Equivalenza tra ASF, RG e RE

a.a. 2020-2021

Corso di Fondamenti di Informatica - 1 modulo Corso di Laurea in Informatica Università di Roma "Tor Vergata"

Prof. Giorgio Gambosi

Grammatiche regolari

ASF e grammatiche di tipo 3

Per ogni grammatica regolare $\mathscr{G} = \langle V_T, V_N, P, S \rangle$, esiste un ASFND $\mathscr{A}_N = \langle \Sigma, Q, \delta_N, q_0, F \rangle$ che riconosce il linguaggio che essa genera.

Viceversa, per ogni ASFND \mathcal{A}_N esiste una grammatica regolare che genera il linguaggio che esso riconosce.

ASF e grammatiche di tipo 3

Sia $\mathcal{G} = \langle V_T, V_N, P, S \rangle$ una grammatica di tipo 3, con al più la sola ε -produzione $S \longrightarrow \varepsilon$.

Definiamo una procedura che partire da $\mathscr G$ produca un ASFND $\mathscr A_N = \langle \Sigma, Q, \delta_N, q_0, F \rangle$ equivalente (che accetta tutte e sole stringhe prodotte da $\mathscr G$).

Da \mathscr{G} a \mathscr{A}_N

$$\Sigma = V_T$$

$$Q = \{q_I \mid I \in V_N\} \cup \{q_F\}$$

$$q_0 = q_S$$

$$F = \begin{cases} \{q_0, q_F\} & \text{se } S \longrightarrow \varepsilon \in P \\ \{q_F\} & \text{altrimenti} \end{cases}$$

Da \mathscr{G} a \mathscr{A}_N

Per ogni coppia $a \in V_T$ e $B \in V_N$,

$$\delta_N(q_B, a) = \begin{cases} \{q_C \mid B \longrightarrow aC \in P\} \cup \{q_F\} & \text{se } B \longrightarrow a \in P \\ \{q_C \mid B \longrightarrow aC \in P\} & \text{altrimenti.} \end{cases}$$

L'automa è, in generale, non deterministico.

Da \mathscr{G} a \mathscr{A}_N . Equivalenza di \mathscr{G} e \mathscr{A}_N

Per dimostrare l'equivalenza tra \mathcal{G} e \mathcal{A}_N , dobbiamo mostrare che per ogni $x \in \Sigma^*$ si ha che

$$S \stackrel{*}{\underset{\mathcal{G}}{\longrightarrow}} x$$
 se e solo se $\overline{\delta}_N(q_S, x) \cap F \neq \emptyset$

Questo è chiaramente vero se $x = \varepsilon$, in quanto $\overline{\delta}_N(q_0, \varepsilon) = q_0 \in F$, se e solo se $S \longrightarrow \varepsilon \in P$, per costruzione.

Nel caso $x \in \Sigma^+$ mostriamo, per induzione sulla lunghezza di x, la proprietà più generale

$$S \stackrel{*}{\Longrightarrow} xZ$$
 se e solo se $q_Z \in \overline{\delta}_N(q_S, x)$

Da \mathscr{G} a \mathscr{A}_N . Equivalenza di \mathscr{G} e \mathscr{A}_N

Iniziamo da

$$S \stackrel{*}{\Longrightarrow} xZ$$
 implica $q_Z \in \overline{\delta}_N(q_S, x)$

Passo base: |x| = 1, per cui x = a, con $a \in \Sigma$. Allora abbiamo che $S \Longrightarrow aZ$ se e solo se $S \longrightarrow aZ \in P$ e quindi se e solo se, per costruzione dell'automa, $q_Z \in \delta_N(q_S, a)$.

Da ${\mathcal G}$ a ${\mathcal A}_N$. Equivalenza di ${\mathcal G}$ e ${\mathcal A}_N$

Passo induttivo: |x| > 1, per cui x = ya, con $|y| = n \ge 1$ e $a \in \Sigma$.

