

BEOMASTER 3000 TYPE 2402

Technische Daten 1 - 2 Technical data Übersicht über Transistoren 5 Parts list for PC units Stückliste für Schaltplatten-Einheiten $\,$. . 9 - 10 PC units Funktionsbeschreibung 12 - 23 Änderungen, Fehlertips 24 Servicetips 25 - 27 Circuit description Modifications, service tips Service tips Some circuits symbols explained

INHALTSVERZEICHNIS

CONTENTS

Parts list for BEOMASTER 3000

TECHNICAL DATA

TECHNISCHE DATEN

Dimensions and weight		Grösse und Gewich	t:
Dimensions:	95 mm high, 260 mm deep, 580 mm long (3 3/4 X 10 1/4	Abmessungen:	95 mm hoch, 260 mm tief, 580 mm lang.
Weight:	X 22 13/16 in). 8.7 kg (19.14 lb.).	Gewicht:	8,7 kg.
Power Supply Voltage:	110 - 130 - 220 - 240 volts AC.	Netzanschluss Spannung:	110 - 130 - 220 - 240 Volt Wechselspannung.
Frequency:	50 - 60 Hz.	Frequenz:	50 - 60 Hz.
Power consumption:	20 - 180 watts.	Verbrauch:	20 - 180 Watt.
Amplifier Section		Verstärkerteil	
Power output:	2 X 30 watts RMS	Ausgangsleistung:	2 X 30 Watt Sinus.
-	2 X 60 watts music power.	,	2 X 60 Watt Musik.
Speaker impedance:	4 ohms.	Lautsprecher-	
		impedanz:	4 Ohm.
Distortion:	Less than 0.6 % at all frequen-	Verzerrung:	< 0,6 % bei allen Frequenzen von 40 -
	cies between 40 and 12,500 Hz		12.500 Hz und einer Ausgangsleistung
	and power outputs of 30 watts		von 30 Watt an beiden Kanälen gleich-
Intermodulation:	on both channels simultaneously. Less than 0.6 % with amplifier	Intermodulation:	zeitig.
intermodulation:	driven to 2 X 30 watts at fre-	intermodulation:	<0,6 % bei Aussteuerung auf 2 X 30 Watt mit Meßfrequenzen 250 und 8.000
	quencies of 250 and 8000 Hz at		Hz bei einem Amplitudenverhältnis
	amplitude ratio of 4:1.		von 4: 1 nach DIN 45.403, Bl. 4.
	DIN 45.403, 4.		ven ver nach bliv verveb, bli ve
Damping factor:	Less than 15 at 4 ohms.	Dämpfungsfaktor:	>15 bei 4 Ohm.
Frequency response:	$40 - 20,000 \text{ Hz} \pm 1.5 \text{ dB}.$	Frequenzgang:	$40 - 20.000 \text{ Hz} \pm 1,5 \text{ dB}.$
Signal-to-noise ratio:	Min. 60 dB at 50 mW at nomi-	Signal/Störspan-	Min. 60 dB für 50 mW bei Nenneingangs
	nal input signal (all inputs).	nungsverhältnis:	spannung. (Alle Eingänge).
	Min. 65 dB at 30 watts and no-		Min. 65 dB für 30 Watt und Nennein-
	minal input signal at PHONO LOW.		gangsspannung bei PHONO LOW.
	Min. 75 dB at 30 watts and no-	•	Min. 75 dB für 30 Watt und Nennein-
	minal input voltage at PHONO		gangsspannung bei PHONO HIGH und
	HIGH and TAPE.		TAPE.
Channel separation:	Better than 45 dB at 1000 Hz	Übersprechdämp-	>45 dB bei 1 kHz und > 30 dB zwische
	and better than 30 dB between		250 und 10.000 Hz, DIN 45.500,
	250 and 10,000 Hz. DIN	den Kanälen:	Bl. 6. 2. 4. 1.
Separation between	45.500, 6. 2. 4. 1. Better than 60 dB at 1000 Hz	Übersprechdämp-	>60 dB bei 1 kHz und >45 dB zwische
inputs:	and better than 45 dB between		250 und 10.000 Hz, DIN 45.500, Bl. 6.
mputs.	250 and 10,000 Hz. DIN	den Eingängen:	Der Fremdspannungsabstand und das
	45.500, 6.		Übersprechdämpfungsmaß wurden mit
	Signal-to-noise ratio and sepa-		folgenden Belastungen an den Eingängen
	ration between inputs were	•	und Nenneingangspegel gemessen:
	measured at the following in-		PHONO HIGH: 5,6 kOhm.
	put loads and nominal input		PHONO LOW: 1,5 kOhm.
	level:		TAPE: 5,6 kOhm.
	PHONO HIGH: 5.6 k ohms.		Regler auf die Nenneingangsempfind-
	PHONO LOW: 1.5 k ohms.		lichkeiten eingestellt. Klangregler linear.
	TAPE: 5.6 k ohms. Alignment controls set for no-		Physiologische Frequenzanhebung aus-
	minal input sensitivities.		geschaltet.
	Tone controls set for flat fre-		
	Guaray rasponsa		

quency response.
"Loudness" control off.

Bass control range: Treble control range: Balance control range: Rumble filter: Treble filter: Channel difference:	± 17 dB at 50 Hz. ± 14 dB at 10,000 Hz. Min. 60 dB. 80 Hz, 12 dB per octave. 4000 Hz, 12 dB per octave. Better than 3 dB in range be- tween max. volume setting and 40 dB below max. volume setting.	Tiefenregler: Höhenregler: Balanceregler: Rumpelfilter: Höhenfilter: Unterschied im Übertragungs- maß der Kanäle:	± 17 dB bei 50 Hz. ± 14 dB bei 10 kHz. Min. 60 dB. 80 Hz 12 dB je Oktave. 4 kHz 12 dB je Oktave. < 3 dB von 0 bis 40 dB Herabregele von Lautstärkeregler.
Tuner section		Radioteil	
Tuning range:	Type 2402 up to and including series 3: 87.5 - 108 MHz. Type 2402, up to and including series 4: 87.5 - 104 MHz.	Abstimmung:	Typ 2402, bis und einschl. Serie 3: 87,5 - 108 MHz. Typ 2402, ab und einschl. Serie 4: 87,5 - 104 MHz.
Limiting:	- 3 dB 1 μV.	Begrenzung:	- 3 dB 1 μV .
Usable sensitivity:	(IHFM 6.03.02) 2 μV.	Nutzbare Emp- findlichkeit:	(IHFM) 6.03.02) 2 μV.
Selectivity:	f ± 400 kHz (IHFM 6.03.05) 55 dB.	Selektivität:	$f \pm 400 \text{ kHz}$ (IHFM 6.03.05) 55 dB.
Capture ratio:	(IHFM 6.03.04) 3 dB.	Capture ratio:	(IHFM 6.03.04) 3 dB.
AM suppression:	45 dB.	AM-Unter- drückung:	45 dB.
Discriminator bandwidth:	1 MHz.	Detektorband- breite:	1 MHz.
Frequency response:	±1.5 dB 20 - 15,000 Hz.	Frequenzgang:	± 1,5 dB 20 - 15.000 Hz.
Signal-to-noise ratio:	$1000~Hz,\ 75~kHz$ variation, $100~\mu V\ 70~dB.$	Fremdspannungs-abstand:	1000 Hz, 75 kHz Hub, 100 µV 70 dB.
Distortion:	1000 Hz, 40 kHz, 100 μV 0.4 %.	Verzerrung:	1000 Hz, 40 kHz, 100 μV 0,4 %.
Stereo channel separation:	1000 Hz 40 dB.	Übersprechdämp- fungsmaß zwischen den Kanälen bei Stereobetrieb:	1000 Hz 40 dB.
Suppression of pilot and carrier:	40 dB.	Unterdrückung von Pilotfrequenz und Trägerwelle:	40 dB.
Semiconductors etc.		Bestückung	
	63 transistors.	Anzahl Transi- storen:	63 Stck.
	2 integrated circuits	Integrierte Schaltungen:	2 Stck.
	2 1000-mA fuses.	Sicherungen:	2 Stck. 1000 mA.

Subject to change without notice.

Änderungen vorbehalten.

BEOMASTER 3000, TYPE 2402. DIAGRAM 2 / BEOMASTER 3000, TYP 2402. SCHALTBILD 2

TRANSISTOR CHART/ÜBERSICHT ÜBER TRANSISTOREN

Index nr.	B B	E B	B E C	. EBC	⊕ E C B	B C E	E B C	S B	CBE	S S S S S S S S S S S S S S S S S S S
8320057	BC114	BC 109B		MPS 6520 MPS 6521	BC 169B BC 184B-L					
8320061						2 N 3055				
8320069	BC 154	BC179B BC263B	BC159B		BC 214B-L BC 259B					
8320089							BF 194			
8320095		BC 109B	BC149B		BC 169B BC 184B-L					
8320097		BC107B	BC147B		BC 167B BC 182B-L					
8320104	BC 153 BC 154	BC 262B BC 178B	BC 158B	MPS 6518 MPS 6519	BC 212 B-L					
8320108	BC 113 BC 114	BC 108 B	BC148B	MPS 6515	BC 168B BC 183B-L					-
8320111								BF 166		
8320119										TIS 88 - 2N5245
8320124	BC 119									
8320125	BC 225									
8320126		BC 312								
8320136								ļ		TIS 88 - 2N 5245
8320138							<u> </u>	-	BC183B-K	
8320161		BC 261 B			BC212B-L					
8320164		BC108B	BC148B	MPS 6515	BC 168 B BC 183 B-L					
8320173		BC310/BC311								
8320192		BC 109 B	BC149B		BC 169 B BC 184 B-L					

NOTES/NOTIZEN				
		-		
	-			
				-
			-	
•				-

DISASSEMBLY / ZERLEGUNG

BEOMASTER 3000-2, TYPE 2402-108 MHz/117 V. CIRCUIT DIAGRAM 2

PC UNIT 8002062, BASS COMPENSATION CIRCUIT / PRINTPLATTE 8002062, PHYSIOLOGISCHE LAUTSTÄRKEREGELUNG

PUSHBUTTON SWITCH WITH PC UNIT, 7402086. / DRUCKKNOPFUMSCHALTER MIT LEITERPLATTE, 7402086.

PC board, conductor side. / Printplatte von Druckseite aus gesehen.

PC board, component side. / Printplatte von Bauteilseite aus gesehen.

PUSHBUTTON SWITCH WITH PC UNIT, 7402086. / DRUCKKNOPFUMSCHALTER MIT LEITERPLATTE, 7402086.

FRONT-END, 8050045 / TUNER 8050045

PC UNIT 8002057, DISCRIMINATOR / PRINTPLATTE 8002057, DETEKTOR

PC board, component side / Printplatte von Bauteilseite aus gesehen.

PC UNIT 8002058, IF/DECODER / PRINTPLATTE 8002058, ZF/DECODER

PC board, component side. / Printplatte von Bauteilseite gesehen.

