北京市西城区 2014—2015 学年度第二学期期末试卷

八年级数学

2015.7

试卷满分: 100分, 考试时间: 100分钟

一、选择题(本题共30分,每小题3分)

下面各题均有四个选项,其中只有一个是符合题意的.

1. 下列图案中, 既是中心对称图形, 又是轴对称图形的是(

2. 下列各组数中,以它们为边长的线段不能构成直角三角形的是(

A. 2, 2, 3

B. 3, 4, 5

C. 5, 12, 13

3. 己知 *□*ABCD 中, ∠A+∠C=200°, 则∠B 的度数是 (

B. 160°

C. 80°

4. 如图,矩形 *ABCD* 中,对角线 *AC*, *BD* 交于点 *O*. 若∠*AOB*=60°, *BD*=8,则 *AB* 的长

A. 4

C. 3

5. 如图,正方形 *ABOC* 的边长为 2,反比例函数 $y = \frac{k}{x}$ (x < 0) 的 图象经过点A,则k的值为(

A. 2

6. 某篮球兴趣小组有15名同学,在一次投篮比赛 中,他们的成绩如右面的条形图所示. 这 15 名 同学进球数的众数和中位数分别是(

A. 10, 7

B. 7, 7

C. 9, 9

D. 9, 7

- 7. 下列命题中正确的是().
 - A. 对角线相等的四边形是矩形
 - B. 对角线互相垂直的四边形是菱形
 - C. 对角线互相垂直平分且相等的四边形是正方形
 - D. 一组对边相等,另一组对边平行的四边形是平行四边形

- 8. 某小区 2014 年屋顶绿化面积为 2000 平方米, 计划 2016 年屋顶绿化面积要达到 2880 平方米. 若设屋顶绿化面积的年平均增长率为 *x*,则依题意所列方程正确的是 ().
 - A. $2000(1+x)^2 = 2880$
- B. $2000(1-x)^2 = 2880$
- C. 2000(1+2x) = 2880
- D. $2000x^2 = 2880$
- 9. 若一个直角三角形两边的长分别为6和8,则第三边的长为().
 - A. 10
- B. $2\sqrt{7}$
- C.10 或 2√7
- D. 10 或 $\sqrt{7}$
- 10. 如图,以线段 AB 为边分别作直角三角形 ABC 和等边三角形 ABD,其中 $\angle ACB$ =90°. 连接 CD,当 CD 的长度最大时,此时 $\angle CAB$ 的大小是 ().

- A. 75°
- B. 45°
- C. 30°
- D. 15°

二、填空题(本题共24分,每小题3分)

- 11. 若 x = 2 是关于 x 的一元二次方程 $x^2 + 3x + m + 1 = 0$ 的一个解,则 m 的值为

- 13. 2015 年 8 月 22 日,世界田径锦标赛将在北京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备. 在某天"110 米跨栏"训练中,每人各跑 5 次,据统计,他们的平均成绩都是 13.6 秒,甲、乙、丙、丁的成绩的方差分别是 0.07, 0.03, 0.05, 0.02. 则当天这四位运动员中"110 米跨栏"的训练成绩最稳定运动员的是______.
- 14. 双曲线 $y = \frac{2}{r}$ 经过点 $A(2, y_1)$ 和点 $B(3, y_2)$, 则 y_1 ______ y_2 . (填">"、"<"或"=")
- 15. 如图, \square ABCD 的对角线 AC与 BD 相交于点 O, $AB \bot AC$. 若 AB=4,AC=6,则 BD 的长为_____.

16. 将一元二次方程 $x^2 + 8x + 3 = 0$ 化成 $(x + a)^2 = b$ 的形式,

则a+b的值为 .

17. 如图,将 *□ABCD* 绕点 *A* 逆时针旋转 30°得到 *□AB'C'D'*,点 *B'*恰好落在 *BC* 边上,则 *∠DAB'*= °.

三、解答题(本题共20分,第19题10分,其余每小题5分)

19. 解方程:

(1)
$$(x-5)^2-9=0$$
;

(2)
$$x^2 + 2x - 6 = 0$$
.

