Sistema para reconhecimento de ondas cerebrais e interação com ambiente virtual

Luccas de Souza Silva

Dalton S. dos Reis (orientador)

Introdução

O campo da eletroencefalografia cresceu dramaticamente nas últimas décadas. O surgimento de Interfaces Cérebro-Máquina permitiu o surgimento de novas formas de controle sobre a tecnologia, tanto para uso pessoal quanto para uso médico.

Objetivos

Disponibilizar um Sistema para monitoramento de ondas cerebrais de usuários, utilizando um equipamento de EEG, com interação em ambiente virtual.

Objetivos

 Permitir que o usuário treine seus próprios estúmulos para serem utilizados no ambiente virtual;

 Disponibilizar um cenário de testes para interação com o ambiente virtual;

 Registrar um histórico dos dados captados durante os cenários de testes.

Justificativa

• Dificuldade na área de monitoramento de estímulos;

• Dificuldade no treinamento do usuário;

• Controle e acompanhamento dos resultedos.

Justificativa

Metodologia

- levantamento bibliográfico;
- reconhecimento de requisitos;
- especificação e análise;
- implementação do sistema;
- testes.

Revisão bibliográfica

• Eletroencefalografia é um procedimento não-invasivo e que pode ser aplicado repetidas vezes com praticamente nenhum risco ou limitação. O EEG é sensível a estados que vão de alerta e estresse até relaxamento, hipnose e sono.

• Dentre os possíveis estímulos utilizados em Interfaces Cérebro-Máquina, os mais populares são Concentração, Resposta a estímulo externo, e Movimento imaginado.

Referências

ANUPAMA H. S.; CAUVER N. K.; LINGARAJU G. M. Brain Computer Interface and Its Types – A Study. **International Journal of Advances in Engineering & Technology**. v. 3, n. 2, p. 739-745, maio 2012. Disponível em http://www.e-ijaet.org/media/0001/78I8-IJAET0805886-BRAIN-COMPUTER-INTERFACE.pdf Acesso em: 10 set. 2017.

BERKA, Chris et al. EEG Correlates of Task Engagement and Mental Workload in Vigilance, Learning, and Memory Tasks. **Aviation, Space, and Environmental Medicine**, v. 78, p. B231-B244, maio 2007. Disponível em: http://www.ingentaconnect.com/content/asma/asem/2007/00000078/A00105s1/art00032 Acesso em: 10 set. 2017.

FERREIRA, Alessandro L. S. et al. A survey of Interactive Systems based on Brain-Computer Interfaces. **SBC**Journal on 3D Interactive Systems, v. 4, n. 1, 2013. Disponível em:

http://www.seer.ufrgs.br/index.php/jis/article/view/40857/26624 Acesso em: 08 set. 2017.

HWANG, Han-Jeong et al. Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard. **Journal of Neuroscience Methods**, v. 208, n. 1, p. 59–65, 2012. Disponível em: https://www.researchgate.net/publication/224949476_Development_of_an_SSVEP-based_BCI_spelling_system_adopting_a_QWERTY-style_LED_keyboard Acesso em: 09 set. 2017.

Referências

LEEB, Robert et al. Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. **Computational Intelligence and Neuroscience**, v. 2007, p. 1–8, 2007. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2272302/ Acesso em: 09 set. 2017.

LEVENDOWSKI, Daniel J. Real-Time Analysis of EEG Indexes of Alertness, Cognition, and Memory Acquired With a Wireless EEG Headset. International Journal of Human-Computer Interaction, v. 17, n. 2, p. 151-170, 2004. Disponível em: Acesso em: 10 set. 2017.