

SOLUCIONES GUÍA Nº 4 DE CÁLCULO I

N°1 a)

t	f(t)	f'(t)
Tiempo	Deuda	-Tasa de crecimiento de la deuda -Razón de cambio de la deuda
Años	Millones dólares	$_{-}$ Millones Dòlares $_{lpha ilde{n}o}$ -Millones dólares por año

- b) dom f = [0,20]
- La deuda de estados unidos al inicio de 1990 es de 3.247,7 millones de dólares

d) Derivada:
$$\frac{df}{dt} = -0.44t^3 + 10.77t^2 - 57.82t + 271.85$$

Valor:
$$\frac{df}{dt}(10) = 330,65$$

Posibles interpretaciones:

- Transcurrido 10 años la tasa de crecimiento de la deuda nacional de EEUU corresponde a 330,65 millones de dólares por año (o 330.650.000 dólares por año)
- La deuda de EEUU transcurrido 10 año aumento a razón de 330,65
 millones de dólares por año

N°2 a)

t	p(t)	p'(t)	
Tiempo	Población	-Tasa de crecimiento de la población	
Петтро	Poblacion	-Razón de cambio de la población	
Años	Miles habitantes	- Miles de habitantes/año -Miles de habitantes por año	

b) dom p = [0,12]

c) Dentro de 5 años se estima que la población sea de 322.521 habitantes

Derivada:
$$\frac{dp}{dt} = 0.75 \cdot e^{0.75 t}$$

Valor:
$$\frac{dp}{dt}(9) \approx 640,544$$

Posibles interpretaciones:

- La tasa de crecimiento de la población trascurrido nueve años será de 640.544 personas por año (o 640,544 miles de habitantes por año)
- La población transcurrido 9 año aumenta a razón de 640.544
 personas por año

N°3 a)

x	I(x)	I'(x)		
Tiomno	Impuesto	-Tasa de crecimiento del impuesto		
Tiempo	Predial	-Razón de cambio del impuesto		
Años	Miles de	_ miles de pesos/año		
	pesos	-Miles de peso por año		

b) Derivada:
$$I'(x) = 2x \cdot e^x + (x^2 + 50) \cdot e^x$$

Valor: I'(6) = 39536,02176

Posibles interpretaciones:

- La tasa de crecimiento del impuesto predial a inicios del año 2011 corresponde a 39.536.022 pesos por año (o 39.536,022 miles de pesos por año)
- La razón de cambio del impuesto predial a inicios del año 2011 corresponde a 39.536.022 pesos por año (o 39.536,022 miles de pesos por año)

N°4 Derivada : $V'(t) = 10e^{0.8t}$

Valor: $V'(5) \approx 545,9815$

La tasa de **crecimiento** de las ventas trascurrido 5 meses corresponde a 545.982 **pesos por mes**. (o 545,982 miles de pesos por mes)

N°5 a)

t	s(t)	s'(t)	s''(t)
Tiempo	Posición	Rapidez Instantánea	Aceleración Instantánea
Minutos	km	- km/ _{minutos} -Kilómetros por minutos	- km/ _{minutos²} -Kilómetros por minutos²

b)

Derivada: s'(t) = 0.04t s''(t) = 0.04

Valor: s(30) = 23 s'(30) = 1,2 s''(30) = 0,04

Interpretación:

- A los **30 minutos** de su partida el ciclista se encuentra en el **kilómetro 23**
- -La rapidez instantánea a los 30 minutos de su partida corresponde a 1,2 **km/min**
- -La aceleración instantánea a los 30 minutos corresponde a 0,04 km/min²

N°6

Derivada:
$$d'(t) = 3x^2e^{x-5} + x^3e^{x-5}$$

$$d''(t) = 6xe^{x-e} + 6x^2e^{x-5} + x^3e^{x-5}$$

Valor:
$$d'(3) \approx 7.31$$

$$d''(4) \approx 67,69$$

La rapidez instantánea del automóvil a las 3 horas es de 7,3 km/h y su aceleración instantánea a las 4 horas corresponde a 67,7 km/h².

N°7 a)

t	f(t)	f'(t)	$f^{\prime\prime}(t)$
Tiempo	Posición	Rapidez Instantánea	Aceleración Instantánea
minutos	cm	- centímetros por minuto	- centímetros por minutos ²

- b) dom f = [0,3]
- c) Inicia su recorrido a los 45 cm del punto de partida

c) Derivada:
$$f'(x) = 3t^2 - 2t + 18$$
 $f''(x) = 6t - 2$

Valor:
$$f'(2) = 26$$
 $f''(2) = 10$

La rapidez instantánea que lleva el carro a los 2 minutos corresponde a 26 cm/min y la aceleración instantánea es de 10 cm/min².

