第二章 矩阵及其运算

矩阵是线性代数的主要研究对象之一,凡是涉及到多方面相互关联的多元数量关系,往往可以用矩阵来描述和处理。本章主要介绍矩阵的概念、矩阵的运算、矩阵的分块及分块矩阵的运算。

第一节 矩阵及有关概念

一、矩阵

定义1 由 $m \times n$ 个数 a_{ii} ($i = 1, 2, \dots, m; j = 1, 2, \dots, n$) 排成的 m 行 n 列的数表

称为m 行n 列矩阵,简称 $m \times n$ 矩阵,通常用大写黑体字母表示,记作

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
 (2.1)

 a_{ij} 称为矩阵 A 的第 i 行第 j 列元素,一个 $m \times n$ 矩阵 A 也可简记为 $A = (a_{ij})_{m \times n}$ 或

 $\mathbf{A} = (a_{ij})$,为了更清楚地表明矩阵的行、列数,有时也写作 $\mathbf{A}_{m \times n}$.

在许多实际问题涉及到表格时,经常会转化为矩阵来研究.

例如某工厂向四个商店销售三种产品的数量(单位:件)分别如下表:

产品 销量 商店	产品I	产品 II	产品 III
商店甲	2	3	5
商店乙	4	5	6
商店丙	3	4	6
商店丁	4	5	7

则该工厂各产品的销售量可以用矩阵表示:

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 5 \\ 4 & 5 & 6 \\ 3 & 4 & 6 \\ 4 & 5 & 7 \end{pmatrix}.$$

又如四个城市间的单向航线如图 2.1 所示:

图 2.1

若记

$$a_{ij} = \begin{cases} 1 & i$$
市到 j 市有1条单向航线 i 市到 j 市没有单向航线

则图 2.1 可以用矩阵 $A = (a_{ij})$ 表示:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

对于一般非齐次线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_1 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(2. 2)

其系数可以构成一个m 行n 列的矩阵

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
 (2.3)

称为线性方程组(2.2)的系数矩阵,而称

$$\overline{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$
 (2.4)

为线性方程组(2.2)的**增广矩阵**,一个线性方程组对应唯一的系数矩阵和增广矩阵,它和增广矩阵是一一对应的.

.、特殊矩阵

1. 零矩阵

若一个矩阵的所有元素都为零,则称这个矩阵为**零矩阵**,记为 $\mathbf{0}$ 或 $\mathbf{0}_{m \times n}$

2. 行矩阵与列矩阵

只有一行元素的矩阵为**行矩阵**,如 $\mathbf{A} = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$

只有一列元素的矩阵为**列矩阵**,如
$$\mathbf{\textit{B}} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

3. **方阵**

3. **方阵** 行数等于列数的矩阵称为**方阵**,例如
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
 是 $n \times n$ **方阵**,也称为 n

阶方阵或 n **阶矩阵**,记作 $A = (a_{ii})_n$,元素 $a_{11}, a_{22}, ..., a_{mn}$ 所在的直线称为方阵的**主对角线**。

一阶方阵(a)就是元素a,不改变方阵 $A = (a_{ii})_n$ 中元素排列顺序所构造的n阶行列式

称为**方阵** A 的行列式,记为|A| 或 det A

4. 上三角矩阵

主对角线以下的元素全为零的
$$n$$
阶方阵 $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$ 称为**上三角矩阵**.

5. 下三角矩阵

主对角线以上的元素全为零的
$$n$$
阶方阵 $\mathbf{A} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$ 称为下三角矩阵.

3

6. 对角矩阵

主对角线以外的元素都为零的
$$n$$
阶方阵 $\mathbf{A}=\begin{pmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & & a_{nn} \end{pmatrix}$ 称为**对角矩阵**,对角

矩阵既是上三角矩阵又是下三角矩阵,即当 $i \neq j$ 时, $a_{ij} = 0$.

特别,主对角元都相等的n阶对角阵 $\mathbf{A}=\begin{pmatrix} \lambda & & & \\ & \lambda & & \\ & & \ddots & \\ & & & \lambda \end{pmatrix}$ 称为**数量矩阵**,而主对角元

都是 1 的 n 阶数量矩阵 $A = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$ 称为 n 阶 **单位矩阵**,记作 E_n 或 E.

三. 矩阵的相等

若两个矩阵的行数相等,列数也相等时,称它们是同型矩阵。

定义 2 若 $A = (a_{ii})$ 与 $B = (b_{ii})$ 是同型矩阵,且对应元素相等,即

$$a_{ij} = b_{ij}, i = 1, 2, \dots, m, j = 1, 2, \dots, n,$$

则称矩阵A与矩阵B相等,记作A=B.

注 不同型的零矩阵是不相等的,如 $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ 与 $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 不相等.

思考题一

- 1. $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ 是否相等?你能从中得到什么结论?
- 2. 不同型的零矩阵是不相等的,请问不同型的单位矩阵相等吗?为什么?

第二节 矩阵的基本运算

一、矩阵的加法

定义 3 设 $\mathbf{A}=(a_{ij})_{m\times n}$, $\mathbf{B}=(b_{ij})_{m\times n}$ 是同型矩阵,规定 \mathbf{A} 与 \mathbf{B} 相加的和矩阵为

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$
(2.5)

根据定义容易验证矩阵的加法满足以下运算规律(设A,B,C都是同型矩阵):

(1) A + B = B + A;

(2)
$$(A+B)+C=A+(B+C)$$
.

设 $A = (a_{ij})_{m \times n}$,记 $-A = (-a_{ij})_{m \times n}$,-A 称为矩阵 A 的**负矩阵**,显然有 A + (-A) = O 由此可以定义矩阵的减法为 A - B = A + (-B)

二、数乘矩阵

定义 4 设矩阵 $A = (a_{ii})_{m \times n}$, λ 是一个数 , 规定数 λ 与矩阵 A 的乘积为

$$\lambda \mathbf{A} = \mathbf{A}\lambda = (\lambda a_{ij}) = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{pmatrix}$$

 λA 简称**数乘矩阵**,根据定义容易验证矩阵的数乘满足以下运算性质(设A,B 为同型矩阵, λ,μ 为数):

- (1) $\lambda \mathbf{A} = \mathbf{A}\lambda;$
- (2) $(\lambda \mu) \mathbf{A} = \lambda(\mu \mathbf{A}) = \mu(\lambda \mathbf{A});$
- (3) $\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}; \ (\lambda + \mu)\mathbf{A} = \lambda \mathbf{A} + \mu \mathbf{A};$
- (4) $0 \cdot A = 0, \lambda \cdot 0 = 0;$
- (5) 设A 为n 阶方阵, λ 为实数,则 $|\lambda A| = \lambda^n |A|$

矩阵加法与数乘运算合起来统称为矩阵的**线性运算**。若 $A=(a_{ij})_{m\times n}$,

 $\mathbf{B} = (a_{ij})_{m \times n}, \lambda, \mu$ 为数,则 \mathbf{A}, \mathbf{B} 线性运算出矩阵 $\mu \mathbf{A} + \lambda \mathbf{B} = (\mu a_{ij} + \lambda b_{ij})_{m \times n}$.

三、矩阵的乘法

定义 5 设矩阵 $\mathbf{A} = (a_{ij})_{m \times s}$, $\mathbf{B} = (b_{ij})_{s \times n}$, 若记

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{is}b_{sj} = \sum_{k=1}^{s} a_{ik}b_{kj} (i = 1, 2, \dots, m; j = 1, 2, \dots, n)$$

则以 c_{ii} 为元素构成的矩阵 $C = (c_{ii})_{m \times n}$ 称为矩阵A与矩阵B的**乘积**,记作C = AB

 $\mathbf{\dot{z}}$ (1) 只有当左边矩阵 \mathbf{A} 的列数等于右边矩阵 \mathbf{B} 的行数时才可以相乘; (2) 乘积矩阵 \mathbf{C} 的行数等于矩阵 \mathbf{A} 的行数,乘积矩阵 \mathbf{C} 的列数等于矩阵 \mathbf{B} 的列数.

