National Textile University, Faisalabad

Department of Computer Science

Muhammad Haseeb
BSCS 5 th (Section – B)
23-NTU-CS-1069
Assignment
Embedded IOT Systems
Sir. Nasir Mahmood
19 th Oct – 2025

Question:01

1. Why is volatile used for variables shared with ISRs?

Ans:

Volatile is the opposite of const. As const makes sure the value of a variable remains the same throughout its execution. Therefore, a Volatile variable means the value of the variable can be changed; it does not remain the same.

2. Compare hardware-timer ISR debouncing vs. delay()-based debouncing.

Ans:

Hardware Timers:

- It only pauses a specific part of the code, as desired by the user.
- The rest of the code keeps on working.

Delay() - Band:

• It pauses everything.

3. What does IRAM ATTR do, and why is it needed?

Ans:

- Stores the function in internal RAM, not along the main code.
- So it runs only when required, else stays dormant.
- Used to handle interrupts.

4. Define LEDC channels, timers, and duty cycle.

Ans:

Channel: It controls output via a specific pin.

Timer: It sets the frequency.

Duty Cycle: It is the percentage of the ON signal.

5. Why should you avoid Serial prints or long code paths inside ISRs?

Ans:

Our ISR (Interrupt Service Routine) needs to be fast.

- Using Serial.print() means giving info about the current condition, then executing the ISR.
- Also, long code would need more CPU time to execute.

Hence, we keep our ISR as simple as possible.

6. What are the advantages of timer-based task scheduling?

Ans:

It helps in running the code smoothly. It uses the concept of multiprogramming, working on multiple parts at once - unlike delay() that pauses everything.

7. Describe I²C signals SDA and SCL.

Ans:

SDA: Carries the data between devices.

SCL: Carries the clock signal, which controls the timing.

8. What is the difference between polling and interrupt-driven input?

Ans:

Polling:	Interrupt:
 Continuously checking the hardware if it needs attention. 	A signal generated by the hardware, telling it needs attention.

9. What is contact bounce, and why must it be handled?

Ans:

When a button is pressed, the metal plates do not make contact once. The current bounces for a few milliseconds. It rapidly turns on and off for a short time before stabilizing. Therefore, we use debouncing.

10. How does the LEDC peripheral improve PWM precision?

Ans:

LEDC (LED Control) uses the hardware timers. Hence, it works on its own without the need for the CPU.

11. How many hardware timers are available on the ESP32?

Ans:

Two timer groups:

- 1. Group 0: Timer0 & Timer1
- 2. Group 1: Timer2 & Timer3

Each has two timers. Hence, total 4 Hardware Timers (64-bit).

12. What is a timer prescaler, and why is it used?

Ans:

It is a clock divider. It divides the main clock speed to create a slower time. Why? To get a desired time for timing/waiting.

13. Define duty cycle and frequency in PWM.

Ans:

Duty Cycle: Percentage of time the signal is ON during a cycle.

Frequency: Number of times a signal cycles (on and off) in a second.

14. How do you compute duty for a given brightness level?

Ans:

$$Duty = \frac{Brightness Level}{Max Brightness Level} \times Max Duty Value$$

Duty Cycle (%) =
$$\frac{T_{ON}}{T_{ON} + T_{OFF}} \times 100\%$$

15. Contrast non-blocking vs. blocking timing.

Ans:

Non-Blocking:	Blocking:
Runs everything in parallel.Uses millis().	Stops everything until time passes.Uses delay().

16. What resolution (bits) does LEDC support?

Ans:

Supports up to 20-bit.

17. Compare general-purpose hardware timers and LEDC (PWM) timers.

Ans:

Hardware Timers:	PWM Timers:
Used for scheduling	g. Used for creating frequency.

18. What is the difference between Adafruit_SSD1306 and Adafruit_GFX?

Ans:

SSD1306:

- Controls the OLED display hardware.
- It is the "canvas"

GFX (Adafruit_GFX Library):

- Provides the drawing and text functions.
- It is the "art kit."

