1 原理

1.1 オペアンプについて

演算増幅器 (Operational Amplifier: オペアンプ) は図 1 のような素子であり回路図記号は図 2 のようになっている. オペアンプはトランジスタ或いは MOSFET と抵抗, キャパシタなどから成る集積回路で音響など様々なアナログ回路で用いられる.

オペアンプの最も根幹となる回路は差動増幅器である.[2] 図にトランジスタによる差動増幅器を示す。差動増幅回路はエミッタ接地増幅器を2つ、エミッタを共通にしたもので、共通のエミッタは定電流回路に接続される。小信号においてコレクタ電流 i_c とベース電流 i_b は比例関係にあると考えられるのでIはエミッタ接地電流増幅率を β として

$$i_{ci} = \beta i_{bi} \qquad (i = 1, 2) \tag{1}$$

である. したがって I は

$$I = i_{e1} + i_{e2}$$

$$= (1 + \beta)(i_{b1} + i_{b2})$$
(2)

となる. また I は定電流回路によって定まっており、一方のトランジスタのエミッタ電流が増えるともう一方は減少する. ここで 2 つの入力に同相の信号を与えたとき左右のトランジスタは同等であるため出力電圧 $v_o=0$ のままである. 一方で逆相の信号を入力する、すなわち定常的な成分を i_{const} 、変化分を i_v として $i_{b1}=i_{const}+i_v$ 、 $i_{b2}=i_{const}-i_v$ と表すと

$$v_o = R\beta(i_{const} + i_v) - R\beta(i_{const} - i_v)$$
(3)

$$=2R\beta i_{v} \tag{4}$$

となる. 以上から差動増幅器では同相の信号が入力されても出力は変化しないが, 2 つの入力信号の間に差があるときにはそれを増幅して出力することになる.

実際のオペアンプは差動増幅器より遥かに複雑であるが、差動増幅という基本的な機能は継承している。 オペアンプにおいては入力電圧 V_+ , V_- と出力電圧 V_o には増幅率を A として以下のような関係が一般に成り立つ。

$$V_o = A(V_+ - V_-) (5)$$

また理想オペアンプには以下のような性質がある.

1. 入出力の線形性

オペアンプの入出力には電源電圧の範囲で線形関係が成り立つ.

2. A が非常に大きい

増幅率 A は非常に大きい. これは差動増幅器の後段に更に増幅回路などを持つためである. ここで (5) 式で V_o が有限の値を持ち A が極めて大きいならば $V_+=V_-$ でなければならない. これを仮想接地と呼ぶ.

- 3. 入力インピーダンスが大きく、出力インピーダンスが小さい これにより、フィードバックを構成する際にオペアンプ内に流れ込む電流を 0 とみなせる.
- 4. 入力電圧が 0 なら出力も 0
- 5. 広い周波数帯域で利用可能

ただし実際のオペアンプでは増幅率やインピーダンスは有限の値を持つが,多くの回路設計において以上の性質は非常に有用である.

fig/fig1.jpg

図 1 ILC7611(DIP8 パッケージ)[3]

図 2 ILC7611 のピンアサイン [1]

図3 差動増幅器

2 実験方法

本実験ではフリーソフトの Ques Spice を用いて回路シミュレーションを行った。シミュレーション環境を表 1 に示す。4 日目では Parameter Sweep 機能を使う必要性があったため Ques Spice のバージョンを上げている。本実験では直流での解析に DC Simulation, 交流での解析に Transient Simulation を用いている。また各種抵抗の抵抗値やコンデンサの静電容量は配布された excel シートを用いて個体差を再現している。また各種グラフの作成には gnuplot を用いた.

表 1 シミュレーション環境

Ques Spice バージョン (3 日目まで)	0.0.19
Ques Spice バージョン (4 日目から)	0.0.22
OS	Ubuntu 20.04 LTS

3 実験 1-A:反転増幅器

3.1 原理

3.1.1 回路方程式

図 4 に反転増幅器の回路図を示す. オペアンプの入力インピーダンスが R_2 に比べて非常に高いことから入力電流 i はすべて R_2 に流れ込むとして良い. したがって Ohm の法則から

$$i = \frac{v_i - v_d}{R_1} = \frac{v_d - v_o}{R_2} \tag{6}$$

ここで(5)式から

$$v_o = A(0 - v_d) \tag{7}$$

が成り立つためこれらを連立すると

$$v_o = -v_i \frac{R_2}{R_1} \frac{1}{1 + \frac{R_1 + R_2}{AR_i}} \tag{8}$$

A が十分大きいとき

$$v_o = -\frac{R_2}{R_1}v_i \tag{9}$$

となる. 以上から反転増幅器は入力信号に対して位相が反転し, 電圧が R_2/R_1 倍の信号が出力されることがわかる.

