University of Copenhagen Computer Science Department

Parallel Parsing using Futhark *Subtitle*

Author: William Henrich Due Advisor: Troels Henriksen Submitted: June 12, 2023

Contents

1	Introduction	1
2	Theory 2.1 $LL(k)$ Grammar	
3	Implementation	3
4	Testing	3
5	Conclusion	3

1 Introduction

2 Theory

2.1 LL(k) Grammar

For the construction of a LLP(q, k) parser generator the construction of first and follow-set[1, p. 5] and a LL(k) parser generator is needed. A short explanation of the construction of a LL(k) parser generator will be given since in the research of this project k=1 was quite often explained but never k>1 in a manner the author found understable.

Definition 2.1 (Truncated product). Let G = (N, T, P, S) be a grammar and $A, B \subseteq P((N \cup T)^*)$ be sets of symbol strings. The truncated product is defined in the following way.

$$A\odot_k B\stackrel{\text{\tiny def}}{=} \{\alpha\beta: \alpha\in A, \beta\in B, |\alpha\beta|\leq k\}$$

Definition 2.2 (Nonempty substring pairs). Let G = (N, T, P, S) be a grammar and $\omega \in (N \cup T)^*$ be a symbol string. The set of every nonempty way to split ω into two substrings is defined to be.

$$\varphi(\omega) \stackrel{\text{def}}{=} \{(\alpha, \beta) : \alpha \in (T \cup N)^+, \beta \in (T \cup N)^+, \alpha\beta = \omega\}$$

Algorithm 2.1 (Solving $FIRST_k$ set). Let G = (N, T, P, S) be a grammar, the first-sets can be solved as followed.

$$FIRST_k(\epsilon) = \{\epsilon\}$$

$$FIRST_k(t) = \{t\}$$

$$FIRST_k(A) = \bigcup_{\delta: A \Rightarrow \delta \in P} FIRST_k(\delta)$$

$$FIRST_k(\omega) = \bigcup_{(\alpha,\beta) \in \varphi(\omega)} FIRST_k(\alpha) \odot_k FIRST_k(\beta)$$

This may result in an infinite loop if implemented as is so fixed point iteration is used. Let $\mathcal{M}: N \to P(T^*)$ be a surjective function i.e. a dictionary which maps nonterminals to sets of terminal strings. $FIRST'_k$ is then the following modified version of $FIRST_k$.

$$FIRST'_{k}(\epsilon, \mathcal{M}) = \{\epsilon\}$$

$$FIRST'_{k}(t, \mathcal{M}) = \{t\}$$

$$FIRST'_{k}(A, \mathcal{M}) = \mathcal{M}(A)$$

$$FIRST'_{k}(\omega, \mathcal{M}) = \bigcup_{(\alpha, \beta) \in \varphi(\omega)} FIRST'_{k}(\alpha, \mathcal{M}) \odot_{k} FIRST'_{k}(\beta, \mathcal{M})$$

This function is then used to solve for a $FIRST_k$ function for a fixed k with fixed point iteration the following way.

- 1. Initialize a dictionary \mathcal{M}_0 such that $\mathcal{M}_0(A) = \emptyset$ where $\forall A \in \mathbb{N}$.
- 2. A new dictionary $\mathcal{M}_{i+1}: N \to P(T^*)$ is constructed by $\mathcal{M}_{i+1}(A) = \bigcup_{\delta: A \Rightarrow \delta \in P} FIRST'_k(\delta, \mathcal{M}_i)$ for all $A \in N$ where \mathcal{M}_i is the last dictionary that was constructed.
- 3. If $\mathcal{M}_{i+1} = \mathcal{M}_i$ then terminate the algorithm terminates else recompute step 2.

Let \mathcal{M}_f be the final dictionary after the algorithm terminates then it holds that $FIRST_k(\omega) = FIRST'_k(\omega, \mathcal{M}_f)$ if k stays fixed.

Algorithm 2.2 (Solving $FOLLOW_k$ set). Let G = (N, T, P, S) be a grammar, the follow-sets can be solved as followed.

$$FOLLOW_k(A) = \bigcup_{B: B \Rightarrow \alpha A \beta \in P} FIRST_k(\beta) \odot_k FOLLOW_k(B)$$

Once again this may not terminate so fixed point iteration can be used with following altered $FOLLOW_k$ and letting $\mathcal{M}: N \to P(T^*)$ be a surjective function.

$$FOLLOW_k(A, \mathcal{M}) = \bigcup_{B: B \Rightarrow \alpha A \beta \in P} FIRST_k(\beta) \odot_k \mathcal{M}(B)$$

This $FOLLOW_k$ function for a fixed k can then be computed using the following algorithm.

- 1. Extend grammar G = (N, T, P, S) using $G' = (N', T', P', S') = (N' \cup \{S'\}, T' \cup \{\Box\}, P \cup \{P \to S\Box^k\}S')$.
- 2. Initialize a dictionary \mathcal{M}_0 such that $\mathcal{M}_0(A) = \emptyset$ where $\forall A \in N \setminus \{S\}$ and $\mathcal{M}_0(S) = \{\Box^k\}$.
- 3. A new dictionary $\mathcal{M}_{i+1}: N \to P(T^*)$ is constructed by $\mathcal{M}_{i+1}(A) = \bigcup_{B: B \Rightarrow \alpha A \beta \in P} FIRST_k(\beta) \odot_k \mathcal{M}_i(B)$ for all $A \in N$ where \mathcal{M}_i is the last dictionary.
- 4. If $\mathcal{M}_{i+1} \neq \mathcal{M}_i$ then recompute step 3.
- 5. Let \mathcal{M}_f be the final dictionary after step 4. is completed. Let \mathcal{M}_u be another dictionary where $\mathcal{M}_u(A) = \{\alpha : \alpha \square^* \in \mathcal{M}_f(A)\}$ for all $A \in N \setminus \{S'\}$

It then holds that $FOLLOW_k(A) = \mathcal{M}_u(A)$ if k stays fixed for grammar G.

2.2 LLP(q,k) Grammar

- 3 Implementation
- 4 Testing
- 5 Conclusion

References

[1] Ladislav Vagner and Bořivoj Melichar. "Parallel LL parsing". In: *Acta Informatica* 44.1 (Apr. 2007), pp. 1–21. ISSN: 1432-0525. DOI: 10. 1007/s00236-006-0031-y. URL: https://doi.org/10.1007/s00236-006-0031-y.