

Inspire...Educate...Transform.

Supervised models

Logistic Regression, Time Series Forecasting

Dr. Sridhar Pappu Executive VP – Academics, INSOFE

July 05, 2015

LOGISTIC REGRESSION

Classification tasks: Regression

It could fail

Least squares is not a good cost function

• In addition, linear regression hypothesis can be much larger than 1 or much smaller than zero and hence thresholding becomes difficult.

- Error terms do not follow normal distribution.
- Error terms are not independent.
- Error variances are heteroscedastic.

Logistic Regression

Frequency

Example

An auto club mails a flier to its members offering to send more information regarding a supplemental health insurance plan if the member returns a brief enclosed form.

Can a model be built to predict if a member will return the form or not?

Example

9

Logistic model

$$f(x) = p = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k}}$$

Odds Ratio is obtained by the probability of an event occurring divided by the probability that it will not occur.

Logistic model can be transformed into an odds ratio:

$$S = Odds \ ratio \ or \ Odds = \frac{p}{1-p}$$

Attention Check – Probability and Odds

If the probability of winning is 6/12, what are the odds of winning?

1:1 (Note, the probability of losing also is 6/12)

If the odds of winning are 13:2, what is the probability of winning?

13/15

If the odds of winning are 3:8, what is the probability of losing?

8/11

If the probability of losing is 6/8, what are the odds of winning?

2:6 or 1:3

Attention Check – Probability and Odds

TENNIS		WIMBLEDON MENS	WIN	INE	R BI	ETTI	NG	OD	DS											Boo	kmarl	f	share	*	tweet	+ share
This Week		Match select ✓																								
Tennis Centre		Free Bets Winner w/o Djokovic	Name	The Fir	nalists	To Re	each Fin	ial	More	All																
Wimbledon	٧	10/1 DJOKOVIC OR 18/1 MURRAY AT WIMBLEDON AT WIMBLEDON AT WIMBLEDON AT WIMBLEDON AT WIMBLEDON AT WIMBLEDON																								
Mens		AI AI												/				_								
Womens		Sign Up FREE BETS	£200	£50	£25	£50	£30	£50	£25	£50	£10	£x3	£25	£20		£200	£30	£50		-	£20	£30	£10	£20	£20	£20
Doubles		Special Offers				9	<u> </u>	e	@	<u> </u>		0		<u> </u>			0		~	<u>~</u>						
Mens Tour	•	View Form & Analysis	58	Ë	box	ports	FRED	rgber	TVICTOR	PADDYPOWER	sames	sport	okes	ORAL	量	ē	tfair	vay	IGHT	pet	ᇤ	ul.	32Red	Į.	BETDAQ	¥ X
Womens Tour	•		pet36	sky BET	totesport	BoyleSports	BET	porti	ETVIC	ADDYP	tan la	88	Ladbrokes	OR		Ē	etl	betway	ETBR	Titan bet	UNIBET	bwin	2	bet §	EIN	MTCH
Match Coupon		sort by: fav/name						- /-			- 1-	_						_	ш.		_		•••			ž.
Grand Slams		Novak Djokovic	11/10	6/5	11/10		11/10	6/5	11/10	6/5	6/5	6/5	5/4	11/10	6/5	6/5	6/5			6/5	6/5	6/5	6/5	5/4		
US Open	•	Andy Murray	2	2	2	12/5	2	5/2	2	9/4	11/5	5/2	2	2	9/4	9/4	12/5	2		9/4	<u>5/2</u>	2	5/2	12/5	23/10	12/5
Australian Open	•	Roger Federer	11/2	9/2	13/2	6	13/2	6	13/2	6	13/2	6	13/2	13/2	6	6	13/2	6		6	6	11/2	6	32/5	33/5	33/5
French Open	•	Stan Wawrinka	11	12	10	<u>12</u>	10	12	12	10	11	11	10	12	10	11	12	11		11	11	11	11	64/5	12	59/5
•		Tomas Berdych	33	33	33	33	33	20	33	33	<u>40</u>	34	<u>40</u>	33	33	<u>40</u>	<u>40</u>	33		<u>40</u>	34	33	34	51	49	<u>54</u>
Other Events		Milos Raonic	33	40	25	33	25	40	28	33	40	34	40	28	25	40	33	33		40	34	33	34	<u>66</u>	63	64
Davis Cup		Grigor Dimitrov	33	40	33	<u>50</u>	33	40	40	33	<u>50</u>	44	<u>50</u>	<u>50</u>	<u>50</u>	<u>50</u>	40	33		<u>50</u>	44	33	44	<u>61</u>	59	59
Fed Cup		Jo-Wilfried Tsonga	50	40	66	40	66	40	40	50	66	60	66	50	50	50	40	50		50	60	50	60	89	86	89
Hopman Cup		Nick Kyrgios	50	80	66	50	66	66	66	50	66	60	66	50	66	50	66	50		50	60	50	60	94	96	99
ATP World Tour Finals		Marin Cilic	50	50	50	66	50	66	50	50	50	90	50	50	50	66	40	50		66	90	50	90	113	108	99
Tennis Specials		Dustin Brown	100	100	66	80	66	125	80		125	<u>150</u>	66	80	100	100	125	100		100	<u>150</u>		<u>150</u>	142	166	
		⊥⊕ Would Andorson	150	150	100	150	100	100	150	175	150	200	100	105	105	150	100	105		150	200	120	200	222	200	60

