DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2022

MAT1107 – Introducción al Cálculo

Lista de Ejercicios

1. Los números reales

1. Sean x, y, a y b números reales positivos no nulos. Asuma que $\frac{x}{y} < \frac{a}{b}$. Demuestre que

$$\frac{x}{y} < \frac{x+a}{y+b} < \frac{a}{b} .$$

2. Resuelva la siguiente inecuación, indicando explícitamente el conjunto solución

$$\frac{4}{x+1} + \frac{5}{2x-1} \geqslant 3.$$

- 3. Sea A el conjunto solución de la inecuación $|x| \leq |x-1|$. Sea B el conjunto solución de la inecuación |4x-2| > x(1-2x).
 - a) Resuelva la primera inecuación, esto es determine A.
 - b) Resuelva la segunda inecuación, esto es determine B.
 - c) Calcule $A \cup B$ y $A \cap B$.
- 4. Resuelva la siguiente inecuación

$$\frac{||x-1|-2|}{2+|x|} \ge 1.$$

5. Resuelva la siguiente inecuación

$$\sqrt{4-|x+1|} \leqslant 1 \ .$$

- 6. Sea $x \ge -3$. Demuestre que $1 + 3x \le (1 + x)^3$.
- 7. Resuelva la inecuación $x^2 6x + 13 > 0$.
- 8. Resuelva la inecuación

$$|x+1| \leqslant \sqrt{x^2 - 4x + 4} + 3$$
.

9. Resuelva la inecuación

$$\frac{x^2 - 4}{x - 4} > 1 .$$

- 10. Si a+b+c=3 demuestre que $a^2+b^2+c^2\geqslant 3$.
- 11. Determine el conjunto solución de la inecuación $||x+1|-1| \ge |x|$.

12. Si a, b y c son números reales positivos, demuestre

$$a^2 + b^2 + c^2 \geqslant ab + bc + ac.$$

13. Determine el conjunto solución de la inecuación

$$\left| \frac{x}{|x| - 2} \right| \geqslant -x \; .$$

- 14. Determine el conjunto solución de la inecuación $\sqrt{2x^2 + x + 3} > 1 x$.
- 15. Determine los valores de $a \in \mathbb{R}$ tal que para todo $x, y \in \mathbb{R}$

$$(x^2 + ax + 3)y^2 + (x + a)y + 1 > 0.$$

16. Resuelva la inecuación

$$\frac{x}{|x|-2} \leqslant x .$$

17. Demuestre, usando las propiedades de orden, que

$$\forall a \in \mathbb{R}^+ : a + a^{-1} \geqslant 2.$$

18. Resuelva la inecuación

$$\frac{x+1}{x-1} \leqslant x+2 \, .$$

19. Sean $a, b \in \mathbb{R}$ con $a \neq b$. Determine el conjunto solución de la inecuación

$$|x-a| + |b-x| > |a-b|$$
.

20. Resuelva la inecuación

$$\sqrt{|x-1| - 2} < x + 3.$$

2. Funciones

1. Considere la función $f:[-2,4]\to\mathbb{R}$ dada en la siguiente gráfica.

Definimos la función $g(x) = 2 - \frac{1}{2}f(-x+3)$, determine:

- a) Las transformaciones apropiadas que aplicadas a f den como resultado la función g.
- b) La gráfica de la función g y de cada una de las transformaciones propuesta en el inciso a)
- c) El dominio y recorrido de la función g.
- 2. a) Grafique la función $r(x) = \frac{1}{(x+1)^2}$.
 - b) Use la forma normal en el numerador y factorice el denominador para demostrar que la función racional

$$s(x) = \frac{2x^2 + 4x + 5}{x^2 + 2x + 1}$$

se puede escribir como

$$s(x) = 2 + \frac{3}{(x+1)^2}$$

A continuación grafique s al transformar la gráfica del inciso a).

c) Determine las asíntotas horizontales o verticales de la función racional y su gráfica

$$t(x) = \frac{3x^2 - 3x - 6}{x - 2} \,.$$

3. Determine condiciones sobre a y b de modo que:

$$f(x) = \begin{cases} x^2 - 4x + 7 & \text{si } x \geqslant 2\\ ax + b & \text{si } x < 2 \end{cases}$$

sea una biyección sobre \mathbb{R} . Demuestre que con las condiciones encontradas f es efectivamente una biyección sobre \mathbb{R} .

