EDAN95 Applied Machine Learning Lecture 7: Sequence Prediction

Pierre Nugues

Pierre.Nugues@cs.lth.se http://cs.lth.se/pierre_nugues/

November 23, 2020

Outline

In the previous lecture, we used networks to produce one output y per input vector \mathbf{x} , for instance one category per sentence.

Given an input sequence **x**, we will now produce an output sequence: **y**. We will experiment three kinds of neural networks:

- Feed forward
- 2 Recurrent
- Street
 LSTM

In the laboratory assignment, you will use the two last ones.

Motivation

The analysis of sentences often involves the analysis of words.

We can divide it in three main tasks:

- Identify the type of word, for instance noun or verb using the classical grammar;
- 2 Identify a group or segment, for instance are these three words, *Kjell Olof Andersson*,

the name of a person;

Identify the relations between two words: for instance is this group the subject of a verb? This corresponds to parsing, semantic analysis, or information extraction.

We will consider the two first tasks.

This lecture will show you how to solve the first one, part-of-speech tagging, and you will write a program for the second one, named entity recognition (NER), in the next laboratory assignment.

Word Categorization: The Parts of Speech

Sentence:

That round table might collapse

Annotation:

Words	Parts of speech	POS tags		
that	Determiner	DET		
round	Adjective	ADJ		
table	Noun	NOUN		
might	Modal verb	AUX		
collapse	Verb	VERB		

The automatic annotation uses predefined POS tagsets such as the Penn Treebank tagset for English

Ambiguity

Words	Possible tags	Example of use
that	Subordinating conjunction	That he can swim is good
	Determiner	That white table
	Adverb	It is not that easy
	Pronoun	That is the table
	Relative pronoun	The table that collapsed
round	Verb	Round up the usual suspects
	Preposition	Turn round the corner
	Noun	A big round
	Adjective	A round box
	Adverb	He went round
table	Noun	That white table
	Verb	I table that
might	Noun	The might of the wind
	Modal verb	She might come
collapse	Noun	The collapse of the empire
	Verb	The empire can collapse

Training Sets: The CoNLL Format

The CoNLL format is a tabular format to distribute annotated texts.

This format was created for evaluations carried out by the Conference in natural language learning

The CoNLL annotation has varied much across the years. We use CoNLL-U, the latest iteration.

Annotation of the Spanish sentence:

La reestructuración de los otros bancos checos se está acompañando por la reducción del personal

'The restructuring of Czech banks is accompanied by the reduction of personnel'

Example of Annotation (CoNLL-U)

La reestructuración de los otros bancos checos se está acompañando por la reducción del personal

ID	FORM	LEMMA	UPOS	FEATS
1	La	el	DET	Definite=Def Gender=Fem Number=Sing PronType=Art
2	reestructuración	reestructuración	NOUN	Gender=Fem Number=Sing
3	de	de	ADP	AdpType=Prep
4	los	el	DET	Definite=Def Gender=Masc Number=Plur PronType=Art
5	otros	otro	DET	Gender=Masc Number=Plur PronType=Ind
6	bancos	banco	NOUN	Gender=Masc Number=Plur
7	checos	checo	ADJ	Gender=Masc Number=Plur
8	se	se	PRON	Case=Acc Person=3 PrepCase=Npr PronType=Prs Reflex=Yes
9	está	estar	AUX	Mood=Ind Number=Sing Person=3 Tense=Pres VerbForm=Fin
10	acompañando	acompañar	VERB	VerbForm=Ger
11	por	por	ADP	AdpType=Prep
12	la	el	DET	Definite=Def Gender=Fem Number=Sing PronType=Art
13	reducción	reducción	NOUN	Gender=Fem Number=Sing
14	del	del	ADP	AdpType=Preppron
15	personal	personal	NOUN	Gender=Masc Number=Sing
16			PUNCT	PunctType=Peri

Another Example

ID	FORM	LEMMA	PLEMMA	POS	PPOS	FEAT	PFEAT
1	Battle	battle	battle	NN	NN		
2	-	-	-	HYPH	HYPH	_	_
3	tested	tested	tested	NN	NN	_	_
4	Japanese	japanese	japanese	JJ	JJ	_	_
5	industrial	industrial	industrial	JJ	JJ	_	_
6	managers	manager	manager	NNS	NNS	_	_
7	here	here	here	RB	RB	_	_
8	always	always	always	RB	RB	_	_
9	buck	buck	buck	VBP	VB	_	_
10	up	up	up	RP	RP	_	_
11	nervous	nervous	nervous	JJ	JJ	_	_
12	newcomers	newcomer	newcomer	NNS	NNS	_	_
13	with	with	with	IN	IN	_	_
14	the	the	the	DT	DT	_	_
15	tale	tale	tale	NN	NN	_	_
16	of	of	of	IN	IN	_	_
17	the	the	the	DT	DT	_	_
18	first	first	first	JJ	JJ	_	_
19	of	of	of	IN	IN	_	_
20	their	their	their	PRP\$	PRP\$	_	_
21	countrymen	countryman	countryman	NNS	NNS	_	_
22	to	to	to	TO	TO	_	_
23	visit	visit	visit	VB	VB	_	_
24	Mexico	mexico	mexico	NNP	NNP	_	_
25		,	,	,	,	_	_
26	a	a	a	DT	DT	_	_
27	boatload	boatload	boatload	NN	NN	_	_
28	of	of	of	IN	IN	_	_
29	samurai	samurai	samurai	NN	NN	_	_
30	warriors	warrior	warrior	NNS	NNS.	- ∢ Æ →	
31	blown	blow	blow	VBN	VBN	* 	< E⇒ < E→

