Sobre polígonos

Antonio Martínez López

Departamento de Geometría y Topología Universidad de Granada

Taller de Geometría y Topología Curso 2019- 2020

Teorema de la curva poligonal de Jordan

Toda curva plana poligonal, simple y cerrada divide al plano en dos componentes (una acotada y otra no) cuya frontera común es la curva.

 $ightharpoonup \mathbb{R}^2 \backslash \mathcal{C}$ tiene a lo más dos componentes conexas.

 $ightharpoonup \mathbb{R}^2 \backslash \mathcal{C}$ tiene al menos dos componentes conexas.

Si $\phi: \mathbb{R}^2 \backslash \mathcal{C} \longrightarrow \{0,1\}$, $\phi(q) = |L_q \cap \mathcal{C}|$ módulo dos, ϕ es localmente constante y biyectiva.

 $ightharpoonup \mathcal{C}$ es frontera común de $\phi^{-1}(0)$ y $\phi^{-1}(1)$.

$$\overline{\phi^{-1}(0)}\subset \overline{\phi^{-1}(0)\cup \mathcal{C}}=\overline{\mathbb{R}^2\backslash \phi^{-1}(1)}=\mathbb{R}^2\backslash \phi^{-1}(1)$$

Así $Fr(\phi^{-1}(0)) \subseteq \mathcal{C}$.

Es evidente que

$$\mathcal{C} \subset \overline{\phi^{-1}(0)}$$
.

 $\phi^{-1}(0)$ es no acotada pues si R >> 0, $\phi^{-1}(0) \subset \mathbb{R}^2 \backslash B_R$ y $\phi^{-1}(1) \subset B_R$ está acotada.

- Un polígono es la región cerrada del plano delimitado por una colección finita de segmentos de línea (lados) que forman una curva cerrada que no se interseca a sí misma. Los puntos donde lados adyacentes se encuentran se llaman vértices.
- ▶ Los polígonos son para la geometría plana, como los enteros a la aritmética. Y las triangulaciones son factorizaciones primarias de los polígonos (pero sin el "teorema fundamental de la aritmética" que garantiza una factorización única)

- ► Una diagonal de un polígono es un segmento de línea que conecta dos vértices de P y se encuentra en el interior de P, sin tocar ∂P excepto en sus puntos finales.
- Dos diagonales son no cruzadas si no comparten puntos interiores

- ► Una triangulación de P es una descomposición en triángulos por un conjunto máximo de diagonales no cruzados.
- ► Máximo significa que no se puede agregar más diagonales al conjunto sin cruzarlas.
- Las triangulaciones de un polígono no son únicas:

Existencia de diagonales

Todo polígono con más de tres vértices tiene una diagonal.

Triangulación

Todo polígono tiene una tringulación

Usar inducción sobre el número de vértices.

Contando

Teorema

Toda tringulación de un polígono con n vértices tiene n-2 tringulos y n-3 diagonales.

► Aplicar inducción sobre *n*

Ore jas

tres vértices consecutivos a, b y c de P forman una oreja si ac es diagonal del P.

Todo polígono con más de tres vértices tiene al menos dos orejas.

Ejercicios

- Prueba que suma de los ángulos interiores de un polígono de n vértices es $(n-2)\pi$
- Prueba que el ángulo total de rotación alrededor del borde de un polígono es 2π .
- Encuentra diferentes triangulaciones de los polígonos de la figura.

▶ Para todo n encuentra un polígono con una única triangulación.