4. Considere las funciones $f(x) = \frac{x+1}{x-2}$ y

$$g(x) = \begin{cases} 3 - x^2 & \text{si } |x| < 3\\ x + 1 & \text{si } |x| \geqslant 3 \end{cases}$$

Calcule f^{-1} y $g \circ f^{-1}$.

- 5. Sea $f : \mathbb{R} \{3\} \to \mathbb{R}$ dada por $f(x) = \frac{x^2 10}{x 3}$.
 - a) Encuentre a, b y c de modo que

$$f(x) = ax + b + \frac{c}{x - 3}.$$

- b) Determine, si es que existen, las asíntotas verticales y horizontales.
- c) Determine el gráfico de f y dedúzca que f es sobreyectiva.
- d) Restringa el dominio de la función f para que sea inyectiva y determine su inversa.

6. Considere la función dada por

$$f(x) = \log_3\left(4 + \log_{\frac{1}{2}}\left(\frac{5x+1}{3-x}\right)\right).$$

- a) Determine el dominio de f.
- b) Demuestre que f es decreciente. Justifique su respuesta. Sugerencia: Puede ser útil graficar la función $x\mapsto \frac{5x+1}{3-x}$.
- c) Determine la inversa de f.
- 7. Encuentre todos los valores de x e y que satisfacen las siguientes condiciones:

$$\begin{cases} (x+y)^{\log(x+y)} = 1000(x+y)^2 \\ \left|\frac{x}{y}\right| = 1 \end{cases}$$

8. Sean las funciones reales

$$f(x) = \begin{cases} x^3 + 2 & \text{si } x \geqslant 0\\ 3x + 2 & \text{si } x < 0 \end{cases}$$

$$g(x) = \begin{cases} x^2 - 1 & \text{si } x > -1 \\ 3x - 2 & \text{si } x \leqslant -1 \end{cases}$$

Demuestre que f es biyección pero g no los es. Determinar $g\circ f^{-1}$

9. Sean $f,g:\mathbb{R}\to\mathbb{R}$ funciones reales definidas por

$$f(x) = \begin{cases} (x+1)^2 + 1 & \text{si } x \le -1 \\ -2x - 1 & \text{si } x > -1 \end{cases} \qquad \text{y} \qquad g(x) = \begin{cases} 1 - x^2 & \text{si } x < 0 \\ x - 1 & \text{si } x \ge 0 \end{cases}$$

- a) Calcule $f \circ g$.
- b) Pruebe que f es inyectiva en \mathbb{R} y calcule f^{-1} .
- 10. Encuentre el dominio y el recorrido de la función

$$f(x) = \sqrt{2x - x^2} \ .$$

- 11. Sea $f: \mathbb{R} \to \mathbb{R}$ tal que f(x+y) = f(x)f(y) para todo $x,y \in \mathbb{R}$. Suponga que $f(0) \neq 0$. Demuestre que
 - a) f(0) = 1.
 - b) f(x) > 0 para todo $x \in \mathbb{R}$.

