EDWARD O'CALLAGHAN

Contents

1.	Prelude	2
2.	Introduction	2
3.	Groups	2
3.1.	. Cyclic Groups	4
3.2.	. Permutations	4
3.3.	. Permutation parity	5
3.4.	. Symmetric Group	5
3.5.	. Group actions	6
3.6.	. Subgroups	6
3.7.	. Group Homomorphisms	8
3.8.	. Characters	10
3.9.	. Cosets	12
3.10	0. Factor (or Quotient) groups	13
3.11	1. Non-commutative Groups	13
3.12	2. Exact sequence	13
4.	First Isomorphism Theorem	14

1. Prelude

TODO: Fix notation here...

We define the non-zero complex numbers form a multiplicative group, written:

$$\mathbb{C}^{\times} \doteq \mathbb{C} - \{0\}.$$

2. Introduction

In this course we build up the rudiments of some important notions of algebraic structures. That is, a algebraic structure of an arbitrary set, or carrier set, coupled with various finitary operations defined on it. ..

3. Groups

Definition 3.1 (Binary operation). A binary operation on a set \mathcal{X} is a map $\circ : \mathcal{X} \times \mathcal{X} \to \mathcal{X}'$. **N.B.** that the binary operation need not be closed.

Definition 3.2 (Magma). A **magma** is a set \mathcal{M} equipped with a binary operation \circ that is closed under the operation on \mathcal{M} . We denote the magma as the tuple pair (\mathcal{M}, \circ) .

Definition 3.3 (Semi-group). A **semi-group** is a set \mathcal{G} equipped with binary operation that is associative. Hence, a semi-group is a magma where the operation is associative; That is, given any $x, y, z \in \mathcal{G}$ then $x \circ (y \circ z) = (x \circ y) \circ z \in \mathcal{G}$. We denote the semi-group as the tuple pair (\mathcal{G}, \circ) , not to be confused with a magma from context.

Definition 3.4 (Monoid). A semi-group with identity or, monoid for short, is a semi-group (\mathcal{G}, \circ) with a unique identity element $e \in \mathcal{G}$ such that $x \circ e = x = e \circ x \, \forall x \in \mathcal{G}$

Proof: unquieness of identity. Assume some other identity $e^{'}$ exists in \mathcal{G} then, $e^{'}=e^{'}\circ e=e\circ e^{'}=e$. \square

Example 3.5. Given $\mathcal{G} = \mathbb{N}$ with the binary law of composition \circ to be defined as arithmetic addition +. Then, $(\mathbb{N}, +)$ forms a semi-group with identity 0. Verify the axioms.

Definition 3.6 (Group). A **group** is a monoid where every element has an inverse. An abelian group is a group that is commutative.

Example 3.7. Given $\mathcal{G} = \mathbb{Z}$ with the binary law of composition \circ to be defined as arithmetic addition +. Then, $(\mathbb{Z}, +)$ forms a semi-group with identity 0. Verify the axioms.

Question 3.8. Why does the set of naturals \mathbb{N} not form a group under multiplication, however does form a monoid?

Definition 3.9 (Group order). If a group \mathcal{G} has n finitely many elements the *order*, denoted $|\mathcal{G}| = n$, is the number of elements of \mathcal{G} .

Definition 3.10 (Group element order). For a element g in some group \mathcal{G} the order of g is defined to be the least positive integer k such that $g^k = e$, where e denotes the group identity, with respect to the groups law of composition. In symbols, o(g) = k. If no such k exists then g is said to have infinite order.

Remark. A non-trivial element, $g \neq e$, of finite order, $o(g) = k < \infty$, is called a torsion element and for when k = 2 it is called an *involution*.

Theorem 3.11. Every finite group of even order has a non-trivial involution. That is, for some group \mathcal{G} where $|\mathcal{G}| = 2n < \infty$ we have that, there exists some non-trivial element $g \neq e$ in \mathcal{G} such that $g^2 = e$.

