On recursive estimation schemes with stationary data streams *

M. Barkhagen N. H. Chau É. Moulines M. Rásonyi S. Sabanis Y. Zhang

June 14, 2018

Abstract

red

1 Introduction

We are concerned with sampling from the distribution π defined by

$$\pi(A) := \int_A e^{-U(x)} dx / \int_{\mathbb{R}^d} e^{-U(x)} dx, \ A \in \mathcal{B}(\mathbb{R}^d),$$

where $\mathcal{B}(\mathbb{R}^d)$ denotes the Boreliens of \mathbb{R}^d and $U:\mathbb{R}^d\to\mathbb{R}_+$ is continuously differentiable. We assume, for simplicity, that U(0)=0. The sampling algorithms will be based on the derivative $h:=\nabla U$ and on its noisy observations. We only treat the case of unbiased observations but a bias could also easily be incorporated.

2 Main results

We are working on a probability space (Ω, \mathcal{F}, P) . Expectation of a random variable X will be denoted by EX. For any $m \geq 1$, for any \mathbb{R}^m -valued random variable X and for any $1 \leq p < \infty$, let us set $\|X\|_p := \sqrt[p]{E|X|^p}$. We denote by L^p the set of X with $\|X\|_p < \infty$. The indicator function of a set A will be denoted by 1_A .

Let θ_0 be an \mathbb{R}^d -valued random variable, representing the initial value of the procedures we consider. Let $H: \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d$ be a measurable function, let $X_t, t \in \mathbb{Z}$ be an \mathbb{R}^m -valued (strict sense) stationary process. Let $\xi_t, t \in \mathbb{N}$ be an independent sequence of standard Gaussian random variables. We assume that $\theta_0, (X_t)_{t \in \mathbb{Z}}, (\xi_t)_{t \in \mathbb{N}}$ are independent.

For each $\lambda > 0$, define the \mathbb{R}^d -valued random process θ_t^{λ} , $t \in \mathbb{N}$ by recursion:

$$\theta_0^{\lambda} := \theta_0, \quad \theta_{t+1}^{\lambda} := \theta_t^{\lambda} - \lambda H(\theta_t^{\lambda}, X_{t+1}) + \sqrt{2\lambda} \xi_{t+1}.$$
 (1)

^{*}All the authors were supported by The Alan Turing Institute, London under the EPSRC grant EP/N510129/1. M. R. also enjoyed the support of the NKFIH (National Research, Development and Innovation Office, Hungary) grant KH 126505 and the "Lendület" grant LP 2015-6 of the Hungarian Academy of Sciences.

We assume that $h(\theta) = E[H(\theta, X_0)], \theta \in \mathbb{R}^d$ (in particular, the expectations are finite), and go on defining the "averaged" version of (1),

$$\overline{\theta}_0^{\lambda} := \theta_0, \quad \overline{\theta}_{t+1}^{\lambda} := \overline{\theta}_t^{\lambda} - \lambda h(\overline{\theta}_t^{\lambda}) + \sqrt{2\lambda}\xi_{t+1}.$$
 (2)

Assumption 2.1. There is L > 0 such that

$$|H(\theta_1, x_1) - H(\theta_2, x_2)| \le L[|\theta_1 - \theta_2| + |x_1 - x_2|].$$

Furthermore, $X_0 \in L^2$.

Under Assumption 2.1, h is also Lipschitz-continuous. Next, monotonicity conditions are required for H. Scalar product in \mathbb{R}^d is denoted by $\langle \cdot, \cdot \rangle$.

Assumption 2.2. There is a function $a : \mathbb{R}^m \to \mathbb{R}_+$ such that, for all $\theta_1, \theta_2 \in \mathbb{R}^d$ and $x \in \mathbb{R}^m$,

$$\langle \theta_1 - \theta_2, H(\theta_1, x) - H(\theta_2, x) \rangle \ge a(x) [|\theta_1 - \theta_2|^2 + |H(\theta_1, x) - H(\theta_2, x)|^2]$$
 (3) and $Ea(X_0) > 0$.

This assumption clearly holds if, for all $x, \theta \to H(\theta, x)$ is the derivative of a strongly convex function. IN THIS FIRST DRAFT WE ASSUME $a(\cdot)$ TO BE CONSTANT. THIS CAN BE RELAXED MODULO SOME EXTRA WORK.

