МАТРИЦЫ, АССОЦИИРОВАННЫЕ С ГРАФОМ

Пусть G — произвольный n-граф. Упорядочим множество вершин графа $VG = \{v_1, v_2, \dots, v_n\}.$

Граф, у которого множество занумеровано натуральными числами от 1 до n, где n — число вершин графа, называется *помеченным графом*.

Определим *матрицу смежности* $A = A(G) = (\alpha_{ij})_{n \times n}$ графа G, полагая α_{ij} равным числу ребер, соединяющих вершины v_i и v_j , причем при i = j каждую петлю учитываем дважды.

n $\Sigma \alpha_{ij} = \deg v_i$ для любого і и матрица смежности обыкновенного графа бинарна. $j{=}1$

Для данного графа имеется, вообще говоря, несколько матриц смежности, отвечающих различным его упорядочениям.

Одна матрица смежности графа получается из другой его матрицы смежности с помощью некоторой перестановки строк и точно такой же перестановки столбцов.

Пусть σ — произвольная подстановка на множестве $\{1, 2, \ldots, n\}$. Определим матрицу $S(\sigma) = (\sigma_{ij})_{n \times n}$, полагая

$$\sigma_{ij} = 1$$
, если $\sigma(i) = j$, и $\sigma_{ij} = 0$, если $\sigma(i) \neq j$.

Нетрудно проверить, что

Последняя матрица получается из матрицы A с помощью перестановки строк и перестановки столбцов, отвечающих подстановке σ . Таким образом, две матрицы смежности графа G подобны.

Пусть G — произвольный обыкновенный граф. Упорядочим множество его вершин $VG = \{v_1, v_2, \dots, v_n\}.$

Определим *матрицу Кирхгофа* $B = B(G) = (\beta_{ij})_{n \times n}$, полагая

$$B = \begin{bmatrix} \operatorname{deg} v_1 & 0 & \dots & 0 \\ 0 & \operatorname{deg} v_2 & \dots & 0 \\ 0 & 0 & \dots & \operatorname{deg} v_n \end{bmatrix} - A(G).$$

Отметим, что обыкновенный граф G может иметь несколько различных матриц Кирхгофа, отвечающих различным упорядочениям графа G, и все эти матрицы подобны между собой.

Лемма 1. Алгебраические дополнения всех элементов матрицы Кирхгофа равны между собой.

Доказательство. Обозначим через 1 и 1^{\square} соответственно столбец и строку длин n, состоящие из единиц.

Для матрицы Кирхгофа $B = (\beta_{ij})_{n \times n}$ выполняется

$$\Sigma \ eta_{ij} = 0 \ (i = 1, 2, \dots, n), \ ext{T. e. } B \cdot \mathbf{1} = 0, \ j = 1 \ n \ \Sigma \ eta_{ij} = 0 \ (j = 1, 2, \dots, n), \ ext{T. e. } \mathbf{1} \ \ B = 0. \ i = 1$$

Отсюда следует, что $\det B = 0$ и $\operatorname{rank} B \leqslant n - 1$.

Если rank B < n-1, то все алгебраические дополнения элементов матрицы B равны 0.

Пусть rank B = n - 1 и B — присоединенная к B матрица, составленная из

алгебраических дополнений B_{ij} элементов β_{ij} , т. е.

В силу свойств матрицы B получаем

$$BB^{\hat{}}=B^{\hat{}}B=(\det B)E=0.$$

Так как $BB^{\hat{}} = 0$, любой столбец X матрицы $B^{\hat{}}$ удовлетворяет системе BX = 0.

Эта система линейных уравнений имеет ранг n-1 и дефект 1.

Так как $B \cdot \mathbf{1} = 0$, этой системе удовлетворяет столбец 1.

Следовательно, столбцы матрицы $B^{\hat{}}$ пропорциональны столбцу $\mathbf{1}$, откуда следует

$$B_{i1} = B_{i2} = \cdots = B_{in} \ (i = 1, 2, \ldots, n).$$

Аналогично получаем

$$B_{1j} = B_{2j} = \cdots = B_{nj} \ (j = 1, 2, \ldots, n).$$

Поэтому все элементы матрицы B одинаковы.

Лемма доказана.

Пусть G — произвольный (n,m)-граф. Упорядочим его множества вершин и ребер. $VG = \{v_1, v_2, \ldots, v_n\}$ и $EG = \{e_1, e_2, \ldots, e_m\}$.

Будем говорить, что граф является дважды помеченным.

Определим бинарную *матрицу инцидентности* $I = I(G) = (\iota_{ij})_{n \times m}$ графа G, полагая

- 1) $\iota_{ij} = 1$, если вершина v_i инцидентна ребру e_j и e_j не является петлей;
- 2) $\iota_{ij} = 0$ во всех остальных случаях.

Здесь вершинам отвечают строки, а ребрам — столбцы.

Заметим, что одна матрица инцидентности графа G получается из другой его матрицы инцидентности с помощью некоторой перестановки строк и некоторой перестановки столбцов.

Рассмотрим теперь произвольный (n, m)-орграф G = (V, D). Упорядочим множества вершин и дуг орграфа

$$V = \{v_1, v_2, \ldots, v_n\}$$
 и $D = \{f_1, f_2, \ldots, f_m\}.$

Определим *матрицу инцидентности* $I = I(G) = (\iota_{ij})_{n \times m}$ *ографа* G, полагая

- 1) $\iota_{ij} = 1$ если v_i начало дуги f_j и f_j не петля;
- 2) $\iota_{ij} = -1$ если v_i конец дуги f_j и f_j не петля;
- 3) $\iota_{ij} = 0$ во всех остальных случаях.

Здесь вершинам отвечают строки, а дугам — столбцы.

Пусть *G* — произвольный обыкновенный (n, m)-граф.

Превратим каждое его ребро в дугу, придав ребру одно из двух возможных направлений. Полученный орграф H на том же множестве вершин V будем называть *ориентацией* графа G.

Зафиксируем в G и H одинаковую нумерацию вершин и одинаковую нумерацию соответствующих ребер и дуг.

Лемма 2. Пусть B = B(G) — матрица Кирхгофа обыкновенного графа G и I = I(H) — соответствующая матрица инцидентности некоторой его ориентации H. Тогда

$$B = I \cdot I$$
?.

Доказательство.

Если умножить i-ю строку матрицы I на i-й столбец матрицы I \mathbb{I} , то получим сумму квадратов элементов i-й строки матрицы I, которая равна, очевидно, deg v_i .

$$a_{j} = \sigma_{i_{A}} \sigma_{i_{2}} \quad i_{A} = \frac{1}{i_{A}} \cdot \left[\frac{1}{i_{A}} \cdot \frac$$

Пусть теперь i_1 -строка матрицы I умножается на i_2 -столбец матрицы I. Если имеется дуга из vi_1 в vi_2 или из vi_2 в vi_1 с номером j, то получим -1. Если такой дуги нет, то получим 0. **Лемма доказана**.

Заметим, что

- 1) матрица В является матрицей Грама, составленной из естественных скалярных произведений строк матрицы I;
- 2) соотношение, указанное для обыкновенного графа в лемме 2, можно переписать в виде:

$$I \cdot I^{\mathsf{T}} = \begin{bmatrix} \operatorname{deg} v_{\mathbf{q}} & 0 & \dots & 0 \\ 0 & \operatorname{deg} v_{\mathbf{q}} & \dots & 0 \\ 0 & 0 & \operatorname{deg} v_{\mathbf{n}} \end{bmatrix} - A.$$

Эта формула связывает матрицу смежности A обыкновенного графа с матрицей инцидентности I его ориентации.