# التطورات غير الرتيبة

مراقبة تطور جملة كيميائية

الكتاب الثاني

الوحدة 06

GUEZOURI Aek - lycée Maraval - Oran

الدرس 3

## الأسترة وإماهة الأسـتر

## في هذا الدرس

- 1 يجب أن أعرف تسمية الكحولات والحموض الكربوكسيلية والأسترات . (التسمية المنهجية)
  - 2 يجب أن أعرف كتابة معادلة الأسترة بواسطة الصيغ نصف المفصلة .
    - 3 يجب أن أعرف خصائص تفاعل الأسترة و الإماهة .
    - 4 يجب أن أعرف العوامل المؤثرة في تفاعل الأسترة إماهة .
  - 5 يجب أن أعرف كيفية استنتاج مردود الأسترة إعتمادا على المعايرة حمض أساس.

#### الدرس

# 1 - الكحــولات

 H H H H H

 H H H H H

 H H H H H

 H H H H H

 H H H H H

## التسمية المنهجية للكحولات:

 $C_nH_{2n+1}-OH$  الصيغة العامة للكحولات الأحادية هي  $C_nH_{2n+2}O$  ، وتُكتب على الشكل حولات الأحادية هي حيث  $-C_nH_{2n+1}$  .

الكربون الوظيفي هو الكربون الذي ترتبط به الزمرة الوظيفية OH -

نحصل شكليا (وليس كيميائيا) على كحول باستبدال ذرة – OH من الهيدروجين في ألكان ( $C_nH_{2n+2}$ ) بالزمرة الوظيفية

$$H = \begin{array}{c} H \\ -C = OH \end{array}$$
 الميثان  $CH_4$  الميثان  $CH_4$  الميثان  $H = C = C_2H_6$  الإيثان  $C_2H_6$  الإيثان  $C_2H_6$ 

#### طريقة التسمية

- نختار أطول سلسلة تشمل الكربون الوظيفي .
- نرقمها من الطرف الأقرب للكربون الوظيفي ، وكل الكربونات المرتبطة مع هذه السلسلة تُعتبر جذور ألكيلية .
- نذكر في اسم الكحول أسماء الجذور مسبوقة بأرقام الكربونات التي تحمل هذه الجذور متبوعة باسم السلسلة الرئيسية مع ذكر رقم الكربون الوظيفي متبوعا بالاحقة أول.

## صورة خير من ألف كلمة:

$$C - \stackrel{2}{C} - \stackrel{1}{C} - OH$$
 $3 \stackrel{2}{C} \qquad 3 \stackrel{2}{C} - \stackrel{1}{C} - OH$ 
 $3 \stackrel{2}{C} \qquad C - \stackrel{1}{C} - OH$ 
 $3 \stackrel{2}{C} \qquad C - \stackrel{1}{C} \qquad$ 

#### أصناف الكحولات

الكحولات الأولية : هي الكحولات التي يكون فيها الكربون الوظيفي مربوطا مباشرة بذرة كربون واحدة .

الكحولات الثانوية: هي الكحولات التي يكون فيها الكربون الوظيفي مربوطا مباشرة بذرتين من الكربون.

الكحولات الثالثية: هي الكحولات التي يكون فيها الكربون الوظيفي مربوطا مباشرة بثلاث ذرات من الكربون.

#### 2 - الحموض الكربوكسيلية

الصيغة العامة  $C_n H_{2n} O_2$  وتُكتب على الشكل  $C_n H_{2n'+1} - COOH$  ، حيث  $C_n H_{2n} O_2$  هو جذر ألكيلي .

