DEPARTMENT OF THE INTERIOR

CANADA

HON. W. J. ROCHE, Minister. W. W. CORY, C.M.G., Deputy Minister.

PUBLICATIONS

OF THE

Dominion Observatory

OTTAWA

W. F. King, C.M.G., LL.D., Director.

Vol. I, No. 15

Measures of γ Aquarii

BY

J. B. CANNON, M.A.

MT 403 PO1-15

OTTAWA GOVERNMENT PRINTING BUREAU 1914

DEPARTMENT OF THE INTERIOR CANADA

HON. W. J. ROCHE, Minister.

W. W. Cony, C.M.G., Deputy Minister.

PUBLICATIONS

16219

OF THE

Dominion Observatory

OTTAWA

W. F. KING, C.M.G., LL.D., Director.

Vol. I, No. 15

Measures of γ Aquarii

BY (garring)

J. B. CANNON, M.A.

OTTAWA GOVERNMENT PRINTING BUREAU 1914 CA1 MT 403 POI-15

48-035-298

MEASURES OF 7 AQUARII.

BY J. B. CANNON, M.A.

The measures of 109 plates of this star follow. Many more plates were taken and measured, but are not included here as the measures of the lines in each were so discordant that no idea of the velocity of the star at the time of taking could be ascertained. In some cases where two plates were taken successively there was so great a difference between the velocities given by the two that both were discarded. What the reason of this may be it is hard to say. In many star spectrograms, certain lines will give velocities quite different from others but unless some evidence is given some time in the cycle of a second spectrum being present, the cause of the divergence in the measures can usually be laid at the door of broad uncertain lines. In this case, however, often the lines are very fair, and yet very poor agreement is found. It is possible that the cause of such disagreement may be due to the presence of a secondary spectrum which our apparatus fails to separate from the primary, yet the effect is such as to form a blend in certain lines which makes the estimation of the velocity indicated very difficult. If this be the case, then we must conclude that the lines present in the secondary are in some instances strong and in others weak, perhaps stronger in some cases and weaker in others than the corresponding lines of the primary.

The star is of A2 type. As will be seen from the measures, the lines of chief importance are H_{β} , λ 4481, H_{γ} , H_{δ} and K. Others appearing are λ 4549, most frequently, and λ λ 4352, 4300, 4233, 4128, 4045, 4026 very faintly on a few plates. The lines of highest weight are λ 4481, H_{γ} and K.

A range of 42 km. was obtained quite early in the work on the star and continued observations on it confirmed the fact of its being a binary. Many attempts at various times were made to determine a period but all failed, and more and more plates were secured in the belief that these would make possible the finding of a period. This continued up to the end of October, 1912, and still no period was forthcoming. That which was most satisfactory was 58.1 days, which suited all but about 9 or 10 plates. These plates, however, could not be considered faulty and there was no excuse for discarding them, so the other alternative was to discard 58-1 days as the period. Other periods of 59, 61.25, 29.74, 29.025 days and many others were tried, but, as in the case of 58-1, while the majority of the plates were satisfied, always a sufficient number fell so far from the general outline of the curve as to make the period impossible. For the time at least the star has been omitted from the observing list. A different apparatus might reveal something in the spectrum to solve the difficulty, but with the present, the large number of plates already taken indicates that further observations would not be of any help.

It would seem that the only reason for the inability to arrive at a satisfactory period—notwithstanding a certain considerable range—must be the presence of blends of lines from the components, whose lines vary in intensity and character to such an extent as to make it impossible to estimate the true velocity of the star at the time the plates were taken.

SUMMARY OF MEASURES OF γ AQUARII.

