9. Structure from Shading (SfS)

A bit of differential geometry, Estimating 3D structure using shading as a cue

- A line (in 2D): y = mx+c, (m,c) are fixed, x is a variable
- A plane (in 2D): ??

- A line (in 2D): y = mx+c, (m,c) are fixed, x is a variable
- A plane (in 2D): only canonical 2D plane exists
- You can lift this 2D plane (in 3D) and you can have several distinct planes out of it

Distinction: Distinct liftings (or transformations) will end up in unique intersection with canonical one

Distinction: Distinct liftings (or transformations) will end up in unique intersection with canonical one (z=0)

What did we learn?

You need only 1 parameter to express a line in 2D

Line in 3D: ??

What did we learn?

You need only 1 parameter to express a line in 2D In 3D: ax+by+cz+d=0. It is seen as an intersection of 2 planes But x,y,z have a co-dependency on a common variable

x= x0 +at, y= y0 +bt, z=z0+ct (x0,y0,z0)- point passing through line (a,b,c)- known t- variable

What did we learn?

You need only 1 parameter to express a line in 2D (or higher)

Q: What is y=mx+c in 3D??

What did we learn?

You need only 1 parameter to express a line in 2D You need only 2 parameters to express a surface in 3D (or higher)

3D surfaces

Parametric representation: S(u,v) = [X(u,v),Y(u,v),Z(u,v)]Basically, a 2D entity embedded in 3D

Developable: can be unwrapped onto a sheet of paper
Non-developable: can't be unwrapped

3D surfaces

Parametric representation: S(u,v) = [X(u,v),Y(u,v),Z(u,v)]Basically, a 2D entity embedded in 3D

Developable: can be unwrapped onto a sheet of paper (cylinder, for example)

Non-developable: can't be unwrapped (sphere, for example)

Jacobian

Parametric representation: S(u,v) = [X(u,v),Y(u,v),Z(u,v)]

$$\mathbf{J}_{S} = \begin{pmatrix} dX(u,v)/du & dX(u,v)/dv \\ dY(u,v)/du & dY(u,v)/dv \\ dZ(u,v)/du & dZ(u,v)/dv \end{pmatrix} = [\mathbf{S}(u,v)_{u} \ \mathbf{S}(u,v)_{v}]$$

())

Su, Sv: are tangent vectors

Su x Sv: Normal vector

What do Jacobians tell?

How the space is transforming in the neighborhood of a point:

How much breakage is expected at a point locally while unwarping

Basically, it tells us what is the transformation

Can be used to measure lengths, areas, angles -> look into **J**^T**J**

 $J^{T}J$: also known as metric tensor

Tells you how near-Euclidean the space is, around a point

 $ds^2 = [du \ dv] \ \mathbf{J}^T \mathbf{J} \ [du \ dv]^T$

If $J^TJ = I$, what does it mean?

 $J^{T}J$: also known as metric tensor

Tells you how near-Euclidean the space is, around a point

 $ds^2 = [du \ dv] \ \mathbf{J}^T \mathbf{J} \ [du \ dv]^T$

If $J^TJ = I$,

lengths, angles areas are preserved

Locally, the surface transforms rigidly

Consider a cylindrical surface surface

$$egin{aligned} x &=
ho\cosarphi \ y &=
ho\sinarphi \ z &= z \end{aligned}$$

Consider rho = 1

$$J = ?$$

$$, \mathbf{J}^{\mathrm{T}}\mathbf{J} = \mathbf{I}$$

Consider a spherical surface

$$x = \rho \sin \varphi \cos \theta; \ y = \rho \sin \varphi \sin \theta; \ z = \rho \cos \varphi.$$

$$\mathbf{J} = egin{bmatrix}
ho\cosarphi\cosarphi\cosarphi&-
ho\sinarphi\sin heta\
ho\cosarphi\sin heta&
ho\sinarphi\cos heta\ -
ho\sinarphi&0 \end{pmatrix} \quad , \mathbf{J}^{\mathrm{T}}\mathbf{J} = \quad ?$$

What do Jacobians tell?

What if you don't slide?

How to differentiate between these?

Hessians

$$\mathbf{S}(\mathbf{u},\mathbf{v}) = [\mathbf{X}(\mathbf{u},\mathbf{v}),\mathbf{Y}(\mathbf{u},\mathbf{v}),\mathbf{Z}(\mathbf{u},\mathbf{v})]$$
$$\mathbf{J}_{\mathbf{S}} = [\mathbf{S}(\mathbf{u},\mathbf{v})_{\mathbf{u}} \ \mathbf{S}(\mathbf{u},\mathbf{v})_{\mathbf{v}}]$$

$$\mathbf{H}_{\mathbf{u}} = [\mathbf{S}(\mathbf{u}, \mathbf{v})_{\mathbf{u}\mathbf{u}} \ \mathbf{S}(\mathbf{u}, \mathbf{v})_{\mathbf{v}\mathbf{u}}]$$

$$\mathbf{H}_{v} = [\mathbf{S}(\mathbf{u}, \mathbf{v})_{vu} \ \mathbf{S}(\mathbf{u}, \mathbf{v})_{vv}]$$

$$\mathbf{H} = \mathbf{J}(\mathbf{J}_{\mathbf{S}})$$

Hessians

It tells you if you are dropped on the surface (you might remain stable), what happens if you are pushed into some direction

It tells you how quickly a surface deviates from its tangent plane in a local neighborhood

Light falling on surfaces gives an indication of relative depths

What impacts pixel brightness?

