Ejercicio 3.16

• El resultado de la monitorización de la actividad de una aplicación informática (usando gprof bajo Linux) que está siendo ejecutada dentro de un servidor dedicado a streaming de vídeo se muestra a continuación. Como información adicional, el perfil de llamadas indica que todos los procedimientos son llamados únicamente desde el programa principal main (que solo se ejecuta una vez y cuyo tiempo propio de ejecución se puede despreciar), excepto ordena, que solo es llamado desde el procedimiento procesa.

% time	cumulative seconds	self seconds	calls	self ms/call	total ms/call	name
XX	XX	1,8	XX	225	225	ordena
XX	XX	XX	2	900	XX	procesa
XX	XX	1,4	4	350	350	invierte
XX	XX	XX	4	175	XX	almacena

a) Complete la información no disponible en la tabla (marcada como "xx"). ¿Cuánto tiempo de CPU consume la aplicación?

Paso 1: Intentamos obtener el Grafo de Llamadas

... todos los procedimientos son llamados únicamente desde el programa principal main (que solo se ejecuta una vez y cuyo tiempo propio de ejecución se puede despreciar), excepto ordena, que solo es llamado desde el procedimiento procesa.

0,225s

calls	self ms/call	total ms/call	name
XX	225	225	ordena
2	900	XX	procesa
4	350	350	invierte
4	175	XX	almacena

Paso 2: Empezamos a rellenar la tabla

$$self\ seconds = calls\ * \frac{self\ ms/call}{1000\ ms/s} \longrightarrow calls = \frac{self\ seconds}{\frac{self\ ms/call}{1000\ ms/s}}$$

% time	cumulative seconds	self seconds	calls	self ms/call	total ms/call	name
XX	XX	1,8	1,8/0,225 = 8	225	225	ordena
XX	XX	1,8	2	900	XX	procesa
XX	XX	1,4	4	350	350	invierte
XX	XX	0,7	4	175	XX	almacena

Paso 3: Ya podemos completar el Grafo de Llamadas

Paso 4: Continuamos rellenando la tabla: cumulative(s)

• Cumulative seconds de una función: La suma acumulada de los segundos consumidos (CPU) por el código propio de dicha función y por el de las funciones que aparecen encima de ella en la tabla.

% time	cumulative seconds	self seconds	calls	self ms/call	total ms/call	name
XX	1,8	1,8	8	225	225	ordena
XX	1,8+1,8=3,6	1,8	2	900	XX	procesa
XX	1,8+1,8+1,4 = 5,0	1,4	4	350	350	invierte
XX	1,8+1,8+1,4+0,7 = 5,7	0,7	4	175	XX	almacena

La aplicación consume 5,7s de CPU

Paso 5: Continuamos rellenando la tabla: %time

- % **time:** Tanto por ciento del tiempo total de CPU del programa que usa el código propio de la función(código propio es el que pertenece a la función y no a las funciones a las que llama).
 - En nuestro caso: tiempo total de CPU del programa = 5,7s.

% time	cumulative seconds	self seconds	calls	self ms/call	total ms/call	name
$\left(\frac{1,8}{5,7}\right) * 100 = 31,6$	1,8	1,8	8	225	225	ordena
$\left(\frac{1,8}{5,7}\right) * 100 = 31,6$	3,6	1,8	2	900	XX	procesa
$\left(\frac{1,4}{5,7}\right) * 100 = 24,6$	5,0	1,4	4	350	350	invierte
$\left(\frac{0,7}{5,7}\right) * 100 = 12,3$	5,7	0,7	4	175	XX	almacena

Paso 6: Acabamos la tabla: total ms/call

• Total s/call: tiempo (CPU) medio de ejecución de cada llamada a la función (contando tanto el tiempo del código propio como el de las funciones a las que llama).

• En nuestro caso, se expresa en ms en lugar de en segundos.

_	cumulative seconds	self seconds	calls	self ms/call	total ms/call	name
	1,8	1,8	8	225	225	ordena
	3,6	1,8	2	900	(1800)	procesa
	5,0	1,4	4	350	350	invierte
	5,7	0,7	4	175	175	almacena

$$\frac{total\ ms}{call}(procesa) = \frac{self\ ms}{call}(procesa) + 4*\frac{total\ ms}{call}(ordena) = 900ms + 4*225ms = 1800ms$$

Ejercicio 3.16, apartado b)

b) Determine la ganancia en velocidad (speedup) que se obtendría si reemplazamos el procedimiento ordena por otro 3 veces más rápido. Exprese esa ganancia en velocidad también como tanto por ciento de mejora.

$$S = \frac{vm}{vo} = \frac{To}{Tm} = \frac{5.7}{4.5} = 1.27$$

El % de mejora obtenido sería: (S - 1) * 100 = 27%

Otra forma (Ley de Amdahl):
$$S = \frac{1}{1 - f + \frac{f}{k}} = \frac{1}{1 - 0.316 + \frac{0.316}{3}} = 1.27$$