Autómatas, Teoría de Lenguajes y Compiladores (72.39) Parcial 1

Ej 2	Ej 3	Ej 4	Nota
1 5	4	0	
	Lj ∠ 1.5	1.5 4	1.5 4 2

Condición mínima de aprobación: Acumular 6 puntos IMPORTANTE:

- El examen tiene por objetivo que el alumno demuestre conocimientos adquiridos en la presente asignatura Autómatas, Teoría de Lenguajes y Compiladores. Por ello, todos los ejercicios deben resolverse utilizando los algoritmos, conceptos y vocabulario vistos en la clase teórica, en la clase práctica o en la bibliografía. En caso de que un ejercicio no sea resuelto utilizando los algoritmos de la presente asignatura, no será considerado (valdrá cero.)
- Se pueden usar propiedades previamente demostradas, pero si no fueron demostradas en clase (o en la práctica) hay que demostrarlas.
- Debe usarse la notación y vocabulario propios de la asignatura para justificar o explicar lo realizado.
 Eso significa que usar un vocabulario coloquial descontará puntos.
- El examen se evalúa por lo que está **escrito**. Por lo tanto, revisar muy bien que las justificaciones y el desarrollo de los ejercicios estén claramente explicados y en el orden correcto.
- Para el caso de tener que obtener un autómata que reconozca el lenguaje asociado a una expresión regular de hasta dos símbolos terminales, se puede escribir directamente. Pero si la expresión regular contiene más de dos símbolos terminales (iguales o distintos) del alfabeto, debe explicar cómo se obtiene el autómata.

Ejercicios

- 1. El conjunto $P_1 \subseteq \Sigma^*$, donde $\Sigma = \{a, b\}$ se define **recursivamente** de la siguiente manera:
 - $\lambda \in P_1$
 - $\operatorname{si} x \in P_1 \Rightarrow ax^r bx \in P_1$
 - a) **Demostrar** que $(\alpha^r)^n = (\alpha^n)^r$, $\forall n \geq 0$.
 - b) Demostrar por inducción estructural que $P_1 \subset L_1 = \{\omega \in \{a,b\}^* / \omega = (ab)^n, n \geq 0\}$
- 2. Construir el Autómata Finito Determinístico Mínimo M_2 que acepte el lenguaje L_2 , tal que $L_2 = \{\omega \in \{0,1\}^*/\omega \text{ contiene la subcadena } 00 \text{ y NO contiene la subcadena } 11\}.$
- 3. Demostrar de dos maneras distintas que L(A) = L(R) siendo $A = \langle \{a,b\}, \{P,Q,R,S\}, \delta, P, \{R\} \rangle$ Con δ dada por la tabla:

δ	a	b	λ
$\rightarrow P$	$\{P,Q\}$	$\{Q\}$	$\{Q\}$
Q	$\{R\}$	$\{P,S\}$	Ø
*R	Ø	Ø	$\{Q\}$
S	Ø	$\{P,R\}$	Ø

$$y R = (b^*a)^*b^*(a + bb)$$

4. Demostrar que el lenguaje $L = \{\omega \in \{0,1\}^*/\omega = \alpha\beta, |\alpha|_0 = |\beta|_1 \wedge |\alpha|_1 = |\beta|_0\}$ no es regular.

```
Ejercicio 1
a Demostror que (ar) = (an) , Yn >0
Lo vamos a solucionar por induccion en n.
Coso base: n=0 => (ar) = > y (a0) = > = > (ar) = (a0) = (a0) = Se cumple
Poso inductivo:
Definimos P(k): (ar) = (ak) , VK30
HI) P(k), k (n
TI) P(n+1)
Partiendo de k = n+1 tenemos (\alpha^{n+1})^r = (\alpha^n \alpha)^r = \alpha^r (\alpha^n)^r
Por HI, (an) = (ar) = ar(an) = ar(ar) = (ar) +1.
Conclusion: Yn > 0 se cumple (an) = (ar)
Obs: (\alpha^n \alpha)^r = \alpha^r (\alpha^n)^r se hace mediante la propiecioa (\alpha \beta)^r = \beta^r \alpha^r
b Demostrar que P1 c L1 = E w E Ea, b3 */w = (ab)", n > 03.
Caso base: \lambda \in P_1 \Rightarrow \omega = (ab)^\circ = \lambda \in l_1 \Rightarrow se cumple
Paso inductivo: se puede formar una codena de P1 a partir de otro cadena de P1
Sea x EP1 = W = ax'bx EP1 y por HI, x EL1 y es de la forma (ab).
Luego, w = a ((ab)")" b (ab)" = a (ab)" b (ab)" = a (ba)" b (ab)".
(1) Si n=0 → w = ab € L1 pues es el coso n=1.
(2) Si n > 1 => sacomos la primero b y ultima a de (bo) = w = ab (ab) - ab (ab) = (ab) = (ab) = (ab)
Concusion: YwePi, weli - Picli
```

