Résumé de Math Sup et compléments : algèbre linéaire

I - Espaces vectoriels - Sous espaces vectoriels

- 1) Structure de K-espace vectoriel Soient K un sous-corps de C et E un ensemble non vide muni d'une l.d.c.i. notée + et d'une l.d.c.e. de domaine \mathbb{K} notée..
- (E, +, .) est un K-espace vectoriel \Leftrightarrow (E, +) est groupe abélien (c'est-à-dire que + est commutative, associative, possède un élément neutre noté 0 et tout x de E possède un symétrique pour + noté -x) et + et . vérifient les quatre axiomes
 - (1) $\forall \lambda \in \mathbb{K}, \forall (x,y) \in E^2, \lambda.(x+y) = \lambda.x + \lambda.y$
 - (2) $\forall (\lambda, \mu) \in \mathbb{K}^2$, $\forall x \in E$, $(\lambda + \mu).x = \lambda.x + \mu.x$ (3) $\forall (\lambda, \mu) \in \mathbb{K}^2$, $\forall x \in E$, $\lambda.(\mu.x) = (\lambda\mu).x$

 - **(4)** $\forall x \in E, 1.x = x.$
- 2) Exemples de K-espaces vectoriels supposés connus (Dans les exemples qui suivent les opérations ne sont pas citées et sont toujours les opérations usuelles dans les ensembles considérés)

a) K-espaces vectoriels

- 1) C est R-ev de dimension 2, C est un Q-ev de dimension infinie, R est un Q-ev de dimension infinie, K est un K-espace vectoriel de dimension 1.
- 2) \mathbb{K}^n est un \mathbb{K} -ev (modèle de l'espace de dimension \mathfrak{n} : tout espace de dimension finie \mathfrak{n} sur \mathbb{K} est isomorphe à \mathbb{K}^n)
- 3) $\mathbb{K}^{\mathbb{N}}$ est un \mathbb{K} -ev de dimension infinie (suites à coefficients dans \mathbb{K}).
- 4) $\mathbb{K}[X]$ est un \mathbb{K} -ev de dimension infinie (polynômes à coefficients dans \mathbb{K}).
- 5) $\mathbb{K}(X)$ est un \mathbb{K} -ev de dimension infinie (fractions rationnelles à coefficients dans \mathbb{K}).
- 6) $\mathbb{R}^{\mathbb{R}}$ est un \mathbb{R} -ev de dimension infinie (applications de \mathbb{R} dans \mathbb{R}) et plus généralement F^{A} (ensemble des applications de A dans F) où A est un ensemble quelconque non vide et F est un K-ev
- 7) $(\mathcal{L}(E,F),+,.)$ est un K-espace vectoriel quand E et F le sont et en particulier $(\mathcal{L}(E),+,.)$. Si E et F sont de dimension finie, $\dim(\mathcal{L}(E,F)) = \dim(E) \times \dim(F)$.
- 8) $E_1 \times E_2 \times ... \times E_n$ est un \mathbb{K} -espace vectoriel si les E_i le sont. Si les E_i sont de dimension finie, $\dim \left(\prod_{i=1}^n E_i\right) = \sum_{i=1}^n \dim (E_i)$.
- 9) $\mathcal{M}_{n,p}(\mathbb{K})$ est un \mathbb{K} -espace vectoriel de dimension np.
- 10) $D^k(I, \mathbb{K})$, $C^k(I, \mathbb{K})$ et $C^{\infty}(I, \mathbb{K})$ sont des \mathbb{K} -espaces de dimension infinie.

