Bio 1101 Lecture 14Chapter 17: Evolution of Animals

• Last time, we were discussing the evolution of progressively more recent groups of plants...

2

3 Chapter 17: Evolution of Animals

How do plants, fungi and animals compare?

PlantFungiAnimaleukaryoticeukaryoticeukaryoticmulticellularmulti- & unicellularmulticellular

autotrophs heterotrophs heterotrophs

lack nervous/muscle lack nervous/muscle have nervous/muscle tissue tissue tissue

cell walls of cellulose cell walls of chitin lack cell walls

4 Animal Reproduction

Most animals reproduce sexually

Blastula → Gastrula → Embryo

Adult Form Larva

Larvae (plural) are sexually immature forms of some animals; they are anatomically distinct from the adult form

(example: tadpoles of frogs)

5 🔲

6 Larvae are sexually immature forms of animals that are morphologically different than the adult and go through metamorphosis

7

- · How did the first animals evolve from a protist?
- First true animals probably evolved from a flagellated protist
 - Colony → hollow sphere → specialization of cells →infolding to form primitive gut

8

9 🔲

- By 550-575 mya, during the Precambrian era, a variety of animals existed
 - Our oldest animal fossils
 - Soft-bodied impressions of sponges, jelly fish, worms, and difficult to classify organisms

	•
10	 During the Cambrian Explosion (535-525 mya), a huge variety of animals evolved Predator-prey interactions necessitated adaptations for survival Diversification of shells and spines for protection The Burgess Shale fossils are a famous assemblage of Cambrian fossils in British Columbia, Canada
11	 A survey of the animal phyla, beginning with the most primitive (oldest) and working our way up to the most advanced (newest) groups Some major characteristics to focus on: Body symmetry Development of body cavities Development of more complex digestive systems Development of more complex tissue layers Development of more complex nervous system
12 1 13 1 14 1 15 1 15 1	
15	 Earliest and Simplest Animals: The Sponges (multiple phyla) •
16	 Asymmetrical (unlike SpongeBob) Multicellular Lack true tissues (no skin, muscle, nerves, etc.) But individuals cells can react to environment Sessile Filter-feeding
17	 Use specialized flagellated cells, <u>choanocytes</u>, to trap bacteria <u>Amoebocyte</u> cells pick up food from the choanocytes and digest it "spicules" give them structure and are manufactured by amoebocytes
18 19 19 20	 Sponges According to National Geographic, a deep sea sponge (above) may be the oldest animal or planet; some estimated to be 11,000 years old!

Cnidarians (Phylum Cnidaria) - Sea anemones, jellyfish, hydras, and corals - Radially symmetrical - Mostly marine 21 22 - Have a "gastrovascular cavity" • One opening (both mouth and anus) -2 different body plans: • Medusa Polyp 23 24 🔲 · Some are polyps, some are medusas, and some go through both stages Polyp is the asexually reproducing stage (budding) • Medusa is the sexually reproducing stage (produces gametes) 25 Tentacles in a ring around mouth • Named for their "cnidocytes" - special stinging cells found on their tentacles - Defense - Capture prey Some inject poison (e.g. jellyfish) 26 Flatworms (Phylum Platyhelminthes) - The simplest, earliest bilaterally symmetrical organisms Lack a body cavity, or coelom (acoelomate) A coelom is a fluid-filled space between the gut and the outer body wall · Holds and protects internal organs - No circulatory system - May be free-living or parasitic - Either have incomplete digestive tract (only 1 opening), or lack digestive tract 27 – Free-living flatworms include the planarian - The beginning of a collection of nervous tissue at front of organism, and some simple "eye spots"

