COMP 251

Algorithms & Data Structures (Winter 2022)

Algorithm Paradigms – Dynamic Programming 2

School of Computer Science McGill University

Slides of (Comp321,2021), Langer (2014), Kleinberg & Tardos, 2005 & Cormen et al., 2009, Jaehyun Park' slides CS 97SI, Topcoder tutorials, T-414-AFLV Course, Programming Challenges books.

Announcements

- A2 is out (just after this lecture).
 - Please start working on it early.
 - Good for you.
 - Good for us.
 - A2 is a good preparation for the midterm.
 - You have 3 weeks; however this assignment is harder than A1.
 - Plus the reading week is in the middle.
 - Midterm will be held two days after the due date.
 - No extensions.

Outline

- Complete Search
- Divide and Conquer.
- Dynamic Programming.
 - Introduction.
 - Examples.
- Greedy.

Dynamic Programming—Take home picture

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ and has value $v_i > 0$.
- Knapsack has capacity of W.
- Goal: fill knapsack so as to maximize total value.

Ex. { 1, 2, 5 } has value 35.

Ex. { 3, 4 } has value 40.

Ex. {3,5} has value 46 (but exceeds weight limit).

i	v_i	w_i
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7
	psack in	

(weight limit w = 11)

value: 20

Taken form baeldung.com

Step 1: Identify the sub-problems (in words).

Step 1.1: Identify the possible sub-problems.

Let OPT(i) be the maximum total value of items 1 to i (i.e., value of the optimal solution to the problem including activities 1 to i).

I just copy the same definition used for the weighted interval scheduling

Let OPT(i) be the maximum total weight of compatible activities 1 to i (i.e., value of the optimal solution to the problem including activities 1 to i).

Step 2: Find the recurrence.

Step 2.1: What decision do I make at every step?.

Case 1: OPT does not select (activity) item i

Must include optimal solution on other (activities) items {1, 2, ..., i-1}.

Case 2: OPT selects (activity) item i

- (activity) Add weight w_i -- (item) Add weight w_i and value v_i
- (activity) Cannot use incompatible activities (item) ?? bus n x mule
- (activity) Must include optimal solution on remaining compatible activities {1, 2, ..., p(j) }. -- (item) ??
 - Selecting item i does not immediately imply that we will have to reject other items
 - Without knowing what other items were selected before i, we do not even know if we have enough room for i.

Step 2: Find the recurrence.

Case 2: OPT selects (activity) item i

- Selecting item i does not immediately imply that we will have to reject other items
- Without knowing what other items were selected before i, we do not even know if we have enough room for i.

Conclusion: We need more subproblems!!!!!

After item n is included in the solution, a weight of w_n is used up and there is $W - w_n$ available weight left

Step 1: Identify the sub-problems (in words).

Step 1.1: Identify the possible sub-problems.

Let OPT(i, w) be the maximum profit subset of items 1 to i with weight limit w.

Step 2: Find the recurrence.

Case 1: OPT does not select item i

OPT selects best of {1, 2, ..., i-1} using weight limit w.

Case 2: OPT selects item i

- New weight limit = w w_i
- OPT selects best of {1, 2, ..., i-1} using this new weight limit.

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\} \end{cases} \text{ otherwise}$$

Optimal substructure property

```
KNAPSACK (n, W, w_1, ..., w_n, v_1, ..., v_n)
```

FOR
$$w = 0$$
 TO W
 $M[0, w] \leftarrow 0$.

FOR
$$i = 1$$
 TO M

FOR $w = 1$ TO W

IF $(w_i > w)$ $M[i, w] \leftarrow M[i-1, w]$.

ELSE $M[i, w] \leftarrow \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}$.

RETURN M[n, W].

i	v _i	Wi
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Max weight W = 11

		М	0	1	2	3	4	5	6	7	8	9	10	11
		{}	0	0	0	0	0	0	0	0	0	0	0	0
		{1}	0											
i		{1,2}	0											
		{1,2,3}	0											
		{1,2,3,4}	0											
•	,	{1,2,3,4,5}	0											

McGill

i	v _i	Wi
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

$$W = 11$$

```
FOR i=1 TO m

FOR w=1 TO W

IF (w_i > w) M[i, w] \leftarrow M[i-1, w].

ELSE M[i, w] \leftarrow \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
```

