MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type (Cost):
J#:	In-Class (1AP)
Date: 2017 June 21	

Standard: This studer C05: IntTech.	nt is able to Identify appropriate integration techniques.	Mark:
4/4	\star reattempt due on:	

Draw lines matching each of the five integrals on the left with the most appropriate integration technique listed on the right. Multiple techniques may be technically possible, but choose the technique most useful to begin integration. Every integral and technique is used exactly once in the correct answer.

$$\int \sin^4(x)\cos^3(x) dx$$

$$\int \frac{x^3 + 4x - 1}{(x+4)(x^2+5)^2} dx$$

$$\int 6x^2 \sqrt{1+x^3} dx$$

$$\int \sin(2x)e^x dx$$

$$\int \frac{4}{x^2 \sqrt{x^2-1}} dx \text{ where } x > 1$$

- Integration by Substitution
- Method of Partial Fractions
- Trigonometric Identities
- Trigonometric Substitution
- Integration by Parts

MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	ype (Cost):
J#:	In-Class	s (1AP)
Date: 2017 June 21		
Standard: This student is able to		26.1
C06: AreaBtCurv. Express an area between curves as a definite integral.		Mark:
$3/4$ \star reat	tempt due on:	

Find a definite integral equal to the area bounded by y = x, y = 2x - 1, and x = 2.

MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	ype (Cost):
J#:	In-Class	s (1AP)
Date: 2017 June 21		
Standard: This student is able to S06: CrossSect. Express an area between curves as a definite integral.		Mark:
1/3 * reatt	tempt due on:	

Find a definite integral equal to the volume of the wedge-shaped solid whose base lays on the region $0 \le x \le 4$ and $0 \le y \le 2$, and whose cross-sections at each x-value are rectangles of height x.