Abstract

Our chosen problem is to predict water potability based on certain measurable metrics. The dataset came from Kaggle and seems to be a comprehensive set of ten metrics regarding water quality, ex: ph, hardness, solids, etc. The dataset is said to be comprised of water samples from 3276 different bodies of water. The methods we used were logistic regression, support vector machine, and neural networks. Results for the first two aforementioned models were poor at around 60% and the result for neural networks was bad at 40%. Logistic regression and support vector machine tend to provide false negatives (potable predicted as non potable), while neural nets are the opposite with false positives (non potable predicted as potable). We concluded that if this dataset needed to be used logistic regression or support vector machines were the models to use.

Intro

The problem is to accurately predict potable water from a water sample, "Access to safe drinking-water is essential to health, a basic human right and a component of effective policy for health protection" (Kaggle). The dataset is said to be comprised of water samples from 3276 different bodies of water, both drinkable and non drinkable.

The dataset is appropriate because it is sufficiently large and completely numeric, with plenty of features and only two classes. Our approaches were to use lists of different parameters and try them all to return the highest precision score, which should also have a good accuracy. This approach was very feasible for logistic regression and support vector machine but arguably terrible for neural nets, as the brute force method took 20+ minutes, even with multiple processes.

Stats

Potables

Max		Min		
ph	11.898078	ph	0.227499	
Hardness	317.338124	Hardness	73.492234	
Solids	56488.672413	Solids	1198.943699	
Chloramines	13.127000	Chloramines	1.390871	
Sulfate	481.030642	Sulfate	129.000000	
Conductivity	695.369528	Conductivity	201.619737	
Organic carbon	23.604298	Organic carbon	2.200000	
Trihalomethanes	124.000000	Trihalomethanes	8.577013	
Turbidity	6.494249	Turbidity	1.492207	
Potability	1.000000	Potability	1.000000	
-		•		
Mean	7 443704	Median		
ph	7.113791	ph	7.046549	
Hardness	195.908341	Hardness	197.617494	
Solids	22344.922883	Solids	21217.158596	
Chloramines	7.174395	Chloramines	7.212254	
Sulfate	332.457832	Sulfate	331.087177	
Conductivity	425.005423	Conductivity	421.099917	
Organic_carbon	14.294764	Organic_carbon	14.252684	
Trihalomethanes	66.581596	Trihalomethanes	66.612984	
Turbidity	3.991254	Turbidity	4.007347	
Potability	1.000000	Potability	1.000000	
Mode				
ph Hardness	Solids Chlo	ramines Sulfate	Conductivity	
Organic_carbon Ti		•	oility	
15.0	69.0	4.0	1.0 (Mode pt.2)	
Standard Deviation	1			
ph	1.437623			
Hardness	35.301146			
Solids	8891.547966			
Chloramines	1.732796			
Sulfate	47.446190			
Conductivity	81.950982			
Organic carbon	3.257917			
Trihalomethanes	16.297713			
Turbidity	0.776408			
Potability	0.000000			

Nonpotables

Max		Min	
ph	14.000000	ph	1.431782
Hardness	300.292476	Hardness	98.452931
Solids	55334.702799	Solids	320.942611
Chloramines	12.653362	Chloramines	2.456014
Sulfate	460.107069	Sulfate	203.444521
Conductivity	753.342620	Conductivity	210.319182
Organic_carbon	27.006707	Organic carbon	4.371899
Trihalomethanes	120.030077	Trihalomethanes	14.343161
Turbidity	6.494749	Turbidity	1.450000
Potability	0.000000	Potability	0.000000
Mean		Median	

Mean		Median	
ph	7.067201	ph	6.992004
Hardness	196.008440	Hardness	196.799368
Solids	21628.535122	Solids	20507.399647
Chloramines	7.107267	Chloramines	7.103718
Sulfate	333.742928	Sulfate	332.615625
Conductivity	427.554342	Conductivity	424.479471
Organic_carbon	14.400250	Organic_carbon	14.351828
Trihalomethanes	66.278712	Trihalomethanes	66.206116
Turbidity	3.955181	Turbidity	3.944085
Potability	0.000000	Potability	0.000000

