Wstęp do Teorii Zbiorów

notatki na podostawie wykładów J. Kraszewskiego

Weronika Jakimowicz

Ze wstępem do matematyki jest jak z uświadamianiem sekualnym dzieci - mówi im się prawdę, ale nie mówi im się wszystkiego.

S	pis treści	
1	JEZYK LOGIKI 1.1 FUNKCJE	$\frac{4}{5}$
2	AKSJOMATY 2.1 AKSJOMAT EKSTENSJONALNOŚĆI 2.2 AKSJOMAT ZBIORU PUSTEGO 2.3 AKSJOMAT PARY 2.4 AKSJOMAT SUMY 2.5 AKSJOMAT ZBIORU PUSTEGO 2.6 AKSJOMAT WYRÓŻNIANIA 2.7 AKSJOMAT ZASTĘPOWANIA 2.8 KONSTRUKCJE NA ZBIORACH SKOŃCZONYCH 2.9 AKSJOMAT NIESKOŃCZONOŚCI 2.10AKSJOMAT REGULARNOŚCI 2.11AKSJOMAT WYBORU	7 8
3	LICZBY PORZĄDKOWE 3.1 LEMAT KURATOWSKIEGO-ZORNA	12 12

JEZYK LOGIKI

1.1 **FUNKCJE**

FUNKCJA - zbiór par uporządkowanych o właśności jednoznaczości, czyli nie ma dwóch par o tym samym poprzedniku i dwóch różnych następnikach.

Teraz dziedzinę i przeciwdziedzinę określamy poza definicją funkcji – nie są na tym samym poziomie co sama funkcja:

$$\begin{split} \text{dom}(f) &= \{ x \, : \, (\exists \, y) \, \langle x, y \rangle \in f \} \\ \text{rng}(f) &= \{ y \, : \, (\exists \, x) \, \langle x, y \rangle \in f \}. \end{split}$$

Warto pamiętać, że definicja funkcji jako podzbioru $f\in X imes Y$ takiego, że dla każdego $x\in$ X istnieje dokładnie jeden $y \in Y$ takie, że $\langle x,y \rangle \in f$ jest tak samo poprawną definicją, tylko kładzie nacisk na inny aspekt funkcji.

1.2 OPERACJE UOGÓLNIONE

Dla rodziny indeksowanej $\{A_i\,:\,i\in I\}$ definiujemy:

- jej sumę: $\bigcup_{i\in I}A_i=\{x\,:\,(\exists\;i\in I)\;x\in A_i\}$ - jej przekrój: $\bigcap_{i\in I}A_i=\{x\,:\,(\forall\;i\in I)\;x\in A_i\}$

Dla nieindeksowanej rodziny zbiorów ${\mathcal A}$ definiujemy:

- suma: $\{ \exists A \in A \mid x \in A \}$

- przekrój: $\bigcap \mathcal{A} = \{x : (\forall A \in \mathcal{A}) \ x \in A\}$

Formalnie, indeksowana rdzina zbiorów jest funkcją ze zbioru indeksów w rodzinę zbiorów, więc powinna być zapisywana w nawiasach trójkątnych (para uporządkowana). Stosowany przez nas zapis w nawiasach klamrowych oznacza zbiór wartości takiej funkcji i nie ma znaczenia czy dany podzbiór pojawi się w nim wielokrotnie. Nie przeszkadza to więc w definiowaniu sumy czy przekroju.

UOGÓLNIONY ILOCZYN KARTEZJAŃSKI (uogólniony produkt) zbiorów:

Dla dwóch i trzech zbiorów mamy odpowiednio:

$$A_1 \times A_2 = \{ \langle x, y \rangle : x \in A_1 \land y \in A_2 \}$$

$$A_1\times A_2\times A_3=\{\langle x,y,z\rangle\ :\ x\in A_1\wedge y\in A_2\wedge z\in A_3\}.$$

Pierwszym pomysłem na definiowanie iloczynu kartezjańskiego trzech i wiecej zbiorów będzie definicja rekurencyjna:

$$A_1 \times A_2 \times A_3 := (A_1 \times A_2) \times A_3.$$

Pojawia się problem formalny - iloczyn kartezjański nie jest łączny:

$$(A_1 \times A_2) \times A_3 \neq A_1 \times (A_2 \times A_3)$$

$$\langle \langle \mathbf{a}_1, \mathbf{a}_2 \rangle \mathbf{a}_3 \rangle \neq \langle \mathbf{a}_1, \langle \mathbf{a}_2, \mathbf{a}_3 \rangle \rangle.$$

Mimo, że iloczyn kartezjański nie jest łączny, matematycy nie mają problemu uznawać, że jest łączny, gdyż istnieje naturalna, kanoniczna bijekcja, która lewej stronie przypisuje prawą stronę.

