

从"被虐"到"落地"—— 明略大数据产品演进实践

明略数据 刘诚忠 2015.4

目录

WHY

大数据落地被虐实例

如何应对

案例分享

我们是谁

北京明略软件系统有限公司

- 成立仅一年,66人
- 大数据平台,挖掘平台,数据工厂
- 国美, 苏宁, 北京台, 银联, 地税, 邮储银行...

提供全行业的大数据整体解决方案,重点覆盖政府、金融、通信和零售四大支柱产业

理想和现实

期望到达

大数据的核心价值在于:挖掘隐藏在大数据背后的知识

目录

WHY

大数据落地被虐实例

如何应对

案例分享

信心爆棚的进击

- Hadoop
- HBase
- Spark
- Storm
- Impala
- ML

很快感受到森森的恶意

丰富的数据源

权力的游戏

性能

更要命的问题——大数据??

问题定义

整合

多源,异构,实时

保护

权限,集群,统一

分析

模型,效率,定制

交与

可视化,实时响应

目录

WHY

大数据落地被虐实例

如何应对

案例分享

明略总体思路

核心产品组件

让传统应用系统的数据实时 整合进数据平台

LogM

日志实时采集、处理和整合

数据整合

数据分析挖掘

Data One & SQL One

全链路数据整合、存储管理、查询计算、 处理分析的大数据作业平台

Data Insight

全界面操作的快速建模和数据挖掘工具

CharmiBoard

自由定制的跨平台数据可视化工具

明略Data ONE

帮助企业实现数据治理的一站式大数据工作台 抽象设计,帮助业务方关注需求任务,不纠结底层技术 异构数据源混合查询的SQL引擎(专利申请中),可JOIN传统数据库,NoSQL,Hadoop数据

Data One Interface				
用户界面	APIs			
Data One Core Services				
MiningLamp SQL One	数据作业			
数据管理	数据整合			

• 数据管理

管理平台中所有文件、结构化和非结 构化数据

• 数据整合

依据分析场景,通过人机交互将异构的数据打通整合

• 数据作业

实现不同复杂程度的数据处理和分析

・人机交互

全界面操作,提供大量数据作业模板

Data ONE系统架构

明略Acre

- •支持Hive, Impala, MySQL多数据接口的统一授权管理(专利申请中)
- •精确到cell级别的ACL/RBAC混合 权限管理,超过市场同类产品 (Cloudera列权限功能开发中)

Acre——系统架构

明略Data Insight

带有调参反馈机制的可视化数据挖掘平台,为企业数据科学家打造的建模利器

集成所有主流数据挖掘算法

可视化快速建立数据挖掘模型

大大降低数据挖掘的交互复杂度

以反欺诈和征信为代表的垂直解决方案

- Decision Tree
- Logistic Regression
- Support Vector Machine
- Multinomial Naive Bayes
- Regression Tree
- Linear Regression
- Lasso Regression
- Ridge Regression
- K-Means
- ...

DI——系统架构

DI——DSL支持

```
filter by $age > 20
group by name = $name
feature aage = AVG($age)
val tmp = $age + 1
feature a = first($tmp)

group by mzid = $mzid
feature transform = $transform
feature stable = $stable
feature caidCLK = sumWith($caid, 1 if $action == "CLK" else 0)
feature spidCLK = sumWith($spid, 1 if $action == "IMP" else 0)
feature spidCLK = sumWith($spid, 1 if $action == "CLK" else 0)
feature spidIMP = sumWith($spid, 1 if $action == "IMP" else 0)
```

- DataInsight自定义了简单的脚本语言,用 来处理一些较为复杂的数据变换
- 目前DSL支持以下功能,基本满足常见的数据转换需求。
 - 数据过滤
 - GroupBy
 - 常用数学函数
 - 类型转换函数
 - 字符串操作
 - Map操作
 - 统计函数

DI——算法列表

分类算法

- SVM
- Logistic Regression
- Native Bayes
- Decision Tree
- Random Forest

特征变换

PCA

聚类算法

- K-means
- DBScan

自然语言处理

- LDA
- Word2Vec

回归算法

- Lasso Regression
- Ridge Regression
- Linear Regression
- Gradient Boosted Regression
- Regression Tree

频繁模式

- FPGrowth
- BIDE

推荐算法

- Item based CF
- User based CF
- Alternating Least Squares

数理统计

- Correlation Analysis
- Distribution Statistics

基于Spark的并行化算法

OLAP CUBE?

• 一站式的意义——DATA GRAVITY

· 要考虑到复杂分析可能——OLMP

· 分布式的痛永远在单点——最大限度去中心 化

DATASTAX

Stratio

http://velvia.github.io/presentations/cassandra-spark-olap-2014/index.html#/25/2

 GDELT dataset, 117 million rows, 57 columns, ~50GB

Spark 1.0.2, AWS 8 x c3.xlarge, cached in memory

• Adhoc: 0.49

• TOP K: 1.51

• TOP Group By: 2.69

http://velvia.github.io/presentations/cassandra-spark-olap-2014/index.html#/25/2

目录

WHY

大数据落地被虐实例

如何应对

案例分享

案例——商圈聚类

- 通过商户的地理坐标,将全 国所有城市中的商户聚集成 商圈
- 使用DBScan算法进行商圈聚 类
- 成功的将全国300个城市中的商户聚集成商圈,发现了很多人工未能标注的商圈。

案例——消费预测

1,000 持卡人

6,000 订单

600,000 RMB

100 RMB

● 在未来一个月内,共有1000人在家乐福消费,共有6000笔交易,预计消费金额为600000元,平均每人单笔消费100元。 **查看具体每一笔交易预测** >

序号	持卡人	交易时间	交易金额	交易商户	所在商團
1	6226020000586980	上午	5,000	家乐福 (学院路店)	五道口商圈
2	620049959996969	上午	5,000	家乐福 (学院路店)	五道口商圈
3	6226020000586980	下午	5,000	家乐福 (学院路店)	五道口商圈
4	620049959996969	晚上	5,000	家乐福 (学院路店)	五道口商圈
5	620049959996969	晚上	5,000	家乐福 (学院路店)	五道口商圈
6	620049959996806	晚上	5,000	家乐福 (学院路店)	五道口商圈

- 通过用户的行为数据,对用户未 来消费行为进行预测
- 使用基于概率转移矩阵的自定义 算法对用户消费行为进行预测
- 预测结果包括:
 - 消费的商户
 - 消费次数
 - 消费平均金额
 - 消费时间属性

总结

大数据技术正在从互联网公司往传统行业飞速扩展,技术应用程度有gap但已经不大

应用更实时,更敏捷,更偏决策导向,IT层在变薄变轻, IT人需要重新定位

数据互联互通将成为全行业刚需,权限审计和行业规范 是目前障碍

技术的进步并未逾越工具范畴,帮助人决策

