Limites

O Limite de uma Função

٧

Vamos analisar o comportamento da função f definida por $f(x) = x^2 - x + 2$ para valores de x próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos de 2, mas não iguais a 2.

х	f(x)	х	f(x)
1,0	2,000000	3,0	8,000000
1,5	2,750000	2,5	5,750000
1,8	3,440000	2,2	4,640000
1,9	3,710000	2,1	4,310000
1,95	3,852500	2,05	4,152500
1,99	3,970100	2,01	4,030100
1,995	3,985025	2,005	4,015025
1,999	3,997001	2,001	4,003001
\downarrow		$\frac{1}{\sqrt{1}}$	\downarrow
0	4	\bigcirc	4
•			

DITEMOS que o l'inite de $f(x) = x^2 - x + 2$ quondo x tende a a \in 4. A votição SERÃ $\lim_{x \to a} (x^2 + a) = \frac{4}{4}$

EXEMPLO

Estime o valor de $\lim_{x \to 1} \frac{x-1}{x^2-1}$.

x < 1	f(x)
0,5	0,666667
0,9	0,526316
0,99	0,502513
0,999	0,500250
0,9999	0,500025

<i>x</i> > 1	f(x)
1,5	0,400000
1,1	0,476190
1,01	0,497512
1,001	0,499750
1,0001	0,499975

$$f(x) = \frac{x-1}{x^2-1}$$

$$f(A) = \text{Now}$$
Existe

$$\lim_{X \to 1} \frac{X-1}{X^2-1} = \frac{1}{2}$$

1 Definição Suponha que f(x) seja definido quando está próximo ao número a. (Isso significa que f é definido em algum intervalo aberto que contenha a, exceto possivelmente no próprio a.) Então escrevemos

$$\lim_{x \to a} f(x) = L$$

e dizemos "o limite de f(x), quando x tende a a, é igual a L"

se pudermos tornar os valores de f(x) arbitrariamente próximos de L (tão próximos de L quanto quisermos), tornando x suficientemente próximo de a (por ambos os lados de a), mas não igual a a.

Faça uma estimativa de $\lim_{x\to 0} \frac{\sin x}{x}$.

x	$\frac{\operatorname{sen} x}{x}$
±1,0	0,84147098
±0,5	0,95885108
±0,4	0,97354586
±0,3	0,98506736
±0,2	0,99334665
±0,1	0,99833417
± 0.05	0,99958339
±0,01	0,99998333
$\pm 0,005$	0,99999583
±0,001	0,99999983
	<u> </u>
\bigcirc	7

2 Definição Escrevemos

$$\lim_{x \to a^{-}} f(x) = L$$

e dizemos que o **limite à esquerda** de f(x) quando x tende a a [ou o **limite d** ef(x) quando x tende a a pela esquerda] é igual a L se pudermos tornar os valores de f(x) arbitrariamente próximos de L, para x suficientemente próximo de a e a menor que a.

De maneira semelhante, se exigirmos que \underline{x} seja maior que \underline{a} , obtemos "o **limite** à direita de f(x) quando x tende a a é igual a L" e escrevemos

$$\lim_{x \to a^+} f(x) = L$$

A função de Heaviside, *H*, é definida por

$$H(t) = \begin{cases} 0 & \text{se } t < 0 \\ 1 & \text{se } t \ge 0 \end{cases}$$

$$H(a) = 1$$

$$\lim_{t \to 0^+} H(t) = 1$$

 $\lim_{x \to a} f(x) = L \quad \text{se e somente se} \quad \lim_{x \to a^{-}} f(x) = L \quad \text{e} \quad \lim_{x \to a^{+}} f(x) = L$

- **4.** Use o gráfico dado de f para dizer o valor de cada quantidade, se ela existir. Se não existir, explique por quê.

