NEWS

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (202) 962-4155 WASHINGTON, D.C. 20546 TELS: (202) 963-6925

FOR RELEASE: February 13, 1970

RELEASE NO: 70-19

MOON ROCK DISTRIBUTION

Distribution of 28 pounds of Apollo 12 lunar material to scientists in the United States and 16 foreign countries has begun at the National Aeronautics and Space

Administration's Manned Spacecraft Center, Houston.

The material, in the form of rocks, chips and fine material and thin sections, is scheduled to be distributed over the next several months to 139 U.S. and 54 foreign scientists.

The 28.6 pounds (13 kilograms) of material represents about 40 percent of the material collected from the Moon's Ocean of Storms by Apollo 12 astronauts Charles Conrad Jr. and Alan L. Bean in November 1969. The bulk of the samples will be distributed to scientists by registered mail and by diplomatic couries. Some scientists will travel to MSC for personal

receipt of the samples.

(N70 - 19)

(ACCESSION NUMBER)

(PAGES)

(NASA CR OR TMX OR AD NUMBER)

CATEGO

There are 51 more scientists receiving Apollo 12 samples than the number of principal investigators who received samples from the first lunar landing. Eighteen pounds of Apollo 11 samples were distributed last September to 106 U.S. scientists and 36 scientists representing eight foreign nations.

The domestic scientific analysis will be performed in 139 university, industrial and government laboratories in 25 states and the District of Columbia. The 54 foreign investigators represent Australia, Belgium, Canada, Czechoslovakia, Finland, West Germany, Japan, Korea, Spain, Switzerland, United Kingdom, South Africa, Italy, France, Norway and India.

A total of 1,620 separate samples, rocks, fines (dust), chips, and thin sections, will be distributed. The scientists will perform analysis in mineralogy-petrology, chemical-isotope, physical properties, and bioscience and organic investigations.

Preliminary examination at the Lunar Receiving Laboratory (LRL) has revealed the Apollo 12 material has characteristics similar to the samples returned on Apollo 11. Mineralogically, the Apollo 12 samples contain the same major minerals, pyroxene, plagicclase, olivene, and ilmenite as found in the samples returned by the Apollo 11 crew.

Most of the Apollo 12 rocks are a coarse-grained crystalline variety with abundant pits and glass splashes throughout.

Potassium-Argon age dating, conducted during the preliminary examinations at the LRL shows the Apollo 12 samples to be about 1 billion years younger than the age of the Apollo 11 samples determined by the same method. Other tests revealed the Apollo 12 samples to have organic content somewhat less than that found on Apollo 11 samples.

The principal investigators will be asked to make a report of their findings at the Lunar Science Conference scheduled to be held in Houston in January 1971.

Of the 28 pounds of material distributed to scientists, approximately four pounds will be destroyed in the course of the planned experiments. The remaining 23.7 pounds of sample material will be returned to NASA.

The parts of the Surveyor III spacecraft which were returned by the Apollo 12 crew were released from the LRL Jan. 10. Scientists and engineers at the Jet Propulsion Laboratory, Pasadena, Calif. and Hughes Aircraft Company, Culver City, Calif. are currently examining parts of the Surveyor TV camera, TV cable and scoop.

In addition to the Apollo 12 samples NASA will distribute an additional 112 grams of Apollo 11 material to 13 scientists in the U.S. and Japan for second generation experiments.

4

APOLLO 12 LUNAR SAMPLE DISTRIBUTION A GROUP: MINERALOGY - PETROLOGY

	Core(grams)	0		1.55	0		0	o
IATE	Fines (grams)	ιcι	īU	16	2.5		0	8
APPROXIMATE SALLOCATION	Rocks (grams)	6/	12	15.5	Q		12	15
No of Different	Rock Specimens	3 (plus 3 thin sections)	4 (+5 TS*)	10 (+6 TS*)	3 (+3 TS*)	(See B Group)	(+SL 1+) t	(+C TS*)
INVESTIGATION		Electron Microprobe Analyses	Mineralogical Composition	Determine Microstructure and Composition	Determine Crystallographic Parameter of Minerals	Determine Abundance/Distri- bution of Radioactive Minerals	Identify Opaque Mineralogy and Deteŕmine Genesis by Lab Experiments	Petrologic, Mineralogic, Compositional Exami- nation
INVESTIGATOR and INSTITUTION		ADLER, I. NASA Goddard Space Flight Center	AGRELL, S. O. Unlv. Cambridge, England	ARRHENIUS, G. O. H Univ. of Calif., San Diego	BELL, P. M. Carnegle Inst. of Washington	BOWIE, S.H.U. Inst. of Geological Sciences, England	BRETT, P. R. NASA Manned Space- craft Center	BROWN, G. M. Univ. of Durham, England

Thin Section

A GROUF (cont'd)

Core(grams)	0	0	0	0	0.95	0	0	0
<u>rron</u> Fines (grams)	m	9	σ	9	6.5	0	٦. ت	0
SAMPLE ALLOCATION Rocks(grams) Fin	σ	15	15	12	Q	0.1	v	v
No. of Different Rock Specimens	m	5	9	6 (+6 TS*)	2 (+2 TS*)	0	a	2 (+2 TS*)
INVESTIGATION	Determine Structure, Comp- osition, Phases of Opaque Minerals	Determine Effects of Shock	Determine the Shock Meta- morphism Parameters	Petrologic and Mineralogic Examination	Determine Physical/Chemical Properties of Fine Grained Materials	Determine Crystal Structure of Sulfide and Associated Minerals	Determine Morphology and Rounding Experties of Siderome End. And Palagonite Grains	Electron Microprobe Analyses
INVESTIGATOR and INSTITUTION	CAWERON, E. N. Univ. of Wisconsin	CARTER, N. L. Yale University New Haven, Conn.	CHAO, E.C.T. U. S. Geological Survey	DOUGLAS, J.A.V. Geological Survey, Canada	DUKE, M. B. U.S. Geological Survey	EVANS, H. T. U.S. Geological Survey	FISHER, R. V. Univ. of Calif., Santa Barbara	FREDRIKSSON, K. Smithsonian Institution Washington, D.C.

