	MATH 331 Homework 02
1	Exercise 1. (10pts).
	a) Let flambaj: n 213 be a family of closed intervals such
	that [a116] > [a2162] > [a3162] >, Show that there is a
	CGIR such that CG[anjbn] for all nz No Follow
	the following steps to prove it!
	(i) Prove that for any nim 21, an 2 bm. [hint! put Mi= max fnim]
	(11) show that sup fan; h > 17 exists.
	(111) Show that C= sup {an: n ≥ 1} satisfies the regularment.
	Suppose E Ean, bnJinz13. Then clearly for any n, m Z1
	on the closed interal familians that and by. The same
	is true for the dord interval [am, bm] then am & bm,
	define M:= max {n, m} so that if n is max then
	Camban = [an, bn] so am < bn and and bn or it
d d	m is max tun [an, bn] D [am, bn] so ans bm
	and un sion. Its you can see it is true that
	and bm. (1) Now we must show that the
	supfaninz1) austs. It als obulous from the
	definition Fund bod > Cantill bod of antil > an
	for a nENe. Then for any not an will be greater
	than or equal to all as too 15:5n-1
	This means there exists a MEIR and for all X = Ean: nzi]
	then - X < Mg. In particular Mn cun be
	equal to an . In addition for all Kn that are
	upper counds of faginz13 then X < Mg < Kn.
	so supofan: n > 1 } exist. (ii) we are asked to show
	that C= supfan; p71} satisfies the requirements, Let
	C=Mn then by the same argument above XECEKA
	Where XE fun; n717, C=supremumEIR, Kn = all upper bounds.
0 6	Therefore It suffices the recomment of the supremum, shie
	bm> (= anzan-1, for any n, clearly c = [anjbn] for all
	neN.

(3)

Exercise 2, (5 pts) Prove that it and A, then land + 1A Proof suppose an conveyed to A, then by the definition of conveyance for an 6>0, there exist an N, GN, such that I fold all in >N, we have lan-Al < E. Now suppose land take the limit 4=1Al such that for all Exo, three Is an N2 EN such that for all n2 N2 then [Mai-IA] < E. We have to show this. Let E>0 and arbitrary the by the properties of absolute valle, 0.25 Theorem iv (py 25) that 1101-161 510-61, 60 take 101=1001 and 161=1A1 Hen by this irrequality I an - IAI san-Al but since an converge to A it must be true that lan-AlKE so by transitivity | |an|-1A| | 5 |an-A| < E. Note to resolve that Ni and No dre not necessarily equal set N:= max {NIND}. Thus we have shown that Exa that [Ian] - IA] < Ian-Al < for all n > N. space E>0 Was arbitrary we have shown that if and A then (an) -> (A). 3 Exercise 3, (5 pts) Let (an), (bn), and (cn) be sequences of real numbers Prove that if and L, bny L and an < Cosbo , then contL. Suppose and endon. suppose an converges to L such that for all EDD, there exists an NEN such that for all nEN, we have |an-L| < E. suppose on conveyed to be such that for all ETO there exists an No EN such that for all no My we have Ibn-LIKE. Now suppose an converges to & where for all \$>0 there seeing an No FN such that for all 12 No we have Icn-GIEF. We Will prove than G- must equal LI NOW suppose we know that fango converges to I and fonting converges & Wish and Ch for all nEN then by 12 theorem. We know LEG. How suppose (Cn) nel converges to & and foring

Converged to L with Chéby for all nENV then we know "FEL by 1.12 Theorem (pg 48). By using transitivity of L< & and &<L then

LSC<L. The only case this is the is when

C=L Therefore we shown that given fanting.

where the and formal converges to L and

and cond by then formal must converge

to L.

4 Exercise 4 (spts) prove that If and A and and one of for all nell then

Tan + JA. Follow the following steps to prove it:

. A. conside the case A=0

2. SUPPOSE that A & De Show that there is a Mi EN such that if no N, then Jan = JIAI/2.

With a clever choice of & and use the properties of observer value,]

3. Use the convergence of (an) again to find a No such that lan-A | < 3 8

4. Express Tan-A as an-A and put N= max {N,1 N2},

Van +VA

SURPOSE Early converges to A and an > O. The the

case where A=O we have for all 6>O there exist an

NEN such that for an n 2M we have | an - 0| = |an| < E

FY the definition of convergence take | N=| such that

for all n ≥ N=| an > O so that - E< an < E, Therefore

OSanse for an n ≥ 1. Let show that if exo

then there exists an NEN such that for an n ≥ No

then | Nan - Na | = | Nan - O| = | Van < E, To show this

take E= | Eo then since we know of an ≤ Eo then

(by HW1 05a56 then Var < Van | Van - Val = | Van - O| = Van < E

(8)

