## 1 Information Theory

## 1.1 Entropy

**Definition 1.1** (Entropy). Let X be a discrete random variable taking values in a finite set  $\mathcal{X}$  with probability mass function p(x) = P(X = x). The *entropy* of X, denoted H(X), is defined as:

$$H(X) \coloneqq -\sum_{x \in \mathcal{X}} p(x) \log p(x),$$

where the logarithm is typically taken base 2 (bits) or base e (nats).

**Remark 1.1.** If p(x) = 0, we set  $p(x) \log p(x) := 0$ . This ensures that  $p(x) \log p(x)$  is continuous on [0, 1].



Figure 1: Plot of the function  $y = -x \ln(x)$ .

**Remark 1.2.** Entropy measures the uncertainty or information content of a random variable. Higher entropy indicates more unpredictability.

**Proposition 1.1** (Non-Negativity of Entropy). For any discrete random variable X, we have  $H(X) \geq 0$ .

*Proof.* Since  $0 \le p(x) \le 1$  and  $-\log p(x) \ge 0$ , each term in the sum is nonnegative, so their total sum is nonnegative.

**Lemma 1.1** (Jensen's Inequality). Let  $X \in \mathcal{X}$  be a random variable over a finite set  $\mathcal{X}$ , and let  $\phi$  be a convex function defined for all X. Then:

$$\phi(E[X]) \le E[\phi(X)]$$
.

*Proof.* We use induction over  $n = |\mathcal{X}|$ . The base case n = 1 is trivial. Hence, assume that the claim holds for some n. We now prove the claim for n + 1. Clearly, for n > 1, we must have  $P(X = x_k) < 1$  for some  $x_k \in \mathcal{X}$ . Without loss of generality, we assume k = n + 1. Hence:

$$\begin{split} \phi(E[X]) &= \phi\left(\sum_{i=1}^{n+1} p(x_i) x_i\right) \\ &= \phi\left(\left[(1 - p(x_{n+1})) \sum_{i=1}^{n} \frac{p(x_i)}{1 - p(x_{n+1})} x_i\right] + p(x_{n+1}) x_{n+1}\right) \\ &\leq \left((1 - p(x_{n+1})) \phi\left(\sum_{i=1}^{n} \frac{p(x_i)}{1 - p(x_{n+1})} x_i\right) + p(x_{n+1}) \phi(x_{n+1}) \\ &\leq \left((1 - p(x_{n+1})) \phi\left(\sum_{i=1}^{n} \frac{p(x_i)}{1 - p(x_{n+1})} \phi(x_i) + p(x_{n+1}) \phi(x_{n+1})\right) \\ &\leq \left((1 - p(x_{n+1})) \sum_{i=1}^{n} \frac{p(x_i)}{1 - p(x_{n+1})} \phi(x_i) + p(x_{n+1}) \phi(x_{n+1})\right) \\ &= \sum_{i=1}^{n+1} p(x_i) \phi(x_i) = E[\phi(X)] \quad . \end{split}$$

**Remark 1.3.** For strictly convex  $\phi$ , it can be shown that

 $\phi(E[X]) = E[\phi(X)]$  is maximized  $\iff X$  is sampled from a uniform distribution

**Proposition 1.2** (Maximum Entropy). For a discrete random variable X over n outcomes, entropy is maximized when X is uniform:

$$H(X) \le \log n$$
 .

*Proof.* We have:

$$\begin{split} -H(X) &= -E[-\log(p(X))] \\ &= E\left[-\log\left(\frac{1}{p(X)}\right)\right] \\ &\underset{\text{Jensen's Inequality}}{\geq} -\log\left(E\left[\frac{1}{p(X)}\right]\right) \\ &= -\log n \quad , \end{split}$$

where we assumed p(X) > 0. Of course, the cases where p(X) = 0 follow directly, since  $p(X) \log p(X) = 0$ .

 $H(X) \leq \log n$  follows directly. Note that we have equality iff X has uniform distribution (since  $-\log(x)$  is strictly convex).

### 1.1.1 Joint, Conditional, and Cross Entropy

**Definition 1.2** (Joint Entropy). For a pair of discrete random variables X and Y, the joint entropy is:

$$H(X,Y) \coloneqq -\sum_{x,y} p(x,y) \log p(x,y) \quad .$$

**Definition 1.3** (Conditional Entropy). The conditional entropy of Y given X is defined as:

$$H(Y\mid X)\coloneqq \sum_{x}p(x)H(Y\mid X=x) = -\sum_{x,y}p(x,y)\log p(y\mid x).$$

Corollary 1.1. We immediately see from the first equation that  $H(Y \mid X) \geq 0$ .

Theorem 1.1 (Chain Rule for Entropy).

$$H(X,Y) = H(X) + H(Y \mid X) \quad .$$

Proof. We have:

$$\begin{split} H(X,Y) &= -\sum_{x,y} p(x,y) \log p(x,y) \\ &= -\sum_{x,y} p(x,y) \log \left( p(x) p(y \mid x) \right) \\ &= -\sum_{x,y} p(x,y) \log p(x) - \sum_{x,y} p(x,y) \log p(y \mid x) \\ &= H(X) + H(Y \mid X) \quad . \end{split}$$

Corollary 1.2.  $H(X,Y) \geq 0$  follows directly.

**Definition 1.4** (Cross-Entropy). Let p and q be two probability distributions over a finite set  $\mathcal{X}$ , with  $p(x) > 0 \Rightarrow q(x) > 0$ . The *cross-entropy* of p relative to q is defined as:

$$H_q(p) := -\sum_{x \in \mathcal{X}} p(x) \log q(x)$$
.

**Remark 1.4.** Cross-entropy measures the expected number of bits required to encode samples from p using a code optimized for the distribution q.

Remark 1.5. Cross-entropy is non-negative (see section 1.2).

#### 1.1.2 Properties of Entropy

**Proposition 1.3.** Conditional entropy satisfies:

$$H(Y \mid X) \le H(Y)$$
 ,

with equality if and only if X and Y are independent.

*Proof.* From the chain rule:

$$H(X,Y) = H(Y) + H(X | Y) = H(X) + H(Y | X)$$
,

which implies:

$$H(Y \mid X) = H(Y) + H(X \mid Y) - H(X) = H(Y) - I(X;Y)$$
,

with mutual information  $I(X;Y) \ge 0$  (see section 1.3). Equality holds if and only if I(X;Y) = 0, i.e., X and Y are independent.

Corollary 1.3 (Subadditivity of Entropy). For any two random variables X and Y,

$$H(X,Y) \le H(X) + H(Y) \quad ,$$

with equality if and only if X and Y are independent.

*Proof.* From the chain rule:

$$H(X,Y) = H(X) + H(Y \mid X) \le H(X) + H(Y)$$
,

since  $H(Y \mid X) \leq H(Y)$  based on proposition 1.3. Equality holds if and only if  $H(Y \mid X) = H(Y)$ , i.e., X and Y are independent.

**Theorem 1.2** (Concavity of Entropy). The entropy function H(p), where  $p \in \Delta$  is a probability vector, is concave on the probability simplex  $\Delta$ .

*Proof.* This follows from the fact that  $f(x) = -x \log x$  is concave for  $x \in [0, 1]$ , and entropy is the sum of such terms. Therefore, for every convex combination  $p = \lambda p_1 + (1 - \lambda)p_2$ :

$$H(p) \ge \lambda H(p_1) + (1 - \lambda)H(p_2) \quad .$$

## Summary of Key Properties

• Non-negativity:  $H(X) \ge 0$ 

• Maximum entropy:  $H(X) \leq \log |\mathcal{X}|$ 

• Chain rule:  $H(X,Y) = H(X) + H(Y \mid X)$ 

• Subadditivity:  $H(X,Y) \leq H(X) + H(Y)$ 

• Conditioning reduces entropy:  $H(Y \mid X) \leq H(Y)$ 

• Concavity: H(p) is concave in the distribution p

## 1.2 Kullback-Leibler Divergence

**Definition 1.5** (KL Divergence). Let P and Q be two discrete probability distributions over the same finite set  $\mathcal{X}$ , with  $P(x) > 0 \Rightarrow Q(x) > 0$ . The Kullback-Leibler divergence (or relative entropy) from P to Q is defined as:

$$D_{KL}(P||Q) := \sum_{x \in \mathcal{X}} P(x) \log \frac{P(x)}{Q(x)}$$
$$= -\sum_{x} P(x) \log Q(x) + \sum_{x} P(x) \log P(x)$$
$$= H_{Q}(P) - H(P) .$$

**Remark 1.6.** If P(x) = Q(x) = 0, we set  $P(x) \log \frac{P(x)}{Q(x)} := 0$ .

**Remark 1.7.** KL divergence measures the inefficiency of assuming that the distribution is Q when the true distribution is P. It is not a metric: it is not symmetric and does not satisfy the triangle inequality.

**Lemma 1.2** (Gibb's Inequality). Suppose that  $P = \{p_1, \ldots, p_n\}$  and  $Q = \{q_1, \ldots, q_n\}$  are discrete probability distributions. Then:

$$-\sum_{i=1}^{n} p_i \log p_i \le -\sum_{i=1}^{n} p_i \log q_i \quad .$$

*Proof.* The claim is equivalent to  $\sum_{i=1}^{n} p_i \log p_i - \sum_{i=1}^{n} p_i \log q_i \ge 0$ . We have:

$$\sum_{i=1}^{n} p_i \log p_i - \sum_{i=1}^{n} p_i \log q_i = \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i}$$

$$= \sum_{i=1}^{n} p_i \left( -\log \frac{q_i}{p_i} \right)$$

$$\underset{\text{Jensen's Inequality}}{\geq} -\log \left( \sum_{i=1}^{n} p_i \frac{q_i}{p_i} \right)$$

$$= -\log(1) = 0 \quad .$$

**Corollary 1.4.** It directly follows from the proof that  $D_{KL}(P||Q) \geq 0$  and  $0 \leq H(P) \leq H_Q(P)$ .

**Proposition 1.4** (Additivity). Let  $P = P_1 \times P_2$ ,  $Q = Q_1 \times Q_2$ . Then:

$$D_{KL}(P||Q) = D_{KL}(P_1||Q_1) + D_{KL}(P_2||Q_2)$$
.

Proof.

$$\begin{split} D_{\mathrm{KL}}(P_1 \times P_2 \| Q_1 \times Q_2) &= \sum_{x,y} P_1(x) P_2(y) \log \frac{P_1(x) P_2(y)}{Q_1(x) Q_2(y)} \\ &= \sum_{x,y} P_1(x) P_2(y) \left( \log \frac{P_1(x)}{Q_1(x)} + \log \frac{P_2(y)}{Q_2(y)} \right) \\ &= \sum_x P_1(x) \log \frac{P_1(x)}{Q_1(x)} + \sum_y P_2(y) \log \frac{P_2(y)}{Q_2(y)} \\ &= D_{\mathrm{KL}}(P_1 \| Q_1) + D_{\mathrm{KL}}(P_2 \| Q_2) \quad . \end{split}$$

**Proposition 1.5** (Entropy Representation via KL Divergence). Let U be the uniform distribution over  $\mathcal{X}$ , where  $|\mathcal{X}| = n$ . Then for any distribution P,

$$H(P) = \log n - D_{KL}(P||U)$$
.

Proof.

$$D_{\text{KL}}(P||U) = \sum_{x} P(x) \log \frac{P(x)}{1/n} = \sum_{x} P(x) \log P(x) + \sum_{x} P(x) \log n$$
  
=  $-H(P) + \log n$ .

**Summary of Key Properties** 

- $D_{\mathrm{KL}}(P||Q) \geq 0$
- $D_{\mathrm{KL}}(P||Q) = 0 \iff P = Q$
- Asymmetric:  $D_{\mathrm{KL}}(P||Q) \neq D_{\mathrm{KL}}(Q||P)$
- Additive over independent distributions
- Connection to entropy:  $H(P) = \log n D_{KL}(P||U)$

#### 1.3 Mutual Information

**Definition 1.6** (Mutual Information). Let X and Y be discrete random variables with joint distribution p(x,y) and marginals p(x), p(y). The mutual information between X and Y is defined as:

$$I(X;Y) := \sum_{x,y} p(x,y) \log \left( \frac{p(x,y)}{p(x)p(y)} \right)$$
.

**Remark 1.8.** Mutual information quantifies how much knowing X reduces uncertainty about Y, and vice versa. Per definition, it is symmetric: I(X;Y) = I(Y;X).

**Proposition 1.6** (Equivalent Expressions). *Mutual information can also be expressed as:* 

$$\begin{split} I(X;Y) &= D_{\mathrm{KL}}(p(x,y) \parallel p(x)p(y)) \\ &= H_{p(x)p(y)}(p(x,y)) - H(X,Y) \\ &= \left[ -\sum_{x,y} p(x,y) \log(p(x)p(y)) \right] - H(X,Y) \\ &= H(X) + H(Y) - H(X,Y) \\ &= H(X) - H(X \mid Y) \\ &= H(Y) - H(Y \mid X) \end{split}$$

*Proof.* Each follows from basic entropy identities and the definition of KL divergence.  $\hfill\Box$ 

**Corollary 1.5.**  $I(X;Y) \ge 0$ , since  $I(X;Y) = D_{KL}(p(x,y)||p(x)p(y))$  and KL divergence is always non-negative.

**Definition 1.7** (Conditional Mutual Information). Let X, Y, Z be discrete random variables. The *conditional mutual information* of X and Y given Z is defined as:

$$I(X;Y\mid Z) \coloneqq \sum_{x,y,z} p(x,y,z) \log \frac{p(x,y\mid z)}{p(x\mid z)p(y\mid z)} .$$

Equivalently, in terms of entropy:

$$I(X;Y \mid Z) = H(X \mid Z) - H(X \mid (Y,Z)) .$$

Proof.

$$\begin{split} &H(X\mid Z) - H(X\mid (Y,Z)) \\ &= \sum_{z} p(z) H(X\mid Z=z) - \sum_{y,z} p(y,z) H(X\mid Y=y,Z=z) \\ &= -\sum_{z} p(z) \sum_{x} p(x\mid z) \log p(x\mid z) \; + \; \sum_{y,z} p(y,z) \sum_{x} p(x\mid y,z) \log p(x\mid y,z) \\ &= \sum_{x,y,z} p(x,y,z) \log \frac{p(x\mid y,z)}{p(x\mid z)} \\ &= \sum_{x,y,z} p(x,y,z) \log \frac{p(x\mid y,z)}{p(x\mid z)p(y\mid z)} \\ &= I(X;Y\mid Z) \quad . \end{split}$$

**Remark 1.9.** Conditional mutual information measures how much knowing Y reduces the uncertainty of X, given that we already know Z.

**Proposition 1.7** (Chain Rule for Mutual Information). Let X, Y, and Z be random variables. Then:

$$I(X;Y,Z) = I(X;Z) + I(X;Y \mid Z) \quad .$$

*Proof.* We use entropy-based expressions for mutual information:

$$\begin{split} I(X;Y,Z) &= H(X) - H(X \mid (Y,Z)) \\ &= I(X;Z) + H(X \mid Z) - H(X \mid (Y,Z)) \\ &= I(X;Z) + H(X \mid Z) - (H(X \mid Z) - I(X;Y \mid Z)) \\ &= I(X;Z) + I(X;Y \mid Z) \quad . \end{split}$$

**Proposition 1.8** (Non-Negativity of Conditional Mutual Information). *It holds true that* 

$$I(X; Y \mid Z) > 0$$
.

Proof. We have:

$$I(X;Y \mid Z) = \sum_{x,y,z} p(x,y,z) \log \frac{p(x,y \mid z)}{p(x \mid z)p(y \mid z)}$$

$$= \sum_{z} p(z) \sum_{x,y} p(x,y \mid z) \log \frac{p(x,y \mid z)}{p(x \mid z)p(y \mid z)}$$

$$= \sum_{z} p(z) D_{KL} (p(x,y \mid z) || p(x \mid z)p(y \mid z)) \ge 0 .$$

Corollary 1.6. As a direct consequence, we have

$$I(X;Z) \le I(X;Y,Z)$$
.

**Definition 1.8** (Conditional Independence). Let X, Y, Z be discrete random variables. We say that X is *conditionally independent* of Z given Y, and write:

$$X \perp Z \mid Y$$

if and only if

$$p(z \mid x, y) = p(z \mid y)$$
 for all  $x, y, z$ .