* Thin Section

200	-	٠
1.0	-	

A GROUP (cont'd)	No. of Different	INVESTIGATION Rock Specimens	Mineralogic and Petrologic 4 (+4 TS*) Examination	Determine Morphology and Composition of Spherules	Determine Mineralogic 5 (+5 TS*) Composition	Investigate Physical-Chemical O Properties of Small Glassy Particles	Determine Chemical and Minerologic Composition of Opaque Fe-Ni Materials	Determine Origin of Glassy 0 Fragments	Determine Crystallization 3 (+3 TS*) Temperature and Oxygen Fug- acity for Fe-Ti Oxide Min- erals	Study Pyroxene Minerals 4 (+4 TS*)
i		C Specimens Rocks (grams)	(+ 4 TS*) 12	0	(+5 TS*) 12.5	0		0	(+3 TS*) 9	(+t TS*) 9
APPROXIMATE	SAMPLE ALLOCATION	ms) Fines (grams,	61.5	ч° .	Q	4.5	5.5	α	0	m
		Core (grams,	0		0	0	0	0	0	0

* Thin Section

\supseteq	
9	
اب	
되	
히	
긔	
۱. ۱	
51	
ଥା	
닔	
$^{\prime}$	
<'∶	

ks(grams) Fines(grams) Core(grams)	0	0 9	3.5 0	6 2.5 0	0 9 6	9 2 0	C 6	0 0 6
Rock Specimens Roc	0	2 (+3 TS*)	0	2 (+2 TS*)	ĸ	4 (+7 TS*)	t (+t TS*)	3 (+2 TS*)
INVESTIGATION	Determine Weight and Size Distribution of Fine Particles and Some of their Bulk Properties	Determine Origin of Micro- craters	Determine Chemical/Physical Properties	Determine Composition and Nature of Magnetite	Determine Mineralogy	Determine Elemental Composition by Electron Microprobe	Mineralogy/Petrography of Fine Size Material	Determine Chemical and Physical Condition for Formation of Lunar Sulfide Minerals
INSTITUTION	HEYWOOD, H. Univ. of Tech. Loughborough, England	HORZ, F. Lunar Science Inst. Houston, Tex.	ISARD, J. O. Univ. Sheffleld, England	j JEDWAB, J. S Univ. Libre de Bruxelles, Belgium	KARR, C. U.S. Bureau of Mines Morgantown, W. Va.	KEIL, KLAUS Univ. of New Mexico	KING, E. A. Univ. of Houston	KULLERUD, G. Carnegie Inst. of Washington
	INVESTIGATION Rock Specimens Rocks(grams) Fines(grams)	INVESTIGATION Rock Specimens Determine Weight and Size Distribution of Fine Particles England and Some of their Bulk Properties	INVESTIGATION Determine Weight and Size and Some of their Bulk Properties Determine Origin of Micro- Craters Determine Origin of Micro- Craters Determine Origin of Micro- Craters Rocks(grams) 3 3 4 Cocks(grams) Fines(grams) 8 Fines(grams) 6 Fines(grams) Fin	HEYWOOD, H. Univ. of Tech. Loughborough, England Loughborough, England HORZ, F. Lunar Science Inst. HOSZ, J. O. Betermine Chemical/Physical Univ. Sheffield, England HOCKS (grams) Rocks Ggrams) Fines (grams) Rocks (grams) Fines (gram	Determine Weight and Size Distribution of Fine Particles and Some of their Bulk Properties Determine Origin of Micro- Determine Chemical/Physical Determine Composition and Determ	HEYMODY, H. HEYMODY, H. HEYMODY, H. Loughborough, England And Some of their Bulk HORZ, F. Loughborough, England HORZ, F. Loughborough, Flanks (C. Loughborough, H. And Some of their Burtleles HORZ, F. Loughborough, Flanks (C. Loughborough, H. And Some of their Burtleles HORZ, F. And Some of their Burtleles And Some of their Burtleles HORZ, F. And Some of their Burtleles HORZ, F. And Some of their Burtleles And Some of their Burtleles HORZ, F. And Some of their Burtleles And Some of their Burtleles HORZ, F. And Some of Horace Composition and Some of their Burtleles And Some of their Burtleles HORZ, F. And Some of their Burtleles HORZ, F. HORZ, F. And Some of their Burtleles And Some of their Burtleles HORZ, F. And Some of their Burtleles And Some of their Burtleles HORZ, F. And Some of their Burtleles HORZ, F. And Some of their Burtleles And Some of their Burtleles HORZ, F. And Some of their Burtleles And Some of their B	HEYMODY H. INVESTIGATION HEYMODY H. Univ. of Tech. Determine Weight and Size Univ. of Tech. Distribution of Fine Particles and Some of their Bulk Properties HORZ, F. Lunar Science Inst. ISARD, J. O. Univ. Sheffield, Belgium ARRR, C. Univ. Libre de Bruxelles, Belgium KARR, C. U.S. Bureau of Mines Morgantown, W. Va. KEIL, KLAUS White of New Mexico Willy Col New Mexico Will Col Col New Mexico Will Col Col Col Col Col Col Col Col Col C	INVESTIGATION Properties Properties

