Математический анализ, 4 семестр. Контрольные задания.

Учебно-методическое пособие

УДК 517.53, 517.53 ББК 22.161.55 М 31

Авторы: Н.В.Белецкая, И.П.Драгилева, С.В.Костин,

М.И.Митягина, М.Н.Прохоров, А.Л.Шелепин

Редактор: Ю.И.Худак

Контрольные задания содержат типовой расчет по теории функций комплексного переменного (математический анализ, IV семестр), входящей в программу факультета кибернетики. Типовой расчет выполняется студентами в письменном виде и сдается преподавателю до начала зачетной сессии. Приведенные в пособии вопросы к зачету или экзамену могут быть уточнены и дополнены лектором.

Математический анализ, 4 семестр. Контрольные задания.

Учебно-методическое пособие

Рецензенты: доц., докт. физ.-мат. наук А.О.Смирнов,

Санкт-Петербургский государственный университет

аэрокосмического приборостроения,

доц., канд. физ.-мат. наук И.С.Пулькин, МИРЭА

Минимальные системные требования:

Поддерживаемые ОС: Windows 2000 и выше

Память: ОЗУ 128 Мб Жесткий диск: 20 Мб

Устройства ввода: клавиатура, мышь

Дополнительные программные средства: программа Adobe Reader

- © Н.В.Белецкая, М.И.Джиоева, В.В.Кирюшин, М.И.Митягина, М.Н.Прохоров, А.Л.Шелепин, 2016
- © МИРЭА, 2016

Оглавление

Теоретические упражнения
Практические задания 4
Задача 1
Задача 2 7
Задача 3
Задача 4
Задача 5
Задача 6
Задача 7
Задача 8
Задача 9
Задача 10
Задача 11
Вопросы к экзамену

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

(ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО)

IV семестр

ТИПОВОЙ РАСЧЕТ

ТЕОРЕТИЧЕСКИЕ УПРАЖНЕНИЯ

1. Каков геометрический смысл тождества

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$
?

2. Найти область, заданную неравенствами

$$\alpha < \arg(z - z_0) < \beta$$
 $(-\pi < \alpha < \beta \le \pi).$

- 3. Найти область, заданную неравенством $|z| < \arg z$, если $0 \leqslant \arg z < 2\pi$.
- 4. Найти ошибку в рассуждении, приводящем к парадоксу Бернулли: $(-z)^2=z^2$, поэтому $2\operatorname{Ln}(-z)=2\operatorname{Ln} z$, и следовательно, $\operatorname{Ln}(-z)=\operatorname{Ln} z$.
- 5. Совпадают ли множества значений $a^{2\alpha}$, $(a^{\alpha})^2$, $(a^2)^{\alpha}$? Рассмотреть для $a=\alpha=i$.
- 6. Для отображения $w=z^2$ найти образы линий y=c и |z|=R. Какие из них преобразуются взаимно-однозначно?
- 7. Для отображения $w=e^z$ найти образ линии x=y и прообраз линии $\rho=\theta,\ 0\leqslant \theta<\infty\ (\rho,\ \theta$ полярные координаты).
 - 8. Доказать, что функция $f(z) = \bar{z}$ нигде не дифференцируема.
- 9. Доказать, что функция $f(z)=z\operatorname{Re} z$ дифференцируема только в точке z=0, найти f'(0).
- 10. Доказать, что для функции $f(z) = \sqrt{|xy|}$ в точке z = 0 выполняются условия Коши-Римана, но производная не существует.
- 11. Будут ли гармоническими функции |f(z)|, $\arg f(z)$, если f(z) регулярная функция?
- 12. Доказать, что производные (любого порядка) гармонической функции также являются функциями гармоническими.
- 13. Какая часть плоскости сжимается, а какая растягивается, если отображение осуществляется функцией $w=z^2,\,w=1/z,\,w=e^z?$
- 14. Пусть функция g(z) регулярна в точке z=a, причем g(a)=b и функция f(w) имеет в точке w=b полюс порядка m. Доказать, что функция F(z)=f(g(z)) имеет в точке z=a полюс порядка mn, где n порядок нуля функции g(z)-b в точке z=a.
- 15. Пусть функция g(z) регулярна в точке z=a и g(a)=b, а функция f(w) имеет в точке w=b существенно особую точку. Доказать, что

точка z = a – существенно особая точка функции F(z) = f(g(z)).

16. Для каких рациональных функций

$$f(z) = \frac{A(z)}{B(z)}$$

точка ∞ является устранимой особой точкой? Неустранимой особой точкой? Каков тип этой особой точки?

- 17. Построить пример функции, имеющей в расширенной плоскости только следующие особенности: полюс второго порядка в точке z=0 и простой полюс на бесконечности.
- 18. Построить пример функции, имеющей в расширенной плоскости только следующие особенности: 3 полюса первого порядка.
- 19. Найти общий вид функции, имеющей в расширенной плоскости только следующие особенности: полюс порядка 2 в точке z=0 и полюс порядка 2 на бесконечности.
- 20. Найти общий вид функции, имеющей в расширенной плоскости только следующие особенности: полюс порядка 2 на бесконечности.
- 21. Доказать, что если f(z) непрерывна в окрестности точки z=a, то

$$\lim_{r \to 0} \int_{|z-a|=r} \frac{f(z)dz}{z-a} = 2\pi i f(a).$$

В чем отличие этого утверждения от интегральной формулы Коши?

- 22. Доказать, что для функции f(z) имеет место равенство $\mathop{\mathrm{res}}_{z=a} f(z) = -\mathop{\mathrm{res}}_{z=-a} f(z),$ если f(z) четная, и $\mathop{\mathrm{res}}_{z=a} f(z) = \mathop{\mathrm{res}}_{z=-a} f(z),$ если f(z) нечетная. Предполагается, что написанные вычеты имеют смысл.
 - 23. Пусть f(z)=g(az), где $a\neq 0$. Доказать, что

$$\underset{z=az_0}{\text{res}} f(z) = \frac{1}{a} \underset{z=z_0}{\text{res}} g(z).$$

- 24. Найти res $f(\varphi(z))$, если $\varphi(z)$ регулярна в точке a и $\varphi'(z) \neq 0$, а f(z) имеет в точке $\varphi(a)$ полюс первого порядка с вычетом, равным A.
- 25. Доказать, что к интегралу $\int\limits_{\Gamma} e^{-z^2} dz$, взятому по границе Γ полуплоскости ${\rm Im}\, z>0$, теорема о вычетах неприменима.
- 26. Сколько корней уравнения $z^4 5z + 1 = 0$ находится в круге |z| < 1?
- 27. Сколько корней уравнения $z^4 5z + 1 = 0$ находится в кольце 1 < |z| < 3?

ПРАКТИЧЕСКИЕ ЗАДАНИЯ

Задача 1. Записать комплексное число z в алгебраической, показательной и тригонометрической формах.

N	z	N	z
1	$\frac{1}{2} + \cos\left(\frac{\pi}{3} + i\ln 2\right)$	2	$\frac{7}{6} + \sin\left(\frac{\pi}{6} + i\ln 3\right)$
3	$-\frac{5\sqrt{3}}{7} - \operatorname{tg}\left(\frac{\pi}{3} - i\frac{\ln 3}{2}\right)$	4	$-\frac{5\sqrt{3}}{13} - \operatorname{ctg}\left(\frac{\pi}{3} - i\frac{\ln 3}{2}\right)$
5	$\frac{1}{2\sqrt{3}} - \operatorname{ch}\left(\ln 3 + i\frac{\pi}{6}\right)$	6	$\frac{7}{4\sqrt{3}} - \operatorname{sh}\left(\ln 2 + i\frac{\pi}{6}\right)$
7	$1 - \operatorname{th}\left(\frac{\ln 3}{4} + i\frac{5\pi}{12}\right)$	8	$\frac{1}{7} - \operatorname{cth}\left(\frac{\ln 3}{4} + i\frac{5\pi}{12}\right)$
9	$-\frac{1}{4\sqrt{2}} + \cos\left(\frac{\pi}{4} + i\ln 4\right)$	10	$-\sqrt{2} + \sin\left(\frac{\pi}{4} + i\ln 2\right)$
11	$1 - \operatorname{tg}\left(\frac{3\pi}{8} + i\frac{\ln 2}{4}\right)$	12	$\frac{3}{5} - \operatorname{ctg}\left(\frac{3\pi}{8} + i\frac{\ln 2}{4}\right)$
13	$\frac{1}{5\sqrt{2}} + \operatorname{ch}\left(\ln 5 - i\frac{3\pi}{4}\right)$	14	$\frac{3}{\sqrt{2}} + \operatorname{sh}\left(\ln 3 - i\frac{3\pi}{4}\right)$
15	$-\frac{1}{7} + \operatorname{th}\left(\ln 2 - i\frac{\pi}{6}\right)$	16	$-\frac{27}{13} + \coth\left(\ln 2 - i\frac{\pi}{6}\right)$
17	$1 + \cos\left(\frac{2\pi}{3} - i\ln 2\right)$	18	$\frac{7}{4} + \sin\left(\frac{5\pi}{6} - i\ln 4\right)$
19	$\frac{1}{7\sqrt{3}} - \operatorname{tg}\left(\frac{\pi}{12} + i\frac{\ln 3}{4}\right)$	20	$\frac{1}{\sqrt{3}} - \operatorname{ctg}\left(\frac{\pi}{12} + i\frac{\ln 3}{4}\right)$
21	$-\frac{1}{12} - \operatorname{ch}\left(\ln 6 + i\frac{2\pi}{3}\right)$	22	$-1 - \operatorname{sh}\left(\ln 2 + i\frac{2\pi}{3}\right)$
23	$\frac{3}{13} - \operatorname{th}\left(\frac{\ln 8}{4} + i\frac{\pi}{8}\right)$	24	$\frac{3}{5} - \operatorname{cth}\left(\frac{\ln 8}{4} + i\frac{\pi}{8}\right)$
25	$\frac{1}{7\sqrt{2}} - \operatorname{ch}\left(\ln 7 + i\frac{\pi}{4}\right)$	26	$\frac{9}{\sqrt{2}} - \sin\left(\frac{3\pi}{4} + i\ln 9\right)$
27	$-\frac{11}{7\sqrt{3}} - \operatorname{tg}\left(\frac{\pi}{6} + i\ln 2\right)$	28	$-\frac{\sqrt{3}}{13} - \operatorname{ctg}\left(\frac{\pi}{6} + i\ln 2\right)$

