Partie II°- Etude mécanique du dégrilleur :

Etude dynamique du dégrilleur :

Dimensionnement du vérin 8

Question 2-1: Déterminer l'expression de la projection sur \vec{z}_{10} du moment dynamique en O_1 de l'ensemble $S = \{4,5\}$ par rapport au châssis (10).

$$\vec{z}_{10}.\vec{\delta}(O_1, S/10) = \vec{z}_{10}.\vec{\delta}(O_1, 4/10) + \vec{z}_{10}.\vec{\delta}(O_1, 5/10)$$
$$\vec{z}_{10}.\vec{\delta}(O_1, S/10) = (I_4 + I_5 + m_5.(x_5^2 + y_5^2)).\vec{y}$$

Question 2-2 : Par application du théorème du moment dynamique, déterminer l'expression littérale de l'effort F que devra fournir le vérin (8) sur l'ensemble $S = \{4,5\}$ en fonction de F_P , des caractéristiques d'inertie, des paramètres géométriques, de l'angle (Ψ) et de ses dérivées.

On isole $\Sigma = 4.5$ on applique le TMD en O_1 en projection sur \vec{z}_{10} :

$$\vec{z}_{10}.\vec{M}\left(O_{1}, \vec{S} \to S\right) = \vec{z}_{10}.\vec{\delta}\left(O_{1}, S/10\right)$$

$$\vec{z}_{10}.\vec{M}\left(O_{1}, \vec{S} \to S\right)$$

$$= \vec{z}_{10}.\vec{M}\left(O_{1}, 10 \to 4\right) + \vec{z}_{10}.\vec{M}\left(O_{1}, 8 \to 4\right) + \vec{z}_{10}.\vec{M}\left(O_{1}, pes \to 4\right) + \vec{z}_{10}.\vec{M}\left(O_{1}, pes \to 5\right) + \vec{z}_{10}.\vec{M}\left(O_{1}, eau \to 4\right)$$

$$\mu.F.sin(\psi - \delta) - y_{p}.F_{p} - (m_{4}.y_{4} + m_{5}.y_{5}).g.sin\psi + m_{5}.g.x_{5}.cos\psi = (I_{4} + I_{5} + m_{5}.(x_{5}^{2} + y_{5}^{2})).\dot{\psi}$$

$$F = \frac{1}{\mu.sin(\psi - \delta)} \left[y_p.F_p + (m_4.y_4 + m_5.y_5).g.sin\psi - m_5.g.x_5.cos\psi - (I_4 + I_5 + m_5.(x_5^2 + y_5^2)).\ddot{\psi} \right]$$

Question 2-3 : En exprimant la condition de non glissement en J, déterminer la relation entre ω_{12} , r et y, en déduire la relation entre ω_{12} et ω_m .

$$\vec{V}\left(J,12/0\right) = \vec{0} , \Rightarrow \vec{V}\left(O_{12},12/0\right) + \vec{\Omega}\left(12/0\right) \wedge \overrightarrow{O_{12}J} = \vec{0} \Rightarrow \quad \dot{y}.\vec{y}_4 + \omega_{12}.\vec{z}_{10} \wedge -r.\vec{x}_4 = \vec{0} \Rightarrow \quad \dot{y} = r.\omega_{12}$$
 Non glissement entre 9 et 3 $\quad \dot{y} = r.\omega_{12} = R.\omega_m \quad \Rightarrow \quad \frac{\omega_{12}}{\omega_m} = \frac{R}{r}$.

Question 2-4: Déterminer l'énergie cinétique de l'ensemble $\Sigma = \{9,3,5,d,11,12\}$ dans son mouvement par rapport au bras (4), en déduire $J_{\acute{eq}}$, le moment d'inertie équivalent ramené à l'axe moteur.

