

Name: _	
Teacher:	
Class:	

FORT STREET HIGH SCHOOL

2010

PRELIMINARY SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 2 – PART B

Mathematics Extension I

TIME ALLOWED: 45 MINUTES

Outcomes Assessed	Questions	Marks
Deduces the equation of a locus and describes it geometrically.	1	
Chooses and applies appropriate algebraic techniques to solve problems involving quadratic functions.	2	

Question	1	2	Total	%
Marks	/18	/18	/36	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used
- Each new question is to be started in a new booklet
- Write in blue or black pen only

Question 1: Locus and the Parabola

(18 marks)

- 1. The point P(x, y) moves so that it is equidistant from the lines y = 2x 1 and y = 4 x. Find the equation of the locus of P. [4]
- 2. For the parabola $x^2 = 2y$, find

b. the focal length
$$a$$
 [1]

c. the focus
$$S$$
 [1]

- d. the equation of the directrix [1]
- 3. The point P(x, y) moves so that it is twice as far from K(2,3) as it is from L(-1,-4). Find the equation of the locus of P and describe it geometrically. [4]
- 4. For the equation $6x = y^2 + 18$:

a. Express this equation in the form
$$(y-k)^2 = 4a(x-h)$$
 [2]

b. Hence sketch the graph of this equation, clearly showing the vertex, focus and directrix. [4]

Question 2: The Quadratic Function

(18 marks)

1. Find the maximum and minimum values of $2x^2 - 5x + 3$ on the domain $-2 \le x \le 2$ [3]

2. Solve
$$x^4 + \frac{16}{x^4} = 17$$

- 3. Find the values of m for which y = mx 4 is a tangent to $y = x^2 x$ [3]
- 4. Find the value of m in the equation $3x^2 5x + m = 0$ such that one root is double the other. [3]
- 5. The roots of the quadratic equation $2x^2 11x + 5 = 0$ are α and β . Find the value of:
 - a. Write down the values of $\alpha + \beta$ and $\alpha\beta$. [1]
 - b. Find the value of $\alpha^2 + \beta^2$ [2]
- 6. The roots of the quadratic equation $3x^2 + 2x + 7 = 0$ are α and β . Find the equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.