Per l'ipotesi induttiva il risultato si assume valido per y, quindi

$$S \stackrel{*}{\Longrightarrow} yZ$$
 se e solo se $q_Z \in \overline{\delta}_N(q_S, y)$

Osserviamo che $S \stackrel{*}{\Longrightarrow} xZ'$ se e solo se esiste $Z \in V_N$ tale che $S \stackrel{*}{\Longrightarrow} yZ \Longrightarrow yaZ' = xZ'$. Ne deriva che

- $q_Z \in \overline{\delta}_N(q_S, y)$ per induzione
- $Z \longrightarrow aZ' \in P$, e quindi $q_{Z'} \in \delta_N(a, Z)$ per costruzione

Quindi,
$$q_{Z'} \in \overline{\delta}_N(q_S, ya) = \overline{\delta}_N(q_S, x)$$

Da \mathscr{G} a \mathscr{A}_N . Equivalenza di \mathscr{G} e \mathscr{A}_N

Abbiamo verificato che $S \stackrel{*}{\Longrightarrow} xZ$ se e solo se $q_Z \in \overline{\delta}_N(q_S, x)$.

Osserviamo ora che $S \stackrel{*}{\Longrightarrow} x$ se e solo se esistono $Z \in V_N, y \in \Sigma^*$ e $Z \longrightarrow a \in P$ tali che x = ya e $S \stackrel{*}{\Longrightarrow} yZ \stackrel{*}{\Longrightarrow} ya = x$.

Da quanto visto sopra, ciò è vero se e solo se $q_Z \in \overline{\delta}_N(q_S, y)$ e $q_F \in \delta_N(q_Z, a)$, e quindi se e solo se $q_F \in \overline{\delta}_N(q_S, ya) = \overline{\delta}_N(q_S, x)$.

In conclusione, per ogni linguaggio regolare (generato da una grammatica di tipo 3) esiste un ASFND che lo accetta (e quindi anche un ASFD che lo decide).

ASF e grammatiche di tipo 3

Sia
$$\mathcal{A} = \langle \Sigma, Q, \delta, q_o, F \rangle$$
 un ASFD.

Definiamo una procedura che partire da $\mathcal A$ produca una grammatica di tipo 3 $\mathcal G = \langle V_T, V_N, P, S \rangle$ equivalente (che genera tutte e sole stringhe accettate da $\mathcal A$).

Da \mathcal{A} a \mathcal{G}

Se $q_o \notin F$:

$$V_T = \Sigma$$

 $V_N = \{A_i \mid \text{ per ogni } q_i \in Q\}$

$$S = A_0$$

per ogni regola di transizione $\delta(q_i,a)=q_j$ esiste $A_i\longrightarrow aA_j\in P$, e se $q_j\in F$ esiste anche $A_i\longrightarrow a\in P$

Da \mathcal{A} a \mathcal{G}

Se $q_0 \in F$:

$$V_T = \Sigma$$

$$V_N = \{A_i \mid \text{ per ogni } q_i \in Q\} \cup \{A'_0\}$$

$$S=A_{\rm o}'$$

per ogni regola di transizione $\delta(q_i,a)=q_j$ esiste $A_i \longrightarrow aA_j \in P$, e se $q_j \in F$ esiste anche $A_i \longrightarrow a \in P$ (tutte le precedenti). Inoltre, per ogni $\delta(q_0,a)=q_j$ esiste $A_0' \longrightarrow aA_j \in P$, e se $q_j \in F$ esiste anche $A_0' \longrightarrow a \in P$ (A_0' ha tutte le produzioni di A_0), infine, esiste $A_0' \longrightarrow \varepsilon \in P$.

Da $\mathcal A$ a $\mathcal G$. Equivalenza di $\mathcal G$ e $\mathcal A$

Come prima, per dimostrare l'equivalenza tra \mathcal{G} e \mathcal{A}_N , dobbiamo mostrare che per ogni $x \in \Sigma^*$ si ha che

$$\overline{\delta}(q_0, x) \in F$$
 se e solo se $S \stackrel{*}{\underset{\mathscr{G}}{\Longrightarrow}} x$

Questo è chiaramente vero se $x=\varepsilon$, in quanto in tal caso necessariamente $q_0\in F$ e, per costruzione, l'assioma di $\mathscr G$ è A_0' e $A_0'\to \varepsilon\in P$.