Designing a Part-of-Speech Tagger

We will now create part-of-speech taggers, where we will examine three architectures:

- A feed-forward pipeline with a one-hot encoding of the words;
- A feed-forward pipeline with word embeddings: We will replace the one-hot vectors with GloVe embeddings;
- A recurrent neural network, either a simple RNN or a LSTM, with word embeddings.

Features for Part-of-Speech Tagging

The word *visit* is ambiguous in English:

I paid a visit to a friend -> noun

I went to visit a friend -> verb

The context of the word enables us to tell, here an article or the infinitive marker

To train and apply the model, the tagger extracts a set of features from the surrounding words, for example, a sliding window spanning five words and centered on the current word.

We then associate the feature vector $(w_{i-2}, w_{i-1}, w_i, w_{i+1}, w_{i+2})$ with the part-of-speech tag t_i at index i.

Part-of-Speech Tagging

ID	FORM	PPOS	
	BOS	BOS	Padding
	BOS	BOS	
1	Battle	NN	
2	-	HYPH	
3	tested	NN	
17	the	DT	
18	first	JJ	
19	of	IN	
20	their	PRP\$	
21	countrymen	NNS	Input features
22	to	TO	
23	visit	VB	Predicted tag
24	Mexico		↓
25	,		
26	а		
27	boatload		
34	years		
35	ago		
36			
	EOS		Padding
	EOS		

Feature Vectors

ID	Feature vectors									
	W_{i-2}	w_{i-1}	w_i	w_{i+1}	W_{i+2}	t_{i-2}	t_{i-1}			
1	BOS	BOS	Battle	-	tested	BOS	BOS	NN		
2	BOS	Battle	_	tested	Japanese	BOS	NN	HYPH		
3	Battle	-	tested	Japanese	industrial	NN	HYPH	JJ		
19	the	first	of	their	countrymen	DT	JJ	IN		
20	first	of	their	countrymen	to	JJ	IN	PRP\$		
21	of	their	countrymen	to	visit	IN	PRP\$	NNS		
22	their	countrymen	to	visit	Mexico	PRP\$	NNS	TO		
23	countrymen	to	visit	Mexico	,	NNS	TO	VB		
24	to	visit	Mexico	,	a	TO	VB	NNP		
25	visit	Mexico	,	a	boatload	VB	NNP	,		
34	ashore	375	years	ago		RB	CD	NNS		
35	375	years	ago		EOS	CD	NNS	RB		
36	vears	ago		EOS	EOS	NNS	RB			

Architecture 1: A Feed-Forward Neural Network

We first use a feed-forward architecture corresponding to a logistic regression:

```
np.random.seed(0)
model = models.Sequential([Dense(NB_CLASSES,
                                  input_dim=X.shape[1],
                                  activation='softmax')))
model.compile(loss='sparse_categorical_crossentropy',
              optimizer=OPTIMIZER,
              metrics=['accuracy'])
model.summary()
model.fit(X, y, epochs=EPOCHS, batch_size=BATCH_SIZE)
model.save('out.model')
```

Encoding the y Vector

In the previous examples, we used categorical_crossentropy
This requires that all the targets are encoded with one-hot vectors
For instance:

- determiner: [1, 0, 0, 0]
- noun: [0, 1, 0, 0]
- verb: [0, 0, 1, 0]
- adjective: [0, 0, 0, 1]

With sparse_categorical_crossentropy, we can use numerical indices:

- determiner: 1
- noun: 2
- verb: 3
- adjective: 4

We do not need to use the to_categorical function of the second s

Preprocessing

Preprocessing is more complex though: Four steps:

- Read the corpus
 train_sentences, dev_sentences, test_sentences, \
 column_names = load_ud_en_ewt()
- ② Store the rows of the CoNLL corpus in dictionaries
 conll_dict = CoNLLDictorizer(column_names, col_sep='\t')
 train_dict = conll_dict.transform(train_sentences)
 test_dict = conll_dict.transform(test_sentences)
- Stract the features and store them in dictionaries
 context_dictorizer = ContextDictorizer()
 context_dictorizer.fit(train_dict)

 X_dict, y_cat = context_dictorizer.transform(train_dict)

Code Example

Jupyter Notebook: 4.1-nn-pos-tagger.ipynb

Architecture 2: Using Embeddings

We replace the one-hot vectors with embeddings, the rest being the same Word embeddings are dense vectors obtained by a principal component analysis or another method.

