(i) APPLICANT: Thomas, Winston J. Drayna, Dennis T. Feder, John N. Gnirke, Andreas Ruddy, David Tsuchihashi, Zenta Wolff, Roger K.

- (ii) TITLE OF INVENTION: Hereditary Hemochromatosis Gene
- (iii) NUMBER OF SEQUENCES: 44
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Townsend and Townsend and Crew LLP
 - (B) STREET: Two Embarcadero Center, Eighth Floor
 - (C) CITY: San Francisco
 - (D) STATE: California
 - (E) COUNTRY: USA
 - (F) ZIP: 94111-3834
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/652,265
 - (B) FILING DATE: 23-MAY-1996
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Smith, William M.
 - (B) REGISTRATION NUMBER: 30,223 (C) REFERENCE/DOCKET NUMBER: 17957-000500
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (415) 576-0200
 - (B) TELEFAX: (415) 576-0300
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10825 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: join(361..436, 3762..4025, 4235..4510, 5606..5881, 6040..6153, 7107..7147)
 - (D) OTHER INFORMATION: /product= "Hereditary Hemochromatosis

(ix) FEATURE:

(ix) FEATURE:

(ix) FEATURE:

(ix) FEATURE:

(ix) FEATURE:

(ix) FEATURE:

(A) NAME/KEY: -

(A) NAME/KEY: -

(A) NAME/KEY: allele

(A) NAME/KEY: allele

(A) NAME/KEY: allele

(HH) protein" /note= "Normal or wild-type (unaffected) Hereditary Hemochromatosis (HH) gene allele" (B) LOCATION: 140..7319 (D) OTHER INFORMATION: /note= "start and stop positions for normal or wild-type (unaffected) allele cDNA (SEQ ID NO:9)" (A) NAME/KEY: -(B) LOCATION: 3852..3891 (D) OTHER INFORMATION: /note= "start and stop positions for normal or wild-type (unaffected) genomic sequence surrounding variant for 24d2(C) allele (SEQ ID NO:41)" (B) LOCATION: 5507..6023 (D) OTHER INFORMATION: /note= "start and stop positions for normal or wild-type (unaffected) genomic sequence surrounding variant for 24d1(G) allele (SEQ ID NO:20)" (B) LOCATION: replace(3872, "c") (D) OTHER INFORMATION: /phenotype= "normal or wild-type (unaffected) " /label= 24d2 (B) LOCATION: replace(3878, "a") (D) OTHER INFORMATION: /phenotype= "normal or wild-type (unaffected) " /label= 24d7 (B) LOCATION: replace (5834, "g") (D) OTHER INFORMATION: /phenotype= "normal or wild-type (unaffected) " /label= 24d1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TCTAAGGTTG	AGATAAAATT	TTTAAATGTA	TGATTGAATT	TTGAAAATCA	TAAATATTTA	60
AATATCTAAA	GTTCAGATCA	GAACATTGCG	AAGCTACTTT	CCCCAATCAA	CAACACCCCT	120
TCAGGATTTA	AAAACCAAGG	GGGACACTGG	ATCACCTAGT	GTTTCACAAG	CAGGTACCTT	180
CTGCTGTAGG	AGAGAGAGAA	CTAAAGTTCT	GAAAGACCTG	TTGCTTTTCA	CCAGGAAGTT	240
TTACTGGGCA	TCTCCTGAGC	CTAGGCAATA	GCTGTAGGGT	GACTTCTGGA	GCCATCCCCG	300

TTTCCCCGCC CCCCAAAAGA AGCGGAGATT TAACGGGGAC GTGCGGC	CCAG AGCTGGGGAA 3	60
ATG GGC CCG CGA GCC AGG CCG GCG CTT CTC CTC CTG ATG Met Gly Pro Arg Ala Arg Pro Ala Leu Leu Leu Met 1 5 10		80
ACC GCG GTC CTG CAG GGG CGC TTG CTG C GTGAGTCCGA GG Thr Ala Val Leu Gln Gly Arg Leu Leu 20 25	GCTGCGGG 4	56
CGAACTAGGG GCGCGGCGGG GGTGGAAAAA TCGAAACTAG CTTTTTC	CTTT GCGCTTGGGA 5	16
GTTTGCTAAC TTTGGAGGAC CTGCTCAACC CTATCCGCAA GCCCCTC	CTCC CTACTTTCTG 5	76
CGTCCAGACC CCGTGAGGGA GTGCCTACCA CTGAACTGCA GATAGGG	GGTC CCTCGCCCCA 6	36
GGACCTGCCC CCTCCCCGG CTGTCCCGGC TCTGCGGAGT GACTTT	rgga accgcccact 6	96
CCCTTCCCCC AACTAGAATG CTTTTAAATA AATCTCGTAG TTCCTCA	ACTT GAGCTGAGCT 7	56
AAGCCTGGGG CTCCTTGAAC CTGGAACTCG GGTTTATTTC CAATGTC	CAGC TGTGCAGTTT 8	16
TTTCCCCAGT CATCTCCAAA CAGGAAGTTC TTCCCTGAGT GCTTGCC	CGAG AAGGCTGAGC 8	76
AAACCCACAG CAGGATCCGC ACGGGGTTTC CACCTCAGAA CGAATGC	CGTT GGGCGGTGGG 9	36
GGCGCGAAAG AGTGGCGTTG GGGATCTGAA TTCTTCACCA TTCCACC	CCAC TTTTGGTGAG 9	96
ACCTGGGGTG GAGGTCTCTA GGGTGGGAGG CTCCTGAGAG AGGCCTA	ACCT CGGGCCTTTC 10	56
CCCACTCTTG GCAATTGTTC TTTTGCCTGG AAAATTAAGT ATATGTT	FAGT TTTGAACGTT 11	.16
TGAACTGAAC AATTCTCTTT TCGGCTAGGC TTTATTGATT TGCAATG	STGC TGTGTAATTA 11	.76
AGAGGCCTCT CTACAAAGTA CTGATAATGA ACATGTAAGC AATGCAC	CTCA CTTCTAAGTT 12	36
ACATTCATAT CTGATCTTAT TTGATTTTCA CTAGGCATAG GGAGGTA	AGGA GCTAATAATA 12	96
CGTTTATTTT ACTAGAAGTT AACTGGAATT CAGATTATAT AACTCT	TTTC AGGTTACAAA 13	56
GAACATAAAT AATCTGGTTT TCTGATGTTA TTTCAAGTAC TACAGCT	IGCT TCTAATCTTA 14	16
GTTGACAGTG ATTTTGCCCT GTAGTGTAGC ACAGTGTTCT GTGGGT	CACA CGCCGGCCTC 14	176
AGCACAGCAC TTTGAGTTTT GGTACTACGT GTATCCACAT TTTACAC	CATG ACAAGAATGA 15	36
GGCATGGCAC GGCCTGCTTC CTGGCAAATT TATTCAATGG TACACTC	GGGC TTTGGTGGCA 15	96
GAGCTCATGT CTCCACTTCA TAGCTATGAT TCTTAAACAT CACACTC	GCAT TAGAGGTTGA 16	556
ATAATAAAAT TTCATGTTGA GCAGAAATAT TCATTGTTTA CAAGTG	TAAA TGAGTCCCAG 17	716
CCATGTGTTG CACTGTTCAA GCCCCAAGGG AGAGAGCAGG GAAACAA	AGTC TTTACCCTTT 17	776
GATATTTTGC ATTCTAGTGG GAGAGATGAC AATAAGCAAA TGAGCAG	GAAA GATATACAAC 18	336
ATCAGGAAAT CATGGGTGTT GTGAGAAGCA GAGAAGTCAG GGCAAG	TCAC TCTGGGGCTG 18	396
ACACTTGAGC AGAGACATGA AGGAAATAAG AATGATATTG ACTGGG	AGCA GTATTTCCCA 19	956
GGCAAACTGA GTGGGCCTGG CAAGTTGGAT TAAAAAGCGG GTTTTC	TCAG CACTACTCAT 20	016