Planarian: 28 🔲 29 🔲 Flatworms were among the first animals to exhibit cephalization – the concentration of sensory organs at the "head end" of the animal - An adaptation for directional movement · Most radially symmetrical animals are stationary - The head end is first to encounter food, danger, or other stimuli -"head" end may contain a brain or simple ganglia, and sensory organs such as eyes 30 - Parasitic flatworms include flukes and tapeworms Complex life cycles -Flukes reproduce sexually in humans; eggs shed into water with feces; hatch in water and infect snails; reproduce asexually in snails, and produces a larval form that lives in water; larval form infects fish, and then fish-eating animals 31 Tapeworms: 32 - Consist of a scolex ("head" with hooks and suckers for attachment to host) and a long chain of proglottids • Each proglottid contains a complete reproductive system - May infect a variety of animals, from pigs, cows, fish, and humans - Tapeworms are different from other flatworms in that they completely lack a digestive system 33 Phylum Mollusca - Includes snails, clams, squid, and octopuses Soft-bodied animals - True coelom Complete digestive tract - Most protected by a hard shell, either internal or external (one exception is slugs) Have a specialized feeding structure called a radula · Scrape algae off rocks · Cut pieces of vegetative material 34

Muscular <u>foot</u> for movement

- <u>Visceral mass</u> contains organs

· Body plan:

– Thin fold of tissue called the <u>mantle</u>, secretes the shell

35	
	 3 groups of Molluscs: Class Gastropoda (snails and slugs)
	Single, spiral shell (or none)May have distinct head w/eyes and tentacles
	• May have distinct head wheyes and tentacles
36	
37	Class Bivalva (clams, aveters, muscale, scallens)
	Class Bivalva (clams, oysters, mussels, scallops)2-part shell
	_
38	Class Cephalopoda (squids and octopuses)
	Usually the shell is reduced, internalized, or absentIntelligent marine predators
	Beak-like jaws and radula
	 Foot has been extended to form tentacles •
	•
39 🔲	Amazing Octopuses!
	 Octopus opens jar: http://www.youtube.com/watch?v=ocWF6d0nelY&feature=related
	•
	 Octopus intelligence & camouflage https://www.youtube.com/watch?v=r1bxBmJAAJE
	•
40	
	Phylum Annelida Sogmented worms
	Segmented wormsIncludes earthworms, leeches, and a variety of marine worms
	Appendages located on each segment, in many species
	– True coelom
	 Bilaterally symmetrical with complete digestive tract Mostly free-living
	•
41	
42 🔲	
	Roundworms (Phylum Nematoda)
	- Cylindrical with tapered ends - Cylindrical with tapered ends
	 Bilaterally symmetrical Found in nearly every habitat, from soil to water to within the bodies of plants and
	animals
	 If everything were to disappear on earth except roundworms, you would still be able to see "ghosts" of nearly every living thing due to the roundworms that live inside

```
them
         - Some parasitic, some free-living
43
         - Have a <u>complete digestive tract</u>, and a <u>pseudocoelom</u> (a primitive body cavity)
           • True body cavities are completely lined by mesoderm (a type of tissue)
            • Pseudocoeloms are only partially lined by mesoderm
44
         - Roundworms include the species that causes the disease trichinosis
            • From eating infected, undercooked pork
            • Worms burrow into and form cysts in muscle tissue
            Trichinella sp.
            found
           in undercooked
            pork
45 🔲
      · Break...
46
      Phylum Arthropoda
         - Bilaterally symmetrical with complete digestive tract
         Segmented animals
            · Segments specialized for specific functions
         - Jointed appendages
         - Exoskeleton
            · made of chitin
            · When animal grows, must "molt"
47
         - A large diversity of species (about 2/3 of all species!)
         -5 main groups:

    Arachnids

    Crustaceans

    Millipedes

    Centipedes

    Insects

48 🔲
```

