Fundamentals of Computer Graphics

Recap of linear algebra II

Emanuele Rodolà rodola@di.uniroma1.it

Recap: Bases

A basis of V is a collection of vectors in V that is linearly independent and spans V

- $\operatorname{span}(v_1, \dots, v_n) = \{a_1v_1 + \dots + a_nv_n : a_1, \dots, a_n \in \mathbb{R}\}$
- $v_1, \ldots, v_n \in V$ are linearly independent if and only if each $v \in \operatorname{span}(v_1, \ldots, v_n)$ has only one representation as a linear combination of v_1, \ldots, v_n

So every vector $v \in V$ can be expressed uniquely as a linear combination

$$v = \sum_{i=1}^{n} \alpha_i v_i$$

You can think of a basis as the minimal set of vectors that generates the entire space

Recap: Matrices

Consider a linear map $T:V\to W$, a basis $v_1,\ldots,v_n\in V$ and a basis $w_1,\ldots,w_m\in W$.

The matrix of T in these bases is the $m \times n$ array of values in $\mathbb R$

$$\mathbf{T} = \begin{pmatrix} T_{1,1} & \cdots & T_{1,n} \\ \vdots & & \vdots \\ T_{m,1} & \cdots & T_{m,n} \end{pmatrix}$$

whose entries $T_{i,j}$ are defined by

$$Tv_j = T_{1,j}w_1 + \dots + T_{m,j}w_m$$

In other words, the matrix encodes how basis vectors are mapped, and this is enough to map all other vectors in their span, since:

$$Tv = T(\sum_{j} \alpha_{j} v_{j}) = \sum_{j} T(\alpha_{j} v_{j}) = \sum_{j} \alpha_{j} Tv_{j}$$

Recap: Matrix of a vector

Suppose $v \in V$ is an arbitrary vector, while v_1, \dots, v_n is a basis of V. The matrix of v wrt this basis is the $n \times 1$ matrix:

$$\mathbf{v} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

so that

$$v = c_1 v_1 + \dots + c_n v_n$$

Once again, we see that the matrix depends on the choice of basis for ${\cal V}$

Recap: Product of "map matrix" and "vector matrix"

$$\underbrace{\begin{pmatrix} T_{1,1} & \cdots & T_{1,n} \\ \vdots & & \vdots \\ T_{m,1} & \cdots & T_{m,n} \end{pmatrix}}_{\mathbf{T}} \underbrace{\begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}}_{\mathbf{c}} = \sum_{j=1}^n c_j \underbrace{\begin{pmatrix} T_{1,j} \\ \vdots \\ T_{m,j} \end{pmatrix}}_{\mathrm{Tv_j}} \underbrace{\mathbf{rr}}_{(\mathbf{w}_1,\dots,\mathbf{w}_m)}$$

Because recall that, for bases $v_1, \ldots, v_n \in V$ and $w_1, \ldots, w_m \in W$:

$$Tv_j = T_{1,j}w_1 + \dots + T_{m,j}w_m$$

We see then that vector $c=\sum_j c_j v_j$ is mapped to $Tc=\sum_j c_j Tv_j$ In other words, matrix product is behaving as expected

The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the dimension of the span of its columns

Example:

$$\mathbf{A} = \begin{pmatrix} 4 & 7 & 1 & 8 \\ 3 & 5 & 2 & 9 \end{pmatrix}$$

The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the dimension of the span of its columns

Example:

$$\mathbf{A} = \begin{pmatrix} 4 & 7 & 1 & 8 \\ 3 & 5 & 2 & 9 \end{pmatrix}$$

The rank is the dimension of

$$\operatorname{span}\left(\begin{pmatrix} 4\\3 \end{pmatrix}, \begin{pmatrix} 7\\5 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 8\\9 \end{pmatrix}\right) \in \mathbb{R}^2$$

The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the dimension of the span of its columns

Example:

$$\mathbf{A} = \begin{pmatrix} 4 & 7 & 1 & 8 \\ 3 & 5 & 2 & 9 \end{pmatrix}$$

The rank is the dimension of

$$\operatorname{span}\left(\begin{pmatrix} 4\\3 \end{pmatrix}, \begin{pmatrix} 7\\5 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 8\\9 \end{pmatrix}\right) \in \mathbb{R}^2$$

This span can not have dimension larger than 2, because $\dim(\mathbb{R}^2)=2$.