GTAGGATGTC TAGCAGTATC CTGTCCTCCC TACTCACTAG GTGCTAGGAG CACTCCCCCA GTCTTGACAA CCAAAAATGT CTCTAAACTT TGCCACATGT CACCTAGTAG ACAAACTCCT GGTTAAGAAG CTCGGGTTGA AAAAAATAAA CAAGTAGTGC TGGGGAGTAG AGGCCAAGAA GTAGGTAATG GGCTCAGAAG AGGAGCCCAA AACAAGTTG TGCAGGCGC TGTAGGCTGT GGTGTAAATT CTAGCCAAGG AGTAACAGTG ATCTGTCACA GGCTTTTAAA AGATTGCTCT GGCTGCTATG TGGAAAGCAG AATGAAGGGA GCAACAGTAA AAGCAGGAGA CCAGCCAGG AAGCTGTTAC ACAGTCCAGG CAAGAGGTAG TGGAGGAGA CAGGAAAAGGG AGTGGAAAAC CATTGTCTCC TGAATATATT CTGAAGGAGA TTGCTGAAGG GAAGACAGTAA AAGCAGGAGA ATCTATGTT GTGTGAGAGA AAGAAGAAA TTGGCTGGGT GTAGTAGGCTC ATGCCAAGGA GAGGCCAAG GAGAGCAGAT TCCTGAGGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT TCTCTACAAA AAATACAAAA ATTAGCTGGG TGTGGTGGGC TGCACCTGTG ATCCTAGCTA ATGACTGTCC CACTGTACTT CAGCCTAGGT GACCAGGCAA AGTTGAGGCT GCACTGTCA ATGACTGTGC CACTGTACTT CAGCCTAGGT GACCAGGAAA GACCCTGTCC CCCTGACCC CCTGAAAAAAA AATGCAAAA ATTAGCTGGG TGCACAGGA AGTTGAGGCT GCACTGACCC CCTGAAAAAAC AATGCAAAA AATTAGCTGGG TGCACCAGGA AGTTGAGGCT CCCCTGACCC CCTGAAAAAAA AAATACAAAA ATTAGCTGGG TGCACCAGGA AGTTGAGGCT CCCCTGACCC CCTGAAAAAAA AAATACAAAA ATTAGCTGGG TGTGGTGGCA TGCACCTGTG ATCCTAGCTA ATGACTGTGC CACTGTACTT CAGCCTAGGT GACCAGGAA AGCCCTGTC CCCCTGACCC CCTGAAAAAAAAAAAAAAAAAAAAAAAAA	
GTCTTGACAA CCAAAAATGT CTCTAAACTT TGCCACATGT CACCTAGTAG ACAAACTCCT 22 GGTTAAGAAG CTCGGTTGA AAAAAATAAA CAAGTAGTGC TGGGGAGTAG AGGCCAAGAA 22 GTAGGTAATG GGCTCAGAAG AGGAGCCACA AACAAGGTTG TGCAGGCGCC TGTAGGCTGT 22 GGTGTGAATT CTAGCCAAGG AGTAACAGTG ATCTGTCACA GGCTTTTAAA AGATTGCTCT 23 GGCTGCTATG TGGAAAGCAG AATGAAGGGA GCAACAGTAA AAGCAGGGAG CCCAGCCAGG 24 AAGCTGTTAC ACAGTCCAGG CAAGAGGTAG TGGAGGGAG TGGGTGGGAA CAGAAAAGGG AAGCAGAAAA CCATTGTCTCC TGAATATATT CTGAAGGAAG TTGCTGAAGG ATCTATGTT 25 GTGTGAGAGA AAGAAGAAAA TTGGCTGGT GTAGTAGCTC ATGCCAAGGA GGAGGCCAAG 26 GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT 26 GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT 26 GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT 26 CTCGGAGGC TGAGGTGGAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCT GCAGTGAGCC 27 CTCTACAAA AAATACAAAA ATTAGCTAGG TGTGGTGGCA TGCACCTGTG ATCCTAGCTA 27 CTCTGGGAGGC TGAGGTGGAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCT GCAGTGAGCC 27 CTCTGAAAAAG AGAAGAGTTA AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGACC 26 CCTGAAAAAAC ATTGGCAAGG AGTTCAGTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG 22 CAGTGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG 23 GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGGATCAGT CAGGCTTCCA 36 GGTGAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATCCAGT CAGGCTTCCA 36 GGTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG 31 AGTGTTGAGAC CACATAGGC ACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAG 32 AGTTTGAGAC CACATAGGC ACTTTGGTG CCAGGTTTTC AGGAGCATT TGAGGTCAGG 32 AGTTTGAGAC CACATAGGC ACCTTTAGTC CCAGGTTTTC AGGAGCATT GGAGCAGGAA AAAAAAAAAA	076
GTTAAGAAG CTCGGGTTGA AAAAAATAAA CAAGTAGTGC TGGGGAGTAG AGGCCAAGAA 227 GTAGGTAATG GGCCAGAAG AGGAGCCACA AACAAGGTTG TGCAGGGGCC TGTAGGCTGT 227 GGTGTGAATT CTAGCCAAGG AGTAACAGTG ATCTGTCACA GGCTTTTAAA AGATTGCTCT 227 GGCTGCTATG TGGAAAGCAG AATGAAGGGA GCACAGTAA AAGCAGGGAG CCCAGCCAGG 244 AAGCTGTTAC ACAGTCCAGG CAAGAGGTAG TGGAGTGGC TGGGTGGGAA CAGAAAAGGG 244 AGGTGACAAAC CATTGTCTCC TGAATATATT CTGAAGGAAG TTGCTGAAGG GAGGCCAAG 246 GAGAGCAGAA AAGAGAAGAA TTGGCTGGGT GTAGTAGCTC ATGCCAAGGA GGAGGCCAAG 246 GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT 246 GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT 246 GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT 246 CTCGGGAGGC TGAGGTGGAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCT GCAGTGAGCC 247 ATGACTGTGC CACTGTACTT CAGCCTAGGT GACACAGGA AGTTGAGGCT GCAGTGAGCC 247 ACGTGGGGGA ATTGGCAAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCT GCCTGACCC 247 ACGTGGGGGTA ATTGGCAAG CCATTTCTGA GACAGAGCAA GACCCTGTCT CCCCTGACCC 247 AGGTGGGGGA ATTGGCAATG CCATTTCTGA GATGGTGAAG GACAGAGGAAA GAGCAGTTTG 247 AGGTGGGGGA ATTGGCAATG CCATTTCTGA GATGGTGAAG GACAGAGGAA GAGCCAGGT GAGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA AGGGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA AGTGTGTAAAAAA AAAAAAAAAA	136
GTAGGTAATG GGCTCAGAAG AGGAGCCACA AACAAGGTTG TGCAGGCGCC TGTAGGCTGT 23 GGTGGAATT CTAGCCAAGG AGTAACAGTG ATCTGTCACA GGCTTTTAAA AGATTGCTCT 23 GGCTGCTATG TGGAAAGCAG AATGAAGGGA GCAACAGTAA AAGCAGGGAG CCCAGCCAGG 24 AAGCTGTTAC ACAGTCCAGG CAAGAGGTAG TGGAGTGGCC TGGGTGGAAA CAGAAAAAGGG 24 AGGTGACAAAC CATTGTCTCC TGAATATATT CTGAAGGAAG TTGCTGAAGG ATCTATGTT 25 GTGTGAGAGA AAGAGAAGAA TTGGCTGGGT GTAGTAGCTC ATGCCAAGGA GGAGGCCAAG GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT 26 GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT 26 CTCGGAGGC TGAGGTGGAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCC GCAGTGAGCC 27 ATGACTGTC CACTGTACTT CAGCCTAGGT GACAGAGAA GACCCCTGTC CCCCTGACC 26 CCTGAAAAAG AGAGAGAAT AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG 22 CAGTGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GACAGAGAA GACCCTGTCC 26 GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTTCC AGGCTAGGC CACTTTGGTG GCTGAGACACAG GACCAGGCT GGCCAGGAGAAAACACAC CACATAGGC CACTTTGGTG GCTGAGAGCAA GACCCTGTCT CCCCTGACC 26 CCTGAAAAAAG AGAACAGAT AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG 22 CAGTGGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAAGGGAA GACCAGTTTG 25 GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA 36 GGTGAGAGAG AGCCCTGTCT TTGGGACAT GTTAAGTTTT AGAGTTCAGT CAGGCTTCCA 36 GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG GCTCACTTCT GTAATCCCAG CACTTTGGTG CCAGGTTTTC AGGAGCCAT GGCCAGGCT 33 AGCCTGGTGT GGTGGCCAC GCCTATAGTC CAGGTTTTC AGGAGCCTA GGCTCCAGC 33 ACCCCTGGTGT GGTGGCCAC CCCTATAGTC CAGGTTTTC AGGAGCCTA GGCCTCAGC 33 ACCCCTGGTGT GGGGCACACCC TGTCCTAAA AAAAAAAAAA	196
GGTGTGAATT CTAGCCAAGG AGTAACAGTG ATCTGTCACA GGCTTTTAAA AGATTGCTCT GGCTGCTATG TGGAAAGCAG AATGAAGGGA GCAACAGTAA AAGCAGGGAG CCCAGCCAGG AAGCTGTTAC ACAGTCCAGG CAAGAGGTAG TGGAGTGGGC TGGGTGGGAA CAGAAAAGGG AGTGACAAAC CATTGTCTCC TGAATATATT CTGAAGGAAG TTGCTGAAGG ATTCTATGTT GTGTGAAGAAA CATTGTCTCC TGAATATATT CTGAAGGAAG TTGCCAAGGA GGAGGCCAAG GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT TCTCTACAAA AAATACAAAA ATTAGCTGGG TGTGTGGCA TGCACTGTG ATCCTAGCTA CTCGGGAGGC TGAGGTGGAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCT GCAGTGAGCC CCTGAAAAAA AGAAGAAGTTA AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG CAGTGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG CAGTGGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG CAGTGGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTC CAGTGGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTC CAGTGGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTC CAGTGGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCCAAGGGT GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGTG GTTAAGTTTC AGATTCCAGT CAGGCTTCCA AGTGTGTGAGG CACAAAGGC AGTTCAGTG AAGAATTCAG GACCAAGGCT GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC AACATGGTG AACACCCATGT CTACTAAAAA TACAAAAATT AGCCTTGGTG GGTGGCGCAC GCCTATAGTC CCAGGTTTTC AGGAGGCTTA GGTAGGAGAA AGCCTTGGTG GGTGGCGCAC GCCTATAGTC CCAGGTTTTC AGGAGGCTTA GGTAGGAGAA ACCCCATGT CTACTAAAAAAAAAAAAAAAAAAAAAAAAA	256
GGCTGCTATG TGGAAAGCAG AATGAAGGGA GCAACAGTAA AAGCAGGGAG CCCAGCCAGG AAGCTGTTAC ACAGTCCAGG CAAGAGGTAG TGGAGTGGGC TGGGTGGGAA CAGAAAAGGG AGTGACAAAC CATTGTCTCC TGAATATATT CTGAAGGAAG TTGCTGAAGG ATTCTATGTT GTGTGAGAGAA AAGAGAAGAA TTGGCTGGGT GTAGTAGCTC ATGCCAAGGA GGAGGCCAAG GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT TCTCTACAAA AAATACAAAA ATTAGCTGGG TGTGGTGGCA TGCACTGTG ATCCTAGCTA CTCGGGAGGC TGAGGTGGAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCT GCAGTGAGCC CTGAAAAAAG ACATGCAATA AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG CAGTGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG GGGTAAAACA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATCCAGT CAGGCTTCCA AGTGGGGGAA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG CAGTGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG GGGTAAAACA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA AGTGGTGAGG CCACATAGGC AGTTCAGTGT AAGAATTCAG GACCAAGGGC GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGCCA ACATTGGTG AACACCCATGT CTACTAAAAA TACAAAAATT AGCCTGGTTG GGTGGCGCAC GCCTATAGTC CCAGGTTTC AGGAGGCTTA GGTAGGAGAA AGCCTGGTTG GGTGGCGCAC GCCTATAGTC CCAGGTTTCC AGGAGGCTTA GGTAGGAGAA ACCCCTTGTAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTGAGAC CCCTTCAAA AAAAAAAAAA	316
AAGCTGTTAC ACAGTCCAGG CAAGAGGTAG TGGAGTGGGC TGGGTGGGAA CAGAAAAGGG AGTGACAAAC CATTGTCTCC TGAATATATT CTGAAGGAAG TTGCTGAAGG ATTCTATGTT GTGTGAGAGA AAGAGAAGAA TTGGCTGGGT GTAGTAGCTC ATGCCAAGGA GGAGGCCAAG GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT TCTCTACAAA AAATACAAAA ATTAGCTGGG TGTGGTGGCA TGCACCTGTG ATCCTAGCTA CTCGGGAGGC TGAGGTGGAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCT GCAGTGAGCC ATGACTGTGC CACTGTACTT CAGCCTAGGT GACAGAGCAA GACCCTGTC CCCTGACCC CCTGAAAAAG AGAAGAGTTA AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG CCTGAAAAAG AGAAGAGTTA AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA AGGTGGGGAG CACATAGGC AGTTCAGTG AAGAATTCAG GACCAAGGCT GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC ACATTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC ACATTGGTG ACCCCTTTC CAGAGGAAA AAAAAAAAA AGCCCTGGTGT GGTGGCGCA CCCTATAGTC CAGGTTTTC AGGAGGCTTA GGTAGGAGAA AGCCTGGTGT GGTGGCGCA CCCTATAGTC CCAGGTTTC AGGAGGCTTA GGTAGGAGAA ACCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAG TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAAA	376
AGTGACAAAC CATTGTCTCC TGAATATATT CTGAAGGAAG TTGCTGAAGG ATTCTATGTT GTGTGAGAGA AAGAGAAGAA TTGGCTGGGT GTAGTAGCTC ATGCCAAGGA GGAGGCCAAG GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT TCTCTACAAA AAATACAAAA ATTAGCTGGG TGTGGTGGCA TGCACCTGTG ATCCTAGCTA CTCGGGAGGC TGAGGTGAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCT GCAGTGAGCC CTGAGAAAAAG AGAAGAGTTA AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG CAGTGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTA AGATTCCAGT CAGGCTTCCA AGGTGGTGAGG CCACATAGGC AGTTCAGTG AAGAATTCAG GACCAAGGCT GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC AACATGGTG AACCCCATGT CTACTAAAAA TACAAAAATT AGCCTGGTGT GGTGGCGCAC GCCTATAGTC CCAGGTTTCC AGGAGGCTA GGTAGGAGAA AGCCTGGTGTA GAGGAGACT CTGTCTCAAA AAAAAAAAAA	436
GTGTGAGAGA AAGAGAAGAA TTGGCTGGGT GTAGTAGCTC ATGCCAAGGA GGAGGCCAAG GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT TCTCTACAAA AAATACAAAA ATTAGCTGGG TGTGGTGCA TGCACCTGTG ATCCTAGCTA CTCGGGAGGC TGAGGTGGAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCT GCAGTGAGCC ATGACTGTGC CACTGTACTT CAGCCTAGGT GACAGAGCAA GACCCTGTCT CCCCTGACCC CCTGAAAAAG AGAAGAGTTA AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG CAGTGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA AGTGGTGAGG CCACATAGGC AGTTCAGTGT AAGAATTCAG GACCAAGGCT GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC AACATGGTGA AACCCCATGT CTACTAAAAA TACAAAAATT AGCCTGGTGT GGTGCGCCA GCCTATAGTC CCAGGTTTCC AGGAGGCTA GGTAGGAGAA ACCCCATGAC CCAGGAGGT CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTAGACC CTGTCTCAAA AAAAAAAAAA	496
GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT TCTCTACAAA AAATACAAAA ATTAGCTGGG TGTGGTGGCA TGCACCTGTG ATCCTAGCTA CTCGGGAGGC TGAGGTGGAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCT GCAGTGAGCC ATGACTGTGC CACTGTACTT CAGCCTAGGT GACAGAGCAA GACCCTGTCT CCCCTGACCC CCTGAAAAAG AGAAGAGTTA AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG CAGTGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA AGTGGTGAGG CCACATAGGC AGTTCAGTGT AAGAATTCAG GACCAAGGCT GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC AACATGGTGA AACCCCATGT CTACTAAAAA TACAAAAATT AGCCTGGTGT GGTGGCGCAC GCCTATAGTC CCAGGTTTCC AGGAGGCTTA GGTAGGAGAA TCCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC TCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC TCCCTTGAAC CCAGGAGGTC CTGTCTCAAA AAAAAAAAAA	556
TCTCTACAAA AAATACAAAA ATTAGCTGGG TGTGGTGGCA TGCACCTGTG ATCCTAGCTA CTCGGGAGGC TGAGGTGGAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCT GCAGTGAGCC ATGACTGTGC CACTGTACTT CAGCCTAGGT GACAGAGCAA GACCCTGTCT CCCCTGACCC CCTGAAAAAG AGAAGAGTTA AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG CAGTGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA AGTGGTGAGG CCACATAGGC AGTTCAGTGT AAGAATTCAG GACCAAGGCT GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC AACATGGTGA AACCCCATGT CTACTAAAAA TACAAAAATT AGCCTGGTGT GGTGGCGCAC GCCTATAGTC CCAGGTTTTC AGGAGGCTTA GGTAGGAGAA TCCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAAA	616
CTCGGGAGGC TGAGGTGGAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCT GCAGTGAGCC ATGACTGTGC CACTGTACTT CAGCCTAGGT GACAGAGCAA GACCCTGTCT CCCCTGACCC CCTGAAAAAG AGAAGAGTTA AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG CAGTGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA AGTGGTGAGG CCACATAGGC AGTTCAGTGT AAGAATTCAG GACCAAGGCT GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC AACATGGTGA AACCCCATGT CTACTAAAAA TACAAAAATT AGCCTGGTGT GGTGGCGCAC GCCTATAGTC CCAGGTTTTC AGGAGGCTTA GGTAGGAGAA TCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAAA	676
ATGACTGTGC CACTGTACTT CAGCCTAGGT GACAGAGCAA GACCCTGTCT CCCCTGACCC CCTGAAAAAG AGAAGAGTTA AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG CAGTGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA AGTGGTGAGG CCACATAGGC AGTTCAGTGT AAGAATTCAG GACCAAGGCT GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC AACATGGTG AACCCCATGT CTACTAAAAA TACAAAAATT AGCCTGGTGT GGTGGCGCAC GCCTATAGTC CCAGGTTTTC AGGAGGCTT GGAGGAGAA TCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAAA	736
CCTGAAAAAG AGAAGAGTTA AAGTTGACTT TGTTCTTTAT TTTAATTTA TTGGCCTGAG CAGTGGGGTA ATTGGCAATG CCATTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA AGTGGTGAGG CCACATAGGC AGTTCAGTGT AAGAATTCAG GACCAAGGCT GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC AACATGGTGA AACCCCATGT CTACTAAAAA TACAAAAATT AGCCTGGTGT GGTGGCGCAC GCCTATAGTC CCAGGTTTTC AGGAGGCTTA GGTAGGAGAA TCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAAA	796
CAGTGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA AGTGGTGAGG CCACATAGGC AGTTCAGTGT AAGAATTCAG GACCAAGGCT GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC AACATGGTGA AACCCCATGT CTACTAAAAA TACAAAAAATT AGCCTGGTGT GGTGGCGCAC GCCTATAGTC CCAGGTTTTC AGGAGGCTTA GGTAGGAGAA TCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAAA	856
GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA AGTGGTGAGG CCACATAGGC AGTTCAGTGT AAGAATTCAG GACCAAGGCT GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC AACATGGTGA AACCCCATGT CTACTAAAAA TACAAAAATT AGCCTGGTGT GGTGGCGCAC GCCTATAGTC CCAGGTTTTC AGGAGGCTTA GGTAGGAGAA TCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAAA	916
AGTEGTEAGG CCACATAGGC AGTTCAGTGT AAGAATTCAG GACCAAGGCT GGGCACGGTG GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC AACATGGTGA AACCCCATGT CTACTAAAAA TACAAAAATT AGCCTGGTGT GGTGGCGCAC GCCTATAGTC CCAGGTTTTC AGGAGGCTTA GGTAGGAGAA TCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAAA	976
GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG AGTTTGAGAC AAGCTTGGCC AACATGGTGA AACCCCATGT CTACTAAAAA TACAAAAATT AGCCTGGTGT GGTGGCGCAC GCCTATAGTC CCAGGTTTTC AGGAGGCTTA GGTAGGAGAA TCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAAA	036
AGTTTGAGAC AAGCTTGGCC AACATGGTGA AACCCCATGT CTACTAAAAA TACAAAAATT AGCCTGGTGT GGTGGCGCAC GCCTATAGTC CCAGGTTTTC AGGAGGCTTA GGTAGGAGAA TCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAAA	096
AGCCTGGTGT GGTGGCGCAC GCCTATAGTC CCAGGTTTTC AGGAGGCTTA GGTAGGAGAA TCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAAA	156
TCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAAA	216
CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAA AAAAAAAAA AAAAAAAAAA	276
AGGAATTATT CCTCAGGATT TGGGTCTAAT TTĞCCCTGAĞ CACCAACTCC TGAGTTCAAC TACCATGGCT AGACACACCT TAACATTTTC TAGAATCCAC CAGCTTTAGT GGAGTCTGTC 35 TAATCATGAG TATTGGAATA GGATCTGGGG GCAGTGAGGG GGTGGCAGCC ACGTGTGGCA 36 GAGAAAAGCA CACAAGGAAA GAGCACCCAG GACTGTCATA TGGAAGAAAG ACAGGACTGC AACTCACCCT TCACAAAATG AGGACCAGAC ACAGCTGATG GTATGAGTTG ATGCAGGTGT 36	336
TACCATGGCT AGACACACT TAACATTTC TAGAATCCAC CAGCTTTAGT GGAGTCTGTC 35 TAATCATGAG TATTGGAATA GGATCTGGGG GCAGTGAGGG GGTGGCAGCC ACGTGTGGCA 35 GAGAAAAGCA CACAAGGAAA GAGCACCCAG GACTGTCATA TGGAAGAAAG ACAGGACTGC 36 AACTCACCCT TCACAAAATG AGGACCAGAC ACAGCTGATG GTATGAGTTG ATGCAGGTGT 36	396
TAATCATGAG TATTGGAATA GGATCTGGGG GCAGTGAGGG GGTGGCAGCC ACGTGTGGCA 35 GAGAAAAGCA CACAAGGAAA GAGCACCCAG GACTGTCATA TGGAAGAAAG ACAGGACTGC 36 AACTCACCCT TCACAAAATG AGGACCAGAC ACAGCTGATG GTATGAGTTG ATGCAGGTGT 36	456
GAGAAAAGCA CACAAGGAAA GAGCACCCAG GACTGTCATA TGGAAGAAAG ACAGGACTGC 36 AACTCACCCT TCACAAAAATG AGGACCAGAC ACAGCTGATG GTATGAGTTG ATGCAGGTGT 36	516
AACTCACCCT TCACAAAATG AGGACCAGAC ACAGCTGATG GTATGAGTTG ATGCAGGTGT 36	576
	636
GTGGAGCCTC AACATCCTGC TCCCCTCCTA CTACACATGG TTAAGGCCTG TTGCTCTGTC 37	696
	756
TCCAG GT TCA CAC TCT CTG CAC TAC CTC TTC ATG GGT GCC TCA GAG Arg Ser His Ser Leu His Tyr Leu Phe Met Gly Ala Ser Glu 30 35	802

