微积分 A(2)期中考试样题参考解答

- **一. 填空题**(每空3分,共15题)
- 解:注意函数沿梯度方向的方向导数等于梯度的模(长度)。 $\left.\frac{\partial u}{\partial \vec{g}}\right|_{(1,0,1)}=\sqrt{5}$ 。
- 2. 曲线 x = t, $y = 2\cos t$, $z = 3\sin t$ 在 $t = \pi/2$ 处的切线方程为 ______

答案:
$$\frac{x-\pi/2}{1} = \frac{y}{-2} = \frac{z-3}{0}$$
.

3. 设z = z(x, y) 是由方程 $x + y + z = \cos(xyz)$ 确定的隐函数,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$

答案:
$$\frac{\partial z}{\partial x} = -\frac{1 + yz\sin(xyz)}{1 + xy\sin(xyz)}$$
。

答案:
$$dz = (yf_u + f_v)dx + (xf_u - f_v)dy$$
, 这里 $f_u = f_u(xy, x - y)$, $f_v = f_v(xy, x - y)$ 。

5. 函数 $u = x + y^2 + z^3$ 在点 (1,1,1) 处沿方向 I = (2,-2,1)/3 的方向导数为______。

解:
$$\frac{\partial u}{\partial I}(1,1,1) = \frac{2}{3} \frac{\partial u}{\partial x}(1,1,1) - \frac{2}{3} \frac{\partial u}{\partial y}(1,1,1) + \frac{1}{3} \frac{\partial u}{\partial z}(1,1,1) = \frac{1}{3}$$
。

6. 函数 $z = \frac{\sin x}{1 - \sin y}$ 在点 (0,0) 处带 Peano 余项 $o(x^2 + y^2)$ 的 Taylor 展式为______。

答案:
$$z = x + xy + o(x^2 + y^2)$$

7. 两曲面 $2x^2 + 3y^2 + z^2 = 9$ 和 $z^2 = 3x^2 + y^2$ 的交线在点 (1,-1,2) 处的切线方程为

答案: 所求切线方程为 $\begin{cases} 4(x-1)-6(y+1)+4(z-2)=0\\ 6(x-1)-2(y+1)-4(z-2)=0 \end{cases}$ 化简得 $\begin{cases} 2x-3y+2z=9\\ 3x-y-2z=0 \end{cases}$

注: 直线方程的另一种形式为
$$\frac{x-1}{8} = \frac{y+1}{10} = \frac{z-2}{7}$$

8. 设函数
$$F(x,y) = \int_0^{+\infty} \sin(xt)e^{-yt^2}dt$$
, $y > 0$, 则 $\frac{\partial^2 F}{\partial x \partial y} = \underline{\hspace{1cm}}$

答案:
$$\frac{\partial^2 F}{\partial x \partial y} = -\int_0^{+\infty} t^3 \cos(xt) e^{-yt^2} dt$$
。

9. 由方程 $xyz + \sqrt{x^2 + y^2 + z^2} = \sqrt{2}$ 所确定的函数 z = z(x, y) 在点 (1,0,-1) 处的全微分

$$dz|_{(1,0)} = \underline{\qquad}$$

答案: $dz\Big|_{(1,0)} = dx - \sqrt{2}dy$.

10. 已知曲面 $2x^2 + y^2 - z = 0$ 在某点的切平面平行于平面 x + y + z = 2,则该切平面的方程为_____。

解: 设曲面 $2x^2+y^2-z=0$ 在点 (x_0,y_0,z_0) 处的切平面平行于平面 x+y+z=2 ,则有 $(4x_0,2y_0,-1)//(1,1,1) \text{。由此可见 } x_0=-1/4 \text{ , } y_0=-1/2 \text{ 。代入曲面方程得 } z_0=3/8 \text{ 。于}$ 是所求切平面的方程为 (x+1/4)+(y+1/2)+(z-3/8)=0 ,即 x+y+z=-3/8 。

11. 设
$$f(u,v)$$
 是 C^2 函数, $z(x,y) = f(x+y,x-y)$,则 $\frac{\partial^2 z}{\partial x \partial y} =$ ______.