In this example, $rank(\mathbf{A}) = 2$

The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the dimension of the span of its columns

Example:

$$\mathbf{A} = \begin{pmatrix} 4 & 7 & 1 & 8 \\ 3 & 5 & 2 & 9 \end{pmatrix}$$

The rank is the dimension of

$$\operatorname{span}\left(\begin{pmatrix} 4\\3 \end{pmatrix}, \begin{pmatrix} 7\\5 \end{pmatrix}, \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 8\\9 \end{pmatrix}\right) \in \mathbb{R}^2$$

This span can not have dimension larger than 2, because $\dim(\mathbb{R}^2)=2$.

In this example, $rank(\mathbf{A}) = 2$

Note that this result does not depend on a choice of basis, i.e., change of basis preserves the rank

Example: Reduced bases

Consider the $\mathbb{R}^{n \times k}$ matrix

$$\mathbf{V} = egin{pmatrix} \mid & \cdots & \cdots & \mid \\ \mathbf{v}_1 & \cdots & \cdots & \mathbf{v}_k \\ \mid & \cdots & \cdots & \mid \end{pmatrix}$$

containing Voronoi basis vectors as its columns, and the $\mathbb{R}^{n imes k'}$ matrix

$$\mathbf{V}' = \begin{pmatrix} | & \cdots & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_{k'} \\ | & \cdots & | \end{pmatrix}$$

obtained by truncating V to the first k' < k columns

Example: Reduced bases

Consider the $\mathbb{R}^{n \times k}$ matrix

$$\mathbf{V} = egin{pmatrix} | & \cdots & \cdots & | \\ \mathbf{v}_1 & \cdots & \cdots & \mathbf{v}_k \\ | & \cdots & \cdots & | \end{pmatrix}$$

containing Voronoi basis vectors as its columns, and the $\mathbb{R}^{n imes k'}$ matrix

$$\mathbf{V}' = \begin{pmatrix} | & \cdots & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_{k'} \\ | & \cdots & | \end{pmatrix}$$

obtained by truncating V to the first k' < k columns

Then,
$$k = \operatorname{rank}(\mathbf{V}) > \operatorname{rank}(\mathbf{V}') = k'$$

The rank reflects the expressive power of the full (V) and reduced (V') bases

Example: Reduced bases

full basis $rank(\mathbf{V}) = k$

 $\operatorname{reduced basis} \operatorname{rank}(\mathbf{V}') = k' < k$

In the standard basis, a one-to-one correspondence is written as a permutation matrix in $\mathbb{R}^{n\times n}$

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

In the standard basis, a one-to-one correspondence is written as a permutation matrix in $\mathbb{R}^{n\times n}$

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Each column is a basis vector, so $rank(\mathbf{P}) = n$, and this is independent of the choice of a basis

In the k-dimensional Voronoi basis, a one-to-one correspondence is written as a generic matrix in $\mathbb{R}^{k\times k}$

$$\tilde{\mathbf{P}} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1k} \\ p_{21} & p_{22} & \cdots & p_{2k} \\ \vdots & & & \vdots \\ p_{k1} & p_{k2} & \cdots & p_{kk} \end{pmatrix}$$

In the k-dimensional Voronoi basis, a one-to-one correspondence is written as a generic matrix in $\mathbb{R}^{k\times k}$

$$\tilde{\mathbf{P}} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1k} \\ p_{21} & p_{22} & \cdots & p_{2k} \\ \vdots & & & \vdots \\ p_{k1} & p_{k2} & \cdots & p_{kk} \end{pmatrix}$$

Each column is the image of a basis vector, i.e. Tv_j ; so $\mathrm{rank}(\tilde{\mathbf{P}}) \leq k \ll n$