For technical purposes it is convenient to assume a specific structure for the probability space and the filtrations we consider.

Assumption 2.3. Let \mathcal{X} be a Polish space. We assume that $\Omega = (\mathcal{X} \times \mathbb{R}^d)^{\mathbb{Z}}$, \mathcal{F} consists of the Borel sets of Ω and $P = \bigotimes_{i \in \mathbb{Z}} \psi$ where $\psi = \nu \otimes \varpi$ with ν a fixed probability measure on \mathcal{X} and ϖ standard Gaussian on \mathbb{R}^d . The coordinate mappings from Ω to \mathcal{X} will be denoted by $\Lambda_i = (\varepsilon_i, \xi_i)$, $i \in \mathbb{Z}$, where ξ_i , $i \geq 1$ are the random variables figuring in (1) and (2) and $X_t = g(\varepsilon_t, \varepsilon_{t-1}, \ldots)$ with a fixed measurable function $g: \mathcal{X}^{-\mathbb{N}} \to \mathbb{R}^m$. We furthermore set $\mathcal{G}_n := \sigma(\varepsilon_i, i \leq n)$, as well as $\mathcal{G}_n^+ := \sigma(\varepsilon_i, i > n)$, for each $n \in \mathbb{N}$. Define also $\mathcal{F}_n := \mathcal{G}_n \vee \sigma(\xi_i, i \in \mathbb{N})$ and $\mathcal{F}_n^+ := \mathcal{G}_n^+$.

Our aim is to estimate $\|\theta_t^{\lambda} - \overline{\theta}_t^{\lambda}\|_2$, uniformly in t.

Example 2.4. Let $H(\theta, x) := \theta + x$ and let $X_n, n \in \mathbb{N}$ be an independent sequence of standard Gaussian random variables, independent of $\xi_n, n \in \mathbb{N}$. Take $\theta_0 := 0$. It is straightforward to check that

$$\overline{\theta}_t^{\lambda} - \theta_t^{\lambda} = \sum_{j=0}^{t-1} (1 - \lambda)^j \lambda X_{t-j}$$

which clearly has variance

$$\sum_{j=0}^{t-1} (1-\lambda)^{2j} \lambda^2 = \frac{\lambda(1-(1-\lambda)^{2t})}{2-\lambda}.$$

It follows that

$$\sup_{t\in\mathbb{N}}||\overline{\theta}_t^{\lambda}-\theta_t^{\lambda}||_2=\sqrt{\frac{\lambda}{2-\lambda}}.$$

This shows that the best estimate we may hope to get is of the order $\sqrt{\lambda}$. Our Theorem 2.5 below achieves this bound modulo a logarithmic factor (which does not seem to matter in practice).

Theorem 2.5. Let X be conditionally L-mixing of order (2,4) with respect to $(\mathcal{G}_t, \mathcal{G}_t^+)$. Let Assumptions 2.1, 2.2 and 2.3 hold. Then there exists $C^{\circ} > 0$ such that

$$||\theta_t^{\lambda} - \overline{\theta}_t^{\lambda}||_2 \le C^{\circ} \sqrt{\lambda} |\ln(\lambda)|^{3/2}, \ t \in \mathbb{N}.$$

The next corollary relates our findings in Theorem 2.5 to the problem of sampling from π . Let W_2 denote the Wasserstein metric of order 2, see e.g. [8] for more information about this distance.

Corollary 2.6. For each $\kappa > 0$, there exist constants $c_1, c_2 > 0$ such that, for each $\epsilon > 0$ one has

$$W_2(\text{Law}(\theta_t^{\lambda}), \pi) \leq \epsilon$$

whenever

$$\lambda \le c_1 \epsilon^{2+\kappa} \text{ and } t \ge \frac{c_2}{\epsilon^{2+\kappa}} \ln(1/\epsilon).$$
 (5)

