What Does a Toolchain for Automating Legislation Eventually Become?

Davin Fifield – VP Product Development, Oracle

Surend Dayal – Partner, Deloitte; Senior Lecturer (Hon.), Australian National University

Don Syme – Principal Researcher, Microsoft (1998-); SoftLaw (1990-91)

The forces of Time, Destiny, Reality, Practicality, Market, Longevity, Opportunity

Hey, let's do a toolchain for automating administrative law!

The forces of Time, Destiny, Reality, Practicality, Market, Longevity, Opportunity

1989 2022

Evolution

1989 - 1993

STATUTE Inference Machine; Rulebase Workshop

1994 – 2002

STATUTE Expert

2003 - 2008

RuleBurst; New non-RETE algorithm

2009 – 2019

Oracle Policy Automation

2020 – present Oracle Intelligent Advisor

The Origins - STATUTE

1990s - STATUTE

Peter Johnson

Administrative Lawyer

"The Annotated Social Security Act 1989"

David Mead

Computer Programmer

- For direct use by administrative lawyers
- Cut the programmers out of the loop
- Targeted to maintaining legislation under change
- Knowledge represented using limited natural language

1990s – STATUTE Programming Model

- You're authoring a "Rulebase Application"
- The "Program" is logical rules in limited natural language
- The "IDE" helps you build and maintain this program
- The "Runtime Engine" knows how to
 - collect facts
 - manipulate limited natural language, e.g. ask questions
 - generate practical interviews , decisions, reports
- "Deployment" into Windows, later Web

Practical isomorphism – source legislation

Division 1—Eligibility for family tax benefit

Subdivision A—Eligibility of individuals for family tax benefit in normal circumstances

21 When an individual is eligible for family tax benefit in normal circumstances

- (1) An individual is eligible for family tax benefit if:
 - (a) the individual:
 - (i) has at least one FTB child; or
 - (ii) has at least one regular care child who is also a rent assistance child; and
 - (b) the individual:
 - (i) is an Australian resident; or
 - (ia) is a special category visa holder residing in Australia; or
 - (ii) satisfies subsection (1A); and
 - (c) the individual's rate of family tax benefit is greater than nil.

Practical isomorphism – modelled rules

The individual is eligible for family tax benefit if

```
the individual satisfies paragraph 21(1)(a)
```

the individual has at least one FTB child

or

the individual has at least one regular care child who is also a rent assistance child

and

the individual satisfies paragraph 21(1)(b)

the individual is an Australian resident; or

the individual is a special category visa holder residing in Australia; or

the individual satisfies subsection (1A)

and

the individual satisfies paragraph 21(1)(c)

the individual's rate of family tax benefit is greater than nil

the individual's fortnightly rate of family tax benefit > 0

"Practical isomorphism" = maintenance under change

Getting Started

Contents

Welcome to STATUTE EXPERT

Starting Out	
Installing STATUTE EXPERT	
Using the STATUTE EXPERT Docum	entation

Part 1 Concepts and Terms

Chapter 1 Facts, Statements and Rules

Facts and Rules	10
Statements, Facts and Values	11
Using rules to infer facts	12
Using rules to find the right questions	13
Components of Simple Rules	14
Complete Rules and Partial Rules	15
What's Next?	16

Chapter 2 Components of Rules

Premises	18
Negative Premises	19
Premises and Values	20
What happens when a premise is false?	21
Multiple Premises	22
Options in Rules	23
Options with Multiple Premises	
Alternative Conclusions	
Summary	26
What's Next?	

Chapter 3 How Rules Work

How do you use a rule?	30
What happens when you learn facts?	
Networks of Rules	
What's Next?	

STATUTE EXPERT Getting Started

Getting Started

Chapter 4 Statements and Variables

Questions and Answers	3
Statements, Values and Variables	
Statement Facts and Variable Facts	4
Summary	4
What's Next?	

Part 2 Introduction to STATUTE EXPERT

Chapter 5 EXPERT Basics

What is a STATUTE EXPERT Rulebase?	48
Different Types of Rules	50
Organizing a Rulebase	
The Sample Rulebase	
What Can You do with a Rulebase?	
What is an Expert System?	55
Why Use a Rulebase?	56
What's Next?	

