S6B0086

65COM / 128 SEG DRIVER & CONTROLLER FOR STN LCD

July 2001 Ver. 0.0

Contents in this document are subject to change without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of LCD Driver IC Team.

Precautions for Light

Light has characteristics to move electrons in the integrated circuitry of semiconductors, therefore may change the characteristics of semiconductor devices when irradiated with light. Consequently, the users of the packages which may expose chips to external light such as COB, COG, TCP and COF must consider effective methods to block out light from reaching the IC on all parts of the surface area, the top, bottom and the sides of the chip. Follow the precautions below when using the products.

- 1. Consider and verify the protection of penetrating light to the IC at substrate (board or glass) or product design stage.
- 2. Always test and inspect products under the environment with no penetration of light.

	S6B0086 Specification Revision History							
Version	Version Content Date							
0.0	Original	July.2001						

CONTENTS

INTRODUCTION	!	가	
BLOCK DIAGRAM	!	가	
PAD CONFIGURATION	!	가	
PAD CENTER COORDINATES	!	가	
PIN DESCRIPTION	!	가	
POWER SUPPLY	!	가	
LCD DRIVER SUPPLY	!	가	
SYSTEM CONTROL	!	가	
MICROPROCESSOR INTERFACE	!	가	
LCD DRIVER OUTPUTS	!	가	
FUNCTIONAL DESCRIPTION	!	가	
MICROPROCESSOR INTERFACE	!	가	
DISPLAY DATA RAM (DDRAM)	!	가	
LCD DISPLAY CIRCUITS	!	가	
LCD DRIVER CIRCUIT	!	가	
POWER SUPPLY CIRCUITS	!	가	
REFERECE CIRCUIT EXAMPLES	!	가	
RESET CIRCUIT	!	가	
INSTRUCTION DESCRIPTION	!	가	
SPECIFICATIONS	!	가	
ABSOLUTE MAXIMUM RATINGS	!	가	
DC CHARACTERISTICS	!	가	
AC CHARACTERISTICS	!	가	
REFERENCE APPLICATIONS	!	가	
MICROPROCESSOR INTERFACE	!	가	
CONNECTIONS BETWEEN S6B0755 AND LCD PANEL		가	

3

INTRODUCTION

The S6B0086 (TQFP type: S6B2086) is a LCD driver LSI which is fabricated by low power CMOS high voltage process technology. In segment driver mode, it can be interfaced in 1-bit serial or 4-bit parallel method by the controller. In common driver mode, dual type mode is applicable. And in segment mode application, the power down function reduces power consumption.

FEATURES

- Power supply voltage: $+ 5V \pm 10 \%$, $+ 3V \pm 10\%$
- Supply voltage for display: 6 to 28V (V_{DD}-V_{EE})
- 4-bit parallel/1-bit serial data processing (in segment mode)
- Single mode operation/dual mode operation (in common mode)
- Power down function (in segment mode)
- Applicable LCD duty: 1/64 1/256
- Interface

Drivers							
COM (cascade)	SEG (cascade)						
S6B0086	S6B0086						

- High voltage CMOS process
- Available PKG type: bare die, 100 QFP, 100 TQFP or TCP

PACKAGE INFORMATION

S6B0086 PKG TYPE

100QFP Package

S6B0086TCP TYPE

TCP

PAD DIAGRAM (S6B0086/S6B0086 TCP)

PAD CENTER COORDINATES (S6B0086/S6B0086TCP)