М	0	1	2	3	4	5	6	7	8	9	10	11
{}	0	0	0	0	0	0	0	0	0	0	0	0
{1}	0	1	1	1	1	1	1	1	1	1	1	1
{1,2}	0											
{1,2,3}	0											
{1,2,3,4}	0											
{1,2,3,4,5}	0											

i	v _i	Wi
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

$$W = 11$$

FOR
$$i=1$$
 TO m
FOR $w=1$ TO W
IF $(w_i > w)$ $M[i, w] \leftarrow M[i-1, w]$.
ELSE $M[i, w] \leftarrow \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}$

М	0	1	2	3	4	5	6	7	8	9	10	11
{}	0	0	0	0	0	0	0	0	0	0	0	0
{1}	0	1	1	1	1	1	1	1	1	1	1	1
{1,2}	0	1										
{1,2,3}	0											
{1,2,3,4}	0											
{1,2,3,4,5}	0											

i	Vi	Wi
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

$$W = 11$$

```
FOR i=1 TO m

FOR w=1 TO W

IF (w_i > w) M[i, w] \leftarrow M[i-1, w].

ELSE M[i, w] \leftarrow \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
```

M	0	1	2	3	4	5	6	7	8	9	10	11
{}	0	0	0	0	0	0	0	0	0	0	0	0
{1}	0	1	1	1	1_	1	1	1	1	1	1	1
V ₂ +M(i-1	,W-W	1	6	M(i-	1,w)							
{1,2,3}	0	7		\int_{λ}								
{1,2,3,4}	0			$\mathcal{N}_{\mathcal{O}_{\mathcal{O}}}$								
{1,2,3,4,5}	0											

i	v _i	w _i
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

$$W = 11$$

```
FOR i=1 TO m

FOR w=1 TO W

IF (w_i > w) M[i, w] \leftarrow M[i-1, w].

ELSE M[i, w] \leftarrow \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
```

М	0	1	2	3	4	5	6	7	8	9	10	11
{}	0	0	0	0	0	0	0	0	0	0	0	0
{1}	0	1	1	1,	1	1	1	1	1	1	1	1
{1, V ₂ +	M(i-1	,W-W ₂	6	7	M(i-	1,w)						
{1,2,3}	0	الملك	,									
{1,2,3,4}	0											
{1,2,3,4,5}	0											

i	Vi	Wi
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

$$W = 11$$

```
FOR i=1 TO m

FOR w=1 TO W

IF (w_i > w) M[i, w] \leftarrow M[i-1, w].

ELSE M[i, w] \leftarrow \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
```

М	0	1	2	3	4	5	6	7	8	9	10	11
{}	0	0	0	0	0	0	0	0	0	0	0	0
{1}	0	1	1	1	1	1	1	1	1	1	1	1
{1,2}	0	1	6	7	7	7	7	7	7	7	7	7
{1,2,3}	0											
{1,2,3,4}	0											
{1,2,3,4,5}	0											

i	Vi	Wi
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

$$W = 11$$

```
FOR i=1 TO m

FOR w=1 TO W

IF (w_i > w) M[i, w] \leftarrow M[i-1, w].

ELSE M[i, w] \leftarrow \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
```

M	0	1	2	3	4	5	6	7	8	9	10	11
{}	0	0	0	0	0	0	0	0	0	0	0	0
{1}	0	1	1	1	1	1	1	1	1	1	1	1
{1,2}	0	1	6	7	7	7	7	7	7	7	7	7
{1,2,3}	0	1	6	7	7	18	19	24	25	25	25	25
{1,2,3,4}	0											
{1,2,3,4,5}	0											

i	Vi	Wi
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

$$W = 11$$

```
FOR i=1 TO m

FOR w=1 TO W

IF (w_i > w) M[i, w] \leftarrow M[i-1, w].

ELSE M[i, w] \leftarrow \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
```

M	0	1	2	3	4	5	6	7	8	9	10	11
{}	0	0	0	0	0	0	0	0	0	0	0	0
{1}	0	1	1	1	1	1	1	1	1	1	1	1
{1,2}	0	1	6	7	7	7	7	7	7	7	7	7
{1,2,3}	0	1	6	7	7	18	19	24	25	25	25	25
{1,2,3,4}	0	1	6	7	7	18	22	24	28	29	29	40
{1,2,3,4,5}	0											

i	v _i	Wi
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

$$W = 11$$

My!

