# Subgroup



### Definition (Left coset relation)

Let G be a group with subgroup H. The **left coset relation** on G with respect to H is the relation R with the property that  $g_1 R g_2$  iff  $g_1^{-1} \cdot g_2 \in H$ ,  $\forall g_1, g_2 \in G$ .

### Definition (Right coset relation)

Let G be a group with subgroup H. The **right coset relation** on G with respect to H is the relation R with the property that  $g_1 R_{g_2}$  iff  $g_1 \cdot g_2^{-1} \in H$ ,  $\forall g_1, g_2 \in G$ .

# Subgroup



#### **Theorem**

The left (right) coset relation is an equivalence relation on a group G, and the equivalence classes are the left (right) cosets of G with respect to a subgroup H of G.

# Normal Subgroup



### **Definition (Normal Subgroup)**

A subgroup H of a group G is said to be a **normal subgroup** if the left coset partition induced by H is identical to the right coset partition induced by H.

Equivalently, H is normal if

$$g \cdot H = H \cdot g, \forall g \in G.$$

#### **Theorem**

A subgroup H of a group G is **normal** if and only if

$$g^{-1} \cdot H \cdot g \subseteq H, \forall g \in G.$$

In other words, a subgroup H of a group G is normal if and only if

$$g^{-1} \cdot h \cdot g \in H, \forall g \in G \text{ and } h \in H.$$

# **Quotient group**



#### **Theorem**

If H is a normal subgroup of a group  $\langle G, \cdot \rangle$ , then the quotient structure  $\langle G/H, \circ \rangle$  is a group, where  $\circ$  is the composition of cosets defined by

$$[g]\circ[h]=[g\cdot h]$$

where [g] denotes a left (right) coset of G relative to H and it is defined by  $[g] = g \cdot H, \forall g \in G$ , with respect to the left coset operation.

The group  $\langle G/H, \circ \rangle$  is called the "quotient group" or "factor group" of G relative to the normal subgroup H.



### Definition (Homomorphism of semigroups)

Let  $[S,\cdot]$  and [T,\*] be two semigroups. A mapping (function)  $\theta: [S,\cdot] \to [T,*]$  is called a morphism (or homomorphism) of two semigroups  $[S,\cdot]$  and [T,\*], if  $\forall s_1,s_2 \in S$ ,  $\theta(s_1\cdot s_2) = \theta(s_1)*\theta(s_2)$ .

### Definition (Homomorphism of monoids)

Let  $[S,\cdot,e_S]$  and  $[T,*,e_T]$  be two monoids. A mapping (function)  $\theta:[S,\cdot,e_S] \to [T,*,e_T]$  is called a morphism (or homomorphism), if the following conditions are met:

- (i)  $\forall s_1, s_2 \in S$ ,  $\theta(s_1 \cdot s_2) = \theta(s_1) * \theta(s_2)$ .
- (ii)  $\theta(e_S) = e_T$ , where  $e_S$  and  $e_T$  denote the identity elements in the monoids  $[S, \cdot, e_S]$  and  $[T, *, e_T]$ , respectively.



### Definition (Homomorphism of groups)

Let  $[G,\cdot]$  and [G',\*] be two groups. A mapping (function)  $\mu:[G,\cdot]\to [G',*]$  is called a morphism (or homomorphism), if the following conditions are met:

- ullet (i)  $orall g,g'\in G$ ,  $\mu(g\cdot g')=\mu(g)*\mu(g')$ .
- (ii)  $\mu(e_G) = e_{G'}$ , where  $e_G$  and  $e_{G'}$  denote the identity elements in the groups  $[G, \cdot]$  and [G', \*], respectively.
- (iii)  $[\mu(g)]^{-1} = \mu(g^{-1}), \forall g \in G.$



#### **Definition**

Let g be a homomorphism from a structure  $[X, \cdot]$  to another structure [Y, \*].

- If  $g: X \to Y$  is onto (surjective), then g is called an **epimorphism**.
- If g: X → Y is one-one (injective), then g is called an monomorphism.
- If g: X → Y is one-one (injective) and onto (surjective) (that is, g is bijective), then g is called an isomorphism.
- If  $g: X \to Y$  is called an **automorphism**, if X = Y and g is a bijection.



#### **Theorem**

Let  $[G,\cdot]$  and [G',\*] be two groups. A mapping (function)  $\mu:[G,\cdot]\to [G',*]$  is called a morphism (or homomorphism) of the groups  $[G,\cdot]$  and [G',\*] if and only if

$$\mu(g \cdot g') = \mu(g) * \mu(g'), \forall g, g' \in G.$$



### Example

Let G be the group of non-zero real numbers under the multiplication operation. Determine whether the following functions are morphisms or not:

- (i)  $\phi: G \to G$ , where  $\phi(x) = x^2$ , for all  $x \in G$ .
- (ii)  $\psi: G \to G$ , where  $\psi(x) = 2^x$ , for all  $x \in G$ .