MATEMÁTICA FINANCEIRA (CONTINUAÇÃO...)

Referência:

MOTA, R.R; CALÔBA, G.M. Análise de investimentos.

São Paulo: Atlas, 2009.

Capítulo 2

O PRINCÍPIO DA EQUIVALÊNCIA

O princípio da equivalência baseia-se no fato de que o dinheiro muda de valor no decorrer do tempo. Assim, uma determinada quantia teria significados econômicos diferentes em épocas diferentes, ainda que em ambiente não inflacionário.

A partir desse raciocínio, podemos imaginar uma outra quantia, situada em época futura, que tenha o mesmo significado econômico, o mesmo valor, que certa quantia conhecida no presente. Em outras palavras, um Valor Futuro (**FV**) equivalente ao Valor Presente (**PV**) conhecido.

Da mesma forma, podemos imaginar que exista, no presente, uma quantia com o mesmo valor que outra quantia conhecida no futuro, ou prevista. Em outras palavras, um Valor Presente equivalente ao Valor Futuro conhecido ou previsto.

JUROS

A diferença entre o Valor Futuro e o Valor Presente é a parcela correspondente aos juros (J).

$$FV = PV + J$$

Os juros podem ser definidos livremente como o aluguel do capital.

Existem várias justificativas para os juros, entre elas podemos citar a teoria da produtividade marginal do capital: o capital, associado aos outros fatores de produção, é, também produtivo. Como o capital é, então, um dos fatores de produção, os juros correspondem à remuneração do fator capital, da mesma forma, por exemplo, que os salários remuneram o fator trabalho.

JUROS

Esse conceito vem de uma taxa de juros, comumente denominada de i.

Essa taxa quantifica a remuneração relativa de capital. Dado que FV é a quantidade de capital obtida pelo investimento PV realizado em dado período de tempo, i representa a taxa de juros a cada período de tempo.

Geralmente multiplica-se i por 100 e toma-se o valor em porcentagem, como comumente vê-se em rendimentos de fundos de investimento (2% a.m., 10% a.a., etc).

Existem algumas formas de capitalização, ou seja, cálculo dos valores futuros FV.

JUROS SIMPLES

A capitalização simples é um regime de cálculo de juros (J) em que estes são definidos, em cada período, como uma parte de um mesmo principal. Este principal é o capital (C) da operação financeira. Os juros são, então, obtidos pela aplicação de uma porcentagem ou taxa, a taxa de juros (i) sobre este principal.

Como sabemos,

$$p = P \cdot i$$

Logo,

$$J = C \cdot i$$

Para obter o total de juros produzidos em certo número (n) de períodos, fazemos:

$$J = C \cdot i \cdot n$$

Combinando-se as duas fórmulas, temos a definição de Montante:

$$M = C + J \implies M = C + C \cdot i \cdot n \implies M = C \cdot (1 + i \cdot n)$$

JUROS SIMPLES - EXEMPLO

Qual o montante equivalente a R\$ 100,00 capitalizados a 50% a.a. em cinco anos?

Solução:

Tem-se, PV ou C = 100 e i = 50% a.a. É possível calcular diretamente:

$$M = 100 \cdot (1 + 0.50 \cdot 5) = R$350.00$$

OU

$$J = C \cdot i \cdot n = 100 \cdot 0,50 \cdot 5 = 250$$

 $M = C + J = 100 + 250 = 350$

JUROS SIMPLES - EXEMPLO

A tabela abaixo apresenta (que pode facilmente ser gerada no Excel) apresenta a capitalização ao longo do período de cinco anos.

Tabela 1 – Capitalização por Juros Simples

Período (anos)	Valor no início do período	Juros do período	Valor fim em cada período
0	0	0	100
1	100	50	150
2	150	50	200
3	200	50	250
4	250	50	300
5	300	50	350

Pode-se observar que os juros são iguais para todos os períodos. Os Juros Simples, em geral, são aplicados em operações de curto prazo.

JUROS SIMPLES

As taxas de juros podem ser classificadas em proporcionais e equivalentes.

Taxas proporcionais são aquelas que se relacionam com os prazos a que se referem formando uma proporção. Assim, a taxa de 24% ao ano é proporcional a 12 % ao semestre, a 2% ao mês, etc.

