Introduction to Data Science and Programming, Fall 2019

Class 13: Normal distributions

Instructor: Michael Szell

Oct 9, 2019

Today you will learn more about (normal) distributions

Fundamentals of probability theory

Normal distributions

Standardization

$$z=\frac{x-\mu}{\sigma}$$

The mean \bar{x} is the average value

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum x_i$$

The standard deviation s measures spread

variance:
$$s^{2} = \frac{(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n - 1}$$
$$= \frac{1}{n - 1} \sum (x_{i} - \bar{x})^{2}$$

$$s = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Mean and deviation are often not useful measures

- 1) They are not robust to outliers
- 2) They are inadequate for skewed distributions:

Our recipe for exploring data on a single quantitative variable:

- 1) Plot a histogram
- 2) Look for the overall pattern and deviations, outliers
- 3) Calculate a numerical summary to describe center and spread

Our recipe for exploring data on a single quantitative variable:

- 1) Plot a histogram
- 2) Look for the overall pattern and deviations, outliers
- 3) Calculate a numerical summary to describe center and spread

4) Sometimes the distribution is so regular that we can describe it by a smooth curve

Probability theory

Many processes in nature are uncertain, and we can understand them better by performing experiments

Many processes in nature are uncertain, and we can understand them better by performing experiments

An experiment produces one outcome (event).

You see only 🗱

You see only C

You see neither

Many processes in nature are uncertain, and we can understand them better by performing experiments

An experiment produces one outcome (event).

You see only 🗱

You see only C

You see neither

You see both

The set of all possible outcomes is the sample space Ω

The possible outcomes are mutually exclusive.

Running an experiment repeatedly allows us to assign a probability P(A) to each event A

This mathematical description of an uncertain situation is called probabilistic model

Probabilities must satisfy 3 axioms

1) Nonnegativity

$$P(A) \ge 0$$

2) Additivity

$$P(A \cup B) = P(A) + P(B)$$
 for disjoint sets A and B

3) Normalization

$$P(\Omega) = 1$$

A random variable X assigns to each outcome a numerical value x, formalizing the notion of a measurement

Example: Rolling two 4-sided dice where X is the maximum roll

A random variable X assigns to each outcome a numerical value x, formalizing the notion of a measurement

Example: Rolling two 4-sided dice

where X is the maximum roll

EXERCISE: 5 min in groups of 3:

What is the sample space?
What is x for each possible event?

A random variable X assigns to each outcome a numerical value x, formalizing the notion of a measurement

Example: Rolling two 4-sided dice where X is the maximum roll

Sample Space: Pairs of Rolls

This example is discrete: x can take only certain values

Example: Rolling two 4-sided dice where X is the maximum roll

Sample Space: Pairs of Rolls When X is a discrete random variable and the probability p(x) is known for all possible x, then p(x) is called the probability mass function (PMF)

Example: Rolling two 4-sided dice where X is the maximum roll

p(x) is short for: P(X = x)

When X is a discrete random variable and the probability p(x) is known for all possible x, then p(x) is called the probability mass function (PMF)

Example: Rolling two 4-sided dice where X is the maximum roll

EXERCISE: 3 min in groups of 3:

What is p(x) here?

When X is a discrete random variable and the probability p(x) is known for all possible x, then p(x) is called the probability mass function (PMF)

Example: Rolling two 4-sided dice where X is the maximum roll

When X can take any value along an interval, it is continuous

Here the probability of measuring a specific value is effectively 0.

When X can take any value along an interval, it is continuous

Here the probability of measuring a specific value is effectively 0. So we use intervals. We ask: What is $P(a \le X \le b)$?

When X is a continuous random variable, we get the probability of X falling into an interval by integrating the probability density function (PDF) f(x)

$$P(a \le X \le b) = \int_a^b f(x) dx$$

A density curve must be everywhere non-negative and the entire area below it must be 1

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

The median of a density curve cuts the area in half

The mean of a density curve is the balance point

Often mean and median are not the same

The mode is the value that appears most often

A unimodal distribution has one "hump" A multimodal distribution has multiple "humps"

unimodal

bimodal

trimodal

Jupyter

A normal distribution with parameters μ and σ is a continuous random variable X with the PDF:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

A normal distribution with parameters μ and σ^2 is a continuous random variable X with the PDF:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

The two parameters completely determine the curve

A parameter is numerical characteristic of a statistical model

Normal distributions are important in statistics

- 1) They describe well some real data sets
- 2) They approximate well many chance outcomes
- 3) They are useful for statistical inference of many symmetric distributions

Real data are often VERY MUCH NOT normal

68-95-99.7 Rule

Linear transformations do not change the shape of a distribution

$$x_{\text{new}} = a + bx$$

They only:

- add a to the center
- multiply center and spread by b.

All normal distributions are the same if we measure in units of size σ around the mean μ as center

The standard normal distribution $\mathcal{N}(0,1)$ has $\mu=0$ and $\sigma=1$

We can turn any normally distributed variable $X \sim \mathcal{N}(\mu, \sigma)$ into $\mathcal{N}(0,1)$ by standardizing it:

$$Z = \frac{X - \mu}{\sigma}$$

The standard normal distribution $\mathcal{N}(0,1)$ has $\mu=0$ and $\sigma=1$

The z-score (standard score) is the number of standard deviations that an observed value x is away from the mean of a reference distribution

Now we know what normal distributions are, but how to reliably spot one?

How can we be sure that the normal distribution is a good model for the data?

How can we be sure that the normal distribution is a good model for the data?

The Q-Q plot (quantile-quantile) assesses normality visually

1) Order data points and calculate their quantiles

2) Calculate z-scores of theoretical normal distributions at same quantiles

3) Compare the two. If on the diagonal, we have a normal distribution

Sources and further materials for today's class

Chapter 1.3

Jupyter