Технически университет – София Електротехнически Факултет Катедра "Обща електротехника" Презентация № 7

Полупроводникови елементи

дисциплина "Електротехника и електроника " – FBME27 ОКС "Бакалавър" от Учебните планове на специалности от МФ, МТФ, ЕМФ и ФТ

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

7. Полупроводникови елементи

- 1. Основни понятия за полупроводниците. PN преход и неговите свойства.
- 2. Еднослойни полупроводникови елементи (тензорезистори, терморезистори, магниторезистори,фоторезистори и др.). Основни характеристики и приложения.
- 3. Полупроводникови диоди видове (изправителни, ценер-диоди,свето-, фото-, магнито-диоди) .Устройство,характеристики, приложение.
- 4. Транзистори- видове, устройство, предназначение, характерни приложения.
- 5. Тиристори- видове<mark>, у</mark>стройство, п<mark>р</mark>една<mark>значен</mark>ие , характерни приложения.

7.1. Основни понятия за полупроводниците. PN - преход и неговите свойства.

В чистия силиций концентрацията на електрическите заряди — свободни електрони(отрицателни) и "дупки"(положителни заряди) е пренебрежимо малка, т.е. той е изолатор.

Внасянето на примеси се нарича легиране на подложката

За произвеждане на полупроводникови елементи се използват основно (Si) силиций и (Ge) германий. За добавка на примеси:

- а) донорни фосфор, арсен, антимон
- b) **акцепторни** бор, индий, алуминий.

Легираните материали с донорни примеси имат **Р-проводимост**, а тези с акцепторни примеси - **N-проводимост**.

Б	С выперод Si	N ASOT	S	
	Si	Р	S	
	силиций	ФОСФОР	СЯРА	
	Ge германия	AS	Se	
	Sn	Sb	Те	
	ME	германия Sn калай	Sn Sb	Sn Sb Te

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Произведено от силиций (от пясък- съдържа силициев диоксид)

Кварцов пясък се загрява до 2100 °C (Стопилка)

→ Редукция с Въглерод

$$SiO_2 + C = Si + CO_2$$

 \rightarrow Първичен силиций

Добавка на Хлор

$$Si + 2Cl_2 = SiCl_4$$

→ Силициев тетрахлорид

Течността се дестилира

→ чист силициев тетрахлорид

Загряване при 1400 °C + Водород (Reduktion)

→ Polysilizium с голяма чистота

$$SiCl_4 + 2H_2 = Si + 4HCl$$

Open GCT (a) showing reverse-conducting silicon wafer (top center) and complete IGCT (b) rated 4.5 kV/2.6 kA

ПРОЕКТ ВG051PO001--4.3.04-0042

Суровина – първичен силиций

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Извличане на чист силициев монокристал от стопилката

Силициева заготовка с диаметър 20 cm и с дължина до 1,5 m.

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Обработки на силициевия кристал

... Разрязване на пластини с 0,5 mm дебелина

Шлайфане

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Следващите обработки на пластините (подложки) като фино шлайфане, полиране, ецване(разяждане) се извършват в идеално чисти помещения.

Абсолютно чисти помещения

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Подложка с чипове:

с много изводи

- Фото маска
- наслагване
- ецване

ПРОЕКТ ВG051РО001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Пластина с чипове

Ядро на компютърен микропроцесор

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Пластината се нарязва на "чипове" Chip-овете се монтират в пластмасови или керамични корпуси

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

4,5 милиона транзистора в Pentium Processor

"поглед отвътре" Intel Processor

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

PN – преход и неговите свойства

PN – преход се нарича областта на границата на два слоя, един от които е с дупчеста, **P- проводимост**, а другия – с електронна, **N-проводимост**

Европейски съюз

а) без приложено напрежение

В граничната област става рекомбинация на токоносители, свободните електрони от **N**- слоя заемат свободните места (дупките) в **P**- слоя.

В така получената област липсват подвижни заряди: запиращ слой. Възникналата потенциална бариера пречи на движението на основни токоносители, но не възпрепятства движението на неосновните токоносители.

б) при прилагане на отрицателно напрежение запиращият слой се разширява, съпротивлението му е голямо и обратният ток е почти нула. Преходът е запушен.

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

рп-преход при приложено напрежение

в) при прилагане на положително напрежение

ширината на запиращия слой намалява и при напрежение 0,3 V-0,5 V този слой "изчезва". Съпротивлението на прехода рязко намалява и протича сравнително голям ток, който се нарича ток в права посока.

pn- прехода е отпушен

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

В7. Полупроводникови елементи . Класификация

Резистори- еднослоен елемент с два извода от еднороден полупроводноков материал, на който съпротивлението зависи от напрежението, температурата, осветеност и други управляващи въздействия.

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Магниторезистор- Магниточувствително съпротивление

където В е магнитната индукция, а R_0 е съпротивлението на магниторезистора при отсъствие на магнитно поле (B=0), а константата K_M зависи от свойствата на полупроводниковия материал.

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

В7. Полупроводникови елементи . Класификация

Диоди- нелинеен двуслоен елемент с два извода ,притежаващ един PN-преход

ПРОЕКТ ВG051РО001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Лазерни диоди

кристал

Лазерен лъч

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Изправителни диоди. Характеристики .Приложение

Токоизправител – мостова еднофазна схема

 $u_1(t) = U \max \sin \omega t$;

Изходното напрежение е пулсиращо двуполупериодно, а токът през товара е постоянен т.е.с една и съща посока

 $u_1(t)$

$$u_1 > 0$$
: $i_1 = i_2 = i = i_R$;

$$u_1 > 0$$
: $i_1 = i_4 = i = i_R$; $u_{D1}, u_{D4} = 0$; $u_R = U_0$

$$u_{D2}, u_{D3} = -u$$

$$u < 0$$
: $i_2 = i_3 = -i = i_R$;

$$u_{D2}, u_{D3} = 0; \quad u_R = U_0$$

$$u_{D1}, u_{D4} = -u$$

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции" Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз Инвестира във вашето бъдеще!

