Homework 3

Due on: Monday, February 24

Problem 1

We study background gauge invariance of $\mathcal{L}_{qu} = \mathcal{L}_{cl} + \mathcal{L}_{fix} + \mathcal{L}_{ghost}$. We discussed Weyl invariance in class. Now analyze the invariance of \mathcal{L}_{qu} under background local Lorentz transformations. How do all fields X^{μ} , $\psi^{\mu A}$, $e^{a}_{\alpha,qu}$, $e^{a}_{\alpha,back}$, $\chi^{A}_{\alpha,qu}$, $\chi^{A}_{\alpha,back}$, d^{α}_{a} , b^{α}_{a} , c^{α} , c^{ab} , c_{W} , Δ_{A}^{α} , β_{A}^{α} , γ^{A} , γ^{A}_{sc} transform? Is \mathcal{L}_{qu} invariant, or only invariant up to a total derivative?

Hint: Pay attention to terms with derivatives of λ_L , and study how they are canceled.

Problem 2

We are going to derive the fermionic field ψ_+ in the z-plane, and construct the stress tensor $T^{(\psi)}(z)$.

- (a) Write the infinitesimal conformal transformation of $\psi_+(t,\sigma)$ as a sum of infinitesimal Einstein (E), local Lorentz (L), and Weyl (W) transformations, as discussed in class for the antighost $b_a{}^{\alpha}$. First write down how $\psi = \begin{pmatrix} \psi^+ \\ \psi^- \end{pmatrix} = \begin{pmatrix} \psi_- \\ -\psi_+ \end{pmatrix}$ transforms under infinitesimal E, L and W gauge transformations.
- (b) Next integrate these infinitesimal transformations to obtain the finite conformal transformations which relates $\psi_+(t+\sigma)$ to $\psi(z)$.
- (c) Now we use

$$\delta_{conf}\psi_{+}(\sigma^{+}) = [C, \psi_{+}(\sigma^{+})] \quad \text{with} \quad C = \frac{i}{\hbar} \int_{0}^{2\pi} \xi^{+}(t+\sigma)T_{++}(t+\sigma)d\sigma \tag{2.1}$$

where $T_{++}(t+\sigma)$ is the stress tensor on the worldsheet for $\psi_{+}(t+\sigma)$. Transform to the z-plane, using such relations as

$$\int_0^{2\pi} d\sigma = \oint \frac{dz}{iz}; \quad \xi^+ = \frac{\xi^z}{iz}$$
 (2.2)

and also the relation $\psi_+(-i\tau+\sigma)=z^\alpha\psi(z)$ where α is a real constant you should derive. This should give you $T^{(\psi)}(z)$.