Niech $\langle A_i:i\in I
angle$ będzie indeksowaną rodziną zbiorów, czyli

$$A:I\to\bigcup_{i\in I}A_i$$

$$A(i) = A_i$$

Wyobraźmy sobie iloczyn kartezjański dwóch zbiorów nie jako punkt na płaszczyźnie, ale jako dwuelementowy ciąg:

To przedstawienie łatwo jest przełożyć na nieskończenie długi iloczyn kartezjański, wystarczy dorysować kolejne osie z elementami kolejnego podzbioru rodziny:

W ten sposób powstaje funkcja, która kolejnym indeksom przypisuje element z tego indeksu:

$$f:I\to\bigcup_{i\in I}A_i$$

 $f(i) \in A_i$.

Według tego, uogólniony iloczyn kartezjański to zbiór funkcji ze zbioru indeksowego w rodzinę indeksowaną:

$$\prod_{i \in I} A_i = \{f \in (\bigcup_{i \in I} A_i)^I \ : \ (\forall \ i \in I) \ f(i) \in A_i\}$$

Jednak dla $I = \{1, 2\}$ nie zachodzi równość:

$$\prod_{i \in I} A_i \neq A_1 \times A_2$$

Po lewej mamy zbiór funkcji, a po prawej iloczyn kartezjański. Możemy pokazać naturalną bijekcję między lewą a prawą stroną, ale byty są róże. Wystarczy pamiętać, że mamy co innego i możemy się tym nie przejmować <3

1.3 JĘZYK PIERWSZEGO RZĘDU

JĘZYK RZĘDU ZERO, czyli rachunek zdań: $\mathrm{p,q,r,...,V,\wedge,\lnot,}\Longrightarrow,\Longleftrightarrow$

JĘZYK PIERWSZEGO RZĘDU jest nadzbiorem języka rzędu zero

część logiczna:

- 1. symbole zmiennych: $V = \{x_0, x_1, ...\}$
- 2. symbole spójników logicznych: $\{\neg, \lor, \land, \Longrightarrow, \iff\}$
- 3. symbole kwantyfikatorów: $\{orall, \exists\}$
- 4. symbol równości: =

część pozalogiczna:

- 1. symbole funkcyjne: $F = \{f_i \, : \, i \in I\}$
- 2. symbole relacyjne (predykaty): $R = \{r_i : j \in J\}$
- 3. symbole stałe: $C = \{c_k : k \in K\}$

ARNOŚĆ – odpowiada liczbie argumentów funkcji lub relacji. Każdy symbol ma swoją arność.

SYGNATURA – zawiera informację o tym, ile jest symboli funkcyjnych, relacyjnych lub stałych i jakiej są arności w danym języku. Sygnatura charakteryzuje język.

1.4 SYNTAKTYKA vs SEMANTYKA

Znała suma cała rzeka, Więc raz przbył lin z daleka I powiada: "Drogi panie, Ja dla pana mam zadanie, Jeśli pan tak liczyć umie, Niech pan powie, panie sumie, Czy pan zdoła w swym pojęciu, Odjąć zero od dziesięciu?" "To dopiero mam z tym biedę -

Może dziesięc? Może jeden?"

Jak odjąc 0 od 10:

semantycznie: 10 - 0 = 10

syntaktycznie: od ciągu 1 i 0 odjęcie 0 to zostawienie tylko 1

SEMANTYKA – patrzy na znaczenie zapisów, nie sam napis. SYNTAKTYKA – interesuje ją tylko zapis, język, a znaczenia nie ma.

