# Modeling of Crime Data to Detect Social and Spatial Proximity

### Claire Kelling\*

Advisors: Murali Haran\*, Corina Graif\*\*

Penn State University
Department of Statistics\*, Department of Sociology and Criminology\*\*

STAT 544: Categorical Data Analysis

# **Topics**

- Introduction
- 2 Data Sources
  - Crime Data
  - Demographic Data
  - Social Proximity Data
- 3 Literature Review Plan
- 4 Analysis Plan

### Motivation

### Geographic proximity has been studied over many years

- mostly focusing on identifying hotspots in certain communities
- led to many controversial policing strategies, such as predictive policing, which was referenced repeatedly in "Weapons of Math Destruction" (O'Neill, 2016).

### Our Approach:

- Demographics
- Geographic Proximity
- Social Proximity

### Data Source



#### **POLICE DATA INITIATIVE**

|        | HOME DATA &                  | AGENCIES JOIN THI | E INITIATIVE | RESOURCES           | FAQ | ABOUT        | CONTACT | Q |
|--------|------------------------------|-------------------|--------------|---------------------|-----|--------------|---------|---|
| A      | Name                         | City              | State        | Link                |     | Title        |         |   |
|        | Baltimore Police Department  | Baltimore         | MD           | https://goo.gl/KvCl | HMn | Calls for Se | vice    |   |
| POLICE | Bloomington Police Departme  | ent Bloomington   | IN           | https://goo.gl/ewq  | lg2 | Calls for Se | vice    |   |
|        | Burlington Police Department | Burlington        | VT           | https://goo.gl/02x  | 9G  | Calls for Se | vice    |   |
|        | Chandler Police Department   | Chandler          | AZ           | https://goo.gl/xbLf | ce  | Calls for Se | vice    |   |
| 01164  | Charleston Police Department | Charleston        | SC           | https://goo.gl/Mk9  | idR | Calls for Se | vice    |   |

# Police Data Initiative

### Call for Service (CFS) data:

- 911 Call
- Officer-Initiated OR Call-Initiated
- collected in computer-aided dispatch systems

#### Variation in Data:

- contain sensitive call types?
- contain all emergency and non-emergency calls?

#### Dataset Size

- Usually a small number of variables (longitude, latitude, time, brief description)
- Usually many calls (4 million+ in some cases)

### Detroit Police Data Initiative Dataset



5.5+ million observations with complete information (09/16-present)

#### Detroit Variables:

- Measures of Response Time:
  - Intake, Dispatch, Travel, Time On Scene, Response Time
- Priority (1-5)
- Call Code, Call Description, Category
- Call Time/Date
- Officer Initiated (Yes/No)
- Neighborhood
- Longitude/Latitude

# Exploratory Data Analysis- PDI



# American Communities Survey



Managed through the US Census Bureau, available through 2015

Variables for all 1,822 block groups:

- median income
- median age
- percentage female
- unemployment rate
- total population
- measure of racial diversity (?)

# Exploratory Data Analysis- ACS

#### Total Population by Block Group



#### Median Income by Block Group



Claire Kelling\*

Crime Data Modeling Project

# Social Proximity

### What is Social Proximity?





Figure 1: An illustration of various types of features we used in Chicago. The POI distribution across community areas reflects profiles of the region functionality. The taxi flow connects non-adjacent regions and act as "hyperlinks" on the space.

# Social Proximity Data

### More Census data

- used by OnTheMap (a Census App)
- LEHD Origin-Destination Employment Statistics (LODES)
- LEHD = Longitudinal Employer-Household Dynamics

#### Index of /data/lodes/LODES7/mi/od

|   | Name                       | Last modified     | Size | Description |
|---|----------------------------|-------------------|------|-------------|
| 4 | Parent Directory           |                   |      |             |
| D | mi od aux JT00 2002.csv.gz | 21-Sep-2017 20:57 | 347K |             |
| D | mi_od_aux_JT00_2003.csv.gz | 21-Sep-2017 20:56 | 341K |             |
| Ō | mi od aux JT00 2004.csv.gz | 21-Sep-2017 20:57 | 320K |             |
| ñ | mi od aux JT00 2005.csv.gz | 21-Sep-2017 20:57 | 323K |             |
| Ā | mi od aux JT00 2006.csv.gz | 21-Sep-2017 20:57 | 319K |             |
| Ā | mi od aux JT00 2007.csv.gz | 21-Sep-2017 20:56 | 337K |             |
| Ă | mi od aux JT00 2008.csv.gz | 21-Sep-2017 20:56 | 500K |             |
| Ă | mi od aux JT00 2009.csv.gz | 21-Sep-2017 20:57 | 419K |             |
| Ă | mi od aux JT00 2010.csv.gz | 21-Sep-2017 20:56 | 447K |             |
|   | mi od aux JT00 2011.csv.gz | 21-Sep-2017 20:57 | 444K |             |
| Ă | mi od aux JT00 2012.csv.gz | 21-Sep-2017 20:56 | 487K |             |
| Ă | mi od aux JT00 2013.csv.gz | 21-Sep-2017 20:57 | 512K |             |
| Ă | mi od aux JT00 2014.csv.gz | 21-Sep-2017 20:57 | 553K |             |
| Ă | mi od aux JT00 2015.csv.gz | 21-Sep-2017 20:56 | 537K |             |
| Ă | mi od aux JT01 2002.csv.gz | 21-Sep-2017 20:56 | 330K |             |
| ŏ | mi od aux JT01 2003.csv.gz | 21-Sep-2017 20:56 | 323K |             |

# Literature Review- Block Group Analysis

### There are two main areas in the current literature:

- Analysis of Crime Data:
  - weighted spatial regression, Wang et al (2016) [1]
  - critique of spatial regression in econometric applications, Anselin (2002) [2]
  - Social ecology theory of crimes, Anselin et al (2000) [3]
- Statistical techniques for Areal Data:
  - CAR Model (conditional autoregressive)- CAR structure on random effects but GLMM framework
  - Chapters 12 and 13 of Handbook of Spatial Statistics [4]
  - Chapter 4 of Banerjee et al [5]

# **Analysis**

There will be two main focuses of this project, with an additional possibility:

- Model the aggregated crime rates (counts) for the block groups, as related to demographic variables
- Model the response time to incidents at the point level, particularly in according to the categorical variable of priority
- Consider neural models with negative binomial spiking, Pillow and Scott (2012) [6]

## References

- [1] Hongjian Wang, Daniel Kifer, Corina Graif, and Zhenhui Li. Crime rate inference with big data. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 635–644. ACM, 2016.
- [2] Luc Anselin. Under the hood issues in the specification and interpretation of spatial regression models. *Agricultural economics*, 27(3):247–267, 2002.
- [3] Luc Anselin, Jacqueline Cohen, David Cook, Wilpen Gorr, and George Tita. Spatial analyses of crime. *Criminal justice*, 4(2):213–262, 2000.
- [4] Alan E Gelfand, Peter Diggle, Peter Guttorp, and Montserrat Fuentes. Handbook of spatial statistics. CRC press, 2010.
- [5] Sudipto Banerjee, Bradley P Carlin, and Alan E Gelfand. *Hierarchical modeling and analysis for spatial data*. Crc Press, 2014.
- [6] James Scott and Jonathan W Pillow. Fully bayesian inference for neural models with negative-binomial spiking. In Advances in neural information processing systems, pages 1898–1906, 2012.