SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVOD ZA PRIMIJENJENU MATEMATIKU

MATEMATIČKA ANALIZA 2

Zadaci za vježbu

Zagreb, 2003.

Sadržaj

1	Funkcije više varijabli	3
2	Diferencijalni račun funkcija više varijabli	4
3	Dvostruki integrali	8
4	Trostruki integrali	11
5	Vektorska analiza	14
6	Krivuljni i plošni integrali	15
7	Diferencijalne jednadžbe	17
8	Rješenja 8.1 Funkcije više varijabli	22 24 25 26 27
9	Kontrolne zadaće iz 2002. godine	29
10	Rješenja kontrolnih zadaća iz 2002. godine	32
11	Pismeni ispiti iz 2002. godine	34
12	Rješenja pismenih ispita iz 2002. godine	44
A	Tablica derivacija	50
В	Tablica neodređenih integrala	50

Funkcije više varijabli 1

- Odrediti i skicirati područje definicije (domenu) slijedećih funkcija:
- a) $f(x,y) = \sqrt{1-x^2} + \sqrt{1-y^2}$ b) $f(x,y) = \sqrt{1-x^2-y^2} \cdot \sqrt{4-x^2-y^2}$
- c) $f(x,y) = \sqrt{(1-x^2-y^2)(4-x^2-y^2)}$
- **d)** $f(x,y) = \sqrt{y^2 x^2 1}$
- e) $f(x,y) = \sqrt{x-y} + \sqrt{y^2 1}$
- f) $f(x,y) = \sqrt{x^2y + 4xy + y^3}$
- g) $f(x,y) = \ln(x^2 + y^2 + 4x + 5)$
- **h)** $f(x,y) = \ln(x \ln(y-x))$
- i) $f(x,y) = \operatorname{arth}\left(\frac{y}{x}\right)$
- 2. Skicirati slijedeće plohe u prostoru:
- a) $y = 2 \sqrt{4 x^2 z^2}$
- **b)** $z = \sqrt{2 y}$
- c) $x = \sqrt{2y y^2}$
- d) $z = 2 \sqrt{x^2 + 4y^2}$
- e) $y = 4 \sqrt{x^2 + z^2 + 10}$
- f) $x^2 + y^2 z^2 = 2y$
- g) $z = x^2 + y^2 + 4y + 5$
- **h**) $z = y^2 x^2 2y + 2x$ **i**) $z = e^{-x^2 y^2}$
- 3. Naći jednadžbu plohe koja nastaje vrtnjom krivulje
- a) $z = \sqrt{y^4 + 1}$ oko osi "z";
- **b)** $z = \cos^2(2y)$ oko osi "z";
- c) $x = y^6 + 1$ oko osi "x";
- d) $z = \ln y$, $y \le 2$ oko pravca y = 2.
- 4. Naći jednadžbu rotacijske stožaste plohe prema slici:

b)

5. Naći jednadžbu stožaste plohe prema slici:

2 Diferencijalni račun funkcija više varijabli

- 1. Zadane su funkcije $f(x) = (\sqrt{x})^x$, $g(x) = (\ln x)^{x^2}$, $h(x) = x^{\sqrt{x^3}}$. Koristeći pravilo za deriviranje složene funkcije izračunati prve i druge derivacije tih funkcija.
- **2.** Zadana je funkcija $f(x,y) = (x^3 + y^3)^{xy}$. Koristeći pravilo za deriviranje složene funkcije izračunati parcijalne derivacije prvog i drugog reda funkcije f.
- 3. Zadane su funkcije:
- a) $z = e^{x^2 + xy + y^2}$;
- **b)** $z = \frac{x+y}{\sqrt[3]{x^2-y^2}}$.

Naći dz.

- **4.** Zadana je funkcija $z = \operatorname{arctg}\left(\frac{x}{y}\right)$ i točka T(2,1). Naći $(dz)_T$ i $(d^2z)_T$.
- 5. Zadana je funkcija $u=2x^3-3x^2y+2xy^2-y^3+z^2$ i točka T(0,1,2). Naći $(du)_T$ i $(d^2u)_T$.
- **6.** Naći $\frac{du}{dx}$ ako je u = f(x, y, z), gdje je y = g(x), $z = \varphi(x, y)$.
- 7. Pokazati da funkcija $z=y\varphi(x^2-y^2)$ zadovoljava jednadžbu

$$\frac{1}{x}\frac{\partial z}{\partial x} + \frac{1}{y}\frac{\partial z}{\partial y} = \frac{z}{y^2}.$$

8. Pokazati da funkcija $z = xf\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$ zadovoljava jednadžbu

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = 0.$$

2 Diferencijalni račun funkcija više varijabli

5

9. Dokazati da jednadžba

$$-\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial t^2} = 2\frac{\partial v}{\partial t}$$

zamjenom $v = ue^t$ prelazi u

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = u.$$

10. Dokazati da izraz

$$w = x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$$

zamjenom $x = r \cos \varphi$, $y = r \sin \varphi$ prelazi u

$$w = r^2 \frac{\partial^2 u}{\partial r^2}.$$

11. Transformirati na nove nezavisne varijable u i v jednadžbu

$$y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = 0,$$

ako je $u = x, v = x^2 + y^2$.

12. Transformirati na nove nezavisne varijable u i v jednadžbu

$$x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = 0,$$

ako je u = xy, $v = \frac{x}{y}$.

13. Funkcija z = z(x, y) zadana je implicitno jednadžbom

$$x^3 + 2y^3 + z^3 - 3xyz - 3y + 7 = 0.$$

Naći d^2z u točki T(1,0,-2).

14. Funkcije u = u(x, y) i v = v(x, y) zadane su implicitno jednadžbama

$$xe^{u+v} + 2uv = 1,$$

$$ye^{u-v} - \frac{u}{1+v} = 2x.$$

Znajući da je u(1,2) = v(1,2) = 0, naći $(du)_{(1,2)}$ i $(dv)_{(1,2)}$.

15. Funkcija z=z(x,y) zadana je parametarski jednadžbama

$$x = u + v,$$

$$y = \ln u + 2v,$$

$$z = uv$$

Naći dz i d^2z u točki za koju je u=1 i v=2.

- 16. Naći jednadžbu tangencijalne ravnine i normale na plohu:
- a) $z = (x^2 + y^2)^2$ u točki $T(2, 1, z_T)$;
- **b)** $x^2 + 3y^2 + 4z^2 = 12$ u točki $T(\sqrt{2}, \sqrt{2}, 1)$;
- **c**)

$$\begin{array}{rcl}
x & = & ue^v \\
y & = & 2u + v
\end{array}$$

u točki T(u=1, v=0).

- 17. Pod kojim kutom se sijeku plohe $x^2+y^2=1$ i $x^2+y^2+z^2=2x$ u točki $M\left(\frac{1}{2},\frac{\sqrt{3}}{2},0\right)$?
- 18. U kojim točkama elipsoida

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1$$

normala na elipsoid tvori jednake kutove s koordinatnim osima?

- 19. Naći jednadžbe tangencijalnih ravnina na plohu $x^2 + xy + y^2 + z^2 = 1$ koje sadrže točke (0,0,2) i (1,1,2).
- **20.** Tangencijalna ravnina na plohu $x^2 y^2 z^2 + 2x = 0$ odsijeca na pozitivnoj osi ordinata odsječak duljine 2, a na negativnoj osi aplikata odsječak duljine 3. Kolika je duljina odsječka te tangencijalne ravnine na osi apscisa?
- **21.** Naći sve točke na plohi $z = xy \ln(x^2 + xy + y^2)$ u kojima je normala na tu plohu paralelna osi "z".
- **22.** Dokazati da tangencijalne ravnine plohe $\sqrt{x} + \sqrt{y} + \sqrt{z} = a$ odsijecaju na koordinatnim osima odsječke čiji je zbroj duljina konstantan. Koliko on iznosi?
- **23.** Dokazati da normala u proizvoljnoj točki rotacijske plohe $z=f(\sqrt{x^2+y^2})$ siječe os rotacije.
- **24.** Prikazati $f(x,y) = -x^2 + 2xy + 3y^2 6x 2y 4$ kao polinom po potencijama binoma (x+2) i (y-1).
- **25.** Naći treći Taylorov polinom u razvoju funkcije $f(x,y) = e^x \sin y$ u okolini točke T(0,0).
- 26. Naći drugi Taylorov polinom u razvoju funkcije
- a) $f(x,y) = y^x$ u okolini točke T(1,1);

- **b)** $f(x, y, z) = z \arctan\left(\frac{x}{y}\right)$ u okolini točke T(1, -1, 1);
- c) z = z(x, y) zadane implicitno jednadžbom $xz + y + z^3 = 2$ u okolini točke T(0, 1, 1);
- d) z = z(x, y) zadane implicitno jednadžbom $x^2yz^2 = 2$ u okolini točke T(1, 2, 1);
- e) z = z(x, y) zadane parametarskim jednadžbama

$$x = u + v$$

$$y = e^{u} + v$$

$$z = u^{2}v$$

u okolini točke T(u=1, v=0).

- 27. Naći i ispitati lokalne ekstreme funkcije:
- a) $f(x,y) = 4xy + \frac{1}{x} + \frac{1}{y}$
- **b)** $f(x,y) = 2x^3 + y^2 + 6x^2y 2y$
- c) $f(x,y) = 3\ln\left(\frac{x}{6}\right) + 2\ln y + \ln(12 x y)$ d) $f(x,y) = e^{x-y}(x^2 2y^2)$ e) $f(x,y,z) = \frac{x}{2} + \frac{2}{y} + \frac{z^2}{2x} + \frac{y^2}{z}$

- 28. Naći i ispitati lokalne ekstreme funkcije
- a) f(x,y) = x + 2y uz uvjet $x^2 + y^2 = 5$;
- **b)** f(x,y) = 3x xy uz uvjet $x^2 + (y-3)^2 = 1$;
- c) $f(x,y) = x^3 + 3y^3$ uz uvjet $x^2 y^2 = 2$;
- d) f(x, y, z) = x 2y + 2z uz uvjet $x^2 + y^2 + z^2 = 1$;
- e) $f(x, y, z) = x^2 + y^2 + z^2$ uz uvjet $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, a > b > c > 0; f) $f(x, y, z) = x^2 + y^2 + z^2 + 2xy + 2yz + xz$ uz uvjet x + 2y + 3z = 1;
- g) f(x, y, z) = xyz uz uvjete x + y + z = 5 i xy + yz + zx = 8.
- 29. Od svih pravokutnih paralelepipeda zadanog volumena V naći onaj kojemu je oplošje najmanje.
- 30. Naći trokut zadanog opsega koji pri rotaciji oko jedne svoje stranice tvori tijelo najvećeg volumena.
- Zadan je tetraedar OABC s vrhovima O(0,0,0), A(a,0,0), B(0,b,0) i C(0,0,c). 31. U taj tetraedar upisan je kvadar maksimalnog volumena (jedan vrh je u točki O(0,0,0)). Koliko iznosi taj volumen?
- Zadane su točke A(0,0,1) i B(0,0,2). Naći sve točke C u ravnini XOY za koje je $\angle ACB$ maksimalan.
- U lik omeđen parabolom $y = 4 x^2$ i osi "x" upisati lik kao na slici tako da mu površina bude maksimalna. Koliko iznosi ta površina?

U tijelo omeđeno plohama $z=x^2+4y^2$ i z=1 upisan je kvadar čije su plohe paralelne koordinatnim ravninama i čiji je volumen maksimalan. Koliko iznosi taj volumen?

 U tijelo omeđeno plohama $y=1-x^2,\;\;z=y\;\;$ i $\;z=0$ upisan je kvadar čije su plohe paralelne koordinatnim ravninama i čiji je volumen maksimalan. Koliko iznosi taj volumen?

36. U elipsoid $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$ upisan je tetraedar s vrhovima A(1,0,0), B(0,-2,0), C(0,0,3), dok četvrti vrh D treba odabrati tako da volumen tetraedra bude maksimalan. Koliko iznosi taj volumen?

Naći točku na plohi z = xy - 1 najbližu ishodištu.

Odrediti poluosi elipse $5x^2 + 8xy + 5y^2 = 9$. 38.

