$$B = \begin{pmatrix} -2 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}. \quad \mathbb{M} |A| = 1, |B| = 0, \ A, B \in S, \ \exists \exists A + B = \begin{bmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = -1,$$

(4) 构成群。由定义易于验证。

17.14 本题即为教材定理 17.29。证明如下:

证明:由于 ea = ae = a,因此 $e \in H$,H 非空。

 $\forall x, y \in H$, xya = xay(ya = ay)= axu(xa = ax)因此, $xy \in H$ 。 $\forall x$, $x \in H$ $\iff xa = ax$ (H 定义)

$$\Leftrightarrow$$
 $x^{-1}xa = x^{-1}ax$ (两边左乘 x^{-1}) (两边左乘 x^{-1}) (两边右乘 x^{-1}) (两边右乘 x^{-1}) (两边右乘 x^{-1}) (本) $ax^{-1} = x^{-1}a$ ($xx^{-1} = x^{-1}x = e$) ($xx^{-1} \in H$ ($xx^{-1} \in H$ ($xx^{-1} \in H$) (xx

17.15

- (1) 由于对任何群 G, $\{e\}$ 和 G 本身都是 G 的子群。故,G 只有一个子群当且仅当 $G = \{e\}$ 。
- (2) 由 Lagrange 定理可知,所有素数阶循环群都有且仅有两个子群: $\{e\}$ 和 G 本身。
- (3) 由 Lagrange 定理和教材定理 17.13 可知, 对所有素数 p, 若 G 为 p^2 阶循环群, 则 G 必有且 仅有 3 个群: $\{e\}$ 、G 和一个 p 阶子群。

17.16

证明: 充分性:

若 $H_1H_2 = H_2H_1$,则: 由于 H_1, H_2 都是子群,所以 $e \in H_1, e \in H_2$,从而 $e = ee \in H_1H_2$ 。 这就是说, H_1H_2 是非空的。又由 H_1H_2 的定义知, H_1H_2 中的任意元素均可写成 ab 的形式, 其中 $a \in H_1, b \in H_2$ 。因此, 任取 $x, y \in H_1H_2$, 将他们写成: x = ab, y = cd, 其中 $a, c \in H_1$ $H_1, b, d \in H_2$ 。从而 $xy^{-1} = ab(cd)^{-1} = abd^{-1}c^{-1}$ 。由于 $b, d \in H_2$,且 H_2 是群,故 $bd^{-1} \in H_2$ 。 于是 $abd^{-1} \in H_1H_2 = H_2H_1$, 这就是说,存在 $h_2 \in H_2, h_1 \in H_1$,使得 $abd^{-1} = h_2h_1$ 。又由于 $h_1, c \in H_1$ 且 H_1 是群,所以 $h_1c^{-1} \in H_1$ 。从而 $xy^{-1} = abd^{-1}c^{-1} = h_2h_1c^{-1} \in H_2H_1 = H_1H_2$ 。 由子群判定定理二知, H_1H_2 是 G 的子群。

必要性:

若 H_1H_2 是子群, 则: 由于 $\forall x \in H_1H_2$, 存在 $a \in H_1, b \in H_2$, 使得 x = ab, 故: $x \in H_1H_2$

$$\implies x^{-1} \in H_1 H_2$$
 $(H_1 H_2 \not\equiv \sharp)$

$$\iff \exists a \exists b (a \in H_1 \land b \in H_2 \land x^{-1} = ab) \tag{H_1 H_2 定义}$$