Understanding KNN w.r.t different Distance metrics

Before I jump on to KNN or other similar distance dependent algorithms lets first take a moment to understand the various distance metrics.

My objective for creating this notebook is understanding the various distances which we can leverage while working on a usecase because there is no single distance metric that can be applied in every problem.

Notebook Contents

```
1. Libraries Import
```

2. Distance Calculations

A. CASE-I: Entire variable as an one row vector

a. Euclidean Distance

b. Manhattan Distance

B. CASE-II: Entire variable as an one column vector

a. Euclidean Distance

b. Manhattan Distance

C. CASE-II: Entire variable as an one column vector

a. Euclidean Distance

b. Manhattan Distance

c. Chebyshev Distance

d. Mahalanobis Distance

D. CASE-IV: Working with DataFrame object

E. CASE-V: Applying Mahalanobis Distance Metric on Breast Cancer

a. Hypothesis Testing

i. CASE-1: Only +ve observations

ii. CASE-2: Only -ve observations

F. Calculate Euclidean Distance

a. Case-1: Self Implementation

b. Case-2: Using Scipy

G. Radius Neighbors

a. Case:1: Using large Radius

b. Case:2: Different values of Radius & Nearest Neighbors

H. KNN: Using precomputed Mahalanobis Distance

Packages Import

```
In [127...
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy
```

```
import statsmodels as stm

from sklearn.datasets import load_breast_cancer
from sklearn.neighbors import KNeighborsClassifier, DistanceMetric, RadiusNeighborsC

%matplotlib inline
```

Distance_Calculations

CASE-I

Entire variable as an one row vector

```
X = np.array([[1,2,3]])
 In [2]:
          Y = np.array([[3,4,5]])
          X, Y
 Out[2]: (array([[1, 2, 3]]), array([[3, 4, 5]]))
         X.shape, Y.shape, X.ndim, Y.ndim
 In [3]:
Out[3]: ((1, 3), (1, 3), 2, 2)
         1.1.Euclidean Distance
          eu_dist = DistanceMetric.get_metric('euclidean')
 In [4]:
         #Pair-wise distance
 In [5]:
          eu_dist.pairwise(X,Y)
 Out[5]: array([[3.46410162]])
         #Reduced distance is squared values in case of Euclidean
 In [6]:
          eu_dist.dist_to_rdist(X), eu_dist.dist_to_rdist(Y)
 Out[6]: (array([[1, 4, 9]], dtype=int32), array([[ 9, 16, 25]], dtype=int32))
          #Reduced distance is squared root of values in case of Euclidean
 In [7]:
          eu dist.rdist to dist(X), eu dist.rdist to dist(Y)
                            , 1.41421356, 1.73205081]]),
 Out[7]: (array([[1.
          array([[1.73205081, 2.
                                        , 2.23606798]]))
         1.2. Manhattan Distance
 In [8]:
         man_hat_dist = DistanceMetric.get_metric('manhattan')
 In [9]:
         man hat dist.pairwise(X,Y)
Out[9]: array([[6.]])
          #Reduced distance is same values in case of Manhattan
In [10]:
          man_hat_dist.dist_to_rdist(X), man_hat_dist.dist_to_rdist(Y)
Out[10]: (array([[1, 2, 3]]), array([[3, 4, 5]]))
          #Reduced distance is same values in case of Manhattan
In [11]:
          man_hat_dist.rdist_to_dist(X), man_hat_dist.rdist_to_dist(Y)
Out[11]: (array([[1, 2, 3]]), array([[3, 4, 5]]))
```

CASE-II

```
Entire variable as an one column vector
          XX = X.copy().reshape(3,1)
In [12]:
          YY = Y.copy().reshape(3,1)
In [13]:
          XX,YY
Out[13]: (array([[1],
                  [2],
                  [3]]),
           array([[3],
                  [4],
                  [5]]))
         2.1.Euclidean Distance
          eu_dist.pairwise(XX,YY)
In [14]:
Out[14]: array([[2., 3., 4.],
                 [1., 2., 3.],
                 [0., 1., 2.]])
          eu_dist.dist_to_rdist(XX), eu_dist.dist_to_rdist(YY)
In [15]:
Out[15]: (array([[1],
                  [4],
                  [9]], dtype=int32),
           array([[ 9],
```

2.2.Manhattan_Distance

[25]], dtype=int32))

[16],

CASE-III

Working with real-valued integer variables


```
In [20]: [shoe_size[5],body_mass[5]], [shoe_size[4],body_mass[4]]
```

Out[20]: ([5, 20], [6, 21])

3.1.Euclidean_Distance

```
In [21]: eu_dist.pairwise([[shoe_size[5],body_mass[5]]], [[shoe_size[4],body_mass[4]]])
```

Out[21]: array([[1.41421356]])

3.2.Manhattan_Distance

```
In [22]: man_hat_dist.pairwise([[shoe_size[5],body_mass[5]]], [[shoe_size[4],body_mass[4]]])
Out[22]: array([[2.]])
```

3.3.Chebyshev_Distance

```
In [23]: chby_dist = DistanceMetric.get_metric('chebyshev')
In [24]: chby_dist.pairwise([[shoe_size[5],body_mass[5]]], [[shoe_size[4],body_mass[4]]])
Out[24]: array([[1.]])
In [25]: shoe_size.reshape((1,7)),body_mass.reshape((1,7))
Out[25]: (array([[ 7,  8,  9,  10,  6,  5,  7]]), array([[23,  24,  29,  35,  21,  20,  25]]))
In [26]: chby_dist.pairwise(shoe_size.reshape((1,7)),body_mass.reshape((1,7))) ## 35 - 10 = 2
Out[26]: array([[25.]])
```

