

Dimensionality Reduction

Pilsung Kang
School of Industrial Management Engineering
Korea University

AGENDA

01	Dimensionality Reduction
02	Variable Selection Methods
03	Shrinkage Methods
04	R Exercise

Revisit MLR

- Multiple Linear Regression
 - √ Formulation

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 \cdots + \hat{\beta_d} x_d$$

√ Objective function (should be minimized)

$$\frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{d} \hat{\beta}_j x_{ij} \right)^2$$

Revisit Logistic Regression

- Logistic Regression
 - √ Formulation

$$log(Odds) = log\left(\frac{p}{1-p}\right) = \hat{\beta_0} + \hat{\beta_1}x_1 + \hat{\beta_2}x_2 + \dots + \hat{\beta_d}x_d$$

√ Objective function (should be minimized)

$$-\sum_{i=1}^{n} \left(y_i \log \left(\frac{1}{1 + \exp(-\sum_{j=0}^{d} \hat{\beta}_j x_j)} \right) + (1 - y_i) \log \left(\frac{\exp(-\sum_{j=0}^{d} \hat{\beta}_j x_j)}{1 + \exp(-\sum_{j=0}^{d} \hat{\beta}_j x_j)} \right) \right)$$

Ridge Regression

• Ridge Linear Regression

$$\frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{d} \hat{\beta}_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{d} \hat{\beta}_j^2$$

Ridge Logistic Regression

$$-\sum_{i=1}^{n} \left(y_i \log \left(\frac{1}{1 + \exp(-\sum_{j=0}^{d} \hat{\beta}_j x_j)} \right) + (1 - y_i) \log \left(\frac{\exp(-\sum_{j=0}^{d} \hat{\beta}_j x_j)}{1 + \exp(-\sum_{j=0}^{d} \hat{\beta}_j x_j)} \right) \right) + \lambda \sum_{j=1}^{d} \hat{\beta}_j^2$$

Ridge Regression

- Ridge (Logistic) Regression
 - √ Add L₂ nom penalty for the objective function

$$\lambda \sum_{j=1}^{d} \hat{\beta}_j^2$$

- ✓ Properties
 - If two models have the same performance, smaller regression coefficients are preferred
 - Regression coefficients can be very small, but hard to make them exactly 0 → not for variable selection
 - Work well when input variables have high correlations

Ridge Regression

- Ridge (Logistic) Regression
 - \checkmark Example of estimated regression coefficients according to different λ

- LASSO: Least Absolute **Shrinkage** and **Selection** Operator
 - ✓ Multiple Linear Regression

$$\frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{d} \hat{\beta}_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{d} |\hat{\beta}_j|$$

√ Logistic Regression

$$-\sum_{i=1}^{n} \left(y_i \log \left(\frac{1}{1 + \exp(-\sum_{j=0}^{d} \hat{\beta_j} x_j)} \right) + (1 - y_i) \log \left(\frac{\exp(-\sum_{j=0}^{d} \hat{\beta_j} x_j)}{1 + \exp(-\sum_{j=0}^{d} \hat{\beta_j} x_j)} \right) \right) + \lambda \sum_{j=1}^{d} |\hat{\beta_j}|$$

- LASSO: Least Absolute <u>Shrinkage</u> and <u>Selection</u> Operator
 - \checkmark Ridge gives L₂ norm penalty while LASSO gives L₁ norm penalty
 - \checkmark Can make the coefficients of irrelevant variables $0 \rightarrow$ can do variable selection
 - \checkmark The number of selected variables (variables with non-zero coefficients) vary according to λ

FIGURE 6.7. Contours of the error and constraint functions for the lasso (left) and ridge regression (right). The solid blue areas are the constraint regions, $|\beta_1| + |\beta_2| \le s$ and $\beta_1^2 + \beta_2^2 \le s$, while the red ellipses are the contours of the RSS.

