

Informatique Graphique 3D & Réalité Virtuelle Modélisation Géométrique : Simplification de Surface

Tamy Boubekeur

Contexte

Modèle St Mattieu

360 000 000 de triangles

TROP pour beaucoup d'applications

Modèle Atlas

500 000 000 de triangles

Objectif

- Générer un maillage
 - contenant moins de polygones
 - préservant au mieux la forme d'origine.

- Entrée : un maillage
- Sortie : un maillage
- Techniques similaires pour les surfaces de points

Caractérisation

- Efficacité :
 - Complexité en temps : vitesse de simplification
 - Simplification à la volée
 - Complexité en mémoire : taille de l'entrée
 - Algorithmes hors-mémoire souhaitables
- Qualité :
 - Préservation de la topologie
 - Degré d'approximation de la géométrie

Classification

- 1. Partitionner la maillage
- 2. Définir un sommet représentant par partition
- 3. Trianguler l'ensemble des sommets représentant

- 1. Définir une importance par sommet
- 2. Supprimer le sommet de moindre importance
- 3. Recommencer en 1 jusqu'à obtenir le nombre souhaité d'éléments

Algorithmes de Simplification

Quelques algorithmes de simplification:

Décimation

- MO (Mesh Optimization): Optimisation de maillage [Hoppe et al., 1993]
- QEF (Quadric Error Function): Erreur L2 basée sur une quadrique locale [Garland 1997]

Partitionnement

- OCS (Out-of-Core Simplification): Partitionnement en grille de soupes de polygones [Lindstrom 2000]
- VSA (Variational Shape Approximation): Relaxation de Lloyd pilotée par la normale [Cohen-Steiner et al. 2004]

Simplification par Décimation

- 1. Trier les sommets en fonction de leur **importance/erreur** (induite par leur suppression) dans une file à priorité **F**
 - Métrique d'erreur : basée sur la position, la normale, la couleur, le point de vue, ...
- 2. Supprimer le sommet de tête de **F** (erreur minimum)
 - Contraction d'arête ou Retriangulation
- **3. Optimisation** : recalculer l'importance des sommets adjacents au sommet supprimé
- 4. Mettre à jour **F**
- 5. Recommencer en 1 jusqu'à condition d'arrêt
 - Nombre de sommets cible
 - Erreur maximum autorisée

Stratégie de Suppression

Contraction d'une arête adjacente au sommet de moindre importance

- Supprime 1 sommet et 2 triangles
- Opération dual : division de sommet

Note: cet opérateur de simplification permet de construire des maillages progressifs, une structure de multirésolution, avec continuum géométrique.

Retriangulation

Note: équivalent à la contraction d'arête, mais en général sans calcul d'optimum local.

Exemple par Décimation

Simplification par Décimation

Avantage	Inconvénients
 Précision et optimalité Continuum et granularité de la simplification Transformation géomorphe de niveaux de détails 	 Lent Difficile à mettre sur de grands modèles (algorithmique hors mémoire)

Simplification par Partitionnement

- 1. Partitionner la surface en régions
- 2. Calculer un représentant pour chaque région
 - Le plus souvent un sommet
 - Position/normale/etc. définit par une optimisation
 - La plus simple : une moyenne
- 3. Trianguler les sommets représentants

Simplification par Partitionnement

Exemple simple : partitionnement en grille (OCS)

- Structure de partition : une grille 3D G
 - Région = ensembles des sommets du maillages appartenant à la même cellule de G
- Sommet représentant : la moyenne des sommet d'une cellule
- Triangulation
 - Pour chaque triangle du maillage d'origine :
 - Si 2 ou 3 des sommets sont dans la même cellule de G, supprimer le triangle
 - Sinon, conserver le triangle, en réindexant ses sommets sur les sommets représentants de leurs cellules respectives

Principe OCS

Maillage

Partitionnement en grille

Calcul des représentants

Avantage

• Simplicité

- Calcul en flux (un sommet du maillage dense en mémoire à la fois)
- Très rapide

Inconvénients

- Contrôle de la résolution de la surface difficile
- Erreurs topologiques

Sélection des triangles à conserver (sommets dans différentes cellules) « Étirement »
des triangles à
la positions des
représentants
(réindexation)

Maillage simplifié

Adaptivité

- Grille régulière G remplacée par une des structures de partitionnement spatial hiérarchiques adaptatives (cf cours dédié)
- Meilleur distribution des régions
 - petites régions dans les zones accidentées
 - grandes régions dans les zones planes
- Exemples :
 - Octree
 - kd tree
 - BSP tree

Simplification par Partitionnement

Exemple haute qualité : VSA (Approximation Variationelle de Forme)

Algorithme itératif :