 - (a) $\lim_{x \to 2^{-}} f(x)$ (b) $\lim_{x \to 2^{+}} f(x)$
- (c) $\lim_{x\to 2} f(x)$

- (d) f(2) = 3 (e) $\lim_{x \to 4} f(x)$
 - (f) f(4) NOO Exist

$$\lim_{x \to 4^{-}} f(x) = 4$$
 $\lim_{x \to 4^{+}} f(x) = 4$

a)
$$\lim_{x\to a^{-}} f(x) = 3$$

b)
$$\lim_{x\to a^+} f(x) = 1$$

e)
$$\lim_{X \to 4} f(x) = 4$$

- Para a função f, cujo gráfico é dado, diga o valor de cada quantidade indicada, se ela existir. Se não existir, explique por quê.
- (a) $\lim_{x \to 1} f(x) = 0$ (b) $\lim_{x \to 3^{-}} f(x) = 1$ (c) $\lim_{x \to 3^{+}} f(x) = 1$

Lintes Entire 100

Encontre $\lim_{x\to 0} \frac{1}{x^2}$, se existir.

$$\lim_{X \to 0^+} \frac{1}{x^2} = 00$$

$$\lim_{X \to 0^-} \frac{1}{x^2} = 00$$

$$\lim_{X \to 0^-} \frac{1}{x^2} = 00 \quad (\text{NAO EXISTE})$$

$$\lim_{X \to 0^+} \frac{1}{x^2} = 00 \quad (\text{NAO EXISTE})$$

Definição Seja f uma função definida em ambos os lados de a, exceto possivelmente no próprio a. Então

$$\lim_{x \to a} f(x) = \infty$$

significa que podemos fazer os valores de f(x) ficarem arbitrariamente grandes (tão grandes quanto quisermos) tornando x suficientemente próximo de a, mas não igual a a.

Definição Seja f definida em ambos os lados de a, exceto possivelmente no próprio a. Então

$$\lim_{x \to a} f(x) = -\infty$$

significa que os valores de f(x) podem ser arbitrariamente grandes, porém negativos, ao tornarmos x suficientemente próximo de a, mas não igual a a.

limites laterais

(a)
$$\lim_{x \to a^{-}} f(x) = \infty$$

(b) $\lim_{x \to a^+} f(x) = \infty$

(c)
$$\lim_{x \to a^{-}} f(x) = -\infty$$

(d)
$$\lim_{x \to a^+} f(x) = -\infty$$

- **8.** Para a função R, cujo gráfico é mostrado a seguir, diga quem são:
 - (a) $\lim_{x \to 2} R(x) = -00$ (b) $\lim_{x \to 5} R(x) = 00$

- (c) $\lim_{x \to -3^{-}} R(x) = -00$ (d) $\lim_{x \to -3^{+}} R(x) = 00$
- (e) As equações das assíntotas verticais.

lim RIXI Não Existe X>3

X=-3, X=6 E X=2são chamadas de assintotas reticais **Definição** A reta $\underline{x} = \underline{a}$ é chamada **assíntota vertical** da curva y = f(x) se pelo menos uma das seguintes condições estiver satisfeita:

$$\lim_{x \to a} f(x) = \infty$$

$$\lim_{x \to a^{-}} f(x) = \infty$$

$$\lim_{x \to a^+} f(x) = \infty$$

$$\lim_{x \to a} f(x) = -\infty$$

$$\lim_{x \to a^{-}} f(x) = -\infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

- **9.** Para a função f cujo gráfico é mostrado a seguir, determine o seguinte:
 - (a) $\lim_{x \to -7} f(x) = -\infty$ (b) $\lim_{x \to -3} f(x) = 00$ (c) $\lim_{x \to 0} f(x) = 00$
 - (d) $\lim_{x \to 6^{-}} f(x) = 0$ (e) $\lim_{x \to 6^{+}} f(x) = 0$
 - (f) As equações das assíntotas verticais. x=-7, x=-3, x=0, x=6

Propriedades dos Limites Supondo que c seja uma constante e os limites

$$\lim_{x \to a} f(x) \qquad e \qquad \lim_{x \to a} g(x)$$

existam, então

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

$$3. \lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{se } \lim_{x \to a} g(x) \neq 0$$

6.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$
 onde $n \notin \text{um inteiro positivo}$

$$7. \lim_{x \to a} c = c_{//}$$

8.
$$\lim_{x \to a} x = a$$

9.
$$\lim_{x \to a} x^n = a^n$$
 onde $n \notin \text{um inteiro positivo}$

10.
$$\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$$
 onde $n \notin \text{um}$ inteiro positivo (Se n for par, supomos que $a > 0$.)

11.
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$
 onde $n \notin \text{um inteiro positivo}$

[Se *n* for par, supomos que $\lim_{x\to a} f(x) > 0$.]

Propriedade de Substituição Direta Se f for uma função polinomial ou racional e a estiver no domínio de f, então

$$\lim_{x \to a} f(x) = f(a)$$

Os gráficos de f e q são dados. Use-os para calcular cada limite. Caso não exista, explique por quê.

