태양광 패널 데이터 분석을 통한 모델별 성능 파악 및 선정

2024.08.14.

So What 조(4조)

강현주 / 권아연 / 구정모

김동엽 / 박동융 / 조시윤

역할 분담

강현주

- 선형회귀분석
- 군집분석
- 이동평균 파악
- PPT 작성

구정모

- 기상청 데이터 수집
- 랜덤포레스트 분류분석
- 앙상블_soft voting
- 주성분 분석

박동융

- 데이터 전처리
- 로지스틱 회귀분석
- 랜덤 포레스트 회귀분석
- 시계열 분석

권아연

- 발표
- 주성분분석
- 지역별 선형회귀분석
- 의사결정나무 + k-fold

김동엽

- 로지스틱 회귀분석
- XG Boost
- 주성분 분석
- 시계열 분석

조시윤

- 랜덤포레스트 회귀분석
- 의사결정나무 분석
- XG Boost
- GBM Boost
- Ada Boost

방향성 _ 추진 배경

신재생에너지공급 의무화 비율이 꾸준한 상승세를 보이며, 태양광에너지 발전 설비 비중이 71%로 압도적임에 따라 태양광 에너지 발전 사업에 대한 관심 필요

방향성_현상 파악

에너지 저장 장치(ESS)의 과부화로 화재 건수가 증가하는 추세 + 출력량이 많아 잦은 출력 제어 발생

출력량을 예측하여 에너지 저장 장치 과부하 방지 필요

| 잦은 출력 제어 시스템으로 인한 문제 |

올해 3월까지 총 60회 출력제어 발생

양이원영 더불어민주당 의원실에 따르면 지난해 풍력발전과 태양광 발전의 출력제어는 총 132회 발생했다. 올해 지난 3월까지 총 60회의 출력제어가 발생했고 3월 한 달 동안 태양광은 총 14회의 출력제어가 일어났다.

고씨가 운영하는 제주도 서귀포시 406키로와트(kW) 규모의 태양광 발전소는 올해 1월부터 이달 17일까지 29차례 '출력 제어'가 이뤄졌다. 지난달에는 8일부터 나흘 연속약 3~4시간 씩 설비를 멈춰세웠다.

출력제어는 전력당국이 해당 발전소의 전력망 접속을 차단해 전력 생산을 중단하는 조 처다. 사업자들은 '영업정지'로 받아들인다. 출력 제어가 되면 전기를 팔 수 없기 때문이 다.

데이터 수집(1)

● 결측치 및 이상치 처리 , 파생변수 생성

항목	의미	유형	이상치	결측치	확인결과	정제방안	
위치	A,B,C,D,E 지역 분류	범주형	B지역 값	-	B지역 데이터 이상치 발생	B지역 제거, A,C,D,E 지역 값 대치 (A,C,D,E ▶ 당진, 울산, 영광, 동해)	
일자	관측일자	범주형	-	-	-	Datetime 날짜형 변환	
계절	관측일자로 계절 파생변수 생성	범주형	-	-	-	파생변수	
현재발전출력	측정된 전력의 출력 값	연속형	_	-	-	목표변수 Y 설정	
평균기온(°C)	관측 기준 평균 기온	연속형	-				
강수 계속시간(Hr)	관측 기준, 강수 지속 시간	연속형	_				
1시간 최다강수량(mm)	시간당 최다강수량	연속형	_	0	NaN값 0 대치	기상청 2016~2021년도 데이터 수집 및 병합	
일강수량(mm)	일 강수량(total)	연속형	-				
가조시간(hr)	발전 설비 운영 X 시간 or 발전 중단된 시간	연속형	-				

5/18

데이터 수집(2)

● 결측치 및 이상치 처리 , 파생변수 생성

결측치 있는 항목	의미	유형	이상치	NaN 값	확인결과	정제방안
합계 일조시간(hr)	태양빛이 지면에 도달하여 관측된 시간 합계	연속형	-			
평균 전운량(1/10)	하늘의 구름 덮임 정도 (구름의 양/10)	연속형	-	0		기상청 2016~2021년도 데이터 수집 및 병합
평균 중하층운량(1/10)	중간 높이, 낮은 높이에 위치한 구름 덮임 정도(구름의 양/10)	연속형	-		O NaN값 0 대치	
평균지면온도(°C)	지표면에서 측정된 온도의 평균값	연속형	-			
수평 일사량	• 패널의 수평 그리드 일사량 • 수평 일사량 1, 2 의 평균치	연속형	-	-	-	파생변수
경사 일사량	 패널의 경사 그리드 일사량 경사 일사량 1, 2 의 평균치	연속형	-	-	-	파생변수
외기온도	대기 중의 공기 온도외기 온도1, 2의 평균치	연속형	-	-	-	파생변수

데이터 분석 계획 수립 내용

데이터 분포 확인

데이터 분석 결과(1)_회귀분석 데이터 선정

데이터의 특성 파악을 위해 특정 회귀 분석(Random Forest)진행 결과, 위치데이터의 영향력이 큼을 확인.