Мо	de						
	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon
0	7.0	192.0	15825.0	7.0	334.0	414.0	14.0
Trihalomethanes Turbidity Potability							
0		64.0	9	4.0	0		

(Ignore the two leading zeros under Mode)

Standard Deviation	
ph	1.659106
Hardness	30.717642
Solids	8461.108693
Chloramines	1.476577
Sulfate	36.398403
Conductivity	79.882677
Organic_carbon	3.370196
Trihalomethanes	15.931953
Turbidity	0.782984
Potability	0.000000

Stats Summary

The stats show how the water potability data varies widely, and how some features might not be very useful. One of the numbers that caught my eye specifically was the standard deviation of "Solids" for both classes, which is extremely large.

Methods/Results

Logistic regression

Logistic regression is a model that generates an optimized logistic function based on the training data and the amount of restriction applied to the regression. The only parameter is the amount of restriction(regularization), but the optimization algorithms make an impact as well.

The result of logistic regression was poor, the avg acc was just 60% with the highest precision score having an accuracy of 58.6%. The model is always weighted towards predicting unsafe water correctly, but not being able to predict safe.

[0.7, 89, '12', 'saga', 0.5860 (parameters in order of training size, c-value, regression, and optimization algorithm.

SVM

Support vector machine is a model that generates an optimized function based on the training data to slice data into two sections/classes using a line/plane/hyperplane (depending on number of features).

The only parameter is the amount of restriction(regularization).

The result was poor, the avg acc was just 60% with the highest precision score having an accuracy of 54%. The model is always weighted towards predicting unsafe water correctly, but not being able to predict safe water, just like logistic regression.

[0.9, 89, 89, 0.544 (parameters in order of training size, c-value, and gamma.

Neural Nets

Neural networks are models that generate an optimized network of weight and biases in order to accurately predict a class. Usually they have many input nodes(features) to a number of hidden layers and then to a single output layer which decides the classification. The weights are optimized from end to beginning and the initial weights are pretty much guessed/random.

The result was very poor, with an average accuracy for the best precision score being 40%. The model is always weighted towards predicting safe water correctly, but not being able to predict unsafe water, the exact opposite of the other two models.

[0.4, [8, 8, 8], 'logistic', 'sgd', 34, 0.38193869096934546] (parameters in order of training size, hidden-layers, activation

function, solver algorithm, c-value, and the resulting accuracy.

Discussion

Logistic regression and support vector machine performed sub-par from what I expected. Kaggle gives this dataset a high usability number, and on initial thought I believed that meant that the dataset was good for machine learning, but with further inspection that number only indicates how well documented the dataset is and has nothing to do with usability. The two aforementioned models had very similar results and always leaned towards predicting all/most samples as non potable.

Starting on neural nets I had hopes that it would turn out better than the other models but it under-performed even them by far. On top of being worse the model leaned towards predicting all water as potable which would be the absolutely worse outcome. All of the models were run with a combination of many parameters to attempt to find the best set. However, almost every model output different parameters every time they were run.

I believe that neural nets had a worse outcome because I could not try an extensive list of the number of hidden layers and size of hidden layers as the execution time of the program became extremely long, even with multiprocessing.

Conclusion

This problem has remained unsolved. My group concluded on extensive analysis of the features that this dataset is either very bad for machine learning or even fake, as many of the features for each class overlap and thus make the accuracies terrible.

Despite the dataset, logistic regression and support vector machine were fairly accurate in solving the problem and gave much more true negatives (potable water predicted non potable) than false positives (non potable water predicted potable). Even so, I would personally not trust whatever result a water potability tester trained from this dataset gave.

References

Water potability dataset

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

 $\underline{https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html\#sklearn.svm.LinearSVC.html\#sklearn.svm.LinearSVC.html\#sklearn.svm.LinearSVC.html\#sklearn.svm.LinearSVC.html\#sklearn.svm.LinearSVC.html$

lpclassifier#sklearn.neural_network.MLPClassifier