$$T(\Sigma/4) = T(9/4) + T(5/4) + T(3/4) + T(11/4) + T(12/4) + T(d/4)$$

$$T(9/4) = \frac{1}{2} I_9 . \omega_m^2 = T(11/4) ; T(d/4) = \frac{1}{2} . m_d . \dot{y}^2 = \frac{1}{2} . m_d . R^2 . \omega_m^2 ; T(5/4) = \frac{1}{2} . m_5 . \dot{y}^2 = \frac{1}{2} . m_5 . R^2 . \omega_m^2$$

$$T(12/4) = \frac{1}{2} . \left(m_{12} + \frac{I_{12}}{r^2} \right) . R^2 . \omega_m^2$$

$$T(\Sigma/4) = \frac{1}{2} . \left(m_{12} + \frac{I_{12}}{r^2} + m_5 + m_d \right) . R^2 + 2 . I \right) . \omega_m^2$$

$$I(\Sigma/4) = \frac{1}{2} . \left(m_{12} + \frac{I_{12}}{r^2} + m_5 + m_d \right) . R^2 + 2 . I$$

Question 2-5 : Par application du théorème de l'énergie cinétique à l'ensemble Σ dans son mouvement par rapport au bras (4) déterminer l'expression du couple moteur Cm en fonction de ω_m , $J_{\epsilon q}$, T_{6d} , m_E , g, R et ψ .

On isole
$$\Sigma = \{9,3,5,11,12,d\}$$
. On applique le T.E.C.
$$\frac{dT(\Sigma/0)}{dt} = Pext + P \text{ int}$$
$$P \text{ int} = 0$$

Eléments de correction

$$Pext = P(\overline{\Sigma} \to \Sigma/4)$$

$$= P(0 \to 9/4) + P(0 \to 11/4) + P(0 \to 12/4) + P(mot \to 9/4) + P(6 \to d/4) + P(pes \to \Sigma/4)$$

$$P(mot \rightarrow 9/4) = C_m.\omega_m$$
; $P(6 \rightarrow d/4) = T_{6d}.\dot{y}$

$$P(pes \rightarrow \Sigma/4) = -m_E.g.\dot{y}_{10}.\dot{y}.\dot{y}_4 = -m_E.g.\dot{y}.Cos\psi$$
 Équilibrage dynamique des solides en rotation est parfaitement réalisé

$$Pext = \left[C_m + \left(T_{6d} - m_E.g..Cos\psi \right).R \right].\omega_m$$

$$C_{m} = J_{\acute{e}q} \cdot \frac{d\omega_{m}}{dt} - (T_{6d} - m_{E}.g..Cos\psi).R$$

Question 2-6: Par application du théorème de la résultante dynamique à l'ensemble $E = \{5, d, 12\}$ en projection sur \vec{y}_4 , déterminer l'expression de N_{6d} l'action normale du contact des déchets avec la grille.

On isole $E = \{5,12,d\}$. On applique le T.R.D. en projection sur \vec{y}_4

$$\vec{y}_{4}.\vec{R}(\bar{E} \to E) = \vec{y}_{4}.m_{E}\vec{\Gamma}(G_{E}/4)$$

$$\vec{y}_{4}.\vec{R}(\bar{E} \to E) = \vec{y}_{4}.\vec{R}(4 \to 5) + \vec{y}_{4}.\vec{R}(3 \to 5) + \vec{y}_{4}.\vec{R}(6 \to d) + \vec{y}_{4}.\vec{R}(0 \to 12) + \vec{y}_{4}.\vec{R}(pes \to E)$$

$$T - f.N_{6d} - m_{E}.g.cos\psi = m_{E}.\ddot{y}$$

$$N_{6d} = \frac{1}{f}.(T - m_{E}.(\ddot{y} + g.cos\psi))$$

Partie III •- Etude du moteur hydraulique 15 :

Etude cinématique :

Question 3-3 : Etablir la relation entre α et θ puis montrer que

$$\rho = L \cdot \left(\cos \left(\theta_f - \theta \right) - \left(\frac{a^2}{L^2} - \sin^2 \left(\theta_f - \theta \right) \right)^{1/2} \right)$$

Fermeture géométrique

$$\overline{O_0B} = \overline{O_0G_2} + \overline{G_2B} \quad L.\vec{x}_f = \rho.\vec{x}_1 + a.\vec{x}_2$$

$$L.sin(\theta_f - \theta) = a.sin\alpha \; ; \qquad L.cos(\theta_f - \theta) = \rho + a.cos\alpha$$

$$L.cos(\theta_f - \theta) = \rho + a.\sqrt{1 - sin^2\alpha}$$

$$\rho = L.\left(cos(\theta_f - \theta) - \left(\frac{a^2}{L^2} - sin^2(\theta_f - \theta)\right)^{1/2}\right)$$

