Université Badj Mokhtar-Annaba De Annaba. Département de mathématiques 3éme année Licence 2023/2024 Matière : Mesure et Intégration ¹

Série 4 : Mesures positives

Exercice 1 Soit E un ensemble nom vide et soit l'application $\mu: \mathscr{P}(E) \to \bar{\mathbb{R}}_+$ définie par

$$\mu(A) = \delta_a(A) = \begin{cases} 0, & a \in A; \\ 1, & a \in A; \end{cases} \forall A \in \mathscr{P}(E),$$

- 1. Montrer que l'application μ est une mesure sur $(E, \mathscr{P}(E))$.
- 2. Déterminer la classe des parties μ -négligéables de E.
- 3. Expliciter à quelle conditions une propriété est vraie μ p.p.

Exercice 2 Soit l'application $\mu: \mathscr{P}(E) \to \mathbb{R}_+$ définie par

$$\mu(A) = \delta_a(A) = \left\{ \begin{array}{ll} \operatorname{card}(A), & \text{si A est fini;} \\ +\infty, & \text{sinon.} \end{array} \right. \forall A \in \mathscr{P}(E),$$

Montrer que l'application μ est une mesure sur $(E, \mathscr{P}(E))$.

Exercice 3 Soient (\mathbb{E}, τ, μ) un espace mesuré, $f: (\mathbb{E}, \tau, \mu) \to (\mathbb{F}, \mathcal{L})$ une fonction mesurable et $\mu_1: \mathcal{L} \to \mathbb{R}_+$ l'application définie par

$$\mu_1(B) = \mu(f^{-1}(B)).$$

Montrer que μ_1 est une mésure sur $(\mathbb{F}, \mathcal{L})$.

Exercice 4 Soient (E, τ, μ) un espace mesuré et $(A_n)_{n\geq 1}$ une suite d'éléments de τ .

1. Montrer que si $(A_n)_{n\geq 0}$ est une suite croissante (i.e., $A_n\subset A_{n+1}$ pour tout $n\in\mathbb{N}$), alors

$$\mu(\cup_{n=0}^{+\infty} A_n) = \lim_n \mu(A_n).$$

2. Montrer que si $(A_n)_{n\geq 0}$ est une suite décroissante (i.e., $A_{n+1}\subset A_n$ pour tout $n\in\mathbb{N}$) telle que $\mu(A_0)<+\infty$, alors

$$\mu(\cap_{n=0}^{+\infty} A_n) = \lim_n \mu(A_n).$$

- Montrer que si la condition $\mu(A_0) < +\infty$ n'est pas vérifiée, l'égalité précédente n'est pas satisfaite en général.

Exercice 5 Soient (E, τ, μ) un espace mesuré. On pose

$$\mathscr{C} = \{ C \in \mathscr{P}(E) : \exists A, B \in \tau \text{ avec } A \subset C \subset B \text{ et } \mu(BA) = 0 \}$$

et on pose pour tout $C \in \mathscr{C}$, $\tilde{\mu}(C) = \mu(A)$.

- 1. Montrer que \mathscr{C} est une tribu sur E.
- 2. Montrer que $\mathscr{C}=\{A\cup M:\, (A,M)\in \tau\times \mathscr{N}_{\mu}\}$ oé \mathscr{N}_{μ} est l'ensemble des parties μ -négligeables.
- 3. Montrer que $\tilde{\mu}$ est une mesure compléte sur E qui prolonge μ .

Exercice 6 On considére l'espace mesuré $(\mathbb{R}, \mathbb{B}(\mathbb{R}), \lambda)$, $a \in \mathbb{R}^*$ fixé et $\tau_a = \{A \in \mathscr{P}(\mathbb{R}) : A + a \in \mathbb{B}(\mathbb{R})\}$.

- 1. Montrer que τ_a est une tribu sur \mathbb{R} .
- 2. Montrer que $\mathbb{B}(\mathbb{R}) = \tau_a$.
- 3. Montrer que la mesure de Lebesgue λ est invariante par translation.
- 4. Montrer que si $A \in \mathbb{R}$ est dénombrable, alors A est un borélien de mesure nulle.
- 5. Montrer que si O est un ouvert borné, alors sa mesure est fini.
- 6. Montrer que si I est un intervalle non borné de \mathbb{R} alors $\mu(I) = +\infty$.

Exercice 7 Soient $f:(E,\tau)\to(\mathbb{R},\mathbb{B}(\mathbb{R}))$ une fonction mesurable. Montrer que si $\mu(E)\neq 0$, alors il existe $A\in\tau$, $\mu(A)\neq 0$, tel que f soit bornée sur A.

^{1.} F. Zouyed, email :fzouyed@gmail.com, Laboratoire des Mathématiques appliquées \mathcal{LMA}