PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-067823

(43) Date of publication of application: 10.03.1998

(51)Int.CI.

C08F210/14

CO8L 23/18

//(C08F210/14

C08F236:20

(21)Application number: 09-

(71)Applicant: MITSUI

226344

PETROCHEM IND

LTD

(22)Date of filing:

22.08.1997 (72)Inventor: KAWASAKI

MASAAKI

MINAMI SHUJI TOJO TETSUO

OKADA KEIJI

(54) HIGHER ALPHA-OLEFIN COPOLYMER AND USE OF **VULCANIZATE THEREOF**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide

a higher α -olefin copolymer and a

vulcanizate thereof excellent in

properties including dynamic fatigue

resistance (flex fatigue resis tance),

weather resistance, ozone resistance,

thermal aging resistance and low-

temperature properties.

$$_{\text{R}^3 - \text{R}^2}^{\text{CH}_2 = \text{C} + \text{H}^1}$$

SOLUTION: Each of a vibration-damping rubber, a rubber roll, a belt, a tire and the covering material for a vibrating member is made from a higher α -olefin copolymer comprising a 6-12C higher α -olefin and a nonconjugated diene

represented by the following formula and having a nonconjugated diene content of 0.01-30mol% and an intrinsic viscosity [η] of 1.0-10.0dl as measured in decalin at 135° C. In the formula, R1 is a 1-4C alkyl; R2 and R3 are each hydrogen or a 1-4C alkyl, provided that

they cannot be hydrogen atoms simultaneously. It is desirable that the above copolymer is a valcanized one.

LEGAL STATUS

[Date of request for examination] 22.08.1997

[Date of sending the examiner's

decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3029095

[Date of registration]

04.02.2000

[Number of appeal against

examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平10-67823

(43) 公開日 平成10年(1998) 3月10日

(51) Int. Cl. 6

識別記号

FΙ

C08F210/14

7446-4J

C08F210/14

CO8L 23/18 // (C08F210/14

236:20

CO8L 23/18

審査請求 有 請求項の数10 OL (全15頁)

(21) 出願番号

特願平9-226344

(62) 分割の表示

特願平1-103679の分割

(22) 出願日

平成1年(1989)4月24日

(71)出願人 000005887

三井化学株式会社

東京都千代田区霞が関三丁目2番5号

(72) 発明者 川 崎 雅 昭

山口県玖珂郡和木町和木六丁目1番2号

三井石油化学工業株式会社内

(72) 発明者 南 修 治

山口県玖珂郡和木町和木六丁目1番2号

三井石油化学工業株式会社内

(72) 発明者 東 條 哲 夫

千葉県市原市千種海岸3番地 三井石油化

学工業株式会社内

(74) 代理人 弁理士 鈴木 俊一郎

最終頁に続く

(54) 【発明の名称】高級 αーオレフィン系共重合体およびその加硫物の用途

(57) 【要約】

【解決手段】炭素数6~12の高級α-オレフィンと、下記 式[I]で表わされる非共役ジエンとからなる共重合体 であって、非共役ジエン含量が0.01~30モル%の範囲内 にあり、135℃のデカリン溶媒中で測定した極限粘度 「n] が1.0~10.0d1/gの範囲内にある高級 α-オレフィ ン系共重合体からなる防振ゴム、ゴムロール、ベルト、 タイヤおよび振動部のカバー材: 【化1】

$$CH_2 = CH - (CH_2)_3 - C = C - R^1$$
 $R^3 R^2 \cdots [1]$

(式中、R'は炭素数1~4のアルキル基、R'およびR ¹は水素原子または炭素数1~4のアルキル基を表わ す。ただし、R'およびR'が共に水素原子であることは ない。) 上記高級 α-オレフィン系共重合体は好ましく は加硫されている。

【効果】耐動的疲労性(耐屈曲疲労性)、耐候性、耐才 ゾン性、耐熱老化性、低温特性などの特性に優れる。

【特許請求の範囲】

【請求項1】炭素数 $6\sim12$ の高級 α -オレフィンと、下記一般式 [I] で表わされる非共役ジエンとからなる 共重合体であって、(a)非共役ジエン含量が 0.01 ~30 モル%の範囲内にあり、(b) 135 $\mathbb C$ のデカリン溶媒中で測定した極限粘度 $[\eta]$ が $1.0\sim10.0$ d 1/g の範囲内にある高級 α -オレフィン系共重合体からなることを特徴とする防振ゴム;

【化1】

$$CH_2 = CH - (CH_2)_3 - C = C - R^1$$
 $R^3 R^2 \cdots [1]$

(式中、 R^1 は炭素数 $1\sim 4$ のアルキル基、 R^1 および R^3 は水素原子または炭素数 $1\sim 4$ のアルキル基を表わす。ただし、 R^3 および R^3 が共に水素原子であることはない。)

【請求項2】上記高級 α -オレフィン系共重合体は加硫されていることを特徴とする請求項1に記載の防振ゴム。

【請求項3】炭素数 $6\sim12$ の高級 α -オレフィンと、下記一般式 [I] で表わされる非共役ジエンとからなる 共重合体であって、(a)非共役ジエン含量が 0.01 ~30 モル%の範囲内にあり、(b) 135 $\mathbb C$ のデカリン溶媒中で測定した極限粘度 $[\eta]$ が $1.0\sim10.0$ d 1/g の範囲内にある高級 α -オレフィン系共重合体からなることを特徴とするゴムロール;

【化2】

$$CH_2 = CH - (CH_2)_3 - C = C - R^1$$
 $R^3 R^2 \cdots [1]$

(式中、 R^1 は炭素数 $1\sim 4$ のアルキル基、 R^2 および R^3 は水素原子または炭素数 $1\sim 4$ のアルキル基を表わす。ただし、 R^2 および R^3 が共に水素原子であることはない。)

【請求項4】上記高級 α -オレフィン系共重合体は加硫されていることを特徴とする請求項3に記載のゴムロール。

【請求項5】炭素数 $6\sim12$ の高級 α -オレフィンと、下記一般式 [I] で表わされる非共役ジエンとからなる 共重合体であって、 (a) 非共役ジエン含量が 0.01 40 ~30 モル%の範囲内にあり、 (b) 135 $\mathbb C$ のデカリン溶媒中で測定した極限粘度 $[\eta]$ が $1.0\sim10.0$ d 1/g の範囲内にある高級 α -オレフィン系共重合体からなることを特徴とするベルト;

【化3】

$$CH_2 = CH - (CH_2)_3 - C = C - R^1$$
 $R^3 R^2 \cdots [1]$

(式中、 R^1 は炭素数 $1\sim 4$ のアルキル基、 R^1 および R^2 は水素原子または炭素数 $1\sim 4$ のアルキル基を表わ

す。ただし、R'およびR'が共に水素原子であることはない。)

 $CH_2 = CH - (CH_2)_3 - C = C - R^1$ $R^3 R^2 \cdots [1]$

(式中、 R^1 は炭素数 $1\sim 4$ のアルキル基、 R^1 および R^3 は水素原子または炭素数 $1\sim 4$ のアルキル基を表わす。ただし、 R^1 および R^3 が共に水素原子であることはない。)

【請求項8】上記高級 α -オレフィン系共重合体は加硫されていることを特徴とする請求項7に記載のタイヤ。【請求項9】炭素数6~12の高級 α -オレフィンと、下記一般式 [I] で表わされる非共役ジエンとからなる共重合体であって、(a) 非共役ジエン含量が0.01~30モル%の範囲内にあり、(b) 135 $^{\circ}$ Cのデカリン溶媒中で測定した極限粘度 [η] が1.0~10.0 d 1/gの範囲内にある高級 α -オレフィン系共重合体からなることを特徴とする振動部のカバー材;

 $CH_2 = CH - (CH_2)_3 - C = C - R^1$ $R^3 R^2 \cdots [1]$

(式中、 R^1 は炭素数 $1\sim 4$ のアルキル基、 R^1 および R^3 は水素原子または炭素数 $1\sim 4$ のアルキル基を表わす。ただし、 R^2 および R^3 が共に水素原子であることはない。)

【請求項10】上記高級 α -オレフィン系共重合体は加 硫されていることを特徴とする請求項9に記載の振動部 のカバー材。

【発明の詳細な説明】

[0001]

【発明の技術分野】本発明は、新規な高級 α-オレフィン系共重合体、その製造方法およびその加硫物に関し、さらに詳しくは、耐動的疲労性(耐屈曲疲労性)、耐候性、耐オゾン性、耐熱老化性、低温特性などの特性に優れ、各種ゴム製品、樹脂改質材などの用途に利用できる高級 α-オレフィン系共重合体、その製造方法およびその加硫物に関する。

[0002]

50

【発明の技術的背景】エチレン-プロピレン・ジエン系

共重合体の加硫物は、その耐熱性、耐オゾン性が良好なことから、自動車工業部品、工業用ゴム製品、電気絶縁材、土木建材用品、ゴム引布等のゴム製品、ポリプロピレン、ポリスチレン等へのプラスチックブレンド用材料として広く用いられている。しかしながら、このエチレン-プロピレン・ジエン系共重合体は、耐動的疲労性に劣るため、特定の用途、たとえば防振ゴム、ゴムロール、ベルト、タイヤ、振動部のカバー材などには不適当であった。