1.5 KONSTRUOWANIE JĘZYKA

TERMY - bazowy zbiór termów to zbiór zmiennych i zbiór stałych:

$$T_0 = V \cup C$$

Do ich budowy wykorzystujemy symbole funkcyjne (F)

Załóżmy, że mamy skonstruowane termy aż do rzędu ${f n}$ i chcemy skonstruować termy rzędu $\mathrm{n}\!+\!1$. Jeśli mamy symbol funkcyjny arności k , to termem jest zastosowanie tego symbolu do wczesniej skonstruowanych termów, których mamy k:

 $f \in F$ f -arności k

$$F(t_1,...,t_k) \quad t_1,...,t_k \in \bigcup_{i=0}^n T_i$$

Czylil jeśli mamy zbiór termów, to biorąc wszystkie dostępne symbole funkcyjne i stosą nowe termy.

Termy to potencjalne wartości funkcji

FORMUŁY - budowane są rekurencyjnie, zaczynając od formuł atomowych:

$$t = s, t, s \in TM$$

stosując wszystkie relacje równoważności termów

$$r \in R$$
 $r(t_1, ..., t_k)$

zastosowanie symbolu relacyjnego na odpowiedniej ilości termów tworzy formułę

Bazowym poziomem frmuł jest formuła atomowa:

$$F_{m_0} = \{ \varphi : \varphi - \text{formula atomowa} \}$$

Jeśli mamy $\mathrm{F}_{\mathrm{m}_{\mathrm{c}}}$ dla pewnego $\mathrm{k} < \mathrm{n}$, czyli wszystkie formuły poniżej n zostały skonstruowane, to

$$F_{m_n} \;:\; \neg\; (\varphi),\; \varphi \vee \phi,\; \varphi \wedge \phi, \dots \quad \text{dla} \;\; \varphi, \phi \in \bigcup_{k < n} F_{m_k},$$

czyli używamy wszystkich spójników logicznych dla poprzednich formuł

$$F_{m_n} \; : \; (\forall \; \varphi) \; (\exists \; x_i) \quad \text{dla} \; \varphi \in \bigcup_{k < n} F_{m_k}, \; x_i \in V$$

kwantyfikujemy też po wszystkich możliwych zmiennych wszystkiemożliwe formuły

$$FM = \bigcup_{n=0}^{\infty} F_{m_n}$$

1.6 JĘZYK TEORII MNOGOŚCI

$$L = \{\in\}$$

składa się z jednego binarnego predykatu, który nie jest jeszcze należeniem

W racuhnku zdań przejście z syntaktyki do semantyki to nadanie symbolom wartości prawda lub fałsz.

SYSTEM ALGEBRAICZNY:

$$\mathcal{A} = \langle A, \{F_i : i \in I\}, \{R_i : j \in J\}, \{C_k : k \in K\} \rangle$$

odpowiednio: zbiór (uniwersum), funkcje na A, relacje na A, stałe w A

 $przykłady: \langle \mathcal{P}(\mathbb{N}), \subseteq \rangle, \langle \mathbb{R}, +, \cdot, 0, 1 \leq \rangle$

Język L możemy interpretować w systemie ${\mathcal A}$ o ile mają one tę samą sygnaturę.

INTERPRETACJA to funkcja ze zbioru wartości w uniwersum:

$$i: V \to A$$
,

którą można rozszerzyć do funkcji ze zbioru termów w uniwersum:

$$\begin{array}{ccc} \bar{i} \ : \ TM \to \mathcal{A} \\ & i \subseteq \bar{i} \end{array}$$

Ponieważ sygnatury są takie same, to każdemu symbolowi funkcyjnemu możemy przypisać funkcję o dokładnie tej samej arności. *Czyli jeśli dany symbol funkcyjny jest nakła*dany na termy, to odpowiadająca mu funkcja jest nakładana na wartości tych termów.

W systemie ${\mathcal A}$ formuła arphi jest spełniona przy interpretacji i

$$\mathcal{A} \models \varphi[i]$$

Zaczynamy od formuł atomowych, czyli:

 $\mathcal{A} \models (t=s)[i]$ wtedy i tylko wtedy, gdy mają tę samą interpretację (czyli $\overline{i}(t) = \overline{i}(s)$)

