Problem 2

The assumptions and requirements for the function

 x^y

as per $ISO/IEC/IEEE\ 29148$ standards.

2.1 Assumptions

- Assumption 1
 - ID: ASSUMP1
 - Version: 1.0
 - Type: functional
 - Owner: Pavit Srivatsan
 - PRIORITY: 1
 - Difficulty: Easy
 - DESC: fractional inputs are entered as double values
 - Rationale: when input base or exponent value equals 2/3, it must be expressed as 0.67
- Assumption 2
 - ID: ASSUMP2
 - Version: 1.0
 - Type: functional
 - Owner: Pavit Srivatsan
 - PRIORITY: 1
 - Difficulty: medium
 - DESC: The output of larger values of exponent and base are expressed in terms of exponents
 - Rationale: when input is 100 raised to 100, the output is expressed as 1.9047931533522278E25
- Assumption 3
 - ID: ASSUMP3
 - Version: 1.0
 - Type: functional
 - Owner: Pavit Srivatsan
 - PRIORITY: 2
 - Difficulty: High
 - DESC: Users enter whole numbers and rational numbers
 - Rationale: Irrational numbers are not handled by the code. For Example: π , $\sqrt{2}$
- Assumption 4
 - ID: ASSUMP4
 - Version: 1.0
 - Type: functional

- Owner: Pavit Srivatsan

PRIORITY: 3Difficulty: Easy

- DESC: Mathematical symbols such as infinity, indeterminate are represented in words

– Rationale: Symbols such ∞ are represented in words - infinity

2.2 Functional Requirements

- Requirement 1
 - ID: FUNR1
 - Version: 1.0
 - Type: functional
 - Owner: Pavit Srivatsan
 - PRIORITY: 1Difficulty: Easy
 - DESC: The arguments passed to the function x power y shall be valued within $\propto to+\propto$ and fractions are expressed as double values.
 - Rationale:when x = 2.2, y = 4.45 where x expressed in radians.
- Requirement 2
 - ID: FUNR2
 - Version: 1.0
 - Type: functional
 - Owner: Pavit Srivatsan
 - PRIORITY: 2
 - Difficulty: Easy
 - DESC: The function shall return the value 1 when any base value is raised to the power zero
 - Rationale: 10 raised to the power 0 returns 1
- Requirement 3
 - ID: FUNR3
 - Version: 1.0
 - Type: functional
 - Owner: Pavit Srivatsan
 - PRIORITY: 2
 - Difficulty: Easy
 - DESC: The function shall return zero when base value zero is raised to any exponent value
 - Rationale: 0 raised to the power 10 returns 0
- Requirement 4
 - ID: FUNR4
 - Version: 1.0

- Type: functional

- Owner: Pavit Srivatsan

- PRIORITY: 2

- Difficulty: Medium

- DESC: The function shall accept only numerical values as specified in the domain

 Rationale: string values, numbers with special characters, special characters are not allowed as inputs and an appropriate error message is displayed

Problem 3

Pseudocode and Algorithm

Calculate: $f(x,y) = x^y$

ALGORITHM 1: Iterative algorithm to calculate x^y

1. function **power_function_iterative**(x,y)

in: double number x,y

out: double number result

2. $result \leftarrow 1$

3. $temp \leftarrow 1$

4. for $temp \leq y$ do

5. $result \leftarrow result * x$

6. $temp \leftarrow temp + 1$

7. end for

8. return result

The output is stored in result, which is initially set to 1. It is then looped from 1 to y, x number of times, incremented by one on each iteration and on each iteration we multiply result by x. At the end of the loop value of result is equal to x^y .

ALGORITHM 2: Recursive Divide and Conquer algorithm to calculate x^y

```
    function power_function_recursive(x,y)
    in: double number x,y
    out: double number result
    power ← exponent_helper(x,y)
    result = power
    return result
```

```
1. function exponent_helper(x,y)
in: double number x, y
out: double number sum
2. if x < 0 then
        x \leftarrow 1.0/x
3.
4.
        y \leftarrow -y
5.
        return exponent\_helper(x, y)
6. else if y = 0 then
        return 1.0
7.
8. else if y = 1 then
9.
        return x
10. else if y \mod 2 = 0 then
11.
         y \leftarrow y * y
12.
         y \leftarrow y/2
13.
         return exponent\_helper(x, y)
14. else
15.
         x \leftarrow x * x
16.
         y \leftarrow y - 1
17.
         y \leftarrow y/2
         return exponent\_helper(x, y)
18.
19. end if
```

A helper function called exponent_helper is defined which calculates x^y . In the base case when y = 0, we return 1, otherwise when y = 1 we return x. When x is even we recurse on x = x * x and y = y/2. In case when x is odd we recurse on x = x * x and y = (y - 1)/2. In the end, in our main function power_function_recursive we multiply the result of exponent_helper to the value of a and return our result.

Advantages and Disadvantages

Algorithm 1:

Advantages:

- 1. In terms of space complexity, iterative algorithms don't suffer from stack overflow because all operations are done on the heap.
- 2. They are easy to comprehend by humans and have better readability. Disadvantage:
- 1. The time complexity of the iterative algorithm is O(n), hence it is not very efficient for larger inputs in terms of time.
- 2. Proper terminating condition for loop is important or else it might lead to infinite looping.

Algorithm 2:

Advantages:

- 1. The time complexity of the recursive algorithm is O(logn). This recursive algorithm is optimized (tail recursive) so that we don't get stack overflow error and it handles large inputs better.
- 2. Recursion has higher maintainability than looping. Handling the base case properly requires little or no modifications.

Disadvantages:

- 1. Due to the continuous allocation of memory space leading to a stack overflow, efficiency is significantly affected
- 2. It is difficult to comprehend. A certain level of expertise is required for understanding it vividly.

Conclusion

Recursive algorithm which is based on Divide and Conquer Algorithmic Strategy is preferred over iterative algorithm

References

- [1] TutorialsPoint, https://www.tutorialspoint.com/java/lang/math_pow.htm
- [2] GeeksforGeeks, https://www.geeksforgeeks.org/write-a-c-program-to-calculate-powxn/
- [3] MathBitsNotebook, https://mathbitsnotebook.com/Algebra1/FunctionGraphs/FNGTypeExponential.html