Gépelemek mechatronikai mérnököknek

Vári Gergő (MQHJ0H)

2025. október 9.

Karimás csőkötés tervezése

1. ábra: Összeállított modell

Gépelemek mechatronikai mérnököknek

BMEGEGIBMGE

4	TT/	• •	• •	1 4
Ι.	Haz	ZI T	ela	dat

Név: Vari Gergo			
Neptun kód: MQHJ0H			
Gyakorlatvezető: Szabó Gyula			

1. A feladat bevezetése

A megadott adatokkal tervezzen egy csővéget vakkarimával lezáró csavarkötést és szilárdságilag ellenőrizze az elemeket.

2. A feladat értékelése

Az elérhető maximális pontszám 15 pont.

3. Adatok

A vezeték folyadékot szállít.

4. A feladat részletezése

- a) Vázolja fel méretarányosan a konstrukció előtervét!
- b) Számítsa ki a vakkarima minimálisan szükséges vastagságát, majd válasszon szabványos méretű lemezvastagságot!
- c) Válasszon megfelelő méretű lapos tömítést és számítsa ki a minimálisan szükséges tömítő erőt!
- d) Számítsa ki az üzemi nyomásból a csavarra jutó terhelést!
- e) Egy reális biztonsági tényező felvételével határozza meg a csavar előfeszítését és számítsa ki a szükséges meghúzási nyomatékot!
- f) Határozza meg a csavarban ébredő egyenértékű feszültséget és válassza ki a csavar megfelelő anyagát!
- g) Készítse el a kötés összeállítási rajzát! Jelölje rajta a főbb méreteket!

Beadási határidő: a hallgatói tájékoztatóban leírtaknak megfelelően

A feladat beadásával kijelentem, hogy ezt a feladatot meg nem engedett segítség nélkül, saját magam készítettem, és abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint idéztem, vagy azonos tartalomban, de átfogalmazva más tartalomból átvettem, egyértelműen, a forrás megadásával jelöltem. Ennek megszegése a TVSZ 135§ értelmében kerül szankcionálásra!

Tartalomjegyzék

1	Kor	strukció előterve	1					
2	Vak	karima vastagsága és karima szabványok	2					
	2.1	Igénybevétel	2					
	2.2	Szabvány -és anyagválasztás	:					
	2.3	Előtervek	•					
3	Tön	nítés kiválasztása	Ę					
	3.1	Minimális tömítőerő	Ę					
	3.2	Szabvány -és anyagválasztás	6					
	3.3	Előterv	6					
4	Csa	varra jutó terhelés	7					
5	Csa	Csavar előfeszítése és meghúzási nyomatéka						
	5.1	Csavar szabvány	7					
	5.2	Meghúzási nyomaték	8					
6 Csavar anyagválasztás		var anyagválasztás	g					
	6.1	Redukált feszültség	Ć					
	6.2	Méretezés	Ć					
7	Öss	zeállítási rajz						

1 Konstrukció előterve

2. ábra: Konstrukció előtervének rajza

 ${\bf A}$ csavarok biztosítására rugós alátétet 1 alkalmaztam. A karima és a vakkarima egy tömítést fog közre.

 $^{^{1}\}mathrm{DIN}$ 127 - A
24 szabvány alapján.

2 Vakkarima vastagsága és karima szabványok

2.1 Igénybevétel²

Az igénybevétel egy d_t átmérőjű³ körön átadódó egyenletesen eloszló terhelés és feltehető hogy a törés egy egyenes vonal mentén lesz: a kiszámolt σ alapján lehet majd anyagot választani.

A vakkarima félkör felületére ható erőt a félkörfelület súlypontjában összpontosítva vehetjük fel (y_k, y_d) . A csavarok k lyukkörén egyenletesen megoszló erő pedig a k átmérőjének megfelelő félkörív súlypontjában összpontosítható. A felvett törési keresztmetszetre ez a két erő ad nyomatékot.