In the k-dimensional Voronoi basis, a one-to-one correspondence is written as a generic matrix in $\mathbb{R}^{k\times k}$

$$\tilde{\mathbf{P}} = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1k} \\ p_{21} & p_{22} & \cdots & p_{2k} \\ \vdots & & & \vdots \\ p_{k1} & p_{k2} & \cdots & p_{kk} \end{pmatrix}$$

Each column is the image of a basis vector, i.e. Tv_j ; so $\operatorname{rank}(\tilde{\mathbf{P}}) \leq k \ll n$

Functions mapped via $\tilde{\mathbf{P}}$ span a subspace of those mapped via \mathbf{P} ; so the rank of the matrix encodes how precisely we can map functions to functions

Consider a correspondence matrix from $\mathcal{F}(\mathcal{X})$ to $\mathcal{F}(\mathcal{Y})$, where:

- ullet The standard basis is chosen for $\mathcal{F}(\mathcal{X})$
- \bullet The Voronoi basis is chosen for $\mathcal{F}(\mathcal{Y})$

Consider a correspondence matrix from $\mathcal{F}(\mathcal{X})$ to $\mathcal{F}(\mathcal{Y})$, where:

- The standard basis is chosen for $\mathcal{F}(\mathcal{X})$
- ullet The Voronoi basis is chosen for $\mathcal{F}(\mathcal{Y})$

$$\mathbf{C} = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ \vdots & & & \vdots \\ c_{k1} & c_{k2} & \cdots & c_{kn} \end{pmatrix} \in \mathbb{R}^{k \times n}$$

Consider a correspondence matrix from $\mathcal{F}(\mathcal{X})$ to $\mathcal{F}(\mathcal{Y})$, where:

- The standard basis is chosen for $\mathcal{F}(\mathcal{X})$
- The Voronoi basis is chosen for $\mathcal{F}(\mathcal{Y})$

$$\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ \vdots & & & \vdots \\ c_{k1} & c_{k2} & \cdots & c_{kn} \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix}$$

 ${f C}$ maps functions expressed in the n-dim. standard basis to functions expressed in the k-dim. Voronoi basis

Consider a correspondence matrix from $\mathcal{F}(\mathcal{X})$ to $\mathcal{F}(\mathcal{Y})$, where:

- The standard basis is chosen for $\mathcal{F}(\mathcal{X})$
- The Voronoi basis is chosen for $\mathcal{F}(\mathcal{Y})$

$$\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ \vdots & & & \vdots \\ c_{k1} & c_{k2} & \cdots & c_{kn} \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix}$$

 ${f C}$ maps functions expressed in the n-dim. standard basis to functions expressed in the k-dim. Voronoi basis; thus, ${\rm rank}({f C})=k$

A subspace U of V is called invariant under $T:V\to V$ if:

 $u \in U$ implies $Tu \in U$

A subspace U of V is called invariant under $T:V\to V$ if:

$$u \in U$$
 implies $Tu \in U$

If $T:V \to V$ also means $T:U \to U$, then U is an invariant subspace.

A subspace U of V is called invariant under $T:V\to V$ if:

$$u \in U$$
 implies $Tu \in U$

If $T:V\to V$ also means $T:U\to U$, then U is an invariant subspace.

Consider the 1-dimensional subspace:

$$U = \{\alpha v : \alpha \in \mathbb{R}\} = \operatorname{span}(v)$$

A subspace U of V is called invariant under $T:V\to V$ if:

$$u \in U$$
 implies $Tu \in U$

If $T:V\to V$ also means $T:U\to U$, then U is an invariant subspace.

Consider the 1-dimensional subspace:

$$U = \{\alpha v : \alpha \in \mathbb{R}\} = \operatorname{span}(v)$$

If U is invariant under T, then for some $\lambda \in \mathbb{R}$:

$$Tv = \lambda v$$

A subspace U of V is called invariant under $T:V\to V$ if:

$$u \in U$$
 implies $Tu \in U$

If $T:V\to V$ also means $T:U\to U$, then U is an invariant subspace.