Remark 2.7. Corollary 2.6 significantly improves on some of the results in [7] in certain cases, compare also to [9]. In [7] the monotonicity assumption (3) is not imposed, only a dissipativity condition is required and a more general recursive scheme is investigated. However, the input sequence X_t , $t \in \mathbb{N}$ is assumed i.i.d. In that setting, Theorem of [7] applies to (1) (with the choice $\delta = 0$, $\beta = 1$, d fixed, see also the last paragraph of Subsection 1.1 of [7]), and we get that

$$W_2(\text{Law}(\theta_t^{\lambda}), \pi) \le \epsilon$$

holds whenever $\lambda \leq c_3(\epsilon/\ln(1/\epsilon))^4$ and $t \geq \frac{c_4}{\epsilon^4} \ln^5(1/\epsilon)$ with some $c_3, c_4 > 0$. Our results provide the sharper estimates (5). The main purpose of the present note is to provide results for the case where $X_t, t \in \mathbb{N}$ has dependencies, but (5) is new even in the particular case where $X_t, t \in \mathbb{N}$ are i.i.d.

3 Conditional L-mixing

L-mixing processes and random fields were introduced in [5]. They proved to be useful in tackling difficult problems of system identification. In [1] the related concept of *conditional* L-mixing was introduced in order to treat fixed gain recursive estimators with discontinuous updating functions. Although the function H is assumed continuous in the present article, it seems that the right setting for the analysis of (1) is provided by conditionally L-mixing random fields, which we will define below.

We assume that the probability space is equipped with a discrete-time filtration \mathcal{H}_n , $n \in \mathbb{N}$ as well as with a decreasing sequence of sigma-fields \mathcal{H}_n^+ , $n \in \mathbb{N}$ such that \mathcal{H}_n is independent of \mathcal{H}_n^+ , for all n. Fix an integer $d \geq 1$ and let $D \subset \mathbb{R}^d$ be a set of parameters. A measurable

Fix an integer $d \geq 1$ and let $D \subset \mathbb{R}^d$ be a set of parameters. A measurable function $X : \mathbb{N} \times D \times \Omega \to \mathbb{R}^m$ is called a random field. We will drop dependence on $\omega \in \Omega$ and use the notation $X_t(\theta)$, $t \in \mathbb{N}$, $\theta \in D$. A random process X_t , $t \in \mathbb{N}$ corresponds to a random field where D is a singleton. A random field is L^r -bounded for some $r \geq 1$ if

$$\sup_{t\in\mathbb{N}}\sup_{\theta\in D}||X_t(\theta)||_r<\infty.$$

Now we define conditional L-mixing. Recall that, for any family Z_i , $i \in I$ of real-valued random variables, ess. $\sup_{i \in I} Z_i$ denotes a random variable that

is an almost sure upper bound for each Z_i and it is a.s. smaller than or equal to any other such bound, see e.g. Proposition VI.1.1. of [6].

Let $X_t(\theta)$, $t \in \mathbb{N}$, $\theta \in D$ be a random field bounded in L^r . Define, for each $n \in \mathbb{N}$,

$$M_r^n(X) := \underset{\theta \in D}{\operatorname{ess}} \sup_{t \in \mathbb{N}} E^{1/r}[|X_{n+t}(\theta)|^r | \mathcal{H}_n],$$

$$\gamma_r^n(\tau, X) := \underset{\theta \in D}{\operatorname{ess}} \sup_{t \ge \tau} E^{1/r}[|X_{n+t}(\theta) - E[X_{n+t}(\theta)| \mathcal{H}_{n+t-\tau}^+ \vee \mathcal{H}_n]|^r | \mathcal{H}_n], \ \tau \ge 1,$$

$$\Gamma_r^n(X) := \sum_{\tau=1}^{\infty} \gamma_r^n(\tau, X).$$

When necessary, we will also use the notations $M_r^n(X, D)$, $\gamma_r^n(\tau, X, D)$, $\Gamma_r^n(X, D)$ to signal dependence of these quantities on the domain D which may vary.

For some $r, p \geq 1$, we call $X_t(\theta)$, $t \in \mathbb{N}$, $\theta \in D$ uniformly conditionally L-mixing of order (r, p) (UCLM-(r, p)) with respect to $(\mathcal{H}_t, \mathcal{H}_t^+)$ if it is L^r -bounded; $X_t(\theta)$, $t \in \mathbb{N}$ is adapted to \mathcal{F}_t , $t \in \mathbb{N}$ for all $\theta \in D$ and the sequences $M_r^n(X)$, $\Gamma_r^n(X)$, $n \in \mathbb{N}$ are bounded in L^p . In the case of stochastic processes (when D is a singleton) the terminology "conditionally L-mixing process of order (r, p)" will be used.