3. ábra: y_k, y_d és az igénybevétel kapcsolata

$$b_{\min} = \frac{d_t}{2} \sqrt{\frac{3p_{\text{ii}}}{\sigma_{\text{hajl}}} \left(1 - \frac{2}{3} \frac{d_t}{k}\right)} = \frac{115}{2} \sqrt{\frac{3 \cdot 15}{172} \left(1 - \frac{2}{3} \cdot \frac{115}{180}\right)} = 7.047 \,[\text{mm}] \quad (4)$$

$$\sigma = \frac{d_t^2}{4} \frac{3p_{\ddot{\mathbf{u}}}}{b_{\min}^2} \left(1 - \frac{2}{3} \frac{d_t}{K} \right) = \frac{115^2}{4} \cdot \frac{3 \cdot \pi}{7.047^2} \left(1 - \frac{2}{3} \cdot \frac{115}{180} \right) = 8.341 \, [\text{MPa}] \quad (5)$$

 d_t : tőmítés középátmérője [mm]

 d_1 : cső csatlakozás külső mérete [mm]

s: falvastagság [mm]

 d_4 : tömítő felület külső átmérője [mm]

k: csavar lyukköre [mm]

 y_k, y_d : súlypont távolsága a vakkarima kör középpontjától [mm]

 b_{\min} : karima minimális vastagsága [mm]

 $p_{\ddot{\mathbf{u}}}$: belső üzemi nyomás [mm]

σ: hajlító feszültség minimális karima vastagsággal [MPa]

 $^{^2\}mathrm{A}$ feladathoz mellékelt segédletből származó számítások és ábrák. (5. oldal, 5-6. ábra)

 $^{^3}$ Lásd 3.3 fejezet.

2.2 Szabvány -és anyagválasztás

A 15 [bar] üzemi nyomás miatt a EN 1092-1 Type 11 - WNRF PN100 szabványt használtam a karimához. A vakkarimához ugyanezen okból a DIN 2527/E PN100 szabványt választottam. Munkaléces⁴ felületek kellenek, hogy ne az egész sík felületet kelljen megmunkálni a tömítésnek. Anyagnak S235⁵ acél megfelel. ($\sigma_{\rm hajl}=172\,{\rm [MPa]}$)

$$n = \frac{\sigma_{\text{hajl}}}{\sigma} = \frac{172}{8.341} = 20.621 [-]$$
 (6) σ_{hajl} : anyag hajlító feszültsége [MPa] n : biztonsági tényező [-]

Tehát az anyag 20.621 [-] biztonsági tényezővel felel meg a várt terhelésnek.

2.3 Előtervek⁶

4. ábra: Vakkarima előtervének rajza

$D = 230 [\mathrm{mm}]$	D 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$f = 3 [\mathrm{mm}]$	D: vakkarima külső átmérője [mm] f: kiugrás [mm]
$d_4 = 138 [\mathrm{mm}]$	d_4 : tömítő felület külső átmérője [mm]
$d_2 = 26 [\mathrm{mm}]$	d_2 : csavar lyukköre [mm]
K = 180 [mm]	K: csavarok középátmérője [mm]
b = 32 [mm]	b: vakkarima magassága [mm]

⁴A feladathoz mellékelt segédletből ötletet merítve. (6. oldal)

 $^{^5 \}mathrm{Mell\acute{e}kelt}$ segédletből választva. (5. oldal, 1. táblázat)

 $^{^6 \}mathrm{Előtervek}$ a EN 1092-1 Type 11 - WNRF PN
100 és a DIN 2527/E PN100 szabványok alapján.

5. ábra: Karima előtervének rajza

$D = 230 [\mathrm{mm}]$	D: karima külső átmérője [mm]
f = 3 [mm]	f: kiugrás [mm]
	d_4 : tömítő felület külső átmérője [mm]
$d_4 = 138 [\mathrm{mm}]$	d_2 : csavar lyukköre [mm]
$d_2 = 26 [\mathrm{mm}]$	s: falvastagság [mm]
$s = 4.45 [\mathrm{mm}]$	N: csavarok [db]
N = 8 [db]	K: csavarok középátmérője [mm]
. 1	b: csavarok alap
$K = 180 [\mathrm{mm}]$	és tömítési sík távolsága [mm]
$b = 32 [\mathrm{mm}]$	d_3 : kúp alsó átmérője [mm]
$d_3 = 120 [\mathrm{mm}]$	d_1 : cső csatlakozás külső mérete [mm]
$d_1 = 88.9 [\text{mm}]$	$d_t extcs$: csavarmenet
	szabványos mérete [mm]
$d_{\rm cs} = M24$	h: karima magassága [mm]
$h = 78 [\mathrm{mm}]$	

