1. domača naloga

Naloge rešite v programu Matlab ali Octave. Datoteke, uporabljene pri reševanju, oddajte v ZIP datoteki ime_priimek_vpisnastevilka_dn1.zip v spletni učilnici dan pred kvizom.

1. Denimo, da so dane točke v ravnini

$\overline{x_i}$	l										
y_i	52	48	45	45	58	44	45	42	42	38	

iščemo pa premico oblike y = kx + n, ki gre skozi dane točke. Vsaka točka bi morala zadoščati enačbi premice. Od tod dobimo sistem enačb Aw = b za neznan vektor w = (k, n), kjer je

$$A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$

Ker imamo več enačb kot neznank, je to predoločen sistem. Sistem v splošnem nima rešitve, zato nalogo preoblikujemo. Določite premico, ki se najbolje prilega podatkom, če je merilo za napako

$$||Aw - b||_1 + ||w||_{\infty}$$
,

kjer je w=(k,n). Problem formulirajte kot linearni program in ga rešite z vgrajeno Matlabovo funkcijo linprog. Rešitev primerjajte z rešitvijo dobljeno po regularizirani metodi najmanjših kvadratov, kjer minimiziramo funkcijo

$$||Aw - b||_2^2 + ||w||_2^2$$
.

- 2. Denimo, da so dane bele točke $\{(x_1,y_1), (x_2,y_2), \dots, (x_n,y_n)\}$ in črne točke $\{(u_1,v_1), (u_2,v_2), \dots, (u_m,v_m)\}$ v ravnini. Radi bi preverili, ali obstaja separacijska premica z enačbo y=ax+b, ki strogo loči točke obeh barv. Izmed vseh takih premic, poiščite tisto za katero je vertikalna razlika do najbližjih točk maksimalna. Problem formulirajte kot linearni program in ga rešite z vgrajeno Matlabovo funkcijo linprog.
- 3. Za politop P, podan s sistemom linearnih neenačb $Ax \leq b$, poiščite največji krog, ki je vsebovan v politopu P. Problem formulirajte kot linearni program za neznan polmer r in središče (s_1, s_2) in rešitev preverite na podatkih

$$y \le 3x - 2,$$
 $y \ge 3x - 28,$
 $y \le x + \frac{3}{2},$ $y \ge \frac{2}{3}x - 6,$
 $y \le \frac{1}{2}x + 4,$ $y \ge \frac{1}{2}x - 5,$
 $y \le -\frac{3}{2}x + 18,$ $y \ge -x + \frac{1}{2}.$

4. Dan je utežen dvodelni graf G = (V, E) z n = |V| vozlišči in m = |E| povezavami. Utež na povezavi e označimo z w_e . Množica M povezav grafa G je prirejanje v G, če povezave iz M nimajo skupnih krajišč. Prirejanje M je popolno, če je vsako vozlišče grafa G krajišče vsaj ene povezave iz M. Prirejanje je največje, če je vsota uteži na povezavah maksimalna.

Naj bo $x = \{0,1\}^n$ incidenčni (karakteristični) vektor povezav grafa G, tj. $x_e = 1$, če povezava e pripada največjemu prirejanju in $x_e = 0$, sicer. Formulirajte problem največjega prirejanja kot celoštevilski linearni program in ga rešite z vgrajeno Matlabovo funkcijo intlinprog.

Celoštevilsko omejitev $x_e \in \{0,1\}$ zamenjamo s konveksno omejitvijo $x_e \in [0,1]$. Dobimo *relaksacijo* programa, saj je vsaka dopustna rešitev celoštevilskega programa tudi dopustna rešitev relaksiranega programa. Množico dopustnih rešitev smo namreč povečali in maksimum se kvečjemu poveča. Od tod sledi, da optimalna vrednost z^* dobljenega relaksiranega programa določa zgornjo mejo za optimalno vrednost p^* celoštevilskega programa. V splošnem je vrednost z^* strogo večja od p^* . Izkaže se, da v primeru problema največjega prirejanja velja $p^* = z^*$. Izračunajte optimalno vrednost relaksiranega programa in preverite, da je enaka p^* . Rešitev preverite na spodnjem primeru. Označena je tudi optimalna rešitev.

5. *Implementacija simpleksne metode.* Naj bo $m \le n$ in $A \in \mathbb{R}^{m \times n}$ matrika polnega ranga. Njene stolpce označimo z a_1, a_2, \ldots, a_n . Za dana vektorja $b \in \mathbb{R}^m$ in $c \in \mathbb{R}^n$ rešujemo primarni linearni program v standardni obliki

in pripadajoči dualni program

$$\max \quad b^T y$$
$$A^T y \le c.$$

- (a) Sestavite program, ki izvaja simpleksno metodo:
 - i. Naj bo J začetna baza in $K = \{1, 2, ..., n\} \setminus J$.
 - ii. Reši sistem $A_I \bar{x}_I = b$.
 - iii. Izračunaj vrednost kriterijske funkcije v trenutni dopustni bazni rešitvi \bar{x}_I :

$$c_I^T \bar{x}_J$$

- iv. Iz sistema $A_I^T y = c_I$ izračunaj dualni vektor y.
- v. Izračunaj $\bar{c}^T = c_K^T u^T A_K$. Če je $\bar{c}^T \geq 0$, smo našli optimalno rešitev. Sicer izberemo najmanjši tak indeks $\sigma \in K$, da velja $c_{\sigma} < 0$. Spremenljivka x_{σ} vstopi v bazo.
- vi. Reši sistem $A_I \bar{a} = a_\sigma$. Če je $\bar{a} \le 0$, je problem neomejen.
- vii. Izračunaj vektor $v=\frac{\bar{x}_J}{\bar{a}}$ in izberi najmanjši indeks $\rho\in J$, da velja $v_\rho=\min_{\bar{a}_j>0}\frac{\bar{x}_{J_j}}{\bar{a}_i}$. Spremenljivka x_ρ izstopi iz baze.
- viii. Posodobi J in K in se vrni na korak (ii).

Delovanje algoritma preverite na primeru

min
$$-3x_1 - x_2 - 3x_3$$

 $2x_1 + x_2 + x_3 \le 2$
 $x_1 + 2x_2 + 3x_3 \le 5$
 $2x_1 + 2x_2 + x_3 \le 6$
 $x > 0$

in rešitev primerjajte z rešitvijo dobljeno z Matlabovo funkcijo linprog. Za začetno bazo izberite indekse, ki določajo dopolnilne spremenljivke.

(b) 1. faza. Denimo, da nimamo začetne baze. Najprej enačbe preuredimo tako, da velja $b \ge 0$. Sestavite program, kjer uporabite algoritem iz točke (a) na pomožnem problemu

$$\min \quad e^T w$$

$$Ax + w = b$$

$$x, w > 0.$$

Pri tem smo z *e* označili vektor samih enic. Če je optimalna vrednost pozitivna, potem originalni program ni dopusten. Sicer iz rešitve tega programa preberemo bazo in nadaljujemo z drugo fazo, kjer uporabimo algoritem iz točke (a).

Delovanje algoritma preverite na primeru

min
$$-x_1 - x_2$$

 $x_1 + 2x_3 + x_4 = 1$
 $x_2 - x_3 + x_5 = 1$
 $x_1 + x_2 + x_3 = 2$
 $x > 0$.