

ÍNDICE

- 1. Introducción: Motivación, Estado del Arte y Objetivos.
- 2. Software.
- 3. Diseño y Codificación Diagramas.
- 4. Interfaz gráfica y Secuencia de uso.
- 5. Filtros digitales: Histograma, Canny y Difuminado Gaussiano.
- 6. Código Repositorio.
- 7. Documentación del código: Paquete, Clase y Método.
- 8. Métricas.
- 9. Conclusiones: Mejoras, Aprendizaje y Experiencia.

INTRODUCCIÓN - MOTIVACIÓN

- Interfaz Gráfica Usuario: acceder a las funciones de OpenCV.
- Conocer el campo de la vision artificial.
- Motivaciones adicionales: <u>Python</u>.
- Poner en práctica los conocimientos aprendidos.
 - Diferentes paradigmas de programación.

INTRODUCCIÓN – ESTADO DEL ARTE

• Gimp:

- Motores GEGL y GTK+.
- Permite tratar cada objeto de la imagen de forma independiente(Capas).
- Precio: Gratis.

XnView:

- Categorizar y convertir imágenes.
- Trabaja con 400 formatos.
- Precio: Gratis.

Adobe PhotoShop:

- Motor gráfico de Adobe.
- Permite tratar cada objeto de la imagen de forma independiente(Capas).
- Precio: Alto. Solo para profesionales. "Estándar de facto".

INTRODUCCIÓN – OBJETIVOS

- Desarrollar una aplicación que procesa imágenes en tiempo real.
- Herramienta multiplataforma, para estudiantes y profesionales.
- Interfaz gráfica sencilla e intuitiva.
- Proyecto colaborativo e incremental.

SOFTWARE

DISEÑO Y CODIFICACIÓN - DIAGRAMA

DISEÑO Y CODIFICACIÓN - DIAGRAMA

GUI – SECUENCIA DE USO

FILTROS DIGITALES - HISTOGRAMA

FILTROS DIGITALES - CANNY

Canny es compatible con imágenes en grises.

FILTROS DIGITALES – GAUSSIAN BLUR

🔃 Gaussian Configurator	?	×
At least have to select one of the two field	ds.	
Matrix Size: (X, Y)		
X:		
Y:		
Sigmas Value: X, Y		
X:		
Y:	pply]

CÓDIGO

El código se ha compartido en un repositorio llamado bitbucket.

DOCUMENTACIÓN - PAQUETE

El proyecto completo se ha documentado en Inglés. Siguiendo el "PEP 0257 – Docstring Convention".

DOCUMENTACIÓN - CLASE Y MÉTODO

Ejemplo de la documentación de una clase y un método. Siguiendo el "PEP 0257 – Docstring Convention".

MÉTRICAS

- Ficheros creados: 20.
- Numero de clases: 14.
- Líneas de código: 1276.
- Horas de trabajo: 400 + 80 + 10.

CONCLUSIONES - MEJORAS

- Filtros+.
- Ventana con historial "Navigator".
- Objeto "Listener". Filtros compatibles.
- Módulo de idiomas.

CONCLUSIONES - APRENDIZAJE

- Conceptos y definiciones de Visión Artificial.
- Lenguaje Python.
- Librerías OpenCV, Qt, Numpy y Scipy.
- Documentación de un proyecto, "PEP-0257".
- Investigación y corrección de errores.

CONCLUSIONES - EXPERIENCIA

- Toma decisiones: Análisis, Diseño y Codificación.
- Programación con librerías de terceros.
- Superado los obstáculos.
- Cumplido con los objetivos presentados.
- Añadido nuevos elementos:
 - Filtros.
 - Ventana "About us".
 - Log para errores.

FIN

- Rainer Arencibia Hernández
- +34 663 73 79 51
- rainer85ah@gmail.com
- https://www.linkedin.com/in/rainerarencibia

Muchas gracias! ☺

