Fak	ultät	Infor	matik
ıan	unai		maun

Erkan Garan, 70467533

Entwurf eines Modells für ein unterstützendes KI-System zur Bewertung von Anwendungsregeln

Abschlussarbeit zur Erlangung des akademischen Grades

Bachelor of Science im Studiengang Informatik im Praxisverbund

an der Ostfalia Hochschule

Hochschule Braunschweig/Wolfenbüttel

Betreuer:

Prof. Dr. Claus Fühner Dipl. -Inf. Stefan Jung

Salzgitter

Suderburg

Wolfsburg

I

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere, dass ich alle wörtlich oder sinngemäß aus anderen Werken übernommenen Aussagen als solche gekennzeichnet habe, und dass die eingereichte Arbeit weder vollständig noch in wesentlichen Teilen Gegenstand eines anderen Prüfungsverfahrens gewesen ist.

Wolfenbüttel, den 13. März 2023

Kurzfassung

Anforderungen sind bestimmte Bedingungen, welche ein System erfüllen muss oder Fähigkeiten, die es besitzen muss. Das korrekte Erfüllen von Anforderungen ist essenziell für den Erfolg von Projekten. Eine besondere Form von Anforderungen stellen die Anwendungsregeln dar. Um einen sicheren und zuverlässigen Einsatz von Komponenten in einem Projekt zu gewährleisten, ist eine Erfüllung der Anwendungsregeln der im Projekt genutzten Komponenten vorausgesetzt. Diese Bachelorarbeit wird sich mit der Erstellung eines unterstützenden KI-Systems beschäftigen, das in der Lage dazu sein soll, mögliche Vorschläge für Bewertungen zu Anwendungsregeln zu liefern. Dafür wird ein Deep Learning Modell mit Daten über Projekte und ihren Anwendungsregeln der Siemens Mobility GmbH trainiert. Diese Daten müssen vorher in eine für das Anlernen eines Modells geeignete Form gebracht werden. Diese Schritte der Datenvorverarbeitung werden hier vorgestellt. Zudem werden in dieser Arbeit Kenntnisse darüber vermittelt, wie künstliche Intelligenz funktioniert, was der Unterschied zwischen KI, maschinellem Lernen und Deep Learning ist und wie solch ein Modell aufgebaut, angewendet und getestet werden kann.

Abstract

Requirements are certain conditions that a system must fulfill or capabilities that it must possess. The correct fulfillment of requirements is essential for the success of projects. Application rules are a special type of requirements. To ensure the safe and reliable use of components in a project, a fulfillment of the application rules from the components used in the project is mandatory. This bachelor thesis will deal with the creation of a supporting AI system, that should be able to predict possible suggestions for the evaluation of application rules. For this purpose, a deep learning model will be trained with data on projects and their application rules from the Siemens Mobility GmbH. This data must first be transformed into a form suitable for the training of an AI model. The required data preprocessing steps are presented here. In addition, this thesis will provide knowledge about, how artificial intelligence works, what the difference between AI, machine learning and deep learning is and how such a model can be built, applied and tested.

Inhaltsverzeichnis IV

Inhaltsverzeichnis

1	Ein	eitung	1
	1.1	Motivation	1
	1.2	Zielsetzung	1
	1.3	Aufbau	1
2	Gru	ndlagen	2
	2.1	Requirements Engineering	2
		2.1.1 Anforderungen	3
		2.1.2 Anwendungsregeln	5
	2.2	Künstliche Intelligenz	6
		2.2.1 Maschinelles Lernen	7
		2.2.2 Deep Learning und neuronale Netze	9
		2.2.3 Overfitting und Underfitting	13
		2.2.4 Vor- und Nachteile	14
3	Wei	kzeuge	16
	3.1		16
		3.1.1 Module	17
		3.1.2 Objekte und Attribute	17
		3.1.3 Baseline	18
		3.1.4 Links	19
		3.1.5 DXL	20
	3.2	Python	20
		3.2.1 Keras	22
		3.2.2 Pandas	23
		3.2.3 Matplotlib	24
4	Date	ensatz	25
	4.1		25
	4.2	Importieren des Datensatzes	29
	4.3		29
	4.4		31
	l ite	raturverzeichnis	32

Abbildungsverzeichnis

2.1	Bewerten einer Anwendungsregel	5
2.2	Beziehung zwischen KI, ML und DL [1, S.22]	7
2.3	Unterschiedliche Programmierparadigmen [1, S.23]	8
2.4	Aufbau eines neuronalen Netzes [2, S.27]	10
2.5	Berechnung Netzeingabe [2, vgl. S.29]	11
2.6	Anlernen eines neuronalen Netzes [1, S.31]	13
3.1	Geöffnetes Modul in DOORS	17
3.2	Baselines eines Moduls in DOORS	19
4.1	Tortendiagramm des Attributs Status	31

Quellcodeverzeichnis

4.1.1 Duplikate in Modulen löschen
4.1.2 Produkt- und Versionsbezeichnung bestimmen
4.1.3 Projektnamen bestimmen
4.2.1 Pandas und den Datensatz importieren
4.3.1 Häufigkeit der Ausprägungen von Status bestimmen
4.3.2 Visualisierung des Attributs Status

Abkürzungsverzeichnis

DOORS IBM Rational DOORS

DXL DOORS eXtension Language

KI Künstliche Intelligenz

ML Machine Learning

DL Deep Learning

NN Neuronales Netz

ReLU Rectified Linear Unit

RE Requirements Engineering

RM Requirements Management

IREB International Requirements Engineering Boards

SMO RI Siemens Mobility Rail Infrastructure

1 Einleitung 1

1 Einleitung

- 1.1 Motivation
- 1.2 Zielsetzung
- 1.3 Aufbau

2 Grundlagen

Die Themenbereiche Requirements Engineering (RE), speziell das Bewerten von Anwendungsregeln, und Künstliche Intelligenz (KI) stellen den Schwerpunkt dieser Bachelorarbeit dar und werden in diesem Kapitel grundlegend vorgestellt. Im Detail wird sich dieses Kapitel damit beschäftigen, was Anforderungen und Anwendungsregeln sind und wie letztere bewertet werden, sowie was KI ist, worin sich die Themen KI, Machine Learning (ML) und Deep Learning (DL) unterscheiden und wie ein KI-Modell als Neuronales Netz (NN) dargestellt werden kann.

2.1 Requirements Engineering

Nach der Definition des International Requirements Engineering Boards (IREB) bezeichnet das RE die systematische und disziplinierte Vorgehensweise bei der Spezifikation und dem Management von Anforderungen. Das Ziel des RE ist dabei, die Wünsche und Bedürfnisse der Stakeholder zu verstehen [3, vgl. S.30]. Stakeholder sind Personen oder Organisationen, die die Anforderungen des Systems direkt oder indirekt beeinflussen oder die von dem System betroffen sind [3, vgl. S.33]. Beispielsweise können Kunden oder Nutzer, aber auch der Gesetzgeber, potenzielle Stakeholder sein. Außerdem soll das Risiko minimiert werden, dass diese Wünsche und Bedürfnisse nicht oder nur unzureichend erfüllt werden [3, vgl. S.30].

Einen Teilbereich des RE stellt das Requirements Management (RM) dar. Dieser Prozess beschreibt die Verwaltung, Speicherung, Änderung sowie die Rückverfolgung von Anforderungen [3, vgl. S.8]. Um den RM Prozess zu unterstützen, können entsprechende Tools verwendet werden. Bei der Siemens Mobility GmbH wird das Tool IBM Rational DOORS (DOORS) verpflichtend eingesetzt [4, vgl. S.18]. Näheres zu DOORS kann dem Kapitel 3.1 entnommen werden.

2.1.1 Anforderungen

Die IEEE definiert eine Anforderung wie folgt:

"(1) A condition or capability needed by a user to solve a problem or achieve an objective.