	PARTS LIST, FRONT-END 8050045	STÜCKLISTE FÜR TUNER 8050045
2	Diode, BB 103 blue	Diode, BB 103 blau
11	Diode, BB 103 green	Diode, BB 103 grün
16	Diode, BB 103 green	Diode, BB 103 grün
27	Electrolytic capacitor, 4.7 $\mu F/25~V~TANT~$.	Eiko, 4,7 µF/25 V Tant
34	Diode, BA 138	Elko, 10 µF/10 V Tant
35	Electrolytic capacitor, 10 µF/10 V TANT .	Diode, BB 103 blau
42	Diode, BB 103 blue	Antennenspule
	Band-pass filter coil, primary	Bandfilterspule, primär 8020121
	Band-pass filter coil, secondary	Bandfilter, sekundär 8020122
	Oscillator coil	Oszillatorspule
	IF coil	ZF-Spule
	IF coil	Transistor, TR 1, TR 2
	Transistor, TR 1, TR 2 Transistor, TR 3	Transistor, TR 3
	Transistor, TR 4	Transistor, TR 4
	PARTS LIST, PC 8002058, IF/DECODER	STÜCKLISTE FÜR PRINTPLATTE 8002058, ZF/DECODER
47	RF coil, 150 µH on 1 megohm	HF-Spule, 150 µH auf 1 MOhm 8020104
74	Potentiometer, 250 ohms	Potentiometer, 250 Ohm
109	Electrolytic capacitor, 2.2 µF/35 V TANT .	Elko, 2,2 µF/35 V Tant
123	Electrolytic capacitor, 10 μF/10 V TANT .	Elko, 10 µF/10 V Tant
	* Diode, 22 volts	Diode, 22 Volt
142 * 145	* Resistor, NTC, 15 k ohms Electrolytic capacitor, 400 µF/40 V	Elko, 400 μF/40 V
158	Potentiometer, 50 k ohms	Potentiometer, 50 kOhm
162	Potentiometer, 50 k ohms	Potentiometer, 50 kOhm 5370061
166	Potentiometer, 5 k ohms	Potentiometer, 5 kOhm 5370058
169	Potentiometer, 2 k ohms	Potentiometer, 2 kOhm
193	Diode, ZF 18	Diode, ZF 18
215 230	Electrolytic capacitor, 25 μF/15 V Electrolytic capacitor, 1 μF/35 V TANT	Elko, 1 μF/35 V Tant
232	Potentiometer, 5 k ohms	Potentiometer, 5 kOhm
237	Electrolytic capacitor, 1 µF/35 V TANT	Elko, 1 μF/35 V Tant
	Electrolytic capacitor, 4.7 µF/25 V TANT .	Elko, 4,7 µF/25 V Tant
	Electrolytic capacitor, 10 μF/10 V TANT .	Elko, 10 μF/10 V Tant
	RF choke, 130 µH	Sperrspule, 130 μH
	AF transformer, 38 kHz	NF-Kreis, 19 kHz m. Abgriff 8022011
	AF circuit, 19 kHz	NF-Kreis, 19 kHz
	AF circuit, 114 kHz filter	NF-Kreis, 114-kHz-Filter 8022024
	AF circuit, 152 kHz filter	NF-Kreis, 152-kHz-Filter 8022025
	FM transformer, discriminator	Transformator, FM Detektor 8010091
	Ceramic filters (three)	Keramisches Filter, 3 Stck 8030002 Integrierte Schaltung, uA 703 8340002
	Integrated circuit, uA 703	Integrierte Schaltung, FM, ZF
	Diode pair, two AA 119's	Diodenpaar, 2 Stck. AA 119 8300000
	Diode, AA 119	Diode, AA 119
	Diode, OA 90	Diode, OA 90
	Diode, 9.1 volts (Nos. 137 and 148)	Diode, 9.1 Volt, Pos. Nr. 137 und 148 8300028
	Diode (Nos. 201, 202, 205, 206, and 226) .	Diode, Pos. Nr. 201, 202, 205, 206 und 226 8300058 Gleichrichterventil, 30 Volt/350 mA 8310028
	Rectifier, 30 volts 350 mA	Transistor, TR 5, TR 6, TR 7 und TR 8 8320089
	Transistor, TR 5, TR 6, TR 7, TR 8 Transistor, TR 9	Transistor, TR 9
	Transistor, TR 10, TR 17	Transistor, TR 10, TR 17 8320161
	Transistor, TR 11, TR 15, TR 19,	Transistor, TR 11, TR 15, TR 19,
	TR 23, TR 24	TR 23, TR 24
	Transistor, TR 12, TR 13, TR 14, TR 22 .	Transistor, TR 12, TR 13, TR 14, TR 22 8320164
	Transistor, TR 16	Transistor, TR 16
	Transistor, TR 18	Transistor, TR 20, TR 21
	* The BEOMASTER 3000, type 2402 - 1,2,	* Im BEOMASTER 3000 Typ 2402-1,2 und 3 (Skala
	and 3 (dial 87.5 - 108 MHz) uses the zener	87,5 - 108 MHz) sind nachstehende Zenerdiode und
	diode and NTC resistor specified here:	NTC-Widerstand angewandt
138	Diode, 27 volts	Diode, 27 Volt
142	Resistor, NTC, 82 k ohms	Widerstand, NTC, 82 kOhm

	•	
	PARTS LIST, PC 8002060, PREAMPLIFIER	STÜCKLISTE FÜR PRINTPLATTE 8002060, VORVERSTÄRKER
		VORVERSTARKER
336 354	Electrolytic capacitor, 250 μF/15 V Electrolytic capacitor, 25 μF/15 V	Elko, 250 μF/15 V
357	Electrolytic capacitor, 250 µF/6 V	Elko, 250 µF/6 V
367	Electrolytic capacitor, 0.47 µF/35 V TANT.	Elko, 0,47 µF/35 V Tant
381	Electrolytic capacitor, 25 µF/15 V	Elko, 25 µF/15 V
391	Electrolytic capacitor 250 µF/6 V	Elko, 250 µF/6 V
398	Electrolytic capacitor 0.47 uF/35 V TANT.	Elko, 0,47 µF/35 V Tant
390	Electrolytic capacitor, 2.2 µF/35 V TANT.	Elko, 2,2 µF/35 V Tant
	Electrolytic capacitor, 4.7 µF/25 V TANT	Elko, 4,7 µF/25 V Tant
	Electrolytic capacitor, 1 µF/35 V TANT	Elko, 1 µF/35 V Tant
	Potentiometer, 50 k ohms	Potentiometer, 50 kOhm
	Transistor, TR 25, TR 26, TR 27,	Transistor, TR 25, TR 26, TR 27,
	TR 28, TR 32, TR 36	TR 28, TR 32, TR 36
	Transistors, TR 29, TR 33	Transistor, TR 29, TR 33
	Transistors, TR 30, TR 34	Transistor, TR 30, TR 34
	Transistors, TR 31, TR 35	Transistor, TR 31, TR 35
	114113131013, 111 31, 111 30	1141515001, 110 51, 110 55
	PARTS LIST, PC 8002059, AF	STÜCKLISTE FÜR PRINTPLATTE 8002059, NF
458	Electrolytic capacitor, 50 µF/50 V	Elko, 50 μF/50 V
472	Electrolytic capacitor, 25 µF/35 V	Elko, 25 μF/35 V
481	Potentiometer, 250 ohms	Potentiometer, 250 Ohm 5370059
484	Diode, 1.5 volts	Diode, 1.5 Volt
546	Electrolytic capacitor, 50 µF/50 V	Elko, 50 μF/50 V
561	Electrolytic capacitor, 25 µF/35 V	
563	Potentiometer, 250 ohms	Potentiometer, 250 Ohm 5370059
572	Diode, 1.5 volts	Diode, 1,5 Volt
	Heat sink for transistor	Kühlprofil für Transistor
	Electrolytic capacitor, 4.7 µF/25 V TANT .	Elko, 4,7 µF/25 V Tant
	Electrolytic capacitor, 10 µF/10 V TANT .	Elko, 10 μF/10 V Tant
	Electrolytic capacitor, 1 µF/35 V TANT	Elko, 1 uF/35 V Tant
	Electrolytic capacitor, 10 µF/70 V	Elko, 10 uF/70 V
	Electrolytic capacitor, 100 µF/35 V	Elko, 100 μF/35 V
	Resistor, 0.15 ohm/1 W	Widerstand, 0,15 Ohm/1 W
	Diodes, (Nos. 488, 492, 496, 496 a,	Diode, Pos. Nr. 488, 492, 496, 496a,
	576, 580, 584, and 584 a)	576, 580, 584 und 584 a
	Transistors, TR 37, TR 38, TR 51, TR 52 .	Transistor, TR 37, TR 38, TR 51, TR 52 8320097
	Transistors, TR 39, TR 53	Transistor, TR 39, TR 53 8320057
	Transistors, TR 40, TR 54	Transistor, TR 40, TR 54 8320095
	Transistors, TR 41, TR 43, TR 55, TR 58 .	Transistor, TR 41, TR 43, TR 55, TR 58 8320108
	Transistors, TR 42, TR 56	Transistor, TR 42, TR 56 8320161
	Transitor pair, TR 44, TR 47, and	Transistorpaar, TR 44, TR 47 und
	TR 59, TR 62	TR 59, TR 62 8320173
	Transistors TR 46, TR 60	
	Transistors, TR 48, TR 61	Transistor, TR 48, TR 61

PC UNIT, 8002060, PREAMPLIFIER / PRINTPLATTE 8002060, VORVERSTÄRKER

PC board, component side / Printplatte von der Bauteilseite aus gesehen

PC UNIT, 8002059, AF / PRINTPLATTE 8002059, NF

PC board, component side / Printplatte von der Bauteilseite aus gesehen

CIRCUIT DESCRIPTION

FM Front-end 8050045

The signal picked up by the aerial is applied, via a tuned circuit, to the RF stage, two FET transistors in a cascode circuit. The cascode circuit eliminates the need for neutralization, and the AVC control system does not affect the input circuit because the incoming signal is applied to TR 2 whilst the AVC bias voltage is applied to TR 1. The mixer, too, uses an FET transistor, TR 4. Injection signal from the separate oscillator TR 3 is fed via an inductive coupling to the source of the mixer transistor, and the amplified signal is fed via a band-pass filter to the gate. The IF signal is taken off at the drain.

Instead of a variable capacitor, the tuner uses four BB 103 capacitance diodes and a 100 k ohm potentiometer. In addition to this potentiometer, which is termed the main potentiometer and covers the entire FM band, the tuner incorporates six more 100 k ohm potentiometers; these are used for fixed-station tuning and are switched into circuit by six associated pushbuttons. Each of them covers the entire FM band from 87.5 to 104 MHz. The six "fingertip potentiometers" are placed on the front panel of the receiver. The seven potentiometers receive 22 volts of stabilized control voltage from transistor TR 10, enabling DC tuning of the oscillator and the three RF circuits.

The BA 138 diode in the oscillator circuit provides AFC control. It is controlled directly from the discriminator circuit.

FM Intermediate Frequency

The IF amplifier uses ceramic filters and integrated circuits, thus reducing the number of adjustable circuits to four. The use of integrated circuits results in higher gain per stage and effective limiting. Each ceramic filter is the equivalent of two tuned circuits. The frequency of the ceramic filters varies between 10.5 MHz and 10.9 MHz, and in the case of replacement it is necessary to replace all three filters as their frequency is not adjustable.

The output of the front-end is fed to the first IF transistor, TR 5, via a link. Ceramic filters in the collector circuit cause an attenuation of 12 dB. The output of the amplifier stage composed of TR 6, TR 7, is applied to an integrated circuit, CA 3012, which provides a gain of approx. 70 dB. A 250-ohm potentiometer (No. 74) immediately ahead of the CA 3012 permits gain control; higher values of resistance gives higher gain but also involve a risk of instability.

The last ceramic filter is placed in the collector circuit of TR 8. From there, the signal passes to integrated circuit µA 703, which provides 25-28 dB of gain. The discriminator is a symmetrical ratio detector; voltage for plotting the S-curve can be taken off at the test point.

