Complete Subnetting Study Notes - Classful Addressing

Table of Contents

- 1. Introduction to Subnetting
- 2. Why Subnetting is Done
- 3. How Subnetting Works
- 4. Detailed Example: Class C Subnetting
- 5. Subnet Mask Calculation
- 6. Routing with Subnets
- 7. Advantages and Disadvantages

1. Introduction to Subnetting {#introduction}

Definition

Subnetting is the process of dividing a big network into smaller networks (subnets).

Context

- Discussed under classful addressing
- IP addresses are divided into classes: A, B, C, D, E
- One of the most important topics in computer networks
- Students often get confused about the concept and implementation

Key Concept

- Take a large network and logically divide it into multiple smaller networks
- This division is done internally within an organization

2. Why Subnetting is Done - Purpose and Benefits {#purpose}

Problem with Large Networks

Example: Class A Network

- Class A can support 2²⁴ hosts (approximately 16 million hosts)
- Managing such a large number of hosts is extremely difficult

Single administrator cannot effectively manage millions of hosts

Real-World Analogy: University Example

Consider a big university with different departments:

- Examination Department
- Placement Department
- Co-curricular Activities Department
- Academics Department
- Library System

Without Subnetting (Single Administrator)

- One administrator manages all departments
- Very difficult to maintain and manage
- Inefficient resource allocation

With Subnetting (Logical Division)

- Subnet 1: Examination Department only
- Subnet 2: Placement Department only
- Subnet 3: Academics Department only
- **Subnet 4**: Co-curricular Activities Department only

Each subnet has its own **network administrator** responsible for their respective subnet.

Primary Benefits

1. Easy Maintenance and Management

- Separate network administrators for each subnet
- Each admin manages their own subnet independently
- Easier to troubleshoot and maintain

2. Reduced Wastage

- Class A networks have millions of possible hosts
- Most organizations don't need that many hosts
- Subnetting reduces IP address wastage

3. Enhanced Security

In large organizations:

- Need to authorize each host individually
- Users need passwords and IP addresses
- Difficult to manage security for millions of hosts

With subnetting:

- Each department has separate security policies
- Enhanced security through logical separation
- Easier to implement access controls

3. How Subnetting Works - Implementation {#implementation}

Basic Principle

Subnetting is implemented by **reserving host bits** to create subnet identifiers.

Key Rules

1. Network bits must remain unchanged

- Never disturb the network portion of the IP address
- Changing network bits changes the entire network destination

2. Reserve host bits for subnetting

- Take bits from the host portion
- Use these bits to identify different subnets

4. Detailed Example: Class C Subnetting {#detailed-example}

Given Network

Network Address: 200.10.20.0

Step 1: Verify Class C

First octet: 200

• Class C range: 192-223

✓ Confirmed as Class C network

Step 2: Analyze Original Network

• **Total IP addresses**: 256 (0-255)

• Network ID: 200.10.20.0 (first address)

• Broadcast address: (200.10.20.255) (last address)

• Usable host addresses: 254 (total - 2)

• Usable range: (200.10.20.1) to (200.10.20.254)

Step 3: Divide into 2 Subnets

Binary Analysis

Last octet breakdown:

Subnet Division Process

- 1. Reserve 1 bit (MSB) for subnet identification
- 2. **Remaining 7 bits** for host identification within each subnet

Subnet 1 (S1)

• Reserved bit: 0 (fixed)

Host bits: 0000000 to 1111111

• Range calculation:

```
Start: 0 0000000 = 0
End: 0 1111111 = 127
```

• **Subnet range**: (200.10.20.0) to (200.10.20.127)

Subnet 2 (S2)

• Reserved bit: 1 (fixed)

Host bits: 0000000 to 1111111

Range calculation:

Start: 1 0000000 = 128 End: 1 1111111 = 255

• **Subnet range**: (200.10.20.128) to (200.10.20.255)

Step 4: Complete Subnet Analysis

Subnet 1 (S1)

• Subnet ID: 200.10.20.0

• **Range**: (200.10.20.0) to (200.10.20.127)

Broadcast address: (200.10.20.127)

Total addresses: 128

Usable addresses: 126 (128 - 2)

• **Usable range**: (200.10.20.1) to (200.10.20.126)

Subnet 2 (S2)

• Subnet ID: 200.10.20.128

• Range: 200.10.20.128 to 200.10.20.255

• Broadcast address: (200.10.20.255)

• Total addresses: 128

• Usable addresses: 126 (128 - 2)

Usable range: (200.10.20.129) to (200.10.20.254)

Step 5: Impact Analysis

• **Before subnetting**: 254 usable addresses

After subnetting: 252 usable addresses (126 + 126)

• Loss: 2 addresses (due to additional subnet IDs and broadcast addresses)

5. Subnet Mask Calculation {#subnet-mask}

Understanding the Need

External routers need to know about internal subnetting to route packets correctly.