Question 3-4 : Par fermeture cinématique au point G_2 , déterminer la vitesse angulaire $\dot{\theta}$ en fonction de $\dot{\rho}$, ρ , θ , θ , L et a

$$\vec{V}(G_{2},2/0) = \vec{V}(G_{2},2/3) + \vec{V}(G_{2},3/1) + \vec{V}(G_{2},1/0) \qquad -R.(\dot{\theta} + \dot{\alpha}).\vec{y}_{2} = \dot{\rho}.\vec{x}_{1} + \rho.\dot{\theta}.\vec{y}_{1}$$

$$R.(\dot{\theta} + \dot{\alpha}).sin\alpha = \dot{\rho}$$

$$-R.(\dot{\theta} + \dot{\alpha}).cos\alpha = \rho.\dot{\theta} \qquad -tan\alpha = \frac{\dot{\rho}}{\rho.\dot{\theta}} \qquad ; \qquad \frac{\dot{\rho}}{\rho.\dot{\theta}} = -\frac{L.sin(\theta_{f} - \theta)}{L.cos(\theta_{f} - \theta) - \rho}$$

$$\dot{\theta} = -\dot{\rho}.\frac{L.cos(\theta_{f} - \theta) - \rho}{\rho.L.sin(\theta_{f} - \theta)}$$

Ouestion 3-6:

Ecrire les équations traduisant l'équilibre de 2 au point G_2 dans la base $(\vec{x}_1, \vec{y}_1, \vec{z}_1)$.

$$\left\{ T\left(0 \to 2\right) \right\} = \left\{ \begin{matrix} X_{02}.cos\alpha & 0 \\ X_{02}.sin\alpha & 0 \\ 0 & 0 \end{matrix} \right\}_{G_2;\vec{x}_1,\vec{y}_1,\vec{z}_1} \left\{ T\left(3 \to 2\right) \right\} = \left\{ \begin{matrix} X_{32} & 0 \\ Y_{32} & 0 \\ 0 & 0 \end{matrix} \right\}_{G_2;\vec{x}_1,\vec{y}_1,\vec{z}_2}$$

$$X_{02}.cos\alpha + X_{32} = 0$$

 $X_{02}.sin\alpha + Y_{32} = 0$

Ecrire les équations traduisant l'équilibre de 3 au point G_2 dans la base $(\vec{x}_1, \vec{y}_1, \vec{z}_1)$

$$\begin{aligned}
& \left\{ T\left(2 \to 3\right) \right\} = \begin{cases} -X_{32} & 0 \\ -Y_{32} & 0 \\ 0 & 0 \end{cases} \\
& \left\{ G_2; \vec{x}_1, \vec{y}_1, \vec{z}_1 \right\} \\
& \left\{ T\left(1 \to 3\right) \right\} = \begin{cases} 0 & 0 \\ Y_{13} & 0 \\ 0 & N_{31} \end{cases} \\
& \left\{ G_2; \vec{x}_1, \vec{y}_1, \vec{z}_1 \right\} \\
& \left\{ T\left(3 \to 2\right) \right\} = \begin{cases} F & 0 \\ 0 & 0 \\ 0 & 0 \end{cases} \\
& \left\{ G_2; \vec{x}_1, \vec{y}_1, \vec{z}_1 \right\} \\
& \left\{ G_3; \vec{x}_1, \vec{y}_1, \vec{z}_2 \right\} \\
& \left\{ G_3; \vec{x}_1, \vec{y}_2, \vec{z}_3 \right\} \\
& \left\{ G_3;$$

En déduire la relation entre l'action du fluide et l'action de la came sur le galet.

$$F = X_{32}$$
; $X_{32} = -X_{02}.cos\alpha = F$

Question 3-7 : Justifier la forme des matrices d'inertie $I(G_2,3)$ et $I(G_2,2)$.

$$I(G_2,2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & A_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\vec{X}_1,\vec{Y}_1,\vec{Z}_0} \qquad I(G_2,3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\vec{X}_1,\vec{Y}_1,\vec{Z}_0}$$

2 : solide de révolution d'axe G_2 , \vec{z}_0

3 : présente deux plans de symétrie perpendiculaires

Question 3-8: Déterminer l'énergie cinétique de l'ensemble $S = \{1, 2, 3\}$.

