100	Eva	luación	Darcial	20	da ak	ء انب	1	2000	
Ler.	Eva	IIIacion	Parcial	- 78	de ar	oril c	P	7008	

5.																											
Nombre:																											
INOTHIDIC.	٠	٠		٠		٠	٠				•	•			•	•	٠		٠	٠		٠	0	•	•	•	

Ingeniería de Software II

Ejercicio 1. Considere el problema de los filósofos comensales con la siguiente variante: los tenedores se encuentran en el centro de la mesa en una bandeja. Cuando un filósofo desea comer debe sentarse a la mesa y tomar los dos tenedores de la bandeja. Cuando termina de comer los devuelve a la bandeja.

- (a) Suponga que hay N filósofos y M tenedores. Dé una condición sobre N y M para que el sistema no entre en deadlock. Asegurese que su condición sea lo más ajustada posible.
- (b) Modele el sistema en FSP bajo la suposición de que la condición anterior no se cumple, modificando el sistema apropiadamente para evitar deadlock.

Ejercicio 2.

- (a) Considere el alfabeto $\Sigma = \{a, b\}$. Determine si la propiedad $(b^*a)^*b^\omega$ es de safety, liveness, ambas, o ninguna. Justifique la respuesta.
- (b) Si no es de safety extiéndala agregando el mínimo conjunto de palabras necesario de manera que lo sea. Use expresiones ω -regulares. Justifique que la extensión es de safety y mínima.
- (c) Dé el autómata de Büchi que representa el lenguaje dado. Justifique.
- Ejercicio 3. Dada dos fórmulas LTL ϕ y ψ , el término $\phi \cap \psi$ se interpreta como "Siempre ocurre ϕ antes que ψ ". Dé una definición de $\phi \cap \psi$ usando los operadores LTL.
- Ejercicio 4. Dé un algoritmo que demuestre que dos fórmulas LTL ϕ y ψ son equivalentes.
- Ejercicio 5. Considere un sistema de administración de impresoras idénticas con dos colas, una para la impresión de textos cortos y la otra para la impresión de textos largos. Suponga que hay N impresoras y que la capacidad de cada cola es M. Las impresoras sólo pueden tomar trabajos de la cola de textos largos si la cola de textos cortos está vacía. Existen además K procesos que envían trabajos a imprimir a cada cola según sean textos cortos o largos.
- (a) Modele el sistema utilizando FSP asegurándose de evitar deadlocks y proveyendo el diagrama de estructura del modelo. Si le conviene, utilice la siguiente definición de cola:

(b) Represente en FSP la propiedad de safety que dice que nunca hay más de 2M + N trabajos dentro del sistema de impresión (ya sea imprimiendo o encolados). Asegúrese de que su modelo la cumpla.

The second of the