Plate.	Julian Day.	Vel.	Plate.	Julian Day.	Vel.
1745	2,418,152-86	-17.8	3516	2,418,859-82	-23
1770	159-81	- 7.7	3517	859 - 84	-31
1779.	161-81	+ 3.2	3523	864-84	-20
1790.	171-81	-30-3	3523	864-84	-29
1847	182.70	- 7.2	3530	866-83	- 4
1879	196-67	-19-8	3559.	892 - 71	+ 1.
1907	218-60	+12.0	3560	892 - 73	- 0-
908	218-62	+12-3	3547	895-76	+ 0.
1908	218 - 62	+12-5	3572	896 - 76	+ 0
919	220 - 62	: 15.0	3573	896-78	- 1-
919	220-62	+13.0	3579	903 - 69	-11-
921	224 - 71	- 7.9	3580	903 - 71	-12
927	227 - 65	- 9.9	3588	910-77	- 7
902	259+55	- 9.3	3589	910-79	- 6-
976	267 - 50	- 4-1	3676	934 - 79	+ 8-
027	202-52	-19.9	3715	952 - 66	+ 2.
041	204 - 54	-13.9	3715	952-66	+ 2
051	297-52	-10.0	3716	952-68	- 5-1
103	314 - 47	$-26 \cdot 4$	3716	952 - 68	- 1.0
135	322-45	-27.9	3724	955-63	- 5
617	492-85	-14.7	3746	962-63	-21-
624	494 - 83	-32.6	3789	978 - 57	-16-
630	495-81	$-22 \cdot 2$	3813	9,011-52	- 7.6
642	497-78	-32.0	3838.	015-46	
653	501 - 85	-25.3	3855.		- 7.8
359	502-77	-26.9	3897	018-50	-21-3
369	508 - 72	-29.2	4504	028 63	+ 9.1
381	515-84	+ 0.5	4515	278 - 66	- 5.7
394	518-85	-19.7	4525	280-69	-18-4
706	521.76	-15.0	4528	284 - 73	-10.0
712	522.76	- 7.7		286 - 67	-15-0
26	525.78	-15.1	4537	292.61	- 6.0
26	525-78	-20-8		293 - 64	-18-4
43	529 - 87	-18-6	4563	298 - 65	- 5.9
52	537 - 76	-14.2	4588	302.63	- 8.7
68	545-68	-17.6	4611	319-58	- 0.3
68	545-68	-17.7	4622	320 - 60	+ 6.0
73	546 - 67	- 4.2	4629	322-57	+ 4.5
02	570-69		4639	323 - 56	+ 9.2
02	570-69	+14-6	4657	329 - 56	- 9-1
19	574.57	+ 4-4	4660	334 - 57	-11-1
22	577-63	$+7.9 \\ -11.5$	4663	337 - 53	$-15 \cdot 1$
67	588-60	- 9.0	4692	354 - 51	- 5.7
01	600 - 65		4700	363 - 50	- 0.5
10.	607.52	-11.8	4702.	368 - 48	-11.7
	619.51	- 5.9	4712	377 - 51	- 8.6
33		- 0.5	4724	384.52	+ 0.2
	629 - 46	- 6.0	4725	389 - 50	- 3.4
67	634 - 49	-10-4	4726	390-47	- 8.0
72	634 - 51	- 2.1	4736	391 - 50	- 9.0
	637.51	+13.8	5109	600.80	- 7.5
72	637 - 51	+15.4	5117	603 - 78	- 2.3
72	637.51	+ 1.6	5125.	607-80	$-12 \cdot 2$
30	640 - 53	-14.5	5130.	608.80	-20.8
7	642 - 44	- 5.9	5134	613.81	-11.3
8	832.83	-30.4	5195	662 - 72	-10.0
0	851.83	~ 7.5	5203	673 - 68	-15.9
4	852.83	-14.9	5216	680 - 65	-11.9
8	857-82	-42.4	5240	692-61	+ 5.2
8	857-82	-27.1	5256	697-61	- 0.4
19	857 - 84	-23.2	5262	706 - 56	-12-8

MEASURES OF γ AQUARII.

λ	174	5	177)	177	0*		1770	· ×		173	9		177	9*		1779	*
	Vel.	Wt.	Vel.	Wr.	Vel.	Wt.	Ve	!	Wt.		Vel.	Wt.	Ve	ıl.	Wt.	1	Vel.	Wt
4861 · 527 4549 · 763 4481 · 400 4340 · 634 4233 · 462 4101 · 890 4026 · 352 3933 · 825	- 30·62 - 32·63 - 39·71 - 38·11 - 8·68 - 19·53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 21 63 + 17 93 + 14 62 - 24 12 - 22 74		- 11·9° - 29·4	7 1	+ 5 - 8 - 26	-54 -06 -62 -18	1 12	+	14 · 36 3 · 13 3 · 68 7 · 52 7 · 52 16 · 49 2 · 02	12 12 12	- 18 - 13 - 23 - 16	3 · 12 3 · 70 3 · 93	1	1111	36 · 00 20 · 10 20 · 60 33 · 82 1 · 83	
Veighted mean V. V. Curv.								19-1	09		+ 9 -	20 72 09 28	1+11				-	04 72 09 28
tadial Velocity	- 17	8	+ 3.	8	- 10	·5	-	9.			+ 3	2		9.	9		- 10	7

^{*}Check measures.