Consider the 1-dimensional subspace:

$$U = \{\alpha v : \alpha \in \mathbb{R}\} = \operatorname{span}(v)$$

If U is invariant under T, then for some $\lambda \in \mathbb{R}$:

$$Tv = \lambda v$$

Conversely, if $Tv=\lambda v$ for some $\lambda\in\mathbb{R}$, then $\mathrm{span}(v)$ is a 1-dimensional subspace of V invariant under T

$$Tv = \lambda v$$

Studying invariant subspaces is a key tool for studying linear maps

$$Tv = \lambda v$$

Studying invariant subspaces is a key tool for studying linear maps

We call λ an eigenvalue of $T:V\to V$ if the above holds for some vector $v\neq 0,$ called the associated eigenvector

$$Tv = \lambda v$$

Studying invariant subspaces is a key tool for studying linear maps

We call λ an eigenvalue of $T:V\to V$ if the above holds for some vector $v\neq 0$, called the associated eigenvector

If the equation holds for m distinct eigenvalues and eigenvectors:

$$Tv_1 = \lambda_1 v_1$$

$$\vdots$$

$$Tv_m = \lambda_m v_m$$

Then it can be proven that v_1, \ldots, v_m are linearly independent

$$Tv = \lambda v$$

Studying invariant subspaces is a key tool for studying linear maps

We call λ an eigenvalue of $T:V\to V$ if the above holds for some vector $v\neq 0$, called the associated eigenvector

If the equation holds for m distinct eigenvalues and eigenvectors:

$$Tv_1 = \lambda_1 v_1$$

$$\vdots$$

$$Tv_m = \lambda_m v_m$$

Then it can be proven that v_1, \ldots, v_m are linearly independent, and it must be:

$$m \le \dim(V)$$

$$Tv_1 = \lambda_1 v_1$$

$$\vdots$$

$$Tv_m = \lambda_m v_m$$

In a sense, eigenvectors provide a decomposition of V into subspaces

$$Tv_1 = \lambda_1 v_1$$

$$\vdots$$

$$Tv_m = \lambda_m v_m$$

In a sense, eigenvectors provide a decomposition of V into subspaces

Additional notes:

 \bullet This decomposition only makes sense for $T:V\to V$

$$Tv_1 = \lambda_1 v_1$$

$$\vdots$$

$$Tv_m = \lambda_m v_m$$

In a sense, eigenvectors provide a decomposition of V into subspaces

Additional notes:

- ullet This decomposition only makes sense for T:V
 ightarrow V
- ullet If V is a function space, eigenvectors are called eigenfunctions

Eigenspaces

If distinct eigenvectors $E=(v_1,\ldots,v_m)$ correspond to the same eigenvalue λ , then E spans an eigenspace of T

An eigenspace is a subspace of V, but has dimension greater than ${\bf 1}$

Eigenspaces

If distinct eigenvectors $E=(v_1,\ldots,v_m)$ correspond to the same eigenvalue λ , then E spans an eigenspace of T

An eigenspace is a subspace of V, but has dimension greater than ${\bf 1}$

To summarize:

ullet Certain linear maps $T:V \to V$ induce invariant subspaces on V

Eigenspaces

If distinct eigenvectors $E=(v_1,\ldots,v_m)$ correspond to the same eigenvalue λ , then E spans an eigenspace of T

An eigenspace is a subspace of V, but has dimension greater than ${\bf 1}$

To summarize:

- ullet Certain linear maps T:V o V induce invariant subspaces on V
- ullet These subspaces are spanned by eigenvectors of T

Eigenspaces

If distinct eigenvectors $E=(v_1,\ldots,v_m)$ correspond to the same eigenvalue λ , then E spans an eigenspace of T

An eigenspace is a subspace of V, but has dimension greater than 1

To summarize:

- ullet Certain linear maps T:V o V induce invariant subspaces on V
- These subspaces are spanned by eigenvectors of T
- Subspaces might be high-dimensional and are called eigenspaces

Eigenspaces

If distinct eigenvectors $E=(v_1,\ldots,v_m)$ correspond to the same eigenvalue λ , then E spans an eigenspace of T

An eigenspace is a subspace of V, but has dimension greater than 1

To summarize:

- ullet Certain linear maps T:V o V induce invariant subspaces on V
- ullet These subspaces are spanned by eigenvectors of T
- Subspaces might be high-dimensional and are called eigenspaces
- ullet Eigenspaces provide a form of decomposition of V

Inner product
We want to be able to measure lengths and angles among vectors

We want to be able to measure lengths and angles among vectors

To do so, we define the inner product as a function $\langle u, v \rangle : V \times V \to \mathbb{R}$ with the properties:

• non-negativity: $\langle v, v \rangle \geq 0$ for all $v \in V$

We want to be able to measure lengths and angles among vectors

To do so, we define the inner product as a function $\langle u,v\rangle:V\times V\to\mathbb{R}$ with the properties:

- non-negativity: $\langle v,v \rangle \geq 0$ for all $v \in V$
- definiteness: $\langle v, v \rangle = 0$ iff v = 0

We want to be able to measure lengths and angles among vectors

To do so, we define the inner product as a function $\langle u,v\rangle:V\times V\to\mathbb{R}$ with the properties:

- non-negativity: $\langle v,v \rangle \geq 0$ for all $v \in V$
- definiteness: $\langle v, v \rangle = 0$ iff v = 0
- additivity: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$ for all $u,v,w\in V$

We want to be able to measure lengths and angles among vectors

To do so, we define the inner product as a function $\langle u,v\rangle:V\times V\to\mathbb{R}$ with the properties:

- non-negativity: $\langle v,v \rangle \geq 0$ for all $v \in V$
- definiteness: $\langle v, v \rangle = 0$ iff v = 0
- additivity: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$ for all $u,v,w\in V$
- homogeneity: $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ for all $\lambda \in \mathbb{R}$ and all $u, v \in V$

We want to be able to measure lengths and angles among vectors

To do so, we define the inner product as a function $\langle u,v\rangle:V\times V\to\mathbb{R}$ with the properties:

- non-negativity: $\langle v,v \rangle \geq 0$ for all $v \in V$
- definiteness: $\langle v, v \rangle = 0$ iff v = 0
- additivity: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$ for all $u,v,w\in V$
- homogeneity: $\langle \lambda u,v \rangle = \lambda \langle u,v \rangle$ for all $\lambda \in \mathbb{R}$ and all $u,v \in V$
- symmetry: $\langle u,v\rangle=\langle v,u\rangle$ for all $u,v\in V$

Examples: Inner products

Lists:

The Euclidean inner product (or dot product) is defined by

$$\langle (u_1,\ldots,u_n),(v_1,\ldots,v_n)\rangle = u_1v_1+\cdots u_nv_n$$

This is the standard inner product for vectors in \mathbb{R}^n

Examples: Inner products

Lists:

The Euclidean inner product (or dot product) is defined by

$$\langle (u_1,\ldots,u_n),(v_1,\ldots,v_n)\rangle = u_1v_1+\cdots u_nv_n$$

This is the standard inner product for vectors in \mathbb{R}^n

• Functions:

On the vector space of continuous functions $f:[-1,1] \to \mathbb{R}$

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$

Norm

Each inner product determines a norm:

$$\|v\| = \sqrt{\langle v,v\rangle}$$

Norm

Each inner product determines a norm:

$$||v|| = \sqrt{\langle v, v \rangle}$$

Examples:

• For lists with the Euclidean inner product:

$$\|(v_1,\ldots,v_n)\| = \sqrt{v_1^2 + \cdots + v_n^2}$$

Norm

Each inner product determines a norm:

$$||v|| = \sqrt{\langle v, v \rangle}$$

Examples:

• For lists with the Euclidean inner product:

$$\|(v_1,\ldots,v_n)\| = \sqrt{v_1^2 + \cdots + v_n^2}$$

• For continuous functions $f:[-1,1] \to \mathbb{R}$:

$$||f|| = \sqrt{\int_{-1}^{1} f(x)^2 dx}$$

Orthogonality

Two vectors $u,v\in V$ are orthogonal if $\langle u,v\rangle=0$

Orthogonality

Two vectors $u,v\in V$ are orthogonal if $\langle u,v\rangle=0$

For $u, v \in \mathbb{R}^2$, it can be shown that

$$\langle u, v \rangle = ||u|| ||v|| \cos \theta$$

where $\theta \in \mathbb{R}$ is the angle between u,v if we think of them as arrows with initial point at the origin