Example 3.12 (Matrix Groups). Linear maps of vector spaces form groups that have characteristic properties. For some vector space \mathcal{V} over some field \mathbb{F} we may define the following groups taking matrix multiplication as the binary law of composition.

i.) The General Linear group defined by,

$$GL(\mathbb{F}) \doteq \{M \in \mathcal{M} : det(M) \neq 0\}.$$

ii.) The Special Linear group defined by,

$$SL(\mathbb{F}) \doteq \{M \in GL(\mathbb{F}) : \det(M) = 1\}.$$

iii.) The Orthogonal group defined by,

$$O(\mathbb{R}) \doteq \{ M \in GL(\mathbb{R}) : M^T M = I \}.$$

iv.) The Special Orthogonal group defined by,

$$SO(\mathbb{R}) \doteq \{M \in O(\mathbb{R}) : \det(M) = 1\}.$$

v.) The *Unitary* group defined by,

$$U(\mathbb{C}) \doteq \{ M \in GL(\mathbb{C}) : M^*M = I \}.$$

vi.) The Special Unitary group defined by,

$$SU(\mathbb{C}) \doteq \{M \in U(\mathbb{C}) : \det(M) = 1\}.$$

Example 3.13 (Lorentz Group). The Lorentz group is defined as,

$$\mathcal{L}(\mathbb{R}) \doteq \{ M \in \mathcal{M}_2(\mathbb{R}) : M^T C M = C \}$$

where C describes the Lorentz inner product with respect to the standard basis, i.e.

$$C = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Definition 3.14 (Automorphism Group). Suppose S = (S, *) is some algebraic structure and S is the set of automorphism of S. Then we may define the structure (S, \circ) , where \circ is defined as functional composition, as the *group of automorphisms* of S, denoted Aut(S) or $\mathcal{A}(S)$. That is,

$$\mathscr{A}(\mathcal{S}) \doteq (\mathbb{S}, \circ)$$
 where $\mathbb{S} \doteq \{\phi : \mathcal{S} \to \mathcal{S}, \text{ where } \phi \text{ is a bijection.}\}$

For some algebraic structure S on set S.

3.1. Cyclic Groups.

3.1.1. Generating Sets.

Definition 3.15 (Generating Set). For some $S \subseteq \mathcal{G}$ define $S^{-1} = \{s^{-1} : s \in S\}$ and let $\langle S \rangle$ denote the set of all elements of \mathcal{G} that can be written as finite products of elements of $S \cup S^{-1}$. That is,

$$\langle S \rangle \doteq \{g \in \mathcal{G} : g = s_0 \dots s_n \text{ where } s_i \in S \cup S^{-1} \}.$$

Lemma 3.16. The generating set $\langle S \rangle$ is a subgroup of \mathcal{G} , called the subgroup generated by S.

Definition 3.17 (Finitely Generated). Let \mathcal{G} be a group. Then \mathcal{G} is said to be *finitely generated* if there is a finite set $S \subseteq \mathcal{G}$ such that $\mathcal{G} = \langle S \rangle$.

Example 3.18. Consider the group $\mathcal{G} = \mathbb{Z}_5^{\times}$ and notice that $\mathcal{G} = \langle 2 \rangle$. Since,

$$2^{1} = 2,$$

 $2^{2} = 4,$
 $2^{3} = 8 \equiv 3 \pmod{5},$
 $2^{4} = 16 \equiv 1 \pmod{5}$

and so the element 2 is a generator of the multiplicative group $\mathbb{Z}_5 - \{0\}$.

3.1.2. Cyclic Groups.

Definition 3.19 (Cyclic group). A group \mathcal{G} is *cyclic* if $\mathcal{G} = \operatorname{Gp}(g)$ for some $g \in \mathcal{G}$. Such a element is called a *generator* of the group.

3.2. **Permutations.** Take a finite set X with |X| = n, then the transformations of X are called **permutations** of the elements of X. In particular, the group of permutations of $X = \{1, 2, \dots, n\}$ is a **symmetric group**, denoted S_n , with **order** $|S_n| = n!$. Thus, by taking any subgroup of S_n we have a **permutation group**. Also note that, for finite sets, *permutation* and *bijective maps* refer to the same operation, namely rearrangement of elements of X. Another way is to consider, a group \mathcal{G} and set X. Then a group action is defined as a group homomorphism φ from \mathcal{G} to the symmetric group of X. That is, the action $\varphi : \mathcal{G} \to S_n(X)$, assigns a permutation of X to each element of the group \mathcal{G} in the following way:

- From the identity element $e \in \mathcal{G}$ to the identity transformation id_X of X, that is, $\varphi : e \to id_X$;
- A product of group homomorphisms $\varphi \circ \psi \in \mathcal{G}$ is then the composite of permutations given by φ and ψ in X.

