A Ouick Recap

CMPE 322/327 - Theory of Computation Week 6: Derivatives & Kleene Algebra & Equivalence of Regular Expressions

Burak Fkici

March 28 - April 1, 2022

Kleene Algebra

A Ouick Recap

•000000

- 1 A Quick Recap

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_{\mathsf{M}} y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_M y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

Lemma

• \equiv_M is right congruent: $\forall x, y \in \Sigma^*$ $x \equiv_M y \implies \forall a \in \Sigma$ $xa \equiv_M ya$

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_M y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

Lemma

• \equiv_M is right congruent: $\forall x, y \in \Sigma^*$ $x \equiv_M y \implies \forall a \in \Sigma$ $xa \equiv_M ya$

• \equiv_M refines L(M): $\forall x, y \in \Sigma^*$ $x \equiv_M y \implies$ either $x, y \in L(M)$ or $x, y \notin L(M)$

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$X \equiv_M y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

Lemma

• \equiv_M is right congruent: $\forall x, y \in \Sigma^*$ $x \equiv_M y \implies \forall a \in \Sigma$ $xa \equiv_M ya$

• \equiv_M refines L(M): $\forall x, y \in \Sigma^*$ $x \equiv_M y$ \Longrightarrow either $x, y \in L(M)$ or $x, y \notin L(M)$

• \equiv_M is of finite index: \equiv_M has finitely many equivalence classes

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_M y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

Lemma

• \equiv_M is right congruent: $\forall x, y \in \Sigma^*$ $x \equiv_M y \implies \forall a \in \Sigma$ $xa \equiv_M ya$

• \equiv_M refines L(M): $\forall x, y \in \Sigma^*$ $x \equiv_M y$ \Longrightarrow either $x, y \in L(M)$ or $x, y \notin L(M)$

 \blacksquare_M is of finite index: \equiv_M has finitely many equivalence classes

Definition

Myhill-Nerode relation for $L \subseteq \Sigma^*$ is right congruent equivalence relation of finite index on Σ^* that refines L

A Quick Recap

0000000

A Quick Recap

0000000

A Ouick Recap

0000000

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

•
$$Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$$

A Ouick Recap

0000000

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

• $Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$

• $\delta([x]_{\equiv}, a) := [xa]_{\equiv}$ well-defined: $x \equiv y \implies xa \equiv ya$

A Ouick Recap

0000000

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

•
$$Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$$

•
$$\delta([x]_{\equiv}, a) := [xa]_{\equiv}$$
 well-defined: $x \equiv y \implies xa \equiv ya$

$$\bullet \ \ s:=[\varepsilon]_{\equiv}$$

A Ouick Recap

0000000

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

• $Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$

• $\delta([x]_{\equiv}, a) := [xa]_{\equiv}$ well-defined: $x \equiv y \implies xa \equiv ya$

 $\bullet \ \ s:=[\varepsilon]_{\equiv}$

 $\bullet \ \ F:=\{[x]_{\equiv}\mid x\in L\}$

A Ouick Recap

0000000

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

• $Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$

• $\delta([x]_{\equiv}, a) := [xa]_{\equiv}$ well-defined: $x \equiv y \implies xa \equiv ya$

• $s := [\varepsilon]_{\equiv}$

• $F := \{ [x]_{\equiv} \mid x \in L \}$

Lemma

 $\widehat{\delta}([x]_{\equiv}, y) = [xy]_{\equiv} \text{ for all } y \in \Sigma^*$

for all $x \in \Sigma^*$

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

• $Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$

• $\delta([x]_{\equiv}, a) := [xa]_{\equiv}$ well-defined: $x \equiv y \implies xa \equiv ya$

• $s := [\varepsilon]_{\equiv}$

• $F := \{ [x]_{\equiv} \mid x \in L \}$

Lemma

 $\widehat{\delta}([x]_{\equiv}, y) = [xy]_{\equiv} \text{ for all } y \in \Sigma^*$

for all $x \in \Sigma^*$

A Ouick Recap

0000000

for any set $L \subseteq \Sigma^*$, equivalence relation \equiv_L on Σ^* is defined as follows:

$$x \equiv_L y \iff \forall z \in \Sigma^*, \ (xz \in L \iff yz \in L)$$

Kleene Algebra

A Ouick Recap

0000000

for any set $L \subseteq \Sigma^*$, equivalence relation \equiv_L on Σ^* is defined as follows:

$$x \equiv_L y \iff \forall z \in \Sigma^*, (xz \in L \iff yz \in L)$$

Kleene Algebra

for any set $L \subseteq \Sigma^*$, \equiv_L is coarsest right congruent refinement of L:

for any set $L \subseteq \Sigma^*$, equivalence relation \equiv_L on Σ^* is defined as follows:

$$x \equiv_L y \iff \forall z \in \Sigma^*, (xz \in L \iff yz \in L)$$

Lemma

for any set $L \subseteq \Sigma^*$, \equiv_L is coarsest right congruent refinement of L:

if \sim is right congruent equivalence relation refining L then

$$\forall x,y \in \Sigma^*, \ x \sim y \implies x \equiv_L y$$

A Ouick Recap

0000000

for any set $L \subseteq \Sigma^*$, equivalence relation \equiv_L on Σ^* is defined as follows:

$$x \equiv_L y \iff \forall z \in \Sigma^*, (xz \in L \iff yz \in L)$$

Lemma

for any set $L \subseteq \Sigma^*$, \equiv_L is coarsest right congruent refinement of L:

if \sim is right congruent equivalence relation refining L then

$$\forall x, y \in \Sigma^*, \ x \sim y \implies x \equiv_L y$$

 \equiv_L has fewest equivalence classes

Theorem (Myhill-Nerode)

following statements are equivalent for any set $L \subseteq \Sigma^*$:

• L is regular

A Ouick Recap

000000

• L admits Myhill-Nerode relation

Theorem (Myhill-Nerode)

following statements are equivalent for any set $L \subseteq \Sigma^*$:

• L is regular

A Ouick Recap

000000

- L admits Myhill-Nerode relation
- \equiv_L is of finite index

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- L is regular
- L admits Myhill-Nerode relation
- ≡ is of finite index

A Ouick Recap

000000

for every regular set L, $M_{(\equiv_l)}$ is minimum-state DFA for L

Theorem (Myhill-Nerode)

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- L is regular
- L admits Myhill-Nerode relation
- ≡ is of finite index

A Ouick Recap

000000

for every regular set L, $M_{(\equiv_I)}$ is minimum-state DFA for L

Theorem

for every DFA M, $M/\approx \approx M_{\equiv}$,

Outline

- 1 A Quick Recap
- 2 Derivatives
- 3 Kleene Algebra
- 4 Equivalence of Regular Expression

$$x \in \Sigma^*$$
 $A \subseteq \Sigma^*$

A Quick Recap

• x-derivative of A: $A_x := \{y \mid xy \in A\}$

$$x \in \Sigma^*$$
 $A \subseteq \Sigma^*$ $a \in \Sigma$ regular expression α over Σ

- x-derivative of A: $A_x := \{y \mid xy \in A\}$
- a-derivative of α is regular expression defined inductively as follows:

Equivalence of Regular Expressions

 $A \subseteq \Sigma^*$ $x \in \Sigma^*$ $a \in \Sigma$ regular expression α over Σ

Definitions

• x-derivative of A: $A_x := \{y \mid xy \in A\}$

• a-derivative of α is regular expression defined inductively as follows:

$$\emptyset \qquad \quad \text{if } \alpha = \emptyset$$

$$x \in \Sigma^*$$
 $A \subseteq \Sigma^*$ $a \in \Sigma$ regular expression α over Σ

- x-derivative of A: $A_x := \{y \mid xy \in A\}$
- a-derivative of α is regular expression defined inductively as follows:

$$lpha_a := \left\{ egin{aligned} arnothing & arnothing &$$

$$x \in \Sigma^*$$
 $A \subseteq \Sigma^*$ $a \in \Sigma$ regular expression α over Σ

- x-derivative of A: $A_x := \{y \mid xy \in A\}$
- a-derivative of α is regular expression defined inductively as follows:

$$\alpha_a := \left\{ egin{aligned} \varnothing & & \text{if } \alpha = \varnothing \text{ or } \alpha = \varepsilon \text{ or } \alpha = b \text{ with } b
eq a \end{aligned}
ight.$$

$$x \in \Sigma^*$$
 $A \subseteq \Sigma^*$ $a \in \Sigma$ regular expression α over Σ

- x-derivative of A: $A_x := \{y \mid xy \in A\}$
- a-derivative of α is regular expression defined inductively as follows:

$$\alpha_a := \begin{cases} \emptyset & \text{if } \alpha = \emptyset \text{ or } \alpha = \varepsilon \text{ or } \alpha = b \text{ with } b \neq a \\ \varepsilon & \text{if } \alpha = a \end{cases}$$

$$x \in \Sigma^*$$
 $A \subseteq \Sigma^*$ $a \in \Sigma$ regular expression α over Σ

- x-derivative of A: $A_x := \{y \mid xy \in A\}$
- a-derivative of α is regular expression defined inductively as follows:

$$\alpha_{a} := \begin{cases} \emptyset & \text{if } \alpha = \emptyset \text{ or } \alpha = \varepsilon \text{ or } \alpha = b \text{ with } b \neq a \\ \varepsilon & \text{if } \alpha = a \\ \beta_{a} + \gamma_{a} & \text{if } \alpha = \beta + \gamma \end{cases}$$

$$x \in \Sigma^*$$
 $A \subseteq \Sigma^*$ $a \in \Sigma$ regular expression α over Σ

- x-derivative of A: $A_x := \{ v \mid xv \in A \}$
- a-derivative of α is regular expression defined inductively as follows:

$$\alpha_{a} := \begin{cases} \varnothing & \text{if } \alpha = \varnothing \text{ or } \alpha = \varepsilon \text{ or } \alpha = b \text{ with } b \neq a \\ \varepsilon & \text{if } \alpha = a \\ \beta_{a} + \gamma_{a} & \text{if } \alpha = \beta + \gamma \\ \beta_{a} \gamma + \gamma_{a} & \text{if } \alpha = \beta \gamma \text{ and } \varepsilon \in L(\beta) \end{cases}$$

$$x \in \Sigma^*$$
 $A \subseteq \Sigma^*$ $a \in \Sigma$ regular expression α over Σ

- x-derivative of A: $A_x := \{ v \mid xv \in A \}$
- a-derivative of α is regular expression defined inductively as follows:

$$\alpha_{a} := \begin{cases} \varnothing & \text{if } \alpha = \varnothing \text{ or } \alpha = \varepsilon \text{ or } \alpha = b \text{ with } b \neq a \\ \varepsilon & \text{if } \alpha = a \\ \beta_{a} + \gamma_{a} & \text{if } \alpha = \beta + \gamma \\ \beta_{a} \gamma + \gamma_{a} & \text{if } \alpha = \beta \gamma \text{ and } \varepsilon \in L(\beta) \\ \beta_{a} \gamma & \text{if } \alpha = \beta \gamma \text{ and } \varepsilon \notin L(\beta) \end{cases}$$

$$x \in \Sigma^*$$
 $A \subseteq \Sigma^*$ $a \in \Sigma$ regular expression α over Σ

- x-derivative of A: $A_x := \{ v \mid xv \in A \}$
- a-derivative of α is regular expression defined inductively as follows:

$$\alpha_a := \begin{cases} \emptyset & \text{if } \alpha = \emptyset \text{ or } \alpha = \varepsilon \text{ or } \alpha = b \text{ with } b \neq a \\ \varepsilon & \text{if } \alpha = a \\ \beta_a + \gamma_a & \text{if } \alpha = \beta + \gamma \\ \beta_a \gamma + \gamma_a & \text{if } \alpha = \beta \gamma \text{ and } \varepsilon \in L(\beta) \\ \beta_a \gamma & \text{if } \alpha = \beta \gamma \text{ and } \varepsilon \notin L(\beta) \\ \beta_a \beta^* & \text{if } \alpha = \beta^* \end{cases}$$

