Quasi-Experiments I

POLSCI 4SS3

Winter 2023

Course surveys due April 12, 11:59 PM

Now Open! Student Course Experience Surveys

It's time to share your feedback on your learning experience.

Here are a few quick tips to make the most impact with your comments.

- Think constructively about your course(s).
- Re respectful.
- Be specific and provide a reasonable amount of information.
- Consider what's working and what's not working.

Get started on your course surveys: mcmaster.bluera.com/mcmaster

Announcements

- Two more weeks left!
- Final projects due April 21
- Groups need to meet with instructor one more time before
 April 19
- Extra office hour times April 13-19
- Every group member needs to be in at least one group meeting to receive group meeting grade

Last time

- Learning from experiments
- Good to understand what works, but not why or where
- Need to think about support factors
- Scaling up, drilling down
- Today: Observational causal data strategies

Types of data strategy

Data strategy

Inquiry	Observational	Experimental	
Descriptive	Sample survey	List experiment	
Causal		Survey/field experiment	

Types of data strategy

Data strategy

Inquiry	Observational	Experimental	
Descriptive	Sample survey	List experiment	
Causal	Quasi-experiment	Survey/field experiment	

Challenges to causal interpretations

1. Reverse causation

- ullet Instead of Z causing Y,Y causes Z
- ullet Simultaneity: Z causes Y and vice versa

(i) Example

Students who are likely to participate enroll in Political Science courses more often

Challenges to causal interpretations 2. Omitted variable bias

ullet There is an unobserved factor X that explains the relationship between Z and Y

Example

- We believe that more education increases income
- But having smart parents increases both education and income

Challenges to causal interpretations 3. Selection bias

- ullet Individuals sort into condition Z in a manner that predicts outcome Y
- Treatment and control are not comparable

(i) Example

• Always-takers are more likely to participate in the TUP program

Challenges to causal interpretations

- 1. Reverse causation
- 2. Omitted variable bias
- 3. Selection bias
- Random assignment avoids this in expectation
- Hard to overcome with observational causal data strategies
- Need to pretend that we can analyze data as if it was an experiment

Quasi-experiments

- Answer strategies that produce data as-if they were drawn from an experiment
- Natural experiment: Random assignment outside of the researcher control
- Example: Choosing municipalities at random for auditing
- Quasi-experiment: Conditions are assigned in a manner that is sufficiently orthogonal to potential outcomes

Examples of quasi-experiment

- Benefits eligible only to people under a certain income
- Institutional variation based on arbitrary population thresholds
- Winning an election by a narrow margin
- Being barely inside/outside an administrative border
- Unexpected events

Regression discontinuity designs

• Three ingredients:

- 1. Score (running variable)
- 2. Cutoff (threshold)
- 3. Treatment (at least two conditions)

Visual representation

As a graph

Unknown heterogeneity

Outcome variable

Example: Hoekstra (2019)

- Question: Effect of higher education on earnings
- Challenge: Selection bias
- **Solution:** Focus on attendance at US state flagship university among 28-33 year olds
- Outcome: Earnings
- Score: SAT test scores
- Cutoff: Admission cutoff
- Treatment: Attending flagship university

Treatment take-up

FIGURE 1.—FRACTION ENROLLED AT THE FLAGSHIP STATE UNIVERSITY

Results

FIGURE 2.—NATURAL LOG OF ANNUAL EARNINGS FOR WHITE MEN TEN TO FIFTEEN YEARS AFTER HIGH SCHOOL GRADUATION (FIT WITH A CUBIC POLYNOMIAL OF ADJUSTED SAT SCORE)

How do you get an estimate?

- Two approaches to RDD data:
- 1. Local randomization
- 2. Continuity-based

Local randomization

- Potential outcomes are not random because they depend on the score (and other things)
- However, around the cutoff, treatment assignment is as good as random
- So we can pretend we have an experiment within a bandwidth around the cutoff

Bandwidth tradeoff

A small bandwidth has low bias but high variance. A larger bandwidth has lower variance

RDD assumptions

1. Continuity

Score is continuous at the cutoff

1. Comparability

Units are comparable at or around the cutoff

- These imply no manipulation and no selection bias
- Local randomization is sufficient but not necessary to satisfy these assumptions

Continuity-based approach

- Treatment assignment is deterministic at the cutoff
- But usually too few or no units at the cutoff
- Task: Approximate the gap at the cutoff as best as possible
- This becomes a line drawing problem

Line drawing: Parametric

Line drawing: Nonparametric

These lines are made by an algorithm that calculates the local average at many windows

Line drawing: Bandwidth

RDDs in balance

Pros

- Intuitive design
- Widely applicable
- Easy to visualize

Cons

- Results are highly local
- Scale up? Drill down?
- Too many moving parts
- Software automates most of the decisions
- Ideally, results are consistent under different approaches

Next Week Quasi-experiments II

Focus on: Difference-in-differences design

Break time!

Lab