

Optical Flow: Horn-Schunck

16-385 Computer Vision (Kris Kitani)
Carnegie Mellon University

Horn-Schunck Optical Flow (1981)

Lucas-Kanade Optical Flow (1981)

brightness constancy

small motion

method of differences

'smooth' flow

(flow can vary from pixel to pixel)

global method (dense)

'constant' flow

(flow is constant for all pixels)

local method (sparse)

Optical Flow

(Problem definition)

How is this different from estimating a 2D transform?

Key Assumptions

(unique to optical flow)

Color Constancy

(Brightness constancy for intensity images)

Implication: allows for pixel to pixel comparison (not image features)

Small Motion

(pixels only move a little bit)

Implication: linearization of the brightness constancy constraint

Approach

I(x, y, t')

Look for nearby pixels with the same color

(small motion)

(color constancy)

Brightness constancy

Optical flow (velocities): (u,v) Displacement: $(\delta x,\delta y)=(u\delta t,v\delta t)$

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

For a really small time step...

Optical Flow Constraint equation

$$I(x + u\delta t, y + v\delta t, t + \delta t) = I(x, y, t)$$

$$I(x,y,t) + \frac{\partial I}{\partial x}\delta x + \frac{\partial I}{\partial y}\delta y + \frac{\partial I}{\partial t}\delta t = I(x,y,t)$$

$$\frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t} = 0$$

$$I_x u + I_y v + I_t = 0$$

Solution lies on a straight line

$$I_x u + I_y v + I_t = 0$$

The solution cannot be determined uniquely with a single constraint (a single pixel)

Horn-Schunck Optical Flow (1981)

Lucas-Kanade Optical Flow (1981)

brightness constancy

small motion

method of differences

'smooth' flow

(flow is smooth from pixel to pixel)

global method

'constant' flow

(flow is constant for all pixels)

local method

Smoothness

most objects in the world are rigid or deform elastically moving together coherently

we expect optical flow fields to be smooth

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

Key idea (of Horn-Schunck optical flow)

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

Enforce brightness constancy

$$I_x u + I_y v + I_t = 0$$

For every pixel,

$$\min_{u,v} \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2$$

Enforce brightness constancy

$$I_x u + I_y v + I_t = 0$$

For every pixel,

$$\min_{u,v} \left[I_x u_{ij} + I_y v_{ij} + I_t
ight]^2$$

Find the optical flow such that it satisfies:

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

Enforce smooth flow field

u-component of flow

Which flow field optimizes the objective? $\min_{\boldsymbol{u}}(u_{i,j}-u_{i+1,j})^2$

$$\sum_{ij} (u_{ij} - u_{i+1,j})^2 \qquad ? \qquad \sum_{ij} (u_{ij} - u_{i+1,j})^2$$

Which flow field optimizes the objective? $\min_{\boldsymbol{u}}(u_{i,j}-u_{i+1,j})^2$

big small

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

bringing it all together...

Horn-Schunck optical flow

$$\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \underset{\text{weight}}{\lambda} E_d(i,j) \right\}$$

HS optical flow objective function

Brightness constancy
$$E_d(i,j) = \left[I_x u_{ij} + I_y v_{ij} + I_t\right]^2$$

Smoothness

$$E_s(i,j) = \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right]$$

How do we solve this minimization problem?

$$\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$$

How do we solve this minimization problem?

$$\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$$

Compute partial derivative, derive update equations (gradient decent!)

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$
smoothness term brightness constancy

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

it's not so bad...

$$\frac{\partial E}{\partial u_{kl}} =$$

how many u terms depend on k and l?

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

it's not so bad...

$$\frac{\partial E}{\partial u_{kl}} =$$

how many u terms depend on k and l?

FOUR from smoothness

ONE from brightness constancy

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

it's not so bad...

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$

how many u terms depend on k and l?

FOUR from smoothness

ONE from brightness constancy

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

$$(u_{ij}^2 - 2u_{ij}u_{i+1,j} + u_{i+1,j}^2) \qquad (u_{ij}^2 - 2u_{ij}u_{i,j+1} + u_{i,j+1}^2)$$

(variable will appear four times in sum)

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

$$(u_{ij}^2 - 2u_{ij}u_{i+1,j} + u_{i+1,j}^2) \qquad (u_{ij}^2 - 2u_{ij}u_{i,j+1} + u_{i,j+1}^2)$$

(variable will appear four times in sum)

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$

$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

short hand for local average
$$\bar{u}_{ij} = \frac{1}{4} \left\{ u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} \right\}$$

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$
$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

Where are the extrema of E?

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$

$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$

$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2) v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$

$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$

$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2) v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

this is a linear system

$$\mathbf{A} x = b$$

 $\mathbf{A} x = \mathbf{b}$ how do you solve this?

We are solving for the optical flow (u,v) given two constraints

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

smoothness

brightness constancy

We need the math to minimize this (back to the math)

Partial derivatives of Horn-Schunck objective function E:

$$\frac{\partial E}{\partial u_{kl}} = 2(u_{kl} - \bar{u}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_x$$

$$\frac{\partial E}{\partial v_{kl}} = 2(v_{kl} - \bar{v}_{kl}) + 2\lambda(I_x u_{kl} + I_y v_{kl} + I_t)I_y$$

Where are the extrema of E?