CAG GAC CTT GGT CTT TCC TTG TTT GAA GCT TTG GGC TAC GTG GAT GAC Gln Asp Leu Gly Leu Ser Leu Phe Glu Ala Leu Gly Tyr Val Asp Asp 40 50 55	3850
CAG CTG TTC GTG TTC TAT GAT CAT GAG AGT CGC CGT GTG GAG CCC CGA Gln Leu Phe Val Phe Tyr Asp His Glu Ser Arg Arg Val Glu Pro Arg 60 65 70	3898
ACT CCA TGG GTT TCC AGT AGA ATT TCA AGC CAG ATG TGG CTG CAG CTG Thr Pro Trp Val Ser Ser Arg Ile Ser Ser Gln Met Trp Leu Gln Leu 75 80 85	3946
AGT CAG AGT CTG AAA GGG TGG GAT CAC ATG TTC ACT GTT GAC TTC TGG Ser Gln Ser Leu Lys Gly Trp Asp His Met Phe Thr Val Asp Phe Trp 90 95 100	3994
ACT ATT ATG GAA AAT CAC AAC CAC AGC AAG G GTATGTGGAG AGGGGGCCTC Thr Ile Met Glu Asn His Asn His Ser Lys 105 110	4045
ACCTTCCTGA GGTTGTCAGA GCTTTTCATC TTTTCATGCA TCTTGAAGGA AACAGCTGGA	4105
AGTCTGAGGT CTTGTGGGAG CAGGGAAGAG GGAAGGAATT TGCTTCCTGA GATCATTTGG	4165
TCCTTGGGGA TGGTGGAAAT AGGGACCTAT TCCTTTGGTT GCAGTTAACA AGGCTGGGGA	4225
TTTTTCCAG AG TCC CAC ACC CTG CAG GTC ATC CTG GGC TGT GAA ATG Glu Ser His Thr Leu Gln Val Ile Leu Gly Cys Glu Met 115 120 125	4272
CAA GAA GAC AAC AGT ACC GAG GGC TAC TGG AAG TAC GGG TAT GAT GGG Gln Glu Asp Asn Ser Thr Glu Gly Tyr Trp Lys Tyr Gly Tyr Asp Gly 130 135 140	4320
CAG GAC CAC CTT GAA TTC TGC CCT GAC ACA CTG GAT TGG AGA GCA GCA Gln Asp His Leu Glu Phe Cys Pro Asp Thr Leu Asp Trp Arg Ala Ala 145	4368
GAA CCC AGG GCC TGG CCC ACC AAG CTG GAG TGG GAA AGG CAC AAG ATT Glu Pro Arg Ala Trp Pro Thr Lys Leu Glu Trp Glu Arg His Lys Ile 160 165 170	4416
CGG GCC AGG CAG AAC AGG GCC TAC CTG GAG AGG GAC TGC CCT GCA CAG Arg Ala Arg Gln Asn Arg Ala Tyr Leu Glu Arg Asp Cys Pro Ala Gln 175 180 185 190	4464
CTG CAG CAG TTG CTG GAG CTG GGG AGA GGT GTT TTG GAC CAA CAA G Leu Gln Gln Leu Leu Glu Leu Gly Arg Gly Val Leu Asp Gln Gln 195 200 205	4510
GTATGGTGGA AACACACTTC TGCCCCTATA CTCTAGTGGC AGAGTGGAGG AGGTTGCAGG	4570
GCACGGAATC CCTGGTTGGA GTTTCAGAGG TGGCTGAGGC TGTGTGCCTC TCCAAATTCT	4630
GGGAAGGGAC TTTCTCAATC CTAGAGTCTC TACCTTATAA TTGAGATGTA TGAGACAGCC	4690
ACAAGTCATG GGTTTAATTT CTTTTCTCCA TGCATATGGC TCAAAGGGAA GTGTCTATGG	4750
CCCTTGCTTT TTATTTAACC AATAATCTTT TGTATATTTA TACCTGTTAA AAATTCAGAA	4810
ATGTCAAGGC CGGGCACGGT GGCTCACCCC TGTAATCCCA GCACTTTGGG AGGCCGAGGC	4870

