Mathematical Methods for Computer Science II

Spring 2018

Series 10 – Hand in before Monday, 07.05.2018 - 12.00

- 1. Let L be a language in a one-letter alphabet $\{0\}$. Show that either all words in $\{0\}^*$ are pairwise L-inequivalent or the number of their L-equivalence classes is finite.
- 2. (8 points) Let $L \subset \Sigma^*$ be a language, and let $a \in \Sigma$ be a letter of the alphabet. The quotient of L by a is the language defined by

$$L/a = \{ w \in \Sigma^* \mid wa \in L \}.$$

- a) Show that $L/a \cdot \{a\} \subset L$, but not necessarily $L/a \cdot \{a\} = L$. Here \cdot stands for the concatenation of languages.
- b) Show that $u \sim_L v \Rightarrow u \sim_{L/a} v$.
- c) Given a DFA that accepts L, explain how to modify it to a DFA that accepts L/a.
- d) Show that the number of states of the minimal automaton for L/a is less or equal to the number of states of the minimal automaton for L. Do these two automata always have the same number of states?
- 3. For any language L, call the number of L-equivalence classes the *index* of L. Denote it by $\operatorname{ind}(L) \in \mathbb{N} \cup \{\infty\}$.
 - a) Let $h \colon \Sigma^* \to \Delta^*$ be a homomorphism, let $L \subset \Delta^*$ be a regular language, and let $L' = h^{-1}(L) \subset \Sigma^*$ be its inverse homomorphic image. Show that

$$\operatorname{ind}(L') \leq \operatorname{ind}(L)$$
.

Give an example of h and L when this inequality is strict.

b) Let $L_1, L_2 \subset \Sigma^*$ be two regular languages. Show that

$$\operatorname{ind}(L_1 \cap L_2) \leq \operatorname{ind}(L_1)\operatorname{ind}(L_2).$$

Give an example of L_1 and L_2 when this inequality is strict.

4. Minimize the DFA given by the following table.

	0	1
q_0	q_1	q_0
q_1	q_0	q_2
q_2	q_7	q_1
q_3	q_6	q_7
q_4	q_7	q_5
q_5	q_6	q_4
q_6	q_5	q_6
q_7	q_7	$ q_0 $

Here q_0 is the initial state, and q_7 is the only final state.