نحصل شكليا (وليس كيميائيا) على حمض باستبدال ذرة من الهيدروجين في ألكان ( $C_nH_{2n+2}$ ) بالزمرة الوظيفية

#### طريقة التسمية

- نرقم أطول سلسلة فحمية تشمل الزمرة الوظيفية COOH ، بحيث نعطى دائما الرقم 1 للكربون الموجود في الزمرة الوظيفية .
- نذكر أسماء الجذور مع أرقام ذرات الكربون التي تحمل هذه الجذور ، متبوعة باسم السلسلة الرئيسية في الحمض وفي آخرها اللاحقة ويك

صورة خير من ألف كلمة

## 3 - الأسترات

الأستر هو المركب العضوي الذي نحصل عليه عندما نفاعل حمضا كربوكسيليا مع كحول .

توجد الأسترات في الطبيعة في الورود والأزهار وبعض الفواكة ، وهي التي تكسبها الرائحة الزكية .

الصيغة العامة لطائفة الأسترات هي  $C_nH_{2n}O_2$  ، وهي نفس الصيغة العامة للحموض الكربوكسيلية .

الحموض الكربوكسيلية والأسترات هي متماكبات وظيفية

الوظيفة الأسترية : R'-C-O-R'، حيث R و R' عبارة عن جذرين ألكيليين (يمكن أن يكون R' ذرة هيدروجين في حالة واحدة هي لما يكون الحمض المشارك في تكوين هذا الأستر هو الميثانويك) .

## طريقة التسمية

 $R-COOH = RCOO^- + H^+$ : نعلم أن الحمض الكربوكسيلي يتشرّد في الماء حسب المعادلة :

تسمّى الشاردة السالبة الناتجة عن الحمض شاردة الألكائوات

-H - COO : میثانوات

: CH<sub>3</sub> - COO

البروبانوات :  $CH_3 - CH_2 - COO^-$ 

لما نسمي أستر نبدأ بتسمية الشاردة الحمضية متبوعة باسم السلسلة الرئيسية في الكحول مع ذكر الجذور في الحمض وفي الكحول .

صورة خير من ألف كلمة

ملاحظة: نرقم دائما سلسلتي الحمض والكحول في الأستر إبتداء من الوظيفة الأسترية.

## خصائص تفاعل الأسترة:

- تفاعل غير تام (محدود) ، لأن النواتج (الماء والأستر) تتفاعل في نفس الوقت وتؤدّي بالتفاعل لحالة توازن
  - $({
    m H_3O}^+$  عناعل بطيء جدا في البرودة (يمكن تنشيطه بالحرارة أو بشوارد الهيدرونيوم
- تفاعل لا حراري (نسبة التقدم النهائي لا تتأثر بدرجة الحرارة). هذه الخاصية تكمن في أن عدد أنواع الروابط في المتفاعلات يساوي عددها في النواتج.

#### متابعة تطور التفاعل

نشكل مزيجا متساوي المولات  $(n_0)$  من حمض كربوكسيلي وكحول .

| $R - COOH + R' - OH = R - COO - R' + H_2O$ |             |                 |       |
|--------------------------------------------|-------------|-----------------|-------|
| $n_0$                                      | $n_0$       | 0               | 0     |
| $n_0 - x$                                  | $n_0 - x$   | x               | x     |
| $n_0 - x_f$                                | $n_0 - x_f$ | $x_f$           | $x_f$ |
| $n_0 - x_m$                                | $n_0 - x_m$ | $\mathcal{X}_m$ | $X_m$ |

$$x_f = 0,67 \times n_0$$
 إذا كان الكحول أوليا يكون يكون  $x_f = 0,60 \times n_0$  إذا كان الكحول ثانويا يكون يكون  $x_f \in \left[0,05 \times n_0 \ ; \ 0,1 \times n_0 \right]$  يكون إذا كان الكحول ثالثيا



السلم غير محترم في هذه البيانات

نسبة التقدّم النهائي: هذه النسبة تمثّل كذلك مردود الأسترة.

