Oipol - Dipol - WW

	assertomplexe klane 10	
	chemisder	
- Alkene	· Bau der Alleue 526	
	& Bildung der Alkeure 5.27	
	· Chen Zeuletionen der 5.29 Alkene (Nach weig)	
	· Nomenklatier + Isomerie 5 28	
1	· Verwenduni	
Aug 1.5 5	29	
Alu:		
- Alkine:	· chemison Ban der 5.30/31	
	· Nomentelation + Isomerice 5.31	
	· cheim. Realitionen der 5:31	
	Allite	
	· Varvendung 5:30 · Beronderheil Ellin-Septyller	
Aug. 2-6		TH #7
	5.37 H (= (-)	15-17
- Mukromol	eteule: 7E 5.35 (=(=)	1:1
		L-4 01 3 4
	Polymensacion 5-35	
AN 2 -	S 25 Variounding 5.35	
My. 2,53	, 53	
- Benzen	: chemisar 3au 5 50/51	
	cham. Reuletion	
	verwenden 1	
	Toluol, Phenol, Styrol (Former)	
- Alkanole:	- chanisaer sau 5.60	
	Nom enletatier 5.62	
	- chem. Realthoney 5.61	
	- pup halisone Eyeus daylers 5.61	
Auf. 1-5	5.62 (11)	
	champl + liter - and	· Volume
1-3	1	

H-C-C-H H H	C=C H	Н−С≡С−Н	HHH
Ethan	Ethen	Ethin	H Benzol
homologe Reihe der Alkane C _n H _{2n+2} gesättigt C-C-Einfachbindung	homologe Reihe der Alkene C _n H _{2n} ungesättigt C=C-Zweifachbindung	homologe Reihe der Alkine C _n H _{2n-2} ungesättigt C≡C-Dreifachbindung	Aromaten aromatisch besonderes Bindungssystem

2. Isomerie und Nomenklatur

Isomere Verbindungen haben die gleiche Molekülformel, besitzen aber unterschiedliche Strukturformeln. Die Benennung organischer Verbindungen erfolgt nach internationalen Nomenklaturregeln.

C ₄ H ₁₀	C	4H ₈ CH ₃ CH ₃	C ₅ H ₁₀
CH ₃ -CH ₂ -CH ₂ -CH ₃ Butan	CH ₂ =CH-CH ₂ -CH ₃ But-1-en	C=C H H cis-But-2-en	CH ₂ =CH-CH ₂ -CH ₂ -CH ₃ Pent-1-en
CH ₃ -CH-CH ₃	CH ₃ -CH=CH-CH ₃	CH ₃ H C=C	H H H Cycle
2-Methylpropan	But-2-en	trans-But-2-en	H H H penta
unterschiedliche Verzweigung	unterschiedliche Lage der C=C-Zweifachbindung	unterschiedliche Stellung der CH ₃ -Gruppen	Kette oder Ring

igenschaften

VAN-DER-WAALS-Bindungen. Zwischen den unpolaren Molekülen der Kohlenwasserstoffe wirken schwache Anziehungskräfte, die VAN-DER-WAALS-Bindungen. Sie nehmen mit der Molekülgröße zu.

Schmelz- und Siedetemperaturen. Kohlenwasserstoffe schmelzen und sieden bei niedrigen Temperaturen. Mit steigender Molekülgröße nehmen die Schmelz- und Siedetemperaturen wegen der stärker werdenden VAN-DER-WAALS-Bindungen zu.

Löslichkeit. Stoffe ähnlicher Polarität sind ineinander löslich. Kohlenwasserstoffe mischen sich mit anderen unpolaren Stoffen, lösen sich aber nicht in polaren Lösungsmitteln wie Wasser. Kohlenwasserstoffe sind hydrophob.

4. Reaktionen

Substitution: In einem Molekül wird ein Atom durch ein anderes Atom ersetzt. Substitutionsreaktionen sind charakteristisch für **gesättigte** und **aromatische** Kohlenwasserstoffe.

Addition: Ein Molekül wird an eine C/C-Mehrfachbindung eines ungesättigten Kohlenwasserstoffs addiert.

Eliminierung: Aus einem Molekül wird unter Ausbildung einer C/C-Mehrfachbindung ein Molekül abgespalten.