* Abstract

A relatively unexplored geometric property of Potts models clusters is their ``diameter'', \$D\$ -- the longest shortest path between any two points on the cluster. We report numerical results for the fractal dimension of the diameter, D_{\min} and the fractal dimension of the chemical distance, d_{\min} , for 2D critical Potts clusters with q=1,2,3,4,5. We find that $D_{\min} = d_{\min}$ within numerical error.

* Intro

- * Motivation
- * Determines efficiency of cluster algorithms
- * Unexplored geometric property of random clusters
- * Places bounds on communication of processes in a network
- * Comparison to previous studies of the chemical distance
- * Potts Model
- * The Model (refer to Sokal)
- * Connection to Random Cluster Model
- * The chemical distance and the diameter
- * Definitions
- * [FIGURE] illustrating typical configuration
- * Mean field expectations
- * Upper critical dimensions for perc, Ising, three-state (with refs)
- * Work of Nachmias and Peres
- * d_min = 1.0 for q>5 (rationale??)
- * Swedsen Wang Algorithm
- * See Sokal's description
- * Measuring the Chemical Distance
- * Methods in the literature
- * Bus bar method
- * average over various clusters
- * Grassberger growth method
- * Our methods
- * Average over various clusters and euclidean distances
- * "Random perimeter point" method
- * Expectation that they will be the same
- * Measuring the Diameter
- * Our method
- * Simulation Details
- * Range of L, 16 to 128
- * Initial configuration random; discard first 10/5 iterations
- * Compare discard interval with autocorrelation time
- * Total run length for all systesm
- * Each data set consists of several runs combined
- * CPU time required in units of L^2 microseconds / iteration, type of processer
- * run the system for shorter times at higher dimensions (??)
- * Data Analysis
- * Fit to power-law Ansatz D=AL^p using the standard weighted least-squares method
- * Fit points with lower cutoff of $L >= L_{min}$ to minimize corrections to scaling
- * Choose fit with smallest L_{min} for which goodness of fit is reasonable (Q value within a certain range)
- * Error analysis
- * Data is taken at intervals assumed to be statistically independent
- * sigma = [fill in]
- * blocking method is used for comparison
- * brief blocking method description, references
- * Results
- * Results for D=2, q=1,2,3,4,5
- * Table
- * [FIGURE]: difference, fit and data for various a
- * Table of results for D=3, q=1,2,3,4,5
- * Preliminary results for D=6,4,8 for q=1,2,3 respectively
- * comparison with mean field expectations