Externspeicheralgorithmen I

Speichermodell
Einfache Datenstrukturen
Sortieren

Maschinenmodell

RAM-Modell

- In jedem Rechenschritt kann jederzeit direkt auf eine beliebige Speicheradresse zugegriffen werden (lesend&schreibend)
- Früher tatsächlich ohne "extra" Wartezeit

$$12 + 42 + 23 + 5 + 9 + 67 = 158$$

$$23 + 9 + 12 + 67 + 5 + 42 = 158$$

```
int data[N]
      int idx[N]
      for i = 1...N:
       idx[i] = i
 permute(idx)
```

sequenziell vs. random access

Resultat: ident

O-Notation: ident O(N)

Oops: Sequentiell VS Random Access

64

128 256

- Intel Core i7 860, 2.80GHz, QuadCore, 8GB RAM
- 1 Core, 32bit, g++ 4.4 –00, Ubuntu 10.10

Bei schreibendem Zugriff wäre es noch ausgeprägter!

```
1..N:
                                   for i = 1..N:
+= data[idx[i]]
                                     data[idx[i]]
```

Speicherhierarchien

	CPU		Cache		DANA	HDD
	Register	Level 1	Level 2	Level 3	RAM	HDD
Größe	16 (64bit)	32+32 KB	256 KB	8MB	8GB	1TB
Latenz	0,5 ns	0,5 ns	3 ns	20ns	40–100 ns	10 ms
in CPU Zyklen	1	1-2	3-7	30-40	80-200	10 ⁷

Größenordnungen bei einem Intel Core i7

"One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed."

[IEEE InfoVis 2003 Call-For-Papers]

Entwicklung der Geschwindigkeiten: CPU ca. + 30% / Jahr

Speicher + 7–10% / Jahr

Betrachtung von Externspeicheralgorithmen wird immer wichtiger!

I/O-Modell

Klassische O-Notation benutzt RAM-Modell

- Jede Operation benötigt gleich viel Zeit (1 Zeiteinheit)
- Jede gewünschte Speicheradresse steht direkt zum Lesen/Schreiben bereit
- ⇒ Zähle # Operationen

I/O-Modell (nach Aggarwal und Vitter), auch: "cache-aware"

Noch immer vereinfacht, aber guter Tradeoff zw. Realität und Analysierbarkeit

- Interner Speicher (zB. RAM) vs. Externer Speicher (zB. HDD)
- Interner Speicher ist (ohne Zeitverlust) direkt adressierbar

• Zwischen internem und externem Speicher werden immer ganze Datenblöcke geladen/geschrieben

M

I/O-Modell

Klassische O-Notation benutzt RAM-Modell

⇒ Zähle # Operationen

I/O-Modell (nach Aggarwal und Vitter), auch: "cache-aware"
Noch immer vereinfacht, aber guter Tradeoff zw. Realität und Analysierbarkeit

- ⇒ Zähle # interne Operationen
 Ziel: Möglichst gleich mit RAM-Modell
- ⇒ Zähle # I/O Zugriffe Laden/Schreiben von Blöcken

Annahmen • immer: M ≥ 2B • tall-cache: M ≥ B² • M ≥ B^{1+ε}

Warum war Sequentiell schneller als Random Access?

Lokalität

Ziele bei der Entwicklung von Externspeicheralgorithmen

Örtliche Lokalität

Ein gelesener Block sollte möglichst viel nutzbare Information enthalten.

Zeitliche Lokalität

Möglichst viele Daten im internen Speicher bearbeiten, bevor sie wieder rausgeschrieben werden.

Interne Effizienz

Optimiere obige Lokalitäten, ohne (große) Einbußen bzgl. der internen Operationen gegenüber dem optimalen Algorithmus im RAM-Modell.