b) K-espaces vectoriels munis en plus d'une structure d'anneau

- 1) $(\mathbb{C}, +, .)$ est un \mathbb{R} -espace vectoriel et $(\mathbb{C}, +, \times)$ est un corps commutatif.
- 2) $(\mathcal{L}(E)+,.)$ est un \mathbb{R} -espace vectoriel et $(\mathcal{L}(E)+,\circ)$ est un anneau, non commutatif si dim $E\geqslant 2$.
- 3) $(\mathcal{M}_n(\mathbb{K}), +, .)$ est un \mathbb{K} -espace vectoriel et $(M_n(\mathbb{K}), +, \times)$ est un anneau, non commutatif si $n \ge 2$.
- 4) $(\mathbb{R}^{\mathbb{R}}, +, .)$ est un \mathbb{R} -espace vectoriel et $(\mathbb{R}^{\mathbb{R}}, +, \times)$ est un anneau commutatif et non intègre (c'est-à-dire qu'un produit de facteurs peut être nul sans qu'aucun facteur ne soit nul)
- 5) $(C^{0}(I, \mathbb{K}), +, .)$ est un \mathbb{K} -espace vectoriel et $(C^{0}(I, \mathbb{K}), +, \times)$ est un anneau commutatif et non intègre.
- $(D^k(I,\mathbb{R}),+,.)$ est un \mathbb{R} -espace vectoriel et $(C^k(I,\mathbb{R}),+,\times)$ est un anneau commutatif et non intègre.
- $(C^{k}(I,\mathbb{R}),+,.)$ est un \mathbb{R} -espace vectoriel et $(C^{k}(I,\mathbb{R}),+,\times)$ est un anneau commutatif et non intègre.
- $(C^{\infty}(I,\mathbb{R}),+,.)$ est un \mathbb{R} -espace vectoriel et $(C^{\infty}(I,\mathbb{R}),+,\times)$ est un anneau commutatif et non intègre.
- 6) $(\mathbb{K}[X], +, .)$ est un \mathbb{K} -espace vectoriel et $(\mathbb{K}[X], +, \times)$ est un anneau commutatif et intègre.
- $(\mathbb{K}(X),+,.)$ est un \mathbb{K} -espace vectoriel et $(\mathbb{K}(X),+,\times)$ est un corps commutatif.

c) structure de K-algèbre (complément de spé)

Définition. Soit $\mathscr A$ un ensemble non vide muni de deux l.d.c.i notée + et \times et d'une l.d.c.e de domaine $\mathbb K$ notée ... $(\mathscr{A}, +, ., \times)$ est une \mathbb{K} -algèbre si et seulement si

- $(\mathscr{A}, +, .)$ est un \mathbb{K} -espace vectoriel;
- $(\mathscr{A}, +, \times)$ est un anneau;
- pour tout $x \in \mathcal{A}$ et tout $(\lambda, \mu) \in \mathbb{K}^2$, $\lambda \cdot (x \times y) = (\lambda \cdot x) \times y = x \times (\lambda \cdot y)$.

La dimension de l'algèbre $(\mathscr{A}, +, ., \times)$ est la dimension de l'espace vectoriel $(\mathscr{A}, +, .)$.

L'algèbre $(\mathscr{A}, +, ., \times)$ est dite commutative si et seulement si l'anneau $(\mathscr{A}, +, \times)$ est commutatif ce qui équivaut à \times est commutative.

L'algèbre $(\mathscr{A},+,.,\times)$ est dite intègre si et seulement si l'anneau $(\mathscr{A},+,\times)$ est intègre ce qui équivaut à : $\forall (x,y) \in \mathscr{A}^2$, $x \times y = 0 \Rightarrow (x = 0 \text{ ou } y = 0)$ (et donc $(\mathscr{A},+,\times)$ pas intègre $\Leftrightarrow \exists (x,y) \in \mathscr{A}^2 / x \neq 0 \text{ et } y \neq 0 \text{ et } x \times y = 0$).

K-algèbres supposées connues.

- 1) $(\mathbb{C}, +, ., \times)$ est une \mathbb{R} -algèbre commutative et intègre de dimension 2.
- 2) $(\mathcal{M}_n(\mathbb{K}), +, ., \times)$ est une \mathbb{K} -algèbre, non commutative et non intègre si $n \ge 2$.
- 3) $(\mathcal{L}(E)+,.,\circ)$ est une \mathbb{K} -algèbre, non commutative et non intègre si dim $(E)\geqslant 2$.
- 4) ($\mathbb{K}[X], +, ., \times$) est une \mathbb{K} -algèbre commutative et intègre (on doit aussi savoir que ($\mathbb{K}_n[X], +, ., \times$) n'est pas une algèbre car $\mathbb{K}_n[X]$ n'est pas stable pour la multiplication).
- $(\mathbb{K}(X), +, ., \times)$ est une \mathbb{K} -algèbre commutative.
- 5) $(\mathbb{K}^{\mathscr{E}}, +, ., \times)$ (où \mathscr{E} est un ensemble non vide quelconque) est une \mathbb{K} -algèbre.

3) Sous espaces vectoriels

a) Définition et caractérisation.

