

PHYS143

Physics for Engineers Tutorial - Chapter 24

Question 1

A flat surface of area 3.20 m^2 is rotated in a uniform electric field of magnitude $E = 6.20 \times 10^5 \text{ N/C}$. Determine the electric flux through this area (a) when the electric field is perpendicular to the surface and (b) when the electric field is parallel to the surface.

Question 2

Consider a thin, spherical shell of radius 14.0 cm with a total charge of 32.0 μ C distributed uniformly on its surface. Find the electric field (a) 10.0 cm and (b) 20.0 cm from the center of the charge distribution.

Question 3

A solid sphere of radius 40.0 cm has a total positive charge of 26.0 μ C uniformly distributed throughout its volume. Calculate the magnitude of the electric field (a) 0 cm, (b) 10.0 cm, (c) 40.0 cm, and (d) 60.0 cm from the center of the sphere.

Ouestion 4

A long, straight metal rod has a radius of 5.00 cm and a charge per unit length of 30.0 nC/m. Find the electric field (a) 3.00 cm, (b) 10.0 cm, and (c) 100 cm from the axis of the rod, where distances are measured perpendicular to the rod's axis.

Question 5

A square plate of copper with 50.0-cm sides has no net charge and is placed in a region of uniform electric field of 80.0 kN/C directed perpendicularly to the plate. Find (a) the charge density of each face of the plate and (b) the total charge on each face.

Question 6

A solid conducting sphere of radius 2.00 cm has a charge of 8.00 μ C. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm, which is concentric with the solid sphere with a charge of -4.00 μ C. Assume both conductors are in an electrostatic equilibrium. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.

Dr. Obada Al Khatib