•
$$\alpha = (a + b)^*$$

$$\alpha_a = (a+b)_a(a+b)^*$$

$$\alpha_b = (a+b)_b(a+b)^*$$

•
$$\alpha = (a + b)^*$$

$$\alpha_a = (a+b)_a(a+b)^*$$

= $(a_a+b_a)(a+b)^*$

$$\alpha_b = (a+b)_b(a+b)^*
= (a_b+b_b)(a+b)^*$$

•
$$\alpha = (a + b)^*$$

$$\alpha_{a} = (a+b)_{a}(a+b)^{*}$$

$$= (a_{a}+b_{a})(a+b)^{*}$$

$$= (\varepsilon+\varnothing)(a+b)^{*}$$

$$\alpha_b = (a+b)_b(a+b)^*$$

$$= (a_b+b_b)(a+b)^*$$

$$= (\varnothing+\varepsilon)(a+b)^*$$

•
$$\alpha = (a + b)^*$$

$$\alpha_{a} = (a+b)_{a}(a+b)^{*}$$

$$= (a_{a}+b_{a})(a+b)^{*}$$

$$= (\varepsilon+\varnothing)(a+b)^{*}$$

$$\equiv (a+b)^{*}$$

$$\alpha_b = (a+b)_b(a+b)^*$$

$$= (a_b+b_b)(a+b)^*$$

$$= (\mathcal{O}+\varepsilon)(a+b)^*$$

$$\equiv (a+b)^*$$

•
$$\alpha = (a + b)^*$$

$$\alpha_a = (a+b)_a(a+b)^*$$

$$= (a_a+b_a)(a+b)^*$$

$$= (\varepsilon+\emptyset)(a+b)^*$$

$$\equiv (a+b)^*$$

$$\alpha_b = (a+b)_b(a+b)^*$$

$$= (a_b+b_b)(a+b)^*$$

$$= (\emptyset+\varepsilon)(a+b)^*$$

$$\equiv (a+b)^*$$

•
$$\beta = (a^*b)^*a^*$$

$$\beta_a = ((a^*b)^*)_a a^* + (a^*)_a$$

$$\beta_b = ((a^*b)^*)_b a^* + (a^*)_b$$

•
$$\alpha = (a + b)^*$$

$$\alpha_a = (a+b)_a(a+b)^*$$

$$= (a_a+b_a)(a+b)^*$$

$$= (\varepsilon+\emptyset)(a+b)^*$$

$$\equiv (a+b)^*$$

$$\alpha_b = (a+b)_b(a+b)^*$$

$$= (a_b+b_b)(a+b)^*$$

$$= (\emptyset+\varepsilon)(a+b)^*$$

$$\equiv (a+b)^*$$

•
$$\beta = (a^*b)^*a^*$$

$$\beta_a = ((a^*b)^*)_a a^* + (a^*)_a
= (a^*b)_a (a^*b)^* a^* + a_a a^*$$

$$\beta_b = ((a^*b)^*)_b a^* + (a^*)_b$$

$$= (a^*b)_b (a^*b)^* a^* + a_b a^*$$

•
$$\alpha = (a + b)^*$$

$$\alpha_a = (a+b)_a(a+b)^*$$

$$= (a_a+b_a)(a+b)^*$$

$$= (\varepsilon+\emptyset)(a+b)^*$$

$$\equiv (a+b)^*$$

$$\alpha_b = (a+b)_b(a+b)^*$$

$$= (a_b+b_b)(a+b)^*$$

$$= (\emptyset+\varepsilon)(a+b)^*$$

$$\equiv (a+b)^*$$

•
$$\beta = (a^*b)^*a^*$$

$$\beta_{a} = ((a^{*}b)^{*})_{a}a^{*} + (a^{*})_{a}$$

$$= (a^{*}b)_{a}(a^{*}b)^{*}a^{*} + a_{a}a^{*}$$

$$= ((a^{*})_{a}b + b_{a})(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$$

$$\beta_b = ((a^*b)^*)_b a^* + (a^*)_b
= (a^*b)_b (a^*b)^* a^* + a_b a^*
= ((a^*)_b b + b_b) (a^*b)^* a^* + \emptyset a^*$$

•
$$\alpha = (a + b)^*$$

$$\alpha_a = (a+b)_a(a+b)^*$$

$$= (a_a+b_a)(a+b)^*$$

$$= (\varepsilon+\emptyset)(a+b)^*$$

$$\equiv (a+b)^*$$

$$\alpha_b = (a+b)_b(a+b)^*$$

$$= (a_b+b_b)(a+b)^*$$

$$= (\emptyset+\varepsilon)(a+b)^*$$

$$\equiv (a+b)^*$$

•
$$\beta = (a^*b)^*a^*$$

$$\beta_{a} = ((a^{*}b)^{*})_{a}a^{*} + (a^{*})_{a}$$

$$= (a^{*}b)_{a}(a^{*}b)^{*}a^{*} + a_{a}a^{*}$$

$$= ((a^{*})_{a}b + b_{a})(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$$

$$= ((a_{a})a^{*}b + \emptyset)(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$$

$$\beta_b = ((a^*b)^*)_b a^* + (a^*)_b
= (a^*b)_b (a^*b)^* a^* + a_b a^*
= ((a^*)_b b + b_b) (a^*b)^* a^* + \emptyset a^*
= ((a_b)_a^*b + \varepsilon) (a^*b)^* a^* + \emptyset a^*$$

•
$$\alpha = (a + b)^*$$

$$\alpha_{a} = (a+b)_{a}(a+b)^{*}$$

$$= (a_{a}+b_{a})(a+b)^{*}$$

$$= (\varepsilon+\emptyset)(a+b)^{*}$$

$$\equiv (a+b)^{*}$$

$$\alpha_b = (a+b)_b(a+b)^*$$

$$= (a_b+b_b)(a+b)^*$$

$$= (\emptyset+\varepsilon)(a+b)^*$$

$$\equiv (a+b)^*$$

•
$$\beta = (a^*b)^*a^*$$

$$\beta_{a} = ((a^{*}b)^{*})_{a}a^{*} + (a^{*})_{a}$$

$$= (a^{*}b)_{a}(a^{*}b)^{*}a^{*} + a_{a}a^{*}$$

$$= ((a^{*})_{a}b + b_{a})(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$$

$$= ((a_{a})a^{*}b + \emptyset)(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$$

$$= (\varepsilon a^{*}b + \emptyset)(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$$

$$\beta_b = ((a^*b)^*)_b a^* + (a^*)_b$$

$$= (a^*b)_b (a^*b)^* a^* + a_b a^*$$

$$= ((a^*)_b b + b_b) (a^*b)^* a^* + \emptyset a^*$$

$$= ((a_b)a^*b + \varepsilon) (a^*b)^* a^* + \emptyset a^*$$

$$= (\emptyset a^*b + \varepsilon) (a^*b)^* a^* + \emptyset a^*$$

•
$$\alpha = (a + b)^*$$

$$\alpha_a = (a+b)_a(a+b)^*$$

$$= (a_a+b_a)(a+b)^*$$

$$= (\varepsilon+\varnothing)(a+b)^*$$

$$\equiv (a+b)^*$$

$$\alpha_b = (a+b)_b(a+b)^*$$

$$= (a_b+b_b)(a+b)^*$$

$$= (\emptyset+\varepsilon)(a+b)^*$$

$$\equiv (a+b)^*$$

•
$$\beta = (a^*b)^*a^*$$

$$\beta_{a} = ((a^{*}b)^{*})_{a}a^{*} + (a^{*})_{a}$$

$$= (a^{*}b)_{a}(a^{*}b)^{*}a^{*} + a_{a}a^{*}$$

$$= ((a^{*})_{a}b + b_{a})(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$$

$$= ((a_{a})a^{*}b + \emptyset)(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$$

$$= (\varepsilon a^{*}b + \emptyset)(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$$

$$\equiv a^{*}b(a^{*}b)^{*}a^{*} + a^{*}$$

$$\beta_b = ((a^*b)^*)_b a^* + (a^*)_b
= (a^*b)_b (a^*b)^* a^* + a_b a^*
= ((a^*)_b b + b_b) (a^*b)^* a^* + \varnothing a^*
= ((a_b)a^*b + \varepsilon) (a^*b)^* a^* + \varnothing a^*
= (\varnothing a^*b + \varepsilon) (a^*b)^* a^* + \varnothing a^*
\equiv (a^*b)^* a^*$$

•
$$\alpha = (a+b)^*$$

$$\alpha_{\partial} = (a+b)_{\partial}(a+b)^*$$

$$= (a_{\partial} + b_{\partial})(a+b)^*$$

$$= (\varepsilon + \emptyset)(a+b)^*$$

$$\equiv (a+b)^*$$

•
$$\beta = (a^*b)^*a^*$$

$$\beta_{a} = ((a^{*}b)^{*})_{a}a^{*} + (a^{*})_{a}$$

$$= (a^{*}b)_{a}(a^{*}b)^{*}a^{*} + a_{a}a^{*}$$

$$= ((a^{*})_{a}b + b_{a})(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$$

$$= ((a_{a})a^{*}b + \emptyset)(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$$

$$= (\varepsilon a^{*}b + \emptyset)(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$$

$$\equiv a^{*}b(a^{*}b)^{*}a^{*} + a^{*}$$

$$\equiv (a^{*}b)^{*}a^{*}$$

$$\alpha_b = (a+b)_b(a+b)^*$$

$$= (a_b+b_b)(a+b)^*$$

$$= (\varnothing + \varepsilon)(a+b)^*$$

$$\equiv (a+b)^*$$

 $\equiv (a^*b)^*a^*$

Kleene Algebra

$$\beta_b = ((a^*b)^*)_b a^* + (a^*)_b$$

$$= (a^*b)_b (a^*b)^* a^* + a_b a^*$$

$$= ((a^*)_b b + b_b) (a^*b)^* a^* + \emptyset a^*$$

$$= ((a_b)a^*b + \varepsilon) (a^*b)^* a^* + \emptyset a^*$$

$$= (\emptyset a^*b + \varepsilon) (a^*b)^* a^* + \emptyset a^*$$

 $x \in \Sigma^*$

 $A \subseteq \Sigma^*$

 $a \in \Sigma$

regular expression α over Σ

Definitions

- x-derivative of A: $A_x := \{y \mid xy \in A\}$
- a-derivative of α is regular expression defined inductively as follows:

$$\alpha_{\mathbf{a}} := \begin{cases} \emptyset & \text{if } \alpha = \emptyset \text{ or } \alpha = \varepsilon \text{ or } \alpha = b \text{ with } b \neq a \\ \varepsilon & \text{if } \alpha = a \\ \beta_a + \gamma_a & \text{if } \alpha = \beta + \gamma \\ \beta_a \gamma + \gamma_a & \text{if } \alpha = \beta \gamma \text{ and } \varepsilon \in L(\beta) \\ \beta_a \gamma & \text{if } \alpha = \beta \gamma \text{ and } \varepsilon \notin L(\beta) \\ \beta_a \beta^* & \text{if } \alpha = \beta^* \end{cases}$$

Lemma

$$L(\alpha_a) = L(\alpha)_a$$

$\alpha \downarrow \text{ for } \varepsilon \in L(\alpha)$	$\alpha \uparrow$ for $\varepsilon \notin L(\alpha)$

 $\alpha \downarrow$ for $\varepsilon \in L(\alpha)$ $\alpha \uparrow$ for $\varepsilon \notin L(\alpha)$

