# Задача Штейнера

Самсонов Владислав 395 группа ФИВТ ПМИ e-mail: vvladxx@gmail.com

29 декабря 2015

## 1 Введение

В данной работе рассматривается задача построения дерева Штейнера. Кроме того, будет рассмотрен метрический вариант задачи в пространстве  $(X,\rho)$  с произвольной метрикой и решена задача построения дерева Штейнера в евклидововом пространстве  $\mathbb{E}^2$ . Алгоритм, представленный в работе, имеет оптимальное время работы  $O(n\log n)$  и показатель аппроксимации  $a=\frac{2\sqrt{3}}{3}\approx 1.15....$ 

## 2 Теоретические сведения

#### 2.1 Базовые определения

| $\mathbf{MST}(G)$     | Минимальное остовное дерево для графа $G$ .     |
|-----------------------|-------------------------------------------------|
| $\mathbf{ST}(G, V_0)$ | Дерево Штейнера графа $G$ .                     |
| $\mathbf{EST}(P)$     | Евклидово дерево Штейнера для набора точек $P.$ |
| $\mathbf{DT}(P)$      | Триангуляция Делоне для набора точек $P.$       |

 $\mathcal{A}$ еревом Штейнера для графа G=(V,E) и набора вершин  $V_0\subseteq V$  называется дерево  $T\subseteq G$  минимального веса, проходящее по всем вершинам  $V_0$ .



Рис. 1: МST (слева) и дерево Штейнера (справа) в  $\mathbb{E}^2$ 

Метрическим деревом Штейнера в пространстве  $(X, \rho)$  для конечного набора точек  $P \subset X$  называется  $\mathbf{ST}(G, P)$ , где G = (V, E) – полный граф, V = X, а вес ребра  $(v, u) \in X \times X$  определяется метрикой  $\rho(v, u)$ .

Eвклидовым деревом Штейнера для конечного набора точек  $P \subset \mathbb{E}$  называется метрическое дерево Штейнера в евклидовом пространстве с евклидовой метрикой.

Mинимальным остовным деревом для графа G = (V, E) называется дерево  $T \subseteq G$  минимального веса, проходящее по всем вершинам V.

Tриангуляцией Делоне для набора точек P в  $\mathbb{E}^2$  называется разбиение плоскости на непересекающиеся треугольники с вершинами из P таким образом, что все точки P принадлежат хотя бы одному треугольнику и для любого треугольника t триангуляции выполняется критерий Делоне: никакая из точек  $p \in P$  не лежит строго внутри окружности, описанной вокруг t.



Рис. 2: Триангуляция Делоне

#### 2.2 Задача Штейнера

Далее будем рассматривать соответствующую задачу распознавания: существует ли дерево Штейнера весом не более k.

**Теорема 1.** Все постановки задачи Штейнера (общая/метрическая/ев-клидова) лежат в **NP**.

Доказательство. В качестве сертификата можно предъявить искомый набор рёбер. Все проверки на корректность дерева и сумму рёбер выполняются очевидным образом и за полиномиальное время.

**Теорема 2.**  $\mathbf{ST}(G, V_0)$  является  $\mathbf{NP}$ -полной.

Доказательство. Из теоремы 1 и следующей теоремы очевидным образом следует утверждение этой теоремы, поскольку метрический вариант задачи является частным случаем общей постановки и сводится к общей. Будем сразу доказывать **NP**-полноту метрической задачи Штейнера. □

Теорема 3. Метрическая задача Штейнера является NP-полной.

Доказательство. Покажем, что задача о вершинном покрытии  $(\mathbf{VC}(G))$  полиномиально сводится к метрической задаче Штейнера.

Пусть дан граф G = (V, E) из задачи о вершинном покрытии. Построим

полный граф G' следующим образом: в нём |V|+|E| вершин, v' соответствуют  $v \in V$  и  $v'_{uv}$  соответствуют  $(u,v) \in E$ . Определим расстояния между вершинами G':

- $\forall (u, v) \in E : \rho(u', v'_{uv}) = \rho(v', v'_{uv}) = \rho(v'_{uv}, u') = \rho(v'_{uv}, v') = 1$
- $\forall u, v \in V : \rho(u', v') = \rho(v', u') = 1$
- $\forall u \in V \ \forall (v, z) \in E$ , t.y.  $u \neq v \neq z$ :  $\rho(u', v'_{vz}) = \rho(v'_{vz}, u') = 2$
- $\forall e,e'\in E$ : если рёбра e и e' имеют общую вершину, то  $\rho(v'_e,v'_{e'})=\rho(v'_{e'},v'_e)=2$ , иначе  $\rho(v'_e,v'_{e'})=\rho(v'_{e'},v'_e)=3$

Расстояния, определённые таким образом, удовлетворяют неравенству треугольника, а значит G' – корректная постановка метрической задачи Штейнера.

