PATENT SPECIFICATION

(11)1446 126

(21) Application No. 22479/74

(22) Filed 20 May 1974 (44) Complete Specification published 18 Aug. 1976

(51) INT CL2 B01J 1/00

(52) Index at acceptance

C2U 3 4A1B 4A2A 4B1 4B2B 4C11 4C1 4C4B 4C4X 4C5 4N12 4N1 4N5 4N6X 4N6Y 5 6A1 6B

(72) Inventor DEREK HAROLD RICHARD BARTON

5

10

15

20

25

30

35

40

45

(54) PHOTOLYTIC PREPARATION OF DIOL MONONITRATES

(71) We, RESEARCH INSTITUTE FOR MEDICINE AND CHEMISTRY INC., a corporation organised and existing under the laws of the Commonwealth of Massachusetts, United States of America, of 49 Amherst Street, Cambridge, Massachusetts 012142, United States of America, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

This invention relates to a novel process for the preparation of diol mononitrates and diols and keto-alcohols derived therefrom.

The photolysis of alcohol nitrites possessing a conformationally adjacent carbon-attached hydrogen atom, the "Barton reaction", is well known. A detail description of the reaction is to be found, for example, in U.S. Patent Specification No. 3,215,713. Under irradiation, the nitrite group splits to yield a free NO group and an oxy radical. This latter radical captures the conformationally adjacent hydrogen atom to form a hydroxy group and a carbon free radical and the NO migrates to this carbon radical to form a nitroso group. In modifications of this reaction, a halogen atom is introduced in place of the nitroso group to form a halohydrin which may, as in the case of steroids, be dehydrohalogenated to form a cyclic ether, and, from this a compound bearing a hydroxy group where the original hydrogen atom was may be prepared, the original hydroxy group having been replaced by hydrogen. Thus, for example, in the steroid field a 6-hydroxy compound yields a 6,19-oxido compound which may be reductively cleaved to the corresponding 19-hydroxy compound. This process is described in detail in, inter alia British Patent Specification No. 1,106,296 and United States Patent Specification No. 3,354,150.

It has now been found, surprisingly, that in the presence of oxygen instead of a halogen free radical, the reaction proceeds in a different way, apparently with a radical transfer, resulting in the introduction of a nitrate ester (nitrooxy) group in place of the conformationally adjacent hydrogen atom and the restoration of the original hydroxy group. In this way a hydroxy group can be introduced while retaining an oxygen function in the original position.

According to the present invention therefore, there is provided a process for the preparation of a mononitrate ester of a diol whereby a nitrite ester of an alcohol having a carbon-attached hydrogen atom which is or is able to be conformationally adjacent to the nitrited hydroxy group and and in which the atoms joining the hydrogen atom and the nitrited hydroxy group include at least two adjacent atoms forming part of a ring is photolysed in the presence of molecular oxygen whereby a corresponding compound is formed in which the said nitrited hydroxy group is converted to a free hydroxy group and the said hydrogen atom is replaced by a nitrooxy group.

The term 'conformationally adjacent' is used to mean that the atoms or groups concerned are so positioned that they may approach without appreciable molecular strain to within the distance normal for an interatomic bond. Thus, for example, in the steriods, the atoms attached to the 116 and 18 carbon atoms are more adjacent to each other than the 11β substituents are to the hydrogen atoms attached to carbon atoms at positions 8, 9, 12 or 13. Similarly, the substituents on the 11β carbon atom are closer to the hydrogen atoms on the 19-carbon atom, than they are to the hydrogen atoms attached to the carbon atoms surrounding the 19-carbon position, that is to the hydrogen atoms attached to carbon atoms at positions 1, 5, 6, or 9.

In a similar manner, the atoms and groups linked to other carbon atoms in the

5

10

15

20

25

30

35

into diol mononitrates having the grouping

where X is a group

As indicated above, the reaction is especially useful in steroid synthesis e.g. in the pregnane, lanostane, 19-norpregnane, oestrane or cholestane series and particular applications are the preparation of 19-hydroxy steroids from 6-hydroxy steroid nitrites, the preparation of 18-hydroxy steroids from 11- and 20-hydroxy steroid nitrites, and the preparation of 32-hydroxy steroids from 7\(\alpha\)-hydroxy steroid nitrites.

By the term "steroids" we mean compounds having the basic cyclopentanoper-

hydrophenanthrene ring structure and which may contain various substituents and/or double bonds, e.g. a keto, hydroxy or acyloxy group in the 3-position; alkyl groups in any of 2-, 4-, 6-, 10-, 13- 14- and 16-positions; a keto, ketal or ortho ester group at the 20-position; a keto group, or hydroxy and/or hydrocarbon or acyl (e.g. acetoxy-acetyl) groups at the 17-position; a hydroxy or keto group at the 11- or 12-position; a hydroxy group at the 6-, 7- or 20-position; an esterified hydroxy group at the 21-position; a double bond at 5-position or the 1- and/or 4-position; and a halogen atom such as fluorine or chlorine at the 11- or 6-position.