- Initialisation d'un ensemble de proxies (couple représentant, point/normale) par selection aléatoire d'un ensemble de triangles
 - Graîne/représentants des regions
- 2. Grossissement de regions basé normal
 - Triangle t en bord de regions affecté à la region dont la normale du proxy minimise l'angle avec la normale de t

3. Optimisation du proxy : point et normales moyennes des triangle de sa régions associée

4. Recommencer en 2 jusqu'à convergence Maillage simplifié obtenu par suivi de contour des régions

Avantage	Inconvénients
Précision et optimalité	• Lenteur
Structure anisotrope	Convergence non garantie

Métriques d'Erreur

- Caractérise le coût géométrique (perte d'information) introduit par la simplification d'un région
 - Région = 1-voisinage d'un sommet supprimé par décimation
 - Région = cellule pour les méthodes par partitionnement
- Peux s'appuyer sur la position des sommets, leurs normales, celles de triangles, etc...
- Idéalement, la métrique d'erreur permet de :
 - Ordonnancer les sommets en vue de supprimer les moins importants
 - Définir un représentant optimum pour la métrique en question

Distances géométrique et métriques d'erreurs

- Distances L^p (p=2 pour la distance euclidienne)
- Carrée de la distance euclidienne : un quadrique (QEM) [Garland 1997]
- Métrique $L^{2,1}$: basée sur le normale des surfaces [Cohen-Steiner 04]
- Distance de Hausdorff

Distances L^p

Distance entre une surface S et sa version simplifiée R

Basé sur les positions des élément (L2)

$$\mathcal{L}^{p}(S,R) = \left(\frac{1}{|S|} \iint_{x \in S} ||d(x,R)||^{p} dx\right)^{\frac{1}{p}}$$
avec $d(x,R) = \inf_{y \in R} ||x-y||$

Quadrique d'Erreur (Quadric Error Metric - QEM)

 $P_i = (x_i, n_i)$ le plan support d'un triangle t_i avec x_i un point quelconque du plan, n_i le vecteur normal unitaire de t_i et $d_i = n_i$ x_i

Distance quadratique d'un point x quelconque à P_i :

$$d^2(x, P_i) = \left(n_i^T x - d_i\right)^2$$

Soit, en coordonnées homogènes, $\bar{x}=(x,1)$ et $\bar{n}_i=(n_i,-d_i)$, alors :

$$d^2(x, P_i) = \left(\overline{n_i}^T \overline{x}\right)^2 = \overline{x}^T \overline{n_i} \overline{n_i}^T \overline{x} =: \overline{x}^T Q_i \overline{x}$$

avec $Q_i = \overline{n_i} \overline{n_i}^T$ une matrice 4x4 symétrique.

La somme des distances quadratiques à tous les plans support d'un ensemble de triangles d'une région R est alors:

$$E(x) = \sum_{t_i \in R} \bar{x}^T Q_i \bar{x} = \bar{x}^T \left(\sum_{t_i \in R} Q_i \right) \bar{x} := \bar{x}^T Q \bar{x}$$

Cette fonction d'erreur est quadratique (iso-contours ellipsoïdaux) : la quadrique **Q** modélise l'erreur à tous les plans/triangles, quelque soit leur nombre.

Optimisation QEM

- Etant donné une matrix quadrique Q modélisant l'erreur à un ensemble de plans/triangles d'une région R
- La position optimale d'un représentant x de R est la solution, au sens des moindres carrés, de Ax = b avec

$$Q = \begin{bmatrix} A & -b \\ -b^T & c \end{bmatrix}$$

- Notes:
 - On utilise une pseudo-inverse basée sur une SVD pour éviter les cas spéciaux
 - On peut intégrer à E l'aire des triangles pour pondérer sa quadrique (maillages irréguliers)

Quadrique d'Erreur (Quadric Error Metric - QEM)

Permet de mieux placer

- un sommet représentant pour les méthodes par partitionnement
- un sommet contracté pour les méthodes par décimation

Métrique $L^{2,1}$

normale moyenne de la région

Conclusion

Tous ces algorithmes peuvent être combinés à différentes échelles. Exemple:

L'opération de simplification de maillage est un cas particulier :

- d'optimisation géométrique
- de ré-échantillonnage géométrique → remaillage

Mémo Simplification

- 1993 : Optimisation de maillage
- 1993: Simplification par partitionnement (OCS)
- 1996: Maillages progressifs (PM)
- 1997 : Quadrique d'Erreur (QEF/QEM)
- 2000 : <u>Simplification hors-mémoire</u> (OCS)
- 2004: <u>Partitionnement variationnel</u> (VSA)
- 2009 : Simplification de Maillages Quad
- 2013 : <u>Sphere-Meshes</u>