α. Η συνάρτηση $f(x)=x^3$ έχει πεδίο ορισμού το $D_f=\mathbb{R}$. Για κάθε $x\in\mathbb{R}$ έχουμε

$$f'(x) = (x^3)' = 3x^2$$

β. Η συνάρτηση $f(x)=x^7$ έχει πεδίο ορισμού το $D_f=\mathbb{R}$. Για κάθε $x\in\mathbb{R}$ έχουμε

$$f'(x) = (x^7)' = 7x^6$$

γ. Η συνάρτηση f(x)= συνx έχει πεδίο ορισμού το $D_f=\mathbb{R}.$ Για κάθε $x\in\mathbb{R}$ έχουμε

$$f'(x) = (\sigma v x)' = -\eta \mu x$$

δ. Η f έχει πεδίο ορισμού το $D_f=\mathbb{R}$. Για κάθε $x\in\mathbb{R}$ έχουμε

$$f'(x) = (e^x)' = e^x$$

ε. Για να ορίζεται η f πρέπει x>0 άρα $D_f=(0,+\infty)$. Για κάθε $x\in(0,+\infty)$ έχουμε

$$f'(x) = (\ln x)' = \frac{1}{x}$$

στ. Για να ορίζεται η f πρέπει $x \geq 0$ άρα $D_f = [0, +\infty)$. Για κάθε $x \in (0, +\infty)$ έχουμε

$$f'(x) = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

ζ. Η f ορίζεται για κάθε $x \neq \kappa \pi + \frac{\pi}{2}$. Έχουμε λοπόν

$$f'(x) = (\varepsilon \varphi x)' = \frac{1}{\sigma v^2 x}$$

η. Η συνάρτηση $f(x)=2^x$ έχει πεδίο ορισμού το $D_f=\mathbb{R}$. Για κάθε $x\in\mathbb{R}$ έχουμε

$$f'(x) = (2^x)' = 2^x \ln 2$$