

### Agenda

- K-nearest neighbours
- Support Vector machine
- SVM användning
- SVM Kernels

#### Kod

- SVM
- Kernel SVM

KNN

#### KNN

Klassificering.

Närmaste grannar.

K betecknar antalet "grannar".

Vilken grupp tillhör en ny punkt?

Mäta avstånd till dess grannar!

Euklidiskt avstånd - mellan två punkter.



#### KNN

Lägg till en ny punkt -

Hur ska man klassificera den?

KNN algoritmen undersöker vilken kategori majoriteten av de K stycken närmaste grannarna tillhör.





### KNN - Algoritmen

- 1. Välj antalet närmaste grannar (K) som ska användas.
- 2. Välj ut de K stycken **närmaste** grannarna till den nya datapunkten.
- Bland dessa grannar, räkna på hur många tillhör varje kategori.
- 4. Tilldela den nya datapunkten den kategori som flest grannar tillhör.

KLART!



#### KNN - Euklidiskt avstånd

Skillnaden i avståndet mellan x punkterna.

Skillnaden i avståndet mellan y punkterna.

Upphöjt till två - ta bort negativa tecken.

Summera avstånden mellan dimensionerna.

Ta roten ur summan.



Euclidean Distance between 
$$P_1$$
 and  $P_2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 

### KNN - Exempel



- Välj ett antal närmaste grannar (nearest neighbours)
  K. n\_neighbors=5
- 2. Räkna ut avståndet till punkter och välj ut de 5 närmaste punkterna.
  - a. Välj avståndsformeln.
  - b. Euklidisk norm mellan en och flera punkter.
  - c. Minkowski ρ=2 samma som Euklidiskt avstånd.
  - d. <u>Det finns andra.</u>
- 3. Räkna hur många av de 5 tillhör varje kategori.
- 4. Tilldela den nya datapunkten den kategori som flest av de K närmaste grannarna tillhör.

# Support Vector Machines

#### SVM

**Support Vector Machine** 

Klassificering

Ny punkt - vilken kategori?

X<sub>2</sub>

Kan dela upp klasserna på flera sätt.



### SVM - Maximum Margin

Marginal från strecket - tub

Lika avstånd på varsin sida.

Vill ha så mycket avstånd till de närmaste punkterna som möjligt - max marginal.



#### SVM - Vektor

- x värden
  - flera dimensioner
  - o en rad
  - o en 1-D array
  - vektor
- Supporting the decision boundary



#### SVM - irl



Нарру



Sad



Surprised



Angry

Känslor från ansikten

Speech recognition

Separera ord från en ström av ord.

Bildanalys

- Har bilden blivit ändrad?
- "This could be used in security-based organizations to uncover secret messages. Yes, we can encrypt messages in high-resolution images."
- (handskriven)Text till (digital)text
- Cancer detection
- m.m.

### SVM - på gränsen

De närmaste punkterna är viktigast!

Många klassificeringsmetoder bygger på typiska värden.

SVM baseras på **gränsfallen**.

Äpplen som är mest lika apelsiner.

Apelsiner som är mest lika äpplen.





Ref: Udemy kurs

### SVM - Classifier & Hyperplane

Benämningar på gränslinjen.

Två dimensioner - Classifier

Fler än två dimensioner - Hyperplane

Positivt hyperplane - ovan

Negativt hyperplane - nedan



### **SVM Kernels**

## SVM - Separationen

Linjärt separerbara punkter



Icke linjärt separerbara punkter



### SVM - högre dimensioner

Icke separerbara punkter i en dimension.

Kan separeras genom att lägga på en dimension.





## SVM - högre dimensioner

Nu kan en linje separera de två klasserna!



#### SVM - Kernel trick

Grafisk representation av **rbf** kärnan.



$$K(\vec{x}, \vec{l}^i) = e^{-\frac{\left\|\vec{x} - \vec{l}^i\right\|^2}{2\sigma^2}}$$

- Radial Basis Function
- Gaussian Function
- Normal distribution / Normalfördelning

#### SVM - RBF kernel

Projicera RBF kärnan på riktmärket.

Då avgörs vilka punkter som grupperas.

Genom att ändra talet **sigma** kan "trattens" bas **minskas** eller **ökas**.







RESTORY...

#### SVM - Kernel

Mapping Function - kärnan är en kartfunktion upp i en högre dimension.





### SVM - Multiple kernels

Genom att slå ihop fler kärnor kan mer komplicerade områden grupperas





### SVM - Kernels

Vanligt förekommande kärnor / kernels



# Ickelinjär SVR

### Hyperplan

Punkter i två dimensioner.

Får en till dimension.

Kan nu separera de två klasserna med ett hyperplan.

Hyperplanet har marginaler i SVM.

I orginaldimensionen är inte linjen rak.



#### Länkar

- Euklidiskt avstånd
- sklearn distance metric
- KNN vid
- SVM kernel main ideas vid 1
- <u>SVM polynomial kernel vid 2</u>
- SVM rbf kernel vid 3
- Kernel example
- Applications of SVM in real life
- Weighted average