F sev de E
$$\underset{\mathrm{def}}{\Leftrightarrow}$$
 F \subset E, F $\neq \varnothing$, F stable pour + et . et F est un K-ev pour les lois induites
$$\underset{\mathrm{th}}{\Leftrightarrow}$$
 F \subset E, 0_E \in F et F stable pour + et .
$$\underset{\mathrm{th}}{\Leftrightarrow}$$
 F \subset E, 0_E \in F et $\forall (x,y) \in$ F², $x+y \in$ F et $\forall x \in$ F, $\forall \lambda \in$ K, $\lambda x \in$ F
$$\underset{\mathrm{th}}{\Leftrightarrow}$$
 F \subset E, 0_E \in F et $\forall (\lambda,\mu) \in$ K², $\forall (x,y) \in$ F², $\lambda x + \mu y \in$ F (c'est-à-dire F stable par combinaisons linéaires)

b) Intersection et somme.

Si F et G sont deux sev de E alors $F \cap G$ et F + G sont des sev de E. Plus généralement, si F_1 , F_2 ,..., F_p sont des sev de E alors $F_1 \cap F_2$... $\cap F_p$ et $F_1 + F_2$... $+ F_p$ sont des sev de E.

Remarque. En général, $F \cup G$ n'est pas un sev et $Vect(F \cup G) = F + G$ (voir exercice n° 1, planche 1).

- c) Résumé des différentes techniques pour vérifier qu'un sous-ensemble de E est un sev de E. Soit (E,+,.) un \mathbb{K} -espace vectoriel.
 - F sev de E \Leftrightarrow F \subset E, $0_E \in$ F et $\forall (\lambda, \mu) \in \mathbb{K}^2$, $\forall (x, y) \in$ F², $\lambda x + \mu y \in$ F.
 - Si F est l'intersection ou la somme de plusieurs sous-espaces, F est un sev de E.
 - Si F = Vect(A) pour une certaine partie ou famille A de E (y compris $A = \emptyset$), F est un sev de E.
 - \bullet Si F = Ker(f) où f est linéaire de E vers un espace vectoriel, F est un sev de E.
 - Si F est l'orthogonal pour un produit scalaire d'une certaine partie A de E (y compris $A = \emptyset$), F est un sev de E.

d) Sous-algèbres.

Soit $(A, +, ., \times)$ une K-algèbre et soit B une partie non vide de A.

B sous-algèbre de
$$A \Leftrightarrow B \subset A, \ B \neq \emptyset, \ B$$
 stable pour $+, \ .$ et \times et B est une \mathbb{K} -algèbre pour les lois induites
$$\Leftrightarrow B \subset A, \ 0_A \in B \ \text{et } B \ \text{stable pour } +, \ . \ \text{et} \times .$$

$$\Leftrightarrow B \subset A, \ 0_A \in B \ \text{et } \forall (x,y) \in B^2, \ x+y \in B \ \text{et } \forall x \in B, \ \forall \lambda \in \mathbb{K}, \ \lambda x \in B \ \text{et } \forall (x,y) \in B^2, \ x \times y \in B$$

$$\Leftrightarrow B \subset A, \ 0_A \in B \ \text{et } \forall (\lambda,\mu) \in \mathbb{K}^2, \ \forall (x,y) \in B^2, \ \lambda x + \mu y \in B \ \text{et } \forall (x,y) \in B^2, \ x \times y \in B$$

- 4) Sommes directes. Sous espaces vectoriels supplémentaires
 - a) Cas de deux sous espaces. Soient F et G deux sev de E.

La somme
$$F+G$$
 est directe $\underset{\text{def}}{\Leftrightarrow}$ tout x de $F+G$ s'écrit de manière unique $x=x_1+x_2$ où $x_1\in F$ et $x_2\in G$ $\underset{\text{def}}{\Leftrightarrow}$ l'application $\varphi: F\times G \to E$ est injective $(x,y)\mapsto x+y$ $\underset{\text{th}}{\Leftrightarrow} F\cap G=\{0\}.$

Dans ce cas, F + G se note $F \oplus G$ et $F \oplus G$ est isomorphe à $F \times G$ (φ est un isomorphisme de $F \times G$ sur F + G).

