

TMA4180

Optimisation I

Spring 2017

Norwegian University of Science and Technology Department of Mathematical Sciences

Solutions to exercise set 8

1 Constructively, a logarithmic barrier approach may be written as

$$\min_{x,y,s} x + y - \mu \log s$$
 subject to $1 - x^2 - y^2 - s = 0$,

where $s (\geq 0)$ is the slack variable, and $\mu > 0$ is the barrier parameter which we intend to drive to 0. Introducing a Lagrange multipler λ , the KKT conditions for this problem are

$$1 + 2x\lambda = 0$$
, $1 + 2y\lambda = 0$, $-\frac{\mu}{s} + \lambda = 0$, and $1 - x^2 - y^2 - s = 0$.

This gives first that

$$\lambda = \frac{\mu}{s}$$
 and $x = y = -\frac{s}{2\mu}$,

and inserted into the constraint equation, we find that

$$1 - \frac{s^2}{2u^2} - s = 0.$$

The relevant solution of this quadratic equation is $s = \mu(\sqrt{\mu^2 + 2} - \mu)$, and we end up with

$$x = y = -\frac{1}{2}(\sqrt{\mu^2 + 2} - \mu)$$
 and $\lambda = (\sqrt{\mu^2 + 2} - \mu)^{-1}$.

Since the Hessian of the Lagrangian to this problem is positive definite (check it!), the found KKT point is the unique global minimiser of the logarithmic barrier formulation. Notably, as $\mu \to 0^+$, we recover the exact solution $x^* = y^* = -1/\sqrt{2}$, with $\lambda^* = 1/\sqrt{2}$, of the original problem.

 $\boxed{2}$ a) In matrix form—since we have m constraints—the augmented Lagrangian equals

$$\mathcal{L}_{A}(x,\lambda;\mu) = \frac{1}{2} \|x\|^{2} - \lambda^{\top} (Ax - b) + \frac{\mu}{2} \|Ax - b\|^{2},$$

where $\lambda \in \mathbb{R}^m$ is the Lagrange multipler, and $\mu > 0$ is the penalty parameter. Trying to minimise \mathcal{L}_A with respect to x, we first note that $\mathcal{L}_A(\cdot, \lambda; \mu)$ is both smooth and coercive, where the latter property follows from the dominating $\frac{1}{2}||x||^2$ term (how?). Hence, a global minimiser exists. This point is also a stationary point, and computing

$$0 = \nabla_x \mathcal{L}_A(x, \lambda; \mu) = x - A^{\top} \lambda + \mu A^{\top} (Ax - b)$$

shows that the unique global minimiser, for all λ and all μ , is

$$x_{\lambda,\mu} = \left(\frac{1}{\mu}\operatorname{Id} + A^{\top}A\right)^{-1}A^{\top}\left(\frac{1}{\mu}\lambda + b\right)$$
$$= A^{\top}\left(\frac{1}{\mu}\operatorname{Id} + AA^{\top}\right)^{-1}\left(\frac{1}{\mu}\lambda + b\right).$$

(Last transition was shown in exercise 3 b) in exercise set 7.)

b) Since the exact solution and optimal Lagrange multiplier of the original optimisation problem equal

$$x^* = (A^{\top}A)^{-1}A^{\top}b = A^{\top}(AA^{\top})^{-1}b = A^{\top}\lambda^*$$
 and $\lambda^* = (AA^{\top})^{-1}b$,

we demand that $x_{\lambda,\mu} = x^*$ and see what happens: left-multipling both sides by $(AA^{\top})^{-1}A$ gives

$$\left(\frac{1}{\mu}\mathrm{Id} + AA^{\top}\right)^{-1}\left(\frac{1}{\mu}\lambda + b\right) = \lambda^*,$$

or,

$$\frac{1}{\mu}\lambda + b = \left(\frac{1}{\mu}\operatorname{Id} + AA^{\top}\right)\lambda^* = \frac{1}{\mu}\lambda^* + b.$$

In conclusion, the minimiser of the augmented Lagrangian equals that of the exact solution if and only if $\lambda = \lambda^*$, with no restrictions on $\mu > 0$.

c) Before we should make any use of the iterative algorithm, it is vital to establish its *consistency* with the original optimisation problem which it intends to solve. By this we mean that the algorithm should solve the original problem in the limit: if $x^k \to x$ and $\lambda^k \to \lambda$, then $x = x^*$ and $\lambda = \lambda^*$.

As x^{k+1} is the minimum of $\mathcal{L}_A(\cdot, \lambda^k; \mu)$, we know that $x^{k+1} = x_{\lambda^k, \mu}$, and so inserting this into the iteration for the Lagrange multiplier yields that

$$\lambda^{k+1} = \lambda^k - \mu \left(Ax^{k+1} - b \right) = M(\lambda^k + \mu b),$$

where

$$M = \operatorname{Id} - AA^{\top} \left(\frac{1}{\mu} \operatorname{Id} + AA^{\top} \right)^{-1}$$

$$= \left[\left(\frac{1}{\mu} \operatorname{Id} + AA^{\top} \right) - AA^{\top} \right] \left(\frac{1}{\mu} \operatorname{Id} + AA^{\top} \right)^{-1}$$

$$= \frac{1}{\mu} \left(\frac{1}{\mu} \operatorname{Id} + AA^{\top} \right)^{-1}$$

$$= \left(\operatorname{Id} + \mu AA^{\top} \right)^{-1}.$$

Suppose now that $x^k \to x$ and $\lambda^k \to \lambda$. Then from the Lagrange multiplier iteration we get

$$\lambda = M(\lambda + \mu b)$$
.

which implies that

$$(\mathrm{Id} + \mu A A^{\top})\lambda = \lambda + \mu b.$$

In other words,

$$\lambda = (AA^{\top})^{-1}b = \lambda^*,$$

and therefore $x = x^*$ as well, because x^* is the minimiser of $\mathcal{L}_A(\cdot, \lambda^*; \mu)$ from question b). Thus the scheme is consistent.

Recall now from numerical linear algebra that the consistent Lagrange multiplier iteration will converge for all initial values if and only if $\rho(M) < 1$, where $\rho(M)$ denotes the spectral radius of M, that is, the largest eigenvalue of M in absolute value. Since A has full rank, matrix AA^{\top} is positive definite, with strictly positive eigenvalues. As such, the eigenvalues of

$$M^{-1} = \mathrm{Id} + \mu A A^{\top}$$

are always strictly greater than 1, which means that $\rho(M) < 1$, as desired.