PAU 2005

Pautes de correcció

Biologia

SÈRIE 4

Exercici 1

1.-

a)	b): d'hidrogen
b)	c): ribosa i uracil
c)	d): citosina i adenina,
	A causa de l'error en el dibuix, s'acceptarà com a resposta correcte qualsevol
	d'aquestes possibilitats::
	- a): guanina i citosina
	- en blanc, indicant que hauria de ser la a) adenina però que els tres enllaços
	d'hidrogen indicarien una parella G/C
d)	a): peptídic

- +0.25 punts per cada resposta correcta
- + 0.1 per assenyalar correctament un enllaç d'hidrogen
- 0.1 per cada resposta fallada

la nota mínima d'aquesta pregunta és un 0 (no hi ha notes negatives) i la màxima un 1 (No 1.1)

2.-

1 punt	• TTC CGG CTT TGA
	o es considerarà correcta independentment del sentit 5'-3' o 3'-5'
0,5 punts	• Es comet una errada en la seqüència
0 punts	• Es comet més d'una errada en la seqüència

3.-

Nom	tRNA o RNA de transferència
Funció de la regió A	transporta/uneix els aminoàcids
Funció de la regió B	s'uneixen al codons de l'mRNA

1 punt	punt • Les tres respostes correctes	
0.5 punts	• dues respostes correctes	
0.25 punts	• una resposta correcta	
0 punts	• cap resposta correcta	

Biologia

Exercici 2

1.-

a) (0.2 p)

/ \ 1/	
+0.1 punt	• La variable independent de l'experiment és la llum
	0 punts si també inclouen altres variables a més de la llum
+0.1 punt	• La variable dependent és la durada del cicle vital (temps)
	• Es valorarien també respostes com ara
	 el grau de desenvolupament dels animals,
	• la posta dels ous,
	• el temps que tardaria l'eclosió d'aquests
	• la velocitat del cicle vital
	0 punts si només s'indica cicle vital

b) (0.8 p)

Per avaluar el disseny caldrà tenir en compte els canvis en la variable independent (llum), el control, les rèpliques i l'observació de la variable dependent (durada del cicle vital)

	(MANIPULACIÓ DE LA VARIABLE INDEPENDENT)
	• Si disposem de diversos terraris, els canviarem les condicions de llum (la
+0.3 punts	variable que investiguem) posarem un terç en condicions de foscor permanent
	(per exemple embolicant-los en paper d'alumini); un terç en condicions de foscor
	i llum (seguin el cicle normal de dies i nits) i l'altre terç en llum permanent (per
	exemple sota un fluorescent).
	• Es considerarà correcte una manipulació adequada de la variable independent,
	tot i que només es facin dos grups: llum constant i foscor constant.
	(CONTROL)
	• A cada terrari haurem de posar el mateix nombre de grills adults, mascles i
+0.3 punts	femelles. Caldrà que l'única variable que realment canviï sigui la llum i les altres
	(temperatura, humitat del sòl, aliment pels animals, etc) caldrà mantenir-les
	fixes per a tots els terraris (control de l'experiment).
	(REPETICIONS – RÈPLIQUES)
+0.1 punts	• Utilitzar diferents rèpliques de cada condició experimental, utilitzant els 12
	terraris
	(OBSERVACIONS I PRESA DE DADES)
+0.1 punt	• Anirem observant i anotant al llarg del temps la posta, la presència de cries i el
	desenvolupament d'aquestes, comparant en cada grup de terraris les diferències.

Biologia

a) (0,5 punts)

+0.1 punt	• Indica diploidia (2n) de zigot, ous, larves i adults
	0 punts en cas de 1 o més errades
+0.2 punts	• Indica meiosi durant formació de gàmetes
+0.1 punt	• Indica haploidia (n) de gàmetes
+0.1 punt	Indica fecundació durant la formació del zigot

b) (0,5 punts)

+0,3 punts	• Fonamentar l'argumentació en base al manteniment de la constància de la
	quantitat d'informació genètica en els organismes que es reprodueixen
	sexualment. Ja sigui a la formació de gàmetes (gametogènesi), obtenint cèl·lules
	sexuals amb la meitat del material genètic, o després de la formació del zigot.
+0,2 punts	• Explicar que també és important per la generació de diversitat o variabilitat
	dels gàmetes, i per tant de la descendència. Aquesta variabilitat s'aconsegueix
	per: (s'acceptarà com a correcte qualsevol d'aquestes dues respostes):
	- entrecreuament de cromosomes homòlegs
	- la segregació aleatòria de les diferents parelles de cromosomes que es
	donen a la primera divisió meiòtica

Biologia

OPCIÓ A

Exercici 3

1.- (1 punt)

+0.4	• Els anticossos són proteïnes (substàncies, molècules) que participen en la
punts	defensa de l'organisme.
	0 punts si s'indica que son cèl·lules
+0.3	• Els anticossos inactiven virus i toxines, aglutinen cèl·lules infeccioses (o
punts	microorganismes, o microbis) i n'afavoreixen la fagocitosi o la destrucció
	(només cal anomenar un d'aquests efectes).
	0.1 punts si simplement es diu que un anticòs reconeix un antigen
+0.3	• Els anticossos són produïts per les cèl·lules plasmàtiques, procedents de
punts	limfòcits B (només cal esmentar un d'aquests dos tipus de cèl·lules).
	0.2 punts per limfòcits
	0.15 punts per glòbuls blancs o leucòcits
	0 punts per altres tipus de cèl·lules

2.- (1 punt)

\ 1 /	
+0.8 punts • Identifica l'error: la capacitat de fabricar uns determinats anticossos és un	
	caràcter adquirit i, per tant, no s'hereta
+0.2 punts	 Afegeix una explicació més acurada.

3.- (1 punt)

Es tracta d'un cas de **selecció natural**. Les poblacions humanes són diverses: hi ha individus amb característiques genètiques que els fan ser més resistents a una malaltia determinada. Quan es produeix una epidèmia, els individus resistents tenen més probabilitats de sobreviure, i de tenir descendents, que els no resistents. Per això la resistència genètica a la malaltia va sent cada vegada més frequent en la població.

1 punt	• Respon anomenant la selecció natural (o el seu concepte) i explicant	
	correctament com actuaria en aquest cas.	
0.5 punts	• Anomena la selecció natural, i ho explica de manera molt incompleta.	
0.25 punts	• Explicar correctament l'adquisició de resistència individual, parlant de	
	limfòcits T i B, cèl·lules de memòria, etc.	
0 punts	Altres respostes.	

Biologia

Exercici 4

1.- (1 punt)

La figura representa un **possible** pedigrí. Naturalment, s'acceptarà qualsevol **ordre** en els fills (l'enunciat no el concreta) i en els progenitors, sempre que estiguin correctament representats i el nombre sigui el correcte.

+0.2 punts	Representar correctament el pedigrí.
+0.8 punts	• Identificar el patró d'herència més probable: lligat al sexe – cromosoma X -
	dominant i indicar que existeixen altres patrons d'herència possibles (lligat al
	sexe recessiu, autosòmic dominant, autosòmic recessiu) però molt menys
	probables.
+0.5 punts	• Dir que tots quatre patrons d'herència són possibles, sense valorar la seva
	probabilitat, o bé
	• Dir que el patró d'herència lligat al sexe dominant és l'únic possible
+ 0.2	• Proposar (de forma raonada) un patró d'herència que és possible però no el
punts	més probable.

