

CSC10004: Data Structure and Algorithms

Lecture 4: Search

Lecturer: Bùi Văn Thạch

TA: Ngô Đình Hy/Lê Thị Thu Hiền

{bvthach,ndhy}@fit.hcmus.edu.vn, lththien@hcmus.edu.vn



## Course topics

- 1. Introduction
- 2. Algorithm complexity analysis
- 3. Recurrences
- 4. Search
- 5. Sorting
- 6. Stack and Queue
- 7. Linked list
- 8. Priority queue

- 9. Tree
  - Binary search tree (BST)
  - 2. AVL tree
- 11. Graph
  - 1. Graph representation
  - 2. Graph search
- 12. Hashing
- 13. Algorithm designs
  - 1. Greedy algorithm
  - 2. Divide-and-Conquer
  - 3. Dynamic programming



### Goals

1. To help students able to understand the basic of search algorithms.

### Outline

- 1. Overview
- 2. Linear search
- 3. Linear search with sentinel
- 4. Binary search
- 5. Randomized search



### Outline

- 1. Overview
- 2. Linear search
- 3. Linear search with sentinel
- 4. Binary search
- 5. Randomized search



# Complexity

|                             | Best | Worst | Average | Extra requirements |
|-----------------------------|------|-------|---------|--------------------|
| Linear search               |      |       |         |                    |
| Linear search with sentinel |      |       |         |                    |
| Binary search               |      |       |         |                    |
| Randomized search           |      |       |         |                    |



- Search problem
  - Look for an element inside an array and return its position

- Example:
  - Given an array:

| 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 |
|---|---|---|---|---|---|----|---|
| 7 | 2 | 1 | 5 | 3 | 6 | 19 | 9 |

- Search 6, output is 5
- Search 55, output is -1 or 8



### Example:

- More generally, given an array of students

```
[ {1912340, "Le Thanh Xuan"},{1813242, "Nguyen Thai Hoang"},{1923422, "Hoang Xuan Phuc"}, ...]
```

- Search student with ID of 1813242
  - Output is {1813242, "Nguyen Thai Hoang"}



- A basic programming technique necessary for many scenarios, for example:
  - Check if an array contains a certain element
  - Search for info of a student with a certain ID

### Outline

- 1. Overview
- 2. Linear search
- 3. Linear search with sentinel
- 4. Binary search
- 5. Randomized search



- Input: an array A with a size of n and a key k
- Output: position of found element
  - For non-existing element, position could be -1 or n
- Idea:
  - Loop through the array from the beginning to the end
  - Check if the i<sup>th</sup> element match k
  - Return i if matched
  - Otherwise, return -1 or n



# Example

|     | 0 | 1 | 2 | 3 | 4 | 5 | 6  | 7 |              |
|-----|---|---|---|---|---|---|----|---|--------------|
| Α   | 7 | 2 | 1 | 5 | 3 | 6 | 19 | 9 | n = 8, k = 6 |
| i=0 | 7 | 2 | 1 | 5 | 3 | 6 | 19 | 9 | 7==6, false  |
| i=1 | 7 | 2 | 1 | 5 | 3 | 6 | 19 | 9 | 2==6, false  |
| i=2 | 7 | 2 | 1 | 5 | 3 | 6 | 19 | 9 | 1==6, false  |
| i=3 | 7 | 2 | 1 | 5 | 3 | 6 | 19 | 9 | 5==6, false  |
| i=4 | 7 | 2 | 1 | 5 | 3 | 6 | 19 | 9 | 3==6, false  |
| i=5 | 7 | 2 | 1 | 5 | 3 | 6 | 19 | 9 | 6==6, TRUE   |

#### Found!



### Source code

```
int linearSearch(int a[], int n, int k)
    int position = -1;
    for(int i=0; i<n; i++)
        if(a[i] == k)
            position = i;
            break;
    return position;
```



# Analysis

Complexity

| 7 | 2 | 1 | 5 | 3 | 6 | 19 | 9 |
|---|---|---|---|---|---|----|---|
|---|---|---|---|---|---|----|---|

- Best case: O(1)
- Worst case: O(n)
- Average: O(n)