They can be trained by the neural network or pretained In this implementation:

- We use pretrained embeddings from the GloVe project;
- Our version of GloVe is lowercased, so we set all the characters in lowercase;
- We add the embeddings as an Embedding layer at the start of the network;
- We initialize the embedding layer with GloVe and make it trainable or not.

It would be possible to use a randomly initialized matrix as embeddings instead

The Embedding Layer

```
model = models.Sequential([
    Embedding(cnt_uniq, EMBEDDING_DIM,
              input_length=2 * W_SIZE + 1),
    Flatten().
    Dense(NB_CLASSES, activation='softmax')
])
if embedding_matrix is not None:
    model.layers[0].set_weights([embedding_matrix])
model.layers[0].trainable = True
model.compile(loss='sparse_categorical_crossentropy',
              optimizer=OPTIMIZER,
              metrics=['accuracy'])
model.summary()
model.fit(X, y, epochs=EPOCHS, batch_size=BATCH_SIZE)
```

Code Example

Jupyter Notebook: 4.2-nn-pos-tagger-embeddings.ipynb

The RNN Architecture

Input Format for RNNs

The input format is different from feed forward networks.

We need to build two lists: one for the input and the other for the output

у	DET	NOUN	VERB	DET NOU	
X	The	waiter	brought	the	meal

All the vectors in a same batch must have the same length. We pad them:

у	PAD	PAD	PAD	DET	NOUN	VERB	DET	NOUN
X	PAD	PAD	PAD	The	waiter	brought	the	meal

We could apply the padding after

Building the Sequences

```
def build_sequences(corpus_dict, key_x='form', key_y='pos',
                  tolower=True):
    X, Y = [], []
    for sentence in corpus_dict:
        x, y = [], []
        for word in sentence:
            x += [word[key_x]]
            y += [word[key_y]]
        if tolower:
            x = list(map(str.lower, x))
        X += [x]
        Y += [V]
    return X, Y
```

At this point, we have **x** and **y** vectors of symbols

Building Index Sequences

0 is for the padding symbol and 1 for the unknown words

```
idx_word = dict(enumerate(vocabulary_words, start=2))
idx_pos = dict(enumerate(pos, start=2))
word_idx = {v: k for k, v in idx_word.items()}
pos_idx = {v: k for k, v in idx_pos.items()}
```

At this point, we have **x** and **y** vectors of numbers

Padding the Index Sequences

We build the complete **X_idx** and **Y_idx** matrices for the whole corpus And we pad the matrices:

```
X = pad_sequences(X_idx)
Y = pad_sequences(Y_idx)

# The number of POS classes and 0 (padding symbol)
Y_train = to_categorical(Y, num_classes=len(pos) + 2)
```

pad_sequences can have an argument that specifies the maximal length maxlen (MAX_SEQUENCE_LENGTH).

The padded sentences must have the same length in a batch. This is automatically computed by Keras

Recurrent Neural Networks (RNN)

```
model = models.Sequential([
    Embedding(len(vocabulary_words) + 2,
              EMBEDDING_DIM,
              mask_zero=True,
              input_length=None),
    SimpleRNN(100, return_sequences=True),
    # Bidirectional(SimpleRNN(100, return_sequences=True)),
    Dense(NB_CLASSES + 2, activation='softmax')])
model.layers[0].set_weights([embedding_matrix])
# The default is True
model.layers[0].trainable = True
```

Parameters

Keras functions have many parameters. In case of doubt, read the documentation A few useful parameters:

- mask_zero=True is to tell whether or not the input value 0 is a special "padding" value;
- ② return_sequences=True tells whether to return the last output in the output sequence, or the full sequence. In sequences, it is essential:
- recurrent_dropout=0.3 tells how much to drop for the linear transformation of the recurrent state.