The diol mononitrate product may, as described above, be reductively cleaved to yield the corresponding free diol. The reducing agent may be any suitable for the purpose, in particular a metal/acid or metal/salt source of nascent hydrogen e.g. zinc and acetic acid or zinc and ammonium acetate.

The diol mononitrates prepared according to the present invention are precursors of alcohols having numerous uses, especially in the steroid field. Thus, for example, 19-hydroxy steroids are useful in the synthesis of 19-nor steroids. 18-Hydroxy steroids are useful intermediates in the synthesis of aldosterone derivatives and aldosterone antagonists. They are also reputed to be involved in hypertension.

 Δ^{1} -18-Hydroxy steroids, which may be produced by the process of the invention from Δ^{1} -11-hydroxy steroid nitrites, are of value in the production of tritium-labelled 18-hydroxy steroids such as 18-hydroxy-corticosterone and 18-hydroxy-11-deoxy-corticosterone, which are of great use in metabolic and diagnostic studies. Particularly useful Δ^{1} -18-hydroxy steroids are thus Δ^{1} -18-hydroxy-corticosterone and Δ^{1} -18-hydroxy-tricosterone and Δ^{1} -18-hydroxy-corticosterone.

The nitrite starting materials may conveniently be prepared by reaction of the corresponding alcohol with a nitrosyl halide, e.g. nitrosyl chloride, in a tertiary amine base such as pyridine or triethylamine.

While it is not wished to be bound by theoretical considerations, it is believed that under photolysis the conformationally adjacent carbon-attached hydrogen atom is captured by the carbon-attached oxygen atom of the nitrite group to yield a molecule of nitric oxide and a carbon free-radical which captures a molecule of oxygen and the molecule of nitric oxide to form a nitroperoxy group which rearranges instantaneously to form the stable nitroxy group:

$$\stackrel{\text{NO}}{\longrightarrow} \begin{array}{c} \stackrel{\text{ONO}}{\downarrow} \\ \stackrel{\text{OH}}{\downarrow} \\ \stackrel{\text{C}}{\downarrow} \end{array} \longrightarrow \begin{array}{c} \stackrel{\text{ONO}}{\downarrow} \\ \stackrel{\text{OH}}{\downarrow} \\ \stackrel{\text{C}}{\downarrow} \\ \stackrel{\text{C}}{\downarrow} \end{array}$$

55

Found

Mass spec. M+ 387 (very faint), base peak (M-63).

C 64.96%

H 6.46%

		,
5	EXAMPLE 3 Preparation of 18-hydroxy-pregna-1,4-diene-3,11,20-trione The end product of Example 2 (100 mg) was taken up in 10 mls of 90% accept acid and treated with zinc dust (500 mg). The mixture was stirred at room temperature for 10 mins, then poured into sodium bicarbonate solution and extracted with ethyl acetate. The extracts were washed well with water, dried (Na ₂ SO ₄) and the solvent removed under reduced pressure. The residue was crystallized from methylen chloride/methanol to give material with the following physical data: m.p. 185—197° IR: v _{max} EBF 3450(m), 1700(m), 1660(s), 1620(m), 1605(w) cm ⁻¹ .	- 1 5
10	NMR (CDCl _s): protons assigned At 8 values	
15	$\begin{array}{cccc} C_1 & 7.55 & (d. \ J=10 Hz) \\ C_2 & 6.17 & (dd \ J=10 \ and \ 2 Hz) \\ C_4 & 6.08 & (broad \ s) \\ C_{16} & 3.51 & (q \ J_{AB}=9 Hz) \end{array}$	10
	Analysis: $C_{21}H_{26}O_4$ also 3.47 (q $J_{AB}=7Hz$) $C_{21}-methyl $	15
20	Requires: C 73.65% H 7.65% Found: C 73.39% H 7.72%	20
25	EXAMPLE 4 Preparation and irradiation of pregn-5-ene-3β,20β-diol-3-acetate 20-nitrite (a) The 20β-alcohol (2.5 g) was taken up in dry pyridine (40 mls), cooled to 0.5°C and treated with nitrosyl chloride until a permanent brown colour was observed. The mixture was stirred for a further 10 min. then poured into ice-water. The product was filtered off, washed with water, taken up in ethyl acetate, washed with water, dried (Na ₂ SO ₄) and evaporated to dryness. Yield 2.4 g (91%). Crystallization from methylene chloride ethanol at room temperature afforded colourless plates. m.p. 153—154.5 (dec.) JP. (dec.)	25
30	1250(s), 780(s) cm ⁻¹ . $[\alpha]_D^{21} = 87^\circ$ (c=1.05 CHCl ₃).	30
35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35
40	(b) The 20β-nitrite (2.0 g) was taken up in dry acetonitrile (500 mls) and oxygen passed through the solution cooled to -20°C. Irradiation was carried out at this temperature for 1 hr.—all the nitrite being consumed. The solvent was removed under reduced pressure and the residue chromatographed over silica using benzene containing 0% rising to 5% ethyl acetate. This resulted in four major components which were further chromatographed (silica gel, prep. t.l.c.) to give:	40
45	1. 505 mg (27%) of pregnenolone acetate VII 2. 400 mg (22%) of the starting 20β-alcohol VIII 3. 295 mg of the required 20β-alcohol-18-nitrate IX (14%) yield 4. 160 mg of the 20-keto-18-nitrate X (8% yield) Fraction 3—the required product was acceptable.	45
50	Fraction 3—the required product was crystallized from hexane to give very light needles. m.p. 140—1°. IR: ν_{max} 3650(w), 1725(s), 1620(s), 1280(m), 1240(s) cm ⁻¹ . [α] _D ²¹ =-51° (c=0.9 CHCl ₃).	50
55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55