FUNKTIONSBESCHREIBUNG

FM-Tuner 8050045

Über einen abgestimmten Kreis wird das Antennensignal zur HF-Stufe geführt, die aus zwei Feldeffekt-Transistoren in Kaskodenkopplung besteht. Eine Stabilisierungsschaltung ist dann nicht erforderlich, und die AVR-Regelung beeinflußt nicht den Eingangskreis, da das Antennensignal dem TR 2 und die AVR-Spannung dem TR 1 zugeführt werden. In der Mischstufe wird auch ein Feldeffekt-Transistor, TR 4, benutzt. Von dem getrennten Oszillator, TR 3, wird das Signal'über eine induktive Kopplung zur Source des Mischtransistors geführt, und das verstärkte Antennensignal wird über ein Bandfilter zum Gate geführt. Das ZF-Signal wird am Drain abgegriffen.

Im Tuner werden statt eines Drehkondensators 4 Kapazitätsdioden BB 103 sowie ein Potentiometer von 100 kOhm benutzt. Außer diesem Potentiometer, das als Hauptpotentiometer bezeichnet wird, und das ganze UKW-Band deckt, gibt es sechs andere, auch von je 100 kOhm, die für die feste Einstellung von Stationen benutzt werden. Zusammen mit einem entsprechenden Druckknopf können diese eingekoppelt werden, und sie decken je für sich das ganze UKW-Band von 87,5 bis 104 MHz. Die sechs "Fingerpotentiometer" sind an der Frontplatte des Empfängers angebracht. Den sieben Potentiometern wird eine stabilisierte Steuerspannung von 22 Volt vom Transistor TR 10 zugeführt, wodurch der Oszillator und die drei HF-Kreise gleichspannungsmäßig abgestimmt werden können

Die in den Oszillator eingeschaltete Diode BA 138 arbeitet als Frequenzfang, AFN, und wird direkt vom FM-Detektor gesteuert.

FM-Zwischenfrequenz

Im Zwischenfrequenzverstärker werden keramische Filter und integrierte Schaltungen benutzt, wodurch die Anzahl von abgleichbaren Kreisen auf 4 vermindert worden ist. Durch die Anwendung von integrierten Schaltungen ergibt sich eine höhere Verstärkung in einer Stufe und gleichzeitig bieten sie eine wirksame Begrenzung. Die keramischen Filter entsprechen je zwei abgestimmten Kreisen. Die Frequenz der Filter schwankt zwischen 10,5 und 10,9 MHz, und bei einer etwaigen Auswechslung müssen alle drei Filter ausgewechselt werden, da ein Abgleich der ZF-Frequenz nicht möglich ist.

Vom Tuner wird das Signal zum 1. ZF-Transistor, TR 5, über eine Link-Kopplung geführt. Im Kollektor befinden sich keramische Filter, die eine Dämpfung um 12 dB bewirken. Von der Verstärkerstufe TR 6, TR 7 wird das Signal einer integrierten Schaltung CA 3012 zugeführt, die eine Verstärkung von ca. 70 dB leistet. Unmittelbar vor der CA 3012 gibt es ein Potentiometer von 250 Ohm, Pos. 74, das die Empfindlichkeit regulieren kann; ein höherer Widerstand ergibt eine grössere Empfindlichkeit, aber damit auch die Möglichkeit einer Unstabilität.

Im Kollektor von TR 8 sitzt das letzte keramische Filter, und es wird von einer integrierten Schaltung µA 703 gefolgt, die eine Verstärkung von 25 - 28 dB leistet. Der Detektor ist ein symmetrischer Verhältnisdetektor; im Testpunkt kann die S-Kurve abgegriffen werden.

13

AVC

Transistor TR 7 is an emitter follower. It is connected to the 2nd IF amplifier, TR 6. Increasing values of incoming signal will cause an increase in signal voltage at the collector of TR 7. This voltage is fed through a capacitance to a voltage doubler composed of diodes D_1 and D_2 . The rectified negative-going voltage appearing at the anode of D_2 is applied to the gate of TR 1.

Since TR 1 is biased in its back direction (gate negative relative to source), as opposed to conventional transistors, the current through TR 1 will drop, causing a reduction in gain (reverse control).

Der Transistor TR 7 ist dem 2. ZF-Transistor TR 6 als Emitterfolger angekoppelt. Bei ansteigendem Antennensignal wird die Signalspannung am Kollektor von TR 7 ansteigen. Diese Spannung wird kapazitiv zu einem Spannungsverdoppler, bestehend aus den Dioden D 1 und D 2, übertragen. Die gleichgerichtete, negativ verlaufende Spannung, die an der Anode von D 2 entsteht, wird dem Gate von TR 1 zugeleitet.

Da dieser in der Sperrichtung vorgespannt ist (Gate negativ im Verhältnis zur Source) im Gegensatz zu gewöhnlichen Transistoren, wird der Strom im TR 1 sinken, und die Verstärkung vermindert sich dadurch (Rückwärtsregulierung).

Tuning Meter and S-lamps

Abstimmanzeigegerät und S-Lampen

An increase in incoming signal will cause the signal voltage to increase at point D too. This signal voltage is fed through a capacitance to a voltage doubler. The negative-going voltage at the anode of D2 is applied to the base of TR 16, causing it to draw more current, with the result that the meter reading will increase. A decrease in incoming signal will be attended by a lower meter reading. In the case of powerful incoming signals, the AVC bias voltage is used for increasing the meter reading.

Bei ansteigendem Antennensignal wird die Signalspannung auch im Punkt D ansteigen. Diese wird kapazitiv zu einem Spannungsverdoppler übertragen. Die negativ verlaufende Spannung an der Anode von D 2 wird zur Basis des TR 16 geführt, der mehr Strom ziehen und dadurch bewirken wird, daß das Instrument einen größeren Ausschlag gibt. Bei abfallendem Antennensignal wird das Instrument einen kleineren Ausschlag geben. Bei starken Antennensignalen wird die AVR-Spannung zur Erhöhung des Ausschlages benutzt.

The curve shows incoming signal voltage as a function of meter reading.

Die Kurve zeigt die Antennenspannung als Funktion des Zeigerinstrumentausschlages.

Transistors TR 9 and TR 13 draw no current if no signal is present at the aerial input. When a signal is present, TR 9 and hence also TR 13 begin to draw current. Base current through TR 13 can be adjusted with the 50 k ohm potentiometer numbered 158 in the circuit diagram. The current through TR 13 will not increase when the incoming signal increases, due to the fact that the base current is constant.

Ohne Antennensignal ziehen die Transistoren TR 9 und TR 13 keinen Strom. Bei ankommendem Signal fängt TR 9 und somit auch TR 13 an, Strom zu ziehen. Der Basisstrom im TR 13 kann mit dem Potentiometer von 50 kOhm, Pos. Nr. 158, eingeregelt werden. Der Strom durch TR 13 wird bei stärkerem Signal nicht ansteigen, da der Basisstrom fest liegt.

The output signal from the discriminator is fed through a resistor to the base of TR 11. Transistors TR 11 and TR 15 should receive the same amount of base bias when the receiver is tuned to the centre of the transmitter signal (zero volts output from the discriminator). The same amount of current will then flow through the two circuits, and the S-lamps will show equal brightness. If the receiver is tuned away from this setting, the base bias at TR 11 will go positive or negative, depending on which portion of the S-curve is involved, and the lamps will show different degrees of brightness.

Vom Detektor wird das Signal durch einen Widerstand zur Basis vom TR 11 geführt. Die Transistoren TR 11 und TR 15 sollen die gleiche Basisvorspannung haben, wenn der Empfänger mitten auf die Station eingestellt ist (der Detektor gibt 0 Volt ab). Der Strom durch die zwei Schaltungen wird dann der gleiche sein, und die S-Lampen werden gleich stark leuchten. Bewegt man sich von der Station fort, so wird die Basisvorspannung zum TR 11 positiv oder negativ verlaufen, abhängig davon, wo man sich auf der S-Kurve befindet, und die Lampen leuchten unterschiedlich.

Decoding

The output signal from the discriminator is fed to the decoder, in which the 19 kHz signal is separated off, amplified and doubled to 38 kHz by means of a full-wave rectifier located in the collector circuit of TR 20. The 38 kHz signal is used to reinsert the carrier in the stereo signal, which is applied to the secondary centre tap of the ring demodulator. The residual 19 kHz signal is balanced out by the network composed of 0.39 megohm and 1 nF in the collector circuit of TR 19 and is applied, 180° out of phase, to the same point as the stereo signal.

Dekodierung

Vom Detektor wird das Signal zum Decoder geführt, wo die 19 kHz abgetrennt, verstärkt und auf 38 kHz mit Hilfe eines Doppelgleichrichters im Kollektor von TR 20 verdoppelt werden. Die 38 kHz werden zum Wiedereinsetzen der Trägerwelle ins Stereosignal benutzt, das zum sekundären Mittelpunkt des Ringdemodulators geführt wird. Die restlichen 19 kHz werden mit Hilfe des Gliedes 0,39 MOhm und 1 nF, die im Kollektor des TR 19 sitzen, ausbalanciert, und werden in Gegenphase zum gleichen Punkt wie das Stereosignal geleitet.

The two channels are restored in the ring demodulator, from where they are fed through a channel separator, TR 23 and TR 24, which provides maximum channel separation – that is, approx. 40 dB at 1000 Hz and 26 dB at 10,000 Hz.

Die beiden Kanäle werden im Ringdemodulator wieder hergestellt und werden von dort aus durch einen Kanaltrenner, TR 23 und TR 24, geleitet, der für eine maximale Kanaltrennung, d. h. ca. 40 dB bei 1 kHz und 26 dB bei 10 kHz, sorgt.

If a mono signal is being received, the full supply voltage will be present at the collector of TR 22 since this transistor only draws current on stereo signals. The 15-volt supply voltage is fed through a voltage divider to the emitter of TR 21 and so cuts this transistor off, and the AA 119 diode (No. 198 in the circuit diagram) will be shunted across circuit 8022011, thus damping it.

With the circuit damped and the transistor cut off as decribed, noise impulses and hiss will be prevented from causing interference to mono signals. Wird mono empfangen, liegt die volle Versorgungsspannung am Kollektor von TR 22, da dieser nur Strom bei einem Stereosignal zieht. Die 15 Volt werden durch einen Spannungsteiler zum Emitter von TR 21 geführt und sperren diesen, und die Diode AA 119, Pos. Nr. 198, wird als eine Dämpfung über dem Kreis 8022011 liegen.

Diese Dämpfung des Kreises und das Sperren des Transistors werden Störimpulse und Rauschen verhindern, Monosignale zu stören.

Automatic mono-stereo switching Automatisch Mono-Stereo Umschaltung

The curve is a plot of the receiver's signal-to-noise ratio in dB as a function of aerial input voltage. The solid curve shows the signal-to-noise ratio of a mono signal whilst the dotted curve shows the signal-to-noise ratio of a stereo signal. Curves above the zero dB lines represent modulation corresponding to 75 kHz swing whilst curves below the zero dB line show noise supression.

Die Kurve zeigt den Signal/Störabstand des Empfängers in dB als Funktion der Antennenspannung. Die voll ausgezogene Kurve zeigt den Signal/Störabstand einer Monosendung, während die gestrichelte Kurve den Signal/Störabstand einer Stereo-Sendung zeigt. Die Kurven oberhalb der Null dB Linie repräsentieren die Modulation entsprechend einem 75-kHz-Hub, während die Kurven unterhalb der Null dB Linie die Störunterdrückung zeigen.

Stereo Indication

Stereo-Anzeige

The stereo indicator will show light when a stereo signal is being received. Transistor TR 22 is wired so that it will not draw current during mono reception. Only when the 19 kHz pilot note is received will it begin to draw current. When the pilot frequency is doubled through the AA 119 diodes, rectification occurs, resulting in a supplementary DC voltage being added to the 15-volt supply voltage. This supplementary DC voltage will be applied, via ZF 18, to the base of TR 22, causing it to begin to draw current and the indicator in the collector lead to light up. Moreover, TR 21 will cease to be cut off, and the AA 119 numbered 198 in the circuit diagram will be biased in its back direction, with the result that it will no longer provide damping of circuit 8022011.