 $A \models r_j(t_1,...,t_k)[i]$ wtedy i tylko wtedy, gdy odpowiedająca temu predykatowi relacja

zachodzi na wartościach termów (czyli $R_j(ar{i}(t_1),...,ar{i}(t_k)))$

 $\mathcal{A}\models(\neg\,\varphi)[\mathrm{i}]$ where $\mathcal{A}\models\varphi[\mathrm{i}]$, it is taken to the second substitution of the second substitution with the second substitution of the second subst

stkimi spójnikami logicznymi

 $\mathcal{A} \models (\forall \; x_m) \; \varphi[i] \qquad \text{wtedy i tylko wtedy, gdy dla każdego } a \in \mathcal{A} \; \text{mamy} \; \mathcal{A} \models \varphi[i(\frac{x_m}{a})] \; \text{(spraw-dzamy dla konkretnego a czy spełnia} \varphi\text{, a potem dla } x_m \; \text{przypisujemy to } \text{ to } \text{ and } \text{ a$

a, natomiast inne wartości dostają podstawienie $\left(\frac{X_m}{a}\right)$?)

2 AKSJOMATY

Zbiór oraz należenie uznajemy za pojęcia pierwotne, więc nie definiujemy ich tylko opisujemy ich własności.

2.1 AKSJOMAT EKSTENSJONALNOŚĆI

zbiór jest jednoznacznie wyznaczony przez swoje elementy $(\forall\;x)\;(\forall\;y)\;(x=y\iff(\forall\;z)\;(z\in x\iff z\in y))$

Od tego momentu zakładamy, że *istnieją wyłącznie zbiory*. Nie ma nie-zbiorów. Naszym celem jest budowanie uniwersum zbiorów i okazuje się, że w tym świecie można zinterpretować całą matematykę.

2.2 AKSJOMAT ZBIORU PUSTEGO

istnieje zbiór pusty Ø $(\exists\; x)(\forall\; y)\neg\; y\in x$

Na podstawie aksjomatu ekstensjonalności oraz aksjomaty zbioru pustego można udowodnić, że istnieje dokładnie jeden zbiór pusty.

- 1. istnienie: aksjomat zbioru pustego
- 2. jedyność: niech P_1,P_2 będą zbiorami pustymi. Wtedy dla dowolnego z zachodzi $\neg\,z\in P_1 \land \neg\,z\in P_2$, czyli $z\in P_1\iff z\in P_2$. Wobec tego, na mocy aksjomatu ekstensjonalności mamy $P_1=P_2$.

Przyjrzyjmy się następującemy systemowi algebraicznemu:

$$\mathcal{A}_1 = \langle \mathbb{N} \cap [10, +\infty), < \rangle$$

W systemie spełnione są oba te aksjomaty:

$$A_1 \models A_1 + A_2$$

Ponieważ nie mamy podanej interpretacji, a nasze aksjomaty są spełnione, to spełnione są dla dowolnej interpretacji.

2.3 AKSJOMAT PARY

dla dowolnych zbiorów x,y istnieje para $\{x,y\}$ $(\forall x,y) (\exists z) (\forall t) (t \in z \iff t = x \lor t = y)$

Para nieuporządkowana jest jednoznacznie wyznaczona. Aksjomat mówi tylko o istnieniu z, a można łatwo udowodnić, korzystając z aksjomatu ekstencjonalności, że takie z istnieje tylko jedno.

Niech P_1,P_2 będa parami nieuporządkowanymi x,y. W takim razie jesli $t\in P_1$, to $t=x\lor t=y$. Tak samo $t\in P_2\iff t=x\lor t=y$. Czyli $P_1=P_2$ bo posiadają te same elementy.

SINGLETONEM elementu x nazywamy zbiór $\{x\} := \{x, x\}$

PARĄ UPORZĄDKOWANĄ (wg. Kuratowskiego) elementów x i y nazyway zbiór:

$$\langle x, y \rangle := \{ \{x\}, \{x, y\} \}$$

Dla dowolnych elementów $\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}$ zachodzi:

$$\langle a, b \rangle = \langle c, d \rangle \iff a = c \wedge b = d$$

DOWOD:

Rozważmy dwa przypadki:

 $\underline{1}$. a = b

$$\langle a, a \rangle = \{ \{a\}, \{a, a\} \} = \{ \{a\} \}$$

Czyli jeśli $x \in \{\{a\}\}$, to $x = \{a\}$. Z drugiej strony mamy

$$\langle \mathbf{c}, \mathbf{d} \rangle = \{\{\mathbf{c}\}, \{\mathbf{c}, \mathbf{d}\}\}\$$

A więc jeśli $x\in\{\{c\},\{c,d\}\}$, to $x=\{c\}$ lub $x=\{c,d\}$. W takim razie mamy $\{a\}=\{c\}=\{c,d\}$, a więc z aksjomatu ekstensjonalności, a=c=d.

