COMP30027 Machine Learning Support Vector Machines

Semester 1, 2019
Jeremy Nicholson & Tim Baldwin & Karin Verspoor

© 2019 The University of Melbourne

Lecture Outline

- 1 Nearest Prototype Classification
- 2 Introduction to SVMs
 - Margins Classification Non-linear SVMs
- 3 Terrifying Maths
- 4 Multi-class SVMs
- 5 Appendix: More Terrifying Maths

Nearest Prototype Classification

- A parametric variant of nearest-neighbour classification is the nearest prototype, whereby we calculate the centroid of each class, and classify each test instance according to the class of the centroid it is nearest to
- The centroid is calculated simply by averaging the numeric values along each axis:

for a class
$$C_j = \{x_i : \langle a_{i,1}, a_{i,2}, ..., a_{i,D} \rangle \}$$
,
the prototype $P_j = \langle a_1^*, a_2^*, ..., a_D^* \rangle$
where each $a_k^* = \sum_{i=1}^M \frac{a_{i,k}}{M}$

Nearest Prototype Classification

• Classification is then based on simple Euclidean distance:

Nearest Prototype Classification

• Classification is then based on simple Euclidean distance:

Lecture Outline

- 1 Nearest Prototype Classification
- 2 Introduction to SVMs
 Hyperplane
 Margins
 Classification
 - Non-linear SVMs
- 3 Terrifying Maths
- 4 Multi-class SVMs
- 5 Appendix: More Terrifying Maths

What is a Support Vector Machine?

A support vector machine is a non-probabilistic binary linear classifier.

- A (linear) hyperplane-based classifier for a two-class classification problem
- The particular hyperplane it selects is the maximum margin hyperplane
- Soft margins allow some data points to violate the separating hyperplane
- A kernel function can be used to allow the SVM to find a non-linear separating boundary between two classes

What is a Support Vector Machine?

The goal is to find a hyperplane that separates two classes.

Linear separability

linearly separable

not linearly separable

Linear classifiers I

A separating hyperplane in D dimensions can be defined by a **normal** \boldsymbol{w} and an **intercept** \boldsymbol{b}

In 3-D (a plane):
$$cx + dy + ez + b = 0$$
, $\mathbf{w} = \langle c, d, e \rangle$
More generally, $\mathbf{w} = \langle w_1, w_2, ... w_m \rangle$
And a point $\mathbf{x} = \langle x_1, x_2, ... x_m \rangle$
So, the hyperplane equation is:

$$w_1x_1 + w_2x_2...w_mx_m + b = 0$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

(b is occasionally called w_0 , in which case it is also known as a **bias**) (These are column vectors, by convention, and the dot product is written $\mathbf{w}^T \mathbf{x} = w_1 x_1 + w_2 x_2 + \ldots + w_m x_m = \mathbf{w} \cdot \mathbf{x}$)

Linear classifiers II

- A linear classifier takes the form $f(x) = \mathbf{w}^T \mathbf{x} + b$
- In 2D, this is a line:

Linear classifiers III

- A linear classifier takes the form $f(x) = \mathbf{w}^T \mathbf{x} + b$
- In 3D, this is a plane:

For a k-NN classifier it was necessary to 'carry' the training data.

For a linear classifier, the training data is used to learn \boldsymbol{w} (the "weight vector") and then (mostly) discarded.

• One solution:

Another solution:

• Lots more solutions:

Margins

- For point A, we should be quite confident about the prediction of its class.
- For point C, a small change to the decision boundary might change our decision to change; we are less confident in the prediction.

 How can we rate the different decision boundaries to work out which is "best" (e.g. is A "better" than B)?

Optimal solution

For a given training set, we would like to find a decision boundary that allows us to make all correct and confident (far from the decision boundary) predictions on the training examples.

Some methods find a separating hyperplane, but not the optimal one. SVM finds an optimal solution.

- Maximizes the distance between the hyperplane and the "difficult points" close to decision boundary
- Intuition: if there are no points near the decision surface, then there are no very uncertain classification decisions

What is the best hyperplane?