Ø↑

 $\alpha \downarrow$ for $\varepsilon \in L(\alpha)$ $\alpha \uparrow$ for $\varepsilon \notin L(\alpha)$

- Ø↑
- ε↓

Notatio

A Quick Recap

 $\alpha \downarrow$ for $\varepsilon \in L(\alpha)$ $\alpha \uparrow$ for $\varepsilon \notin L(\alpha)$

- Ø↑
- ε↓
- $a \uparrow$ for all $a \in \Sigma$

A Ouick Recap

 $\alpha \downarrow$ for $\varepsilon \in L(\alpha)$ $\alpha \uparrow$ for $\varepsilon \notin L(\alpha)$

- Ø↑
- εl
- $a \uparrow$ for all $a \in \Sigma$
- $(\alpha + \beta) \downarrow \iff \alpha \downarrow \text{ or } \beta \downarrow$

A Ouick Recap

 $\alpha \downarrow$ for $\varepsilon \in L(\alpha)$ $\alpha \uparrow$ for $\varepsilon \notin L(\alpha)$

- Ø↑
- εl
- $a \uparrow$ for all $a \in \Sigma$
- $(\alpha + \beta) \downarrow \iff \alpha \downarrow \text{ or } \beta \downarrow$
- $\alpha \downarrow$ and $\beta \downarrow$ • $(\alpha\beta)\downarrow \iff$

```
\alpha \downarrow for \varepsilon \in L(\alpha) \alpha \uparrow for \varepsilon \notin L(\alpha)
```

- Ø↑
- εl
- $a \uparrow$ for all $a \in \Sigma$
- $(\alpha + \beta) \downarrow \iff \alpha \downarrow \text{ or } \beta \downarrow$
- $(\alpha\beta)\downarrow \iff \alpha\downarrow \text{ and }\beta\downarrow$
- a*↓

A Ouick Recap

```
\alpha \downarrow for \varepsilon \in L(\alpha) \alpha \uparrow for \varepsilon \notin L(\alpha)
```

- Ø↑
- εl
- $a \uparrow$ for all $a \in \Sigma$
- $(\alpha + \beta) \downarrow \iff \alpha \downarrow \text{ or } \beta \downarrow$
- $(\alpha\beta)\downarrow$ \iff $\alpha\downarrow$ and $\beta\downarrow$
- a*↓

for every regular expression α over $\Sigma = \{a_1, \dots, a_n\}$ $\alpha \equiv \varepsilon(\alpha)$

A Ouick Recap

$$\alpha \downarrow$$
 for $\varepsilon \in L(\alpha)$ $\alpha \uparrow$ for $\varepsilon \notin L(\alpha)$ $\varepsilon(\alpha) = \emptyset$ if $\alpha \uparrow$ $\varepsilon(\alpha) = \varepsilon$ if $\alpha \downarrow$

- Ø1
- ε↓
- $a \uparrow$ for all $a \in \Sigma$
- $(\alpha + \beta) \downarrow \iff \alpha \downarrow \text{ or } \beta \downarrow$
- $(\alpha\beta)\downarrow \iff \alpha\downarrow \text{ and }\beta\downarrow$
- a*↓

for every regular expression α over $\Sigma = \{a_1, \dots, a_n\}$ $\alpha \equiv \varepsilon(\alpha) + a_1\alpha_{a_1} + \dots + a_n\alpha_{a_n}$

•00000

- 1 A Quick Recap
- 3 Kleene Algebra

A Ouick Recap

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$

A Ouick Recap

Kleene Algebra consists of set K with distinguished elements 0, $1 \in K$ and operations $*: K \to K$ and $+, \times: K \times K \to K$

Kleene Algebra

0.0000

Notatio

• ab for $a \times b$ a^* for *(a)

A Ouick Recap

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$

Kleene Algebra

0.0000

- ab for a x b a^* for *(a)
- binding precedence: * > x > +

Derivatives

Definition

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $*: K \to K$ and $+, \times: K \times K \to K$ such that

$$a + (b + c) = (a + b) + c$$

 $a + b = b + a$
 $a + a = a$
 $a + 0 = a$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a)
- binding precedence: * > x > +

(ab)c

Definition

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that

$$a + (b + c) = (a + b) + c$$
 $a0 = 0$ $a(bc)$
 $a + b = b + a$ $0a = 0$
 $a + a = a$ $1a = a$
 $a + 0 = a$ $a1 = a$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a)
- binding precedence: * > x > +

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that

$$a + (b + c) = (a + b) + c$$
 $a0 = 0$ $a(bc) = (ab)c$
 $a + b = b + a$ $0a = 0$ $(a + b)c = ac + bc$
 $a + a = a$ $1a = a$ $a(b + c) = ab + ac$
 $a + 0 = a$ $a1 = a$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a)
- binding precedence: * > x > +

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that

$$a + (b + c) = (a + b) + c$$
 $a0 = 0$ $a(bc) = (ab)c$ $1 + aa^* = a^*$ $a + b = b + a$ $0a = 0$ $(a + b)c = ac + bc$ $1 + a^*a = a^*$ $1a = a$ $a(b + c) = ab + ac$ $a + 0 = a$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a)
- binding precedence: * > x > +

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a) $a \le b$ for a + b = b
- binding precedence: * > x > +

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that (A.1) - (A.13)

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a) $a \le b$ for a + b = b
- binding precedence: * > x > +

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that (A.1) - (A.13)

$$a+(b+c) = (a+b)+c \qquad a0 = 0 \qquad a(bc) = (ab)c \qquad 1+aa^* = a^* \\ a+b = b+a \qquad 0a = 0 \qquad (a+b)c = ac+bc \qquad 1+a^*a = a^* \\ a+a = a \qquad 1a = a \qquad a(b+c) = ab+ac \qquad ac \leqslant c \Longrightarrow a^*c \leqslant c \\ a+0 = a \qquad a1 = a \qquad ca \leqslant c \Longrightarrow ca^* \leqslant c$$

(A.14) $b + ac \le c \implies a * b \le c$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a) $a \le b$ for a + b = b
- binding precedence: * > x > +

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that (A.1) - (A.13)

(A.14) $b + ac \le c \implies a^*b \le c$ (A.15) $b + ca \le c \implies ba^* \le c$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a) $a \le b$ for a + b = b
- binding precedence: * > x > +

A Ouick Recap

Definition

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that (A.1) - (A.13)

Kleene Algebra 0.0000

 $(A.14) b + ac \le c \implies a*b \le c$ $(A.15) b + ca \le c \implies ba^* \le c$ (A.16) $(a+b)^* = (a^*b)^*a^*$

for all $a, b, c \in K$

- ab for a x b a^* for *(a) $a \le b$ for a+b=b
- binding precedence: * > x > +

A Ouick Recap

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that (A,1) - (A,13)

Kleene Algebra

 $\begin{array}{l} (A.14) \ b + ac \leqslant c \implies a^*b \leqslant c \\ (A.16) \ (a+b)^* = (a^*b)^*a^* \end{array} \qquad \begin{array}{l} (A.15) \ b + ca \leqslant c \implies ba^* \leqslant c \\ (A.17) \ a(ba)^* = (ab)^*a \end{array}$

for all $a, b, c \in K$

- ab for $a \times b$ a^* for *(a) $a \le b$ for a + b = b
- binding precedence: * > x > +

Example

A Quick Recap

ullet regular sets over alphabet Σ form Kleene algebra

000000

- ullet regular sets over alphabet Σ form Kleene algebra
 - Ø for 0

000000

- regular sets over alphabet Σ form Kleene algebra
 - Ø for 0
 - $\{\varepsilon\}$ for 1

000000

- ullet regular sets over alphabet Σ form Kleene algebra
 - Ø for 0
 - {ε} for 1
 - union for +

000000

- ullet regular sets over alphabet Σ form Kleene algebra
 - Ø for 0
 - $\{\varepsilon\}$ for 1
 - union for +
 - concatenation for x

000000

Example

- ullet regular sets over alphabet Σ form Kleene algebra
 - Ø for 0
 - $\{\varepsilon\}$ for 1
 - union for +
 - concatenation for x
 - asterate for *

000000

- regular sets over alphabet Σ form Kleene algebra
 - Ø for 0
 - $\{\varepsilon\}$ for 1
 - union for +
 - concatenation for x
 - asterate for *
- binary relations over set A form Kleene algebra

- regular sets over alphabet Σ form Kleene algebra
 - Ø for 0
 - $\{\varepsilon\}$ for 1
 - union for +
 - concatenation for x
 - asterate for *
- binary relations over set A form Kleene algebra
 - empty relation Ø for 0

000000

- regular sets over alphabet Σ form Kleene algebra
 - Ø for 0
 - $\{\varepsilon\}$ for 1
 - union for +
 - concatenation for x
 - asterate for *
- binary relations over set A form Kleene algebra
 - empty relation Ø for 0
 - identity relation $\{(a, a) \mid a \in A\}$ for 1

Example |

- regular sets over alphabet Σ form Kleene algebra
 - Ø for 0
 - $\{\varepsilon\}$ for 1
 - union for +
 - concatenation for x
 - asterate for *
- binary relations over set A form Kleene algebra
 - empty relation Ø for 0
 - identity relation $\{(a, a) \mid a \in A\}$ for 1
 - union for +

000000

- regular sets over alphabet Σ form Kleene algebra
 - Ø for 0
 - $\{\varepsilon\}$ for 1
 - union for +
 - concatenation for x
 - asterate for *
- binary relations over set A form Kleene algebra
 - empty relation Ø for 0
 - identity relation $\{(a, a) \mid a \in A\}$ for 1
 - union for +
 - relational composition for ×

- regular sets over alphabet Σ form Kleene algebra
 - Ø for 0
 - $\{\varepsilon\}$ for 1
 - union for +
 - concatenation for x
 - asterate for *
- binary relations over set A form Kleene algebra
 - empty relation Ø for 0
 - identity relation $\{(a, a) \mid a \in A\}$ for 1
 - union for +
 - relational composition for x
 - reflexive transitive closure for *

A Ouick Recap

for all regular expressions lpha and eta

$$\alpha \equiv \beta \quad \Leftarrow$$

 $\alpha \equiv \beta \iff \alpha = \beta$ can be proven from Kleene algebra axioms

Kleene Algebra

000000

for all regular expressions α and β

$$\alpha \equiv \beta \iff \alpha = \beta$$
 can be proven from Kleene algebra axioms

Inference Rules

equivalence

$$\overline{\alpha = \alpha}$$

Theoren

for all regular expressions lpha and eta

$$\alpha \equiv \beta \iff \alpha = \beta$$
 can be proven from Kleene algebra axioms

Inference Rules

equivalence

$$\frac{\alpha=\beta}{\beta=\alpha}$$

for all regular expressions α and β

$$\alpha \equiv \beta \iff \alpha = \beta$$
 can be proven from Kleene algebra axioms

Inference Rules

equivalence

$$\frac{\alpha = \beta}{\beta = \alpha}$$

$$\frac{\alpha=\beta\quad\beta=\gamma}{\alpha=\gamma}$$

for all regular expressions α and β

$$\alpha \equiv \beta \iff \alpha = \beta$$
 can be proven from Kleene algebra axioms

Inference Rules

equivalence

$$\frac{\alpha = \beta}{\alpha = \alpha}$$
 $\frac{\alpha = \beta}{\beta = \alpha}$ $\frac{\alpha = \beta \quad \beta = \gamma}{\alpha = \gamma}$

application

$$\frac{\sigma(\gamma)=\sigma(\delta)}{\sigma(\alpha)=\sigma(\beta)} \qquad \forall \text{ axioms } \gamma=\delta \implies \alpha=\beta \quad \forall \text{ substitutions } \sigma$$

for all regular expressions α and β

$$\alpha \equiv \beta \iff \alpha = \beta$$
 can be proven from Kleene algebra axioms