Disclaimer: Gambling/Betting is injurious to financial health. Dr. Sridhar or INSOFE do not endorse this addiction, and this has been explained only for educational purposes.

Source: http://www.oddschecker.com/tennis/wimbledon/mens/winner

Last accessed: July 03, 2015

Logistic model

$$S = Odds \ ratio = \frac{p}{1 - p}$$

$$\frac{e^{\beta_0} + \beta_1 x_1 + \dots + \beta_k x_k}{1 + e^{\beta_0} + \beta_1 x_1 + \dots + \beta_k x_k}$$

$$S = \frac{1 - \frac{e^{\beta_0} + \beta_1 x_1 + \dots + \beta_k x_k}{1 + e^{\beta_0} + \beta_1 x_1 + \dots + \beta_k x_k}}{1 + e^{\beta_0} + \beta_1 x_1 + \dots + \beta_k x_k}$$

$$\therefore, S = e^{\beta_0} + \beta_1 x_1 + \dots + \beta_k x_k$$

$$\ln(S) = \ln\left(e^{\beta_0} + \beta_1 x_1 + \dots + \beta_k x_k\right)$$

$$= \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

Logistic model

The log of the odds ratio is called logit, and the transformed model is linear in β s.

Interpreting the output

Binary Log	istic Regre	ssion: Ask	for Insura	nce Inform	ation versu	ıs Age	
Response	Informatio	n					
			Value	Count			
Variable			1	36	(Event)		
Ask for Ins	urance Inf	ormation	0	56			
			Total	92			
Logistic Re	gression T	able					
					Odds	95%	CI
Predictor	Coef	SE Coef	Z	Р	Ratio	Lower	Upper
Constant	-20.754	4.61715	-4.49	0.000			
Age	0.43368	0.096946	4.47	0.000	1.54	1.28	1.87
Log-Likelih	ood = -24.	708					
Test that a			= 73.739, D	F = 1, P-Val	ue = 0.000		

What is the logit equation?

$$\ln(S) = -20.754 + 0.43368Age$$

Determining Logistic Regression Model

Suppose we want a probability that a 50-year old club member will return the form.

$$ln(S) = -20.754 + 0.43368 * 50 = 0.93$$
$$S = e^{0.93} = 2.535$$

The odds that a 50-year old returns the form are 2.535 to 1.

Determining Logistic Regression Model

$$\hat{p} = \frac{S}{S+1} = \frac{2.535}{2.535+1} = 0.7171$$

Using a probability of 0.50 as a cutoff between predicting a 0 or a 1, this member would be classified as a 1.