例 1 某地区有四个工厂 $I \times II \times III \times IV$,生产 $1 \times 2 \times 3$ 三种产品,一年中各工厂生产各种产品的数量可表示为矩阵

$$\boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{pmatrix} \quad ,$$

其中 a_{ik} (i=1,2,3,4;k=1,2,3) 是第i个工厂生产第k种产品的数量,矩阵 $\mathbf{\textit{B}}=\begin{pmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\\b_{31}&b_{32}\end{pmatrix}$

的两列分别表示各种产品的单位价格(元)及单位利润(元),其中 b_{k1} 及 b_{k2} (k=1,2,3)分别是第k种产品的单位价格及单位利润,记 $AB=C=(c_{ij})_{4\times 2}$,则 c_{i1} 和 c_{i2} (i=1,2,3,4)分别是第i个工厂生产三种产品的总收入及总利润.

例 2 已知矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 4 & 1 & 0 \\ -1 & 1 & 3 \\ 2 & 0 & 1 \end{pmatrix}$, 求 \mathbf{AB} .

解 由定义可得

$$\mathbf{AB} = \begin{pmatrix} 1 \times 4 + 0 \times (-1) + 3 \times 2 & 1 \times 1 + 0 \times 1 + 3 \times 0 & 1 \times 0 + 0 \times 3 + 3 \times 1 \\ 2 \times 4 + 1 \times (-1) + 0 \times 2 & 2 \times 1 + 1 \times 1 + 0 \times 0 & 2 \times 0 + 1 \times 3 + 0 \times 1 \end{pmatrix} = \begin{pmatrix} 10 & 1 & 3 \\ 5 & 3 & 3 \end{pmatrix}$$

注意此时 BA 没有意义.

例3 已知矩阵
$$A = \begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$, 求 $AB \ni BA$.

$$\mathbf{A}\mathbf{B} = \begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 10 & 20 \\ -5 & -10 \end{pmatrix}, \mathbf{B}\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

此例说明矩阵的乘积一般不满足交换律,而且还说明了两个非零矩阵的乘积,可能是零矩阵,因此矩阵的乘法需要注意: (1) 任意两个矩阵未必可乘; (2) 交换律一般不成立,即一般来说 $AB \neq BA$,但若 AB = BA 成立,则称矩阵 A = B 可交换; (3) 消去律一般不成立,即由 AB = O,不能推出 A = O 或 B = O,因此由 AB = AC 且 $A \neq O$ 不能推出 B = C,这是因为 AB - AC = A(B - C) = O 不能推出 B - C = O.

但矩阵的乘法仍满足以下运算性质 (假设运算都可行):

(1)
$$(AB)C = A(BC)$$
;

(2)
$$A(B+C) = AB + AC; (B+C)A = BA + CA;$$

(3)
$$\lambda(AB) = (\lambda A)B = A(\lambda B);$$

(4)
$$AO = O, OA = O$$
;

(5)
$$A_{m\times n}E_n = A_{m\times n}$$
, $E_mA_{m\times n} = A_{m\times n}$, 其中矩阵 $A = (a_{ii})_{m\times n}$, E 为单位矩阵.

(6) 设A,B 都是n阶方阵,则|AB| = |A||B|

例4 已知
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$
,求所有与 \mathbf{A} 可交换的矩阵.

解 设B 为与A 可交换的矩阵,即B 满足AB = BA,则A,B 为同阶矩阵.

设
$$\mathbf{B} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
,则 $\mathbf{AB} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ 2a+c & 2b+d \end{pmatrix}$;

$$\mathbf{B}\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} a+2b & b \\ c+2d & d \end{pmatrix}$$
. 由 $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}$ 可推出 $b=0, a=d$.

所以所有与A可交换的矩阵为 $\begin{pmatrix} a & 0 \\ c & a \end{pmatrix}$, 其中a,c 为任意数.

设矩阵
$$m{A} = (a_{ij})_{m \times n}, m{\Lambda} = \begin{pmatrix} \lambda & & \\ & \ddots & \\ & & \lambda \end{pmatrix}$$
 为数量阵,容易验证:

$$\Lambda = \lambda E, \Lambda_m A = (\lambda E_m) A = \lambda (E_m A) = \lambda A, A \Lambda_n = A(\lambda E_n) = \lambda (A E_n) = \lambda A.$$

由此可见数量阵乘矩阵 A ,等于数 λ 乘矩阵 A ,这就是称其为数量阵的缘由,且当 A 为 n 阶方阵时,有 $A_nA=\lambda A=AA_n$ 表明数量阵与任何同阶方阵都是可交换的.

设有线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(2. 6)

记矩阵

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

A 即为线性方程组(2.6)的系数矩阵,称 X 为未知数向量(变元),b 为常数向量,而由

$$\boldsymbol{A}\boldsymbol{X} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix}$$

可知方程组(2.6)可以表示为

$$\boldsymbol{AX} = \boldsymbol{b} \tag{2.7}$$

(2.7) 式称为线性方程组(2.6) 的矩阵表示式.

容易证明两个同阶对角矩阵

$$A = \begin{pmatrix} a_{11} & & & & \\ & a_{22} & & & \\ & & \ddots & & \\ & & & a_{nn} \end{pmatrix}, B = \begin{pmatrix} b_{11} & & & & \\ & b_{22} & & & \\ & & \ddots & & \\ & & & b_{nn} \end{pmatrix},$$

的乘积

$$\mathbf{AB} = \begin{pmatrix} a_{11}b_{11} & & & \\ & a_{22}b_{22} & & \\ & & \ddots & \\ & & & a_{nn}b_{nn} \end{pmatrix}$$

为对角矩阵,同样可以证明,有限个同阶对角阵的乘积还是对角矩阵,而且还可以证明,有限个同阶上(下)三角矩阵的乘积还是上(下)三角矩阵(读者证明).

四、方阵的幂

定义 6 设 A 是 n 阶方阵,定义

$$A^{0} = E \cdot A^{1} = A \cdot A^{2} = AA \cdot ... \cdot A^{k+1} = A^{k}A$$

由定义可知只有方阵才有幂,容易验证方阵的幂有以下运算性质 (k,l)为正整数):

- $(1) \qquad \boldsymbol{A}^{k+l} = \boldsymbol{A}^k \boldsymbol{A}^l.$
- (2) $(A^k)^l = A^{kl}$:
- $(3) |\mathbf{A}^{k}| = |\mathbf{A}|^{k}.$

注: 由于矩阵乘法的不可交换性,一般来说 $(AB)^k \neq A^kB^k$,由此

$$(A+B)^2 \neq A^2 + 2AB + B^2, (A+B)(A-B) \neq A^2 - B^2$$

等熟知的乘法公式一般不再成立,但只要A与B可交换,这些公式就都成立了.

上节中有一个四城市间的单向航线矩阵
$$\mathbf{A}$$
,由 $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$ 得

$$\boldsymbol{A}^{2} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 1 \end{pmatrix},$$

记 $A^2 = (b_{ij})$,则 b_{ij} 表示从 i 市经一次中转到 j 市的单向航线条数,例如 $b_{42} = 2$ 表示从④市经一次中转到②市的单向航线有 2 条(④ — → ① — → ②,④ — → ③ — → ②).

例 5 已知
$$\mathbf{A} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$$
,求 \mathbf{A}^k (k 为正整数).

解法一 首先计算

$$A^{2} = A \cdot A = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2\lambda \\ 0 & 1 \end{pmatrix},$$

$$\mathbf{A}^3 = \mathbf{A}^2 \cdot \mathbf{A} = \begin{pmatrix} 1 & 2\lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3\lambda \\ 0 & 1 \end{pmatrix},$$

于是猜测 $\mathbf{A}^k = \begin{pmatrix} 1 & k\lambda \\ 0 & 1 \end{pmatrix}$, 下面用数学归纳法证明之.