Stack

```
push(type v) Legt v oben auf den Stack
type pop() Liefert oberstes Element des Stacks und entfernt es
```

Implementierungen (optimal im RAM-Modell)

- Array + Zeiger auf oberstes Element
- Zeigerverkettete Liste

```
Anzahl der I/Os? (für beliebige Abfolge von Operationen)
O(1) pro Operation!
```

Besser: Extern-Stack

Extern-Stack

- Interner Speicher ("Puffer"): Array J der Größe 2B; restlichen Daten extern
- J enthält zu jedem Zeitpunkt die $k \le 2B$ obersten Elemente

push(type v)

- Falls $k \le 2B$ ("meistens"): Füge v in J ein. \rightarrow Kein I/O
- Falls k = 2B ("Puffer voll"): Lagere die untersten B Elemente von J auf den externen Speicher aus; füge v in J ein. $\rightarrow 1 I/O$

type pop()

- Falls k > 0 ("meistens"): Entferne oberstes Element aus J. \rightarrow Kein I/O
- Falls k = 0 ("Puffer leer"): Lade die obersten B Elemente aus dem externen Speicher nach J; entferne oberstes Element aus J. $\rightarrow 1 \text{ I/O}$

Beobachtung

Nach jedem I/O-Zugriff mindestens B viele Operationen ohne I/O!

- ⇒ O(1/B) I/Os pro Operation (amortisiert)
- ⇒ Dies ist bestmöglich, da nur B Elemente pro I/O

Weitere einfache Datenstrukturen

- Analog für Queue → Übung
- Wie für Listen? → Übung

Kompliziertere Datenstrukturen

Priority Queue? → nächste Woche

Zunächst

Einfache Algorithmen

Sortieren (vergleichsbasiert)

im RAM-Modell am effizientesten...

- Quick-Sort O(N²), randomisiert/erwartet: O(N log N)
- Merge-Sort O(N log N)
- Heap-Sort O(N log N)

Partitionierungsschritt (N₀ viele Elemente)

 $load_block_of(Pivot) \rightarrow ersparbar$ wenn man gleich letztes Element wählt $load_block_of(L)$, $load_block_of(R)$

Laufe mit L nach rechts, mit R nach links:

- stoppe jeweils wenn Element kleiner (größer) als Pivot. Vertausche.
 - \rightarrow sequenziell! $O(N_0/B)$ I/Os
- fertig wenn R links von L. Tausche Pivot in die "Mitte".
 - \rightarrow Mitte ist schon geladen, load_block(ganz-rechts) \rightarrow geladen falls M \geq 3B

Partitionieren von N_0 Elementen: $O(N_0/B)$ I/Os

→ jeder Block wird nur "1 mal" angeschaut

Rekursion

- Pro Rekursionstiefe: O(N/B) I/Os
- Sobald N<M: Lade alle M/B Blöcke und sortiere rekursiv ohne weitere I/Os.
- Rekursionstiefe?
 average: O(log₂ N), worst: O(N)

Rekursionstiefe solange I/Os benötigt werden (Analyse wie traditionell):

average: O(log₂ (N/B)), worst: O(N/B)

Gesamt # I/Os:

average: O((N/B) log₂ (N/B)), worst: O(N²/B²)

Rekursiv unterteilen: nur Index-Berechnungen, keine I/Os

Bottom-up: Teilsequenzen ("Runs") mergen, Hilfsarray.

Mergen zweier Runs der Längen N_1, N_2 : O($1+(N_1+N_2)/B$) I/Os

Anzahl der Merge-Operationen per Rekursionsebene: O(N)

I/Os pro Rekursionsebene: O(N + N/B)

I/Os ingesamt: $O(N \log_2 N) \rightarrow \Theta$, Quick-Sort hatte $O((N/B) \log_2 (N/B))$

Beschleunige Merge-Sort (1)

Verhindere I/Os für kleine Runs

- Sobald ein Run ≤ M/2: Lade kompletten Run in Speicher, sortiere intern (ohne I/Os), schreibe die Lösung raus. → O(M/B) I/Os
- Teile das Array in 2N/M Chunks der Größe ≤ M/2, und sortiere intern:
 O((N/M) · (M/B)) = O(N/B) I/Os
- Merge diese Chunks nun gemäß Merge-Sort:
 - Rekursionstiefe: O(log₂ (N/M))
 - I/Os pro Rekursionsebene: O(N/M + N/B)
- I/Os ingesamt: O(N/B + (N/M+N/B) log₂ (N/M)) (N/M < N/B)
 = O((N/B) log₂ (N/M))

Beschleunige Merge-Sort (2)

