Universidad Autónoma de Aguascalientes

DEPARTAMENTO DE ESTADÍSTICA

Academia de Métodos Estadísticos Avanzados A2

Formulario para los cursos: Estadística I Probabilidad y estadística Estadística descriptiva y probabilidad

Author:

Dr. José Antonio Guerrero Díaz de León

2023

Unidad I

Departamento de Estadística, UAA

ESTADÍSTICA DESCRIPTIVA

Dada una muestra $\{x_1, x_2, \dots, x_n\}$, se definen

Frecuencias

absolutas $f_i = \frac{n_i}{n}$ $p_i = f_i \times 100$ relativas porcentajes absolutas acumuladas relativas acumuladas

$$\text{Media } \bar{x} = \frac{\displaystyle\sum_{i=1}^n x_i}{n} = \frac{\displaystyle\sum_{k=1}^r x_k n_k}{n}$$

$$S_n^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n} = \frac{\sum_{k=1}^r (x_k - \bar{x})^2 n_k}{n}$$

$$S_{n-1}^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1} = \frac{\sum_{k=1}^r (x_k - \bar{x})^2 n_k}{n-1}$$

Rango
$$R = x_{(n)} - x_{(1)}$$

Cuantiles C_p , $0 \le p \le 1$

$$C_p = (1 - \Delta)x_{(\mathbf{E})} + \Delta x_{(\mathbf{E}+1)}$$

donde
$$r = p(n - 1) + 1$$
,

A=parte decimal, r=parte entera

• Cuartiles
$$Q_k=C_{\frac{k}{4}}$$
, $k=1,2,3$

• Deciles
$$D_k=C_{\frac{k}{10}},\,k=1,2,\ldots,9$$

• Percentiles
$$P_k = C_{\frac{k}{100}}, \, k=1,2,\ldots,99$$

Rango intercuartilico $RIQ = Q_3 - Q_1$

Coeficiente de simetría $\alpha_3 = \frac{M_3}{\varsigma_3}$

$$\operatorname{con} M_3 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3$$

Coeficiente de curtosis $\alpha_4=rac{M_4}{S^4}$

con
$$M_4 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4$$

Diagrama de caja y brazos

$$CI_i = Q_1 - 1.5 \times RIQ$$

$$CI_s = Q_3 + 1.5 \times RIQ$$

2 TEORÍA DE EVENTOS

Conmutatividad Distributividad

$$A \cup B = B \cup A$$
 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 $A \cap B = B \cap A$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Leyes de Morgan **Asociatividad**

$$(A \cup B)^c = A^c \cap B^c \qquad (A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B)^c = A^c \cup B^c \qquad (A \cap B) \cap C = A \cap (B \cap C)$$

Complementario

$$A \cap A^c = \emptyset$$
 $\emptyset^c = \Omega$
 $A \cup A^c = \Omega$ $(A^c)^c = A$
 $\Omega^c = \emptyset$ $A - B = A \cap B^c$

3 PROBABILIDAD

Axiomas de Kolmogorov

- P(A) > 0
- $P(\Omega) = 1$
- Si A y B son excluyentes $P(A \cup B) = P(A) + P(B)$

$$\begin{aligned} & \textbf{Probabilidad condicional} \\ & P(A|B) = \frac{P(A \cap B)}{P(B)}, & \text{si } P(B) > 0 \end{aligned}$$

Regla del producto

$$P(A \cap B) = P(A|B)P(B)$$

Leyes de suma

- $P(A^c) = 1 P(A)$
- $P(A-B) = P(A) P(A \cap B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Probabilidad total

- $P(B) = P(B|A)P(A) + P(B|A^c)P(A^c)$
- $P(B) = \sum_{i=1}^{k} P(B|A_i)P(A_i)$ donde $\{A_1, A_2, \dots, A_k\}$ forman una partición de Ω

Regla de Bayes

- $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$
- $P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)}$
- $P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^k P(B|A_i)P(A_i)}$

Independencia

A y B son independientes sí y sólo si

- P(A|B) = P(A)
- P(B|A) = P(B)
- $P(A \cap B) = P(A)P(B)$

4 DISTRIBUCIONES DISCRETAS

En las propiedades, $X \sim f = f_X$ y $Y \sim f_y$ y $c \in \mathbb{R}$

Función de distribución

$$\begin{split} f(x) &\geq 0 \\ \sum_{x} f(x) &= 1 \\ \operatorname{Si} X \sim f, \, P(X=x) &= f(x) \end{split}$$

Función de distribución acumulada

$$F(x) = P(X \le x) = \sum_{y \le x} f(y)$$

- $0 \le F(x) \le 1$
- Si $x \le y$ entonces $F(x) \le F(y)$

Valor esperado

$$E[X] = \sum_{x} x f(x)$$

- E[c] = c
- E[cX] = cE[X]
- E[X + c] = E[X] + c
- E[X + Y] = E[X] + E[Y]

$$E[g(X)] = \sum_{x} g(x)f(x)$$

Varianza

$$V[X] = E[(X - E[X])^{2}]$$

$$= \sum_{x} (x - E[X])^{2} f(x)$$

- V[c] = 0
- $V[cX] = c^2 V[X]$
- V[X + c] = V[X]
- Si X y Y son independientes, V[X+Y] = V[X] + V[Y]

$$SD[X] = \sqrt{V[X]}$$

Momentos

$$m_r = E[X^r] = \sum_x x^r f(x)$$

- $m_1 = E[X]$
- $m_2 = V[X] + E[X]^2$
- $V[X] = m_2 m_1^2$

Función generadora de momentos

$$M_X(t) = E[e^{tX}] = \sum_x e^{tx} f(x)$$

- $m_k = \left. \frac{\mathrm{d}^k M(t)}{\mathrm{d}t^k} \right|_{t=0}$
- Si Y = cX, $M_Y(t) = M_X(ct)$
- Si Y = X + c, $M_Y(t) = e^{ct} M_X(t)$
- Si $Y = \sum_{i=1}^{n} X_i$, $M_Y(t) = M_{X_1}(t) \cdots M_{X_n}(t)$
- Si X y Y son dos variables tales que $M_X(t) = M_Y(t)$, entonces $f_X(x) = f_Y(x)$

5 REPASO DE CÁLCULO

Deriadas

$$dx^n = nx^{n-1}$$

•
$$\frac{\mathrm{d}e^x}{\mathrm{d}x} = e^x$$

•
$$\frac{\mathrm{d}\sin(x)}{\mathrm{d}x} = \cos(x)$$

•
$$\frac{\mathrm{d}\cos(x)}{\mathrm{d}x} = -\sin(x)$$

•
$$\frac{d\cos(x)}{dx} = -\sin(x)$$

• $\frac{dUV}{dx} = U\frac{dV}{dx} + V\frac{dU}{dx}$

Integrales

•
$$\int \cos(x) dx = \sin(x) + c$$

•
$$\int \sin(x) dx = -\cos(x) + c$$

•
$$\int U dV = UV - \int V dU$$

Unidad III

Departamento de Estadística, UAA

6 DISTRIBUCIONES CONTINUAS

En las propiedades, $X \sim f = f_X$, $Y \sim f_y$ y $c \in \mathbb{R}$

Función de densidad

$$f(x) \ge 0$$

$$\int f(x) dx = 1$$

$$P(a < X < b) = \int_a^b f(x) dx$$

Función de distribución acumulada

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy$$

- $0 \le F(x) \le 1$
- Si $x \le y$ entonces $F(x) \le F(y)$
- F'(x) = f(x)

Valor esperado

$$E[X] = \int x f(x) \mathrm{d}x$$

- E[c] = c
- E[cX] = cE[X]
- E[X + c] = E[X] + c
- E[X + Y] = E[X] + E[Y]

$$E[g(X)] = \int g(x)f(x)\mathrm{d}x$$

Varianza

$$V[X] = E[(X - E[X])^{2}]$$

$$= \int (x - E[X])^{2} f(x) dx$$

- V[c] = 0
- $V[cX] = c^2 V[X]$
- V[X + c] = V[X]
- Si X y Y son independientes, V[X+Y] = V[X] + V[Y]

$$SD[X] = \sqrt{V[X]}$$

Covarianza

$$Cov[X,Y] = E[(X-E[X])(Y-E[Y])]$$

- Cov[X, Y] = E[XY] E[X]E[Y]
- V[X + Y] = V[X] + V[Y] + 2Cov[X, Y]

Función gamma

- $\Gamma(x) = (x-1)\Gamma(x-1)$
- $\Gamma(n) = (n-1)! \operatorname{si} n \in \mathbb{N}$

