Outline

- 1 Problem Overview
- 2 Selection Sort
- 3 Merge Sort
- 4 Lower Bound for Comparison Based Sorting
- 5 Non-Comparison Based Sorting Algorithms

Definition

A comparison based sorting algorithm sorts objects by comparing pairs of them.

Definition

A comparison based sorting algorithm sorts objects by comparing pairs of them.

Example

Selection sort and merge sort are comparison based.

Any comparison based sorting algorithm performs $\Omega(n \log n)$ comparisons in the worst case to sort n objects.

Any comparison based sorting algorithm performs $\Omega(n \log n)$ comparisons in the worst case to sort n objects.

In other words

For any comparison based sorting algorithm, there exists an array $A[1 \dots n]$ such that the algorithm performs at least $\Omega(n \log n)$ comparisons to sort A.

Decision Tree

the number of leaves ℓ in the tree must be at least n! (the total number of permutations)

- the number of leaves ℓ in the tree must be at least n! (the total number of permutations)
- the worst-case running time of the algorithm (the number of comparisons made) is at least the depth d

- the number of leaves ℓ in the tree must be at least n! (the total number of permutations)
- the worst-case running time of the algorithm (the number of comparisons made) is at least the depth d
- $lack d \geq \log_2 \ell$ (or, equivalently, $2^d \geq \ell$)

- the number of leaves ℓ in the tree must be at least n! (the total number of permutations)
- the worst-case running time of the algorithm (the number of comparisons made) is at least the depth *d*
- $d \geq \log_2 \ell$ (or, equivalently, $2^d \geq \ell$)
- thus, the running time is at least

$$\log_2(n!) = \Omega(n \log n)$$

$$\log_2(n!) = \Omega(n \log n)$$

Proof

$$\log_2(n!) = \log_2(1 \cdot 2 \cdot \dots \cdot n)$$

$$= \log_2 1 + \log_2 2 + \dots + \log_2 n$$

$$\geq \log_2 \frac{n}{2} + \dots + \log_2 n$$

$$\geq \frac{n}{2} \log_2 \frac{n}{2} = \Omega(n \log n)$$

Outline

- 1 Problem Overview
- 2 Selection Sort
- 3 Merge Sort
- 4 Lower Bound for Comparison Based Sorting
- 5 Non-Comparison Based Sorting Algorithms

			3									
Α	2	3	2	1	3	2	2	3	2	2	2	1

					т							
			Cou	nt	2	7	3					
					\							
1	2	3	4	5	6	7	8	9	10	11	12	

2 | 2 | 2 | 2 | 2 | 2

Counting Sort: Ideas

Assume that all elements of $A[1 \dots n]$ are integers from 1 to M.

Counting Sort: Ideas

- Assume that all elements of $A[1 \dots n]$ are integers from 1 to M.
- By a single scan of the array A, count the number of occurrences of each $1 \le k \le M$ in the array A and store it in Count[k].

Counting Sort: Ideas

- Assume that all elements of $A[1 \dots n]$ are integers from 1 to M.
- By a single scan of the array A, count the number of occurrences of each $1 \le k \le M$ in the array A and store it in Count[k].
- Using this information, fill in the sorted array A'.

CountSort(A[1...n])

 $Count[1...M] \leftarrow [0,...,0]$ for i from 1 to n: $Count[A[i]] \leftarrow Count[A[i]] + 1$

 $\{k \text{ appears } Count[k] \text{ times in } A\}$ $Pos[1...M] \leftarrow [0,...,0]$

 $Pos[1] \leftarrow 1$ for i from 2 to M:

 $Pos[j] \leftarrow Pos[j-1] + Count[j-1]$ $\{k \text{ will occupy range } [Pos[k]...Pos[k+1]-1]\}$ for i from 1 to n:

 $Pos[A[i]] \leftarrow Pos[A[i]] + 1$

 $A'[Pos[A[i]]] \leftarrow A[i]$

Provided that all elements of A[1...n] are integers from 1 to M, CountSort(A) sorts A in time O(n+M).

Provided that all elements of A[1...n] are integers from 1 to M, CountSort(A) sorts A in time O(n+M).

Remark

If M = O(n), then the running time is O(n).

Summary

- Merge sort uses the divide-and-conquer strategy to sort an n-element array in time $O(n \log n)$.
- No comparison based algorithm can do this (asymptotically) faster.
- One can do faster if something is known about the input array in advance (e.g., it contains small integers).