Question Number	Scheme	Marks
3 (a)	$\frac{(5x+3)}{(11x-3)} = \frac{(3x-3)}{(5x+3)} \text{ or } (5x+3)^2 = (3x-3)(11x-3)$	M1A1
	$25x^2 + 30x + 9 = 33x^2 - 42x + 9$	
	$8x^2 - 72x (= 0)$ $x = 0, x = 9$	dM1A1 (4)
	Spec case: Give M1A0M0A0 (ie B1) if $x = 0$ seen w/o working	
(b)	$x = 0$ $r = \frac{3}{-3} = -1$	B1
	$x = 9 r = \frac{48}{96} = \frac{1}{2}$	M1A1cso (3)
(c)	x = 9 $a = 96$	
	$S_{\infty} = \frac{96}{1 - \frac{1}{2}}, = 192$	M1Aft, A1cao (3)
	2	[10]
(a)M1	Form an equation connecting the three given terms, must either be equating fractions or	
	multiplying in pairs.	
A1	Correct equation, fractions can be either way up	
dM1	Solve the resulting quadratic to $x =$	
A1 (b)	Both c orrect values of x obtained	
B1	r = -1 seen	
M1	Use a non-zero value of x obtained in (a) and obtain the corresponding of r . Must use the	
	same value of x in both substitutions.	
A1cso	$r = \frac{1}{2}$	
(c)M1	Use the formula for the sum to infinity of a convergent geometric series with $ r < 1$ and a	
	value of a found using the corresponding value of x .	
	Acceptable formulae $S_{\infty} = \frac{a}{1-r}, = \frac{a(1-r^{\infty})}{1-r}, = \frac{a(r^{\infty}-1)}{r-1}$	
A1ft	"Correct" numbers in the formula, ft their x and r and $r^{\infty} = 0$	
A1cao	192	