3.4. Mahalanobis_Distance

```
body_data_df = pd.DataFrame({'shoe_size':shoe_size, 'body_mass':body_mass})
In [27]:
In [28]:
           np.square(body_data_df.corr())
Out[28]:
                     shoe_size body_mass
           shoe_size
                      1.000000
                                 0.879253
          body_mass
                      0.879253
                                 1.000000
           np.square(np.corrcoef(shoe_size,body_mass))
In [29]:
                            , 0.8792535],
          array([[1.
Out[29]:
                 [0.8792535, 1.
           ## Calculating Mahalanobis Distance ::: (X - mu) * inv(cov(X)) * (X - mu).T
In [30]:
           x_min_mu = body_data_df - np.mean(body_data_df)
           inv_cov_x = pd.DataFrame(scipy.linalg.inv(body_data_df.cov()))
           x_min_mu_T = x_min_mu_T
           x_min_mu.shape, inv_cov_x.shape, x_min_mu_T.shape
In [31]:
Out[31]: ((7, 2), (2, 2), (2, 7))
           mahanalobis_dists_matrix = pd.DataFrame(np.dot(np.dot(x_min_mu,inv_cov_x),x_min_mu_T
In [32]:
           mahanalobis_dists_matrix
                                        2
                                                 3
                                                           4
                                                                     5
                                                                               6
Out[32]:
          0
             0.416337
                       0.875584
                                 0.014185 -1.177375
                                                     0.287251 -0.171996 -0.243986
          1
             0.875584
                       2.705124
                                 0.959986
                                         -1.678823
                                                    -0.060287 -1.889828 -0.911756
             0.014185
                       0.959986
                                 1.002187
                                           0.818488
                                                    -0.705715 -1.651516
                                                                       -0.437615
            -1.177375 -1.678823
                                 0.818488
                                           4.065489
                                                    -1.425616 -0.924168
                                                                         0.322005
          3
                       -0.060287
             0.287251
                                -0.705715
                                          -1.425616
                                                     0.709262
                                                               1.056800
                                                                         0.138306
             -0.171996
                      -1.889828
                                -1.651516
                                          -0.924168
                                                     1.056800
                                                               2.774632
                                                                         0.806076
            -0.243986 -0.911756 -0.437615
                                           0.322005
                                                     0.138306
                                                               0.806076
                                                                         0.326970
In [33]:
           np.diagonal(mahanalobis_dists_matrix)
Out[33]: array([0.41633666, 2.70512442, 1.00218689, 4.0654885, 0.70926178,
                 2.77463207, 0.32696968])
         CASE-IV
```

Working with DataFrame object

Understood Mahalanobis Distance via link ::

https://www.machinelearningplus.com/statistics/mahalanobis-distance/

```
In [34]:
          filepath = 'https://raw.githubusercontent.com/selva86/datasets/master/diamonds.csv'
          df = pd.read_csv(filepath).iloc[0:500, [0,4,6]]
          df.shape, df.ndim, df.head()
         ((500, 3),
Out[34]:
          2,
                     depth
              carat
                            price
                      61.5
          0
               0.23
                               326
                      59.8
                               326
               0.21
```

```
0.23
                    56.9
          2
                             327
              0.29 62.4
                             334
          3
              0.31
                     63.3
                             335)
          def mahalanobis(x=None, data=None):
In [36]:
              """This function generates the Mahalanobis Distance"""
              x_{\min} = x - np.mean(data)
              cov = np.cov(data.values.T)
              inv_cov_x = scipy.linalg.inv(cov)
              first_term = np.dot(x_min_mu, inv_cov_x)
              mahal_dist = np.dot(first_term, x_min_mu.T)
              return mahal_dist.diagonal(), inv_cov_x
          df_x = df[['carat', 'depth', 'price']].head(500)
          df_x['mahala'],VI = mahalanobis(x=df_x, data=df[['carat', 'depth', 'price']])
          df_x.head()
Out[36]:
            carat depth price
                                mahala
                               3.766898
             0.23
                          326
                    61.5
```

Manual Calculation

0.21

0.23

0.29

0.31

2

59.8

56.9

62.4

326

334

63.3 335 4.661105

5.040171

3.876022

327 11.473766

	.DataFrame		p.mean(ar,	//.varues	ш зстру.т	THATE THE	(41.607()	·vaiues//	w ((ui
(50	00, 500)								
рс	.DataFrame	e(((df - n	p.mean(df)).values	@ scipy.l	inalg.inv	(df.cov()	.values))	@ ((df
	0	1	2	3	4	5	6	7	8
(3.766898	3.916408	3.985651	3.509290	3.396797	3.658189	3.682101	3.631782	3.615154
•	3.916408	5.040171	6.724389	3.101321	2.465016	3.068993	3.374325	3.531883	1.749026
2	3.985651	6.724389	11.473766	2.590670	1.152378	1.861321	2.675488	3.354030	-1.915498
3	3.509290	3.101321	2.590670	3.876022	4.122082	3.776873	3.677306	3.664491	4.162841
4	1 3.396797	2.465016	1.152378	4.122082	4.661105	4.052604	3.808965	3.714524	5.067003
••	•								
49!	-1.030892	-1.550898	-2.805898	-1.077694	-0.864771	-0.577531	-0.770679	-1.059940	0.449597
496	-0.963937	-0.695969	-0.526231	-1.356482	-1.546962	-1.124048	-1.076651	-1.143898	-1.233603
497	7 -0.877226	0.018579	1.250222	-1.610250	-2.134672	-1.516238	-1.285177	-1.208840	-2.467239
498	3 -0.901139	-0.286753	0.436055	-1.510683	-1.891033	-1.321054	-1.175901	-1.178855	-1.866096
499	-1.741025	-3.158284	-4.643153	-0.159136	0.751059	-0.777156	-1.092296	-1.001465	0.323868
500	rows × 500	columns							
4									

So, good here as everything matched!!

