Calculus III Lecture 13

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

- Double Integrals
 - Riemann Sums, Double Integral Definition
 - Double integral properties
 - Iterated integrals

License to use and redistribute

These lecture slides and their LaTEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

A Cheaper "Census"

Imagine we want cheap procedure to estimate population in region \mathcal{R} .

• Decompose \mathcal{R} into pairwise non-overlapping smaller regions D_k (states, counties, finer division...).

$$\mathsf{population}(\mathcal{R}) = \sum_k \mathsf{population}(D_k) = \sum_k \mathsf{density}(D_k) \cdot \mathsf{area}(D_k)$$

- To find the population density in D_k we need to count everyone (what an actual census does).
- Instead, we estimate the population density as follows.
 - We pick a sample point P_k in each region D_k .
 - We estimate the population density density (D_k) by counting people in a small region around P_k (density near(P_k)).
- Our population estimate becomes

$$\mathsf{population}(\mathcal{R}) = \sum \mathsf{pop.}(D_k) \simeq \sum \mathsf{density_near}(P_k) \mathsf{area}(D_k).$$

Riemann sum in two variables

Let \mathcal{R} be a compact (closed, bounded) region in the plane, and let $f \colon \mathcal{R} \to \mathbb{R}$ be a function on \mathcal{R} . Let $\{D_k\}$ be finite set of regions covering \mathcal{R} with the following properties.

- Each D_k is a compact set.
- The boundary of each D_k is a collection of smooth curves.
- Two regions D_i and D_j may overlap only on their boundaries.

Let P_k be a collection of sampling points with $P_k \in D_k$ for all k.

Definition (Riemann sum)

The *Riemann sum* defined by such data is $\sum_{k} f(P_k)$ area (D_k) .

Double Integrals

 \mathcal{R} -region covered by D_k , D_k don't overlap except at boundaries.

Definition (Riemann sum)

The *Riemann sum* defined by such data is $\sum_{k} f(P_k)$ area (D_k) .

Definition

If the limit

$$\lim_{\max_k (\operatorname{diam} D_k) \to 0} \sum_k f(P_k) \operatorname{area}(D_k)$$

exists and is finite, then its value is called the *double integral of f over* \mathcal{R} (with respect to area), and is denoted by

$$\iint_{\mathcal{R}} f(P) dA$$

Midpoint Rule

- Suppose region of integration \mathcal{R} is rectangle, i.e., $\mathcal{R} = [a,b] \times [c,d]$, integration w.r.t. dA = dxdy. $\iint_{\mathcal{R}} f(P) dA = \iint_{[a,b] \times [c,d]} f(x,y) dx dy.$
- If integral exists: approximate by fine enough Riemann sum.
- Simplest way: divide \mathcal{R} into $n \times n$ equal pieces, sides $\Delta x = \frac{b-a}{n}$, $\Delta y = \frac{d-c}{n}$.
- For $(s, t)^{th}$ rectangle D_{st} , sample at midpoint $P_{s,t} = \left(a + \left(s \frac{1}{2}\right) \Delta x, c + \left(t \frac{1}{2}\right) \Delta y\right)$.

$$\iint\limits_{\mathcal{R}} f(x,y) dx dy = \lim_{n \to \infty} \sum_{1 \le s,t \le n} f(P_{s,t}) \operatorname{area}(D_{st})$$

$$\approx \sum_{1 \le i,i \le n} f(P_{s,t}) \Delta x \Delta y \quad .$$

$$P_{11}=\left(1,\frac{1}{2}\right),$$

Use the Midpoint Rule to approximate $\iint_{[0,4]\times[0,2]} x^2 y dx dy, \text{ with each side divided into } n = 2 \text{ pieces.}$