2. $a \neq b$

$$\langle \mathbf{a}, \mathbf{b} \rangle = \{\{\mathbf{a}\}, \{\mathbf{a}, \mathbf{b}\}\}\$$

Jeśli więc $x \in \langle a, b \rangle$, to $x = \{a\}$ lub $x = \{a, b\}$. Z drugiej strony mamy

$$\langle \mathbf{c}, \mathbf{d} \rangle = \{\{\mathbf{c}\}, \{\mathbf{c}, \mathbf{d}\}\}\$$

Jeśli $x \in \langle c, d \rangle$, to $x = \{c\}$ lub $x = \{c, d\}$. W takim razie otrzymujemy $\{c\} = \{a\}$ i $\{c, d\} = \{a, b\}$. Z aksjomatu ekstensjonalności mamy a = c oraz d = b.

2.4 AKSJOMAT SUMY

Dla dowolnego zbioru istnieje jego suma $(\forall x) (\exists y) (\forall z) (z \in y \iff (\exists t) (t \in x \land z \in t))$

Ponieważ wszystko w naszym świecie jest zbiorem, to *każdy zbiór możemy postrzegać ja-ko rodzinę zbiorów -* jego elementy też są zbiorami. W takim razie suma tego zbioru to suma rodziny tego zbioru.

Suma jest określona jednoznacznie i oznaczamy ją $\bigcup x$.

DOWOD:

Załóżmy nie wprost, ze istnieją dwie sumy zbioru x: S_1 i S_2 . Wtedy

$$(\forall z)(z \in S_1 \iff (\exists t \in x)(z \in t))$$

$$(\forall \ z)(z \in S_2 \iff (\exists \ t \in x)(z \in t))$$

Zauważamy, że

$$z \in S_1 \iff (\exists \ t \in x)z \in t \iff z \in S_2$$

a więc S_1 i S_2 mają dokładnie te same elementy, więc z aksjomatu ekstencjonalności są tym samym zbiorem.

Suma dwóch zbiorów:

$$x \cup y := \bigcup \{x,y\}$$

DOWOD:

Ustalmy dowolne z. Wtedy mamy

$$\begin{split} z \in \bigcup \{z,y\} & \stackrel{4}{\Longleftrightarrow} (\exists \ t) \ (t \in \{x,y\} \land z \in t) & \stackrel{3}{\Longleftrightarrow} (\exists \ t) ((t = x \lor t = y) \land z \in t) \iff \\ & \iff (\exists \ t) \ ((t = x \land z \in t) \lor (t = y \land z \in t)) \iff \\ & \iff (exists \ t) (t = x \land z \in t) \lor (\exists \ t) (t = y \land z \in t) \implies \\ & \implies (\exists \ t) (z \in x) \lor (\exists \ t) (z \in y \iff z \in x \lor z \in y) \end{split}$$

i smiga

2.5 AKSJOMAT ZBIORU PUSTEGO

dla każdego zbioru istnieje jego zbiór potęgowy

$$(\forall x)(\exists y)(\forall z)z \in y \iff (\forall t \in z)t \in x$$
$$(\forall x)(\exists y)(\forall z)z \in y \iff z \subseteq x$$

Zbiór potęgowy jest wyznaczony jednoznacznie i oznaczamy go $\mathcal{P}(\mathbf{x})$

DOWOD:

Załóżmy, nie wprost, że istnieją dwa różne zbiory potęgowe P_1 i P_2 dla pewnego zbioru x . Wówczas

$$(\forall z) z \in P_1 \iff z \subseteq x$$

$$(\forall z) z \in P_2 \iff z \subseteq x$$

Zauważamy, że

$$z \in P_1 \iff z \subseteq x \iff z \in P_2,$$

czyli zbiory P_1 i P_2 mają dokładnie te same elementy, więc na mocy aksjomatu ekstencjonalności $\mathrm{P}_1=\mathrm{P}_2$

