Functional Mediation Analysis with an Application to Functional Magnetic Resonance Imaging Data

Yi Zhao

Department of Biostatistics

Johns Hopkins Bloomberg School of Public Health

July 4, 2018

Acknowledgements

Xi (Rossi) Luo, PhD Department of Biostatistics Brown University

Martin Lindquist, PhD Department of Biostatistics Johns Hopkins Bloomberg School of Public Health

Brian Caffo, PhD
Department of Biostatistics
Johns Hopkins Bloomberg School
of Public Health

Motivation

Credit: NSF

Task-related functional MRI (fMRI)

- fMRI: measures brain activities
- task fMRI: perform task under fMRI scanner
- response conflict task
 - "GO" trial: push the button
 - "STOP" trial: withhold the pushing

Motivation

Credit: NSF

GO GO GO GO GO

Task-related functional MRI (fMRI)

- fMRI: measures brain activities
- task fMRI: perform task under fMRI scanner
- response conflict task
 - "GO" trial: push the button
 - "STOP" trial: withhold the pushing

Motivation

Credit: NSF

Task-related functional MRI (fMRI)

- fMRI: measures brain activities
- task fMRI: perform task under fMRI scanner
- response conflict task
 - "GO" trial: push the button
 - "STOP" trial: withhold the pushing

Objective

- identify causal effects of task stimulus on brain activity
- infer brain connectivity (effective connectivity)

Response conflict task

- Brain regions of interest
 - primary motor cortex (M1): responsible for movement
 - presupplementary motor area (preSMA): primary region for motor response prohibition
 - Objective
 - Quantify the causal effects
 - ullet stimulus o preSMA, stimulus o M1
 - ullet preSMA ightarrow M1 1

¹Obeso et al., Brain Stimulation, 2013

Response conflict task

- Brain regions of interest
 - primary motor cortex (M1): responsible for movement
 - presupplementary motor area (preSMA): primary region for motor response prohibition
 - Objective
 - Quantify the causal effects
 - $\bullet \ \ \mathsf{stimulus} \to \mathsf{preSMA}, \ \mathsf{stimulus} \to \mathsf{M1} \\$
 - ullet preSMA ightarrow M1 1

¹Obeso et al., Brain Stimulation, 2013

Mediation analysis

- conflict response task: STOP/GO
- mediator region: preSMA, outcome region: M1
- mediation model on functional measures
- dynamic causal effects

Mediation analysis (structural equation modeling)

$$M = Z\alpha + \epsilon_1$$

 $Y = Z\gamma + M\beta + \epsilon_2$ Z

- Z, M, Y: scalar measures
- causal estimands

DE =
$$(z - z')\gamma$$

IE = $(z - z')\alpha\beta$

• DE: direct effect; IE: indirect effect

Existing methods

- Mediation analysis in neuroimaging studies
 - Two-stage (e.g., Wager et al. (2008, 2009), Atlas et al. (2010, 2014), Zhao and Luo (2014), Chen et al. (2015))
 - Stage I: extract single trial activation
 - Stage II: mediation analysis
 - Functional mediator (Lindquist (2012))
 - Time series data mediation analysis (Zhao and Luo (2018+))
 - SEM + Granger causality
- Time dependent treatment and mediator
 - sparse longitudinal data (Avin et al. (2005), VanderWeele (2009), Goldsmith et al. (2016),
 Bind et al. (2016), Zheng and van der Laan (2017), VanderWeele and Tchetgen Tchetgen (2017))
- Dynamic brain connectivity
 - dynamic functional connectivity (e.g., Chang and Glover (2010), Calhoun et al. (2013, 2014), Lindquist et al. (2014), Warnick et al. (2017), Gonzalez-Castillo and Bandettini (2017))
 - dynamic effective connectivity (e.g., Samdin et al. (2015))

