

SINGLE-CELL TRANSCRIPTOMICS WITH R

Normalization and scaling

Deepak Tanwar

March 18-20, 2025

Adapted from previous year courses

Feedback from Geert van Geest

Learning objectives

Understand the importance of Normalization and Scaling Identify and apply Normalization techniques
Understand Scaling and Transformation

Normalization and scaling

Understanding the differences

Understanding the differences

Goal of normalization

Remove technical noise while preserving biological signal

- Library size

Understanding the differences

Normalization we apply

UMI (Unique Molecular Identifiers):

- Cells with **extremely high UMI counts** could be **doublets** (two or more cells captured in a single droplet).
- Cells with very low UMI counts might be low-quality or empty droplets.

Detected genes:

- A healthy cell will express a moderate number of genes.
- Very low gene count could indicate a dead cell or an empty droplet.
- High gene count could indicate a doublet.

Normalization techniques applied in scRNA-seq

% Mitochondrial UMI:

- 1. Mitochondrial genes are usually expressed at low levels.
- High mitochondrial RNA percentage (>10-20%) indicates stressed or dying cells.

% Ribosomal UMI:

1. High ribosomal content may suggest technical artifacts or certain cell types (e.g., rapidly dividing cells).

% Globin UMI:

- 1. In blood samples, **high globin content** comes from red blood cells (RBCs).
- 2. Filtering out these cells is often necessary when focusing on immune or other cell types.

High UMI count + high gene count → **Doublet suspicion**High mitochondrial percentage → **Apoptotic or stressed cell**Low gene count + low UMI → **Low-quality or empty droplet**High ribosomal percentage → **Potential technical artifact**

Scaling

Multiply each UMI count by a cell specific factor to get all cells to have the same UMI counts

Different cells have different amounts of mRNA; this could be due to differences between cell types or variation within the same cell type depending on how well the chemistry worked in one drop versus another.

Scaling: standardize range, mean and variance

Transformation

- -Simple transformations
- -Pearson residuals

Transformation: Simple transformations

Raw data

	Cell Type A	Cell Type B	Δ			
Gene 1	1	2	1			
Gene 2	100	200	100			
Gene 3	5	25	20			
Gene 4	400	800	400			
Gene 5	10	60	50			

Transformation : Simple transformations

Raw data			Log ₂ transform			
	Cell Type A	Cell Type B	Δ	Cell Type A	Cell Type B	Δ
Gene 1	1	2	1	0.00	1.00	1.00
Gene 2	100	200	100	6.64	7.64	1.00
Gene 3	5	25	20	2.32	4.64	2.32
Gene 4	400	800	400	8.64	9.64	1.00
Gene 5	10	60	50	3.32	5.91	2.58

Transformation : Simple transformations

Raw data			Log ₂ transform		Square root transform				
	Cell Type A	Cell Type B	Δ	Cell Type A	Cell Type B	Δ	Cell Type A	Cell Type B	Δ
Gene 1	1	2	1	0.00	1.00	1.00	1.00	1.41	0.41
Gene 2	100	200	100	6.64	7.64	1.00	10.00	14.14	4.14
Gene 3	5	25	20	2.32	4.64	2.32	2.24	5.00	2.76
Gene 4	400	800	400	8.64	9.64	1.00	20.00	28.28	8.28
Gene 5	10	60	50	3.32	5.91	2.58	3.16	7.75	4.58

Transformation: Simple transformations

- -Log transformation
- -Square root transformation

$$y_{ij} = f(x_{ij})$$

i: cell

j: gene

Quiz

Which of the simple transformation methods transform each measurements individually?

- 1. Log
- 2. Square root
- 3. None
- 4. Both

Transformation: Pearson residuals

$$y_{ij} = w_j * x_{ij}$$

w: weight

How do we choose weights? 1/sqrt(mean of the gene)

Transformation: Pearson residuals

Instead of transforming each measurements individually, Pearson residuals apply a weight to all measurements of a gene

Transformation: Pearson residuals

Raw data

Cell A: 75%, Cell B: 25%

Log transform

Cell A: 75%, Cell B: 25%

Square root transform

Cell A: 75%, Cell B: 25%

Pearson Residuals

Cell A: 75%, Cell B: 25%

	Cell Type A	Cell Type B	Δ
Gene 1	1.00	2.00	1.00
Gene 2	100.00	200.00	100.00
Gene 3	5.00	25.00	20.00
Gene 4	400.00	800.00	400.00
Gene 5	10.00	60.00	50.00

	Cell Type A	Cell Type B	Δ
	0.00	1.00	1.00
į	6.64	7.64	1.00
i	2.32	4.64	2.32
	8.64	9.64	1.00
i	3.32	5.91	2.58

Cell Type A	Cell Type B	Δ
1.00	1.41	0.41
10.00	14.14	4.14
2.24	5.00	2.76
20.00	28.28	8.28
3.16	7.75	4.58

_			
	Cell Type A	Cell Type B	Δ
	-0.83	1.44	2.28
	-8.33	14.43	22.77
	-3.69	6.39	10.08
	-16.67	28.87	45.53
	-5.87	10.16	16.03

sctransform

Summary

Normalization: Adjust UMI counts, mitochondrial, ribosomal, globin RNA percentages

Goal: Remove technical noise, preserve biological signals

Scaling: Standardize range, mean, variance

Transformations: Log, square root, Pearson residuals

Outcome: Reliable, meaningful scRNA-seq data analysis

Thank you

sib.swiss

