Linked lists

LL example

Data structures

Abstract dat types

Oueue:

Charles

Jeach.

Othic

Tree

122com Data structures and types

Coventry University

Overview

Arrays

Linked lists
Array example
LL example

structures

Abstract data types

Queues

Stacks

Sets

Other

Ouiz

- 1 Arrays
- 2 Linked lists
 - Array example
 - LL example
- 3 Data structures
- 4 Abstract data types
- 5 Queues
- 6 Stacks
- 7 Sets
- 8 Other
- 9 Trees
- 10 Quiz
- 11 Recap

Array example

structures

Abstract data types

Queues

Stacks

Othe

Tree

<u>. . . : -</u>

Recap

A series of objects all of the same size and type.

```
array<char,5> arr = {'A', 'B', 'C', 'D', 'E'};
```

- Stored in contiguous blocks of memory.
- Python lists are functionally closest.
 - But are not arrays.
- Can't be resized.

Linked lists

The challenger for array's crown.

- Series of nodes, each of which points to the next element.
 - And to the previous element if it's a doubly linked list.

Doubly linked
$$\leftarrow A \leftarrow B \leftarrow C \rightarrow D$$

$$| \rightarrow |$$
 \leftarrow

$$| \stackrel{\rightarrow}{\leftarrow} |$$

$$\stackrel{\leftarrow}{\rightarrow}$$

Linked lists II

Arrays

Linked lists Array example

Data structure

Abstract data types

Queues

. .

Stacks

Othe

Tree

~ ----

Coventry University

Not in contiguous memory.

- Each node is separate.
- Scattered.
- C++ Dynamic memory (pointers!).
 - Discussed in depth later in module.

- Why would we use linked lists instead of arrays?
 - Can change size.
 - Can quickly insert and delete elements.

```
class Node:
    __prev = None
    __next = None
    value = None
```

```
class Node
{
private:
    Node *prev;
    Node *next;

public:
    int value;
};
```


Linked lists II

Arrays Linked lists

Array example

Data structures

Abstract data

Queues

. .

Sets

Othe

Tree

Not in contiguous memory.

- Each node is separate.
- Scattered.
- C++ Dynamic memory (pointers!).
 - Discussed in depth later in module.

- Why would we use linked lists instead of arrays?
 - Can change size.
 - Can quickly insert and delete elements.

```
class Node:
   __prev = None
   __next = None
   value = None
```

```
class Node
{
private:
    Node *prev;
    Node *next;

public:
    int value;
};
```


Linked lists II

Arrays Linked lists

Array example

Data structure

Abstract data

Queues

Stacks

Othe

Tree

Q 0.1.2

Not in contiguous memory.

- Each node is separate.
- Scattered.
- C++ Dynamic memory (pointers!).
 - Discussed in depth later in module.

- Why would we use linked lists instead of arrays?
 - Can change size.
 - Can quickly insert and delete elements.

```
class Node:
   __prev = None
   __next = None
   value = None
```

```
class Node
{
private:
    Node *prev;
    Node *next;

public:
    int value;
};
```


Array

Linked lists
Array example

Data structures

Abstract da types

Queues

c. .

sets

Othe

Tree

Quiz

- Array in memory, multiple elements in a contiguous block.
- How do we remove elements from the middle?

Array

Linked lists

Array example

LL example

Data structures

Abstract da types

Queues

Stack:

Sets

Othe

Tree

Quiz

- Array in memory, multiple elements in a contiguous block.
- How do we remove elements from the middle?
 - Remove element from the array.

Array

Linked lists

Array example

LL example

Data structure

Abstract dat types

Queues

Juack.

Otne

Tree

D - ---

Coventry

- Array in memory, multiple elements in a contiguous block.
- How do we remove elements from the middle?
 - Remove element from the array.
 - Move next element to occupy the empty space.

Array

Array example

Data structure

Abstract data

Ouelles

...