- Arachnids · Spiders, scorpions, mites and ticks · Live on land • 4 pairs of walking legs, and 1 pair of feeding appendages -In spiders, these are fang-like and inject poison 49 🔲 - Spiders make webs using their spinneret glands, located in the abdomen - Use the wind to carry the thread of silk for first strand of a web; if it sticks to a good surface, spider will walk across the thread, adding a second thread for support - Most wait at the edge of their web with a foot on the "signal line" to detect when something is captured 50 - Crustaceans Mostly aquatic, such as crabs, lobsters, crayfish, shrimp One terrestrial group are the isopods, or "pill bugs" 51 52 - Millipedes and Centipedes Many similar segments (resemble annelids) · Jointed legs • Millipedes eat decaying plant matter; centipedes are carnivores (poisonous) • Millipedes = two pairs of legs on most body segments; body round in cross-section • Centipedes = one pair of legs on most body segments; body flattened 53 54 Insects - More species of insects than all other species combined -3 pairs of legs - 3-part body: head, thorax, and abdomen - Other appendages for eating and flying – Many insects undergo a metamorphosis · e.g. butterflies 55 56

- Larvae are bilaterally symmetrical, but when transform into adults, take on radial

Phylum Echinodermata

- All marine

symmetry

- Sea urchins, sand dollars and star fish

7

 Most have an endoskeleton
Water-vascular system, used for gas exchange, waste disposal, and for movement"tube feet"
57 🔲
58
 Phylum Chordata Includes the subphylum vertebrata Animals with backbones All Chordates share 4 traits Dorsal hollow nerve cord Notochord Pharyngeal gill slits Post-anal tail
•
But we're vertebrates, and we don't have gill slits or tails
Or do we???
60
During embryonic development, we have all of the characteristics of the Phylum Chordata, including post-anal tails and gill slits •
61
62
• We'll begin here next time
64
 Phylum Chordata includes the vertebrates, but not all chordates are vertebrates A vertebrate is an animal with a backbone Invertebrate chordates include the tunicates and lancelets Tunicates = "sea squirts" Lancelets = small, blade-shaped marine animals
•
 Subphylum Vertebrata 1. Fishes Evolutionarily, the first vertebrates Jawless fishes were the earliest Example: lampreys and hagfishes
–Note that hagfishes = fishes with a cranium but not a true backbone – however,

they are considered vertebrates due to the cranium; -Lampreys and hagfishes are jawless fishes 66 🔲 67 🔲 · And then there came the evolution of.... JAWS! 68 · Class Chondrichthyes: the cartilaginous fishes - The first fish with jaws - No true bone - skeleton of cartilage - Includes the sharks and rays - Have a <u>lateral line</u> system, which they use to detect movement in the water (helps them locate prey, since their vision is poor) - Must move constantly to circulate water over gills and breathe 69 🔲 70 🔲 · Class Osteichthyes: Bony Fishes - More species than in any other Class of vertebrates - Tuna, trout, goldfish, etc. – Skeleton reinforced by calcium salts = bone - Also have lateral line system - Keen vision and smell - Have an operculum on either side of head to protect gills · Can move operculum to circulate water through gills • Allows them to breathe when not in motion 71 72 🔲 73 · Class Amphibia - Evolved from lobe-finned bony fishes Developed arms and legs - Developed lungs for air-breathing - Also depend on their moist skin for gas exchange Ectothermic (cold-blooded) - Eggs lack shells and usually must be laid in water • Undergo metamorphosis, from an aquatic larval form to a terrestrial adult form

74 🔲

75

- · Amphibians were first vertebrates to colonize land
- Have four legs = "tetrapod"
- · All subsequent animals evolving from amphibian ancestor are also tetrapods

76

· Class Reptilomorpha - the reptiles and birds

- First to evolve an amniotic egg
 - Fluid-filled egg with a waterproof shell
 - Allows these animals to reproduce on land (unlike amphibians, which must deposit their eggs in aquatic or at least wet environments)
 - Note that mammals are also classified as amniotes, even though most no longer lay eggs

-

77 🔲

- Reptiles (Class Reptilia)
 - Snakes, lizards, turtles, alligators, and crocodiles
 - Waterproof scales allow them to conserve water better than amphibians
 - Hard-shelled, water-containing eggs (amniotic eggs) can be laid on land (won't dry out)
 - These characteristics allowed reptiles to exploit terrestrial habitats better than amphibians
 - Cold-blooded

78 🔲

79 🔲

· Birds (Class Reptilia)

