

PEP 559
Machine Learning in
Quantum Physics

Dr. Chunlei Qu

Four Modules

- Model A: Machine Learning
- Module B: Deep Learning
- Module C: Quantum Information
- Module D: Machine Learning for Quantum Physics

Three types of machine learning

> Labeled data Supervised learning Direct feedback Predict outcome/future No labels/targets Unsupervised learning No feedback Find hidden structure in data Decision process Reinforcement learning Reward system Learn series of actions

Supervised learning

- Classification: labels are discrete, e.g., email spam detection is a binary classification task
- Regression: labels are continuous, e.g., house price vs. size

Unsupervised learning

- Clustering: Discovering hidden structure of unlabeled data
- For example, the Hertzsprung-Russell diagram groups stars by temperature and luminosity

Reinforcement learning

• To develop a system (agent) that improves its performance based on interactions with the environment

Notation and Terminology

The Iris DataSet

- 4 Features: Sepal length, Sepal width, Petal length,
 Petal width
- 150 Samples or instances or observations, etc.
- Class labels: Setosa, Versicolor, Virginica.

Data Matrix

- Superscript = **sample** index = row index
- Subscript = **feature** index = column index

$$X \in \mathbb{R}^{150 \times 4}$$

feature vector

Terminology

- **Training example**: a row in the data matrix, also known as an observation, record, instance, or sample
- Feature: a column in the data matrix, also known as predictor, variable, input, attribute
- Target: also known as class label, ground truth, outcome, output, etc.
- Loss function: also known as cost function or error function.

ML typical workflow

Feature scaling

The features should be on the same scale for optimal performance.

Normally, we transform it to a standard distribution with zero mean and unit variance.

Preprocessing pipeline I:Missing data handlingInitial feature extraction

and selection

Preprocessing pipeline 2:

• Feature scaling
• Dimensionality reduction:
• Feature selection
• Feature extraction

Hyperparameter choice + training

Iterate and evaluate
via cross-validation

Python

• See Jupyter Notebook

McCulloch-Pitts (MCP) neuron model

Pre-determined weights, no learning capability

STEVENS INSTITUTE of TECHNOLOGY

Rosenblatt's perceptron model

Proposed an algorithm that would automatically learn the optimal weight coefficients

Key idea to adjust the weight (and bias)

- If predicted label is 1, but the actual label is 0, we want to reduce the weight
- If predicted label is 0, but the actual label is 1, we want to enhance the weight

The perceptron learning rule

- 1. Initialize the weights and bias unit to 0 or small random numbers
- 2. For each training example, $x^{(i)}$:
 - a. Compute the output value, $\hat{y}^{(i)}$
 - b. Update the weights and bias unit

$$w_j \coloneqq w_j + \Delta w_j$$

and $b \coloneqq b + \Delta b$

The update values ("deltas") are computed as follows:

Applicable to linearly separable data only

• The algorithm finds the linear decision boundary after certain number of iterations (epochs)

Implementation

• See jupyter notebook