 ωt

Стабилитрон- Ценер-диод. Характеристика. Приложение Волт-Амперна Характеристика

Напрежението в областта на пробива ΔU_Z слабо зависи от тока, когато той се изменя от I_{Z0} до I_{Zmax} Използва се за стабилизиране на напрежение, за създаване на т.н. опорно напрежение в електронни схеми

ПРОЕКТ BG051PO001--4.3.04-0042 "Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции" Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз

Инвестира във вашето бъдеще!

Приложение на ценер-диод

За стабилизи<mark>р</mark>ане на изходното напрежение U_a

Два примера за създаване на опорни напрежения 2,5 V и 5 V

ПРОЕКТ ВG051PO001--4.3.04-0042

Светодиоди. Характерни приложения.

ПРОЕКТ ВG051PO001--4.3.04-0042

В7. Полупроводникови елементи . Транзистори. Класификация

Транзистор - елемент с три извода ,състоящ се от три слоя полупроводников материал с редуваща се проводимост, притежаващ обикновено два PN-прехода

В биполярните транзистори токът се определя от движението на два вида ел.заряди- електрони(N) и дупки (P)

При полевите транзистори токът се управлява от електрическо поле IGBT са комбиниран тип транзистори от биполярен и полеви транзистори

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

В7. Полупроводникови елементи . Транзистори. Устройство

Структура и принципна работа на прп транзистор

База-Емитер pn-прехода е в права посока, $U_{BE} > 0$:

Дифузионен ток на токоносители:

- +"дупките" от р-слоя на базата към емитер,
- -- електрони от n-слоя на емитера към базата.

Базисната област е много тънка (μm), затова малко електрони се отклоняват като I_B , повечето преминават през прехода Колектор-База, I_C

Колектор-База pn- прехода е в обратна посока, $U_{CB} > 0$: Само неосновни токоносители, електрони от емитера могат да прекосят (дифундират) базисния слой.

Потока от електрони от емитер към база се управлява чрез напрежението U_{BE} .

С помощта на малък базисен ток се управлява многократно по-голям колекторен ток. Този процес наричат усилване.Транзистора е усилвателен елемент

 $I_C = B I_R$; В е коефициент на усилване по ток

Ιc

• Колектор-База pn- преход

• База-Емитер pn-пр<mark>еход</mark>

n-слой

р-слой

n-слой

Емитер

База

Колектор

ПРОЕКТ BG051PO001--4.3.04-0042 "Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции" Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз

Инвестира във вашето бъдеще!

Биполярни транзистори. Видове. Характеристики.

Изводите на транзистора са колектор C ,база B , емитер E

NPN Транзистор

PNP Транзистор

ПРОЕКТ ВG051PO001--4.3.04-0042

7. Полупроводникови елементи

7.3 Биполярен транзистор, сравнение на схемите на свързване

Обща база

Общ емитер Емитерен повторител IC ĺΕ ĺС **UCB** İΒ **UCE** I_B **UCE UCB U**FB ĺΕ **UBE** Усилване по голямо ≈1 голямо напрежение Усилване по ≈1 голямо голямо ТОК Усилване по Много голямо ГОЛЯМО голямо мощност

ПРОЕКТ BG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз Инвестира във вашето бъдеще!

Общ колектор

Характерни приложения на транзистор

Схема на свързване – Общ емитер

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"

Характерни приложения на транзистор

Транзистор в ключов режим на работ<mark>а</mark>

Управление на електромагнитно реле

Съставен транзистор – схема Дарлингтон

ПРОЕКТ BG051PO001--4.3.04-0042 "Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции" Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз

Инвестира във вашето бъдеще!

В7.Полеви транзистори (FieldEffectTransistor)

Полеви транзистор с изолиран N-Канал-(MOSFET):

На основа на ниско легиран p-слой се нанася изолационен слой окис SiO_2 -с дебелина ($d \approx 0, 1~\mu m$). На предварително отворени места в слоя SiO_2 се създават области с n-проводимост(Source, Drain) и съответните изводи S и D (на разстояние $\sim 3~\mu m$).

Металния слой и електрода G (Gate) са изолирани чрез окисния слой от Drain и Source електродите.

 $U_{GS}=0$: n- канала е затворен (липсва), практически не протича ток между Drain и Source.

 $U_{GS} > 0$: Ако напрежението U_{GS} е достатъчно голямо, се създава канал с n-проводимост между Drain и Source. Протича ток между D и S.Управлението чрез електрическо поле е без загуби ,тъй като $I_G = 0$.

S: Source, G: Gate, D: Drain

ПРОЕКТ ВG051PO001--4.3.04-0042

Характеристики на полеви транзистор

Изходни характер<mark>ис</mark>тики

ПРОЕКТ ВG051PO001--4.3.04-0042

"Организационна и технологична инфраструктура за учене през целия живот и развитие на компетенции"
Проектът се осъществява с финансовата подкрепа на Оперативна програма "Развитие на човешките ресурси", съфинансирана от Европейския социален фонд на Европейския съюз

Инвестира във вашето бъдеще!

Тиристори. Видове тиристори. Класификация.

ПРОЕКТ ВG051PO001--4.3.04-0042

Тиристорът е полупроводников прибор с четири слоя с редуваща се проводимост, между които се образуват 3 PN- прехода.

ПРОЕКТ ВG051PO001--4.3.04-0042

