Конспект лекции 10/9/19

Отношения

Конспекты по многим темам есть на neerc.

Опр. *(нестрогое)* **Множество** - объединение неких объектов, каждый $x \in X$ либо $x \notin X$

 \mathbb{U} - универсум - множество всех объектов

Прямое *(декартово)* произведение $X imes Y = \{(x,y) | x \in X, y \in Y\}$

 $R\subset X imes Y$ - (бинарное) **отношение между** X и Y (подмножество прямого произведения), в частности $R\subset X imes X$ - отношение на X.

Свойства отношений

- 1. $\forall x: xRx$ рефлексивность
- 2. $\forall x:x\cancel{R}x$ антирефлексивность
- 3. $\forall x,y:xRy\Rightarrow yRx$ симметричность
- 4. $\forall x,y:xRy$ и $yRx\Rightarrow x=y$ антисимметричность
- 5. $\forall x,y,z:xRy,yRz\Rightarrow xRz$ транзитивность

Тоже определение антисимметричности: $\forall x
eq y : xRy \Rightarrow y \cancel{R} x$

Эквивалентность:

- рефлексивность
- транзитивность
- симметричность

Теорема: Дано отношение эквивалентности X на множестве R. $\exists Y=X/R$ и функция f:X o Y, такие что $xRy\Leftrightarrow f(x)=f(y)$. Y называется множеством классов эквивалентности X относительно R.

Это можно понять следующей аналогией: Покрасим эквивалентные элементы в однаквые цвета, не эквивалентные элементы в разные.

Пример $X=\mathbb{Z}$, R - сравнимость по модулю 17.

$$\mathbb{Z} \equiv_{17} = \{\text{oct.0}, \text{oct.1}, ... \text{oct.16}\}$$

Частичный порядок:

- рефлексивность
- транзитивность
- антисимметричность

Теорема В графе частичного порядка нет циклов, кроме петель.

Доказательство: от противного. Пусть в этом графе есть цикл длины k. Тогда по транзитивности в графе есть цикл длины k-1. Тогда есть цикл длины 2 - противоречие по антисимметричности. \blacksquare

Опр. Линейный порядок - частичный порядок, где любые два элемента находятся в сравнении.

Опр. Композицией отношений R и S, определенных на X, называется отношение RS такое, что xRSy, если $\exists z: xRz, zSy$.

Частный случай: xR^2y - значит, что в графе отношений от x до y можно дойти за 2 шага.

 $R^0=I$ - отношение равенства, $I=\{(x,x)|x\in X\}$ - минимальное рефлексивное отношение

$$igcup_{i=0}^{\infty} R^i$$
 - рефлексивное транзитивное замыкание отношения R , обозначается R^*

$$igcup_{i=1}^{\infty} R^i$$
 - транзитивное замыкание отношения R , обозначается R^+

Лемма R,S - транзитивное отношение на X , тогда $R\cap S$ - транзитивное отношение на X .

Доказательство:
$$T:=R\cap S$$
 $xTy,yTz\Rightarrow xRy,xSy,yRz,ySz\Rightarrow xRz,xSz\Rightarrow xTz$

Эта лемма верна для пересечения произвольного количества отношений.

$$T(R)=\{S|R\subset S, S- ext{транз.}\}$$
 - множество всех транзитивных надмножеств $R.$ $TC(R):=igcap_{S\in T(R)}S$

Tеорема
$$TC(R)=R^+$$

Доказательство:
$$TC(R)=R^+\Leftrightarrow TC(R)\subset R^+, R^+\subset TC(R)$$
 R^+ — транз., $R\subset R^+\Rightarrow R^+\in T(R)\Rightarrow TC(R)\subset R^+$

Докажем, что $R^i \subset TC(R)$ по мат.инд.

База:
$$i=1$$
 $R^1=R\subset TC(R)$

Переход:
$$R^{i+1}=R^iR$$
 $R^i\subset TC(R), R\subset TC(R)$ $\exists z:xR^iz,zRy\Rightarrow xTC(R)z,zTC(R)y\Rightarrow xTC(R)y\Rightarrow R^{i+1}\subset TC(R)$