## Ministério da Educação



## Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE Departamento de Ciências Exatas - DCEX



Disciplina: Cálculo Diferencial e Integral I — Semestre: 2021/2 Prof. Me. Luiz C. M. de Aquino

## Lista II

1. Calcule a derivada das funções definidas abaixo.

(a) 
$$f(x) = x^2 \cos x$$
 (c)  $u(a) = \left(1 - \frac{1}{a}\right) \cos a$  (e)  $j(u) = \cos^2 u - \sin^2 u$  (g)  $h(s) = \ln \frac{1}{s}$ 

(b) 
$$g(t) = \frac{1 - t^2}{1 + \text{sen } t}$$
 (d)  $v(r) = \frac{e^r - r^2}{r^3 + r}$  (f)  $w(k) = (1 - 3k^4)^5$  (h)  $i(v) = 2^{v^3 - 1}$ 

2. Determine a reta tangente ao gráfico das funções definidas abaixo nos pontos indicados.

(a) 
$$f(x) = \frac{x-1}{x+1}$$
,  $P = \left(3; \frac{1}{2}\right)$ . (c)  $g(x) = x^2 \log x$ ,  $P = (1; 0)$ .  
(b)  $h(x) = \frac{\sin x}{x}$ ,  $P = \left(\pi; -\frac{1}{\pi}\right)$ . (d)  $j(x) = \cos x e^x$ ,  $P = (0; 1)$ .

3. Em um jogo de naves espaciais, considere que a nave se movimenta ao longo do gráfico da função  $f(x) = \frac{1}{4}x^2 - 3x + 10$ . Além disso, ao disparar um projétil, ele seguirá a trajetória da reta tangente ao gráfico de f na posição em que a nave está, como ilustra a figura abaixo. Nessas condições, se a nave está no ponto (3, f(3)), então o projétil atingirá o solo (eixo x) em que posição?



- 4. Usando o fato de que  $[\cos x]' = -\sin x$ , exiba um desenvolvimento para justificar que  $[\arccos x]' = -\frac{1}{\sqrt{1-x^2}}$ .
- 5. Usando o fato de que  $[\sin x]' = \cos x$ , exiba um desenvolvimento para justificar que  $[\arcsin x]' = \frac{1}{\sqrt{1-x^2}}$ .

## Gabarito

[1] (a) 
$$f'(x) = -x^2 \sin x + 2x \cos x$$
. (b)  $g'(t) = \frac{t^2 \cos t - 2t \sin t - 2t - \cos t}{(1 + \sin t)^2}$ 

[1] (a) 
$$f'(x) = -x^2 \sin x + 2x \cos x$$
. (b)  $g'(t) = \frac{t^2 \cos t - 2t \sin t - 2t - \cos t}{(1 + \sin t)^2}$ .  
(c)  $u'(a) = -\frac{a^2 \sin a - a \sin a - \cos a}{a^2}$ . (d)  $v'(r) = \frac{r^4 + r^3 e^r - 3r^2 e^r - r^2 + re^r - e^r}{(r^3 + r)^2}$ .

(e) 
$$j'(u) = -2 \operatorname{sen} 2u$$
. (f)  $w'(k) = -60k^3 (1 - 3k^4)^4$ .

(g) 
$$h'(s) = -\frac{1}{s}$$
. (h)  $i'(v) = (3 \ln 2) 2^{v^3 - 1} v^2$ .

(e) 
$$j'(u) = -2 \operatorname{sen} 2u$$
. (f)  $w'(k) = -60k^3 (1 - 3k^4)^4$ . (g)  $h'(s) = -\frac{1}{s}$ . (h)  $i'(v) = (3 \ln 2) 2^{v^3 - 1} v^2$ . [2] (a)  $y = \frac{1}{8}x + \frac{1}{8}$ . (b)  $y = -\frac{1}{\pi}x + \frac{\pi - 1}{\pi}$ . (c)  $y = \frac{1}{\ln 10}x - \frac{1}{\ln 10}$ . (d)  $y = x + 1$ . [3] Posição:  $B = (\frac{31}{6}, 0)$ . [4] Sugestão: comece calculando  $[\cos (\arccos x)]' = [x]'$ . [5] Sugestão: comece calculando  $[\sin (\arccos x)]' = [x]'$ .

(c) 
$$y = \frac{1}{\ln 10}x - \frac{1}{\ln 10}$$
. (d)  $y = x + 1$ .

[3] Posição: 
$$B = (\frac{31}{6}, 0)$$
.

[4] Sugestão: comece calculando 
$$[\cos(\arccos x)]' = [x]'$$
.

[5] Sugestão: comece calculando 
$$[sen (arcsen x)]' = [x]'$$
.