第七章 Markov链

陈斌

Outline

- ① 基本定义
- 2 马尔可夫链的例子
- 3 独立增量过程
- 4 马尔可夫链中状态的分类

独立:
$$P(C \mid A) = P(C), P(AC) = P(A)P(C)$$

条件独立定义: $P(C \mid AB) = P(C \mid B), 称 A, C$ 关于B 条件独立条件乘法公式: $P(AC \mid B) = P(A \mid B) \cdot P(C \mid AB)$
条件独立判定准则:

条件独立
$$\Leftrightarrow P(AC \mid B) = P(A \mid B) \cdot P(C \mid B)$$
 设 $\{B_n, n \geq 1\}$ 两两不相容, $A, B_n \in \mathcal{F}$, 且 $A \subset \bigcup_{n=1}^{\infty} B_n$
$$P(B_n) > 0, \quad \text{则} P(A) = \sum_{n=1}^{\infty} P(AB_n) = \sum_{n=1}^{\infty} P(B_n) P(A \mid B_n)$$

$$\Pr \left\{ \xi_{n+2} = i_{n+2} \mid \xi_0 = i_0, \dots \xi_n = i_n \right\}$$

$$= \sum_{i_{n+1} \in I} \Pr \left\{ \xi_{n+1} = i_{n+1}, \xi_{n+2} = i_{n+2} \mid \xi_0 = i_0, \dots, \xi_n = i_n \right\}$$

$$= \sum_{i_{n+1} \in I} \Pr \left\{ \xi_{n+1} = i_{n+1} \mid \xi_0 = i_0, \dots, \xi_n = i_n \right\}$$

$$\times \Pr \left\{ \xi_{n+2} = i_{n+2} \mid \xi_0 = i_0, \dots, \xi_{n+1} = i_{n+1} \right\}$$

基本定义

Markov过程定义:已知现在,将来与过去无关。

定义: $\{\xi(t), t \in T\}$,若 $\forall t_1 < t_2 < \dots < t_m < t_{m+1} \in T$ 都有条件密度 $\xi_{t_{m+1}}|\xi_{t_1}, \dots \xi_{t_m}$ 和 $\xi_{t_{m+1}}|\xi_{t_m}$,而且

$$f(x_{m+1}|x_1, x_2, \dots x_m) = f(x_{m+1}|x_m) \tag{*}$$

则称 $\{\xi(t), t \in T\}$ 为Markov过程。

(*) 的等价形式:

$$\Pr\{\xi_{t_{m+1}} \in A | \xi_{t_1} = x_1, \dots \xi_{t_m} = x_m\} = \Pr\{\xi_{t_{m+1}} \in A | \xi_{t_m}\}$$

或

$$F(x_{m+1}|x_1, x_2, \cdots x_m) = F(x_{m+1}|x_m).$$

4□ > 4□ > 4 = > 4 = >

$\xi(t)$ 的有限维分布(密度)

$$f(x_1, x_2, \dots x_m) = f(x_m | x_1, \dots x_{m-1}) \cdot f(x_1, \dots x_{m-1})$$

$$= f(x_m | x_{m-1}) \cdot f(x_1, \dots x_{m-1})$$

$$\vdots$$

$$= f(x_m | x_{m-1}) \cdot f(x_{m-1} | x_{m-2}) \cdots f(x_2 | x_1) f(x_1)$$

Markov链定义:离散参数,离散状态Markov过程。

设
$$T = \{0, 1, \dots, n, \dots\}$$
, I 为状态空间。

随机序列 $\{\xi(n), n \geq 0\}$ 若满足

$$\forall i_0, \dots, i_{n+1} \in I$$
, $\text{ A } \Pr\{\xi_0 = i_0, \dots, \xi_n = i_n\} > 0 \text{ }$

$$\Pr\{\xi_{n+1} = i_{n+1} | \xi_0 = i_0, \dots \xi_n = i_n\} = \Pr\{\xi_{n+1} = i_{n+1} | \xi_n = i_n\}$$

则称 $\xi(n)$ 为Markov链。

条件独立定义: A, C 关于 B 条件独立, 若 P(A|BC) = P(A|B)

判定准则: $P(AC|B) = P(A|B) \cdot P(C|B)$

故由Markov链定义知, 在 $\xi_n = i_n$ 条件下, ξ_{n+1} 与 $(\xi_0, \dots \xi_{n-1})$ 独立. 故 ξ_{n+1} 与 $(\xi_0, \dots \xi_{n-1})$ 的任意子集独立。

例如: ξ_{n+1} 与 ξ_{n-1} 条件独立, i.e.,

$$\Pr\{\xi_{n+1} = i_{n+1} | \xi_{n-1} = i_{n-1}, \xi_n = i_n\} = \Pr\{\xi_{n+1} = i_{n+1} | \xi_n = i_n\}$$

$$\Pr\{\xi_{n+2} = i_{n+2} | \xi_0 = i_0, \dots \xi_n = i_n\} = \Pr\{\xi_{n+2} = i_{n+2} | \xi_n = i_n\}$$

Markov链定义:

$$\Pr\left\{\xi_{n+1} = i_{n+1} \mid \xi_0 = i_0, \dots \xi_n = i_n\right\} = \Pr\left\{\xi_{n+1} = i_{n+1} \mid \xi_n = i_n\right\}$$

进一步

$$\Pr\left\{\xi_{n+2} = i_{n+2} \mid \xi_0 = i_0, \dots \xi_n = i_n\right\} = \Pr\left\{\xi_{n+2} = i_{n+2} \mid \xi_n = i_n\right\}$$

如何证明?

证:

差
$$\stackrel{\stackrel{\triangle}{=}}{=} \sum_{i_{n+1} \in I} \Pr\{\xi_{n+2} = i_{n+2}, \xi_{n+1} = i_{n+1} | \xi_0 = i_0, \dots \xi_n = i_n\}$$

$$= \sum_{i_{n+1} \in I} \Pr\{\xi_{n+2} = i_{n+2} | \xi_0 = i_0, \dots \xi_{n+1} = i_{n+1}\}$$

$$\cdot \Pr\{\xi_{n+1} = i_{n+1} | \xi_0 = i_0, \dots \xi_n = i_n\}$$

$$= \sum_{i_{n+1} \in I} \Pr\{\xi_{n+2} = i_{n+2} | \xi_n = i_n, \xi_{n+1} = i_{n+1}\}$$

$$\cdot \Pr\{\xi_{n+1} = i_{n+1} | \xi_n = i_n\}$$

$$= \sum_{i_{n+1} \in I} \Pr\{\xi_{n+2} = i_{n+2}, \xi_{n+1} = i_{n+1} | \xi_n = i_n\}$$

$$\stackrel{\triangle}{=} \not\equiv$$

故递推得知(把握今天,成就土豪!)

$$\Pr\{\xi_{n+k} = i_{n+k} | \xi_0 = i_0, \dots \xi_n = i_n\} = \Pr\{\xi_{n+k} = i_{n+k} | \xi_n = i_n\}.$$

Markov链等价定义:

$$\forall i_0, \dots i_{n+1} \in I, \ j_0 < j_1 < \dots < j_{n+1},$$

$$\Pr\{\xi_{j_0} = i_0, \dots, \xi_{j_n} = i_n\} > 0$$

有 $\Pr\{\xi_{j_{n+1}}=i_{n+1}|\xi_{j_0}=i_0,\cdots\xi_{j_n}=i_n\}=\Pr\{\xi_{j_{n+1}}=i_{n+1}|\xi_{j_n}=i_n\}$ 如何证明定义等价?

Markov链等价定义:

$$\forall i_0, \dots i_{n+1} \in I, \ j_0 < j_1 < \dots < j_{n+1},$$

$$\Pr\{\xi_{j_0} = i_0, \dots \xi_{j_n} = i_n\} > 0$$

有
$$\Pr\{\xi_{j_{n+1}}=i_{n+1}|\xi_{j_0}=i_0,\dots\xi_{j_n}=i_n\}=\Pr\{\xi_{j_{n+1}}=i_{n+1}|\xi_{j_n}=i_n\}$$
 如何证明定义等价?

有限维分布 (密度)

$$\Pr\{\xi_0 = i_0, \dots \xi_n = i_n\}$$

$$= \Pr\{\xi_n = i_n | \xi_{n-1} = i_{n-1}\} \dots \Pr\{\xi_1 = i_1 | \xi_0 = i_0\} \cdot \Pr\{\xi_0 = i_0\}$$

可见一步转移概率 $p_{ij}(k) \triangleq \Pr\{\xi(k+1) = j | \xi(k) = i\}$ 至关重要! 显然

$$p_{ij}(k) \ge 0, \sum_{i \in I} p_{ij}(k) = 1, p_{ij}^{(1)}(k) \triangleq p_{ij}(k)$$

定义: 若 $p_{ij}(k)$ 不依赖于 k, 即 $p_{ij}(k) \equiv p_{ij}$, 从状态 i 转移到状态 j 的概率与 k 无关,称为齐次马尔科夫链。

齐次Markov链具有如下形式的一步转移概率矩阵

$$\mathbf{P} = \begin{pmatrix} p_{00} & p_{01} & p_{02} & \dots \\ p_{10} & p_{11} & p_{12} & \dots \\ \vdots & \vdots & \vdots & \dots \\ p_{i0} & p_{i1} & p_{i2} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

 $I = \{0, 1, \dots\}$ 状态空间 I有限 \Rightarrow 有限状态马氏链

$$\sum_{j \in I} p_{ij} = 1 \Leftrightarrow$$
每行的和为 1

m 步转移概率 $p_{ij}^{(m)}(n) \triangleq \Pr\{\xi(n+m) = j | \xi(n) = i\}$, 在时刻 n 状态为 i 的条件下,经过 m 步转移到状态 j 的概率。

显然

$$p_{ij}^{(m)}(n) \ge 0,$$

 $\sum_{j \in I} p_{ij}^{(m)}(n) = 1.$

m=1 时,一步转移概率,m=0 时, $p_{ij}^{(0)}(n) \triangleq \delta_{ij}$.

定理: (Chapman-Kolmogorov) C-K方程

$$p_{ij}^{(m+r)}(n) = \sum_{k \in I} p_{ik}^{(m)}(n) p_{kj}^{(r)}(n+m)$$

左: 时刻 n, 状态 $i \xrightarrow{m+r \to}$ 时刻 n+m+r, 状态 i.

右: 时刻 n, 状态 $i \xrightarrow{mb}$ 时刻 n+m,

状态 $k \xrightarrow{r_0}$ 时刻 n+m+r. 状态 i.

递归使用C-K方程,可由一步转移概率求出任意步转移概率。

证:

$$\begin{split} p_{ij}^{(m+r)}(n) &= & \Pr\{\xi(n+m+r) = j | \xi(n) = i\} \\ &\stackrel{\triangleq}{=} & \sum_{k \in I} \Pr\{\xi(n+m+r) = j, \xi(n+m) = k | \xi(n) = i\} \\ &\stackrel{\triangleq}{=} & \sum_{k \in I} \Pr\{\xi(n+m+r) = j | \xi(n+m) = k, \xi(n) = i\} \\ & \cdot \Pr\{\xi(n+m) = k | \xi(n) = i\} \\ &\stackrel{\stackrel{\square}{=}}{=} & \sum_{k \in I} \Pr\{\xi(n+m+r) = j | \xi(n+m) = k\} \\ & \cdot \Pr\{\xi(n+m) = k | \xi(n) = i\} \\ &= & \sum_{i \in I} p_{ik}^{(m)}(n) p_{kj}^{(r)}(n+m) \end{split}$$

养次:
$$p_{ij}^{(m+r)} = \sum\limits_{k \in I} p_{ik}^{(m)} p_{kj}^{(r)} \Leftrightarrow \mathbf{P}^{(m+r)} = \mathbf{P}^{(m)} \mathbf{P}^{(r)}$$

m 步转移概率矩阵 $\mathbf{P}^{(m)} = \mathbf{P}^m$

$$I = \{0, 1, \dots\}$$

 $\mathbf{P}^{(m)}$ 的第 i 行表示初始状态为 i 时, 经过 m 步后的概率分布。

$$\mathbf{P}^{m+r} = \mathbf{P}^m \cdot \mathbf{P}^r$$

矩阵乘法满足结合律。

由初始分布和一步转移概率可求出马氏链的有限维分布:

$$\begin{split} & \Pr\{\xi(n_1) = i_1, \dots, \xi(n_k) = i_k\} \quad 0 < n_1 < \dots < n_k \\ & \stackrel{\triangleq}{=} \quad \sum_{j \in I} \Pr\{\xi(0) = j, \xi(n_1) = i_1, \dots, \xi(n_k) = i_k\} \\ & \stackrel{\triangleq}{=} \quad \sum_{j \in I} \Pr\{\xi(n_k) = i_k | \xi(n_{k-1}) = i_{k-1}\} \dots \Pr\{\xi(n_2) = i_2 | \xi(n_1) = i_1\} \\ & \cdot \Pr\{\xi(0) = j\} \cdot \Pr\{\xi(n_1) = i_1 | \xi(0) = j\} \\ & \stackrel{\triangleq}{=} \quad \sum_{j \in I} p_{i_{k-1}i_k}^{(n_k - n_{k-1})} \dots p_{i_1i_2}^{(n_2 - n_1)} p_{ji_1}^{(n_1)} \cdot \Pr\{\xi(0) = j\} \end{split}$$

例1: 无限制随机游动(不可停留)

p: 右移一个单位概率; 1-p=q: 左移一个单位概率。

若 $\xi(n) = i$, 则 $\xi(n+1)$ 的取值与 ξ_0, \dots, ξ_{n-1} 无关, 故为马氏

链 (齐次)。状态空间 $I = \{0, \pm 1, \pm 2, \dots\}$

一步转移概率
$$\begin{cases} p_{i,i+1} = p \\ p_{i,i-1} = q \\ p_{ij} = 0, \ j \neq i \pm 1 \end{cases}$$

$$\begin{pmatrix} \dots \\ \dots & 0 \quad q \quad 0 \quad p \quad 0 \quad \dots \\ \dots & 0 \quad q \quad 0 \quad p \quad 0 \quad \dots \\ \dots & \dots & \dots \end{pmatrix}$$

n 步转移概率

Stirling公式:
$$n! \approx (\frac{n}{e})^n \sqrt{2\pi n}$$
, $p_{ii}^{(2n)} \approx \frac{(4pq)^n}{\sqrt{\pi n}}$

例2: 无限制随机游动 p+q+r=1 (可停留), $r=0 \Rightarrow \emptyset$ 1

p: 右移 q: 左移 r: 原地不动。 $\xi(n)$ 是一个马氏链。

一步转移概率 $\begin{cases} p_{i,i+1} = p & p_{ii} = r \\ p_{i,i-1} = q & p_{ij} = 0 \end{cases}$ $j \neq i, i \pm 1$

n 步转移概率 $p_{ij}^{(n)} = ?$

$$\begin{cases} a = \frac{n - m + j - i}{2} \\ b = \frac{n - m - j + i}{2} \end{cases} m \text{ π $^{\text{\text{$$}}$}$ m π $^{\text{\text{$$}}$}$ m π $^{\text{\text{$$}}$}$ -!$$

$$\begin{array}{ll} p_{ij}^{(n)} & = \sum\limits_{\stackrel{\scriptstyle 0 \, \leq \, m \, \leq \, n \, - \, |j \, - \, i|}{n \, - \, m \, + \, j \, - \, i}} \binom{n}{m} \binom{n \, - \, m}{m} p^{\frac{n - m + j - i}{2}} \cdot r^m \cdot q^{\frac{n - m - j + i}{2}} \\ & = \sum\limits_{\stackrel{\scriptstyle n \, - \, m \, + \, j \, - \, i}{a \, , \, b \, , \, m \, > \, 0}} \binom{n}{a \, , \, b \, , \, m} p^a q^b r^m. \qquad \sharp \, \psi \left(\begin{array}{c} n \\ a \, , \, b \, , \, m \end{array} \right) \triangleq \frac{n!}{a!b!m!} \end{array}$$

例3: 带一个吸收壁的随机游动, p: 右移 q: 左移 r: 原地不动。 $\xi(n), n = 0, 1, \ldots,$ 状态空间 $I = \{0, 1, \ldots\}, 0$ 状态为吸收态, i.e., $p_{00} = 1$. 齐次马氏链。

一步转移概率
$$\begin{cases} p_{i,i+1} = p, \ p_{i,i-1} = q, \ p_{ii} = r, \ i \ge 1 \\ p_{00} = 1, \ p_{0j} = 0, \ j \ge 1 \\ p_{ij} = 0, \ \texttt{其它}(\text{i.e.}, \ i \ge 1 \ \texttt{且} \ j \ne i, i \pm 1) \end{cases}$$

 $p_{ii} = 1 \Leftrightarrow i$ 为吸收态。

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ q & r & p & 0 & \dots \\ 0 & q & r & p & \vdots \\ \vdots & \vdots & \vdots & \vdots & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

例4:两个吸收壁:

$$\xi(n), n = 0, 1, ..., I = \{0, 1, ..., a\}, 0, a$$
 为吸收态。

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ q & r & p & 0 & \dots & 0 & 0 & 0 \\ 0 & q & r & p & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & q & r & p \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}_{(a+1)*(a+1)}$$

有限状态, P: (a+1)*(a+1) 矩阵。

例5: 带一个反射壁 $\xi(n), I = \{0, 1, ...\}$

- (1) 反射壁在 $-\frac{1}{2}$ 处,p+q=1, i.e., 质点进入0状态后,下一步以 p 概率右移,q 概率停留。
- (2) 反射壁在0处, i.e., 质点进入0状态后, 下一步必右移。

例6: 带两个反射壁 $I = \{0, 1, \dots, a\}$ 有限状态, **P** 有限。

(1) 反射壁在 $-\frac{1}{2}$, $a + \frac{1}{2}$ 处, p + q = 1.

$$\mathbf{P} = \begin{pmatrix} q & p & 0 & \dots & 0 & 0 & 0 \\ q & 0 & p & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & q & 0 & p \\ 0 & 0 & 0 & \dots & 0 & q & p \end{pmatrix}$$

(2) 反射壁在 0, a 处, $p+q+r=1^{1}$

$$\mathbf{P} = \begin{pmatrix} r & 1-r & 0 & \dots & 0 & 0 & 0 \\ q & r & p & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & q & r & p \\ 0 & 0 & 0 & \dots & 0 & 1-r & r \end{pmatrix}$$

例7:赌徒输光问题

甲、乙赌博,甲获胜概率 p, 贏1元;翰掉概率 q, 输1元。平局概率 r, 不输不赢。p+q+r=1. 甲有 a 元,乙有 b 元,a+b=c, 赌至一方输光为止。求甲输光的概率。

¹注:可停留,r=0,可退化成例5(2)

解: $I = \{0,1,\ldots,c\}$, 带两个吸收壁的随机游动,0,c 吸收态。求质点从 a 出发被 0 吸收的概率。

记 u_j : 从j 出发到达0状态先于到达c状态的概率,则

$$u_j = {}^2u_{j+1} \cdot p + u_{j-1} \cdot q + u_j \cdot r = u_{j+1}p + u_{j-1}(1-p-r) + u_jr$$

全概率的含义: 1. 甲接下去赢了一局(概率p),处于状态j+1后再输光; 2.甲接下去输了一局(概率q),处于状态j-1 后再输光; 3甲接下去打平(概率r)这三个事件的和事件的概率 \Leftrightarrow $(1-p-r)(u_j-u_{j-1})=p(u_{j+1}-u_j)$ 等比数列, $u_0=1,\ u_c=0.$ 故

$$u_j - u_{j+1} = \frac{1 - p - r}{p} (u_{j-1} - u_j) = (\frac{1 - p - r}{p})^j (1 - u_1)$$

$$\Rightarrow u_k = \sum_{j=k}^{c-1} (u_j - u_{j+1}) = (1 - u_1) \sum_{j=k}^{c-1} (\frac{1 - p - r}{p})^j,$$

令 $d \triangleq \frac{1-p-r}{p}$, d = 1时, $k = 0 \Rightarrow u_1 = 1 - 1/c \Rightarrow u_a = \frac{b}{c}$

$$d \neq 1, k = 0 \Rightarrow u_1 = \frac{d - d^c}{1 - d^c} \Rightarrow u_a = \frac{d^a - d^c}{1 - d^c}$$

4 □ ト 4 圖 ト 4 필 ト 3 里 り 4 ○ 9

第七章 Markoy链

 $^{^{2}}P(A) = \sum P(B_n) P(A \mid B_n)$

基本定义 马尔可夫链的例子 独立增量过程 马尔可夫链中状态的

例8: 艾伦菲斯特模型

袋中有 2a 个球,两种颜色:红与黑

过程: 随机摸出一个球, 换入另一颜色的球。

 $\xi(n)$: n 次模换后袋中的黑球数目。 $\xi(0)$: 初始分布

 $I = \{0, 1, \dots, 2a\}$, 带两个反射壁;

$$i
ightarrow \left\{ egin{array}{ll} i+1 & rac{2a-i}{2a} = p_{i,i+1} &$$
齐次马氏链 $i-1 & rac{i}{2a} = p_{i,i-1} &$ 一次转移概率

时刻 $n \rightarrow$ 时刻 n+1.