위치데이터 제거 후에 회귀 분석 재진행

데이터 분석 결과(1)_회귀분석(Y=출력량, X= 위치데이터 제외한 나머지 데이터)

6가지 분석에 대한 결정계수 확인 결과, Radom Forest의 설명력이 가장 우수했기에

Random Forest 분석을 선택

Random Forest

 r^2 score

0.214

Xg boost

 r^2 score

0.2088

Gbm boost

 r^2 score

0.2061

선형회귀분석

 r^2 score

0.064

의사결정트리

 r^2 score

0.0652

Ada boost

 r^2 score

0.0053

데이터 분석 결과(1)_회귀분석(Y=출력량, X= 위치데이터 제외한 나머지 데이터)

5가지 분석에 대한 결정계수 확인 결과, Radom Forest의 설명력이 가장 우수했기에

Random Forest 분석을 선택

Random Forest

r² score**0.214**

선형회귀분석

 r^2 score

0.064

[성능 지표]

1.MAE: 179.62

2.MSE: 58621.74

 $3.r^2$ score : 0.2140

4.explained_variance: 0.2161

데이터 분석 결과(2)_전체 지역 로지스틱 회귀분석

	정확도	정밀도	재현율	F1-score
비위험군	0.0156	0.86	0.93	0.89
과부하 위험군 (상위 20%)	0.8156	0.36	0.20	0.26

데이터 분석 결과(2)_지역별 로지스틱 회귀분석

	정확도	정밀도	재현율	F1-score
비위험군	0.7700	0.85	0.87	0.86
과부하 위험군 (상위 20%)	0.7739	0.40	0.36	0.38

	정확도	정밀도	재현율	F1-score
비위험군	0.7022	0.86	0.89	0.87
과부하 위험군 (상위 20%)	0.7922	0.47	0.39	0.43

데이터 분석 결과(2)_지역별 로지스틱 회귀분석

	정확도	정밀도	재현율	F1-score
비위험군	0.0050	0.84	0.95	0.89
과부하 위험군 (상위 20%)	0.8059	0.49	0.21	0.30

	정확도	정밀도	재현율	F1-score
비위험군	0.7716	0.80	0.95	0.87
과부하 위험군 (상위 20%)	0.7716	0.38	0.12	0.18

데이터 분석 결과(3) _ 특정 독립변수 XGBoost

	정확도	정밀도	재현율	F1-score
비위험군	0.0012	0.83	0.94	0.88
과부하 위험군(상위 20%)	0.8013	0.60	0.31	0.41

위험군 설정

•현재발전출력 상위 20% 기준 : 과부하 위험군

플래그 생성

- 하위 80% : 0상위 20% : 1
- → 플래그 생성하여 이진 클래스로 분류

정규화

- X, Y 선정 (상관관계 높은 변수 제외) (출력량 극단적인 당진, 영광 제외)
- Min-Max scaling→ 정규화

모델 훈련 및 예측

- 데이터 분할 (Test data 20%)
- 랜덤포레스트 분류
 모델 훈련 및 예측

성능평가

- 과부하 위험군
- ✓ 정확도 : 0.87
- ✓ 정밀도: 0.74
- ✓ 재현율: 0.56
- ✓ <u>F1-score</u>: 0.64
- 비위험군
- ✓ 정확도 : 0.87
- ✓ 정밀도: 0.90
- ✓ 재현율: 0.95
- ✓ F1-score: 0.92

인사이트 도출

● 분석을 통한 인사이트 도출안

	당진	울산	영광	동해
과부하 위험군 F1-score	0.38	0.43	0.30	0.18

지역별로지스틱 회귀 분석 후 F1-Score 확인 결과,

울산 지역의 F1-Score 수치가 가장 우수함을 확인할 수 있었다.

▶ 울산 데이터의 성능이 좋음을 파악했고, 울산 데이터로 추가적인 분석 필요

● 최종 선택 모델

: 랜덤 포레스트 분류 모델

20%	과부하 위험군 (출력 제어 명령 발생 위험군)
80%	비위험군

Review . .

1) 깨달은 점

실제 데이터를 기반으로 진행하니, 생각보다 R squared 수치가 낮게 나왔다. 이에 이론적으로 배운 값과는 수치적으로 차이가 있어 의미가 없는 줄 알았으나, 실무 데이터에서는 0.2XX 값이면 높은 수치임을 알게 되었다.

2) 좋았던 점

이론적으로 배웠던 머신러닝 분석 기법을 프로젝트를 통해 익힐 수 있어 좋았다.

