Aufgabe 1 (Einstimmung). Seien $p(X) = X^{500} - 2X^{301} + 1$ und $q(X) = X^2 - 1$ in $\mathbb{Q}[X]$. Man berechne den Rest von p(X) bei Division mit q(X).

Lösung. Dazu betrachten wir den Faktorring $\mathbb{Q}[X]/(q)$, und bemerken, daß zwei Elemente $f_1, f_2 \in \mathbb{Q}[X]$ modulo (q) gleich sind, wenn sie bei Division durch q den gleichen Rest haben, bzw. wenn $f_1 - f_2$ durch q teilbar ist. Insbesondere ist jedes Polynom $f \in \mathbb{Q}[X]$ modulo (q) gleich seinem Rest bei Division durch q. Sei nun r der Rest von p bei Division durch q, dh. p = sq + r in $\mathbb{Q}[X]$ mit $\deg(r) < \deg(q) = 2$. Dann gilt

$$r + (q) = p + (q).$$

Wir finden r, indem wir einen bezüglich des Grads minimalen Repräsentanten der Klasse p+(q) berechnen. Dafür bemerken wir noch, dass gilt $x^2+(q)=1+(q)$.

$$\begin{array}{lll} p+(q) & = & X^{500}-2X^{301}+1+(q) \\ & = & (X^{500}+(q))-(2+(q))\cdot(X^{301}+q)+(1+(q)) \\ & = & ((X^2)^{250}+(q))-(2+(q))\cdot((X^2)^{150}+q)(X+(q))+(1+(q)) \\ & = & (1^{250}+(q))-(2+(q))\cdot(1^{150}+q)(X+(q))+(1+(q)) \\ & = & (1+(q))-(2+(q))\cdot(1+q)(X+(q))+(1+(q)) \\ & = & (1+(q))-(2X+(q))+(1+(q))=2-2X+(q) \end{array}$$

Also ist die Differenz r - (2 - 2X) durch q teilbar. Da aber beide Grad < 2 haben, gilt r - (2 - 2X) = 0 und r = 2 - 2X.

Aufgabe 2 (Frühjahr 2014). Es seien K ein Körper und K[X] der Polynomring in einer Unbekannten. Sei $n, m \in \mathbb{N}_0$. Zeigen Sie:

Ist m > 1, dann ist $X^r - 1$ der Rest bei Division von $X^n - 1$ durch $X^m - 1$, wobei r der Rest bei Division von n durch m ist.

Lösung. Sei n=qm+r im euklidischen Ring $\mathbb Z$ mit r< m. Und sei $X^n-1=g(X^m-1)+h$ mit $\deg(h)<\deg(X^m-1)=m$. Diesmal arbeiten wir im Restklassenring $K[X]/(X^m-1)$. Es gilt wieder $X^n-1\equiv h$ mod (X^m-1) und $X^m\equiv 1\mod(X^m-1)$. Damit berechnen wir einen minimalen Repräsentanten:

$$X^{n} - 1 = X^{mq+r} - 1$$

= $(X^{m})^{q}X^{r} - 1$
= $X^{r} - 1 \mod (X^{m} - 1)$

Es folgt für den Rest h, daß $h \equiv X^r - 1 \mod (X^m - 1)$, also ist die Differenz $h - (X^r - 1)$ durch $X^m - 1$ teilbar. Aber da sowohl h, als auch $X^r - 1$ Grad kleiner m haben, gilt $h - (X^r - 1) = 0$, also $h = X^r - 1$.

Aufgabe 3 (Herbst 1987). R sei ein kommutativer Ring mit Eins und d eine Derivation von R, das heißt eine Abbildung $d: R \to R$ mit

$$d(x+y) = dx + dy$$
 , $d(x \cdot y) = x \cdot dy + y \cdot dx$ für alle $x, y \in R$.

- (a) Zeigen Sie, daß $\ker(d) := \{x \in R; dx = 0\}$ eine Unterring von R ist, der die Eins enthält.
- (b) Beweisen Sie die Formel $d(x^n) = nx^{n-1}dx$ für $x \in R$, $n \in \mathbb{Z}$, n > 0.
- (c) Zeigen Sie daß der Ring $\mathbb{Z}[X]/(X^2)$ eine nicht-triviale Derivation besitzt.

