

TEST REPORT

Test report no.: 1-5784/18-01-02-A

BNetzA-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

InnoSenT GmbH

Am Rödertor 30 97499 Donnersdorf / GERMANY Phone: +49 9528 9518-0

Fax: +49 9528 9518-99 email: info@innosent.de

Manufacturer

InnoSenT GmbH

Am Rödertor 30

97499 Donnersdorf / GERMANY

Radio Communications & EMC

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 210 Issue 9 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Radar Sensor 24 GHz

 Model name:
 IVS-234

 FCC ID:
 UXS-IVS-234

 IC:
 6902A-IVS234

 Frequency:
 24.075 – 24.175

Antenna: Integrated patch Antenna

Power supply: -5.00 V to +5.00 V DC

Temperature range: -40°C to +80°C

Radio Communications & EMC

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed
Meheza Walla	Thomas Kautenburge
Lab Manager	Testing Manager

Table of contents

1	Table	of contents	2
2	Gene	ral information	3
	2.1 2.2 2.3	Notes and disclaimerApplication details	3
3	Test s	standard/s and references	4
4	Test e	environment	5
5	Test i	tem	5
	5.1 5.2	General descriptionAdditional information	
6	Descr	ription of the test setup	6
	6.1 6.2 6.3 6.4 6.5	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz Radiated measurements > 50 GHz AC conducted	8 9 9
7	Seque	ence of testing	12
	7.1 7.2 7.3 7.4 7.5	Sequence of testing radiated spurious 9 kHz to 30 MHz	13 14 15
8	Sumn	nary of measurement results	17
9	Detail	led measurement results	18
	9.1 9.2 9.3 9.4 9.5	Field strength of fundamental emission Occupied bandwidth (99% bandwidth) Field strength of emissions (radiated spurious) Conducted spurious emissions < 30 MHz Frequency stability	20 22 30
Glo	ssary		35
Do	cumen	t history	36
Δς	redita	tion Certificate	36

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-5784/18-01-02 and dated 2018-02-08.

2.2 Application details

Date of receipt of order: 2018-01-15
Date of receipt of test item: 2018-01-15
Start of test: 2018-01-17
End of test: 2018-02-08

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 36

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	08 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS-GEN	11-2014	General Requirements for Compliance of Radio Apparatus
Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/- -/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless devices

© CTC advanced GmbH Page 4 of 36

4 Test environment

Temperature	:	T_{nom} T_{max} T_{min}	21 °C during room temperature tests 50 °C during high temperature tests -20 °C during low temperature tests
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply	:	V _{nom} V _{max} V _{min}	±5 V by external power supply +5.75 V / -4.25 V +4.25 V / -5.75

5 Test item

5.1 General description

Kind of test item :	Radar Sensor 24 GHz
Type identification :	IVS-234
HMN :	-/-
PMN :	IVS-234
HVIN :	IVS-234
FVIN :	-/-
S/N serial number :	00037407
HW hardware status :	-/-
SW software status :	-/-
Frequency band :	24.075 – 24.175
Type of radio transmission: Use of frequency spectrum:	single carrier
Type of modulation :	CW
Number of channels :	1
Antenna :	Integrated patch Antenna
Power supply :	-5.25 V to -4.75 V and +4.75 V to +5.25 V
Temperature range :	-40°C to +80°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-5784/18-01-02-A_AnnexA

1-5784/18-01-02-A_AnnexB 1-5784/18-01-02-A_AnnexD

© CTC advanced GmbH Page 5 of 36

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 36

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor) <u>Example calculation:</u>

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

= 41 3.1.1	Jiiiciic (1	10. 1 . 1	11	- N
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	45	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	50	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	93	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	15.12.2017	14.12.2018
5	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
6	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
7	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
8	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
9	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018
10	n. a.	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	20.12.2017	19.12.2018

© CTC advanced GmbH Page 7 of 36

6.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$

Equipment table:

No.	Lab /	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vIKI!	12.12.2017	11.12.2020
2	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	k	07.07.2017	06.07.2019
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	19	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	14.02.2017	13.02.2019
5	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
6	9	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
7	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	20.12.2017	19.12.2018
8	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
10	n. a.	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
11	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
12	n. a.	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
13	n. a.	PC	ExOne	F+W		300004703	ne	-/-	-/-
14	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-
15	n. a.	TRILOG Broadband Test-Antenna	VULB9163	Schwarzbeck Mess Elektronik	01029	300005379	k	07.04.2017	06.04.2020

© CTC advanced GmbH Page 8 of 36

6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

Note: conversion loss of mixer is already included in analyzer value.

