

Enhancing Group Formation in Online Discussions with the Louvain Algorithm for Group Detection

Minkyung Lee and Priya Sharma Penn State University

Group Formation

Group formation has been challenging in online settings as instructors must capture different needs and characteristics of the large number of students to create balanced groups.

Group Formation

- Different methods exist to form groups:
 - random selection
 - self-selection
 - teacher selection
 - automatic selection (Felder & Brent, 2001).
- Algorithmic group formation
 - Uses algorithms to assign students to groups based on criteria such as skills, interests, or learning needs.
 - Methods can be effective and economically beneficial, as it can generate optimal groupings quickly with a given set of criteria (Muller et al., 2022).

Group Formation

- Group formation by frequency of interaction: Louvain algorithm (Blondel et al., 2008)
- The most popular modularity optimization method (Menczer et al., 2018)
- The Louvain algorithm iteratively optimizes modularity by reassigning nodes to communities and aggregating them into super-nodes, resulting in a hierarchical community structure.

(Blondel et al., 2008)

Community detection to examine learning

- Jan & Vlachopoulos (2018) They suggest that community-based learning and structural similarity between networks and communities make SNA a natural choice for deeper understanding of group interaction. The study substantiated their method as an effective framework for structural identification of a Community of Inquiry (CoI) and Community of practice (CoP).
- Yassine (2020) used the label propagation algorithm and Louvain algorithm for community detection and found those different community detection algorithms can be implemented on learning networks and detect communities.

Purpose of the study

To explore the potential of the Louvain algorithm for group formation in online learning environments, concentrating on identifying groups based on their connectivity patterns.

Our research questions are as follows:

- 1. How can the Louvain algorithm be applied to identify groups within online learning environments based on their connectivity patterns?
- 2. What are the global network characteristics of courses and the local network characteristics of the groups identified by the algorithm?

Data collection

The raw data of an online undergraduate business course was anonymized and used for analysis.

	# of students	# of posts	# of topics
Course4	53	808	9
Course5	50	764	9
Course6	51	839	9

Students were given different reflective questions for nine weeks and required to write their opinions as well as replies to others.

Data preparation

course n	course canv	term nan	student car	discussion entry id	parent discussion	topic id	topic	grour topic message	discussion message	message	workflow reply d topic assignment id	score	points
MBADM	1933434	2188 - 20	6881588	10500000024068311		10500000012157160	M5 Discussion: New Thinking	TI	Volunteer Line Judge - Girl's Volleyball\nTo challenge r	2402	active 1 1050000010228279	25	25
MBADM	1933434	2188 - 20	6636858	10500000024076724		10500000012157160	M5 Discussion: New Thinking	TI	The service that I decided to utilize to incorporate new thinking	2391	active 1 1050000010228279	25	25
MBADM	1933434	2188 - 20	6636858	10500000024076771	105000000240683	10500000012157160	M5 Discussion: New Thinking	TI	Hi Neville,\nThis is a great analysis of your new way of	976	active 2 1050000010228279	25	25
MBADM	1933434	2188 - 20	6901221	10500000024081680		10500000012157160	M5 Discussion: New Thinking	TI	M5 Discussion-New Thinking\nI have an idea for New	2818	active 1 10500000010228279	25	25
MBADM	1933434	2188 - 20	6868764	10500000024083666		10500000012157160	M5 Discussion: New Thinking	TI	My object is a walletbecause I need a new one.\nSir	2866	active 1 10500000010228279	25	25
MBADM	1933434	2188 - 20	6910663	10500000024084150		10500000012157160	M5 Discussion: New Thinking	TI	An activity I have identified that would benefit from new thinking.	2973	active 1 1050000010228279	25	25
MBADM	1933434	2188 - 20	6896477	10500000024085451		10500000012157160	M5 Discussion: New Thinking	TI	While running today, I asked myself, "how much do i need to running today."	2588	active 1 1050000010228279	25	25

Data preparation

- We extracted the source and target data from each course and created adjacency lists to generate sociograms.
- This data was imported into Gephi, a tool for data visualization and analysis, where we ran various network statistics such as weighted degree, diameter, and density, including modularity function to identify communities within the network.
- We applied the same procedure to all courses for consistency and comparability.

