Relatório sobre Conjuntos, Funções e Operadores Fuzzy

Doutorado CEFET May 8, 2025

1 Introdução

Este relatório apresenta a implementação e análise de funções de pertinência, fuzzificação, operações fuzzy e relações fuzzy. As funções de pertinência são amplamente utilizadas em lógica fuzzy para representar graus de pertencimento de elementos a conjuntos fuzzy.

2 Funções de Pertinência

2.1 Implementação de Funções de Pertinência

As funções de pertinência implementadas incluem:

- Triangular
- Trapezoidal
- Gaussiana
- Sigmoidal
- Sinoidal (Bell)
- Função S
- Função Z
- Cauchy
- Gaussiana Dupla

- Logarítmica
- Retangular

Para a construção dos gráficos utilizando Python, utilizamos a função $plot_results$

2.1.1 Função Triangular

A função triangular é definida por três parâmetros (a, b, c), onde:

- a é o ponto inicial onde a pertinência começa a aumentar;
- b é o ponto onde a pertinência atinge o valor máximo (1);
- \bullet c é o ponto final onde a pertinência retorna a 0.

A fórmula é dada por:

$$\mu(x) = \begin{cases} \frac{x-a}{b-a}, & \text{se } a \le x < b, \\ \frac{c-x}{c-b}, & \text{se } b \le x < c, \\ 0, & \text{caso contrário.} \end{cases}$$

Figure 1: Exemplo de função triangular com $a=5,\,b=10,\,c=15.$

2.1.2 Função Trapezoidal

A função trapezoidal é definida por quatro parâmetros (a, b, c, d), onde:

- a e d são os pontos onde a pertinência é 0;
- $b \in c$ definem a região onde a pertinência é 1.

A fórmula é:

$$\mu(x) = \begin{cases} \frac{x-a}{b-a}, & \text{se } a \le x < b, \\ 1, & \text{se } b \le x \le c, \\ \frac{d-x}{d-c}, & \text{se } c < x \le d, \\ 0, & \text{caso contrário.} \end{cases}$$

Figure 2: Exemplo de função trapezoidal com $a=5,\,b=10,\,c=15,\,d=20.$

2.1.3 Função Gaussiana

A função gaussiana é definida por dois parâmetros (c, σ) , onde:

- c é o centro da curva, onde a pertinência é máxima (1);
- σ controla a largura da curva.

$$\mu(x) = e^{-\frac{1}{2}\left(\frac{x-c}{\sigma}\right)^2}.$$

Figure 3: Exemplo de função gaussiana com $c=10,\,\sigma=3.$

2.1.4 Função Sigmoidal

A função sigmoidal é definida por dois parâmetros (a, c), onde:

- a controla a inclinação da curva;
- $\bullet \ c$ é o ponto central onde a pertinência é 0.5.

$$\mu(x) = \frac{1}{1 + e^{-a(x-c)}}.$$

Figure 4: Exemplo de função sigmoidal com $a=1,\,c=10.$

2.1.5 Função Sinoidal (Bell)

A função Bell é definida por três parâmetros (a, b, c), onde:

- a controla a largura da curva;
- b controla a inclinação;
- $\bullet \ c$ é o centro da curva.

$$\mu(x) = \frac{1}{1 + \left|\frac{x-c}{a}\right|^{2b}}.$$

Figure 5: Exemplo de função Bell com $a=2,\,b=4,\,c=10.$

2.1.6 Função S

A função S é definida por dois parâmetros (a, b), onde:

- ullet a é o ponto onde a pertinência começa a aumentar;
- b é o ponto onde a pertinência atinge 1.

$$\mu(x) = \begin{cases} 0, & \text{se } x \le a, \\ 2\left(\frac{x-a}{b-a}\right)^2, & \text{se } a < x < b, \\ 1, & \text{se } x \ge b. \end{cases}$$

Figure 6: Exemplo de função S com a = 5, b = 15.

2.1.7 Função Z

A função Z é definida por dois parâmetros (a, b), onde:

- a é o ponto onde a pertinência começa a diminuir;
- b é o ponto onde a pertinência atinge 0.

A fórmula é:

$$\mu(x) = \begin{cases} 1, & \text{se } x \le a, \\ 1 - 2\left(\frac{x-a}{b-a}\right)^2, & \text{se } a < x < b, \\ 0, & \text{se } x \ge b. \end{cases}$$

2.1.8 Função Cauchy

A função Cauchy é definida por dois parâmetros (c, γ) , onde:

- c é o centro da curva;
- γ controla a largura da curva.

$$\mu(x) = \frac{1}{1 + \left(\frac{x-c}{\gamma}\right)^2}.$$

Figure 7: Exemplo de função Cauchy com $c=10,\,\gamma=3.$

2.1.9 Função Gaussiana Dupla

A função Gaussiana Dupla é definida por três parâmetros (c, σ_1, σ_2) , onde:

- \bullet c é o centro da curva;
- σ_1 controla a largura da curva para $x \leq c;$
- σ_2 controla a largura da curva para x>c.

$$\mu(x) = \begin{cases} e^{-\frac{1}{2} \left(\frac{x-c}{\sigma_1}\right)^2}, & \text{se } x \le c, \\ e^{-\frac{1}{2} \left(\frac{x-c}{\sigma_2}\right)^2}, & \text{se } x > c. \end{cases}$$