Nel caso $x \in \Sigma^+$ mostriamo, per induzione sulla lunghezza di x, entrambe le proprietà

$$A_i \stackrel{*}{\Longrightarrow} xA_j$$
 se e solo se $\overline{\delta}(q_i, x) = q_j$
 $A_i \stackrel{*}{\Longrightarrow} x$ se e solo se $\overline{\delta}(q_i, x) \in F$

Da ${\mathscr A}$ a ${\mathscr G}$. Equivalenza di ${\mathscr G}$ e ${\mathscr A}$

Passo base: |x| = 1, ad esempio x = a. Abbiamo allora che

Per costruzione, $A_i \longrightarrow aA_j \in P$ (e quindi $A_i \Longrightarrow aA_j$) se e solo se $\delta(q_i, a) = q_j$ (e quindi $\overline{\delta}(q_i, a) = q_j$)

e inoltre che, per costruzione,

 $A_i \longrightarrow a \in P$ (e quindi $A_i \Longrightarrow a$) se e solo se $q_j \in F$

Da $\mathcal A$ a $\mathcal G$. Equivalenza di $\mathcal G$ e $\mathcal A$

Passo induttivo: |x| = n > 1.

Sia x = ya, con |y| = n - 1: per l'ipotesi induttiva, la proprietà è valida per y, e quindi

$$A_i \stackrel{*}{\Longrightarrow} y A_k$$
 se e solo se $\overline{\delta}(q_i, y) = q_k$

Supponiamo $A_i \stackrel{*}{=} xA_j = yaA_j$: ciò è possibile se e solo se esiste A_k tale che $A_i \stackrel{*}{=} yA_k$ e $A_k \longrightarrow aA_j \in P$

Da ${\mathscr A}$ a ${\mathscr G}$. Equivalenza di ${\mathscr G}$ e ${\mathscr A}$

Per l'ipotesi induttiva, $A_i \stackrel{*}{\Longrightarrow} yA_k$ se e solo se $\overline{\delta}(q_i, y) = q_k$.

Per costruzione, $A_k \longrightarrow aA_j \in P$ se e solo se $\delta(q_k, a) = q_j$.

Ne consegue che

$$A_i \stackrel{*}{\Longrightarrow} yA_k \Longrightarrow yaA_j = xA_j$$

se e solo se

$$q_j = \delta(q_k, a) = \delta(\overline{\delta}(q_i, y), a) = \overline{\delta}(q_i, ya) = \overline{\delta}(q_i, x)$$

Esempio

Il linguaggio rappresentato da $a(a+ba)^*a$ è generato dalla grammatica

$$\begin{array}{ccc} S & \longrightarrow & aB \\ B & \longrightarrow & aB \mid bS \mid a. \end{array}$$

ed è riconosciuto dall'ASFND

Esempio

A partire dall'ASFND è possibile derivare un ASFD equivalente

Esempio

E da questo una grammatica di tipo 3 equivalente a quella iniziale, dove $S = A_0$

$$\begin{array}{ccc} A_{0} & \longrightarrow & aA_{1} \\ A_{1} & \longrightarrow & bA_{0} \mid aA_{2} \mid a \\ A_{2} & \longrightarrow & aA_{2} \mid bA_{0} \mid a \end{array}$$

Per costruzione, questa grammatica ha, per ogni coppia $X \in V_N$ e $c \in V_T$, al più un $Y \in V_N$ tale che $X \longrightarrow cY \in P$.

Esercizio

Si consideri la grammatica regolare avente le seguenti produzioni:

$$S \longrightarrow oA \mid 1B \mid oS$$

$$A \longrightarrow aB \mid bA \mid a$$

$$B \longrightarrow bA \mid aB \mid b.$$

Si derivino un ASFND e un ASFD che riconoscono il linguaggio generato da tale grammatica. A partire dall'automa deterministico, derivare poi una grammatica di tipo 3 equivalente.