3 Dvostruki integrali

Izračunati slijedeće dvostruke integrale, pri čemu je područje integracije (P) zadano slikom:

a)
$$\iint_{(P)} (x^4 + x^2y^2 + y^4) dx dy;$$
 b) $\iint_{(P)} x^3ye^{xy} dx dy.$

$$b) \iint_{(P)} x^3 y e^{xy} \, dx \, dy$$

3 DVOSTRUKI INTEGRALI

9

2. Promijeniti poredak integracije u integralu

a)

$$\int_{-1}^{1} dx \int_{3-x^2}^{9-x^2} f(x, y) \, dy;$$

b)

$$\int_{1}^{2} dy \int_{\ln y}^{y} f(x, y) \, dx.$$

3. Promjenom poretka integracije izračunati integral

a)

$$\int_{0}^{1} x^{5} dx \int_{x^{2}}^{1} e^{y^{2}} dy;$$

b)

$$\int_{1}^{2} x \, dx \int_{1}^{x} \sqrt{x^2 - y^2} \, dy.$$

4. Neka je (P) četverokut s vrhovima A(2,0), B(0,1), C(-2,0) i D(0,1). Postaviti granice integracije u integralu $\iint_{(P)} f(x,y) dx dy$, te izračunati integral za

- **a)** $f(x,y) = e^{x+y};$
- **b)** $f(x,y) = x + y^2;$
- c) $f(x,y) = (x+1)^2$;
- $\mathbf{d)} \quad f(x,y) = y.$

5. Neka je (P) lik omeđen krivuljama $y=x^2$ i y=1.

- a) Izračunati površinu lika (P).
- b) Izračunati $\iint_{(P)} (x+1)y^2 dx dy$.

6. Izračunati površinu lika omeđenog krivuljama $y=\frac{x^2}{4}$ i $y=\frac{8}{x^2+4}$. Nacrtati sliku!

7. Izračunati $\iint_{(P)} e^{-|x|-|y|} dx dy$, pri čemu je $P = \{(x,y) \in \mathbf{R}^2 : y > |x|-1\}$.

8. Izračunati volumen tijela omeđenog plohama $x^2+y^2=1\,$ i $\,x^2+z^2=1.\,$ Nacrtati sliku!

9. Izračunati volumen tijela određenog nejednadžbama $y \geq x^2, \ z \leq 1, \ z \leq 4-2y$ i $z \geq 0$. Nacrtati sliku!

10. Izračunati $\iint_{(P)} \ln(x^2 + y^2) dx dy$, pri čemu je (P) kružni vijenac $e^2 \le x^2 + y^2 \le e^4$.

- Izračunati $\iint_{(P)} \sqrt{1-x^2-y^2} \, dx \, dy$, pri čemu je (P) kružni isječak određen nejednadžbama $x^2 + y^2 \le 1$, $y \ge x$, $y \le \sqrt{3}x$, $y \ge 0$.
- 12. Izračunati površinu lika određenog nejednadžbama
- b) $r \le |\sin(2\varphi)|$ i $r^2 \le \frac{3}{2}\cos(2\varphi)$; c) $(x^2 + y^2)^2 \le 8x^3$ i $x^2 + y^2 \le 1$.
- 13. Izračunati površinu lika omeđenog krivuljom

$$\left(\frac{x^2}{a} + \frac{y^2}{b}\right)^2 = \frac{xy}{c}, \quad a, b, c > 0.$$

14. Izračunati

$$\iint_{(P)} \frac{dx \, dy}{\sqrt{x^2 + y^2}},$$

pri čemu je (P) lik određen nejednadžbama $(x^2+y^2)^2 \leq \sqrt{3}x^3$ i $(x^2+y^2)^2 \leq 9y^3$.

15. Prijelazom na polarne koordinate izračunati

a)

$$\int_{-\sqrt{3}}^{\sqrt{3}} dx \int_{3}^{2+\sqrt{4-x^2}} \frac{dy}{(x^2+y^2)^{\frac{3}{2}}};$$

b)

$$\int_{0}^{\frac{\sqrt{3}}{2}} dx \int_{1-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \sqrt{x^2 + y^2} \, dy;$$

 \mathbf{c}

$$\int_{0}^{1} dx \int_{1}^{\sqrt{4-x^2}} \frac{dy}{(x^2+y^2)^{\frac{5}{2}}}.$$

- **16.** Izračunati površinu lika određenog nejednadžbama $1 \le 3(x-2)^2 + (y-3)^2 \le 3$ i $\frac{x-2}{\sqrt{3}} \le y - 3 \le x - 2.$
- 17. Prijelazom na poopćene polarne koordinate izračunati

$$\int_{0}^{\sqrt{3}} dx \int_{\frac{1}{2}}^{\sqrt{1-\frac{x^{2}}{4}}} \frac{dy}{\left(\frac{x^{2}}{4}+y^{2}\right)^{\frac{3}{2}}}.$$

11

18. Izračunati $\iint_{(P)} (x+y)^3 (x-y)^2 dx dy$, pri čemu je (P) kvadrat omeđen pravcima x+y=1. x+y=3, x-y=-1 i x-y=1.

Naputak: Uvesti nove varijable u = x + y, v = x - y.

19. Izračunati $\iint_{(P)} (x^2 + y^2) dx dy$, pri čemu je (P) lik u prvom kvadrantu omeđen krivuljama $x^2 - y^2 = 1$, $x^2 - y^2 = 4$, xy = 1 i xy = 3.

Naputak: Uvesti nove varijable $u = x^2 - y^2$, v = xy.

20. Izračunati

$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x+y)^2 - 3y^2} \, dx \, dy.$$

Naputak: Uvesti nove varijable u = x + y, v = y, te potom prijeći na polarne koordinate.

21. Izračunati

$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(ax+by)^2} dx dy, \quad a, b > 0.$$

Naputak: Uvesti nove varijable u = ax + by, $v = \frac{y}{x}$.

- **22.** Izračunati masu kružne ploče polumjera R, ako je njena gustoća proporcionalna udaljenosti točke do središta, a na rubu ploče jednaka je δ .
- 23. Naći koordinate težišta homogenog lika omeđenog
- a) krivuljom $r = a(1 + \cos \varphi);$
- **b)** krivuljama $y^2 = 4x + 4$ i $y^2 = -2x + 4$.
- **24.** Izračunati moment tromosti homogenog kružnog vijenca s polumjerima $R_1,\ R_2$ $(R_1 < R_2)$
- a) s obzirom na promjer prstena;
- b) s obzirom na središte prstena.

4 Trostruki integrali

1. Izračunati

$$\iiint\limits_{(V)} e^{-x-y-z} \, dx \, dy \, dz,$$

pri čemu je (V) tetraedar s vrhovima $A(0,0,0),\,B(1,0,2),\,C(0,1,2),\,D(0,0,2).$

2. Izračunati

$$\iiint\limits_{(V)} \frac{dx\,dy\,dz}{y+1},$$

pri čemu je (V) tetraedar s vrhovima $A(0,0,0),\,B(1,0,0),\,C(0,2,0),\,D(0,0,4).$

Postaviti granice integracije u integralu

$$\iiint\limits_{(V)} f(x, y, z) \, dx \, dy \, dz,$$

ako je (V) piramida s vrhovima

- a) A(0,0,0), B(2,0,0), C(0,3,0), D(0,0,6);
- **b)** A(0,0,1), B(3,0,1), C(2,2,1), D(0,3,1), E(0,0,2);
- c) A(0,0,0), B(2,0,0), C(0,2,0), D(2,2,0), E(1,1,1);
- **d)** A(1,1,0), B(0,0,2), C(2,0,2), D(0,2,2), E(2,2,2).
- (V) je tijelo određeno nejednadžbama $y \ge x^2, \ z \le 3 y, \ z \ge y.$
- a) Izračunati

$$\iiint\limits_{(V)} z \, dV.$$

- b) Izračunati volumen tijela (V).
- Izračunati

$$\iiint\limits_{(V)} z\,dV,$$

pri čemu je (V) tijelo omeđeno plohama

- a) $z = 5 x^2 y^2$ i z = 1; b) $z = e^{x^2 + y^2}$ i z = 2.
- Izračunati volumen tijela omeđenog plohama $z=\sqrt{x^2+y^2+7}\,\,$ i z=4.
- Izračunati 7.

$$\iiint\limits_{(V)} x^2 z \, dV,$$

pri čemu je (V)dio tijela omeđenog plohama $z=4-3x^2-y^2\;$ i $\;z=1$ koji se nalazi u prvom oktantu, između ravnina y = x i $y = \sqrt{3}x$

Izračunati

$$\iiint\limits_{(V)} yz\,dV,$$

pri čemu je (V) tijelo omeđeno plohama $z=x^2+(y-1)^2\;\;{\rm i}\;\;z=4.$

- Izračunati volumen tijela omeđenog plohama $z = 1 x^2 y^2$ i y + z = 1.
- 10. Izračunati volumen tijela određenog nejednadžbama $x^2 + y^2 \le 1, z \ge 0$ i $z \le 2y + 1$.
- Izračunati 11.

$$\iiint\limits_{(V)} \frac{dV}{z^3},$$

13

pri čemu je (V) tijelo određeno nejednadžbama $z \geq x^2 + 3y^2, z \leq 2$ i $x \geq 1$.

12. Izračunati

$$\iiint\limits_{(V)} z^2 \, dV,$$

pri čemu je (V) tijelo omeđeno plohama $x=3-\sqrt{y^2+z^2},\,x=1\,$ i $\,x=2.$

13. Izračunati volumen tijela omeđenog plohama $z = \frac{1}{2}(x^2 + y^2)$ i $z = 4 - \sqrt{x^2 + y^2}$.

14. Izračunati

$$\iiint\limits_{(V)} \sqrt{x^2 + y^2 + z^2} \, dV,$$

pri čemu je (V) tijelo određeno nejednadžbom $x^2 + y^2 + z^2 \le x$.

15. Prijelazom na sferne koordinate izračunati

$$\iiint\limits_{(V)} (x^2 + y^2 + z^2)^{-\frac{5}{2}} dV,$$

pri čemu je (V) tijelo određeno nejednadžbama $x^2+y^2+z^2\geq z,\ x^2+y^2+z^2\leq 2z$ i $z\geq \sqrt{3(x^2+y^2)}.$

16. U integralu

$$\int_{-\sqrt{3}}^{\sqrt{3}} dx \int_{-\sqrt{3-x^2}}^{\sqrt{3-x^2}} dy \int_{1}^{\sqrt{4-x^2-y^2}} f(x,y,z) dz$$

izvršiti prijelaz na 1) cilindrične koordinate; 2) sferne koordinate, te izračunati integral ako je

- a) $f(x, y, z) = z^3$;
- **b)** $f(x, y, z) = (x^2 + y^2 + z^2)^{-\frac{5}{2}}$.
- 17. Izračunati

$$\iiint\limits_{(V)} z^2 \, dV,$$

pri čemu je (V) tijelo određeno nejednadžbom $(x-1)^2+4(y+1)^2+(z-5)^2\leq 4.$

- 18. Izračunati moment tromosti homogenog 1 pravokutnog paralelepipeda sa stranicama duljina $a,\,b$ i cs obzirom na
- a) jedan vrh;
- \mathbf{b}) stranicu duljine a.

 $^{^{1}\}gamma(x,y,z)=1$

- 19. Naći težište homogenog tijela određenog nejednadžbama
- a) $x^2 + y^2 + z^2 \le 2z$ i $x^2 + y^2 \le z^2$;
- **b**) $y^2 + 4z^2 \le 4x$ i $x \le 2$.
- **20.** Naći težište kocke $0 \le x, y, z \le a$, ako je $\gamma(x, y, z) = x + y + z$.

5 Vektorska analiza

- 1. Zadano je skalarno polje $f(x,y,z)=3x^2y+y^2z^3$, te vektor $\vec{s}=\vec{\imath}+\vec{\jmath}+2\vec{k}$. Izračunati:
 - a) grad f; b) $\frac{\partial f}{\partial \vec{s}}$; c) Δf .
- **2.** Zadano je vektorsko polje $\vec{v}(x,y,z)=x^2\vec{\imath}+y^2\vec{\jmath}+xyz\vec{k}$, te vektor $\vec{s}=\vec{\imath}+\vec{\jmath}+2\vec{k}$. Izračunati:
 - **a)** div \vec{v} ; **b)** rot \vec{v} ; **c)** $\frac{\partial \vec{v}}{\partial \vec{s}}$; **d)** $\Delta \vec{v}$.

Neka je \vec{a} konstantan vektor, \vec{r} radijvektor točke u prostoru, te r njegov modul.

