Big Data in Transportation

Addressing the Big Data Challenges in ITS

- Artjola MeliShradha Godse

Data Privacy & Security - Ethical Considerations

High:

- Strong laws and regulations.
- Transparent data collection
- Ability for citizens to control their own data

Medium:

- Not too comprehensive laws
- Not well-enforced laws
- Some transparent data

Low:

- Few or no laws and regulations
- Opaque data collection
- Citizens cannot control their own data

Data Management High High	Privacy High Medium
<u> </u>	
High	Medium
Medium	Medium
Medium	High
Medium	Low
Low	Low
Low	Very Low
Low	Low
	Medium Medium Low Low

Data Integration and prediction of accidents

Data Collection and Integration

- Traffic Censors
- Cameras and Surveilance
- Weather Data
- GPS and location data
- Historical Accident Data
- Social Media and Mobile Data

Data Preprocessing and Fusion

- Data Preprocessing
- Data Fusion
- Temporal and Spatial Alignment

Advanced Analytics and Machine Learning

- Descriptive Analytics
- Predictive Modeling
- Real-time Analytics

Factors influencing Predictions

- Traffic Density
- Weather Conditions
- Driver Behavior
- Time of Day

Accident prevention model outputs

- Risk Scores
- Alerts and Warnings
- Decision Support Systems

Challenges in Unstructured Data Storage in ITS

Diverse Data Formats

- Compatibility
- Integration
- Rapid Analysis & Real-time
 Processing

Storage and Retrieval Efficiency

- Volume
- Speed
- Cost Efficiency

Scalability

- Infrastructure
- Maintainability
- Anticipating Future-needs

Real-time vs Streaming Data

Real-time	Streaming data
Defined by requirements of maximum tolerance of time to response	Describing continuous data ingestion, implying potential for decreased time to response

Streaming pipelines needed for 'True Streaming'

Fig. 1. Open-source big data pipeline analysis technologies.

Final Product - Smart Cities

- Benefits of ITS/Smart Cities
- Address challenges of ITS/Smart Cities using Big Data Techniques
- Deep Dive into machine learning algorithms utilized when predicting accidents
- Traffic data streaming using Kafka & Spark