N	z	N	z
29	$\frac{9}{7} - \operatorname{th}\left(\frac{\ln 12}{4} - i\frac{5\pi}{12}\right)$	30	$\frac{1}{4} - \operatorname{sh}\left(\frac{\ln 12}{2} - i\frac{5\pi}{6}\right)$
31	$\frac{5}{6} - \operatorname{ch}\left(\frac{\ln 3}{2} + i\frac{\pi}{6}\right)$	32	$\frac{11}{5} - \operatorname{tg}\left(\frac{3\pi}{8} + i\frac{\ln 8}{4}\right)$

Решение варианта 31. Пусть $z_1 = \frac{\ln 3}{2} + i \frac{\pi}{6}$. Имеем:

$$\operatorname{ch} z_1 = \frac{e^{z_1} + e^{-z_1}}{2}.$$

Находим числа e^{z_1} и e^{-z_1} :

$$e^{z_1} = e^{\frac{\ln 3}{2} + i\frac{\pi}{6}} = e^{\frac{\ln 3}{2}} \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) =$$

$$= \sqrt{3} \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right) = \frac{3}{2} + i\frac{\sqrt{3}}{2};$$

$$e^{-z_1} = e^{-\frac{\ln 3}{2} - i\frac{\pi}{6}} = e^{-\frac{\ln 3}{2}} \left[\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right] =$$

$$= \frac{1}{\sqrt{3}} \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right) = \frac{1}{2} - \frac{i}{2\sqrt{3}}.$$

Следовательно,

$$\operatorname{ch} z_1 = \frac{\left(\frac{3}{2} + i\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2} - \frac{i}{2\sqrt{3}}\right)}{2} = \frac{2 + \frac{i}{\sqrt{3}}}{2} = 1 + \frac{i}{2\sqrt{3}}.$$

Поэтому
$$z = \frac{5}{6} - \operatorname{ch} z_1 = -\frac{1}{6} - \frac{i}{2\sqrt{3}} = \frac{1}{6} (-1 - i\sqrt{3}).$$

Мы записали число z в алгебраической форме.

Находим модуль и главное значение аргумента числа z:

$$|z| = \frac{1}{6} |-1 - i\sqrt{3}| = \frac{1}{6} \cdot 2 = \frac{1}{3},$$

 $\arg z = \arg (-1 - i\sqrt{3}) = -\frac{2\pi}{3}.$

Записываем число z в показательной и тригонометрической формах:

$$z = \frac{1}{3} e^{i\left(-\frac{2\pi}{3}\right)} = \frac{1}{3} \left[\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right].$$

Ответ:
$$z = -\frac{1}{6} - \frac{i}{2\sqrt{3}} = \frac{1}{3} e^{i\left(-\frac{2\pi}{3}\right)} = \frac{1}{3} \left[\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right].$$

Решение варианта 32. Пусть $z_1 = \frac{3\pi}{8} + i \frac{\ln 8}{4}$. Имеем:

$$\operatorname{tg} z_1 = \frac{\sin z_1}{\cos z_1} = \frac{e^{iz_1} - e^{-iz_1}}{2i} \cdot \frac{2}{e^{iz_1} + e^{-iz_1}} = -i \cdot \frac{e^{iz_1} - e^{-iz_1}}{e^{iz_1} + e^{-iz_1}} = -i \cdot \frac{e^{2iz_1} - 1}{e^{2iz_1} + 1}$$

(мы умножили числитель и знаменатель на e^{iz_1} и учли, что $\frac{1}{i}=-i$).

Находим число e^{2iz_1} :

$$e^{2iz_1} = e^{-\frac{\ln 8}{2} + i\frac{3\pi}{4}} = e^{-\frac{\ln 8}{2}} \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) =$$
$$= \frac{1}{2\sqrt{2}} \left(-\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right) = -\frac{1}{4} + \frac{i}{4}.$$

Следовательно,

$$\operatorname{tg} z_{1} = -i \cdot \frac{\left(-\frac{1}{4} + \frac{i}{4}\right) - 1}{\left(-\frac{1}{4} + \frac{i}{4}\right) + 1} = -i \cdot \frac{-\frac{5}{4} + \frac{i}{4}}{\frac{3}{4} + \frac{i}{4}} = \frac{1 + 5i}{3 + i}.$$

Умножим числитель и знаменатель на число, комплексно сопряженное к знаменателю, то есть на 3-i:

$$\operatorname{tg} z_1 = \frac{(1+5i)(3-i)}{(3+i)(3-i)} = \frac{3+15i-i+5}{9+1} = \frac{4}{5} + \frac{7}{5}i.$$

Поэтому
$$z = \frac{11}{5} - \operatorname{tg} z_1 = \frac{7}{5} - \frac{7}{5}i = \frac{7}{5}(1-i).$$

Мы записали число z в алгебраической форме.

Находим модуль и главное значение аргумента числа z:

$$|z| = \frac{7}{5}|1 - i| = \frac{7}{5} \cdot \sqrt{2} = \frac{7\sqrt{2}}{5},$$

 $\arg z = \arg(1 - i) = -\frac{\pi}{4}.$

Записываем число z в показательной и тригонометрической формах:

$$z = \frac{7\sqrt{2}}{5} e^{i\left(-\frac{\pi}{4}\right)} = \frac{7\sqrt{2}}{5} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right].$$

Ответ:
$$z = \frac{7}{5} - \frac{7}{5}i = \frac{7\sqrt{2}}{5} e^{i\left(-\frac{\pi}{4}\right)} = \frac{7\sqrt{2}}{5} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right].$$

Задача 2. В нечетных вариантах записать в алгебраической форме все элементы множества E. В четных вариантах решить уравнение и записать в алгебраической форме все его решения.

N	Множество <i>Е</i>	N	Уравнение
1	$\operatorname{Arth}\left(\frac{11+2i\sqrt{3}}{7}\right)$	2	$(1 - 4i\sqrt{3}) \operatorname{cth} z = 3 + 2i\sqrt{3}$
3	$\operatorname{Arsh}\left(\frac{1-3i}{2\sqrt{2}}\right)$	4	$7\operatorname{ch} z + 9\operatorname{sh} z = 1 - 3i\sqrt{3}$
5	$\operatorname{Arcctg}\left(\frac{-12-i}{5}\right)$	6	$(4-7i) \operatorname{tg} z = -3-16i$
7	$Arcsin\left(\frac{3}{4}i\right)$	8	$3\cos z + i\sin z = 3 - i$
9	$\operatorname{Arcth}\left(\frac{1+2i\sqrt{3}}{13}\right)$	10	$(5 - 8i\sqrt{3}) \operatorname{th} z = 2 - 13i\sqrt{3}$
11	$\operatorname{Arch}\left(\frac{3\sqrt{3}+i}{4\sqrt{2}}\right)$	12	$11\operatorname{ch} z - 5\operatorname{sh} z = -9 + i\sqrt{3}$
13	$\operatorname{Arctg}\left(\frac{4+5i\sqrt{3}}{7\sqrt{3}}\right)$	14	$(8+11i\sqrt{3})$ ctg $z = 7\sqrt{3} - 28i$
15	$\operatorname{Arccos}\left(\frac{-3-i}{2\sqrt{2}}\right)$	16	$6\cos z - 2i\sin z = 3\sqrt{3} + i$
17	$\operatorname{Arth}\left(\frac{7-6i}{5}\right)$	18	(1+30i) cth z = 11 - 10i
19	$\operatorname{Arsh}\left(\frac{1-i\sqrt{3}}{2}\right)$	20	$3\operatorname{ch} z - 5\operatorname{sh} z = -2 - 2i\sqrt{3}$
21	$\operatorname{Arcctg}\left(\frac{2\sqrt{3}-i}{13}\right)$	22	$(5+16i\sqrt{3}) \operatorname{tg} z = 12\sqrt{3}-7i$

N	Множество <i>Е</i>	N	Уравнение
23	$Arcsin\left(\frac{3\sqrt{3}-i}{4\sqrt{2}}\right)$	24	$2\cos z + 10i\sin z = \sqrt{3} + 9i$
25	$\operatorname{Arctg}\left(\frac{3\sqrt{3}-8i}{7}\right)$	26	$(4 + 25i\sqrt{3}) \text{ th } z = 24 - 5i\sqrt{3}$
27	$\operatorname{Arch}\left(\frac{5}{12}i\right)$	28	$9\operatorname{ch} z - 7\operatorname{sh} z = -6 - 2i$
29	$\operatorname{Arccos}\left(\frac{-\sqrt{3}+i}{2}\right)$	30	(3+11i) ctg $z = 19+9i$
31	$\operatorname{Arcth}\left(\frac{2-i\sqrt{3}}{7}\right)$	32	$\cos z + 7i\sin z = 2\sqrt{3} - 6i$