* Thin Section

g)	
cont	
JP (
GROL	
ď	

â

	A GROUP	A GROUP (cont'd)	APPROXIMATE	_E	
	•	No of Different	SAMPLE ALLOCATION	TION	
INSTITUTION	INVESTIGATION	Rock Specimens	Rocks(grams)	Fines (grams)	Core(grams)
KUSHIRO, I. Univ. of Tokyo	Petrologic Study	9 (+4 TS*)	2.1	0	0
LOFGREN, G. NASA Manned Space- craft Center	Establish Formation Wech- anism for Lunar Glass by Comparison with Terrestrial Glasses	0	o	П	0
LOVERING, J. F. Australlan Natl. Univ.	Determine Elemental Composition, Concentration of Several Elements: Fission Track Dating	(See B. Group)	٠.		
MAC GREGOR, I. D. Univ. Calif., Davis	Determine the Mineralogy	3 (+¢ TS*)	ο,	12	0
MASON, B. Smithsonian Inst. Washington, D.C.	Mineralogical Investigations/ Microprobe Analysis	η (+t TS*)	σ	11.5	0
MASSON, C. R. Nat. Research Council Nova Scotla	Determine the Concentration of Anionic Species	0	0	н	0
MC KAY, D. NASA Manned Space- craft Center	Composition of Fine Particulate Matter	1	m	8.5	0.55
MUAN, A. Pennsylvania State Univ.	Determine Origin of Lunar Materials through Phase Equilibrium Studies	; 9 (+4 TS*)	18	0	0

* Thin Sections

(q)
cont
GROUP (

	SAMFLE ALLOCATION	Rock Specimens Rocks(grams) Fines(grams) Core(grams)	TS*) 21 . 0 0	9 2 0	(See B Group)	1 TS*) 9 0 0 0	0 6.5 0	5 TS*) 21 1 0	TS*) 3 3 0	0.1 0	TS*) 9 7.5 0
A GROUP (contra)	•	INVESTIGATION ROCK Sp	Phase Equilibria Studies 9 (+4 TS*)	Determine Crystal-Chemical A Relationships	Petrography of Lunar Studles (See E	Opaque Mineralogy 3 (+ 1 TS*)	Determine Micro-Lumin- escence Properties	Mineralogy 10 (+5 TS*)	Fluid Inclusions 1 (+2 TS*)	Mineralogy 2	Shock Damage Studies 3 (+4 TS*)
	INVESTIGATOR and	INSTITUTION	O'HARA, M. J. Edinburgh Univ., Scotland	PAPIKE, J. State Univ. of N.Y. at Stonybrook	QUAIDE, W. L. NASA Ames	RAMDOHR, P. Max Planck Inst. Heldelberg, Germany	ROY, R. Pennsylvania State Univ.	RINGWOOD, W. E. Australian Natl. Univ.	ROEDDER, E. U.S. Geological Survey	ROSS, M. U.S. Geological Survey	SCLAR, C. B. Lehigh Univ. Bethlehem, Pa.

*Thin Sections

	A GROUP	A GROUP (cont'd)			
			APPROXIMATE SAMPLE ALLOCATION	TION	
INVESTIGATOR and INSTITUTION	INVESTIGATION	No. of Different Rock Specimens	Rocks(grams)	Fines (grams)	Core(grams)
SHORT, N. Kent State Univ. Kent, O.	Shock Damage Studies	5 (+6 TS*)	12	11	0.1
SIPPEL, R. F. Mobil-Research Corp. Dallas, Tex.	Cathode Luminescence Studies	3 (+3 TS*)	σ	1.5	0
SKINNER, B. F. Yale Univ. New Haven, Conn.	Mineralogy of Sublimates	1 (+1 TS*)	m	T.	0
SMITH, J. V. Univ. of Chicago	Mineralogy	4 (+5 TS*)	σ	8.5	0
STEWART, D. U.S. Geological Survey	Structure and Stability of Feldspars	2 (+1 TS*)	9	m	0
TOLANSKY, S. Univ. of London	Diamonds and Surface Features of Glass	0	0	1.5	0
VON ENGELHARDT, W. Tubingen Univ. Germany	Shock Mineralogy and Metamorphism	3 (+2 TS*)	6	ī.	0
WALTER, L. S. NASA Goddard Space Flight Center	Determine Mineralogic Composition	3 (+2 TS*)	6	2.5	0
WEILL, D. F. Univ. of Oregon	Plagioclase Mineralogy	10 (+5 TS*)	21	0	O

Thin Sections

		Core(grams)	0	0	0
Ħ	VLION	Fines (grams)	9.5	t.5	0
APPROXIMATE	SAMPLE ALLOCATION	Rocks(grams)	6	12	īU
A GROUP (cont'd)	M. Or District	Rock Specimens	4 (+5 TS*)	5 (+5 TS*)	ੜ
A		INVESTIGATION	Microprobe Studies and Mineralogy	Mineralogy and Petrology	Determine Substructure of Lunar Minerals by High Voltage Transmission Elec- tron Microscopy
	d and the transfer	INVESTIGATOR and INSTITUTION	WOOD, J. Smithsonian Obser. Cambridge, Mass.	ZUSSMAN, J. Univ. of Manchester England	RADCLIFFE, V. Case Western Reserve Univ., Cleveland, O.

