Summer 2012

Ve320 Introduction to Semiconductor Device Homework #1, due next Friday (May 25,2012) **before class**

- **1.** RFP, Problem 1.1(g)
- 2. RFP, Problem 1.4
- 3. Ge has the same crystal structure as Si (diamond), with a lattice constant of $0.564 \, nm$. Find the atomic density (atoms/cm³) and the spacing between nearest neighbor atoms in Ge. Recall that $1 \, nm = 1 \times 10^{-7} \, cm$.
- 4. RFP, Problem 1.5
- **5.** Graphene has a two dimensional structure. Please sketch the structure and identify a unit cell.
- **6.** We used the relations $E = \hbar \omega$ and $p = \hbar k$ in the expression $E = mc^2$ to derive Schrodinger equation for electrons. Repeat the same analysis for photons $(m_0 = 0)$ to show that they obey classical wave-equation, i.e. $\frac{\partial^2 A}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2}$ where A(x,t) is the amplitude of the wavefunction.

*Note: RFP refers to the textbook (semiconductor device fundamentals by R. F. Pierret)