Orthogonality

Two vectors $u,v\in V$ are orthogonal if $\langle u,v\rangle=0$

For $u, v \in \mathbb{R}^2$, it can be shown that

$$\langle u, v \rangle = ||u|| ||v|| \cos \theta$$

where $\theta \in \mathbb{R}$ is the angle between u,v if we think of them as arrows with initial point at the origin

From this, we can think of the inner product as encoding a general notion of angle between two vectors:

$$\theta = \arccos \frac{\langle u, v \rangle}{\|u\| \|v\|}$$

For example, we can now think of "angle between two functions"

A basis (v_1,\ldots,v_n) is orthogonal if all the vectors are orthogonal to each other

A basis (v_1,\ldots,v_n) is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition, $\|v_i\|=1$ for all v_i

A basis (v_1,\ldots,v_n) is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition, $\|v_i\|=1$ for all v_i

Note that every collection of orthogonal vectors is linearly independent

A basis (v_1,\ldots,v_n) is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition, $\|v_i\|=1$ for all v_i

Note that every collection of orthogonal vectors is linearly independent

Examples:

A basis (v_1,\ldots,v_n) is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition, $\|v_i\|=1$ for all v_i

Note that every collection of orthogonal vectors is linearly independent

Examples:

• The standard basis in \mathbb{R}^n is orthonormal

A basis (v_1,\ldots,v_n) is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition, $\|v_i\|=1$ for all v_i

Note that every collection of orthogonal vectors is linearly independent

Examples:

- ullet The standard basis in \mathbb{R}^n is orthonormal
- $\bullet \ (\frac{1}{2},\frac{\sqrt{3}}{2}),(-\frac{\sqrt{3}}{2},\frac{1}{2}) \in \mathbb{R}^2$ is orthonormal

A basis (v_1,\ldots,v_n) is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition, $\|v_i\|=1$ for all v_i

Note that every collection of orthogonal vectors is linearly independent

Examples:

- ullet The standard basis in \mathbb{R}^n is orthonormal
- $\bullet \ (\frac{1}{2},\frac{\sqrt{3}}{2}),(-\frac{\sqrt{3}}{2},\frac{1}{2}) \in \mathbb{R}^2$ is orthonormal
- The Voronoi basis is orthogonal, but not orthonormal

A basis (v_1,\ldots,v_n) is orthogonal if all the vectors are orthogonal to each other; the basis is orthonormal if, in addition, $\|v_i\|=1$ for all v_i

Note that every collection of orthogonal vectors is linearly independent

Examples:

- ullet The standard basis in \mathbb{R}^n is orthonormal
- $\bullet \ (\frac{1}{2},\frac{\sqrt{3}}{2}),(-\frac{\sqrt{3}}{2},\frac{1}{2}) \in \mathbb{R}^2$ is orthonormal
- The Voronoi basis is orthogonal, but not orthonormal

Given an orthonormal basis, $v \in V$ can be written as a linear combination:

$$v = \langle v, v_1 \rangle v_1 + \cdots \langle v, v_n \rangle v_n$$

So the combination coefficients are simply given by inner products

For vectors $u, v \in V$ in the standard basis $\{e_i\}$, we can write:

$$\langle u, v \rangle = \langle \sum_{i} u_{i} e_{i}, \sum_{j} v_{j} e_{j} \rangle$$

For vectors $u,v\in V$ in the standard basis $\{e_i\}$, we can write:

$$\langle u, v \rangle = \langle \sum_{i} u_{i} e_{i}, \sum_{j} v_{j} e_{j} \rangle$$

$$= \sum_{i,j} \langle u_{i} e_{i}, v_{j} e_{j} \rangle$$

For vectors $u, v \in V$ in the standard basis $\{e_i\}$, we can write:

$$\langle u, v \rangle = \langle \sum_{i} u_{i} e_{i}, \sum_{j} v_{j} e_{j} \rangle$$

$$= \sum_{i,j} \langle u_{i} e_{i}, v_{j} e_{j} \rangle$$

$$= \sum_{i,j} u_{i} v_{j} \underbrace{\langle e_{i}, e_{j} \rangle}_{=0 \text{ if } i \neq j}$$

For vectors $u, v \in V$ in the standard basis $\{e_i\}$, we can write:

$$\langle u, v \rangle = \langle \sum_{i} u_{i} e_{i}, \sum_{j} v_{j} e_{j} \rangle$$

$$= \sum_{i,j} \langle u_{i} e_{i}, v_{j} e_{j} \rangle$$

$$= \sum_{i,j} u_{i} v_{j} \underbrace{\langle e_{i}, e_{j} \rangle}_{=0 \text{ if } i \neq j}$$

$$= \sum_{i} u_{i} v_{i}$$

which corresponds to the standard Euclidean inner product

For vectors $u, v \in V$ in the standard basis $\{e_i\}$, we can write:

$$\langle u, v \rangle = \langle \sum_{i} u_{i} e_{i}, \sum_{j} v_{j} e_{j} \rangle$$

$$= \sum_{i,j} \langle u_{i} e_{i}, v_{j} e_{j} \rangle$$

$$= \sum_{i,j} u_{i} v_{j} \underbrace{\langle e_{i}, e_{j} \rangle}_{=0 \text{ if } i \neq j}$$

$$= \sum_{i} u_{i} v_{i}$$

which corresponds to the standard Euclidean inner product In matrix notation, we can thus write

$$\langle u, v \rangle = \mathbf{u}^{\top} \mathbf{v}$$

For vectors $u,v\in V$ in some other basis $\{w_i\}$, we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \langle w_i, w_j \rangle$$

For vectors $u, v \in V$ in some other basis $\{w_i\}$, we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\mathsf{T}} \mathbf{w}_j}$$

For vectors $u, v \in V$ in some other basis $\{w_i\}$, we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\mathsf{T}} \mathbf{w}_j}$$
$$= \mathbf{u}^{\mathsf{T}} \mathbf{W}^{\mathsf{T}} \mathbf{W} \mathbf{v}$$

where ${f W}$ contains the basis vectors ${f w}_i$ as its columns

For vectors $u, v \in V$ in some other basis $\{w_i\}$, we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\top} \mathbf{w}_j}$$
$$= \mathbf{u}^{\top} \mathbf{W}^{\top} \mathbf{W} \mathbf{v}$$

where ${f W}$ contains the basis vectors ${f w}_i$ as its columns

• If $\{w_i\}$ is orthonormal, then $\mathbf{W}^{\top}\mathbf{W} = \mathbf{I}$

For vectors $u, v \in V$ in some other basis $\{w_i\}$, we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\top} \mathbf{w}_j}$$
$$= \mathbf{u}^{\top} \mathbf{W}^{\top} \mathbf{W} \mathbf{v}$$

where ${f W}$ contains the basis vectors ${f w}_i$ as its columns

- If $\{w_i\}$ is orthonormal, then $\mathbf{W}^{\top}\mathbf{W} = \mathbf{I}$
- Another way to see the derivation above is as follows:

For vectors $u, v \in V$ in some other basis $\{w_i\}$, we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\top} \mathbf{w}_j}$$
$$= \mathbf{u}^{\top} \mathbf{W}^{\top} \mathbf{W} \mathbf{v}$$

where ${f W}$ contains the basis vectors ${f w}_i$ as its columns

- ullet If $\{w_i\}$ is orthonormal, then $\mathbf{W}^ op \mathbf{W} = \mathbf{I}$
- Another way to see the derivation above is as follows:
 - Wu gives the coefficients of u in the standard basis (and similarly for v)

