Logit price dynamics

James Costain and Anton Nakov

Banco de España

January 2013

990

Anton Nakov (BdE)

Logit price dynamics

Many individual prices are "sticky"

Figure 1: The Price of Fleischmann's Margarine⁽ⁱ⁾

Source: Campbell and Eden (2010)

Motivating questions

- What causes the "stickiness" of individual prices?
- 2 Does the rigidity of individual prices matter for aggregate business cycle fluctuations?

Implications for macroeconomic performance and for policy

DQ Q

Anton Nakov (BdE)

Logit price dynamics

Three approaches to price stickiness

- Arbitrary failures to adjust:
 - Taylor (1979), Calvo (1983)
- "Menu costs":
 - Barro (1972), Mankiw (1985), Caplin-Spulber (1987)
 - ▶ Dotsey et al (1999), Golosov-Lucas (2007), Midrigan (2011)
- **3** Costly or imperfect information processing and decisions:
 - ▶ Woodford (2009), Alvarez-Lippi-Paciello (2011)
 - Case study evidence of Zbaracki et al (2004) points to managerial costs

This paper

- Main assumption: precise decisions are costly Making exactly the right decision at all points in time is costly
- 2 Game theoretic approach: "control costs"
 - **1** Assume a **cost function** for **precision**
 - 2 Implies **mistakes** occur in equilibrium
 - 3 If precision is measured by **entropy**, then choices distributed as **logit**
- Two margins for errors:
 - **1** When to adjust price (like Costain-Nakov JME 2011)
 - **Which price** to set (like Costain-Nakov ECB WP 1375)
- This paper puts the two margins together

DQ Q January 2013

Anton Nakov (BdE)

Logit price dynamics

Possible interpretations of our paper

- Putting "logit equilibrium" or "control costs" in a macro model
- 2 Redefining "menu costs" so they can be interpreted as costs of managerial decisions
- 3 Showing that **near-rational** price adjustment, where errors can occur if they are not too costly, is tractable and empirically successful

Recent related papers

- Empirics of price adjustment
 - ► Klenow-Kryvtsov (2008), Nakamura-Steinsson (2008), Klenow-Malin (2010)
 - Document many stylized facts about micro price adjustment
- Menu cost models
 - ► Golosov-Lucas (2007), Midrigan (2011)
 - ► Feature aggregate and idiosyncratic shocks; fit to micro-data and then look for macro implications
 - ▶ In our model there is no menu cost but instead a "control cost"

Anton Nakov (BdE)

Logit price dynamics

January 2013

7 / 59

Recent related papers

- Menu cost and observation cost
 - Alvarez-Lippi-Paciello (2011)
 - ► Highly successful in matching micro evidence in spite of relying only on two free parameters
 - ▶ But they don't look at general equilibrium impulse-responses
- Rational inattention
 - Woodford (2009), Matejka (2011)
 - ► There is a constraint on the rate of information flow from the environment to the decisionmaker
 - ▶ In our model the decisionmaker has full information, yet decisions are subject to error due to control costs

SOME STYLIZED FACTS

 ✓ □ ▶ ◀ □ ▶ ◀ □ ▶ ◀ □ ▶ ▼ □
 ✓ ○ ○

 January 2013
 9 / 59

Anton Nakov (BdE) Logit price dynamics January 2013 9 / 59

Histogram of price changes: data vs. menu cost model

Declining price adjustment hazard

Months since the last price change

Source: Nakamura-Steinsson (2008)

Anton Nakov (BdE) Logit price dynamics January 2013 11 / 59

Typical price adjustment hazard in the menu cost model

Idiosyncratic shocks with positive persistence

Average size of price changes as a function of price age

Source: Klenow-Kryvtsov (2008)

Anton Nakov (BdE) Logit price dynamics January 2013 13 / 59

Average size of price changes in the Calvo model

Extreme prices are young in the data

Figure 7: The Fraction of Young Prices by Relative $Price^{(i)}$

Note: (i) Young prices are those with ages less than four weeks. The plotted fractions exclude prices one week old from both the numerator and denominator.

