# CSARCH1 LE2 Reviewer Series

Sequential Circuit Analysis

Version: 0.0

## Sequential Circuit:

- "Memory" circuit (has capacity for storage
- Specified by a time sequence of inputs, outputs, and states. The next state is a function of the current state plus input.
  - This is opposed to combinational circuit where the output is purely based on the input.
- Feedback paths are characteristic of sequential circuits as this serves as the memory element.

## Latch Vs. Flip Flop:

- Latch is based on signal/level trigger (Async)
- Flip-Flop is based on edge trigger (Sync)

Each of the flip-flops can be described by the following: Truth Table, Characteristic Table, and Excitation Table.

#### TYPES OF SEQUENTIAL CIRCUIT:

#### **Synchronous:**

- Behavior is defined by signals at discrete instants of time
- Synchronized through clock signals by a clock generator which produce periodic clock pulses.
  - Clock signals are Denoted as clock or clk.
- Clock pulse can be
  - Signal/Level Trigger
  - Clock Transition or Edge Trigger

#### **Asynchronous:**

- No System Clock
- Depends on the order of input signals
- Transitions are defined in units of gate delay

The **truth table** takes the previous state at Q(t) and two flip-flop inputs S and R and Q(t+1) as the output. The **characterstic table** takes the flip-flop inputs and determines the properties of the next state based on these inputs only.

The excitation table is a table that determines the minimum inputs to change a state into a different state.

#### Flip-Flop Operations:

No Change:  $Q(t) \rightarrow Q(t+1) = Q(t)$ 

Toggle:  $Q(t) \to Q(t+1) = \overline{Q(t)}$ 

SR Flip Flop:

Circuit Diagram



$$\begin{array}{c|c} \text{Block Diagram} \\ \hline S & Q \\ \hline \\ \hline \\ R & \overline{Q} \\ \hline \end{array}$$

Truth Table

| 1 |      |   |   |        |               |  |  |  |  |  |
|---|------|---|---|--------|---------------|--|--|--|--|--|
|   | Q(t) | S | R | Q(t+1) | Comment       |  |  |  |  |  |
|   | 0    | 0 | 0 | 0      | No Change     |  |  |  |  |  |
|   | 0    | 0 | 1 | 0      | Reset         |  |  |  |  |  |
|   | 0    | 1 | 0 | 1      | Set           |  |  |  |  |  |
|   | 0    | 1 | 1 | X      | Indeterminate |  |  |  |  |  |
|   | 1    | 0 | 0 | 1      | No Change     |  |  |  |  |  |
|   | 1    | 0 | 1 | 0      | Reset         |  |  |  |  |  |
|   | 1    | 1 | 0 | 1      | Set           |  |  |  |  |  |
|   | 1    | 1 | 1 | X      | Indeterminate |  |  |  |  |  |



$$Q(t+1) = S + Q\overline{R}$$
 Note:  $S = 1 \wedge R = 1$  cannot be true.

Characteristic Table

Excitation Table

| S | R | Q(t+1)        | Q(t) | Q(t+1) | S | R |
|---|---|---------------|------|--------|---|---|
| 0 | 0 | Q(t)          | 0    | 0      | 0 | X |
| 0 | 1 | 0             | 0    | 1      | 1 | 0 |
| 1 | 0 | 1             | 1    | 0      | 0 | 1 |
| 1 | 1 | Indeterminate | 1    | 1      | X | 0 |

JK Flip Flop:



Note: The JK flip-flop is a modification of the SR flip-flop which removes the indeterminate state when both flip-flop inputs are 1. This is achieved by having an AND gate.

# D Flip Flop:



Note: The D flip-flop also known as a data flip-flop can be seen as a flip-flop that stores the current input.

## T Flip Flop:



Note: The T flip-flop also known as a toggle flip-flop can be seen as a flip-flop that changes state from 0 to 1 and 1 to 0 when a high signal is received. No change otherwise.