25 Spring 439/639 TSA: Lecture 21

Dr Sergey Kushnarev

Table of contents

Multiplicative seasonal ARIMA model	1
Cross-covariance, cross-correlation function	2
Bartlett's theorem on sample CCF	3

Multiplicative seasonal ARIMA model

Similar to seasonal ARMA $(p,q) \times (P,Q)_s$, we can also combine a nonseasonal ARIMA(p,d,q) and a seasonal ARIMA $(P,D,Q)_s$.

First, we need to define seasonal ARIMA $(P, D, Q)_s$.

Recall that in the nonseasonal version, we say $Y_t \sim \text{ARIMA}(p,d,q)$ if $\nabla^d Y_t \sim \text{ARMA}(p,q)$. Where the differencing operator ∇ is

$$\nabla Y_t = Y_t - Y_{t-1} = (1-B) \ Y_t, \quad \text{so } \nabla^d Y_t = (1-B)^d \ Y_t.$$

We need a seasonal analogue for this. The seasonal differencing operator of period s, is defined as

$$\nabla_s Y_t = Y_t - Y_{t-s} = (1 - B^s) Y_t$$

We say $Y_t \sim \text{ARIMA}(P, D, Q)_s$ if $\nabla_s^D Y_t \sim \text{ARMA}(P, Q)_s$. This is called seasonal ARIMA (SARIMA).

Similarly, for multiplicative seasonal ARIMA: we say $Y_t \sim \text{ARIMA}(p,d,q) \times \text{ARIMA}(P,D,Q)_s$ if $\nabla^d \nabla^D_s Y_t \sim \text{ARMA}(p,q) \times \text{ARMA}(P,Q)_s$. In other words,

$$\text{if } \nabla^d \nabla^D_s Y_t \sim \text{ARMA}(p,q) \times \text{ARMA}(P,Q)_s, \quad \text{then } Y_t \sim \text{ARIMA}(p,d,q) \times \text{ARIMA}(P,D,Q)_s.$$

Using the AR/MA polynomial, $Y_t \sim \text{ARIMA}(p, d, q) \times \text{ARIMA}(P, D, Q)_s$ can be written as

$$\phi(B) \ \Phi(B) \ (1-B)^d \ (1-B^s)^D \ Y_t = \theta(B) \ \Theta(B) \ e_t,$$

where $\phi(x), \Phi(x), \theta(x), \Theta(x)$ are the AR from nonseasonal, AR from seasonal, MA from nonseasonal, MA from seasonal respectively.

Example. Consider this model

$$Y_t = 0.5 Y_{t-1} + Y_{t-4} - 0.5 Y_{t-5} + e_t - 0.3 e_{t-1}$$

It can be written as

$$\begin{split} (1-0.5B-B^4+0.5B^5) \ Y_t &= (1-0.3B) \ e_t, \\ (1-0.5B)(1-B^4) \ Y_t &= (1-0.3B) \ e_t. \end{split}$$

This is an ARIMA(1,0,1) × ARIMA(0,1,0)₄: (1-0.5B) and (1-0.3B) are nonseasonal AR/MA polynomial, with orders p=q=1. $(1-B^4)^1$ is a seasonal differencing operator of period s=4, with order D=1.

Example. Consider this model

$$Y_t = Y_{t-4} + e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2}.$$

Rewrite it as

$$(1-B^4) \ Y_t = (1-\theta_1 B - \theta_2 B^2) \ e_t.$$

This is an ARIMA $(0,0,2) \times ARIMA(0,1,0)_4$.

Example. Consider this model

$$Y_t = Y_{t-1} + Y_{t-12} - Y_{t-13} + e_t - 0.1 \, e_{t-1} - 0.1 \, e_{t-12} + 0.01 \, e_{t-13}.$$

Rewrite it as

$$\begin{split} (1-B-B^{12}+B^{13})\ Y_t &= (1-0.1B-0.1B^{12}+0.01B^{13})\ e_t, \\ (1-B)(1-B^{12})\ Y_t &= (1-0.1B)(1-0.1B^{12})\ e_t. \end{split}$$

This is an ARIMA(0,1,1) × ARIMA(0,1,1)₁₂: (1-0.1B) and $(1-0.1B^{12})$ are the nonseasonal and seasonal (period s=12) MA parts, with orders q=Q=1. $(1-B)^1$ and $(1-B^{12})^1$ are nonseasonal and seasonal (period s=12) differencing operators, with orders d=D=1.

Cross-covariance, cross-correlation function

Previously, we studied forecasting, i.e. use the past values of (Y_t) to predict future Y_t . Now we consider a different setting. We may use the past values of another time series (X_t) to help predict Y_t .