- Evolved from reptilian ancestor
 - Small, two-legged dinosaurs called theropods
- Scales evolved into feathers
- Evolved endothermy fairly constant body temperature maintained by metabolism
- Hard-shelled eggs
- No teeth, so have a gizzard for grinding food (located near stomach)

80 🔲

- Flight
 - Bones of birds are honeycombed, making them light yet strong, an adaptation for flight
 - Frigate birds are large seagoing species
 - Wingspan of over 6 1/2 feet
 - Skeleton only weighs 4 ounces!
 - Other ways birds reduce weight: eliminating some internal organs
 - For example, female birds have only one ovary
 - · Lack of teeth also reduces weight

- Wings with feathers act as airfoil
 Feathers likely first evolved as insulation

 81

 82

 Class Mammalia

 The mammals

 Also evolved from reptiles

 First mammals were small, mouse-sized, and nocturnal

 Diversified after downfall of dinosaurs

 Hair derived from scales

 Evolved endothermy separately from birds

 Earliest mammals were egg-layers
- 83 🔲
- Most mammals are born (have lost the "egg" over time)

- Today, only 3 species of egg-laying mammals (monotremes)

- Marsupial mammals have a brief gestation period; tiny baby is born, attaches to mother's nipple and is protected in a pouch
 - Example: kangaroo and koala
 - Nearly all marsupials live in Australia, New Zealand, and South America
 - North American marsupial = opossums
- 84 🔲
- 85
- · Placental Mammals
 - Have longer gestation period and more elaborate placenta
 - Don't have a "pouch"
 - Examples: dogs, cats, cows, rodents, bats, whales, and primates (including humans)
- 86 🔲
- · Evolution of Humankind
 - We share a common ancestor with the chimpanzees about 7 million years ago
 - Note that this does not mean we "evolved from chimps"
 - Rather, chimpanzees are more like our phylogenetic "cousins"
 - We are related to chimpanzees through common descent
 - Bipedalism (walking upright on two legs) was an important adaptation of our ancestors
 - The fossil named "Lucy" (of the species *Australopithecus afarensis*) was an important insight into the importance of bipedalism in our early evolution
 - · Lucy had small brain, but walked upright
 - This fossil hominin dates back 3.24 million years

87 🔲

88

- Enlargement of the human brain is first evident in fossil hominins dating back 2.4 million years ago
- After first standing up, then evolving larger brains, human ancestors began making tools
- Homo habilis remains have been found with their handmade tools
- Why did we evolve larger brains? A number of different hypotheses:
 - · For building tools
 - For hunting or gathering food
 - · For attracting mates

89 🔲

- First human species to extend beyond Africa was *Homo erectus*
- Homo erectus fossils dating 1.8 million years old have been found in former Soviet republic of Georgia
- This species had larger brain than Homo habilis and was also taller
- Lived in huts or caves, built fires, made clothes from animal skin, and made stone tools
- Eventually spread through Europe and Asia

-

90

- A descendant of *Homo erectus* was *Homo neadnerthalensis* (the "Neanderthals")
- Also had large brains and made diversity of stone and wood tools
- Lived in Europe as far back as 350,000 years ago, but went extinct 28,000 years ago
- Are modern humans related to Neanderthals?
 - DNA evidence suggests our last common ancestor with Neanderthals lived about 500,000 years ago
 - However, early *Homo sapiens* co-existed with Neanderthals and may have inter-bred with them
 - Video: http://www.youtube.com/watch?feature=endscreen&v=HpQiBPdFtog&NR=1

91

- Oldest Homo sapiens fossils were discovered in Ethiopia and date from 160,000 to 195,000 years old
- These humans lacked the heavy browridge of the Neanderthals and had a more slender skeleton
- A uniquely human trait is that, although primate brains in general continue to grow after birth, human brains continue to grow for a longer period than any other primate
- We have an extended period of parental care, which allows our offspring to learn from earlier generations
 - The basis of culture the social transmission of knowledge, customs, beliefs, and art over generations
 - Although not restricted to humans, it is particularly well developed in our species

92 🔲

• Break, then movie...