【0003】一方、米国特許第3933769号は、1-ブテン 10 および炭素数 5 乃至12のα-オレフィンから選択される少なくとも一つのモノマーと、5-メチル-1,4-ヘキサジエンおよび4-メチル-1,4-ヘキサジエンの混合物(但し5-メチル-1,4-ヘキサジエンが少なくとも15%以上である)とを配位触媒により共重合し、イオウ加硫可能でゲルの含量の少ない共重合体を開示している。また米国特許第4340705号は遷移金属化合物と有機アルミニウム化合物にヘキサアルキルフォスフォリックトリアミドまたは有機リン酸エステルを加えた触媒系を用いて炭素数4万至12のモノオレフィンと非共役系の炭素数8万20至約36のα、ω-ポリエンとを共重合して、高分子量で、イオウ加硫可能な、ゲル含量の少ない共重合体を開示している。

【0004】本発明者らは、耐候性、耐オゾン性、耐熱 老化性などの特性に優れるとともに、耐屈曲性などの動 的特性に優れた加硫物を得ることのできる重合体を得る べく鋭意研究し、特定のオレフィン重合用触媒の存在下に、特定の高級 α -オレフィンと特定の非共役ジエンと を共重合させたところ、上記特性に優れ、かつゲル発生 のない新規な高級 α -オレフィン系共重合体が得られる ことを見出し、本発明を完成するに至った。

[0005]

【発明の目的】かくして本発明は加硫可能でゲルの発生が実質的にない新規高級 α-オレフィン・非共役ジエン 共重合体を提供する。

【0006】さらに、本発明は上記新規共重合体の製造方法を提供する。そしてまた、本発明は上記新規な高級 α-オレフィン・非共役ジエン共重合体から得られる耐候性、耐オゾン性、耐熱老化性、低温特性、制振性および耐動的渡労性に優れる新規加硫物を提供する。

[0007]

【発明の概要】本発明に係る防振ゴム、ゴムロール、ベルト、タイヤ、振動部のカバー材は、炭素数 $6\sim12$ の高級 α -オレフィンと、下記一般式 [I] で表わされる非共役ジエンとからなる共重合体であって、(a)非共役ジエン含量が $0.01\sim30$ モル%の範囲内にあり、

(b) 135℃のデカリン溶媒中で測定した極限粘度

 $[\eta]$ が 1. 0 \sim 1 0. 0 d l /gの範囲内にある高級 α -オレフィン系共重合体からなることを特徴としている。

[0008] 【化6]

$$CH_2 = CH - (CH_2)_3 - C = C - R^1$$
 $R^3 R^2 \cdots [1]$

【0009】(式中、R'は炭素数 $1\sim4$ のアルキル基、R'およびR'は水素原子または炭素数 $1\sim4$ のアルキル基を表わす。ただし、R'およびR'が共に水素原子であることはない。)

10 本発明においては、上記高級 α-オレフィン系共重合体 は加硫されていることが好ましい。

[0010]

【発明の具体的説明】以下、本発明に係る高級 α-オレフィン系共重合体、その製造方法およびその加硫物について具体的に説明する。

【0011】本発明に係る高級 α -オレフィン系共重合体は、高級 α -オレフィンと非共役ジエンとから構成されている。本発明で用いられる高級 α -オレフィンは、炭素数が $6\sim12$ の α -オレフィンであり、具体的には、ヘキセン-1、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1などが挙げられる

【0012】本発明においては、上記のような高級 α -オレフィンを単独で用いても良く、また2 種以上の混合物として用いても良い。本発明で用いられる非共役ジエンは、下記の一般式 [I] で表わされる非共役ジエンである。

[0013]

$$CH_2 = CH - (CH_2)_3 - C = C - R^1$$
 $R^3 R^2 \cdots [1]$

【0014】(式中、 R^1 は炭素数 $1\sim4$ のアルキル基、 R^2 および R^3 は水素原子または炭素数 $1\sim4$ のアルキル基を表わす。ただし、 R^3 および R^3 が共に水素原子であることはない。)

上記のような非共役ジエンとしては、具体的には、6-メ チル-1、6-オクタジエン、7-メチル-1、6-オクタジエン、 6-エチル-1、6-オクタジエン、6-プロピル-1、6-オクタジ 40 エン、6-ブチル-1、6-オクタジエン、6-メチル-1、6-ノナ ジエン、7-メチル-1、6-ノナジエン、6-メチル-1、6-ノナ ジエン、7-メチル-1、6-ノナジエン、6-メチル-1、6-デカ ジエン、7-メチル-1、6-デカジエン、6-メチル-1、6-ウン デカジエンなどが挙げられる。

【0015】本発明においては、上記のような非共役ジェンを単独で用いても良く、また2種以上の混合物として用いても良い。上記非共役ジェンのうち、特に7-メチル-1.6-オクタジエンが好ましく用いられる。

【0016】さらに、上記のような非共役ジエンの他 50 に、他の共重合可能なモノマー、たとえばエチレン、プ ロピレン、プテン-1、ペンテン-1、4-メチルペンテン-1 などを、本発明の目的を損なわない範囲で、用いてもよい

【0017】本発明の高級 α -オレフィン系共重合体を構成する非共役ジエンの含量は、 $0.01\sim30$ モル%、好ましくは $0.1\sim20$ モル%の範囲内にある。高級 α -オレフィン系共重合体の組成は、 13 C - NMR法で測定する。この特性値は、本発明の高級 α -オレフィン系共重合体を硫黄あるいは過酸化物を用いて加硫する場合の目安となる値である。

【0018】本発明の高級 α -オレフィン系共重合体の 135℃デカリン溶媒中で測定した極限粘度 [n] は、 $1.0\sim10.0$ d 1/g、好ましくは $1.5\sim8$ d 1/gの範囲内にある。この特性値は、本発明の高級 α -オレフィン系共重合体の分子量を示す尺度である。

【0019】上記のような本発明に係る高級 α -オレフィン系共重合体は以下の方法で製造することができる。本発明に係る高級 α -オレフィン系共重合体は、オレフィン重合用触媒の存在下に、高級 α -オレフィンと非共役ジエンとを共重合させることにより得られる。

【0020】本発明で用いられるオレフィン重合用触媒は、固体チタン触媒成分 [A] と、有機アルミニウム化合物触媒成分 [B] と、電子供与体触媒成分 [C] とから形成されている。

【0021】第1図に本発明に係るオレフィン重合用触媒成分の調製方法のフローチャートの例を示す。本発明で用いられる固体チタン触媒成分 [A] は、マグネシウム、チタン、ハロゲンおよび電子供与体を必須成分として含有する高活性の触媒成分である。

【0022】このような固体チタン触媒成分 [A] は、下記のようなマグネシウム化合物、チタン化合物および電子供与体を接触させることにより調製される。本発明において、固体チタン触媒成分 [A] の調製に用いられるチタン化合物としては、たとえばTi(OR) X

るチタン化合物としては、たとえは T_1 (OR) ${}_{*}$ X ${}_{4-*}$ (Rは炭化水素基、Xはハロゲン原子、 $0 \le g \le 4$) で示される 4 価のチタン化合物を挙げることができる。より具体的には、 T_1 C_1 、 T_1 C_2 のテトラハロゲン化チタン; T_1 (OCH,) C_3 、 T_4 (OC, C_4) C_5 、 C_7 、

【0023】これらの中ではハロゲン含有チタン化合

タンなどを挙げることができる。

物、とくにテトラハロゲン化チタンが好ましく、さらに 好ましくは四塩化チタンが用いられる。これらチタン化 合物は単独で用いてもよいし、二種類以上を組み合わせ て用いてもよい。さらに、これらのチタン化合物は、炭 化水素化合物あるいはハロゲン化炭化水素化合物などに

【0024】本発明において、固体チタン触媒成分 [A] の調製に用いられるマグネシウム化合物として は、還元性を有するマグネシウム化合物および還元性を 10 有しないマグネシウム化合物を挙げることができる。

希釈されていてもよい。

【0025】ここで、還元性を有するマグネシウム化合 物としては、たとえば、マグネシウム・炭素結合あるい はマグネシウム・水素結合を有するマグネシウム化合物 を挙げることができる。このような還元性を有するマグ ネシウム化合物の具体的な例としては、ジメチルマグネ シウム、ジエチルマグネシウム、ジプロピルマグネシウ ム、ジプチルマグネシウム、ジアミルマグネシウム、ジ ヘキシルマグネシウム、ジデシルマグネシウム、エチル 塩化マグネシウム、プロピル塩化マグネシウム、ブチル 塩化マグネシウム、ヘキシル塩化マグネシウム、アミル 塩化マグネシウム、ブチルエトキシマグネシウム、エチ ルプチルマグネシウム、オクチルプチルマグネシウム、 ブチルマグネシウムハライドなどを挙げることができ る。これらマグネシウム化合物は、単独で用いることも できるし、後述する有機アルミニウム化合物と錯化合物 を形成していてもよい。また、これらのマグネシウム化 合物は、液体であっても固体であってもよい。

【0026】還元性を有しないマグネシウム化合物の具 体的な例としては、塩化マグネシウム、臭化マグネシウ ム、沃化マグネシウム、弗化マグネシウムなどのハロゲ ン化マグネシウム;メトキシ塩化マグネシウム、エトキ シ塩化マグネシウム、イソプロポキシ塩化マグネシウ ム、ブトキシ塩化マグネシウム、オクトキシ塩化マグネ シウムなどのアルコキシマグネシウムハライド;フェノ キシ塩化マグネシウム、メチルフェノキシ塩化マグネシ ウムなどのアルコキシマグネシウムハライド; エトキシ マグネシウム、イソプロポキシマグネシウム、プトキシ マグネシウム、n-オクトキシマグネシウム、2-エチルへ キソキシマグネシウムなどのアルコキシマグネシウム; フェノキシマグネシウム、ジメチルフェノキシマグネシ ウムなどのアリロキシマグネシウム;ラウリン酸マグネ シウム、ステアリン酸マグネシウムなどのマグネシウム のカルポン酸塩などを挙げることができる。

