

Low-noise and long-range PIR sensor conditioner circuit

Design Goals

AC Gain	Filter Cut Off Frequency		Supply	
90dB	f _L	f _H	V _{cc}	V _{ee}
	0.7Hz	10Hz	5V	0V

Design Description

This two stage amplifier design amplifies and filters the signal from a passive infrared (PIR) sensor. The circuit includes multiple low–pass and high–pass filters to reduce noise at the output of the circuit to be able to detect motion at long distances and reduce false triggers. This circuit can be followed by a window comparator circuit to create a digital output or connect directly to an analog–to–digital converter (ADC) input.

Design Notes

- 1. The common mode voltage and output bias voltage are set using the resistor dividers between R₂ and R₃ (and R₇ and R₈).
- 2. Two or more amplifier stages must be used to allow for sufficient loop gain.
- 3. Additional low–pass and high–pass filters can be added to further reduce noise.
- 4. Capacitors C₄ and C₈ filter noise by decreasing the bandwidth of the circuit and help stabilize the amplifiers.
- 5. RC filters on the output of the amplifiers (for example, R₆ and C₅) are required to reduce the total integrated noise of the amplifier.
- 6. The maximum gain of the circuit can be affected by the cutoff frequencies of the filters. The cutoff frequencies may need to be adjusted to achieve the desired gain.

Design Steps

1. Choose large–valued capacitors C₁, C₅, and C₉ for the low–pass filters. These capacitors should be selected first since large–valued capacitors have limited standard values to select from compared to standard resistor values.

$$C_1 = C_5 = C_9 = 10 \mu F$$

2. Calculate resistor values for R_1 , R_6 , and R_{11} to form the low–pass filters.

$$\begin{array}{c} R_1=R_6=R_{11}=\frac{1}{2\pi\times f_H\times C_1}=\frac{1}{2\pi\times 10Hz\times 10\mu F}=1.592k\Omega\\ \text{Choose} \ \ R_1=R_6=R_{11}=1.5k\Omega \ \ \text{(Standard value)} \end{array}$$

3. Select capacitor values for C₂, C₃, C₆, and C₇ for the high-pass filters.

$$C_2 = C_3 = C_6 = C_7 = 33 \mu F$$

4. Calculate the resistor values for R₄ and R₉ for the high–pass filters.

 Set the common–mode voltage of the amplifier to mid–supply using a voltage divider. The equivalent resistance of the voltage divider should be equal to R₄ to properly set the corner frequency of the high–pass filter.

$$R_2 = R_3 = R_7 = R_8 = 2 \times R_4 = 2 \times 6 \cdot 81$$
kΩ = 13 · 62kΩ Choose $R_2 = R_3 = R_7 = R_8 = 13 \cdot 7$ kΩ (Standard value)

6. Calculate the gain required by each gain stage to achieve the total gain requirement. Distribute the total gain target of the circuit evenly between both gain stages.

$$Gain = \frac{90dB}{2} = 45dB = 177.828\frac{V}{V}$$

7. Calculate R₅ to set the gain of the first stage.

$$R_5 = (Gain-1) \times R_4 = (177.828 \frac{V}{V} - 1) \times 6.81 k\Omega = 1.204 M\Omega$$
 Choose 1.2M\Omega

8. Calculate C₄ to set the low–pass filter cut off frequency.

$$C_4=\frac{1}{2\pi\times R_5\times f_H}=\frac{1}{2\pi\times 1.2 M\varOmega\times 10 Hz}=13$$
 . 263nF Choose $C_4=15 nF$

9. Since the gain and cut off frequency of the first gain stage is equal to the second gain stage, set all component values of both stages equal to each other.

$$\begin{aligned} R_1 &= R_6 = 1.5 k\Omega \\ R_7 &= R_8 = 13.7 k\Omega \\ R_9 &= R_4 = 6.81 k\Omega \\ R_{10} &= R_5 = 1.2 M\Omega \\ C_8 &= C_4 = 15 nF \end{aligned}$$

10. Calculate R₁₁ to set the cut off frequency of the low-pass filter at the output of the circuit.

$$\begin{array}{c} R_{11}\!=\frac{1}{2\pi\times C_9\times f_H}\!=\frac{1}{2\pi\times 10\mu F\times 10Hz}\!=1.592k\Omega\\ \text{Choose} \quad R_{11}\!=1.5k\Omega \end{array}$$

Design Simulations

AC Simulation Results

Noise Simulation Results

Revision History www.ti.com

References:

- 1. Analog Engineer's Circuit Cookbooks
- 2. SPICE Simulation File SBOC524
- 3. TI Precision Labs

Design Featured Op Amp

TLV9062			
V _{ss}	1.8V to 5.5V		
V _{inCM}	Rail-to-rail		
V _{out}	Rail-to-rail		
V _{os}	0.3mV		
I _q	538µA		
I _b	0.5pA		
UGBW	10MHz		
SR	6.5V/µs		
#Channels	1,2,4		
www.ti.com/product/tlv9062			

Design Alternate Op Amp

OPA376			
V _{ss}	2.2V to 5.5V		
V _{inCM}	V _{ee} to V _{cc} -1.3V		
V_{out}	Rail-to-rail		
V _{os}	5µV		
I _q	760µA/Ch		
I _b	0.2pA		
UGBW	5.5MHz		
SR	2V/μs		
#Channels	1, 2, 4		
http://www.ti.com/product/opa376			

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (December 2018) to A Revision

Page

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated