

Project Initialization and Planning Phase

Date	03-10-2024	
Team ID	LTVIP2024TMID24897	
Project Title	Flight delay prediction using ML	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) template

It can dramatically reduce the flight delays to saves huge amount of turnovers, using machine-learning algorithms.

machine learning models could accurately predict flight delays, with a prediction accuracy of up to 92%.

Project Overview		
Objective	Such a model may help both passengers as well as airline companies to predict future delays and minimize them.	
Scope	This project can identify the wheather reports and passengers late	
Problem Statement		
Description	A change in Flight schedule due to which You will not have sufficient time to change planes or other means of transportation for Flight Connection(s)	
Impact	Delayed flights can be inconvenient, especially for business travelers who may miss appointments. Passengers may also experience anger, frustration, or air rage.	
Proposed Solution		
Approach	statistical models and machine learning models	
Key Features	low visibility, hail, high winds at takeoff, and thunderstorms	

Resource Requirements

Resource Type	Description	Specification/Allocation	
Hardware			
Computing Resources	CPU/GPU specifications, number of cores	e.g., 2 x NVIDIA V100 GPUs	
Memory	RAM specifications	e.g., 8 GB	
Storage	Disk space for data, models, and logs	e.g., 1 TB SSD	
Software			
Frameworks	Python frameworks	e.g., Flask	
Libraries	Additional libraries	e.g., scikit-learn, pandas, numpy	
Development Environment	IDE, version control	e.g., Jupyter Notebook, Git	
Data			
Data	Source, size, format	e.g., Kaggle dataset, 10,000 images	