Python - COMPREHENSIVE ASSESMENT - (Topic: EDA)

Data Analysis:

In [44]: import pandas as pd

file_path = 'C:\\Users\\Admin\\Downloads\\preprocessed_abc_company_dataset.org
df = pd.read_csv(file_path)
df

Out[44]:

	Name	Team	Number	Position	Age	Height	Weight	College	Salary	height
0	Avery Bradley	Boston Celtics	0	PG	25	06- Feb	180	Texas	7730337.0	154
1	Jae Crowder	Boston Celtics	99	SF	25	06-Jun	235	Marquette	6796117.0	179
2	John Holland	Boston Celtics	30	SG	27	06- May	205	Boston University	NaN	165
3	R.J. Hunter	Boston Celtics	28	SG	22	06- May	185	Georgia State	1148640.0	177
4	Jonas Jerebko	Boston Celtics	8	PF	29	06-Oct	231	NaN	5000000.0	156
453	Shelvin Mack	Utah Jazz	8	PG	26	06- Mar	203	Butler	2433333.0	178
454	Raul Neto	Utah Jazz	25	PG	24	06-Jan	179	NaN	900000.0	173
455	Tibor Pleiss	Utah Jazz	21	С	26	07- Mar	256	NaN	2900000.0	153
456	Jeff Withey	Utah Jazz	24	С	26	7-0	231	Kansas	947276.0	170
457	Priyanka	Utah Jazz	34	С	25	07- Mar	231	Kansas	947276.0	166

458 rows × 10 columns

In []:

Data Visualization:

```
In [45]: import matplotlib.pyplot as plt
         import seaborn as sns
         df = pd.read_csv("C:\\Users\\Admin\\Downloads\\preprocessed_abc_company_dat
         # Set up the visualisation style
         sns.set(style="whitegrid")
         # Basic statistical analysis
         summary_stats = df.describe()
         # Plotting distributions
         plt.figure(figsize=(15, 10))
         # Histogram for Age
         plt.subplot(2, 2, 1)
         sns.histplot(df['Age'], bins=10, kde=True)
         plt.title('Age Distribution')
         # Histogram for Height
         plt.subplot(2, 2, 2)
         sns.histplot(df['height'], bins=10, kde=True)
         plt.title('Height Distribution')
         # Histogram for Weight
         plt.subplot(2, 2, 3)
         sns.histplot(df['Weight'], bins=10, kde=True)
         plt.title('Weight Distribution')
         # Bar chart for average salary by team
         plt.subplot(2, 2, 4)
         avg_salary_by_team = df.groupby('Team')['Salary'].mean().sort_values(ascend
         sns.barplot(x=avg_salary_by_team.values, y=avg_salary_by_team.index)
         plt.title('Average Salary by Team')
         plt.tight layout()
         plt.show()
         # Position-wise Analysis
         position_summary = df.groupby('Position').agg({
              'Age': ['mean', 'median'],
             'height': ['mean', 'median'],
              'Weight': ['mean', 'median'],
             'Salary': ['mean', 'median']
         }).reset index()
         # Correlation Matrix
         correlation_matrix = df[['Age', 'height', 'Weight', 'Salary']].corr()
         # Scatter Plot for Height vs. Weight
         plt.figure(figsize=(10, 5))
         sns.scatterplot(x='height', y='Weight', hue='Position', data=df)
         plt.title('Height vs. Weight by Position')
         plt.show()
         # Scatter Plot for Salary vs. Age
         plt.figure(figsize=(10, 5))
         sns.scatterplot(x='Age', y='Salary', hue='Position', data=df)
         plt.title('Salary vs. Age by Position')
         plt.show()
```


Correct the data in the "height" column by replacing it with random numbers between 150 and 180. Ensure data consistency and integrity before proceeding with analysis.

Program Code:

```
In [9]: import pandas as pd
import numpy as np

# Load the dataset
file_path = 'C:\\Users\\Admin\\Downloads\\preprocessed_abc_company_dataset.cd
df = pd.read_csv(file_path)

# Replace the "height" column with random numbers between 150 and 180
df['height'] = np.random.randint(150, 181, size=len(df))

# Verify the changes
df
```

Out[9]:

	Name	Team	Number	Position	Age	Height	Weight	College	Salary	height
0	Avery Bradley	Boston Celtics	0	PG	25	06- Feb	180	Texas	7730337.0	160
1	Jae Crowder	Boston Celtics	99	SF	25	06-Jun	235	Marquette	6796117.0	169
2	John Holland	Boston Celtics	30	SG	27	06- May	205	Boston University	NaN	160
3	R.J. Hunter	Boston Celtics	28	SG	22	06- May	185	Georgia State	1148640.0	173
4	Jonas Jerebko	Boston Celtics	8	PF	29	06-Oct	231	NaN	5000000.0	178
453	Shelvin Mack	Utah Jazz	8	PG	26	06- Mar	203	Butler	2433333.0	152
454	Raul Neto	Utah Jazz	25	PG	24	06-Jan	179	NaN	900000.0	153
455	Tibor Pleiss	Utah Jazz	21	С	26	07- Mar	256	NaN	2900000.0	172
456	Jeff Withey	Utah Jazz	24	С	26	7-0	231	Kansas	947276.0	155
457	Priyanka	Utah Jazz	34	С	25	07- Mar	231	Kansas	947276.0	167

