Tradução: decodificação da linguagem de ácido nucleico para polipeptídeo

Deise Schroder Sarzi

Tradução

- Proteínas são os produtos finais da maioria das vias de informação
- São necessárias para o funcionamento da célula
- Síntese protéica chega a consumir 90% do total de energia utilizada por uma célula para reações biossintéticas

Dogma Central

Onde as proteínas são sintetizadas na célula?

- Paul Zamecnik, em 1950
- Injeção de aa radioativos em ratos e acompanharam a síntese em diferentes tempos a partir de homogeneizados do fígado
- Após 2h todas as células continham proteínas marcadas
- Após alguns minutos, porém, apenas uma fração citosólica apresentava proteínas marcadas, e era composta por ribonucleoproteínas: o ribossomo
- Puderam ser visualizados em microscopia eletrônica

tRNA funciona como adaptador

Amino acid

Amino acid

binding site

Adaptor

- Francis Crick: como 4 letras de DNA codificam 20aa?
- Uma molécula (RNA?) atuando como adaptador para ligar um aa específico, enquanto a outra parte dessa pequena molécula reconheceria a sequência de nucleotídeos que codifica para aquele aa
- Zamecnik e Hoagland: aa eram ativados quando incubados com ATP e com a parte citosólica das células hepáticas
- Os aa se ligavam a um RNA (posteriormente denominado tRNA) para formar um aminoacil-tRNA
- Esse processo era catalisado pelas aminoacil-tRNA- Nucleotide triplet coding for an amino acid
 sintases
- O tRNA adaptador traduz a sequência nucleotídica de um mRNA = TRADUÇÃO!

tRNA é o adaptador de Crick

- Consistem em uma fita de de RNA dobrada em uma estrutura 3D precisa
- Contém entre 73 e 93 nucleotídeos
- Pelo menos 32 tRNAs são necessários para reconhecer todos os códons de aa

Decifrando o código genético

- Quatro letras do DNA e 20 aminoácidos
 - 4²= 16 aa possíveis
 - 4³= 64 aa possíveis
- Códon: trinca de nucleotídeos que codifica um aa específico
- Trincas são lidas de forma sucessiva e sem interrupção e sobreposição
- Primeiro códon estabelece a fase de leitura (3 fases de leitura possíveis)
- Cada fase apresenta uma sequência diferente de códons

```
Reading frame 2 --- U U C U C G G A C C U G G A G A U U C A C A G U --- 3'

Reading frame 2 --- U U C U C G G A C C U G G A G A U U C A C A G U ---

Reading frame 3 --- U U C U C G G A C C U G G A G A U U C A C A G U ---
```

Ficava a dúvida: quais eram as 3 letras em código para cada aa?

O código genético foi decifrado usando moldes artificiais de mRNA

- Marshall Nierenber e Heinrich Matthaei, 1961
- Incubaram poliU sintético em 20 tubos diferentes cada um com um dos aa marcados radioativamente em E. coli
- Polipeptideo radioativo foi formado apenas no tubo que continha fenilalanina radioativa
- Adotou a mesma abordagem para poliC (prolina) e poliA (lisina)

Decifrando o código

- Neierenberg e Leder, 1964: são os trinucleotídeos que promovem a ligação específica de tRNAs apropriados
- Os experimentos poderiam ser realizados com oligonucleotídeos sintetizados artificialmente!
- Khorana desenvolveu métodos químicos para sintetizar polipeptideos com sequências repetidas de 2 ou 4 nucleotídeos.
- Ex: (AC)x
- ACA CAC ACA CAC ACA
- Quantidades iguais de histidina e treonina
- Ex: Se já se sabia o códon para histidina (CAC), então treonina só pode ser o outro (ACA)

código genético decifrado (61 codons + 3 terminação)

O código genético: RNAm

- Degenerado : 4x4x4 = 64
 - 61 (aminoácidos) 3 (stop códons)
- Universal (quase)
 - Variações são raras
 - AUG: geralmente códon de iniciação (metionina)
 - exceções: GUG (algumas bact) CUG (eucariotos)

Código genético é degenerado

- Especificidade: um códon codifica sempre um aa específico
- Redundância/degeneração: um aa pode ser codificado por mais de um códon
- Contínuo: sempre lido de 3 em 3 bases

Universal

Oscilação permite que alguns tRNAs reconheçam mais de um códon

- tRNAs pareiam a sequência de 3 bases com o anticódon
- Precisaríamos de um tRNA para cada códon de aa
- Não é isso que ocorre.
- Crick criou a hipótese da oscilação: 3º base "oscila", se pareia de maneira mais frouxa
- Quando uma mutação ocorre na 3ª base do códon, que é a base oscilante, isso acarretará em uma mudança no aa codificado em apenas 25% dos casos
- Mutações silenciosas: o nucleotídeo é diferente mas o aa permanece o mesmo

Posição wobble (pendular)

tRNA

mRNA

Códon de iniciação e de parada

- Iniciação: AUG (metionina) sinal para o início para a síntese de um polipeptídeo
- Códons de parada: (UAA, UAG, UGA) não codificam aa
- Se a fase de leitura de alguma forma pular um nucleotídeo, todos os códons subsequentes estarão distorcidos
- OBS: os experimentos para identificar a função dos códons não deveriam ter funcionado sem os códons de iniciação: Sorte no azar!

Open Reading Frames (ORFs)

- Sequências aleatórias de nucleotídeos normalmente apresentam 1 códon de parada a cada 20 códons
- Quando não há códons de parada por mais de 50 códons contínuos, considera-se uma ORF.
- Longas fases de leitura sem stop códons normalmente correspondem a genes que codificam proteínas!

Síntese proteica – estágios

- Ativação de aa: ligação do aa ao tRNA aminoacilação (ocorre no citosol), cada um dos 20 aa é ligado ao tRNA correspondente e essa ligação requer ATP
- Iniciação: o mRNA se liga a subunidade menor do ribossomo e ao tRNA iniciador carregado. Após, a subunidade maior do ribossomo se liga para formar o complexo
- Alongamento: o tRNA carregado entra no ribossomo e ocorre a adição de unidades sucessivas de aa à medida que o ribossomo se movimenta
- Término: reconhecimento de códon de parada no mRNA
- Enovelamento: dobramento tridimencional do polipeptídeo gerado, que pode ser auxiliado por enzimas ou outros processos

Ribossomos

Constituem quase ¼
 do peso seco da
 célula

 São compostos por duas subunidades

 Duas subunidades se encaixam de modo a formar uma fenda para o mRNA

S: Svedberg units

Estrutura do ribossomo

- Ribossomos têm 3 sítios de ligação de tRNA:
 - Sítio aminoacil (A)
 - Sítio peptidil (P)
 - Sítio de saída (E)

Ribossomos de eucariotos não tem sítio E*

A e P ligam aminoacil tRNAs, enquanto E liga tRNAs não carregados

Reconhecimento de tRNAs por suas aminoacil-tRNA-sintetase

Segundo código genético

 Na primeira etapa da síntese, no citosol, esterificam os 20 aa aos seus tRNAs

Cada enzima é específica para um aa ou tRNA correspondente

- Para aa com dois ou mais tRNAs correspondentes a mesma enzima pode aminoacilar
- Para cada molécula de aa ativada são gastos duas ligações de fosfato de alta energia (2ATPs)
- Tem função de ativar o aa para a ligação peptídica e de garantir o posicionamento adequado do aa no polipeptídeo nascente

Início da síntese

 Síntese começa na extremidade

aminoterminal (AUG – metionina aminoterminal) e segue na direção carboxiterminal

 Todos os organismos tem dois tRNAs para metionina – um para posições internas e um para o códon de início

Prokarya X Eukarya

RNA policistrônico Operon

RNA monocistrônico interação entre proteínas que se ligam a cauda poliA e proteínas do Complexo de Iniciação

Inicio em bactérias

- Subunidade 30S do ribossomo se liga a dois fatores de iniciação (IF-1 e IF-3).
- IF-3 impede que a subunidade 50S e 30S se combinem prematuramente
- mRNA se liga ao 30S
- O 5'AUG iniciador é guiado até sua posição correta pela sequência de Shine-Dalgarno (consenso com 8-13 bases de purina) presente no mRNA
- O AUG de inicio é distinguido dos demais AUGs pela sua proximidade com a sequência Shine-Dalgarno
- Os 3 IFs saem do ribossomo
 - Ao final, ribossomo funcional 70S

FIGURA 8.10 Os fatores de iniciação estabilizam as subunidades 30S livres e ligam o tRNA iniciador ao complexo 30S-mRNA.

Início eucariotos

- Não possuem sequência consenso de Shine-Dalgarno
- Apresentam CAP 5' e cauda poliA que vão ser reconhecidas por sequências ribossomais e vão posicionar o códon de iniciação no sítio P

Alongamento – ligações peptídicas

© 2006 John Wiley & Sons

Requer:

Complexo de iniciação

Aminoacil-tRNA

Fatores de alongamento:
 3 proteínas citosólicas 5/mRNA

(EF-Tu, EF-Ts, EF-G)

GTP

O processo

- Ligação de um aminoacil-tRNA apropriado à um complexo EF-Tu+GTP
- Esse complexo se liga ao sítio A do ribossomo e o GTP é hidrolisado
- Complexo EF-Tu-GDP é liberado do ribossomo

Ligação peptídica

- Uma ligação peptídica é formada entre os dois aa ligados por seus tRNAs, aos sítios A e P
- Dipeptídeo no sítio A e o sítio P não está mais com o tRNA carregado
- A ligação peptídica é catalisada pelo rRNA 23S (peptidil transferase)

Translocação

- Ribossomo se move em direção à extremidade 3' do mRNA
- Isso move o dipepdil-tRNA do sítio A para o sítio P e move o o tRNA descarregado do sítio P para o E, o qual é então liberado para o citosol
- O movimento do ribossomo ao longo do mRNA requer uma translocase (EF-G) e a energia fornecida pela hidrólise de GTP
- O polipeptídeo permanece ligado ao tRNA do último aa inserido

Término

 O alongamento continua até atingir um dos códons de parada no mRNA:

• UAA, UAG, UGA

 Quando um desses códons ocupa o sítio A do ribossomo há 3 fatores de término:

RF1 reconhece UAG e UAA

RF2 reconhece UGA e UAA

 Ligam-se ao códon de parada e induzem a peptidil-transferase a transferir o polipeptídeo nascente para uma molécula de água e não para outro aa

 Em eucariotos há um único fator de término que reconhece os códons de parada: eRF

Reciclagem do ribossomo

- Fatores de término se dissociam do complexo
- São substituídos pelo EF-G e pela proteína RRF (fator de reciclagem do ribossomo)

- Hidrólise de GTP pelo EF-G faz a subunidade 50S dissociar do complexo 30S-tRNA-mRNA
- EFG e RRF são substituídos por IF3, que promove a dissociação do tRNA e mRNA
- Complexo IF-3+30S está pronta para iniciar outro ciclo de síntese protéica

FIGURA 8.9 A iniciação requer subunidades ribossomais livres. Quando os ribossomos são liberados na terminação, as subunidades 30S ligam-se a fatores de iniciação e dissociam-se, gerando subunidades livres. Quando as subunidades se reassociam na iniciação, originando um ribossomo funcional, os fatores são liberados.

Polissomos

- Conjuntos de 10 a 100 ribossomos atuando simultaneamente na síntese proteica de um mRNA, permitindo o uso altamente eficiente desse mRNA
- Tradução é feita no sentido 5'->3'

Custo energético da síntese protéica

Formação de aminoacil-tRNA: 2 ATPs

Atividade hidrolase da aminoacil-t-RNA sintetase com tRNA incorreto: 1 ATP

Primeira etapa de alongamento: 1 GTP

Translocação: 1 GTP

Para cada ligação peptídica são necessários: 4 NTPs (122 Kj/mol) -> a hidrólise de uma ligação peptídica gera 21 Kj/mol

Proteínas são importantes para uma infinidade de funções!

Chaperonas I

FIGURA 10.10 As proteínas emergem do ribossomo, ou da passagem através da membrana, em um estado desenovelado que atrai chaperonas que se ligam e protegem as proteínas do enovelamento incorreto.

FIGURA 10.8 As chaperonas ligam-se a regiões interativas das proteínas à medida que estas são sintetizadas, impedindo a agregação aleatória. Regiões da proteína são liberadas para interagir de forma ordenada, resultando na conformação adequada.

 Complexo protéico que auxilia na montagem da estrutura 3D de uma proteína

Modificações pós traducionais

- Formação de ligações dissulfeto/dobramento
- Clivagem da cadeia
- Fosforilação
- Glicosilação
- Metilação/Acetilação
- Adição de grupos prostéticos

Proteína pronta: e agora??

Endereçamento e degradação de proteínas

- Célula tem muitos compartimentos com funções específicas que necessitam de proteínas específicas
- Proteínas destinadas ao citosol permanecem onde são sintetizadas
- Muitas modificações pós traducionais tem início no retículo endoplasmático (RE):
 - proteínas de membrana, lisossomais e secretadas
- Em geral tem uma sequência sinal N-terminal de 16-36 nt que marca para o transporte para o RE
- Lado carboxil tem um sítio de clivagem que remove essa sequência após sua importação para o RE

- Sequência sinal direciona o ribossomo para o RE
 - (sequência sinal aparece no início da síntese, pois está na porção N-terminal)

Proteína

Mitocôndria

Peroxissomo

Núcleo

Cloroplasto

Citosol

- Sequência sinal e o ribossomo se ligam a partícula de reconhecimento sinal (SRP)
- SRP se liga ao GTP e direciona o ribossomo ainda ligado ao mRNA para os receptores SRP presentes no lado citosólico do RE
- O polipeptídeo nascente é levado para o complexo de translocação de peptídeos no RE
- O alongamento do polipeptídeo continua associado à esse complexo, levando o peptídeo para dentro do lúmen do RE até que toda a proteína tenha sido sintetizada
- A sequência sinal é removida, o ribossomo dissocia-se e é reciclado

 Proteínas vão do RE para o complexo de golgi para serem transportadas dentro de vesículas para seus destinos adequados

 Distinção do destino das proteínas é com base em características estruturais já que a sequência sinal já se dissociou

Sequências sinal para transporte nuclear não são clivadas

- Envelope nuclear é rompido a cada divisão celular e depois reeestabelecido
- Nesse processo, proteínas nucleares dispersam e precisam ser importadas novamente para o núcleo
- Sequência de localização nuclear (NLS) não é removida depois que a proteína atinge seu destino e isso permite a importação repetidas vezes

Síntese proteica é inibida por antibióticos e toxinas

- Tetraciclinas bloqueiam o sítio A do ribossomo
- Estreptomicina causa leitura errada do código genético
- Cloranfenicol bloqueia a peptidiltransferase
- Ricina proteína tóxica presente na mamona: inativa a subunidade 60S dos ribossomos de eucariotos