•

Dist. gamma

$$F(x) = 1 - \sum_{k=0}^{\beta-1} e^{-\lambda x} \frac{(\lambda x)^k}{k!}$$

Estandarización

•
$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1),$$

donde
$$\mu = E[X]$$
 y $\sigma = \sqrt{V[X]}$

Momentos

$$m_k = E[X^k] = \int x^k f(x) \mathrm{d}x$$

- $m_1 = E[X]$
- $m_2 = V[X] + E[X]^2$
- $V[X] = m_2 m_1^2$

Función generadora de momentos

$$M_X(t) = E[e^{tX}] = \int e^{tx} f(x) dx$$

- $m_k = \left. \frac{\mathrm{d}^k M(t)}{\mathrm{d}t^k} \right|_{t=0}$
- Si Y = cX, $M_Y(t) = M_X(ct)$
- Si Y = X + c, $M_Y(t) = e^{ct} M_X(t)$
- Si $Y = \sum_{i=1}^{n} X_i$, $M_Y(t) = M_{X_1}(t) \cdots M_{X_n}(t)$
- Si $M_X(t) = M_Y(t)$, entonces $f_X(x) = f_Y(x)$

7 DISTRIBUCIONS CONJUNTAS

Propiedades

- $f_{X,Y}(x,y) \ge 0$
- $\int \int f_{X,Y}(x,y) \mathrm{d}y \mathrm{d}x = 1$

Valor esperado

•
$$E[g(X,Y)] = \int \int g(X,Y)f_{X,Y}(x,y)dydx$$

Acumulada

Final add
$$F(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f(x,y) dy dx$$

Marginales

- $f_X(x) = \int f_{X,Y}(x,y) dy$
- $f_Y(y) = \int f_{X,Y}(x,y) dx$

Condicionales

- $f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$
- $f_{Y|X=x}(y) = \frac{f_{X,Y}(x,y)}{f_{X}(x)}$

Nombre de	Función de distribución	Dominio		Parámetros	Media	Varianza	Generadora de
la distribución	de probabilidad				E[X]	V[X]	momentos $M_X(t)$
Uniforme	$P(X=x) = \frac{1}{N}$	$x \in \{x_1, x_2, \dots, x_N\}$			\bar{x}	S_N^2	$\frac{1}{N} \sum_{i=1}^{n} e^{tx_i}$
	$P(X=x) = \frac{1}{N}$	$x = a, \dots, b$	a	: Límite inferior	$\frac{a+b}{2}$	$\frac{N^2-1}{12}$	$e^{at} - e^{(b+1)t}$
	N = b - a + 1	$x = a, \dots, b$: Límite superior	2		$N(1-e^t)$
Bernoulli	$P(X = x) = p^{x}(1-p)^{1-x}$	x = 0, 1	p	: Probabilidad de éxito	p	p(1-p)	$pe^t + (1-p)$
Binomial	$P(X = x) = \binom{N}{x} p^x (1-p)^{N-x}$	$x = 0, \dots, N$	p	: Probabilidad	Np	Np(1-p)	$(pe^t + (1-p))^N$
				de éxito			
			N	: Número de			
				ensayos			
Geométrica	$P(X=x) = p(1-p)^{x-1}$	$x = 1, 2, \dots$	p	: Probabilidad	1_	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
				de éxito	p	*	$1-(1-p)e^{\iota}$
	$P(Y=y) = p(1-p)^y$	$y = 0, 1, \dots$	p	: Probabilidad	$\frac{1-p}{n}$	$\frac{1-p}{p^2}$	$\frac{p}{1 - (1 - p)e^t}$
Dinomial	Y = X - 1			de éxito	p	P	1 (1 p)c
Binomial negativa	$P(X = x) = {x - 1 \choose r - 1} p^r (1 - p)^{x - r}$	$x = r, r + 1, \dots$	p	: Probabilidad de éxito	and the second	(1)	(t \ r
			r	: Número de	$\frac{r}{p}$	$\frac{r(1-p)}{n^2}$	$\left(\frac{pe^t}{1-(1-p)e^t}\right)^r$
			'	éxitos deseados		r	(- F)- /
Poisson	$P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}$	$x = 0, 1, \dots$	λ	: tasa	λ	λ	$e^{\lambda(e^t-1)}$
Hipergeométrica	$P(X = x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}$	$x = A, \dots, B$	N	: Tamaño de			
		$A = \max(0, n + K - N)$		la población			
		$B = \min(n, K)$	n	: Tamaño de	$n\frac{K}{N}$	$\frac{nK(N-K)(N-n)}{N^2(N-1)}$	No es práctica
				la muestra			
			K	: Tamaño de			
				subconjunto			
				de interés			

