N_buffers_in_deque 81 int N_deque = BUFFER SIZE * N buffers in deque N_taps 40001 samples = BUFFER SIZE * (N buffers in deque - 1) + 1 == max that fits using N deque

Fred Harris' approximation Multirate Signal Processing for Communication Systems, Fredric J. Harris, 2004, page 216, equation (8.16) 49 Hz

50 Hz f stop 88.00 dB = N_taps * 22 * ((f_stop - f_pass) / Fs) filter attenuation

f pass

			_
N_sig_into_conv	40500	samples	= BUFFER_SIZE + N_taps - 1 == N_deque by optimal design
offset_deque	0	samples	= N_deque - N_sig_into_conv == 0 by optimal design
N_conv_valid_out	500	samples	= N_deque - N_taps + 1 == BUFFER_SIZE by optimal design
offset_valid	20000	samples	= INT((N_taps - 1) / 2)
win_idx_valid_start	20000	samples	= offset_valid + offset_deque == offset_valid by optimal design
T_delay_valid_start	2.00	S	= win_idx_valid_start / Fs