன. ஒரு நாளின் முடிவில், உற்பத்தியிலிருந்து சமவாய்ப்பு முறையில் ஒரு திருகு தேர்ந்தெடுக்கப்பட்ட போது அது குறையுள்ளதாக காணப்பட்டது. அது இயந்திரம் A_1 –ன் உற்பத்தியிலிருந்து வந்தது என்பதற்கான நிகழ்தகவு என்ன ?

தீர்வு :

$$P(A_1) = P(இயந்திரம் A_1 உற்பத்தி செய்த திருகுகளுக்கான)
$$= \frac{1000}{6000} = \frac{1}{6}$$$$

$${
m P(A_2)}\ ={
m P(}$$
இயந்திரம் ${
m A_2}$ உற்பத்தி செய்த திருகுகளுக்கான)
$$={2000\over 6000}={1\over 3}$$

$${
m P(A_3)}\ ={
m P(}$$
இயந்திரம் ${
m A_3}$ உற்பத்தி செய்த திருகுகளுக்கான)
$$={3000\over 6000}={1\over 2}$$

தேர்ந்தெடுக்கப்பட்ட திருகு குறையுடையதாக இருப்பதற்கான நிகழ்ச்சியை B என்க.

$$:: P(B/A_1) = P$$
 (குறையுள்ள திருகு இயந்திரம் A_1 –லிருந்து வருவதற்கான) $= .01$

இதைப் போலவே

$$P(B/A_2)$$
 = P (குறையுள்ள திருகு இயந்திரம் A_2 –யிலிருந்து வருவதற்கான) = $.015$ $P(B/A_3)$ = P (குறையுள்ள திருகு இயந்திரம் A_3 –யிலிருந்து வருவதற்கான) = $.02$

நாம் காண வேண்டியது $P(A_1/B)$

எனவே பேயிஸின் தேற்றப்படி நாம் பெறுவது யாதெனில்

$$P(A_1 / B) = \frac{P(A_1) P(B / A_1)}{P(A_1) P(B / A_1) + P(A_2) P(B / A_2) + P(A_3) P(B / A_3)}$$

$$= \frac{\frac{1}{6} \times (.01)}{\frac{1}{6} \times (.01) + \frac{1}{3} \times (.015) + \frac{1}{2} \times (.02)}$$

$$= \frac{.01}{.01 + .03 + .06} = \frac{.01}{.1} = \frac{1}{10}$$

திருகுகள் உற்பத்தி செய்யும் தொழிற்சாலை ஒன்றில் இயந்திரங்கள் A_1,A_2,A_3 முறையே 25%,35% மற்றும் 40% உற்பத்தி செய்கின்றன. அவற்றின் மொத்த உற்பத்தியில் 5%,4%,2% திருகுகள் குறையுள்ளதாக காணப்படுகின்றன. உற்பத்தியிலிருந்து, சமவாய்ப்பு முறையில் ஒரு திருகு எடுக்கப்படும் போது, அது குறையுள்ளதாக காணப்படுகிறது. அது இயந்திரம் A_2 –வால் உற்பத்தி செய்யப்பட்டது என்பதற்கான நிகழ்தகவு என்ன ?

தீர்வு ::

$$P(A_1) = P$$
 (இயந்திரம் A_1 உற்பத்தி செய்த திருகுகளுக்கான)
$$= \frac{25}{100} = .25$$

இதைப் போலவே
$$P(A_2)=rac{35}{100}=.35$$
 மற்றும் $P(A_3)=rac{40}{100}=.4$

தேர்ந்தெடுக்கப்பட்ட திருகு குறையுடையதாக இருப்பதற்கான நிகழ்ச்சியை B என்க.

$$P(B/A_1) = P(குறையுள்ள திருகு இயந்திரம் A_1 –லிருந்து வருவதற்கான)
$$= \frac{5}{100} = .05$$$$

இதைப் போலவே
$$P(B/A_2)=\frac{4}{100}=.04$$
 மற்றும் $P(B/A_3)=\frac{2}{100}=.02$ நாம் காண வேண்டியது $P(A_2/B)$

எனவே பேயிஸின் தேற்றப்படி, நாம் பெறுவது யாதெனில்,

$$P(A_2 / B) = \frac{P(A_2) P(B / A_2)}{P(A_1) P(B / A_1) + P(A) P(B / A_2) + P(A_3) P(B / A_3)}$$

$$= \frac{(.35) (.04)}{(.25) (.05) + (.35) (.04) + (.4) (.02)}$$

$$= \frac{28}{69}$$

பயிற்சி 10.3

- 1) மூன்று நாணயங்கள் சுண்டப்படுகிது. இதில் (i) தலை விழாமல் இருப்பதற்கு மற்றும் (ii) குறைந்த பட்சம் ஒரு தலை விழுவதற்கான நிகழ்தகவைக் காண்க.
- 2) ஒரு முழுமையான பகடை இருமுறை வீசப்படும் பொழுது, எண்களின் கூடுதல் **9** பெறுவதற்கான நிகழ்த்கவைக் கண்டுபிடிக்கவும்.
- 3) 4 வெள்ளை, 6 கருப்பு பந்துகளைக் கொண்ட ஒரு பையிலிருந்து, சமவாய்ப்பு முறையில் இரண்டு பந்துகள் எடுக்கப்படுகிறது. (i) இரண்டும் வெள்ளையாக மற்றும் (ii) இரண்டும் கருப்பாக இருப்பதற்கான நிகழ்தகவு என்ன ?

- 4) {1,2,3,....100} லிருந்து ஒரு எண் தேர்ந்தெடுக்கப்படும் பொழுது அவ்வெண்
 (i) வர்க்க எண்ணாக (ii) 3 அல்லது 7ன் பெருக்கமாக
- 5) ஒரு பையில் 4 வெள்ளை, 5 கருப்பு மற்றும் 6 சிவப்பு பந்துகள் உள்ளன. சமவாய்ப்பு முறையில் ஒரு பந்து எடுக்கப்படும் போது, அப்பந்து சிவப்பு அல்லது வெள்ளை நிறமாக இருப்பதற்கான நிகழ்தகவு என்ன ?
- 6) இரண்டு பகடைகள் ஒரே சமயத்தில் வீசப்படும் போது, அவ்விரண்டு நாணயங்களின் மேல் காணப்படும் எண்களின் கூடுதல் 10க்கு மிகையாக இருப்பதற்கான நிகழ்தகவு என்ன ?
- 7) ஒரு நபர் 4–ல், 3 முறை இலக்கை எய்துவார் எனவும், மற்றொரு நபர் 3–ல் 2 முறை இலக்கை எய்துவார் எனவும் தெரிகிறது. இரு நபர்களும் சுடும் பொழுது, இலக்க எய்தப்படுவதற்கான நிகழ்தகவு என்ன ?
- 8) மூன்று பெட்டிகளில் முறையே, 1 வெள்ளை, 2 சிவப்பு, 3 கருப்பு, 2 வெள்ளை, 3 சிவப்பு, 1 கருப்பு, 2 வெள்ளை, 1 சிவப்பு, 2 கருப்பு பந்துகள் உள்ளன. சமவாய்ப்பு முறையில் ஒரு பெட்டி தோர்ந்தெடுக்கப்பட்டு அதிலிருந்து இரண்டு பந்துகள் எடுக்கப்படுகிறது. அவ்விரு பந்துகளும் 1 சிவப்பு, 1 வெள்ளை என காணப்படுகிறது. அவைகள் இரண்டாவது பெட்டியில் இருந்து வந்ததற்கான நிகழ்தகவு என்ன ?
- 9) ஒரு தொழிற்சாலையில் A_1 , A_2 , A_3 என்ற மூன்று இயந்திரங்கள் முறையே 20%, 35% மற்றும் 45% பொருட்களை உற்பத்தி செய்கிறது. A_1 என்கிற இயந்திரம் உற்பத்தி செய்தவற்றில் 2% பழுதுள்ளவை என்பதனை முன் அனுபவத்தின் மூலம் அறிய முடிகிறது. அதைப் போலவே A_2 மற்றும் A_3 இயந்திரங்கள் உற்பத்தி செய்வதில் மு— றயே 3%, 5% பொருட்கள் பழுதுள்ளவையாக காணப்படுகிறது. சமவாய்ப்பு முறையில் உற்பத்தி செய்யப்பட்ட பொருளிலிருந்து, ஒன்று எடுக்கப்பட்டு, அது பழுதுள்ளவை என காணப்படுகிறது. அப்பொருள், இயந்திரம் A_3 –ல் உற்பத்தி செய்யப்பட்டது என்பதற்கான நிகழ்தகவு என்ன ?
- $U_1,\ U_2,\ U_3$ என்கிற மூன்று பாத்திரங்களில் முறையே இரண்டு சிவப்பு மற்றும் ஒரு கருப்பு ; மூன்று சிவப்பு மற்றும் இரண்டு கருப்பு ; ஒரு சிவப்பு மற்றும் ஒரு கருப்பு பந்துகள் இருப்பதாக கொள்வோம். மூன்று பாத்திரங்களில் ஒரு பாத்திரம் சமவாய்ப்பு முறையில் தேர்ந்தெடுக்கப்பட்டு அவற்றிலிருந்து ஒரு பந்து எடுக்கப்படுகிறது. அப்பந்தின் நிறம் கருப்பு என காணப்படுகிறது. அப்பந்து U_3 என்ற பாத்திரத்திலிருந்து தேர்ந்தெடுக்கப்பட்டதற்கான நிகம்தகவு என்ன ?

