

Universidade Federal do Rio Grande do Norte Centro de Tecnologia - CT Circuitos Digitais

REGISTRADOR DE MÚLTIPLAS FUNÇÕES

ELE2715 - Laboratório 10

Isaac de Lyra Junior

Isaac de Lyra Junior

REGISTRADOR DE MÚLTIPLAS FUNÇÕES

Projeto da disciplina de Circuitos Digitais do Departamento de Engenharia Elétrica da Universidade do Rio Grande do Norte para relatório das atividades.

Docente: Samaherni Morais Dias

SUMÁRIO

1 DESENVOLVIMENTO	4
2 RESULTADOS	6
3 CONCLUSÃO	9
REFERÊNCIAS	10
ANEXO A - CIRCUITO ESQUEMÁTICO COMPLETO	11

1 DESENVOLVIMENTO

A problemática do laboratório é implementar um registrador de múltiplas funções. O registrador possui ao todo seis funções distintas com ordem de prioridade entre elas, por ordem: CLEAR assíncrono, manter, carregar, deslocar à direita, deslocar à esquerda e set síncrono). A Figura 1 mostra o bloco do circuito que deve ser implementado. Se SHR = 1, o registrador deverá deslocar, após o pulso de clock, os bits da saída para a direita com o bit de entrada dado por shr_in. Se SHL = 1, o registrador deverá delocar, após o pulso de clock, os bits da saída para a esquerda com o bit de entrada dado por shl_in. Se SET = 1, todos os bits da saída do registrador, após o pulso de clock, devem ir para 1. Se LOAD = 1, o registrador deverá fazer com que a saída O[3:0], após o pulso de clock, receba o valor da entrada I[3:0]. Por fim, se CLR=1, todos os bits da saída do registrador devem ir para 0 imediatamente.

Figura 1 - Bloco do circuito do registrador de múltiplas funções.

Fonte: Dados do problema.

O primeiro passo foi transformar o comportamento que o circuito deverá ter em uma tabela verdade, que irá fornecer como saída uma chave K[2:0] que será utilizada para escolher as funções e precedência das mesmas do nosso circuito, a Figura 2 mostra a tabela criada.

Figura 2 - Tabela verdade de precedência do registrador

FUNÇÕES	ENTRADAS				SAÍDAS		
	LOAD	SHR	SHL	SET	K2	K1	K0
MANTER	0	0	0	0	0	0	0
CARREGAR	1	Χ	Χ	Χ	0	0	1
DESLOCAR DIREITA	0	1	Χ	Χ	0	1	0
DESLOCAR ESQUERDA	0	0	1	Χ	0	1	1
SET	0	0	0	1	1	0	0

Fonte: Elaborado pelo autor.

Em seguida foi utilizada a tabela verdade da Figura anterior para definir a lógica combinacional dos bits da chave **K**. O resultado está Figura 3

Figura 3 - Lógica combinacional dos bits da chave K

SAÍDA	LÓGICA COMBINACIONAL
K2	~LOAD ~SHR ~SHL SET
K1	~LOAD SHL + ~LOAD SHR
K0	~SHR SHL + LOAD

Fonte: Elaborado pelo autor.

A idéia é utilizar **K** como chave de quatro multiplexadores 8x1 que vai ser responsável por selecionar qual função deve ocorrer, cada saída dos multiplexadores são conectadas a um Flip Flop do tipo D, a saída destes flip flops será a saída **O**[3:0] do circuito. Desta forma, os multiplexadores terá como primeira entrada o valor armazenado na saída dos flip flops, ou seja, uma realimentação, essa lógica será utilizada na função manter, para a função carregar, foi definido que a segunda entrada dos multiplexadores será o valor **I**[3:0], desta forma, quando a chave **K** selecionar esta saída, os flip flops irão carregar este valor na saída, após o pulso de clock.

Para a função deslocar à direita, foi colocado como entradas dos multiplexadores os bits carregados no flip flop à esquerda, com exceção do multiplexador mais à esquerda que irá carregar o SHR_IN no flip flop responsável pelo bit mais significativo de **O**. A mesma lógica é utilizada para a função deslocar à esquerda, sendo que dessa vez carregando os bits dos flip flops à direita, com exceção do flip flop responsável pelo bit menos significativo, este carregará SHL_IN. Por fim, para a função carregar é definido como entrada dos multiplexadores os bits da entrada **I**[3:0] do circuito, assim, após o pulso de clock é carregado este valor na saída. A função

clear, por ser assíncrona, foi definida como entrada reset destes flip flops, desta forma, assim que CLR = 1, os flip flops são zerados.

2 RESULTADOS

Para a implementação do circuito deste registrador de funções foi utilizado o software Proteus em sua versão 8.9. Como componentes foi utilizado CI's comerciais dados na Tabela 1.

Tabela 1 - Componentes utilizados

FUNÇÃO	CI COMERCIAL
NOT	7404
AND[2]	7408
OR[2]	7432
MULTIPLEXADOR 8X1	74151
FLIP FLOP D	4013
RESISTOR	560 Ω

Fonte: Elaborado pelo autor.

Com toda a lógica combinacional definida, foi possível implementar o bloco responsável por definir os bits da chave **K**, que utiliza como entrada o LOAD, SHR, SHL e SET, o resultado está exposto na Figura 4.

Figura 4 - Circuito combinacional do seletor K

Fonte: Elaborado pelo autor.

Em seguida, foi utilizado \mathbf{K} como chave seletora de 4 multiplexadores 8x1, a saída de cada multiplexador é utilizada como entrada em um flip flop D, está na Figura 5 e 6 respectivamente.

Figura 5 - Conteúdo do arquivo .do

Fonte: Elaborado de autor.

Figura 6 - Conteúdo do arquivo .do

Fonte: Elaborado de autor.

Por fim, o circuito ficou como demonstrado na Figura 7, na mesma figura também é possível ver uma simulação do registrador de funções realizando a função LOAD, carregando o número I[3:0] na saída O[3:0]. O esquemático como um todo pode ser visto no ANEXO A.

Figura 9 - Simulação da função LOAD

Fonte: Elaborado pelo autor.

3 CONCLUSÃO

O relatório tinha como finalidade apresentar a implementação de um registrador de funções que terá 6 funções, tais funções também possuem uma ordem de prioridade. Para conseguir implementar esta ordem de prioridade foi feito uma tabela verdade e feito uma chave seletora para selecionar qual função deve ser selecionada a partir das entradas do circuito. Toda a implementação e simulação foi realizada no software Proteus.

REFERÊNCIAS

TOCCI, Ronald J.; WIDMER, Neal S.; MOSS, Gregory L.. **Sistemas Digitais: Princípios e Aplicações**. 11a ed. São Paulo: Pearson, 2011. 844 p.

VAHID, Frank. **Sistemas digitais: projeto, otimização e HDLS**. Rio Grande do Sul: Artmed Bookman, 2008. 558 p.

ANEXO A - CIRCUITO ESQUEMÁTICO COMPLETO

