

RAJESH SHARMA SOFTWARE ENGINEER Walt Disney Animation Studios

7

Machine Learning

Rajesh Sharma ————

Today

- Recap
 - Transfer Learning
 - Homework celebrity match
- Variational Autoencoder
- Generative Adversarial Network

Questions

How can we tweak the weights in the MT-CNN model?

Ganesh Belgur Ramachandra

MT-cnn seems to have problems where the face is rotated. Is that a structured problem with the network or a training problem with the dataset?

Bobby Bodenheimer

"If your database of faces you can recognize is larger, does that mean you need to do more comparisons? Or can you somehow reduce the amount of faces to compare to?"

Marijn Eken

Recap: Transfer Learning

Built a Facial Recognition System

Extracting Faces -- Haar Cascades

Extracting Faces -- Haar Cascades

https://arxiv.org/abs/1604.02878, Zhang et.al mt-cnn

Homework

(facialRecognition03Celeb.ipynb)

AlbertoMartin

b' Luca Marin': 59.564% b' Rodrigo Santoro': 4.248% b' Darian Alvarez': 4.104%

Donovan

b' Maciej Stuhr': 20.821% b' Steve Windolf': 9.195% b' Dietrich Bruggemann': 8.932%

Gabriel

b' Cliff Richards': 6.434% b' Uday Chopra': 5.626%

b' Daniel Gimeno-Traver': 4.730%

ThanhP

b' Teofisto Guingona III': 5.069% b' Hayden Kho': 3.328%

b' Giorgia Meloni': 3.065%

Gerrit

b' Toby Keith': 29.544%

b' Guillaume de Tonquedec': 12.076% b' Ali Akbar Salehi': 13.760% b' Jurgen von der Lippe': 4.295%

JesusH

b' Sami Yusuf': 9.901%

b' Egbert Jan Weeber': 6.369%

b' Ismail YK': 5.618%

JonathanM

b' Clifton Collins Jr. : 5.461%

b' Pooja Bhatt': 4.759%

b' Danny Gokey': 4.721%

Rajesh

b' Keegan-Michael Key': 6.683%

b' Stomy Bugsy': 6.621%

b' Mark Medlock': 6.309%

LouH

b' Yona Metzger': 24.793%

b' Ben Bernanke': 8.014%

MartinA

b' Vedran Corluka': 15.950% b' Alexandre Pato': 4.681%

b' Brian Harman': 3.689%

Randi

b' David Alward': 32.692%

b' Charlie Weis': 11.711%

b' Les Dennis': 8.377%

SabrinaK

b' Angelica Panganiban': 15.201%

b' Gretchen Barretto': 6.866%

b' Alana Nichols': 5.128%

Autoencoder

Autoencoder

Autoencoder - A variation

You don't because...

The latent space and the input distributions are *different*!

But there is a way:

Treat encoder output as μ and σ of a distribution

Variational Autoencoder

You get nice continuous distribution for each input

Latent Spaces and Embeddings

https://projector.tensorflow.org

For each input we can generate new 'fake' output!

Moreover, we can interpolate!

but, we can do even better!

What about the distributions for other inputs?

We can interpolate between distributions

We can interpolate between two (or more) inputs

https://projector.tensorflow.org

What are GANs?

..a look back at the Variational Autoencoder

Variational Autoencoder

What are GANs?

GANs are similar to variational Autoencoder

Instead of estimating the distribution (var, mean)

They try to sample from the distribution directly by generating the sample from noise

• GAN - Generative Adversarial Networks

GAN - Generative Adversarial Networks

GAN training proceeds in alternating periods:

- 1. The discriminator trains for one or more epochs.
- 2. The generator trains for one or more epochs.
- 3. Repeat steps 1 and 2 to continue to train the generator and discriminator networks.
- 4. Both the generator and the discriminator are neural networks.
- 5. The generator output is connected directly to the discriminator input.
- 6. Through backpropagation, the discriminator's classification is used by the generator to update its weights.

Easier to explain by building up an example

Goal: Generate random unseen cat images

Step1: Need a classifier: cat or not Input: labeled images of cat and not cats (we did this with iris flowers)

GAN...

Goal: Generate random unseen cat images

Step2: Random image generator

Input: Noise

GAN...

Goal: Generate random unseen cat images

Step3: Hook them up together!

Hands on...

Find and open: mnistGAN.ipynb

Advanced Examples

GANimals

GauGAN

Next Class

- Exploring Latent Spaces
- Recurrent Neural Networks
- Homework:
 - Take one of the classes of satellite images
 - Using GAN generate images of that class
- @xarmalarma, #siggraphNOW

THANK YOU

WANT TO HEAR MORE FROM SIGGRAPH AND DISNEY?

Check out SIGGRAPH Now on YouTube

YouTube.com/user/ACMSIGGRAPH

Subscribe to the SIGGRAPH Spotlight podcast