Source: Campbell-Eden (2010)

Anton Nakov (BdE)

Logit price dynamics

January 2013

15 / 59

Extreme prices in the Calvo model

Prices are more volatile than costs

	Std(log(price))	Std(log(cost))	Ratio
Eichenbaum et al*			
Weekly prices and costs	0.14	0.12	1.08
"Reference" prices and costs	0.08	0.07	1.15
Menu cost simulation**	0.060	0.063	0.95
Calvo simulation**	0.049	0.063	0.78

^{*}Source: Eichenbaum-Jaimovich-Rebelo (2011)

Anton Nakov (BdE) Logit price dynamics January 2013 17 / 59

Effects of money supply shocks

^{**}Source: Authors' simulations

This paper: summary of results

- 1 This paper: allow errors in timing and size of adjustment.
- Entropy control costs give rise to logit equilibrium
 - Calibrate two logit parameters to match size distribution and frequency of price changes
- 3 Microeconomic results (errors in choosing which price are helpful):
 - ► Large and small price adjustments coexist
 - Adjustment hazard is largely independent of age of price
 - Adjustment size is largely independent of age of price
 - Extreme prices are younger
 - Prices more volatile than costs
- Macroeconomic results (errors in when to adjust are helpful):
 - Monetary nonneutrality, closer to the Calvo model

Anton Nakov (BdE)

Logit price dynamics

January 2013

19 / 59

CONTROL COSTS AND LOGIT

Deriving multinomial logit from control costs

- Think of decisions as probability distributions over alternatives
- Suppose the **time cost** of decision π is:

$$\kappa \mathcal{D}(\pi|u) \equiv \kappa \sum_{j=1}^{n} \pi^{j} \log \left(\frac{\pi^{j}}{n^{-1}}\right) = \kappa \left(\log(n) + \sum_{j=1}^{n} \pi^{j} \log \pi^{j}\right)$$

- ▶ This is the **relative entropy** of decision π , compared with perfectly uniform decision u
- Also called Kullback-Leibler divergence
- ▶ It means choice is more costly if more precise
- Normalizes cost of uniform decision to zero

Anton Nakov (BdE)

Logit price dynamic

January 201

21 / 59

Deriving multinomial logit from control costs

• Maximize expected value net of costs:

$$\tilde{V} = \max_{\pi^j} \sum_{j=1}^n \pi^j V^j - \kappa W \left(\log(n) + \sum_j \pi^j \log \pi^j \right) \text{ s.t. } \sum_j \pi^j = 1$$

- $ightharpoonup V^j$ is nominal value of alternative j
- W is nominal value of time
- First-order condition:

$$V^j - \kappa W(1 + \log \pi^j) = \mu$$

Rearranging, obtain

$$\pi^{j} = \frac{\exp(V^{j}/(\kappa W))}{\sum_{k} \exp(V^{k}/(\kappa W))}$$

- ◆ロト ◆昼 ト ◆ ≣ ト ◆ ■ ・ かへで

Nesting frictionless choice

$$\pi^{j} = \frac{\exp(V^{j}/(\kappa W))}{\sum_{k} \exp(V^{k}/(\kappa W))}$$

- If $\kappa=0$, then $\pi(P^*)=1$
- If $\kappa = \infty$, then $\pi^j = 1/n$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Anton Nakov (BdE)

Logit price dynamic

January 201

23 / 59

Deriving logit timing from control costs

• Suppose **time cost** of the adjustment hazard λ_t is:

$$\kappa \mathcal{D}(\{\lambda_t, 1 - \lambda_t\} | | \{\bar{\lambda}, 1 - \bar{\lambda}\}) \equiv \kappa \left(\lambda_t \log \frac{\lambda_t}{\bar{\lambda}} + (1 - \lambda_t) \log \frac{1 - \lambda_t}{1 - \bar{\lambda}}\right)$$

- ▶ This is the **relative entropy** of endogenous adjustment hazard λ_t , compared with exogenous adjustment hazard $\bar{\lambda}$.
- It means costs are greater if adjustment probability deviates from $\bar{\lambda}$.
- Normalizes cost of some Calvo model $\bar{\lambda}$ to zero.