Решение варианта 31. Множество $E = \operatorname{Arcth}\left(\frac{2-i\sqrt{3}}{7}\right)$ состоит из всех комплексных чисел z таких, что

$$cth z = \frac{2 - i\sqrt{3}}{7}.$$
(*)

Поэтому задача сводится к решению уравнения (*). Имеем:

$$\operatorname{cth} z = \frac{\operatorname{ch} z}{\operatorname{sh} z} = \frac{e^z + e^{-z}}{2} \cdot \frac{2}{e^z - e^{-z}} = \frac{e^z + e^{-z}}{e^z - e^{-z}} = \frac{e^{2z} + 1}{e^{2z} - 1}$$

(мы умножили числитель и знаменатель на e^z). Обозначим число e^{2z} буквой t. Мы приходим к уравнению

$$\frac{t+1}{t-1} = \frac{2 - i\sqrt{3}}{7}.$$

Решаем это уравнение:

$$7(t+1) = (2 - i\sqrt{3})(t-1);$$
$$7t + 7 = (2 - i\sqrt{3})t - 2 + i\sqrt{3};$$
$$(5 + i\sqrt{3})t = -9 + i\sqrt{3};$$

$$t = -\frac{9 - i\sqrt{3}}{5 + i\sqrt{3}}.$$

Умножим числитель и знаменатель на число, комплексно сопряженное к знаменателю, то есть на $5-i\sqrt{3}$:

$$t = -\frac{(9 - i\sqrt{3})(5 - i\sqrt{3})}{(5 + i\sqrt{3})(5 - i\sqrt{3})} = -\frac{45 - 5i\sqrt{3} - 9i\sqrt{3} - 3}{25 + 3} =$$
$$= -\frac{42 - 14i\sqrt{3}}{28} = -\frac{14(3 - i\sqrt{3})}{14 \cdot 2} = -\frac{3}{2} + i\frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}(-\sqrt{3} + i).$$

Таким образом, мы приходим к уравнению

$$e^{2z} = t = \frac{\sqrt{3}}{2} (-\sqrt{3} + i).$$

Находим модуль и главное значение аргумента числа t:

$$|t| = \frac{\sqrt{3}}{2} |-\sqrt{3} + i| = \frac{\sqrt{3}}{2} \cdot 2 = \sqrt{3},$$

 $\arg t = \arg(-\sqrt{3} + i) = \frac{5\pi}{6}.$

Следовательно,

$$2z = (\ln t)_k = \ln |t| + i(\arg t + 2\pi k) =$$

$$= \ln \sqrt{3} + i \left(\frac{5\pi}{6} + 2\pi k\right) = \frac{\ln 3}{2} + i \left(\frac{5\pi}{6} + 2\pi k\right), \quad k \in \mathbb{Z}.$$
Отсюда $z = \frac{\ln 3}{4} + i \left(\frac{5\pi}{12} + \pi k\right), \quad k \in \mathbb{Z}.$
Ответ: $E = \left\{\frac{\ln 3}{4} + i \left(\frac{5\pi}{12} + \pi k\right) \mid k \in \mathbb{Z}\right\}.$

Решение варианта 32. Имеем:

$$\frac{e^{iz} + e^{-iz}}{2} + 7i \cdot \frac{e^{iz} - e^{-iz}}{2i} = 2\sqrt{3} - 6i.$$

Обозначим число e^{iz} буквой t. Тогда $e^{-iz} = \frac{1}{t}$ и мы приходим к уравнению

$$\frac{1}{2}\left(t+\frac{1}{t}\right) + \frac{7}{2}\left(t-\frac{1}{t}\right) = 2\sqrt{3} - 6i.$$

Отсюда получаем квадратное уравнение

$$4t^2 - (2\sqrt{3} - 6i)t - 3 = 0. (*)$$

Находим дискриминант:

$$D = (2\sqrt{3} - 6i)^2 - 4 \cdot 4 \cdot (-3) = 12 - 24i\sqrt{3} - 36 + 48 =$$
$$= 24 - 24i\sqrt{3} = 24(1 - i\sqrt{3}).$$

Находим модуль и главное значение аргумента числа D:

$$|D| = 24 |1 - i\sqrt{3}| = 24 \cdot 2 = 48,$$

 $\arg D = \arg (1 - i\sqrt{3}) = -\frac{\pi}{3}.$

Записываем число D в показательной форме: $D=48\,e^{i\left(-\frac{\pi}{3}\right)}$. Находим главное значение корня 2-й степени из числа D:

$$(\sqrt{D})_0 = \sqrt{48} e^{i\left(-\frac{\pi}{6}\right)} = 4\sqrt{3} \left[\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right] =$$
$$= 4\sqrt{3} \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right) = 6 - 2i\sqrt{3}.$$

Находим корни квадратного уравнения (*):

$$t_1 = \frac{2\sqrt{3} - 6i + (6 - 2i\sqrt{3})}{8} = \frac{6 + 2\sqrt{3} - i(6 + 2\sqrt{3})}{8} =$$

$$= \frac{(6 + 2\sqrt{3})(1 - i)}{8} = \frac{3 + \sqrt{3}}{4}(1 - i);$$

$$t_2 = \frac{2\sqrt{3} - 6i - (6 - 2i\sqrt{3})}{8} = \frac{-(6 - 2\sqrt{3}) - i(6 - 2\sqrt{3})}{8} =$$

$$= \frac{(6 - 2\sqrt{3})(-1 - i)}{8} = \frac{3 - \sqrt{3}}{4}(-1 - i).$$

Таким образом, мы приходим к двум уравнениям:

$$e^{iz} = t_1 = \frac{3 + \sqrt{3}}{4} (1 - i);$$

 $e^{iz} = t_2 = \frac{3 - \sqrt{3}}{4} (-1 - i).$

Находим модуль и главное значение аргумента чисел t_1 и t_2 :

$$|t_1| = \frac{3+\sqrt{3}}{4} |1-i| = \frac{3+\sqrt{3}}{4} \cdot \sqrt{2} = \frac{3+\sqrt{3}}{2\sqrt{2}},$$

$$\arg t_1 = \arg (1-i) = -\frac{\pi}{4};$$

$$|t_2| = \frac{3-\sqrt{3}}{4} |-1-i| = \frac{3-\sqrt{3}}{4} \cdot \sqrt{2} = \frac{3-\sqrt{3}}{2\sqrt{2}},$$

$$\arg t_2 = \arg (-1-i) = -\frac{3\pi}{4}.$$

Следовательно,

$$iz = (\ln t_1)_k = \ln |t_1| + i(\arg t_1 + 2\pi k) =$$

$$= \ln \frac{3 + \sqrt{3}}{2\sqrt{2}} + i\left(-\frac{\pi}{4} + 2\pi k\right), \quad k \in \mathbb{Z};$$

$$iz = (\ln t_2)_k = \ln |t_2| + i(\arg t_2 + 2\pi k) =$$

$$= \ln \frac{3 - \sqrt{3}}{2\sqrt{2}} + i\left(-\frac{3\pi}{4} + 2\pi k\right), \quad k \in \mathbb{Z}.$$

Отсюда $z=-\frac{\pi}{4}+2\pi k-i\ln\frac{3+\sqrt{3}}{2\sqrt{2}},\ k\in\mathbb{Z};\ z=-\frac{3\pi}{4}+2\pi k-i\ln\frac{3-\sqrt{3}}{2\sqrt{2}},\ k\in\mathbb{Z}$ (мы умножили обе части равенств на $\frac{1}{i}=-i$).

Заметим, что число $\frac{3+\sqrt{3}}{2\sqrt{2}}$ больше 1, а число $\frac{3-\sqrt{3}}{2\sqrt{2}}$ меньше 1. Поэтому $\ln\frac{3+\sqrt{3}}{2\sqrt{2}}>0$, $\ln\frac{3-\sqrt{3}}{2\sqrt{2}}<0$. Для того чтобы было яснее видно, что решения второй серии имеют положительную мнимую часть. произ-

что решения второй серии имеют положительную мнимую часть, произведем следующее тождественное преобразование:

$$\ln \frac{3-\sqrt{3}}{2\sqrt{2}} = -\ln \left(\frac{3-\sqrt{3}}{2\sqrt{2}}\right)^{-1} = -\ln \frac{2\sqrt{2}}{3-\sqrt{3}} =$$

$$= -\ln \frac{2\sqrt{2}\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)} = -\ln \frac{6\sqrt{2}+2\sqrt{6}}{6} = -\ln \frac{\sqrt{6}+\sqrt{2}}{\sqrt{3}}.$$
Other:
$$z = -\frac{\pi}{4} + 2\pi k - i\ln \frac{3+\sqrt{3}}{2\sqrt{2}}, \ k \in \mathbb{Z}; \ z = -\frac{3\pi}{4} + 2\pi k + i\ln \frac{\sqrt{6}+\sqrt{2}}{\sqrt{3}}, \ k \in \mathbb{Z}.$$

Задача 3. Определить, при каких значениях параметра $a \in \mathbb{R}$ функция u(x,y) (четные варианты) или v(x,y) (нечетные варианты) является действительной или, соответственно, мнимой частью некоторой регулярной функции f(z). Восстановить f(z).