- (2) A condition or capability that must be met or possessed by a system or system component to satisfy a contract, standard, specification, or other formally imposed documents.
- (3) A documented representation of a condition or capability as in (1) or (2)." [5, S.62]

Daher bilden Anforderung die Basis eines jeden Projekts, da diese definieren, welche Bedingungen ein System erfüllen muss bzw. welche Fähigkeiten es besitzen muss. Sie werden idealerweise unter Berücksichtigung und in Zusammenarbeit mit den Stakeholdern des Projekts ermittelt. Neben den Stakeholdern können unter anderem auch Normen, Gesetze oder Vorgänger eines Systems weitere Quellen für Anforderungen sein. Um von jedem Stakeholder des Projekts verstanden zu werden, werden Anforderungen in der Regel in natürlicher Sprache formuliert. Da natürliche Sprache Raum für Interpretation bieten kann, muss darauf geachtet werden, dass die Anforderungen so klar und unmissverständlich wie möglich formuliert werden und dabei trotzdem vollständig bleiben. Zudem wird voraussichtlich nicht jeder Stakeholder über die fachlichen Kenntnisse verfügen um Fachsprache oder Konventionen zu verstehen, weshalb darauf verzichtet werden sollte [6, vgl. S.2]. Um sicherzustellen, dass Anforderungen korrekt formuliert werden, wurden in der Norm ISO/IEC/IEEE 29148:2018(E) Eigenschaften definiert, welche Anforderungen erfüllen sollen. Diese Eigenschaften werden nachfolgend dargestellt und kurz beschrieben:

Notwendig Die Anforderung definiert eine wesentliche Fähigkeit, Eigenschaft, Einschränkung und/oder einen Qualitätsfaktor [7, vgl. S.12].

Angemessen Die Anforderung verfügt über einen angemessenen Detaillierungsgrad und erlaubt dabei bei der Implementierung größtmögliche Unabhängigkeit [7, vgl. S.12].

Eindeutig Die Anforderung ist leicht zu verstehen, einfach formuliert und

kann nur auf eine einzige Weise interpretiert werden [7, vgl.

S.12].

Komplett Die Anforderung ist hinreichend beschrieben und benötigt keine

weiteren Informationen um verstanden zu werden [7, vgl. S.12].

Atomar Die Anforderung beschreibt eine einzige Fähigkeit oder Bedin-

gung [7, vgl. S.12].

Durchführbar Die Anforderung kann innerhalb der Beschränkungen des Sys-

tems mit akzeptablem Risiko durchgeführt werden [7, vgl. S.13].

Verifizierbar Die Umsetzung der Anforderung kann überprüft werden [7, vgl.

S.13].

Korrekt Die Anforderung ist eine genaue Darstellung des Bedürfnisses ih-

rer Quelle [7, vgl. S.13].

Konform Die Anforderung wurde, wenn möglich, mithilfe einer genehmig-

ten Standardvorlage und -stil verfasst [7, vgl. S.13].

Um diese Eigenschaften zu erfüllen, ist es ratsam auf Vorlagen für das Schreiben von Anforderungen zurückzugreifen. Eine Anforderung, welche mithilfe einer Vorlage verfasst wurde, könnte wie folgt aussehen:

"The <system> shall <function> <object> every <performance> <units>.

E.g. The coffee machine shall produce a hot drink every 10 seconds. " [6, S.81]

Nach einer Umfrage aus dem Chaos Report der Standish Group nennen mehr als die Hälfte der Befragten als Faktor für die Beeinträchtigung von Projekten einen Grund, der direkt im Zusammenhang mit mangelndem RE und RM steht. Dazu gehören z.B. Gründe wie unvollständige Anforderungen, Nutzer nicht ausreichend involviert, unrealistische Erwartungen oder geänderte Anforderungen und Spezifikationen [8, vgl. S.5]. Gut durchgeführtes RE und RM ist also essenziell für den Erfolg von Projekten.

2.1.2 Anwendungsregeln

Eine spezielle Form von Anforderungen stellen die Anwendungsregeln dar. Diese Anforderungen werden an Komponenten gestellt, um einen sicheren und zuverlässigen Einsatz von Komponenten im System zu gewährleisten. Dafür müssen sie von dem Kunden oder dem Projekt, welches die jeweiligen Komponenten nutzt, berücksichtigt werden [9, vgl. S.9]. Alle Anwendungsregeln von Komponenten der Siemens Mobility Rail Infrastructure (SMO RI) in all ihrer Versionen befinden sich zentral gespeichert in einem Projekt im Tool DOORS. Von dort kann der zuständige Requirements-Manager eines Projekts alle Anwendungsregeln von Komponenten importieren, die im jeweiligen Projekt genutzt werden. Als Nächstes muss er bewerten, welche Anwendungsregeln für das Projekt anwendbar sind und welche nicht. Die anwendbaren Anwendungsregeln müssen daraufhin mit einer Designlösung abgeschlossen werden oder einem oder mehreren Teilsystemen zugeordnet werden. Diese Bewertung der Anwendungsregeln erfolgt ebenfalls in DOORS wie in der Abbildung 2.1 gezeigt wird.

Abbildung 2.1: Bewerten einer Anwendungsregel

Dafür werden die Attribute REQ Statement und REQ Progress genutzt. Im Attribut REQ Progress kann der System-Manager eine von fünf verschiedenen Ausprägungen wählen. Eine Auflistung und Erklärung dieser Ausprägungen kann der Tabelle 2.1 entnommen werden. Der System-Manager muss daraufhin ein Statement darüber abgeben, warum er welchen REQ Progress gewählt hat. Dieses Statement wird in Textform im Attribut REQ Statement gespeichert. Die Anwendungsregel in der Abbildung 2.1 wurde beispielsweise mit closed bewertet, da die Anwendungsregel für das Projekt anwendbar ist und zudem auch gelöst ist, da die Streckenlänge, wie in der Anwendungsregel gefordert, weniger als 6,5 km beträgt.

REQ Progress Erklärung

not applicable Anwendungsregel ist nicht anwendbar

forwarded Anwendungsregel soll an Subsystem weitergeleitet werden

closed Anwendungsregel auf System Design Ebene mit einem

Statement abgeschlossen

open Bewertung der Anwendungsregel noch offen

compliant Anwendungsregel anwendbar, noch nicht bewertet

Tabelle 2.1: Ausprägungen des Attributs REQ Progress [9, vgl. S.28f.]

2.2 Künstliche Intelligenz

Das Thema KI hat in letzter Zeit eine große mediale Aufmerksamkeit erhalten. Ein aktuelles Beispiel dafür ist der Chatbot ChatGPT der Firma OpenAI. ChatGPT wurde im November 2022 veröffentlicht und ist ein Sprachmodell, das natürliche Sprache verstehen und abhängig von der Benutzereingabe in Dialogform Antworten liefern soll. Es ist dabei in der Lage, sich an vorherige Eingaben zu erinnern und kann deshalb Anfragen in einen Kontext einordnen. Dadurch kann es auch vorherige Antworten korrigieren und auf Wünsche und Bedürfnisse des Benutzers eingehen [10].

Die Frage nach KI und nach dem ob und wie Maschinen denken können ist jedoch wesentlich älter als dieser Chatbot. Bereits Alan Turing stellte sich diese Frage in den 1950er Jahren. Er schlug vor, die Frage, ob Maschinen denken können, mit einer anderen Frage zu ersetzen. Dafür formulierte er das Problem mithilfe eines Spiels, dem "Imitation Game", das heute eher als Turing-Test bekannt ist, um. Dieses Spiel wird mit drei Personen gespielt, einem Fragesteller, einem Mann und einer Frau. Ziel des Spiels ist es, dass der Fragesteller mithilfe von Fragen herausfinden soll, welche Person der Mann und welche Person die Frau ist. Der Mann soll dabei versuchen, den Fragesteller dazu zu bringen, ihn fälschlicherweise als die Frau zu identifizieren, während die Frau versuchen soll, dass der Fragesteller sie korrekt als Frau identifiziert. Dafür befindet sich der Fragesteller in einem anderen Raum und die Fragen werden entweder über eine außenstehende weitere Person oder einem

Fernschreiber übermittelt. Was würde nun passieren, wenn eine Maschine die Rolle des Mannes übernehmen würde? Würde der Fragesteller dann häufiger oder seltener gewinnen? Alan Turing glaubte, dass eine Maschine dann als intelligent bezeichnet werden könne, wenn eine Maschine in der Lage dazu wäre, menschliches Verhalten zu imitieren [11, vgl. S.433f.].

Abbildung 2.2: Beziehung zwischen KI, ML und DL [1, S.22]

François Chollet, der Entwickler der Deep-Learning-Bibliothek Keras, welche im Kapitel TODO näher beschrieben wird, definiert das Fachgebiet KI als "[den] Versuch, normalerweise von Menschen erledigte geistige Aufgaben automatisiert zu lösen" [1, S.22]. Nach dieser Definition schließt KI weitere Themen wie das ML sowie das DL ein. Wichtig zu beachten ist dabei, dass diese Gebiete sich voneinander unterschieden. Ihre Beziehung zueinander wird in Abbildung 2.2 verdeutlicht.