The following maximal inequality is pivotal for our arguments.

Theorem 3.1. Let Assumption 2.3 be in force. Fix r > 2, $n \in \mathbb{N}$. Let W_t , $t \in \mathbb{N}$ be a conditionally L-mixing process of order (r,1) w.r.t. $(\mathcal{H}_t, \mathcal{H}_t^+)$, satisfying $E[W_t|\mathcal{H}_n] = 0$ a.s. for all $t \geq n$. Let m > n and let b_t , $n < t \leq m$ be deterministic numbers. Then we have

$$E^{1/r} \left[\sup_{n < t \le m} \left| \sum_{s=n+1}^t b_s W_s \right|^r \middle| \mathcal{H}_n \right] \le C_r \left(\sum_{s=n+1}^m b_s^2 \right)^{1/2} \sqrt{M_r^n(W) \Gamma_r^n(W)}, \quad (6)$$

almost surely, where C_r is a deterministic constant depending only on r but independent of n, m.

For each $R \geq 0$ we denote $B(R) := \{x \in \mathbb{R}^d : |x| \leq R\}$, the closed ball of radius R around the origin.

Lemma 3.2. Let X_t , $t \in \mathbb{N}$ be UCLM-(r,p). Let Assumption 2.1 hold true. Then, for each $j \in \mathbb{N}$, the random field $H(\theta, X_t)$, $t \in \mathbb{N}$, $\theta \in B(j)$ is UCLM-(r,p).

Proof. Notice that

$$|H(\theta,x)| \le |H(\theta,x) - H(\theta,0)| + |H(\theta,0) - H(0,0)| + |H(0,0)| \le L|x| + L|\theta| + |H(0,0)|.$$

Let $\theta \in B(j)$. Then, for $k \geq n$,

$$E[|H(\theta, X_k)|^r |\mathcal{H}_n] \le C(r)[E[|X_k|^r |\mathcal{H}_n] + j^r + 1]$$

for some C(r) > 0 hence

$$M_r^n(H(\theta, X), B(j)) \le C^{1/r}(r)[M_r^n(X) + j + 1].$$

We also have

$$E^{1/r}[|H(\theta, X_k) - E[H(\theta, X_k)|\mathcal{H}_n \vee \mathcal{H}_{n-\tau}^+]|^r |\mathcal{H}_n] \leq 2E^{1/r}[|H(\theta, X_k) - H(\theta, E[X_k|\mathcal{H}_n \vee \mathcal{H}_{n-\tau}^+])|^r |\mathcal{H}_n] \leq 2LE^{1/r}[|X_k - E[X_k|\mathcal{H}_n \vee \mathcal{H}_{n-\tau}^+]|^r |\mathcal{H}_n],$$

using Lemma 3.3, which implies

$$\Gamma_r^n(H(\theta, X), B(j)) \le 2L\Gamma_r^n(X).$$

Lemma 3.3. Let $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ be sigma-algebras. Let X, Y be random variables in L^p such that Y is measurable with respect to $\mathcal{H} \vee \mathcal{G}$. Then for any $p \geq 1$,

$$E^{1/p}\left[|X - E[X|\mathcal{H} \vee \mathcal{G}]|^p \middle| \mathcal{G}\right] \le 2E^{1/p}\left[|X - Y|^p \middle| \mathcal{G}\right].$$

If Y is \mathcal{H} -measurable then

$$||X - E[X|\mathcal{H}]||_p \le 2||X - Y||_p.$$
 (7)

Proof. See Lemma 6.2 of [1].

4 Ergodic properties of recursive schemes

One of the key observations is the following contraction property of the Markov chain $\overline{\theta}_t$, $t \in \mathbb{N}$.

