Algorithms for Computing Discrete Logarithms

Prof. Ashok K Bhateja

IIT Delhi

Discrete logarithm problem

- Definition DLP: Given a prime p, a generator α of Z_p^* , and an element $\beta \in Z_p^*$, find the integer x, $0 \le x \le p$ 2, s.t., $\alpha^x \equiv \beta \pmod{p}$.
- Let p = 97. Z_{97}^* is a cyclic group of order 96. A generator of Z_{97}^* is $\alpha = 5$.
 - Since $5^{32} \equiv 35 \pmod{97}$ therefore $\log_5 35 = 32$ in \mathbb{Z}_{97}^* .
- Definition GDLP: Given a finite cyclic group G of order n, a generator α of G, and an element $\beta \in G$, find the integer x, $0 \le x \le n 1$, such that $\alpha^x \equiv \beta$.

Algorithms for solving Discrete Log Problem

- **Exhaustive** search
- Baby-step giant-step algorithm
- Pollard's rho algorithm for logarithms
- Pohlig-Hellman algorithm
- Index-calculus algorithm
- Number Field Sieve

Exhaustive search

- Successively compute α , α^2 , ..., α^n
- This method takes O(n) multiplications, where n is the order of α
- \blacksquare Inefficient if n is large

Baby-step giant-step algorithm

- Developed by Shanks
- Let G be a cyclic group of order n, α is a generator of G.
- $-m = \lceil \sqrt{n} \rceil$
- If $\beta = \alpha^x$, then write x = qm + r, where $0 \le q$, r < m.
- Therefore $\alpha^x = \alpha^{qm} \alpha^r$ i.e., $\beta \alpha^{-mq} = \alpha^r$
- **■** The algorithm
 - Baby Step: If for some r, $\beta \alpha^{-r} = 1$, then $\beta = \alpha^r$
 - Giant step: Find $\beta \alpha^{-mq}$; q = 0, 1, 2, ...

Compare this with α^r ; r = 0, 1, 2, ... till $\beta \alpha^{-mq} = \alpha^r$

$$x = mq + r$$

Baby-step giant-step algorithm

Given: a generator α of a cyclic group Z_p^* of order n and an element β in Z_p^* .

Set
$$m \leftarrow \lceil \sqrt{n} \rceil$$

for
$$r = 0$$
 to $m - 1$

compute $\alpha^r \pmod{p}$ and store the pair (r, α^r) in a table

Sort this table by second component (use hashing)

compute α^{-m}

$$\gamma \leftarrow \beta$$

for
$$q = 0$$
 to $m - 1$

if $\gamma = \alpha^r$ for some r in the table

return
$$qm + r$$

else
$$\gamma \leftarrow \gamma \cdot \alpha^{-m} \mod p$$

Ashok K Bhateja IIT Delhi

Example: Let p = 113, $\alpha = 3$ and $\beta = 57$

$$m = \lceil \sqrt{112} \rceil = 11$$

r	0	1	2	3	4	5	6	7	8	9	10
$3^r \mod 113$	1	3	9	27	81	17	51	40	7	21	63

Sort by second row

r	0	1	8	2	5	9	3	7	6	10	4
$3^r \mod 113$	1	3	7	9	17	21	27	40	51	63	81

Find $\alpha^{-1} = 3^{-1} \mod 113 = 38$, $\alpha^{-m} = 58$, $\gamma = \beta \alpha^{-mq} \mod 113$ for q = 0, 1, 2, ... is computed until a value in the second row of the table is obtained.

q	0	1	2	3	4	5	6	7	8	9
$\gamma = 57.58^q \bmod 113$	57	29	100	37	112	55	26	39	2	3

Since
$$\beta \alpha^{-mq} \mod 113 \equiv 3 = \alpha^{-1}, mq + r = 11 \times 9 + 1 = 100$$

$$\log_{3} 57 \pmod{113} = 100$$

Time complexity of Baby-step giant-step algorithm

- Memory (storage) requirement $O(\sqrt{n})$
- Construction of table: It requires $O(\sqrt{n})$ multiplications
- Sorting the table: Sort the table by second component, it requires $O(\sqrt{n} \lg n)$ comparisons
- For all q where $0 \le q < m$, it is required to search α^r , which is equal to γ . It requires $O(\sqrt{n})$ multiplications and $O(\sqrt{n})$ table look-ups
- The running time of the algorithm is $O(\sqrt{n})$ multiplications.