Dieses Kapitel wird näher erläutern, worum es sich bei den Themen ML und DL handelt und wie ein KI-Modell als neuronales Netz erstellt wird.

2.2.1 Maschinelles Lernen

Das maschinelle Lernen ist ein Teilgebiet der KI und beschäftigt sich mit der Frage, ob ein Computer in der Lage dazu ist selbstständig eine bestimmte Aufgabe zu erlernen. Ziel dabei ist es, dass eine Maschine aus einem vorgegebenem Datensatz und den dazugehörigen Antworten Regeln extrahieren soll, die den Datensatz erklären können. Anders als bei der klassischen Programmierung soll eine Maschine hier nicht die Antworten aus den Daten und Regeln herausgeben, sondern selber nach

einer Struktur suchen, aus der die Maschine dann Regeln ableiten kann, die auch auf andere Aufgaben angewendet werden können [1, vgl. S.23f.]. Angenommen ein Datensatz bestünde aus Bildern von Hunden und Menschen. Bei der klassischen Programmierung würde der Programmierer nun selber Regeln definieren und diese programmieren müssen. Beispiele für mögliche Regeln könnten hier sein:

Wenn Wesen Fell hat, dann ist es ein Hund.

Wenn Wesen auf zwei Beinen läuft, dann ist es ein Mensch.

Beim ML hingegen müsste der Programmierer diese Regeln nicht selber definieren. Hier werden neben dem Datensatz noch die entsprechenden Antworten benötigt. Jedes Bild bräuchte also ein Label, also eine Information darüber, ob es sich auf dem Bild um einen Hund oder einen Menschen handelt. Aufgabe der Maschine wäre es nun, mithilfe des Datensatzes und der Label, Regeln zu definieren, ob auf einem Bild ein Hund oder ein Mensch zu sehen ist. Das ML-System wird also sozusagen trainiert. Dem trainiertem System können dann neue Bilder gezeigt werden und es wäre in der Lage anhand seiner definierten Regeln vorherzusagen, ob auf den neuen Bildern Hunde oder Menschen zu sehen sind.

Abbildung 2.3: Unterschiedliche Programmierparadigmen [1, S.23]

Abbildung 2.3 verdeutlicht nochmal die Unterschiede zwischen der klassischen Programmierung und dem ML. Beim ML sind also drei Elemente notwendig, diese werden anhand des oben genannten Beispiels verdeutlicht:

Eingabedaten Bilder von Menschen und Hunden [1, S.24]

Antworten Label, ob auf dem Bild ein Mensch oder ein Hund abgebildet ist [1, S.24]

Metrik zur Bewertung des Algorithmus Benötigt, um die Abweichung zwischen Ausgabe des Modells und eigentlicher Antwort zu bestimmen. Wird als Feedback-Signal genutzt, um Algorithmus anzupassen. Beispielsweise wie viel Prozent der Bilder richtig zugeordnet werden. [1, S.24f.].

Die Aufgabe eines ML-Modells ist es passende Repräsentationen der Eingabedaten zu erlernen, das heißt, dass die Daten vom Modell sinnvoll umgewandelt werden müssen. Die systematische und automatische Suche nach der bestmöglichen Repräsentationen der Daten, mithilfe eines Feedback-Signals, für eine bestimmte vorgegebene Aufgabe kann als Möglichkeit verstanden werden, wie Maschinen lernen können. Mithilfe dieses Ansatzes und der in den letzten Jahren besser werdenden Hardware können große Datenmengen analysiert werden, was das Lösen von Aufgaben wie der Spracherkennung oder dem autonomen Fahren ermöglicht hat [1, vgl. S.24ff.].

Die hier beschriebene Variante des Machine Learnings wird auch Supervised Learning, also überwachtes Lernen, genannt. "Supervised" bezieht sich hierbei darauf, dass dem Modell die Antworten vorgegeben werden und es anhand der Antworten versucht Regeln zu finden. Neben dieser Variante existiert auch noch das sogenannte Unsupervised Learning. Bei dieser Variante des Machine Learnings werden dem Modell keine Antworten gegeben. Stattdessen versucht das Modell die Daten anhand ihrer Beziehung zueinander zu analysieren und die Daten in Kategorien zu klassifizieren. Algorithmen zum Clustern von Datensätze sind typische Beispiele für das Unsupervised Learning [12, vgl. S.47ff.]. In dieser Arbeit finden Unsupervised Learning Algorithmen oder Modelle keine Anwendung, deshalb ist mit ML hier immer Supervised Learning gemeint.

2.2.2 Deep Learning und neuronale Netze

Wie Abbildung 2.2 zeigt, ist das DL ein Teilgebiet des ML und beschäftigt sich somit ebenfalls mit der Suche nach den bestmöglichen Repräsentationen von Daten. Das Besondere am DL ist, dass das Lernen des Modells in mehreren aufeinanderfolgenden Schichten, auch Layer genannt, stattfindet. Dabei können beliebig viele

Schichten eingesetzt werden. Die Anzahl an Schichten wird auch Tiefe des Modells genannt, was auch das "Deep" in DL beschreibt. Je tiefer dabei eine Schicht liegt, desto sinnvoller sollen die Repräsentationen werden [1, vgl. S.27]. François Chollet definiert DL als "Lernen durch schichtweise Repräsentationen oder Lernen durch hierarchische Repräsentationen" [1, S.27]. DL-Modelle werden in der Regel als NN dargestellt, das aus beliebig vielen Schichten besteht, wobei jedes NN mindestens eine Eingabe- und eine Ausgabeschicht besitzt, dazwischen kann es beliebig viele versteckte Schichten, die hidden Layer, beinhalten. Die versteckten Schichten sind für die Verarbeitung der Daten zuständig. Eine Schicht besteht dabei aus einer vom Ersteller des NN ausgewählten Anzahl an Neuronen, die miteinander verbunden sind [2, vgl. S.26]. In der Abbildung 2.4 wird der grundlegende Aufbau eines einfachen neuronalen Netzes dargestellt.

Abbildung 2.4: Aufbau eines neuronalen Netzes [2, S.27]

Die Verbindungen zwischen den Neuronen, die Kanten genannt werden, sind gerichtet und besitzen ein Gewicht. Wenn jedes Neuron eine Verbindung zu jedem Neuron in der nächsten Schicht hat, dann wird diese Schicht auch als fullyconnected bezeichnet. Das NN in Abbildung 2.4 besteht aus drei Schichten, welche, bis auf die Ausgabeschicht, fully-connected sind. Unabhängig davon bekommt jedes Neuron, welches sich nicht in der Eingabeschicht befindet, eine Netzeinga-

be, welche sich aus den Ausgaben der Neuronen zusammensetzt, die eine Kante zu dem jeweiligen Neuron haben. Dabei wird jede Ausgabe eines Neurons mit dem Kantengewicht multipliziert.

Abbildung 2.5: Berechnung Netzeingabe [2, vgl. S.29]

Abbildung 2.5 zeigt beispielhaft ein Neuron und die Ausgabe von drei vorherigen Neuronen. Die Netzeingabe des Neurons wird wie folgt berechnet [2, S.29]:

$$net = o_1 \cdot w_1 + o_2 \cdot w_2 + o_3 \cdot w_3 = 0, 8 \cdot 0, 6 + 0, 3 \cdot 0, 5 + 0, 4 \cdot 0, 7 = 0, 91$$
 (2.1)

Jedes Neuron besitzt eine Aktivierungsfunktion, welche mithilfe der Netzeingabe prüft, ob das jeweilige Neuron eine Ausgabe hat und welchen Wert diese annimmt. Es existieren viele verschiedene Aktivierungsfunktionen, in dieser Arbeit wird die Rectified Linear Unit (ReLU)-Funktion genutzt. Diese ist definiert als [2, S.31]:

$$f(net) = max(0; net) \tag{2.2}$$

Diese Funktion nimmt die Netzeingabe und wenn die Netzeingabe positiv ist, dann wird die Netzeingabe als Ausgabe ausgegeben, ansonsten gibt das Neuron 0 als Ausgabe aus. Eine ReLU-Funktion als Aktivierungsfunktion eines Neurons zu benutzen ist typisch im Bereich des DL [2, vgl. S.31].