For vectors $u, v \in V$ in some other basis $\{w_i\}$, we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\top} \mathbf{w}_j}$$
$$= \mathbf{u}^{\top} \mathbf{W}^{\top} \mathbf{W} \mathbf{v}$$

where W contains the basis vectors w_i as its columns

- If $\{w_i\}$ is orthonormal, then $\mathbf{W}^{\top}\mathbf{W} = \mathbf{I}$
- Another way to see the derivation above is as follows:
 - Wu gives the coefficients of u in the standard basis (and similarly for v)
 - Once we are in the standard basis, we can write

$$\langle u, v \rangle = (\mathbf{W}\mathbf{u})^{\top} (\mathbf{W}\mathbf{u})$$

For vectors $u, v \in V$ in some other basis $\{w_i\}$, we can write:

$$\langle u, v \rangle = \sum_{i,j} u_i v_j \underbrace{\langle w_i, w_j \rangle}_{\mathbf{w}_i^{\top} \mathbf{w}_j}$$
$$= \mathbf{u}^{\top} \mathbf{W}^{\top} \mathbf{W} \mathbf{v}$$

where ${f W}$ contains the basis vectors ${f w}_i$ as its columns

- If $\{w_i\}$ is orthonormal, then $\mathbf{W}^{\top}\mathbf{W} = \mathbf{I}$
- Another way to see the derivation above is as follows:
 - Wu gives the coefficients of u in the standard basis (and similarly for v)
 - · Once we are in the standard basis, we can write

$$\langle u, v \rangle = (\mathbf{W}\mathbf{u})^{\top}(\mathbf{W}\mathbf{u}) = \mathbf{u}^{\top}\mathbf{W}^{\top}\mathbf{W}\mathbf{u}$$

The Voronoi basis can be made orthonormal by rescaling each basis vector:

$$v_i \mapsto \frac{v_i}{\|v_i\|}$$

The Voronoi basis can be made orthonormal by rescaling each basis vector:

$$v_i \mapsto \frac{v_i}{\|v_i\|}$$

With this rescaling, we get $\mathbf{V}^{ op}\mathbf{V} = \mathbf{I}$

The Voronoi basis can be made orthonormal by rescaling each basis vector:

$$v_i \mapsto \frac{v_i}{\|v_i\|}$$

With this rescaling, we get $\mathbf{V}^{\top}\mathbf{V} = \mathbf{I}$

Now given coefficients f in the standard basis, in order to find its coefficients in the Voronoi basis we solved:

$$\mathbf{V}\mathbf{c}\approx\mathbf{f}$$

The Voronoi basis can be made orthonormal by rescaling each basis vector:

$$v_i \mapsto \frac{v_i}{\|v_i\|}$$

With this rescaling, we get $\mathbf{V}^{\top}\mathbf{V} = \mathbf{I}$

Now given coefficients f in the standard basis, in order to find its coefficients in the Voronoi basis we solved:

$$\mathbf{Vc} \approx \mathbf{f}$$

But they can be simply obtained as:

$$\mathbf{c} = \mathbf{V}^{\top} \mathbf{f}$$

The Voronoi basis can be made orthonormal by rescaling each basis vector:

$$v_i \mapsto \frac{v_i}{\|v_i\|}$$

With this rescaling, we get $\mathbf{V}^{\top}\mathbf{V} = \mathbf{I}$

Now given coefficients f in the standard basis, in order to find its coefficients in the Voronoi basis we solved:

$$\mathbf{Vc} \approx \mathbf{f}$$

But they can be simply obtained as:

$$\mathbf{c} = \mathbf{V}^{\top} \mathbf{f}$$

This is true for any orthonormal basis

Exercise: Rank of a map

Implement the example of slide number 22 (download shapes tr_reg_010 and tr_reg_031 from the course website)

For these shapes, the ground-truth correspondence is the identity.

- ullet Use the standard basis U on the source
- ullet Use the Voronoi basis V on the target, based on 50 FPS
- ullet Encode the ground-truth map as a matrix ${f C}$ wrt bases U and V
- ullet Map the x coordinate function from source to target via ${f C}$

Visualize the function on source and target using the jet colormap; you should get a similar rendering as the one shown in slide 22.

Suggested reading

See sections 3.F, 5.A - 6.B of:

S. Axler, "Linear algebra done right – 3rd edition". Springer, 2015