Merge nicht nur 2 Runs $\rightarrow k$ -way Merge

- $k = \frac{1}{2} (M/B) \rightarrow M/B = Anzahl der Blöcke die in internen Speicher passen$
- Verschmelze immer k Runs:
 - Benutze jeweils einen Block für jeden Run.
 - Lade die ersten B Elemente jedes Runs in seinen Block.
 Lade immer einen Block nach, wenn geladener Block fertig abgearbeitet ist.
 - Iterativ: Verschiebe kleinstes der "obersten" Elemente in Ausgabepuffer
 - Interner Rechenaufwand?
- Es ändert sich nur die Rekursionstiefe: O(log_{M/B} (N/M))
- I/Os ingesamt: O((N/B) log_{M/B} (N/M))

Verschmelzen von *k* Runs: Finde Minimum

Naïv: lineare Suche, O(k)

• Aufwand pro Rekursionsebene $O(k \cdot N)$ statt $O(N) \rightarrow \odot$

 $k = \frac{1}{2} M/B$

Priority Queue

- Kleinstes Element pro Block in eine Priority-Queue (zB. Min-Heap) (Größe: $k = \frac{1}{2}$ M/B, interner Speicher reicht dafür aus)
 - Wähle kleinstes Element in PQ (O(1)), und füge vom entsprechenden Block das nächstkleinste Element in PQ ein (O($\log_2 k$) = $\log_2(M/B)$)

Gesamtaufwand (interne Rechenoperationen)

- Sortieren der Chunks: O(N/M · M log₂ M) = O(N log₂ M)
- Rekursionstiefe: O(log_{M/B} (N/M))
- Pro Rekursionsebene (inkl. Minimum-Finden): O(N log₂ (M/B))

Gesamt: $O(N \log_2 M + N \log_2 (M/B) \log_{M/B} (N/M)) = O(N \log_2 N)$ \rightarrow Effizient wie internes Merge-Sort!

	Interne Operationen	I/Os
Internes Quick-Sort (Average, bzw. Randomisiert/Erwartungswert)	Õ(Nlog ₂ N)	Õ((N/B) log ₂ (N/B))
Internes Merge-Sort	O(Nlog2N)	O(Nlog2N)
Externes Merge-Sort	O(Nlog2N)	O((N/B) log _{M/B} (N/M))

I/O Aufwand fundamentaler Operationen

→ Diese Komplexitäten werden oft als Black-Box innerhalb von anderen Algorithmen benutzt

Externspeicheralgorithmen II

Priority-Queue – Externer Array-Heap

Details in:

[Andreas Crauser. LEDA-SM: External Memory Algorithms and Data Structures in Theory and Practice. Dissertation, Saarbrücken, 2001]

Wiederholung: I/O-Modell

Klassische O-Notation benutzt RAM-Modell

⇒ Zähle # Operationen

I/O-Modell (nach Aggarwal und Vitter), auch: "cache-aware"
Noch immer vereinfacht, aber guter Tradeoff zw. Realität und Analysierbarkeit

- ⇒ Zähle # interne Operationen
 Ziel: Möglichst gleich mit RAM-Modell
- ⇒ Zähle # I/O Zugriffe Laden/Schreiben von Blöcken

Priority Queue

Priority Queue (PQ)

Operationen

- insert(key,data)
 Füge Key/Data-Paar in die PQ ein.
- decreaseKey(entry, newKey)
 Vermindere den Schlüssel eines gegebenen Key/Data-Paares in der PQ
- (key,data) deleteMinimum()
 Liefere und entferne das Key/Data-Paar mit kleinstem Schlüssel

Klassischste Implementierung (intern):

Binary Heap

Problem

Jeder Sprung in eine benachbarte Schicht benötigt (womöglich) einen I/O Zugriff!