Espressioni regolari

Espressioni regolari

Teorema

Tutti i linguaggi definiti da espressioni regolari sono regolari.

Teorema

Data una grammatica $\mathcal G$ di tipo 3, esiste una espressione regolare r tale che $L(\mathcal G)=\mathcal L$ (r), che descrive cioè il linguaggio generato da $\mathcal G$.

Consideriamo una grammatica $\mathscr G$ di tipo 3 ed il linguaggio L da essa generato, che per semplicità assumiamo non contenga la stringa vuota ε .

Se così non fosse, applichiamo le considerazioni seguenti al linguaggio $L-\{\varepsilon\}$, anch'esso regolare: una volta derivata un'espressione regolare r che lo definisce, l'espressione regolare che definisce L sarà chiaramente $r+\varepsilon$.

Alla grammatica ${\mathfrak G}$ possiamo far corrispondere un sistema di equazioni su espressioni regolari.

Estensione del linguaggio delle espressioni regolari con variabili A, \ldots, Z , associando una variabile ad ogni non terminale in \mathcal{G} .

Tali variabili potranno assumere valori nell'insieme delle espressioni regolari.

Raggruppamento di tutte le produzioni che presentano a sinistra lo stesso non terminale. Per ogni produzione del tipo

$$A \longrightarrow a_1B_1 \mid a_2B_2 \mid \ldots \mid a_nB_n \mid b_1 \mid \ldots \mid b_m$$

equazione del tipo

$$A = a_1 B_1 + a_2 B_2 + \ldots + a_n B_n + b_1 + \ldots + b_m.$$

Da una grammatica regolare si ottiene un sistema di *equazioni lineari destre*, in cui ogni monomio contiene una variabile a destra di simboli terminali.

Risoluzione del sistema di equazioni su espressioni regolari estese:

individuazione dei valori (espressioni regolari normali, prive delle variabili che definiscono a loro volta espressioni regolari) che, una volta sostituiti alle variabili, soddisfano il sistema di equazioni.

$$\begin{array}{ccc} A & \longrightarrow & aA \mid bB \\ B & \longrightarrow & bB \mid c \end{array}$$

corrisponde al sistema di equazioni

$$\begin{cases} A = aA + bB \\ B = bB + c. \end{cases}$$

Per risolvere il sistema è possibile utilizzare, le trasformazioni algebriche applicabili sulle operazioni di unione e concatenazione (distributività, fattorizzazione, ecc.), oltre alle seguenti due regole.

Sostituzione di una variabile con un'espressione regolare estesa.

Con riferimento all'esempio precedente abbiamo

$$\begin{cases} A = aA + b(bB + c) = aA + bbB + bc \\ B = bB + c. \end{cases}$$

Eliminazione della ricursione.

L'equazione B = bB + c si risolve in $B = b^*c$. Infatti, sostituendo a destra e sinistra abbiamo

$$b^*c = b(b^*c) + c = b^+c + c = (b^+ + \varepsilon)c = b^*c.$$

Più in generale abbiamo che un'equazione del tipo

$$A = \alpha_1 A + \alpha_2 A + \ldots + \alpha_n A + \beta_1 + \beta_2 + \ldots + \beta_m$$

si risolve in

$$A = (\alpha_1 + \alpha_2 + \ldots + \alpha_n)^* (\beta_1 + \beta_2 + \ldots + \beta_m),$$

dove $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m$ sono espressioni regolari estese.

Grammatica regolare

$$\begin{array}{cccc} A_0 & \longrightarrow & aA_1 \mid a \\ \\ A_1 & \longrightarrow & bA_3 \mid bA_2 \\ \\ A_2 & \longrightarrow & aA_2 \mid bA_0 \mid b \\ \\ A_3 & \longrightarrow & bA_3 \mid aA_2. \end{array}$$

da cui si ottiene il seguente sistema lineare.