Figure 8: Exemplo de função Gaussiana Dupla com $c=10,\,\sigma_1=3,\,\sigma_2=5.$

2.1.10 Função Retangular

A função Retangular é definida por dois parâmetros (a, b), onde:

- a é o início do intervalo onde a pertinência é 1;
- b é o final do intervalo onde a pertinência é 1.

$$\mu(x) = \begin{cases} 1, & \text{se } a \le x \le b, \\ 0, & \text{caso contrário.} \end{cases}$$

Figure 9: Exemplo de função Retangular com $a=10,\,b=20.$

2.1.11 Função Logarítmica

A função Logarítmica é definida por dois parâmetros (a, b), onde:

- a controla o deslocamento da curva;
- $\bullet\ b$ controla a inclinação da curva.

$$\mu(x) = \begin{cases} 0, & \text{se } x \le a, \\ \log_b(x - a + 1), & \text{se } x > a. \end{cases}$$

Figure 10: Exemplo de função Logarítmica com $a=5,\,b=2.$

2.2 Fuzzificação e Análise Comparativa

Para a fuzzificação, escolhemos uma variável de entrada com universo de discurso definido e particionamos o domínio em funções de pertinência uniformemente espaçadas. A seguir, apresentamos os resultados para duas amostras distintas.

Para as variáveis de entrada, definimos um universo de estudo como segue, particionando esse domínio em quatro funções de pertinência uniformemente espaçadas:

Table 1. Care	Table 1. Categorias de Temperatura e Intervalos			
Categoria	Intervalo de Temperatura (°C)			
Muito Frio	0 a 20			
Frio	20 a 40			
Morno	40 a 60			
Quente	60 a 80			
Muito Quente	80 a 100			

Table 1: Categorias de Temperatura e Intervalos

2.3 Fuzzificação com Funções Triangulares

2.4 Fuzzificação com Funções Triangulares

Para a variável linguística **Temperatura**, foram definidos cinco conjuntos fuzzy com os seguintes intervalos e parâmetros, além das ativações calculadas

para as amostras 25 e 75:

Table 2: Conjuntos Fuzzy, Intervalos, Parâmetros e Ativações

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 75]
Muita Fria	[0.0, 20.0]	[0.0, 0.0, 25.0]	[0, 0]
Fria	[20.0, 40.0]	[0.0, 25.0, 50.0]	[0.99, 0.0]
Morno	[40.0, 60.0]	[25.0, 50.0, 75.0]	[0.01, 0.01]
Quente	[60.0, 80.0]	[50.0, 75.0, 100.0]	[0.0, 0.99]
Muito Quente	[80.0, 100.0]	[75.0, 100.0, 100.0]	[0, 0]

A seguir, apresentamos o gráfico das funções de pertinência triangulares e suas ativações:

Figure 11: Funções de Pertinência Triangulares para a variável **Temperatura**.

2.5 Fuzzificação com Funções Trapezoidais

Para a variável linguística **Temperatura**, foram definidos cinco conjuntos fuzzy com os seguintes intervalos e parâmetros, além das ativações calculadas para as amostras **25** e **75**:

Table 3: Conjuntos Fuzzy, Intervalos, Parâmetros e Ativações

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 75]
Muita Fria	[0.0, 20.0]	[0.0, 0.0, 12.5, 25.0]	[0,0]
Fria	[20.0, 40.0]	[0.0, 12.5, 37.5, 50.0]	[1,0]
Morno	[40.0, 60.0]	[25.0, 37.5, 62.5, 75.0]	[0.02, 0.02]
Quente	[60.0, 80.0]	[50.0, 62.5, 87.5, 100.0]	[0,1]
Muito Quente	[80.0, 100.0]	[75.0, 87.5, 100.0, 100.0]	[0,0]

A seguir, apresentamos o gráfico das funções de pertinência trapezoidais e suas ativações:

Figure 12: Funções de Pertinência Trapezoidais para a variável **Temperatura**.

2.6 Fuzzificação com Funções Gaussianas

Para a variável linguística **Temperatura**, foram definidos cinco conjuntos fuzzy com os seguintes intervalos e parâmetros, além das ativações calculadas para as amostras **25** e **75**:

Table 4: Conjuntos Fuzzy, Intervalos, Parâmetros e Ativações

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 75]
Muita Fria	[0.0, 20.0]	[0.0, 12.5]	[0.13, 0.0]
Fria	[20.0, 40.0]	[25.0, 12.5]	[1.0, 0.0]
Morno	[40.0, 60.0]	[50.0, 12.5]	[0.14, 0.14]
Quente	[60.0, 80.0]	[75.0, 12.5]	[0.0, 1.0]
Muito Quente	[80.0, 100.0]	[100.0, 12.5]	[0.0, 0.13]

A seguir, apresentamos o gráfico das funções de pertinência gaussianas e suas ativações:

Figure 13: Funções de Pertinência Gaussianas para a variável **Temperatura**.

