Opdrachten lecture 2

1) Differentieer de volgende functies.

•
$$f(x) = 4x^3 - 3x^4 + x^{\frac{1}{2}} + 10x + 15$$

•
$$f(x) = (-5x + 3x^2)(3-x)$$

•
$$f(x) = \frac{5x+2}{2+4x}$$

•
$$f(x) = (6x^2 + 7)^3$$

•
$$f(x) = 4e^{-x}$$

Differentieren

1)
$$f(x) = 4x^3 - 3x^4 + x^{\frac{1}{2}} + 10x + 15$$
 $f'(x) = -12x^3 + 12x^2 + 0, 5x^{\frac{1}{2}} + 10$

2) $f(x) = (-5x + 3x^2)(3-x)$
 $f'(x) = -15x - 5x^2 + 9x^2 + 3x^3$
 $= 3x^3 + 4x^2 - 15x$
 $= 9x^2 + 8x - 15$

$$(4) f(x) = (6x^{2} + 7)^{2} (dx^{2} + 7)^{2}$$

$$= 3(6x^{2} + 7)^{2} (dx^{2} + 7)$$

$$= 3(6x^{2} + 7)^{2} (12x)$$

$$= 3(6x^{2} + 7)^{2} (12x)$$

$$f'(x) = 36x(6x^{2} + 7)$$

5)
$$f(x) = ye^{-x}$$

 $= (e^{in(ye)})^{-x}$
 $= (e^{in(ye)(-x)})$
 $= (e^{in(ye)(-x)}) (\frac{d}{dx}(in(ye))(-x))$
 $= e^{in(ye)(-x)} (in(ye)(-1))$
 $= (e^{in(ye)})^{-x} (in(ye)) (-1)$
 $f(x) = (ye)^{-x} (in(ye)) (-1)$

2) Differentieer een aantal activatiefuncties.

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	-
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0,z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	

Sigmoid

Tanh

-10

-5

-0.5

10