12. Sea $f:[0,2]\to\mathbb{R}$ dada por

$$f(x) = \begin{cases} x & x \in [0, 1] \\ 2 - x & x \in (1, 2] \end{cases}$$

- a) Grafique f.
- b) Grafique g(x) = 3f(1-2x) detallando su razonamiento.
- 13. Esboce la gráfica de $p(x) = 2x(x-1)^3(x-2)^2(x-3)$.
- 14. Esboce la gráfica de $f(x) = \frac{x+2}{2x-1}$.
- 15. Sea $f : [a, b] \to \mathbb{R}$ una función estrictamente creciente, es decir, si $x_1, x_2 \in [a, b]$ y $x_1 < x_2$ entonces $f(x_1) < f(x_2)$.
 - a) Demuestre que f es invertible.
 - b) Demuestre que f^{-1} es estrictamente creciente.
- 16. Sea $x \in \mathbb{R}$. Demuestre que $e^x + e^{-x} \geqslant 2$.
- 17. Esboce la gráfica de la función

$$f(x) = \frac{|x|^3 - x^3}{x+1} \,.$$

18. Determine el dominio de

$$f(x) = \sqrt{1 - \sqrt{\frac{x^2 - 1}{|x| - 1}}}.$$

19. En la siguiente gráfica se muestra la gráfica de una función $f:[3,9]\to\mathbb{R}$.

Si
$$g(x) = -1 - \frac{1}{2}f(3x+6)$$
,

- a) Determine el dominio y recorrigo de g.
- b) Identifique un orden en que deben ser aplicadas las transformaciones a f para obtener la gráfica de g.
- c) Trace la gráfica de g en su dominio.

20. Dadas las funciones

$$f(x) = x + \frac{2}{x}$$
 y $g(x) = \begin{cases} \frac{1}{x} & \text{si } x < 3, \ x \neq 0, \\ \\ \sqrt{x} & \text{si } x \geqslant 3. \end{cases}$

Determine una expresión para $g \circ f$, identificando su dominio.

- 21. Sea $f:(5,\infty)\to B$ dada por $f(x)=1+\frac{1}{x^2-9}$.
 - a) Determine B para que f sea sobrevectiva.
 - b) Pruebe que f es inyectiva.
 - c) Calcule f^{-1} e identifique su dominio.
- 22. a) Trace la gráfica de $f(x) = 2 e^{-|x|}$.
 - b) Determine el dominio y recorrido de $g(x) = \ln(2 e^{-|x|})$
- 23. Si se detuviera de repente la contaminación del lago Erie, se ha estimado que el nivel de contaminantes decrecería de acuerdo con la fórmula

$$C(t) = C_0 e^{-\frac{t}{4}} ,$$

donde t está en años y C_0 es el nivel de contaminantes cuando se dejó de contaminar. ¿Cuántos años tomará eliminar el 50 % de los contaminantes?

- 24. Considere la función definida por $h(x) = x^2 \left[\frac{1}{x}\right]$.
 - a) ¿Es h una función par?
 - b) Bosqueje el gráfico de h.
- 25. Considere las funciones g y f definidas por:

$$g(x) = \sqrt{4 - x^2}$$
, $f(x) = \begin{cases} 4x - 10 & \text{si } x > 1, \\ 3 - x^2 & \text{si } x \le 0. \end{cases}$

- a) Determine $g \circ g$.
- b) Determine $g \circ f$.
- 26. Sea f la función cuyo gráfico se muestra a continuación

- a) Bosqueje el gráfico de h(x) = f(2x 2).
- b) Bosqueje el gráfico de g(x) = 1 f(2x 2).
- 27. Considere la función definida por $h(x) = \ln\left(\frac{3^x-1}{3^x+1}\right)$.
 - a) Determine el dominio de h.
 - b) Demuestre que h es inyectiva.
 - c) Determine la inversa de h.
- 28. Bosqueje el gráfico de $f(x) = -3 \left(\frac{1}{2}\right)^{x-3}$.

3. Sucesiones de números reales

1. La sucesión $\{a_n\}$ se define recursivamente con $a_1=1$ y

$$a_{n+1} = 3 - \frac{1}{a_n} \quad \text{para } n \geqslant 1 .$$

Pruebe que $\{a_n\}$ es monótona creciente, es decir, que $a_n < a_{n+1}$ para todo $n \in \mathbb{N}$.