$$\label{eq:def-equation} \begin{array}{l} F \ \mathrm{et} \ G \ \mathrm{sont} \ \mathrm{supplémentaires} \ \mathrm{dans} \ E \ \mathop{\Longleftrightarrow}_{\mathrm{def}} \ \mathrm{tout} \ x \ \mathrm{de} \ E \ \mathrm{s'écrit} \ \mathrm{de} \ \mathrm{manière} \ \mathrm{unique} \ x = x_1 + x_2 \ \mathrm{où} \ x_1 \in F \ \mathrm{et} \ x_2 \in G \\ \\ \mathop{\Longleftrightarrow}_{\mathrm{def}} \ \mathrm{l'application} \ \varphi \ : \ F \times G \ \to \ E \ \mathrm{est} \ \mathrm{bijective} \\ \\ (x,y) \ \mapsto \ x + y \\ \\ \mathop{\Longleftrightarrow}_{\mathrm{th}} F \cap G = \{0\} \ \mathrm{et} \ E = F + G. \end{array}$$

L'existence d'un supplémentaire est démontrée en dimension finie mais ne peut être utilisée en dimension infinie. Si E « est » est un espace euclidien et F est un sev de E, F^{\perp} est un supplémentaire de F et plus précisément, F^{\perp} est le supplémentaire orthogonal de F.

Exemples de base. • $\mathbb{R}^{\mathbb{R}} = \mathscr{P} \oplus \mathscr{I}$ (décomposition d'une fonction $f : \forall x \in \mathbb{R}, f(x) = \underbrace{\frac{1}{2}(f(x) + f(-x))}_{\in \mathscr{P}} + \underbrace{\frac{1}{2}(f(x) - f(-x))}_{\in \mathscr{I}}.$

- $\bullet \ \mathcal{M}_n(\mathbb{K}) = S_n(\mathbb{K}) \oplus A_n(\mathbb{K}) \ (\text{décomposition d'une matrice } M: M = \underbrace{\frac{1}{2}(M + {}^tM)}_{\in S_n} + \underbrace{\frac{1}{2}(M {}^tM)}_{\in A_n}.$
 - b) Cas général d'un nombre fini de sous espaces. $F_1, \ldots, F_p, p \geqslant 2$, sont p sev de E.

$$\begin{array}{c} \text{La somme $F_1+\ldots F_p$ est directe} \underset{\text{def}}{\Leftrightarrow} \text{tout x de $F_1+\ldots +F_p$ s'écrit de manière unique $x=x_1+\ldots +x_p$} \\ \text{où $\forall i\in [\![1,p]\!], $x_i\in F_i$} \\ \underset{\text{def}}{\Leftrightarrow} \text{l'application $\phi: F_1\times\ldots\times F_p$ } \to & E \\ (x_1,\ldots,x_p) & \mapsto & x_1+\ldots+x_p \end{array} \text{ est injective} \\ \underset{\text{th}}{\Leftrightarrow} \forall i\in [\![1,p]\!], $F_i\cap \left(\sum_{j\neq i}F_j\right)=\{0\}$} \\ \underset{\text{th}}{\Leftrightarrow} \forall i\in [\![2,p]\!], $F_i\cap \left(\sum_{j=1}^{i-1}F_j\right)=\{0\}. \end{array}$$

Dans ce cas, la somme $F_1 + \dots F_p$ se note $F_1 \oplus \dots \oplus F_p$. $F_1 \oplus \dots \oplus F_p$ est isomorphe à $F_1 \times \dots \times F_p$ (ϕ est un isomorphisme).

Danger. Il est faux de croire que la somme $\sum_i F_i$ est directe si et seulement si $\forall i \neq j, F_i \cap F_j = \{0\}$. Si la somme est directe, on a obligatoirement $\forall i \neq j$, $F_i \cap F_j = \{0\}$ mais ce n'est pas suffisant. Le cas de trois droites vectorielles de \mathbb{R}^2 deux à deux distinctes fournit un contre exemple usuel.

- 5) Projections et symétries Soient F et G deux sev supplémentaires de E. Soient p la projection sur F parallèlement à G, q la projection sur G parallèlement à F et s la symétrie par rapport à F parallèlement à G. Soit $x = x_1 + x_2$ la décomposition d'un vecteur quelconque x de E associée à la décomposition $E = F \oplus G$. Par définition, $p(x) = x_1 \text{ et } s(x) = x_1 - x_2.$
 - a) $\bullet \forall x \in E, \ p(x) = x_1.$
 - $p \in \mathcal{L}(E)$.
 - $p \circ p = p$, $p \circ q = q \circ p = 0$, $p + q = Id_E$.
 - $F = Imp = Kerq = Ker(Id p) = \{vecteurs invariants par p\} \text{ et } G = Kerp = Imq = Im(Id p)$
 - $p_{/Imp} = Id_{/Imp}$ et $p_{/Kerp} = 0_{/Kerp}$.