**Лемма 1.** Если в G есть вершинное покрытие размера k, то в G' есть дерево Штейнера весом m+k-1.

Доказательство. Пусть  $S \subset V$  – вершинное покрытие. Рассмотрим точки  $\{v' \in V' : v \in V\}$  и точки  $\{v'_{uv} \in V' : (u,v) \in E\}$  и посмотрим на все рёбра длины 1 между ними. В результате такого описания получился индуцированный связный подграф G', потому что любая вершина u' соединена ребром длины 1 с любой другой v', а каждая  $\omega'_{uv}$  соединена с u'. Любое остовное дерево этого связного подграфа в G' имеет m+k-1 рёбер длины 1, а значит условие леммы выполнено.

**Лемма 2.** Если в G' есть дерево Штейнера весом  $\leq m+k-1$ , то в G есть вершинное покрытие размера k.

Доказательство. Пусть T – дерево Штейнера весом  $\leq m+k-1$ . Сперва мы изменим дерево таким образом, что у него не будет рёбер длины 2 или 3. Будем повторять следующие действия:

- Если есть ребро длины 2 между w' и  $v'_{uv}$ , мы удаляем ребро (ставим  $\infty$ ) из дерева и добавляем 2 новых ребра длины 1: (w', u') и  $(u', v'_{uv})$ .
- Если есть ребро длины 2 между  $v'_{uv}$  и  $v'_{vw}$ , мы удаляем ребро (ставим  $\infty$ ) из дерева и добавляем 2 новых ребра длины 1:  $(v'_{uv}, v')$  и  $(v', v'_{vw})$ .

• Наконец, если есть ребро длины 3 между  $v'_{uv}$  и  $v'_{wz}$ , мы удаляем ребро (ставим  $\infty$ ) из дерева и добавляем 3 новых ребра длины 1:  $(v'_{uv}, v'), (v', w')$  and  $(w', v'_{wz})$ .

Мы повторяем действия, описанные выше, пока в графе есть рёбра длины 2 или 3. Этот процесс не увеличивает стоимость и в результате получается связный граф. Мы можем получить дерево удалением рёбер (и уменьшением стоимости) если нужно.

В полученном дереве есть только рёбра длины 1 и его вес  $\leq m+k-1$ , т.е. оно содержит  $\leq m+k$  вершин. m вершин  $v'_{uv}$  должны быть в дереве, значит в дереве  $\leq k$  вершин v'. Пусть S – множество этих вершин. Можно заметить, что это и есть вершинное покрытие для G. В самом деле, для любого ребра  $(u,v)\in G$  вершина  $v'_{uv}$  соединена с v' в дереве только рёбрами длины 1, что означает, что либо u', либо v' в дереве, и либо u, либо v в S.

Таким образом, мы полиномиально свели  $\mathbf{VC}(G)$  к метрической задаче Штейнера.

**Теорема 4.** Длина MST в метрической задаче Штейнера не более удвоенного веса минимального дерева Штейнера.

Доказательство. Обозначим вес минимального дерева Штейнера за  $L_s$ . Заменим в этом дереве каждое ребро на двойное ребро. Получили дерево с чётным количеством рёбер, а значит в нём можно выделить эйлеров цикл. Теперь склеим двойные рёбра обратно в одно. Эйлеров цикл будет проходить по всем вершинам графа G (возможно по несколько раз) и иметь длину  $2L_s$ . Но, с другой стороны, граф G полный, а значит в нём существует гамильтонов цикл минимального веса  $L_g$ . Тогда  $L_g \leq 2L_s$ . Обозначим длину MST за  $L_m$ . Если удалить одно ребро из минимального гамильтонова цикла, то получится какое-то остовное дерево длины L, при этом  $L \leq L_g$  (т.к. удалили ребро) и  $L_m \leq L$  (т.к.  $L_m$  — длина минимального остовного дерева).

В итоге получаем следующую цепочку:  $L_m \le L \le L_g \le 2L_s$ .

#### 2.3 Алгоритм 2-аппроксимации для метрической задачи Штейнера

Пусть в пространстве  $(X, \rho)$  требуется решить метрическую задачу Штейнера для графа G(X, E) и конечного набора точек P.

Тогда достаточно построить минимальное остовное дерево для индуцированного подграфа G вершинами P.

**Теорема 5.** Данный алгоритм имеет показатель аппроксимации не больше 2.

Доказательство. Прямое следствие из теоремы 4:

$$a = \sup \frac{p^*}{p} = \sup \frac{L_m}{L_s} \le 2$$

Тут  $p^*$  – найденное решение, p – минимальное решение.

**Теорема 6.** Данный алгоритм имеет сложность  $O(|P|^2)$ .

Доказательство. Так как индуцированный подграф полный и содержит  $C_{|P|}^2 \sim |P|^2$  рёбер, то задачу построения MST можно решать алгоритмом Прима для полных графов за  $O(|P|^2)$ .

#### 2.4 Алгоритм для евклидовой задачи Штейнера

Рассмотрим задачу нахождения дерева Штейнера в  $\mathbb{E}^2$ , то есть на плоскости. В этом случае, разумеется, можно решать задачу алгоритмом для метрической задачи Штейнера. Однако, в этом частном случае алгоритм можно ещё немного улучшить, как в показателе аппроксимации, так и по времени работы.