Inference Rules

equivalence

$$\frac{\alpha = \beta}{\alpha = \alpha} \qquad \frac{\alpha = \beta}{\beta = \alpha} \qquad \frac{\alpha = \beta \quad \beta = \gamma}{\alpha = \gamma}$$

application

$$\sigma(lpha) = \sigma(eta)$$
 \forall axioms $\sigma = eta$ \forall substitutions σ

for all regular expressions α and β

$$\alpha \equiv \beta \iff \alpha = \beta$$
 can be proven from Kleene algebra axioms

Inference Rules

equivalence

$$\frac{\alpha = \beta}{\alpha = \alpha}$$
 $\frac{\alpha = \beta}{\beta = \alpha}$ $\frac{\alpha = \beta \quad \beta = \gamma}{\alpha = \gamma}$

application

$$\dfrac{\sigma(\gamma)=\sigma(\delta)}{\sigma(\alpha)=\sigma(\beta)}$$
 \forall axioms $\gamma=\delta \implies \alpha=\beta \quad \forall$ substitutions σ

congruence

$$\frac{\alpha = \gamma \quad \beta = \delta}{\alpha + \beta = \gamma + \delta}$$

for all regular expressions lpha and eta

$$\alpha \equiv \beta \iff \alpha = \beta$$
 can be proven from Kleene algebra axioms

Inference Rules

equivalence

$$\dfrac{lpha=eta}{lpha=lpha} \qquad \dfrac{lpha=eta}{eta=lpha} \qquad \dfrac{lpha=eta=\gamma}{lpha=\gamma}$$

application

$$\frac{\sigma(\gamma)=\sigma(\delta)}{\sigma(\alpha)=\sigma(\beta)} \qquad \forall \text{ axioms } \gamma=\delta \implies \alpha=\beta \quad \forall \text{ substitutions } \sigma$$

congruence

$$\frac{\alpha = \gamma \quad \beta = \delta}{\alpha + \beta = \gamma + \delta} \qquad \frac{\alpha = \gamma \quad \beta = \delta}{\alpha \beta = \gamma \delta}$$

for all regular expressions lpha and eta

$$\alpha \equiv \beta \iff \alpha = \beta$$
 can be proven from Kleene algebra axioms

Inference Rules

equivalence

$$\frac{\alpha=\beta}{\alpha=\alpha}$$
 $\frac{\alpha=\beta}{\beta=\alpha}$ $\frac{\alpha=\beta}{\alpha=\gamma}$

application

$$\frac{\sigma(\gamma)=\sigma(\delta)}{\sigma(\alpha)=\sigma(\beta)} \qquad \forall \text{ axioms } \gamma=\delta \implies \alpha=\beta \quad \forall \text{ substitutions } \sigma$$

congruence

$$\frac{\alpha = \gamma \quad \beta = \delta}{\alpha + \beta = \gamma + \delta} \qquad \frac{\alpha = \gamma \quad \beta = \delta}{\alpha \beta = \gamma \delta} \qquad \frac{\alpha = \beta}{\alpha^* = \beta^*}$$

Example (page 11)

$$\beta_a = a^*b(a^*b)^*a^* + a^*$$

Example (page 11)

$$\beta_{a} = a^*b(a^*b)^*a^* + a^*$$
$$= xx^*y + y$$

000000

$$\beta_a = a^*b(a^*b)^*a^* + a^*$$

= $xx^*y + y$ $x := (a^*b)$

000000

Example (page 11)

$$\beta_a = a^*b(a^*b)^*a^* + a^*
= xx^*y + y x := (a^*b) y := (a^*)$$

000000

$$\beta_a = a^*b(a^*b)^*a^* + a^*
= xx^*y + y x := (a^*b) y := (a^*)
= (xx^* + \epsilon)y$$

000000

$$\beta_a = a^*b(a^*b)^*a^* + a^*$$

= $xx^*y + y$ $x := (a^*b)$ $y := (a^*)$
= $(xx^* + \varepsilon)y$
= x^*y

000000

000000

Example (page 11)

$$\beta_{a} = a^{*}b(a^{*}b)^{*}a^{*} + a^{*}$$

$$= xx^{*}y + y \qquad x := (a^{*}b) \qquad y := (a^{*})$$

$$= (xx^{*} + \varepsilon)y$$

$$= x^{*}y$$

$$= (a^{*}b)^{*}a^{*}$$

$$= (a + b)^{*}$$

Example (w4.pdf – page 19)

$$\alpha = (0 + (1 + \boldsymbol{\varepsilon})(1 + \boldsymbol{\varepsilon})^*0) + (0 + (1 + \boldsymbol{\varepsilon})(1 + \boldsymbol{\varepsilon})^*0)((0 + \boldsymbol{\varepsilon}) + 1(1 + \boldsymbol{\varepsilon})^*0)^*((0 + \boldsymbol{\varepsilon}) + 1(1 + \boldsymbol{\varepsilon})^*0)$$

$$\begin{array}{lcl} \alpha & = & (0 + (1 + \epsilon)(1 + \epsilon)^*0) + (0 + (1 + \epsilon)(1 + \epsilon)^*0)((0 + \epsilon) + 1(1 + \epsilon)^*0)^*((0 + \epsilon) + 1(1 + \epsilon)^*0) \\ & = & x + xy^*y \end{array}$$

Kleene Algebra

00000

$$\begin{array}{lll} \alpha & = & (0 + (1 + \pmb{\varepsilon})(1 + \pmb{\varepsilon})^*0) + (0 + (1 + \pmb{\varepsilon})(1 + \pmb{\varepsilon})^*0)((0 + \pmb{\varepsilon}) + 1(1 + \pmb{\varepsilon})^*0)^*((0 + \pmb{\varepsilon}) + 1(1 + \pmb{\varepsilon})^*0) \\ & = & x + xy^*y & x := (0 + (1 + \pmb{\varepsilon})(1 + \pmb{\varepsilon})^*0) \end{array}$$

Kleene Algebra

00000

Example (w4.pdf – page 19)

A Ouick Recap

$$\begin{array}{lll} \alpha & = & (0 + (1 + \pmb{\varepsilon})(1 + \pmb{\varepsilon})^*0) + (0 + (1 + \pmb{\varepsilon})(1 + \pmb{\varepsilon})^*0)((0 + \pmb{\varepsilon}) + 1(1 + \pmb{\varepsilon})^*0)^*((0 + \pmb{\varepsilon}) + 1(1 + \pmb{\varepsilon})^*0) \\ & = & x + xy^*y & x := (0 + (1 + \pmb{\varepsilon})(1 + \pmb{\varepsilon})^*0) & y := ((0 + \pmb{\varepsilon}) + 1(1 + \pmb{\varepsilon})^*0) \end{array}$$

Kleene Algebra

00000

$$\begin{array}{rcl} \alpha & = & (0+(1+\boldsymbol{\varepsilon})(1+\boldsymbol{\varepsilon})^*0)+(0+(1+\boldsymbol{\varepsilon})(1+\boldsymbol{\varepsilon})^*0)((0+\boldsymbol{\varepsilon})+1(1+\boldsymbol{\varepsilon})^*0)^*((0+\boldsymbol{\varepsilon})+1(1+\boldsymbol{\varepsilon})^*0) \\ & = & x+xy^*y & x:=(0+(1+\boldsymbol{\varepsilon})(1+\boldsymbol{\varepsilon})^*0) & y:=((0+\boldsymbol{\varepsilon})+1(1+\boldsymbol{\varepsilon})^*0) \\ & = & x(\boldsymbol{\varepsilon}+y^*y) & = & xy^* \end{array}$$

$$\begin{array}{lll} \alpha & = & (0+(1+\boldsymbol{\varepsilon})(1+\boldsymbol{\varepsilon})^*0)+(0+(1+\boldsymbol{\varepsilon})(1+\boldsymbol{\varepsilon})^*0)((0+\boldsymbol{\varepsilon})+1(1+\boldsymbol{\varepsilon})^*0)^*((0+\boldsymbol{\varepsilon})+1(1+\boldsymbol{\varepsilon})^*0) \\ & = & x+xy^*y & x:=(0+(1+\boldsymbol{\varepsilon})(1+\boldsymbol{\varepsilon})^*0) & y:=((0+\boldsymbol{\varepsilon})+1(1+\boldsymbol{\varepsilon})^*0) \\ & = & x(\boldsymbol{\varepsilon}+y^*y) & = & xy^* \\ x & := & 0+(1+\boldsymbol{\varepsilon})(1+\boldsymbol{\varepsilon})^*0 \end{array}$$

Example (w4.pdf - page 19)

$$\begin{array}{rcl} \alpha & = & (0+(1+\varepsilon)(1+\varepsilon)^*0) + (0+(1+\varepsilon)(1+\varepsilon)^*0)((0+\varepsilon) + 1(1+\varepsilon)^*0)^*((0+\varepsilon) + 1(1+\varepsilon)^*0) \\ & = & x+xy^*y & x := (0+(1+\varepsilon)(1+\varepsilon)^*0) & y := ((0+\varepsilon) + 1(1+\varepsilon)^*0) \\ & = & x(\varepsilon+y^*y) & = & xy^* \\ x & := & 0+(1+\varepsilon)(1+\varepsilon)^*0 \\ & = & 0+(1+\varepsilon)1^*0 \end{array}$$

= 0 + 11*0 + 1*0

A Ouick Recap

$$\begin{array}{lll} \alpha & = & (0+(1+\varepsilon)(1+\varepsilon)^*0) + (0+(1+\varepsilon)(1+\varepsilon)^*0)((0+\varepsilon) + 1(1+\varepsilon)^*0)^*((0+\varepsilon) + 1(1+\varepsilon)^*0) \\ & = & x+xy^*y & x := (0+(1+\varepsilon)(1+\varepsilon)^*0) & y := ((0+\varepsilon)+1(1+\varepsilon)^*0) \\ & = & x(\varepsilon+y^*y) & = & xy^* \\ x & := & 0+(1+\varepsilon)(1+\varepsilon)^*0 \\ & = & 0+(1+\varepsilon)1^*0 \end{array}$$

Example (w4.pdf – page 19)

$$\begin{array}{lll} \alpha & = & (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) + (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0)((0+\pmb{\varepsilon}) + 1(1+\pmb{\varepsilon})^*0)^*((0+\pmb{\varepsilon}) + 1(1+\pmb{\varepsilon})^*0) \\ & = & x+xy^*y & x := (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) & y := ((0+\pmb{\varepsilon}) + 1(1+\pmb{\varepsilon})^*0) \\ & = & x(\pmb{\varepsilon}+y^*y) & = & xy^* \\ x & := & 0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0 \\ & = & 0+(1+\pmb{\varepsilon})1^*0 \\ & = & 0+11^*0+1^*0 \\ & = & (\pmb{\varepsilon}+11^*+1^*)0 \end{array}$$

Example (w4.pdf - page 19)

$$\begin{array}{rcl} \alpha & = & (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) + (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0)((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0)^*((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x+xy^*y & x:=(0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) & y:=((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x(\pmb{\varepsilon}+y^*y) & = & xy^* \\ x & := & 0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0 \\ & = & 0+(1+\pmb{\varepsilon})1^*0 \\ & = & 0+11^*0+1^*0 \\ & = & (\pmb{\varepsilon}+11^*+1^*)0 \\ & = & (1^*+1^*)0 \end{array}$$

