Data Engineering Batch 1 PROJECT 2 Data Processing Pipeline Akilesh K k.akilesh123@gmail.com

Project statement

Implement a serverless data processing pipeline where Azure Data Factory orchestrates data

workflows, and Azure Databricks is used as a serverless processing engine for on-demand

analytics and transformations.

Project Overview

This project establishes a serverless code analysis pipeline in Azure. By leveraging Azure

Data Factory (ADF), code seamlessly moves from a GitHub repository to secure Azure Blob

Storage. Azure Databricks, empowered by PySpark, then analyses the data, offering valuable

insights into functionality, quality, and potential issues. This automated process streamlines

data analysis, reduces manual intervention, and fosters data-driven decision-making for

developers.

About the Project

Dataset:

This dataset, named "organisations", contains information about 10,000 organisations. It was

downloaded from the website Datablist: https://www.datablist.com/ and is formatted as a

comma-separated values (CSV) file with the following schema:

Attributes:

Index: An integer representing the unique identifier for each organisation within the dataset.

Organization Id: A unique identifier for each organisation, potentially in a non-human-

readable format.

Name: The official name of the organisation.

Website: The organisation's website URL (if available).

Country: The country in which the organisation is headquartered.

Description: A brief description of the organisation's activities or mission.

Founded: The year in which the organisation was founded.

Industry: The primary industry sector in which the organisation operates.

Number of employees: The approximate number of employees working for the organisation (may not be entirely accurate)

a A	B C D E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т
1 Index	Organizatic Name Website Country	Description F	ounded	Industry	Number of emp	loyees										
2	1 522816eF8f Mckinney Phttp://soto Sri Lanka	Synergized	1988	Dairy	3930											
3	2 70C7FBD7e Cunninghar http://hard Namibia	Team-orier	2018	Library	7871											
4	3 428B397eA: Ruiz-Walls http://www.iran	Re-context	2003	Hospital / I	3095											
5	4 9D234Ae8C Parrish, Osl http://sala; British Indi	Fully-config	1989	Supermark	5422											
6	5 6CDCcdE3D Diaz, Roble https://ww Botswana	Inverse inta	2013	Nanotechn	3135											
7	6 cdAD9BBF2 Keith PLC http://www.Ecuador	Cross-group	1978	Online Pub	7233											
8	7 0fe6F8Dd1(Humphrey-https://fau Sierra Leon	Adaptive di	2005	Publishing	6022											
9	8 ECC0FBd0d Castaneda- http://wwv.Zimbabwe	Front-line v	2015	Defense /	4580											
10	9 e0E6cfAE68 Santos-Bov https://ww Ecuador	Multi-layer	1979	Computer	3245											
11	10 A7DdBb239 Valdez-Este http://meleTimor-Lest	(Diverse ne)	1985	Plastics	1785											
12	11 6a74D1bF2l Young-Zava http://www Ukraine	Sharable m	1972	Music	2985											
13	12 Cc5293Dbc2Shaffer Inc https://www.United King	Sharable cc	1997	Automotiv	839											
14	13 849CEAb2ft Gaines-Van http://www.Thailand	Compatible	2021	Online Pub	3135											
15	14 DcFCcD6B1 Larsen-Garr https://wal Turkey	Polarized o	2014	Building M	7261											
16	15 a8dc16ba1t Taylor LLC https://ww Kiribati	Re-context	1971	Informatio												
17		Profit-focu:	1981	Chemicals	6477											
18	17 fD4BD3662l Rich-Kelly https://ww/Colombia			Investmen												
19	18 3F2A9d9c44 Solis PLC https://gon Suriname		2004	E - Learning	2546											
20	19 4eBE2067f1 David-Sumi http://levir Burundi	Monitored	2019	Machinery	219											
21	20 e8F94361bl Orr-Stanley http://www.Kazakhstan			Photograp												
22	21 aeCF5B129(Watkins-Gi https://kell Malta	Pre-emptiv	2004	Online Pub												
23		Cross-group		Mining / M												
24		Universal w		Investmen												
25	24 220c1D09F5 Hampton Ir https://ww Central Afr			Civil Engine												
26	25 d4B566cF72 Schaefer, B http://marcSwaziland			Design	8044											
27	26 1Cec2bE2f8 Sosa-Lynn https://wat Brazil	Monitored		Architectu												
28	27 92cAd11Ec4 Nichols, Ro https://olseBangladesh			Commercia												
29	28 1ADB796E3 Landry, Per http://matl Ghana	Optional ne		Textiles	4214											
30	29 aaFDd69B4 George Ltd https://pitt Isle of Man			Commercia												
31	30 65bB9Baa2: Greer-Watt https://ww Timor-Lest			Wholesale	1884											
32	31 da750fccbe Archer, Gechttp://www.Russian.Fe			Environme												
33		Innovative		Internet	358											
34		Versatile fu	2001	Mental He												
35		Virtual clier		Photograp												
36		Adaptive in		Venture Ca												
37	36 AdC821b25 Hatfield PL/http://www.Malta	Distributed		Translation												
38	37 eabCabc94f Richards PL http://todd Albania	Perseverin		Public Safe												
20	28 ESE7SEh6r@Brandt Vachttn://rinncAndorra	Droactive n	2019	Coematice	7277											
< < >	> organizations-10000 +											4				

Architecture

The architectural diagram depicts a systematic approach to data processing and analysis within the project. It begins with the acquisition of code from a GitHub repository, facilitated by Azure Data Factory (ADF). ADF orchestrates the transfer of code to Azure Blob Storage, where it is securely stored for further processing. Azure Databricks workspace is then provisioned to handle data processing tasks efficiently. Within the workspace, a Notebook activity configured within ADF executes PySpark code responsible for data analysis. This PySpark code loads the code data from Blob Storage into Spark DataFrame, conducts necessary transformations, and performs analysis using PySpark libraries. The results of this analysis are visualized using tools available within Azure Databricks, with options for generating visualizations such as pie charts to represent the code analysis findings. Additionally, if required, the processed data or analysis results can be stored back to Blob Storage for future reference or sharing.

