Jonah Okike-Hephzibah

☐ (310) 259-3522 • ☑ jo356@cornell.edu

Permanent Address: 5110 Crenshaw Blvd. Apt. 210, Los Angeles, CA 90043

Education

Cornell University | College of Engineering

B.S./M.Eng in Mechanical Engineering/ Dynamics, Controls and Robotics (3.8)

Ithaca, NY

Expected May/Dec 2018

Santa Monica College

Santa Monica, CA

Honors & STEM Curriculum

Aug 2012–*June* 2015

Related Coursework: Multivariable Control Theory; Feedback Control Systems; Embedded Operating Systems; Digital Systems Design using Microcontrollers; Machine Learning for Intelligent Systems; System Dynamics; Intermediate Dynamics & Vibrations; Advanced Dynamics; Mechatronics; Object-Oriented Programming and Data Structures; Assembly Programming

Technical Experience

Cyngn Menlo Park, CA

Vehicle Platform Intern

June 2018 – Aug 2018

o Intern at a stealth mode startup working on autonomous vehicles

Cornell Autonomous Systems Laboratory

Ithaca, NY

Independent Undergraduate Researcher and Intern (Principal Investigator: Hadass Kress-Gazit)

Feb. 2017 – Present

- o Collaborating with a PhD and postdoc student to interface collision avoidance via barrier certificates and path planning strategies for efficient navigation using Python
- o Developed a scalable controller for multiple robots to enable navigation of a swarm using Vicon Motion Systems as positional feedback
- o Interfaced an ESP8266 Microcontroller with Hexbugs to enable wireless communication using the Arduino IDE

Cornell University, Department of Mechanical & Aerospace Engineering

Ithaca, NY

Graduate Teaching Assistant - Mechatronics

Aug 2018 – Dec 2018

o Worked as a lab TA with analog circuits and microcontrollers and helped students debug their robots for the courses final competition

Cornell Hyperloop

Ithaca, NY

Electrical Sub-Team Member

Sep 2016 – *June* 2017

- o Researched & selected the linear actuators for pod induction breaking subsystem
- o Advanced straight to third stage of SpaceX Hyperloop Pod Competition in Spring 2017 based on innovation in Fall 2016

Cornell Cup Robotics

Ithaca, NY

Mechanical Modular Robot Sub-Team Member

Sep 2015 - Dec 2016

- o Built a Java interface to allow for virtual communication methods with the modular robot. This also gave control of the robot to the user
- o Implemented and tuned a PID controller using MATLAB and converted algorithm into C#
- o Calculated necessary motor requirements based on estimate of bot weight and performance metrics to optimize motor selection

UCLA, The Mechatronics and Controls Laboratory

Los Angeles, CA

Summer Undergraduate Student Researcher (400+Hours)

Jun 2015 – *Aug* 2015

- o Designed MRI compatible robotic arm for biopsy using SolidWorks
- o Utilized a 3D printer to produce the individual parts
- o Implemented a PID controller using LabVIEW, interfaced through myRIO

Projects

Robotic Arm Simulation | MAE 5710 Applied Dynamics

o Simulated an N-link robotic arm for waypoint navigation using inverse kinematics

Robust Control of a Bi-Copter | MAE 6780 Multivariable Controls

o Created a model of a bi-copter in simulink to implement a sliding mode controller. The controller was intended to reject environmental disturbances as well as follow waypoints that are fed in from a path planning algorithm.

Nerf Gun Cannon | ECE 5725 Embedded Operating Systems

o Used opency to implement stereo vision with two web cameras on a Raspberry Pi in order to determine global coordinates of a target.

This data was fed into an inverse kinematics model to determine necessary pitch and yaw to orient the gun to hit the target. **Real Time Pressure Mapping of a Hand for Startup (OrthoFit)** | ECE 4760 Digital Systems Design using Microcontrollers

o Designed and programmed a glove that mapped the pressure applied on the hand in real time to a locally hosted website for visualization. Stabilization of an Inverted Pendulum on a Cart | MAE 5780 Feedback Control Systems

o Stabilized the linearized dynamical model of an inverted pendulum using control concepts and applied controller to a physical system

The N-Link Pendulum | MAE 4730 Intermediate Dynamics and Vibrations

o Implemented an N-Link Pendulum deriver and animator using three different numerical approaches in MATLAB.

Skills & Interests

Technical: MATLAB, Simulink, LabVIEW, Java, Python, Linux, C++, C, Git, Microcontrollers, PID, LQR, CAN Bus

Extracurricular: Shake Ultimate Club Frisbee team, Theta Tau Engineering Fraternity, DREAM Team.