More Regression

February 18, 2019

The expected value vector and the covariance matrix of jointly distributed random variables

Consider two jointly distributed random variables in the form of a vector $Z=\begin{pmatrix} Z_1\\Z_2 \end{pmatrix}$. The bivariate distribution of Z has expected value vector

$$E(Z) = \begin{pmatrix} E(Z_1) \\ E(Z_2) \end{pmatrix}$$

and covariance matrix link

$$V(Z) = E \left[(Z - E(Z))(Z - E(Z))' \right] = E(ZZ') - E(Z)E(Z)' = \begin{pmatrix} \sigma_{Z_1}^2 & \sigma_{Z_1, Z_2} \\ \sigma_{Z_1, Z_2} & \sigma_{Z_2}^2 \end{pmatrix}$$

The expected value vector and the covariance matrix of jointly distributed random variables

Consider n jointly distributed random variables in the form of a vector $Z = \begin{pmatrix} Z_1 & Z_2 & \cdots & Z_n \end{pmatrix}'$. The multivariate distribution of Z has expected value vector

$$E(Z) = \begin{pmatrix} E(Z_1) \\ E(Z_2) \\ \vdots \\ E(Z_n) \end{pmatrix}$$

and covariance matrix

$$V(Z) = E\left[(Z - E(Z))(Z - E(Z))'\right] = \begin{pmatrix} \sigma_{Z_1}^2 & \sigma_{Z_1, Z_2} & \cdots & \sigma_{Z_1, Z_n} \\ \sigma_{Z_2, Z_1} & \sigma_{Z_2}^2 & \cdots & \sigma_{Z_2, Z_n} \\ \vdots & \vdots & \ddots & \ddots \\ \sigma_{Z_n, Z_1} & \sigma_{Z_n, Z_2} & \cdots & \sigma_{Z_n}^2 \end{pmatrix}$$

The multivariate Normal distribution

The normal distribution has a general multivariate version, where the parameters are given by the expected value vector and the covariance matrix link. For two normal random variables link:

$$Z = \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} \sim N(E(Z), V(Z)).$$

The law of large numbers (LLN) and the central limit theorem (CLT) also applies to jointly distributed variables. If we take a random sample from a joint distribution (Y_i, X_i) , i = 1, ..., n, then under some regularity conditions:

$$\begin{pmatrix} \bar{Y} \\ \bar{X} \end{pmatrix} \stackrel{p}{\to} \begin{pmatrix} E(Y) \\ E(X) \end{pmatrix}$$

and

$$\sqrt{n} \begin{pmatrix} \bar{Y} - \mu_Y \\ \bar{X} - \mu_X \end{pmatrix} \overset{d}{\to} N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_Y^2 & \sigma_{Y,X} \\ \sigma_{Y,X} & \sigma_X^2 \end{pmatrix} \end{pmatrix}$$

Homoskedasticity

In the small sample case we didn't only assume normality we also assumed $V(U|X)=\sigma^2$, this is called the homoskedasticity assumption link to one example. This assumption is very strong and in large samples this is not necessary.

Heteroskedasticity

If we don't impose the homoskedasticity assumption we allow for heteroskedasticity, i.e. that the variance of U may depend on X link to one example. In this case we have to estimate $V(\hat{\beta})$ to be able to perform inference about β .

link with both skedasticities

Heteroskedastic and auto-correlation robust inference

It is actually possible to estimate $V(\hat{\beta})$ when there is some dependence between $U_i, i=1,\ldots,n$, but this is beyond the scope of the course.

Robust Hypothesis testing in large samples

Hypothesis in large samples can be conducted with the following T-statistic

$$T = \frac{(\hat{\beta}_k - \beta_k)}{\sqrt{\left(\hat{V}(\hat{\beta})\right)_{(k+1),(k+1)}/n}} \stackrel{d}{\to} N(0,1)$$

where we will use R to obtain $\hat{V}(\hat{\beta})$.

In large samples heteroskedastic-robust standard errors are correct even under homoskedasticity. But the opposite is not true.