03/1-a.png

図 4 反転増幅器

3.1.2 伝達関数

(9) から伝達関数を求めると以下のようになる.

$$V_{o} = -\frac{R_{2}}{R_{1}}V_{i}$$

$$G(s) = \frac{V_{o}}{V_{i}} = -\frac{R_{2}}{R_{1}}$$
(10)

これに図4で示した値を代入してBode線図を描くと図5のようになる.

図 5 Bode 線図の理論値

3.2 方法

3.2.1 測定 1-A-01

図 4 の回路を Ques Spice 上で作成した. まず $R_1=0.999$ $k\Omega$, $R_2=3.381$ $k\Omega$ として電圧利得 3.3 倍の反転増幅器を構成した. この反転増幅器上で入力電圧 V_i を -6 V から 6 V まで 0.5 V 刻みで変化させながら出力電圧 V_o とオペアンプの入力電圧の差 $(=V_d)$ を記録した.

3.2.2 測定 1-A-02

上記の回路で R_2 を $334.4~\Omega$ に変更し、電圧利得 0.33 倍の反転増幅器を構成した。この回路に $V_{p-p}=1~\mathrm{V}$ 、周波数が $10,\,100,\,1\mathrm{k},\,10\mathrm{k},\,100~\mathrm{kHz}$ の正弦波を入力し利得及び位相差を記録、Bode 線図を作成した。また周波数が $1~\mathrm{kHz}$ の時の波形を記録した。

3.3 結果

3.3.1 測定 1-A-01

図 6 に測定 1-A-01 の結果を示す. 左側の軸が V_o , 右側の軸が V_d である. 破線は V_o の直線部分を最小二乗 fit したものであり回帰曲線は以下の関数である.

$$y = -3.385x + 8.973 \times 10^{-31} \tag{11}$$

3.3.2 測定 1-A-02

図 7 に周波数 1 kHz の時の波形を示す.青線が入力信号 V_i ,赤線が出力信号 V_o である.縦軸の単位は V,横軸の単位は S である.また図 S に測定 S に利定 S で得た S Bode 線図を示す.

図 6 V_i に対する V_o , V_d の変化

図 7 1 kHz の時の波形

図 8 Bode 線図の実測値

3.4 考察

3.4.1 測定 1-A-01

 $R_1=0.999~{
m k}\Omega,\,R_2=3.381~{
m k}\Omega$ としたことから反転増幅器の ${
m Gain}$ は

$$|G| = \frac{R_2}{R_1} = 3.38\tag{12}$$

となる. 一方で (11) からシミュレーションにより得られた Gain は |G|=3.39 である. 実験値と理論値の相対誤差は 0.3% であり、十分に一致していると考えられる.

また図 6 からオペアンプの入力電圧 ± 15 V を超える電圧は出力されていないことがわかる. さらに v_o が飽和した時 v_d も変化していることがわかる. これについて (6) から

$$\frac{v_i - v_d}{R_1} = \frac{v_d - v_o}{R_2}
v_d = \frac{R_2 v_i}{R_1 + R_2} + \frac{R_1 v_o}{R_1 + R_2}$$
(13)

ここで v_o が飽和した時 $v_o=\pm 15~\mathrm{V}$ となる. このことから

$$v_{d\pm} = 0.772v_i \pm 3.42\tag{14}$$

を得る. 一方で図 6 の V_d の直線部を最小二乗 fit して回帰曲線を求めると図 9 のようになり、回帰曲線は以下の関数になった.

$$y = \begin{cases} 0.7718x + 3.420\\ 0.7719x - 3.419 \end{cases}$$
 (15)

それぞれ有効数字 3 桁の範囲で (14) と完全に一致しており、上での立式は正しいと考えられる.

3.4.2 測定 1-A-02

図 7 を見るとたしかに V_{p-p} が 0.33 倍程度で、位相が反転した波形が出力されていることがわかる.

図 5 と図 8 を見比べるとどちらも周波数依存性の無いグラフでありその値もほぼ等しい。したがって (10) で得た伝達関数は正しいとわかる。

位相がどちらも π 程度で一定であるのに対し、Gain は 0.3% 程度の差がある。これは gnuplot が十分な桁数を持ってグラフを描画しているのに対し、Qucs Spice が小数点以下 3 桁を切り捨てて出力したことが原因だと考えられる。

図 9 V_d の回帰曲線

4 実験 1-B:非反転増幅器

4.1 原理

4.1.1 回路方程式

図 10 に非反転増幅器の回路図を示す.仮想短絡を考えるとオペアンプの - 端子の電圧 v_- は入力電圧 v_i と等しいと考えられる.さらに v_- は v_o を R_1 と R_2 で分圧した電圧になるので

$$v_{i} = v_{-} = \frac{R_{1}}{R_{1} + R_{2}} v_{o}$$

$$v_{o} = \left(1 + \frac{R_{2}}{R_{1}}\right) v_{i}$$
(16)

となる. 以上から非反転増幅器は入力信号に対して位相がそのままで, 電圧が $1+R_2/R_1$ 倍の信号が出力されることがわかる.

