III. CCD Basics [v1.3.3]

A. Overview

- In observational astronomy, an experiment is often only as good as its detector
 - \diamond e.g. Efficiency of UV detectors remains at $\sim 20\%$
 - ♦ Advances in detectors (e.g. energy resolving devices in the topcial) can lead to major leaps in the science
- Optical astronomy (and essentially IR) is dominated by the CCD
 - An intuitive knowledge of the inner workings is vital to gauge the quality of your data
 - ♦ And to analyze it!
- A CCD is similar to a postage stamp with a grid on it.
 - ♦ Each cell can detect photons, holding electrons like rain buckets (or egg cartons)
 - ♦ You can read the charge one time, any time, which then empties each bucket.
 - ▲ IR detectors can read without 'destroying' the charge
- Goals
 - ♦ Understand how detectors collect and report signal
 - ♦ Understand the primary sources of "noise" (a.k.a. error)
- References
 - ♦ Léna, "Observational Astrophysics"
 - ♦ Howell, "Astronomical CCD Observing and Reduction Techniques"

B. The "Detector"

- Lecture II (Detectors) describes the basic physics of a semi-conductor detector
 - ♦ Photons strike the silicon
 - \diamond A fraction η generate charge in the conduction band which move freely in the metal
 - The charge is then stored as voltage in a capacitor (in a 'well' across the surface of the detector)
- Key quantities
 - ♦ Device
 - \blacktriangle Efficiency (η or QE): Ratio of the number of electrons generated divided by the number of photons incident
 - ▲ Dark current: Current generated by thermal motions of electrons in the device
 - ♦ Electronics
 - ▲ Counts: Number recorded to the file [this is all you get!]

- \triangle Gain (g): Ratio of electrons generated to counts recorded
- ▲ Bias level: 'Artificial' charge added to properly measure zero signal
- ▲ Read noise: Uncertainty in measuring the charge imposed by the electronics
- We will refer to one unit of this "detector" as a cell or a pixel

C. Pixel

- Refer to each cell in the CCD array as a pixel
- Each pixel collects photons independently of all other pixels
 - ♦ The charge is confined by "gates"
 - ♦ The charge is stored in a "well" akin to a zero time-constant capacitor
- Physical parameters
 - \diamond Area of the pixel (size, e.g. μm^2)
 - $\diamond x, y$ position Spatial information
 - ♦ Charge (voltage) photon counting
- The "full well"
 - ♦ The gates on the pixel can hold a finite charge
 - ♦ If you exceed this full well design, the charge bleeds to adjacent pixels
 - ♦ In an array, bleeding occurs preferentially along the columns, not the rows, because the gates are weaker there (by design)

D. CCD Array

- With modern photo-lithography, it is possible to generate an array of pixels
 - The silicon is inlaid with other metals that hold voltage and become clocking "gates"
 - ♦ These gates separate the pixels, and can prevent charge from being transferred between them.
 - ♦ They also can be used to shift charge around
 - ▲ In a standard CCD, charge may be moved down the columns (high to low by convention)
 - ▲ It may also be moved across the row (typically only on the bottom row), to an amplifier
 - ▲ Fancy clocking on CCDs can shuffle charge up and down columns and side to side. These often have poorer performance.

Full-Frame CCD Architecture

- Modern CCDs may have 4096x4096 pixels
 - \diamond At 18 μ m per pixel, that implies approximately 1 cm on a side
 - These large format devices enable imaging huge areas of the sky and highdispersion spectroscopy
- A high QE $\eta > 0.8$, low noise device costs over \$200k each
 - ♦ Current technology is tuned to wavelength, e.g. < 4000Å or > 8000Å
 - ♦ Devices are buttable enabling large mosaics (1 Gigapixels!)
- The device is generally covered with a shutter to avoid charge accumulation inbetween exposures and during readout

E. Readout Basics

- (a) Expose (with shutter open, presumably) and accumulate charge
 - At the end of the exposure, each pixel has its own set of charge
 - Ideally, one electron per photon
 - Hopefully, it is at least proportional to the number of photons that hit it
- (b) Readout means measuring the charge accumulated in each pixel
 - Use electronics attached to the CCD to "read" (i.e. count) the charge
 - In simplest form (e.g. our figure), the readout electronics are attached to **one** pixel at one corner of the CCD
 - One reads charge only from this single pixel!
- (c) Read one row at a time
 - The gates are able to shift the charge along a row
 - ♦ Modulate the voltages on each gate
 - ♦ This is a highly orchestrated (clocked) procedure
 - Read, shift, read, shift, read, shift

- (d) After reading the bottom row, shift all the remaining rows down one
 - This utilizes the other set of (parallel) gates
 - This timing is simpler
- (e) Consider the charge in the far corner from the readout
 - By the end, it has moved n + m times (for $n \times m$ pixels)
 - Charge Transfer Efficiency (CTE) Accuracy with which one moves charge on the CCD
 - ♦ For a large device, the CTE must be better than 1 part in 99,999
 - ♦ 0.001% losses are unacceptible
 - ♦ This scales with the size of the detector (divided by the # of readout amplifiers)