GGGTGGTCAC AAGGTCAGGA GTTTGAGACC AGCCTGACCA ACATGGTGAA ACCCGTCTCT	4930
AAAAAAATAC AAAAATTAGC TGGTCACAGT CATGCGCACC TGTAGTCCCA GCTAATTGGA	4990
AGGCTGAGGC AGGAGCATCG CTTGAACCTG GGAAGCGGAA GTTGCACTGA GCCAAGATCG	5050
CGCCACTGCA CTCCAGCCTA GGCAGCAGAG TGAGACTCCA TCTTAAAAAA AAAAAAAAAA	5110
AAAAAAAGAG AATTCAGAGA TCTCAGCTAT CATATGAATA CCAGGACAAA ATATCAAGTG	5170
AGGCCACTTA TCAGAGTAGA AGAATCCTTT AGGTTAAAAG TTTCTTTCAT AGAACATAGC	5230
AATAATCACT GAAGCTACCT ATCTTACAAG TCCGCTTCTT ATAACAATGC CTCCTAGGTT	5290
GACCCAGGTG AAACTGACCA TCTGTATTCA ATCATTTTCA ATGCACATAA AGGGCAATTT	5350
TATCTATCAG AACAAAGAAC ATGGGTAACA GATATGTATA TTTACATGTG AGGAGAACAA	5410
GCTGATCTGA CTGCTCTCCA AGTGACACTG TGTTAGAGTC CAATCTTAGG ACACAAAATG	5470
GTGTCTCTCC TGTAGCTTGT TTTTTCTGA AAAGGGTATT TCCTTCCTCC AACCTATAGA	5530
AGGAAGTGAA AGTTCCAGTC TTCCTGGCAA GGGTAAACAG ATCCCCTCTC CTCATCCTTC	5590
CTCTTTCCTG TCAAG TG CCT CCT TTG GTG AAG GTG ACA CAT CAT GTG ACC Val Pro Pro Leu Val Lys Val Thr His His Val Thr 210 215	5640
TCT TCA GTG ACC ACT CTA CGG TGT CGG GCC TTG AAC TAC TAC CCC CAG Ser Ser Val Thr Thr Leu Arg Cys Arg Ala Leu Asn Tyr Tyr Pro Gln 220 225 230	5688
AAC ATC ACC ATG AAG TGG CTG AAG GAT AAG CAG CCA ATG GAT GCC AAG Asn Ile Thr Met Lys Trp Leu Lys Asp Lys Gln Pro Met Asp Ala Lys 235 240 245	5736
GAG TTC GAA CCT AAA GAC GTA TTG CCC AAT GGG GAT GGG ACC TAC CAG Glu Phe Glu Pro Lys Asp Val Leu Pro Asn Gly Asp Gly Thr Tyr Gln 250 265	5784
GGC TGG ATA ACC TTG GCT GTA CCC CCT GGG GAA GAG CAG AGA TAT ACG Gly Trp Ile Thr Leu Ala Val Pro Pro Gly Glu Glu Gln Arg Tyr Thr 270 275 280	5832
TGC CAG GTG GAG CAC CCA GGC CTG GAT CAG CCC CTC ATT GTG ATC TGG G Cys Gln Val Glu His Pro Gly Leu Asp Gln Pro Leu Ile Val Ile Trp 285 290 295	5881
GTATGTGACT GATGAGAGCC AGGAGCTGAG AAAATCTATT GGGGGTTGAG AGGAGTGCCT	5941
GAGGAGGTAA TTATGGCAGT GAGATGAGGA TCTGCTCTTT GTTAGGGGGT GGGCTGAGGG	6001
TGGCAATCAA AGGCTTTAAC TTGCTTTTTC TGTTTTAG AG CCC TCA CCG TCT Glu Pro Ser Pro Ser 300	6053
GGC ACC CTA GTC ATT GGA GTC ATC AGT GGA ATT GCT GTT TTT GTC GTC Gly Thr Leu Val Ile Gly Val Ile Ser Gly Ile Ala Val Phe Val Val 305	6101
ATC TTG TTC ATT GGA ATT TTG TTC ATA ATA TTA AGG AAG AGG CAG GGT Ile Leu Phe Ile Gly Ile Leu Phe Ile Leu Arg Lys Arg Gln Gly	6149

