ML -Assignments - 22April 2025

1. Decision Tree Classification

Use make_classification(n_samples=100, n_features=2) to generate a binary classification dataset.

Train a DecisionTreeClassifier, predict, and print the classification report.

2. Decision Tree Regression

Generate data using make_regression(n_samples=100, n_features=1, noise=10). Train a DecisionTreeRegressor and evaluate using MAE, RMSE, and R² score.

3. Plot Decision Boundaries of a Decision Tree

Use a 2D dataset (make_classification with 2 features), fit a DecisionTreeClassifier, and plot the **decision boundary**.

4. Max Depth Impact in Decision Trees

Use the Iris dataset.

Train DecisionTreeClassifier with different max_depth values and compare accuracy on the test set.

5. Visualize Tree Structure

Train a decision tree on the Iris dataset and use plot_tree from sklearn.tree to visualize the structure of the tree.

Random Forest

6. Random Forest Classification

Use the Breast Cancer dataset from sklearn.datasets.load_breast_cancer.

Train a RandomForestClassifier, compute accuracy, and display feature importance.

7. Random Forest Regression

Create data using make regression.

Train a RandomForestRegressor, evaluate on test data using R² and RMSE, and visualize predicted vs actual values.

8. Compare Random Forest vs Decision Tree

On a classification dataset (make_classification), compare accuracy, **F1-score**, and **confusion matrix** between a DecisionTreeClassifier and a RandomForestClassifier.

Gradient Boosting Machines (GBM)

9. Gradient Boosting Classifier

Use the Wine dataset (load_wine() from sklearn). Train a GradientBoostingClassifier and compare accuracy with RandomForestClassifier.

10. Gradient Boosting Regressor

Generate regression data and train GradientBoostingRegressor. Tune parameters like n estimators, learning rate and observe impact on \mathbf{R}^2 score.

Model Stacking

11. Stacking Classifier

On a classification dataset, stack LogisticRegression, DecisionTreeClassifier, and RandomForestClassifier using sklearn.ensemble.StackingClassifier. Compare accuracy with individual base models.

12. Stacking Regressor

On regression data, implement stacking using RandomForestRegressor, GradientBoostingRegressor, and LinearRegression.

Measure RMSE.

CatBoost

13. CatBoost Classifier

Use a dataset with categorical features (e.g., Titanic dataset or simulate one with pandas). Train a CatBoostClassifier and evaluate accuracy and F1-score.

LightGBM

14. LightGBM Classifier

Generate a dataset with 10+ features using make_classification. Train a LGBMClassifier, plot feature importance, and compare it to RandomForestClassifier.

XGBoost

15. XGBoost Regressor

Use make regression() data.

Train an XGBRegressor, tune parameters ($n_estimators$, max_depth , learning_rate), and evaluate using R^2 and RMSE.

16. Compare Hierarchical Clustering with K-Means

Dataset: Use make blobs (n samples=300, centers=4).

- Cluster the dataset using both AgglomerativeClustering and KMeans.
- Compare the cluster assignments visually.

17. Cluster Real-World Dataset (e.g., Mall Customer Segmentation)

Dataset: Use the Mall Customers.csv dataset (Age, Income, Spending Score).

- Normalize features using StandardScaler.
- Apply AgglomerativeClustering.
- Visualize clusters using scatter plots.

18. Determine Optimal Number of Clusters Using Dendrogram

Dataset: make blobs(n_samples=100, centers=4, random_state=42)

• Plot the dendrogram and cut it at different heights to determine the number of clusters.

19. Perform Agglomerative Clustering and Visualize Dendrogram

Dataset: Generate data using make_blobs(n_samples=150, centers=3, cluster_std=1.0).

- Apply AgglomerativeClustering from sklearn.
- Use scipy.cluster.hierarchy.dendrogram to visualize the hierarchical tree
- Plot clusters using different colors.
- 20. Use Breast cancer dataset and perform the above .