Geometric Topology

Amit Rajaraman

Last updated March 12, 2021

Contents

1	Introduction	3

 $\mathbf{2}$

0 Pre-Requisites

§0. Pre-Requisites

We assume that the reader has a decent knowledge of General Topology, Analysis, and some parts of Basic Algebra. Nevertheless, we restate some important topological definitions and results.

Definition 0.1. A topological space X is said to be a *Hausdorff space* if for any distinct $x_1, x_2 \in X$, there exist disjoint open subsets U_1 and U_2 such that $x_1 \in U_1$ and $x_2 \in U_2$.

Definition 0.2. If X is a topological space and $x \in X$, a collection \mathcal{B}_x of neighbourhoods of x is called a *neighbourhood* basis for X at x if any neighbourhood of x contains some $B \in \mathcal{B}_x$.

X is said to be *first countable* if there is a countable neighbourhood basis at each point.

It is often more useful to have a nested neighbourhood basis, defined as follows.

Definition 0.3. If X is a topological space and $x \in X$, a sequence (U_n) of neighbourhoods of x is said to be a nested neighbourhood basis at x if $U_{n+1} \subseteq U_n$ for each n and any neighbourhood of x contains some U_n .

The following lemma makes first countable spaces slightly easier to handle.

Lemma 0.1 (Nested Neighbourhood Basis Lemma). A space X is first countable iff every $x \in X$ has a nested neighbourhood basis.

Theorem 0.2. Let X be a first countable space, $A \subseteq X$, and $x \in X$. Then

- (a) $x \in \overline{A}$ iff x is a limit of a sequence of points in A.
- (b) $x \in A^{\circ}$ iff every sequence in X converging to x is eventually in A.
- (c) A is closed iff it contains every limit of every convergent sequence of points in A.
- (d) A is open iff every sequence of points converging to a point in A is eventually in A.

Definition 0.4. A topological space X is said to be second countable if it has a countable basis.

Theorem 0.3. Let X be a second countable space. Then

- (a) X is first countable.
- (b) X contains a countable dense subset (it is separable).
- (c) Every open cover of X contains a countable subcover.

§1. Introduction

Manifolds are essentially like curves or surfaces, except that they might be of higher dimension. Loosely speaking, an n-dimensional manifold is something that, at every point, is locally like \mathbb{R}^n .

So for example, manifolds of dimension 1 would be lines and curves. Manifolds of dimension 2 are surfaces, such as the unit sphere in \mathbb{R}^3 , torii, paraboloids, etc.

To help us formalize this notion, let us make concrete what "locally like \mathbb{R}^n " means.

Definition 1.1. A topological space M is said to be locally Euclidean of dimension n if every point in M has a neighbourhood homeomorphic to an open subset of \mathbb{R}^n .

Further, we see that since any open subset of \mathbb{R}^n contains (an affine shift) of the Euclidean ball, the following follows as well.

Lemma 1.1. Let M be a topological space. The following are equivalent.

- (a) M is locally Euclidean of dimension n.
- (b) Every point of M has a neighbourhood homeomorphic to the open ball in \mathbb{R}^n .
- (c) Every point of M has a neighbourhood homeomorphic to \mathbb{R}^n .

We represent the open ball in \mathbb{R}^n by \mathbb{B}^n .

The proof of the above is not too difficult – we can use the fact that in \mathbb{R}^n , translations $(x \mapsto x + x_0)$, dilations $(x \mapsto cx)$, and boundedness are not topological properties (that is, they need not be preserved under homeomorphism). In particular, \mathbb{B}^n is homeomorphic to \mathbb{R}^n .

Suppose U is locally Euclidean of dimension n and $U \subseteq M$ is open and homeomorphic to some open subset of \mathbb{R}^n . In this context, U is called a *coordinate domain* and any homeomorphism φ from U to an open subset of \mathbb{R}^n is called a *coordinate map*. (U, φ) is then called a *coordinate chart*. If U is homeomorphic to \mathbb{B}^n , it is called a *coordinate ball* (or sometimes, a *coordinate disk* in dimension 2).

If $p \in M$ and $U \ni p$ is a coordinate domain, it is called a *coordinate neighbourhood* or *Euclidean neighbourhood of p*. Observe that the definition of being locally Euclidean even extends to dimension 0 – this is equivalent to saying that the space is discrete.

Definition 1.2 (Manifold). An n-dimensional topological manifold is a second countable Hausdorff space that is locally Euclidean of dimension n.

We often refer to them as n-dimensional manifolds, n-manifolds, or even just manifolds if the dimension is known or unimportant.

First of all, note that any manifold has a well-defined dimension. However, this begs the question – does a manifold have a unique dimension? This might seem quite obvious, but proving it is quite non-trivial. We state the result here, and return to it much later.

Theorem 1.2. A non-empty topological space cannot be both an m-manifold an an n-manifold for some $m \neq n$.

The proof of the above is quite obvious in the case where one of m and n is 0. Indeed, this would mean that the space is discrete, but a singleton set (that is open), does not contain any open subset homeomorphic to \mathbb{B}^n .

At the beginning of this section, we described how manifolds can be thought of as curves or surfaces, but of a higher dimension. Is this true in general? It turns out that it is, and any n-manifold is homeomorphic to some subset of a Euclidean space.

In the definition of a manifold, some authors require separability instead of second countability. This is in fact equivalent to our definition, as is not too difficult to show (one direction is obvious from Theorem 0.3).