பயிற்சி 10.4

ஏற்புடைய விடையை தெரிவு செய்க.

- 1) கீழ்கண்டவற்றில் எவை ஒன்று மையப் போக்களவையாகும் ?
 - (a) வீச்சு

- (b) மாறுபாட்டுக் கெழு
- (c) இடைநிலை
- (d) இதில் ஏதுமில்லை

2)	2, -2 ன் கூட்டுச் சராசரி						
	(a) 2	(b) 0	(c) -2	(d) இதில் ஏதுமில்லை			
3)	2, 20, 10, 8, 1 –ன் இ	டைநிலை என்ன ?					
	(a) 20	(b) 10	(c) 8	(d) இதில் ஏதுமில்லை			
4)	முகடு என்பது						
	(a) அதிக அலைகளி	ள் மதிப்பு	(b) நடு மதிப்பு				
	(c) ஒரு தொடரின் மு	தல் மதிப்பு	(d) இதில் ஏதுமில்லை				
5)	0,2, 8, 10 ன் பெருக்கு	5ச் சராசரி					
	(a) 2	(b) 10	(c) 0	(d) இதில் ஏதுமில்லை			
6)	தனித்த 'n' உறுப்புக்க	ளுக்கான, இசைச் சரா	சரி என்பது				
	(a) $\sqrt{\frac{n}{\sum x}}$	(b) $\sqrt{\frac{\frac{n}{1}}{\sum \frac{1}{x}}}$	(c) $\frac{n}{\sum \frac{1}{x}}$	(d) இதில் ஏதுமில்லை			
7)		சிதறல் அளவை அல்ல					
	(a) H.M	(b) S.D.	(c) C.V.	(d) இதில் ஏதுமில்லை			
8)	ஒரு தொடரின் கூட் மாறுபாட்டுக்கெழு எஎ		க்கம்) ² ஆகிய	வை 10 மற்றும் 25 எனில்,			
	(a) 25	(b) 50	(c) 100	(d) இதில் ஏதுமில்லை			
9)	ஒரு தொடரின் திட் கூட்டுச்சராசரி என்பத		நக் கெழு ஆ	கிய 5 மற்றும் 25 எனில்,			
	(a) 20	(b) 5	(c) 10	(d) இதில் ஏதுமில்லை			
10)	A, B என்ற நிகழ்ச்சிக நிகழ்தகவு	எளில் குறைந்த பட்சம் ம	ரதேனும் ஒரு நி	கழ்ச்சி நடைபெறுவதற்கான			
	(a) $P(A \cup B)$	(b) $P(A \cap B)$	(c) P(A/B)	(d) இதில் ஏதுமில்லை			
11)	$P(A) + P(\overline{A}) =$						
	(a) -1	(b) 0	(c) 1	(d) இதில் ஏதுமில்லை			
12)	A மற்றும் B ஆகியகை	ப ஒன்றையொன்று வி	<mark>ுக்கும்</mark> நிகழ்ச்சி	கள் எனில், $\mathrm{P}(\mathrm{A}{\cup}\mathrm{B})$ என்பது			
	(a) P(A) + P(B)	(b) $P(A) + P(B) - P(A)$	$A \cap B$) (c) 0	(d) இதில் ஏதுமில்லை			
13)	ஒரு சீட்டுக்கட்டிலிருந்	து, ஒரு ஸ்பேட் சீட்டை	தேர்ந்தெடுப்பத	தற்கான நிகழ்தகவு யாது ?			

14)	6 சிவப்பு, 8 கருப்பு, 10 மஞ்சள் மற்றும் 1 பச்சை பந்துகள் கொண்ட ஒரு பையிலிருந்து, ஒரு வெள்ளை பந்தை தேர்ந்தெடுப்பதற்கான நிகழ்தகவு				
	(a) $\frac{1}{52}$	(b) 0	(c) $\frac{1}{24}$	(d) இதில் ஏதுமில்லை	
15)	P(A/B) =		∠-т		
	(a) $\frac{P(A \cap B)}{P(A)}$		(b) $\frac{P(A \cap B)}{P(B)}$, $P(B) =$	0	
	(c) $\frac{P(A \cap B)}{P(B)}$, $P(B) \neq$	0	(d) இதில் ஏதுமில்லை		
16)	எல்லா உறுப்புக்களை	பும் அடிப்படையா	ாக கொண்டவை எது	?	
	(a) លឺទំអ	(b) இடைநிலை	(c) சராசரி	(d) முகடு	
17)	கீழ்கண்டவற்றில், கன	டசி உறுப்புக்கள	ால் பாதிக்கப்படாதது	तकंका ?	
	(a) இடைநிலை	(b) சராசரி	(c) முகடு	(d) திட்ட விலக்கம்	
18)	சராசரி, இடைநிலை ம என்ன ?	மற்றும் முகடு ஆ	_த கியவற்றிற்கு இடை (யே உள்ள அனுபவ தொடர்பு	
	(a) சராசரி - முகடு = 2	3 இடைநிலை	(b) சராசரி – முகடு =	3 (சராசரி - இடைநிலை)	
	(c) சராசரி - முகடு = 2	2 சராசரி	(d) சராசரி = 3 இடைந	நிலை - முகடு	
19)	திட்டவிலக்கத்தின் வ	ர்க்கம் என்பது			
	(a) சராசரி விலக்கம்	(b) கால்	ம்மான விலக்கம்	(c) மாறுபாடு (d) வீச்சு	
20)	A மற்றும் B ஆகியகை	ப ஒன்றுக்கொன்	று தொடர்பற்ற நிகழ்ச்	சிகள் எனில் $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$	
	(a) $P(A) P(B)$	(b) $P(A) + P(B)$	(c) P(A/B)	(d) P(B) - P(A)	
21)	கீழ்க்கண்டவற்றில் எழ	து சரி			
	(a) இசைச் சராசரி ≤ 0	பெருக்குச் சராசர்	$0 \leq \mathbf{g}$ ட்டுச் சராசரி		
	(b) இசைச் சராசரி ≥ 0	பெருக்குச் சராச	$fl \leq$ கூட்டுச் சராசரி		
	(c) கூட்டுச் சராசரி \leq	பெருக்குச் சராச	ரி \leq இசைச் சராசரி		
	(d) இதில் ஏதுமில்லை				
22)	கீழ்க்கண்டவற்றில் எழ	து சரி ?			
	(a) (കു	பெ.ச.	(b) சு⊾.ச. × இ.	ச. = (பெ.ச.) ²	
	(с) (இ.ғ. × Сы.ғ.) = (கூ.ச.) ²	(d) &r. .0 6. + 0	<u>பெ.ச.</u> = இ.ச.	
23)	சாத்தியமுள்ள நிகழ்ச்	சியின் நிகழ்தக	य तर्जेज ?		
	(a) 1	(b) 0	(c) -1	(d) S	

	(a) 1	(b) 0	(c) 2	(d) ф
25)				பு முறையில் ஒரு எழுத்து இருப்பதற்கான நிகழ்தகவு
	(a) $\frac{3}{11}$	(b) $\frac{2}{11}$	(c) $\frac{4}{11}$	(d) 0

சாத்தியமற்ற நிகழ்ச்சியின் நிகழ்தகவு என்பது

24)