- 3. Zadano je vektorsko polje $\vec{v}=\mathrm{grad}[(\vec{a}\cdot\vec{r})r^2]$. Izračunati $\frac{\partial\vec{v}}{\partial\vec{a}}$.
- 4. Zadano je vektorsko polje $\vec{v} = \nabla (r^3 + 3r^2)$, te vektor $\vec{s} = 2\vec{\imath} + \vec{\jmath} 2\vec{k}$. Izračunati

$$\left(\frac{\partial \vec{v}}{\partial \vec{s}}\right)_{T(0,1,0)}.$$

- **5.** Zadano je skalarno polje $v = \Delta(r^3 + 3r)$, te vektor $\vec{s} = 2\vec{\imath} + \vec{\jmath} 2\vec{k}$. Izračunati $\frac{\partial v}{\partial \vec{s}}$.
- 6. Izračunati

$$\operatorname{div}\left(\frac{\vec{a}\times\vec{r}}{\vec{a}\cdot\vec{r}}\right).$$

- 7. Izračunati $\nabla [f(r)\vec{r} \times (\vec{a} \times \vec{r})]$.
- 8. Izračunati $\nabla \{ \nabla [(\vec{r} \cdot \vec{a}) (\vec{a} \times (\vec{r} \times \vec{a}))] \}$.
- 9. Izračunati rot $\{\operatorname{rot}[(\vec{a}\cdot\vec{r})(\vec{a}\times\vec{r})]\}.$
- 10. Izračunati

$$\Delta\left(\frac{\vec{a}\cdot\vec{r}}{r^3}\right).$$

11. Izračunati $\Delta[\vec{r} \times (\vec{a} \times \vec{r})]$.

12. Zadano je vektorsko polje $\vec{v} = \operatorname{grad}(r^2 \ln r)$. Izračunati

$$\left(\frac{\partial \vec{v}}{\partial \vec{k}}\right)_{T(\sqrt{3},0,1)}.$$

- 13. Izračunati $\Delta[(\vec{a} \times \vec{r})r^2]$.
- 14. Zadano je vektorsko polje $\vec{v} = \nabla(r^3 + 3r)$, te vektor $\vec{s} = \vec{i} \vec{j} + \vec{k}$. Izračunati

$$\left(\frac{\partial \vec{v}}{\partial \vec{s}}\right)_{T(1,2,2)}.$$

- **15.** Izračunati $\Delta[(\vec{a} \cdot \vec{r})\vec{r}]$.
- **16.** Zadano je vektorsko polje $\vec{v} = \text{rot}[(\vec{a} \times \vec{r}) \cdot r^2]$. Izračunati $\frac{\partial \vec{v}}{\partial \vec{a}}$.
- 17. Izračunati $\nabla \{ \nabla [f(r)\vec{r} \times (\vec{a} \times \vec{r})] \}$.
- 18. Izračunati $\Delta\{[(\vec{a}\cdot\vec{r})+r^2]\vec{r}\}.$
- 19. Izračunati $rot[rot(r^2\vec{a})]$.

6 Krivuljni i plošni integrali

1. Izračunati

$$\int\limits_{\Gamma} xy\,ds,$$

pri čemu je Γ dio presječnice ploha $x^2+y^2=4$ i z=y koji se nalazi u prvom oktantu $(x,y,z\geq 0)$. Nacrtati sliku!

- 2. Izračunati duljinu krivulje C, zadane kao dio presječnice ploha $y=x^2\,$ i $y+z=3\,$ koji se nalazi u prvom oktantu. Nacrtati sliku!
- 3. Izračunati

$$\int_{\overrightarrow{AB}} \frac{x^2 dx + y^2 dy + z^2 dz}{x^2 + y^2 + z^2 + 4},$$

pri čemu je \overrightarrow{AB} usmjerena dužina od A(0,1,1) do B(1,2,3).

4. Izračunati

$$\int_{\Gamma} x \, ds,$$

16

pri čemu je Γ dio presječnice ploha $y=x^2\;$ i $\;y+z=3\;$ koji se nalazi u prvom oktantu.

5. Izračunati

$$\int_{\widehat{AC}} yz \, dx + (x+z) \, dy + xy \, dz,$$

pri čemu je \widehat{AB} dio krivulje

$$\begin{cases} 3y^2 + z^2 = 4 \\ x = 0 \end{cases},$$

dok je \overrightarrow{BC} usmjerena dužina (vidi sliku!).

6. Izračunati

$$\int_{\Gamma} x \, ds,$$

pri čemu je Γ dio krivulje $(x^2+y^2)^2=x^2-y^2$ koji se nalazi u prvom kvadrantu. Nacrtati krivulju $\Gamma!$

Naputak: Prijeći na polarne koordinate.

7. Neka je \vec{a} konstantan vektor, te \vec{r} radij
vektor točke u prostoru. Ispitati je li krivuljni integral

$$\int_{C} \cot[(\vec{a} \cdot \vec{r})(\vec{a} \times \vec{r})] \cdot d\vec{s},$$

pri čemu je $d\vec{s} = dx\,\vec{\imath} + dy\,\vec{\jmath} + dz\,\vec{k}$, neovisan o putu integracije.

8. Izračunati

$$\iint_{S} (x+y+z) \, dS,$$

pri čemu je Sdio plohe $x^2+y^2=1$ koji se nalazi između ravnina z=0 i z=2.

9. Izračunati

$$\iint_{S} z^2 \, dS,$$

pri čemu je S sfera $x^2 + y^2 + (z - 2)^2 = 1$.

- 10. Izračunati površinu dijela plohe $x^2+y^2=1$ za koji je $z\geq 0$ i $z\leq y$. Nacrtati sliku!
- 11. Izračunati površinu dijela plohe $z=x^2+y^2$ koji se nalazi unutar sfere

$$x^2 + y^2 + z^2 = 42.$$

Nacrtati sliku!

- 12. Izračunati površinu dijela plohe $x^2+y^2=1$ koji se nalazi između ravnina z=y i z=4y i za koji je $z\geq 0$. Nacrtati sliku!
- 13. Izračunati

$$\iint_{S^+} x \, dy \, dz,$$

pri čemu je S^+ dio plohe $y=1-\sqrt{2x-x^2}$ za koji je $0\leq z\leq 1$, orijentirane tako da normala na tu plohu zatvara s osi "y" kut veći od 90°. Nacrtati sliku!

14. Izračunati

$$\iint_{S^+} x^2 \, dy \, dz + y^2 \, dx \, dz + z^2 \, dx \, dy,$$

pri čemu je S^+ dio ravnine z=2y za koji je $x^2+4y^2\leq 4$, orijentirane tako da normala na ravninu zatvara s osi "z" kut veći od 90°.

15. Izračunati

$$\iint_{S^{+}} xz^{2} \, dy \, dz + yz^{2} \, dx \, dz + z^{3} \, dx \, dy,$$

pri čemu je S^+ vanjska strana sfere $x^2+y^2+(z-2)^2=1$.

7 Diferencijalne jednadžbe

1. Naći opće rješenje diferencijalne jednadžbe

$$y' = \frac{1}{x\cos y + \sin(2y)}.$$

2. Naći opće rješenje diferencijalne jednadžbe

$$\left(x + e^{\frac{x}{y}}\right) dx + \left(1 - \frac{x}{y}\right) e^{\frac{x}{y}} dy = 0.$$

3. Naći opće rješenje diferencijalne jednadžbe

$$\left(\frac{2x}{y} + \frac{y}{x}\right) dx + \left(\ln x - \frac{x^2}{y^2}\right) dy = 0.$$

- 18
- 4. Naći ortogonalne trajektorije familije krivulja

$$y^2 = 2x^2(1 - Cx).$$

- 5. Naći sve krivulje sa svojstvom da je duljina odsječka normale na krivulju u proizvoljnoj točki T, između točke T i sjecišta normale s osi "x", jednaka kvadratu ordinate točke T.
- 6. Naći opće rješenje diferencijalne jednadžbe

$$y'x - y = y'\sqrt{x^2 + y^2}.$$

7. Naći opće rješenje diferencijalne jednadžbe

$$y' - y\cos x = \sin(2x).$$

8. Naći opće rješenje diferencijalne jednadžbe

$$y'\cos x + \sin x + e^y = 0.$$

9. Naći opće rješenje diferencijalne jednadžbe

$$y = -\frac{1}{2}y'(2x + y').$$

- 10. Odrediti jednadžbu krivulje za koju vrijedi da je kut kojeg radijvektor bilo koje točke T(x,y) na krivulji čini s osi "x" dva puta manji od kuta kojeg tangenta u točki T(x,y) čini s osi "y".
- 11. Naći opće rješenje diferencijalne jednadžbe

$$x(2y - xy') = y^2.$$

12. Naći opće rješenje diferencijalnih jednadžbi:

a)
$$y' = \frac{2x+y+1}{4x+2y-3}$$
; b) $y' = \frac{-x+2y-5}{2x-y+4}$.

13. Naći opće i singularno rješenje diferencijalne jednadžbe

$$y = xy' + \frac{1}{y'}.$$

7 DIFERENCIJALNE JEDNADŽBE

19

- 14. Naći opće rješenje diferencijalnih jednadžbi:
- a) $(y^2 + xy^2)y' + x^2 yx^2 = 0$
- **b)** $y' = a^{x+y}$ $(a > 0, a \neq 1)$
- $\mathbf{c)} \quad y' = \sin(x y)$
- 15. Naći opće rješenje diferencijalne jednadžbe

$$y' = \frac{x}{y} + \frac{y}{x}.$$

16. Naći opće rješenje diferencijalne jednadžbe

$$\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0.$$

- 17. Odrediti jednadžbe onih krivulja kojima svaka tangenta siječe os ordinata u točki koja je jednako udaljena od ishodišta kao i od dirališta.
- 18. Naći opće rješenje diferencijalnih jednadžbi:
- a) (x+y-2) dx + (x-y+4) dy = 0
- **b)** (3x + 4y + 1)y' + 2x + 3y + 1 = 0
- 19. Naći opće rješenje diferencijalne jednadžbe

$$y' - y\sin x = \sin x\cos x.$$

20. Naći opće rješenje diferencijalne jednadžbe

$$y' - \frac{y}{x \ln x} = x \ln x.$$

21. Naći opće rješenje diferencijalne jednadžbe

$$\frac{dy}{dx} = \frac{1}{x\cos y + a\sin(2y)}, \quad a \neq 0.$$

22. Naći opće rješenje diferencijalne jednadžbe

$$y' + \frac{2}{x}y = x^3.$$

23. Naći opće rješenje diferencijalne jednadžbe

$$(1+x^2)y' - 2xy = (1+x^2)^2.$$

Naći opće rješenje diferencijalnih jednadžbi:

a)
$$y' + \frac{y}{x} = x^2 y^4$$
; b) $y' + \frac{2y}{x} = \frac{2\sqrt{y}}{\cos^2 x}$.

25. Naći opće rješenje diferencijalne jednadžbe

$$y' = -\frac{\sin y}{x\cos y}.$$

Naći opće rješenje diferencijalne jednadžbe

$$y\sqrt{1-y^2} \, dx + (x\sqrt{1-y^2} + y) \, dy = 0.$$

Rješenja 8

Funkcije više varijabli 8.1

- 1. a) $\{(x,y)| -1 \le x \le 1, -1 \le y \le 1\};$ b) $\{(x,y)|x^2+y^2 \le 1\};$ c) $\{(x,y)|x^2+y^2 \le 1\} \cup \{(x,y)|x^2+y^2 \ge 4\};$ d) $\{(x,y)|y^2-x^2 \ge 1\};$

- e) $\{(x,y)|y \le x, |y| \ge 1\};$ f) $\{(x,y)|y \ge 0, (x+2)^2 + y^2 \ge 4\} \cup \{(x,y)|y \le 0, (x+2)^2 + y^2 \le 4\};$
- $\mathbf{g}) \mathbf{R}^2;$
- h) $\{(x,y)|x>0, y>x+1\} \cup \{(x,y)|x<0, x< y< x+1\};$
- i) $\{(x,y)| |y| < |x|, x \neq 0\}.$

8 RJEŠENJA 21

2.

22 8 Rješenja

d) e) f)

g) h) i)

3. a)
$$z = \sqrt{(x^2 + y^2)^2 + 1}$$
; b) $z = \cos^2(2\sqrt{x^2 + y^2})$; c) $x = (y^2 + z^2)^3 + 1$;

d)
$$z = \ln \left(2 - \sqrt{x^2 + (y-2)^2}\right)$$
.