Otne

Tree

Ouiz

- Array in memory, multiple elements in a contiguous block.
- How do we remove elements from the middle?
 - Remove element from the array.
 - Move next element to occupy the empty space.
 - Repeat.

Array

Array example

Data structure

Abstract data

Ouelles

. .

Sets

Othe

Tree

1100

- Array in memory, multiple elements in a contiguous block.
- How do we remove elements from the middle?
 - Remove element from the array.
 - Move next element to occupy the empty space.
 - Repeat.

Array:

Linked lists

Array example

LL example

Data structure

Abstract dat types

Oueue:

Ctack

C-4-

Otho

1166

Recar

Coventry University

- Array in memory, multiple elements in a contiguous block.
- How do we remove elements from the middle?
 - Remove element from the array.
 - Move next element to occupy the empty space.
 - Repeat.
- Is very slow with large arrays.

Array

Linked list

Array example

LL example

Abstract dat

types

Queue:

Stack

_ .

Othe

Tree

- Linked list, separate elements scattered in memory.
- Each pointing to the next/prev element.
- How do we remove elements?

Array

Linked list Array example LL example

Abstract dat

types

Queue:

Stack

...

Two o

1100

Pocar

- Linked list, separate elements scattered in memory.
- Each pointing to the next/prev element.
- How do we remove elements?
 - Change pointers.

Array

Linked list Array example LL example

Abstract dat

types

Queues

Stack

rree

- Linked list, separate elements scattered in memory.
- Each pointing to the next/prev element.
- How do we remove elements?
 - Change pointers.

Array

Linked list Array example LL example

Abstract dat

types

Queue

Stack

Sets

Othe

Troc

Ouiz

- Linked list, separate elements scattered in memory.
- Each pointing to the next/prev element.
- How do we remove elements?
 - Change pointers.
 - Delete old element.

Linked lists
Array example
LL example

Abstract dat

0.....

Queue

Stack

Sets

·

1166

Recar

Advantages

- Inserting and deleting elements is very fast.
 - **O**(1).
- No size limits, can keep adding new elements.
- Doesn't waste memory.

Disadvantages

- Not indexed.
 - Can't ask for the 20th element etc.
 - Have to step through the list (slow).
- Needs more memory than an array to store the same number of elements.
 - Have to keep track of where the next/prev nodes are.

Array example

Data structures

types

Oueue:

Stack

Sets

Othe

Tree

~ ----

Recap

Arrays and linked lists are data structures.

- A specific way of storing data.
- Can see how the various elements of the structure are laid out in memory.
- Direct access to the underlying memory.

Array

Linked lists Array example

structures

Abstract data types

Queue:

C4--1--

Oth

Ouiz

Recap

As we move to storing more complex information in our software we well start to encounter Abstract Data Types (ADTs).

■ Software engineering principal.

Array

Linked lists
Array example

structures

Abstract data types

Queue:

Stack

Othe

Two

Ouiz

Recap

- Software engineering principal.
- Keep what a data type can do...

Array

Linked lists
Array example

structures

Abstract data

Abstract dat types

Queue:

Stack

Jiacr

Tree

- Software engineering principal.
- Keep what a data type can do... ...and how it does it separate.

Array

Array example

structures

Abstract data types

Queues

~----

Stack

. . .

....

....

Recap

- Software engineering principal.
- Keep what a data type can do... ...and how it does it separate.
- Unlike data structure ADTs only concerned with the interface.

1

Array:

Array example

structures

Abstract data types

Queues

~----

Stack

Sets

Oth

Tree

Recar

- Software engineering principal.
- Keep what a data type can do... ...and how it does it separate.
- Unlike data structure ADTs only concerned with the interface.
- Internals of ADTs can vary widely between implementations.

Abstract data

Imagine an ADT like a car.

■ It has a set of supported operations, go faster, go slower, turn left, turn right.

Abstract data

Imagine an ADT like a car.

- It has a set of supported operations, go faster, go slower, turn left, turn right.
- Don't care how it achieves these.