Pollard's rho algorithm for Discrete Logarithms

- Pollard an elegant algorithm proposed in 1978
- Pollard's rho algorithm for computing discrete logarithms is a randomized algorithm
- Its expected running time is same as the baby-step giant-step algorithm i.e. $O(\sqrt{n})$
- It requires a negligible amount of storage.
- Therefore, it is far preferable to baby-step giant-step algorithm for problems of practical interest.

Pollard's rho algorithm for Discrete Logarithms

- Let G be a cyclic group of order n, with generator α ; $\beta \in G$
- Find integers a, b, A, B s.t. $\alpha^a \beta^b = \alpha^A \beta^B$ i.e., the equation (B - b) x = (a - A) where $x = \log_{\alpha} \beta$
- For finding such a, b, A, B, Floyd's cycle-finding algorithm can be used which finds a cycle in the sequence $x_i = \alpha^{a_i} \beta^{b_i}$. i.e., find two group elements x_i and x_{2i} such that $x_i = x_{2i}$.
- $\blacksquare \text{ Hence } \alpha^{a_i} \beta^{b_i} = \alpha^{a_{2i}} \beta^{b_{2i}} \Rightarrow \beta^{b_i b_{2i}} = \alpha^{a_{2i} a_i}$
- By taking log both sides $(b_i b_{2i}) \log_{\alpha} \beta = (a_{2i} a_i) \mod n$ provided $b_i \neq b_{2i} \pmod{n}$. (note $b_i \equiv b_{2i} \mod n$ occurs with probability ≈ 0)
- Solution to this equation can be easily obtained using Euclidean algorithm.

Floyd's cycle-finding

Floyd's cycle-finding algorithm: For any function f that maps a finite set S to itself, and any initial value x_0 in S, the sequence of iterated function values

$$x_0, x_1 = f(x_0), x_2 = f(x_1), \dots, x_i = f(x_{i-1}), \dots$$

must eventually use the same value twice: there must be some pair of distinct indices i and j such that $x_i = x_j$.

 \blacksquare Cycle detection is the problem of finding *i* and *j*, given *f* and x_0 .

Pollard's rho algorithm for Discrete Logarithms

- Divide the group G into three pairwise disjoint subsets S_0 , S_1 and S_2 with $G = S_0 \cup S_1 \cup S_2$ roughly equal in size.
- \blacksquare Let $f: G \to G$ defined by

$$x_{i+1} = f(x_i) = \begin{cases} \beta \cdot x_i & \text{if } x_i \in S_0 \\ x_i^2 & \text{if } x_i \in S_1 \\ \alpha \cdot x_i & \text{if } x_i \in S_2 \end{cases}$$

- Choose a random integer $x_0 \in \{1, 2, ..., n\}$
 - The initial term $x_0 = \alpha^{a_0} \beta^{b_0}$ for random values of $a_0 \& b_0$
 - $-a_0 \& b_0$ may be zero i.e. $x_0 = 1$
- Compute the sequence $\{x_i\}_{i\in N}$ using $x_{i+1}=f(x_i)$.