Example (w4.pdf - page 19)

$$\begin{array}{rcl} \alpha & = & (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) + (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0)((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0)^*((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x+xy^*y & x:=(0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) & y:=((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x(\pmb{\varepsilon}+y^*y) & = & xy^* \\ x & := & 0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0 \\ & = & 0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0 \\ & = & 0+(1+\pmb{\varepsilon})1^*0 \\ & = & 0+11^*0+1^*0 \\ & = & (\pmb{\varepsilon}+11^*+1^*)0 \\ & = & 1^*0 \end{array}$$

```
Example (w4.pdf - page 19)
```

$$\begin{array}{rcl} \alpha & = & (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) + (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0)((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0)^*((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x+xy^*y & x:=(0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) & y:=((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x(\pmb{\varepsilon}+y^*y) & = & xy^* \\ x & := & 0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0 & y & := & (0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0 \\ & = & 0+(1+\pmb{\varepsilon})1^*0 & \\ & = & 0+11^*0+1^*0 & \\ & = & (\pmb{\varepsilon}+11^*+1^*)0 & \\ & = & (1^*+1^*)0 & \\ & = & 1^*0 & \end{array}$$

Example (w4.pdf - page 19)

$$\begin{array}{lll} \alpha & = & (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) + (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0)((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0)^*((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x+xy^*y & x:=(0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) & y:=((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x(\pmb{\varepsilon}+y^*y) & = & xy^* \\ x & := & 0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0 & y & := & (0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0 \\ & = & 0+(1+\pmb{\varepsilon})1^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & 0+11^*0+1^*0 & = & (\pmb{\varepsilon}+11^*+1^*)0 \\ & = & (1^*+1^*)0 & = & 1^*0 \end{array}$$

Example (w4.pdf - page 19)

$$\begin{array}{rcl} \alpha & = & (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) + (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0)((0+\pmb{\varepsilon}) + 1(1+\pmb{\varepsilon})^*0)^*((0+\pmb{\varepsilon}) + 1(1+\pmb{\varepsilon})^*0) \\ & = & x+xy^*y & x:= (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) & y:= ((0+\pmb{\varepsilon}) + 1(1+\pmb{\varepsilon})^*0) \\ & = & x(\pmb{\varepsilon}+y^*y) & = & xy^* \\ x & := & 0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0 & y & := & (0+\pmb{\varepsilon}) + 1(1+\pmb{\varepsilon})^*0 \\ & = & 0+(1+\pmb{\varepsilon})1^*0 & = & (0+\pmb{\varepsilon}) + 11^*0 \\ & = & 0+11^*0 + 1^*0 & = & \pmb{\varepsilon} + (0+11^*0) \\ & = & (1^*+1^*)0 \\ & = & 1^*0 \end{array}$$

Example (w4.pdf – page 19)

$$\begin{array}{lll} \alpha & = & (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) + (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0)((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0)^*((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x+xy^*y & x:=(0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) & y:=((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x(\pmb{\varepsilon}+y^*y) & = & xy^* \\ x & := & 0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0 & y & := & (0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0 \\ & = & 0+(1+\pmb{\varepsilon})1^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & 0+11^*0+1^*0 & = & \pmb{\varepsilon}+(0+11^*0) \\ & = & (\pmb{\varepsilon}+11^*+1^*)0 & = & \pmb{\varepsilon}+(\pmb{\varepsilon}+11^*)0 \\ & = & (1^*+1^*)0 & = & 1^*0 \end{array}$$

Example (w4.pdf - page 19)

$$\begin{array}{llll} \alpha & = & (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) + (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) ((0+\pmb{\varepsilon}) + 1(1+\pmb{\varepsilon})^*0)^* ((0+\pmb{\varepsilon}) + 1(1+\pmb{\varepsilon})^*0) \\ & = & x+xy^*y & x:= (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) & y:= ((0+\pmb{\varepsilon}) + 1(1+\pmb{\varepsilon})^*0) \\ & = & x(\pmb{\varepsilon}+y^*y) & = & xy^* \\ x & := & 0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0 & y & := & (0+\pmb{\varepsilon}) + 1(1+\pmb{\varepsilon})^*0 \\ & = & 0+(1+\pmb{\varepsilon})1^*0 & = & (0+\pmb{\varepsilon}) + 11^*0 \\ & = & 0+11^*0 + 1^*0 & = & \pmb{\varepsilon} + (0+11^*0) \\ & = & (\pmb{\varepsilon}+11^*+1^*)0 & = & \pmb{\varepsilon} + (\pmb{\varepsilon}+11^*)0 \\ & = & (1^*+1^*)0 & = & \pmb{\varepsilon} + 1^*0 \\ & = & 1^*0 \end{array}$$

```
Example (w4.pdf - page 19)
```

$$\begin{array}{lll} \alpha & = & (0+(1+\varepsilon)(1+\varepsilon)^*0) + (0+(1+\varepsilon)(1+\varepsilon)^*0)((0+\varepsilon)+1(1+\varepsilon)^*0)^*((0+\varepsilon)+1(1+\varepsilon)^*0)\\ & = & x+xy^*y & x:=(0+(1+\varepsilon)(1+\varepsilon)^*0) & y:=((0+\varepsilon)+1(1+\varepsilon)^*0)\\ & = & x(\varepsilon+y^*y) & = & xy^*\\ x & := & 0+(1+\varepsilon)(1+\varepsilon)^*0 & y & := & (0+\varepsilon)+1(1+\varepsilon)^*0\\ & = & 0+(1+\varepsilon)1^*0 & = & (0+\varepsilon)+11^*0\\ & = & 0+11^*0+1^*0 & = & \varepsilon+(0+11^*0)\\ & = & (\varepsilon+11^*+1^*)0 & = & \varepsilon+(\varepsilon+11^*)0\\ & = & (1^*+1^*)0 & = & \varepsilon+1^*0\\ & xy^* & := & (1^*0)(\varepsilon+1^*0)^* \end{array}$$

```
Example (w4.pdf - page 19)
```

$$\begin{array}{lll} \alpha & = & (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) + (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0)((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0)^*((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x+xy^*y & x:=(0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) & y:=((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x(\pmb{\varepsilon}+y^*y) & = & xy^* \\ x & := & 0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0 & y & := & (0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0 \\ & = & 0+(1+\pmb{\varepsilon})1^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & 0+11^*0+1^*0 & = & \pmb{\varepsilon}+(0+11^*0) \\ & = & (\pmb{\varepsilon}+11^*+1^*)0 & = & \pmb{\varepsilon}+(\pmb{\varepsilon}+11^*)0 \\ & = & (1^*+1^*)0 & = & \pmb{\varepsilon}+1^*0 \\ & = & 1^*0 \\ xy^* & := & (1^*0)(\pmb{\varepsilon}+1^*0)^* \\ & = & (1^*0)(1^*0)^* \end{array}$$

Example (w4.pdf – page 19)

Example (w4.pdf - page 19)

$$\begin{array}{lll} \alpha & = & (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) + (0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0)((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0)^*((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x+xy^*y & x:=(0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0) & y:=((0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0) \\ & = & x(\pmb{\varepsilon}+y^*y) & = & xy^* \\ x & := & 0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0 & y & := & (0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0 \\ & = & 0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0 & = & (0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0 \\ & = & 0+(1+\pmb{\varepsilon})(1+\pmb{\varepsilon})^*0 & = & (0+\pmb{\varepsilon})+1(1+\pmb{\varepsilon})^*0 \\ & = & 0+11^*0+1^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+11^*0 & = & (0+\pmb{\varepsilon})+11^*0 \\ & = & (1+\pmb{\varepsilon})+$$

```
Example (w4.pdf - page 19)
```

```
= (0 + (1 + \varepsilon)(1 + \varepsilon)^*0) + (0 + (1 + \varepsilon)(1 + \varepsilon)^*0)((0 + \varepsilon) + 1(1 + \varepsilon)^*0)^*((0 + \varepsilon) + 1(1 + \varepsilon)^*0)
       = x + xy^*y  x := (0 + (1 + \varepsilon)(1 + \varepsilon)^*0)  y := ((0 + \varepsilon) + 1(1 + \varepsilon)^*0)
       = x(\varepsilon + v^*v) = xv^*
x := 0 + (1 + \boldsymbol{\varepsilon})(1 + \boldsymbol{\varepsilon})^* 0
                                                                              v := (0 + \boldsymbol{\varepsilon}) + 1(1 + \boldsymbol{\varepsilon})^* 0
      = 0 + (1 + \varepsilon)1^*0
                                                                                    = (0 + \varepsilon) + 11*0
      = 0 + 11*0 + 1*0
                                                                                    = \epsilon + (0 + 11*0)
      = (\varepsilon + 11^* + 1^*)0
                                                                                    = \boldsymbol{\varepsilon} + (\boldsymbol{\varepsilon} + 11^*)0
      = (1^* + 1^*)0
                                                                                    = \epsilon + 1*0
      = 1*0
          := (1*0)(\varepsilon + 1*0)*
xv^*
          = (1*0)(1*0)*
          = (1*0)*(1*0)
          = ((1*0)*1*)0
          = (1+0)*0
```

```
Example (w4.pdf - page 19)
```

```
= (0 + (1 + \varepsilon)(1 + \varepsilon)^*0) + (0 + (1 + \varepsilon)(1 + \varepsilon)^*0)((0 + \varepsilon) + 1(1 + \varepsilon)^*0)^*((0 + \varepsilon) + 1(1 + \varepsilon)^*0)
       = x + xy^*y  x := (0 + (1 + \varepsilon)(1 + \varepsilon)^*0)  y := ((0 + \varepsilon) + 1(1 + \varepsilon)^*0)
       = x(\varepsilon + v^*v) = xv^*
x := 0 + (1 + \boldsymbol{\varepsilon})(1 + \boldsymbol{\varepsilon})^* 0
                                                                               v := (0 + \boldsymbol{\varepsilon}) + 1(1 + \boldsymbol{\varepsilon})^* 0
      = 0 + (1 + \boldsymbol{\varepsilon}) \mathbf{1}^* \mathbf{0}
                                                                                      = (0 + \varepsilon) + 11*0
      = 0 + 11*0 + 1*0
                                                                                      = \epsilon + (0 + 11*0)
      = (\varepsilon + 11^* + 1^*)0
                                                                                      = \boldsymbol{\varepsilon} + (\boldsymbol{\varepsilon} + 11^*)0
      = (1^* + 1^*)0
                                                                                      = \epsilon + 1*0
      = 1*0
          := (1*0)(\varepsilon + 1*0)*
xv^*
          = (1*0)(1*0)*
          = (1*0)*(1*0)
          = ((1*0)*1*)0
          = (1+0)*0
          = (0+1)*0
```

Outline

- 1 A Quick Recap
- 2 Derivative
- 3 Kleene Algebra
- 4 Equivalence of Regular Expressions

equivalence problem for regular expression

instance: regular expressions α and β over alphabet Σ

Kleene Algebra

question: $L(\alpha) = L(\beta)$

is decidable

equivalence problem for regular expression

regular expressions α and β over alphabet Σ instance:

Kleene Algebra

question: $L(\alpha) = L(\beta)$

is decidable

Decision Procedure

① convert α and β into equivalent finite automata N_{α} and N_{β}

equivalence problem for regular expression

regular expressions α and β over alphabet Σ instance:

question: $L(\alpha) = L(\beta)$

is decidable

Decision Procedure

① convert α and β into equivalent finite automata N_{α} and N_{β}

determinize and minimize N_{α} and N_{β} into D_{α} and D_{β}

 $L(\alpha) \neq L(\beta)$

Theoren

equivalence problem for regular expression

instance: regular expressions α and β over alphabet Σ

question: $L(\alpha) = L(\beta)$

is decidable

Decision Procedure

① convert α and β into equivalent finite automata N_{α} and N_{β}

② determinize and minimize N_{α} and N_{β} into D_{α} and D_{β}

 \bigcirc check whether D_{α} and D_{β} are identical (isomorphic):

yes
$$\Longrightarrow$$
 $L(\alpha) = L(\beta)$ no

Theoren

equivalence problem for regular expression

instance: regular expressions α and β over alphabet Σ

question: $L(\alpha) = L(\beta)$

is decidable

Decision Procedure

① convert α and β into equivalent finite automata N_{α} and N_{β}

② determinize and minimize N_{α} and N_{β} into D_{α} and D_{β}

6) check whether D_{α} and D_{β} are identical (isomorphic):

yes \Longrightarrow $L(\alpha) = L(\beta)$ no \Longrightarrow $L(\alpha) \neq L(\beta)$

inefficient decision procedure

Theorem

equivalence problem for regular expression

instance: regular expressions α and β over alphabet Σ

question: $L(\alpha) = L(\beta)$

is decidable

Decision Procedure

① convert α and β into equivalent finite automata N_{α} and N_{β}

② determinize and minimize N_{α} and N_{β} into D_{α} and D_{β}

6) check whether D_{α} and D_{β} are identical (isomorphic):

yes \Longrightarrow $L(\alpha) = L(\beta)$ no \Longrightarrow $L(\alpha) \neq L(\beta)$

inefficient decision procedure

Alternative Approaches (employing derivatives)

