This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt **European Patent Office** Office européen des brevets

(II) Publication number:

0 584 673 A1

EUROPEAN PATENT APPLICATION

(21) Application number: 93112996.9

(a) Int. Cl.5: G01B 11/06, G01B 11/02

Date of filing: 13.08.93

Priority: 19.08.92 US 932470

43 Date of publication of application: 02.03.94 Bulletin 94/09

Beginning States: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

Applicant: OWENS-BROCKWAY GLASS CONTAINER INC. One Sea Gate. 30-LOP Toledo; Ohio 43666(US)

Inventor: Juvinail, John W. 9200 Head-O-Lake Road Ottawa Lake MI 49627(US) Inventor: Ringlien, James A. 2210 Glenview Drive Maumee, Ohio 43537(US) Inventor: Kistler, Steven D. 9655 Wolfinger Road Berkey, Ohio 43504(US)

Representative: Blumbach Weser Bergen Kramer Zwirner Hoffmann Patentanwälte Sonnenberger Strasse 100 D-65193 Wiesbaden (DE)

(2) Measurement of transparent container wall thickness.

Apparatus (10) for measuring sidewall thickness of transparent containers (12) that includes a source (24) for directing a light beam (26) onto the outer surface (28) of the container sidewall (14) at an angle such that a portion (32) of the light beam is reflected from the outer sidewall surface (28), and a portion (32) is refracted into the container sidewall (14), reflected (36) from the inner sidewall surface (34) and then re-emerges (38) from the outer sidewall surface. A lens (40) is disposed between a linear array light sensor (42) and the container sidewall (14) for focusing light energy reflected from the outer and inner sidewall surfaces onto the sensor. The lens has an imag plane in which the sens r is disposed and an object plan (OP) colinear with the light beam (26). Electronics (22) is responsiv to light nergy incident on the sensor for determining wall thickn ss of the contain r b twe n the inner and uter sid wall surfaces (28,34).

FIG. 1

10

15

20

50

55

electronics thus possess enhanced responsiveness to the thinnest and thickest sections of the contain r sidewall. The light sensor in the preferred embodiment of the invention c mprises a plurality of sensing elements disposed in a linear array parallel to the light beam incident on the container sidewall. Sidewall thickness is proportional to separation at the array between the portions of the light beam r flected from the outer and inner surfaces. The light beams and the linear array sensor are disposed in a plane perpendicular to the container surface at the impact point of the beam, and the container is rotated about its central axis. Preferably, the linear array sensor is scanned at increments of container rotation, and scan data is averaged over a plurality of scanned increments controllable by software, thereby simulating the output from the conventional rf gauge, which measures sidewall thickness over a larger area.

Brief Description of the Drawings

The invention, together with additional objects, features and advantages thereof, will be best understood from the following description, the appended claims and the accompanying drawings in which:

FIG. 1 is a schematic diagram of a container sidewall thickness measurement apparatus in accordance with a presently preferred embodiment of the invention;

FIG. 2 is a ray trace schematic diagram that illustrates operation of the embodiment of the invention illustrated in FIG. 1;

FIG. 3 is a ray trace schematic diagram similar to that of FIG. 2 but illustrating operation in accordance with the prior art;

FIGS. 4 and 5 are fragmentary ray trace schematic diagrams similar to that of FIG. 2, but on an enlarged scale, illustrating advantages of the present invention over the prior art; and

FIG. 6 is a schematic diagram that illustrates detector output in accordance with the invention.

Detailed Description of Preferred Embodiment

FIG. 1 is a schematic diagram of an inspection station 10 for measuring sidewall thickness of transparent containers 12 having a substantially cylindrical sidewall 14 and a central axis 16. At station 10, container 12 is engaged by a driv wheel 18 or other suitable device for rotating th container about its central axis 16. Drive 18 is also connected to a positi n encoder 20 for providing a signal to an information processor 22 indicative of increments of container rotation. A laser or other suitable light s urce 24 is controlled by information proc ssor 22 to direct a collimated beam 26 of

coherent light energy onto sid wall 14 of container 12 at a nominal angle of 45° to the container radius. As shown in FIG. 2, light b am 26 is incident at point A on the outer surface 28 of container sidewall 14, at which a portion 30 is reflected from outer surface 28 and a portion 32 is refracted into the container sidewall. Light beam portion 32 is incident at point B on the inner surface 34 of sidewall 14, from which a portion 36 is reflected back into the container sidewall to intersect the outer surface 28. Ultimately, a portion 38 of the light energy reflected from inner sidewall surface 34 emerges from outer surface 28.