3 Tömítés kiválasztása

3.1 Minimális tömítőerő⁷

A belső nyomás miatti csőerő hat ellen az üzemi nyomásnak. A gyűrűfelületi csőerő nyom ellen a gyűrű alsó felülete alá benyomódó folyadéknak. A minimális tömítő erő szükséges ahhoz hogy a tömítetség kialakuljon. Ezek összege adja a csavarra ható üzemi erőt.

$$z = \frac{d_{2t} - d_{1t}}{2} = \frac{115 - 95}{2} = 10 \,[\text{mm}] \tag{7}$$

$$b_t^* = 9 + 0.2z = 9 + 0.2 \cdot 10 = 11 \text{ [mm]}$$
 (8)

$$n_t = 1.3 \left[-\right] \tag{9}$$

$$F_{\rm cső} = \frac{\rm DN^2 \cdot \pi}{4} p_{\rm ti} = \frac{230^2 \cdot \pi}{4} \cdot 15 = 7539.822 \,[\rm N] \tag{10}$$

$$F_{\rm p} = \frac{\left(d_t^2 - {\rm DN}^2\right)\pi}{4}p_{\ddot{\rm u}} = \frac{\left(115^2 - 230^2\right)\pi}{4} \cdot 15 = 8040.514\,[{\rm N}] \tag{11}$$

$$F_{\text{t\"{o}m}} = n_t \cdot p_{\ddot{\mathbf{u}}} \cdot \pi \cdot d_t \cdot b_t^* = 1.3 \cdot 15 \cdot \pi \cdot 115 \cdot 11 = 7749.524 \,[\text{N}]$$
 (12)

$$F_{\text{csavar "üzemi}} = F_{\text{cső}} + F_{\text{p}} + F_{\text{t\"{o}m}}$$

$$= 7539.822 + 8040.514 + 7749.524 = 23329.86 \text{ [N]}$$
(13)

$$n_{\text{bizt}t} = 1.4 \left[-\right] \tag{14}$$

$$F_{\text{csavar szerelési}} = n_{\text{bizt}t} \cdot F_{\text{csavar üzemi}} = 1.4 \cdot 23329.86 = 32661.804 [N]$$
 (15)

z: fogak száma [db]

 b_t^* : tömítés hatásos szélessége⁸ [mm]

 $F_{cső}$: belső nyomásból származó csőerő [N]

 $F_{\rm p}$: belső nyomásból származó gyűrűfelületi erő [N]

 $F_{\text{töm}}$: minimális tömítő erő [N]

 $F_{\text{csavar üzemi}}$: csavarokra ható üzemi erő [N]

 n_t : választott biztonsági tényező [-]

 $n_{\mathrm{bizt}t}$: csavarokra ható szerelési erőhöz választott biztonsági tényező $\,[-]\,$

 $F_{\rm csavar\ szerelési}$: csavaroknál alkalmazott szerelési erő [N]

⁷A feladathoz mellékelt segédletből származó számítások. (7. oldal)

 $^{^8{\}rm K\acute{e}plete}$ a feladathoz mellékelt segédletből. (8. oldal, 3. táblázat)

3.2 Szabvány -és anyagválasztás

A DIN EN 1514-6 B29A PN100 szabványt választottam és ez a tömítés nagy nyomásokat is kibír. 1.4541 fémből és egy PTFE borításból készül ahol a fém fésük deformálják a műanyagot az előfeszítés hatására ezzel előidézve a tömítőerőt.

3.3 Előterv⁹

6. ábra: Tömítés előtervének rajza

$$\begin{split} d_{1t} &= 95 \, [\text{mm}] \\ d_{2t} &= 115 \, [\text{mm}] \\ d_{3t} &= 154 \, [\text{mm}] \\ b_t &= 3 \, [\text{mm}] \\ b_m &= 5 \, [\text{mm}] \\ h_{\min} &= \frac{0.3 \, [\text{mm}]}{0.5 \, [\text{mm}]} \end{split}$$

 d_{1t} : tőmítés belső átmérője [mm]

 d_{2t} : tőmítés felfekvő felület külső átmérője [mm]

 d_{3t} : távtartó gyűrű külső átmérője [mm] b_t : távtartó gyűrű vastagsága [mm] b_m : fém mag magassága [mm]

 $h_{\rm min}\colon$ szerelés utáni/előtti távolsága

PTFE lemezeknek a vasmag tetejétől [mm]

⁹Előterv a DIN EN 1514-6 B29A PN100 szabvány alapján.