当k=2时,由上可知结论成立. 假设k=n时结论成立,则k=n+1时,

$$\mathbf{A}^{n+1} = \mathbf{A}^{n} \cdot \mathbf{A} = \begin{pmatrix} 1 & n\lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & (n+1)\lambda \\ 0 & 1 \end{pmatrix},$$

所以对任意的正整数 k,都有 $\mathbf{A}^k = \begin{pmatrix} 1 & k\lambda \\ 0 & 1 \end{pmatrix}$.

解法二 记
$$A = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & \lambda \\ 0 & 0 \end{pmatrix} = E + B,$$

易见E与B可交换,则依 Newton 二项公式有 $A^k = (E+B)^k = \sum_{i=0}^k C_k^i B^i$,而

因此
$$\boldsymbol{A}^{k} = \boldsymbol{C}_{k}^{0} \boldsymbol{B}^{0} + \boldsymbol{C}_{k}^{1} \boldsymbol{B} = \boldsymbol{E} + k \boldsymbol{B} = \begin{pmatrix} 1 & k \lambda \\ 0 & 1 \end{pmatrix}.$$

例 6 设
$$A = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$, \diamondsuit $C = AB = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$, 求 C^{100}

$$\mathbf{R}$$
 $\mathbf{C}^{100} = \underbrace{(\mathbf{A}\mathbf{B})(\mathbf{A}\mathbf{B})\cdots(\mathbf{A}\mathbf{B})}_{100} = \mathbf{A}\underbrace{(\mathbf{B}\mathbf{A})(\mathbf{B}\mathbf{A})\cdots(\mathbf{B}\mathbf{A})}_{99} \mathbf{B} = (\mathbf{B}\mathbf{A})^{99}(\mathbf{A}\mathbf{B}) = 14^{99}\mathbf{C}.$

五、矩阵的转置

定义7 把 $m \times n$ 矩阵 $\mathbf{A} = (a_{ij})_{m \times n}$ 的行(列)依次换为列(行)得到的 $n \times m$ 矩阵 $(a_{ji})_{n \times m}$ 称为矩阵 \mathbf{A} 的**转置矩阵**,记作 \mathbf{A}^{T} ,

即若
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
,则有 $A^{\mathrm{T}} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$.

容易验证矩阵的转置满足以下运算性质:

(1)
$$(\lambda A)^{T} = \lambda A^{T}$$
,其中 λ 为实数;

(2)
$$(\boldsymbol{A} \pm \boldsymbol{B})^{\mathrm{T}} = \boldsymbol{A}^{\mathrm{T}} \pm \boldsymbol{B}^{\mathrm{T}};$$

(3)
$$(\boldsymbol{A}\boldsymbol{B})^{\mathrm{T}} = \boldsymbol{B}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}$$
;

(4) 设 \mathbf{A} 是 \mathbf{n} 阶方阵,则| \mathbf{A}^{T} |=| \mathbf{A} |;

$$(5) \quad (\boldsymbol{A}^{\mathrm{T}})^{\mathrm{T}} = \boldsymbol{A}.$$

定义 8 设 A 是 n 阶方阵,如果 $A^{T} = A$,则称 A 为对称矩阵,如果 $A^{T} = -A$,则称 A 为反对称矩阵.

由定义可得,若A为对称矩阵或反对称矩阵,则A一定是方阵,并且对称矩阵的元素以主对角线为对称轴对应相等,而反对称矩阵的主对角线上所有元素都为0,其它元素以主对角线为对称轴互为相反数.

例7 设A,B 为n 阶对称矩阵,证明AB+BA 是对称阵.

证明: $(AB + BA)^{T} = (AB)^{T} + (BA)^{T} = B^{T}A^{T} + A^{T}B^{T} = BA + AB = AB + BA$, 所以 AB + BA 是对称阵.

例8 设A,B为n阶对称矩阵,证明: AB是对称矩阵的充分必要条件是AB = BA,即A与B可交换.

证明 AB 是对称矩阵 \Leftrightarrow $(AB)^{T} = AB \Leftrightarrow B^{T}A^{T} = AB \Leftrightarrow BA = AB$.

此例表明,对称矩阵的乘积不一定是对称矩阵.

思考题二

- 1. 设A 是n 阶矩阵, 试问| λA |=| λ ||A|吗? λA 与 λ |A|有什么区别呢?
- 2.设A,B 是n阶矩阵,试问|A+B|=|A|+|B|一定成立吗?|AB|=|BA|呢?
- 3. 若A,B 可乘,试问|AB|=|A||B|一定成立吗?
- 4. 非对角矩阵之积可以是对角矩阵吗?
- 5. 分别举例说明下列结论不成立:
 - (1) AB = BA
 - (2) $AB = O \Rightarrow A = O \Rightarrow B = O$
 - (3) AB = AC, $\exists A \neq O \Rightarrow B = C$
 - (4) 设A 是n阶矩阵,且 $A^2 = 0 \Rightarrow A = 0$
 - (5) 设A 是n阶矩阵,且 $A^2 = E \Rightarrow A = E$ 或A = -E
 - (6) 设A,B 是n 阶矩阵,

$$(AB)^2 = A^2B^2$$
, $A^2 - B^2 = (A + B)(A - B)$, $(A + B)^2 = A^2 + 2AB + B^2$

- $(7) (\boldsymbol{A}\boldsymbol{B})^{\mathrm{T}} = \boldsymbol{A}^{\mathrm{T}}\boldsymbol{B}^{\mathrm{T}}$
- 6. 设A 是n 阶对称矩阵, 试问 $A^k(k \ge 2)$ 还是n 阶对称矩阵吗?
- 7. 设**B** 是 n 阶反对称矩阵, 试问 $B^k(k \ge 2)$ 还是 n 阶反对称矩阵吗?

第三节 逆矩阵

一、伴随矩阵

定义9 设 $\mathbf{A} = (a_{ij})_{n \times n}$ 为n 阶矩阵,称n 阶矩阵

$$egin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \ A_{12} & A_{22} & \cdots & A_{n2} \ dots & dots & dots \ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

为 \boldsymbol{A} 的**伴随矩阵**,记为 \boldsymbol{A}^* ,其中 \boldsymbol{A}_{ij} 为 $|\boldsymbol{A}|$ 中元素 \boldsymbol{a}_{ij} 的代数余子式.

注 A^* 中第i行元素是矩阵 A 的行列式 |A| 中第i 列对应元素的代数余子式.

例9 设
$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, 求 \mathbf{A} 的伴随矩阵 \mathbf{A}^* .

解 因为
$$A_{11} = (-1)^{1+1} \mid d \mid = d, A_{12} = (-1)^{1+2} \mid c \mid = -c,$$

$$A_{21} = (-1)^{2+1} | b | = -b, A_{22} = (-1)^{2+2} | a | = a,$$

所以

$$A^* = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

例 10 设
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 6 \end{pmatrix}$$
, 求 A^* .

解 因为
$$A_{11} = (-1)^{1+1} \begin{vmatrix} 0 & 3 \\ 1 & 6 \end{vmatrix} = -3$$
, $A_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 3 \\ 2 & 6 \end{vmatrix} = 0$, $A_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} = 1$,

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 2 & 1 \\ 1 & 6 \end{vmatrix} = -11$$
, $A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 2 & 6 \end{vmatrix} = 4$, $A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = 3$,

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 2 & 1 \\ 0 & 3 \end{vmatrix} = 6$$
, $A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} = -2$, $A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} = -2$,

所以

$$\mathbf{A}^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} -3 & -11 & 6 \\ 0 & 4 & -2 \\ 1 & 3 & -2 \end{pmatrix}.$$

方阵A与伴随矩阵 A^* 有如下重要关系:

定理 1 设 A^* 为 n 阶方阵 A 的伴随矩阵,则

$$\mathbf{A}\mathbf{A}^* = \mathbf{A}^*\mathbf{A} = |\mathbf{A}|\mathbf{E} \tag{2.8}$$

证明 记 $AA^* = B = (b_{ij})_{n \times n}$,则 $b_{ij} = a_{i1}A_{j1} + a_{i2}A_{j2} + ... + a_{in}A_{jn}$,由行列式按行(列)

展开定理,得 $b_{ij} = \begin{cases} |A| & i = j \\ 0 & i \neq j \end{cases}$,即 $AA^* = |A|E$,同理可证 $A^*A = |A|E$.

