

EL TEOREMA DE GAUSS-BONNET II

Alan Reyes-Figueroa Geometría Diferencial

(AULA 29) 07.MAYO.2021

Triangulaciones

ejemplos de triangulaciones para algunas superficies.

Triangulaciones para una región regular R.

Triangulaciones

La pregunta de si es posible triangular cualquier variedad ha sido ampliamente investigada. Algunos resultados:

- Toda variedad diferenciable (*smooth manifold*) admite una triangulación (J. H. C. Whitehead, L. E. J. Brouwer, 1949), (James Munkres, 1967).
- Toda variedad topológica (topological manifold) de dimensión 1, 2 ó 3, admite una triangulación. Provado para superficies por Tibor Radó (1920s), y para 3-variedades por Edwin E. Moise y R. H. Bing (1950s).
- En dimensión 4, la variedad E8 no admite triangulación.
- R. Kirby y L. Siebenmann, (1970s) hallaron ejemplos de variedades en dimensión 4 que no admiten triangulaciónes lineales por pedazos: contraejemplo al *Hauptvermutung* (conjetura principal).
- En 2013, Ciprian Manolescu desprueba la *Triangulation Conjecture*. Muestra que existen variedades en dimensión ≥ 5 que no son homeomorfas a un complejo simplicial.

Característica de Euler

Definición

Sea $\mathcal K$ un complejo simplicial de dimensión n. Para $d=0,1,2,\ldots,n$, el d**-esqueleto** de $\mathcal K$ es el conjunto $\mathcal K_d=\{\sigma\in\mathcal K:\dim\sigma=d\}$ de los d-simplejos contenidos en $\mathcal K$. Las cardinalidades

$$\beta_i = \beta_i(\mathcal{K}) = |\mathcal{K}_i| = \dim H_i(\mathcal{K}, \mathbb{Z}),$$

se llaman los **números de Betti** de K.

Definición

La **característica de Euler** de un complejo simplicial ${\mathcal K}$ es el número

$$\chi(\mathcal{K}) = \sum_{i=0}^{\dim \mathcal{K}} (-1)^i \, \beta_i(\mathcal{K}) = \sum_{i=0}^{\dim \mathcal{K}} (-1)^i \, |\mathcal{K}_i|.$$

Característica de Euler

Propiedades:

- $\chi(\mathcal{K})$ es un invariante topológico.
- En particular, si R es una variedad topológica (o una región), y $\mathcal K$ es una triangulación para R, vale

$$\chi(R) = \chi(\mathcal{K}).$$

• En el caso de superficies, si $R \subseteq \mathbf{x}(U)$ es una región regular sobre una superficie, y \mathcal{K} es una triangulación de R, entonces

$$\chi(R) = \chi(\mathcal{K}) = \sum_{i=0}^{2} (-1)^{i} |\mathcal{K}_{i}| = |\mathcal{K}_{0}| - |\mathcal{K}_{1}| + |\mathcal{K}_{2}|$$

$$= V - A + F.$$

(V = # vértices, A = # de aristas, F = # de caras).

Característica de Euler

Ejemplos:

- La característica de Euler de la esfera S^2 es $\chi(S^2)=2$.
- La característica de Euler de una superficie compacta orientable de género g es $\chi(S)=2-2g$.
- El **Teorema de Clasificación de Superficies Compactas**, establece que toda superficie compacta está determinada por su característica de Euler, a menos de homeomorfismo.
 - ∘ Para S_q orientable: $\chi(S_q) = 2 2g$
 - \circ Para N_g no-orientable: $\chi(N_g)=2-g$
- En general, para superficies o regiones (orientables), con género g, y b componentes frontera, $\chi(R)=2-2g-b$.
- Para el disco $\mathbb D$ o cualquier región simple R, $\chi(R)=1$.
- Para el cilindro $C = S^1 \times \mathbb{R}$, $\chi(C) = 0$.