解: 两次应用链规则得
$$\frac{\partial \mathbf{z}}{\partial y} = \frac{\partial f}{\partial u} - \frac{\partial f}{\partial v}$$
, $\frac{\partial^2 \mathbf{z}}{\partial x \partial y} = \frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v \partial u} - \frac{\partial^2 f}{\partial u \partial v} - \frac{\partial^2 f}{\partial^2 v} = \frac{\partial^2 f}{\partial u^2} - \frac{\partial^2 f}{\partial v^2}$.

12. 设
$$f(x,y)$$
 在点 (x_0,y_0) 处可微,向量 $\vec{u} = \left(\frac{-1}{\sqrt{5}},\frac{2}{\sqrt{5}}\right)$, $\vec{v} = \left(\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}}\right)$ 。 若 $\frac{\partial f}{\partial \vec{u}}\Big|_{(x_0,y_0)} = 1$,

$$\left. \frac{\partial f}{\partial \vec{v}} \right|_{(x_0, y_0)} = -2, \quad 则微分 \, df \Big|_{(x_0, y_0)} = \underline{\hspace{1cm}}.$$

解: 记
$$\nabla f\Big|_{(x_0,y_0)} = (a,b)$$
,则有 $\frac{\partial f}{\partial \vec{u}}\Big|_{(x_0,y_0)} = \frac{-1}{\sqrt{5}}a + \frac{2}{\sqrt{5}}b = 1$, $\frac{\partial f}{\partial \vec{v}}\Big|_{(x_0,y_0)} = \frac{1}{\sqrt{2}}a - \frac{1}{\sqrt{2}}b = -2$ 。

解得
$$a = \sqrt{5} - 4\sqrt{2}$$
 , $b = \sqrt{5} - 2\sqrt{2}$ 。由此得 $df|_{(x_0, y_0)} = (\sqrt{5} - 4\sqrt{2})dx + (\sqrt{5} - 2\sqrt{2})dy$ 。

13. 极限
$$\lim_{a\to 0} \int_{a}^{1} \sqrt{x^3 + a^2} dx = \underline{\hspace{1cm}}$$

解:
$$\lim_{a\to 0} \int_{a}^{1} \sqrt{x^3 + a^2} dx = \int_{0}^{1} \sqrt{x^3} dx = \frac{2}{5}$$
.

14. 已知积分
$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$
, a , b 和 c 为三个常数,且 $a > 0$,则积分 $\int_{-\infty}^{+\infty} e^{-(ax^2 + 2bx + c)} dx = 0$

解: 对二次多项式 $ax^2 + 2bx + c$ 配方得 $ax^2 + 2bx + c = a(x+b/a)^2 + (ac-b^2)/a$ 。于是

$$\int_{-\infty}^{+\infty} e^{-(ax^2+2bx+c)} dx = e^{(b^2-ac)/a} \int_{-\infty}^{+\infty} e^{-a(x+b/a)^2} dx = e^{(b^2-ac)/a} \int_{-\infty}^{+\infty} e^{-ay^2} dy = e^{(b^2-ac)/a} \sqrt{\frac{\pi}{a}}$$

15. 曲面 $z = x^2 + y^2$ 在点 (1,2,5) 处的法线方程为 ______。

解: 曲面 $z = x^2 + y^2$ 在点 (1,2,5) 处的梯度方向为 $(2x,2y,-1)|_{(1,2,5)} = (2,4,-1)$ 。 因此所求法

线方程为
$$\frac{x-1}{2} = \frac{y-2}{4} = \frac{z-5}{-1}$$
。

二、计算题(每题10分,共4题)(请写出详细的计算过程和必要的根据!)