19. How can you optimize text rendering performance on an OLED?

Ans:

- Update only what is required.
- Use simple fonts.
- Avoid full screen clears.

20. Give short specifications of your selected ESP32 board (NodeMCU-32S).

Ans:

Core: Dual-Core processors **Speed:** Up to 240 MHz

Memory: 4MB Flash Storage, 520 KB RAM

Connectivity: Wi-Fi and Bluetooth

Pins: 30

Voltage: 3.3V

Question:02

1. A 10 kHz signal has an ON time of 10 ms. What is the duty cycle? Justify with the formula.

Ans:

Data:

$$f = 10 \text{ KHz} = 10000 \text{ Hz}$$

$$T_{ON} = 10 \text{ ms} = 0.01 \text{ ms}$$

$$T = \frac{1}{f} = \frac{1}{10000} = 0.0001 \, ms$$

Sol:

Duty Cycle (%) =
$$\frac{T_{ON}}{T_{ON} + T_{OFF}} \times 100\%$$

Duty Cycle (%) =
$$\frac{T_{ON}}{T} \times 100\%$$

Duty Cycle (%) =
$$\frac{0.01}{0.0001} \times 100\%$$

Conclusion:

10,000% not possible. Therefore; we take 100%.

2. How many hardware interrupts and timers can be used concurrently? Justify.

Ans:

Hardware Timers:	Hardware Interrupts:
Because the ESP-32 itself has only 4	All GPIO pins.
timers. Only 4.	Each pin can be configured
-	individually; the limit is the number of
	pins (GPIO).

3. How many PWM-driven devices can run at distinct frequencies at the same time on ESP32? Explain constraints.

Ans:

PWM Timers:

High Speed = 4 Low Speed = 4

Hence, 8 different frequencies.

Constraint:

- 1. Channels that share a timer also share the frequency condition.
- 2. Duty cycle can be different when the timer is the same.

4. Compare a 30% duty cycle at 8-bit resolution and 1 kHz to a 30% duty cycle at 10-bit resolution (all else equal).

Ans:

8-bit Resolution

Max Value = $2^8 - 1 = 255$

At 30% Duty Cycle (8-bit):

$$= 255 \times \frac{30}{100}$$

$$= 76.5 \approx 77$$

Find Duty % from Value 77 (8-bit):

$$\frac{77}{255} \approx 30.2\%$$

10-bit Resolution

Max Value = $2^{10} - 1 = 1023$

At 30% Duty Cycle (10-bit):

$$= 1023 \times \frac{30}{100}$$
$$= 306.9 \approx 307$$

Find Duty % from Value 307 (10-bit):

$$\frac{307}{255} \approx 30.01\%$$

5. How many characters can be displayed on a 128×64 OLED at once with the minimum font size vs. the maximum font size? State assumptions.

Ans:

$$Total \ Characters = \frac{Total \ Bytes \ Screen}{Total \ Bytes \ per \ Character}$$

Minimum Font

Font Size: 5x8 pixels

Total Bytes for Screen:

$$\frac{Width \times Height}{8} = \frac{128 \times 64}{8}$$
$$= 1024 \text{ bytes}$$

Total Bytes per Character:

$$\frac{Width \times Height}{8} = \frac{5 \times 8}{8}$$
= 5 bytes per character

Final:

Total Characters (assuming 5 bytes per character):

$$\frac{\text{Total Bytes}}{\text{Bytes per Character}} = \frac{1024}{5}$$

$$\approx 204 \text{ characters}$$

Maximum Font

Font Size: 16x32 pixels

Total Bytes for Screen:

$$\frac{Width \times Height}{8} = \frac{128 \times 64}{8}$$
$$= 1024 \text{ bytes}$$

Total Bytes per Character:

$$\frac{Width \times Height}{8} = \frac{16 \times 32}{8}$$
$$= 64 \text{ bytes per character}$$

Final:

Total Characters (assuming 64 bytes per character):

$$\frac{\text{Total Bytes}}{\text{Bytes per Character}} = \frac{1024}{64}$$

$$\approx 16 \text{ characters}$$