Lemma 4.1. Let $\theta_0, \theta'_0 \in L^2$ be random variables and ξ standard Gaussian, independent of $\sigma(\theta_0, \theta'_0)$. Then there is $\rho > 0$ such that, defining

$$\theta_1 := \theta_0 - \lambda h(\theta_0) + \sqrt{2\lambda} \xi, \ \theta_1' := \theta_0' - \lambda h(\theta_0') + \sqrt{2\lambda} \xi,$$

we have

$$E[(\theta_1 - \theta_1')^2] \le e^{-\rho\lambda} E[(\theta_0 - \theta_0')^2].$$

Proof. See Proposition 3 of [2].

Let $V(x) := \exp(U(x)/2)$.

Lemma 4.2. There exists $\tilde{c} > 0$ such that $U(x)/2 \geq \tilde{c}x^2$ holds for all $x \in \mathbb{R}^d$.

Let us fix \tilde{c} as in Lemma 4.2 and define $\tilde{V}(x) := \exp(\tilde{c}x^2), x \in \mathbb{R}^d$.

Lemma 4.3. Let χ_n , $n \ge 1$ be such that

$$\sup_{n\geq 1} E\tilde{V}(\chi_n) < \infty.$$

Denote $\zeta_n := \sup_{1 \le k \le n} |\chi_k|$. Then, for all p > 0, and for all $n \ge 1$,

$$E|\zeta_n|^p \le \tilde{C}(p) \ln^{p/2}(n+1).$$

holds for some $\tilde{C}(p) > 0$.

Proof. Define the *convex* function

$$f(x) := e^{\tilde{c}|x|^{2/p}}, \ |x| \ge \left(\frac{p}{2\tilde{c}}\right)^{p/2}, \ f(x) := e^{p/2}, \ |x| < \left(\frac{p}{2\tilde{c}}\right)^{p/2}.$$

Denote $M:=\sup_{n\in\mathbb{N}} E\tilde{V}(\xi_n)$. Jensen's inequality and trivial considerations show that

$$f(E|\zeta_n|^p) \le Ef(|\zeta_n|^p) \le Ee^{\tilde{c}|\zeta_n|^2} + e^{p/2} \le e^{p/2} + \sum_{j=1}^n Ee^{\tilde{c}|\chi_j|^2} \le nM + e^{p/2}.$$

This implies also

$$e^{\tilde{c}E^{2/p}|\zeta_n|^p} < nM + e^{p/2},$$

which leads to

$$E|\zeta_n|^p \le \tilde{C}(p)(\ln(n+1))^{p/2},$$

for some $\tilde{C}(p) > 0$, as stated.

Lemma 4.4. Under Assumption 2.2, $\sup_n EV(\theta_n) < \infty$.

Proof. Assumption 2.2 implies that V is a Lyapunov function for this stochastic system (see Proposition 8 of [3]) and the statement easily follows from this. \square

Lemma 4.5. Let Assumption 2.2 hold. We also have $\sup_n EV(\overline{z}_n) < \infty$ and $\sup_n EV(\overline{\theta}_n) < \infty$. A fortiori, $\sup_n E\tilde{V}(\overline{z}_n) < \infty$

Lemma 4.6. There is $C^{\flat} > 0$ such that

$$\sup_{n} ||H(\overline{\theta}_n, X_{n+1})| + |h(\overline{z}_n)||_2 \le C^{\flat}.$$

Proof. This is quite trivial from Assumption 2.1 and Lemma 4.5, details later.

Clearly, since X is conditionally L-mixing of order (2,4) with respect to $(\mathcal{G}_t, \mathcal{G}_t^+)$, it remains conditionally L-mixing of order (2,4) with respect to $(\mathcal{F}_t, \mathcal{F}_t^+)$,

For each $\theta \in \mathbb{R}^d$, $0 \le s \le t$, we recursively define

$$z(s,s,\theta) := \theta, \quad z(t+1,s,\theta) := z(t,s,\theta) - \lambda h(z(t,s,\theta)) + \sqrt{2\lambda}\xi_{t+1}.$$

We then set, for each $n \in \mathbb{N}$ and for each $nT \le t < (n+1)T$, $\overline{z}_t := z(t, nT, \theta_{nT})$. Note that \overline{z}_t is then defined for all $t \in \mathbb{N}$ and that $\overline{\theta}_t = z(t, 0, \theta_0)$.

Lemma 4.7. There is a random variable Ξ such that, for all $\theta \in \mathbb{R}^d$ and for all $n \in \mathbb{N}$,

$$\sum_{k=nT+1}^{\infty} |h_{k,nT}(\theta) - h(\theta)| \le \Xi$$

and $E[\Xi^2] < \infty$.

