

CORRESPONDENCES FROM TILTING THEORY IN HIGHER HOMOLOGICAL ALGEBRA

Joint work with J. August, J. Haugland, S. Kvamme, Y. Palu and H. Treffinger

Karin M. Jacobsen

Motivation

Theorem ([AIR '14])

Let A be a finite-dimension algebra over an algebraically closed field k. We have bijections between:

- The set of functorially finite torsion classes in mod A;
- ► The set of basic two-term silting complexes for A;
- ▶ The set of maximal τ -rigid pairs in mod A.

Overview

Higher homological algebra

(higher) Torsion classes

(higher) τ -tilting

Silting

Correspondence

d-cluster-tilting subcategories

Let $\mathcal A$ be an essentially small, finite length abelian category, satisfying the Krull–Remak–Schmidt property.

Fix some integer $d \ge 1$

Let $\mathcal{M} \subseteq \mathcal{A}$ be generating-cogenerating and assume

$$\mathcal{M} = \{ X \in \mathcal{A} \mid \operatorname{Ext}_{\mathcal{A}}^{i}(X, M) = 0 \text{ for } M \in \mathcal{M} \text{ and } i = 1, \dots, d - 1 \}$$
$$= \{ Y \in \mathcal{A} \mid \operatorname{Ext}_{\mathcal{A}}^{i}(M, Y) = 0 \text{ for } M \in \mathcal{M} \text{ and } i = 1, \dots, d - 1 \}.$$

Then \mathcal{M} is a d-cluster-tilting subcategory of \mathcal{A} [lyama '07].

d-abelian categories

The category \mathcal{M} is *d-abelian*. [Jasso '16] Amongst other things it has

d-exact sequences
$$0 \to X \to E_1 \to \cdots \to E_d \to Y \to 0$$

d-kernels
$$0 \to K_1 \to \cdots \to K_d \to X \xrightarrow{f} Y$$

d-cokernels
$$X \xrightarrow{f} Y \rightarrow C_1 \rightarrow \cdots \rightarrow C_d \rightarrow 0$$

Higher Auslander-Reiten translation $\tau_d X = \tau \Omega^{d-1} X$

Any d-abelian category can be obtained as a d-cluster-tilting subcategory of an abelian category [Kvamme '22, EN-I '22].

We will consider $\mathcal{M} \subseteq \mathcal{A} = \text{mod} A$, where A is a finite-dimensional algebra over a field k.

Running example: A_4^2

Running example: $\mathcal{M} \subset \operatorname{mod} A_4^2$

Torsion Classes

A pair $(\mathcal{T}, \mathcal{F})$ of subcategories of \mathcal{A} is a torsion pair if the following conditions are satisfied:

1. For every $X \in A$, there exists a short exact sequence

$$0 \rightarrow tX \rightarrow X \rightarrow fX \rightarrow 0$$

where $tX \in \mathcal{T}$ and $tX \in \mathcal{F}$.

2. $\operatorname{\mathsf{Hom}}_{\mathcal{A}}(X,Y)=0$ for all $X\in\mathcal{T}$ and $Y\in\mathcal{F}$.

We say that $\mathcal T$ is a torsion class and $\mathcal F$ a torsion free class.

Theorem ([Dickson '66])

A subcategory $\mathcal T$ of $\mathcal A$ is a torsion class if and only if $\mathcal T$ is closed under extensions and quotients.

Higher Torsion Classes [Jørgensen '16]

Let \mathcal{M} be a d-abelian category. A subcategory \mathcal{U} of \mathcal{M} is a d-torsion class if for every M in \mathcal{M} , there exists a d-exact sequence

$$0 \rightarrow U_M \rightarrow M \rightarrow V_1 \rightarrow \cdots \rightarrow V_d \rightarrow 0$$

such that the following conditions are satisfied:

- **1.** The object U_M is in \mathcal{U} .
- **2.** The sequence $0 \to \operatorname{Hom}_{\mathcal{M}}(U, V_1) \to \cdots \to \operatorname{Hom}_{\mathcal{M}}(U, V_d) \to 0$ is exact for every U in \mathcal{U} .

Characterisation of higher torsion classes

Theorem ([AJST '22])

Let $\mathcal{U} \subseteq \mathcal{M} \subseteq \operatorname{mod} A$ be a d-torsion class in the d-cluster tilting subcategory \mathcal{M} of $\operatorname{mod} A$. Then the minimal torsion class of $\operatorname{mod} A$ containing \mathcal{U} is the unique torsion class \mathcal{T} satisfying:

- **1.** $\forall M \in \mathcal{M}, tM \in \mathcal{U};$
- **2.** \mathcal{T} is the minimal torsion class containing all tM for $M \in \mathcal{M}$;
- **3.** $\forall M, N \in \mathcal{M}$, $\operatorname{Ext}_{\mathcal{A}}^{d-1}(tM, fN) = 0$.