Default vs Subnet Mask

Default Class C Mask

255.255.255.0

- Used by external routers

Subnet Mask Calculation

- 1. **Start with default mask**: (255.255.255.)
- 2. Add reserved bits: We reserved 1 bit
- 3. **Binary representation**: (1) followed by (7 zeros)

Binary: 10000000 Decimal: 128

4. Final subnet mask: (255.255.255.128)

General Formula

Number of reserved bits = n Subnet mask last octet = $2^(8-n) * (2^n - 1) + 2^(8-n)$

For 1 reserved bit: (128) For 2 reserved bits: (192) For 3 reserved bits: (224)

6. Routing with Subnets {#routing}

Network Infrastructure

External Gateway Router

- **Purpose**: Routes packets from outside world to the organization
- Mask used: Default mask (255.255.255.0)
- **Knowledge**: Only knows about main network (200.10.20.0)

Internal Router

- **Purpose**: Routes packets between subnets within organization
- Mask used: Subnet mask (255.255.255.128)
- Knowledge: Knows about internal subnet structure

Routing Examples

Example 1: Packet to Address (200.10.20.15)

Step 1: Internal router receives packet

• Destination: (200.10.20.15)

• Subnet mask: (255.255.255.128)

Step 2: Binary masking operation

Address: 200.10.20.15

Binary: 11001000.00001010.00010100.00001111

 $\wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge$

Subnet mask: 255.255.255.128

 $\wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge$

Result: 11001000.00001010.00010100.00000000

Decimal: 200.10.20.0

Step 3: Subnet identification

• Result: (200.10.20.0) = Subnet 1 ID

• Routing decision: Forward to Subnet 1

Example 2: Packet to Address 200.10.20.130

Step 1: Binary masking operation

Address: 200.10.20.130

Binary: 11001000.00001010.00010100.10000010

^^^^^

Subnet mask: 255.255.255.128

 $\wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge$

Result: 11001000.00001010.00010100.10000000

Decimal: 200.10.20.128

Step 2: Subnet identification

• Result: (200.10.20.128) = Subnet 2 ID

• **Routing decision**: Forward to Subnet 2

House Analogy

Think of subnetting like a house with multiple rooms:

- **House number** = Network ID (visible from outside)
- **Rooms inside** = Subnets (internal organization)
- Street address = External router knowledge
- Room layout = Internal router knowledge

Someone outside knows the house number (180), but doesn't know the internal room structure. The internal routing system directs visitors to the correct room.

7. Advantages and Disadvantages {#pros-cons}

Advantages

1. Easy Maintenance

- Separate administrators for each subnet
- Independent management of different departments
- Localized troubleshooting

2. Enhanced Security

- Logical separation between departments
- Department-specific security policies
- Controlled inter-subnet communication

3. Reduced IP Wastage

- Better utilization of available IP addresses
- Appropriate subnet sizes for different needs

4. Scalability

- Can create multiple subnets as needed
- Flexible network design

Disadvantages

1. Increased Routing Complexity

Traditional routing (3 steps):

- 1. Find Network ID
- 2. Find Host within network
- 3. Find Process (Port) within host

Subnetting routing (4 steps):

- 1. Find Network ID
- 2. Find Subnet within network ← Additional step
- 3. Find Host within subnet
- 4. Find Process (Port) within host

2. Additional Overhead

- More complex routing tables
- Additional processing for subnet identification
- Increased computational requirements

3. IP Address Loss

- Each subnet requires its own network ID and broadcast address
- Reduces total usable IP addresses
- Example: 254 → 252 usable addresses (loss of 2)

Summary

Subnetting is a fundamental networking concept that provides:

- **☑** Better network management and organization **☑** Enhanced security through logical separation **☑** Reduced IP address wastage **☑** Scalable network architecture
- ★ Increased routing complexity ★ Additional computational overhead ★ Slight reduction in usable IP addresses

The benefits generally outweigh the disadvantages, making subnetting essential for large organizational networks.

Quick Reference

Key Formulas

• **Number of subnets**: 2ⁿ (where n = reserved bits)

- Hosts per subnet: 2^(remaining bits) 2
- **Subnet mask calculation**: Default mask + (2ⁿ × subnet bits)

Common Subnet Masks (Class C)

- 1 subnet bit: (255.255.255.128) (2 subnets, 126 hosts each)
- 2 subnet bits: (255.255.255.192) (4 subnets, 62 hosts each)
- 3 subnet bits: 255.255.255.224 (8 subnets, 30 hosts each)