學號:B04705018 系級: 資管三 姓名:楊之郡

請實做以下兩種不同 feature 的模型,回答第 (1)~(3) 題:

- 1. 抽全部 9 小時內的污染源 feature 的一次項(加 bias)
- 2. 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- 1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響
 - (1) 抽全部 9 小時內的污染源 feature 的一次項(加 bias): RMSE = 6.7699244452
 - (2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias) RMSE = 6.59624690677

Feature 1: 抽全部的一次項因為 model 可能會有 overfitting 的問題, 所以 RMSE 較大

- 2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化
 - (1) 抽全部 5 小時內的污染源 feature 的一次項(加 bias): RMSE = 6.66311131487
 - (2) 抽全部 5 小時內 pm2.5 的一次項當作 feature(加 bias) RMSE = 6.74491674708

Feature1 的 error 變低但 feature2 的 error 變高,所以只抽 5 小時不一定會讓 model 變好

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖 (1)抽全部 9 小時內的污染源 feature 的一次項(加 bias):

		Train	test
$\lambda = 0.1$	RMSE =	5.878287	6.76992444415
$\lambda = 0.01$	RMSE =	5.878285	6.76992444508
$\lambda = 0.001$	RMSE =	5.878284	6.76992444518
λ=0.0001	RMSE =	5.878284	6.76992444519

(2) 抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias):

		Train	test
$\lambda=0.1$	RMSE =	6.123029	6.59624640053
λ=0.01	RMSE =	6.123022	6.5962468561
$\lambda = 0.001$	RMSE =	6.123022	6.59624690169

抽全部 9 小時內的污染源 feature 的一次項(加 bias):

抽全部 9 小時內 pm2.5 的一次項當作 feature(加 bias):

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 $x^{\text{\tiny "}}$,其標註(label)為一存量 $y^{\text{\tiny "}}$,模型參數為一向量 w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 n=1Nyn-xnw2 。若將所有訓練資料的特徵值以矩陣 $X = [x^{\text{\tiny "}} x^{\text{\tiny "}} ... x^{\text{\tiny "}}]^{\text{\tiny "}}$ 表示,所有訓練資料的標註以向量 $y = [y^{\text{\tiny "}} y^{\text{\tiny "}} ... y^{\text{\tiny "}}]^{\text{\tiny "}}$ 表示,請問如何以 X 和 y 表示可以最小化損失函數的向量 w ?請寫下算式並選出正確答案。(其中 $X^{\text{\tiny "}}X$ 為 invertible)

- a. $(X^TX)X^Ty$
- b. $(X^TX)^{-1}X^Ty$
- c. $(X^TX)^{-1}X^Ty$
- d. $(X^TX)^{-2}X^Ty$

將 gradient 寫成向量形式 = $(-2)*X^T(y-Xw)$

當 gradient(一階微分) = 0 時,存在極值,又 Loss function 是一個 convex 的函數,所以 gradient = 0 時,w 的值帶入 Loss function 即為 Loss function 的最小值。

Gradient =
$$(-2)*X^T(y - Xw) = 0$$

=> $X^Ty - X^TXw = 0$ => $X^Ty = X^TXw => (X^TX)^{-1} X^Ty = w$
=> 答案 = c #