- ◀ □ ▶ ◀ ♬ ▶ ◀ Ē ▶ · · Ē · · · · ? O Q C

Deriving logit timing from control costs

Maximize expected gains net of costs

$$G_t = \max_{\lambda_t} \lambda_t D_t - \kappa W_t \left(\lambda_t \log \frac{\lambda_t}{\bar{\lambda}} + (1 - \lambda_t) \log \frac{1 - \lambda_t}{1 - \bar{\lambda}} \right)$$

- $ightharpoonup D_t$ is gain from adjustment at t
- $ightharpoonup W_t$ is value of time at t
- First-order condition:

$$D_t = \kappa W_t \left(1 + \log rac{\lambda_t}{ar{\lambda}} - \left(1 + \log rac{1 - \lambda_t}{1 - ar{\lambda}}
ight)
ight)$$

Rearranging,

$$\lambda_t = \frac{\bar{\lambda}}{\bar{\lambda} + (1 - \bar{\lambda}) \exp(-D_t/(\kappa W_t))}$$

• Same as Woodford (2009)

Anton Nakov (BdE)

Logit price dynamic

January 2013

25 / 59

Nesting Calvo and menu cost

$$\lambda_t = \frac{\bar{\lambda}}{\bar{\lambda} + (1 - \bar{\lambda}) \exp(-D_t/(\kappa W_t))}$$

- ullet If $\kappa=0$, menu cost: $\lambda_t=1$ if $D_t>0$ and $\lambda_t=0$ if $D_t<0$
- If $\kappa=\infty$, Calvo model: $\lambda_t=ar{\lambda}$ regardless of D_t

◀□▶◀圖▶◀臺▶◀臺▶ 臺 釣९ⓒ

New parameters

- ullet Two free parameters: **noise** κ and **rate** $ar{\lambda}$
- Interpretation of $\bar{\lambda}$: Adjustment probability when the firm is indifferent between adjusting or not
- ullet Interpretation of κ : Level of noise in decision-making

Anton Nakov (BdE) Logit price dynamics January 2013 27 / 59

MODEL

Model: monopolistic firms

• Firm's demand: $Y_{it} = (P_t/P_{it})^{\epsilon} Y_t$

• Firm's output: $Y_{it} = A_{it} N_{it}$

• Idiosyncratic productivity: $\log A_{it} = \rho \log A_{it-1} + \varepsilon_{it}^{a}$

• Profits: $U_{it} = P_{it}Y_{it} - W_tN_{it} = U_t(P_{it}, A_{it})$

Frictionless optimal choice would imply:

$$V_t^*(A_{it}) = \max_{P} U_t(P, A_{it}) + E[Q_{t,t+1}V_{t+1}^*(A_{it+1})]$$

... but now there are mistakes and control costs.

Anton Nakov (BdE)

Logit price dynamic

January 201

29 / 59

Model: mistakes in price choice

- Instead of *optimal* price $P_t^*(A_{it})...$
- ... there is a logit distribution across possible prices:

$$\pi_t(P|A_{it}) = \frac{\exp(\kappa^{-1}W_t^{-1}V_t(P, A_{it}))}{\sum_{P'} \exp(\kappa^{-1}W_t^{-1}V_t(P', A_{it}))}$$

• The value of adjusting is:

$$\tilde{V}_t(A_{it}) = \sum_{P} \pi_t(P|A_{it}) V_t(P, A_{it}) - W_t K_t^{\pi}
= E^{\pi} V(P, A_{it}) - W_t K_t^{\pi}$$

• ... which includes the adjustment cost:

$$W_t K_t^{\pi} = W_t \kappa \mathcal{D}(\pi_t | u)$$

- ◀ □ ▶ ◀ ♬ ▶ ◀ Ē ▶ · · Ē · · · · ? O Q C

Model: mistakes in timing

- Optimal timing is to adjust iff $E^{\pi}V_t(P,A_{it}) W_tK_t^{\pi} > V_t(P_{it},A_{it})$.
- But here, instead, adjustment hazard is a weighted logit:

$$\lambda(L) = \frac{\bar{\lambda}}{\bar{\lambda} + (1 - \bar{\lambda}) \exp(-L)},$$