4. a)
$$(z-1)^2 = 4[(x-3)^2 + (y-2)^2];$$
 b) $y = 3 - 3\sqrt{(x-1)^2 + (z-2)^2}.$

$$5. \quad z^2 = 2x^2 + 4y^2.$$

8.2 Diferencijalni račun funkcija više varijabli

1.
$$f'(x) = (\sqrt{x})^x \cdot \left[\frac{1}{2} + \ln(\sqrt{x})\right], \quad f''(x) = (\sqrt{x})^x \cdot \left[\frac{1}{4} + \frac{1}{2x} + \ln(\sqrt{x}) + \ln^2(\sqrt{x})\right];$$

$$g'(x) = (\ln x)^{x^2} \cdot \left[\frac{x}{\ln x} + 2x \ln(\ln x)\right],$$

$$g''(x) = (\ln x)^{x^2} \cdot \left[\frac{x^2}{\ln^2 x} - \frac{1}{\ln^2 x} + \frac{3}{\ln x} + \frac{4x^2 \ln(\ln x)}{\ln x} + 4x^2 \ln^2(\ln x) + 2\ln(\ln x)\right];$$

$$h'(x) = x^{\sqrt{x^3}} \cdot \left[\sqrt{x} + \frac{3}{2}\sqrt{x} \cdot \ln x\right], \quad h''(x) = x^{\sqrt{x^3}} \cdot \left[x + \frac{2\sqrt{x}}{x} + 3x \ln x + \frac{9}{4}x \ln^2 x + \frac{3\ln x}{4\sqrt{x}}\right].$$
2. Stavimo $f(u, v) = u^v, \quad u = x^3 + y^3, \quad v = xy.$

$$f'_u = vu^{v-1}, \quad f'_v = u^v \ln u,$$

$$f''_{uu} = v(v - 1)u^{v-1}, \quad f''_{uv} = u^{v-1} + vu^{v-1} \ln u, \quad f''_{vv} = u^v \ln^2 u;$$

$$u'_x = 3x^2, \quad u''_{xx} = 6x, \quad u'_y = 3y^2, \quad u''_{yy} = 6y, \quad u''_{xy} = 0;$$

$$v'_x = y, \quad v''_{xx} = 0, \quad v'_y = x, \quad v''_{yy} = 0, \quad v''_{xy} = 1;$$

c) maksimum u T(6,4);

- d) nema ekstrema u $T_1(0,0)$, maksimum u $T_2(-4,-2)$;
- e) minimum u $T_1(1, 1, 1)$, maksimum u $T_2(-1, -1, -1)$.
- **28.** a) minimum u $T_1(-1, -2)$, maksimum u $T_2(1, 2)$;
- **b)** minimum u $T_1\left(\frac{1}{\sqrt{2}}, 3 + \frac{1}{\sqrt{2}}\right)$ i $T_2\left(-\frac{1}{\sqrt{2}}, 3 \frac{1}{\sqrt{2}}\right)$, maksimum u $T_3\left(-\frac{1}{\sqrt{2}}, 3 + \frac{1}{\sqrt{2}}\right)$ i
- $T_4\left(\frac{1}{\sqrt{2}}, 3 \frac{1}{\sqrt{2}}\right);$
- c) minimum u $T_1(\sqrt{2},0)$ i $T_2(\frac{3}{2},\frac{1}{2})$, maksimum u $T_3(-\sqrt{2},0)$ i $T_4(-\frac{3}{2},-\frac{1}{2})$;
- **d)** minimum u $T_1\left(-\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}\right)$, maksimum u $T_2\left(\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right)$;
- e) maksimum u $T_1(a, 0, 0)$ i $T_2(-a, 0, 0)$, nema ekstrema u $T_3(0, b, 0)$ i $T_4(0, -b, 0)$, minimum u $T_5(0,0,c)$ i $T_6(0,0,-c)$;
- f) nema ekstrema u $T\left(-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$; g) minimum u $T_1\left(1, 2, 2\right), T_2\left(2, 1, 2\right), T_3\left(2, 2, 1\right)$, maksimum u $T_4\left(\frac{4}{3}, \frac{4}{3}, \frac{7}{3}\right), T_5\left(\frac{4}{3}, \frac{7}{3}, \frac{4}{3}\right), T_6\left(\frac{7}{3}, \frac{4}{3}, \frac{4}{3}\right).$
- Kocka brida $a = \sqrt[3]{V}$.
- Ako opseg trokuta označimo sa s, onda su duljine stranica $a = \frac{3}{8}s$, $b = \frac{3}{8}s$, $c = \frac{1}{4}s$.
- 31. $V_{\text{max}} = \frac{abc}{27}$. 32. Nepravi maksimum u točkama kružnice $x^2 + y^2 = 2$.
- **33.** $P_{\text{max}} = \frac{32}{\sqrt{27-6\sqrt{3}}}$. **34.** $V_{\text{max}} = \frac{1}{4}$.
- 35. $V_{\text{max}} = \frac{8\sqrt{5}}{125}$
- **36.** $D\left(-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}, -\frac{3}{\sqrt{3}}\right)$, $V_{\text{max}} = \frac{1}{6} \cdot \left| (\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD} \right| = 1 + \sqrt{3}$.
- **37.** T(0,0,-1).
- **38.** Tjemena elipse su u točkama $T_1\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$, $T_2\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$, $T_3\left(\frac{3\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2}\right)$. $T_4\left(-\frac{3\sqrt{2}}{2}, \frac{3\sqrt{2}}{2}\right)$; poluosi su a = 3, b = 1.

Dvostruki integrali 8.3

- **b**) $e^4 + 3$. 1. a) $\frac{346}{45}$;
- $\int_{0}^{3} dy \int_{1}^{-\sqrt{3-y}} f(x,y) dx + \int_{0}^{3} dy \int_{1}^{1} f(x,y) dx + \int_{0}^{8} dy \int_{1}^{1} f(x,y) dx + \int_{0}^{9} dy \int_{1}^{\sqrt{9-y}} f(x,y) dx;$

b)
$$\int_{0}^{\ln 2} dx \int_{1}^{e^{x}} f(x,y) \, dy + \int_{\ln 2}^{1} dx \int_{1}^{2} f(x,y) \, dy + \int_{1}^{2} dx \int_{x}^{2} f(x,y) \, dy.$$

3. a)
$$\frac{1}{12}$$
; b) $\frac{2\pi}{3} - \frac{3\sqrt{3}}{4}$.

$$\int_{-2}^{0} dx \int_{-\frac{x}{2}-1}^{\frac{x}{2}+1} f(x,y) \, dy + \int_{0}^{2} dx \int_{\frac{x}{2}-1}^{-\frac{x}{2}+1} f(x,y) \, dy;$$

a)
$$\frac{4}{3} \left(e^2 + \frac{1}{e^2} - e - \frac{1}{e} \right);$$
 b) $\frac{2}{3};$ c) $\frac{20}{3};$ d) 0.
5. a) $\frac{4}{3};$ b) $\frac{4}{7}.$
6. $2\pi - \frac{4}{3}.$
7. $4 - \frac{5}{e}.$
8. $\frac{16}{3}.$
9. $\frac{64\sqrt{2}}{15} - \frac{12}{5}\sqrt{\frac{3}{2}}.$
10. $\pi e^2(3e^2 - 1).$

5. a)
$$\frac{4}{3}$$
; b) $\frac{4}{7}$

6.
$$2\pi - \frac{4}{3}$$
.

7.
$$4 - \frac{5}{e}$$
.

8.
$$\frac{16}{2}$$
.

9.
$$\frac{64\sqrt{2}}{15} - \frac{12}{5}\sqrt{\frac{3}{2}}$$
.

10.
$$\pi e^2(3e^2-1)$$
.

11.
$$\frac{\pi}{36}$$
.

12. a)
$$\pi$$
; b) $\frac{\pi}{6} + \frac{3}{2} - \frac{7\sqrt{3}}{8}$; c) $\frac{11\pi}{3} - 6\sqrt{3}$.
13. $\frac{ab}{2c}$.
14. $6 - \frac{19\sqrt{3}}{6}$.

13.
$$\frac{ab}{2a}$$
.

14.
$$6 - \frac{19\sqrt{3}}{6}$$
.

15. **a**)
$$\frac{1}{3} - \frac{1}{2} \ln \sqrt{3}$$
; **b**) $-\sqrt{3} + \frac{16}{9} + \frac{\pi}{9}$; **c**) $-\frac{\pi}{144} - \frac{\sqrt{3}}{8} + \frac{5\sqrt{2}}{18}$.
16. $\frac{\sqrt{3}}{3} \left(\frac{\pi}{6} - \arctan \frac{1}{3} \right)$.

16.
$$\frac{\sqrt{3}}{3} \left(\frac{\pi}{6} - \arctan \frac{1}{3} \right)$$
.

17.
$$2\sqrt{3} - \frac{2\pi}{3}$$
.
18. $\frac{20}{3}$.
19. 3.

18.
$$\frac{20}{3}$$
.

20.
$$\frac{\pi}{6\sqrt{3}}$$

21.
$$\frac{1}{2ab}$$
.

20.
$$\frac{\pi}{6\sqrt{3}}$$
.
21. $\frac{1}{2ab}$.
22. $\frac{2}{3}\delta R^2\pi$.

23. a)
$$T\left(\frac{5}{6}a, 0\right)$$
; b) $T\left(\frac{2}{5}, 0\right)$.

23. a)
$$T\left(\frac{5}{6}a,0\right)$$
; b) $T\left(\frac{2}{5},0\right)$.
24. a) $(R_2^4 - R_1^4) \cdot \frac{\pi}{4}$; b) $(R_2^4 - R_1^4) \cdot \frac{\pi}{2}$.

8.4 Trostruki integrali

1.
$$\frac{14}{9}e^{-3} - e^{-2} + \frac{1}{9}$$
.
2. $\frac{9}{2}\ln 3 - 4$.
3. a)

2.
$$\frac{9}{2} \ln 3 - 4$$
.

3.
$$a$$

$$\int_{0}^{2} dx \int_{0}^{3-\frac{3}{2}x} dy \int_{0}^{6-3x-2y} f(x, y, z) dz;$$

b)
$$\int_{0}^{2} dy \int_{y}^{3-\frac{1}{2}y} dx \int_{1}^{2-\frac{1}{3}x-\frac{1}{6}y} f(x,y,z) dz + \int_{0}^{2} dx \int_{x}^{3-\frac{1}{2}x} dy \int_{1}^{2-\frac{1}{6}x-\frac{1}{3}y} f(x,y,z) dz;$$

$$\int_{0}^{1} dy \int_{y}^{2-y} dx \int_{0}^{y} f(x, y, z) dz + \int_{1}^{2} dx \int_{2-x}^{x} dy \int_{0}^{2-x} f(x, y, z) dz + \int_{1}^{2} dy \int_{2-y}^{y} dx \int_{0}^{2-y} f(x, y, z) dz + \int_{1}^{2} dx \int_{0}^{x} f(x, y, z) dz + \int_{0}^{1} dx \int_{x}^{2-x} dy \int_{0}^{x} f(x, y, z) dz;$$

d)

$$\int_{0}^{1} dy \int_{y}^{2-y} dx \int_{2-2y}^{2} f(x,y,z) dz + \int_{1}^{2} dx \int_{2-x}^{x} dy \int_{2x-2}^{2} f(x,y,z) dz + \int_{1}^{2} dy \int_{2-y}^{y} dx \int_{2y-2}^{2} f(x,y,z) dz + \int_{1}^{2} dx \int_{2}^{x} dy \int_{2}^{2} f(x,y,z) dz + \int_{1}^{2} dx \int_{2}^{x} dy \int_{2}^{2} f(x,y,z) dz.$$

4. a)
$$\frac{9\sqrt{6}}{5}$$
; b) $V = \frac{6\sqrt{6}}{5}$

4. a)
$$\frac{9\sqrt{6}}{5}$$
; **b**) $V = \frac{6\sqrt{6}}{5}$.
5. a) $\frac{56\pi}{3}$; **b**) $\pi \left(2 \ln 2 - \frac{3}{4}\right)$.

6.
$$V = \frac{7\sqrt{7}-10}{3}\pi$$

7.
$$\frac{7\sqrt{3}}{384}(\pi+6-3\sqrt{3})$$

8.
$$\frac{64\pi}{3}$$
.

9.
$$V = \frac{\pi}{32}$$

10.
$$V = \frac{3\sqrt{3}}{4} + \frac{2\pi}{3}$$

11.
$$\frac{1}{\sqrt{3}} \left(\frac{1}{4} - \frac{\pi}{16} \right)$$
.

12.
$$\frac{31\pi}{20}$$
.

13.
$$V = \frac{20\pi}{3}$$
.

14.
$$\frac{\pi}{10}$$
.

15.
$$\frac{2\sqrt{3}-3}{4}\pi$$
.

16. a)
$$\frac{9\pi}{2}$$
; b) $\frac{\pi}{6}$

17.
$$\frac{688\pi}{5}$$
.

