## Reachability in Vector Addition Systems is Ackermann-complete

Wojciech Czerwiński Łukasz Orlikowski

University of Warsaw

## **Presentation plan**

- History and definition of the problem
- Main result
- Techniques

**Vector Addition Systems with States** 



## **Vector Addition Systems with States**

(-1, 1)

(2,-1) (-1,1)

- 1: x += 1
- 2: **loop**
- $x -= 1 \quad y += 1$
- 4: **loop**
- 6: **loop**
- 7: x -= 1 y += 1
- 8: **loop**

## **Reachability Problem**

**Given:** a Vector Addition System with States (VASS) V, two configurations s and t

Question: is there a run from s to t in V?



## **Example of run**

$$p(1,0,2) \to p(0,1,2) \to q(0,1,2) \to q(2,0,2) \to p(2,0,1)$$



$$F_1(n) = 2n$$

$$F_1(n) = 2n$$
  $F_2(n) = 2^n$ 

$$F_1(n) = 2n$$
  $F_2(n) = 2^n$   $F_3(n) = Tower(n)$ 

$$F_1(n) = 2n$$
  $F_2(n) = 2^n$   $F_3(n) = Tower(n)$ 

$$F_d(n) = F_{d-1}(F_{d-1}(...(F_{d-1}(1))...))$$
 composed n times

$$F_1(n) = 2n$$
  $F_2(n) = 2^n$   $F_3(n) = Tower(n)$ 

$$F_d(n) = F_{d-1}(F_{d-1}(...(F_{d-1}(1))...))$$
 composed n times

Ackermann(n) =  $F_n(n)$ 

• Lipton `76: ExpSpace-hardness

- Lipton `76: ExpSpace-hardness
- Mayr `81: decidability

- Lipton `76: ExpSpace-hardness
- Mayr `81: decidability
- Kosaraju `82, Lambert `92: simplifications

- Lipton `76: ExpSpace-hardness
- Mayr `81: decidability
- Kosaraju `82, Lambert `92: simplifications
- Leroux, Schmitz `15: cubic-Ackermann upper bound

- Lipton `76: ExpSpace-hardness
- Mayr `81: decidability
- Kosaraju `82, Lambert `92: simplifications
- Leroux, Schmitz `15: cubic-Ackermann upper bound
- Leroux, Schmitz `19: Ackermann upper bound

- Lipton `76: ExpSpace-hardness
- Mayr `81: decidability
- Kosaraju `82, Lambert `92: simplifications
- Leroux, Schmitz `15: cubic-Ackermann upper bound
- Leroux, Schmitz `19: Ackermann upper bound
- Czerwiński, Lasota, Lazic, Leroux, Mazowiecki `19:
  Tower-hardness

- Lipton `76: ExpSpace-hardness
- Mayr `81: decidability
- Kosaraju `82, Lambert `92: simplifications
- Leroux, Schmitz `15: cubic-Ackermann upper bound
- Leroux, Schmitz `19: Ackermann upper bound
- Czerwiński, Lasota, Lazic, Leroux, Mazowiecki `19:
  Tower-hardness

#### Our contribution

#### Theorem:

The Reachability Problem for Vector Addition Systems is Ackermann-hard.

#### Our contribution

#### Theorem:

The Reachability Problem for Vector Addition Systems is Ackermann-hard.

#### Theorem:

The Reachability Problem for 6d-VASSes is F<sub>d</sub>-hard

• Jerome Leroux independent proof

- Jerome Leroux independent proof
  - 4d+O(1) first version

- Jerome Leroux independent proof
  - 4d+O(1) first version
  - 2d+O(1) last version

- Jerome Leroux independent proof
  - 4d+O(1) first version
  - 2d+O(1) last version
- Sławomir Lasota follow-up (3d + O(1))

# **Techniques**

$$c_0 \xrightarrow{\rho_1} c_1 \xrightarrow{\rho_2} \dots \xrightarrow{\rho_{n-1}} c_{n-1} \xrightarrow{\rho_n} c_n.$$

x<sub>i</sub> value of counter x in state c<sub>i</sub>

$$c_0 \xrightarrow{\rho_1} c_1 \xrightarrow{\rho_2} \dots \xrightarrow{\rho_{n-1}} c_{n-1} \xrightarrow{\rho_n} c_n.$$

- x<sub>i</sub> value of counter x in state c<sub>i</sub>
- $x'_i$  be the effect of run  $\rho_i$  on counter x

$$c_0 \xrightarrow{\rho_1} c_1 \xrightarrow{\rho_2} \dots \xrightarrow{\rho_{n-1}} c_{n-1} \xrightarrow{\rho_n} c_n.$$

- x<sub>i</sub> value of counter x in state c<sub>i</sub>
- $x'_i$  be the effect of run  $\rho_i$  on counter x
- How to check if  $x_i = 0$  for all i?

$$c_0 \xrightarrow{\rho_1} c_1 \xrightarrow{\rho_2} \dots \xrightarrow{\rho_{n-1}} c_{n-1} \xrightarrow{\rho_n} c_n.$$

- x<sub>i</sub> value of counter x in state c<sub>i</sub>
- $x'_i$  be the effect of run  $\rho_i$  on counter x
- How to check if  $x_i = 0$  for all i?
- Introduce new counter  $c = x_1 + x_2 + ... + x_n = nx_1' + ... + x_{n+1}'$

## **Controlling counter - example**

- 1: x += 1 c += n
- 2: for i := 1 to n do
- 3: loop
- 4: x -= 1 y += 1
- 5: **loop**
- 6: x += 2 y -= 1 c += n i 1

- Let's have a triple (b,2c, 2bc)
- Allows for c zero-tests on b-bounded counters

flush(x,y,z):

- 1: **loop**
- 2: x -= 1 y += 1 z -= 1

Let's have triple (b, y, z) = (B, 2C, 2BC)

## Zero-test(x):

- 1: **flush**(b, x, z)
- 2: flush(x, b, z)
- 3: y = 2

Let's have triple (b, y, z) = (B, 2C, 2BC)

Zero-test(x):

- 1: **flush**(b, x, z)
- 2: flush(x, b, z)
- 3: y = 2

Invariant (b+x)y=z kept only if x was indeed zero!

## Minsky machine

counter program with zero-tests and three counters

## Minsky machine

- counter program with zero-tests and three counters
- in general reachability problem is undecidable

## F<sub>d</sub> bounded reachability problem

**Given:** a Minsky machine M and two configurations s and t

**Question:** is there a run from s to t in M where all counters are bounded by  $F_d(|M|)$ ?

## F<sub>d</sub> bounded reachability problem

**Given:** a Minsky machine M and two configurations s and t

**Question:** is there a run from s to t in M where all counters are bounded by  $F_d(|M|)$ ?

This problem is F<sub>d</sub>-hard

## F<sub>d</sub> bounded reachability problem

**Given:** a Minsky machine M and two configurations s and t

**Question:** is there a run from s to t in M where all counters are bounded by  $F_d(|M|)$ ?

This problem is  $F_d$ -hard We can simulate it by VASS using multiplication triples technique ( $F_d$ (|M|), C,  $F_d$ (|M|)C)

• Main challenge: producing such triples

- Main challenge: producing such triples
- Can be done by producing bigger triples from smaller ones

- Main challenge: producing such triples
- Can be done by producing bigger triples from smaller ones
- Possible due to controlling counter technique

# Thank you!