基本定义 马尔可夫链的例子 独立增量过程 马尔可夫链中状态

例8: 艾伦菲斯特模型

袋中有 2a 个球, 两种颜色: 红与黑

过程: 随机模出一个球, 换入另一颜色的球。

 $\xi(n)$: n 次摸换后袋中的黑球数目。 $\xi(0)$: 初始分布

 $I = \{0, 1, \dots, 2a\}$, 带两个反射壁;

$$i \rightarrow \begin{cases} i+1 & \frac{2a-i}{2a} = p_{i,i+1} \\ i-1 & \frac{i}{2a} = p_{i,i-1} \end{cases}$$
 齐次马氏链 一次转移概率 計刻 $n \rightarrow$ 計刻 $n+1$

变形*: $I = \{0, 1, \dots, 2a\} \rightarrow I = \{-a, -a+1, \dots, 0, 1, \dots, a\}$ 描述粒子通过薄膜进行扩散的数学模型。艾伦菲斯特首次用该模型研 究气体分子运动。-a, a 可看做反射壁。单位时间只有一个粒子运动。 $\xi(n)$: n次后右部分粒子个数与a之差. 如-a表示全部粒子都转移到了左边; (具体转移概率见教材P53)

$$\left\{ \begin{array}{l} p_{i,i+1} = \frac{1}{2}(1-\frac{i}{a}) \\ p_{i,i-1} = \frac{1}{2}(1+\frac{i}{a}) - a + 1 \leq i \leq a - 1 \\ p_{a,a-1} = 1, \ p_{-a,-a+1} = 1, \ p_{ij} = 0 \ \mbox{\sharp} \ \mbox{$\rlap{\rlap{$:}}$} \end{array} \right.$$

例9: Polya模型

袋中有 b 只黑球, r 只红球 (初始分布)

过程: 随机摸出一个球, 放回并加入 c 只同色球。

 $\xi(n)$: n 次后的黑球数目

$$I = \{0, 1, 2, \dots\} \quad b, b + c, \dots$$

$$\Pr\{\xi_{n+1} = j | \xi_n = i\} = \begin{cases} \frac{i}{b+r+nc} & j = i+c \to 摸出黑球概率\\ 1 - \frac{i}{b+r+nc} & j = i\\ 0 & \end{cases}$$

 $p_{ij}(n)$ 与 n 有关, 非齐次马氏链。

例10: 离散分枝过程(生灭过程)

考察生物群体,每个个体可产生下一代个体 η 个, η 随机, η 的密度 为 $\Pr\{\eta=k\}=p_k,\,k=0,1,\ldots$, 各个体独立。令 $\xi(n)$ 为第 n 代中的个体总数目,显然

$$\xi(n+1) = \eta_1 + \eta_2 + \dots + \eta_{\xi(n)}$$
, 设初始分布 $\xi(0) \equiv 1$.

 η_i 独立同 η 分布随机变量,且如果知道 $\xi(n)$,则 $\xi(n+1)$ 完全确定,是马尔可夫链

 $\xi(n+1)$ 的分布与 η 有何关系?

例10: 离散分枝过程(生灭过程)

考察生物群体,每个个体可产生下一代个体 η 个, η 随机, η 的密度 为 $\Pr\{\eta = k\} = p_k, k = 0, 1, ...,$ 各个体独立。令 $\xi(n)$ 为第 n 代中的 个体总数目,显然

 η_i 独立同 η 分布随机变量,且如果知道 $\xi(n)$,则 $\xi(n+1)$ 完全确定,是 马尔可夫链

 $\xi(n+1)$ 的分布与 n 有何关系?

随机变量之和应使用母函数(特征函数)来研究。

随机变量和
$$\begin{cases} X_1 + X_2 + \dots + X_k \sim F_1(s) \cdot F_2(s) \dots F_k(s) \\ Y_1 + Y_2 + \dots + Y_z \sim G[F(s)] \end{cases}$$

 Y_i 独立同分布 $\sim F(s)$. $Z \sim G(s)$

故设 $n \sim F(s)$, 则 $\xi(n)$ 的母函数

$$G(s) = F(F(\ldots F(s)\ldots)) = F^{(n)}(s).$$

完全决定了 $\xi(n)$ 的分布!

例11: 天气预报,两状态: A(有雨), B(无雨); 假定Markov

一步:
$$\mathbf{P} = \begin{pmatrix} \alpha & 1-\alpha \\ \beta & 1-\beta \end{pmatrix}$$
两步: $\mathbf{P}^2 = \begin{pmatrix} \alpha^2 + (1-\alpha)\beta & (1-\alpha)(1+\alpha-\beta) \\ (1+\alpha-\beta)\beta & \beta(1-\alpha) + (1-\beta)^2 \end{pmatrix}$
今日有雨,明日有雨概率为 α
今日有雨,后日无雨概率为 $(1-\alpha)(1+\alpha-\beta)$
设 $\alpha = 0.7$, $\beta = 0.4$, $\mathbf{P}^4 = \begin{pmatrix} 0.575 & 0.425 \\ 0.567 & 0.433 \end{pmatrix}$
明日(第一日),今日无雨,第四日有雨概率为 0.567

马尔可夫链的例子 独立增量过程 马尔可夫链中状态

例12: 天气预报(续)

马氏性的"现在"是一个抽象概念,在天气模型中不要机械的认为就 是今天。如:假设某日天气依赖于前两日的天气,而不是只依赖于前 一日的天气,则可通过增加状态建立马氏链模型。

当前步状态 $\left\{ egin{array}{ll} \mathbb{F}_1 & \mathbb{F}_2 & \mathbb{F}_3 \\ \mathbb{F}_1 & \mathbb{F}_2 & \mathbb{F}_3 \\ \mathbb{F}_1 & \mathbb{F}_2 & \mathbb{F}_3 \\ \mathbb{F}_2 & \mathbb{F}_3 & \mathbb{F}_4 \\ \mathbb{F}_3 & \mathbb{F}_4 & \mathbb{F}_3 \\ \mathbb{F}_4 & \mathbb{F}_4 & \mathbb{F}_5 \\ \mathbb{F}_4 & \mathbb{F}_5 & \mathbb{F}_5 \\ \mathbb{F}_5 & \mathbb{F}_5 & \mathbb{F}_6 \\ \mathbb{F}_5 & \mathbb{F}_5 & \mathbb{F}_6 \\ \mathbb{F}_5 & \mathbb{F}_5 & \mathbb{F}_5 \\ \mathbb$

齐次马氏链:

独立增量过程

增量相互独立, i.e., $t_1 < t_2 < \cdots < t_n$, 则 $\xi(t_1), \ldots, \xi(t_n) - \xi(t_{n-1})$ 独 立。

独立增量过程必是马氏过程!

设 $T = [a, +\infty), a < t_1 < t_2 < \cdots < t_n < t$, 不妨设初始分布 $\xi(a) \equiv 0$.

在 $\xi(t_n)$ 已知的条件下, $\xi(t)$ 与 $\xi(t_1), \xi(t_2), \ldots, \xi(t_{n-1})$ 独立

独立增量过程

增量相互独立, i.e., $t_1 < t_2 < \cdots < t_n$, 则 $\xi(t_1), \ldots, \xi(t_n) - \xi(t_{n-1})$ 独 立。

独立增量过程必是马氏过程!

设
$$T = [a, +\infty)$$
, $a < t_1 < t_2 < \dots < t_n < t$, 不妨设初始分布 $\xi(a) \equiv 0$.

在
$$\xi(t_n)$$
 已知的条件下, $\xi(t)$ 与 $\xi(t_1), \xi(t_2), \dots, \xi(t_{n-1})$ 独立

证明:

$$\xi(t) - \xi(t_n), \, \xi(t_n) - \xi(t_{n-1}), \, \ldots, \, \xi(t_2) - \xi(t_1), \, \xi(t_1) - \xi(a)$$
 独立

$$\xi(t_n)$$
 常数 $\Rightarrow \xi(t)$ 与 $\xi(t_1)$ 独立

$$\Rightarrow \xi(t)$$
 与 $\xi(t_2) = \xi(t_2) - \xi(t_1) + \xi(t_1)$ 独立 ... \Rightarrow 马氏性 (*)

马氏链状态分类

马氏链的状态分类:一般情况下,本章只讨论齐次马氏链。

定义: (到达) 称 i 可达 j, $\frac{\bf{z}}{\bf{z}} \exists n \geq 1$, 使得 $p_{ij}^{(n)} > 0$, 记 为 $i \to j$. $i \not\to j \Leftrightarrow \forall n \geq 1$, $p_{ij}^{(n)} = 0$

定义: (相通) 称 i 与 j 相通, 若 $i \rightarrow j$, 且 $j \rightarrow i$.

例: 无限制随机游动。 $\forall i, j \in I, i \rightarrow j, j \rightarrow i, 故 i \leftrightarrow j.$ 有吸收壁的随机游动,吸收壁状态不能到达其它状态。

定理: 若 $i \rightarrow k, k \rightarrow j$, 则 $i \rightarrow j$. 即 "到达"具有传递性。

证: $i \to k \Leftrightarrow \exists n, p_{ik}^{(n)} > 0$ $k \to j \Leftrightarrow \exists r, p_{kj}^{(r)} > 0$ 由C-K方程

$$p_{ij}^{(n+r)} = \sum_{m \in I} p_{im}^{(n)} p_{mj}^{(r)} \geq p_{ik}^{(n)} \cdot p_{kj}^{(r)} > 0$$

故 $i \rightarrow j$.

推论: 若 $i \leftrightarrow k, k \leftrightarrow j$, 则: $i \leftrightarrow j$, 即"相通"具有传递性。 称 \sim 为等价关系,则 \sim 满足:

(1) $i \sim i$ (2) $i \sim j, j \sim k \Rightarrow i \sim k$ (3) $i \sim j \Rightarrow j \sim i$. 由等价关系可以定义等价类,即集合I 中的元素a 的等价类:

$$[a] = \{i \in I \mid \sim a\}$$

相通在 I 上不是等价关系, 因为不满足(1).

若定义 $p_{ij}^{(0)} = \delta_{ij}$, 规定 i 与 j 本身相通,则 \leftrightarrow 是等价关系。

定义:设 $C \subseteq I$ 为状态空间的子集,若 $\forall i \in C, j \notin C$,有 $p_{ij} = 0$.则称 C 为闭集(只进不出)。显然 I 是闭集。单个状态的闭集称为吸收态, i 为吸收态 $\Leftrightarrow p_{ii} = 1$.

