МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе№2
по дисциплине «Организация ЭВМ и систем»
Тема: Изучение режимов адресации и формирования
исполнительного адреса.

Студент гр. 1303	Беззубов Д.В.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2022

Цель работы.

Изучить режимы адресации и формирование исполнительного адреса на языке ассемблер.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Выполнение работы

- 1. У преподавателя получен вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и свои данные занесены вместо значений, указанных в приведенной ниже программе.
- 2. Программа протранслирована с созданием файла диагностических сообщений; Первая трансляция прошла с ошибками:

```
LR2.ASM(42): error A2052: Improper operand type
LR2.ASM(49): warning A4031: Operand types must match
LR2.ASM(53): warning A4031: Operand types must match
LR2.ASM(54): error A2055: Illegal register value
LR2.ASM(73): error A2046: Multiple base registers
LR2.ASM(74): error A2047: Multiple index registers
LR2.ASM(81): error A2006: Phase error between passes

47832 + 459428 Bytes symbol space free

2 Warning Errors
5 Severe Errors
```

Рис. 1 – трансляция программы с ошибками

Пояснение ошибок:

1. LR2.ASM(42): error A2052: Improper operand type mov mem3,[bx];

Данная ошибка возникает, так как команды не могут оперировать сразу с двумя ячейками памяти. Один из операндов должен быть либо регистром, либо значением, другой может быть ячейкой в памяти.

2. LR2.ASM(49): warning A4031: Operand types must match и LR2.ASM(53): warning A4031: Operand types must match mov cx,vec2[di] и mov cx,matr[bx][di];

Данная ошибка возникает из-за несоответствия типов. Попытка поместить байт в слово в обоих случаях.

3. LR2.ASM(54): warning A2055: Illegal register value mov ax,matr[bx*4][di];

Данная ошибка возникает из-за попытки умножения базового регистра bx на 4, данный регистр нельзя использовать при индексной адресации с масштабированием.

4. LR2.ASM(73): warning A2046: Multiple base registers mov ax,matr[bp+bx];

В данном случае ошибка возникает из-за того, что берутся два базовых регистра при том, что исполняемый адрес при адресации с базированием и индексированием берется как сумма адресов, расположенных в базовом и индексном регистрах.

5. LR2.ASM(74): warning A2047: Multiple index registers

mov ax,matr[bp+di+si];

В данном случае ошибка возникает из-за того, что берутся два индексных регистра при том, что исполняемый адрес при адресации с базированием и индексированием берется как сумма адресов, расположенных в базовом и индексном регистрах.

- 3. Исправленная программа снова протранслированна и скомпонован загрузочный модуль.
- 4. Программа выполнена в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды. Результат представлен в таблице 1.

Исходный код программы и листинг программы с закомментированными ошибочными операциями приведены в приложении А.

Таблица 1 – протокол отладки программы.

Адрес	Символический	16-ричный код команды	Изменяемые данные	
команды	код команды		до	после
0000	PUSH DS	1E	IP = 0000	IP = 0001
			SP=0018	SP=0016
			Stack $+0 = 0000$	Stack +0 = 19F5
			Stack $+2 = 0000$	Stack +2 = 0000
			Stack $+4 = 0000$	Stack +4 = 0000
			Stack $+6 = 0000$	Stack $+6 = 0000$
0001	SUB AX, AX	2BCO	AX=0000	AX=0000
			IP = 0001	IP = 0003
			SP=0016	SP=0016
0003	PUSH AX	50	IP = 0003	IP = 0004
			SP=0016	SP=0014
			Stack +0 = 19F5	Stack +0 = 0000