二. 逆矩阵及其性质

1. 逆矩阵

定义 10 设A为n阶方阵,若存在n阶方阵B,使得

$$\mathbf{AB} = \mathbf{BA} = \mathbf{E} \tag{2.9}$$

则称**矩阵 A 可逆**(或称 A 是可逆矩阵),称 B 是 A 的**逆矩阵**,记为 A^{-1} ,即 $B = A^{-1}$,若不存在 n 阶方阵 B 满足(2.9),则称矩阵 A 不可逆.

定理 2 若方阵 A 可逆,则 A 的逆矩阵是唯一的.

证明 设 B,C 都 是 A 的 逆 矩 阵 ,则 有 AB = BA = E, AC = CA = E , 从 而 B = BE = B(AC) = (BA)C = EC = C , 所以 A 的逆矩阵是唯一的.

2. 矩阵可逆的条件

下面讨论矩阵 A 可逆的充分条件、必要条件以及求逆矩阵的公式.

定理3 *n* 阶矩阵 *A* 可逆的充分必要条件是 $|A|\neq 0$. 且当 *A* 可逆时,有

$$\boldsymbol{A}^{-1} = \frac{1}{|\boldsymbol{A}|} \boldsymbol{A}^* \tag{2.10}$$

证明 必要性:设A可逆,即有 A^{-1} ,使得 $AA^{-1}=E$,两边取行列式,得

$$|AA^{-1}| = |A||A^{-1}| = |E| = 1$$
,所以 $|A| \neq 0$,进一步可得 $|A^{-1}| = \frac{1}{|A|}$.

充分性: 若
$$|A| \neq 0$$
,由于 $AA^* = A^*A = |A|E$,故可得 $A(\frac{A^*}{|A|}) = (\frac{A^*}{|A|})A = E$

于是由逆矩阵定义知A可逆,且有 $A^{-1} = \frac{1}{|A|}A^*$.

如果 $|A|\neq 0$,则称A为非奇异矩阵;如果|A|=0,则称A为奇异矩阵.

由定理 3, 还可得下面推论:

推论 若 AB = E (或 BA = E),则 A, B 都可逆,且 A, B 互为逆矩阵(即 $A^{-1} = B, B^{-1} = A$).

证明 由 AB = E ,得 |A||B|=1 ,所以 $|A| \neq 0$, $|B| \neq 0$,故 A ,B 都可逆,且

$$B = EB = (A^{-1}A)B = A^{-1}(AB) = A^{-1}E = A^{-1}, A = AE = A(BB^{-1}) = (AB)B^{-1} = EB^{-1} = B^{-1}.$$

例11 设
$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
,且 $ad - bc \neq 0$,求 \mathbf{A}^{-1} .

解 因为
$$|A| = ad - bc \neq 0$$
,则 A^{-1} 存在,由例 9 知 $A^* = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

$$\boldsymbol{A}^{-1} = \frac{1}{|\boldsymbol{A}|} \boldsymbol{A}^* = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

例 12 已知
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 3 \\ 2 & 1 & 6 \end{pmatrix}$$
, 证明 \mathbf{A} 可逆并求 \mathbf{A}^{-1} .

证明 先算出 $|A| = -2 \neq 0$ 知 A^{-1} 存在,由例 10 知 $A^* = \begin{pmatrix} -3 & -11 & 6 \\ 0 & 4 & -2 \\ 1 & 3 & -2 \end{pmatrix}$,

所以

$$A^{-1} = \frac{1}{|A|}A^* = -\frac{1}{2} \begin{pmatrix} -3 & -11 & 6 \\ 0 & 4 & -2 \\ 1 & 3 & -2 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & \frac{11}{2} & -3 \\ 0 & -2 & 1 \\ -\frac{1}{2} & -\frac{3}{2} & 1 \end{pmatrix}.$$

例 13 若方阵 A 满足 $A^2 - A - 2E = 0$, 证明 A + 2E 可逆, 并求其逆.

证明 由
$$A^2 - A - 2E = O$$
 可得 $A(A + 2E) - 3(A + 2E) = -4E$,

即
$$(A-3E)(A+2E) = -4E$$
, 即 $-\frac{(A-3E)}{4}(A+2E) = E$.

由定理 3、4 推论可知 $\mathbf{A} + 2\mathbf{E}$ 可逆,且 $(\mathbf{A} + 2\mathbf{E})^{-1} = -\frac{\mathbf{A} - 3\mathbf{E}}{4}$.

3. 逆矩阵的性质

设n阶矩阵A,B均可逆,则有

- (1) 当 λ 是非零实数时, λA 也可逆,且 $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$;
- (2) AB 可逆,且 $(AB)^{-1} = B^{-1}A^{-1}$;
- (3) A^{T} 可逆,且 $(A^{T})^{-1} = (A^{-1})^{T}$;
- (4) A^{-1} 可逆,且 $(A^{-1})^{-1} = A, |A^{-1}| = \frac{1}{|A|};$
- (5) A^* 可逆,且 $(A^*)^{-1} = \frac{A}{|A|}, A^* = |A|A^{-1}, |A^*| = |A|^{n-1}$.

证明 性质(1),(2),(3),(4)由定理3之推论易验证,下证性质(5).

由定理 1 可得 $AA^* = |A|E$, 又因 $|A| \neq 0$, 可得 $\frac{A}{|A|} \cdot A^* = E$, 因此 A^* 可逆, 且

$$(\boldsymbol{A}^*)^{-1} = \frac{\boldsymbol{A}}{|\boldsymbol{A}|}, \boldsymbol{A}^* = |\boldsymbol{A}|\boldsymbol{A}^{-1}, |\boldsymbol{A}^*| = |\boldsymbol{A}|\boldsymbol{A}^{-1}| = |\boldsymbol{A}|^n |\boldsymbol{A}^{-1}| = |\boldsymbol{A}|^n |\boldsymbol{A}^{-1}| = |\boldsymbol{A}|^n |\boldsymbol{A}^{-1}| = |\boldsymbol{A}|^n$$

例 14 设
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 4 \end{pmatrix}$$
, 且矩阵 X 满足矩阵方程 $AX = A + 2X$, 求矩阵 X .

解 由AX = A + 2X,可得(A - 2E)X = A,又

$$(A-2E) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix}, |A-2E| \neq 0, 则 A - 2E$$
 可逆,有 $X = (A-2E)^{-1}A$.

$$\overrightarrow{m}$$
 $(A-2E)^{-1} = \frac{1}{|A-2E|}(A-2E)^* = -\frac{1}{2} \begin{pmatrix} -2 & 0 & 0 \\ -2 & 2 & 0 \\ 2 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ -1 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$

因此 $X = (A - 2E)^{-1}A =$ $\begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ -1 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 2 & -1 & 0 \\ -2 & 1 & 2 \end{pmatrix}.$

例 15 设 A 是 3 阶方阵,且|A|= $\frac{1}{2}$,求| $(4A)^{-1}$ - $3A^*$ |.