Réciproquement, si p est un endomorphisme vérifiant $p \circ p = p$ alors Imp et Kerp sont supplémentaires (y compris en dimension infinie) et p est la projection sur Imp parallèlement à Kerp.

- **b**) $\forall x \in E, \ s(x) = x_1 x_2.$
- $s \circ s = Id$. s = 2p Id = Id 2q ou aussi $p = \frac{1}{2}(Id + s)$. $F = Ker(s Id) = \{vecteurs \text{ invariants par } s\}$ et $G = Ker(s + Id) = \{vecteurs \text{ changés en leur opposé}\}$.

Réciproquement, si s est un endomorphisme de E vérifiant $s \circ s = Id$ alors Ker(s-Id) et Ker(s+Id) sont supplémentaires (y compris en dimension infinie) et s est la symétrie par rapport à Ker(s-Id) parallèlement à Ker(s+Id).

6) Combinaisons linéaires et sous-espace engendré par une famille ou une partie de E

a) Combinaisons linéaires.

Soit $(\lambda_i)_{i \in I}$ une famille non vide de scalaires. Cette famille est dite à support fini si et seulement si l'ensemble des indices i tels que $\lambda_i \neq 0$ est fini (éventuellement vide).

Soit $(x_i)_{i \in I}$ est une famille non vide de vecteurs de E. Un vecteur y de E est combinaison linéaires de la famille $(x_i)_{i \in I}$ si et seulement si il existe $(\lambda_i)_{i \in I}$ une famille de scalaires à support fini telle que $y = \sum_{i \in I} \lambda_i x_i$.

En particulier, si la famille $(x_i)_{i \in I}$ est de cardinal infini, un vecteur y est combinaison linéaire de la famille $(x_i)_{i \in I}$ si et seulement si y est combinaison linéaire d'une sous-famille finie de la famille $(x_i)_{i \in I}$.

Soit X une partie de E. y est combinaison linéaire des vecteurs de X si et seulement si il existe une famille de scalaires $(\lambda_x)_{x \in X}$ à support fini telle que $y = \sum_{x \in X} \lambda_x x$ (convention usuelle : $\sum_{\emptyset} = 0$).

b) Sous espace engendré par une famille ou une partie.

Approche externe. Soit \mathscr{F} une famille de vecteurs de E (ou X une partie de E) éventuellement vide. Il existe un et un seul plus petit sous-espace vectoriel (pour l'inclusion) de E contenant les vecteurs de \mathscr{F} (ou contenant X) et noté $\operatorname{Vect}(\mathscr{F})$ (ou $\operatorname{Vect}(X)$). C'est l'intersection de tous les sous-espaces vectoriels de E contenant \mathscr{F} (ou X) (et donc $\operatorname{Vect}(\varnothing) = \{0\}$).

Approche interne. Vect \mathscr{F} est l'ensemble des combinaisons linéaires des vecteurs de \mathscr{F} .

c) Propriétés.

- $\operatorname{Vect}(x_i) = \{ \operatorname{combinaisons\ linéaires\ des\ } x_i \} = \left\{ \sum_{i \in I} \lambda_i x_i, \ (\lambda_i)_{i \in I} \ \text{à support\ fini} \right\} = \operatorname{plus\ petit\ sev\ de\ E\ contenant\ les\ } \operatorname{vecteurs\ de\ la\ famille\ } (x_i)_{i \in I}.$
- $A \subset \text{Vect} A$ et Vect A est un sev de E. Puis $A = \text{Vect} A \Leftrightarrow A$ sev de E.
- $A \subset B \Rightarrow Vect A \subset Vect B$ (réciproque fausse).
- Vect(VectA) = VectA.
- $\bullet \ \operatorname{Vect}(A \cup B) = \operatorname{Vect}A + \operatorname{Vect}B \ \operatorname{et} \ \operatorname{Vect}(A \cap B) \subset \operatorname{Vect}A \cap \operatorname{Vect}B.$

II - Familles libres. Familles génératrices. Bases

1) Familles libres.

a) Définitions.

$$(x_i)_{i\in I} \mathrm{\ est\ libre} \Leftrightarrow (\forall (\lambda_i)_{i\in I} \in K^I \mathrm{\ à\ support\ fini}) \ [(\sum_{i\in I} \lambda_i x_i = 0) \Rightarrow (\forall i\in I,\ \lambda_i = 0)].$$

 $(x_i)_{i\in I}$ est liée $\Leftrightarrow (\exists (\lambda_i)_{i\in I} \in \mathbb{K}^I$ à support fini telle que les λ_i ne soient pas tous nuls et $\sum_{i\in I} \lambda_i x_i = 0$) (une telle relation est alors une relation de dépendance linéaire).