CASE-V

Applying Mahalanobis Distance Metric on Breast Cancer

```
In [40]:
            cancer = load breast cancer()
In [41]:
            cancer_df = pd.DataFrame(cancer.data,columns=cancer.feature_names)
            cancer_df.head()
Out[41]:
                                                                                         mean
               mean
                        mean
                                   mean
                                          mean
                                                       mean
                                                                     mean
                                                                                mean
                                                                                                     mean
                                                                                       concave
              radius
                      texture
                              perimeter
                                           area
                                                 smoothness
                                                              compactness
                                                                            concavity
                                                                                                 symmetry
                                                                                         points
                                                                                                            diı
               17.99
           0
                        10.38
                                  122.80
                                         1001.0
                                                      0.11840
                                                                    0.27760
                                                                               0.3001
                                                                                        0.14710
                                                                                                    0.2419
               20.57
                        17.77
                                  132.90
                                         1326.0
                                                      0.08474
                                                                    0.07864
                                                                                        0.07017
                                                                                                    0.1812
           1
                                                                               0.0869
                                  130.00 1203.0
           2
               19.69
                        21.25
                                                      0.10960
                                                                    0.15990
                                                                               0.1974
                                                                                        0.12790
                                                                                                    0.2069
           3
               11.42
                        20.38
                                   77.58
                                           386.1
                                                      0.14250
                                                                    0.28390
                                                                               0.2414
                                                                                        0.10520
                                                                                                    0.2597
               20.29
                                  135.10 1297.0
                                                      0.10030
                                                                    0.13280
                                                                               0.1980
                                                                                                    0.1809
                        14.34
                                                                                        0.10430
          5 rows × 30 columns
            y = pd.DataFrame(cancer.target,columns=['Label'])
In [42]:
            y.head()
Out[42]:
              Label
           0
                  0
           1
                  0
           2
                  0
           3
                  0
           4
                  0
            cancer_df = pd.concat([cancer_df,y],axis=1).copy(deep=True)
In [43]:
            cancer_df.head()
Out[43]:
                                                                                          mean
               mean
                        mean
                                   mean
                                          mean
                                                       mean
                                                                     mean
                                                                                mean
                                                                                                     mean
                                                                                       concave
                              perimeter
              radius
                                                 smoothness
                                                                            concavity
                      texture
                                           area
                                                              compactness
                                                                                                 symmetry
                                                                                                            diı
                                                                                         points
           0
               17.99
                        10.38
                                  122.80
                                         1001.0
                                                      0.11840
                                                                    0.27760
                                                                               0.3001
                                                                                        0.14710
                                                                                                    0.2419
               20.57
                                                                                        0.07017
           1
                        17.77
                                  132.90 1326.0
                                                      0.08474
                                                                    0.07864
                                                                               0.0869
                                                                                                    0.1812
           2
               19.69
                        21.25
                                  130.00
                                         1203.0
                                                      0.10960
                                                                    0.15990
                                                                               0.1974
                                                                                        0.12790
                                                                                                    0.2069
           3
                                   77.58
               11.42
                        20.38
                                           386.1
                                                      0.14250
                                                                    0.28390
                                                                               0.2414
                                                                                        0.10520
                                                                                                    0.2597
               20.29
                        14.34
                                  135.10 1297.0
                                                      0.10030
                                                                    0.13280
                                                                               0.1980
                                                                                        0.10430
                                                                                                    0.1809
          5 rows × 31 columns
            from sklearn.model_selection import train_test_split
In [44]:
            from sklearn.metrics import accuracy_score, precision_score, recall_score
```

In [46]: X_train.shape, X_test.shape, y_train.shape, y_test.shape

Out[46]: ((341, 30), (228, 30), (341,), (228,))

Seggregating the positive and negative observations

Only positivies

```
In [47]: train_df = pd.concat([X_train,y_train],axis=1).copy(deep=True)
    train_df_pos = train_df[train_df['Label']==1].copy(deep=True)
    train_df_pos.shape
```

Out[47]: (214, 31)

In [48]: train_df_pos.head()

Out[48]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry
525	8.571	13.10	54.53	221.3	0.10360	0.07632	0.025650	0.015100	0.1678
58	13.050	19.31	82.61	527.2	0.08060	0.03789	0.000692	0.004167	0.1819
342	11.060	14.96	71.49	373.9	0.10330	0.09097	0.053970	0.033410	0.1776
413	14.990	22.11	97.53	693.7	0.08515	0.10250	0.068590	0.038760	0.1944
559	11.510	23.93	74.52	403.5	0.09261	0.10210	0.111200	0.041050	0.1388

5 rows × 31 columns

Only negatives

Out[49]: (127, 31)

In [50]: train_df_neg.head()

