

VFD Motor Control Introduction

Mackenzie Miller Andrew Nguyen Aidan Rader Ryan Regan

Overview

Problem Statement: A motor control system is needed for an AC induction motor. Traditional motor control systems cannot adjust to varying load demands, resulting in poor energy efficiency, excessive heat generation, and premature component failure.

Solution Proposal: Develop a Variable Frequency Drive (VFD) motor control system to adjust frequency and voltage to load demands, resulting in improved motor controllability, optimized energy efficiency, enhanced safety, and extended component lifespan.

System Overview

System Overview

Task Partition

- Mackenzie: Design optoelectronic circuit, tachometer, and voltage and current monitoring circuit. Optoelectronics makes the analog and digital sides communicate via light so they do not touch.
- Andrew: Design PCB for the MCU, MCU will send PWM signals to power control system to control the frequency of VFD, step down voltage to a usable 3.3V,take inputs from a user and output the frequency needed for the task
- Aidan: Design PCB with rectifier to convert AC to DC, DC link circuit to filter DC, and power control to convert DC to AC.
- Ryan: Design and write all firmware necessary for microcontroller and any other systems; create a user interface to make controlling and monitoring the system more straightforward

Subsystem progress in past 1.5 months

- Mackenzie: Researched materials and concepts, almost completed subsystem introduction project, and started schematic design
- Andrew: Researched needed materials, almost completed subsystem introduction, began creating schematics for my PCB
- Aidan: Researched concepts and components, started subsystem introduction project (SIP, steps 1-4), completed schematic design (SIP, steps 1-3)
- Ryan: Researched and outlined main firmware for VFD, designed GUI for user interface

		E	(excu	ion Pl	an 8/2	20/202	24-12/	5/202	24								
	8/20	8/27	9/3	9/10	9/17	9/24	10/1	10/8	10/15	10/22	10/29	11/5	11/12	11/19	11/26	12/3	Date
CONOPS Report																	9/15
FSR, ICD, Milestones, & Validation Plan													Not Started			9/26	
Project Introduction Presentation													In Progress			9/30	
Schematic Layout													Completed			9/30	
Subsystem Introduction Project													Behind Schedule			10/7	
Order Parts																	10/8
Firmware Code																	10/14
PCB Layout																	10/14
Order PCBs																	10/15
Project Update Presentation																	10/21
Firmware Validation/Debugging w/ Dev Board																	10/28
PCB Assembly																	11/5
Final Presentation																	11/18
PCB & Firmware Validation/Debugging																	11/26
ProjectSubsystem Demonstration																	11/26
Final Report																	12/5

Validation plan

Paragraph#	Test Name	Success Criteria	Methodology	Status	Responsible Engineer(s)
3.2.1.1	Speed and Torque	Motor shall operate within speed range of ORPM to 1800RPM	In put motor with voltage and check if it achieves ORPM and Olb-ft . Repeat for	Untested	Andrew, Ryan
	Requirement	and torque range of Olb-ft to 0.729lb-ft.	300 RPM, 600 RPM, 90 0RPM, 1200RPM, 1500 RPM, 1800RPM.		
3.2.1.2	Frequency	System shall operate within frequency range of 5Hz to 60 Hz.	In put system with frequency generator set to 5Hz and check if the motor runs	Untested	All
	Requirement		smoothly. Repeat for 10Hz, 20Hz, 30Hz, 40Hz, 50Hz, 60Hz.		
3.2.1.3	Temperature	System shall operate within temperature range of 0 °C to 70 °C.	Place system in freezer set to 0°C and check if the motor runs smoothly. Repeat	Untested	All
	Requirement		with oven set to 70 °C.		
3.2.3.2	Input Voltage Level	System input voltage shall be 208V _{AC} .	Measure with mutlimeter and check if the voltage is 208V _{AC} .	Untested	Aidan
3.2.3.3	Input Noise and	System shall not exceed ripple range of 0 V to 0.165V.	Measure with mutlimeter and check if the voltage exceeds 0V to 0.165V.	Untested	Andrew
	Ripple				
3.2.3.4	External Commands	External commands shall be documented in appropriate ICD.	Show to teaching team and check with them for approval.	Untested	All
3.2.3.5	Visual Output	System shall display output measurements on GUI.	In put system with known values and check if the output measurements match.	Untested	Ryan
			Repeat for six additional sets of known values.		
3.2.3.6	Connectors	System shall use terminal blocks for power and signal	Observe power and signal connections and check if they are are terminal blocks.	Untested	Mackenzie,
		connections.			Andrew, Aidan
3.2.3.7	Overtemperature	System shall automatically shut down if sensor exceeds	Place sensor in freezer set to -1°C and check if sensor is triggered. Repeat with oven	Untested	Mackenzie
	Shutdown	temperature range of 0°C to 70°C.	set to 71°C.		
3.2.3.8	Built in Test	System shall generate and evaluate test signals to assess	Compare generated values with known values and check if the failure statuses	Untested	All
		failure status.	match. Repeat for six additional sets of values.		
TBD	Inputs	The parameters are within the expected range.	Confirm that all electrical parameters (voltage, current, power) remain within safe	Untested	All
			and expected ranges under varying conditions.		
TBD	Communication	Firmware is successfully uploaded, and system can	Verify that data transfer between the VFD controller and the PC is reliable and	Untested	Andrew, Ryan
	Testing	communicate to PC.	supports functions like setting parameters and uploading firmware.		
TBD	Controller	Motor spins according to user defined parameters.	Validate that the system operates efficiently and delivers accurate motor control	Untested	All
	Performance		across the expected range of operating conditions.		
TBD	MCU Voltage Step	MCU converts the voltage it is given to 3.3V.	Measure the voltage of the signals being sent to the MCU and measure that the MCU	Untested	Mackenzie,
	Down		converts it to 3.3V.		Andrew