

Queries With GROUP BY and HAVING

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

- The target-list contains
 - ➤ (i) attribute names
 - \triangleright (ii) terms with aggregate operations (e.g., MIN (*S.age*)).
- The attribute list (i) must be a subset of *grouping-list*. Intuitively, each answer tuple corresponds to a *group*, and these attributes must have a single value per group. (A *group* is a set of tuples that have the same value for all attributes in *grouping-list*.)

Conceptual Evaluation

- The cross-product of *relation-list* is computed, tuples that fail *qualification* are discarded, '*unnecessary*' fields are deleted, and the remaining tuples are partitioned into groups by the value of attributes in *grouping-list*.
- The *group-qualification* is then applied to eliminate some groups. Expressions in *group-qualification* must have a *single value per group*!
 - ➤ In fact, an attribute in *group-qualification* that is not an argument of an aggregate op also appears in *grouping-list*. (SQL does not exploit primary key semantics here!)
- One answer tuple is generated per qualifying group.

Find age of the youngest sailor with age ≥ 18 , for each rating with at least 2 such sailors

85

95

96

art

bob

frodo

SELECT S.rating, MIN (S.age) AS minage

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

Answer relation:

rating	minage
3	25.5
7	35.0
8	25.5

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
29	brutus	1	33.0
31	lubber	8	55.5
32	andy	8	25.5
58	rusty	10	35.0
64	horatio	7	35.0
71	zorba	10	16.0
74	horatio	9	35.0

3

3

3

Sailors instance:

25.5

63.5

25.5

Find age of the youngest sailor with age \geq 18, for each rating with at least 2 <u>such</u> sailors.

rating	age	rating	age			
7	45.0	 1	33.0			
1	33.0	3	25.5			
8	55.5	3	63.5		rating	minage
8	25.5	3	25.5	1	3	25.5
10	35.0	7	45.0	1	7	35.0
7	35.0	7	35.0		8	25.5
10	16.0	 8	55.5			
9	35.0	8	25.5			
3	25.5					
3	63.5	 9	35.0			
3	25.5	10	35.0			

Find age of the youngest sailor with age \geq 18, for each rating with at least 2 <u>such</u> sailors and with every sailor under 60.

HAVING COUNT (*) > 1 AND EVERY (S.age <=60)

rating	age		rating	age								
7	45.0		1	33.0								
1	33.0		3	25.5								
8	55.5		3	63.5		rating	minage					
8	25.5		3	25.5		7	35.0					
10	35.0		7	45.0		8	25.5					
7	35.0		7	35.0								
10	16.0		8	55.5								
9	35.0		8	25.5	V	Vhat is t	hat is the result					
3	25.5	9 35.0 changing EV			EVERY 1	to						
3	63.5	_				- ANY?						
3	25.5		10	35.0		, _ ;						

For each red boat, find the number of reservations for this boat

SELECT B.bid, COUNT (*) AS scount FROM Boats B, Reserves R WHERE R.bid=B.bid AND B.color='red' GROUP BY B.bid

- Grouping over a join of two relations.
- What do we get if we remove B.color='red' from the WHERE clause and add a HAVING clause with this condition?