N	v(x,y)	N	u(x,y)
1	$e^{-y}(x\cos x - y\sin ax)$	2	$\cos ay \cdot \operatorname{ch} x$
3	$e^x(y\cos y + x\sin ay)$	4	$e^{-2y}\cos ax$
5	$\sin y \operatorname{ch} ax$	6	$x \sin x \cosh ay - y \cos x \sinh y$
7	$y/(ax^2+y^2)$	8	$x \sin x \cosh y + y \cos x \sinh ay$
9	$\cos ax \cdot \operatorname{ch}(2y+1)$	10	$1 - e^{ax} \sin y$
11	$\sin x \cdot \operatorname{ch} ay$	12	$\cos x \cdot \operatorname{ch} ay$
13	$2y/(3x^2 - ay^2)$	14	$e^{-y}\sin x + ay$
15	$\cos x \cdot \operatorname{ch}(y - a)$	16	$e^{-y}\cos x + ax$
17	$\sin ay \cdot \operatorname{ch} x$	18	$x/(ax^2 - y^2)$
19	$3y/(2x^2 - ay^2)$	20	$\sin ax \cdot \cosh 3y$
21	$3y/(4x^2 - ay^2)$	22	$\cos ax \cdot \sinh(ay + 2)$
23	$\sin 3y \cdot \sin ax$	24	$y/(2x^2 + ay^2)$
25	$\sin 2ax \cdot \sinh y$	26	$2x/(x^2 + ay^2)$
27	$x^2 - (ay - 1)^2$	28	$\cos(ax+2)\cdot \operatorname{ch} y$
29	$ax^2 + 4y^2$	30	$ax^2 - y^2 - x$
31	$\sin ax \cdot \sinh y$		

Решение варианта 31. Если v(x,y) есть мнимая часть аналитической функции f(z), то v(x,y) удовлетворяет уравнению Лапласа:

$$\triangle v(x,y) = 0 \implies \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0.$$

Имеем:

$$\frac{\partial v}{\partial x} = a \cos ax \cdot \sinh y \implies \frac{\partial^2 v}{\partial x^2} = -a^2 \sin ax \cdot \sinh y;$$
$$\frac{\partial v}{\partial y} = \sin ax \cdot \cosh y \implies \frac{\partial^2 v}{\partial y^2} = \sin ax \cdot \sinh y.$$

Следовательно,

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \sin ax \cdot \sinh y \cdot (1 - a^2) = 0 \implies 1 - a^2 = 0 \implies a = \pm 1.$$

Итак, при $a = \pm 1$ функция $v(x, y) = \sin ax \cdot \sin y$ есть гармоническая функция на всей комплексной плоскости.

1) Пусть a=1. Тогда $v(x,y)=\sin x\cdot \sin y$. Найдем действительную часть аналитической функции f(z)=u(x,y)+iv(x,y), где $v(x,y)=\sin x\cdot \sin y$. Поскольку u(x,y) и v(x,y) — сопряженные гармонические функции, то они связаны условиями Коши-Римана:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \iff \frac{\partial u}{\partial x} = \sin x \cdot \operatorname{ch} y;$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \iff \frac{\partial u}{\partial y} = -\cos x \cdot \operatorname{sh} y.$$

Будем искать функцию u(x, y) в виде:

$$u(x,y) = \int (\sin x \cdot \operatorname{ch} y) dx + \varphi(y).$$

Здесь интегрирование производится по переменной x, а y выполняет роль параметра; $\varphi(y)$ — неизвестная функция, зависящая от y, но не от x. Итак,

$$u(x,y) = \int (\sin x \cdot \operatorname{ch} y) dx + \varphi(y) = -\cos x \cdot \operatorname{ch} y + \varphi(y).$$

Для $\frac{\partial u}{\partial y}$ имеем:

$$\frac{\partial u}{\partial y} = -\cos x \cdot \sinh y = -\cos x \cdot \sinh y + \varphi'(y) \implies$$

 $\Rightarrow -\cos x\cdot \sinh y = -\cos x\cdot \sinh y + \varphi'(y) \Rightarrow \varphi'(y) = 0 \Rightarrow \varphi(y) = \mathrm{const} = C.$ Окончательно для u(x,y) имеем: $u(x,y) = -\cos x\cdot \cosh y + C.$ Тогда

$$f(z) = u(x, y) + iv(x, y) = -\cos x \cdot \operatorname{ch} y + C + i\sin x \cdot \operatorname{sh} y =$$

$$= -\cos x \cdot \cos iy + \sin x \cdot \sin iy + C = -(\cos x \cdot \cos iy - \sin x \cdot \sin iy) + C =$$
$$= -\cos(x + iy) + c = -\cos z + C \Rightarrow f(z) = -\cos z + C.$$

f(z) — аналитическая функция на всей комплексной плоскости.

Замечание. Мы здесь воспользовались следующими формулами и обозначениями: $\operatorname{ch} y = \cos iy$, $\operatorname{sh} y = -i\sin y$, z = x + iy.

2) a = -1. Тогда $v(x, y) = \sin(-x) \cdot \sinh y = -\sin x \cdot \sinh y$. Проводим те же выкладки, что и в пункте 1):

$$f(z) = u(x, y) + i(-\sin x \cdot \sinh y);$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \Leftrightarrow \frac{\partial u}{\partial x} = -\sin x \cdot \cosh y;$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \Leftrightarrow \frac{\partial u}{\partial y} = \cos x \cdot \sinh y.$$

Тогда $u(x,y)=\int (-\sin x\cdot \operatorname{ch} y)dx+\varphi(y)=\cos x\cdot \operatorname{ch} y+\varphi(y).$ Для $\frac{\partial u}{\partial y}$ имеем:

$$\frac{\partial u}{\partial y} = \cos x \cdot \sinh y = \cos x \cdot \sinh y + \varphi'(y) \Rightarrow$$

 $\Rightarrow \cos x \cdot \sinh y = \cos x \cdot \sinh y + \varphi'(y) \Rightarrow \varphi'(y) = 0 \Rightarrow \varphi(y) = \text{const} = C.$ Окончательно: $u(x,y) = \cos x \cdot \cosh y + C.$ Тогда

$$f(z) = u(x,y) + iv(x,y) = \cos x \cdot \operatorname{ch} y + C + i(-\sin x \cdot \operatorname{sh} y) =$$

$$= \cos x \cdot \cos iy - \sin x \cdot \sin iy + C =$$

$$= \cos(x+iy) + C = \cos z + C \Rightarrow f(z) = \cos z + C.$$

Таким образом, при a = -1 $f(z) = \cos z + C$.

f(z) — аналитическая функция на всей комплексной плоскости.

Ответ: 1)
$$a = 1$$
, $f(z) = -\cos z + C$; 2) $a = -1$, $f(z) = \cos z + C$.

 ${f 3}$ адача 4. Даны функция f(z) и множество E.

- 1) Изобразить множество E на комплексной плоскости.
- 2) Найти образ E' = f(E) множества E при отображении w = f(z) (описать множество E' с помощью неравенств), изобразить его на комплексной плоскости.

N	f(z)	E
1	$\left (\sqrt{3} + i)z^2 + 1 + 5i \right $	$1/2 < z < 1, 0 \leqslant \arg z < \pi/4$
		$1 < z , \pi/4 < \arg z \leqslant 3\pi/4$

N	f(z)	E
3		$0 < \operatorname{Re} z \leqslant 2, -\pi/6 < \operatorname{Im} z \leqslant \pi/6$
4	$\ln z + 1 - i$	$1 \leqslant z < 2, -\pi/6 \leqslant \arg z < \pi/6$
5	$\left (-\sqrt{3} - i)z^2 - 1 - 5i \right $	$1 \leqslant z < 2, -\pi/4 < \arg z \leqslant 0$
6	$2e^z + 3 - 2i$	$\operatorname{Re} z < 0, \pi/3 \leqslant \operatorname{Im} z < 2\pi/3$
7	$e^{2zi+i\pi/4} + 3i$	$-\pi/4 < \operatorname{Re} z \leqslant \pi/2, 0 < \operatorname{Im} z$
8	$\ln{(iz)} - 1 + 5i$	$2 \leqslant z < 3, 0 \leqslant \arg z < \pi/4$
9	$(-2+2i)z^3 - 2 + i$	$2 < z \leqslant 3, -3\pi/4 < \arg z \leqslant -\pi/4$
10	$e^{z+i\pi/3} + 2 - 4i$	$1 \leqslant \operatorname{Re} z < 3, -\pi/4 < \operatorname{Im} z \leqslant \pi/3$
11	$\ln\left(2z\right) - 3 + 2i$	$ z < 1, -\pi/4 \leqslant \arg z < \pi/3$
12	$\ln\left(-z\right) - 2 + 3i$	$1 \leqslant z < 3, -\pi/2 \leqslant \arg z < -\pi/4$
13	$(\sqrt{3}-i)z^2-3i$	$2 < z \leqslant 5, \pi/6 \leqslant \arg z < \pi/3$
14	$e^{iz+i\pi/8} + 1 + 2i$	$0 \leqslant \operatorname{Re} z \leqslant \pi/4$, $\operatorname{Im} z < 1$
15	$\ln\left(3z\right) - 1 - 6i$	$1 \leqslant z , \pi/4 < \arg z \leqslant 2\pi/3$
16	$(-1-i)z^3+6-i$	$ z < 2, \pi/4 \leqslant \arg z \leqslant \pi/2$
17	$e^{-z+i3\pi/2} - 2 - 3i$	$0 < \operatorname{Re} z \leqslant 1, \pi/6 \leqslant \operatorname{Im} z < \pi/3$
18	$(1+i)\ln z - 2$	$1 < z \leqslant 3, 0 < \arg z \leqslant \pi/6$
19	$(-\sqrt{3}+i)z^3 - 2i$	$1 \leqslant z \leqslant 3, \pi/2 < \arg z < 2\pi/3$
20	$e^{3iz-i\pi/4}-i$	$0 < \operatorname{Re} z \leqslant \pi/6, 2 < \operatorname{Im} z$
21	$(1-i)\ln(2z) + i$	$2 \leqslant z < 3, \pi/3 < \arg z \leqslant \pi/2$
22	$(1-i)z^4 - 2 + 3i$	$1 < z , 2\pi/3 \leqslant \arg z \leqslant \pi$
23	$e^{2z+i\pi/2} + 1 + 3i$	$1 \leqslant \operatorname{Re} z < 2, 3\pi/4 \leqslant \operatorname{Im} z < \pi$
24	$i\ln(3z) - 2 - 3i$	$2 \leqslant z , \pi/6 < \arg z \leqslant \pi/4$
25	$(2-2i)z^2 + 5 - i$	$ z \leqslant 3$, $\pi/6 \leqslant \arg z < \pi/2$
26	$e^{-2iz+i\pi/4} - 1 - 3i$	$\pi/3 \leqslant \operatorname{Re} z \leqslant \pi/2, 2 < \operatorname{Im} z$
27	$-i\ln\left(iz\right) + 1$	$1 < z \leqslant 2, -\pi/4 \leqslant \arg z < -\pi/6$
28	$(1+i)z^4 - 3 + 2i$	$ z < 1, -\pi/6 \leqslant \arg z < 0$
29	$e^{-iz-i\pi/2} + 5i$	$0 < \operatorname{Re} z \leqslant \pi/3, \operatorname{Im} z \leqslant 2$
30	$2\ln(3iz) - 2 + 4i$	$2 \leqslant z < 4, -\pi/3 < \arg z \leqslant -\pi/6$