Wie kommen nun die Kantengewichte zustande? Den Kanten werden zunächst zufällige Werte als Gewicht zugeordnet. Danach wird jede Eingabe an das Modell übergeben, die daraufhin die einzelnen Layer durchläuft. Die Vorhersage wird nun mit dem tatsächlichen Wert an eine Verlustfunktion übergeben, welche dann den Verlustscore berechnet. Für eine Regression, also die Vorhersage eines numerischen Wertes, bietet sich beispielsweise die Berechnung des mittleren quadratischen

Fehlers (mean squared error) an. Dieser Verlustscore wird als Feedback-Signal genutzt und gibt an, wie gut das Modell die Aufgabe lösen kann. Das DL-Modell versucht während des Trainings diesen Wert zu minimieren, indem der Verlustscore an einen Optimierer übergeben wird, der anhand des Verlustscores die Gewichtungen der Kanten im NN aktualisiert. Am Anfang des Trainingsprozesses wird der Verlustscore relativ hoch sein, da die Kantengewichte zufällig ausgewählt wurden. Mit jeder neuen Eingabe werden die Kantengewichte jedoch aktualisiert, was zur Folge hat, dass das Modell immer genauer wird und der Verlustscore somit abnimmt [1, vgl. S.30ff.]. Abbildung 2.6 zeigt dabei grafisch den Aufbau des Trainingsprozesses eines NN. Je mehr Daten vorhanden sind, desto genauer kann das Modell somit werden. Die ImageNet-Datenbank mit ihren 1,4 Millionen Bilddateien hatte beispielsweise einen großen Einfluss auf den Erfolg von DL [1, vgl. S.45]. Wichtig zu beachten ist, dass der Datensatz in einen Trainings- und einen Testdatensatz aufgeteilt werden muss. Ein Modell darf niemals mit den Daten trainiert werden, die auch zum Testen genutzt werden. Wird ein Datensatz nicht aufgeteilt, wird das Modell logischerweise beim Testen sehr gute Ergebnisse erzielen, da es die Testdaten bereits kennt. Der Testdatensatz wird zudem genutzt, um die Genauigkeit des Modells bei unbekannten Daten zu bestimmen. Dieser Schritt ist wichtig, da so geprüft werden kann, wie gut ein Modell mit neuen Daten umgehen kann und ob es in der Lage ist diese korrekt vorherzusagen.

Abbildung 2.6: Anlernen eines neuronalen Netzes [1, S.31]

2.2.3 Overfitting und Underfitting

Overfitting und Underfitting, auf Deutsch Über- und Unteranpassung, können im Trainingsprozesses von ML- sowie DL-Aufgaben auftreten. Unter dem Begriff Underfitting wird verstanden, dass ein Modell noch nicht alle Zusammenhänge im Trainingsdatensatz erkannt und modelliert hat und somit der Verlustscore noch hoch ist, da das Modell für den Trainingsdatensatz noch keine sinnvollen Repräsentationen gefunden hat. Dieses Problem kann gelöst werden, indem die Anzahl an Trainingsdurchläufen erhöht oder die Komplexität des Modells erweitert wird, also weitere Schichten oder mehr Neuronen in einer Schicht hinzugefügt werden. Overfitting beschreibt dabei den Fall, dass ein Model die Eigenheiten der Trainingsdaten sozusagen auswendig lernt und mögliche irrelevante Muster im Trainingsdatensatz erlernt. Das Problem daran ist, dass das Modell dann nicht mehr in der Lage ist, das eigentliche Problem generalisiert zu betrachten und neue Daten korrekt vor-

herzusagen. Mögliche Lösungen wäre dabei mehr Daten zu beschaffen oder die Komplexität des Modells zu verringern. Zudem existiert ein Verfahren, das ebenfalls dabei hilft, Overfitting zu verhindern. Dieses Verfahren nennt sich Dropout-Regularisierung. Bei der Dropout-Regularisierung werden während des Trainings einige zufällig ausgewählte Ausgaben von Neuronen in einer Schicht auf 0 gesetzt. Das soll verhindern, dass ein NN irrelevante Muster im Trainingsdatensatz erlernt [1, vgl. S.142ff.].

Je weniger Daten vorhanden sind und je komplexer ein Modell ist, desto wahrscheinlicher läuft das Modell Gefahr, von Overfitting betroffen zu sein. Je simpler ein Modell ist und je weniger Trainingsdurchläufe durchlaufen werden, desto eher kann es zu einer Unteranpassung des Modells kommen. Es ist also wichtig, ein gutes Mittelmaß zu finden, damit ein Modell in der Lage ist ein Problem verallgemeinert und optimal lösen zu können.

2.2.4 Vor- und Nachteile

Der große Vorteil von DL und NN ist das "Universal Approximation Theorem", welches besagt, dass jeder funktionale Zusammenhang zwischen Ein- und Ausgabe durch ein NN angenähert werden kann. Das gilt dabei nicht nur für mathematische Zusammenhänge. Voraussetzung dafür ist ein NN, dessen Komplexität groß genug gewählt wird. Dafür kann bereits eine versteckte Schicht ausreichen. Durch diese Eigenschaft kann ein NN theoretisch jedes Approximationsproblem lösen und interessiert sich dabei nicht dafür, ob eine Kausalität zwischen Ein- und Ausgabe besteht und kann ebenfalls mit unvollständigen und falschen Daten arbeiten [2, vgl. S.74ff.]. Zudem sind NN nicht anfällig gegenüber leichten Änderungen im Datensatz, stattdessen sind sie fehlertolerant. Selbst wenn ein Teil des Netzes funktionsunfähig werden sollte, spielt das keine allzu große Rolle, da die Muster und Strukturen, welches ein Modell gelernt hat, auf das gesamte Netz verteilt ist. Diese Tatsache hat zudem den Vorteil, dass wenn neue Daten dazu kommen, nicht das gesamte Netz neu trainiert werden muss, sondern das bestehende Netz upgedatet werden kann [2, vgl. S.82]. Weitere Vorteile von NN sind ihre Einfachheit und Skalierbarkeit. Das Erstellen eines Modells ist einfach und auf eine beliebige Größe skalierbar, wes-

halb NN auch mit großen Datenmengen und einer Vielzahl an Attributen angelernt werden können [1, vgl. S.47].

Neben den Vorteilen bringt die Nutzung von NN auch einige Nachteile mit sich. Zum einen ist die Genauigkeit der Prognose eines Modells stark abhängig von der Qualität der Trainingsdaten. Werden Attribute im Trainingsdatensatz genutzt, die irrelevant bei der Beschreibung des Problems sind, wirkt sich das negativ auf die Genauigkeit des Modells aus, weshalb eine vorhergehende Analyse der Attribute, die sogenannte "Feature Selection", unausweichlich ist. Zudem kann das Training eines NN mit steigender Komplexität zeit- und rechenintensiv werden, da die Anzahl an zu berechnenden Parametern bei steigender Komplexität zunimmt. Ein komplexeres Modell hat außerdem zur Folge, dass es nicht mehr möglich ist transparent und nachvollziehbar zu Verstehen, wie ein NN eine Ausgabe berechnet. Außerdem muss beim Testen und Validieren eines Modells überprüft werden, ob das Modell nicht eventuell over- oder underfitted und somit nicht in der Lage ist, das zu lösende Problem hinreichend verallgemeinert abzubilden und somit auf neuen Daten zu fehlerhaftem Verhalten neigt [2, vgl. S.84ff.].

3 Werkzeuge

In diesem Kapitel werden die Tools vorgestellt, die in der Arbeit verwendet werden. Dazu zählt das Anforderungsmanagement-Tool DOORS, da es von der Siemens Mobility GmbH genutzt wird, um Anforderungen und somit auch Anwendungsregeln zu verwalten.

Das KI-Modell, welches in dieser Arbeit erstellt und vorgestellt wird, wird in der Programmiersprache Python geschrieben. Dieses Kapitel wird sich deshalb auch mit Python und den Bibliotheken, welche hier genutzt werden, beschäftigen und einen Überblick über diese geben.

