경기인력개발원 2025

디지털 논리 회로 실습을 위한

Q

TinkerCAD 421H

및 전자 계측•시험 기기 사용법 소개

실습이 필요함 !!!

실습을 통해 배운 내용을 복습하면 더욱 깊은 학습이 가능. 하지만 여건상 항상 실습을 할 수는 없다!

4 Channels Duplex Transmission CWDM Mux & Demux

모든 측면에서 아주 쉽습니다

무료 온라인 3D 캐드 및 회로 시뮬레이션 툴 입문자 및 저학년을 대상으로 하기 때문에 사용법이 직관적임.

실습과 비슷한 환경

브레드보드를 이용하는 실습과 비슷한 환경. 실제 소자를 만져본 경험이 있다면 진입장벽 없이 누구나 사용 가능.

멀티미터 Multimeter

- 전자 계측기.
- 전압(V), 전류(A), 저항(R), 캐패시턴스(F) 등을 측정하는 용도.
- 팅커캐드에서는 가장 기본인 V, I, R만 계측이 가능함.

특정 노드의 전압을 측정하는 방법. 멀티미터의 음극을 GND에 연결한 후 양극을 측정할 노드에 연결.

특정 소자의 양 단에 걸리는 전압을 측정하는 방법. 멀티미터의 양단을 소자의 양단에 연결.

특정 소자를 지나는 전류를 측정하는 방법. 소자의 결선을 해제한 후 멀티미터를 직렬로 연결.

특정 소자의 저항을 측정하는 방법. 멀티미터의 양단을 측정할 소자의 양 극에 연결.

함수 발생기 Function Generator

- 시험용으로 사용되는 신호원.
- 사인파, 사각파, 삼각파 등 출력 가능.
- 임의의 파형을 갖는 주파수를 출력해 회로의 특성을 관찰.

함수 발생기 사용법

주파수와 파형, 전압을 선택하면 그에 맞는 신호를 출력. 디지털 소자 실습 시 일반적인 세팅값은?

함수 발생기 사용법

함수 발생기 (
이름 1	
주파수 1000	Hz
진폭 5	V
DC 오프셋 2.50	V
함수 사각형	•

팅커캐드에서 진폭(전압) 세팅은 V_{p-p} (peak to peak)으로 설정.

Offset으로 파형을 low level일 때 OV가 되도록 끌어올려야 함.

오실로스코프 Osciloscope

- 신호의 성분(전압, 주파수, 파형 등)을 계측하기 위한 장비.
- 전압, 전류 등을 계측 가능해 멀티미터처럼 사용도 가능.
- 보통 파형 관측 및 주파수 성분 관측에 사용.

오실로스코프 사용법

T/d(Time Per Division)이라는 세팅값만 가지고 있음.
X축(시간) 한 칸의 단위를 정해줌. 시간이 길수록 파형을 축소해서 볼 수 있음.

AND Gate 실습

AND Gate의 입력 한쪽을 5V와 결선, 나머지 한 쪽은 함수 발생기의 출력과 결선. AND Gate의 출력을 오실로스코프로 확인 시 함수 발생기의 출력을 확인 가능.

74HC74 Dual D Flip – Flop

- 2개의 D 플립플롭이 담긴 IC.
- 강제 리셋(액티브 로우), 강제 셋(액티브 로우) 핀 존재.
- 라이징 엣지 클록이 들어올 시 작동.

PIN	SYMBOL	DESCRIPTION
1	1RD	asynchronous reset-direct input (active LOW)
2	1D	data input
3	1CP	clock input (LOW-to-HIGH, edge-triggered)
4	1SD	asynchronous set-direct input (active LOW)
5	1Q	true flip-flop output
6	1Q	complement flip-flop output
7	GND	ground (0 V)
8	2Q	complement flip-flop output
9	2Q	true flip-flop output
10	2SD	asynchronous set-direct input (active LOW)
11	2CP	clock input (LOW-to-HIGH, edge-triggered)
12	2D	data input
13	2RD	asynchronous reset-direct input (active LOW)
14	V _{CC}	positive supply voltage

Fig.1 Pin configuration DIP14, SO14 and (T)SSOP14.

D Flip Flop 실습

각 IC의 데이터시트를 확인하고 알맞은 핀을 결선하여 실습할 수 있다.

갈무리

아두이노 등 간단한 MCU 시뮬레이션도 가능. 제작한 회로 공유도 가능.

갈무리

Q&A

경기인력개발원 2025

감사합니다.