2.6 AKSJOMAT WYRÓŻNIANIA

To tak naprawdę schemat aksjomatu, czyli nieskończona rodzina aksjomatów

SIMPLIFIED VERSION: niech $\varphi(t)$ będzie formułą języka teorii mnogości. Wtedy dla tej formuły mamy $A_{6\varphi}$ dla każdego zbioru x istnieje zbiór, którego elementy spełniają własność φ

$$(\forall x)(\exists y)(\forall t)(t \in y \iff t \in x \land \varphi(t))$$

FULL VERSION: niech $\varphi(t,z_0,...,z_n)$ będzie formułą jezyka teorii mnogści. Wtedy pozostałe zmienne wolne będa parametrami (zapis skrócony $z_0,...,z_n:=\overline{z})$

Dla każdego układu parametrów i dla każdego x istnieje y taki, że dla każdego t \in y t należy do x i t spełnia formułę φ

$$(\forall \ z_0)...(\forall \ z_n)(\forall \ x)(\exists \ y)(\forall \ t)(t \in y \iff t \in x \land \varphi(t,z_0,...,z_n))$$

Weźmy półprostą otwartą:

$$(0, +\infty) = \{ x \in \mathbb{R} : x > 0 \},\$$

druga półprosta to

$$(1, +\infty) = \{x \in \mathbb{R} : x > 1\}$$

i tak dalej. Czyli ogólna definicja półprostej to:

$$(a, +\infty) = \{x \in \mathbb{R} : x > a\}.$$

Dla każdej z tych półprostych trzeba wziąc inną formułę, które wszystkie są zdefiniowane za pomocą formuły

$$\varphi(\mathbf{x}, \mathbf{a}) = (\mathbf{x} > \mathbf{a}),$$

gdzie a funkcjonuje jako parametr.

2.7 AKSJOMAT ZASTEPOWANIA

Ostatni aksjomat konstrukcyjny, jest to schemat rodziny aksjomatów

SIMPLIFIED VERSION: niech $\varphi(x,y)$ będzie formułą języka teorii mnogości taką, że:

$$(\forall x)(\exists ! y)\varphi(x, y).$$

Wówczas dla każdego zbioru x istnieje zbiór $\{z: (\exists \ t \in x) \ \varphi(t,z)\}$ $(\forall \ x)(\exists \ y)(\forall \ z) \ (z \in y \iff (\exists \ t \in x) \ \varphi(t,z))$

Czyli każdy zbiór można opisać za pomocą operacji.

FULL VERSION: niech $arphi(x,y,p_0,...,p_n)$ będzie formułą języka teorii mnogości.

$$(\forall p_0), ..., (\forall p_n) ((\forall x) (\exists !y) \varphi(x, y, \overline{p}) \implies (\forall x)(\exists y)(\forall z) (z \in y \iff (\exists t \in x) \varphi(t, z, \overline{p})))$$

2.8 KONSTRUKCJE NA ZBIORACH SKOŃCZONYCH

Niech x,y będą dowolnymi zbiorami. Wtedy definiujemy:

$$x\cap y=\{t\in x\ :\ t\in y\}$$

$$x \setminus y = \{t \in x : t \notin y\}$$

$$x \times y = \{z \in \mathcal{P}(\mathcal{P}(x \cup y)) \ : \ (\exists \ s \in x)(\exists \ t \in y) \ z = \langle s, t \rangle \}$$

Formalnie stara definicja iloczynu kartezjańskiego nie działa w nowych warunkach, bo nie wiemy z czego wyróżnić tę parę uporządkowaną. Ponieważ $s,t\in x\cup y$, mamy

$$\{s\}, \{s, t\} \subseteq x \cup y,$$

a więc

$$\{\{s\}, \{s, t\}\} \subseteq \mathcal{P}(x \cup y).$$

Czyli nasza para uporządkowana jest elementem zbioru potęgowego zbioru potęgowego sumy zbiorów.

$$\bigcap x = \{z \in \bigcup x \,:\, (\forall\; y \in x)\; z \in y\}$$
 i wówczas $\bigcap \emptyset = \emptyset$

RELACJA – definiujemy rel (\mathbf{r}) jako dowolny zbiór par uporządkowanych:

$$rel(r) := (\exists x)(\exists y) r \subseteq x \times y$$

FUNKCJA – relcja, która nie ma dwóch par o tym samym poprzedniku i różnych następnikach:

$$\texttt{fnc}(f) := \texttt{rel}(f) \wedge (\forall \; x)(\forall \; y)(\forall \; z) \; (\langle x,y \rangle \in f \wedge \langle x,z \rangle \in f) \implies y = x$$