© CTC advanced GmbH Page 9 of 36

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A027	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	k	13.12.2017	12.12.2019
2	A031	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	k	13.12.2017	12.12.2019
3	n. a.	Spectrum Analyzer 20 Hz - 50 GHz	FSU50	R&S	200012	300003443	k	28.10.2016	27.10.2018
4	n. a.	PXA Spectrum Analyzer 3Hz to 50GHz	N9030A PXA Signal Analyzer	Agilent Technologies	US51350267	300004338	k	24.01.2017	23.01.2019
5	n. a.	Std. Gain Horn Antenna 33.0-50.1 GHz	2324-20	Flann	57	400000683	ne	-/-	-/-
6	n. a.	Broadband LNA 18- 50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	-/-	-/-
7	n. a.	Harmonic Mixer, 75- 110 GHz	M1970W	KEYSIGHT	MY51430848	300005115	k	05.04.2017	04.04.2018
8	n. a.	Harmonic Mixer, 50- 80 GHz	M1970V	KEYSIGHT	MY51390914	300005116	k	05.04.2017	04.04.2018
9	A026	Std. Gain Horn Antenna 49.9-75.8 GHz	2524-20	Flann	*	300001986	ne	-/-	-/-
10	A027	Std. Gain Horn Antenna 73.8-112 GHz	2724-20	Flann	*	300001988	ne	-/-	-/-

© CTC advanced GmbH Page 10 of 36

6.5 AC conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

 $FS [dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	101	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	893045/004	300000584	k	13.12.2017	12.12.2018
2	67	RF-Filter-section	85420E	HP	3427A00162	300002214	k	27.11.2006	-/-
3	27	EM-Injection Clamp	FCC-203i	emv	232	300000626	ev	18.05.2001	-/-
4	n. a.	Magnetfeldantenne	MS 100	EM-Test		300002659	ev	24.04.2000	-/-
5	n. a.	AC- Spannungsquelle variabel	MV2616-V	EM-Test	0397-12	300003259	k	11.12.2015	01.03.2018
6	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
7	n. a.	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	08.04.2008	-/-
8	n. a.	Power Supply	NGSM 32/10	R&S	3939	400000192	vlKI!	31.01.2017	30.01.2020
9	n. a.	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	18.12.2017	17.12.2018

© CTC advanced GmbH Page 11 of 36

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 12 of 36

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 36

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 36

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 15 of 36

7.5 Sequence of testing radiated spurious above 50 GHz with external mixers

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate for far field (e.g. 0.25 m).
- The EUT is set into operation.

Premeasurement

- The test antenna with external mixer is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.
- Caution is taken to reduce the possible overloading of the external mixer.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- As external mixers may generate false images care is taken to ensure that any emission measured by the spectrum analyzer does indeed originate in the EUT. Signal identification feature of spectrum analyzer is used to eliminate false mixer images (i.e., it is not the fundamental emission or a harmonic falling precisely at the measured frequency).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 16 of 36

8 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	47 CFR Part 15 RSS-210, Issue 8, Annex F	Passed	2018-02-14	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Results (max.)
§15.245(b) RSS-210 Annex F	Field strength of fundamental emission	Nominal	Nominal	\boxtimes				113.2 dBµV/m
§2.1049	Occupied bandwidth (99% bandwidth)	Nominal	Nominal	\boxtimes				25.84 kHz
§15.209(a) / §15.245(b)(1)(2)(3) RSS-210 Annex F RSS-Gen 8.9	Field strength of emissions (radiated spurious)	Nominal	Nominal	\boxtimes				
§15.207(a) RSS-Gen 8.8	Conducted emissions < 30 MHz	Nominal	Nominal	\boxtimes				complies
§15.215(c) RSS-210 / Annex F RSS-Gen 8.11	Frequency Stability	Nominal Extreme	Nominal Extreme	\boxtimes				

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 17 of 36

9 Detailed measurement results

9.1 Field strength of fundamental emission

Description:

Measurement of the maximum radiated field strength of the fundamental emission.

