CS/COE 1501

www.cs.pitt.edu/~nlf4/cs1501/

An Introduction to Cryptography

Introduction to crypto

- Cryptography enabling secure communication in the presence of third parties
 - Alice wants to send Bob a message without anyone else being able to read it

Enter the adversary

- Consider the adversary to be anyone that could try to eavesdrop on Alice and Bob communicating
 - People in the same coffee shop as Alice or Bob as they talk over WiFi
 - Admins operating the network between Alice and Bob
 - And mirroring their traffic to the NSA...
- Will have access to:
 - The ciphertext
 - The encrypted message
 - The encryption algorithm
 - At least Alice and Bob should assume the adversary does
- The key material is the only thing Bob knows that the adversary does not

Cryptography has been around for some time

- Early, classic encryption scheme:
 - Caesar cipher:
 - "Shift" the alphabet by a set amount
 - Use this shifted alphabet to send messages
 - The "key" is the amount the alphabet is shifted

Alphabet

ABCDEFGHIJKLMNOPQRSTUVWXYZ XYZABCDEFGHIJKLMNOPQRSTUVW

Yes, that Caesar

By modern standards, incredibly easy to crack

BRUTE FORCE

- Try every possible shift
 - 25 options for the English alphabet
 - 255 for ASCII
- OK, let's make it harder to brute force
 - Instead of using a shifted alphabet, let's use a random permutation of the alphabet
 - Key is now this permutation, not just a shift value
 - R size alphabet means R! possible permutations!

By modern standards, incredibly easy to crack

- Just requires a bit more sophisticated of an algorithm
- Analyzing encrypted English for example
 - Sentences have a given structure
 - Character frequencies are skewed
 - Essentially playing Wheel of Fortune

So what is a good cipher?

- One-time pads
 - List of one-time use keys (called a pad) here
- To send a message:
 - Take an unused pad
 - Use modular addition to combine key with message
 - For binary data, XOR
 - Send to recipient
- Upon receiving a message:
 - Take the next pad
 - Use modular subtraction to combine key with message
 - For binary data, XOR
 - Read result
- Proven to provide perfect secrecy

One-time pad example

Encoding: 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ABCDEFGHIJ K L M N 0 Р Q R S Pad: Q J C W T Message: HELLO 16 9 2 22 19 4 11 11 14 (mod 26) 16 9 2 22 19 + 23 13 13 7 7 Encrypted X N N H H Message: 23 13 13 7 7 16 9 2 22 19 (mod 26) 4 11 11 14 Н

Difficulties with one-time pads

- Pads must be truly random
- Both sender and receiver must have a matched list of pads in the appropriate order
- Once you run out of pads, no more messages can be sent

Symmetric ciphers

- E.g., DES, AES, Blowfish
- Users share a single key
 - Numbers of a given bitlength (e.g., 128, 256)
 - Key is used to encrypt/decrypt many messages back and forth
- Encryptions/decryptions will be fast
 - Typically linear in the size the input
- Ciphertext should appear random
- Best way to recover plaintext should be a brute force attack on the encryption key
 - Which we have shown to be infeasible for 128bit AES keys

Problems with symmetric ciphers

- Alice and Bob have to both know the same key
 - How can you securely transmit the key from Alice to Bob?
- Further, if Alice also wants to communicate with Charlie, her and Charlie will need to know the same key, a different key from the key Alice shares with Bob
 - Alice and Danielle will also have to share a different key...
 - o etc.

Enter public-key encryption

- Each user has their own pair of keys
 - A public key that can be revealed to anyone
 - A private key that only they should know
- How does this solve our problem?
 - Public key can simply be published/advertised
 - Posted repositories of public keys
 - Added to an email signature
 - Each user is responsible only for their own keypair
- Let's look at a public-key crypto scheme in detail...

RSA

RSA Cryptosystem in-depth

- What are RSA keypairs?
- How messages encrypted?
- How are messages decrypted?
- How are keys generated?
- Why is it secure?

RSA keypairs

- Public key is two numbers, which we will call n and e
- Private key is a single number we will call d
- The length of n in bits is the key length
 - I.e., 2048 bit RSA keys will have a 2048 bit n value
 - Note that "n" will be used to indicate the RSA public key component for our discussion of RSA...