*Thin Sections

B GROUP: CHEMICAL AND ISOTOPIC ANALYSIS

	ms) Core(grams)	0	0	0.5		0	0	o	0	0
TE	Fines (grams)	7	0	2	20	0	н	0	m	CI
SAMPLE ALLOCATION	Rocks(grams)	16	9	12	318	200	CV	6	13.5	17
CHEMICAL AND ISOTOPIC ANALYSIS	Rock Specimens	ľV	1	15		73	Q	3 (+3 TS*)	æ	O/
B GROUP: CHEMICAL	INVESTIGATION	Determine Abundance of Major and Trace Elements by Several Techniques	Apollo 11 Sample	Selected Elements and Cosmic	hay Al-5 Na5- Determine AL ²⁶ and Na ²² content by Nondestructive Methods (Non- destructive Analyses)	Determine the Bombardment History of Samples	Neutron Activation for Yttrium and Elements of Lanthanide Series	Determine U Th, Pb Abundances	Determine Oxygen Isotope Ratios	Determine Major, Trace Elements and Rb/Sr Ages
	INSTITUTION	AHRENS, L. A. Univ. of Cape Town South Africa		ANDERS, E.	Univ. of Cnicago	ARNOLD, J. Univ. Calif. San Diego	BISCHOFF, J. L. Univ. Calif. Los Angeles	BOWIE, S.H.U. Inst. Geol. Sciences London	CLAYTON, R. N. Univ. Chicago	COMPSTON, W. Aust. Natl. Univ.

* Thin Sections

0

 \sim

8.5

Ŋ

Determine H20, and Isotopic Composition of C, 0, and H

FRIEDMAN, I. U.S. Geological Survey

Core(gram 0.3

TE	ATION Fines (grams)	10	ō	0	m	0	v	ſŪ	ſΛ
AFPR XIMATE	SAMPLE ALLOCATION Rocks (grams) Fin	0	٢	70	7.5	18	13.7	ιζ.	20
B GROUP . d.	No. of Different Rock Specimens	0	म	ч		m	10	1	т
B GROU	INVESTIGATION	Determine Radioistopic Content of Argon and Hydrogen	Determine Thermodynamic Parameters for Vaporizing Lunar Samples and Activity of Fe,	Apollo 11 Sample	Al, Si, O and Ir, Ni, Co, Sc (Complements Other Studies; Nondestructive)	Determine Abundance of Major Rock Forming Elements	Determine Isotope Ratios for C, 0, Si, H	Search for Transuranic Elements	Measure ${\rm Ar}^{37}$, ${\rm Ar}^{39}$ and Tritium Content
	INVESTIGATOR and INSTITUTION	DAVIS, R. Brookhaven Natl. Lab. Long Island, N.Y.	DE MARIA, G. Univ. of Rome, Italy		EHMANN, W.D. J Univ. of Kentucky	ENGEL, A.E. Univ. Calif. San Diego	EPSTEIN, S. Calif. Inst of Tech.	FIELDS, P. Argonne Natl. Lab. Chicago	FIREMAN, E. L. Smithsonian Obs. Cambridge, Mass.

(cont'd)	
B GROUP	

APPROXIMATE SAMPLE ALLOCATION	Rocks(grams) Fines(grams) Core(grams)	1.5 0	34 1.6 0.9	9.7 1.5 0	3 1	2 0 0	10 2 0	5 1 0	2.9 1 0
	No. of Different Rock Specimens Ro	10	2	ω	m	Q	6	ų	9
B GROUP	INVESTIGATION	Determine Alkali Metals, Alkaline Earths, Rare Earths and Strontion Isotope Comp- osition	Determine Noble Gas and Tritium Content	Trace Elements (Complements Other Studies Nondestructive)	Effects of Solar Wind and Cosmic Rays and Abundance of Li and B by Ion Source Mass Spectrometry	Determine the Elemental Composition of Lunar Materials by Auger Electron Spectroscopy	Rare Earth Elements	Determine Elemental Concentration in Lunar Materials by Neutron Activation Analysis	Emission Spectrographic Determination of Major and Minor Elements
	INVESTIGATOR and INSTITUTION	GAST, P. W. Lamont Geol. Obs. New York, N.Y.	GEISS, J. Univ. of Berne Switzerland	GOLES, G. G. Univ. of Oregon	d GRADSZTAJN, ELI G Centre Natl. de la Recherche Scientifique France	GUPTA, Y. P. Northrop Corporate Lab. Hawthorne, Callf.	HASKIN, L. A. Univ. of Wisconsin	HEIER, K. S. Mineralogisk-Geologisk Museum Norway	HELZ, A. U.S. Geological Survey

B GROUP (cont'd) APPROXIMATE SAMPIE ALLOCATION	INVESTIGATION Rock Specimens Rocks(grams) Fines(grams) Core(grams)	Determine Abundance of $Mn53$ 3 3 10 10 0	Determine Abundance of Noble 2 1.5 3.5 0.5 Gases	Determine Abundance of Rare 3 3 2.5 0 Gases He and N	Determine Rb/Sr Ages 2 0 0	Spark Source Mass Spec- 4 4 2 0 trometry of Dust and Age Determination by Os/Re and K/Ca	Determine Amount and Concentration of Elements Removed from Lunar Materials When Dissolved in Water and Acids Under Ambient Temperature	Chemical Analysis by Use of a 1 1 1 0
	INVESTIGATOR and INSTITUTION	HERR, W. Univ. of Cologne Germany	HEYMAN, D. Rice Univ. Houston, Tex.	HINTENBERGER, H. Max Planck Inst., Mainz, Germany	HURLEY, P. M. Mass. Inst. Tech.	KAPLAN, G. Lab D'Analyses Physiques Serres-Castet, France	KELLER, W. D. Univ. of Missouri	KNOX, B.