【0027】これら還元性を有しないマグネシウム化合物は、上述した還元性を有するマグネシウム化合物から誘導した化合物あるいは触媒成分の調製時に誘導した化合物であってもよい。還元性を有しないマグネシウム化合物を、還元性を有するマグネシウム化合物から誘導するには、たとえば、還元性を有するマグネシウム化合物

50 を、ポリシロキサン化合物、ハロゲン含有シラン化合

物、ハロゲン含有アルミニウム化合物、エステル、アル コールなどの化合物と接触させればよい。

【0028】なお、本発明において、マグネシウム化合物は上記の還元性を有するマグネシウム化合物および還元性を有しないマグネシウム化合物の外に、上記のマグネシウム化合物と他の金属との錯化合物、複化合物あるいは他の金属化合物との混合物であってもよい。さらに、上記の化合物を2種以上組み合わせた混合物であってもよい。

【0029】本発明においては、これらの中でも、還元 10 性を有しないマグネシウム化合物が好ましく、特に好ましくはハロゲン含有マグネシウム化合物であり、さらに、これらの中でも塩化マグネシウム、アルコキシ塩化マグネシウム、アリロキシ塩化マグネシウムが好ましく用いられる。

【0030】本発明において、固体チタン触媒成分

[A] の調製に用いられる電子供与体としては、有機カルボン酸エステル好ましくは多価カルボン酸エステルが挙げられ、具体的には、下記式で表わされる骨格を有する化合物が挙げられる。

[0031]

【化8】

$$R^{3}-C-COOR^{1}$$
 $R^{4}-C-COOR^{2}$
 $R^{3}-C-COOR^{2}$
 $R^{3}-C-COOR^{5}$
 $R^{4}-C-COOR^{6}$
 $R^{3}-C-COOR^{5}$
 $R^{4}-C-COOR^{5}$

【0032】上記した式中、R¹は置換または非置換の炭化水素基を表わし、R²、R⁵、R⁵は水素原子、置換もしくは非置換の炭化水素基を表わし、R³、R⁴は水素原子、置換もしくは非置換の炭化水素基を表わす。なお、R³、R⁴は少なくとも一方が置換または非置換の炭化水素基であることが好ましい。またR³とR⁴とは互いに連結されて環状構造を形成していてもよい。置換の炭化水素基としては、N、O、Sなどの異原子を含む置換の炭化水素基が挙げられ、たとえば一C-O-C-、一COOR、-COOH、-OH、-SO₃H、-C-N-C-、-NH₁などの構造を有する置換の炭化水素基が挙げられる。

【0033】これらの中では、R'、R'の少なくとも一方が、炭素数が2以上のアルキル基であるジカルボン酸 50

から誘導されるジエステルが好ましい。多価カルポン酸 エステルの具体例としては、コハク酸ジエチル、コハク 酸ジブチル、メチルコハク酸ジエチル、 α-メチルグル タル酸ジイソプチル、マロン酸ジプチルメチル、マロン 酸ジエチル、エチルマロン酸ジエチル、イソプロピルマ ロン酸ジエチル、プチルマロン酸ジエチル、フェニルマ ロン酸ジエチル、ジエチルマロン酸ジエチル、アリルマ ロン酸ジエチル、ジイソブチルマロン酸ジエチル、ジノ ルマルプチルマロン酸ジエチル、マレイン酸ジメチル、 マレイン酸モノオクチル、マレイン酸ジイソオクチル、 マレイン酸ジイソプチル、プチルマレイン酸ジイソプチ ル、プチルマレイン酸ジエチル、β-メチルグルタル酸 ジイソプロピル、エチルコハク酸ジアルリル、フマル酸 ジ-2-エチルヘキシル、イタコン酸ジエチル、イタコン 酸ジイソブチル、シトラコン酸ジイソオクチル、シトラ コン酸ジメチルなどの脂肪族ポリカルカルボン酸エステ ル、1,2-シクロヘキサンカルボン酸ジエチル、1,2-シク ロヘキサンカルボン酸ジイソプチル、テトラヒドロフタ ル酸ジエチル、ナジック酸ジエチルのような脂肪族ポリ 20 カルボン酸エステル、フタル酸モノエチル、フタル酸ジ メチル、フタル酸メチルエチル、フタル酸モノイソブチ ル、フタル酸ジエチル、フタル酸エチルイソプチル、フ タル酸モノノルマルプチル、フタル酸エチルノルマルブ チル、フタル酸ジn-プロピル、フタル酸ジイソプロピ ル、フタル酸ジn-ブチル、フタル酸ジイソプチル、フタ ル酸ジn-ヘプチル、フタル酸ジ-2-エチルヘキシル、フ タル酸ジデシル、フタル酸ベンジルブチル、フタル酸ジ フェニル、ナフタリンジカルボン酸ジエチル、ナフタリ ンジカルボン酸ジプチル、トリメリット酸トリエチル、 30 トリメリット酸ジプチルなどの芳香族ポリカルボン酸エ ステル、3,4-フランジカルボン酸などの異節環ポリカル ボン酸から誘導されるエステルなどを挙げることができ る。

【0034】多価カルボン酸エステルの他の例としては、アジピン酸ジエチル、アジピン酸ジイソブチル、セバシン酸ジイソプロピル、セバシン酸ジn-ブチル、セバシン酸n-オクチル、セバシン酸ジ-2-エチルヘキシルなどの、長鎖ジカルボン酸から誘導されるエステルを挙げることができる。

【0035】これらの多価カルボン酸エステルの中では、前述した一般式で表わされる骨格を有する化合物が好ましく、さらに好ましくはフタル酸、マレイン酸、置換マロン酸などと、炭素数2以上のアルコールとから誘導されるエステルが好ましく、フタル酸と炭素数2以上のアルコールとの反応により得られるジエステルがとくに好ましい。

【0036】これらの多価カルボン酸エステルとしては、必ずしも出発原料として上記のような多価カルボン酸エステルを使用する必要はなく、固体チタン触媒成分[A]の調製過程でこれらの多価カルボン酸エステルを

誘導することができる化合物を用い、固体チタン触媒成 分 [A] の調製段階で多価カルボン酸エステルを生成さ せてもよい。

【0037】本発明において、固体チタン系触媒[A] を調製する際に使用することができる多価カルボン酸以 外の電子供与体としては、後述するような、アルコール 類、アミン類、アミド類、エーテル類、ケトン類、ニト リル類、ホスフィン類、スチピン類、アルシン類、ホス ホルアミド類、エステル類、チオエーテル類、チオエス テル類、酸無水物類、酸ハライド類、アルデヒド類、ア 10 る方法。 ルコレート類、アルコキシ(アリーロキシ)シラン類な どの有機ケイ素化合物、有機酸類および周期律表の第I 族〜第IV族に属する金属のアミド類および塩類などを 挙げることができる。

【0038】本発明において、固体チタン触媒成分

[A] は、上記したようなマグネシウム化合物(もしく は金属マグネシウム)、電子供与体およびチタン化合物 を接触させることにより製造することができる。固体チ タン触媒成分 [A] を製造するには、マグネシウム化合 物、チタン化合物、電子供与体から高活性チタン触媒成 20 分を調製する公知の方法を採用することができる。な お、上記の成分は、たとえばケイ素、リン、アルミニウ ムなどの他の反応試剤の存在下に接触させてもよい。

【0039】これらの固体チタン触媒成分 [A] の製造 方法を数例挙げて以下に簡単に述べる。

- (1) マグネシウム化合物、あるいはマグネシウム化合 物および電子供与体からなる錯化合物とチタン化合物と を液相にて反応させる方法。この反応は、粉砕助剤など の存在下に行なってもよい。また、上記のように反応さ せる際に、固体状の化合物については、粉砕してもよ い。さらにまた、上記のように反応させる際に、各成分 を電子供与体および/または有機アルミニウム化合物や ハロゲン含有ケイ素化合物のような反応助剤で予備処理 してもよい。なお、この方法においては、上記電子供与 体を少なくとも一回は用いる。
- (2) 還元性を有しない液状のマグネシウム化合物と、 液状チタン化合物とを、電子供与体の存在下で反応させ て固体状のチタン複合体を析出させる方法。
- (3) (2) で得られた反応生成物に、チタン化合物を さらに反応させる方法。
- (4) (1) あるいは(2) で得られる反応生成物に、 電子供与体およびチタン化合物をさらに反応させる方
- (5)マグネシウム化合物あるいはマグネシウム化合物 と電子供与体とからなる錯化合物をチタン化合物の存在 下に粉砕して得られた固体状物を、ハロゲン、ハロゲン 化合物および芳香族炭化水素のいずれかで処理する方 法。なお、この方法においては、マグネシウム化合物あ るいはマグネシウム化合物と電子供与体とからなる錯化 合物を、粉砕助剤などの存在下に粉砕してもよい。ま