- $x_i = \alpha^{a_i} \beta^{b_i} \pmod{n}$ for $i \ge 0$
- The values of a_i and b_i can be obtained by

Define
$$a_{i+1} = \begin{cases} a_i & \text{if } x_i \in S_0 \\ 2a_i \mod n & \text{if } x_i \in S_1 \\ a_i + 1 \mod n & \text{if } x_i \in S_2 \end{cases}$$

and
$$b_{i+1} = \begin{cases} b_i + 1 \mod n & if \ x_i \in S_0 \\ 2b_i \mod n & if \ x_i \in S_1 \\ b_i & if \ x_i \in S_2 \end{cases}$$

Find two group elements x_i and x_{2i} using Floyd's cycle finding algorithm such that $x_i = x_{2i}$

$$x_i = x_{2i}$$
 i.e. $\alpha^{a_i} \beta^{b_i} = \alpha^{a_{2i}} \beta^{b_{2i}} \pmod{n}$

$$\therefore \beta^{b_i - b_{2i}} = \alpha^{a_{2i} - a_i} \pmod{n}$$

$$(b_i - b_{2i}) \log_{\alpha} \beta \equiv (a_{2i} - a_i) \bmod n$$

$$\therefore \log_{\alpha} \beta \equiv (b_i - b_{2i})^{-1} (a_{2i} - a_i) \bmod n$$

provided
$$b_i \not\equiv b_{2i} \pmod{n}$$

Floyd's cycle-finding algorithm

- One starts with the pair (x_1, x_2) and iteratively computes (x_i, x_{2i}) from the previous (x_{i-1}, x_{2i-2}) , until $x_m = x_{2m}$ for some m.
- The expected running time of this method is $O(n^{1/2})$.

Pollard's rho algorithm for computing discrete logarithms

Given: a generator α of a cyclic group G of order n, and an element $\beta \in G$

Set
$$x_0 = 1$$
, $a_0 = 0$, $b_0 = 0$
for $i = 1, 2, ...$
find x_i , a_i , b_i , and x_{2i} , a_{2i} , b_{2i}
if $x_i = x_{2i}$
set $r = b_i - b_{2i} \mod n$.
if $r = 0$ then terminate the algorithm with failure else
return $x = r^{-1} (a_{2i} - a_i) \mod n$

In rare case it terminates with failure, the procedure can be repeated by selecting random integers a_0 , b_0 in the interval [1, n-1], and $x_0 = \alpha^{a_0} \beta^{b_0}$

Pollard's rho algorithm: Example

Let $\alpha = 5$ be a generator of a cyclic group Z_{2017}^* , $\beta = 1736$ Divide the set $S = \{1, 2, ..., 2016\}$ into 3 subsets S_0 , S_1 , S_2 $S_i = \{a \mid a \in S \& a = i \text{ mod } 3\}$ for i = 0, 1, 2Initialization: Let $a_0 = 27$, $b_0 = 0$, $x_0 = \alpha^{a_0} \beta^{b_0} = 5^{27} \text{ mod } 2017 \equiv 710$

i	\mathcal{X}_i	S_0	S_1	S_2	a_i	b_i
0	$x_0 = 710$			710	27	0
1	$x_1 = \alpha \cdot x_0 \bmod 2017 = 1533$	1533			28	0
2	$x_2 = \beta \cdot x_1 \mod 2017 = 865$		865		28	1
3	$x_3 = x_2^2 \bmod 2017 = 1935$	1935			56	2
4	$x_4 = \beta \cdot x_3 \mod 2017 = 855$	855			56	3
5	$x_5 = \beta \cdot x_4 \mod 2017 = 1785$	1785			56	4
6	$x_6 = \beta \cdot x_5 \mod 2017 = 648$	648			56	5
7	$x_7 = \beta \cdot x_6 \mod 2017 = 1459$		1459		56	6
8	$x_8 = x_7^2 \mod 2017 = 746$			746	112	12
9	$x_9 = \alpha \cdot x_8 \mod 2017 = 1713$	1713			113	12
10	$x_{10} = \beta \cdot x_9 \mod 2017 = 710$			710	113	13

Example Pollard Rho algorithm

Since 710 appears twice in the 0th and 10th rows, therefore

$$\alpha^{27} \beta^0 = \alpha^{113} \beta^{13} \Rightarrow \beta^{13-0} = \alpha^{27-113}$$
 $\Rightarrow (\alpha^x)^{13} = \alpha^{27-113}$
 $\Rightarrow \alpha^{13x} = \alpha^{27-113}$
 $\Rightarrow 13x \equiv (27-113) \mod 2016$
 $\Rightarrow x \equiv 13^{-1} \times 1930 \mod 2016$
 $\equiv 1861 \times 1930 \mod 2016$
 $= 1234$

Pohlig-Hellman (Silver Pohling-Hellman) algorithm

- Discovered by Roland Silver, but first published by Stephen Pohlig and Martin Hellman.
- It applies to groups whose order is a primes power
- Consider a finite cyclic abelian group Z_p^* , with order n.