Une famille infinie est libre si et seulement si toute sous-famille finie est libre.

Une famille infinie est liée si et seulement si il existe une sous-famille finie liée.

b) Propriétés.

Soit $L = (x_i)_{i \in I}$ une famille de vecteurs de E.

- Si L contient le vecteur nul ou 2 vecteurs colinéaires, L est liée (réciproque fausse).
- L est liée si et seulement si il existe un vecteur de L qui est combinaison linéaire des autres vecteurs de L.
- Toute sur-famille d'une famille liée est liée. Toute sous-famille d'une famille libre est libre (convention : Ø est libre).
- L est libre $\Leftrightarrow (\sum_i \lambda_i x_i = \sum_i \mu_i x_i \Leftrightarrow \forall i, \ \lambda_i = \mu_i)$ (on peut identifier les coefficients quand L est libre)
- Soit $L' = L \cup \{x\}$. [(L libre et L' liée) $\Rightarrow x$ est combinaison linéaire des x_i)]

Danger (ou erreur de base). Si les vecteurs de L ne sont pas deux à deux colinéaires, la famille L n'est pas nécessairement libre.

2)Familles génératrices.

 $(x_i)_{i \in I}$ est génératrice de $E \Leftrightarrow \operatorname{Vect}(x_i)_{i \in I} = E \Leftrightarrow \operatorname{tout} \operatorname{vecteur} \operatorname{de} E \operatorname{est} \operatorname{combinaison} \operatorname{linéaire} \operatorname{des} \operatorname{vecteurs} \operatorname{de} \operatorname{la famille} (x_i)_{i \in I}$

Toute sur famille d'une famille génératrice est génératrice.

3) Bases.

 $\mathscr{B} = (x_i)_{i \in I}$ base de $E \Leftrightarrow \text{tout vecteur } x$ de E s'écrit de manière unique comme combinaison linéaire des $x_i \Leftrightarrow \mathscr{B}$ est libre et génératrice.

Si
$$x = \sum_{i} \lambda_{i} x_{i}$$
, les λ_{i} sont les coordonnées de x dans \mathscr{B} .

Théorème. Les bases de E sont les familles génératrices minimales pour l'inclusion ou libres maximales. Donc, si $x \notin \mathcal{B}$, $\mathcal{B} \cup \{x\}$ n'est plus libre et si $x \in \mathcal{B}$, $B \setminus \{x\}$ n'est plus génératrice.

III- Applications linéaires

1) Définition. Soient E et F deux K-ev et f une application de E dans F.

f linéaire
$$\Leftrightarrow \forall (x,y) \in E^2, \ \forall \lambda \in \mathbb{K}, \ f(x+y) = f(x) + f(y) \ \text{et} \ f(\lambda x) = \lambda f(x)$$

 $\Leftrightarrow \forall (x,y) \in E^2, \ \forall (\lambda,\mu) \in \mathbb{K}^2, \ f(\lambda x + \mu y) = \lambda f(x) + \mu f(y).$

Si f est linéaire, on a toujours $f(0_E) = 0_F$.

2) Images directes et réciproques.

Théorème. Soient E et F deux K-espaces vectoriels et f linéaire de E dans F.

L'image directe d'un sous-espace de E est un sous-espace de F.

L'image réciproque d'un sous-espace de F est un sous-espace de E.

En particulier, $\text{Ker} f = \{x \in E/\ f(x) = 0_F\} = f^{-1}(\{0_F\})$ est un sous-espace de E et $\text{Im} f = \{f(x)/\ x \in E\} = f(E)$ est un sous espace de F.

(f injective \Leftrightarrow Kerf = $\{0\}$), (f surjective \Leftrightarrow Imf = F) (f bijective Kerf = $\{0\}$ et Imf = F).

Vocabulaire usuel : (homomorphisme=application linéaire) (endomorphisme = application linéaire de E vers E) (isomorphisme = application linéaire bijective de E sur F) (automorphisme = application linéaire bijective de E sur E).

