Welcome to WorldQuant Quantitative Re Math Test

Test duration

180 mins

No. of questions

40 questions

Platform Help | Execution Environment | FAQ

1. Prime Numbers Program

Complete the blanks in the following question with the appropriate answer.

What is the value of the variable A after running the following program?

End

The value of A is:

Submit Answer & Continue

ALL

2. Exponential Decay

For any integer k > 2, which equation below depicts exponential decay?

Pick ONE option

$$y = ((2k+1)/(2k+2))^x$$

$$y = (2k-1)^{k}$$

$$y = (2k+1)^{n}x$$

$$y = ((2k-1)/(2k-2))^x$$

Clear Selection

Continue

3. Two dice	
Complete the blanks in the following	question with the appropriate answer.
ach roll is tracked.	es. Player B rolls it 1010 times. For each player, the total number of odd numbers and even numbers that turned up as a result or A got strictly more odd numbers than twice of Player B?
ne answer is:	. Please enter it as the decimal fraction using point to denote the decimal point (e.g., 0.123, 0.9 and so on)
Submit Answer & Continue	

6. Program

Complete the blanks in the	following question with	the appropriate a
----------------------------	-------------------------	-------------------

Given the following program, what is the final value of C?

A is equal to 167

B is 91

CISO

While A-2 is strictly greater than B

Subtract two from A

And add one to C

The answer is

. Please enter an integer

Submit Answer & Continue

11. My new car's future	
Complete the blanks in the following	ng question with the appropriate answer.
having emission above the actu	tee made a decision today that the NOx emission limit will be halved every fourth year from now, starting with 0.08g/km. All cars all limit must be disassembled and recycled immediately. My new hybrid car has 0.0015g/km emission, which will grow as the G at the compound annual growth rate of the emission is 10%.
low many years will my car surv	vive before disassemblement if the emission growth will be exactly as the manufacturer stated?
e answer is	. Please enter an integer
ubmit Answer & Continue	

Let R(n,m) be a relation on two integers n and m. We know that R(n,m) is true prove that:	if n>m. If we want to DISPROVE the claim, "R(ri,m) is equivalent to rivin for all integers n and m", then we need to
Pick ONE option	
There exists a pair of integers n>m so that R(n,m) is false.	
There exists a pair of integers n<=m so that R(n,m) is false.	
There exists a pair of integers n>m so that R(n,m) is true.	
There exists a pair of Integers n<=m so that R(n,m) is true.	
R(n,m) is false for every pair of integers n>m.	
R(n,m) is false for every pair of integers n<=m.	
R(n,m) is true for every pair of integers n>m.	
R(n,m) is true for every pair of integers n<=m.	

Four robots stand in the vertices direction to face that neighbor. In Pick ONE option	of a unit square. At time zero, every robot starts to move with speed of one unit per second towards the clockwise neighbor, and continuously changes its
O 1/2	
sqrt(2) / 2	
01	
Sqrt(2)	
O 2	
Never	

18. Asymptotic Complexities

Complete the blanks in the following question with the appropriate answer.

A.	O(N^3)	complexities of eight functions, each with input of length N:	
В.	O(Log(N))		
C.	O(Sqrt(N))		
D,	O(N * log(N))		
E.	O(2^N)		
F.	O(N^N)		
G.	O(NI)		
ł.	O(Log(Log(N)))		
ort th	he functions by order of arm	wth, with slower-growing functions first.	
		ce of letters corresponding to the functions above, eg "BACFDEHG".	
ne a	inswer is	. Please enter without quotation mark	-
		. riedse enter without quotation mark	٥
Sub	omit Answer & Cont	inue	

lestion with the appropriate answer.

Alice and Bob are playing a guessing game. Than game is played in 10 rounds. At each round, Alice draws a number from a truncated normal distribution with mu=30 & sigma=10 (values being capped between [0, 60]) and bob tries to guess the number Alice draws.

- If Bob's guess is right he receives 1000 dollars
- If Bob's guess is lesser than Alice's number, Bob loses 2 dollars
- If Bob's guess is higher than Alice's number, Bob loses 1 dollar.

In a 10 rounds, what is the MAXIMUM EXPECTED money Bob can get?