Functional mediation model

For $\forall t \in [0, T]$,

Concurrent model

$$M(t) = Z(t)\alpha(t) + \epsilon_1(t)$$

$$Y(t) = Z(t)\gamma(t) + M(t)\beta(t) + \epsilon_2(t)$$

Historical influence model

$$M(t) = \int_{\Omega_t^1} Z(s)\alpha(s,t) ds + \epsilon_1(t)$$

$$Y(t) = \int_{\Omega_t^2} Z(s)\gamma(s,t) ds + \int_{\Omega_t^3} M(s)\beta(s,t) ds + \epsilon_2(t)$$

- $\Omega_t^k = [(t \delta_k) \vee 0, t], \ \delta_k \in (0, +\infty], \ k = 1, 2, 3$
- if $\delta_k \in [T, +\infty]$: whole history

Notations

- $\mathcal{H}_t = [0, t]$
- $\{x(s)\}_{\mathcal{H}_t}$: the history of variable x
- $M(t; \{z(s)\}_{\mathcal{H}_t})$: potential outcome of M at time t if Z has the history $\{z(s)\}_{\mathcal{H}_t}$
- $Y(t; \{z(s), m(s)\}_{\mathcal{H}_t})$: potential outcome of Y at time t when the history of Z and M at level $\{z(s)\}_{\mathcal{H}_t}$ and $\{m(s)\}_{\mathcal{H}_t}$

Causal estimands

Concurrent model

$$M(t) = Z(t)\alpha(t) + \epsilon_1(t)$$

$$Y(t) = Z(t)\gamma(t) + M(t)\beta(t) + \epsilon_2(t)$$

 $DE(t) = \mathbb{E} [Y(t; \{z(s), m(s)\}_{\mathcal{H}_t}) - Y(t; \{z'(s), m(s)\}_{\mathcal{H}_t})]$

$$= (z(t) - z'(t)) \gamma(t)$$

$$IE(t) = \mathbb{E} \left[Y(t; \{z(s), m(s; \{z(u)\}_{\mathcal{H}_s})\}_{\mathcal{H}_t}) - Y(t; \{z(s), m(s; \{z'(u)\}_{\mathcal{H}_s})\}_{\mathcal{H}_t}) \right]$$

$$= (z(t) - z'(t)) \alpha(t)\beta(t)$$

DE: controlled direct effect

Historical influence model

$$M(t) = \int_{\Omega_t^1} Z(s)\alpha(s,t) ds + \epsilon_1(t)$$

$$Y(t) = \int_{\Omega_t^2} Z(s)\gamma(s,t) ds + \int_{\Omega_t^3} M(s)\beta(s,t) ds + \epsilon_2(t)$$

$$DE(t) = \mathbb{E} \left[Y(t; \{z(s), m(s)\}_{\mathcal{H}_t}) - Y(t; \{z'(s), m(s)\}_{\mathcal{H}_t}) \right]$$

$$= \int_{\Omega_t^2} \left(z(s) - z'(s) \right) \gamma(s, t) ds$$

$$IE(t) = \mathbb{E} \left[Y(t; \{z(s), m(s; \{z(u)\}_{\mathcal{H}_s})\}_{\mathcal{H}_t}) - Y(t; \{z(s), m(s; \{z'(u)\}_{\mathcal{H}_s})\}_{\mathcal{H}_t}) \right]$$

$$= \int_{\Omega_s^2} \left(\int_{\Omega_s^1} (z(u) - z'(u)) \alpha(u, s) du \right) \beta(s, t) ds$$

DE: controlled direct effect

Direct effect (DE)

• $\delta_1 = \delta_2 = \delta_3 = \delta$, δ small

Indirect effect (IE)

Direct effect (DE)

• $\delta_1 = \delta_2 = \delta_3 = \delta$, $\delta \in [T, +\infty]$

Indirect effect (IE)

Causal assumptions

Let
$$\mathcal{O}_t = \{Z(s), M(s), Y(s)\}_{\mathcal{H}_t \setminus \{t\}} \ (\mathcal{H}_t = [0, t])$$

Assumption 1: No (unmeasured) "treatment-outcome confounder"

$$Y(t; \{z(s), m(s)\}_{\mathcal{H}_t}) \perp \!\!\! \perp Z(t) \mid \mathcal{O}_t$$

Assumption 2: No (unmeasured) "treatment-mediator confounder"

$$M(t; \{z(s)\}_{\mathcal{H}_t}) \perp \!\!\! \perp Z(t) \mid \mathcal{O}_t$$

Assumption 3: No (unmeasured) "mediator-outcome confounder"

$$Y(t; \{z(s), m(s)\}_{\mathcal{H}_t}) \perp \!\!\!\perp M(t; \{z(s)\}_{\mathcal{H}_t}) \mid Z(t), \mathcal{O}_t$$

Method: Penalized least squares²

Concurrent model

$$Y(t) = X(t)\theta(t) + \epsilon(t)$$

$$\mathrm{PLS}(\theta) = \int_0^T \|Y(t) - X(t)\theta(t)\|_2^2 \; \mathrm{d}t + \sum_{j=1}^q \lambda_j \int_0^T \left[\mathcal{L}_j\theta_j(t)\right]^2 \; \mathrm{d}t$$

- \mathcal{L}_j : linear differential operator
 - $\mathcal{L}_j = \mathcal{D}^2$ curvature operator
 - $\mathcal{L}_j = \omega^2 \mathcal{D} + \mathcal{D}^3$ harmonic acceleration operator (ω angular frequency)
- λ_i : tuning parameter
- suppose $\theta_j(t) = \sum_k g_{kj} \phi_{kj}(t)$, $\phi_{kj}(t)$ basis function
- estimate g_{jk}

²Ramsay, Functional Data Analysis, 2006

Historical influence model

$$Y(t) = \int_{\Omega_t} X(s) \theta(s,t) \, \mathrm{d}s + \epsilon(t)$$

$$PLS(\theta) = \int_0^T \|Y(t) - \int_{\Omega_t} X(s)\theta(s, t) ds\|_2^2 dt + \lambda_s \mathcal{P}_s(\theta) + \lambda_t \mathcal{P}_t(\theta)$$

$$\mathcal{P}_s = \int_0^t \int_0^T [\mathcal{L}_s heta(s,t)] [\mathcal{L}_s heta^ op(s,t)] \, \mathrm{d}s \mathrm{d}t$$
 $\mathcal{P}_t = \int_0^t \int_0^T [\mathcal{L}_t heta(s,t)] [\mathcal{L}_t heta^ op(s,t)] \, \mathrm{d}s \mathrm{d}t$

- suppose $\theta_j(s,t) = \sum_k \sum_l g_{klj} \phi_{kj}(s) \eta_{lj}(t)$
 - $\phi_{kj}(s)$ basis respect to s, $\eta_{lj}(t)$ basis respect to t
- estimate g_{klj}

Simulation study

simulate BOLD signal using canonical HRF

- N = 50 subjects, T = 300 s, TR = 2 s (150 time points)
- Event: $\mathbb{P}(\text{``case''}) = \mathbb{P}(\text{``control''}) = 0.5 \text{ (40 s between trials)}$
- Method
 - two-stage (**beta-KKB**)
 - stage I: extract single-beta activation
 - stage II: (multilevel³) mediation analysis
 - functional mediation (FMA)

True model: concurrent

IE: $\alpha(t)\beta(t)$

DE: $\gamma(t)$

	Estimate (SE)	Power		
beta-KKB	-0.000 (0.028)	0.055		

True model: historical influence ($\delta = 6$ s)

 $\mathsf{IE} : \int_{\Omega^3_t} \left(\int_{\Omega^1_t} \alpha(u,s) \, \, \mathrm{d}u \right) \beta(s,t) \, \, \mathrm{d}s \qquad \qquad \mathsf{DE} : \int_{\Omega^2_t} \gamma(s,t) \, \, \mathrm{d}s$

	Estimate (SE)	Power
beta-KKB	-0.022 (0.161)	0.049

	LStilliate (SL)	rower	
beta-KKB	0.001 (0.039)	0.067	

Estimate (SE)

DOWG

Response conflict task fMRI study⁴

- *N* = 121 right-handed healthy participants
- randomized STOP/GO trials: 90 GO trials and 32 STOP trials
 - remove GO trials
- mediator region: preSMA-post (MNI: (-4,-8,60))
- outcome region: M1 (MNI: (-41,-20,62))
- TR = 2 s, 184 time points
- Z(t): convolution of event onsets and canonical HRF
- M(t) and Y(t): BOLD signals after motion correction

Concurrent model

$$M(t) = Z(t)\alpha(t) + \epsilon_1(t)$$

$$Y(t) = Z(t)\gamma(t) + M(t)\beta(t) + \epsilon_2(t)$$

Historical influence model

$$M(t) = \int_{\Omega_t^1} Z(s)\alpha(s,t) ds + \epsilon_1(t)$$

$$Y(t) = \int_{\Omega_t^2} Z(s)\gamma(s,t) ds + \int_{\Omega_t^3} M(s)\beta(s,t) ds + \epsilon_2(t)$$

- $\Omega_t^k = [(t \delta_k) \vee 0, t], \ \delta_k \in (0, +\infty], \ k = 1, 2, 3$
- if $\delta_k \in [T, +\infty]$: whole history
- $\delta = 2, 4, 6, 10, 20, 30, \infty$ (seconds)

Model selection

• mean squared error: θ_i observed M_i or Y_i

$$ext{MSE}(\hat{ heta}) = rac{1}{N} \sum_{i=1}^N \int_0^T (\hat{ heta}_i(t) - heta_i(t))^2 dt$$

	Concurrent	Historical	Historical ($\sim Z$)						
	Concurrent	(∼ <i>M</i>)	$\delta = 2$	$\delta = 4$	$\delta = 6$	$\delta=10$	$\delta=20$	$\delta = 30$	$\delta = \infty$
М	353.460		352.645	352.244	351.988	351.652	351.179	351.272	357.396
		$\delta = 2$	212.331	212.308	211.960	212.333	212.378	212.130	212.343
		$\delta = 4$	211.324	211.227	211.062	211.064	211.124	211.070	211.57
Υ	220.203	$\delta = 6$	211.883	211.663	211.541	211.546	211.592	211.575	212.11
		$\delta=10$	214.277	214.035	213.909	213.953	213.989	213.971	214.51
		$\delta=20$	218.383	218.098	217.878	217.928	218.312	218.247	218.76
		$\delta = 30$	221.183	220.915	220.666	220.685	221.041	221.266	221.72
		$\delta = \infty$	295.291	294.938	294.904	294.695	294.820	294.742	301.38

Mediator: preSMA-post (MNI: (-4, -8, 60))

• STOP trial: $\delta_{MZ}=20$, $\delta_{YZ}=6$, $\delta_{YM}=4$

Mediator: preSMA-ant (MNI: (-4, 36, 56))

• STOP trial: $\delta_{MZ}=8$, $\delta_{YZ}=30$, $\delta_{YM}=6$

Mediator: preSMA-post (MNI: (-4, -8, 60))

• GO trial: $\delta_{MZ}=20$, $\delta_{YZ}=4$, $\delta_{YM}=4$

Mediator: preSMA-ant (MNI: (-4, 36, 56))

• GO trial: $\delta_{MZ}=20$, $\delta_{YZ}=4$, $\delta_{YM}=6$

Discussion

- Functional mediation analysis: dynamic effective connectivity
- Limitation and future direction
 - application limitation
 - unmeasured confounding, sensitivity analysis
 - · covariates: scalar and functional
 - different HRF for different brain regions, i.e., $\{Z(t)\}_t$ different
 - dense/sparse functional data
- R package cfma available

Thank you!