$$\begin{cases} A_0 &= aA_1 + a \\ A_1 &= bA_3 + bA_2 \\ A_2 &= aA_2 + bA_0 + b \\ A_3 &= bA_3 + aA_2 \end{cases}$$

per eliminazione della ricursione su A_3 :

$$\begin{cases} A_0 = aA_1 + a \\ A_1 = bA_3 + bA_2 \\ A_2 = aA_2 + bA_0 + b \\ A_3 = b^* a A_2 \end{cases}$$

per eliminazione della ricursione su A_2 :

$$\begin{cases} A_0 &= aA_1 + a \\ A_1 &= bA_3 + bA_2 \\ A_2 &= a^*(bA_0 + b) \\ A_3 &= b^*aA_2 \end{cases}$$

per sostituzione di A_2 nell'equazione relativa ad A_3

$$\begin{cases} A_0 = aA_1 + a \\ A_1 = bA_3 + bA_2 \\ A_2 = a^*(bA_0 + b) \\ A_3 = b^*aa^*(bA_0 + b) \end{cases}$$

per sostituzione di A_2 e A_3 nell'equazione relativa ad A_1

$$\begin{cases} A_{0} &= aA_{1} + a \\ A_{1} &= b(b^{*}aa^{*}(bA_{0} + b)) + b(a^{*}(bA_{0} + b)) \\ A_{2} &= a^{*}(bA_{0} + b) \\ A_{3} &= b^{*}aa^{*}(bA_{0} + b) \end{cases}$$

per fattorizzazione nell'equazione relativa ad A_1 :

$$\begin{cases} A_{0} = aA_{1} + a \\ A_{1} = b(b^{*}aa^{*} + a^{*})(bA_{0} + b) \\ A_{2} = a^{*}(bA_{0} + b) \\ A_{3} = b^{*}aa^{*}(bA_{0} + b) \end{cases}$$

per sostituzione di A_1 nell'equazione relativa ad A_0 :

$$\begin{cases} A_{0} &= a(b(b^{*}aa^{*} + a^{*})(bA_{0} + b)) + a \\ A_{1} &= b(b^{*}aa^{*} + a^{*})(bA_{0} + b) \\ A_{2} &= a^{*}(bA_{0} + b) \\ A_{3} &= b^{*}aa^{*}(bA_{0} + b) \end{cases}$$

per fattorizzazione nell'equazione relativa ad A_0 :

$$\begin{cases} A_{0} &= ab(b^{*}aa^{*} + a^{*})bA_{0} + ab(b^{*}aa^{*} + a^{*})b + a \\ A_{1} &= b(b^{*}aa^{*} + a^{*})(bA_{0} + b) \\ A_{2} &= a^{*}(bA_{0} + b) \\ A_{3} &= b^{*}aa^{*}(bA_{0} + b) \end{cases}$$

$$\begin{array}{ccc} S & \longrightarrow & aS \mid bA \mid \varepsilon \\ A & \longrightarrow & aA \mid bS \mid \varepsilon \end{array}$$

Eliminazione della produzione $A \longrightarrow \varepsilon$:

$$S \longrightarrow aS \mid bA \mid \varepsilon \mid b$$

$$A \longrightarrow aA \mid bS \mid a.$$

$$S = aS + bA + b + \varepsilon$$
$$A = aA + bS + a$$

$$S = aS + bA + b + \varepsilon$$

$$A = a^*(bS + a)$$

$$S = aS + ba^*(bS + a) + b + \varepsilon$$

$$A = a^*(bS + a)$$

$$S = (a + ba*b)S + ba*a + b + \varepsilon$$

$$A = a*(bS + a)$$

$$S = (a + ba^*b)^*(ba^*a + b + \varepsilon)$$

$$A = a^*(bS + a)$$

Esercizio

Si consideri la seguente grammatica:

$$\begin{array}{ccc} A & \longrightarrow & aB \mid bC \mid a \\ B & \longrightarrow & aA \mid bD \mid b \\ C & \longrightarrow & ab \mid aD \mid a \\ D & \longrightarrow & aC \mid bB \mid b \end{array}$$

che genera le stringhe contenenti un numero dispari di a o un numero dispari di b.

Si costruisca l'espressione regolare corrispondente.