Triangulaciones

Recordemos que $\mathcal K$ es una triangulación de una región R si:

- $T_i, T_i \in \mathcal{K}$ y $T_i \cap T_i \neq \emptyset \Rightarrow T_i \cap T_i$ es una arista o vértice común.
- $R = \bigcup_{T \in \mathcal{K}} T$.

Proposición

Sea S una superficie regular orientada, $R \subseteq S$ una región regular, y sea $\mathbf{x}_{\alpha}: \bigcup_{\alpha} U_{\alpha}\mathbb{R}^2 \to S$ una colección de parametrizaciones positivas tales que $R \subseteq \bigcup_{\alpha} \mathbf{x}_{\alpha}(U_{\alpha})$. Entonces, existe una triangulación $\mathcal{K} = \{T_j\}_{j=1}^r$ de R de modo que para $j = 1, 2, \ldots, r$ existe α_j con $T_j \subseteq \mathbf{x}_{\alpha_j}(U_{\alpha_j})$.

Más aún, si orientamos los ∂T_j positivamente, triángulos adyacentes inducen orientaciones opuestas sobre la arista común. \Box

Obs! Sabemos que cada triángulo T_j de la triangulación \mathcal{K} está contenido en la imagen de una parametrización ortogonal (F = 0).

Nuestro objetivo ahora es elaborar una versión del Teorema de Gauss-Bonnet para una región regular *R* limitada cualquiera.

Sea S superficie orientada, $\mathbf{x}: U \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ parametrización regular, y sea $R \subseteq \mathbf{x}(U)$ una región regular, cuya frontera ∂R está parametrizada por una curva $\alpha: [a,b] \to \mathbf{x}(U)$, regular por partes, en $a=t_0 < t_1 < \ldots < t_n = b$, y parametrizada por longitud de arco, y $\partial R = \alpha_1 \cup \ldots \cup \alpha_c$.

Entonces

Teorema (Teorema de Gauss-Bonnet global)

$$\int_{R} \mathsf{K} \, \mathsf{dS} + \int_{\partial R} \kappa_{g} \, \mathsf{dS} + \sum_{\ell=1}^{\mathsf{c}} heta_{\ell} = \mathbf{2} \pi \chi(R).$$

Prueba:

Sea $\mathcal{K} = \{T_j\}_{j=1}^r$ una triangulación de la región R (sobre S), orientada positivamente. Para cada triángulo T_j , el teorema de Gauss-Bonnet local establece

$$\int_{\mathsf{T}_{j}} \mathsf{K} \, \mathsf{dS} + \int_{\partial \mathsf{T}_{j}} \kappa_{g} \, \mathsf{dS} + \sum_{k=1}^{3} \theta_{jk} = 2\pi, \quad j = 1, 2, \dots, r;$$

donde $\theta_{j_1}, \theta_{j_2}, \theta_{j_3}$ son los ángulos externos a T_j . Denotamos

 $V = \text{número de vértices en } \mathcal{K},$

 $A = número de aristas en \mathcal{K},$

 $F = \text{número de caras o regiones triangulares en } \mathcal{K}.$

Sumando las ecuaciones anteriores, para j = 1, 2, ..., r, obtenemos

$$\int_{R} K dS + \int_{\partial R} \kappa_{g} ds + \sum_{i=1}^{r} \sum_{k=1}^{3} \theta_{jk} = 2\pi F.$$
 (1)

Los ángulos internos de los triángulos T_i son

$$\varphi_{jk} = \pi - \theta_{jk} \implies \sum_{j=1}^{r} \sum_{k=1}^{3} \theta_{jk} = \sum_{j=1}^{r} \sum_{k=1}^{3} (\pi - \varphi_{jk}) = 3\pi F - \sum_{j=1}^{r} \sum_{k=1}^{3} \varphi_{jk}.$$

Entonces (1) puede escribirse como

$$\int_{R} K dS + \int_{\partial R} \kappa_{g} dS - \sum_{j=1}^{r} \sum_{k=1}^{3} \varphi_{jk} = -\pi F.$$
 (2)

Observe ahora que en una triangulación ${\mathcal K}$ tenemos varios tipos de vértices:

Denotemos

 V_i = número de vértices internos en \mathcal{K} ,

 V_e = número de vértices externos en \mathcal{K} ,

 $V_c = \text{número de vértices externos que son vértices de la curva } \partial R$,

 $V_t = V_e - V_c = \text{número de vértices externos de la triangulación } \mathcal{K}$.

