DESIGN METHODOLOGY OF AN AUTOMATED SCATTERING MEASUREMENT FACILITY(U) AIR FORCE INST OF TECH MRIGHT-PATTERSON AFB ON SCHOOL OF ENGINEERING D G MAZUR DEC 85 AFIT/GE/ENG/85D-26 F/G 17/9 AD-A163 896 1/2 NL ' UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHART
NATIONAL PURPAGE OF STANDARDS 1964 A

FILE COPY

DESIGN METHODOLOGY OF AN AUTOMATED

SCATTERING MEASUREMENT FACILITY

THESIS

David G. Mazur First Lieutenant, USAF

AFIT/GE/ENG/85D-26

DISTRIBUTION STATEMENT A

Approved for public releases

Distribution Unlimited

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

86 2 13 014

DESIGN METHODOLOGY OF AN AUTOMATED

SCATTERING MEASUREMENT FACILITY

THESIS

David G. Mazur First Lieutenant, USAF

AFIT/GE/ENG/85D-26

Approved for public release; distribution unlimited

DESIGN METHODOLOGY OF AN AUTOMATED SCATTERING MEASUREMENT FACILITY

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Electrical Engineering

David G. Mazur

First Lieutenant, USAF

December 1985

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/

Availability Codes

Dist
Avail and for
Special

Approved for public release; distribution unlimited

Preface

The purpose of this thesis was to investigate the design methodology behind an automated scattering measurement facility. Perhaps the main benefit to the U.S. Air Force from this thesis was the establishment of an operating facility at the Air Force Institute of Technology (AFIT) WPAFB, OH. Being a student myself, the software from this thesis was written with students in mind. They should find the operation of AFIT's facility relatively easy, thus letting them concentrate more on the results of the measurements rather than the procedures.

I would like to thank some of the people who gave me direction and assistance throughtout this thesis effort. First, I would like to express my appreciation to my thesis advisor, lLt Randy Jost, for his insight into RCS measurements and his patience throughout the whole year. I would also like to acknowledge 2Lt John Joseph for his assistance in the hardware configuration used in the chamber. He allowed me the luxury of being able to concentrate on the software side of the house. Also I would like to thank Jack Tiffany and his men at AFIT's Model Fabrication Shop for providing high quality professional help in the manufacture of the standard sphere and tunnels for the horn antennas. Finally I would like to thank my lovely wife, Sandy, for putting up with what seemed an endless series of sacrifices throughout the year and a half here at AFIT. Pau Hana.

David G. Mazur

Table of Contents

•		Page
Preface		ii
List of Figures	• • • • • • • • • • • • • • • • • • • •	v
List of Tables		vi
Abstract		vii
I. Introduction	• • • • • • • • •	1
Problem Scope General Approach Sequence of Presentation Historical Survey		2 3 3 4 4
II. Theoretical Background		7
Electromagnetic Theory		7 15 22
III. Hardware		25
Anechoic Chamber		26 28 36 40 42 47 48
IV. Software		49
ObjectiveSystemApplications		49 50 50
V. Results and Discussion		57
Recommendations	• • • • • • • • • • • • • • • • • • • •	59
Appendix A: Equipment List		63
Appendix B: Device's HP-IB Address and Capabilities		64

		Page
Appendix C:	Software Description	65
Appendix D:	Software Listing	80
Appendix E:	Sample RCS Plots	93
Bibliography		96
Vita		98

List of Figures

Figu	re I	Page
1.	Relationship of Incident and Scattered Waves	8
2.	Spherical and Plane Wave Fronts at the Scatterer	10
3.	CW Cancellation Requirements	14
4.	CW System Components	16
5.	Vector Subrtraction	17
6.	RCS of Sphere	20
7.	Error in RCS due to Background Reflections	24
8.	AFIT's Anechoic Chamber	27
9.	RF System	29
10.	Waveguide Configuration	33
11.	Limit Light Circuit	39
12.	Multiplexer Terminal Card	41
13.	HP-IB Connector Pin Designators	44
14.	HP-IB Structure	45
15.	HP-IB Message Format	46
16.	Printer Output	54
17.	Plotter Output	55
18.	Main Program	65
19.	Pplot Subroutine	68
20.	RCS Subroutine	73
22.	Flat Plate RCS	94
23	Corner Reflector and Sahera RCS	Q.5

<u>List of Tables</u>

Table		Page	
1.	Scaled	Parameters	13

Abstract

This thesis addresses the design methodology surrounding an automated scattering measurement facility. A brief historical survey of radar cross-section (RCS) measurements is presented. The electromagnetic theory associated with a continuous wave (CW) background cancellation technique for measuring RCS is discussed as background. In addition, problems associated with interfacing test equipment, data storage and output are addressed. The facility used as a model for this thesis is located at the Air Force Institute of Technology, WPAFB, OH. Even though this paper addresses a particular facility, the design methodology applies to any automated scattering measurement facility. A software package incorporating features that enhance the operation of AFIT's facility by students is presented. Finally, sample outputs from the software package illustrate formats for displaying RCS data.

DESIGN METHODOLOGY OF AN AUTOMATED SCATTERING MEASUREMENT FACILITY

I. Introduction

Since the advent of radar during WWII, builders of aircraft have attempted to circumvent the detection process by a variety of techniques. These have included everything from crude noise jammers to chaff. These countermeasures in turn have led to more sophisticated radars that attempt to negate any electronic countermeasures (ECM) with techniques such as phase encoded pulses and coherent detection. The electronic warfare (EW) community has also risen to its current level of technology employing digital radio frequency memories (DRFM) and sophisticated techniques attacking the processors of the modern radar.

The common thread that relates the performance of all radars is the radar cross-section (RCS) of the target. By exploring the radar cross-section of different targets in the laboratory environment, much insight can be gained on how to reduce the radar cross-section.

Reducing the radar cross-section leads to a reduction in the maximum detection range of the radar. An automated scattering measurement facility provides the user the capability of quickly making the radar cross-section measurement, of storing radar cross-section data for future reference or comparison, and enhancing the repeatability of the measurement.

Much effort has been expended, and progress has been made on analytical techniques for establishing the RCS of specific targets. However, when one considers that there are only a few simple bodies where the exact solution of its electromagnetic scattering cross-section is known, the importance of experimentally establishing the RCS becomes apparent. While there are very good approximate solutions to many "simple" scattering problems, these usually break down at certain aspect angles and frequencies. Even with the present emphasis on these solutions, experimental results play a very important part in the development and verification of these solutions. More complicated targets, such as aircraft, often prove to be too complex for either exact or approximate solutions, and so experimental data becomes a very important avenue for collection of needed RCS data.

An anechoic chamber that is to be used primarily for measuring RCS will have stricter requirements than a chamber that is primarily used for antenna measurements. This is due to the two way path involved with RCS measurements. In a continuous wave (CW) system the background components of the return signal must be cancelled out so as to obtain the true RCS. One technique is to mix a properly adjusted portion of the transmitted signal with the received signal, such that the background signal is cancelled. At this point the target is placed into the chamber, being careful not to disturb the chamber in any manner, and an RCS measurement is taken.

Problem

The purpose of this study is to address the methodology involved

with the design of an automated scattering measurement facility and the problems encountered in this endeavor.

An automated chamber offers several advantages over a standard chamber. An automated chamber utilizes a computer as a controller to provide a way of extracting data automatically, processing the data and storing the radar cross-section data for future use. The stored data may then be retrieved at a later date for computer processing. Since all measured scattering data is relative data and frequently requires normilization and scaling to operational frequencies, receiving equipment capable of digital storage is highly desirable.

Scope

While design methodology is system independent, it will be examined in the form of a specific system. This study will be limited in scope to the anechoic chamber, with associated equipment, located at the Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH. More specifically, a near monostatic chamber whose primary purpose is as much educational as research orientated.

General Approach

The total design concept for a chamber of this nature can be broken down into two broad categories: Hardware and Software. Since hardware and software are intimately associated with each other, both topics will be discussed in this study. In addition, the system stability and sensitivity will be addresed, as measurement of low RCS targets is a major driving force of this chamber.

More specifically, the hardware topics will cover the following:

- 1. Chamber
- 2. RF System
- 3. Positioning of Target
- 4. Data Acquisition
- 5. Interface/Bus Structures
- Controller

The software topics cover the following concepts:

- 1. Easy Start Up
- 2. User Friendliness
- 3. Menu Driven
- 4. Soft Keys/Default Values
- CRT Viewing
- 6. Data Output
- 7. Plotting Multiple Data Sets
- 8. Error Trapping
- 9. Exit to BASIC

Sequence of Presentation

A historical survey of RCS measurement is presented to give the reader a perspective in the development of RCS measurements. In Chapter II the theory of RCS measurements is discussed in relation to a CW near monostatic system and what factors are involved when automating the system. The hardware and its associated problems will be covered in Chapter III with the software being discussed in Chapter IV. Results and discussion are presented in Chapter V with recommendations following in Chapter VI.

Historical Survey

To better prepare the reader to understand the concepts involved in RCS measurements, a brief historical survey is appropriate. Ever since the initial experiments with radio waves the phenomenon of scattering has been observed. As early as 1886, Heinrich Hertz showed

that radio waves could be scattered by both metallic and dielectric bodies. Skolnik [1:8] writes that a German engineer by the name of Hulsmeyer designed an "obstacle detector" that detected the scattering from ships. In 1904 he obtained patents in several countries, but the device was rejected by the German Navy. The technology of the day allowed a detection range of only one nautical mile; not much better than a visual observer.

AND TOWNS AND A

Marconi, in a speech delivered to the Institute of Radio Engineers [2:215-238] in 1922, suggested the use of radio waves for detection of targets miles away. Marconi recognized the plausibility of designing an apparatus to "screen the receiver from the local transmitter." This concept is the basis for modern unmodulated CW RCS measurement techniques.

Work investigating the reflection and scattering of radio waves from the ionosphere led to two widely used techniques in RCS measurement. In 1925 Breit and Tuve [3:554-575] applied a pulse technique to measure the height of the ionosphere. In addition, Appleton and Barnett [4:333-334] used frequency modulation in their work with the ionosphere.

The first attempt to quantify RCS measurements occurred during World War II when radar was becoming more widely used. It come as no surprise that the people involved in the development of radar also became involved with RCS measurement. The M.I.T. Radiation Laboratory investigated the radar returns from operational targets such as aircraft and ships. As early as 1942 measurements of models in anechoic rooms were being made by the laboratory [5].

Military applications again provided the driving force behind the development of RCS measurements. Ohio State University (OSU) [6] established the first comprehensive RCS measurement facility to obtain aircraft RCS data for to use in the design of decoys to confuse radar operators. The OSU system [7:902] started out as a CW system utilizing a three element Yagi array inside a waveguide to achieve the required separation between transmitted and received signals. The Yagi array inside the waveguide had the same directivity as a many-element Yagi and was capable of a relatively high degree of isolation, albeit for a short period of time. The Yagi array was eventually replaced by a waveguide hybrid tee. This configuration, conceived during World War II, is still in use today.

Blacksmith [7:903] writes that within a few years following the end of World War II, CW measurements were being make by the Naval Research Laboratory, Evans Signal Laboratory, Air Force Cambridge Research Center and McGill University.

What was probably the first anechoic chamber designed well enough to allow accurate indoor measurement of low RCS targets was described in a 1956 report [8] by Upson and Hines of Ohio State University. It is from these roots that RCS measurements in anechoic chambers have risen. Today there approximately 400 chambers in existance [9:484]. Most are involved with antenna measurements, but more and more are being designed and utilized as RCS measurement facilities.

II. Theoretical Background

Principles governing the radar cross-section measurements of a target are relatively few. These principles, when correctly applied in the design of an automated chamber, allow a high degree of quality in radar cross-section measurements.

These principles can be summarized as follows:

- Electromagnetic theory. This includes the definition of radar cross-section, plane wave approximation, electromagnetic similitude and power relationships.
- 2) Background cancellation. This includes the techniques used to reduce the effects of clutter from the walls and leakage from RF components.
- 3) Communication Theory. This includes the errors caused by the background signals and their effect on the accuracy of the measured radar cross-section.

Electromagnetic Theory

Definition of Radar Cross-Section. The radar cross-section can be defined as [10:33]

$$\sigma(\theta, \phi, \theta_i, \phi_i) = \lim_{R \to \infty} 4\pi R^2 |\overline{S_r^S(\theta, \phi)}| / |\overline{S^I(\theta_i, \phi_i)}|$$
 (1)

where R, θ , ϕ are spherical coordinates with the target not located at the origin (Fig. 1). $S^{\frac{1}{2}}$ is the time average Poynting vector of the plane wave incident on the target from the direction θ_1 , ϕ_1 and $S^{\frac{5}{2}}$ is the radial component of the scattered time averaged Poynting vector in

Fig. 1. Relationship of Incident and Scattered Waves

the direction θ , ϕ at the far field distance R from the target.

In AFIT's chamber, R is evaluated in the direction of the backscatter. Under these conditions σ is called the backscatter cross-section. If R was evaluated in any other direction it would be called the bistatic cross-section. If R is of sufficient distance (to be defined in a later section) the scattered wave will be planar and will have only transverse components. Therefore, using the definition for the Poynting vector [11:8]

$$S_{\mathbf{r}}^{S}(\theta, \phi) = \left[\operatorname{Re} \, \widehat{\mathbf{r}} \cdot (E^{S} \times H^{S^{*}}) \right] / 2$$

$$= \operatorname{Re} \left[E_{\theta}^{S}(\theta, \phi) H_{\phi}^{S^{*}}(\theta, \phi) - E_{\phi}^{S}(\theta, \phi) H_{\theta}^{S^{*}}(\theta, \phi) \right] / 2$$

$$(2)$$

where $\textbf{E}^{\textbf{S}}$ and $\textbf{H}^{\textbf{S}}$ are the scattered electric and magnetic fields and $\boldsymbol{\widehat{r}}$ is

the unit vector in the radial direction.

A typical target would generally take a linearly polarized incident wave and scatter a wave that is elliptically polarized. Since an elliptically polarized wave would contain both θ and ϕ components, both components would have to be measured to corectly define the radar cross-section of a particular target. For the purpose of this paper the definition will be limited to a preferred polarization, since most radars use the same polarization in both transmit and receive channels. Thus the definition of radar cross-section will be [7:903]

$$\sigma(\theta, \phi, \theta_i, \phi_i) = 4\pi R^2 \left[W^s(\theta, \phi) / W^i(\theta_i, \phi_i) \right]$$

$$= 4\pi R^2 \left[\left| E^s(\theta, \phi) \right|^2 / \left| E^i(\theta_i, \phi_i) \right|^2 \right]$$
(3)

where $E^{s}(\theta,\phi)$ is the scattered electric field (E-field) whose polarity is parallel to the polarization of the incident wave, $E^{i}(\theta_{i},\phi_{i})$. The power density associated with the scattered E-field is $W^{s}(\theta,\phi)$ and the power density associated with the incident E-field is $W^{i}(\theta_{i},\phi_{i})$. R is the distance from the scatterer in the far field. It should be noted that there are some targets, such as flat plates, that don't depolarize and Eq (3) would be the true radar cross-section.

Plane Wave Approximation. The phase and amplitude of the scattered wave from a target has a direct relationship to the incident wave. Since most targets are detected in the far field, an attempt is made to define this same area inside the anechoic chamber. The target is placed at a distance R that will guarantee, within prescribed limits, the incident wave will approach the characteristics of a plane

wave. In effect, that is saying that the measurement is independent of R.

To determine the minimum distance where this can be achieved, assume that a uniformly illuminated circular antenna with aperture of diameter D illuminates a target with a maximum dimension of L at a distance R. The far-zone field from this antenna and the plane wave field are [7:906]

$$E_{a} = [A_{1} \exp(-jkR) J_{1}(\pi D \sin \theta / \lambda)] / (\pi D \sin \theta / \lambda)$$

$$E_{p} = A_{2} \exp(-jkR)$$
(4)

where A_1 and A_2 are proportionality constants, λ is the wavelength, k is the propagation vector and $J_1(u)$ is the Bessel function of order one. In the design of a chamber, R is chosen such that E_a and E_p are the same over the area concerned within acceptable limits. When working with Eq (4) three minimum values of R are obtained. These are due to the transverse variation in phase (R_p) , the radial variation in amplitude (R_{ra}) , and the transverse variation in amplitude (R_{ta}) .

From Fig. 2 the following information can be obtained.

Fig. 2. Spherical and Plane Wave Fronts at the Scatterer

Let ϵ and δ represent the deviation from a plane wave for amplitude and phase respectively. From the geometry of Fig. 2

$$(R + \delta)^2 = (L / 2)^2 + R^2$$
 (5)

which leads to

$$R^2 + \delta^2 + 2R\delta = (L^2 / 4) + R^2$$
 (6)

$$\delta^2 + 2R\delta - (L^2 / 4) = 0 (7)$$

if $R >> \delta$ then Eq (7) can be approximated by

$$\delta = L^2 / 8R \tag{8}$$

or

$$R = L^2 / 8\delta \tag{9}$$

For the purpose of this paper the acceptable phase error will be 22.5 degrees which corresponds to a path difference of λ /16. Therefore R_p represents the minimum range that the target can be placed at and not have the phase error exceed 22.5 degrees over the target.

For the radial varition in amplitude

$$[E(R - L/2) - E(R + L/2)] / E(R) = \epsilon$$
 (10)

combining Eqs (4) and (10)

$$R_{ra} = L / \epsilon \tag{11}$$

A typical value for ϵ might be 0.05. Therefore R $_{\rm ra}$ represents the minimum range where the target can be placed and the incident wave does

not vary by more than 5%.

The transverse amplitude variation, when the maximum target dimension is perpendicular to the direction of propagation, is

$$R_{ta} = (L\pi D / \lambda) / (4\sqrt{2\epsilon})$$
 (12)

When determining the minimum distance the three values (R_p , R_{ta} , R_{ra}) are calculated and the largest one is chosen to ensure all three requirements are met.

Electromagnetic Similitude. Fortunately one principle of electromagnetics allows measurement of the radar cross-section of targets that are too large to be practical in a chamber. Often the radar cross-section of aircraft, ships or land vehicles can be obtained through the use of models. The principle that guarantees reliable results is electromagnetic similitude. Simply put, an electromagnetic system will give equivalent results at all frequencies as long as linear passive quantities/parameters are properly scaled with respect to the frequency used [12:11]. For example,

$$L_2 = (\lambda_2 / \lambda_1) L_1 = (f_1 / f_2) L_1$$
 (13)

where \mathbf{L}_2 is the linear model dimension at frequency \mathbf{f}_2 and \mathbf{L}_1 is the linear model dimension at \mathbf{f}_1 . Table I shows the relevant relationships.