N°8 a)

t	V(t)	V'(t)		
Tiempo	Volumen	-Razón de cambio del volumen -Taza de decrecimiento del volumen		
minutos	galones	- galones/minuto -Galones por minutos		

$$V'(t) = 100.000 \cdot 2 \cdot \frac{-1}{60} \cdot \left(1 - \frac{t}{60}\right) \qquad \Rightarrow \qquad V'(t) = \frac{-10.000}{3} \cdot \left(1 - \frac{t}{60}\right)$$

c) Valor: $V'(30) \approx -1666,66$

Posibles interpretaciones:

-La rapidez instantánea a los 30 minutos, con la que el agua sale del depósito corresponde a 1.667 galones por minuto.

-A los 30 minutos, el agua **sale** del depósito a una **razón** de 1.667 **galones por minuto**

N°9

Derivada:
$$c'(x) = \frac{0.15(t^2 + 0.81) - 0.15t \cdot 2t}{(t^2 + 0.81)^2}$$
 Valor:

$$c'(2) \approx -0.0207$$

Posibles interpretaciones:

-A las dos horas la concentración de medicamento está **disminuyendo** en 0,0207 **ml/hr.**

-La rapidez con la que **disminuye** la concentración de medicamento a las dos horas de su aplicación es de 0,0207 **ml/hr**

N°10

Derivada:
$$p'(t) = \frac{24(t^2+1)-(24t+10)\cdot 2t}{(t^2+1)^2}$$

Valor: $p'(1,5) \approx -5,6804733$

Posibles interpretaciones

-La rapidez instantánea a las 1,5 horas con la que **disminuye** la población, es de 5.680 **bacterias por hora**.

-la tasa de **decrecimiento** de la población a las 1,5 horas es de 5.680 **bacterias por hora.**

N°11 a)

Variables	Significado	Unidad de Medida
x	x Cantidad de fertilizante	
I(x) Ingreso		pesos
I'(x)	-Ingreso marginal -Tasa de crecimiento de los ingresos -Razón de cambio de los ingresos	- ^{pesos} / _{kilo} -Pesos por kilo
C(x)	costos	pesos
C'(x)	-Costo marginal -Tasa de crecimiento de los costos -Razón de cambio de los costos	- ^{pesos} / _{kilo} -Pesos por kilo

b) Derivada : I'(x) = 18000 - 4x

c) Valor: I(30) = 538.200

- Al vender 30 kilos de fertilizante, el ingreso será de 538.200 pesos

Valor: I'(30) = 17.880

Posibles interpretaciones:

- Si la producción es de 30 kilos de fertilizante, la tasa de **crecimiento** del ingreso será de 17.880 **pesos por kilógramo**

- Si la producción es de 30 kilos de fertilizante, el **ingreso marginal** será de 17.880 **pesos por kilógramo**

d) Derivada : C'(x) = 1000 + 2x

e) Valor: C(30) = 30.900

- El costo de 30 kilos de fertilizante será de 30.900 pesos

Valor: C(30) = 1060

Posibles interpretaciones:

 Si la producción es de 30 kilos de fertilizante, la tasa de crecimiento del costo será de 1.060 pesos por kilógramo

- Si la producción es de 30 kilos de fertilizante, el **costo marginal** será de 1.060 **pesos por kilógramo**

N°12 a)

Variables	Significado	Unidad de
Variables	Significado	Medida
x	Cantidad de productos	unidades
I(x)	Ingreso	dólares
I'(x) = IM	-Ingreso marginal -Tasa de crecimiento de los ingresos -Razón de cambio de los ingresos	- dólares/unidad -dólares por unidad
C(x)	costos	pesos
C'(x) = CM	-Costo marginal -Tasa de crecimiento de los costos -Razón de cambio de los costos	- dólares/unidad -dólares por unidad

b) Derivada : IM(x) = 50 y CM(x) = -0.01 Valor: IM(700) = 50 y CM(700) = -0.01

dólares por unidad

- Si la producción es de 700 unidades, la tasa de decrecimiento del costo será en 0,01 dólares por unidad
 O Si la producción es de 700 unidades, el costo marginal será de -0,01
- Si la producción es de 700 unidades, la tasa de crecimiento del ingreso será de 50 dólares por unidad
- O Si la producción es de 700 unidades, el **ingreso marginal** será de **50 dólares por unidad**

N°13 Derivada : c'(x) = 40 i'(x) = 100 - 0.02x Valor: c'(24) = 40

i'(59) = 98,82

Si la producción es de 24 litros, la tasa de crecimiento del costo será en
40 dólares por litro.