Linked lists
Array example

structures

Abstract data

types

Queue:

Stack

Sets

Othe

Tree

Recap

Imagine an ADT like a car.

- It has a set of supported operations, go faster, go slower, turn left, turn right.
- Don't care how it achieves these.
- Don't care if, internally, it's using a combustion engine or an electric motor.

Linked lists
Array example

Abstract data

types

Queues

Stack

Sets

Othe

nee

Recap

Coventry University

Imagine an ADT like a car.

- It has a set of supported operations, go faster, go slower, turn left, turn right.
- Don't care how it achieves these.
- Don't care if, internally, it's using a combustion engine or an electric motor.
- Only care about the result.
- Keep people away from the internal workings/data.

Linked lists
Array example
LL example

Abstract data

Ougues

Queues

Stacks

Oth

Tree

Ouis

Recap

A First In First Out (FIFO) ADT.

- Ends of the queue called the front and back.
- New elements added to back of queue only.
 - Pushing push(value)
- Old elements removed from front of queue only.
 - Popping pop()
- No cutting in.

Linked lists
Array example
LL example

structures
Abstract data

types

Queues

Stacks

Sets

Othe

Tree

Quiz

Recap

A FIFO ADT.

- Ends of the queue called the front and back.
- New elements added to back of queue only.
 - Pushing push(value)
- Old elements removed from front of queue only.
 - Popping pop()
- No cutting in.
- Buffer to hold items for processing in the order in which they arrive.

Linked lists
Array example
LL example

structures
Abstract dat

types

Queues

Stacks

Sets

Othe

Tree

Docar

A FIFO ADT.

- Ends of the queue called the front and back.
- New elements added to back of queue only.
 - Pushing push(value)
- Old elements removed from front of queue only.
 - Popping pop()
- No cutting in.
- Buffer to hold items for processing in the order in which they arrive.
- Which would be better for a queue? An array or a linked list?

Queues

A FIFO ADT.

- Ends of the queue called the front and back.
- New elements added to back of queue only.
 - Pushing push(value)
- Old elements removed from front of gueue only.
 - Popping pop()
- No cutting in.
- Buffer to hold items for processing in the order in which they arrive.
- Which would be better for a queue? An array or a linked list?
 - Linked list.

Data structures

types

Queues

Stack

Sets

Othe

Tree

front \Rightarrow

- Very similar to stacks.
 - Keep track of next free space.
 - Limited size.

Linked lists
Array example

Data structur

Abstract data

Queues

Stack

Sets

Othe

Tree

Recan

- Very similar to stacks.
 - Keep track of next free space.
 - Limited size.

Linked lists

Data

Abstract data

Queues

Stacks

Sate

Othe

Troc

- Very similar to stacks.
 - Keep track of next free space.
 - Limited size.

Array:

Linked lists
Array example

Data structure

Abstract data

Queues

Stacks

Sets

Othe

Troo

Ouiz

- Very similar to stacks.
 - Keep track of next free space.
 - Limited size.

Array

Linked lists
Array example

Data structure

Abstract data

Queues

C+--l--

Otho

Troo

Ouiz

- Very similar to stacks.
 - Keep track of next free space.
 - Limited size.
- What happens when we pop()?
 - Have to shuffle every element forward one space.
 - Inefficient.

Array

Linked lists Array example

Data structure

Abstract data

Queues

Stack

Sets

Othe

Tree

Quiz

Coventry University

- $front \Rightarrow$ push(A) front $\Rightarrow \mid A$ 1 front \Rightarrow В push(B) push(C) front \Rightarrow В pop() В front \Rightarrow 1
- Very similar to stacks.
 - Keep track of next free space.
 - Limited size.
- What happens when we pop()?
 - Have to shuffle every element forward one space.
 - Inefficient.

Array

Linked lists
Array example

Data structure

Abstract data

Queues

Stacks

C-4-

Othe

Tree

Ouis

- Very similar to stacks.
 - Keep track of next free space.
 - Limited size.
- What happens when we pop()?
 - Have to shuffle every element forward one space.
 - Inefficient.

