LP Metode Simplex

Rudi Susanto

Brief

LP Metode grafik tidak dapat menyelesaikan persoalan linear program yang memilki variabel keputusan yang cukup besar atau lebih dari dua, maka untuk menyelesaikannya digunakan LP Metode Simplex.

Ketentuan yang perlu diperhatikan

- Nilai kanan (NK / RHS) fungsi tujuan harus nol (0).
- Nilai kanan (RHS) fungsi kendala harus positif. Apabila negatif, nilai tersebut harus dikalikan –1.
- Fungsi kendala dengan tanda "≤" harus diubah ke bentuk "=" dengan menambahkan variabel slack/surplus. Variabel slack/surplus disebut juga variabel dasar.
- 4. Fungsi kendala dengan tanda "≥" diubah ke bentuk "≤" dengan cara mengalikan dengan −1, lalu diubah ke bentuk persamaan dengan ditambahkan variabel slack. Kemudian karena RHS-nya negatif, dikalikan lagi dengan −1 dan ditambah artificial variabel (M).
- 5. Fungsi kendala dengan tanda "=" harus ditambah artificial variabel (M).

Contoh

- Maksimumkan $Z = 3X_1 + 5X_2$
- Batasan (constrain)
 - $(1) \quad 2X_1 \leq 8$
 - $(2) \quad 3X_2 \leq 15$
 - (3) $6X_1 + 5X_2 \le 30$

Bagaimana menyelesaikan dengan **metode Simplex** ?

Langkah-langkah metode simpleks

Langkah 1:

Mengubah fungsi tujuan dan batasan-batasan

Fungsi tujuan

$$Z = 3X_1 + 5X_2$$
 diubah menjadi $Z - 3X_1 - 5X_2 = 0$.

Fungsi batasan (diubah menjadi kesamaan & di + slack variabel)

 $(1) 2X_1$

 \leq 8 menjadi $2X_1 + X_3 = 8$

 $(2) 3X_2$

 \leq 15 menjadi $3X_2 + X_4 = 15$

 $(3) 6X_1 + 5X_2$

 \leq 30 menjadi $6X_1 + 5X_2 + X_5 = 30$

Slack variabel adalah variabel tambahan yang mewakili tingkat pengangguran atau kapasitas yang merupakan batasan 5

Langkah 2:

Menyusun persamaan-persamaan di dalam tabel

Z = 3X1 + 5X2 diubah menjadi Z - 3X1 - 5X2 = 0. (1) 2X1 ≤ 8 menjadi 2X1 + X3 = 8(2) 3X2 ≤ 15 menjadi 3X2 + X4 = 15(3) 6X1 + 5X2 ≤ 30 menjadi 6X1 + 5X2 + X5 = 30

1. Tabel simpleks yang pertama

Variabel Dasar	Z	X ₁	X ₂	X ₃	X ₄	X ₅	NK
Z	1	-3	-5	0	0	0	0
X ₃	0	2	0	1	0	0	8
X ₄	0	0	3	0	1	0	15
X ₅	0	6	5	0	0	1	30

Langkah 3: Memilih kolom kunci

Kolom kunci adalah kolom yang mempunyai nilai pada baris Z yang bernilai negatif dengan angka terbesar.

Var.Dsr	Z	X_1	X_2	X_3	X_4	X_5	NK	index
Z	1	-3	-5	0	0	0	0	
X ₃	0	2	0	1	0	0	8	
X_4	0	0	3	0	1	0	15	
X ₅	0	6	5	0	0	1	30	

Jika suatu tabel sudah tidak memiliki nilai negatif pada baris fungsi tujuan, berarti tabel itu tidak bisa dioptimalkan lagi (sudah optimal).

Langkah 4: Memilih baris kunci

 $Index = \frac{Nilai \ kanan \ (NK)}{Nilai \ kolom \ kunci}$

Baris kunci adalah baris yang mempunyai index terkecil

Var.Dsr	Z	X_1	X_2	X_3	X_4	X_5	NK	index
Z	1	-3	-5 \	0	0	0	0	
X ₃	0	2	0	1	0	0	8	~
X ₄ *	0	0	3	8	1	0	15	5
X ₅	0	6	5	0	0	1	30	6
			1		7			

angka kunci

koef angka kolom kunci

Langkah 5: Mengubah nilai-nilai baris kunci

=> dengan cara membaginya dengan angka kunci

Baris baru kunci = baris kunci : angka kunci

sehingga tabel menjadi seperti berikut:

Var.Dsr	Z	X_1	X_2	X_3	X_4	X_5	NK	index
Z	1	-3	-5	0	0	0	0	
X ₃	0	2	0	1	0	0	8	~
X ₂	0	0	1	0	1/3	0	5	5
X ₅	0	6	5	0	0	1	30	6