解:

解

20. 已知:如图,四边形 ABCD 是平行四边形,AE //CF,且分别交对角线 BD 于点 E,F. (1) 求证: $\triangle AEB \cong \triangle CFD$;

(2) 连接 *AF*, *CE*, 若∠*AFE*=∠*CFE*, 求证: 四边形 *AFCE* 是菱形. 证明: (1)

(2)

- 21. 如图,在平面直角坐标系 xOy 中, $\triangle ABC$ 三个项点的坐标分别为 A (-2, -1),B (-4, 1),C (-3, 3). $\triangle ABC$ 关于原点 O 对称的图形是 $\triangle A_1B_1C_1$.
 - (1) 画出 $\triangle A_1B_1C_1$;

 - (3) 若点 P(a, b) 是 $\triangle ABC$ 一边上的任意一点,则点 P 经过上述变换后的对应点 P_1 的坐标可表示为______.

四、解答题(本题共12分,每小题6分)

22. "中国汉字听写大会"是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次"汉字听写"

八年级期末 数学试卷 第4页(共8页)

比赛,每位参赛学生听写 40 个汉字. 比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数 x 绘制成了以下不完整的统计图.

根据以上信息回答下列问题:

- (2) 补全频数分布直方图;
- (3) 各组的组中值如下表所示. 若用各组的组中值代表各组每位学生听写正确的汉字个数, 求被调查学生听写正确的汉字个数的平均数;

听写正确的汉字个数 x	组中值
1≤ <i>x</i> <11	6
11≤ <i>x</i> <21	16
21≤ <i>x</i> <31	26
31≤ <i>x</i> <41	36

(4) 该校共有 1350 名学生,如果听写正确的汉字个数不少于 21 个定为良好,请你估计该校本次"汉字听写"比赛达到良好的学生人数.

解: (3)

- 23. 已知关于x的一元二次方程 $x^2 + (2m+2)x + m^2 4 = 0$ 有两个不相等的实数根.
 - (1) 求m的取值范围;
 - (2) 若 m 为负整数, 且该方程的两个根都是整数, 求 m 的值.

八年级期末 数学试卷 第5页(共8页)

解: (1)

五、解答题(本题共14分,每小题7分)

24. 如图,在平面直角坐标系 xOy 中,点 A (a, $-\frac{7}{2}$) 在直线 $y = -\frac{3}{2}x - \frac{1}{2}$ 上,AB//y 轴,

且点 B 的纵坐标为 1,双曲线 $y = \frac{m}{r}$ 经过点 B.

- (1) 求 a 的值及双曲线 $y = \frac{m}{x}$ 的解析式;
- (2) 经过点 B 的直线与双曲线 $y = \frac{m}{x}$ 的另一个交点为点 C,且 $\triangle ABC$ 的面积为 $\frac{27}{4}$.
 - ①求直线 BC 的解析式;
 - ②过点 B 作 BD//x 轴交直线 $y = -\frac{3}{2}x \frac{1}{2}$ 于点 D, 点 P 是直线 BC 上的一个动点. 若将 $\triangle BDP$ 以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点 P 的坐标.

解: (1)

(2) (1)

- ②点 *P* 的坐标为______.
- 25. 己知: 在矩形 *ABCD* 和△*BEF* 中, ∠*DBC*=∠*EBF*=30°, ∠*BEF*=90°.
 - (1) 如图 1, 当点 E 在对角线 BD 上,点 F 在 BC 边上时,连接 DF,取 DF 的中点 M,连接 ME,MC,则 ME 与 MC 的数量关系是______, $\angle EMC$ =______。
 - (2) 如图 2,将图 1中的 \triangle *BEF* 绕点 *B* 旋转,使点 *E* 在 *CB* 的延长线上,(1)中的其他条件不变.

- ① (1) 中 ME 与 MC 的数量关系仍然成立吗?请证明你的结论;
- ②求 $\angle EMC$ 的度数.