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k}$$

■ Idea: compute $x \mod p_i^{e_i}$ for each i, $1 \le i \le k$ then compute $x \mod n$ using Chinese remainder theorem

The Pohlig-Hellman Algorithm

Consider prime p, α is a generator of Z_p^* and $\beta \in Z_p^*$.

Goal: to determine $x = \log_{\alpha} \beta \pmod{n}$

Let $n = p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k}$ where the p_i 's are distinct primes

Idea: compute $x \mod p_i^{e_i}$ for each $i, 1 \le i \le k$ then compute $x \pmod n$ using Chinese remainder theorem

Suppose that $q = p_i$ and $e = e_i$,

How to compute the value $a = x \pmod{q^e}$?

Express a in radix q representation as

$$a = x_0 + x_1 q + \dots + x_{e-1} q^{e-1}$$
; $0 \le x_i \le q^e$

 $a = x \pmod{q^e} \Rightarrow x = a + q^e s$ for some integer s.

$$\therefore x = x_0 + x_1 q + \dots + x_{e-1} q^{e-1} + s q^e$$

Step 1: to find x_0 .

 x_0 can be computed using the fact

Fact:
$$\beta^{\frac{p-1}{q}} \equiv \alpha^{\frac{x_0(p-1)}{q}} \mod p$$
 ... (1)

Proof: $\beta^{\frac{p-1}{q}} \equiv (\alpha^x)^{\frac{(p-1)}{q}} \mod p$

$$\equiv (\alpha^{x_0+x_1q+\cdots+x_{e-1}q^{e-1}+sq^e})^{\frac{(p-1)}{q}} \mod p$$

$$\equiv (\alpha^{x_0+Kq})^{\frac{(p-1)}{q}} \mod p \quad \text{where K is an integer}$$

$$\equiv \alpha^{x_0(\frac{p-1}{q})} \alpha^{K(p-1)} \mod p$$

$$\equiv \alpha^{x_0(\frac{p-1}{q})} \mod p \quad \text{because } \alpha^{p-1} \equiv 1 \mod p$$

Ashok K Bhateja IIT Delhi

Algorithm to compute x_0

Compute $\beta^{\frac{p-1}{q}}$

If $\beta^{\frac{p-1}{q}} \equiv 1 \mod p$ then $x_0 = 0$

Otherwise successively compute

$$\gamma = \alpha^{\frac{p-1}{q}} \mod p, \ \gamma^2 \mod p, \dots$$

until
$$\gamma^i \equiv \beta^{\frac{p-1}{q}} \mod p$$

return
$$(x_0 = i)$$

step 2: to compute $x_1, x_2, ..., x_{e-1}$ if e > 1

Define $\beta_0 = \beta$, and

$$\beta_j = \beta \alpha^{-(x_0 + x_1 q + \dots + x_{j-1} q^{j-1})} \mod p$$
, for $0 \le j \le e - 1$

Consider the generalization of equation (1)

$$(\beta_j)^{\frac{p-1}{q^{j+1}}} \equiv \alpha^{\frac{x_j(p-1)}{q}} \bmod p \qquad \dots (2)$$