Testing the Overall Model – G Statistic

In regression analysis, F test was used. Here, G statistic is used.

 $G = 2\{[log likelihood with variable] - [log likelihood without variable]\}$

Log likelihood without variable = $ln\left[\left(\frac{n_0}{N}\right)^{n_0}\left(\frac{n_1}{N}\right)^{n_1}\right]$, where n_0 is the # of "0" observations, n_1 is the # of "1" observations and N is the total # of observations.

Testing the Overall Model – G Statistic

Log likelihood without variable = $ln\left[\left(\frac{n_0}{N}\right)^{n_0}\left(\frac{n_1}{N}\right)^{n_1}\right] =$

-61.578

$$G = 2\{[-24.708] - [-61.578]\} = 73.74$$

p-value indicates overall significance of the model.

Likewise, the z-values and the associated p-values provide significance of individual predictor variables.

Testing the Overall Model - AIC

R outputs AIC (Akaike's Information Criterion) and you need to pick the model with the lowest AIC. Below is a sample output:

20

Testing the Overall Model - AIC

- $AIC = -2 * \ln(likelihood) + 2 * k$ where k is the number of parameters in the model including the constant and the error.
- AIC provides a means for model selection.
- It does not test a model in the sense of null hypothesis and hence doesn't tell anything about the quality of the model. It is only a relative measure between multiple models.

Intuition

• Overly large coefficient magnitudes, overly large error bars on the coefficient estimates, and the wrong sign on a coefficient could be indications of correlated inputs.

Applications

- Predicting stock price movement (up/down)
- Predict whether a patient has diabetes or not
- Predict whether a customer will buy or not
- Predict the likelihood of loan default

23

TIME SERIES FORECASTING

Why time series

- Causal independent variables are
 - -Unknown to us
 - -Not available
 - -Might not fit the data well
 - -Difficult to forecast

Typical time series

$$\hat{y}_{t+1} = f(y_t, y_{t-1}, y_{t-2} \dots) + f(x_1, x_2, x_3 \dots)$$

f can be linear or nonlinear

26

IMPORTANT CONCEPTS

Autocorrelation (ACF) and Partial ACF (PACF)

- ACF: n^{th} lag of ACF is the correlation between a day and n days before that.
- PACF: The same as ACF with all intermediate correlations removed. It is the $k_{\rm th}$ coefficient of the ordinary least squares regression.

$$[y_t] = \beta_0 + \sum_{i=1}^k \beta_i [y_{t-i}]$$
 where

 $[y_t]$ is the input time series, k is the lag order and β_i is the i_{th} coefficient of the linear multiple regression.

EXCEL ACTIVITY

28

Components of time series

- Trend
- Seasonality/Cyclicality
- Random component

Seasonality

They vary significantly


```
> kingstimeseries <- ts(kings)
> kingstimeseries
Time Series:
Start = 1
End = 42
Frequency = 1
[1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 59 86 55 68 51 33 49 67 77
[35] 81 67 71 81 68 70 77 56
```


ACF and PACF – Idealized Trend, seasonality and randomness

ACF and PACF – Idealized Trend

ACF and PACF – Idealized Trend

- ACF is a bar chart of correlation coefficients of the time series and its lags.
- PACF is a plot of the partial correlation coefficients of the time series and its lags.

ACF and PACF – Idealized Seasonality

ACF and PACF – Idealized Seasonality

Series growth

Series growth

Series growth

Series growth

Series growth

ACF and PACF - Idealized Trend, Seasonality and Randomness

- Ideal Trend: Decreasing ACF and 1 or 2 lags of PACF
- Ideal Seasonality: Cyclicality in ACF and a few lags of PACF with some positive and some negative

• Ideal Random: A spike may or may not be present; even if present, magnitude will be small

ACF and PACF (Real-world): Decomposing Time Series into the 3 Components

ACF and PACF (Real-world): Decomposing Time Series into the 3 Components - Births

Decomposition of additive time series

46

ACF and PACF (Real-world): Decomposing Time Series into the 3 Components - Births

ACF and PACF (Real-world): Decomposing Time Series into the 3 Components – Kings' ages at death

http://www.insofe.edu.in

The best place for students to learn Applied Engineering

Stationary and Non-Stationary

Stationary data has a constant mean

• If the data is stationary, forecasting is easier!

