DEEP LEARNING

FOR COMPUTER VISION

Summer School at UPC TelecomBCN Barcelona. June 28-July 4, 2018

Instructors

Organized by

+ info: http://bit.ly/dlcv2018

http://bit.ly/dlcv2018

Day 2 Lecture 6

Medical Imaging at DCU

Kevin McGuinness

kevin.mcguinness@dcu.ie

Overview

Computer aided diagnosis of knee-osteoarthritis

Neonatal brain image segmentation

Detecting ischemic lesions in neonatal brains

Task: predict KL grade from X-Ray images

Pipeline: locate and classify

Detection performance

FCN detection performance

Test Data	J≥0.25	J≥0.5	J≥0.75	Mean	Std.Dev
OAI	100%	99.9%	89.2%	0.83	0.06
MOST	99.5%	98.4%	85.0%	0.81	0.09
Combined OAI-MOST	99.9%	99.9%	$\boldsymbol{91.4\%}$	0.83	0.06

Template matching: (J > 0.5) 8.3%

SVM on handcrafted features: (J > 0.5): 38.6%

Multi-objective learning helps!

Same network used to regress on KL grade and predict a discrete KL grade

Jointly train on both objectives

Crada	Joint training for Clsf & Reg Precision Recall F_1 AUC			Training for only Clsf				
Grade	Precision	Recall	F_1	AUC	Precision	Recall	F_1	AUC
0	0.68	0.80	0.74	0.87	0.63	0.82	0.71	0.83
1	0.32	0.15	0.20	0.71	0.25	0.04	0.06	0.66
2	0.53	0.63	0.58	0.82	0.47	0.57	0.51	0.78
3	0.78	0.74	0.76	0.96	0.76	0.71	0.73	0.94
4	0.81	0.75	0.78	0.99	0.78	0.77	0.77	0.99
Mean	0.61	0.63	0.61		0.56	0.60	0.56	-

Comparison with the state-of-the-art

Method	Test Data	Accuracy Me	ean-Squared Error
Wndchrm	OAI	29.3%	2.496
Wndchrm	MOST	34.8%	2.112
Fine-Tuned BVLC CaffeNet	OAI	57.6 %	0.836
Our CNN trained from Scratc	th OAI & MOST	60.3%	0.898

How far are we from human-level accuracy?

Most errors are between grade 0 and 1 and grade 1 and 2. Human experts have a hard time with these grades too.

Agreement among humans on OAI

weighted kappa of 0.70 [0.65-0.76]

Human machine agreement

weighted kappa of 0.67 [0.65-0.68]

Predictions agree with the "gold standard" about as well as the "gold standard" agrees with itself.

Confusion matrix

Neonatal brain image segmentation

Volumetric semantic segmentation: label each pixel with class of brain matter.

Applications:

- Prerequisite for volumetric analysis
- Early identification of risk factors for impaired brain development

Challenge:

- Neonatal brains very different
- Sparse training data! Neobrains challenge has 2 training examples

The task

Some background...

Semantic segmentation and fully convolutional networks

Semantic segmentation

Label every pixel!

Don't differentiate instances (cows)

Classic computer vision problem

Semantic segmentation via pixelwise classification

Convolutionalizing

Semantic segmentation using a FCN

Run "fully convolutional" network to get all pixels at once

Fully convolutional networks

16

Dilated convolutions

We usually use striding and pooling to reduce the resolution so subsequent filters can take into account a larger spatial region

- 2x, 3x effective aperture size
- Reduce computation
- Spatial invariance

Cost: loss of spatial resolution

Dilated convolutions can be used to increase effective aperture size without sacrificing spatial resolution.

AKA. **Atrous convolutions**, convolution with holes.

Dilated convolutions

Dilated convolutions

Our model

- 8 layer FCN
- 64/96 convolution filters per layer
- Atrous (dilated) convolution to increase receptive field without sacrificing prediction resolution
- 9D per pixel softmax over classes
- Binary cross entropy loss
- L² regularization
- Aggressive data augmentation: scale, crop, rotate, flip, gamma
- Train on 2 axial volumes (~50 slides per volume) for 500 epochs using Adam optimizer

Sample results

matter

white matter

fluid

Neobrains challenge

New state of the art on Neobrains infant brain segmentation challenge for axial volume segmentation

Deep learning with only 2 training examples!

No ensembling yet. Best competing approach is a large ensemble.

Second best is also a deep net.

Tissue	Ours	LRDE_LTCI	UPF_SIMBioSy s
Cerebellum	0.92	0.94	0.94
Myelinated white matter	0.51	0.06	0.54
Basal ganglia and thalami	0.91	0.91	0.93
Ventricles	0.89	0.87	0.83
Unmyelinated white matter	0.93	0.93	0.91
Brainstem	0.82	0.85	0.85
Cortical grey matter	0.88	0.87	0.85
Cerebrospinal fluid	0.83	0.83	0.79
UWM+MWM	0.93	0.93	0.90
CSF+Ven	0.84	0.84	0.79
	0.85	0.80	0.83 22

Detecting ischemic lesions

Another neonatal brain MRI analysis task

Pixelwize binary classification task: {lesion, no lesion}

Application:

Automatic quantification of ischemic injury

Same challenges as before: sparse labelled training data.

Previous state of the art

Random forest classifier trained on hand-crafted features

- Manually created brain mask
- Superpixel segmentation
- 9 hand crafted features based on:
 - Superpixel volume,
 - o intensity,
 - spatial location,
 - distance to brain mask, etc.

Our model

Almost identical to approach to brain segmentation!

- Fully convolutional network (4 layer)
- Atrous convolutions
- Data augmentation
- 3x3 filters, 64-96-96-1 channels
- Adam optimizer

This is only an initial attempt: more improvements expected with improved model.

Sample results

Comparison with state of the art

Questions?