命题: C 是闭集 $\Leftrightarrow \forall i \in C, j \notin C$ 都有 $p_{ij}^{(n)} = 0, n \ge 1$. "一步出不去,永远出不去"

证: "←" 显然成立。 "⇒" 由C-K方程,

$$p_{ij}^{(2)} = \sum_{k \in I} p_{ik} p_{kj} = \sum_{k \in C} + \sum_{k \notin C} = 0$$

由归纳法知, $\forall n \geq 1, p_{ij}^{(n)} = 0$

定义: 若闭集 C 的所有状态相通,称闭集 C 是不可约的。 称马氏链 $\{\xi(n), n \geq 0\}$ 不可约,若 I 是不可约的。 不可约马氏链的所有状态相通。 显然,若 C_1,C_2 为两个不同的不可约闭集,则 $C_1\cap C_2=\phi$,即 I 的不可约闭子集是两两不相交的。

这样, 状态空间 I 可分解为:

$$I = N + C_1 + C_2 + \dots$$
, 其中 $C_1, C_2 \dots$ 为不可约闭集

 ${f P}^{(n)}$: n 步转移概率矩阵,C 闭集,若只保留 ${f P}^{(n)}$ 中与 C 相关的行和列,则得到的仍是随机矩阵,仍满足 ${f C}$ -K方程。

i.e. $\forall i, j \in C$

- $1 \sum_{k \in C} p_{ik} = 1 \rightarrow$ 随机矩阵
- 2 $\sum_{k\in C} p_{ik}^{(m)} p_{kj}^{(n)} = p_{ij}^{(m+n)}
 ightarrow ext{C-K方程}$

$$\text{FI: } P = \left(\begin{array}{cccc} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 0 & 1 \end{array} \right), \ I = \{0, 1, 2, 3\}.$$

$$\text{P: } P = \left(\begin{array}{cccc} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 0 & 1 \end{array} \right), \ I = \{0, 1, 2, 3\}.$$

状态3: 吸收态, 不可约闭集

状态0,1: 不可约闭集

0,1,3: 闭集, 但可约; 0, 1, 2 非闭集

$$\text{M}: \ P = \left(\begin{array}{cccc} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 0 & 1 \end{array} \right), \ I = \{0, 1, 2, 3\}.$$

状态3: 吸收态, 不可约闭集

状态0,1: 不可约闭集

0,1,3: 闭集, 但可约; 0, 1, 2 非闭集

如果改变状态2的转移概率

$$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \to \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0$$

则 0,1,2 为闭集, 但可约

常返态与非常返态

定义: 首达时间 $T_{ij} \triangleq \min\{n: n \geq 1, \xi_0 = i, \xi_n = j\}^3$, $T_{ij} = \mathcal{M}$ 状态 i 出发首次到达状态 j 的时间。若状态 i 永远不能达到状态 j, 则定义 $T_{ij} = \infty$.

定义: 首达概率
$$f_{ij}^{(n)} \triangleq \Pr\{T_{ij} = n | \xi_0 = i\}$$

$$f_{ij}^{(n)} = \Pr\{\xi_n = j, \xi_m \neq j, m = 1, 2, \dots, n - 1 | \xi_0 = i\}$$

 $f_{ij}^{(n)}$ 为从 i 出发经 n 步首次到达 j 的概率。

$$f_{ij}^{(1)} = p_{ij}$$
 一步转移概率。

$$f_{ij}^{(\infty)} = \Pr\{\xi_m \neq j, m \geq 1 | \xi_0 = i\}, i$$
 永远不能到达 j 的概率。

³随机变量

首达概率 $f_{ij}^{(n)} \triangleq \Pr\{T_{ij} = n | \xi_0 = i\}$

定义: $f_{ij} \triangleq \sum_{n=1}^{\infty} f_{ij}^{(n)} = \Pr\{T_{ij} < \infty\}$, 求和中不包含 $f_{ii}^{(\infty)}$. f_{ij} 为从 i 出发经有限步首次到达 j 的概率。

定义: 称 i 为常返态, 若 $f_{ii} = 1$: 有限步概率1回来 称 i 为非常返态, 若 $f_{ii} < 1$. 有可能回不来

当 i 为常返态时, $f_{ii}=1$, $\{f_{ii}^{(n)}, n\geq 1\}$ 构成一个概率分布 η_i . n_i : 从i出发**首次返回**i的时间, 离散状态随机变量,

$$\Pr\{\eta_i = n\} \triangleq f_{ii}^{(n)}, n \ge 1$$

 η_i 的均值 μ_i 表示从 i 出发**首次返回** i 的平均时间(步数).

$$\mu_i \triangleq E\eta_i = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$$
 平均返回时间.

定义:设i为常返态,若 $\mu_i < \infty$,称i为正常返态;若 $\mu_i = \infty$,则称i 为零常返态。

$$\text{P: } P = \left(\begin{array}{cccc} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{2} \end{array} \right), \ I = \{0, 1, 2, 3, 4\},$$

对马氏链进行分类?!

(特例: p=1/2的无限制随机游动,每个状态零常返)。

定义:设 i 为常返态,若 $\mu_i < \infty$,称 i 为正常返态;若 $\mu_i = \infty$,则称 i 为零常返态。

$$\text{FI: } P = \left(\begin{array}{cccc} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{2} \end{array} \right), \ I = \{0, 1, 2, 3, 4\},$$

对马氏链进行分类?!

(特例: p=1/2的无限制随机游动, 每个状态零常返)。

解: 2,3:不可约闭集,常返; $f_{ii}^{(n)}=\frac{1}{2n}$ (出去呆n-2步,回来!) $\mu_2=\mu_3=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\cdots=2$, 故正常返。

0,1:不可约闭集, 常返; $f_{00}^{(n)} = f_{11}^{(n)} = \frac{1}{2^n}$ $\mu_0 = \mu_1 = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \dots = 2$, 故正常返。

4: 非闭集, 非常返。

$$f_{44}^{(1)} = \frac{1}{2}, f_{44}^{(n)} = 0 (n \ge 2), \quad f_{44} = \frac{1}{2} < 1$$

4□ > 4□ > 4 = > 4 = > = 900

n步转移与n步首达互表示

$$p_{ij}^{(n)} = \sum_{v=1}^{n} \Pr \{ \xi_n = j \mid T_{ij} = v, \xi_0 = i \} \cdot \Pr \{ T_{ij} = v \mid \xi_0 = i \}$$

其中.

$$\Pr\{\xi_n = j | T_{ij} = v, \xi_0 = i\}$$

$$= \Pr\{\xi_n = j | \xi_0 = i, \xi_1 \neq j, \dots, \xi_{v-1} \neq j, \xi_v = j\}$$

$$= \Pr\{\xi_n = j | \xi_v = j\} = p_{jj}^{(n-v)}$$

$$\Pr\{T_{ij} = v | \xi_0 = i\} = f_{ij}^{(v)} \Rightarrow p_{ij}^{(n)} = \sum_{v=1}^n f_{ij}^{(v)} p_{jj}^{(n-v)}$$

反之,
$$f_{ij}^{(1)} = p_{ij}$$
, 显然, $n \ge 2$ 时

$$\{T_{ij} = n, \xi_0 = i\} = \bigcup_{k \neq i} \{\xi_0 = i, \xi_1 = k, \xi_m \neq j, 2 \le m \le n-1, \xi_n = j\}$$

Markov链

$$f_{ij}^{(n)} = \Pr\{T_{ij} = n | \xi_0 = i\}$$

$$\stackrel{\triangleq}{=} \sum_{k \neq j} \Pr\{\xi_1 = k, \xi_m \neq j, 2 \leq m \leq n - 1, \xi_n = j | \xi_0 = i\}$$

$$\stackrel{\triangleq}{=} \sum_{k \neq j} \Pr\{\xi_1 = k | \xi_0 = i\} \cdot$$

$$\Pr\{\xi_m \neq j, 2 \leq m \leq n - 1, \xi_n = j | \xi_1 = k\}$$

$$= \sum_{k \neq j} p_{ik} f_{kj}^{(n-1)}$$

推论:
$$f_{ij}^{(n)} \leq p_{ij}^{(n)} \leq f_{ij}$$

证明:

$$f_{ij}^{(n)} = f_{ij}^{(n)} p_{jj}^{(n-n)} \le p_{ij}^{(n)} = \sum_{v=1}^{n} f_{ij}^{(v)} p_{jj}^{(n-v)} \le \sum_{v=1}^{n} f_{ij}^{(v)} \le \sum_{v=1}^{\infty} f_{ij}^{(v)} = f_{ij}$$

定理⁴: $f_{ij} > 0 \Leftrightarrow i \to j$, 从而 $f_{ij} > 0$, $f_{ji} > 0 \Leftrightarrow i \leftrightarrow j$.

if: "
$$\Rightarrow$$
" $f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)}, \ f_{ij} > 0 \Rightarrow \exists n_0 \ge 1, \ s.t. \ f_{ij}^{(n_0)} > 0,$

$$\operatorname{Fr} p_{ij}^{(n_0)} = \sum_{v=1}^{n_0} f_{ij}^{(v)} p_{jj}^{(n_0-v)} \ge \sum_{v=n_0} f_{ij}^{(v)} p_{jj}^{(n_0-v)} = f_{ij}^{(n_0)} > 0$$

故 $i \rightarrow j$.

"
$$\Leftarrow$$
" 若 $i \to j$,则 $\exists n \ge 1, \ s.t. \ p_{ij}^{(n)} > 0$

$$p_{ij}^{(n)} = \sum_{v=1}^{n} f_{ij}^{(v)} p_{jj}^{(n-v)} > 0 \Rightarrow \exists v_0, f_{ij}^{(v_0)} > 0$$

故
$$f_{ij} = \sum_{v=1}^{\infty} f_{ij}^{(v)} \ge f_{ij}^{(v_0)} > 0.$$

定理:
$$i$$
 常返 $\Leftrightarrow \sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$

$$i 非常返(f_{ii} < 1) \Leftrightarrow \sum_{n=0}^{\infty} p_{ii}^{(n)} = \frac{1}{1 - f_{ii}} < \infty$$

证: 引入母函数

$$p_{ii}^{(n)} \leftrightarrow P_i(s) \triangleq \sum_{n=0}^{\infty} p_{ii}^{(n)} s^n \qquad p_{ii}^{(0)} \triangleq 1$$

$$f_{ii}^{(n)} \leftrightarrow F_i(s) \triangleq \sum_{n=1}^{\infty} f_{ii}^{(n)} s^n \qquad f_{ii}^{(0)} \triangleq 0$$