TABLE I
Scaled Parameters

Quantity	Full-Scale System	Model System
Length	ı	l' = l/p
Time	t	t' = t/p
Frequency	f	f' = fp
Wavelength	λ	$\lambda' = \lambda/p$
Propagation constant	k	k' = pk
Conductivity	σc	$\sigma_e' = p\sigma_e$
Inductive capacity	e	€′ =€
Permeability	μ	$\mu' = \mu$
Impedance	E	z' = z
Antenna gain	£	g' - g
Scatter cross section	σ	$\sigma' = \sigma/p^2$

Scale models of targets can be employed in the chamber to obtain the true radar cross-section of the full size target when linear media and materials are used. The limiting factor is the accuracy of models involved. At low frequencies some of the physical structures such as openings, gaps, or stores do not contribute to the radar cross-section as they would at higher frequencies. The radar cross-section from a UHF, VHF or HF radar can be easily modeled because the electrically small features don't contribute significantly. But as the radar frequencies rise these small features become electrically larger. Therefore, for the measurement frequency, the model must duplicate these features accurately, with high tolerances.

Power Relationships. When measuring targets with low radar cross-section the power requirement become the limiting factor. Take, for example [7:911], a target with 35 dB variation in cross-section. As will be explained later in this chapter, an accuracy of $\pm 1/2$ dB requires the difference between the target signal and the residual or uncancelled signal to be 25 dB. This represents the difference between level (D) and (E) in Fig. 3. A reasonable estimate of the difference

Fig. 3. CW Cancellation Requirements

between the power transmitted and the power received from the target can be derived from the power relationship [1:4]

$$P_r/P_t = G_tG_r\lambda^2\sigma / (4\pi)^3R^4$$
 (14)

where G_t and G_r are the gain of the transmit and receive antennas respectively, λ is the wavelenth, R is distance from the antenna to the target and σ is the minimum radar cross-section that will be measured. The gain of the horn antennas can be approximated from [11:413]

$$G = 4\pi(AB) / 2\lambda^2$$
 (15)

where A and B are the physical dimension of the aperture of the horn.

Using a gain of 19 dB for both antennas, a wavelenth of 0.03 meters (10 GHZ), a target radar cross-section of -40 dBsm and a range of 9 meters Eq (14) gives

$$P_t / P_r = 103 \text{ dB}$$
 (16)

Thus, the uncancelled signal at the receiver (no target) must not be greater than 35dB + 103dB + 25dB = 163dB. This represents the difference between levels (A) and (E) in Fig. 3. This is what is referred to as 163 dB isolation. The power requirements can be derived from these calculations. With a receiver noise level at -120 dBm the power at the transmit arm must be at least 43 dBm. This power level can be achieved from the sweep oscillator (15 dBm) and power amp (30 dBm).

Background Cancellation

CW System Description. There are several methods to obtain radar cross-section measurements. They include Pulse, Frequency Modulation-Continuous Wave (FM-CW) and Continuous Wave (CW). The system used for this paper is the CW system. The components of the CW system are illustrated in Fig. 4.

The transmitted CW signal from the synchronized sweep oscillator is amplified before being sent to the transmit antenna. The received signal is added to a signal that was coupled off of the transmit arm through a 10 dB coupler. This coupled signal is adjusted in phase and amplitude so that it cancels the received signal from the empty

いいとは最後できないというないのではないでは、これできる

. .

Fig. 4. CW System Configuration

chamber. This cancellation must hold for the 5-10 minutes required to take a set of measurements to ensure accurate measurements. If numerous measurements are to be taken, this tuning and retuning can be very time consuming and a possible source of error in measurements. The use of the computer aids in the measurement process.

The general procedure is as follows: The system is manually tuned to achieve the maximum cancellation with no target in the chamber. The receiver is configured to indicate the amplitude of the signal in the receive arm and the phase difference between the receive and transmit arm. These two quantities are a superposition of all contributions from the empty chamber. Therefore a requirement for placing a target in the chamber is that every effort be made not to disturb any object already in position.

The phase and amplitude information of the empty chamber is stored in the computer as a vector. With the target in place, the new phase and amplitude information, in vector form, is also stored in the computer. The empty chamber vector is then subtracted from the target vector (Fig. 5).

Fig. 5. Vector Subtraction

The amplitude of the resultant vector is plotted as the target's radar cross-section for that particular aspect angle.

Typically the radar cross-section of a target is made relative, in decibers, to a target with a radar cross section of 1 meter squared (dBsm). This is accomplished by taking the measurement of a known calibrated target, i.e. an object whose radar cross-section is exactly known. In AFIT's facility a 5" sphere is utilized. To ensure high quality measurements, two spheres are used. The first is a high precision calibration sphere used to calibrate the solid aluminum 5" sphere manufactured by AFIT's model fabrication shop for day-to-day use. The calibration sphere is made with higher tolerances. By using the AFIT made sphere the possiblity of damaging the calibration sphere is reduced.

The bistatic radar cross-section of a conducting sphere in the far field is given by [13]

$$\sigma(\theta, \phi) = (|S_1(\theta)|^2 \cos^2 \phi + |S_2(\theta)|^2 \sin^2 \phi) 4\pi/k^2$$
 (17)

where \mathbf{S}_1 and \mathbf{S}_2 are the E plane and H plane scattering coefficients respectively and are given by

$$S_{1}(\theta) = j_{n=1}^{\infty} (-1)^{n} [b_{n} dP_{n}^{i}(\cos \theta)/d\theta - a_{n} P_{n}^{i}(\cos \theta)/\sin \theta]$$
 (18)

$$x (2n+1)/n(n+1)$$

$$S_{2}(\theta) = j_{n=1}^{\infty} (-1)^{n} \left[a_{n} dP_{n}^{i}(\cos\theta) / d\theta - b_{n} P_{n}^{i}(\cos\theta) / \sin\theta \right]$$

$$\times (2n+1) / n(n+1)$$
(19)

where

$$a_n = j_n(e) / h_n (e)$$

$$b_n = [ej_n(e)] / eh_n (e)$$

For the backscatter case where $\theta = 0$

$$dP'_{n}(\cos\theta) / d\theta \Big|_{\theta=0} = n(n+1) / 2$$
 (20)

$$P_n'(\cos\theta) / \sin\theta \Big|_{\theta=0} = n(n+1) / 2$$
 (21)

the radar cross-section becomes (E field)

$$\sigma(0,0) = (\pi/k^2) \left| \sum_{n=1}^{\infty} (-1)^n (2n+1) (b_n - a_n) \right|^2$$
(22)

This solution is plotted in Fig. 6. The solution to Eq (22) can be divided into three regions: Rayleigh, Mie and Optics. The optics region is the desired region since the value of the radar cross-section asymptotically approaches $\sigma = \pi r^2$. In other words the size of the sphere is choosen such that the radar cross-section is constant over the frequency range desired.

The lowest frequency projected for use in AFIT's chamber is 8.2 GHz (X band). The 5" sphere was choosen because it is the smallest standard sphere that still had a constant radar cross-section from 8.2 GHz and up. Therefore the radar cross-section of AFIT's standard sphere is

$$\sigma = \pi (2.5 \times .0254)^2 = 0.013 \text{ m}^2$$
 (23)

in decibels relative to one meter squared

$$\sigma_{\text{stdrd}} = -19 \text{ dBsm}$$
 (24)

Fig. 6. RCS of Sphere

To obtain the relative radar cross-section of the target (to 1m²) the standard is placed in the chamber and measured. Again the empty chamber vector is subtracted from the standard vector. The amplitude of the resultant vector (measured in volts) is related to the power by

$$P_{\text{stdrd}} \cong V_{\text{stdrd}}^{2} \tag{25}$$

This in turn is related to the target radar cross-section by

$$P_{stdrd}/P_{trgt} = \sigma_{stdrd}/\sigma_{trgt} = V_{stdrd}^2/V_{trgt}^2$$
 (26)

in decibels

20 log
$$V_{stdrd}$$
 - 20 log $V_{trgt} = \sigma_{stdrd}(dBsm) - \sigma_{trgt}(dBsm)$ (27)

 V_{trgt} is the amplitude of the resultant vector for the target and stored in a matrix in the computer. Likewise V_{stdrd} is the amplitude of the resultant vector of the standard target. σ_{stdrd} is known from Eq (23) (-19 dBsm). Therefore the radar cross-section (dBsm) of the target is

$$\sigma_{\text{trgt}}(\text{dBsm}) = \sigma_{\text{stdrd}}(\text{dBsm}) - 20 \log V_{\text{stdrd}} + 20 \log V_{\text{trgt}}$$
 (28)

The true advantage of an automated system can be seen from these formulas. The radar cross-section data can be processed and stored by the computer in matrix form, thereby allowing the data to be later retrieved to compare to a new target or the same target that has been modified. This information can then be plotted on the same graph for comparison.

A CW configuration is very phase sensitive and typically is stable for only 10-15 minutes. With an automated system any variation in phase can be accounted for by taking a quick (5-10 sec) measurement of the empty chamber. The new empty chamber vector takes into account any variation in phase that might have occured due to instabilities in the components. This can be done without any further manual tuning thereby reducing the possibility for error in the measurement process. It is because of these instabilities that the user is required to take an empty chamber and standard target measurement before taking the target measurement. The user is not required to null out the CW circuit each time since a complete measurement (empty chamber, standard target and then target) takes into account the instabilities of the system.

Communication Theory

Background Signal Errors. Unwanted signals from walls or leaky components produce errors in the radar cross-section data. These errors drive the power requirements up. To properly account for these errors, let \overline{E}_m , \overline{E}_t , and \overline{E}_e be the measured field, the true scattered field and the net extraneous field (unwanted field) respectively. Then [7:907]

$$E_{m} = \hat{e} \left(\overline{E}_{t} + \overline{E}_{e} \right) = E_{t} \left[1 + S_{e} \exp(j\phi) \right]$$
 (29)

where $\hat{\mathbf{e}}$ is the unit vector parallel to the receiver's polarization, is the relative phase between $\overline{\mathbf{E}}_{\mathbf{e}}$ and $\overline{\mathbf{E}}_{\mathbf{t}}$ and $\mathbf{S}_{\mathbf{e}} = |\hat{\mathbf{e}} \cdot \overline{\mathbf{E}}_{\mathbf{e}} / \hat{\mathbf{e}} \cdot \overline{\mathbf{E}}_{\mathbf{t}}|$. For this paper $\overline{\mathbf{E}}_{\mathbf{t}}$ is assumed parallel to $\hat{\mathbf{e}}$.

The radar cross-section can be now written as

$$\sigma_{m} = kE_{m}E_{m}^{*} = \sigma_{t}(1 + 2S_{e}\cos\phi + S_{e}^{2})$$
 (30)

where σ_m is the measured radar cross-section, σ_t is the true radar cross section and k is a proportionality constant. The maximum variation between σ_m and σ_t is

$$(\sigma_{\rm m} - \sigma_{\rm t})/\sigma_{\rm t} = \pm 2S_{\rm e} + S_{\rm e}^{2}$$
(31)

In decibels

$$\sigma_{\rm m(dBsm)} = \sigma_{\rm t(dBsm)} + \sigma_{\rm e(dBsm)}$$
 (32)

where

$$\sigma_{e(dB)} = 10 \log(1 + 2S_{e}\cos\phi + S_{e}^{2})$$
 (33)

The upper and lower limits of the bracketed portion of Eq (33) are plotted in Fig. 7.

The left hand scale gives the percentage error for a given background level. The right hand scale gives the corresponding error in dB. As an example, to maintain an accuracy of ± 0.5 dB, the background signal after cancellation must be 25 dB lower than the desired scattered signal level. This is the figure used earlier in the chapter when defining the power requirements for AFIT's facility. In other words, taking in to consideration the physical layout of AFIT's chamber, the power sources available (HP 8350B and HP 495A) and an accuracy of 1/2 dB, the theoretical minimum RCS measurable in AFIT's facility is -40 dBsm.

Fig. 7. Error in RCS Due to Background Reflections

III. Hardware

のは、大きななながない。ななながらないない。

Occasionally an operator works with equipment whose purchase was driven by financial constraints more then by compatability or capability. In this environment one often faces the formidable task of ensuring that equipment from manufacturer A can be made compatable with manufacturer B. Fortunately some standards do exist, such as the IEEE standard 488-1978 interface, that allows a certain level of compatability to be achieved. Problems with compatability may be encountered with any automated radar cross-section measurement facility. Solving these problems is the task of the system designer. As with any large task, it is often easier to solve if the task is broken down into several smaller tasks. Keeping in mind the purpose of automating a radar cross-section facility, the hardware can divided into groups that can be attacked separately.

The purposes of automating a facility are twofold: First, through the use of a computer controlled system the effects of phase variation in the RF "plumbing" due to temperature, vibration, etc., can be more easily reduced and accounted for mathematically. This can drastically increases the repeatability and accuracy of radar cross-section measurements. Second, the digitized data can be stored and later retrieved for analysis. For example, this analysis may be a comparison with the radar cross-section of a target that has been modified. This dictates that the radar cross-section information be capable of being stored and retrieved for temporary (CRT) or permanent (plotter, disk) record. With these purposes in mind the hardware associated with an

automated radar cross-section measurement facility can be broken into the following groups:

- 1. Anechoic chamber
- 2. Radio frequency (RF) system
- 3. Positioner
- 4. Data acquisition
- Interface/Bus structure
- Controller

The remaining portion of this chapter was written using information obtained from the test equipment operating manuals. The reader is directed to Appendix A for complete listing of the test equipment used.

Anechoic Chamber

The basic and perhaps most unique component of a radar cross-section measurement facility is the anechoic chamber itself. The anechoic chamber discussed in this paper is located in building 168, Wright-Patterson AFB, Dayton OH. The tapered design of the facility (Fig. 8) was utilized in order to minimize the wide-angle specular reflection from walls and ceilings. The near monostatic configuration places the receive and transmit antennas at the tapered end of the chamber eight feet above ground level in line with the target located 30 feet down range on top of the positioner. The walls, ceilings and floor are covered with Rantec pyramidal absorber.

The transmit and receive antennas are secured to a removable two foot circular insert. This insert can be rotated in order to measure the radar cross-section at different polorization. In addition the insert can be removed and replaced with different inserts so that different antenna configurations or frequency bands can be used. To

元の方の方式できた。

Fig. 8. AFIT's Anechoic Chamber

further reduce sidelobes from influencing the measurements, "tunnels" were fabricated by the AFIT Fabrication Shop. These tunnels are flared in the H-field direction and parallel in the direction of the E-field. The tunnels are lined with AN-75 absorber to reduce the sidelobes. It has been experimentally shown [14] that in order for the tunnels to reduce the sidelobes by up to 20 dB, the tunnel length must be approximately 20 wavelengths long.

To further improve isolation between the transmit and receive channels the transmit antenna is positioned 1/2 inch closer to the target than the receive antenna. This improvement in isolation was implemented on suggestion from the personnel at the Wright Avionics Lab, WPAFB.

RF System

The RF system (Fig. 9) provides the means to generate a stabilized continuous wave (CW) signal, transmit this signal into the chamber, receive the backscattered signal, mix it with a signal coupled off the transmit channel and provide this signal to the receiver to measure the amplitude and relative phase. There are several manufacturers of test equipment capable of performing the required operations. It would be unreasonable to discuss all the combinations possible. Therefore this paper will be limited to the equipment available in AFIT's chamber. Whenever possible the capabilities that are generic to different manufacturers will be highlighted.

RF Source. A CW radar cross-section measurement technique requires a source that is extremely stable and synchronized. This

Fig. 9. RF System

usually requires two pieces of equipment: an oscillator and synchronizer. The oscillator used for this chamber is a Hewlett-Packard Model 8350B Sweep Oscillator with an 5.9 to 12.4 GHz RF plug-in. Together they provide a complete, solid state, swept signal source. For the purpose of this paper the 8350B will be limited to a CW mode. In this mode the instrument is tuned to a single frequency RF output.

All front panel controls except the power line switch may be controlled manually or programmed remotely. This remote programming capability in the signal source is a much desired capability. The 8350B uses the Hewlett-Packard Interface Bus (HP-IB), which is equivalent to the IEEE standard 488-1978 interface. This interface provides a remote operator with the same control of the instrument available to a manual (local) operator if the capability is built into the instrument. Remote control is maintained by a system controller (in this case a HP 9836 desktop computer) that sends commands or instructions to and receives data from the 8350B using the HP-IB.

RF Amplifier. To further increase the sensitivity of the overall facility a Hewlett-Packard Model 495A Amplifier is inserted to provide an additional 20 to 30 dB gain. As seen from Chapter II this will increase the minimum radar cross-section measurable in the chamber.

Source Synchronizer. Since a CW system relies on a phase shifted, attenuated signal to cancel the effects of a background signal the accuracy of the system is very sensitive to the stability of the source. This requires the use of a synchronizer to lock the source at the desired frequency. Without the synchronizer the signal may be off

by as much as 10 KHz. When properly configured the synchronizer will tune the signal source to output the correct frequency to within 1 Hz. The microwave counter/synchronizer used for this system is the Hewlett-Packard Model 5344S Microwave Source Synchronizer. The 5344S is comprised of the 5344A Source Synchronizer and the 5342A Microwave Frequency Counter with an Option 001 High Stability Timebase and Option 001 HP-IB Interface. The two units are mechanically and electrically connected for use as a source synchronizer. Again all front panel controls may be programmed by the controller via the HP-IB.

The counter is fed a signal that is coupled off the output from the 8350B Signal Source. The 5344A synchronizer generates a correction signal for the signal source by comparing the phase of the down converted signal in the counter with an internal crystal controlled synthesizer. This lock-on procedure, initiated over the HP-IB, will occur if the signal source is within the 25 MHz capture range of the synchronizer.

Other source synchronizers may be used in place of the 8344S. To fully exploit the automation concept it is desirable that the substituted source synchronizer be able to communicate over an IEEE 488-1978 interface. One such synchronizer that is used in AFIT's chamber when the 8344S is being calibrated is the EIP Microwave Inc Model 575 Source Locking Microwave Counter. To minimize software changes it is helpful to change the HP-IB address of the substituted synchronizer to that of the 8344S.