-NO2

	1,440,120	6	•
	Analysis: C ₂₃ H ₃₀ NO ₆ Requires: C 65.53% H 8.37% N 3.32% Found: C 65.60% H 8.30% N 3.29% Mass spectrum M ⁺ not seen, base peak at M-60, (M-123).		
5	Fraction 4 was identical in all physical data to the keto-nitrate obtained by oxidation of fraction 3 as follows.	5	
10	EXAMPLE 5 Preparation of 3\(\beta\), 18-dihydroxy-pregn-5-en-20-one 3-acetate 18-nitrate The 20\(\beta\)-hydroxy-18-nitrate from Fraction 3 of Example 4 (75 mg) was taken up in acctone (5 mls), and treated with Jones' reagent (0.1 ml). After stirring for 2 mins.	NO THE	2
15	the reaction mixture was poured into water, the product extracted into methylene chloride, washed with sodium bicarbonate solution, water and dried (Na ₂ SO ₄). After removal of the solvent the residue (68 mg, 91%) was found to be essentially pure by t.l.c. and was recrystallized from hexane to give colourless plates. m.p. 156—7°. IR: $\nu_{\text{max}}^{\text{EBr}}$ 1725(s), 1705(s), 1635(s), 1275(s), 1240(s) cm ⁻¹ . $[\alpha]_{\text{D}}^{21}$ = +24° (c=0.95, CHCl ₃).	10	
	NMR (CDCl ₃): protons assigned At δ values		
	C _c 5.35 (m)		
20	C ₆ 5.35 (m) C ₃ 4.5 (m, very broad) C ₁₈ 4.34 (broadened singlet) C ₂₁ -methyl 2.25 (s) O-acetyl 2.00 (s)	20	
25	C ₁₉ -methyl 1.03 (s) Analysis: C ₂₃ H ₂₃ NO ₆ Requires: C 65.84% H 7.93% N 3.34% Found: C 65.92% H 7.94% N 3.25%	25	
	Found: C 65.92% H 7.94% N 3.25% Mass spectrum M+ not seen, base peak at M-60 (M-123).		
30	EXAMPLE 6 Preparation and irradiation of pregn-5-ene-3 β ,20 α -diol 3-acetate 20-nitrite (a) The procedure used was identical to that employed for the 20 β -nitrite preparation in Example 4. 1.1 g of the 20 α -alcohol afforded 1.08 g (91%) of the nitrite. Crystallization from methylene chloride/methanol afforded colourless needles. m.p. 110—111°. IR: ν_{max} EEr 1735(s), 1630(s), 1245(s), 800(s) cm ⁻¹ . [α] _D ²¹ =-31° (c=0.8 CHCl ₂).	30	3 .
35	NMR (CDCl ₃): protons assigned At δ values	35	
40	$\begin{array}{cccc} C_{20} & & & 5.5 \text{ (m, broad)} \\ C_{6} & & & 5.4 \text{ (m)} \\ C_{5} & & & 4.6 \text{ (m, very broad)} \\ O\text{-acetyl} & & 2.00 \text{ (s)} \\ C_{21}\text{-methyl} & & 1.45 \text{ (d } J\text{=}6\text{Hz)} \\ C_{10}\text{-methyl} & & 1.03 \text{ (s)} \\ \end{array}$	40	
45	(b) The same irradiation procedure as in Example 4 was used. 1.0 g of the nitrite in acetonitrile (500 mls) was irradiated at 0 to -20° C in the presence of oxygen for 35 mins. Chromatography then gave 506 mg (47% yield) of the required nitrate. $[\alpha]_D=44^{\circ}$.	45	
	Analaysis: C ₂₃ H ₃₅ NO ₅ Requires: C 65.53% H 8.37% N 3.32% Found: C 65.74% H 8.34% N 3.20%		
50	EXAMPLE 7 Preparation of 36,18-dihydroxy-pregn-5-ene-20-one 3-acetate 18-nitrate The 20\alpha-hydroxy-18-nitrate from Example 6 (100 mg) was oxidized with Jones' reagent (0.15 mls) in acetane (10 mls) in the control of the contro	50	
55	reagent (0.15 mls) in acetone (10 mls) in the same way as the 20β-hydroxy compound in Example 5 to give the 20-keto-18-nitrate (89 mg, 89%). All physical data were identical with that reported in Example 5.	55	

