

Semantic Table Annotation Tasks

Egypt 1.010.408 Cairo Germany 357,386 **Berlin**

wd:Q79 ("Egypt") wd:Q183 ("Germany")

Egypt 1,010,408 Cairo Germany 357,386 **Berlin**

wd:Q6256 ("country")

1,010,408 Cairo **Egypt** 357,386 Germany **Berlin**

wdt:P36 ("capital")

CEA Cell Entity Annotation

CTA Column Type Annotation

CPA Column Property Annotation

Outlook

- 1. Semantic Table Annotations
- 2. Related Work
- 3. Proposed Technique
- 4. Datasets
- 5. Evaluation
- 6. Results
- 7. Conclusions & Future work

Proposed Technique

- Preprocessing
- CFS Pattern
- Contexts and annotation modules
- Architecture

Preprocessing

Generic fix

- Encoding fixes (ftfy)
- Special character removal
- Restore missing spaces (parse errors)

2. Datatype predication

- Types with equivalents in KG
- OBJECT, QUANTITY, DATE, STRING

3. Type-based cleaning

- Extract the relevant part from (QUANTITY, DATE)
- $10/12/2020 (10 \text{ Dec } 2020) \rightarrow 2020-12-10$
- 1,199 km (745 mi) → 1199

CFS Pattern

- Different KG-lookups using different constraints, assemble all the retrieved information and find a proper solution.
- Create, Filter and Select pattern
 - 1. **Create** all possible candidates for the 3 tasks
 - 2. Filter the initial candidates set by using feedback from other tasks
 - 3. **Select** the most suitable candidate from the remaining ones
- Data sources
 - Lookup services (elastic search tools over KG)
 - SPARQL endpoint (structured queries)

4 contexts used to create/filter annotations

(a) Cell

(b) Column

(c) Row

(d) Row-Column

4 contexts used to create/filter annotations

4 contexts used to create/filter annotations

type

4 contexts used to create/filter annotations

4 contexts used to create/filter annotations

Black Box Example

Annotation Module(s):

CEA Label Lookup

* For complex cell values, e.g., 1st Global Opinion Leader's Summit, we try other strategies to create mappings. For example, look for each token in the cell as a standalone query.

CEA Label Lookup

• 4 strategies obtaining queries from cell value + 2 handling spelling mistakes

Strategy	Priority	Method	Cell Example	Queries
Full Cell	1	Cleaned value as a query	Dainik Bhaskar	{Dainik Bhaskar}
Selective	2	parts before brackets	Mario's Super Picross (900 Wii Points)	{Mario's Super Picross}
Token	3	tokenize the cell values & exclude stopwords	Lost in Space	{Lost, Space}
All Token	3	tokenize the cell values, exclude stopwords & concatenate tokens ascending	Little House on the Prairie	{Little, House, Prairie, Little House, Little House Prairie, House Prairie}

CEA Label Lookup

4 strategies obtaining queries from cell value + 2 handling spelling mistakes

Generic Lookup	Autocorrect
Pre-computed	On demand
Executed before the actual pipeline	Invoked in cases of failure by Generic Lookup
Jaro-Wrinkler distance ^[1]	1-edit distance + word2vec ranking ^[2]
Highest priority (0)	Lowest priority (4)

[1] Winkler, W.E.: String comparator metrics and enhanced decision rules in the fellegi-sunter model of record linkage. (1990)

[2] https://www.kaggle.com/cpmpml/spell-checker-using-word2vec

Black Box Example

Annotation Module(s):

CEA by Column

Do you know what **UK** is? It is also a **country**

Black Box Example

Annotation Module(s):

- CEA by row
- CEA by subject

Do you know what is the **thing** that **has capital named London?**

Annotations Module Continued ...

- CTA
 - Collects types for all retrieved cells annotations

Annotations Module Continued ...

- CTA
 - Collects types for all retrieved cells annotations
- CPA
 - Collects properties for all retrieved cells annotations (Object Properties)
 - Fuzzy match properties with values only (Literal Properties)
 - DATE: try matching day, month and year parts only, ignore any other parts.
 - **QUANTITY**: support a margin of tolerance e.g., 10%
 - **STRING**: Calculates overlap between KG value and Table value. Consider a match if overlap > threshold.

Annotation Modules ... Filter

- CTA support
 - Column types < support by cell candidates
 - Affects CTA and CEA candidates
- CEA by unmatched properties
 - Cell candidates have no matched properties
- CEA by property support
 - A generic form of the above
 - Considers support value
- CEA by string distance
 - Cell value vs. KG label value
 - Levenshtein distance > threshold

Annotation Modules ... Select

Picks the solution!

CEA

- CEA by string similarity
 - Selects the KG value with the closest Levenshtein distance
- CEA by column
 - Looks inside the same column for a similar value and pick its candidate

CPA

- CPA by majority vote
 - Picks most co-occurred property

CTA

- CTA by LCS vs. CTA by majority
- CTA by direct parents
- CTA by popularity

* LCS - Least Common Subsumer

Annotation Modules ... Select

Finds the solution!

CEA by string similarity

- Selects the KG value with the closet Levenshtein distance
- CEA by column
 - Looks inside the same column for a similar value and pick its candidate

CPA

- CPA by majority vote
 - Picks most co-occurred property

CTA by LCS vs. CTA by majority

- CTA by direct parents
- CTA by popularity

* LCS - Least Common Subsumer

Select CTA

CTA by majority

Col0	P31
Spaziano . Florida	Q18146819, Q19692072
Smith v/ Maryland	Q18146819, Q19692072
SEC v. Texas Gulf Sumphur Co.	Q2334719
Reieer v. Thompso	Q18146819, Q19692072
Reed v. Pennsylvania Railroad Compan	Q18146819, Q2334719
Building Service Employees International Union Local 262 v/ Gazzam	Q18146819, Q19692072
Ramspeck v. Federal Trial Exainers Conference	Q18146819, Q2334719
Budk v. California	Q18146819, Q19692072
Cowma Dairy Company v. United States	Q18146819, Q2334719
Noswood v. Kirkpatrick	Q18146819, Q19692072
Mongomery Building & Construction Trades Council v. Ledbetter Erection Company	Q18146819, Q19692072
Southern Pacfic Company v. Gileo	Q18146819, Q19692072
Colgate-Palmolive-Peft Company v. National Labor Relations Board	Q18146819, Q19692072
Unitee States v. United States Smelting Refining	Q18146819, Q19692072
Poizzi v. Cowles Magazies	Q18146819, Q19692072

Select CTA

CTA by LCS

Col0	P31
Spaziano . Florida	Q18146819, Q19692072
Smith v/ Maryland	Q18146819, Q19692072
SEC v. Texas Gulf Sumphur Co.	Q2334719
Reieer v. Thompso	Q18146819, Q19692072
Reed v. Pennsylvania Railroad Compan	Q18146819, Q2334719
Building Service Employees International Union Local 262 v/ Gazzam	Q18146819, Q19692072
Ramspeck v. Federal Trial Exainers Conference	Q18146819, Q2334719
Budk v. California	Q18146819, Q19692072
Cowma Dairy Company v. United States	Q18146819, Q2334719
Noswood v. Kirkpatrick	Q18146819, Q19692072
Mongomery Building & Construction Trades Council v. Ledbetter Erection Company	Q18146819, Q19692072
Southern Pacfic Company v. Gileo	Q18146819, Q19692072
Colgate-Palmolive-Peft Company v. National Labor Relations Board	Q18146819, Q19692072
Unitee States v. United States Smelting Refining	Q18146819, Q19692072
Poizzi v. Cowles Magazies	Q18146819, Q19692072

^{*} LCS - Least Common Subsumer

Select CTA

CTA by direct parents (flatten leaves and parents + majority voting)

Col0	P31
Spaziano . Florida	Q18146819, Q19692072
Smith v/ Maryland	Q18146819, Q19692072
SEC v. Texas Gulf Sumphur Co.	Q2334719
Reieer v. Thompso	Q18146819, Q19692072
Reed v. Pennsylvania Railroad Compan	Q18146819, Q2334719
Building Service Employees International Union Local 262 v/ Gazzam	Q18146819, Q19692072
Ramspeck v. Federal Trial Exainers Conference	Q18146819, Q2334719
Budk v. California	Q18146819, Q19692072
Cowma Dairy Company v. United States	Q18146819, Q2334719
Noswood v. Kirkpatrick	Q18146819, Q19692072
Mongomery Building & Construction Trades Council v. Ledbetter Erection Company	Q18146819, Q19692072
Southern Pacfic Company v. Gileo	Q18146819, Q19692072
Colgate-Palmolive-Peft Company v. National Labor Relations Board	Q18146819, Q19692072
Unitee States v. United States Smelting Refining	Q18146819, Q19692072
Poizzi v. Cowles Magazies	Q18146819, Q19692072

Sequence of Modules

- Create
 - Plus
 - Red
- Filter
 - Triangle
 - Green
- Select
 - Circle
 - Yellow

Sequence of Modules

- Group 1
 - Core Pipeline
 - No selection
- Group 9
 - Last resort
 - Backup solutions are invoked if failure of the previous methods

Architecture

- Distributed system
- Manager central point
- Isolated services
- Scalable
 - Fits large scale datasets
- Easily exchange
 - Data sources (KG substitution)
 - Approach

Datasets

- Automatically Generated
- Tough Tables
- 130K tables

Round	R1	R2	R3	R4
Tables # Avg. Rows # (± Std Dev.) Avg. Columns # (± Std Dev.) Avg. Cells # (± Std Dev.)	$34,294$ 7 ± 4 5 ± 1 36 ± 20	$12,173$ 7 ± 7 5 ± 1 36 ± 18	$62,614$ 7 ± 5 4 ± 1 23 ± 18	$22,390 109 \pm 11,120 4 \pm 1 342 \pm 33,362$
Target Cells # (CEA) Target Columns # (CTA) Target Columns Pairs # (CPA)	985,110 34,294 135,774	283,446 26,726 43,753	768,324 97,585 166,633	1,662,164 32,461 56,475

Dataset Challenges

- a) Missing metadata
- b) Spelling mistakes
- c) Ambiguity
- d) Missing spaces
- e) Inconsistent format
- f) Nested pieces of information in Quantity fields
- g) Redundant columns
- h) Encoding issues
- i) Noisy data
- j) Missing values (nulls, empty strings and special characters)
- k) Tables of excessive length

Evaluation

Secondary Score

CEA & CPA metrics

$$P = \frac{|correct\ annotations|}{|annotated\ cells|},\ R = \frac{|correct\ annotations|}{|target\ cells|},\ F1 = \frac{2\times P\times R}{P+R}$$

CTA metrics

$$cscore(\alpha) = \begin{cases} 1, & \text{if } \alpha \text{ is in GT,} \\ 0.8^{d(\alpha)}, & \text{if } \alpha \text{ is an ancestor of the GT,} \\ 0.7^{d(\alpha)}, & \text{if } \alpha \text{ is a descendant of the GT,} \\ 0, & \text{otherwise} \end{cases}$$

Secondary Score

$$AP = \frac{\sum cscore(\alpha)}{|annotated\ cells|},\ AR = \frac{\sum cscore(\alpha)}{|target\ cells|},\ AF1 = \frac{2\times AP\times AR}{AP+AR}$$

^{*} AP Approximate Precision

Primary Score

Primary Score

Experiments

- 3 Modes of CTA
 - Which one has the best scores?

- Preprocessing
 - Type Prediction
 - Accuracy 99.0%

- Generic Lookup
 - High coverage
 - Computationally expensive

Rounds	Unique Labels	Matched (%)
R1	252,329	99.0
R2	132,948	98.9
R3	361,313	99.0
R4	$533,\!015$	96.8

https://github.com/fusion-jena/JenTab_precomputed_lookup

- Audit statistics for CEA
- Reflects our priorities
- Various strategies capture a wide range of information inside cells

Creation Strategies

Audit statistics for CEA

- String similarity is the dominant method
- Solves 38% more than column similarity
- The need of a backup method
- Some cells failed to have an annotation or annotation was removed by filter function

Selection Strategies

- Audit statistics for CTA
- Majority vote is the dominant
- Backup solutions are frequently used

Mode: P31

- Audit statistics for CTA
- LCS is the dominant
- Backup solutions are less frequently used
- LCS is more effective than Majority vote

Mode: 2 Hops

- JenTab among the
 - Top 5 systems (CEA & CTA)
 - Top 3 systems (CPA)
- No Wikidata dump
- No generic search engines
 - SearX

	Automatically Generated Dataset					Tough Tables				
	CEA		CTA		CPA		CEA		СЛ	ĪA.
System	F1	Pr	F1	Pr	F1	Pr	F1	Pr	F1	Pr
JenTab (P31)	0.974	0.974	0.945	0.941	0.992	0.994	0.485	0.488	0.524	0.554
JenTab (2 Hops)	0.973	0.974	0.930	0.924	0.993	0.994	0.476	0.526	0.646	0.666
JenTab (Multiple Hops)	0.947	0.949	0.863	0.892	0.956	0.994	0.287	0.402	0.180	0.237
MTab4Wikidata	0.993	0.993	0.981	0.982	0.997	0.997	0.907	0.907	0.728	0.730
bbw	0.978	0.984	0.980	0.980	0.995	0.996	0.863	0.927	0.516	0.789
LinkingPark	0.985	0.985	0.953	0.953	0.985	0.986	0.810	0.811	0.686	0.687
DAGOBAH	0.984	0.985	0.972	0.972	0.995	0.995	0.412	0.749	0.718	0.747
SSL	0.833	0.833	0.946	0.946	0.924	0.924	0.198	0.198	0.624	0.669

- JenTab among the
 - Top 5 systems (CEA & CTA)
 - Top 3 systems (CPA)
- No Wikidata dump
- No generic search engines
 - SearX
- Poor performance on 2T dataset
 - P31 is insufficient for hard cases

		Au	Automatically Generated Dataset					Tough Tables			
		Cl	EΑ	CTA		CPA		CEA		C	ГА
	System	F1	Pr	F1	Pr	F1	Pr	F1	Pr	F1	Pr
	JenTab (P31)	0.974	0.974	0.945	0.941	0.992	0.994	0.485	0.488	0.524	0.554
	JenTab (2 Hops)	0.973	0.974	0.930	0.924	0.993	0.994	0.476	0.526	0.646	0.666
Je	nTab (Multiple Hops)	0.947	0.949	0.863	0.892	0.956	0.994	0.287	0.402	0.180	0.237
	MTab4Wikidata	0.993	0.993	0.981	0.982	0.997	0.997	0.907	0.907	0.728	0.730
	bbw	0.978	0.984	0.980	0.980	0.995	0.996	0.863	0.927	0.516	0.789
	LinkingPark	0.985	0.985	0.953	0.953	0.985	0.986	0.810	0.811	0.686	0.687
ses	DAGOBAH	0.984	0.985	0.972	0.972	0.995	0.995	0.412	0.749	0.718	0.747
	SSL	0.833	0.833	0.946	0.946	0.924	0.924	0.198	0.198	0.624	0.669
	·										

- JenTab among the
 - Top 5 systems (CEA & CTA)
 - Top 3 systems (CPA)
- No Wikidata dump
- No generic search engines
 - SearX
- Multiple Hops
 - Too generic solutions
 - Lower scores

	Au	Automatically Generated Dataset						Tough Tables				
	CF	CEA		ТА	CJ	PA	CE	ΞA	СТ	Ä		
System	F1	Pr	F1	Pr	F1	Pr	F1	Pr	F1	Pr		
JenTab (P31)	0.974	0.974	0.945	0.941	0.992	0.994	0.485	0.488	0.524	0.554		
JenTab (2 Hops)	0.973	0.974	0.930	0.924	0.993	0.994	0.476	0.526	0.646	0.666		
JenTab (Multiple Hops)	0.947	0.949	0.863	0.892	0.956	0.994	0.287	0.402	0.180	0.237		
MTab4Wikidata	0.993	0.993	0.981	0.982	0.997	0.997	0.907	0.907	0.728	0.730		
bbw	0.978	0.984	0.980	0.980	0.995	0.996	0.863	0.927	0.516	0.789		
LinkingPark	0.985	0.985	0.953	0.953	0.985	0.986	0.810	0.811	0.686	0.687		
DAGOBAH	0.984	0.985	0.972	0.972	0.995	0.995	0.412	0.749	0.718	0.747		
SSL	0.833	0.833	0.946	0.946	0.924	0.924	0.198	0.198	0.624	0.669		

- Execution Time
 - Time scoped
 - Faster convergence
 - R4 50% reduction

		R1		R2		R3	R4		
Mode	Days	Runners	Days	Runners	Days	Runners	Days	Runners	
P31	0.5	4	2.5	4	1.5	6	2	4	
2 Hops	1	4	1.2	4	2	4	1.1	8	
Multi Hops	1	4	1.5	4	2.5	6	3.5	6	

Conclusions

- JenTab toolkit*
 - Publicly available KG data sources
 - CFS pattern
 - 3 experiments of CTA
 - Detailed analysis of the 3 modes

^{*} https://github.com/fusion-jena/JenTab

Future Work

- Optimize certain components that take substantial resources
 - Generic lookup
 - SPARQL queries
- Dig deeper into Tough Table dataset

Acknowledgement

Dr. Kobkaew Opasjumruskit

Dr. Sheeba Samuel

Franziska Zander

Prof. Dr. Birgitta König-Ries

Prof. Dr. Joachim Denzler

Supported by the Carl Zeiss Foundation

Thank You!

Nora Abdelmageed

nora.abdelmageed@uni-jena.de

@NoraYoussef

Sirko Schindler

sirko.schindler@uni-jena.de