Dato un ASFD \mathcal{A} , esiste una espressione regolare r tale che $L(\mathcal{A})=\mathcal{L}(r)$, che descrive cioè il linguaggio riconosciuto da \mathcal{A} .

Sia $\mathcal{A} = \langle \Sigma, Q, \delta, q_0, F \rangle$ un ASFD e sia L il linguaggio da esso riconosciuto. Assumiamo $F = \{q_F\}$.

Sia n = |Q| e sia $\langle q_0, \dots, q_{n-1} \rangle$ un qualunque ordinamento degli stati tale che $q_{n-1} = q_F$.

Definiamo ora come

$$R_{ij}^k$$
 $0 \le i, j \le n - 1; k \ge \max(i, j)$

l'insieme delle stringhe tali da portare $\mathcal A$ da q_i a q_j senza transitare per nessuno stato q_h con $h \geq k$.

Abbiamo cioè che $x = a_1, \ldots, a_m \in R_{ij}^k$ se e solo se:

- 1. $\overline{\delta}(q_i, x) = q_j$;
- 2. se $\overline{\delta}(q_i, a_1 \dots a_l) = q_{i_l}$ allora $i_l < k$, per $1 \le l \le m 1$.

Per k = 0 si ha:

$$R_{ij}^{0} = \left\{ egin{array}{ll} \bigcup \{a\} & ext{tali che } \delta(q_i, a) = q_j, ext{ se ne esiste almeno uno;} \\ \emptyset & ext{altrimenti.} \end{array} \right.$$

Per k > 0, se $x \in R_{ij}^{k+1}$ è una stringa che conduce da q_i a q_j senza transitare per nessuno stato q_h con $h \ge k+1$, possono verificarsi due casi:

- 1. x conduce da q_i a q_j senza transitare per q_k , dal che deriva che $x \in R_{ij}^k$.
- 2. x conduce da q_i a q_j transitando per q_k

Nel secondo caso la sequenza degli stati attraversati può essere divisa in varie sottosequenze:

- 1. una prima sequenza, da q_i a q_k senza transitare per nessuno stato q_h con h > k, la corrispondente sottostringa di x appartiene quindi a R_{ik}^k ;
- 2. $r \ge 0$ sequenze, ognuna delle quali inizia e termina in q_k senza transitare per nessuno stato q_h con $h \ge k$, le corrispondenti sottostringhe di x appartengono quindi ciascuna a R_{kk}^k ;
- 3. una sequenza finale, da q_k a q_j senza transitare per nessuno stato q_h con $h \ge k$, la corrispondente sottostringa di x appartiene quindi a R_{kj}^k .

In conseguenza, ne deriva la relazione

$$R_{ij}^{k+1} = R_{ij}^k \cup R_{ik}^k \circ (R_{kk}^k)^* \circ R_{kj}^k$$

Dalle osservazioni precedenti deriva che è possibile costruire tutti gli insiemi R_{ij}^k a partire da k=0 e derivando poi man mano i successivi.

Osserviamo anche che $L = R_{o(n-1)}^n$

Ogni insieme di stringhe R_{ij}^k può essere descritto per mezzo di una opportuna espressione regolare r_{ij}^k , infatti abbiamo che, per k=0,

$$r_{ij}^{o} =$$

$$\begin{cases}
a_{i_1} + \ldots + a_{i_l} & \text{dove } \delta(q_i, a_{i_k}) = q_j, k = 1, \ldots, l; \\
\emptyset & \text{se } l = o.
\end{cases}$$