<u>Waveguide</u> <u>Configuration</u>. The synchronized signal is fed by a low loss coaxial cable to the waveguide. The signal basically follows two

paths. Refering to Fig. 10, the signal first goes through an isolator. The ferrite isolator is a unidirectional device which provides a lossless, or very low loss, transmission in one direction and provides a good load, or attenuates the signal, going in the opposite direction. The isolator at the input provides a good means of ensuring that reflections are not allowed to propagate back into the source. The isolation between transmit and receive channels is very critical and therefore isolators should be inserted whenever there is a possibility of reflections in the transmit branch finding their way into the receive branch.

After the signal passes through the isolator a signal is coupled off with a 20 dB directional coupler. This coupled signal will be used to cancel the backscattering from the empty chamber and will be discussed later. Back in the transmit arm the signal travels through a slide-screw tuner before going through a coax cable to the transmit antenna. The slide-screw tuner provides a means to better match the transmit arm to the transmit antenna. This increases the power transmitted and reduces the reflected waves. At these frequencies (8-12 GHz) coaxial cable can be very lossy. Therefore it is desirable to reduce the cable length as much as practical. Note, however, that a change in polorization requires that the antenna mount be rotated 90 degrees. For this reason low loss coaxial cable was used between the antennas and waveguides. The cable has an attenuation of .38 dB/ft in 8-12 GHZ region. With a cable length of 9 ft. only a loss of 3.5 db is encountered. This is well within the capability of the system to handle.

CONTROL OF STANKING CONTROL OF STANKING

.:..

• .

Fig. 10. Waveguide Configuration

The signal that is coupled off the transmit channel through the directional coupler is used to cancel out the backscattering of the empty chamber. After being coupled off, the signal goes immediatly into a 10 dB directional coupler. This coupled signal is connected to the receiver as a reference for the phase measurement. The cancellation signal continues down the waveguide through a phase shifter and variable attenuator and a slide-screw tuner before being connected to the secondary arm of another directional coupler. The slide screw tuner provides a means by which to better match the cancellation arm with that of the directional coupler. The cancellation signal is mixed with the signal received that is traveling in the reverse direction through the directional coupler.

With an empty chamber the cancellation signal is tuned, phase shifted and attenuated until it cancels the backscatter signal from the chamber. With a target in place the combined cancellation signal and received signal is passed through a coaxial mixer before being sent to the receiver for phase and amplitude measurements.

Receiver. The receiver used is a Scientific-Atlanta series 1750 Phase/Amplitude Receiver. This receiver was choosen because of its capability to provide both phase and amplitude measurements. This capability is a requirement because the actual determination of the radar cross-section is based on vector subtraction (both phase and amplitude).

The receiver is designed to provide precise measurement of change in the amplitudes and relative phases of two CW signals that are applied to the signal input terminals. The receiver's local oscillator

can be tuned from 2 to 4.1 GHz in order to convert the input signal to the 45 MHz IF. With X-band operating frequencies an external crystal mixer is required to convert the input signal to a signal below 2 GHz. The Scientific-Atlanta Model 14-3 mixer is employed in AFIT's chamber. It is important the the "xtal current" be adjusted on the receiver not to exceed 10 milliamperes can indicated on the receiver panel meter. Fortunately the diode in the mixer is field repairable. It is recommended that a supply of Sylvania D5506 replacement diodes (or equivalent) be kept on hand to reduce any unnecessary downtime.

Crystal-Bolometer Amplifier. The amplitude and phase data will be acquired by a DC digital voltmeter in the HP 3497A Data Acquisition system. The DVM measures the DC analog signal and transfers this data to the controller. Because of this only the phase data (DC) is input from the receiver to the 3497A. The amplitude information is obtained from the Scientific-Atlanta Model 1586 Crystal Bolometer Amplifier.

Pattern Recorder. An automated measurement facility operates on the principal that the data can be stored and later retrieved for calculations in order to present this data to the operator. The disadvantage, of course, is the lack of real-time monitoring of the results. An addition to provide this real-time capability is a Scientific-Atlanta Model 1581 Pattern Recorder. The previously mentioned 1566 Crystal-Bolometer Amplifier is an accessory unit intended for use as a preamplifier with the pattern recorder. The 1586 is a sensitive amplifier which can accept inputs for either a crystal detector or bolometer detector. Fortunately one output of the 1586 is

an isolated BNC-type output provided for monitoring the resulting DC equivalent of the amplified input signal. This provides the necessary DC analog signal of the amplitude for the 3497A Data Acquisition unit.

Positioning of Target

The radar cross-section of a target is usually dependent on the aspect angle. Therefore it is desirable to be able to move the target 360 degrees in azimuth to obtain the radar cross-section at every aspect in azimuth. In addition it is required to correlate the phase and amplitude data with aspect angle to enable the operator to evaluate the radar cross-section data. This translates into two requirements: First, an ability to rotate the target a full 360 degrees inside the chamber. Second, an ability to correlate the position data with the phase and amplitude data.

Positioning the target is accomplished with three pieces of equipment. The first piece is the actual positioner itself. AFIT's chamber utilizes a Scientific-Atlanta Model 5021 Azimuth Positioner. This is a single axis positioner designed to support and rotate the target in azimuth. For most applications a single axis positioner is adequate. Since the target must be in the chamber to be measured it is necessary to try and reduce the backscattering from the positioner and support assembly. To accomplish this an aluminum shield was fabricated in the shape of an ogive. This shape minimizes the specular backscattering and reduces the contributions of the support structure to the radar cross-section. In addition, the ogive is covered with a magnetic radar absorbing material (RAM). Every effort is made to

reduce the backscattering from the empty chamber (including the positioner) to obtain better radar cross-section measurements.

The postioner is controlled by a Scientific-Atlanta Model 4116B

Remote Control Unit. This unit provides a means to manually start the positioner traveling in a forward or reverse direction. The rate of rotation is also controlled by the 4116B.

The actual real-time position of the target in degrees is visually displayed on the Scientific-Atlanta Series 1844 Digital Positon

Indicator. The indicator is electrically connected to the positioner to obtain the synchro voltages. The indicator then processess this information to obtain the position data. The processed data in turn is displayed on the six decade LED display. The position is also supplied to the pattern recorder, in BCD format, over an interface cable between the indicator and the recorder.

To correlate the phase and amplitude information with the appropriate aspect angle a means must be provided to establish the position each time the phase and amplitude data is measured. One way to accomplish this would be to build a digital to analog converter (DAC) that samples the BCD data on the interface cable between the indicator and recorder. The analog output could then be measured and later translated into degrees.

Another technique would be to purchase a BCD interface for the controller that would sample the BCD data directly. Such an interface has been ordered for the HP 9836 in AFIT's chamber but will not arrive in time for completion of this thesis effort.

A simpler technique was implemented to prove the concept behind

automating the facility. Every time the phase and amplitude data is sampled a clock is also sampled and stored in the data matrix. The rate of rotation is determined by dividing the total number of degrees rotated by the total time in seconds.

If the time of the sampling is made relative to the first sample and multiplied by the rotation rate the actual position of the target in degrees when the phase and amplitude data was taken will be determined.

Since the positioner actually travels more than 360 degree (approximately 400 degrees) the data matrix must be truncated to include only the azimuth aspect angles from 0-360 degrees. This assumes a constant rotation rate. In addition the positioner must be rotated slow enough to ensure that 360 data points are achieved. This will provide the necessary resolution. In reality each data point will be the average of 9 or more samples of phase data and 9 or more samples of amplitude data. This will be explained under Data Acquisition.

To obtain the total number of degrees the positioner rotates, the operator is instructed by the software to rotate the positioner to one of its limits. The operator must enter the displayed degrees on the indicator. The positioner is then rotated until it reaches the other limit. The operator is again querried for the displayed degrees. From this the software determines the total number of degrees rotated.

The total time of rotation is determined from the start and stop times. The limit lamp circuits are utilized since the positioner will start from one of its limits and stop at the other limit (Fig. 11).

Fig. 11. Limit Light Circuit

The two limit switches are normally closed switches. When the positioner is not at the corresponding limit the indicator lamp is shorted out (not lit). The voltage across the lamp and the diode would be zero. When the positioner reaches the limit the switch opens causing the voltage measured to be nonzero. Since DS2 is a neon glow lamp and its illuminating current is very small, the voltage measured is effectively the voltage of the field supply, 117 VDC. Therefore, by sampling the voltage across the diode and the neon glow lamp it can be determined when the positioner starts (leaves the reverse limit) and

stops (arrives at the forward limit). The algorithm for this will be explained in the following chapter.

Data Acquisition

With an automated measurement facility a method must be provided to acquire the data and transfer it to the controller. In AFIT's chamber this is accomplished by using a Hewlett-Packard Model 3497A Data Acquisition/Control unit. The 3497A is designed to perform two tasks: data acquisition and control. In AFIT's chamber the function of the 3497A is to measure data points from the system and transfer this data to the computer (i.e. data acquisition). On command from the computer, the 3497A samples and measures the input data and then outputs these measurements over a communications interface (HP-IB) to the HP 9836.

Data acquisition measurements can be divided into five categories, depending on the system parameters to be determined: voltage, temperature, resistance, frequency or pressure. Since the data is available as DC signals, voltage measurement will be utilized to acquire the data. The 3497A's digital voltmeter (DVM) assembly (option 001) is a 5 1/2 digit, 1 microvolt sensitive DC voltmeter which can measure voltages up to 119.999 volts. The DVM assembly is fully guarded and uses an integrating A/D conversion technique which provides excellent common and normal mode noise rejection.

In addition the 3497A also has a 20 Channel Relay Multiplexer

Assembly (Option 010). The 20 channel analog signal multiplexer

assembly is used to switch (multiplex) signals from up to 20 channels

to the 3497A DVM. The 20 channels divided accordingly:

- 0-16 (even channels)--phase
- 1-17 (odd channels)--amplitude
- 18 Reverse limit switch
- 19 Forward limit switch

The 3497A is instructed by the computer to take 20 readings, storing each reading internally before downloading the entire array to the computer. Once in the computer, channels 18 and 19 are checked by the software for a high voltage output (>50 VDC) to establish start and stop times.

The terminal card from the multiplexer assembly is configured as follows (Fig. 12):

Fig. 12. Multiplexer Terminal Card

The even channels from 0-16 are connected in parallel. Likewise for the odd channels 1-17. The G terminal in Fig. 12 is the Guard terminal and is connected to the Low (L) terminal. The purpose of the Guard terminal is to reduce the effect of common mode voltages. These are the errors caused when the grounds of the voltmeter and device are at different potentials. Although both the voltmeter ground and device ground in this system are on the same line the ground voltage differs at each point along the line. The voltmeter is eventually grounded back to the same ground as the rest of the system, so the voltmeter contains a common mode whenever its referenced to any point but the one where it's actually grounded. Connecting the Guard to the Low terminal makes both terminals at almost the same voltages. This configuration provides common mode rejection when the leads are kept to a minimum.

The amplitude lead is connected to the BNC connector behind the crystal/bolometer amplifier that provides a DC output. The phase lead is connected the BNC phase output on the back of the receiver. The leads from channel 18 are attached across the diode and indicator lamp in the reverse limit circuit (Fig. 11). Similiarly the leads from channel 19 are attached in the forward limit circuit.

Interface/Bus Structures

The interface provides the means by which the computer can communicate with the test equipment. The IEEE standard 488-1978, "Standard Digital Interface for Programmable Instrumentation", was choosen for AFIT's facility. The Hewlett-Packard Interface Bus (HP-IB) which is an IEEE 488 bus, provides the communication between

the HP 9836 desktop computer and the other HP equipment.

The HP-IB is an interface system which uses a party-line bus structure so that up to 15 devices can be placed on a single bus. Each of these devices can be classified into one of three catogories:

Talkers, Listeners or Controllers.

Talkers: These are devices which are capable of transmitting data over the bus to other devices. A device becomes an active talker when addressed by the controller. There can be only one active talker on the interface bus at a time.

Listeners: These are devices which are capable of receiving data over the bus. A device becomes an active listener when addressed by the controller. There can be up to 14 active listeners on the bus at any one time.

Controllers: These are devices which can designate active listeners and talkers for data transfer. There are two types of controllers, active and system. The Active controller is the current controlling device. The system controller can take control of the bus even when it is not the active controller. There can only be one controller on the bus at any one time.

In AFIT's chamber the HP 9836 desktop computer, acting as system controller, controls five devices. Refer to Appendix B for listing of capabilities and addresses of each device.

The HP-IB cables can be ordered in a variety of lengths. The cables come with identical "piggy-back" connectors on both ends so that several cables can be connected to a single source (Fig. 13).

Fig. 13. HP-IB Connector Pin Designators

A good rule of thumb is not to stack more than two cables on any one connector. If the stack becomes too large and is "bumped" the force may cause the connectors to break and interfere with the HP-IB operation. In addition, the total cable length should not exceed 20 meters. A Hewlett-Packard recommendation is to take the number of devices connected to the HP-IB and multiply by 2 meters to arrive at

the maximum total length of cable.

The HP-IB bus structure consists of a parallel bus of 16 active signal lines, grouped into three functional sets (Fig. 14).

Fig. 14. HP-IB Structure

The DATA lines consist of eight signal lines used to transmit data in the form of coded messages. This data can be used to program devices on the bus, transfer measured data, coordinate instrument operation and manage the system. The DATA BYTE TRANSFER control lines are three signal lines that permit the proper coordination (handshaking) required between devices. These lines permit asynchronous data transfer at the rate of the slowest active device used in that transfer. The remaining five GENERAL INTERFACE MANAGEMENT lines are used to perform "household chores" in managing the bus. This includes activating all connected devices at once, clearing the interface and others.

Several types of information may be transferred over the bus, the most common being in the form of Bus Messages. Each bus message can be divided into three parts: Operation, Address, and Information (Fig. 15)

Fig. 15. HP-IB Message Format

The operation portion of the bus message specifies the type of bus message. The syntax is controller dependent for the operation portion of the bus message. Each device on the bus must have an unique address. The address consists of a Interface Select Code (7 for HP-IB) and

Device Code (eg., 09 for HP 3497A). The final portion of the bus message contains the commands for the devices or data that is being transferred. The transferred data may consist of measured data or the status of the device.

In summary, the HP-IB was choosen because it allows computer control of the properly equipped test equipment and provides an avenue for data input and output. Other standard busses could be selected but the HP-IB control language is simple, yet powerful, allowing extensive control of the external devices.

Controller

As discussed earlier the controller manages the operation of the bus primarily by designating which devices are to send and receive data. It may also command specific actions within the devices themselves. The controller choosen for AFIT's facility is the Hewlett-Packard 9836 Desktop Computer. The 9836 was choosen because it contains many features that make the measurement process very quick and easy.

The 9836 contains a powerful 16 Bit Motorala MC68000 CPU with a built in 8 MHz clock, 912 Kbytes of internal memory and two 133 mm (5 1/4 inch) flexible disk drives with 260 Kbyte capacity each. To help in the programming, the 9836 contains a rotary control knob for curser control, interupt generation, a 120 character ACII keyboard with ten (20 with shift) softkeys, and special function keys for program editing, curser control and system control.

Output Devices

The man-machine interface is a key aspect of any automated operation. With an automated scattering measurement facility several separate output devices are used to effectively and efficiently interact with the user.

As previously mentioned the SA series 1580 pattern recorder provides a real time output for the user. The pattern recorder plots the radar-cross section as a function of target position angle in either polor or rectangular chart format.

The CRT of the HP 9836 provides a volatile means of presenting data for the user to verify. The resolution of the CRT plot is less than that of the plotter but does provide a quick means of viewing the data.

The HP 7470A plotter and HP 2671A printer provide the user with hard copy plots of the measurement data. The plotter provides a higher resolution two color plot of the measured data whereas the printer essentially dumps the CRT plot onto the paper.

And finally the disk drive of the HP 9836 provides the means of storing the measurement data for archival purposes on 5 1/4 inch floppy disks. In addition the disks can be used to conviently transfer the data to other organizations.

IV. Software

Objective

The main objective of the software for AFIT's automated facility is to provide a capability for the user to measure the radar cross-section of a variety of targets in a rapid, repeatable manner. The user of AFIT's facility will consist mainly of graduate students participating in AFIT's graduate program.

The anechoic chamber allows the student to observe first hand the impact the physical characteristic of a target has on its radar cross-section and to explore different techniques to reduce the radar cross-section.

Since the main usage will be in a non-production mode the software must be extremely user friendly. That is, the student must be able to sit down at the computer and conduct a meaningful radar cross-section measurement and obtain a plot with minimum background in the actual operation of the facility. In addition, the chamber's accuracy must be at a level such that it may be used in a research capacity. Since each student is required to prepare a thesis, it is conceivable that several individuals will want to use the facility in their research efforts.

Another user group that will find the facility useful are the participants of the short courses presented by AFIT. Again, because of their limited background in radar cross-section measurement, the software must be extremely user friendly. In essense, the software must lead the user from turn on to turn off.

System

As discussed in Chapter III, the controller used is a

Hewlett-Packard 9836 Desktop Computer. The 9836 comes with nearly one
megabyte of RAM before loading one of three possible languages: BASIC,

HPL or Pascal. The software for this paper was written with BASIC 3.0.

There are several versions (other than 3.0) of BASIC in use today.

BASIC 3.0 is HP's latest version and contains many powerful commands
that enhance the ease of programming. BASIC 3.0 was choosen over

Pascal because of the author's familiarity with BASIC and time

constraints prevented the learning and subsequent usage of Pascal for
this thesis effort. To assist in the plotting routines Hewlett-Packard

Graphics Language (HP-GL) was utilized. HP-GL consists of two-letter

mnemonic instructions which activate the plotter.

Every attempt was made to present a software package that is not only user friendly but also programmer friendly. This allows future modifications to the program to be made as painlessly as possible. The use of Basic and HP-GL were choosen to assist the programmer but had no real impact on the output to the user. There is no reason why another language (i.e. Pascal) could not be used instead.

Applications

Keeping the pedagogical purposes of AFIT's facility in mind, the desired features of the software can be listed as:

- 1) Provide easy start up procedures.
- 2) Allow a student/user unfamiliar with radar cross-section measurements to sit down and be able to make, store and plot a radar cross-section measurement.

3) Be menu driven.

- 4) Minimize data entry through the use of soft keys and with common default values.
- 5) Be capable of viewing data on a cathode ray tube (CRT).
- 6) Provide a means of quickly outputting data (dump to printer) or outputting a finished product (dump to plotter).
- 7) Be capable of plotting up to four sets of data on one plot.
- 8) Provide error trapping whenever possible.
- 9) Provide the user an graceful exit from the program.

