Stabilization and Synchronization of Logical Clocks

Franck Petit

UPMC

Paris

Preliminaries

- $_{\circ}$ G=(V,E) is a connected network
- V: set of n nodes/processes
- E: set of m bidirectional links
- N_p : set of neighboring nodes of p
- Memory shared between neighboring nodes

Preliminaries, Distributed Algorithm

- In each computation step:
 - According to its variables and the variables of its neighbors, a node/process is either enabled to execute an action or not
 - Synchronous system
 - Every enabled nodes execute an action atomically
 - Asynchronous system
 - Some enabled nodes are chosen by an unfair adversary
 - The chosen nodes execute an action atomically

- Each node p maintains a logical clock register r_p
- Synchronous / Asynchronous Environment

$$r_p := r_p + 1$$

- Each node p maintains a logical clock register r_p
- Synchronous/Asynchronous Environment

Global Synchronizer (asynchronous) distributed systems

In systems with unique IDs or a particular node (root, leader, main server...)?

- Wave Algorithms, e.g.,
 - Propagation of Information with Feedback (PIF)
 - Depth-First Token Circulation
- Global Synchronization, e.g.,
 - (Group) Mutual Exclusion
 - Leader Election
 - Reset
 - Logical Clock Synchronization
 - Rooted Spanning Tree
 - O ...

Propagation of Information with Feedback

- Best Case: O(D)
 - Worst Case: O(N)

Can we provide better complexities?

- Each node p maintains a phase clock register r_p
- Synchronous/Asynchronous Environment

If
$$\forall q \in N_p : r_p \le r_q$$
 then $r_p := r_p + 1$

Unison

- Each node maintains a phase clock register
 r in [o,...,K-1]=Z_K
- Safety: The gap between the phase clock of two neighboring nodes is at most equal to 1 (mod K).
- No starvation (Vivacity): Each phase clock r is incremented by 1 (mod K) infinitely often.

Unison

K=5

Minimality of K?

- o K=2?
- No possible order among the clocks

- Successor Function and Predecessor Function possible if K≥3
- o K=3
 - Local total order ≤ over Z = {o,1,2}

$$a \le_l b \text{ iff } 0 \le b - a \mod 3 \le 1$$

$$0 \le 1$$
; $1 \le 2$; $2 \le 0$;

p.R, virtual register, it counts the number of increments of p

The lifting is compatible with the local ordering of Z_K

The lifting defines a global preorder over the nodes

Generalization over Z_{K}

- (Local) total order ≤ over Z_K={o,1,2,...,K}
- Let M ≥ 1 and K ≥ 2M+1

 $a \le_l b \ iff \ 0 \le b - a \ mod \ K \le M$

With M=2 and K=5, then for 1 $4 \le_1 1$; $0 \le_1 1$; $1 \le_1 1$; $1 \le_1 2$; $1 \le_1 3$;

Complexities

- Space : O(1)
- Time, for one pulse:
 - Best Case: O(1)
 - $Worst Case: O(D) \leftarrow [DELAY]$

Fault Tolerance

Starting from an arbitrary configuration?

Self-stabilization

A self-stabilizing system, regardless of its initial state, is guaranteed to converge to the intended behavior in finite time. [Dijkstra 74]

→ Transient Faults

o K=3

o K=6

o K=6

o K=6

MUTUAL EXCLUSION!

What are the conditions to be able to (re)synchronize the system?

System Configurations

 Γ : The register values are arbitrary

 Γ_1 : The register of two neighboring process is less than or equal to 1

 $\Gamma^{\circ}_{_{1}}$: There is no deadlock (there exists a compatible lifting to the configuration)

System Configurations

 Γ : The register values are arbitrary

 Γ_{1} : The register of two neighboring process is less than or equal to 1

 Γ_1° : There is no deadlock (there exists a compatible lifting to the configuration)

$$\begin{array}{c} \text{THEOREM:} \\ \text{K>C}_{\text{G}} = > \Gamma_{1} = \Gamma_{1}^{0} \end{array}$$

 $C_G(C_G \le n)$, the cyclomatic characteristic of the graph: Equal to the size of the greatest cycle in one of the cycle basis of G where the size of the greatest cycle is minimum (equal to 2 if G is acyclic)

[Boulinier, Petit, and Villain, PODC 2004]

C_G =4 in meches and tories

C_G =6 in honeycombs

C_G =4 in hypercubes

 $C_G = n$ on rings

To avoid deadlock due arbitrary initial values, K must be greater than C_G ($C_G \le n$), the cyclomatic characteristic of the graph

System Configurations

 Γ : The register values are arbitrary

 $\Gamma_{\bf 1}$: The register of two neighboring process is less than or equal to 1

 $\Gamma^{\circ}_{_{1}}$: There is no deadlock (there exists a compatible lifting to the configuration)

Stabilization

- Global Reset (Stabilizing PIF), implies a root or IDs
- Local Reset (also woks in anonymous networks)

QUESTION:

What is the motivation behind anonymity?

"Only a few amount of bits allows to distinguish a huge number of nodes!"

Advantages of Anonymous Solutions

- Lack of (underlying) infrastructure
 - No unique identifier assignation or no central process
 - No maintenance of any distributed structure
- Economic advantages
- User privacy preserved
 [Delporte-Gallet, Fauconnier, Guerraoui, and Ruppert, OPODIS 2007]
- No one-to-one routing
- Very suitable for sensor networks

Self-Stabilizing Logical Clock Synchronization

To avoid starvations due arbitrary initial values, K must be greater than C_G ($C_G \le n$), the cyclomatic characteristic of the graph

Safety eventually guaranteed using a reset mechanism:

Register r is set in $[-\alpha,...,o]$

To avoid starvations due arbitrary initial values, α must be greater than than H_G+1 ($H_G \le n$), the greatest chordless cycle of the graph [Boulinier, Petit, and Villain, PODC 2004]

Self-Stabilizing Logical Clock Synchronization

SSSync AN: $\forall q \in N_p$: $Correct_p(q) \land (NormalStep_p) \rightarrow <<appli>>; r_p:=\phi(r_p);$ AR: $\neg (\forall q \in N_p: Correct_p(q)) \land (r_p \notin tail\phi) \rightarrow r_p:=-\alpha; //reset$

AC: $r_p \in \text{init} \phi^* \land (\forall q \in N_p : r_q \in \text{init} \phi^* \land r_p \leq \phi(r_q) \rightarrow r_p := \phi(r_p) :$

Values of Register r

Asynchronous, Anonymous Logical Clock, Related Works

of states

Stabilizing Time

Gouda, Couvreur, Francez, 1992 $O(n^2)$

O(nd)

Dolev, 2000

 $O(n^2)$

O(d)

 \circ SSSync(K, α ,M)

 α =0, K>M.C_G, M>H_G-2

O(nd)

O(nd)

 α >H_G-2, M=1, K>C_G

O(n)

O(n)

Tree networks

O(1)

O(d)