Equivalently:

$$p(x, z \mid y) = p(x \mid y)p(z \mid y) \quad .$$

**Proposition 1.9.** If  $X \perp Z \mid Y$ , then the conditional mutual information between X and Z given Y is zero:

$$I(X; Z \mid Y) = 0 \quad .$$

*Proof.* By definition of conditional mutual information:

$$I(X; Z \mid Y) = \sum_{x,z,y} p(x,z,y) \log \frac{p(x,z \mid y)}{p(x \mid y)p(z \mid y)}$$
.

If  $X \perp Z \mid Y$ , then:

$$p(x, z \mid y) = p(x \mid y)p(z \mid y) \quad ,$$

so the logarithm becomes:

$$\log \frac{p(x\mid y)p(z\mid y)}{p(x\mid y)p(z\mid y)} = \log 1 = 0 \quad .$$

Hence, each term in the sum is zero, and:

$$I(X; Z \mid Y) = 0 \quad .$$

#### 1.3.1 Data Processing Inequality

**Lemma 1.3** (Markov Chain). Let X, Y, Z be random discrete random variables forming the Markov chain  $X \to Y \to Z$ . Then:

$$X \perp Z \mid Y$$
 .

*Proof.* Per definition from Markov chains, we have:

$$p(z \mid x, y) = p(z \mid y) \quad ,$$

and hence  $X \perp Z \mid Y$ .

**Theorem 1.3** (Data Processing Inequality). If  $X \to Y \to Z$  is a Markov chain, then:

$$I(X;Z) \le I(X;Y)$$
.

*Proof.* We use the chain rule and conditional independence:

$$\begin{split} I(X;Z) &= I(X;Z,Y) - I(X;Y \mid Z) \\ &= I(X;Y) + I(X;Z \mid Y) - I(X;Y \mid Z) \quad . \end{split}$$

Since  $X \to Y \to Z$ , we have  $I(X; Z \mid Y) = 0$ . Thus:

$$I(X;Z) = I(X;Y) - I(X;Y \mid Z) \le I(X;Y) \quad ,$$

because  $I(X; Y \mid Z) \geq 0$ .

**Corollary 1.7** (No Gain in Processing). Any function f(Y) of Y cannot increase information about X:

$$I(X; f(Y)) < I(X; Y)$$
.

*Proof.* This follows by applying the DPI to the chain  $X \to Y \to f(Y)$ .

## **Summary of Key Properties**

- $I(X;Y) \ge 0$
- I(X;Y) = 0 if and only if  $X \perp Y$
- $I(X;Y) = D_{\mathrm{KL}}(p(x,y)||p(x)p(y))$
- Chain rule:  $I(X;Y,Z) = I(X;Z) + I(X;Y \mid Z)$
- Data Processing Inequality:  $X \to Y \to Z \Rightarrow I(X;Z) \leq I(X;Y)$

# 1.4 Bounding Mutual Information via Matrix Rank of the Joint Distribution

**Theorem 1.4.** Let X, Y be random variables from finite sets X, Y, and let matrix P denote their joint probability distribution, i.e.  $P_{ij} = p(x_i, y_j)$ . Let r := rank P denote the rank of matrix P. Then we have

$$I(X;Y) \le \log r$$
 .

*Proof.* Let  $n := |\mathcal{X}|$  and  $m := |\mathcal{Y}|$ . If  $\mathbf{P}$  has rank r, then so must the transition matrix  $\mathbf{P}_{Y|X} \in \mathbb{R}^{m \times n}$  defined as  $(\mathbf{P}_{Y|X})_{ij} := p(y_i \mid x_j) = \frac{p(x_j, y_i)}{\sum_k p(x_k, y_i)}$ , since  $\mathbf{P}_{Y|X}$  is created from  $\mathbf{P}$  by transposing and column scaling. If one column consisted of only zeros, i.e.  $\sum_k p(x_k, y_i) = 0$ , we may just copy a different scaled column vector to this column.