Out[50]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	•
39	13.48	20.82	88.40	559.2	0.10160	0.12550	0.1063	0.05439	0.1720	
229	12.83	22.33	85.26	503.2	0.10880	0.17990	0.1695	0.06861	0.2123	
40	13.44	21.58	86.18	563.0	0.08162	0.06031	0.0311	0.02031	0.1784	
172	15.46	11.89	102.50	736.9	0.12570	0.15550	0.2032	0.10970	0.1966	
213	17.42	25.56	114.50	948.0	0.10060	0.11460	0.1682	0.06597	0.1308	

5 rows × 31 columns

Distance calculation for positive observations

mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry
8.571	13.10	54.53	221.3	0.10360	0.07632	0.025650	0.015100	0.1678
13.050	19.31	82.61	527.2	0.08060	0.03789	0.000692	0.004167	0.1819
11.060	14.96	71.49	373.9	0.10330	0.09097	0.053970	0.033410	0.1776
14.990	22.11	97.53	693.7	0.08515	0.10250	0.068590	0.038760	0.1944
11.510	23.93	74.52	403.5	0.09261	0.10210	0.111200	0.041050	0.1388
	8.571 13.050 11.060 14.990	radius texture 8.571 13.10 13.050 19.31 11.060 14.96 14.990 22.11	radius texture perimeter 8.571 13.10 54.53 13.050 19.31 82.61 11.060 14.96 71.49 14.990 22.11 97.53	radius texture perimeter area 8.571 13.10 54.53 221.3 13.050 19.31 82.61 527.2 11.060 14.96 71.49 373.9 14.990 22.11 97.53 693.7	radius texture perimeter area smoothness 8.571 13.10 54.53 221.3 0.10360 13.050 19.31 82.61 527.2 0.08060 11.060 14.96 71.49 373.9 0.10330 14.990 22.11 97.53 693.7 0.08515	radius texture perimeter area smoothness compactness 8.571 13.10 54.53 221.3 0.10360 0.07632 13.050 19.31 82.61 527.2 0.08060 0.03789 11.060 14.96 71.49 373.9 0.10330 0.09097 14.990 22.11 97.53 693.7 0.08515 0.10250	radius texture perimeter area smoothness compactness concavity 8.571 13.10 54.53 221.3 0.10360 0.07632 0.025650 13.050 19.31 82.61 527.2 0.08060 0.03789 0.000692 11.060 14.96 71.49 373.9 0.10330 0.09097 0.053970 14.990 22.11 97.53 693.7 0.08515 0.10250 0.068590	mean radius mean texture mean perimeter mean area mean area mean smoothness mean compactness mean concave points 8.571 13.10 54.53 221.3 0.10360 0.07632 0.025650 0.015100 13.050 19.31 82.61 527.2 0.08060 0.03789 0.000692 0.004167 11.060 14.96 71.49 373.9 0.10330 0.09097 0.053970 0.033410 14.990 22.11 97.53 693.7 0.08515 0.10250 0.068590 0.038760

5 rows × 32 columns

Distance calculation for negative observations

```
In [55]: train_df_neg['mahal_dist'] = train_df_neg_mh_dist.diagonal()
```

In [56]: train_df_neg.head()

Out[56]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	•
39	13.48	20.82	88.40	559.2	0.10160	0.12550	0.1063	0.05439	0.1720	
229	12.83	22.33	85.26	503.2	0.10880	0.17990	0.1695	0.06861	0.2123	
40	13.44	21.58	86.18	563.0	0.08162	0.06031	0.0311	0.02031	0.1784	
172	15.46	11.89	102.50	736.9	0.12570	0.15550	0.2032	0.10970	0.1966	
213	17.42	25.56	114.50	948.0	0.10060	0.11460	0.1682	0.06597	0.1308	

5 rows × 32 columns

Hypothesis_Testing

Find Chi-square test Critical Value

```
In [57]: from scipy.stats import chi2
  chi2.ppf((1-0.01), df=2)
```

Out[57]: 9.21034037197618

Find Chi-square P-Value

```
In [58]: 1 - chi2.cdf(12.7,df=2)
```

Out[58]: 0.0017467471362611064

CASE-1

Only +ve observations

Here, first I'll perform the test on positive observations considering the null hypothesis as TRUE or POSITIVE and the alternate hypothesis as FALSE or negative.

Means,

- Ho = All are positive observations
- Ha = All are not positive observations

Out[60]: 50.89218131151707

So, above is the critical value and if mahalanobis distance is greater than this value then we will reject the null hypothesis.

```
In [61]: train_df_pos['p_val'] = 1 - chi2.cdf(train_df_pos['mahal_dist'], df=dof)
In [62]: train_df_pos.head()
```

Out[62]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry
525	8.571	13.10	54.53	221.3	0.10360	0.07632	0.025650	0.015100	0.1678
58	13.050	19.31	82.61	527.2	0.08060	0.03789	0.000692	0.004167	0.1819
342	11.060	14.96	71.49	373.9	0.10330	0.09097	0.053970	0.033410	0.1776
413	14.990	22.11	97.53	693.7	0.08515	0.10250	0.068590	0.038760	0.1944
559	11.510	23.93	74.52	403.5	0.09261	0.10210	0.111200	0.041050	0.1388