Lösung. Zu (a): Da $d(1) = d(1 \cdot 1) = 1d(1) + 1d(1)$, folgt 0 = d(1), also $1 \in \ker(d)$. Sei $x, y \in \ker(d)$. Dann ist d(x - y) = d(x) - d(y) = 0 - 0 = 0 und d(xy) = xd(y) + yd(x) = 0 + 0 = 0, also $x - y, xy \in \ker(d)$, und $\ker(d)$ ist ein Unterring.

Zu (b): Mit Induktion nach n. Klar für n=1. Angenommen wir wissen $d(x^{n-1})=(n-1)x^{n-2}dx$. Schreibe

$$d(x^n) = d(x^{n-1}x) = x^{n-1}d(x) + xd(x^{n-1}) = x^{n-1}d(x) + x(n-1)x^{n-2}dx = nx^{n-1}dx.$$

Zu (c): Wir definieren zunächst eine nicht-triviale Derivation von $\mathbb{Z}[X]$ und zeigen, daß diese eine nicht-triviale Derivation von $\mathbb{Z}[X]/(X^2)$ induziert. (Wir überlegen uns zunächst folgendes:

Für eine solche Derivation gilt, daß d(n)=0, für alle $n\in\mathbb{Z}$, da nach (a) $1\in\ker(d)$, und $d(n)=d(1+\ldots+1)=d(1)+\ldots+d(1)$. Da $\mathbb{Z}[X]$ eine \mathbb{Z} -Algebra ist, genügt es eine Derivation auf X zu definieren: für die Monome X^n kann man $d(X^n)$ dann mit dem Resultat aus (b) berechnen. Damit kann man dann für beliebige Polynome $\sum_{i=0}^n a_i X^i$ den Wert $d(\sum_{i=0}^n a_i X^i)$ mithilfe der "Summenformel" bestimmen. Damit dies dann eine Derivation auf $\mathbb{Z}[X]/(X^2)$ induziert, sollten Elemente aus dem Ideal (X^2) auf Elemente in (X^2) selbst geschickt werden.)

Betrachte nun die Derivation definiert durch

$$X \mapsto d(X) = X.$$

Dann ist nach der "Produktformel" (oder genauer Aufgabe (b))

$$d(X^n) = nX^{n-1}d(X) = nX^n.$$

Mit der Summenformel erhalten wir für $f = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$

$$d(f) = \sum_{i=0}^{n} i a_i X^i.$$

Insbesondere ist das Bild des Ideals (X^2) unter d wieder in dem Ideal selbst enthalten. Also induziert $d: \mathbb{Z}[X] \to \mathbb{Z}[X]$ eine Derivation auf $\mathbb{Z}[X]/(X^2)$ und das Diagramm

$$\mathbb{Z}[X] \xrightarrow{d} \mathbb{Z}[X]$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$

$$\mathbb{Z}[X]/(X^2) \xrightarrow{d} \mathbb{Z}[X]/(X^2)$$

wobei π die knonische Projektion ist, kommutiert.

Aufgabe 4 (Frühjahr 1972). Sei $P(x) \in \mathbb{Z}[x]$ ein Polynom mit der Eigenschaf, daß es ganze Zahlen a, b gibt mit P(a) - P(b) = q, wobei q eine Primzahl ist. Zeigen Sie, daß a - b nur einen der Werte -q, -1, 1, q annehmen kann.

Lösung. Zunächst bemerken wir, daß $a \neq b$ sein muß. Sei $P(x) = a_0 + a_1 x^1 + \ldots + a_n x^n$. Nach Voraussetzung ist

$$q = P(a) - P(b) = (a_0 + \dots + a_n a^n) - (a_0 + \dots + a_n b^n) = a_1(a - b) + a_2(a^2 - b^2) + \dots + a_n(a^n - b^n).$$

Nun wissen wir, daß für $i \ge 1$

$$(a^{i} - b^{i}) = (a - b)(a^{i-1} + a^{i-2}b + \dots + ab^{n-2} + b^{n-1}).$$

Also teilt (a-b) die rechte Seite der obigen Gleichung. Damit ist (a-b) ein Teiler von q. Da aber q eine Primzahl ist, muß $(a-b) \in \{q, -q, 1, -1\}$ liegen.