Chapter 6 Introduction to the STATUTE Interview Framework

The Interview Framework	60
The Interview Interface	62
Performing an Interview	64
Sample Question 1	66
Sample Question 2	67
Sample Question 3	68
Reports	70
Performing Another Interview	72
A More Sophisticated Example	74
Summary	75
What's Next?	76

Part 3 Building a Rulebase

Chapter 7 STATUTE Rulebase Workshop Basics

Starting and Exiting the SRW	80
Opening a Rulebase	82
Saving a Rulehase	84

STATUTE EXPERT Getting Started

STATUTE Expert Methodology

- Addressed deeply practical considerations
 - Methodology for Modelling
 - Interpretation v. Legislation
 - Business Process Automation
 - Auditing Systems
- Note these topics are fundamental to any practical toolchain for automating legislation
- Rooted in deep experience with implementing administrative law

1989-1996 — STATUTE First use cases

- Claims for non fault accident compensation (New Zealand ACC)
- Compensation Claims (Australian Department of Veterans Affairs)
- Social Security entitlement and calculation (Australia)
- Tax Law Guidance (Her Majesty's Revenue and Customs, UK)

The Present – Oracle Intelligent Advisor

Demonstration

Oracle Policy Modeling

From a legislative toolchain to Oracle Intelligent Advisor - Technical

1989 – 1993 STATUTE Inference Machine	1994 – 2002 STATUTE Expert	2003 – 2008 RuleBurst	2009 – 2019 Oracle Policy Automation	2020 – present Oracle Intelligent Advisor
Parsing Boolean statements Objects / attributes English only	Parsing Statement verbs Object names Partly manual	Parsing +Simplified parsing +Rule functions +Relationship functions	Parsing • +20 non-English languages	Parsing • +Further simplified parsing
Logic Quantification Nullable values	Logic • Four-state values (null and uncertain)	Logic • +Hierarchical relationships • +Temporal reasoning	Logic • +Many-to-many reasoning	Logic • +Ordering / arrays
Rule management • Database		Rule management • Word/Excel documents	Rule management • +Cloud deployment	Rule management • All cloud-based (WIP)
ApplicationQuestion searchDecision reporting	Application +Name substitution +Pronoun substitution +Web interviews	Application • +Application connectors • +Web services	Application - +Application data mapping - +Mobile app - +Chatbots	Application • +Process flows
Engine • Prolog	Engine • C++ (RETE)	Engine • Java/.NET (non-RETE)		Engine • JavaScript

Copyright © 2022, Oracle and/or its affiliates

Use case applicability over time

Copyright © 2022, Oracle and/or its affiliates

Discussion

Summary: Discuss!

Toolchains for **legislation** that find widespread adoption eventually become toolchains for **automating business policy**

Why? Because legislation-in-practice has strong affinity with business-policy-in-practice, and all the forces of time, cost and practicality lead any successful toolchain towards the latter

Toolchains for legislation must be grounded in limited natural language to be long-term successful

Why? Because legislation's primary knowledge representation is natural language, its interpretation is business policy and practical isomorphism is key to maintenance

Papers

Primary references for Oracle Intelligent Advisor

- https://bit.ly/OracleCXIA
- https://bit.ly/OracleIADoc

Primary reference for STATUTE/OIA's use of limited natural language representation

• ICAIL 1991

Primary reference for STATUTE/OIA's methodology insights

• ICAIL 1993

Links

- Oracle Intelligent Advisor use it in the cloud!
- Archival material and paper citations: https://github.com/dsyme/ProLaLa2022
- Contact details:
 - <u>Davin Fifield | LinkedIn; davin.fifield@oracle.com</u>
 - <u>Surend Dayal | LinkedIn; surend.dayal@anu.edu.au</u>
 - Don Syme | LinkedIn, dsyme@microsoft.com

Thank you!

Davin Fifield – VP Product Development, Oracle

Surend Dayal – Partner, Deloitte; Senior Lecturer (Hon.), Australian National University

Don Syme – Principal Researcher, Microsoft (1998-); SoftLaw (1990-91)

A vision for models at the heart of the legislative lifecycle

Historical challenges to widespread adoption

- Separation between policy and administrative arms of government
- Momentum for existing legislative/policy drafting processes
- Changing the way complex rules are managed means a massive change to the way the organisation is run
- Implementation Partners prefer to code in tools they already know
- "Business technologists" were not yet a thing

Commercial realities drove broadening to any "business policy" modelling use cases

Summary #2

The history of STATUTE/OIA gives a practical guide to the commercial domains that have synergy with automating legislation

Why? STATUTE evolved into OIA under commercial pressures. This evolution reveals the areas that benefit from techniques that originated with automating legislation

Group Questions: Discuss! What advice for a young researcher in programming languages and the law?

Is there a role for AI in the technical areas? (Parsing, Logic, Rule management, Application, Engine) How about advanced logic techniques?

How can researchers get involved in OIA today?