I. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset.

A. Data type of all columns in the "customers" table.

Insights: In the data type more string data types

B. Get the time range between which the orders were placed.

ANS:

```
SELECT min(order_purchase_timestamp) as frist_order,
max(order_purchase_timestamp) as last_order FROM `scalar-dsml-sql-
raju.target_SQL.orders`
```


Insights: This market is opened for 2 years from 04/09/2016 and last order placed on 17/09/2018.

C. Count the number of Cities and States in our dataset.

Ans: select count(distinct c.customer_city) cities ,count(distinct c.customer_state) states from `target_SQL.customers` c join `target_SQL.orders` o on c.customer_id=o.customer_id

Query results

JOB INFORMATION RESULTS JSON EXECUTION DETAILS CHART PREVIEW EXECUTION GRAPH

Row cities * states * 4

1 4119 27

Insights: the total number of cities 4119 and 27 states.

II. In-depth Exploration:

A. Is there a growing trend in the no. of orders placed over the past years?

ANS:

select extract(month from order_purchase_timestamp) as month, extract(year from order_purchase_timestamp) as year,

count(*) as no_of_orders from `target_SQL.orders` group by month, year order by year asc, month asc

JOB IN	FORMATION	RESULTS	JS0	N EXECUTION	DETAILS	CHART	PREVIEW	
Row	month ▼	year ▼	h	no_of_orders ▼				
1	9		2016	4				
2	10		2016	324				
3	12		2016	1				
4	1		2017	800				
5	2		2017	1780				
6	3		2017	2682				
7	4		2017	2404				
0	-		2017	2700				
						Results	er page:	5

PERSONAL HISTORY PROJECT HISTORY

Insights: no. of orders in growing trend

B. Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

Ans: select extract(month from order_purchase_timestamp) as month, count(*) as no_of_orders from `target_SQL.orders`

group by month order by month

JSON	RESULTS		JOB INFORMATION	
rs 🔻 /	no_of_order	11	nonth 🔻	Row
8069		1		1
8508		2		2
9893		3		3
9343		4		4
10573		5		5
9412		6		6
10318		7		7
10843		8		8
1205		۵		۵
ECT HISTORY	PROJ	RY	ONAL HISTO	PF

Insights: 7,8 months are peaked in no. of orders placed

C. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs : Dawn7-12 hrs : Mornings13-18 hrs : Afternoon19-23 hrs : Night

ANS:

Insight: afternoon is the most placed orders

PERSONAL HISTORY

PROJECT HISTORY

III. Evolution of E-commerce orders in the Brazil region:

A. Get the month on month no. of orders placed in each state.

Ans: select c.customer_state,extract(month from order_purchase_timestamp) as
month,count(*) as no_of_orders from `target_SQL.customers` c join
`target_SQL.orders` o on c.customer_id=o.customer_id group by 1,2 order by 1,2

JOB IN	FORMATION	RESULTS	JSON E	XECUTION DETAILS
Row	customer_state	▼	month ▼	nooforders ▼
13	AL		1	39
14	AL		2	39
15	AL		3	40
16	AL		4	51
17	AL		5	46
18	AL		6	34
19	AL		7	40
20	AL		8	34
21	AL		9	20
			4.0	

B. How are the customers distributed across all the states?

Ans: select customer_state ,count(*) as no_of_customers from `target_SQL.customers` group by 1 order by 1,2

JOB IN	NFORMATION	RESULTS	JSON	EXECUTION
Row	customer_state	~	no_of_customers	· ×
1	AC			31
2	AL		4	13
3	AM		14	48
4	AP		(58
5	BA		338	30
6	CE		133	36
7	DF		214	40
8	ES		203	33
9	GO		202	20
			_	

IV. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

A. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

```
Ans: select ((lag_value-cost_of_orders)/lag_value )* 100 increase_percentage from (select year,cost_of_orders,lag(cost_of_orders) over (order by year desc) lag_value, from (select extract ( year from order_purchase_timestamp) as year,sum(payment_value) as cost_of_orders from `target_SQL.orders` o join `target_SQL.payments` p on o.order_id=p.order_id where extract ( year from order_purchase_timestamp) in (2017,2018) and extract ( month from order_purchase_timestamp) in (1,2,3,4,5,6,7,8) group by 1

) sub)anothersub order by 1 desc limit 1

JOB INFORMATION RESULTS JSON EXI
```

JOB INFORMATION RESULTS JSON EXTRACTION increase_percentage 1 57.80178913446...

B. Calculate the Total & Average value of order price for each state.

```
Ans: select c.customer_state, sum(price) as total ,Avg(price) as Average from
  `target_SQL.customers` c join `target_SQL.orders` o on o.customer_id=c.customer_id
  join `target_SQL.order_items`as oi on oi.order_id=o.order_id group by 1
```

JOB INFORMATION		RESULIS	JSUN EX	ECUTION DETAILS
Row	customer_state	~	total ▼	Average ▼
1	MT		156453.5299999	148.2971848341
2	MA		119648.2199999	145.2041504854
3	AL		80314.81	180.8892117117
4	SP		5202955.050001	109.6536291597
5	MG		1585308.029999	120.7485741488
6	PE		262788.0299999	145.5083222591
7	RJ		1824092.669999	125.1178180945
8	DF		302603.9399999	125.7705486284
9	RS		750304.0200000	120.3374530874

NOSI

EVECUTION DETAILS

DECLIFE

C. Calculate the Total & Average value of order freight for each state.

```
Ans: select c.customer_state, sum(freight_value) as total ,Avg(freight_value) as
Average from `target_SQL.customers` c join `target_SQL.orders` o on
o.customer_id=c.customer_id join `target_SQL.order_items` as oi on
oi.order_id=o.order_id group by 1
```

JOB INFORMATION		RESULTS	JSON	EXECUTION DETAILS
Row	customer_state ▼		total ▼	Average ▼
1	RN		18860.09999999	35.65236294896
2	CE		48351.58999999	32.71420162381
3	RS		135522.7400000	21.73580433039
4	SC		89660.26000000	21.47036877394
5	SP		718723.0699999	15.14727539041
6	MG		270853.4600000	20.63016680630
7	ВА		100156.6799999	26.36395893656
8	RJ		305589.3100000	20.96092393168
9	GO		53114.97999999	22.76681525932

V. Analysis based on sales, freight and delivery time.

A. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

Do this in a single query.