た、マグネシウム化合物あるいはマグネシウム化合物と 電子供与体とからなる錯化合物を、チタン化合物の存在 下に粉砕した後に、反応助剤で予備処理し、次いで、ハ ロゲンなどで処理してもよい。なお、反応助剤として は、有機アルミニウム化合物あるいはハロゲン含有ケイ 素化合物などが挙げられる。なお、この方法において は、少なくとも一回は電子供与体を用いる。

- (6) 前記(1)~(4)で得られる化合物を、ハロゲ ンまたはハロゲン化合物または芳香族炭化水素で処理す
- (7) 金属酸化物、ジヒドロカルビルマグネシウムおよ びハロゲン含有アルコールとの接触反応物を、電子供与 体およびチタン化合物と接触させる方法。
- (8) 有機酸のマグネシウム塩、アルコキシマグネシウ ム、アリーロキシマグネシウムなどのマグネシウム化合 物を、電子供与体、チタン化合物および/またはハロゲ ン含有炭化水素と反応させる方法。

【0040】上記(1)~(8)に挙げた固体チタン触 媒成分 [A] の調製法の中では、触媒調製時において液 状のハロゲン化チタンを用いる方法あるいはチタン化合 物を用いた後、あるいはチタン化合物を用いる際にハロ ゲン化炭化水素を用いる方法が好ましい。

【0041】固体チタン触媒成分 [A] を調製する際に 用いられる上述したような各成分の使用量は、調製方法 によって異なり一概に規定できないが、たとえばマグネ シウム化合物1モル当り、電子供与体は約0.01~5 モル、好ましくは0.05~2モルの量で、チタン化合 物は約0.01~500モル好ましくは0.05~30 0モルの量で用いられる。

【0042】このようにして得られた固体チタン触媒成 分 [A] は、マグネシウム、チタン、ハロゲンおよび電 子供与体を必須成分として含有している。この固体チタ ン触媒成分 [A] において、ハロゲン/チタン (原子 比) は約4~200、好ましくは約5~100であり、 前記電子供与体/チタン(モル比)は約0.1~10、 好ましくは約0.2~約6であり、マグネシウム/チタ ン (原子比) は約1~100、好ましくは約2~50で あることが望ましい。

【0043】この固体チタン触媒成分 [A] は市販のハ ロゲン化マグネシウムと比較すると、結晶サイズの小さ いハロゲン化マグネシウムを含み、通常その比表面積が 約50m¹/g以上、好ましくは約60~1000m¹/ g、より好ましくは約100~800m²/gである。 そして、この固体チタン触媒成分 [A] は、上記の成分 が一体となって触媒成分を形成しているので、ヘキサン 洗浄によって実質的にその組成が変わることがない。

【0044】このような固体チタン触媒成分 [A] は、 単独で使用することもできるが、また、たとえばケイ素 化合物、アルミニウム化合物、ポリオレフィンなどの無 機化合物または有機化合物で希釈して使用することもで

きる。なお、希釈剤を用いる場合には、上述した比表面 積より小さくても、高い触媒活性を示す。

【0045】このような高活性チタン触媒成分の調製法等については、たとえば、特開昭50-108385号公報、同50-126590号公報、同51-20297号公報、同51-28189号公報、同51-64586号公報、同51-92885号公報、同 51-136625号公報、同52-87489号公報、同52-100596号公報、同52-147688号公報、同52-104593号公報、同53-2580号公報、同53-40093号公報、同53-40094号公報、同53-43094号公報、同55-135102号公報、同55-135103号公報、同55-135102号公報、同55-135103号公報、同55-13606号公報、同56-811号公報、同56-11908号公報、同56-18606号公報、同58-83006号公報、同58-138705号公報、同58-138706号公報、同58-138707号公報、同58-138707号公報、同58-138707号公報、同58-138707号公報、同58-138707号公報、同58-138707号公報、同58-138707号公報、同58-138707号公報、同58-138707号公報、同58-138705号公報、同58-138705号公報、同58-138705号公報、同58-138705号公報、同58-138705号公報、同58-138705号公報、同58-138705号公報、同58-138705号公報、同58-138705号公報、同58-138705号公報、同58-138705号公報、同58-138705号公報、同58-138705号公報、同58-138705号公報、同58-138710号公報、同58-138715号公報、同60-23404号公報、同61-21109号公報、同61-37803号公報、などに開示されている。

【0046】有機アルミニウム化合物触媒成分 [B] としては、少なくとも分子内に1個のAl-炭素結合を有する化合物が利用できる。このような化合物としては、たとえば、

(i) 一般式 R^1 、A 1 (OR^2)。H、X、(式中、 R^1 および R^2 は炭素原子を通常 $1\sim 1$ 5 個、好ましくは $1\sim 4$ 個含む炭化水素基であり、これらは互いに同一でも異なってもよい。X はハロゲン原子を表わし、 $0< m \le 3$ 、n は $0 \le n < 3$ 、p は $0 \le p < 3$ 、q は $0 \le q < 3$ の数であって、しかもm+n+p+q=3である)で表わされる有機アルミニウム化合物、

(ii) 一般式M'AlR'。(式中、M'はLi、Na、K であり、R'は前記と同じ)で表わされる第1族金属とアルミニウムとの錯アルキル化物などを挙げることができる。

【0047】前記の(i)に属する有機アルミニウム化合物としては、次のような化合物を例示できる。

一般式R¹。A 1 (OR²) 3-6

(式中、R'およびR'は前記と同じ。mは好ましくは 1. $5 \le m \le 3$ の数である)、

一般式R'。AlX3-。

(式中、 R^1 は前記と同じ。Xはハロゲン、mは好ましくは0 < m < 3 である)、

. 一般式R¹。A l H₃.。

(式中、 R^{\dagger} は前記と同じ。mは好ましくは $2 \le m < 3$ である)、

一般式R'Al(OR')。X。

(式中、 R^1 および R^1 は前記と同じ。Xはハロゲン、0 $< m \le 3$ 、 $0 \le n < 3$ 、 $0 \le q < 3$ で、m+n+q=3 である)で表わされる化合物などを挙げることができる。

【0048】(i)に属するアルミニウム化合物として 酸無水物、アルコキシシランなどの含酸素電子供与体、は、より具体的には、トリエチルアルミニウム、トリブ 50 アンモニア、アミン、ニトリル、イソシアネートなどの

チルアルミニウムなどのトリアルキルアルミニウム;ト リイソプレニルアルミニウムなどのトリアルケニルアル ミニウム:ジエチルアルミニウムエトキシド、ジプチル アルミニウムプトキシドなどのジアルキルアルミニウム アルコキシド; エチルアルミニウムセスキエトキシド、 ブチルアルミニウムセスキプトキシドなどのアルキルア ルミニウムセスキアルコキシド、R'1.5Al (OR') 。」などで表わされる平均組成を有する部分的にアルコ キシ化されたアルキルアルミニウム;ジエチルアルミニ ウムクロリド、ジブチルアルミニウムクロリド、ジエチ ルアルミニウムプロミドなどのジアルキルアルミニウム ハライド;エチルアルミニウムセスキクロリド、プチル アルミニウムセスキクロリド、エチルアルミニウムセス キプロミドなどのアルキルアルミニウムセスキハライ ド;エチルアルミニウムジクロリド、プロピルアルミニ ウムジクロリド、ブチルアルミニウムジブロミド等のア ルキルアルミニウムジハライドなどの部分的にハロゲン 化されたアルキルアルミニウム;ジエチルアルミニウム ヒドリド、ジブチルアルミニウムヒドリドなどのジアル 20 キルアルミニウムヒドリド;エチルアルミニウムジヒド リド、プロピルアルミニウムジヒドリド等のアルキルア ルミニウムジヒドリドなどその他の部分的に水素化され たアルキルアルミニウム; エチルアルミニウムエトキシ クロリド、プチルアルミニウムプトキシクロリド、エチ ルアルミニウムエトキシブロミドなどの部分的にアルコ キシ化およびハロゲン化されたアルキルアルミニウムを

[0049] また(i) に類似する化合物としては、酸素原子や窒素原子を介して2以上のアルミニウムが結合した有機アルミニウム化合物を挙げることができる。このような化合物としては、例えば、 $(C_1H_1)_1A1OA1$ (C4H₁)2、 $(C_4H_1)_2$ 、(C4H₂)2、(C4H₃)2、

[0050] [化9]

挙げることができる。

 $(C_2H_5)_2AINAI (C_2H_5)_2$, I C_2H_5

【0051】メチルアルミノオキサンなどを挙げること 40 ができる。前記 (ii) に属する化合物としては、LiAl (C_1H_{15}) $_4$ などを挙げることができる。

【0052】これらの中ではとくにトリアルキルアルミニウムあるいは上記した2種以上のアルミニウム化合物が結合したアルキルアルミニウムを用いることが好ましい。電子供与体触媒成分 [C] としては、アルコール類、フェノール類、ケトン、アルデヒド、カルボン酸、有機酸または無機酸のエステル、エーテル、酸アミド、酸無水物、アルコキシシランなどの含酸素電子供与体、アンチニア、アミン、ニトリル、イソシアネートなどの

