Modelowanie matematyczne

wykład 5

Niestandardowe modele

- Mała firma skupuje mleko z 20 gospodarstw, a następnie przewozi je do mleczarni w celu przetworzenia.
- Firma ma jedną ciężarówkę z cysterną o pojemności 80 000 litrów.
- 11 gospodarstw jest małych i trzeba je odwiedzać tylko co drugi dzień.
- Z pozostałych 9 gospodarstw mleko musi być odbierane codziennie.
- Tabela pokazuje położenie gospodarstw względem mleczarni, wielkość ich produkcji oraz wymaganą częstotliwość odwiedzania.

Tabela pokazuje położenie gospodarstw względem mleczarni, wielkość ich produkcji oraz wymaganą częstotliwość odwiedzania.

	Położenie ((*10 km)		Wielkość produkcji
Gospodarstwo	Wschód	Północ	Częstotliwość	(w 1000 ∣)
mleczarnia 1	0	0	-	_
2	- 3	3	codziennie	5
3	1	11	codziennie	4
4	4	7	codziennie	3
5	- 5	9	codziennie	6
6	- 5	-2	codziennie	7
7	- 4	-7	codziennie	3
8	6	0	codziennie	4
9	3	- 6	codziennie	6
10	- 1	- 3	codziennie	5
11	0	- 6	co drugi dzień	4
12	6	4	co drugi dzień	7
13	2	5	co drugi dzień	3
14	-2	8	co drugi dzień	4
15	6	10	co drugi dzień	5
16	1	8	co drugi dzień	6
17	-3	1	co drugi dzień	8
18	- 6	5	co drugi dzień	5
19	2	9	co drugi dzień	7
20	-6	- 5	co drugi dzień	6
21	5	- 4	co drugi dzień	6

Pogrubione gospodarstwa muszą być odwiedzane codziennie.

- Znajdź optymalną drogę dla ciężarówki każdego dnia.
- Ciężarówka nie może przekroczyć swojej pojemności.
- Każdego dnia ciężarówka musi odwiedzić każde gospodarstwo spośród 2-10 i część gospodarstw 11-21.
- Następnego dnia ciężarówka musimy odwiedzić każde gospodarstwo spośród 2-10 i wszystkie pozostałe gospodarstwa spośród 11-21.

Rozwiązanie

- Problem dostaw mleka jest modyfikacją znanego problemu komiwojażera.
- Algorytmy dedykowane dla problemu komiwojażera nie zadziałają tutaj bez daleko idących modyfikacji.
- Sformułujemy problem jako zagadnienie programowania matematycznego (całkowitoliczbowe).
- Zauważmy rozważyć dwa dni nieparzysty "1" i parzysty "2".

Zmienne

- Wprowadzamy następujące zmienne:
 - $\bullet \ x_{i,j,k} = \left\{ \begin{array}{l} 1 \quad \text{jeśli w dniu } k \ \text{łączymy bezpośrednio} \ i \ \text{i} \ j \ (\text{w dowolnym kierunku}) \\ \text{dla} \ i < j \ \text{i} \ k = 1,2. \end{array} \right.$
 - $y_{i,k} = \begin{cases} 1 & \text{jesli farma } i \text{ jest odwiedzona w dniu } k \\ 0 & \text{w przeciwnym przypadku} \end{cases}$ $d|a|i = 11, \dots, 21 \text{ i } k = 1, 2.$
- Razem mamy 442 zmiennych (wszystkie binarne).

Ograniczenia

- Pojemność cysterny jest ograniczona.
 - $\bullet \sum_{i} K_{i} \cdot y_{i,k} \leq C \; \mathsf{dla} \; k = 1,2$

gdzie K_i jest produkcją gospodarstwa i, a C pojemnością cysterny

- Niektóre gospodarstwa muszą być odwiedzane co drugi dzień.
 - $y_{i,1} + y_{1,2} = 1$ dla $i = 11, \dots, 21$
- Konieczność odwiedzenia wszystkich gospodarstw 2–10 dokładnie raz daje ograniczenie:
 - $\sum_{j:j>i} x_{i,j,k} + \sum_{j:j< i} x_{j,i,k} = 2 \text{ dla } i = 2, ..., 11 \text{ i } k = 1, 2$
- Podobnie postępujemy dla gospodarstw 11–21, pamiętając które są odwiedzane którego dnia.
 - $\sum\limits_{j:\,j>i}x_{i,j,k}+\sum\limits_{j:\,j< i}x_{j,i,k}-2\cdot y_{i,k}=0$ dla $i=11,\ldots,21$ i k=1,2

Dodatkowe ograniczenia

- Zauważmy, że jeśli gospodarstwo nie jest odwiedzane danego dnia, nie jest też połączone z żadnym innym.
 - $x_{i,j,k} y_{i,k} \le 0$ dla $i = 11, \dots, 21, j = 1, \dots, 21, j > i, k = 1, 2$
 - $x_{i,i,k} y_{i,k} \leq 0$ dla $i = 11, \ldots, 21, j = 1, \ldots, 21, j > i, k = 1, 2$
- Dodanie tych ograniczeń przyspieszy obliczenia (i nie zmieni ich wyniku).
- Ponadto możemy założyć, że gospodarstwo 11 jest odwiedzane pierwszego dnia.
 - $y_{11,1} = 1$
- Pozwoli to uniknąć rozważania rozwiązań symetrycznych i przyspieszy obliczenia.
- Razem mamy 65 ograniczeń.