5 rows × 33 columns

```
In [63]: train_df_pos.shape
Out[63]: (214, 33)
In [64]: train_df_pos[train_df_pos['p_val'] < 0.01].shape
Out[64]: (26, 33)</pre>
```

```
rej_null_hyp = train_df_pos[train_df_pos['p_val'] < 0.01]['mahal_dist'].values</pre>
In [65]:
          rej_null_hyp
Out[65]: array([ 81.02384852,
                               72.07114302,
                                             52.08522329,
                                                           62.90183841,
                 69.0939475 , 66.10649304, 66.76169799,
                                                           76.36211933,
                118.79639287, 145.94310336,
                                             59.52453926,
                                                           73.90722389,
                 68.33222003, 96.34523381, 54.67357222, 154.13771741,
                 76.20390925, 100.12061258, 74.13167215, 58.07212966,
                               54.58637054, 129.41505176, 60.14696292,
                194.52697533,
                 89.70806506,
                               54.60903334])
          rej_null_hyp.min(), rej_null_hyp.max()
In [66]:
         (52.085223289182096, 194.5269753331549)
          train_df_pos[train_df_pos['p_val'] >= 0.01]['mahal_dist'].min(), train_df_pos[train_
In [67]:
Out[67]: (6.167006044471601, 50.03579960395341)
```

So, the null hypothesis got rejected based on the above 26 observations where the mahalanobis distance is greater than the critical value thus the distance ended up in the rejection region.

CASE-2

Only -ve observations

Now, I'll perform the test on negative observations considering the null hypothesis as FALSE or NEGATIVE and the alternate hypothesis as TRUE or POSITIVE.

Means,

In [68]:

- Ho = All are negative observations
- Ha = All are not negative observations

```
In [69]:
            train_df_neg.head()
Out[69]:
                                                                                               mean
                  mean
                           mean
                                      mean
                                              mean
                                                           mean
                                                                          mean
                                                                                     mean
                                                                                                           mean
                                                                                             concave
                 radius texture
                                 perimeter
                                                    smoothness compactness
                                               area
                                                                                                       symmetry
                                                                                               points
            39
                  13.48
                           20.82
                                       88.40
                                              559.2
                                                          0.10160
                                                                        0.12550
                                                                                     0.1063
                                                                                              0.05439
                                                                                                           0.1720
           229
                  12.83
                           22.33
                                       85.26
                                              503.2
                                                          0.10880
                                                                        0.17990
                                                                                    0.1695
                                                                                             0.06861
                                                                                                          0.2123
            40
                  13.44
                           21.58
                                       86.18
                                              563.0
                                                          0.08162
                                                                        0.06031
                                                                                    0.0311
                                                                                             0.02031
                                                                                                          0.1784
                  15.46
                                                                                                           0.1966
           172
                           11.89
                                      102.50
                                              736.9
                                                          0.12570
                                                                        0.15550
                                                                                    0.2032
                                                                                             0.10970
           213
                  17.42
                           25.56
                                      114.50
                                              948.0
                                                          0.10060
                                                                        0.11460
                                                                                    0.1682
                                                                                             0.06597
                                                                                                          0.1308
```

train_df_neg['p_val'] = 1 - chi2.cdf(train_df_neg['mahal_dist'], df=dof)

5 rows × 33 columns

```
train_df_neg.shape
In [70]:
Out[70]: (127, 33)
          train_df_neg[train_df_neg['p_val'] < 0.01].shape</pre>
In [71]:
Out[71]: (14, 33)
          rej_null_hyp_neg = train_df_neg[train_df_neg['p_val'] < 0.01]['mahal_dist'].values</pre>
In [72]:
          rej_null_hyp_neg
                                65.26593056,
                                             57.53158832, 74.66179609,
Out[72]: array([104.13997248,
                               79.93825875, 52.30118131, 67.52958184,
                 55.42755962,
                 58.82178158,
                               52.2838042 , 61.00788787, 102.21571179,
                 60.01309311, 70.31700251])
In [73]:
          rej_null_hyp_neg.min(), rej_null_hyp_neg.max()
Out[73]: (52.28380420063802, 104.13997248029511)
          train_df_neg[train_df_neg['p_val'] >= 0.01]['mahal_dist'].min(), train_df_neg[train_
In [74]:
Out[74]: (8.361142675252562, 49.68938504959755)
```

So, the null hypothesis got rejected based on the above 14 observations where the mahalanobis distance is greater than the critical value thus the distance ended up in the rejection region.

Calculate Euclidean Distance

Euclidean Distance :: It performs the pairwise difference and not takes the distribution into account.

```
In [75]: x1 = np.array([1,2,3,4,5])
x2 = np.array([5,6,7,8,9])
```

Case-1

Self implementation

```
In [97]:
          def calc_euclidean_dist(vec1, vec2):
              Description: This function is created for calculating the Euclidean Distance bet
              Input parameters : It accepts below 2 parameters:

    vec1 : np.array

                      First vector
                  2. vec2 : np.array
                      Second vector
              Output : It returns the pandas dataframe with the input vectors and calculated E
              data points = list(zip(x1,x2))
              point_a = data_points[0]
              distances = []
              for i in range(len(data points)):
                  euc_dist = np.sqrt(np.sum(np.square(np.array(data_points[0]) - np.array(data
                  distances.append(euc dist)
              euc_df = pd.DataFrame({'vec1':vec1,'vec2':vec2,'euclidean_dist':distances})
              return euc df
          calc_euclidean_dist(x1,x2)
In [98]:
```

Out[98]:		vec1	vec2	euclidean_dist
	0	1	5	0.000000
	1	2	6	1.414214
	2	3	7	2.828427
	3	4	8	4.242641
	4	5	9	5.656854

Case-2

Using Scipy

So, good here as the results matched!!