TCA A GTGAGTAGGA ACAAGGGGGA AGTCTCTTAG TACG Ser 335	CTCTGCC CCAGGGCACA	6203
GTGGGAAGAG GGGCAGAGGG GATCTGGCAT CCATGGGAAG	G CATTTTTCTC ATTTATATTC	6263
TTTGGGGACA CCAGCAGCTC CCTGGGAGAC AGAAAATAA	I GGTTCTCCCC AGAATGAAAG	6323
TCTCTAATTC AACAAACATC TTCAGAGCAC CTACTATTT	I GCAAGAGCTG TTTAAGGTAG	6383
TACAGGGGCT TTGAGGTTGA GAAGTCACTG TGGCTATTC	T CAGAACCCAA ATCTGGTAGG	6443
GAATGAAATT GATAGCAAGT AAATGTAGTT AAAGAAGACC	C CCATGAGGTC CTAAAGCAGG	6503
CAGGAAGCAA ATGCTTAGGG TGTCAAAGGA AAGAATGATC	C ACATTCAGCT GGGGATCAAG	6563
ATAGCCTTCT GGATCTTGAA GGAGAAGCTG GATTCCATTA	A GGTGAGGTTG AAGATGATGG	6623
GAGGTCTACA CAGACGGAGC AACCATGCCA AGTAGGAGAC	TATAAGGCAT ACTGGGAGAT	6683
TAGAAATAAT TACTGTACCT TAACCCTGAG TTTGCGTAG	C TATCACTCAC CAATTATGCA	6743
TTTCTACCCC CTGAACATCT GTGGTGTAGG GAAAAGAGAA	A TCAGAAAGAA GCCAGCTCAT	6803
ACAGAGTCCA AGGGTCTTTT GGGATATTGG GTTATGATCA	A CTGGGGTGTC ATTGAAGGAT	6863
CCTAAGAAAG GAGGACCACG ATCTCCCTTA TATGGTGAAT	GTGTTGTTAA GAAGTTAGAT	6923
GAGAGGTGAG GAGACCAGTT AGAAAGCCAA TAAGCATTTC	C CAGATGAGAG ATAATGGTTC	6983
TTGAAATCCA ATAGTGCCCA GGTCTAAATT GAGATGGGTG	G AATGAGGAAA ATAAGGAAGA	7043
GAGAAGAGGC AAGATGGTGC CTAGGTTTGT GATGCCTCTT	TCCTGGGTCT CTTGTCTCCA	7103
CAG GA GGA GCC ATG GGG CAC TAC GTC TTA GCT Arg Gly Ala Met Gly His Tyr Val Leu Ala 340	Glu Arg Glu	7144
TGACACGCAG CCTGCAGACT CACTGTGGGA AGGAGACAAA	A ACTAGAGACT CAAAGAGGGA	7204
GTGCATTTAT GAGCTCTTCA TGTTTCAGGA GAGAGTTGAA	CCTAAACATA GAAATTGCCT	7264
GACGAACTCC TTGATTTTAG CCTTCTCTGT TCATTTCCTC	C AAAAAGATTT CCCCATTTAG	7324
GTTTCTGAGT TCCTGCATGC CGGTGATCCC TAGCTGTGAC	CTCTCCCCTG GAACTGTCTC	7384
TCATGAACCT CAAGCTGCAT CTAGAGGCTT CCTTCATTTC	CTCCGTCACC TCAGAGACAT	7444
ACACCTATGT CATTTCATTT CCTATTTTTG GAAGAGGACT	CCTTAAATTT GGGGGACTTA	7504
CATGATTCAT TTTAACATCT GAGAAAAGCT TTGAACCCTG	GGACGTGGCT AGTCATAACC	7564
TTACCAGATT TTTACACATG TATCTATGCA TTTTCTGGAC	CCGTTCAACT TTTCCTTTGA	7624
ATCCTCTCTC TGTGTTACCC AGTAACTCAT CTGTCACCAA	GCCTTGGGGA TTCTTCCATC	7684
TGATTGTGAT GTGAGTTGCA CAGCTATGAA GGCTGTACAC	TGCACGAATG GAAGAGGCAC	7744
CTCTCCCACA AAAACCATCA TCCCTATCTC TCCCTACTA	- CAMCCCMCMM MMMACCT	5001

i	AGGAGGCAAA	TATCTTGAAA	GGGGTTGTGA	AGAGGTGTTT	TTTCTAATTG	GCATGAAGGT	7864
(GTCATACAGA	TTTGCAAAGT	TTAATGGTGC	CTTCATTTGG	GATGCTACTC	TAGTATTCCA	7924
(gacctgaaga	ATCACAATAA	TTTTCTACCT	GGTCTCTCCT	TGTTCTGATA	ATGAAAATTA	7984
•	TGATAAGGAT	GATAAAAGCA	CTTACTTCGT	GTCCGACTCT	TCTGAGCACC	TACTTACATG	8044
(CATTACTGCA	TGCACTTCTT	ACAATAATTC	TATGAGATAG	GTACTATTAT	CCCCATTTCT	8104
•	ITTTTAAATG	aagaaagtga	AGTAGGCCGG	GCACGGTGGC	TCACGCCTGT	AATCCCAGCA	8164
(CTTTGGGAGG	CCAAAGCGGG	TGGATCACGA	GGTCAGGAGA	TCGAGACCAT	CCTGGCTAAC	8224
2	ATGGTGAAAC	CCCATCTCTA	ATAAAAATAC	AAAAAATTAG	CTGGGCGTGG	TGGCAGACGC	8284
(CTGTAGTCCC	AGCTACTCGG	AAGGCTGAGG	CAGGAGAATG	GCATGAACCC	AGGAGGCAGA	8344
(GCTTGCAGTG	AGCCGAGTTT	GCGCCACTGC	ACTCCAGCCT	AGGTGACAGA	GTGAGACTCC	8404
1	ATCTCAAAAA	АТААААТА	аааатааааа	aatgaaaaa	AAAAGAAAGT	GAAGTATAGA	8464
(GTATCTCATA	GTTTGTCAGT	GATAGAAACA	GGTTTCAAAC	TCAGTCAATC	TGACCGTTTG	8524
į	ATACATCTCA	GACACCACTA	CATTCAGTAG	TTTAGATGCC	TAGAATAAAT	AGAGAAGGAA	8584
(GAGATGGCT	CTTCTCTTGT	CTCATTGTGT	TTCTTCTGAG	TGAGCTTGAA	TCACATGAAG	8644
(eggaacagca	GAAAACAACC	AACTGATCCT	CAGCTGTCAT	GTTTCCTTTA	AAAGTCCCTG	8704
1	AAGGAAGGTC	CTGGAATGTG	ACTCCCTTGC	TCCTCTGTTG	CTCTCTTTGG	CATTCATTTC	8764
•	TTTGGACCCT	ACGCAAGGAC	TGTAATTGGT	GGGGACAGCT	AGTGGCCCTG	CTGGGCTTCA	8824
(CACACGGTGT	CCTCCCTAGG	CCAGTGCCTC	TGGAGTCAGA	ACTCTGGTGG	TATTTCCCTC	8884
2	AATGAAGTGG	AGTAAGCTCT	CTCATTTTGA	GATGGTATAA	TGGAAGCCAC	CAAGTGGCTT	8944
2	AGAGGATGCC	CAGGTCCTTC	CATGGAGCCA	CTGGGGTTCC	GGTGCACATT	АААААААА	9004
•	CTAACCAGG	ACATTCAGGA	ATTGCTAGAT	TCTGGGAAAT	CAGTTCACCA	TGTTCAAAAG	9064
2	AGTCTTTTTT	TTTTTTTGA	GACTCTATTG	CCCAGGCTGG	AGTGCAATGG	CATGATCTCG	9124
(GCTCACTGTA	ACCTCTGCCT	CCCAGGTTCA	AGCGATTCTC	CTGTCTCAGC	CTCCCAAGTA	9184
(GCTGGGATTA	CAGGCGTGCA	CCACCATGCC	CGGCTAATTT	TTGTATTTTT	AGTAGAGACA	9244
(GGTTTCACC	ATGTTGGCCA	GGCTGGTCTC	GAACTCTCCT	GACCTCGTGA	TCCGCCTGCC	9304
7	CGGCCTCCC	AAAGTGCTGA	GATTACAGGT	GTGAGCCACC	CTGCCCAGCC	GTCAAAAGAG	9364
7	CTTAATATA	TATATCCAGA	TGGCATGTGT	TTACTTTATG	TTACTACATG	CACTTGGCTG	9424
(CATAAATGTG	GTACAAGCAT	TCTGTCTTGA	AGGGCAGGTG	CTTCAGGATA	CCATATACAG	9484
(CTCAGAAGTT	TCTTCTTTAG	GCATTAAATT	TTAGCAAAGA	TATCTCATCT	CTTCTTTTAA	9544
1	ACCATTTTCT	TTTTTTGTGG	TTAGAAAAGT	TATGTAGAAA	AAAGTAAATG	TGATTTACGC	9604
7	rcattgtaga	AAAGCTATAA	AATGAATACA	ATTAAAGCTG	TTATTTAATT	AGCCAGTGAA	9664