On considère l'ensemble $\Sigma = \{1,2,3\}$.

$$T(S/0) = T(1/0) + T(2/0) + T(3/0)$$

$$T(1/0) = \frac{1}{2} I_1 \dot{\theta}^2 \qquad (\dot{\theta} + \dot{\alpha})^2 = \frac{1}{R^2} . (\dot{\rho}^2 + \rho^2 . \dot{\theta}^2)$$

$$T(2/0) = \frac{1}{2}m_2.\vec{V}^2(G_2/0) + \frac{1}{2}.\vec{\Omega}(2/0).\vec{\sigma}(G_2,2/0) = \frac{1}{2}.(C_2 + m_2.R^2).(\dot{\theta} + \dot{\alpha})^2$$

$$T(3/0) = \frac{1}{2} m_3 \cdot \vec{V}(G_3/0) \cdot \vec{V}(G_2/0) + \frac{1}{2} \cdot \vec{\Omega}(3/0) \cdot \vec{\sigma}(G_2,3/0)$$

$$\vec{\Omega}(3/0) = \dot{\theta}.\vec{z}_{0}$$

$$\vec{\sigma}(G_{2},3/0) = m_{3}.\vec{G_{2}}\vec{G}_{3} \wedge \vec{V}(G_{2},3/0) + I_{G_{2}}(3)\vec{\Omega}(3/0)$$

$$= -m_{3}.l.\vec{x}_{1} \wedge (\dot{\rho}.\vec{x}_{1} + \rho.\dot{\theta}.\vec{y}_{1}) + C_{3}.\dot{\theta}.\vec{z}_{0} = (C_{3} - m_{3}.l.\rho).\dot{\theta}.\vec{z}_{0}$$

$$\vec{V}(G_3/0) = \dot{\rho}.\vec{x}_1 + (\rho - l).\dot{\theta}.\vec{y}_1 \,\vec{V}(G_2/0) = \dot{\rho}.\vec{x}_1 + \rho.\dot{\theta}.\vec{y}_1 \,\vec{V}(G_3/0).\vec{V}(G_2/0) = \dot{\rho}^2 + \rho.(\rho - l).\dot{\theta}^2$$

$$T(3/0) = \frac{1}{2} \left[m_3.\dot{\rho}^2 + \left(m_3.(\rho^2 - 2.\rho.l) + C_3 \right).\dot{\theta}^2 \right]$$

$$T(S/0) = \frac{1}{2} I_1 . \dot{\theta}^2 + \frac{1}{2} . (C_2 + m_2 . R^2) . (\dot{\theta} + \dot{\alpha})^2 + \frac{1}{2} \left[m_3 . \dot{\rho}^2 + (m_3 . (\rho^2 - 2 . \rho . l) + C_3) . \dot{\theta}^2 \right]$$

Question 3-9: Par application du théorème de l'énergie cinétique à l'ensemble S dans son mouvement par rapport à 0, déterminer la relation entre F, C, les paramètres cinématiques du moteur hydraulique et T(S/0) l'énergie cinétique de l'ensemble $S = \{1,2,3\}$.

$$p_{\text{int}} = F.\dot{\rho} ; \quad p_{\text{ext}} = C.\dot{\theta}$$

$$\frac{d}{dt}T(S/0) = F.\dot{\rho} + C.\dot{\theta}$$

IV-1°- Modélisation du moteur hydraulique :

Question 4 -1: En considérant les conditions initiales nulles, écrire les deux équations (1) et (2) dans le domaine de Laplace.

Equation hydraulique
$$Q(p) = D.\Omega_m(p) + \frac{v}{4R}.p.\Delta p(p)$$
 (1)

Equation mécanique
$$J_{\acute{e}q} \cdot p.\Omega_m(p) = D.\Delta P(p) - f.\Omega_m(p) - C_{re}(p)$$
 (2)

Question 4-2 : A partir de la question précédente et de la figure 6 ci-contre <u>tracer</u> le schéma bloc du moteur hydraulique.

Question 4-3: Déterminer la fonction de transfert du

moteur hydraulique $H_{m}(p) = \left[\frac{\theta_{m}(p)}{Q(p)}\right]_{Cre=0}$.