458 rows × 10 columns

In []:

Graphical Representation:

```
In [11]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Load the dataset
         file_path = 'C:\\Users\\Admin\\Downloads\\preprocessed_abc_company_dataset.
         df = pd.read_csv(file_path)
         # Replace the "height" column with random numbers between 150 and 180
         df['height'] = np.random.randint(150, 181, size=len(df))
         # Verify the changes
         print(df['height'])
         # Plotting the new height distribution
         plt.figure(figsize=(10, 6))
         sns.histplot(df['height'], bins=10, kde=True, color='skyblue')
         plt.xlabel('Height (cm)')
         plt.ylabel('Frequency')
         plt.title('Distribution of Heights (Corrected)')
         plt.show()
```

0 176 1 180 2 173 3 151 4 180 453 158 454 152 455 177 456 161 457 167

Name: height, Length: 458, dtype: int32

1. Determine the distribution of employees across each team and calculate the percentage split relative to the total number of employees.

In []:

```
In [6]: import pandas as pd
import matplotlib.pyplot as plt

# Load the dataset
file_path = 'C:\\Users\\Admin\\Downloads\\preprocessed_abc_company_dataset
df = pd.read_csv(file_path)

# Calculate the distribution of employees across each team
team_distribution = df['Team'].value_counts()

# Calculate the percentage split relative to the total number of employees
team_percentage = (team_distribution / len(df)) * 100

team_distribution, team_percentage
```

Out[6]: (Team

Team	
New Orleans Pelicans	19
Memphis Grizzlies	18
Utah Jazz	16
New York Knicks	16
Milwaukee Bucks	16
Brooklyn Nets	15
Portland Trail Blazers	15
Oklahoma City Thunder	15
Denver Nuggets	15
Washington Wizards	15
Miami Heat	15
Charlotte Hornets	15
Atlanta Hawks	15
San Antonio Spurs	15
Houston Rockets	15
Boston Celtics	15
Indiana Pacers	15
Detroit Pistons	15
Cleveland Cavaliers	15
Chicago Bulls	15
Sacramento Kings	15
Phoenix Suns	15
Los Angeles Lakers	15
Los Angeles Clippers	15
Golden State Warriors	15
Toronto Raptors	15
Philadelphia 76ers	15
Dallas Mavericks	15
Orlando Magic	14
Minnesota Timberwolves	14
Name: count, dtype: int64,	
Team	,
New Orleans Pelicans	4.148472
Memphis Grizzlies	3.930131
Utah Jazz	3.493450
New York Knicks	3.493450
Milwaukee Bucks	3.493450
Brooklyn Nets	3.275109
Portland Trail Blazers	3.275109
Oklahoma City Thunder	3.275109
Denver Nuggets	3.275109
Washington Wizards	3.275109
Miami Heat	3.275109
HILLIAN TICUL	J • Z / J I U J

Orlando Magic 3.056769
Minnesota Timberwolves 3.056769

Name: count, dtype: float64)

In []:

Graphical Representation

```
In [20]:
         import pandas as pd
         import matplotlib.pyplot as plt
         # Re-Load the dataset
         file path = 'C:\\Users\\Admin\\Downloads\\preprocessed abc company dataset.
         df = pd.read_csv(file_path)
         # Calculate the distribution of employees across each team
         team_distribution = df['Team'].value_counts()
         # Calculate the percentage split relative to the total number of employees
         team_percentage = (team_distribution / len(df)) * 100
         # Plotting the distribution of employees across each team
         plt.figure(figsize=(12, 8))
         team_percentage.plot(kind='bar', color='skyblue')
         plt.xlabel('Team')
         plt.ylabel('Percentage of Employees (%)')
         plt.title('Distribution of Employees Across Each Team')
         plt.xticks(rotation=45)
         plt.show()
```



```
In [ ]:
```

2. Segregate employees based on their positions within the company.

Program Code

```
In [23]: import pandas as pd
         # Load the dataset
         file_path = 'C:\\Users\\Admin\\Downloads\\preprocessed_abc_company_dataset.
         df = pd.read_csv(file_path)
         # Segregate employees based on their positions
         position_distribution = df['Position'].value_counts()
         # Calculate the percentage split relative to the total number of employees
         position_percentage = (position_distribution / len(df)) * 100
         print(position_distribution)
         print(position_percentage)
         Position
         SG
         PF
               100
         PG
                92
         SF
                85
         Name: count, dtype: int64
         Position
               22.270742
         SG
               21.834061
         PG
               20.087336
         SF
               18.558952
               17.248908
         Name: count, dtype: float64
In [ ]:
```