• Differencing to convert non-stationary to stationary

EXCEL ACTIVITY

Removing trend from data

ACF and **PACF** of stationary and non-stationary

 Non-stationary series have an ACF that remains significant for half a dozen or more lags, rather than quickly declining to zero.

• You must difference such a series until it is stationary before you can identify the process.

A CRUDE WAY OF SOLVING TIME SERIES (CURVE FITTING)

Goodness of fit

- MSE (Mean square error)
- MAE (Mean absolute error)
- RMSE (Root mean square error)
- MAPE (Mean absolute percent error)

- NMSE (Normalized mean square error)
- NMAE (Normalized mean absolute error)
- NMAPE (Normalized mean absolute percent error)

Regression on time

Use when trend is the most pronounced

 ACF decays exponentially and PACF has very few spikes

Regression analysis

Quadratic trend

Seasonal regression models

	value of			
Quarter	X_{3_t}	X_{4t}	X_{5_t}	
1	1	0	0	
2	0	1	0	
3	0	0	1	
4	0	0	0	

Value of

$$Y_t = \beta_0 + \beta_1 X_{1_t} + \beta_2 X_{2_t} + \beta_3 X_{3_t} + \beta_4 X_{4_t} + \beta_5 X_{5_t} + \epsilon_t$$

where,
$$X_{1t} = t$$
 and $X_{2t} = t^2$.

Seasonal regression models

Seasonal regression models

Seasonal regression models - Births

II.	Data Editor					
File Edit Help						
	births	time	var3	var4	var5	var6
1	26.663	1				
2	23.598	2				
3	26.931	3				
4	24.74	4				
5	25.806	5				
6	24.364	6				
7	24.477	7				
8	23.901	8				
9	23.175	9				
10	23.227	10				
11	21.672	11				
12	21.87	12				
13	21.439	13				
14	21.089	14				
15	23.709	15				
16	21.669	16				
17	21.752	17				
18	20.761	18				
19	23.479	19				

Seasonal regression models - Births

■ Data Edito				tor	
File	Edit Help				
	births	time	seasonal	var4	var5
1	26.663	1	1		
2	23.598	2	2		
3	26.931	3	3		
4	24.74	4	4		
5	25.806	5	5		
6	24.364	6	6		
7	24.477	7	7		
8	23.901	8	8		
9	23.175	9	9		
10	23.227	10	10		
11	21.672	11	11		
12	21.87	12	12		
13	21.439	13	1		
14	21.089	14	2		
15	23.709	15	3		
16	21.669	16	4		
17	21.752	17	5		
18	20.761	18	6		
19	23.479	19	7		

62

Another crude way of incorporating seasonality

Take the trend prediction and actual prediction

• Depending on additive or multiplicative model compute the deviation and map it as seasonality effect for each prediction

• Take averages of the seasonality value. Use this to make future predictions

Case

		Time variable	
		(this is created)	
Year	Quarter		Revenues
2008		1	10.2
	II	2	12.4
	Ш	3	14.8
	IV	4	15
2009		5	11.2
	11	6	14.3
	Ш	7	18.4
	IV	8	18


```
lm(formula = y \sim x)
Residuals:
   Min 1Q Median 3Q
                                 Max
-3.5595 -0.9384 0.4405 1.3265 1.9286
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.0393 1.5531 6.464 0.00065 ***
       0.9440 0.3076 3.069 0.02196 *
\mathbf{x}
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
Residual standard error: 1.993 on 6 degrees of freedom
Multiple R-squared: 0.6109, Adjusted R-squared: 0.5461
F-statistic: 9.422 on 1 and 6 DF, p-value: 0.02196
```


