Robot Kinematics

Representation of an object in 3-Dspace

Representation of the Position

$$^{U}ar{Q}=egin{bmatrix}q_{x}\q_{y}\q_{z}\end{bmatrix};$$
 3x1 matrix

Representation of the Orientation

$${}^{U}R_{B}=\left[{}^{U}ar{X}_{B} \quad {}^{U}ar{Y}_{B} \quad {}^{U}ar{Z}_{B}
ight]_{3\cdot3}$$

Representation of the Orientation

$${}^U_BR = \left[{}^Uar{X}_B \quad {}^Uar{Y}_B \quad {}^Uar{Z}_B
ight]_{3\cdot3}$$

A set of 3 vector

Frame Transformation

Frame: A set of four vectors carrying position and orientation information

Translation of a Frame

$${}^{U}\bar{Q} = {}^{U}\bar{Q}_{Borg} + {}^{B}\bar{Q}$$

Rotation of a Frame

The position of point Q with respect to rotated body coordinates is known

$${}^Uar{Q}=^U_BR~{}^Bar{Q}$$

Translation and Rotation of a Frame

$$^{U}Q^{ar{}}=^{U}_{B}R$$
 $^{B}ar{Q}+^{U}ar{Q}_{Borg}$

$$^{U}Q^{ar{}}=_{B}^{U}R$$
 $^{B}ar{Q}+^{U}ar{Q}_{Borg}$

$$^{U}Q^{ar{}}=^{U}_{B}T^{B}ar{Q}$$

Where T: transformation(translation and rotation)

$$\Rightarrow \begin{bmatrix} {}^U\bar{Q}(3X1) \\ ---- \end{bmatrix} = \begin{bmatrix} {}^U_BR(3X3) & || & {}^U_B\bar{Q}_{Borg}(3X1) \\ ---- & || & ---- \end{bmatrix} \begin{bmatrix} {}^B\bar{Q}(3X1) \\ ---- \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} {}^U\bar{Q}(3X1) \\ ---- \\ 1 \end{bmatrix} = \begin{bmatrix} {}^U_BR(3X3) & || & {}^U_B\bar{Q}_{Borg}(3X1) \\ ---- & || & ---- \\ 0 & 0 & 0 & || & 1 \end{bmatrix} \begin{bmatrix} {}^B\bar{Q}(3X1) \\ ----- \\ 1 \end{bmatrix}$$
 Perspective transformation
$${}^U\bar{Q} = {}^A_BT \, {}^B\bar{Q}$$
 Scaling factor

 $[T]^{-1} = rac{adj\,T}{|T|}$

Robot Kinematics

Lecture-10

Let [T]:Homogeneous Transformation matrix

$$[T] = egin{bmatrix} {}^U_B R(3 \cdot 3) & || & {}^U_{ar{Q}_{Borg}}(3 \cdot 1) \ - - - - & || & - - - \ 0 & 0 & || & 1 \end{bmatrix}$$

Say

$$[T] = egin{bmatrix} r_{11} & r_{12} & r_{13} & q_x \ r_{21} & r_{22} & r_{23} & q_y \ r_{31} & r_{32} & r_{33} & q_z \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Translation operator

$$Trans(\hat{X},q)$$
 : Translation of q units along x-director

$$Trans ig(\hat{X}, qig) = egin{bmatrix} 1 & 0 & 0 & q \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Note: Trans operators are commutative in nature

$$Trans\Big(\hat{X},q_x\Big)Trans\Big(\hat{Y},q_y\Big)=Trans\Big(\hat{Y},q_y\Big)Trans\Big(\hat{X},q_x\Big)$$

Rotational Operator

 $Rot\left(\hat{Z}, heta
ight)$: Rotation about \hat{Z} axis by an angle $\,$ (anticlockwise sense)

$$ar{DC} = q_x \mathrm{Sin}\, heta$$

$$ar{AQ} = q_y \mathrm{Cos}\, heta$$

$$ar{OC} = q_x \mathrm{Cos}\, heta$$

$$ar{AD} = BC = q_y \mathrm{Sin} heta$$

 $q_X = q_x \text{Cos}\theta - q_y \text{Sin}\theta + q_z X0$

$$egin{bmatrix} q_X \ q_Y \ q_Z \end{bmatrix} = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} q_x \ q_y \ q_z \end{bmatrix}$$

$$\mathrm{Rot}(\hat{Z}, heta) = egin{bmatrix} \cos heta & -\sin heta & 0 \ \sin heta & \cos heta & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Similarly, we get

$$\mathrm{Rot}(\hat{X}, heta) = egin{bmatrix} 1 & 0 & 0 \ 0 & \cos heta & -\sin heta \ 0 & \sin heta & \cos heta \end{bmatrix}$$

$$\mathrm{Rot}(\hat{Y}, heta) = egin{bmatrix} \cos heta & 0 & \sin heta \ 0 & 1 & 0 \ -\sin heta & 0 & \cos heta \end{bmatrix}$$

