CS215: Discrete Math (H)

2024 Fall Semester Written Assignment # 3

Due: Nov. 13th, 2024, please submit at the beginning of class

- Q.1 What are the prime factorizations of
 - (a) 8085
 - (b) 10!

Q.3 For three integers a, b, y, suppose that $gcd(a, y) = d_1$ and $gcd(b, y) = d_2$. Prove that

$$\gcd(\gcd(a,b),y)=\gcd(d_1,d_2).$$

- Q.4 Prove the following statement. If $c|(a \cdot b)$, then $c|(a \cdot \gcd(b, c))$.
- Q.5 Solve the following modular equation.

$$312x \equiv 3 \pmod{97}.$$

- Q.6 Find counterexamples to each of these statements about congruences.
 - (a) If $ac \equiv bc \pmod{m}$, where a, b, c, and m are integers with $m \geq 2$, then $a \equiv b \pmod{m}$.
 - (b) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, where a, b, c, d, and m are integers with c and d positive and $m \geq 2$, then $a^c \equiv b^d \pmod{m}$.
- Q.7 Prove that if a and m are positive integer such that gcd(a, m) = 1 then the function

$$f: \{0, \dots, m-1\} \to \{0, \dots, m-1\}$$

defined by

$$f(x) = (a \cdot x) \bmod m$$

is a bijection.

- Q.8 Convert the decimal expansion of each of these integers to a binary expansion.
 - (a) 231 (b) 4532

Q.9 Let the coefficients of the polynomial $f(n) = a_0 + a_1 n + a_2 n^2 + \cdots + a_{t-1} n^{t-1} + n^t$ be integers. We now show that **no** non-constant polynomial can generate only prime numbers for integers n. In particular, let $c = f(0) = a_0$ be the constant term of f.

- (1) Show that f(cm) is a multiple of c for all $m \in \mathbb{Z}$.
- (2) Show that if f is non-constant and c > 1, then as n ranges over the nonnegative integers \mathbb{N} , there are infinitely many $f(n) \in \mathbb{Z}$ that are not primes. [Hint: You may assume the fact that the magnitude of any non-constant polynomial f(n) grows unboundedly as n grows.]
- (3) Conclude that for every non-constant polynomial f there must be an $n \in \mathbb{N}$ such that f(n) is not prime. [Hint: Only one case remains.]

Q.10 Show that if a and m are relatively prime positive integers, then the inverse of a modulo m is unique modulo m.

Q.11 Prove that there are infinitely many primes of the form 4k + 3, where k is a nonnegative integer. [Hint: Suppose that there are only finitely many such primes q_1, q_2, \ldots, q_n , and consider the number $4q_1q_2 \cdots q_n - 1$.]

Q.12

- (1) Show that if n is an integer then $n^2 \equiv 0$ or 1 (mod 4).
- (2) Show that if m is a positive integer of the form 4k+3 for some nonnegative integer k, then m is not the sum of the squares of two integers.

Q.13

- (a) State Fermat's little theorem.
- (b) Show that Fermat's little theorem does not hold if p is not prime.
- (c) Compute 302^{302} (mod 11), 4762^{5367} (mod 13), 2^{39674} (mod 523).

Q.14 Let m_1, m_2, \ldots, m_n be pairwise relatively prime integers greater than or equal to 2. Show that if $a \equiv b \pmod{m_i}$ for $i = 1, 2, \ldots, n$, then $a \equiv b \pmod{m}$, where $m = m_1 m_2 \cdots m_n$.

Q.15 Solve the system of congruence $x \equiv 3 \pmod{6}$ and $x \equiv 4 \pmod{7}$ using the methods of Chinese Remainder Theorem or back substitution.

Q.16 For a collection of balls, the number is not known. If we count them by 2's, we have 1 left over; by 3's, we have nothing left; by 4, we have 1 left over; by 5, we have 4 left over; by 6, we have 3 left over; by 7, we have nothing left; by 8, we have 1 left over; by 9, nothing is left. How many balls are there? Give the details of your calculation.

Q.17 Recall how the *linear congruential method* works in generating pseudorandom numbers: Initially, four parameters are chosen, i.e., the modulus m, the multiplier a, the increment c, and the seed x_0 . Then a sequence of numbers $x_1, x_2, \ldots, x_n, \ldots$ are generated by the following congruence

$$x_{n+1} = (ax_n + c) \pmod{m}.$$

Suppose that we know the generated numbers are in the range 0, 1, ..., 10, which means the modulus m = 11. By observing three consecutive numbers 7, 4, 6, can you predict the next number? Explain your answer.

Q.18 Recall that Euler's totient function $\phi(n)$ counts the number of positive integers up to a given integer n that are coprime to n. Prove that for all integers $n \geq 3$, $\phi(n)$ is even.

Q.19 Recall the RSA public key cryptosystem: Bob posts a public key (n, e) and keeps a secret key d. When Alice wants to send a message 0 < M < n to Bob, she calculates $C = M^e \pmod{n}$ and sends C to Bob. Bob then decrypts this by calculating $C^d \pmod{n}$. In class we learnt that in order to make this scheme work, n, e, d must have special properties.

For each of the three public/secret key pairs listed below, answer whether it is a **valid** set of RSA public/secret key pairs (whether the pair satisfies the required properties), and explain your answer.

(a)
$$(n, e) = (91, 25), d = 51$$

(b)
$$(n, e) = (91, 25), d = 49$$

(c)
$$(n, e) = (84, 25), d = 37$$

Q.20 Consider the RSA system. Let (e,d) be a key pair for the RSA. Define

$$\lambda(n) = \operatorname{lcm}(p-1, q-1)$$

and compute $d'=e^{-1} \bmod \lambda(n)$. Will decryption using d' instead of d still work? (prove $C^{d'} \bmod n = M$)