The small rectangles have dimensions

$$\frac{4-0}{2} \cdot \frac{2-0}{2} = 2 \cdot 1$$
 and area 2. The midpoints are

$$P_{11} = \left(1, \frac{1}{2}\right), \quad P_{12} = \left(1, \frac{3}{2}\right), \quad P_{21} = \left(3, \frac{1}{2}\right), \quad P_{22} = \left(3, \frac{3}{2}\right).$$

$$\iint_{[0,4]\times[0,2]} x^2 y \, \mathrm{d}x \mathrm{d}y \approx 2\left(f\left(1,\frac{1}{2}\right) + f\left(3,\frac{1}{2}\right) + f\left(1,\frac{3}{2}\right) + f\left(3,\frac{3}{2}\right)\right)$$

$$= 1 \cdot \frac{1}{2} \cdot 2 + 9 \cdot \frac{1}{2} \cdot 2 + 1 \cdot \frac{3}{2} \cdot 2 + 9 \cdot \frac{3}{2} \cdot 2$$

= 1 + 9 + 3 + 27 = 40 .

Lecture 13 **Todor Milev** 2020

Theoretical Examples

 \bullet The total population over a region ${\cal R}$ is:

$$\mathsf{population}(\mathcal{R}) = \iint_{\mathcal{R}} \mathsf{density}(P) \, \mathsf{d} A \simeq \sum_k \mathsf{density}(P_k) \, \mathsf{area}(D_k) \; .$$

• Mass is the double integral of density with respect to area:

$$\mathsf{mass}(\mathcal{R}) = \iint_{\mathcal{R}} \mathsf{density}(P) \, \mathsf{d}A$$
 .

• Volume under the graph of $h: \mathcal{R} \to [0, \infty)$

Volume =
$$\iint_{\mathcal{P}} h(P) dA$$
.

Area of a region:

Area(
$$\mathcal{R}$$
) = $\iint_{\mathcal{R}} 1 \, dA$.

Double Integral Properties

$$\iint_{\mathcal{R}} f(P) \, \mathrm{d}A = \lim_{\max_k (\mathrm{diam} D_k) o 0} \sum_k f(P_k) \, \mathrm{area}(D_k)$$

- If f is bounded and continuous, except maybe on a finite number of smooth curves, then the limit exists and is finite.
- Linearity

$$\iint_{\mathcal{R}} [\lambda f(P) + \mu g(P)] dA = \lambda \iint_{\mathcal{R}} f(P) dA + \mu \iint_{\mathcal{R}} g(P) dA.$$

• Domain additivity: if \mathcal{R}_1 and \mathcal{R}_2 intersect only along boundaries:

$$\iint_{\mathcal{R}_1 \cup \mathcal{R}_2} f(P) \, \mathrm{d}A = \iint_{\mathcal{R}_1} f(P) \, \mathrm{d}A + \iint_{\mathcal{R}_2} f(P) \, \mathrm{d}A$$

• Monotonicity property: If $m \le f(P) \le M$ for all P in \mathbb{R} , then

$$m \operatorname{area}(\mathcal{R}) \leq \iint_{\mathcal{P}} f(P) dA \leq M \operatorname{area}(\mathcal{R})$$
.

Applications

• Average value of f on \mathcal{R} .

$$\begin{split} \iint_{\mathcal{R}} f(P) \, \mathrm{d}A &= \iint_{\mathcal{R}} (\text{average value of } f \text{ on } \mathcal{R}) \, \mathrm{d}A \\ &= (\text{average value of } f \text{ on } \mathcal{R}) \iint_{\mathcal{R}} \mathrm{d}A \\ &= (\text{average value of } f \text{ on } \mathcal{R}) \cdot \text{area}(\mathcal{R}) \\ \text{average value of } f \text{ on } \mathcal{R} &= \frac{1}{\text{area}(\mathcal{R})} \iint_{\mathcal{R}} f(P) \, \mathrm{d}A \; . \end{split}$$

Theorem (Mean Value Theorem)

If f is continuous on \mathbb{R} , then there exists P_0 in \mathbb{R} such that

$$f(P_0) = \frac{1}{area(\mathcal{R})} \iint_{\mathcal{R}} f(Q) \, \mathrm{d}A$$

Theorem (Analog of Fundamental Theorem of Calculus)

If f is continuous around P, then

$$\lim_{D\to\{P\}}\frac{1}{area(D)}\iint_D f(Q)dA = f(P)$$

Vectorial Integrals

The double integral definition extends directly to f-ns with vector output.