Properties of Rotation Matrix

- Each row/column of a rotation matrix is a unit vector.
- Inner(dot) product of each row of a rotation matrix with each other row becomes equal to 0. The same is true for each column also.
- Rotation matrices are not commutative in nature

$$Rot\Big(\hat{X},\, heta_1\Big)\,Rot\Big(\hat{Y}, heta_2\Big)
eq Rot\Big(\hat{Y}, heta_2\Big)Rot\Big(\hat{X}, heta_1\Big)$$

Inverse of a rotation matrix is nothing but its transpose

$$Rot^{-1}\Big(\hat{X}, heta\Big) = Rot^T\Big(\hat{X}, heta\Big)$$

$${}_B^AT = {}_B^AT^{-1}$$

A numerical Example

A frame {B} is rotated about \hat{X}_U axis of the universal coordinate system by 45 degrees and translated along \hat{X}_U , \hat{Y}_U , and \hat{Z}_U by 1, 2, and 3 units, respectively. Let the position of a point Q in {B} is given by [3.0 2.0 1.0]^T Determine $U\bar{Q}$?

A numerical Example

A frame {B} is rotated about \hat{X}_U axis of the universal coordinate system by 45 degrees and translated along \hat{X}_U , \hat{Y}_U , and \hat{Z}_U by 1, 2, and 3 units, respectively. Let the position of a point Q in {B} is given by [3.0 2.0 1.0]^T Determine $U\bar{Q}$?

Solution:
$${}^UQ=^{U}_RR\times^BQ$$

$$= \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & \cos 45 & -\sin 45 & 2 \\ 0 & \sin 45 & \cos 45 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \\ 1 \end{bmatrix}$$

 $=egin{bmatrix} 4 \ 2\cos 45 - \sin 45 + 2 \ 2\sin 45 + \cos 45 + 3 \ 1 \end{bmatrix} = egin{bmatrix} 4 \ 2.707 \ 5.121 \ 1 \end{bmatrix}$

Composite Rotation Matrix

Composite rotation matrix representing a rotation of α angle about \hat{Z} , followed by a rotation of β angle about \hat{Y} axis, followed by a rotation of γ angle about \hat{X} axis.

$$Rot_{ ext{composite}} = Rot\Big(\hat{X}, \gamma\Big)Rot\Big(\hat{Y}, eta\Big)Rot\Big(\hat{Z}, \, lpha\Big)$$

Representations of position in other than cartesian coordinate system

Cylindrical coordinate System

Steps:

- 1. Starting from the origin O, translate by r units along \hat{X}_U
- 2. Rotate in anticlockwise sense about \hat{Z}_U axis by an angel θ
- 3. Translate along \hat{Z}_U axis by Z units

$$[T]_{ ext{composite}} = Trans\Big(\hat{Z}_{U},z\Big)Rot\Big(\hat{Z_{U}}, heta\Big)Trans\Big(\hat{X}_{U},r\Big)$$

$$=egin{bmatrix} \cos heta & -\sin heta & 0 & r\cos heta \ \sin heta & \cos heta & 0 & r\sin heta \ 0 & 0 & 1 & z \ 0 & 0 & 0 & 1 \end{bmatrix}$$

We get:
$$q_x = r\cos heta$$
 $q_y = r\sin heta$ $q_z = z$

Spherical coordinate System

Steps:

- 1. Starting from the origin O, translate by r units along axis \hat{Z}_U
- 2. Rotate in anticlockwise sense about \hat{Y}_U axis by an angel α
- 3. Rotate in anticlockwise sense about \hat{Z}_U axis by an angel β

$$[T]_{ ext{composite}} = Rot \Big(\hat{Z}_{U}, eta\Big) Rot \Big(Y_{U}, lpha\Big) Trans \Big(\hat{Z}_{U}, r\Big)$$

$$=egin{bmatrix} \coslpha\coseta & -\sineta & \sinlpha\coseta & r\sinlpha\sineta \ \coslpha\coseta & \coseta & \sinlpha\coseta & r\sinlpha\sineta \ -\sinlpha & 0 & \coslpha & r\coslpha \ 0 & 0 & 0 & 1 \end{bmatrix}$$

We get:
$$q_x = r \sin lpha \cos eta$$
 $q_y = r \sin lpha \sin eta$ $q_z = r \cos lpha$