Ejerado Z

Buscamos el automata A' = Ew = E0.13" / w no contiene 00 ó w contiene 113 y sacamos el complemento.

SAFNOR	0	1	a
A *	t	t	B,D
B *	c	В	t
c *	t	ß	Ł
0	D	O,E	t
E	t	F	t
F *	F	F	t.

- · Ca(A) = EA,B,03
- . Ca(B) = [B3
- · Ca(c) = EC3
- · Ca(0) = E03
- · Ca(E) = [E3
- · (71F) = EF3

- 0	SAFND	0	1 1
	A*	C,P	B,O,E
	6 *	c	B
	C*	t	В
	۵		D,E
	E	t	F

Pasamos a AFD:

SAFD	0	1
A*	CD	BDE
co *	D	BDE
BOE *	ထ	BDEF
D	D	OE
BOEF *	COF	BOEF
DE	0	OEF
CDF *	OF	BOEF
DEF *	OF	OEF
DF T	DF	DEF

estados nueuos

MINIMIED AFD: TO = EG: = ED, DE, t), Gz = EA, CO, BDE, BDEF, CDF, DEF, DF33

SAFD	0	1 1	Π1		SAFD	0	1	Πz
A *	CD	BDE	Gı		A*	CD	BOE	Gı
CD *	0	BDE	G 2		CD*	D	BDE	Gz
BOE*	ထ	BDEF	G۱	πο ≠ π1	BDE*	CO	BDEF	Gı
0	D	OE	G ₃		0	D	OE	G3
BDEF*	COF	BOEF	Gı		BDEF*	COF	BOEF	Gu
DE	0	OEF	Gu		DE	0	OEF	Gs
CDF	OF	BOEF	Gı		COF *	OF	BOEF	Gu
DEF	OF	OEF	G.		DEF T	OF	OEF	Gu
DF T	DF	OEF	G.		OF *	DF	OEF	Gu
t		T.	G3			t	t	Ge

	SAFD	0	1	T3		SAFD	0	1 1	Πα
	A*	CD	BOE	Gı		A*	CO	BDE	G. T
Π1 ≠ T 2	CD *	D	BDE	Gz	Tz + T3	CD *	0	BDE	Gz *
	BOE*	CO	BDEF	G ₃		BDE*	CO	BDEF	G3 *
	0	D	OE	64		0	D	OE	G 4
	BOEF*	COF	BOEF	Gs		BDEF*	COF	BOEF	Gs *
	DE	0	OEF	Ge		DE	0	OEF	Ge
	COF *	OF	BOEF	Gs		CDF	OF	BOEF	Gs
	DEF T	DF	OEF	Gs		DEF T	OF	OEF	Gs
	OF *	OF	OEF	Gs		DF	DF	OEF	GS
	T.	t	t	Ga		t	t	t	G ₃

₽ A = < EG1, Gz, Gz, Gz, Gu, Gs, Gs3, E0, 13, G1, S, EG1, Gz, Gz, Gs3>

ક	0	1
Gı	Gz	دی
Gz	Gu	GS
G3	Gz	Gs
G4	Gu	Ge
Gs	Gs	GS
G6	Gu	GS

Complemento el automata:

Obs: notemos que Gs es estado trampa = 10 sacamos

Conclusion:

Ejercicio 3 Forma 1: Vamos a posor del AFNO. A a una ER 8 a P Q Q P,Q Ø Q P,5 R R* Ø Ø Ø P, R 5 (1) Paso a un AFNO