The rest of this chapter describes implementations of these key features and the reasons why they were implemented as such. The reader is directed to Appendix B for a more detailed explanation of the software.

Easy Start Up. The student loads the computer with the necessary language and program by simply inserting the two appropriatly marked disks into the two disk drives and then turn the computer on. First, all the BINS (portions of BASIC needed for this program) are loaded, then the actual program is loaded and automatically run.

User Friendliness. Every attempt is made to ensure user friendliness throughout the program. The first message seen will introduce the user to the protocol of the program (i.e. types of querries/responses). The program will also instruct the user to turn on all equipment and initiate the program with date and time information. This allows the data to be identified not only with a file name but also with the date and time of the measurement.

To further assist, the user is prompted and the program is paused while a required interaction with the chamber takes place (i.e.

placement of standard or target in the chamber, adjustment and rotation of the positioner, ensuring plotter has paper and pen installed, etc.).

のは、「大人の人の人」のである。

Menu Driven. The use of menu's are employed throughout the program. This allows the user an easily understandable format for making decisions concerning program structure. Each decision is explained on the screen with relevant information also displayed. In addition the heading of the menu describes what portion of program the user is currently at. Whenever practical the user has the capability of returning back to the main menu. This allows the user to "change direction in midstream" if desired.

Soft Keys/Default Values. To minimize data entry, default values are used whenever possible. This reduces the possiblity of error in input and speeds the measurement process. As an example, a default value of 5" is used for the diameter of the standard sphere. This is the diameter of the sphere fabricated by AFIT's Model Fabrication Shop. But the user still has the capability to input another diameter if another size standard sphere is used.

Soft keys allow decision inputs to be made with a single key. The use of soft keys speeds up the measurement process and reduce the possibility of incorrect inputs. The actual soft key assignments reduce the possibility of striking the wrong key by placing idle soft keys between active keys.

CRT Viewing. After taking a radar cross-section measurement the data is displayed on the CRT for viewing. This allows the user the opportunity to observe the data for any obvious errors that occured during the measurement process (i.e. receiver lost lock). After

viewing the data the user can dump to the printer, store the data on the storage disk or dump to the plotter. Likewise when retrieving stored data the plot is displayed on the CRT. Again the user can quickly observe an incorrect choice of a file name. Of course this check cannot distinguish files that have radar cross-sections that are similar, but it does provides the user the capability to detect obvious mistakes (ex. viewing a flat plate versus a corner reflector).

Data Output. The user should be capable of obtaining a hard copy of the data when finished. This is accomplished in two formats. The quick way, but with less resolution, is to dump the data to the printer. The user can do this when a data set is in place in the program. This can be right after a measurement or after recalling a data set from memory. As can be seen in Fig. 16 the data is presented in a graphical format with minimal information. Still, the major features of the radar cross-section can be observed along with the maximum and minimum radar cross-section values (dBsm) and file name. To produce a more complete product the user can output the data to the plotter. The plotter provides a larger, better resolution, two colored plot of the data (Fig. 17). The legend contains all the important information about that particular measurement: file name, frequency, polarity, date and time taken.

Plotting Multiple Data Sets. The program has the capability of plotting up to two sets of data on the same graph. This allows the user to compare the radar cross-section of a variety of targets or a single target that has been modified several times. The user then gets a chance to gain an insight into the major contributers to the radar

Fig. 16. Printer Output

Fig. 17. Plotter Output

cross-section of a particular target.

1941 1944 - MANAGARA

Error Trapping. To avoid the possibility of a user induced error causing the program to "crash", error trapping is used whenever possible. The most common error will occur when loading or storing data from the storage disk. If the user request a file that does not exist or tries to store a file that has a duplicate file name an error message is displayed and the user is prompted again for the proper file names. To further reduce these types of errors the user can view the names of the files already stored on the disk. This will help ensure the student chooses the correct file name. Other error trapping involves the user defined RCS (dBsm) scale of the RCS (dBsm) of the plots. If the maximum value of the scale inputted is equal to or less than the minimum value the user is notified of the condition and prompted for the correct inputs.

Graceful Exit. After finishing the desired operations with the facility the user can exit the program by pressing the "EXIT" soft key in the main menu. The program prompts the student in shutting down the system and displays a HP provided space shuttle picture before exiting back to BASIC.

V. Results and Discussion

A design methodology for an automated scattering measurement facility has been described in this thesis. Test equipment from various manufacturers was interfaced and a software package was written. The menu-driven program provides easy start up procedures for users unfamiliar with the operation of the HP computer. The program also allows a user with limited background to make, store and output a meaningful radar cross-section measurement. These features were verified during a demonstration of the facility to a group of students (i.e. future users). The group was capable of conducting a RCS measurement and outputting the data with minimum assistance. The user's reaction was very positive as to the potential of facility to provide a "hands-on" environment to reinforce classroom lectures.

The major by-product of this thesis is the automation of AFIT's scattering measurement facility. To further improve the credibility of the facility some work remains to be done. These tasks, though trivial in appearance, will impact any measurements taken. These include investigating the placement of absorber on the floor to securing absorber on the door on the back wall of the chamber. Most importantly, however, the chamber must go through a calibration process to ensure that the accuracy of the measurements achieve the highest level possible. Tasks such as these were not undertaken in this thesis because of time constraints.

Finally, the inherent shortcoming of the measurement process must be pointed out. As is discussed in Appendix C, there is some interpolation of data if the rotation rate of the positioner exceeds one degree of azimuth per sample set. Any RCS fluctuations resulting from real or resultant point sources may go unmeasured in this circumstance. Therefore it is important to keep this "smoothing" error in mind when analyzing the data.

VI. Recommendations

A years worth of work can not be done on a project such as this thesis without acquiring a "wish list" of items that could enhance the operation of the facility. Most of these suggestions were not undertaken because of time or money constraints, but are listed here as a reference.

- 1) The RF plumbing for this thesis is accomplished with waveguides and their associated devices (directional couplers, attenuators, etc.). By using SMC type devices the size of the RF system can be reduced from 20 square feet down to under four square feet. This should enhance the accuracy of the system since the it would be less susceptable to vibration. Also this would give more room to move around the test equipment area.
- 2) To enhance the stability of the RF system it is recommeded that the system be rigidly mounted on a 1/4 inch thick aluminum plate. By firmly affixing the waveguides or SMC devices to this plate the measurements will be less affected by vibration. These errors will show up in the accuracy of the measurement.
- 3) When measuring low radar cross-section targets all available power must find its way from the oscillator to the transmit antenna, back into the receive antenna and into the receiver. The power transfer can be enhanced by minimizing the length of the coaxial cables. This can be accomplished by placing the RF system as close as possible to the

antennas. With SMC devices the aluminum plate can be hung on the wall under the antennas.

- 4) Most RF sources are not built with shielding in mind. When measuring low radar cross-section targets any leakage from the RF source will limit the minimum cross-section that can be measured. Therefore it is recommended that a box lined with metal sheets be constructed (with proper ventilation) to enclose the RF source.
- 5) The leakage of RF at waveguide connections raises the minimum cross-section that can be measured. By using RF gaskets this extraneous signal can be greatly reduced.

The next recommendation, albeit a more expensive one, could greatly enhance the capability and accuracy of the facility. Utilizing a HP 8510 Network Analyzer, a HP 8340 Synthesized Sweep Oscillator and a HP 8511A Frequency Converter very highly accurate swept frequency radar cross-section measurements can be automatically made [15].

One drawback of the current system used in AFIT's facility is the rate at which data can be obtained. A complete sample set (20 measurements) takes approximately .9 seconds to measure and store in the computer. Although this process can be shortened by using a packed BCD format for the data, only about .15 seconds will be gained. With a synthesized sweeper, the 8510 takes about .7 seconds to take 401 measurement points. In addition the 8510 provides:

- A) Measurement accuracies that are ten to a hundred times more precise than previously attainable with commercially available instrumentation.
- B) $45\ \text{MHz}$ to $26.5\ \text{GHz}$ vector testing with no change of connections.

C) Optional transformation (using Fast Fourier techniques) of error-corrected data between the frequency and time domains at speeds permitting real-time adjustments.

CALL PROPERTY SOURCES

Perhaps the most powerful feature of the 8510 is its time domain gating capability. This is the ability to isolate a gate in time (i.e. a specific length within the chamber) and look only at the frequency response due to the item located in this gate. In effect the 8510 will look only at the area of the target and eliminate unwanted signals from the back and side walls. This can all be accomplished by utilizing the internal calibration capabilities of the 8510. The error models contained in the 8510 have been optimized for network measurements but several are more than adequate for radar cross-section measurements.

The HP 8340A Synthesized Sweeper combines a high performance synthesizer and broadband sweep oscillator into one instrument. The HP 8511A frequency converter should be used because of the large dynamic range usually associated with radar cross-section measurements.

The HP 8510 recommendation comes about as a result of a thesis written by an AFIT student comparing the characteristics of a RCS measurement range using CW nulling technique and pulse gating technique [16]. Simpson writes that RCS measurements can be enhanced utilizing a time gating technique. But in a chamber such as AFIT's, where the side walls are relatively close to the target, there is still a significant level of background interference in the gated "window". By utilizing a hybrid configuration, where both time gating and CW nulling techniques are employed, this background signal can be eliminated.

These recommendations, although varying in price, will all enhance the capability of an educational/research automated scattering measurement facility. Still, the current configuration provides a user friendly system that will give the user insight to the electromagnetic phenomenon surrounding radar cross-section measurements.

Appendix A

The following is a list of equipment used for this thesis:

Hewlett-Packard

and recession habitally becomes polynopies.

1)	НР 9836	Desktop Computer
2)	HP 8350B	Sweep Oscillator
3)	HP 5344S	Microwave Source Synchronizer
4)	HP 495A	Microwave TWT Amplifier
5)	HP 3497A	Data Acquisition/Control Unit
6)	HP 7470A	2-pen Graphics Plotter

Alphanumeric Thermal Printer

Scientific-Atlanta

7) HP 2671A

1)	SA 1750	Phase/Amplitude Receiver
2)	SA 1586	Crystal-Bolometer Amplifier
3)	SA 1580	Pattern Recorder
4)	SA 1844	Digital Position Indicator
5)	SA 4116B	Remote Control Unit
6)	SA 5021	High Accuracy Positioner

Appendix B

In AFIT's chamber the HP 9836 Desktop Computer, acting as system controller, controls five devices. Each device is capable of being a Listener, Talker and/or Controller. These devices are listed below with their appropriate capabilities and HP-IB addresses.

Device	Capabilities	Address.
HP 9836 Desktop Computer	Listener, Talker Controller	N/A
HP 8350B Sweep Oscillator	Listener	719
HP 5344A Source Synchronizer	Listener, Talker	704
HP 3497A Data Acquisition	Listener, Talker	709
HP 2671A Thermal Printer	Listener	701
HP 7470A Graphics Plotter	Listener	705

Appendix C

This appendix describes in greater detail the flow and structure of the software program written for AFIT's facility. The program can be broken into two main subroutines: Begin and Main_menu. As shown in Fig. 18 after the user enters Main_menu, two paths may be taken depending on the user's needs (i.e. to plot data already stored or to make a new measurement). The reader is advised to reference the listing in Appendix D to better follow this appendix.

Fig. 18 Main Program

Begin

The first subroutine, Begin, introduces the user to AFIT's facility. The user is instructed on the three types of querries the computer generates: 1) type the appropriate answer followed by depressing the ENTER key, 2) press the appropriate soft key or 3) press

the CONTINUE key. The routine also tells the user what equipment should be on (namely all) and asks for the date and time. The date and time information is stored with the data when a radar cross-section measurement is made. This allows the information to be included in the legend when a plot is made.

Main menu

This subroutine allows the student to choose between the two main purposes of the program, i.e. to plot data previously stored on disk or to make, store and plot a new radar cross-section measurement. In addition it provides the user a way to exit back to BASIC.

Pplot. If the student requires a plot of data that was previously stored on a disk the "PLOT" soft key would be pressed as instructed by the main menu. This would get the user into Pplot. The passed parameters of this subroutine are:

Plot_dt (2,365).....A 2 x 365 array containing two dat sets, one in each row. There are 360 data sets stored corresponding to 0-359 degrees aspect angle (one data set per degree). The data stored is in dBsm.

View (365)..........An array used to retrieve data from the disk and transfer to Plot_dt (*) (note: a variable with (*) signifies an array). Also used to view the data on the CRT. Included in View (*) are also the frequency and polarity information of that particular data set.

Fr1.....Frequency of data set 1 (GHz).

Polarityl......Polarity of data set 1 (vertical=0, horizontal=1)

Dtel\$.....Date data set 1 was taken.

Timel\$.....Time data set 1 was taken (ex. 13:23:10).

Polarity2......Date data set 2 was taken.

Time2\$......Time data set 2 was taken.

Ymax.....The maximum value of the radar cross-section data

set(s). Used for scaling of plot.

Ymin.....The minimum value of the radar cross-section data set(s). Used for scaling of plot.

Dbl_flag......Flag to indicate a double set of data will be plotted.

Help......Flag to get user back to Main_menu.

Fr2.....Frequency of data set 2.

As seen in Fig. 19 the first subroutine called in Pplot is Plt_sgl_dbl. This routine allows the user to choose between a single or double set of data to be plotted. The user is also given the chance to escape back to the main menu. After choosing between "Single" or "Double" by soft key the Dbl_flag is set to either 1 or 2. The user is then instructed to insert the disk containing the data into disk drive 0 (right-hand drive). The user is querried to see if he wishes a listing of the disk (default being no).

After viewing the listing the student is prompted for the name of the first file. If the user enters a file name that does not exist on the disk an error message is generated and the user is prompted again for the first file name. When a good file name in input the radar cross-section, frequency and polarity data is transferred to View(*). From there the radar cross-section data is transferred to the first column in Plot_dt (*), the frequency data to Frl and polarity data to Polarityl. In addition the time and date information is retrieved from

Fig. 19. Pplot Subroutine

the disk and stored in the appropriate string variables.

At this point View_crt is called. View_crt takes the radar cross-section data passed in View (*) and plots this information on the CRT. The user can then visually inspect the data, dump the data to the printer for a quick copy and/or continue. If this is not the data set the user really wanted to use he may then re-choose and begin the process over again by pressing the soft key "RE-DO". After viewing the data on the CRT, control is passed back to Plt_sgl_dbl. If the "Double" key was pressed (Dbl_flag=2) then the whole process is repeated for the second set of data. The only difference is that the radar cross-section data is now stored in the second column of Plot dt(*).

After the radar cross-section data set(s) are stored in Plot_dt(*), Scale_ch is called. This subroutine, common to both Pplot and RCS, allows the student to select a computer generated scale or a user generated scale for the plot. The maximum and minimum values of the radar cross-section data are displayed on the CRT. The student must press the "Auto Scale" or "User" soft key. If "Auto Scale" is pressed the software adds 10 dB to the maximum value and subracts 10 dB from the minimum value. It then rounds these new values to the nearest ten. This establishes a scale where the data fills the majority of the plot and the range of radar cross-section axes is divisible by 10. If the "User" soft key is pressed the student is querried to enter the maximum and minumum value for the radar cross-section scale. If the maximum is less than or equal to the minimum the student is notified and asked again for the appropriate values. In both cases (Auto Scale

and User) the maximum and minimum values of the axis are passed in the Ymax and Ymin variables for the next subroutine, Draw pl.

Draw_pl is a subroutine common to both RCS and Pplot. After pauseing to ensure that paper and pens are in the plotter, the subroutine draws the basic grid of the plot on the HP plotter. Next the aspect angles in degrees are drawn on the abscissa with 180 degrees at the center. The major tick marks are drawn at 45 degree intervals with minor ticks drawn every five degrees. Using Ymax and Ymin the RCS (dBsm) ordinate axis is drawn to scale. The major and minor tick marks are dependent on the range of Ymax and Ymin. If the computer generated Ymax and Ymin a major tick mark is drawn every 10 dB. If the user generated the scale the major tick marks are at every tenth of the range.

The data itself is drawn using the common subroutine Draw_data. If only one data set is being plotted (Dbl_flag=1) then the data and legend are drawn in a different color than the plot grid. The legend contains the file name, date and time the measurement was taken, the frequency of the oscillator during the measurement and the polarity of the electric field.

If two data sets are being plotted the first data set and legend are drawn in the same color as the grid with the second data set and legend drawn in the remaining color. After the complete plot is drawn the paper is positioned towards the user for easy removal.

At this point Pplot is completed and the user is returned back to the main menu.

Rcs. To make a radar cross-section measurement the user must press the "RCS" soft key while on the main menu. This calls the other major subroutine Rcs. The passed parameters include:

Dt	750,23) A 750 x 23 array that contains the raw data
	voltage measurements) that the data
	acquisition unit takes in. The actual
	values of the columns will be explained with
	the Target subroutine

Dummy	(750,3)
	Dt(*) after being averaged and reduced. The
	first column contains the time (in sec) of
	sampling. The second column contains
	amplitude measurements and the third column
	contains the phase measurement.

Good $(361,2)$ A 361×2 array that contains the data from
Dummy(*) in a truncated version. Since the
positioner actually travels more than 360
degrees Good(*) starts when the target
crosses O degrees and ends when the target
crosses 360 degrees at one data set
(amplitude and phase) per degree.

Plot_dt(*)Same array as in Pplot. Contains	the actual
radar cross-section data in dBsm	that will
be plotted.	

PolaritylPolarity	of	electric	field	used	in	measured
data.						

Time1\$	Time	target	maseuramant	uae	ctartad
11002130	. LIME	Larger	measurement	WAS	started.

Dtel\$.....Date target measurement was taken.

Fr2.....Frequency of data set 2.

Polarity2......Polarity of electric field of data set 2.

Dte2\$.....Date of data set 2.

Timel\$.....Time of data set 1.

Ec_phasePhase (volts converted to degrees) of the backscatter signal from the empty chamber.
Std_ec_ampAmplitude of the backscatter signal from the standard target and chamber.
Std_ec_phasePhase of the backscatter signal from the standard target and chamber.
Degf
Degl
Rcs_stndrdThe mathmatical prediction of the radar cross-section of the standard target (dBsm).
I
Dt_lgth

Refering to Fig. 20 the first subroutine called in RCS is

Configure. Configure allows the user to remotely program the sweep oscillator and synchronizer to the user supplied frequency. This frequency is loaded into the variable Frl for transfer to other subprograms. The student is also querried for the polarity (Polarityl) of the antennas with default being vertical. The software continues on after receiving a response from the synchronizer that it has locked onto the desired frequency and calls Empty chamber.