O Si la producción es de 24 litros, el **costo marginal** será de **40 dólares por litro**

 Si la producción es de 59 litros, la tasa de crecimiento del ingreso será de 98,9 dólares por litro

O Si la producción es de 59 litros, el **ingreso marginal** será de **98,9 dólares por litro**

N°14

Derivada :
$$p'(t) = \frac{5e^{-0.5t}}{\left(1 + 10e^{-0.5t}\right)^2}$$
 Valor: $p'(5) \approx 0.123$

Posibles interpretaciones

-La rapidez instantánea de esparcimiento del rumor a las 5 horas corresponde a un 12,3% de la población por hora

-la tasa de **crecimiento** del rumor a las 5 horas corresponde a un 12,3% de la población por hora

N°15

Derivada :
$$C'(t) = 0.2 \cdot e^{\frac{-t}{2}} - \frac{1}{10}t \cdot e^{\frac{-t}{2}}$$

Valor: $C'(1) \approx 0.06$ C'(2) = 0 $C'(3) \approx -0.0223$

-la tasa de **crecimiento** del % de alcohol en la sangre a cabo de una hora es de 0,06**% por hora,** es decir, el % de alcohol está aumentando en la sangre a 0,06**% por hora**.

-la tasa de **crecimiento** del % de alcohol en la sangre a cabo de dos hora es de 0,0**% por hora, es decir,** el % de alcohol no está aumentando en la sangre.

-la tasa de **decrecimiento** del % de alcohol en la sangre a cabo de tres horas es de 0,02% **por hora,** es decir, el % de alcohol está disminuyendo en la sangre a 0,02% **por hora**.

N°16

Derivada:
$$p'(t) = \frac{-50t^2 + 800}{(t^2 + 16)^2}$$
 Valor: $p'(3) = 0.56$;

$$p'(7) \approx -0.39$$

- A los 3 días del primer caso reportado la rapidez con que aumenta del % de estudiantes que sufre la enfermedad es de 0,56**% por día.** En otras palabras a los 3 días la tasa de **crecimiento** del % de estudiantes que sufre la enfermedad es de 0,56**% por día**
- A los 7 días del primer caso reportado la rapidez con que disminuye % de estudiantes que sufre la enfermedad es de 0,39% por día. En otras palabras a los 7 días la tasa de **decrecimiento** del % de estudiantes que sufre la enfermedad es de 0,39**% por día**
- N°17 Derivada : $Q'(t) = 3t^2 4t + 6$ Valor: Q'(0,5) = 4,75 La corriente que pasa a los 0,5 minutos por el alambre corresponde a 4,75 amperes (coulombs/seg.).
- **N°18** Derivada : p'(t) = 12x + 5 Valor: p'(10) = 125

Transcurridas 10 semanas la tasa de **crecimiento** de la población corresponde a 125 **personas por semana**.

N°19 Derivada :
$$p'(t) = 20x + 50e^{0.04x}$$
 Valor: $p'(15) \approx 391.11$

- A los 15 días la población crecerá a una razón de 391 conejos por día
- La tasa de crecimiento a los 15 días será de 391 conejos por día

N°20	Derivada : $c'(x) = 50$	i'(x) = 100	Valor:	i'(60) = 100	c'(50) = 50
	- Si la producción es de será en 50 dólares por	•	la tasa de	e crecimiento	del costo
	- Si la producción es de (60 unidades,	la tasa de	crecimiento	del ingreso

será de 100 **dólares por unidad**

N°21	Derivada: $\frac{d'(t) = 9t^2 + 36t + 55}{d''(t) = 18t + 36}$	Valor:	d'(2) = 163 d''(1,5) = 63
	La rapidez instantánea del carrito a los 2	minutos es d	le $163 \frac{cm}{seg}$
	La aceleración instantánea del carrito a lo	s 1,5 minuto	os es de $63 \frac{cm}{seg^2}$