U.S. DEPARTMENT OF COMMERCE National Technical Information Service

AD-A027 530

DISPERSION CONTROL SYSTEM FOR SOUNDING ROCKETS

AIR FORCE GEOPHYSICS LABORATORY

4 MARCH 1976

Dispersion Control System for Sounding Rockets

JAMES R. PICKELL, Capt, USAF

4 March 1976

Approved for public release; distribution unlimited.

AEROSPACE INSTRUMENTATION DIVISION PROJECT 7659
AIR FORCE GEOPHYSICS LABORATORY

HANSCOM AFO, MASSACHUSETTS 0'731

AIR FORCE SYSTEMS COMMAND, USAF

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S DEPLATMENT OF COMMERCE
SPRINGFIELD, VA. 22161

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER:

Chief Scientist

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date)	cnierea)		
REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
AFGL-TR-76-0044	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (end Subtille) DISPERSION CONTROL SYSTEM SOUNDING ROCKETS	FOR	s. Type of Report & Period Covered Scientific. Interim.	
		6. PERFORMING ORG. REPORT NUMBER IP No. 246	
7. AUTHOR(*)		8. CONTRACT OR GRANT NUMBER(*)	
James R. Pickell, Capt, USAF			
9. PERFORMING ORGANIZATION NAME AND ADDRESS Air Force Geophysics Laboratoric Hanscom AFB Massachusetts 01731	es (CR)	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HUMBERS 62101F 76590401	
11. CONTROLLING OFFICE HAME AND ADDRESS	og (I CD)	12. REPORT DATE	
Air Force Geophysics Laboratori Hanscom AFB	es (LCR)	March 1976 13. NIMBER OF PAGES 79	
Massachusetts 01731 14. MONITORING AGENCY NAME & ADDRESS(II dilleren.	I from Controlling Office)	15. SECURITY CLASS. (of this report)	
		Unclassified	
		15a DECLASSIFICATION DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report)		<u> </u>	
Approved for public release, distribution unlimited.			
17. DISTRIBUTION STATEMENT (of the abstract entered	in Black 20, II dillerent fra	om Report)	
18. S,PPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary an	d identify by block number)	
Control sounding rocket dispersion	on		
20. ABSTRACT (Continue on reverse elde if necessary and High altitude sounding rocket: test ranges such as WSMR becaus a strap-on dispersion control sysits brains that requires only softw sounding rocket vehicles. Mostly the electronic hardware used, and Tomahawk sounding rocket.	s have always properties of rocket dispeted the employing a vare changes to the report conti	resented a problem to small ersion. This report presents 16-bit microprocessor as accommodate different ains a detailed explanation of	

DD 1 JAN 73 1473 EDITION OF 1 NOV 63 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Contents

III.I.H	ODUCTION	•
DISPI	ERSION CONTROL ELECTRONICS	9
2.3	TDY-52B Microcomputer	9 10 14 16 19
DISPI	ERSION COMTROL SOFTWARE	24
3.3 3.4	Block A Block B	24 25 27 28 28 32 32 33 34 37 37
ROM	LOADER	38
4.1 4.2 4.3	Operation ROM Loader Electronics Subroutines 4.3.1 Subroutine RECV (ACO, AC1) 4.3.2 Subroutine WORDR (ACO, AC1) 4.3.3 Subroutine XMIT (ACO) 4.3.4 Subroutine WORDS (AC1)	39 42 42 42 48 49
	DISPI 2.1 2.2 2.3 2.4 2.5 DISPI 3.1 3.2 3.3 3.4 3.5 3.6	2.2 Gyro Resolver 2.3 TDY-52B Microcomputer 2.4 Computer Housekeeping 2.5 Memory Interface DISPERSION COMTROL SOFTWARE 3.1 Auto Pilot Difference Equation 3.2 Auto Pilot Flow Chart 3.3 Block A 3.4 Block B 3.5 Block C 3.6 Subroutines 3.6.1 Subroutine MUL (ACO, AC1) 3.6.2 Subroutine AOUT (ACO, AC1) 3.6.3 Subroutine CALC (AC3) 3.6.4 Subroutine MPYA (ACO, AC1) 3.6.5 Subroutine MPYB (ACO, AC1) 3.6.6 Subroutine FDELAY (ACO) ROM LOADER 4.1 Operation 4.2 ROM Loader Electronics 4.3 Subroutines 4.3.1 Subroutine RECV (ACO, AC1) 4.3.2 Subroutine WORDR (ACO, AC1) 4.3.3 Subroutine XMIT (ACO)

Preceding page blank

3

		Contents
API	PENDIX A: TDY-52B Instruction Set	53
API	PENDIX B: TDY-52B Assembly Language	57
API	PENDIX C: Autopilot Listing	59
	PENDIX D: ROM Loader Listing	71
	-	
API	PENDIX E: Definition of Terms	77
		lllustrations
1.	Dispersion Control 9-in. Dia Payload	8
2.	Dispersion Control Rack	9
3.	Dispersion Control Electronics	10
4.	Dispersion Control Simplified Block Diagram	11
5.	Basic Gyro Resolver Circuit	12
8.	Gyro Encoder Outputs	13
7.	Gyro Resolver Truth Table	14
8.	TDY-52B Simplified Block Diagram	15
9.	TDY-52B CPU Components	16
10.	TDY-52B Timing Diagram	17
11.	TDY-52B Operation Flowchart	18
12.	TDY-52B	19
13.	Computer Housekeeping	20
14.	TDY-52B Interface Circuit to ROM/RAM Mix	21
15.	TDY-52B Timing Interface Circuit	22
16.	TDY-52B Interface Circuit to 4096 CMOS RAM	22
17.	TDY-52B Timing for R/W Cycle	23
18.	Auto Pilot	26
19.	Block A	27
20.	Block B	29
21.	Input Format of Gyro ϕ	30
22.	Absolute Value of Sin ϕ and Cos ϕ vs AC2	30
23.	Block C	31
24.	Input Fermat of Gyro $ heta g$ and ψg	32
25.	Pitch Gravity Turn - Paiute Tomahawk	32

26.	Subroutine MUL (ACO, AC1)	33
27.	Subroutine AOUT (ACO, AC1)	34
28.	Subroutine CALC (AC3)	35
29.	Subroutine MPYA (ACO, AC1)	37
30.	Subroutine FDELAY (AC0)	38
31.	Sample ROM Loader Listing	39
32.	ROM Loader Faper Tape Format	39
33.	TTY Interface	40
34.	ROM Loader Interface	41
35.	ROM Loader Flow Chart	43
36.	Subroutine RECV (ACO, AC1)	46
37.	TTY Word Format	48
38.	Subroutine RECV (ACO, AC1) Look Up Table	48
39.	Subroutine WORDR (ACO, AC1)	49
40.	Format of ACO, Subroutine WORDR (ACO, AC1)	49
41.	Subroutine XMIT (AC0)	50

Format of ACO, Subroutine XMIT (ACO)

Assembly Language Instruction Format

Assembly Language Data Format

Subroutine WORDS (AC1)

42.

43.

B1.

B2.

Illustrations

52

52

58

58

Dispersion Control System for Sounding Rockets

1. INTRODUCTION

High altitude sounding rockets have always presented a problem to small test ranges such as WSMR because of rocket dispersion. This report presents a strap-on dispersion control system employing a 16-bit microprocessor as its brains, that requires only software changes to accommodate different sounding rocket vehicles.

The Painte-Tomahawk sounding rocket was chosen as the first test vehicle for this system because it is the most difficult to control. Figure 1 shows the payload as it was hung by ropes from the launcher during TM checks at WSMR. The actuator is a pneumatic position, proportional canard control manufactured by Chandler Evans Inc. A 6000 psi helium gas bottle, visible in the illustration, provides the energy to move the fins. An exercise port is available on the actuator for connection of an external helium source, providing a means of exercising the fins without firing a pyrotechnic which opens the helium gas bottle valve. Figure 2 shows the rack in the control section. A modified MIDAS platform (Gyro) manufactured by the Space Vector Corporation provided the error signals for the control system. Note that the removable eyelets at the top of the rack allowed for expriseration and removal from the control housing section. Figure 3 shows the control system electronics mounted on four wire wrap boards with the 16-bit microprocessor mounted on the wall of the electronics box for heat sinking purposes. The wire

(Received for publication 3 March 1976)

wrap boards are manufactured by Mupac Corp. and used because of their unique 108 pin socket connector. The 16-bit microprocessor is the TDY-52B manufactured by Teledyne Systems Company and discussed in greater detail in Section 2.3.

Operation of the control system was only during the coast phase of flight, that is, T+5 sec to T+17 sec with second stage ignition at T+20 sec. The system is capable of guiding through second stage, however, Range Safety required early shut down so they could observe the gyro output and determine if it is safe to enable the second stage. The system was launched 16 October 1975 at WSMR with a radar impact within a mile of a computer simulated impact.

Figure 1. Dispersion Control 9-in. Dia Payload

Figure 2. Dispersion Control Rack

2. DISPERSION CONTROL ELECTRONICS

A detailed discussion of the important electronic circuitry used by the Dispersion Control Electronics is described in the following sections. The complete circuit diagram is not contained in this report because of its size.

2.1 Block Diagram

Figure 4 is a simplified block diagram of the dispersion control system electronics. The heart of the system is a 16-bit microprocessor, TDY-52B, requiring only a 512 word by 16-bit memory to perform all control algorithms.

Figure 3. Dispersion Control Electronics

At rocket liftoff a G-switch activates the Interrupt Start which delivers a clock pulse approximately every 10 ms to the TDY-52B interrupt line. Every 10 ms the TDY-52B will increment a memory location, that is, the TDY-52B will also be the system clock. Five sec after liftoff the TDY-52B will pulse the Initiate Actuator signal releasing gas into the chamber of the pneumatic actuator. Until 17 sec after liftoff when the Lock Fins signal is pulsed the TDY-52B will sample the Gyro outputs every 10 ms and provide an output to the canards via the Pitch & Yaw Command A&B signals. At 20 sec the 2nd State Initiate line will be pulsed and the TDY-52B will halt.

Those blocks which require detailed explanation are discussed in the following sections.

2.2 Gyro Resolver

The Gyro Resolver transforms the gyro roll, pitch and yaw encoder outputs into positional information.

Figure 5 is the basic circuit used to transform the gyro encoder outputs, signals A and B, into positional information, Up/Down Binary counter outputs.

Figure 5. Basic Gyro Resolver Circuit

There are three such circuits used by the Gyro Resolver, one each for Roll, Pitch and Yaw. Signals A and B, Figure 6, indicate each .08789 degree change in gyro position and the direction of change, positive or negative from the previous position. Thus each change of state between A and B is a change in gyro position of .08789 degrees and the knowledge of the previous A and B state immediately following a change of state indicates whether the gyro moved in a positive or negative direction.

Figure 6. Gyro Encoder Outputs

The truth table in Figure 7 indicates all possible input states to the 1 of 16 decoder and the resultant outputs to the binary counters. The truth table is read from top to bottom for each direction positive or negative. To change direction jump between identical input stable states and continue to read down.

