STANISLAS Exercices

Intégrales à paramètre Chapitre XII

PSI

2021-2022

I. Convergence dominée, Intégration terme à terme

Exercice 1. (4) Soit f une fonction continue sur [1,e] à valeurs dans \mathbb{C} . Déterminer la limite de la suite de terme général $u_n = n \int_{1}^{1+1/n} f(t^n) dt$.

Exercice 2. (🚈) [ENSAM] Montrer la convergence et déterminer la somme de la série $\sum (-1)^n \int_{1}^{\pi/2} \cos^n(x) dx$.

Exercice 3. (2) Déterminer $\lim_{x\to+\infty} \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}\theta}{1+x^2\tan^2\theta}$.

Exercice 4. (🗷) Déterminer $\lim_{n \to +\infty} \int_{0}^{+\infty} \frac{\mathrm{d}x}{x^n + e^x}$.

Exercice 5. [CCP] Soit $a_n = \int_0^1 \left(\frac{1+t^2}{2}\right)^n dt$.

- **1.** Montrer que la suite (a_n) est convergente et déterminer sa limite.
- **2.** Montrer que la série de terme général $(-1)^n a_n$ est convergente.
- **3.** Montrer que pour tout $n \in \mathbb{N}$, $a_n \ge 1/(2n+1)$. En déduire le rayon de convergence de $\sum a_n x^n$.

Exercice 6. [TPE] Soit x > 0. Pour $n \in \mathbb{N}$, on pose $I_n = \int_{-\infty}^{+\infty} \frac{e^{-t} t^n}{n!} dt$. Justifier l'existence de I_n puis déterminer la limite de la suite (I_n) .

Exercice 7. Montrer que $\int_0^1 \frac{(\ln(x))^2}{1+x^2} dx = 2 \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^3}$.

Exercice 8. Montrer que $\int_0^1 \frac{\ln(t)}{1+t^2} dt = \sum_{t=0}^{+\infty} \frac{(-1)^{n-1}}{(2n+1)^2}$.

II. Régularité des intégrales à paramètres

Exercice 9. (Théorème de FUBINI, \heartsuit) Soit $f:[a,b]\times[c,d]\to\mathbb{K}$ une application continue. En utilisant les applications H et G définies sur [a,b] par

$$H(x) = \int_a^x \left(\int_c^d f(t, y) \, \mathrm{d}y \right) \, \mathrm{d}t \text{ et } G(x) = \int_c^d \left(\int_a^x f(t, y) \, \mathrm{d}t \right) \, \mathrm{d}y,$$

montrer que

$$\int_a^b \left(\int_c^d f(x, y) \, dy \right) \, dx = \int_c^d \left(\int_a^b f(x, y) \, dx \right) \, dy.$$

Exercice 10. [ENSAM] On pose $f(t) = \int_{0}^{+\infty} e^{-x^2} \cos(2xt) dx$.

- **1.** Montrer que f est définie et continue sur \mathbb{R}
- **2.** Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R} et calculer f'.
- 3. On admet que $\int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$. Exprimer f à l'aide des fonctions

Exercice 11. (4) Étudier l'ensemble de définition, la continuité et la dérivabilité de $F: x \mapsto \int_{0}^{+\infty} \sqrt{1+tx} e^{-t^2} dt$.

Exercice 12. Soit $F: t \mapsto \int_0^{+\infty} \frac{\arctan(xt)}{x(1+x^2)} \, \mathrm{d}x$. 1. Étudier l'ensemble de définition, la continuité et la dérivabilité de F.

- **2.** Calculer F' et en déduire une expression de F.
- **3.** En déduire la valeur de $\int_0^{+\infty} \left(\frac{\arctan(x)}{x}\right)^2 dx$.

Exercice 13. (Intégrale de DIRICHLET) [IMT] On note $I = \int_0^{+\infty} \frac{\sin(t)}{t} dt$ et $F(x) = \int_{0}^{+\infty} \frac{\sin(t)}{t} (1 - e^{-xt}) dt$.

1. Montrer que I est bien définie.

32

Exercices XII PSI

2. Montrer que F est définie sur $[0, +\infty[$, que F est continue sur $[0, +\infty[$ et que F est dérivable sur $[0, +\infty[$.

3. En déduire la valeur de I.

Exercice 14. Soit $F: x \mapsto \int_0^1 \frac{\cos(tx)}{\sqrt{1-t^2}} dt$. Étudier l'ensemble de définition, la continuité et la dérivabilité de F.