விடைகள்

அணிகளும் அணிக்கோவைகளும்

ယောက်၏ 1.1
2) i)
$$A + B = \begin{pmatrix} 12 & 3 & 7 \\ 4 & 12 & 7 \\ 6 & -1 & 8 \end{pmatrix}$$
 ii) $\begin{pmatrix} 12 & 3 & 7 \\ 4 & 12 & 7 \\ 6 & -1 & 8 \end{pmatrix}$

ii)
$$\begin{pmatrix} 12 & 3 & 7 \\ 4 & 12 & 7 \\ 6 & -1 & 8 \end{pmatrix}$$

iii)
$$5A = \begin{pmatrix} 15 & 5 & 10 \\ 20 & 45 & 40 \\ 10 & 25 & 23 \end{pmatrix}$$
 iv) $\begin{pmatrix} 18 & 4 & 10 \\ 0 & 6 & -2 \\ 8 & -12 & -4 \end{pmatrix}$

$$iv) \begin{pmatrix} 18 & 4 & 10 \\ 0 & 6 & -2 \\ 8 & -12 & -4 \end{pmatrix}$$

3)
$$AB = \begin{pmatrix} 8 & 4 \\ -9 & 12 \end{pmatrix}, BA = \begin{pmatrix} 14 & 16 \\ -3 & 6 \end{pmatrix}$$

4)
$$AB = \begin{pmatrix} 11 & -40 & 39 \\ 0 & 18 & -14 \\ 7 & -18 & -15 \end{pmatrix}, BA = \begin{pmatrix} -8 & 38 & 3 \\ -4 & 14 & 1 \\ -9 & 41 & 8 \end{pmatrix}$$

5)
$$AB = \begin{pmatrix} 9 & 13 \\ 12 & 18 \end{pmatrix}, BA = \begin{pmatrix} 7 & 16 & -10 \\ 17 & 16 & -6 \\ 8 & -1 & 4 \end{pmatrix}$$

11)
$$AB = 29, BA = \begin{pmatrix} 12 & 20 & 24 \\ 3 & 5 & 6 \\ 6 & 10 & 12 \end{pmatrix}$$

12)
$$AB = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, BA = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

13) A எனும் குடும்பத்துக்கு தேவையான கலோரிகள் மற்றும் புரதம் முறையே 12000, 320 அலகுகள். இதே போன்று B எனும் குடும்பத்துக்கு தேவையானவைகள் 10900, 295 அலகுகள் ஆகும்.

14)
$$\begin{pmatrix} 11 & 15 & 16 \\ 15 & 15 & 16 \\ 25 & 35 & 43 \end{pmatrix}$$
 15)
$$\begin{pmatrix} -3 & -6 \\ -7 & 2 \end{pmatrix}$$
 18)
$$\begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix}$$

22) (i)
$$\begin{pmatrix} 60 & 44 \\ 27 & 32 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 58 & 40 \\ 31 & 34 \end{pmatrix}$ (iii) $\begin{pmatrix} 44 & 6 \\ -5 & 10 \end{pmatrix}$ (iv) $\begin{pmatrix} 32 & 19 \\ 0 & 18 \end{pmatrix}$ 320

23) (i)
$$\begin{pmatrix} 45 & 60 & 55 & 30 \\ 58 & 72 & 40 & 80 \end{pmatrix}$$

(ii)
$$2 \times 4$$
 (iii)
$$\begin{pmatrix} 45 & 58 \\ 60 & 72 \\ 55 & 40 \\ 30 & 80 \end{pmatrix}$$

(iv) (i) என்பது (iii) –ன் நிரல் நிரை மாற்று அணி

பயிற்சி 1.2

- 1) (i) 24 (ii) 9 (iii) 8 2) 10 3) 1 4) A என்பது பூஜ்ஜிய அணிக்கோவை
- 5) A என்பது பூஜ்ஜியமற்ற அணிக்கோவை 6) 0 7) 0 8) -120

- 9)5

பயிற்சி 1.3

- 1) (c) 2) (c) 3) (a) 4) (c) 5) (b) 6) (b) 7) (a) 8) (c) 9) (d) 10) (a)

- 11) (b) 12) (c) 13) (c) 14) (b) 15) (a) 16) (c) 17) (a) 18) (b) 19) (b) 20) (b)

- 21) (a) 22) (b) 23) (a) 24) (a) 25) (c) 26) (b) 27) (d) 28) (d) 29) (b) 30) (a)

இயற்கணிதம்

பயிற்சி 2.1

1)
$$\frac{4}{5(x-3)} + \frac{1}{5(x+2)}$$

2)
$$\frac{-19}{x+2} + \frac{21}{x+3}$$

3)
$$\frac{21}{x+3} + \frac{21}{x+3}$$

4)
$$\frac{1}{2(x+2)} + \frac{1}{2(x-2)} - \frac{1}{x+1}$$

5)
$$\frac{-2}{25(x+3)} + \frac{2}{25(x-2)} + \frac{3}{5(x-2)^2}$$
 6) $\frac{1}{9(x-1)} - \frac{1}{9(x+2)} - \frac{1}{3(x+2)^2}$

6)
$$\frac{1}{9(x-1)} - \frac{1}{9(x+2)} - \frac{1}{3(x+2)^2}$$

7)
$$\frac{1}{4(x-1)} - \frac{1}{4(x+1)} + \frac{1}{2(x+1)^2}$$

8)
$$\frac{2}{x-1} - \frac{5}{(x+3)^2}$$

9)
$$\frac{4}{3x-2} + \frac{x-5}{x^2-2x-1}$$

10)
$$\frac{3}{2(x-1)} - \frac{3x+1}{2(x^2+1)}$$

பயிற்சி 2.2

3) (i)
$$\frac{13!}{3!3!3!}$$

1) n = 10 2) 21 3) (i)
$$\frac{13!}{3!3!3!}$$
 (ii) $\frac{11!}{2!2!2!}$ (iii) $\frac{11!}{4!4!2!}$

- 5) 6666600 6) (i) 8! 4! (ii) (7!) (⁸p₄)

- 7) 1440 8) 1440 9) (i) 720 (ii) 24

பயிற்சி 2.3

- 1) (i) 210 (ii) 105 2) 16 3) 8 4) 780 5) 3486

- 6) 858

7) 9

8) 20790

பயிற்சி 2.5

1)
$$\frac{n(n+1)(n+2)(n+3)}{4}$$

1)
$$\frac{n(n+1)(n+2)(n+3)}{4}$$
 2) $\frac{n(n+1)(n+2)(3n+5)}{12}$ 3) $\frac{2n(n+1)(2n+1)}{3}$

3)
$$\frac{2n(n+1)(2n+1)}{3}$$

4)
$$n(3n^2 + 6n + 1)$$

5)
$$\frac{n}{3}(2n^2+15n+74)$$
 6) $\frac{n(n+1)(n+2)}{6}$

6)
$$\frac{n(n+1)(n+2)}{6}$$

பயிற்சி 2.6

1)
$${}^{11}c_5 (-2)^5 x$$
, ${}^{11}c_6 \frac{2^6}{x}$

2)
$${}^{12}c_6 \frac{y^3}{x^3}$$

3)
$${}^{10}c_4$$
 (256) 4) $\frac{144x^2}{y^7}$

4)
$$\frac{144x^2}{y^7}$$

5)
$${}^{9}c_{4} \frac{3x^{17}}{16}$$
, ${}^{-9}c_{5} \frac{x^{19}}{96}$

6)
$${}^{12}c_4(2^4)$$

பயிற்சி 2.7

தொடரினங்கள் மற்றும் தொடர்கள்

பயிற்சி 3.1

1)
$$\frac{4}{23}$$
, $\frac{2}{19}$

2)
$$\frac{1}{248}$$

பயிற்சி 3.2

1) 11, 17, 23 2) 15, 45, 135, 405, 1215 3)
$$\frac{1}{8}$$
, $\frac{1}{11}$, $\frac{1}{14}$, $\frac{1}{17}$ 4) 4, 64

பயிற்சி 3.4

1) (a)
$$2, \frac{3}{2}, \frac{2}{3}, \frac{5}{24}, \frac{1}{20}$$

(b)
$$\frac{1}{2}$$
, $-\frac{1}{3}$, $\frac{1}{4}$, $-\frac{1}{5}$, $\frac{1}{6}$