Maximum margin solution: most stable under perturbations of the inputs

What is the best hyperplane? Soft margins

Possibly large margin solution is better even though one constraint is violated

Trade-off between the margin and the number of mistakes on the training data

SVM-based classification

- Associate one class as positive (+1), and one as negative (-1)
- Find the best hyperplane w and b, which maximises the margin between the positive and negative training instances (the model)
- To make a prediction for a test instance $t = t_1, t_2, ... t_n$:
 - Find the sign of $f(t) = \mathbf{w}^T \mathbf{t} + b$
 - Sometimes we assign "?" to instances within the margin
 - The value of f(t) can be transformed into a "probability", with some extra work

Learning the SVM

For small training sets, we can use a naive training method:

- Pick a plane w and b
- Find the worst classified sample y_i
 (Note: This step is computationally expensive for large data sets)
- Move plane w and/or b to improve the classification of y_i
- Repeat steps 2-3 until the algorithm converges

If the data isn't linearly separable

To obtain a non-linear classifier, we can transform our data by applying a mapping function, and then apply a linear classifier to the new feature vectors.

Kernel function

- Make non-separable problem separable.
- Map data into better representational space.

Lecture Outline

- 1 Nearest Prototype Classification
- 2 Introduction to SVMs

Margins Classification Non-linear SVMs

- 3 Terrifying Maths
- 4 Multi-class SVMs
- 5 Appendix: More Terrifying Maths

Formal specification of SVM

Let the input be a set of N training vectors $\{x_k\}_{k=1}^N$ and corresponding class labels $\{y_k\}_{k=1}^N$, where $x_k \in \mathbb{R}^D$ and $y_k \in \{-1,1\}$. Initially we assume that the two classes are linearly separable. The hyperplane separating the two classes can be represented as:

$$\boldsymbol{w}^T\boldsymbol{x}+b=0,$$

such that:

$$oldsymbol{w}^{\mathsf{T}} oldsymbol{x}_k + b \geq 1 \quad ext{ for } y_k = +1, \\ oldsymbol{w}^{\mathsf{T}} oldsymbol{x}_k + b \leq -1 \quad ext{ for } y_k = -1.$$

n.b.:

$$y_k(\mathbf{w}^T\mathbf{x}_k+b)-1\geq 0$$

"Support Vectors"

- Objective is to find the data points that act as the boundaries of the two classes.
- These are referred to as the "support vectors".
- They constrain the margin between the two classes.

Optimisation: Maximizing the margin I

- We want to choose w so that the margin $\frac{2}{||w||}$ is maximised, given that all points are on the correct side of the separating hyperplane $y_k(w^Tx_k + b) 1 \ge 0$
- It turns out that maximising $\frac{2}{||w||}$ is inconvenient (the partial derivatives are ugly)
- So we instead minimise $\frac{1}{2}||\boldsymbol{w}||^2 = \frac{1}{2}(w_1^2 + w_2^2 + \ldots + w_n^2)$ (note nicer derivatives)

Optimisation: Maximizing the margin II

- Given the relationship between the margin, and the normalisation factor of the weight vector, maximizing the margin corresponds to minimizing $\|\mathbf{w}\|$.
- Determination of model parameters corresponds to a convex quadratic optimisation problem. Any local solution is also a global optimum.

"Slack" — allow soft margins

Now, let's consider the case when the two classes are not (completely) linearly separable. We introduce slack variables $\{\xi_k\}_{k=1}^N$ and allow few points to be on the wrong side of the hyperplane at some cost. The modified objective function:

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{k=1}^{N} \xi_k$$
s.t. $y_k(\mathbf{w}^T \mathbf{x}_k + b) + \xi_k - 1 \ge 0$, $\xi_k \ge 0$, $\forall k \in \{1..N\}$

The parameter C must be tuned.

Solving the optimisation problem I

- Current state-of-the-art for solving constrained optimisation problems uses the method of Lagrange multipliers, where we introduce a value α_k for each constraint.
- In this case, that means a Lagrange multiplier α_k for every instance in the training set.

Solving the optimisation problem II

Solving the optimisation problem III

The classification function eventually becomes:

$$f(t) = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}^{T} t + b$$
$$b = y_{j} (1 - \xi_{j}) - \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$

- Most α_k are 0; the non-zero values correspond to **support** vectors.
- If we wish to recover w and b, we can do so by only considering the instances with non-zero α_k .
- Effectively, we can ignore every training instance not on the decision boundary at this point.

