Λ(1520) 3/2⁻

$$I(J^P) = 0(\frac{3}{2}^-)$$
 Status: ***

Discovered by FERRO-LUZZI 62; the elaboration in WATSON 63 is the classic paper on the Breit-Wigner analysis of a multichannel resonance.

The measurements of the mass, width, and elasticity published before 1975 are now obsolete and have been omitted. They were last listed in our 1982 edition Physics Letters **111B** 1 (1982).

Production and formation experiments agree quite well, so they are listed together here.

Λ(1520) POLE POSITION

	•	/(1320) POLE	FUS			
REAL PART VALUE (MeV)	-	DOCUMENT ID		TECN	СОММ	ENT
1517 +4	_	¹ KAMANO	15	DPWA	Multic	channel
4 • • • We do r	not use the follo	wing data for ave	rages,	fits, limi	ts, etc.	• • •
1518		ZHANG	_	DPWA		
1518.8		QIANG	10	SPEC	$ep \rightarrow$	$e'K^+X$ (fit to X)
$^{ m 1}$ From the p	preferred solutio	n A in KAMANO	15.			
-2×IMAGIN	NARY PART					
VALUE (MeV)		DOCUMENT ID		TECN	СОММ	ENT
15 +10 - 8		¹ KAMANO	15	DPWA	Multic	channel
• • • We do r	not use the follo	wing data for ave	rages,	fits, limi	ts, etc.	• • •
16		ZHANG	13A	DPWA	Multic	channel
17.2		QIANG	10	SPEC	$ep \rightarrow$	$e'K^+X$ (fit to X)
$^{ m 1}$ From the p	oreferred solutio	n A in KAMANO	15.			
	normalized resid	$\Lambda(1520)$ POLE ue is the residue of $\overline{\Lambda} \rightarrow \Lambda(1520)$	divided → N	I by Г $_{pol}$	e/2.	
MODULUS	<u>PHASE (°)</u>	<u>DOCUM</u>				COMMENT
		wing data for ave ¹ KAMA	_			
0.431	-11			15	DPWA	Multichannel
From the p	preferred solutio	n A in KAMANO	15.			
Normalized I	residue in $N\overline{R}$	$\overline{\Lambda} \rightarrow \Lambda(1520)$	\rightarrow Σ	$\bar{\pi}$		
MODULUS	PHASE (°)	<u>DOCUM</u>	ENT IE)	TECN	COMMENT
• • • We do r	not use the follo	wing data for ave	_			
0.435	-10	¹ KAMA		15	DPWA	Multichannel
¹ From the p	preferred solutio	n A in KAMANO	15.			
HTTP://PD	G.LBL.GOV	Page	1	C	reated	: 5/30/2017 17:2
, ,		3				, ,

Normalized	residue in NK –	\rightarrow $\Lambda(1520) \rightarrow \Sigma(1385)\pi$, S-wave	
MODULUS	PHASE (°)	DOCUMENT ID TECN COMME	NT
• • • We do	not use the followin	g data for averages, fits, limits, etc. • • •	
0.431	-123	¹ KAMANO 15 DPWA Multic	nannel
$^{ m 1}$ From the	preferred solution A	in KAMANO 15.	
Normalized	residue in $N\overline{K}$ –	\rightarrow $\Lambda(1520) \rightarrow \Sigma(1385)\pi$, <i>D</i> -wave	
MODULUS	PHASE (°)	DOCUMENT ID TECN COMME	NT
• • • We do	not use the followin	g data for averages, fits, limits, etc. • • •	

¹ KAMANO 15 DPWA Multichannel 0.0141 $^{\rm 1}\,{\rm From}$ the preferred solution A in KAMANO 15.