 $\frac{\Omega_m(p)}{Q(p)} = \frac{1/D}{1 + \frac{f.v}{4.B.D^2} \cdot p + \frac{J_{\acute{e}q}.v}{4.B.D^2} \cdot p^2}$

Identifier les paramètres canoniques $K_{\scriptscriptstyle m}$, z et $\omega_{\scriptscriptstyle n}$.

$$K_m = \frac{1}{D}, z = \frac{f}{4.D}.\sqrt{\frac{v}{J_{eq}.B}} \; ; \; \omega_n = \sqrt{\frac{4.B.D^2}{J_{eq}.v}}$$

IV-3°- Etude de la boucle d'asservissement en position du dégrilleur :

Question 4-9 : Déterminer la fonction de transfert en boucle ouverte $H_{BO}\left(p\right) = \frac{Z\left(p\right)}{\varepsilon\left(p\right)}$ et en déduire l'expression du

gain de boucle $K_{{\scriptscriptstyle BO}}$, de sa classe et de son ordre.

$$H_{BO}(p) = \frac{Z(p)}{\varepsilon(p)} = \frac{K_p.K_{sv}.K_c.K_m.r.R}{p.\left(1 + \frac{2.z}{\omega_n}.p + \frac{1}{\omega_n^2}.p^2\right)}, \quad K_{BO} = K_p.K_{sv}.K_c.K_m.r.R, \text{ ordre 3 classe 1}$$

Question 4-10: Déterminer la fonction de transfert en boucle fermée $H_{BF}\left(p\right) = \frac{Z\left(p\right)}{Zc\left(p\right)}$ en fonction de K_{BO} ,

z et ω_n

$$H_{BF}(p) = \frac{Z(p)}{Zc(p)} = \frac{H_{BO}(p)}{1 + H_{BO}(p)} = \frac{K_{BO}}{K_{BO} + p + \frac{2.z}{\omega_n} \cdot p^2 + \frac{1}{\omega_n^2} \cdot p^3}$$

$$H_{BF}(p) = \frac{1}{1 + \frac{1}{K_{BO}} \cdot p + \frac{1}{K_{BO}} \cdot \frac{2 \cdot z}{\omega_n} \cdot p^2 + \frac{1}{K_{BO}} \cdot \frac{1}{\omega_n^2} \cdot p^3}$$

Question 4-11: Donner l'expression de l'erreur statique \mathcal{E}_{S} $\left(zc(t) = Z_{0}.u(t)\right)$ et l'erreur de traînage \mathcal{E}_{tr} (zc(t) = a.t.u(t)). Les résultats peuvent être donnés sans calcul.

$$\Rightarrow \varepsilon_s = 0$$

La fonction $H_{BO}(p)$ est de classe 1 $\Rightarrow \varepsilon_{Tr} = \frac{a}{K_{RO}}$

$$\Rightarrow \varepsilon_{Tr} = \frac{a}{K_{RO}}$$

Question 4-12 : Déterminer, par application du critère de Routh, la condition que doit satisfaire Kp pour que le système soit stable. Soit $\mathit{Kp}_{\mathit{limite}}$ la valeur de Kp correspondante à la limite de stabilité.

Soit
$$D(p) = K_{BO} + p + \frac{2.z}{\omega_n} \cdot p^2 + \frac{1}{\omega_n^2} \cdot p^3$$
 le dénominateur de $H_{BF}(p)$

p^3	$1/\omega_n^2$	1
p^2	$2.z/\omega_n$	K_{BO}
$p^{\scriptscriptstyle 1}$	$\frac{\frac{2.z}{\omega_n} - \frac{K_{BO}}{\omega_n^2}}{\frac{2.z}{\omega_n}}$	0
$p^{\scriptscriptstyle 0}$	K_{BO}	0

Première condition
$$K_{BO} > 0$$

Deuxième condition
$$2.z.\omega_n - K_{BO} > 0$$

$$K_{BO} < 2.z.\omega_n \; ; \qquad K_{BO} = K_p.K_{SV}.K_c.K_m.r.R$$

$$0 < K_p < \frac{2.z.\omega_n}{K_{SV}.K_c.K_m.r.R}$$

$$0 < K_p < \frac{2.z.\omega_n}{K_{sv}.K_c.K_m.r.R}$$

$$Kp_{limite} = \frac{2.z.\omega_n}{K_{SV}.K_C.K_m.r.R}$$

Question 4-13: Déterminer la nouvelle valeur de Kp en fonction de Kp_{limite} pour avoir une marge de gain de 12dB.