Biologia

2.- (1 punt)

a) (0.5 punts)

0.5	• Fa un raonament correcte i presenta una taula que descriu amb rigor les					
punts	combinacions possibles.					
	• El raonament ha d'incloure les pr	roposicions	s següents (o semblants en contingut):			
	• En les persones, el sexe v	e determin	at per la presència dels cromosomes			
	sexuals X i Y.					
	 Les dones tenen dos crom 	nosomes X	, mentre els homes tenen un			
	cromosoma X i un cromoso		,			
	• Pel que fa a la taula, s'acceptarà	com a corr	recta una taula que presenti les			
	_		s persones, com també una taula de			
	Punnett amb les combinacions poss		•			
	F					
	Cromosomes sexuals	Sexe	de la persona			
	XX	Femella (dona)				
	XY	Mascle (home)				
			Övuls			
			X			
	Espermatozoides X XX (dona)					
		Y XY (home)				
0.3	Elabora una taula correcta però fa un raonament que es considera incomplet.					
punts	Elabora una maia correcta pero la un raonament que es considera meompiet.					
0.3	• Fa un raonament correcte però no	o fa taula o	presenta una taula que no es pot			
punts	acceptar.					
Pulles	acceptar.					

b) (0.5 punts)

0.5 punts	 Afirma que té raó el germà i argumenten correctament. L'argumentació ha d'incloure els següents raonaments (o semblants en contingut): l'òvul sempre aporta el mateix tipus de cromosoma sexual, l'X. pel que fa als cromosomes sexuals podem distingir dos tipus d'espermatozoides, els que són portadors del cromosoma X i els que porten el cromosoma Y- per tant la informació decisiva és la que aporta l'espermatozou, en el sentit que existeixen dues possibilitats i segons quin participi en la fecundació s'obtindrà un zigot que, més tard, es diferenciarà en un o altre sexe.
0,25 punts	• Afirma que té raó el germà, però fa un raonament que es considera encertat però incomplet, o que conté alguna errada
0 punts	• Afirma que té raó el germà, però sense cap tipus de raonament

Biologia

OPCIÓ B

Exercici 3

1.-

a) (0.2 punts)

0.2 punt	A l'interior del mitocondri (o a la matriu mitocondrial)
0.1 punts	Al mitocondri, o bé al pas del citosol al mitocondri
0 punts	Altres orgànuls

b) (0.4 punts)

0.4 punt	• La destinació serà la respiració cel·lular, la cadena respiratòria, la cadena de			
	transport d'electrons, etc.			
	• També s'acceptarà com a correcte la formació d'ATP o respostes equivalents			
0.1 punts	Poder reductor			
0 punts	• Altres respostes			

c) (0.4 punts)

0.4 punt	• Una de les següents: glucòlisi, cicle de Krebs, beta-oxidació o oxidació d'àcids			
	grassos, desaminació d'alguns aminoàcids, etc.			
0.2 punts	• Altres vies que produeixen NADPH, com la via de les pentoses o la fase			
	lumínica de la fotosíntesi			
0 punts	• Altres respostes			

2.- (1 punt)

1 punt	• Esmenta detalladament el procés d'obtenció d'energia a partir de glucosa i
	explica que en absència d'aquest enzim aquest procés es veu afectat. Per tant, les
	cèl·lules tindran dificultat d'obtenir la quantitat d'energia metabòlica.
	• Donat que les cèl·lules del sistema nerviós no obtenen gairebé energia de
	l'oxidació d'altres substàncies, es veuran greument afectades pel que fa a
	l'obtenció d'ATP per realitzar tots els processos cel·lulars que el requereixen.
0.7 punts	• Explicacions correctes però no relacionades amb la oxidació de la glucosa
0.5 punts	• Indicar la importància de la glucòlisi al sistema nerviós a causa del seu elevat
	consum energètic.
0.5 punts	• En la fermentació de la glucosa fins lactat només s'obtenen 2 ATP i no explica
	perquè no es podrà fer el cicle de Krebs pel que fa als glúcids.
0.25 punts	Perquè no és podrà formar l'acetil CoA i no precisa més
0.25 punts	Perquè no s'obtindrà l'ATP necessari i no precisa més
0 punts	• Altres respostes

Biologia

3.- (1 punt)

Un esquema metabòlic d'aquest tipus:

Biologia

1 punt	 Un esquema correcte, com els proposats, integrador del metabolisme de lípids i glúcids, en el que s'expliqui perquè es produeix l'acumulació de lactat. No es demana que situïn els compartiments cel·lulars on tenen lloc.
0.8 punts	Altres esquemes correctes però no integradors
0.5 punts	• A l'esquema no surten totes les molècules implicades: glucosa, lactat, piruvat,
	acetil-Co A i lípids, greixos, àcids grassos o tots els processos : glucòlisi, β-
	oxidació, cicle de Krebs.
0.4 punts	• Esquema que justifica perquè aquestes cèl·lules poden consumir greixos però
	no perquè s'acumula lactat
0.4 punts	• Esquema que justifica perquè s'acumula lactat però no perquè aquestes
	cèl·lules poden consumir greixos
0.2 punts	Explicació correcta però sense esquema
0 punts	Altres respostes

Es trauran dècimes si a l'esquema no hi figuren:

- les principals vies metabòliques: glucòlisi, cicle de Krebs, beta-oxidació o oxidació de greixos, fermentació
 - els principals metabòlits: glucosa, lípids o greixos, piruvat, lactat, AcCoA

Exercici 4

1.-

rs)					
 S'Explicita la simbologia: En tractar-se d'un cas d'herència intermèdia, la majúscula es pot assignar a qualsevol dels dos al·lels. S'acceptarà qualsevol simbologia coherent, utilitzant qualsevol lletra (majúscula i minúscula), superíndexs (per exemple P^a, Pⁿ) o lletres diferents (per exemple N i A) pels dos al·lels Per exemple, si s'utilitza A per l'al·lel que produeix plomatge normal i a per l'al·lel que produeix plomatge arrissat, la taula quedaria completada de la següent manera. S'omple correctament la taula: 					
Gàmetes procedents del gall pare (F1)					
Gàmetes	A	AA	Aa		
gallina mare (F1)	a	Aa	aa		
	S'Explicita la simble En tractar-sassignar a que S'acceptara (majúscula i indiferents (per Per exemple a per l'al·lel de la següent Gàmetes procedents de la	 S'Explicita la simbologia: En tractar-se d'un cas d'la assignar a qualsevol dels de S'acceptarà qualsevol sir (majúscula i minúscula), su diferents (per exemple N i Per exemple, si s'utilitza a per l'al·lel que produeix per la següent manera. S'omple correctament la taula: Gàmetes procedents de la 	 S'Explicita la simbologia: En tractar-se d'un cas d'herència intermè assignar a qualsevol dels dos al·lels. S'acceptarà qualsevol simbologia cohere (majúscula i minúscula), superíndexs (per ediferents (per exemple N i A) pels dos al·le Per exemple, si s'utilitza A per l'al·lel qua per l'al·lel que produeix plomatge arrissa de la següent manera. S'omple correctament la taula: Gàmetes del gall A Gàmetes procedents de la 	 S'Explicita la simbologia: En tractar-se d'un cas d'herència intermèdia, la majúscula assignar a qualsevol dels dos al·lels. S'acceptarà qualsevol simbologia coherent, utilitzant qual (majúscula i minúscula), superíndexs (per exemple Pa, Pn) o diferents (per exemple N i A) pels dos al·lels Per exemple, si s'utilitza A per l'al·lel que produeix ploma a per l'al·lel que produeix plomatge arrissat, la taula quedari de la següent manera. S'omple correctament la taula: Gàmetes procedents del gall pare (F1) A A Gàmetes procedents de la 	

Biologia

0.25	• No explicita la simbologia utilitzada però s'emplena correctament la taula.		
punts			
0.1 punts	• Explicita la simbologia, però no omple correctament la taula anterior.		
0 punts	• Altres respostes.		

b)

D)					
0,5 punts	• Esperem obtenir				
	1/4 d'animals amb el plomatge normal,				
	1/2 d'animals amb el plomatge mitjanament arrissat, i				
	1/4 d'animals amb el plomatge arrissat.				
	• Evidentment s'acceptà qualsevol formulació matemàtica equivalent a les				
	probabilitats correctes, com ara 25% ó 0.25 per ½ ó 50%, 2/4 ó 0,5 per ½)				
0 punts	Respostes incorrectes.				