Λ(1520) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1519.5 ±1.0	OUR ESTIMATE				
1519.54 ± 0.17	OUR AVERAGE				
1519.6 ± 0.5		ZHANG	13A	DPWA	Multichannel
1520.4 ± 0.6	± 1.5	QIANG	10	SPEC	$ep \rightarrow e'K^+X$ (fit to X)
1517.3 ± 1.5	300	BARBER	80 D	SPEC	$\gamma p \rightarrow \Lambda(1520) K^+$
1517.8 ± 1.2	5k	BARLAG	79	HBC	$K^- p$ 4.2 GeV/ c
1520.0 ± 0.5		ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1519.7 ± 0.3	4k	CAMERON	77	HBC	$K^- p 0.96-1.36 \text{ GeV}/c$
1519 ± 1		GOPAL	77	DPWA	$\overline{K}N$ multichannel
1519.4 ± 0.3	2000	CORDEN	75	DBC	$K^- d 1.4–1.8 \text{ GeV}/c$

Λ(1520) WIDTH

<i>VALUE</i> (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
15.6 ±1.0 OUR ES	STIMATE				
15.73±0.29 OUR A	/ERAGE	Error includes sca	le fact	or of 1.1	
17 ± 1		ZHANG	13A	DPWA	Multichannel
$18.6 \pm 1.9 \pm 1.0$		QIANG	10	SPEC	$ep \rightarrow e'K^+X$ (fit to X)
16.3 ± 3.3	300	BARBER	80 D	SPEC	$\gamma p \rightarrow \Lambda(1520) K^+$
16 ± 1		GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
14 ± 3	677	¹ BARLAG	79	HBC	$K^- p$ 4.2 GeV/ c
$15.4\ \pm0.5$		ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
16.3 ± 0.5	4k	CAMERON	77	HBC	$K^- p 0.96-1.36 \text{ GeV}/c$
$15.0\ \pm0.5$		GOPAL	77	DPWA	$\overline{K}N$ multichannel
$15.5 \ \pm 1.6$	2000	CORDEN	75	DBC	$K^- d 1.4–1.8 \; {\sf GeV}/c$
1					

¹ From the best-resolution sample of $\Lambda\pi\pi$ events only.

Λ(1520) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	NK	$(45 \pm 1)\%$
Γ_2	$\Sigma \pi$	$(42 \pm 1)\%$
Γ_3	$\Lambda\pi\pi$	(10 ± 1) %
Γ_4	$\Sigma(1385)\pi$, <i>S</i> -wave	
Γ_5	$\Sigma(1385)\pi$, $ extit{D}$ -wave	
Γ_6	$\Sigma(1385)\pi$	
Γ_7	$\Sigma(1385)\pi(\rightarrow \Lambda\pi\pi)$	
Γ ₈	$\Lambda(\pi\pi)_{S ext{-wave}}$	
Γ_9	$\sum \pi \pi$	($0.9~\pm0.1$)%
Γ_{10}	$\Lambda\gamma$	(0.85±0.15) %
Γ ₁₁	$\Sigma^0 \gamma$	

CONSTRAINED FIT INFORMATION

An overall fit to 9 branching ratios uses 28 measurements and one constraint to determine 6 parameters. The overall fit has a $\chi^2=18.9$ for 23 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

1/(1520) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ ₁ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.45 ± 0.01 OUR ESTIMATE				
0.448±0.007 OUR FIT Error inclu	des scale factor	of 1.2	2.	
0.456±0.010 OUR AVERAGE				
0.47 ± 0.04	ZHANG	13A	DPWA	Multichannel
0.47 ± 0.02	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
0.45 ± 0.03	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
0.448 ± 0.014	CORDEN	75	DBC	$K^- d 1.4-1.8 \text{ GeV}/c$
				,
HTTP://PDG.LBL.GOV	Page 3		Creat	ed: 5/30/2017 17:20

• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
0.43	¹ KAMANO	15	DPWA	Multichannel
0.47 ± 0.01	GOPAL	77	DPWA	See GOPAL 80
0.42	MAST	76	HBC	$K^- p \rightarrow \overline{K}^0 n$
$^{ m 1}$ From the preferred solution A i	n KAMANO 15.			
$\Gamma(\Sigma\pi)/\Gamma_{total}$				Γ ₂ /Γ
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>
0.42 ±0.01 OUR ESTIMATE				
0.421±0.007 OUR FIT Error incl	udes scale factor	of 1.2	2.	
0.425±0.011 OUR AVERAGE				
0.47 ± 0.05	ZHANG	13A	DPWA	Multichannel
0.426 ± 0.014	CORDEN	75		$K^- d 1.4 - 1.8 \text{ GeV}/c$
0.418 ± 0.017				$K^- p 0.28-0.45 \text{ GeV}/c$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
0.446	¹ KAMANO	15	DPWA	Multichannel
0.46	KIM	71	DPWA	K-matrix analysis
$^{\mathrm{1}}$ From the preferred solution A i	n KAMANO 15.			
$\Gamma(\Sigma\pi)/\Gamma(N\overline{K})$				Γ_2/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT
0.940 ± 0.026 OUR FIT Error incl				
0.95 ±0.04 OUR AVERAGE Er	4	facto		See the ideogram below
0.98 ± 0.03	¹ GOPAL	77	DPWA	$\overline{K}N$ multichannel
0.82 ± 0.08	BURKHARDT	69		$K^- p 0.8-1.2 \text{ GeV}/c$
1.06 ± 0.14	SCHEUER	68	DBC	$K^- N$ 3 GeV/ c
0.96 ± 0.20	DAHL	67	HBC	π^-p 1.6–4 GeV/ c
0.73 ± 0.11	DAUBER	67	HBC	K^-p 2 GeV/ c
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
1.06 ± 0.12	BERTHON	74	HBC	Quasi-2-body σ
1.72 ± 0.78	MUSGRAVE	65	HBC	
1 The $\overline{\it K}{\it N} ightarrow ~ {\it \Sigma}\pi$ amplitude at	resonance is $+0$.	46 ±	0.01.	

` , ` ,				
$\Gamma(\Lambda\pi\pi)/\Gamma_{total}$				Γ ₃ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
0.10 ± 0.01 OUR ESTIMATE				
0.095±0.005 OUR FIT Error	includes scale factor	of 1.2	2.	
0.096 ± 0.008 OUR AVERAGE	Error includes scale	facto	r of 1.6.	
0.091 ± 0.006				$K^- d 1.4 – 1.8 \text{ GeV}/c$
0.11 ± 0.01	$^{ m 1}$ MAST	73 B	IPWA	$K^- p \rightarrow \Lambda \pi \pi$
1 Assumes $\Gamma ig({\it N} \overline{\it K} ig) / \Gamma_{ m total} =$	0.46 ± 0.02 .			
$\Gamma(\Lambda\pi\pi)/\Gamma(N\overline{K})$				Γ_3/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT

$\Gamma(\Lambda\pi\pi)/\Gamma(N\overline{K})$				Γ_3/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT
0.212 ± 0.012 OUR FIT	Error includes scale factor	of 1.2		
0.202 ± 0.021 OUR AVE	RAGE			
0.22 ± 0.03	BURKHARDT	69	HBC	$K^- p 0.8-1.2 \text{ GeV}/c$
0.19 ± 0.04	SCHEUER	68	DBC	$K^- N$ 3 GeV/ c
$0.17\ \pm0.05$	DAHL	67	HBC	$\pi^- p$ 1.6–4 GeV/ c
0.21 ± 0.18	DAUBER	67	HBC	K^-p 2 GeV/ c
• • • We do not use the	following data for averages	, fits,	limits, e	etc. • • •
0.27 ± 0.13	BERTHON	74	HBC	Quasi-2-body σ
0.2	KIM	71	DPWA	K-matrix analysis

Created: 5/30/2017 17:20

$\Gamma(\Sigma\pi)/\Gamma(\Lambda\pi\pi)$					Γ_2/Γ_3
VALUE	DOCUMENT ID		TECN	COMMENT	
4.43±0.25 OUR FIT Error includ	es scale factor of	1.2.			
3.9 \pm 0.6 OUR AVERAGE					
3.9 ± 1.0	UHLIG	67	HBC	$K^- p 0.9-1.0 G$	ieV/c
3.3 ± 1.1	BIRMINGHAM		HBC	$K^- p \ 3.5 \ \text{GeV}/$	С
4.5 ± 1.0	ARMENTERO	S65 C	HBC		
$\Gamma(\Sigma(1385)\pi$, <i>S</i> -wave $)/\Gamma_{ ext{total}}$					Γ_4/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
0.121	¹ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A ii	n KAMANO 15.				
$\Gamma(\Sigma(1385)\pi$, <i>D</i> -wave $)/\Gamma_{ ext{total}}$					Γ_5/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
0.003	¹ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A in	n KAMANO 15.				
$\Gamma(\Sigma(1385)\pi)/\Gamma_{ m total}$					Γ_6/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	O,
0.041±0.005	CHAN	72	НВС	$K^- p \rightarrow \Lambda \pi \pi$	
$\Gamma(\Sigma(1385)\pi(\rightarrow \Lambda\pi\pi))/\Gamma(\Lambda)$ The $\Lambda\pi\pi$ mode is largely due given by MAST 73B and COF The discrepancy between the made concerning the shape of VALUE CL%	e to $\Sigma(1385)\pi$. (RDEN 75 are base two results is ess	ed on sential e stat	real 3-bo lly due to e.	ody partial-wave as the different hy	analyses.
0.58±0.22		75		$K^- d 1.4-1.8 G$	`a\//a
0.38 ± 0.22 0.82 ± 0.10	-			$K^- p \rightarrow \Lambda \pi \pi$	iev/C
 • • • We do not use the following 	_			•	
					F00)
<0.44 90	WIELAND ² BURKHARDT	11		$\gamma p \rightarrow K^+ \Lambda (19)$ $K^- p \rightarrow (\Lambda \pi \pi)$	
			нвс	$\kappa \rho \rightarrow (\Lambda \pi \pi)$	τ
1 Both $ \Sigma(1385) \pi DS_{03} $ and $ \Sigma (au $	$(\pi\pi)$ DPo2 contrib	bute.			
² The central bin (1514–1524 M standard deviations.			O; other	bins are lower b	y 2-to-5
² The central bin (1514–1524 M); other	bins are lower b	y 2-to-5 Γ ₈ /Γ ₃
² The central bin (1514–1524 M standard deviations.				bins are lower b	

$\Gamma(\Sigma\pi\pi)/\Gamma_{total}$							Г ₉ /Г
VALUE		<u>DOCUME</u>	NT ID		TECN	COMMENT	
0.009 ± 0.001 O	UR ESTIMA	TE					
$0.0086 \pm 0.0005 \text{ O}$							
0.0086±0.0005 O	UR AVERAC						
0.007 ± 0.002					DBC	K^-d 1.4–1.8	GeV/c
0.0085 ± 0.0006		² MAST		73	MPWA	$K^- p \rightarrow \Sigma \pi$	π
$0.010\ \pm0.0015$		BARBAI	RO	69 B	HBC	$K^- p 0.28-0.4$	15 GeV/ <i>c</i>
$\frac{1}{2}$ Much of the $\frac{2}{3}$ Assumes $\Gamma(N)$		•	1385) π	г.			
$\Gamma(\Lambda\gamma)/\Gamma_{\text{total}}$							Γ ₁₀ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	СОМ	MENT	
8.5±1.5 OUR ES	STIMATE						
8.8±1.1 OUR FI							
8.8±1.1 OUR A	VERAGE						
$10.7\!\pm\!2.9\!+\!1.5_{-0.4}$	32	TAYLOR	05	CLAS	γp -	$\rightarrow K^+ \Lambda \gamma$	
$10.2\!\pm\!2.1\!\pm\!1.5$	290	ANTIPOV	04A	SPN	< pN(C) $\rightarrow \Lambda(1520)$	$K^+N(C)$
8.0 ± 1.4	238	MAST	68 B	HBC	Usin	$g \Gamma(N\overline{K})/\Gamma_{tota}$	$_{\rm al} = 0.45$
$\Gamma(\Sigma^0\gamma)/\Gamma_{\text{total}}$							Γ_{11}/Γ
VALUE		DOCUME	NT ID		TECN	COMMENT	
0.0193±0.0034 O	UR FIT						
0.02 ± 0.0035		$^{ m 1}$ MAST		68 B	HBC	Not measured	; see note
¹ Calculated from branching ratio	m $\Gamma(\Lambda\gamma)/\Gamma_{to}$ os to be unit	otal ^{,assuming(} y.	SU(3).	Neede	ed to co	nstrain the sum	of all the
		4/1520\ DE	CEDE	NCE	•		