解: (2) ①

2

北京市西城区 2014—2015 学年度第二学期期末试卷

八年级数学附加题

试卷满分: 20 分

2015.7

一、填空题(本题6分)

- 1. 若一个三角形的三条边满足:一边等于其他两边的平均数,我们称这个三角形为"平均数三角形".
 - (1) 下列各组数分别是三角形的三条边长:

①5, 7, 5; ②3, 3, 3; ③6, 8, 4; ④1, $\sqrt{3}$, 2.

其中能构成"平均数三角形"的是 ; (填写序号)

(2) 已知 $\triangle ABC$ 的三条边长分别为 a,b,c,且 a < b < c. 若 $\triangle ABC$ 既是 "平均数三角形",

又是直角三角形,则 $\frac{a}{b}$ 的值为______.

二、解答题(本题共14分,每小题7分)

2. 阅读下列材料:

某同学遇到这样一个问题: 在平面直角坐标系 xOy 中, 已知直线l: y=-x, 点 A(1, y)

t) 在反比例函数 $y = \frac{3}{x}$ (x > 0) 的图象上, 求点 A 到直线 l 的距离.

如图 1,他过点 A 作 $AB \perp l$ 于点 B, AD // y 轴分别交 x 轴于点 C,交直线 l 于点 D.他 发现 OC=CD, $\angle ADB=45$ °,可求出 AD 的长,再利用 $Rt \triangle ABD$ 求出 AB 的长,即为点 A 到直线 l 的距离.

请回答:

图 1 中,AD=_____,点 A 到直线 l 的距离=_____.

参考该同学思考问题的方法,解决下列问题:

在平面直角坐标系 xOy 中,已知直线 l: y=-x,点 M(a,b) 是反比例函数 $y=\frac{k}{x}$ (x>0) 的图象上的一个动点,且点 M 在第一象限,设点 M 到直线 l 的距离为 d .

- (1) 如图 2, 若 a=1, $d=5\sqrt{2}$, 则 k=_____;
- (2) 如图 3, 当k = 8 时,

②在点M运动的过程中,d的最小值为

- 3. 已知: $\mathbb{D}_{\mathbb{B}_1}$ CD 是正方形, E 是 AB 边上一点,连接 DE,过点 D 作 D 图 3 交 BC 的 延长线于点 F,连接 EF.
 - (1) 如图 1, 求证: *DE=DF*;
 - (2) 若点 D 关于直线 EF 的对称点为 H, 连接 CH, 过点 H 作 $PH \perp CH$ 交直线 AB 于点 P. ①在图 2 中依题意补全图形;
 - ②求证: E为AP的中点;

- (3) 如图 3, 连接 AC 交 EF 于点 M, 求 $\frac{2AM}{AB+AE}$ 的值.
- (1) 证明:

(2) ②证明:

图 2

(3) 解:

图 3

北京市西城区 2014—2015 学年度第二学期期末试卷

八年级数学参考答案及评分标准 20

一、选择题(本题共30分,每小题3分)

题号	1	2	3	4	5	6	7	8	9	10
答案	В	A	C	A	D	D	C	A	C	В

- 二、填空题(本题共24分,每小题3分)
- 11. –11.
- 12. 64.
- 13. 丁.
- 14. >.

- 15. 10.
- 16. 17.
- 17. 75.
- 18. $(\frac{\sqrt{3}}{2}, \frac{1}{2}), (\frac{\sqrt{3}}{2}, -\frac{1}{2}).$
- 三、解答题(本题共20分,第19题10分,其余每小题5分)

得 $x-5=\pm 3$. 3 分

即 x-5=3,或 x-5=-3.

 $\Delta = b^2 - 4ac = 2^2 - 4 \times 1 \times (-6) = 28$. 2%

$$= \frac{-2 \pm \sqrt{28}}{2} = -1 \pm \sqrt{7} .$$

- 20. 证明: (1) 如图 1.
 - ::四边形 ABCD 是平行四边形,

∴AB // DC, AB=DC. ················1 分

 $\therefore \angle 1 = \angle 2$.