Proof: When j = 0, this equation reduces to equation (1)

$$(\beta_{j})^{\frac{p-1}{q^{j+1}}} \equiv \left(\beta \alpha^{-(x_{0}+x_{1}q+\cdots+x_{j-1}q^{j-1})}\right)^{\frac{p-1}{q^{j+1}}} \mod p$$

$$\equiv \left(\alpha^{x-(x_{0}+x_{1}q+\cdots+x_{j-1}q^{j-1})}\right)^{\frac{p-1}{q^{j+1}}} \mod p$$

$$\equiv \left(\alpha^{x_{j}q^{j}+\cdots+x_{e-1}q^{e-1}+sq^{e}}\right)^{\frac{p-1}{q^{j+1}}} \mod p$$

$$\equiv \left(\alpha^{x_{j}q^{j}+\cdots+x_{e-1}q^{e-1}+sq^{e}}\right)^{\frac{p-1}{q^{j+1}}} \mod p$$

$$\equiv \left(\alpha^{x_{j}q^{j}+Kq^{j+1}}\right)^{\frac{p-1}{q^{j+1}}} \mod p \text{ where } K \text{ is an integer}$$

$$\equiv \alpha^{\frac{x_{j}(p-1)}{q}} (\alpha^{p-1})^{K} \mod p$$

$$\equiv \alpha^{\frac{x_{j}(p-1)}{q}} \mod p$$

Hence, we can compute x_i using this equation

Computation of $\log_{\alpha}\beta$ mod $p_i^{e_i}$

Since
$$\beta_j = \beta \alpha^{-(x_0 + x_1 q + \dots + x_{j-1} q^{j-1})} \mod p$$
,
for $0 \le j \le e - 1$

$$\therefore \beta_{j+1} = \beta_j \alpha^{-x_j q^j} \bmod p \qquad \dots (3)$$

Now compute x_0 , β_1 , x_1 , β_2 , ..., β_{e-1} , x_{e-1} by alternatively applying equation (2) and (3).

$$x = x_0 + x_1 q + \dots + x_{e-1} q^{e-1} + s q^e$$

or
$$log_{\alpha}\beta \mod p_i^{e_i} = \sum_{i=0}^{e-1} x_i q^i$$

$$(\beta_j)^{\frac{p-1}{q^{j+1}}} \equiv \alpha^{\frac{x_j(p-1)}{q}} \mod p$$
... (2)

Algorithm: Pohlig-Hellman to compute $\log_{\alpha} \beta \pmod{q^e}$

Compute
$$\gamma_i = \alpha^{(p-1)i/q} \mod p$$
 for $0 \le i \le q-1$ set $j = 0$ and $\beta_j = \beta$ while $j \le e-1$

compute
$$\delta = (\beta_j)^{\frac{(p-1)}{q^{j+1}}} \mod p$$

find i such that $\delta = \gamma_i$
 $x_j = i$
 $\beta_j = \beta \alpha^{-x_j q^j} \mod p$
 $j = j + 1$

28

Example:
$$p = 29$$
, $\alpha = 2$, $\beta = 18$

$$p-1=28=2^2 \cdot 7$$

$$q = 2, e = 2;$$

$$\gamma_0 = 1$$

$$\gamma_1 = \alpha^{(p-1)/q} \mod p = 2^{14} \mod 29 \equiv 28$$

$$\delta = \beta^{28/2} \mod 29 = 18^{14} \mod 29 = 28$$

Hence $x_0 = 1$.

Compute $\beta_1 = \beta_0 \alpha^{-1} \mod 29 = 9$

and
$$(\beta_1)^{28/4} = 9^7 \mod 29 = 28$$
; since $\gamma_1 = 28$

Therefore $x_1 = 1$; Hence $x = 3 \mod 4$

Similarly for q = 7, $x = 4 \mod 7$

Using CRT $x = 11 \mod 28$. i.e. $\log_2 18$ in \mathbb{Z}_{29} is 11.

Pohlig-Hellman Algorithm: Analysis

- Given the factorization of n, the running time of the Pohlig-Hellman algorithm is $O(\sum_{i=1}^{n} e_i(\lg n + \sqrt{p_i}))$ group multiplications.
- Pohlig-Hellman algorithm is efficient only if each prime divisor p_i of n is relatively small; i.e., if n is a smooth integer.

References:

- Cryptography: Theory and Practice by Douglas R. Stinson
- The PohligHellman Algorithm by D.R. Stinson
 http://anh.cs.luc.edu/331/notes/PohligHellmanp_k2p.pdf