$\Lambda(1520)$ REFERENCES

KAMANO	15	PR C92 025205	H. Kamano <i>et al.</i>	(ANL, OSAK)					
ZHANG	13A	PR C88 035205	H. Zhang et al.	(KSU)					
WIELAND	11	EPJ A47 47	F. Wieland <i>et al.</i>	(ELSA SAPHIR Collab.)					
QIANG	10	PL B694 123	Y. Qiang <i>et al.</i>	(DUKE, JEFF, PNPI, GWU+)					
TAYLOR	05	PR C71 054609	S. Taylor <i>et al.</i>	(JLab CLAS Collab.)					
Also	00	PR C72 039902 (errat.)		(JLab CLAS Collab.)					
ANTIPOV	04A	PL B604 22	Yu.M. Antipov et al.	(IHEP SPHINX Collab.)					
PDG	82	PL 111B 1	M. Roos et al.	(HELS, CIT, CERN)					
BARBER	80D	ZPHY C7 17	D.P. Barber <i>et al.</i>	(DARE, LANC, SHEF)					
GOPAL	80	Toronto Conf. 159	G.P. Gopal	(RHEL) IJP					
BARLAG	79	NP B149 220	S.J.M. Barlag <i>et al.</i>	(AMST, CERN, $\hat{N}IJM+\hat{J}$					
ALSTON	78	PR D18 182	M. Alston-Garnjost et al.	` (LBL, MTHO+) IJP					
Also		PRL 38 1007	M. Alston-Garnjost et al.	(LBL, MTHO+) IJP					
CAMERON	77	NP B131 399	W. Cameron et al.	` (RHEL, LOIC) IJP					
GOPAL	77	NP B119 362	G.P. Gopal et al.	(LOIC, RHEL) IJP					
MAST	76	PR D14 13	T.S. Mast et al.	(LBL)					
CORDEN	75	NP B84 306	M.J. Corden et al.	(BÌRM)					
BERTHON	74	NC 21A 146	A. Berthon et al.	(CDEF, RHEL, SACL+)					
MAST	73	PR D7 3212	T.S. Mast et al.	(LBL) IJP					
MAST	73B	PR D7 5	T.S. Mast et al.	(LBL) IJP					
CHAN	72	PRL 28 256	S.B. Chan et al.	(MASA, YALE)					
BURKHARDT	71	NP B27 64	E. Burkhardt <i>et al.</i>	(HEID, CERN, SACL)					
KIM	71	PRL 27 356	J.K. Kim	(HARV) IJP					
Also		Duke Conf. 161	J.K. Kim	(HARV) IJP					
Hyperon Re		•							
BARBARO	69B	Lund Conf. 352	A. Barbaro-Galtieri <i>et al.</i>	(LRL)					
Also		Duke Conf. 95	R.D. Tripp	(LRL)					
Hyperon Re	Hyperon Resonances 1970								

BURKHARDT	69	NP B14 106	E. Burkhardt <i>et al.</i>	(HEID, EFI, CERN+)
MAST	68B	PRL 21 1715	T.S. Mast et al.	` (LRL)
SCHEUER	68	NP B8 503	J.C. Scheuer <i>et al.</i>	(SABRE Collab.)
DAHL	67	PR 163 1377	O.I. Dahl et al.	(LRL)
DAUBER	67	PL 24B 525	P.M. Dauber et al.	(ÚCLA)
UHLIG	67	PR 155 1448	R.P. Uhlig et al.	(UMD, NRL)
BIRMINGHAM	66	PR 152 1148	M. Haque <i>et al.</i>	(BIRM, GLAS, LOIC, OXF+)
ARMENTEROS	65C	PL 19 338	R. Armenteros et al.	(CERN, HEID, SACL)
MUSGRAVE	65	NC 35 735	B. Musgrave et al.	(BIRM, CERN, EPOL $+$)
WATSON	63	PR 131 2248	M.B. Watson, M. Ferro-Lu	zzi, R.D. Tripp (LRL) IJP
FERRO-LUZZI	62	PRL 8 28	M. Ferro-Luzzi, R.D. Tripp	, M.B. Watson (LRL) IJP

Created: 5/30/2017 17:20