Empty_chmbr measures the phase and amplitude of the backscatter signal from the empty chamber. The program is paused while the user ensures that the chamber is empty, the receiver is locked on the signal and the backscatter signal is cancelled as much is possible. The cancellation is achieved by adjusting the coupled signal in phase and

Fig. 20. Rcs Subroutine

amplitude to be 180 degrees out of phase and equal in amplitude to the backscattered signal. When this is accomplished the software directs the Data Acquisition unit to take 90 measurements each of the amplitude and phase. The average amplitude and phase of the signal are stored in the variables Ec_amp and Ec_phase respectively.

The subroutine Standard measures the amplitude and phase of the backscatter signal from the chamber with the standard target in place. The program is paused while the student places the standard (assumed to be a sphere) target on the postioner inside the chamber. The student is then prompted for the diameter of the standard sphere to compute the mathmatical radar cross-section to be placed into Rcs_stndrd. The default value for the diameter is 5 inches (diameter of the sphere fabricated by the model shop). At this point the Data Acquisition unit again takes 90 samples each of the amplitude and phase output and places the average value into Std ec_amp and Std_ec_phase.

The next subroutine called is Target. This subroutine measures the amplitude and phase of the backscattered signal from the chamber and target. The program is paused while the student places the target on the positioner. After rotating the positioner to the reverse limit (reverse limit light on) the user enters the degree reading from the position indicator into the variable Degf. The Data Acquisition unit then continuously samples the reverse limit light circuit. When the user begins to rotate the positioner the light will go off and a voltage appears accross the circuit. at that point the internal clock of the computer is sampled and this start time is stored in Timel\$. The Data Acquisition unit then begins taking 9 samples each of the

amplitude and phase outputs. In addition the forward limit light circuit is sampled. After unloading the 20 samples (9 amplitude, 9 phase, reverse light circuit, forward light circuit) into an intermediate array the information is placed into Dt(*). The amplitude samples are put into the even columns for 4 to 20, the phase samples into the odd columns 5 to 21, the reverse limit circuit voltage into column 22 and the forward limit circuit voltage in column 23. The time of each set of samples is placed into the first column. This whole procedure is repeated until a voltage appears accross the forward limit circuit. This indicates that the positioner has finished rotating.

The user must then enter the final setting of the positioner in the degrees indicated on the positioner indicator. This variable, Degl, is used with Degf to compute the total degrees that the positioner has traveled. If the rotation rate of the positioner is too slow, Dt(*) array size will be exceeded. When this occurs the user will be required to restart the rotation process but at a faster rotation rate.

To complete the subroutine the nine samples of amplitude and the nine samples of phase for each sample set are averaged and placed into the second and third column respectively of Dt(*). The end result is that the time of the measured sample set is in column one with the average amplitude and average phase in columns two and three respectively.

The next three subroutines, Shake, Rattle and Roll perform the actual "number-crunching" of the data. Shake takes the time of each sample set (first column is Dt(*)) and translates this to the actual

position of the positioner in degrees. This is accomplished by computing the total number of degrees rotated (Total_deg = 720 + Degl - Degf), dividing this by the total time of rotation to arrive at the rotation rate. By multiplying the rotation rate with the time elapsed from the initial measurement, the degrees rotated since the initial measurement will be obtained. By adding Degf to this, the actual position of the positioner at each sample set will be derived. These values are then rounded to the nearest degree. Since the only measurements of interest are those when the positioner was between 0 and 360 degrees, Dt(*) is truncated to include only the degrees of interest and placed into Dummy(*).

The length of Dummy(*) will reflect one of three conditions: 1) more than on sample set per degree (Dt_1gth > 361), 2) one sample set per degree (Dt_1gth = 361) and 3) less than one sample set per degree (Dt 1gth < 361).

When Dt_1gth is greater than 361 some of the degrees will be repeated. If this condition exists Rattle goes through Dummy(*) and finds which degrees are repeated. The routine then finds the average measured values for that degree of position and translates that information to the array Good(*). This array is 361 rows long (0 to 360 degrees) with each row containing the measured or average of the amplitude and phase value.

If Dt_lgth is equal to 361 then Dummy(*) is transferred directly to Good(*) since the sample rate was exactly on sample set per degree.

Finally if Dt_lgth is less than 361 some position values will be missed. Rattle establishes which and how many degrees are missing. It

then creates a value for the missing degree that is proportional to the known value surrounding the missed values. For example if the phase measurements at 90 and 93 degrees were 1 and 4 VDC respectively the software would assign values of 2 and 3 VDC to 91 and 92 degrees respectively. The final result is that at the end of Rattle Good(*) will have 361 amplitude values and 361 phase values, one set for each degree of position.

The final "number-crunching" subroutine is called Roll. Roll takes the values of amplitude and phase from Good(*) and combines them with Ec_amp, Ec_phase, Std_ec_amp, Std_ec_phase and Rcs_stndr to arrive at the value for the radar cross-section of the target at the respective aspect angle in dBsm. This is accomplished through the use of vector subtraction as explained in Chapter 4. All this information is transferred to the array Plot_dt(*). This array contains the plot data for a particular target and is used when preparing a plot for the CRT or plotter.

The next subroutine the user encounters is Plot_str. In this routine the user must assign a file name to the measured data. Once the file name is entered into Dt_fill\$, View_crt is called to display the file on the CRT for verification. From that point a decision to store the data on disk, plot the data or return to the main menu must be made. If the decision to store the data is made the user will be prompted to insert the storage disk into drive 0 (right-hand drive). After this is completed two files are created. In order to conserve space on the disk one BDAT file is created to contain the plot data, frequency and polarity with respect to the measured target. Since this

information will be accessed as a whole unit only one record is created 2960 bytes long. This gives the room necessary for 362 real numbers (360 radar cross-section values, frequency in GHz and a polarity value of 0 or 1). To store the string variables, Dtel\$ and Timel\$, a second BDAT file is created two records long, 30 bytes/record. This allows the two string variables to be up to 26 characters long apiece. The file name of this file is the lower case version of the original file name in Dt_filel\$. For this reason Dt_filel\$ must contain at least one upper case character. After the storage is completed the "Plot/Store" menu is returned to the CRT.

If a decision is made to plot the data ("Plot" soft key is pressed) the user will no longer be able to store the data previously measured. If the user does press "Plot" the next menu will be from the subroutine Rcs_sgl_dbl. In this menu the user must decide to have either one data set plotted or two data sets plotted. This routine is very similar to Plot_sgl_dbl with the following exception. Since the current radar cross-section data is already in Plot_dt(*)'s first column (from subroutine Roll). A decision to plot a single data set results in Dbl_flag being set to one and then an exit from subroutine Plot_sgl_dbl. A decision to plot two data sets results in Dbl_flag being set to 2 and a querry for the file name of the second data set. Just as in Plot_sgl_dbl the data is loaded from the storage disk and the subroutine is exited.

The remaining subroutines Scale_ch, Draw_pl and Draw_dt are common to both Rcs and Pplot. Since these routines were previously discussed earlier the reader is directed to review the appropriate section under

Pplot for the description of those subroutines.

As with Pplot, control of the program is returned to Main_menu when the plot is completed. From that point the user may exit the program by depressing "Exit" or continue on to RCS or PLOT. If the user exits the program he will be reminded to shut off all equipment before the program is scratched and returned to BASIC.

Appendix D

The following listing is the software written for this thesis for AFIT's scattering measurement facility. The reader is directed to Appendix C for a detailed description of the flow and structure of the program.

```
10
20
30
40
50
60
70
                Software for AFIT's
Automated Scattering
Measurement Facility
                         written by
80
                      David G. Mazur
9Õ
                    Revision Record
                        25 Nov 85
120
130
140
            Consult thesis. Appendix C.
        150
160
180
190
200
210
        OPTION BASE 1
CLEAR 7
        CALL Begin(Dte1$)
CALL Main_menu(Dte1$)
PRINT "You are now back in BASIC."
END
220
230
240
 250
260
270
         SUB Begin(Dte1$)
CALL Heading
PRINT "
 280
                               ":CHR$(129);"*
                            *":CHR$(128)
```

```
urned on before RESETting and RUNning th e program. *":CHR$(128) 420 PRINT " ";CHR$(129):"*****
                                                          800 Idle:DISP "Enter appropriate soft ke
                                                          8io
                                                               GOTO Idle
C_rcs:DFF KEY
CALL Rcs(Dt(*),Dunmy(*),Good(*).
                                                          820
                                                          830
INPUT "Enter today's date.", Dtel
                                                          Plot_dt(+).Dte1$)
430
                                                               GOTO Begin
C_pplot:OFF KEY
                                                          840
          INPUT "Enter present hour (milit
                                                          850
440
                                                               C_ppid::Urr KLT
CALL Pplot(Plot_dt(*),Good(*))
GDTO Begin
C_exit:OFF KEY
CALL Exit_bsc
ary time).", Hours
450 INPUT "Enter present minutes.", M
                                                          870
                                                          880
inutes
460
          SET TIME Hours #3600 + Minutes #60
                                                          890
                                                          900
                                                                  SUBEND
470
        SUBEND
                                                          910
480
                                                          920
490
1500 SUB Main_menu(Dte1$)

510 DIM Dt(750,23),Dummy(750,3),Good

1361,3),Plot_dt(370,3)

520 Begin:Flag_rcs_plt=0

530 Help=0

540 OFF KEY
                                                                  SUB Rcs(Dt(*),Dummy(*),Good(*),Plo
                                                          930
                                                                  Dte1s)
ABORT 7
                                                          t_dt(
940
                                                                     CALL Clear_crt
CALL Configure(Fr1,Polarity1)
                                                          950
                                                          960
                                                          970
                                                                     CALL Empty_chmbr(Ec_amp,Ec_phase
           CALL Clear_crt
CALL Heading
PRINT "
550
                                                          980
                                                                     CALL Stndrd(Std_ec_amp,Std_ec_ph
560
                                                          570
           PRINT "
                                                          me1$)
580
                                                          1000
                                                                     CALL Shake(Dt(*), Dummy(*), Degf, D
            MAIN MENU
                                                                  Dt_lgth)
CALL Rattle(Dummy(*),Good(*),Dt_
                                                          egl,I,
         PRINT "
590
                                                          lgth)
1020
          PRINT "
                                                                     CALL Roll(Plot_dt(*),Good(*),Ec_
600
                                                          amp,Ec_phase,Std_ec_amp,Std_ec_phase,Rcs
                                                          _stndrd,Help)
1030 IF He
                                                                        Help=1 THEN SUBEXIT
           PRINT ""
610
                                                          1040 CALL Plot_str(Plot_dt(*),Fr1.Pol
arity1,Time1$.Dte1$,Dt_file1$,Help)
1050 IF Help=1 THEN SUBEXIT
1060 CALL Sgl_dbl(Dbl_flag,Plot_dt(*),Dte2$,Dt_file2$,Fr2,Polarity2,Time2$,He
           PRINT ""
620
           PRINT ""
630
           PRINT ""
650 PRINT "CHRs(128):".....
640
                              "; CHR$(129); "RCS";
                             Tale RCS measuremen
                                                          ĺp)
           PRINT ""
660
                                                           1070
                                                                     IF Help=1 THEN SUBEXIT
660 PRINT "
670 PRINT "
;CHR$(128);"....
                              ";CHR$(129);"PLOT"
                                                          1080
                                                                     CALL Scale_ch(Ymax,Ymin,Dbl_flag
                                                           ....Plot data already
1090
                                                                     CALL Draw_pl(Ymax, Ymin)
 039
           PRINT
                                                          1100
           PRINT "
                              "; CHR$(129); "EXIT"
                                                          1110 CALL Draw_data(Plot_dt(*).Ymax,Ymin,Dte1$.Dt_file1$,Fr1,Polarity1,Time1$,Dt_file2$,Dte2$,Db1_flag,Fr2,Polarity2.
690
 ;CHRs(128);".....Exit back to BASIC
                                      RCS" GOTO C_
 700
           ON KEY 5 LABEL "
                                                          Time2$)
                                                          1120
                                                                  SUBEND
 7CS
           ON KEY 7 LABEL "
                                      PLCT" GOTO C
                                                          1130
                                                          1140
1150
 _pplot
720
                                                                  SUB Heading
           ON KEY 9 LABEL "
                                      EXIT" GOTO C
                                                                     CALL Clear_crt
PRINT " :CHR$(129):"*****
 730
                                                          1160
                                                          1170
            ON KEY O GOTO Idle
           ON KEY 1 GOTO Idle
ON KEY 2 GOTO Idle
ON KEY 3 GOTO Idle
ON KEY 3 GOTO Idle
ON KEY 4 GOTO Idle
ON KEY 6 GOTO Idle
ON KEY 8 GOTO Idle
                                                                     *****
 740
                                                                                       ***********
                                                          750
 760
                                                                                     ";CHR$(128)
";CHR$(129);"*
 770
780
                                                                     PRINT "
                                                          1190
                                                               AFIT'S AUTOMATED SCATTERING MEASUREM
 790
```

```
":CHR$(128)
":CHR$(129);"=
":CHR$(128)
";CHR$(129):"=====
                                                                            1600
                                                                                          ENABLE INTR 7:2
ENT FACILITY
                                                                                          GOTO 1610
PRINT "
              PRINT "
                                                                            1610
 1200
                                                                            1620
                                                                                         Please wait."
PRINT "
              PRINT "
 1210
                                                                           1630 PRINT " The system is taking measurements."
1640 OUTPUT 709:"VT4 VS1 SD0 VR4 VF1"
1650 FOR I=1 TO 10
1660 OUTPUT 709;"AF00 AL17 AE1 VS1
VN18 AC00 SO1 VT3 VS"
1670 ENTER 709;A(*)
1680 FOR J=1 TO 18
1690 M(I,J)-A(J)
1710 NEXT J
1710 NEXT J
1720 CALL Clear_crt
1730 CALL Empty_hdg
1740 PRINT "
Thank you."
                                                                            1630
                                 ***";CHR$(128)
 1230
1240
1250
1250
1270
           SUB Configure(Fri,Polarity1)
CALL Clear_crt
CALL Heading
PRINT "
 1280
              PRINT "
 1290
          SYSTEM CONFIGURATION
    RCS
              PRINT "
 1300
                                                                                         PRINI "
Thank you."
WAIT .75
FOR I=1 TO 10
FOR J=1 TO 17 STEP 2
Amp_sum=Amp_sum+M(I,J)
Phase_sum=Phase_sum+M(I,J+1)
              PRINT "
 1310
                                                                            1760
1770
 ****
              Polarity1=0
INPUT "CW Frequency (GHz) = ?",F
                                                                             1780
 1320
                                                                             1790
1330
                                                                             1800
                                                                                              NEXT J
                                                                             1810
                                                                                           NEXT I
                                                                                       Ec_amp=Amp_sum/90
Ec_phase=Phase_sum*(-100/90)
CALL Clear_crt
SUBEND
                                                                            1820
1830
1840
                                                                             1850
                                                                             1860
                                                                             1870
                                                                             1880
                                                                                       SUB Empty_hdg
                                                                             1890
                                                                                          CALL Heading PRINT "
                                                                             1900
                                                                                           PRINT "
                                                                             1910
 1410
                                                                             CALIBRATION OF EMPTY CHAMBER
 1420
                                                                                         PRINT "
           SUB Empty_chmbr(Ec_amp,Ec_phase)
OPTION BASE 1
DIM A(18)
 1430
                                                                             1920
 1440
1450
                                                                                           PRINT "
               DIM M(10.18)
                                                                             1930
 1460
               Amp_sum=0
 1470
              Phase_sum=0
CLEAR 709
CALL Clear_crt
CALL Empty_hdg
PRINT "
                                                                             ----
 1480
                                                                             1940
                                                                                           PRINT ""
 1490
                                                                                           PRINT ""
                                                                             1950
 1500
1510
                                                                             1960
1970
                                                                                        SUBEND
 1520
                                                       Ensure th
 at the receiver is locked on the signal.
                                                                             1980
                                                                                       SUB Stndrd(Std_ec_amp,Std_ec_phase
                                                                             1990
               PRINT "
                                                                             .Rcs
                                                                                      stndrd)
 1530
                                                       Adrust ph
                                                                                           Amp_sum=0
Phase_sum=0
Diam=0
OPTION BASE 1
 ase shifter and attenuator at this time.
                                                                             2010
               PRINT ""
                                                                              2020
               PRINT "
                                                                              2030
 1550
                                                                                           DIM A(18)
DIM M(10.18)
CLEAR 709
CALL Clear_crt
CALL Stndrd_hdg
PRINT "
 ess ";CHR$(131);"CONTINUE";CHRS(128);"
hen chamber is empty."
1560 PAUSE
                                                                             2040
                                                                             2060
               CALL Clear_crt
CALL Empty_hdg
ON INTR 7 GOTO 1620
                                                                              2070
2080
  1580
                                                                              2090
  1590
```

