Домашняя работа к занятию 21.

- **1.1** Получите линейное дифференциальное уравнение, для которого функции x и e^x образуют ФСР.
- 1.2 Решите задачу Коши $\begin{cases} (x^2-4)y''-2xy'+2y=8 \\ y(0)=4; \ y'(0)=1 \end{cases}$ На каком интервале определено непродолжаемое решение этой задачи? Можно ли ответить на этот вопрос, не решая уравнения?
- **1.3** Функции p(x) и q(x) непрерывны на интервале (a;b). Могут ли два линейно независимых решения дифференциального уравнения y'' + p(x)y' + q(x) = 0 иметь экстремумы в одной и той же точке этого интервала?
- **2.1** Убедитесь, что функции $y_1(x) \equiv 1$ и $y_2(x) = -\cos x$ являются решениями уравнения $(1+\cos x)y'' + \sin xy' + y = 1$. Решите для этого уравнения задачу Коши с начальными данными y(0) = 1, y'(0) = 1. На каком интервале определено непродолжаемое решение этой задачи Коши?
- **2.2** Коэффициенты уравнения y'' + p(x)y' + q(x) = 0 непрерывны на интервале (a;b). Функция $y_1(x)$ частное решение этого уравнения, имеющее на интервале (a;b) ровно два нуля. Докажите, что частное решение $y_2(x)$, линейно независимое с $y_1(x)$, обязательно имеет на интервале (a;b) ровно один нуль.
- ${f 3.1}$ Найдите два линейно независимых решения уравнения в виде $u=x^n$:

$$x^{2}(2x+1)y''' + x(4x+3)y'' - 2xy' + 2y = 0.$$

Получите уравнение второго порядка, которому удовлетворяет третье решение, линейно независимое с найденными. Запишите общее решение исходного уравнения.

Ответы и указания

1.1 Указание: Раскройте определитель Вронского $\begin{vmatrix} y & x & e^x \\ y' & 1 & e^x \\ y'' & 0 & e^x \end{vmatrix} = 0$ по первому столбцу.

Other:
$$(x-1)y'' - xy' + y = 0$$

1.2 Указание: Частное решение неоднородного уравнения и решения однородного уравнения ищем в виде многочленов второй степени.

$$y_{\text{ o.H.}}(x) = C_1 x + C_2 (x^2 + 4) - x^2$$

Oтвет: Непродолжаемое решение задачи Коши y = x + 4 определено на интервале (-1;1).

1.3 Указание: Если в точке x_0 обе функции имеют экстремум, то определитель Вронского в этой точке равен нулю.

Ответ: не могут.

2.1 Указание: разность $y_1(x) - y_2(x)$ является решением однородного уравнения. Второе решение постройте, используя формулу Лиувилля.

Ответ: Непродолжаемое решение $y = 1 + \sin x$ определено на интервале $(-\pi;\pi)$.

- **2.2** Указание: Рассмотрите определитель Вронского в нулях функции $y_1(x)$ и докажите, что функция имеет в этих точках значения разных знаков.
- **3.1** Указание: $y_1(x) = x$, $y_2(x) = x^{-1}$. Третье решение ищем из уравнения $x^2y'' + xy' y = C(2x 1)$. Следовательно, $y_3 = x \ln|x| 1$.

Other:
$$y = C_1 x + \frac{C_2}{x} + C_3 (x \ln|x| - 1)$$