Returning to FIG. 1, a lens 40 is positioned to intercept beam portions 30.38 reflected from the outer and inner surface reflection points A,B of container sidewall 14, and to focus such beam portions 30,38 onto a light sensor 42. Lens 40 may be a fresnel, holographic, plastic or glass lens; a multi-element glass lens is currently preferred. Preferably, sensor 42 comprises a plurality of light sensing elements or cells disposed in a linear array. Linear detector array 42 is disposed in the image plane of lens 40, which has an object plane OP (FIG. 2) co-linear with the axis of incident beam 26. Preferably, the object plane OP of lens 40 is imaged onto detector 42 at substantially 1:1 ratio. Laser 24, lens 40 and sensor 42 are disposed so that light beams 26,30,38 and the linear array of sensor 42 are all in a plane perpendicular to the surface of container 12 at the point of impact of the incident beam 26. The preferred angle of incidence of beam 26 is 45°. The optical axis of lens 40 bisects the nominal axes of reflected beams 30,38. Such an orientation is less sensitive to container wobble and deviations.

For purposes of comparison, FIG. 3 illustrates the position of the linear detector object plane PA relative to the various incident and reflected beams in accordance with the prior art European application discussed above. Incoming beam 26a is incident at point A at an angle of 37.5°, which is stated in the prior art to provide best results. The object plane PA of the focusing lens is co-linear with a line between the outer surface reflection point A and the virtual image Q of the inner surface reflection point B. It can be shown mathematically that the virtual image Q of the inner surface reflection point B in FIG. 3, and the point W at which the object plane OP intersects the container radius 44 in FIG. 2, are non-identical.

The present invention (FIGS. 1 and 2) provides enhanced ability over the prior art (FIG. 3) to measure sid wall thickness in containers that deviate from ideal or nominal geometry or position. FIG. 4 illustrates operation of the invention versus the prior art in a situation where the contain r sidewall 14 is displaced to the position 14a toward th

980:30 ED BI unt

15

20

25

30

40

45

d tection optics. At the nominal position of container sidewall 14, the outer surface reflection point A and the virtual image Q of the inner surface reflection point B are located on the object plane PA of the imaging lens in the prior art. However, when the container is displaced to the sidewall p sition 14a, the incoming beam is now incident at the point A' and the virtual image of the inner surfac reflection point B' is displaced to the position Q'. Since the measurement device itself has not mov d, the object plane PA of the lens remains at the same position, so that neither point A' nor Q' is in the object plane. There is thus an error at both reflection points because neither point A' or Q' is in the object plane. However, with the object plane OP positioned in accordance with the present invention, the outer surface reflection points A and A' are both disposed in the detector object plane, and th sole source of error is in the change of position of the inn r surface reflection point. In the situation illustrated schematically in FIG. 4, the present inv ntion obtains an approximately 65% reduction in measurement error

FIG. 5 illustrates a container in which the sidewall 14 has a flat spot 14b in the outer sidewall surface. In this situation, it will be noted that neither the outer surface reflection point A nor the virtual image Q of the inner surface reflection point B lie in the detector object plane PA, once again creating two sources of measurement error. However, the outer surface reflection point A remains in the object plane OP in accordance with the present invention.

in sum, the prior art technique disclosed in the above-noted European application contains two sources of error relating to displacement of the outer surface reflection point and the virtual image of the inn r surface reflection point from the object plan in various situations. However, in identical situations, the technique of the present invention contains only a single source of error, which has been found to be sufficiently small in practice to yield accurate readings not only on ideal containers, but on production containers within normal tolerances as well. The technique of the present invention thus provides a more accurate measurem nt of container sidewall thickness despite normal production deviations from ideal container position and sidewall contour.

Returning to FIGS. 1 and 2, lens 40 is positioned so that detector array 42 lies within the image plane of th 1 ns, and the object plane OP of th lens is co-linear with beam 26 as previously described. Preferably, was 40 (which may comprise a lens system) is of limited aperture so that h lens only accepts beam portions 38 reflected rom the inner sidewall surface 34 is parallel or substantially par-

allel to the outer sidewall surface 28. This occurs at all local minimum and maximum thickness points, thereby creating a thin/thick spot detector in combination with the sensor lectronics 22. In the preferred embodiment of the invention, the effective aperture of lens 40 is f1.4, or approximately 40° acceptance angle. With such an acceptance angle, the lens will capture light from a surface that can be tilted about - 10° from nominal. That is, both surfaces can tilt - 10° independently in vertical and/or horizontal directions. If the angle is greater than 10° in the plane of rotation, the system is non-responsive to the minimum and maximum thicknesses.

Detector array 42 is scanned by information processor 22 at increments of container rotation. FIG. 6 illustrates the output of detector array 42, providing a first peak 42a associated with reflected beam 30 from the outer surface and a second peak 42b associated with reflected beam 38 from the inner surface. Information process identifies the weighted centerline of each peak 42a,42b, and computes thickness 42c therefrom. Preferably, a variable width electronic filter in the information processor allows averaging of the thickness measurement in the horizontal direction over a selectable number of increments, which can be used to simulate a larger measurement area as in the prior art rf gauge described above.