في حالة مزيج غير متساوى المولات نقسم على كمية المادة الأصغر

من بين الكحول والحمض (أي المتفاعل المحد).

$$r = \frac{n_{ester}}{n_{0 \, acide}} \times 100 \qquad \tau = \frac{n_{ester}}{n_{0 \, acide}}$$

$$au = rac{0.67 n_0}{n_0} = 0.67$$
: بالنسبة لكحول أولي

$$au = \frac{0,60 n_0}{n_0} = 0,60$$
: بالنسبة لكحول ثـانوي

$$au\in \left[0.05 \; ; \; 0.10
ight]$$
 : بالنسبة لكحول ثالثي

نسبة التقدم النهائي 7 لا تتأثر بدرجة الحرارة

لكنها تتأثر بالمزيج الإبتدائي . القيم الموجودة على يمينك خاصة فقط بمزيج متساوى المولات ، أي كمية مادة الكحول تساوى كمية مادة الحمض.

## كسر التفاعل

$$R - COOH + R' - OH = R - COO - R' + H_2O$$

$$Q_r = \frac{\left[R - COO - R'\right] \times \left[H_2O\right]}{\left[RCOOH\right] \times \left[R' - OH\right]} = \frac{n_{ester} \times n_{H_2O}}{n_{acide} \times n_{Al}}$$

$$Q_{rf} = \frac{\left[R - COO - R'\right]_f \times \left[H_2O\right]_f}{\left[RCOOH\right]_f \times \left[R' - OH\right]_f} = K$$

ملاحظة : تركيز الماء يظهر في عبارة ثابت التوازن لأن الماء في هذا التفاعل ليس حالا ، بل يمثل أحد الناتجين .

$$K = \frac{\left(0,67n_0^{}
ight)^2}{\left(0,33n_0^{}
ight)^2} = 4$$
: بالنسبة لكحول أولي

$$K = \frac{\left(0,60n_0\right)^2}{\left(0,40n_0\right)^2} = 2,25$$
: بالنسبة لكحول ثـانوي

ثابت التوازن K لا يتأثر بدرجة الحرارة ولا بالمزيج الإبتدائي ، سواء كان متساوى المولات أو غير متساوي المولات.

## كيف نسر ع تفاعل الأسترة ؟

من أجل تسريع تفاعل الأسترة ، نتبع إحدى الطريقتين ، إما نرفع درجة حرارة المزيج أو نضيف بعض القطرات من حمض الكبريت أو الإثنين معا .



## كيف نرفع (نحسن) مردود الأسترة ؟

نرفع مردود الأسترة بإحدى الطريقتين التاليتين:

- نستعمل مزيجا غير متساوي المولات ( مثلا 1 mol من الكحول و mol 5 من الحمض ) ، في هذه الحالة الكحول يتأستر تقريبا كله .
  - نسحب الماء أو الأستر خلال التفاعل ، لكي لا نسمح لتفاعل الإماهة بالحدوث .

تفاعل الإماهة : تفاعل الإماهة هو التفاعل العكسي للأسترة ، أي التفاعل بين الأستر والماء .

$$0 \\ || \\ R' - C - O - R + H_2O = R - O - H + R' - C - O - H$$

- تفاعل غير تام (محدود) ، لأن النواتج (الكحول والحمض) تتفاعل في نفس الوقت وتؤدّي بالتفاعل لحالة توازن.
  - $(H_3O^+)$  عناعل بطيء جدا في البرودة (يمكن تنشيطه بالحرارة أو بشوارد الهيدرونيوم
- تفاعل لا حراري (نسبة التقدم النهائي لا تتأثر بدرجة الحرارة). هذه الخاصية تكمن في أن عدد أنواع الروابط في المتفاعلات يساوي عددها في النواتج.