Suppose (X_t, Y_t) is a vector time series,

$$(X_1,Y_1),(X_2,Y_2),...,(X_t,Y_t),...$$

The Cross-covariance function (CCVF) is defined as

$$\gamma_{t,s}(X,Y) \stackrel{\text{def}}{=} \text{Cov}(X_t, Y_s).$$

We can also define the **joint (weak) stationarity** for the vector time series (X_t, Y_t) (which is a generalization of the weak stationarity of a single time series (Y_t)). A vector time series (X_t, Y_t) is (weakly) stationary if it satisfies

- $\mathbb{E}[X_t]$ is a constant μ_X for all t, $\mathbb{E}[Y_t]$ is a constant μ_Y for all t.
- $Var(X_t)$ is a constant for all t, $Var(Y_t)$ is a constant for all t.
- ACVF $\gamma_{t,s}(X) = \text{Cov}(X_t, X_s)$ only depends on the lag difference t s, $\gamma_{t,s}(Y) = \text{Cov}(Y_t, Y_s)$ only depends on the lag difference t s.
- CCVF $\gamma_{t,s}(X,Y) = \text{Cov}(X_t,Y_s)$ only depends on the lag difference t-s.

So the first three conditions are just saying (X_t) and (Y_t) are both stationary. The only new requirement is the last condition on CCVF.

If the joint stationarity holds, then we can replace the notation $\gamma_{t,s}(X,Y)$ by $\gamma_{t-s}(X,Y)$, since it only depends on the lag difference t-s. For example, assuming joint stationarity,

$$\begin{split} \gamma_0(X,Y) &= \gamma_{t,t}(X,Y) = \operatorname{Cov}(X_t,Y_t), \text{ for any } t \\ \gamma_1(X,Y) &= \gamma_{t+1,\,t}(X,Y) = \operatorname{Cov}(X_{t+1},\,Y_t), \text{ for any } t \\ \gamma_{-1}(X,Y) &= \gamma_{t-1,\,t}(X,Y) = \operatorname{Cov}(X_{t-1},\,Y_t), \text{ for any } t \end{split}$$

Note: For a single stationary time series (Y_t) , the ACVF has the property that $\gamma_k(Y) = \gamma_{-k}(Y)$ by the symmetry of covariance. But for a joint stationary vector time series (X_t, Y_t) , in general, $\gamma_k(X, Y) \neq \gamma_{-k}(X, Y)$.

Similarly, we can define **cross-correlation function (CCF)**. For simplicity, assume the vector time series (X_t, Y_t) is jointly stationary. The CCF is

$$\rho_k(X,Y) \stackrel{\mathrm{def}}{=} \mathrm{corr}(X_t,Y_{t-k}) = \frac{\gamma_k(X,Y)}{\sqrt{\gamma_0(X) \cdot \gamma_0(Y)}}.$$

Example. Consider (X_t, Y_t) , where $X_t \sim \text{iid}(0, \sigma_x^2)$, and

$$Y_t = \beta_0 + \beta_1 X_{t-d} + e_t, \quad e_t \sim \mathrm{iid}(0, \sigma_e^2),$$

and $(X_t), (e_t)$ are independent. For this vector time series (X_t, Y_t) , we can show that the CCF is

$$\begin{cases} \rho_{-d}(X,Y) = \operatorname{corr}(X_t,Y_{t+d}) = \frac{\beta_1\sigma_x}{\sqrt{\beta_1^2\sigma_x^2 + \sigma_e^2}} \\ \rho_k(X,Y) = 0, \quad \text{if } k \neq -d. \end{cases}$$

Exercise: verify this CCF.

Bartlett's theorem on sample CCF

Given the observed samples from a vector time series (X_t, Y_t) , we can also obtain sample CCF $r_m(X, Y)$. (Similar to the way we constructed sample ACF.)

We also have another version of Bartlett's theorem for sample CCF: when sample size n is large, the sampling distribution of the sample CCF $r_m(X, Y)$ is approximately

$$r_m(X,Y) \sim \mathcal{N}\left(\rho_m(X,Y), \ \frac{1}{n}\left(1 + 2\sum_{k=1}^{\infty} \rho_k(X)\,\rho_k(Y)\right)\right).$$

This may lead to "spurious correlation": even the theoretical CCF $\rho_m(X,Y)$ is small (or zero), the sample CCF $r_m(X,Y)$ may still be "large" which seemingly implies correlation at lag m. Note: here "large" is in the sense of comparing to the standard " $\frac{2}{\sqrt{n}}$ rule" used in the software.

Example. Suppose $X_t \sim \text{AR}(1)$, $Y_t \sim \text{AR}(1)$, and (X_t) , (Y_t) are independent. So the theoretical CCF $\rho_m(X,Y) = 0$ for any m, and the variance term in Bartlett theorem above is

$$\mathrm{Var}(r_m(X,Y)) = \frac{1}{n} \left(1 + 2 \sum_{k=1}^\infty \phi_X^k \phi_Y^k \right) = \frac{1}{n} \left(\frac{1 + \phi_X \phi_Y}{1 - \phi_X \phi_Y} \right).$$

For example, if $\phi_X = \phi_Y = \frac{1}{2}$, then $\operatorname{Var}(r_m(X,Y)) \approx \frac{1.67}{n}$. So the sampling distribution has larger variance than the standard $\frac{1}{n}$, which makes the standard " $\frac{2}{\sqrt{n}}$ rule" not reliable here.