The system of the invention may be employed in conjunction with any transparent material, and may measure sidewall, shoulder, neck, head or bottom thickness. Light source 24, lens 40 and array 42 may be mounted on a head that is movable with respect to the container. In this connection, it will be recognized that prior art techniques have encountered difficulty measuring wall thickness at radiused locations, such as shoulders and heels.

Claims

1. Apparatus (10) for measuring wall thickness of transparent containers (12) that comprises: means (24) for directing a light beam (26) onto the outer surface (28) of a container wall (14) at an angle such that a portion (30) of the light is reflected from the outer surface, and a portion (32) is refracted into the container wall and reflected from the inner wall surface (34), light sensing means (42) that includes at I ast one light sensor disposed in a plan, means (40) for focusing light energy reflected from said outer and inner wall surfaces (28,34) onto said light sensing means (42), and means (22) responsive to light energy incident on said sensing means (42) for determining wall thickness of the container (12) between the inner and

10

outer wall surfaces (28,34),

characterized in that said focusing means (40) has an image plan in which said array (42) is disposed and an object plane (OP) colinear with said light beam (26).

The apparatus (10) set forth in claim 1 wherein said sensing means (42) comprises a plurality of light s nsors disposed in a linear array, wall thickness of the container being proportional to separation at said array between light energy reflected from said outer and inner wall surfaces (28.34).

The apparatus (10) set forth in claim 2 wherein said light beam (26) and said linear array (42) ar disposed in a plane perpendicular to the container outer surface (28).

The apparatus (10) set forth in claim 3 wherein said m ans (22) for determining wall thickness of the container (12) comprises means for scanning said array at increments of container rotation, and means for averaging scan data over a plurality of said increments.

The apparatus (10) set forth in any preceding claim wherein said beam-directing means (24) comprises a laser.

The apparatus (10) set forth in any preceding claim wherein said angle is substantially equal to 45.

The apparatus (10) set forth in any preceding claim wherein said focusing means (40) comprises a lens having an acceptance angle of approximately 40.

A method of measuring sidewall thickness of a transparent container (12) having a substantially cylindrical sidewall (14) and a central axis (16) comprising the steps of:

- (a) directing a light beam (26) onto the sidewall of a container at an angle such that a portion (30) of the light beam is reflected from the outer surface (28) of the container sidewall, and a portion (32) is refracted into the container sidewall and reflected from the inner sid wall surface (34).
- (b) directing the light reflected from the outer and inn r sidewall surfaces (28,34) onto a light sensor (42) with a tens (40) that has an image plane in which the sensor (42) is disposed and an object plane (OP) colinear with the light beam (26) directed onto the container sidewall in said step (a), and

(c) measuring wall thickness as a function of separation at said sensor (42) betw en said light reflect d from said outer and inner sidewall surfaces (28,34).

- The method set forth in claim 8 comprising the additional step of: (d) rotating the container (12) about its central axis (16).
- 10. The method set forth in claim 9 wherein said step (c) comprises the steps of: (c1) scanning said sensor (42) at increments of container rotation, (c2) determining a wall thickness measurement at each said increment, and (c3) averaging thickness measurements determined in said step (c2) over a plurality of rotation increments.

30

25

4O

45

50

55

do1:30 60 81 unt

KHSEEK & THUGHLIN

9.9

EUROPEAN SEARCH REPORT

Application Number EP 93 11 2996

	DOCUMENTS CONSIDERED TO BE RELEV.	ANT		_
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CL5)	
X	THIRD INTERNATIONAL CONFERENCE ON INTEGRATED OPTICS AND OPTICAL FIBER COMMUNICATION 27 April 1981, SAN FRANCISCO, CA, USA pages 62 - 63 J. SANCHEZ ET AL 'On-line Measurement of Glass Thickness deposited in the MCVD Fiber Preform Process' see abstact TUG2 * page 62, column 2, paragraph 3 - page 62, column 3, paragraph 3 * page 63; figure 1 *	1-6,8-10	G01B11/06 G01B11/02	
Χ .	EP-A-O 248 552 (W.R. TOLE; R. BETHAM.) * page 5, line 12 - page 13, line 18; figures 1-8 *	1,2,5,8		·
			TECHNICAL FIELDS SEARCHED (Int.Cl.5)	
			G018	
		·		
1				
		·		
	The present search report has been drawn up for all claims		and the second s	* . *
			English States and Sta	and the second second
() Processo	THE HAGUE 25 November 19)93 Vis	ser, F	· 中国中央公司中央公司的特殊公司 (1944年) (1944年)
CATEGORY OF CITED DOCLMENTS T: theory or principle underlying the invention E: earlier patent document, but published on, or X: particularly relevant if taken alone Y: particularly relevant if combined with another B: document cited in the application L: document cited for other reasons				*
A : tecl	A : technological background O : non-written disclosure A : member of		ly, corresponding	
P : lot	irmediate document document		· <u></u>	J