*We used the default setting of modularity resolution and chose the undirected graphs.

Results

a) Explored the entire network at a global level to understand the course network structures with specific measures

b) Investigated one of the courses (C5) to understand the interaction within groups generated by the Louvain algorithm

Results – Global level

• Global metrics describe characteristics, topology, and structures (Morrison et al., 2022).

	# of nodes	# of edges	Graph density	weighted degree	path length	Diameter	Clustering coefficient
C4	53	314	0.228	16.679	2.111	5	0.345
C5	50	261	0.213	14.96	1.996	4	0.282
C6	51	340	0.267	17.294	1.807	4	0.372

• Course 6(C6) has the most active and interconnected student network, with the highest levels of interaction, communication intensity, and cohesion. Course 4(C4) shows moderate levels of interaction, while Course 5 (C5) appears to have the least active network.

Results – Global level networks

a hub

201

165
164
198
190
186
165
166
197
195
200
161
173
168
167
184
184
188
182
207

Group 0 –orange

Group 1- purple

group 2 – yellow

Group 3- pink

Group 4- blue

Group 5- light violet

Results – Local level

 Local metrics are measures describing the attributes of a network at the node or edge level (Morrison et al., 2022).

	Degree	Weighted Degree	Clustering coefficient	Triangles
group0	4.286	9.143	0.619	4.714
group1	4.200	5.800	0.463	3.700
group2	3.333	9.000	0.528	2.500
group3	3.714	7.714	0.595	3.000
group4	3.333	4.000	0.385	1.000
group5	2.364	3.636	0.015	0.091
C5	3.538	6.549	0.434	2.501

- The nodes in group 0 are more connected in groups, more influential(weighted degree) and more densely connected(clustering coefficient, triangle) to their neighbors than the nodes in the other groups.
- We may imply Group 0 could be more central or influential within the C5 network compared to the other groups.

Results – Local level networks

- Node size : weighted degree
- Node color : the number of triangle

Implication

Global level- the course network structures

Local level- the group network structures by Louvain algorithm

We think this research...

- expand the ways to form groups using algorithm for online learning as well as classroom learning
- b. give insight on group interaction network to anticipate the group cohesiveness

Limitations

- Implementation requires technical expertise and understanding.
- Online learning environments are dynamic, causing constant group adjustment.
- Louvain algorithm is more often used with large networks.

Future research

- Conduct content analysis to integrate the results from the network data
- Conduct controlled experiments to compare group dynamics and learning outcomes of Louvain algorithm with traditional methods to evaluate its effectiveness
- Develop user-friendly tools to make Louvain algorithm accessible for instructors in various learning settings

Thank you and we welcome any questions and feedback!

Minkyung Lee <u>mzl263@psu.edu</u> Priya Sharma <u>pus3@psu.edu</u>

		Cor	relations			
			Weighted	Clustering		Eigenvector
		Degree	Degree	Coefficient	Triangles	Centrality
Degree	Pearson Correlation	1	.964**	.752	.965**	.935*
	Sig. (2-tailed)		.008	.142	.008	.020
	N	5	5	5	5	5
Weighted Degree	Pearson Correlation	.964**	1	.733	.993**	.873
	Sig. (2-tailed)	.008		.159	<.001	.053
	N	5	5	5	5	5
Clustering	Pearson Correlation	.752	.733	1	.750	.896*
Coefficient	Sig. (2-tailed)	.142	.159		.144	.040
	N	5	5	5	5	5
Triangles	Pearson Correlation	.965**	.993**	.750	1	.867
	Sig. (2-tailed)	.008	<.001	.144		.057
	N	5	5	5	5	5
Eigenvector	Pearson Correlation	.935*	.873	.896*	.867	1
Centrality	Sig. (2-tailed)	.020	.053	.040	.057	
** Completion is significant at the	N	5	5	5	5	5

^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).