解法一 由逆矩阵性质(1)和性质(5)可知

$$(4\mathbf{A})^{-1} - 3\mathbf{A}^* = \frac{1}{4}\mathbf{A}^{-1} - 3|\mathbf{A}|\mathbf{A}^{-1} = \frac{1}{4}\mathbf{A}^{-1} - \frac{3}{2}\mathbf{A}^{-1} = -\frac{5}{4}\mathbf{A}^{-1},$$

则有 $|(4\mathbf{A})^{-1} - 3\mathbf{A}^*| = |-\frac{5}{4}\mathbf{A}^{-1}| = (-\frac{5}{4})^3 |\mathbf{A}^{-1}| = (-\frac{5}{4})^3 \frac{1}{|\mathbf{A}|} = -\frac{125}{32}.$

解法二
$$(4A)^{-1} - 3A^* = \frac{1}{4}A^{-1} - 3A^* = \frac{1}{4}\frac{A^*}{|A|} - 3A^* = -\frac{5}{2}A^*.$$

则有
$$|(4\mathbf{A})^{-1} - 3\mathbf{A}^*| = |-\frac{5}{2}\mathbf{A}^*| = (-\frac{5}{2})^3 |\mathbf{A}^*| = (-\frac{5}{2})^3 |\mathbf{A}|^2 = -\frac{125}{32}.$$

例 16 设
$$\mathbf{A} = \begin{pmatrix} 1 & 4 \\ -1 & 2 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix}$, 求矩阵 X 使其满足矩阵方程

AXB = C.

解 因为 $|A|=6\neq 0$, $|B|=2\neq 0$,故A,B都可逆,用 A^{-1} 左乘方程, B^{-1} 右乘方程,

有

$$A^{-1}AXBB^{-1} = A^{-1}CB^{-1}$$
, $\mathbb{P} X = A^{-1}CB^{-1}$, $\mathbb{P} X$

因此有
$$X = A^{-1}CB^{-1} = \begin{pmatrix} \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{6} & \frac{1}{6} \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ -\frac{1}{2} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ -\frac{1}{2} & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{1}{4} & 0 \end{pmatrix}.$$

例 17 在军事密码学中,发送方将要传送的信息数字化后用一个矩阵 X 表示,双方约定好一个可逆阵 A ,加密后即为 B=AX ,其中 B 为发送出去的密码,接收方收到后,只须计算 $X=A^{-1}B$,即为明码,现在我们将 26 个英文字母分别与正整数1,2,3,...,26 一一对

$$m{A}$$
 $m{B}$ … $m{Z}$ 应,如 \updownarrow \updownarrow … \updownarrow ,已知发送方传出密码为 7,13,39,67 ,约定可逆矩阵为 $m{A}=\begin{pmatrix}2&3\\4&5\end{pmatrix}$ 1 2 … 26

试破解密码.

解 由题意可知
$$X = A^{-1}B = \begin{pmatrix} -\frac{5}{2} & \frac{3}{2} \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 7 & 39 \\ 13 & 67 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 11 \end{pmatrix}$$
, 因此明码为

2,1,3,11,对应字母为b,a,c,k,即密码为back。

思考题三

- 1. 试问矩阵 A 的伴随矩阵 A^* 的第i 行第 i 列元素是 A 中哪个元素的代数余子式?
- 2. 若A,B 是n 阶矩阵,试问 $(A+B)^* = A^* + B^*$ 成立吗?
- 3. 可逆矩阵 A 的逆矩阵能写成 $\frac{1}{A}$ 或 $\frac{E}{A}$ 吗?为什么?
- 4. 若n阶矩阵A,B可逆,则A+B是否可逆?是否成立有(A+B)⁻¹ =A⁻¹ +B⁻¹ 呢?
- 5. 设A,B 是n 阶矩阵,则A,B,AB 中若有两个可逆,则其余一个也可逆,试证明之.
- 6. 设A.B 是n 阶矩阵, 举例说明 $(AB)^{-1} = A^{-1}B^{-1}$ 不成立.
- 7. 伴随矩阵都有哪些性质?试列举之.

第四节 分块矩阵

在处理大型矩阵(即行数与列数都较大)时,常把它转化为小型矩阵(即行数与列数较小的矩阵)来处理,这种处理方法就是本节要介绍的分块矩阵法,这种方法能使原矩阵结构显得简单而清晰,使一些运算变得较为简单.

一. 分块矩阵的定义

定义 11 将矩阵用一些横线和纵线分割成若干个小块,每个小块称为矩阵的**子块**,以子块为元素的形式上的矩阵称为**分块矩阵**,如

$$\mathbf{A} = \begin{pmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \\ 0 & 0 & p & q \\ 0 & 0 & r & s \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{E} \\ O & \mathbf{A}_{22} \end{pmatrix},$$

其中
$$\mathbf{A}_{11} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \mathbf{A}_{22} = \begin{pmatrix} p & q \\ r & s \end{pmatrix}.$$

可以按行分块
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{pmatrix};$$

也可以接列分块
$$m{A} = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = m{(B_1 \ B_2 \ \cdots \ B_n)}.$$

显然一个矩阵的分块矩阵是不唯一的,与矩阵的分法有关,因此,在利用分块矩阵讨论 具体问题时,应采用适当的分块法,使问题的解决更为简便.

二. 分块矩阵的运算

对分块矩阵进行运算时,可以把每一个子块当成矩阵的元素来处理,因此它与矩阵的运 算相类似,但要注意保证运算可行性.

1. 加法

设 $m \times n$ 矩阵 $A \subseteq B$ 分块法一致,即

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1r} \\ A_{21} & A_{22} & \cdots & A_{2r} \\ \vdots & \vdots & & \vdots \\ A_{s1} & A_{s2} & \cdots & A_{sr} \end{pmatrix}, B = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1r} \\ B_{21} & B_{22} & \cdots & B_{2r} \\ \vdots & \vdots & & \vdots \\ B_{s1} & B_{s2} & \cdots & B_{sr} \end{pmatrix},$$

其中每一 A_{ii} 和 B_{ii} 都是同型矩阵,则

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} \mathbf{A}_{11} + \mathbf{B}_{11} & \mathbf{A}_{12} + \mathbf{B}_{12} & \cdots & \mathbf{A}_{1r} + \mathbf{B}_{1r} \\ \mathbf{A}_{21} + \mathbf{B}_{21} & \mathbf{A}_{22} + \mathbf{B}_{22} & \cdots & \mathbf{A}_{2r} + \mathbf{B}_{2r} \\ \vdots & \vdots & & \vdots \\ \mathbf{A}_{s1} + \mathbf{B}_{s1} & \mathbf{A}_{s2} + \mathbf{B}_{s2} & \cdots & \mathbf{A}_{sr} + \mathbf{B}_{sr} \end{pmatrix}.$$

2. 数乘

设
$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1r} \\ A_{21} & A_{22} & \cdots & A_{2r} \\ \vdots & \vdots & & \vdots \\ A_{s1} & A_{s2} & \cdots & A_{sr} \end{pmatrix}$$
, λ 为实数,则
$$\lambda A = \begin{pmatrix} \lambda A_{11} & \lambda A_{12} & \cdots & \lambda A_{1r} \\ \lambda A_{21} & \lambda A_{22} & \cdots & \lambda A_{2r} \\ \vdots & \vdots & & \vdots \\ \lambda A_{s1} & \lambda A_{s2} & \cdots & \lambda A_{sr} \end{pmatrix}.$$

3. 乘法

设A为 $m \times l$ 矩阵,B为 $l \times n$ 矩阵,且A的列的分法与B的行的分法一致,即

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1t} \\ A_{21} & A_{22} & \cdots & A_{2t} \\ \vdots & \vdots & & \vdots \\ A_{s1} & A_{s2} & \cdots & A_{st} \end{pmatrix}, B = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1r} \\ B_{21} & B_{22} & \cdots & B_{2r} \\ \vdots & \vdots & & \vdots \\ B_{t1} & B_{t2} & \cdots & B_{tr} \end{pmatrix},$$

则

$$\boldsymbol{AB} = \begin{pmatrix} \boldsymbol{C}_{11} & \boldsymbol{C}_{12} & \cdots & \boldsymbol{C}_{1r} \\ \boldsymbol{C}_{21} & \boldsymbol{C}_{22} & \cdots & \boldsymbol{C}_{2r} \\ \vdots & \vdots & & \vdots \\ \boldsymbol{C}_{s1} & \boldsymbol{C}_{s2} & \cdots & \boldsymbol{C}_{sr} \end{pmatrix},$$

其中 $C_{ij} = A_{i1}B_{1j} + ... + A_{it}B_{ij}, i = 1, 2, ..., s; j = 1, 2, ..., r.$

例 18 设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 2 & 4 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}, 求 \mathbf{AB}.$$

解 把矩阵 A 和 B 分别分成 $A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 2 & 4 \end{pmatrix} = \begin{pmatrix} A_{11} & E \\ O & A_{22} \end{pmatrix}, B = \begin{pmatrix} O \\ E \end{pmatrix}, 则$

$$\mathbf{A}\mathbf{B} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{E} \\ \mathbf{O} & \mathbf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{O} \\ \mathbf{E} \end{pmatrix} = \begin{pmatrix} \mathbf{E} \\ \mathbf{A}_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 3 \\ 2 & 4 \end{pmatrix}.$$

特别,设A为 $m \times l$ 矩阵,B为 $l \times n$ 矩阵,将按B列分块: $B = (\beta_1, \beta_2, \dots, \beta_n)$,则 $AB = A(\beta_1, \beta_2, \dots, \beta_n) = (A\beta_1, A\beta_2, \dots, A\beta_n)$,这在后面会经常用到这个结论.

