

Random Variables and Probability Distributions

Department of Science and Humanities

UNIT 2: Random Variables and Probability Distributions

Session: 6

Subtopic: Poisson Distribution

Poisson Distribution

- Poisson distribution is the discrete probability distribution of a discrete random variable x, which has no upper bound.
- It is defined for non-negative values of x as follows:

$$f(x,\lambda) = P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
, for $x = 0, 1, 2, ...$

• Here $\lambda > 0$ is called the parameter of the distribution and

Poisson Distribution

Prerequisite:

- Each trial results in two mutually exclusive outcomes, termed as success and failure.
- The number of trials n is very large i.e., $n \to \infty$.
- The constant probability of success, p, is very small $(p \to 0)$.
- $\lambda = np$ is a finite positive real number.

Note:

Binomial distribution can be approximated by Poisson distribution when $n \to \infty$ and $p \to 0$ such that $np = \lambda = constant$.

Poisson Distribution

Examples that give rise to Poisson distribution:

- Number of printing mistakes per page.
- Number of accidents on a highway.
- Number of defectives in a production centre
- Number of telephone calls during a particular time etc...

Poisson Distribution – Derivation of Mean

Mean:
$$E(X) = \sum_{x=0}^{\infty} x P(x)$$

$$= \sum_{x=0}^{\infty} x \cdot \frac{\lambda^{x} e^{-\lambda}}{x!}$$

$$= \lambda e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^{x-1}}{(x-1)!}$$

$$= \lambda e^{-\lambda} \left(1 + \frac{\lambda}{1!} + \frac{\lambda^{2}}{2!} + \cdots \right)$$

$$= \lambda e^{-\lambda} e^{\lambda} = \lambda$$

Poisson Distribution – Derivation of Variance

Variance:
$$E(X^2) = \sum_{x=0}^{\infty} x^2 P(x) - \lambda^2$$

Consider
$$\sum_{x=0}^{\infty} x^2 P(x) = \sum_{x=0}^{\infty} x^2 \cdot \frac{\lambda^x e^{-\lambda}}{x!} = \sum_{x=0}^{\infty} [x(x-1) + x] \cdot \frac{\lambda^x e^{-\lambda}}{x!}$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x \cdot x(x-1)}{x!} + e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x \cdot x}{x!}$$

$$= e^{-\lambda} \sum_{x=2}^{\infty} \frac{\lambda^x}{(x-2)!} + e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^x}{(x-1)!}$$

$$= \lambda^2 e^{-\lambda} \left(1 + \frac{\lambda}{1!} + \frac{\lambda^2}{2!} + \cdots \right) + \lambda e^{-\lambda} \left(1 + \frac{\lambda}{1!} + \frac{\lambda^2}{2!} + \cdots \right)$$

$$= \lambda^2 + \lambda$$

Thus variance $E(X^2) = \lambda^2 + \lambda - \lambda^2 = \lambda$

Poisson Distribution – Example

1. Suppose that a book of 600 pages contains 40 printing mistakes. Assume that these errors are randomly distributed throughout the book and the number of errors per page has a Poisson distribution. What is the probability that 10 pages selected at random will be free of errors?

Poisson Distribution – Example

Solution:

$$p = \frac{40}{600} = \frac{1}{15}$$
, $n = 10$, $\lambda = np = 10 \times \frac{1}{15} = \frac{2}{3}$

$$P(x) = \frac{\lambda^x e^{-\lambda}}{x!} = \frac{\left(\frac{2}{3}\right)^x e^{-\frac{2}{3}}}{x!}$$

$$P(x=0) = \frac{\left(\frac{2}{3}\right)^0 e^{-\frac{2}{3}}}{0!} = e^{-\frac{2}{3}} = 0.51$$

Department of Science and Humanities