Dynamic Programming

Subhashis Majumder

Prof. & HoD, CSE; Dean UG

Main facets of Dynamic Programming (DP)

- Has similarity with Divide and Conquer (D & C)
- D & C partitions problems into independent subproblems, solves them recursively, then combines the solutions
- DP is applicable when the sub-problems are dependent.
- DP will solve every subsubproblem only once and will save its answer in a table
- DP is typically applied to optimization problems

The 4 Steps of DP

- Characterize the structure of an optimal solution
- Recursively define the value of an optimal solution
- Compute the value of an optimal solution in a bottom-up fashion
- Construct an optimal solution from already computed information

All pair Shortest Paths

- G = (V, E) is a weighted directed graph with weight function w: $E \rightarrow R$.
- Want to output a table so that the entry in u's row and v's column will be the weight of a shortest path from u to v.
- If we use Dijkstra's algorithm, and if min-priority queue is implemented
 - -i) as array, then $O(V^3 + VE) = O(V^3)$
 - ii) as binary heap O(VE lg V) (improvement for sparse graph)
 - iii) Fibonacci heap O(V²lg V + VE)

Other alternatives

- If we use Bellman Ford algorithm then advantage is that –ve weight cycles can now be present – for dense graphs O(V² E) = O(V⁴).
- 3 algortihms for APSP -
- i) Matrix multiplication algorithm
- ii) Floyd Warshal algorithm
- iii) Johnson's algo for sparse graphs
- First 2 algorithms use adjacency matrices.

Starting Basics

- Assume vertices are numbered 1, 2,..., n = |V|, so that input is a n x n matrix W representing the edge-weights of an n-vertex directed graph G = (V, E), W = (w_{ij})
- $w_{ij} = 0$ if i = j
 - $= \infty$ if i \neq j, (i, j) does not belong to E
 - = the weight of the directed edge (i, j), if i ≠ j and (i, j) belongs to E

Some more trivia

- Assume –ve weight edges are allowed, but no
 –ve weight cycles are allowed
- Output is an n x n matrix D = (d_{ij}) , where at termination the matrix becomes $d_{ij} = \delta(i, j)$
- Also will compute predecessor matrix $\pi = (\pi_{ij})$, where π_{ij} = nil if either i = j, or there is no path from i to j, otherwise it is the predecessor of j in some shortest path from i

Predecessor Subgraphs

- The subgraph induced by the ith row of the π matrix is the shortest paths tree with root i
- For each vertex i belonging to V, we define the predecessor subgraph of G for i (root) as –
- $G_{\pi,i} = (V_{\pi,i}, E_{\pi,i})$ where
- $V_{\pi,i} = \{j \text{ belongs to } V : \pi_{ij} \neq \text{nil} \} \cup \{i\} \text{ and } i\}$
- $E_{\pi,i} = \{(\pi_{ij}, j) : j \text{ belongs to } V_{\pi,i} \{i\}\}$
- $G_{\pi,i}$ gives a shortest paths tree with i as root

Procedure: PrintAllPairShortestPaths(π , i, j)

```
\begin{split} &\text{if i = j} \\ &\text{then print I} \\ &\text{else if } \pi_{ij} = \text{nil} \\ &\text{then print "no path from i to j"} \\ &\text{else PrintAllPairShortestPaths}(\pi, i, \pi_{ij}) \\ &\text{print j} \end{split}
```

- Dynamic Programming algo based on Matrix Multiplication takes O(V³ logV) time
- However Floyd-Warshal algo takes O(V³) time

Floyd-Warshal Algorithm

- Assumption No negative cycles are present
- Structure of a Shortest Path –
- Intermediate vertex of a simple path $p = \langle v_1, v_2, ...v_l \rangle$ is any vertex p other than v_1 or v_l , i.e., any vertex from the set $\langle v_2, v_3, ...v_{l-1} \rangle$
- Let V = {1, 2,, n}, consider {1, 2, ..., k}, a subset of V.
- For any pair i, j ∈ V, consider paths from i to j where intermediate vertices are drawn from {1, 2, ..., k} and let p be a minimum weight simple i->j path from among them

F-W algo contd.

- Floyd Warshal algo exploits whether vertex k is present or not as an intermediate vertex of p.
- If k is not an intermediate vertex of p, then a shortest path from i to j with all intermediate vertices in {1, 2, ..., k 1} is also a shortest path with intermediate vertices in the set {1, 2, ..., k}
- Otherwise if k is an intermediate vertex of path p, then we break down p into 2 subpaths p1 from i
 k and p2 from k
 j where p1 and p2 are paths with all intermediate vertices from {1, 2, ..., k − 1}

- Let d_{ij} (k) = shortest path distance from i to j with all intermediate vertices in the set {1, 2, ..., k},
- When k = 0, there is no intermediate vertices at all
- Hence $d_{ij}^{(0)} = w_{ij}$ (such a path has at most one edge)
- Recursive solution to all-pair-shortest-path-problem
- $d_{ij}^{(k)} = w_{ij}^{(k)}$ if k = 0
- $\min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$
- The matrix D (n) = d_{ij} (n) = δ (i, j) for all i, j ϵ V

Computing Shortest Path Bottom-up

```
Floyd-Warshal(W)
n <- rows[W]
D^{(0)} < -W
for k <- 1 to n
do for i <- 1 to n
     do for j < -1 to n
         do d_{ii}^{(k)} = \min(d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)})
return D (n)
```

Complexity – O(n³)

Constructing a Shortest Path

- Construct a matrix Π while computing D, like $\pi^{(0)}$, $\pi^{(1)}$, ..., $\pi^{(n)} = \Pi$, where
- $\pi_{ij}^{(k)}$ is defined as predecessor of vertex j on the shortest path from i to j with all intermediate vertices in the set $\{1, 2, ..., k\}$
- $\pi_{ij}^{(0)}$ = nil if i = j or w_{ij} = ∞ = i if i \neq j and w_{ij} < ∞
- Now, for k ≥ 1, if we choose a path going through k
 while going from i to j where k ≠ j, choose the
 predecessor of j in path from k to j with vertices from
 {1,2, ..., k -1}

Final Predecessor Expression

•
$$\pi_{ij}^{(k)} = \pi_{ij}^{(k-1)} \text{ if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

= $\pi_{kj}^{(k-1)} \text{ if } d_{ij}^{(k-1)} \ge d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$

- Transitive Closure of G is called G* = (V, E*)
 where E* = {(i, j): there is a path p from i to j in G}
- We can give a O(n³) algorithm by assigning weight = 1 to each edge of G and run Floyd Warshal algorithm.