7 1,446,126 7 **EXAMPLE 8** Preparation and irradiation of 1-dehydrocorticosterone 21-acetate 11-nitrite (a) 1-Dehydrocorticosterone 21-acetate (2.4 g) in pyridine (20 mls) was cooled in an ice-bath and treated with nitrosyl chloride until a brown colouration persisted. 5 The mixture was stirred for a further 10 mins, then poured into cold water and the product filtered off and washed well with water. This solid was dissolved in methylene 5 chloride, washed with water, dried (Na₂SO₃) and evaporated to dryness. Yield 2.5 g (96%). An analytical sample was crystallized from ethyl acetate/hexane. m.p. 165-7° (dec.). IR: $\nu_{\text{max}}^{\text{KBr}}$ 1755(s), 1720(s), 1660(s), 1625(m), 1610(w), 1240(s) cm⁻¹. UV: $\lambda_{\text{max}}^{\text{Mooff}}$ 241 m μ (ϵ 16,600). [α] $_{\text{D}}^{\text{20}}$ =+218° (c=0.98 CHCl₃). 10 10 NMR (CDCI₃): protons assigned At δ values 6.88 (d, J=10Hz)6.23 (dd, J=10 and 2Hz) 5.98 (broad s) 15 6.1 (m) 15 4.55 (s) O-acetyl 2.12 (s) C₁₉-methyl 1.20 (s) C18-methyl 0.80 (s) (b) The nitrite in acetonitrile (550 mls) containing triethylamine (0.5 mls) was 20 irradiated as described above for 70 mins. at 0°C in the presence of oxygen. The sol-20 vent was removed under reduced pressure and the residue chromatographed to give the required 18-hydroxy-dehydrocorticosterone 21-acetate 18-nitrate (325 mg, 32%) containing some 5% of an impurity. m.p. 102—12°, $[\alpha]_D = +162^\circ$. 25 Calculated for: C23H29NO8: Requires: 25 C 61.73 % C 61.64 % H 6.53% Found: H 6.50% EXAMPLE 9 Preparation of 18-Hydroxypregnenolone 3-Acetate A solution of the 18-nitrate of 18-hydroxypregnenolone acetate obtained in Examples 5 and 7 (100 mg) in methanol (20 mls) was cooled to 0°C and ammonium 30 30 acetate (0.1 g) added, followed by zinc dust (1.5 g). The reaction mixture was stirred at 0-5°C for 90 mins., before being diluted with water and methylene chloride. The insoluble material was filtered off, the organic phase separated and the aqueous phase extracted twice with methylene chloride. The combined methylene chloride extracts were washed with water, dried (Na₂SO₄) and evaporated to dryness (97 mg). Crystal-35 35 lization from acetone gave 69 mg (78%) of material having m.p. 169—171°; successive crystallizations from acetone eventually raised the m.p. to 171—3° (lit. m.p. $171-4^\circ$) [α]_D²⁵=:-2° (c=0.6, CHCl₃) (lit. [α]_D+6°) (Sykes and Kelley, J. Chem. Soc. C. 1968, 2913). IR: ν_{max} Kill 3500(m), 1735(s), 1240(s) cm⁻¹. 40 40 NMR (CDCl₃): protons assigned At δ values 5.3 (m) 4.5 (m, very broad) 4.68 (broadened s) 2.00 (s) 45 O-acetyl 45 C21-methyl 1.46 (s) 0.94 (s) C_{19} -methyl Analysis: C23H34O4: Requires: C 73.76% H 9.15% 50 C 73.86% Found: H 8.94% Mass spectrum: weak molecular ion at 374, (M-18), (M-46), (M-60), (M-78), (M-90), 50 (M-93).