Call:

Seasonality: Multiplicative

Time	Observed values	Predicted values (per	SI = TSI/T
	TSI (assuming no	the regression)	
	impact of	T	
	cyclicality)		
1	10.2	10.983	0.929
2	12.4	11.927	1.040
3	14.8	12.871	1.150
4	15	13.815	1.086
5	11.2	14.759	0.759
6	14.3	15.703	0.911
7	18.4	16.647	1.105
8	18	17.591	1.023

Quarterly seasonality

Time	Average seasonality factor
Q1	0.844
Q2	0.975
Q3	1.127
Q4	1.054

Computations

• Trend $Y_9 = 10.039 + 0.944(9) = 18.535$

• Corrected for seasonality and randomness: 18.535* 0.844 = 15.643

68

Seasonality: Multiplicative

	■ Data Editor					
	File	Edit Help)			
		births	time	seasonal	mae	var5
	1	26.663	1	1	1.214304	
	2	23.598	2	2	1.072901	
	3	26.931	3	3	1.222374	
	4	24.74	4	4	1.121036	
	5	25.806	5	5	1.167374	
	6	24.364	6	6	1.100294	
	7	24.477	7	7	1.103546	
	8	23.901	8	8	1.075775	
	9	23.175	9	9	1.041357	
	10	23.227	10	10	1.041954	
	11	21.672	11	11	0.9705802	
	12	21.87	12	12	0.9778208	
	13	21.439	13	1	0.9569611	
	14	21.089	14	2	0.93978	
	15	23.709	15	3	1.054788	
	16	21.669	16	4	0.9624398	
	17	21.752	17	5	0.9645349	
	18	20.761	18	6	0.9190777	
	19	23.479	19	7	1.037695	

Issues with regressing on time

- It is too much of a curve fit For a statistician to sleep well!
- If there is no trend or if seasonality and fluctuations are more important than trend, then the coefficients behave weirdly

TIME SERIES: MORE ROBUST ANALYSES

Identifying techniques for different processes

- We use different techniques for different processes
 - Random stationary
 - Seasonal
 - Trend
- First we need to identify them

Stationary model: Case 1 – Simple Moving Averages

12 13	1	15.5 12.5	2.5 1.5	15 14.666667	0.666667
19	7	16.5	4.5	15.666667	3.666667
14	5	14	5	14	5
14	0	14	0	15.333333	1.333333
14	0	16	2	16.666667	2.666667
18	4	18	4	17.666667	3.666667
18	0	17.5	0.5	17.333333	0.666667
17	1	17	1	14.666667	3.333333
17	0	13.5	3.5	15.666667	1.333333
10	7	15	2	16	1
20	10	19	9	19.333333	9.333333
18	2	19	1	19.333333	0.666667
20		20		19	1
20	0	18.5	1.5		2.666667
17					4.666667
-			+		1.333333
					0
					1.666667
					1.666667
				17	4
		17.5	1.5		
15	5				
					Error
	20 20 18 20 10 17 17 18 18 18 14 14	15 5 20 4 16 3 13 5 18 4 14 1 15 2 17 3 20 0 20 2 18 2 20 10 10 7 17 0 17 1 18 0 18 4 14 0 14 0 14 5	15 5 20 4 17.5 16 3 18 13 5 14.5 18 4 15.5 14 1 16 15 2 14.5 17 3 16 20 0 18.5 20 2 20 18 2 19 20 10 19 10 7 15 17 0 13.5 17 1 17 18 4 18 14 0 16 14 0 14 14 0 14 14 5 14	15 5 20 4 17.5 1.5 16 3 18 5 13 5 14.5 3.5 18 4 15.5 1.5 14 1 16 1 15 2 14.5 2.5 17 3 16 4 20 0 18.5 1.5 20 2 20 2 18 2 19 1 20 10 19 9 10 7 15 2 17 0 13.5 3.5 17 1 17 1 18 0 17.5 0.5 18 4 18 4 14 0 14 0 14 5 14 5	15 5 20 4 17.5 1.5 16 3 18 5 17 13 5 14.5 3.5 16.333333 18 4 15.5 1.5 15.666667 14 1 16 1 15 15 2 14.5 2.5 15.666667 17 3 16 4 15.333333 20 0 18.5 1.5 17.333333 20 2 20 2 19 18 2 19 1 19.333333 20 10 19 9 19.333333 10 7 15 2 16 17 0 13.5 3.5 15.666667 17 1 17 1 14.666667 18 0 17.5 0.5 17.333333 18 4 18 4 17.666667 14 0 16 2 16.666667 14 0 14