Heteroskedastic robust T-testing in R

```
library(car)
data(Prestige)
#Load package for testing of the regression model
library(lmtest)
#Load package for robust covariance matrices
library(sandwich)
#Run regression
reg<-lm(prestige~income+women, data=Prestige)
#Non-robust results
summary(reg)
# Heteroskedasticity-robust estimate of V(beta_h)
V_b<-vcovHC(reg)
#Robust results
coeftest(reg,vcov=V_b)
```

Joint hypotheses

We want to test a joint hypothesis, e.g.

$$H_0: \beta_1 = 0 \& \beta_2 = 0, \quad H_a: \beta_1 \neq 0 \text{ and/or } \beta_2 \neq 0$$

Consider

$$R = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \& \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}, \text{ then } R\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$$

then we can formulate the joint null hypothesis like

$$H_0: R\beta = r$$
, where $r = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Joint hypothesis testing in small samples

$$H_0: R\beta = r \& H_a: \neg R\beta = r$$

If H_0 is true and $U_i \sim iidN(0,\sigma^2)$ (the latter is equivalent to assuming $U|X \sim N(0,\sigma^2)$ and you have a simple random sample), then it is possible to show

$$F = \frac{\left[(R\hat{\beta} - r) \right]' \left[R(\mathbf{X}'\mathbf{X})^{-1} R' \right]^{-1} \left[(R\hat{\beta} - r) \right] / Q}{S^2} \sim F_{Q, n - K - 1}$$

where

- K is the number of regressors (X-variables)
- Q is the number of restrictions given by H₀; the number of rows of R

We can compute P-value = P(F > F-value) based on the F-distribution ($F_{Q,n-K-1}$) to test the joint hypothesis.

Joint hypothesis in large samples

By the CLT

$$\sqrt{n}(\hat{\beta} - \beta) \stackrel{a.}{\sim} N(\mathbf{0}, V(\hat{\beta}))$$

given this and that H_0 is true it is possible to show:

$$W = \left[\sqrt{n}(R\hat{\beta} - r)\right]' \left[RV(\hat{\beta})R'\right]^{-1} \left[\sqrt{n}(R\hat{\beta} - r)\right] \stackrel{a.}{\sim} \chi_Q^2.$$

With a large sample size we can estimate $V(\hat{eta})$ such that

$$W = \left[\sqrt{n}(R\hat{\beta} - r)\right]' \left[R\hat{V}(\hat{\beta})R'\right]^{-1} \left[\sqrt{n}(R\hat{\beta} - r)\right] \stackrel{a.}{\sim} \chi_Q^2.$$

Robust Joint hypothesis in large samples: Wald test

Thus, in large samples we can use

$$W = n \left[(R\hat{\beta} - r) \right]' \left[R\hat{V}(\hat{\beta})R' \right]^{-1} \left[(R\hat{\beta} - r) \right] \stackrel{a.}{\sim} \chi_Q^2$$

as test statistic, it is valid both under homo- and heteroskedasticity and under non-normaly distributed U, in large samples. The statistic is often called Wald-statistic.

 χ_Q^2 is the chi-square distribution with parameter (degrees of freedom) Q. It is used when calculating P-values.

Standard Joint-test for regression

Consider

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + U$$

The standard joint test for regression analysis is the following:

$$H_0: \beta_1 = 0 \& \beta_2 = 0, \quad H_a: \beta_1 \neq 0 \text{ and/or } \beta_2 \neq 0.$$

i.e. have at least one of the explanatory variables a significant effect on Y?

- ▶ Why not just look att the two t-tests for β_1 and β_2 and reject H_0 if at least one of them has P-value < 0.05?
 - ► Since the probability to reject a true joint *H*₀ generally is larger than 0.05 if you do this
 - ▶ If you increase the number of X-variables the probability to reject a true *H*₀ increases with the number of variables
 - ▶ With the joint test, if you reject when P-value < 0.05, the probability to reject a true H_0 will be 0.05 and nothing else

Example: Standard Joint-test for regression

```
#Continue with the Prestige data
#Run regression
reg<-lm(prestige~income+women, data=Prestige)</pre>
# The matrices for the joint hypothesis
#H_0: beta_1=beta_2=0
R \leftarrow rbind(c(0,1,0),c(0,0,1)); r \leftarrow c(0,0)
#The function linear Hypothesis() is included in car
#The F-test you get by summary(reg)
linearHypothesis(reg, hypothesis.matrix=R, rhs=r)
# Heteroskedasticity-robust estimate of V(beta_h)
V_b<-vcovHC(reg)
#The heteroskedasticity-robust Joint Wald-test
linearHypothesis(reg, hypothesis.matrix=R, rhs=r,
test=c("Chisq"),vcov.=V_b)
```

Nonlinear modeling: Polynomials

Consider

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \ldots + \beta_r X^r + U$$

We can test if the function is linear

$$H_0: \ \beta_2 = \beta_3 = \ldots = \beta_r = 0 \ \text{vs.}$$

$$H_1$$
: At least one $\beta_j \neq 0, j = 2, 3, \dots, r$

with help of a F-test or a Wald-test.