Note:

Truncated Normal Distribution (bounded between a and b) is defined with following probability density function (PDF)

$$\psi(\mu,\sigma,a,b,x) = egin{cases} 0, & ext{if } x < a \ rac{\phi(\mu,\sigma,x)}{\Omega(\mu,\sigma,b) - \Omega(\mu,\sigma,a)}, & ext{if } a \leq x \leq b \ 0, & ext{if } x > b \end{cases}$$

where $\phi(\mu,\sigma,x)$ is the probability density function for Normal distribution and $\Omega(\mu,\mathfrak{g},x)$ is the cumulative density function for the Normal distribution.

In this question $a=0, b=60, \mu=30, \sigma=10$

The answer is

dollars. Please enter an integer

Complete the blanks in the following question with the appropriate answer. Each of four players writes their name on a card (all names are different). Each round these four cards are shuffled and randomly distributed among the players one card to each player. If a player gets a card with their name, they get 1 point in this round. Otherwise, they get zero points. The game stops after 2021 round What is the the correlation between the numbers of points scored by two different players by the end of the game? The answer is	21. Random Game	
What is the the correlation between the numbers of points scored by two different players by the end of the game? The answer is	Complete the blanks in the following	question with the appropriate answer.
What is the the correlation between the numbers of points scored by two different players by the end of the game? The answer is Please enter and irreducible proper fraction, eg 1/2, 3/4. Please do not enter any spaces. Submit Answer & Continue	Each of four players writes their rone card to each player. If a player	name on a card (all names are different). Each round these four cards are shuffled and randomly distributed among the players or gets a card with their name, they get 1 point in this round. Otherwise, they get zero points. The game stops after 2021 round
Submit Answer & Continue		
	The answer is	. Please enter and irreducible proper fraction, eg 1/2, 3/4. Please do not enter any spaces.
	Submit Answer & Continue	

Complete the blanks in the following question with the appropriate answer. Start with a cube (let us denote it by A). Put a point at the center of each of its faces and create a polyhedron (denoted by B) with these points as vertices. Put a point at the center of each of this polyhedron's faces and create a second polyhedron (denoted by C) with these new points as vertices. What is the volume of the cube A if the polyhedron C has volume of 1? The answer is Please enter an integer Submit Answer & Continue	22. Volume	
What is the volume of the cube A if the polyhedron C has volume of 1? The answer is Please enter an integer	Complete the blanks in the following	g question with the appropriate answer.
The answer is Please enter an integer	Start with a cube (let us denote at the center of each of this poly	it by A). Put a point at the center of each of its faces and create a polyhedron (denoted by B) with these points as vertices. Put a polyhedron's faces and create a second polyhedron (denoted by C) with these new points as vertices.
The state of the s	What is the volume of the cube	A if the polyhedron C has volume of 1?
Submit Answer & Continue	The answer is	. Please enter an integer
	Submit Answer & Continue	

23. Inverse Matrix

Complete the blanks in the following question with the appropriate answer.

(.1)
,

24. Repeated Application

Complete the blanks in the following question with the appropriate answer

ubmit Answer & Continue	
e answer is:	
ow many additions will take place while evaluating f(f(f(3)))?	
return result	
result = result + i	
for i from 1 to x (inclusively):	
result = 1	
define f(x)	
Given the following function definition:	

29. Nice Places on Earth		
We call a place on Earth " nice " if you go 1 mile N twice. What is the minimum number of circumfe	orth, 1 mile West, 1 mile South and 1 mile East then you end up at ex- rences covering all nice places on Earth?	actly the same place you started, but you did not visit any location more
Pick ONE option		
00		
01		
O 2		
O 3		
O 4		
Infinity		
ear Selection		

complete the blanks in the following of	question with the appropriate answer.
uppose that there are three linea /hat is least number of dimensio	ar subspaces in a space V, each of them has dimension 5 and each of their pairwise intersection has dimension can V be?
e answer is:	. Please enter an integer
Submit Answer & Continue	

32. Knapsack Problem

Complete the blanks in the following question with the appropriate answer.

You are given a list of sems each having weight w_i and price p_i. You are to select the subset of items with total weight not exceeding W and with resumation.