Solving the optimisation problem IV

If we need a non-linear SVM, we replace our dot product with the corresponding kernel function:

$$f(t) = \sum_{i} \alpha_{i} y_{i} K(x_{i}, t) + b$$

$$b = y_{j} (1 - \xi_{j}) - \sum_{i} \alpha_{i} y_{i} K(x_{i}, x_{j})$$

Everything else is the same!

Lecture Outline

- 1 Nearest Prototype Classification
- 2 Introduction to SVMs

Margins Classification Non-linear SVMs

- 3 Terrifying Maths
- 4 Multi-class SVMs
- 5 Appendix: More Terrifying Maths

Extending SVM to multiple classes

SVMs are inherently two-class classifiers.

Most common approaches to extending to multiple classes:

- one-versus-all (or one-versus-rest) classification choose class which classifies test data point with greatest margin
- one-versus-one classification (one classifier per pair of classes)
 choose class selected by most classifiers

Training time becomes a serious issue, because we need to build many SVMs...

Summary and Resources

- SVMs is a high-accuracy margin classifier
- Learning a model means finding the best separating hyperplane.
- Classification is built on projection of a point onto a hyperplane normal.
- SVMs have lots of parameters that need to be optimised (slow?).
- SVMs can be applied to non-linearly-separable data with an appropriate kernel function.

http://nlp.stanford.edu/IR-book/pdf/15svm.pdf
Mathematical Formulation:
https://www.youtube.com/watch?v=_PwhiWxHK8o

http://research.microsoft.com/pubs/67119/svmtutorial.pdf

Lecture Outline

- 1 Nearest Prototype Classification
- 2 Introduction to SVMs

Margins
Classification
Non-linear SVMs

- 3 Terrifying Maths
- 4 Multi-class SVMs
- 5 Appendix: More Terrifying Maths

Common kernel functions

Linear kernel

$$K(x_i, x_j) = x_i^T x_j$$

Polynomial kernel

$$K(x_i, x_j) = (x_i^T x_j + \theta)^d$$

Radial basis kernel

$$K(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|^2}{2\sigma^2})$$

A kernel function K must be continuous, symmetric, and have a positive definite gram matrix.

Watch a polynomial kernel in action: https://www.youtube.com/watch?v=3liCbRZPrZA

Why a kernel function, instead of a transformation? I

We could explicity transform our dataset into a higher-order representation. For example, the polynomial kernel of order 2 ϕ_{P2} transforms a vector of m dimensions into a vector of $C(m,2)+2m+1=\frac{m^2}{2}+\frac{3m}{2}+1$ dimensions:

$$x : \langle x_1, x_2, \dots x_m \rangle \to \phi_{P2}(x) : \langle 1, \sqrt{2}x_1, \sqrt{2}x_2, \dots, \sqrt{2}x_m, x_1^2, x_2^2, \dots x_m^2, \sqrt{2}x_1x_2, \sqrt{2}x_1x_3, \dots \sqrt{2}x_{m-1}x_m \rangle$$

Why a kernel function, instead of a transformation? II

- In training, we need to find the dot product between all pairs of training instances.
- This is a lot of calculations $(\mathcal{O}(DN^2)$, for D attributes and N training instances)
- We have now increased our number of attributes to $\mathcal{O}(D^2)$
-)-:

Why a kernel function, instead of a transformation? III

- A kernel function acts on the un-transformed vectors, but calculates the dot product of the transformed vectors
- For example, given 2D vectors $\mathbf{x}_i = [x_{i1}, x_{i2}]$ and $\mathbf{x}_j = [x_{j1}, x_{j2}]$:

$$K_{P2}(\mathbf{x}_{i}, \mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{\mathsf{T}} \mathbf{x}_{j})^{2}$$

$$= 1 + x_{i1}^{2} x_{i2}^{2} + 2x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^{2} x_{j2}^{2} + 2x_{i1} x_{j1} + 2x_{i2} x_{j2}$$

$$= [1, x_{i1}^{2}, \sqrt{2} x_{i1} x_{i2}, x_{i2}^{2}, \sqrt{2} x_{i1}, \sqrt{2} x_{i2}]^{\mathsf{T}} [1, x_{j1}^{2}, \sqrt{2} x_{j1} x_{j2}, x_{j2}^{2}, \sqrt{2} x_{j1}, \sqrt{2} x_{j1}]$$

$$= \phi_{P2}(\mathbf{x}_{i})^{\mathsf{T}} \phi_{P2}(\mathbf{x}_{j})$$

Why a kernel function, instead of a transformation? IV

- Using the polynomial kernel function, we need:
 - The dot product between the two vectors (which we needed to calculate anyway)
 - One extra addition
 - One extra exponentiation
- And we get the dot product between the higher-order vectors
- So, we effectively skip the cost of transformation step, plus all of the (many) extra calculations!

