HW #1

1. Prove that $\sqrt{3}$ is irrational.

Bonus (not required): prove that for all primes $p \ge 2$, \sqrt{p} is irrational (among other things, this shows us that there exist an infinite number of irrational numbers, due to the infinitude of primes)

2. Recall that the power set of a set Λ is the set of all subsets (not necessarily proper) of Λ .

Prove using induction, that for any finite set A with |A| = n, $|P(A)| = 2^n \forall n \ge 1$, where P(A) denotes the power set of A.

First:

Son care:
$$N=0$$

A. [i], $P(A) = [0] = 2^{\circ} - 1$

Ind Step: $pron P(K) \rightarrow P(K^{H})$

Assum $P(K) + 2^{K} = 2^{K} = 2^{K}$
 $= 2 \cdot 2^{K}$
 $= 2 \cdot 2^{K}$