Postulates and Theorems

Postulates and Theorems of Boolean Algebra

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 =$	x
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' =$	0
Theorem 1	(a)	x + x = x	(b)	$x \cdot x =$	x
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 =$	0
Theorem 3, involution		(x')' = x			
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy =	yx
Theorem 4, associative	(a) x	+ (y + z) = (x + y)	(b)	x(yz) =	172
Postulate 4, distributive	(a)	x(y+z) = xy + xz	(b)	x + yz =	(x+y)(x+z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)		x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x + y) =	x
		10			

Your Turn

$$A + A\overline{B} = ?$$

• Solution = A

$$(A+B) \cdot (A+C) = ?$$

Solution = A + BC

Solution = A+B

Today's Lecture Outline

- Boolean Function
- Gate Implementation
- Minimization of function
 - Algebraic Manipulations
- Complement of a Boolean function

Boolean Function

Boolean algebra is an algebra that deals with the binary variables and logic operations

A boolean Function described by an expression. For given value of binary variables the Boolean Function can be 1 or 0

Function as a Gate Implementation

• A Boolean function can be transformed from an algebraic expression into circuit diagram composed of logic gates.

$$-F_1 = x + y'z$$

-The logic-circuit diagram for this function is shown below:

Gate Implementation (Examples)

А	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Gate Implementation (Examples)

A	В	F
0	0	1
0	1	0
1	0	0
1	1	0

Minimization

- Functions in algebraic form can be represented in various ways.
 - -Remember the postulates and theorems that allows us to represent a function in various ways.
- We must keep in mind that the algebraic expression is representative of the gates and circuitry used in a hardware piece.
 - -We want to be able to minimize circuit design to reduce cost, power consumption, and package count, and to increase speed.
- By manipulating a function using the postulates and theorems, we may be able to minimize an expression.

Minimization of the F₂

The following is an example of a non-minimized function:

$$F_2 = x'y'z + x'yz + xy'$$

Minimization of the F₂

The function can be minimized as follows:

$$x'y'z + x'yz + xy' =$$

= $x'z \cdot (y' + y) + xy'$ by postulate: 4(a)
= $x'z \cdot 1 + xy'$ 5(a)
= $x'z + xy'$ 2(b)

Implementation of Boolean Function

Algebraic Manipulation

 By reducing the number of terms, the number of literals (single variable) or both in a Boolean function, it is possible to obtain a simpler circuit, as each term requires a gate and each variable within the term designates an input to the gate

 $F_1 = x'y'z + x'yz + xy'$ contains 3 terms and 8 literals $F_2 = x'z + xy'$ contains 2 terms and 4 literals.

Example Manipulations

The following are some example manipulations:

•
$$x(x' + y) = ?$$

 $x(x' + y) = xx' + xy = 0 + xy = xy$

•
$$x + x'y = ?$$

 $x + x'y = (x + x')(x + y) = 1(x + y) = x + y$

•
$$(x + y)(x + y') = ?$$

 $(x + y)(x + y') = x + xy + xy' + yy' = x(1 + y + y') = x$

•
$$xy + x'z + yz = ?$$

= $xy + x'z + yz(x + x')$
= $xy + x'z + xyz + x'yz$
= $xy(1 + z) + x'z(1 + y)$
= $xy + x'z$ Consensus Theorem

The End