16. 设函数
$$z = z(x, y)$$
 为由方程 $x^3 + y^3 + z^3 = 3e^z$ 确定的隐函数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$ 。

解: 对方程
$$x^3 + y^3 + z^3 = 3e^z$$
 关于 x 求导得 $3x^2 + 3z^2z_x = 3e^zz_x$ 。由此得 $z_x = \frac{x^2}{e^z - z^2}$ 。

同理可得
$$z_y = \frac{y^2}{e^z - z^2}$$
。对式 $z_y = \frac{y^2}{e^z - z^2}$ 关于 x 求导得

$$z_{xy} = \frac{-y^2}{(e^z - z^2)^2} \left(e^z - 2z \right) z_x = \frac{x^2 y^2 (2z - e^z)}{(e^z - z^2)^3} .$$

17. 设
$$f(x,y) = \begin{cases} 0, & (x,y) = (0,0) \\ \frac{xy^3}{x^2 + y^4}, & (x,y) \neq (0,0) \end{cases}$$
 回答以下问题,并说明理由。(i) 函数 f 在

原点 (0,0) 处是否连续? (ii) 函数 f 在原点 (0,0) 处沿任意给定的方向 u=(a,b) $(a^2+b^2=1)$ 的方向导数是否存在?若存在,求出这个方向导数; (iii) 函数 f 在原点 (0,0) 处是否可微,若可微,求出这个微分。

解: (i) 当 $(x,y) \to (0,0)$ 时, $|f(x,y) - f(0,0)| = \frac{|xy^2||y|}{x^2 + y^4} \le \frac{|y|}{2} \to 0$,因此 f(x,y) 在原点连续。

(ii)
$$\stackrel{\text{diff}}{=} a \neq 0$$
 $\stackrel{\text{diff}}{=} \frac{f(ta,tb) - f(0,0)}{t} = \frac{t^4ab^3}{t^2a^2 + t^4b^4} = \frac{t^2ab^3}{a^2 + t^2b^4} \rightarrow 0 \ (t \rightarrow 0); \stackrel{\text{diff}}{=} a = 0$

时,
$$\frac{f(ta,tb)-f(0,0)}{t} \equiv 0$$
。 因此 $f(x,y)$ 在原点处沿任意方向都有方向导数 0。

(iii) 假设 f(x,y) 在原点可微,由(ii)知 $f_x(0,0) = f_y(0,0) = 0$,因此当 $(x,y) \to (0,0)$ 必有

$$f(x,y) = \frac{xy^3}{x^2 + y^4} = o(\sqrt{x^2 + y^2}), \quad \mathbb{P}\left(\frac{xy^3}{(x^2 + y^4)\sqrt{x^2 + y^2}}\right) \to 0.$$

但是, 当点(x,y)沿着抛物线 $x=y^2$ 在上半平面趋向于(0,0)时,

$$\frac{xy^3}{(x^2+y^4)\sqrt{x^2+y^2}} = \frac{y^5}{(y^4+y^4)\sqrt{y^4+y^2}} = \frac{1}{2\sqrt{1+y^2}} \to \frac{1}{2}, \ \text{矛盾。因此} \ f(x,y)$$
在原点不可微。

18. 计算含参变量的广义积分
$$I(y) = \int_0^{+\infty} \frac{\arctan(yx)}{x(1+x^2)} dx$$
 , 其中 $y \in R$ 。

解: 记
$$f(x,y) = \frac{\arctan(xy)}{x(1+x^2)}$$
,则 $I(y) = \int_0^{+\infty} f(x,y) dx$ 是奇函数,且关于 y 连续

(取控制函数 $\frac{\pi}{2x(1+x^2)}$ 知 I(y) 关于 $y \in R$ 一致收敛,注意 0 不是 I(y) 的奇点)。

而且有
$$I'(y) = \int_0^{+\infty} \frac{\partial f}{\partial y}(x, y) dx = \int_0^{+\infty} \frac{dx}{(1+x^2)(1+x^2y^2)}$$

(这是因为,取控制函数 $\frac{1}{1+x^2}$ 有 $\int_{0}^{+\infty} \frac{dx}{(1+x^2)(1+x^2y^2)}$ 关于 $y \in R$ 一致收敛)。