MEASURES OF γ AQUARII—Continued.

λ	1790)	179	00*	1	847	18	179	19	907	190)8	190	K*
	Vel.	Wt.	Vel.	Wt.	Vel	Wt.	Vel.	Wt.	Vel.	Wt	Vel.	Wt.	Vel.	Wt
4861 · 527 4549 · 766 4481 · 400 4340 · 634 4233 · 462 4101 · 890 3933 · 825	- 51·36 - 50·53 - 50·34 - 17·53	1	- 43·2 - 14·5 - 8·4 - 33·8	7 1 0 1 3 1 3 1	+ 0 - 11 - 11 - 0	48 1 63 1 48 1	- 11 - 13	74 1 68 ‡	+ 13 + 44 -	97 ½ 31 1 28 ½ 68 ¼	+ 34·5 + 14·6 + 6·4	3 1 1 4	+ 29-80	
Weighted mean V _a V _d Curv.	-	· 10 · 01 · 16 · 28	- 24 + 4		±	6·51 0·41 ·00 ·28		2·13 7·30 ·07 ·28	+	29 · 16 16 · 89 - 02 - 28	+ 29 - 16 -	8-89 -09	- 16 -	-80 -89 -09 -28
Radial Velocity	- 40	- 5	- 20	0.2	-	7.2		19-8	+	12.0	+ 12	2-3	+ 12	. 5

^{*}Check measures.

MEASURES OF γ AQUARII—Continued.

λ	1919	1919*	1921	1927	1962	1976	2027
^	Vel. Wt	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
4861 · 527 4549 · 766 4481 · 400 4340 · 634 4101 · 890 3933 · 825	+ 35·22 1 + 31·22 1	+ 36.58 11	+ 14·38 1 + 10·34 1	+ 12·31 1½ + 9·50 }	+ 37·18 1 + 19·73 1 + 14·93 1	+ 40·52 1 + 25·73 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Weighted mean V _a V _d Curv.	+ 33·22 - 18·12 - ·04 - ·28	+ 31·48 - 18·12 - ·04 - ·28	+ 12·36 - 19·75 - ·22 - ·28	+ 11·37 - 20·85 - · 13 - · 28	+ 19·99 - 28·87 - ·12 - ·28	+ 24·93 - 29·65 - 04 - ·28	+ 8.83 - 28.21 20 28
Radial Velocity	+ 15.0	+ 13.0	- 7.9	- 9.9	- 9.3	- 4.1	- 19.9

^{*}Check measures.

MEASURES OF γ AQUARII—Continued.

λ	2041	2051	2103	2135	2617	2624	2630	
	Vel Wt	Vel Wt.	Vel Wt	Vel Wt	Vel Wt	Vel Wt	Vel Wt	
4861 - 527 4549 - 766 4481 - 400 1471 - 676 4340 - 634 4101 - 890	+ 19·15 1 + 13·54 1	+ 15-61 1	- 4.84 1 - 8.09 11 + 11.44 1	- 27.72, 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 48-21 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Weighted mean V _a V _d Curv.	+ 14·32 - 27·66 - ·25 - ·28	+ 8·34 - 26·83 - ·22 - ·28	+ 2·30 1 - 3·37 - 22·52 - ·22 - ·28	7·72 19·64 ·23 ·28	- 53·34 } - 37·50 + 23·06 ± ·00 - ·28	- 45·80 ½ - 55·21 + 22·87 + · 02 - · 28	- 44·17 + 22·15 + ·09 - ·28	
adial Velocity	- 13.9	- 19.0	- 26.4	- 27·9	- 14.7	- 32.6	~ 22.2	

