Numerical explorations with R

means, median, SD; use R as calc

Amos Thairu

January 17, 2015

1/8

Import data

- > #import dataset
- > data <- read.csv("bwmal.csv")</pre>

Import data

```
> #import dataset
> data <- read.csv("bwmal.csv")
> dim(data) #Returns the dimension of the dataset
[1] 791 12
```

Import data

> #import dataset

> data <- read.csv("bwmal.csv")</pre>

```
[1] 791 12

> names(data) #Returns variable names of the dataset

[1] "X" "matage" "mheight" "gestwks" "sex" "left" "smoke" "pfplacen" "parity" "workload" "matagegp" "gestwks" "sex" "left" "smoke" "pfplacen" "parity" "workload" "matagegp" "gestwks" "sex" "left" "smoke" "pfplacen" "parity" "workload" "matagegp" "gestwks" "sex" "left" "smoke" "smoke"
```

> dim(data) #Returns the dimension of the dataset

View data

> head(data) #Returns first six rows of dataset

	Х	matage	mheight	gestwks	sex	bweight	smoke	pfplacen	parity
1	1	26	1.575	40	0	3.11	0	0	3
2	2	23	1.529	40	0	2.65	0	0	1
3	3	18	1.540	40	1	3.41	0	0	0
4	4	25	1.581	40	1	2.99	0	0	2
5	5	25	1.555	40	1	3.16	0	0	1
6	6	21	1.561	40	1	2.82	0	0	1

gestcat

1	2
2	2
3	2
4	2
5	2
6	2

- > #some data explorations
- > mean(data\$mheight)

[1] 1.543273

- > #some data explorations
- > mean(data\$mheight)
- [1] 1.543273
- > var(data\$mheight)
- [1] 0.002884892

- > #some data explorations
- > mean(data\$mheight)
- [1] 1.543273
- > var(data\$mheight)
- [1] 0.002884892
- > sd(data\$matage)
- [1] 5.139645

```
> #some data explorations
```

- > mean(data\$mheight)
- [1] 1.543273
- > var(data\$mheight)
- [1] 0.002884892
- > sd(data\$matage)
- [1] 5.139645
- > median(data\$matage)
- [1] 23

> summary(data\$matage) #sumarize continous variable

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 13.00 20.00 23.00 23.78 27.00 46.00
```

Explorations for categorical variables

```
> table(data$sex) #summarize categorical variable
    0    1
381 410
```

Explorations for categorical variables

```
> table(data$sex) #summarize categorical variable
0 1
381 410
> table(data$sex,data$smoke) #cross-tabulation of two category
0 1
0 346 35
1 378 32
```

Explorations for categorical variables

```
> table(data$sex) #summarize categorical variable
381 410
> table(data$sex,data$smoke) #cross-tabulation of two categors
 0 346 35
  1 378 32
> with(data, table(sex,smoke)) #Alternatively, with variable 1
   smoke
sex
 0 346 35
  1 378 32
```

Use R as calculator

```
> #enter the expression that we want evaluated and hit enter
> 1000-2*10^2/(8+2)
[1] 980
> #Built-in functions:
> log(1.4) #returns the natural logarithm of the number 1.4
[1] 0.3364722
> log10(1.4) # returns the log to the base of 10
[1] 0.146128
> sqrt(16) #returns the square root of 16
```

[1] 4

Calculations with assignment statements

- > #we can store a value(s) under some variable name using the
- > #("less than" followed by a hyphen)
- > x <- 2.5
- > #to know what is in a variable type the variable name
- > x
- [1] 2.5
- > #can store a computation under a new variable name or change
- > y <- 3*log(x)