Moreover, in this case we have $\mathcal{U} = \mathcal{M} \cap \mathcal{T}$ and $tM \cong U_M$ for all $M \in \mathcal{M}$.

Characterization of higher torsion classes

Theorem ([AHJKPT '23])

Let \mathcal{M} be a d-cluster tilting subcategory of an abelian length category \mathcal{A} . A subcategory $\mathcal{U} \subseteq \mathcal{M}$ is a d-torsion class if and only if it is closed under d-extensions and d-quotients.

Closure under *d*-quotients:

$$M \xrightarrow{f} U \to E_1 \to E_2 \to \cdots \to E_d \to 0$$

Closure under *d*-extensions:

$$0 \to X \to E_1 \to \cdots \to E_d \to Y \to 0$$

Example

Maximal τ -rigid pairs

Definition ([AIR '14])

Consider a pair (M, P) with $M \in \text{mod } A$ and $P \in \text{proj } A$.

- ▶ M is called τ -rigid if $Hom_A(M, \tau M) = 0$.
- ▶ (M, P) is called a τ -rigid pair in \mathcal{M} if M is τ -rigid and $Hom_A(P, M) = 0$.
- (M, P) is called a maximal τ -rigid pairs if either of the following equivalent conditions are satisfied:
 - ightharpoonup |M| + |P| = |A| (also known as a support au-tilting pair)
 - If $\operatorname{Hom}(M, \tau X) = 0$, $\operatorname{Hom}(X, \tau M) = 0$ and $\operatorname{Hom}(P, X) = 0$ then $X \in \operatorname{\mathsf{add}} M$.

Maximal τ_d -rigid pairs

Definition ([JJ '20, ZZ '23])

Let \mathcal{M} be a d-cluster tilting subcategory of mod A and consider a pair (M, P) with $M \in \mathcal{M}$ and $P \in \operatorname{proj} A$.

- ▶ M is called τ_d -rigid if $Hom_A(M, \tau_d M) = 0$.
- ▶ (M, P) is called a τ_d -rigid pair in \mathcal{M} if M is τ_d -rigid and $\text{Hom}_A(P, M) = 0$.
- \blacktriangleright (M, P) is called a maximal τ_d -rigid pair in \mathcal{M} if it satisfies:
 - ▶ If N is in \mathcal{M} , then

$$N \in \operatorname{add}(M) \iff egin{cases} \operatorname{\mathsf{Hom}}_{\mathcal{A}}(M, au_d N) = 0, \ \operatorname{\mathsf{Hom}}_{\mathcal{A}}(N, au_d M) = 0, \ \operatorname{\mathsf{Hom}}_{\mathcal{A}}(P, N) = 0. \end{cases}$$

▶ If *Q* is in proj *A*, then

$$Q \in \operatorname{\mathsf{add}}(P) \iff \operatorname{\mathsf{Hom}}_A(Q,M) = 0.$$

From torsion classes to τ_d -rigid pairs [AHJKPT (wip)]

- ▶ Start with a functorially finite *d*-torsion class $\mathcal{U} \subseteq \mathcal{M} \subseteq \text{mod } A$.
- ▶ Let $M_{\mathcal{U}}$ be a basic additive generator of Ext^d-projectives in \mathcal{U} .
- ▶ let P_U be the maximal basic projective A-module such that $\operatorname{Hom}_A(P_U, \mathcal{U}) = 0$
- ▶ Then $(M_{\mathcal{U}}, P_{\mathcal{U}})$ is a basic τ_d -rigid pair in \mathcal{M} with $|M_{\mathcal{U}}| + |P_{\mathcal{U}}| = |A|$.

This gives an injection ϕ from the set of functorially finite d-torsion classes to the set of τ_d -rigid pairs.

Example

Let $M = \bigoplus \odot$ and $P = P_0$. (M, P) is a τ_d -rigid pair.

Silting complexes

Definition

The complex $S \in K^b(\text{proj } A)$ is a presilting complex if $\text{Hom}_{K^b(\text{proj } A)}(S, S[i]) = 0$ for all i > 0.

We say that S is silting if moreover **thick**(S) = K^b (proj A), i.e., the smallest triangulated full subcategory containing S and closed under direct summands in K^b (proj A).