 ${f 3a}$ дана функция f(z) и дано число $z_0.$

1) Найти все возможные разложения функции f(z) в ряд Лорана (ряд Тейлора) по степеням $z-z_0$. Указать области, в которых справедливы полученные разложения.

- 2) Определить, является ли точка z_0 изолированной особой точкой функции f(z). Если да, то, используя разложение функции f(z) в ряд Лорана в окрестности точки z_0 , определить тип особой точки z_0 и найти вычет функции f(z) в этой точке.
- 3) Используя разложение функции f(z) в ряд Лорана в окрестности точки $z=\infty$, определить тип особой точки $z=\infty$ и найти вычет функции f(z) в этой точке.

N	f(z)	z_0	N	f(z)	z_0
1	$\frac{z-1}{z(z+1)}$	-1	2	$\frac{z^2 + 2z - 4}{z^2(z - 2)}$	-2
3	$\frac{2z^2 - 5z + 4}{z(z-2)^2}$	2	4	$\frac{z+1}{z(z-1)}$	-3-2i
5	$\frac{z+2}{z^2-1}$	1	6	$\frac{z}{(z+2)(z+3)}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
7	$\frac{3z-1}{z^2-2z-3}$	-1	8	$\frac{z}{z^2+4}$	0
9	$\frac{2z^2 - z + 1}{z^3 - z}$	1	10	$\frac{2z-3}{z^2-3z+2}$	0
11	$\frac{2z^2+z+2}{z^2(z+2)}$	-2	12	$\frac{z^3 + 3z^2 + 2z + 1}{z^2(z+1)^2}$	-1
13	$\frac{2z^2 - 3z + 2}{(z - 1)^2 z}$	1	14	$\frac{3z^2-1}{z(z^2-1)}$	$oxed{1}$
15	$\frac{z^2 - 3z + 5}{(z+1)(z-2)^2}$	2	16	$\frac{1}{z^2 - 7z + 12}$	3
17	$\frac{z^2 + z + 1}{z^3 + z}$	0	18	$\frac{2}{z^2 - 4z + 3}$	-1
19	$\frac{2z^2 + z + 3}{z^2(z+3)}$	-3	20	$\frac{z^2+z-1}{z^2(z-1)}$	$\begin{bmatrix} & -1 & \end{bmatrix}$
21	$\frac{2z^2 + 5z + 4}{z^2(z+4)}$	0	22	$\frac{1}{z^2 - 5z + 6}$	0
23	$\frac{3z^2 - 1}{z^2(z - 1)}$	0	24	$\frac{2z^2 + 4z + 1}{z(z+1)^2}$	$igg -1 \ igg $
25	$\frac{9-2z}{z(3-z)^2}$	3	26	$\frac{z+3}{z^2-1}$	$\left -2-2i \right $
27	$\frac{z^2}{z^2+9}$	0	28	$ \frac{z+3}{z^2-1} \\ \frac{2z}{z^2+4} \\ \frac{z-2}{z^2-2z-3} $	-3+2i
29	$\frac{z-1}{z^2+2z}$	-2-3i	30	$\frac{z-2}{z^2-2z-3}$	2-2i

Задача 6. Дана функция f(z) и дано число z_0 .

- 1) Разложить функцию f(z) в ряд Лорана по степеням $z-z_0$.
- 2) Используя разложение функции f(z) в ряд Лорана, определить тип особой точки z_0 и найти вычет функции f(z) в этой точке.
- 3) Используя разложение функции f(z) в ряд Лорана, определить тип особой точки $z=\infty$ и найти вычет функции f(z) в этой точке.

N	f(z)	z_0	N	f(z)	z_0
1	$z\cos\frac{1}{z-2}$	2	2	$\sin\frac{z}{z-1}$	1
3	$ze^{z/(z-5)}$	5	4	$\sin\frac{2z-1}{z+2}$	-2
5	$\cos \frac{3z}{z-i}$	i	6	$\sin\frac{5z}{z-2i}$	2i
7	$\sin\frac{3z-i}{3z+i}$	$-\frac{i}{3}$	8	$z\cos\frac{3z}{z-1}$	1
9	$z\sin\frac{z}{z-1}$	1	10	$(z-3)\cos\frac{\pi(z-3)}{z}$	0
11	$z^2 \sin \frac{\pi(z+1)}{z}$	0	12	$z\cos\frac{z}{z+2i}$	-2i
13	$\cos \frac{z^2 - 4z}{(z - 2)^2}$ $\sin \frac{z}{z - 3}$	2	14	$\sin\frac{z+i}{z-i}$	i
15	$\sin \frac{z}{z-3}$	3	16	$ze^{1/(z-2)}$	2
17	$e^{z/(z-3)}$	3	18	$\sin\frac{2z}{z-4}$	4
19	$\sin\frac{z^2 - 4z}{(z-2)^2}$ $ze^{\pi/(z-a)}$	2	20	$e^{(4z-2z^2)/((z-1)^2)}$	1
21	$ze^{\pi/(z-a)}$	a	22	$ze^{\pi z/(z-\pi)}$	π
23	$z\sin\frac{\pi(z+2)}{z}$	0	24	$z \cos \frac{\pi(z+3)}{z-1}$ $z \sin \frac{z^2 - 2z}{(z-1)^2}$ $z \sin \frac{\pi(z-1)}{z-2}$ $\frac{\sin^2(2/z)}{z}$	1
25	$z^2 \sin \frac{z+3}{z}$	0	26	$z\sin\frac{z^2-2z}{(z-1)^2}$	1
27	$z\cos\frac{z}{z-3}$	3	28	$z\sin\frac{\dot{\pi}(z-1)}{z-2}$	2
29	$\frac{\sin^2 z}{z}$ $ze^{z/(z-i)}$	0	30	$\frac{\sin^2\left(2/z\right)}{z}$	0
31	$ze^{z/(z-i)}$	i		~	

Решение варианта 31. $f(z) = ze^{z/(z-i)}, z_0 = i.$

1) Функция $f(z) = ze^{z/(z-i)}$ представляет собой произведение двух множителей. Разложим каждый множитель в ряд Лорана по степеням (z-i): z=i+(z-i), разложение справедливо на всей комплексной плоскости;

$$e^{z/(z-i)} = e^{1+\frac{i}{z-i}} =$$
(в области $0 < |z-i| < \infty$) $= e \cdot \left(1 + \frac{i}{z-i} + \left(\frac{i}{z-i}\right)^2 \cdot \frac{1}{2!} + \dots + \left(\frac{i}{z-i}\right)^n \cdot \frac{1}{n!} + \dots\right).$

Тогда

$$f(z) = e(z - i) + 2ei + \sum_{n=1}^{\infty} \frac{e \cdot i^{n+1} \left(\frac{1}{n!} + \frac{1}{(n+1)!}\right)}{(z - i)^n},$$

причем разложение справедливо в области $0 < \mid z - i \mid < \infty$.

2) Так как ряд содержит бесконечно много членов с отрицательными степенями, то $z_0 = i$ — существенно особая точка.

Вычет равен коэффициенту при $(z-z_0)^{-1}$:

$$\operatorname{res}_{z=i} f(z) = e \cdot (-1) \left(\frac{1}{1} + \frac{1}{2} \right) = -\frac{3e}{2}.$$

3) $z_0 = i$ — единственная конечная изолированная особая точка функции. Поэтому

$$\operatorname{res}_{z=\infty} f(z) = -\operatorname{res}_{z=i} f(z) = \frac{3e}{2}.$$

Так ряд Лорана содержит конечное число слагаемых с положительными степенями (1 слагаемое), то $z = \infty$ — полюс первого порядка.

