Buffer manager e índices

Clase 04

IIC 3413

Prof. Cristian Riveros

Para esta clase

Outline

Buffer Manager

Índices

Outline

Buffer Manager

Índices

Buffer manager

- Mediador entre el disco y la memoria principal.
- Cuenta con una cantidad restringida de memoria RAM.
- Páginas son traidas a memoria a pedido.
- Encargado de decir que páginas eliminar cuando el buffer esta lleno.

Buffer manager

Cada frame tiene dos variable:

- 1. #pin = cantidad de procesos que estan usando esta página.
- 2. Dirty = si el contenido es necesario guardarlo en memoria.

Procesos acceden al Buffer manager usando las funciones:

pin(pageno) y
unpin(pageno, dirty)

Interfaz para acceder el buffer manager

Función pin(pageno)

- 1. Solicita la página pageno al buffer manager.
- 2. Si la página pageno no esta en memoria:
 - Se selecciona un frame vació X.
 - Se trae la página pageno a memoria y se carga en X.
 - Se actualiza X.#pin := 1 y X.dirty := false.
- 3. Si la página pageno esta en memoria, se incrementa su #-pin en 1.
- 4. Buffer manager retonar una referencia al frame que contiene pageno.

¿Problemas?

- ¿qué ocurre si no hay un frame vacío?
- ¿qué ocurre si todos los frames tienen #pin mayor que 1?

Interfaz para acceder el buffer manager

Función unpin(pageno, dirty)

- 1. Solicita la liberación de la página pageno (almacenada en el frame X).
- 2. Se decrementa el X.#pin en uno.
- 3. Se actualiza X.dirty := truesi la página fue modificada.

¿ Problemas?

- ¿cuándo son guardados los datos de la página en disco?
- ¿qué ocurre si un proceso nunca hace unpin de su página?

Requisitos de la interfaz pin y unpin

1. Cada proceso (de una BD) debe mantener las funciones pin y unpin correctamente anidadas.

```
d \leftarrow pin(p);
:
(proceso lee y usa los datos en la dirrección de memoria d)
:
unpin(p, false);
```

2. Cada proceso (de una BD) debe liberar una página lo antes posible.

Escritura concurrente de una página

Suponga lo siguiente:

- La misma página p es solicitada por más de un proceso (#pin > 0).
- Mas de un proceso modifica el mismo dato de p.

¿qué hacemos?

... estos conflictos son manejados por el administrador de transacciones.

(lo veremos más adelante)

Políticas de reemplazo (replacement policies)

La efectividad del buffer manager depende directamente de la política de reemplazo usada.

Diferentes tipos de póliticas o (heurísticas).

- FIFO.
- Least Recently Used (LRU).
- Clock.
- Random.

Recordar: estas son heuristicas y pueden fallar.

Buffer manager en la práctica

Varias técnicas adicionales:

- Prefetching.
- Page fixing / hating.
- Buffer particionado.

Base de Datos vs. Sistemas Operativos

¿cuáles son las ventajas de usar un buffer manager propio?

- Mayor conocimiento del patrón de acceso a los datos.
- Política de reemplazo propia.
- Hacer pinned y unpinned de las páginas.
- Forzar el almacenamiento de páginas.
- Acceso "fino" por parte del administrador de transacciones.

Outline

Buffer Manager

Índices

Métodos de acceso

Management System (DBMS Database

Métodos de acceso

Procesador de consultas

considera las relaciones como "colección de records".

Administrador de almacenamiento provee al procesador de consultas con métodos para acceder estas colecciones de records.

Estos métodos son conocidos como métodos de acceso.

Evaluación de consulta y métodos de acceso

 $\begin{array}{lll} Q &=& SELECT & pName, mStadium, goals \\ & FROM & Players AS \ P, \ Matches \ AS \ M, \ Players_Matches \ AS \ PM \\ & WHERE & P.pld = PM.pld \ AND \ PM.mld = M.mld \ AND \\ & P.pYear \geq 1985 \end{array}$

Plan físico para evaluar Q:

Interfaz de acceso a relaciones

1. Create o Destroy

· Crear o destruir el acceso.

2. Insert(record)

Insertar un nuevo record a la relación.

3. Delete(RID)

• Eliminar un record dado su Record ID (RID).

4. **Get**(searchkey)

- Buscar un record dado una "llave de busquedad".
- El criterio de busqueda puede ser diverso (por valor, por rango, etc).
- En general, Get puede estar "sobrecargado".

5. Scan

Iterar sobre todos los records.

Ejemplo: Heapfile

- 1. Create o Destroy: crea un heap-file de la relación.
- 2. Insert(record): inserta un record al final del archivo.
- 3. Delete(RID): busca la página del record y la elimina.
- 4. **Get**(searchkey)
 - Busca en todas las páginas los records que satisface el searchkey.
- 5. Scan
 - Iterar sobre todas las páginas y sobre todos los records.

Ejemplo: Sortedfile

- 1. Create o Destroy: crea un sortedfile de la relación.
- 2. Insert(record): inserta un record en la **posición** que le corresponde.
- 3. Delete(RID): busca la página del record y la elimina.
- 4. **Get**(searchkey)
 - Busqueda binaria del record que satisface el searchkey.
- 5. Scan.
 - Iterar sobre todos las páginas y sobre todos los records.