Array

Linked lists
Array example

Data structure

Abstract data types

Queues

Stacks

Coto

Othe

Tree

Quiz

- Very similar to stacks.
 - Keep track of next free space.
 - Limited size.
- What happens when we pop()?
 - Have to shuffle every element forward one space.
 - Inefficient.

Arrays

Linked lists

Data

Abstract data

A

Queue

Stacks

Arrays

Linked lists

LL example

structures

Abstract data

pop()

Queues

. .

Othor

Ouiz

Arrays

Linked lists

LL exampl

structures

pop()

Abstract data types

Queues

Stacks

_ .

Other

Troo

Quiz

Linked lists

LL exampl

structures

Abstract data types

Queues

Stacks

Otho

Recap

pop(), pop()

Array:

Linked lists

LL example

Data

Abstract data

pop(), pop()

-51---

Queue

Stack:

Sets

Othe

Tree

Quiz

Linked lists

LL exampl

Abatra et date

Abstract data types

Queues

Stack

. . .

Otne

11.00

Linked lists

LL example

structures

Abstract data types

Oueues

Stack

Juck.

. . .

Ouiz

Linked lists
Array example
LL example

structures
Abstract data

Abstract data types

Oueues

Stacks

Jeden.

Otha

_

Recap

A First In Last Out (FILO) ADT.

- Ends of the stack are called the top and bottom.
- New elements add to top of stack only.
 - Pushing push(value)
- Old elements removed from top of stack only.
 - Popping pop()
- No cutting in.

Linked lists
Array example
LL example

structures
Abstract dat

types

Queues

Stacks

Jeack

Sets

Othe

Tree

Dagan

Recap

A FILO ADT.

- Ends of the stack are called the top and bottom.
- New elements add to top of stack only.
 - Pushing push(value)
- Old elements removed from top of stack only.
 - Popping pop()
- No cutting in.
- Which would be better for a stack? An array or a linked list?

Linked lists
Array example
LL example

structures
Abstract data

types

Queues

Stacks

Stack

Sets

Oth

Tree

Dogge

Coventry University

A FILO ADT.

- Ends of the stack are called the top and bottom.
- New elements add to top of stack only.
 - Pushing push(value)
- Old elements removed from top of stack only.
 - Popping pop()
- No cutting in.
- Which would be better for a stack? An array or a linked list?
 - Doesn't matter performance wise.
 - Linked list if n is unknown.

Array as a stack.

Arrays

Linked lists
Array example

Data

Abstract dat

турсз

Queue

Stacks

Coto

Othe

Tree

- Arrays have a fixed size.
 - Can't hold more values than we have space for.

Linked lists Array example

Data structure

Abstract data

Queues

Stacks

Othe

Tree

- Keep track of position of the next free space in the array.
- Arrays have a fixed size.
 - Can't hold more values than we have space for.

Linked lists Array example

Data

Abstract data

Queues

.

Stacks

Othe

Ouiz

- Keep track of position of the next free space in the array.
- Arrays have a fixed size.
 - Can't hold more values than we have space for.

Array as a stack.

Array

Linked lists Array example

Data structure

Abstract data

Queues

Queue.

Stacks

5005

Otne

Tree

Quiz

- Keep track of position of the next free space in the array.
- Arrays have a fixed size.
 - Can't hold more values than we have space for.

Array as a stack.

1

Array

Linked lists Array example

Data structure

Abstract data

Queues

Queue.

Stacks

Otha

Tree

Ouiz

- Keep track of position of the next free space in the array.
- Arrays have a fixed size.
 - Can't hold more values than we have space for.

Array example

Data structure

Abstract dat types

Queue

Stack

Sets

Othe

Tree

Recar

- Items ordered by the set.
- You have no control over it.
- Sets contain unique elements.
 - Can't contain duplicates.
- Can add items to a set.
- Can remove items from a set.
- Can see if an item is in a set.
- Can't get the *n*th element.
 - It's unordered remember.

