

มหาวิทยาลัยเทคในโลยีพระจอมเกล้าธนบุรี

การสอบปลายภาคการศึกษา 2/2553

ข้อสอบวิชา ENE/EIE 104 ทฤษฎีวงจรไฟฟ้า

Electric Circuat Theory.

รหัส

นักศึกษาชั้นปีที่ 1 ภาควิชาวิศวกรรมอิเล็กทรอนิกส์ และโทรคมนาคม

สอบวันจันทร์ที่ 7 มีนาคม พ.ศ. 2554

เวลา 9:00-12:00 น.

คำสั่ง

ชื่อ-สกุล

- 1) ไม่อนุญาตให้นำเอกสาร ตำราต่าง ๆ เข้าห้องสอบ
- 2) อนุญาตให้ใช้เครื่องคิดเลข
- 3) ให้ทำในข้อสอบทั้งหมด
- 4) ให้เขียนชื่อ-นามสกุล และรหัสประจำตัวนักศึกษา ลงในกระดาษที่ต้องการให้ตรวจทุกแผ่น
- 5) ถ้าข้อสอบมีการตกหลุ่น ให้พิจารณาเอง และเขียนใน้ตลงด้วย
- 6) ข้อสอบทั้งหมด 5 ข้อ รวม 100 คะแนนเต็ม

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาที่ทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พันสภาพการเป็นนักศึกษา

ข้อที่	คะแนนเต็ม	ม คะแนนที่ได้	
1	20		
2	10		
3	20		
4	20		
5	20		
คะแนนรวม	90		

ออกข้อสอบโดย อ. เดชวุฒิ ชาวปริสุทธิ์ โทร. 02-470-9070

ผศ.ดร.วุฒิชัย อัศวินชัยโชติ หัวหน้าภาควิชาฯ

1.] Find (20 คะแนน)

1.1.)
$$i_L(0^-) =$$

1.2.)
$$i_L(\infty) =$$

1.3.)
$$v_C(0^-)$$

1.4.)
$$v_{\mathcal{C}}(\infty)$$

1.5.)
$$v_C(t)$$
 for $t > 0$

$$R \geqslant \begin{array}{c} - v_C + \\ \downarrow \\ C \\ \downarrow \\ L \geqslant v_L \\ - \end{array}$$

$$\alpha = \frac{1}{2RC} \qquad \omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$\alpha = \frac{R}{2L}$$

$$\alpha = \frac{R}{2L} \qquad \omega_0 = \frac{1}{\sqrt{LC}}$$

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

Damping	Natural Response Equations	Coefficient Equations Overdamped
Overdamped $(\alpha > \omega_0)$	$x(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$	$\begin{vmatrix} x(0) = A_1 + A_2 \\ \frac{dx}{dt} \Big _{t=0^+} = A_1 s_1 + A_2 s_2 \end{vmatrix}$
Critically damped $(\alpha = \omega_0)$	$x(t) = e^{-\alpha t} \left(B_1 t + B_2 \right)$	$\begin{vmatrix} x(0) = B_2 \\ \frac{dx}{dt} \Big _{t=0^+} = B_1 - \alpha B_2 \end{vmatrix}$
Underdamped $(\alpha < \omega_0)$	$x(t) = e^{-\alpha t} (C_1 \cos \omega_d t + C_2 \sin \omega_d t)$ Note: $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$	$\begin{vmatrix} x(0) = C_1 \\ \frac{dx}{dt} \Big _{t=0^+} = -\alpha C_1 + \omega_d C_2 \end{vmatrix}$

Damping	Step Response Equations	Coefficient Equations Overdamped
Overdamped $(\alpha > \omega_0)$	$x(t) = X_f + A_1 e^{s_1 t} + A_2 e^{s_2 t}$	$x(0) = X_f + A_1 + A_2$
$(u > w_0)$		$\left \frac{dx}{dt} \right _{t=0^+} = A_1 S_1 + A_2 S_2$
Critically	$x(t) = X_f + e^{-\alpha t} \left(B_1 t + B_2 \right)$	$x(0) = X_f + B_2$
$\mathbf{damped} \\ (\alpha = \omega_0)$		$\frac{dx}{dt}\bigg _{t=0^+} = B_1 - \alpha B_2$
Underdamped	$x(t) = X_f + e^{-\alpha t} (C_1 \cos \omega_d t + C_2 \sin \omega_d t)$	$x(0) = X_f + C_1$
$(\alpha < \omega_0)$	Note: $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$	$\left \frac{dx}{dt} \right _{t=0^+} = -\alpha C_1' + \omega_d C_2'$

__เลขที่นั่งสอบ_

รหัส____

2.] Find current i in the circuit when $v_s(t)=50cos200t$ V. (10 คะแนน)

ข้	้อสอบ	หน้า5/7	
นั้งสอง	Li		

4	_				
Ŋ	อ	-31	ก	ล	

รหัส

3.] Two loads connected in parallel draw a total of 2.4 kW at 0.8 pf lagging from a 120-V rms, 60-Hz line. One load absorbs 1.5 kW at a 0.707 pf lagging.

Determine: (20 คะแนน)

- 3.1.) The pf of the second load
- 3.2.) The parallel element required to correct the pf to 0.9 lagging for the two loads.

4.] Find (20 คะแนน)

- 4.1.) the rms magnitude and the phase angle of \mathbf{I}_{aA} from a single-phase equivalent circuit
- 4.2.) the rms magnitude and the phase angle of \mathbf{I}_{CA}
- 4.3.) the average power delivered by the three-phase source

ชื่อ-สกุล ____

รหัส

__เลขที่นั่งสอบ

5.] Find the h parameters of the two-port circuit (20 คะแนน)

$$\begin{bmatrix} \mathbf{V}_{1} = \mathbf{t}_{11} \mathbf{V}_{2} - \mathbf{t}_{12} \mathbf{I}_{2} \\ \mathbf{I}_{1} = \mathbf{t}_{21} \mathbf{V}_{2} - \mathbf{t}_{22} \mathbf{I}_{2} \end{bmatrix}$$