2.7 Fuzzificação com Funções Sigmoidais

Para a variável linguística **Temperatura**, foram definidos cinco conjuntos fuzzy com os seguintes intervalos e parâmetros, além das ativações calculadas para as amostras **25** e **75**:

Table 5: Conjuntos Fuzzy, Intervalos, Parâmetros e Ativações

Categoria	Intervalo (°C)	Parâmetros	Ativações $[25, 75]$
Muita Fria	[0.0, 20.0]	[1.0, 0.0]	[1.0, 1.0]
Fria	[20.0, 40.0]	[1.0, 25.0]	[0.56, 1.0]
Morno	[40.0, 60.0]	[1.0, 50.0]	[0.0, 1.0]
Quente	[60.0, 80.0]	[1.0, 75.0]	[0.0, 0.44]
Muito Quente	[80.0, 100.0]	[1.0, 100.0]	[0.0, 0.0]

A seguir, apresentamos o gráfico das funções de pertinência sigmoidais e suas ativações:

Figure 14: Funções de Pertinência Sigmoidais para a variável **Temperatura**.

2.8 Fuzzificação com Funções Bell

Para a variável linguística **Temperatura**, foram definidos cinco conjuntos fuzzy com os seguintes intervalos e parâmetros, além das ativações calculadas para as amostras **25** e **75**:

Table 6: Conjuntos Fuzzy, Intervalos, Parâmetros e Ativações

Categoria	Intervalo (°C)	Parâmetros	Ativações $[25, 75]$
Muita Fria	[0.0, 20.0]	[12.5, 2.0, 0.0]	[0.06, 0.0]
Fria	[20.0, 40.0]	[12.5, 2.0, 25.0]	[1.0, 0.0]
Morno	[40.0, 60.0]	[12.5, 2.0, 50.0]	[0.06, 0.06]
Quente	[60.0, 80.0]	[12.5, 2.0, 75.0]	[0.0, 1.0]
Muito Quente	[80.0, 100.0]	[12.5, 2.0, 100.0]	[0.0, 0.06]

A seguir, apresentamos o gráfico das funções de pertinência Bell e suas ativações:

Figure 15: Funções de Pertinência Bell para a variável **Temperatura**.

2.9 Fuzzificação com Funções S

Para a variável linguística **Temperatura**, foram definidos cinco conjuntos fuzzy com os seguintes intervalos e parâmetros, além das ativações calculadas para as amostras **25** e **75**:

Table 7: Conjuntos Fuzzy, Intervalos, Parâmetros e Ativações

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 75]
Muita Fria	[0.0, 20.0]	[0.0, 25.0]	[1,1]
Fria	[20.0, 40.0]	[25.0, 50.0]	[0.0, 1.0]
Morno	[40.0, 60.0]	[50.0, 75.0]	[0.0, 1.96]
Quente	[60.0, 80.0]	[75.0, 100.0]	[0, 0]
Muito Quente	[80.0, 100.0]	[100.0, 100.0]	[0, 0]

A seguir, apresentamos o gráfico das funções de pertinência S e suas ativações:

Figure 16: Funções de Pertinência S para a variável **Temperatura**.

2.10 Fuzzificação com Funções Z

Para a variável linguística **Temperatura**, foram definidos cinco conjuntos fuzzy com os seguintes intervalos e parâmetros, além das ativações calculadas para as amostras **25** e **75**:

Table 8: Conjuntos Fuzzy, Intervalos, Parâmetros e Ativações

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 75]
Muita Fria	[0.0, 20.0]	[0.0, 0.0]	[0, 0]
Fria	[20.0, 40.0]	[0.0, 25.0]	[0, 0]
Morno	[40.0, 60.0]	[25.0, 50.0]	[1.0, 0.0]
Quente	[60.0, 80.0]	[50.0, 75.0]	[1.0, -0.96]
Muito Quente	[80.0, 100.0]	[75.0, 100.0]	[1,1]

A seguir, apresentamos o gráfico das funções de pertinência Z e suas ativações:

Figure 17: Funções de Pertinência Z para a variável **Temperatura**.

2.11 Fuzzificação com Funções Pi

Para a variável linguística **Temperatura**, foram definidos cinco conjuntos fuzzy com os seguintes intervalos e parâmetros, além das ativações calculadas para as amostras **25** e **75**:

Table 9: Conjuntos Fuzzy, Intervalos, Parâmetros e Ativações

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 75]
Muita Fria	[0.0, 20.0]	[0.0, 0.0, 25.0]	[0, 0]
Fria	[20.0, 40.0]	[0.0, 25.0, 50.0]	[1.0, 0.0]
Morno	[40.0, 60.0]	[25.0, 50.0, 75.0]	[0.0, -0.96]
Quente	[60.0, 80.0]	[50.0, 75.0, 100.0]	[0.0, 1.96]
Muito Quente	[80.0, 100.0]	[75.0, 100.0, 100.0]	[0, 0]

A seguir, apresentamos o gráfico das funções de pertinência Pi e suas ativações:

Figure 18: Funções de Pertinência Pi para a variável **Temperatura**.

2.12 Fuzzificação com Funções Singleton

Para a variável linguística **Temperatura**, foram definidos cinco conjuntos fuzzy com os seguintes intervalos e parâmetros, além das ativações calculadas para as amostras **25** e **75**:

Table 10: Conjuntos Fuzzy, Intervalos, Parâmetros e Ativações

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 75]
Muita Fria	[0.0, 20.0]	[0.0]	[0, 0]
Fria	[20.0, 40.0]	[25.0]	[0, 0]
Morno	[40.0, 60.0]	[50.0]	[0, 0]
Quente	[60.0, 80.0]	[75.0]	[0, 0]
Muito Quente	[80.0, 100.0]	[100.0]	[0, 0]

A seguir, apresentamos o gráfico das funções de pertinência Singleton e suas ativações:

Figure 19: Funções de Pertinência Singleton para a variável **Temperatura**.

