Bayesian Neural Networks

Ava, Conor, & Taylor

Reed College

March 21, 2024

A Brief History

Intro

000

 Intro
 Operations
 Security
 Implementations
 References

 OO●
 OOO
 OOO
 OO

Applications

Merkle trees are secured data structures whose operations can be used to prove/verify membership of a node in $\mathcal{O}(\log(n))$ hashes.

Figure: XKCD: "Tree" [6]

Proving Membership (singular)

Figure: Show Germany exist in the tree [2]

Proving Membership (multiple)

Figure: Show Germany and France exist in the tree [2]

ntro Operations Security Implementations References

Joining trees

See blackboard

Figure: Create a new root node and connect trees A and B [1]

ntro Operations Security Implementations References
000 000 000 00

Equality

See blackboard

Figure: Show trees A and B are equal.

tro Operations Security Implementations References

Is it a secure authenticated data structure

We next define security. We say that an adversary defeats the scheme if it can output a hash

We assume the underlying hash function h is collision resistant.

Authenticated data structure scheme syntax

An authenticated data structure scheme $\mathcal{D} = (H, P, V)$ defined over $(\mathcal{X}^n, \mathcal{Y})$ is a tuple of three efficient deterministic algorithms:

- H is an algorithm that is invoked as $y \leftarrow H(T)$, where $T := (x_1, \dots, x_n) \in \mathcal{X}^n$ and $y \in \mathcal{Y}$.
- P is an algorithm that is invoked as $\pi \leftarrow P(i, x, T)$, where $x \in \mathcal{X}$ and $1 \le i \le n$. The algorithm outputs a proof π that $x = x_i$, where $T := (x_1, \dots, x_n)$.
- V is an algorithm that is invoked as $V(i, x, y, \pi)$ and outputs accept or reject.
- We require that for all $T:=(x_1,\ldots,x_n)\in\mathcal{X}^n$, and all $1\leq i\leq n$, we have that

$$V(i, x_i, H(T), P(i, x_i, T)) = accept$$

tro Operations Security Implementations References

○○ ○○○ ○○○ ○○○ ○○

Attack Game

For Merkle tree D = (H, P, V) defined over $(\mathcal{X}^n, \mathcal{Y})$, and a given adversary \mathcal{A} :

The adversary A outputs a $y \in \mathcal{Y}$, a position $i \in \{1, ..., n\}$, and two pairs (x, π) and (x', π') where $x, x' \in \mathcal{X}$.

 \mathcal{A} wins the game if $x \neq x'$ and $V(i, x, y, \pi) = V(i, x', y, \pi')$ =accept. Define \mathcal{A} 's advantage with respect to \mathcal{D} , denoted $\mathrm{ADSadv}[\mathcal{A}, \mathcal{D}]$, as the probability that \mathcal{A} wins the game.

tro Operations Security Implementations References

OO OOO OOO OOO

Merkle hash tree scheme is a Secure Authenticated Data Structure Scheme

The Merkle hash tree scheme is a secure authenticated data structure scheme, assuming the underlying hash function h is collision resistant.

Lessons from Bitcoin

IT'S STILL AROUND. WHAT ARE THINGS LIKE TEN I JUST BOUGHT YEARS FROM NOW IN 2020? WE HAVE THIS NEW "BITCOIN" THING-DOES IT EVER CATCH ON AND RECOME NORMAL?

Figure: XKCD: "2010 and 2020" [7]

- All cryptocurrencies are Ponzi schemes
- The chain is actually collection of root nodes.
- Bitcoin incorrectly implemented their merkle trees and it resulted in DOS attacks due to over hashing and duplicate nodes (CVE-2012-2459).

ntro Operations Security **Implementations** References

BitTorrent Data Integrity

AWAITING THE JUDGES' RULING AT THE PIRATE BAY TRIAL:

Figure: XKCD: "Pirate Bay" [5]

- Finding errors in $\mathcal{O}(\log(n))$!
- Only needing to compare nodes below incorrect nodes.

tro Operations Security Implementations References

References I

- Boneh, D., & Shoup, V. (2020). A graduate course in applied cryptography. *Draft 0.5*.
- Buchannen, B. (2022, January). Bloom filters, merkle trees and... accumulators. https://medium.com/asecuritysite-when-bob-met-alice/bloom-filters-merkle-trees-and-accumulators-27bc2f7baf5a
- Friedenbach, M., & Alm, K. (2017, August). Fast merkle trees proposal. https://github.com/bitcoin/bips/blob/master/bip-0098.mediawiki
- Merkle, R. C. (1979). Method of providing digital signatures. *Patent US4309569A*.
- Monroe, R. (2009, March). Xkcd: Pirate bay.
- Monroe, R. (2010, December). Xkcd: Tree.
- Monroe, R. (2020, March). Xkcd: 2010 and 2020.