- Best: k = 7
  - O(1)
- Worst: k = 15 or k = 200
  - O(n)
- Average:
  - $\Pr(k = a[i]) = \frac{1}{n+1}$ , i = 0, 1,..., n-1 and  $\Pr(k \neq a[i]) = \frac{1}{n+1}$
  - $\mathbb{E}[T] = \sum_{i=1}^{n+1} i \Pr(k = a[i]) = \frac{1}{n+1} \sum_{i=1}^{n} i + 1 = \frac{n+2}{2}$
  - Complexity: O(n)



# Complexity

|                             | Best | Worst | Average | Extra requirements |
|-----------------------------|------|-------|---------|--------------------|
| Linear search               | 0(1) | O(n)  | O(n)    | NO                 |
| Linear search with sentinel |      |       |         |                    |
| Binary search               |      |       |         |                    |
| Randomized search           |      |       |         |                    |



### Outline

- 1. Overview
- 2. Linear search
- 3. Linear search with sentinel
- 4. Binary search
- 5. Randomized search



- In linear search, we perform two checks for each iteration
  - One for loop
  - The other for key matching
- Can we do better?

```
int linearSearch(int a[], int n, int k)
    int position = -1;
    for(int i=0; i<n; i++)
        if(a[i] == k)
            position = i;
            break;
    return position;
```



- Idea: remove one check in each iteration
  - Add a fake element, namely, sentinel, equal to the key k at the end of array
  - Loop through the array until reaching k
- When reaching k, we need to identify if it is fake
  - If k is at the end, it is fake or k does not exist in the array
  - Otherwise, it is a real element in the array





### Source code

```
int sentinelLinearSearch(int a[], int n, int k)
   int i = 0;
   for(; a[i] != k; i++)
   if (i < n)
       return i;
   return -1;
```

```
int linearSearch(int a[], int n, int k)
    int position = -1;
    for(int i=0; i<n; i++)
        if(a[i] == k)
            position = i;
            break;
    return position;
```



## Analysis

- Complexity
  - Best case: O(1)
  - Worst case: O(n)
  - Average: O(n)
- Advantage
  - In practice, it is about 25% outperforming regular linear search
- Disadvantage
  - We need an extra slot at the end of the array for the sentinel



# Complexity

|                             | Best | Worst | Average | Extra requirements                                     |
|-----------------------------|------|-------|---------|--------------------------------------------------------|
| Linear search               | 0(1) | O(n)  | O(n)    | NO                                                     |
| Linear search with sentinel | 0(1) | O(n)  | O(n)    | an extra slot at the end of the array for the sentinel |
| Binary search               |      |       |         |                                                        |
| Randomized search           |      |       |         |                                                        |

### Outline

- 1. Overview
- 2. Linear search
- 3. Linear search with sentinel
- 4. Binary search
- 5. Randomized search



- Linear search checks all the elements, hence the search space is large
- In case of sorted arrays, with a given key, we can narrow down the search space



k=6 Search in the right!



- Input: an array A with a size of n and a key k
- Output: position of found element



Idea:

$$k = 6$$

- Split the input array into two parts
- Compare **k** with the middle element
  - If matched, k is found
  - Otherwise, if k is smaller than the middle element, search in the left
  - Otherwise, search in the right



# Example

$$key k = 60$$

$$i = \frac{7}{2} = 3$$
$$i = \frac{7}{2} + \frac{4}{2} = 5$$

$$i = \frac{7}{2} = 3$$

| 1 2 3 5 6 7 9 19 |
|------------------|
|------------------|

#### Found!



### Source code: recursive programming

```
int binarySearch(int a[], int left, int right, int k)
      if(left > right)
          return -1;
    int mid = (left + right)/2;
    if(a[mid] == k)
        return mid;
    if(k > a[mid])
        return binarySearch(a, mid+1, right, k);
    return binarySearch(a, left, mid - 1, k);
```



## Source code: Non-recursive programming

```
int binarySearch(int a[], int n, int k)
    int result = -1, left = 0, right = n - 1;
    while(left <= right)</pre>
        int mid = (left + right)/2;
        if(a[mid] == k)
            result = mid;
            break;
        if(k > a[mid])
            left = mid + 1;
        else
            right = mid - 1;
    return result;
```