For a given table of w_i and p_i, what is the maximal possible total price for W=182

Item number	W_i	p i
1	3	10
2	4	12
3	5	18
4.	4	19
5	7	20
6	В	19
7	5	12

The answer is

Submit Answer & Continue

	35. QuickSort
ALL	
	Complete the blanks in the following question with the appropriate answer.
	Let N be the length of an array of real numbers. Select correct statements about quick sort algorithm. Your solution should be a sequence of letters in alphabetical order (e.g., ABCD).
	A. Guaranteed (worst-case) time complexity is O(N^2)
	B. Guaranteed (worst-case) time complexity is O(N * log(N))
	C. Guaranteed (worst-case) time complexity is O(N)
	D. Guaranteed (worst-case) time complexity is O(log(N))
	E. Expected (average) time complexity is O(N^2)
	F. Expected (average) time complexity is O(N * log(N))
	G. Expected (average) time complexity is O(N)
	H. Expected (average) time complexity is O(log(N))
Th	e answer is
	Submit Answer & Continue

37. Three Dollars	
Peter, Army and John play the folk other two players independently What is the probability that after	owing game. Each starts with \$1. A bell rings every 10 seconds, at which time each of the players who currently have more than 1 and at random and gives \$1 to that player. Please note the player with \$0 stays in the game. the bell has rung 2021 times, each player will have \$1?
For example, Peter and Amy may	each decide to give \$1 to John, and John may decide to give his dollar to Amy, at which point Peter will have \$0, john will be \$2, and \$1, and
Pick ONE option	
0 1/7	
0 1/4	
O 1/3	
O 1/2	
2/3	
Ball of the later	

12. Is it greater?	
Let $R(n,m)$ be a relation on two integers n and m . We know that $R(n,m)$ is true increase that:	f n>m. If we want to DISPROVE the claim, "R(n,m) is equivalent to n>m for all integers n and m", then we need to
Pick ONE option	
There exists a pair of integers n>m so that R(n,m) is false.	
There exists a pair of integers n<=m so that R(n,m) is false.	
There exists a pair of integers n>m so that R(n,m) is true.	
There exists a pair of integers n<=m so that R(n,m) is true.	
R(n,m) is false for every pair of integers n>m.	
R(n,m) is false for every pair of integers n<=m.	
R(n,m) is true for every pair of integers n>m.	
R(n,m) is true for every pair of integers n<=m.	

19. Guessing Game

Complete the blanks in the following question with the appropriate answer.

Alice and Bob are playing a guessing game. Than game is played in 10 rounds.

At each round, Alice draws a number from a truncated normal distribution with mu=30 & sigma=10 (values being capped between [0, 60]) and bob tries to guess the number Alice draws.

- . If Bob's guess is right he receives 1000 dollars
- . If Bob's guess is lesser than Alice's number, Bob loses 2 dollars
- . If Bob's guess is higher than Alice's number, Bob loses 1 dollar

In a 10 rounds, what is the MAXIMUM EXPECTED money Bob can get?

Note:

Truncated Normal Distribution (bounded between a and b) is defined with following probability density function (PDF)

$$\psi(\mu,\sigma,a,b,x) = \left\{ egin{array}{ll} 0, & ext{if } x < a \ rac{\phi(\mu,\sigma,x)}{\Omega(\mu,\sigma,b) - \Omega(\mu,\sigma,a)}, & ext{if } a \leq x \leq b \ 0, & ext{if } x > b \end{array}
ight.$$

where $\phi(\mu, \sigma, x)$ is the probability density function for Normal distribution and $\Omega(\mu, \sigma, x)$ is the cumulative density function for the Normal distribution.

In this question $a=0, b=60, \mu=30, \sigma=10$

21. Random Game	
Complete the blanks in the following	g question with the appropriate answer.
	name on a card (all names are different). Each round these four cards are shuffled and randomly distributed among the player ver gets a card with their name, they get 1 point in this round. Otherwise, they get zero points. The game stops after 2021 round
What is the the correlation betw	een the numbers of points scored by two different players by the end of the game?
he answer is	. Please enter and irreducible proper fraction, eg 1/2, 3/4. Please do not enter any spaces.
Submit Answer & Continue	

29. Nice Places on Earth				
We call a place on Earth " nice " if you go 1 mile twice. What is the minimum number of circum	North, 1 mile West, 1 mile South and 1 mile Eas erences covering all nice places on Earth?	t then you end up at exactly the same pla	ce you started, but you did not visit any k	ocation more than
Pick ONE option				
00				
01				
O 2				
○ 3				
0 1 0 2 0 3				
Infinity				
Clear Selection				

