1

Assignment 13

Pulkit Saxena

1 Problem Hoffman pg208/1A

Find an invertible matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are both diagonal where A and B are real matrices.

1)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 3 & -8 \\ 0 & -1 \end{pmatrix}$$

2 Theorem's

Theorem	According to theorem , if a 2×2 matrix has two characteristics values then the P that diagonalize A will necessarily also diagonalize any B that commutes with A .
Common Basis	Let there exist a \mathbf{P} in basis $\beta = \{\mathbf{b}_1,, \mathbf{b}_n\}$ of \mathbb{V} consisting of eigen vector which are common to both \mathbf{A} and \mathbf{B} such that $\mathbf{A}\mathbf{b}_i = \lambda_i \mathbf{b}_i$ $\mathbf{B}\mathbf{b}_i = \mu_i \mathbf{b}_i$ $\Lambda_A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ $\Lambda_B = \begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix}$ $\Lambda_A = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ $\Lambda_B = \mathbf{P}^{-1}\mathbf{B}\mathbf{P}$

TABLE 1: Theorems

3 Solution

Operations	Matrix A	Matrix B
Characteristic Polynomial	$p(x) = \begin{vmatrix} x\mathbf{I} - \mathbf{A} \end{vmatrix}$ $= \begin{vmatrix} x - 1 & -2 \\ 0 & x - 2 \end{vmatrix}$ $= (x - 1)(x - 2)$	$p(x) = x\mathbf{I} - \mathbf{B} $ $= \begin{vmatrix} x - 3 & 8 \\ 0 & x + 1 \end{vmatrix}$ $= (x - 3)(x + 1)$
Characteristic values	p(x) = 0 (x - 1)(x - 2) = 0 $\lambda_1 = 1, \lambda_2 = 2$	$p(x) = 0$ $(x - 3)(x + 1) = 0$ $\mu_1 = 3, \ \mu_2 = -1$
Basis for Characteristics Values	For $\lambda_1 = 1$	For $\mu_1 = 3$
	$(\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{b_1} = 0$	$(\mathbf{B} - \mu_1 \mathbf{I})\mathbf{b_1} = 0$
	$\left(\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) \mathbf{b_1} = 0$	$\left(\begin{pmatrix} 3 & -8 \\ 0 & -1 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) \mathbf{b_1} = 0$
	$\left(\begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} \right) \mathbf{b_1} = 0$	$(\mathbf{B} - \mu_1 \mathbf{I})\mathbf{b_1} = 0$ $\begin{pmatrix} \begin{pmatrix} 3 & -8 \\ 0 & -1 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \mathbf{b_1} = 0$ $\begin{pmatrix} \begin{pmatrix} 0 & -8 \\ 0 & -4 \end{pmatrix} \end{pmatrix} \mathbf{b_1} = 0$ $\mathbf{b_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
	$\mathbf{b_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\mathbf{b_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
	For $\lambda_2 = 2$	For $\mu_2 = -1$
	$(\mathbf{A} - \lambda_2 \mathbf{I})\mathbf{b_2} = 0$	$(\mathbf{B} - \mu_2 \mathbf{I})\mathbf{b_2} = 0$
	$\left(\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) \mathbf{b_2} = 0$	For $\mu_2 = -1$ $(\mathbf{B} - \mu_2 \mathbf{I}) \mathbf{b_2} = 0$ $\left(\begin{pmatrix} 3 & -8 \\ 0 & -1 \end{pmatrix} - (-1) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right) \mathbf{b_2} = 0$
	$\left(\begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} \right) \mathbf{b_2} = 0$	$\left(\begin{pmatrix} 4 & -8 \\ 0 & 0 \end{pmatrix} \right) \mathbf{b_2} = 0$
	$\begin{pmatrix} \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \mathbf{b_2} = 0$ $\mathbf{b_2} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $\mathbf{P} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} \begin{pmatrix} 4 & -8 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \mathbf{b_2} = 0$ $\mathbf{b_2} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $\mathbf{P} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$
	$\mathbf{P} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	$\mathbf{P} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

Verification	$\Lambda_A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$	$\Lambda_B = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$ $\Lambda_B = \mathbf{P}^{-1} \mathbf{B} \mathbf{P}$
	$\Lambda_A = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$	$\Lambda_B = \mathbf{P}^{-1}\mathbf{B}\mathbf{P}$
	$\implies \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	$\Lambda_B = \mathbf{P}^{-1}\mathbf{B}\mathbf{P}$ $\implies \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & -8 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$
		$= \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} = \Lambda_B$
Answer.The Invertible Matrix P	$\mathbf{P} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	$\mathbf{P} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

TABLE 2: Solution Table