EXAMPLE 10

Preparation of 18-nitrooxy-progesterone

A solution of the 18-nitrooxy-pregnenolone acetate from Examples 5 and 7
(395 mg) in methanol (15 mls) was treated with perchloric acid (0.5 mls). After 6 hrs. at room temperature a further 0.25 mls of perchloric acid were added and the stirring

55

		2,110,220		ð
	continued for 2 hrs.; t.l.c. then sh water to give a semi-solid product, methylene chloride, washed with wat mg).	18-nitrooxy-pregnen	olone, which was taken up in	
5	NMR (CDCl ₃): protons	assigned	At 8 values	5
10		o 18 3 21-methyl 15-methyl	5.25 (m) 4.30 (AB, q. J=11 Hz) 3.5 (m, very broad) 2.20 (s)	
	Attempts to crystallize this material without further purification.		0.97(s) nerefore it was carried through	10
15 20	The above product (300 mg) piperidone (3 mls) was refluxed unde 5 mls. of distillate were discarded at mg) in dry toluene (2 mls) was add refluxed for a further 6 hours, cooled then dried (Na ₂ SO ₄) and evaporated the required 18-nitrooxy-progesteror acetate/hexane afforded material with V _{max} . T700(m), 1665(s), 1620(s), 17,200). [\alpha] _D ²⁵ =+190° (c=0.87 C	r nitrogen using a D ad then a solution of ed dropwise over a f l, washed 3 times wi t to dryness. Prepar e, 126 mg, 47% yi h the following phy 1280(s) cm ⁻¹ . UV	ean-Stark apparatus. The first aluminium isopropoxide (490 ew minutes. The mixture was th 1% H ₂ SO ₄ , with water and ative t.l.c. (silica gel) afforded eld. Crystallization from ethyl sical data: mp. 145—6° IR	15 20
	NMR (CDCl ₃): protons	assigned	At δ values	
25	C	s 18 21-methyl 19-methyl	5.69 (s, broadened) 4.35 (AB, q, J=11Hz) 2.17 (s) 1.20 (s)	25
30	Found: C 67 Mass spectrum: Molecular ion at 37: When a Jones oxidation was att the major product isolated had the	.17% H 7.78% .14% H 7.61% i, (M-28), (M-63, basempted instead of the following physical d	N 3.73% N 3.53% Se peak). He above Oppenauer oxidation, Hata, in accord with 6-0x0-18-	30
35	nitrooxy-progesterone, m.p. 178—18 1630(s), 1275(s), 870(s, broad) cm ⁻¹ +45° (c=0.51 CHCl ₃).	9° (gas evolution). . UV λ _{max.} ^{MeOH} : 25	IR $v_{\text{max}}^{\text{BEr}}$: 1700(s), 1685(s), 0 m μ (ε =11,600). [α] $_{\text{D}}^{28.7}$ =	35
	NMR (CDCl ₃): protons	assigned	At δ values	
40	Requires: C64	18 21-methyl 103-methyl 176% H 6.99% 177% H 6.99%		40
45	Mass spectrum: very weak molecul	• 1		45
		EXAMPLE 11		
50	18-hydroxypregnenolone acetate, 50 of crude product. Chromatography of CHCl ₂ gave 31 mg (71%) of 18-h aqueous acetone to give material w mainly but some crystals remained 1660(s), 1620(w) cm ⁻¹ . UV λ _{max.} Mo	mg of 18-nitrooxy on silica gel (prep. t. ydroxyprogesterone ith the following pl in the melt up to	progesterone afforded 51 mg l.c.) eluting with 5% acetone/which was recrystallized from mysical data: m.p. 159—161° to 163. IR: v _{max. KBr} 3500(m),	50
55	0.79), CH ₂ Cl ₂).	. 240 ща (в—10	ο,νου). [α]p · . Τ124· (C—	55