11/8/22 Slide by L. Fei-Fei 21

Pixel Brightness

E and L are linearly related. E = a L (a depends on lens area, focal length and angle between viewing ray and optical axis)

Reflection models

Specular reflection: light is reflected about the surface normal

Diffuse reflection: light scatters equally in all directions

Slide from D. Hoiem

Reflection models

Bidirectional reflectance distribution function (BRDF)

Ratio of the radiance in the emitted direction to irradiance in the incident direction

It tells how bright a surface appears when viewed from one direction when light falls on it from another

Bidirectional reflectance distribution function (BRDF)

On specular surfaces, it changes with light source position On diffused surfaces, it doesn't

Source: J. Johnson and D. Fouhey

Bidirectional reflectance distribution function (BRDF)

On specular surfaces, it changes with light source position On diffused surfaces, it doesn't

Source: J. Johnson and D. Fouhey

Lambert's Law on Diffused Surfaces

$$I = \rho (S \cdot N)$$

= $\rho ||S|| \cos \theta$

- I: reflected intensity (technically: radiosity, or total power leaving the surface per unit area)
- ρ : albedo (fraction of incident irradiance reflected by the surface)
- S: direction of light source (magnitude proportional to intensity of the source)
- N: unit surface normal

Given I, can we recover N, S?

$$I = \rho (S \cdot N)$$

= $\rho ||S|| \cos \theta$

SfS: Take multiple images by moving light source to recover normals

Assume orthographic projection: Z = f(x,y)What is normal?

Assume orthographic projection: Z = f(x,y)

$$N = [f_x; f_y; 1]/sqrt(1+f_x^2+f_y^2)$$

Knowns: I and S

Unknowns: N and albedo

$$I = \rho (S \cdot N)$$

= $\rho ||S|| \cos \theta$

- Known: source vectors S_j and pixel values $I_j(x, y)$
- Unknown: surface normal N(x, y) and albedo $\rho(x, y)$
- Assume that the response function of the camera is a linear scaling by a factor of k
- Lambert's law:

$$I_{j}(x,y) = k \rho(x,y) (N(x,y) \cdot S_{j})$$

$$= (\rho(x,y)N(x,y)) \cdot (k S_{j})$$

$$= g(x,y) \cdot V_{j}$$

• For each pixel, set up a linear system:

$$\begin{bmatrix} V_1^T \\ V_2^T \\ \vdots \\ V_n^T \end{bmatrix} g(x,y) = \begin{bmatrix} I_1(x,y) \\ I_2(x,y) \\ \vdots \\ I_n(x,y) \end{bmatrix}$$

$$\underset{k\text{nown}}{\underset{n \times 3}{\text{unknown}}} \underset{k\text{nown}}{\underset{n \times 1}{\text{known}}}$$

- Obtain least-squares solution for g(x, y), which we defined as $\rho(x, y)N(x, y)$
- Since N(x,y) is the *unit* normal, $\rho(x,y)$ is given by the magnitude of g(x,y)
- Finally, $N(x,y) = \frac{1}{\rho(x,y)}g(x,y)$

$$N = [f_x; f_y; 1]/sqrt(1+f_x^2+f_y^2)$$

Write the estimated vector g as

$$g(x,y) = \begin{bmatrix} g_1(x,y) \\ g_2(x,y) \\ g_3(x,y) \end{bmatrix}$$

Then we obtain values for the partial derivatives of the surface:

$$f_x(x,y) = \frac{g_1(x,y)}{g_3(x,y)}$$

$$f_{y}(x,y) = \frac{g_{2}(x,y)}{g_{3}(x,y)}$$

Recovering surfaces from normals

We can now recover the surface height at any point by integration along some path, e.g.

$$f(x,y) =$$

$$\int_0^x f_x(s,0)ds + \int_0^y f_y(x,t)dt + C$$

For robustness, it is better to take integrals over many different paths and average the results

Enforce:

$$\frac{\partial}{\partial y} \left(\frac{g_1(x, y)}{g_3(x, y)} \right) = \frac{\partial}{\partial x} \left(\frac{g_2(x, y)}{g_3(x, y)} \right)$$

SfS