• ... where *L* is **real loss from not adjusting:**

$$L = L_t(P_{it}, A_{it}) = \frac{E^{\pi}V_t(P, A_{it}) - W_tK_t^{\pi} - V_t(P_{it}, A_{it})}{\kappa W_t}$$

- ▶ Noise parameter $\kappa \in [0, \infty)$ controls precision of timing.
- Each period, pay a cost to check whether it is a good time to adjust:

$$W_t K_t^{\lambda} = W_t \kappa \mathcal{D}\left(\{\lambda(L), 1 - \lambda(L)\} || \{\bar{\lambda}, 1 - \bar{\lambda}\}\right)$$

Anton Nakov (BdE)

Logit price dynamics

January 2013

31 / 59

Bellman equation

• Value of production now at current firm-specific state (P, A):

$$\begin{aligned} V_t(P,A) &= U_t(P,A) \\ &+ E_t \left\{ Q_{t,t+1} \max_{\lambda} \left[(1-\lambda)V_{t+1}(P,A') + \lambda \tilde{V}_{t+1}(A') \right. \right. \\ &- \left. W_{t+1} \kappa \mathcal{D} \{ (\lambda, 1-\lambda) || (\bar{\lambda}, 1-\bar{\lambda}) \} \right] \middle| A \right\} \end{aligned}$$

- Here $V_{t+1}(P, A')$ = value of continuing next period without adjusting
- ▶ And $\tilde{V}_{t+1}(P, A') =$ expected value of continuing after adjustment:

$$ilde{V}_{t+1}(A') = \max_{\pi^j} \sum_j \pi^j V_{t+1}(P^j, A') - W_{t+1} \kappa \mathcal{D}(\pi||u)$$
 s.t. $\sum_j \pi^j = 1$

Versions compared

In the paper we compare six versions of the model:

- "Precautionary price stickiness": errors in price choice. Timing optimal.
 - ▶ PPS-logit
 - ▶ PPS-control
- "Woodford": errors in timing. Set optimal price when adjustment occurs.
 - Woodford-logit
 - Woodford-control
- "Nested": errors in price choice and timing.
 - Nested-logit
 - Nested-control
- Three versions just impose logit, without subtracting control costs
- The other three versions derive logit from control costs

Anton Nakov (BdE)

Logit price dynamic

January 2013

33 / 59

Model: the rest is standard

- Household utility: $\frac{C^{1-\gamma}}{1-\gamma} \chi N + \nu \log(M/P)$ with discount β
- Period budget constraint:

$$P_t C_t + M_t + R_t^{-1} B_t = W_t N_t + M_{t-1} + T_t + B_{t-1} + \Pi_t$$

Consumption bundle:

$$C_t = \left[\int_0^1 C_{it}^{\frac{\epsilon-1}{\epsilon}} di\right]^{\frac{\epsilon}{\epsilon-1}}$$
 with price $P_t \equiv \left[\int_0^1 P_{it}^{1-\epsilon} di\right]^{\frac{1}{1-\epsilon}}$

• Money supply: $M_t = \mu \exp(z_t) M_{t-1}$, where $z_t = \phi_z z_{t-1} + \epsilon_t^z$

Model: aggregate consistency and aggregate state variable

- Labor market clearing: $N_t = \Delta_t C_t + K_t^{\lambda} + K_t^{\pi}$
- Measure of price dispersion: $\Delta_t \equiv P_t^{\epsilon} \int_0^1 P_{it}^{-\epsilon} A_{it}^{-1} di$
- Balanced budget: $M_t = M_{t-1} + T_t$
- Bond market clears: $B_t = 0$
- Aggregate state variable: $\Omega_t \equiv (z_t, M_{t-1}, \Psi_{t-1})$...
 - ... where Ψ_{t-1} is the cross-sectional distribution of prices and productivities at time t-1

Anton Nakov (BdE)

Logit price dynamics

January 2013

35 / 59

COMPUTATION

Computation

- Challenge: need to keep track of the distribution of firms
- Reiter's (2009) method of "projection & perturbation"
- Appropriate for price-setting by firms: idiosyncratic shocks are relatively large; aggregate shocks are relatively small
- Two-step procedure, computing:
 - Aggregate steady-state by backwards induction on a finite grid
 - 2 Aggregate dynamics by linearization around each grid point