Definition

$$\iint_{\mathcal{R}} \mathbf{F}(P) \, dA = \lim_{\text{maxdiam}(\mathcal{D}) \to 0} \sum_{k} \mathbf{F}(P_k) \, \text{area}(D_k)$$

Theoretical example: Electric force on a lamina

- Given:
 - a charge Q, located at the origin;
 - charge q, uniformly distributed on a planar lamina \mathcal{R} .
- What is the resulting (total) force **F** on *Q*?
- Recall that the attraction force exerted on a charge Q located at the origin by a charge c located at a point with position vector \mathbf{r} is $\varepsilon Q c \frac{\mathbf{r}}{|\mathbf{r}|^3}$.

$$\begin{array}{lcl} \mathrm{d}q & = & (\mathrm{density} \ \mathrm{of} \ \mathrm{charge}) \mathrm{d}A = \frac{q}{A(\mathcal{R})} \mathrm{d}A \\ \mathrm{d}\mathbf{F} & = & \varepsilon Q \frac{\mathbf{r}}{|\mathbf{r}|^3} \mathrm{d}q = \varepsilon \frac{Qq}{A(\mathcal{R})} \frac{\mathbf{r}}{|\mathbf{r}|^3} \mathrm{d}A \\ \mathbf{F} & = & \iint_{\mathcal{R}} \mathrm{d}\mathbf{F} = \iint_{\mathcal{R}} \varepsilon \frac{Qq}{A(\mathcal{R})} \frac{\mathbf{r}}{|\mathbf{r}|^3} \mathrm{d}A \\ & = & \varepsilon \frac{Qq}{A(\mathcal{R})} \iint_{\mathcal{R}} \frac{\mathbf{r}}{|\mathbf{r}|^3} \mathrm{d}A \end{array}$$

Iterated Integrals

$$\iint_{[a,b]\times[c,d]} f(x,y) dx dy \approx \sum_{1\leq i,j\leq n} f(x_i,y_j) \Delta x \Delta y$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} f(x_i,y_j) \Delta x\right) \Delta y.$$

The j^{th} summand is a Riemann sum for $g(y_j) = \int_{x=a}^{x=b} f(x,y_j) dx$

$$\sum_{j=1}^{n} \left(\sum_{i=1}^{n} f(x_i, y_j) \Delta x \right) \Delta y \approx \sum_{j=1}^{n} g(y_j) \Delta y \approx \int_{y=c}^{y=d} g(y) dy$$

$$\iint_{[a,b] \times [c,d]} f(x,y) dx dy = \int_{y=c}^{y=d} g(y) dy = \int_{y=c}^{y=d} \left(\int_{x=a}^{x=b} f(x,y) dx \right) dy$$

Todor Milev

Lecture 13

Theorem

If f is continuous the double integral $\iint_{[a,b]\times[c,d]} f(x,y) dxdy$ exists.

Theorem (Fubini's Theorem)

Suppose the double integral of f exists. Then, except at a set of measure 0, the iterated integrals exist and

$$\iint_{[a,b]\times[c,d]} f(x,y) \, dxdy = \int_{y=c}^{y=d} \left(\int_{x=a}^{x=b} f(x,y) \, dx \right) \frac{dy}{dx}$$
$$= \int_{x=a}^{x=b} \left(\int_{y=c}^{y=d} f(x,y) dy \right) dx.$$

This theorem allows to integrate non-continuous functions. The term "set of measure 0" is too technical to define here; usually studied in the subject(s) "Real Analysis/Measure Theory".

Compute
$$\iint_{[1,2]\times[2,3]} (2x+3y^2) dxdy$$
.

For (x, y) in $[1, 2] \times [2, 3]$, y takes values between c = 2 and d = 3. For a fixed value $y = y_0$, x takes values between a = 1 and b = 2.

$$\iint_{[1,2]\times[2,3]} (2x+3y^2) dx dy = \int_{y=2}^{y=3} \left(\int_{x=1}^{x=2} (2x+3y^2) dx \right) dy$$

$$= \int_{y=2}^{y=3} \left[x^2 + 3y^2 x \right]_{x=1}^{2x=2} dy$$

$$= \int_{y=2}^{y=3} \left((4+6y^2) - (1+3y^2) \right) dy$$

$$= \int_{y=2}^{y=3} (3+3y^2) dy = \left[3y + y^3 \right]_{y=2}^{y=3}$$

$$= 36 - 14 = 22.$$

Todor Milev

More General Regions

What makes iterated integrals work over rectangular regions? Slices with respect to one variable are intervals in the other. If variable is x:

- fix x,
- integrate with respect to y,
- to obtain function that depends only on x,
- then integrate the so obtained function in x.