# Analysis

- Complexity
  - Best case: O(1)
  - Worst case:  $O(\log_2 n)$
  - Average:  $O(\log_2 n)$
- Disadvantage
  - Input array needs to be sorted beforehand



# Complexity

|                             | Best | Worst         | Average       | Extra requirements                                     |
|-----------------------------|------|---------------|---------------|--------------------------------------------------------|
| Linear search               | 0(1) | O(n)          | O(n)          | NO                                                     |
| Linear search with sentinel | 0(1) | O(n)          | O(n)          | an extra slot at the end of the array for the sentinel |
| Binary search               | 0(1) | $O(\log_2 n)$ | $O(\log_2 n)$ | Input array needs to be sorted beforehand              |
| Randomized search           |      |               |               |                                                        |

### Outline

- 1. Overview
- 2. Linear search
- 3. Linear search with sentinel
- 4. Binary search
- 5. Randomized search

### Idea

- 1. Set a counter to be zero.
- 2. Randomly generate an index  $i \in [0, n-1]$ .
- 3. Check whether a[i] == key.
  - If YES, return i.
  - If NO, increase the counter by 1 and repeat Step 2.
- 4. Return -1 (not found) after repeating  $n^{0.9} + 1$  times, i.e., count =  $n^{0.9}$ .



## Programming

```
int randomizedSearch(int a[], int n, int k)
    int i = rand(1, n);
    int count = 0;
    while (count < pow(n, 0.9)) {
        if (a[i] == k)
            return i;
        else
                                   Why do we use rand() even we know there is a
            i = rand(1, n);
                                   possibility that the same value could appear twice?
        count++;
    return -1;
```



# Analysis: best and worst

- Best: *O*(1).
- Worst:  $O(n^{0.9})$  to return the found index or -1.



## Analysis: average case (1/2)

- Suppose that there are m keys in the array.
  - $\rightarrow m$  indices in the array that make (a[i] == k) true.
  - → The probability of getting i such that (a[i] == k) by calling i = rand(1, n) is p = m/n.
- The probability that after c times, the key is found is

$$(1-p)^{c-1}p = \left(1 - \frac{m}{n}\right)^{c-1} \cdot \frac{m}{n}$$

 Since this is the geometric distribution, the expectation to hit the key in the array is:

$$\frac{1}{p} = \frac{n}{m}$$



# Analysis: average case (2/2)

 The probability that after count times, the key has not been found is

$$(1-p)^{\text{count}} = \left(1 - \frac{m}{n}\right)^{\text{count}} \le \exp\left(-\frac{m}{n} \times \text{count}\right)$$

• Substitute count =  $n^{0.9}$ , we get

$$(1-p)^{\text{count}} \le \exp\left(-\frac{m}{n} \times n^{0.9}\right) = \exp(-mn^{-0.1})$$

- The probability the key is found after count times is at least  $1 \exp(-mn^{-0.1})$
- $m = 1, n = 100, \text{count} = 63 \Rightarrow \ge 0.4.$



# Complexity

|                             | Best | Worst         | Average                     | Extra requirements                                                                     |
|-----------------------------|------|---------------|-----------------------------|----------------------------------------------------------------------------------------|
| Linear search               | 0(1) | O(n)          | O(n)                        | NO                                                                                     |
| Linear search with sentinel | 0(1) | O(n)          | O(n)                        | an extra slot at the end of the array for the sentinel                                 |
| Binary search               | 0(1) | $O(\log_2 n)$ | $O(\log_2 n)$               | Input array needs<br>to be sorted<br>beforehand                                        |
| Randomized search           | 0(1) | $O(n^{0.9})$  | $O\left(\frac{n}{m}\right)$ | <ol> <li>m is the number of keys in the array</li> <li>Probabilistic method</li> </ol> |



## Summary

- Linear search loops through an array from the beginning to the end for searching
- Linear search is slow with large arrays
- Binary search takes the advantage of arrays being sorted to narrow down searching space.
- Binary search significantly outperforms linear search with large arrays
  - For example, with one billion elements, binary search tries 30 times at maximum
- Randomized algorithms seems better than linear search.



