Week 9

Juan Patricio Carrizales Torres Section 3: Proof by Contrapositive

September 18, 2021

Let P(x) and Q(x) be two open sentences over some domain S. Suppose one wants to prove that $P(x) \Rightarrow Q(x)$ is true for all $x \in S$, but it is not directly clear how or whether a direct proof can be applied. Then one can prove directly that the contrapositive of $P(x) \Rightarrow Q(x)$, namely $\sim Q(x) \Rightarrow \sim P(x)$, is true for each $x \in S$ since an implication and its contrapositive are logically equivalent. One assumes that $\sim Q(x)$ is true for an arbitrary $x \in S$ and proves that $\sim P(x)$ is true for this same x. This method is known as a Proof by Contrapositive.

Note that if one proves the truth of $\forall x \in S, P(x) \Rightarrow Q(x)$, then the truth of $\forall x \in S, \sim Q(x) \Rightarrow \sim P(x)$ is also proven, and vice versa. Therefore it is understood that for all $x \in S$ for which P(x) is true, Q(x) is true. Also, for all $x \in S$ for which Q(x) is false, P(x) is false.

Problem 16. Let $x \in \mathbb{Z}$. Prove that if 7x + 5 is odd, then x is even.

Proof. Assume that x is odd. Then x = 2k + 1 for some $k \in \mathbb{Z}$. Hence,

$$7(2k+1) + 5 = 14k + 12 = 2(7k+6)$$

Since 7k + 6 is an integer, it follows that 7x + 5 is even.

Problem 17. Let $n \in \mathbb{Z}$. Prove that if 15n is even, then 9n is even.

Proof. Let 15n be even. Then 15n = 2k for some $k \in \mathbb{Z}$. Note that

$$9n = 15n - 6n = 2k - 6n = 2(k - 3n)$$

Because k-3n is an integer, it follows that 9n is even.

Problem 18. Let $x \in \mathbb{Z}$. Prove that 5x - 11 is even if and only if x is odd.

Proof. Assume x is even. Then x = 2m for some $m \in \mathbb{Z}$. Therefore,

$$5(2m) - 11 = 10m - 12 + 1 = 2(5m - 6) + 1$$

Since 5m-6 is an integer, 5x-11 is odd.

For the converse, let x be odd. Then x = 2k + 1 for some $k \in \mathbb{Z}$. Hence,

$$5(2k+1) - 11 = 10k + 5 - 11 = 10k - 6 = 2(5k-3)$$

Since 5k-3 is an integer, it follows that 5x-11 is even.

Problem 19. Let $x \in \mathbb{Z}$. Use a lemma to prove that if 7x + 4 is even, then 3x - 11 is odd.

Lemma Let $x \in \mathbb{Z}$. If 7x + 4 is even, then x is even.

Proof. Assume x is odd. Then x = 2n + 1 for some $n \in \mathbb{Z}$. Therefore,

$$7(2n+1) + 4 = 14n + 7 + 4 = 14n + 6 + 4 + 1 = 2(7n+5) + 1$$

Since 7n + 5 is an integer, 7x + 4 is odd.

We are now ready to prove the result in problem 19.

Proof. Let 7x + 4 be even. Then by lemma, x = 2k for some $k \in \mathbb{Z}$. Therefore,

$$3(2k) - 11 = 2(3k) - 12 + 1 = 2(3k - 6) + 1$$

Since 3k - 6 is an integer, it follows that 3x - 11 is odd.

Problem 20. Let $x \in \mathbb{Z}$. Prove that 3x + 1 is even if and only if 5x - 2 is odd.

Proof. Assume 3x + 1 is even. Then 3x + 1 = 2k for some $k \in \mathbb{Z}$. Note that

$$5x - 2 = (3x + 1) + 2x - 4 + 1 = 2k + 2x - 4 + 1 = 2(k + x - 2) + 1$$

Since k + x - 2 is an integer, 5x - 2 is odd.