So far used rectangular regions; this also works if slices are intervals whose endpoints depend continuously on the location of the slice.

- Regions of type I: vertical slices are segments.
- Regions of type II: horizontal slices are segments.

We call such regions curvilinear trapezoids.

Strategy: Curvilinear Trapezoids (Type I)

- Identify the leftmost point(s), with x-coordinate x = a and the rightmost point(s), x = b.
- Draw a vertical slice at a value x between a and b.
- Find the lowest point on that slice, (x, f(x)) and the highest point, (x, g(x)).

The region is the region bounded by:

- the vertical lines x = a and x = b;
- the graphs of y = f(x) and y = g(x), with $f, g: [a, b] \to \mathbb{R}$.

$$\mathcal{R} = \{(x,y)|a \leq x \leq b, f(x) \leq y \leq g(x)\}.$$

$$\iint_{\mathcal{R}} f(x, y) \, dxdy = \int_{x=a}^{x=b} \left(\int_{y=f(x)}^{y=g(x)} f(x, y) dy \right) \, dx$$

Strategy: Curvilinear Trapezoids (Type II)

- Identify the lowest point(s), with y-coordinate
 y = c and the topmost point(s), y = d.
- Draw a generic horizontal slice at some value y between c and d.
- Find the lowest point on that slice, (f(y), y) and the topmost point, (g(y), y).

The region is bounded by:

- horizontal lines y = c and y = d
- graphs of x = f(y) and x = g(y), with $f, g: [c, d] \to \mathbb{R}$:

$$\mathcal{R} = \{(x,y) \mid c \leq y \leq d, \ f(y) \leq x \leq g(y)\}.$$

$$\iint_{\mathcal{R}} f(x, y) \, dx dy = \int_{y=c}^{y=d} \left(\int_{x=f(y)}^{x=g(y)} f(x, y) dx \right) \, dy$$

Strategy for Computing a Double Integral

Problem

Find the integral $\iint_{\mathcal{R}} f(x, y) dxdy$ over a region \mathcal{R} enclosed by a set of smooth curves.

- We present a strategy for approaching the above problem.
- The tractability of this strategy depends on the concrete description of f and the enclosing curves.
 - Plot the curve(s) enclosing \mathcal{R} .
 - Identify the region \mathcal{R} .
 - Chop $\mathcal R$ into curvilinear trapezoids; the trapezoids are allowed to intersect only on their boundaries.
 - By possible subdivision ensure trapezoids have smooth boundaries.
 - Integrate *f* over the obtained curvilinear trapezoids & collect terms.
- Our strategy will be augmented/combined later with variable changes (via the multivariable substitution rule).

Let \mathcal{R} be the region bounded by y = 2x and $y = x^2$. Compute

$$\iint_{\mathcal{R}} \frac{1}{8} \left(x^2 + y^2 \right) \mathrm{d}x \mathrm{d}y$$

Plot y = 2x. Plot $y = x^2$. Identify the region.

$$x^2 = 2x$$

The two curves intersect when x(x-2) = 0

The intersection points are therefore (0,0) and (2,4). We can plot the function $\frac{1}{8}(x^2+y^2)$ as above. Our integral is

$$\int_{x=0}^{x=2} \left(\int_{y=x^2}^{3} \frac{1}{8} (x^2 + y^2) dy \right) dx$$

$$\int_{x=0}^{x=2} \left(\int_{y=x^2}^{y=2x} \frac{1}{8} \left(x^2 + y^2 \right) dy \right)$$