			Stack +2 = 0000	Stack +2 = 19F5
			Stack $+4 = 0000$	Stack +4 = 0000
			Stack $+6 = 0000$	Stack $+6 = 0000$
0004	MOV AX,1A07	B8071A	AX = 0000	AX =1A07
			IP = 0004	IP = 0007
			SP=0014	SP=0014
0007	MOV DS,AX	8ED8	DS=19F5	DS=1A07
			IP = 0007	IP = 0009
			SP=0014	SP=0014
0009	MOV AX,01F4	B8F401	AX = 1A07	AX = 01F4
			IP = 0009	IP = 000C
000C	MOV CX,AX	8BC8	CX = 00B0	CX=01F4
			IP = 000C	IP = 000E
000E	MOV BL,24	B324	BX = 0000	BX = 0024
			IP = 000E	IP = 0010
0010	MOV BH,CE	B7CE	BX = 0024	BX = CE24
			IP = 0010	IP = 0012
0012	MOV	C7060200C	IP = 0012	IP = 0018
	[0002],FFCE	EFF		
0018	MOV BX,0006	BB0600	BX = CE24	BX = 0006
			IP = 0018	IP = 001B
001B	MOV [0000],AX	A30000	IP = 001B	IP = 001E
001E	MOV AL,[BX]	8A07	AX = 01F4	AX = 0105
			[BX] = [0006] = 05	IP = 0020
			IP = 001E	
		1		

0020	MOV	8A4703	AX = 0105	AX = 0108
	AL,[BX+03]		[BX+03] = 08	IP = 0023
			IP = 0020	
0023	MOV CX,	8B4F03	CX = 01F4	CX = 0C08
	[BX+03]		[BX+03] = 08	IP = 0026
			IP = 0023	
0026	MOV DI, 0002	BF0200	DI = 0000	DI = 0002
			IP = 0026	IP = 0029
0029	MOV AL,	8A850E00	AX = 0108	AX = 0114
0023	[000E+DI]	011000200	[000E+DI] = 14	IP = 002D
			IP = 0029	11 0025
002D	MOV BX, 0003	BB0300	BX = 0006	BX = 0003
			IP = 002D	IP = 0030
0030	MOV AL,	8A811600	[0016+DV+DI] = 02	AX = 0103
0030	[0016+BX+DI]	071011000	[0016+BX+DI] = 03 AX = 0114	IP = 0034
			IP = 0030	IF - 0034
			11 – 0030	
0034	MOV AX, 1A07	B8071A	AX = 0103	AX = 1A07
			IP = 0034	IP = 0037
2027	1.02275	07.53	70 4075	
0037	MOV ES, AX	8EC0	ES = 19F5	ES = 1A07
			AX = 1A07	IP = 0039

			IP = 0037	
0039	MOV AX,	268B07	AX = 1A07	AX = 00FF
	ES:[BX]		IP = 0039	IP = 003C
003C	MOV AX, 0000	B80000	AX = 00FF	AX = 0000
			IP = 003C	IP = 003F
003F	MOV ES, AX	8EC0	ES = 1A07	ES = 0000
			AX = 0000	IP = 0041
			IP = 003F	
0041	PUSH DS	1E	IP = 0041	IP = 0042
			SP = 0014	SP = 0012
			Stack+0 = 0000	Stack+0 = 1A07
			Stack+2 = 19F5	Stack+2 = 0000
			Stack+ $4 = 0000$	Stack+4 = 19F5
0042	POP ES	07	ES = 0000	ES = 1A07
			IP = 0042	IP = 0043
			SP = 0012	SP = 0014
			Stack+0 = 1A07	Stack+0 = 0000
			Stack+2 = 0000	Stack+2 = 19F5
			Stack+4 = 19F5	Stack+4 = 0000
0043	MOV CX,	268B4FFF	CX = 0C08	CX = FFCE
	ES:[BX—01]		IP = 0043	IP = 0047
0047	XCHG AX, CX	91	AX = 0000	AX = FFCE
			CX = FFCE	CX = 0000
			IP=0047	IP=0048
0048	MOV DI, 0002	BF0200	DI = 0002	DI = 0002

