

COMSATS University Islamabad, Wah Campus **Sessional-1 Examinations Spring 2021**

Department of ___Mathematics__

Program/Class:CVE(A, B)	Date: 2021
Subject: _Differential Equations	Instructor:Dr. Adnan Jahangir
Total Time Allowed:60mins	Maximum Marks:(10)
Student Name: _Muhammad Hamaad Kaleem	Registration (Section)#: FA17-BSE-106 SE-8B

IMPORTANT:

- Time to solve paper is 1hr, and extra 30 minutes for uploading the answer sheet.
- Write your, department, section and registration number on first page of question paper and registration number on each page of your answer sheet.
- Submit in PDF format on CUonline and as well submit through email within the time domain to adnan.jahangir@ciitwah.edu.pk

The population of student in a University grows at some specific rate at time t. After $(\ln \alpha)$ hours it is observed that the students are increased to the square of the initial amount. Find the initial population of students if After 2α hours the students are double the initial number.

where, α = Numeric digit of your registration number

Answer: Paste pictures of solution here

Q1 dp 2 kPo Integerating both miles In IPI = Kt+c P = cent at t=0 P(0)2 Po So, Pr Poent - (i) At t= ln (106) t 2 4.66 P2 P0 2 at t2 4.66 er (i) z Pz Poekt 2 Poe 4 (4.66) - (4) At tz 2 a = 2 (106) Non 12 lo 2 lo e 212k Faling In 6/5 In 121 = lx 1 822124 ln 22 ln 21 ln 2 Q. No. 2) (3)

Find the general solution of the differential equation

$$x\frac{dy}{dx} + \alpha y = 0$$
: $x(\alpha) = 1$,

where, $\alpha = numeric \ digits \ of \ your \ registration \ number$.

Answer:

Q02
$$\times \frac{d_0}{dx} + ag = 0$$
, $\times (a) = 1$
 $a = 106$
 $\frac{d_0}{dx} + 106g = 0$
 $\frac{d_0}{dx} = -\frac{69g}{\pi} - (i)$
 $\frac{d_0}{dx} = \frac{1}{\pi} - (a)$
 $\frac{d_0}{dx} = \frac{1}{\pi} - \frac{1}{\pi} -$

Q. No. 3) (3)

Solve the following differential equation,

$$\frac{dy}{dx} + \frac{\alpha}{x}y = -x^{-9}y^5$$

FALT-BSE-106 SE-88 Sessional 1 Differential Equations Q03 dy + x 8 = - x 2 y 5 Dividing by y on both sides 45 dy + a 8x /85 = 1 x 85/x 1/85 8-5 dy + & 5-4; -x-9 let v= 5-4 dr = -45 5 ds 8-5 dy: -1/3 dv -14 dv + vd 2 - x on both rides Taking $2.F_{54d/x} = 4x^{-9}$ Taking $2.F_{54d/x} = e^{4d5/x} = 4a^{4}J_{n}(x)$ $= e^{2n(x)^{4\alpha}} = e^{4\alpha} = e^{4\alpha} = e^{4\alpha}$

Multiplying
$$E-F$$
 with all experients:

$$x^{4}a \frac{dv}{dx} - (x^{4}a) \frac{(4av)}{x} + x^{-9}x^{4}a$$

$$x^{4}a \frac{dv}{dx} - 4ax^{4}a^{-1}v = 4x^{-9}x^{4}a$$

$$(x^{4}a \frac{dv}{dx} - 4ax)$$

$$\frac{d}{dx} = 4x^{4}a^{-9}$$

$$\frac{d}{dx} = 4x^{4}a^{-9}$$

$$\frac{d}{dx} = 4x^{4}a^{-9}$$

$$\frac{d}{dx} = 4x^{4}a^{-9} + 1$$

$$\sqrt{x^{4}a} = \frac{4x^{4}a^{-9+1}}{4a^{-9+1}} + C$$

$$\frac{4x^{4}a^{-8}}{4a^{-8}} + C$$

$$\frac{4x^{4}a^{-8}}{4a^{-8}} + C$$

$$\frac{x^{4}a^{-8}}{a^{-2}} + C$$

$$\sqrt{x^{4}a^{-8}} + C$$

$$\sqrt{x^{$$