VRDL HW2: Object Detection:

Name:陳政彥

Student ID:310552006

Link of my code:

Github repo link:

https://github.com/egghead2630/VRDL HW2

Eval Code(inference.ipynb):

https://colab.research.google.com/drive/1 ziiQF5g-lu8BFIUoYCgF-i9x2s8C EB?usp=sharing

Model:

https://drive.google.com/file/d/1EfmCP7WWCvxOp90zdR 7vdNfmdxq3P5A/view?usp=sharing

Config:

https://drive.google.com/file/d/1cuOqzwqRlbO7KXoyscsp33-Mt5Jk4DiH/view?usp=sharing

README:

https://github.com/egghead2630/VRDL HW2/blob/main/README.md

Reference:

1.https://github.com/ultralytics/yolov5

Benchmark:

Code:

```
# Test your inference time
TEST_IMAGE_NUMBER = 100 # This number is fixed.

test_img_list = []

# Read image (Be careful with the image order)

data_listdir.sort(key = lambda x: int(x[:-4]))

for img_name in data_listdir[:TEST_IMAGE_NUMBER]:
    img_src = os.path.join("content/test/test". img_name)
    img_dst = os.path.join("content/data/test". img_name)
    test_img_list.append(img_name)
    shutil.copy(img_src, img_dst)

# Start_time = time.time()

% content/yolov5/val.py —img 320 —batch 10 —data_digits.yaml —task_test —device 0 —weights_best.pt

end_time = time.time()

print("\oldsymbol{norterence} time_per_image: ", (end_time - start_time) / len(test_img_list))

# Remember to screenshot!
```

Result:

```
Content/yolov5
val: data-digits.yaml, weights=['best.pt'], batch_size=10, imgsz=320, conf_thres=0.001, iou_thres=0.6, task=test, device=0, single_cls=False, augment=False, verbose=False, save_txt=False, sa
```

Brief introduction

My model is trained for the HW2 digit detection problem, I use mainly yolov5 to accomplish the HW2.

Basic structure:

I split the training data into train-part and validate-part with proportion: **9:1**. The model which performs best on validate-part would be chosen.

Technics applied:

- 1. Some preprocess and augmentation on the train-part
- 2. Proper hyperparameters setting(Tuning)
- 3. Model selection

In the HW2, I apply above methods to train my model better, I will explain them in detail in the following part: **Methodology**

Methodology:

This part, I simply introduce how I apply above methods in the HW2.

About Data Preprocess and Augmentation:

I simply use the default augmentation and preprocess setting of yolov5, since the default settings are good enough for me to gain a satisfying predictive model

About Hyperparameters tuning:

Image size:

I first apply the (640*640) image size as default, however, I find it not suitable to do so because most of the pictures in data set are really small, even smaller than (200 * 200). Therefore, I latter choose to apply (320 * 320) image size on training process, and get a good model with about 4-times faster training

Batch size:

I set batch size to 16 as yolov5 github code suggested, and according to my observation, it's good to train with this batch size in this HW.

About Model Selection:

It's well-known that we shall take a trade-off when choosing among models, in the yolov5 structure, there are 4 type: small(s), medium(m), large(l), extra large(xl). In the aspect of complexity: xl > l > m > s, and in the aspect of speed: s > m > l > xl. In this homework, I choose to use small: yolov5s, for the reason that yolov5s is already complex enough to do prediction on digits according to the experimental result. Moreover, in my opinion, simply applying a more complicated model backbone is usually not useful on improving the performance, sometimes even lead to a worse result, I will specify the issue in the following part: Comparison with another model.

Comparison with another model:

In this part, I will compare **yolov5s** along with another model: **detectors_cascade_rcnn_r50_1x_coco.py** in mmdetection.

In the following we use yolo and detector as abbreviation of the above two models

Inference and training time:

While **training**, detector need about **2 hours** per epoch, and yolo need only a few minutes. While **inferencing**, detector need 70 minutes to accomplish 13000 pictures, while yolo take less than 2 minutes to accomplish them.

Accuracy:

Below is the two results generated by detector and yolo respectively.

Detector: trained for **10** hours, 5 epochs:

	7	0.342286	answer.zip	11/15/2021 15:44:06	Finished
--	---	----------	------------	---------------------	----------

Yolo: trained for about **7** hours, 80 epochs:

13 0.416198 answer.zip 11/22/2021 10:56:59 Finis	Finished
--	----------

Apparently, yolo outperforms much than detector, in terms of not only **training and inference time, but also accuracy**. However, detector actually has a much more complex structure than yolo. This experimental result reminds me of the principals when choosing the model, that a **more-complicated model is not always a better choice.**

Summary:

I will summarize what I have learned in this homework.

What I have learned in the homework:

Basically I learn some new criterions and file formats, and also some important aspects including:

1.What is mAP, bbox:

Before writing the homework, I have no idea how to evaluate an object detection model, and the mAP criterion let me know where to begin with.

2.What is COCO-format:

Before writing the homework, I don't know what is the popular file format in the object-detection field, COCO-format is a good start, and I believe other kind such as VOC won't be a problem after realizing COCO.

3. How to pick proper hyperparameters:

It is important to pick proper hyperparameters, in this homework, I learned that picking good hyperparameters can not only help us improving the accuracy of our model, it can also saves time for us when training and evaluating our model.

4. How to choose a proper model:

In this homework, I learned that a complicated model is not always a great model, we should always keep this in mind to choose model wisely.

Above is my report for HW2,	thanks for the	patience rea	ading it all dov	vn here!

Have a Nice day!

Sincerely,

Chen.