Bei Empfang eines Stereo-Signales wird der Stereo-Anzeiger leuchten. Der Transistor TR 22 ist so gekoppelt, daß er beim Empfang eines Mono-Signals keinen Strom zieht. Erst dann, wenn die Pilotfrequenz von 19 kHz empfangen wird, beginnt er Strom zu ziehen. Durch die Verdopplung der Pilotfrequenz mit Hilfe der Dioden AA 119 entsteht durch Gleichrichtung eine gleichstrommäßige Zusatzspannung zu den 15 Volt. Diese Spannung wird über ZF 18 zur Basis von dem TR 22 übertragen, der beginnt Strom zu ziehen, und der Anzeiger, der in der Kollektorleitung angebracht ist, wird leuchten. Ebenfalls wird die Sperrung von dem TR 21 aufhören, und AA 119, Pos. Nr. 198, wird in der Sperrichtung vorgespannt sein, wodurch sie nicht als eine Dämpfung über den Kreis 8022011 liegen wird.

AF Section

In addition to the FM function, the receiver has inputs for gramophone (both high-impedance and low-impedance) and tape recorder, with level adjustment controls for all inputs. Two sockets are provided for each input: DIN sockets and phono sockets. The sockets are wired in parallel, except that a voltage divider is provided for the DIN socket of the tape recorder output. Only the FM signal is fed direct to the AF amplifier; the other signals are fed through preamplifiers.

Only the left channel will be covered by the following description.

NF-Teil

Außer der FM-Funktion hat der Empfänger Eingänge für Phono, hochohmig und niederohmig, und Tonbandgerät mit zugehöriger Pegelregelung für jeden Eingang. Jeder Eingang hat zwei Buchsen-Typen, nach DIN und Klinkensteckerbuchsen. Die Buchsen sind parallelverbunden; jedoch erfolgt eine Spannungsteilung zur DIN-Buchse im Tonbandgerätausgang. Nur das FM-Signal geht direkt zum NF-Verstärker, die anderen gehen zuerst zu einem Vorverstärker.

Nachstehend wird nur der linke Kanal erwähnt.

Preamplifier

Gramophone signal 1 is fed to the base of TR 34 and via TR 35 to a 50 k ohm potentiometer (No. 393) for level control. From the collector of TR 36, the signal is fed via the switches to the input transistor of the amplifier.

Gramophone signal 2 is fed to TR 27. From the 50 k ohm level-control potentiometer numbered 333 in the circuit diagram, it is similarly fed via the switches to the input transistor of the amplifier.

The tape recorder signal is fed to TR 28. From the 50 k ohm level-control potentiometer numbered 330 in the circuit diagram, it is fed via the switches to TR 51. The signal for the tape recorder output goes through an emitter follower, TR 33, to the socket so as to provide a low output impedance.

Vorverstärker

Das Phonosignal 1 wird zur Basis des TR 34 und über TR 35 zu einem Potentiometer 50 kOhm, Pos. Nr. 393, zur Pegelregelung geführt. Vom Kollektor von TR 36 wird das Signal über die Umschalter zum ersten Transistor im Verstärker geleitet.

Das Phonosignal 2 wird zum TR 27 geführt. Vom Potentiometer 50 kOhm, Pos. Nr. 333, für Pegelregelung, wird es über die Umschalter ebenfalls zum ersten Transistor im Verstärker geleitet.

Das Tonbandgerät-Signal wird zum TR 28 geführt. Vom Potentiometer 50 kOhm, Pos. Nr. 330, für Pegelregelung, wird es über den Umschalter zum TR 51 geleitet. Das Signal zum Tonbandgerätausgang geht durch einen Emitterfolger TR 33 zur Buchse, um eine niedrige Ausgangsimpedanz zu erhalten.

AF Amplifier

From TR 51, the signal is fed to an emitter follower, TR 52, to the volume and balance controls. The Loudness switch, boosting the bass and treble ranges at low volume levels, is connected to a tap on the volume potentiometer. The balance potentiometer when set at mid-scale will provide the same volume level on both channels. Sliding it towards the left will reduce the volume on the right channel and ultimately silence it, whilst the left channel retains its level unchanged. Emitter follower TR 53 feeds the signal to the bass and treble controls; these have control ranges of ± 17 dB and ± 15 dB, respectively. Transistors TR 54 and TR 55 are DC-coupled; TR 55 operates as an emitter follower from where the signal is fed via the LO filter, TR 56, in whose base circuit the HI filter is located. The output of TR 56 is fed via TR 61 to driver transistors TR 59 and TR 62.

NF-Verstärker

Vom TR 51 wird das Signal über einen Emitterfolger TR 52 zum Lautstärke- und Balanceregler geführt. Der Loudness-Umschalter, der den Tiefen- und Höhenbereich bei niedriger Lautstärke anhebt, ist einem Abgriff am Lautstärkepotentiometer angekoppelt. Das Balancepotentiometer wird in der Mittelstellung die gleiche Stärke an beide Kanäle geben; wird es nach links verschoben, wird die Lautstärke im rechten Kanal geschwächt und zuletzt völlig heruntergedreht, während der linke Kanal unverändert ist. TR 53 ist als Emitterfolger gekoppelt und führt das Signal zu den Tiefen- und Höhenreglern, die eine Änderung von ± 17 dB bzw. ± 15 dB bewirken können. Die Transistoren TR 54 und TR 55 sind DC-gekoppelt; TR 55 ist als Emitterfolger gekoppelt, von dem das Signal über das LO-Filter zum TR 56 geführt wird, dessen Basis mit dem HI-Filter versehen ist. Vom TR 56 wird das Signal über TR 61 zu den Treibertransistoren TR 59 und TR 62 geführt.

Amplifier response with "LOUDNESS" button depressed, at different volume-control settings. The top line (0 dB) gives full volume (volume control turned fully clockwise).

Der Frequenzgang des Verstärkers mit dem "LOUD-NESS"-Knopf bei verschiedenen Stellungen des Lautstärkereglers hineingedrückt. Die oberste Linie (0 dB) zeigt den voll aufgedrehten Lautstärkeregler (Lautstärkeregler ganz nach rechts gedreht).

Tone control. – The centre line, "dB 0", represents "correct frequency response", with bass and treble controls at zero.

-Curves show tone control for maximum and minimum bass, respectively, and for maximum and minimum treble, respectively.

Klangregelung. Die Mittellinie "dB 0" zeigt den "rechten Frequenzgang", wo die Tiefen- und Höhenregler sich in der Nullstellung befinden. Die Kurven zeigen die Klangregelung bei maximalen bzw. minimalen Tiefen sowie maximalen bzw. minimalen Höhen.

Curve showing treble and bass cut when using "HI" and "LO" filters (scratch and rumble filters), respectively.

Kurve über Höhen- bzw. Tiefenabschneidung bei der Verwendung von dem "HI"- bzw. "LO"-Filter (Rauschund Rumpelfilter).

The no-load current is controlled by TR 57, located on the heat sink of the output transistors, and is adjustable by means of the 250-ohm potentiometer numbered 563 in the circuit diagram. Increasing temperature will cause the current through TR 57 to increase; the voltage across the transistor will drop, and so will also the voltage between the two bases of TR 59 and TR 62. The IN 4148 diode (No. 584) prevents TR 60 from receiving an incorrect amount of bias at high signal levels, which might result in clipping.

Der Leerlaufstrom wird mit Hilfe von TR 57 geregelt, der am Kühlblech der Endtransistoren angebracht ist und sich mit dem Potentiometer 250 Ohm, Pos. Nr. 563, einregeln läßt. Bei ansteigender Hitze wird der Strom im TR 57 steigen, die Spannung über dem Transistor wird fallen und damit auch die Spannung zwischen den beiden Basen von TR 59 und TR 62. Die Diode 1 N 4148, Pos. Nr. 584, verhindert, daß TR 60 eine verkehrte Vorspannung bei starker Aussteuerung erhält, wodurch er das Signal beschneiden könnte.

The output stage is fundamentally a push-pull circuit. It comprises output transistors TR 63 and TR 64, and driver transistors TR 59 and TR 62, in a mid-point supply voltage arrangement in which the transistor next to chassis potential draws current during the negative halv-cycles whilst the other transistor operates during the positive half-cycles. For a constant load, the theoretical operating characteristic, PC (collector current as a function of collector voltage), will have the appearance represented by PC in Fig. 1. When working into a loudspeaker load, the transistor will operate, not on a line, but over a larger area (the shaded area).

Die Endstufe arbeitet grundsätzlich als Gegentaktendstufe, bestehend aus den Endtransistoren TR 63 und TR 64, und den Treibertransistoren TR 59 und TR 62, mit Mittelpunktspannung, wo der Transistor, der dem Chassis am nächsten ist, Strom bei negativen Halbwellen und der obere bei positiven zieht. Bei einer konstanten Belastung werden die theoretische Arbeitslinie PC (Kollektorstrom als Funktion der Kollektorspannung) einen Verlauf wie die Linie PC in Abb. 1 bekommen. Bei Belastung durch einen Lautsprecher werden die Transistoren nicht längs einer Linie, sondern innerhalb eines größeren Bereiches arbeiten (das schraffierte Feld).

The line PC max. indicates max. transistor loading. The transistor will be permanently damaged if this line is exceeded. In order to prevent this, a circuit has been inserted to protect the output against overloads (and short circuits). The line B is the operating characteristic at which the protective circuit is to function.

Die Linie PC max. gibt die maximale Belastung des Transistors an; wird sie überschritten, so wird der Transistor zerstört. Um dies zu verhindern, ist eine Schaltung zur Sicherung des Ausganges gegen Überlastung (und Kurzschluß) eingeschaltet. Die Linie B ist die Arbeitslinie, wodurch die Sicherung in Funktion treten soll.

The voltage across the 0.15-ohm resistor numbered 579 in the circuit diagram will depend on the current through TR 63; during negative half-cycles no current will flow through TR 63, no voltage will be present across the 0.15-ohm resistor, and TR 58 will draw no current. During positive half-cycles, voltage will be present across the 0.15-ohm resistor (No. 579), at 0.6 volt TR 58 will begin to draw current and consequently limit the current through the output transistor. This protective circuit will have the operating characteristic shown in Fig. 2. However, this characteristic is not ideal because it is capable of exceeding the line PC max. (Fig. 1).

Die Spannung über 0,15 Ohm, Pos. Nr. 579, wird vom Strom durch den TR 63 abhängen; bei negativen Halbperioden geht kein Strom durch den TR 63, wodurch keine Spannung über 0,15 Ohm liegt, und TR 58 zieht keinen Strom. Bei positiven Halbperioden kommt eine Spannung über 0,15 Ohm, Pos. Nr. 579; bei 0,6 V wird TR 58 anfangen, Strom zu ziehen und damit den Strom in den Endtransistoren begrenzen. Diese Sicherung wird eine Arbeitslinie gemäß Abb. 2 haben. Diese ist indessen nicht ideal, da sie die Linie PC max. (Abb. 1) wird überschreiten können.

By inserting two resistors in the circuit (47 k ohms, No. 575; and 470 ohms, No. 578), TR 58 is caused to operate already when 0.3 volt is present across the 0.15-ohm resistor, seeing that when 30 volts is present across TR 63, 0.3 volt - 1/100 of the voltage - will be present across the 470-ohm resistor (No. 578).

With full voltage (60 volts) across TR 63, the voltage across the 470-ohm resistor will be 0.6 volt, when no voltage is required across the 0.15-ohm resistor in order to make TR 58 draw current. The resulting operating characteristic is shown in Fig. 3.