Linked lists
Array example

Data structure

Abstract data

Queue:

Stack

Sets

Othe

Tree

Recap

- Items ordered by the set.
- You have no control over it.
- Sets contain unique elements.
 - Can't contain duplicates.
- Can add items to a set.
- Can remove items from a set.
- Can see if an item is in a set.
- Can't get the *n*th element.
 - It's unordered remember.

add(A)

Linked lists
Array example

Data structures

Abstract data types

Queues

Stack

Sets

Othe

Tree

- An unordered ADT.
 - Items ordered by the set.
 - You have no control over it.
- Sets contain unique elements.
 - Can't contain duplicates.
- Can add items to a set.
- Can remove items from a set.
- Can see if an item is in a set.
- Can't get the n^{th} element.
 - It's unordered remember.

Linked lists
Array example

structures

Abstract dat types

Queues

Stack

Sets

Othe

Tree

- An unordered ADT.
 - Items ordered by the set.
 - You have no control over it.
- Sets contain unique elements.
 - Can't contain duplicates.
- Can add items to a set.
- Can remove items from a set.
- Can see if an item is in a set.
- Can't get the n^{th} element.
 - It's unordered remember.

Linked lists
Array example

Data structure

Abstract dat types

Queue:

Stack

Sets

Otne

Tree

- An unordered ADT.
 - Items ordered by the set.
 - You have no control over it.
- Sets contain unique elements.
 - Can't contain duplicates.
- Can add items to a set.
- Can remove items from a set.
- Can see if an item is in a set.
- Can't get the n^{th} element.
 - It's unordered remember.

Linked lists Array example

Data structure

Abstract data

Queue

. .

Stack

.

Other

Tree

Docar

Lots of other ADTs.

■ Different names in different languages.

- Lists.
- Circular lists.
- Associative arrays.
 - Dictionaries/Maps.
- Double-ended queues.
- Trees.
- Graphs.

Linked lists

LL example

structures

Abstract dat types

Queue

Stack:

. . .

Otnei

Trees

Linked lists
Array example

Data

Abstract data

Ougues

Charles

Jeack.

Otho

Trees

Quiz

Recap

Variation on linked lists.

- Made of nodes and relationships.
- Root node at top.
- Each node can have > o children.
- Binary search tree.
 - Very common type.
 - Ordered.
 - Max two children.
 - Binary searching.
 - Very good for sets.

Balance

Array

Linked lists Array example

Data structure:

Abstract data types

Queues

Stack

- .

Other

Trees

Q 0...

- Not required for all trees.
- Going to be talking about BSTs from here on.
- Unbalanced because more than a one node difference between the two halves.

Balance

Array

Linked lists Array example

Data structure

Abstract data

Oueues

Ctools

- .

Othe

Trees

Quiz

- Trees can be balanced or unbalanced.
- Not required for all trees.
- Going to be talking about BSTs from here on.
- Unbalanced because more than a one node difference between the two halves.
 - For the whole tree...

Linked lists Array example

Data structures

Abstract data

Queue

Stack

Soto

Othe

Trees

- Trees can be balanced or unbalanced.
- Not required for all trees.
- Going to be talking about BSTs from here on.
- Unbalanced because more than a one node difference between the two halves.
 - For the whole tree...
 - ...and one of the subtrees.

Balance

Array

Linked lists
Array example

Data structure

Abstract data

Oueue

Stack

Coto

Othe

Trees

....

- Trees can be balanced or unbalanced.
- Not required for all trees.
- Going to be talking about BSTs from here on.
- Unbalanced because more than a one node difference between the two halves.
 - For the whole tree...
 - ...and one of the subtrees.

Linked lists
Array example

Data structures

types

Queues

Stacke

sets

Othe

Trees

Quiz

Recap

Important that you keep your BSTs balanced.

Degenerate tree.