Langkah 6: Mengubah nilai-nilai selain pada baris kunci sehingga nilai-nilai kolom kunci (selain baris kunci) = 0

Baris baru = baris lama – (koefisien Angka kolom kunci) x nilai baris baru kunci

Baris lama	[-3	-5	0	0	0	0]	
NBBK	-5 [0	1	0	1/3	0	5]	
Baris baru	-3	0	0	5/3	0	25	
Baris X_3							
Baris lama	[2	0	1	0	0	8]	
NBBK	0 [0	1	0	1/3	0	5]	_
Baris baru	2	0	1	0	0	8	
Baris X_5							
Baris lama	[6	5	0	0	1	30]	
NBBK	5 [0	1	0	1/3	0	5]	_
Baris baru	6	0	0	-5/3	1	5	

Baris Z

Masukkan nilai di atas ke dalam tabel, sehingga tabel menjadi seperti berikut

Var.Dsr	Z	X_1	X_2	X_3	X_4	X_5	NK	index
Z	1	-3	0	0	5/3	0	25	
X_3	0	2	0	1	0	0	8	
X_2	0	0	1	0	1/3	0	5	
X ₅	0	6	0	0	-5/3	1	5	

Iterasi 1

Langkah 7: Melanjutkan perbaikan

Ulangilah langkah-langkah perbaikan mulai langkah 3 sampai langkah ke-6 untuk memperbaiki tabel-tabel yang telah diubah/diperbaiki nilainya. Perubahan baru berhenti setelah pada baris pertama (fungsi tujuan) tidak ada yang bernilai negatif

Variabel Dasar	Z	X ₁	X ₂	X ₃	X ₄	X ₅	NK	Keterangan (Indeks)
Z	1	-3	0	0	5/3	0	25	
X ₃	0	2	0	1	0	0	8	= 8/2 = 4
X ₄	0	0	1	0	1/3	0	5	
X ₅	0	6	0	0	-5/3	1	5	= 5/6 (minimum)
Z	1				: : :		:	
X ₃	0							
X ₂	0							
X ₁	0	6/6	0	0	-5/18	1/6	5/6	
	6/ 6] / [0/	6 0/6	(-5/3)	/6 / <u>1/(</u>	5 /0	5	12

Nilai baru

Baris ke-1

		[-3	0	0	5/3	0,	25]	
	(-3)	[1	0	0	-5/18	_	5/6]	(-)
Nilai baru	=	[0	0	0	5/6	1/2,	27 ¹ / ₂]	

Baris ke-2 (batasan 1)

		[2		1	0	0,	8]	
	(2)	:	0	•	-5/18	:	•	(-)
Nilai baru	=	0	0	1	5/9	-1/3,	6 ¹ / ₃]	

Baris ke-3 tidak berubah karena nilai pada kolom kunci = 0

		0]	1	0	1/3	0,	5]	
	(0)	[1	0	0	-5/18		5/6]	(-)
Nilai baru	=	0	1	0	1/3	0,	5]	

Tabel simpleks final hasil perubahan

Variabel Dasar	Z	X ₁	X ₂	X ₃	X ₄	X ₅	NK
Z	1	0	0	0	5/6	1/2	271/2
X ₃	0	0	0	1	5/9	-1/3	6 ¹ / ₃
X ₂	0	0	1	0	1/3	0	5
X ₁	0	1	0	0	-5/18	1/6	5/6

Baris pertama (Z) tidak ada lagi yang bernilai negatif. Sehingga tabel tidak dapat dioptimalkan lagi dan tabel tersebut merupakan hasil optimal

Dari tabel final didapat

$$X_1 = 5/6$$

 $X_2 = 5$
 $Z_{\text{maksimum}} = 27^1/_2$

SOAL

1. Selesaikan linear program berikut ini dengan metode Simplex

Maksimumkan
$$Z = 400X_1 + 300X_2$$

Fungsi kendala/ batasan:

1)
$$4X_1 + 6X_2 \leq 1200$$

2)
$$4X_1 + 2X_2 \le 800$$

3)
$$X_1 \leq 250$$

4)
$$X_2 \leq 300$$

SOAL

2. Selesaikan linear program berikut ini dengan metode Simplex

Maksimumkan
$$Z = 2X_1 + 3X_2 + X_3$$

Dengan fungsi kendala:

1)
$$X_1 + X_2 + X_3 \leq 9$$

2)
$$2X_1 + 3X_2 \le 25$$

3)
$$X_2 + 2X_3 \le 10$$

4)
$$X_1, X_2, X_3 \ge 0$$