Dziedzinę i zbiór wartości możemy wówczas zdefiniować jako:

$$dom(f) = \{x \in \bigcup f : (\exists y)\langle x, y \rangle \in f\}$$

$$\text{rng}(f) = \{y \in \bigcup \bigcup f \ : \ (\exists \ x) \langle x,y \rangle \in f\},$$

ponieważ

$$\{\{x\},\{x,y\}\}\in f\implies \{x\},\{x,y\}\in\bigcup f\implies x,y\in\bigcup\bigcup f$$

Dopóki działamy na zbiorach skończonych, wynikiem operacji zawsze będzie kolejny zbiór skończony – niemożliwe jest otrzymanie zbioru nieskończonego.

2.9 AKSJOMAT NIESKOŃCZONOŚCI

Istnieje zbiór induktywny:

$$(\exists \ x) \ (\emptyset \in x \land (\forall \ y \in x) \ (y \cup \{y\} \in x))$$

Na początku do naszego zbioru x dodajemy \emptyset . Potem, skoro \emptyset należy do x, to należy też $\{\emptyset\}$. Ale skoro do x należy $\emptyset\cup\{\emptyset\}$, to również $\{\emptyset\cup\{\emptyset\}\}$ jest jego elementem i tak dalej.

.....

TW. Istnieje zbiór induktywny najmniejszy względem zawierania, czyli taki, który zawiera się w każdym innym zbiorze induktywnym.

DOWOD:

Niech x będzie zbiorem induktywnym, który istnieje z aksjomatu nieskończoności. Niech

$$\omega = \bigcap \{ y \in \mathcal{P}(x) : y \text{ jest zbiorem induktywnym} \}$$

Chcę pokazać, że ω jest zbiorem induktywnym, czyli $\emptyset \in \omega$.

$$\emptyset \in \omega \iff \emptyset \in y$$
 dla każdego zbioru induktywnego $y \subseteq x$

Ponieważ każdy zbiór induktywny zawiera \emptyset , także ω zawiera \emptyset .

Pozostaje pokazać, że dla dowolnego $t \in \omega$ mamy

$$t \cup \{t\} \in \omega$$

Dla każdego zbioru induktywnego $y\subseteq x$ mamy $t\in y$. ale ponieważ y jest zbiorem induktyw-nym, mamy

$$t \cup \{t\} \in y.$$

Z definicji przekroju zbioru x mamy

$$t \cup \{t\} \in \bigcap \{y \in \mathcal{P}(x) \ : \ \text{y jest zbiorem induktywnym}\} = \omega$$

Czyli istnieje zbiór induktywny ω będący przekrojem wszystkich innych zbiorów induktywnych. Pokażemy teraz, że jest to zbiór najmniejszy.

Niech z będzie dowolnym zbiorem induktywnym. Wtedy $z \cap x$ jest zbiorem induktywnym i $z \cap x \subseteq x$. Czyli z jest jednym z elementów rodziny, której przekrój daje ω :

$$z \cap x \supseteq \{y \in \mathcal{P}(x) : Y \text{ zb. ind.}\} = \omega$$

i smiga

Każdy element \emptyset , $\{\emptyset\}$, $\{\emptyset, \{\emptyset\}\}\}$... możemy utoższamić z kolejnymi liczbami naturalnymi. W takim razie ten najmniejszy zbiór induktywny będzie utożsamiany ze zbiorem liczb naturalnych. Konsekwencją tego jest zasada indukcji matematycznej.

Niech $\varphi(x)$ będzie formułą ozakresiie zmiennej $x \in \mathbb{N}$ takiej, że zachodzi $\varphi(0)$ oraz

$$(\forall n \in \mathbb{N}) \varphi(n) \implies \varphi(n+1).$$

Wówczas

$$(\forall \ z \in \mathbb{N}) \ \varphi(n)$$

DOWOD:

Niech

$$A = \{ n \in \mathbb{N} : \varphi(n) \}.$$

Wtedy $A\in\mathbb{N}$ oraz A jest induktywny. Kolejne zbiory należące do zbioru induktywnego utożsamialiśmy z $n\in\mathbb{N}$, więc skoro $\varphi(n)$ należy do tego zbioru induktywnego, to również $\varphi(n+1)$ należy do A. Skoro A jest zbiorem induktywnym, to $\mathbb{N}\subseteq A$, więc $A=\mathbb{N}$.