Stationary model: Moving Averages

Only decision point is K

Stationary model: Weighted moving average

$$\hat{Y}_{t+1} = w_1 Y_t + w_2 Y_{t-1} + \cdots + w_k Y_{t-k+1}$$

• Typically we choose a time period of moving average and weights are chosen such that the error is minimized

WMA

SMA and WMA - Kings' ages at death

Stationary model: Exponential smoothing

$$\hat{\mathbf{Y}}_{t+1} = \hat{\mathbf{Y}}_t + \alpha(\mathbf{Y}_t - \hat{\mathbf{Y}}_t)$$

Above equation indicates that the predicted value for time period t+1 ($\widehat{Y_{t+1}}$) is equal to the predicted value for the previous period ($\widehat{Y_t}$) plus an adjustment for the error made in predicting the previous period's value ($\alpha(Y_t - \widehat{Y_{t+1}})$).

The parameter α can assume any value between 0 and 1 ($0 \le \alpha \le 1$).

Exponential smoothing in other ways

$$\widehat{Y_{t+1}} = \widehat{Y_t} + \alpha (Y_t - \widehat{Y_t})$$

$$= \alpha Y_t + (1 - \alpha) \widehat{Y_t}$$

$$\widehat{Y_{t+1}} = Y_t - (1 - \alpha) (Y_t - \widehat{Y_t})$$

$$\hat{Y}_{t+1} = \alpha Y_t + \alpha (1 - \alpha) Y_{t-1} + \alpha (1 - \alpha)^2 Y_{t-2} + \dots + \alpha (1 - \alpha)^n Y_{t-n} + \dots$$

EXCEL ACTIVITY – Effect of α

Various ways of understanding exponential smoothing

- Forecast
 - Interpolation between previous forecast and previous observation
 - Previous *forecast* plus fraction of previous error
 - Previous *observation* minus fraction 1- of previous error
 - Exponentially weighted (i.e. discounted) moving average

Exponential smoothing

• *Y* at *t*+1

$$\widehat{Y_{t+1}} = \widehat{Y_t} + \alpha(Y_t - \widehat{Y_t})$$

- *Y* at *t*+2
- All future predictions are same! This is in accordance with **stationary** assumption.

EMA

SMA, WMA and EMA – Kings' ages at death

errorEMA	7.45191533669607
errorSMA	9.60897435897436
errorWMA	7.91794871794872

87

Effect of k – Kings' ages at death

ADDING TREND AND SEASONALITY TO MOVING AVERAGE PROCESSES

Holt-Winters method with Additive Seasonality

$$\hat{\mathbf{Y}}_{t+n} = \mathbf{E}_t + n\mathbf{T}_t + \mathbf{S}_{t+n-p}$$
Random Trend Seasonality