Why is the margin 2/||w||?

- Since $\mathbf{w}^T \mathbf{x} + b = 0$ and $c(\mathbf{w}^T \mathbf{x} + b) = 0$ define the same plane, we can choose the normalisation of \mathbf{w}
- Choose normalisation such that ${m w}^T{m x}_+ + b = +1$ and ${m w}^T{m x}_- + b = -1$ for positive / negative support vectors, respectively
- Then the margin is given by $\frac{\mathbf{w}}{\|\mathbf{w}\|}(x_+ x_-) = \frac{\mathbf{w}'(x_+ x_-)}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$

Another look at normalisation and the margin

$$y(x) = \mathbf{w}^T \mathbf{x} + b$$

Decision surface (red) is perpendicular to w; its displacement from origin is controlled by b

The signed orthogonal distance of a point x from the decision surface is y(x)/||w||

We push the margin in/out by rescaling w.

The margin moves out with $\frac{1}{\|\mathbf{w}\|}$.

Constrained optimisation I

Given the constrained optimisation problem:

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^{2}$$
s.t. $y_{k}(\mathbf{w}^{T} \mathbf{x}_{k} + b) - 1 \ge 0$

$$\forall k \in \{1..N\}$$

Constrained optimisation II

We construct a Lagrangian (called the "primal") that we need to minimise:

$$\mathcal{L} : \frac{1}{2} ||\boldsymbol{w}||^2 - \sum_{i=1}^{N} \alpha_i y_i (\boldsymbol{w} \cdot \boldsymbol{x}_i + b) + \sum_{i=1}^{N} \alpha_i$$

All of the partial derivatives must equal 0 to find a minimum: $\frac{\partial \mathcal{L}}{\partial \mathbf{w}}$, $\frac{\partial \mathcal{L}}{\partial b}$, $\frac{\partial \mathcal{L}}{\partial \alpha_k}$ (for all $k \in \{1..N\}$ From the first two partial derivatives, we can immediately observe $\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$ and $\sum_i \alpha_i y_i = 0$; now we have a *new* set of constraints!

Constrained optimisation III

We construct an equivalent (the "Wolfe dual") formulation through substitution, except now we need to maximise:

$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

Constrained optimisation IV

If we allow soft margins, we have:

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{k=1}^{N} \xi_k
\text{s.t. } y_k (\mathbf{w}^T \mathbf{x}_k + b) + \xi_k - 1 \ge 0,
\xi_k \ge 0, \quad \forall k \in \{1..N\}$$

Constrained optimisation V

We can again construct two (equivalent) Lagrangians, now with more multipliers (μ) for the extra conditions over the slack variables (ξ). The primal:

$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^N \xi_i - \sum_{i=1}^N \alpha_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 + \xi_i] - \sum_{i=1}^N \mu_i \xi_i$$

And the dual, where we modify the conditions $\alpha_k \geq 0$ to $0 \leq \alpha_i \leq C$ (but note that the ξ terms are nicely absent):

$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

Constrained optimisation VI

And if we have a non-linear SVM? The dot product is replaced by the kernel function:

$$\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

Constrained optimisation VII

The most popular solver is Sequential Minimal Optimisation, which attempts to solve the above (dual) formulation numerically by breaking the problem down:

- Choose a Lagrange multiplier which violates the Karush-Kuhn-Tucker conditions (KKT) (remember that a Lagrange multiplier corresponds to an instance)
- Choose a second Lagrange multiplier whose value is neither 0 nor C
- Optimise for just these two multipliers
- Iterate until all multipliers pass the KKT conditions (within tolerance ϵ)

John Platt (1998) Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. Technical Report.