Ignore for the time being the OR gate and D Flip Flop in Figure 5. The 8 μ sec delays allow the transition states to exist long enough to provide a clock pulse, CP, whose positive going edge will increment or decrement the binary counters as determined by the Up/down, U/D, signal. The 1 μ sec delay insures the stability of the U/D signal before the CP signal reaches the counters. Synchronization of the Gyro resolver with the TDY-52B is accomplished by the D Flip Flop which is clocked by C45, a clock signal generated by the TDY-52B. Presetting of the binary counters is accomplished serially through the OR gate using the Bias Input.

CONDITION	INPUT	OUTPUT
	BBĀA	U/D CP
Stable	1 0 1 0	0 0
Transition	1 0 1 1	0 1
Stable	1 0 0 1	0 0
Transition	1 1 0 1	0 1 Decrement (Negative)
Stable	0 1 0 1	0 0 Counters
Transition	0 1 0 0	0 1
Stable	0 1 1 0	0 0
Transition	0 0 1 0	0 1)
Stable	1 0 1 0	0 0)
Transition	1 1 1 0	1 1
Stable	0 1 1 0	0 0
Transition	0 1 1 1	1 1 increment (Positive)
Stable	0 1 0 1	0 0 '\
Transition	0 0 0 1	1 1 Counters
Stable	1001	0 0
Transition	1000	1 1
Stable	1010	0 0 }

Figure 7. Gyro Resolver Truth Table

2.3 TDY-52B Microcomputer

The TDY-52B is a 16-bit parallel processor packaged in a 2 in. x 2 in. (Figure 12) hermetically-sealed module, dimensions are exclusive of its 120 pins. Teledyne Systems Company is the manufactor of this hybrid computer based on National Semiconductors IMP-16C micro-computer. The TDY 52B has the following features:

16 Bits
60 (implemented by CPU resident microprogram)
Parallel, binary, fixed point, two's complement
Multiply, Divide, Double precision Add and Sub-
tract
Must be provided externally
16 word Last-In/First Out Stack Internal
Page Size of 256 Words. For direct and indirect
modes: Absolute
Relative to Program Counter
Relative to Accumulator 2 (indexed)
Relative to Accumulator 3 (indexed)
4

Input/Output and Control

16 bit data - memory input port

16 bit data - peripheral input port

16 bit data - output bus

16 bit address bus

6 general-purpose output flags

4 general-purpose jump-condition inputs

1 general interrupt input

1 control panel interrupt input

Figure 8 shows a simplified block diagram of the TDY 52B. The CPU is the heart of the TDY 52B which is configured around MOS/LSI devices, as shown in Figure 9. The MOS/LSI devices consists of two CROM's (Control Read Only Memory) and four RALU's (Register and Arithmetic Logic Units). Each RALU handles 4 bits, and a 16 bit CPU is formed by connecting four RALU's in parallel. A 4-bit wide control bus is used by the CROM's to communicate most of the control information to the RALU's

Figure 8. TDY-52B Simplified Block Diagram

Figure 9. TDY-52B CPU Components

The Clock Generator in Figure 8 provides the CPU and external circuits to the TDY 52B with the required timing signals. There are eight time phases to each execution of an instruction resident in the CROM. Collectively the eight time phases are called one microcycle and a number of microcycles is required to execute each instruction resident in the external memory. Figure 10 shows the timing relationships. Time phase 4 (T4) may be extended during reading/writing operations when external memory requires slower access times than 525 ns. The use of external circuitry is required to extend T4 greater than two time phases. For more detailed information contact Teledyne Systems Company, Northridge, CA 91324.

Figure 11 is a flowchart of the TDY-52B operation starting with application of power. When power is first applied all RALU registers, flags and the LIFO stack are cleared to zero. The microprogram then enters an initialization sequence, in which the Program Counter (PC) is set to a starting value of FFFE₁₆, that is, the next-to-last location in the memory which is the first executed instruction.

2.4 Computer Housekeeping

The Computer Housekeeping circuit as shown in Figure 13 provides the TDY-52B with an approximate 10 ms interrupt and a system clear signal (SYSCLR). This circuit also provides the PCM and debounce clocks.

Figure 10. TDY-52B Timing Diagram

At system power turn on Reset is held momentarily low while Interrupt and Computer Start are held high. The TDY-52B will execute its first instruction from location FFFE₁₆ of the memory when Computer Start is momentarily grounded. To reset the TDY-52B while payload power is on momentarily ground Reset while momentarily turning OFF the TDY-52B minus 12 volt supply.

Interrupt Start is momentarily grounded during rocket liftoff enabling the interrupt clock. C45 in Figure 13 synchronizes the Interrupt Clock with the TDY-52B. Synchronization is required to prevent a positive transition during Time Phase 2 (T2, Figure 10). Interrupt Enable (INTEN) in Figure 13 is set by the TDY-52B under software control and cleared automatically upon the TDY-52B's recognition of a positive Interrupt Clock transition. Upon recognition of a positive Interrupt Clock transition the TDY-52B will halt and not execute the instruction from memory location 0001₁₆ until the Interrupt Clock is zero, hence the use of the last D Flip-Flop in Figure 13.

Figure 11. TDY-52B Operation Flowchart

Figure 12. TDY-52B

2.5 Memory Interface

The Memory Interface circuit provides the necessary timing and control signals for interfacing of the memory with the TDY-52B. Figures 14 and 15 make up the Memory Interface Circuit while Figure 16 was used in place of Figure 14 during software development of the dispersion control system. See Figure 17 for circuit timing.

The Timing Interface Circuit of Figure 15 extends T4 to allow adequate access time to the CMOS RAM's. During a read microcycle, address information is sent out at T4 and the TDY-54B expects data back at T7 of the same microcycle. During a write microcycle data is sent to the memory during T4 of the next microcycle. The TDY-52B employs latches on its address lines eliminating the need to store address information externally. TDY-52B output signal Holdout triggers the Holdin signal high causing T4 to extend for 7.0 time phases. Holdout is generated only during a read/write (R/W) microcycle.

The said of the sa

Figure 13. Computer Housekeeping

Figure 14. TDY-52B Interface Circuit to ROM/RAM Mix

Figure 15. TDY-52B Timing Interface Circuit

D-Flip Flop L---+5
Figure 16. TDY-52B Interface Circuit to 4096 CMOS RAM

The state of the s

Figure 17. TDY-52B Timing for R/W Cycle

The circuits of Figures 14 and 15 provide their respective memories with Chip Enable (CE) and Read/Write (R/W) signals. Because of the large capacitive loading created by the CMOS RAM's, the TDY-52B address lines take approximately 500 ns to reach a stable state, the CE signal is delayed for 612.5 ns after the start of T4. The RAM Enable line in Figures 14 and 16 is used in conjunction with the ROM Loader, where a logic zero enables access to the memories.

3. DISPERSION CONTROL SOFTWARE

A detailed description of the Dispersion Control Software is contained in the following sections and a complete listing in Appendix C. Appendix B describes the TDY-52B Assembly Language used in Appendix C while Appendix E is a listing of the terms used by the flowcharts and listings.

3.1 Auto Pilot Difference Equation

Eq. (1) is the autopilot filter 1 chosen to control the Paiute-Tomahawk Rocket. The dispersion control system uses two of these autopilots, that is, control in pitch plane and control in yaw plane. δc is a positional command in degrees to the cannards in either the pitch or yaw plane and θ_c is the error signal generated in the pitch or yaw planes.

Eq. (2) is written by matching 2 zeros and poles in the z-domain with those of Eq. (1) in the s-domain. The constant K_1 is determined by equating the final value of Eq. (1) with Eq. (2) in Eq. (3). Expanding Eq. (2) as shown in Eq. (4), the autopilot difference equation, Eq. (5) falls out.

Since fixed point arithmetic will be used by the software, Eq. (5) must be scaled. The maximum absolute allowable error signal is a 22.5° – .08789° step where $\left|\delta c\right| \leq 210.11$. The scale factor 256 will be used as shown in Eq. (6). The factor .8 is absorbed by K_2 to save a software multiplication step when converting the autopilot fixed point output for use by the D/A converters.

Eqs. (7) and (8) are the equations used by the software.

$$\frac{\delta c(s)}{\theta c(s)} = \frac{K}{(s+w)^2} \tag{1}$$

where K = 6 and w = .8,

^{1.} Wilson, George, Martin Marietta Aerospace.

^{2.} Technique from Software Research Corp.

$$\frac{\delta c(z)}{\theta c^{(2)}} = \frac{K_1}{(z - e^{-WT})^2},$$
(2)

where T = sampling period.

$$\frac{K}{w^2} = \frac{K_1}{(1 - e^{-wT})^2} \text{ as } \substack{s \to 0 \\ z \to 1},$$
(3)

where
$$K_1 = K \left[\frac{1 - e^{-wT}}{w} \right]^2$$
.

$$\delta_{\rm c} = 2e^{-{\rm wT}} Z^{-1} \delta_{\rm c} - e^{-2{\rm wT}} Z^{-2} \delta_{\rm c} + K_1 Z^{-2} \theta_{\rm c}$$
, (4)

$$\delta cn = 2e^{-wT} \delta cn - 1 - e^{-2wT} \delta cn - 2 + K_1 \theta cn - 2,$$
 (5)

$$\left[\frac{\delta \operatorname{cn}}{256}\right] = 2 \operatorname{A} \left[\frac{\delta \operatorname{cn}-1}{256}\right] - \operatorname{B} \left[\frac{\delta \operatorname{cn}-2}{256}\right] + \frac{K_2}{256} \left[\theta \operatorname{cn}-2\right], \tag{6}$$

where $K_2 = .8*K_1 * 256 * .08789°$.

$$A = e^{wT}$$

$$B = e^{-2wT}$$

 $[\theta \text{ cn-2}]$ = Integer quantity of .08789° steps which is presently divided by 256. Note that $[\theta \text{ cn-2}] \neq \theta \text{ cn-2}$.

$$ADP = 2 * A * ADP1 - B * ADP2 + \frac{K_2}{256} * THETA2,$$
 (7)

$$ADY = 2 * A * ADY1 - B * ADY2 + \frac{K_2}{256} * PSIG2.$$
 (8)

3.2 Auto Pilot Flow Chart

Figure 18 is a simplified flow chart of the Dispersion Control Software.

Execution begins with Block A (see Figure 19) where test commands are sent to the fins and the 32 word by 16 bit RAM is initialized. Upon completion of Block A the TDY-52B will wait for activation of the Interrupt Start Line. Every 10 ms after activation of the Interrupt Start, TN will be incremented and compared against TL (Launch Time), TI (Initiate Actuator Time), T13 (TI . 100 ms), TF (Lock Fins Time), TF3 (TF + 100 ms), and T2 (2nd stage Initiate Time), that is, variable TN will serve as the system clock. Block B will perform roll transformation of

coordinates while Block C will calculate the difference equations. Note that Flags F8 and F12 and user jump input condition U3 were used to synchronize the TDY-52B with the AFCRL EAI 8900 during ground testing.

