

AFRE 802 Statistical Methods for Agricultural, Food, & Resource Economists

Hypothesis Testing – Part 1 of 3 (WMS Ch. 10.1-10.3)

November 9, 2017

Mary Doidge & Nicole Mason Michigan State University Fall 2017

MICHIGAN STATE

GAME PLAN

- Collect Ch. 8 HW; return graded HW & exercises
- Review
- Hypothesis testing Part 1 of 3
 - · Motivation / intuition on hypothesis testing
 - Type I vs. Type II error
 - The steps in the hypothesis testing procedure
 - Examples (large sample hypothesis testing)

REVIEW MICHIGAN STATE

3 important properties of estimators

- 1. Unbiasedness:
- 2. Efficiency:
- 3. Consistency:
 - An unbiased estimator is consistent if:
 - Note that consistency does NOT imply unbiasedness (but unbiasedness <u>plus</u> zero asymptotic variance does imply consistency)
 - Unbiasedness is nice, but consistency is essential

3 common methods of estimation

- 1. Method of moments
- 2. Maximum likelihood
- 3. Least squares

2

REVIEW: Method of moments

Method #1: The method of moments (MOM)

- The gist: replace population moments" (expected values) with their sample analogues
- What would you propose as the MOM estimator of:
 - $E(Y^2)$?
 - $V(Y)=E(Y^2)-[E(Y)]^2$
- Pros:
 - · Easy & intuitive to use
 - Consistent
- Cons:
 - · Often biased
 - Typically not very efficient

REVIEW: Maximum likelihood estimation

Method #2: Maximum likelihood estimation (MLE)

- The gist: Finding the value of $\hat{\theta}$ that maximizes the likelihood function (joint distribution)
 - In practice, maximize log likelihood function
- Pros:
 - · Usually consistent, often unbiased
 - Often most (asymptotically) efficient estimator
- Cons:
 - · No major cons

4

REVIEW: Least squares

Method #3: Least squares

• The gist: Finding the value of $\hat{\theta}$ that **minimizes** the sum of squared deviations between the observed values and the estimated values $\sum_{i=1}^{N} \left(Y_i - \hat{\mu}\right)^2$

Hypothesis testing: Motivation

- The main <u>objective of statistics</u> is to <u>make inferences</u> about unknown population parameters based on information contained in sample data
- Previous 2 sections of the course: how to estimate population parameters from sample data, and some desirable properties of estimators
- **Statistical inference** = testing hypotheses about population parameters
- Once we have our estimate of a given population parameter, can test whether it is equal to zero or to some other value, including the values of other population parameters. Examples from your work?

Source: Wooldridge (2003: 724-725)

MICHIGAN STATE

Motivation (cont'd)

- Suppose that in a recent election Candidate A got 42% of the vote, and Candidate B got 58%
- Candidate A is convinced he got more than 42% of the vote, so hires a consultant to randomly sample 100 voters and record if they voted for A or B
 - · 53 of them voted for candidate A
 - → sample implies 53% voted for Candidate A, but official results were that 42% voted for Candidate A
 - Enough to conclude that there was election fraud? How strong is the sample evidence against the official results?
- Can set up a **hypothesis test** to determine this

8

Source: Wooldridge (2003: 724-725)

MICHIGAN STATE

Motivation (cont'd)

- Let θ be the true proportion of the population that voted for Candidate A
- The hypothesis that the official results are accurate can be stated as H_0 : $\theta = 0.42$ ("null hypothesis")
 - Null hypothesis is presumed to be true until the data strongly suggest otherwise (innocent until proven guilty)
- Candidate A believes he got more than 42% of the vote, so the "alternative hypothesis" of interest is H₁: θ > 0.42
- In order to reject H₀ in favor of H₁, we need to have evidence "beyond a reasonable doubt" against H₀
- Is 53 out of 100 strong enough to reject H_0 ?
 - Depends on how we quantify "beyond a reasonable doubt"

In hypothesis testing, we can make two kinds of mistakes:

Type I and Type II errors

		REALITY		
		NULL HYPOTHESIS		
		TRUE	FALSE	
Conclusion of your hypothesis test/study: the null is	TRUE	<u>•</u>	Type II error (β) 'False negative'	
	FALSE	Type I error (α) 'False positive'		

- Type I error: reject H_0 when H_0 is true
 - In medical stats: "false positive"
 - Probability: α (significance level)
 - In our candidate A example?

