1 Theorie

1.1 Wahrscheinlichkeitsraum

1.1.1 Definition

Ein Wahrscheinlichkeitsraum ist ein Tripel (Ω, \mathcal{A}, P) bestehend aus der Grundmenge Ω , einer σ -Algebra $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ und einer Abbildung $P : \mathcal{A} \to [0, 1]$

$$(i) P(\Omega) = 1$$

$$(ii) P(\bigcup_{i} A_{i}) = \sum_{i} P(A_{i}), \text{ mit } A_{i} \cap A_{j} = \emptyset \text{ für } i \neq j$$

Die Elemente von Ω werden elementare Ereignisse und die von \mathcal{A} Ereignisse genannt. Mengen M mit P(M) = 0 werden Nullmengen genannt. Die Abbildung P wird Wahrscheinlichkeitsmaß genannt.

1.1.2 σ -Algebra

Es sei Ω eine Menge und $\mathcal{A} \subset \mathcal{P}(\Omega)$ ein System von Teilmengen (= Ereignissen). \mathcal{A} heißt σ -Algebra (Sigma-Algebra) falls gilt:

(i)
$$\Omega \in \mathcal{A}$$

(ii) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
(iii) $A_i \in \mathcal{A} \Rightarrow \bigcup_i A_i \in \mathcal{A}$

$$(A^c = \Omega \setminus A)$$

1.2 Zufallsvariablen

1.2.1 Zufallsvariable

Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und (Ω', \mathcal{A}') ein Messraum. Eine Zufallsvariable ist eine Abbildung

$$X:\Omega\to\Omega'$$

so dass für alle Ereignisse $A' \in \mathcal{A}'$

$$X^{-1}(A') \in \mathcal{A}$$

ein Ereignis in A ist. Urbilder von Ereignissen sind also Ereignisse.

1.2.2 Messraum

Ein Messraum ist ein Paar (Ω, A) bestehend aus einer Menge Ω und einer Sigma-Algebra $A \subset \mathcal{P}(\Omega)$.

1.2.3 Reelle Zufallsvariable

Unter einer reellen Zufallsvariable verstehen wir eine Zufallsvariable

$$X: \Omega \to \mathbb{R}^n$$

$$X(\omega) := \left(X_1(\omega), \dots, X_n(\omega)\right),$$

wobei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum ist und $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ der \mathbb{R}^n zusammen mit der Borel'schen Sigma-Algebra ist.

1.3 Erwartungswert

1.3.1 Definition

Für eine reelle, integrierbare Zufallsvariable \boldsymbol{X} ist der Erwartungswert definiert durch

$$\mathbb{E}(X) := \int_{\Omega} X \, dP \, .$$

Ist (Ω, \mathcal{A}, P) ein diskreter Wahrscheinlichkeitsraum und $X : \Omega \to \mathbb{R}$ eine eindimensionale reelle Zufallsvariable, so ist

$$\mathbb{E}(X) = \sum_{\omega \in \Omega} X(\omega) \cdot P(\omega)$$

1.3.2 Eigenschaften

Sind $X,Y:\Omega\to\mathbb{R}^n$ reelle, integrierbare Zufallsvariablen und $\alpha,b\in\mathbb{R}$ konstant, so gilt:

$$\mathbb{E}(\alpha \cdot X \pm b \cdot Y) = \alpha \cdot \mathbb{E}(X) \pm b \cdot \mathbb{E}(Y)$$

$$\forall x \in \Omega : X(x) \le Y(x) \Rightarrow \mathbb{E}(X) \le \mathbb{E}(Y)$$

$$X, Y \text{ stoch. unabhängig} \Rightarrow \mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$$

$$\mathbb{E}(1_A) = P(A)$$

1.4 Varianz

Für eine reelle Zufallsvariable \boldsymbol{X} ist die Varianz definiert durch

$$\mathbb{V}(X) := \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

1.5 Verteilungen

1.5.1 Normalverteilung

Die Normalverteilung $N(\mu, \sigma^2)$ auf \mathbb{R} ist definiert durch

Dichte:
$$f(x) := \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

 \Rightarrow Verteilung: $F(x) = N(\mu, \sigma^2)(-\infty, x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{t-\mu}{\sigma})^2}dt$

Erwartungswert und Varianz bei $X \sim N(\mu, \sigma^2)$:

$$\mathbb{E}(X) = \mu$$
$$\mathbb{V}(X) = \sigma^2$$

1.5.2 Verteilungsfunktion

Für eine reelle Zufallsvariable X heißt

$$F_X : \Omega \to [0, 1]$$

 $F_X(x) := P(X \le x) := P_X((-\infty, x)) = P(X^{-1}(-\infty, x))$

Verteilungsfunktion von X.

1.5.3 Gleichverteilung

Die Gleichverteilung U(a,b) auf einem Intervall $(a,b) \subset \mathbb{R}$ ist definiert durch

Dichte:
$$f(x) := \frac{1_{(a,b)}}{|b-a|}$$

Verteilung: $F(x) = P_f((-\infty, x)) = \int_{-\infty}^{x} \frac{1_{(a,b)}}{|b-a|} dt$

$$= \begin{cases} 0 & \text{für } x \le a \\ \frac{x-a}{|b-a|} & \text{für } a \le x \le b \\ 1 & \text{für } x \ge b \end{cases}$$

Erwartungswert und Varianz bei $X \sim U(\alpha,b)$:

$$\mathbb{E}(X) = \frac{a+b}{2}$$

$$\mathbb{V}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \frac{1}{3} \frac{b^3 - a^3}{b-a} - \left(\frac{a+b}{2}\right)^2$$

$$= \frac{1}{12}(b-a)^2$$

1.5.4 Dichte

Sei $\Omega \subset \mathbb{R}^n$ und (Ω, \mathcal{A}) ein Messraum, wobei alle $A \in \mathcal{A}$ Lebesgue-messbar sind. Eine Funktion $f: \Omega \to \mathbb{R}$ heißt Dichte, falls für ihr Lebesgue-Integral $\int_{\Omega} f d\mu = 1$ gilt.