			IP = 0048	IP = 004B
004B	MOV ES:[BX+DI], AX	268901	IP = 004B	IP = 004E
004E	MOV BP, SP	8BEC	BP = 0000	BP = 0014
			SP = 0014	IP = 0050
			IP = 004E	
0050	PUSH [0000]	FF360000	IP = 0050	IP = 0054
			[0000] = 01F4	[0000] = 01F4
			SP = 0014	SP = 0012
			Stack+0 = 0000	Stack+0 = 01F4
			Stack+2 = 19F5	Stack+2 = 0000
			Stack+4 = 0000	Stack+4 = 19F5
0054	PUSH [0002]	FF360200	IP = 0054	IP = 0058
			[0002] = FFCE	[0002] = FFCE
			SP = 0012	SP = 0010
			Stack+0 = 01F4	Stack+0 = FFCE
			Stack+2 = 0000	Stack+2 = 01F4
			Stack+4 = 19F5	Stack+4 = 0000
			Stack+6 = 0000	Stack+6 = 19F5
0058	MOV BP, SP	8BEC	BP = 0014	BP = 0010
			SP = 0010	SP = 0010
			IP = 0058	IP = 005A
005A	MOV DX,	8B5602	DX = 0000	DX = 01F4
	[BP+02]		[BP+02] = 01F4	IP = 005D
			IP = 005A	

005D	RET Far 0002	CA0200	IP = 005D	IP = FFCE
			SP = 0010	SP = 0016
			CS = 1A0A	CS = 01F4
			Stack+0 = FFCE	Stack+0 = 19F5
			Stack+2 = 01F4	Stack+2 = 0000
			Stack+4 = 0000	Stack+4 = 0000
			Stack+6 = 19F5	Stack+6 = 0000

Выводы

Изучены режимы адресации и формирование исполнительного адреса на языке ассемблер.

ПРИЛОЖЕНИЕ А

Название файла: lr2.asm

```
; Программа изучения режимов адресации процессора IntelX86
EOL EOU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 5,6,7,8,12,11,10,9
vec2 DB -20, -30, 20, 30, -40, -50, 40, 50
matr DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-4,8,7,6,5
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
push DS
sub AX, AX
push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
mov cx, ax
mov bl, EOL
mov bh, n2
; Прямая адресация
```

```
mov mem2, n2
mov bx, OFFSET vec1
mov mem1, ax
; Косвенная адресация
mov al, [bx]
; mov mem3, [bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
; mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx, 3
mov al, matr[bx][di]
; mov cx, matr[bx][di]
; mov ax, matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es: [bx-1]
xchg cx,ax
; ----- вариант 3
mov di, ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp, sp
; mov ax,matr[bp+bx]
; mov ax,matr[bp+di+si]
; Использование сегмента стека
```

```
push mem2
 mov bp,sp
mov dx, [bp]+2
 ret 2
Main ENDP
CODE ENDS
 END Main
     Название файла: lr2.lst
Microsoft (R) Macro Assembler Version 5.10
                                                                  10/9/22
13:49:46
                                                                       1-
                                                               Page
1
                       ; Программа изучения режи
                      ов адресации процессора I
                      ntelX86
 = 0024
                            EOL EQU '$'
 = 0002
                            ind EQU 2
 = 01F4
                            n1 EQU 500
 =-0032
                            n2 EQU -50
                      ; Стек программы
 0000
                      AStack SEGMENT STACK
 0000
      000C[
                             DW 12 DUP(?)
        ????
                  ]
 0018
                      AStack ENDS
                      ; Данные программы
 0000
                      DATA SEGMENT
                      ; Директивы описания данни
                            mem1 DW 0
 0000
      0000
 0002
      0000
                            mem2 DW 0
      0000
 0004
                            mem3 DW 0
      05 06 07 08 0C 0B
 0006
                           vec1 DB 5,6,7,8,12,11,10,9
       0A 09
      EC E2 14 1E D8 CE
                          vec2 DB -20, -30, 20, 30, -40, -50, 40, 50
 000E
       28 32
                                    DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-
 0016 FB FA F9 F8 04 03
                          matr
4,8,7,6,5
       02 01 FF FE FD FC
       08 07 06 05
 0026
                      DATA ENDS
                      ; Код программы
 0000
                      CODE SEGMENT
                       ASSUME CS:CODE, DS:DATA, SS:AStack
                      ; Головная процедура
 0000
                      Main PROC FAR
```