FOR $i = 1$ TO n
For $w = 1$ to W
IF $(w_i > w)$ $M[i, w] \leftarrow M[i-1, w]$.
ELSE $M[i, w] \leftarrow \max \{ M[i-1, w], v_i + M[i-1, w-w_i] \}$
W + \

М	0	1	2	3	4	5	6	7	8	9	10	11
{}	0	0	Ite	m 3	in			0	0	0	0	0
{1}	0	1		utio				It	em 4	4 in		
{1,2}	0 🛧	1	6	7	7	7	7	S	oluti	on		
{1,2,3}	0	1	6	7	7	18	19	24	25	25	25	25
{1,2,3,4}	0	1	6	7	7	18	22	24	28	29	29	40
{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	35	40

Theorem. There exists an algorithm to solve the knapsack problem with n items and maximum weight W in $\Theta(n|W)$ time and $\Theta(n|W)$ space.

Pf.

weights are integers between 1 and W

- Takes O(1) time per table entry.
- There are Θ(n W) table entries. ← "pseudo-polynomial"
- After computing optimal values, can trace back to find solution: take item i in OPT(i, w) iff M[i, w] < M[i-1, w].

Problem: given two strings x and y, find the longest common subsequence (LCS) and print its length.

Example:

- x : ABCBDAB
- · y : BDCABC
- "BCAB" is the longest subsequence found in both sequences, so the answer is 4.

Step 1: Identify the sub-problems (in words).

Step 1.1: Identify the original problem.

Let C_{nm} be the length of the LCS of $x_{1..n}$ and $y_{1..m}$

Step 1.2: Identify the possible sub-problems.

Let C_{ij} be the length of the LCS of $x_{1..i}$ and $y_{1..i}$

Step 2: Find the recurrence.

Step 2.1: What decision do I make at every step?.

Two options. To contribute to the LCS length or not.

- If $x_i = y_j$, they both contribute to the LCS => match same character match
- If x_i!= y_i, either x_i or y_i does not contribute to the LCS, so one can be dropped

Step 2: Find the recurrence.

Step 2.1: What decision do I make at every step?.

Two options. To contribute to the LCS length or not.

- If x_i = y_i, they both contribute to the LCS => match
- If x_i!= y_i, either x_i or y_i does not contribute to the LCS, so one can be dropped

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let Z = $\langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .

 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.

 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Optimal substructures

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- If $z_k \neq x_m$, then we could append $x_m = y_n$ to Z to obtain a common subsequence of X and Y of length k+1, contradicting the supposition that Z is a LCS of X and Y.
- The prefix Z_{k-1} is a common subsequence of X_{m-1} and Y_{n-1} with length k-1. We wish to show that it is an LCS.
 - Suppose for the purpose of contradiction that there exists a common subsequence W of X_{m-1} and Y_{n-1} with length greater than k-1. Then, appending $x_m = y_n$ to produce W produces a common subsequence of X and Y whose length is greater than k, which is a contradiction.

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- If $z_k \neq x_m$, then Z is a common subsequence of X_{m-1} and Y. If there were a common subsequence W of X_{m-1} and Y with length greater than k, then W would also be a common subsequence of X_m and Y, contradicting the assumption that Z is an LCS of X and Y.

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Overlapping

• To find an LCS of X and Y, we may need to find the LCSs of X and Y_{n-1} and of X_{m-1} and Y. But each of these subproblems has the subsubproblem of finding an LCS of X_{m-1} and Y_{n-1} .

Step 2: Find the recurrence.

Step 2.1: What decision do I make at every step?.

Two options. To contribute to the LCS length or not.

- If x_i = y_j, they both contribute to the LCS => match
 - If $x_i != y_j$, either x_i or y_j does not contribute to the LCS, so one can be dropped

Step 2: Find the recurrence.

- If x_i = y_i, they both contribute to the LCS => match
 - $C_{ij} = C_{i-1,j-1} + 1$
- Otherwise, either x_i or y_j does not contribute to the LCS, so one can be dropped
 - $\frac{\text{dropped}}{\cdot C_{ij}} = \max\{C_{i-1,j}, C_{i,j-1}\}$

Step 3: Recognize and solve the base cases.

•
$$C_{i0} = C_{0i} = 0$$
. One is empty

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

Step 4: Implement a solving methodology.

```
for(j=1;j<=m;j++){
     if(x[i]==y[j])
        c[i][j]=c[i-1][j-1]+1; ( )
     else
        c[i][j]=max(c[i-1][j],c[i][j-1]) ( x > 2
```

Step 4: Implement a solving methodology.