- LASSO: Least Absolute **Shrinkage** and **Selection** Operator
 - \checkmark Example of estimated regression coefficients according to different λ

- LASSO: Least Absolute **Shrinkage** and **Selection** Operator
 - \checkmark determine the best λ with the highest regression performance

✓ Limitation: Both variable selection and regression performance degenerate if variables are highly correlated

Elastic Net

- Elastic Net
 - ✓ Can have advantages of both Ridge (considering correlation between variables) and LASSO (variable selection ability)
 - ✓ Multiple Linear Regression

$$\frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{d} \hat{\beta}_j x_{ij} \right)^2 + \lambda_1 \sum_{j=1}^{d} |\hat{\beta}_j| + \lambda_2 \sum_{j=1}^{d} \hat{\beta}_j^2$$

✓ Logistic Regression

$$-\sum_{i=1}^{n} \left(y_i \log \left(\frac{1}{1 + \exp(-\sum_{j=0}^{d} \hat{\beta}_j x_j)} \right) + (1 - y_i) \log \left(\frac{\exp(-\sum_{j=0}^{d} \hat{\beta}_j x_j)}{1 + \exp(-\sum_{j=0}^{d} \hat{\beta}_j x_j)} \right) \right)$$

$$+\lambda_1\sum_{j=1}^d|\hat{eta}_j|+\lambda_2\sum_{j=1}^d\hat{eta}_j^2$$
ু এ৪দৈশ্র

Elastic Net

 λ_{I} Increases

Number of variable decreases

Elastic Net

 $\lambda_2 \mbox{ Increases}$ Little impact on variable selection

- Compare four variable selection methods and three shrinkage methods
 - √ Variable selection: Forward selection, Backward elimination, Stepwise selection, GA
 - √ Shrinkage: Ridge, Lasso, Elasitic Net

Ridge	$\hat{\beta} = \min_{\beta} Y - X\beta ^2 + \lambda_1 \beta ^2$	shrinkage
Lasso	$\hat{\beta} = \min_{\beta} Y - X\beta ^2 + \lambda_2 \beta ^1$	shrinkage, variable selection
Elastic net	$\widehat{\beta} = \min_{\beta} Y - X\beta ^2 + \lambda_2 \beta ^1 + \lambda_1 \beta ^2$	shrinkage, variable selection, grouping effect

• Data sets: 49 regression data sets

Dataset	source	records	variables	Dataset	source	records	variables
abalone	KEEL	4,177	9	OVCTT_bitrate	UCI	68,784	16
akbilgic	UCI	536	8	OVCTT_framerate	UCI	68,784	16
ANACALT	KEEL	4,052	8	OVCTT_height	UCI	68,784	16
autoMPG8	KEEL	392	8	OVCTT_width	UCI	68,784	16
baseball	KEEL	336	17	ParkinsonsTele	UCI	5,875	21
Buzz	UCI	28,179	95	PersonalLoan	etc.	2,500	13
california	KEEL	20,640	9	PCASP	UCI	45,730	10
Carseats	R	400	11	pole	KEEL	14,998	27
CBM_C	UCI	11,934	15	puma32h	KEEL	4,124	33
<u>CBM_</u> T	UCI	11,934	15	SML2010	UCI	4,137	24
compactiv	KEEL	8,192	22	solar flare_C	UCI	323	11
concrete	KEEL	1,030	9	solar flare_M	UCI	323	11
dee	KEEL	365	7	solar flare_X	UCI	323	11
delta_ <u>elv</u>	KEEL	9,517	7	stock	KEEL	950	10
elevators	KEEL	16,599	19	student	UCI	382	51
EnergyEfficiency_C	UCI	768	9	tic	KEEL	9,822	86
EnergyEfficiency_H	UCI	768	9	ToyotaCorolla	etc.	1,436	34
forestFires	KEEL	517	13	UScrime	R	47	16
Hitters	R	263	20	Wage	R	3,000	10
house	KEEL	22,784	17	wankara	KEEL	1,609	10
housing	UCI	506	14	winequality	UCI	6,497	12
machineCPU	KEEL	209	7	wizmir	KEEL	1,461	10
mortgage	KEEL	1,049	16	wpbc	UCI	194	34
mv	KEEL	40,768	11	yacht	UCI	308	7
nuclear	R	32	11				

Error Rate Improvement

Variable Reduction Ratio

• Performance comparison

변수선택 방법	예측 정확도	변수 감소율	계산 효율성
			" - E 0
Forward	4	4	I
Backward	3	3	2
Stepwise	2	2	6
Ridge	T	6	5
Lasso	6	1	3
Elastic Net	5	5	4