#### متابعة تطور التفاعل:

نشكل مزيجا متساوي المولات  $(n_0)$  من أستر والماء .

| $R - COO - R' + H_2O = R - COO H + R' - OH$ |             |                   |                   |  |
|---------------------------------------------|-------------|-------------------|-------------------|--|
| $n_0$                                       | $n_0$       | 0                 | 0                 |  |
| $n_0 - x$                                   | $n_0 - x$   | x                 | x                 |  |
| $n_0 - x_f$                                 | $n_0 - x_f$ | $x_f$             | $x_f$             |  |
| $n_0 - x_m$                                 | $n_0 - x_m$ | $\mathcal{X}_{m}$ | $\mathcal{X}_{m}$ |  |

$$x_f = 0.33 \times n_0$$
 إذا كان الكحول الناتج أوليا يكون  $x_f = 0.40 \times n_0$  يكون يكون  $x_f = 0.40 \times n_0$  إذا كان الكحول الناتج ثالثيا يكون  $x_f \in \left[0.90 \times n_0 \ ; \ 0.95 \times n_0 \right]$  يكون يكون إذا كان الكحول الناتج ثالثيا

#### كسر التفاعل:

$$R - COO - R' + H_2O = R - COO H + R' - OH$$

$$K' = rac{\left(0,33n_0
ight)^2}{\left(0,67n_0
ight)^2} = 0,25$$
: عندما ينتج كحول أولي ينتج كحول ثانوي  $K' = rac{\left(0,40n_0
ight)^2}{\left(0,60n_0
ight)^2} = 0,44$ : عندما ينتج كحول ثانوي

$$Q_r = \frac{\left[R - COOH\right] \times \left[R' - OH\right]}{\left[R - COO - R'\right] \times \left[H_2O\right]} = \frac{n_{acide} \times n_{Al}}{n_{ester} \times n_{H_2O}}$$

$$Q_{rf} = \frac{\left[R - COOH\right]_f \times \left[R' - OH\right]_f}{\left[R - COO - R'\right]_f \times \left[H_2O\right]_f} = K'$$

$$r = \frac{n_{acide}}{n_{0ester}} \times 100$$

$$\tau = \frac{n_{acide}}{n_{0ester}}$$

$$au = rac{0.33 n_0}{n_0} = 0.33$$
: عندما ينتج كحول أولي

$$au=rac{0,40n_0}{n_0}=0,40$$
 : بالنسبة لكحول ثـانوي

$$au\in igl[0.90\ ;\ 0.95igr]$$
 : بالنسبة لكحول ثالثي

نسبة التقدم النهائي 7 لا تتأثر بدرجة الحرارة لكنها تتأثر بالمزيج الابتدائي. القيم الموجودة على يمينك خاصة فقط بمزيج متساوي المولات، أي كمية مادة الأستر تساوي كمية مادة الماء.

## البيانات الخاصة بمزيج متساوي المولات من الماء والأستر:



#### ملحق

استعمال كلور الأسيل:

كلور الأسيل عبارة عن مشتق حمضي ، نحصل عليه باستبدال OH - في الحمض بذرة من الكلور .

لكي نسمي كلور الأسيل نستبدل اللاحقة ويك في الحمض باللاحقة ويل

H O | || H-C-C-CI H

كلور الإيثانويل

کلور البروبانوپل

إذا أردنا أن نؤستر كحولا أسترة تامة نفاعله مع مشتق حمضي مثل كلور الإيثانويل مثلا عوَض حمض الإيثانويك ، في هذه الحالة يكون التفاعل سريعا ومردوده %100 .

تفاعل التصبّن:

هو تفاعل أستر مع محلول مائي لأساس قوي .

 $(Na^+, OH^-)$ مثلا تفاعل إيثانوات الإيثيل مع هيدروكسيد الصوديوم

 $CH_3 - COO - C_2H_5 + (Na^+, OH^-) = (CH_3 - COO^-, Na^+) + C_2H_5 - OH$ 

ينتج كحول وملح إيثانوات الصوديوم .

يُبتعمل هذا التقاعل لصناعة الصابون ، وذلك باستعمال حموض ذهنية ، فيكون الناتج عبارة عن صابون .

تفاعل التصبن سريع وتام .