注意到当
$$y \neq 1$$
 时有 $\frac{1}{(1+x^2)(1+x^2y^2)} = \frac{1}{1-y^2} \left(\frac{1}{1+x^2} - \frac{y^2}{1+x^2y^2} \right)$,于是当 $y \geq 0$ 时有

$$I'(y) = \frac{1}{1-y^2} \left(\frac{\pi}{2} - \frac{\pi y}{2}\right) = \frac{\pi}{2(1+y)}$$
。 积分并注意到 $I(0) = 0$ 得

$$I(y) = \frac{\pi}{2} \ln(1+y)$$
, $y \ge 0$, 其中上式对 $y = 1$ 成立是由 $I(y)$ 的连续性得到。

又
$$I(y)$$
 是奇函数。故 $I(y) = \frac{\pi}{2} \operatorname{sgn}(y) \ln(1+|y|)$ 。

19. 确定函数 $f(x,y) = x^2 + y^2 - 12x + 16y$ 在区域 $x^2 + y^2 \le 25$ 上的最大值和最小值.

解: (法一) 令
$$0 = f_x = 2x - 12, 0 = f_y = 2y + 16$$
,解得函数 $f(x,y)$ 在全平面上有唯一驻点

(6,-8),它不在D内。因此,函数 f(x,y) 在闭圆盘 $\overline{D}: x^2+y^2 \le 25$ 上的最值必在其边界,即圆周 $\partial D: x^2+y^2=25$ 上达到。

$$\begin{cases} 2y + 16 + 2\lambda y = 0, 解得 (x, y, \lambda) = (3, -4, 1), 或 (-3, 4, -3)。 由于函数 $f(x, y)$ 在有界闭集 $x^2 + y^2 - 25 = 0.$$$

 ∂D 上必有最值,而 f(-3,4) = 125 , f(3,-4) = -75 , 故 f(x,y) 在 $x^2 + y^2 \le 25$ 内最大值为 125,最小值为-75.

(法二) 同上证明最值必在边界取到。 令 $x = 5\cos t$, $y = 5\sin t$. 我们有

当
$$t = \frac{\pi}{2} - \varphi$$
时 f 取到最大值 125,当 $t = -\frac{\pi}{2} - \varphi$ 时 f 取到最小值-75.

(法三) 注意到
$$f(x,y) = (x-6)^2 + (y+8)^2 - 100 = (d(x,y))^2 - 100$$
, 这里

$$d(x,y) = \sqrt{(x-6)^2 + (y+8)^2}$$
 表示平面上点 (x,y) 到点 P $(6,-8)$ 的(欧氏)距离。以下只需求闭圆盘 $\overline{D}: x^2 + y^2 \le 25$ 上的点到 P点的距离的最值。

易知 P 在 D 外。连接 PO 交 ∂D 于两点 Q,R,可求得 Q(3,-4)及 R(-3,4)。

任取一点 $S \in \overline{D}$,我们有 $|PS| \leq PO|+|OS| \leq PO|+|OR| = |PR| = 15$

及 $|PS| \ge |PO| - |OS| \ge |PO| - |OQ| = |PQ| = 5$ 。

由此可得 $\max f(x, y) = f(-3,4) = 125$, $\min f(x, y) = f(3,-4) = -75$ 。

三、证明题(请写出详细的证明过程!)

20. (8 分) 证明函数 $f(x,y) = \frac{x+y}{1+x^2+y^2}$ 在全平面 R^2 上可以取得最大值和最小值,并求

出它的最大值和最小值,以及最大值点和最小值点。

证明: (法一) 先考虑函数 f 的驻点。为此解方程组 $\begin{cases} f_{x}=0 \\ f_{y}=0 \end{cases}$ 。该方程组与方程组

$$\begin{cases} 1+x^2+y^2-2x(x+y)=0\\ 1+x^2+y^2-2y(x+y)=0 \end{cases}$$
 同解。容易解得第二个方程组有且仅有两组解,即两个驻点

$$(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$$
和 $(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$ 。而 $f(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})=-\frac{1}{\sqrt{2}}$, $f(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})=\frac{1}{\sqrt{2}}$ 。以下证明,

