Дисципліна: "Програмування складних алгоритмів"

Лабораторна робота №2. Рекурсивні алгоритми.

Мета роботи:

Метою лабораторної роботи ϵ набуття практичних навичок з рекурсивними функціями.

Лабораторна робота №2. Рекурсивні алгоритми.

Методичні вказівки

Лабораторна робота спирається на знаннях отриманих при вивченні наступних питань лекції:

- Поняття рекурсії.
- Поняття прямої і непрямої рекурсії.

Завдання до лабораторної роботи:

Розробити програми згідно з алгоритмом з використанням рекурсивної функції та без використання рекурсивної функції. Оцінити час виконання та складність алгоритму.

Варіанти індивідуальних завдань

Група ТР-22:

1.	$y = \sum_{t=1}^{n} \frac{2t}{t^2 - \sin t}$	6.	$y = \prod_{t=1}^{n} \frac{2t+1}{t^2}$
2.	$y = \sum_{t=1}^{n} \frac{\ln t}{t^3}$	7.	$y = \prod_{t=2}^{n} \left(\frac{3t}{t-1} - t^2 \right)$
3.	$y = \sum_{t=2}^{n} t^2 (t-1)$	8.	$y = \prod_{t=2}^{n} \frac{\sqrt{t}}{t^2 - 1}$
4.	$y = \prod_{t=1}^{n} \frac{1}{(3t+1)^2}$	9.	$y = \sum_{t=1}^{n} \frac{\cos t \sqrt{1 - \cos^2 t}}{1 + \sin^2 t}$
5.	$y = \prod_{t=1}^{n} \sqrt{\frac{t}{1 + e^{-t}}}$	10.	$y = \sum_{t=1}^{n} \frac{\sin 2t}{1 + \cos t}$

11.
$$y = \prod_{t=1}^{n} \frac{2t}{e^{t} - t^{2}}$$
16.
$$y = \prod_{t=1}^{n} \frac{\sin t}{2t - 1}$$
12.
$$y = \sum_{t=1}^{n} \frac{t^{2} - 2}{e^{t}}$$
17.
$$y = \prod_{t=2}^{n} \frac{3t - 3}{3t}$$
18.
$$y = \prod_{t=2}^{n} \frac{\sin 2t}{t^{2} + 1}$$
19.
$$y = \sum_{t=1}^{n} \frac{\sin 2t}{t^{2} + 1}$$
15.
$$y = \prod_{t=1}^{n} \sqrt{\frac{1}{t + 2\sin t}}$$
20.
$$y = \sum_{t=1}^{n} \frac{3t^{2}}{e^{t} - e^{-t}}$$

21.
$$y = \sum_{t=2}^{n} \frac{\sin^{2} t}{t^{3} - 1}$$
 26. $y = \prod_{t=1}^{n} 2 \sin 2t$
22. $y = \sum_{t=1}^{n} \frac{3t - 2}{2t + 1}$ 27. $y = \prod_{t=2}^{n} \frac{\sin t}{t^{2} - 1}$
23. $y = \sum_{t=1}^{n} \frac{t + 1}{t^{2} + 1}$ 28. $y = \prod_{t=1}^{n} \frac{\cos t}{2t + t^{3}}$
24. $y = \prod_{t=1}^{n} \frac{\sin^{2} t}{t}$ 29. $y = \sum_{t=1}^{n} \frac{1}{2 \sin(e^{t} - 1)}$
25. $y = \prod_{t=1}^{n} \frac{t - 1}{3t + 1}$ 30. $y = \prod_{t=1}^{n} \frac{1}{3t^{2}}$

Лабораторна робота №2. Рекурсивні алгоритми.

```
Приклад. Числа Фібоначі
                                                 F(n) = F(n-1) + F(n-2), де F(0)=1, F(1)=1.
                #include <iostream>
                                                                    Console Shell
                int fibonacci(int number)
                                                                     clang++-7 -pthread -std=c++17 -o main Q X
                                                                     ./main
                     if (number == 0)
                                                                     0 1 1 2 3 🕻
                     return 0;
                          else if (number == 1)
                          return 1;
                return fibonacci(number-1) + fibonacci(number-2);
               int main()
                for (int count=0; count < 5; ++count)
                std:: cout << fibonacci(count) << " ";
                return 0;}
```

Лабораторна робота №2. Рекурсивні алгоритми.