Radius_Neighbors

Reference Link of Fixed Nearest Neighbors ::

- https://machinelearningmastery.com/radius-neighbors-classifier-algorithm-with-python/
- **Julia Blog** :: https://jaantollander.com/post/searching-for-fixed-radius-near-neighbors-with-cell-lists-algorithm/

```
In [688... from IPython.display import Image
    from IPython.core.display import HTML

path = 'E:\STUDY\PROJECTS\AAIC_Practice\MODULES\Module_3\Mod_3_KNN\Refer_Notes\\'
Image(filename = path + "Fixed_NN.jpg", width=700, height=700)
```

Out[688...

- RadiusNN is an extension of KNN and both are similar in a way of storing the entire train dataset in the training phase, however, they both uses the training dataset for prediction in a different manner.
- Instead of locating the k-neighbors, the Radius Neighbors Classifier locates all examples in the training dataset that are within a given radius of the new example. The radius neighbors are then used to make a prediction for the new example.
- The radius is defined in the feature space and generally assumes that the input variables are numeric and scaled to the range 0-1, e.g. normalized.
- Given a fixed radius, dense regions of the feature space will contribute more information and sparse regions will contribute less information. It is this latter case that is most desirable and it prevents examples very far in feature space from the new example from contributing to the prediction.
- The radius-based approach to locating neighbors is appropriate for those datasets where it is desirable for the contribution of neighbors to be proportional to the density of examples in the feature space.
- The Radius Neighbors Classifier may be more appropriate for prediction problems where there are sparse regions of the feature space.
- Given that the radius is fixed in all dimensions of the feature space, it will become less
 effective as the number of input features is increased, which causes examples in the
 feature space to spread further and further apart. This property is referred to as the
 curse of dimensionality.

In [170...

```
X_train.shape, X_test.shape, y_train.shape, y_test.shape
In [171..
         ((426, 30), (143, 30), (426,), (143,))
Out[171...
          from sklearn.preprocessing import MinMaxScaler
In [205..
         mms = MinMaxScaler()
In [194...
          mms.fit(X_train)
          X_train_mms = mms.transform(X_train)
          X_test_mms = mms.transform(X_test)
In [195...
          pd.DataFrame(X_train_mms).head()
                                                                           7
Out[195...
                                                          5
                                                                  6
                                                                                   8
           0.636992 0.408184
                           0.622003 0.487593
                                            0.287343 0.287467
                                                            0.229808
                                                                     0.406952 0.281818
                                                                                     0.118155
           0.488918
                                                                            0.651515 0.504002
           1.000000 0.627323
                                                             0.228189
                                                                     0.274543
                                                                             0.665657
                                                                                     0.949031
                                    0.198388
           0.334091 0.212039 0.317808
                                           0.218753 0.121373
                                                             0.082880
                                                                     0.153894
                                                                             0.330303
                                                                                     0.189975
           0.292525
                                                                            0.539899
                                                                                     0.006108
        5 rows × 30 columns
In [200...
          np.unique(y_train), np.bincount(y_train)
         (array([0, 1]), array([158, 268], dtype=int64))
Out[200...
In [196...
          pd.DataFrame(X test mms).head()
Out[196...
                                  2
                                          3
                                                          5
                                                                  6
                                                                           7
                                                                                   8
                                                                                           9
           0.550381  0.356442  0.541151  0.403181  0.316087  0.267530  0.349437
                                                                     0.210564 0.257017 0.206413
                                                    0.231520
                                                             0.047631
                                                                             0.295455
                                    0.107953
                                            0.462781
                                                                     0.097282
                                                                                     0.329823
           0.197785  0.395671  0.187686
                                    0.100445
                                            0.389434
                                                    0.123919
                                                             0.021001
                                                                     0.056247
                                                                             0.280303
                                                                                    0.241786
           0.373373  0.355090  0.361620
                                    0.227953
                                            0.330657
                                                    0.196522
                                                             0.160038
                                                                     0.258808
                                                                             0.215657
                                                                                     0.158382
           0.375740 0.176530 0.363900 0.230498 0.183071 0.202779 0.129902
                                                                     0.168374
                                                                            0.316667
                                                                                     0.141744
        5 rows × 30 columns
        Case:1
```

Radius is larger than 1

Here, as the dominating class is 1 thus with a radius of 3 we are considering the entire training dataset to label the test dataset. Hence, all are labelled as 1 because all the training points are inside the radius of 3.

Case:2

Different values of Radius and Nearest Neighbors

NOTE:: I'm making an assumption here that is if the nearest neighbors of a point are not found within the given radius then it will be marked as -ve i.e. 0.

```
k = [7,9,11,13,15]
In [288...
     radius = [0.8, 0.9, 1.0, 1.2, 1.5]
     for idx,(n,r) in enumerate(list(zip(k,radius))):
       print("\n### Run -- {} with Nearest Neighbors -- {} and Radius -- {} ###".format
       rnc1 = RadiusNeighborsClassifier(radius=r,n_neighbors=n,weights='uniform',algori
                       leaf_size=15,p=2,metric='minkowski',outlier_label=0)
       rnc1.fit(X_train_mms, y_train)
       print(rnc1.predict(pd.DataFrame(X_test_mms)))
       print("Accuracy Score is {}".format(np.round(rnc1.score(pd.DataFrame(X_test_mms)))
     ### Run -- 1 with Nearest Neighbors -- 7 and Radius -- 0.8 ###
     0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0
     Accuracy Score is 0.944
     ### Run -- 2 with Nearest Neighbors -- 9 and Radius -- 0.9 ###
     0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0
     Accuracy Score is 0.923
     ### Run -- 3 with Nearest Neighbors -- 11 and Radius -- 1.0 ###
     0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0
     Accuracy Score is 0.874
     ### Run -- 4 with Nearest Neighbors -- 13 and Radius -- 1.2 ###
     0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0]
     Accuracy Score is 0.783
     ### Run -- 5 with Nearest Neighbors -- 15 and Radius -- 1.5 ###
     1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
     Accuracy Score is 0.713
```

So, the accuracy is clearly dropping down with the increase in radius.