含窒素電子供与体、あるいは上記のような多価カルポン 酸エステルなどを用いることができる。より具体的に は、メタノール、エタノール、プロパノール、ペンタノ ール、ヘキサノール、オクタノール、ドデカノール、オ クタデシルアルコール、オレイルアルコール、ベンジル アルコール、フェニルエチルアルコール、クミルアルコ ール、イソプロピルアルコール、クミルアルコール、イ ソプロピルベンジルアルコールなどの炭素数1~18の アルコール類:フェノール、クレゾール、キシレノー ル、エチルフェノール、プロピルフェノール、ノニルフ 10 ェノール、クミルフェノール、ナフトールなどの低級ア ルキル基を有してもよい炭素数6~20のフェノール 類:アセトン、メチルエチルケトン、メチルイソブチル ケトン、アセトフェノン、ペンゾフェノン、ペンゾキノ ンなどの炭素数3~15のケトン類;アセトアルデヒ ド、プロピオンアルデヒド、オクチルアルデヒド、ベン ズアルデヒド、トルアルデヒド、ナフトアルデヒドなど の炭素数2~15のアルデヒド類; ギ酸メチル、酢酸メ チル、酢酸エチル、酢酸ビニル、酢酸プロピル、酢酸オ クチル、酢酸シクロヘキシル、プロピオン酸エチル、酪 20 酸メチル、吉草酸エチル、クロル酢酸メチル、ジクロル 酢酸エチル、メタクリル酸メチル、クロトン酸エチル、 シクロヘキサンカルボン酸エチル、安息香酸メチル、安 息香酸エチル、安息香酸プロピル、安息香酸ブチル、安 息香酸オクチル、安息香酸シクロヘキシル、安息香酸フ ェニル、安息香酸ベンジル、トルイル酸メチル、トルイ ル酸エチル、トルイル酸アミル、エチル安息香酸エチ ル、アニス酸メチル、マレイン酸n-プチル、メチルマロ ン酸ジイソブチル、シクロヘキセンカルボン酸ジn-ヘキ シル、ナジック酸ジエチル、テトラヒドロフタル酸ジイ 30 ソプロピル、フタル酸ジエチル、フタル酸ジイソプチ .ル、フタル酸ジn-ブチル、フタル酸ジ2-エチルヘキシ ル、γ-ブチロラクトン、δ-バレロラクトン、クマリ ン、フタリド、炭酸エチレンなどの炭素数2~30の有 機酸エステル;アセチルクロリド、ペンゾイルクロリ ド、トルイル酸クロリド、アニス酸クロリドなどの炭素 数2~15の酸ハライド類;メチルエーテル、エチルエ ーテル、イソプロピルエーテル、ブチルエーテル、アミ ルエーテル、テトラヒドロフラン、アニソール、ジフェ ニルエーテルなどの炭素数2~20のエーテル類;酢酸 40 アミド、安息香酸アミド、トルイル酸アミドなどの酸ア ミド類:メチルアミン、エチルアミン、ジエチルアミ ン、トリプチルアミン、ピペリジン、トリベンジルアミ ン、アニリン、ピリジン、ピコリン、テトラメチレンジ アミンなどのアミン類;アセトニトリル、ベンゾニトリ ル、トルニトリルなどのニトリル類;無水酢酸、無水フ タル酸、無水安息香酸などの酸無水物などが用いられ

【0053】また電子供与体触媒成分 [C] として、下 記のような一般式 [I] で示される有機ケイ素化合物を 50

用いることもできる。 R、Si(OR') [I]

[式中、RおよびR は炭化水素基であり、0 < n < 4である]

上記のような一般式 [I] で示される有機ケイ素化合物 としては、具体的には、トリメチルメトキシシラン、ト リメチルエトキシシラン、ジメチルジメトキシシラン、 ジメチルジエトキシシラン、ジイソプロピルジメトキシ シラン、t-プチルメチルジメトキシシラン、t-プチルメ チルジエトキシシラン、t-アミルメチルジエトキシシラ ン、ジフェニルジメトキシシラン、フェニルメチルジメ トキシシラン、ジフェニルジエトキシシラン、ビス0-ト リルジメトキシシラン、ピスロートリルジメトキシシラ ン、ピスp-トリルジメトキシシラン、ピスp-トリルジエ トキシシラン、ビスエチルフェニルジメトキシシラン、 ジシクロヘキシルジメトキシシラン、シクロヘキシルメ チルジメトキシシラン、シクロヘキシルメチルジエトキ シシラン、エチルトリメトキシシラン、エチルトリエト キシシラン、ビニルトリメトキシシラン、メチルトリメ トキシシラン、n-プロピルトリエトキシシラン、デシル トリメトキシシラン、デシルトリエトキシシラン、フェ ニルトリメトキシシラン、 ャークロルプロピルトリメト キシシラン、メチルトルエトキシシラン、エチルトリエ トキシシラン、ビニルトリエトキシシラン、t-プチルト リエトキシシラン、n-プチルトリエトキシシラン、iso-ブチルトリエトキシシラン、フェニルトリエトキシシラ ン、γ-アミノプロピルトリエトキシシラン、クロルト リエトキシシラン、エチルトリイソプロポキシシラン、 ビニルトリプトキシシラン、シクロヘキシルトリメトキ シシラン、シクロヘキシルトリエトキシシラン、2-ノル ボルナントリメトキシシラン、2-ノルボルナントリエト キシシラン、2-ノルボルナンメチルジメトキシシラン、 ケイ酸エチル、ケイ酸ブチル、トリメチルフェノキシシ ラン、メチルトリアリロキシ(allyloxy)シラン、ピニル トリス (β-メトキシエトキシシラン)、ビニルトリア セトキシシラン、ジメチルテトラエトキシジシロキサン などが用いられる。このうちエチルトリエトキシシラ ン、n-プロピルトリエトキシシラン、t-ブチルトリエト キシシラン、ビニルトリエトキシシラン、フェニルトリ エトキシシラン、ピニルトリプトキシシラン、ジフェニ ルジメトキシシラン、フェニルメチルジメトキシシラ ン、ビスp-トリルジメトキシシラン、p-トリルメチルジ メトキシシラン、ジシクロヘキシルジメトキシシラン、 シクロヘキシルメチルジメトキシシラン、2-ノルボルナ ントリエトキシシラン、2-ノルポルナンメチルジメトキ シシラン、ジフェニルジエトキシシランが好ましい。 【0054】さらに電子供与体触媒成分 [C] として、 下記のような一般式 [II] で示される有機ケイ素化合物

SiR'R', (OR') [II]

を用いることもできる。

[式中、R¹はシクロペンチル基もしくはアルキル基を 有するシクロペンチル基であり、R'はアルキル基、シ クロペンチル基およびアルキル基を有するシクロペンチ ル基からなる群より選ばれる基であり、R¹は炭化水素

基であり、mは0≦m≦2である。] 上記式 [II] において、R'はシクロペンチル基もしく はアルキル基を有するシクロペンチル基であり、R¹と しては、シクロペンチル基以外に、2-メチルシクロペン チル基、3-メチルシクロペンチル基、2-エチルシクロペ ンチル基、2.3-ジメチルシクロペンチル基などのアルキ 10 ル基を有するシクロペンチル基を挙げることができる。 【0055】また、式[II] において、R'はアルキル 基、シクロペンチル基もしくはアルキル基を有するシク ロペンチル基のいずれかの基であり、R¹としては、た とえばメチル基、エチル基、プロピル基、イソプロピル 基、ブチル基、ヘキシル基などのアルキル基、またはR 'として例示したシクロペンチル基およびアルキル基を 有するシクロペンチル基を同様に挙げることができる。 【0056】また、式[II] において、R1は炭化水素 基であり、R¹としては、たとえばアルキル基、シクロ アルキル基、アリール基、アラルキル基などの炭化水素 基を挙げることができる。

【0057】これらのうちではR'がシクロペンチル基 であり、R¹がアルキル基またはシクロペンチル基であ り、R¹がアルキル基、特にメチル基またはエチル基で ある有機ケイ素化合物を用いることが好ましい。

【0058】このような有機ケイ素化合物として、具体 的には、シクロペンチルトリメトキシシラン、2-メチル シクロペンチルトリメトキシシラン、2,3-ジメチルシク ロペンチルトリメトキシシラン、シクロペンチルトリエ 30 トキシシランなどのトリアルコキシシラン類;ジシクロ ペンチルジメトキシシラン、ビス (2-メチルシクロペン チル) ジメトキシシラン、ビス(2,3-ジメチルシクロペ ンチル) ジメトキシシラン、ジシクロペンチルジエトキ シシランなどのジアルコキシシラン類;トリシクロペン チルメトキシシラン、トリシクロペンチルエトキシシラ ン、ジシクロペンチルメチルメトキシシラン、ジシクロ ペンチルエチルメトキシシラン、ジシクロペンチルメチ ルエトキシシラン、シクロペンチルジメチルメトキシシ ラン、シクロペンチルジエチルメトキシシラン、シクロ 40 ペンチルジメチルエトキシシランなどのモノアルコキシ シラン類などを挙げることができる。これら電子供与体 のうち有機カルボン酸エステル類あるいは有機ケイ素化・ 合物類が好ましく、特に有機ケイ素化合物が好ましい。 【0059】本発明で用いられるオレフィン重合用触媒 は、上記のような固体チタン触媒成分【A】と、有機ア ルミニウム化合物触媒成分 [B] と、電子供与体 [C] とから形成されており、本発明では、このオレフィン重

合用触媒を用いて高級 α-オレフィンと非共役ジエンと

-オレフィンあるいは高級 α-オレフィンを予備重合させ た後、この触媒を用いて高級 α-オレフィンと非共役ジ エンを重合(本重合)させることもできる。予備重合の 際オレフィン重合用触媒1g当り、0.1~500g、 好ましくは0.3~300g、特に好ましくは1~10 0gの量で α -オレフィンあるいは高級 α -オレフィンを 予備重合させる。