**Теорема 7** (Нижняя оценка для показателя аппроксимации).  $a \geq \frac{2\sqrt{3}}{3}$ .



Рис. 3: Пример

Доказательство. Рассмотрим конфигурацию точек  $P = \{A, B, C\}$ , по-казанную на рисунке. Точки ABC образуют равносторонний треугольник со стороной 1. Деревом Штейнера будут отрезки AD, BD, CD длиной  $\frac{\sqrt{3}}{3}$  каждый, то есть вес дерева Штейнера  $\sqrt{3}$ . Но вес минимального остова 2, откуда получаем  $a \geq \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$ .

**Теорема 8** (Верхняя оценка для показателя аппроксимации).  $a \leq \frac{2\sqrt{3}}{3}$ .

Это утверждение долгое время оставалось открытой гипотезой. Экспериментально гипотеза хорошо подтверждается. Доказательство этой теоремы можно посмотреть в [2], но в нём была найдена ошибка [3]. Поэтому, оставим эту теорему без доказательства.

Теперь будем улучшать время работы.

**Лемма 3.** B **DT**(P) не более 3|P|-3 рёбер u не более 2|P|-2 треугольников.

Доказательство. Пусть T – количество треугольников, E – количество рёбер. Все рёбра принадлежат ровно двум треугольникам кроме тех K рёбер, которые лежат на выпуклой оболочке  $\mathbf{CONV}(P)$  – в этом случае, очевидно, ребро принадлежит только одному треугольнику.

$$2E - K = 3T \implies 2E > 3T$$

Далее, пользуемся |P| - E + (T+1) = 2 (формула Эйлера для планарных графов), получаем нужные соотношения.

Лемма 4.  $MST(P) \subseteq DT(P)$ 

Доказательство. См. [4]

**Лемма 5.**  $\mathbf{DT}(P)$  можно построить за  $O(|P|\log|P|)$ .

 $\mathcal{A}$ оказательство. См. [5]

**Теорема 9.**  $\mathbf{MST}(P)$  для |P| точек в  $\mathbb{E}^2$  можно построить за  $O(|P|\log|P|)$ .

Доказательство. Прямое следствие из леммы 3-5. Строим  $\mathbf{DT}(P)$ . Теперь из  $\mathbf{DT}(P)$  мы можем выделить  $\mathbf{MST}(P)$ . Так как по лемме 3 в полученном графе рёбер не слишком много, то достаточно воспользоваться алгоритмом Прима/Краскала и получить требуемый результат.

Таким образом, полученный алгоритм имеет хороший показатель аппроксимации  $a=\frac{2\sqrt{3}}{3}\approx 1.15...$  и оптимальное время работы.

Оптимальность следует из того, что с помощью евклидова дерева Штейнера можно сортировать действительные числа, расположив их на одной прямой. В результате построения дерева штейнера для такой конструкции соседние числа будут соединены ребром, то есть получится двусвязный список отсортированных чисел. Как известно,  $N\log N$  — нижняя граница для сортировки N произвольных действительных чисел. Те же самые рассуждения применимы и для минимального остовного дерева. Это значит, что представленный алгоритм является оптимальным.

### 3 Тестирование

Тестирование проводилось на точках, сгенерированных случайно и равномерно распределённых внутри квадрата  $[0,1] \times [0,1]$ . Программа вычисляла аппроксимацию веса дерева Штейнера. Ошибка вычисляется относительно точного ответа по формуле  $1-\frac{A}{A^{opt}}$ . Для большого количества точек точный ответ не известен (слишком долго считается) и ошибка не указана.

| Число точек | Время работы (сек.) | Ошибка |
|-------------|---------------------|--------|
| 10          | 0.0001              | 0.12   |
| $10^{2}$    | 0.0002              | 0.09   |
| $10^{3}$    | 0.0033              | 0.08   |
| $10^{4}$    | 0.0401              |        |
| $10^{5}$    | 0.1713              | _      |

#### 4 Реализация на языке С++

Исходный код можно найти в ./src. main.cpp — основная программа.

#### Список литературы

[1] U.C. Berkeley — CS172: Automata, Computability and Complexity, Professor Luca Trevisan, 2015.

- [2] A.O. Ivanov and A.A. Tuzhilin Minimal networks: the Steiner problem and its generalizations, CRC press, 1994. Page 167, Theorem 3.1.
- [3] A.O. Ivanov and A.A. Tuzhilin The Steiner Ratio Gilbert-Pollak Conjecture Is Still Open, Algorithmica February 2012, Volume 62, Issue 1, pp 630-632.
- [4] Godfried T. Toussaint The relative neighbourhood graph of a finite planar set, Pattern Recognition Vol. 12, Issue 4, 1980, Pages 261–268.
- [5] D.T. Lee, B.J. Schachter Two algorithms for constructing a Delaunay triangulation, International Journal of Computer & Information Sciences, June 1980, Vol. 9, Issue 3, pp 219-242.