Introduction to Algorithms

Main Objective: Design Efficient Algorithms that finds optimum solutions in the Worst Case

Defining Efficiency

"Runs fast on typical real problem instances"

Pros:

- Sensible,
- Bottom-line oriented

Cons:

- Moving target (diff computers, programming languages)
- Highly subjective (how fast is "fast"? What is "typical"?)

Measuring Efficiency

Time ≈ # of instructions executed in a simple programming language

```
only simple operations (+,*,-,=,if,call,...)
each operation takes one time step
each memory access takes one time step
no fancy stuff (add these two matrices, copy this long
string,...) built in; write it/charge for it as above
```

Time Complexity

Problem: An algorithm can have different inputs

Solution: The complexity of an number **T(N)**, the "time" the c'size **N**.

On which

一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的(渐近时间复杂度),亦即考察输入值大小趋近无穷时的情况。

当n很大时,你可以把它想象成10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了。

Mathematically,

T is a function that maps positive integers giving problem size to positive integers giving number of steps

Time Complexity (N)

Worst Case Complexity: max # steps algorithm takes on any input of size N

This Couse

Average Case Complexity: avg # steps algorithm takes on inputs of size N

Best Case Complexity: min # steps algorithm takes on any input of size N

Why Worst-case Inputs?

- Analysis is typically easier
- Useful in real-time applications
 e.g., space shuttle, nuclear reactors)
- Worst-case instances kick in when an algorithm is run as a module many times
 - e.g., geometry or linear algebra library
- Useful when running competitions e.g., airline prices
- Unlike average-case no debate about the right definition

Time Complexity on Worst Case Inputs

O-Notation

Given two positive functions f and g

- f(N) is O(g(N)) iff there is a constant c>0 s.t.,
 f(N) is eventually always ≤ c g(N)
- f(N) is Ω(g(N)) iff there is a constant ε>0 s.t.,
 f(N) is ≥ ε g(N) for infinitely

f(N) is ⊕(g(N)) iff there are constants C₁, C₂>0 so that

eventually always $c_1g(N) \le f(N) \le c_2g(N)$

Asymptotic Bounds for common fns

Polynomials:

$$a_0 + a_1 n + \dots + a_d n^d$$
 is $O(n^d)$

Logarithms:

 $\log_a n = O(\log_b n)$ for all constants a, b > 0

- Logarithms: log grows slower than every polynomial For all x > 0, $\log n = O(n^k)$
- $n \log n = O(n^{1.01})$

$O(1) < O(\log n) < O(n) < O(n\log n) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)$

Big-O Complexity Chart

Efficient = Polynomial Time

An algorithm runs in polynomial time if $T(n)=O(n^d)$ for some constant d independent of the input size n.

Why Polynomial time?

If problem size grows by at most a constant factor then so does the running time

- E.g. $T(2N) \le c(2N)^k \le 2^k(cN^k)$
- Polynomial-time is exactly the set of running times that have this property

Typical running times are small degree polynomials, mostly less than N³, at worst N⁶, not N¹⁰⁰

Why it matters?

- #atoms in universe <2²⁴⁰
- Life of the universe < 2⁵⁴ seconds
- A CPU does $< 2^{30}$ operations a second If every atom is a CPU, a 2^n time ALG cannot solve n=350 if we start at Big-Bang.

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Why "Polynomial"?

Point is not that n^{2000} is a practical bound, or that the differences among n and 2n and n^2 are negligible.

Rather, simple theoretical tools may not easily capture such differences, whereas exponentials are qualitatively different from polynomials, so more amenable to theoretical analysis.

- "My problem is in P" is a starting point for a more detailed analysis
- "My problem is not in P" may suggest that you need to shift to a more tractable variant