Durch Einschaltung von zwei Widerständen, 47 kOhm – Pos. Nr. 575 – bzw. 470 Ohm – Pos. Nr. 578 – wird TR 58 bereits bei 0,3 V über 0,15 Ohm in Funktion treten, da bei 30 Volt über TR 63 0,3 Volt über Pos. Nr. 578 (1/100 der Spannung) sein werden. Bei voller Spannung (60 V) über TR 63 wird die Spannung über 470 Ohm 0,6 V ausmachen, und dann ist keine Spannung über 0,15 Ohm erforderlich, damit TR 58 Strom zieht. Hierdurch entsteht eine Arbeitslinie wie in Abb. 3 gezeigt.

This operating characteristic, though it does not exceed PC max, causes clipping in the bass range. In order to compensate for this, a diode (No. 576) is inserted between the base of TR 58 and an artificial mid-point (68 k ohms and 56 k ohms), Fig. 4. During the positive half-cycle, the diode will be biased in its forward direction and will carry some of the current. The operating characteristic will now be as shown by the line B in Fig. 1, and one half of the output stage, TR 59 and TR 63, is protected against the consequences of short circuits.

Diese Arbeitslinie überschreitet nicht PC max., verursacht aber ein Beschneiden im Tieftonbereich. Um hierfür zu kompensieren, wird eine Diode, Pos. 576, zwischen der Basis von TR 58 und einem künstlichen Mittelpunkt (68 kOhm und 56 kOhm) Abb. 4 eingeschaltet. In der positiven Halbperiode wird die Diode in der Leitrichtung vorgespannt und nimmt einen Teil des Stromes ab. Die Arbeitslinie wird nun wie Linie B in der Abb. 1, und die eine Hälfte der Endstufe TR 59 und TR 63 ist gegen Kurzschluß gesichert.

A similar circuit protects TR 62 and TR 64. This circuit consists of TR 60, a diode (No. 580), a 470-ohm resistor (No. 582), and a 47 k ohm resistor (No. 585). Its operation is the same as that described above. In order to prevent excessive generation of heat, such as may occur under conditions of poor ventilation, a PTC resistor is connected between the collector of TR 56 and the base of TR 61. This resistor is mounted on the output transistor proper. In the case of excessive heating, the value of the PTC resistor will become so high (approx. 100 k ohms) that the signal path is broken, thus silencing the receiver until the temperature has dropped. At normal temperature, the PTC resistor is 50 ohms.

Eine entsprechende Schaltung ist zum Schutz von TR 62 und TR 64 aufgebaut. Die Schaltung setzt sich zusammen aus TR 60, Diode Pos. 580 und den Widerständen 470 Ohm Pos. 582 und 47 kOhm Pos. 585. Die Wirkungsweise ist gleich der oben beschriebenen. Um eine zu große Wärmeentwicklung zu verhindern, z.B. bei schlechter Belüftung, sitzt ein PTC-Widerstand zwischen dem Kollektor von TR 56 und der Basis von TR 61, und ist direkt am Endtransistor montiert. Bei zu hoher Wärme wird der PTC-Widerstand einen so hohen Wert annehmen (ca. 100 kOhm), daß der Signalweg unterbrochen und der Empfänger stumm wird, bis die Temperatur wieder abgesunken ist. Bei normaler Temperatur hat der PTC-Widerstand einen Wert von ca. 50 Ohm.

Speakers

The output amplifier is designed for working into a load impedance of 4 ohms, and maximum power output will be obtained at this impedance. However, lower or higher load impedances will not cause appreciable reduction in output.

There are outputs for two speaker pairs, 1 and 2, which may be used both separately and together. The third speaker output, "in", is intended for connection of an external output amplifier. This output is connected to both speaker pairs, 1 and 2, when the speaker button is not depressed.

Lautsprecher

Der Endverstärker ist für eine Belastung von 4 Ohm ausgelegt, bei der die höchste Ausgangsleistung erzielt wird. Bei einer kleineren oder größeren Belastung wird die Ausgangsleistung doch nicht nennenswert absinken.

Anschlußmöglichkeiten für 2 Lautsprechergruppen, 1 und 2, sind vorhanden, die sowohl getrennt wie auch zusammen benutzt werden können. Der dritte Lautsprecheranschluß "in" ist für den Anschluß eines externen Endverstärkers vorgesehen. Dieser Anschluß hat Verbindung zu Lautsprecher 1 und 2, wenn der Lautsprecherknopf nicht gedrückt ist.

Maximum obtainable power output per channel as a function of speaker impedance.

Die maximal erreichbare Ausgangsleistung je Kanal bei verschiedenen Lautsprecherimpedanzen.

Square-wave signal at output amplifier, $R_{1oad} = 4$ ohms, 100 Hz.

Rechtecksignal am Endverstärker RBelast. = 4 Ohm, 100 Hz.

Square-wave signal at output amplifier, $R_{\mbox{\scriptsize load}}$ = 4 ohms, 1000 Hz.

Rechtecksignal am Endverstärker RBelast. = 4 Ohm, 1 kHz.

Square-wave signal at output amplifier, $R_{\mbox{\scriptsize load}}$ = 4 ohms, 10,000 Hz.

Rechtecksignal am Endverstärker RBelast. = 4 Ohm, 10 kHz.

Power Supply Section

The receiver is powered from three supply voltages: 15 volts, 22 volts, and 60 volts. The mains transformer has two secondaries: 22 volts and 43 volts. The 22-volt secondary is used for the power supply section proper, which furnishes 15 volts of stabilized DC for the front end, intermediate-frequency amplifier, decoder, and preamplifiers. The stabilization circuit incorporates transistors TR 17 and TR 18, and a zener diode, ZF 9.1.

The 60-volt supply for the output amplifier is obtained from the 43-volt winding. No stabilization is used other than a 5000 μF filter capacitor. The omission of the stabilizing circuit results in larger voltage variations under conditions of fluctuating power consumption, but on the other hand the receiver will be capable of delivering much higher peak power compared to the RMS power.

The 43-volt winding also powers the circuit composed of transistor TR 10 and zener diodes ZF 9.1 and ZF 22, which delivers 22 volts for the tuning diodes.

Netzteil

Der Empfänger wird mit drei verschiedenen Spannungen, 15 V, 22 V und 60 V, versorgt. Der Netztransformator besitzt zwei Sekundärwicklungen, 22 V und 43 V. Die 22 V werden für den Netzteil benutzt, der eine stabilisierte Spannung von 15 V für die Versorgung von Tuner, Zwischenfrequenz, Decoder und Vorverstärker abgibt. TR 17, TR 18 und eine Zenerdiode ZF 9,1 gehen in die Stabilisierungsschaltung ein.

Die 60 Volt für die Versorgung des Endverstärkers werden von der 43-Volt-Wicklung geholt. Sie werden unstabilisiert, nur durch 5000 µF abgekoppelt, benutzt. Dadurch daß die Stabilisierungsschaltung ausgelassen wird, werden die Spannungsschwankungen größer, wenn der Stromverbrauch sich ändert; aber dadurch wird der Empfänger auch eine sehr viel höhere Spitzenleistung im Verhältnis zur Sinusleistung abgeben können.

Die 43-Volt-Wicklung liefert außerdem Spannung für die aus TR 10 und den Zenerdioden ZF 9,1 und ZF 22 bestehende Schaltung, die 22 V für die Versorgung der Abstimmungsdioden liefert.

NOTES/NOTIZEN		•
		-
-		
	Andrews Agents, and a company and an arrangement of the angel of the a	

MODIFICATIONS

Interference, stereo

When listening to a stereo broadcast under adverse conditions it is possible for interference to occur. In order to avoid this, two filters, 8022024 and 8022025, have been introduced in all type 2402 receivers as from series 05. These filters are parallel-resonant circuits. They are inserted between the discriminator and the input transistor of the decoder. On the PC board, they are located in line with the four circuits of the decoder.

The filters are factory preadjusted to 114 kHz and 152 kHz (3rd and 4th harmonics of 38 kHz) and should not be touched.

ÄNDERUNGEN

Interferenz, Stereo

Unter ungünstigen Empfangsverhältnissen kann beim Hören einer Stereo-Sendung Interferenz auftreten. Um dies zu vermeiden sind alle Empfänger vom Typ 2402 ab Reihe 05 mit zwei Filtern 8022024 und 8022025 versehen. Die als Parallelkreise ausgeführten Filter sind zwischen Detektor und dem ersten Transistor im Decoder eingeschaltet. Auf der Printplatte sind sie in Verlängerung der vier Decoderkreise angebracht. Die Filter sind werkseitig auf 114 kHz und 152 kHz (3. und 4. Oberschwingung von 38 kHz) abgestimmt und sollten nicht abgeglichen werden.

NOTES/NOTIZEN				·
	·			
		THE PARTY OF THE P		~
			1 1000	

	· .			

SERVICE TIPS

Receiver dead

If the clamp holding the three electrolytic capacitors has been mounted with too-long screws it is possible for these to bite through the insulation of the capacitors and so short circuit the output signal to chassis.

FEHLERTIPS

Empfänger stumm

Für die Befestigung des Bügels um die drei Elkos können unnötig lange Schrauben benutzt worden sein, die sich durch die Isolierung der Elkos haben scheuern und dadurch das Ausgangssignal nach Masse kurzschließen können.

Weak Signal Output

If the receiver shows these symptoms: S-lamps light simultaneously when a station is tuned in and the meter functions normally, it is possible that the μA 703 integrated circuit may be defective.

Empfänger schwach

Falls der Empfänger folgende Symptome zeigt: S-Lampen leuchten gleichzeitig auf bei Einstellung auf eine Station und das Instrument arbeitet normal, so kann die integrierte Schaltung µA 703 schadhaft sein.

IOTES/NOTIZEN		
	The state of the s	
_		
	· ·	

SERVICE TIPS / SERVICETIPS

Mains-voltage Switch

Wiring connections between mains transformer and mains-voltage switch.

Spannungsumschalter

Leitungsverbindungen zwischen Netztransformator und Spannungsumschalter.

Disassembling the Preamplifier

When servicing the IF circuit board it may be necessary to remove the preamplifier. To do this, remove the four screws marked A, at pickup 1 and tape.

Demontierung von Vorverstärker

Bei Servicearbeiten an der ZF-Printplatte kann es notwendig sein, den Vorverstärker zu entfernen. Dies läßt sich machen, nachdem die vier mit A bezeichneten Schrauben bei Pickup 1 und tape herausgeschraubt worden sind.

Removing the Front Panel

Demontierung von Frontplatte

Bottom view of receiver

Remove screws marked B

Empfänger vom Boden aus betrachtet. Mit B bezeichnete Schrauben entfernen.

27

Top view of receiver

Empfänger von oben aus betrachtet.

To remove the four slide potentiometers, pull the eight springs located at the end of each potentiometer backwards.

Set the slide pointer to one of its end positions and remove the dial drive with the screws marked C.

Remove the screws marked D. The front panel with the pushbutton assembly may now be taken out.

Die vier Schiebepotentiometer werden dadurch entfernt, daß die acht Federn, die am Ende jedes Potentiometers angebracht sind, nach hinten gezogen werden. Der Schiebezeiger wird in eine der Außenstellungen gebracht, und der Skalenantrieb wird mit den mit C bezeichneten Schrauben entfernt.

Die mit D bezeichneten Schrauben werden entfernt und Frontplatte und Druckknopfeinheit lassen sich herausnehmen.

NOTES/NOTIZEN				₩.a.
				,
	 • .			
				,
	 -			
		:	-	
	,	-	, , , , , , , , , , , , , , , , , , , ,	
. '				
				,
		-		

SOME CIRCUITS SYMBOLS **EXPLAINED**

Denotes an ammeter insertéd between a specified point and the associated lead.