Measurement:

Measurement parameter		
Detector:	Pos-Peak / RMS	
Sweep time:	1 s	
Video bandwidth:	3 MHz	
Resolution bandwidth:	1 MHz	
Trace-Mode	Max Hold	
Measurement uncertainly	± 5 dB	

Limits:

FCC			IC
CFR Part 15.245(b)		RSS-210 Annex F
Field strength of emissions			
The field strength of emissions from intentional radiators operated within these frequency bands shall comp with the following:			these frequency bands shall comply
Frequency Field S [GHz] [dBµ		trength V/m]	Measurement distance
24.075 – 24.175		28	3

Measurement result:

EUT TEST CONDITIONS		Measurement	Maximum field stregth		
EOI	TEST CONDITIONS	distance [m]	Peak [dBµV/m]	RMS [dBµV/m]	
Sample	T_{nom} / V_{nom}	3	114.3	113.2	

© CTC advanced GmbH Page 18 of 36

Plot 1: Field strength, RMS measurement

Plot 2: Field strength, peak measurement

Date: 22.JAN.2018 13:38:08

© CTC advanced GmbH Page 19 of 36

9.2 Occupied bandwidth (99% bandwidth)

Description:

§2.1049 The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Measurement:

Measurement parameter		
Detector:	Pos-Peak	
Sweep time:	1 s	
Resolution bandwidth:	2 kHz	
Video bandwidth:	10 kHz	
Trace-Mode:	Max Hold	
Measurement uncertainty	Span/1000	

Limit:

	CFR Part 15.245(b) / RSS-210 Anne.	x F
Frequency range	f(lowest) > 24.075 GHz	f(highest) < 24.175 GHz

Measurement results:

EUT	TEST CONDITIONS	Measurement distance [m]	Bandwidth [kHz]
Sample	T _{nom} / V _{nom}	3	25.84

© CTC advanced GmbH Page 20 of 36

Plot 3:

Date: 22.JAN.2018 15:23:29

© CTC advanced GmbH Page 21 of 36

9.3 Field strength of emissions (radiated spurious)

Description:

Measurement of the radiated spurious emissions.

Measurement:

Measurement parameter			
Detector:	Peak / Quasi Peak / RMS		
Sweep time:	Auto		
Video bandwidth:	Auto		
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz		
Trace-Mode:	Max Hold		
Measurement uncertainly	± 5 dB		

Limits:

FCC	IC
CFR Part 15.209(a) / 15.245(b)	RSS-210 Annex F / RSS-Gen

Radiated Spurious Emissions

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3
Harmonics	88.0	3

© CTC advanced GmbH Page 22 of 36

Measurement results:

TX Spurious Emissions Radiated			
F [GHz]	Detector	Level [dBµV/m]	
	No critical peaks found		
0.039	QP	9.8	
0.044	QP	18.8	
0.18	QP	6.8	
0.51	QP	17.9	
0.73	QP	19.6	
0.90	QP	21.3	
1.50	RMS	30.3	
4.51	RMS	46.7	
22.57	RMS	41.2	
25.58	RMS	48.0	
48.17	RMS	42.4	