4. 转置矩阵

设

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1r} \\ A_{21} & A_{22} & \cdots & A_{2r} \\ \vdots & \vdots & & \vdots \\ A_{s1} & A_{s2} & \cdots & A_{sr} \end{pmatrix},$$

则

$$oldsymbol{A}^{\mathrm{T}} = egin{pmatrix} oldsymbol{A}_{11}^{\mathrm{T}} & oldsymbol{A}_{21}^{\mathrm{T}} & \cdots & oldsymbol{A}_{s1}^{\mathrm{T}} \ oldsymbol{A}_{12}^{\mathrm{T}} & oldsymbol{A}_{22}^{\mathrm{T}} & \cdots & oldsymbol{A}_{s2}^{\mathrm{T}} \ dots & dots & dots \ oldsymbol{A}_{1r}^{\mathrm{T}} & oldsymbol{A}_{2r}^{\mathrm{T}} & \cdots & oldsymbol{A}_{sr}^{\mathrm{T}} \end{pmatrix}.$$

三. 分块对角矩阵

定义 12 形如
$$m{A} = \begin{pmatrix} m{A}_1 & & & & \\ & m{A}_2 & & & \\ & & \ddots & \\ & & & m{A}_r \end{pmatrix}$$
的分块矩阵称为**分块对角矩阵**,简记为

 $A = diag(A_1, A_2, ..., A_r)$,其中 $A_i(i = 1, 2, ..., r)$ 为方阵.

分块对角矩阵有以下性质:

(1)
$$A = \operatorname{diag}(A_1, A_2, ..., A_r)$$
, $\mathbb{M} \uparrow |A| = |A_1| |A_2| ... |A_r|, A^k = \operatorname{diag}(A_1^k, A_2^k, ..., A_r^k)$;

(2) 若
$$A_i$$
($i = 1, 2, ..., r$) 均可逆,则 $A^{-1} = diag(A_1^{-1}, A_2^{-1}, ..., A_r^{-1})$.

例 19 设
$$A = \begin{pmatrix} 5 & 2 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$
, 求 $|A|$, A^{-1} .

解 令
$$\mathbf{A} = \begin{pmatrix} 5 & 2 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{O} \\ \mathbf{O} & \mathbf{A}_2 \end{pmatrix}$$
, 其中 $\mathbf{A}_1 = \begin{pmatrix} 5 & 2 \\ 3 & 1 \end{pmatrix}$, $\mathbf{A}_2 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, 则有

$$|A| = |A_1| |A_2| = -3$$
, $\mathbb{E} A^{-1} = \begin{pmatrix} A_1^{-1} & O \\ O & A_2^{-1} \end{pmatrix}$, $\mathbb{X} A_1^{-1} = \begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix}$, $A_2^{-1} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$,

所以

$$\boldsymbol{A}^{-1} = \begin{pmatrix} \boldsymbol{A}_{1}^{-1} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A}_{2}^{-1} \end{pmatrix} = \begin{pmatrix} -1 & 2 & 0 & 0 \\ 3 & -5 & 0 & 0 \\ 0 & 0 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}.$$

例 20 证明实矩阵 A = O 的充分必要条件是 $A^{T}A = O$.

证明 首先必要性显然成立,下证充分性.

设 $\mathbf{A} = (\mathbf{a}_{ii})_{m \times n}$, 把 \mathbf{A} 按列分块为 $\mathbf{A} = (\mathbf{\alpha}_1 \quad \mathbf{\alpha}_2 \quad \cdots \quad \mathbf{\alpha}_n)$,则

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \begin{pmatrix} \boldsymbol{\alpha}_{1}^{\mathrm{T}} \\ \boldsymbol{\alpha}_{2}^{\mathrm{T}} \\ \vdots \\ \boldsymbol{\alpha}_{n}^{\mathrm{T}} \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{n} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\alpha}_{1}^{\mathrm{T}}\boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{1}^{\mathrm{T}}\boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{1}^{\mathrm{T}}\boldsymbol{\alpha}_{n} \\ \boldsymbol{\alpha}_{2}^{\mathrm{T}}\boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2}^{\mathrm{T}}\boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{2}^{\mathrm{T}}\boldsymbol{\alpha}_{n} \\ \vdots & \vdots & & \vdots \\ \boldsymbol{\alpha}_{n}^{\mathrm{T}}\boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{n}^{\mathrm{T}}\boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{n}^{\mathrm{T}}\boldsymbol{\alpha}_{n} \end{pmatrix},$$

因 为 $A^{T}A = 0$, 故 $a_{i}^{T}a_{j} = 0 (i = 1, 2, ..., n; j = 1, 2, ..., n)$, 特 殊 地 , 有

$$\boldsymbol{\alpha}_{i}^{\mathrm{T}}\boldsymbol{\alpha}_{i}=0(j=1,2,...,n),\overline{m}$$

$$m{lpha}_{j}^{ ext{T}}m{lpha}_{j} = ig(a_{1j} \quad a_{2j} \quad \cdots \quad a_{mj}ig) egin{pmatrix} a_{1j} \ a_{2j} \ dots \ a_{mj} \end{pmatrix} = a_{1j}^{2} + a_{2j}^{2} + \ldots + a_{mj}^{2} = 0.$$

可得 $a_{ij} = 0 (i = 1, 2, ..., m)$ 即 A = O.

思考题四

- 1. 一个矩阵的分块矩阵唯一吗?
- 2. 分块矩阵可乘的条件是什么?如何计算?
- 3. 试比较分块矩阵和对角阵的定义和运算。
- 4. 试给出分块上三角矩阵和分块下三角矩阵的定义

习 题 二

(A)

1. 下列矩阵中,哪些是对角矩阵、三角矩阵、数量矩阵、单位矩阵?

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{pmatrix}, \quad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

2. 设

$$A = \begin{pmatrix} 1 & 2y - x & 3 \\ 4 & 2 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 \\ 2z & 2x - y & 4 \end{pmatrix},$$

如果 $\mathbf{A} = \mathbf{B}$, 求x, y, z.

3. 设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 1 & 0 \end{pmatrix}$

- (1) 计算 2A + B, A 2B;
- (2) 若矩阵 X 满足 (2A X) + 2(B X) = 0, 求 X;
- (3) 若矩阵 X 满足 X + 2Y = A, 2X + Y = B, 求 X 和 Y.
- 4. 计算下列乘积矩阵:

(1)
$$(1 \ 2 \ 3)\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
; (2) $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ (1 2 3);

$$(3) \begin{pmatrix} 1 & -1 & 4 & 5 \\ 2 & 1 & 3 & -2 \\ 3 & -2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 4 & -1 \\ 0 & 3 \end{pmatrix}; \qquad (4) \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 2 \\ 1 & 4 & 5 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ -1 & 3 & -2 \end{pmatrix};$$

$$(5) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

$$(6) \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix};$$

$$(7) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}; \qquad (8) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

5. 设有 3 阶方阵
$$\mathbf{A} = \begin{pmatrix} a_1 & c_1 & d_1 \\ a_2 & c_2 & d_2 \\ a_3 & c_3 & d_3 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} b_1 & c_1 & d_1 \\ b_2 & c_2 & d_2 \\ b_3 & c_3 & d_3 \end{pmatrix}$, 且 $|\mathbf{A}| = 1$, $|\mathbf{B}| = 2$, 求

|**A**+ 3**B**|.