Ответ: 1)
$$f(z) = e(z-i) + 2ei + \sum_{n=1}^{\infty} \frac{e \cdot i^{n+1} \left(\frac{1}{n!} + \frac{1}{(n+1)!}\right)}{(z-i)^n};$$

2)
$$z = i$$
 — существенно особая точка; $\mathop{\mathrm{res}}_{z=i} f(z) = -\frac{3e}{2}$;

3)
$$z = \infty$$
 — полюс первого порядка; $\mathop{\mathrm{res}}_{z=\infty} f(z) = \frac{3e}{2}$.

Задача 7. Найти интеграл $\int\limits_{\Gamma} f(z)\,dz$ с помощью вычетов. Кривая Γ ориентирована против часовой стрелки.

N	f(z)	Γ	N	f(z)	Γ
1	$\frac{z^2+1}{(2z+3)z^2}$	z+1 =2	2	$\frac{\sin z}{z^2(z+4)^2}$	z+2 =3
3	$\frac{\operatorname{sh} z}{(z^2+4)(z^2-9)}$	z-3-4i = 5	4	$\frac{1}{z^4 + 1}$	z-1 =1
5	$\frac{z(z+1)^2}{\sin^2\left(2\pi z\right)}$	z-1/5 = 1/4	6	$\frac{1}{(z-1)^2(z^2+1)}$	z-1-i =2
7	$\frac{\cos z}{z^3 - z^2 - 2z}$	z-i =2	8	$\frac{(z^2+9)^2}{\operatorname{ch} z}$	z+3i =3
9	$\frac{\operatorname{tg} z}{z(z-\pi/4)^2}$	$ z-1-i = \sqrt{3}$	10	$\frac{e^z - 1}{z(z^2 + 2z + 5)^2}$	z - i = 2
11	$\frac{e^z}{z^4 + 8z^2 - 9}$	z-1-2i = 5/2	12	$\frac{\sin(2z)}{z^2(z^2+4)}$	z - 2i = 3
13	$\frac{\sin z}{z^2(z-2)^2}$	z-2-2i =3	14	$\frac{z}{(z^2-1)(z-2)^2}$	z-2 = 3/2
15	$\frac{z^3}{z^4 - 1}$	$ z+1-i = \sqrt{2}$	16	$\frac{1 - e^{4z}}{z(z^2 - 16)}$	z+2 =3
17	$\frac{\cos z}{z^2(z+1)}$	z+1-i = 5/4	18	$\frac{\sinh z}{z(z^2 + 2z + 5)}$	z+i =2
19	$\frac{e^z}{z(z-1)^2(z-4)}$	z-1-i =2	20	$\frac{z(\sin z + 2)}{\sin z(z - 1)^2}$	z-3/2 = 2
21	$\frac{z+1}{z(z-1)^2(z-3)}$	z-2-i =2	22	$\frac{e^z}{z^2(z-\pi i)}$	z =4
23	$\frac{\sin^3(z+2)}{(z+2)^2(z-3)^2}$	z+1 = 5	24	$\frac{e^z - 1}{z^3(z - 2)}$	z-2 =3
25	$\frac{z - \sin z}{z^3 \sin (\pi z)}$	z = 3/2	26	$\frac{\cos(z+2)-1}{(z+2)^2(z-3)^2}$	z-1-i =3
27	$\frac{e^z - 1}{(z^2 - 1)^2 z}$	z-2 = 5/2	28	$\frac{\sin(3z)}{z(z^2-4)^2}$	z-1 =2
29	$\frac{1-\cos\left(2z\right)}{z^3(z^2+1)}$	z - i = 3/2	30	$\frac{e^z - 1}{z(z^2 + 9)^2}$	z-2 =3
31	$\frac{\sin 2z}{2z^2(z-4)^2}$	z-2 =3			

Решение варианта 31. Пусть

$$I = \int_{\Gamma} \frac{\sin 2z}{2z^2(z-4)^2} dz$$
, где $\Gamma: |z-2| = 3$.

Нарисуем контур Γ и найдем особые точки функции f(z).

 $\Gamma: |z-2| = 3$ — окружность радиуса R=3 с центром в точке (2,0). Особые точки функции f(z):

z = 0 — полюс 1-го порядка, находится внутри контура Γ ;

 $z = 4 = 4 + i \cdot 0$ — полюс 2-го порядка.

Тогда

$$I = \int_{\Gamma} \frac{\sin 2z}{2z^2(z-4)^2} dz = 2\pi i (\operatorname{res}_{z=0} f(z) + \operatorname{res}_{z=4} f(z)).$$

Имеем:

$$\operatorname{res}_{z=0} f(z) = \lim_{z \to 0} \frac{\sin 2z}{2z^2(z-4)^2} \cdot z = \lim_{z \to 0} \frac{2 \cdot z \cdot z}{2z^2(z-4)^2} = \frac{1}{(0-4)^2} = \frac{1}{16};$$

$$\operatorname{res}_{z=4} f(z) = \frac{1}{1!} \lim_{z \to 4} \left[\frac{\sin 2z}{2z^2(z-4)^2} \cdot (z-4)^2 \right]' =$$

$$= \lim_{z \to 4} \left[\frac{\sin 2z}{2z^2} \right]' = \lim_{z \to 4} \frac{2\cos 2z \cdot 2z^2 - 4z \cdot \sin 2z}{2z^4} =$$

$$= \frac{2\cos 8 \cdot 2 \cdot 16 - 4 \cdot 4 \cdot \sin 8}{4 \cdot 4^4} = \frac{4\cos 8 - \sin 8}{4^3} = \frac{\cos 8}{16} - \frac{\sin 8}{64}.$$

Окончательно:

$$I = \int_{\Gamma} \frac{\sin 2z}{2z^2(z-4)^2} dz = 2\pi i \left(\frac{1}{16} + \frac{\cos 8}{16} - \frac{\sin 8}{64} \right) \Rightarrow$$

$$\Rightarrow I = \pi i \left(\frac{1}{8} + \frac{\cos 8}{8} - \frac{\sin 8}{32} \right) \Rightarrow$$

$$\Rightarrow I = i \frac{\pi}{32} \left(4 + 4 \cos 8 - \sin 8 \right).$$

Ответ: $I = i \frac{\pi}{32} (4 + 4 \cos 8 - \sin 8).$

Задача 8. Найти несобственный интеграл $\int\limits_a^b f(x)\,dx$ с помощью вычетов.

N	f(x)	a	b	N	f(x)	a	b
1	$\frac{x^2}{(x^2+1)(x^2+9)}$	0	$+\infty$	2	$\frac{(x-3)e^{ix}}{x^2 - 6x + 45}$	$-\infty$	$+\infty$
3	$\frac{e^{ix}}{x^2 - 2ix - 2}$	$-\infty$	$+\infty$	4	$\frac{(x+1)\cos 3x}{x^2+4x+104}$	$-\infty$	$+\infty$
5	$\frac{(x+1)\sin 2x}{x^2 + 2x + 2}$	$-\infty$	$+\infty$	6	$\frac{x^2 - x + 2}{x^4 + 10x^2 + 9}$	$-\infty$	$+\infty$
7	$\frac{(x-1)\cos x}{x^2 - 4x + 5}$	$-\infty$	$+\infty$	8	$\frac{x^2 + 2}{x^4 - 2ix(x^2 + 1) - 1}$	$-\infty$	$+\infty$
9	$\frac{x^2+1}{x^4+1}$	0	$+\infty$	10	$\frac{x^3 \sin x}{x^4 + 5x^2 + 4}$	$-\infty$	$+\infty$
11	$\frac{1}{x^4 - (4ix + 5)^2}$				$\frac{x\sin x}{x^2 + 2x + 10}$	$-\infty$	$+\infty$
13	$\frac{1}{(x^2+1)^3}$	0	$+\infty$	14	$\frac{x^2 + 2}{(x^2 - 2ix - 5)(x^2 + 4)}$	$-\infty$	$\left +\infty \right $
15	$\frac{x\cos x}{x^2 - 2x + 10}$	$-\infty$	$+\infty$	6	$\frac{x^2}{(x^2+4)^3}$	0	$+\infty$
17	$\frac{(x^3 + 5x)\sin x}{x^4 + 10x^2 + 9}$	$-\infty$	$+\infty$	18	$\frac{x+5}{(x^2-4ix-13)^3}$	$-\infty$	$+\infty$
19	$\frac{e^{ix}}{(x^2+4ix-5)^3}$	$-\infty$	$+\infty$	20	$\frac{x^2}{x^4 - 4ix(x^2 + 4) - 16}$	$-\infty$	$+\infty$
21	$\frac{x\sin x}{x^2 + 9}$			22	$r^- + 4$		$\left +\infty \right $
23	$\frac{x^4+1}{x^6+1}$	$-\infty$	$+\infty$	24	$\frac{x\sin x}{(x^2+1)^2}$	0	$\left +\infty \right $
25	$\frac{x^2}{x^4 - (2ix + 3)^2}$	$-\infty$	$+\infty$	26	$\frac{(x-1)e^{ix}}{x^2 - 2x + 2}$	$-\infty$	$\left +\infty \right $
27	$\frac{2x^2 + 13x}{x^4 + 13x^2 + 36}$	$-\infty$	$+\infty$	28	$\frac{(x-3)e^{ix}}{x^2 - 6x + 409}$	$-\infty$	$\left +\infty \right $
29	$\frac{\cos x}{(x^2+1)^3}$	0	$+\infty$	30	$\frac{x \sin x}{(x^2+1)^2}$ $\frac{(x-1)e^{ix}}{x^2-2x+2}$ $\frac{(x-3)e^{ix}}{x^2-6x+409}$ $\frac{(x^3-2)\cos(x/2)}{(x^2+2)(x^2+9)}$	$-\infty$	$+\infty$

Задача 9. Используя теорему Руше, найти число нулей функции F(z) в области D (каждый нуль считается столько раз, какова его кратность).