Per $k \ge 1$, abbiamo che, dalla relazione tra R^{k+1}_{ij} , R^k_{ik} , R^k_{kk} e R^k_{kj} , deriva che

$$r_{ij}^{k+1} = r_{ij}^k + r_{ik}^k (r_{kk}^k)^* r_{kj}^k$$

Quindi, il linguaggio ${\cal L}$ sarà descritto dall'espressione regolare

$$r_{o(n-1)}^n$$

Assumiamo l'ordinamento $q_1 = q_0$, $q_2 = q_1$, $q_3 = q_3$, $q_4 = q_2$ tra gli stati. Allora:

$$\begin{split} r_{00}^{0} &= \emptyset; \ r_{01}^{0} = a; \ r_{02}^{0} = b; \ r_{03}^{0} = \emptyset; \\ r_{10}^{0} &= b; \ r_{11}^{0} = \emptyset; \ r_{12}^{0} = \emptyset; \ r_{13}^{0} = a; \\ r_{20}^{0} &= \emptyset; \ r_{21}^{0} = \emptyset; \ r_{22}^{0} = a + b; \ r_{23}^{0} = \emptyset; \\ r_{30}^{0} &= b; \ r_{31}^{0} = \emptyset; \ r_{32}^{0} = \emptyset; \ r_{33}^{0} = a; \end{split}$$

$$\begin{split} r_{00}^1 &= r_{00}^0 + r_{00}^0 (r_{00}^0)^* r_{00}^0 = \emptyset + \emptyset(\emptyset)^* \emptyset = \emptyset \\ r_{01}^1 &= r_{01}^0 + r_{00}^0 (r_{00}^0)^* r_{01}^0 = a + \emptyset(\emptyset)^* a = a \\ r_{02}^1 &= r_{02}^0 + r_{00}^0 (r_{00}^0)^* r_{02}^0 = b + \emptyset(\emptyset)^* b = b \\ r_{03}^1 &= r_{03}^0 + r_{00}^0 (r_{00}^0)^* r_{03}^0 = \emptyset + \emptyset(\emptyset)^* \emptyset = \emptyset \\ r_{10}^1 &= r_{10}^0 + r_{10}^0 (r_{00}^0)^* r_{00}^0 = b + b(\emptyset)^* \emptyset = b \\ r_{11}^1 &= r_{11}^0 + r_{10}^0 (r_{00}^0)^* r_{01}^0 = \emptyset + b(\emptyset)^* a = ba \\ r_{12}^1 &= r_{12}^0 + r_{10}^0 (r_{00}^0)^* r_{02}^0 = \emptyset + b(\emptyset)^* b = bb \\ r_{13}^1 &= r_{13}^0 + r_{10}^0 (r_{00}^0)^* r_{03}^0 = a + b(\emptyset)^* \emptyset = a \\ \dots \end{split}$$

$$\begin{split} r_{00}^1 &= \emptyset; \ r_{01}^1 = a; \ r_{02}^1 = b; \ r_{03}^1 = \emptyset; \\ r_{10}^1 &= b; \ r_{11}^1 = ba; \ r_{12}^1 = bb; \ r_{13}^1 = a; \\ r_{20}^1 &= \emptyset; \ r_{21}^1 = \emptyset; \ r_{22}^1 = a + b; \ r_{23}^1 = \emptyset; \\ r_{30}^1 &= b; \ r_{31}^1 = ba; \ r_{32}^1 = bb; \ r_{33}^1 = a; \end{split}$$

$$r_{00}^2 = a(ba)^*b; \ r_{01}^2 = a + a(ba)^*ba; \ r_{02}^2 = b + a(ba)^*bb; \ r_{03}^2 = a(ba)^*a;$$

$$r_{10}^2 = b + ba(ba)^*b; \ r_{11}^2 = ba + ba(ba)^*ba; \ r_{12}^2 = bb + ba(ba)^*bb; \ r_{13}^2 = a + ba(ba)^*a;$$

$$r_{20}^2 = \emptyset; \ r_{21}^2 = \emptyset; \ r_{22}^2 = a + b; \ r_{23}^2 = \emptyset;$$

$$r_{30}^2 = b + ba(ba)^*b; \ r_{31}^2 = ba + ba(ba)^*ba; \ r_{32}^2 = bb + ba(ba)^*bb; \ r_{33}^2 = a + ba(ba)^*a;$$

Il linguaggio accettato dall'automa sarà descritto dall'espressione regolare

$$r_{03}^{4}$$

Procedura iterativa di eliminazione degli stati su un automa non deterministico generalizzato equivalente, in cui:

- 1. la funzione di transizione è definita su $Q \times E$, dove E è l'insieme delle espressioni regolari su Σ , per cui gli archi sono etichettati con e.r.
- 2. lo stato iniziale non ha archi entranti, per cui $\nexists q \in Q, e \in E : q_0 \in \delta_N(q,e)$
- 3. esiste un solo stato finale q_F senza archi uscenti, per cui $\nexists e \in E: \delta_N(q_F,e) \neq \emptyset$

Dato un qualunque automa $\mathcal A$ non deterministico, un automa generalizzato $\mathcal A'$ equivalente può essere immediatamente ottenuto:

- 1. mantenendo gli stati di A
- 2. introducendo, per ogni arco del grafo di transizione di \mathcal{A} etichettato con l'insieme a_1, \ldots, a_k , un arco nel grafo di transizione di \mathcal{A}' etichettato $a_1 + \ldots + a_k$
- 3. se lo stato iniziale q_0 di $\mathcal A$ ha archi entranti, introducendo in $\mathcal A'$ un nuovo stato iniziale $\overline q_0$ senza archi entranti, e la ε -transizione $\delta'_N(\overline q_0,\varepsilon)=\{q_0\}$
- 4. se esistono più stati finali in F, o se il solo stato finale ha archi uscenti, introducendo un ulteriore stato q_F , ponendo $F' = q_F$ e introducendo la ε -transizione $\delta'_N(q,\varepsilon) = \{q_F\}$ per ogni $q \in F$

- Dato un automa nondeterministico (con ε -transizioni) $\mathcal A$ con insieme di stati Q, e dato uno stato q non iniziale né finale, è possibile ottenere un automa generalizzato equivalente $\mathcal A'$ con stati $Q \{q\}$ effettuando una opportuna operazione di eliminazione dello stato
- L'eliminazione dello stato viene effettuata considerando tutti i possibili cammini di lunghezza 3 passanti per q (sequenze q_i , q, q_j per le quali esistono archi da q_i a q e da q a q_j)
- Per ogni cammino, le etichette degli archi interessati vengono modificate come mostrato di seguito
- Al termine, rimangono lo stato iniziale e quello finale, collegati da un arco, la cui etichetta fornisce l'espressione regolare cercata

Da

a

Le espressioni regolari risultanti possono comunque essere complesse

$$\overline{r}_{ii}$$
 q_i q_k \overline{r}_{kk}

$$\begin{split} \bar{r}_{ii} &= r_{ij}(r_{jj} + r_{jk}r_{kk}^*r_{kj})^*r_{ji} + r_{ij}(r_{jj} + r_{jk}r_{kk}^*r_{kj})^*r_{jk}r_{kk}^*r_{ki} + r_{ik}(r_{kj}r_{jj}^*r_{jk} + r_{kk})^*r_{kj}r_{jj}^*r_{ji} + r_{ik}r_{ki} \\ \bar{r}_{kk} &= r_{kj}(r_{jj} + r_{kj}r_{ii}^*r_{ij})^*r_{jk} + r_{kj}(r_{jj} + r_{ji}r_{ii}^*r_{ij})^*r_{ji}r_{ii}^*r_{ik} + r_{ki}(r_{ij}r_{jj}^*r_{ji} + r_{ii})^*r_{ij}r_{jj}^*r_{jk} + r_{ki}r_{ik} \\ \bar{r}_{ik} &= r_{ik} + r_{ij}r_{jj}^*r_{jk} \\ \bar{r}_{ki} &= r_{ki} + r_{kj}r_{jj}^*r_{jk} \end{split}$$

In effetti, se esistono n cammini $q_iq_iq_h$ ($h=k_1,\ldots,k_n$), allora si ha che

$$\bar{r}_{ik} = r_{ik_1} + r_{ij}r_{ji}^*r_{jk_1} + r_{ik_2} + r_{ij}r_{ji}^*r_{jk_2} + \dots + r_{ik_n} + r_{ij}r_{ji}^*r_{jk_n}$$

lo stesso, evidentemente, vale per \bar{r}_{ki}