Azure Resources Used for This Project

• Azure Data Factory (ADF):

An ADF instance will be created to orchestrate and automate the data transfer process between GitHub and Azure Blob Storage.

Linked Services: Configured to connect to GitHub using an appropriate authentication method (e.g., personal access token, OAuth) and Azure Blob Storage.

Datasets: Defined to represent the schema of the code files (e.g., text format) in the GitHub repository.

Pipelines: Created to define the sequence of activities for copying code from the GitHub repository to a specific blob storage container.

• Azure Blob Storage:

A blob storage container will be used as the destination for storing code transferred from the GitHub repository.

This stored code will be accessed by Azure Databricks for data processing tasks.

• Azure Databricks:

A Databricks workspace will be provisioned to perform data processing tasks using PySpark.

Databricks Notebooks: Utilized to write and execute PySpark code for code analysis, including tasks like:

Extracting data from the code files (e.g., lines of code, function names, comments).

Performing data transformations and cleaning (e.g., removing irrelevant content, formatting code).

Project Requirements

• Data Source:

Type: Identify the specific source of your code, such as a GitHub repository, Azure DevOps repository, or a local file system.

Connectivity: Ensure you have the necessary credentials and access methods to securely connect to this source from the Azure environment.

• Azure Data Factory (ADF) Configuration:

Instance: Create an Azure Data Factory (ADF) instance within your Azure subscription.

Linked Services:

Configure a linked service to connect to the GitHub repository using an appropriate authentication method (e.g., personal access token, OAuth).

Configure a linked service to connect to Azure Blob Storage for storing the transferred code.

Datasets: Define a dataset in ADF to represent the schema of the code files (e.g., text format) from the source location.

Pipelines: Create a pipeline in ADF to define the data transfer process:

Use a Copy Activity to copy code from the source location (e.g., GitHub repository) to a specific blob storage container.

Configure the copy activity with source and destination details, scheduling options (e.g., daily), and error handling mechanisms.

• Data Storage:

Azure Blob Storage: Utilize a blob storage container as the destination for storing the transferred code retrieved through ADF. This stored code will be accessed by Azure Databricks for further processing.

• Data Processing with Azure Databricks:

Provision an Azure Databricks workspace in your Azure subscription.

Define and implement data processing tasks using PySpark within the Databricks environment. PySpark provides a powerful framework for distributed data processing, enabling tasks such as data cleaning, transformation, aggregation, and analysis.

Use Databricks notebooks to write and execute PySpark code interactively, leveraging the scalability and performance of the Databricks runtime.

Tasks performed:

- Acquire data: Retrieve code from a GitHub repository.
- Transfer data: Utilize Azure Data Factory (ADF) to orchestrate the transfer of code from GitHub to Azure Blob Storage.
- Store data: Utilize Azure Blob Storage to securely store the transferred data.
- Process data:
- Provision an Azure Databricks workspace.
- Within ADF, add a Notebook activity: Configure the activity to use your Databricks workspace and specify the PySpark notebook responsible for code analysis.
- Within the PySpark notebook:
- Load data from Blob Storage into a Spark DataFrame.
- Implement data transformations and analysis using PySpark libraries.
- Visualize data: Generate visualizations (e.g., pie charts) depicting the results of code analysis using libraries within Databricks.

Implementation

• CSV data on github

• In azure ,create a storage account mentioning the location

• create a new blob container

• create a azure data factory account

• select ingest data to create a new data pipeline

• For Source click on new connection and type http

• Copy and paste the raw url of the csv file

• Create a connection for destination blob storage

• Select the container

• summary of the deployment of from SQL server to azure blob storage

• The csv file is stored in the container

• Create a Azure databricks and launch it

Mount blob storage to azure databricks

- Add source line of the blob storage
- enter the mount points to store in databricks
- Configure extra_configs by mentioning the access key and pasting the key of the blob storage.
- list of the files mounted on Databricks
- display the data frame

Performing data preprocessing activity such trimming blank spaces from columns

• Drop rows with Null values

• Count of Organisations by Country

• Visualising count of Organisation by Country using a pie chart

• Average number of Employees per industry

• Visualising count of country grouped by the year in which they were founded using a bar graph

• Top 10 Organisations sorted by the number of employees

 In Azure Datafactory drag and drop the Notebook activity and link it to the databricks

Notebook

Copy the access token from Databricks Notebook by clicking on User settings ->
Developer -> Generate new Token

• In Datafactory Validate the pipeline and then click on debug

• The pipeline is running successfully

Conclusion

In conclusion, this project successfully demonstrated the integration of various Azure services to create an end-to-end data processing pipeline. Beginning with data acquisition from GitHub, we utilized Azure Data Factory to orchestrate data movement to Azure Blob Storage. Subsequently, Azure Databricks was employed for data processing and analysis, including preprocessing tasks and generating insightful visualizations. The seamless integration of these Azure services facilitated efficient data handling and analysis, showcasing the power of cloud-based data solutions in modern data engineering workflows. This project highlights the effectiveness of Azure's ecosystem in enabling scalable and efficient data processing pipelines for diverse use cases.