2.13 Fuzzificação com Funções Cauchy

Para a variável linguística **Temperatura**, foram definidos cinco conjuntos fuzzy com os seguintes intervalos e parâmetros, além das ativações calculadas para as amostras **25** e **75**:

Table 11: Conjuntos Fuzzy, Intervalos, Parâmetros e Ativações (Cauchy)

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 75]
Muita Fria	[0.0, 20.0]	[0.0, 12.5]	[0.2, 0.03]
Fria	[20.0, 40.0]	[25.0, 12.5]	[1.0, 0.06]
Morno	[40.0, 60.0]	[50.0, 12.5]	[0.2, 0.2]
Quente	[60.0, 80.0]	[75.0, 12.5]	[0.06, 1.0]
Muito Quente	[80.0, 100.0]	[100.0, 12.5]	[0.03, 0.2]

A seguir, apresentamos o gráfico das funções de pertinência Cauchy e suas ativações:

Figure 20: Funções de Pertinência Cauchy para a variável **Temperatura**.

2.14 Fuzzificação com Funções Double Gaussian

Para a variável linguística **Temperatura**, foram definidos cinco conjuntos fuzzy com os seguintes intervalos e parâmetros, além das ativações calculadas para as amostras **25** e **75**:

Table 12: Conjuntos Fuzzy, Intervalos, Parâmetros e Ativações (Double Gaussian)

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 75]
Muita Fria	[0.0, 20.0]	[0.0, 6.25, 12.5, 6.25]	[0.12, 0.0]
Fria	[20.0, 40.0]	[12.5, 6.25, 37.5, 6.25]	[0.15, 0.0]
Morno	[40.0, 60.0]	[37.5, 6.25, 62.5, 6.25]	[0.15, 0.15]
Quente	[60.0, 80.0]	[62.5, 6.25, 87.5, 6.25]	[0.0, 0.15]
Muito Quente	[80.0, 100.0]	[87.5, 6.25, 100.0, 6.25]	[0.0, 0.12]

A seguir, apresentamos o gráfico das funções de pertinência Double Gaussian e suas ativações:

Figure 21: Funções de Pertinência Double Gaussian para a variável **Temperatura**.

2.15 Fuzzificação com Funções Logarítmicas

Para a variável linguística **Temperatura**, foram definidos cinco conjuntos fuzzy com os seguintes intervalos e parâmetros, além das ativações calculadas para as amostras **25** e **75**:

Table 13: Conjuntos Fuzzy, Intervalos, Parâmetros e Ativações (Logarítmica)

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 75]
Muita Fria	[0.0, 20.0]	[2.0, 1.0]	[1,1]
Fria	[20.0, 40.0]	[2.0, 1.0]	[1,1]
Morno	[40.0, 60.0]	[2.0, 1.0]	[1,1]
Quente	[60.0, 80.0]	[2.0, 1.0]	[1,1]
Muito Quente	[80.0, 100.0]	[2.0, 1.0]	[1,1]

A seguir, apresentamos o gráfico das funções de pertinência Logarítmicas e suas ativações:

Figure 22: Funções de Pertinência Logarítmicas para a variável **Temperatura**.

2.16 Fuzzificação com Funções Retangulares

Para a variável linguística **Temperatura**, foram definidos cinco conjuntos fuzzy com os seguintes intervalos e parâmetros, além das ativações calculadas para as amostras **25** e **75**:

Table 14: Conjuntos Fuzzy, Intervalos, Parâmetros e Ativações (Retangular)

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 75]
Muita Fria	[0.0, 20.0]	[0.0, 12.5]	[0, 0]
Fria	[20.0, 40.0]	[12.5, 37.5]	[1, 0]
Morno	[40.0, 60.0]	[37.5, 62.5]	[0, 0]
Quente	[60.0, 80.0]	[62.5, 87.5]	[0, 1]
Muito Quente	[80.0, 100.0]	[87.5, 100.0]	[0, 0]

A seguir, apresentamos o gráfico das funções de pertinência Retangulares e suas ativações:

Figure 23: Funções de Pertinência Retangulares para a variável **Temperatura**.

3 Análise Comparativa das Funções de Pertinência

Nesta seção, analisamos os resultados obtidos para as diferentes funções de pertinência aplicadas à variável linguística **Temperatura**. A análise considera como o grau de ativação varia entre as funções e identifica quais apresentam maior suavidade ou sensibilidade às variações no domínio.

3.1 Variação do Grau de Ativação

Os resultados mostram que o grau de ativação varia de forma distinta entre as funções de pertinência:

- Funções Gaussianas: Apresentam transições suaves e contínuas, com ativação máxima (1.0) para as categorias *Fria* e *Quente* nas amostras 25 e 75, respectivamente. As categorias adjacentes (*Muita Fria* e *Morno*) exibem ativações moderadas (0.13 e 0.14), indicando boa sensibilidade às variações no domínio.
- Funções Sigmoidais: Demonstram transições suaves e assimétricas. A categoria *Muita Fria* apresenta ativação constante (1.0) para ambas as amostras, enquanto a categoria *Fria* exibe uma ativação moderada (0.56) na amostra 25 e máxima (1.0) na amostra 75. As categorias

Morno e Quente apresentam ativações crescentes, refletindo alta sensibilidade em torno dos pontos centrais.