ではないというないがある。

```
HRS(131);"CONTINUE";CHRS(128);" when sta
ndard target is in chamber."
2100 PAUSE
2110 CALL Clear_crt
2120 CALL Stndrd_hdg
2130 INPUT "Enter the diameter (inch)
of the standard sphere word (default)
                                                                                      2560
                                                                                      2570
                                                                                                 SUB Target(Dt(*),Degf,Degl.I,Time1
                                                                                      ŽŚ80
                                                                                                      Amp_sum=0
                                                                                      2590
                                                                                                      Phase_sum=0
OPTION BASE 1
                                                                                      2600
  of the standard sphere used (default = 5 inch)".Diam
                                                                                      2610
                                                                                                      DIM A(20)
                .Diam
IF Diam=0 THEN Diam=5
Rcs_stndrd=10*LGT(PI*(Diam*.0254
                                                                                                      CALL Clear_crt
CALL Target_hdg
PRINT "
                                                                                      2620
2630
 2140
 2150
                                                                                      2640
 72) 2)
                                                                                      s ";CHR$(131);"CONTINUE";CHR$(128);"
               CALL Clear_crt
CALL Stndrd_hdg
ON INTR 7 GOTO 2210
ENABLE INTR 7;2
GOTO 2200
PRINT "
2160
2170
2180
                                                                                      n target is in place."
2650 PAUSE
                                                                                                      CALL Clear_crt
CALL Target_hdg
PRINT "
                                                                                      2660
2670
2190
2200
                                                                                      2680
                                                                                                     itioner to the reverse limit."
INPUT "What degree is positioner
2210
                                                                                      ust pos
                PLEASE WAIT."
                                                                                      2690
                                                                                      2690 INPUT "What degree is positioner on?",Degf 2700 CALL Clear_crt 2710 CALL Target_hdg 2720 ON INTR 7 GUTO Start 2730 ENABLE INTR 7;2 2740 GUTO 2740 2750 Start:OUTPUT 709;"VT4 AEO VS0 SD0 V R3 VF1"
2220
                                                                       THE
2220 PRINT " THE

SYSTEM IS TAKING MEASUREMENTS."
2230 OUTPUT 709;"VT4 VS1 SD0 VR4 VF1"

2240 FOR I=1 TD 10

2250 OUTPUT 709:"AF00 AL17 AE1 VS1

VN18 AC00 SD1 VT3 VS"

2260 ENTER 709;A(*)
2270 FOR J=1 TO 18

2280 M(I,J)=A(J)

2290 NFXT J
2260
2270
2280
2290
2300
2310
2320
                                                                                      R3 VF1
2760
                                                                                                      PRINT "
                    NEXT J
                                                                                            Begin rotating positioner."
70 PRINT ""
                                                                                       2770
                NEXT I
                                                                                                      PRÎNT ""
                CALL Clear_crt
                                                                                       2780
                                                                                      2790 Lloop:OUTPUT 709;"AC19 S01 VT3"
2800 ENTER 709:R
2810 IF R<50 AND R>-50 THEN GOTO Pl_w
               CALL Stndrd_hdg
PRINT "
2330
                     THANK YOU."
                WAIT .75
FOR I=1 TO 10
FOR J=1 TO 17 STEP 2
2340
                                                                                       aıt
 2350
                                                                                        2820
                                                                                                      GOTO Lloop
                                                                                       2830 Pl_wait:PRINT "
2360
2370
2380
2390
                        Amp_sum=Amp_sum+M(I,J)
Phase_sum=Phase_sum+M(I,J+1)
                                                                                                        The system is taking measuremen
                                                                                       e wait.
                                                                                       ts."
2840
2850
                                                                                      ts."
2840 FOR I=1 TO 750
2850 Time1s=TIME$(TIMEDATE)
2860 Dt(I,1)=TIMEDATE MOD 86400
2870 OUTPUT 709;"VT4 AF00 AL19 AE1
VS1 VN20 AC00 S01 VT3 VS"
2880 ENTER 709;A(*)
                NEXT J
 2400
            Std_ec_amp=Amp_sum/90
Std_ec_phase=Phase_sum*(-100/90)
SUBEND
 2410
 2420
 2430
2440
2450
                                                                                                          FOR J=1 TO 20
Dt(I,J+3)=A(J)
                                                                                       2890
2900
            SUB Stndrd_hdg
CALL Heading
PRINT "
 2460
                                                                                                          NEXT J
IF Dt(I,22)>50 OR Dt(I,22)<-50
2470
                                                                                       2910
2480
                                                                                       2920
                                                                                         THEN GOTO 2990

1930

NEXT I

2940

CALL Clear_crt
2950

CALL Target_hdg

2960

PRINT "You have exceeded the arr
                PRINT "
2490
                                                                                       2930
                                                                           CA
LIBRATION WITH STANDARD TARGET
                                                                                        2940
                                                                                        2950
               PRINT "
2500
                                                                                       2960
                                                                                        ay size
                                                                                                     CONTINUE'."
                PRINT "
2510
                                                                                        Press
                                                                                        2970
                                                                                                       PAUSE
                                                                                                       GOTO 2580
CALL Clear_crt
BEEP
                                                                                        2980
2520
2530
2540
                PRINT ""
                                                                                        2990
                                                                                        3000
                                                                                                       CALL Target_hdg
INPUT "Enter final position of p
            SUBEND
                                                                                        3010
 2550
                                                                                        3020
```

```
3500
ositioner (DEG).",Degl
3030 FOR K*1 TO I
                                                            3500 K=K+1

3510 Next_J:NEXT J

3520 Set_Igth:Dt_lgth=K

3530 FOR J=1 TO K

3540 FOR L=1 TO 3

3550 Dummy(J,L)=Dt(J+Flag-1.L)

3560 NEXT L
3040
              Amp_sum=0
3050
             Phase_sum=0
FOR J=4 TO 20 STEP 2
                Amp_sum=Amp_sum+Dt(K,J)
Phase_sum=Phase_sum+Dt(K,J+1
3070
3080
                                                             3570
3090
                                                             3580
                                                                    SUBEND
              NEXT J
Dt(K,2)=Amp_sum/9
                                                            3590
3100
                                                            3600
           Dt(K,3)=Phase_sum/9
NEXT K
3110
                                                                    SUB Rattle(Dummy(*),Good(*),Dt_lgt
                                                            3610
3120
                                                            h)
362
        SUBEND
3130
                                                                       PRINT "
3140
                                                                     The less you see"
FOR J=1 TO 361
3150
                                                            3630
        SUB Target_hdg
CALL Heading
PRINT "
3160
3170
                                                            3640
                                                                          Good(J,1)=J-1
3180
                                                            3650
                                                                       NEXT J
3190
           PRINT "
          TARGET MEASUREMENT
                                                             3660
                                                                        IF Dt_lgth>361 THEN GOTO Repeats
                                                                  REPEATS
3200
           PRINT "
                                                                        IF Dt_lgth<361 THEN GOTO Misses
           PRINT "
3210
                                                             3680
                                                                       FOR J=1 TO Dt_lgth-1
                                                            3690
                                                                          Good(J,2)=Dummy(J,2)
Good(J,3)=Dummy(J,3)
           PRINT ""
3220
                                                             3700
3230
           PRINT ""
                                                             3710
3240
3250
                                                             3720
                                                                        SUBEXIT
3260
                                                             3730 Repeats:K=1
! REPEATS
3270
        SUB Shake(Dt(*),Dummy(*),Degf,Degl
,I,Dt_lgth)
3280 PRINT ""
                                                                        FOR J=1 TO Dt_lgth-1
                                                             3740
                                                            3750
3760
3770
3290
           PRINT ""
                                                                          Amp=0
                                                                           Phase #0
3300
           PRINT "
        LON OBSERVABLES"
                                                                           IF Dummy(J,1)=Dimmy(J+L,1) THE
                                                             3780
3310
           PRINT
3320
           Flag=0
                                                             3790
3330
                                                                             L=L+1
            K=0
                                                                          IF L>1 THEN GOTO 3880
                                                             3800
            Total_deg=720+Degl-Degf
Total_time=Dt(I,1)-Dt(1,1)
3340
                                                             3810
3820
3350
3360
                                                                             Good(K,2)=Dummy(J.2)
Good(K,3)=Dummy(J.3)
           Rot_rate=Total_deg/Total_time
Time1=Dt(1,1)
FOR J=1 TO I
                                                             3830
 3370
                                                             3840
                                                                             K=K+1
 3380
                                                             3850
                                                                             GOTO 3990
 3390
              Dt(J,1)=((Dt(J,1)-Time1)*Rot_r
                                                                           END IF
GOTO 3780
                                                             3860
 ate)+Degf
                                                             3870
 3400
              Dt(J,1)=PROUND(Dt(J,1).0)
                                                             3880
                                                                           FDR M=0 TO L-1
 3410 Dt(J,3)=Dt(J,3)=(-100)
3420 IF Dt(J,1)>360 OR Dt(J,1)=360
THEN Dt(J,1)=Dt(J,1)=360
                                                                             Amp*Amp+Dummy(J+M.2)
                                                             3900
                                                                             Phase=Phase+Dummy(J+M,3)
                                                                          NEXT M
Good(K,2)=Amp/L
Good(K,3)=Phase/L
FOR M=1 TO L-1
                                                             3910
            NEXT J
 3430
            FOR J=1 TO I
IF Flag>0 THEN GOTO Test
IF Dt(J,1)<10 THEN GOTO Set_fl
                                                             3920
 3440
                                                             3930
3940
 3450
 3460
                                                             3950
                                                                           J=J+1
NEXT M
 ag
3470
                                                             3960
              GOTO Next_;
                                                             3970
 K=K+1
L=1
                                                             3980
                                                                        NEXT J
 ath
```

```
4000
             GOTO Bottom
                                                                                 Plot_dt(I.1)=I-1
NEXT I
OFF ERROR
                                                                    4490
4010 Misses:IF Dummy(1,1) *0 THEN
! MISSES
                                                                    4500
4510
4020
                Good(1,2)=Dummy(1,2)
                                                                    4520
                                                                                 SUBEXIT
4030
4040
                Good(1,3)=Dummy(1,3)
                                                                    4530 Bottom: BEEP
                K=2
                                                                     4540
                                                                                 Help=1
PRINT "
4050
             ELSE
                                                                                                    The program has enco
Verify that"
                                                                     4550
4060
                                                                    untered a problem.
4560 PRINT "
                FOR L=1 TO Dummy(1,1)+1
Good(L,2)=Dummy(1,2)
Good(L,3)=Dummy(1,3)
4070
                                                                                                    the receiver is stil
4080
                                                                    l in lock. You will need to 4570 PRINT" start the
4090
                                                                     4570
                                                                                                start the measuremen; CHRS(13.1); "CONTINUE"; C
          K=K+1
NEXT L
END IF
FOR J=2 TO Dt_lgth
Tes.=Dummy(J,1)-Dummy(J-1,1)
IF Test=1 THEN GOTO 4240
Amp=Dummy(J,2)-Dummy(J-1,2)
Phase=Dummy(J,3)-Dummy(J-1,3)
FOR M=1 TO Test

''' 2)=Dummy(J-1,2)+(Amp
                                                                    t again. Press "
HR$(128);" when '
4100
4110
                                                                                 PRINT "
4120
                                                                     4580
                                                                                                    ready. Thank you."
 4130
                                                                                 OFF ERROR
PAUSE
                                                                     4590
4140
                                                                     4600
4150
                                                                     4610
                                                                              SUBEND
4160
                                                                     4620
4170
                                                                     4630
                                                                    4630 !
4640 SUB Plot_str(Plot_dt(*),Fr1,Polar:
ty1,Time1$,Dte1$,Dt_file1$,Help)
4650 DIM View(365)
4650 CALL Clear_crt
4670 CALL Heading
4680 CALL Plot_str_hdg
4690 PRINT ""
4180
4190
M/Test)
4200
                   Good(K,3)=Dummy(J-1,3)+(Phas
e*M/Test)
                   K=K+1
4210
                NEXT M
GOTO 4270
4220
                                                                                 PRINT ""
4230
                                                                     4700
                Good(K,2)=Dummy(J,2)
Good(K,3)=Dummy(J,3)
4240
                                                                     4710
                                                                                 PRINT ""
4250
                                                                                 PRINT ""
                                                                     4720
4260
                K=K+1
                                                                     4730 Name:PRINT "
                                                                                                                The file name
            NEXT J
                                                                      must have at least one UPPER CASE lette
4280 Bottom: SUBEND
                                                                     r in it.
4740
                                                                     r in it."

4740 INPUT "Enter the filename for the current set of data.",Dt_file1$

4750 File_name1$=\L\C\S\(Dt_file1\S\)

4760 FOR I=1 TO 360

4770 View(I)=Plot_dt(I,2)

4780 NEXT I
4290
4300
4310
        SUB Roll(Plot_dt(*),Good(*),Ec_amp
 ,Ec_phase,Std_ec_amp,Std_ec_phase,Rcs_st
ndrd,Help)
4320 PRINT "
        the more it hurts!"
ON ERROR GOTO Bottom
                                                                                  CALL View_crt(View(*),Dt_file1$,
                                                                     4790
 4330
                                                                     Help)
             Ec_x=Ec_amp*COS(Ec_phase)
Ec_y=Ec_amp*SIN(Ec_phase)
4340
                                                                                  CALL Clear_crt
                                                                     4800
4350
                                                                                  CALL Heading PRINT "
                                                                     4810
4360
             Std_ec_x=Std_ec_amp*COS(Std_ec_p
                                                                     4820
hase)
4370
             Std_ec_y=Std_ec_amp+SIN(Std_ec_p
                                                                                  PRINT "
                                                                          DATA STORAGE OR PLOT
hase)
 4380
             Std_x=Std_ec_x-Ec_x
             Std_y=Std_ec_y-Ec_y
Std_amp=(Std_x^2+Std_y^2)\.5
FOR I=1 TO 360
4390
                                                                                  PRINT "
                                                                     4840
 4400
 4410
                                                                                  PRINT "
                                                                      4850
                Trgt_ec_x=Good(I,2)+CDS(Good(I
 4420
 .3))
 4430
                Trgt_ec_y * Good(I,2) * SIN(Good(I
                                                                     4870 PRINT ""
4880 PRINT "
";CHR$(128);"...
                                                                      4860
                                                                                  PRINT ""
 .3))
 4440
                Trgt_x=Irgt_ec_x-Ec_x
                                                                                                        ":CHR$(129);"STORE
                Trgt_y=Trgt_ec_y-Ec_y
Trgt_amp=(Trgt_x^2+Trgt_y^2)^.
 4450
                                                                                                      ...Store current dat
 4460
                                                                      4890
                                                                                  PRINT ""
                                                                      4900 PRINT ":CHR$(128);".....
4470
4470 Rcs_trgt=Rcs_stndrd-(20*LGT(Std_anp))+(20*LGT(Trgt_anp))
4480 Plot_dt(I,2)=Rcs_trgt
                                                                                                        ":CHR$(129):"PLOT"
                                                                                                   .....Plot current data
```

```
PRINT "
                                                                                                 5400
                 PRINT ""
PRINT "
                                               ":CHR$(129);"MAIN
4920
                                                                                                                  PRINT "
                                                                                                 5410
MENU"; CHR$(128);".....Exit back to main
                 ON KEY 5 LABEL "
4930
                                                          STORE" GOTO S
                                                                                                 5420
                                                                                                              SUBEND
4940
                 ON KEY 7 LABEL " PLOT" GOTO PI
                                                                                                 5430
                                                                                                5440 !
5450 SUB Sgl_dbl(Dbl_flag,Plot_dt(*).Dt
e2$.Dt_file2$.Fr2.Polarity2.Time2$.Help)
5460 DIM View(365)
5470 CALL Clear_crt
5480 CALL Heading
5490 CALL Sgl_dbl_hdg
5500 PRINT ""
5510 PRINT ""
5520 PRINT ""
5520 PRINT " ";CHR$(129);"SINGL
E";CHR$(128);".......Plot single data
set (current)."
5530 PRINT ""
5540 PRINT ""
5540 PRINT ""
5550 PRINT "
5550 PRINT ";CHR$(129);"DOUBL
E";CHR$(128);"......Plot two data se
ts (current and stored)."
5550 PRINT "
5560 PRINT ";CHR$(129);"MAIN
MENU";CHR$(128);"......Exit back to mai
                                                                                                 5440
4950
                 ON KEY O GOTO Idle
4960
                  ON KEY 1 GOTO Idle
                ON KEY 1 GOTO Idle
ON KEY 2 GOTO Idle
ON KEY 3 GOTO Idle
ON KEY 4 GOTO Idle
ON KEY 6 GOTO Idle
ON KEY 8 GOTO Idle
ON KEY 9 LABEL "
4970
4980
4990
5000
5010
5020
                                                          MAIN MENU" GO
TO Mm
5030 Idle:DISP "Enter appropriate soft k
ey."
5040
5040 GOTO Idle
5050 Mm:OFF KEY
5060
                 Help=1
SUBEXIT
5070
5070 SUBEXIT

5080 Str:OFF KEY

5090 CALL Clear_crt

5100 CALL Heading

5110 PRINT ""

5:20 PRINT ""

5130 PRINT ""
                                                                                                 MENU":CHR$(128);".....Exit back to mai
                                                                                                 n menu."
                                                                                                                  ON KEY 5 LABEL " SINGLE" GOTO S
                                                                                                 5570
                                                                                                 g l
5580
5140
                  PRINT ""
                                                                                                                  ON KEY 7 LABEL " DOUBLE" GOTO D
5150 PRINT "Insert storage disk into right hand disk drive. Press ";CHR$(129);"CONTINUE";CHR$(128);" when ready."
                                                                                                5590
5600
5610
                                                                                                                   ON KEY O GOTO Idle
                                                                                                                  ON KEY 1 GOTO Idle
ON KEY 2 GOTO Idle
ON KEY 3 GOTO Idle
ON KEY 4 GOTO Idle
);"CI
                 PAUSE
5160 PAUSE

5170 ON ERROR GOTO Err

5180 GOTO Disk

5190 Err:PRINT ERRMS

5200 GOTO Name

5210 Disk:CREATE BDAT Dt_file1$,1,2960

5220 View(361)=Fr1
                                                                                                 5620
                                                                                                                  ON KEY 4 GOTO Idle
ON KEY 6 GOTO Idle
ON KEY 8 GOTO Idle
ON KEY 8 GOTO Idle
                                                                                                 5630
                                                                                                 5640
                                                                                                 5650
                                                                                                 5660
                                                                                                                  ON KEY 9 LABEL
                                                                                                                                                           MAIN MENU" GO
                                                                                                 TO Mm
                                                                                                 5670 Idle:DISP "Enter the appropriate so ft key."
5680 COTO Idle
                 View(361)=Fr1
View(362)=Polarity!
ASSIGN @Dt_file1 TO Dt_file1$
OUTPUT @Dt_file1;View(*)
ASSIGN @Dt_file1 TO *
CREATE BDAT File_name1$.2,30
ASSIGN @File_name1 TO File_name1
5230
5240
5250
                                                                                                 5690 Mm: DFF KEY
5260
5270
                                                                                                 5700
                                                                                                                   Help=1
                                                                                                 5710
                                                                                                                   SUBEXIT
5280
                                                                                                 5720 Sgl:Dbl_flag=1
5730 OFF KEY
5740 SUBEXIT
 5290
                  OUTPUT @File_name1,1:Dte1$
OUTPUT @File_name1.2:Time1$
ASSIGN @File_name TO *
5300
                                                                                                 5750 Dbl:Dbl_flag=2
5760 OFF KEY
5310
5320 SUBEXIT
5330 Plt:OFF KEY
                                                                                                 5770 CALL Clear_crt
5780 CALL Heading
5790 CALL Sgl_dbl_hdg
5800 Start:PRINT ""
5810 PRINT ""
5340
             SUBEND
5350
5360
             SUB Plot_str_hdg
                                                                                                                   PRÎNT "
                                                                                                 5820
5380
               PRINT
                                                                                                                                                       Insert disc con
                                                                                                 taining data file into right hand disk d
                  PRINT "
5390
                                                                                                 five.
5830
                                                                                                                   PRINT ""
                DATA STORAGE
                                                                                                                   PRINT "
                                                                                                  5840
```

```
Press ":CHR$(131);"CONTINUE";CHR$(128);
                                                                                                   PRINT "
                                                                                    6360
" when ready.
5850 PAUSE
                                                                                     *******
5850 PAUSE
5860 ON ERROR GOTO Err2
5870 CALL Clear_crt
5880 CALL Heading
5890 CALL Sgl_dbl_hdg
5900 INPUT "Do you wish to see listin g of disk (Y or N)? Default is NO.",Lli
                                                                                     6370
                                                                                                    PRINT ""
                                                                                                    PRINT ""
                                                                                     6380
                                                                                     6390
                                                                                                SUBEND
                                                                                     6400
                                                                                     6410
                                                                                    6420
                                                                                                SUB Scale_ch(Ymax,Ymin,Dbl_flag,Pl
                                                                                    ot_dt(*),Help)
6430 Ymin=Plot_dt(1,2)
st$
5910
5920
                IF Llist$="Y" THEN CAT
                                                                                              INITIALIZE
5930 CHI
5930 ON KBD GOTO Again
5940 DISP CHR$(131);"Press space ba
r when ready.":CHR$(128)
5950 Lloop:GOTO Lloop
5960 ELSE
5970 COTO Again
                                                                                                   Ymax=Ymin
FOR I=2 TO Dbl_flag+1
FOR J=1 TO 360
IF Plot_dt(J,I)<Ymin THEN Ym
                                                                                     6440
                                                                                     6450
                                                                                     6460
                                                                                     6470
                                                                                     in=Plot_dt(J,I)
6480 IF Plot_dt(J,I)>Ymax THEN Ym
                    GOTO Again
5970
5970 GUTO Again
5980 END IF
5990 Again:CALL Clear_crt
6000 OFF KBD
6010 OFF ERROR
6020 CALL Heading
6030 CALL Sgl_dbl_hdg
6040 Name:INPUT "Enter the file name of
the stored file.",Dt_file2$
6050 ON ERROR GOTO Err1
6050 GOTO Inhound
                                                                                     ax=Plot_dt(J,I)
                                                                                     6490
                                                                                                       NEXT J
                                                                                                    NEXT I
CALL Clear_crt
CALL Heading
PRINT "
                                                                                     6500
6510
6520
                                                                                     6530
                                                                                     6540
                                                                                                    PRINT "
                                                                                            SCALING CHOICES
6060 GOTO Inbound
6070 Err1:PRINT ERRMS
                                                                                                    PRINT "
                                                                                     6550
6080
               GOTO Name
GUIU Name
6090 Inbound:ASSIGN @File2 TO Dt_file2$
6100 ENTER @File2;View(*)
6110 ASSIGN @File2 IO *
6120 FOR I=1 TO 360
6130 Plot_dt(I,3)=View(I)
6140 NEXT I
6150 Fig=View(361)
6150 Polarity2=View(362)
                                                                                                    PRINT '
                                                                                     6560
                                                                                     *******
                                                                                    of the current data is ":Ymax:" (dBsm)."
6590 PRINT " The minimum value
of the current data is ":Ymin;" (dBsm)."
6600 PRINT ""
6610 PRINT ""
6610 PRINT "";CHRs(129)."
               Pr2=View(3b1)
Polarity2=View(362)
Dte_file2$=LHC$(Dt_file2$)
ASSIGN &Dte_file2 TO Dte_file2$
ENTER @Dte_file2,1:Dte2$
ENTER &Dte_file2,2:Time2$
ASSIGN @Dte_file2 TO *
CALL View_crt(View(*),Dt_file2$,
6160
6170
6180
6190
6200
6210
6220
                                                                                     SCALE"; CHR$(128);".....Computer gen
                                                                                     erates scale."
6620 PRINT ""
                                                                                     Help)
6230
                SUBEXIT
                                                                                     scale.'
6240 Err2:CALL Clear_crt
6250 DISP ERRM$
6260 BEEP
6270 OFF ERROR
                                                                                                     PRINT ""
                                                                                                     PRINT "
                                                                                      6650
                                                                                                                               ";CHR$(129);"MAIN
                                                                                      MENU"; CHR$(128);".....Exit back to
                                                                                       main menu.
                GOTO Start
                                                                                                     ON KEY 5 LABEL "
6280
                                                                                      6660
                                                                                                                                            AUTO SCALE"
6290
6300
                                                                                      GOTO Auto
            SUBEND
                                                                                                     ON KEY 7 LABEL " .
                                                                                                                                               USER" GOTO
                                                                                      €670
6310
                                                                                     User
6680
            SUB Sgl_dbl_hdg
PRINT"
                                                                                                     ON KEY 9 LABEL "
                                                                                                                                           MAIN MENU" G
6320
                                                                                      OTO Mm
6330
                                                                                                     ON KEY 0 GOTO Idle
ON KEY 1 GOTO Idle
ON KEY 2 GOTO Idle
ON KEY 3 GOTO Idle
                                                                                      6690
                                                                                      6700
6710
6340
               PRINT "
                                                                          TH
F NUMBER OF DATA SETS DESIRED
                                                                                     6720
```