Note: QP = Quasi-Peak, PK = Peak, AVG = Linear Average, RMS = Root Mean Square

© CTC advanced GmbH Page 23 of 36

Plot 4: 9 kHz to 30 MHz, horizontal / vertical polarization

Plot 5: 30 MHz to 1 GHz, horizontal / vertical polarization

© CTC advanced GmbH Page 24 of 36

Plot 6: 1 GHz to 18 GHz, horizontal / vertical polarization

Plot 7: 18 GHz to 24.075 GHz

Date: 22.JAN.2018 16:17:34

© CTC advanced GmbH Page 25 of 36

Plot 8: Band edge compliance, Lower edge

Date: 22.JAN.2018 14:39:34

Plot 9: Band edge compliance, Upper edge

Date: 22.JAN.2018 14:43:12

© CTC advanced GmbH Page 26 of 36

Plot 10: 24.175 GHz to 26 GHz

Date: 22.JAN.2018 16:14:16

Plot 11: 26 GHz to 40 GHz

Date: 22.JAN.2018 16:35:00

© CTC advanced GmbH Page 27 of 36

Plot 12: 40 GHz to 50 GHz

Date: 22.JAN.2018 16:47:56

Plot 13: 50 GHz to 75 GHz

Date: 22.JAN.2018 17:31:20

© CTC advanced GmbH Page 28 of 36

Plot 14: 75 GHz to 110 GHz

Date: 22.JAN.2018 17:24:57

© CTC advanced GmbH Page 29 of 36

9.4 Conducted spurious emissions < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

Measurement parameter			
Detector:	Peak - Quasi Peak / Average		
Sweep time:	Auto		
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Span:	9 kHz to 30 MHz		
Trace-Mode:	Max Hold		

Limits:

FCC			IC
CFR Part 15.207(a)		RSS-Gen 8.8	
	Conducted Spurious	Emissions < 30 MHz	
Frequency (MHz)	Quasi-Peak (dBµV/m)		Average (dBμV/m)
0.15 – 0.5	66 to 56*		56 to 46*
0.5 – 5	56		46
5 – 30.0	60		50

^{*}Decreases with the logarithm of the frequency

Measurement results:

See plots below.

© CTC advanced GmbH Page 30 of 36

Plot 15: Phase line

Project ID: 1-5784/18-01-02

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.150646	37.51	28.45	65.964	30.13	25.85	55.982
24.746765	28.32	31.68	60.000	21.47	28.53	50.000

© CTC advanced GmbH Page 31 of 36

Plot 16: Neutral line

Neutral line tbl

Project ID: 1-5784/18-01-02

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.150138	37.90	28.09	65.992	29.64	26.36	55.996
0.765138	28.52	27.48	56.000	21.71	24.29	46.000
1.417074	27.85	28.15	56.000	21.05	24.95	46.000
1.648840	27.64	28.36	56.000	20.82	25.18	46.000
3.414731	27.57	28.43	56.000	20.52	25.48	46.000
4.126896	27.05	28.95	56.000	20.29	25.71	46.000

© CTC advanced GmbH Page 32 of 36

9.5 Frequency stability

Description:

§15.215(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Measurement:

Measurement parameter		
Detector:	Pos-Peak	
Sweep time:	20 ms	
Resolution bandwidth:	10 kHz	
Video bandwidth:	30 kHz	
Trace-Mode:	Max Hold	
Measurement uncertainty	Span/1000	

Limits:

FCC	IC		
CFR Part 15.215(c)	RSS-210 Annex F / RSS-210		
Frequency Stability			

As specified in Section 15.215(c), the bandwidth of the fundamental emission must be contained within the frequency band over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage. Frequency stability is to be measured according to Section 2.1055 at the highest and lowest frequency of operation and with the modulation that produces the widest emission bandwidth.

Measurement results:

Test Conditions	Frequency (GHz)	bandwidth
-30 °C / V _{nom}	24.079948 (fc)	in-band
20 °C / V _{min/nom/max}	24.079982 (f _L), 24.080219 (f _H)	237 kHz
55 °C / V _{nom}	24.0799994 (fc)	in-band

© CTC advanced GmbH Page 33 of 36

Plot 17: 20 °C, voltage variation

Date: 24.JAN.2018 12:05:31

© CTC advanced GmbH Page 34 of 36

Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 35 of 36

Document history

Version	Applied changes	Date of release
-/-	Initial release	2018-02-08
А	Test item description and cover sheet	2018-02-14

Accreditation Certificate

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication	Deutsche Akkreditierungsstelle GmbH Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS.
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number D-Pt-1207-61 and is valid until 2.104.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following amonx with a total of 43 pages. Registration number of the certificate: D-Pt-12076-01-03	The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette J. 2625) and the Regulation (E(R) No 752,0008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union 12.88 of 9 July 2008, p. 30). DAkkS is a signatory to the Multilisteral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA). International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.laf.ru
Frankfurt, 02.06.2017 Diplyse, (PH) find plefor Helds of Division	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf

© CTC advanced GmbH Page 36 of 36