(接下页)

$$P_{i}(s) = \sum_{n=0}^{\infty} p_{ii}^{(n)} \cdot s^{n}$$

$$= \sum_{n=1}^{\infty} [\sum_{v=1}^{n} f_{ii}^{(v)} p_{ii}^{(n-v)}] s^{n} + 1$$

$$= \sum_{v=1}^{\infty} \sum_{n=v}^{\infty} f_{ii}^{(v)} \cdot p_{ii}^{(n-v)} s^{n} + 1$$

$$= \sum_{v=1}^{\infty} f_{ii}^{(v)} s^{v} \cdot \sum_{n=v}^{\infty} p_{ii}^{(n-v)} s^{n-v} + 1$$

$$= F_{i}(s) \cdot \sum_{m=0}^{\infty} p_{ii}^{(m)} s^{m} + 1$$

$$= F_{i}(s) \cdot P_{i}(s) + 1$$

Markov链

$$0 \le s < 1$$
 \mathbb{H}^5 ,

$$P_i(s) < P_i(1) = \sum_{n=0}^{\infty} p_{ii}^{(n)}$$

$$F_i(s) < F_i(1) = f_{ii} \le 1$$

$$P_i(s) = \frac{1}{1 - F_i(s)},$$

 $s \rightarrow 1^-$ 时,

$$P_i(s) \to \sum_{n=0}^{\infty} p_{ii}^n, \quad F_i(s) \to f_{ii},$$

故

$$i$$
 非常返 $(f_{ii} < 1) \Leftrightarrow \sum_{i=0}^{\infty} p_{ii}^{(n)} = \frac{1}{1 - f_{ii}} < \infty$

 $^{{}^{5}}P_{i}(s) = F_{i}(s) \cdot P_{i}(s) + 1$

小结:判断是否常返/是否正常返

$$f_{ij} \triangleq \sum_{n=1}^{\infty} f_{ij}^{(n)} = \Pr\left\{T_{ij} < \infty\right\}$$

定义: 称i 为常返态, 若 $f_{ii} = 1$;

称i 为非常返态, 若 $f_{ii} < 1$.

$$\mu_i \triangleq E\eta_i = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$$

定理:

- $i \; \Re \mathfrak{G} \Leftrightarrow \sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$
- $i \sharp \%(f_{ii} < 1) \Leftrightarrow \sum_{n=0}^{\infty} p_{ii}^{(n)} = \frac{1}{1 f_{ii}} < \infty$

定义:设i 为常返态,若 $\mu_i < \infty$, 称i 为正常返态;

命题:

- 1 i 常返 ⇔ 无穷多次返回 i (概率1).
- 2 i 非常返 ⇔ 概率1有限次返回 i (概率1).

则S(i) 表示马氏链 $\{X_n, n \ge 0\}$ 到达i 的次数. 于是

$$E\{S(i) \mid X_0 = i\} = \sum_{n=0}^{\infty} E\{I_n(i) \mid X_0 = i\}$$
$$= \sum_{n=0}^{\infty} P\{X_n = i \mid X_0 = i\} = \sum_{n=0}^{\infty} p_{ii}^{(n)}$$

可见 $\sum_{n=0}^{\infty} p_{ii}^{(n)}$ 表示由i 出发返回到i 的平均次数. 当i 为常返状态时,返回i 的平均次数为无限多次, 反之亦然; 当i 为非常返状态时, 再回到i 的平均次数为有限次.

Markov链

推论1: 若 j 非常返,则对每一个 i, $\sum_{n=0}^{\infty} p_{ij}^{(n)} < \infty$, 且 $p_{ij}^{(n)} \to 0$.

证: j = i 时, 显然成立。

因为i 非常返 $(f_{ii} < 1) \Leftrightarrow \sum_{n=0}^{\infty} p_{ii}^{(n)} = \frac{1}{1 - f_{ii}} < \infty$ $j \neq i$ 时,类似地有 $P_{ij}(s) = F_{ij}(s)P_{jj}(s)$.

命题: 如果j 为非常返态,则任意i 概率1 有限次到达j. 证明: 反设 $\{i$ 无穷次到达 $j\} = \{i$ 首达j,j 无穷次返回 $j\}$,与j 为非常返态予盾!

两种情形:

- (1) $i \rightarrow j \Rightarrow$ 任意i, 0 次到达j (概率1)
- (2) $i \to j \Rightarrow \exists n \ge 1, p_{ij}^{(n)} > 0 \Rightarrow \exists m \le n, f_{ij}^{(m)} > 0$

- 4 ロ ト 4 個 ト 4 種 ト - 種 - り Q ()

推论2: 若j常返 6 ,则

$$1 i \rightarrow j$$
 时, $\sum_{n=0}^{\infty} p_{ij}^{(n)} = \infty$

2
$$i \not\rightarrow j$$
 时, $\sum\limits_{n=0}^{\infty}p_{ij}^{(n)}=0$

证: 2显然成立, 下面证1.

$$i \to j \Leftrightarrow \exists m > 0, s.t. \ p_{ij}^{(m)} > 0.$$
 由C-K方程,

$$p_{ij}^{(m+n)} = \sum_{k \in I} p_{ik}^{(m)} p_{kj}^{(n)} \ge p_{ij}^{(m)} p_{jj}^{(n)}$$

$$\sum_{n=0}^{\infty} p_{ij}^{(m+n)} \ge p_{ij}^{(m)} \sum_{n=0}^{\infty} p_{jj}^{(n)} = \infty$$

故

$$\sum_{n=0}^{\infty} p_{ij}^{(n)} = \infty.$$

 $^{^{6}}i$ 常返会 $\sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$

例: 无限制随机游动 r=0, q=1-p, p 右移概率

$$p_{ij}^{(n)} = \binom{n}{\frac{n+j-i}{2}} p^{\frac{n+j-i}{2}} q^{\frac{n-j+i}{2}}, \ n \ge 1, \quad \text{ \mathbb{Z} $\%$ } \%$$

证明: 由二项展开:

$$(1+s)^a = \sum_{n=0}^a \binom{a}{n} s^n,$$

推广:

$$(1+s)^{-a} = \sum_{n=0}^{\infty} {\binom{-a}{n}} s^n, \ |s| < 1 \text{ B.}$$

$${\binom{a}{n}} \triangleq \frac{a \cdot (a-1) \dots (a-n+1)}{n!},$$

$${\binom{-a}{n}} \triangleq \frac{-a(-a-1) \dots (-a-n+1)}{n!}$$

$$i=j$$
 时,
$$p_{ii}^{(2n+1)}=p_{00}^{(2n+1)}=0$$

$$p_{ii}^{(2n)}=p_{00}^{(2n)}=\left(\begin{array}{c}2n\\n\end{array}\right)p^nq^n,\ n\geq 1$$

考虑母函数

$$p_{ii}(s) = \sum_{n=0}^{\infty} {2n \choose n} p^n q^n s^{2n} = \sum_{n=0}^{\infty} \frac{(2n)!}{n! n!} (pqs^2)^n$$

$$= \sum_{n=0}^{\infty} \frac{2^{2n} (-1)^n}{n!} (-\frac{1}{2}) \dots (-\frac{2n-1}{2}) (pqs^2)^n$$

$$= \sum_{n=0}^{\infty} \frac{(-\frac{1}{2}) \cdot (-\frac{1}{2} - 1) \dots (-\frac{1}{2} - n + 1)}{n!} (-4pqs^2)^n$$

$$= \sum_{n=0}^{\infty} {-\frac{1}{2} \choose n} (-4pqs^2)^n = (1 - 4pqs^2)^{-\frac{1}{2}}$$

其中,

$$(2n)! = [1 \cdot 3 \cdot \dots (2n-1)](2 \cdot 4 \cdot \dots 2n)$$

= $[1 \cdot 3 \cdot \dots (2n-1)] \cdot 2^n \cdot n!$

$$P_{ii}(s) = (1 - 4pqs^2)^{-\frac{1}{2}}$$

$$\Rightarrow \sum_{n=0}^{\infty} p_{ii}^{(n)} = P_{ii}(1) = \lim_{s \to 1^{-}} (1 - 4pqs^{2})^{-\frac{1}{2}} = \frac{1}{\sqrt{1 - 4pq}}$$

故
$$p=q=\frac{1}{2}$$
 时, $\sum_{n=0}^{\infty}p_{ii}^{(n)}=\infty\Leftrightarrow i$ 常返

$$p \neq \frac{1}{2}$$
 时, $\sum_{n=0}^{\infty} p_{ii}^{(n)} < \infty \Leftrightarrow i$ 非常返

$$P_{ii}(s) = (1 - 4pqs^2)^{-\frac{1}{2}}, \quad (1+s)^a = \sum_{n=0}^a \binom{a}{n} s^n$$

 $p=rac{1}{2}$ 时,

$$P_{ii}(s) = \frac{1}{1 - F_{ii}(s)} \Leftrightarrow F_{ii}(s) = 1 - \frac{1}{P_{ii}(s)} = 1 - (1 - s^2)^{\frac{1}{2}}$$

平均返回时间

$$\mu_i = \sum_{n=1}^{\infty} n f_{ii}^{(n)} = F'_{ii}(1) = \lim_{s \to 1^-} \frac{s}{\sqrt{1 - s^2}} = \infty$$

故状态 i 是零常返的。

$$F_{ii}(s) = 1 - \sum_{n=0}^{\infty} {1 \choose n} (-s^2)^n = \sum_{n=0}^{\infty} \frac{1 \cdot 3 \dots (2n-3)}{2^n \cdot n!} s^{2n}$$

$$\Leftrightarrow f_{ii}^{(2n)} = \frac{1 \cdot 3 \dots (2n-3)}{2^n \cdot n!}$$

结论:

无限制随机游动r = 0, q = 1 - p, p 右移概率

$$p=q=rac{1}{2}$$
 时, $\sum_{n=0}^{\infty}p_{ii}^{(n)}=\infty\Leftrightarrow i$ 常返

平均返回时间

$$\mu_i = \sum_{n=1}^{\infty} n f_{ii}^{(n)} = \infty$$

故状态i 是零常返的。

$$p \neq \frac{1}{2}$$
 时, $\sum_{n=0}^{\infty} p_{ii}^{(n)} < \infty \Leftrightarrow i$ 非常返

Markov链

周期与非周期

定义: 若 $\{n: n \geq 1, p_{ii}^{(n)} > 0\}$ 为空集,则不对状态 i 定义周 期。否则,记 $d = \gcd\{n : n \ge 1, p_{ii}^{(n)} > 0\}$ (最大公约数)。 若 d > 1, 称 i 为周期的, 其最小正周期为 d: \dot{H} \dot{H} 周期为 $d \Rightarrow \forall n \geq 1, p_{ii}^{(nd)} > 0$ (与书上不同)

例:

其它边的概率都为 1, 显然 $p_{AA}^{(4)} = \frac{1}{2} > 0$, $p_{AA}^{(6)} = \frac{1}{2} > 0$, 故 d=2, 但 $p_{AA}^{(2)}=0$.

Markov链

命题:设i的周期为d,则存在正整数M, $\forall n \geq M$,有 $p_{ii}^{(nd)} > 0$. 周期性与常返性无关!