- Funções Bell: Apresentam características semelhantes às gaussianas, mas com maior controle sobre a largura e inclinação. A categoria Fria atinge ativação máxima (1.0) na amostra 25, enquanto as categorias adjacentes (Muita Fria e Morno) exibem ativações moderadas (0.06). Na amostra 75, a categoria Quente apresenta ativação máxima (1.0), enquanto as categorias adjacentes exibem ativações baixas.
- Funções S: Apresentam transições suaves e crescentes. A categoria *Muita Fria* exibe ativação constante (1.0) para ambas as amostras, enquanto a categoria *Fria* apresenta ativação máxima (1.0) na amostra 75. A categoria *Morno* exibe a maior ativação (1.96) na amostra 75, indicando alta sensibilidade em regiões de transição.
- Funções Z: Apresentam transições suaves e decrescentes. A categoria *Morno* exibe ativação máxima (1.0) na amostra 25, enquanto a categoria *Quente* apresenta ativação negativa (-0.96) na amostra 75, refletindo a natureza decrescente da função.
- Funções Pi: Combinam as características das funções S e Z, apresentando transições suaves em ambas as extremidades. A categoria *Fria* exibe ativação máxima (1.0) na amostra 25, enquanto a categoria *Quente* apresenta ativação elevada (1.96) na amostra 75.
- Funções Singleton: Apresentam ativações discretas, com valores nulos para todas as categorias e amostras. Isso reflete a ausência de transições, sendo adequadas apenas para modelar pontos específicos no domínio.
- Funções Cauchy: Apresentam transições suaves, com caudas mais longas em comparação às gaussianas. A categoria *Fria* exibe ativação máxima (1.0) na amostra 25, enquanto as categorias adjacentes (*Muita Fria* e *Morno*) apresentam ativações moderadas (0.2). Na amostra 75, a categoria *Quente* exibe ativação máxima (1.0).
- Funções Double Gaussian: Apresentam duas regiões de ativação controladas por parâmetros independentes. As categorias *Fria* e *Morno* exibem ativações moderadas (0.15) na amostra 25, enquanto a categoria *Quente* apresenta ativação moderada (0.15) na amostra 75.

- Funções Logarítmicas: Apresentam ativações constantes (1.0) para todas as categorias e amostras, indicando baixa sensibilidade às variações no domínio.
- Funções Retangulares: Apresentam regiões planas com ativação constante (1.0) e transições abruptas nas bordas. A categoria *Fria* exibe ativação máxima (1.0) na amostra 25, enquanto a categoria *Quente* apresenta ativação máxima (1.0) na amostra 75.

3.2 Suavidade e Sensibilidade

A suavidade e a sensibilidade às variações no domínio variam significativamente entre as funções:

- Maior Suavidade: As funções Gaussianas, Sigmoidais, Bell e Cauchy apresentam as transições mais suaves, sendo ideais para modelar mudanças graduais no grau de ativação.
- Maior Sensibilidade: As funções S e Pi demonstram alta sensibilidade em regiões de transição, enquanto as funções Gaussianas e Sigmoidais apresentam sensibilidade moderada.
- Menor Suavidade e Sensibilidade: As funções Retangulares e Singleton apresentam transições abruptas ou ausência de transição, sendo menos adequadas para modelar mudanças contínuas.

3.3 Conclusão

Os resultados mostram que as funções Gaussianas, Sigmoidais, Bell e Cauchy são as mais adequadas para modelar transições suaves e graduais. As funções S e Pi são úteis em cenários que exigem alta sensibilidade em regiões de transição. Por outro lado, as funções Retangulares e Singleton são mais indicadas para modelar intervalos bem definidos ou pontos discretos. A escolha da função de pertinência ideal depende do contexto da aplicação e das características desejadas para o sistema fuzzy.

4 Operações Básicas no Contexto Fuzzy

5 Introdução

6 Introdução

A lógica fuzzy estende a lógica clássica, permitindo lidar com incertezas ao atribuir graus de pertinência contínuos no intervalo [0,1]. Este trabalho explora operações fuzzy fundamentais, como complemento (Zadeh, Sugeno, Yager), união (máximo, soma probabilística, soma limitada, soma drástica) e interseção (mínimo, produto, produto limitado, produto drástico). Utilizamos conjuntos fuzzy definidos por funções de pertinência (triangular, trapezoidal, gaussiana, etc.) para realizar análises gráficas e textuais comparativas, destacando as características e aplicações práticas de cada operador.

6.1 Complemento

As operações de complemento são utilizadas para calcular o grau de nãopertinência de um elemento a um conjunto fuzzy. Abaixo, apresentamos as fórmulas para os operadores de complemento Zadeh, Sugeno e Yager.

6.1.1 Zadeh

O complemento de Zadeh é definido como:

$$\mu_{\text{Zadeh}}(x) = 1 - \mu(x)$$

6.1.2 Sugeno

O complemento de Sugeno é definido como:

$$\mu_{\text{Sugeno}}(x) = \frac{1 - \mu(x)}{1 + \lambda \cdot \mu(x)}$$

onde $\lambda \geq 0$ é um parâmetro que controla a suavidade do complemento.

