Matrix calculations

Walter ∕Judzimbabwe

Matrix Computations

Matrix calculations

Walter Mudzimbabwe

Matrix operations

Matrix calculations

Walter Mudzimbabw

Matrix Computations Let $A \in \mathbb{R}^{m \times n}$ then we write

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

<u>Addition</u>: $\mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{m \times n}$: C = A + B where $c_{ii} = a_{ii} + b_{ii}$

$$c_{ij} = \alpha a_{ij}$$

 $\underline{\mathsf{Multiplication}} \colon \, \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times p} \longrightarrow \mathbb{R}^{m \times p} : \quad \mathsf{C} = \mathsf{AB} \,\, \mathsf{where} \,\,$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

 $\underline{\mathsf{Transpose}} \colon \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{n \times m} \colon \quad \mathsf{C} = \mathsf{A}^{\mathsf{T}} \text{ where } c_{ij} = a_{ji}$

Special square matrices

Matrix calculations

Walter Mudzimbabwe

Matrix Computations Symmetric matrix: An $A \in \mathbb{R}^{n \times n}$ is symmetric if $A^T = A$. Examples:

$$\begin{bmatrix} 1 & 7 & 3 \\ 7 & 4 & 5 \\ 3 & 5 & 0 \end{bmatrix}, \begin{bmatrix} 4 & 0 & 1 & 10 \\ 0 & -3 & 6 & -2 \\ 1 & 6 & 1 & 10 \\ 10 & -2 & 10 & 10 \end{bmatrix}.$$

Orthogonal matrix: An $A \in \mathbb{R}^{n \times n}$ is orthogonal if $A^T A = I_n$ where $I_n \in \mathbb{R}^{n \times n}$ is an identity matrix.

The columns and rows are orthonormal ie if you take the dot product of any two columnss or rows, the product is 0. Examples:

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Orthogonal matrices

Matrix calculations

Walter Mudzimbabv

Matrix Computations

From $A^TA = I_n$ we have $A^{-1} = A^T$ which makes finding the inverse much easier (than doing lots of row operations, imagine if n = 1000!)

Other Special non square matrices

Matrix calculations

Walter Mudzimbabwe

Matrix Computations <u>Diagonal matrix</u>: An $A \in \mathbb{R}^{m \times n}$ is a diagonal matrix if $a_{ij} = 0$ when $i \neq j$.

Notation: We write A =diag($\alpha_1, \alpha_2, \dots, \alpha_k$) where $k = \min\{m, n\}$ then

$$A = [a_{ij}]$$
 is diagonal and $a_{ii} = \alpha_i$ for $i = 1, 2, \dots, k$

Examples:

$$\begin{bmatrix} 7 & 0 \\ 0 & -5 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \end{bmatrix}, \quad \begin{bmatrix} 4 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -13 \end{bmatrix}.$$

Not that this is not square.

Vector norms

Matrix calculations

Walter Mudzimbabwe

Matrix Computations A vector norm on \mathbb{R}^n is a function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ such that:

$$1 f(x) \ge 0, \qquad \forall x \in \mathbb{R}^n$$

$$f(x+y) = f(x) + f(y), \qquad \forall x, y \in \mathbb{R}^n$$

We denote such an f(x) by ||x||.

Examples:

Holder/p-norms: $||\mathbf{x}||_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}$ For example:

$$||\mathbf{x}||_2 = (|x_1|^2 + |x_2|^2 + \dots + |x_n|^2)^{1/2} = (\mathbf{x}^T \mathbf{x})^{1/2}$$

$$||\mathbf{x}||_{\infty} = \max_{i} |x_{i}|$$

Vector norms

Matrix calculations

Walter Mudzimbabwe

Matrix Computations Exercise: Prove that the 2-norm is invariant under orthogonal transformations

Solution: By a an orthogonal transformation of x, we mean Qx where Q is an orthogonal matrix. So the question is asking you to prove that $||Qx||_2 = ||x||_2$.

Now

$$||Qx||_2^2 = (Qx)^T Qx$$

 $= x^T Q^T Qx$
 $= x^T x$, since $Q^T Q = I_n$, because Q is orthogonal
 $= ||x||_2^2$

which implies $||Qx||_2 = ||x||_2$ since the norm can not be negative.

Matrix norms

Matrix calculations

Walter Mudzimbabwe

Matrix Computations A matrix norm on $\mathbb{R}^{m\times n}$ is a function $f:\mathbb{R}^{m\times n}\longrightarrow\mathbb{R}$ such that:

1
$$f(A) \ge 0$$
, $\forall A \in \mathbb{R}^{m \times n}$ with $f(A) = 0$ iff $A = 0$

$$\exists f(\alpha A) = \alpha f(A), \qquad \forall \alpha \in \mathbb{R}, \forall A \in \mathbb{R}^{m \times n}.$$

Again, we denote such an f(x) by ||x||. Examples:

Frobenius norm:
$$||A||_F = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2\right)^{1/2}$$
.

We can also define p-norms but they are not neccessary in this course.

Singular value decomposition (SVD)

Matrix calculations

Walter Mudzimbabwe

Matrix Computations Let $A \in \mathbb{R}^{m \times n}$ then there exist orthogonal matrices

$$\begin{aligned} U &= [u_1, u_2, \cdots, \cdots, u_m] \in \mathbb{R}^{m \times m} \\ V &= [v_1, v_2, \cdots, v_n] \in \mathbb{R}^{n \times n} \end{aligned}$$

such that

$$\mathsf{U}^T\mathsf{AV} = \mathsf{diag}(\sigma_1, \sigma_2, \cdots, \sigma_p) \tag{1}$$

where $p = \min\{m, n\}$ and $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p \ge 0$. We can write (1) as

$$A = U \operatorname{diag}(\sigma_1, \sigma_2, \cdots, \sigma_p) V^T$$

which is called the singular decomposition (SVD) of A. The σ_i 's are called singular values of A and vectors u_i and v_i are the i^{th} left and right singular vectors respectively.

Singular value decomposition (SVD)

Matrix calculations

Walter Mudzimbabwe

Matrix Computations We can also verify that

$$Av_i = \sigma_i u_i$$
$$A^T u_i = \sigma_i v_i$$

To do this we need to verify that

$$A = \sum_{i=1}^{r} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{T}$$

which implies

$$\mathsf{A}^T = \sum_{j=1}^r \sigma_j \mathsf{v}_j \mathsf{u}_j^T$$

Singular value decomposition (SVD)

Matrix calculations

Walter

Matrix Computations

Therefore

$$Av_{i} = \left(\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T}\right) v_{i}$$

$$= \sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{T} v_{i}$$

$$= \sigma_{i} u_{i} I_{n}$$

$$= \sigma_{i} u_{i}$$