For the converse, assume 5x-2 is odd. Then 5x-2=2k+1 for some $k\in\mathbb{Z}$. Note that

$$3x + 1 = (5x - 2) - 2x + 3 = 2k + 1 - 2x + 3 = 2(k - x + 2)$$

Since k - x + 2 is an integer, it follows that 3x + 1 is even.

Problem 21. Let $n \in \mathbb{Z}$. Prove that $(n+1)^2 - 1$ is even if and only if n is even.

Proof. Assume n is odd. Then n=2k+1 for some $k\in\mathbb{Z}$. Therefore

$$(n+1)^2 - 1 = (2k+2)^2 - 1 = 4k^2 + 8k + 4 - 1 = 4k^2 + 8k + 3 = 2(2k^2 + 4k + 1) + 1$$

Because $2k^2 + 4k + 1$ is an integer, $(n+1)^2 - 1$ is odd.

For the converse, assume n is even. Then n=2k for some $k\in\mathbb{Z}$. Thus,

$$(2k+1)^2 - 1 = 4k^2 + 4k + 1 - 1 = 2(2k^2 + 2k)$$

Since $2k^2 + 2k$ is an integer, $(n+1)^2 - 1$ is even.

Problem 22. Let $S = \{2, 3, 4\}$ and let $n \in S$. Use a proof by contrapositive to prove that if $n^2(n-1)^2/4$ is even, then $n^2(n+1)^2/4$ is even.

Proof. Let $n \in S$ such that $n^2(n+1)^2/4$ is odd. Then n=2 and so $n^2(n-1)^2/4=1$ is odd.

Problem 23. Let $A = \{0, 1, 2\}$ and $B = \{4, 5, 6\}$ be subsets of $S = \{0, 1, ..., 6\}$. Let $n \in S$. Prove that if $\frac{n(n-1)(n-2)}{6}$ is even, then $n \in A \cup B$.

Proof. Assume $n \notin A \cup B$, where $n \in S$. Then n = 3 and so $\frac{n(n-1)(n-2)}{6} = 1$ is odd.

Problem 24. Let $n \in \mathbb{Z}$. Prove that $2n^2 + n$ is odd if and only if $\cos \frac{n\pi}{2}$ is even.

Proof. Assume $\cos \frac{n\pi}{2}$ is odd. Then $\cos \frac{n\pi}{2} = \pm 1$ and n is even. Therefore, n = 2k for some $k \in \mathbb{Z}$. Thus,

$$2(2k)^2 + 2k = 8k^2 + 2k = 2(4k^2 + k)$$

Since $4k^2 + k$ is an integer, $2n^2 + n$ is even.

For the converse, let $\cos \frac{n\pi}{2}$ be even. Then $\cos \frac{n\pi}{2} = 0$ and n is odd. Therefore, n = 2k + 1 for some $k \in \mathbb{Z}$. Thus,

$$2(2k+1)^2 + 2k + 1 = 2(4k^2 + 4k + 1) + 2k + 1 = 2(4k^2 + 5k + 1) + 1$$

Because $4k^2 + 5k + 1$ is an integer, it follows that $2n^2 + n$ is odd.

Problem 25. Let $\{A, B\}$ be a partition of the set of $S = \{1, 2, ..., 7\}$, where $A = \{1, 4, 5\}$ and $B = \{2, 3, 6, 7\}$. Let $n \in S$. Prove that if $\frac{n^2 + 3n - 4}{2}$ is even, then $n \in A$.

Proof. Let
$$n \in S$$
 such that $n \notin A$. Then $n \in B = \{2, 3, 6, 7\}$. Note that $\frac{2^2 + 3(2) - 4}{2} = 3$, $\frac{3^2 + 3(3) - 4}{2} = 7$, $\frac{6^2 + 3(6) - 4}{2} = 25$ and $\frac{7^2 + 3(7) - 4}{2} = 33$ are all odd integers.