Funkcja celu

- Minimalizujemy łączną trasę przebytą przez ciężarówkę podczas obu dni.
 - $\bullet \sum_{k=1}^2 \sum_{i=1}^{21} \sum_{j=1}^{i-1} c_{i,j} \cdot x_{i,j,k} \\ c_{i,j} \text{ jest odleg} \text{lością między punktami } i,j$

Uwagi końcowe:

- Omówiony model dopuszcza możliwość, że trasa składa się z wielu rozłącznych cykli.
- Jest on zatem relaksacją prawdziwego modelu.
- Aby rozwiązać problem, należy dodać ograniczenia wykluczające taką możliwość.
- Dodajemy je w miarę potrzeb, tak jak było to omówione przy rozwiązaniu problemu komiwojażera.

Rusztowanie

• Rozważmy wiszące rusztowanie jak na schemacie poniżej.

- Liny C1 i C2 mogą wytrzymać obciążenie po 300 kg.
- Liny C3 i C4 mogą wytrzymać obciążenie po 100 kg.
- Liny C5 i C6 mogą wytrzymać obciążenie po 50 kg.
- Każdy z odważników L1, L2, L3 waży co najmniej 50 kg.
- ullet Jakie największe łączne obciążenie może utrzymać rusztowanie (L1 + L2 + L3)?

Rusztowanie - rozwiązanie

```
set A := \{1 \text{ to } 3\}; # cieżary
set C := \{ \text{ read } " \text{ capacity.txt" as } " <1n> " \text{ comment } "\#" \};
param capacity[C] := read " capacity.txt" as " <1n>2n" comment "#";
var L[A] >= 50:
var c[C]:
param capacity\{\langle i \rangle \text{ in C}\} := if i \langle = 2 \text{ then } 300 \text{ else if } i \langle = 4 \text{ then } 100 \text{ else } 50 \text{ end } end;
subto c1: c[1] == 6/7 * c[3] + 3/7 * c[4] + 2/7 * L[1] + 1/7 * c[6];
subto c2: c[2] == 1/7 * c[3] + 4/7 * c[4] + 5/7 * L[1] + 6/7 * c[6]:
subto c3: c[3] == 2/3 * L[2] + 1/3 * c[5]:
subto c4: c[4] == 1/3 * L[2] + 2/3 * c[5];
subto c5: c[5] == 2/3 * L[3];
subto c6: c[6] == 1/3 * L[3];
subto constr : forall \langle i \rangle in C do
c[i] \le capacitv[i]:
maximize load : sum<i> in A: L[i];
```

Hurtownie

Pewien produkt wytwarzany jest przed trzy fabryki. Następnie czterech dostawców dostarcza produkt z fabryk do pięciu klientów.

Każda fabryka ma ograniczenie na ilość wyprodukowanego towaru (jednostka to 1000 ton):

	Maksymalna
Fabryka	produkcja
1	100
2	150
3	200

Ponadto fabryka 1 z powodów technologicznych musi produkować co najmniej 50 tys. ton towaru.

Każdy z dostawców ma określoną maksymalny i minimalny obrót, czyli ilość towaru odebranego z fabryk i dostarczonego klientom.

	Minimalny	Maksymalny
Dostawca	obrót	obrót
1	25	70
2	20	50
3	15	30
4	50	120

Hurtownie

Każdy z klientów ma określone zapotrzebowanie na towar.

Klient	Zapotrzebowanie
1	100
2	50
3	40
4	30
5	20

Koszt dostawy jednej jednostki towaru z fabryk do dostawców przedstawia tabela (zależy on tylko od fabryki, a nie od dostawcy).

Fabryka	Koszt	
1	2	
2	1.8	
3	1.7	

Koszt dostawy jednej jednostki towaru od dostawców do klientów przedstawia tabela (zależy on tylko od dostawcy, a nie od klienta).

Dostawca	Koszt
1	2.1
2	1.9
3	2.2
4	2.3

Hurtownie

Zakładamy, że dostawcy nie magazynują towaru, czyli całość towary odebranego z fabryk przekazują klientom.

Zadanie

Zaplanuj dostawy tak, żeby wszystkie ograniczenia były spełnione i całkowity koszt był minimalny.

Dodatkowe

Dane: Zbiór elementów oraz ich wagi.

Szukane: Podział zbioru na 3-elementowe podzbiory, maksymalizujacy minimalną sumę wag podzbioru.