IOB INFORMATION

Ans: select order_id, ceil(timestamp_diff(order_delivered_customer_date, order_purchase_timestamp, hour)/24) as time_to_delivered,

 $\label{limestamp_diff} $$ (order_estimated_delivery_date, order_delivered_customer_date, hour)/24) $$ as $diff_estimated_delivery from $$$

`target_SQL.orders` order by time_to_delivered

1 7 2 3	order_id ▼ 7a4df5d8cff4090 85de4050331c6c	644cddc86f4	time_to_delivered > null null	diff_estimated_delive null
2 3	35de4050331c6c	644cddc86f4		
			null	null
3 b	5359909123fa0	3c50bdb0cfe		
			null	null
4 d	dba5062fbda3af4	fb6c33b1e04	null	null
5 9	90ab3e7d52544e	c7bc3363c82	null	null
6 fa	a65dad1b0e818	e3ccc5cb0e3	null	null
7 1	ldf2775799eecdf	9dd8502425	null	null
8 6	5190a94657e101	2983a274b8	null	null
9 5	58ce513a55c740	a3a81e8c8b7	null	null

Re

B. Find out the top 5 states with the highest & lowest average freight value.

```
select c.customer_state, avg(freight_value) as highest_average from
`target_SQL.customers` c join `target_SQL.orders` o on o.customer_id=c.customer_id
join `target_SQL.order_items`as oi
on oi.order_id=o.order_id group by 1 order by 2 desc limit 5
```

JOB IN	NFORMATION	RESULTS	JSON	EXECL
Row	customer_state	~	highestaverage	- /1
1	RR		42.98442307692	2
2	PB		42.72380398671	l
3	RO		41.06971223021	l
4	AC		40.07336956521	l
5	PI		39.14797047970)

```
select c.customer_state,avg(freight_value) as lowest_average from
`target_SQL.customers` c join `target_SQL.orders` o on o.customer_id=c.customer_id
join `target_SQL.order_items`as oi
on oi.order_id=o.order_id group by 1 order by 2 asc limit 5
```

JOB IN	IFORMATION	RESULTS		JSON	EXECUTION
Row	customer_state	~	, le	owest_average	- //
1	SP		1	5.14727539041	1
2	PR		2	0.53165156794	1
3	MG		2	0.63016680630	D
4	RJ		2	0.96092393168	3
5	DF		2	1.04135494596	5

C. Find out the top 5 states with the highest & lowest average delivery time.

ANS:

select

```
c.customer_state,avg(ceil(timestamp_diff(order_estimated_delivery_date,order_delive
red_customer_date ,hour)/24)) as highest_average from `target_SQL.customers` c join
`target_SQL.orders` o on o.customer_id=c.customer_id join
`target_SQL.order_items`as oi on oi.order_id=o.order_id group by 1 order by 2 desc
limit 5
```

JOB IN	IFORMATION	RESULTS	JSON	EXECUT
Row	customer_state	~	highest_average	Y /4
1	AC		20.96703296703	
2	RO		19.97802197802	
3	AM		19.85276073619	
4	AP		18.39506172839	
5	RR		18.17391304347	

select

```
c.customer_state,avg(ceil(timestamp_diff(order_estimated_delivery_date,order_delive
red_customer_date ,hour)/24)) as lowest_average from `target_SQL.customers` c join
`target_SQL.orders` o on o.customer_id=c.customer_id join
`target_SQL.order_items`as oi on oi.order_id=o.order_id group by 1 order by 2 asc
limit 5
```


D. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

ANS: select customer_state, avg(timestamp_diff(order_estimated_delivery_date, order_delivered_customer_date, hour)) as A_V from `target_SQL.orders` o join `target_SQL.customers` c on c.customer_id = o.customer_id group by 1

VI. Analysis based on the payments:

A. Find the month on month no. of orders placed using different payment types.

ANS:

```
select payment_type, extract(month from order_purchase_timestamp ) as month,
count(*) as no_of_orders from `target_SQL.payments` p join `target_SQL.orders` o on
o.order_id=p.order_id group by 1,2 order by 2,1
```

JOB INFORMATION		RESULTS	JSON	EXECU.	TION DETAILS
Row	payment_type 🔻	h	month ▼	no.	_of_orders ▼
1	UPI			1	1715
2	credit_card			1	6103
3	debit_card			1	118
4	voucher			1	477
5	UPI			2	1723
6	credit_card			2	6609
7	debit_card			2	82
8	voucher			2	424
9	UPI			3	1942

B. Find the no. of orders placed on the basis of the payment installments that have been paid.

ANS:

 $\begin{tabular}{ll} select count(distinct(order_id)) as installments from `target_SQL.payments` where payment_installments > 0 \\ \end{tabular}$

I	JOB IN	FORMATION		RESULTS	JSON	EXEC
	Row	installments ▼	h			
	1	9943	38			