04/1-b.png

図 10 非反転増幅器

4.1.2 伝達関数

(16) から伝達関数を求めると以下のようになる.

$$V_o = \left(1 + \frac{R_2}{R_1}\right) V_i$$

$$G(s) = \frac{V_o}{V_i} = 1 + \frac{R_2}{R_1}$$

$$(17)$$

これに図 10 で示した値を代入して Bode 線図を描くと図 11 のようになる.

図 11 Bode 線図の理論値

4.2 方法

4.2.1 測定 1-B-01

図 10 の回路を Ques Spice 上で作成した. まず $R_1=1.034$ $k\Omega$, $R_2=5.025$ $k\Omega$ として電圧利得 6 倍の非反転増幅器を構成した. この非反転増幅器上で入力電圧 V_i を -3 V から 3 V まで 0.5 V 刻みで変化させながら出力電圧 V_o を記録した.

4.2.2 測定 1-B-02

上記の回路で R_2 を $608.4~\Omega$ に変更し、電圧利得 1.6 倍の非反転増幅器を構成した。この回路に $V_{p-p}=1~\mathrm{V}$ 、周波数が $10,\,100,\,1\mathrm{k},\,10\mathrm{k},\,100~\mathrm{kHz}$ の正弦波を入力し利得及び位相差を記録、Bode 線図を作成した。また周波数が $1~\mathrm{kHz}$ の時の波形を記録した。

4.3 結果

4.3.1 測定 1-B-01

図 12 に測定 1-B-01 の結果を示す. 破線は V_o の直線部分を最小二乗 fit したものであり回帰曲線は以下の関数である.

$$y = 5.843x + 9.202 \times 10^{-31} \tag{18}$$

4.3.2 測定 1-B-02

図 13 に周波数 1 kHz の時の波形を示す.青線が入力信号 V_i , 赤線が出力信号 V_o である.縦軸の単位は V, 横軸の単位は S である.また図に測定 1-B-02 で得た Bode 線図を示す.

図 12 V_i に対する V_o の変化

図 13 1 kHz の時の波形

図 14 Bode 線図の実測値

4.4 考察

4.4.1 測定 1-B-01

 $R_1=1.034~{
m k}\Omega,\,R_2=5.025~{
m k}\Omega$ としたことから反転増幅器の Gain は

$$|G| = 1 + \frac{R_2}{R_1} = 5.85 \tag{19}$$

となる. 一方で (18) からシミュレーションにより得られた Gain は |G|=5.84 である. 実験値と理論値の相対誤差は 0.2% であり, 十分に一致していると考えられる.

また図 12 から反転増幅器と同様にオペアンプの入力電圧 $\pm 15~\mathrm{V}$ を超える電圧は出力されていないことがわかる.

4.4.2 測定 1-B-02

図 13 を見るとたしかに V_{p-p} が 1.6 倍程度で、同位相の波形が出力されていることがわかる.

図 11 と図 14 を見比べるとどちらも周波数依存性の無いグラフでありその値もほぼ等しい。したがって (10) で得た伝達関数は正しいとわかる。

- 5 実験 1-C:加算,減算回路
- 5.1 原理
- 5.1.1 加算回路の回路方程式

図 15 に加算回路の回路図を示す. $R_1,\,R_2$ を流れる電流をそれぞれ $i_1,\,i_2$ とすると

$$v_1 = R_1 i_1 v_2 = R_2 i_2$$
 (20)

仮想短絡によりオペアンプの — 端子の電位は 0 である. またオペアンプに流れ込む電流は 0 とみなせるので R_3 を流れる電流は $I=i_1+i_2$ となる. したがって

$$v_o = -\left(\frac{R_3}{R_1}v_1 + \frac{R_3}{R_2}v_2\right) \tag{21}$$

となり、たしかに2つの入力それぞれを定数倍したものが加算されていることがわかる.

05/adder.png

図 15 加算回路

5.1.2 減算回路の回路方程式

参考文献

- [1] ルネサスエレクトロニクス. Icl7612 datasheet. https://akizukidenshi.com/download/ds/renesas/icl7611-12.pdf. (Accessed on 06/14/2021).
- [2] 進一高橋. 電子回路. 電気・電子・情報工学系テキストシリーズ; 3. 培風館, 東京, 2002.
- [3] 秋月電子通商. オペアンプ icl7611. https://akizukidenshi.com/catalog/g/gI-00286/. (Accessed on 06/14/2021).