Inter (Part-I) 2017

Mathematics	Group-I	PAPER: I
Time: 30 Minutes	(OBJECTIVE TYPE)	Marks: 20

Note: Four possible answers, A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

1-1- C, is equal to:

(a) n!

- (b) $\frac{n!}{(n-r)!}$
- (c) n(n-r)!
- (d) $\frac{n!}{r!(n-r)!} \sqrt{}$

2- $\frac{1}{4}$ rotation (anti-clockwise) = :

(a) 45°

- (b) 90° 1
- (c) 180°
- (d) 360°
- 3- Notation for radius of in-circle is:
 - (a) r 1/

(b) R

(c) r₁

- (d) A
- 4- The value of cos 315° is:
 - (a) 0

(b) 1

(c) $\frac{\sqrt{3}}{2}$

(d) $\frac{1}{\sqrt{2}} \sqrt{2}$

5- Harmonic mean between 3 and 7 is:

(a) $\frac{5}{21}$

(b) $\frac{21}{5} \sqrt{ }$

(c) 5

(d) 21

6- Period of $\tan \frac{x}{2}$ is:

(a) π

(b) 2π √

(c) $\frac{\pi}{2}$

(d) $\frac{3\pi}{2}$

7-	A quadratic equation has degree:			
	(a) 0	(b) 1		
	(c) 2 V	(d) 3		
8-	Set of integers is a group with respect to:			
	(a) +	(b) ÷		
_	(c) ×	(d)		
9-	Number of terms in the expansion of $(1 + x)^{2n+1}$ is:			
	(a) 2n + 1	(b) 2n		
	(c) 2n + 2 $\sqrt{}$	(d) 3n + 1		
10-	The sum of odd	coefficient in the expansion of		
	$(1 + x)^5$ is:			
	(a) 5	(b) 16 √		
	(c) 25	(d) 32		
44	Arithmetic mean between $\frac{1}{a}$ and $\frac{1}{b}$ is:			
11-	Arithmetic mean between a and b is:			
	, a+b,	a+b		
	(a) $\frac{a+b}{2ab} \sqrt{}$	(b) $\frac{a+b}{ab}$		
	2ab	(d) $\frac{ab}{a+b}$		
	(c) $\frac{2ab}{a+b}$	$(d) \overline{a+b}$		
12-	If A is a matrix of order 3 × 4, then order of AAt is			
	(a) 4 × 3	(b) 3 × 4 (d) 3 × 3 V		
	(c) 4 × 4	(d) 3 × 3 1		
	D-diel Serbiero	5 will be of the form.		
13-	Partial fractions	of $\frac{1}{x^2-1}$ will be of the form:		
	Ax + B	(b) $\frac{A}{x+1} + \frac{B}{x-1} $		
V	(a) $\frac{Ax + B}{x^2 - 1}$	(b) $\frac{1}{x+1} + \frac{1}{x-1} = \frac{1}{x}$		
		В		
	(c) $\frac{A}{x+1}$	(d) $\frac{B}{x-1}$		
14-		ation $x^2 - 5x + 6 = 0$ are:		
	(a) $2, -3$	(b) -2, -3 (d) -2, 3		
	(c) 2, 3 √	(d) -2, 3		
15-	$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = :$			
10-	(2)			
	$\frac{\pi}{2}$	$(b) \frac{\pi}{4}$		
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{6} \sqrt{}$		
	π	π		
	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{3}$		
	ELECTRIC CO. Co			

- $\sqrt{\frac{s(s-a)}{bc}}$ equals:
 - (a) $\sin \frac{\alpha}{2}$
- (b) $\sin \frac{B}{2}$
- (c) $\cos \frac{\alpha}{2} \sqrt{}$ (d) $\cos \frac{\beta}{2}$
- $\cos x = \frac{1}{2}$ has solution $--- x \in [0, \pi]$: 17-
 - (a) $\frac{\pi}{6}$
- (b) $\frac{\pi}{3} \sqrt{}$
- (c) $\frac{\pi}{4}$
- (d) $\frac{\pi}{2}$
- If $\begin{vmatrix} k & 4 \\ 4 & k \end{vmatrix} = 0$, then k = ---:

- (b) 0
- (a) 16 (c) ± 4 √
- (d) 8
- $\frac{3!}{0!}$ equals:
 - (a) 3

(b) 6 v

(c) ∞

- (d) 12
- If z = 3 4i, then $|\overline{z}|$ is:
 - (a) 4

- (b) 5 v
- (c) -5