Exercise: Linear versus non-linear function

Use the *Prestige* data in the car package and compute the Wald-test for the joint hypothesis

$$H_0:~\beta_4=\beta_5=0$$
 vs. $H_a:~\mathrm{At~least~one}~\beta_j\neq 0,~j=4,5$

prestige =
$$\beta_0 + \beta_1$$
income + β_2 women+
 β_3 education + β_4 education² + β_5 education³ + U

Why is the null-hypothesis a hypothesis for linearity?

Other nonlinear models

The following models are example of non-linear specifications which can be modelled linearly

- $Y = exp(X\beta + U)$
- $Y = \prod_{k=1}^K X_k^{\beta_k} \exp(\beta_0 + U)$
- $Y = (X\beta + U)^2$

given the following transformations

$$\log(Y) = X\beta + U$$

$$\log(Y) = \beta_0 + \sum_{k=1}^K \log(X_k) \beta_k + U$$

$$\blacktriangleright \sqrt{Y} = X\beta + U$$

where
$$X\beta = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_K X_K$$

Defined exactly like for the single regressor case

$$R^2 = \frac{\sum (\hat{Y}_i - \bar{Y})^2}{\sum (Y_i - \bar{Y})^2} = \frac{ESS}{TSS}$$

which also can be written as

$$1 - \frac{\sum (Y_i - \hat{Y}_i)^2}{\sum (Y_i - \bar{Y})^2} = 1 - \frac{RSS}{TSS}.$$

- ▶ Important remark
 - ▶ If we add an extra regressor, X₊, RSS decreases, while TSS is unchanged

 $\Rightarrow R^2$ increases

Adjusted R^2

- ▶ The R^2 value will be larger for a model with 1000 regressors than a model with e.g. five.
- Is the model with 1000 regressors a better model?
 - Probably not. If we want to say something relevant about real-life it is difficult to have such a large model.
 - ▶ A model should be a simplification of reality that still explains the most important mechanisms.
- ▶ The adjusted R^2 (\bar{R}^2) is a penalization of R^2

$$\bar{R}^2 = 1 - \frac{n-1}{n-K-1} \frac{RSS}{TSS}$$

Compare \bar{R}^2 and R^2

$$R^{2} = 1 - \frac{RSS}{TSS}$$

$$\bar{R}^{2} = 1 - \frac{n-1}{n-K-1} \frac{RSS}{TSS}$$

An additional regressor increases $\frac{n-1}{n-K-1} \Rightarrow \bar{R}^2 \downarrow$ and RSS decreases $\Rightarrow \bar{R}^2 \uparrow$ and $R^2 \uparrow$

Maximize the \bar{R}^2 value?

NO,

- ► We should have some knowledge of the research topic and be able to put up a model based theory and/or experience, and
- try to obtain a neat model that catches the main mechanisms we are interested in.
- ▶ However, there will always be secondary variables which we don't know if we should include or not and in this case a measure as \bar{R}^2 could give guidance.

Multicolinearity

Perfect multicolinearity

If one of the regressors is a linear combination of the other regressors we cannot compute the least-squares estimator. Consider

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + U$$

if

$$X_1 = X_2 + 0.5X_3$$

then

$$Y = \beta_0 + (\beta_1 + \beta_2)X_2 + (0.5\beta_1 + \beta_3)X_3 + U$$

and we can only identify $(\beta_1 + \beta_2)$ and $(0.5\beta_1 + \beta_3)$ not β_1 , β_2 and β_3 separately. This make some intuitive sense and the mathematical definition for this problem is exact: $\mathbf{X}'\mathbf{X}$ is not invertible in cases with perfect multicollinearity $(\mathbf{X}'\mathbf{X})$ is 'singular')

Perfect multicollinearity and dummy variables

Example

$$D_1 = \begin{cases} 1 & \text{if female} \\ 0 & \text{otherwise} \end{cases}$$
 $D_2 = \begin{cases} 1 & \text{if male} \\ 0 & \text{otherwise} \end{cases}$

 $D_1 = 1 - D_2$ is a linear combination, we can only include one of D_1 and D_2 in the regression!

