Devoir surveillé n° 2 - MPI*

Samedi 20 septembre 2025.

Ce devoir surveillé, d'une durée de 4h est constitué d'un problème issu des concours. On attachera une attention particulière au soin et à la présentation, et à la rigueur de l'argumentation, tout en évitant les lourdeurs inutiles.

Petite règle supplémentaire pour ce devoir : ne pas répondre à une question si vous n'êtes pas sûr de le faire soigneusement, et avec les idées à peu près claires. Barème généreux mais -1 pt sur la note "concours" (et 0 pt sur la note "bulletin") pour toute réponse qui ressemble à un brouillon. Bon courage!

Notations et définitions

Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , \mathbb{N} désigne l'ensemble des entiers naturels et n est un entier naturel.

On note $\mathbb{K}_n[X]$ le sous-espace vectoriel de $\mathbb{K}[X]$ des polynômes de degré inférieur ou égal à n à coefficients dans \mathbb{K} et, pour $n \ge 1$, $\mathcal{M}_n(\mathbb{K})$ la \mathbb{K} -algèbre des matrices carrées de taille n à coefficients dans \mathbb{K} . La matrice unité est notée I_n et on désigne par $GL_n(\mathbb{K})$ le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$.

Pour toute matrice A de $\mathcal{M}_n(\mathbb{K})$, on note A^{\top} la transposée de la matrice A, rg(A) son rang, tr(A) sa trace, $\chi_A = \det(XI_n - A)$ son polynôme caractéristique, π_A son polynôme minimal et sp(A) l'ensemble de ses valeurs propres dans \mathbb{K} .

Dans tout le problème, E désigne un espace vectoriel sur le corps \mathbb{K} de dimension finie n supérieure ou égale à 2, et $\mathcal{L}(E)$ est l'algèbre des endomorphismes de E. On note f un endomorphisme de E.

On note
$$f^0 = \text{Id}_E$$
 et $\forall k \in \mathbb{N}, f^{k+1} = f^k \circ f$.

Si $Q \in \mathbb{K}[X]$ avec $Q(X) = a_0 + a_1X + \cdots + a_mX^m$, Q(f) désigne l'endomorphisme $a_0\mathrm{Id}_E + a_1f + \cdots + a_mf^m$. On note $\mathbb{K}[f]$ la sous-algèbre commutative de $\mathcal{L}(E)$ constituée des endomorphismes Q(f) quand Q décrit $\mathbb{K}[X]$.

De même, on utilise les notations suivantes, similaires à celles des matrices, pour un endomorphisme f de $E : rg(f), tr(f), \chi_f, \pi_f$ et sp(f).

Enfin, on dit que f est *cyclique* si et seulement s'il existe un vecteur x_0 dans E tel que $(x_0, f(x_0), \ldots, f^{n-1}(x_0))$ soit une base de E.

I. Matrices compagnons et endomorphismes cycliques

I.A.

Soit $M \in \mathcal{M}_n(\mathbb{K})$.

- 1. Montrer que M et M^{T} ont même spectre.
- 2. Montrer que M^{T} est diagonalisable si et seulement si M est diagonalisable.

I.B. Matrices compagnons

3. Soit $(a_0, a_1, \dots, a_{n-1}) \in \mathbb{K}^n$ et $Q(X) = X^n + a_{n-1}X^{n-1} + \dots + a_0$. On considère la matrice

$$C_{Q} = \begin{pmatrix} 0 & \dots & \dots & 0 & -a_{0} \\ 1 & 0 & \dots & \dots & 0 & -a_{1} \\ 0 & 1 & \ddots & \vdots & -a_{2} \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & 1 & 0 & -a_{n-2} \\ 0 & \dots & \dots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

Déterminer en fonction de Q le polynôme caractéristique de C_Q.

4. Soit λ une valeur propre de C_Q^{\top} . Déterminer la dimension et une base du sous-espace propre associé.

I.C. Endomorphismes cycliques

- 5. Montrer que f est cyclique si et seulement s'il existe une base \mathcal{B} de E dans laquelle la matrice de f est de la forme C_Q , où Q est un polynôme unitaire de degré n.
- **6.** Soit f un endomorphisme cyclique. Montrer que f est diagonalisable si et seulement si χ_f est scindé sur \mathbb{K} et a toutes ses racines simples.
- 7. Montrer que si f est cyclique, alors $(\mathrm{Id}, f, f^2, \dots, f^{n-1})$ est libre dans $\mathcal{L}(\mathrm{E})$ et le polynôme minimal de f est de degré n.

I.D. Application à une démonstration du théorème de Cayley-Hamilton

8. Soit x un vecteur non nul de E. Montrer qu'il existe un entier p strictement positif tel que la famille

$$(x,f(x),f^2(x),\ldots,f^{p-1}(x))$$
 soit libre et qu'il existe $(\alpha_0,\alpha_1,\ldots,\alpha_{p-1})\in\mathbb{K}^p$ tel que :

$$\alpha_0 x + \alpha_1 f(x) + \dots + \alpha_{p-1} f^{p-1}(x) + f^p(x) = 0$$

- **9.** Justifier que $Vect(x, f(x), f^2(x), \dots, f^{p-1}(x))$ est stable par f.
- 10. Montrer que $X^p + \alpha_{p-1}X^{p-1} + \cdots + \alpha_0$ divise le polynôme χ_f .
- 11. Démontrer que $\chi_f(f)$ est l'endomorphisme nul.

II. Étude des endomorphismes cycliques

II.A. Endomorphismes cycliques nilpotents

Dans cette sous-partie, on suppose que f est un endomorphisme nilpotent de E. On note r le plus petit entier naturel tel que $f^r = 0$.

12. Montrer que f est cyclique si et seulement si r=n. Préciser alors la matrice compagnon.

II.B.

Dans cette sous partie II.B, on suppose $\mathbb{K} = \mathbb{C}$.

On suppose que $(\mathrm{Id}, f, f^2, \dots, f^{n-1})$ est libre et on se propose de montrer que f est cyclique. On factorise le polynôme caractéristique de f sous la forme

$$\chi_f(\mathbf{X}) = \prod_{k=1}^p (\mathbf{X} - \lambda_k)^{m_k}$$

où les λ_k sont les p valeurs propres deux à deux distinctes de f et les m_k de \mathbb{N}^* leurs ordres de multiplicité respectifs.

Pour $k \in [1, p]$, on pose $F_k = \ker((f - \lambda_k \operatorname{Id}_E)^{m_k})$.

13. Montrer que les sous-espaces vectoriels F_k sont stables et que $E = F_1 \oplus \cdots \oplus F_p$.

Pour $k \in [1, p]$, on note φ_k l'endomorphisme induit par $f - \lambda_k \text{Id}$ sur le sous-espace vectoriel F_k ,

$$\varphi_k : \begin{cases} F_k \to F_k \\ x \mapsto f(x) - \lambda_k x \end{cases}$$

14. Justifier que φ_k est un endomorphisme nilpotent de F_k .

On note ν_k le plus petit entier naturel tel que $\varphi_k^{\nu_k}=0.$

- **15.** Pourquoi a-t-on $\nu_k \leq \dim(\mathbf{F}_k)$?
- **16.** Montrer, avec l'hypothèse proposée, que pour tout $k \in [1, p]$, on a $\nu_k = m_k$.
- 17. Expliciter la dimension de F_k pour $k \in [[1,p]]$, puis en déduire l'existence d'une base $\mathcal{B} = (u_1, \ldots, u_n)$ de E dans laquelle f a une matrice diagonale par blocs, ces blocs appartenant à $\mathcal{M}_{m_k}(\mathbb{C})$ et étant de la forme

$$\begin{pmatrix} \lambda_k & 0 & \dots & \dots & 0 \\ 1 & \lambda_k & \ddots & & & \vdots \\ 0 & 1 & \lambda_k & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \lambda_k & 0 \\ 0 & \dots & \dots & 0 & 1 & \lambda_k \end{pmatrix}$$

On pose $x_0 = u_1 + u_{m_1+1} + \cdots + u_{m_1+\cdots+m_{p-1}+1}$.