AAACTA	TTAA	CAACTTGTCT	ATTACCTGTT	AGTATTATTG	TTGCATTAAA	AATGCATATA	9724
CTTTAA	TAAA	TGTATATTGT	ATTGTATACT	GCATGATTTT	ATTGAAGTTC	TTGTTCATCT	9784
TGTGTA	TATA	CTTAATCGCT	TTGTCATTTT	GGAGACATTT	ATTTTGCTTC	TAATTTCTTT	9844
ACATTT	TGTC	TTACGGAATA	TTTTCATTCA	ACTGTGGTAG	CCGAATTAAT	CGTGTTTCTT	9904
CACTCT	AGGG	ACATTGTCGT	CTAAGTTGTA	AGACATTGGT	TATTTTACCA	GCAAACCATT	9964
CTGAAA	GCAT	ATGACAAATT	ATTTCTCTCT	TAATATCTTA	CTATACTGAA	AGCAGACTGC	10024
FATAA G	GCTT	CACTTACTCT	TCTACCTCAT	AAGGAATATG	TTACAATTAA	TTTATTAGGT	10084
AAGCAT	TTGT	TTTATATTGG	TTTTATTTCA	CCTGGGCTGA	GATTTCAAGA	AACACCCCAG	10144
rcttca:	CAGT	AACACATTTC	ACTAACACAT	TTACTAAACA	TCAGCAACTG	TGGCCTGTTA	10204
ATTTTT	TTAA	TAGAAATTTT	AAGTCCTCAT	TTTCTTTCGG	TGTTTTTAA	GCTTAATTTT	10264
rctggc	TTTA	TTCATAAATT	CTTAAGGTCA	ACTACATTTG	AAAAATCAAA	GACCTGCATT	10324
TAAATI	TCTT	ATTCACCTCT	GGCAAAACCA	TTCACAAACC	ATGGTAGTAA	AGAGAAGGGT	10384
GACACC'	TGGT	GGCCATAGGT	AAATGTACCA	CGGTGGTCCG	GTGACCAGAG	ATGCAGCGCT	10444
GAGGGT"	TTTC	CTGAAGGTAA	AGGAATAAAG	AATGGGTGGA	GGGGCGTGCA	CTGGAAATCA	10504
CTTGTA	GAGA	AAAGCCCCTG	AAAATTTGAG	AAAACAAACA	AGAAACTACT	TACCAGCTAT	10564
TGAAT'	TGCT	GGAATCACAG	GCCATTGCTG	AGCTGCCTGA	ACTGGGAACA	CAACAGAAGG	10624
AAAACA	AACC	ACTCTGATAA	TCATTGAGTC	AAGTACAGCA	GGTGATTGAG	GACTGCTGAG	10684
AGGTAC	AGGC	CAAAATTCTT	ATGTTGTATT	ATAATAATGT	CATCTTATAA	TACTGTCAGT	10744
'ATTTTA	TAAA	ACATTCTTCA	CAAACTCACA	CACATTTAAA	AACAAAACAC	TGTCTCTAAA	10804
ATCCCC	AAAT	TTTTCATAAA	С				10825