N	F(z)	D
1	$z^5 - 5z^2 + 2z + 1$	1 < z < 2
2	$z^6 - 7z^5 + 3z^3 - z - 1$	1 < z < 2
3	$z^4 - 5z^3 - z^2 - 1$	1/2 < z < 1
4	$2z^5 - 3z^3 + 2z^2 - 5$	1/2 < z < 2
5	$3z^4 + 2z^3 - z^2 - z + 3$	1/2 < z < 2
6	$2z^3 - 7z^2 + 3z + 1$	1 < z < 4
7	$2z^5 - 8z^4 + z^3 + 2z^2 + z - 1$	1 < z < 2
8	$z^5 - 4z^3 - 10z^2 + 3$	1 < z < 3
9	$3z^6 - 4z^4 + 5z^2 - 15z - 1$	1 < z < 2
10	$2z^4 + 4z^3 - 17z^2 + 3z - 7$	1 < z < 5
11	$5z^5 + 4z^4 - 3z^3 - 2z^2 - 17$	1 < z < 2
12	$z^8 - 3z^5 + 2z^2 - 12z - 3$	1 < z < 2
13	$5z^4 + 2z^3 - 13z^2 + 4z + 1$	1 < z < 2
14	$2z^4 + 3z^3 - z^2 + 11z - 1$	1/2 < z < 3
15	$2z^5 - 5z^4 + 5z - 1$	2 < z < 3
16	$z^6 - 10z^3 + 2z^2 + 3z - 1$	2 < z < 3
17	$z^7 - 5z^5 + 2z^4 + 1$	1 < z < 3
18	$3z^7 + z^6 - 9z^4 + 2z^2 - 2$	1 < z < 2
19	$10z^4 - z^3 + 4z^2 - z - 3$	1/2 < z < 1
20	$2z^3 - 3z^2 - 7z - 1$	1 < z < 3
21	$z^5 + 2z^4 - z^3 - 3z^2 + 13z - 5$	1 < z < 4
22	$z^5 - 2z^2 + 5z + 1$	1 < z < 2
23	$z^4 - 6z^3 + z^2 - 10z + 1$	1 < z < 2
24	$z^3 - 17z^2 + 25z - 5$	1 < z < 2
25	$4z^3 + 10z^2 - 3z + 1$	2 < z < 3
26	$3z^3 + 9z^2 - 5z - 1$	2 < z < 4
27	$2z^4 - z^3 + 6z^2 - z - 1$	1/4 < z < 1
28	$z^6 - 5z^3 + z^2 + 1$	1/2 < z < 1
29	$z^3 - 2z - 5$	1 < z < 3
30	$z^8 + 5z^7 - z^4 + 2$	4 < z < 6

Задача 10. В вариантах 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28 с помощью вычетов найти оригинал f(t) изображения F(p). Сделать проверку (найти изображение функции f(t), используя таблицу стандартных изображений и свойства преобразования Лапласа, и убедиться, что оно равно F(p)).

В вариантах 2, 6, 10, 15, 18, 22, 26, 29 с помощью вычетов найти косинус-преобразование Фурье $F_c(\omega)$ функции f(x). Представить функцию f(x) интегралом Фурье.

В вариантах 3, 7, 11, 14, 19, 23, 27, 30 с помощью вычетов найти синуспреобразование Фурье $F_s(\omega)$ функции f(x). Представить функцию f(x) интегралом Фурье.

N	F(p)	N	f(x)	N	f(x)	N	F(p)
1	$\frac{p}{p^3+1}$	2	$\frac{1}{(1+x^2)^3}$	3	$\frac{x^3}{1+x^6}$	4	$\frac{p}{p^2 - 2p + 5}$
5	$\frac{p}{(p^2+4)^2}$	6	$\frac{1}{(1+x^2)^2}$	7	$\frac{x}{(1+x^2)^2}$	8	$\frac{1}{p^3 + 2p^2 + p}$
9	$\frac{1}{(p^3-8)^2}$	10	$\frac{x^2}{(1+x^2)^2}$	11	$\frac{x}{(1+x^2)(9+x^2)}$	12	$\left \frac{p}{(p-1)^3(p+2)^2} \right $
13	$\frac{p}{p^4-1}$	14	$\frac{x^3}{(1+x^2)^3}$	15	$\frac{1}{(1+x^2)(4+x^2)}$	16	$ \frac{p-1}{(p^2+1)(p+1)} $
17	$\frac{p}{p^4+1}$	18	$\frac{1}{1+x^4}$	19	$\frac{x}{1+x^4}$	20	$\frac{p-3}{(p^2+2p+5)}$
21	$\frac{1}{(p+1)^3}$	22	$\frac{x^2}{1+x^4}$	23	$\frac{x^3}{1+x^4}$	24	$\frac{4-p-p^2}{p^3-p^2}$
25	$\frac{p^2}{p^6-1}$	26	$\frac{x^2}{1+x^6}$	27	$\frac{x}{1+x^6}$		
28	$\frac{1}{p(p-1)^3}$	29	$\frac{1}{1+x^2}$	30	$\frac{x}{1+x^2}$		

Задача 11. Найти интеграл, используя свойства гамма- и бета-функций.

N	Интеграл	N	Интеграл
1	$\int\limits_{0}^{+\infty} \frac{x^7}{(x^3+1)^3} dx$	2	$\int_{0}^{\pi/2} \cos^{10} x dx$
3	$\int_{-2}^{2} x^2 \sqrt[4]{16 - x^4} dx$	4	$\int_{-\infty}^{+\infty} x^4 e^{-2x^2} dx$
5	$\int_{0}^{1} \frac{dx}{\sqrt[6]{1-x^6}}$	6	$\int_{1}^{+\infty} \frac{\ln^3 x}{x^6} dx$
7	$\int_{0}^{+\infty} \frac{\sqrt[4]{x}}{(x+3)^2} dx$	8	$\int_{0}^{\pi/6} \sqrt{\operatorname{tg} 3x} dx$
9	$\int_{0}^{1} \sqrt[6]{x(1-x)^5} dx$	10	$\int_{0}^{+\infty} \sqrt{x} e^{-x^3} dx$
11	$\int_{0}^{2} \sqrt[3]{\frac{x}{2-x}} dx$	12	$\int_{0}^{2} \frac{\ln^{3}(x/2)}{\sqrt{x}} dx$
13	$\int_{-\infty}^{+\infty} \frac{x^6}{(x^6+1)^2} dx$	14	$\int_{-\pi/2}^{\pi/2} \sqrt[3]{\frac{\sin^8 x}{\cos^2 x}} dx$
15	$\int_{0}^{4} x \sqrt[3]{64 - x^{3}} dx$	16	$\int\limits_{0}^{+\infty}x^{8}e^{-2x}dx$
17	$\int_{-1}^{1} \frac{dx}{\sqrt[4]{1-x^4}}$ $+\infty$ $\int_{-1}^{+\infty} \sqrt[3]{x}$	18	$\int_{1}^{+\infty} \sqrt{\frac{\ln x}{x^3}} dx$
19	$\int_{0}^{+\infty} \frac{\sqrt[3]{x}}{(x+4)^3} dx$	20	$\int_{-2\pi}^{2\pi} \sin^{12}\frac{x}{4} dx$
21	$\int_{0}^{1} \sqrt[4]{x^3 \left(1 - x\right)} dx$	22	$\int_{0}^{+\infty} \sqrt{x^3} e^{-x^5} dx$

23	$\int_{0}^{5} \sqrt[6]{\frac{x}{5-x}} dx$	24	$\int_{0}^{1/5} \sqrt{-\frac{x}{\ln 5x}} dx$
25	$\int\limits_{0}^{+\infty} \frac{x^8}{(x^4+1)^3} dx$	26	$\int_{0}^{\pi/2} \sqrt[3]{\cot x} dx$
27	$\int_{-\sqrt{5}}^{\sqrt{5}} x^4 \sqrt{125 - x^6} dx$	28	$\int_{-\infty}^{+\infty} x^4 e^{-2x^2} dx$
29	$\int_{0}^{1} \frac{dx}{\sqrt[3]{1-x^3}} dx$	30	$\int_{1}^{+\infty} \left(\frac{\ln x}{x}\right)^{3} dx$
31	$\int_{-\infty}^{+\infty} \frac{x^{10}}{(x^6+8)^3} dx$	32	$\int_{0}^{\pi} \sqrt{\sin^3 x \cos^2 \frac{x}{2}} dx$

Основные формулы:

$$\Gamma(a) = \int_{0}^{+\infty} x^{a-1} e^{-x} dx \quad (a > 0); \tag{1}$$

$$\Gamma(a+1) = a \Gamma(a) \quad (a>0); \tag{2}$$

$$\Gamma(1) = 1, \quad \Gamma(2) = 1, \quad \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi};$$
(3)

$$\Gamma(n) = (n-1)! \quad (n \in \mathbb{N}); \tag{4}$$

$$\Gamma(a)\Gamma(1-a) = \frac{\pi}{\sin \pi a} \quad (0 < a < 1); \tag{5}$$

$$B(a, b) = \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx \quad (a > 0, b > 0);$$
 (6)

$$B(a, b) = \int_{0}^{+\infty} \frac{x^{a-1}}{(x+1)^{a+b}} dx \quad (a > 0, b > 0);$$
 (7)

$$B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \quad (a > 0, b > 0).$$
(8)

Решение варианта 31.
$$I = \int_{-\infty}^{+\infty} \frac{x^{10}}{(x^6+8)^3} dx$$
.