Candidate A example: H_0 : $\theta = 0.42$ H_1° : $\theta > 0.42$

- Type II error: fail to reject H_0 when H_0 is false • In medical stats: "false negative"

 - Probability: β
 - In our candidate A example?

Hypothesis testing rules are constructed to:

1. Make the probability of Type I error fairly small

- α is the "significance level" (or simply "level") of the test
- Commonly set at 0.01, 0.05, or 0.10
- What does α =0.05 mean?

2. Minimize the probability of Type II error (β) given the chosen significance level (α)

• We'll come back to this later in Chapter 10 when we talk about the "power" of a test, which is 1- β

12

Hypothesis testing procedure

- 1. State the null & alternative hypotheses. EX)
- 2. Define an appropriate <u>test statistic</u> (like an estimator; a function of the sample measurements on which the statistical decision will be based). EX)
- 3. Determine the distribution of the test statistic under the null hypothesis. EX) In general, $\hat{p} \sim N\left(p, \frac{pq}{N}\right)$. Under H_{θ} :
- 4. <u>Standardize the test statistic</u> to something with known/tabled probabilities for its sampling distribution (e.g., *Z*, *t*, *chi-square*, *F*)

EX)
$$Z = \frac{\hat{p} - p}{\sigma_{\hat{p}}} \sim N(0, I)$$
 in general, so in our example $Z =$

- 1. Choose a <u>significance level</u> (α , the P(Type I error)=P(reject the null when it is true), typically 0.01, 0.05, or 0.10) & a <u>rejection region</u> (values of standardized test statistic that lead to rejection of H_0)
- Reject the null hypothesis if the standardized statistic lies in the rejection region; fail to reject otherwise

Notes on the language of hypothesis testing

- We either reject or fail to reject a hypothesis; we never accept or prove a hypothesis
- "Reject the null hypothesis (at the $\alpha {\rm *100\%}$ level) in favor of the alternative hypothesis"
- "Fail to reject the null hypothesis (at the $\alpha*100\%$ level) in favor of the alternative hypothesis"

Two- vs. one-sided alternatives & associated rejection regions for *Z*-statistics (similar for *t*)

 $H_{0}: \ \theta = \theta_{0} \ \text{ (null hypothesis)}$ $H_{1}: \begin{cases} \theta \neq \theta_{0} \ \text{(two-sided (two-tailed) alternative hypothesis)} \\ \theta > \theta_{0} \ \text{(one-sided (upper-tail) alternative hypothesis)} \\ \theta < \theta_{0} \ \text{(one-sided (lower-tail) alternative hypothesis)} \end{cases}$

Rejection region for two-sided alternative

Rejection region for one-sided (lower-tail) alternative

Example: testing a hypothesis about μ against a two-sided alternative hypothesis

The mean lifetime of a sample of 100 fluorescent light bulbs produced by a company is computed to be 1570 hours with a sample standard deviation of 120 hours. If μ is the mean lifetime of all the bulbs produced by the company, test the null hypothesis μ = 1600 hours against the alternative hypothesis $\mu \neq$ 1600 hours, using a level of significance of (a) 0.05 and (b) 0.01. (Note that N is large, so we can use the sample standard deviation as an estimate of σ .)

- 1. State the null & alternative hypotheses.
- 2. Define an appropriate <u>test statistic</u> (like an estimator; a function of the sample measurements on which the statistical decision will be based).
- 3. Determine the distribution of the test statistic under the null hypothesis.
- 4. <u>Standardize the test statistic</u> to something with known/tabled probabilities for its sampling distribution (e.g., *Z*, *t*, *chi-square*, *F*)
- 5. Choose a <u>significance level</u> (α , the P(Type I error)=P(reject the null when it is true), typically 0.01, 0.05, or 0.10) & a <u>rejection region</u> (values of standardized test statistic that lead to rejection of H_0)
- 6. Reject the null hypothesis if the standardized statistic lies in the rejection region; fail to reject otherwise

Continuing our previous example: Testing a hypothesis about μ against a one-sided lower tail alternative hypothesis

Now test the hypothesis $\mu = 1600$ hours against the alternative hypothesis μ < 1600 hours, using a level of significance of (a) 0.05, (b) 0.01.