这两个驻点分别就是 f 的最小值点和最大值点。

设 R>0 。 记 D_R 为 开 圆 盘 $x^2+y^2< R^2$, 记 \overline{D}_R 为 闭 圆 盘 $x^2+y^2\leq R^2$ 。 由 于 $\lim_{x^2+y^2\to+\infty}f(x,y)=0$,故存在充分大的 R>0 (不妨设 R>1),使得 |f(x,y)|<1/2 , 对 $\forall (x,y)\in R^2\setminus D_R$ 。 于是两个驻点 $(-1/\sqrt{2},-1/\sqrt{2})$ 和 $(1/\sqrt{2},1/\sqrt{2})$ 均落在 D_R 内。另一方面,

连续函数 f(x,y) 在闭圆盘 \overline{D}_R 上必有最大值和最小值。并且最大值应 $\geq 1/\sqrt{2}$,最小值应 $\leq -1/\sqrt{2}$ 。由于在 \overline{D}_R 的边界上,|f(x,y)|<1/2,因此这两个最值点必落在开圆盘 D_R 内,必为驻点。但是 f 有且仅有两个驻点,因此,函数 f 在点 $(-1/\sqrt{2},-1/\sqrt{2})$ 处取得最小值 $-1/\sqrt{2}$,在点 $(1/\sqrt{2},1/\sqrt{2})$ 处取得最大值 $1/\sqrt{2}$ 。

(法二)注意到f(0,0) = 0,而当 $|x| + |y| \neq 0$ 时有

$$|f(x,y)| \le \frac{|x|+|y|}{1+|x|^2+|y|^2} \le \frac{|x|+|y|}{1+\frac{(|x|+|y|)^2}{2}} = \frac{1}{\frac{1}{|x|+|y|}} + \frac{|x|+|y|}{2} \le \frac{1}{2\sqrt{1/2}} = \frac{\sqrt{2}}{2}, \quad \text{id}$$

里等号成立要求 $x = y, |x| + |y| = \sqrt{2}$ 。 因此 f 有最大值 $f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}$ 和最小值

$$f\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right) = -\frac{\sqrt{2}}{2}.$$

21. (7分) 设函数 u = u(x,y) 和 v = v(x,y) 在开单位圆盘 $D: x^2 + y^2 < 1$ 上有二阶连续的偏导数,在闭单位圆盘 $\overline{D}: x^2 + y^2 \le 1$ 上连续。假设这两个函数还满足条件(i)它们在边界(单位圆周)上相等,即 $u|_{\partial D} = v|_{\partial D}:$ (ii)在 D 内处处满足 $u_{xx} + u_{yy} = e^u$, $v_{xx} + v_{yy} \le e^v$ 。证明 $u(x,y) \le v(x,y)$, $\forall (x,y) \in \overline{D}$ 。

证明: 假设结论不成立,则存在一点 $(x_0,y_0)\in D$,使得 $u(x_0,y_0)>v(x_0,y_0)$ 。记 $\mathbf{w}=w(x,y)\coloneqq u(x,y)-v(x,y)$,则函数 w(x,y) 在开单位圆盘 D 上有二阶连续的偏导数,在闭单位圆盘 \overline{D} 上连续,在边界上为零,并且 $w(x_0,y_0)>0$ 。 因此函数 w(x,y) 在闭单位圆盘 \overline{D} 上的最大值一定在开圆盘 D 内的某点 $(\xi,\eta)\in D$ 处达到,这个最大值也是极大值。因此,函数 w(x,y) 在点 (ξ,η) 处的 Hesse 矩阵半负定,有 $0\geq (w_{xx}+w_{yy})_{(\xi,\eta)}$ $=(u_{xx}+u_{yy}-v_{xx}-v_{yy})_{(\xi,\eta)}\geq (e^u-e^v)_{(\xi,\eta)}>0$,矛盾。