Anton Nakov (BdE)

Logit price dynamics

January 201

37 / 59

Finite grid approximation

- To keep track of value function and cross-sectional distribution, define them over finite grid.
- Grid of real firm-specific states: $\Gamma = \Gamma^a \times \Gamma^p \dots$
 - ... where $\Gamma^a \equiv \{a^1, a^2, ... a^{\# a}\}, \Gamma^p \equiv \{p^1, p^2, ... p^{\# p}\}$
- Exogenous Markov matrix describes productivity:

S:
$$s^{jk} = prob(a^j|a^k)$$

• Endogenous, time-varying Markov matrix deflates real prices:

$$\mathbf{R}_t$$
: $r^{jk} = prob(p^j|p^k, P_t/P_{t-1})$

• (If previous real price was p^k , \mathbf{R}_t only allocates positive probability to the two grid points bounding $\frac{P_{t-1}}{P_t}p^k$.)

Computation: aggregate steady-state (projection)

Real prices converge to an ergodic distribution Ψ .

- Guess real wage: w
- **2** Consumption: $C = (\chi/w)^{1/\gamma}$
- **3** Payoff at grid points: $U^{jk} = (p^j w/a^k) C(p^j)^{-\epsilon}$
- 4 Iterate on Bellman equation: $\mathbf{V} = \mathbf{U} + \beta \mathbf{R}' (\mathbf{V} + \mathbf{G}) \mathbf{S}$
- Iterate on distribution matrices:
 - ▶ Beginning of period: $\tilde{\Psi} = R\Psi S'$
 - End of period: $\Psi = (\mathbf{1}_{pa} \mathbf{\Lambda}) . * \tilde{\Psi} + \mathbf{\Pi} . * \left(\mathbf{1}_{pp} * (\mathbf{\Lambda} . * \tilde{\Psi})\right)$
- **6** Check if $\sum_{j=1}^{\#^p} \sum_{k=1}^{\#^a} \Psi^{jk}(p^j)^{1-\epsilon} = 1$, and adjust w until it holds.

Anton Nakov (BdE)

Logit price dynamic

January 2013

39 / 59

Computation: aggregate dynamics (perturbation)

Dynamic Bellman equation:

$$\mathbf{V}_t = \mathbf{U}_t + \beta E_t \left[\frac{u'(C_{t+1})}{u'(C_t)} \mathbf{R}'_{t+1} \left(\mathbf{V}_{t+1} + \mathbf{G}_{t+1} \right) \mathbf{S} \right]$$

- Distributional dynamics:
 - $\blacktriangleright \ \tilde{\Psi}_t = \mathsf{R}_t \Psi_{t-1} \mathsf{S}'$
 - $\blacktriangleright \ \Psi_t {=} \left(\mathbf{1}_{pa} \mathbf{\Lambda}_t\right) . * \tilde{\Psi}_t + \mathbf{\Pi}_t . * \left(\mathbf{1}_{pp} * (\mathbf{\Lambda}_t . * \tilde{\Psi}_t)\right)$
- Collect variables in vector: $X_t = (vec(\Psi_{t-1}), vec(V_t), C_t, \pi_t, M_{t-1})$
- Model: $E_t \mathcal{F}(X_{t+1}, X_t, z_{t+1}, z_t) = 0$
- Linearization: $E_t A \Delta X_{t+1} + B \Delta X_t + E_t C z_{t+1} + D z_t = 0$
- Solve with Klein's QZ method for linear RE models

CALIBRATION

Anton Nakov (BdE)

Logit price dynamics

January 2013

41 / 59

Common parameters (same in all specifications)

Discount factor $\beta^{-12} = 1.04$ Golosov-Lucas (2007)

CRRA $\gamma=2$ Ibid. Labor supply $\chi=6$ Ibid.

MIUF coeff. $\nu=1$ lbid.

Elast. subst. $\epsilon = 7$ lbid.

Money growth $\mu^{12}=1.02$ Dominick's 2% annual inflation

Persistence prod. $\rho = 0.95$ Blundell-Bond (2000)

Std. dev. prod. $\sigma = 0.06$ Eichenbaum et. al. (2009)

Estimated parameters for each specification

Estimation criterion:

distance =
$$\sqrt{n}||\lambda_{model} - \lambda_{data}|| + ||h_{model} - h_{data}||$$

where $\lambda = \text{frequency}$, h = histogram of changes, n = length(h).

