Jupyter Notebook Assignment Report

Student: Nishal Sukumar

Assignment: Nishal_Sukumar_Assignment_1

Date: 2025-04-11 11:53

Cell 1 (code)

```
# Import libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
```

Cell 2 (code)

```
# Load California housing dataset
california = fetch_california_housing()
df = pd.DataFrame(california.data, columns=california.feature_names)
df['Target'] = california.target
```

Cell 3 (markdown)

---- EDA ----

Cell 4 (code)

```
# Basic Info
print("Shape of dataset:", df.shape)
print("\nFirst 5 rows:\n", df.head())
print("\nSummary statistics:\n", df.describe())
```

stdout: Shape of dataset: (20640, 9)

First 5 rows:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	\
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	

```
Longitude Target
0 -122.23 4.526
1 -122.22 3.585
2 -122.24 3.521
3 -122.25 3.413
4 -122.25 3.422
```

Summary statistics:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	\
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	
mean	3.870671	28.639486	5.429000	1.096675	1425.476744	
std	1.899822	12.585558	2.474173	0.473911	1132.462122	
min	0.499900	1.000000	0.846154	0.333333	3.000000	
25%	2.563400	18.000000	4.440716	1.006079	787.000000	
50%	3.534800	29.000000	5.229129	1.048780	1166.000000	
75%	4.743250	37.000000	6.052381	1.099526	1725.000000	
max	15.000100	52.000000	141.909091	34.066667	35682.000000	
	AveOccup	Latitude	Longitude	Target		
count	20640.000000	20640.000000	20640.000000	20640.000000		
mean	3.070655	35.631861	-119.569704	2.068558		
std	10.386050	2.135952	2.003532	1.153956		
min	0.692308	32.540000	-124.350000	0.149990		
25%	2.429741	33.930000	-121.800000	1.196000		
50%	2.818116	34.260000	-118.490000	1.797000		
75%	3.282261	37.710000	-118.010000	2.647250		
max	1243.333333	41.950000	-114.310000	5.000010		

Cell 5 (code)

```
# Check for missing values
print("\nMissing values:\n", df.isnull().sum())
```

stdout:

Missing values:
MedInc 0

0 HouseAge AveRooms 0 AveBedrms 0 Population 0 AveOccup 0 Latitude 0 Longitude 0 Target dtype: int64

Cell 6 (code)

```
# Correlation heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation Heatmap")
```

<Figure size 1000x800 with 2 Axes>

Cell 7 (code)

```
# Distribution of the target variable
sns.histplot(df['Target'], kde=True)
plt.title("Distribution of Target (Median House Value)")
plt.show()
```

<Figure size 640x480 with 1 Axes>

Distribution of Target (Median House Value)