→ Externer Array-Heap

als Verbesserung des klassischen Binary Heaps für Externspeicher


```
Wähle Konstante \mathbf{c} < \mathbf{1}. (Typischer Wert: ^1/_7)

M/B = max. Anzahl der Blöcke im internen Speicher \rightarrow \alpha := \mathbf{c} \cdot \mathbf{M}/\mathbf{B} \in \mathbf{N}

\ell_i := \mathbf{B} \cdot \alpha^i

\mu := \alpha - 1

\Rightarrow \ell_1 = \mathbf{c} \cdot \mathbf{M}

\Rightarrow \ell_{i+1} = \ell_i \cdot (\mu+1)
```

insert(key, data)

Operation insert:

- Füge neues Element in internen Heap **H** ein
- Falls kein Platz in H:
 - Verschiebe ℓ_1 Einträge **S** in den externen Speicher
 - Falls ein Slot in \mathcal{L}_1 frei: Lege S dort ab
 - Sonst: S = Overflow-Folge
 - ightarrow Fasse **S** mit alle Listen in den Slots von \mathcal{L}_1 zusammen
 - \rightarrow Gesamtliste hat $\leq \ell_1 \cdot (\mu+1)$ Einträge = Größe eines Slots in ℓ_2
 - \rightarrow Falls ein Slot in \mathcal{L}_2 frei ist: Lege Gesamtliste dort ab
 - \rightarrow Sonst: wiederhole Vorgehen für \mathcal{L}_3 ,...

deleteMinimum()

Operation **deleteMinimum**:

- oops... schwer...
- Invariante um das Minimum schnell zu finden:
 Das kleinste Element liegt immer im internen Speicher (Heap H)
- Also: nach deleteMinimum ggf. H wieder auffüllen
- Dazu: Benutze 2 Heaps H₁, H₂ statt einem Heap H.

Priority Queue: Externer Array-Heap

- $|H_1| = 2cM$
- $|H_2| = B \cdot L\mu = B \cdot L \cdot (c \cdot M/B 1) \le L \cdot cM$
- Zusätzlich: Mergen von μ Slots + Overflow-Folge \rightarrow B α = cM
- ⇒ Interner Speicher: (3+L)cM⇒ $(3+L)c \le 1$

Praxis:
$$c = \frac{1}{7}$$
, $L = 4$

 $\alpha := \mathbf{c} \cdot \mathbf{M} / \mathbf{B}$ $\ell_{i} := \mathbf{B} \cdot \alpha^{i}$ $\mu := \alpha - 1$ $\ell_{i+1} = \ell_{i} \cdot (\mu+1)$

 \rightarrow Wieviele Daten können maximal verwaltet werden? \rightarrow später...

Hilfsoperationen (1)

$$\mu = \alpha - 1$$
 Slots pro Level

Slotgröße:

$$\ell_1 = \mathbf{c} \cdot \mathbf{M}$$
 $\ell_{i+1} = \ell_i \cdot (\mu + 1)$

Merge(i,S,S')

Verschmelze alle Slots aus \mathcal{L}_i (inkl. deren Blöcke in H_2) und die Folge $S(|S| \le \ell_i)$ zu einer neuen Folge S'.

 $O(\ell_{i+1}/B)$ I/Os

Store(i,S) $O(\ell_i/B)$ I/Os

Voraussetzung: \mathcal{L}_i hat einen freien Slot. Speichere die Folge S in einen freien Slot von \mathcal{L}_i , und verschiebe die kleinsten B Elemente nach H_2 .

Load(i,j)

Lade die (nächsten) B kleinsten Elemente aus Slot j von \mathcal{L}_i nach H_2 .

O(1) I/Os

Hilfsoperationen (2)

Compact(i) $O(\ell_i/B)$ I/Os

Immer ausführen falls: es existieren mindestens zwei Slots von \mathcal{L}_i die in Summe (inkl. ihrer Blöcke in H_2) maximal ℓ_i Elemente enthalten.

Verschmelze diese Slots (inkl. ihrer Blöcke in H_2) und verschiebe den Minimum-Block der neuen Liste nach H_2 .

Dadurch wird mindestens ein Slot frei.

insert(key, data)

Operation insert:

- Füge neues Element in internen Heap H₁ ein
- Falls kein Platz in H₁:
 - Verschiebe ℓ_1 Einträge **S** in den externen Speicher
 - Falls ein Slot in \mathcal{L}_1 frei: store(1,S)
 - Sonst: (alle bis auf max. 1 Slot aus \mathcal{L}_1 haben mind. $\ell_1/2$ Elemente)
 - \rightarrow merge(1,S,S')
 - \rightarrow Gesamtliste hat $\leq \ell_1 \cdot (\mu+1)$ Einträge = Größe eines Slots in ℓ_2
 - \rightarrow Falls ein Slot in \mathcal{L}_2 frei ist: store(2,5')
 - \rightarrow Sonst: merge \mathcal{L}_{2} ,... etc. ...

deleteMinimum()

Operation deleteMinimum:

- Entferne kleinstes Element x aus H₁ bzw. H₂.
- Falls x aus H₂ kam:
 - Sei \mathcal{L}_{i} das Level, und **j** der Slot in diesem Level, aus dem **x** kam.
 - Falls x das letzte Element aus dem Minimum-Block von Slot j war:
 - Lade Daten nach, load(i,j),
 - Rufe compact(i) nach Bedarf auf.

