CAGD 作业 2

刘紫檀 SA21229063

原理

使用 de Casteljau 算法计算 Bezier Curve 上任意一点的坐标。

算法输入

给定控制点集合 P_i $(i=0,\ldots,n)$, 我们想求曲线上 t 处的值 c(t), 构造 B_i^n 如下:

$$egin{aligned} b_i^0(t) &= P_i & i = 0, \dots, n \ b_i^r(t) &= (1-t)b_i^{r-1}(t) + tb_{i+1}^{r-1}(t) & r = 1, \dots, n \end{aligned}$$

则 $b_0^n(t)$ 即为所求 c(t) 的值。

计算步骤

在计算时我们可以采用动态规划 (DP) 的求解策略,观察到计算 $b_r(t)$ 只需要 $b_{r-1}(t)$ 的值。这样,我们在计算每个采样点 t 的值 c(t) 时只需要 O(n) 的空间复杂度,其中 n 为控制点个数。

框架介绍

本次实验我采用了 ImGui + glfw + ImPlot 来进行。代码采用 C++11 兼容的写法,使用 CMake 编译运行。

ImGui 是一个优秀的立即模式 GUI 库,配合 glfw 和 OpenGL backend 可以达到比较好的性能,也十分方便与已有的游戏引擎集成。

关于立即模式,可以搜索 immediate mode gui library vs retained mode gui library

如何编译运行

要求:

- CMake 3.5+
- Visual Studio 2019

CMake Configure & Build 即可。 hw-main 为主程序。

结果

下面是一些展示:

交互式拖动中

添加更多的控制点

