

MF2070

Workshop 2 The Quantitative Approach

No Questions to the Workshops...

- You ask questions at the seminars to be able to write the report.
- To be able to ask questions you have to understand the basics of the theory of science, quantitative methods and qualitative methods.
- These workshops will support this, but are only as good as you make them.

Outline

- Quantitative Data Gathering
- Quantitative Data Analysis

The Quantitative Extreme According to the Previous Lecture

objectively

Inferences to be evaluated by other experts

Question to (try to) answer objectively

Methods?

Data Gathering

Ways of gathering data?

- (Structured/Controlled) Observation
- (Structured) Interview
- (Structured) Questionnaire

Ways of gathering data?

- (Structured/Controlled) Observation
- (Structured) Interview
- (Structured) Questionnaire

Focus:

Objective Measurements of an Objective Reality

An Example

Question: Is a particular type of machine "unsafe"?

- Count reports on workplace fatalities.
- Ask each worker how many incidents of a number of clearly listed types have occurred.

Study designed (e.g. order of questions) not to be provocative, confusing or otherwise open to dispute.

Methodology 1: The Survey

- Studies the characteristics of a sample of a population and draws inferences, i.e. a descriptive methodology.
- Does not manipulate or arrange for events to happen.
- Widely assumed to only be usable for hypothesis formulation.
 The reason being that you cannot define a confidence level for an established relationship between a cause and an effect.

Methodology 1: The Survey

Basically you consider threats through bias and unreliability.

What can go wrong?

An Example

Question: Is a particular type of machine "unsafe"?

- Count reports on workplace fatalities.
- Ask each worker how many incidents of a number of clearly listed types have occurred.

Study designed (e.g. order of questions) not to be provocative, confusing or otherwise open to dispute.

Methodology 1: The Survey

Basically you consider threats through bias and unreliability.

What can be / is done about it?

• **Hypothesis testing** is done through experiments, i.e. a test involving **manipulation** of a variable.

• **Hypothesis testing** is done through experiments, i.e. a test involving **manipulation** of a variable.

 Hypothesis testing is done through experiments, i.e. a test involving manipulation of a variable.

What can go wrong?

 Hypothesis testing is done through experiments, i.e. a test involving manipulation of a variable.

What can go wrong?

Uncontrollable factors

• Researchers are exploring whether a **new variant** of a machine is more "unsafe" than the old variant.

- Researchers are exploring whether a new variant of a machine is more "unsafe" than the old variant.
- They choose a couple of plants for an experiment study, and introduce the new variant to select workers at these plants.

- Researchers are exploring whether a new variant of a machine is more "unsafe" than the old variant.
- They choose a couple of plants for an experiment study, and introduce the new variant to select workers at these plants.
- One researcher is concerned about the ethics of this approach and repeatedly stresses that the machine might be unsafe to the selected workers.

- Researchers are exploring whether a new variant of a machine is more "unsafe" than the old variant.
- They choose a couple of plants for an experiment study, and introduce the new variant to select workers at these plants.
- One researcher is concerned about the ethics of this approach and repeatedly stresses that the machine might be unsafe to the selected workers.
- This may be the real reason for any lack of an observed "effect".

 Hypothesis testing is done through experiments, i.e. a test involving manipulation of a variable.

What can go wrong?

Uncontrollable factors

 Hypothesis testing is done through experiments, i.e. a test involving manipulation of a variable.

What can go wrong?

• Researchers are exploring whether a **new variant** of a machine is more "unsafe" than the old variant.

- Researchers are exploring whether a new variant of a machine is more "unsafe" than the old variant.
- Some incident reports refer to avulsions, which some (nonnative English speaking) researchers thinks are equivalent to abrasions.

- Researchers are exploring whether a new variant of a machine is more "unsafe" than the old variant.
- Some incident reports refer to avulsions, which some (nonnative English speaking) researchers thinks are equivalent to abrasions.
- This may be the real reason for any lack of an observed "effect".

 Hypothesis testing is done through experiments, i.e. a test involving manipulation of a variable.

What can go wrong?

• **Hypothesis testing** is done through experiments, i.e. a test involving **manipulation** of a variable.

What can go wrong?

Confounding / Uncontrollable Factors (Example)

- Researchers are exploring whether a new variant of a machine is more "unsafe" than the old variant.
- The new variant can be left unsupervised for longer stretches of time, meaning that workers spend more time on other tasks.

Confounding / Uncontrollable Factors (Example)

- Researchers are exploring whether a new variant of a machine is more "unsafe" than the old variant.
- The new variant can be left unsupervised for longer stretches of time, meaning that workers spend more time on other tasks.
- The study is conducted during the summer, when workers walk through the plant more often for breaks outside.

Confounding / Uncontrollable Factors (Example)

- Researchers are exploring whether a new variant of a machine is more "unsafe" than the old variant.
- The new variant can be left unsupervised for longer stretches of time, meaning that workers spend more time on other tasks.
- The study is conducted during the summer, when workers walk through the plant more often for breaks outside.
- The risks associated with other tasks or places in the factory may be the explanation for any "effect".

• **Hypothesis testing** is done through experiments, i.e. a test involving **manipulation** of a variable.

What can go wrong?

 Hypothesis testing is done through experiments, i.e. a test involving manipulation of a variable.

What can go wrong?

What can be / is done about it?

 Hypothesis testing is done through experiments, i.e. a test involving manipulation of a variable.

Replicate, Randomize, Control...?

Replicate, Randomize, Control...?

Replicate, Randomize, Control...?

Replicate, Randomize, Control...?

Replicate, Randomize, Control...?

Information?

Internal and External Validity

- The **internal validity** of a study is basically its ability to measure what it says it measures.
- The **external validity** of study is basically the possibility to generalize the findings of the study.

Methodology 3: The Quasi-Experiment

- An "experiment" in which treatment or control is not assigned randomly.
- This is a risk, so why would one do this?

Methodology 3: The Quasi-Experiment

- An "experiment" in which treatment or control is not assigned randomly.
- This is a risk, so why would one do this?

Problems:

- Practical
- Ethical

Methodology 3: The Quasi-Experiment

 An "experiment" in which treatment or control is not assigned randomly.

• This is a risk, so why would one do this?

Problems:

Validity:

Practical

Artificial vs Natural

Ethical

Data Analysis

Statistics, Statistics and ... Statistics

- Descriptive Statistics is the development of indices from raw data.
- Inferential statistics are concerned with two major type of problems:
 - The estimation of population parameters.
 - The testing of statistical hypotheses.

This is a large area of study...

Measures of ...

- Central Tendency Mean, Median, Mode...
 - Summarizes a large set of data into a single value.
 - Descriptive, Inferential (Comparative)
- Variability Range, Interquartile Range, Standard Deviation...
 - Descriptive (The degree to which the scores are spread out or clustered together), Inferential (How accurately any individual score or sample represents the entire population)
- Probability...

Probability

Example 1

Probability that the observed values after the treatment could be from the original population?

Example 2

Size of sample gives probability that observed strength of effect is representative!

Beware...

- The offhand use of statistics by researchers.
 - Is the type of data appropriate?
 - Is the sample size correct?
- Is the goal to describe, test or estimate?
 - Requires different types of statistics.