Theorie

- Anzahl I/Os?
- Speicherplatz-Bedarf?Speicherplatz-Beschränkung?

Praxis

Bringt's was? Wieviel?

Externspeicheralgorithmen III

Priority-Queue – Externer Array-Heap:
Komplexitätsbeweis
Experimente

34

Wiederholung: Externer Array-Heap

Operationen

- insert
- deleteMinimum

Praxis:
$$\mathbf{c} = \frac{1}{7}$$
, $\mathbf{L} = 4$ $\mathbf{\alpha} := \mathbf{c} \cdot \mathbf{M} / \mathbf{B}$ $\ell_i := \mathbf{B} \cdot \mathbf{\alpha}^i$ $\mu := \mathbf{\alpha} - 1$ $\ell_{i+1} = \ell_i \cdot (\mu+1)$

Lemma A.

Nach jeder Operation ist das kleinste Element immer im internen Speicher.

Lemma B.

Bei einem Aufruf von store(i,S) gilt: $\ell_i/2 \le |S| \le \ell_i$.

Beweis (induktiv). $i=1: \ell_1$ Elemente aus $H_1 \checkmark$

i>1: Wieviele Elemente kommen aus...?:

Overflow-Folge S⁻: $\ell_{i-1}/2 \le |S^-| \le \ell_{i-1}$ (Induktionsvoraussetzung)

Schicht i-1: Für alle Slotpaare a,b in \mathcal{L}_{i-1} gilt: $s_a + s_b > \ell_{i-1}$ $(s_a, s_b, ... \#Elemente in <math>a,b)$

$$\sum_{a} s_a = \frac{\sum_{a \neq b} (s_a + s_b)}{\mu - 1} > \frac{\sum_{a \neq b} \ell_{i-1}}{\mu - 1} = \frac{\frac{\mu(\mu - 1)}{2} \ell_{i-1}}{\mu - 1} = \frac{\mu}{2} \cdot \ell_{i-1}$$

Summe: maximum: $\ell_{i-1} + \mu \cdot \ell_{i-1} = (\mu+1) \cdot \ell_{i-1} = \ell_i$

minimum: $\ell_{i-1}/2 + \mu \cdot \ell_{i-1}/2 = (\mu+1) \cdot \ell_{i-1}/2 = \ell_i/2$

Lemma A.

Nach jeder Operation ist das kleinste Element immer im internen Speicher.

Lemma B.

Bei einem Aufruf von store(i,S) gilt: $\ell_i/2 \le |S| \le \ell_i$.

Beweis ✓

Lemma C. (Annahme: cM>3B)

Nach **N** Operationen werden maximal $L \leq \log_{\alpha} (N/B)$ Level benutzt.

Lemma D.

Store(i,S), compact(i) und merge(i-1,S,S') benötigen maximal $3\ell_i/B$ I/Os.

Weitere Beweise: Übung.

Beobachtung.

Ein Element wechselt immer nur in höhere Levels, nie nach unten.

I/O-Aufwand: Theorem & Beweis-Ansatz

Theorem.

Angenommen $N \le B \cdot \alpha^{1/c-3}$, $0 < c < \frac{1}{3}$ und cM > 3B.

Amortisiert über **N insert** und/oder **deleteMinimum** Operationen, benötigt **insert** maximal **18L/B** und **deleteMinimum** maximal **7/B** I/O-Operationen.