2. Encuentre el valor de las siguientes sumas

a)
$$\sum_{k=0}^{n} (k-1)^2 - k^2$$

b)
$$\sum_{k=1}^{n} \text{sen}(k) - \text{sen}(k+1)$$

$$c) \sum_{k=1}^{n} \log \left(1 + \frac{1}{k} \right)$$

3. Encuentre el término independiente de x en $\left(1+\frac{1}{x}\right)^2(1+x)^n$.

4. Sean $p,q\in\mathbb{R}$ tales que p+q=1. Definimos para $k=0,1,\ldots,n$ los términos

$$r_k = \binom{n}{k} \cdot p^k \cdot q^{n-k} .$$

Demuestre que

$$\sum_{k=0}^{n} k \cdot r_k = n \cdot p .$$

5. Demuestre, usando la definición de límite, que la sucesión $a_n = \frac{2n+3}{n+2}$ converge a L=2.

6. Calcule $\lim_{n\to\infty} \frac{2n+1}{\sqrt{4n^2+5n-1}}$.

7. Considere la sucesión $\{a_n\}$ definida por

$$a_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)}$$
.

8. La sucesión $\{a_n\}$ se define con $a_1 = 1$ y

$$a_{n+1} = 3 - \frac{1}{a_n} \quad \text{para } n \geqslant 1 \,.$$
 (1)

Se sabe que $\{a_n\}$ es monótona creciente. Pruebe que $\{a_n\}$ es convergente y calcule su límite.

9. Calcule el límite de las siguientes sucesiones

a)
$$a_n = \frac{1+2\cdot 10^n}{5+3\cdot 10^n}$$

b)
$$b_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}}$$

10. Halle las constantes $a, b \in \mathbb{R}$ tal que

$$\lim_{n \to +\infty} \left(an + b - \frac{n^3 + 1}{n^2 + 1} \right) = 0.$$

- 11. a) Calcular $\lim_{n \to \infty} \left(\frac{9^{n+1}}{14^n} \frac{2n \sqrt{n + 4n^2}}{2 3n} \right)$.
 - b) Considere la sucesión

$$a_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \frac{1}{\sqrt{n^2 + 3}} + \dots + \frac{1}{\sqrt{n^2 + n}}$$

Use el Teorema del Sandwich para calcular $\lim_{n\to\infty} a_n$.

12. Calcule el valor de

$$S = \sum_{k=7}^{201} \frac{1}{(k+1)(k+3)}.$$

13. Calcule el valor de

$$\sum_{k=0}^{n} \binom{n}{k} \frac{1}{2^k} .$$

14. Encuentre el coeficiente que acompaña el término x^{13} en la expansión de

$$\left(x^2 + \frac{1}{x}\right)^{17}.$$

Puede dejar su respuesta expresada en términos de coeficiente binomiales.

15. Usando la definición de límite, demuestre que

$$\lim_{n \to \infty} \frac{n^2}{2n^2 + n + 1} = \frac{1}{2} \, .$$

16. Considere la sucesión dada por

$$a_1 = 1$$
 $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right), \quad n \geqslant 1.$

- a) Demuestre que $a_n > 0$ para todo $n \ge 1$.
- b) Demuestre que $a_n \geqslant \sqrt{2}$ para todo $n \geqslant 2$.
- c) Demuestre que $a_n \ge 2$ para todo $n \ge 1$.
- 17. Calcule el límite

$$\lim_{n\to\infty} \left(\sqrt{n^2 + 3n + 5} - n\right) .$$

Justifique su respuesta.

18. Sean $a, b, c \in \mathbb{R}$ tales que 1 < a < b < c. Calcule el límite

$$\lim_{n \to \infty} \sqrt[n]{a^n + b^n + c^n} .$$

Justifique su respuesta.

19. Sea $a \in \mathbb{R}$. Considere la sucesión dada por

$$a_1 = a$$

 $a_{n+1} = a_n + a^{n+1}, \quad n \geqslant 1.$

Calcule a_{100} .