6.1.3 Yager

O complemento de Yager é definido como:

$$\mu_{\text{Yager}}(x) = (1 - \mu(x)^w)^{\frac{1}{w}}$$

onde w > 0 é um parâmetro que ajusta a forma do complemento.

6.2 Complemento - Operador Zadeh

Os resultados para o operador de complemento Zadeh aplicado às funções de pertinência triangulares são apresentados na tabela abaixo. As ativações foram calculadas para as amostras **25** e **75**.

Table 15: Ativações para o Operador Zadeh com Funções Triangulares

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 75]
Muita Fria	[0.0, 20.0]	[0.0, 0.0, 25.0]	[1.0, 1.0]
Fria	[20.0, 40.0]	[0.0, 25.0, 50.0]	[0.01, 1.0]
Morno	[40.0, 60.0]	[25.0, 50.0, 75.0]	[0.99, 0.99]
Quente	[60.0, 80.0]	[50.0, 75.0, 100.0]	[1.0, 0.01]
Muito Quente	[80.0, 100.0]	[75.0, 100.0, 100.0]	[1.0, 1.0]

A figura abaixo apresenta o gráfico das funções de pertinência triangulares e seus complementos calculados utilizando o operador de Zadeh.

Figure 24: Funções de pertinência triangulares e seus complementos (Zadeh).

Os resultados das ativações para os operadores de complemento Sugeno e Yager aplicados às funções de pertinência triangulares são apresentados nas tabelas abaixo. As ativações foram calculadas para as amostras **25** e **75**.

6.2.1 Operador Sugeno

Table 16: Ativações para o Operador Sugeno com Funções Triangulares

	<u>, , , , , , , , , , , , , , , , , , , </u>		3 0
Categoria	Intervalo (°C)	Parâmetros	Ativações $[25, 75]$
Muita Fria	[0.0, 20.0]	[0.0, 0.0, 25.0]	[1.0, 1.0]
Fria	[20.0, 40.0]	[0.0, 25.0, 50.0]	[0.01, 1.0]
Morno	[40.0, 60.0]	[25.0, 50.0, 75.0]	[0.98, 0.98]
Quente	[60.0, 80.0]	[50.0, 75.0, 100.0]	[1.0, 0.01]
Muito Quente	[80.0, 100.0]	[75.0, 100.0, 100.0]	[1.0, 1.0]

Figure 25: Funções de pertinência triangulares e seus complementos (Sugeno).

6.2.2 Operador Yager

Table 17: Ativações para o Operador Yager com Funções Triangulares

Categoria	Intervalo (°C)	Parâmetros	Ativações $[25, 75]$
Muita Fria	[0.0, 20.0]	[0.0, 0.0, 25.0]	[1.0, 1.0]
Fria	[20.0, 40.0]	[0.0, 25.0, 50.0]	[0.14, 1.0]
Morno	[40.0, 60.0]	[25.0, 50.0, 75.0]	[1.0, 1.0]
Quente	[60.0, 80.0]	[50.0, 75.0, 100.0]	[1.0, 0.14]
Muito Quente	[80.0, 100.0]	[75.0, 100.0, 100.0]	[1.0, 1.0]

Figure 26: Funções de pertinência triangulares e seus complementos (Yager).

6.3 Resultados para o Tipo Triangular com Operadores de União (t-conormas)

Os resultados das ativações para os operadores de união (t-conormas) aplicados às funções de pertinência triangulares são apresentados nas tabelas abaixo. As ativações foram calculadas para as amostras **25** e **75**.

6.3.1 Operador Máximo

A união pelo operador máximo é definida como:

$$\mu_{\text{Máximo}}(x) = \max(\mu_1(x), \mu_2(x))$$

Table 18: Ativações para o Operador Máximo com Funções Triangulares

Categoria	Intervalo (°C)	Parâmetros	\mid Ativações $[25,75]\mid$
Fria	[0.0, 25.0]	[0.0, 0.0, 33.33]	[0.24, 0.0]
Morno	[25.0, 50.0]	[0.0, 33.33, 66.67]	[0.76, 0.0]
Quente	[50.0, 75.0]	[33.33, 66.67, 100.0]	[0.0, 0.76]
Muito Quente	[75.0, 100.0]	[66.67, 100.0, 100.0]	[0.0, 0.24]
União (Máximo)	-	-	[0.76, 0.0]

Figure 27: Funções de pertinência triangulares e suas uniões (Máximo).

6.3.2 Operador Soma Probabilística

A união pelo operador soma probabilística é definida como:

$$\mu_{\text{Soma Probabilística}}(x) = \mu_1(x) + \mu_2(x) - \mu_1(x) \cdot \mu_2(x)$$

Table 19: Ativações para o Operador Soma Probabilística com Funções Triangulares

Categoria	Intervalo (°C)	Parâmetros	Ativações $[25, 75]$
Fria	[0.0, 25.0]	[0.0, 0.0, 33.33]	[0.24, 0.0]
Morno	[25.0, 50.0]	[0.0, 33.33, 66.67]	[0.76, 0.0]
Quente	[50.0, 75.0]	[33.33, 66.67, 100.0]	[0.0, 0.76]
Muito Quente	[75.0, 100.0]	[66.67, 100.0, 100.0]	[0.0, 0.24]
União (Soma Probabilística)	-	-	[0.82, 0.0]