Distribuciones continuas

Departamento de Estadística, UAA

Nombre	Función de densidad	Parámetros	Media	Varianza	Generadora	
			E[X]	V[X]	de momentos $M_X(t)$	
		a: localización				
	1	(límite inferior)				
Uniforme	$f_X(x) = \frac{1}{b-a}$ $a \le x \le b$	b: localización	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$	
		(límite superior)	2	12	(b-a)t	
		$\infty < a, b < \infty$				
		a < b				
		λ : tasa				
Exponencial	$f_X(x) = \lambda e^{-\lambda x}$ $x > 0$	$\lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t} \ t < \lambda$	
			λ	λ^2	$\lambda - t$	
		$\lambda = 1/\theta$				
	1 -	θ: escala				
	$f_X(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}$		θ	θ^2	$\frac{1}{1-t\theta} \ t < \frac{1}{\theta}$	
	x > 0				$1-t\theta$ θ	
		$\theta > 0$				
		μ : localización				
	$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$				$e^{\mu t + rac{t^2\sigma^2}{2}}$	
Normal		(central)	μ	σ^2	$e^{\mu\iota+{2}}$	
	$-\infty < x < \infty$	$-\infty < \mu < \infty$				
		σ : escala $\sigma > 0$				
	λ^{β}	λ: tasa				
Gamma	$f_X(x) = \frac{\lambda^{\beta}}{\Gamma(\beta)} x^{\beta - 1} e^{-\lambda x}$ $x > 0$	β : forma	$\frac{\beta}{\lambda}$	$\frac{eta}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^{\beta} t < \lambda$	
			λ	λ²	$(\lambda - t)$	
		$\beta, \lambda > 0$				
		θ: escala				
	$f_X(x) = \frac{1}{\theta^{\beta} \Gamma(\beta)} x^{\beta - 1} e^{-\frac{x}{\theta}}$	β : forma	20	$eta heta^2$	$\left(\frac{1}{1-t\theta}\right)^{\beta} t < \frac{1}{\theta}$	
	x > 0		$\beta\theta$	$\rho \theta$	$\left(\frac{1-t\theta}{1-t\theta}\right)^{-t} < \frac{\pi}{\theta}$	
		$\beta, \theta > 0$				
		α: tasa				
		β : forma			$\int_{-\infty}^{\infty} t^k dt = \int_{-\infty}^{\infty} k dt$	
Weibull	$f_X(x) = \beta \alpha^{\beta} x^{\beta - 1} e^{-(\alpha x)^{\beta}}$ $x > 0$		$\frac{1}{\alpha}\Gamma\left(1+\frac{1}{\beta}\right)$	$\frac{1}{\alpha^2} \left[\Gamma \left(1 + \frac{2}{\beta} \right) - \Gamma \left(1 + \frac{1}{\beta} \right)^2 \right]$	$\sum_{k=0}^{\infty} \frac{t^k}{k! \alpha^k} \Gamma\left(1 + \frac{k}{\beta}\right)$	
		$\alpha, \beta > 0$			$\beta \ge 1$	
		$\alpha = \frac{1}{\theta}$				
	$\beta (x)^{\beta-1} - (\underline{x})^{\beta}$	θ ; escala	/	[$\sum_{k=0}^{\infty} \frac{t^k \theta^k}{k!} \Gamma\left(1 + \frac{k}{\beta}\right)$	
	$f_X(x) = \frac{\beta}{\theta} \left(\frac{x}{\theta}\right)^{\beta - 1} e^{-\left(\frac{x}{\theta}\right)^{\beta}}$	β : forma	$\theta\Gamma\left(1+\frac{1}{\beta}\right)$	$\theta^2 \left[\Gamma \left(1 + \frac{2}{\beta} \right) - \Gamma \left(1 + \frac{1}{\beta} \right)^2 \right]$	$\sum_{k=0}^{\infty} \frac{1}{k!} \left(1 + \overline{\beta}\right)$	
	x > 0	$\theta, \beta > 0$			$\beta \geq 1$	