SOME CONTRACTOR OF STREET

PRINT "

MICROCOPY RESOLUTION TEST CHART
NATIONAL PHIREAU OF STANDARDS 1963 A

```
6730 ON KEY 4 GOTO Idle
6740 ON KEY 6 GOTO Idle
6750 ON KEY 8 GOTO Idle
6760 Idle:DISP "Enter appropriate soft k
                                                                                             7180
                                                                                                             PRINT ""
                                                                                                             PRINT "
                                                                                             7190
                                                                                              Press
                                                                                                              "; CHR$(129); "CONTINUE"; CHR$(128)
                                                                                             ;" when ready.
7200 PAUSE
ey."
6770
                                                                                            7210
7210
7220
7230
                                                                                                             CALL Clear_crt
CALL Heading
PRINTER IS 705
6770 GOTO Idle
6780 Mm:OFF KEY
6790
                                                                                            7240
7250
7500;"
7260
7270
                                                                                                             ES-CHRS(3)
PRINT "IN;SP1:IP 1500,2000,9500,
                 SUBEXIT
6800
          User:CALL Clear_crt
CALL Heading
PRINT " **
6810
6820
                                                                                                           PRINT "SC0,360,0.100;"
PRINT "PU 0,0 PD 360,0,360,100,0
                                                                                            7270
,100,0
7280
7290
7300
7310
7320
                PRINT "
6840
                                                                                                             PRINT "SI .2,.3:TL 3,0:"
FOR X-45 TO 315 STEP 45
PRINT "PA",X,"0,XT:"
        USER DEFINED SCALE
            PRINT "
6850
                                                                                                             PRINT "TL 1.5,0"
FOR X=5 TD 355 STEP 5
PRINT "PA",X,"0,XI"
                PRINT "
6860
                                                                                             7330
                                                                                             7340
                                                                                                             NEXT X
PRINT "TL 0.3:"
FOR X-45 TO 315 STEP 45
PRINT "PA",X."100,XI:"
6870
                PRINT ""
                                                                                             7350
                 PRINT ""
                                                                                             7360
6880
6880 PRINT ""
6890 INPUT "Enter the maximum value of RCS scale desired.", Ymax
6900 INPUT "Enter the minimum value of RCS scale desired.", Ymin
6910 Range=Ymax-Ymin
6920 IF Range>0 THEN GOTO Good_rge
                                                                                             7370
7380
                                                                                                             NEXT X
PRINT "TL 0,1.5"
FOR X-5 TO 355 STEP 5
PRINT "PA",X,"100,XT"
                                                                                             7390
                                                                                             7400
                                                                                             7410
                                                                                             7420
                                                                                                             FRINI FH .A, 100,A,

NEXT X

FOR X=0 TO 360 STEP 45

PRINT "PA",X."0"

IF X<10 THEN PRINT "CP -1.5.-1
                                                                                             7430
6930
                 IF Range=0 THEN PRINT "
                                                                                             7440
   You have entered the same value fo
Ymin and Ymax."
950 IF Range<0 THEN PRINT "
Your Ymin is greater than y
                                                                                             7450
                                                                                             7460
                                                                                             :LB"
7470
6950
                                                                                                                 IF X>9 AND X<100 THEN PRINT "C
our Ymax."
                                                                                                               B";X:E$
                                                                                            7480
                                                                                                                 IF X>99 THEN PRINT "CP -2.5.-1
6960
                 PRINT ""
                 PRINT "
                                                                                             ;LB"
7490
6970
                                                                                                        NEXT X
PRINT "PA 180.0:CP -11,-2.5; LBA
ANGLE (DEGREES)";E$
PRINT "SC0.360",Ymin.Ymax;"TL 3.
        Try again!"
| G0T0 6890
                                                                                             7500
6980
6990 Good_rge:CALL Clear_crt
7000 OFF KEY
7010 SUBEXIT
                                                                                             SPECT
                                                                                            7510
0"
                                                                                             7520
                                                                                                             Range=Ymax-Ymin
FOR Y=Ymin+10 TO Ymax-10 STEP 10
PRINT "PAO",Y,"YT"
 7020 Auto:CALL Clear_crt
7030 Ymax=Ymax+10
7040 Ynax=PROUND(Ymax,1)
                                                                                             7530
7540
 7040
7050
7060
                                                                                                            PRINT "PAO", Y, "YI"

NEXT Y

PRINT "TL 1.5.0"

IF Range>49 THEN Little_tick=2.5

IF Range<51 THEN Little_tick=1

FOR Y * Min+Little_tick TO Ymax-L

ick STEP Little_tick TO Ymax-L

ick STEP Little_tick

PRINT "PA 0", Y, "YI"

NEXT Y

PRINT "TL 0.3"

FOR Y * Ymin+10 TO Ymax-10 STEP 10

PRINT "PA 360 ", Y, "YI"

NEXT Y
                 Ymin=Ymin-10
                                                                                             7550
                 Ymin=PROUND(Ymin,1)
OFF KEY
                                                                                             7560
                                                                                             7570
7580
7590
  7070
 7080
             SUBEND
 7090
                                                                                             7600
 7100
             SUB Draw_pl(Ymax,Ymin)
CALL Clear_crt
CALL Heading
PRINT ""
PRINT ""
                                                                                             ittle
7610
 7110
 7120
  7130
                                                                                             7620
                                                                                             7630
7640
7650
  7140
 7150
7160
                 PRINT ""
                                                                                                             NEXT Y
PRINT "TL 0.1.5"
                 PRINT "
                                                   Ensure that pape
 7170
                                                                                             7670
 r and two pens are in the plotter at thi
                                                                                                              FOR Y=Ymin+Little_tick TO Ymax-L
                                                                                             7680
```

```
PRINT "CP:LBPolarity: ":Polis:ES
IF Dbi_flag=1 THEN GOTO Botton
PRINT "PUO",Plot_dt(1,3);
PRINT "SP2;"
FOR I=1 TO 360
PRINT "PD",I-1,Plot_dt(I,3)
 ittle_tick STEP Little_tick
7690 PRINT "PA 360",Y."YT"
                                                                      8130
7690
7700
7710
7720
                                                                      8140
8150
8160
            NEXT Y
PRINT "TL 3.0"
FOR Y=Ymin TO Ymax STEP 10
PRINT "PA 0",Y;
Ynum=Y
                                                                      8170
773Ŏ
                                                                      8180
                                                                                   NEXT I
PRINT "PU:PA270", Ymin, "CP0, -5:"
IF Polarity2=1 THEN
Pol25="HORIZONTAL"
 7740
                                                                      8190
                                                                     8200
8210
8220
8230
                Ynum=PROUND(Ynum,-2)
IF Ynum<-99.99 THEN Offset=6
IF Ynum>-100 AND Ynum<-9.99 TH
 7750
7760
7770
                                                                                   ELSE
EN Offset=5
7780
                IF Ynum>-10 AND Ynum<-.99 THEN
                                                                      8240
                                                                                      Pol2$="VERTICAL"
                                                                      8250
8260
                                                                                   END IF
  Offset=4
                                                                                   PRINT "LBFile Name: ":Dt_file25:
7790
                IF Ynum>-1 AND Ynum<0 THEN Off
set=3
7800
                                                                      E$
8270
E$
                IF Ynum=0 THEN Offset=0
IF Ynum>0 AND Ynum<1 THEN Offs
                                                                                   PRINT "CP;LBDate taken: ";Dte25;
7810
et=2
                                                                      8280
                                                                                  PRINT "CP:LBTime taken: ":Time2$
 7820
                                                                      ;Es
                IF Ynum>.99 AND Ynum<10 THEN O
                                                                      8290
Hz";E$
8300
 ffset=3
                                                                                   PRINT "CP:LBFrequency: ":Fr2:" G
7830
                IF Ynum>9.99 AND Ynum<100 THEN
                                                                     8300 PRINT "CP;LBPolarity: ";Pol2s;E$ 8310 Bottom:PRINT "SI .2,.3;PU0",Ymin."S P_;"
 Offset=4
                IF Ynum>99.99 THEN Offset=5
PRINT "CP",(-2.5)-Offset."-.25
7840
7850
 :LB";Ynum;E$
7860 NEXT Y
                                                                      8320
                                                                                   PRINTER IS CRT
                                                                      8330
                                                                               SUBEND
7870 PRINT "PAO", Ymin+Range/2; "DIO,1; CP -5,5"
                                                                      8340
                                                                      8350
8360
                                                                     7880
            PRINT "LBRCS (dBsm)";E$
PRINT "DI1,0"
 7890
             PRINTER IS CRT
 7900
 7910
          SUBEND
 7920
                                                                      8380
8390
                                                                                   IF Help=1 THEN SUBEXIT
 7930
                                                                      8390 CALL Scale_ch(Ymax,Ymin,Dbl_flag
,Plot_dt(*),Help)
 7940 SUB Draw_data(Plot_dt(+),Ymax,Ymin
,Dte1$,Dt_file1$,Fr1,Polarity1,Time1$,Dt
_file2$,Dte2$,Dbl_flag,Fr2,Polarity2,Tim
 7940
                                                                                   IF Help-1 THEN SUBEXIT
                                                                      8400
                                                                      8410 CALL Draw_pl(Ymax, Ymin)
8420 CALL Draw_data(Plot_dt(*), Ymax, Ymin, Dtels.Dt_file1s,Fr1,Polarity1, Time1s,Dt_file2s,Dte2s,Dbl_flag,Fr2,Polarity2,
 e2$)
             PRINTER IS 705
PRINT "SC0,360,",Ymin.Ymax
IF Dbl_flag=1 THEN PRINT "SP2:"
PRINT "PUO",Plot_dt(1,2);
FOR I=1 TO 360
PRINT "PD",I-1,Plot_dt(I,2)
 7950
 7960
7970
7980
                                                                      Time2$)
                                                                      8430 SUBEND
 7990
                                                                      8440
 8000
          NEXT I PRINT "PU; PAO", Ymin, "; SI .15,.22
 6010
                                                                      8450
                                                                      8460 SUB Plt_sgl_dbl(Plot_dt(*),Fr1,Pol
arity1,Time15,Dte18,Dt_file18,Fr2,Polari
 8020
5:CP0.
8030
             ÉS=CHRS(3)
                                                                      ty2.Time2$,Dte2$.Dt_file2$,Dbl_flag.Help
             IF Polarity1=1 THEN
Polis="HORIZONTAL"
 8040
                                                                                   DIM View(365)
CALL Clear_crt
CALL Heading
 8050
                                                                      8470
                                                                      8480
 8060
                 Polis="VERTICAL"
 8070
                                                                      8490
             END IF PRINT "LBFile Name: ";Dt_file1$;
                                                                                   CALL Sgl_dbl_hdg
PRINT ""
PRINT " ";(
 8080
                                                                      8500
8510
 8090
                                                                      8520 PRINT " ";CHR$(129);"SINGL
E";CHR$(128);".........Plot single data
 E۶
 8100
             PRINT "CP:LBDate taken: ":Dte15;
                                                                                   PRINT ""
 8110
                                                                      8530
             PRINT "CP:LBTime taken: ":Time1$
                                                                      ;E$
             PRINT "CP; LBFrequency: "; Fr1; " G
 Hz":ES
```

```
9040 ON ERROR GOTO Err1
9050 GOTO Inbound1
9060 Err1:PRINT ERRM$
9070 GOTO Again1
9080 Inbound1:ASSIGN @File1 TO Dt_file1$
9090 ENTER @File1;View(*)
9100 ASSIGN @File1 TO *
9110 Dte_file1$=LWC$(Dt_file1$)
9120 ASSIGN @Dte_file1 TO Dte_file1$
9130 ENTER @Dte_file1,1;Dte1$
9140 ENTER @Dte_file1,2;Time1$
9150 ASSIGN @Dte_file1 TO *
8550
8560
                 PRINT ""
                  PRINT "
                                                ":CHR$(129):"MAIN
 MENU"; CHR$(128);".....Exit back to mail
 n menu.
                  ON KEY 5 LABEL " SINGLE" GOTO S
 8570
gl
8580
                  ON KEY 7 LABEL " DOUBLE" GOTO D
Ы
8590
                  ON KEY O GOTO Idle
                  ON KEY 1 GOTO Idle
ON KEY 2 GOTO Idle
ON KEY 3 GOTO Idle
 8600
 8610
 8620
                  ON KEY 4 GOTO Idle
ON KEY 6 GOTO Idle
ON KEY 8 GOTO Idle
ON KEY 9 LABEL "
                                                                                                                OFF ERROR
FOR I=1 TO 360
Plot_dt(I,2)=View(I)
NEXT I
8630
8640
                                                                                                9160
                                                                                                9170
 8650
                                                                                                9180
                                                           MAIN MENU" GO
                                                                                                9190
 8660
 TO Mm
                                                                                                9200
                                                                                                                 Fr1=View(361)
8670 Idle:DISP "Enter the appropriate so ft key."
8680 GOTO Idle
                                                                                                                 Polari y1=View(362)
Time1=View(363)
                                                                                                9210
                                                                                                9220
                                                                                                                 CALL View_crt(View(*),Dt_file1$,
                                                                                                9230
 8690 Mm: OFF KEY
                                                                                               Help)
9240
9250
                                                                                               Help=1
 8710
                   SUBEXIT
8770
           Begin: CALL Clear_crt
 8780 CALL Heading
8790 CALL Sgl_dbl_hdg
8800 Start:PRINT ""
8810 PRINT ""
                                                                                               9310 Err2:PRINT ERRMS
9320 GOTO Again2
9330 Inbound2:ASSIGN @File2 TO Dt_file2S
9340 ENTER @File2;View(*)
9350 ASSIGN @File2 TO *
9360 Dte_file2*S-LWC$(Dt_file2$)
9370 ASSIGN @Dte_file2 TO Dte_file2$
9380 ENTER @Dte_file2,1;Dte2$
9390 ENTER @Dte_file2,1;Dte2$
9390 ENTER @Dte_file2.2;Time2$
9400 ASSIGN @Dte_file2 TO *
9410 OFF ERROR
9420 FOR I=1 TO 360
9430 Plot_dt(I,3)=View(I)
9440 NEXT I
9450 F72=View(361)
 8810 PRINT "Insert disc containing da ta file(s) into right hand disk drive."
8830 PRINT ""
8840 PRINT "Press ";CHR$(131);"CONTIN
8830 PRINI ""
8840 PRINI "Press "; CHR$(131); "CONTIN UE"; CHR$(128); " when ready."
8850 PAUSE 8860 CALL Clear_crt 8870 CALL Heading 8880 CALL Sgl_dbl_hdg ON ERROR GOTO Err3 8900 INPUT "Do you wish to see listing of disk (Y or N)? Default is NO.", Lliet$
                                                                                                9450
                                                                                                                 Fr2=View(361)
                                                                                                9460
                                                                                                                 Polarity2=View(362)
                                                                                                9470
                                                                                                                 CALL View_crt(View(*),Dt_file2$.
 8910
                   IF LlistS="Y" THEN
                                                                                                Help)
 SUBEXIT
                                                                                                9480
                                                                                                9490 Err3:BEEP
                                                                                                                 CALL Clear_crt
DISP ERRMS
OFF ERROR
GDTD Start
                                                                                                9500
                                                                                                9510
                                                                                                9520
  8960
                   ELSE
                                                                                                9530
9540
  8970
                   END IF
                                                                                                             SUBEND
                   CALL Clear_crt
OFF KBD
OFF ERROR
 8980
                                                                                                9550
                                                                                                9560
9570
 8990
                                                                                                             SUB View_crt(View(*),Name$,Help)
CALL Clear_crt
GINIT
  9000
 9010 CALL Heading
9020 CALL Sgl_dbl_hdg
9030 Again1:INPUT "Enter the file name of the first stored file.",Dt_file!$
                                                                                                9580
                                                                                                9590
9600
                                                                                                                 PLOTTER IS 3, "INTERNAL"
Ymin=View(1)
                                                                                                9610
```

```
Ymax=Ymin
FOR_I=1 TO 359
9620
                                                                                        10200 ON KBD GOTO Bottom
10210 Idle:DISP CHR$(131);"Press space b
ar.";CHR$(128);"
9630
9640
                         View(I)<Ymin THEN Ymin=View
(I)
                                                                                                                                                          ":TIMESO
9650
                    IF View(I)>Ymax THEN Ymax=View
                                                                                         TIMEDATE)
                                                                                        10220 HAIT 1
10230 GOTO Idle
10240 Ddump:PRINTER IS 701
10250 OUTPUT KBD;" N";
10260 PRINTER IS CRT
10270 GOTO Idle
10280 Bottom:GRAPHICS OFF
(I)
9660
                NEXT I
                Ymax=Ymax+10
Ymax=PROUND(Ymax,1)
9670
9680
9690
9700
9710
9720
                 Ymin=Ymin-10
                Ymin=PROUND(Ymin,1)
               Ymin=PROUND(Ymin,1)
Range=Ymax-Ymin
GRAPHICS ON
MOVE 0.95
CSIZE 3
LABEL Name$
CSIZE 6
LORG 6
FOR I=-.3 IO .3 STEP .1
MOVE 70+I,100
LABEL "LOW OBSERVABLES"
NEXT I
                                                                                         10290
                                                                                                         CALL Clear_crt
9730
                                                                                         10300 SUBEND
9740
9750
                                                                                         10310
                                                                                         10320 :
10320 :
10330 SUB Clear_crt
10340 OUTPUT KBD;" K";
10350 SUBEND
9760
9770
9780
9790
                                                                                         10360
9800
                                                                                         10370
                                                                                        10380 SUB Exit bsc !SHUTTLE GRAPHICS PR
OVIDED BY HEHLETT-PACKARD
10390 CALL Heading
10400 PRINT ";CHR$(129);"=
                NEXT I
9810
9820
               CSIZE 4
MOVE 0.62
Labels="RCS"
FOR I=1 TO 3
LABEL Labels(I,I)
9830
9840
9850
                                                                                         When finished with measurement and/or plots ensure "":CHR$(128) 10410 PRINT" ";CHR$(129):"+
9860
9870
               NEXT I
MOVE 56.15
LABEL "ASPECT ANGLE"
VIEHPORT 15.125.30.90
                                                                                          that all equipment is turned off. Have a nice day! "CHR$(128)
9880
9890
                                                                                        a nice day!
10420 PRINT "
9900
                                                                                                                                 ";CHR$(129);"*

*";CHR$(128)

";CHR$(129);"*

*";CHR$(129);"*
9910
9920
9930
                WINDOW 0.360, Ymin, Ymax
                                                                                         10430 PRINT "
               MINUUM U.36U.Tmin.Tmax
AXES 5,2.0,Ymin,9,5,2
CSIZE 3
LORG 6
CLIP OFF
FOR I *0 TO 360 STEP 45
MOVE I.Ymin-1
LABEL I
9940
9950
                                                                                         10440
                                                                                                         PRINT "
9960
9970
                                                                                         ******;CHR$(128)
9980
                                                                                         10450 ON KBD GOTO Start
10460 DISP "Press space bar when ready
9990
10000
                                                                                         10470 Idle:GOTO Idle
10480 Start:CALL Clear_crt
10490 OFF KBD
10500 OPTION BASE 0
10010
                NEXT I
10020
                LORG 8
                FOR I-Ymin TO Ymax STEP 10
MOVE -1.I
LABEL I
10040
 10050
                                                                                         10510 COM /Configuration/ Plotter,Printer.Svm.Gen,Auto,Width
10520 INTEGER F(1392,2),B(518,2),Color
                                                                                         10510
               NEXT I
FOR I=0 TO 359
PLOT I,View(I+1)
NEXT I
10060
10070
10080
                                                                                          (17.1)
10530
                                                                                                          ON ERROR GOTO Bottom
 10100
                ON KEY 5 LABEL "DUMP TO PRNTR" G
                                                                                          10540
                                                                                                          GINIT
OTO Downp
                                                                                                          GCLEAR
                                                                                          10550
                                                                                                         GCLERK
PRINTER IS 1
OUTPUT 2 USING "#,K";" K"
IF Width=50 THEN Hd=15
IF Width=80 THEN Hd=0
MASS STORAGE IS ":INTERNAL,4.1"
PRINT TAB(30-Hd);"== SPACE*SHUT
 10110
                 ON KEY O GOTO Idle
                                                                                         10560
                ON KEY 1 GOTD Idle
ON KEY 2 GOTD Idle
ON KEY 3 GOTD Idle
ON KEY 4 GOTD Idle
 10120
10130
10140
10150
                                                                                          10580
                                                                                          10590
                                                                                          10600
                ON KEY 6 GOTO Idle
ON KEY 7 GOTO Idle
ON KEY 8 GOTO Idle
ON KEY 9 GOTO Idle
 10160
                                                                                          10610
                                                                                          TLE
10620
 10180
                                                                                                          ASSIGN OF 11e TO "MATTE"
ENTER OF 11e; F(*), B(*)
 10190
```

```
MASS STORAGE IS ":INTERNAL,4.0" GRAPHICS ON WINDOW -80.619,-50,482
 10540
 10650
10660 HINDOH -80.619,-50,482
10670 Re_plot:!
10680 PEN 1
10590 GCLEAR
10700 OUTPUT 2 USING "#.K";" K"
10710 RESTORE Star_data
10720 FDR 1-1 TO 50
10730 READ X,Y
10740 MOVE X,Y
10750 DRAW X-.5,Y-.5
10760 NEXT I
10770 RESTORE F_color_data
10780 GOSUB Get_colors
10790 Mat_plot(F(*),1392,@File,Color(*))
  10660
 ))
10800
10810
                                           RESTORE B_color_data
GDSUB Get_colors
Mat_plot(B(*),518,9File,Color(*)
   10820
   10830
                                             BEEP 1500,.2
  10840
10850
10860
                                           PEN 1
CSIZE 3
PENUP
10860 PENUP
10870 ON KBD GOTO Bottom
10880 DISP "Press space bar when ready
to go back to BASIC or shut down."
10890 Stall:GOTO Stall
10900 Bottom:OFF KBD
10910 MASS STORAGE IS ":INTERNAL,4,0"
10920 GRAPHICS OFF
10930 CALL Clear_crt
10940 SUBEXIT
10950 Get colors: 1
   10950 Get_colors: !
10960 READ Color(*)
10970 RETURN
 10980 F_color_data:!
10990 DATA 0,5,51,3,89,4,98,5,335,2.47
0.5,483,3,580,4,640,5,720,2,730,3,785,4
11000 DATA 832,7,940,5,1040,4,1130,5,1
0.5.483,3,580,4,640,5,720,2.730,3,785,4
11000 DATA 832,7,940,5,1040,4,1130,5,1
303,2.1380,4
11010 B_color_data:!
11020 DATA 0.6,97.2,130,3,217,1,252.2,
256.2.272.3,279,1,293,2,350.6
11030 DATA 360,6,389,2,391,2,435,7,463,1,492,3,499,2,519,1
11040 Star_data:!
11050 DATA 162,337,-48,469,90,399,232,360,494,154,544,34,553,19,514,344,417,11060 DATA 29,9,9,-47,47,458,426,90,41,7,450,250,566,30,306,83.33,274,51,450,11070 DATA 32,429,462,475,454,472,21,1,64,391,35,-19,193,515,364,284,330,570,11080 DATA 139,210,73,-79,184,97,80,17,7,368,290,49,427,192,28,239,473,-23,11090 DATA 473,348,80,-43,342,280,320,403,449,322,65,69,161,340,60,261,370,70,236,405,300
111100 SUBEND
```