	_	Â	В	C	В	D	Α	В
-	0	0	0	0	0	0	0	0
B	0	0	1	1	1	1	1	1
D	0	0	1	1	1	2	2	2
C	0	0	1	2	2	2	2	2
A	0	0	1	2	2	2	ო	3
В	0	0	1	2	2	2	3	4
C	0	0	1	2	2	2	3	4

Dynamic Programming—trees

Problem: given a tree, find the size of the Largest Independent **S**et (LIS). A set of nodes is an independent set if there are no edges between the nodes.

Example:

The largest independent set (LIS) is in white. The size of the LIS is 5.

Dynamic Programming—trees

Step 1: Identify the sub-problems (in words).

Step 1.1: Identify the original problem.

MIS(r) denote the size of the largest independent set in the tree with root at r.

Step 1.2: Identify the possible sub-problems.

MIS(v) denote the size of the largest independent set in the subtree rooted at v.

Dynamic Programming—trees

Step 2: Find the recurrence.

Step 2.1: What decision do I make at every step?.

Two options.

- Include the node.
 - A set that includes v necessarily excludes all of v's children.
- Do not include the current node (root).
 - Any independent set is the union of independent sets in the subtrees rooted at the children of v.

Step 2: Find the recurrence.

Step 2.1: What decision do I make at every step?.

Two options.

- Include the node.
 - A set that includes v necessarily excludes all of v's children.
- Do not include the current node (root).
 - Any independent set is the union of independent sets in the subtrees rooted at the children of *v*.

$$MIS(v) = \max \left\{ \sum_{w \downarrow v} MIS(w), \ 1 + \sum_{w \downarrow v} \sum_{x \downarrow w} MIS(x) \right\}$$

$$\text{notation } w \downarrow v \text{ means "} w \text{ is a child of } v \text{"}$$

$$\text{children w of v} \qquad \text{grandchildren x of v} \qquad \text{of v$$

$$MIS(v) = \max \left\{ \sum_{w \downarrow v} MIS(w), \ 1 + \sum_{w \downarrow v} \sum_{x \downarrow w} MIS(x) \right\}$$

Step 4: Implement a solving methodology.

- What data structure should we use to memoize this recurrence?
 - Array, 2D array, tree?
- What's a good order to consider the subproblems?
 - The subproblems associated with any node *v* depends on the subproblems associated with the children and grandchildren of *v*.
 - We can visit the nodes in any order we like, provided that every vertex is visited before its parent.
 - Pre-order? In-Order? Post-Order?

Step 4: Implement a solving methodology.

- What data structure should we use to memoize this recurrence?
 - The most natural choice is the tree itself! Specifically, for each vertex v, we store the result of *MIS(v)* in a field *v.MIS*
- What's a good order to consider the subproblems?
 - The subproblems associated with any node *v* depends on the subproblems associated with the children and grandchildren of *v*.
 - We can visit the nodes in any order we like, provided that every vertex is visited before its parent.
 - Post-Order traversal.

Dynamic programming is *not* about filling in tables.

It's about smart recursion!

Step 4: Implement a solving methodology.

- We can derive an even simpler algorithm by defining two separate functions over the nodes of the tree.
 - Let MISyes(v) denote the size of the largest independent set of the subtree rooted at v that includes v.
 - Let MISno(v) denote the size of the largest independent set of the subtree rooted at v that excludes v.

$$MISyes(v) = 1 + \sum_{w \downarrow v} MISno(w)$$

$$MISno(v) = \sum_{w \downarrow v} \max \{MISyes(w), MISno(w)\}$$

$$MISyes(v) = 1 + \sum_{w \downarrow v} MISno(w)$$
$$MISno(v) = \sum_{w \downarrow v} \max \{MISyes(w), MISno(w)\}$$

$$MISyes(v) = 1 + \sum_{w \downarrow v} MISno(w)$$

 $MISno(v) = \sum_{w \downarrow v} \max \{MISyes(w), MISno(w)\}$

```
TREEMIS2(v):

v.MISno \leftarrow 0

v.MISyes \leftarrow 1

for each child w of v

v.MISno \leftarrow v.MISno + TREEMIS2(w)

v.MISyes \leftarrow v.MISyes + w.MISno

return max{v.MISyes, v.MISno}
```



```
TREEMIS2(v):

v. MISno ← 0

v. MISyes ← 1

for each child w of v

v. MISno ← v. MISno + TREEMIS2(w)

v. MISyes ← v. MISyes + w. MISno

return max{v. MISyes, v. MISno}
```


Outline

- Complete Search
- Divide and Conquer.
- Dynamic Programming.
 - · Introduction.
 - Examples.
- Greedy.