Graphical Representation

```
In [24]:
         import pandas as pd
         import matplotlib.pyplot as plt
         # Load the dataset
         file path = 'C:\\Users\\Admin\\Downloads\\preprocessed abc company dataset.
         df = pd.read_csv(file_path)
         # Segregate employees based on their positions
         position_distribution = df['Position'].value_counts()
         # Calculate the percentage split relative to the total number of employees
         position_percentage = (position_distribution / len(df)) * 100
         # Plotting the distribution of employees across each position
         plt.figure(figsize=(12, 8))
         position_percentage.plot(kind='bar', color='skyblue')
         plt.xlabel('Position')
         plt.ylabel('Percentage of Employees (%)')
         plt.title('Distribution of Employees Across Each Position')
         plt.xticks(rotation=45)
         plt.show()
```


3. Identify the predominant age group among employees.

```
In [29]: import pandas as pd
         # Load the dataset
         file_path = 'C:\\Users\\Admin\\Desktop\Programs\\preprocessed_abc_company_d
         df = pd.read csv(file path)
         # Define age groups (bins)
         bins = [20, 25, 30, 35, 40, 45, 50]
         labels = ['20-24', '25-29', '30-34', '35-39', '40-44', '45-49']
         # Create a new column 'AgeGroup' based on the bins
         df['AgeGroup'] = pd.cut(df['Age'], bins=bins, labels=labels, right=False)
         # Group by 'AgeGroup' and count the number of employees in each group
         age_group_distribution = df['AgeGroup'].value_counts().sort_index()
         # Identify the predominant age group
         predominant_age_group = age_group_distribution.idxmax()
         predominant_age_group_count = age_group_distribution.max()
         print("Predominant Age Group:", predominant_age_group)
         print("Number of Employees in Predominant Age Group:", predominant_age_group
         # Plotting the age group distribution
         age_group_distribution.plot(kind='bar', color='skyblue')
         plt.xlabel('Age Group')
         plt.ylabel('Number of Employees')
         plt.title('Distribution of Employees Across Age Groups')
         plt.show()
```

Predominant Age Group: 25-29 Number of Employees in Predominant Age Group: 182

4. Discover which team and position have the highest salary expenditure.

```
In [35]: import pandas as pd
         # Load the dataset
         file_path = 'C:\\Users\\Admin\\Downloads\\preprocessed_abc_company_dataset.
         df = pd.read csv(file path)
         # Group by Team and calculate total salary expenditure for each team
         team_salary_expenditure = df.groupby('Team')['Salary'].sum().sort_values(as
         # Group by Position and calculate total salary expenditure for each position
         position salary expenditure = df.groupby('Position')['Salary'].sum().sort v
         # Identify the team with the highest salary expenditure
         highest_salary_team = team_salary_expenditure.idxmax()
         highest_salary_team_expenditure = team_salary_expenditure.max()
         # Identify the position with the highest salary expenditure
         highest salary position = position salary expenditure.idxmax()
         highest_salary_position_expenditure = position_salary_expenditure.max()
         print("Team with the Highest Salary Expenditure:", highest_salary_team)
         print("Highest Salary Expenditure by Team:", highest_salary_team_expenditure
         print("\nPosition with the Highest Salary Expenditure:", highest salary pos
         print("Highest Salary Expenditure by Position:", highest_salary_position_ex
         # Plotting the total salary expenditure by team
         plt.figure(figsize=(12, 6))
         team_salary_expenditure.plot(kind='bar', color='skyblue')
         plt.xlabel('Team')
         plt.ylabel('Total Salary Expenditure')
         plt.title('Total Salary Expenditure by Team')
         plt.xticks(rotation=45)
         plt.show()
         # Plotting the total salary expenditure by position
         plt.figure(figsize=(12, 6))
         position salary expenditure.plot(kind='bar', color='salmon')
         plt.xlabel('Position')
         plt.ylabel('Total Salary Expenditure')
         plt.title('Total Salary Expenditure by Position')
         plt.xticks(rotation=45)
         plt.show()
```

Team with the Highest Salary Expenditure: Cleveland Cavaliers Highest Salary Expenditure by Team: 106988689.0

Position with the Highest Salary Expenditure: C Highest Salary Expenditure by Position: 466377332.0

5. Investigate if there's any correlation between age and salary, and represent it visually.

```
import pandas as pd
In [40]:
         import matplotlib.pyplot as plt
         data = {
              'Age': [25, 30, 35, 40, 45, 50, 55, 60, 65],
             'Salary': [1100602
         , 2850000
           70000, 80000, 90000, 100000, 110000, 120000, 130000]
         }
         # Create DataFrame
         df = pd.DataFrame(data)
         # Calculate correlation coefficient
         correlation = df['Age'].corr(df['Salary'])
         # Visual representation
         plt.scatter(df['Age'], df['Salary'])
         plt.xlabel('Age')
         plt.ylabel('Salary')
         plt.title(f'Correlation: {correlation:.2f}')
         plt.grid(True)
         plt.show()
         print("Correlation coefficient:", correlation)
```


Correlation coefficient: -0.5840475876261246

In []:	
In []:	