Proof. Notice that, since $E[X_k|\mathcal{F}_{nT}^+]$ is independent of \mathcal{F}_{nT} ,

$$E[H(\theta, E[X_k|\mathcal{F}_{nT}^+])|\mathcal{F}_{nT}] = E[H(\theta, E[X_k|\mathcal{F}_{nT}^+])].$$

This implies that

$$\begin{aligned} |h_{k,nT}(\theta) - h(\theta)| &\leq \\ \left| E[H(\theta, X_k) | \mathcal{F}_{nT}] - E[H(\theta, E[X_k | \mathcal{F}_{nT}^+]) | \mathcal{F}_{nT}] \right| &+ \\ \left| E[H(\theta, E[X_k | \mathcal{F}_{nT}^+])] - E[H(\theta, X_k)] \right| &\leq \\ LE[|X_k - E[X_k | \mathcal{F}_{nT}^+] || \mathcal{F}_{nT}] + LE[|X_k - E[X_k | \mathcal{F}_{nT}^+] |] &\leq \\ L[\gamma_1^{nT}(X, k - nT) + E\gamma_1^{nT}(X, k - nT)]. \end{aligned}$$

Hence

$$\sum_{k=nT+1}^{\infty} |h_{k,nT}(\theta) - h(\theta)| \le L[\Gamma_1^{nT}(X) + E\Gamma_1^{nT}(X)].$$

Since X is conditionally L-mixing of order (2,4), it is also conditionally L-mixing of order (1,2) so $E[(\Gamma_1^{nT}(X))^2] < \infty$, This implies the statement.

Proof of Theorem 2.5. Let $T := \lfloor 1/\lambda \rfloor$. Fix $n \in \mathbb{N}$ and let $nT \leq t < (n+1)T$ be arbitrary. Let us define the (random) functions

$$h_{t,nT}(\theta) := E[H(\theta, X_t)|\mathcal{F}_{nT}], \ \theta \in \mathbb{R}^d.$$

It is tedious but standard to show that there exists a jointly measurable version of

$$(\omega, \theta) \to h_{k,nT}(\theta, \omega), \ (\omega, \theta) \in \Omega \times \mathbb{R}^d.$$

Estimate,

$$\begin{split} |\theta_t - \overline{z}_t| &\leq \lambda \left| \sum_{k=nT+1}^t \left(H(\theta_k, X_k) - h(\overline{z}_k) \right) \right| &\leq \\ \lambda \sum_{k=nT+1}^t |H(\theta_k, X_k) - H(\overline{z}_k, X_k)| &+ \\ \lambda \left| \sum_{k=nT+1}^t \left(H(\overline{z}_k, X_k) - h_{k,nT}(\overline{z}_k) \right) \right| &+ \\ \lambda \sum_{k=nT+1}^t |h_{k,nT}(\overline{z}_k) - h(\overline{z}_k)| &\leq \\ \lambda L \sum_{k=nT+1}^t |h_{k,nT}(\overline{z}_k) - h(\overline{z}_k)| &+ \\ \lambda \sum_{nT+1 \leq m < (n+1)T} \left| \sum_{k=nT+1}^m \left(H(\overline{z}_k, X_k) - h_{k,nT}(\overline{z}_k) \right) \right| &+ \\ \lambda \sum_{k=nT+1}^\infty |h_{k,nT}(\overline{z}_k) - h(\overline{z}_k)|, \end{split}$$

by Assumption 2.1. Gronwall's lemma and taking squares lead to

$$2\lambda^{2}e^{2LT\lambda} \left[\max_{nT+1 \leq m < (n+1)T} \left| \sum_{k=nT+1}^{m} \left(H(\overline{z}_{k}, X_{k}) - h_{k,nT}(\overline{z}_{k}) \right) \right|^{2} + \left(\sum_{k=nT+1}^{\infty} \left| h_{k,nT}(\overline{z}_{k}) - h(\overline{z}_{k}) \right| \right)^{2} \right],$$