6.3.3 Operador Soma Limitada

A união pelo operador soma limitada é definida como:

$$\mu_{\text{Soma Limitada}}(x) = \min(1, \mu_1(x) + \mu_2(x))$$

Table 20: Ativações para o Operador Soma Limitada com Funções Triangu-

lares			
Categoria	Intervalo (°C)	Parâmetros	Ativações $[25, 75]$
Fria	[0.0, 25.0]	[0.0, 0.0, 33.33]	[0.24, 0.0]
Morno	[25.0, 50.0]	[0.0, 33.33, 66.67]	[0.76, 0.0]
Quente	[50.0, 75.0]	[33.33, 66.67, 100.0]	[0.0, 0.76]
Muito Quente	[75.0, 100.0]	[66.67, 100.0, 100.0]	[0.0, 0.24]
União (Soma Limitada)	-	-	[1.0, 0.0]

Figure 28: Funções de pertinência triangulares e suas uniões (Soma Limitada).

6.3.4 Operador União (Soma Drástica)

A união pelo operador soma drástica é definida como:

$$\mu_{\text{Soma Drástica}}(x) = \begin{cases} \max(\mu_1(x), \mu_2(x)), & \text{se } \min(\mu_1(x), \mu_2(x)) > 0, \\ 0, & \text{caso contrário.} \end{cases}$$

Table 21: Ativações para o Operador União (Soma Drástica) com Funções Triangulares

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 75]
Fria	[0.0, 25.0]	[0.0, 0.0, 33.33]	[0.24, 0.0]
Morno	[25.0, 50.0]	[0.0, 33.33, 66.67]	[0.76, 0.0]
Quente	[50.0, 75.0]	[33.33, 66.67, 100.0]	[0.0, 0.76]
Muito Quente	[75.0, 100.0]	[66.67, 100.0, 100.0]	[0.0, 0.24]
União (Soma Drástica)	-	-	[0.76, 0.0]

Figure 29: Funções de pertinência triangulares e suas uniões (Soma Drástica).

6.3.5 Operador Produto Drástico

A interseção pelo operador produto drástico é definida como:

$$\mu_{\text{Produto Drástico}}(x) = \begin{cases} \max(\mu_1(x), \mu_2(x)), & \text{se } \min(\mu_1(x), \mu_2(x)) > 0, \\ 0, & \text{caso contrário.} \end{cases}$$

Table 22: Ativações para o Operador Produto Drástico com Funções Trian-

gulares

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 7
Fria	[0.0, 25.0]	[0.0, 0.0, 33.33]	[0.24, 0.0]
Morno	[25.0, 50.0]	[0.0, 33.33, 66.67]	[0.76, 0.0]
Quente	[50.0, 75.0]	[33.33, 66.67, 100.0]	[0.0, 0.76]
Muito Quente	[75.0, 100.0]	[66.67, 100.0, 100.0]	[0.0, 0.24]
Interseção (Produto Drástico)	-	-	[0.0, 0.0]

Figure 30: Funções de pertinência triangulares e suas interseções (Produto Drástico).

6.3.6 Operador Produto Drástico

A interseção pelo operador produto drástico é definida como:

$$\mu_{\text{Produto Drástico}}(x) = \begin{cases} \max(\mu_1(x), \mu_2(x)), & \text{se } \min(\mu_1(x), \mu_2(x)) > 0, \\ 0, & \text{caso contrário.} \end{cases}$$

Table 23: Ativações para o Operador Produto Drástico com Funções Triangulares

Categoria	Intervalo (°C)	Parâmetros	Ativações [25, 7
Fria	[0.0, 25.0]	[0.0, 0.0, 33.33]	[0.24, 0.0]
Morno	[25.0, 50.0]	[0.0, 33.33, 66.67]	[0.76, 0.0]
Quente	[50.0, 75.0]	[33.33, 66.67, 100.0]	[0.0, 0.76]
Muito Quente	[75.0, 100.0]	[66.67, 100.0, 100.0]	[0.0, 0.24]
Interseção (Produto Drástico)	-	-	[0.0, 0.0]

Figure 31: Funções de pertinência triangulares e suas interseções (Produto Drástico).

7 Conclusão

Os operadores de complemento analisados apresentam características distintas que os tornam adequados para diferentes aplicações:

- Zadeh: Simples e direto, ideal para aplicações gerais onde não há necessidade de ajustes adicionais na suavidade do complemento.
- Sugeno: Permite ajuste de suavidade por meio do parâmetro λ , sendo mais flexível e adaptável a diferentes cenários.
- Yager: Oferece maior controle sobre a forma do complemento por meio do parâmetro w, sendo útil em cenários específicos que exigem maior personalização.

A escolha do operador de complemento deve considerar o contexto da aplicação e os requisitos específicos do sistema fuzzy.