ZEICHENERKLÄRUNG

Zeigt ein zwischen einem angegebenen Punkt und zugehöriger Leitung eingeschaltetes Amperemeter.

Denotes a sweep generator having a frequency swing of ± 0.5 MHz and modulated by a 4000 Hz note.

Zeigt einen Wobbelgenerator an; Frequenzhub ± 0.5 MHz und mit 400 Hz moduliert.

Denotes a signal generator modulated by a 400 Hz note and a frequency swing of 22.5 kHz.

Zeigt einen Meßsender an; moduliert mit 400 Hz und 22,5-kHz-Frequenzhub.

Denotes a stereo coder having a frequency swing of 40 kHz, multiplex signal at 1000 Hz, and 8 - 10 % pilot note.

Zeigt einen Stereodecoder an; Frequenzhub 40 kHz, Multiplexsignal von 1 kHz und Pilotton 8 - 10 %.

Oscilloscope with diode probe.

Oszilloskop mit Diodensonde.

0

 Λ !

Trimmer potentiometer.

Iron cores, trimmer capacitors, or potentiometers to be adjusted in numerical se-

Denotes adjustment to maximum response.

Weak light.

Strong light.

Short circuit.

Denotes identical brightness.

X

Trimmpotentiometer.

Eisenkerne, Trimmer oder Potentiometer, die der Nummernreihenfolge nach abzugleichen

Gibt Abgleich auf Maximalkurve an.

Schwach leuchtend.

Stark leuchtend.

Gibt gleiche Helligkeit an.

Kurzschluß.

ADJUSTMENT PLAN	JUSTIERUNGSÜBERSICHT	FIG.
Current adjustments Voltage adjustments Alignment Sensitivity adjustment Adjustment of meter Adjustment of S-lamps	Trimmung Empfindlichkeitsjustierung Justierung von Instrument Justierung von S-Lampen	3 - 4 5 - 7 8 9 - 10 11 - 12
Adjustment of decoder	Justierung von Decoder	13 - 14

Adjust left-channel no-load current to 100 mA after the receiver has been switched on for 10 min. with the volume control turned down.

Leerlaufstrom des linken Kanals wird auf 100 mA eingeregelt, nachdem der Empfänger bei herabgedrehtem Lautstärkeregler 10 Minuten lang eingeschaltet gewesen ist.

after the receiver has been switched on for 10 min. with the volume control turned down.

Adjust right-channel no-load current to 100 mA Leerlaufstrom des rechten Kanals wird auf 100 mA eingeregelt, nachdem der Empfänger bei herabgedrehtem Lautstärkeregler 10 Minuten lang eingeschaltet ge-

Adjust tuning voltage to 4.5 volts (dial 87.5 - 104 MHz). P 1 button depressed and potentiometer 1 turned to zero at 87.5 MHz. Dial 87.5 - 108 MHz. Adjust tuning voltage to 4.2 volts.

Abstimmungsspannung wird auf 4,5 V (Skala 87,5 - 104 MHz) justiert. P-1-Knopf gedrückt und Potentiometer 1 in Nullstellung bei 87,5 MHz gebracht. Skala 87,5 - 108 MHz, Abstimmungsspannung wird auf 4,2 V justiert.

Adjust tuning voltage to 4.5 volts (dial 87,5 - 104 MHz). FM button depressed and slide pointer all the way to the left.

Dial 87.5 - 108 MHz. Adjust tuning voltage to 4.2 volts.

Abstimmungsspannung wird auf 4,5 V (Skala 87,5 - 104 MHz) justiert. UKW-Knopf gedrückt und Schiebezeiger soll ganz links sein.

Skala 87,5 - 108 MHz, Abstimmungsspannung wird auf 4,2 V justiert.

Tune front-end as shown. Repeat adjustment if necessary.

Adjust discriminator transformer secondary to 0 volts on vacuum-tube-voltmeter with no signal at

Detektor Sek. ohne Antennensignal auf 0 Volt am Röhrenvoltmeter justieren.

Adjust discriminator transformer primary for max. AC vacuum-tube-voltmeter reading.

Detektor Prim. auf max. Ausschlag am Wechselspannungs-Röhrenvoltmeter justieren.

Sensitivity adjustment:

- (a) No. 74 set as indicated, signal generator output 1 mV; note wattmeter reading.
- (b) Signal generator output 2 μ volts EMF. Adjust No. 74 until wattmeter reading has dropped to value 3 dB below original reading.

Justierung von Empfindlichkeit:

- a: Pos. 74 in der gezeigten Stellung, Ausgangsleistung Meßsender 1 mV, Ausschlag am Wattmeßgerät ablesen.
- b: Ausgangsleistung Meßsender 2 μV EMK, Pos. 74 justieren, bis Ausschlag am Wattmeßgerät um 3 dB im Verhältnis zum abgelesenen Ausschlag gefallen ist.

Zero adjustment of meter.

Nullabgleich von Meßgerät.

Max. adjustment of meter, signal generator output 10 mV.

 $\mbox{Max.}$ Abgleich von Meßgerät, Ausgangsleistung Meßsender 10 mV.

Adjustment of brightness balance (S-lamps).

Abgleich von Helligkeits-Balance (S-Lampen).

Adjust brightness of S-lamps to weak level. Repeat 11 - 12 if necessary.

Helligkeit der S-Lampen auf schwaches Niveau justieren.
Nötigenfalls 11 - 12 wiederholen.

Adjustment of decoder. No. 232 should be set as indicated. Damping network and short circuit mounted in place.

Justierung von Decoder. Pos. 232 in der gezeigten Stellung, Dämpfungsglied und Kurzschluß montiert.

Adjustment of decoder. Modulated in left channel.

Justierung von Decoder. Linker Kanal moduliert.

	PARTS LIST FOR BEOMASTER 3000, TYPE 2402	STÜCKLISTE FÜR BEOMASTER 3000, TYP 2402
1	Cabinet, teak	Gehäuse, Teak
	Cabinet, rosewood	Gehäuse, Palisander
	Cabinet, oak	Gehäuse, Eiche
2	Instruction diagram	Anweisungsschaltbild
3		Scheibe
4		Schraube, AM 3 X 5 DIN 84
5		Netzschnur
6		Bodenabdeckung
7 .		Schraube, AM 4 X 6 DIN 84
8		Gleitschützer
~		Dischartenths Art 4261 2 04 V 6 25 201220

21	Screw, AM 4 X 5 DIN 84	Schraube, AM 4 X 5 DIN 84
22	PC unit, bass compensation,	Printplatte, mit gehörrichtiger Lautstärkeregelung,
	wired	montiert
23	Spring for slide potentiometer	Feder für Schiebepotentiometer
24	Slide potentiometer, 2 X 20 k ohms log.,	Schiebepotentiometer, 2 X 20 kOhm log.
	with tap, VOLUME	mit Abgriff, VOLUME
25	Bracket for slide potentiometer	Winkel für Schiebepotentiometer 2530147
26	Screen for pointer, VOLUME	Abschirmung für Schiebezeiger VOLUME 3302123
27	Slide for pointer	Zeigerschlitten für Schiebezeiger
28	Pointer glass	Schiebezeigerglas
29	Screen for pointer	Abschirmung für Schiebezeiger
30	Screen for pointer, BASS	Abschirmung für Schiebezeiger BASS 3302120
31	Screen for pointer, TREBLE	Abschirmung für Schiebezeiger TREBLE 3302122
32	Screen for pointer, BALANCE	Abschirmung für Schiebezeiger BALANCE 3302121
33	Screen for pointer, TUNING	Abschirmung für Schiebezeiger TUNING 3302119
34	Pointer glass	Schiebezeigerglas
35	Screen for pointer	Abschirming für Schiebezeiger
36	Drive wheel for pointer	Antriebsrad für Schiebezeiger 2794023
37	Slide for pointer	Zeigerschlitten für Schiebezeiger 3015011
38	Screw, AM 4 X 4 DIN 84	Schraube, AM 4 X 4 DIN 84
39	Screw, AM 3 X 4 DIN 84	Schraube, AM 3 X 4 DIN 84
40	Screw, AM 3 X 4 DIN 84	Schraube, AM 3 X 4 DIN 84
41	Slide potentiometer, 2 X 50 k ohms, BASS.	Schiebepotentiometer, 2 X 50 kOhm, BASS 5310025
42	Screen for on/off switch, metal	Netzschalterabschirmung, Metall 3302125
43	Screen for on/off switch, plastic	Netzschalterabschirmung, Plastik 3300018
44	Screw, AM 3 X 3 DIN 84	Schraube, AM 3 X 3 DIN 84
45	Slide potentiometer, 2 X 20 k ohms lin.,	Schiebepotentiometer, 2 X 20 kOhm, lin.,
	TREBLE	TREBLE
. 46	Slide potentiometer, 2 X 20 k ohms lin.,	Schiebepotentiometer, 2 X 20 kOhm, lin. spez.,
	BALANCE	BALANCE 5310027
47	Sheet metal screws, 3.5 X 6.35	Blechschrauben, 3,5 X 6,35
48	Screen for back plate	Abschirmung rückwärtige Abdeckung 3302116
49	Screw, AM 4 X 4 DIN 84	Schraube, AM 4 X 4 DIN 84
50	Screw, AM 4 X 6 DIN 84	Schraube, AM 4 X 6 DIN 84
51	Plastic moulding	Plastik profil
52	Cover for potentiometer drive wheels	Deckel für Kantpotentiometer
53	Screw, AM 4 X 6 DIN 63	Schraube, AM 4 X 6 DIN 63
54	Dial, 87 - 104 MHz	Skala 87 - 104 MHz
	Dial, 87 - 108 MHz	Skala 87 - 108 MHz
55	Potentiometer, 100 k ohms, cord pulley	Potentiometer, 100 kOhm, Schnurrad 5300056
56	Bracket for dial drive	Winkel für Skalenantrieb
57	Spring, 4 dia. X 11	Feder, 4 Ø X 11
58	Nut	Mutter
	Dial cord	Skalaschnur