9	
5	Exercise 5, (5 pts) For each sequence (an) = define the sequence
	(on) =1 by
	$\sigma_n := \frac{\alpha_1 + \alpha_2 + \dots + \alpha_n}{n} \qquad (n \ge 1)$
	n
	Prove that if and A, then Jn + A, Find an example of
	a object to sequence can such that (on) a converyes
	proof: suppose that an > A then It must be true that
	for all 870 there is an NEW such that for all nZN,
	we have lan-A < E . We are trying to show that
	for Not N such that for all n Z No that On-A < &
	Let @ >0 be arbitrary. Since we know any A and
×	that Ian-Aleg then
Jan.	
	1 1 + 1 2 + + an - A; - A, An
	where A = Ag = = An
	then by the triongle inequality we have
	= [a1-A]+ [a2-A]+ [a3-A]d1.1+ [am-An]
	$\leq \left(\frac{\varepsilon}{n}\right) n = \varepsilon$
	(n) WE have show that IF 6>0 1. there is an Mit Ni such that
	for all AZN, then aitant ton - A < Er Since & wal
	arbitrary it implies to 30 converges to A.
34 23	
B	
	Idldnf Anlsh
10	

a) $(a_n)_{n=1}^{\infty}$ given by $a_n = 5 + \frac{1}{n}$ for $n \ge 1$.

Proof: By the definition of convergence we will take A=S and show that $(5+\frac{1}{2}n)^{\infty}_{n=1}$ converges to S. Let E>0.

Then there exists an N such that for all $n\geq N$.

We have $|5+\frac{1}{2}n-5|=|\frac{1}{n}|=\frac{1}{n}<E$. By the Archimedean property $E(X\times Y\in R, \times>0 \text{ In } \epsilon N)$ we will take $n=N_0$ $\times=E$, and Y=I then $N_0E>I$.

Here we take $N=N_0$, so it $n\geq N_0$ we have $n\in \mathbb{Z}$ N_0E (by axiom OA) and by transfelvity (by axiom OA) we have $n\in \mathbb{Z}$ N_0E (by axiom OA) and by transfelvity $N_0E>I$ for all $N\geq N_0$. Then this implies the following

We have just shown that if $\varepsilon > 0$ three exist an $N = N_0$. We have just shown that if $\varepsilon > 0$ three exist an $N = N_0$ such that, for all $n > N_0$ then $15 + \frac{1}{n} - 5| = \frac{1}{n} < \varepsilon$. Since $\varepsilon > 0$ was arbitrary $(5 + \frac{1}{n}) = 0$ converges to 5. To

b) (an) n=1 given by an = 3n for nz/

Proof: By the definition of convergence we will take $k = \frac{3}{2}$ and show that $\left(\frac{3n}{2n+1}\right)^{\infty}_{n=1}$ converged to $\frac{3}{2}$. Let \$70 then

there exists an N such that for all n2N we have $\left|\frac{3n}{2n+1} - \frac{3}{2}\right| = \left|\frac{-3}{4n+2}\right| = \frac{3}{4n+2} < \mathcal{E}$. By the Archimedean

property we will take $n = N_0$, $X = \mathcal{E}_1$ and $Y = \frac{3}{4}$, then $N_0 \mathcal{E} \times \frac{3}{4}$. Now take $N = N_0$, so if $n \ge N_0$ then we have $n \in \mathbb{Z} \times \mathbb{Z}$

(-1)n-Al<1. Note that

(8)

(-1) = 1 for all 0 that are each. Also, $(-1)^n = -1$ for all 1 that are each. Also, $(-1)^n = -1$ for all 1 that are each. Also, $(-1)^n = -1$ for the all 1 that are each. Desire $(-1)^{2k}$ for keNl for the case where $(-1)^n = 1$ and desire $(-1)^{2k-1}$ for keNl for the lase where $(-1)^n = -1$. If $1(-1)^n - A| < 1$ and n is even then $1(-1)^n - A| = 1(-1)^2 - A| = 11 - A| < 1$ on $(-1)^n - A| = 1(-1)^n - A| = 1 - A| < 1$ and n is odd than $1(-1)^n - A| = 1 - A| < 1$ and n is odd than $1(-1)^n - A| = 1 - A| < 1$ and n is odd than $1(-1)^n - A| = 1 - A| < 1$ and n is odd than $1(-1)^n - A| = 1 - A| < 1$ and n is odd than $1(-1)^n - A| = 1 - A| < 1$ and n is odd than $1(-1)^n - A| = 1 - A| < 1$ for all $1(-1)^n - A| = 1 - A| < 1$ for all $1(-1)^n - A| = 1 - A| < 1$ for all $1(-1)^n - A| <$