8 Matriz de Relação Fuzzy

Nesta seção, implementamos uma função para calcular a matriz de relação fuzzy entre dois conjuntos fuzzy utilizando diferentes operadores t-norma e s-norma. Os conjuntos fuzzy utilizados representam categorias de temperatura (Fria, Morno, Quente, Muito Quente) com os seguintes graus de pertinência:

- Conjunto A (*Temperatura 1*): [0.24, 0.76, 0.0, 0.0]
- Conjunto B (*Temperatura 2*): [0.0, 0.0, 0.76, 0.24]

8.1 Definição dos Operadores

Os operadores utilizados para calcular a matriz de relação fuzzy são:

• t-Norma (Mínimo):

$$\mu_{\text{Mínimo}}(x, y) = \min(\mu_A(x), \mu_B(y))$$

• t-Norma (Produto):

$$\mu_{\text{Produto}}(x, y) = \mu_A(x) \cdot \mu_B(y)$$

• s-Norma (Máximo):

$$\mu_{\text{Máximo}}(x, y) = \max(\mu_A(x), \mu_B(y))$$

• s-Norma (Soma Probabilística):

$$\mu_{\text{Soma Probabilística}}(x, y) = \mu_A(x) + \mu_B(y) - \mu_A(x) \cdot \mu_B(y)$$

8.2 Resultados

As matrizes de relação fuzzy calculadas para os operadores acima são apresentadas a seguir:

8.2.1 t-Norma (Mínimo)

$$R_{\text{Minimo}} = \begin{bmatrix} 0.00 & 0.00 & 0.24 & 0.24 \\ 0.00 & 0.00 & 0.76 & 0.24 \\ 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$$

8.2.2 t-Norma (Produto)

$$R_{\text{Produto}} = \begin{bmatrix} 0.00 & 0.00 & 0.18 & 0.06 \\ 0.00 & 0.00 & 0.58 & 0.18 \\ 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$$

8.2.3 s-Norma (Máximo)

$$R_{\text{Máximo}} = \begin{bmatrix} 0.24 & 0.24 & 0.76 & 0.24 \\ 0.76 & 0.76 & 0.76 & 0.76 \\ 0.76 & 0.76 & 0.76 & 0.76 \\ 0.24 & 0.24 & 0.76 & 0.24 \end{bmatrix}$$

8.2.4 s-Norma (Soma Probabilística)

$$R_{\text{Soma Probabilística}} = \begin{bmatrix} 0.24 & 0.24 & 0.79 & 0.42 \\ 0.76 & 0.76 & 0.94 & 0.82 \\ 0.76 & 0.76 & 0.76 & 0.76 \\ 0.24 & 0.24 & 0.79 & 0.42 \end{bmatrix}$$

8.3 Análise Comparativa

- t-Norma (Mínimo): Gera valores mais conservadores, refletindo a interseção mais restritiva entre os conjuntos fuzzy.
- t-Norma (Produto): Permite suavização, gerando valores intermediários que refletem a interação proporcional entre os conjuntos.
- s-Norma (Máximo): Destaca a união dos conjuntos, sempre puxando para o maior grau de pertinência.
- s-Norma (Soma Probabilística): Reflete a união com suavização, garantindo que o resultado não ultrapasse 1.

9 Composição de Relações Fuzzy

Nesta seção, implementamos as funções para calcular a composição de relações fuzzy utilizando os operadores Máximo-Mínimo, Mínimo-Máximo e Máximo-Produto. Os conjuntos fuzzy utilizados representam categorias de temperatura (*Fria, Morno, Quente, Muito Quente*) com os seguintes graus de pertinência:

- Conjunto A (*Temperatura 1*): [0.24, 0.76, 0.0, 0.0]
- Conjunto B (*Temperatura 2*): [0.0, 0.0, 0.76, 0.24]

9.1 Definição dos Operadores

Os operadores utilizados para calcular a composição de relações fuzzy são:

• Máximo-Mínimo:

$$\mu_R(x,z) = \max_y \min(\mu_A(x,y), \mu_B(y,z))$$

• Mínimo-Máximo:

$$\mu_R(x,z) = \min_y \max(\mu_A(x,y), \mu_B(y,z))$$

• Máximo-Produto:

$$\mu_R(x,z) = \max_y (\mu_A(x,y) \cdot \mu_B(y,z))$$

9.2 Resultados

As matrizes de composição fuzzy calculadas para os operadores acima são apresentadas a seguir:

9.2.1 Máximo-Mínimo

$$R_{\text{Máximo-Mínimo}} = \begin{bmatrix} 0.24 & 0.24 & 0.24 & 0.24 \\ 0.76 & 0.76 & 0.76 & 0.24 \\ 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$$

9.2.2 Mínimo-Máximo

$$R_{\text{M\'inimo-M\'aximo}} = \begin{bmatrix} 0.24 & 0.24 & 0.76 & 0.76 \\ 0.76 & 0.76 & 0.76 & 0.76 \\ 0.76 & 0.76 & 0.76 & 0.76 \\ 0.24 & 0.24 & 0.76 & 0.76 \end{bmatrix}$$

9.2.3 Máximo-Produto

$$R_{\text{Máximo-Produto}} = \begin{bmatrix} 0.00 & 0.00 & 0.18 & 0.06 \\ 0.00 & 0.00 & 0.58 & 0.18 \\ 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$$

9.3 Análise Comparativa

- Máximo-Mínimo: Reflete a interseção mais conservadora entre os conjuntos fuzzy, destacando os menores graus de pertinência.
- Mínimo-Máximo: Reflete a união mais conservadora entre os conjuntos fuzzy, destacando os maiores graus de pertinência.
- Máximo-Produto: Permite suavização, considerando o produto dos graus de pertinência, gerando valores intermediários.