Pour $Kp = Kp_{limite}$ le système est à la limite de stabilité, la marge de gain est nulle.

$$MG = -\|H_{BO}(j\omega)\|_{dB}$$
 avec $\varphi(\omega_C) = -180^{\circ}$

Pour avoir une marge de gain de 12dB alors $20LogKp = 20\log Kp_{limite} - 12$, $Kp = (10^{3/4}).Kp_{limite}$

IV-4°- Etude de la boucle d'asservissement en accélération du dégrilleur :

$$\varepsilon_{\gamma}(p) = \frac{\Gamma_{C}(p)}{1 + H_{\gamma_{-BO}}(p)} \qquad \varepsilon_{\gamma}(p) = \Gamma_{C}(p) \cdot \frac{1 + \frac{2\xi}{\omega_{0}} \cdot p + \frac{1}{\omega_{0}^{2}} \cdot p^{2}}{1 + \left(\frac{2\xi}{\omega_{0}} + K_{acc}\right) \cdot p + \frac{1}{\omega_{0}^{2}} \cdot p^{2}}$$

Question 4-15: Calculer l'erreur en régime permanent \mathcal{E}_{v} pour une entrée échelon $\gamma_{C}(t) = \gamma_{C} \mathcal{U}(t)$, en déduire γ_{0} la valeur en régime permanent de $\gamma(t)$. Conclure.

$$Pour \Gamma_{C}(p) = \frac{\gamma_{C}}{p}$$

$$\varepsilon_{\gamma} = \lim_{t \to +\infty} \varepsilon_{\gamma}(t) = \lim_{p \to 0} p.\varepsilon_{\gamma}(p) = \gamma_{C}$$

 $\mathcal{E}_{\gamma}=\gamma_{C}-\gamma_{0}\Longrightarrow\gamma_{0}=0$. Au bout d'un temps fini le système se déplacera avec une accélération $\gamma_{0}=0$ même en présence d'une consigne d'accélération $\gamma_C \neq 0$.

Page 5 Eléments de correction

Correction proportionnelle intégrale :

Question 4-16 : La fonction de transfert en boucle ouverte $H_{rBO}(p)$

$$H_{\gamma_{-BO}}(p) = \frac{K.K_{acc}.(1+T_i.p)}{1+\frac{2\xi}{\omega_0}.p+\frac{1}{\omega_0^2}.p^2}$$
; $K_O = K.K_{acc}$ Classe 0; ordre 2

En déduire l'erreur en régime permanent ε_{γ} pour une entrée échelon $\gamma_{C}(t) = \gamma_{C}.u(t)$. En déduire γ_{0} la valeur en régime permanent de $\gamma(t)$. Déterminer la valeur de K pour que l'accélération en régime permanent soit réglée à 75%

$$\begin{split} de \, \gamma_{\text{max}} \, . \qquad & H_{\gamma_-BO} \left(\, p \, \right) \text{est de classe 0 alors} \, \, \mathcal{E}_{\gamma} = \frac{\gamma_C}{1 + K_O} \, \, ; \\ \mathcal{E}_{\gamma} = \gamma_C - \gamma_0 \Longrightarrow \gamma_0 = \gamma_C - \mathcal{E}_{\gamma} = \gamma_C - \frac{\gamma_C}{1 + K_O} = \gamma_C . \\ \frac{1}{1 + K_O} = 0,75. \gamma_{\text{max}} \end{split} \qquad \qquad \gamma_C . \frac{1}{1 + K_O} = 0 \, \gamma_{\text{th}} \\ K_O = K. K_{acc} = \frac{\gamma_C}{0,75. \gamma_{\text{max}}} - 1 \, \left[K = \frac{1}{K_{acc}} . \left(\frac{\gamma_C}{0,75. \gamma_{\text{max}}} - 1 \right) \right] \end{split}$$

Question 4-17 : Déterminer la fonction de transfert en boucle fermée en fonction de $K.K_{acc}$, ξ et ω_0 .

