第八章 热电式传感器

本章主要内容

- 1 金属热电阻
- 2半导体热敏电阻
- 3 热电偶

1金属热电阻

1.1 (金属) 热电阻工作原理

热电阻效应:物质的电阻率随其本身的温度而变化的现象.

在一定温度范围内,大多数金属的电阻率几乎与温度成正比

金属的温度系数为正,即阻值随温度的升高而增加

测温材料:线性、稳定性、较高的电阻率---铂和铜

1.2 金属热电阻测量与接口电路

桥式测量电路

误差源:

- (1) 引线电阻在温度梯度作用下引起的电阻误差;
- (2) 各个触点上产生热电动势;
- (3) 电流流过电阻元件产生的自热效应 消除方法:
- (1) 三导线法;
- (2) 所有触点置于同一温度下;
- (3) 降低电桥激励电压并增大放大器增益,或使用脉冲源激励电桥

热电阻R_T的三根连接导线,直径和长度均相等,阻值都为r。其中一根串联在电桥的电源上,对电桥的平衡与否毫无影响,另外两根分别串联在电桥的相邻两臂里,则相邻两臂的阻值都增加相同的阻值r。

$$(R_T+r)R_2=(R_3+r)R_1$$

$$R_T = \frac{R_3 R_1}{R_2} + (\frac{R_1}{R_2} - 1)r$$

2 半导体热敏电阻

(半导体) 热敏电阻 正温度系数型(PTC)热敏电阻:当温度超过某一数值时,其电阻值朝正的方向快速变化 BaTO₃(钛酸钡),做限流元件。

临界温度系数型(CTR)热敏电阻:在某个温度值上电阻值急剧变化。VO₃(钒酸)与Ba、Si等的氧化物,具有开关特性。

2.1 NTC型半导体热敏电阻的主要特性

在一定的 温度范围内(低于450°C),热敏电阻的电阻-温度特性符合指数规律,即

大學 $R_T = R_0 e^{\frac{B}{T} - \frac{B}{T_0}}$ 热敏电阻的材料 物定电阻, $R_T = R_0 e^{\frac{B}{T} - \frac{B}{T_0}}$ 料系数 电阻值,记为 R_{100} 电阻值,记为 R_{20}

$$B = 1366 \ln \frac{R_{20}}{R_{100}}$$

NTC型半导体热敏电阻在温度T下的温度系数 α_T

$$\alpha_T = \frac{1}{R_T} \cdot \frac{dR_T}{dT} = -\frac{B}{T^2}$$

NTC型半导体热敏电阻的电阻温度系数与温度的平方成反比

热敏电阻式传感器热电偶式传感器

3热电偶

热电偶式传感器就是利用温差电现象制成的热敏传感器。

3.1 温差电现象 (泽贝克效应)

热电势 (泽贝克热电势)

1、定义:

温差电现象(泽贝克效应):将两种不同材料的导体组成一个闭合回路,如果两个结点的温度不同,则回路中将产生一定的电流(电势),其大小与材料性质及结点温度有关.

A和B称为热电极

热端 (工作端): 温度高的接点

冷端(自由端):温度低的接点

当电流通过两种不同金属接成的回路时,流过的电流将造成一个结点吸收热量,而同时另一个结点放热,因此在两个结点处将产生温度差.如果改变电流方向,则温度差也改变符号。

第一种电势是珀耳帖电动势:它是由于两种不同的金属相接触和接点温度 所产生的一种电动势,称为接触电势.它与温度和两金属的电子密度有 关.净的珀耳帖电动势近似地与两接点的温度差成正比.

另一种电势是汤姆逊电动势:

它是由于

导体的温度梯度所产生的。大小与导体两端的温度的平方差成正比。

$$U = \alpha (T_1 - T_2) + \beta (T_1^2 - T_2^2)$$

一次热电偶常数 被测温度 参比温度,通常令其为0 二次热电偶常数

4、热电灵敏度(热电势率或泽贝克系数)

$$S = \frac{dU}{dT_1} = \alpha + 2\beta T_1$$

3.2 热电偶的基本定则

如果构成热电偶的两个热电极为材料相同的均质导体,则无论两结点温度如何,热电偶回路内的总热电势为零。必须采用两种不同的材料作为热电极。

沿一均匀导线的温度梯度不影响热电势。

$$E_{AB}(T_1, T_2) = f(T_1 - T_2)$$

$$E_{AA}(T_1, T_2) = 0$$

$$T_1$$
 A
 T_3
 T_2

$$E_{AB}(T_1, T_3, T_2) = f(T_1 - T_2)$$

2、中间金属定则

在热电偶回路中接入第三种金属材料,只要该第三种金属材料两端 温度相同,则热电偶所产生的热电势保持不变。即不受第三种金属材料 接入的影响。

推论:连接热电偶的许多引线,只要新形成的各个连结点均处于同一温

度下,就不会影响被测热电势的精度

 $E_{AB}(T_1, T_2) = f(T_1 - T_2)$

$$E_{ACB}(T_1, T_2) = f(T_1 - T_2)$$

3、中间温度定则

$$E_{AB}(T_1, T_3) = E_{AB}(T_1, T_2) + E_{AB}(T_2, T_3)$$

4、组成定则

$$E_{AB}(T_1, T_2) = E_{AC}(T_1, T_2) - E_{BC}(T_1, T_2)$$

$$E_{AC}(T_1,T_2)$$

$$E_{BC}(T_1,T_2)$$

$$E_{AB}(T_1,T_2)$$

3.3 热电偶的种类

测温范围宽 -50———+1600℃
$$-200°C 2800°C$$

根据所用的材料,热电偶可分为K、E、J、T、B、R、S这七种类型

3.4 热电偶传感器的测量电路

根据中间金属定则,把第三种金属C换成电压测量电路,并保持两个结点温度一致,就可以完成温度的测量。

$$E_{ABC}(T_1,T_2)=E_{AB}(T_1,T_2)$$

热电偶式传感器的冷端补偿

原因

- 只有当热电偶冷端温度保持不变时,热电势才是被测温度的单值函数。实际中由于热电偶工作端与冷端距离很近,冷端又暴露于空间,容易受到周围环境波动的影响,因而冷端温度难以保持恒定;
- ●热电偶分度表给出的热电势是以冷端温度0°C为依据,否则会产生误差。