$$E_{t} = \alpha(Y_{t} - S_{t-p}) + (1 - \alpha)(E_{t-1} + T_{t-1})$$

$$T_{t} = \beta(E_{t} - E_{t-1}) + (1 - \beta)T_{t-1}$$

$$S_{t} = \gamma(Y_{t} - E_{t}) + (1 - \gamma)S_{t-p}$$

Holt-Winters method with Multiplicative Seasonality

$$\hat{\mathbf{Y}}_{t+n} = (\mathbf{E}_t + n\mathbf{T}_t)\mathbf{S}_{t+n-p}$$

$$E_{t} = \alpha \frac{Y_{t}}{S_{t-p}} + (1 - \alpha)(E_{t-1} + T_{t-1})$$

$$T_{t} = \beta(E_{t} - E_{t-1}) + (1 - \beta)T_{t-1}$$

$$S_{t} = \gamma \frac{Y_{t}}{E_{t}} + (1 - \gamma)S_{t-p}$$

Holt-Winters method: Only Randomness

Holt-Winters filtering

> birthsforecast\$55E
[1] 281.8759

Holt-Winters method: All Components

Holt-Winters filtering

> birthsforecast\$55E
[1] 90.94058

CSE 7202c

Holt-Winters method: All Components

```
Holt-Winters exponential smoothing with trend and additive seasonal component.
call:
HoltWinters(x = birthstimeseries)
Smoothing parameters:
 alpha: 0.4823655
 beta: 0.02988495
 gamma: 0.563186
Coefficients:
           [,1]
    28.04366357
     0.04199921
   -0.78546221
   -2.19944507
s3
     0.87813012
s4
   -0.65164728
s 5
    0.63427267
56
     0.21182821
     2.23177191
s7
58
     2.17167733
59
     1.52077678
s10 1.16900861
s11 -0.97500043
s12 -0.18636055
> birthsforecast$fitted
             xhat
                     level
                                   trend
                                               season
Jan 1947 23.13579 23.81055 -0.1567618007 -0.51798958
Fab 1047 31 03000 33 03531
                            A 101771006A
```


Holt-Winters method: Forecasting

Forecasts from HoltWinters

Holt-Winters method: Forecasting with no trend and seasonality

Forecasts from HoltWinters

Box–Jenkins methodology

- Model identification and model selection.
- Parameter estimation.
- Model checking
- http://www.ncss.com/wpcontent/themes/ncss/pdf/Procedures/NCSS/The_Box-Jenkins_Method.pdf

100

Model selection

- Check ACF, PACF
- Identify important lag periods
- Create a data frame (table)
 with these past lag values
 as independent variables
 and value to be predicted
 as dependent variable
- Perform autoregression (AR models)
- To incorporate randomness, use MA

SHAPE	INDICATED MODEL
Exponential, decaying to zero	Autoregressive model. Use the partial autocorrelation plot to identify the order of the autoregressive model.
Alternating positive and negative, decaying to zero	Autoregressive model. Use the partial autocorrelation plot to help identify the order.
One or more spikes, rest are essentially zero	Moving average model, order identified by where plot becomes zero.
Decay, starting after a few lags	Mixed autoregressive and moving average model.
All zero or close to zero	Data is essentially random.
High values at fixed intervals	Include seasonal autoregressive term.
No decay to zero	Series is not stationary.

In practice

• There are techniques that automate model selection

ARIMA(p,d,q) model

- p is the number of autoregressive terms (a linear regression of the current value of the series against one or more prior values of the series)
 - Maximum lag beyond which PACF is 0
- d is the number of non-seasonal differences, (d is the order of the differencing used to make the time series stationary)

- q is the order of the moving average model (a linear regression of the current value of the series against the white noise or random shocks/spikes of one or more prior values of the series)
 - Maximum lag beyond which the ACF is 0

- Non-seasonal ARIMA models are denoted ARIMA(p,d,q)
- Seasonal ARIMA models are denoted $ARIMA(p,d,q)(P,D,Q)_{m}$, where m refers to the number of periods in each season and (P,D,Q) refer to the autoregressive, differencing and moving average terms of the seasonal part of the ARIMA model.