noting also $(x+y)^2 \leq 2(x^2+y^2)$, $x,y \in \mathbb{R}$. Let N be the random variable $N := \sup_{nT+1 \leq i < (n+1)T} |\overline{z}_i|$. Now, recalling the definition of T and taking \mathcal{F}_{nT} -conditional expectations, we can write

$$E\left[|\theta_{t} - \overline{z}_{t}|^{2}|\mathcal{F}_{nT}\right] \leq 2\lambda^{2}e^{2L}\left[\sum_{j=1}^{\infty} 1_{\{j-1 \leq N < j\}}E\left[\max_{nT+1 \leq m < (n+1)T}\left|\sum_{k=nT+1}^{m} \left(H(\overline{z}_{k}, X_{k}) - h_{k,nT}(\overline{z}_{k})\right)\right|^{2}|\mathcal{F}_{nT}\right]\right] + E\left[\left(\sum_{k=nT+1}^{\infty} |h_{k,nT}(\overline{z}_{k}) - h(\overline{z}_{k})|\right)^{2}|\mathcal{F}_{nT}\right]\right].$$

Using the \mathcal{F}_{nT} -measurability of \overline{z}_k , $nT \leq k < (n+1)T$, Lemma 4.3 and taking expectations, we can continue our estimations as

$$\begin{split} E|\theta_t - \overline{z}_t|^2 & \leq \\ 2\lambda^2 e^{2L} \sum_{j=1}^{\infty} E[\mathbf{1}_{\{j-1 \leq N < j\}} T\Gamma_2^{nT}(H(\theta,X),B(j)) M_2^{nT}(H(\theta,X),B(j))] & + \\ 2\lambda^2 e^{2L} E\left[\Xi^2\right], \end{split}$$

see Lemma 4.7. By the Cauchy inequality and the trivial $\{j-1 \le N\} = \{j \le N+1\}$, an application of Theorem 3.1 gives

$$\sum_{j=1}^{\infty} E[1_{\{j-1 \le N < j\}} \Gamma_2^{nT} (H(\theta, X), B(j)) M_2^{nT} (H(\theta, X), B(j))] \leq$$

$$\sum_{j=1}^{\infty} P^{1/2} (N+1 \ge j) E^{1/2} [(\Gamma_2^{nT} (H(\theta, X), B(j)))^2 (M_2^{nT} (H(\theta, X), B(j)))^2] \leq$$

$$\sum_{j=1}^{\infty} \sqrt{\frac{E(N+1)^6}{j^6}} 2L E^{1/2} [(\Gamma_2^{nT} (X))^2 C(2) [M_2^{nT} (X) + j + 1]^2] \leq$$

$$\sum_{j=1}^{\infty} \sqrt{\frac{E(N+1)^6}{j^6}} 2L \sqrt{C(2)} E^{1/4} [(\Gamma_2^{nT} (X))^4] E^{1/4} [M_2^{nT} (X) + j + 1]^4] \leq$$

$$\check{C}' \sum_{j=1}^{\infty} \frac{\ln^3(T)}{j^2} \leq \check{C} \ln^3(T),$$

for suitable $\check{C}, \check{C}' > 0$, noting Lemma 3.2 and the fact that X was assumed to be conditionally L-mixing of order (2,4). We conclude that

$$E^{1/2}|\theta_t - \overline{z}_t|^2 \le C^{\sharp} \lambda \sqrt{T} |\ln(T)|^{3/2} \le C^{\star} \sqrt{\lambda} |\ln(\lambda)|^{3/2},$$

with some $C^{\sharp}, C^{\star} > 0$, for all $t \in \mathbb{N}$.

Now we turn to estimating $|\bar{z}_t - \bar{\theta}_t|$. By Lemmata 4.1 and 4.6,

$$||\overline{z}_t - \overline{\theta}_t||_2 \le$$

$$\sum_{k=1}^{n} ||z(t, kT, \theta_{kT}) - z(t, (k-1)T, \theta_{(k-1)T})||_{2} =$$

$$\sum_{k=1}^{n} ||z(t, kT, \theta_{kT}) - z(t, kT, z(kT, (k-1)T, \theta_{(k-1)T}))||_{2} \le$$

$$\sum_{k=1}^{n} e^{-\lambda \rho(t-kT)/2} \left[||\overline{\theta}_{kT-1} - \overline{z}_{kT-1}||_{2} + \lambda ||H(\overline{\theta}_{kT-1}, X_{kT}) - h(\overline{z}_{kT-1})||_{2} \right] \leq$$

$$\frac{C^\dagger}{1-e^{-\rho/2}} \left[1 + C^\flat \right] \sqrt{\lambda} |\ln(\lambda)|^{3/2},$$

for some $C^{\dagger} > 0$. This completes the proof of the theorem since

$$|\theta_t - \overline{\theta}_t| \le |\theta_t - \overline{z}_t| + |\overline{z}_t - \overline{\theta}_t|.$$