Pad	Pad	Coord	linates	Pad	Pad	Coord	linates	Pad	Pad	Coord	linates
No.	Name	Х	Υ	No.	Name	Х	Υ	No.	Name	Х	Υ
1	SC51	-1690	1959	35	V12	-900	-1959	69	SC19	2029	544
2	SC52	-2029	1884	36	V0	-775	-1959	70	SC20	2029	678
3	SC53	-2029	1750	37	VS	-600	-1959	71	SC21	2029	812
4	SC54	-2029	1616	38	М	-475	-1959	72	SC22	2029	946
5	SC55	-2029	1482	39	DISP0FFB	-350	-1959	73	SC23	2029	1080
6	SC56	-2029	1348	40	VDD	-225	-1959	74	SC24	2029	1214
7	SC57	-2029	1214	41	SHL	-100	-1959	75	SC25	2029	1348
8	SC58	-2029	1080	42	VSS	25	-1959	76	SC26	2029	1482
9	SC59	-2029	946	43	D4_DR	266	-1959	77	SC27	2029	1616
10	SC60	-2029	812	44	D3_DM	470	-1959	78	SC28	2029	1750
11	SC61	-2029	678	45	D2_DL	711	-1959	79	SC29	2029	1884
12	SC62	-2029	544	46	D1_SID	915	-1959	80	SC30	1690	1959
13	SC63	-2029	410	47	CL2	1040	-1959	81	SC31	1529	1959
14	SC64	-2029	276	48	ELB	1165	-1959	82	SC32	1368	1959
15	SC65	-2029	142	49	CL1	1290	-1959	83	SC33	1207	1959
16	SC66	-2029	8	50	ELB	1496	-1959	84	SC34	1046	1959
17	SC67	-2029	-126	51	SC1	2029	-1884	85	SC35	885	1959
18	SC68	-2029	-260	52	SC2	2029	-1735	86	SC36	724	1959
19	SC69	-2029	-394	53	SC3	2029	-1601	87	SC37	563	1959
20	SC70	-2029	-528	54	SC4	2029	-1467	88	SC38	402	1959
21	SC71	-2029	-662	55	SC5	2029	-1333	89	SC39	241	1959
22	SC72	-2029	-797	56	SC6	2029	-1199	90	SC40	80	1959
23	SC73	-2029	-931	57	SC7	2029	-1065	91	SC41	-80	1959
24	SC74	-2029	-1065	58	SC8	2029	-931	92	SC42	-241	1959
25	SC75	-2029	-1199	59	SC9	2029	-797	93	SC43	-402	1959
26	SC76	-2029	-1333	60	SC10	2029	-662	94	SC44	-563	1959
27	SC77	-2029	-1467	61	SC11	2029	-528	95	SC45	-724	1959
28	SC78	-2029	-1601	62	SC12	2029	-394	96	SC46	-885	1959
29	SC79	-2029	-1735	63	SC13	2029	-260	97	SC47	-1046	1959
30	SC80	-2029	-1884	64	SC14	2029	-126	98	SC48	-1207	1959
31	ERB	-1479	-1959	65	SC15	2029	8	99	SC49	-1368	1959
32	VEE	-1275	-1959	66	SC16	2029	142	100	SC50	-1529	1959
33	V5	-1150	-1959	67	SC17	2029	276				
34	V43	-1025	-1959	68	SC18	2029	410				

S6B0086 TQFP TYPE (S6B2086)

100TQFP

PAD DIAGRAM (S6B2086)

PAD CENTER COORDINATES (S6B2086)

