STAT2008/STAT6038 Revision

What is a population? What is a sample?

- □ Population: a collection of the whole of something
 e.g. all people who live in Belconnen
- Sample: a set of individuals drawn from a population e.g. the people who live in Macgregor are a sample of all people who live in Belconnen.

If we have a population....

- We can get <u>parameters</u> true values for things like the centre and spread of the population
- We know the answers what proportion are this tall? We look at the population and get the answer.

If we have a sample...

□ We can get <u>statistics</u> – these are values that estimate the parameters e.g. sample centre and sample spread used to estimate population centre and population spread

Types of Data

- □ Two basic types of data discrete or continuous
- □ Discrete data nominal, ordinal, count
- □ Continuous data also called interval
- □ Other sorts of information e.g. comments in interview/survey qualitative

Discrete data examples

- □ Nominal faculty of study, eye colour, job
- Ordinal rank teaching as poor/fair/good/very aood
- $\hfill\Box$ Count data number of people at a party

Continuous data examples

- □ Anything measured
 - Height
 - Weight
 - Exam marks
 - Incomes
 - Prices
- □ "to the nearest _____"

Sample Mean

- □ Arithmetic mean average
- $\hfill \square$ If observations are labelled $X_1,X_2,...,X_n$ then sample average is called \overline{X}
- □ Calculated as

$$\overline{X} = \frac{1}{n} (X_1 + X_2 + ... + X_n)$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_i$$

Easy example - mean

□ Data: 5, 7, 1, 2, 4

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$= \frac{1}{5} (5 + 7 + 1 + 2 + 4)$$

$$= \frac{1}{5} * 19$$

$$= 3.8$$

Measures of variability

- $\hfill\Box$ Need to know how "spread out" the data are
- □ Range (maximum obs-minimum obs)
- \square IQR (Q₃-Q₁)
- □ Variance/Standard Deviation
- □ Coefficient of variation
- □ **Note:** IQR much less influenced by extreme values than variance/std dev/cv

Variance

- □ A measure of spread of data
- □ Measured in **square units**
- $\hfill\Box$ Sample value is given symbol s^2
- □ Calculated as

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$
$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2} \right]$$

Easy example - variance

□ Data: 5, 7, 1, 2, 4

$$s^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2} \right]$$

$$= \frac{1}{4} \left[(25 + 49 + 1 + 4 + 16) - 5 * 3.8^{2} \right]$$

$$= \frac{1}{4} \left[(95) - 5 * 14.44 \right]$$

$$= \frac{1}{4} * 22.8 = 5.7$$

Standard Deviation

- □ Another measure of spread
- $\ \square$ Given symbol s
- \Box Calculated as $s = \sqrt{s^2}$
- □ Standard Deviation is the square-root of variance

Easy example – standard deviation

□ Data: 5, 7, 1, 2, 4

$$s^2 = 5.7$$

 $s = \sqrt{s^2} = \sqrt{5.7} = 2.387$ (to 3dp)

• Measured in same units as original data.

Populations vs Samples

- □ Population every individual of a certain type
- □ Sample selection of individuals
- $\hfill \square$ Mostly, we are dealing with samples
- Populations have <u>parameters</u> certain true values which describe them. E.g. if we measure every individual, we can calculate the exact average and exact variance of the population. These are called population parameters.
- □ From a sample we calculate <u>statistics</u>, or estimates of the parameters. E.g. from a sample we can estimate the true population mean by using the same mean; if we have a sample standard deviation, we can estimate the population standard deviation.

Sample vs population

	Sample (Real World)	Population (Fantasy)
Average (Mean)	\overline{X}	μ
Variance	s^2	σ^2
Standard Deviation	S	σ

If we have two measurements on one observation...

- E.g. height and weight of a person, weekly income and amount spent on rent per week.
- □ Scatterplot
- □ Covariance
- □ Correlation

Scatterplot – Always plot your data!!!

Covariance

- Measures the linear relationship between X and
 Y sign indicates direction of slope, but
 magnitude is dependent on units of measurement
 (so cannot indicate strength of relationship).
- □ Calculated as

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$
$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} X_i Y_i - n \overline{X} \overline{Y} \right]$$

Values of covariance

□ If cov<0, then as X increases, Y decreases; as X decreases, Y increases (negative slope)

Coefficient of Correlation

- □ Also measures strength of linear relationship between X and Y.
- \square Is bounded between -1 and +1.
- □ Calculated as

$$\rho = \frac{COV(X,Y)}{\sigma_X \sigma_Y}, \quad r = \frac{\text{cov}(X,Y)}{s_X s_Y}$$

If correlation equals....

- ☐ If r=-1, perfect negative linear relationship
- \Box If r=+1, perfect positive linear relationship
- □ If r=0, no LINEAR relationship