5. a)
$$\frac{56\pi}{3}$$
; b) $\pi \left(2 \ln 2 - \frac{3}{4}\right)$.
6. $V = \frac{7\sqrt{7}-10}{3}\pi$.
7. $\frac{7\sqrt{3}}{384}(\pi + 6 - 3\sqrt{3})$.
8. $\frac{64\pi}{3}$.
9. $V = \frac{\pi}{32}$.
10. $V = \frac{3\sqrt{3}}{4} + \frac{2\pi}{3}$.
11. $\frac{1}{\sqrt{3}}\left(\frac{1}{4} - \frac{\pi}{16}\right)$.
12. $\frac{31\pi}{20}$.
13. $V = \frac{20\pi}{3}$.
14. $\frac{\pi}{10}$.
15. $\frac{2\sqrt{3}-3}{4}\pi$.
16. a) $\frac{9\pi}{2}$; b) $\frac{\pi}{6}$.
17. $\frac{688\pi}{5}$.
18. a) $I_0 = \frac{1}{3}abc(a^2 + b^2 + c^2)$; b) $I_a = \frac{1}{3}abc(b^2 + c^2)$.
19. a) $T\left(0,0,\frac{7}{6}\right)$; b) $T\left(\frac{4}{3},0,0\right)$.

19. a)
$$T(0,0,\frac{7}{6});$$
 b) $T(\frac{4}{3},0,0).$

20.
$$T\left(\frac{5}{9}a, \frac{5}{9}a, \frac{5}{9}a\right)$$
.

8.5 Vektorska analiza

1. a)
$$6xy\vec{i}+(3x^2+2yz^3)\vec{j}+3y^2z^2\vec{k};$$
 b) $\frac{1}{\sqrt{6}}(6xy+3x^2+2yz^3+6y^2z^2);$ c) $6y+2z^3+6y^2z$.

2. a)
$$2x + 2y + xy$$
; b) $xz\vec{i} - yz\vec{j}$; c) $\frac{1}{\sqrt{6}}[2x\vec{i} + 2y\vec{j} + (xz + yz + 2xy)\vec{k}]$; d) $2\vec{i} + 2\vec{j}$.

3.
$$2a\vec{r} + 4(\vec{a_0} \cdot \vec{r})\vec{a}$$
.

- **4.** $6\vec{\imath} + 4\vec{\jmath} 6\vec{k}$.
- 5. $\left(12 \frac{6}{r^2}\right)(\vec{s_0} \cdot \vec{r_0})$.
- 6.
- 7. $-2(\vec{a}\cdot\vec{r})f(r)$.
- 8. $2a^2\vec{a}$.
- **9.** $\vec{0}$.
- **10.** 0.
- 11. $4\vec{a}$. 12. $\frac{\sqrt{3}}{2}\vec{i} + \left(2\ln 2 + \frac{3}{2}\right)\vec{k}$. 13. $10(\vec{a} \times \vec{r})$.
- **14.** $\frac{1}{9\sqrt{3}}(98\vec{i} 74\vec{j} + 106\vec{k}).$ **15.** $2\vec{a}.$
- **16.** $6(\vec{a} \cdot \vec{r})\vec{a_0} 2a\vec{r}$.
- 17. $-2f(r)\vec{a} 2(\vec{a} \cdot \vec{r})f'(r)\vec{r_0}$.
- 18. $2\vec{a} + 10\vec{r}$.
- **19.** $-4\vec{a}$.

Krivuljni i plošni integrali 8.6

- 1. $\frac{8}{2}(2\sqrt{2}-1)$.
- $\frac{\frac{1}{4\sqrt{2}} \left[\frac{1}{2} \operatorname{sh}(2 \operatorname{arsh} \sqrt{24}) + \operatorname{arsh} \sqrt{24} \right]}{\frac{5}{3} \frac{7\pi}{18\sqrt{3}}}.$ $\frac{\frac{31}{6}}{\frac{3}{2}} \frac{2\pi}{\sqrt{3}}.$
- 4.

- 6. \$\frac{\sqrt{2}}{2}\$.
 7. Ne ovisi o putu integracije.
- 8. 4π .
- 9. $\frac{52\pi}{3}$.
- **10.** 2.
- 11. $\frac{62\pi}{2}$.
- **12.** 6.
- 13.
- 14. $-\pi$.
- 15. 28π .

Diferencijalne jednadžbe 8.7

- 1. Linearna diferencijalna jednadžba po x. Opće rješenje je $x = Ce^{\sin y} 2(1 + \sin y)$. 2. Egzaktna diferencijalna jednadžba. Opći integral je $\frac{x^2}{2} + ye^{\frac{x}{y}} = C$. 3. Egzaktna diferencijalna jednadžba. Opći integral je $\frac{x^2}{y} + y \ln x = C$.

- 4. $x^2 + 3y^2 \ln |Cy| = 0$.
- 5. $\ln|y + \sqrt{y^2 1}| = \pm x + C$ (ili arch $y = \pm x + C$).

6. Homogena diferencijalna jednadžba. Opći integral je $x + \sqrt{x^2 + y^2} = C$.

7. Linearna diferencijalna jednadžba. Opće rješenje je $y = Ce^{\sin x} - 2(1 + \sin x)$.

8. Supstitucijom $e^y = t$ dobije se Bernoullijeva diferencijalna jednadžba. Opći integral je $x - e^{-y} \cos x = C$.

9. Lagrangeova diferencijalna jednadžba. Opće rješenje u parametarskom obliku je

$$x = \frac{1}{3} \left(\frac{C}{\sqrt{p}} - p \right)$$
$$y = -\frac{1}{6} (2C\sqrt{p} + p^2)$$

10.

$$\frac{1}{\sqrt[3]{1 - 3\frac{y^2}{x^2}}} = Cx.$$

11. Homogena diferencijalna jednadžba. Opći integral je y = Cx(y - x).

12. a) $2x + y - 1 = Ce^{2y - x}$; b) $C(x + y - 1)^3 = x - y + 3$.

13. Clairautova diferencijalna jednadžba. Opće rješenje je $y=Cx+\frac{1}{C}$; singularno rješenje je $y^2=4x$.

14. a) Diferencijalna jednadžba sa separiranim varijablama. Opći integral je

$$x^{2} - 2x - y^{2} - 2y + 2\ln\left|\frac{x+1}{y-1}\right| = C;$$

b) Diferencijalna jednadžba sa separiranim varijablama. Opći integral je $a^x + a^{-y} = C$;

c) Supstitucijom t=x-y dobije se diferencijalna jednadžba sa separiranim varijablama. Opći integral je $1-\lg\frac{x-y}{2}=\frac{2}{x+C}$.

15. Homogena diferencijalna jednadžba. Opći integral je $\frac{y^2}{x^2} = 2 \ln |Cx|$.

16. Homogena diferencijalna jednadžba. Opći integral je $x + ye^{\frac{x}{y}} = C$.

17. $Cx = x^2 + y^2$.

18. a) $x^2 + 2xy - y^2 - 4x + 8y = C$; b) $2(y+1)^2 + 3(y+1)(x-1) + (x-1)^2 = C$.

19. Linearna diferencijalna jednadžba. Opće rješenje je $y = 1 - \cos x + Ce^{-\cos x}$.

20. Linearna diferencijalna jednadžba. Opće rješenje je $y = \left(\frac{x^2}{2} + C\right) \ln x$.

21. Linearna diferencijalna jednadžba po x. Opće rješenje je $x = -2a(\sin y + 1) + Ce^{\sin y}$.

22. Linearna diferencijalna jednadžba. Opće rješenje je $y = \frac{x^4}{6} + \frac{C}{x^2}$.

23. Linearna diferencijalna jednadžba. Opće rješenje je $y = (1 + x^2)(x + C)$.

24. a) Bernoullijeva diferencijalna jednadžba. Opće rješenje je

$$y = \frac{1}{x\sqrt[3]{3\ln\left|\frac{C}{x}\right|}};$$

b) Bernoullijeva diferencijalna jednadžba. Opće rješenje je

$$y = \left(\operatorname{tg} x + \frac{\ln|\cos x| + C}{x}\right)^{2}.$$

- 29
- **25.** Diferencijalna jednadžba sa separiranim varijablama. Opći integral je $x \sin y = C$.
- **26.** Diferencijalna jednadžba svodi se na egzaktnu množenjem s Eulerovim multiplikatorom oblika $\mu = \mu(y)$. Opći integral je $xy \sqrt{1 y^2} = C$.

9 Kontrolne zadaće iz 2002. godine

PRVA KONTROLNA ZADAĆA IZ MATEMATIČKE ANALIZE 2

25. 03. 2002.

GRUPE: A B C M N O

1. (3 boda) Funkcija z=z(x,y) je zadana implicitno jednadžbom

$$(x+1)e^y + (y+1)e^z + (z+1)e^x = 3.$$

Naći $\frac{\partial^2 z}{\partial x \partial y}$ u točki T(0,0,0).

2. (3 boda) Pokažite da sve tangencijalne ravnine na plohu

$$z(x,y) = x \cdot \varphi\left(\frac{y}{x}\right)$$

(gdje je φ derivabilna funkcija) prolaze ishodištem.

3. (4 boda) Naći i ispitati lokalne ekstreme funkcije

$$f(x, y, z) = 2x^3 + y^2 + z^2 - 3x^2y + y.$$

1. (3 boda) Pokažite da funkcija z=z(x,y) definirana jednadžbom

$$x + y + z = f(x^2 + y^2 + z^2)$$

(gdje je f derivabilna funkcija) zadovoljava identitet

$$(y-z)\frac{\partial z}{\partial x} + (z-x)\frac{\partial z}{\partial y} = x-y.$$

2. (3 boda) Naći jednadžbe tangencijalnih ravnina na plohu

$$x^2 + 4y^2 + 4z^2 = 21$$

paralelnih ravnini x + y + 4z = 10.

3. (4 boda) Naći i ispitati ekstreme funkcije

$$z = \frac{1}{x} + \frac{1}{y}$$

uz uvjet

$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2} \qquad (a > 0).$$

DRUGA KONTROLNA ZADAĆA IZ MATEMATIČKE ANALIZE 2

29. 04. 2002.

GRUPE: A B C M N O

1. (3 boda) Izračunati

$$\iint_{(P)} x^2 \, dx \, dy,$$

pri čemu je (P) lik određen nejednad
žbama $3x^2+(y-2)^2\leq 4,\ y\leq 2-x^2$ i $x\geq 0.$

- **2.** (4 boda) Izračunati volumen tijela određenog nejednadžbama $x^2+y^2+z^2 \leq 4$ i $x^2+y^2 \leq 2x$.
- 3. (3 boda) Neka je

$$\varphi = \nabla[r^3(\vec{a} \times \vec{r})],$$

pri čemu je \vec{a} konstantan vektor, \vec{r} radij
vektor, a r modul radijvektora. Izračunati $\nabla \varphi$.

GRUPE: DEFGHIJKL

1. (3 boda) Izračunati

$$\iint_{(P)} (xy + 2y - 5) \, dx \, dy,$$

pri čemu je (P) područje omeđeno elipsom

$$(x-4)^2 + \frac{(y-3)^2}{4} = 1.$$

2. (4 boda) Izračunati

$$\iiint\limits_{(V)} x^2 \sqrt{x^2 + y^2 + z^2} \, dV,$$

pri čemu je (V) tijelo određeno nejednadžbama $x^2+y^2+z^2 \leq 2z$ i $z \geq \sqrt{x^2+y^2}$. Nacrtati sliku!

3. (3 boda) Izračunati

$$\operatorname{div}[\vec{r}(\vec{a}\cdot\vec{r})],$$

pri čemu je \vec{a} konstantan vektor, a \vec{r} radijvektor.

TREĆA KONTROLNA ZADAĆA IZ MATEMATIČKE ANALIZE 2

03. 06. 2002.

GRUPE: A B C M N O

1. (3 boda) Izračunati

$$\int_{C} y ds$$
,

pri čemu je C luk krivulje

$$4x^2 + 3y^2 = 12$$

od točke $A(\sqrt{6}/2, -\sqrt{2})$ do točke B(0, 2).

- **2.** (2 boda) Izračunati površinu dijela plohe $z = x^2 + y^2$ za koji je $z \le 2$.
- 3. (2 boda) Izračunati

$$\iint_{S^+} x^3 \, dy \, dz + y^3 \, dz \, dx + z^3 \, dx \, dy,$$

pri čemu je S^+ vanjska strana kugle

$$x^2 + y^2 + z^2 = a^2.$$

4. (**3** boda) Naći jednadžbu krivulje za koju se odsječak normale između koordinatnih osi u bilo kojoj točki krivulje raspolavlja u toj točki.

GRUPE: DEFGHIJKL

- 1. (2 boda) Izračunati duljinu luka krivulje zadane kao dio presječnice ploha $y=x\sqrt{x}$ i y+z=8, za koji je $z\geq 0.$
- 2. (2 boda) Izračunati

$$\int_{K} \ln(x+1) \, dx + (x^2 + y^2) \, dy,$$

pri čemu je K pozitivno orijentirana kontura četverokuta s vrhovima u točkama A(0,0), B(2,0), C(4,4) i D(0,4).