A (pre)-silting complex $S \in K^b(\text{proj }A)$ is a (d+1)-term (pre)-silting complex if it is concentrated in homological degrees $0, 1, \ldots, d$, and has homology concentrated in degrees 0 and d.

Connection to τ_d -rigid pairs

Let P_{\bullet}^{U} be the complex given by the minimal projective resolution of U, with the projective cover in degree zero.

Proposition (Consequence of [MM])

Let (U, P_U) be a τ_d -rigid pair in the d-cluster tilting subcategory \mathcal{M} . Then $P_{\bullet}^{(U, P_U)} := P_{\bullet}^U \oplus P_U[d]$ is a (d+1)-term presilting object in $K^b(\operatorname{proj} A)$.

Theorem

Let A be a finite-dimensional algebra and let $\mathcal U$ be a functorially finite d-torsion class in a d-cluster tilting subcategory $\mathcal M \subset \operatorname{mod} A$.

If $(M_{\mathcal{U}}, P_{\mathcal{U}})$ is the basic τ_d -rigid pair induced by \mathcal{U} , then $P_{\bullet}^{(M_{\mathcal{U}}, P_{\mathcal{U}})}$ is a silting object in $K^b(\text{proj }A)$.

Example

Consequence for ϕ

Proposition

Let A be a finite-dimensional algebra and let \mathcal{U} be a functorially finite d-torsion class in a d-cluster tilting subcategory \mathcal{M} in mod A. Then the τ_d -rigid pair $(M_{\mathcal{U}}, P_{\mathcal{U}})$ is maximal.

Proof.

 $P_{\bullet}^{(M_{\mathcal{U}},P_{\mathcal{U}})} = P_{\bullet}^{M_{\mathcal{U}}} \oplus P_{\mathcal{U}}[d]$ is silting. Hence $K^b(\text{proj }A) = \mathbf{thick}(P_{\bullet}^{(M_{\mathcal{U}},P_{\mathcal{U}})})$ Maximality is shown by lifting to $K^b(\text{proj }A)$.

In other words, we have an injection ϕ from the set of functorially finite d-torsion classes to the set of maximal τ_d -rigid pairs.

Main Result [AHJKPT (wip)]

Classical correspondence

Main result [AHJKPT (wip)]

References I

- J. August, J. Haugland, K. Jacobsen, S. Kvamme, Y. Palu, and H. Treffinger. *A characterisation of higher torsion classes*, arXiv:2301.10463
- J. August, J. Haugland, K. Jacobsen, S. Kvamme, Y. Palu, and H. Treffinger. Functorially finite higher torsion classes and τ_d -tilting theory, work in progress.
- T. Adachi, O. Iyama and I. Reiten, τ -tilting theory, Compos. Math. (2014), vol. 150, no. 3, 415–452.
- J. Asadollahi, P. Jørgensen, S. Schroll and H. Treffinger, *On higher torsion classes*, Nagoya Math. J. 248 (2022), 823–848.
- S. E. Dickson, *A torsion theory for abelian categories*, Trans. Amer. Math. Soc., 121 (1966), 223–235.

References II

- R. Ebrahimi and A. Nasr-Isfahani, *Higher Auslander's formula*, Int. Math. Res. Not. IMRN 2022, no. 22, 18186-–18203.
- O. Iyama, *Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories*, Adv. Math. 210 (2007), no. 1, 22–50.
- K. M. Jacobsen and P. Jørgensen, *Maximal* τ_d -rigid pairs, J. Algebra 546 (2020), 119–134.
- G. Jasso, *n-abelian and n-exact categories*, Math. Z. 283 (2016), no. 3-4, 703–759.
- G. Jasso, J. Külshammer, C. Psaroudakis and S. Kvamme, *Higher Nakayama algebras I: Construction*, Adv. Math. 351 (2019), 1139–1200.

References III

- P. Jørgensen, *Torsion classes and t-structures in higher homological algebra*, Int. Math. Res. Not. IMRN 2016, no. 13, 3880–3905.
- S. Kvamme, *Axiomatizing subcategories of abelian categories*, J. Pure Appl. Algebra 226 (2022), no. 4, 106862.
- L. Martinez and O. Mendoza, *n-term silting complexes in* $K^b(\text{proj}(\Lambda))$, J. of Algebra Volume 622, 15 May 2023, Pages 98-133.
- P. Zhou and B. Zhu, Support τ_n -tilting pairs, J. Algebra 616, 193-211 (2023).

Thanks for your attention!