A 非周期, 非常返 B 非周期, 常返 A,C 周期,非常返 B,D 周期,常返

例: 无限制随机游动: r=0 时,周期 =2,雪点,

零常返: $p=q=\frac{1}{2}$; 非常返: $p\neq q$

定义: 非周期的正常返状态称为遍历态。

定理: 设i常返,则

- ① i 为零常返 $\Leftrightarrow \lim_{n \to \infty} p_{ii}^{(n)} = 0;$
- ② i 遍历(正常返且非周期) $\Leftrightarrow \lim_{n\to\infty} p_{ii}^{(n)} = \frac{1}{\mu_i}$;
- ③ i 正常返且周期为 d, $\Leftrightarrow \lim_{n \to \infty} p_{ii}^{(nd)} = \frac{d}{\mu_i}$.

其中 $\mu_i \triangleq \sum_{n=1}^{\infty} n f_{ii}^{(n)}$ 为平均返回时间。

证明可参见:李漳南,吴荣《随机过程教程》或 林元烈《应用随机过程》 定理若i与j相通,即 $i \leftrightarrow j$,则它们或同为非常返,或同为常返。当i与j同为常返时,或同为零常返,或同为正常返。

证: $i\leftrightarrow j\Leftrightarrow$ 存在 $l\geq 1, n\geq 1$, 使 $p_{ij}^{(l)}=\alpha>0, p_{ji}^{(n)}=\beta>0$ 由C-K方程

$$p_{ii}^{(l+m+n)} \ge p_{ij}^{(l)} p_{jj}^{(m)} p_{ji}^{(n)} = \alpha \beta \cdot p_{jj}^{(m)}$$

$$p_{jj}^{(l+m+n)} \ge p_{ji}^{(n)} p_{ii}^{(m)} p_{ij}^{(l)} = \alpha \beta \cdot p_{ii}^{(m)}$$

故 $\sum\limits_{m=1}^{\infty}p_{ii}^{(m)}$ 与 $\sum\limits_{m=1}^{\infty}p_{jj}^{(m)}$ 或同为 ∞ , 或同为有限值,即 i 与 j 或同为非常返,或同为常返。

类似的, 由零常返, 正常返判别定理可证其余结论。

例: 齐次链, $I = \{0, 1, 2, \ldots\}$, $\begin{cases} p_{i,i+1} = q_i, 0 < q_i < 1 \\ p_{i,0} = 1 - q_i \end{cases}$ $i = 0, 1, \ldots$ 试研究该链的特性。 可约?周期?常返?正常返或零常返?

解: 状态i 右移的概率为 q_i , $0 < q_i < 1$, 左移至0 的概率为 $1 - q_i$. 显然所有状态连通, 故不可约。 现研究状态0 的性质: 以下 $p_i riangleq q_i$

$$f_{00}^{(1)} = 1 - p_0, f_{00}^{(2)} = p_0 (1 - p_1), \dots, f_{00}^{(k)} = p_0 p_1 \dots p_{k-2} (1 - p_{k-1})$$
$$\sum_{k=1}^{n} f_{00}^{(k)} = 1 - p_0 p_1 \dots p_{n-1} \Rightarrow f_{00} = 1 - \lim_{n \to \infty} p_0 p_1 \dots p_{n-1}$$

故 0 常返⇔
$$f_{00} = 1 \Leftrightarrow -\sum_{n=0}^{\infty} \ln p_n = +\infty$$
 。

定义 马尔可夫链的例子 独立增量过程 马尔可夫链中状态的

由
$$f_{00}^{(k)} = p_0 p_1 \dots p_{k-2} (1 - p_{k-1})$$
可得

$$\mu_0 = \sum_{n=1}^{\infty} n f_{00}^{(n)}$$

$$= (1 - p_0) + \sum_{n=2}^{\infty} n \cdot \exp\left\{-\left(1 + \frac{1}{2} + \dots + \frac{1}{n-1}\right)\right\} \left(1 - e^{-\frac{1}{n}}\right)$$

定理: $i \leftrightarrow j$, <mark>则它们或同为非周期,或同为周期,且有相同</mark>的周期。

证:设j的周期为d(d=1时即为非周期)

$$p_{jj}^{(l+n)} \ge p_{ji}^{(n)} p_{ij}^{(l)} = \alpha \beta > 0$$

故 d|l+n

设 i 的周期为 d', 可取m与d互素, 使得 $p_{ii}^{(md')} > 0$, 故 $p_{ii}^{(l+md'+n)} \ge \alpha \beta \cdot p_{ii}^{(md')} > 0$, 即 $d \mid l + md' + n$.

故 $d|d' \Rightarrow d \leq d'$, 同理可知 $d' \leq d$, 因此 d = d'.

例: 无限制随机游动, r=0, q=1-p, 所有状态相通, 周期为 2, $p=\frac{1}{2}$ 时, 同为零常返; $p\neq\frac{1}{2}$ 时, 同为非常返。

例: 设马氏链 $S = \{1, 2, 3, \dots\}$, 转移概率为 $p_{11} = \frac{1}{2}$, $p_{ii+1} = \frac{1}{2}$, $p_{ii} = \frac{1}{2}$, $i \in S$. i 遍历状态?

例: 设马氏链 $S = \{1, 2, 3, \dots\}$, 转移概率为 $p_{11} = \frac{1}{2}$,

证明: 画状态转移图, 分析状态1.

可知
$$f_{11}^{(1)}=\frac{1}{2},f_{11}^{(2)}=\left(\frac{1}{2}\right)^2,f_{11}^{(3)}=\left(\frac{1}{2}\right)^3,\cdots,f_{11}^{(n)}=\left(\frac{1}{2}\right)^n$$

$$f_{11} = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = 1$$
, $\text{MULL 1 LL RESULT 2}$.

又因为
$$\mu_1 = \sum_{n=1}^{\infty} n \cdot \left(\frac{1}{2}\right)^n < \infty$$
, 所以"1"是正常返状态.

再由 $p_{11}^{(1)} = \frac{1}{2} > 0$, 知"1"是非周期的. 从而"1"是遍历状态. 对其他 $i \neq 1$, 因 $i \leftrightarrow 1$, 故i 也是遍历状态 (注: 若求 $f_{ii}^{(n)}$ 则较麻烦)

总结

$$\mu_i = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$$
 平均返回时间

 $i \leftrightarrow j \Rightarrow i = j$ 同非常返,常返,零常返,正常返,周期,遍历。

再论状态空间的分解

定理:所有(零)常返状态构成一个闭集 C。

证:由定义证, $\forall i \in C, j \notin C$, 则 $i \rightarrow j$.

用反证法, 若 $i \rightarrow j$, 由 i 常返知 j 常返(见林元烈教材定理3.3.8), 与 $j \not\in C$ 矛盾。

令 C表示所有常返态构成的闭集,则有

定理: $C \neq \phi$, C_i 为两两互不相交的不可约闭集(两两相

通)。 $C = C_1 + C_2 + \dots$ (有限或无限)

证: $\forall i_1 = C$, C_1 为包含 i_1 所有相通状态的子集。

取 $i_2 \in C - C_1$ (若 $C - C_1 \neq \phi$), C_2 为包含 i_2 所有相通状态的 子集。

. .

所以
$$C = C_1 + C_2 + \dots$$

定义 马尔可夫链的例子 独立增量过程 马尔可夫链中状态的

定理: 令 C 为包含所有常返态的闭集, T 为包含所有非常返态的集合(T 不一定是闭集), 则状态空间

$$I = T + C = T + C_1 + C_2 + \dots$$

其中 C_i 称为 I 的基本常返闭集。

定理: $\{\xi_n\}$ 为有限状态马氏链,即 I 为有限集,则 $T=\phi$ 或 T 非闭证: 若 $T=\phi$,则证完。若T 非空,用反证法,假设T 是闭集,则对任意 $i\in T$,有

$$\sum_{j \in T} p_{ij}^{(n)} = 1$$

由前面推论1可知 $\lim_{n\to\infty}p_{ij}^{(n)}=0$,因此有

$$1 = \lim_{n \to \infty} \sum_{j \in T} p_{ij}^{(n)} = \sum_{j \in T} \lim_{n \to \infty} p_{ij}^{(n)} = 0$$
,矛盾,可知T闭集。

推论: 有限马氏链至少有1个状态是常返的。

推论:有限不可约马氏链所有状态常返。

推论:有限不可约非周期马氏链所有状态<mark>遍历</mark>。

例: 无限马氏链上述结论不一定成立。

无限制随机游动, $r=0, P \neq \frac{1}{2}$ 时,所有状态非常返。

 $p_{ij}^{(n)}$ 的渐进性质和平稳分布

证: j 非常返态, 已证。

j 零常返态,且 i=j 时已证,即 $p_{ii}^{(n)} \rightarrow 0$.

下证j 零常返态, 且 $i \neq j$ 时设 m < n, 则

$$p_{ij}^{(n)} = \sum_{v=1}^{n} f_{ij}^{(v)} p_{jj}^{(n-v)} = \sum_{v=1}^{m} f_{ij}^{(v)} p_{jj}^{(n-v)} + \sum_{v=m+1}^{n} f_{ij}^{(v)} p_{jj}^{(n-v)}$$

$$\leq \sum_{v=1}^{m} p_{jj}^{(n-v)} + \sum_{v=m+1}^{n} f_{ij}^{(v)}$$

$$\forall \varepsilon > 0$$

$$\sum_{v=1}^{\infty} f_{ij}^{(v)} \leq 1 \Rightarrow \exists m_0 \ \mbox{ter} \ \ \sum_{v=m_0+1}^{\infty} f_{ij}^{(v)} \leq \frac{\varepsilon}{2}$$

$$p_{jj}^{(n)} \to 0, m_0$$
 有限值 $\Rightarrow \exists n_0, \$ 使得 $n \ge n_0, \sum_{v=1}^{m_0} p_{jj}^{(n-v)} \le \frac{\varepsilon}{2}$

故

推论:有限马氏链无零常返状态。

证:
$$i$$
 零常返, $C_i = \{j: i \leftrightarrow j\}$ 闭, 故 $\sum_{j \in C_i} p_{ij}^{(n)} = 1 \ (\forall n \ge 1)$ 由于 $p_{ij}^{(n)} \to 0$, C_i 有限, 则 $\sum_{j \in C_i} p_{ij}^{(n)} = \to 0$, 矛盾。

极限分布与平稳分布

齐次马氏链, $\pi(0)$ 为初始分布, $\pi_i(0) = \Pr\{\xi(0) = i\}$, $\pi(n)$ 为时刻 n 时的分布, $\pi_i(n) = \Pr\{\xi(n) = j\}$, $\pi(n) \triangleq (\pi_0(n), \pi_1(n), \ldots)$

$$\pi_{j}(n) = \sum_{i \in I} \Pr\{\xi(0) = i\} \cdot \Pr\{\xi(n) = j | \xi(0) = i\}$$

$$= \sum_{i \in I} \pi_{i}(0) \cdot p_{ij}^{(n)}$$

 $\pi(n) = \pi(0) \cdot \mathbf{P}^{(n)}$

Problem: $n \to \infty$ 时, $\pi(n)$ 极限是否存在? \Leftrightarrow $\mathbf{P}^{(n)}$ 极限是否存在? i.e., $\pi_j(n)$ 极限存在? $p_{ij}^{(n)}$ 极限存在? 是否与 i 有关?