ARIMA(p,d,q)

ARIMA(p,1,q) and ARIMA(p,2,q)

108

Seasonal ARIMA model

```
Series: birthstimeseries
ARIMA(2,1,2)(1,1,1)[12]
Coefficients:
               ar2
                        ma1 ma2
        ar1
                                      sar1
                                              sma1
     0.6539 -0.4540 -0.7255 0.2532 -0.2427 -0.8451
s.e. 0.3004 0.2429 0.3228 0.2879 0.0985
                                            0.0995
sigma^2 estimated as 0.3918: log likelihood=-157.45
AIC=328.91 AICc=329.67 BIC=350.21
```


Seasonal ARIMA model - Forecast

Forecasts from ARIMA(2,1,2)(1,1,1)[12]

TS has more cells, fridges

6% of all salaried households in rural TS pay taxes, in AP it's 3%

DC CORRESPONDENT HYDERABAD, JULY 3

As per the Socio Economic and Caste Census 2011 released on Friday, there are about 83.06 lakh households in Telangana State to Andhra Pradesh's 1.22 crore households.

The first installment of the SECC report that was released on Friday covers the rural parts of the country.

Rural Telangana has about 57.06 lakh households while AP has 92.97 lakh households. Despite this, rural TS has a higher number of salaried households than AP. Also, more salaried households in rural TS pay income or professional taxes than AP.

About 6 per cent of all salaried households in rural TS pay taxes while in AP it's half the number.

Also, more people in Telangana own mobiles phones and refrigerators. More than 83 per cent of the rural population in TS own mobile phones.

The land ownership patterns in the two states have also thrown up interesting facts. Unirrigated land in AP constitutes about 24 per cent while in TS it is 31 per

Proportion of agricultural lands, which receive assured irrigation water in the two states, is the same at 36 per cent.

The quantum of land though is higher in AP. AP, however, has beaten TS in terms of education as a higher proportion of the TS

rural population is still illiterate. Majority of the rural populations in the two states derive their income from manual casual labour.

A whopping 59 per cent of AP's rural population comprises casual labourers while nearly half of the rural TS population comprises casual labourers.

The SECC 2011 data shows that about 26 per cent of the TS rural population derives its income from cultivation. The corresponding figure in AP is lesser at 22 per cent.

A whopping 59 per cent of AP's rural population comprises casual labourers while nearly half TS population comprises casual labourers

— SOCIA-ECONOMIC CASTE CENSUS

- Kuchcha Households: 12.38%
 Kuchcha Households: 9.12%
- Pucca Households: 87.52% Pucca Households: 90.65%
- Houses with 1 room: 13.50%Houses with 1 room: 26.12%

■ Vote to decide if Greece gets a last-ditch financial rescue

Slim lead for 'Yes' in Greece referendum

Athens, July 3: Supporters of Greece's bailout terms have taken a wafer-thin opinion poll lead over the 'No' vote backed by the leftist government, 48 hours before a referendum that may determine the country's future in the euro zone.

The poll by the respected ALCO institute, published in the *Ethnos* on Friday, put the 'Yes' camp on 44.8 per cent against 43.4 per cent for the 'No' vote. But the lead was well within the pollster's 3.1 percentage point margin of error, with 11.8 per cent saying they are still undecided.

Given a volatile public mood and a string of recent election results that ran counter to opinion poll predictions, the result is in effect completely open.

With banks shuttered all

PROBLEMS

IN FOCUS

IN ORDER TO WALK OUT OF THE HOUR OF ECONOMIC CRISIS, GREECE HAS TO ADDRESS SOME OF THESE PROBLEMS

DEFUSING PENSION BOMB

Olivier Passet, director of Greece's economy analysis, Xerfi, said resolving Greece's pension "time bomb... is priority number one."

International School of Engineering

Plot 63/A, 1st Floor, Road # 13, Film Nagar, Jubilee Hills, Hyderabad - 500 033

For Individuals: +91-9502334561/63 or 040-65743991

For Corporates: +91-9618483483

Web: http://www.insofe.edu.in

Facebook: https://www.facebook.com/insofe

Twitter: https://twitter.com/Insofeedu

YouTube: http://www.youtube.com/InsofeVideos

SlideShare: http://www.slideshare.net/INSOFE

LinkedIn: http://www.linkedin.com/company/international-

school-of-engineering

This presentation may contain references to findings of various reports available in the public domain. INSOFE makes no representation as to their accuracy or that the organization subscribes to those findings.