MEASURES OF 7 AQUARII -Continued

λ	2642	2653	2650	2669	2681	2694	2706
	Ver W.	Vel Wr	Vel Wr	Ver Wr	Vol Wr.	Vel Wr	Vel Wt
4861 527 4549 766 4481 469 1310 634 4128 211 4101 890 4045-975 5970-177 5933 825	53 69 56 79 1 57 24 1 • 25 51 1 38 12 1 54 86 1 40 01	54 98 40 58 .1 16 .6 .1 36 .01 70 .40 57 .24 .1	44-42 (66-28 23 4)	0 8 1 1 62 1 1 76 1 7 03 1 5 39 1	. + 2+ 1. - 12:81 1 - 11:71 1 - 18:71)	(5-26) 21-4 - 4-4 12-82-4 23-62-5 14-74-4	11 .38 - ½ 24 .68 .1 :36 .82 .1, 24 .48 .1 - 26 .65 .1
Weighted vie.th V. Vi Curv.	52 51	45-18	46 51	R6-62	- 13·83	12 ×3	27 - 22
	20 71	- 20-14	+ 19 81	+ 17-58	+ 14·70	14 44	12 - 55
	- 13	- 02	+ 12	+ 16	- ·09	12	02
	28	- 28	- 28	- 28	- ·28	28	28
Rad, d Velocity	32-0	25/3	26/9	29.2	+ 0.5	}43 7	15-0

MEASURES OF γ AQUARII—Continued

λ	2712	2726	2726*	2743	2752	2768	2768*
	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt	Vel. Wt.	Vel. Wt.	Vel. Wt
1861 · 527 1549 · 766 1481 · 400 4395 · 286 1340 · 634 1300 · 211 4233 · 328 4101 · 890 3970 · 177 3933 · 825	- 12·59 ½ - 17·66 ⅓	- 25·44 1 - 26·78 1	- 25·69 1 - 54·72, ½ - 28·39 1	- 35·40, 4 - 26·08 1 - 26·31 1	- 26·22 4 - 11·07 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 27·24 1 - 23·77. 1
$\begin{array}{c} \text{Weighted} \\ \text{mean} \\ V_a \\ V_d \\ \text{Curv.} \end{array}$	- 19·68	- 26·11	- 31·90	= 26 52	= 18 68	= 18·01	- 18·16
	+ 12·24	+ 11·37	+ 11·37	± 8 41	= 4.61	· 0·73	+ 0·73
	+ ·01	- · 04	- ·04	= - 21	= .06	= ·06	+ ·06
	- ·28	- · 28	- ·28	= - 28	= .28	= ·28	- ·28
Radial Velocity	- 7.7	~ 15·1	- 20.9	- 18-6	- 14-2	- 17-6	- 17.7

^{*}Check measures

MEASURES OF 7 AQUARIT -Control

\	2773 V (- W)	2802 V) W (2802°	2819 Vel We	2822 Vil Wt	2867 Vel Wr	290 i
4861-527 - 49-766 - 181-400 - 140-634 - 25-939 1128-211 1101-890 - 67-177	5·86 } - 5·60 \$ - 3·23 1½	+ 16-92 1 + 8-77-1	+ 30 02 1 + 21 46 1	+ 18-81 1	- 1.91° 1 + 3.70° 1	+ 18-69 11	+ 14·14 1 + 8·67 1 + 11·53 ;
Ver. 1,200, 00 V , V , V , V , 40 , it s	4 23 - 0 23 - 00 - 28	16 25 11 49 09 28	- 26 47 11 49 09 28	+ 20 97 13 07 + 09 28	- 3 44 14 65 03 28	- 10 50 - 19 17 - 02 - 28	+ 12 13 23 51 17 28
Rond Vetocry	1.2	- 1-4	+ 14.6	+ 7.9	- 11.5	- 9.0	- 11·8