定理: 若j 为非常返态或零常返态, 则 $\forall i \in I, p_{ij}^{(n)} \to 0.$

上述定理解决了j为非常返和零常返状态的情形。

只需解决j 正常返态, $\pi_i(n)$ 的极限问题即可。

一些记号: $\pi(n)$: 时刻 n 时的分布, 是一维概率分布 (行向量),

$$\pi_j(n) \triangleq \Pr\{\xi_n = j\}, \; \sum_{j \in I} \pi_j(n) = 1, \; \pi(n) = \pi(0) \cdot \mathbf{P}^{(n)},$$

 $\pi(n+1) = \pi(n) \cdot \mathbf{P}.$

上述定理解决了j 为非常返和零常返状态的情形。

只需解决j 正常返态, $\pi_i(n)$ 的极限问题即可。

一些记号: $\pi(n)$: 时刻 n 时的分布, 是一维概率分布(行向量),

$$\pi_j(n) \triangleq \Pr\{\xi_n = j\}, \ \sum_{j \in I} \pi_j(n) = 1, \ \pi(n) = \pi(0) \cdot \mathbf{P}^{(n)}, \ \pi(n+1) = \pi(n) \cdot \mathbf{P}.$$

假设 $\mathbf{P}^{(n)}$ 极限存在, $\pi(n)$ 存在极限分布 $\pi(n \to \infty)$, 即 $\pi_i(n) \triangleq \Pr \{\xi_n = j\} \to \pi_i, \pi = (\pi_0, \pi_1, \ldots)$, 则

- 2 概率分布的极限仍是概率分布, $\sum_{j \in I} \pi_j = 1$

3
$$\mathbf{P}^{(n)}$$
 极限存在, $\mathbf{P}^{(n)} \to \begin{pmatrix} \pi \\ \vdots \\ \vdots \end{pmatrix}$ 即 $\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j$ 与 i 无关

证: 设 $\mathbf{P}^{(n)} \to \mathbf{Q} = (q_{ij}) \Rightarrow \pi = \pi(0) \cdot \mathbf{Q} \Leftrightarrow \pi_j = \sum_{i \in I} \pi_i(0) q_{ij}$, 由于 $\pi(0)$ 是任意概率分布,取 $\pi(0) = (1, 0, ...)$ 得 $q_{0j} = \pi_j$, 取 $\pi(0) = (0, 1, 0, ...)$, 得 $q_{1j} = \pi_j$,

即 Q 的行向量相同并为 π.

4 π 是唯一的, 极限亦唯一。

假设
$$\pi' = \pi' \mathbf{P}, \ \pi = \pi \mathbf{P}, \ \text{则} \ \pi' = \pi' \mathbf{P}^{(n)} \to \pi' \begin{pmatrix} \pi \\ \vdots \\ \pi \\ \vdots \end{pmatrix}$$
、,
故 $\pi'_j = \sum_{i \in I} \pi'_i \cdot \pi_j = (\sum_{i \in I} \pi'_i) \cdot \pi_j = \pi_j, \ \text{即} \ \pi' = \pi$
5 $\pi \vdash \pi(0)$ 即起始状态分布无关
 $\pi(n) = \pi(0) \cdot \mathbf{P}^{(n)} \Rightarrow \pi = \pi(0) \cdot (\pi \dots \pi)^T,$
该式对任意分布 $\pi(0)$ 都成立。

综上, 只需解决 j 正常返态, $\pi_i(n)$ 的极限问题即可。

定义: 定义在I 上的概率分布 $\theta=(\theta_0,\theta_1,\ldots)$ 称为马氏链的平稳分布, 若有 $\theta=\theta$ P, 即 $\theta_j=\sum_{i\in I}\theta_i p_{ij}$

$$\theta = \theta P = \theta P^2 = \dots = \theta P^n = \dots$$

求以下马氏链的平稳分布:

$$\left(\begin{array}{cc} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{3}{4} \end{array}\right), \left(\begin{array}{cc} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{array}\right), \left(\begin{array}{ccc} \frac{2}{3} & \frac{1}{3} & 0 & 0 \\ \frac{1}{4} & \frac{3}{4} & 0 & 0 \\ 0 & 0 & \frac{3}{4} & \frac{1}{4} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{array}\right)$$

 $\pi(n)$: 时刻n 时的分布

$$\pi(n)$$
 极限分布 $\pi = (\pi_0, \pi_1, ...)$ 何时等于平稳分布

$$\pi(n)$$
 极限分布 $\pi=(\pi_0,\pi_1,\ldots)$ 何时等于平稳分布 $\mathbf{M}^7: I=\{0,1,2\}, \ \mathbf{P}=\begin{pmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.4 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{pmatrix}$,有限不可约遍历.

$$\pi = \pi \mathbf{P} = (\pi_0, \pi_1, \pi_2)$$

$$\begin{cases} 0.5\pi_0 + 0.3\pi_1 + 0.2\pi_2 = \pi_0 \\ 0.4\pi_0 + 0.4\pi_1 + 0.3\pi_2 = \pi_1 \\ 0.1\pi_0 + 0.3\pi_1 + 0.5\pi_3 = \pi_2 \\ \pi_0 + \pi_1 + \pi_2 = 1 \end{cases}$$

解方程组得

$$\pi_0 = \frac{21}{62}, \ \pi_1 = \frac{23}{62}, \ \pi_2 = \frac{18}{62}$$

$$\mathbf{P}^{10} = \begin{pmatrix} 0.338719 & 0.370972 & 0.290309 \\ 0.338708 & 0.370967 & 0.290325 \\ 0.338701 & 0.370964 & 0.290335 \end{pmatrix}$$

 $\pi: 0.338710 \ 0.370968 \ 0.290323 \ \approx \mathbf{P}^{15}$

⁷推论: 有限不可约非周期马氏链所有状态遍历 。

$$i$$
 正常返
$$\left\{ \begin{array}{l} \textbf{周期: 平稳分布存在} . \\ \textbf{非周期 \Leftrightarrow 遍历 \Leftrightarrow } \lim_{n \to \infty} p_{ii}^{(n)} = \frac{1}{\mu_i} > 0. \end{array} \right.$$
 存在唯一

$$\mu_i = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$$
,平均返回时间

 $C_i = \{i : i \leftrightarrow i\}$ 为包含 i 的不可约闭集, i 遍历 $\Leftrightarrow C_i$ 遍历。

定理: 基本正常返闭集具有唯一的平稳分布

 $C_i = \{i : i \leftrightarrow i\}$ 为包含i 的不可约闭集, i 正常返

则
$$\left\{\theta_j = \frac{1}{\mu_j}, j \in C_i\right\}$$
 是方程组

$$\left\{ \begin{array}{ll} \theta_j = \sum_{i \in C_i} \theta_i p_{ij} & j \in C_i \\ \sum_{j \in C_i} \theta_j = 1, & \theta_j \geq 0 \end{array} \right.$$
 的唯一解。

也是 C_i 的唯一平稳分布!

重要情形! 极限分布=平稳分布

注: 一般来说, 平稳分布容易求 (解方程)。若极限分布=平稳分布, 则极限分布可以直接通过平稳分布求得!

推论:不可约遍历链具有唯一的平稳分布, 且平稳分布就是极限分布。

$$\theta_j = \lim_{n \to \infty} p_{ij}^{(n)} = \frac{1}{\mu_j} = \pi_i \, 与 \, i \, 无关(与初始分布无关)$$

故不可约遍历链(无论状态有限还是无限)极限性质易于处理。 此时通过解 $方程\pi = \pi P$ 就可以求出平稳(极限) 分布。 I = T + C, T 非常返集, C 常返集, 设 $C_+ \subset C$ 为正常返集。 **定理**: (一般马氏链)

- ① 平稳分布存在 $\Leftrightarrow C_+ \neq \phi$.
- ② 平稳分布唯一存在 \Leftrightarrow 只有一个基本正常返闭集 $C_+ = C$.
- ③ 有限状态马氏链的平稳分布一定存在.
- ④ 有限不可约(非周期)马氏链存在唯一的平稳分布。 且 $\pi_i = \frac{1}{\mu_i}$
- 证: (1): "⇒"

平稳分布存在 $\Leftrightarrow \pi \mathbf{P} = \pi, \ \pi \neq 0$

反证法: 若 $C_+ = \phi$, 则 I 的状态为非常返态或零常返态。

故 $p_{ij}^{(n)} \to 0$, 即 $\mathbf{P}^n \to 0$, 故 $\pi = \pi \mathbf{P} = \pi \mathbf{P}^n \to 0$ 矛盾

- (2) 略 (两个基本正常返闭集可导出两个不同的平稳分布)
- (3) 有限状态马氏链至少有1个状态正常返 $\Rightarrow C_+ \neq \phi \Rightarrow$ 平稳分布存在。
- (4) 有限不可约链所有状态相通,故只有一个正常返基本闭集。

 $m{i}$: j 正常返,周期, $\lim_{n \to \infty} p_{ij}^{(n)}$ 不一定存在,但 $\lim_{n \to \infty} p_{ij}^{(nd)}$ 存在此时, \mathbf{P}^n 极限不一定存在,马氏链可能不存在极限分布,但一定存在平稳分布。极限分布 \Rightarrow 平稳分布。反之未然

注:对于非周期不可约链,

正常返⇔平稳分布 = 极限分布且唯一。

注: 不可约遍历链, $Pr\left\{\xi_n=j\right\}=\pi_j(n)\to\pi_j=\frac{1}{\mu_j}$. 无论初始状态如何, ξ_n 是一个渐进平稳序列!

