

Presentación del equipo

Santiago
Alberto Rozo
Silva
Investigación
algoritmos

Pedro Pablo Rodas Investigación y trabajos relacionados

Isis Amaya Arbelaez Creación de algoritmo

Andrea Serna Revisión de la literatura

Mauricio Toro
Preparación
de los datos

Planteamiento del problema

Calles de Medellín, Origen y Destino

El más camino más corto restringido

Primer algoritmo

Segundo algoritmo

Calles de Medellín, Origen y Destino

Ruta con el menor riesgo promedio ponderado de acoso sin superar una distancia *d*

Explicación del algoritmo

BSR (Best Safer Route)

Complejidad del algoritmo

	Complejidad temporal	Complejidad de la memoria
Dijkstra	O(V*2)	O(V)
Dijkstra con cola de prioridad	O(E log V)	O(V)

Complejidad en tiempo y memoria de Dijkstra. V representa los vértices o nodos, que en nuestro caso serian las direcciones, mientras que E representa las aristas, osea la forma de conectar los nodos, que en este caso seria la ruta más corta.