20. Calcule el coeficiente que acompaña a x^{-30} en la expansión de

$$\left(2 + \left(x^2 + \frac{1}{x}\right)^{54}\right)^2.$$

21. Usando la definición, demuestre que

$$\lim_{n\to\infty} \frac{[n+1]^3}{n^2+1} = \infty .$$

22. Demuestre que el límite

$$\lim_{n \to \infty} \frac{n^2 \cos(\pi n)}{n^2 + 1}$$

no existe.

23. Calcule las siguientes sumas.

a)
$$\sum_{k=5}^{n} \left(12k^2 - \frac{4}{5^k} \right)$$
,

$$b) \sum_{k=10}^{100} \frac{1}{k^2 - 4k + 3} .$$

- 24. Determine el coeficiente que acompaña a x^3 en la expansión del binomio $\left(2x + \frac{1}{8x}\right)^{15}$.
- 25. Calcule

$$\sum_{k=1}^{n} k \binom{n}{k} (-3)^k.$$

26. Demuestre que $a_n = \frac{n^2}{n^2 + 1}$ es monótona, para $n \in \mathbb{N}$.

27. Demuestre, por definición de límite, que

$$\lim_{n \to \infty} \frac{2n^2 + 5n + 3}{n^2 + 2n + 1} = 2.$$

- 28. Dada la sucesión $2a_{n+1} = \sqrt{7a_n + 2}$ con $a_1 = 1$, demuestre
 - $a) \ 0 \leqslant a_n \leqslant 2 \text{ y}$
 - b) a_n es creciente.
- 29. Calcule los siguientes límites

a)
$$\lim_{n \to \infty} \frac{3n+1}{\sqrt{4n^2+3n-2}}$$

b)
$$\lim_{n \to \infty} \left(\sqrt{n^2 + 4n + 1} - n \right).$$

30. Sabiendo que $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$ calcule

$$\lim_{n\to\infty} \left(1 + \frac{1}{2n}\right)^n .$$

31. Use el teorema del Sandwich para demostrar que

$$\lim_{n \to \infty} \left(\frac{\sqrt{1}}{n^2 + 1} + \frac{\sqrt{2}}{n^2 + 2} + \frac{\sqrt{3}}{n^2 + 3} + \dots + \frac{\sqrt{n}}{n^2 + n} \right) = 0.$$

32. Calcule las siguientes sumas:

a)
$$\sum_{k=4}^{40} \frac{4}{(2k-3)(2k+1)}$$
,

$$b) \sum_{k=10}^{50} \frac{(-2)^{k+1}}{3^{2k}}.$$

- 33. Sea x_n la sucesión definida recursivamente por $x_1 = 6$, $x_{n+1} = 5 \frac{6}{x_n}$ para cada $n \in \mathbb{N}$.
 - a) Demuestre que x_n es monótona.
 - b) Demuestre que x_n es acotada.
 - c) Use las dos partes anteriores para concluir que el límite existe y calcule su límite.
- 34. Demuestre, por definición, que

$$\lim_{n \to \infty} \frac{n+2}{\sqrt{n+1}} = \infty .$$

- 35. Asuma que x_n es tal que existe $\lim_{n\to\infty} y_n$ y $|x_n\cdot y_n|$ es acotada. Demuestre que x_n converge a 0.
- 36. Calcule

a)
$$\sum_{k=21}^{100} \frac{2}{(2k-1)(2k+1)}$$
, b) $\sum_{k=1}^{100} (-1)^k k^2$,

$$b) \sum_{k=1}^{100} (-1)^k k^2$$

c)
$$\sum_{k=100}^{153} \frac{(-3)^{k+1}}{2^{2k}}$$
.

37. Considere la siguiente suma:

$$a + (1+a)b + (1+a+a^2)b^2 + \dots + (1+a+a^2+\dots+a^{n-1})b^{n-1}$$
.

Escriba la suma anterior usando sumatorias.

