Concordia University

Dept. of Computer Science and Software Engineering

COMP 335 – Introduction to Theoretical Computer Science Fall 2018

Assignment 4

Submission through Moodle due on Thursday Nov. 29th at 23:55

Note: This is a theoretical course. That means, while the WHAT is important, the WHY is absolutely essential. Show steps of your solution for the full mark.

Total mark is 60.

- 1. [10 Points] Show that the family of context-free languages are closed under each of the following operations.
 - (a). Reversal (Note: $L^R = \{w^R : w \in L\}$, for any language L.)
 - (b). Homomorphism.

If Σ and Γ are alphabets, a homomorphism h is a function from Σ to Γ^* , that is h replaces a single symbol in Σ to a string over Γ . This definition can be extended naturally to strings, that is, if $w = a_1 \cdots a_n$ is a string, then $h(w) = h(a_1) \cdots h(a_n)$.

- 2. [20 Points] Which of the following languages are CF and which ones are not? For each language, if it is CF, give a CFG that generates it; otherwise prove your claim.
 - (a). $L_a = \{w : w \neq uu, u \in L((a+b)^*)\}$

<u>Hint 1:</u> Note that L_a contains every string of length odd and certain strings of length even.

<u>Hint 2:</u> Note that every even length string w in L_a can be written/viewed as xy, where |x| is odd, |y| is odd, AND the central symbol of x is different from the central symbol of y. You can use these hints to design a CFG or a PDA for L_a .

- (b). $L_b = \{w : w = uu, u \in L(1^*01^*)\}$
- (c). $L_c = \{w : w \in \{a, b, c\}^*, n_a(w) > n_b(w) > n_c(w)\}$
- (d). $L_d = \{a^{n^2} : n \ge 0\} \cup \{a^n : n \ge 0\}$
- 3. [20 Points] For each of the following languages, show the transition diagram of a Turing machine (TM) that accepts the language.
 - (a). $L_e = \{w : w \in \{a, b, c\}^+, n_a(w) = n_b(w) = n_c(w)\}$
 - (b). $L_f = \{ww : w \in \{a, b\}^+\}$
 - (c). $L_q = \{ww^R : w \in \{a, b\}^+\}$
- 4. [10 Points] For each of the following functions over the positive integers, represented in *unary*, give the transition diagram of a TM that computes the function.
 - (a). $f(x) = x \mod 5$
 - (b). $g(x) = |\frac{x}{2}|$