Taxas equivalentes são aquelas que produzem o mesmo resultado quando aplicadas pelo mesmo prazo. No Regime de Capitalização Simples, as taxas proporcionais são equivalentes.

Assim, se aplicarmos um capital a 5% ao mês durante dois anos, iremos obter a mesma quantidade de juros que obteríamos aplicando por dois anos esse capital a 10 % ao bimestre, a 30% ao semestre ou a 60% ao ano.

DESCONTO SIMPLES

O Desconto Simples Comercial (d_c) , equivale aos juros simples calculados sobre o Valor Nominal (\mathbf{N}) do título. Da fórmula dos juros simples:

$$J = C \cdot i \cdot n$$

Substituiremos J por d_c e C por N, assim temos:

$$d_c = N \cdot i \cdot n$$

DESCONTO SIMPLES - EXEMPLO

Calcular o desconto comercial de um título de R\$ 500,00, descontado 27 dias antes do vencimento, à taxa de desconto de 5% a.m.

Comentário: Como o prazo não está em uma unidade de tempo compatível com o período de capitalização da taxa, é necessário expressá-lo em função dessa nova unidade de tempo.

$$N = 500$$

$$i = 0,05 \text{ a.m.}$$

$$n = 27 \text{ dias } \Rightarrow n = \frac{27}{30}$$

Então:

$$d_c = 500 \cdot 0.05 \cdot \frac{27}{30} = R\$ 22,50$$

JUROS COMPOSTOS

No Regime de Capitalização Composta, os juros são sempre calculados sobre o valor bruto do período anterior, ao contrário do que ocorre no Regime de Capitalização Simples. Nesse regime o capital é sempre o Montante (**M**) ou Valor Futuro do período anterior.

Partindo de um certo Capital Inicial, o montante no primeiro período é dado por:

$$M_1 = C + C \cdot i = C \cdot (1+i)$$

Para o segundo período, temos:

$$M_2 = M_1 + M_1 \cdot i = M_1 \cdot (1+i) = C \cdot (1+i) \cdot (1+i)$$

= $C \cdot (1+i)^2$

JUROS COMPOSTOS

Generalizando, temos:

$$M_n = C \cdot (1+i)^n$$

Ao trabalhar com juros compostos, é mais simples obter o montante e depois subtrair o capital inicial para obter o valor dos juros. Assim:

$$J = FV - PV$$

$$J = C \cdot (1+i)^n - C$$

Finalmente,

$$J = C \cdot [(1+i)^n - 1] \longrightarrow \begin{array}{c} \text{Juros acumulados} \\ \text{no período } n \end{array}$$

JUROS COMPOSTOS - EXEMPLO

Voltando ao exemplo anterior: Qual o montante equivalente a R\$ 100,00 capitalizados a 50% a.a. em cinco anos, a juros compostos?

$$M_1 = C \cdot (1+i) = 100 \cdot (1+0.5) = 150.00$$

 $M_2 = M_1 + M_1 \cdot i = 150 + 150 \cdot 0.5 = 225.00$
:

Período (anos)	Saldo devedor no início do período	Juros do período	Saldo devedor fim do período
0	0	0	100,00
1	100,00	50,00	150,00
2	150,00	75,00	225,00
3	225,00	112,50	337,50
4	337,50	168,75	506,25
5	506,25	253,12	759,37

JUROS COMPOSTOS - EXEMPLO

OU...

$$M_5 = C \cdot (1+i)^5$$

$$M_5 = 100 \cdot (1 + 0.5)^5 = 759.37$$

Os juros acumulados nesse período foram:

$$J = C \cdot [(1+i)^n - 1]$$

$$J = 100 \cdot [(1+0.5)^5 - 1] = 659.37$$

DESCONTO COMPOSTOS

Como vimos, o desconto é a operação inversa da capitalização. Enquanto a operação de capitalização agrega, a cada período, os juros ao capital inicial ou Valor Presente para produzir o montante ou Valor Futuro, a operação de desconto retira, a cada período, os juros de um determinado Valor Futuro para produzir o Valor Presente daquele período.

