from sklearn.preprocessing import StandardScaler
<pre>from sklearn.metrics import accuracy_score, classification_report, confusion_matrix data = pd.read_csv('Social_Network_Ads (2).csv') data.head() User ID Gender Age EstimatedSalary Purchased 0 15624510 Male 19 19000 0</pre>
1 15810944 Male 35 20000 0 2 15668575 Female 26 43000 0 3 15603246 Female 27 57000 0 4 15804002 Male 19 76000 0
User ID Gender Age EstimatedSalary Purchased 395 15691863 Female 46 41000 1 396 15706071 Male 51 23000 1 397 15654296 Female 50 20000 1 398 15755018 Male 36 33000 0
399 15594041 Female 49 36000 1 data.describe() User ID Age EstimatedSalary Purchased count 4.000000e+02 400.000000 400.000000
mean 1.569154e+07 37.655000 69742.500000 0.357500 std 7.165832e+04 10.482877 34096.960282 0.479864 min 1.556669e+07 18.000000 15000.000000 0.000000 25% 1.562676e+07 29.750000 43000.000000 0.000000 50% 1.569434e+07 37.000000 70000.000000 0.0000000
75% 1.575036e+07 46.000000 88000.000000 1.000000 max 1.581524e+07 60.000000 150000.000000 1.000000 data.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 400 entries, 0 to 399 Data columns (total 5 columns):</class>
User ID 400 non-null int64 Gender 400 non-null object Age 400 non-null int64 EstimatedSalary 400 non-null int64 Purchased 400 non-null int64 dtypes: int64(4), object(1) memory usage: 14.1+ KB sns.countplot(data['Purchased']) plt.show()
250 - 200 - 150 -
df = pd.get dummies(data['Gender'], drop first=True)
<pre>dataframe = pd.concat([data,df],axis=1) dataframe.drop(columns='Gender',inplace=True) dataframe.head()</pre>
O 15624510 19 19000 0 1 1 15810944 35 20000 0 1 2 15668575 26 43000 0 0 3 15603246 27 57000 0 0 4 15804002 19 76000 0 1
<pre>x = dataframe.drop(columns=['User ID','Purchased']) y = dataframe['Purchased'] x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=42,stratify=y,train_size=0.80) x_train.shape,x_test.shape</pre>
<pre>((320, 3), (80, 3)) scaler = StandardScaler() X_train = scaler.fit_transform(x_train) X_test = scaler.transform(x_test) classifier = KNeighborsClassifier(n_neighbors=5) classifier = fit (Y_train_n_text_n)</pre>
<pre>classifier.fit(X_train,y_train) y_pred = classifier.predict(X_test) print('Accuracy :',accuracy_score(y_test,y_pred)) Accuracy : 0.9 y_pred = classifier.predict(X_test) mat = confusion_matrix(y_test,y_pred) mat = confusion_matrix(y_test,y_pred)</pre>
<pre>array([[46, 5],</pre>
- 40 - 32 - 24 - 16
print(classification_report(y_test,y_pred)) precision recall f1-score support
0 0.94 0.90 0.92 51 1 0.84 0.90 0.87 29 accuracy 0.90 80 macro avg 0.89 0.90 0.89 80 weighted avg 0.90 0.90 0.90 80 Optimal K value finding.
<pre>k_range = range(1,50) score = [] for k in k_range: knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) y_pred=knn.predict(X_test) score.append(accuracy_score(y_test, y_pred)) np.array(score).max()</pre>
0.88 - 0.86 - 0.84 - 0.82 -
<pre>score = [] k_neibour = list(range(1,50,2)) for i in k_neibour: knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train,y_train)</pre>
<pre>knn.fit(X_train,y_train) knn.predict(X_test) y_predict = knn.predict(X_test) score.append(accuracy_score(y_test,y_predict)) np.array(score).max() 0.9125</pre>
<pre>knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train,y_train) knn.predict(X_test) y_predict = knn.predict(X_test) print('Accuarcy score :-',accuracy_score(y_test,y_predict))</pre>
<pre>Accuarcy score :- 0.9 Generating the model k=8 knn = KNeighborsClassifier(n_neighbors=8) knn.fit(X_train,y_train) knn.predict(X_test) y_predict = knn.predict(X_test)</pre>
Print ('Accuarcy score :-', accuracy_score (y_test, y_predict)) Accuarcy score :- 0.9 From the above we can see the as we increase the k value our accuracy getting increase. Here, we have increased the number of neighbours in the model and accuracy got increased. But, this is not necessary for each case that an increase in many neighbours increases the accuracy.