Beweis. Bankkonto-Methode

- Jede I/O-Operation kostet eine (Geld)einheit.
 Wir dürfen max. so viele Geldeinheiten ausgeben, wie wir für unsere Operationen amortisiert bezahlen wollen (18L/B und 7/B Einheiten).
- Jedes Element in der PQ hat ein Konto, das nie negativ werden darf.
- Jeder Slot j (in Level i) benötigt eine Sicherungseinlage (Deposit) D_{i,j}.
 Hat ein nicht-leerer Slot x freien Plätze, müssen x·6/B hinterlegt sein.
- Jeder Slot j (in Level i) hat ein (anfangs leeres) internes Konto IK_{i,j}.
- Beim Einfügen in die PQ erhält das Element 18L/B (Geld)einheiten.
- Beim Entfernen aus der PQ zahlen wir 7/B Einheiten in D_{int}.

unsere Ausgaber

Insert()

- Beim Einfügen in die PQ erhält das Element **18L/B** (Geld)einheiten.
 - → **18/B** Einheiten pro Level-Verschiebung.
- Keine Level-Verschiebung → keine I/Os → keine Kosten ✓

Betrachte: Levelverschiebung von i nach i+1

Es werden mindestens $\ell_{i+1}/2$ Elemente verschoben.

- merge(i,S,S') ... 3 l_{i+1}/B I/Os
- store(i+1,S) ... $3 \ell_{i+1}/B$ I/Os (falls freier Slot) $6 \ell_{i+1}/B$ Einheiten
- Bezahlen des Deposits x·6/B für x freigelassene Elemente im neuen Slot

$$x \le \ell_{i+1}/2$$

3 ℓ_{i+1}/B Einheiten

- Levelverschiebung kostet (max.) 9 ℓ_{i+1}/B Einheiten.
 - Dafür müssen (mind.) $\ell_{i+1}/2$ Elemente zahlen.
 - ⇒ 18/B Einheiten pro Element ✓

DeleteMinimum()

- Kleinstes Element in H₁ → keine I/Os
- Kleinstes Element in $H_2 \rightarrow$ keine I/Os aber ggf. Load & Compact nötig...
- Bei jedem deleteMinimum zahle **7/B** Einheiten in entspr. **IK**_{i,j} ein.

Vor einem Nachladen (Load(i,j)) gab es für diesem Slot **B** viele deleteMinimum-Aufrufe \rightarrow IK_{i,i} \geq **7** Einheiten.

Load(i,j) benötigt 1 I/O → 1 Einheit

Durch Load hat der Slot nun B mehr freie Einträge

- \rightarrow **D**_{i,i} benötigt **B·6/B** = 6 mehr **Einheiten**
 - \Rightarrow Bezahle diese **6 Einheiten** für $D_{i,j}$ mit dem Geld aus $IK_{i,j}$
 - \Rightarrow 6+1 = 7 Einheiten \checkmark

Compact()?

I/O-Aufwand: Theorem – compact()

Compact(i)

- Benötigt 3·ℓ_i/B I/Os (=Einheiten)
- Bezahlen aus den Deposits!
- Verschmelze die Slots a,b (mit s_a, s_b Elementen)
- x_a, x_b ... Anzahl freier Elemente im Slot a,b
- $s_a + s_b \le \ell_i \implies x_a + x_b \ge \ell_i$
- Einheiten in den Deposits: (x_a+x_b)·6/B ≥ 6·ℓ_i/B
- Bezahlen von Compact(i): 3·ℓ_i/B
- Maximal $\mathbf{x'} = \ell_i/2$ freie Einträge in neuverschmolzenem Slot $\mathbf{a'}$, $\mathbf{x'} \cdot 6/\mathbf{B} = \mathbf{3} \cdot \ell_i/\mathbf{B}$ Einheiten für $\mathbf{D_{i,a'}}$.

I/O-Aufwand: Theorem (wieder)

Alle Operationen werden bezahlt, ohne Schulden zu machen.

→ Unsere amortisierten oberen Schranken waren korrekt.

Theorem.

Angenommen $N \le \alpha^{1/c-3}$, $0 < c < \frac{1}{3}$ und cM > 3B.

Amortisiert über N insert und/oder deleteMinimum Operationen, benötigt insert maximal 18L/B und deleteMinimum maximal 7/B I/O-Operationen.

Genauere Analyse:

Amortisiert über **N insert** und/oder **deleteMinimum** Operationen, benötigt **insert** maximal **4L/B** und **deleteMinimum** maximal **7/B** I/O-Operationen.

Theorem.