Csavarra jutó terhelés¹⁰ 4

A csavar terhelésének kiszámításához a legnagyobb fellépő erő szükséges.

$$F_v = \frac{F_{\text{csavar szerelési}}}{n} = \frac{32661.804}{8} = 4082.725 [N]$$
 (16)

 F_v : csavar terhelése [N]

 $F_{\rm csavar\ szerelési}$: csavaroknál alkalmazott szerelési erő $\ [{\rm N}]$

n: csavarok száma [db]

Csavar előfeszítése és meghúzási nyomatéka 5

Csavar szabvány¹¹ 5.1

$$\begin{split} p &= 3 \, [\text{mm}] \\ d_{3\text{cs}} &= 20.319 \, [\text{mm}] \\ d_{2\text{cs}} &= 22.051 \, [\text{mm}] \\ d_w &= 33.6 \, [\text{mm}] \\ b &= 54 \, [\text{mm}] \\ l &= 100 \, [\text{mm}] \\ \beta &= 60 \, [^{\circ}] \end{split}$$

$$\mu_{\min}_{\max} = {0.1[-]\atop 0.14[-]} \tag{17}$$

$$\mu = \frac{\mu_{\min} + \mu_{\max}}{2} = \frac{0.1[-] + 0.14[-]}{2} = 0.12[-]$$
 (18)

p: menet emelkedése [mm]

 d_{3cs} : orsó magátmérője [mm]

 d_{2cs} : csavar középátmérője [mm]

 β : menetprofil szöge [°]

 μ_{\min}/μ : súrlódási tényező 12,13 [-]

 $^{^{10}}$ A feladathoz mellékelt segédletből származó számítások. (9. oldal)

 $^{^{11}\}mathrm{ISO}~4014$ szabvány alapján kapott értékek.

 $^{^{12}\}mathrm{MSZ}$ EN 24014 szabvány alapján kapott értékek.

 $^{^{13}\}mathrm{A}$ súrlódási tényező átlagolható elég nagy biztonsági tényező mellett.

5.2 Meghúzási nyomaték¹⁴

 α menetemelkedési szög számítható eddigi adatainkból. A látszólagos súrlódási félkúpszög $(\rho^{'})$ pedig az ismert súrlódási tényezőkből. A csavar meghúzásához szükséges nyomaték $(M_{\rm meghúzási})$ a csavar mentén $(M_{\rm csavar})$ -és az anya homlokfelületén $(M_{\rm anya})$ ébredő súrlódás összege.

$$\alpha = \arctan \frac{p}{d_{2_{\rm cs}}\pi} = \arctan \frac{3}{22.051 \cdot \pi} = 2.479 \, [^{\circ}]$$
 (19)

$$\mu' = \frac{\mu}{\cos\frac{\beta}{2}} = \frac{.12}{\cos\frac{60}{2}} = 0.139 \,[\text{rad}]$$
(20)

$$\rho^{'} = \arctan \mu^{'} = \arctan 0.139 \, [\text{rad}] = 7.889 \, [^{\circ}]$$
 (21)

$$d_a = \frac{d_w + d_{cs}}{2} = \frac{33.6 + 24}{2} = 28.8 \,[\text{mm}]$$
 (22)

$$M_{\text{csavar}} = F_v \frac{d_{2_{\text{cs}}}}{2} \tan \left(\alpha + \rho' \right)$$

$$= 4082.725 \cdot \frac{22.051}{2} \tan \left(2.479 \left[\circ \right] + 7.889 \left[\circ \right] \right)$$

$$= 8236.115 \left[\text{Nmm} \right]$$
(23)

$$M_{\rm anya} = F_v \frac{d_a}{2} \mu^{'} = 4082.725 \cdot \frac{28.8}{2} \cdot 0.139 = 7054.95 \, [{\rm Nmm}] \eqno(24)$$

$$M_{\text{meghúzási}} = M_{\text{csavar}} + M_{\text{anya}}$$

= 8236.115 + 7054.95 = 15 291.064 [Nmm] (25)