Let \mathcal{R} be the region bounded by y = 2xand $y = x^2$. Compute

$$\iint_{\mathcal{R}} \frac{1}{8} \left(x^2 + y^2 \right) dx dy$$

Plot y = 2x. Plot $y = x^2$. Identify the region.

$$\int_{x=0}^{x=2} \left(\int_{y=x^2}^{y=2x} \frac{1}{8} \left(x^2 + y^2 \right) dy \right) dx = \frac{1}{8} \int_{x=0}^{x=2} \left[x^2 y + \frac{y^3}{3} \right]_{y=x^2}^{y=2x} dx$$

$$= \frac{1}{8} \int_{0}^{2} \left(2x^3 + \frac{8}{3}x^3 - x^4 - \frac{x^6}{3} \right) dx$$

$$= \frac{1}{8} \left[-\frac{1}{21}x^7 - \frac{1}{5}x^5 + \frac{7}{6}x^4 \right]_{x=0}^{x=2}$$

$$= \frac{27}{35}$$

2020 Todor Milev Lecture 13

bounded by y = x - 1 and $y^2 = 2x + 6$. Compute Let \mathcal{R} be the region

$$\int \int_{\mathcal{R}} \left(2 + \frac{1}{4}xy\right) dxdy.$$

Plot x - 1. Plot $y^2 = 2x + 6$. Identify the region. The two curves

$$(x-1)^2 = 2x+6$$

intersect when $\begin{array}{rcl} x^2 - 2x + 1 & = & 2x + 6 \\ x^2 - 4x - 5 & = & 0 \end{array}$

$$x^2 - 4x - 5 = 0$$

$$x = -1 \text{ or } 5.$$

The two intersection points are (-1, -2) and (5, 4). The function can be plotted as above. The integral becomes:

$$\int_{y=-2}^{y=4} \int_{x=\frac{y^2-6}{2}}^{x=y+1} \left(2 + \frac{1}{4}xy\right) dxdy$$

2020 Todor Milev Lecture 13

Let \mathcal{R} be the region bounded by y = x - 1 and $y^2 = 2x + 6$. Compute

$$\int_{y=-2}^{y=4} \int_{x=\frac{y^2-6}{2}}^{x=y+1} \left(2 + \frac{1}{4}xy\right) dxdy = \int_{y=-2}^{y=4} \left[2x + \frac{x^2y}{8}\right]_{x=\frac{y^2-6}{2}}^{x=y+1} dy$$

$$= \int_{y=-2}^{y=4} \left(-\frac{1}{32}y^5 + \frac{1}{2}y^3 - \frac{3}{4}y^2 + y + 8\right) dy$$

$$= \left[-\frac{1}{192}y^6 + \frac{1}{8}y^4 - \frac{1}{4}y^3 + \frac{1}{2}y^2 + 8y\right]_{-2}^{4} = 45$$

Todor Miley Lecture 13 2020

Let \mathcal{R} be region bounded by $y = (x + 1)^2$, $x = y - y^3$, the line x = -1 and the line y = -1. Set-up iterated integrals for

$$\iint_{\mathcal{R}} f dA.$$

Plot x = -1. Plot y = -1. Plot $y = (x + 1)^2$. Plot $x = y - y^3$. Identify the region. Compute the intersection points: the four points lying on the boundary of our region have coordinates:

(-1,-1),(0,-1),(-1,0),(0,1). Split into two curvilinear trapezoids: $\mathcal{R}=\mathcal{R}_1\cup\mathcal{R}_2$, where $\mathcal{R}_1,\mathcal{R}_2$ are as indicated. The integral becomes:

$$\iint\limits_{\mathcal{R}_1} f dA + \iint\limits_{\mathcal{R}_2} f dA = \int\limits_{y=0}^{y=1} \int\limits_{x=\sqrt{y}-1}^{x=y-y^3} f dx dy + \int\limits_{y=-1}^{y=0} \int\limits_{x=-1}^{x=y-y^3} f dx dy$$

Example
$$\iint_{[0,\infty)\times[0,\infty)} e^{-x-y} dxdy$$

Todor Milev Lecture 13 2020

Example
$$\int_0^1 \int_{3y}^3 e^{x^2} dx dy$$

Todor Milev Lecture 13 2020