AE // CF

∴ ∠3=∠4. ·······2 分

在 $\triangle AEB$ 和 $\triangle CFD$ 中,

$$\begin{cases} \angle 3 = \angle 4, \\ \angle 1 = \angle 2, \\ AB = CD, \end{cases}$$

∴ △AEB≌ △CFD.3 分

(2) 如图 2.

当m = -1时,方程 $x^2 - 3 = 0$ 的根为 $x_1 = \sqrt{3}$, $x_2 = -\sqrt{3}$ 不是整数,不符合题意, 当m = -2时,方程 $x^2 - 2x = 0$ 的根为 $x_1 = 0$, $x_2 = 2$ 都是整数,符合题意. 24. 解: (1) :点A (a, $-\frac{7}{2}$) 在直线 $y = -\frac{3}{2}x - \frac{1}{2}$ 上, $\therefore -\frac{7}{2} = -\frac{3}{2}a - \frac{1}{2}.$ $\therefore AB//y$ 轴,且点B的纵坐标为1, ∴点 B 的坐标为 (2, 1). **:** 双曲线 $y = \frac{m}{r}$ 经过点 B(2, 1), $\therefore 1 = \frac{m}{2}, \quad \mathbb{P} m = 2.$ (2) ①过点 *C* 作 *CE* ⊥ *AB* 于点 *E*,如图 5. $\therefore S_{\triangle ABC} = \frac{1}{2}AB \cdot CE = \frac{1}{2} \times [1 - (-\frac{7}{2})] \times CE = \frac{27}{4}.$ ∴点C的横坐标为-1. ∴点 C 在双曲线 $y = \frac{2}{x}$ 上, ∴点 C 的坐标为 (-1, -2). ······ 4分 设直线 BC 的解析式为 y = kx + b, 则 $\begin{cases} 1 = 2k + b, \\ -2 = -k + b. \end{cases}$ 解得 $\begin{cases} k = 1, \\ b = -1. \end{cases}$ 图 5 ∴直线 BC 的解析式为 y = x - 1. 5 分 ② (-1, -2) 或 $(\frac{1}{2}, -\frac{1}{2})$. 7 分

 25. 解: (1) ME=MC, 120;
 2 分

 (2) ①ME=MC 仍然成立.
 证明: 分别延长 EM, CD 交于点 G, 如图 6.
 3 分

::四边形 ABCD 是矩形, ∴ ∠*DCB*=90 °. *∴* ∠*BEF*=90 °, ∴ ∠*FEB*+∠*DCB*=180 °. :点 E 在 CB 的延长线上, \therefore FE // DC. $\therefore \angle 1 = \angle G$. $:M \in DF$ 的中点, $\therefore FM = DM$. 在 $\triangle FEM$ 和 $\triangle DGM$ 中, 图 6 $\angle 1 = \angle G$, $\therefore \triangle FEM \cong \triangle DGM.$ $\therefore EM = GM$. ∴在 Rt $\triangle GEC$ 中, $CM = \frac{1}{2}EG = EM$. 即 ME=MC. ②分别延长 FE, DB 交于点 H, 如图 7. ∴ ∠4=∠5, ∠4=∠6, ∴∠5=∠6. ∴点 E 在直线 FH 上, $\angle FEB$ =90° ∴ ∠*HEB*=∠*FEB*=90 °. 在 \triangle *FEB* 和 \triangle *HEB* 中, $\angle FEB = \angle HEB$, 图 7 $\therefore \triangle FEB \cong \triangle HEB$ ∴FE=HE. :FM=MD, :.EM//HD. ∴∠7=∠4=30°. $\therefore ME=MC$ ∴ ∠7=∠8=30°. ∴∠EMC=180°-∠7-∠8=180°-30°-30°=120°. ····· 7 分

北京市西城区 2014—2015 学年度第二学期期末试卷

八年级数学附加题参考答案及评分标准 2015.7

一、填空题(本题6分)

1. (1) ②, ③; 4分 (2) $\frac{3}{4}$.

