

CS / EE 320 Computer Organization and Assembly Language

Lecture 10

Shahid Masud

Topics: Arithmetic and Logic Operations, Multipliers, Dividers, Simple ALU Design

Topics

- Recap Basic ALU operations, digital logic building blocks
- Binary Multiplier Pencil and paper method
- Binary Multiplier Hardware
- Binary Divider Method
- Binary Divider Hardware
- SIMD and Sub-Word Parallelism
- 32 bit ALU Design with functions AND, OR, NAND, NOR, NOT, Adder, A+B, A-B, A<B, Check Overflow
- QUIZ 2 TODAY

Dissecting an ALU

Combined Adder and 2's Complement Subtraction

Other Digital Components in CPU Design

Decoders

- Select (turn to '1') one out of eight available outputs. Rest of the outputs remain at '0'.
- Used in selecting a particular I/O Device or Memory based on Address lines

Multiplexers

- Has several inputs and one output
- Based on Select lines, connects one of the inputs to the output while other inputs are isolated from the output

Registers

- Temporary Storage made out of flipflop devices
- The data moves from input to the output only at the edge of Clock
- The output is isolated from input when there is no clock; state is retained

Multiplexers and Array of Multiplexers

a. A 32-bit wide 2-to-1 multiplexor

 b. The 32-bit wide multiplexor is actually an array of 32 1-bit multiplexors

Binary Multiplication – Pencil and Paper Method

	2	8	6
х		3	4
1	1	4	4
8	3 5 1	8	0
9	7	2	4
	1		

4-Bit Array Multiplier connected as AND and ADD

Multip	olicand			A_3	A_2	A_1	A_0
Multiplier		×	B ₃	B ₂	B_1	B_0	
				A_3B_0	A_2B_0	A_1B_0	A_0B_0
			A_3B_1	A_2B_1	A_1B_1	A_0B_1	0
		A_3B_2	A_2B_2	A_1B_2	A_0B_2	0	0
	A_3B_3	A_2B_3	A_1B_3	A_0B_3	0	0	0
Cout	P_6	P ₅	P_4	P_3	P_2	P_1	P_0

HA = Half Adder
FA = Full Adder
Px = Partial Product

Binary Multiplication Examples continued

				1	1	0	1	Multiplicand
			X	1	0	1	1	Multiplier
				1	1	0	1	
			1	1	0	1	(X)-	→ Shift Left by one
		1	0	0	1	1	1	Partial product after first step
		0	0	0	0	X	X	Another shift left
		1	0	0	1	1	1	Partial product after second step
	1	1	0	1	X	X	X	Another shift left
1	0	0	0	1	1	1	1	Partial product after final step

Answer = $(10001111)_2 = (143)_{10}$

Direct Multiplication Hardware

Basic Multiplication Algorithm using Hardware

- If the least significant bit of the multiplier is '1', add the multiplicand to the product
- If not, go to the next step
- Shift the multiplicand left and the multiplier to the right in the next two steps
- These steps are repeated 32 times

Application of Multiplication Algorithm

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: 1 ⇒ Prod = Prod + Mcand	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	000①	0000 0100	0000 0010
2	1a: 1 ⇒ Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 ⇒ No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 ⇒ No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

The bit examined to determine the next step is circled

Execution of Sequential Multiplication

(unsigned numb	pers e.g.) Multiplicand (11 dec)	C 0	A 0000	Q 1101	M 1011	Initial	Values
x <u>1101</u>	Multiplier (13 dec) Partial products	0	1011 0101	1101 1110	1011 1011	Add Shift	First Cycle
0000 1011	Note: if multiplier bit is 1 copy multiplicand (place value)	0	0010	1111	1011	Shift }	Second Cycle
	otherwise zero Product (143 dec) Ible length result	0 0	1101 0110	1111 1111	1011 1011	Add Shift	Third Cycle
		1	0001 1000	1111 1111	1011 1011	Add }	Fourth Cycle

Multiplication Hardware

Start with long-multiplication approach

Refined Multiplication Hardware (32-Bit ALU)

Perform steps in parallel: add/shift

Improved Version of Multiplication Hardware

- The Multiplicand Register, ALU and Multiplier Register are
 32 bits wide
- Only the Product Register is 64 bits
- Now the Product is shifted right
- Separate Multiplier register is not required, the multiplier is placed in the right half of the Product register

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

Integer Multiply and Divide Instructions

In	struction	Meaning	Format					
mult	Rs, Rt	HI, LO = Rs \times_s Rt	0p = 0	Rs	Rt	0	0	0x18
multu	Rs, Rt	HI, LO = Rs \times_u Rt	0p = 0	Rs	Rt	0	0	0x19
mul	Rd, Rs, Rt	$Rd = Rs \times_s Rt$	0x1c	Rs	Rt	Rd	0	2
div	Rs, Rt	HI, LO = Rs $/_s$ Rt	0p = 0	Rs	Rt	0	0	0x1a
divu	Rs, Rt	HI, LO = Rs / _u Rt	0p = 0	Rs	Rt	0	0	0x1b
mfhi	Rd	Rd = HI	0p = 0	0	0	Rd	0	0x10
mflo	Rd	Rd = LO	0p = 0	0	0	Rd	0	0x12
mthi	Rs	HI = Rs	0p = 0	Rs	0	0	0	0x11
mtlo	Rs	LO = Rs	0p = 0	Rs	0	0	0	0x13

 x_s = Signed multiplication, x_u = Unsigned multiplication y_s = Signed division, y_u = Unsigned division