- **18.** Déterminer les polynômes $Q \in \mathbb{C}[X]$ tels que $Q(f)(x_0) = 0$.
- 19. Justifier que f est cyclique.

III. Endomorphismes commutants, décomposition de Frobenius

On appelle commutant de f l'ensemble $C(f) = \{g \in \mathcal{L}(E) / f \circ g = g \circ f\}.$

20. Montrer que C(f) est une sous-algèbre de $\mathcal{L}(E)$.

III.A. Commutant d'un endomorphisme cyclique

On suppose que f est cyclique et on choisit un vecteur x_0 dans E tel que $(x_0, f(x_0), \ldots, f^{n-1}(x_0))$ est une base de E.

Soit $g \in C(f)$, un endomorphisme qui commute avec f.

21. Justifier l'existence de $\lambda_0, \lambda_1, \dots, \lambda_{n-1}$ de \mathbb{K} tels que

$$g(x_0) = \sum_{k=0}^{n-1} \lambda_k f^k(x_0)$$

- **22.** Montrer alors que $g \in \mathbb{K}[f]$.
- **23.** Établir que $g \in C(f)$ si et seulement s'il existe un polynôme $R \in \mathbb{K}_{n-1}[X]$ tel que g = R(f).

III.B. Décomposition de Frobenius

On se propose de démontrer le théorème de décomposition de Frobenius : toute matrice est semblable à une matrice diagonale par blocs, ces blocs étant des matrices compagnons.

24. Montrer que si la réunion d'un nombre fini de sous-espaces vectoriels F_1, \ldots, F_r de E est un sous-espace vectoriel, alors l'un des sous-espaces F_i contient tous les autres.

On note d le degré de π_f .

25. Justifier l'existence d'un vecteur x_1 de E tel que $(x_1, f(x_1), \ldots, f^{d-1}(x_1))$ est libre. Pour tout x non nul de E, on pourra remarquer que $I_x = \{P \in \mathbb{K}[X]/P(f)(x) = 0\}$ est un idéal de $\mathbb{K}[X]$ engendré par un polynôme unitaire $\pi_{f,x}$ diviseur de π_f et considérer les sous-espaces vectoriels $\ker(\pi_{f,x}(f))$.

On pose
$$e_1 = x_1$$
, $e_2 = f(x_1)$, ..., $e_d = f^{d-1}(x_1)$ et $E_1 = \text{Vect}(e_1, e_2, \dots, e_d)$.

26. Montrer que E_1 est stable par f et que $E_1 = \{P(f)(x_1)/P \in \mathbb{K}[X]\}.$

On note ψ_1 l'endomorphisme induit par f sur le sous-espace vectoriel E_1 ,

$$\psi_1 : \begin{cases} \mathbf{E}_1 \to \mathbf{E}_1 \\ x \mapsto f(x) \end{cases}$$

27. Justifier que ψ_1 est cyclique.

On complète, si nécessaire, (e_1, e_2, \ldots, e_d) en une base (e_1, e_2, \ldots, e_n) de E. Soit Φ la d-ième forme coordonnée qui à tout vecteur x de E associe sa coordonnée suivant e_d . On note $F = \{x \in E \mid \forall i \in \mathbb{N}, \Phi(f^i(x)) = 0\}$.

28. Montrer que F est stable par f et que E_1 et F sont en somme directe.

Soit Ψ l'application linéaire de E dans \mathbb{K}^d définie, pour tout $x \in \mathcal{E}$, par

$$\Psi(x) = (\Phi(f^{i}(x)))_{0 \le i \le d-1} = (\Phi(x), \Phi(f(x)), \dots, \Phi(f^{d-1}(x)))$$

- **29.** Montrer que Ψ induit un isomorphisme entre E_1 et \mathbb{K}^d .
- **30.** Montrer que $E = E_1 \oplus F$.
- **31.** En déduire qu'il existe r sous-espaces vectoriels de E, notés E_1, \ldots, E_r , tous stables par f, tels que :
 - $E = E_1 \oplus \cdots \oplus E_r$;
 - pour tout $1 \le i \le r$, l'endomorphisme ψ_i induit par f sur le sous-espace vectoriel \mathbf{E}_i est cyclique;
 - si on note P_i le polynôme minimal de ψ_i , alors P_{i+1} divise P_i pour tout entier i tel que $1 \le i \le r-1$.

III.C. Commutant d'un endomorphisme quelconque

- **32.** Montrer que la dimension de C(f) est supérieure ou égale à n.
- **33.** On suppose que f est un endomorphisme tel que l'algèbre C(f) est égale à $\mathbb{K}[f]$. Montrer que f est cyclique.

Un corrigé

I. Matrices compagnons et endomorphismes cycliques

I.A.

$$\begin{aligned} \textbf{1.} \ \text{On a} \ \chi_{\mathbf{M}} &= \det(\mathbf{X}\mathbf{I}_n - \mathbf{M}) = \det\left((\mathbf{X}\mathbf{I}_n - \mathbf{M})^\top\right) = \det(\mathbf{X}\mathbf{I}_n - \mathbf{M}^\top) = \chi_{\mathbf{M}^\top} \ \text{donc} \\ &\forall \lambda \in \mathbb{K}, \ \lambda \in \mathrm{sp}(\mathbf{M}) \Leftrightarrow \chi_{\mathbf{M}}(\lambda) = 0 \Leftrightarrow \chi_{\mathbf{M}^\top}(\lambda) = 0 \Leftrightarrow \lambda \in \mathrm{sp}\left(\mathbf{M}^\top\right) \end{aligned}$$

Ainsi $\operatorname{sp}(M) = \operatorname{sp}(M^T)$ et donc M et M^T ont même spectre

2. $\underline{\Leftarrow}$: On suppose que M est diagonalisable. ce qui nous fournit $P \in GL_n(\mathbb{K})$ et $D \in \mathcal{M}_n(\mathbb{K})$ diagonale telles que $M = PDP^{-1}$

$$\operatorname{donc} \, M^{\!\top} = \left(P^{-1}\right)^{\!\top} \! D^{\!\top} P^{\!\top} = \left(P^{\!\top}\right)^{-1} D P^{\!\top}$$

d'où M^{T} est diagonalisable

 \Rightarrow : On suppose que M^{T} est diagonalisable.

Pour montrer que M est diagonalisable, on utilise l'implication précédente en remarquant que $M = (M^T)^T$.

On a bien montré que M^{\top} est diagonalisable si et seulement si M est diagonalisable

I.B. Matrices compagnons

3. On montre que $\chi_{C_Q} = Q$ par récurrence sur $\deg(Q) = n \geqslant 2$

Initialisation: On suppose que $\deg(Q) = 2$ ainsi $Q = X^2 + a_1X + a_0$ et $C_Q = \begin{pmatrix} 0 & -a_0 \\ 1 & -a_1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$

On a $\chi_{C_Q} = X^2 - tr(C_Q)X + det(C_Q) = X^2 + a_1X + a_0$ ce qui prouve l'initialisation

Hérédité : Soit l'entier $n \ge 2$. On suppose la propriété vraie pour tout polynôme unitaire de degré n.