38. Calcule la siguiente suma:

$$\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} 3^{k}.$$

39. Determine el término independiente de x en el desarrollo de

$$(2x+1)\left(1+\frac{2}{x}\right)^n.$$

40. Sea $\{a_k\}_{k\in\mathbb{N}}$ la sucesión definida por:

$$a_1 = 1$$
, $a_{k+1} = 3 - \frac{1}{a_k}$.

Demuestre que

- a) La sucesión es acotada inferiormente por 0.
- b) La sucesión es acotada superiormente por 3.
- c) Demuestre que la sucesión es monótona.

41. Decida si es verdadero o falso justificadamente:

- a) Sea $\{a_k\}_{k\in\mathbb{N}}$ una sucesión. Si las sub-sucesiones $\{a_{2k}\}_{k\in\mathbb{N}}$ y $\{a_{2k+1}\}_{k\in\mathbb{N}}$ son decrecientes entonces $\{a_k\}_{k\in\mathbb{N}}$ también lo es.
- b) Si $\{a_k\}_{k\in\mathbb{N}}$ es acotada y $a_k\neq 0$ para todo $k\in\mathbb{N}$, entonces la sucesión $b_k=\frac{1}{a_k}$ es acotada.

42. Sea $\{a_k\}_{k\in\mathbb{N}}$ la sucesión definida por:

$$a_k = \frac{k^2 + 2k + 2}{k + 1} \, .$$

- a) Determine algún $k_0 \in \mathbb{N}$ tal que $a_k > 10^{10}$ para todo $k \geqslant k_0$.
- b) Demuestre, usando la definición, que $\lim_{k\to\infty} a_k = +\infty$.

43. Decida si es verdadero o falso justificadamente:

Si $\{a_k\}_{k\in\mathbb{N}}$ y $\{b_k\}_{k\in\mathbb{N}}$ son succesiones tales que $\lim_{k\to\infty}a_k=+\infty$ y que b_k es acotada entonces

$$\lim_{k \to \infty} (a_k + b_k) = +\infty .$$

44. Demuestre, usando la definición, que

$$\lim_{k \to \infty} \frac{2k+1}{k+3} = 2 \ .$$

45. Decida si es verdaderi o falso justificadamente:

a) Si $\{a_k\}_{k\in\mathbb{N}}$ y $\{b_k\}_{k\in\mathbb{N}}$ son succesiones tales que $\lim_{k\to\infty}a_k=0$ y que $\lim_{k\to\infty}b_k=+\infty$ entonces

$$\lim_{k \to \infty} a_k \cdot b_k = 0 .$$

b) Si $\{a_k\}_{k\in\mathbb{N}}$ y $\{b_k\}_{k\in\mathbb{N}}$ son sucesiones tales que $\lim_{k\to\infty}a_k=0$ y que $\lim_{k\to\infty}b_k=8$ entonces

$$\lim_{k \to \infty} (a_k + b_k) = 8.$$

46. Calcule los siguientes límites:

$$a) \lim_{n \to \infty} \frac{2^n}{3^n + 5^n} \,,$$

b)
$$\lim_{n \to \infty} \frac{\cos(2n^2)}{1 + \sqrt{n}}.$$

47. Demuestre que los siguientes límites no existen.

$$a) \lim_{n \to \infty} \frac{(-1)^n n^3}{n^3 + 2n^2 + 1} \,,$$

b)
$$\lim_{n\to\infty}\frac{n!}{2^n}$$
.

48. Considere la sucesión $\{a_k\}_{k\in\mathbb{N}}$ definida recursivamente por

$$a_1 = 1$$
, $a_{k+1} = \frac{1}{3 - a_k}$.

- a) Demuestre que para todo $k \in \mathbb{N}$ se tiene que $(a_k)^2 3a k + 1 \leq 0$.
- b) Demuestre que la sucesión es acotada.
- c) Demuestre que la sucesión es monótona.
- d) Concluya que la sucesión converge y calcule el límite.