SugarTrail Code Introduction

1 Phase 1: Signature Test

- Location:
 - Getting Data: \sugar\cluster\reading_testing
 - Analysis: \sugar\cluster\analysis\lab_signature
- Fig:
 - Stable reading for one node
 - Disturbed reading for one node
 - Relatively stable signature for one node
- Run: \sugar\cluster\analysis\lab_signature\sig_analisis.m

2 Phase 2: Distribution Table/Curve generate

- Location: \sugar\cluster\distribution
- Fig:
 - Relation of ranging distance and real distance
- Run:

3 Phase 3: Hallway Test

- Location: \sugar\cluster\hallway_simulation
- Fig:
 - Cluster
 - Navigation
 - Base number and performance
 - Cluster size threshold and performance
- Run: main.c

4 Phase 4: Lab(Field Test)

- \bullet Location: \sugar\cluster\lab_field_test
- Fig: None
- Run: main.c

5 Phase 5: Lab(Database Test)

- Location: \sugar\cluster\lab_database
- Fig:
 - Clustering(path_length = 10000)
 - Navigaion
- Run:
 - p1_collect_readings.m (collecting data, done, don't run again)
 - p2_data_process.m (generate proper data structure for later, done, don't run again)
 - p3_generate_cluster.m
 - p4_match_area_to_cluter.m
 - p5_testing.m
 - p6_kmeans.m

6 Phase 6: Supermarket Experiment

- \bullet Location: \sugar\cluster\supermarket_exp
- Supermarket layout: supermarket.skp
- Data:
 - Raw Data: \sugar\cluster\supermarket_exp\step3\raw_data\
 - Complete Data and Documentation: \sugar\cluster\supermarket_exp\step3\complete_data\
- Fig:
 - Compass Direction
 - Clustering(path_length = 10000)
 - Navigation
- Run:
 - pl_collect_readings.m (collecting data, done, don't run again)
 - p2_data_process.m (generate proper data structure for later, done, don't run again)
 - draw_compass_direction.m
 - p3_generate_cluster.m
 - p4_testing.m
- Code for analysis: \sugar\cluster\supermarket_exp\analysis
 - .m files:
 - * angle_convert.m : convert direction information into angle
 - * dijkstra.m : Dijkstra Algorithm
 - * direction_convert.m : convert current reading into direction info based on the reading at that point
 - * draw_cluster.m : draw the clusters, should be updated with translucent style soon
 - * draw_compass_direction.m: draw the magnetic field based on compass reading in supermarket

- * get_cluster_sig.m : get the cluster which the signature belongs to, used to implemented by choosing the minimum eclidean distance, but with the using of sub-set in signature, we change it to use possibility also, but it does not work well with the later one, cannot select correct cluster often.
- * get_next_point.m: used in the "training part", when the training paths are generated, it will give out the next point in path, based on random walk and the data from supermarket.
- * get_next_step.m: used in the "testing part", when the guiding paths are generated, it will give out the next step location in navigation, based on guiding info and the data from supermarket.
- $\ast\,$ guide.m : the main part of guiding
- * is_blocked.m : check whether if the path of current point and next point is blocked by environment.
- * navigate.m : called in testing.m for navigation from one point to another
- * possibility.m : give out the possibility of one ready belongs to certain cluster.
- * valid_sig.m : check whether the signature reading is valid and how many valid info is in one signature.

- .mat files:

- * 2feet_grid.mat : real supermarket readings, ranging with different anchors and compass reading at each point of the grid
- * processed_data.mat : the data processed from raw data.
- * distribution_table.mat : calcutate the possibility of one reading belongs to the cluster with certain center
- * environment_info.mat : racks' edges info, for obstacle detection