NN Distances and Indices

Distance to every Nearest Neighbor and their indices

- The Radius Neighbors function finds the neighbors within a given radius of a point or points.
- It return the indices and distances of each point from the dataset lying in a ball with size radius around the points of the query array. Points lying on the boundary are included in the results.
- The result points are *not* necessarily sorted by distance to their query point.

```
In [292... distances_to_each_nn, indices_of_nn = rnc1.radius_neighbors(X_test_st,radius=0.8)
In [293... distances_to_each_nn.shape, indices_of_nn.shape
Out[293... ((143,), (143,))
```

So, till now we are good because 143 data points exist in the test dataset.

Here, the first point in the test dataset has 107 Radius Nearest Neighbors.

```
distances_to_each_nn[0]
In [298...
Out[298... array([0.77485119, 0.79928181, 0.75381767, 0.70104903, 0.78250427,
                 0.66317849, 0.663835 , 0.59951726, 0.73479384, 0.63464298,
                 0.68966113, 0.73084904, 0.75086833, 0.76285138, 0.60855405,
                 0.7042115 , 0.65302504, 0.77355881, 0.7643015 , 0.69141421,
                 0.50073962, 0.64050169, 0.72027237, 0.72954823, 0.7175256,
                 0.70404708, 0.56169357, 0.61452768, 0.62009898, 0.61641988,
                 0.7451911 , 0.63563298, 0.58947877, 0.6019377 , 0.52353405,
                 0.53506146, 0.61081914, 0.62331693, 0.52414384, 0.52262196,
                 0.72080903, 0.46332191, 0.60930924, 0.44142947, 0.60589131,
                 0.45932364, 0.6261524 , 0.40951519, 0.60013706, 0.44445524,
                 0.74071954, 0.43127356, 0.49096904, 0.77621701, 0.56782249,
                  0.66669249, \ 0.6931883 \ , \ 0.55817302, \ 0.62487651, \ 0.78417201, 
                 0.56344947, 0.77031498, 0.73625407, 0.72129064, 0.72113906,
                 0.63343834, 0.78740412, 0.57786836, 0.74541704, 0.7393466,
                 0.39731962, 0.77010967, 0.74216385, 0.68700304, 0.72430201,
                 0.66556779, 0.58060416, 0.40485425, 0.61051576, 0.68552695,
                  0.5759053 \ , \ 0.64410966, \ 0.4960889 \ , \ 0.52578606, \ 0.48918407, 
                 0.79324096, 0.48277944, 0.75340673, 0.5322959, 0.72316033,
                  0.68425833, \ 0.69591922, \ 0.389545 \quad , \ 0.58881879, \ 0.44132117, \\
                 0.78901245, 0.7205242, 0.54556867, 0.6572326, 0.46841819,
                 0.68788622, 0.48553522, 0.73903593, 0.79735253, 0.54686117,
                 0.58888114, 0.51697856])
```

Above are the distances of first test point to its 107 Radius Nearest Neighbors.

```
Out[296...

59, 14, 26, 57, 148, 248, 44, 423, 130, 323, 310, 341, 165, 378, 229, 351, 30, 52, 223, 270, 120, 226, 283, 78, 94, 140, 54, 314, 333, 318, 102, 107, 0, 144, 43, 36, 312, 376, 306, 58, 234, 345, 297, 254, 338, 179, 105, 260, 128, 125, 370, 220, 307, 422, 377, 389, 143, 126, 15, 190, 18, 204, 45, 295, 189, 74, 181, 369, 374, 121, 28, 247, 75, 24, 340, 394, 324, 408, 208, 316, 116, 327, 95, 183, 246, 110, 404, 13, 343, 360, 37, 170, 296, 319], dtype=int64)
```

Above are the training data points indices of first test point 107 Radius Nearest Neighbors.

In [302	pd.	DataFrame	e(X_train	_mms[ind	ices_of_r	nn[0],:])					
Out[302		0	1	2	3	4	5	6	7	8	
	0	0.291495	0.373013	0.291549	0.166872	0.240262	0.274584	0.254456	0.183481	0.253535	0.2156
	1	0.385205	0.235712	0.380001	0.243097	0.260184	0.234648	0.177064	0.213225	0.269697	0.2085
	2	0.441053	0.202570	0.420911	0.286872	0.314798	0.146433	0.129597	0.238526	0.328788	0.1392
	3	0.413129	0.142712	0.402253	0.262227	0.318267	0.230783	0.167331	0.310141	0.381818	0.1531
	4	0.381419	0.237741	0.379656	0.231559	0.359996	0.358935	0.181074	0.321066	0.307071	0.3944
	•••										
	102	0.475129	0.482584	0.476885	0.320594	0.566855	0.399423	0.566839	0.628855	0.600000	0.2919
	103	0.364854	0.144403	0.376132	0.217434	0.402319	0.503711	0.340056	0.329326	0.518182	0.5075
	104	0.383312	0.542103	0.374611	0.243097	0.395381	0.240200	0.289634	0.342551	0.296465	0.3091
	105	0.439159	0.411566	0.440260	0.289841	0.535137	0.334090	0.421904	0.417198	0.408586	0.3235
	106	0.594870	0.456544	0.588142	0.437116	0.381505	0.344825	0.435272	0.533717	0.469192	0.1870
	107 r	ows × 30	columns								
	4										•

Above are the 107 Radius Nearest Neighbors of first test point from training data.

