Datenstrukturen schriftliche Finzelprüfung 18.01.2019	Algorithmen und Datenstrukturen (ADS VO)
---	--

	13		14		32		15		18		23		39		34
+		+		+		+		+		+		+		+	
	z_1		\mathbf{z}_2		\mathbf{z}_3		Z ₄		Z ₅		z ₆		Z 7		Z 8

Aufgabe 1 [2]

Fügen Sie in obiger Tabelle in den leeren Kästchen, vor denen das Pluszeichen steht, die Ziffern Ihrer Matrikelnummer ein. Führen Sie die Additionen durch und ermitteln Sie die Zahlen $\mathbf{z_1}$ bis $\mathbf{z_8}$.

Aufgabe 2 [18]

- a) [10] Erstellen Sie in C++-ähnlichem Pseudocode eine rekursive Funktion f mit einem ganzzahligen Parameter n, auf die das Mastertheorem anwendbar ist und deren Laufzeit in $\Theta(n^2 \log n)$ liegt.
- b) [3] Zeigen Sie mit Hilfe des Mastertheorems, dass f die gewünschte Laufzeit hat.
- c) [5] Erstellen Sie in C++-ähnlichem Pseudocode eine Funktion g mit einem ganzzahligen Parameter n, die f aufruft und deren Laufzeit in $\Theta(n^2(\log n)^3)$ liegt.

Aufgabe 3 [20]

Die Werte z_1 bis z_8 (aus Aufgabe 1) seien in dieser Reihenfolge von links nach rechts in einem Array gespeichert. Sortieren Sie die Werte aufsteigend mit

- a. [8] CountingSort
- b. [4] Mergesort
- c. [8] Heapsort

Geben Sie jeweils alle benötigten Zwischenschritte so genau an, dass der Ablauf des Algorithmus klar ersichtlich wird.

Aufgabe 4 [20]

- a. [9] Fügen Sie die Werte z_2 bis z_8 aus Aufgabe 1 (in dieser Reihenfolge) in eine zu Beginn leere Hashtabelle der Länge 7 ein. Verwenden Sie als Hashfunktion h(k) = k%7 und double hashing zur Kollisionsbehandlung. Die zweite Hashfunktion ist g(k) = k%5 + 1.
 - Skizzieren Sie den Zustand der Hashtabelle nach jedem Einfügeschritt.
- b. [1] Löschen Sie den Wert z_3 aus der Tabelle und skizzieren Sie den Zustand der Hashtabelle.
- c. [5] Geben Sie den Kollisionspfad (besuchte Indexpositionen) bei einer Suche nach dem Wert Z₈ an.
- d. [5] Geben Sie den Kollisionspfad (besuchte Indexpositionen) bei einer Suche nach dem Wert 50 an.

Aufgabe 5 [20]

- a. [4] Fügen Sie die Werte z_1 bis z_8 aus Aufgabe 1 (in dieser Reihenfolge) in einen zu Beginn leeren binären Suchbaum ein (Werte können im Baum eventuell mehrfach gespeichert sein). Skizzieren Sie den Zustand des Baums nach jedem Einfügeschritt.
- b. [4] Geben Sie in C++ ähnlicher Notation die Definition einer Datenstruktur für einen binären Suchbaum an.
- c. [8] Geben Sie in C++ ähnlicher Notation eine Definition einer Funktion oder Methode an, die die Höhe eines binären Suchbaums ermittelt.
- d. [4] Bestimmen Sie die Laufzeitkomplexität Ihrer Funktion abhängig von der Anzahl n der im Suchbaum gespeicherten Werte in O-Notation. Begründen Sie Ihr Ergebnis kurz.

Algorithmen und	schriftliche		
Datenstrukturen	Einzelprüfung	18.01.2019	2
(ADS VO)	Linzerprutung		

Aufgabe 6 [20]

Gegeben ist der folgende gerichtete Graph (die Werte $\mathbf{z_1}$ bis $\mathbf{z_6}$. sind aus Aufgabe 1 zu übernehmen):

- a. [3] Geben Sie die Adjazenzmatrix des Graphen an.
- b. [3] Skizzieren Sie die Adjazenzliste des Graphen.
- c. [10] Bestimmen Sie mit dem Algorithmus von Dijkstra die jeweils kürzesten Wege vom Knoten 1 zu allen anderen Knoten des Graphen.
- d. [4] Ist für den Dijkstra-Algorithmus eher die Verwendung einer Adjazenzmatrix oder einer Adjazenzliste vorteilhaft? Begründen Sie Ihre Aussage.