push DS

push mem1

0000 1E

```
0001 2B C0
                           sub AX, AX
 0003 50
                     push AX
 0004 B8 ---- R
                     mov AX, DATA
 0007 8E D8
                           mov DS, AX
                     ; ПРОВЕРКА РЕЖИМОВ АДРЕСА
                    ИИ НА УРОВНЕ СМЕЩЕНИЙ
                     ; Регистровая адресация
                           mov ax, n1
 0009 B8 01F4
 000C 8B C8
                           mov cx, ax
 000E B3 24
                           mov bl, EOL
 0010 B7 CE
                           mov bh, n2
                    ; Прямая адресация
 0012 C7 06 0002 R FFCE mov mem2, n2
 0018 BB 0006 R mov bx, OFFSET vec1
 001B A3 0000 R
                    mov mem1,ax
                     ; Косвенная адресация
 001E 8A 07
                           mov al, [bx]
                     ; mov mem3, [bx]
                     ; Базированная адресация
Microsoft (R) Macro Assembler Version 5.10
                                                              10/9/22
13:49:46
                                                           Page 1-
2
 0020 8A 47 03
                           mov al, [bx]+3
 0023 8B 4F 03
                          mov cx, 3[bx]
                     ; Индексная адресация
 0026 BF 0002
                           mov di, ind
 0029 8A 85 000E R
                           mov al, vec2[di]
                     ; mov cx,vec2[di]
                     ; Адресация с базирование
                     и индексированием
 002D BB 0003
                           mov bx,3
 0030 8A 81 0016 R
                           mov al, matr[bx][di]
                     ;mov cx,matr[bx][di]
                     ;mov ax,matr[bx*4][di]
                     ; ПРОВЕРКА РЕЖИМОВ АДРЕСА
                     ИИ С УЧЕТОМ СЕГМЕНТОВ
                     ; Переопределение сегмент
                     ; ---- вариант 1
 0034 B8 ---- R
                    mov ax, SEG vec2
 0037 8E CO
                         mov es, ax
 0039 26: 8B 07
                    mov ax, es:[bx]
 003C B8 0000
                         mov ax, 0
                     ; ---- вариант 2
 003F 8E CO
                          mov es, ax
 0041
     1E
                     push ds
                     pop es
 0042 07
 0043 26: 8B 4F FF
                           mov cx, es:[bx-1]
 0047 91
                     xchg cx,ax
                     ; ---- вариант 3
 0048 BF 0002
                          mov di, ind
 004B 26: 89 01
                    mov es:[bx+di],ax
                     ; ---- вариант 4
```

```
004E 8B EC mov bp,sp; mov ax,matr[bp+bx]; mov ax,matr[bp+di+si]; mov ax,matr[bp+di+si]; Использование сегмента ú тека

0050 FF 36 0000 R push mem1
0054 FF 36 0002 R push mem2
0058 8B EC mov bp,sp
005A 8B 56 02 mov dx,[bp]+2
005D CA 0002 ret 2

0060 Main ENDP
0060 CODE ENDS
END Main
```

Segments and Groups:

	N a m e	Length Alig	n Combine Class
ASTACK CODE DATA		0018 PARA 0060 PARA 0026 PARA	STACK NONE NONE
Symbols:			
	N a m e	Type Value	Attr
EOL		NUMBER	0024
IND		NUMBER	0002
MAIN		F PROC	0000 CODE Length =
MATR		L BYTE	0016 DATA
MEM1		L WORD L WORD	0000 DATA 0002 DATA
MEM3		L WORD	0004 DATA
N1		NUMBER NUMBER	01F4 -0032
VEC1 VEC2		L BYTE L BYTE	0006 DATA 000E DATA
@CPU		TEXT 0101) TEXT LR2 TEXT 510	1

⁸³ Source Lines 83 Total Lines

47840 + 459420 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors

¹⁹ Symbols