Theorem

A Ouick Recap

equivalence problem for regular expression

instance: regular expressions α and β over alphabet Σ

Kleene Algebra

question: $L(\alpha) = L(\beta)$

is decidable

Decision Procedure

convert α and β into equivalent finite automata N_{α} and N_{β}

determinize and minimize N_{α} and N_{β} into D_{α} and D_{β}

check whether D_{α} and D_{β} are identical (isomorphic):

ves \Longrightarrow $L(\alpha) = L(\beta)$

 $L(\alpha) \neq L(\beta)$

inefficient decision procedure

Alternative Approaches (employing derivatives)

derivatives:

equivalence problem for regular expression

instance: regular expressions α and β over alphabet Σ

Kleene Algebra

 $L(\alpha) \neq L(\beta)$

question: $L(\alpha) = L(\beta)$

is decidable

Decision Procedure

convert α and β into equivalent finite automata N_{α} and N_{β}

determinize and minimize N_{α} and N_{β} into D_{α} and D_{β}

check whether D_{α} and D_{β} are identical (isomorphic):

ves \Longrightarrow $L(\alpha) = L(\beta)$

inefficient decision procedure

Alternative Approaches (employing derivatives)

1 derivatives: build DFAs D_{α} and D_{β}

 $L(\alpha) \neq L(\beta)$

Theorem

A Ouick Recap

equivalence problem for regular expression

instance: regular expressions α and β over alphabet Σ

question: $L(\alpha) = L(\beta)$

is decidable

Decision Procedure

convert α and β into equivalent finite automata N_{α} and N_{β}

determinize and minimize N_{α} and N_{β} into D_{α} and D_{β}

check whether D_{α} and D_{β} are identical (isomorphic):

ves \Longrightarrow $L(\alpha) = L(\beta)$

inefficient decision procedure

Alternative Approaches (employing derivatives)

① derivatives: build DFAs D_{α} and D_{β} then minimize and check whether $D_{\alpha} \simeq D_{\beta}$

A Ouick Recap

equivalence problem for regular expression

instance: regular expressions α and β over alphabet Σ

question: $L(\alpha) = L(\beta)$

is decidable

Decision Procedure

convert α and β into equivalent finite automata N_{α} and N_{β}

determinize and minimize N_{α} and N_{β} into D_{α} and D_{β}

check whether D_{α} and D_{β} are identical (isomorphic):

ves \Longrightarrow $L(\alpha) = L(\beta)$ $L(\alpha) \neq L(\beta)$

inefficient decision procedure

Alternative Approaches (employing derivatives)

derivatives: build DFAs D_{α} and D_{β} then minimize and check whether $D_{\alpha} \simeq D_{\beta}$

derivatives + bisimulation:

A Ouick Recap

equivalence problem for regular expression

instance: regular expressions α and β over alphabet Σ

question: $L(\alpha) = L(\beta)$

is decidable

Decision Procedure

convert α and β into equivalent finite automata N_{α} and N_{β}

determinize and minimize N_{α} and N_{β} into D_{α} and D_{β}

check whether D_{α} and D_{β} are identical (isomorphic):

ves \Longrightarrow $L(\alpha) = L(\beta)$ no ⇒ $L(\alpha) \neq L(\beta)$

inefficient decision procedure

Alternative Approaches (employing derivatives)

① derivatives: build DFAs D_{α} and D_{β} then minimize and check whether $D_{\alpha} \simeq D_{\beta}$

2 derivatives + bisimulation: check whether $L(\alpha) = L(\beta)$

equivalence problem for regular expression

instance: regular expressions α and β over alphabet Σ

question: $L(\alpha) = L(\beta)$

is decidable

Decision Procedure

① convert α and β into equivalent finite automata N_{α} and N_{β}

② determinize and minimize N_{α} and N_{β} into D_{α} and D_{β}

6) check whether D_{α} and D_{β} are identical (isomorphic):

yes \Longrightarrow $L(\alpha) = L(\beta)$ no \Longrightarrow $L(\alpha) \neq L(\beta)$

inefficient decision procedure

Alternative Approaches (employing derivatives)

1 derivatives: build DFAs D_{α} and D_{β} then minimize and check whether $D_{\alpha} \simeq D_{\beta}$

(next slide)

2 derivatives + bisimulation: check whether $L(\alpha) = L(\beta)$

equivalence problem for regular expression

instance: regular expressions α and β over alphabet Σ

question: $L(\alpha) = L(\beta)$

is decidable

Decision Procedure

① convert α and β into equivalent finite automata N_{α} and N_{β}

② determinize and minimize N_{α} and N_{β} into D_{α} and D_{β}

(Second Price of Second Particul Action 2) check whether D_{α} and D_{β} are identical (isomorphic):

 $\mathsf{ves} \implies \mathsf{L}(\alpha) = \mathsf{L}(\beta)$

no \Longrightarrow $L(\alpha) \neq L(\beta)$

inefficient decision procedure

Alternative Approaches (employing derivatives)

1 derivatives: build DFAs D_{α} and D_{β} then minimize and check whether $D_{\alpha} \simeq D_{\beta}$

(next slide)

2 derivatives + bisimulation: check whether $L(\alpha) = L(\beta)$

(slides #23 - #26)

•
$$\alpha = (a+b)^*$$

start
$$\rightarrow \alpha$$

Kleene Algebra

•
$$\alpha = (a+b)^*$$
, $\alpha_a \equiv \alpha$

start
$$\rightarrow \alpha$$

Kleene Algebra

•
$$\alpha = (a+b)^*$$
, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$

start
$$\rightarrow (\alpha)$$
 a b

Kleene Algebra

•
$$\alpha = (a+b)^*$$
, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 ab

Kleene Algebra

•
$$\alpha = (a+b)^*$$
, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 at

Kleene Algebra

•
$$\beta = (a^*b)^*a^*$$

$$\mathsf{start} \longrightarrow \widehat{\beta}$$

•
$$\alpha = (a+b)^*$$
, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 a b

Kleene Algebra

•
$$\beta = (a^*b)^*a^*$$
, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$

•
$$\alpha = (a+b)^*$$
, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 ab

Kleene Algebra

• $\beta = (a^*b)^*a^*$, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$, $\beta_b \equiv \beta$

•
$$\alpha = (a+b)^*$$
, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 ab

Kleene Algebra

• $\beta = (a^*b)^*a^*$, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$, $\beta_b \equiv \beta$, $\beta \downarrow$

•
$$\alpha = (a+b)^*$$
, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 at

Kleene Algebra

• $\beta = (a^*b)^*a^*$, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$, $\beta_b \equiv \beta$, $\beta \downarrow$, $\gamma_a \equiv \gamma$

• $\alpha = (a+b)^*$, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 ab

• $\beta = (a^*b)^*a^*$, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$, $\beta_b \equiv \beta$, $\beta \downarrow$, $\gamma_a \equiv \gamma$, $\gamma_b \equiv \beta$

• $\alpha = (a+b)^*$, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 ab

• $\beta = (a^*b)^*a^*$, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$, $\beta_b \equiv \beta$, $\beta \downarrow$, $\gamma_a \equiv \gamma$, $\gamma_b \equiv \beta$, $\gamma \downarrow$

•
$$\alpha = (a+b)^*$$
, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 at

Kleene Algebra

• $\beta = (a^*b)^*a^*$, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$, $\beta_b \equiv \beta$, $\beta \downarrow$, $\gamma_a \equiv \gamma$, $\gamma_b \equiv \beta$, $\gamma \downarrow$

every regular expression α can be transformed into equivalent DFA using derivatives (and 'easy' Kleene algebra axioms for simplification)

Kleene Algebra

Example

 $\alpha = a^*$

A Quick Recap

A Quick Recap

$$\alpha = a^*$$
 $\alpha_a = \varepsilon a^*$

$$\alpha = a^*$$
 $\alpha_a = \varepsilon a^*$ $(\alpha_a)_a = \emptyset a^* + \varepsilon a^*$

$$\alpha = a^* \quad \alpha_a = \epsilon a^* \quad (\alpha_a)_a = \varnothing a^* + \epsilon a^* \quad ((\alpha_a)_a)_a = \varnothing a^* + \varnothing a^* + \epsilon a^*$$

$$\begin{array}{lll} \alpha = a^* & \alpha_a = \varepsilon a^* & (\alpha_a)_a = \varnothing a^* + \varepsilon a^* & ((\alpha_a)_a)_a = \varnothing a^* + \varnothing a^* + \varepsilon a^* & (((\alpha_a)_a)_a) = \cdots \\ ((\alpha_a)_a)_a = \varnothing a^* + \varnothing a^* + \varepsilon a^* & \equiv \varnothing a^* + \varepsilon a^* = (\alpha_a)_a & \text{modulo ACI of } + \end{array}$$

Kleene Algebra

$$\begin{array}{lll} \alpha = a^* & \alpha_a = \varepsilon a^* & (\alpha_a)_a = \varnothing a^* + \varepsilon a^* & ((\alpha_a)_a)_a = \varnothing a^* + \varnothing a^* + \varepsilon a^* & (((\alpha_a)_a)_a) = \cdots \\ ((\alpha_a)_a)_a = \varnothing a^* + \varnothing a^* + \varepsilon a^* & \equiv \varnothing a^* + \varepsilon a^* = (\alpha_a)_a & \text{modulo ACI of } + \end{array}$$

Remark

• 'easy' Kleene algebra axioms: ACI of +

$$a + (b + c) = (a + b) + c$$

$$a+b=b+a$$

$$a + a = a$$

$$\begin{array}{lll} \alpha=a^* & \alpha_a=\varepsilon a^* & (\alpha_a)_a=\varnothing a^*+\varepsilon a^* & ((\alpha_a)_a)_a=\varnothing a^*+\varnothing a^*+\varepsilon a^* & (((\alpha_a)_a)_a)_a=\cdots \\ ((\alpha_a)_a)_a=\varnothing a^*+\varnothing a^*+\varepsilon a^*\equiv \varnothing a^*+\varepsilon a^*=(\alpha_a)_a & \text{modulo ACI of } + \end{array}$$

Remark

• 'easy' Kleene algebra axioms: ACI of +

$$a + (b+c) = (a+b) + c$$

$$a+b=b+a$$

$$a + a = a$$

Lemma

every regular expression has finitely many derivatives modulo ACI of +

$$\begin{array}{lll} \alpha=a^* & \alpha_a=\varepsilon a^* & (\alpha_a)_a=\varnothing a^*+\varepsilon a^* & ((\alpha_a)_a)_a=\varnothing a^*+\varnothing a^*+\varepsilon a^* & (((\alpha_a)_a)_a)_a=\cdots \\ ((\alpha_a)_a)_a=\varnothing a^*+\varnothing a^*+\varepsilon a^*\equiv \varnothing a^*+\varepsilon a^*=(\alpha_a)_a & \text{modulo ACI of } + \end{array}$$