3.1 IBM Rational DOORS

Das Anforderungsmanagement-Tool DOORS ist ein plattformübergreifendes und unternehmensweites Tool und wird zur Erfassung, Verknüpfung, Verfolgung, Analyse und Verwaltung von Anforderungen genutzt. DOORS ist ein Akronym, das für Dynamic Object-Oriented Requirements System steht. Alle Anforderungen und weitere Informationen werden in einer zentralen Datenbank gespeichert. Innerhalb der Datenbank werden die Informationen in Modulen gespeichert. Diese Module können mithilfe von Ordnern und Projekten organisiert werden. Ordner sind vergleichbar mit den Ordnern z.B. im Windows Explorer und können andere Ordner, Projekte oder Module beinhalten. Ein Projekt hingegen ist ein spezieller Ordner, der alle Daten für ein entsprechendes Projekt beinhaltet. Sowohl für Ordner als auch für Projekte können die Zugriffsrechte individuell eingestellt werden [6, vgl. S.173]. Dabei existieren die Optionen read, modify, create, delete und administer (RMCDA).

3.1.1 Module

Es existieren zwei verschiedene Arten von Modulen im Anforderungsmanagement-Tool DOORS. Module, die die eigentlichen Anforderungen beinhalten, werden Formal Module genannt. Abbildung 3.1 zeigt ein Beispiel für so ein Modul. Zu erkennen ist dort ein geöffnetes Formal Module. Auf der linken Seite ist ein Explorer zu sehen, auf der rechten Seite die eigentlichen Inhalte des Moduls. Durch den Explorer auf der linken Seite, der in einer Baumstruktur organisiert ist, wird es dem Benutzer ermöglicht leicht zu einer bestimmten Stelle im Modul zu navigieren. Dabei können die einzelnen Sektionen auf- und zugeklappt werden [6, vgl. S.176]. Die Daten auf der rechten Seite sind tabellarisch angeordnet. Die Spalten stellen dabei die einzelnen Attribute des Moduls dar, während die Zeilen die Objekte darstellen.

Neben den Formal Modules existieren auch die Link Modules. In diesen werden Informationen über die Beziehungen zwischen einzelnen Objekten gespeichert, was die Verfolgbarkeit von Anforderungen gewährleistet.

Abbildung 3.1: Geöffnetes Modul in DOORS

3.1.2 Objekte und Attribute

Innerhalb eines Moduls werden Daten in Objekten gespeichert. In der Regel bestehen Objekte aus mindestens zwei Spalten. Die erste Spalte enthält eine ID, die sich aus einem Präfix und einem Integerwert zusammensetzt. Der Integerwert wird bei jedem neu angelegtem Objekt inkrementiert, sodass jedem Objekt innerhalb eines

Moduls eine eindeutige ID zugeordnet werden kann. Die zweite Spalte besteht dabei entweder aus einer Sektions-Nummer und einer Überschrift, wie im ersten Objekt in der Abbildung 3.1 zu sehen ist, oder aus einem Objekt-Text, der beispielsweise eine Anforderung beinhalten kann. Ein Beispiel für einen Objekt-Text, der eine Anforderung beinhaltet, ist das vierte Objekt der Abbildung 3.1 [6, vgl. S.178]. Einem Objekt können beliebig viele weitere Attribute hinzugefügt werden.

Attribute beinhalten relevante Informationen über Module oder Objekte. Modulattribute speichern Informationen über das Modul, wie beispielsweise den Ersteller des Moduls, das letzte Änderungsdatum und Ähnliches. Diese Modulattribute findet der Benutzer über die Eigenschaften des Moduls, welche mit einem Rechtsklick auf das Modul in der grafischen Oberfläche geöffnet werden können. Objektattribute hingegen speichern Informationen über die Objekte. In der Abbildung 3.1 ist die Spalte STD Object Type z.B. ein Objektattribut, das definiert, ob es sich bei dem Objekt um eine Anforderung oder um Prosa, also z.B. eine Überschrift handelt.

3.1.3 Baseline

Eine Baseline friert den aktuellen Stand der Anforderungen eines Projekts mit ihren Attributen ein und ist eine nicht veränderbare Kopie von formalen Modulen [6, vgl. S.182]. Baselines werden in der Regel zu Releases von Systemen oder Subsystemen erstellt [4, vgl. S.60]. Wenn ein Formal Module geöffnet ist, kann der Benutzer unter File → Baseline eine Baseline erstellen oder eine bereits vorhandene Baseline ansehen. Abbildung 3.2 zeigt das Dialogfenster zum Öffnen bereits vorhandener Baselines. Dort wird deutlich, dass Baselines versioniert werden können.

Abbildung 3.2: Baselines eines Moduls in DOORS

3.1.4 Links

In der Abbildung 3.1 sind an der rechten Kante der zweiten Spalte zwei Arten von Pfeilen zu erkennen. Diese Pfeile symbolisieren Links in DOORS. Links sind gerichtete Verbindungen von einem Quellobjekt zu einem Zielobjekt. Sie werden in DOORS genutzt, um die Verfolgbarkeit von Anforderungen zu gewährleisten. Der Benutzer kann dabei, ungeachtet von der Richtung des Links, vom Quellobjekt zum Zielobjekt oder andersherum navigieren [6, vgl. S.183]. Ein nach links zeigender gelber Pfeil ist dabei ein In-Link, das heißt, dass dieses Objekt als Zielobjekt dient und ein anderes Objekt eine Verbindung zu diesem Objekt hat. Das Gegenstück zum In-Link ist ein Out-Link. Dieser wird in der grafischen Benutzeroberfläche von DOORS als roter nach rechts zeigender Pfeil dargestellt. Hat ein Objekt einen Out-Link, heißt das, dass dieses Objekt als Quellobjekt dient und eine Verbindung zu einem anderen Objekt, welches als Zielobjekt dient, hat.

3.1.5 DXL

DOORS eXtension Language (DXL) ist eine Skript-Sprache, die ein Teil des Anforderungsmanagement-Tools DOORS ist. Durch diese Skript-Sprache können Skripte geschrieben werden, die als Batch-Skript ausgeführt werden können. Diese Skripte bieten neben der grafischen Benutzeroberfläche eine weitere Möglichkeit, um mit DOORS zu arbeiten. Zudem besteht die Möglichkeit die grafische Benutzeroberfläche von DOORS um neue, entwickelte Anwendungen zu erweitern. Von der Syntax ähnelt die Sprache den Programmiersprachen C und C++ [13, vgl. S.1]. Eine Besonderheit von DXL ist dabei der Datentyp Skip, welche eine Skiplist als Datenstruktur implementiert. Eine Skiplist besteht aus Key-Value-Paaren und ermöglicht einen schnellen Zugriff auf einzelne Elemente.

DXL wurde im Praxisprojekt zum Sammeln von Bewertungen von Anwendungsregeln aus Projekten der Siemens Mobility GmbH genutzt, indem Batch-Skripte geschrieben wurden. Diese Skripte haben im zentralen Projekt, das die Anwendungsregeln von Komponenten beinhaltet, die Links der Objekte verfolgt und dort in den Modulen nach korrekt bewerteten Anwendungsregeln gesucht. Diese wurden dann nach Projekt und Komponente gruppiert und jeweils in neue Module geschrieben, um in Zukunft als Lösungsvorschlag für neue Projekte zu dienen. Der Inhalt dieser Module wird als Datensatz für diese Bachelorarbeit genutzt. Ebenfalls wird DOORS dazu benötigt, um in der grafischen Oberfläche eines Moduls mit neu importierten Anwendungsregeln ein Programm zu starten, was mit den Informationen aus dem Modul ein weiteres Skript in der Programmiersprache Python startet. In dem Python-Skript wird das KI-Modell erstellt und angelernt. Mithilfe des Modells und mit den Daten über die Anwendungsregeln aus dem Modul soll das Modell dann Vorschläge zur Bewertung der Anwendungsregeln liefern.