				-
	NMR (CDCl ₃):	protons assigned	At δ values	
		C., C1.8	5.66 (s, broadened)	
		C_{1_6}	3.66 (s, broadened)	
5		C ₂₁ -methy C ₁₉ -methy		
	Analysis C21H30O3	C ₁₉ -mem	1.08 (s)	5
		Requires: C 76.33	10/ TT 0.150/	
	Ŧ.	ound · C 76.69	O/ TT 0.02 o/	
	Mass spectrum: Molecu	lar ion at 330 is ve	ry weak (M-18), (M-60), (M-103).	
10				
10	Irradiation of Al costinger	EXAMP	LE 12	10
	A solution of the ni	trite (2.4 s) = 4	nitrite in the presence of oxygen	10
	amine (0.5 mls) was irrad	diated at 0 100 for	acetonitrile (550 mls) containing triethyl-	
	medium pressure mercur	y lamp. The solvent	was removed under reduced pressure and	
15	the residue chromatogr	aphed (silica gel	was removed under reduced pressure and prep. t.l.c.) to afford 18-nitrooxy-Δ¹-	
	hevane violding selection	(875 mg) 34%) wh	prep. t.l.c.) to afford 18-nitrooxy-Δ¹- ich was recrystallized from ethyl acetate/	15
	Crystals remaining in the	ss needles, m.p. 11	0-115° softening from 106° but some	
	106°, gas evolution. [a]	nen unui 118°. Sei	ich was recrystallized from ethyl acetate/ 0—115° softening from 106° but some alled tube m.p. 113—115°, softening from ρ , CHCl ₃). $UV \lambda_{max.MeoM}$: 240 m μ (ϵ = (m), 1730(m), 1660(c), 1630(c), 1630(c)	
20	15,800). $IR \nu_{\text{max}}$ (Br. 35)	50(m, broad), 1755	, CHCl ₃). $UV \lambda_{max}$ MeOH: 240 m μ (ϵ = (m), 1730(m), 1660(s), 1630(s), 1280(s)	
	cm ⁻¹ .	(),, 2,55	(m), 1750(m), 1000(s), 1650(s), 1280(s)	20
	NMP (CDCL)			
	NMR (CDCl ₃):	protons assigned	At δ values	
		C ₁ C ₂ C ₁ C ₁₃ C ₂₃	8.23 (d, $J=10Hz$)	
25	•	C₂	6.20 (d.d., $J=10$ and $2Hz$)	
		<u>G</u> 5	5.97 (broad, s)	25
		C_{i}	All anadassis 40 a	
		$\tilde{\mathbf{C}}_{21}^{n}$	All overlapping 4.2—5	
30		O-acetyl	2.10 (s)	
	A1 : 0 =	C ₁₀ -methyl	1.43 (s)	30
	Analysis: C ₂₃ H ₂₀ NO ₈	0.61.70-4		
	Requires : Found :	C 61.73% C 61.64%	H 6.53% N 3.13%	
		01.04%	H 6.50% N 2.90%	
35	0-11-1 - 1-5	EXAMPL	E 13	
	Oxidation of 18-nitrooxy-A	1-corticosterone 21-a	cetate	35
	Inc above 18-nitrate	(250 mg) in aceton	e (30 mls) was treated with 0.3 mls. of	33
	was diluted with water a	nd the product ex	reasted into minutes the action mixture	
40				•
40				40
	corticosterone 21-acetate	(219 mg, 88%).	Crystallization from isopropanol gave	40
	CHCl.) IP K ^H F. 17	g physical data: n	crystalization from isopropanol gave i.p. $130-2^{\circ}$. [a] _D ²⁰ = +298° (c=0.5, 0)(c) 1660(a)	
	1220(s) cm ⁻¹ //V \ MeOH	00(s), 1/30(s), 171(1.p. $130-2^{\circ}$. $[\alpha]_{\nu}^{2\nu} = +298^{\circ}$ (c=0.5, 0(s), 1660(s, broad), 1615(s), 1290(s), 100).	
		. 259 mg (E-10,20	ou).	
45	NMR (CDCl ₃):	protons assigned	A	
		_	At δ values	45
		C ₁ C ₂ C ₄ C ₂₁ C ₁₈	7.70 (d, J=10Hz)	
		C.	6.14 (d.d., $J=10$ and $2Hz$)	
		Č.	6.05 (broad, s)	
50		\tilde{C}_{18}^{11}	4.60 (s)	
		_	4.38 (AB, q, J=11Hz) 2.13 (s)	50
		C_{19} -methyl	1.42 (s)	
	Analysis: C ₂₃ H ₂₇ NO ₈			
	Requires:	C 62.01%	H (110)	
55	Found:	C 62 199.	H 6.11% N 3.14% H 6.13% N 3.16%	
	Mass spectrum: Molecular	ion at 445 (weak, (I 6.13% N 3.16% M-46), (M-61), (M-63)	55
		` , '	// \ 04/3 (414-03/).	