Given that each element of \mathcal{G} is represented as a permutation. Then a group action can also be consider as a permutation representation.

A permutation $\sigma \in S_n$ can be written,

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix} \text{ where } a_1 = \sigma(1), a_2 = \sigma(2), \cdots.$$

The identity permutation $id_n \in S_n$ is simply,

$$id_n = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix}$$

Since $|S_n| = n!$ then the total number of ways n elements maybe permuted is n!.

Take any two permutations $\sigma, \pi \in S_n$ then composition is well defined as functional composition as follows.

Given,

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix} \text{ and } \pi = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{pmatrix}$$

then,

$$\pi \circ \sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \pi(a_1) & \pi(a_2) & \cdots & \pi(a_n) \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & \cdots & n \\ b_1 & b_2 & \cdots & b_n \end{pmatrix}$$

A inverse of any permutation $\sigma \in S_n$ is given by,

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix}^{-1} = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 1 & 2 & \cdots & n \end{pmatrix}$$

3.3. **Permutation parity.** Consider the algebraic structure:

$$\triangle_n(x_1, \dots, x_n) = \prod_{i < j} (x_i - x_j)$$

TODO..

3.4. Symmetric Group. TODO FIX sections??

Definition 3.20 (Dihedral group). The dihedral group \mathcal{D}_n is defined as the symmetries of a regular n-gon. The order $|\mathcal{D}_n| = 2n$ as there are n rotations and n reflections.

3.5. **Group actions.** For any mathematical object (e.g. sets, groups, vector spaces) X an isomorphism of X is a symmetry of X. The set of all isomorphisms of X, or symmetries of X, form a group called the symmetry group of X, denoted Sym(X). More formally;

Definition 3.21 (Group action). An *action* of a group \mathcal{G} on a mathematical object X is a mapping $\mathcal{G} \times X \to X$, defined by $(g, x) \mapsto g.x$ satisfying:

- $e.x = x \, \forall x \in X$ and
- $(gh).x = g.(h.x) \forall g, h \in \mathcal{G}, x \in X.$

That is, we have the (left) \mathcal{G} -action on X and denote this by $\mathcal{G} \curvearrowright X$.

Notice that we may study properties of the symmetries of some mathematical object X without reference to the structure of X in particular.

3.6. Subgroups.

Definition 3.22 (Subgroup). A group \mathcal{H} is a **subgroup** of a group \mathcal{G} if the restriction of the binary operation $\circ : \mathcal{H} \times \mathcal{H} \to \mathcal{H}$ is a group operation on \mathcal{H} . In particular, A non-empty subset \mathcal{H} of a group \mathcal{G} is a subgroup of \mathcal{G} if and only if $h_1 \circ h_2 \in \mathcal{H}$ whenever $h_1, h_2 \in \mathcal{H}$, and $h^{-1} \in \mathcal{H}$ whenever $h \in \mathcal{H}$. We denote the subgroup by $\mathcal{H} \leq \mathcal{G}$.

Theorem 3.23 (Smallest subgroup). If \mathcal{A} is a subset of a group \mathcal{G} , there is a smallest subgroup $Gp(\mathcal{A})$ of \mathcal{G} which contains \mathcal{A} , the subgroup generated by \mathcal{A} .

Example 3.24. Suppose $\mathcal{A} = \{g\}$ then $\operatorname{Gp}(\mathcal{A}) = \operatorname{Gp}(g)$ and so $\operatorname{Gp}(g) = \{g^n : n \in \mathbb{Z}\}$, where $g^0 = e$, g^n is the product of n copies of g where n > 0, and g^n is the product of |n| copies of g^{-1} when n < 0.

Definition 3.25 (Normal subgroup). A subgroup \mathcal{H} of a group \mathcal{G} is a **normal**, or *self-conjugate*, if $ghg^{-1} = h$ for all $g \in \mathcal{G}$ and for all $h \in \mathcal{H}$. We denote the normal $\mathcal{H} \subseteq \mathcal{G}$.

