In table ??, we see th results of five dependent variables for an OLS regression. So in the dependent variable, y_{it} , y is killed, injured and arrests. They stand for the number of killed, injured and arrests in each conflict at time t in district i. The weighted variable is an index for the intensity of conflicts. In this variable, for each conflict I create and index based on the number of killed, with weight 1, injured with weight .5 and arrested with weight .25. The fifth dependent variable is the dummy for conflict.

Table 1: Effect of Desecration on Conflict and Conflicts' Intensity

	Dependent variable:					
	Dummy for Conflicts	Weighted	Killed	Injured	Arrests	
	(1)	(2)	(3)	(4)	(5)	
Desecration Dummy	0.000	-9.981	-1.526	-0.565	-32.690	
	(0.000)	(8.711)	(2.572)	(5.234)	(23.681)	
Muslims' Population Ratio	0.000	-0.173	21.658	-10.352	-66.618	
	(0.000)	(94.531)	(27.905)	(56.795)	(256.975)	
Hindus' Population Ratio	0.000	2.113	17.436	-20.843	-19.604	
-	(0.000)	(103.341)	(30.506)	(62.088)	(280.925)	
Constant	1.000***	-8.895	-17.767	25.960	-16.434	
	(0.000)	(120.222)	(35.489)	(72.230)	(326.814)	
Year Control	Yes	Yes	Yes	Yes	Yes	
State Control	Yes	Yes	Yes	Yes	Yes	
Observations	1,275	1,275	1,275	1,275	1,275	

^{*}p<0.1; **p<0.05; ***p<0.01. This table presents the results of the OLS regression. Weighted variable is the the weighted average of killed, with weight 1, injured with weight .5 and arrested with weight .25. In this table to control for the population differences in all districts, the ratio of Muslims' and Hindus' population is used.

The interesting results in table ?? and in table ?? is that while the desecrations have no effects on the number of conflicts, but they decreases the intensity of the conflicts. The regressions in table ?? have the same variables for dependent and independent but instead of an OLS we use and Poisson model in our regression. While in the OLS model we do not see any

significant results, but in th Poisson model we can see that while still the desecrations have no effect on the number of conflicts but they decrease the conflicts intensity.

Table 2: Poisson Results

	Dependent variable:				
	Dummy for Conflicts	Weighted	Killed	Injured	Arrests
	(1)	(2)	(3)	(4)	(5)
Dummy for District	-0.000 (0.087)	-0.284^{***} (0.016)	-0.304^{***} (0.042)	-0.003 (0.021)	-0.404^{***} (0.011)
Muslims' Population Ratio	$0.000 \\ (0.949)$	-0.038 (0.184)	4.483*** (0.502)	-0.224 (0.241)	-1.276^{***} (0.126)
Hindus' Population Ratio	0.000 (1.037)	0.067 (0.202)	3.922*** (0.542)	-0.731^{***} (0.267)	-0.631^{***} (0.138)
Constant	-0.000 (1.207)	0.295 (0.567)	-16.238 (195.794)	1.895*** (0.453)	-10.482 (97.519)
Year Control	Yes	Yes	Yes	Yes	Yes
State Control	Yes	Yes	Yes	Yes	Yes
Observations	1,275	1,275	1,275	1,275	1,275

 $^{^*}$ p<0.05; *** p<0.01. This table presents the results of the Poisson regression model. Weighted variable is the the weighted average of killed, injured with and arrested with weight a, .5 and .25 respectively. In this table to control for the population differences in all districts, the ratio of Muslims' and Hindus' population in the district is used.

1 Polarization

Table 3: OLS Results

	Dependent variable:				
	Number of Conflicts	Weighted	Killed	Injured	Arrests
	(1)	(2)	(3)	(4)	(5)
dummies_district	-0.000 (0.000)	-9.221 (8.669)	-1.464 (2.559)	-0.556 (5.208)	-29.916 (23.571)
fraction	0.000 (0.000)	4.414 (23.765)	8.543 (7.016)	12.139 (14.278)	-40.791 (64.621)
Constant	1.000*** (0.000)	-9.117 (73.627)	-3.311 (21.736)	4.387 (44.235)	-32.000 (200.202)
Year Control	Yes	Yes	Yes	Yes	Yes
State Control	Yes	Yes	Yes	Yes	Yes
Observations	1,275	1,275	1,275	1,275	1,275

^{*}p<0.1; **p<0.05; ***p<0.01. In here I used the fraction of populations.

Table 4: Poisson Results

	Dependent variable:					
	Number of Conflicts	Weighted	Killed	Injured	Arrests	
	(1)	(2)	(3)	(4)	(5)	
dummies_district	-0.000 (0.000)	-0.256^{***} (0.016)	-0.260^{***} (0.042)	-0.004 (0.021)	-0.365^{***} (0.011)	
fraction	0.000 (0.000)	0.107** (0.042)	1.381*** (0.106)	0.599*** (0.057)	-0.560^{***} (0.029)	
Constant	1.000*** (0.000)	0.276 (0.536)	-12.885 (196.723)	1.106*** (0.382)	-11.048 (96.744)	
Year Control	Yes	Yes	Yes	Yes	Yes	
State Control	Yes	Yes	Yes	Yes	Yes	
Observations	1,275	1,275	1,275	1,275	1,275	

^{*}p<0.1; **p<0.05; ***p<0.01. In here I used the fraction of populations.

Table 5: OLS Results

	Dependent variable:				
	Number of Conflicts	Weighted	Killed	Injured	Arrests
	(1)	(2)	(3)	(4)	(5)
dummies_district	0.000 (0.000)	-10.342 (8.671)	-1.655 (2.561)	-0.832 (5.211)	-33.084 (23.571)
polar	0.000 (0.000)	-4.913 (18.349)	5.153 (5.418)	7.290 (11.026)	-54.844 (49.877)
Constant	1.000*** (0.000)	-6.529 (73.182)	-1.137 (21.610)	7.481 (43.974)	-36.530 (198.927)
Year Control	Yes	Yes	Yes	Yes	Yes
State Control	Yes	Yes	Yes	Yes	Yes
Observations	1,275	1,275	1,275	1,275	1,275

^{*}p<0.1; **p<0.05; ***p<0.01. In here I used the polarization of populations.

Table 6: Poisson Results

	Dependent variable:					
	Number of Conflicts	Weighted	Killed	Injured	Arrests	
	(1)	(2)	(3)	(4)	(5)	
dummies_district	0.000 (0.000)	-0.294^{***} (0.016)	-0.310^{***} (0.041)	-0.014 (0.021)	-0.407^{***} (0.011)	
polar	0.000 (0.000)	-0.175^{***} (0.033)	0.792*** (0.078)	0.383*** (0.044)	-0.794^{***} (0.023)	
Constant	1.000*** (0.000)	0.363 (0.536)	-12.486 (193.346)	1.278*** (0.382)	-11.155 (98.651)	
Year Control	Yes	Yes	Yes	Yes	Yes	
State Control	Yes	Yes	Yes	Yes	Yes	
Observations	1,275	1,275	1,275	1,275	1,275	

^{*}p<0.1; **p<0.05; ***p<0.01. In here I used the fraction of populations.