Predicting House Sale Price

Jacob Bayer and Wei Bin Li

About the data

- Dependent Variable: sale price of a house
- Dimensions: 1460 x 79
- 18 numerical & 61 categorical predictors
- P = 188 after creating dummy variables

CV plots

Ridge	0.44s
Lasso	0.62s
Elastic Net	0.61s

- North_Ames Gilbert
- College_Creek Sawyer
- Old_Town Northwest_Ames
 - Sawyer_West Edwards
 - Mitchell Somerset
- Northridge_Heights Brookside

 Meadow_Village Greens

Blueste

- Briardale Green_Hills Bloomington_Heights Landmark
- Veenker
- Northpark_Villa

- Crawford
- Iowa_DOT_and_Rail_Road
- Timberland
- Northridge
 - Stone_Brook
- South_and_West_of_lowa_State_University

Model Performance

MODEL	90% CI for R^2	MEAN R^2 PERFORMANCE	TIME (Seconds)
LASSO	(0.70,0.92)	0.85	0.71
ELASTIC NET	(0.70,0.92)	0.84	0.94
RIDGE	(0.74,0.92)	0.86	0.52
RANDOM FOREST	(0.85,0.91)	0.88	15.11

Conclusion

- Random forest is the best model, but it takes the longest to calculate
- The most important factor in predicting house price is location (neighborhood)
- The second most important factor appears to be whether or not the house is damaged