Clean Version

COPY OF PAPERS ORIGINALLY FILED

Amended Drawings

RECEIVED

APR 2 4 2002

OFFICE OF PETITIONS

Remarks / Arguments

These drawings have been extensively modified to comply 37 CFR 1.84. The graphs have been changed to black and white line art, and the tables have been modified to be clearer. Also, the equations have been removed from the specification and included with the drawings. Each entry is properly identified with a "FIG." Preceding the drawing number.

FIG.1

FIG.2

3/10

 $\begin{bmatrix} 100 \text{ grams sugar} \\ +3.75 \text{ grams ammonia} \\ +64.95 \text{ grams oxygen} \end{bmatrix} \Rightarrow \begin{bmatrix} 46.88 \text{ grams water} \\ +50.93 \text{ liters carbon dioxide} \\ +30 \text{ grams yeast} \end{bmatrix}$

FIG.3

Time During Fermentation	Yield (g cells/ g sugar)	Ammonia Needed (grams)	Water Produced (grams)	CO ₂ Produced (liters)	Yeast Produced (C ₈ H ₁₀ O ₃ N) (grams dry wt.)	Ethanol Produced (C ₂ H ₆ O) (grams)*
1st 3rd	.15	18.70	5.1	22.51	15.04	41.19
2nd 3rd	.052	.65	1.79	25.54	5.20	47.68
3rd 3rd	.023	.29	.79	26.44	2.30	49.61
Overall	.05	.626	1.72	25.60	5.00	48.52

FIG.4

 CO_2 solubility (in ICO_2/IH_2O) = $-1.06556266071 \times In(°F) + 5.38424482284$

FIG.5

$$\frac{\text{Change in yeast mass}}{\text{Change in time}} = \frac{\Delta X}{\Delta t} = \mu \times X$$

$$\ln \left[\frac{X}{X^{\circ}} \right] = \mu \times (t - t_{lag})$$

FIG.6

$$t_{d} = \frac{\ln{(2)}}{\mu}$$

FIG.7

Ratio
$$\left[\frac{1 \text{CO}_z}{\text{g sugar}}\right] = 0.271599039164 - (0.310674946821 \times \text{Yield})$$

FIG.8

Specific Gravity = $(3.65201035996 \times 10^{-4}) \times S + 0.999953627005$

FIG.9

$$Y = \frac{\Delta X}{\Delta S}$$

FIG.10

$$\left[\frac{\Delta X (for decay)}{\Delta time}\right] = b \times X$$

FIG.11

$$Y = \left[\frac{\Delta X}{\Delta S}\right] = \left[\frac{5.14794}{24.644}\right] = 0.20889 \frac{g X}{g S}$$

FIG.12

 $Xchrgd = 0.504076447609 \times EXP(-0.0816252748703 \times Ratio)$

FIG.13

Sample Name	Time (hours)	X weight (grams)	S.G. Reading (g S/I, see EQSG)	Measured CO2 Flow (ml / min)
to	0	1.415	183.59	0
t ₁	15.75	2.73	178.11	3.944
t ₂	21.03	5.1	158.94	12.344
t ₃	24.5	6.18	147.99	15.074
t ₄	44.08	8.38	95.965	7.234

FIG.14

		С	D
Α	В	Total hours of	Mass lost from
Interval	Observed New X	interval	starting X decay
1 1	1.315	15.75	0.089145
t ₀ - t ₁	2.37	5.28	0.0576576
t ₁ - t ₂	1.08	3.2	0.06528
t ₂ - t ₃	2.2	19.58	0.4840176
t3 - t4	2.2	19.36	0.4040170
	E	F	G
A	Sub-total new mass	Ratio new X/Start X	Charge what new
Interval	(B + D)	(Starting X + E) / Starting X	mass b?
		<u> </u>	(EQXchrgd)
t ₀ - t ₁	1.404145	1.9923	0.471
t ₁ - t ₂	2.4276576	1.88925	0.475
t ₂ - t ₃	1.14528	1.22457	0.5
t3 - t4	2.6840176	1.434307	0.493
1			
Α	Н	1	Amount of sugar
Interval	Decay of new mass	Total new mass yield	used
intervai	(E x G x C x .004)	(E + H)	(g/l)
to - t1	0.0416652	1.4458102	5.48
t ₁ - t ₂	0.024354261	2.45201186	19.17
t ₂ - t ₃	0.007329792	1.152609792	10.95
t3 - t4	0.103634643	2.7876522	52.025
-			
_	•	K	L
A	J	Yield	Yield (fm curve)
Interval	Average % S consumed	g X / g S	g X / g S
t ₀ - t ₁	1.4925	0.263833977	0.258098264
t ₁ - t ₂	8.206	0.127908809	0.144275124
t ₂ - t ₃	16.409	0.105261168	0.097997972
t3 - t4	33.56	0.053582936	0.05021553
Α	M		
Interval	% of actual Yield		
t ₀ - t ₁	97.83%]	
t ₁ - t ₂	112.80%	1	
t ₂ - t ₃	93.10%	1	
t3 - t4	93.72%		

$$Y = \{-6.67814305038 \times 10^{-2} \times [ln(\%used)]\} + 0.284841059276$$

FIG.16

Interval	% fraction of S	Yield fm EQ%used	Ratio fm EQYId (I CO₂/g X)
t ₀ - t ₁	1.4925	0.2580973	0.79324921
t ₁ - t ₂	8.206	0.14427497	1.52663404
t ₂ - t ₃	16.409	0.097998	2.3594534
t3 - t4	33.56	0.0502161	5.00801093
Interval	Total new X (grams)	liters CO₂ predicted fm model (g X x Ratio)	liters CO₂ predicted by actual Yield
t ₀ - t ₁	1.445803	1.1469	1.1192
t ₁ - t ₂	2.452006	3.7433	4.2872
t ₂ - t ₃	1.1526299	2.71968	2.5095
t ₃ - t ₄	2.787623	13.9604	12.9849
Interval	Average measured CO ₂ (ml / min)	liters CO ₂ predicted fm avg of measured CO ₂ flow rate at this interval	
t _o - t ₁	1.972	1.8635	
t ₁ - t ₂	8.144	2.58	
t ₂ - t ₃	13.709	2.6321	
t3 - t4	11.154	13.1037	

FIG.17