

Unit - I Introduction to Electricity

Dr.Santhosh.T.K.

Hireless power transmission

Syllabus

UNIT – I 10 Periods

- Introduction and Basic Concepts: Concept of Potential difference, voltage, current Fundamental linear passive and active elements to their functional current-voltage relation Terminology and symbols in order to describe electric networks Concept of work, power, energy and conversion of energy- Principle of batteries and application.
- Principles of Electrostatics: Electrostatic field electric field intensity electric field strength
 absolute permittivity relative permittivity capacitor composite dielectric capacitors capacitors in series & parallel energy stored in capacitors charging and discharging of capacitors.

Charge

- Charge is conserved: it is neither created nor destroyed
- Symbol: Q or q; units are coulomb (C)
- The smallest charge, the *electronic charge*, is carried by an electron (-1.602 × 10⁻¹⁹ C) or a proton (+1.602 × 10⁻¹⁹ C)
- In most circuits, the charges in motion are electrons

Current and Charge

Current is the rate of charge flow:

1 ampere = 1 coulomb/second (or 1 A = 1 C/s)

Current-Water Analogy

Voltage

•Symbol: V

•Unit: Volt

- Potential difference across two terminals in a circuit "across variable."
- In order to move charge from point A to point B, work needs to be done.
- Like potential energy at a water fall.

~ 20m A

>50nA = 80mA (c)

(*d*)

Voltage-Water Analogy

Voltage/Current-Water Analogy

Series Connection

- Each cell provides 1.5 V
- Two cells connected one after another, in series, provide 3 V, while three cells would provide 4.5 V
- Polarities matter

Parallel Connection

If the cells are connected in parallel, the voltage stays at
 1.5 V, but now a larger current can be drawn.

Power: p = vi

The power required to push a current i (C/s) into a voltage v (J/C) is p = vi (J/s = W).

When power is positive, the element is *absorbing* energy.

When power is negative, the element is *supplying* energy.

Example: Power

How much power is absorbed by the three elements above?

$$P_a = +6 \text{ W}, P_b = +6 \text{ W}, P_c = -20 \text{ W}.$$

(Note: (c) is actually supplying power)

Wire-Water Analogy

Resistors-Water Analogy

Resistor V-I Characteristic

•In a typical resistor, a conducting element displays linear voltage-current relationship. (i.e., current through a resistor is directly proportional to the voltage across it).

$$I \propto V$$

•Using G as a constant of proportionality, we obtain:

$$I = GV$$

•Equivalently,

$$V = RI \text{ (or } V = IR)$$

where R = 1/G.

- -R is termed as the resistance of conductor (ohm, Ω)
- -G is termed as the conductance of conductor (mho, ♂)

Variable Resistor: Rotary Potentiometers

Variable Resistor: Other Examples

Photoresistor

Thermistor

Resistor Examples

Resistors in Series

Resistors in Parallel

Exercise 1

Voltmeter Connection

- The voltmeter is connected in parallel between two points of circuit
- A voltmeter should have a very HIGH input impedance

Ammeter Connection

- Break the circuit so that the ammeter can be connected in series
- All the current flowing in the circuit must pass through the ammeter
- An ammeter must have a very LOW input impedance

Capacitor Symbols

Capacitor Water Pipe Analogy

- •Water capacitor: a tube with a rubber membrane in the middle
- •Rubber membrane analogous to the dielectric, two chambers analogous to two capacitor plates
- •When no water pressure is applied on the water capacitor, the two chambers contain same amount of water (uncharged)
- •When pressure is applied on the top chamber, the membrane is pushed down causing the water to be displaced from the bottom chamber (appearance of current flow \rightarrow displacement current)

Capacitor Variations

Ceramic capacitors

- -very popular nonpolarized capacitor
- -small, inexpensive, but poor temperature stability and poor accuracy
- -ceramic dielectric and a phenolic coating
- -often used for bypass and coupling applications

•Electrolytic

- -Aluminum, tantalum electrolytic
- -Tantalum electrolytic capacitor has a larger capacitance when compared to aluminum electrolytic capacitor
- -Mostly polarized.
- -Greater capacitance but poor tolerance when compared to nonelectrolytic capacitors.
- -Bad temperature stability, high leakage, short lives

Capacitor Variations

•Mylar

- -very popular, nonpolarized
- -reliable, inexpensive, low leakage
- –poor temperature stability

•Mica

- -extremely accurate, low leakage current
- -constructed with alternate layers of metal foil and mica insulation, stacked and encapsulated
- -small capacitance
- -often used in high-frequency circuits (i.e. RF circuits)

Inductor Variations

Chokes

- -general-purpose inductors that act to limit or suppress fluctuating current.
- -some use a resistor-like color code to specify inductance values.

Toroidal coil

- -resembles a donut with a wire wrapping
- -high inductance per volume ratios, high quality factors, self-shielding, can be operated at extremely high frequencies

Open and Short Circuits

- An open circuit between A and B means i=0.
- Voltage across an open circuit: any value.
- An open circuit is equivalent to $R = \infty \Omega$.
- A short circuit between A and B means v=0.
- Current through a short circuit: any value.
- A short circuit is equivalent to $R = 0 \Omega$.

Summary

Basics Scharge
Voltage / current / power
Voltage / current / power
Voltage / current / power

Voltage / current / power

Nother Ammeter

Proposition C

Proposition