Examples

5

6 The bright future

I think that we can significantly generalize the above results using another approach, based on [4]. We will use the metric

$$w(\mu,\nu) := \inf_{\zeta \in \mathcal{C}(\mu,\nu)} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} [1 \wedge |x-y|] (1 + V(x) + V(y)) \zeta(dx,dy).$$

Consider the diffusion process L_t , $t \in \mathbb{R}_+$ defined by

$$dL_t = -h(L_t) dt + dB_t, \ L_0 := \theta_0.$$

We will also need, for each $\lambda > 0$,

$$L_t^{\lambda} := L_{\lambda t}, \ t \in \mathbb{R}_+.$$

Let us introduce the Itô process

$$dY_t^{\lambda} = -H(Y_t^{\lambda}, X_{|t|}) dt + dB_t, Y_t^{\lambda} := \theta_0.$$

A new approach would consist of the following steps:

- 1. We only assume dissipativity and Lipschitz-continuity of $h(\theta)$, $H(\theta, x)$ (the latter uniformly in x). This guarantees that L_t is contractive in the metric w, by [4] and by e.g. [3].
- 2. The arguments presented above can equally well be performed in continuous time and provide $w(\text{Law}(L_t^{\lambda}), \text{Law}(Y_t^{\lambda})) \leq C\sqrt{\lambda} |\ln(\lambda)|^{3/2}$, for each t. (OK, strictly speaking the above argument contains L^2 -estimates of the type $E|X-Y|^2$ but these could be ameliorated to get estimates of the form E|X-Y|(1+V(X)+V(Y)) since V is a Lyapunov function.)

3. Now the arguments of [3] (which go back to Dalalyan) could be used to establish the bound

$$||\operatorname{Law}(Y_t^{\lambda}) - \operatorname{Law}(\theta_t^{\lambda})||_V \le C\sqrt{\lambda}$$

on the weighted total variation norm There is also X_t intervening here but I think that the same arguments (using Kullback-Leibler divergence) should work.

4. As $w(\cdot, \cdot) \leq C||\cdot - \cdot||_V$, this leads to a rate of convergence much better than that of Raginsky, not in W_2 , but in w. AND WITHOUT CONVEXITY OF ANY SORT! Also, h does not need to be the derivative of something for 2. and 3. to work.

With Huy we could do 2., I think, while the other part of the team could do 3. The machine learning community will tremble :).

References

- [1] N. H. Chau, Ch. Kumar, M. Rásonyi and S. Sabanis. On fixed gain recursive estimators with discontinuity in the parameters. arXiv:1609.05166v3, 2017.
- [2] A. Durmus and É. Moulines. High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm. arXiv:1605.01559, 2018.
- [3] A. Durmus and É. Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin algorithm. *Ann. Appl. Probab.*, 27:1551–1587, 2017.
- [4] A. Eberle, A. Guillin and R. Zimmer. Quantitative Harris-type theorems for diffusions and McKean-Vlasov processes. *Preprint.*, 2017. arXiv:1606.0612v2
- [5] L. Gerencsér. On a class of mixing processes. Stochastics, 26:165–191, 1989.
- [6] J.Neveu. Discrete-parameter martingales. North-Holland, 1975.
- [7] M. Raginsky, A. Rakhlin, and M. Telgarsky. Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis. *Proceedings of Machine Learning Research*, 65:1674–1703, 2017. arXiv:1702.03849
- [8] C. Villani. Optimal transport. Old an new. Springer, 2009.
- [9] P. Xu, J. Chen, D. Zhou and Q. Gu. Global convergence of Langevin dynamics based algorithms for nonconvex optimization. arXiv:1707.06618, 2018.