3.3 Block A

Figure 19. Block A

3.4 Block B

Block B calculates the effect of Gyro roll position phi, ϕ , on the pitch and yaw commands (see Figure 20).

Gyro roll position phi is loaded in ACO using the format of Figure 21. ACO is right justified by shifting ACO 5 times. AC2 is equated to ACO and shifted twice to the right. The value in AC2 will be used as an address to select the correct $\left|\sin\phi\right|$ and $\left|\cos\phi\right|$ from Figure 22 while bits of 0 and 1 of ACO determine the correct quadrant. The first If statement of Block B determines which of two pairs of quadrants, 1&3 or 2&4, is phi presently located. If phi is located in quadrants 1&3, AC2 is the address of $\left|\sin\phi\right|$ while 0020₁₆ - AC2 is the address of $\left|\cos\phi\right|$. If phi is located in quadrants 2&4. 0040₁₆ - AC2 is the address of $\left|\sin\phi\right|$ while AC2 0020₁₆ is the address of $\left|\cos\phi\right|$. The last two If statements of Block B determine the signs of $\left|\sin\phi\right|$ and $\left|\cos\phi\right|$. Finally the roll transformation equations are calculated and pitch & yaw commands sent.

3.5 Block C

Block C calculates the pitch & yaw error signals and uses subroutine CALC (AC3) to calculate the pitch & yaw difference equations. Figure 23 is a flow chart of Block C.

Gyro pitch θ_g , and yaw, ψ_g , position is placed in ACO using the format of Figure 24. Notice that this format has a scale factor of 512 instead of 256 which is used by the Auto pilot difference equations. Before subroutine CALC (AC3) is called the pitch & yaw error signals are multiplied by 2.

Pitch & yaw error signals are calculated by subtracting the gyro input position from the desired reference position. Gravity turn affects the pitch reference, Figure 25, while the yaw reference is a constant 4000₁₆. The pitch reference is calculated by successive summations rather than time consuming multiplications as shown in Eqs. (9) and (10).

Pitch Ref =
$$at + b$$
 (9)

where a = slope

t = time

b = intercept.

Pitch Ref = REFPN +
$$\Sigma$$
 ATNH (10)

where REFPN = $b + a_n t_n$

 $t_n = time line segment n, Figure 25, begins n = 1, 2, or 3$

 $ANTH = a_* T$

a_n = slope of line segment n

T ≈ 10 ms sampling rate

Figure 20. Block B

Figure 21. Input Format of Gyro $\boldsymbol{\phi}$

	Quadra	nt 1 & 3	Quadran	t 2 & 4	
AC2	Sin #	Cos #	Sin Ø	Cos #	Magnitude
0000	Sin 0°, Sirı 180°	Cos 90°, Cos 270°	Sin 180 ⁰ , Sin 360 ⁰	Cos 90°, Cos 270°	0000
0001	1	A	A	1	0647
0002		Ī	Ţ		0 C 8 B
0 0 0 3					1 2 C 8
0 0 0 4					18F8
0005					1 F 1 9
0006					2 5 2 8
0007					2 B 1 F
0008					2 0 F E
je ο α ο					3 6 B A
0 0 0 A				l i	3 C 5 6
0 0 0 B					4 1 C E
0 0 0 C					4710
0 0 0 D			i i		4 C 3 I
0 0 0 E				}	5 1 3 3
0 0 0 F	'		ا ا	' -	5 5 F 5
0010	Sin 45 ⁰ , Sin 225 ⁰	Cos 45°, Cos 225°	Sin 135 ⁰ , Sin 315 ⁰	Cos 135° Cos 315°	5 A 8 2
0 0 1 1		A	À]]	5 E D 7
0012		Ţ		1	6 2 F 2
0 0 1 3				1	6 6 C F
0 0 1 4	l i				6 A 6 C
0 0 1 5		Į į		i l	6 D C A
0 0 1 6				l i	7 0 E 2
0 0 1 7					7 3 B 5
0 0 1 8				1	7 6 4 1
0019				, 1	7 8 8 4
0 0 1 A.				i l	7 A 7 C
0 0 1 B					7 6 2 9
0 0 1 C					7 0 8 4
0 0 1 D					7 E 9 C
0 0 1 E				1	7 F 6 2
0 0 1 F	'			'	7 F D 8
0020	Sin 90°, Sin 270°	Cos 0°, Cos 180°	Sin 90 ⁰ , Sin 270 ⁰	Cos 180°, Cos 360°	7 F F F

Figure 22. Absolute Value of Sin ϕ and Cos ϕ v3 AC2

3 i

Figure 24. Input Format of Gyro θg and ψg

Figure 25. Pitch Gravity Turn - Paiute Tomahawk

3.6 Subroutines

3.6.1 SUBROUTINE MUL (ACO, AC1)

Subroutine MUL (ACO, AC1) calculates one-half the signed product of ACO and AC1. The 32 bit result is placed in ACO and AC1 with the Most Significant Part, MSP, in ACO (see Figure 26).

Figure 26. Subroutine MUL (ACO, AC1)

3.6.2 SUBROUTINE AOUT (ACO, AC1)

Subroutine AOUT (AC0, AC1) will convert the fin command in AC0 to n atch the format of the D/A converter (see Figure 27).

The first IF statement tests the sign bit of ACO and sets AC3 accordingly. A test is then made of the fin command magnitude to determine if it exceeds the 10° maximum. If greater than 10°, ACO is set to 10° and if less ACO is multiplied by

128 removing in effect the scale factor used during its calculation. Remember that the factor .8 was buried in K2 of the difference equation, Eq. (6), so that only a 7 bit left shift is required at this point saving valuable time. The final IF statement determines the correct sign bit for AC0.

Figure 27. Subroutine AOUT (ACO, AC1)

3.6.3 Subroutine CALC (AC3)

Subroutine CALC (AC3) calculates the Auto Pilot Difference Equation, (see Figure 28). AC3 is used by the main program to tell the subroutine if the pitch or yaw difference equation is to be calculated.

Figure 28. Subroutine CALC (AC3)

Figure 28. Subroutine CALC (AC3) (Cont)

3.6.4 SUBROUTINE MPYA (ACO, AC1)

Subroutine MPYA (ACO, AC1) calculates one-half the product of the 32 bit fixed point number formed by ACO and AC1 and the 32 bit fixed point number formed by A and AL. The 32 bit result is placed in ACO and AC1. MSP is in ACO (see Figure 29).

3.6.5 SUBROUTINE MPYB (ACO, AC1)

Same as MPYA except the 32 bit fixed point number formed by B and BL is used.

Figure 29. Subroutine MPYA (ACO, AC1)

3.6.6 SUBROUTINE FDELAY (ACO)

Subroutine FDELAY (ACO) will provide an approximate 5 sec command to both the pitch and yaw fins. ACO is the signed magnitude of the command and must be in the correct format for the D/A converters (see Figure 30).

Figure 30. Subroutine FDELAY (ACO)

4. ROM LOADER

The ROM Loader is designed to edit or debug a program stored in the CMOS RAM. An ASR-33 and Figures 33 and 34 comprise the ROM Loaders hardware. There are three functions which the ROM Loader performs; List memory contents, Read a paper tape into the memory and Write into the memory from the teletype keyboard.

4.1 Uperation

To use the ROM Loader switch S1 of Figure 34 must be in position one before starting the TDY-52B. When the TDY-52B is started the teletype will respond with the message "COMMAND:" and wait for one of three commands typed on the keyboard L, R or W:

L, AAAA, BBBB* typed on the teletype will produce a listing of the memory contents at the four digit hexadecimal location AAAA through location BBBB. See Figure 31 for sample output.

R typed on the teletype will start the paper tape reader. Figure 32 is the required papertape format.

COMMA	ND: L, 0020, 0024		
LOC	DATA		
0020	4700	Figure 31.	Sample ROM Loader Listing
0021	4C10		
0022	C002		
0023	A002		
0024	0800		

Figure 32. ROM Loader Paper Tape Format

Figure 33. TTY Interface

Figure 34. ROM Loader Interface

W, AAAA, BBBB* typed on the teletype will write the four digit hexadecimal value BBBB in memory location AAAA.

After completing each command the message "COMMAND:" is once again sent by the ROM Loader indicating it is ready for a new command. *Note commas in the above commands are not necessary. Figure 35 is the ROM Loader Flow Chart.

4.2 ROM Loader Electronics

The circuit diagrams in Figures 33 and 34 comprise the ROM Loader Electro v. s. The two 256 word by 8 bit PROM's contain the ROM Loader software. Switch S1 of Figure 34 determines which memory the TDY-52B will fetch its first instruction from, that is, position 1 will enable the ROM Loader while position 2 will enable the Dispersion Control memory. The RAM Enable of Figure 34 is connected as shown in Figure 14, or when using the 4096 RAM in Figure 16. Address lines AD00 through AD07 and AD15 of the TDY-52B are used to address the ROM Loader memory (see Figure 34). Isolation between the ROM Loader Memory and the Dispersion Control Memory is accomplished by means of Tri-State outputs, which must be provided externally for the Intel PROM's, that is, the Hex Tri-State Buffers DM8095. MD00 through MD15 are the memory data input lines of the TDY-52B.

4.3 Subroutines

4.3.1 SUBROUTINE RECV (ACO, AC1)

Subroutine RECV (ACO, AC1) provides the necessary decoding of the 8 bit data words sent serially by the teletypes transmitter, (see Figure 36). The subroutine will return from where it was called with ACO containing the decoded teletype data and AC1 containing the position of the teletype data in the look up table, Figure 38.

Upon recognition of a teletype start bit a 13.5 ms delay is intiated to wait for the middle of the first teletype data bit, (see Figure 37). After ACO has been filled with the first seven data bits and the parity bit, bit 8, ignored, ACO is compared against the look up table in Figure 38 to determine what alphanumeric character the teletype sent. If there is no match the subroutine will return to its beginning to wait for another teletype transmission. If ACO contains the alphanumeric characters 0-F it is decoded from seven bits to four bits, that is, the four LSB's of ACO will contain the hexadecimal digits 0-F with all other bits zero.

Figure 35. ROM Loader Flow Chart

Figure 35. ROM Loader Flow Chart (Cont)

Figure 35. ROM Loader Flow Chart (Cont)

Figure 36. Subroutine RECV (ACO, AC1)

Figure 36. Subroutine RECV (ACO, AC1) (Cont)

Figure 37. TTY Word Format

DATA(2)	ASCII	AC1
003016	0	0014 ₁₆
003116] 1]	001316
0032 ₁₆	2	0012 ₁₆
003316	3	001116
0034 ₁₆	4	001016
0035 ₁₆	5	000F ₁₆
003616	6	000E ₁₆
003716	7	000D ₁₆
003816	8	000C ₁₆
003916	9	000B ₁₆
0041 ₁₆	A	000A ₁₆
0042 ₁₆	В	000916
004316	С	000816
0044 ₁₆	D	000716
004516	E	000616
0046 ₁₆	F	000516
002116	1	000416
004C ₁₆) L	000316
0052 ₁₆	R	000216
0057 ₁₆	W	0001 ₁₆

Figure 38. Subroutine RECV (ACO, AC1) Look Up Table

4.3.2 SUBROUTINE WORDR (ACO, AC1)

Subroutine WORDR (ACO, ACI) receives four data words from the teletype and stores them as four hexadecimal digits of four bits each in ACO using subroutine RECV (ACO, ACI), (see Figure 39 and Figure 40). ACI will contain the position in the look up table, Figure 38, of the last data word received. If the teletype sends an!, L, R or W the subroutine terminates early.