1) (a)
$$2, \frac{3}{2}, \frac{2}{3}, \frac{5}{24}, \frac{1}{20}$$
 (b) $\frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}, \frac{1}{6}$ (c) $1, \frac{1}{4}, \frac{1}{27}, \frac{1}{256}, \frac{1}{3125}$

(d) 1, 0,
$$\frac{1}{2}$$
, 0, $\frac{1}{3}$

(d) 1, 0,
$$\frac{1}{2}$$
, 0, $\frac{1}{3}$ (e) 2, 16, 96, 512, 2560 (f) -1, 1, -1, 1, -1

3) (a)
$$\{0, 2\}$$
 b) $\{-1, 1\}$ 4) (a) n^2 (b) $4n-1$

4) (a)
$$n^2$$
 (b) $4n-1$

(c)
$$2 + \frac{1}{10^n}$$
 (d) $n^2 - 1$ (e) $\frac{10n}{3^n}$

(d)
$$n^2 - 1$$

(e)
$$\frac{10r}{3^n}$$

5) (a)
$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}$$
 (b) $5, -10, 20, -40, 80, -160$ (c) $1, 4, 13, 40, 121, 364$

- (d) 2, 6, 15, 34, 73, 152 (e) 1, 5, 14, 30, 55, 91 (f) 2, 1, 0, -1, -2, -3

- (g) 1, 1, 3, 11, 123, 15131 (h) 1, -1, 3, 1, 5, 3

பயிற்சி 3.5

- 1) егь. 27,350
- 2) i) etg. 5,398 ii) etg. 5,405
- 3) еҧ. 95, 720
- 4) еп. 13,110

- 5) еҧ. 1,710
- 6) ரு. 8,000
- 7) 12% 8) $22\frac{1}{2}$ ஆண்டுகள் (தோராயமாக)

- 9) 16.1%
- 10) 12.4%

பயிற்சி 3.6

- 1) еҧ. 5,757.14
- 2) ets. 2,228
- 3) еъ. 6,279
- 4) ets. 3,073

- 5) еҧ. 12,590
- 6) இயந்திரம் B ஐ வாங்கலாம்
- 7) еп. 1,198

- 8) ரு. 8,097
- 9) еп. 5,796
- 10) ரு. 6,987
- 11) еҧ. 46,050

12) еђ. 403.40 13) еђ. 7,398

பயிற்சி 3.7

- 1) (a)
- 2) (a)
- 3) (b)
- 4) (d)
- 5) (a)
- 6) (b)

- 7) (b)
- 8) (a)
- 9) (a)
- 10) (b)
- 11) (d)
- 12) (a)

- 13) (a)
- 14) (c)
- 15) (d)
- 16) (a)
- 17) (b)
- 18) (b)

- 19) (b)
- 20) (a)
- 21) (a)
- 22) (d)
- 23) (b)
- 24) (b)

- 25) (b)
- 26) (b)
- 27) (b)
- 28) (c)
- 29) (d)
- 30) (a)

- 31) (b)
- 32) (c)
- 33) (b)

பகுமுறை வடிவ கணிதம்

பயிற்சி 4.1

- 1) 8x + 6y 9 = 0 2) x 4y 7 = 0 3) $8x^2 + 8y^2 2x 36y + 35 = 0$
- 4) $x^2 + y^2 6x 14y + 54 = 0$ 5) 3x 4y = 12 6) $x^2 3y^2 2y + 1 = 0$ 7) x - y - 6 = 0

 - 8) $24x^2 y^2 = 0$ 9) $3x^2 + 3y^2 + 2x + 12y 1 = 0$

10) 2x + y - 7 = 0

பயிற்சி 4.2

- 1) 2x 3y + 12 = 0 2) $x y + 5\sqrt{2} = 0$ 3) x + 2y 6 = 0; 2x + y = 0

- 4) $\frac{7}{5}$ 5) $-\frac{3}{2}$ or $\frac{17}{6}$ 6) 2x 3y + 12 = 0 7) $x \sqrt{3}y + 2 + 3\sqrt{3} = 0$
- 8) 9x 33y + 16 = 0; 77x + 21y 22 = 0

பயிற்சி 4.3

2)
$$h = -33$$

3)
$$4x - 3y + 1 = 0$$

4)
$$x - 2y + 2 = 0$$

2)
$$h = -33$$
 3) $4x - 3y + 1 = 0$ 4) $x - 2y + 2 = 0$ 5) $3x + y - 5 = 0$

7)
$$y = 7x + 500$$

8)
$$y = 4x + 6000$$

6) Rs. 0.75 7)
$$y = 7x + 500$$
 8) $y = 4x + 6000$ 9) $24 = 7x + 24000$

பயிற்சி 4.4

1)
$$x^2 + y^2 + 8x + 4y - 16 = 0$$

1)
$$x^2 + y^2 + 8x + 4y - 16 = 0$$
 2) $x^2 + y^2 - 4x - 6y - 12 = 0$ 3) π , $\frac{\pi}{4}$

3)
$$\pi$$
, $\frac{\pi}{4}$

4)
$$x^2 + y^2 + 8x - 12y - 33 = 0$$
 5) $x^2 + y^2 - 8x + 2y - 23 = 0$

5)
$$x^2 + y^2 - 8x + 2y - 23 = 0$$

6)
$$x^2 + y^2 - 6x - 6y + 13 = 0$$
 7) $x^2 + y^2 - 6x - 8y + 15 = 0$

7)
$$x^2 + y^2 - 6x - 8y + 15 = 0$$

8)
$$5x^2 + 5y^2 - 26x - 48y + 24 = 0$$
 9) $x^2 + y^2 - 4x - 6y - 12 = 0$

9)
$$x^2 + y^2 - 4x - 6y - 12 = 0$$

பயிற்சி 4.5

1)
$$x + 3y - 10 = 0$$

2)
$$2x + y - 7 = 0$$

1)
$$x + 3y - 10 = 0$$
 2) $2x + y - 7 = 0$ 3) 6 அலகுகள் 4) $a^2(l^2 + m^2) = n^2$ 6) $\frac{1}{2}\sqrt{46}$

6)
$$\frac{1}{2}\sqrt{46}$$

பயிற்சி 4.6

திரிகோணமிதி

பயிற்சி 5.1

12)
$$\frac{31}{12}$$

13)
$$\frac{1}{8}$$

12)
$$\frac{31}{12}$$
 13) $\frac{1}{8}$ 14) $\frac{1-\sqrt{3}}{2\sqrt{2}}$ 18) $\frac{3}{4}$ 19) $1 \pm \sqrt{2}$

18)
$$\frac{3}{4}$$

(19)
$$1 \pm \sqrt{2}$$

பயிற்சி 5.2

3)
$$\cos A = \frac{24}{25}$$
, $\csc A = \frac{-25}{7}$ 4) $\frac{-1331}{276}$ 5) 1 6) $\cot A$

4)
$$\frac{-1331}{276}$$

பயிற்சி 5.3

5) (i)
$$-(2+\sqrt{3})$$
 (ii) $\frac{2\sqrt{2}}{1-\sqrt{3}}$ 8) (i) $\frac{36}{325}$ (ii) $-\frac{253}{325}$

(ii)
$$\frac{2\sqrt{2}}{1-\sqrt{3}}$$

8) (i)
$$\frac{36}{325}$$

(ii)
$$-\frac{253}{325}$$

பயிற்சி 5.4

14)
$$\sin 3A = \frac{117}{125} \cos 3A = \frac{-44}{125}$$
; $\tan 3A = \frac{-117}{44}$

பயிற்சி 5.5

1) (i)
$$\frac{1}{2}(\cos\frac{A}{2} - \cos A)$$
 (ii) $\frac{1}{2}(\cos 2C - \cos 2B)$ (iii) $\frac{1}{2}(\frac{1}{2} + \cos 2A)$

(iv)
$$\frac{1}{2}$$
(cos 3A + cos $\frac{A}{3}$)

பயிற்சி 5.6

1) (i)
$$\frac{\pi}{6}$$
 (ii) $5\frac{\pi}{6}$ (iii) $3\frac{\pi}{4}$ (iv) $\frac{\pi}{6}$ (v) $-\frac{\pi}{4}$ (vi) $\frac{\pi}{4}$

2) (i)
$$\theta = n\pi \pm \frac{\pi}{3}$$
, $n \in Z$ (ii) $\theta = 2n\pi \pm \frac{\pi}{3}$, $n \in Z$, $\theta = 2n\pi \pm \frac{2\pi}{3}$, $n \in Z$

