учебный центр обшей физики фтф

Группа М3102	К работе допущен
Студент Лопатенко Георгий Валентинович	Работа выполнена
Преподаватель Тимофеева Э О	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.01

Исследование распределения случайной величины

1. Цель работы:

- 1. Провести многократные измерения определенного интервала времени;
- 2. Построить гистограмму распределения результатов измерения;
- 3. Вычислить среднее значение и дисперсию полученной выборки;
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

2. Задачи, решаемые при выполнении работы:

- 1. Получить выборку (выборочную совокупность) для дискретной случайной величины;
- 2. Исследовать закон распределения этой случайной величины.

3. Объект исследования:

Случайная величина – результат измерения заданного промежутка времени (5 сек).

4. Метод экспериментального исследования:

Многократное измерение определенного интервала времени и проверка закономерностей распределения значений этой случайной величины.

5. Рабочие формулы и исходные данные:

Выборочное среднеквадратичное отклонение среднего значения: $\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$

Максимальная «высота» гистограммы: $ho_{max} = rac{1}{\sigma\sqrt{2\pi}}$

Доверительный интервал: $\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$

Доверительная вероятность: $\alpha = P(t \in [\langle t \rangle - \Delta t, \langle t \rangle + \Delta t])$

Среднеквадратичное отклонение среднего значения: $\sigma_{< t>} = \sqrt{\frac{1}{N(N-1)}\sum_{i=1}^{N}(t_i-\langle t\rangle_N)^2}$

Абсолютная погрешность с учетом погрешности приборов: $\Delta x = \sqrt{(\overline{\Delta x})^2 + \left(\frac{2}{3}\Delta_{ux}\right)^2}$

 Δ_{ux} – погрешность прибора, $\overline{\Delta x}$ – случайная погрешность (доверительный интервал)

Относительная погрешность: $\varepsilon_{\chi} = \frac{\Delta x}{\bar{\tau}} \cdot 100\%$

6. Измерительные приборы:

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	4-6 c	0.005 c
2	Часы	Электронный	0-10 с	0.005 c

7. Схема установки:

Устройство или прибор, в котором происходит периодический процесс с частотой порядка нескольких десятых долей герца (часы с секундной стрелкой, стрелочный секундомер, математический или физический маятник) и цифровой секундомер, с ценой деления не более 0,01 с. Первый прибор задает интервал времени, который многократно измеряется цифровым секундомером.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов):

Nº	t_i , c	$t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2$, c^2
1	4,920	-0,0795	0,0063
2	5,110	0,1105	0,0122
3	5,220	0,2205	0,0486
4	4,610	-0,3895	0,1517
5	4,960	-0,0395	0,0016
6	5,120	0,1205	0,0145
7	5,010	0,0105	0,0001
8	4,910	-0,0895	0,0080
9	4,960	-0,0395	0,0016
10	5,070	0,0705	0,0050
11	5,050	0,0505	0,0026
12	4,940	-0,0595	0,0035
13	5,060	0,0605	0,0037
14	5,020	0,0205	0,0004
15	4,910	-0,0895	0,0080
16	5,140	0,1405	0,0197
17	5,050	0,0505	0,0026
18	4,890	-0,1095	0,0120
19	4,960	-0,0395	0,0016
20	5,070	0,0705	0,0050
21	4,810	-0,1895	0,0359
22	5,210	0,2105	0,0443
23	4,990	-0,0095	0,0001
24	5,010	0,0105	0,0001
25	4,920	-0,0795	0,0063
26	5,030	0,0305	0,0009
27	4,960	-0,0395	0,0016
28	5,090	0,0905	0,0082
29	4,830	-0,1695	0,0287
30	5,110	0,1105	0,0122
31	4,770	-0,2295	0,0527
32	5,180	0,1805	0,0326
33	4,970	-0,0295	0,0009
34	5,010	0,0105	0,0001
35	5,060	0,0605	0,0037
36	4,930	-0,0695	0,0048
37	5,040	0,0405	0,0016
38	5,060	0,0605	0,0037
39	5,110	0,1105	0,0122
40	4,850	-0,1495	0,0224
41	5,150	0,1505	0,0227
42	4,810	-0,1895	0,0359
43	5,080	0,0805	0,0065
44	5,110	0,1105	0,0122
45	4,950	-0,0495	0,0025
46	4,910	-0,0895	0,0080
47	5,090	0,0905	0,0082
48	5,000	0,0005	0,0000