	B GROUP	B GROUP (cont'd)	APPROXIMATE	Ħ	
TW/RSHTGAMOR and		No. of Different	SAMPLE ALLOCATION	TION	
INSTITUTION	INVESTIGATION	Rock Specimens	Rocks(grams)	Fines(grams)	Core(grams)
KOHMAN, T. Carnegie-Mellon Inst. Pittsburgh, Pa.	Determine Isotopic Abundance of Pb, Sr, Os, Ti, Nd and Ag	0	0	ហ	0
LIPSCHULTZ, M. E. Purdue Univ. Indiana	Determine the Vanadium and Vanadium Isotope Content	ĸ	9	1	0
LOVERING, J. F. Australian Natl. Univ.	U, Th, K, Re, Os, Ru	10 (+5 TS*)	15.5	8.5	0
MAXWELL, J. A. Geol. Survey of Canada	Determine Abundance of Major Elements	~	10	r.	0
MEGRUE, G. H. Smithsonian Astro. Obsv. Cambridge, Mass.	Determine the Isotopic Abundance of He, Ne, Ar, Kr, and Xe, the Concentration and Distribution of Water, CO2, N2, SO2 by Laser Microprobe-Mass Spectrometry	N	м	п	0
MORRISON, G. Cornell Univ. Ithaca, N.Y.	Trace Elements by Spark Source	₽	7	CV.	0
MURTHY, R. Univ. of Minn.	Isotopic Composition of Rare Earth Elements and Other Selected Elements	ſŲ.	11	α	0
NAUGHTON, J. J. Univ. of Hawaii	Search for Evidence of Alkali Metals Erosion by Mass Spectro- metry	к	m	0	0

*Thin Sections

⊢1	Fines (grams) Core (grams)	**	0	2.5 0.15	***	5 0.5	7.5	2.5	. 2.5
APPROXIMATE SAMPLE ALLOCATION	Rocks (grams) Fin	2597	ī.	5.6	6010	15	(620)	12.5	ر د
No of Different	Rock Specimens	ın	r	σ	ω	ω	13 (+2 TS*)	· e a	Φ
,	INVESTIGATION	Determine Content of Cosmic Ray Induced Nuclides and K, U, and Th	Determin e Abundance of Major Elements	Determine Noble Gas Content	Irradiation History of Lunar Materials (Nondestructive Analyses)	Rare Earth Element and BA, K, Rb and Sr Content	Determine Cosmic Ray Induced,	Selected Blements Including F, Cl, Br, I	Determine Rare Gas Content Alkali Metal and U Content
And Composition	INSTITUTION	O'KELLEY, G. D. Oak Ridge Nat. Lab. Tennessee	PECK, U.S. Jeological Survey	PEPIN, R. Univ. of Minn.	PERKINS, R. W. Battelle Mem. Inst. Brhland, Wash.	PHILPOTTS, J. A. NASA Goddard Space Flight Center	QUAIDE, W. L. NASA Ames Res. Center	REED, G. W. Argonne Natl. Lab. Chicago	REYNOLDS, J. Univ. Calif. Berkeley

B GROUP (cont'd)

*Thin Sections ** O'Kelley and Perkins to count nondestructive (ND) remainder of two core samples.

		Core(grams)							
		Core (0	o ,	0	0	0	0
H.	ATION	Fines (grams)		8	0	1.5	3.5	Ŋ	н
APPROXTMATE	SAMPLE ALLOCATION	Rocks(grams)		ੜ	m	শ্ৰ	7	rv	ੜ
(contid)	No of Different	Rock Specimens	(3 TS*)	N	m	व	&	T.	ব
B GROUP (cont'd)		INVESTIGATION	Autoradiography	Determine Abundance of Major Elements	Oxygen Fugacity of Rock Melts and Individual Minerals with a Fugacity Probe	Determine Rare Gas Content	Rare Earth and Bulk Elemental Content	Determine Abundance of Major Elements	Determine Concentration of Be, Cr, Fe, Co, and Ni by Gas Chrom- atography and Mass Spectrometry of Metal Chelates
	6 20 GORA OTHERWINE	INSTITUTION	RICHARDSON, K. NASA Manned Space- craft Center	ROSE, H. U.S. Geological Survey	SATO, M. U.S. Geological Survey	SCHAEFFER, O. State Univ. of N.Y. at Stonybrook	SCHMITT, R. A. Oregon State Univ.	SCOON, J. H. Cambridge Univ. England	SIEVERS, R. E. Aerospace Research Lab. U.S. Air Force
						-more	-		

B GROUP (cont'd)