Definition 3.26 (Simple group). A group \mathcal{G} is **simple** if it has no normal subgroups other than the trivial normal subgroups $\{e\}$ and \mathcal{G} .

3.6.1. Sylow's Theorems. The Norwegian mathematician Ludwig Sylow established some important results while investigating subgroups of prime order.

Definition 3.27 (p-subgroup). TODO.

Definition 3.28 (Sylow p-subgroup). TODO.

Theorem 3.29 (First Sylow Theorem). Let p be prime and \mathcal{G} be a group such that $|\mathcal{G}| = kp^n$ where p $/\!\!/k$. Then \mathcal{G} has at least one Sylow p-subgroup.

Theorem 3.30 (Second Sylow Theorem). Let P be a Sylow p-subgroup of some finite group \mathcal{G} . Let Q be any p-subgroup of \mathcal{G} . Then Q is contained in a conjugate of P.

Theorem 3.31 (Third Sylow Theorem). All the Sylow p-subgroups of a finite group are conjugate.

Theorem 3.32 (Fourth Sylow Theorem). The number of Sylow p-subgroups of a finite group is congruent to $1 \pmod{p}$.

Theorem 3.33 (Fifth Sylow Theorem). The number of Sylow p-subgroups of a finite group is a divisor of their common subgroup index.

We now look at a representation theorem for groups known as Cayley's Theorem. This theorem informs us that; In order to study finite groups it is only necessary to study subgroups of the symmetric group. In particular,

Theorem 3.34 (Cayley's Theorem). Let S_n denote the symmetric group on n letters. Every finite group is isomorphic to a subgroup of S_n for some $n \in \mathbb{Z}$.

Proof. Let $\mathcal{H} = \{e\}$. By applying permutation of Cosets to \mathcal{H} so that $\mathbb{S} = \mathcal{G}$ and $\ker(\theta) = \{e\}$. The result follows by the First Isomorphism Theorem.

Definition 3.35 (Characteristic Subgroup). Let \mathcal{G} be a group and \mathcal{H} be a subgroup $\mathcal{H} \leq \mathcal{G}$ such that for every $\phi \in Aut(\mathcal{G})$ we have $\phi(\mathcal{H}) = \mathcal{H}$, where $Aut(\mathcal{G})$ denotes the group of automorphisms of \mathcal{G} . Then \mathcal{H} is characteristic in \mathcal{G} , or a characteristic subgroup of \mathcal{G} .

Theorem 3.36 (Characteristic Subgroup Transivity). Suppose \mathcal{G} is a group and let \mathcal{H} be a characteristic subgroup of \mathcal{G} and \mathcal{K} a characteristic subgroup of \mathcal{H} . Then \mathcal{K} is a characteristic subgroup of \mathcal{G} .

Proof. Let $\phi: \mathcal{G} \to \mathcal{G}$ be a group automorphism. Since \mathcal{H} is a characteristic subgroup of \mathcal{G} , by definition, we have that

$$\phi(\mathcal{H}) = \mathcal{H}.$$

That is, the restriction of ϕ to \mathcal{H} , written $\phi|_{\mathcal{H}}$, is a automorphism of \mathcal{H} . Now, since \mathcal{K} is a characteristic subgroup of \mathcal{H} , we have that

$$\phi|_{\mathcal{H}}(\mathcal{K}) = \mathcal{K}$$

$$\Rightarrow \phi(\mathcal{K}) = \mathcal{K}$$

and so K is a characteristic subgroup of G.

3.7. **Group Homomorphisms.** Homomorphisms are structure preserving mappings. In group homomorphisms we preserve the group structure, defined by the binary law of composition. In particular,

Definition 3.37 (Group Homomorphism). Let (\mathcal{G}, \circ) and (\mathcal{H}, \dagger) be two groups. Then a mapping $\varphi : \mathcal{G} \to \mathcal{H}$ is called a *group homomorphism* if

$$\varphi(g_1 \circ g_2) = \varphi(g_1) \dagger \varphi(g_2) : g_1, g_2 \in \mathcal{G}.$$

It follows that, for some $g \in \mathcal{G}$ we have,

$$\varphi(e_g) = \varphi(g \circ g^{-1})$$

$$= \varphi(g) \dagger \varphi(g^{-1})$$

$$= \varphi(g) \dagger (\varphi(g))^{-1}$$

$$= e_h \in \mathcal{H}.$$

That is the identity e has been preserved.

