Embedded Software Engineering

3 Unit Course, Winter 2010 CS Department, Univ. of Salzburg

RT Scheduling

Christoph Kirsch

RMA Example

	T_1	T_2
C_i	2	1
p_i	5	10

Assume, then Guarantee for RMA

- Resource assumptions:
 - single processor
 - no administrative overhead
- *Task* assumptions:
 - preemptive
 - independent, i.e., no precedence constraints
 - periodic
 - WCET $(T_i) = C_i$ given
 - deadlines equal to periods
- Optimality guarantee:
 - RMA is optimal wrt. *fixed-priority* feasibility

Utilization-Based Schedulability Tests

• EDF:

- $\bullet \sum_{i=1}^{n} C_i / P_i \le 1$
- exact, but cannot be extended to more complex task models

• RMA:

- $\sum_{i=1}^{n} C_i / P_i < n * (2^{1/n} 1)$
- sufficient but not necessary (for non-harmonic task sets)

RMA: 84% Utilization (Test: < 82.8%)

	T_1	T_2
C_{i}	3	3
p_i	6	9

RMA: 89% Utilization

	T_1	T_2
C_{i}	2	5
p_i	6	9

RMA: 95% Utilization

	T_1	T_2
C_{i}	1	7
p_i	6	9

RMA: 89% Utilization

	T_1	T_2
C_{i}	4	2
p_i	6	9

RMA: 95% Utilization

	T_1	T_2
C_{i}	5	1
p_i	6	9

EDF: 100% Utilization

RMA: The Critical Instant

EDF: Response Times

