MA3102

Algebra I

Autumn 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1	\mathbf{Gro}	oups and Symmetries	1
	1.1	Symmetries of plane figures	1
	1.2	Symmetries of the Euclidean plane	2
	1.3	Basic definitions	2

1 Groups and Symmetries

1.1 Symmetries of plane figures

A symmetry of a plane figure can be thought of as a rigid motion which *preserves its structure*, i.e. sends it to itself.

For example, consider an equilateral triangle; there is the identity symmetry (which does nothing), two rotations by $2\pi/3$ and $2\pi/3$, and three reflections. This gives us a total of 6 symmetries. Coincidentally, the plane symmetries of an equilateral triangle are precisely the set of 3! = 6 permutations of its vertices.

The same cannot be said of a square; there are 4! = 24 of its vertices, but only 8 of them are rigid motions. Here, we see 4 rotations and 4 reflections.

In general, a regular n-gon has 2n plane symmetries, of which n are rotations and n are reflections. This can be seen by noting that a symmetry of an n-gon is completely determined by its action on an edge; once the final positions of the first two vertices is determined, the rest are forced. There are n positions for the first vertex, which leaves only 2 positions for the second vertex. One of these choices results in a rotation (since it preserves the cyclicity of the vertices) and the other a reflection (since it reverses the cyclicity of the vertices).

Note that these symmetries can be *composed*, i.e. applied in succession. For example, a rotation by $2\pi/n$ can be applied repeatedly to obtain every possible rotational symmetry. Similarly, we can perform rotations and reflections in succession, and we always end up with another symmetry. This composition is associative, there is an identity symmetry, and each symmetry has an inverse. The collection of such symmetries forms a *group*.

The group of plane symmetries of a regular n-gon is called the *dihedral group*, denoted as D_{2n} .

1.2 Symmetries of the Euclidean plane

Consider the class of isometries of the plane, i.e. all bijections $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that ||f(v) - f(w)|| = ||v - w||. These constitute symmetries of the Euclidean plane \mathbb{R}^2 . The three basic forms of such symmetries are rotations, reflections, and translations; it can be shown that every symmetry of \mathbb{R}^2 is a combination of at most three reflections. Another representation for each symmetry is

$$f(\boldsymbol{v}) = A\boldsymbol{v} + \boldsymbol{v}_0,$$

where $A \in O_2(\mathbb{R})$ is an orthogonal matrix, accounting for the rotational and reflectional part of the transformation.

To show this, set $v_0 = f(0)$ and define $g = f - v_0$. Thus, g(0) = 0, and g is also an isometry. Not that for all $v, w \in \mathbb{R}^2$, we can write

$$||g(\boldsymbol{v}) - g(\boldsymbol{w})||^2 = ||g(\boldsymbol{v})||^2 + ||g(\boldsymbol{w})||^2 - 2\langle g(\boldsymbol{v}), g(\boldsymbol{w})\rangle,$$

$$||\boldsymbol{v} - \boldsymbol{w}||^2 = ||\boldsymbol{v}||^2 + ||\boldsymbol{w}||^2 - 2\langle \boldsymbol{v}, \boldsymbol{w}\rangle.$$

On the other hand, $||g(\boldsymbol{v}) - g(\boldsymbol{w})||^2 = ||\boldsymbol{v} - \boldsymbol{w}||^2$, and $||g(\boldsymbol{v})||^2 = ||\boldsymbol{v}||^2$, $||g(\boldsymbol{w})||^2 = ||\boldsymbol{w}||^2$. This gives $\langle g(\boldsymbol{v}), g(\boldsymbol{w}) \rangle = \langle \boldsymbol{v}, \boldsymbol{w} \rangle$, i.e. g preserves the inner product.

We claim that $g(\alpha \mathbf{v}) = \alpha g(\mathbf{v})$ for all $\alpha \in \mathbb{R}$, $\mathbf{v} \in \mathbb{R}^2$. Note that $||g(\alpha \mathbf{v})|| = ||\alpha \mathbf{v}|| = ||\alpha g(\mathbf{v})||$. Now,

$$||g(\alpha \mathbf{v}) - \alpha g(\mathbf{v})||^2 = ||g(\alpha \mathbf{v})||^2 + ||\alpha g(\mathbf{v})||^2 - 2\langle g(\alpha \mathbf{v}), \alpha g(\mathbf{v})\rangle$$
$$= \alpha^2 v^2 + \alpha^2 v^2 - 2\alpha \langle \alpha \mathbf{v}, \mathbf{v} \rangle$$
$$= 2\alpha^2 v^2 - 2\alpha^2 v^2$$
$$= 0$$

This proves that $g(\alpha \mathbf{v}) = \alpha g(\mathbf{v})$.

Next, we claim that $g(\mathbf{v} + \mathbf{w}) = g(\mathbf{v}) + g(\mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$. Write

$$||g(\mathbf{v} + \mathbf{w}) - g(\mathbf{v}) - g(\mathbf{w})||^2 = ||g(\mathbf{v} + \mathbf{w}) - g(\mathbf{v})||^2 + ||g(\mathbf{w})||^2 - 2\langle g(\mathbf{v} + \mathbf{w}) - g(\mathbf{v}), g(\mathbf{w})\rangle$$

$$= ||\mathbf{v} + \mathbf{w} - \mathbf{v}||^2 + ||\mathbf{w}||^2 - 2\langle \mathbf{v} + \mathbf{w}, \mathbf{w}\rangle + 2\langle \mathbf{v}, \mathbf{w}\rangle$$

$$= w^2 + w^2 - 2\langle \mathbf{v}, \mathbf{w}\rangle - 2w^2 + 2\langle \mathbf{v}, \mathbf{w}\rangle$$

$$= 0.$$

This proves that $g(\mathbf{v} + \mathbf{w}) = g(\mathbf{v}) + g(\mathbf{w})$. Thus, g is a linear map.

Now let $g(\mathbf{e}_1) = \mathbf{a}$ and $g(\mathbf{e}_2) = \mathbf{b}$. Clearly, $\|\mathbf{a}\| = \|\mathbf{b}\| = 1$. For arbitrary $\mathbf{v} \in \mathbb{R}^2$, we immediately get $g(\mathbf{v}) = v_x \mathbf{a} + v_y \mathbf{b}$, so by arranging \mathbf{a} and \mathbf{b} as the columns of a 2×2 matrix A, we have $g(\mathbf{v}) = A\mathbf{v}$. We clearly have $A^{\top}A = \mathbb{I}_2$ from $\mathbf{a}^{\top}\mathbf{a} = \mathbf{b}^{\top}\mathbf{b} = 1$, and $\langle \mathbf{a}, \mathbf{b} \rangle = \langle \mathbf{e}_1, \mathbf{e}_2 \rangle = 0$. Thus, $A \in O_2(\mathbb{R})$. Substituting this back into f, we have

$$f(\boldsymbol{v}) = A\boldsymbol{v} + \boldsymbol{v}_0$$

as desired.

It can be further shown (algebraically) that every member of $O_2(\mathbb{R})$ is of the form

$$\begin{bmatrix} \cos \theta & \mp \sin \theta \\ \sin \theta & \pm \cos \theta \end{bmatrix}.$$

1.3 Basic definitions

MA3102: Algebra I

Definition 1.1. A group is a set G with a binary operation of composition, satisfying the following properties.

- 1. Associativity: For all $a, b, c \in G$, a(bc) = (ab)c.
- 2. Existence of an identity element: There exists $e \in G$ such that for all $a \in G$, ae = e = ea.
- 3. Existence of inverse elements: For all $a \in G$, there exists $b \in G$ such that ab = e = ba. We denote $b = a^{-1}$.

Example. The integers $\mathbb Z$ form a group under addition.

Example. The set $\{-1, +1\}$ forms a group under multiplication.

Example. The symmetries of a tetrahedron form a group under composition of symmetries.