On considère $Q(X) = X^{n+1} + a_n X^n + \cdots + a_0$ où les $a_i \in \mathbb{K}$. On a en développant par rapport à la première ligne :

$$\chi_{C_{Q}} = \begin{vmatrix} X & \dots & \dots & 0 & a_{0} \\ -1 & X & \dots & \dots & 0 & a_{1} \\ 0 & -1 & \ddots & \vdots & a_{2} \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & -1 & X & a_{n-1} \\ 0 & \dots & \dots & 0 & -1 & X + a_{n} \end{vmatrix}_{[n+1]}$$

$$= \begin{vmatrix} -X & \dots & \dots & 0 & a_{1} \\ -1 & \ddots & \vdots & a_{2} \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ & \ddots & \ddots & \vdots & \vdots \\ & & \ddots & -1 & X & a_{n-1} \\ \dots & & 0 & -1 & X + a_{n} \end{vmatrix}_{[n]} + (-1)^{n+2} a_{0} \begin{vmatrix} -1 & X & \dots & \dots & 0 \\ 0 & -1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ [n]$$

Je note $R = X^n + a_n X^{-1} + \cdots + a_1$ et on a $\chi_{C_Q} = X \chi_{C_R} + a_0 (-1)^{2n+2}$ Par hypothèse, on a $\chi_{C_R} = R$ donc $\chi_{C_Q} = XR + a_0 = Q$ **Conclusion :** On a montré par récurrence que la propriété était vraie pour tout polynôme unitaire de degré $\geqslant 2$

En particulier \mathbb{Q} est le polynôme caractéristique de $\mathbb{C}_{\mathbb{Q}}$

4. On a
$$(C_Q)^{\top} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & & 0 & 1 \\ -a_0 & -a_1 & \dots & & -a_{n-1} \end{pmatrix}$$
.

On a $\chi_{C_{\mathcal{O}}^{\top}} = \chi_{C_{\mathcal{Q}}} = Q$ ainsi $Q(\lambda) = 0$

Soit
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K}),$$

$$(\mathbf{C}_{\mathbf{Q}})^{\mathsf{T}}\mathbf{X} = \lambda\mathbf{X} \Longleftrightarrow \begin{cases} x_2 &= \lambda x_1 \\ x_3 &= \lambda x_2 \\ \vdots & \Longleftrightarrow \\ x_n &= \lambda x_{n-1} \\ -a_0 x_1 &- \dots - a_{n-1} x_n = \lambda x_n \end{cases} \Longleftrightarrow \begin{cases} x_2 = \lambda x_1 \\ x_3 = \lambda^2 x_1 \\ \vdots \\ x_n = \lambda^{n-1} x_1 \\ (-a_0 - a_1 \lambda - \dots - a_{n-1} \lambda^{n-1}) x_1 = \lambda^n x_1 \end{cases}$$

Ainsi
$$(C_Q)^T X = \lambda X \iff \begin{cases} \forall i \in [2, n], \ x_i = \lambda^{i-1} x_1 \\ Q(\lambda) x_1 = 0 \end{cases}$$

Notez bien que le "ainsi" concerne toute l'équivalence!

Comme λ est racine de Q, alors $\dim \left(\mathbf{E}_{\lambda} \left(\mathbf{C}_{\mathbf{Q}}^{\top} \right) \right) = 1, \ \mathbf{E}_{\lambda} \left(\mathbf{C}_{\mathbf{Q}}^{\top} \right) = \operatorname{vect}(\mathbf{X}_{\lambda}) \text{ où } \mathbf{X}_{\lambda} = \begin{pmatrix} 1 \\ \lambda \\ \vdots \\ \lambda^{n-1} \end{pmatrix}$

I.C. Endomorphismes cycliques

5. \Rightarrow : On suppose que f est cyclique.

Ceci nous fournit $x_0 \in E$ tel que $\mathcal{B} = (x_0, f(x_0), \dots, f^{n-1}(x_0))$ soit une base de E

Il existe alors
$$(\lambda_0, \lambda_1, \dots, \lambda_{n-1}) \in \mathbb{K}^n$$
 tel que $f^n(x_0) = \sum_{i=0}^{n-1} \lambda_i f^i(x_0)$

Je pose alors
$$Q = X^n + \sum_{i=0}^{n-1} (-\lambda_i) X^i \mathbb{K}[X]$$

de sorte que Q est unitaire de degré n et $\mathcal{M}_{\mathcal{B}}(f) = \mathcal{C}_{\mathcal{Q}}$

 \Leftarrow : On suppose qu'il existe une base $\mathcal{B} = (e_0, e_1, \dots e_{n-1})$ de E dans laquelle la matrice de f est de la forme C_Q , où Q est un polynôme unitaire de degré n

Ainsi
$$\forall i \in [0, n-2], \ f(e_i) = e_{i+1}$$

donc
$$(e_0, f(e_0), f^2(e_0), \dots, f^{n-1}(e_0))$$
 est une base de E et donc f est cyclique

f est cyclique si et seulement s'il existe une base \mathcal{B} de E dans laquelle la matrice de f est de la forme C_Q où Q est un polynôme unitaire de degré n

6. \Leftarrow : On suppose que χ_f est scindé sur $\mathbb K$ et a toutes ses racines simples.

Ainsi $|\operatorname{sp}(f)| = \operatorname{deg}(\chi_f) = \dim E$

donc f est diagonalisable d'après le cours

 \Leftarrow : On suppose que f est diagonalisable. Comme f est cyclique,

ceci nous fournit \mathcal{B} une base de E et $Q \in \mathbb{K}[X]$ unitaire de degré n tel que $\mathcal{M}_{\mathcal{B}}(f) = C_Q$ d'après 5.

Ainsi C_Q est diagonalisable et il en est de même pour C_Q^\top d'après 2

Ainsi
$$\mathbb{K}^n = \bigoplus_{\lambda \in \operatorname{sp}(f)} \operatorname{E}_{\lambda}\left(\operatorname{C}_{\operatorname{Q}}^{\top}\right)$$
 d'où $n = \sum_{\lambda \in \operatorname{sp}\left(\operatorname{C}_{\operatorname{Q}}^{\top}\right)} \operatorname{dim}\left(\operatorname{E}_{\lambda}\left(\operatorname{C}_{\operatorname{Q}}^{\top}\right)\right)$

or on a $\forall \lambda \in \operatorname{sp}\left(\mathbf{C}_{\mathbf{Q}}^{\top}\right)$, dim $\left(\mathbf{E}_{\lambda}\left(\mathbf{C}_{\mathbf{Q}}^{\top}\right)\right) = 1$ d'après 4 donc $\left|\operatorname{sp}\left(\mathbf{C}_{\mathbf{Q}}^{\top}\right)\right| = n$

or d'après 1 : sp $\left(\mathbf{C}_{\mathbf{Q}}^{\top}\right) = \mathrm{sp}\left(\mathbf{C}_{\mathbf{Q}}\right) = \mathrm{sp}\left(f\right)$

donc f admet n valeurs propres distinctes dans \mathbb{K}

donc χ_f est scindé sur $\mathbb K$ et a toutes ses racines simples

Ainsi f est diagonalisable si et seulement si χ_f est scindé sur \mathbb{K} et a toutes ses racines simples

7. On suppose que f est cyclique.

Soit
$$(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{K}^n$$
 tel que $\sum_{i=0}^n \lambda_i f^i = 0_{\mathcal{L}(\mathbf{E})}$. Montrons $\forall i \in [0, n-1]$, $\lambda_i = 0$

Comme f est cyclique, ceci nous fournit $x \in E$ tel que $\mathcal{B} = (x, f(x), \dots, f^{n-1}(x))$ soit une base de E

donc
$$\sum_{i=0}^{n} \lambda_i f^i(x) = 0_{\mathcal{L}(\mathbf{E})}(x) = 0_{\mathbf{E}}$$

ainsi $\forall i \in [[0, n-1]], \ \lambda_i = 0 \text{ car } \mathcal{B} \text{ est libre}$

Alors
$$(\mathrm{Id}, f, f^2, \dots, f^{n-1})$$
 est libre dans $\mathcal{L}(\mathrm{E})$

Je note d le degré de π_f . D'après le cours on a $d = \dim (\mathbb{K}[f])$.