【0060】予備重合では、本重合における系内の触媒 **濃度よりもかなり高濃度の触媒を用いることができる。** 予備重合における固体チタン触媒成分 [A] の濃度は、 後述する不活性炭化水素媒体1リットル当り、チタン原 子換算で、通常約0.01~200ミリモル、好ましく は約 $0.1\sim100$ ミリモル、特に好ましくは $1\sim50$ ミリモルの範囲とすることが望ましい。

【0061】有機アルミニウム触媒成分 [B] の量は、 固体チタン触媒成分 [A] 1g当り0.1~500g好 ましくは0.3~300gの重合体が生成するような量 であればよく、固体チタン触媒成分【A】中のチタン原 子1モル当り、通常約0.1~100モル、好ましくは 20 約0.5~50モル、特に好ましくは1~20モルの量 であることが望ましい。

【0062】電子供与体触媒成分 [C] は、固体チタン **触媒成分 [A] 中のチタン原子1モル当り、0.1~5** 0モル、好ましくは0.5~30モル、特に好ましくは 1~10モルの量で用いられることが好ましい。

【0063】予備重合は、不活性炭化水素媒体にオレフ ィンあるいは高級 α-オレフィンおよび上記の触媒成分 を加え、温和な条件下に行なうことが好ましい。この際 用いられる不活性炭化水素媒体としては、具体的には、 プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オ クタン、デカン、ドデカン、灯油などの脂肪族炭化水 素:シクロペンタン、シクロヘキサン、メチルシクロペ ンタンなどの脂環族炭化水素;ベンゼン、トルエン、キ シレンなどの芳香族炭化水素; エチレンクロリド、クロ ルベンゼンなどのハロゲン化炭化水素、あるいはこれら の混合物などを挙げることができる。これらの不活性炭 化水素媒体のうちでは、特に脂肪族炭化水素を用いるこ とが好ましい。なお、オレフィンあるいは高級 α-オレ フィン自体を溶媒に予備重合を行なうこともできるし、 実質的に溶媒のない状態で予備重合することもできる。

【0064】予備重合で使用される高級 α-オレフィン は、後述する本重合で使用される高級 α-オレフィンと 同一であっても、異なってもよい。予備重合の際の反応 温度は、通常約-20~+100℃、好ましくは約-2 0~+80℃、さらに好ましくは0~+40℃の範囲で あることが望ましい。

【0065】なお、予備重合においては、水素のような 分子量調節剤を用いることもできる。このような分子量 調節剤は、135℃のデカリン溶媒中で測定した予備重 を重合させるが、このオレフィン重合用触媒を用いて α 50 合により得られる重合体の極限粘度 [n] が、約0 2

d1/g以上、好ましくは約 $0.5\sim10d1/g$ になるような量で用いることが望ましい。

【0066】予備重合は、上記のように、固体チタン触媒成分 [A] 1 g 当 り約0. $1\sim500$ g、好ましくは約0. $3\sim300$ g、特に好ましくは $1\sim100$ g の重合体が生成するように行なうことが望ましい。予備重合量をあまり多くすると、オレフィン重合体の生産効率が低下することがある。

【0067】予備重合は回分式あるいは連続式で行なうことができる。上記のようにしてオレフィン重合用触媒 10 に予備重合を行なって、得られた固体チタン触媒成分 [A] と、有機アルミニウム触媒成分 [B] と、電子供与体触媒成分 [C] とから形成されるオレフィン重合用触媒の存在下に、高級α-オレフィンと非共役ジエンとの共重合(本重合)を行なう。

【0068】高級 α -オレフィンと非共役ジエンとの共重合(本重合)の際には、上記オレフィン重合用触媒に加えて、有機アルミニウム化合物触媒成分として、オレフィン重合用触媒を製造する際に用いられた有機アルミニウム化合物触媒成分 [B] と同様なものを用いること 20ができる。また高級 α -オレフィンと非共役ジエンとの共重合(本重合)の際には、電子供与体触媒成分として、オレフィン重合用触媒を製造する際に用いられた電子供与体触媒成分 [C] と同様なものを用いることができる。なお、高級 α -オレフィンと非共役ジエンとの共重合(本重合)の際に用いられる有機アルミニウム化合物および電子供与体は、必ずしも上記のオレフィン重合用触媒を調製する際に用いられた有機アルミニウム化合物および電子供与体と同一である必要はない。

【0069】高級 α -オレフィンと非共役ジエンとの共重合(本重合)は、通常、気相あるいは液相で行なわれる。高級 α -オレフィンと非共役ジエンとの共重合(本重合)において、固体チタン触媒成分 [A] は、重合容積1リットル当りチタン原子に換算して、通常は約0.001~約1.0ミリモル、好ましくは約0.005~0.5ミリモルの量で用いられる。また、有機アルミニウム化合物触媒成分 [B] は、固体チタン触媒成分

[A] 中のチタン原子1モルに対し、有機アルミニウム 化合物触媒成分 [B] 中の金属原子は、通常約 $1\sim20$ 00モル、好ましくは約 $5\sim500$ モルとなるような量 40 で用いられる。さらに、電子供与体触媒成分 [C] は、有機アルミニウム化合物触媒成分 [B] 中の金属原子1モル当り、通常は約 $0.01\sim2$ モル、特に好ましくは約 $0.01\sim2$ モル、特に好ましくは約 $0.05\sim1$ モルとなるような量で用いられる。

【0070】本重合時に、水素の使用量を制御することにより、得られる重合体の分子量を調節することができる。本発明において、高級 α -オレフィンと非共役ジエンとの重合温度は、通常、約 $10\sim200$ ℃、好ましくは約 $30\sim100$ ℃に、圧力は、通常、常圧 ~100 k 50

 g/cm^{2} 、好ましくは常圧 $\sim 50 k g/cm^{2}$ に設定される。高級 α -オレフィンと非共役ジエンとの共重合

(本重合) においては、重合を、回分式、半連続式、連続式の何れの方法においても行なうことができる。 さらに重合を、反応条件を変えて2段以上に分けて行なうこともできる。

【0071】上記の重合によって得られる本発明の高級 α -オレフィン系共重合体は耐動的疲労性、耐熱性、耐オゾン性、低温特性等に優れたポリマーとして利用される。特に樹脂改質材、各種ゴム製品へ応用した場合、その特性を最大限に発揮する。

【0072】樹脂改質材としては、たとえばポリプロピレン、ポリエチレン、ポリスチレンなどの改質材として用いることができる。これらの樹脂に本発明の高級 α-オレフィン系共重合体を添加すると、耐衝撃性、耐ストレスクラック性を飛躍的に向上させることができる。

【0073】各種ゴム製品は一般に加硫状態で用いられるが、本発明の高級 α -オレフィン系共重合体も加硫状態で用いれば、さらにその特性を発揮する。本発明の高級 α -オレフィン系共重合体を各種ゴム製品として用いる場合、加硫物は通常一般のゴムを加硫するときと同様に、未加硫の配合ゴムを一度調製し、次いで、この配合ゴムを意図する形状に成形した後に加硫を行なうことにより製造される。

【0074】加硫方法としては、加硫剤を使用して加熱 する方法、および電子線を照射する方法のどちらを採用 してもよい。加硫の際に使用される加硫剤としては、イ オウ系化合物および有機過酸化物を挙げることができ る。イオウ系化合物としては、具体的には、イオウ、塩 化イオウ、二塩化イオウ、モルホゾンジスルフィド、ア ルキルフェノールジスルフィド、テトラメチルチウラム ジスルフィド、ジメチルジチオカルバミン酸セレンなど が挙げられる。なかでもイオウが好ましく用いられる。 イオウ系化合物は本発明の高級 α-オレフィン系共重合 体100重量部に対して0.1~10重量部、好ましく は0.5~5重量部の量で用いられる。有機過酸化物と しては、具体的には、ジクミルペルオキシド、2.5-ジメ チル-2,5-ジ (第三プチルペルオキシ) ヘキサン、2,5-ジメチル-2,5-ジ(ベンゾイルペルオキシ)ヘキサン、 2.5-ジメチル-2.5-ジ(第三ブチルペルオキシ)へキシ ン-3、ジ第三ブチルペルオキシド、ジ第三ブチルペルオ キシ-3, 3, 5-トリメチルシクロヘキサン、第三プチルヒ ドロペルオキシドなどが挙げられる。なかでもジクミル ペルオキシド、ジ第三プチルペルオキシド、ジ第三プチ ルペルオキシ-3, 3, 5-トリメチルシクロヘキサンが好ま しく用いられる。有機過酸化物は本発明の高級 α-オレ フィン系共重合体100gに対して3×10⁻¹~5×1 0⁻¹ モル、好ましくは1×10⁻¹~3×10⁻¹ モルの量 で用いられる。

