

$$m_{1}(x) = \frac{1}{2} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{dx}{dx} dx = \frac{1}{2} \int_{0}^{2\pi} \left[-2 \frac{1}{\sqrt{4}} \right]_{1}^{2\pi} dx dx$$

$$= \left(\frac{2\pi}{4} + 2\pi \right)$$

(1) oleh muatan titix,
$$\Gamma_{A}$$
- Γ_{B} = (1,1,0)
 E_{BA} : k. $\frac{(\times 10^{-8})}{2^{3/2}}$ i tk. $\frac{(\times 10^{-8})}{2^{3/2}}$

$$E_{\hat{V}} = SV_{2} | x | 0^{3} \int_{0}^{\infty} \frac{1}{(z^{2} + 2)^{3}/2} = S \times x | 0^{-9} \hat{U}$$

$$= \left(\sum_{k=1}^{\infty} f_{2} \times \hat{I} + \sum_{k=1}^{\infty} f_{2} \times \hat{I} \right) \times 10^{-9}$$

Mara, Melan di titiu A azalah

$$E = E_{(1)} + E_{(1)} + E_{(3)}$$

$$= \kappa \left[\left(\frac{1 \times 10^{-8}}{2^{3/2}} + \frac{5}{2} \sqrt{2} \times 10^{-9} \right) \hat{i} + \left(\frac{1 \times 10^{-8}}{2^{3/2}} + \frac{5}{2} \sqrt{2} \times 10^{-9} \right) \hat{j} \right]$$

$$= -4 \pi \times 10^{-9} \hat{k}$$

diguna Kan rumus hari penurunan untuk melan listi u pada hidang

E=271K (s an, normal bidang addlan n= (2,1,1)

mara, an= (2,1,1) mara, an = (2, 1, 1)

ferhatikan bahwa karena koordnat & titlu ya sitingau (thidang, 1 digunation oin kebalikannya yaitu an: (-21-11) Maka F = 2NK X 10-9 (- 2 1 - 1 1 - 1 1)

·) Arcibat muatan titin loone di (-3,-4,-8), mray titin it dan totin yang limjau oranah titin B

aran dicar terlebih Jahulu MAB = (0,0,0)-(-3,-4,-8) = <3,4,8> 1 ra B1 = Vot16+64 = V89

maka, diparolen
$$E_{AB} = 18 \frac{Q r_{AB}}{|r_{AB}|^3} = 100 \times 10^{-9} \, \text{k} \left(\frac{3}{89^{3/2}} \hat{i} + \frac{4}{89^{3/2}} \hat{j} + \frac{8}{89^{3/2}} \hat{j}^2 + \frac{8}{89^{3/2}} \hat{j}^2 \right)$$

Maka, E = Etitle + Egermuhaan

$$: 10^{-9} \, \text{k} \left[\left(-\frac{4\pi}{\sqrt{\epsilon}} + \frac{3}{89^{3/2}} \right) \hat{i} + \left(-\frac{2\pi}{\sqrt{\epsilon}} + \frac{4}{89^{3/2}} \right) \hat{j} + \left(-\frac{2\pi}{\sqrt{6}} + \frac{8}{89^{3/2}} \right) \hat{k} \right], \, k \approx 9 \times 10^{-9} \, \text{Nm}^2/c$$

$$= 10^{-9} \, \text{k} \left[\left(-\frac{4\pi}{10} + \frac{3}{89^{3/2}} \right) \hat{i} + \left(-\frac{2\pi}{10} + \frac{4}{89^{3/2}} \right) \hat{j} + \left(-\frac{2\pi}{16} + \frac{8}{89^{3/2}} \right) \hat{k} \right], \, k \approx 9 \times 10^{-9} \, \text{Nm}^2/c$$

Karena muatan garis tersebar secara Merata, maka dapat sigunakan rumus hast penninnan untuk muatan sars.

·) untur titik A

Anibat muchan gan3 dr sb-x
$$\hat{E} = 2\kappa \frac{\rho_L}{\rho} \hat{a}_L = 2.9 \times 10^{69} \cdot \frac{90 \, \text{m}}{4} = \frac{90 \, \text{m}}{4} \times \frac{90 \, \text{m}}{4} = \frac{90 \, \text{m}}{4} = \frac{90 \, \text{m}}{4} \times \frac{90 \, \text{m}}{4} = \frac{90 \, \text{m$$

1) untuk titik B

Aribat muatan gais & Sty (aran resultan melan (ishinnya aza zi arz)

Muaton tersever meata pada permikaan,
naka lapat Irgunanan rumus hasii
Peneruran

2=1.82 E

7 Pada A (2.5,-5)

 $\frac{1}{2} \frac{1}{2} \frac{1}$ =9h(-2) κ=-18πκ N/C/ =-2KT(6)=-12KTX10-9k

EFA = 2KMPSF R (ZACZF) =-2k1 (3) =-6k11 x 10-9k

·) Pada B (2,4,5)

$$E_{0B} = 2 \, \text{KT} \, P_{SD} \, \hat{k} \, \left(\text{Korena} \, 267 \, 20 \right)$$

$$= 2 \, \text{KT} \, \left(-8 \right) = -16 \, \text{KT} \, \times 10^{-9} \, \hat{k}$$

$$= 2 \, \text{KT} \, \left(\text{SE} \, \hat{k} \, \left(\text{Karena} \, 267 \, 2$$

5. Little P(1,4,-2)

$$\hat{T} = 2e^{5x} \left[y(5x^{11}) \hat{a}_x + x \hat{a}_y \right]$$

Persamaan garis mezan azalah

$$\frac{E_y}{E_x} = \frac{dx}{dy}$$
, Exdan Ey adalah Komponen x dan y dan E

$$\frac{qx}{qh}: \frac{\lambda(2x+1)}{X} \Leftrightarrow \lambda = \frac{2x+1}{XqX}$$

integral man ketua sin,

$$\int \frac{1}{x \cdot 5x} \frac{1}{x^{3}} \frac$$

Di peroleh

$$= \frac{1}{25} v - \frac{1}{25} \ln(u) + C_2$$

$$= \frac{1}{25} (5 \times 41) - \frac{1}{25} \ln(5 \times 41) + C_2$$

$$\frac{1}{2}y^2 = \frac{1}{25}(5x+1) - \frac{1}{25}\ln(5x+1) + C$$

Subtiansikan P (1,4,-2), diperoleh

$$|6:\frac{12}{25}-\frac{2}{25}|_{10}6+C\rightarrow C:\frac{2}{25}|_{10}6+\frac{388}{25}$$

Maka, Persamoan gans metannya atalah

$$y^2$$
, $\frac{2}{25}(5\times1) - \frac{2}{25}\ln(5\times1) + \frac{2}{25}\ln6 + \frac{388}{25}$