VIRTUAL TRIP AND PLANNING ADVISOR

Applied Data Science Capstone Project
IBM Data Sceince Professional Certificate Specialization
By Ihor Kulmatytskyy

Virtual Trip advisor or classifier project consists of:

Gathering data about the Ukrainian Carpathian Mountains and nearest venues

Applying clustering with k-Means to determine mountain peaks with similar nearest outdoor activities

Studying result, picking labels to the determined clusters, visualization, and presentation

	Name	Height	Location	id	Latitude	Longitude
0	Goverla	2061.0	Chornogora	1	48.15111	24.50000
1	Brebeneskul	2035.8	Chornogora	2	48.09833	24.58056
2	Pip Ivan Chornogors'kii	2028.5	Chornogora	3	48.04778	24.62778
3	Petros	2022.5	Chornogora	4	48.17194	24.42111
4	Gutin Tomnatik	2016.4	Chornogora	5	48.10000	24.55667

Carpathian mountain peaks from Wikipedia

Sights and venues from Foursquare

	id	Name	Category	Latitude	Longitude
0	1	Говерла (2061 м) / Hoverla	Mountain	48.16039	24.50037
1	2	Брескул (1911 м) / Breskul	Mountain	48.15037	24.51103
2	3	Гірське Крісло	Other Great Outdoors	48.16272	24.50573
3	4	Говерлянка	Mountain	48.16615	24.50546
4	5	Пожижевська (1822 м)	Mountain	48.14430	24.52357

Frequencies of venues in relation to mountain peaks – illustration of non-consistent data on small data

Apply k-Means to cluster Mountain Peaks by categories of the nearest venues.

1 -> - (3)

Use the elbow method to determine an optimal number of clusters k = 6.

Perform k-Means and pick up proper cluster names

Display result on a map

THANK YOU

Stay healthy and positive:)