求平稳分布的两种方法

例: 艾伦菲斯特模型(续)

2a 个球, 红, 黑, 随机摸出一球, 换入另一颜色球。 $\xi(0)$ 为初始分布, $\xi(n)$ 为 n 次摸换后的黑球数目。, 求平稳分布(极限分布)

方法一: 定义法, 即解方程

$$I = \{0, 1, \dots, 2a\}$$
, $p_{i,i+1} = \frac{2a-i}{2a}$, $p_{i,i-1} = \frac{i}{2a}$, 其它为 0 .

$$\pi = \pi \mathbf{P} \Leftrightarrow \pi_j = \sum_{i \in I} \pi_i p_{ij} \Leftrightarrow \pi_i = \sum_{j \in I} \pi_j p_{ji}$$

定义
$$\pi_{-1} = \pi_{2a+1} = 0$$
,

$$\pi_{i} = \pi_{i+1} p_{i+1,i} + \pi_{i-1} p_{i-1,i}$$

$$= \pi_{i+1} \cdot \frac{i+1}{2a} + \pi_{i-1} \cdot \frac{2a-i+1}{2a} \quad i = 0, 1, \dots, 2a$$

Markov链

解方程组得8

$$\pi_i = \pi_0 \left(\begin{array}{c} 2a \\ i \end{array} \right), \ i = 0, 1, \dots, 2a$$

$$\sum \pi_i = 1 \quad \Rightarrow \quad \pi_0 \cdot \sum_{i=0}^{2a} {2a \choose i} = \pi_0 \cdot 2^{2a} = 1$$

$$\Rightarrow \quad \pi_0 = 2^{-2a} \Rightarrow \pi_i = 2^{-2a} {2a \choose i}$$

$$\pi_i = \frac{1}{\mu_i} \Rightarrow \mu_i = \frac{2^{2a}}{2a \choose i}$$

有限,不可约,正常返,周期

$$p_{ii}^{(2n+1)} = 0, \quad p_{ii}^{(2n)} \to \frac{2}{\mu_i}$$

⁸具体求解见陆大金教材p93

方法二: 动态平衡原理求

利用动态平衡原理求平稳分布 π:

将 I 分解为 I_1 与 I_2 的和, i.e. $I = I_1 \bigcup I_2, I_1 \cap I_2 = \phi$

从 I_1 进入 I_2 的概率 $\Pr\{I_1 \to I_2\} = \sum_{j \in I_2} \sum_{i \in I_1} \pi_i p_{ij}$

从 I_2 进入 I_1 的概率 $\Pr\{I_2 \to I_1\} = \sum_{j \in I_1} \sum_{i \in I_2} \pi_i p_{ij}$

动态平衡原理: $\Pr\{I_1 \to I_2\} = \Pr\{I_2 \to I_1\}$ 证明(略), 见p.99-100

例:用动态平衡原理求艾伦菲斯特模型的平稳分布

$$I = \{0, 1, \dots, 2a\}, I_1 = \{0, 1, \dots, i-1\}, I_2 = \{i, i+1, \dots, 2a\}$$

$$\Pr\{I_1 \to I_2\} = \frac{2a - (i-1)}{2a} \cdot \pi_{i-1}$$

 $\Pr\{I_2 \to I_1\} = \frac{i}{2a}\pi_i$

故
$$\frac{2a - (i - 1)}{2a} \pi_{i-1} = \frac{i}{2a} \pi_i \Leftrightarrow \pi_i = \frac{2a - (i - 1)}{i} \pi_{i-1}$$

该递推公式更简单,易得 $\pi_i = \pi_0 \begin{pmatrix} 2a \\ i \end{pmatrix}$, 其余步骤相同。

定理: $\{\xi_n\}$ 马氏链, 则: ξ_n 严平稳 \Leftrightarrow 初始分布是平稳分布。

 $\operatorname{PP} \pi(0) = \pi(0) \mathbf{P}$.

证: " \Rightarrow " ξ_n 严平稳, $\pi(n)$ 为时刻 n 的一维分布。故

$$\pi(0) = \pi(1) = \cdots = \pi(n) = \dots$$
 (有限维分布相同 \Rightarrow 一维分布相同)

由 $\pi(1) = \pi(0)\mathbf{P}$ 得, $\pi(0) = \pi(0)\mathbf{P}$.

" \Leftarrow " $\pi(1) = \pi(0)\mathbf{P} = \pi(0)$, $\not\bowtie \pi(0) = \pi(1) = \cdots = \pi(n) = \cdots$ 即一维分布相同,下面证明有限维分布相同。 $t_1 < t_2 < \cdots < t_n$

$$\Pr\{\xi_{t_1} = i_1, \dots, \xi_{t_n} = i_n\} = \pi_{i_1}(t_1) \cdot p_{i_1 i_2}^{(t_2 - t_1)} \dots p_{i_{n-1} i_n}^{(t_n - t_{n-1})}$$

$$= \pi_{i_1(t_1 + \tau)} p_{i_1 i_2}^{(t_2 - t_1)} \dots p_{i_{n-1} i_n}^{(t_n - t_{n-1})}$$

$$= \Pr\{\xi_{t_1 + \tau} = i_1, \dots, \xi_{t_n + \tau} = i_n\}$$

故严平稳。

非常返态分析

$$I = T + C = T + C_1 + C_2 + \dots$$

一、求从状态i出发进入基本常返闭集 C_k 的概率 $\Pr\{C_k|i\}$,

即 C_k 的吸收概率。

$$i \in C_k \implies \Pr\{C_k|i\} = 1$$

$$i \in C_m \neq C_k \implies \Pr\{C_k|i\} = 0$$

$$i \in T: \Pr\{C_k|i\} \stackrel{\triangleq}{=} \sum_{j \in I} p_{ij} \Pr\{C_k|j\}$$

$$= \sum_{j \in T} p_{ij} \Pr\{C_k|j\} + \sum_{j \in C_k} p_{ij}$$

假设 T 有限集

$$i \in T, \ \Pr\{C_k|i\} - \sum_{j \in T} p_{ij} \Pr\{C_k|j\} = \sum_{j \in C_k} p_{ij}$$

是一个线性方程组,可以解出 $Pr\{C_k|i\}$.

二、研究从非常返态进入常返态所需的平均时间 ES. (吸收时间的数学期望)

i: 起始状态,S: 吸收时间,取值 $0,1,2,\ldots$

$$i \in C \Rightarrow S = 0$$

$$i \in T \left\{ egin{array}{l} T \ \mbox{有限集 (非闭)} \Rightarrow \Pr\{C|i\} = 1 = \Pr\{S < \infty | i\} \\ T \ \mbox{无限集} \Rightarrow \Pr\{C|i\} \ \mbox{可能为0} \end{array}
ight.$$

 $\Pr\{S=n|i\}, n=0,1,\dots$ 表示系统从 i 出发经过 n 步<mark>首次</mark>进入 C 的概率。

 $\Pr\{C|i\} = \Pr\{S < \infty|i\}$ 系统从 i 出发进入 C 的概率。 $1 - \Pr\{S < \infty|i\}$ 系统永远停留在 T 中的概率,"亏值"。

$$i \in C \quad \Leftrightarrow \quad \left\{ \begin{array}{l} \Pr\{S = 0 \mid i\} = 1 \\ \Pr\{S > 0 \mid i\} = 0 \end{array} \right.$$

(续下页)

$$i \in C \quad \Leftrightarrow \quad \left\{ \begin{array}{l} \Pr\{S = 0 \mid i\} = 1 \\ \Pr\{S > 0 \mid i\} = 0 \end{array} \right.$$

 $i \in T$, $n \ge 1$;

$$\Pr\{S = n+1|i\} \stackrel{\text{\rightharpoonup}}{=} \sum_{j \in I} \Pr\{S = n|j\} p_{ij} = \sum_{j \in T} \Pr\{S = n|j\} p_{ij} \quad (1)$$

$$\Pr\{S = 1|i\} = \sum_{j \in I} \Pr\{S = 0|j\} p_{ij} = \sum_{j \in C} p_{ij}$$
 (2)

故得到(1)为递推方程,(2)为(1)的初始条件。此时可得到S的概率分布。

亏值为0时,S是一个分布,其均值为:

$$E(S|i) = \sum_{n=1}^{\infty} n \Pr\{S = n|i\}$$

亏值 $\neq 0$ 时,S 不是一个分布,系统可能永远停留在 T 中,上 式无意义。

改变上述步骤,也可以直接求 E(S|i), 其本质还是一样的。

$$i \in T, \Pr\{S = n + 1 | i\} = \sum_{j \in T} \Pr\{S = n | j\} p_{ij}$$

$$(n+1)\Pr\{S = n+1|i\} - \Pr\{S = n+1|i\} = \sum_{j \in T} n\Pr\{S = n|j\} p_{ij}$$

 $n = 0, 1, 2, \dots$ 求和

$$(n+1)\Pr\{S=n+1\mid i\} - \Pr\{S=n+1\mid i\} = \sum_{j\in T} n\Pr\{S=n\mid j\}p_{ij}$$
 $n=0,1,2,\ldots$ 求和

$$E(S|i) - \sum_{n=1}^{33} \Pr\{S = n|i\} = \sum_{j \in T} E(S|j) p_{ij}$$

假设亏值为0,

$$i \in T \Rightarrow \sum_{n=1}^{\infty} \Pr\{S = n | i\} = 1$$

故

$$E(S|i) - \sum_{j \in T} E(S|j)p_{ij} = 1$$

解方程组可求出所有的 E(S|i), $i \in T$.

Markov链

例: $I = \{0, 1, 2, \dots, k\}$, 起始状态为 k > 0, 0 吸收态 $p_{00} = 1$,

 $j = 0, 1, \dots, i - 1$ \forall , $p_{ij} = \frac{1}{i}$, $i = 1, 2, \dots, k$

求: 吸收时间的数学期望。T = ?C = ? 吸收态与谝历态?

例: $I = \{0, 1, 2, ..., k\}$, 起始状态为 k > 0, 0 吸收态 $p_{00} = 1$, j = 0, 1, ..., i - 1 时, $p_{ij} = \frac{1}{i}$, i = 1, 2, ..., k 求:吸收时间的数学期望。T = ?C = ? 吸收态与谝历态?

解: **首先** $C = \{0\}$, $T = \{1, 2, ..., k\}$,?? 且 $p_{ij} = 0$, $j \ge i$. 设 $E(s|i) = s_i$, 则由 $E(s|i) - \sum_{j \in T} E(s|j) \cdot p_{ij} = 1$ 得

$$s_i - \sum_{j=1}^{i-1} s_j \cdot \frac{1}{i} = 1, i = 2, 3, \dots, k$$

$$s_1 = E(s|1) = 1 \cdot p_{10} = 1,$$
 一步返回0的概率为1
$$s_i = 1 + \frac{1}{2} + \dots + \frac{1}{i}$$

$$s_i = \sum_{j=1}^{i-1} \frac{s_j}{i} + 1 \Leftrightarrow s_i - 1 = \sum_{j=1}^{i-1} \frac{s_j}{i}$$

基本定义 马尔可夫链的例子 独立增量过程 马尔可夫链中状态的

$$s_{i+1} = \sum_{j=1}^{i} \frac{s_j}{i+1} + 1$$

$$= \sum_{j=1}^{i-1} \frac{s_j}{i+1} + \frac{s_i}{i+1} + 1$$

$$= (\sum_{j=1}^{i-1} \frac{s_j}{i}) \cdot \frac{i}{i+1} + \frac{s_i}{i+1} + 1$$

$$= (s_i - 1) \frac{i}{i+1} + \frac{s_i}{i+1} + 1$$

$$= s_i + \frac{1}{i+1}.$$

故由
$$s_1 = 1$$
 得 $s_i = 1 + \frac{1}{2} + \dots + \frac{1}{i}$,

$$E\{s|k\} = s_k = 1 + \frac{1}{2} + \dots + \frac{1}{k}$$