Remark

• 'easy' Kleene algebra axioms: ACI of +

$$a + (b + c) = (a + b) + c$$

$$a+b=b+a$$
 $a+a=a$

$$a + a = a$$

using more Kleene algebra axioms might speed up computation of equivalent DFA

every regular expression has finitely many derivatives modulo ACI of +

Notation

A Quick Recap

 $A\downarrow$ denotes $\varepsilon\in A$

Kleene Algebra

Notation

A Ouick Recap

 $A\downarrow$ denotes $\varepsilon\in A$

Definition

bisimulation is binary relation \sim between languages over alphabet Σ

 $A \downarrow$ denotes $\varepsilon \in A$

Definition

bisimulation is binary relation \sim between languages over alphabet Σ such that if $A \sim B$ then

Kleene Algebra

 $A\downarrow$ denotes $\varepsilon\in A$

Definition

bisimulation is binary relation \sim between languages over alphabet Σ such that if $A \sim B$ then

Kleene Algebra

- **①** $A_a \sim B_a$ for all $a \in \Sigma$
- \bigcirc $A\downarrow \iff B\downarrow$

Kleene Algebra

Example (bisimulation of languages)

A Ouick Recap

$$L = \{aa, ba\}$$
 and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

Kleene Algebra

Example (bisimulation of languages)

A Ouick Recap

 $L = \{aa, ba\}$ and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

$$L = \{aa, ba\}$$
 and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

1
$$L_a \sim M_a = \{a\} \sim \{a\}$$

 $L = \{aa, ba\}$ and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

- 1 $L_a \sim M_a = \{a\} \sim \{a\}$
- 2 $L_b \sim M_b = \{a\} \sim \{b\}$

 $L = \{aa, ba\}$ and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

- **1** $L_a \sim M_a = \{a\} \sim \{a\}$
- 2 $L_b \sim M_b = \{a\} \sim \{b\}$

 $L = \{aa, ba\}$ and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

- **1** $L_a \sim M_a = \{a\} \sim \{a\}$
- 2 $L_b \sim M_b = \{a\} \sim \{b\}$
- 3 $L\downarrow \iff M\downarrow \checkmark$

 $L = \{aa, ba\}$ and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

- **1** $L_a \sim M_a = \{a\} \sim \{a\}$
- 2 $L_b \sim M_b = \{a\} \sim \{b\}$

$$L = \{aa, ba\}$$
 and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

if $L \sim M$ then it must be that

1
$$L_a \sim M_a = \{a\} \sim \{a\}$$

2
$$L_b \sim M_b = \{a\} \sim \{b\}$$

$$\mathbf{3} \ L\downarrow \iff M\downarrow \checkmark$$

$$L = \{aa, ba\}$$
 and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

if $L \sim M$ then it must be that

1
$$L_a \sim M_a = \{a\} \sim \{a\}$$

2
$$L_b \sim M_b = \{a\} \sim \{b\}$$

$$L = \{aa, ba\}$$
 and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

if $L \sim M$ then it must be that

1
$$L_a \sim M_a = \{a\} \sim \{a\}$$

2
$$L_b \sim M_b = \{a\} \sim \{b\}$$

$$(L_b)_b \sim (M_b)_b = \emptyset \sim \{\varepsilon\}$$

$$L = \{aa, ba\}$$
 and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

if $L \sim M$ then it must be that

1
$$L_a \sim M_a = \{a\} \sim \{a\}$$

2
$$L_b \sim M_b = \{a\} \sim \{b\}$$

$$(L_b)_b \sim (M_b)_b = \emptyset \sim \{\varepsilon\}$$

$$3 L_b \downarrow \iff M_b \downarrow$$

$$L = \{aa, ba\}$$
 and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

if $L \sim M$ then it must be that

1
$$L_a \sim M_a = \{a\} \sim \{a\}$$

2
$$L_b \sim M_b = \{a\} \sim \{b\}$$

$$(L_b)_b \sim (M_b)_b = \emptyset \sim \{\varepsilon\}$$

$$L = \{aa, ba\}$$
 and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

if $L \sim M$ then it must be that

1
$$L_a \sim M_a = \{a\} \sim \{a\}$$

2
$$L_b \sim M_b = \{a\} \sim \{b\}$$

$$(L_b)_b \sim (M_b)_b = \emptyset \sim \{\varepsilon\} \qquad \times$$

$$L = \{aa, ba\}$$
 and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

if $L \sim M$ then it must be that

1
$$L_a \sim M_a = \{a\} \sim \{a\}$$

2
$$L_b \sim M_b = \{a\} \sim \{b\}$$

if $L_b \sim M_b$ then it must be that

3
$$L_b \downarrow \iff M_b \downarrow \checkmark$$

languages L_b and M_b are not bisimilar therefore L and M cannot be bisimilar

 $L = \{aa, ba\}$ and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

if $L \sim M$ then it must be that

1
$$L_a \sim M_a = \{a\} \sim \{a\}$$

2
$$L_b \sim M_b = \{a\} \sim \{b\}$$

$$\mathbf{3} L \downarrow \iff M \downarrow \checkmark$$

if $L_b \sim M_b$ then it must be that

$$(L_b)_b \sim (M_b)_b = \emptyset \sim \{\varepsilon\} X$$

languages L_b and M_b are not bisimilar therefore L and M cannot be bisimilar

Remark

only equal languages are bisimilar (next slide)

(next slide

Theoren

A Ouick Recap

1 regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Kleene Algebra

2 $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

1 regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Kleene Algebra

2 $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Proof. (second statement)

A Ouick Recap

- 1 regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim
- **2** $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Proof. (second statement)

 \implies identity relation on languages is bisimulation that satisfies $L(\alpha) = L(\beta)$

- **1** regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim
- 2 $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation ~

Proof. (second statement)

- \implies identity relation on languages is bisimulation that satisfies $L(\alpha) = L(\beta)$
- \iff suppose $x \in L(\alpha)$

1 regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Kleene Algebra

2 $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Proof. (second statement)

- identity relation on languages is bisimulation that satisfies $L(\alpha) = L(\beta)$
- suppose $x \in L(\alpha)$ we show $x \in L(\beta)$ by induction on x

A Ouick Recap

1 regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Kleene Algebra

2 $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Proof. (second statement)

 \implies identity relation on languages is bisimulation that satisfies $L(\alpha) = L(\beta)$

 \iff suppose $x \in L(\alpha)$

we show $x \in L(\beta)$ by induction on x

• if $x = \varepsilon$ then $L(\alpha) \downarrow$

1 regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Kleene Algebra

2 $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Proof. (second statement)

identity relation on languages is bisimulation that satisfies $L(\alpha) = L(\beta)$

suppose $x \in L(\alpha)$

we show $x \in L(\beta)$ by induction on x

• if $x = \varepsilon$ then $L(\alpha) \perp$ $L(\beta)\downarrow$ because $L(\alpha) \sim L(\beta)$

A Ouick Recap

- **1** regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim
- **2** $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Proof. (second statement)

- \implies identity relation on languages is bisimulation that satisfies $L(\alpha) = L(\beta)$
- \iff suppose $x \in L(\alpha)$

we show $x \in L(\beta)$ by induction on x

• if $x = \varepsilon$ then $L(\alpha) \downarrow$ $L(\beta) \downarrow$ because $L(\alpha) \sim L(\beta)$ and thus $x \in L(\beta)$

A Ouick Recap

- **1** regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim
- 2 $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Proof. (second statement)

- \implies identity relation on languages is bisimulation that satisfies $L(\alpha) = L(\beta)$
- \iff suppose $x \in L(\alpha)$

- if $x = \varepsilon$ then $L(\alpha) \downarrow$ $L(\beta) \downarrow$ because $L(\alpha) \sim L(\beta)$ and thus $x \in L(\beta)$
- x = ay for some $a \in \Sigma$ with IH: $\forall a \in \Sigma, y \in L(\alpha)_a \longleftrightarrow y \in L(\beta)_a$

A Ouick Recap

- 1 regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim
- 2 $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation ~

Proof. (second statement)

- identity relation on languages is bisimulation that satisfies $L(\alpha) = L(\beta)$
- suppose $x \in L(\alpha)$

- if $x = \varepsilon$ then $L(\alpha)1$ $L(\beta)\downarrow$ because $L(\alpha) \sim L(\beta)$ and thus $x \in L(\beta)$
- x = ay for some $a \in \Sigma$ with IH: $\forall a \in \Sigma, y \in L(\alpha)_a \leftrightarrow y \in L(\beta)_a$ given x = ay then $y \in L(\alpha)_a$

1 regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Kleene Algebra

2 $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation ~

Proof. (second statement)

- identity relation on languages is bisimulation that satisfies $L(\alpha) = L(\beta)$
- suppose $x \in L(\alpha)$

- if $x = \varepsilon$ then $L(\alpha)1$ $L(\beta)\downarrow$ because $L(\alpha) \sim L(\beta)$ and thus $x \in L(\beta)$
- x = ay for some $a \in \Sigma$ with IH: $\forall a \in \Sigma, y \in L(\alpha)_a \leftrightarrow y \in L(\beta)_a$ given x = ay then $y \in L(\alpha)_a$ $y \in L(\beta)_a$ according to IH

A Ouick Recap

- 1 regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim
- 2 $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation ~

Proof. (second statement)

- identity relation on languages is bisimulation that satisfies $L(\alpha) = L(\beta)$
- suppose $x \in L(\alpha)$

- if $x = \varepsilon$ then $L(\alpha)1$ $L(\beta)\downarrow$ because $L(\alpha) \sim L(\beta)$ and thus $x \in L(\beta)$
- x = ay for some $a \in \Sigma$ with IH: $\forall a \in \Sigma, y \in L(\alpha)_a \leftrightarrow y \in L(\beta)_a$ given x = ay then $y \in L(\alpha)_a$ $y \in L(\beta)_a$ according to IH therefore $L(\alpha)_a = L(\beta)_a \quad \forall a \in \Sigma$

- 1 regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim
- 2 $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation ~

Proof. (second statement)

- \implies identity relation on languages is bisimulation that satisfies $L(\alpha) = L(\beta)$
- \iff suppose $x \in L(\alpha)$

- if $x = \varepsilon$ then $L(\alpha) \downarrow$ $L(\beta) \downarrow$ because $L(\alpha) \sim L(\beta)$ and thus $x \in L(\beta)$
- x = ay for some $a \in \Sigma$ with IH: $\forall a \in \Sigma, y \in L(\alpha)_a \longleftrightarrow y \in L(\beta)_a$ given x = ay then $y \in L(\alpha)_a$ $y \in L(\beta)_a$ according to IH therefore $L(\alpha)_a = L(\beta)_a \quad \forall a \in \Sigma$ and thus $L(\alpha) = L(\beta)$

Kleene Algebra

Example

A Quick Recap

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$

$$\begin{array}{c|cccc} & a & b \\ \hline \alpha & \alpha & \alpha & \downarrow \end{array}$$

Kleene Algebra

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

Kleene Algebra

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

$$\begin{array}{c|cccc} & a & b \\ \hline \alpha & \alpha & \alpha & \downarrow \end{array}$$

Kleene Algebra

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

$$\begin{array}{c|cccc} & a & b & \\ \hline \alpha & \alpha & \alpha & \downarrow \end{array}$$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

1
$$L(\alpha)_a \sim L(\beta)_a = L(\alpha_a) \sim L(\beta_a) = L(\alpha) \sim L(\gamma)$$

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

$$\begin{array}{c|cccc} & a & b & \\ \hline \alpha & \alpha & \alpha & \downarrow \end{array}$$

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

$$\begin{array}{c|c|c|c} & a & b & \\ \hline \alpha & \alpha & \alpha & \downarrow \end{array}$$

