

Deep Q-Learning

Industrial AI Lab.

Prof. Seungchul Lee

Q-Learning

• Value iteration algorithm: use Bellman equation as an iterative update

$$Q_{k+1}(s,a) \; \leftarrow \; \mathbb{E}_{s' \sim P(s'|s,a)} \left[R(s) + \gamma \max_{a} Q_k \left(s', a'
ight)
ight]$$

• Q_k will converge to Q_* as goes to ∞

What is the Problem with Q-Learning?

- Not scalable. Must compute tabular Q(s, a) for every state-action pair.
- If state is for instance current game state pixels, computationally infeasible to compute for entire state space!
 - too many states to visit them all in training
 - too many states to hold the Q-table in memory
- States in Tetris: naive board configuration + shape of the falling piece $\sim 10^{60}$ states !!!
- Solution: use a function approximator to estimate Q(s,a)
 - learn about some small number of training states from experience
 - generalize that experience to new, similar situations

Tetris

Approximate Q-Learning

- Instead of a table, we have a parameterized Q function: $Q_{\omega}(s, a) \approx Q_{*}(s, a)$
- can be a linear function in features

$$Q_{\omega}(s,a) = \omega_0 f_0(s,a) + \omega_1 f_1(s,a) + \cdots + \omega_n f_n(s,a)$$

or a complicated neural network → (Deep Q-learning Network)

$$ext{target}\left(s'
ight) = R(s) + \gamma \max_{a'} Q_{\omega}(s', a') \ Q_{k+1}(s, a) \; \leftarrow \; Q_k(s, a) + lpha \; \underbrace{\left(ext{target}\left(s'
ight) - Q_k(s, a)
ight)}_{ ext{difference}}$$

Approximate Q-Learning

Difference

$$ext{difference} = \left[R(s) + \gamma \max_{a'} Q_{\omega}(s', a')
ight] - Q_{\omega}(s, a)$$

• loss function by mean-squared error in Q-value

$$\ell(\omega) = \left[rac{1}{2} (ext{target} \left(s'
ight) - Q_{\omega}(s,a)
ight)^2
ight]$$

• GD update:

$$egin{aligned} \omega_{k+1} &\leftarrow \omega_k - \alpha \;
abla_\omega \ell(\omega) &\Longrightarrow ext{Deep Learning Framework} \\ &\leftarrow \; \omega_k - \alpha \;
abla_\omega \left[rac{1}{2} (ext{target} \left(s'
ight) - Q_\omega(s,a)
ight)^2
ight] \\ &\leftarrow \; \omega_k + lpha \; \left[(ext{target} \left(s'
ight) - Q_\omega(s,a)
ight)
ight]
abla_\omega Q_\omega(s,a) \end{aligned}$$

Linea Function Approximator

$$Q_{\omega}(s,a) = \omega_0 f_0(s,a) + \omega_1 f_1(s,a) + \cdots + \omega_n f_n(s,a)$$

Exact Q

$$Q(s,a) \leftarrow Q(s,a) + \alpha \, [ext{difference}]$$

Approximate Q

$$\omega_i \leftarrow \omega_i + \alpha \left[\text{difference} \right] f_i(s, a)$$

Example: Linear Regression

$$\ell = rac{1}{2} \sum_i \left(y_i - \hat{y}_i
ight)^2$$

• Difference

$$y-\hat{y}=y-(\omega_0f_0(x)+\omega_1f_1(x)+\cdots+\omega_nf_n(x))=\underbrace{y}_{ ext{target}}-\underbrace{\sum_i\omega_if_i(x)}_{ ext{prediction}}$$

• For one point

$$rac{\partial \ell(\omega)}{\partial \omega_k} = \left(y - \sum_i \omega_i f_i(x)
ight) f_k(x)$$

$$egin{array}{ll} \omega_k \; \leftarrow \; \omega_i + lpha \left(y - \sum_i \omega_i f_i(x)
ight) f_k(x) \end{array}$$

$$\omega_k \leftarrow \omega_i + \alpha \text{ [difference] } f_k(x)$$

Deep Q-Networks (DQN)

- DQN method (Q-learning with deep network as Q function approximator) became famous in 2013 for learning to play a wide variety of Atari games better than humans.
- Deep Mind, 2015
 - Used a deep learning network to represent Q

Deep Q-Networks (DQN)

• (Tabular) Q-Learning like DQN, but inefficient

Better DQN

DQN with Gym Environment

- Cart Pole Problem
 - Objective:
 - Balance a pole on top of a movable cart
 - State:
 - position, horizontal velocity, angle, angular speed
 - Action:
 - horizontal force applied on the cart
 - Reward:
 - 1 at each time step if the pole is upright

Nature of Learning

- We learn from past experiences
 - She has no explicit teacher but does have direct interaction to the environment
- Positive compliments vs. negative criticism

What is Reinforcement Learning?

- Computational approach to learning from interaction
 - Learn to make good sequence of decisions
 - No supervision
 - Feedback is delayed
 - Actions affect the subsequent future rewards
- The key challenge is to learn to make good decision under uncertainty

Fundamental Terminology in RL

- Markov Decision Process (MDP)
 - State, action
 - State transition probability, reward function, discount factor
- Policy, value, model
- Planning vs. learning
- Predictions vs. control
- Exploration vs. exploitation

observation

From MDP To Reinforcement Learning

 You should take good actions to get rewards, but in order to know which actions are good, we need to explore and try different actions.

- Markov decision process (offline)
 - Have mental model of how the world works.
 - Find policy to collect maximum rewards.
- Reinforcement learning (online)
 - Don't know how the world works.
 - Perform actions in the world to find out and collect rewards.

Deep Reinforcement Learning

Playing Atari [Google DeepMind, 2013]:

- Just use a neural network for $\hat{Q}_{\mathrm{opt}}(s,a)$
- Last 4 frames (images) → 3-layer NN → keystroke
- ϵ -greedy, train over 10M frames with 1M replay memory
- https://www.youtube.com/watch?v=V1eYniJ0Rnk

AlphaGo

- Supervised learning: on human games
- Reinforcement learning: on self-play games
- Evaluation function: convolutional neural network (value network)
- Policy: convolutional neural network (policy network)
- Monte Carlo Tree Search: search / lookahead

Control Inverted Pendulum

• From open-loop to closed-loop systems

Reinforcement Learning

• Software-in-the-loop

Control Uni-copter

• From open-loop to closed-loop systems

Reinforcement Learning

• Hardware-in-the-loop

Reinforcement Learning

• Learned knowledge can be transferred