Ein externer Array-Heap mit n Elementen benötigt maximal 2n/B+L Blöcke und cM(3+L) internen Speicher.

Beweis. *Interner Speicher:* schon analysiert ✓ *Externer Speicher:*

Beobachtung

Ein Slot (auf Level i) mit s Elementen benötigt **nicht** $\lceil \ell_i / B \rceil$ Blöcke, sondern immer nur $\lceil s/B \rceil$ viele Blöcke.

- → Pro Slot ist nur maximal ein Block mit < B/2 Elementen gefüllt, alle anderen Blöcke sind vollständig gefüllt.
- Slots mit mind. halbgefülltem Endblock \rightarrow 2s/B Blöcke
- Slots mit mind. 2 Blöcken → 2s/B Blöcke
- Pro Level maximal ein Slot mit nur einem Block und < B/2 Elementen
 → insgesamt max. L Blöcke
- Summe über alle Slots: $\sum_{s} 2s/B + L = 2n/B + L$

Es muss gelten $N \le B \cdot \alpha^{1/c-3} = B \cdot (cM/B)^{1/c-3}$.

Beispiel 1

- $c = \frac{1}{7}$
- $M = \frac{1}{100}$ (1GB, 1 Integer = 32bit = 4Byte pro Dateneintrag)
- $B = \frac{1}{4} \cdot 10^6 \text{ (1MB)}$
- Wie viel Daten können in der externen PQ gespeichert werden?

```
N \le \frac{1}{4} \cdot 10^6 \cdot (10^3/7)^{7-3} = \frac{1}{4} \cdot 10^6 \cdot 10^{12}/7^4 \approx 10^{14}
```

... 100 Billionen Integer-Werte, ca. 400 TB

Beispiel 2

- Annahmen wie oben, aber $M = \frac{1}{4} \cdot 4 \cdot 10^9$ (4GB)
- $N \le \frac{1}{4} \cdot 10^6 \cdot (4 \cdot 10^3 / 7)^{7-3} = 4^3 \cdot 10^6 \cdot 10^{12} / 7^4 \approx 2,66 \cdot 10^{16}$

... 27 Billiarden Integer-Werte, ca. 100 PB (PetaByte)

Externer Array-Heap (verbessert)

Theorem

Angenommen $\mathbb{N} \leq \mathbf{B} \cdot \alpha^{(1-3c)\mathbf{M}/\mathbf{B}}$.

Amortisiert über **N** insert und/oder deleteMinimum Operationen, benötigt insert maximal $O(1/B \cdot log_{M/B}(N/B))$ und deleteMinimum maximal O(1/B) I/O-Operationen.

Experimente

Hardware [2001!]

- Sun UltraSPARC 1 / 143MHz
- 256 MB RAM
- 9 GB fast-wide SCSI HDD

Parameter

- M = 16 MB
- B = 32KB

Interne PQs

k-ary heap, radix heap

Externe PQs

buffer tree, array heap, radix heap

Externe Radix-Heaps

Benötigen bestimmte Voraussetzungen an Schlüssel und Operationsreihenfolge

→ Übung

All-Insert-All-Delete

Füge **N** zufällige Elemente in anfangs leere Queue ein, Lösche danach **N** mal das Minimum

Random & Dijkstra

Fülle PQ zunächst mit 50·10⁶ Elementen. Danach zufällig

 $\frac{1}{3}$: inserts

 $^{2}/_{3}$: deleteMins

PQ-Benutzung bei Berechnung von kürzesten Wegen

Externspeicher

Bisher: Cache-Aware Algorithmen

Die Algorithmen mussten M und B explizit kennen und benutzen

→ Beweise und Implementierung fummelig

Besser: Cache-Oblivious Algorithmen

Die Algorithmen müssen **M** und **B** nicht kennen und benutzen, funktionieren aber immer I/O-effizient

- → Nur mehr Beweise fummelig
- → Implementierung wie "normale" Algorithmen

Weitere Vorteile:

- flexibler einsetzbar, da nicht parameterabhängig
- Algo funktioniert nicht nur bzgl. einem Hierarchiewechsel (M/B-Paar) gut, sondern über alle Hierarchiestufen (L1,L2,L3-Caches, RAM, HDD) gleichzeitig!

... leider keine Zeit dafür... oder??