2)

Descripció	Lletra de la taula
	anterior
Individu que per a un determinat caràcter presenta al·lels diferents	I
Al·lel que no es manifesta en presència d'un altre al·lel del mateix	E
gen	
Cèl·lula sexual	C i/o B (J)
Dotació cromosòmica dels espermatozoides dels organismes amb cicle biològic diplont	В
Cromosoma que intervé en la determinació del sexe als mamífers	
	H

0,2 punts per apartat correcte

PAU 2005

Pautes de correcció

Biologia

SÈRIE 1

Exercici 1

a)

Temperatura (°C)	0	10	25	40
Activitat fotosintètica (oxigen alliberat)	0	2,5	15	0

b) Esperarem un gràfic semblant al següent:

2.

En el procés de la fotosíntesi intervenen, amb funcions diverses, diferents exemples de proteïnes (transportadores, enzimàtiques; no caldrà que l'alumne esmenti tots els tipus). Les proteïnes perden la seva estructura nativa, es desnaturalitzen, per efecte dels canvis de temperatura la qual cosa explica que a temperatures inferiors a 25°C i superiors a 30°C no presentin un 100% d'activitat

Biologia

3.

L'equació general de la fotosíntesi haurà de respondre amb poques variacions a la que es mostra a continuació.

$$CO_2 + H_2O \xrightarrow{\text{llum}} \underline{\text{matèria orgànica}} + O_2$$
(o glúcids, o glucosa, o $C_n(H_2O)_n$)

En ella es pot observar que l'oxigen és un producte final del procés. Una activitat fotosintètica elevada, que produeixi una quantitat també elevada de matèria orgànica, anirà associada a l'alliberament d'una quantitat d'oxigen superior a la que es donaria en una activitat fotosintètica moderada o baixa.

Exercici 2

1.

Pautes de correcció Biologia

2.

La substitució d'una base en un gen, com qualsevol canvi heretable en el material genètic, és una mutació.

El triplet ATG és transcrit en el codó UAC que, com es pot veure a la taula del codi genètic, codifica l'aminoàcid Tir. En canvi, el triplet mutat ATC és transcrit en el codó UAG que indica Stop, o aturada de síntesi proteica. Això fa que la proteïna leptina sigui més curta del que era. Possiblement això haurà canviat la seva estructura tridimensional, o bé faltarà algun aminoàcid important en el reconeixement pel seu receptor, de manera que la leptina deixi de ser funcional.

OPCIÓ A

Exercici 3

1.

Pregunta a investigar: Quin és l'anticòs monoclonal més efectiu per combatre aquest tipus de càncer, l'A o el B?

Hipòtesi: Potser l'anticòs B és més eficaç que l'A per combatre aquest tipus de càncer

2.

a)

Variable independent: Tipus d'anticòs (anticòs A i anticòs B)
Variable dependent: resposta (creixement o eliminació) de les cèl·lules tumorals en ser administrat l'anticòs.

Mantindrem tots els ratolins en les mateixes condicions (aliment, llum, temperatura, humitat, etc) i observarem com evolucionen els tumors malignes de cada ratolí al llarg del temps.

3.

a)

En aquest cas l'antigen és alguna substància pròpia de les cèl·lules cancerígenes, ja que l'anticòs és capac d'identificar-lo i neutralitzar-lo.

b)

L'administració de l'anticòs no suposa una immunització activa (en no administrar-se antígens que provoquin la producció i memòria immunològica); tant sols pot considerar-se una teràpia (passiva) amb anticossos produïts fora de l'organisme.

Biologia

Exercici 4

1.