•	$C_{\lambda}(P) =$	ΕP, Q3	■ ■	OAFNO	0	l b
•	Ca(Q) =	EQ3		P	P.Q.R	P.5.Q
	Ca (A) =	ER,Q3		Q	R,0	P.S.Q
•	Ca (5) =	Es3		R*	R,Q	P. S.Q
				5	ø	P.R.Q

(2) Paso a AFD

SAFD	a	ь	estados nueuos
ρ	PQR	PSQ	
PQK*	PQR	PSQ	
PSQ	POR	PSRQ	
PSRQ*	POR	PSRQ	

(3) Busco AFD minimal: To = EG: = EP, PSQ3, Gz = EPQR, PSQR33

SAFD	a	ь	π1
P	PQR	PSQ	Gı
PQK*	POR	PSQ	Gz
PSQ	POR	PSRQ	Gs
PSRQ*	POR	PSRQ	Gч

Obs: To \$ 17, PERO no podemos separar mas

→ AFD = < {61. Gz. G3. G43. Ea, b3. 8. G1. EGz. G43>

5	a	Ь
Gı	Gz	G3
Gz*	Gz	G3
Gs	Gz	Gu
Gu*	Gz	G4

(4) Escribimos las ecuaciones asociadas

- · G = aGz + bG3
- · Gz = aGz + b G3 + 2
- · G3 = QG2 + bG4
- · Gu = bGu + aGz + 7

(5) Aplicamos el 1ema de Arden para buscar la ER

- · Gu = (aGz + bGu) + 7 = G3 +7
- · G3 = aG2 + bG3 + b = b* (0G2+b)
- · G = aGz + bG3 = aGz + bb*aGz + bb*b
- Por distributiva, (a+bb*a)Gz + bb*b = (7+bb*)aGz + b*bb

luego, notemos que Gz = G1 + 2 = G1 = b*aG1+b*a+b*bb

*P Por Lema de Arden, G1 = (b*a)* b*(a+bb) = ER

Forma z: Vamos a pasar de la ER a un AFD

Safdu	0	5	₽	SAFD	a	Ь	Πο
A	B,C	A,D		A	ВС	AO	Qo
B	B, C	A,D.B		BC*	BC	ADB	a.
C *	Ł	.		AD	ВС	ADE	90
. ۵	t	Ε		ADB	ВС	ADBE	Q.
E*	Ł	t		ADE*	BC	AOE	g,
				AOBE*	ВС	ADBE	ام

SAFD	a	Ь	π		SAFD	a	Ь	Πz
A	BC	AD	go		A	ВС	AO	q0
BC*	BC	ADB	٩٠	πo ≠ π 1	BC*	BC	ADB	q.
AD	ВС	ADE	Qz		AD	ВС	ADE	Qz
ADB	ВС	ADBE	Q z		ADB	ВС	ADBE	Qz
ADE T	BC	AOE	93		ADE "	BC	AOE	93
AOBE*	ВС	ADBE	95		ADBE*	ВС	ADBE	Q3

Conclusion: como es el mismo AFD, entonces la ER es equipalente al AFND - 2

Ejerado 4 L = EW E EO, 13* / W = &B, Idlo = 1814 A lala = 18103 Supongamos que L es lenguaje regular - Se debe sansfacer el lema de Bombeo. Recordemos: El lema de bombeo nos dice que VI, lenguaje regular sobre un E y N= < k, E, S, Qo, F> tol que LIHI = L. 3p>n con n=Iki / Yael, Iai >p (3x,y. E) 7 = xy = x Ixyi 1 x I i on xy^ ₹€ L). Seo ω = αβ / α = 0°1 y β = 01° siendo ρ el numero del lemo. Ahora, escribimos ω en terminos de xyz => x = or, y = os, = = ot 101° donde se cumple lxyl €p, lyl ≥1 y r+s+t =P. Luego, tomo i= z = xyi z = 0 029 0 101 = 1 lalo = r+zs+t = P+s > P pues 5 > 1 = 1 lalo ≠ 1811 ABS! Conclusion: la absurdo vino de suponer l'ienguaje regular. Luego, no 10 es.