

Adaptive Biosignal Data Gathering for Distributed and Continual Remote Monitoring

Osamu Saisho, Keiichiro Kashiwagi, Yui Saito, Tomoyuki Fujino (NTT)

Introduction

- Demand for remote biosignal sensing application is growing.
- Ideal apps requires
 - a high-performance machine learner
 - a dataset that shows the temporal trait of each user
- In a continual sensing environment, both need to be built simultaneously.
- However, uploading all data of all users is not desirable in terms of communication bandwidth and cloud capacity.
- We propose an distributed active sampling method for the remote sensing environment

Methods

- The requirements for distributed sampling in real systems are very strict.
 - Learning model in a cloud cannot see any data that was not uploaded.
 - Edge devices cannot see any other device's data.
 - Edge devices have only limited resources.
 - Data distribution changes over time.
- Three components of our proposed method
 - Preprocessing
 - General filtering and period extraction
 - First sampling (active sampling)
 - Acquisition function is derived from uncertainty sampling[2].
 - Training status in a cloud are propagated to edges through K-shape clustering[3].
 - Second sampling (user's temporal trait)
 - Additional data are sampled to minimize EMD[4] between sampled data and whole.

Experiment

Experimental settings

dataset	MIT-BIH _[5]		
data description	five-class arrhythmia classification (N: 83.1%, V: 6.3%, S: 2.5%, F: 0.7%, Q: 7.4%)		
data volume	about 30 min. ECG data from 48 individuals		
classification model	1d-CNN[6]		
sampling rate	six beats / min.		
comparative methods	 proposed method only active sampling (fixed(1.0)) fixed(0.65) proposed method random sampling 		

- Experimental results
 - Active sampling methods achieved higher performance than random sampling.
 - Proposed method achieved higher performance than fixed(0.65).

 Proposed method achieved smaller trait deviation than active sampling.

Euclidian distances between histograms of the classes of sampled data and whole (*10⁻²)

proposed	fixed(1.0)	fixed(0.65)	random
6.52	7.73	5.17	2.35

Conclusion

- We proposed a distributed active sampling method for continual biosignal monitoring.
- The experimental results verify the effectiveness for model training, graspability for temporal user traits, and adaptability.
- Our future work is evaluating the method in a real system and adding other factors to the consideration.

References

- [1] https://www.hitoe.toray/en/
- [2] B. Settles, Active Learning Literature Survey, 2009
- [3] J. Paparrizos and L. Gravano, k-shape: Efficient and accurate clustering of time series, SIGMOD2015
- [4] N. Bonneel et al., Displacement interpolation using Lagrangian mass transport, TOG2011
- [5] G. Moody and R. Mark, The impact of the MIT-BIH Arrhythmia Database, Eng. Med. Biol. Mag. 2001 [6] A. Hannun et al., Cardiologist-level arrhythmia detection and classification in ambulatory
- electrocardiograms using a deep neural network, Nat. Med. 2019