70	Shaft	Achse
71	Circlip	Sicherungsring
72	Pushbutton	Druckknopf
73	Spring	Feder
74	Cover plate	Abdeckplatte
75	PC connector	Kontaktfedergabel für Printplatte
76	Switch	Umschalter
	Potentiometer 50 k ohms, pos. No. 129	Potentiometer 50 kOhm Pos. 129 5370061
	Potentiometer 10 k ohms, pos. No. 132	Potentiometer 10 kOhm Pos. 132 5370074
77	Jack socket	Klinkensteckerbuchse
78	Bracket for jack socket	Winkel für Klinkensteckerbuchse 2530132
79	Nut	Mutter
80	Dummy plug	Abdeckungspropfen
81	Screw, AM 3 X 4 DIN 84	Schraube, AM 3 X 4 DIN 84
82	Screw, AM 3 X 3 DIN 84	Schraube, AM 3 X 3 DIN 84
83	Screw, AM 3 X 4 DIN 84	Schraube, AM 3 X 4 DIN 84 2038206
84	Screw, AM 3 X 4 DIN 84	Schraube, AM 3 X 4 DIN 84
85	Window, green	Fenster, grün
86	Window, red	Fenster, rot
87	Screw, AM 3 X 3 DIN 84	Schraube, AM 3 X 3 DIN 84
88	Washer, 3.2 DIN 433	Scheibe, 3,2 DIN 433
89	Switch	Schalter
90	Screw, AM 3 X 4 DIN 84	Schraube, AM 3 X 4 DIN 84
91	Bracket	Winkel
92	Screw, AM 4 X 5 DIN 84	Schraube, AM 4 X 5 DIN 84
93	Window, red, embossed	Fenster, rot, geprägt
94	Screw, AM 3 X 4 DIN 84	Schraube, AM 3 X 4 DIN 84
95	Socket for lamp	Fassung für Lampe
96	Lamp, 12 V 0.03 A	Lampe, 12 V/0,03 A 8230023
97	Window, red, embossed	Fenster, rot, geprägt
98	Screen	Abschirmung
99	Screw, AM 3 X 4 DIN 84	Schraube, AM 3 X 4 DIN 84 2038206
100	Holder for indicator	Halter für Anzeiger
101	Bracket	Winkel
102	Indicator, type Fa 371 - 1 A	Anzeiger, Typ Fa 371 - 1 A
103	Lamp, 6 V/0.03 A, glass socket	Lampe, 6 V/0,03 A, Glasfassung 8230025
104	Screw, AM 3 X 3 DIN 84	
105	Washer, 3.2	Scheibe, 3,2
106	PC board for pushbutton assembly	-
107	Edge-operated potentiometer, 6 X 100 k ohms	, Kantpotentiometer, 6 X 100 kOhm
	diode 104 MHz	Diode 104 MHz5320012
	Edge-operated potentiometer, 6 X 100 k ohms	, Kantpotentiometer, 6 X 100 kOhm
	diode 108 MHz	Diode 108 MHz 5320010
108	Screw, AM 3 X 4 DIN 84	
109	Screw, AM 3 X 3 DIN 84	Schraube, AM 3 X 3 DIN 84
110	Mounting hardware for edge-operated	Beschlag für
	potentiometer	Kantpotentiometer
111	Front moulding	Frontprofil
112	End piece	Endprofil
113	Screw, AM 3 X 4 DIN 84	Schraube, AM 3 X 4 DIN 84 2038206

120	Heat sink for transistor	Kühlprofil für Transistor
121	Screw, AM 3 X 6 DIN 63	Schraube, AM 3 X 6 DIN 63
122	Screw, AM 3 X 6 DIN 63	Schraube, AM 3 X 6 DIN 63
123	Screw ART 4260 2.84 X 6.35	Schraube, Art. 4260 2,84 X 6,35 2013002
124	Side plate, right	
125	Screw, AM 3 X 4 DIN 84	Schraube, AM 3 X 4 DIN 84
126	Clamp	Bügel
127	Screen	Abschirmung
128	PC board	Printplatte 8002064
129	Insulation for transistor	Isolierstück für Transistor
130	Back plate	Rückwärtige Abdeckung
131	Tooth-lock washer, DIN 6798	Fächerscheibe, DIN 6798
132	Screw, AM 4 X 6 DIN 84	Schraube, AM 4 X 6 DIN 84
133		Glimmerscheibe
134	Transistor, 2 N 3055	Transistor, 2 N 3055 8320061
135	Holder for FM aerial	Halter für Antenne, UKW
136	Screw, AM 3 X 4 DIN 84	
137	Transistor, 2 N 3055	Transistor, 2 N 3055
138	Hood for transistor	Deckel für Transistor
139	Screw, AM 3 X 10 DIN 84	Schraube, AM 3 X 10 DIN 84
140	Square nut	Vierkantmutter
141	Bushing	Buchse
142	Chassis for DIN socket	Chassis für Din-Stecker
143	PC unit, preamplifier	Printeinheit für Vorverstärker
143	Socket, 5-contact, DIN 41524 M	Steckbuchse, 5polig, DIN 41524 M
	Socket panel, AF	Buchsen-Steckerleiste, NF
144	Transistor, BC 183 B	Transistor, BC 183 B
145	Screw, AM 4 X 6 DIN 63	Schraube, AM 4 X 6 DIN 63
146	Screw, AM 3 X 12 DIN 84	·
147	Mica insert	Schraube, AM 3 X 12 DIN 84 2038220
		Glimmerscheibe
148	PTC resistor, 50 ohms	PTC-Widerstand, 50 Ohm
149	Screw, AM 3 X 12 DIN 63	Schraube, AM 3 X 12 DIN 63 2038017
150	Screw, AM 3 X 5 DIN 84	Schraube, AM 3 X 5 DIN 84
151	FM front-end unit, 87 - 108 MHz	Tuner, FM 87 - 108 MHz
152	PC board, IF/decoder	Printplatte, ZF/Decoder
153	Screw, ART 4271 2.84 X 6.35	Schraube, Art. 4271, 2,84 X 6,35 2013201
154	PC board, AF	Printplatte, NF
155	Screw, ART 4171 2.84 X 6.35	Schraube, Art. 4171, 2,84 X 6,35 2013201
156	Clamp for transistor	Spannstück für Transistor
157	Clamp	Spannstück
158	Clamp, fibre	Spannstück, Fiber
159	Bushing	Buchse 0411067
160	Screw, ART 4261, 2.84 X 6.35	Schraube, Art. 4261, 2,84 X 6,35 2013200
161	Screw, ART 4261, 2.84 X 6.35	Schraube, Art. 4261, 2,84 X 6,35 2013200
162	Milled nut	Rändelmutter
163	Bushing for PC-unit suspension	Buchse für Printplattenaushängung 2938034
164	PC board for DIN socket	Printplatte für DIN-Buchse 6140115
165	PC board for phono socket	Printplatte für Phono-Buchse
166	Bracket	Winkel
167	Screw, ART 4261 2.84 X 6.35	Schraube, Art. 4261, 2,84 X 6,35
168	Screw, AM 2 X 4 DIN 84	Schraube. AM 2 X 4 DIN 84
169	Washer	Scheibe
170	Tooth-lock washer	Fächerscheibe
171	Hexagonal nut, M 3 DIN 934	Sechskantmutter, M 3 DIN 934
	Screw, AM 4 X 6 DIN 84	Schraube, AM 4 X 6 DIN 84
173	Bracket for rectifier	Winkel für Gleichrichter
		manufact of Cicinification

174	Screw, ART 4271 2.84 X 12.7	Schraube, Art. 4271, 2,84 X 12,7 2013204
175	Slide switch	Schiebeumschalter 7402041
176	Screw, AM 3 X 10 DIN 84	Schraube, AM 3 X 10 DIN 84 2038216
177	Clamp	Bügel
178	Electrolytic capacitor, 3000 µF/70 V	Eiko, 3000 μF/70 V
179	Screw, ART 4261 2.84 X 6.35	Schraube, Art. 2,84 X 6,35
180	Mounting plate	Montierungsplatte 3120193
181	Screw, ART 4261 2.84 X 6.35	Schraube, Art. 2,84 X 6,35
182	Electrolytic capacitor, 5000 µF/70 V	Elko, 5000 μF/70 V
183	Electrolytic capacitor, 3000 µF/70 V	Elko, 3000 µF/70 V
184	Bracket	Winkel
185	Mains transformer	Netztransformator 8013058
186	Side plate, left	Seitenplatte, links 3470015
187	Screw, AM 4 X 6 DIN 63	Schraube, AM 4 X 6 DIN 63
188	Screw, AM 4 X 6 DIN 63	Schraube, AM 4 X 6 DIN 63
189	Rectifier, B 80 C 3000/5000	Gleichrichterventil, B 80 C 3000/5000 8310023
	Rectifier, mounted on bracket	Gleichrichterventil, montiert 8310029
190	Mounting plate	Montierungsplatte
191	Lock washer for 3 MT	Verriegelungsblech für 3 M
192	Fuse, slow-acting, 1 A - T/250 V	Sicherung, T 1 A - T/250 V
193	Cover for housing	Deckel für Gehäuse
194	Screw, AM 3 X 12 DIN 7988	Schraube, AM 3 X 12 DIN 7988 2039113
195	Housing for fuse and mains-voltage switch .	Gehäuse für Sicherung und Spannungsumschalter 3131016
196	Contact spring for fuse	Kontaktfeder für Sicherung
197	Mains-voltage switch	Spannungsumschafter
198	Screw, ART 4261 2.84 X 7.35	Schraube, Art. 4261, 2,84 X 6,35 2013200

NOT ILLUSTRATED	NICHT GEZEIGTE TEILE
Instruction Manual, English Instruction Manual, German Outer carton for type 2402 Two top/bottom inserts Two pcs. foam plastic	Bedienungsanleitung, englisch3502054Bedienungsanleitung, deutsch3502055Außenkarton für Typ 240233912262 Stck. obere/untere Einlage33912272 Stck. Schaumstoffverpackung3397069
EXTRA ACCESSORIES	ZUSÄTZLICHES ZUBEHÖR
	Antenne

BEOMASTER 3000-2, TYPE 2402

BEOMASTER 3000-2, TYPE 2402

TECHNICAL DATA

Power Supply

Voltage:

110 - 130 - 220 - 240 V AC.

Frequency:

50 - 60 Hz.

Power consumption:

20 - 200 W

Amplifier Section

Output:

2 X 40 W RMS. 2 X 75 W music.

Distortion:

< 0.6 % at 1000 Hz and 40 W output on

both channels simultaneously.

Signal-to-noise ratio:

Min. 60 dB at 50 mW with nominal input

voltage (all inputs).

Min. 62 dB at 40 W nominal input voltage

at PHONO LOW.

Min. 75 dB at 40 W with nominal input voltage at PHONO HIGH and TAPE

Channel matching: Better than 3 dB at volume control settings

between 0 dB and 40 dB down.

Other data as for BEOMASTER 3000, type 2402

Subject to Change Without Notice

BEOMASTER 3000-2, TYP 2402 BEOMASTER 3000-2, TYP 2402

TECHNISCHE DATEN

Netzanschluss

Spannung:

110 - 130 - 220 - 240 Volt Wechselspannung.

Frequenz:

50 - 60 Hz.

Verbrauch: 20 - 200 Watt.

Verstärkerteil

Ausgangsleis-

2 X 40 Watt Sinus.

tung:

2 X 75 Watt Musik.

Verzerrung:

< 0.6 % bei 1000 Hz und Ausgangsleist.

40 Watt in beiden Kanälen gleichzeitig.

Signal/Fremdspannungsabstand:

Min. 60 dB bei 50 mW mit Nenneingangs-

spannung, (alle Eingänge).

Min. 62 dB bei 40 Watt mit Nenneingangs-

spannung.bei PHONO LOW.

Min. 75 dB bei 40 Watt mit Nenneingangsspannung bei PHONO HIGH und TAPE.

Unterschied im

Übertragungs-

<3 dB von 0 bis 40 dB Herabregelung des

maß der Kanäle: Lautstärkereglers.

Sonstige Daten wie BEOMASTER 3000,

Typ 2402

Änderungen vorbehalten

Input	Application	Curve	Input Impe- dance	Nominal 1) Input Voltage	Alignment Control Ranges	Max. Input Voltage	Socket	
Eingang	Anwendung	Kurve	Eingangs- impedanz	Nennein- 1) gangs- spannung	Regelbereich der Ein- steller	Max. Ein- gangs- spannung		
PHONO 1	Magnetic Pickup	IEC fine groove	47 k ohms	3 mV	1,5 mV 100 mV	12 mV 100 mV	DIN and RCA	
PHONO 2	Crystal Pickup and Line	Linear	1 megohm	250 mV	200 mV 3 V	1,6 V 3 V	DIN and RCA	
TAPE	Tape Recorder	Linear	1 megohm	250 mV	200 mV 3 V	1,6 V 3 V	DIN and RCA	

Nominal input voltage is the voltage which provides full power output with the volume control at maximum. Technical data are for alignment controls set for nominal input voltages.

Speaker impedance is represented by the parallel connection of the speakers connected at SPEAKERS 1 and SPEAKERS 2.