(set derivatives to zero and solve for unknowns u and v)

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$

$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2) v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

$$\mathbf{A} x = b$$
 how do you solve this?

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$
$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2)v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

Recall
$$\boldsymbol{x} = \mathbf{A}^{-1}\boldsymbol{b} = \frac{\operatorname{adj}\mathbf{A}}{\det\mathbf{A}}\boldsymbol{b}$$

$$(1 + \lambda I_x^2)u_{kl} + \lambda I_x I_y v_{kl} = \bar{u}_{kl} - \lambda I_x I_t$$
$$\lambda I_x I_y u_{kl} + (1 + \lambda I_y^2)v_{kl} = \bar{v}_{kl} - \lambda I_y I_t$$

Recall
$$\boldsymbol{x} = \mathbf{A}^{-1}\boldsymbol{b} = \frac{\operatorname{adj}\mathbf{A}}{\det\mathbf{A}}\boldsymbol{b}$$

Same as the linear system:

$$\{1 + \lambda (I_x^2 + I_y^2)\}u_{kl} = (1 + \lambda I_x^2)\bar{u}_{kl} - \lambda I_xI_y\bar{v}_{kl} - \lambda I_xI_t$$
 (det A)

$$\{1 + \lambda(I_x^2 + I_y^2)\}v_{kl} = (1 + \lambda I_y^2)\bar{v}_{kl} - \lambda I_xI_y\bar{u}_{kl} - \lambda I_yI_t$$
 (det A)

$$\{1 + \lambda(I_x^2 + I_y^2)\}u_{kl} = (1 + \lambda I_x^2)\bar{u}_{kl} - \lambda I_x I_y \bar{v}_{kl} - \lambda I_x I_t$$

$$\{1 + \lambda(I_x^2 + I_y^2)\}v_{kl} = (1 + \lambda I_y^2)\bar{v}_{kl} - \lambda I_x I_y \bar{u}_{kl} - \lambda I_y I_t$$

Rearrange to get update equations:

$$\hat{u}_{kl} = ar{u}_{kl} - rac{I_x ar{u}_{kl} + I_y ar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_x$$
 $\hat{v}_{kl} = ar{v}_{kl} - rac{I_x ar{u}_{kl} + I_y ar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_y$

Recall:
$$\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$$

When lambda is small (lambda inverse is big)...

$$\hat{u}_{kl} = ar{u}_{kl} - rac{I_x ar{u}_{kl} + I_y ar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_x$$
 $\hat{v}_{kl} = ar{v}_{kl} - rac{I_x ar{u}_{kl} + I_y ar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_y$

Recall:
$$\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$$

When lambda is small (lambda inverse is big)...

$$\hat{u}_{kl}=ar{u}_{kl}-rac{I_xar{u}_{kl}+I_yar{v}_{kl}+I_t}{\lambda^{-1}+I_x^2+I_y^2}ar{I}_x^{ ext{goes to}}$$
 $\hat{v}_{kl}=ar{v}_{kl}-rac{I_xar{u}_{kl}+I_yar{v}_{kl}+I_t}{\lambda^{-1}+I_x^2+I_y^2}ar{I}_y$

Recall:
$$\min_{\boldsymbol{u},\boldsymbol{v}} \sum_{i,j} \left\{ E_s(i,j) + \lambda E_d(i,j) \right\}$$

When lambda is small (lambda inverse is big)...

$$\hat{u}_{kl} = ar{u}_{kl} - rac{I_x ar{u}_{kl} + I_y ar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} ar{I}_x^{ ext{goes to}}$$
 $\hat{v}_{kl} = ar{v}_{kl} - rac{I_x ar{u}_{kl} + I_y ar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} ar{I}_y^{ ext{goes to}}$

...we only care about smoothness.

We are solving for the optical flow (u,v) given two constraints

$$\sum_{ij} \left\{ \frac{1}{4} \left[(u_{ij} - u_{i+1,j})^2 + (u_{ij} - u_{i,j+1})^2 + (v_{ij} - v_{i+1,j})^2 + (v_{ij} - v_{i,j+1})^2 \right] + \lambda \left[I_x u_{ij} + I_y v_{ij} + I_t \right]^2 \right\}$$

smoothness

brightness constancy

We needed the math to minimize this (now to the algorithm)

Horn-Schunck Optical Flow Algorithm

1. Precompute image gradients

- I_y I_x
- 2. Precompute temporal gradients I_t
- 3. Initialize flow field

- u = 0
- v = 0

4. While not converged

Compute flow field updates for each pixel:

$$\hat{u}_{kl} = \bar{u}_{kl} - \frac{I_x \bar{u}_{kl} + I_y \bar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_x \qquad \hat{v}_{kl} = \bar{v}_{kl} - \frac{I_x \bar{u}_{kl} + I_y \bar{v}_{kl} + I_t}{\lambda^{-1} + I_x^2 + I_y^2} I_y$$

Just 8 lines of code!