Usando a fórmula do montante, basta isolarmos no primeiro membro do capital:

$$C = \frac{M}{(1+i)^n}$$

DESCONTO COMPOSTOS - EXEMPLO

Calcular o valor atual de um título de R\$ 20.000,00 descontado um ano antes do vencimento à taxa de desconto bancário composto de 5% ao trimestre, capitalizável trimestralmente.

$$C = \frac{M}{(1+i)^n}$$

$$C = \frac{20000}{(1+0.05)^4} = 19.999,87$$

JUROS COMPOSTOS

A exemplo do que vimos em juros simples, as taxas podem ser classificadas em **proporcionais** e **equivalentes**.

Porém, ao contrário do que ocorre nos juros simples, no Regime de Capitalização Composta as taxas proporcionais **não são** equivalentes. Isso ocorre porque, nesse regime, os juros não são calculados sempre sobre o mesmo capital inicial, mas sim sobre o montante do período anterior.

Como as taxas incidem, a cada período, sobre um capital diferente, a taxa **equivalente** ao fim de um certo número de períodos não pode ser simplesmente o resultado do produto da taxa ao período pelo número de períodos, como uma taxa **proporcional.**

TAXAS DE JUROS NOMINAIS

É comum que os contratos financeiros apresentem a taxa de juros relativa a um período de tempo (geralmente ao ano), chamado de **período financeiro**. Porém para os cálculos considera-se a incidência dos juros em um período diferente (geralmente ao mês), chamado de **período de capitalização**.

O cálculo, nesse caso, é feito com a utilização da taxa no período de capitalização **proporcional** à taxa contratada no período financeiro.

Por exemplo, 10% a.a. capitalizados mensalmente:

taxa contratada: 10% a.a. período financeiro: um ano

capitalização:mensal período de capitalização: um mês

taxa proporcional no período de capitalização: 10% ÷ 12 = 0,83% a.m.

TAXAS DE JUROS NOMINAIS E EFETIVAS

Sabemos, no entanto, que por se tratar do regime de capitalização composta, o resultado obtido será diferente do resultado indicado pela taxa contratada.

Assim, a taxa contratada de 10% a.a. é apenas uma taxa anual **proporcional** à taxa no período de capitalização, é uma taxa meramente **nominal**, pois não corresponde ao resultado da operação.

A taxa que realmente reflete o custo financeiro anual da operação é a taxa anual **equivalente** a 0,83% a.m.

Podemos calculá-la usando:

$$i_{eq} = (1+i_n)^{\frac{eq}{n}} - 1$$

Em que:

 i_{eq} — taxa equivalente i_n — taxa nominal do período de capitalização

TAXAS DE JUROS NOMINAIS E EFETIVAS

Nesse caso, temos:

$$i_{eq} = (1 + 0,0083)^{\frac{12}{1}} - 1$$

 $i_{eq} = 0,1043 = 10,43\% \ a. \ a.$

Esta taxa de 10,43% a.a. é a taxa **efetiva** da operação e corresponde ao custo anual da operação, diferentemente da taxa **nominal** de 10% a.a.

FLUXOS DE CAIXA

- Como vimos, as operações de Desconto e Capitalização são operações inversas.
- Isso significa que, capitalizando um determinado valor presente (PV) por um certo número de períodos (n) a uma determinada taxa (i), obtendo, assim, um valor futuro (FV), se descontarmos esse valor futuro (FV) à mesma taxa (i), pelo mesmo número de períodos (n), iremos obter o mesmo valor presente (PV).
- Esse raciocínio ilustra bem o princípio fundamental da matemática financeira: o Princípio da Equivalência.

FLUXOS DE CAIXA

 Os fluxos de caixa, ou seja, os fluxos monetários de entrada e saída de capital, podem ser representados através do diagrama:

 As setas positivas (voltadas para cima) indicarão entrada de dinheiro no caixa e as setas negativas (voltadas para baixo) indicarão sua saída.

FLUXOS DE CAIXA

 O tempo 0 indica o momento presente e os números no eixo horizontal indicam o número de períodos de capitalização à frente do inicial. Um exemplo é apresentado abaixo:

