Chapitre 9: Loi Binomiale

I. Variable aléatoire et loi de probabilité

1) Variable aléatoire

Rappels:

- Le résultat d'une expérience aléatoire s'appelle une issue.
- \bullet L'univers Ω est l'ensemble des issues d'une expérience aléatoire.
- Un **événement** est un sous-ensemble de l'univers Ω .
- ❖ Un événement élémentaire est un événement contenant une seule issue.

Exemple:

On considère l'expérience aléatoire : « On lance un dé à six faces et on regarde le résultat. »

L'ensemble de toutes les issues possibles $\Omega = \{1; 2; 3; 4; 5; 6\}$ est l'univers.

L'événement A « On obtient un nombre premier. » s'écrit aussi $A = \{2, 3, 5\}$.

On considère l'événement élémentaire E : « On obtient un 1 ».

On écrit : $E = \{1\}$.

Définition:

Soit une expérience aléatoire dont l'univers est un ensemble fini Ω . Une **variable aléatoire** X est une fonction qui associe un nombre réel à une issue.

Exemple:

Dans l'expérience aléatoire précédente, considérons le jeu suivant

- Si le résultat est un 1 ou un 6, on gagne 10 €;
- Sinon, on perd 4 €.

On a ici défini une variable aléatoire X sur $\Omega = \{1, 2, 3, 4, 5, 6\}$ qui peut prendre les valeurs réelles 10 ou -4.

Par exemple, dans notre cas, on a : X(1) = 10, X(2) = -4 ou X(6) = 10.

2) Loi de probabilité

Définition:

On appelle $x_1,\,x_2,\ldots,\,x_n$ les valeurs prises par X et on note $P(X=x_1)$ la probabilité de l'événement x_1 .

La **loi de probabilité** de la variable aléatoire X est un tableau reliant chaque valeur x_i à une probabilité $P(X=x_i)$.

Remarques:

• On note parfois $p_i = P(X = x_i)$.

❖ La somme de tous les p_i est toujours égale à 1.

 $\underline{\mathsf{Exemple}} : \mathsf{On} \ \mathsf{considère} \ \mathsf{la} \ \mathsf{variable} \ \mathsf{al\acute{e}atoire} \ X \ \mathsf{d\acute{e}finie} \ \mathsf{dans} \ \mathsf{l'exemple} \ \mathsf{initial}.$

• Chaque issue d'un lancer de dé est équiprobable et vaut $\frac{1}{6}$.

La probabilité que la variable aléatoire X soit égale à 10 est donc égale à $\frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$.

On note : $P(X = 10) = \frac{1}{3}$.

De la même façon, on trouve : $P(X = -4) = \frac{2}{3}$.

La loi de probabilité de la variable aléatoire \boldsymbol{X} est représenté dans un tableau :

x_i	-4	10
$P(X = x_i)$	$\frac{2}{3}$	$\frac{1}{3}$

On remarque que dans cet exemple : P(X = -4) + P(X = 10) = 1.

Méthode : Déterminer une loi de probabilité

Considérons l'expérience aléatoire : « On tire une carte dans un jeu de 32 cartes. »

On considère le jeu suivant :

- Si on tire un cœur, on perd 5 €.
- ❖ Si on tire un roi, on gagne 7 €.
- Si on tire une autre carte, on gagne 1 €.

On appelle X la variable aléatoire qui, à un tirage, associe un gain ou une perte.

Déterminons la loi de probabilité de X.

La variable aléatoire X peut prendre les valeurs -5, 7, 1 mais aussi 2. En effet, si on tire le roi de cœur, on gagne 7(roi) -5 (cœur) = 2.

• La carte tirée est un cœur (autre que le roi de cœur), X = -5.

$$P(X = -5) = \frac{7}{32}.$$

 \bullet La carte tirée est un roi (autre que le roi de cœur), X = 7.

$$P(X = 7) = \frac{3}{32}.$$

$$P(X = 2) = \frac{1}{32}.$$

$$P(X = 1) = \frac{21}{32}.$$

La loi de probabilité de \boldsymbol{X} s'écrit dans le tableau suivant :

x_i	- 5	1	2	7
$P(X = x_i)$	$\frac{7}{32}$	$\frac{21}{32}$	$\frac{1}{32}$	$\frac{3}{32}$

On peut constater que : P(X = -5) + P(X = 1) + P(X = 2) + P(X = 7) = 1.