二、解答题(本题共14分,每小题7分)

- 3. (1) 证明: 如图 1.
 - ::四边形 ABCD 是正方形,
 - $\therefore DA=DC$, $\angle DAE=\angle ADC=\angle DCB=90^{\circ}$.
 - ∴ ∠DCF=180 °-90 °=90 °.
 - $\therefore \angle DAE = \angle DCF$.
 - $:DF \perp DE$,
 - ∴ ∠*EDF*=90 °.
 - ∵∠1+∠2=90°, ∠2+∠3=90°,

在 $\triangle DAE$ 和 $\triangle DCF$ 中,

$$\begin{cases}
\angle DAE = \angle DCF, \\
DA = DC, \\
\angle 1 = \angle 3,
\end{cases}$$

- $\therefore \triangle DAE \cong \triangle DCF.$
- ∴DE=DF. 2分
- (2) ①所画图形如图 2 所示. 3 分
 - ②证明: 连接 HE, HF, 如图 3.
 - :点H与点D关于直线EF对称,
 - \therefore EH=ED, FH=FD.
 - :DE=DF,
 - \therefore EH= FH=ED=FD.
 - ∴四边形 DEHF 是菱形.
 - ∵ ∠*EDF*=90 °,

 - ∴ ∠*DEH*= ∠*EHF*= ∠*HFD*=90 °.
 - \therefore $\angle 1+\angle 2=90^{\circ}$, $\angle 3+\angle DFC=90^{\circ}$.
 - $\therefore \triangle DAE \cong \triangle DCF$,
 - $\therefore \angle 1 = \angle DFC, AE = CF.$
 - ∴∠2=∠3.
 - $:PH\perp CH$
 - ∴ ∠*PHC*=90 °.
 - ∴ ∠4+∠5=90°, ∠5+∠6=90°,
 - ∴∠4=∠6.

八年级期末 数学试卷

图 1

在 \triangle *HPE* 和 \triangle *HCF* 中,

$$\begin{cases}
\angle 2 = \angle 3, \\
EH = FH, \\
\angle 4 = \angle 6,
\end{cases}$$

- $\therefore \triangle HPE \cong \triangle HCF.$
- $\therefore PE=CF$.
- $\therefore AE=PE$.

(3) 解:过点F作GF $\bot CF$ 交AC的延长线于点G,如图4.

则 ∠*GFC*=90°.

- ∵正方形 *ABCD* 中,∠*B*=90°,
- $\therefore \angle GFC = \angle B$.
- $\therefore AB // GF$.
- $\therefore \angle 1 = \angle G$.
- ::四边形 ABCD 是正方形,
- $\therefore AB=BC$

$$\angle 1 = \angle 2 = \frac{1}{2} \times 90 = 45 \degree$$
.

- $\therefore \angle 3 = \angle 2 = \angle 1 = \angle G = 45^{\circ}$.
- $\therefore FC = FG$.
- $\therefore \triangle DAE \cong \triangle DCF$,
- $\therefore AE = CF$.
- $\therefore AE=FG$.

在 $\triangle AEM$ 和 $\triangle GFM$ 中,

$$\begin{cases}
\angle AME = \angle GMF \\
\angle 1 = \angle G, \\
AE = GF,
\end{cases}$$

- $\therefore \triangle AEM \cong \triangle GFM.$
- $\therefore AM = GM.$

$$\therefore$$
 AG=2AM. 6 $\%$

在 Rt
$$\triangle ABC$$
 中, $AC = \sqrt{AB^2 + BC^2} = \sqrt{2AB^2} = \sqrt{2}AB$.

同理,在 Rt \triangle *CFG* 中, *CG* = $\sqrt{2}$ *CF* .

$$\therefore AG = AC + CG = \sqrt{2}AB + \sqrt{2}CF = \sqrt{2}(AB + CF) = \sqrt{2}(AB + AE).$$

$$\therefore 2AM = \sqrt{2}(AB + AE) \ .$$

$$\therefore \frac{2AM}{AB + AE} = \sqrt{2} . \qquad 7 \, \text{ }$$

