

Programming I

Introduction

- Important Reading to Consider
 - Chapters 15-17 in R4DS
 - Chapters 14-18 in RP4DS
 - Chapter 7 in AoRP
 - Chapter 4 in FCSPR
- Programming Steps
 - Understand the Problem
 - Inputs and Outputs
 - Create Code
 - Test the Code (Simple Case)
 - Generalize the Code
 - Test Problematic Cases
 - Edit Code to Handle Issues
 - Consider Efficiency

Setup for Lecture

- Open Tutorial 9
- Packages Required:
 - Tidyverse
 - Ecdat
- Knit Document As You Go
- Read Introduction
- Prepare Your Minds for the Matrix

Part 1: If-Else

General Construction:

• "If"

```
if (CONDITION) {
     ACTION
}
```

• "If-Else"

```
if (CONDITION) {
        ACTION 1
} else {
        ACTION 2
}
```

ifelse()

ifelse(CONDITION, ACTION1, ACTION2)

Part 1: If-Else

- Run Chunk 1
 - Check if Larger than 0
 - If True, Take Log
 - Result When x = 3?
 - Result When x = -3?
- Run Chunk 2
 - Notice the Difference
 - If-Else to Handle Errors
- Run Chunk 3
 - Situation Not Considered
 - Replace BLANK to Lead to Potential Problem

Part 1: If-Else

Run Chunk 4

- Replace BLANK with Different Options and Check
- How Would You Explain this Code to Your Granny?

Run Chunk 5

- What is the Difference Between y1 and y2?
- Always Look for a Vectorized Solution for Efficiency

- Nested ifelse() Statements
- How Would You Explain this to your Mother?

General Construction

"for" Loop

```
for (INDEX in VECTOR) {
    ACTION FOR EACH INDEX
}
```

• "while" Loop

```
while (CONDITION) {
     ACTION UNTIL CONDITION = FALSE
}
```

Nested "for" Loops

```
for (INDEX1 in VECTOR1) {
    for (INDEX2 in VECTOR2) {
        ACTION
    }
}
```


Mental Process

I Want to Do	
for Every	
until	

- What Type of Object Do You Want Returned?
- Initiate a Starting Point Based on the Desired Output
- Try R Code on Single Instance
- Create the Loop

Geometric Series

$$\sum_{k=0}^{\infty} a r^k = rac{a}{1-r}, ext{ for } |r| < 1$$

- Run Chunk 1
 - What a did you choose?
 - What r did you choose?
 - What is the theoretical limit?
 - What pattern exists?
- Run Chunk 2
 - Choose a and r that work?
 - Choose a and r that don't work?
 - Modify: if(k>100) break

Geometric Series (Cont.)

$$\sum_{k=0}^{\infty} a r^k = rac{a}{1-r}, ext{ for } |r| < 1$$

- Run Chunk 3
 - Suppose We Want to Save at Every Step
 - Why? Picture to Examine the Path of the Summation
 - Choose Small K<15
 - Choose Large K>50
 - What do You Observe?
 - How Would You Explain This Code to Your Stranged Brother?

Correlation Matrix

- Definition: Matrix Which Shows the Correlation Between Every Pair of Numeric Variables
- Used to Understand Strength of Linear Relationships Between Numeric Variables
- Helpful in Measuring Collinearity

- Inspect the Variables in Cigar
- Inspect the Correlation Matrix
- Which Variable(s) is Inappropriate for a Correlation Analysis? Why?

Run Chunk 5

- Run First Half Loops through Every Combination of Columns and Computes Correlation
- Examine Second Half Loops
 Through Every Combination of Columns Excluding the First Column
- Fill in Blanks with Appropriate Indices so Second Loop Works
- Run Second Half

- Inspect the Variables in HI
- Uncomment to Print Correlation Matrix
- What is the Problem?

- Observe the Difference Between the Printed Tibbles
- What is the Difference?
- How Would You Explain the First Loop to a Toddler?
- What is cat() doing?
- How Would You Explain the Second Loop to an Infant?
- Remember: There Are an Infinite Number of Ways to Do the Same Thing.

Part 3: SRS

- Important For Simulation Studies
- Known Distributions

Distribution	Density/pmf	cdf	Quantiles	Random Numbers
Normal Chi square Binomial	<pre>dnorm() dchisq() dbinom()</pre>	<pre>pnorm() pchisq() pbinom()</pre>	qnorm() qchisq() qbinom()	<pre>rnorm() rchisq() rbinom()</pre>

- "d" -> Useful for Plotting
 Density Curve for Continuous
 Variables or Probability Mass
 Function for Discrete Variables
- "p" -> Finds the Probability
 Less Than Or Equal to a Given
 Number
- "q" -> Finds Cutoff Points
- "r" -> Generates a Random Sample from the Distribution

Part 3: SRS

- For SRS, Use "r"
- Run Chunk 1
 - Scenario for x1: You Ask
 BLANK Number of Students
 There Grades where Grades
 Follow a Normal Distribution
 with Mean=82 and SD=2
 - Scenario for x2: You Ask
 BLANK Number of Students to
 Roll a Fair Die 10 Times and
 Tell You the Number of 6's that
 Appeared.
 - Try Small and Large for BLANK

Part 3: SRS

- Sampling From Finite Set of Possible Outcomes
- Run Chunk 2
 - Scenario: Flip k Coins
 - P(Heads) = BLANK
 - P(Tails) = 1-BLANK
 - How would You Explain What the Figure is Showing to a Politician?

Closing

Disperse and Make Reasonable Decisions