(iii)
$$\theta = n\pi \pm \frac{\pi}{2}$$
, $n \in Z$ (iv) $\theta = n\pi \pm \frac{\pi}{3}$, $n \in Z$

பயிற்சி 5.7

6)
$$x = -1$$
 or $\frac{1}{6}$ 7) $x = \frac{1}{2}$ or -4 9) $\frac{33}{65}$

பயிற்சி 5.8

சார்புகளும் அவற்றின் வரைபடங்களும்

பயிற்சி 6.1

5)
$$2x - 3 + h$$
 6) 0 7) மதிப்பகம் $\{ x / < 0 \text{ or } x \ge 1 \}$

8)
$$C = \begin{cases} 100n ; 0 \le n < 25 \\ 115n - \frac{n^2}{25}; 25 \le n \end{cases}$$
 9) $(-\infty, 2)$ and $(3, \infty)$

12)
$$f\left(\frac{1}{x}\right) = \frac{1-x}{3+5x}$$
, $\frac{1}{f(x)} = \frac{3x+5}{x-1}$ 13) $2\sqrt{x^2+1}$; ± 2

பயிற்சி 6.2

4)
$$\log 8$$
; $(\log 2)^3$ 5) (i) 1 (ii) -11 (iii) -5 (iv) -1 (v) $41 - 29\sqrt{2}$

$$(iii) - 5$$

$$(iv) - 1$$

(v)
$$41 - 29\sqrt{2}$$

$$(vi)\ 0.25$$
 $(vii)\ 0$ $(viii)\ \frac{8}{3}$, மதிப்பகம் $R - \{-\frac{1}{2}\}$ $(ii)\ 1,\ 1$ $(ii)\ -1,\ 1$

$$(iii) \ \frac{1}{2} \ , - \ \frac{1}{2} \quad (iv) \ (0, \, 0) \ ;$$
 மதிப்பகம் $R - \{ (4n \pm 1) \ \frac{\pi}{2} \ ; n$ ஒரு முழு எண் $\}$

$$(viii) \frac{1}{3}$$
, மதிப்பகம் $R - \{-\frac{1}{2}\}$

$$(ii) - 1,$$

$$\frac{1}{2}$$
, $\frac{1}{2}$ (17) (0,

$$n \pm 1$$
) $\pi : n \in \mathbb{Z}$)

(ii)
$$R - \{2n\pi : n \in Z\}$$

7) (i)
$$R - \{(2n \pm 1) \pi ; n \in Z\}$$
 (ii) $R - \{2n\pi ; n \in Z\}$ (iii) $R - \{n\pi \pm \frac{\pi}{4} ; n \in Z\}$

$$(v) R - \{2n\pi ; n \in Z\}$$

$$\mbox{(iv) } R \qquad \mbox{(v) } R - \{2n\pi \; ; \; n \in Z\} \qquad \mbox{(vi) } R - \{(2n+1) \; \frac{\pi}{2} \; ; \; n \in Z\}$$

10) (i)
$$f(x) = \frac{1}{3}x + \frac{10}{3}$$

8) ரூ. 1, 425 9) 74 வருடங்கள் 10) (i)
$$f(x) = \frac{1}{3}x + \frac{10}{3}$$
 (ii) $f(3) = \frac{13}{3}$ (iii) $a = 290$

பயிற்சி 6.3

வகை நுண்கணிதம்

பயிற்சி 7.1

$$(ii) - 5$$

(iv) -
$$1/\sqrt{2}$$

1) (i)
$$10/3$$
 (ii) -5 (iii) $1/3$ (iv) $-1/\sqrt{2}$ (v) 2 (vi) 1 (vii) $\frac{15}{8}a^{7/24}$ (viii) $5/3$ (ix) 1 (x) 4 (xi) 12 (xii) 5

2) 5

$$4)\ 28\ /\ 5\ ,\ {
m f}\ (\ 2\)$$
 –யைக் காண இயலாது

பயிற்சி 7.2

$$2) 5/4, -4/3$$

2)
$$5/4$$
, $-4/3$. (6) $x = 3$ and $x = 4$

பயிற்சி 7.3

1) (i) -
$$\sin x$$
 (ii) $\sec^2 x$ (iii) - $\cot x \csc x$ (iv) $\frac{1}{2\sqrt{x}}$

(iv)
$$\frac{1}{2\sqrt{x}}$$

2) (i)
$$12x^3 - 6x^2 + 1$$

(ii)
$$\frac{-20}{x^5} + \frac{6}{x^4} - \frac{1}{x^2}$$

2) (i)
$$12x^3 - 6x^2 + 1$$
 (ii) $\frac{-20}{x^5} + \frac{6}{x^4} - \frac{1}{x^2}$ (iii) $\frac{1}{2\sqrt{x}} - \frac{1}{3x^{2/3}} + e^x$ (iv) $\frac{-1}{x^2}(3 + x^2)$

(iv)
$$\frac{-1}{x^2}(3+x^2)$$

$$(v) \sec^2 x + 1/x$$

(vi)
$$x^2e^x(x+3)$$

(v)
$$\sec^2 x + 1/x$$
 (vi) $x^2 e^x (x + 3)$ (vii) $\frac{15}{2} x^{3/2} - 6x^{1/2} - x^{-3/2}$ (viii) $\frac{n}{x^{n+1}} (ax^{2n} - b)$

(viii)
$$\frac{n}{x^{n+1}}(ax^{2n}-b)$$

(ix)
$$2x (6x^2 + 1)$$

(ix)
$$2x (6x^2 + 1)$$
 (x) $x^2 \cos x + 2 (\cos x + x \sin x)$ (xi) $\sec x (1 + 2 \tan^2 x)$

(xi)
$$\sec x(1 + 2 \tan^2 x)$$

$$(xii) 2\sin x (x-1) + x \cos (x-2) + e^x$$
 $(xiii) 2x (2x^2 + 1)$ $(xiv) x^{n-1} (1 + n \log x)$

$$(xiii) 2x (2x^2 + 1)$$

$$(xiv) x^{n-1} (1 + n \log x)$$

$$(xv)\ 2\ (x\ tanx+cot\ x)+x\ (x\ sec^2x-2\ cosec^2x)$$

$$(xvi) \frac{\sec x}{2\sqrt{x}} (2x\tan x + 1) \qquad (xvii) \frac{e^x}{(1+e^x)^2} \qquad (xviii) \tan \frac{x}{2} \left(1 + \tan^2 \frac{x}{2}\right)$$

(xix)
$$\frac{-30}{(3+5x)^2}$$
 (xx) $\frac{x^2-1}{x^2-4}$ (xxi) $1-\frac{1}{x^2}$

(xxii) x (1 + 2 log x) (xxiii) x sec²x + tan x - sin x (xxiv)
$$\frac{xe^x}{(1+x)^2}$$

பயிற்சி 7.4

1)
$$\frac{3x-1}{\sqrt{3x^2-2x+2}}$$
 2) $\frac{-10}{3(8-5x)^{1/3}}$

3)
$$e^x \cos(e^x)$$
 4) $e^{\sec x} (\sec x \tan x)$ 5) $\tan x$ 6) $2xe^{x^2}$

7)
$$\frac{1}{\sqrt{x^2 + 1}}$$
 8) - 3 sin (3x - 2) 9) - 2x tan (x²)

10)
$$\frac{2(x^2-3)}{x^2-4}$$
 11) $e^{\sin x + \cos x} (\cos x - \sin x)$ 12) $-\csc^2 x \cdot e^{\cot x}$

13)
$$\frac{1}{1+e^x}$$
 14) 2 cot x 15) $\frac{1}{2\sqrt{\tan x}} (e^{\sqrt{\tan x}} \sec^2 x)$

16)
$$2x \cos x^2$$
 17) $\frac{n[\log(\log(\log x))]^{n-1}}{x \cdot \log x \cdot \log(\log x)}$ 18) $-2 \sin 2x$

19)
$$\frac{1}{1+e^x} - \frac{\log(1+e^x)}{e^x}$$
 20) $\frac{4x}{1-x^4}$ 21) $\frac{1}{3}(x^3+x+1)^{-2/3}(3x^2+1)$

22)
$$\frac{\cos(\log x)}{x}$$
 23) $x^{\log(\log x)} [1 + \log(\log x)]$ 24) $18x (3x^2 + 4)^2$

