COMPUTER SYSTEMS ORGANIZATION

Input/Output -- Spring 2010 -- IIIT-H -- Suresh Purini

The Big Picture: Where are we now?

Input and Output

System Bus Consists of:

- Address lines
- Data lines
- Control lines

Typical Control Lines:

Memory write

I/O read

Memory read

Transfer ACK

□ I/O write

Bus request

- Bus grant
- Interrupt request
- Interrupt ACK
- Clock

Typical Signal Lines for Memory and CPU

Traditional Bus Architecture

Another Possible Bus Architecture

Typical Signal Lines for I/O Modules (Device Controllers)

Typical Signal Lines for I/O Modules (Device Controllers)

We need a device drive which knows how to interface with the Device Controller

Floppy Disk Controller

		1001	
Control Signal	Action by the device	Status Signal	Action by the device
Drive Select	FDD gets logically connected	Track 0	Read/write head is positioned over the track 0
Head Select	FDD selects either the top or bottom head	Write Protect	FDD is write protected
		Ready	FDD is ready for operation
Direction	Indicate the direction of head movement (inward or outward)	•••••	•••••
Step	Move one track		

Types of Data Transfer

Bus interconnection should support the following types of transfer:

- Memory to processors
- Processor to memory
- I/O to processor
- Processor to I/O
- \Box I/O to or from memory (Direct Memory Access DMA)

Elements of Bus Design: Bus Type

- Dedicated
 - Separate data & address lines
- Multiplexed
 - Shared lines
 - Address valid or data valid control line
 - Advantage fewer lines
 - Disadvantages
 - More complex control
 - Ultimate performance

Elements of Bus Design: Method of Arbitration

- More than one module controlling the bus
 - e.g. CPU and DMA controller
- Only one module may control bus at one time
- Arbitration may be Centralised (Bus Controller) or Distributed

Elements of Bus Design: Timing

- Co-ordination of events on bus
- Synchronous
 - Events determined by clock signals
 - Control Bus includes clock line
 - A single 1-0 is a bus cycle
 - All devices can read clock line
 - Usually sync on leading edge
 - Usually a single cycle for an event
- Asynchronous

Timing of Synchronous Bus Operations

Important Remark: Bus clock and Processor clock are different.

Timing of Asynchronous Bus Operations

Timing of Asynchronous Bus Operations

Various Bus Protocols

- □ Industry Standard Architecture ISA (1982)
- Extended Industry Standard Architecture EISA
- □ Vesa Local Bus VL Bus
- □ Peripheral Component Interconnect PCI (Early 1990s)

Typical Desktop System

