

Nathan Corral

✓ nathan.b.corral@gmail.com

• https://nathancorral.com

in www.linkedin.com/in/nathan-corral

Als Computer Engineer mit einem Master-Schwerpunkt in Computer Vision und Robotik bin ich motiviert, die angewandte Automatisierung durch modernste Deep-Learning-Lösungen voranzutreiben.

Berufserfahrung

Humanoid Robots Lab – Universität Bonn 09.2021 - 09.2022

Wissenschaftlicher Mitarbeiter Bonn, Deutschland

- Mitgewirkt an Forschung und Veröffentlichungen in Bereich "Personalized Robot Navigation".
- Programmierung der ROS-Schnittstelle für die 3D-Lokalisierung von Menschen mit einer RGBD-Kamera unter Nutzung von Deep Learning und Implementierung dieser Funktion auf einem realen Roboter zur autonomen Navigation.
- Verwendung des fotorealistischen Simulators iGibson (PyBullet-Backend) zur Generierung von Daten für einen Deep-Reinforcement-Learning-basierten Path Planning Algorithm.
- Aufbau und Durchführung einer Nutzerstudie zur Bewertung der Mensch-Roboter-Interaktion mit einem VR-Headset und anschließender Umsetzung auf realer Roboterhardware.

Head Rush Technologies

Vertragsingenieur

12.2019 - 04.2020

Boulder, USA

- Vertragsarbeit zur Entwicklung der Firmware auf einem ATmega328PB-Mikrochip für ein Proof-of-Concept-System.
- Arbeit umfasste die Programmierung eines durch Interrupts ausgelösten Zahnrad-Sensors, RS485-Kommunikation, einer PWM-gesteuerten Bremse sowie Logik für endliche Zustandsautomaten.
- Durchführung von Feldtests und Erstellung der Projektdokumentation.
- Der Erfolg dieses Prototyps führte zu einer weiteren Entwicklung, die letztendlich als ihre "Catch-and-Hold-Technology" veröffentlicht wurde.

Agronos

Software entwickler

11.2018 - 12.2019

Denver, USA

- Entwicklung von ROS-Nodes zur Visualisierung des LiDAR-Prototyps des Unternehmens.
- Strukturierung von UDP-Paketen und Programmierung beider Seiten der Sende- und Empfangsmodule.
- Interaktion mit einer REST-API auf dem eingebetteten System zur Konfiguration von Hyperparametern.
- Filterung von Punktwolken und Gruppierung von Objekten mit der C++ Point Cloud Library.

Creative Edge LLC

Software entwickler

08.2017 - 09.2018

Denver, USA

- Entwicklung von Anwendungen für das Kryptowährungs-Mining unter Windows und
- Erstellung von Software zur Verwaltung von Betriebssystemtreibern, Systemkonfigurationen und Tools von Drittanbietern.

Bildung

M.Sc. Universität Bonn 10.2020 - 09.2023

08.2013 - 05.2017

B.Sc. University of Illinois Urbana-Champaign Computer Engineering GPA: 3.55/4.0

Masterarbeit

2023 Stochastic Transformer for Prediction of Multiple Futures

Diese Arbeit baut auf den Grundlagen der Stochastic Video Generation¹ und Variational Transformers² auf und erweitert deren Anwendungen zu einem vielseitigen, aufgabenunabhängigen, stochastischen Vorhersagenetzwerk. Diese Arbeit trug Folgendes bei:

- Eine neuartige, transformerbasierte Prädiktorarchitektur, die eine Verteilung über mögliche Zukünfte lernen kann.
- Detaillierter Vergleich mit anderen stochastischen Modellen in der Videovorhersage, mit einer höheren Structural Similarity in frameweisen Vergleichen.
- Anwendung im Bereich Human Pose Prediction, mit der Generierung von über 8 Sekunden fortgesetztem Gehen nach den ersten 0,3 Sekunden Seed-Bewegung.

Projekte

2024 ROS 2 Whisper

Video. Source

Informatik

Note: 1.7

Als Erweiterung dieses Open-Source-Projekts habe ich eine grenzenlose, Live-Audiotranskription implementiert. Geschrieben in C++ legt mein Codebeitrag den Fokus auf:

- Skalierbarkeit: Through using both inheritance and composition in objectoriented programming behavior.
- Effizienz: Through intentional memory management, thread-safe callbacks and work splitting across multiple nodes.
- Einfachheit in der durchdachten Implementierung complex merging algorithms.

ROS 2 Computer Vision

Video, Source

Das Ausführen mehrerer Computer-Vision-Modelle (DETR, Maskformer), die für verschiedene Datensätze/Aufgaben trainiert wurden, auf einem Live-Kamerastream stellt mehrere Implementierungsherausforderungen dar. Dieses Python-Repository bietet eine Lösung für:

- Das Herunterladen und Ausführen von State-of-the-Art-Modellen aus Hugging Face als asynchrone ROS 2 Nodes.
- Das Hosten eines Label Server, um Modell-Ausgaben in einer globalen Datenbank neu zu adressieren.
- Die Anzeige von Segmentation Masks und Bounding Boxes als Matplotlib Ani-
- Das Veröffentlichen von Datensatzbildern zur wiederholbaren Evaluierung von CV-Modellen.

¹Denton et al., "Stochastic video generation with a learned prior." ICML 2018

²Lin et al., "Variational transformers for diverse response generation." arXiv 2020

Projekte (continued)

Semantic Search using Facebook AI Similarity (FAISS)
Dieses Projekt implementiert die ersten Schritte der Retrieval-Augmented Generation (RAG) (endet vor "Generation"). Ich führe Web-Scraping, Datensatz-/Abfrage-Einbettung und Ähnlichkeitsbewertung durch, um Dateneinträge basierend auf einer Abfrage in natürlicher Sprache abzurufen.

Veröffentlichungen

J. de Heuvel, N. Corral, et al. "Learning depth vision-based personalized robot navigation from dynamic demonstrations in virtual reality" *IROS*, 2023

Fähigkeiten

0	
Languages	English (Native) · Deutsch (C1)
Stärken	Rroblemlösung · Zusammenarbeit · Zuverlässig
	· Technische Dokumentation · Fleißig
Coding	$ ightharpoonup \cdot C++ \cdot Python \cdot Bash \cdot C \cdot LaTeX \cdot Java$
Software	\blacksquare · Linux/Ubuntu · GitHub · Docker · ROS/ROS2 · QEMU
	· Hyperstack · AWS EC2
Libraries $(C++)$	📘 · std · chrono · Point Cloud Library · nlohmann/json · curl
Libraries (Py)	PyTorch · Hugging Face · TensorFlow · Matplotlib · Pandas
	· OpenCV · NumPy · scikit-learn
Wissen	Agile · REST API · Test-driven Development · POSIX
	· Object Oriented Programming · Data Structures
Robotics	Forward/Inverse Kinematics · SLAM · Path Planning
	· PID / Model Predictive Controllers · Kalman (Bayes) Filters
Deep Learning	· Computer Vision · Generative AI · Large Language Models
	· Gradient Descent Optimization · Retrieval-Augmented Generation
	· Reinforcement Learning · Point Cloud Processing · CUDA
Simulators	· CARLA · iGibson · (Py)Bullet · Gazebo · Webots
Mictrocontrollers	· UART/I2C/SPI · Systems on Chip · Real-Time Systems
	· Interrupt Triggers · Discrete Signal Processing