KNN

Using pre-computed Mahalanobis Distance

NOTE:: Sklearn implementation expects the distances to be +ve valued when using metric as 'precomputed' and algorithm also should be set as 'auto' or 'ball_tree'.

```
In [643... cancer_pre_comp = pd.DataFrame(cancer.data,columns=cancer.feature_names)
    cancer_pre_comp_y = cancer.target
    cancer_pre_comp.head()
```

Out[643...

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	diı
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	

mean

mean

radius texture perimeter

mean mean

area smoothness compactness concavity

mean

mean

mean

points

concave

mean

symmetry dii

mean

								points	a
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809
rc	ows × 30	columr	าร						
									•
Cá	ancer_pr	re_comp	.shape, c	ancer_pre	_comp_y.shap	e			
((569, 30), (569),))						
C	ancer_pi	e_comp	_mahala =		p.dot((cance cancer_pre_c		_		
			_		e(pd.DataFra	me(cancer_p	ore_comp_m	nahala))	
C	ancer_pr	re_comp	_mahala.s	hape					
(5	69, 569)							
Cá	ancer_pr	e_comp	_mahala.h	ead()					
		0	1	2	3	4	!	5 6	;
0	8546.335	317 2	17.013675	44.919530	221.166696	38.085944	78.517852	2 1.480728	0.001
1	217.013	8675 13	20.319427	13.357036	30.453245	27.211435	44.175538	8 144.354281	117.855
2	44.919	9530	13.357036	555.204880	340.240745	8.547820	17.05073	3 17.587972	0.760
3	221.166	6696	30.453245	340.240745	12586.119449	347.417854	370.36008	1 32.206953	162.945
4	38.085	5944	27.211435	8.547820	347.417854	717.905001	3.477353	9.061761	1.978
rc	ws × 56	9 colum	nns						
4)
kı	nc = KNe	eighbor	sClassifi	er(n_neig	hbors=9,weig	hts='distar	n <mark>ce'</mark> ,algor	rithm='brute	e',metri
kı	nc.fit(ancer	pre comp	mahala.ca	ncer_pre_com	o v)			
	· · · · · · · · · · · · · · · · · · ·				ute', metric		-od'n ne	aighhors-9	
1214	cignoon.	3014331		hts='dist		- рі ссопри	.cu , 11_11c	.1811001 3-2,	
d:	ists, in	ndxs =	knc.kneig	hbors(can	cer_pre_comp	_mahala,n_r	neighbors=	:9)	
d:	ists[34]], indx	s[34]						
(a	rray([2	.794749	91e-05, 1	.65500188	se-04, 2.6286	4771e-04, 5	5.28682818	Be-04,	
a	2	.300869	72e-03]),		28, 475, 359				
					3],cancer_pro 1],cancer_pro				
			3438e-05, 3273196,						

```
0.0005286828181794098,
          0.0005343604065472748,
          0.0005628531423005402,
          0.0006258899556841858)
In [679...
          cnts = []
          for idx in indxs[34]:
               cnts.append(cancer_pre_comp_y[idx])
          print(cnts)
          if cnts.count(0) > cnts.count(1):
               print("Prediction is :: Non Cancerous")
               print("Prediction is :: Cancerous")
          [1, 1, 1, 1, 1, 0, 1, 1, 1]
          Prediction is :: Cancerous
In [680...
          knc.predict(np.array(cancer_pre_comp_mahala.iloc[34,:]).reshape(1,-1))
Out[680... array([1])
In [681...
          knc.predict_proba(np.array(cancer_pre_comp_mahala.iloc[34,:]).reshape(1,-1))
Out[681... array([[0.03307214, 0.96692786]])
```

When we are using the precomputed distance matrix then 'predict' and 'predict_proba' function accepts test data input in the shape of (number of test observations, number of train data observations). For example, if we are trying ot test only 1 new unseen observation and used 569 training observations then the expected shape is (1,569).

Conclusion

- 1. We can use Radius or Fixed Neighbors when we want to give weightage only to the nearby points within fixed distance.
- 2. We can use Radius or Fixed Neighbors to find the outliers if we are sure that points outside of a particular radius are outliers. This can give better results with data of high sparcity.
- 3. With Radius NN the features needs to be normalized. And, we can calculate the distances and indices of NN using Nearest neighbors function.
- 4. The time and space complexity looks to be same for both Radius NN and KNN, its just that we can get better results using Radius NN if we want to find the neighbors only in close proximity.
- 5. If we are using metric == 'precomputed' then in sklearn only 'brute' algorithm is supported otherwise select 'auto'. Make sure the shape of test set would be (n_test, n_train).
- 6. With KNN we can compute the NN distances and their indices using kneighbors function.