3. (3 boda) Izračunati

$$\iint_{S^+} x \, dy \, dz + y \, dx \, dz + z \, dx \, dy,$$

pri čemu je S^+ dio plohe $2z=x^2+y^2$ za koji je $z\leq b \ (b>0)$, orijentiran tako da normala na plohu zatvara s pozitivnim dijelom osi OZ kut veći od 90°.

4. (**3** boda) Naći jednadžbu krivulje za koju je odsječak na osi ordinata, koji odsijeca bilo koja tangenta na krivulju, jednak apscisi dirališta.

10 Rješenja kontrolnih zadaća iz 2002. godine

RJEŠENJA PRVE KONTROLNE ZADAĆE IZ MATEMATIČKE ANALIZE 2

25. 03. 2002.

GRUPE: A B C M N O

1.

$$\left(\frac{\partial^2 z}{\partial x \partial y}\right)_T = 0.$$

2. Jednadžba tangencijalne ravnine:

$$\left[\varphi\left(\frac{y_0}{x_0}\right) - \frac{y_0}{x_0}\varphi'\left(\frac{y_0}{x_0}\right)\right](x - x_0) + \varphi'\left(\frac{y_0}{x_0}\right)(y - y_0) - (z - z_0) = 0.$$

U jednadžbu uvrstimo

$$z_0 = x_0 \cdot \varphi \left(\frac{y_0}{x_0} \right),$$

pa se lako vidi da točka x=y=z=0 zadovoljava jednadžbu tangencijalne ravnine.

3. Stacionarne točke: $T_1\left(0, -\frac{1}{2}, 0\right), T_2(1, 1, 0), T_3\left(-\frac{1}{3}, -\frac{1}{3}, 0\right).$

 $(d^2f)_{T_1} > 0 \Rightarrow \text{minimum u } T_1, f_{\min} = -\frac{1}{4};$

 $(d^2f)_{T_2}$ mijenja predznak \Rightarrow nema ekstrema u T_2 ;

 $(d^2f)_{T_3}$ mijenja predznak \Rightarrow nema ekstrema u T_3 .

GRUPE: DEFGHIJKL

1.

$$\frac{\partial z}{\partial x} = -\frac{1 - 2xf'}{1 - 2zf'}, \qquad \frac{\partial z}{\partial y} = -\frac{1 - 2yf'}{1 - 2zf'}.$$

Parcijalne derivacije zadovoljavaju zadani identitet.

2.

$$\pi_1 \dots x + y + 4z - \frac{21}{2} = 0, \qquad \pi_2 \dots x + y + 4z + \frac{21}{2} = 0.$$

3.

$$F(x, y; \lambda) = \frac{1}{x} + \frac{1}{y} + \lambda \left(\frac{1}{x^2} + \frac{1}{y^2} - \frac{1}{a^2} \right)$$

Stacionarne točke: $T_1\left(-a\sqrt{2},-a\sqrt{2}\right),\ \lambda_1=\frac{a\sqrt{2}}{2};\ T_2(a\sqrt{2},a\sqrt{2}),\ \lambda_2=-\frac{a\sqrt{2}}{2}.$ $(d^2F)_{T_1}=\frac{\sqrt{2}}{2a^3}(dx)^2>0$ za $(dx)^2>0$ \Rightarrow minimum u $T_1,\ z_{\min}=-\frac{\sqrt{2}}{a};$ $(d^2F)_{T_2}=-\frac{\sqrt{2}}{2a^3}(dx)^2<0$ za $(dx)^2>0$ \Rightarrow maksimum u $T_2,\ z_{\max}=\frac{\sqrt{2}}{a}.$

RJEŠENJA DRUGE KONTROLNE ZADAĆE IZ MATEMATIČKE ANALIZE 2

29. 04. 2002.

GRUPE: A B C M N O

1.

$$I = \frac{2\pi\sqrt{3}}{27} - \frac{7}{60}.$$

2.

$$V = \frac{16}{3}\pi - \frac{64}{9}.$$

3.

$$\varphi = 0, \quad \nabla \varphi = \nabla 0 = \vec{0}.$$

GRUPE: DEFGHIJKL

1.

$$I=26\pi$$
.

2.

$$I = \frac{\pi}{189}(64 - 11\sqrt{2}).$$

3.

$$4(\vec{a}\cdot\vec{r}).$$

RJEŠENJA TREĆE KONTROLNE ZADAĆE IZ MATEMATIČKE ANALIZE 2

03. 06. 2002.

GRUPE: A B C M N O

1.

$$\int\limits_C y \, ds = 3 \operatorname{arsh} \frac{\sqrt{6}}{6} + \frac{\sqrt{7}}{2}.$$

2.

$$S = \frac{13\pi}{3}.$$

3.

$$I = \frac{12\pi a^5}{5}.$$

4.

$$y^2 - x^2 = C$$
 (familija hiperbola).

GRUPE: DEFGHIJKL

$$s = \frac{4}{27}(19\sqrt{19} - 1).$$

2.

$$I = \frac{112}{3}.$$

3.

$$I = b^2 \pi$$
.

4.

$$y = x \ln \frac{C}{x}.$$

11 Pismeni ispiti iz 2002. godine

PISMENI ISPIT IZ MATEMATIČKE ANALIZE 2 28. 01. 2002.

- 1. (4 boda) Naći i ispitati lokalne ekstreme funkcije $z=z(x,y)=e^{-y^2}\cos x$.
- **2.** (2 boda) Izračunati prve parcijalne derivacije funkcije $u = u(x, y, z) = (x + y)^{y+2z}$ na njenom prirodnom području definicije.
- 3. (3 boda) Izračunati integral

$$\iiint\limits_{V}z\,dV,$$

pri čemu je V tijelo omeđeno plohama $z=x^2+4y^2\;$ i $\;z=4.\;$ Nacrtati sliku!

- **4.** (**2** boda) Izračunati grad $[(\vec{a} \cdot \vec{r})r^3]$, pri čemu je \vec{a} konstantan vektor, a \vec{r} radijvektor proizvoljne točke prostora.
- 5. (4 boda) Izračunati

$$\int\limits_{\Gamma} \frac{x \, dx + y \, dy + z \, dz}{\sqrt{x^2 + y^2 + z^2 + 1}},$$

pri čemu je Γ dio krivulje zadane sa $y=x^2+1, \ z=\sqrt{x^2+x+2}$ od točke A(x=0) do točke B(x=1).

Naputak: Ispitati ovisnost krivuljnog integrala o putu integracije.

- 6. (3 boda) Izračunati površinu dijela plohe $z=x^2+y^2$ za koji je $z\leq 4$. Nacrtati sliku!
- ${\bf 7.}~({\bf 2}~{\rm boda})$ Naći opće rješenje diferencijalne jednadžbe

$$y' = \frac{y}{3x + y^2}.$$

PISMENI ISPIT IZ MATEMATIČKE ANALIZE 2

15. 02. 2002.

1. (4 boda) Naći jednadžbu normale iz točke P(3,0,3) na plohu $y=\sqrt{2x^2+z^2+2}$. Nacrtati sliku!

2. (2 boda) Izračunati integral

$$\iint_{P} x \, dP$$
,

pri čemu je P lik omeđen krivuljama $y=0,\ y=\ln x$ i y=x-(e-1) koji se nalazi u prvom kvadrantu.

3. (4 boda) Izračunati

$$\iiint\limits_V (x^2 + y^2) \, dV,$$

pri čemu je V dio kugle $x^2+y^2+z^2\leq 4$ za koji je $z\geq 1.$

4. (**3** boda) Neka je \vec{a} konstantan vektor, a \vec{r} radijvektor proizvoljne točke prostora. Izračunati usmjerenu derivaciju vektorskog polja $\vec{v} = (\vec{a} \cdot \vec{r})r^3\vec{r}$ u smjeru vektora \vec{a} .

5. (2 boda) Izračunati duljinu luka krivulje

$$x = t\sin t + \cos t$$

$$y = t\cos t - \sin t$$

$$z = t$$

od t = 0 do $t = 2\pi$.

6. (2 boda) Neka je S^+ pozitivno orijentirana ploha $x^2 + y^2 + y^2 = 1$, te neka je \vec{a} konstantan vektor, a \vec{r} radijvektor proizvoljne točke prostora. Izračunati

$$\iint_{S^+} (\vec{a} \times \vec{r}) \, d\vec{S}.$$

7. (3 boda) Riješiti jednadžbu

$$xy' - y\left(x\ln\frac{x^2}{y} + 2\right) = 0,$$

koristeći supstituciju $u(x) = \frac{x^2}{y}$.

36

PISMENI ISPIT IZ MATEMATIČKE ANALIZE 2

03. 04. 2002.

1. (2 boda) Funkcija z = z(x, y) je zadana parametarski sa

$$x = \frac{u^2 + v^2}{2}$$

$$y = \frac{u^2 - v^2}{2}$$

$$z = uv.$$

Naći dz u točki T za koju je u = 1, v = 1.

2. (3 boda) Naći i ispitati lokalne ekstreme funkcije

$$f(x,y) = 2x^3 + y^2 - 3x^2y + y.$$

3. (2 boda) Postaviti granice integracije u integralu

$$\iiint\limits_V f(x,y,z)\,dx\,dy\,dz,$$

pri čemu je V tetraedar s vrhovima O(0,0,0), A(-1,1,0), B(1,1,0) i C(0,0,2).

4. (3 boda) U integralu

$$\int_{0}^{1} dx \int_{1-\sqrt{1-x^2}}^{\sqrt{2-x^2}} f(x,y) \, dy$$

izvršiti prijelaz na polarne koordinate.

5. (2 boda) Izračunati

$$\int_{\Gamma} xy\,dx,$$

pri čemu je Γ dio pozitivno orijentirane krivulje $x^2+y^2=4$ od točke $A(\sqrt{2},\sqrt{2})$ do točke $B(-\sqrt{2},-\sqrt{2}).$

6. (4 boda) Korištenjem Greenove formule izračunati

$$\int_{\Gamma} (e^x \sin y - y^2) \, dx + e^x \cos y \, dy,$$

pri čemu je Γ dio krivulje $y = \sqrt{4x - x^2}$ od A(x = 1) do B(x = 3).

Primjedba: Uočiti da krivulja nije zatvorena.

7. (4 boda) Naći krivulje čija svaka tangenta siječe os "y" u točki koja je jednako udaljena od dirališta i od ishodišta koordinatnog sustava.

PISMENI ISPIT IZ MATEMATIČKE ANALIZE 2 13. 06. 2002.

1. (4 boda) Na plohi

$$z = \sqrt{x^2 + 3y^2 + 5}$$

naći točku najbližu točki A(2,4,0).

2. (2 boda) Promijeniti poredak integriranja u dvostrukom integralu

$$\int_{-2}^{2} dx \int_{-\sqrt{4-x^2}}^{\frac{1}{2}x+1} f(x,y) \, dy.$$

3. (4 boda) Izračunati volumen tijela omeđenog plohama $x^2+y^2=2x, \ x^2+y^2=2y, \ z=x+2y, \ z=0.$

4. (3 boda) Izračunati $\Delta(r\vec{r})$, pri čemu je \vec{r} radijvektor, a $r = |\vec{r}|$.

5. (2 boda) Izračunati

$$\int_C y \, ds$$
,

pri čemu je C dio kardioide $r=1+\cos\varphi$ koji se nalazi u prvom kvadrantu.

6. (3 boda) Izračunati

$$\iint_{S^+} \frac{x \, dy \, dz + y \, dx \, dz + z \, dx \, dy}{x^2 + y^2 + z^2} \ ,$$

pri čemu je S^+ dio plohe

$$x = \sqrt{1 - y^2}, \quad 0 \le z \le 1,$$

orijentiran tako da normala na tu plohu zatvara s osi OX kut manji od $\pi/2$.

7. (2 boda) Naći opće rješenje diferencijalne jednadžbe

$$xy' + y = y^2 \ln x.$$

PISMENI ISPIT IZ MATEMATIČKE ANALIZE 2 01. 07. 2002.

1. (3 boda) Naći i ispitati ekstreme funkcije

$$f(x,y) = e^{x-y}(x^2 - 2y^2).$$

2. (3 boda) Izračunati površinu lika određenog nejednadžbama

$$x^{2} + y^{2} \ge x$$
, $x^{2} + y^{2} \le 2x$, $y \ge \frac{x}{\sqrt{3}}$, $y \le x$.