6.
$$\exists \exists A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 3 & 0 & 1 \end{pmatrix},$$

(1) 求**AB**,**BA**; (2) (**A**+**B**)(**A**-**B**),**A**²-**B**²; (3) 比较(1) 和(2) 的结果,可以得出什么结论?

- 7. 设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$,求与 \mathbf{A} 可交换的矩阵.
- 8. 求下列矩阵的k次幂,其中k为正整数

$$(1) \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}; \qquad (2) \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}; \qquad (3) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 9. 已知矩阵 $\boldsymbol{\alpha} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$, $\boldsymbol{\beta} = \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \end{pmatrix}$, $\boldsymbol{\diamond} \boldsymbol{A} = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta}$, 求 \boldsymbol{A}^{k} , 其中 k 为正整数.
- 10. 证明任何一个方阵都可以表示为一个对称矩阵和一个反对称矩阵之和.
- 11. 设A,B 为n 阶对称矩阵,则AB 为对称矩阵当且仅当AB = BA
- 12. 设A,B为n阶矩阵,且A为n阶对称矩阵,证明B^TAB 也是对称矩阵.
- 13. 设A 是n 阶方阵,且满足 $AA^{T} = E$ 和|A| = -1,证明: |A + E| = 0
- 14. 求下列矩阵的逆矩阵

$$(1) \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}; \quad (2) \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}; \quad (3) \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}; \quad (4) \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

15.
$$abla \mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{pmatrix}, \mathbf{A}^* \not\in \mathbf{A} \text{ 的伴随矩阵}, \ \vec{\mathbf{x}} (\mathbf{A}^*)^{-1}.$$

16. 设 A,B,A+B 都 是 可 逆 矩 阵 , 证 明 : $A^{-1}+B^{-1}$ 也 可 逆 , 且 $(A^{-1}+B^{-1})^{-1}=A(A+B)^{-1}B.$

17. 解下列矩阵方程:

$$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} \boldsymbol{X} = \begin{pmatrix} 2 & 1 & 3 \\ 3 & -1 & 4 \end{pmatrix}.$$

(2)
$$X \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 2 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 2 \end{pmatrix}$$
.

$$(3) \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} X \begin{pmatrix} 1 & 4 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix}.$$

18. 设矩阵
$$\mathbf{A} = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 4 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
,已知 $\mathbf{AB} = \mathbf{A} + 2\mathbf{B}$,求 \mathbf{B} .

19. 设矩阵
$$\mathbf{A}$$
, \mathbf{B} 满足 $\mathbf{A}^*\mathbf{B}\mathbf{A} = 2\mathbf{B}\mathbf{A} - 4\mathbf{E}$, 其中 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$, 求 \mathbf{B} .

- 20. 设n阶矩阵A满足 $A^3+A^2-A+2E=0$,证明A+E可逆,并求 $(A+E)^{-1}$
- 21. 已知 A 为 n 阶矩阵,且对某个正整数 m 有 $A^m = 0$,证明 E A 可逆,并求其逆
- 22. 若 $\mathbf{A}^2 = \mathbf{B}^2 = \mathbf{E}$, 且 $|\mathbf{A}| + |\mathbf{B}| = 0$, 试证明 $\mathbf{A} + \mathbf{B}$ 是不可逆矩阵
- 23. 设A为三阶矩阵,且|A|=2,求(1) $|2A^{-1}|$ (2) $|A^*|$ (3) $|(A^*)^*|$ (4) $|3A^{-1}-2A^*|.$
 - 24. 设A,B 为n 阶可逆矩阵,且|A|=2,求 $|B^{-1}A^kB|$ (k 为正整数)
 - 25. (1) 设 $\mathbf{B} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$, 证明 $\mathbf{B}^k = \mathbf{P}^{-1}\mathbf{A}^k\mathbf{P}$.

(2)
$$abla \mathbf{AP} = \mathbf{PB}$$
, $\Box \mathbf{P} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $abla \mathbf{A} \stackrel{2014}{=} .$

26. 利用分块矩阵计算下列矩阵的乘积:

$$(1) \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \qquad (2) \begin{pmatrix} a & 0 & 1 & 0 \\ 0 & a & 0 & 1 \\ 1 & 0 & b & 0 \\ 0 & 1 & 0 & b \end{pmatrix} \begin{pmatrix} 0 & c \\ c & 0 \\ 0 & d \\ d & 0 \end{pmatrix}.$$

27. 利用分块矩阵求下列方阵的逆矩阵:

$$\begin{pmatrix}
1 & 2 & 0 \\
-2 & -3 & 0 \\
0 & 0 & 4
\end{pmatrix}; \qquad (2) \begin{pmatrix}
3 & 1 & 0 & 0 \\
4 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 3 & 4
\end{pmatrix}, \qquad (3) \begin{pmatrix}
1 & 2 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 3 \\
0 & 0 & 0 & 2 & 4
\end{pmatrix},$$

28. 设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, 利用分块矩阵计算 \mathbf{A}^{2014} .

29. 设矩阵
$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 5 & 1 & 0 & 0 \\ 0 & 0 & 4 & 2 \\ 0 & 0 & 3 & -1 \end{pmatrix}$$
, 利用分块矩阵计算 $\left| A^{2014} \right|$

30. (1) 设
$$A$$
, B 都可逆,求 $\begin{pmatrix} O & A \\ B & O \end{pmatrix}$ 的逆;

(2) 利用 (1), 求
$$\begin{pmatrix} 0 & a_1 & 0 & \cdots & 0 \\ 0 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} \\ a_n & 0 & 0 & \cdots & 0 \end{pmatrix} (a_i \neq 0, i = 1, 2, \cdots, n)$$
 的逆.

31. 设A,B,C均为n阶方阵,且A,C可逆,证明 $\begin{pmatrix} A & O \\ B & C \end{pmatrix}$ 可逆,且

$$\begin{pmatrix} \boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{B} & \boldsymbol{C} \end{pmatrix}^{-1} = \begin{pmatrix} \boldsymbol{A}^{-1} & \boldsymbol{O} \\ -\boldsymbol{C}^{-1}\boldsymbol{B}\boldsymbol{A}^{-1} & \boldsymbol{C}^{-1} \end{pmatrix}.$$

(B)

1. 设 $A_{m \times n}$, $B_{n \times m}$ $(m \neq n)$, 则下列结果不为n阶方阵的是 ()

(A)
$$\mathbf{B}\mathbf{A}$$
 (B) $\mathbf{A}\mathbf{B}$ (C) $(\mathbf{B}\mathbf{A})^{\mathrm{T}}$ (D) $\mathbf{A}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}}$

2. 设n阶方阵A,B,C 满足关系式ABC = E,其中E 是n阶单位阵,则必有 ()

