Théorie de la décision

Alexis Tsoukiàs et Elise Bonzon 2 février 2011 - 2h Tous documents autorisés

Exercice 1 : (Modélisation des préférences)

Vous avez 4 objets et les préférences suivantes : a est indifférent à b, qui est indifférent à c, qui est indifférent à d. a est préféré à c, et b est préféré à d. Donnez une représentation numérique de ces préférences.

Exercice 2 : (Décision dans l'incertain)

Vous partez pour une excursion. Vous ne savez pas encore si vous serez seul, avec un, deux ou trois amis. Vous pouvez prendre avec vous 1, 2, 3 ou 4 morceaux de ce gâteau magnifique que vos amis apprécient beaucoup.

Votre fonction de valeur est exprimé par $x - 2y - z^2$ où x est le nombre de vos amis qui sont satisfaits, y est le nombre de morceaux de gâteau que vous avez pris avec vous, et z est le nombre de vos amis qui ne sont pas satisfaits. Quelle est votre décision max-min? Et dans quel cas les scénarios ont la même probabilité?

Exercice 3: (Théorie du choix social)

Soit *A* l'ensemble fini de candidats, et soit *V* l'ensemble fini de votants. On considère la procédure d'aggrégation suivante :

- 1. Chaque votant présente un ordre total sur l'ensemble des candidats A
- 2. Chaque candidat classé en première position pour un votant reçoit 3 points
- 3. Tous les autres candidats n'ont aucun point
- 4. Le candidat ayant le plus de point est élu

Présentez le théorème d'Arrow, puis analysez cette procédure par rapport aux propriétés de ce théorème.

Cette procédure est-elle monotone ? Séparable ? Condorcet cohérente ? Est-ce qu'elle incite à la participation ?

Exercice 4: (Surclassement)

Soient trois alternatives (a, b, c), et quatre critères (c_1, c_2, c_3, c_4) , évalués comme suit :

	c_1	c_2	<i>c</i> ₃	c_4
а	8	17	1000	85
b	9	40	900	69
С	10	25	800	75
w_j	0.4	0.2	0.2	0.2
veto		20		15

Quel doit être le seuil de concordance maximal pour que a surclasse b? a surclasse b? a surclasse b?

On suppose maintenant que le seuil de concordance vaut 0.6. Rangez les alternatives (problématique du rangement), et justifiez votre résultat.