Figure 39. Subroutine WORDR (ACO, AC1)

Figure 40. Format of ACO, Subroutine WORDR (ACO, AC1)

4.3.3 SUBROUTINE XMIT (AC0)

Subroutine XMIT (ACO) will transmit two 8 bit data words in ACO as two teletype data words, (see Figures 41 and 42). If only one data word is to be sent use data word No. 1 and set data word No. 2 to zero in Figure 42.

4.3.4 SUBROUTINE WORDS (AC1)

Subroutine WORDS (AC1) in conjunction with subroutine XMIT (AC0) will transmit to the teletype four hexadecimal digits in AC1 using the format of Figure 40. Figure 43 is the flow chart used by Subroutine WORDS (AC1).

Figure 41. Subroutine XMIT (AC0)

Figure 41. Subroutine XMIT (AC0) (Cont)

Figure 42. Format of ACO, Subroutine XMIT (ACO)

Figure 43. Subroutine WORDS (AC1)

TDY-52B Instruction Set

	· · · · · · · · · · · · · · · · · · ·	-T	T	
			Execution Time	Format
MNEMONIC	INSTRUCTION NAME	FUNCTION	in Microseconds#	FOIMAG
LOAD AND STORE		IGAN JACA IK INDIAKCE JIGAN JAGA	0 1 10 15 77 743	١
5T **	LOAD	(EA) - (ACr) IF INDIRECT ((EA)) (ACr) (ACN) - (EA), IF INDIRECT (ACr) ((EA))	9.1,10.15 IF Ind. 10.15,14.35,IF Ind.	2
	1	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	Right 21.0, left 32.2	Į.
LDB STB	LOAD BYTE STORE BYTE	(1/2 EA)—(ACO LESS SIGNIFICANT BYTE) (ACO LESS SIGNIFICANT BYTF —(1/2 EA) 0—(SEL)	Right 29.05, Left	5 5
ARITHMETIC			38.85	
ADD	ADD	(AC1) + (EA) (AC1) OV, CY	9.1	2
SUB	SUBTRACT	(ACI) - (EA) - (ACI) OV, CY	9. 1	2
MPY	MULTIPLY		151.55 to 173.95	5
DIV	DIVIDE	(ACO), (ACI) - (EA)(ACO) QUOTIENT 0 - (SEL) OV, L (ACI) REMAINDER	1178.15 to 225.75	5
DADD	DOUBLE PRECISION ADD	0-(SEL) OV, CY	21.0	5
DSUB	DOUBLE PRECISION SUBT.ACT	[(ACO), (ACI)] - [(EA), (EA + 1)] - [(ACO), (ACI)]	21.0	5
LOGICAL			[]
AND	AND	(RO1) "AND"(EA)(RO1)	9.1	3
OR	OR	(RO1) "OR" (EA) - (RO1)	9.1	3
SKIP				
ISZ	INCREMENT AND SKIP IF ZERO	(EA) + 1 - (EA) 1F (EA) = 0, (PC) + 1 - (PC)	12.95 If Skip 14.35	4B
DSZ	DECREMENT AND SKIP IF ZERO	(EA) - 1 - : EA) IF (EA) = 0, (PC) + 1 - (PC)	14.35 If Skip 15.75	4B
SKG	SKIP IF GREATER THAN	IF (ACr) >(EA), (PC) + 1(PC)	13.3 to 16.1	2
SKNE	SKIP IF NOT EQUAL	IF (ACr) ≠ (EA), (PC) + 1 - (PC)	10.5	2
SKAZ	SKIP IF "AND" IS ZERO	IF (RO1) "AND" (EA) +0, (PC) +1 (PC)	10.5 If Skip 11.9	3
SKSTF	SKIP IF STATUS FLAG TRUE	IF (STATUS FLAG N) + 1, (PC) + 1 (PC) 0 (SEL)	27.65 to 55.65	9
SKBIT	SKIP IF BIT TRUE	IF (ACO 811 N) = 1, (PC) + 1 - (PC) 0 (SEL)	27.65 to 55.65	9
SINGLE BIT				}
SEIST	SET STATUS BIT	1 (STATUS FLAG N)	24.85 to 51.45	9
CLRST	CLEAR STATUS 8:T	"0 (STATUS FLAG N)	24.85 to 51.45	9
SETBIT	SET BIT	1 (ACO BIT N)	22.05 to 48.65	9
CLRSIT	CLEAR BIT	0 (ACO BIT N)	22.05 to 48.65	9
CMFBIT	COMPLEMENT BIT	(ACO BIT N)(ACO BIT N)	22.05 to 48.65	9
TRANSFER				1
JMP **	JUMP	EA-(PC), IF INDIRECT (EA)- (AC)	5.25 If Ind. 9.1	4A
JSR **	JUMP TO SUBROUTINE	(PC) - (STK)	6.65, If Ind. 10.5	4A
BOC	BRINCH ON CONDITION	EA -(PC), IF INDIRECT (EA)-(PC) IF CONDITION CC IS TRUE,	6.65, IF Branch 8.05	1
RT)	RETURN FROM INTERRUPT	(PC) + D - (PC) (STK) + C - (PC)	8.05	8
		1 (IEF)		8
RTS	RETURN FROM SUBROUTINE	(STK) + C + (PC)	6.65	ľ
JSRI	JUMP TO SUBROUTINE IMPLIED	(PC) - (SIK)	6.65	8
		FF80 ₁₆ + C − (PC)		I

^{*}Times are for T4 Extended 6 Time Phases

^{**}For Ind. add ID to mnemonic, that is, LDID

TDY-52B Instruction Set (Cont)

				Execution Time	
WHEWOHIC	INSTRUCTION NAME	FUNCTION		In Microseconds*	Format
TRANSFER (cont)		1100 110 1001		10.05	
JMPP	JUMP THROUGH POINTER	(100 ₁₆ +N) (PC)		12.95	9
ISEP INTERRUPT	JMP TO SUBROUTINE THRU POINTER	(PC)—(STK) (100 ₁₆ + C)(PC)		14.35	8
INIL	JUMP INDIRECT TO LEVEL 0	(PC)—(STK), 0→(IEF) (120 _{1A} +N) → PC		11.9	9
ISCAN	INTERRUPT SCAN	1/2 (AC1)-(AC1) UNTIL 1 SHIFTED OL (AC2) + NUMBER OF SHIFTS-(AC2)	JT .	13.65 to 113.05	9
SHIFT					
ROL	ROTATE LEFT	2 (ACr) — (ACr) IF SEL = 0, (BIT 15) — (BIT 0) IF SEL = 1, (BIT 15) — (L), (L)—(BIT 0)	D TIMES	6.65 + 4.2D	4B
ROR	ROTATE RIGHT	1/2 (ACr) - (ACr)	1		
		IF SEL = 0, (BIT 0)(BIT 15) IF SEL = 1, (BIT 0)(L), (L)(BIT 15)	D TIMES	6.65 + 4.2D	48
SHL	SHIFT LEFT	2 (ACr) - (ACr)	1		1
		O (BIT O)	D TIMES	6.65 + 4.2D	l ₄ B
	[IF SEL = 1, (BIT 15) (L)			1 ""
SHR	SHIFT RIGHT	1/2 (ACr) (ACr)	ì		1
	Į	IF SEL + 0, 0→(BIT 15)	D TIMES	6.65 + 4.2D	4B
	İ	IF SEL = 1, (L) (BIT 15), 0-(L)	l		
STACK	1				1
PUSH	PUSH ONTO STACK	(ACI)-(STK)		5.25	4B
PULL	PULL FROM STACK	(SIK) (ACI)		5.25	4B
PUSHF	PUSH STATUS FLAGS ONTO STACK	(SF) — (STK)		6.65	8
PULLF	PULL STATUS FLAGS FROM STACK INTO FLAG REGISTER	(STK) (ACI)		8.05	8
XCHRS	EXCHANGE REGISTER AND STACK	(ACr) —(STK) (STK)—(ACr)		8.05	4B
IMMEDIATE					
u	LOAD IMMEDIATE	D (ACr)		5.25	4B
AISZ	ADD IMMEDIATE AND SKIP IF ZERO	(ACr) + D (ACr) OV, CY IF (ACr) = 0, (FC) + 1 (PC)		6.65,IF Skip 8.05	4B
CAI	COMPLEMENT AND ADD	~ (ACr) + D - (ACr)		5.25	4B
REGISTER		(4) - (0)			1
RADD	REGISTER ADD	(SR) + (DR) → (CR) ~, CY		5.25	6
RXCH	REGISTER EXCHANGE	(SR) = (DR), (D'') = (SR)		12.25	6
RUPY	REGISTER COPY	(SR) - (DR)		10.5	6
RXOR	REGISTER EXCLUSIVE OR	(SR)⊙(DR) +(DR) (SR)=AND= (DR) (DR)		9.45	6
RAND	PEGISTER AND	(SR) "AND" (DR) (DR)		9.45	6
INPUT/OUTPUT		(463) + 6 = (10, 400 m)		10.05	8
RIN	REGISTER INPUT	(AC3) + C - (IO ADDR) (IO DATA) - (AC0)		10.85	8
ROUT	REGISTER OUTPUT	(AC3) + C - (IOAUDE) (AC0) - (IO DATA)		10.85	1
SFLG	SET FIAG	C-(IOADDR), 1-(CONTROL FLAG F		6.65	7
FFLG	PULSE FLAG	C-(IOADDA), 1-(CONTROL FLAG F	(C)	6.65	7
HALT	HALT	PROCESSOR HALTS			8

^{*}Times are For T4 Extended 6 Time Phaces

Appendix B

TDY-52B Assembly Language

Each source statement of Appendices C and D contains an instruction found in Appendix A or a 4 digit hexadecimal data word stored at the indicated memory location. Figure B1 is the instruction format while Figure B2 is the data word format:

Instruction Format

- a) Optional address field with not more than ten alphanumeric characters.
- b) Instruction mnemonic field. See Appendix A.
- c) Working accumulator field or code field with the following formats referenced to Appendix A. Formats 4A, 4B and 5: Working accumulator having one of four values (0, 1, 2, 3) except where restricted by Appendix A in the column labeled function. Format 6: Source accumulator followed by destination accumulator in parenthesis. Each having one of four values (0, 1, 2, 3). Formats 1, 7, and 9: Condition code field containing one of sixteen values

 $(0, 1, \ldots, 15).$

Formats 2, 3 and 8: Field not used.

d) Displacement field with either ten or less alphanumeric characters referring to an address field, or a 4 digit hexadecimal value whose least significant digits are used to determine the least significant bits of the instructions object code. The addressing mode is placed in parenthesis at the end of the displacement field for those instructions using formats 2, 3, 4A and 5. The addressing mode is one of four values (0, 1, 2, 3).