Or $(\mathrm{Id}, f, f^2, \dots, f^{n-1})$ est libre dans $\mathbb{K}[f]$ donc $d \ge n$

de plus d'après Cayley-Hamilton, on a χ_f est annulateur de f

d'où $\pi_f \mid \chi_f$ or ce sont des polynômes non nuls ainsi on a $d = \deg(\pi_f) \leqslant \deg(\chi_f) = n$

ainsi n=d d'où le polynôme minimal de f est de degré n

On ne se sert pas de cette question pour montrer le théorème de Cayley-Hamilton dans le paragraphe I.D qui suit.

I.D. Application à une démonstration du théorème de Cayley-Hamilton

8. On note $N_x = \left\{ m \in \mathbb{N}^* \mid (f^i(x))_{0 \le i \le m-1} \text{ libre} \right\}.$

On sait que $1 \in \mathcal{N}_x$ car $x \neq 0_{\mathcal{E}}$ et que $\forall m \geq n, \ m \notin \mathcal{N}_x$ car dim $\mathcal{E} = n$

Ainsi N_x est une partie de \mathbb{N}^* non vide majorée par n-1

donc N_x admet un plus grand élément $p \in \mathbb{N}^*$.

Ainsi la famille $(f^i(x))_{0 \le i \le p-1}$ est libre et la famille $(f^i(x))_{0 \le i \le p}$ est liée

On a bien l'existence de
$$p \in \mathbb{N}^*$$
 et de $(\alpha_0, \alpha_1, \dots, \alpha_{p-1}) \in \mathbb{K}^p$ tels que la famille $(x, f(x), f^2(x), \dots, f^{p-1}(x))$ est libre et $\alpha_0 x + \alpha_1 f(x) + \dots + \alpha_{p-1} f^{p-1}(x) + f^p(x) = 0$

9. On a $f\left(\operatorname{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x))\right) = \operatorname{Vect}(f(x), f^{2}(x), f^{3}(x), \dots, f^{p}(x))$ car f linéaire or $f^{p}(x) = -\alpha_{0}x - \alpha_{1}f(x) + \dots - \alpha_{p-1}f^{p-1}(x) \in \operatorname{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x))$ d'où $f\left(\operatorname{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x))\right) \subset \operatorname{Vect}(x, f(x), f^{2}(x), \dots, f^{p-1}(x))$

Ainsi $Vect(x, f(x), f^2(x), \dots, f^{p-1}(x))$ est stable par f

- 10. Je note alors \tilde{f} l'endomorphisme induit par f sur $\text{Vect}(x, f(x), f^2(x), \dots, f^{p-1}(x))$ D'après ce qui précède $\mathcal{B} = (x, f(x), f^2(x), \dots, f^{p-1}(x))$ est une base de $\text{Vect}(x, f(x), f^2(x), \dots, f^{p-1}(x))$ On remarque que $\mathcal{M}_{\mathcal{B}}(\tilde{f})=C_Q$ en notant $Q=\alpha_0+\alpha_1X+\cdots+\alpha_{p-1}X^{p-1}+X^p$ d'où $\chi_{\tilde{f}} = \mathbf{Q}$ or $\chi_{\tilde{f}} | \chi_f$ car \tilde{f} induit par fOn a montré que $X^p + \alpha_{p-1}X^{p-1} + \cdots + \alpha_0$ divise le polynôme χ_f
- 11. En reprenant les notations précédentes, on a Q(f)(x) = 0 et il existe $P \in \mathbb{K}[X]$ tel que $PQ = \chi_f$ Ainsi $\chi_f(f) = P(f) \circ Q(f)$ donc $\chi(f)(x) = P(f)[Q(f)(x)] = P(f)(0) = 0$ car P(f) linéaire On a ainsi montré que : $\forall x \in E, \ \chi(f)(x) = 0$ or $\chi(f) \in \mathcal{L}(E)$ d'où $|\chi_f(f)|$ est l'endomorphisme nul

II. Etude des endomorphismes cycliques

II.A. Endomorphismes cycliques nilpotents

- 12. \Rightarrow : On suppose f cyclique alors deg $(\pi_f) = n$ d'après 7 De plus d'après le cours, $\chi_f = X^n$ car f nilpotente or $\pi_f | \chi_f$ selon Cayley-Hamilton et π_f est unitaire par définition donc $\pi_f = X^n$ ainsi $f^n = 0$ et $\forall i \in [0, n-1], f^i \neq 0$ d'où r=n
 - \Leftarrow : On suppose que r = n donc $f^n = 0$ et $f^{n-1} \neq 0$ Ceci nous fournit $x \in E$ tel que $f^{n-1}(x) \neq 0$

Soit $\lambda_0, \ldots, \lambda_{n-1} \in \mathbb{K}$ tels que $\sum_{i=0}^{n-1} \lambda_i f^i(x) = 0$.

On montre que $\forall i \in \llbracket 0, n-1 \rrbracket$, $\lambda_i = 0$

On suppose, par l'absurde, que la propriété est fausse

Je note alors j le minimum de $\{i \in [0, n-1] \mid \lambda_i \neq 0\}$

Ainsi
$$0 = f^{n-1-j} \left(\sum_{i=0}^{n-1} \lambda_i f^i(x) \right) = f^{n-1-j} \left(\sum_{i=j}^{n-1} \lambda_i f^i(x) \right) = \lambda_j f^{n-1}(x) + \sum_{i=j}^{n-1} \lambda_i f^{n-1+i-j}(x)$$

Or $\forall i \geq p$, $f^i(x) = 0$ donc $\lambda_i f^{n-1}(x) = 0$ et $\lambda_i \neq 0$

d'où $f^{n-1}(x) = 0$ ce qui est absurde

Ainsi $(x, f(x), \dots, f^{n-1}(x))$ est une famille libre composée de n vecteurs de E et dim E = ndonc $(x, f(x), \dots, f^{n-1}(x))$ est une base de E

donc f est cyclique.

On a montré que f est cyclique si et seulement si r = n

On remarque que la matrice compagnon associée est unique car les coefficients de cette matrices sont donnés par ceux du polynôme caractéristique.

On sait que si f est cyclique et nilpotente, alors $\chi_f = X^n$

ainsi la matrice compagnon de f dans ce cas est $\begin{pmatrix} 0 & \dots & \dots & 0 & 0 \\ 1 & 0 & \dots & \dots & 0 & 0 \\ 0 & 1 & \ddots & & \vdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$

II.B.