F. Readout Electronics

- Amplifier (amp)
 - ♦ Amplify the tiny charge in each pixel into a manageable value
 - ♦ This ampifies the error too!
 - And introduces new error
- Analog to Digital Converter (ADC or A/D)
 - ♦ Convert an analog voltage into a digital number (Counts)
 - ♦ Often restricted to a 16-bit value
 - ▲ Data storage was expensive (still can be, e.g. space missions like Kepler)
 - \blacktriangle If unsigned, then the values range from 0-64,000
 - ♦ Beware of non-linearity
 - ▲ Depends on how charge accumulates with photon number
 - ▲ Depends on how voltages are converted to numbers
- Bias level
 - ♦ Essential to properly counting zero photons
 - ▲ One never measures a truly zero voltage, only values near zero
 - ▲ If each of the 'negative' voltages were given 0 counts, then you would bias the measurement high
 - Solution
 - ▲ Convert a zero voltage to a significant, positive value of counts (e.g. 1000)
 - ▲ A series of pixels with nearly 'zero' voltage will then give values that fluctuate around 1000
 - ▲ This intential offset in counts from zero is the bias level
 - ♦ Assessing the bias level
 - ▲ Overscan: After reading the row of charge, one may read a series of 'fake' pixels expected to have zero charge

- ▲ Bias image: Take a series of 0s exposures and analyze
- Gain (g)
 - ♦ Ratio of electrons produced to the counts recorded
 - \blacktriangle Usually, g > 1
 - ▲ e.g. 2 electrons per count
 - ♦ How would you measure the gain of a CCD?
 - ▲ Electrons follow Poisson stats, not counts!
- Read Noise (RN)
 - ♦ The readout electronics contribute a source of noise to the measured counts
 - ♦ Usually close to a Gaussian, random 'signal'
 - ▲ Typical values are 3 10 electrons
 - ▲ Easily assessed from analysis of a bias frame
- Connect to a storage device
 - ♦ e.g. a computer with a hard-drive
 - The modern standard is to write all of the pixel values into a single binary (FITS) file

G. Dark Current

- As described in the Detectors lecture, our semi-conductor devices are designed to enable charge to flow when a photon strikes them
 - ♦ One generally designs the device so that electrons are very close to conducting
 - \diamond This maximizes efficiency η
- If the device is too warm (high T), charge may flow without photons
 - ♦ i.e. the tail of the Maxwellian distribution has sufficient energy to 'cross the gap'
 - ♦ This is referred to as Dark Current
 - One mitigates against this unwanted charge by lowering the CCD temperature
 - ♦ This also reduces the device's efficiency
- Modern CCD devices have low dark currents
 - ♦ Modern IR devices continue to have non-negligible values
 - ♦ Best to characterize this yourself on whichever detector you use

H. QE and Flat Fields

- The QE defines the probability that a pixel generates an electron when struck by a photon
 - \diamond Ranges from 0-100%
 - ♦ Wavelength dependent
- Generally, the pixels in a CCD array have nearly the same QE

- \diamond But it is never *exactly* the same
- \diamond Modern devices have variations at the $\approx 0.5\%$ level
- Shine exactly the same number of photons on each pixel of a CCD
 - ♦ Observe a variation in the number recorded
 - ♦ For many reasons, one wishes to correct for these intrinsic variations in the QE
- Flat-field
 - ♦ Correct for QE variations
 - Multiplicative factor, not additive
 - ♦ Procedure:
 - (a) Uniformly illuminate a CCD with light
 - ▲ Difficult to do perfectly
 - ▲ Observe the twilight sky
 - ▲ Observe a screen in the dome
 - ▲ Observe the night sky at random positions and take median
 - (b) Take a series of exposures
 - (c) Combine the series of images
 - (d) Remove detector bias (see below)
 - (e) Normalize the resultant image to a unit value
 - ▲ Often smooth the data first
 - ▲ Reduces illumination patterns
 - (f) Divide this flat-field image into your science frames

I. Example (good) Images

• Bias frame

- Raw image of the night sky (Keck/LRIS)
 - ♦ The striping is due to the different bias levels for the 4-amplifier read-out
 - ♦ The well illuminated region is the unvignetted portion of the camera
 - ♦ Note the (partially) bad columns in the 2nd and 4th amps
 - ♦ Note the odd flat pattern in the 3rd amp

J. CCD "failure" modes

- A/D failure
 - ♦ Improper bias level (e.g. non-Gaussian)
 - ♦ Dropping bits

\bullet CTE

- ♦ Shift register not accurate to 99.999%
- ♦ Typically in the parallel shift (along the column)
- ♦ Charge is left behind from pixels with large values
 - \blacktriangle Same fraction any time the charge is shifted
 - \blacktriangle Point source 'grows' a tail that fades behind

• Defects

- ♦ Difficult to manufacture a device without blemish
- ♦ Military buys the perfect ones
- ♦ Scientists pay a much cheaper price for the imperfect devices

♦ Bad columns, quadrants, etc.

• Cosmic-rays

- ♦ CCDs also record cosmic ray events
- ♦ Bright and localized charge concentrations
- ♦ Often show up as little 'streaks' as in the image below

• Saturation

 \diamond Bleeding: Exceed the full-well of a pixel

 \diamond Over-expose: Exceed the A/D bit-level (e.g. 64,000)

 \diamond Non-linearity: Exceed the linear regime of the system

• Fringing

- ♦ Patterened response of the CCD to longer wavelength light
- \diamond Systematic and highly wavelength dependent

