# CS3800: Theory of Computation — Summer II '22 — Drew van der Poel

Homework 3

Due Friday, July 29 at 11:59pm via Gradescope

Name:

Collaborators:

- Make sure to put your name on the first page. If you are using the LATEX template we provided, then you can make sure it appears by filling in the yourname command.
- This assignment is due Friday, July 29 at 11:59pm via Gradescope. No late assignments will be accepted. Make sure to submit something before the deadline.
- Solutions must be typeset. If you need to draw any diagrams, you may draw them by hand as
  long as they are embedded in the PDF. I recommend using the source file for this assignment
  to get started.
- I encourage you to work with your classmates on the homework problems. *If you do collaborate, you must write all solutions by yourself, in your own words.* Do not submit anything you cannot explain. Please list all your collaborators in your solution for each problem by filling in the yourcollaborators command.
- Finding solutions to homework problems on the web, or by asking students not enrolled in the class is strictly forbidden.

## **Problem 1.** *Context-Free Grammars* (7 points)

In the following problems, the alphabet  $\Sigma = \{a, b\}$ . Give a context-free grammar for each of the following languages.

(a) **[3 pts.]**  $L_a = \{a^n b^n | n > 1 \text{ is not a multiple of 3} \}$ 

Show how to generate aaaabbbb with your grammar.

### **Solution:**

A → aabb | aaaAbbb | aaAbb

To generate aaaabbbb: A  $\rightarrow$  aaAbb  $\rightarrow$  aaaabbbb

(b) [4 pts.]  $L_a = \{w|w \text{ has twice as many a's as b's}\}$ 

Show how to generate aababaaab and aaaabb with your grammar.

#### **Solution:**

 $A \rightarrow AA$  | aab | aba | baa | aa | bA  $\varepsilon$  B  $\rightarrow$ 

To generate aababaaab:  $A \rightarrow AA \rightarrow aabAA \rightarrow aababaAA \rightarrow aababaaab$ 

To generate aaaabb:  $A \rightarrow aaAb \rightarrow aaAAb \rightarrow aaaaAbb \rightarrow aaaabb$ 

## **Problem 2.** CFGs and PDAs (7 points)

Consider the following context-free grammar *G*:

 $S \rightarrow aWb|bWa$ 

 $W \rightarrow aW|bW|\epsilon$ 

(a) [2 pts.] Describe the set of strings which can be generated by *G*.

#### **Solution:**

The set of all strings in which the first input is a and the last input is b or the first input is a and the last input is a.

(b) **[5 pts.]** Give a PDA which recognizes the language given by grammar G. You should show all necessary states for "guessing" rule S, but can use shorthand otherwise. Specify  $\Sigma$  and  $\Gamma$ .



$$\Sigma = \{a, b\}$$
  
$$\Gamma = \{S, W, a, b\}$$

## **Problem 3.** *PDAs* (8 points)

Consider  $\Sigma = \{0, 1\}$  and language  $L = \{0^n 101^m | n > m; n, m \in \mathbb{N}\}.$ 

Show that L is context-free by giving a PDA which recognizes it. You should give a complete PDA. Your machine should accept strings 00000001011, 010, 00101, and 00000010, but not  $10\ 0010111$ , or 0101. Explain why it accepts 00101 and why it does not accept 0101.

### **Solution:**

## **Problem 4.** *Non Context-Free Languages* (4+4=8 points)

(a) Prove that language  $L = \{w | w \in \{a, b, c\}^*$  and the number of a's is equal to the number of b's and the number of a's is greater than the number of c's} is not context-free.

## **Solution:**

(b) Prove that language  $L = \{a^l b^{l^2} | l \in \mathbb{N}\}$  is not context-free.

## **Solution:**