13. Pour $k \in [1, p]$, $(f - \lambda_k \operatorname{Id}_{E})^{m_k}$ et f commutent car $\mathbb{C}[f]$ est une algèbre commutative donc $F_k = \operatorname{Ker}((f - \lambda_k \operatorname{Id}_{E})^{m_k})$ est stable par f

On a $\chi_f(\mathbf{X}) = \prod_{k=1}^p (\mathbf{X} - \lambda_k)^{m_k}$ et les polynômes $(\mathbf{X} - \lambda_k)^{m_k}$ sont deux à deux premiers entre eux

Alors selon le lemme de décomposition des noyaux, on a

$$\operatorname{Ker}(\chi(f)) = \operatorname{Ker}((f - \lambda_1 \operatorname{Id}_{\mathbf{E}})^{m_1}) \oplus \cdots \oplus \operatorname{Ker}((f - \lambda_p \operatorname{Id}_{\mathbf{E}})^{m_p}) = \operatorname{F}_1 \oplus \cdots \oplus \operatorname{F}_p$$

de plus selon Cayley-Hamilton, $\chi_f(f) = 0$ et donc Ker $(\chi(f)) = E$

d'où
$$E = F_1 \oplus \cdots \oplus F_p$$

14. Soit $x \in F_k$. On a $(f - \lambda_k \operatorname{Id})^{m_k}(x) = 0$

Pour tout $y \in F_k$, on a $(f - \lambda_k \operatorname{Id})(y) = \varphi_k(y) \in F_k$

ainsi pour tout $p \in \mathbb{N}$, $(f - \lambda_k \operatorname{Id})^p(x) = \varphi_k^p(x)$ par récurrence immédiate sur p donc $\varphi_k^{m_k}(x) = 0$, comme c'est vrai pour tout $x \in F_k$, on conclut que

 φ_k est un endomorphisme nilpotent de \mathbf{F}_k

- **15.** D'après le cours, l'indice de nilpotence de φ_k , endomorphisme de F_k est majoré par dim F_k ainsi $\nu_k \leq \dim(F_k)$
- **16.** Je note $P = \prod_{i=1}^{p} (X \lambda_i)^{\nu_i}$. Soit $k \in [[1, p]]$. Soit $x \in F_k$.

On a P(f) =
$$\left[\prod_{\substack{i=1\\i\neq k}}^p (\mathbf{X} - \lambda_i)^{\nu_i}(f) \right] \circ (f - \lambda_k \mathrm{Id})^{\nu_k}$$

donc
$$P(f)(x) = \left[\prod_{\substack{i=1\\i\neq k}}^{p} (X - \lambda_i)^{\nu_i}(f)\right] \left(\varphi_k^{\nu_k}(x)\right) = \left[\prod_{\substack{i=1\\i\neq k}}^{p} (X - \lambda_i)^{\nu_i}(f)\right] (0) = 0$$

donc P(f) coïncide avec l'endomorphisme nul sur chaque F_k et $E = F_1 \oplus \cdots \oplus F_p$ d'après 13 donc P(f) = 0

Je note d le degré de P comme P est unitaire alors $(\mathrm{Id}, f, f^2, \dots, f^d)$ est liée donc $d \ge n$ car $(\mathrm{Id}, f, f^2, \dots, f^{n-1})$ est libre

or
$$d = \sum_{i=0}^{p} \nu_i$$
 d'où $n \leqslant \sum_{i=0}^{p} \nu_i$

On remarque à l'aide de la question 14 que $\nu_k \leqslant m_k$ pour tout $k \in \llbracket 1,p \rrbracket$

donc
$$n \leq \sum_{k=0}^{p} \nu_k \leq \sum_{i=0}^{p} m_k = n$$

ainsi les inégalités sont des égalités et pour tout $k \in [\![1,p]\!],$ on a $\nu_k=m_k$

17. Comme $E = F_1 \oplus \cdots \oplus F_p$ d'après 13 et $\forall k \in [[1, p]], \nu_k \leq \dim F_k$ d'après 15

on a donc avec la question précédente $n=\sum_{k=1}^p \nu_k \leqslant \sum_{k=1}^p \dim(\mathbf{F}_k)=n$

Comme à la question précédente, on obtient : $\forall k \in [[1, p]], \ \nu_k = m_k = \dim(\mathcal{F}_k)$

 φ_k est un endomorphisme nilpotent de \mathcal{F}_k d'indice $\nu_k=m_k=\dim{(\mathcal{F}_k)}$

donc selon 12, φ_k est nilpotent et cyclique.

ceci nous fournit une base
$$\mathcal{B}_k$$
 de \mathcal{F}_k tel que $\mathcal{M}_{\mathcal{B}_k}(\varphi_k) = \begin{pmatrix} 0 & 0 & \dots & \dots & 0 \\ 1 & 0 & \ddots & & \vdots \\ 0 & 1 & 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{m_k}(\mathbb{C})$

En notant f_k l'endomorphisme induit par f sur F_k ,

on a alors
$$\mathcal{M}_{\mathcal{B}_k}(f_k) = \begin{pmatrix} \lambda_k & 0 & \dots & \dots & 0 \\ 1 & \lambda_k & \ddots & & \vdots \\ 0 & 1 & \lambda_k & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \lambda_k & 0 \\ 0 & \dots & \dots & 0 & 1 & \lambda_k \end{pmatrix} \in \mathcal{M}_{m_k}(\mathbb{C})$$

En concaténant les bases \mathcal{B}_k pour k allant de 1 à

On obtient une base \mathcal{B} adaptée à la décomposition en somme directe $E = F_1 \oplus \cdots \oplus F_p$ Ainsi $\mathcal{B} = (u_1, \ldots, u_n)$ est une base de E dans laquelle f a une matrice diagonale par blocs de formes voulues.

Remarque: pour la suite on peut démontrer que pour une telle base on a nécessairement:

$$\forall k \in [[1, p]], (f - \lambda_k \text{Id})^{m_k} (u_{m_1 + \dots + m_{k-1} + 1}) = 0 \text{ puis}$$

$$\forall k \in [1, p], \ \forall i \in [1, m_k], \ u_{m_1 + \dots + m_{k-1} + i} \in \mathcal{F}_k$$

On peut aussi supposer que l'on travaille avec la base choisie.

18. Pour $k \in [[1, p]]$, on a $u_{m_1 + \dots + m_{k-1} + 1} \in \mathcal{F}_k$

ainsi $\forall i \in \mathbb{N}, \ f^i(u_{m_1+\cdots+m_{k-1}+1}) \in \mathcal{F}_k \ \text{car} \ \mathcal{F}_k \ \text{stable par} \ f$

puis pour tout $P \in \mathbb{C}[X]$, on a $P(f)(u_{m_1+\cdots+m_{k-1}+1}) \in F_k$ car F_k est stable par combinaison

Et ainsi $P(f)(x_0) = \sum_{k=1}^{p} P(f)(u_{m_1+\cdots+m_{k-1}+1})$ est la décomposition de $P(f)(x_0)$ sur $F_1 \oplus \cdots \oplus F_p$

Soit $Q \in \mathbb{C}[X]$. On a donc $Q(f)(x_0) = 0 \iff \forall k \in [1, p], \ Q(f)(e_k) = 0$

Je note $e_k = u_{m_1 + \dots + m_{k-1} + 1}$ et on a $\mathcal{B}_k = (e_k, \varphi_k(e_k), \dots, \varphi_k^{m_k - 1}(e_k))$ est une base de F_k

On a vu que la matrice de φ_k dans cette base est $\mathcal{C}_{\mathcal{X}^{m_k}}$

donc $\pi_{\varphi_k} = \mathbf{X}^{m_k}$ car φ_k est cyclique et nilpotent et $\dim(\mathbf{F}_k) = m_k$ selon 12 $\forall k \in [[1, p]], \ (f - \lambda_k \mathrm{Id})^{m_k} (u_{m_1 + \dots + m_{k-1} + 1}) = 0$ puis

$$\forall k \in [1, p], (f - \lambda_k \text{Id})^{m_k} (u_{m_1 + \dots + m_{k-1} + 1}) = 0 \text{ puis}$$

$$\forall k \in \llbracket 1,p \rrbracket, \ \forall i \in \llbracket 1,m_k \rrbracket, \ u_{m_1+\cdots+m_{k-1}+i} \in \mathcal{F}_k$$