У

 A_i = número de aristas internos en \mathcal{K} ,

 A_e = número de aristas externos en \mathcal{K} .

Como las componentes α_j de ∂R son curvas cerradas, entonces $V_e = A_e$. Además, en la triangulación \mathcal{K} vale $3F = 2A_i + A_e$

$$\Rightarrow A_e + 3F = 2A_i + 2A_e = 2A \Rightarrow A_e = 2A - 3F.$$

Entonces

$$\sum_{j=1}^{r} \sum_{k=1}^{3} \theta_{jk} = 3\pi F - \sum_{j=1}^{r} \sum_{k=1}^{3} \varphi_{jk} = \pi (2A_i + A_e) - \sum_{j=1}^{r} \sum_{k=1}^{3} \varphi_{jk}$$
$$= 2\pi A_i + \pi A_e - \sum_{i=1}^{r} \sum_{k=1}^{3} \varphi_{jk}.$$

$$\Rightarrow \sum_{j=1}^{r} \sum_{k=1}^{3} \theta_{jk} = 2\pi A_{i} + \pi A_{e} - \sum_{j=1}^{r} \sum_{k=1}^{3} \varphi_{jk}$$

$$= 2\pi A_{i} + \pi A_{e} - \left(2\pi V_{i} + \pi V_{t} + \sum_{\ell=1}^{c} (\pi - \theta_{\ell})\right)$$

$$= 2\pi A_{i} + \pi A_{e} - 2\pi V_{i} - \pi V_{t} - \pi V_{c} + \sum_{\ell=1}^{c} \theta_{\ell}$$

$$= 2\pi A_{i} + \pi A_{e} + (\pi A_{e} - \pi V_{e}) - 2\pi V_{i} - \pi V_{t} - \pi V_{c} + \sum_{\ell=1}^{c} \theta_{\ell}$$

$$= 2\pi (A_{i} + A_{e}) - 2\pi (V_{i} + V_{e}) + \sum_{\ell=1}^{c} \theta_{\ell} = 2\pi A_{\ell} - 2\pi V_{\ell} + \sum_{\ell=1}^{c} \theta_{\ell}.$$

Sustituyendo lo anterior en (1), resulta

$$\int_{R} K dS + \int_{\partial R} \kappa_{g} dS + \left(2\pi A - 2\pi V + \sum_{\ell=1}^{c} \theta_{\ell}\right) = 2\pi F. \tag{3}$$

Como la característica de Euler de R se calcule mediante la triangulación \mathcal{K} como $\chi(R) = V - A + F$, entonces (3) equivale a

$$\int_{R} K dS + \int_{\partial R} \kappa_{g} dS + \sum_{\ell=1}^{c} \theta_{\ell} = 2\pi V - 2\pi A + 2\pi F$$

$$= 2\pi (V - A + F)$$

$$= 2\pi \chi(R). \square$$

Corolario

Si R es una región simple sobre S, (satisfaciendo todas las hipótesis en el Teorema de Gauss-Bonnet), entonces

$$\int_R K \, dS + \int_{\partial R} \kappa_g \, ds + \sum_{\ell=1}^c \theta_\ell = 2\pi.$$

<u>Prueba</u>: Si *R* es una región simple, entonces $\chi(R) = \chi(\mathbb{D}) = 1$.

Corolario

Si S es una superficie compacta, orientable, entonces

$$\int_{S} K \, dS = 2\pi \chi(S).$$

<u>Prueba</u>: En este caso, R = S y $\partial R = \emptyset \Rightarrow \sum \theta_{\ell} = o$.