¿qué es un índice?

Definición

Método de acceso que optimiza el acceso a los datos para una consulta o conjunto de consultas en particular.

Ejemplos

- Indice de un libro.
- Orden alfabético en un diccionario.
- Número de páginas de un libro.
- Secciones de un diario.

Algunos hechos importantes sobre un índice

- 1. Un índice optimiza un subconjunto de consultas.
- 2. Un índice optimiza ciertas consultas pero puede hacer otras más costosas.
- Es posible sacrificar espacio por tiempo, pero idealmente un índice debe ser mantenido en RAM.

¿qué consultas nos gustaría optimizar con índices?

Busqueda por valor (value query).

SELECT '

FROM table

WHERE attribute = 'value'

Busqueda por rango (range query).

SELECT

FROM table

WHERE attribute ≥ 'value'

Busqueda por match (pattern matching).

SELECT

FROM table

Tion table

WHERE attribute LIKE 'patrón'

¿qué otra consulta nos gustaría optimizar?

Evaluación de la eficiencia de índices

Evaluación con respecto a:

- Tipo de acceso.
- Tiempo de acceso.
- Tiempo de inserción.
- Tiempo de eliminación.
- Sobrecarga de espacio.

¿qué parametro es el más importante?

Definición

```
Search key = parámetros de busqueda.
```

Index entry = valor o puntero

de la estructura interna de un índice

Data entry = record mismo, o dirección donde se almacena un record.

Para un search key k, un data entry puede ser:

- 1. Un record. (que satisface el search key k)
- 2. (k, RID).
- 3. (k, lista de RID).

¿cuáles son los search keys, index y data entries de este índice?

Ejemplos

INDEX

ALCOHOL CAN BE A GAS!

U.S. corn. 27, 27f, 31-32, 31f, 39-40 Agrocybe aegerita (mushroom), 314f Agral 18 Agrol Company, 17, 18 air conditioners cogenerators as, 445 heat pumps compared to, 218, 219 household codenerated, 445 ice block 447 air pollution, 34-35, 56 catalytic converters and, 379 coal and, 57-58 exhaust, 425 neat ethanol reducing, 350 small engine 421 stoichiometric ratios and, 379-380 two-stroke engines and, 425 wood smoke, 224, 339

forms of 437 generator using, 444 household power use of, 446-448 industrial-grade, 206 leakage of, 268 lighting with, 447 liquid, 210 off-road uses for, 196-197, 339-341, 444. 462 axygen content of, 347 phase separation of, 225-226 prálnie v. com. 42 proof requirement and, 196-197 reforming, 431 sources for, 119-180 storage of, 232, 268-274, 2687, 271f sugar, 136 vaporized, 66, 331f, 332-333, 418

¿cuáles son los search keys, index y data entries de este índice?

Ejemplos

Relación Players(ID, name, number), ordenado por ID:

232	Claudio Bravo	1
335	Gary Medel	17
481	Eugenio Mena	2
520	Mauricio Isla	4
555	Eduardo Vargas	11
630	Alexis Sanchez	7

¿cuáles son los search keys, index y data entries de este índice?

Definición

Clustered index =

 índice para el cual el orden de sus data entries es el mismo orden de los records en disco.

Unclustered index =

indice que NO es clustered.

Ejemplos

Índice sobre la relación Players(ID, name, number):

Suponiendo que la relación esta almacenada por orden de ID, ¿es este índice **clustered** o **unclustered**?

Ejemplos

Índice sobre la relación Players(ID, name, number):

¿es este índice **clustered** o **unclustered**? ¿qué tipo de **data entry** tiene este índice?

- En general, por cada relación
 es posible mantener un solo clustered index. (¿por que?)
- Unclustered index tiene data entries del tipo 2 o 3.
- Unclustered index son ineficientes cuando el output es numeroso.
 - · range queries.
- Usualmente, clustered y unclustered indexes son conocidos como:

```
clustered index = índice primario.
```

unclustered index = índice secundario.

Índices densos o dispersos

Definición

Los índices pueden ser:

Denso (dense) = un index entry por cada record de la relación.

Disperso (sparse) = no todos los records están mencionadas en los index entries.

Índices densos o dispersos

¿es este índice denso o disperso?

Índices densos o dispersos

Ejemplos

Índice sobre la relación Players(ID, name, number):

Bravo	-	<u></u>	232	Claudio Bravo	1
Isla			520	Mauricio Isla	4
Medel	-		335	Gary Medel	17
Mena	-		481	Eugenio Mena	2
Sanchez	_		630	Alexis Sanchez	7
Vargas	-	-	555	Eduardo Vargas	11

¿que ventaja puede tener este índice?

Resumen de la clasificación de indices

Clustered vs unclustered

- Clustered: el orden de sus data entries es el mismo que los records.
- Unclustered: data entries no mantienen el mismo orden de los datos.

Denso vs disperso

- Denso: un index entry por cada record.
- Disperso: no todos los records están mencionadas en los index entries.

Dos tipos de índices básicos

- Índices basados en árboles: uso del orden de los valores para organizar los records.
 - ISAM.
 - B+ trees.
- 2. Índices basados en hashing: uso de una distribución uniforme de los valores sobre distintos grupos.
 - Extendable Hashing.