Pad	Pad	Coord	linates	Pad	Pad	Coord	linates	Pad	Pad	Coord	linates
No.	Name	Х	Υ	No.	Name	Х	Υ	No.	Name	Х	Υ
1	SC28	-1969	1691	35	SC62	-515	-2064	69	D1_SID	1969	924
2	SC29	-1969	1551	36	SC63	-390	-2064	70	CL2	1969	1049
3	SC30	-1969	1411	37	SC64	-265	-2064	71	AMS	1969	1174
4	SC31	-1969	1271	38	SC65	-140	-2064	72	CL1	1969	1299
5	SC32	-1969	1131	39	SC66	-15	-2064	73	ELB	1969	1504
6	SC33	-1969	991	40	SC67	110	-2064	74	SC1	1969	1904
7	SC34	-1969	851	41	SC68	235	-2064	75	SC2	1969	2029
8	SC35	-1969	711	42	SC69	360	-2064	76	SC3	1360	2064
9	SC36	-1969	571	43	SC70	485	-2064	77	SC4	1235	2064
10	SC37	-1969	431	44	SC71	610	-2064	78	SC5	1110	2064
11	SC38	-1969	291	45	SC72	735	-2064	79	SC6	985	2064
12	SC39	-1969	151	46	SC73	860	-2064	80	SC7	860	2064
13	SC40	-1969	11	47	SC74	985	-2064	81	SC8	735	2064
14	SC41	-1969	-151	48	SC75	1110	-2064	82	SC9	610	2064
15	SC42	-1969	-291	49	SC76	1235	-2064	83	SC10	485	2064
16	SC43	-1969	-431	50	SC77	1360	-2064	84	SC11	360	2064
17	SC44	-1969	-571	51	SC78	1969	-2029	85	SC12	235	2064
18	SC45	-1969	-711	52	SC79	1969	-1904	86	SC13	110	2064
19	SC46	-1969	-851	53	SC80	1969	-1779	87	SC14	-15	2064
20	SC47	-1969	-991	54	ERB	1969	-1475	88	SC15	-140	2064
21	SC48	-1969	-1131	55	VEE	1969	-1270	89	SC16	-265	2064
22	SC49	-1969	-1271	56	V5	1969	-1145	90	SC17	-390	2064
23	SC50	-1969	-1411	57	V43	1969	-1020	91	SC18	-515	2064
24	SC51	-1969	-1551	58	V12	1969	-895	92	SC19	-640	2064
25	SC52	-1969	-1691	59	V0	1969	-770	93	SC20	-765	2064
26	SC53	-1640	-2064	60	CS	1969	-595	94	SC21	-890	2064
27	SC54	-1515	-2064	61	М	1969	-470	95	SC22	-1015	2064
28	SC55	-1390	-2064	62	DISP0FFB	1969	-345	96	SC23	-1140	2064
29	SC56	-1265	-2064	63	VDD	1969	-220	97	SC24	-1265	2064
30	SC57	-1140	-2064	64	SHL	1969	-95	98	SC25	-1390	2064
31	SC58	-1015	-2064	65	VSS	1969	30	99	SC26	-1515	2064
32	SC59	-890	-2064	66	D4_DR	1969	272	100	SC27	-1640	2064
33	SC60	-765	-2064	67	D3_DM	1969	477				
34	SC61	-640	-2064	68	D2_DL	1969	719				

BLOCK DIAGRAM

BLOCK DESCRIPTION

Name	Function	COM/SEG
Clock control	Generates latch clock (LCK), shift clock (SCK) and control clock timing according to the input of CL1, CL2 and control inputs (CS, AMS). In common driver application mode, this block generates the shift clock (LCK) for the common data Bi-directional shift register.	COM/SEG
Data latch control	Determines the direction of segment data shift, and input data of each Bi-directional shift register. In 4-bit segment data parallel transfer mode, data is shifted by a 4-bit unit. In common driver application mode, data is transferred to the common data shift register directly, which disables this block.	SEG
Power down function	Controls the clock enable state of the current driver according to the input value of enable pin (ELB or ERB). If enable input value is "Low", every clock of the current driver is enabled and the clock control block works. But if enable input is "High", current driver is disabled and the input data value has no effect on the output level. So power consumption can be lowered.	SEG
Output level selector	Controls the output voltage level according to the input control pin (M and DISPOFFB) (refer to PIN DESCRIPTION).	COM/SEG
20x4-bit segment data I- directional shift register	Stores output data value by shifting the input values. In 1-bit serial interface mode application, all 80 shift clocks (SCK) are needed to store all the display data. But in 4-bit parallel transfer mode application, only 20 clocks are needed. In common driver application mode, this block does not work.	SEG
80-bit data latch / common data l- directional shift register	In segment driver application mode, the data from the 20x4-bit segment data shift register are latched for segment driver output. In single-type common driver application,1-bit input data (from DL or DR pin) is shifted and latched by the direction according to the SHL signal input. In dual-type common application mode, 80-bit registers are divided by two blocks and controlled independently (refer to NOTE 3).	COM/SEG
80-bit level shifter	Voltage level shifter block for high voltage part. The inputs of this block are of logical voltage level and the outputs of this block are at high voltage level value. These values are input in to the driver.	SEG
80-bit 4-level driver	Selects the output voltage level according to M and latched data value. If the data value is "High" the driver output is at selected voltage level (V0 or V5), and in the reverse case the driver output value is at the non-selected level (V12 or V43). In segment driver application mode, non-selected output value is V2 or V3. and when in common driver application, this value becomes V1 or V4.	SEG

PIN DESCRIPTION

Pin	I/O	Name			Function	Function						
V0, V12, V43, V5	I	LCD driver output voltage level	by the re	Bias supply voltage input to drive the LCD. Bias voltage divided by the resistance is usually used as a supply voltage source (refer to NOTE 2).								
SC1 - SC80	0	LCD driver output	latch con display d	Display data output pin which corresponds to the respective latch contents. One of V0, V12, V34 and V5 is selected as a display driving voltage source according to the combination of the latched data level and M signal (refer to NOTE 1).								
CL2	I	Data shift clock		nt drive	for the bi-directional shift registrapplication mode, the data is ta shift.		Controller					
				•	which was input when the enanct active condition, is invalid.	able bit						
			common	data bi-	r application mode, the data is directional shift register by the pin is not used (Open or confidence)	CL1 clock.						
М	I	AC signal for LCD driver output		Alternate signal input pin for LCD driving. Normal frame inversion signal is input in to this pin.								
CL1	I	Data latch clock	latching to clock pul CL1 puls - In com	he shift se. e "High' mon driv	rer application mode, this signaregister contents at the falling level initializes power-down for application mode, CL1 is us output data.	edge of this unction block.	Controller					
DISPOFFB	I	Display OFF control	level, dur V0 level	ing "Lovoutput fr	to fix the driver output (SC1~S v" value input. LCD becomes rom every output of segment drondrivers.	on-selected by	Controller					
CS	I	COM/SEG mode control	driver.		v", S6B0086 is used as an 80- h", S6B0086 is set to an 80-b	_	V _{DD} /V _{SS}					
AMS	I	Application mode select			input value of the AMS and the of S6B0086 is differs as show		V _{DD} /V _{SS}					
			CSS									
			0 0 4-bit Parallel Interface mode									
			0 1 1-bit Serial Interface mode SEG									
			1	0	Single Type Application mode	СОМ						
			1	1	Dual Type Application mode							

PIN DESCRIPTION (CONTINUED)

Pin	I/O	Name		Function					
D1_SID, D2_DL, D3_DM, D4_DR	I/O	Display data input/serial input data/left, right data input output	as 4-bit mode : input pi	n and other pins are not	it parallel interface ID is used as serial data used (connect these to	Controller			
			from D2 type into applicat D3_DM case the	(hand) (when 1-bit serial interface mode: AMS = "High"). In common driver application mode, the data is shifted from D2_DL(D4_DR) to D4_DR(D2_DL), when in single type interface mode (AMS = "Low"). In dual-type application case, the data are shifted from D2_DL and D3_DM (D4_DR and D3_DM) to D4_DR(D2_DL). In each case the direction of the data shift and the connection of data pins are determined by SHL input (refer to NOTE 3, NOTE 4)					
SHL	Input	Shift direction control		SHL = "Low", data is sh SHL = "High", the direction		V _{DD} /V _{SS}			
ELB, ERB	I/O	Enable data input/output	operation ERB) is drivers is	nent driver application months on is enabled only when a "Low" (power down fundare serially connected, the shifted according to the ins as below.	enable input (ELB or ction). When several ne enable state of each				
			SHL	Segmen	t Driver				
				ELB	ERB				
			L	L Output (open) Input (V ss)					
			Н						
			function	In common driver application mode, power down function is not used.					
			Open th	Open these pins.					

NOTE 1. Output Level Control

М	Latched data	DISPOFFB	Output level (SC1 - SC80)	
			SEG Mode	COM Mode
L	L	Н	V12 (V2)	V12 (V1)
L	Н	Н	V0	V5
Н	L	Н	V43 (V3)	V43 (V4)
Н	Н	Н	V5	V0
X	Х	L	V0	V0

NOTE 2. LCD Driving Voltage Application Circuit

(1) Segment driver application (CS = "Low")

(2) Common driver application (CS = "High")

NOTE 3. Data Shift Direction according to Control Signals

(1) When CS = "Low" (segment driver application)

17

(2) When CS = "High" (common driver application)

NOTE 4. Usage of Data Pins

COM/SEG	Application mode	SHL		Data Interface Pin			
(CS pin)	(AMS pin)		D1_SID	D2_DL	D3_DM	D4_DR	
SEG (CS ="Low")	4-bit parallel interface mode (AMS = "Low")	Х	D1 (input)	D2 (input2)	D3 (input3)	D4 (input4)	
	1-bit serial interface mode (AMS = "High")	Х	SID (input)	Connect to V _{DD}			
COM (CS = "High")	single-type application mode	L	open	DL (input)	Open	DR (output)	
	(AMS = "Low")	Н		DL (output)		DR (input)	
	dual-type application mode (AMS = "High")	L	open	DL (input1)	DM (input2)	DR (output2)	
		Н		DL (output2)	DM (input2)	DR (input1)	

MAXIMUM ABSOLUTE LIMIT

Characteristic	Symbol	Value	Unit
Power Supply Voltage	V_{DD}	-0.3 to +7.0	V
Driver Supply Voltage	V _{LCD}	0 to +30	
Input Voltage	V _{IN}	-0.3 to V _{DD} + 0.3	
Operating Temperature	T _{OPR}	-30 to +85	°C
Storage Temperature	T _{STG}	-55 to +150	

NOTE: Voltage greater than above may do damage to the circuit.

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

(1) Segment Driver Application

 $(V_{SS} = 0V, Ta = -30 \text{ to } +85^{\circ}C)$

Characteristic	Symbol	Test Conditio	n	Min.	Тур.	Max.	Unit
Operating	V_{DD}	_	2.7	1	5.5		
Voltage1	V _{LCD}	V _{IN} = V _{DD} - V _{EE}		6	_	28	V
Input Voltage (1)	V _{IH}	_		0.8V _{DD}	-	V_{DD}	
	V _{IL}	-		0	_	0.2V _{DD}	
Output Voltage (2)	V _{OH}	I _{OH} = -0.4mA		V _{DD} -0.4	_	-	V
	V _{OL}	I _{OL} = 0.4mA		-	_	0.4	
Input Leakage Current 1 ⁽¹⁾	I _{IL1}	$V_{IN} = V_{DD}$ to V_{SS}	$V_{IN} = V_{DD}$ to V_{SS}			10	μΑ
Input Leakage Current 2 (3)	I _{IL2}	$V_{IN} = V_{DD}$ to V_{EE}		-25	ı	25	
On Resistance (4)	R _{ON}	I _{ON} = 100μA		_	2	4	kΩ
Supply Current (5)	I _{STBY}	f _{CL1} = 32kHz M = V _{SS}	V _{SS} pin	_	_	100	μΑ
	I _{DD}	f _{CL1} = 32kHz	V _{DD} = 5V	-	-	5	mA
		f _M = 80Hz	V _{DD} = 3V	-	-	2	
	I _{EE}		V _{DD} = 5V	-	_	500	μΑ

NOTES:

- 1. Applied to CL1, CL2, ELB, ERB, D1_SID D4_DR, SHL, DISPOFFB, M, CS, AMS pin
- 2. ELB, ERB pin
- 3. V0, V12, V43, V5 pin 4. $V_{LCD} = V_{DD} V_{EE}$, V0 = $V_{DD} = 5V$, V5= $V_{EE} = -23 V$ $V12 = V_{DD}-2/n(V_{LCD})$, $V43 = V_{EE}+2/n(V_{LCD})$, n = 17 (1/256 duty, 1/17 bias)
- 5. $V0 = V_{DD}$, $V12 = 1.71V(V_{DD} = 5V)$ or $-0.06V(V_{DD} = 3V)$,

 $V43 = -19.71 \text{ V}(V_{DD} = 5V) \text{ or } -19.94V \text{ } (V_{DD} = 3V), V5 = V_{EE} = -23V, \text{ no-load condition } (1/256 \text{ duty}, 1/17 \text{ bias})$

4-bit parallel interface mode

 I_{STBY} : V_{DD} = 5V, f_{CL2} = 5.12MHz, SHL = V_{SS} , DISPOFFB = V_{DD} , M = V_{SS} , display data pattern = 0000

 I_{DD} : $V_{DD} = 3V$, $f_{CL2} = 4MHz$, display data pattern = 0101

 $V_{DD} = 5 \text{ V}$, $f_{CL2} = 5.12 \text{MHz}$, display data pattern = 0101

 I_{FF} : V_{DD} = 5V, $f_{Cl,2}$ = 5.12MHz, display data pattern = 0101, V_{FF} pin

DC CHARACTERISTICS (CONTINUED)

(2) Common Driver Application

 $(V_{SS} = 0V, Ta = -30 \text{ to } +85^{\circ}C)$

Characteristic	Symbol	Test Conditio	Min.	Тур.	Max.	Unit	
Operating	V_{DD}	_	2.7	-	5.5	V	
Voltage	V _{LCD}	$V_{IN} = V_{DD} - V_{EE}$	6	_	28		
Input Voltage ⁽¹⁾	V _{IH}	_		0.8V _{DD}	_	V _{DD}	
	V _{IL}	_		0	_	0.2V _{DD}	
Output Voltage (3)	V _{OH}	I _{OH} = -0.4mA		V _{DD} -0.4	_	-	V
	V _{OL}	I _{OL} = 0.4mA		_	_	0.4	
Input Leakage Current 1 (1)	I _{IL1}	$V_{IN} = V_{DD}$ to V_{SS}		-10	_	10	μΑ
Input Leakage Current ⁽²⁾	I _{IL2}	$V_{IN} = 0V, V_{DD} = 5V$ (PULL UP)		-50	-125	-250	
Input Leakage Current 3 (4)	I _{IL3}	$V_{IN} = V_{DD}$ to V_{EE}		-25	_	25	
On Resistance ⁽⁵⁾	R _{ON}	I _{ON} = 100μA		-	2	4	kΩ
Supply Current (6)	I _{STBY}	f _{CL1} = 32Khz	V _{SS} pin	_	_	100	μΑ
	I _{DD}	f _{CL1} = 32kHz	V _{DD} = 5V	_	_	200	
		f _M = 80Hz	V _{DD} = 3V	_	_	120	
	I _{EE}		V _{DD} = 5V	_	_	150	

NOTES:

- 1. Applied to CL1, D2_DL (SHL = LOW), D4_DR (SHL = HIGH), SHL, DISPOFFB, M, CS, AMS pin
- Pull-up input pins: CL2, D1_SID, D3_DM (AMS = HIGH), ELB (SHL = LOW), ERB (SHL = HIGH)
- 3. $D2_DL$ (SHL = HIGH), $D4_DR$ (SHL = LOW) pin
- 4. V0, V12, V43, V5 pin
- 5. $V_{LCD} = V_{DD} V_{EE}$, $V0 = V_{DD} = 5V$, $V5 = V_{EE} = -23V$ $V12 = V_{DD} - 1/n(V_{LCD})$, $V43 = V_{EE} + 1/n(V_{LCD})$, n = 17(1/256 duty, 1/17 bias)
- 6. $V0 = V_{DD}$, V12 = 3.35V ($V_{DD} = 5V$) or 1.47V ($V_{DD} = 3V$),

V43 = -21.35V ($V_{DD} = 5 V$) or -21.47V ($V_{DD} = 3 V$), $V5 = V_{EE} = -23 V$, no-load condition (1/256 duty, 1/17 bias)

single-type mode operation : AMS = V_{SS} , SHL = V_{SS} , DISPOFFB = V_{DD}

 $D1_SID = D3_DM = V_{DD}$, $D4_DR = OPEN$, ELB = ERB = OPEN,

 $I_{STBY} : V_{DD} = 5V, M = V_{SS}, D2_DL = V_{SS}$

 I_{DD} : $f_{M} = 80Hz$, $D2_{DL} = V_{DD}$

 V_{DD} = 3 V, display data pattern = 10000000..., 01000000..., 00100000..., 000100000..., ...

V_{DD} = 5 V, display data pattern = 10000000..., 01000000..., 00100000..., 00010000..., ...

 I_{FF} : $f_{M} = 80Hz$, $D2_{DL} = V_{DD}$

 V_{DD} = 5V, current through V_{EE} Pin, display data pattern = 10000000..., 01000000...,

00100000..., 00010000...

AC CHARACTERISTICS

(1) Segment Driver Application

 $(V_{SS} = 0V, Ta = -30 \text{ to } +85^{\circ}C)$

Characteristic	Symbol	Test	(1) V _{DD} = 5V ±10%		(2) $V_{DD} = 3V \pm 10\%$			Unit	
		Condition	Min.	Тур.	Max.	Min.	Тур.	Max.	
Clock cycle time	t _{CY}	Duty = 50%	125	_	_	250	_	_	ns
Clock pulse width	t _{WCK}	-	45	_	_	95	_	-	
Clock rise/fall time	t _R /t _F	_	-	-	-	_	-	30	
Data set-up time	t _{DS}	-	30	-	-	65	-	-	
Data hold time	t _{DH}	-	30	-	-	65	-	-	
Clock set-up time	t _{CS}	-	80	-	-	120	-	-	
Clock hold time	t _{CH}	-	80	-	-	120	-	-	
Propagation delay time	t _{PHL}	ELB Output	-	-	60	-	-	125	
		ERB Output			60			125	
ELB,ERB set-up time	t _{PSU}	ELB Input	30	_	_	65	_	_	
		ERB Input	30			65			
DISPOFFB low pulse width	t _{WDL}	_	1.2	-	-	1.2	-	-	μs
DISPOFFB clear time	t _{CD}	_	100	_	_	100	_		ns
M - OUT propagation delay time	t _{PD1}	C _L = 15pF	ı	-	1.0	ı	-	1.2	μs
CL1 - OUT propagation delay time	t _{PD2}		-		1.0	-		1.2	
DISPOFFB - OUT propagation delay time	t _{PD3}		_	_	1.0	_	_	_	

AC CHARACTERISTICS (Continued)

(2) Common Driver Application

 $(V_{SS} = 0V, Ta = -30 \text{ to } +85^{\circ}C)$

Characteristic	Symbol	Test (1) $V_{DD} = 5 V \pm 10\%$		(2) V _{DD} = 3V ±10%			Unit		
		Condition	Min.	Тур.	Max.	Min.	Тур.	Max.	
Clock cycle time	t _{CY}	Duty = 50%	250	-	-	500	_	_	ns
Clock pulse width	t _{WCK}	-	45	_	_	95	_	_	
Clock rise/fall time	t _R /t _F	-	_	-	50	-	_	50	
Data set-up time	t _{DS}	-	30	-	-	65	_	_	
Data hold time	t _{DH}	-	30	-	-	65	_	_	
DISPOFFB low pulse width	t _{WDL}	-	1.2	_	_	1.2	_	_	μs
DISPOFFB clear time	t _{CD}	-	100	_	_	100	_	_	ns
Output delay time	t _{DL}	C _L = 15pF	_	_	200	_	_	250	
M – OUT propagation delay time	t _{PD1}		_	_	1.0	_	_	1.2	μs
CL1 - OUT propagation delay time	t _{PD2}			-	1.0	-	_	1.2	
DISPOFFB - OUT propagation delay time	t _{PD3}		_	-	1.0	_	_	1.2	

AC CHARACTERISTICS (Continued)

(3) Segment Driver Application Timing

AC CHARACTERISTICS (Continued)

(4) Common Driver Application Timing

POWER DOWN FUNCTION

In the case of cascade connection of segment mode drivers, S6B0086 has a "power down function" In order to reduce the power consumption.

SHL	Enable input	Enable output	Current driver status	The other drivers status
L	ERB	ELB	While ERB ="Low", current driver is enabled.	Disabled
Н	ELB	ERB	While ELB ="Low", current driver is enabled.	Disabled

NOTE: In the case of common driver application, power down function does not work.

OPERATION TIMING DIAGRAM

(1) 4-bit Parallel Mode Interface Segment Driver

When SHL = "Low"

• When SHL = "High"

(2) 1-bit Serial Mode Interface Segment Driver

When SHL = "Low"

• When SHL = "High"

(3) Single-type Interface Mode Common Driver

When SHL = "Low"

• When SHL = "High"

(4) DUAL-type Interface Mode Common Driver

When SHL = "Low"

When SHL = "High"

(5) Common/Segment Driver Timing (1/200 Duty)

APPLICATION INFORMATION

1-bit Serial Interface Mode (80-CH Segment Driver)

a) Lower View (SHL = L, AMS = H)

b) Upper View (SHL = H, AMS = H)

4-Bit Parallel Interface Mode (80-CH Segment Driver)

a) Lower View (SHL = L, AMS = L)

b) Upper View (SHL = H, AMS = L)

Single-type Interface Mode (80CH Common Driver)

Dual-type Interface Mode (40CH + 40CH Common Driver)

NOTE: Using this application mode (dual-type common mode), the duty ratio can be reduced to half. In the case abale, 1/200 duty can be used to drive the 400 common LCD panel.

APPLICATION CIRCUIT EXAMPLE

NOTES

IMPORTANT NOTICE

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. Samsung assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained herein. Samsung reserves the right to make changes in its products or product specifications with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

This publication does not convey to a purchaser of semiconductor devices described here in any license under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Samsung assume any liability arising out of the application or use of any product r circuit and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

"Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts.

Samsung products are not designed, intended, or authorized for use as components in systems intended for surgical implant in to the body, for other applications intended to support or sustain life, or for any other application I which the failure of the Samsung product could create a situation where personal injury or death may occur. Should the Buyer purchase or use a Samsung product for any such unintended or unauthorized application, the Buver shall indemnify and hold Samsung and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Samsung was negligent regarding the design or manufacture of said product.

*Precautions for Light

Light has characteristics to move electrons in the integrated circuitry of semiconductors, therefore may change the characteristics of semiconductor devices when irradiated with light.

Consequently, the users of the packages which may expose chips to external light such as COB, COG, TCP and COF must consider effective methods to block out light from reaching the IC on all parts as the surface area, the top, bottom and the sides of the chip.

Follow the precautions below when using the products.

- 1. Consider and verify the protection of penetrating light to the IC at substrate (board or glass) or product design stage.
- 2. Always test and inspect products under the environment with no penetration of light.

Graphic LCD Driver IC Data Book

2002 Samsung Electronics

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Samsung Electronics.

Samsung Electronics Co,.Ltd San#24 Nongseo-Ri, Kiheung-Eup Yongin-City Kyungi-Do, Korea C.P.O. Box #37, Suwon 449-900

TEL: 82-331-209-1431 FAX: 82-331-209-1432

Home page URL: http://www.samsungsemi.com/

Printed in the Republic of Korea