40	4 020	. A A70F	0 0063
49	4,920	-0,0795	0,0063
50	5,040	0,0405	0,0016 0,0004
51 52	4,980	-0,0195 -0,0295	0,0009
_	4,970	0,0105	
53	5,010		0,0001
54	5,080	0,0805 -0,0595	0,0065 0,0035
55	4,940	0,0105	0,0001
56	5,010	-0,0295	0,0009
57 58	4,970	-0,0395	0,0016
59	4,960	-0,0195	0,0004
60	4,980 5,170	0,1705	0,0291
61	4,920	-0,0795	0,0063
62	5,010	0,0105	0,0001
63	4,980	-0,0195	0,0004
64	4,220	-0,7795	0,6076
65	5,630	0,6305	0,3975
66	5,160	0,1605	0,0258
67	4,960	-0,0395	0,0016
68	5,000	0,0005	0,0000
69	4,930	-0,0695	0,0048
70	5,210	0,2105	0,0443
71	4,920	-0,0795	0,0063
72	4,880	-0,1195	0,0143
73	5,030	0,0305	0,0009
74	5,150	0,1505	0,0227
75	4,880	-0,1195	0,0143
76	5,060	0,0605	0,0037
77	4,990	-0,0095	0,0001
78	4,960	-0,0395	0,0016
79	5,060	0,0605	0,0037
80	4,950	-0,0495	0,0025
81	4,960	-0,0395	0,0016
82	5,100	0,1005	0,0101
83	4,940	-0,0595	0,0035
84	5,010	0,0105	0,0001
85	4,910	-0,0895	0,0080
86	5,140	0,1405	0,0197
87	4,840	-0,1595	0,0254
88	5,080	0,0805	0,0065
89	5,060	0,0605	0,0037
90	5,060	0,0605	0,0037
91	5,000	0,0005	0,0000
92	4,880	-0,1195	0,0143
93	4,940	-0,0595	0,0035
94	4,940	-0,0595	0,0035
95	5,130	0,1305	0,0170
96	5,040	0,0405	0,0016
97	4,920	-0,0795	0,0063
98	5,170	0,1705	0,0291
99	4,940	-0,0595	0,0035
100	4,940	-0,0595	0,0035
	$\langle t \rangle_N = 4,9995 c$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N)$	$\sigma_N = 0.14 c$ $ ho_{max} = 2.77 c^{-1}$
		= -0,000000000000030 c	

 $t_{min} = 4,22c$; $t_{max} = 5,63c$ — тогда возьмём 10 интервалов с шагом 0,141с.

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов):

Границы интервалов, с	ΔN	$\frac{\Delta N}{N\Delta t}$, C ⁻¹	t, c	ρ, c ⁻¹
4,220	1	0,0709	4,2905	0,0000075
4,361	<u> </u>	0,0705		
4,361	0	0	4,4315	0,00074
4,502	•	0		
4,502	1	0,0709	4,5725	0,026
4,643	<u> </u>	0,0705	4,3723	
4,643	1	0,0709	4,7135	0,33
4,784				
4,784	19	1,3475	4,8545	1,62
4,925				
4,925	52	3,6879	4,9955	2,77
5,066				
5,066	22	1,5603	5,1365	1,72
5,207	22	1,5005	5,1505	1,72
5,207	3	0,2128	5,2775	0,39
5,348		0,2120	3,2773	0,39
5,348	0	0	5,4185	0,031
5,489		U	7,4107	0,001
5,489	1	0,0709	5,5595	0,00093
5,630	.			

Опытное значение плотности вероятности: $\frac{\Delta N}{N\Delta t} = \frac{52}{100 \cdot 0,141} = 3,6879$ (шестой интервал)

		Интервал, с		ΔN	$\Delta N/N$	P
		ОТ	ДО			
$\langle t \rangle_N \pm \sigma_N$	4,9995 ± 0,1439 c	4,8556	5,1439	82	0,82	0,683
$\langle t \rangle_N \pm 2\sigma_N$	4,9995 ± 0,2878 c	4,7117	5,2873	97	0,97	0,954
$\langle t \rangle_N \pm 3\sigma_N$	4,9995 ± 0,4317 c	4,5678	5,4312	98	0,98	0,997

10. Расчет погрешностей измерений (для прямых и косвенных измерений):

 $\Delta_{ux} = 0.005 \text{ c}; \quad \overline{\Delta x} = t_{\alpha,N} \cdot \sigma_{(t)} \approx 0.2855; \quad t_{\alpha,N} = 1.9842;$

Абсолютная погрешность с учетом погрешности прибора: $\Delta x = \sqrt{(\overline{\Delta x})^2 + \left(\frac{2}{3}\Delta_{ux}\right)^2} = 0,2855$ с Относительная погрешность измерения: $\varepsilon_x = \frac{\Delta x}{\bar{x}} \cdot 100\% = 5,71\%$

11. Графики:

Распределение измерений

12. Окончательные результаты:

Среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)}} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2 = 0,014396531 \approx 0,014$$

Дисперсия:
$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2 \approx \textbf{0,021}$$

Доверительный интервал ($\alpha = 0.95$; коэфф. Стьюдента (1,9842)):

$$\overline{\Delta x} = t_{lpha,N} \cdot \sigma_{\langle t \rangle} pprox$$
0,2855

По итогам измерений: $t = \langle t \rangle_N + \Delta t = (4,9995 \pm 0,2855)$ с; $\varepsilon_x = 5,71\%$; $\alpha = 0,95$

13. Выводы и анализ результатов работы:

Проведены многократные измерения определенного интервала времени в 5 секунд (эксперимент с секундомером), получена выборка из 100 измерений, построена гистограмма результатов измерения, распределения вычислены среднее значение $((4,9995 \pm 0,2855)$ с) и дисперсия (0,021). При сравнении гистограммы с графиком функции Гаусса - распределения случайной величины (при таких же начальных параметрах) – было отмечено сходство поведения построенной опытным путём функции с теоретикостатистической сущностью.

Работа позволила ознакомиться с законом распределения случайной величины и подробно его изучить.

- 14. Дополнительные задания:
- 15. Выполнение дополнительных заданий:
- 16. Замечания преподавателя: