Agentes Reactivos en Inteligencia Artificial

1. Introducción a los Agentes Reactivos

Un **agente reactivo** es un tipo de agente de Inteligencia Artificial (IA) que toma decisiones en función de su percepción del entorno en un momento dado, sin almacenar un historial de eventos ni planificar a futuro. Su comportamiento se basa en reglas predefinidas de la forma **"si ocurre X, entonces hacer Y"**.

Los agentes reactivos son adecuados para entornos donde las respuestas rápidas y eficientes son necesarias, pero pueden ser limitados en escenarios más complejos.

Los agentes reactivos se dividen en dos tipos principales:

- 1. Agentes Reactivos Simples
- 2. Agentes Reactivos Basados en Modelos

2. Agentes Reactivos Simples

¿Qué son?

Un **agente reactivo simple** sigue reglas directas para responder a su entorno. No tiene memoria ni modelo interno del mundo; solo actúa en función de lo que percibe en el momento.

Estructura

- Sensores: Captan información del entorno.
- Reglas de condición-acción: Conjunto de instrucciones predefinidas.
- Actuadores: Ejecutan una acción según la regla que se cumpla.

Ejemplo de Funcionamiento

Imagina un robot aspiradora muy básico:

- Si detecta un obstáculo, gira a la derecha.
- Si detecta suciedad, la aspira.

Aquí no hay almacenamiento de información pasada, solo reacción inmediata a estímulos.

Ventajas y Desventajas

Ventajas:

- Rápido y eficiente en tareas simples.
- Fácil de implementar.

X Desventajas:

- No puede manejar situaciones complejas.
- No tiene memoria ni aprendizaje.
- No puede prever consecuencias futuras.

Ejemplo en la Vida Real

- Termostato: Si la temperatura es menor a X grados, enciende la calefacción.
- Semáforos básicos: Cambian de color en intervalos fijos sin considerar el tráfico.

3. Agentes Reactivos Basados en Modelos

¿Qué son?

Un **agente reactivo basado en modelos** es una mejora del agente reactivo simple. Tiene un **modelo interno** del mundo, lo que le permite recordar información sobre su entorno y tomar mejores decisiones.

Estructura

- Sensores: Perciben el entorno.
- Modelo del mundo: Guarda información del estado del entorno.
- Reglas de condición-acción: Igual que en el agente reactivo simple, pero considerando la información del modelo.
- Actuadores: Ejecutan la acción correspondiente.

Ejemplo de Funcionamiento

Volviendo al robot aspiradora, ahora puede recordar qué áreas ya limpió y evitar pasar varias veces por el mismo lugar.

 Si detecta un obstáculo, consulta su modelo interno para decidir una mejor ruta en lugar de solo girar al azar.

Ventajas y Desventajas

Alex Fernando Bojórquez Rojas Jesús Miguel Velarde Arce

Ventajas∶

- Puede manejar entornos más complejos.
- Recuerda estados anteriores, lo que mejora su eficiencia.

X Desventajas:

- Mayor complejidad computacional.
- Puede requerir más memoria y procesamiento.

Ejemplo en la Vida Real

- Coches autónomos: Guardan información de la carretera y el tráfico para moverse de manera más eficiente.
- Asistentes virtuales (Siri, Alexa): Recuerdan preferencias y contexto para dar respuestas más precisas.

4. Comparación entre Agentes Reactivos Simples y Basados en Modelos

Característica	Agente Reactivo Simple	Agente Reactivo Basado en Modelos
Memoria	No tiene memoria	Usa un modelo del mundo
Complejidad	Baja	Mayor complejidad
Capacidad de Aprendizaje	No aprende ni recuerda	Puede recordar estados pasados
Ejemplo	Termostato básico	Robot aspiradora avanzada

5. Conclusión

Los agentes reactivos son fundamentales en IA porque permiten que los sistemas interactúen con el mundo real de manera rápida y eficiente. Sin embargo, su efectividad depende de la complejidad del problema:

- Para tareas simples, un agente reactivo simple es suficiente.
- Para entornos más complejos, un agente reactivo basado en modelos es una mejor opción.

En problemas aún más avanzados, los agentes necesitan planificación y aprendizaje, lo que lleva a otros tipos de agentes, como los **basados en objetivos** o **basados en utilidad**.