Simulation UNIVERS avec COSMOGRAVITY Mode d'emploi

Le facteur d'échelle de l'univers

RAPPEL. Avec la relativité générale et le principe cosmologique la courbe a(t) du facteur d'échelle de l'espace est déterminée par la donnée de la valeur de trois des 4 paramètres de densité Ω_i (i = rayonnement, matière, constante cosmologique, courbure spatiale) et la valeur présente du taux d'expansion de l'espace H_0 (constante de Hubble-Lemaître).

- 1. En ouvrant l'onglet **Univers > simulation > constante cosmologique**, la simulation du modèle standard (valeurs collaboration Planck 2015) est lancée et affiche son a(t).
- 2. Vous pouvez modifier les **Entrées** et simuler des **univers différents** en changeant les valeurs des paramètres de densité et du taux d'expansion. Note : le paramètre de densité de radiation Ω_{r0} est calculé à partir de la température du RFC qui est en entrées. **Cliquer sur « Tracer » pour lancer la nouvelle simulation.**
- 3. Par défaut le a(t) est calculé et affiché entre $a_{min} = 0$ et $a_{max} = 5$. Vous pouvez modifier ces valeurs ... et cliquer sur **Tracer**.
- 4. Vous pouvez également utiliser le **diagramme interactif** pour modifier Ω_{m0} et $\Omega_{\Lambda0}$.
- Dans tous les cas vous pouvez sauvegarder entrées et graphique produit en cliquant sur Enregistrer
- 6. L'option **Univers Plat** force Ω_k = 0 en ajustant $\Omega_{\Lambda 0}$

Simulation UNIVERS avec COSMOGRAVITY Mode d'emploi

<u>Calculs annexes</u>: la boîte à outils de l'observateur en cosmologie

Le clic sur **Calculs annexes** ouvre une nouvelle fenêtre : Les entrées de la fenêtre principale sont rappelées et les masses volumiques $\rho_{\Lambda 0}$, ρ_{m0} et ρ_{r0} sont calculées.

- 1. En entrant un (ou deux) z (et une intensité photométrique) et en appuyant sur **calcul** vous lancez le calcul des **paramètres** ainsi que ceux des **distances métriques** correspondant au(x) z (et les luminosités, distances luminosité, distances diamètre apparent, éclats)
- 2. En sélectionnant ensuite z_1 ou z_2 Vous pouvez calculer le **diamètre apparent** θ en secondes d'arc correspondant à un **diamètre réel D** (en m ou en pc) ou bien le calcul inverse en rentrant θ en secondes d'arc
- 3. D'autres calculs inverses sont disponibles : $z(d_m)$, z(t)
- 4. Enfin un générateur de graphiques à fins pédagogiques :
 - 1. Quatre distances en fonctions de z: distance métrique, distance luminosité, distance diamètre apparent, distance temps-lumière sur un même graphique entre z_{min} et z_{max}
 - 2. Les quatre paramètres de densité Ω_i en fonction de z entre z_{min} et z_{max}
 - 3. Le temps cosmique en fonction de z entre z_{min} et z_{max}

Constantes (un clic sur Constantes dans la fenêtre principale ouvre une nouvelle fenêtre)

Vous pouvez y modifier les valeurs par défaut des constantes fondamentales de la physique : c, k, h, G ... et choisir la définition de l'unité de temps année