Par ailleurs on montre facilement que

$$\forall P \in \mathbb{C}[X], P(\varphi_k) = 0 \iff P(\varphi_k)(e_k) = 0$$

car $P(\varphi_k)$ commute avec tout φ_k^i et que $(\varphi_k^i(e_k))_{0 \le i < m_k}$ est une base de F_k . Par ailleurs on a $\mathbf{Q}(\varphi_k) = 0 \Longleftrightarrow \mathbf{X}^{m_k} | \mathbf{Q}$ (nilpotent et cyclique)

donc
$$Q(f)(e_k) = 0 \iff Q(\varphi_k + \lambda_k Id_{F_k})(e_k) = 0 \iff X^{m_k}|Q(X + \lambda_k)$$

ainsi $Q(f)(e_k) = 0 \iff (X - \lambda_k)^{m_k}|Q(X)$

donc comme les $(X - \lambda_k)^{m_k}$ sont deux à deux premiers entre eux,

on a finalement
$$Q(f)(x_0) = 0 \iff \prod_{k=1}^p (X - \lambda_k)^{m_k} |Q|$$

19. Soit
$$(\lambda_i)_{0 \leqslant i \leqslant n-1} \in \mathbb{K}^n$$
 tel que $\sum_{i=0}^{n-1} \lambda_i f^i(x_0) = 0$ Je note $Q = \sum_{i=0}^{n-1} \lambda_i X^i$ de sorte que $Q(f)(x_0) = 0$

ainsi
$$\prod_{k=1}^{p} (\mathbf{X} - \lambda_k)^{m_k} | \mathbf{Q}$$
 d'après la question précédente or $\deg(\mathbf{Q}) \leqslant n - 1 < n = \deg\left(\prod_{k=1}^{p} (\mathbf{X} - \lambda_k)^{m_k}\right)$

donc Q est le polynôme nul et ainsi $\forall i \in \llbracket 0, n-1 \rrbracket, \ \lambda_i = 0$

donc $(f^i(x_0))_{0 \le i \le n-1}$ est une famille libre de n vecteurs de E et $n = \dim E$

d'où $(f^i(x_0))_{0 \le i \le n-1}$ est une base de E ce qui justifie que f est cyclique

III. Endomorphismes commutants, décomposition de Frobenius

20. L'application $g \mapsto f \circ g - g \circ f$ est un endomorphisme de $\mathcal{L}(E)$ dont le noyau est C(f) Ainsi C(f) est un sous-espace vectoriel de $\mathcal{L}(E)$

De plus, soit g et $h \in C(f)$. On a $(g \circ h) \circ f = g \circ f \circ h = f \circ (g \circ h)$ ainsi C(f) est stable par \circ et il est clair que $\mathrm{Id} \in C(f)$ Ainsi C(f) est une sous-algèbre $\mathrm{Id} \in \mathcal{L}(E)$

III.A. Commutant d'un endomorphisme cyclique

21. On a $g(x_0) \in E$ et $(x_0, f(x_0), \dots, f^{n-1}(x_0))$ est une base de E.

d'où l'existence de $\lambda_0, \lambda_1, \dots, \lambda_{n-1}$ de \mathbb{K} tels que $g(x_0) = \sum_{k=0}^{n-1} \lambda_k f^k(x_0)$

22. Il suffit d'établir que les applications linéaires g et $\sum_{k=0}^{n-1} \lambda_k f^k$ coïncident sur la base $(x_0, f(x_0), \dots, f^{n-1}(x_0))$.

On montre par récurrence immédiate que $\forall i \in \mathbb{N}, \ g \in \mathcal{C}\left(f^{i}\right)$

Soit $i \in [0, n-1]$. En utilisant 21 et le fait que l'algèbre $\mathbb{K}[f]$ est commutative

$$g(f^{i}(x_{0})) = f^{i}(g(x_{0})) = f^{i}\left(\sum_{k=0}^{n-1} \lambda_{k} f^{k}(x_{0})\right) = \sum_{k=0}^{n-1} \lambda_{k} f^{k}(f^{i}(x_{0}))$$

donc
$$g = \sum_{k=0}^{n-1} \lambda_k f^k$$
 et $g \in \mathbb{K}[f]$

23. On vient d'établir le sens direct (avec un polynôme de degré $\leq n-1$)

La réciproque vient du fait que $\mathbb{K}[f]$ est une algèbre commutative et que $\mathbb{K}_{n-1}[X] \subset \mathbb{K}[X]$ et $f \in \mathbb{K}[f]$.

On conclut que

 $g\in \mathcal{C}(f)$ si et seulement s'il existe un polynôme $\mathcal{R}\in \mathbb{K}_{n-1}[\mathcal{X}]$ tel que $g=\mathcal{R}(f)$

III.B. Décomposition de Frobenius

24. On suppose que $G = F_1 \cup \cdots \cup F_r$ est un sous espace de E.

Par l'absurde, je suppose qu'aucun des sous-espaces F_i ne contient tous les autres.

Ainsi $r \ge 2$ et $G \ne \{0\}$.

Méthode 1 : Quitte à réduire le nombre, on peut supposer qu'aucun F_i n'est inclus dans la réunion des autres. Cela nous fournit $x_1 \in F_1$ qui n'est dans aucun des F_i pour $i \ge 2$.

Sinon, $F_1 \neq G$ et on peut aussi trouver $y \in G \setminus F_1$.

Pour tout scalaire λ , on a $y + \lambda x_1 \notin F_1$ (car sinon $y \in F_1$) et ainsi $y + \lambda x_1 \in F_2 \cup \cdots \cup F_r$.

La droite affine $y + \mathbb{K}x_1$ est donc incluse dans $F_2 \cup \cdots \cup F_r$ et contient une infinité d'éléments car \mathbb{K} est infini et $t \in \mathbb{K} \mapsto y + tx_1$ est injective car $x_1 \neq 0$

Ceci nous fournit $j \in [2, r]$ et $\lambda \neq \lambda'$ dans \mathbb{K} tel que $y + \lambda x_1 \in \mathcal{F}_j$ et $y + \lambda' x_1 \in \mathcal{F}_j$

donc $x_1 \in \mathcal{F}_i$ (par combinaison linéaire) ce qui est absurde

Méthode 2 : Comme G est un \mathbb{K} -espace vectoriel de dimension finie, on peut munir G d'une norme.

De plus les notions topologiques sur G sont indépendantes du choix de la norme car dim $G < +\infty$.

Comme les F_i sont des sous-espaces de G de dimensions finies, ce sont des fermés de G.

Soit $i \in [1, r]$. Comme $F_i \neq G$, cela nous fournit $e \in G \setminus F_i$.

Soit $x \in F_i$. On a alors : $\forall p \in \mathbb{N}^*, x + \frac{1}{p}e \notin F_i$

Pour toute boule B_x centré en x, il existe $p_0 \in \mathbb{N}^*$, $x + \frac{1}{p_0}e \in B_x$ car $\left(x + \frac{1}{p_0}e\right)_{p \geqslant 1}$ converge vers x

Ainsi relativement à G, les F_i sont des fermés d'intérieurs vides.

Donc pour $i \in [1, r]$, $\Omega_i = G \setminus F_i$ un ouvert dense dans G

On pose
$$V_i = \bigcap_{j=1}^i \Omega_j$$

On montre par récurrence finie que les V_i $(1 \le i \le r)$ sont des ouverts non vides de G

Pour l'initialisation c'est évident car $V_1=\Omega_1$ est dense dans G.