0 - direct

- 1 relative to Program Counter
- 2 relative to Accumulator 2
- 3 relative to Accumulator 3

Data Format

- a) Optional address field with not more than ten alphanumeric characters.
- b) Data field having a 4 digit hexadecimal value.

Figure B1. Assembly Language Instruction Format

ADDRESS, DC,, DATA Figure B2. Assembly Language Data Format

AUTOPILOT L:STING

LOC	OBJECT CODE	STMT	SOURCE STATEMENTS
0000	0000	ı	,DC,,0000,
0001	0000	2	INT2,DC,,0000,
0002	0000	3	TN,DC,,0000,
0003	0000	1,	SCP,DC,,0000,
0004	0000		COSPH,DC,,0000,
0005	0000	5 6	SINPH,DC,,0000,
0006	0000	7	SCP2,DC,,0000,
0007	0000	8	SCP3,DC,,0000,
8000	0000	9	SCP4,DC,,0000,
0009	0000	10	
000A	0000	11	ADPH,DC,,0000, ADPL,DC,,0000,
000B	0000	12	
000C	0000	13	ADPH1,DC,,0000,
000D	0000	14	ADPIA,DC,,0000,
1000	0000	15	ADPH2,DC,,0000,
000E	0000	16	ADPL2,DC,,0000,
0010			THETA, DC,,0000,
0010	0000	17	THETA1,DC,,0000,
0011	0000	18	THETA2,DC,,0000,
	0000	19	ADYH,DC,,0000,
0013	0000	20	ADYL,DC,,0000,
0014	0000	21	ADYH1,DC,,0000,
0015	0000	22	ADYL1,DC,,0000,
0016	0000	23	ADYH2,DC,,0000,
0017	0000	24	ADYL2,DC,,0000,
0018	0000	25	PSIG,DC,,0000,
0019	0000	26	PSIG1,DC,,0000,
001A	0000	27	PSIG2,DC,,0000,
001B	0000	28	SEGADD,DC,,0000,
001C	0000	29	REFPH,DC,,0000,
0010	0000	30	REFPL,DC,,0000,
u100	0000	31	,DC,,0000,
001F	0000	32	,DC,,0000,
0020	14700	33	,PULL,3,,
0021	4C10	314	,LI,0,0010,
0022	C002	35	,ADD,O,TN(O),
0053	V005	36	,ST,O,TN(O),
005/1	0800	37	,SFLG,0,0000,
0025	0900	38	,SFLG,1,0000,
JU26	BO52	39	,STID,O,COUT(0),
6327	D04C	40	,sub,o,tl(o),
0028	1205	41	,BOC,2,5,
0029	1E01	42	2,BOC,14,1,
002A	2029	43	,JMP,,2(0),
002B	0880	1, 1,	1,PFLG,0,0000,
305C	202D	45	3,ЛМР,,4(0),
0020	202C	1.6	и,лмр,,з(о),
0021	8002	le e	5, 'D, O, TN(O),

roc	OBJECT CODE	STMT	SOURCE STATEMENTS
002F	DO4D	48	
0030	1205	40 49	,SUB,0,TI(0),
0031	0000		,BOC,2,8,
0032	1E01	50 53	9,SFLG, 1,0000,
0033	2032	51 52	6,BOC,14,7,
0034	0C80	-	,JMP,,6(0),
0035	202D	53 54	7,PFLG,4,0000,
0036	8002	55 55	,JMP,,4(0),
0037	DO4E	56	3,LD,O,TH(O),
0038	1202		,SUB,0,TI3(0),
0039	0p00	57 58	,BOC,2,10,
003A	2031	58 50	,SFLG,5,0000,
003B	0D80	59	,JMP,,9(0),
0030	8002	60	10,PFLG,5,0000,
003D	D04F	61	,LD,O,TN(O),
003E	1B54	62	,SUB,O,TF(O),
003F	8002	63	,BOC,11,TRANS,
0010	D05 0	64	,LD,G,TN(O),
0041	1204	65	,SUB,0,TF3(0),
00112	4000	66	,BOC,2,11,
0043	B053	67	,J.I ,0 ,0000 ,
0044	B054	68	,STID,O,POUT(O),
0045	2031	69	,STID,O,YOUT(O),
0046	0E00	70	,JMP,,9(0),
0047	8002	71	11,SFLG,6,0000,
0048	D051	72	,LD,O,TH(O),
0019	1BE2	73	,SUB,0,T2(0),
004A	0F00	74	,BOC,11,3,
004B	0000	75	,SFIG,7,0000,
001C	0000	76	,HALF,,,
004D	1F20	77	TL,DC,,0000,
004E	1FCO	78 78	TI,DC,,1F2O,
004F	69E0	79	TI3,DC,,1FCO,
0050	6,80	80	TF,DC,,69E0,
0051	7090	81	TF3,DC,,6A80,
0052	OFFC	82	T2,DC,,7C90,
0053	OFFC	83	COUT, DC, OFFC,
0054	07FC	84	POUT, DC, OBFC,
0055	0000	85 86	YOUT, DC, ,O7FC,
0056	0001	86	SCP1,DC,,0000,
0057	0020	87	SCP5,DC,,0001.
0058	7EF9	88	THE2,DC,,0020,
0059	7DF6	89	A,DC,,7EF9,
005A	• • • • •	90	B,DC,,7DF6,
005B	0161 3810	91	K2,DC,,0161,
005C	3810	92	TG1,DC,,3810,
005D	3EA9 C1 A 6	93	REFPIH,DC,, BEA9,
/	CINO	94	REFPIL, DC, , CIA6,

roc	OBJECT CODE	STMT	SOURCE STATEMENTS
005E	FFFF	95	Almu ba pena
005F	9DC9	96	AlTH,DC,,FFFF,
0060	50F0	97	AlTL,DC,,9DC9,
0061	3E10	98	TG2,DC,,50F0,
0062	D6CF	99	REFP2H,DC,,3E10,
0063	FFFF	1.00	REFP2L,DC,,D6CF,
0064	8B14	2.01	A2TH,DC,,FFFF,
0065	7FFF	:.02	A2TL,DC,,8B14,
0066	3D5A	::03	TG3,DC,,7FFF,
0067	CB6F	104	REFP3H,DC,,3D5A,
0068	FFFF	104	REFP3L,DC,,CB6F,
0069	6F04	106	ASTH, DC, FFFF,
006A	7FFF	107	A3TI, DC, ,6F04,
006в	0000	108	TG4,DC,,7FFF,
006C	0000	109	,DC,,0000,
006D	0000	110	,DC,,0000,
006E	0000		,DC,,0000,
106F	0000	111 112	,DC,,0000,
0070	06117	113	,DC,,0000,
0071	0C8B	113	,DC,,0647,
0072	1208	115	,DC,,OC8B,
0073	18F8	116	,DC,,12C8,
0074	1F19	110	,DC,,18F8,
0075	2528	118	,DC,,1F19,
0076	2B1F	110	,DC,,2528,
0077	30FB	120	,DC,,2B1F,
0078	36BA	121	,DC,,30FB,
0079	3C56	122	,DC,,36BA,
007A	41CE	123	,DC,,3C56,
007B	471C	124	,DC,,41CE,
007C	4C3F	125	,DC,,471C,
007D	5133	126	,DC,,4C3F,
007E	55F5	127	,DC, ,5133,
007F	5A82	128	,DC,,55F5,
0080	5ED7	129	,DC,,5A82,
0081	62F2	130	,DC,,5ED7,
0082	66CF	131	,DC,,62F2,
0083	6A6D	132	,DC,,66CF,
00814	6DCA	133	,DC,,6A6D,
0085	70E2	134	,DC,,6DCA,
0086	73B5	135	,DC,,70F2,
0087	7541	136	,DC,,73B5,
0088	7884	137	,DC,,7641,
0089	TAIR	138	,DC,,7884,
Λ800	7029	139	,DC,,7A7D,
008в	7D8A	140	,DC,,7C29, ,DC,,7D8A,
008c	7E9D	141	,DC,,7E9D,
008D	7F62	142	
008E	7FD8	11/3	,DC,,7F62,
		,	,DC,,7FD8,

roc	OBJECT CODE	STMT	SOURCE STATEMENTS
008F	e nama		STATEMENTS
0090	7FFF	1 h h	,DC,,7FFF,
0091	5500 hoos	145	CHECK, DC, ,5500,
0092	,1000	146	YREPH, DC, ,4000,
0093	7F00	147	FIN,DC,,7FOO,
0054	4F00	148	TRANS, LI, 3,000,
0095	0B00 0 440	149	,SFLG,3,0000,
0096	0440 0B80	150	,RIN,,0040,
0097	_	151	,PFLG,3,0000,
0098	0765	152	,CMPBIT,5,,
0099	0A80	153	,PFLG,2,0000,
009A	5CFB	154	,SHR,0,0005,
009B	3281 5EFE	155	,RCPY,O(2),,
009C	7ErE 1408	156	,SHR,2,0002,
009D	8£6F	157	,BOC,4,12
009E		158	,LD,3,006F(2),
009E	5201 C857	159	,CAI,2,0001,
00A0	866F	160	,ADD,2,THE2(0),
00A1		161	,LD,1,006F(2),
0042	130A	162	,BOC,3,14,
00A3	5301	163	,CAI,3,0001,
00A3	5101	164	13,CAI,1,0001,
00A5	20AC	165	,JMP,,14(0),
0006	5241 8e6f	166	12,CAT,2,0041,
00A7	5201	167	,LD,3,006F(2),
8A00	C857	168	,CAT,2,0001,
0000	866F	169	,ADD,2,THE2(O),
0000	13F8	170	,LD,1,006F(2),
OOAB	5301	171	,80C,3,13,
OOAC	A14O14	172	,CAI,3,0001,
OOVD	AC05	173	14,ST,1,COSPH(O),
OOAE	8009	174	,ST,3,SINPH(0),
OOAF	8404	175	,LD,O,ADPH(0),
0080	28CB	176	,LD,1,COSPH(0),
00B1	A006	177	,JSR,,MUL(0),
00B2	Λ008 Λ ¹ 4Ο7	178	,ST,0,SCP2(0),
00B3	8012	179	,ST,1,SCP3(0),
00B)	8405	180	,LD,O,ADYH(O),
00B5	28CB	181	,LD,1,SINPH(O),
00В6	0/10 0/10	182	,JSR,,MUL(O),
00B7	0006	183	,DADD,,SCP2(0),
00B8	28E1	101	
00B9	A008	184	,JSR,,AOUT(O),
OOBA	8009	185	,ST,0,SCP4(0),
OOBB	8405	186	,LD,0,ADPH(0),
OOBC	28CB	187	,ւհ,1,ՏՈՒԲՈ(Օ),
OOBD	A006	188	,JSR,,MUL(O),
00,00	NUUO	189	,ST,0,SCP2(0),

