Inteligência Artificial Aula 10 - vídeo 3 - Regressão Linear e Logística

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

28 de outubro de 2020

- Limiar de classificação da saída $h_{\theta}(x)$ em 0.5:
 - Se $h_{\theta}(x) \ge 0.5$, faça y = 1
 - Se $h_{\theta}(x) < 0.5$, faça y = 0

- Limiar de classificação da saída $h_{\theta}(x)$ em 0.5:
 - Se $h_{\theta}(x) \ge 0.5$, faça y = 1
 - Se $h_{\theta}(x) < 0.5$, faça y = 0

- Limiar de classificação da saída $h_{\theta}(x)$ em 0.5:
 - Se $h_{\theta}(x) \ge 0.5$, faça y = 1
 - Se $h_{\theta}(x) < 0.5$, faça y = 0

- Limiar de classificação da saída $h_{\theta}(x)$ em 0.5:
 - Se $h_{\theta}(x) \geq 0.5$, faça y = 1
 - Se $h_{\theta}(x) < 0.5$, faça y = 0

- Limiar de classificação da saída $h_{\theta}(x)$ em 0.5:
 - Se $h_{\theta}(x) \ge 0.5$, faça y = 1
 - Se $h_{\theta}(x) < 0.5$, faça y = 0

- Limiar de classificação da saída $h_{\theta}(x)$ em 0.5:
 - Se $h_{\theta}(x) \ge 0.5$, faça y = 1
 - Se $h_{\theta}(x) < 0.5$, faça y = 0
- Não parece ser uma boa ideia usar regressão linear para problemas de classificação.

- Note que $y \in \{0,1\}$, mas $h_{\theta}(x)$ pode ser > 1 ou < 0
- Regressão Logística: $0 \le h_{\theta}(x) \le 1$
- Para isso, nossa hipótese $h_{\theta}(x) = \theta^T x$ é transformado na hipótese $h_{\theta}(x) = g(\theta^T x)$, onde $g(z) = \frac{1}{1+e^{-z}}$ é a função sigmoide/logística. Logo,

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Interpretação de $h_{\theta}(x)$: probabilidade estimada que y=1 dado o input x.

Ou seja,
$$h_{\theta}(x) = P(y = 1 \mid x; \theta)$$
.

Como consequência, $P(y = 0 \mid x; \theta) = 1 - P(y = 1 \mid x; \theta)$

Exemplo

Se
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ tam.tumor \end{bmatrix}$$

 $h_{\theta}(x) = 0.7$ significa que existe uma chance de 70% do tumor ser malígno.

- Note que:
 - Se $h_{\theta}(x) = g(\theta^T x) \ge 0.5$, prevemos y = 1
 - Se $h_{\theta}(x) = g(\theta^T x) < 0.5$, prevemos y = 0
- Mas
 - $g(\theta^T x) \ge 0.5$ sempre que $\theta^T x \ge 0$ e
 - $g(\theta^T x) < 0.5$ sempre que $\theta^T x < 0$

Exemplo

- Temos $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
- Considere os parâmetros $\theta_0 = -3, \theta_1 = 1, \theta_2 = 1$
- Logo, teremos y = 1 se $-3 + x_1 + x_2 \ge 0$, ou, $x_1 + x_2 \ge 3$

Exemplo

- Temos $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
- Considere os parâmetros $\theta_0 = -3, \theta_1 = 1, \theta_2 = 1$
- Logo, teremos y = 1 se $-3 + x_1 + x_2 \ge 0$, ou, $x_1 + x_2 \ge 3$
- A equação $x_1 + x_2 = 3$ corresponde a $h_{\theta}(x) = 0.5$ (Decision Boundary)

• Conjunto de treinamento: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$

•
$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$
, $x_0 = 1, y \in \{0, 1\}$

- $h_{\theta}(x) = \frac{1}{1+e^{-\theta^T x}}$
- Como escolher os parâmetros θ ?
- Regressão Linear: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) y^{(i)})^2 = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$
- Usar esta função para regressão logística, podemos ter vários mínimos locais por causa de $h_{\theta}(x)$. $(J(\theta)$ é **não convexa**).
- Regressão Logística: $Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{se } y = 1 \\ -log(1 h_{\theta}(x)) & \text{se } y = 0 \end{cases}$

Regressão Logística:
$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{se } y = 1 \\ -log(1 - h_{\theta}(x)) & \text{se } y = 0 \end{cases}$$

Regressão Logística:
$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{se } y = 1 \\ -log(1 - h_{\theta}(x)) & \text{se } y = 0 \end{cases}$$

Regressão Logística:
$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{se } y = 1 \\ -log(1 - h_{\theta}(x)) & \text{se } y = 0 \end{cases}$$

Uma forma equivalente de escrever o custo:

$$Cost(h_{\theta}(x), y) = -y * log(h_{\theta}(x)) - ((1 - y) * log(1 - h_{\theta}(x)))$$

Então:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} * log(h_{\theta}(x^{(i)})) + ((1 - y^{(i)}) * log(1 - h_{\theta}(x^{(i)})))$$

Queremos determinar os parâmetros θ que minimizam $J(\theta)$ e fazer previsões para novos valores de x usando a fórmula $h_{\theta}(x) = \frac{1}{1+e^{-\theta^T x}}$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} * log(h_{\theta}(x^{(i)})) + ((1 - y^{(i)}) * log(1 - h_{\theta}(x^{(i)})))$$

Para determinar os parâmetros θ que minimizam $J(\theta)$ usamos gradiente descendente:

- Repetir até convergir:
 - $\theta_j := \theta_j \alpha \frac{\partial}{\partial \theta_j} J(\theta)$
- Atualização simultânea.

Inteligência Artificial Aula 10 - vídeo 3 - Regressão Linear e Logística

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

28 de outubro de 2020