*Thin Sections

(cont'd)	
B GROUP	

D GROUP (CORUTA) APPROXIMATE	No. of Different Rocks(grams) Fines(grams) Core(grams)	17 30 10 0	2 30 2 0	9 61 10 0	5 4 0	5 1 0	1 1 0	5 4.5 2.5 0	3 2.5 0	0 11
John G	INVESTIGATION	U, Th, and Pb Concentration and Isotopic Composition	Elemental Composition	U, Th, and Pb Concentration and Isotopic Composition	Determine Trace Elements Concentration by Spark Source Mass Spectrometry	Determine Abundance of Stable Isotopes of S and Mg	Determine Abundance of 42 Ele- ments in Lunar Materials by Neutron Activation	Selected Elements	Heavy Elements Content	Determine Age by Argon Dating
	INVESTIGATOR and INSTITUTION	SILVER, L. T. Calif. Inst. of Tech.	SMALES, A. A. Atomic Energy Research Est., England	TATSAMOTO, M. U.S. Geological Survey	TAYLOR, S. R. Australian Natl. Univ.	THODE, H. G. McMaster Univ. Canada	TRAVESI, A. Comision Nacional Inves- tigacion del Espacio Spain	TUREKIAN, K. K. Yale University New Haven, Conn.	TURKEVICH, A. Univ. of Chicago	TURNER, G. Sheffield Univ., England

D
ont
0
GROUP
В

APPROXIMATE SAMPLE ALLOCATION	No. of Different Rocks(grams) Fines(grams) Core(grams)	6 1.5 0.3	1 1 0	7 200 102 0 ose		so- 1 5 0 0 ° r,	nd V 11 0.9	7 1.5 0	0 0	
<u> </u>	INVESTIGATION	Determine Isotopic Composition and Concentration of Rare Gases	Determine Abundance of Ele- ments by Neutron Activation	Minor and Major Elements (Al- location is for Cosmic Ray Work and Also Used for This Purpose	Determine Cosmic Ray Induced Nuclides	Determine Concentration and Isotopic Composition of Pb, U. Sr, and Ar	Isotopic Composition of Rare Gases: K, Rb, Sr, Ba, Gd and	Ga, Ge, In, Ir and B	Search for Fissionable Transurants Elements Using Thermal Neutron-induced Fission Technique	
ANTVERTITE AND COMPANY OF THE PRINCE OF THE	INSTITUTION	UREY, H. C. Univ. Calif. San Diego	VOBECKY, M. Nuclear Research Inst. of Czechoslovakian Acad. of Sciences	WANKE, H. Max Planck Inst., Mainz, Germany		WANLESS, R. K. Canada Geol. Survey	WASSERBURG, G. J. Calif. Inst. of Tech.	WASSON, J. T. Univ. Calif., Los Angeles	WESOLOWSKI, J. J. Lawrence Radiation Lab. Berkeley, Calif.	o o intermedia

		Fines(grams) Core(grams)	0	5	1,2 0 .
	APPROXIMATE SAMPLE ALLOCATION	Rocks(grams) Fines	18	1	8.5
B GROUP (cont'd)		No. of Different Rock Specimens	α	1	ī.
B GROU		INVESTIGATION	Determine Abundance of Major Elements	Determine Chemical and Physical Properties by Several Methods	Determine Mineralogy and Solar Wind Effects
		INVESTIGATOR and INSTITUTION	WIIK, H. B. Geol. Survey of Finland	YOUNG, Atomic Energy Res. Korea	ZAHRINGER, J. Max Planck Inst. Heldelberg, Germany

C GROUP: PHYSICAL PROPERTIES PROPOSED ALLOCATION PLAN

Core (grams)	0.3	ıg Lab	0	0	0	0.15	0	0	0
MATE OCATION Fines(grams)	2	NASA Lunar Receiving	н	0	20	0.5	13	0.5	ſŲ
APPROXIMATE SAMPLE ALLOCATION Rocks(grams) Fines(vo	pleted at NASA	27	ηT	0	М	7	0	0
No. of Different Rock Specimens	62	Analyses to be completed at after Apollo 13	က	г.	0	г	N	0	0
INVESTIGATION	Determine Spectral Reflectance	Search for Dirac Monopoles	Measure Physical Properties	Determine Thermal Conductivity	Apollo 11 Sample	Determine by Thermally Stimulated Exo-electron Emissions Thermal and Radiation History of Lunar Rocks	Determine Reflectance and Thermal Conductivity	Characterize Glass Portions	Apollo 11 Sample
INVESTIGATOR and INSTITUTION	ADAMS, J.B. Caribbean Research Institute, Virgin Islands	ALVAREZ, L.W. Univ. of Calif., Berkeley	ANDERSON, O.L. Lamont Geological Observatory, New York, N.Y.	BASTIN, J.	wueen mary college Univ. London	BECKER, K. Oak Ridge Nat'l. Lab Tennessee	BIRKEBAK, R.C. Univ. Kentucky Research Foundation	COOPER, A.R. Case Western Reserve	Univ., Cleveland, O.

C GROUP (Con't.)

APPROXIMATE SAMPLE ALLOCATION	Rock Specimens Rocks (grams) Fines (grams) Core (grams)	Electrical Properties 1 13 2.5 0	Determine Thermoluminescent 1 0.1 2.5 1.6 Properties	Magnetic Properties (General 2 21 1 0 Survey to be Completed at LRL)	Determine Distribution of Free 2 2 2 0 Radicals in Carbonaceous Materials and Iron	Apollo 11 Sample 0 0 1 0	Measure Luminescent and Thermo- 2 4 1 0.3 luminescent Properties under Proton Bombardment	Measure Radiation History 4 12 2 1.35	Determine Luminescence Properties 2 5 2 0	Measure Size Distribution, Photo- 6 8.6 9 0.3
INVESTIGATION		Electrical Properties	Determine Thermoluminescent Properties	Magnetic Properties (General Survey to be Completed at LRL)	Determine Distribution of Free Radicals in Carbonaceous Materials and Iron	Apollo 11 Sample	Measure Luminescent and Thermo- luminescent Properties under Proton Bombardment	Measure Radiation History	Determine Luminescence Properti	
INVESTIGATOR and INSTITUTION		COLLETT, L.S. Geological Survey, Canada	DALKYMPLE, G.B. U.S. Geological Survey	DOELL, R.R. U.S. Geological Survey	DUCHENSE, J. Univ. of Leige, Belgium		EDGINGTON, J. A. Queen Mary College England	FLEISCHER, R.L. General Electric Co., Schenectady, N.Y.	GEAKE, J.E. Univ. of Manchester England	GOLD, T.