Now, let's analyze matrix  $P_{Y|X}$ . First, note that it is a Markov chain transition matrix, and hence all its columns lie in the m-dimensional unit simplex. Consider the convex hull of the column vectors, it is a r-dimensional convex polytope in the m-dimensional unit simplex. Thus, we can find a r-dimensional simplex with corners collected by matrix U s.t. it is a superset of this polytope and still a subset of the (potentially) higher dimensional unit simplex.

Thus, every column vector in  $P_{Y|X}$  can be written as a convex combination of the column vectors in U. It follows that  $P_{Y|X}$  can be decomposed as

$$P_{Y|X} = UV$$
,  $U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{r \times n}$ 

where both U and V are Markov chain transition matrices as well.

Hence, we can introduce a latent variable  $Z \in \{1, ..., r\}$ , which forms the Markov chain

$$X \underset{\mathbf{V}}{\rightarrow} Z \underset{\mathbf{U}}{\rightarrow} Y$$
.

Finally, based on theorem 1.3 it follows that

$$I(X;Y) \le I(X;Z) = H(Z) - H(Z \mid X) \le H(Z) \le \log r \quad .$$

## 1.5 Convergence of Mutual Information

**Theorem 1.5.** Let f be a function defined on a domain containing the sequence  $\{x_n\}_{n=1}^{\infty}$  and its limit point  $x_0$ . Suppose there exist constants C > 0 and  $p \in \mathbb{R}$  such that for all sufficiently large n:

$$|f(x_0) - f(x_n)| \le Cn^p |x_0 - x_n|$$

If the sequence  $x_n$  converges to  $x_0$  exponentially fast, then the sequence  $f(x_n)$  converges to  $f(x_0)$  exponentially fast.

#### *Proof.* 1. Formalize the given conditions.

The condition  $|f(x_0) - f(x_n)| \le O(n^p)|x_0 - x_n|$  means that for some constant K > 0 and for all n greater than some integer  $N_1$ :

$$|f(x_0) - f(x_n)| \le Kn^p |x_0 - x_n|$$
 (1)

The exponential convergence of  $x_n$  to  $x_0$  means there exist a constant D > 0 and a rate  $\rho \in (0,1)$  such that for all n greater than some integer  $N_2$ :

$$|x_0 - x_n| \le D\rho^n \tag{2}$$

#### 2. Combine the inequalities.

For any  $n > \max(N_1, N_2)$ , we can substitute the bound from (2) into (1):

$$|f(x_0) - f(x_n)| \le Kn^p (D\rho^n)$$
  
=  $(KD)n^p \rho^n$ 

#### 3. Show that the new bound is also exponential.

The core of the proof is to show that the term  $n^p \rho^n$  is itself bounded by an exponential decay. We know that for any polynomial term  $n^p$  and any exponential term  $r^n$  with |r| < 1, the exponential term dominates.

Let's choose a new rate  $\sigma$  such that  $\rho < \sigma < 1$ . A convenient choice is  $\sigma = \sqrt{\rho}$ . Since  $\rho \in (0,1)$ , we have  $\rho < \sqrt{\rho} < 1$ .

Now consider the term  $n^p \rho^n$ . We want to show it can be bounded by  $M\sigma^n$  for some constant M. Let's examine the sequence:

$$a_n = \frac{n^p \rho^n}{\sigma^n} = n^p \left(\frac{\rho}{\sigma}\right)^n$$

Let  $r = \frac{\rho}{\sigma}$ . Since  $\sigma > \rho$ , we have  $r \in (0,1)$ . The limit of the sequence  $a_n = n^p r^n$  as  $n \to \infty$  is zero:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} n^p r^n = 0$$

Since the sequence  $\{a_n\}$  converges, it is bounded. Therefore, there exists a constant M > 0 such that  $a_n \leq M$  for all n. This gives us the bound:

$$n^p \rho^n = a_n \sigma^n \leq M \sigma^n$$

## 4. Final Conclusion.

Substitute this result back into our main inequality:

$$|f(x_0) - f(x_n)| \le (KD)(n^p \rho^n) \le (KD)(M\sigma^n)$$

Let C' = KDM. Then we have:

$$|f(x_0) - f(x_n)| \le C' \sigma^n$$

Since C' is a positive constant and  $\sigma \in (0,1)$ , this is the definition of exponential convergence for the sequence  $f(x_n)$  to the limit  $f(x_0)$ .