

รายงานประจำวิชา

เรื่องเฉพาะทางวิทยาการคอมพิวเตอร์

(Select Topic in Computer Science)

รหัสวิชา 01418496 หมู่ 800

เรื่อง

Sentiment Analysis

จัดทำโดย

สมาชิกกลุ่ม

1. นางสาวภานุมาศ	ชาติไธสง	รหัสนิสิต 6530200347
2. นางสาวมนิชญา	เบญจเจิดสิริ	รหัสนิสิต 6530200380
3. นางสาวอักษรา	สุวัณณะวยัคฆ์	รหัสนิสิต 6530200886
4. นายอัฏดีน	สาแล๊ะ	รหัสนิสิต 6530200894

เสนอ

อาจารย์อรวรรณ อื่มสมบัติ

1. ที่มา และ วัตถุประสงค์

แบรนด์เครื่องสำอางมีความสำคัญในอุตสาหกรรมเครื่องสำอางและความงามมุ่งสู่การสรรหาผลิตภัณฑ์ที่ดี และใช้งานได้ง่าย เพื่อรองรับความต้องการของผู้บริโภคและความพึงพอใจในสินค้า ความคิดเห็นของลูกค้าเป็นสิ่ง สำคัญที่ช่วยให้แบรนด์เครื่องสำอางเข้าใจความพึงพอใจของลูกค้าและ มีโอกาสปรับปรุงผลิตภัณฑ์หรือบริการของ พวกเขาให้ดียิ่งขึ้น

ในยุคที่สื่อสังคมและการแสดงความคิดเห็นในสถานการณ์ต่าง ๆ มีความสำคัญอย่างมาก การวิเคราะห์ ความคิดเห็นเกี่ยวกับแบรนด์เครื่องสำอางในสื่อสังคมและแหล่งข้อมูลออนไลน์เป็นอุปกรณ์ที่มีประโยชน์อย่างมาก ในการหาความรู้สึกและความคิดเห็นของลูกค้าต่อผลิตภัณฑ์ของบริษัท การทำ Sentiment Analysis ในกรณีนี้ มุ่งเน้นที่การวิเคราะห์ความคิดเห็นและความรู้สึกของผู้บริโภคเกี่ยวกับแบรนด์เครื่องสำอางเพื่อ

- 1. เข้าใจความพึงพอใจและความไม่พึงพอใจของลูกค้าต่อผลิตภัณฑ์ของแบรนด์
- 2. ตรวจสอบความนิยมของแบรนด์เครื่องสำอางในสื่อสังคมและแหล่งข้อมูลออนไลน์

การวิเคราะห์ความคิดเห็นเกี่ยวกับแบรนด์เครื่องสำอางจะช่วยให้แบรนด์เครื่องสำอางทราบถึงความพึง พอใจและความคิดเห็นของลูกค้าต่อผลิตภัณฑ์ของพวกเขาและสร้างโอกาสในการปรับปรุงผลิตภัณฑ์และบริการ ของพวกเขาอย่างมีประสิทธิภาพเพื่อตอบสนองความต้องการของลูกค้า

2. Dataset

- Link google sheet: hzp7eln7hFbVZbnS3rBzX0EPgmBNSHH acalg/edit?usp=sharing
- จำนวนข้อมูล
 - ความคิดเห็นเชิงบวก 50 ความคิดเห็น
 - ความคิดเห็นเชิงปกติ 50 ความคิดเห็น
 - ความคิดเห็นเชิงลบ 51 ความคิดเห็น

3. กระบวนการ pre-processing ต่างๆ ที่ทำ

อ่านไฟล์

```
data = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/image/sentiment_lagalce.csv")
print(data.head(20))
```

- แปลงคอลัม class ให้เป็น ตัวเลขที่กำหนด

```
sentiment_mapping = {'positive': 2, 'neutral': 1, 'negative': 0} data['class'] = data['class'].replace(sentiment_mapping) print(data.head(20))
class sentence
0 2 เบบี้บลัชใช้ดีมาก ทาแล้วแก้มชมพูน่ารัก
1 2 เราชอบมาก น่ารักมาก ๆ เลยค่ะ หมดเมื่อไหร่กลับม...
2 2
เลิศเกิน สีสวยมาก
3 2 เห็นแพคเกจในคลิปรีวิวว่ากรี๊ดแล้ว เห็นของจริงย...
```

- ตัดคำ + train test ข้อมูล

```
แบ่งชุดข้อมูล X กับ y เพื่อเทรบ

[ ] sentence = data['sentence'].astype(str)
    y = data['class'].values

ดัดค่า และ train test

[ ] X_tokenized = sentence.apply(word_tokenize, keep_whitespace=False)
    sentence_train, sentence_test, y_train, y_test = train_test_split(X_tokenized, y, test_size=0.3, random_state=100)
```

- แปลงข้อมูล (word representation) โดยใช้ countVectorizer()

4. ผลการทดลองด้วย อัลกอริทึมต่างๆ, % การ train-test และ link ไฟล์ google colab

- ทดลองใช้ classification --> LogisticRegression()

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# Step 1: Train the binomial logistic regression
logreg_classifier = LogisticRegression()
logreg_classifier.fit(X_train, y_train)

# Step 2: Evaluate the model
y_pred = logreg_classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

Accuracy: 0.9130434782608695
```

- ทดลองใช้ classification --> KNN

```
[141] from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2)
classifier.fit(X_train, y_train)

v KNeighborsClassifier
KNeighborsClassifier()

y_pred = classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

Accuracy: 0.717391304347826
```

- ทดลองใช้ classification --> MultinomialNB()

```
[143] from sklearn.naive_bayes import MultinomialNB

if
    classifier_NB = MultinomialNB()
    classifier_NB.fit(X_train, y_train)

v MultinomialNB
    MultinomialNB()

[144] y_predict = classifier_NB.predict(X_test)
    score = classifier_NB.score(X_test, y_test)
    print("Accuracy:", score)

Accuracy: 0.6739130434782609
```

(https://colab.research.google.com/drive/1l1F2bvePzpHqU6k8zqMiYFc-

KWE_DmCd?usp=sharing)

5. confusion matrix การจำแนก class ต่างๆ ของอัลกอริทึมที่มีผลสูงสุด

- confusion matrix เลือกใช้ classification --> LogisticRegression()

```
▶ from sklearn.metrics import classification_report, confusion_matrix
      # Print classification report (precision, recall, F1-score, support)
print("Classification Report:")
      print(classification_report(y_test, y_pred))
      print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
☐ Classification Report:
                                         recall f1-score support

      0.83
      0.91

      0.91
      0.87

      1.00
      0.94

                                                         0.91
                               0.83
                              0.89
                                                                          46
          macro avg
                                       0.91
      weighted avg
      [[15 2 1]
[ 0 10 1]
       [0 0 17]]
```

6. QR code Chatbot:

