Context-Free Grammar (CFG)

CFG stands for context-free grammar. It is a formal grammar which is used to generate all possible patterns of strings in a given formal language. Context-free grammar G can be defined by four tuples as:

1.
$$G = (V, T, P, S)$$

Where,

G is the grammar, which consists of a set of the production rule. It is used to generate the string of a language.

T is the final set of a terminal symbol. It is denoted by lower case letters.

V is the final set of a non-terminal symbol. It is denoted by capital letters.

P is a set of production rules, which is used for replacing non-terminals symbols(on the left side of the production) in a string with other terminal or non-terminal symbols(on the right side of the production).

S is the start symbol which is used to derive the string. We can derive the string by repeatedly replacing a non-terminal by the right-hand side of the production until all non-terminal have been replaced by terminal symbols.

Example 1:

Construct the CFG for the language having any number of a's over the set $\Sigma = \{a\}$.

Solution:

As we know the regular expression for the above language is

1. r.e. =
$$a^*$$

Production rule for the Regular expression is as follows:

- 1. $S \rightarrow aS$ rule 1
- 2. $S \rightarrow \varepsilon$ rule 2

Now if we want to derive a string "aaaaaa", we can start with start symbols.

- 1. S
- 2. aS
- 3. aaS rule 1
- 4. aaaS rule 1
- 5. aaaaS rule 1

- 6. aaaaaS rule 1
- 7. aaaaaaS rule 1
- 8. aaaaaaε rule 2
- 9. aaaaaa

The r.e. = a^* can generate a set of string $\{\epsilon, a, aa, aaa,\}$. We can have a null string because S is a start symbol and rule 2 gives S $\rightarrow \epsilon$.

Example 2:

Construct a CFG for the regular expression (0+1)*

Solution:

{ ε,0,1,01,10,11,00,010,...

The CFG can be given by,

Production rule (P):

- 1. $S \rightarrow 0S \mid 1S$
- 2. $S \rightarrow \epsilon$

The rules are in the combination of 0's and 1's with the start symbol. Since $(0+1)^*$ indicates $\{\epsilon, 0, 1, 01, 10, 00, 11,\}$. In this set, ϵ is a string, so in the rule, we can set the rule $S \rightarrow \epsilon$.

Example 3:

Construct a CFG for a language $L = \{wcwR \mid where w \in (a, b)^*\}$.

Solution:

The string that can be generated for a given language is {aacaa, bcb, abcba, bacab, abbcbba,}

The grammar could be:

- 1. $S \rightarrow aSa$ rule 1
- 2. $S \rightarrow bSb$ rule 2
- 3. $S \rightarrow c$ rule 3

Now if we want to derive a string "abbcbba", we can start with start symbols.

- 1. $S \rightarrow aSa$
- 2. $S \rightarrow abSba$ from rule 2
- 3. $S \rightarrow abbSbba$ from rule 2

4. $S \rightarrow abbcbba$ from rule 3

Thus any of this kind of string can be derived from the given production rules.

Example 4:

Construct a CFG for the language L = anb2n where n > = 1.

Solution:

The string that can be generated for a given language is {abb, aabbbb, aaabbbbbb....}.

The grammar could be:

5.
$$S \rightarrow aSbb \mid abb$$

Now if we want to derive a string "aabbbb", we can start with start symbols.

 $S \rightarrow aSbb$

S → aabbbb

Example 5:

A CFG for the regular language corresponding to the RE 00 *11 *.

Solution:

The language is the concatenation of two languages: all strings of zeroes with all strings of ones.

The grammar could be:

 $S \rightarrow CD$

 $C \rightarrow 0C \mid 0$

 $D \rightarrow 1D \mid 1$

BACKUS NAUR FORM(BNF):

It stands for Backus-Naur Form one notation used to write grammar.

It is a formal, mathematical way to specify context-free grammars

Example:

BNF for number--

```
""::="means "is defined as" (somevariants use ":="instead)
"|" means "or"
Angle brackets mean a Non Terminal
Symbols without angle brackets are Terminals
```

EXAMPLE 2:

There is the production for any grammar as follows:

 $S \rightarrow aSa$ $S \rightarrow bSb$ $S \rightarrow c$

In BNF, we can represent above grammar as follows:

S → aSa| bSb| c

EXTANDED BACKUS NAUR FORM(EBNF):

EBNF is a few simple extensions to BNF which make expressing grammars more convenient

- "*" The Kleene Star): means 0 or more occurrences
- "+" (The Kleene Cross): means 1 or more occurrences
- "[...]":means 0 or 1 occurrences
- ()Use of parentheses for grouping
- {}* used to show arbitary sequence
- If you have a rule such as:

Examples:

<real no> ::= <integer part>.<fraction part> | .<fraction part>

You can replace it with:

```
<real no> ::= [<integer part>].<fraction part>
```

If you have a rule such as:

```
<integer> ::= <digit> | <integer> <digit>
You can replace it with:

<signed integer> ::=[+|-]<digit>{ <digit>}*
```

<signed integer> ::= + <integer> | - <integer>

```
<signed integer> ::=[+|-]{ <digit>}+
```

• If you have a rule such as:

You can replace it with:

```
<exp> ::= <term>[(+|-)<term>]
```

SIMPLICATION OF CFG

As we have seen, various languages can efficiently be represented by a context-free grammar. All the grammar are not always optimized that means the grammar may consist of some extra symbols(non-terminal). Having extra symbols, unnecessary increase the length of grammar. Simplification of grammar means reduction of grammar by removing useless symbols. The properties of reduced grammar are given below:

- 1. Each variable (i.e. non-terminal) and each terminal of G appears in the derivation of some word in L.
- 2. There should not be any production as $X \rightarrow Y$ where X and Y are non-terminal.
- 3. If ε is not in the language L then there need not to be the production $X \to \varepsilon$.

Removal of Useless Symbols

A symbol can be useless if it does not appear on the right-hand side of the production rule and does not take part in the derivation of any string. That symbol is known as a useless symbol. Similarly, a variable can be useless if it does not take part in the derivation of any string. That variable is known as a useless variable.

For Example:

- 1. $T \rightarrow aaB \mid abA \mid aaT$
- 2. $A \rightarrow aA$
- 3. $B \rightarrow ab \mid b$
- 4. $C \rightarrow ad$

In the above example, the variable 'C' will never occur in the derivation of any string, so the production $C \rightarrow ad$ is useless. So we will eliminate it, and the other productions are written in

such a way that variable C can never reach from the starting variable 'T'.

Production $A \rightarrow aA$ is also useless because there is no way to terminate it. If it never terminates, then it can never produce a string. Hence this production can never take part in any derivation.

To remove this useless production $A \rightarrow aA$, we will first find all the variables which will never lead to a terminal string such as variable 'A'. Then we will remove all the productions in which the variable 'B' occurs.

Elimination of ε Production

The productions of type $S \to \epsilon$ are called ϵ productions. These type of productions can only be removed from those grammars that do not generate ϵ .

Step 1: First find out all nullable non-terminal variable which derives ϵ .

Step 2: For each production $A \rightarrow a$, construct all production $A \rightarrow x$, where x is obtained from a by removing one or more non-terminal from step 1.

Step 3: Now combine the result of step 2 with the original production and remove ϵ productions.

Example:

Remove the production from the following CFG by preserving the meaning of it.

- 1. $S \rightarrow XYX$
- 2. $X \rightarrow 0X \mid \epsilon$
- 3. $Y \rightarrow 1Y \mid \epsilon$

Solution:

Now, while removing ϵ production, we are deleting the rule $X \to \epsilon$ and $Y \to \epsilon$. To preserve the meaning of CFG we are actually placing ϵ at the right-hand side whenever X and Y have appeared.

Let us take

1.
$$S \rightarrow XYX$$

If the first X at right-hand side is ϵ . Then

1.
$$S \rightarrow YX$$

Similarly if the last X in R.H.S. = ε . Then

1.
$$S \rightarrow XY$$

If
$$Y = \varepsilon$$
 then

1.
$$S \rightarrow XX$$

If Y and X are ϵ then,

1.
$$S \rightarrow X$$

If both X are replaced by ε

1.
$$S \rightarrow Y$$

Now,

1.
$$S \rightarrow XY \mid YX \mid XX \mid X \mid Y$$

Now let us consider

1.
$$X \rightarrow 0X$$

If we place ε at right-hand side for X then,

2.
$$X \rightarrow 0X \mid 0$$

Similarly $Y \rightarrow 1Y \mid 1$

Collectively we can rewrite the CFG with removed ϵ production as

1.
$$S \rightarrow XY \mid YX \mid XX \mid X \mid Y$$

2.
$$X \rightarrow 0X \mid 0$$

3.
$$Y \rightarrow 1Y \mid 1$$

Removing Unit Productions

The unit productions are the productions in which one non-terminal gives another non-terminal. Use the following steps to remove unit production:

Step 1: To remove $X \to Y$, add production $X \to a$ to the grammar rule whenever $Y \to a$ occurs in the grammar.

Step 2: Now delete $X \rightarrow Y$ from the grammar.

Step 3: Repeat step 1 and step 2 until all unit productions are removed.

For example:

1.
$$S \rightarrow 0A \mid 1B \mid C$$

2.
$$A \rightarrow 0S \mid 00$$

3.
$$B \rightarrow 1 \mid A$$

4. $C \rightarrow 01$

Solution:

 $S \to C$ is a unit production. But while removing $S \to C$ we have to consider what C gives. So, we can add a rule to S.

1.
$$S \rightarrow 0A \mid 1B \mid 01$$

Similarly, $B \rightarrow A$ is also a unit production so we can modify it as

1.
$$B \rightarrow 1 \mid 0S \mid 00$$

Thus finally we can write CFG without unit production as

- 1. $S \rightarrow 0A \mid 1B \mid 01$
- 2. $A \rightarrow 0S \mid 00$
- 3. $B \rightarrow 1 \mid 0S \mid 00$
- 4. $C \rightarrow 01$