Exercice 15. Soit F définie sur \mathbb{R}_+^* par $F(x) = \int_0^x \frac{\mathrm{d}t}{\sqrt{(1+t^2)(x^2-t^2)}}$. Déterminer les limites de F en 0 et en $+\infty$.

Exercice 16. Soit $F: x \mapsto \int_0^{+\infty} \exp\left(-t^2 - \frac{x^2}{t^2}\right) dt$.

1. Étudier le domaine de définition, la continuité et la dérivabilité de F.

2. Déterminer F' et en déduire la valeur de F(x). On rappelle que $\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

Exercice 17. [X-ENS]

- **1.** Calculer, pour tout $n \in \mathbb{N}$, $\int_0^1 x^n \ln(x) dx$.
- **2.** Montrer que $\int_0^1 \ln(x) \ln(1-x) dx = \sum_{n=1}^{+\infty} \frac{1}{n(n+1)^2}$.

Exercice 18. (Intégrale de GAUSS) [X-ENS] Soient f et g les fonctions définies pour tout $x \in \mathbb{R}_+$ par $f(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{1+t^2} dt$ et $g(x) = \int_0^x e^{-t^2} dt$.

- **1.** Calculer f(0) puis $\lim_{x\to +\infty} f(x)$.
- **2.** Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R}_+ et que, pour tout $x \in \mathbb{R}_+$, -2g'(x)g(x) = f'(x).
- **3.** En déduire $I = \int_0^{+\infty} e^{-t^2} dt$.

Soit h une fonction continue par morceaux, décroissante sur \mathbb{R}_+ telle que $\int_0^{+\infty} h(t) dt$ soit convergente et non nulle.

4. Montrer que h est à valeurs positives.

Pour tout réel positif t non nul, on pose $S(t) = \sum_{n=1}^{+\infty} h(nt)$.

5. Montrer que S existe.

6. Déterminer un équivalent de S(t) lorsque t tend vers 0^+ .

7. Déterminer un équivalent de $\sum_{n=1}^{+\infty} x^{n^2}$ lors que x tend vers 1^- .

Exercice 19. [Mines] Soit f la fonction définie pour tout x réel par $f(x) = \int_0^{+\infty} \arctan(tx) e^{-t} dt$.

1. Vérifier l'existence de f puis montrer que f est \mathscr{C}^3 sur \mathbb{R}

2. Soit $u_0 > 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. Étudier la convergence de cette suite puis trouver un équivalent en $+\infty$.

Exercice 20. [Mines] Soient a, b deux réels strictement positifs.

- **1.** Montrer l'existence puis calculer $I(a,b) = \int_0^{+\infty} \frac{e^{-at} e^{-bt}}{t} dt$.

 Ind.: Considérer I comme une fonction en a.
- **2.** Calculer $\int_0^1 \frac{t-1}{\ln(t)} dt.$

Exercice 21. [CCP] On pose $I_n = \int_0^{+\infty} \frac{\sin(t/n)}{t(1+t^3)} dt$.

1. Déterminer $\lim_{n\to+\infty} I_n$.

2. Déterminer un équivalent de I_n en $+\infty$.

Ind.: Étudier nI_n .

III. Avec Python

Exercice 22. [Centrale] Pour tout $n \ge 1$, on pose $f_n : t \mapsto \frac{1-\cos(t/n)}{t^2(t^2+1)}$ et $u_n = \int_0^{+\infty} f_n(t) dt$.

1. Tracer les graphes de f_1, \ldots, f_{10} ainsi que celui de $t \mapsto 1/2$ sur $[0, \pi]$.

2. Déterminer la valeur de u_1, \ldots, u_{30} . Que constate-ton? Le prouver.

3. On définit F sur \mathbb{R}_+^* par $F(x) = \int_0^{+\infty} \frac{1 - \cos(xt)}{t^2(t^2 + 1)} dt$. Existence et continuité de F.

4. Tracer le graphe de F sur]0, 10].

Exercices XII PSI

Mathématiciens

GAUSS Johann Carl Friedrich (30 avr. 1777 à Brunswick-23 fév. 1855 à Göttingen).

DIRICHLET Johann Peter Gustav Lejeune (13 fév. 1805 à Düren-5 mai 1859 à Göttingen).

Fubini Guido (19 jan. 1879 à Venise-6 juin 1943 à New York).