Buck are a co

	2910	2933	2960	2967	2968	2972	2972*
λ .	vel Wr.	Vel. Wt.	Vel. Wt.	Vel Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
1549 · 766 1481 · 400 1340 · 634 4233 · 328 4101 · 890 1045 · 975	+ 16.06 1	+ 9.58 1 + 40.32 1 + 32.89 1 + 4.37 1	+ 25·25 1 + 19·56 1 + 27·65 } + 26·38 }	+ 19·55 1 + 30·53 1	+ 23 · 88	+ 32·95 1 + 47·14 1	+ 28.76 4
Weighted mean V ₂ V _d Curv.	+ 19·87 - 25·52 + ·04 - ·28	+ 28·19 - 28·18 - ·22 - ·28	+ 23·78 - 29·46 ± ·00 - ·28	+ 18·80 - 28·87 - · · · · · · · · · · · · · · · · · · ·	+ 27·11 - 28·87 - ·09 - ·28	+ 14·04 29·85 ·10 ·28	+ 31·84 + 29·85 - · 10 - · ·28
Radial Velocity	- 5.9	- 0.5	- 6.0	- 10-4	- 2.1	+ 13.8	+ 1.6

^{*}Check measures

MEASURES OF γ AQUARII—Continued

	2972*	2980	2987	3478	3500	3504	3508
λ	Vel Wt	Vel → Wt	Vel Wt.	Vel. 'Wt.	Vel. Wt	Vel. Wt	Vel. Wt
4861-527 1549-766 1481-406 4352-006 4340-634 4101-890 1933-825		+ 7·87 1 + 20·11 1	+ 29·39 1 + 20·91 1 + 22·83 1 + 14·46 1 + 28·57 1 + 32·99 ½	- 57·75 ½ - 59·32 ⅓	- 23·41 ½ - 36·25 ¼ - 38·43 ⅓	- 22·76, 1 - 32·69, 1 - 47·78 1 - 51·84 4 - 38·68, 1	- 77·10 ; - 56·80 ; - 52·62 ; - 58·64 ; - 83·66 ;
Weighted mean V _a V _d Curv	4 45·62 29·85 10 28	+ 15.77 - 29.85 16 + .28	+ 23-85 29-79 + -04 28	- 58·54 + 28·29 + ·12 - ·28	- 31·98 + 24·76 + ·04 - ·28	- 39·20 + 24·52 + ·09 - ·28	- 65·38 + 23·14 + 09 - 28
Radial Velocity	+ 15-4	- 14-5	~ 5.9	- 30.4	- 7.5	- 14.9	- 42-4

[•]Check measures

MEASURES OF Y AQUARII-Continued

						1	
	1508*	3509	3516	3517	3523	353*	3530
λ	Vel Wt.	Vel. Wt	Vel. Wt	Vel Wt	Vel Wt	Vel Wt	Vel Wi
1861 - 527 1549 766 1481 100 4340 - 634 4101 890 1933 825	76 14 1 43 26 1 48 72 1 43 04 1 42 13 1 50 42 1	- 55 75 { - 73 01 } - 30 35 } - 47 23 } - 52 31 }	67 [6] 56 86 1 31 27 1 21 98 1 44 27 1	- 52 40 1 - 55 71 ,	20 04 1 41 21 1 37 50 1 42 62 1 44 96 1	- 48 46	- 30 93 . - 22 08 . - 21 47 1
Weighted mean Vo Vd Curv.	- 50·03 + 23·14 + 09 - ·28	- 46·07 + 23·14 + ·04 - ·28	- 46·09 + 22·53 ± ·00 - ·28	54-06 22-53 00 28	- 41·57 · 20·91 + · 03 - · 28	- 49·70 + 20·91 + ·01 - ·28	- 23·98 + 20·23 ± ·00 - ·28
Radial Velocity	- 27·1	- 23.2	- 23.8	- 31.8	- 20-9	- 29.0	- 4.0

^{*}Check measures

MI ASURIS OF A AQUARII -Contour I

λ	(550	3560 3560		3572	5573	3579	,3580
	/ , i = 1/ t	\. \\t	Vil Wi	Vel Wr	Vel Wr	Vel. Wt	Vel. W:
4861 -27 6349 766 4481 100 4340 631 4161 800 7053 825	9 30 } ; 6 63 } ; 2 51 1 12 67 } -15 00 1	* 0 16 - ! 9 92 - ; 11 31 - 1 = 15 42 - ;	16 79 } 8 19 1	- 5 60 § - 15 69 1 - 3 231 §	- 11·77 1 - 0.50 1 - 2·65 1	- 16·54 ½ - 16·62 1 - 15·07 4	- 8-66 } - 26-47 - 17-68 - 11-66 - 32-16
Weighted Weighted Va Va Va Curv.	\$-15 9-51 12 28	9 52 • 9 54 • 12 28	- 7 51 - 8 10 - 00 - 28	- 7·25 · 7·65 · 04 28	- 8 98 + 7 65 - 04 - 28	= 15 06 + 4 29 + 09 = 28	- 16, 58 - 4, 29 - 07 - 28
Radial Velocity		0.1	+ 0.3	- 0-4	- 16	- 11.0	- 12-6

MENSURES OF Y AQUARII-Continued

	su _{ses} .	3580	3676	3715	3716	3715*	3716°
λ l el. W	Vel. Wt.	Vel. Wt.	Vel. Wt	Vel Wt	Vel Wt.	Vel. Wt.	Vel. Wt
1861 - 527 4549 - 766 4481 - 400 1340 - 634 1101 - 890 3933 - 825	- 15·35 1 - 3·55 }	- 11·84 1 - 5·65 1 - 1·82 1		+ 28-11 1}	+ 3·46 } + 17·81 1	+ 27.48 13	
Weighted mean V _a V _d Curv.	- 8.08 + 0.80 - 12 - 28	- 6·37 + 0·80 - ·18 - ·28	+ 19·49 10·96 ·25 ·28	+ 21·34 - 18·76 - ·14 - ·28	+ 12·54 + 18·76 - 18 14 - 28	+ 22·01 - 18·76 14 28	+ 18·27 - 18·76 - 14 - 28
Radial Velocity	. 77	. 6	+ 80	÷ 2.2	6.6	+ 2.8	- 1.0

^{*}Check measures

MEASURE OF A MANUAL CONTROL

		111 12	171				
1	3724	3746	.751	×1.		_p N/ _{to}	,×97
\	Vel Wi	Vel. Wt	Ţ ; \\',	\ a1 = 11 +	\.; \\.	Vel W.t	Vil Wi
		+ 1.07 1 + 2.43 1 + 2.98		77.71 (21.31 1 , 26.1 (, 21.19	- 1, 62 2) 71 1 - 18 0 1	1 51 1 15 81 1 7 81 1	- 11 49
We give I	+ 15-10 10-02 	· 1 87 = 22-44 = -11 - 28	10 57 26 9 c 10 28	+ 25 07 29 60 16 28	. 29 71 29 55 09 28	× 02 28 80 16 28	37 14 09 28
Radial Velouty	5 2	21-0	16.8	7.0	() ()	21/3	• 9.1

MEASURES OF 7 AQUARIE (... '

	1504	4515	1525	1128	15.77	tico	4563
λ	Vel Wt	Vi) Wi	Vel Wr	Vel Wr	Vel Wr	Vel Wit	Vel W
4861 527 1549 766 4481 400 4340 634 4128 244 4101 800 933 825	- 11-45 1 + 1-39 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 09] - 5·47 1 - 15·46] - 1·66] - 6·96]	20 68 } 24 60 } - 0-80 1 - 12 35 }	4·71 } + 4·73 1 + 1·58 }	- 7·37 1 - 13·31	+ 13 11
Weighted mean V ₃ V ₄ Curv.	- 5·03 - 0·52 + ·09 - ·28	- 16-66 1-53 + -03 28	- 6.07 - 3.52 09 28	- 10 24 - 4 49 + 02 - 28	+ 1.64 - 7.41 + .08 28	- 10·30 - 7·80 + ·04 - ·28	+ 4:64 - 10:31 ± :00 - :28
Radial Velocity	- 5.7	- 18-4	- 10 0	15.0	6 0	- 15 4	- 59

MEASURES OF γ AQUARII-Continued.