C GROUP (Cont.)

Core(grams)	0	0	٥.4	0	0	0.3	0	0	0
MATE OCATION Fines (grams)	ч	ſΛ	0.5	н	П	7	1.0	г	0
APPROXIMATE SAMPLE ALLOCATION Rocks(grams) Core(grams)	rv.	N	9	0.5	0	ተ	27	ന	50
No. of Different Rock Specimens	α	1	m	п	0	α	ų (+4TS*)	3 (+3TS*)	α
INVESTIGATION	Determine Origin and Nature of Luminescence	Determine Adhesive Microphysical and Microchemical Properties	Conduct Mossbauer Studies	Determine Surface Properties of Lunar Materials by Electron Paramagnetic Resonance	Apollo 11 Samples	Determine Solar Wind Damage	Measure Magnetic Properties	Conduct Mossbauer Studies	Determine Elastic Constants
INVESTIGATOR and INSTITUTION	GREENMAN, N.N. Douglas Aircraft Co. Santa Monica, Calif.	GROSSMAN, J.J. Douglas Aircraft Co. Santa Monica, Calif.	HAFNER, S. University of Chicago	HANEMAN, D. Univ. of New South Wales, Australia	e –	HAPKE, B. University of Pittsburgh	HELSLEY, C.E. Southwest Center for Advanced Studies, Dallas, Texas	HERZENBERG, C.L. IIT Research Institute Chicago	KANAMORI, H. University of Tokyo

*Thin Section

C GROUP (Con't.)

INVESTIGATOR and INSTITUTION	INVESTIGATION	No. of Different	APPROXIMATE SAMPLE ALLOCAT	OXIMATE ALLOCATION	
		Rock Specimens	Rocks(grams)	Fines(grams)	Core(grams)
LAL, D. Tata Institute, India	Determine Solar and Galactic Radiation History from Study of Lunar Samples	ជ	12	п	1.25
	Apollo 11 Samples	0	0	α	0
LAROCHELLE, A. Geological Survey, Canada	Determine Magnetic Properties	α	21	Н	0
MANATT, S.L. Jet Propulsion Lab. Pasadena, Calif.	Determine Chemical State of Hydrogen and Metallic Ele- ments	н	0.5	0.8	0
	Apollo 11 Samples	0	0	10	0
MAURETTE, M. Centre Natl. de la Recherche Scientifique	Determine Radiation History of Lunar Materials by Several Techniques	स	12	N	1.3
MUIR, A.H. North American Rockwell Thousand Oaks, Calif.	Conduct Mossbauer Studies	m	m	H	0
NAGATA, T.	Determine Magnetic Properties	1	10.5	1.0	0
UNIVERSICY OF TORYO	Apollò 11 Samples	Н	10	0	0
NASH, D.B. Jet Propulsion Lab. Pasadena, Calif.	Determine Luminescence, Photo- metric and Chemical Response to UV and Protons	CJ	ſŲ	ന	1.25
PICKART, S.J. U.S. Naval Ord. Lab. White Oak, Md.	Determine Structure of Glass, Crystalline Phases, Elements and Magnetite by Neutron Diffractometry	0	0	п	0

C GROUP (Con't.)

ore(grams)		1.35	0	0	0	0	0	O
MATE OCATION Fines(grams) Core(grams)		N	0	н	п	0	α	н
APPROXIMATE SAMPLE ALLOCATION Rocks(grams) Fines(g	only.	12	30	21	0	0.5	0	220
No. of Different Rock Specimens R	Apollo 11 material only	न	N	ስ (+4 ፲S#)	0	п	0	2 (+4 TS*)
INVESTIGATION	Determine Infrared Reflection-Absorption Characteristics Using the Mariner 7 Spectrometer (1.9 to 14.3)	Radiation History through Study of Fossil Fission Tracks	Measure Heat Capacity	Determine Magnetic Properties	Search for Quarks by Mass Spectrometric Methods	Determine Magnetic Properties, State of Iron and Water Con- tent of Lunar Glass	Apollo 11 Samples	Determine Thermal Diffusivity/ Conductivity Electrical Con- stants, Thermal Expansion and Velocity of Shear and Com- pressional Waves
INVESTIGATOR and INSTITUTION	PIMENTEL, G.C. University of Calif. Berkeley	PRICE, D.B. University of California, Berkeley	ROBIE, R.A. U.S. Geological Survey	G RUNCORN, S.K. o Univ. of Newcastle on Tyne, England	SCHIFFER, J.P. Argonne Natl. Lab. Chicago	SENFTLE, F.E. U.S. Geological Survey		SIMMONS, M.G. Mass. Institute of Technology, Cambridge, Mass.

*Thin Section

C GROUP (Con't.)