3.2 Python

Python ist eine interpretierte, high-level, objektorientierte Programmiersprache und wird von einem Artikel im International Research Journal of Engineering and Technology (IRJET) als die am schnellsten wachsende Programmiersprache bezeichnet [14, vgl. S.354]. Jacqueline Kazil, ehemaliges Vorstandsmitglied der Python

Software Foundation, nennt als Hauptgründe für das Wachstum der Programmiersprache die Beliebtheit von Python in den Themen ML und Data Science [14, vgl. S.354]. Weitere Eigenschaften der Programmiersprache sind:

- Hohe Lesbarkeit durch einfache Syntax [14, vgl. S.354]
- Programme haben weniger Zeilen Code als vergleichbare Sprachen wie C
 [14, vgl. S.354]
- hohe Flexibilität durch dynamische Typisierung [14, vgl. S.354]
- Automatisches Speichermanagement [14, vgl. S.354]
- läuft auf vielen verschiedenen Betriebssystemen [14, vgl. S.355]

Die dynamische Typisierung sorgt zwar auf der einen Seite für eine erhöhte Flexibilität, da Variablen kein fester Typ bei der Deklarierung zugeordnet werden muss, liefert aber auf der anderen Seite auch Nachteile. Durch die dynamische Typisierung kann die Ausführung eines Programms zeitintensiver werden und bei größeren Projekten kann es dazu kommen, dass nicht mehr genau nachvollzogen werden kann, welchen Typ eine Variable hat [14, vgl. S.355]. Beide Nachteile sind bei der Größe dieses Projekts aber vernachlässigbar.

Ein großer Vorteil von Python sind die Programmierbibliotheken, die die Sprache besitzt und die importiert werden können. Für nahezu jeden Anwendungsfall existiert eine Bibliothek die Python um weitere Klassen und Funktionen erweitert und somit die Entwicklung von Anwendungen beschleunigt und erleichtert. Durch sie muss der Entwickler die Funktionalitäten, die eine Bibliothek mitbringt, nicht selber implementieren und kann stattdessen auf diese Bibliotheken zurückgreifen. In dieser Arbeit wurden drei Bibliotheken verwendet, die für das Erstellen von KI-Modellen, für die Datenverarbeitung und das Visualisieren von Daten genutzt wurden. Diese werden in den folgenden Kapiteln näher beschrieben.

Aufgrund der Beliebtheit der Sprache im Thema KI und den Programmierbibliotheken wird Python in dieser Arbeit dazu genutzt, die Daten aus dem Praxisprojekt zu importieren, zu verarbeiten und das KI-Modell zu erstellen und mit den Daten anzulernen. Eine Alternative dazu wäre die Programmiersprache R, jedoch wird

hier Python bevorzugt, da Python weiter verbreitet ist und eine simplere Syntax hat und somit einfacher zu lesen und zu verstehen ist.

3.2.1 Keras

Keras ist eine Bibliothek für die Programmiersprache Python, welche Klassen und Funktionen liefert, um verschiedene DL-Modelle zu erstellen und diese anschließend zu trainieren. Operationen zur Berechnung und Bearbeitung von beispielsweise Tensoren bringt diese Bibliothek nicht mit. Stattdessen greift Keras auf andere Bibliotheken zurück, die diese Funktionalitäten mitbringen, und nutzt diese dann. Dabei ist Keras kompatibel zu mehreren Bibliotheken dieser Art, wie zum Beispiel TensorFlow von Google oder CNTK von Microsoft. Der Entwickler kann aussuchen, welche dieser Bibliotheken verwenden will und kann diese auch während der Entwicklung wechseln [1, vgl. S.89ff.]. François Chollet empfiehlt standardmäßig TensorFlow zu nutzen, da diese "am weitesten verbreitet, skalierbar und ausgereift"[1, S.91] sei. Was TensorFlow genau kann und wie es genutzt wird, ist für die Erstellung eines DL-Modells mit Keras nicht relevant und wird somit nicht genauer beschrieben.

Das Erstellen eines NN mithilfe von Keras folgt dabei in der Regel den folgenden vier Schritten:

- Trainingsdatensatz definieren und in Ein- und Ausgabewerte aufteilen [1, vgl. S.92]
- 2. NN definieren, indem die einzelnen Schichten konfiguriert werden [1, vgl. S.92]
- 3. Verlustfunktion, Optimierer und Metrik(Kennzahl) auswählen [1, vgl. S.92]
- 4. Modell mit Trainingsdaten anlernen [1, vgl. S.92]

Ein großer Vorteil der Bibliothek ist, dass Keras bereits die verschiedenen Schichten als Klassen mitbringt, diese also nicht vom Entwickler erst definiert werden müssen. Der Entwickler kann dadurch einem Modell beliebig Schichten hinzufügen oder entfernen und diese nach seinen Wünschen konfigurieren. Die Anzahl an Neuronen innerhalb einer Schicht und die Aktivierungsfunktion der Neuronen

in der Schicht werden der Schicht einfach als Parameter übergeben und die Aktivierungsfunktion muss ebenfalls nicht selbst definiert werden, denn da reicht es aus, den Namen der Funktion als Parameter anzugeben. Das Auswählen der Verlustfunktion, des Optimierers und der Metrik verlaufen ebenfalls genauso einfach. Diese werden, nachdem das Modell mit seinen Schichten definiert wurden, ganz simpel, wie bei der Auswahl der Aktivierungsfunktion, einer Funktion als Parameter übergeben. Genau diese Schritte werden in dieser Arbeit durchlaufen, um das KI-System zur Bewertung von Anwendungsregeln zu erstellen und anzulernen.

3.2.2 Pandas

Um unter anderem das Importieren der Daten, welche im Praxisprojekt gesammelt wurden, zu ermöglichen, wird die Datenverarbeitungsbibliothek Pandas genutzt. Pandas ist ein Akronym, welches für panel data steht. Diese Bibliothek basiert dabei auf Tabellen, ähnlich wie bei Excel, und bietet die Möglichkeit Excel-Dateien, CSV-Dateien und weitere Dateitypen direkt zu importieren oder zu exportieren. Die beiden wichtigsten Datenstrukturen sind dabei die Series und die Dataframe [15, vgl. S.253].

Series können dabei wie eine zweispaltige Tabelle verstanden werden. Die erste Spalte beinhaltet einen Index, dieser kann dabei beliebig sein, muss also nicht wie bei einem Array aus Integer-Werten bestehen. Diese Eigenschaft unterscheidet Series von Arrays und bietet dadurch die Möglichkeit beliebige Indizes zu nutzen und Daten somit als Key-Value-Paare zu speichern. Wird jedoch kein spezieller Index definiert, so besteht der Index, genau wie bei einem Array, aus aufsteigenden Integer-Werten von 0 bis zur Länge des Arrays. In der anderen Spalte werden die eigentlichen Werte gespeichert, diese müssen dabei alle vom selben Datentyp sein [15, vgl. S.254f.]. Weitere Eigenschaften der Datenstruktur Series sind:

- Indizierung [15, vgl. S.256]
 - über Index oder Liste von Indizes auf bestimmte Werte eines Series-Objekts zuzugreifen
- Filtern nach einer Bedingung, zum Beispiel nur auf Werte zugreifen, die größer als ein Schwellwert sind [15, vgl. S.256]

 Anwendung von mathematischen Funktionen auf gesamtes Series-Objekt möglich [15, vgl. S.256]

Dataframes sind eine weitere Datenstruktur, die die Pandas Bibliothek mitbringt. Ein Dataframe hat, wie ein Series-Objekt, ebenfalls Ähnlichkeiten zu einer Tabelle, dieses Mal jedoch mit einer unbegrenzten Anzahl an Spalten. Die Werte einer Spalte müssen vom selben Datentyp sein, jedoch können verschiedene Spalten auch verschiedene Datentypen besitzen. Da nun mehrere Spalten mit Werten vorhanden sein können, besitzen Dataframes sowohl einen Zeilen- als auch einen Spaltenindex. Die Indizes sind wieder beliebig wählbar. Zudem können mindestens zwei Series-Objekte zu einem Dataframe konkateniert werden [15, vgl. S.263f.]. Also kann über Dataframes gesagt werden, dass sie eine Datenstruktur sind, die aus mehreren einzelnen Series-Objekten bestehen.

Neben den beiden Datenstrukturen liefert die Pandas Bibliothek zahlreiche Funktionen zur Analyse, Bearbeitung und Verwaltung der gespeicherten Daten. Die in dieser Arbeit verwendeten Funktionen werden in Kapitel XXX an den gesammelten Daten aus dem Praxisprojekt vorgestellt und erläutert.

3.2.3 Matplotlib

Zur Visualisierung von Daten wird in dieser Arbeit die Bibliothek Matplotlib für Python genutzt. Matplotlib bietet die Möglichkeit verschiedenste Diagramme und Darstellungen, wie zum Beispiel Linien-, Balken-, Tortendiagramme und viele mehr, mit wenig Code zu erstellen. Die erstellten Diagramme können vom Entwickler zudem noch beliebig konfiguriert werden [15, vgl. S.167.]. Das Visualisieren der Daten sorgt für ein besseres Verständnis der Daten im Vergleich zu einer rein textuellen Beschreibung.