Encryption

Say Alice wants to send a message to Bob

- 1. Looks up Bob's public key
- 2. Convert the message into an integer: m
- 3. Compute the ciphertext c as:
 - \circ c = m^e (mod n)
- 4. Send c to Bob

Decryption

Bob can simply:

- 1. Compute m as:
 - a. $m = c^d \pmod{n}$
- 2. Convert m into Alice's message

n, e, and d need to be carefully generated

- 1. Choose two prime numbers p and q
- 2. Compute n = p * q
- 3. Compute $\varphi(n)$

$$\phi(n) = \phi(p) * \phi(q) = (p - 1) * (q - 1)$$

- 4. Choose e such that
 - \circ 1 < e < $\phi(n)$
 - \circ GCD(e, $\varphi(n)$) = 1
 - **I.e.**, e and φ(n) are co-prime
- 5. Determine d as $d = e^{-1} \mod(\varphi(n))$

What the φ?

- Here, we mean φ to be Euler's totient
- $\varphi(n)$ is a count of the integers < n that are co-prime to n
 - I.e., how many k are there such that:
 - 1 <= k <= n AND GCD(n, k) = 1
- p and q are prime..
 - Hence, $\varphi(p) = p 1$ and $\varphi(q) = q 1$
- Further, φ is multiplicative
 - Since p and q are prime, they are co-prime, so
 - - I won't detail the proof here...

OK, now what about multiplicative inverses mod $\varphi(n)$?

- $d = e^{-1} \mod(\varphi(n))$
- Means that $d = 1/e \mod(\varphi(n))$
- Means that $e * d = 1 \pmod{\varphi(n)}$
- Now, this can be equivalently stated as $e * d = z * \phi(n) + 1$
 - For some z
- Can further restate this as: $e * d z * \phi(n) = 1$
- Or similarly: $1 = \varphi(n) * (-z) + e * d$
- How can we solve this?
 - Hint: recall that we know GCD($\phi(n)$, e) = 1

Use extended Euclidean algorithm!

- GCD(a, b) = i = ax + by
- Let:
 - \circ a = $\varphi(n)$
 - \circ b = e
 - \circ X = -Z
 - y = d
 - \circ i = 1
- GCD($\phi(n)$, e) = 1 = $\phi(n)$ * (-z) + e * d
- We can compute d in linear time!

RSA keypair example notes

- p and q must be prime
- n = p * q
- $\varphi(n) = (p-1) * (q-1)$
- Choose e such that
 - \circ 1 < e < φ(n) and GCD(e, φ(n)) = 1
- Solve XGCD($\phi(n)$, e) = 1 = $\phi(n)$ * (-z) + e * d
- Compute the ciphertext c as:
 - \circ c = m^e (mod n)
- Recover m as:
 - \circ m = c^d (mod n)

OK, but how does $m^{ed} = m \mod n$?

- Feel free to look up the proof using Fermat's little theorem
 - Knowing this proof is **NOT** required for the course
 - Knowing how to generate RSA keys and encrypt/decrypt IS
- For this course, we'll settle with our example showing that it does work

Why is RSA secure?

- 4 avenues of attack on the math of RSA were identified in the original paper:
 - Factoring n to find p and q
 - \circ Determining $\varphi(n)$ without factoring n
 - \circ Determining d without factoring n or learning $\varphi(n)$
 - Learning to take eth roots modulo n

Factoring n

- To the best of our knowledge, this is hard
 - A 768 bit RSA key was factored one time using the best currently known algorithm
 - Took 1500 CPU years
 - 2 years of real time on hundreds of computers
 - Hence, large keys are pretty safe
 - 2048 bit keys are a pretty good bet for now

What about determining $\varphi(n)$ without factoring n?

- Would allow us to easily compute d because ed = 1 mod φ
 (n)
- Note:

$$\circ$$
 $\phi(n) = n - p - q + 1$

$$\phi(n) = n - (p + q) + 1$$

$$(p + q) = n + 1 - \phi(n)$$

$$\circ$$
 (p + q) - (p - q) = 2q

Now we just need (p - q)...

$$(p-q)^2 = p^2 - 2pq + q^2$$

$$(p-q)^2 = p^2 + 2pq + q^2 - 4pq$$

$$(p - q)^2 = (p + q)^2 - 4pq$$

$$(p - q)^2 = (p + q)^2 - 4n$$

$$(p - q) = \sqrt{((p + q)^2 - 4n)}$$

 If we can figure out φ(n) efficiently, we could factor n efficiently!

Determining d without factoring n or learning $\varphi(n)$?