【0075】また加硫剤としてイオウ系化合物を使用す

るときは、加硫促進剤を併用することが好ましい。加硫 促進剤としては、具体的には、N-シクロヘキシル-2-ペ ンゾチアゾールスルフェンアミド、N-オキシジエチレン -2-ベンゾチアゾールスルフェンアミド、N. N-ジイソプ ロピル-2-ベンゾチアゾールスルフェンアミド、2-メル カプトベンゾチアゾール、2-(2.4-ジニトロフェニル) メルカプトベンゾチアゾール、2-(2.6-ジエチル-4-モ ルホリノチオ) ベンゾチアゾール、ジベンゾチアジルジ スルフィドなどのチアゾール系化合物;ジフェニルグア ニジン、トリフェニルグアニジン、ジオルソトリルグア 10 ニジン、オルソトリル・バイ・グアナイド、ジフェニル グアニジン・フタレートなどのグアニジン系化合物;ア セトアルデヒド-アニリン反応物、ブチルアルデヒド-ア ニリン縮合物、ヘキサメチレンテトラミン、アセトアル デヒドアンモニアなどのアルデヒドアミンまたはアルデ ヒド-アンモニア系化合物;2-メルカプトイミダゾリン などのイミダゾリン系化合物; チオカルバニリド、ジエ チルチオユリア、ジブチルチオユリア、トリメチルチオ ユリア、ジオルソトリルチオユリアなどのチオユリア系 化合物; テトラメチルチウラムモノスルフィド、テトラ 20 メチルチウラムジスルフィド、テトラエチルチウラムジ スルフィド、テトラプチルチウラムジスルフィド、ペン タメチレンチウラムテトラスルフィドなどのチウラム系 化合物;ジメチルジチオカルバミン酸亜鉛、ジエチルチ オカルバミン酸亜鉛、ジ-n-ブチルジチオカルバミン酸 亜鉛、エチルフェニルジチオカルバミン酸亜鉛、ブチル フェニルジチオカルバミン酸亜鉛、ジメチルジチオカル バミン酸ナトリウム、ジメチルジチオカルパミン酸セレ ン、ジエチルジチオカルバミン酸テルルなどのジチオ酸 塩系化合物;ジブチルキサントゲン酸亜鉛などのザンテ 30 ート系化合物: 亜鉛華などの化合物を挙げることができ

【0076】これらの加硫促進剤は高級α-オレフィン系共重合体100重量部に対して0.1~20重量部、好ましくは0.2~10重量部の量で用いられる。加硫剤として有機過酸化物を使用するときは、加硫助剤を併用することが好ましい。加硫助剤としては、具体的には、硫黄、p-キノンジオキシムなどのキノンジオキシム系化合物;ポリエチレングリコールジメタクリレートなどのメタクリレート系化合物;ジアリルフタレート、ト40リアリルシアヌレートなどのアリル系化合物;その他マレイミド系化合物;ジビニルベンゼンなどが挙げられる。

【0077】このような加硫助剤は、使用する有機過酸化物1モルに対して $1/2\sim2$ モル、好ましくは約等モルの量で用いられる。加硫方法として加硫剤を使用せず、電子線を使用する場合は、後述する成形された未加硫の配合ゴムに $0.1\sim10$ MeV (メガエレクトロンボルト)、好ましくは $0.3\sim20$ MeV のエネルギーを有する電子を吸収線量が $0.5\sim35$ Mrad(メガラッ

ド)、好ましくは 0. $5\sim1$ OMradになるように照射すればよい。このとき加硫剤としての有機過酸化物と併用して加硫助剤を使用してもよく、その量は本発明の高級 α -オレフィン系共重合体 10^{-1} 0^{-1}

【0078】未加硫の配合ゴムは次の方法で調製される。すなわちバンパリーミキサーのようなミキサー類により高級 α -オレフィン系共重合体、充填剤、軟化剤を $80\sim170$ \mathbb{C} の温度で $3\sim10$ 分間混練した後、オープンロールのようなロール類を使用して、加硫剤、必要に応じて加硫促進剤または加硫助剤を追加混合し、ロール温度 $40\sim80$ \mathbb{C} \mathbb{C}

【0079】このように調製された配合ゴムは押出成形機、カレンダーロール、またはプレスにより意図する形状に成形され、成形と同時にまたは成形物を加硫槽内に導入し、150~270℃の温度で1~30分間加熱するか、あるいは前記した方法により電子線を照射することにより加硫物が得られる。この加硫の段階は金型を用いてもよいし、また金型を用いずに加硫を実施してもよい。金型を用いない場合は成形、加硫の工程は通常連続的に実施される。加硫槽おける加熱方法としては熱空気、ガラスビーズ流動床、UHF(極超短波電磁波)、スチームなどの加熱槽を用いることができる。

【0080】もちろん、電子線照射により加硫を行なう場合は、加硫剤の配合されない配合ゴムを用いる。以上のようにして製造されたゴム加硫物は、そのもの自体で防振ゴム、タイヤ振動部のカバー材などの自動工業部品、ゴムロール、ベルトなどの工業用ゴム製品、電気絶縁材、土木建材用品、ゴム引布などの用途に用いることができる。また発泡剤を前記未加硫の配合ゴムに配合して加熱発泡させれば、発泡材を得ることができ、この発泡材を断熱材、クッション材、シーリング材などの用途に用いることができる。またポリオレフィン、ポリアミド、ポリエステル、ポリカーボネートなどの樹脂に配合してこれらの樹脂の耐衝撃性を向上させることもできる。

[0081]

【発明の効果】本発明に係る高級 α-オレフィン系共重 合体からは、耐候性、耐オゾン性、耐熱老化性、低温特 性、制振性に優れるとともに、耐動的疲労性に優れた加 硫物を得ることができる。

【0082】また本発明に係る製造方法によれば、上記のような効果を有する高級 α -オレフィン系共重合体を効率よく、高収率で製造することができる。以下、本発明を実施例により説明するが、本発明は、これら実施例に限定されるものではない。

[0083]

50 【実施例1】

(固体チタン触媒成分 [A] の調製)無水塩化マグネシ ウム95.2g、デカン442mlおよび2-エチルヘキ シルアルコール390.6gを130℃で2時間加熱反 応を行なって均一溶液とした後、この溶液中に無水フタ ル酸21.3gを添加し、さらに、130℃にて1時間 撹拌混合を行ない、無水フタル酸をこの均一溶液に溶解 させた。このようにして得られた均一溶液を室温に冷却 した後、この均一溶液75m1を-20℃に保持した四 塩化チタン200ml中に1時間にわたって全量滴下装 入した。装入終了後、この混合液の温度を4時間かけて 10 110℃に昇温し、110℃に達したところでジイソブ チルフタレート5.22gを添加し、これより2時間同 温度にて撹拌下保持した。2時間の反応終了後、熱濾過 にて固体部を採取し、この固体部を275mlの四塩化 チタンにて再懸濁させた後、再び110℃で2時間、加 熱反応を行なった。反応終了後、再び熱濾過にて固体部 を採取し、110℃デカンおよびヘキサンにて、洗液中 に遊離のチタン化合物が検出されなくなるまで充分洗浄 した。以上の操作によって調製した固体チタン触媒成分 [A] はデカンスラリーとして保存したが、この内の一 20 部を触媒組成を調べる目的で乾燥する。このようにして 得られた固体チタン触媒成分 [A] の組成はチタン2. 2 重量%、塩素 5 8. 1 重量%、マグネシウム 1 9. 2 重量%およびジイソプチルフタレート10.7重量%で あった。

(重 合) 撹拌翼を備えた 5 0 0 m l の重合器にデカンを1 4 2 m l、オクテン-1を1 0 0 m l、7-メチル-1,6-オクタジエンを8 m l 装入した。この溶液の温度を50℃に昇温し、水素、窒素をそれぞれ 1 時間あたり1

リットル、50リットルの速度で溶液中に連続的に導入した。50℃に昇温後、0.625ミリモルのトリイソブチルアルミニウム、0.21ミリモルのトリメチルエトキシシランおよびチタン原子に換算して0.0125ミリモルの固体チタン触媒成分 [A] を装入し重合を開始した。50℃で30分間重合を行なった後、少量のイソブチルアルコールを添加して重合を停止した後、重合溶液を大量のメタノール中に投入し、共重合体を析出させた。次いで、析出した共重合体を回収した後、120℃で一昼夜減圧下に乾燥して12.4gのオクテン-1.6-オクタジエン共重合体が得られた。得られた共重合体のデカリン中で135℃で測定した極限粘度 [η] は6.4d1/gであり、7-メチル-1.6-オクタジエン含量は6.6

[0084]

【実施例 $2\sim6$ 】実施例 1 において、表 1 に示すように、高級 α -オレフィンおよび重合条件を変えて、実施例 1 と同様にして、共重合を行なって表 1 に示す共重合体を得た。

0 [0085]

【比較例1】触媒として三塩化チタン(東邦チタニウム 社製、TAC-131) およびジエチルアルミニウムクロリド をそれぞれ1. 25ミリモル、2. 5ミリモルを用いた 以外は、実施例1と同様にして、共重合を行なって表1 に示す共重合体を得た。チタンあたりの活性は低く、実 施例1の0. 7%に過ぎなかった。

[0086]

【表1】

表 1

	Ti濃度	A Q 濃度	第3	3成分	水索	窒素	高級ローナ	7717	NOD	温度	共重合体	[n]	M O D
	₹ <i>9₹4/</i> 1	₹9 <i>₹₩/</i> }		19E4/#	1/期	1/帽		ml	ml	ಭ	収量、g	d Q ∕g	モル%
		i Bug A Q											
実施例1	0.05	2.5	TMES	0.83	1	50	オタテソート	100	8	50	12.4	6.4	6.6
実施例2	1.0	5	THES	1.67	3	50	オタテンー1	100	20	50	24.6	4.5	15.1
実施例3	0.05	2.5	THES	0.83	3	50	オクテソート	115	5	50	26.6	6.5	3.9
実施例4	0.05	2.5	TMES	0.83	8	5 0	デセソー]	100	10	50	11.1	3.6	11.2
実施例5	0.05	2.5	TMES	0.83	3	50	ヘキセソー]	100	10	50	11.3	3.5	8.2
実施例6	0.05	2.5	TXMS	0.83	3	50	オクテンー】	100	5	50	15.7	4.1	8.6
		Et A Q CQ											
比較例1	5.0	10	_		3	50	オクテン-1	100	5	50	9.0	7.4	6.2