Code Example

Jupyter Notebook: 4.3-rnn-pos-tagger.ipynb

Long Short-Term Memory (LSTM)

```
model = models.Sequential([
    Embedding(len(vocabulary_words) + 2,
              EMBEDDING_DIM,
              mask_zero=True,
              input_length=None),
    Bidirectional(LSTM(100, return_sequences=True)),
    Dense(NB_CLASSES + 2, activation='softmax')])
model.layers[0].set_weights([embedding_matrix])
# The default is True
model.layers[0].trainable = True
```

Segment Recognition

```
Group detection – chunking –:
```

```
Brackets: [NG] The government NG] has [NG] other agencies and instruments NG] for pursuing [NG] these other objectives NG].
```

Tags: The/I government/I has/O other/I agencies/I and/I instruments/I for/O pursuing/O these/I other/I objectives/I ./O

Brackets: Even [NG Mao Tse-tung NG] [NG 's China NG] began in [NG 1949 NG] with [NG a partnership NG] between [NG the communists NG] and [NG a number NG] of [NG smaller, non-communists parties NG].

Tags: Even/0 Mao/I Tse-tung/I 's/B China/I began/0 in/0 1949/I with/0 a/I partnership/I between/0 the/I communists/I and/0 a/I number/I of/0 smaller/I ,/I non-communists/I parties/I ./0

Segment Categorization

Tages extendible to any type of chunks: nominal, verbal, etc. For the IOB scheme, this means tags such as I.Type, O.Type, and B.Type, Types being NG, VG, PG, etc. In CoNLL 2000, ten types of chunks

Word	POS	Group	Word	POS	Group
Не	PRP	B-NP	to	TO	B-PP
reckons	VBZ	B-VP	only	RB	B-NP
the	DT	B-NP	£	#	I-NP
current	JJ	I-NP	1.8	CD	I-NP
account	NN	I-NP	billion	CD	I-NP
deficit	NN	I-NP	in	IN	B-PP
will	MD	B-VP	September	NNP	B-NP
narrow	VB	I-VP	•		O

Noun groups (NP) are in red and verb groups (VP) are in blue.

November 23, 2020 30/37

IOB Annotation for Named Entities

Co	NLL 2002		С	oNLL 200)3
Words	Named entities	Words	POS	Groups	Named entities
Wolff	B-PER	U.N.	NNP	I-NP	I-ORG
,	0	official	NN	I-NP	0
currently	0	Ekeus	NNP	I-NP	I-PER
a	0	heads	VBZ	I-VP	0
journalist	0	for	IN	I-PP	0
in	0	Baghdad	NNP	I-NP	I-LOC
Argentina	B-LOC			0	0
,	0				
played	0				
with	0				
Del	B-PER				
Bosque	I-PER				
in	0				
the	0				
final	0				
years	0				
of	0				
the	0				
seventies	0				
in	0				
Real	B-ORG				
Madrid	I-ORG				
	0				

Named Entities: Proper Nouns

Others Entities: Common Nouns

Evaluation

There are different kinds of measures to evaluate the performance of machine learning techniques, for instance:

- Precision and recall in information retrieval and natural language processing;
- The receiver operating characteristic (ROC) in medicine.

	Positive examples: <i>P</i>	Negative examples: N
Classified as P	True positives: A	False positives: B
Classified as N	False negatives: C	True negatives: D

More on the receiver operating characteristic here: http: //en.wikipedia.org/wiki/Receiver_operating_characteristic

Recall, Precision, and the F-Measure

The **accuracy** is $\frac{|A \cup D|}{|P \cup N|}$.

Recall measures how much relevant examples the system has classified correctly, for P:

$$Recall = \frac{|A|}{|A \cup C|}.$$

Precision is the accuracy of what has been returned, for *P*:

$$Precision = \frac{|A|}{|A \cup B|}.$$

Recall and precision are combined into the **F-measure**, which is defined as the harmonic mean of both numbers:

$$F = \frac{2 \cdot \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}.$$

Evaluation

Accuracy, precision, and recall.

For noun groups with the predicted output:

Word	POS	Group	Word	POS	Group
Не	PRP	B-NP	to	TO	B-PP
reckons	VBZ	B-VP	only	RB	B-NP
the	DT	B-NP	£	#	I-NP
current	JJ	B-NP	1.8	CD	B-NP
account	NN	I-NP	billion	CD	I-NP
deficit	NN	I-NP	in	IN	B-PP
will	MD	B-VP	September	NNP	B-NP
narrow	VB	I-VP	•		0

Accuracy = $\frac{14}{16}$, recall = $\frac{2}{4}$ = 0.5, precision = $\frac{2}{6}$ = 0.33 harmonic mean = $2 \times \frac{0.33 \times 0.5}{0.33 + 0.5}$ = 0.4

The Architecture of a Full-Fledged Network

Courtesy: Marcus Klang. See also:

- Xuezhe Ma, Eduard Hovy, End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF, 2016, https://arxiv.org/abs/1603.01354
- Jason P.C. Chiu, Eric Nichols, Named Entity Recognition with Bidirectional LSTM-CNNs, 2016, https://arxiv.org/abs/1511.08308
- Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, Chris Dyer, Neural Architectures for Named Entity Recognition, 2016, https://arxiv.org/abs/1603.01360