- State the null & alternative hypotheses.
- 2. Define an appropriate test statistic (like an estimator; a function of the sample measurements on which the statistical decision will be based).
- 3. Determine the distribution of the test statistic under the null hypothesis.
- 4. Standardize the test statistic to something with known/tabled probabilities for its sampling distribution (e.g., Z, t, chi-square, F)
- 5. Choose a significance level (α , the P(Type I error)=P(reject the null when it is)true), typically 0.01, 0.05, or 0.10) & a rejection region (values of standardized test statistic that lead to rejection of H_0)
- 6. Reject the null hypothesis if the standardized statistic lies in the rejection region; fail to reject otherwise

Summary

Large-Sample α -Level Hypothesis Tests

$$H_0: \theta = \theta_0.$$

$$H_a: \begin{cases} \theta > \theta_0 & \text{(upper-tail alternative).} \\ \theta < \theta_0 & \text{(lower-tail alternative).} \\ \theta \neq \theta_0 & \text{(two-tailed alternative).} \end{cases}$$

$$\hat{\theta} - \theta_0$$

Test statistic:
$$Z = \frac{\hat{\theta} - \theta_0}{\sigma_{\hat{\theta}}}$$

Test statistic:
$$Z = \frac{\hat{\theta} - \theta_0}{\sigma_{\hat{\theta}}}$$
.

Rejection region:
$$\begin{cases} \{z > z_{\alpha}\} & \text{(upper-tail RR).} \\ \{z < -z_{\alpha}\} & \text{(lower-tail RR).} \\ \{|z| > z_{\alpha/2}\} & \text{(two-tailed RR).} \end{cases}$$

				MICHIGAN STATE UNIVERSITY	
Table 8.1 Expected values and standard errors of some common point estimators					
Target Parameter θ	Sample Size(s)	Point Estimator $\hat{\theta}$	Square of varia of estin $E(\hat{ heta})$	ince Error	
μ	n	\overline{Y}	μ	$\frac{\sigma}{\sqrt{n}}$	
p	n	$\hat{p} = \frac{Y}{n}$	p	$\sqrt{rac{pq}{n}}$	
$\mu_1 - \mu_2$	n_1 and n_2	$\overline{Y}_1 - \overline{Y}_2$	$\mu_1 - \mu_2$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}^{*\dagger}$	
$p_1 - p_2$	n_1 and n_2	$\hat{p}_1 - \hat{p}_2$	$p_1 - p_2$	$\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}^{\dagger}$	

 σ_1^2 and σ_2^2 are the variances of populations 1 and 2, respectively.

© Cengage Learning

MICHIGAN STATE

Homework:

- WMS Ch. 10
 - Large-sample hypothesis tests (section 10.3): 10.17-10.21 (excluding part e on 10.17)

Next class:

- Small sample hypothesis testing for μ
- Relationship b/w hypothesis testing procedures & confidence intervals
- Another way to report the results of a statistical test: p-values

Reading for next class:

• WMS Ch. 10 (sections 10.5-10.8)

[†]The two samples are assumed to be independent.

In-class exercise on hypothesis testing

EXAMPLE 10.6

A machine in a factory must be repaired if it produces more than 10% defectives among the large lot of items that it produces in a day. A random sample of 100 items from the day's production contains 15 defectives, and the supervisor says that the machine must be repaired. Does the sample evidence support his decision? Use a test with level .01.

22

MICHIGAN STATE

In-class exercise on hypothesis testing

EXAMPLE 10.7

A psychological study was conducted to compare the reaction times of men and women to a stimulus. Independent random samples of 50 men and 50 women were employed in the experiment. The results are shown in Table 10.2. Do the data present sufficient evidence to suggest a difference between true mean reaction times for men and women? Use $\alpha = .05$. Also find the p-value for your test statistic.

Table 10.2 Data for Example 10.7

Men	Women
$n_1 = 50$ $\overline{y}_1 = 3.6 \text{ seconds}$ $s_1^2 = .18$	$n_2 = 50$ $\overline{y}_2 = 3.8 \text{ seconds}$ $s_2^2 = .14$

© Cengage Learning