Aquesta malaltia s'hereta segons un patró recessiu i autosòmic. No pot ser lligat al sexe, perquè llavors l'individu III2 hauria de patir la malaltia (X^mY), per tal que la dona IV2 la tingués també (X^mX^m). Tampoc no pot ser dominant, doncs llavors una de les dues persones, com a mínim, de la parella III hauria de ser heterozigòtica (Mm), i llavors patiria (o patirien) la malaltia

El patró autosòmic-recessiu permet explicar els fenotips observats a l'arbre genealògic. Suposant M-al·lel "normal" de la proteïna muscular; m-al·lel mutant de la proteïna muscular, els genotips serien:

$$I2-I3-IV2 = mm$$

$$III1-III2 = Mm$$

2.

a)

	Sueca	Comunitat	Japó
		Valenciana	
Freqüències	9/25.000 = 3,6.10 ⁻⁴	4/4.450.000 =	1/440.000 =
		8,99.10 ⁻⁷	2,27.10 ⁻⁶

b)

L'origen d'aquesta gran diferència en la freqüència fenotípica d'aquesta malaltia a Sueca (9/25.000 = 3,6.10⁻⁴), **molt superior** comparada tant amb el Japó (1/440.000 = 2,27.10⁻⁶, unes 160 vegades inferior a la de Sueca) com amb la resta de la Comunitat Valenciana (4/4.450.000 = 8,99.10⁻⁷, unes 400 vegades inferior a la de Sueca), el podríem trobar a un possible **"efecte fundador"**. Algun o alguns dels 17 **repobladors tarraconins** podia ser que haguessin estat afectats o bé fossin **portadors de l'al·lel mutant** d'aquest gen. Com es tractava d'una **comunitat petita, amb una població reduïda**, lògicament devia donar-se un procés d'**endogàmia**, de forma que fos més probable la compartició d'al·lels (la **homozigosi**); a més en una població petita actuarà de forma més evident la **"deriva genètica".** Encara que Sueca hagi estat posteriorment poblada per persones vingudes de fora (immigració), no ha estat eliminada la presència d'aquest al·lel, possiblement testimoni de l'origen de part de la seva població.

Biologia

OPCIÓ B

Exercici 3

1.

Les cèl·lules que s'estan dividint per meiosi són la A i la C ja que hi ha una reducció del nombre de cromosomes (A): separació dels cromosomes homòlegs i un repartiment de les cromàtides (C). A la cèl·lula B també hi ha un repartiment de cromàtides però com que les tres cèl·lules son d'una mateixa espècie, la B no pot estar en meiosi ja que a la meiosi II no hi pot haver tants cromosomes, si a la meiosi I (A) només hi havia 3 parells d'homòlegs.

Es troben en metafase ja que els cromosomes es troben formant la placa equatorial (al centre de la cèl·lula). (Es considerarà correcte que es troben en anafase perquè han començat ja a separar-se).

2.

a)

Aquesta espècie té 2n= 6 o n=3 cromosomes.

- b)
 La meiosi permet mantenir constant el nombre de cromosomes d'una espècie en fer que les cèl·lules sexuals (gàmetes) tinguin la meitat dels cromosomes que les cèl·lules somàtiques de l'espècie. També incrementa la variabilitat: recombinació a la profase I i repartició a l'atzar dels cromosomes homòlegs a la metafase i anafase I.
- 3. L'afirmació NO és vàlida. Tant els espermatozoides com els òvuls sempre són n. Si fossin 2n, el zigot seria 4n i, és clar, hauria de fer meiosi per recuperar el 2n de l'adult.

Exercici 4

1.

La situació comentada descriu clarament una situació en la que intervé la selecció natural. Les condicions de vida en aquest període afavorien a certs individus de la població d'ocells, als portadors d'una característica que els feia més eficaços: un gruix del bec superior. Aquests individus assolirien l'edat reproductora i deixarien major descendència per la qual cosa es farien més abundants, de forma progressiva, en les generacions descendents.

2.

a)

b: efectivament, així evolucionen els caràcters, seleccionant els més aptes a la situació del medi de entre una diversitat més o menys gran, produïda per la variabilitat generada a l'atzar.

h)

c: Són òrgans homòlegs perquè tot i que exerceixen funcions lleugerament diferents, tenen un origen i una estructura comuna.