பயிற்சி 7.5

1)
$$\frac{3}{\sqrt{1-x^2}}$$
 2) $\frac{3}{1+x^2}$ 3) $\frac{2}{1+x^2}$ 4) $\frac{2}{1+x^2}$ 5) $\frac{2}{1+x^2}$ 6) $\frac{1}{2(1+x^2)}$

7)
$$\frac{1}{2(1+x^2)}$$
 8) $\frac{1}{\sqrt{a^2-x^2}}$ 9) $x^x(1+\log x)$

10)
$$(\sin x)^{\log x} \left[\cot x \log x + \frac{\log \sin x}{x} \right]$$
 11) $x \sin^{-1} x \left[\frac{\sin^{-1} x}{x} + \frac{\log x}{\sqrt{1 - x^2}} \right]$

12)
$$(3x-4)^{x-2} \left[\frac{3(x-2)}{3x-4} + \frac{\log(3x-4)}{x-2} \right]$$
 13) $e^{x^x} \cdot x^x (1 + \log x)$

$$14) \ x^{\log x} \left(\frac{2 \log x}{x} \right)$$

15)
$$\frac{5}{3}\sqrt[3]{\frac{4+5x}{4-5x}} \left[\frac{8}{16-25x^2} \right]$$

16)
$$(x^2 + 2)^5 (3x^4 - 5)^4 \left[\frac{10x}{x^2 + 2} + \frac{48x^3}{3x^4 - 5} \right]$$
 17) $x^{1/x} \left[\frac{1}{x^2} (1 - \log x) \right]$

17)
$$x^{1/x} \left[\frac{1}{x^2} (1 - \log x) \right]$$

18) $(\tan x)^{\cos x} (\csc x - \sin x \log \tan x)$

19)
$$\left(1 + \frac{1}{x}\right)^x \left[\log\left(1 + \frac{1}{x}\right) - \frac{1}{1 + x}\right]$$

20)
$$\frac{2x}{\sqrt{1+x^2}(1-x^2)^{3/2}}$$

21)
$$\frac{x^3\sqrt{x^2+5}}{(2x+3)^2} \left[\frac{3}{x} + \frac{x}{x^2+5} - \frac{4}{2x+3} \right]$$

22)
$$a^x \log a$$

$$23) \ x^{\sqrt{x}} \left(\frac{2 + \log x}{2\sqrt{x}} \right)$$

24)
$$(\sin x)^x [x \cot x + \log \sin x]$$

பயிற்சி 7.6

1)
$$\frac{2a}{y}$$

2)
$$\frac{-x}{y}$$

3)
$$\frac{-y}{x}$$

3)
$$\frac{-y}{x}$$
 4) $\frac{-b^2x}{a^2y}$ 5) $\frac{b^2x}{a^2y}$

$$5) \ \frac{b^2x}{a^2y}$$

6)
$$\frac{-(ax + hy)}{(hx + by)}$$
 7) 1

8)
$$\frac{-x(2x^2+y^2)}{y(x^2+2y^2)}$$
 9) $\frac{-\sqrt{y}}{\sqrt{x}}$

9)
$$\frac{-\sqrt{y}}{\sqrt{x}}$$

10)
$$\frac{y}{x} \left[\frac{x \log y - y}{y \log x - x} \right]$$
 11) $-\frac{2x + 1}{2y + 1}$ 12) $-\frac{\sin(x + y)}{1 + \sin(x + y)}$ 13) $\frac{\log x}{(1 + \log x)^2}$

11)
$$-\frac{2x+1}{2y+1}$$

12)
$$-\frac{\sin(x+y)}{1+\sin(x+y)}$$

$$13) \quad \frac{\log x}{\left(1 + \log x\right)^2}$$

14)
$$\frac{\log \sin y + y \tan x}{\log \cos x - x \cot y}$$
 15)
$$\frac{y - 2x}{2y - x}$$

$$15) \quad \frac{y-2x}{2y-x}$$

பயிற்சி 7.7

1)
$$-\frac{b}{a}\cot\theta$$

2)
$$-\frac{1}{t^2}$$

1)
$$-\frac{b}{a}\cot\theta$$
 2) $-\frac{1}{t^2}$ 3) $\frac{b}{a}\csc\theta$ 4) $\frac{1}{t}$

4)
$$\frac{1}{t}$$

5) –
$$\tan \theta$$

6) t cost t 7) tan
$$\theta$$

8)
$$\frac{2(t^2-1)}{t^{3/2}}$$

9)
$$\frac{t \tan t}{\sin(\log t)}$$

$$10) - 1$$
 $11) \frac{1}{2}$

11)
$$\frac{1}{t}$$

பயிற்சி 7.8

2)
$$a^{2}y$$

2)
$$a^2y$$
 3) $-\frac{1}{(1+x)^2}$ 4) $-\frac{1}{2at^3}$

4)
$$-\frac{1}{2at^3}$$

5)
$$-\frac{b}{a^2}$$
cosec³ θ

6)
$$\frac{1}{3a}\sec^4\theta \csc\theta$$

11)
$$-\frac{1}{x^2}$$

பயிற்சி 7.9

தொகை நுண்கணிதம்

பயிற்சி 8.1

1)
$$x(x^3-1)+C$$

2)
$$x^5 + \frac{2}{3}x\sqrt{x} - 14\sqrt{x} + C$$

2)
$$x^5 + \frac{2}{3}x\sqrt{x} - 14\sqrt{x} + C$$
 3) $\frac{x^4}{2} + 4x^2 + 5\log x + e^x + C$

4)
$$\frac{x^2}{2} + \log x + 2x + C$$

4)
$$\frac{x^2}{2} + \log x + 2x + C$$
 5) $\frac{x^4}{4} - \frac{1}{2x^2} + \frac{3}{2}x^2 + 3\log x + C$ 6) $5 \sec x - 2 \cot x + C$