Rate:	Noise:	Noise
$ar{\lambda}$	κ_π	κ_{λ}
_	0.049	_
_	0.0044	_
0.044	_	0.0051
0.045	_	0.0080
0.083	0.013	0.013
0.22	0.018	0.018
	$\frac{\bar{\lambda}}{\lambda}$ - 0.044 0.045 0.083	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Anton Nakov (BdE) Logit price dynamics January 2013 43 / 59

RESULTS

Equilibrium behavior (Nested control-cost model)

Histogram of nonzero price changes

Steady-state: statistics on price variability

	Wdfd	Wdfd	PPS	PPS	Nest	Nest	Data
	logit	cntrl	logit	cntrl	logit	cntrl	
$\overline{\operatorname{Std}(p)/\operatorname{Std}(a)}$	0.95	0.91	1.13	0.98	1.09	1.04	1.15
Freq. Δp	10.2	10.2	10.2	10.2	10.2	10.2	10.2
Mean $ \Delta p $	4.88	4.68	14.0	6.72	8.11	7.51	9.90
$Std(\Delta p)$	5.51	5.27	17.0	7.32	10.1	9.30	13.2
$Kurt(\Delta p)$	2.24	2.22	2.58	2.37	3.48	3.40	4.81
$^{\text{\%}} \Delta p > 0$	62.7	63.3	55.2	62.3	58.3	58.8	65.1
$ \Delta p \le 0.05$	47.9	49.7	16.5	27.9	31.5	33.6	35.4

Note: Statistics in percent.

Dominick's data: "regular" price changes, excluding sales.

Anton Nakov (BdE)

Logit price dynamics

January 2013 47 / 59

Steady-state: Costs of decision-making

	Wdfd	Wdfd	PPS	PPS	Nested	Nested	
	logit	cntrl	logit	cntrl	logit	cntrl	
Pricing costs	0	0	0	0.174	0	0.509	
Timing costs	0	0.167	0	0	0	0.361	
Gain if rational	0.258	0.416	0.665	0.365	0.582	1.41	

Note: Costs and gains stated as percentage of average revenue.

Price adjustment hazard

Anton Nakov (BdE) Logit price dynamics January 2013 49 / 59

Size of price change as function of price age

< 분 > < 분 >

Fraction of young prices

◆□ → ◆ = →

Anton Nakov (BdE) Logit price dynamics January 2013 51 / 59

Effects of trend inflation

Effects of money growth shock

◆昼 ▶ ◆夏 ▶ ◆夏 ▶ Anton Nakov (BdE) Logit price dynamics January 2013 53 / 59

Responses to a money growth shock

Selection effect is dominant at low trend inflation rates

Estimated Phillips curve coefficients

Table 3. Variance decomposition and Phillips curves

Money shocks:	Wdfd	Wdfd	PPS	PPS	Nest	Nest	Data*
$(\phi_z = 0.8)$	logit	cntrl	logit	cntrl	logit	cntrl	
Std μ (%)	0.16	0.15	0.16	0.12	0.17	0.17	
Std inflation (%)	0.25	0.25	0.25	0.25	0.25	0.25	0.25
$\%$ explained by μ	100	100	100	100	100	100	
Std output (%)	0.41	0.37	0.34	0.20	0.45	0.43	0.51
$\%$ explained by μ	80	73	67	38	89	84	
Phillips slope*	0.32	0.29	0.31	0.15	0.38	0.35	

CONCLUSIONS

Anton Nakov (BdE)

Logit price dynamic

January 2013

57 / 59

Conclusions

- Model: price stickiness as near-rational behavior
- Standard model of "mistakes": logit equilibrium
- Just two free parameters, but:
 - Matches micro facts well (due to price errors)
 - Generates monetary nonneutrality closer to the Calvo model (due to timing errors)
- Tractable enough to compute in DSGE

THANKS!

Anton Nakov (BdE)

Logit price dynamics

January 2013 59 / 59