Appendix E

The following sample plots illustrate the format of the data that is outputted from the software for AFIT's facility. The targets are choosen because of their predictable peak radar cross-section. Fig. 21 is a plot of a square flat plate. The predicted RCS is 9.5 dBsm. The measured peak RCS is 9.8 dBsm. Fig. 22 is a plot of two data sets. The first data set is that of a 8" sphere. The actual plot has the data sets and their corresponding legends in different colors. In Fig. 22 the "flat" line is the sphere's RCS. The predicted RCS of the sphere is -14.8 dBsm where the measured RCS is -14.1 dBsm. The second data set is that of a trihedral corner reflector. Its predicted peak RCS is -2.1 dBsm and its peak measured RCS is -0.4 dBsm.

Fig. 21. Flat Plate RCS

Fig. 22. Corner Reflector and Sphere RCS

■これものののの■デンタンプを含む

Bibliography

- Skolnik, M.I. <u>Introduction to Radar Sytems</u> (Second Edition). New York: McGraw-Hill, 1980.
- Marconi, G. "Radio Telegraphy," <u>Proceedings IRE</u>, 10: 215-238 (1922).
- Breit, G. and M.A. Tuve. "A Test of The Existence of the Conducting Layer," Physics Revue, 28: 554-575 (September 1926).
- Appleton E.V. and M.A.F. Barnett. "Local Reflection of Wireless Waves from the Upper Atmosphere," <u>Nature</u>, <u>115</u>: 333-334 (March 1925).
- 5. Raymond, R.C. Scattering of 10cm Radiation by a Model Airplane.
 Report 156. M.I.T. Radiation Lab, Cambridge, Mass., May 21, 1942.
- 6. Yates, Y.P. Continuous Wave Method of Measuring Radar Cross
 Sections and Reflection Patterns by Means of Models: Report
 759-33. The Ohio State University Research Foundation, Columbus,
 OH, October 31, 1945.
- 7. Blacksmith Jr., P. et al. "Introduction to Radar Cross-Section Measurements," Proceedings IEEE, 53: 901-920 (August 1965).

<u>.</u>

- 8. Upson, J. and J.N. Hines. An Indoor Echo-area Measuring System:
 Report 612-11. The Ohio State University Research Foundation,
 Columbus, OH, November 1, 1956.
- 9. Emerson, W.H. "Electromagnetic Wave Absorbers and Anechoic Chambers through the Years,""IEEE Transactions on Antennas and Propagation, AP-21, No. 4: 484-489 (July 1973).
- 10. Kerr, D.E. <u>Propagation of Short Radio Waves</u>. New York: McGraw-Hill, 1951.
- Stuzman, W.L. and G.A. Thiele. Antenna Theory and Design. New York: John Wiley & Sons, 1981.
- 12. Rome Air Development Center, Air Force Systems Command. Basic Design Principles of Electromagnetic Scattering Measurement Facilies. RADC-TR-81-40. Hanscom AFB, Mass., March 1981.
- 13. Pyati, V. Lecture materials distributed in EENG 628, Electromagnetic Waves II. School Of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, April 1985.

- 14. Bahret, W.F., Propagation Group, Electromagnetic Environment Branch, AFWAL, WPAFB, OH. Correspondence to HQ USAF, Washington D.C., May 25, 1966.
- 15. Boyles, J. "Recruit an ANA for RCS Tests," Microwave & RF: 87-92 (March 1985).
- 16. Simpson, lLt G. R. Comparison of a RCS Measurement Range Using CW Nulling Technique and Pulse Gating Technique. MS Thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, December 1985.

1Lt David G. Mazur was born on 20 March 1954 in Detroit, Michigan. He graduated from Gabriel Richard High School in Riverview, Michigan in 1972 and enlisted in the United States Marine Corps immediately thereafter. After successful completion of Marine Corps boot camp in San Diego, CA he was assigned to Aviation Electrician School at NAS Jacksonville, FL. From there he completed tours with the Marine Air Wings at MCAS El Toro, CA, MCAS Iwakuni, Japan, MCAS Cherry Point, NC and MCAS Kaneohe, Hawaii until his honorable disharge in early 1979. In the spring of 1979 he enrolled at the University of Michigan, College of Engineering where he graduated Cumme Laude with a Bachelor of Science, Electrical Engineering in December 1981. Lt Mazur received his commission in April 1982 at the completion of Officer Training School, Lackland AFB, TX where he graduated first honor graduate. His first assignment was to the Tactical Air Warfare Center (TAWC), Eglin AFB, FL where he served as an electronic warfare systems engineer until entering the School of Engineering, Air Force Institute of Technology, in June 1984.

Permanent address: 3365 Maidstone

Trenton, Michigan 48183

UNCI	ASSIE	LED.				_
ECURITY	CLASSIFI	CATION	OF	THIS	PAGI	E

AD-A163 846

				REPORT DOCUM	ENTATION PAG	E			
18 REPORT SECURITY CLASSIFICATION					16. RESTRICTIVE MARKINGS				
UNCLASSIFIED									
28 SECURITY CLASSIFICATION AUTHORITY					3. DISTRIBUTION/AVAILABILITY OF REPORT				
	-0.0.0.5.04	2011110010			Approved for publec release;				
26 DECLASSIFICATION/DOWNGRADING SCHEDULE					distribution unlimited				
4 PERFCR	MING ORGAN	ZATION REI	PORT NUM	BER(S)	5. MONITORING OF	GANIZATION P	EPORT NUMBE	R(S)	
AFIT/GE/ENG/85D-26									
64. NAME OF PERFORMING ORGANIZATION				66. OFFICE SYMBOL	7a. NAME OF MONI	TORING ORGAN	IZATION		
Scho	ol of Er	ngineer	ing	AFIT/ENG					
6c. ADDRE	SS (City, State	and ZIP Code)		7b. ADDRESS (City, State and ZIP Code)				
Air	Force Ir	stitute	e of T	echnology	į				
				io 45433					
Sa. NAME OF FUNDING/SPONSORING ORGANIZATION				8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
Sc ADDES	8c ADDRESS (City. State and ZIP Code)					IN SOURCE OF SUNDING NOS			
a. AUUNE	SS (City, State)	wie air C000)	,		10. SOURCE OF FUNDING NOS. PROGRAM PROJECT TASK WORK UNIT				
					ELEMENT NO.	NO.	NO.	NO.	
						[
11 TITLE (Include Security Classification)					1				
	box 19				<u> </u>				
	NAL AUTHORO d G. Maz		F. USA	F					
David G. Mazur, 1Lt, USAF 13a TYPE OF REPORT 13b TIME COVERED					14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT				
MS Thesis FROM				то	1985 December		10	107	
16. SUPPLE	MENTARY NO	TATION							
17	COSATI	CODES		18. SUBJECT TERMS (C	ontinue on reverse if n	ecessary and iden	tify by block num	iberi	
FIELD	GROUP SUB. GR.		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Radar Waves						
20	20 14			Electromagnetic Wave Reflections					
				Radar Cross					
Title	e: Desi	.gn Meth man: I	nodolo Randy	d dentily by block numbe gy of an Auto J. Jost, 1Lt, ctor of Elect	omated Scatt USAF	-	asurement	: Facility	
					1	YN & WOLAVE	ic releases www.	g o Development	
20 DISTRIBUTION AVAILABILITY OF ABSTRACT					21 ABSTRACT SECURITY CLASSIFICATION				
UNCLASSI	UNCLASSIFIED UNLIMITED X SAME AS APT TOTIC USERS T					UNCLASSIFIED			
22a. NAME	22. NAME OF RESPONSIBLE INDIVIDUAL					UMBER	22c OFFICE SYMBOL		
Randy J. Jost, 1Lt, USAF					Include Area Co		AFIT/ENG		

SECURITY CLASSIFICATION OF THIS PAGE

This thesis addresses the design methodology surrounding an automated scattering measurement facility. A brief historical survey of radar cross-section (RCS) measurements is presented. The electromagnetic theory associated with a continuous wave (CW) background cancellation technique for measuring RCS is discussed as background. In addition, problems associated with interfacing test equipment, data storage and output are addressed. The facility used as a model for this thesis is located at the Air Force Institute of Technology, WPAFB, OH. Even though this paper addresses a particular facility, the design methodology applies to any automated scattering measurement facility. A software package incorporating features that enhance the operation of AFIT's facility by students is presented. Finally, sample outputs from the software package illustrate formats for displaying RCS data. Negocolds: frequency negociated and facility of the software package illustrate formats for displaying RCS data.

Fahre Moves

END

FILMED

3-86

DTIC