Поскольку подынтегральная функция является четной, то

$$I = 2 \int_{0}^{+\infty} \frac{x^{10}}{(x^6 + 8)^3} dx.$$

Сделаем замену переменной $t=\frac{x^6}{8}$. Тогда $x=\sqrt[6]{8t}=\sqrt{2}\cdot t^{1/6},$ $dx=\sqrt{2}\cdot\frac{1}{6}\cdot t^{-5/6}\,dt.$

Имеем:

$$I = 2 \int_{0}^{+\infty} \frac{2^{5} \cdot t^{5/3}}{(8t+8)^{3}} \cdot \sqrt{2} \cdot \frac{1}{6} \cdot t^{-5/6} dt = \frac{1}{24\sqrt{2}} \int_{0}^{+\infty} \frac{t^{5/6}}{(t+1)^{3}} dt = \frac{1}{24\sqrt{2}} \cdot B\left(\frac{11}{6}, \frac{7}{6}\right).$$

Поскольку

$$B\left(\frac{11}{6}, \frac{7}{6}\right) = \frac{\Gamma\left(\frac{11}{6}\right)\Gamma\left(\frac{7}{6}\right)}{\Gamma(3)} = \frac{\frac{5}{6} \cdot \Gamma\left(\frac{5}{6}\right) \cdot \frac{1}{6} \cdot \Gamma\left(\frac{1}{6}\right)}{2} =$$
$$= \frac{5}{72} \cdot \Gamma\left(\frac{5}{6}\right)\Gamma\left(\frac{1}{6}\right) = \frac{5}{72} \cdot \frac{\pi}{\sin(\pi/6)} = \frac{5\pi}{36},$$

то окончательно получаем, что $I = \frac{1}{24\sqrt{2}} \cdot \frac{5\pi}{36} = \frac{5\pi}{864\sqrt{2}}$.

Ответ: $I = \frac{5\pi}{864\sqrt{2}}$.

Решение варианта 32.
$$I = \int_{0}^{\pi} \sqrt{\sin^{3} x \cos^{2} \frac{x}{2}} dx$$
.

Преобразуем интеграл следующим образом:

$$I = \int_{0}^{\pi} \sqrt{\sin^{3} x \cos^{2} \frac{x}{2}} dx = \int_{0}^{\pi} \sqrt{\left(2 \sin \frac{x}{2} \cos \frac{x}{2}\right)^{3} \cos^{2} \frac{x}{2}} dx =$$

$$= 4\sqrt{2} \int_{0}^{\pi} \sqrt{\sin^{3} \frac{x}{2} \cos^{5} \frac{x}{2}} d\left(\frac{x}{2}\right) = \left[t = \frac{x}{2}\right] = 4\sqrt{2} \int_{0}^{\pi/2} \sqrt{\sin^{3} t \cos^{5} t} dt.$$

Сделаем замену переменной $u=\sin^2 t$. Тогда $t=\arcsin \sqrt{u},\ dt=\frac{du}{\sqrt{1-u}\cdot 2\sqrt{u}}.$

Имеем:

$$I = 4\sqrt{2} \int_{0}^{1} u^{3/4} (1-u)^{5/4} \cdot \frac{du}{\sqrt{1-u} \cdot 2\sqrt{u}} =$$

$$= 2\sqrt{2} \int_{0}^{1} u^{1/4} (1-u)^{3/4} du = 2\sqrt{2} \cdot B\left(\frac{5}{4}, \frac{7}{4}\right).$$

Поскольку

$$B\left(\frac{5}{4}, \frac{7}{4}\right) = \frac{\Gamma\left(\frac{5}{4}\right)\Gamma\left(\frac{7}{4}\right)}{\Gamma(3)} = \frac{\frac{1}{4} \cdot \Gamma\left(\frac{1}{4}\right) \cdot \frac{3}{4} \cdot \Gamma\left(\frac{3}{4}\right)}{2} =$$
$$= \frac{3}{32} \cdot \Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right) = \frac{3}{32} \cdot \frac{\pi}{\sin(\pi/4)} = \frac{3\pi}{16\sqrt{2}},$$

то окончательно получаем, что $I = 2\sqrt{2} \cdot \frac{3\pi}{16\sqrt{2}} = \frac{3\pi}{8}$.

Ответ: $I = \frac{3\pi}{8}$.

ВОПРОСЫ К ЭКЗАМЕНУ

- 1. Комплексные числа и действия над ними. Тригонометрическая и показательная форма комплексного числа. Корни *n*-й степени из комплексного числа.
- 2. Определение регулярной (аналитической) функции комплексного переменного. Условия Коши Римана.
- 3. Линейная функция комплексного переменного. Ее регулярность (аналитичность). Отображение, которое она осуществляет.
- 4. Степенная функция комплексного переменного. Ее регулярность (аналитичность). Область однолистности. Отображение, которое она осуществляет.
- 5. Показательная функция комплексного переменного. Ее регулярность (аналитичность). Период. Область однолистности. Отображение, которое она осуществляет.
- 6. Тригонометрические и гиперболические функции комплексного переменного. Их регулярность (аналитичность). Периоды.
- 7. Логарифм комплексного переменного. Регулярность (аналитичность). Многозначность отображения, которое он осуществляет.
- 8. Общая степенная функция комплексного переменного. Регулярность (аналитичность). Многозначность отображения, которое она осуществляет.
- 9. Гармонические функции. Их связь с регулярными функциями комплексного переменного.
- 10. Геометрический смысл модуля и аргумента производной регулярной (аналитической) функции. Понятие конформного отображения.
- 11. Определение интеграла от функции комплексного переменного, его связь с криволинейными интегралами. Основные свойства.
- 12. Интеграл от регулярной (аналитической) функции, его независимость от пути интегрирования. Формула Ньютона Лейбница.
- 13. Интегральная теорема Коши для односвязной и многосвязной областей.
 - 14. Интегральная формула Коши для регулярной (аналитической)

функции.

- 15. Бесконечная дифференцируемость аналитических функций. Интегральная формула Коши для производных регулярной (аналитической) функции.
- 16. Разложение регулярной (аналитической) функции в ряд Тейлора. Область сходимости. Формулы для коэффициентов.
- 17. Разложение функции, аналитической в кольце, в ряд Лорана. Формулы для коэффициентов.
- 18. Изолированные особые точки регулярной (аналитической) функции и их классификация. Примеры.
- 19. Устранимая особая точка. Ряд Лорана и поведение функции в окрестности этой точки.
- 20. Полюс n-го порядка. Ряд Лорана и поведение функции в окрестности этой точки.
- 21. Существенно особая точка. Ряд Лорана и поведение функции в окрестности этой точки.
- 22. Нули аналитической функции. Порядок нуля. Связь между нулем и полюсом.
- 23. Вычет аналитической функции в точке. Его связь с рядом Лорана. Основная теорема о вычетах.
 - 24. Формулы для вычисления вычетов в простом и кратном полюсе.
- 25. Стереографическая проекция. Бесконечно удаленная точка. Ряд Лорана в окрестности бесконечности. Классификация особенностей в бесконечности.
- 26. Вычет в бесконечно удаленной точке. Его связь с рядом Лорана. Вторая теорема о вычетах.
- 27. Приложение теории вычетов к вычислению интегралов по вещественной прямой от рациональных функций.
 - 28. Лемма Жордана. Вычисление несобственных интегралов вида $\int\limits_{-\infty}^{+\infty}e^{i\alpha x}f(x)\,dx.$
- 29. Логарифмический вычет. Связь числа нулей и полюсов функции внутри замкнутого контура с интегралом по этому контуру.
 - 30. Принцип аргумента. Теорема Руше.

- 31. Интегралы, зависящие от параметра. Непрерывность по параметру.
- 32. Интегралы, зависящие от параметра. Интегрирование и дифференцирование по параметру.
- 33. Несобственные интегралы, зависящие от параметра. Определение равномерной сходимости. Признаки равномерной сходимости.
- 34. Равномерная непрерывность несобственного интеграла по параметру. Примеры.
- 35. Интегрирование несобственного интеграла по параметру. Примеры.
- 36. Дифференцирование несобственного интеграла по параметру. Примеры.
- 37. Гамма-функция и ее свойства: формула понижения, связь с факториалом, формула дополнения.
- 38. Аналитическое продолжение гамма-функции в комплексной плоскости. Ее значения на отрицательной полуоси. Свойства $\Gamma(z)$.
- 39. Бета-функция. Ее связь с гамма-функцией. Применение к вычислению интегралов. Пример.
 - 40. Определение преобразования Лапласа. Его аналитичность.
- 41. Определение преобразования Лапласа. Его обращения с помощью вычетов.
 - 42. Степенные ряды. Теорема Абеля.
- 43. Радиус и круг сходимости степенного ряда. Вычисление радиуса сходимости.
- 44. Свойства степенных рядов. Сформулировать условия непрерывности, дифференцируемости, интегрируемости степенного ряда в заданной области.
 - 45. Преобразование Фурье и его свойства.
- 46. Тригонометрические ряды Фурье: вещественная и комплексная формы записи, ряды Фурье для четных и нечетных функций, разложение функций на полупериоде в ряды по синусам и по косинусам.
- 47. Тригонометрические ряды Фурье: признаки сходимости и равномерной сходимости, теорема единственности.
 - 48. Свойства коэффициентов ряда Фурье.