 The training phase of the k-nearest neighbor classification algorithms. There is no need to the train the model for generalization. That is why KNN is known as the simple and instance-based learning algorithm. KNN can useful in the case of non-linear data. It can be used with the Regression problem. Output value for object is computed by the average of k closest neighbors value. The testing phase of k-nearest neighbors classification is slower and costlier in the term of time and memory. It requires large memory for storing the entire training dataset for prediction. KNN requires scalling of the data because KNN uses the Euclidean distance between two data points to find the nearest neighbors. Euclidean distance is sensitive to magnitudes. The features with high magnitudes will weight
more the features than the features with low magnitudes. KNN is also not suitable for large dimensional data. To improve the KNN model accuracy we need Standardscaling while Classification and Regression. Parameter tunning with Cross-Validation. from IPython.display import Image Image (filename='C:/Users/Microsoft/Desktop/pandas/cv_knn.png')
0.13
0.11 - E 0.10 - E 0.09 - E 0.0
0.10 -
0.05 0.04 0.04 0 10 20 30 40 50
Number of Neighbors K Parameter tunning with Cross-Validation. It will help to get the best value of nearest neighbour (K) • During this method, as we will increase the number of neighbours (k) That we should have to take care of the errors.
So,need to select such value of K at which we will optimum error. The best K is the one that corresponds to the lowest test error rate, so let's suppose we carry out the repeated measurements of the test error for the diffrent values of K. Inadvertently, what we are doing is using the test set as a training set!. This means that we are underestimating the true error rate since our model has been force to fit test set in best possible manner. Our model is then incapable in generalizing to newer observations, a process known as overfitting.
 Hence, touching the test set is out of the question and must only be done at the very end of our pipeline. Using the test set for hyperparameter tunning can lead to overfitting. An alternative and smarter approach involves estinating the test error by holding out a subset of the training set from the fitting process. This subset called as validation set, can be used to select the appropriate level of flexibility of our algorithm!.
 There are the diffrent validation approaches that are used in practice, and we will be exploring one of the more popular once called as k-fold cross validation. from IPython.display import Image Image (filename='C:/Users/Microsoft/Desktop/pandas/kfolds.png')
Validation Training Fold Fold 1st Performance 1
Performance 2 Performance 2 Performance 3 Performance 4 Performance 4 Performance 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 Explination with Working Principle:- We our data into the many sunsets.we take one subset for validation and rest of the sunsets used as training data. Let's supose we having the cv=10 If we have ten cross validation then devide the data into then ten similar parts and we take one part for validations and other 9 part for
 taken as training datasets. For the 2nd time we will take the 2nd subset for cross-validation and rest of the 9 subset taken as training datasets. Simailary it goes upto 10 times.then we will calculate mean accuracy and other accuracy metrics to found out the performance of our model. Cross validation can be used to estimate the test error associated with a learning method in order to evaluate it's performance or to select the appropriate level of flexibility.
<pre>scaler = StandardScaler() x_scalled =scaler.fit_transform(x) from sklearn.model_selection import cross_val_score neibours = list(range(1,50,2)) cv_score =[]</pre>
<pre>for k in neibours: knn = KNeighborsClassifier(n_neighbors=k) scores = cross_val_score(knn,x_scalled,y,cv=10,scoring='accuracy') cv_score.append(scores.mean()) cv_score [0.85750000000000002, 0.8975,</pre>
<pre>0.9075, 0.905, 0.905, 0.9099999999999, 0.905, 0.892500000000001, 0.882500000000001, 0.877500000000001, 0.88000000000001, 0.8875,</pre>
0.8700000000000000000000000000000000000
 0.8175000000000001, 0.81749999999999, 0.8125] Now we want to calculate the RMS(Root Mean Square) for each CV Score. This is nothing but the 1-[cv_scores.]