Théorème. Soit f linéaire de E vers F. Si X est génératrice de E, f(X) est génératrice de Imf = f(E) et en particulier si f est surjective, f(X) est génératrice de F.

Théorème. Si f est linéaire et X est liée alors f(X) est liée. Si f(X) est libre, X est libre.

Si f est injective et X est libre dans E alors f(X) est libre dans F.

Théorème. f est un isomorphisme de E sur F si et seulement si l'image par f d'une base de E est une base de F.

Détermination sur une base : soit $(e_i)_{i \in I}$ une base de E, $f \in \mathcal{L}(E,F)$ est entièrement déterminée par les $f(e_i)$ et en particulier deux applications linéaires qui coïncident sur une base sont égales ou une application linéaire qui s'annule sur une base est nécessairement l'application nulle.

3) Ensembles d'applications linéaires.

- $(\mathcal{L}(E,F),+,.)$ est un K-espace vectoriel et de plus $(\mathcal{L}(E),+,\circ)$ est anneau, non commutatif si dim $E\geqslant 2$.
- $(GL(E), \circ)$ est un groupe, non commutatif si dim $E \ge 2$. GL(E) = groupe linéaire de $E = \{$ automorphismes de $E \} = \{$ inversibles de $\mathcal{L}(E)$ pour $\circ \}$.

Danger. Si f et g sont dans GL(E), f + g ne l'est que très rarement.

- $(O(E), \circ)$ est un sous-groupe de $(GL(E), \circ)$, appelé le groupe orthogonal (notion euclidienne).
- $(SL(E), \circ)$ est un sous-groupe de $(\mathscr{GL}(E), \circ)$, appelé le groupe spécial linéaire (si E est de dimension finie, SL(E) =ensemble des endomorphismes de E de déterminant 1).

IV - Dimension des espaces vectoriels

1) Dimension.

E est dit de dimension finie sur \mathbb{K} si et seulement si E admet une famille génératrice finie. E est dit de dimension infinie sinon. E est de dimension infinie si et seulement si E contient une famille libre infinie.

Théorème de la dimension finie et définition. Si E de dimension finie, toutes les bases ont même cardinal (fini) et $\dim_{\mathbb{K}}(\mathsf{E})$ est le cardinal d'une base quelconque.

(Convention. \emptyset est une base de $\{0\}$ et dim $\{0\} = 0$.)

Deux espaces vectoriels E et F de dimensions finies sont isomorphes si et seulement si ils ont même dimension. $\dim_{\mathbb{K}}\mathbb{K}^n = n$ et si $e_i = (0,0,...0,1,0,...,0)$ alors $\mathscr{B} = (e_i)_{1 \leqslant i \leqslant n}$ est une base de \mathbb{K}^n appelée base canonique de \mathbb{K}^n . Si $\dim \mathbb{E} = n < +\infty$, E est isomorphe à \mathbb{K}^n .

2) Familles libres et génératrices. Soit $n = \dim E < +\infty$.

Si L est libre alors $\operatorname{card} L \leqslant n$ et de plus (L base de $E \Leftrightarrow \operatorname{card} L = n$).

Si G est génératrice de E alors $\operatorname{card} G \leq n$ et de plus (G base de E $\Leftrightarrow \operatorname{card} G = n$.)

Théorème. Si E est de dimension finie $\mathfrak n$ et si $\mathscr B$ est une famille de vecteurs de E, deux des trois propositions suivantes entrainent la troisième :

- 1) $\operatorname{card} \mathscr{B} = \mathfrak{n}$
- 2) \mathcal{B} est libre
- 3) \mathcal{B} est génératrice de E

Théorème de la base incomplète. Soit L libre dans E de dimension finie. L peut être complétée en une base de E.

Si dim $E < +\infty$, E admet des bases.

Si dim $E < +\infty$, de toute famille génératrice de E, on peut extraire une base.

3) Sous espaces.

Soit $n = \dim E < +\infty$ et soit F sev de E alors $(\dim F \leq n \text{ et } \dim F = n \Leftrightarrow F = E)$ (faux en dimension infinie).

Théorème. (Supplémentaires) Soit $n = \dim E < +\infty$ et soit F sev de E

- F admet au moins un supplémentaire.
- Tout supplémentaire de F a pour dimension dimE dimF.
- plus généralement, $\dim(F \oplus G) = \dim F + \dim G$.

Théorème. Soient F et G sev de E.