Matplotlib eignet sich vor allem in der Verwendung zusammen mit Pandas. Pandas listet Matplotlib als "optionale Abhängigkeit", bedeutet, dass für die Verwendung von Pandas Matplotlib nicht zwingend benötigt wird, aber es empfohlen wird [15, vgl. S.253]. Beide Datenstrukturen der Pandas-Bibliothek besitzen zudem eine Plot-Funktion, also eine Funktion um ein Diagramm aus den Daten zu erstellen, die genutzt werden kann, wenn sowohl Pandas als auch Matplotlib als Bibliotheken importiert werden.

4 Datensatz

In dem Praxisprojekt, auf das diese Bachelorarbeit aufbaut, wurden Bewertungen von Anwendungsregeln aus vorherigen Projekten der Siemens Mobility GmbH gesammelt und in eine CSV-Datei geschrieben. Wie im Kapitel 3.2.1 beschrieben, ist der erste Schritt beim Erstellen eines DL-Modells als NN das Definieren des Datensatzes sowie die Aufteilung dessen in Eingabe- und Ausgabewerte. Dieses Kapitel wird sich mit diesem Schritt beschäftigen und den Datensatz so aufbereiten, dass er für das Anlernen des KI-Modells genutzt werden kann. Zudem werden in diesem Kapitel wichtige Eigenschaften des Datensatzes visualisiert.

4.1 Datensatz aus dem Praxisprojekt

Das Ergebnis aus dem Praxisprojekt war ein Datensatz mit 195.518 Anwendungsregeln und ihren Bewertungen. Beim Erstellen des Datensatzes wurde jedoch ein entscheidender Fehler begangen. Als die Daten aus den Projekten gesammelt wurden, wurde dabei auch jede Baseline eines Moduls berücksichtigt ohne zu überprüfen, ob sich an der Anwendungsregeln und ihrer Bewertung etwas geändert hat. Die Folge dessen war, dass der Datensatz eine Vielzahl von Duplikaten enthalten hat, was dazu geführt hätte, dass Projekte mit mehreren Baselines stärker ins Gewicht gefallen wären, obwohl die Anzahl an Baselines nichts über die Signifikanz der Bewertung aussagt. Deshalb mussten die erstellten Module mit den bewerteten Anwendungsregeln in DOORS überarbeitet werden.

Dafür wurde ein Skript in DXL geschrieben, was in den Modulen nach Duplikaten sucht und diese löscht. Die äußere Schleife durchläuft dazu alle Elemente in dem Ordner, in welchem sich die Module mit den bewerteten Anwendungsregeln befinden. Wenn ein Element ein Formal Module ist, dann wird dieses Modul geöffnet und in einer inneren Schleife werden alle Objekte des Moduls durchlaufen. Für je-

```
// ...
      for it in f do{
          if (type(it) == "Formal"){
              m = edit(fullName(it), false)
              for o in entire m do{
                  szData = o."ObjectText""" o."Status""" o."
     Statement"";
                   if (find(slUnique, szData)) {
                       softDelete(o);
                   }else{
                       put(slUnique, szData, szData)
                  szData = ""
12
13
              purgeObjects_(m)
14
              delete (slUnique)
15
```

Quellcode 4.1.1: Duplikate in Modulen löschen

des Objekt wird eine Zeichenfolge erstellt, die aus den Attributen ObjectText, Status und Statement besteht. Anschließend wird überprüft, ob diese Zeichenfolge in einer Skiplist bereits vorhanden ist. Wenn dies der Fall ist, dann wurde das Objekt als Duplikat erkannt und mittels der softDelete-Funktion als gelöscht gekennzeichnet. Wenn diese Zeichenfolge noch nicht in der Skiplist vorhanden ist, dann ist dieses Objekt noch einzigartig und wird der Skiplist hinzugefügt, um sicherzustellen, dass zukünftige Duplikate erkannt werden. Anschließend wird die Zeichenfolge geleert. Nachdem die innere Schleife durchlaufen wurde, werden alle Objekte, welche als gelöscht gekennzeichnet wurden, endgültig aus dem Modul entfernt. Zudem wird der Inhalt der Skiplist entfernt, bevor das nächste Modul durchlaufen wird, um zu gewährleisten, dass diese bei der nächsten Verwendung keine Elemente aus vorherigen Modulen mehr enthält.

Das Entfernen der Duplikate hatte zur Folge, dass der im Praxisprojekt gesammelte Datensatz von ursprünglich 195.518 auf 14.572 bewertete Anwendungsregeln reduziert wurde. Der Grund, weshalb der Datensatz auf rund 7,5% seiner eigentlichen Größe geschrumpft ist, liegt darin, dass einige Projekte bis zu 40 Baselines hatten, wo sich aber die meisten Anwendungsregeln nicht verändert hatten. Dieser Schritt war wichtig, um dafür zu sorgen, dass bestimmte Bewertungen stärker gewichtet werden, als andere.

Nun besteht der Datensatz aus 14.572 Einträgen, die jeweils aus drei Attributen, nämlich dem eigentlichen Text der Anwendungsregel sowie dem Status und dem Statement bestehen. Wie in der Abbildung 2.3 dargestellt, benötigt so ein Modell Eingabedaten und die dazugehörigen Antworten. Die Eingabedaten stellen in diesem Fall die Texte dar, während die Antworten hier in Form des Status und des Statements dargestellt werden. Angenommen der Status einer Anwendungsregel X wird 15x mit closed und 10x mit open bewertet und ein Modell wird mit diesen Daten angelernt. Würde ein neues Projekt nun diese Anwendungsregel X importieren und einen Vorschlag vom Modell generieren lassen, dann würde das Modell eine Mehrheitsentscheidung durchführen und prüfen, wie oft die Anwendungsregel in der Vergangenheit mit welchem Status bewertet wurde. Das Modell würde aufgrund der Mehrheitsentscheidung diese Anwendungsregeln immer mit closed bewerten. Das wäre ein legitimer Ansatz um Vorschläge zu generieren. Dahinter steckt jedoch lediglich keine Struktur, die das Modell erkennen könnte, und somit auch keine Intelligenz. Dieses Problem könnte auch mit einer einfachen Tabelle gelöst werden, das Nutzen eines NN wäre hier unnötig. Daher benötigt der Datensatz noch weitere Attribute, da die Bewertung von Anwendungsregeln nicht alleine durch die reine Anzahl an Bewertungen in der Vergangenheit prognostiziert werden kann. Beispielsweise spielen regionale Gegebenheiten eine große Rolle, da wenn Projekte im selben Land durchgeführt werden, es wahrscheinlicher ist, dass sie Anwendungsregeln ähnlich bewerten.

Um an mehr Daten über die vorherigen Projekte zu gelangen, muss das Skript aus dem Praxisprojekt erweitert werden. Neben dem Text der Anwendungsregel, dem Status und dem Statement muss auch das Produkt und die Version der Komponente berücksichtigt werden, von der die Anwendungsregel stammt. Ebenso spielt der Name des Projekts eine Rolle, da durch ihn in einer Access-Datenbank nach Informationen zu dem Projekt gesucht werden kann. Das Produkt und die Version der Komponente lässt sich durch den Link bestimmen, den jedes Objekt auf das zentrale Projekt hat, in der die Anwendungsregeln gespeichert werden. Dieses Projekt heißt RA Application Conditions und ist dabei wie folgt aufgebaut:

\RA Application Conditions\XX_PG\Kategorie\Produkt...

```
for l in all o -> "*" do{
    mnTarget = target(l)
    if(fullName (getParentProject(mnTarget)) == fullName (
    project("RA Application Conditions"))) {
        szProduct = getProduct(target(l))
        szVersion = target(l)
        break;
    }
}
// ...
```

Quellcode 4.1.2: Produkt- und Versionsbezeichnung bestimmen

Aus dem Zielobjekt des Links lässt sich das Modul bestimmen, in dem die jeweilige Anwendungsregeln gespeichert ist. Das Modul trägt dabei als Namen die Versionsbezeichnung eines Produkts. Über den Speicherpfad lässt sich außerdem das Produkt, als das dritte Element des Pfades, bestimmen. Im DXL-Skript muss also eine weitere Schleife hinzugefügt werden. Diese Schleife soll alle ausgehenden Links eines Objekts durchlaufen, bis ein Link gefunden wurde, dessen Zielobjekt sich im Projekt RA Application Conditions befindet. Wenn so ein Link gefunden wurde, dann wird der vollständige Pfad an eine selbstgeschriebene Funktion übergeben, die als Rückgabewert den Namen des Produkts hat. Außerdem wird die Versionsbezeichnung ebenfalls dem Link entnommen und in einer Variable gespeichert. Dabei ist zu beachten, dass die Funktion target(Link) überladen ist. Im ersten Fall wird eine Referenz auf das Modul zurückgegeben, auf das der Link zeigt. Diese Referenz beinhaltet den kompletten Pfad. Im zweiten Fall wird lediglich der Name des Zielmoduls zurückgegeben [13, vgl. S.391]. Da der Name des Moduls bereits die Produktbezeichnung beinhaltet, ist hier der volle Pfad nicht relevant.