Imperfect multicollinearity

$$0 < \operatorname{corr}(X_i, X_j) < 1$$

Imperfect multicollinearity does not disable computation, $\hat{\beta}$ is still unbiased, consistent and asymptotically normally distributed.

- Problem
 - When the multicollinearity is strong the variances of the beta-estimators are large.
- Intuition
 - ▶ When $corr(X_1, X_2)$ is large it is difficult to distinguish the unique effects of X_1 and X_2

Example imperfect multicollinearity

```
## Generate some data
    n<-50
    set.seed(7)
    X1<-runif(n,-5,5);    X2<--0.5*X1+runif(n)
    U<-rnorm(n,0,sd=sqrt(1.5))
    Y<-0.5-1*X1+2*X2+U
    # Use lm to estimate
    reg<-lm(Y~X1+X2)
    summary(reg)</pre>
```

Remedies of Imperfect multicollinearity

Imperfect multicollinearity does not disable computation but causes large variances and standard errors of the estimators of the beta-coefficients

Some remedies are

- Increase sample size
- Are all regressors necessary, can you remove one X without the risk of 'omitted variable bias' in $\hat{\beta}$, i.e. without violating E(U|X) = E(U)?
- Use estimators with smaller variance than the LS estimator (e.g. the ridge estimator; not in this course)

Exercise: Continue example imperfect multicollinearity

- 1. If you remove X_1 and run the regression only with X_2 as regressor, what happens with the estimate of $\hat{\beta}_2$?
- 2. Do you think one can remove X_1 without violating $E(U|X_2) = E(U)$?
- 3. Assume we can obtain more data. Use the code from the previous example and set n=100 and estimate again. Is X_1 significant now?

Outliers

- In small samples the results are affected a lot if there are outliers
 - ▶ Also asymptotic results can be affected by extreme outliers

Cook's Distance

- The Cook's distance is a way to identify influential observations in R
- Cook's distance is an F-statistic-like measure derived from the null hypotheses

$$H_0: \hat{\beta} = \hat{\beta}_{-i}$$

for each observation, where $\hat{\beta}_{-i}$ is the estimator where the i^{th} observation has been removed. The distance is defined as follows

$$D_i = \frac{(\hat{\beta}_{-i} - \hat{\beta})'X'X(\hat{\beta}_{-i} - \hat{\beta})}{(K+1)S^2}$$

- ▶ The statistics is relatively intuitive: if the estimates doesn't change much when the observation is deleted D_i is small $((\hat{\beta}_{-i} \hat{\beta}) \approx \mathbf{0})$.
- ► Even in large samples the Cook distance doesn't converge to an F-distribution or any other limit distribution
 - It converges to zero

Cook's Distance and removal of outliers

- Since the Cook distance doesn't have a known distribution it is difficult to set an appropriate threshold for outliers
- One can try to remove the largest outliers and see if it affects the results
 - The estimates
 - the significant results
- ▶ If not, I would keep all "outliers"

Example: Diagnostics for Outliers

```
set.seed(7); n<-15
#I generate some X-varibles and construct some
#correlation between them
x1 < -rexp(n); x2 < -runif(n) + 0.5 * x1; x3 < -runif(n) + x2 - x1
#I generate Y through a linear model
#I run the regression
reg2 < -lm(Y^x1 + x2 + x3)
#Create graphical diagnostics
par(mfrow=c(1,2))
  plot(fitted(reg2), resid(reg2), xlab="Fitted values",
  ylab="Residuals")
plot(reg2, which=4)
```

Example: Remove Outlier (difficult in small samples)

According to the Cook's distances there seem to be one observation that has more influence than the other ones (Nr 7)

```
data<-data.frame(Y,x1,x2,x3)
  data_sub<-data[-7,]
  reg3<-lm(Y~x1+x2+x3,data=data_sub)
par(mfrow=c(1,2))
  plot(fitted(reg3),resid(reg3),xlab="Fitted values",
   ylab="Residuals")
plot(reg3,which=4)
summary(reg2)
summary(reg3)</pre>
```