 α : menetemelkedés szöge [°]

 μ_{\max}/μ : súrlódási tényező [–]

 β : menetprofil szöge [°]

 d_a : anya felvekvő felület középátmérője [mm]

 d_{cs} : csavar szabványos mérete [mm]

 d_{2cs} : menet középátmérője [mm]

 $M_{\rm csavar}$: menet súrlódási nyomatéka [Nmm]

 F_v : csavar terhelése [N]

 ρ' : látszólagos súrlódási félkúpszög [°]

 $M_{\rm anva}$: csavaranya felülete alatti súrlódási nyomaték [Nmm]

 $M_{\text{meghúzási}}$: meghúzási nyomaték [Nmm]

 $^{^{14}\}mathrm{A}$ feladathoz mellékelt segédletből származó számítások. (9-10. oldal)

6 Csavar anyagválasztás¹⁵

6.1 Redukált feszültség

A legnagyobb igénybevételre ($\sigma_{\rm red}$) kell méretezni és ez a húzó (σ) illetve csavaró (τ) nyomaték összege.

$$A_e = \frac{\left(\frac{d_{2_{cs}} + d_{3_{cs}}}{2}\right)^2 \pi}{4} = \frac{\left(\frac{22.051 + 20.319}{2}\right)^2 \pi}{4} = 352.49 \,[\text{mm}^2]$$
 (26)

$$\sigma = \frac{F_v}{A_e} = \frac{4082.725}{352.49} = 11.583 \,[\text{MPa}] \tag{27}$$

$$K_p = \frac{\left(\frac{d_{2\text{cs}} + d_{3\text{cs}}}{2}\right)^3 \pi}{16} = \frac{\left(\frac{22.051 + 20.319}{2}\right)^2 \pi}{16} = 1866.875 \,[\text{mm}^3]$$
 (28)

$$M_{\text{csavar}} = M_{\text{anya}} = 7054.95 \,[\text{MPa}] \tag{29}$$

$$\tau = \frac{M_{\text{csavar}}}{K_p} = \frac{7054.95}{1866.875} = 3.779 \,[\text{MPa}]$$
(30)

$$\sigma_{\rm red} = \sqrt{\sigma^2 + 3\tau^2} = \sqrt{11.583^2 + 33.779^2} = 13.304 \,[\text{MPa}]$$
 (31)

6.2 Méretezés¹⁶

A kiszámolt feszültséggel már lehet szilárdsági osztályt választani és a 3.6-os megfelel az igényeknek (hiszen $R_{\rm eH}$ nagyobb az elvártnál).

$$R_{\rm eH} = 180 \,[\mathrm{MPa}] \tag{32}$$

$$n_{\text{biztcs}} = \frac{R_{\text{eH}}}{\sigma_{\text{red}}} = \frac{180}{13.304} = 13.529 [-]$$
 (33)

 A_e : csavarerőt vivő keresztmetszet terület [mm²]

 d_{2cs} : menet középátmérője [mm]

 d_{3cs} : orsó magátmérője [mm]

 σ : húzó feszültség [MPa]

 F_v : csavar terhelése [N]

 K_p : csavar keresztmetszet poláris másodrendű nyomaték $[\text{mm}^3]$

 $M_{\rm csavar}$: csavar mentén súrlódásból származó csavaró nyomaték [Nmm]

 $M_{\rm anya_{\rm max}}$: csavaranya felülete alatti maximum súrlódás [Nmm]

 τ : csavaró feszültség [MPa]

 $\sigma_{\rm red}$: redukált feszültség [MPa]

R_{eH}: folyáshatár [MPa]

 N_{biztcs} : csavar biztonsági tényező [-]

 $^{^{15}\}mathrm{A}$ feladathoz mellékelt segédletből származó számítások. (10-11. oldal)

 $^{^{16} \}mathrm{ISO}$ 898-1 szabvány alapján kapott értékek.