NO arithmetic exception can occur

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

- MIPS provides a separate pair of 32-bit registers to contain the 64 bit Product, called Hi and Lo registers
- MIPS has two instructions: multiply (mult) and multiply unsigned (multu)
- To fetch the integer 32 bit Product, the programmer uses move from lo (mflo).
- MIPS Assembler also generates a pseudo instruction for multiplier that specifies mflo and mfhi registers

Binary Division – Pencil and Paper Method

Division Operation in Decimal Numbers

Division of 274 ÷ 13

Decimal Division – another example

Division Operation in Binary – Example 1

Remainder

Division of 274 ÷ 13

Remainder

Division Operation in Binary – Example 2

Division of 299 ÷ 15

Division – developing an Algorithm

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes <
 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

SUBTRACTION: Use 2's Compliment and ADD Circuits

Simple Division Algorithm

LUMS

Division Algorithm using the hardware

- If the remainder is positive, the divisor goes into the dividend, so step 2a generates a '1' in the quotient
- A negative remainder after step 1 means that the divisor did not go into the dividend, so step 2b generates a 0 in the quotient and
- Adds the divisor to the remainder. This reverses the subtraction of step 1.
- The final shift in step 3 aligns the divisor properly, relative to the dividend for the next iteration
- These steps are repeated 33 times

Applying Sequential Division Algorithm

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	@110 0111
1	2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	@111 0111
2	2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem - Div	0000	0000 1000	@111 1111
3	2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	@000 0011
4	2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem - Div	0001	0000 0010	0000 0001
5	2a: Rem $\geq 0 \Longrightarrow$ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

The bit examined to determine the next step is encircled

Simple Division Hardware Implementation

Simple Division Hardware

- The Divisor register, ALU and Remainder register are all
 64 bits wide
- Only the Quotient register is 32 bits
- The 32 bits Divisor starts in the left half of the Divisor register and it is shifted right 1 bit in each iteration
- The Remainder is initialized with the Dividend
- Control decides when to shift the Divisor and Quotient registers and when to write the new value into the remainder register

Optimized Divider (32-Bit ALU)

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Improved Version of Division Hardware

- The Divisor register, ALU, and Quotient register are all
 32 bits wide
- Only the Remainder register is 64 bits
- The Quotient Register is combined with the right half of the Remainder register

Right Shift and Division

- Left shift by i places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - $11111011_2 >> 2 = 111111110_2 = -2$
 - Rounds toward -∞
 - c.f. $11111011_2 >>> 2 = 001111110_2 = +62$

Remember, each left shift is multiplication by 2

Assembly Instructions for Division

A with your making	register				
Arithmetic	multiply	mult	\$s2,\$s3	Hi, Lo = \$s2 x \$s3	64-bit signed product in Hi, Lo
	multiply unsigned	multu	\$s2,\$s3	Hi, Lo = \$s2 x \$s3	64-bit unsigned product in Hi, Lo
	divide	div	\$s2,\$s3	Lo = \$s2 / \$s3, Hi = \$s2 mod \$s3	Lo = quotient, Hi = remainder
	divide unsigned	divu	\$s2,\$s3	Lo = \$s2 / \$s3, Hi = \$s2 mod \$s3	Unsigned quotient and remainder
	move from Hi	mfhi	\$ s1	\$s1 = Hi	Used to get copy of Hi
	move from Lo	mflo	\$s1	\$s1 = Lo	Used to get copy of Lo

Note: Use of Hi and Lo registers in CPU

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Divide instructions in MIPS

- The same sequential hardware can be used for both multiply and divide
- The only requirement is that 64 bit register than can shift left or right and a 32 bit ALU that adds or subtracts
- MIPS uses the 32 bit Hi and 32 bit Lo registers for both multiply and Divide instructions
- Hi contains the Remainder
- Lo contains the Quotient after the Divide instruction is completed
- div instruction is for signed numbers
- divu instruction is unsigned numbers
- MIPS assembler has pseudo instructions that specify three registers to place desired result in a general-purpose register

Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

SIMD Introduction

Single Instruction Multi Data

SIMD Registers

128 - bits							
64	- bits	64 - bits					
32 -bits	32 - bits	32 - bits	32 - bits				

SIMD Processing

SIMD Processor

SIMD Processor

The SIMD processor is equipped with special hardware, which allows it to execute an instruction which operates on multiple data elements.

It is equipped with **vector registers** which can hold more than 1 element each. Let **VLEN** be the number of elements stored in each vector register.

Also, the processor is equipped with **vector instructions** which perform the same operation on all elements in a vector register. For example, a VLOAD (vector load) can load multiple elements from RAM into a vector register, a VADD (vector add) can perform addition on all elements, and so on. Thus **single instruction** acts on **multiple data** elements. This reduces the total number of instructions executed, reducing the overhead of an instruction cycle.

In *LAMS* program, we need to execute 4 vector instructions. If VLEN = 4, then all 8 elements of the array can be processed in just 8 instruction cycles (4 vector instructions * 2 groups). Figure 2 shows the execution of the *LAMS* program in vector processors.

SIMD Architecture

Figure 3. Execution in SIMD Processor

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - <u>Single-Instruction Multiple-Data</u>

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

Readings

- Chap 3 of P&H Textbook
- Appendix C of P&H Textbook