<u>i</u> smiqa

2.10 AKSJOMAT REGULARNOŚCI

Do tej pory poznaliśmy aksjomaty o instnieniu i serie aksjomatów konstrukcyjnych. Aksjomat regularności nie jest żadnym z nich.

W każdym niepustym zbiorze istnieje element \in -minimalny:

$$(\forall x) x \neq \emptyset \implies ((\exists y \in x) (\forall z \in x) \neg z \in y),$$

a więc eliminowane są patologie jak np: $x \in x$, $y \in y \in x$.

Antynomia Russlla,

$$\{x : x \notin x\},\$$

jest eliminowana przez aksjomat regularności.

2.11 AKSJOMAT WYBORU

Dla każdej rozłącznej rodziny parami rozłącznych zbiorów niepustych istnieje SELEKTOR

$$(\forall x) ((\forall y, z \in x) (y \neq \emptyset \land (y \neq z \implies y \cap z = \emptyset)) \implies (\exists s)(\forall y \in x)(\exists !t) t \in s \cap y)$$

Problematyczne nie jest znalezienie punktów, które są reprezentantami zbiorów naszej rodziny, a wskazanie zbioru, który je wszystkie zawiera. Dlatego w tym może nam pomóc akjomat wyboru. Wystarczy pokazać, że rozważamy rodzinę rozłącznych zbiorów i już z tego wiemy, że możemy wybrać selektor. Handy.

PARADOKS BANACHA-TARSKIEGO:

Kulę możemy rozłożyć na 5 kawałków i przesuwać je izometrycznie w taki sposób, żeby złożyć z nich dwie identyczne kule jak ta, którą mieliśmy na początku. Kawałki na które dzielimy są niemieżalne, nie mają objętości, są maksymalnie patologiczne, ale nadal możemy powiedzieć że istnieją korzystając z aksjomatu wyboru. Daje on nam tylko informację, że istnieje selektor, a nie o tym jak on wygląda, więc może być absurdalny i patologiczny jak tylko ma ochotę.

FUNKCJA WYBORU - niech $\mathcal A$ będzie rodziną zbiorów niepustych. Funkcją wyboru dla rodziny $\mathcal A$ nazywamy wtedy dowolną funkcję f:

$$\begin{aligned} f: \mathcal{A} &\to \bigcup \mathcal{A} \\ (\forall \ A \in \mathcal{A}) \ f(A) \in A \end{aligned}$$

Aksjomat wyboru jest równoważny temu, że dla każdej rozłącznej rodziny niepustych zbiorów istnieje funkcja wyboru (selektor).

3 LICZBY PORZĄDKOWE

3.1 LEMAT KURATOWSKIEGO-ZORNA

Suma przeliczalnie wielu przeliczalnych zbiorów jest przeliczalna: $(\forall n \in \mathbb{N}) \mid A \mid < \aleph 0 \longrightarrow \aleph > 1 \mid A$

$$(\forall n \in \mathbb{N}) |A_n| \leq \aleph 0 \implies \aleph_0 \geq \bigcup_{n \in \mathbb{N}} A_n$$

DOWOD:

Ponieważ $|\mathrm{A_n}| \leq leph_0$, to istnieje bijekcja

 $f_n: \mathbb{N} \to A_n$.

Chcemy pokazać, że istnieje też bijekcja:

$$f: \mathbb{N} \times \mathbb{N} \to \bigcup_{n \in \mathbb{N}} A_n$$

$$f(n,k) = f_n(k) \quad (\clubsuit)$$

Musimy znać wszystkie elementy (f_n) jednocześnie, więc skorzystamy z aksjomatu wyboru. Rozpatrzmy zbiór funkcji:

$$F_n = \{\varphi \in S_n^{\mathbb{N}} \,:\, \varphi \text{ jest bijekcja}\}$$

dla $n \in \mathbb{N}$, gdzie $S_n^\mathbb{N}$ oznacza wszstkie funkcje

$$g:\mathbb{N}\to A_n$$

Niech F będzie funkcją wyboru dla rodziny

$$\{F_n\ :\ n\in\mathbb{N}\},$$

czyli każdej rodzinie przypisujemy element tej rodziny:

$$F(F_n) \in F_n$$