MSE [0.1424999999999985, 0.1025000000000004, 0.0925000000000003, 0.094999999999997, 0.094999999999997,
0.090000000000000000000000000000000000
<pre>0.150000000000002, 0.155000000000003, 0.15750000000000008, 0.1550000000000003, 0.16249999999999, 0.1725, 0.1700000000000015, 0.18249999999998, 0.1825000000000001, 0.1875]</pre>
<pre>optimal_k = neibours[(MSE.index(min(MSE)))] optimal_k 11 plt.plot(neibours, MSE) plt.xlabel('Number of K')</pre>
0.12 - 0.10 - 0.1
<pre>0 10 20 30 40 50 Number of K scaler = StandardScaler() x_scalled = scaler.fit_transform(x) n = list(range(1,50)) cv_sc = [] for i in n:</pre>
<pre>for i in n: knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train,y_train) sco = cross_val_score(knn,x_scalled,y,cv=10,scoring='accuracy') cv_sc.append(sco.mean()) cv_sc [0.857500000000000002, 0.845,</pre>
0.845, 0.8975, 0.8899999999999, 0.9075, 0.90249999999999, 0.905, 0.89999999999999, 0.905, 0.9099999999999, 0.909999999999, 0.90999999999,
<pre>0.9075, 0.905, 0.8925000000000001, 0.892500000000001, 0.882500000000001, 0.882500000000001, 0.88000000000001, 0.88000000000001, 0.8877500000000001, 0.880000000000001, 0.880000000000001, 0.880000000000001, 0.880000000000001,</pre>
0.87000000000001, 0.875, 0.8700000000000001,
0.87000000000001, 0.8625, 0.86, 0.857500000000002, 0.85500000000001, 0.85, 0.85,
0.8625, 0.86, 0.857500000000002, 0.855000000000001, 0.85,
0.8625, 0.86, 0.85750000000000001, 0.85, 0.845, 0.840000000000001, 0.845, 0.84249999999999, 0.84249999999999, 0.84249999999999, 0.8425, 0.835, 0.8375, 0.82749999999999, 0.8275, 0.8299999999999, 0.8275, 0.8299999999999, 0.8125, 0.81749999999999, 0.815000000000001, 0.822, 0.817499999999999, 0.8150000000000001, 0.825,
0.8625, 0.86, 0.85750000000000000000000000000000000000
0.8625, 0.867, 0.8575000000000000000001, 0.855, 0.850000000000000001, 0.85, 0.840000000000000001, 0.843, 0.843, 0.843, 0.843, 0.843, 0.843, 0.833, 0.833, 0.8375, 0.827499999999999, 0.82749999999999, 0.827499999999999, 0.827499999999999, 0.8274999999999999, 0.827499999999999, 0.827499999999999, 0.827499999999999, 0.827499999999999, 0.827499999999999, 0.827499999999999, 0.82749999999999, 0.827499999999999, 0.827499999999999, 0.827499999999999, 0.827499999999999, 0.827499999999999, 0.827499999999999, 0.827499999999999, 0.827499999999999, 0.827499999999999, 0.82749999999999, 0.82749999999999, 0.82749999999999, 0.92749999999999, 0.92749999999999, 0.92749999999999, 0.92749999999999, 0.92749999999999, 0.92749999999999, 0.92749999999999, 0.92749999999999, 0.9274999999999, 0.92749999999999, 0.92749999999999, 0.92749999999999, 0.92749999999999, 0.92749999999999, 0.92749999999999, 0.9274999999999, 0.92749999999999, 0.92749999999999, 0.92749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.907499999999999, 0.907499999999999, 0.90749999999999999, 0.90749999999999999, 0.907499999999999, 0.907499999999999, 0.907499999999999, 0.907499999999999, 0.907499999999999, 0.90749999999999, 0.907499999999999, 0.907499999999999, 0.907499999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.90749999999999, 0.907499999999999, 0.90749999999999999, 0.90749999999999999999, 0.9074999999999999999, 0.9074999999999999, 0.90749999999999, 0.907499999999999, 0.907499999999999999999999999999, 0.90749999999999999999999999999999999999
U.8625, U.875000000000000000000000000000000000000
0.9625, 0.86, 0.87500000000000000000000000000000000000
1.0.18.5. 1.0.18
1.
Lists
Description