LOC	OBJECT CODE	STMT	SOURCE STATEMENTS
001.0	41.07	300	am 3 aapa(a)
00bE	A407	190	,ST,1,SCP3(0),
OOBF	8012	191	,LD,O,ADYH(O),
0000	8404	192	,LD,1,COSPH(O),
0001	28СВ	193	,JSR,,MUL(O),
00C2	04B0	194	,DSUB,,SCP2(0),
00C3	0006		
00C4	58EJ	195	JSR,,AOUT(O),
0005	8408	196	,LD,1,SCP4(0),
0006	E054	197	,STID,O,YOUT(O),
00C7	B453	196	,STID,1,POUT(0),
00C8	0000	199	,SFLG,4,0000,
0009	1E2A	200	16,BOC,14,15,
OOCA	2009	201	,JMP,,16(0),
OOCB	1211	202	MUL, BOC, 2,100,
00CC	3180	203	, RXCH, O(1), ,
OOCD	1206	201	,BOC,2,101,
OOCE	5101	205	,CAI,1,0001,
OOCF	5001	206	,CAI,0,0001,
00D0	A003	207	102,ST,0,SCP(0),
00D1	01/80	208	MPY, SCP(0),
00D2	0003	200	, 2 , , , , , , , , , , , , , , , , ,
00D3	0200	209	,RT'S,,0000,
00D4	5101	210	101,CAI,1,0001,
00D5	A003	211	103,ST,0,SCP(0),
00D)	0480	515	,MPY,,SCP(0),
00D7	0003	212	, PIF1 , , SOF (0),
00D1 00D8	5000	213	0AT 0 0000
00D0 00D9	5100	51 ₁ 4	,CAI,0,0000,
•			,CAI,1,0000,
AGD0	04A0	215	,DADD,,SCP1(O),
OODB	0055	02.6	pmg 0000
OODC	0200	216	,RTS,,0000,
OODD	3180	217	100,RXCH,0(1),,
OODE	12F1	218	,BOC,2,102,
OODF	5001	219	,CAI,0,0001,
00E0	2005	220	"MP,,103(0),
00E1	120E	221	AOUT, BOC, 2, 18,
00E2	5000	222	,CAI,0,0(00,
00E3	5100	223	,CAI,1,COOO,
00E)ı	OAIO	55/1	,Daud,,SCP1(0),
00E5	0055		
00E6	4F01	225	,LI,3,0001,
00E7	E0F2	226	19,SKG,O,DSA(O),
00E8	20EE	227	,JMP,,17(0),
00E9	8092	558	,LD,O,FIN(0),
OOEA	FC56	229	20,SKNE,3,SCP5(0),
OOEB	0200	230	,RTS,,,
OOEC	68F3	231	,OR,O,PFIN(O),
OOED	0200	232	,RTS,,,
OOEE	5007	233	17,SHL,0,0007,
OOLF	20EA	23/4	,JMP,,20(0),
oofo	1,F00	235	18,LI,3,0000,

FOC	OBJECT CODE	STMT	SOURCE STATEMENTS
00F1	20E7	236	JMP, 19(0),
00F2	OOFF	237	DSA,DC,,OOFF,
00F3	8000	238	PFIN,DC,,8000,
00F3	14F00	239	15,LI,3,0000,
00F5	0В00	240	,SFLG,3,0000,
00F6	01400	241	RIN, 0000,
00F7	0880	242	,PFLG,3,0000,
00F1	A018	243	,ST,0,PSIG(0),
00F0 00F9	0B00	241	,SFIG. 3,0000,
-	0420	245	,RIN,,0020,
OOFA	0#20 0#80	246	,PFIX, 3,0000,
OOFB	AOOF	2117	,ST,0,THETA(0),
OOFC		248	,ID,2,S. GADD(0),
OOFD	881B	240 249	
OOFE	8200	•	,LD,0,00\?(2),
OOFF	D002	250	,SUB,O,TN(O),
0100	1814	251	,BOC,11,500,
0101	801C	252	501, ID, 0, REFPH(0),
0102	DOOF	253	,SUB,O,THETA(O),
0103	5001	254	,SHL,0,0001,
0104	AOOF	255	,st,o,theta(o),
0105	801C	256	,LD,O,REFPH(O),
0106	81410	257	,ID,1,REFPL(0),
0107	0610	258	,DADD,,0003(2),
0108	0003		
0109	AO1C	259	,st,o,reffi(o),
010A	A41D	260	,ST,1,REFPL(O),
010B	4F09	261	,61,3,0009,
010C	290F	565	JSR,,CALC(1),
010D	8091	263	,LD,O,YREPH(O),
010E	D018	264	,SUB,O,PSIG(O),
010F	5C01	265	,SIIL,0,0001,
0110	VO18	266	,ST,O,PSIG(O),
0111	hF12	267	,11,3,0012,
0112	2909	268	JSR,,CALC(1),
0113	oc8o	269	,PFLG,4,0000,
0114	202C	270	,JMP,,3(O),
0115	4A05	271	500,AISZ,2,0005,
0116	A81B	272	,st,2,segadd(0),
0117	8201	273	,LD,0,0001(2),
0118	VOI C	2714	,st,o,refph(o),
0119	8202	275	,LD,0,0002(2),
011A	AOID	276	,ST,O,REFPL(O),
011B	21E5	277	JMP, 501(1),
011C	8308	278	CALC, LD, 0,0008(3),
011D	845A	279	,LD,1,K2(0),
011E	28св	280	JSR, MUL(O),
011F	11E00	281	,LI,2,0000,
0120	1201	282	,BOC,2,200,
0121	1 _{E80}	283	LI,2,0080,
0122	1300	284	200, PUSH, 3,,
V.46	. 500		, , , , ,

roc	OBJECT CODE	STMT	SOURCE STATEMENTS
0123	CAOO	285	,SFIG,2,0000,
0124	4F08	286	,LI,3,0008,
0125	4200	287	201, PUSH, 2,,
0126	0280	288	PULLF
0127	58FF	289	,ROR,0,0001,
0128	59FF	290	ROR,1,0001,
0129	hbpp	291,	AISZ,3,00FF,
012/	21.FA	292	,JMP,,201(1),
012B	11700	293	,PULL,3,,
012C	14000	294	,PUSH,O,,
015D	4100	295	,PUSH,1,,
015E	83011	296	,LD,0,000h(3),
012F	8705	297	,LD,1,0005(3),
0130	1201	298	,800,2,600,
0131	5000	299	,CAI,0,0000,
0132	51.00	300	,CAI,1,0000,
0133	ομνο	301	,DADD,,SCP1,
0134	0055		, ,
0135	2935	305	JSR, MPYB(1),
0136	5000	303	,CAI,0,0000,
0137	5100	30)1	,CAT,1,0000,
0138	0400	305	,DADD,,SCP1,
0139	0055		,
0131	2101	306	, дмр, , бол (1),
013B	292F	307	600,JSR,,MPYB(1),
013C	۸٥٥6	308	601,ST,0,SCP2(0),
013D	ለት07	309	,sr,1,scP3(0),
01 3ዩ	4500	310	,PULL, 1,,
0).3F	hh00	311	,PULL,O,,
01/10	0480	317	,DSUB,,SCPP(0),
01/1	0006		
01/13	4000	313	,PUSH,O,,
01/13	4100	37,1	,PUSH,1,,
01/1/4	8302	31.	,10,0,0002(3),
0145	8703	316	,.և.,1,0003(3),
0146	1201	317	,BO 7,2,700,
0147	5000	318	,CAI,0,0000,
0148	5100	319	,CAI,1,0000,
0149	0)100	320	,DADD,,SCP1,
01 _β V	0055		
01 jt B	29/16	321	,JSR,,MPYΛ(1),
014C	5000	355	,CA1,0,0000,
01)tD	5100	323	,0000,
O114E	Olivo	324	,DADD, ,SCP1,
01 ^h F	0055		

roc	OBJECT CODE	SIMI	SOURCE STATFMENTS
0150	2101	325	,ЛМР,,701(1),
0151	2940	326	700,JSR,,MPYA(1),
0152	0A00	327	701,SFLG,2,0000,
0153	5D01	328	,SHL,1,0001,
01511	5801	329	,ROL,0,0001,
0155	лооб	330	,ST,0,SCP2(0),
0156	Λ ¹ tO.\	331	,ST,1,SCP3(0),
0157	4500	332	,PULL,1,,
0158	4400	333	,PULL,O,,
0159	0)100	334	,DADD,,SCP2(0),
015A	0006		
015B	8E07	335	,ւր,2,0007(3),
015C	AB08	336	,ST,2,0008(3),
015D	8806	337	,LD,2,0006(3),
015E	лвоу	338	,ST,2,0007(3),
015F	8803	339	,LD,2,0003(3),
0160	AB05	3140	,ST,2,0005(3),
0161	8802	341	,LD,2,0002(3),
0162	ABOli	342	,51,2,000հ(3),
0163	Λ300	3113	,sr,o,0000(3),
0164	Λ701	344	,ST,1,0001(3),
0165	0000	3/15	,sflg,2,0000,
0166	5001	3116	,SHL,1,0001,
0167	5801	3117	,ROL,0,0001,
0168	A302	3118	,st,0,0002(3),
0169	۸703	349	,ST,1,0003(3),
016A	0200	350	,rts,,,
016в	4000	351	MPYB,PUSH,O,,
016C	4 LOO	352	,PUSH,1,,
016D	8459	353	,ID,1,B(O),
016E	V003	354	,ST,0,SCP(0),
016F	01:80	355	,MPY,,SCP(0),
0170	0003		
0171	V006	356	,ST,0,SCP2(0),
0172	Alio7	357	,ST,1,SCP3(0),
0173	11100	358	PULL,0,
017)1	0480	359	,PFIG,2,0000,
0175	SCFF	360	,SHR,0,0001,
0176	81159	361	,LD,1,B(O),
0177	V003	362	,sr,o,scr(o),
0178	0480	363	,MPÝ,,SCP(O),
0179	0003		

roc	OBJECT CODE	STMT	SOURCE STATEMENTS
017A	0A00	364	,SFIG,2,0000,
017B	5D01	365	,SHL,1,0001,
017C	5801	366	,ROL,0,0001,
017D	3181	367	,RCPY,0(1),,
017E	4000	368	,LI,0,0000,
017F	04A0	369	,DADD,,SCP2,
0180	0006	5-7	,,,
0181	A006	370	,ST,0,SCP2(0),
0182	A407	371	,ST,1,SCP3(0),
0183	8136	372	,LD,O,BL(1),
0184	0480	373	PFLG,2,0000,
0185	5CFF	374	,SHR,0,0001,
0186	4500	375	,PULL,1,,
0187	A003	376	→,ST,0,SCP(0),
0188	A480	377	,MPY,,SCP(0),
0189	0003	J11	, 1,,501 (0/,
018A	0A00	378	,sflg,2,0000,
018B	5D01	379	,SHL,1,0001,
018C	5801	380	,ROL,0,0001,
018D	3181	381	,RCPY,0(1),,
018E	4C00	382	,LI,0,0000,
018E 018F	04A0	302 383	,DADD,,SCP2(0),
0190	0006	202	,0000,,5012(0),
0190	0200	384	RTS,,,
0191	4000	385	MPYA, PUSH, O,,
-	4100	386	PUSH,1,
0193	8458	387	,LD,1,A(0),
0194		388	,E7,1,A(0), ,ST,0,SCP(0),
0195	A003		,S1,0,367(0),
0196	0480	389	,uri , ,nor(o),
0197	0003	200	,ST,0,SCP2(0),
0198	A006	390	,SI,0,SCF2(0), ,ST,1,SCP3(0),
0199	A407	391	
019A	4400	392	,PULL,0,,
019B	080	393	,PFIG,2,0000,
019C	5CFF	394	,SHR,0,0001,
019D	8458	395	,LD,1,A(0),
019E	V003	396	,ST,0,SCP(0),
019F	0480	397	,MPY,,SCP(O),
01/0	0003	220	051.0.0000
01A1	0A00	398	,SFLG,2,0000,
01VS	5D01	399	,SHL,1,0001,
01 V3	5801	400	,ROL,0,0001,
01A4	3181	401	,RCPY,0(1),,
01/05	4C00	1102	,LI,0,0000,
0146	0440	403	,DADD,,SCP2,
01A7	0006		