 $(E = F \oplus G) \Leftrightarrow (F \cap G = \{0\} \text{ et } \dim F + \dim G = \dim E) \Leftrightarrow (F + G = E \text{ et } \dim F + \dim G = \dim E).$

Plus généralement, $\dim(F_1 \oplus ... \oplus F_p) = \dim F_1 + ... + \dim F_p$.

 $\mathrm{Si}\ F_1\oplus ...\oplus F_p=E\ \mathrm{et\ si}\ \mathscr{B}_i\ \mathrm{est\ une\ base\ de\ } F_i\ \mathrm{alors}\ \mathscr{B}=\bigcup_{i\in I}\mathscr{B}_i\ \mathrm{est\ une\ base\ de\ } E.\ \mathrm{R\'{e}ciproquement},\ \mathrm{si}\ \mathscr{B}=\bigcup_{i\in I}\mathscr{B}_i\ \mathrm{est}$

une base de E alors les $F_i = \text{Vect} \mathcal{B}_i$ sont supplémentaires dans E.

4) Rang.

a) d'une famille de vecteurs.

Soit $(x_i)_{1\leqslant i\leqslant p}$ une famille de vecteurs de E. $\operatorname{rg}(x_i)_{1\leqslant i\leqslant p}=\dim\operatorname{Vect}(x_i)_{1\leqslant i\leqslant p}=\max$ maximum du cardinal d'une sous-famille libre extraite de $(x_i)_{1\leqslant i\leqslant p}$.

Soient $n = \dim E$, $r = \operatorname{rg}(x_i)_{1 \leq i \leq p}$ (et $p = \operatorname{card}(x_i)_{1 \leq i \leq p}$).

- $r \le p$ et $r = p \Leftrightarrow (x_i)_{1 \le i \le p}$ libre.
- $r \leqslant n$ et $r = n \Leftrightarrow (x_i)_{1 \leqslant i \leqslant p}$ génératrice de E.
- $(x_i)_{1 \leq i \leq p}$ base de $E \Leftrightarrow r = p = n$.

b) d'une application linéaire.

Soit $f \in \mathcal{L}(E,F)$ où E est de dimension finie. $\operatorname{rg}(f) = \dim(\operatorname{Im} f) = \operatorname{rg}((f(e_i))_{1 \leqslant i \leqslant n})$ où $(e_i)_{1 \leqslant i \leqslant n}$ est une base de E quelconque.

Théorème du rang. La restriction de f à un supplémentaire de Kerf réalise un isomorphisme de ce supplémentaire sur Imf. En particulier, dimKerf + rgf = dimE.

Conséquences.

Théorème. Si dim $E = \dim F < +\infty$ et $f \in \mathcal{L}(E,F)$) alors (f est injective \Leftrightarrow f est surjective \Leftrightarrow f est bijective).

Théorème. Si $n = \dim E < +\infty$ et $f \in \mathcal{L}(E)$ les propriétés suivantes sont équivalentes :

1) f bijective

2) $\det(f) \neq 0$

3) f injective

4) f surjective

5) $Kerf = \{0\}$

6) Imf = E

7) rgf = n

- 8) f inversible à droite pour o
- 9) f inversible à gauche pour o

- 10) f simplifiable à droite pour o
- 11) f simplifiable à gauche pour o

c) Transformations ne modifiant pas le rang.

Les transformations élémentaires suivantes ne modifie pas le rang (car ne modifie pas le sous espace engendré):

- a) permuter les vecteurs de la famille
- b) remplacer un vecteur x de la famille par λx où λ est un scalaire non nul
- c) ajouter à un vecteur x de la famille un autre vecteur de la famille.

Plus généralement, on ne modifie pas le rang d'une famille en ajoutant à un vecteur x de cette famille une combinaison linéaire des autres vecteurs de cette famille.

5) Dimensions usuelles.

- $\dim(E \times F) = \dim E + \dim F$ et plus généralement $\dim(E_1 \times ... \times E_p) = \dim E_1 + ... + \dim E_p$.
- $\bullet \, \dim(F \oplus G) = \dim F + \dim G \,\, \mathrm{et \,\, plus \,\, g\acute{e}n\acute{e}ralement \,\, } \dim(E_1 \oplus ... \oplus E_p) = \dim E_1 + ... + \dim E_p.$
- $\dim(\mathcal{L}(E,F)) = (\dim E) \times (\dim F)$. Donc $\dim(\mathcal{L}(E)) = (\dim E)^2$.
- $\dim(F + G) = \dim F + \dim G \dim(F \cap G)$.