λ	1588				1611				4622				4629				4	639			46	57			4660			
		Vel		Wt.		Vel		Wt.		Vel		11.	t.	Vel		Wt		Vel		Wt.		Vel.		Wt	,	Vel.		11/
1861 · 527 4549 · 766 1481 · 400 4340 · 634 4101 · 890 3933 · 825	+	11-2-	83		++	23 15	91	1	++	24 31	68	1	+++	38 29 25 29		4 10	.+++	20 28 32	· 37 · 64 · 90 · 23 · 31	1	+	3. 20. 18.	75 19	1	+++	25.0 25.0 25.0	80 43 86	1 1
Weighted mean V _a V _d Curv.		+ - + -									19	.07 .82 .02 .28										+	23			+	24	56 00
tadial Velocity			8.	7		400	0	-3		+	6	-0		+	4	- 5		+	9	-2			9.	1		- 1	11.	1

MEASURES OF γ AQUARII-Continued.

λ	4663	4692			4	4700			4702			4712			4724			4725			
	Vel.	Wt.	Vel	1.	Wt.	Vel		Wt.	1	/el.	w	t.	Vel	1.	Wt.	'	řel.	Wt.	Ve	1.	W
4861 - 527			+ 18	-95	4				+	38-4	5					+	30 - 38	1 2			
4549 766			+ 30		1	+ 29	-21	1										+			
4481 - 400			+ 16	-59	1	+ 29	-60	1	+	21.9	3		- 28				$24 \cdot 99$		+ 18		
4340 - 634	+ 8.67	1	+ 27	-65	1							1	19	.21	9	+	20.30	1 1	+ 32	2.05	
4233 - 328				***					+	22.5	66	1					01++		4.8.83		
$4101 \cdot 890$			+ 30									- 1					42.50			2 00	
3933 - 825	+ 12-46	3 1	+ 22	2-88	9				+	16-8	31 1		+ 10	1.72	1 1	+	33 - 4	5 1	+ 2	3 . 01:	×
Weighted																					
mean	+ 10	-56	+				-	-52	1		9-46			21			+ 29			25	
V_{α}		-38	-	-				-70			9.86			29		1	- 28			27	98
V_d		.00	-		04	-		.06	1	-	.04		-		-16	1	-	-19			- 28
Curv.	-	-28			-28			· 28	L	-	- 28			-	-28		-	, 20			. 20
Radial Velocity	- 1				.7		(1.7			6	-6		+ (0.2	-	q	.4

MEASURES OF γ AQUARII-Continued.

	4726		47	36		5109		5	117		5125		51	30		5134	
λ Vel	Vel.	Wt.	Vel.	Wt.	Ve		Wt.	Vel	W	t. Ve	el.	Wt.	Vel.	Wt.	Ve		W
4861 - 527 4549 - 766 4481 - 400 4340 - 434 4101 - 890 3933 - 825	+ 11 · 72 + 8 · 00 + 26 · 52 + 28 · 00 + 12 · 71 + 15 · 69	1 12	+ 29 + 14 + 19 +	84 ½	- 20 - 22	1.99 1.62	1	- 19		- 2	5·69 0·75	4	- 40 - 30 - 40	03 1	- 12 - 26 - 38 - 23 - 23	·73 ·03 ·31	14 14 14
Weighted mean Va Vd Curv.	+ 19 - 27 -	80		19-09 27-59 -20 -28			7		19-84 17-84 -04 -28	+ ±			+ 1	86 · 37 15 · 85 · 01 · 28	++	24 - 13 -	74 06
Radial Velocity	- 8	.0	_	9.0		7-5	;	-	2.3	-	12	2	- :	20.8	_	11.	3

MEASURES OF \(\gamma \) AQUARII—Concluded.

	(market)						
	5195	5203	5216	5240	5256	5262	
λ	Vel. V	Vt. Vel. Wt	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt
4549 · 766 4481 · 400 4340 · 634 4101 · 890 3933 · 825	- 5·72 + 10·04 - 7·87 - 3·15	1 + 6·36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 7.85			+ 10·18	
Weighted mean V _s V _d Curv.	+ 0·00 - 9·71 - ·11 - ·2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 6·20 - 17·76 - · 09 - · 28	+ 27·33 - 21·77 - ·07 - ·28	+ 23.85 - 23.90 - 09 - 28	+ 13·92 - 26·37 - 04 - 28	
Radial Velocity	- 10.2	- 15-9	- 11-9	+ 5-2	- 0.4	- 12.8	

Dominion Observatory, Ottawa, March, 1913.