Die Nenneingangsspannung ist die Spannung, die bei voll aufgedrehtem Lautstärkeregler die volle Ausgangsleistung gibt. Die Technischen Daten sind bei Einstellung der Justierungen auf Nenneingangsspannung angegeben.

Die Lautsprecherimpedanz ist die Parellelschaltung von angeschlossenen Lautsprechern an SPKRS I und II.

Outputs	Impedance	Output Voltage at Nominal Input Voltage	Max. Output Voltage or Po- wer at 1000 Hz	Socket Stecker	
Ausgänge	Impedanz	Ausgangsspan- nung bei Nenn- eingangsspan- nung	Max. Ausgangs- spannung oder -leistung bei 1000 Hz		
TAPE	5 K ohms	15 mV	200 mV	DIN	
TAPE	5 k ohms	170 mV	2,2 V	RCA	
SPKRS 1-2	4 ohms 2)	2 X 40 W	2 X 48 W	2 DIN	
SPKRS 1-2	8 ohms ²⁾	2 X 20 W	2 X 30 W	2 DIN	
SPKRS 1-2	16 ohms ²⁾	2 X 10 W	2 X 20 W	2 DIN	
PHONES	200 ohms	100 mW	300 mW	Socket	

PC 8050054, FRONT END / PC 8050054, TUNER

PC board, component side
Printplatte von der Bauteilseite aus gesehen

PC board, conductor side

Printplatte von der Leiterseite aus gesehen

TRANSISTOR CHART / TRANSISTORENÜBERSICHT

Index nr.	В	C	E C	B E C	E B C	E C B	B C E	E	C B E	S O D	\$ 6 D	D G	S G
8320057	вс	114	BC 109 B		MPS 6520 MPS 6521	BC 169 B BC 184 B-L							
8320069	ВС	154	BC 179 B BC 263 B	BC 159 B		BC 214 B-L BC 259 B			BC 253B				
8320089								BF 194					
8320095	вс	114	BC 109 B BC 109 C	BC 149 B		BC 169 B BC 184 B-L		,					
8320097			BC 107 B	BC 147 B		BC 167 B BC 182 B-L			BC 182 B-K				
8320104		153 154	BC 262 B BC 178 B BC 260 C	BC 158 B	MPS 6518 MPS 6519	BC 212 B-L							
8320108	BC BC	113 114	BC 108B	BC 148 B	MPS 6515	BC 168 B BC 183 B-L S 7033	·		BC 183 B-K	-			
8320112								BF 195					
8320119										TIS 88	- 2N 5245 TIS 88A	U 1981 E	
8320124	ВС	119											
8320125	вс	225											
83 20 12 6			BC 312										
8320136										TIS 88	- 2 N 5245 3 C 2	U 1981	U 1837 E
83 20138						BC 183 B-L		` '	BC 183 B-K				
8320161			BC 261 B BC 266 B			BC 212 B-L			BC 251B BC 212B-K				-
8320164			BC 108 B	BC 148 B	MPS 6515	BC168 B BC183 B-L							
8320173			NPN/PN BC310/BC3	11									
8320192	вс	114	BC 109 B BC 109 C			BC 169 B BC 184 B-L		44		-			
8320198			BC 178 B BC 262 E	BC 158 B	MPS 6518				BC 252 B				
8320201	-				MPS 6515 BC 183B-K	BC 183 B-L							
8320282							2 N 3055						

MODIFICATIONS

AF Level for FM

In practice, the AF level from the FM detector has been found to differ from one receiver to the next, in addition to being low in comparison with the gramophone and tape inputs.

This condition has been remedied by introducing a 2 kohm potentiometer which can be adjusted during production. Besides, the gain of the decoder has been raised to provide a 4 dB output increase of AF output.

The following component values have been altered in the decoder circuit:

No. 192: from 560 ohms to 390 ohms.

Nos. 222 and 224: from 0.33 Mohm to 0.39 Mohm.

Nos. 227 and 236: from 4.7 kohms to 8.2 kohms.

Nos. 233 and 239: from 10 nF to 6.8 nF.

Adjustment is made with an oscilloscope connected to the test point for the FM detector output and a FM modulated signal applied to the aerial input,

input voltage 100 µV.

With frequency swing of 22.5 kHz correct adjustment produces 0.4 V_{pp} .

With frequency swing of 40 kHz correct adjustment provides $0.65 V_{pp}$.

With frequency swing of 75 kHz correct adjustment provides 1.25 $V_{\rm pp}$.

Incorrect adjustment will either result in overdriving the decoder during loud sound passages or in insufficient pilot tone being available for stereo reproduction.

This modification has been introduced as from series 07 No. 24900.

Output Transistors

Output transistor 2N3055 No. 8320061, manufactured by RCA, has been replaced by a Motorola 2N3055 No. 8320282.

As will appear from the sketch below, the two transistors have different dimensions, in consequence of which No. 8320282 requires a different cover, No. 3164135, and screws which are 2 mm longer:

3 X 12 DIN 63 No. 2038017 and

3 X 12 DIN 84 No. 2038220.

When using transistor No. 8320282 it is possible for unstability to occur. The remedy consists in installing a 1 nF capacitor No. 4010008 between the collector and base of each of the protective transistors TR 43 and TR 58. The capacitors may be installed in the PC board as holes are provided adjacent to the transistors.

This modification has been introduced as from series 21.

ÄNDERUNGEN

UKW NF-Niveau

In der Praxis hat es sich herausgestellt, daß das NF-Niveau vom FM-Detektor von Empfänger zu Empfänger abweicht und zugleich zu niedrig ist im Vergleich mit den Phono- und Tape-Eingängen.

Dies ist dadurch geändert worden, daß ein 2-kOhm-Potentiometer eingeführt ist, das während der Herstellung eingeregelt werden kann, und die Verstärkung im Decoder ist auf eine um 4 dB höhere NF-Ausgangsleistung angehoben worden.

Folgende Bauteile wurden in der Decoderschaltung geändert:

Pos. 192 von 560 Ohm in 390 Ohm.

Pos. 222 und 224 von 0,33 MOhm in 0,39 MOhm.

Pos. 227 und 236 von 4,7 kOhm in 8,2 kOhm.

Pos. 233 und 239 von 10 nF in 6,8 nF.

Während des Abgleiches wird ein Oszilloskop dem Testpunkt für den Ausgang des FM-Detektors angeschlossen, und ein FM-moduliertes Signal, Eingangsspannung 100 µV, wird dem Antenneneingang zugeführt.

Bei Frequenzhub 22,5 kHz gibt korrekter Abgleich 0,4 Vss. Bei Frequenzhub 40 kHz gibt korrekter Abgleich 0,65 Vss. Bei Frequenzhub 75 kHz gibt korrekter Abgleich 1,25 Vss. Ein verkehrter Abgleich wird entweder eine Übersteuerung des Decoders bei kräftigen Tonpassagen bewirken oder daß nicht Pilotton genug für eine Stereowiedergabe vorhanden ist.

Die Änderung wurde ab Serie 07 nr. 24900 eingeführt.

Endtransistoren

Der Endtransistor 2N3055 Nr. 8320061 vom Fabrikat RCA ist in ein Motorola 2N3055 Nr. 8320282 geändert worden.

Wie aus der untenstehenden Skizze hervorgeht, haben die zwei Transistoren unterschiedliche Abmessungen, was bewirkt, daß für Nr. 8320282 ein anderer Deckel Nr. 3164135 und 2 mm längere Schrauben zu verwenden sind:

3 X 12 DIN 63 Nr. 2038017 und

3 X 12 DIN 84 Nr. 2038220.

Bei der Anwendung des Transistors 8320282 mag in einigen Fällen eine Unstabilität auftreten. Diese kann dadurch behoben werden, daß ein 1-nF-Kondensator Nr. 4010008 zwischen Kollektor und Basis der Sicherungstransistoren TR 43 und TR 58 montiert wird. Die Kondensatoren können auf der Printplatte montiert werden, da es Löcher neben den Transistoren gibt.

Die Änderung wurde ab Serie 21 eingeführt.

Decoder

Transistor TR 22 in the stereo decoder: No. 8320164 has been replaced by No. 8320201. This modification was introduced because it is possible for residual carrier problems to occur when using No. 8320164 as TR 22.

This modification has been introduced as from series 21.

SERVICE TIPS

Conversion of Gramophone Pre-amplifier to Microphone Pre-amplifier

Remove capacitors No. 352 and No. 388 and short-circuit resistors No. 347 and No. 385.

Short-circuit pins 1 and 4 of gramophone socket 1 to pin 2.

Gramophone socket 2 may still be used for connection of a gramophone with a built-in pre-amplifier.

Poor Channel Separation

Better channel separation can be obtained by altering the following components:

No. 199 from 18 kohms to 12 kohms.

No. 200 from 3.3 kohms to 2.2 kohms.

No. 213 from 5.6 kohms to 3.9 kohms

Transistor TR 22 from No. 8320164 to No. 8320201.

This modification has been introduced in production.

Direct Signal Pick-up

In cases where direct signal pick-up of Channel 4 signals (approx. 60 MHz) can turn the stereo lamps on or cause them to flash on and off during playback of gramophone or tape-recorder programmes, the remedy consists in installing a diode, such as a 1N4148 No. 8300058, between 1 nF capacitor No. 49 and 1 nF capacitor No. 48.

Correct diode polarity appears from the sketch below.

Decode

Der Transistor TR 22 im Stereodecoder ist von Nr. 8320164 in Nr. 8320201 geändert worden. Die Änderung ist darauf zurückzuführen, daß Probleme mit einem Trägerwellenrest entstehen können, wenn Nr. 8320164 als TR 22 benutzt wird.

Die Änderung wurde ab Serie 21 eingeführt.

SERVICETIPS

Änderung des Phonovorverstärkers in Mikrofonvorverstärker

Kondensatoren Pos. 352 und 388 entfernen und Widerstände Pos. 347 und 385 kurzschließen.

In der Phonobuchse 1 wird Stift 1 und 4 nach Stift 2 kurzgeschlossen. Die Phonobuchse 2 läßt sich weiterhin für den Anschluß eines Plattenspielers mit eingebautem Vorverstärker verwenden.

Schlechte Kanaltrennung

Die Kanaltrennung kann dadurch verbessert werden, daß folgende Komponente geändert werden:

Pos. 199 von 18 kOhm in 12 kOhm.

Pos. 200 von 3,3 kOhm in 2,2 kOhm.

Pos. 213 von 5,6 kOhm in 3,9 kOhm.

Transistor TR 22 von Nr. 8320164 in Nr. 8320201.

Die Änderung ist in die Produktion eingeführt.

Einstrahlung

In den Fällen, wo das Einstrahlen von Kanal 4 (ca. 60 MHz) die S-Birnen beim Hören von Schallplatten oder Tonbandgerät zum Blinken oder Aufleuchten bringen können, kann dies dadurch behoben werden, daß eine Diode, z.B. 1N4148 Nr. 8300058, zwischen 1 nF Pos. 49 und 1 nF Pos. 48 montiert wird

Die Diode muß so gerichtet sein wie in untenstehender Skizze gezeigt.

Reduction of Lamp Voltage

In order to reduce lamp voltage, the following modifications have been introduced in production:

No. 135 from 180 ohms to 220 ohms.

No. 240 from 100 ohms to 120 ohms.

It is suggested that these modifications be made in connection with service on the BEOMASTER 3000.

Reduzierung der Birnenspannung

Um die Spannung zu den Birnen herabzusetzen, wurden folgende Änderungen in der Produktion eingeführt:

Pos. 135 wird von 180 Ohm in 220 Ohm und

Pos. 240 wird von 100 Ohm in 120 Ohm geändert.

Die Änderung kann mit Vorteil bei Service am BEOMASTER 3000 ausgenutzt werden.