WHAT IS CLAIMED IS:

1	1. A method of using static timing analysis to extract implicit		
2	connectivity graph information comprising:		
3	creating a unique clock waveform;		
4	defining a clock domain for the clock waveform;		
5	injecting the clock domain into a control node;		
6	propagating the clock waveform from the control node to a transitively		
7	adjacent observation node; and		
8	retrieving transitively adjacent control node information to determine path		
9	delay information from the control node to the transitively adjacent		
10	observation node based upon propagation of the clock waveform.		
1	2. The method of claim 1 wherein:		
2	the clock domain includes a rising edge clock domain and a falling edge clock		
3	domain; and,		
4	the path delay information includes information relating to the rising edge		
5	clock domain and the falling edge clock domain.		
1	The method of claim 1 wherein:		
2	the transitively adjacent observation node becomes a pseudo control node.		
1	4. The method of claim 1 wherein:		
2	the connectivity graph includes information a path between the control node		
3	and the transitively adjacent observation node.		
1	5. The method of claim 1 wherein:		
2	the path between the control node and the transitively adjacent observation		
3	node is a direct path.		
-			
1	6. The method of claim 1 wherein:		
2	the path between the control node and the transitively adjacent observation		
3	node includes combinational logic.		

1	7.	The method of claim 1 wherein:	
2	the pa	th between the control node and the transitively adjacent observation	
3		node includes a flop.	
1	8.	The method of claim 1 wherein:	
2	the pa	th delay information includes timing constraint information.	
1	9.	The method of claim 8 wherein:	
2	the timing constraint information includes setup constraint timing constrain		
3		information.	
1	10.	The method of claim 8 wherein:	
2	the tin	ning constraint information includes hold constraint timing constraint	
3		information.	
1	11.	A system for using static timing analysis to extract implicit	
2	connectivity g	graph information comprising:	
3	means	s for creating a unique clock waveform;	
4	means	s for defining a clock domain for the clock waveform;	
5	means	s for injecting the clock domain into a control node;	
6	means	s for propagating the clock waveform from the control node to a	
7		transitively adjacent observation node; and	
8	means	s for retrieving transitively adjacent control node information to	
9		determine path delay information from the control node to the	
0		transitively adjacent observation node based upon propagation of the	
1		clock waveform.	
1	12.	The system of claim 11 wherein:	
2	the clo	ock domain includes a rising edge clock domain and a falling edge clock	
3		domain; and,	
4	the pa	th delay information includes information relating to the rising edge	
5		clock domain and the falling edge clock domain.	

1	13.	The system of claim 11 wherein:		
2	the tr	ansitively adjacent observation node becomes a pseudo control node.		
1	14.	The system of claim 11 wherein:		
2	the co	onnectivity graph includes information a path between the control node		
3		and the transitively adjacent observation node.		
1	15.	The system of claim 11 wherein:		
2	the path between the control node and the transitively adjacent observation			
3		node is a direct path.		
1	16.	The system of claim 11 wherein:		
2	the path between the control node and the transitively adjacent observation			
3		node includes combinational logic.		
1	17.	The system of claim 11 wherein:		
2	the path between the control node and the transitively adjacent observation			
3		node includes a flop.		
1	18.	The system of claim 11 wherein:		
2	the pa	th delay information includes timing constraint information.		
1	19.	The system of claim 18 wherein:		
2	the tin	ning constraint information includes setup constraint timing constraint		
3		information.		
1	20.	The system of claim 18 wherein:		
2	the tin	the timing constraint information includes hold constraint timing constraint		
3		information.		

ላን

1	21. An apparatus for using static timing analysis to extract implicit
2	connectivity graph information comprising:
3	a clock waveform module, the clock module creating a unique clock
4	waveform;
5	a clock domain module, the clock domain module defining a clock domain for
6	the clock waveform;
7	an injecting module, the injecting module injecting the clock domain into a
8	control node;
9	a propagating module, the propagating module propagating the clock
10	waveform from the control node to a transitively adjacent observation
11	node; and
12	a retrieving module, the retrieving module retrieving transitively adjacent
13	control node information to determine path delay information from the
14	control node to the transitively adjacent observation node based upon
15	propagation of the clock waveform.
1	22. The apparatus of claim 21 wherein:
2	the clock domain includes a rising edge clock domain and a falling edge clock
3	domain; and,
4	the path delay information includes information relating to the rising edge
5	clock domain and the falling edge clock domain.
1	23. The apparatus of claim 21 wherein:
2	the transitively adjacent observation node becomes a pseudo control node.
1	24. The apparatus of claim 21 wherein:
2	the connectivity graph includes information a path between the control node
3	and the transitively adjacent observation node.
J	and the named very adjacent observation node.
1	25. The apparatus of claim 21 wherein:
2	the path between the control node and the transitively adjacent observation
3	node is a direct path.

1	26.	The apparatus of claim 21 wherein:	
2	the path between the control node and the transitively adjacent observation		
3		node includes combinational logic.	
1	27.	The apparatus of claim 21 wherein:	
2	the path between the control node and the transitively adjacent observation		
3		node includes a flop.	
1	28.	The apparatus of claim 21 wherein:	
2	the path delay information includes timing constraint information.		
1	29.	The apparatus of claim 28 wherein:	
2	the timing constraint information includes setup constraint timing constraint		
3		information.	
1	30.	The apparatus of claim 28 wherein:	
2	the tin	ning constraint information includes hold constraint timing constraint	
3		information.	