A01 2021 Broken Access Control

Description

Access control enforces policy such that users cannot act outside of their intended permissions. Failures typically lead to unauthorized information disclosure, modification, or destruction of all data or performing a business function outside the user's limits. Common access control vulnerabilities include:

- Violation of the principle of least privilege or deny by default, where access should only be granted for particular capabilities, roles, or users, but is available to anyone.
- Bypassing access control checks by modifying the URL (parameter tampering or force browsing), internal application state, or the HTML page, or by using an attack tool modifying API requests.
- Permitting viewing or editing someone else's account, by providing its unique identifier (insecure direct object references)
- Accessing API with missing access controls for POST, PUT and DELETE.
- Elevation of privilege. Acting as a user without being logged in or acting as an admin when logged in as a user.
- Metadata manipulation, such as replaying or tampering with a JSON Web Token (JWT) access control token, or a cookie or hidden field manipulated to elevate privileges or abusing JWT invalidation.
- CORS misconfiguration allows API access from unauthorized/untrusted origins.
- Force browsing to authenticated pages as an unauthenticated user or to privileged pages as a standard user.

CWE-284: Improper Access Control

Description

Access control involves the use of several protection mechanisms such as:

- Authentication (proving the identity of an actor)
- Authorization (ensuring that a given actor can access a resource), and
- Accountability (tracking of activities that were performed)

When any mechanism is not applied or otherwise fails, attackers can compromise the security of the product by gaining privileges, reading sensitive information, executing commands, evading detection, etc.

There are two distinct behaviors that can introduce access control weaknesses:

- Specification: incorrect privileges, permissions, ownership, etc. are explicitly specified
 for either the user or the resource (for example, setting a password file to be worldwritable, or giving administrator capabilities to a guest user). This action could be
 performed by the program or the administrator.
- Enforcement: the mechanism contains errors that prevent it from properly enforcing
 the specified access control requirements (e.g., allowing the user to specify their own
 privileges, or allowing a syntactically-incorrect ACL to produce insecure settings). This
 problem occurs within the program itself, in that it does not actually enforce the
 intended security policy that the administrator specifies.

A02:2021 – Cryptographic Failures

Description

Access control enforces policy such that users cannot act outside of their intended permissions. Failures typically lead to unauthorized information disclosure, modification, or destruction of all data or performing a business function outside the user's limits. Common access control vulnerabilities include:

- Violation of the principle of least privilege or deny by default, where access should only be granted for particular capabilities, roles, or users, but is available to anyone.
- Bypassing access control checks by modifying the URL (parameter tampering or force browsing), internal application state, or the HTML page, or by using an attack tool modifying API requests.
- Permitting viewing or editing someone else's account, by providing its unique identifier (insecure direct object references)
- Accessing API with missing access controls for POST, PUT and DELETE.
- Elevation of privilege. Acting as a user without being logged in or acting as an admin when logged in as a user.
- Metadata manipulation, such as replaying or tampering with a JSON Web Token (JWT) access control token, or a cookie or hidden field manipulated to elevate privileges or abusing JWT invalidation.
- CORS misconfiguration allows API access from unauthorized/untrusted origins.
- Force browsing to authenticated pages as an unauthenticated user or to privileged pages as a standard user.

CWE-259: Use of Hard-coded Password

Description

A hard-coded password typically leads to a significant authentication failure that can be difficult for the system administrator to detect. Once detected, it can be difficult to fix, so the administrator may be forced into disabling the product entirely. There are two main variations:

Inbound: the product contains an authentication mechanism that checks for a hard-coded password.

Outbound: the product connects to another system or component, and it contains hard-coded password for connecting to that component.

In the Inbound variant, a default administration account is created, and a simple password is hard-coded into the product and associated with that account. This hard-coded password is the same for each installation of the product, and it usually cannot be changed or disabled by system administrators without manually modifying the program, or otherwise patching the product. If the password is ever discovered or published (a common occurrence on the Internet), then anybody with knowledge of this password can access the product. Finally, since all installations of the product will have the same password, even across different organizations, this enables massive attacks such as worms to take place.

The Outbound variant applies to front-end systems that authenticate with a back-end service. The back-end service may require a fixed password which can be easily discovered. The programmer may simply hard-code those back-end credentials into the front-end product. Any user of that program may be able to extract the password. Client-side systems with hard-coded passwords pose even more of a threat, since the extraction of a password from a binary is usually very simple.

A03:2021 - Injection

Description

An application is vulnerable to attack when:

- User-supplied data is not validated, filtered, or sanitized by the application.
- Dynamic queries or non-parameterized calls without context-aware escaping are used directly in the interpreter.
- Hostile data is used within object-relational mapping (ORM) search parameters to extract additional, sensitive records.
- Hostile data is directly used or concatenated. The SQL or command contains the structure and malicious data in dynamic queries, commands, or stored procedures.

Some of the more common injections are SQL, NoSQL, OS command, Object Relational Mapping (ORM), LDAP, and Expression Language (EL) or Object Graph Navigation Library (OGNL) injection. The concept is identical among all interpreters. Source code review is the best method of detecting if applications are vulnerable to injections. Automated testing of all parameters, headers, URL, cookies, JSON, SOAP, and XML data inputs is strongly encouraged. Organizations can include static (SAST), dynamic (DAST), and interactive (IAST) application security testing tools into the CI/CD pipeline to identify introduced injection flaws before production deployment.

CWE-20: Improper Input Validation

Description

Input validation is a frequently-used technique for checking potentially dangerous inputs in order to ensure that the inputs are safe for processing within the code, or when communicating with other components. When software does not validate input properly, an attacker is able to craft the input in a form that is not expected by the rest of the application. This will lead to parts of the system receiving unintended input, which may result in altered control flow, arbitrary control of a resource, or arbitrary code execution.

Input validation is not the only technique for processing input, however. Other techniques attempt to transform potentially-dangerous input into something safe, such as filtering (<u>CWE-790</u>) - which attempts to remove dangerous inputs - or encoding/escaping (<u>CWE-116</u>), which attempts to ensure that the input is not misinterpreted when it is included in output to another component. Other techniques exist as well (see <u>CWE-138</u> for more examples.)

Input validation can be applied to:

- raw data strings, numbers, parameters, file contents, etc.
- metadata information about the raw data, such as headers or size

Data can be simple or structured. Structured data can be composed of many nested layers, composed of combinations of metadata and raw data, with other simple or structured data.

Many properties of raw data or metadata may need to be validated upon entry into the code, such as:

- specified quantities such as size, length, frequency, price, rate, number of operations, time, etc.
- implied or derived quantities, such as the actual size of a file instead of a specified size
- indexes, offsets, or positions into more complex data structures
- symbolic keys or other elements into hash tables, associative arrays, etc.
- well-formedness, i.e. syntactic correctness compliance with expected syntax
- lexical token correctness compliance with rules for what is treated as a token
- specified or derived type the actual type of the input (or what the input appears to be)
- consistency between individual data elements, between raw data and metadata, between references, etc.
- conformance to domain-specific rules, e.g. business logic
- equivalence ensuring that equivalent inputs are treated the same
- authenticity, ownership, or other attestations about the input, e.g. a cryptographic signature to prove the source of the data

Implied or derived properties of data must often be calculated or inferred by the code itself. Errors in deriving properties may be considered a contributing factor to improper input validation.

Note that "input validation" has very different meanings to different people, or within different classification schemes. Caution must be used when referencing this CWE entry or mapping to it. For example, some weaknesses might involve inadvertently giving control to an

A04:2021 – Insecure Design

Description

Insecure design is a broad category representing different weaknesses, expressed as "missing or ineffective control design." Insecure design is not the source for all other Top 10 risk categories. There is a difference between insecure design and insecure implementation. We differentiate between design flaws and implementation defects for a reason, they have different root causes and remediation. A secure design can still have implementation defects leading to vulnerabilities that may be exploited. An insecure design cannot be fixed by a perfect implementation as by definition, needed security controls were never created to defend against specific attacks. One of the factors that contribute to insecure design is the lack of business risk profiling inherent in the software or system being developed, and thus the failure to determine what level of security design is required.

CWE-256: Plaintext Storage of a Password

Description

Password management issues occur when a password is stored in plaintext in an application's properties, configuration file, or memory. Storing a plaintext password in a configuration file allows anyone who can read the file access to the password-protected resource. In some contexts, even storage of a plaintext password in memory is considered a security risk if the password is not cleared immediately after it is used.

A05:2021 – Security Misconfiguration

Description

The application might be vulnerable if the application is:

- Missing appropriate security hardening across any part of the application stack or improperly configured permissions on cloud services.
- Unnecessary features are enabled or installed (e.g., unnecessary ports, services, pages, accounts, or privileges).
- Default accounts and their passwords are still enabled and unchanged.
- Error handling reveals stack traces or other overly informative error messages to users.

- For upgraded systems, the latest security features are disabled or not configured securely.
- The security settings in the application servers, application frameworks (e.g., Struts, Spring, ASP.NET), libraries, databases, etc., are not set to secure values.
- The server does not send security headers or directives, or they are not set to secure values.
- The software is out of date or vulnerable (see <u>A06:2021-Vulnerable and Outdated Components</u>).

CWE-520: .NET Misconfiguration: Use of Impersonation

Description

.NET server applications can optionally execute using the identity of the user authenticated to the client. The intention of this functionality is to bypass authentication and access control checks within the .NET application code. Authentication is done by the underlying web server (Microsoft Internet Information Service IIS), which passes the authenticated token, or unauthenticated anonymous token, to the .NET application. Using the token to impersonate the client, the application then relies on the settings within the NTFS directories and files to control access. Impersonation enables the application, on the server running the .NET application, to both execute code and access resources in the context of the authenticated and authorized user.

By: Pavan Kumar.S

21BAI1527