MOD: 7-メチル-1.6- オクタジエン、TMES: トリメチルエトキシシラン、TMMS: トリメチルメトキシシラン、

共通重合条件) 重合時間30分、溶媒デカン

器を用いて、連続的に、オクテン-1と7-メチル-1.6-オ クタジエンとの共重合反応を行なった。

【0088】すなわち、重合器上部からオクテン-1およ び7-メチル-1.6-オクタジエンのデカン溶液を、重合器 内でのオクテン-1濃度が155g/リットル、7-メチル -1.6-オクタジエンの重合器内での濃度が14g/リッ トルとなるように毎時1リットル、触媒として固体チタ ン触媒成分 [A] のデカンスラリー溶液を重合器内での チタン濃度が0.05ミリモル/リットルとなるように 毎時 0. 4 リットル、トリイソプチルアルミニウムのデ 10 カン溶液を重合器内でのアルミニウム濃度が2.5ミリ モル/リットルとなるように毎時1リットル、トリメチ ルエトキシシランのデカン溶液を重合器内でのシラン濃 度が0.83ミリモル/リットルとなるように毎時1. 6 リットルの速度でそれぞれ重合器中に、連続的に供給 した。一方、重合器下部から重合器中の重合液が常に2 リットルとなるように連続的に抜き出した。また重合器 上部から、水素を毎時1リットル、窒素を毎時50リッ トルの速度で供給した。共重合反応は、重合器外部に取

り付けたジャケットに温水を循環させることにより、5 0℃で行なった。

【0089】次いで、重合器下部から抜き出した重合溶 液に、メタノールを少量添加して共重合反応を停止さ せ、この重合溶液を大量のメタノール中に投入して共重 合体を析出させた。共重合体をメタノールで充分洗浄し た後、140℃で一昼夜減圧乾燥してオクタン-1・7-メ チル-1.6-オクタジエン共重合体が毎時225gの速度 で得られた。

【0090】得られた共重合体中の7-メチル-1.6-オク タジエン含量は、7.2モル%であり、135℃デカリ ン中で測定した極限粘度 [η] は5. 2であった。 [0091]

【実施例8】実施例1で製造されたオクテン-1・7-メチ ル-1, 6-オクタジエン共重合体を表2に従い、8インチ オープンロールにより混練し、未加硫の配合ゴムを得

[0092]

【表2】

2

粗	成	物	[重量部]
まりテン-1・7-	3 3 N - 1 , S	5ーオクタジェン共重合体	100.0
ステアリ	ン酸		1.0
亜 鉛	華		5.0
HAFカ	ーポン	1)	50.0
ナフテン系	オイル	2)	10.0
加硫促進	新 A	3)	0.5
加硫促進	剤 B	4)	0.5
硫	黄		0.5

[0093]

1) 商品名: 旭70

: 旭カーポン社製

2) 商品名:サンセン4240 :日本サン石油社製

3) 商品名:サンセラーM : 三新化学社製

商品名:サンセラーTT :三新化学社製

この配合ゴムを160℃に加熱されたプレスにより20 分間加熱し、加硫シートを作製し、下記の試験を行なっ た。試験項目は以下のとおりである。

[試験項目] 引張試験、硬さ試験、老化試験、屈曲試 験、制振性、耐候性、耐オソン試験、低温特性。

[試験方法] 引張試験、硬さ試験、老化試験、屈曲試験 は JIS K 6301に従って測定した。すなわち、引張試験 では引張強さ (T_s)、伸び (E_s)、硬さ試験ではH_s JISA 硬度を測定し、老化試験は120℃で70時間空 気加熱老化試験を行なった。

【0094】老化試験後引張試験を行ない、老化前の物 性に対する保持率、すなわち引張強さ保持率A

』(T_B)、伸び保持率A_B(E_B)を求めた。屈曲試験は デマッチャー試験機で亀裂成長に対する抵抗性を調べ

40 た。すなわち、亀裂が15mmになるまでの屈曲回数を 測定した。

【0095】制振性の指標として損失正接(tan δ)を レオメトリック社のダイナミックスペクトロメーターを 用い、25℃、100 rad / sec で測定した。次に、サ ンシャインウェザーメータを使って耐候性を調べた。サ ンシャインウェザーメータの条件は、ブラックパネル温 度63℃とし、カーボンアークを点灯し、120分サイ クルで18分間、水をスプレーした。このサイクルを2 00時間行なった後、引張試験を行なって試験前に対す 50 る強度、伸びの保持率を求めた。

【0096】耐オゾン試験は、JIS K 6301に従い行なっ た。試験条件は、オゾン濃度50pphm、試験雰囲気温度 40℃、伸長率を30%とし、200時間後に表面の劣 化状態(キレツ発生の有無)を観察した。低温特性は、 JIS K 6301に従い、衝撃脆化試験を行ない、脆化温度を 求めた。

【0097】結果を表3に示す。

[0098]

【実施例9】実施例8において、共重合体として実施例 2で製造されたものを用いた以外は、実施例8と全く同 10 重合体(三井 EPT 3070 、三井石油化学工業(株)製) 様にして、加硫シートを得、上記試験を行なった。

【0099】結果を表3に示す。

[0100]

【実施例10】実施例8において、共重合体として実施 例4で製造されたものを用いた以外は、実施例8と全く 同様にして、加硫シートを得、上記試験を行なった。

【0101】結果を表3に示す。

[0102]

【実施例11】実施例8において、共重合体として実施 例5で製造されたものを用いた以外は、実施例8と全く 同様にして、加硫シートを得、上記試験を行なった。

【0103】結果を表3に示す。

[0104]

【比較例2】実施例8において、本発明に係る共重合体 を用いずに、市販のエチレン・プロピレン・ジエン系共 を用いた以外は、実施例8と全く同様にして、加硫シー トを得、上記試験を行なった。

【0105】結果を表3に示す。

[0106]

【表3】

	実施例 8	実施例 9	実施例10	実施例11	比較例 2
引張 試験 引張強さTB(lg/cn") 伸 びE ₈ (%)	1 2 5 5 2 0	1 3·0 4 5 0	1 1 8 5 5 0	1 3 6 5 4 0	1 8 5 5 1 0
硬き試験 スプリフダ硬きH _S JISA	5 3	5 5	5 1	5 4	8 6
老 化 試 験 引張強さ保持率 An (Ta)(%) 伸 び 保 持 率 An (Ea)(%)	9 4 8 0	9 8 8 1	9 5 7 7	9 6 8 3	9 9 7 1
屈 曲 試 験 亀叉成長までの回数 (回)	1 05 以上	105以上	105以上	105以上	10 ³ 以下
制数性 损失正接	0. 6 6	0. 6 3	0. 6 1	0'. 7 2	0, 12
耐 候 性 引張強さ保持率 A _A (T _B)(%) 伸 び 保 持 率 A _A (E _B)(%)	1 0 0 9 2	1 1 0 9 0	1 0 0 9 5	9 5 9 3	9 8 9 6
耐 オ ゾ ン 性 表面状態(亀製発生の有無)	無	無:	無	無	無
低 温 特 性 胞 化 温 度	-50℃以下	-50℃以下	-50℃以下	-50℃以下	-50℃以下

[0107]

【実施例12】ポリプロピレン(三井石油化学社製ハイ ポール 1700) を80重量部、実施例1で製造した高 級 α-オレフィン系共重合体を 2 0 重量部、2, 6-ジタシ ャリープチル-4-メチルフェノール0. 1重量部を19 0℃で3分間B型バンバリーミキ サー(神戸製鋼所 製) で混練した後、オープンロールでシート出しした。 これを角ペレタイザー(朋来鉄鋼社製)でペレット化 し、射出成形に供し、サイズ150mm×120mm× 2mmのシートを成形した。射出成形条件は以下の通り である。

[0108]

射出一次圧 1000kg/cm²、サイクル5秒 保持二次圧 800kg/cm²、サイクル5秒 射出速度

4 0 mm/sec

樹脂温度

230℃

このシートからJIS K 6758に規定する方法で降伏点応力 (YS)、破断点伸び(EL)を測定し、さらにASTM D 256に従い23℃の雰囲気下でアイゾット衝撃強度を測 40 定した。

【0109】結果を表4に示す。

[0110]

【比較例3】実施例12において、高級α-オレフィン 系共重合体を使用せず、ポリプロピレンをそのまま射出 成形に供した以外は、実施例12と同様に行なった。

【0111】結果を表4に示す。

[0112]

【表4】

	実施例12	比較例3
降伏点応力 YS [kg/cm²]	310	370
破断点伸び EL [%]	690	690
アイゾット衝撃強度 [kg・cm/cm]	10	3

【図面の簡単な説明】

10 共重合体を製造する際に用いられるオレフィン重合用触 【図1】第1図は、本発明に係る高級 lpha-オレフィン系 媒の調製工程を示すフローチャート図である。 ・

【図1】

第 1 図

(A) 基移金属成分

フロントページの続き

(72) 発明者 岡 田 圭 司 千葉県市原市千種海岸3番地 三井石油化 学工業株式会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.