Corolario (Triángulos geodésicos)

Si R es un triángulo geodésico sobre S, con ángulos internos $\varphi_1, \varphi_2, \varphi_3$, entonces

entonces $\sum_{i=1}^{3} \varphi_i = \pi + \int_{R} K \, dS.$

Prueba: $\theta_i = \pi - \varphi_i$, $i = 1, 2, 3 \Rightarrow \sum \theta_i = 3\pi - \sum \varphi_i$. Por Gauss-Bonnet $\int_R K \, dS + \int_{\partial R} \kappa_g \, ds + \left(3\pi - \sum_{i=1}^3 \varphi_i\right) = 2\pi \chi(R).$

Como R es región simple $\Rightarrow \chi(R) = 1$. Además, como los lados de R son geodésicas, entonces $\kappa_q = 0$ sobre ∂R . Así

$$\sum_{i=1}^3 arphi_i = \pi + \int_R \mathsf{K} \, \mathsf{dS}.$$
 \square

Corolario

Toda superficie compacta, conexa, orientable, con curvatura positiva, es homeomorfa a S².

<u>Prueba</u>: Sea S orientable, compacta, conexa con curvatura K > 0. Por Gauss-Bonnet

 $2\pi\chi(S) = \int_S K \, dS > 0 \ \Rightarrow \ \chi(S) > 0.$

Como S es compacta, también $\chi(S) = 2 - 2g$, donde g es el género de S.

En particular, la única posibilidad es que g=0. Por el Teorema de clasificación de superficies compactas, $S \simeq S^2$. \square

Corolario

Sea S superficie orientable, con $K \le 0$. Entonces, dos gedésicas γ_1 , γ_2 en S que parten de un punto $\mathbf{p} \in S$ no pueden encontrarse nuevamente en un punto $\mathbf{q} \in S$ de tal forma que los trazos de γ_1 y γ_2 , constituyen la frontera de una región simple $R \subset S$.

Prueba: De Gauss-Bonnet,
$$\int_R K dS + \theta_1 + \theta_2 = 2\pi$$
.
Como $\theta_1, \theta_2 < \pi$ (¿por qué?) $\Rightarrow \theta_1 + \theta_2 < 2\pi$
 $\Rightarrow \int_R K dS > 0$.

Pero $K \leq$ o, un absurdo. \Box

Corolario

Sea S una superficie homeomorfa al cilindro $S^1 \times \mathbb{R}$, con K < 0. Entonces, S posee a lo sumo una geodésica cerrada simple.

Prueba: Tenemos dos curvas cerradas posibles sobre S:

Como K < o, y por el corolario anterior, una geodésica cerrada γ sobre S no puede ser simple. De lo contrario, γ encierra una región R, homeomorfa al disco \mathbb{D} , pues ∂R consistiría de dos geodésicas, encerrando una región simples $(\rightarrow \leftarrow)$. Portanto el primer caso no ocurre.

Supongamos ahora que γ_1 , γ_2 son geodésicas cerradas simples sobre S, como en el segundo caso. Tenemos de nuevo dos posibilidades:

El caso $\gamma_1 \cap \gamma_2 \neq \emptyset$ es imposíble. En ese caso, la región limitada R (limitada por γ_1 y γ_2) sería una región simple limitada por dos geodésicas, lo cual contradice de nuevo el corolario anterior.

Luego, $\gamma_1 \cap \gamma_2 = \emptyset$. Entonces la región comprendida entre γ_1 y γ_2 es homeomorfa al cilindro $S^1 \times \mathbb{R} \Rightarrow \chi(R) = 0$. Por Gauss-Bonnet

$$0 > \int_R K dS = 2\pi \chi(R) = 0,$$

un absurdo $(\rightarrow \leftarrow)$. Este caso tampoco es posible.

Portanto, existe a lo suma una geodésica cerrada simple. \Box