铜-康铜热电偶分度表(自由端温度为0°C时t—mV对应值)

工作端	0	10	20	30	40	50	60	70	80	90
温度 ∕℃	mV(绝对值)									
_	- 0.00	-0.39	-0.78	-1.16	-1.53	- 1.89		1,000	XX 12 35C	Tru de
0	0.00	0.40	0.80	1.20	1.61	2.02	2.44	2.85	3.27	3.68
100	4.10	4.51	4.92	5.33	5.73	6.14	6.54	6.94	7.34	7.74
200	8.14	8.54	8.94	9.34	9.75	10.15	10.56	10.97	11.38	11.79
300	12.21	12.62	13.04	13.46	13.87	14.29	14.71	15.13	15.55	15.97
400	16.40	16.82	17.24	17.66	18.09	18.51	18.94	19.36	19.79	20.21
500	20.64	21.07	21.49	21.92	22.35	22.77	23.20	23.62	24.05	24.48
600	24.90	25.33	25.75	26.18	26.60	27.02	27.45	27.87	28.29	28.71
700	29.13	29.55	29.97	30.38	30.80	31.21	31.63	32.04	32.46	32.87
800	33.29	33.69	34.10	34.50	34.91	35.31	35.72	36.12	36.52	36.93
900	37.33	37.72	38.12	38.52	38.92	39.31	39.70	40.10	40.49	40.88
1000	41.27	41.66	42.05	42.43	42.82	43.20	43.59	43.97	44.35	44.73
1100	45.11	45.49	45.86	46.21	46.61	46.99	47.36	47.73	48.10	48.46
1200	48.83	49.19	49.56	49.92	50.28	50.63	50.99	51.34	51.70	52.05
1300	52.40	基件证券					能以他	牛营商	英四联组	脚坡

1. 冰浴法

把热电偶的参比端置于冰水混合物容器里,使 $T_0=0$ °C。这种办法仅限于科学实验中使用。为了避免冰水导电引起两个连接点短路,必须把连接点分别置于两个玻璃试管里,浸入同一冰点槽,使相互绝缘。

2 补偿导线法

热电偶的材料通常为贵重金属,由于受到材料价格的限制不可能做很长,而要使其冷端不受测温对象的温度影响,必须使冷端远离温度对象,采用补偿导线可以做到这一点。

所谓补偿导线,实际上是一对材料化学成分不同的导线,在0~100℃温度范围内与配接的热电偶有一致的热电特性,但价格相对要便宜。

$$E_{ABB'A'}(T_1,T_2,T_0) = E_{AB}(T_1,T_2) + E_{A'B'}(T_2,T_0)$$

当导体A与A', B与B'具有相同的热电特性时

$$egin{aligned} E_{ABB'A'}(T_1,T_2,T_0) &= E_{AB}(T_1,T_2) + E_{A'B'}(T_2,T_0) \\ &= E_{AB}(T_1,T_2) + E_{AB}(T_2,T_0) \\ &= E_{AB}(T_1,T_0) \end{aligned}$$

3 冷端温度计算校正法

由于热电偶的分度表是在冷端温度保持在0度的情况下得到,与它配套使用的仪表又是根据分度表进行刻度的,因此,尽管已采用了补偿导线使热电偶冷端延伸到温度恒定的地方,但只要冷端温度不等于0度,就必须对仪表表示值加以修正。

$$E(t,0^{\circ}) = E(t,t_0) + E(t_0,0^{\circ})$$

例:用铜-康铜热电偶测某一温度T,参比端在室温环境 $T_{\rm H}$ 中,测得热电动势 $E_{\rm AB}(T,\ T_{\rm H})$ =1.979mV,又用室温计测出 $T_{\rm H}$ =21°C,查此种热电偶的分度表可知, $E_{\rm AB}(21,0)$ =0.84mV,故得

 $E_{AB}(T, 0) = E_{AB}(T, 21) + E_{AB}(21, 0) = 1.979 + 0.84 = 2.819 (mV)$ 再次查分度表,与2.819mV对应的热端温度T = 69°C。

4 补正系数修正法

冷端温度为 T_n 时测得温度为 T_I (指示值),则实际温度T为 T_I 1) T_I 2) T_I 3。 T_I 4。 T_I 5。 T_I 7。 T_I 7。 T_I 7。 T_I 8。 T_I 9。 T_I 9 。 T_I

热电偶的补正(修正)系数

例 用铂铑₁₀ - 铂热电偶测温,已知冷端温度 T_H =35°C,这时热电动势为 11.348mV.查S型热电偶的分度表,得出与此相应的温度T=1150°C。再 从下表中查出,对应于1150°C的补正系数k=0.53。于是,被测温度 T=1150+0.53×35=1168.3 (°C)

将一支灵敏度为0.08mV/°C的热电偶与电压表相连,电压表接线处温度为50°C电压表上读数为60mV,求热电偶热端温度。

$$E(t,50) = 60mV$$

$$\frac{60}{t-50} = 0.08$$

$$t = 800^{\circ} C$$