In this way, it does not matter if we compose in \mathcal{G} and map to \mathcal{H} or take two elements in \mathcal{G} then compose the mapped elements in \mathcal{H} , since the group structure has been preserved.

How much information about the elements inside the structure is, however, another quality to consider. Hence we fix some terminology here.

- A homomorphism that is injective is called monomorphic.
- A homomorphism that is surjective is called epimorphic.
- A homomorphism that is bijective is called isomorphic.

Thus we have the following definitions by considering a group homomorphism $\varphi: \mathcal{G} \to \mathcal{H}$.

Definition 3.38 (Monomorphic). φ is **monomorphic** if for $\varphi(x) = \varphi(y) \implies x = y \, \forall x, y \in \mathcal{G}$.

Definition 3.39 (Epimorphic). φ is **epimorphic** if $\forall h \in \mathcal{H} \exists g \in \mathcal{G}$ so that $\varphi(g) = h$.

Definition 3.40 (Isomorphic). φ is **isomorphic** if φ is **both** mono- and epic- morphic.

Some special cases are sometimes of particular interest and we shall outline them now.

Definition 3.41 (Endomorphic). A monomorphism $\mathcal{G} \to \mathcal{G}$ for a group \mathcal{G} is called an *endomorphism* of \mathcal{G} .

Definition 3.42 (Automorphic). A isomorphism $\mathcal{G} \to \mathcal{G}$ for a group \mathcal{G} is called an *automorphism* of \mathcal{G} .

Remark. The set $Aut(\mathcal{G})$ of automorphisms of \mathcal{G} forms a group, when composition of mappings is taken as the group law of composition.

Example 3.43 (Trivial Homomorphism). The trivial group homomorphism $id_{\mathcal{G}}: \mathcal{G} \to \mathcal{G}$, given by the mapping $g \mapsto g$ for every $g \in \mathcal{G}$, is in fact a group automorphism.

Example 3.44. Consider $\psi: GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$ defined by the mapping $A \mapsto \det(A)$ and recall that $\det(AB) = \det(A) \det(B)$. That is, the determinant is a group homomorphism.

Example 3.45. Consider $\psi : \mathcal{G} \to S_n/A_n$ where $\mathcal{G} = \{-1, 1\}$, defined by $1 \mapsto A_n$ and $-1 \mapsto (1 \, 2)A_n$, and observe that ϕ is a group homomorphism.

Problem 3.46. Consider the map $\phi : \mathbb{R} \to SL_2(\mathbb{R})$ defined by,

$$x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
.

Show that $\phi(x+y) = \phi(x) \cdot \phi(y)$. Also, prove that ϕ is injective.

Example 3.47. Consider the map $\exp : \mathbb{R}^+ \to \mathbb{R}^\times$ from the additive to the multiplicative group, defined by $x \mapsto e^x$, is a group homomorphism. Since, $\exp(x+y) = \exp(x) \cdot \exp(y)$.

Example 3.48. Consider the linear transformation $T: \mathcal{V} \to \mathcal{W}$. By definition of linearity, $T(\vec{v}_1 + \vec{v}_2) = T(\vec{v}_1) + T(\vec{v}_2)$, the mapping T is a group homomorphism from the additive group of vector space \mathcal{V} to the additive group of vector space \mathcal{W} .

Problem 3.49. Suppose $N \subseteq \mathcal{G}$ and $\pi : \mathcal{G} \to \mathcal{G}/N$, given by the mapping $g \mapsto gN$ for every $g \in \mathcal{G}$. Show that π is a group homomorphism and then show that it is surjective.

Problem 3.50. Suppose $\phi : \mathbb{C}^{\times} \to \mathbb{R}^{\times}$ given by the mapping $z \mapsto |z|$. Show that ϕ is a group homomorphism. Is ϕ bijective?

Proposition 3.51. Let $\varphi : \mathcal{G} \to \mathcal{H}$ be a group homomorphism.

- $i.) \varphi(1_{\mathcal{G}}) = 1_{\mathcal{H}},$
- ii.) $\varphi(g^{-1}) = \varphi(g)^{-1}$ for all $g \in \mathcal{G}$,
- iii.) If $\mathcal{G}' \leq \mathcal{G}$ then $\varphi(\mathcal{G}') \leq \mathcal{H}$ when the restriction $\mathcal{H} = \varphi|_{\mathcal{G}'}(\mathcal{G})$ holds,
- iv.) If φ is an isomorphism, then so is its inverse $\varphi^{-1}: \mathcal{H} \to \mathcal{G}$,
- v.) If $\psi: \mathcal{G} \to \mathcal{H}$ and $\varphi: \mathcal{H} \to \mathcal{K}$ are group homomorphisms then so is $\varphi \circ \psi$.

Proof. For i.) we see that,

$$1_{\mathcal{H}} \cdot \varphi(1_{\mathcal{G}}) = \varphi(1_{\mathcal{G}})$$
 (and that)
$$\varphi(1_{\mathcal{G}}) = \varphi(1_{\mathcal{G}} \circ 1_{\mathcal{G}})$$

$$= \varphi(1_{\mathcal{G}}) \cdot \varphi(1_{\mathcal{G}})$$

so we have that,

$$1_{\mathcal{H}} \cdot \varphi(1_{\mathcal{G}}) = \varphi(1_{\mathcal{G}})$$

$$\Rightarrow 1_{\mathcal{H}} \cdot \varphi(1_{\mathcal{G}}) \cdot \varphi(1_{\mathcal{G}})^{-1} = \varphi(1_{\mathcal{G}}) \cdot \varphi(1_{\mathcal{G}})^{-1}$$

$$\Rightarrow 1_{\mathcal{H}} = \varphi(1_{\mathcal{G}}).$$

Proof. For ii.) we see that,

$$gg^{-1} = 1_{\mathcal{G}} = g^{-1}g$$

$$\Rightarrow 1_{\mathcal{H}} = \varphi(g)\varphi(g^{-1})$$

$$= \varphi(g^{-1})\varphi(g).$$

Hence,

$$\varphi(q^{-1}) = \varphi(q)^{-1}.$$

Definition 3.52 (kernel). If $\varphi : \mathcal{G} \to \mathcal{H}$ is a group homomorphism, then the *kernel* is the set $\ker(\varphi) = \{g \in \mathcal{G} : \varphi(g) = e_h \in \mathcal{H}\}.$

If $\varphi: \mathcal{G} \to \mathcal{H}$ is a group homomorphism, then observe that $\ker(\varphi)$ is a normal subgroup of of \mathcal{G} .

3.8. Characters. A group character is a group homomorphism, $\chi : \mathcal{G} \to \mathbb{C}^{\times}$, from a finite abelian group to the multiplicative group of nonzero complex numbers. In particular;

Definition 3.53 (Character). Let \mathcal{G} be a finite abelian group of order n, written additively. A character of \mathcal{G} is a group homomorphism, $\chi: \mathcal{G} \to \mathbb{C}^{\times}$, of \mathcal{G} , that is:

$$\chi(g_1 + g_2) = \chi(g_1)\chi(g_2) : g_1, g_2 \in \mathcal{G}.$$

Lemma 3.54.

$$\chi(g)^n = \chi(ng)$$
$$= \chi(0) = 1 : q \in \mathcal{G}.$$

Hence the values of χ are the n^{th} roots of unity.

Lemma 3.55.

$$\chi(-g) = \chi(g)^{-1}$$
$$= \overline{\chi(g)}$$

 $where \ the \ bar \ denotes \ the \ complex \ conjugation.$

Definition 3.56 (Principle Character). The principle character, denoted by χ_0 , is defined by

$$\chi_0(g) \doteq 1 : g \in \mathcal{G}.$$

Proposition 3.57. For any non-principle character χ of \mathcal{G} ,

$$\sum_{g \in \mathcal{G}} \chi(g) = 0.$$

Proof. Let $h \in \mathcal{G} : \chi(h) \neq 1$ and let $S = \sum_{g \in \mathcal{G}} \chi(g)$. Then,

$$\chi(h) \cdot S = \chi(h) \sum_{g \in \mathcal{G}} \chi(g)$$
$$= \sum_{g \in \mathcal{G}} \chi(h) \chi(g)$$
$$= \sum_{g \in \mathcal{G}} \chi(g+h)$$
$$= S.$$

Hence it follows that,

$$\chi(h) \cdot S = S$$
$$(\chi(h) - 1) \cdot S = 0$$

and since $\chi(h) \neq 1$ then,

$$\Rightarrow S = 0.$$

Corollary (First orthogonality relation for characters). Let χ and ψ be two characters of \mathcal{G} . Then

$$\sum_{g \in \mathcal{G}} \overline{\chi(g)} \psi(g) = \begin{cases} n & \text{if } \chi = \psi, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Consider the two cases.

i.) For when $\chi = \psi$ it is trivially so, by that,

$$\overline{\chi(g)} = \chi(g)^{-1}$$

$$\Rightarrow \overline{\chi(g)}\chi(g) = 1$$
 (for each $g \in \mathcal{G}$)

and that $|\mathcal{G}| = n$.

ii.) If
$$\chi \neq \psi$$
 then $\overline{\chi}\psi$ is a non-principle character and so $\overline{\chi(g)}\psi(g) = 0$ for each $g \in \mathcal{G}$.

Remark. As observed in the last proof, the point wise product of the characters χ and ψ is again a character:

$$(\chi\psi)(g) \doteq \chi(g)\psi(g).$$

Problem 3.58. Let $\widehat{\mathcal{G}}$ denote the set of characters. Check that $\widehat{\mathcal{G}}$ forms an abelian group under the operation defined by $(\chi \psi)(g) \doteq \chi(g)\psi(g)$ for every $g \in \mathcal{G}$. We call $\widehat{\mathcal{G}}$ the dual group of \mathcal{G} .

Proposition 3.59. Let ω be a primitive n^{th} root of unity. Then the map $\chi_j: \mathbb{Z}_n \to \mathbb{C}^{\times}$ defined by $\chi_j(k) = \omega^{kj} : k \in \mathbb{Z}_n \text{ is a character of } \mathbb{Z}_n \text{ for every } j \in \mathbb{Z}. \text{ Moreover,}$

- (1) $\chi_i = \chi_j \Leftrightarrow i \equiv j \pmod{n}$;
- (2) $\chi_j = \chi_1^j$;
- (3) $\widehat{\mathbb{Z}_n} = \{\chi_0, \dots, \chi_{n-1}\};$ (4) Consequently, $\widehat{\mathbb{Z}_n} \cong \mathbb{Z}_n.$

Proof. TODO..

Proposition 3.60. If \mathcal{G} is a direct sum, $\mathcal{G} = H_1 \oplus H_2$, and $\psi_i : H_i \to \mathbb{C}^{\times}$ is a character of H_i , with $i \in \{1,2\}$, then $\chi = \psi_1 \oplus \psi_2$, defined by

$$\chi(h_1, h_2) \doteq \psi_1(h_1) \cdot \psi_2(h_2),$$

is a character of G. Moreover, all characters of G are of this form. Consequently,

$$\widehat{\mathcal{G}} = \widehat{H_1} \oplus \widehat{H_2}.$$

Proof. TODO..

Corollary.

$$\widehat{\mathcal{G}} \cong \mathcal{G}$$
.

Proof.

Observe that,

$$\mathcal{G} \cong \mathbb{Z}_{n1} \oplus \cdots \oplus \mathbb{Z}_{nk}$$

$$\Rightarrow \widehat{\mathcal{G}} \cong \widehat{\mathbb{Z}_{n1}} \oplus \cdots \oplus \widehat{\mathbb{Z}_{nk}}$$

$$\cong \mathcal{G}.$$

3.9. Cosets. Let \mathcal{G} be a group and \mathcal{H} be a subgroup of \mathcal{G} with $g \in \mathcal{G} : g \notin \mathcal{H}$, then

Definition 3.61 (Left Coset). $gH = \{gh : h \in H\}$ is a **left coset of** \mathcal{H} in \mathcal{G} .

Definition 3.62 (Right Coset). $Hg = \{hg : h \in H\}$ is a **right coset of** \mathcal{H} in \mathcal{G} .

Definition 3.63 (Normal Subgroup). If gH = Hg then \mathcal{H} is a **normal** subgroup of \mathcal{G} , denoted by $\mathcal{H} \triangleleft \mathcal{G}$.