Pour l'hérédité, on suppose pour i < r que V_i est un ouvert non vide

on a $V_{i+1} = V_i \cap \Omega_{i+1}$ est un ouvert (intersection de deux ouverts) et non vide car $V_i \neq \emptyset$ et Ω_{i+1} dense

donc
$$V_r \neq \emptyset$$
 et $V_r = G \setminus \left(\bigcup_{j=1}^r F_j\right) = \emptyset$ ce qui est absurde

Ainsi l'un des sous-espaces F_i contient tous les autres

Remarque : Pour r = 2, il existe une preuve classique purement algébrique. Pour le cas général, la preuve doit utiliser le fait que \mathbb{K} est infini.

En effet, si je prend $K = \mathbb{Z}/2\mathbb{Z}$, $E = \mathbb{K}^2$, $F_1 = \text{Vect}((1,0))$, $F_2 = \text{Vect}((0,1))$ et $F_3 = \text{Vect}((1,1))$.

On a $E = F_1 \bigcup F_2 \bigcup F_3$ et pourtant aucun des sous-espaces F_i ne contient tous les autres.

25. Soit $x \in E$ On considère l'application $\varphi_x : P \in \mathbb{K}[X] \longrightarrow P(f)(x) \in E$.

Comme $I_x = \{P \in \mathbb{K}[X]/P(f)(x) = 0\}$ est le noyau de l'application linéaire φ_x ,

 I_x un sous groupe de $(\mathbb{K}[X], +)$

Pour $P \in I_x$ et $Q \in \mathbb{K}[X]$, on a $QP \in I_x$

$$\operatorname{car}\left(\operatorname{QP}(f)(x) = \left(\operatorname{Q}(f) \circ \operatorname{P}(f)\right)(x) = \operatorname{Q}(f)\left(\operatorname{P}(f)(x)\right) = 0 \operatorname{car} \operatorname{Q}(f) \in \mathcal{L}(\operatorname{E})$$

d'où I_x est un idéal de $\mathbb{K}[X]$ comme $\pi_f \in I_x$, cet idéal est non réduit à $\{0\}$

ce qui nous fournit $\pi_{f,x} \in \mathbb{K}[X]$ unitaire (donc non nul) tel que $I_x = (\pi_{f,x}) = \{\pi_{f,x}P \mid P \in \mathbb{K}[X]\}$ On remarque que : $\forall x \in E, \ \pi_{f,x}|\pi_f$

Si on écrit $\pi_f = \prod_{k=1}^{N} P_i^{\alpha_i}$ décomposition en facteurs irréductibles, où $N \in \mathbb{N}^*$, les P_i sont irréductibles unitaires et distincts deux à deux et enfin les $\alpha_i \in \mathbb{N}^*$.

Alors le nombre de diviseurs unitaires de π_f est $\prod_{k=1}^{N} (\alpha_i + 1)$

Ainsi l'ensemble $\{\pi_{f,x} \mid x \in \mathcal{E}\}$ est fini de cardinal noté r où $r \in [1, \prod_{k=1}^{N} (\alpha_i + 1)]]$

On peut donc choisir $u_1, \dots u_r \in \mathcal{E}$, tel que $\{\pi_{f,x} \mid x \in \mathcal{E}\} = \{\pi_{f,u_i} \mid i \in \llbracket 1,r \rrbracket \}$

Ainsi E =
$$\bigcup_{i=1}^r \ker(\pi_{f,u_i}(f))$$
 car $\forall x \in E, x \in \ker(\pi_{f,x}(f))$

La question 24 nous fournit $i_0 \in [\![1,r]\!]$ tel que $\ker(\pi_{f,u_{i_0}}(f)) = \mathbf{E}$

On note $x_1 = u_{i_0}$ et on a $\ker(\pi_{f,x_1}(f)) = E$

On remarque que $\pi_{f,x_1}(f) = 0_{\mathcal{L}(E)}$ donc $\pi_f|\pi_{f,x_1}$

or $\pi_{f,x_1}|\pi_f$ et ce sont des polynômes unitaires

donc $\pi_{f,x_1} = \pi_f$ Finalement

$$\forall P \in \mathbb{K}[X], \ P(f)(x_1) = 0 \iff \pi_f|P$$

en faisant comme en 19, on montre que $(x_1, f(x_1), \dots, f^{d-1}(x_1))$ est libre

26. En faisant comme en 9, on montre que E_1 est stable par f De plus, on a $E_1 = \{P(f)(x_1)/P \in \mathbb{K}_{d-1}[X]\} \subset \{P(f)(x_1)/P \in \mathbb{K}[X]\}$ Soit $P \in \mathbb{K}[X]$. Comme $\pi_f \neq 0$,

le théorème de la division euclidienne nous fournit Q et $R \in \mathbb{K}[X]$ tels que $\begin{cases} P = Q\pi_f + R \\ \deg(R) < d = \deg(\pi_f) \end{cases}$ On a alors $P(f)(x_1) = [Q(f) \circ \pi_f(f)](x_1) + R(f)(x_1) = R(f)(x_1) \in \{T(f)(x_1) / T \in \mathbb{K}_{d-1}[X]\}$ On conclut que $E_1 = \{P(f)(x_1) / P \in \mathbb{K}[X]\}$

- 27. D'après ce qui précède $\mathcal{B} = (e_1, e_2, \dots, e_d)$ est une base de E_1 . De plus on a $\mathcal{M}_{\mathcal{B}}(\psi_1) = C_{\pi_f}$ matrice compagnon du π_f polynôme unitaire de degré $d = \dim(E_1)$ alors d'après 5, ψ_1 est cyclique
- **28.** Pour $i \in \mathbb{N}$, on note $F_i = \operatorname{Ker} (\Phi \circ f^i)$ ainsi $F = \bigcap_{i \in \mathbb{N}} F_i$ est bien un sous-espace de E De plus, on a pour $i \ge 1$, $f(F_i) \subset F_{i-1}$ donc

$$f(\mathbf{F}) \subset f\left(\bigcap_{i \in \mathbb{N}^*} \mathbf{F}_i\right) \subset \bigcap_{i \in \mathbb{N}^*} f\left(\mathbf{F}_i\right) \subset \bigcap_{i \in \mathbb{N}^*} \mathbf{F}_{i-1} = \mathbf{F}$$

d'où F est stable par f Soit $u \in E_1 \cap F$.

Comme $u \in E_1$, cela nous fournit $\lambda_1, \ldots, \lambda_d \in \mathbb{K}$ tels que $u = \sum_{k=1}^d \lambda_k e_k$

or
$$\Phi(x) = \lambda_d$$
 et $\Phi(f^0(x)) = 0$ car $u \in \mathbb{F}$, donc $\lambda_d = 0$ d'où $u = \sum_{k=1}^{d-1} \lambda_k e_k$

puis
$$f(u) = \sum_{k=1}^{d-1} \lambda_k e_{k+1}$$
 et donc $\lambda_{d-1} = 0$ et $f(u) = \sum_{k=1}^{d-2} \lambda_k e_{k+1}$

En réitérant le procédé, on trouve $\lambda_{d-2} = \ldots = \lambda_1 = 0$

donc u = 0

L'autre inclusion étant évidente, on a $E_1 \cap F = \{0\}$ d'où E_1 et F sont en somme directe

29. Je note Ψ_1 l'application linéaire induite par Ψ entre \mathcal{E}_1 et \mathbb{K}^d .

Soit $x \in \text{Ker}(\Psi_1)$.

On a
$$x \in E_1$$
 et $\Phi(x) = \Phi(f(x)) = \dots = \Phi(f^{d-1}(x)) = 0$.