LOC	OBJECT CODE	STMT	SOURCE STATEMENTS
01A8	A006	404	,ST,0,SCP2(0),
01A9	A407	405	,ST,1,SCP3(0),
Olaa	810E	406	,LD,O,AL(1),
01AB	0800	407	,PFLG,2,0000,
Olac	5CFF	408	,SHR,0,0001,
Olad	4500	409	,PULL,1,,
Olae	A003	410	,ST,0,SCP(0),
Olaf	0480	411	,MPY,,SCP(0),
01B0	0003	,	, Mr 1 , , DCF (U) ,
OlBl	0000	412	,SFLG,2,0000,
01B2	5D01	413	,SHL,1,0001,
01B3	5801	414	,ROL,0,0001,
01B4	3181	415	,RCPY,O(1),
01B5	4C00	416	,koi1,0(1),,
01B6	Ol4A0	1,17	,DADD,,SCP2(0),
01B7	0006	7-1	, MDD , , DCF2 (U) ,
01B8	0200	418	,RTS,,,
01B9	F902	419	AL,DC,,F902,
Olba	0A68	120	BL,DC,,0A68,
Olbb	8120	1421	INTT, I.D, O, PTEN(1).
Olbc	2921	1422	JSR, FDELAY(1),
OlbD	811F	423	,LD,O,PFIVE(1),
Olbe	2922	1,21,	,JSR,,FDELAY(1),
01BF	811F	425	,LD,O,NFIVE(1),
01C0	2920	426	JSR, FDELAY(1),
01C1	811C	427	,LD,O,NTEN(1),
01C2	291E	1,28	JSR, FDELAY(1),
01C3	8117	429	,LD,O,INT1(1),
01C4	A001	1130	,ST,0,1NT2(0),
0105	4000	431	,LI,0,0000,
0106	A002	1432	,ST,O,TN(O),
0107	4F12	433	,LI,3,0012,
01C8	4E09	434	,LI,2,0009,
0109	Λ200	435	605,ST,0,0000(2),
01C	4A01	436	,AISZ,2,0001,
O1 CB	4 BFF	437	,AISZ,3,OOFF,
Olcc	21FC	1138	,JMP,,605(1),
Olcd	4C5B	439	,LI,0,005B,
Olce	VOIB	440	ST,O,SEXIADD(O),
Olcf	8 05 C	441	,LD,O,REFPIH(O),
0100	AOlc	442	ST,O,REFPH(O),
01D1	805D	443	,LD,O,REFP1L(O),
01D5	VOID	lifili	ST,O,REFPL(O),
0103	4000	445	,LI,0,0000,
		-	,,.,,

LOC	OBJECT CODE	STMT	SOURCE STATEMENTS
01D4	B053	446	,STID,O,POUT(0),
01D5	B054	447	,STID,O,YOUT(0),
01D6	B052	41,8	,STID,O,COUT(O),
01D7	8090	449	,LD,O,CHECK,
03.D8	0900	450	,SFIG,1,0000,
01D9	B052	451	,STID,O,COUT(O),
Olda	202C	452	,JMP,,3(0),
OldB	2020	453	INT1,DC,,2020,
Oldc	FF00	454	PTEN,DC,,FF00,
Oldd	C000	455	PFIVE,DC,,COOO,
Olde	7F00	456	NTEN,DC,,7FOO,
OlDF	14000	457	NITVE, DC, ,4000,
01E0	753C	458	DELAY, DC, ,753C,
01E1	B053	459	FDELAY,STID,O,POUT(0),
01E2	B054	460	,STID,O,YOUT(O),
01E3	14DOE	461	,LI,1,000E,
01E4	81FB	462	900,LD,0,DULAY(1),
01E5	48FF	463	901,AISZ,O,OOFF,
01E6	21FE	464	,JMP,,901(1),
01F7	49FF	465	,AISZ,1,00FF,
01E8	21FB	466	,JMP,,900(1),
01E9	0200	467	,RTS,,,
01EA	21D0	468	,JMP,,INTI(1),
01EB	21CF	469	,JMP,,INTI(1),
•	•	•	
0100	0500	470	DARTH TIMETALL
01FE	2500	470 471	,JMPID,,INTI1(1),
01FF	01EA	4/1	INTI1,DC,,OIEA

ROM LOADER LISTING

LOC	OBJECT CODE	STMT	SOURCE STATEMENTS
FF13	OF80	20	TTY, PFIG, 7,0000,
FF14	8182	21	,LD,O,LFCR(1),
FF15	295A	22	JSR, XMIT(1),
FF16	8181	23	,LD,0,OC(1),
FF17	2958	24	JSR.,XMIT(1),
FF18	8180	25	,LD,0,MM(1),
FF19	2956	26	,JSR,,XMIT(1),
FF1A	817F	27	,LD,0,NA(1),
FF1B	2954	28	JSR,,XMIT(1),
FF1C	817E	29	,LD,0,SICD(1),
FEID	2952	30	,JSR,,XMIT(1),
FF1E	2D5 O	31	,JSRID,,50(1),
FF1F	E562	32	,SKG,1,FOUR(1),
FF20	2101	33	,JMP,,11(1),
FF21	21F1	34	,JMP,,TTY(1),
FF22	E55D	35	11,SKG,1,ONE(1),
FF23	2140	36	,JMP,,WRITE(1),
FF24	E55C	37	,SKG,1,TWO(1),
FF25	2131	38	,Jn:P,,READ(1),
FF26	2962	39	LIST, JSR, , WORDR(1),
FF27	E55A	40	,SKG,1,FOUR(1),
FF28	21EA	1,1	,JMP,,TTY(1),
FF29	4000	42	,PUSH,O,,
FT2A	295E	43	,JSR,,WORDE(1),
FF2B	1,700	1, Ĩ4	, PULL, 3, ,
FF2C	£555	115	,SKG,1,FOUR(1),
FF2D	21E5	46	,JAP, ,TTY(1),
FF2E	4000	1,7	,PUSH,O,,
FF2F	1,300	48	,PUSH,3,,
FF30	8166	49	,LD,O,LFCR(1),
FF31	293E	50	,JSR,,YMIT(1),
FF32	8169	51	,LD,0,01.(1),
FF33	293C	52	,JSR,,XMIT(1),
FF34	8168	53	,LD,0,SPC(1),
FF35	293A	54	,JSR,,XMIT(1),
FF36	8167	55	,LD,0,SPSP(1),
FF37	2938	56	,JSR,,XMIT(),
FF38	8166	57	,LD,0,AD(1',
c = 39	2936	58	,JSR,,XMT.(1),
- ,A	8165	59	,LD,O,Ar(1),
r 1' 3B	2934	60	,JSR,,XMIT(1),
FF3C	815A	61	,LD,O,LFCR(1),
FF3D	2932	62	,JSR,,XMIT(1),
FF3E	3158	63	,LD,O,LFCR(1),
FF3F	2930	64	,JSR,,XMIT(1),

ROM LOADER LISTING (Cont)

LOC	OBJECT CODE	STMT	SOURCE STATEMENTS
FF40	4700	65	,PULL,3,,
FF41	4600	66	,PULL,2,,
FF42	3D31	67	,RCPY,3,(1),
FF43	5102	68	,CAI,1,0002,
FF44	3600	69	,RADD,1(2),,
FF45	3D81	70	16,RCPY,3(1),,
FF46	4200	71	PUSH.2.,
FF40 FF47	4300	72	,PUSH,3,,
FF48	2958	73	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
FF49	8154	13 74	,LD,0,SPSP(1),
FF4A	2925	75	, JSR, , XMIT(1),
FF4B	4700	76	,05K,,KMII(17,
FF4C	8700	77	,LD,1,0000(3),
FF4D	4300	78	PUSH,3,,
	-		
FF4E	2952 81.7	79 80	,JSR,,WORDS(1), ,LD,O,LFCR(1),
FF4F	8147		,ED,0,EFCR(1), ,JSR,,XMIT(1),
FF50	291F	81	
FF51	4700	82	,PULL,3,,
FF52	4600	83	,PULL,2,,
FF53	CD2C	84	,ADD,3,ONE(1),
FF54	4AFF	85	,AISZ,2,00FF,
FF55	21EF	86	,лмР,,16(1),
FF56	21BC	87	,JMP,,TTY(1),
FF57	OFOO	88	READ, SFLG, 7,0000,
FF58	2930	89	,JSR,,WORDR(1),
FF59	3381	90	,RCPY,O(3),,
FF5A	4300	91	30, PUSH, 3,,
FF5B	292D	92	,JSR,,WORDR(1),
FF5C	1,700	93	,PULL,3,,
FF5D	E524	94	,SKG,1,FOUR(1),
FF5E	2103	95	,JMP,,31(1),
FF5F	A300	96	,ST,0,0000(3),
FF60	CD1F	97	,ADD,3,ONE(1),
FF61	21F8	98	,JMP,,30(1),
FF62	0F80	99	31,PFIG,7,0000,
FF63	21AF	100	,JMP,,TTY(1),
FF64	5921:	101	WRITE, JSR, , WORDR(1),
FF65	E51C	102	,SKG,1,FOUR(1),
FF66	21AC	103	,JMP,,TTY(1),
FF67	14000	104	,PUSH,O,,
FF68	2920	105	,JSR,,WORDR(1),
7F69	4700	106	,PULL,3,,
ff6a	E517	107	,SKG,1,FOUR(1),
ff6B	21/7	108	,JMP,,TTY(1),
ff6c	A300	109	,st,0,0000(3),
ff6D	21/15	110	,JMP,,TTY(1),
ff6e	0000	111	.DC,,0000,

ROM LOADER LISTING (Cont)