$$\begin{split} H_{\gamma_BF}\left(p\right) &= \frac{\frac{K_O.\left(1 + T_i.p\right)}{1 + \frac{2\xi}{\omega_0}.p + \frac{1}{\omega_0^2}.p^2}}{1 + \frac{K_O.\left(1 + T_i.p\right)}{1 + \frac{2\xi}{\omega_0}.p + \frac{1}{\omega_0^2}.p^2}} = \frac{K_O.\left(1 + T_i.p\right)}{1 + \frac{2\xi}{\omega_0}.p + \frac{1}{\omega_0^2}.p^2 + K_O.\left(1 + T_i.p\right)} \\ &= \frac{K_O.\left(1 + T_i.p\right)}{1 + K_O + \frac{2\xi}{\omega_0}.p + \frac{1}{\omega_0^2}.p^2 + K_O.T_i.p}} = \frac{K_O}{1 + K_O}.\frac{\left(1 + T_i.p\right)}{1 + K_O}.\frac{\left(1 + T_i.p\right)}{1 + K_O}.p + \frac{1}{1 + K_O}.\frac{1}{\omega_0^2}.p^2} \end{split}$$

Question 1-3:

Compléter la table de vérité

secteur	$e_{_{\! 1}}$	e_{2}	$e_{_3}$	$e_{_{\!\!4}}$	S ₁	S_2	S_3	S_4
0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	1
2	1	0	0	1	0	0	1	1
3	1	0	1	1	0	0	1	0
4	1	0	1	0	0	1	1	0
5	1	1	1	0	0	1	1	1
6	0	1	1	0	0	1	0	1
7	0	0	1	0	0	1	0	0
8	0	0	1	1	1	1	0	0
9	0	0	0	1	1	1	0	1

Compléter les tableaux de Karnaugh ci-contre des sorties S_3 et S_4 .

Donner les équations simplifiées des sorties S_3 et S_4 .

$$S_3 = e_1.e_4 + e_1.e_3$$

$$S_4 = e_2 + e_1 \cdot \overline{e_3} + \overline{e_3} \cdot e_4$$

Document réponse DR2

Tableau de Karnaugh de S3

e ₃ e ₄ e ₂	00	01	11	10
00	0	φ	φ	0
01	0	φ	φ	1
11	0	ϕ	ϕ	1
10	0	0	1	1

Tableau de Karnaugh de S_A

e ₃ e ₄ e ₂	00	01	11	10
00	0	ϕ	φ	1
0 1	1	φ	φ	1
11	0	φ	φ	0
10	0	1	1	0

Question 3-1 et Question 3-2 : Déterminer <u>graphiquement</u> la vitesse de translation du piston(3) par rapport bloc-cylindres(1) correspondante à cette vitesse.

Justifications des tracés $\vec{V}(G_2, 2/0) = \vec{V}(I, 2/0) + \vec{\Omega}(2/0) \wedge \overrightarrow{IG_2} = \vec{\Omega}(2/0) \wedge \overrightarrow{IG_2}$ $\vec{V}(G_2, 2/0)$ Normale à $\overrightarrow{IG_2}$

Question 3-2:
$$\vec{V}(G_2, 1/0) = \vec{V}(O_0, 1/0) + \vec{\Omega}(1/0) \wedge \overrightarrow{O_0G_2} = \rho.\omega_{1/0}.\vec{y}_1 = 6(m/s).\vec{y}_1$$

 $\vec{V}(G_2, 2/0) = \vec{V}(G_2, 2/3) + \vec{V}(G_2, 3/1) + \vec{V}(G_2, 1/0)$

$$\vec{V}(G_2, 3/1)$$
 Suivant $\vec{x}_1 \qquad \vec{V}(G_2, 2/3) = \vec{0}$

Identification des fonctions de transfert la chaîne fonctionnelle :

Identification de la fonction de transfert du moteur hydraulique :

La fonction de transfert du moteur hydraulique :

La fonction de transfert du moteur est notée
$$M(p) = \frac{\Omega_m(p)}{Q(p)} = \frac{K_m}{1 + \frac{2.z}{\omega_n} \cdot p + \frac{1}{\omega_n^2} \cdot p^2}$$

On donne ci-contre la réponse indicielle du moteur pour un échelon unitaire de débit en m^3/s .

Question 4-4: Déterminer, en démarche. précisant votre paramètres canoniques K_m , z, ω_n ainsi que le temps de réponse à 5% du moteur.

Question 4-5: Déterminer la valeur de la pente à l'origine.

