平面图与图着色

可平面图(Planar Graph)

如果图G能够被画在一个平面上且图中的任意两条边都不相交,则图G被称为可平面图。

Regions

- Exterior region
- Boundary of region

The Euler Identity

- Theorem 9.1
 - If G is a connected plane graph of order n, size m and having r regions, then n-m+r =2.

Theorem 9.2

 If G is a planar graph of order n>=3 and size m, then m <= 3n-6.

- Corollary 9.3
 - Every planar graph contains a vertex of degree 5 or less.
- Corollary 9.4
 - K₅ is nonplanar.

Theorem 9.5

• The graph $K_{3,3}$ is nonplanar.

Kuratowski's theorem

 A graph G is planar if and only if G does not contain K₅, K_{3,3}, or a subdivision of K₅ or K_{3,3} as a subgraph.

 A graph G' is called a subdivision of a graph G if one or more vertices of degree 2 are inserted into one or more edges of G.

Graph Coloring

- Dated back to 1852, Francis Guthrie
- → De Morgan →
 Hamilton → Sylvester → Kempe → Heawood
 → Birkhoff → Heesch → Shimamoto → Appel
 & Haken & IBM 370-168 (June 1976).

Vertex Coloring

- Assignment of colors to the vertices of G, one color to each vertex, such that adjacent vertices are colored differently.
- Chromatic number, x (G)
- k-colorable; k-coloring; k-chromatic.

The Four Color Theorem

 The chromatic number of every planar graph is at most 4.

Theorem 10.5

- For every graph G of order n,
 - $X(G) >= \omega(G)$ and $X(G) >= n/\beta(G)$.

Theorem 10.7

For every graph

$$- X(G) <= 1 + \Delta(G).$$

Theorem 10.8 (Brooks' Theorem)

 For every connected graph G that is not an odd cycle or a complete graph,

$$- X(G) \leq \Delta(G)$$
.