LOC	OBJECT CODE	STAT	SOURCE STATEMENTS
ff6f	FFB8	112	
FF70	0800		50,DC,,FFB8,
FF71	0000	113	XMIT, PFIG, 2,0000,
FF72	2910	114	,SLFG,4,0000,
FF73	4E08	115	JSR, DELAY(1),
FF74	0080	116	,LI,2,0008,
FF75	1301	117	4,PFLG,4,0000,
FF76	0000	118	,BOC,3,3,
FF77	290B	119	,SFLG, 4,0000,
FF78	5CFF	120	3,JSR,,DELAY(1),
FF79	4AFF	121	,SHR,0,0001,
FF7A	2) F9	122	,AISZ,2,OOFF,
FF7B	0C80	123	,JMP,,4(1),
FF7C	2906	124	,PFLG,4,0000,
FF7D	- ·	125	,JSR, DELAY(1),
FF7E	4905 1573	126	,JSR,,DELAY(1),
FF7F	15F1	127	,BOC,5,XMIT,
FF80	0200	128	,RTS,,,
FF81	0001	129	ONE,DC,,0001,
FF82	0002	130	TWO,DC,,0002,
FF83	0004	131	FOUR, DC, ,0004,
FF84	8004	132	DELAY,LD,3,V2(1),
FF85	4BFF	133	2,AISZ,3,00FF,
FF86	21FE	134	,JMP,,2(1),
2.7	0200	135	,omr,,2(1),
FF87	ohgf	136	11 DC 0160
FF88	02F4	137	V1,DC,,046F,
FF89	4C00	138	V2,DC,,O2F4,
FF8A	4EO4	139	WORDR, LI, 0,0000,
FF8B	4200	140	,LI,2,0004,
FF8C	5C04	141	20, PUSH, 2,
FF8D	4000	142	,SHL,0,0004,
FF8E	2929	143	,PUSH,O,,
FF8F	4700] l _i l _i	JSR, ,RECV(1),
FF90	3000	145	,PULL,3,,
FF91	4600	146	,RADD,3(0),,
FF92	E5EF	147	,PULL,2,,
FF93	0200	148	,SKG,1,FOUR(1),
FF94	4AFF	149	,RTS,,,
FF95	21F5	•	,AISZ,2,OOFF,
FF96	0200	150	,JMP,,20(1),
FF97	8A8D	151	,RTS,,,
FF98	CFC3	152	LFCR,DC,,8A8D,
FF99	CDCD	153	OC,DC,,CFC3.
FF9A	CEC1	154	MM,DC,,CDCD,
FF9B	BAC4	155	NA,DC,,CEC1,
FF9C	CFCC	156	SICD, DC, , BACh,
FF9D	V0C3	157	OL,DC,,CFCC,
FF9E	VOVO	158	SPC,DC,,AOC3.
-	nono	159	SPSP,DC,,AOAO,

ROM LOADER LISTING (Cont)

LOC	OBJECT CODE	STMT	SOURCE STATEMENTS
FF9F	C1C4	160	AD,DC,,ClC4,
FFAO	C1D4	161	AT,DC,,ClD4,
FFAl	l4E0l4	162	WORDS, LI, 2, 0004,
FFA2	08A0	163	17,PFLG,2,0000,
FFA3	5904	164	,ROL, 1,000h,
FFA4	3481	165	,RCPY,1(0),,
FFA5	610E	166	AND O BLANK(1).
ffa6	690E	167	,OR,O,C(1),
FFA7	Eloe	168	,SKG,0,C9(1),
ffa8	2109	169	,JMP,,300(1),
FFA9	D142	170	,SUB,O,NINE(1),
FFAA	4100	171	301,PUSH,1,,
FFAB	14200	172	,PUSH,2,,
FFAC	29C3	173	JSR, XMIT(1),
FFAD	4600	174	,PULL,2,,
FFAE	4500	175	,PULL,1,,
FFAF	4AFF	176	,AISZ,2,00FF,
FFB0	21F1	177	,JMP,,17(1),
FFB1	0200	178	,RTS,,,
FFB2	ClOh	179	300,ADD,0,B(1),
FFB3	21F6	180	,JMP,,301(1),
FFB4	000F	181	BLANK, DC,, 000F,
FFB5	0000	182	C,DC,,00CO,
FFB6	0009	183	C9,DC,,OOC9,
FFB7	FFFO	184	B,DC,,FFFO,
FFB8	hD01	185	RECV, LI, 1,0001,
FFB9	14C00	186	,LI,0,0000,
FFBA	1/E07	187	,LI,2,0007,
FFBB	1201	188	6,BOC,14,5,
FFBC FFBD	21FE	189	,JMP,,6(1),
FFBE	გენე 2005	190	5,LD,3,V1(1),
FFBF	29 C5 1 E 01	191	,JSR,,2(1),
FFCO	3400	192	8,B0C,14,7.
FFCl	5D01	193 194	,RADD,1(0),,
FFC2	2900	•	7,SHL,1,0001,
FFC3	1,AFF	195 196	,JSR,,DELAY(1),
FFC4	21FA	197	,AISZ,2,00FF, ,JMP,,8(1),
FFC5	29BD	198	
FFC6	1,D11	190	,JSR,,DELAY(1), ,L1,1,0014,
FFC7	890D	200	,LT,1,001", ,LD,2,DATA(1),
FFC8	14000	201	9,PUSH,0,,
FFC9	D200	202	,SUB,0,0000(2),
FFCA	C9B5	203	,505,0,000(2), ,ADD,2,ONE(1),
FFCB	1104	501	,ROC,1,10,
	110.4		1100111101

roc	OBJECT CODE	STMT	SOURCE STATEMENTS
FFCC	4400	205	,PULL,O,,
FFCD	49FF	206	,AISZ,1,OOFF,
FFCE	21F9	207	,JMP,,9(1),
FFCF	21E8	208	,JMP,,RECV(1),
	4400	209	10,PULL,0,,
FFDO FFD1	6118	210	,AMD,0,TR(1),
FFD2	E518	211	,SKG,1,TEN(1),
	C118	212	,ADD,O,NINE(1),
FFD3 FFD4	0200	213	,RTS,,,
	FFD6	214	DATA, DC, ,FFD6,
FFD5	0030	215	,DC,,0030,
FFD6	0031	216	,DC,,OO°1,
FFD7	0032	217	,DC,,O2,
FFD8	0032	218	,DC,,0033,
FFD9	0034	219	,DC,,0034,
FFDA	0035	220	,DC,,0035,
FFDB	0036	221	,DC,,0036,
FFDC	0037	222	,DC,,9037,
FFDD	0038	223	,DC,,0038,
FFDE	0039	224	,DC,,0039,
FFDF	0039	225	,DC,,0041,
FFEO	0042	226	,DC,,0042,
FFE1	0042	227	,DC,,00 ¹ 43,
FFE2	0043 0044	228	,DC,,00hh,
FFE3	0045	229	,DC,,0045,
FFEh	0045	230	ຸກວັ, ,0046,
FFE5	0021	231	,DC,,0021,
ffe6	004C	232	,DC,,004C,
FFE(0052	233	,DC,,0052,
FFE8	0057	234	,DC,,0057,
FFE9	000F	235	TR,DC,,000F,
FFEA	000A	236	TEN,DC,,OOOA,
FFEB	0009	237	NINE,DC,,0009,
FFEC	0003	238	THREE, DC,, 0003,
FFED	0900	239	,SFLG,1,0000,
FFEE	2500	240	,JMPID,,TTYB(1)
FFEF	FF13	241	TTYB,DC,,FF13,
FFF0	FF13		•
•	•	•	•
•	•	•	•
PFFE	2500	242	,JMPID,,TTYB1(1)
	2500 FF13	243	TTYB1,DC,,FF13,
FFFF	LLIJ	6-7 →	

Appendix E

Definition of Terms

```
E59. (7) and (8)
Α
      : MSP of A
      : LSP of A
                       Eqs. (7) and (8)
AL
AC0
        Accumulator 0 of the TDY-52B
AC1
      : Accumulator 1 of the TDY52-B
AC2
      : Accumulator 2 of the 1 DY-52B
AC3
      : Accumulator 3 of the TDY-52B
ADPH: MSP of ADP
                       Eq. (7)
ADPL: LSP of ADP
                       Eq. (7)
ADPH1: MSP of ADP1
                       Eq. (7)
ADPL1: LSP of ADP1
                       Eq. (7)
ADPH2: MSP of ADP2
                       Eq. (7)
ADPL2: LSP of ADP2
                       Eq. (7)
ADYH: MSP of ADY
                       Eq. (8)
ADYL: LSP of ADY
                       Eq. (8)
ADYH1: MSP of ADY1
                       Eq. (8)
ADYL1: LSP of ADY1
                       Eq. (8)
ADYH2: MSP of ADY2
                       Eq. (8)
ADYL2: LSP of ADY2
                       Eq. (8)
В
         MSP of B
                       Eqs. (7) and (8)
      : LSP of B
                       Eqs. (7) and (8)
BL
```

COUT :

Address of clock latch, a store instruction to this address will cause bits 8 through 15 to be loaded in the clock latch (see Figure 4).

DATA (2+000F₁₆): Used by the flow charts to reference the memory contents at the memory location computed by adding AC2 to 000F₁₆.

F8 : TDY-52B general purpose output flag 8 which may be set at T2 or reset at T6 under software control. There are 6 flags available.

INTEN: Interrupt Enable Flag when set under software control enables TDY-52B internal interrupt structure.

INTRA: TDY-52B interrupt signal input which is sampled under hardware control during T3 to detect an interrupt. If set the next instruction executed is from memory location 0001₁₈.

K2 : K₂ of Eq. (6)

LIFO : Refers to the TDY-52B 16 word by 16 bit Last In/First Out Shift

register, that is, stack.

LSD: Least Significant Digit
LSP: Least Significant Part
MSD: Most Significant Digit
MSP: Most Significant Part

POUT: Address of Pitch Latch, a store instruction to this address will cause bits 8 through 15 to be loaded in the Pitch Latch (see Figure 4).

φ : Gyro Roll position angle.
 Ψg : Gyro Yaw position angle.

PSIG : Ψg

PSIG1: PSIG one sampling period removed.

PSIG2: PSIG two sampling periods removed, Eq. (8).

PULSE: Refers to the setting and resetting of a TDY-52B Flag during the same

microcycle.

REFPH: MSP of current Pitch Reference (see Figure 23). REFPL: LSP of current Pitch Reference (see Figure 23).

REFPH1: MSP of starting value of Pitch Reference for line segment ending at time tg₁ (see Figure 25).

REFPL1: LSP of starting value of Pitch Reference for line segment ending at time tg₁ (see Figure 25).

SEGADD: Address of TG1, TG2 or TG3 (see Figure 23).

SEL: TDY-52B Select Flag.

STACK1: Reference to location one of the LIFO.

 θg : Gyro Pitch position Angle.

THETA: θg

THETA1: THETA one sampling period removed.

THETA2: THETA two sampling periods removed, Eq. (7).

TTY: Mnemonic for ASR-33 Teletype.

TF: Time to zero fins.

TF3 : TF + 100 ms, time to initiate lock fins pyrotechnic

TI : Time to initiate actuator pyrotechnic

TI3 : TI+100 ms

TL: Launch time - not used

T2 : Second Stage ignition time

[AC0+AC1]: Refers to 32 bit word formed by AC0, MSP, and AC1, LSP.