Question 4-4:

$$K_m = 80 (rad/s)/(m^3/s)$$

 $D_1 = 9; D = 9/80 = 0.1125$

$$D = e^{\frac{-\pi . z}{\sqrt{1 - z^2}}} = 0.1125$$
 .Ce qui permet de déterminer z .

$$t_1 = 1,25(s) \ avec \ t_1 = \frac{\pi}{\omega_n . \sqrt{1-z^2}} \ . \ \ Ce \ \ qui$$

permet de déterminer ω_n

Ou à partir de
$$T_0 = \frac{2.\pi}{\omega_n \sqrt{1-z^2}}$$

Question 4-5 : *pente nulle à l'origine*

Identification de la fonction de transfert de la servovalve :

On donne ci-contre la réponse indicielle de la servovalve pour un échelon de tension d'amplitude $U_0 = 12 (V)$.

On note $H_S(p) = \frac{Q(p)}{U(p)}$ la fonction de transfert

de la servovalve.

Question 4-6: Déterminer l'ordre et les paramètres canoniques de cette fonction, en déduire le temps de réponse à 5%.

$$H_S(p) = \frac{Ksv}{1 + Ts.p}$$

$$tr5\% = 9,9(s) = 3.Ts$$

$$Ts = 3,3(s)$$

$$Ksv.U_O = 18,2 \Rightarrow Ksv = \frac{18,2}{U_O} \approx 1,51((m^3/s)/V)$$

Identification de la fonction de transfert du capteur :

On donne ci-dessous les diagrammes de Bode de la fonction de transfert $H_C(p) = \frac{U_m(p)}{Z(p)}$ du capteur.

Question 4-7 : Déterminer l'ordre et les paramètres canoniques de cette fonction. Tracer les diagrammes asymptotiques sur la figure ci-dessous.

Détermination de la fonction de transfert du réducteur :

La réduction de la vitesse de rotation du moteur est assurée par un <u>réducteur épicycloïdal</u> dont le schéma cinématique est donné ci-dessous :

On donne:

 Z_1 : nombre de dents du pignon de l'arbre moteur A_m .

 Z_0 : nombre de dents de la couronne fixée au bâti.

 Z_{2a}, Z_{2b} : nombre de dents des pignons du satellite.

$$\frac{\theta_{\rm m}(t)}{{\rm R\'educteur}} \frac{\theta_{\rm r}(t)}{{\rm e}}$$

Rapport de réduction
$$r = \frac{\omega_r(t)}{\omega_m(t)} = \frac{\theta_r(t)}{\theta_m(t)}$$

Question 4-8 : Déterminer en fonction des nombres des dents le rapport de réduction :

$$r = \frac{\omega_{Ar}(t)}{\omega_{Am}(t)} = \frac{\omega_{r}(t)}{\omega_{m}(t)}$$

$$\frac{\omega_{s/ps}}{\omega_{e/ps}} = -\frac{Z_{1}}{Z_{2a}} \cdot \frac{Z_{2b}}{Z_{0}}$$

$$\frac{\omega_{0/Ar}}{\omega_{Am/Ar}} = -\frac{Z_{1}}{Z_{2a}} \cdot \frac{Z_{2b}}{Z_{0}} = -\frac{\omega_{Ar/0}}{\omega_{Am/0} - \omega_{Ar/0}}$$

$$\frac{\omega_{Am/0}}{\omega_{Ar/0}} = \frac{Z_{2a}}{Z_{1}} \cdot \frac{Z_{0}}{Z_{2b}} + 1$$

$$r = \frac{\omega_{Ar}}{\omega_{Am}} = \frac{Z_{1}Z_{2b}}{Z_{1}Z_{2b} + Z_{2a}Z_{0}}$$

Question 4-18 : Sur le document réponse DR5, tracer le diagramme <u>asymptotique</u> de Bode de la de transfert en <u>boucle fermée</u> $H_{\gamma_{-BF}}(p)$. $H_{\gamma_{-BF}}(p) = 2 \cdot \frac{1+10.p}{\left(1+0.25.p\right) \cdot \left(1+2.p\right)}$

Question 4-19 : Tracer **l'allure** de la courbe **réelle** du diagramme de **gain**, puis donner, graphiquement, la valeur de la bande passante à -3dB de l'asservissement en accélération.

Documents réponses Page 10