Intro to Deep Learning

Chris Powell Software Engineer at Hudl

What I'll be talking about today

- 1. What is 'Deep Learning'?
- 2. How does a neural network work?
- 3. What are a few examples of Deep Learning models and why would I use them?
- 4. What are the downsides to choosing a neural network for my next machine learning project?

Deep Learning is a subset of Machine Learning

Examples of Deep Learning

"Frame Oracle" →

A series of processes that produce player information, that includes a Deep Learning Convolutional Neural Network.

Reviewing the output of Frame Oracle on top of the video that was input to the model.

Predicting the state of American Football games.

Examples of Deep Learning

GitHub Copilot

DALL-E created the cover for a recent magazine. DALL-E uses CLIP is an example of a deep learning model.

Neural Networks

Overview of neural network

Input Layer = Array of Values

Hidden Layer(s) = where the network learns

Output Layer = matches the problem type

Connections = Weighted Edges

Overview of neural network

Perceptron: Single Layer Neural Network

Inputs and Bias

Weights for each input

Added together

Multiplied by an activation function

Perceptron: Single Layer Neural Network

Why use an activation function?

Non-linear Activation Functions

Backpropagation

Gradient Descent

Gradient Descent

in the contract of the second contract of the contract of the

Gradient Descent

Initializing Weights in Network

Convolutional Neural Networks (CNNs)

Real World Applications

Frame Oracle

Input: Spatial Relationship

Frame Oracle

Matrix of (i, j) values that correspond to colors

Height of i pixels

Size of inputs

4K UHD² * 100 = 6,872,410,000,000,000

Input: RGB layers

Breaking Down An Image

Input: Spatial Relationship

To avoid losing the spatial information, we consider subsections of the image together.

Height of m pixels

Input: Spatial Relationship

To avoid losing the spatial information, we consider subsections of the image together.

Height of m pixels

Input: Spatial Relationship

To avoid losing the spatial information, we consider subsections of the image together.

Height of m pixels

Turning regions into single values

Turning regions into single values

Pooling

Stacking convolutional layers

So what does a whole CNN look like?

Recurrent Neural Networks

Real World Applications

Input

Architecture

Architecture: Long-Short Term Memory Cells

Output

Disadvantages of Neural Networks

Black Box

NEWS Jul 07, 2020

OpenAl Presents GPT-3, a 175 Billion Parameters Language Model

By Nefi Alarcon

Tags: featured, Machine Learning & Artificial Intelligence, News, Speech & Audio Processing, Supercomputing / Cluster

Black Box

Training Time/Computation

Neural Networks need a lot of data

Thanks for listening to my presentation

Additional topics and citations after this slide

Generative Adversarial Networks (GANs)

Do you know this celebrity?

Do you know this celebrity?

His backdrop is very odd. The glasses don't seem to connect to his right ear.

Why is she wearing two different earrings? Does the skin around her left eye look older than the right?

Architecture for a GAN

Reinforcement Learning

Examples

Model Zoos and Transfer Learning

Model Zoo?

Alternatively, use an API

Transfer Learning

Multi-task Models

Why Deep Learning Now?

Big Data

GPU

Continued advancement in neural networks