6)
$$5 \sec x - 2 \cot x + C$$

7)
$$\frac{2}{7}x^{7/2} + \frac{2}{5}x^{5/2} + \log x + C$$

8)
$$\frac{2}{7}x^{7/2} + \frac{6}{5}x^{5/2} + 8x^{1/2} + C$$

9)
$$3e^x + 2 \sec^{-1}(x) + C$$

10)
$$\log x - \frac{1}{3x^3} + C$$
 11) $9x - \frac{4x^3}{3} + C$

11)
$$9x - \frac{4x^3}{3} + C$$

12)
$$\frac{2}{3}x^{3/2} + \frac{2}{5}x^{5/2} + x^2 + C$$

13)
$$\frac{3}{2}x^{2/3} + 3\sin x + 7\cos x + C$$

14)
$$2x^{1/2} - \frac{2}{3}x^{3/2} + C$$

15)
$$\frac{2}{3}x\sqrt{x+3} + C$$

15)
$$\frac{2}{3}x\sqrt{x+3} + C$$
 16) $\frac{2}{3}(x+7)\sqrt{x+1} + C$

17)
$$x - 2\tan^{-1}x + C$$

18)
$$x - tan^{-1}x + C$$

19)
$$(\sin x + \cos x) + C$$

20)
$$\tan \frac{x}{2} + C$$

21)
$$-\frac{1}{3x^3} + e^{-x} + C$$

22)
$$\log x + e^{-x} + C$$

23)
$$\log x + \frac{1}{x} + e^x + C$$

24)
$$3x^3 + 4x^2 + 4x + C$$

24)
$$3x^3 + 4x^2 + 4x + C$$
 25) $-\frac{1}{x} - 2e^{-2x} + 7x + C$

26)
$$\tan x + \sec x + C$$

பயிற்சி 8.2

1)
$$\frac{1}{12(2-3x)^4} + C$$

2)
$$\frac{1}{2(3-2x)} + C$$

3)
$$\frac{5}{24}(4x+3)^{6/5} + C$$

4)
$$\frac{e^{4x+3}}{4} + C$$

5)
$$\frac{2}{3\sqrt{x-1}}(x^2+4x+8)+C$$
 6) $\frac{1}{2}(x^3+x-4)^2+C$

6)
$$\frac{1}{2}(x^3+x-4)^2+C$$

7)
$$-\frac{1}{2}\cos(x^2) + C$$

8)
$$-2\cos\sqrt{x} + C$$

9)
$$\frac{1}{3}(\log x)^3 + C$$

10)
$$\frac{2}{3}(x^2+x)^{3/2}+C$$

11)
$$\sqrt{x^2+1}+C$$

12)
$$\frac{1}{8}(x^2+2x)^4+C$$

13)
$$\log (x^3 + 3x + 5) + C$$

14)
$$\frac{1}{6} \tan^{-1} \left(\frac{x^3}{2} \right) + C$$

15)
$$\log (e^x + e^{-x}) + C$$

$$16) \log (\log x) + C$$

17)
$$\tan (\log x) + C$$

18)
$$-\frac{1}{4(2x+1)^2} + C$$

19)
$$\log \{\log (\log x)\} + C$$

20)
$$\frac{1}{6(1-2\tan x)^3} + C$$

$$21) \log (\sin x) + C$$

$$22) - \log(\csc x + \cot x) + C$$

23)
$$\log (1 + \log x) + C$$

24)
$$\frac{1}{4} \{ \tan^{-1}(x^2) \}^2 + C$$

25)
$$\frac{2}{3}(3 + \log x)^{3/2} + C$$

26)
$$\frac{1}{4} \log \frac{x^4}{x^4 + 1} + C$$

$$27) (\tan \sqrt{x})^2 + C$$

28)
$$\frac{(2x+4)^{3/2}}{3} + C$$

29)
$$\frac{(x^2-1)^5}{5} + C$$

30)
$$\frac{2}{3}(x^2+x+4)^{3/2}+C$$

31)
$$\frac{1}{b} \log (a + b \tan x) + C$$

32)
$$\log \sec x + C$$

பயிற்சி 8.3

1)
$$\frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3}} \right) + C$$
 2) $\frac{1}{\sqrt{2}} \tan^{-1} (\sqrt{2}x) + C$ 3) $\frac{1}{4} \log \left(\frac{x-2}{x+2} \right) + C$

2)
$$\frac{1}{\sqrt{2}} \tan^{-1}(\sqrt{2}x) + C$$

3)
$$\frac{1}{4} \log \left(\frac{x-2}{x+2} \right) + C$$

4)
$$\frac{1}{2\sqrt{5}}\log\left(\frac{\sqrt{5}+x}{\sqrt{5}-x}\right) + C$$

5)
$$\frac{1}{3}\log(3x + \sqrt{9x^2 - 1}) + C$$

4)
$$\frac{1}{2\sqrt{5}}\log\left(\frac{\sqrt{5}+x}{\sqrt{5}-x}\right)+C$$
 5) $\frac{1}{3}\log(3x+\sqrt{9x^2-1})+C$ 6) $\frac{1}{6}\log(6x+\sqrt{36x^2+25})+C$

$$7) \quad \frac{1}{2}\sin^{-1}\left(\frac{2x}{3}\right) + C$$

8)
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x+1}{\sqrt{2}} \right) + C$$

8)
$$\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x+1}{\sqrt{2}} \right) + C$$
 9) $\frac{1}{6} \tan^{-1} \left(\frac{3x+1}{2} \right) + C$

10)
$$\log \left\{ (x+2) + \sqrt{x^2 + 4x + 2} \right\} + C$$

10)
$$\log \left\{ (x+2) + \sqrt{x^2 + 4x + 2} \right\} + C$$
 11) $\log \left\{ \left(x - \frac{1}{2} \right) + \sqrt{3 - x + x^2} \right\} + C$

12)
$$\frac{1}{2}\log(x^2+4x-5) - \frac{1}{6}\log\left(\frac{x-1}{x+5}\right) + C$$
 13) $\frac{7}{2}\log(x^2-3x+2) + \frac{9}{2}\log\left(\frac{x-2}{x-1}\right) + C$

14)
$$\frac{1}{2}\log(x^2 - 4x + 3) + 2\log\left(\frac{x - 3}{x - 1}\right) + C$$
 15) $2\sqrt{2x^2 + x - 3} + C$

16)
$$2\sqrt{x^2 + 2x - 1} + 2\log\left\{(x+1) + \sqrt{x^2 + 2x - 1}\right\} + C$$

பயிற்சி 8.4

1)
$$-e^{-x}(x+1) + C$$
 2) $\frac{x^2}{2} \left(\log x - \frac{1}{2} \right) + C$ 3) $x (\log x - 1) + C$

4)
$$\frac{a^x}{\log_e a} \left(x - \frac{1}{\log_e a} \right) + C$$
 5) $x (\log x)^2 - 2x (\log x - 1) + C$

6)
$$-\frac{1}{x}(\log x + 1) + C$$
 7) $\frac{x \sin 2x}{2} + \frac{\cos 2x}{4} + C$ 8) $\frac{\sin 3x}{9} - \frac{x \cos 3x}{3} + C$

9)
$$x \cos^{-1} x - \sqrt{1 - x^2} + C$$
 10) $x \tan^{-1} x - \frac{1}{2} \log(1 + x^2) + C$

11)
$$x \sec x - \log (\sec x + \tan x) + C$$
 12) $e^x (x^2 - 2x + 2) + C$

பயிற்சி 8.5

1)
$$\frac{x}{2}\sqrt{x^2-36}-18\log(x+\sqrt{x^2-36})+C$$
 2) $\frac{x}{2}\sqrt{16-x^2}+8\sin^{-1}\left(\frac{x}{4}\right)+C$

3)
$$\frac{x}{2}\sqrt{x^2+25} + \frac{25}{2}\log\left(x+\sqrt{25+x^2}\right) + C$$
 4) $\frac{x}{2}\sqrt{x^2-25} - \frac{25}{2}\log\left(x+\sqrt{x^2-25}\right) + C$

$$5) \quad \frac{x}{2}\sqrt{4x^2 - 5} - \frac{5}{4}\log\left(2x + \sqrt{4x^2 - 5}\right) + C \quad 6) \quad \frac{x}{2}\sqrt{9x^2 - 16} - \frac{8}{3}\log\left(3x + \sqrt{9x^2 - 16}\right) + C$$

பயிற்சி 8.6

1)
$$\frac{29}{6}$$
 2) 5 log 2 3) $\frac{\pi}{4}$ 4) $\frac{1}{\log_e 2}$ 5) 3 (e-1) 6) $\frac{1}{2}$ (e-1)

7)
$$\tan^{-1}(e) - \frac{\pi}{4}$$
 8) $1 - \frac{\pi}{4}$ 9) $\frac{\pi}{8}$ 10) $\frac{\pi}{2} - 1$ 11) $(\log 4) - 1$ 12) $\frac{8}{3}(3\sqrt{3} - 1)$ 13) $\frac{\pi}{4}$ 14) $\log\left(\frac{4}{3}\right)$ 15) $\sqrt{2}$ 16) $\frac{2}{3}$

12)
$$\frac{8}{3}(3\sqrt{3}-1)$$
 13) $\frac{\pi}{4}$ 14) $\log\left(\frac{4}{3}\right)$ 15) $\sqrt{2}$ 16) $\frac{2}{3}$

17)
$$\frac{\pi}{2}$$
 18) $\frac{1}{4}$ (e-1)

பயிற்சி 8.7

1)
$$\frac{3}{2}$$

2)
$$e - 1$$
 3) $\frac{15}{4}$ 4) $\frac{1}{3}$

4)
$$\frac{1}{3}$$

பயிற்சி 8.8

சரக்கு முதல்கள், பங்குகள் மற்றும் கடன் பத்திரங்கள்

பயிற்சி 9.1

7)
$$6\frac{2}{3}\%$$

10) 20% 11)
$$7\frac{9}{13}$$
%

14) 13
$$\frac{1}{3}$$
% 15) ரூ. 40,500

பயிற்சி 9.2

பள்ளியியல்

பயிற்சி 10.1

பயிற்சி 10.2

7)
$$S.D = 1.07$$

8)
$$S.D = 1.44$$

9)
$$S.D = 2.47$$

11)
$$C.V = 13.92$$

12) C.V(A) = .71, C.V(B) = .67, C.V(B) < C.V(A), எனவே நகரம் B–யில் நிலவும் விலை மிகவும் நிலையானது.

13) C.V =(x) = 5.24, C.V(y) = 1.90, since C.V(y) < C.V(x) எனவே நகரம் y–யில் நிலவும் பங்கு விலை மிகவும் நிலையானது.