- If we know, d, we can get a multiple of $\varphi(n)$
 - \circ ed = 1 mod $\varphi(n)$
 - \circ ed = k ϕ (n) + 1
 - For some k
 - \circ ed 1 = k ϕ (n)
- It has been shown that n can be efficiently factored using any multiple of $\phi(n)$
 - Hence, this would provide another efficient solution to factoring!

Learning to take eth roots modulo n

- Conjecture was made in 1978 that breaking RSA would yield an efficient factoring algorithm
 - To date, it has been not been proven or disproven

This all leads to the following conclusion

- Odds are that breaking RSA efficiently implies that factoring can be done efficiently.
- Since factoring is probably hard, RSA is probably safe to use.

Implementation concerns

- Encryption/decryption:
 - How can we perform efficient exponentiations?
- Key generation:
 - We can do multiplication, XGCD for large integers
 - What about finding large prime numbers?

Efficient exponentiation for RSA

Does this solve our problems?

```
ans = 1
foreach bit in y:
    ans = @ass<sup>2</sup> mod n)
    if bit == 1:
        ans = @ass**xx mod n)
```

- How can we improve runtime for RSA exponentiations?
 - Don't actually need x^y
 - Just need (x^y mod n)

Still slower (generally) than symmetric encryption

- If only we could have the speed of symmetric encryption without the key distribution woes!
 - What if we transmitted symmetric crypto keys with RSA?
 - RSA Envelopes!
- Going back to Alice and Bob
 - Alice generates a random AES key
 - Alice encrypts her message using AES with this key
 - Alice encrypts the key using Bob's RSA public key
 - Alice sends the encrypted message and encrypted key to Bob
 - Bob decrypts the AES key using his RSA private key
 - Bob decrypts the message using the AES key

RSA Envelope example

Prime testing option 1: BRUTE FORCE

- Try all possible factors of x
 - 1 .. sqrt(x)
 - \blacksquare aka 1 .. sqrt(2^{size(x)})
 - For a total of 2^{(size(x)/2)} factor checks
- A factor check should take about the same amount of time as multiplication
 - \circ size(x)²
- So our runtime is $\Theta(2^{(\text{size}(x)/2)} * \text{size}(x)^2)$

Option 2: A probabilistic approach

- Need a method test : $Z \times Z \rightarrow \{T, F\}$
 - If test(x, a) = F, x is composite based on the witness a
 - \circ If test(x, a) = T, x is probably prime based on the witness a
- To test a number x for primality:
 - Randomly choose a witness a
 - if test(x, a) = F, x is composite
 - if test(x, a) = T, loop

often probability ≈ 1/2

k repetitions leads to probability that x is composite $\approx 1/2^k$

- Possible implementations of test(x, a):
 - Miller-Rabin, Fermat's, Solovay–Strassen

Another fun use of RSA...

- Notice that encrypting and decrypting are inverses
 - \circ m^{ed} = m^{de} (mod n)
- We can "decrypt" the message first with a private key
- Then recover the message by "encrypting" with a public key
- Note that anyone can recover the message
 - However, they know the message must have come from the owner of the private key
 - Using RSA this way creates a digital signature

Do RSA signatures need to be slow?

- We encrypted symmetric crypto keys before to speed things up...
 - We'll need another crypto primitive to help out here
 - Cryptographically secure hash functions

Hashing for security (similarities)

- Cryptographically secure hash functions share properties with the hash functions we've already talked about:
 - Map from some input domain to a limited output range
 - Though output ranges are much larger here
 - For modern algorithms 224-512 bit output sizes
 - Time required to compute the hash is proportional to the size of the item being hashed
 - Though, practically, cryptographic hash functions are more expensive

Now just sign a hash of the message!

What about collisions?

- If Bob signs a hash of the message "I'll see you at 7"
- It could appear that Bob signed any message whose hash collides with "I'll see you at 7"...
- If h("I'll see you at 7") == h("I'll see you after I rob the bank"),
 Bob could be in alot of trouble
- An attack like this helped the Flame malware to spread
- This is also the reason Google is aiming to deprecate SHA-1

Hashing for security (differences)

- This is why cryptographically secure hash functions must support additional properties:
 - It should be infeasible to find two different messages with the same hash value
 - It should be infeasible to recover a message from its hash
 - Should require a brute force approach
 - Small changes to a message should change the hash value so extensively that the new hash value appears uncorrelated with the old hash value

Public key isn't perfect

What do you when a private key is compromised?

Final note about crypto

NEVER IMPLEMENT YOUR OWN CRYPTO

Use a trusted and tested library.