Arravs

Linked lists

Array example

Data structures

Abstract dat types

Queue:

Charles

Jeach

....

Othic

O. .:-

Recap

Quiz

Array example

structures

Abstract data

~ -----

Stacks

Soto

Othe

Tree

Quiz

Recap

Stacks and queues are examples of _____

- Data structures.
- Linked lists.
- Arrays.
- Abstract Data Types.

Array example

Data structure

Abstract data

0.....

.

Stacks

Sets

Othe

Tree

Quiz

Recap

Stacks and queues are examples of _____

- Data structures.
- Linked lists.
- Arrays.
- Abstract Data Types.

Linked lists
Array example
LL example

structures

Abstract dat types

Oueues

Stacks

Othe

Troo

Quiz

Recap

Coventry University One advantage of linked lists over arrays is that _____

- They use less memory.
- They don't waste memory.
- They can be used for queues.
- They are faster to search though.

Linked lists Array example

Data

Abstract dat

Onenes

- .

Stacks

Sets

Othe

Tree

Quiz

- They use less memory.
- They don't waste memory.
- They can be used for queues.
- They are faster to search though.

Linked lists

LL example

structures

Abstract data types

Ougues

Stack

5005

Othe

Tree

Quiz

Recap

Stacks are a ____ type.

- FIFO.
- FOFI.
- FILO.
- FIDO.

Linked lists

Array example

Data structure

Abstract data types

Queuc

Stack

Sets

Othor

Troo

Quiz

- FIFO.
- FOFI.
- FILO.
- FIDO.

Array example

Data structures

Abstract data

Ougues

queue

Stack

Cata

Othe

Tree

Quiz

- Contain duplicates.
- Be sequences, ie. lists, strings.
- Be out of order.
- Be removed.

Array example

Data structure

Abstract data

Ougues

Queue

Stack:

Quiz

- Contain duplicates.
- Be sequences, ie. lists, strings.
- Be out of order.
- Be removed.

Linked lists
Array example
LL example

Data structures

Abstract data

Ougues

Queues

Stacks

C-4-

Othe

Tree

Quiz

- Input and output.
- Attributes and methods.
- Implementation and interface.
- Code and software.

Arrays Linked lists Array example

Data structure

Abstract data

0.,,,,,,,

Queues

Stacks

Sets

Othe

Tree

Quiz

- Input and output.
- Attributes and methods.
- Implementation and interface.
- Code and software.

Why do I care?

Arrays

Array example

Data structure

Abstract dat types

Oueues

Queue

Stacl

Sets

Othe

Tree

Recap

Everyone

- Need to understand the structures before we can pick the right one.
- Different data structures have very different characteristics.
- Huge effect on efficiency of your code.
- If you pick the right ADT it can save you a lot of code.
 - E.g. why write code to check for duplicates? Use a set and they can't exist.
 - **E**.g. why write code to find the most recent addition to a list, use a stack.

Recap

Arrays

Linked list:
Array example

Abstract dat

Abstract dat types

Queue

Stacks

Other

Tree

- Arrays.
 - Advantages/disadvantages.
- Linked lists .
 - Advantages/disadvantages.
 - How to insert/delete.
- Difference between data structure and ADTs.
- Stack.
 - FILO.
 - Using an array as one.
 - Using a LL as one.

- Queue.
 - FIFO.
 - Using an array as one.
 - Using a LL as one.
- Sets.
 - No duplicates.
 - Unordered.
- Trees.
 - Balanced/unbalanced.

Array example

structures

Abstract data types

Queues

~----

Stack

O. 4. 1- -

. .

Recap

■ Complete the yellow Codio exercises for this week.

- Attempt the green Codio exercises for next week.
- If you have spare time attempt the red Codio exercises.
- If you are having issues come to the PSC.

https://gitlab.com/coventry-university/programming-support-lab/wikis/home

Linked lists

Data

Abstract data types

Queues

Stacks

Juck

...

Othlei

Quiz