APPROXIMATE SAMPLE ALLOCATION No. of Different	Rock Specimens Rocks (grams) Fines (grams) Core (grams)	3 20 0 0	4 21 0 0	5 12.1 3 1.5	1 5 0.8 0	(2 + TS*)
INVESTIGATION	: "1	Determine Pressure-Volume Properties	Determine Magnetic Properties	Determine Radiation History	Determine Chemical State	Search for and Characterization of Radioactive Haloes
INVESTIGATOR and INSTITUTION		STEPHENS, D.R. University of California Livermore	STRANGWAY, D.W. University of Toronto Canada	WALKER, R.M. Washington University St. Louis, Mo.	WEEKS, R.A. Oak Ridge Nat'l. Lab. Tennessee	GENTRY, R.V. Oak Ridge Nat'l. Lab. Tennessee

*Thin Section

APOLLO 12 LUNAR SAMPLE DISTRIBUTION

D GROUP: BIOSCIENCE/ORGANIC GROUP PROPOSER ATTOCAMTON PLAN

PROPOSED ALLOCATION FLAN	APPROXIMATE SAMPLE ALLOCATION NO. of Different	Rock Specimens Rocks (grams) Fines (grams) Core (grams)	1 1.25	acterize Organic 0 0 8 0.6 dentification of	1c Compounds) mple 1 40 0 0	Organic Characterization Analyses completed at NASA Lunar Receiving Lab. rganic Matter Volatile	re, Distribution and 1 5 40 1	rete Organized 1 (+ 1 TS*) 1 1.25 0 res (Abundance Micro-nic Microfossils)	oture & Quantities of 2 10 31 1.8 ounds (Identification 1.8 1 Organic Compounds)	-organic Compounds and 0 0 20.15 0 oific Class of Compound oro objects or microfossis)
PROPOSED ALLOC	INVESTIGATION	Rock Spe	Determine Discrete Organized Microstructures (Abundance Microobjects or Microfossils)	Isolate & Characterize Organic Compounds (Identification of		Complete Prel. Organic Characterization (Levels of Organic Matter Volatile at 500°C)	Determine Nature, Distribution and Origin of Organic Matter (Identification of Individual Organic Compounds)		Determine Structure & Quantities of 2 Organic Compounds (Identification of Individual Organic Compounds)	Search for Bio-organic Compounds and 0 Systems (Specific Class of Compound abundance-mioro objects or microfossils)
	INVESTIGATORS and INSTITUTION		BARGHOORN, E.S. Harvard Univ. Cambridge, Mass.	BIEMANN, K. M.I.T.	Cambridge, Mass.	F BURLINGAME, A.L.	CALVIN, W. U. Celif., Berkeley	CLOUD, P.E. U. Calif., San Diego	EGLINTON, G. Univ. Bristol England	FOX, S. W. Univ. Florida

APOLLO 12 LUNAR SAMPLE DISTRIBUTION

GROUP	PLAN
BIOSCIENCE/ORGANIC	ALLOCATION
ENCE/O	ALI
BIOSCI	PROPOSED
GROUP:	
А	

		Core(grams)	0	0	0	o	0	1.6	0	0
	MATE	Fines (grams)	15	1.2	য	20	25	ω	0	30
	APPROXIMETE SAMPLE ALLOCATION	Rocks(grams)	0	٥.5	10	0	0	া	н	N
FULL ALLOCATION FLAN	No of Different	Rock Specimens	0	2	2	0	0	1 2	Т	п
THOOLOU	INVESTIGATION	·	Determine Association Between Porphyrins and Amino Acids (Specific Class of Compounds)	Determine Organic Carbon Content (Approximate Levels of Organic Matter Pyrolyzable at 900°C)	Determine Abundance and Isotopic Ratios for C, H, O & S	Determine Organic Compounds (Identification of Indiv. Organic Cpds.)	Determine C _{15-C30} Alkanes (Specific Class of Compound)	Determine Total Carbon and Nitrogen	(10021 Carbon concent) Apollo 11 sample	Determine Lipids, Amino Acids & Polymer Type Organic Matter (Identification of Indiv. Organic Cpds; Abundance Microbject or Microfossils)
	INVESTIGATORS and INSTITUTION		HALPERN, B. Stanford Univ. Palo Alto, Calif.	JOHNSON, R.D. NASA/Ames	g KAPLAN, I.R. g Univ. Callf., L.A.	LIPSKY, S.R. Yale Univ. New Haven, Conn.	MEINSCHEIN, W.G. Univ. Indiana	MOORE, C.B.	Arraona State univ.	NAGY, B. Univ. Arizona

APOLLO 12 LUNAR SAMPLE DISTRIBUTION

D GROUP: BIOSCIENCE/ORGANIC GROUP PROPOSED ALLOCATION PLAN

	No. of Different Rock Specimens	ous tter	cro- able	s 1dual	and Specific	nisms 1 (+1 TS*) or
INVESTIGATION		Conduct Study of Carbonaceous Organic & Organogenic Matter (Identification of Indiv. Organic Cpds.)	Determine Native Viable Micro- organisms (Culture of Viable Organism)	Determine Organic Compounds (Identification of Individual Organic Compounds)	Detect & Identify Metallic and Nonmetallic Porphyrins (Specific Class of Compound)	Search for Non-viable Organisms (Abundance Micro-objects or Microfossils)
INVESTIGATORS and INSTITUTION		ORO, J. Univ. Houston	OYAMA, V.I. NASA/Ames	PONNAMPERUMA, C.A. NASA/Ames	RHO, J.H. Jet Propulsion Lab. Pasadena, Calif.	SCHOPF, J.W. Univ. of Calif., L.A.

* Thin Sections