		1,440,120		10
5	EXAMPLE 14 Preparation and irradiation of 20β-hydroxy-pregna-1,4-dien-3-one 20-nitrite (a) A solution of 20β-hydroxy-pregna-1,4-dien-3-one (110 mg) in pyridine (4 mls) was cooled in an ice-bath then treated with nitrosyl chloride until a permanent brown colouration was observed. The mixture was stirred for a further 5 minutes and then poured into water. The solid product was filtered off, washed with water, taken up in methylene chloride, washed again with water, dried (Na ₂ SO ₄) and evaporated to dryness (112 mg, 93%). Crystallization was carried out at below 40°C from ethyl acetate/hexane with a trace of pyridine to afford the nitrite, m.p. 145—7°. IR ν _{max} ^{KDP} : 1665(s), 1600(w), 880(s) cm ⁻¹ . [α] _D ²⁶ =+52° (c=0.51, CHCl ₃).UV λ _{max} ^{MeoII} : 244 mμ (ε=17,200).			5
	NMR (CDCl ₃): prote	ons assigned	At δ values	
15		C ₁ C ₂ C ₄ C ₂₀ C ₂₁ -methyl C ₁₀ -methyl C ₁₈ -methyl	6.90 (d, J=10Hz) 6.10 (d,d, J=10 and 2Hz) 6.00 (broad, s) 5.35 (m) 1.33 (d, J=6Hz) 1.21 (s) 0.73 (s)	15
20	in the presence of oxygen about the nitrite. The solvent was eva	ng triethylamine (0.5 m .50 mins, being required	d for complete consumption of	20
25	added dropwise over 5 minutes, and then diluted with water (300 washed with sodium bicarbonate Two 1 gram aliquots were then tr	the mixture was stirn of mls). The product was and with water, dries cated as follows:	h. Jones' reagent (15 mls) was red for a further 10 minutes, as extracted into ethyl acetate, d and evaporated to dryness.	25
30	A. Preparative t.l.c. (silica afforded a total of 380 mg (33° the following physical data: $m.p$ (c=1.7, CH ₂ Cl ₂). $IR \nu_{max}$. Kur : 1275(s) cm ⁻¹ . $UV \lambda_{max}$. MacOH : 243	%) of 18-nitrooxypregr . 148.5—150° (dec.—g 700(m), 1660(s), 1635(s	2c evolution) [] 24.5 / 120	30
	NMR (CDCl ₃): proto	ns assigned	At 8 values	
35		C ₁ C ₂ C ₄ C ₁₈ C ₂₁ -methyl	7.00 (d, J=10Hz) 6.20 (d,d, J=10 and 2Hz) 6.05 (broad, s) 4.38 (A), q, J=10Hz)	35
40		C ₁₉ -methyl	2.20 (s) 1.27 (s)	40
	Analysis: C ₂₁ H ₂₇ NO ₈ Requires: C Found: C	67.54% H 7.29% 67.66% H 7.56%	N 3.75% N 3.70%	
45	added and the stirring continued accetate and water, filtered and the washed with water, dried (N2,SO	solution cooled in an idea of 40 mins. The mixture aqueous layer separated to draw and evaporated to draw and evap	d off. The organic extract was	45
50	residue eluting with benzene co purification by preparative t.l.c. hydroxypregna-1,4-diene-3,20-dion ethyl acetate/hexane. $m.p.$ 170— 1600(w) cm ⁻¹ . UV λ_{max} Meori : CH ₂ Cl ₂); +74° (c=0.68, CHCl ₃)	maining 0% rising to (silica gel) afforded Δ^1 . (a) (220 mg., 23%) w 3°. $IR \nu_{\text{max}}^{\text{EBT}}$: 3550(6% ethyl acetate and final -18-hydroxyprogesterone (18-	50

_					
1	.44	К.	1	7	4

1	4

				11
	NMR (CDCl ₃):	protons assigned	At & values	
5		C ₁ C ₂ C ₄ C ₁₈ C ₂₁ -methyl C ₁₉ -methyl	7.00 (d, J=10Hz) 6.17 (d,d, J=10 and 2Hz) 6.03 (broad, s) 3.73 (s) 1.50 (s) 1.18 (s)	5
	Analysis: C ₂₁ H ₂₈ O ₃	Requires: C 76.78%	H 8.59%	
10		Found: C 76.46%	H 8.31%	10
	was spectrum: very	weak molecular ion at 328,	base peak at (M-18).	
	3β -Acetoxy- 7α -hydroxy	EXAMPLE 15 -5\alpha-lanostan-32-yl Nitrate		
15	125w high-pressure me whilst a slow stream of the stream o	rcury vapour lamp with a P f dry oxygen was bubbled	t al. J. Chem. Soc. Perkin I, 1972, ene (500 ml) was irradiated using a lyrex (registered Trade Mark) filter through the stirred solution. After the residue chromatographed on	15
20	afforded the above ni $[\alpha]_{12}=14^{\circ}$ (c. 0.14), ν_1 1720 and 1265 (—OAc (2H ABq, J 10Hz, C-3 5.96 (1H, m, C-7R H	trate (1.4 g, 44%), m.p. (Nujol—registered Trade), and 1630, 1620 and 1280 2 H_2), ca . 5.5 $1H$, c -3 α H , c	the residue chromatographed on eum (b.p. 40—60°) (60:40 v/v) (from ethanol) 146—149° (dec.), le Mark) 3540 and 3480 (—OH), 0 (—ONO ₂) cm ⁻¹ , τ 5.08 and 5.45 obscured by C-32 H ₂ signal), and 0.1; N, 2.5. C ₃₂ H ₅₅ NO ₅ requires	20
25	C, 69.9; H, 10.1; N, 2.5	/0/-	\mathcal{O}_{11} , \mathcal{O}_{12} \mathcal{O}_{13} \mathcal{O}_{14} requires	25
	3β-Acetoxy-5 _m -lanost-7-	EXAMPLE 16 en-32-yl Nitrate		
30	and extracted with ethe phonate, v _{max} (carbon (—ONO ₂), and 1345 and stirred with Woelm has	to give 3β -acetoxy-32-nit tetrachloride) 1735 and d 1175 (—OMs) cm ⁻¹ . This ic alumina (20 g) for 12 h	he solution was poured into water rate-5 a lanostan-7 a-yl methanesul-1240 (—OAc), 1633 and 1280 material in benzene (100 ml) was (t.l.c. control). The alumina was	30
35	and the residue chron petroleum (b.p. 60—80° (830 mg, 86%), m.p. (carbon tetrachloride) 17	natographed on silica (50) (40: 60 v/v) afforded 3β -from benzene-ethanol) 90—35 and 1240 (—OAc), and	g). Elution with benzene-light acetoxy-5 α -lanst-7-en-32-yl nitrate -91°, [α] _D +46.4° (c 0.12), ν _{max} . 1635 and 1280 (—ONO ₂) cm ⁻¹ , τ	35
40	N_{1} , 2.6%).	.5; H, 10.0; N, 2.55. C ₃₂ H ₃	2 H ₂ , C-32 H ₂), and 5.45 (1H, m, 3 NO ₈ requires C, 72.3; H, 10.05;	40
	5α-Lanost-7-ene-3β,32-di 3β-Acetoxy-5α-lanos	EXAMPLE 17 ol 3-Acetate		
45	was filtered through Co thoroughly with ether. T ether. The extracts were	elite (registered Trade Ma The total filtrate was poure washed with IN sodium	g) in glacial acetic acid (50 ml) ated zinc dust (5 g). The mixture rk) and the filter cake washed d into water and extracted with bonate solution, then water, dried	45
50	3β,32-diol 3-acetate (230 bon tetrachloride) 3530 (C-7H), 5.50 (1H, m, C-3ε	mg, 84%), m.p. 152—153°	methanol gave 5α -lanost-7-ene- [α] _D +32.5° (c 0.28, ν_{max} (car-) (—OAc) cm ⁻¹ , τ 4.63 (1H, m,	50
55	3β-Acetoxy-5α-lanost-7-en 5α-Lanost-7-ene-3β,3 —30° and Jones chromit was allowed to warm to r	2-diol 3-acetate (100 mg) in	n acetone (40 ml) was cooled to s) added. After 1 h the solution a further 5 min. the mixture was	55

30 -

12

5

10

15

20

25

10. A process according to claim 8 or claim 9 in which the steroid contains substituents and double bonds selected from a keto, hydroxy or acyloxy group in the 3position; alkyl groups in any of the 2-, 4-, 6-, 10-, 13-, 14- and 16-positions; a keto, ketal or orthoester group at the 20-position; a keto group or hydroxy and/or hydrocarbon or acyl groups at the 17-position; a hydroxy or keto group at the 11- or 12position; a hydroxy group at the 6-, 7- or 20-position; an esterified hydroxy group at the 21-position; a double bond at 5-position or the 1- and/or 4-position; and a halogen

40

45

50

55

35

atom at the 11- or 6-position. 11. A process according to any of claims 8 to 10 in which the steroid is of the pregnane, lanostane, 19-norpregnane, oestrane or cholestane series.

12. A process according to any of claims 1 to 11 in which the diol mononitrate obtained is reductively cleaved to yield the corresponding free diol.

13. A process according to claim 12 in which the reaction is effected using a

source of nascent hydrogen.

14. A process according to claim 12 in which the diol mononitrate produced is subjected to further reactions selected from oxidation, dehydration, isomerisation, esterification, etherification and hydrolysis of ester groups, before the nitrate group is cleaved.

15. A process according to any of claims 8-14, in which a free hydroxy group which has been introduced at the 18 position is subsequently radiolabelled with 16. A process according to claim 1 substantially as described herein.

17. A process according to claim 1 substantially as described herein in any one of Examples 1, 4, 6, 8, 12, 14 and 15.

For the Applicants, FRANK B. DEHN & CO., Imperial House, 15-19 Kingsway London, WC2B 6UZ.

Printed for Her Majesty's Stationery Office, by the Courier Press, Leamington Spa, 1976.
Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

5

20

25

35

40

45

50