En faisant comme à la question précédente, on obtient x = 0

L'autre inclusion étant évidente, on a $Ker(\Psi_1) = \{0\}$

Ainsi Ψ_1 est une application linéaire injective entre E_1 et \mathbb{K}^d or $\dim(E_1) = d = \dim(\mathbb{K}^d)$

En utilisant le théorème du rang, on obtient que Ψ_1 est surjective puis bijective

Ainsi Ψ induit un isomorphisme entre \mathbf{E}_1 et \mathbb{K}^d

30. De la question précédente, on montre que Ψ est surjective de E vers \mathbb{K}^d et que $\ker(\Psi) \cap E_1 = \{0\}$.

Ainsi dim
$$(E_1) = d = \operatorname{rg}(\Psi)$$
 et dim $(E) = \operatorname{dim}(\ker(\Psi)) + \operatorname{rg}(\Psi) = \operatorname{dim}(\ker(\Psi)) + \operatorname{dim}(E_1)$
donc $E = E_1 \oplus \operatorname{Ker}(\Psi)$

On a
$$\operatorname{Ker}\Psi = \bigcap_{i=0}^{d-1} \operatorname{F}_i$$
 (les F_i sont introduits en 28) on a donc $\operatorname{F} \subset \operatorname{Ker}\Psi$

Soit $x \in \text{Ker}(\Psi)$. Montrons que $x \in F$

Soit $i \in \mathbb{N}$. Il suffit d'établir que $\Phi(f^i(x)) = 0$

Le théorème de la division euclidienne nous fournit Q et $R \in K[X]$ tel que deg(R) < d et $X^i = Q\pi_f + R$.

On peut écrire $\mathbf{R} = \sum_{k=0}^{d-1} a_k \mathbf{X}^k$. On a comme en 26 et car Φ est linéaire

$$\Phi(f^{i}(x)) = \Phi(0) + \Phi(R(f)(x)) = 0 + \sum_{k=0}^{d-1} a_{k} \Phi(f^{k}(x)) = 0$$

ainsi F $\supset \mathrm{Ker} \Psi$ d'où F $= \mathrm{Ker} \Psi$

on conclut que $E = E_1 \oplus F$

31. Préambule : Avant de commencer la construction par récurrence, on remarque que dans ce qui précède le polynôme minimal de f est celui de ψ_1 et donc que $\forall x \in F, \pi_{\psi_1}(f)(x) = 0$

Initialisation : On prend $E_1,\,F$ et ψ_1 comme ci dessus.

On a E_1 stable par F et ψ_1 cyclique.

On pose $P_1=\pi_f=\pi_{\psi_1},\,G_1=F$ de sorte que $E_1\oplus G_1=E$

On a $\forall x \in G_1, P_1(f)(x) = 0$

Hérédité : Soit $k \in \mathbb{N}^*$.

On suppose avoir l'existence de k sous-espaces vectoriels de E, notés E_1, \ldots, E_k et G_k tous stables par f, tels que

- $E = E_1 \oplus \cdots \oplus E_k \oplus G_k$;
- pour tout $1 \le i \le k$, l'endomorphisme ψ_k induit par f sur le sous-espace vectoriel \mathbf{E}_i est cyclique:
- si on note P_i le polynôme minimal de ψ_i , alors P_{i+1} divise P_i pour tout entier i tel que $1 \le i \le k-1$

• $\forall x \in G_k, P_k(f)(x) = 0$

Si dim $G_k = 0$, on s'arrête et on pose r = k

Sinon, on applique 24 à 30 à l'endomorphisme induit par f sur G_k

On obtient alors E_{k+1} , G_{k+1} sous espaces stables par f et le polynôme P_{k+1} tels que

- $E = E_1 \oplus \cdots \oplus E_{k+1} \oplus G_{k+1}$;
- l'endomorphisme ψ_{k+1} induit par f sur le sous-espace vectoriel \mathbf{E}_{k+1} est cyclique;
- $\bullet\,$ si on note \mathbf{P}_{k+1} le polynôme minimal de $\psi_{k+1},$ alors \mathbf{P}_{k+1} divise \mathbf{P}_k
- $\forall x \in G_{k+1}, P_{k+1}(f)(x) = 0$

On a ainsi la construction voulue au rang k.

Conclusion : Cette construction algorithmique s'arrête car à chaque étape $\dim(\mathbf{E}_k) \leq 1$ et donc $r \leq \dim(\mathbf{E})$. car $(\dim \mathbf{G}_k)_k$ est une suite à valeurs dans $\mathbb N$ strictement décroissante.

On obtient ainsi le résultat voulu.

On en déduit qu'il existe r sous-espaces vectoriels de E, notés E_1, \ldots, E_r , tous stables par f, tels que :

- $E = E_1 \oplus \cdots \oplus E_r$;
- pour tout $1 \le i \le r$, l'endomorphisme ψ_i induit par f sur le sous-espace vectoriel \mathbf{E}_i est cyclique;
- si on note P_i le polynôme minimal de ψ_i , alors P_{i+1} divise P_i pour tout entier i tel que $1 \le i \le r-1$.

III.C. Commutant d'un endomorphisme quelconque

32. Je reprends les notations de la questions précédente pour la décomposition de Frobenius de f.

Je note
$$\Lambda$$
 l'application telle que pour $(g_1,\ldots,g_r)\mathcal{L}(\mathbf{E}_1)\times\cdots\times\mathcal{L}(\mathbf{E}_r)$, on a $\Lambda(g_1,\ldots,g_r)$ défini

sur E par
$$\Lambda(g_1, \dots, g_r)(x) = g_1(x_1) + \dots + g_r(x_r)$$
 où $x = \sum_{k=1}^r x_k$ et les $x_k \in E_k$

Ainsi définie, Λ est linéaire de $\mathcal{L}(E_1) \times \cdots \times \mathcal{L}(E_r)$ à valeurs dans $\mathcal{L}(E)$

De plus on montre facilement que Λ est injective et que $\Lambda(C(\psi_1) \times \cdots \times C(\psi_r)) \subset C(f)$

Ainsi dim
$$(C(f)) \ge \dim (C(\psi_1) \times \cdots \times C(\psi_r)) = \dim (C(\psi_1)) + \cdots + \dim (C(\psi_r))$$

or pour $i \in [1, r]$, en notant $n_i = \dim \mathcal{E}_i$ on a $\mathcal{C}(\psi_i) = \operatorname{vect}(\psi_i^0, \psi_i^1, \dots, \psi_i^{n_i-1})$ d'après 23 du III.A

Comme ψ_i est cyclique alors $(\psi_i^0, \psi_i^1, \dots, \psi_i^{n_i-1})$ est libre d'après 7 donc dim $(C(\psi_i)) = n_i = \dim(E_i)$ d'où

$$\dim (C(\psi_1)) + \cdots + \dim (C(\psi_r)) = \dim (E_1) + \cdots + \dim (E_r) = \dim (E_1 \oplus \cdots \oplus E_r) = \dim (E) = n$$

Ainsi | la dimension de $\mathrm{C}(f)$ est supérieure ou égale à n

33. On note $d = \deg(\pi_f)$. D'après le cours, on a $\dim(\mathbb{K}[f]) = d$

or $\mathbb{K}[f] = \mathcal{C}(f)$ et dim $\mathcal{C}(f) \ge n$ donc $d \ge n$.

Or on a $\pi_f|\chi_f$ comme conséquence de Cayley-Hamilton ainsi $d\leqslant n$

donc d = n

Or en reprenant les notations précédentes, on a $\dim(E_1) = d = n$

Donc $E_1 = E$ et $\psi_1 = f$ or ψ_1 est cyclique

ainsi f est cyclique