Model Selection

Libraries

```
In []: #Importing Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

#import machine Learning Libraries
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

DataSet

```
In [ ]: #import dataset

df = pd.read_csv('FlowersData.csv')
    df
```

Out[]:		sepal_length	sepal_width	petal_length	petal_width	flower_name
	0	5.1	3.5	1.4	0.2	hibiscus
	1	4.9	3.0	1.4	0.2	hibiscus
	2	4.7	3.2	1.3	0.2	hibiscus
	3	4.6	3.1	1.5	0.2	hibiscus
	4	5.0	3.6	1.4	0.2	hibiscus
	•••					
	145	6.7	3.0	5.2	2.3	lily
	146	6.3	2.5	5.0	1.9	lily
	147	6.5	3.0	5.2	2.0	lily
	148	6.2	3.4	5.4	2.3	lily
	149	5.9	3.0	5.1	1.8	lily

150 rows × 5 columns

Heads

```
In [ ]: #head
df.head()
```

Out[]:		sepal_length	sepal_width	petal_length	petal_width	flower_name
	0	5.1	3.5	1.4	0.2	hibiscus
	1	4.9	3.0	1.4	0.2	hibiscus
	2	4.7	3.2	1.3	0.2	hibiscus
	3	4.6	3.1	1.5	0.2	hibiscus
	4	5.0	3.6	1.4	0.2	hibiscus

_Doing Linear Regreesion on columns sepal_length and petal_length_

```
In [ ]: #Selecting two columns for Linear Regression
    df_lr=df[['sepal_length','petal_length']]
    df_lr.head()
```

Out[]: _		sepal_length	petal_length
	0	5.1	1.4
	1	4.9	1.4
	2	4.7	1.3
	3	4.6	1.5
	4	5.0	1.4

Checking for null values

No Null Values

Tackling with Outliers

```
In []: #detecting outliers in sepal_length with iqr method
    q1 = df_lr['sepal_length'].quantile(0.25)
    q3 = df_lr['sepal_length'].quantile(0.75)
    iqr = q3-q1
    df_lr=df_lr[(df_lr['sepal_length']>(q1-1.5*iqr)) & (df_lr['sepal_length']<(q1+1.5*iqr)

In []: #detecting outliers in petal_length with iqr method
    q1 = df_lr['petal_length'].quantile(0.25)
    q3 = df_lr['petal_length'].quantile(0.75)
    iqr = q3-q1
    df_lr=df_lr[(df_lr['petal_length']>(q1-1.5*iqr)) & (df_lr['petal_length']<(q1+1.5*iqr)</pre>
```

Boxplot

```
In [ ]: #boxplot for sepal_length
sns.boxplot(df_lr['sepal_length'])
```

c:\Users\AL Ghani Computer\anaconda3\lib\site-packages\seaborn_decorators.py:36: Fut
ureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the o
nly valid positional argument will be `data`, and passing other arguments without an
explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[]: <AxesSubplot:xlabel='sepal_length'>


```
In [ ]: #boxplot for petal_length
sns.boxplot(df_lr['petal_length'])
```

c:\Users\AL Ghani Computer\anaconda3\lib\site-packages\seaborn_decorators.py:36: Fut
ureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the o
nly valid positional argument will be `data`, and passing other arguments without an
explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[]: <AxesSubplot:xlabel='petal_length'>

Model Selection

Dependent & Independent

```
In [ ]: #selectiong dependent and independent variables
    x = df_lr['sepal_length']
    y = df_lr['petal_length']
```

Model Building

```
In []: #model building
  model=LinearRegression()
  #fitting the model
  model.fit(x.values.reshape(-1,1),y)
```

Out[]: LinearRegression()

Prediction

```
In []: #prediction
    model.predict([[22]])
    # 22 is the sepal Length and 36.53 is the predicted petal Length

Out[]: array([36.53174197])

In []: #sepal Length is entered by the user and predicted petal Length is obtained
    sepal_length=int(input("Enter the sepal length:"))
    print("The predicted petal length is :",model.predict([[sepal_length]]))
```

The predicted petal length is : [38.55609747]

```
In []: #finding accuracy of the model, we have to train and test data
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
    #In linear regression, the "random_state" parameter is used to set a seed for the rand
    # Setting the random_state to a specific value will ensure that the same train-test specific value will ensure the specific value
```

```
In []: #model building
model=LinearRegression()
#fitting the model
model.fit(x_train.values.reshape(-1,1),y_train)
#predicting the model
y_pred=model.predict(x_test.values.reshape(-1,1))
```

Scatterplot

```
In []: #scatterplot
   plt.scatter(x_test,y_test)
   plt.plot(x_test,y_pred,color='red')
   plt.xlabel('sepal_length')
   plt.ylabel('petal_length')
   plt.show()
```


As a straight line is obtained so our model is 100% accurate

Model Score

```
In [ ]: # Testing accuracy by model score
    model.score(x_test.values.reshape(-1,1),y_test)
    #In linear regression, the model.score() function is used to evaluate the accuracy of
```

```
# It value ranges from 0-1, if the value is one it means that the model is perfect # and if we obtain 0 or near to 0 values it means our model isn't much accurate.
```

Out[]: 0.7121393028038641

Mean Absolute Error

```
In []: #evauating the accuracy by MAE
    from sklearn.metrics import mean_absolute_error
    mean_absolute_error(y_test,y_pred)
    #MAE is the average of the absolute differences between the actual and predicted value
    # It is the easiest to understand, because it's the average error.
```

Out[]: 0.7255077424143427

Mean Squared Error

```
In []: #evaluating the accuracy by MSE

from sklearn.metrics import mean_squared_error

mean_squared_error(y_test,y_pred)

#MSE is the average of the squared differences between the actual and predicted values

# It's more popular than MAE, because MSE "punishes" larger errors, which tends to be
```

Out[]: 0.7811415783977846

Root Mean Squared Error

```
In []: #evaluating the accuracy by RMSE
    from sklearn.metrics import mean_squared_error
    np.sqrt(mean_squared_error(y_test,y_pred))
    #RMSE is the square root of the average of the squared differences between the actual
    # It's even more popular than MSE, because RMSE is interpretable in the "y" units.
```

Out[]: 0.8838221418349874

R2 Method

```
In [ ]: #evaluating the accuracy by R2(R Square)
    from sklearn.metrics import r2_score
    r2_score(y_test,y_pred)
    #R2 is the percentage of the response variable variation that is explained by a linear
    # It is also known as the coefficient of determination, or the coefficient of multiple
```

Out[]: 0.7121393028038641

Mean Absolute Percentage Error

```
In []: #evaluating the accuracy by MAPE
    def mean_absolute_percentage_error(y_test, y_pred):
        y_test, y_pred = np.array(y_test), np.array(y_pred)
        return np.mean(np.abs((y_test - y_pred) / y_test)) * 100
    mean_absolute_percentage_error(y_test,y_pred)
    #MAPE is the average of the absolute percentage differences between the actual and pre
    # It is the easiest to understand, because it's the average error.
```

Out[]: 30.05360038080669

F-Statistics

```
In []: #evauating accuracy by F statistics
    from sklearn.feature_selection import f_regression
        f_regression(x.values.reshape(-1,1),y)
    #F statistics is the ratio of the explained variation to the unexplained variation.
        # It is also known as the coefficient of determination, or the coefficient of multipl

Out[]: (array([353.26807637]), array([1.24551254e-39]))
```