Direction des Examens et de l'Evaluation

Durée : 4H Coefficient :

8/4

Service des Examens

Baccalauréat

Sciences physiques session complémentaire 2011

Exercice 1

On fait réagir un ester E, de formule brute $C_6H_{12}O_2$ sur l'eau et on obtient un composé A et un composé B.

- En présence de A seul, la solution de permanganate de potassium en milieu acide reste violette.
- En présence de B seul, la solution de permanganate de potassium en milieu acide se décolore et il apparaît dans le milieu un nouveau composé organique C.
- C donne un précipité jaune avec la 2,4-dinitrophénylhydrazine (DNPH) mais ne réagit pas avec la liqueur de Fehling.

1 Indiquer les fonctions chimiques de A, B et C. Justifier.

- 2 On prépare une solution aqueuse de 3g de A. Cette solution est acide. Il faut y ajouter 100 mL de solution d'hydroxyde de sodium de concentration 0,5 mol/L pour obtenir l'équivalence acido-basique. En déduire la masse molaire moléculaire, la formule brute, la formule semi-développée et le nom de A.
- 3 Quelle est alors la formule semi-développée et le nom de B?
- 4 Donner la formule semi-développée et le nom de E.
- 5 Ecrire l'équation-bilan correspondant à l'hydrolyse de E.

Données: C: 12 g/mol O: 16 g/mol H: 1 g/mol

Exercice 2)

1. Identification d'un indicateur coloré.

On dispose d'un flacon d'indicateur coloré avec comme seule indication sa concentration molaire : $C_0 = 2.9.10^{-4}$ mol.L⁻¹. On mesure son pH et on trouve pH= 4.18.

Le couple acide/base présent dans cet indicateur coloré sera noté HInd/Ind-.

La solution d'indicateur coloré a été préparée à partir de la forme acide de l'indicateur: HInd.

L'équation de la réaction entre HInd et l'eau est :

 $HInd + H_2O \rightleftharpoons Ind^- + H_3O^+$

- 1.1 Cet acide est-il totalement dissocié dans l'eau ? Justifier votre réponse.
- 1.2 Les valeurs des concentrations à l'équilibre permettent de calculer la constante d'acidité de la réaction: $K_A=1,9.10^{-5}$. Calculer le p K_A du couple Hind/Ind $^-$ et identifier l'indicateur à l'aide des données du tableau suivant :

Indicateur	Couleur acide	Zone de virage	Couleur basique	pK _A
Hélianthine	Jaune orangé	3,1-4,4	rouge	3,7

Vert de Bromocrésol	jaune	3,8-5,4	bleu	4,7
Bleu de Bromothymol	jaune	6,0 – 7,6	bleu	7,0
Phénolphtaléine	incolore	8,2-10,0	violet	9,4

2. Dosage d'une solution d'acide chlorhydrique concentrée.

Dans le laboratoire d'un lycée, on dispose d'un flacon d'une solution d'acide chlorhydrique concentrée où est notée sur l'étiquette l'indication suivante : 33% minimum en masse d'acide chlorhydrique.

On appellera cette solution S_0 . Pour connaître la concentration molaire C_0 de cette solution S_0 , on la dilue d'abord 1000 fois. On obtient ainsi une solution S_1 de concentration C_1 .

Puis on prélève précisément un volume V_1 =100,0 mL de la solution S_1 , qu'on dose par une solution titrante d'hydroxyde de sodium de concentration C_B = 1,00.10⁻¹ mol.L⁻¹.

- 2.1 On ajoute un volume $V_E = 11,2$ mL de la solution d'hydroxyde de sodium à la solution S_1 pour atteindre l'équivalence. Écrire l'équation de la réaction acido-basique.
- 2.2 A l'équivalence, écrire la relation existant entre C_1 , C_B , V_E et V_1 et calculer la concentration molaire C_1 de la solution d'acide chlorhydrique diluée S_1 . En déduire la concentration molaire C_0 de la solution d'acide chlorhydrique concentrée S_0 .
- 2.3 Calculer la masse m_0 d'acide chlorhydrique HC*l* dissous dans un litre de solution. On donne : $M_{HCl} = 36,5$ g.mol⁻¹.
- 2.4 Quelle est la masse m d'un litre de solution S ? La solution S ayant une masse volumique = 1160 g.L⁻¹.
- 2.5 Le pourcentage massique de la solution S_0 étant la masse d'acide chlorhydrique dissous dans 100 g de solution. Calculer ce pourcentage massique pour la solution S_0 . L'indication de l'étiquette du flacon de solution d'acide chlorhydrique concentrée estelle correcte ?

Exercice 3

Autour de la planète Jupiter gravitent des satellites naturels. On considère que chaque satellite de masse m n'est soumis qu'à la seule force gravitationnelle de la part de Jupiter de masse M et que les astres ont une répartition de masse à symétrie sphérique. On note r le rayon de la trajectoire circulaire décrite par les satellites autour de Jupiter. r représente la distance entre le centre de Jupiter et le centre du satellite étudié. G représente la constante universelle de gravitation.

- 1.Donner l'expression vectorielle de la force de gravitation exercée par Jupiter sur un satellite. Représenter cette force sur un schéma.
- 2. Montrer qu'un satellite est animé d'un mouvement uniforme et exprimer sa vitesse.
- 3. Choisir parmi les quatre propositions ci-dessous celle qui correspond au satellite le plus rapide. Justifier.
- -le plus proche de Jupiter
- -le plus loin de Jupiter

- -le plus léger
- -le plus lourd
- 4.À partir de l'expression de la vitesse, établir l'expression de la période de révolution T d'un satellite autour de Jupiter en fonction de r et des grandeurs de l'exercice.

- 5.Établir la troisième loi de Kepler : $\frac{T^2}{r^3}$ = cte 6.L'étude des mouvements.
- 6.L'étude des mouvements des satellites de Jupiter permet de déterminer la période et le rayon de l'orbite de chaque satellite. Sur le graphe cicontre, on a représenté pour chaque satellite, les valeurs des couples (r ³, T ²).
- 6.1 En observant ce graphe, pourquoi peut-on dire que la troisième loi de Kepler est vérifiée ?
- 6.2 L'équation de la meilleure droite passant par les points obtenus est :
- $T^2 = 3. 10^{-16} r^3$. En déduire la grandeur de la masse de Jupiter.

On prend $\pi^2 = 10$ et $G = 1.10^{-10}$ SI.

Exercice 4

Les frottements et les phénomènes d'induction sont négligeables et on prendra $g=10m/s^2$.

Un conducteur MN de masse m=40g et de longueur L=MN=20cm, peut glisser sur des rails parallèles tout en leur restant perpendiculaire.

L'ensemble est plongé dans un champ magnétique uniforme et vertical \vec{B} , orienté vers le haut. Un générateur, lié aux rails, permet de faire passer dans le conducteur un courant d'intensité I=10A. 1 On attache au milieu O du conducteur un fil de masse négligeable qui passe sur la gorge d'une poulie P et qui supporte en sa deuxième extrémité un solide S de masse M=100g. Le système abandonné à lui-

même est alors en équilibre lorsque $T_1 = T_2$. Fig1 1.1Le plan des rails étant horizontal.

- 1.1.1 Déterminer les caractéristiques de la force electromagnétique \vec{F} exercée sur le conducteur MN. En déduire le sens du courant dans le conducteur MN.
- 1.1.2 Calculer l'intensité B du champ magnétique \vec{B} .
- 1.1.3On incline le plan des rails d'un angle $\alpha = 30^{\circ}$ par rapport au plan horizontal. (Voir fig2). Quelle intensité doit avoir le champ magnétique pour que le conducteur MN puisse rester en équilibre sur les rails ?

2.On supprime le solide S et le fil puis on inverse le sens du courant, le plan des rails est maintenu horizontal. Le conducteur MN est initialement au repos en un point O et le champ magnétique s'étend sur une distance OA=16cm voir fig 3.

On donne: B=0.5T et I=10A.

- 2.1Déterminer la nature du mouvement du conducteur MN entre O et A et calculer son accélération.
- 2.2Calculer sa vitesse au point A.
- 2.3Quelle durée doit mettre le conducteur pour parcourir la distance OC=21,64cm ; C étant situé sur la droite (OA) ?

Exercice 5

Un dispositif interférentiel comporte deux sources lumineuses S_1 et S_2 ponctuelles émettant en concordance de phase une radiation monochromatique de longueur d'onde

- λ . La distance entre S_1 et S_2 est
- a = 2mm. On place un écran E parallèle au plan formé par S_1 et S_2 à une distance D de ce dernier.
- 1 Pour D=D₁ l'interfrange du système d'interférences obtenue est i_1 =0,54mm.

Lorsqu'on augmente D de 0,5m l'interfrange devient i_2 =0,72mm.

- 1.1Rappeler la définition de l'interfrange.
- 1.2Déduire des données la valeur de D_1 et celle de λ .
- 2.On fixe D à 2m ; les faisceaux issus de S_1 et S_2 ont chacun pour angle d'ouverture $\alpha = 0.008$ rad et les bords des faisceaux sont parallèles deux à deux.
- 2.1Représenter les faisceaux émis et hachurer le champ d'interférences. Déterminer la largeur l du champ d'interférences.
- 2.2Déterminer le nombre de franges brillantes et celui de franges sombres sur l'écran.
- 3.Les sources S_1 et S_2 émettent à présent en plus de la radiation précédente une autre radiation $\lambda' = 0$, 64 µm.

A quelle distance de la frange centrale observe-t-on la première coïncidence entre les milieux des franges brillantes ?