НАЦИОНАЛНА ОЛИМПИАДА ПО ИНФОРМАТИКА Областен кръг, 6 март 2010 г.

Група А, 11-12 клас

Задача АЗ. ДВОЙНО ПРОСТИ ЧИСЛА

Две естествени числа ще наречем "двоично близки", ако броят на цифрите им в двоичен запис без водещи нули се различава най-много с едно. Двоично близки с $5=101_2$, например, са всички естествени числа от $2=10_2$ до $15=1111_2$ включително.

Да наречем "двойно прости" ония прости естествени числа, чийто двоичен запис (без водещи нули) представлява "залепени" две двоично близки прости естествени числа, също без водещи нули. Например 29 е "двойно просто" – просто е, но и двоичният му запис (11101_2) може да се разглежда като съставен от "залепени" $3=11_2$ и $5=101_2$, които също са и прости, и двоично близки. Простото число 43 не е "двойно просто": $43=101011_2$ (разбиването 101_2 - 011_2 (5-3) не ни върши работа този път, защото в 011_2 има водеща нула; в 10_2 - 1011_2 (2-11) числата са прости, но не са двоично близки; при 1010_2 - 11_2 първото число 1010_2 =10 не е просто, а и числата не са двоично близки). Простото число $3=11_2$ също не е "двойно просто" (припомняме, че 1 не е просто!). Най-малкото "двойно просто" е $11=1011_2$.

Напишете програма **dprime**, която намира броя на "двойно простите" естествени числа в зададен затворен интервал [a, b].

Вход

От стандартния вход се въвежда един ред с двете естествени числа a и b, разделени с интервал.

Изход

Запишете на стандартния изход един ред, съдържащ само едно цяло неотрицателно число – броя на "двойно простите" естествени числа в затворения интервал [a, b].

Ограничения

 $1 \le a \le b \le 50\ 000\ 000$

Пример

Вход

8 109

Изход

7

Обяснение на примера: В интервала [8, 109] се съдържат следните "двойно прости" числа: $11=1011_2$, $23=10111_2$, $29=11101_2$, $31=11111_2$, $47=101111_2$, $61=111101_2$ и $109=1101101_2$.