3. (3 boda) Izračunati integral

$$\iiint\limits_{(V)} \frac{x \, dx \, dy \, dz}{(x+y+z+1)^4},$$

pri čemu je (V) tetraedar s vrhovima O(0,0,0), A(1,0,0), B(0,1,0) i C(0,0,1).

- **4.** (2 boda) Izračunati $\Delta(r^3)$, pri čemu je $r = |\vec{r}|$, a \vec{r} radijvektor.
- 5. (4 boda) Izračunati

$$\int_{C} \frac{x^3 \, dy - x^2 y \, dx}{(x^2 + y^2)^2},$$

pri čemu je C dio krivulje $y=2^{-x}$ od točke A(0,1) do točke $B(1,\frac{1}{2})$.

6. (2 boda) Izračunati

$$\iint_{S} (x^2 + y^2) dS ,$$

pri čemu je Sdio plohe $z=x^2+y^2$ za koji je $1\leq z\leq 4.$ Nacrtati sliku!

7. (3 boda) Naći opće rješenje diferencijalne jednadžbe

$$x \, dy - y \ln \frac{y}{x} \, dx = 0.$$

PISMENI ISPIT IZ MATEMATIČKE ANALIZE 2 09. 07. 2002.

- 1. (2 boda) Odrediti točku u ravnini, tako da je zbroj kvadrata udaljenosti te točke do točaka A(1,0), B(1,1) i C(2,2) minimalan.
- 2. (2 boda) Promjenom poretka integracije izračunati

$$\int_{0}^{1} x \, dx \int_{x^{2}}^{1} e^{-y^{2}} dy.$$

3. (4 boda) Izračunati integral

$$\iiint\limits_{(V)} \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dz,$$

pri čemu je (V) određen nejednadžbama $x^2+y^2+z^2\leq 4$ i $x^2+y^2+z^2\leq 4z$.

- **4.** (2 boda) Izračunati div $(r^3\vec{r})$, pri čemu je \vec{r} radijvektor, a $r = |\vec{r}|$.
- 5. (3 boda) Izračunati

$$\oint_C x \, dx + (x+y) \, dy + (x+y+z) \, dz,$$

pri čemu je C presječnica ploha $x^2 + y^2 = a^2 (a > 0)$ i z = x + y, prijeđena u pozitivnom smjeru, gledano iz točke (0,0,1).

6. (3 boda) Izračunati

$$\iint_{S} x \, dS \; ,$$

pri čemu je S dio sfere $x^2 + y^2 + z^2 = R^2$ (R > 0) koji se nalazi u prvom oktantu.

7. (4 boda) Tangenta i normala neke krivulje povučene u bilo kojoj točki M(x,y) te krivulje sijeku os "x" u točkama $T(x_T,0)$ i $N(x_N,0)$, redom. Odredite sve krivulje za koje vrijedi

$$|OM|^2 = x_T \cdot x_N.$$

PISMENI ISPIT IZ MATEMATIČKE ANALIZE 2

30. 08. 2002.

1. (2 boda) Pokažite da funkcija

$$u(x,y) = x^p \varphi\left(\frac{y}{x^2}\right), \quad p \in \mathbf{R},$$

pri čemu je φ derivabilna funkcija, zadovoljava jednadžbu

$$x\frac{\partial u}{\partial x} + 2y\frac{\partial u}{\partial y} = pu.$$

2. (3 boda) Izračunati

$$\iint_{(P)} \frac{x^2 \, dx \, dy}{(x^2 + y^2)^3},$$

pri čemu je (P) lik određen nejednadžbama

$$x^2 + y^2 \ge y$$
, $x^2 + y^2 \le 2y$, $x \ge 0$, $y \ge x$.

3. (3 boda) Izračunati integral

$$\iiint\limits_{(V)} \sqrt{x^2 + y^2 + 1} \, dx \, dy \, dz,$$

pri čemu je (V) područje određeno nejednadžbama

$$y + z \le 4$$
, $x^2 + y^2 \le 16$, $z \ge 0$.

Nacrtati sliku!

- **4.** (**4** boda) Izračunati $\nabla \ln\{re^r + \nabla[r(\vec{a} \times \vec{r})]\}$, pri čemu je \vec{a} konstantan vektor, \vec{r} radijvektor, a $r = |\vec{r}|$.
- 5. (4 boda) Izračunati

$$\int_C y \, ds$$
,

pri čemu je C presječnica ploha $z=x^2+y^2\,$ i $z=5-(x-1)^2-y^2.$

6. (2 boda) Izračunati

$$\oint_C xy^2 \, dy - x^2 y \, dx,$$

pri čemu je C kružnica $x^2+y^2=a^2$ prijeđena u pozitivnom smjeru.

7. (2 boda) Naći opći i singularni integral diferencijalne jednadžbe

$$y = xy' + \sqrt{1 + (y')^2}.$$

PISMENI ISPIT IZ MATEMATIČKE ANALIZE 2 06. 09. 2002.

1. (2 boda) Naći i ispitati lokalne ekstreme funkcije

$$z = -\frac{1}{3}x^3 + x^2 + y^2 + xy - x - 4y.$$

2. (3 boda) Izračunati

$$\iint_{(D)} (x^2 + y^2) \, dx \, dy,$$

pri čemu je (D) dio elipse

$$\left(\frac{x-1}{2}\right)^2 + (y-1)^2 = 1,$$

za koji je $x \ge 1$ i $y \ge 1$.

 ${\bf 3.}~({\bf 4}~{\rm boda})$ Izračunati volumen tijela određenog nejednad
žbama

$$x^{2} + y^{2} + z^{2} \le a^{2}$$
 i $x^{2} + y^{2} \le \frac{az}{2\sqrt{3}}$ $(a > 0)$.

4. (2 boda) Izračunati $(\vec{a} \times \nabla) \times \vec{r}$, pri čemu je \vec{a} konstantan vektor, a \vec{r} radijvektor.

5. (4 boda) Izračunati

$$\int_{C} \frac{1}{x} dx + \frac{1}{y} dy + \frac{1}{z} dz,$$

pri čemu je C dio presječnice ploha

$$x^2 + y^2 = 1$$
 i $z = (x-2)^2 + y^2$

od točke $A(\frac{\sqrt{3}}{2},\frac{1}{2},-2\sqrt{3}+5)$ do točke $B(\frac{1}{2},\frac{\sqrt{3}}{2},3)$. Nacrtati sliku!

6. (3 boda) Izračunati

$$\iint_{S} y \, dS,$$

pri čemu je S dio plohe $y=x^2$ za koji je $y\leq 1$ i $0\leq z\leq 1$.

7. (2 boda) Naći ortogonalne trajektorije familije krivulja xy = a.

PISMENI ISPIT IZ MATEMATIČKE ANALIZE 2

17. 09. 2002.

 ${f 1.}$ (4 boda) Naći kvadar najvećeg volumena čija prostorna dijagonala iznosi D. Koliki je taj volumen?

2. (3 boda) Izračunati površinu lika određenog nejednadžbama $x^2 + y^2 \ge 1$ i $x^2 + y^2 \le \frac{2}{\sqrt{3}}x$.

3. (2 boda) Izračunati

$$\iiint\limits_{(V)} z \, dV,$$

pri čemu je (V) tijelo omeđeno plohama $z=x^2+4y^2\,$ i z=4. Nacrtati sliku!

4. (3 boda) Izračunati

$$\operatorname{div}[(\vec{a} \times \vec{r})f(r)],$$

pri čemu je \vec{a} konstantan vektor, \vec{r} radij
vektor, a fderivabilna funkcija.

5. (3 boda) Izračunati

$$\int_C xy(dy - dx),$$

pri čemu je C dio pozitivno orijentirane kružnice $x^2 + (y+1)^2 = 1$ od točke A(1,-1) do točke B(-1,-1).

6. (3 boda) Izračunati

$$\iint_{S^+} z \, dx \, dy,$$

pri čemu je S^+ vanjska strana elipsoida

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

7. (2 boda) Naći opći integral diferencijalne jednadžbe

$$e^y dx + (xe^y - 2y) dy = 0.$$

PISMENI ISPIT IZ MATEMATIČKE ANALIZE 2

25. 09. 2002.

- 1. (4 boda) Naći i ispitati lokalne ekstreme funkcije f(x,y)=5x+3y uz uvjet $4\sin x=3\cos y$ u području $0< x<\frac{\pi}{2},\ 0< y<\frac{\pi}{2}.$
- 2. (2 boda) Zamjenom poretka integracije izračunati integral

$$\int_{0}^{1} x^{5} dx \int_{x^{2}}^{1} e^{y^{2}} dy.$$

3. (4 boda) Izračunati volumen tijela omeđenog plohama

$$z = 0,$$
 $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ i $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{2x}{a}$.

- **4.** (3 boda) Izračunati rot $[(\vec{a} \cdot \vec{r})f(r)\vec{r}]$, pri čemu je \vec{a} konstantan vektor, \vec{r} radijvektor, a f derivabilna funkcija.
- 5. (3 boda) Izračunati

$$\oint_C \frac{1}{x} \arctan \frac{y}{x} dx + y^3 e^{-y} dy,$$

pri čemu je C pozitivno orijentirana zatvorena krivulja zadana slikom:

- 6. (2 boda) Izračunati površinu dijela plohe $z=x^2+y^2$ za koji je $z\leq 4$. Nacrtati sliku!
- 7. (2 boda) Naći opći integral diferencijalne jednadžbe

$$(x + 2y + 1) dx + (x + 3y) dy = 0.$$

PISMENI ISPIT IZ MATEMATIČKE ANALIZE 2 04. 11. 2002.

1. (3 boda) Naći ekstreme funkcije

$$z(x,y) = x^4 + y^4 - 2x^2 - 4xy - 2y^2.$$

2. (2 boda) Izračunati integral

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} e^{-x^2-y^2} \, dx \, dy.$$

3. (3 boda) Izračunati

$$\Delta(\sin r)$$
,

pri čemu je \vec{r} radijvektor, a $r = |\vec{r}|$.

4. (3 boda) Izračunati volumen tijela omeđenog plohama

$$x^2 + y^2 + z^2 = 4$$
 i $x^2 + y^2 = 3z$.

5. (4 boda) Izračunati integral

$$\int_{K} (y-2) \, ds,$$

pri čemu je K presjek paraboloida $4(x-1)^2+y^2=4z$ s ravninom z=y, uz uvjet y>2.

6. (3 boda) Izračunati integral

$$\iint_{S^+} z \, dx \, dy + x \, dz \, dx + y \, dy \, dz,$$

pri čemu je S^+ gornja strana ravnine 2x+z=4 u prvom oktantu, određene uvjetom 0 < y < 4.

7. (2 boda) Riješiti diferencijalnu jednadžbu

$$(x^2 + y^2 + 2x) dx + 2xy dy = 0.$$

12 Rješenja pismenih ispita iz 2002. godine

RJEŠENJA PISMENOG ISPITA IZ MATEMATIČKE ANALIZE 2 28. 01. 2002.

1. Stacionarne točke: $T_k(k\pi, 0), k \in \mathbf{Z}$.

k paran $\Rightarrow T_k$ je lokalni maksimum.

k neparan $\Rightarrow T_k$ je lokalni minimum.

2.

$$\frac{\partial u}{\partial x} = (y+2z)(x+y)^{y+2z-1}, \qquad \frac{\partial u}{\partial y} = (x+y)^{y+2z} \left(\ln(x+y) + \frac{y+2z}{x+y} \right),$$

$$\frac{\partial u}{\partial z} = 2(x+y)^{y+2z} \ln(x+y).$$

3.

$$I = \frac{32\pi}{3}.$$

4.

$$3r(\vec{a}\cdot\vec{r})\vec{r}+r^3\vec{a}.$$

5.

$$I = \sqrt{10} - 2$$
.

6.

$$S = \frac{\pi}{6}(17\sqrt{17} - 1).$$

7.

$$x = Cy^3 - y^2.$$

RJEŠENJA PISMENOG ISPITA IZ MATEMATIČKE ANALIZE 2 15. 02. 2002.

1.

$$n \dots \frac{x-1}{4} = \frac{y-\frac{5}{2}}{-5} = \frac{z-\frac{3}{2}}{3}.$$

2.

$$I = \frac{5}{12} - \frac{e}{2} + \frac{e^2}{4}.$$

3.

$$I = \frac{53\pi}{30}.$$

4.

$$(\vec{a} \cdot \vec{r})r^3\vec{a}_0 + r^3a[3(\vec{a}_0 \cdot \vec{r}_0)^2 + 1]\vec{r}.$$

5.

$$s = \frac{1}{2} \operatorname{arsh}(2\pi) + \frac{1}{4} \operatorname{sh}(2 \operatorname{arsh}(2\pi)).$$

$$I=0.$$

7.

$$C \ln \frac{x^2}{y} = e^{-x}.$$

RJEŠENJA PISMENOG ISPITA IZ MATEMATIČKE ANALIZE 2 $03.\ 04.\ 2002.$

1.

$$dz|_T = dx.$$

2. Stacionarne točke: $T_1(0, -\frac{1}{2}), T_2(1, 1), T_3(-\frac{1}{3}, -\frac{1}{3}).$

U T_1 funkcija ima lokalni minimum.