Theorem 3.64 (Lagrange's Theorem). *TODO*.

$$Proof.$$
 TODO.

3.10. Factor (or Quotient) groups. Let \mathcal{G} be a commutative group and consider a subgroup \mathcal{H} . Then \mathcal{H} determines an equivalence relation in \mathcal{G} given by

$$x \sim x' \text{ iff } x - x' \in \mathcal{H}.$$

..

3.11. **Non-commutative Groups.** A common class of non-commutative groups are transformation groups. Note:

Definition 3.65 (Transformation). A bijective map $\varphi: X \to X$ is called a **transformation** of X.

Note. The most trivial case is the *identity map* id_X by $id_X(x) = x$, $\forall x \in X$.

Hence, there exists a inverse φ^{-1} of φ such that $\varphi^{-1} \circ \varphi = id_X = \varphi \circ \varphi^{-1}$. Now, take two transformations of X, φ and ψ , and let the product $\varphi \circ \psi$ be well defined. Then the set of all transformations of X form the group $\mathbf{Transf}(\mathbf{X})$. Since, given $\varphi, \psi, \phi \in Transf(X)$ then we have associativity, $\varphi \circ (\psi \circ \phi) = (\varphi \circ \psi) \circ \phi$. We have identity $e = id_X \in Transf(X)$ and so, inverses $\forall \varphi \in Transf(X) \exists ! \varphi^{-1} : \varphi \circ \varphi^{-1} = e$. Closure follows from the composition of two transformations φ and ψ , since $(\varphi \circ \psi)^{-1} = \psi^{-1} \circ \varphi^{-1}$.

A transformation group is a type of group action which describes symmetries of objects. More abstractly, since a group \mathcal{G} is a category with a single object in which every morphism is bijective. Then, a group action is a *forgetful functor* \mathcal{F} from the group \mathcal{G} in the category **Grp** to the set category **Set** that is, $\mathcal{F}: \mathcal{G} \to \mathbf{Set}$.

3.12. Exact sequence. An exact sequence may either be a finite or infinite sequence of objects and morphisms between them. Such a sequence is constructed so that the image of one morphism equals the kernel of the next.

In particular;

Definition 3.66 (Exact Sequence). Consider the sequence of n group homomorphism between n+1 groups in the following way:

$$\mathcal{G}_0 \xrightarrow{\varphi_1} \mathcal{G}_1 \xrightarrow{\varphi_2} \mathcal{G}_2 \xrightarrow{\varphi_3} \dots \xrightarrow{\varphi_n} \mathcal{G}_n$$

Then the sequence is said to be exact if,

$$\ker(\varphi_{k+1}) = \operatorname{im}(\varphi_k)$$

for every $k \in \{1 \dots n\}$. For n = 3 the sequence is said to be a **short exact sequence**.

Example 3.67. Suppose we have $\mathcal{K} \subseteq \mathcal{G}$ and that $q: \mathcal{G} \to \mathcal{G}/\mathcal{K}$ is the quotient mapping. Then,

$$1 \longrightarrow \mathcal{K} \stackrel{\subseteq}{\longrightarrow} \mathcal{G} \stackrel{q}{\longrightarrow} \mathcal{G}/\mathcal{K} \longrightarrow 1$$

is a short exact sequence.

4. First Isomorphism Theorem

Theorem 4.1. Let \mathcal{G} and \mathcal{H} , and let $\varphi : \mathcal{G} \to \mathcal{H}$ be a group homomorphism. Then:

- The kernel of φ is a normal subgroup of \mathcal{G} ; $\ker(\varphi) \subseteq \mathcal{G}$,
- The image of φ is a subgroup of \mathcal{H} ; $\operatorname{im}(\varphi) \leq \mathcal{H}$, and
- The image of φ is also isomorphic to the factor group $\mathcal{G}/\ker(\varphi)$; $\operatorname{im}(\varphi) \cong \mathcal{G}/\ker(\varphi)$.

In particular, if φ is epimorphic then $\mathcal{H} \cong \mathcal{G}/\ker(\varphi)$.

We may represent these fundamental relations in the following commutative diagram.

Notice the *exact sequence* that runs from the lower left to the upper right of the commutative diagram.