

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Bahasa Reguler

- Dari suatu alfabet Σ , maka bahasa-bahasa reguler adalah:
 - Bahasa kosong (\emptyset), bahasa hanya berisi satu string kosong ($\{\epsilon\}$), serta bahasa-bahasa hanya berisi satu string simbol tunggal ($\{a\}$, yang mana $a \in \Sigma$).
 - Bahasa-bahasa hasil operasi **union** dari bahasa-bahasa reguler: $L_1 = L_2 \cup L_{3,}$ yang mana L_2 dan L_3 adalah reguler
 - Bahasa hasil operasi **konkatenasi** dari bahasa-bahasa reguler: $L_1 = L_2 L_3$, yang mana L_2 dan L_3 adalah reguler
 - Bahasa hasil operasi **Kleene*** dari bahasa reguler

Contoh-contoh

- $L = \{w \in \{0, 1\}^* : w \text{ berakhiran } 10\}$ = $\{0, 1\}^* \{10\} = (\{0\} \cup \{1\})^* (\{1\}\{0\})$
- $L = \{a^m b^n : m, n \ge 0\}$ = $\{a\}^* \{b\}^*$
- $L = \{w \in \{a, b\}^* : |w| \text{ bilangan genap}\}\$ = $(\{a \cup b\} \{a \cup b\})^*$
- Pertanyaan: bisakah $\{a^nb^n : n \ge 0\}$ diekspresikan sebagai hasil operasi-operasi demikian? Tidak! (mengapa?)
- Bagaimana dengan $\{a^nb^n : n \ge 0, \text{ dan } n < 10\}$

Bahasa-bahasa Finite

- Setiap Bahasa finite (berhingga) adalah regular.
 - Mengapa? Karena bisa dianggap union dari bahasa-Bahasa yang berisi satu string, dan setiap bahasa yang berisi satu string merupakan bahasa hasil konkatenasi dari bahasa-bahasa berisi satu string satu symbol (bahasa sederhana).
- Bahasa finite bisa memiliki string sangat banyak!
 - Contoh: $\{w \in \{0-9\}^* \mid w \text{ nomor-nomor SIM card di Indonesia}\}$

Ekspresi Reguler (Regex)

 Penulisan deretan operasi himpunan untuk menspesifikasikan bahasa reguler dapat disederhanakan menjadi suatu string ekspresi reguler.

Ekspresi Himpunan: L	Ekspresi Reguler: α
∅ atau {}	Ø
{ε}	3
{a}	a
$L_1 \cup L_2$	$lpha \cup eta$
L_1L_2	$\alpha \cup \beta$ $\alpha \beta$
L^*	$lpha^*$
L^{+}	$lpha^+$
(L)	(α)

Contoh-contoh

- $L_1 = \{w \in \{0, 1\}^* : w \text{ berakhiran } 10\}$ = $\{0, 1\}^* \{10\} = (\{0\} \cup \{1\})^* (\{1\}\{0\})$ ekspresi reguler L_1 adalah $(0 \cup 1)^* 10$
- $L_2 = \{ \in \{a, b\}^* : w \text{ tidak berisi substring } aa \}$ ekspresi reguler L_2 adalah $(ab \cup b)^* (a \cup \varepsilon)$
- $L_3 = \{a^m b^n : m, n \ge 0\} = \{a\}^* \{b\}^*$ ekspresi reguler L_3 adalah $a^* b^*$
- $L_4 = \{w \in \{a, b\}^* : |w| \text{ bilangan genap}\}\$ = $(\{a \cup b\}\{a \cup b\})^*$ ekspresi reguler L_4 adalah $((a \cup b)(a \cup b))^*$

Precedence Order dari Operator

- Seperti pada ekspresi aljabar, ekspresi reguler memerlukan pengurutan presedensi operator:
 - Tertinggi Kleene-* (seperti halnya pangkat),
 - Kemudian konkatenasi (seperti halnya perkalian),
 - Lalu union (seperti halnya penjumlahan)
 - Sepasang kurung menyatukan ekspresi di dalam tanda kurung tsb terhadap operator di luarnya.

Bahasa vs Ekspresi

- Ingat: **bahasa reguler** L adalah himpunan string sementara **ekspresi reguler** α adalah string menspesifikasikan bahasa reguler atau $L(\alpha)$.
- Suatu bahasa reguler *L* bisa dispesifikasikan oleh beberapa ekspresi reguler berbeda (tidak unik, tapi arti sama!)
 - Contoh: $L = \{w \in \{a, b\}^* : \#_a(w) \text{ bilangan ganjil}\}$
 - Ekspresi regulernya:
 - Bisa $b^*(ab^*ab^*)^*ab^*$, juga bisa $b^*ab^*(ab^*ab^*)^*$

Regex vs. Ekspresi Reguler

- Regex adalah nama popular dalam fitur pemrosesan teks dalam operating system, text editor, bahasa-bahasa pemrograman, dll.
- Mulanya Regex terkait kelas bahasa regular namun selain notasinya bertambah juga berevolusi meliputi halhal di luar bahasa regular.
- Pembahasan disini adalah ekspresi regular (regex, dengan huruf kecil) bukan Regex.

- Operasi bahasa-bahasa regular yang bersifat closure dalam bahasa-bahasa reguler:
 - jika operasi dilakukan pada bahasa regular, menghasilkan suatu bahasa regular juga.
- Bahasa-bahasa reguler bersifat closure terhadap operasi union, konkatenasi dan Kleene Star.
 - Sudah jelas dalam definisinya!
- Bahasa-bahasa reguler bersifat closure terhadap operasi komplemen, irisan, set-difference, reverse, dan substitusi symbol.
 - Akan dibahas di slide berikutnya.

Closure thd Operasi Komplemen

- "Komplemen dari setiap Bahasa regular adalah juga regular."
- Dibuktikan dengan menemukan DFSM M_2 yang bekerja berlawanan dengan DFSM M_1 , dimana M_1 mesin untuk menerima bahasa reguler L.
 - Jika $M_1 = \{K, \Sigma, \delta, s, A\}$ maka $M_2 = \{K, \Sigma, \delta, s, K-A\}$ accepting state menjadi nonaccepting state, sementara nonaccepting state menjadi accepting state.

Closure thd Operasi Irisan

- "Hasil operasi irisan dari Bahasa-bahasa reguler adalah juga bahasa reguler."
- Menurut de'Morgan L_1 dan L_2 adalah dua himpunan maka: $L_1 \cap L_2 = \neg(\neg L_1 \cup \neg L_2)$
 - Jika L_1 dan L_2 bahasa-bahasa reguler arena union dan komplemen bersifat closure thd bahasa-bahasa reguler maka $\neg L_1$ reguler, $\neg L_2$ reguler, kemudian $(\neg L_1 \cup \neg L_2)$ reguler dan akhirnya $L_1 \cap L_2$ regular.

Closure thd Operasi Set-Difference

• "Hasil operasi "set-difference" dari bahasa-bahasa reguler L_1 oleh L_2 adalah juga bahasa reguler."

$$L_1 - L_2 = L_1 \cap \neg L_2$$

Karena operasi-operasi irisan dan komplemen bersifat closure terhadap bahasa-bahasa regular maka hasilnya juga suatu bahasa regular.

Pertanyaan:

- Apakah hasil operasi reverse suatu bahasa regular juga bahasa regular?
- Apakah hasil operasi substitusi suatu bahasa regular juga bahasa regular?

Teorema Kleene

- Teorema Kleene mengambil nama Stephen Cole Kleene
- Teorema aslinya menyatakan ekivalensi tiga pernyataan berikut.
 - Bahasa yang diekspresikan ekspresi reguler
 - Bahasa yang diterima NDFSM
 - Bahasa yang diterima DFSM
- Kedua terakhir sudah dibuktikan dengan adanya algoritma konversi NDFS ←→ DFSM
- Materi berikutnya adalah terkait ekspresi reguler dengan FSM, dalam 2 bagian
 - Ekspresi reguler → NDFSM
 - ∘ FSM → ekspresi reguler
- Keduanya dibuktikan adanya algoritma konversi juga

Ekspresi Reguler → FSM

• **Teorema**: bahasa untuk setiap ekspresi reguler, dapat diterima oleh bbrp FSM tertentu, dan berarti juga bahasa reguler.

• **Bukti**: dengan membangun FSM *M* dari ekspesi reguler

 α sehingga $L(\alpha) = L(M)$

• Untuk $\alpha = c$, $c \in \Sigma$, mesin M seperti Gambar (a).

- Untuk $\alpha = \emptyset$, mesin M seperti Gambar (b)
- Untuk $\alpha = \varepsilon$, mesin M seperti Gambar (c).
- Untuk α lain....(next page)

Regex→ FSM [Union]

- Untuk α lain, diketahui juga bahwa β dan γ ekspresiekspresi reguler dengan
 - $L(\beta)$ diterima oleh $M_1 = (K_1, \Sigma, \delta_1, s_1, A_1)$,
 - $L(\gamma)$ diterima oleh $M_2 = (K_2, \Sigma, \delta_2, s_2, A_2)$, dan
 - $\circ K_1 \cap K_2 = \emptyset$
- Untuk $\alpha = \beta \cup \gamma$, sehingga $L(\alpha) = L(\beta) \cup L(\gamma)$, maka $L(\alpha)$ diterima oleh $M_3 = (K_3, \Sigma, \delta_3, s_3, A_3)$ sbb:

$$\bullet \ K_3 = K_1 \cup K_2 \cup \{s_3\}, \, s_3 \notin K_1 \cup K_2$$

$$\circ \ \delta_3 = \delta_1 \cup \delta_2 \cup \{((s_3, \varepsilon), s_1), ((s_3, \varepsilon), s_2)\}_{\varepsilon}$$

$$A_3 = A_1 \cup A_2$$

Regex → FSM [Konkatenasi]

- Untuk α lain, diketahui juga bahwa β dan γ ekspresiekspresi reguler dengan
 - $L(\beta)$ diterima oleh $M_1 = (K_1, \Sigma, \delta_1, s_1, A_1)$,
 - $L(\gamma)$ diterima oleh $M_2 = (K_2, \Sigma, \delta_2, s_2, A_2)$, dan
 - $\circ K_1 \cap K_2 = \emptyset$
- Untuk $\alpha = \beta \gamma$, sehingga $L(\alpha) = L(\beta) L(\gamma)$, maka $L(\alpha)$ diterima oleh $M_3 = (K_3, \Sigma, \delta_3, s_3, A_3)$, sbb:
 - $K_3 = K_1 \cup K_2$
 - $\delta_3 = \delta_1 \cup \delta_2 \cup \{((q, \varepsilon), s_2) : q \in A_1\}$
 - $A_3 = A_2$

Regex → FSM [Kleene*]

- Untuk α lain, diketahui juga bahwa β ekspresi reguler dengan $L(\beta)$ diterima oleh $M_1 = (K_1, \Sigma, \delta_1, s_1, A_1)$,
- Untuk $\alpha = \beta^*$, sehingga $L(\alpha) = L(\beta)^*$, maka $L(\alpha)$ dapat diterima oleh $M_3 = (K_3, \Sigma, \delta_3, s_3, A_3)$ sbb:
 - $K_3 = K_1 \cup \{s_3\}$, dengan $s_3 \notin K_1$
 - $\delta_3 = \delta_1 \cup \{((s_3, \varepsilon), s_1), ((q, \varepsilon), s_1) : q \in A_1\}$
 - $A_3 = A_1 \cup \{s_3\}$

Contoh Untuk $(b \cup ab)^*$

An FSM for (b \cup ab)*

Catatan Tambahan

- Operasi-operasi pada mesin tersebut bersifat algoritmis (untuk kepentingan implementasi) demi untuk membuktikan bahwa dari ekspresi regular α bisa di bangun NDFSM yang dapat menerima $L(\alpha)$.
- Jika hanya untuk dilakukan secara manual beberap penyederhanaan bisa dilakukan.
 - Misalnya dalam konkatenasi, jika accepting state M_1 hanya satu maka bias langsung menjadi start state dari M_2 .
 - Dalam union, jika pada kedua mesin tidak ada transisi kembali ke start-state, maka kedua start state bisa digabung menjadi start-state mesin gabungan (tanpa ada penambahan start-state baru).