(a)
$$\lim_{x \to 2} [f(x) + g(x)]$$

(b)
$$\lim_{x \to 1} [f(x) + g(x)]$$

(c)
$$\lim_{x\to 0} [f(x)g(x)]$$

(d)
$$\lim_{x \to -1} \frac{f(x)}{g(x)}$$

(e)
$$\lim_{x\to 2} [x^3 f(x)]$$

(f)
$$\lim_{x \to 1} \sqrt{3 + f(x)}$$

3–9 Calcule o limite justificando cada passagem com as Propriedades dos Limites que forem usadas.

3.
$$\lim_{x \to -2} (3x^4 + 2x^2 - x + 1)$$

4.
$$\lim_{x \to -1} (x^4 - 3x)(x^2 + 5x + 3)$$

5.
$$\lim_{t \to -2} \frac{t^4 - 2}{2t^2 - 3t + 2}$$

6.
$$\lim_{u \to -2} \sqrt{u^4 + 3u + 6}$$

7.
$$\lim_{x\to 8} \left(1 + \sqrt[3]{x}\right) (2 - 6x^2 + x^3)$$
 8. $\lim_{t\to 2} \left(\frac{t^2 - 2}{t^3 - 3t + 5}\right)^2$

8.
$$\lim_{t\to 2} \left(\frac{t^2-2}{t^3-3t+5}\right)^t$$

$$9. \quad \lim_{x \to 2} \sqrt{\frac{2x^2 + 1}{3x - 2}}$$

3.
$$\lim_{x \to -2} (3x^4 + 2x^2 - x + 1) = 3(-2)^4 + 2(-2)^2 - (-2) + 1$$

11–32 Calcule o limite, se existir.

11.
$$\lim_{x\to 2} \frac{x^2+x-6}{x-2}$$

13.
$$\lim_{x \to 2} \frac{x^2 - x + 6}{x - 2}$$

15.
$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}$$

17.
$$\lim_{h\to 0} \frac{(-5+h)^2-25}{h}$$
 18. $\lim_{h\to 0} \frac{(2+h)^3-8}{h}$

19.
$$\lim_{x \to -2} \frac{x+2}{x^3+8}$$

21.
$$\lim_{h\to 0} \frac{\sqrt{9+h}-3}{h}$$

23.
$$\lim_{x \to -4} \frac{\frac{1}{4} + \frac{1}{x}}{4 + x}$$

12.
$$\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4}$$

14.
$$\lim_{x \to -1} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

16.
$$\lim_{x \to -1} \frac{2x^2 + 3x + 1}{x^2 - 2x - 3}$$

18.
$$\lim_{h\to 0} \frac{(2+h)^3-8}{h}$$

20.
$$\lim_{t\to 1} \frac{t^4-1}{t^3-1}$$

22.
$$\lim_{u \to 2} \frac{\sqrt{4u+1}-3}{u-2}$$

24.
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^4 - 1}$$

21.
$$\lim_{h\to 0} \frac{\sqrt{9+h}-3}{h}$$
. $\frac{\sqrt{9+h}+3}{\sqrt{9+h}+3}$

$$=\lim_{h\to 0}\frac{(19+h)^2-3^2}{h(19+h)+3}$$

$$= \lim_{h \to 0} \frac{x_{+}h}{h(19_{+}h(13)_{+})}$$

12.
$$\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4} =$$

$$\lim_{X \to -4} \frac{X+1}{X-1} = \frac{-4+1}{-4-1} = \frac{3}{-5} = \frac{3}{5}$$

$$x^{2} + 5x + 4 = (x+1)(x+4)$$

$$\Delta = 25 - 16 = 9$$

$$x = -5 + 3 > -4$$

$$x^{2} + 3x - 4 = (x-1)(x+4)$$

$$\Delta = 9 + 16 = 25$$

$$x = -3 + 5 > 2$$

11.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = 0$$
Forma independent the ninder $x \to 0$

The property of the property

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2} \frac{(x + 3)}{(x + 3)}$$

$$(x \neq 2)$$

=
$$\lim_{X \to 2} x+3 = 2+3 = 5$$

$$x = -1 \pm 5$$
 pa 2 3-3

$$2 \times + \times - 6 = (\times - 2)(\times + 3)$$

da da Fg. do