COLISIONES DE ABEJAS

Esteban Zapata Camilo Restrepo Medellín, Mayo 15

Ordenamiento QuickSort respect a eje x:

Grafico 1: Representa un ejemplo de un ordenamiento QuickSort

Estructura de datos diseñada:

Grafico 2: Representa la division del ArrayList de Abejas

Complejidad

Clases	Complejidad
LeerTxt()	O(n)
Ordenador()	O(nlog(n))
Tree()	O(nlog(n))

Tabla 1: Complejidad de las clases

Criterios de diseño

- El proceso de ordenamiento tiene una complejidad de O(nLog(n))
- En la solucion las operaciones basicas se requiere tener como complejidad O(1)
- En la division de ArrayList la complejidad no debe ser mayor a O(n)
- El analisis de colisiones se subdivide en dos analisis con complejidad O(nLog(n))

Consumo de tiempo y memoria

Operaciones	10 Bees (s)	100 Bees (s)	1.000 Bees (s)	10.000 Bees (s)	100.000 Bees (s)
Leer	0.004	0.043	0.48	5.31	56.85
Ordenar	0.006	0.061	0,68	7.25	76,41
Colisiones	0.008	0.082	0,96	11.85	113,87

Tabla 2: Se muestra cuanto tiempo tarda en realizar las operaciones

Funcionamiento

Grafico 3: Representa la division del ArrayList de Abejas