பயிற்சி 10.3

1)
$$\frac{1}{8}$$
, $\frac{7}{8}$

2)
$$\frac{1}{9}$$

3)
$$\frac{2}{15}$$
, $\frac{1}{3}$

1)
$$\frac{1}{8}$$
, $\frac{7}{8}$ 2) $\frac{1}{9}$ 3) $\frac{2}{15}$, $\frac{1}{3}$ 4) $\frac{1}{10}$, $\frac{43}{100}$ 5) $\frac{2}{3}$ 6) $\frac{1}{12}$

5)
$$\frac{2}{3}$$

6)
$$\frac{1}{12}$$

7)
$$\frac{11}{12}$$

8)
$$\frac{6}{11}$$

9)
$$\frac{45}{74}$$

8)
$$\frac{6}{11}$$
 9) $\frac{45}{74}$ 10) $\frac{15}{37}$

பயிற்சி 10.4

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4	8	12	17	21	25	29	33	37
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	4	8	11	15	19	23	26	30	34
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	3	7	10	14	17	21	24	28	31
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6	10	13	16	19	23	26	29
14	1461	1492	1523	1553	1594	1614	1644	1673	1703	1732	3	6	9	12	15	18	21	24	27
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6	8	11	14	17	20	22	25
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	3	5	8	11	13	16	18	21	24
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2	5	7	10	12	15	17	20	22
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2	5	7	9	12	14	16	19	21
19 20	2788 3010	2810 3032	2833 3054	2856 3075	2878 3096	2900 3118	2923 3139	2945 3160	2967 3181	2989 3201	2	4 4	7 6	9	11 11	13 13	16 15	18 17	20 19
20		3032									_	4	O	0	11		15		
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24 25	3802 3979	3820 3997	3838 4014	3856 4031	3874 4048	3892 4065	3909 4082	3927 4099	3945 4116	3962 4133	2 2	4 3	5 5	7 7	9 9	11 10	12 12	14 14	16 15
23	3313	3331		4001	4040	4000	4002	4033	4110	4100	_		J	l	3	10	12		13
26	4150	4166	4183	5200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	13	15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	10	12	14
29	4624	4639	4654 4800	4669	4683	4698	4713	4728 4871	4742	4757	1	3	4	6	7 7	9 9	10 10	12 11	13 13
30	4771	4786		4814	4829	4843	4857		4886	4900	1	3	4	0	1	9	10	11	
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	5	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12
33	5185	5198	5211	5224 5353	5237	5250	5263 5391	5276	5289	5302	1	3	4	5	6	8 8	9	10 10	12 11
34	5315 5441	5328 5453	5340 5465	5478	5366 5490	5378 5502	5514	5403 5527	5416 5539	5428 5551	1 1	3 2	4 4	5 5	6 6	o 7	9	10	11
													•						
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
37	5682 5798	5694	5705 5821	5717 5832	5729	5740	5752 5866	5763	5775 5888	5786	1	2	3	5	6	7	8	9	10
39	5911	5809 5932	5933	5944	5843 5955	5855 5966	5977	5877 5988	5999	5899 6010	1 1	2	3	5 4	6 5	7 7	8	9 9	10 10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117		2	3	4	5	6	7	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42 43	6232 6335	6243 6345	6253 6355	6263 6365	6274 6375	6284 6385	6294 6395	6304 6405	6314 6415	6325 6425	l '	2	3	4	5	6	7	8	9 9
43	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1 1	2	3	4	5 5	6 6	7 7	8 8	9
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46 47	6628 6721	6637 6730	6646 6739	6656 6749	6665	6675	6684	6693 6785	9702 6794	9712	1	2	3	4	5	6	7	7 7	8
47	6812	6821	6830	6839	6758 6848	6767 6857	6776 6866	6875	6884	6803 6893	1	2	3	4	5 4	5 5	6	7 7	8 8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52 53	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7 6	8
53 54	7243 7324	7251 7332	7259 7340	7267 7348	7275 7356	7284 7364	7292 7372	7300 7380	7308 7388	7316 7396	1	2	2	3	4 4	5 5	6	6 6	7 7
54	1324	1332	1340	/ J48	1330	1304	1312	1300	1300	1390	1		2	J	4	<u> </u>	0	6	1

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	3	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8096	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8162	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9764	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	4	4

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
.04	1096 1122	1099 1125	1102 1127	1104 1130	1107 1132	1109 1135	1112 1138	1114 1140	1117 1143	1119 1146	0	1 1	1 1	1 1	1 1	2	2 2	2	2
.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	' 1	1	2	2	2	2
.00	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1		1	2	2	2	2
.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
.11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3
.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
.13 .14	1349 1380	1352 1384	1355 1387	1358 1390	1361 1393	1365 1396	1368 1400	1371 1403	1374 1406	1377 1409	0	1 1	1 1	1 1	2	2 2	2 2	2	3
.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	Ιί	2	2	2	3	3
.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3
.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3
.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3
.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
.21 .22	1622 1660	1626 1663	1629 1667	1633 1671	1637 1675	1641 1679	1644 1683	1648 1687	1652 1690	1656 1694	0	1 1	1 1	2 2	2	2	3	3 3	3
.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	3	3	3	4
.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
.28 .29	1905 1950	1910 1954	1914 1959	1919 1963	1923 1968	1928 1972	1932 1977	1936 1982	1941 1986	1945 1991	0	1 1	1 1	2 2	2	3	3	4 4	4
.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
.31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4
.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4
.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4
.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
.35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4	5
.36 .37	2291 2344	2296 2350	2301 2355	2307 2360	2312 2366	2317 2371	2323 2377	2328 2382	2333 2388	2339 2393	1 1	1 1	2	2 2	3 3	3 3	4 4	4 4	5 5
.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4 4	4	5
.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	3	4	5	5
.41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5
.42	2630	2636	2642	2648	2655	2661	2667	2673	2679	2685	1	1	2	2	3	4	4	5	6
.43 .44	2692 2754	2698 2761	2704 2767	2710 2773	2716 2780	2723 2786	2729 2793	2735 2799	2742 2805	2748 2812	1 1	1 1	2	2	3 3	4 4	4 4	5 5	6
.45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1 1	1	2	3	3	4	4 5	5 5	6
.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	6	6
.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	4	4	5	6	6
.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	4	4	5	6	7

ANTI - LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	2	2	3	4	4	5	6	7
.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
.53	3388 3467	3396 3475	3404 3483	3412 3491	3420 3499	3428 3508	3436 3516	3443 3524	3451 3532	3459 3540	1 1	2	2	3	4 4	5 5	6	6 6	7 7
.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	7	7	8
.61 .62	4074 4169	4083 4178	4093 4188	4102 4198	4111 4207	4121 4217	4130 4227	4140 4236	4150 4246	4159 4256	1 1	2	3 3	4	5 5	6 6	7 7	8 8	9 9
.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9
.64	4365	4375	4385	4395	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9
.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	8	10
.67	4677	4688	4699	4710	4721	4732 4842	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10
.68	4786 4898	4797 4909	4808 4920	4819 4932	4831 4943	4955	4853 4966	4864 4977	4875 4989	4887 5000	1 1	2	3	4 5	6 6	7 7	8 8	9 9	10 10
.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11
.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11
.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5358	1	2	4	5	6	7	9	10	11
.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
.74	5495 5623	5508 5636	5521 5649	5534 5662	5546 5675	5559 5689	5572 5702	5585 5715	5598 5728	5610 5741	1 1	3	4 4	5 5	6 7	8 8	9	10 10	12 12
.76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12
.77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12
.78	6026	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13
.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	9	10	12	13
.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
.81	6457 6607	6471 6622	6486 6637	6501 6653	6516 6668	6531 6683	6546 6699	6561 6714	6577 6730	6592 6745	2 2	3	5 5	6 6	8 8	9 9	11 11	12 12	14 14
.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	14
.85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
.86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	14	15
.87 .88	7413 7586	7430 7603	7447 7621	7464 7638	7482 7656	7499 7674	7516 7691	7534 7709	7551 7727	7568	2	3 4	5 5	7 7	9 9	10	12 12	14 14	16 16
.89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7745 7925	2 2	4	5 5	7	9	11 11	13	14	16
.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	10	11	13	15	17
.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
.93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
.94	8710 8913	8730 8933	8750 8954	8770 8974	8790 8995	8810 9016	8831 9036	8851 9057	8872 9078	8892 9099	2 2	4 4	6 6	8 8	10 10	12 12	14 14	16 17	18 19
.96	9120	9141	9162	9183	9204	9226	9247	9268	9290	9311	2	4	7	9	11	13	15	17	19
.97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	20
.98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20
.99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	21