6) $(a_n)^{\infty} = (\sin(\frac{2n+1}{2}\pi))^{\infty}$

Proof: Let's prove that (sin(2n+1)) no diverges by showing a contradiction, suppose (SIn(2n+1 T))) n=1 converses set E=1 then there must be an NEN such th for all n>N ten (sin(2nt) T) -A <1. Sin (2n+1 11) for n 15 even as sin (2(2K)+11)=1 for KEN define sin(2n+1 11) for n us add us sin(2(2K-1)+17 tor KEN. In the case then | sin(2n+1) - A = |sin(2(2k)+1) - A | = |1-A | < 1. By Property of absolute value - 1 < 1-A < 1. the inequality (axion 01) then -2<-A<0. care where nis odd then | sin(2n+1) - A = |sin(2(2x-1)+1) - A = |-1-A| <1. By the property of absolute value -1<-1-AL and by adding I to the long valley be an element of both sets or -AEL-2,0) \(\O, 2) = \delta. This is a contradiction, since we showed that the assumption (SIN(2n+1)) a=1 is false, it must be true. than ((SIN(2n+1))) diverges.

10

Exercise 9 (5p+s) Give an example of two sequences (an)
and (bn) such that (un) and (bn) dont converge
but (antbn) converge.

the example is $(an)_{n=1}^{\infty} = (n+1)_{n=1}^{\infty} + (bn)_{n=1}^{\infty} = (-n)_{n=1}^{\infty}$.

(i) Lets prox that $(n+1)_{n=1}^{\infty}$ diverges using a contradiction.

Suppose $(n+1)_{n=1}^{\infty}$ converges to A. Then by 1.2 Theorem

(pg 37) It must be bounded. Bused on 1.2 Theorem

an must be bounded from above an $\leq M_1$ where $M \in \mathbb{R}_1$.

Co $n+1 \leq M_1$ for all $n \in \mathbb{N}$. However, by the 1.

Archimedean principal $= (1e+n) \leq 1e = M_1 + e = M_1 + 1 \geq M_1$.

Ni $\geq M_1 - 1e = m \leq M_2$ and $\leq m \leq M_2 + m \leq M_3 + 1 \geq M_4$.

Which is a contradiction, Therefore $(n+1)_{n=1}^{\infty}$ must diverge.

(11) lets prove (bn) == (-n) = diverges using a contradiction,

Suppose (-n) == converge to A. By 1.2 theorem (pg 3-1)

It must be bounded and say it has a lower bound such

that for all n; Se an where SeeR. So Seenlor

Sitne O (bound on axiom ob) infor all neW. However, based on

the Archimedeur principal (let x=1, y=-seeR, n=N2) then

(bound on axiom of)

-sexumption of the existing of N2 contradicts.

the assumption that (-n) not is bounded, therefore

it is unbounded and diverges.

Uli) in this example, (an) \$\infty\$ = (n+1) \$\infty\$ = (-n) \$\infty\$ = (-n) \$\infty\$ = (-n) \$\infty\$ = (-n) \$\infty\$ = diverged

but (ant bn) \$\infty\$ converges. We will prove that, Suppose

Un=h+1 | bn=h | then (ant bn) \$\infty\$ = (n+1-n) \$\infty\$ = (1) \$\infty\$ = (1) \$\infty\$ which is a waster sequence, Let \$\infty\$ = 1. For \$\infty\$ = 70, there exists an

NEW such that for all \$n \generall Ne have \$|1-1|=0 < \infty\$.

Consider \$N=1\$ then if \$\infty\$ is have \$|an-A|=|1-1|=0 < \infty\$.

For all \$n \generall\$ is best proved that if \$\infty\$ is there exists

UN \$N=1\$ such that for all \$n \generall\$ = 10 \cdot \infty\$. Since \$\infty\$ was

arbitrary we shown that (anton) = 1 = (n+1-h) = 1 = (1) = 1 asked to find the 6001c. $\left(\frac{n^2+4n}{n^2-5}\right)$ We MUST 100 K (1-3/n2) no conveyer to 1 to I and (1/h) or converges to zero so by I of Hearen (12) nz, converges

(1-3/h2) n=1 6E{-2116} cosn 1 80 () converges to 113 Hearen (pg 40) (1 . aosn) n=1 Where (an) an = (1) no (cosh) 00 (1 , cosn) 00 $(\sqrt{4-\frac{1}{n}}=2)n$ d) n (14-1/n-2) (14-1/n+2 (V4-1/n)

	So the denominator (14-1/2 +2) == con be proken to
	(It-Va) n=1 which converges to 2 and (2) n=1 converges
	to 2 80 Heaton (J4-Vn+2) no conveyed to (2+2) no
	= (4) not which conveys to 4. so by 1.11 Theorem
	the humantor converges to -1 and denominator to 4
	SO BXO and box is borroll away from zero 6n (18+2,2)
	then the limit of $(\sqrt{4-1/n}-2)n n = 1 - (\sqrt{4-1/n}+2)n = 1$ converges
	to -1/4,
Management Court Management (Product Description Court Description	
6 30 30 30	
9	
± -	
	· · · · · · · · · · · · · · · · · · ·