U T_2 i T_3 funkcija nema ekstrem.

3.

$$\int_{-1}^{0} dx \int_{-x}^{1} dy \int_{0}^{2-2y} f(x, y, z) dz + \int_{0}^{1} dx \int_{x}^{1} dy \int_{0}^{2-2y} f(x, y, z) dz.$$

4.

$$\int_{0}^{\pi/4} d\varphi \int_{0}^{2\sin\varphi} f(r\cos\varphi, r\sin\varphi) r \, dr + \int_{\pi/4}^{\pi/2} d\varphi \int_{0}^{\sqrt{2}} f(r\cos\varphi, r\sin\varphi) r \, dr.$$

5.

$$I = \frac{4\sqrt{2}}{3}.$$

6.

$$I = (e^3 - e)\sin\sqrt{3} - \frac{22}{3}.$$

7.

$$x^2 + y^2 = Cx.$$

RJEŠENJA PISMENOG ISPITA IZ MATEMATIČKE ANALIZE 2 13. 06. 2002.

1.

$$F(x,y,z) = (x-2)^2 + (y-4)^2 + z^2 + \lambda(x^2 + 3y^2 + 5 - z^2), \quad z > 0$$

Minimum u točki T(1,1,3).

2.

$$I = \int_{-2}^{0} dy \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} f(x,y) dx + \int_{0}^{2} dy \int_{2y-2}^{2} f(x,y) dx$$

3.
$$V = \frac{3}{2} \left(\frac{\pi}{2} - 1 \right)$$

4. $\Delta(r\vec{r}) = 4\vec{r_0}$

5.
$$\int_{C} y \, ds = \frac{2\sqrt{2}}{5} (4\sqrt{2} - 1).$$

6. $I = \frac{\pi^2}{4}$

7. Bernoullijeva diferencijalna jednadžba.

$$y(x) = \frac{1}{\ln x + 1 + Dx}$$

RJEŠENJA PISMENOG ISPITA IZ MATEMATIČKE ANALIZE 2 01. 07. 2002.

1. Stacionarne točke: $T_1(0,0)$, $T_2(-4,-2)$. Nema ekstrema u $T_1(0,0)$. Maksimum u $T_2(-4,-2)$, $f_{\max}=8e^{-2}$.

2.

$$P = \frac{\pi + 6 - 3\sqrt{3}}{16}.$$

3.

$$I = -\frac{1}{9} + \frac{1}{6} \ln 2.$$

4.

$$\Delta(r^3) = 12r.$$

5.

 $\frac{\partial P}{\partial u} \equiv \frac{\partial Q}{\partial x} \Rightarrow$ krivuljni integral ne ovisi o putu integracije

$$I = \frac{1}{2} \arctan \frac{1}{2} - \frac{\pi}{4} + \frac{1}{5}$$

6.

$$\iint_{S} (x^2 + y^2) \, dS = \frac{\pi}{16} \left[\frac{2}{5} (289\sqrt{17} - 25\sqrt{5}) - \frac{2}{3} (17\sqrt{17} - 5\sqrt{5}) \right].$$

7. Homogena diferencijalna jednadžba. Opće rješenje je: $y = xe^{Cx+1}$, $C \in \mathbf{R}$.

RJEŠENJA PISMENOG ISPITA IZ MATEMATIČKE ANALIZE 2 09. 07. 2002.

1. Minimum u $T\left(\frac{4}{3},1\right)$.

2.
$$I = \frac{1}{4} \left(1 - e^{-1} \right).$$

$$I = \frac{24\pi}{5}.$$

4.
$$\nabla(r^3\vec{r}) = 6r^3.$$

5.
$$I = a^2 \pi.$$

$$\iint_{S} x \, dS = \frac{R^3 \pi}{4}.$$

7. Opće rješenje: $y = \frac{Cx^2}{2} - \frac{1}{2C}$, $x \neq 0$, $C \neq 0$.

RJEŠENJA PISMENOG ISPITA IZ MATEMATIČKE ANALIZE 2 30. 08. 2002.

1.
$$\frac{\partial u}{\partial x} = px^{p-1}\varphi\left(\frac{y}{x^2}\right) - 2x^{p-3}y\varphi'\left(\frac{y}{x^2}\right), \qquad \frac{\partial u}{\partial y} = x^{p-2}\varphi'\left(\frac{y}{x^2}\right),$$
$$x\frac{\partial u}{\partial x} + 2y\frac{\partial u}{\partial y} = pu.$$

$$I = \frac{3}{8} \left(1 - \frac{\pi}{4} \right).$$

3.
$$I = \frac{8\pi}{3}(17\sqrt{17} - 1).$$

4.
$$\nabla \ln\{re^r + \nabla[r(\vec{a}\times\vec{r})]\} = \frac{1+r}{r}\vec{r_0}.$$

$$\int_C y \, ds = 0.$$

6.
$$I = \frac{a^4\pi}{2}.$$

7. Clairautova diferencijalna jednadžba.

Opći integral:
$$y = xC + \sqrt{1 + C^2}$$

Opći integral: $y = xC + \sqrt{1 + C^2}$ Singularni integral: $x^2 + y^2 = 1$, $y \ge 0$.

RJEŠENJA PISMENOG ISPITA IZ MATEMATIČKE ANALIZE 2 06. 09. 2002.

1. Stacionarne točke: $T_1(2,1), T_2\left(-\frac{1}{2}, \frac{9}{4}\right)$.

U T_1 funkcija nema ekstrem.

U T_2 funkcija ima lokalni minimum, $z_{\min} = -\frac{205}{48}$.

2.

$$I = \frac{13\pi}{8} + 4.$$

3.

$$I = \pi a^3 \left(\frac{2}{3} - \frac{5\sqrt{3}}{16}\right).$$

4.

$$(\vec{a} \times \nabla) \times \vec{r} = -2\vec{a}.$$

5.

$$I = \ln \frac{3}{5 - 2\sqrt{3}}.$$

6.

$$I = \frac{1}{128} \operatorname{sh}(4 \operatorname{arsh} 2) - \frac{1}{32} \operatorname{arsh} 2.$$

7. $y^2 - x^2 = C$, $C \in \mathbf{R}$ (familija hiperbola).

RJEŠENJA PISMENOG ISPITA IZ MATEMATIČKE ANALIZE 2 17. 09. 2002.

1.
$$T_{\max}\left(\frac{D\sqrt{3}}{3},\frac{D\sqrt{3}}{3},\frac{D\sqrt{3}}{3}\right), \qquad V_{\max}=\frac{D^3\sqrt{3}}{9}.$$

2.

$$P = \frac{1}{18} \left(3\sqrt{3} - \pi \right).$$

3.

$$I = \frac{32\pi}{3}.$$

4.

$$\operatorname{div}[(\vec{a} \times \vec{r})f(r)] = 0.$$

5.

$$I = \frac{2}{3} - \frac{\pi}{2}.$$

6.

$$I = \frac{4}{3}abc\pi.$$

7. Egzaktna diferencijalna jednadžba. Opći integral: $xe^y-y^2=C,\,C\in\mathbf{R}.$

RJEŠENJA PISMENOG ISPITA IZ MATEMATIČKE ANALIZE 2 25. 09. 2002.

1. Maksimum u točki $T\left(\arcsin\frac{9}{16},\arccos\frac{3}{4}\right)$.

$$I = \frac{1}{12}.$$

$$V = \frac{3ab\pi}{2}.$$

$$rot[(\vec{a} \cdot \vec{r})f(r)\vec{r}] = f(r)(\vec{a} \times \vec{r}).$$

$$I = -\frac{\pi}{4} \ln 2.$$

6.

$$S = \frac{\pi}{6}(17\sqrt{17} - 1).$$

7. Opći integral:

$$C[3(y-1)^2 + 3(y-1)(x+3) + (x+3)^2] = e^{\frac{2\sqrt{3}}{3}\arctan\left(2\sqrt{3}\frac{y-1}{x+3} + \sqrt{3}\right)}, \qquad C \in \mathbf{R}^+.$$

RJEŠENJA PISMENOG ISPITA IZ MATEMATIČKE ANALIZE 2 04. 11. 2002.

1. Stacionarne točke: $T_0(0,0), T_1(\sqrt{2}, \sqrt{2}), T_2(-\sqrt{2}, -\sqrt{2}).$ Nema ekstrema u $T_0(0,0).$

U $T_1(\sqrt{2}, \sqrt{2})$ i $T_2(-\sqrt{2}, -\sqrt{2})$ funkcija ima minimum $z_{\min} = -8$.

2.

$$I = \frac{\pi}{4} \left(1 - \frac{1}{e} \right).$$

3.

$$\Delta(\sin r) = -\sin r + \frac{2}{r}\cos r.$$

4.

$$V = \frac{19\pi}{6}.$$

5.

$$I = 4\sqrt{2} + \frac{2\sqrt{7}}{7}\ln(2\sqrt{2} + \sqrt{7}).$$

6.

$$I = 48.$$

7. Egzaktna diferencijalna jednadžba. Opći integral je

$$xy^2 + \frac{x^3}{3} + x^2 = C.$$

DODATAK

A Tablica derivacija

f(x)	f'(x)	f(x)	f'(x)
c	0	arctg x	$\frac{1}{1+x^2}$
x^{α}	$\alpha x^{\alpha-1}$	$\operatorname{arcctg} x$	$-\frac{1}{1+x^2}$
a^x	$a^x \ln a$	$\operatorname{ch} x$	$\sinh x$
e^x	e^x	$\sinh x$	$\operatorname{ch} x$
$\ln x$	$\frac{1}{x}$	th x	$\frac{1}{\cosh^2 x}$
$\log_a x$	$\frac{1}{x}\log_a e$	$\operatorname{cth} x$	$-\frac{1}{\sinh^2 x}$
$\sin x$	$\cos x$	$\operatorname{arsh} x$	$\frac{1}{\sqrt{x^2+1}}$
$\cos x$	$-\sin x$	$\operatorname{arch} x$	$\frac{1}{\sqrt{x^2-1}}$
tg x	$\frac{1}{\cos^2 x}$	$\operatorname{arth} x$	$\frac{1}{1-x^2}$
$\cot x$	$-\frac{1}{\sin^2 x}$	$\operatorname{arcth} x$	$\frac{1}{1-x^2}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$		
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$		

B Tablica neodređenih integrala

1.	$\int x^{\alpha} dx$	=	$\frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$
2.	$\int \frac{dx}{x}$	=	$\ln x + C$
3.	$\int e^x dx$	=	$e^x + C$
4.	$\int a^x dx$	=	$\frac{a^x}{\ln a} + C$
5.	$\int \sin x dx$	=	$-\cos x + C$
6.	$\int \cos x dx$	=	$\sin x + C$
7.	$\int \frac{dx}{\cos^2 x}$ $\int \frac{dx}{\sin^2 x}$	=	$\operatorname{tg} x + C$
8.	$\int \frac{dx}{\sin^2 x}$	=	$-\operatorname{ctg} x + C$
9.	$\int \sinh x dx$	=	$\operatorname{ch} x + C$
10.	$\int \operatorname{ch} x dx$	=	$\operatorname{sh} x + C$
11.	$\int \frac{dx}{\cosh^2 x}$	=	th x + C
12.	$\int \frac{dx}{\cosh^2 x}$ $\int \frac{dx}{\sinh^2 x}$	=	$-\coth x + C$
13.	$\int \frac{dx}{\sin x}$	=	$\ln \left \operatorname{tg} \left(\frac{x}{2} \right) \right + C$
14.	$\int \frac{dx}{\cos x}$	=	$\ln \left \operatorname{tg} \left(\frac{x}{2} + \frac{\pi}{4} \right) \right + C$
15.	$\int \frac{dx}{x^2 + a^2}$	=	$\frac{1}{a} \arctan\left(\frac{x}{a}\right) + C, a \neq 0$
16.	$\int \frac{dx}{x^2 - a^2}$	=	$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right + C, a \neq 0$
17.	$\int \frac{dx}{\sqrt{a^2 - x^2}}$	=	$\arcsin\left(\frac{x}{a}\right) + C, a \neq 0$
18.	$\int \frac{dx}{\sqrt{x^2 \pm a^2}}$		$ \ln\left x + \sqrt{x^2 \pm a^2}\right + C, a \neq 0 $