Während des Praxisprojekts wurden alle bewerteten Anwendungsregeln nach Projekt und Komponente gruppiert. Dabei liegen alle bewerteten Anwendungsregeln eines Projekts jeweils in einem Ordner. Der Name dieses Ordners trägt den Namen des Projekts. Um nun an den Namen eines Projekts zu kommen, muss lediglich der Name des Ordners geprüft werden, in dem sich das aktuelle Modul befindet. Dies wird ermöglicht durch die getParentFolder-Funktion, wie dem Quellcode 4.1.3 entnommen werden kann. In der Access-Datenbank steht vor dem Namen des Projekts noch ein Slash, weshalb dieser noch vor den Namen gesetzt werden muss.

Quellcode 4.1.3: Projektnamen bestimmen

Das Ergebnis dieser beiden Schritte ist eine CSV-Datei mit 14.572 Einträgen, die jeweils 6 Attribute (Text der Anwendungsregel, Produkt, Version, Pfad, Status, Statement) besitzen. Diese Datei kann nun mittels der Pandas-Bibliothek in ein Python-Skript importiert werden.

4.2 Importieren des Datensatzes

Um die Pandas-Bibliothek zu nutzen, muss diese zunächst importiert werden. Beim Importieren einer Bibliothek besteht die Möglichkeit dieser Bibliothek einen Alias zuzuweisen, wie in Zeile 1 des Quellcodes 4.2.1 zu erkennen ist. Für die Pandas-Bibliothek ist dabei pd als Alias gebräuchlich.

```
import pandas as pd
df = pd.read_csv('SAR_Data.csv')
df.shape
Output:
(14572, 6)
```

Quellcode 4.2.1: Pandas und den Datensatz importieren

df.shape gibt hierbei die Anzahl der Zeilen und Spalten des Dataframes zurück. Das Tupel kann dabei als (Anzahl Zeilen, Anzahl Spalten) gelesen werden. An der Ausgabe können die 14.572 Zeilen und die 6 Attribute erkannt werden.

4.3 Datensatz auf Fehler prüfen

Nach dem Einlesen des Datensatzes sollte der Datensatz auf mögliche Fehler und Unregelmäßigkeiten überprüft werden. Die erste potenzielle Fehlerquelle können die verschiedenen Ausprägungen des Attributs Status sein. Alle erlaubten Ausprägungen nach dem Process Manual zu Anwendungsregeln der Siemens Mobility

GmbH können der Tabelle 2.1 entnommen werden. Um zu überprüfen, welche Ausprägungen das Attribut Status hat und wie oft jede Ausprägung auftritt, kann der Quellcode 4.3.1 genutzt werden. Dort wird eine Liste erstellt, welche alle einzigartigen Werte der Spalte Status beinhaltet. Im Anschluss wird eine Schleife definiert, die über all diese Werte iteriert. Bei jedem Durchgang wird der aktuelle Wert und die Anzahl an Zeilen, bei denen die Spalte Status den aktuellen Wert annimmt, auf der Konsole ausgegeben.

```
status = df['Status'].unique()
      for x in status:
          print(x + " " + str(len(df[df['Status'] == x])))
      Output:
      In creation 773
      non applicable 4052
      closed 6772
      forwarded 1339
10
      open 111
      postponed 12
      compliant 1413
12
      partly closed 92
13
      partly open 8
```

Quellcode 4.3.1: Häufigkeit der Ausprägungen von Status bestimmen

An der Ausgabe des Codes wird deutlich, dass bei der Bewertung der Anwendungsregeln vom Process Manual abgewichen wurde. Um das zu beheben, müssen die Statuswerte gemapped werden. Dafür werden die Ausprägungen "In Creation", "postponed" und "partly open" als "open" definiert. Die Ausprägung "partly closed" wird zu "closed" geändert. Zudem wird die Schreibweise "non applicable" in "not applicable" abgeändert, um die Vorgaben des Process Manuals zu erfüllen.

Um die Häufigkeit der einzelnen Ausprägungen zu visualisieren wird der Quellcode 4.3.2 ausgeführt. Dort wird eine neue Liste erstellt, in der die Häufigkeiten
der verschiedenen Statuswerte gespeichert werden. Im Anschluss wird wieder die
Schleife aus dem Quellcode 4.3.1 durchlaufen. Dieses Mal werden die Häufigkeiten
aber nicht auf der Konsole ausgegeben, sondern sie werden der neuen Liste hinzugefügt.

```
status = df['Status'].unique()
hauefigkeit = []

for x in status:
    hauefigkeit.append(len(df[df['Status'] == x]))
fig, ax = plt.subplots()
ax.pie(hauefigkeit, labels=status, autopct='%1.1f%%')
```

Quellcode 4.3.2: Visualisierung des Attributs Status

Mit den Listen "status" und "hauefigkeit" kann nun ein Tortendiagramm mithilfe von Matplotlib erstellt werden. Dafür muss ein Plot erstellt werden und an die beiden Listen müssen als Parameter an die pie()-Methode übergeben werden. Der letzte Parameter bietet die Möglichkeit das Format der Prozentangaben der einzelnen Tortensegmente anzugeben. Die Abbildung 4.1 zeigt das erstelle Tortendiagramm an. Durch diese Abbildung wird zum Beispiel deutlich, dass fast die Hälfte der Anwendungsregeln in der Vergangenheit mit "closed" bewertet wurden.

Abbildung 4.1: Tortendiagramm des Attributs Status

4.4 Codierung der Attribute

Literaturverzeichnis 32

Literaturverzeichnis

- [1] François Chollet, Deep Learning mit Python und Keras. mitp, 2018, vol. 1.
- [2] Daniel Sonnet, Neuronale Netze kompakt: Vom Perceptron zum Deep Learning. Springer, 2022, vol. 1.
- [3] IREB(International Requirements Engineering Board), "Wörterbuch der Requirements Engineering Terminologie," 2022.
- [4] Siemens Mobility GmbH, RM Process Manual Project Execution, 2021.
- [5] IEEE(The Institute of Electrical and Electronics Engineers), *IEEE Standard Glossary of Software Engineering Terminology*, 1990.
- [6] Elizabeth Hull, Ken Jackson, Jeremy Dick, *Requirements Engineering*. Springer, 2005, vol. 2.
- [7] ISO/IEC/IEEE International Standard, "29148-2018 Systems and software engineering Life cycle processes Requirements engineering," 2018.
- [8] The Standish Group, "The CHAOS Report," 1994.
- [9] Siemens Mobility GmbH, RM Process Manual Application Rules, 2022.
- [10] OpenAI, "Introducing ChatGPT," https://openai.com/blog/chatgpt, accessed: 2023-03-02.
- [11] A. M. TURING, "I.—COMPUTING MACHINERY AND INTELLIGENCE," *Mind*, vol. 59, no. 236, pp. 433–460, 1950.
- [12] Huawei Technologies Co., Ltd, *Artificial Intelligence Technology*. Springer, 2023.
- [13] IBM, *The DXL Reference Manual*, https://www.ibm.com/docs/en/SSYQBZ_9.5.0/com.ibm.doors.requirements.doc/topics/dxl_reference_manual.pdf, 2012, accessed: 2023-03-01.
- [14] K. Srinath, "Python-the fastest growing programming language," *International Research Journal of Engineering and Technology*, vol. 4, no. 12, pp. 354–357, 2017.
- [15] B. Klein, *Numerisches Python*. Carl Hanser Verlag GmbH & Emp; Co. KG, 2019.