(A)
$$ACB = E$$
 (B) $CBA = E$ (C) $BAC = E$ (D) $BCA = E$

3. 设
$$A,B,C$$
 均为 n 阶方阵,且 $AB = BC = CA = E$,则 $A^2 + B^2 + C^2 = ($

(A)
$$3E$$

(B)
$$2\mathbf{E}$$

$$(C)$$
 E

$$(D)$$
 $\mathbf{0}$

(A) 设 A 为n阶	〉矩阵,则 $(A-E)(A$	$(\mathbf{A} + \mathbf{E}) = \mathbf{A}$	$\mathbf{E}^{2}-\mathbf{E}$.	
(B) 设 A,B 均为	为 <i>n×</i> 1矩阵,则 A [™] B	$\mathbf{B} = \mathbf{B}^{\mathrm{T}} \mathbf{A}.$		
(C) 设 A,B 均为	カ <i>n</i> 阶矩阵,且 AB =	= O ,则(A	$(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + \mathbf{B}^2$	2.
(D)设 A,B 均为	为 <i>n</i> 阶矩阵,且 <i>AB</i> =	= BA ,则》	对任意正整数 k,m	a 有 $A^kB^m = B^mA^k$.
5. 设 A 是一个 n	1 阶方阵,则下列矩阵	车为对称矩	阵的是 ()	
$(\mathbf{A}) \mathbf{A} - \mathbf{A}^{\mathrm{T}}$	(B) CAC^{T} (C 为	n 阶方阵)	(C) $\mathbf{A}\mathbf{A}^{\mathrm{T}}$	(D) $2A + A^T$
6. 设 A , B 是同阶	介对称矩阵且 A 可逆	,则下列知	巨阵为对称矩阵的。	是 ()
$(\mathbf{A}) \ \mathbf{A}^{-1}\mathbf{B} - \mathbf{B}\mathbf{A}$	$(B) A^{-1} B +$	+ BA ^{−1}	(C) $A^{-1}BA$	(D) $\mathbf{A}\mathbf{B}\mathbf{A}^{-1}\mathbf{B}$
7. 设 <i>A,B</i> 均为	ɪn 阶方阵,则必有(()		
(A) A B =	$B \parallel A \mid$	(B)	A+B = A +	$B \mid$
(C) $(\boldsymbol{A} + \boldsymbol{B})^T$	= A + B	(D)	$(\boldsymbol{A} + \boldsymbol{B})^{-1} = \boldsymbol{A}^{-1}$	$^{1} + B^{-1}$
8. 设 A,B 为n的	介方阵,满足 <i>AB = 0</i>) ,则必有	()	
9. 以下结论正确	$= m{O}$ (B) $m{A} + m{B} =$ 确的是(). 的行列式 $ m{A} = m{0}$,则 $m{A}$		$\boldsymbol{A} \models 0 \overrightarrow{\mathbf{g}} \mid \boldsymbol{B} \models 0$	(D) $ A + B = 0$
(B) 若 $A^2 = 0$,则 $A = O$.			
(C) 若 A 为对和	称矩阵,则 A ² 也是对	讨称矩阵.		
(D) 对任意的同	司阶矩阵 \pmb{A}, \pmb{B} ,有 \pmb{A}	$\mathbf{A}^2 - \mathbf{B}^2 = ($	(A+B)(A-B).	
10. 设 A,B 均为] <i>n</i> 阶可逆矩阵,且 A	AB = BA,	则下列结论中不过	正确的是 ()
(A) $AB^{-1} = B$	$\mathbf{S}^{-1}\mathbf{A}$	(B) A	$\mathbf{B} = \mathbf{B}\mathbf{A}^{-1}$	
(C) $A^{-1}B^{-1} = $	$\boldsymbol{B}^{-1}\boldsymbol{A}^{-1}$	(D) B -	$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}^{-1}\mathbf{B}$	
11. 设 A,B 均为	为 n 阶矩阵,且($m{A}$ +	(A-B)	$\mathbf{A} = \mathbf{A}^2 - \mathbf{B}^2$,则必	必有 ()
$\mathbf{A}) \boldsymbol{A} = \boldsymbol{B}$	(B) $\boldsymbol{A} = \boldsymbol{E}$	(C)	AB = BA	(D) $B = E$

4. 下列结论中不正确的是 ()

(A)	A或 B 可逆,	必有 AB 可逆;	(B) A 或 B 不可逆,如	必有 AB 不可逆;
(C)	A,B均可逆,	必有 $A+B$ 可逆;	(D) A 或 B 均不可逆,	必有 $A+B$ 不可逆。
1	3. 若 AB = A(C必能推出 $B=C$,其中	中 A,B,C 均为同阶方阵,	则 A 应满足条件
()			
(A)	$A \neq 0$	(B) $ A \neq 0$	(C) $A = 0$	(D) $ A =0$
	14. 设 A,B 均	为 n 阶方阵, A =−2,	$\boldsymbol{B} = 3, \mathbb{M} \left[\left(\frac{1}{2} \boldsymbol{A} \boldsymbol{B} \right)^{-1} - \frac{1}{3} \right]$	$\left \left(\mathbf{A} \mathbf{B} \right)^* \right = ()$
(A	$\frac{2^{2n-1}}{3}$	(B) $-\frac{2^{2n-1}}{3}$	(C) $\frac{2}{3}$	(D) $\frac{46}{3}$
	15. 设 A 为n(r	$n \geq 3$) 阶矩阵, A^* 是 A 自	的伴随矩阵, k 为常数, 目	$k \neq 0, \pm 1$,则 $(kA)^* =$
()			
(A)	$oldsymbol{A}^*$	$(\mathbf{B}) k\mathbf{A}^*$	(C) $k^{n-1}A^*$	(D) $k^n A^*$
	16. 矩阵 A =	$egin{pmatrix} m{A_1} & m{O} \ m{O} & m{A_2} \end{pmatrix}$ 的伴随矩阵为	A ()	
($\mathbf{A}) \begin{pmatrix} \boldsymbol{A}_1 \boldsymbol{A}_1^* \\ \boldsymbol{O} \end{pmatrix}$	$egin{pmatrix} oldsymbol{O} \ oldsymbol{A}_2 oldsymbol{A}_2^* \end{pmatrix}$	$(\mathbf{B}) \begin{pmatrix} A_2 A_2^* \\ \mathbf{O} \end{pmatrix}$	$oxed{oldsymbol{O}}{ oldsymbol{A}_{\!\!1} oldsymbol{A}_{\!\!1}^*}$
($\mathbf{C}) \begin{pmatrix} \mathbf{A}_2 \mathbf{A}_1^* \\ \mathbf{O} \end{pmatrix}$	$oldsymbol{O} oldsymbol{ A_1 A_2^*}$	$(\mathbf{D}) \begin{pmatrix} A_1 A_2^* \\ 0 \end{pmatrix}$	$oldsymbol{O} \left oldsymbol{A}_2 \left oldsymbol{A}_1^* ight)$
	17. 设 A 为n	阶方阵,且 $A^2 = A$,贝	J必有 ()	
(A)	A = 0	(B) $A = E$	(C) $\mathbf{A} + \mathbf{E}$ 可逆	(D) A 可逆
	18. 设 <i>n</i> 阶矩	阵 A 非奇异($n \ge 2$),	A^* 是矩阵 A 的伴随矩阵	,则 ()
	$(\mathbf{A}) \ (\mathbf{A}^*)^* = $	$A\mid^{n-1}A$	$(\mathbf{B}) \ (\boldsymbol{A}^*)^* = \mid \boldsymbol{A}$	A^{n+1} A
	$(\mathbf{C}) \ \left(\boldsymbol{A}^*\right)^* = \mid$	$A \mid^{n-2} A$	$(D) (A^*)^* = A $	$^{n+2}$ A
	19. 设 A.B.C	C 均为 n 阶方阵, E 为 r	n阶单位矩阵,若 $B=E$	+AB.C = A + CA. 则
B – C	C为() (A) E		(C) A	(D) - A

12. 设A,B均为n阶方阵,则 ()

- 21. 设A,B为同阶方阵,且B可逆,若A为m次幂零阵,即 $\exists m \in \mathbb{N}, A^m = 0$,证明:满足矩阵方程AX = XB的只能是X = O.
- 22. 设A为n阶方阵,已知(E+A)可逆,证明: 满足矩阵方程 $(E+A)^{-1}$ 与E-A可交换.
 - 23. 证明: (1) 如果 A 是可逆的反对称矩阵, A^{-1} 则也是反对称矩阵.
 - (2) 不存在奇数阶的可逆反对称矩阵.