Aufgabe 5 (Herbst 1981). Lösen Sie folgende Gleichungen für Polynome $P, Q \in \mathbb{R}[X]$.

- (a) $P(X^2) = (X^2 + 1)P(X)$.
- (b) Q(Q(X)) = Q(X).

 $L\ddot{o}sung$. **Zu** (a): Das Nullpolynom ist offensichtlich eine Lösung. Weiterhin gilt für eine Lösung P

$$2\deg(P) = \deg(P) + 2.$$

Also ist P vom Grad 2. Wir schreiben $P(X) = aX^2 + bX + c$. Also

$$P(X^{2}) = aX^{4} + bX^{2} + c$$
$$(X^{2} + 1)P(X) = aX^{4} + bX^{3} + (a+c)X^{2} + bX + c$$

Indem wir diese gleichsetzen schließen wir, daß b=0, und weiter a+c=0. Also sind die Lösungen von der Form

$$P(X) = a(X^2 - 1)$$

für $a \in \mathbb{R}$.

Zu (b): Ist Q eine nichttriviale Lösung (also $\neq 0$), so ist $\deg(Q \circ Q) = \deg(Q)^2$, damit erhalten wir die Gleichung

$$\deg(Q)^2 = \deg(Q).$$

Damit $\deg(Q) = 1$ oder $\deg(Q) = 0$ (also konstant $\neq 0$). Wir schreiben Q(X) = aX + b, also

$$Q \circ Q(X) = a(aX + b) + b = a^2X + (ab + b)$$
$$Q(X) = aX + b$$

Also $a^2=a$, das heißt a=1 oder a=0, und ab=0. Ist a=1, so ist b=0. Ist a=0, so kann $b\in\mathbb{R}$ beliebig sein. Also sind die Lösungen der Gleichung die konstanten Polynome und das Polynom Q(X)=X.

Aufgabe 6 (Frühjahr 1993). Für $P \in \mathbb{R}[X]$ und $a, b \in \mathbb{R}$, $a \neq b$, sei 1 der Rest bei Division von P durch (X - a) und -1 der Rest bei Division von P durch (X - b). Was ist der Rest bei Division von P durch (X - a)(X - b)?

Lösung. Wir wissen, daß $P(X) = (X - a)Q_1(X) + 1$, also P(a) = 1. Ebenso $P(X) = (X - b)Q_2(X) - 1$, also P(b) = -1. Wir schreiben für die Division von P(X) durch (X - a)(X - b)

$$P(X) = (X - a)(X - b)Q(X) + R(X)$$

wobei $\deg(R) < 2$. Schreibe $R(X) = \alpha x + \beta$. Wir setzten in die obige Gleichung a und b ein, und erhalten:

$$\alpha a + \beta = 1$$
$$\alpha b + \beta = -1$$

Die Läung dieses GLeichungssystmes ist

$$\alpha = \frac{2}{a - b}$$
$$\beta = \frac{-a - b}{a - b}$$

Also ist der Rest bei Division von P durch (X - a)(X - b) gleich

$$R(X) = \frac{2}{a-b}X + \frac{-a-b}{a-b}.$$

Aufgabe 7 (Frühjahr 1991). Sei K ein Körper und $A,B,P\in K[X],P$ nicht konstant. Angenommen $A\circ P\big|B\circ P.$ Man zeige $A\big|B.$

Lösung. Es gibt $Q, R \in K[X]$ mit B = AQ + R und $\deg(R) < \deg(A)$. Komposition mit P ergibt die Gleichung

$$B \circ P = (A \circ P)(Q \circ P) + R \circ P.$$

Das Polynom $A \circ P \in K[X]$ hat den Grad $\deg(A \circ P) = \deg(A) \cdot \deg(P)$. Ebenso hat das Polynom $R \circ P$ den Grad $\deg(R \circ P) = \deg(R) \cdot \deg(P)$. Also ist $\deg(R \circ P) < \deg(A \circ P)$. Nach der Einduetigkeit der Division mit Rest, angewendet auf die Division von $B \circ P$ durch $(A \circ P)$, muss dann aber $R \circ P = 0$ sein. Dies ist aber nur möglich, wenn bereits R = 0 ist. Also B = AQ und $A \mid B$ wie gewünscht.