Problemas de Corazón

Gabriela Navarro - 20000127, Diego Sican - 19001690, Sandra Soria - 20002619

Introducción

Los problemas cardiovasculares son unas de las principales causas de muerte a nivel mundial, por lo que si estas no son tratadas a tiempo, pueden generar complicaciones de salud a largo plazo. Debido a eso, es importante que se diagnostique de manera precisa, ya que de lo contrario afectaría la vida cotidiana de la persona. Por eso es significativo que se realicen chequeos médicos anuales.

Resultados

Los resultados que se obtuvieron de los modelos fueron los siguientes:

MODELOS	% Accuracy	% Specificity	% Sensitivity
M1	80%	87.1%	72.41%
M2	90%	88.57%	92%
M3	92.19%	94.29%	89.66%

Table 1. Tabla de resultados.

- Accuracy: Porcentaje de predicciones correctas.
- Specificity: Porcentaje de precisión de personas saludables.
- Sensitivity: Porcentaje de detección de personas con problemas cardiovasculares.

Descripción del Dataset

El dataset utilizado para este proyecto abarca distintos parámetros de salud recopilados por diversos individuos. Estas características fueron utilizadas para predecir la ausencia o presencia de una enfermedad cardiovascular.

Los parámetros los cuales se nos proporcionaron son:

- 1. Síntomas:
 - Chest pain type
 - Exercise-induced angina
- 2. Resultados de Pruebas:
- Resting electrocardiographic results
- Thallium Stress Test Result
- 3. Características Demográficas:
- Gender of the patient
- Age of the patient
- 4. Medidas Clínicas:
- Fasting blood sugar
- Number of major vessels colored by fluoroscopy
- ST segment slope

Max HR	Num Vessels	Cholesterol	Diagnosis
60 a 100	0	< 239 mg/dl	Saludable
100 < max hr	1-3	240 mg/dl o más	Problema de Corazón

Table 2. Rangos de Salud

Conclusiones

- Al realizar los diferentes modelos, observamos que los factores más relevantes al momento de detectar una enfermedad cardiovascular son chest pain, thalassemia, exercise angina, gender, st slope, st depression, num vessels.
- Con base en los resultados de precisión obtenidos por los modelos, vemos que la detección de enfermedades utilizando IA puede ser algo factible y capaz de reducir el error humano.
- Utilizando las 297 muestras incluidas en el dataset, tomando en cuenta que se realiza la repartición de entrenamiento y validación, se obtuvieron buenos resultados, por lo que es posible mejorar la precisión del modelo.

Metodología

Se desarrollaron 3 diferentes tipos de modelos de inteligencia artificial, los cuales son capaces de resolver problemas de clasificación. Estos nos indican si los pacientes están saludables o si padecen de problemas cardiovasculares.

El modelo el cual devolvió los mejores resultados está compuesto por 4 capas. La capa de entrada tiene 7 neuronas, luego se agregaron dos capas de 41 neuronas con la función de activación "relu" y una capa de salida con 2 neuronas y función de activación "softmax".

Para el proceso de entrenamiento se utilizó la función de pérdida Sparse Categorical Cross Entropy y como métrica de evaluación la precisión. Se utilizaron 100 epochs y tensorboard para verificar que no hubiera overfitting.

Mejoras a Futuro

- Recopilar muestras de otros pacientes para cubrir áreas que el dataset no toma en cuenta para mejorar la precisión del modelo.
- Investigar factores que puedan ser relevantes para determinar enfermedades cardiovasculares.
- Experimentar con radiografías para observar que la predicción con imágenes pueda tener mejores resultados que la clasificación con un dataset.

Código QR

Semestre 7

Seminario Profesional