"I guess I'm just hopelessly fascinated by the realities that you can assemble out of connected fragments."

Sequence read lengths remain limiting

Chr1: 249 Mb

249 Mb sequencing read

Current platforms:

- Sanger: A very small number (1-10,000) reads (700-1000 bp) but lowest error rates
- Illumina: A very large number (2 billion) of short reads (75-200 bp) but error rate 0.1-1%
- PacBio: A moderate number (~500,000) of long reads (~10 kb) but error rate as high as 14% (but have been falling).

Read Coverage

Length of genomic segment: G

Number of reads: n Coverage C = n L/G

Length of each read:

Therefore ..

Getting 1X coverage of the human genome requires:

 $N = c*G / L = 1(3x10^9) / 500 = 6$ million reads

And 10X requires 60 million reads!

Lander-Waterman statistics: questions

 As the coverage increases, more and more areas of the genome are likely to be covered. Ideally, you want to see 1 long contig per chromosome.

Genome Coverage

 If you sequence at 10x coverage how much of the genome will be sequenced at least 5 times?

Lander and Waterman (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. *Genomics* 2(3):231-239.

Lander-Waterman model: Poisson distribution

• a discrete frequency distribution that gives the probability of a number of independent events occurring in a fixed time.

$$f(k; \lambda) = \Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!},$$

Average coverage = lambda

Probability of getting k reads for a base given the average coverage lambda

Poisson Distribution

```
Po=e-c % not sequence % sequenced (1- Po)
0.37
         37%
                     63%
                     87.5%
0.135
           13.5%
0.05
          5%
                     95%
0.018
          1.8%
                     98.2%
0.0067
           0.6%
                      99.4%
0.0025
          0.25%
                     99.75%
0.0009
          0.09%
                     99.91%
0.0003
          0.03%
                     99.97
0.0001
          0.01%
                     99.99%
0.000045
           0.005%
                     99.995%
```

Example

- Average coverage = 5x
- Probability of a given base being sequenced 10 times is:

$$f(k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!},$$

 $5^{10}e^{-5}/10! = 0.018$ or about 2% of bases will have 10x coverage.

 If you sequence at 10x coverage how much of the genome will be sequenced at least 5 times?

$$1 - [f(0,10) + f(1,10) + f(2,10) + f(3,10) + f(4,10)] = 0.97$$

Determining sequence overlap

 Given a pair of fragments s₁ and s₂, do they belong together?

Yes, if a prefix of s_2 matches a suffix of s_1

• How would you compute such a match?

Overlap Detection

- Compute the best prefix-suffix alignments between each pair of fragments.
- Keep the "high-scoring" ones as evidence of true overlap.

Overlap detection problem

- Consider the number of fragments. The statistics say that we need good coverage (c=8, 10) to get most of the base-pairs.
 - -G = 3000Mb, L=500
 - Coverage LN/G = 10
 - $-N = 10*3*10^9/500 = 6*10^7$
 - Number of comparisons needed = $3.6 * 10^{15}$
 - Not good! (Only a small fraction are true overlaps)

 Repeats at read ends can be assembled in multiple ways.

Repeats complicate assembly!

In addition to anchoring repeats, paired end (or mate pair) reads also permit scaffolding

 Mate-pairs allow you to merge contigs into scaffolds