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

$$\begin{array}{c|cccc} & a & b & \\ \hline \alpha & \alpha & \alpha & \downarrow \end{array}$$

1
$$L(\alpha)_{\partial} \sim L(\beta)_{\partial} = L(\alpha_{\partial}) \sim L(\beta_{\partial}) = L(\alpha) \sim L(\gamma)$$

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

1
$$L(\alpha)_a \sim L(\beta)_a = L(\alpha_a) \sim L(\beta_a) = L(\alpha) \sim L(\gamma)$$

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

$$\begin{array}{c|cccc} & a & b & \\ \hline \alpha & \alpha & \alpha & \downarrow \end{array}$$

if
$$L(\alpha) \sim L(\gamma)$$
, it must be that

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

Example

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

3
$$L(\alpha) \downarrow \iff L(\beta) \downarrow \checkmark$$

if
$$L(\alpha) \sim L(\gamma)$$
, it must be that

$$1 L(\alpha)_a \sim L(\gamma)_a = L(\alpha_a) \sim L(\gamma_a) = L(\alpha) \sim L(\gamma)$$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

1
$$L(\alpha)_a \sim L(\beta)_a = L(\alpha_a) \sim L(\beta_a) = L(\alpha) \sim L(\gamma)$$

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

2
$$L(\alpha)_b \sim L(\gamma)_b = L(\alpha_b) \sim L(\gamma_b) = L(\alpha) \sim L(\beta)$$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

$$\exists L(\alpha) \downarrow \iff L(\beta) \downarrow \checkmark$$

if
$$L(\alpha) \sim L(\gamma)$$
, it must be that

1
$$L(\alpha)_a \sim L(\gamma)_a = L(\alpha_a) \sim L(\gamma_a) = L(\alpha) \sim L(\gamma)$$

2
$$L(\alpha)_b \sim L(\gamma)_b = L(\alpha_b) \sim L(\gamma_b) = L(\alpha) \sim L(\beta)$$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

$$\exists L(\alpha) \downarrow \iff L(\beta) \downarrow \checkmark$$

if
$$L(\alpha) \sim L(\gamma)$$
, it must be that

1
$$L(\alpha)_a \sim L(\gamma)_a = L(\alpha_a) \sim L(\gamma_a) = L(\alpha) \sim L(\gamma)$$

2
$$L(\alpha)_b \sim L(\gamma)_b = L(\alpha_b) \sim L(\gamma_b) = L(\alpha) \sim L(\beta)$$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

$$\begin{array}{c|cccc} & a & b \\ \hline \alpha & \alpha & \alpha & \downarrow \end{array}$$

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

$$\exists L(\alpha) \downarrow \iff L(\beta) \downarrow \checkmark$$

if
$$L(\alpha) \sim L(\gamma)$$
, it must be that

1
$$L(\alpha)_a \sim L(\gamma)_a = L(\alpha_a) \sim L(\gamma_a) = L(\alpha) \sim L(\gamma)$$

2
$$L(\alpha)_b \sim L(\gamma)_b = L(\alpha_b) \sim L(\gamma_b) = L(\alpha) \sim L(\beta)$$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

$$\begin{array}{c|cccc} & a & b \\ \hline \alpha & \alpha & \alpha & \downarrow \end{array}$$

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

$$\exists L(\alpha) \downarrow \iff L(\beta) \downarrow \checkmark$$

if
$$L(\alpha) \sim L(\gamma)$$
, it must be that

1
$$L(\alpha)_a \sim L(\gamma)_a = L(\alpha_a) \sim L(\gamma_a) = L(\alpha) \sim L(\gamma)$$

2
$$L(\alpha)_b \sim L(\gamma)_b = L(\alpha_b) \sim L(\gamma_b) = L(\alpha) \sim L(\beta)$$

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

$$\begin{array}{c|cccc} & a & b \\ \hline \alpha & \alpha & \alpha & \downarrow \end{array}$$

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

1
$$L(\alpha)_a \sim L(\gamma)_a = L(\alpha_a) \sim L(\gamma_a) = L(\alpha) \sim L(\gamma)$$

2
$$L(\alpha)_b \sim L(\gamma)_b = L(\alpha_b) \sim L(\gamma_b) = L(\alpha) \sim L(\beta)$$

3
$$L(\alpha) \downarrow \iff L(\gamma) \downarrow \checkmark$$

Example

$$\alpha = (a+b)^*$$
 and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

$$\begin{array}{c|c|c|c} & a & b \\ \hline \alpha & \alpha & \alpha & \downarrow \end{array}$$

if $L(\alpha) \sim L(\beta)$, it must be that

1
$$L(\alpha)_a \sim L(\beta)_a = L(\alpha_a) \sim L(\beta_a) = L(\alpha) \sim L(\gamma)$$

2
$$L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$$

if $L(\alpha) \sim L(\gamma)$, it must be that

2
$$L(\alpha)_b \sim L(\gamma)_b = L(\alpha_b) \sim L(\gamma_b) = L(\alpha) \sim L(\beta)$$

hence $\{(L(\alpha), L(\beta)), (L(\alpha), L(\gamma))\}\$ is bisimulation and thus $L(\alpha) = L(\beta) = L(\gamma)$

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

derivatives

$$\alpha_{a} = b^{*}(a+b)^{*}b =: \alpha_{1}$$

$$(\alpha_{1})_{a} = (a+b)^{*}b =: \alpha_{2}$$

$$(\alpha_{2})_{a} = \alpha_{2}$$

$$(\alpha_{3})_{a} = \alpha_{2}$$

$$(\alpha_{4})_{a} = \alpha_{2}$$

$$\beta_{a} = a^{*}(b^{*}a)^{*}b =: \beta_{1}$$

$$(\beta_{1})_{a} = a^{*}(b^{*}a)^{*}b + (b^{*}a)^{*}b =: \beta_{2}$$

$$(\beta_{2})_{a} = \beta_{2}$$

$$(\beta_{3})_{a} = (b^{*}a)^{*}b =: \beta_{4}$$

$$(\beta_{4})_{a} = \beta_{4}$$

$$(\beta_{5})_{a} = \beta_{4}$$

$$\alpha_b = \emptyset$$

$$(\alpha_1)_b = b^* (a+b)^* b + (a+b)^* b + \varepsilon =: \alpha_3$$

$$(\alpha_2)_b = (a+b)^* b + \varepsilon =: \alpha_4$$

$$(\alpha_3)_b = \alpha_3$$

$$(\alpha_4)_b = \alpha_4$$

$$\beta_b = \emptyset$$

$$(\beta_1)_b = b^* a (b^* a)^* b + \varepsilon =: \beta_3$$

$$(\beta_2)_b = \beta_3$$

$$(\beta_3)_b = b^* a (b^* a)^* b =: \beta_5$$

$$(\beta_4)_b = \beta_3$$

$$(\beta_5)_b = \beta_5$$

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

tables

	а	b				b	
α	α_1	Ø	1	β	β_1	Ø	1
$lpha_1$	α_2	α_3	1	$oldsymbol{eta}_1$	β_2	β_3	1
	α_2	α_4	 Î	β_2	β_2	β_3	1
	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	1
α_4	α_2	α_4	↓	β_4	β_4	β_3	1
Ø	Ø	Ø	1	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	β_1 β_2 β_2 β_4 β_4 β_4 \emptyset	Ø	1

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

tables

	а	b			а	b	
α	α_1	Ø	1	β	β_1	Ø	1
$lpha_1$	α_2	α_3	1	$oldsymbol{eta_1}$	β_2	β_3	1
α_2	α_2	α_4	1	$oldsymbol{eta}_2$	β_2	β_3	1
α_3	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	↓
α_4	α_2	α_4	↓	β_4	β_4	β_3	1
Ø	Ø	Ø	1	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	Ø	Ø	1

Kleene Algebra

• any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_1) \sim L(\beta_1)$

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

tables

		а	b			а	b	
- 0	χ	α_1	Ø	1	β	β_1	Ø	1
C	χ_1	α_2	α_3	1	$oldsymbol{eta_1}$	β_2	β 3	1
C	x ₂	α_2	α_4	1	$oldsymbol{eta}_2$	β_2	β_3	1
C	x 3	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	↓
C	x ₄	α_2	α_4	↓	β_4	β_4	β_3	1
	Ø	Ø	Ø	1	$oldsymbol{eta}_5$	β_4	β_5	1
					Ø	Ø	Ø	1

Kleene Algebra

• any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_3) \sim L(\beta_3)$

$$\alpha = ab^*(a+b)^*b \text{ and } \beta = aa^*(b^*a)^*b$$

tables

	a	b			а	b	
α	α_1	Ø	1	β	β_1	Ø	1
$lpha_1$	α_2	α_3	1	$oldsymbol{eta_1}$	β_2	β_3	1
α_2	α_2	α_4	1	$oldsymbol{eta}_2$	β_2	β_3	1
α_3	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	↓
α_4	α_2	α_4	↓	β_4	β_4	β_3	1
Ø	Ø	Ø	↑	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	Ø	Ø	1

Kleene Algebra

• any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_3) \sim L(\beta_5)$

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

tables

	a	b			а	b	
α	α_1	Ø	1	β	β_1	Ø	1
$lpha_1$	α_2	α_3	1	$oldsymbol{eta_1}$	β_2	β_3	1
α_2	α_2	α_4	1	$oldsymbol{eta}_2$	β_2	β_3	1
α_3	α_2	α_3	1	$oldsymbol{eta}_3$	β_4	β_5	↓
α_4	α_2	α_4	↓	β_4	β_4	β_3	1
Ø	Ø	Ø	↑	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	Ø	Ø	1

- any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_3) \sim L(\beta_5)$
- $L(\alpha_3)\downarrow$ and $L(\beta_5)\uparrow$

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

tables

	a	b			а	b	
α	α_1	Ø	1	β	β_1	Ø	1
α_1	α_2	α_3	1	$oldsymbol{eta_1}$	β_2	β_3	
α_2	α_2	α_4	1	$oldsymbol{eta}_2$	β_2	β_3	1
α_3	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	↓
α_4			↓	β_4	β_4	β_3	1
Ø	Ø	Ø	1	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	Ø	Ø	1

- any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_3) \sim L(\beta_5)$
- $L(\alpha_3)\downarrow$ and $L(\beta_5)\uparrow$

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

tables

		а	b				а	b	
-	χ	α_1	Ø	1	-μ	3	β_1	Ø	1
C	χ_1	α_2	α_3	1	F	31	β_2	β_3	1
C	χ_2	α_2	α_4	1	f	32	β_2	β_3	1
C	χ_3	α_2	α_3	↓	f	33	β_4	β_5	↓
C	χ_4	α_2	α_4	↓	f	34	β_4	β_3	1
	Ø	Ø	Ø	↑	f	35	β_4	β_5	1
						Ø	Ø	Ø	1

- any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_3) \sim L(\beta_5)$
- $L(\alpha_3)\downarrow$ and $L(\beta_5)\uparrow$
- $L(\alpha) \neq L(\beta)$

$$\alpha = ab^*(a+b)^*b$$
 and $\beta = aa^*(b^*a)^*b$

tables

	a	b			а	b	
α	α_1	Ø	1	β	β_1	Ø	1
α_1	α_2	α_3	1	$oldsymbol{eta_1}$	β_2	β_3	
α_2	α_2	α_4	1	$oldsymbol{eta}_2$	β_2	β_3	1
α_3	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	↓
α_4			↓	β_4	β_4	β_3	1
Ø	Ø	Ø	1	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	Ø	Ø	1

- any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_3) \sim L(\beta_5)$
- $L(\alpha_3)\downarrow$ and $L(\beta_5)\uparrow$
- $L(\alpha) \neq L(\beta)$ (witness: $abb \in L(\alpha) \setminus L(\beta)$)

Thanks! & Questions?