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 348 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Gly Pro Arg Ala Arg Pro Ala Leu Leu Leu Leu Met Leu Leu Gln
1 5 10 15

Thr Ala Val Leu Gln Gly Arg Leu Leu Arg Ser His Ser Leu His Tyr 20 25 30

Leu Phe Met Gly Ala Ser Glu Gln Asp Leu Gly Leu Ser Leu Phe Glu 35 40 45

Ala Leu Gly Tyr Val Asp Asp Gln Leu Phe Val Phe Tyr Asp His Glu

Andreas and the second of the

Ser 65	Arg	Arg	Val	Glu	Pro 70	Arg	Thr	Pro	Trp	Val 75	Ser	Ser	Arg	Ile	Ser 80
Ser	Gln	Met	Trp	Leu 85	Gln	Leu	Ser	Gln	Ser 90	Leu	Lys	Gly	Trp	Asp 95	His
Met	Phe	Thr	Val 100	Asp	Phe	Trp	Thr	Ile 105	Met	Glu	Asn	His	Asn 110	His	Ser
Lys	Glu	Ser 115	His	Thr	Leu	Gln	Val 120	Ile	Leu	Gly	Cys	Glu 125	Met	Gln	Glu
Asp	Asn 130	Ser	Thr	Glu	Gly	Tyr 135	Trp	Lys	Tyr	Gly	Tyr 140	Asp	Gly	Gln	Asp
His 145	Leu	Glu	Phe	Cys	Pro 150	Asp	Thr	Leu	Asp	Trp 155	Arg	Ala	Ala	Glu	Pro 160
Arg	Ala	Trp	Pro	Thr 165	Lys	Leu	Glu	Trp	Glu 170	Arg	His	Lys	Ile	Arg 175	Ala
Arg	Gln	Asn	Arg 180	Ala	Tyr	Leu	Glu	Arg 185	Asp	Cys	Pro	Ala	Gln 190	Leu	Gln
Gln	Leu	Leu 195	Glu	Leu	Gly	Arg	Gly 200	Val	Leu	Asp	Gln	Gln 205	Val	Pro	Pro
Leu	Val 210	Lys	Val	Thr	His	His 215	Val	Thr	Ser	Ser	Val 220	Thr	Thr	Leu	Arg
Cys 225	Arg	Ala	Leu	Asn	Tyr 230	Tyr	Pro	Gln	Asn	Ile 235	Thr	Met	Lys	Trp	Leu 240
Lys	Asp	Lys	Gln	Pro 245	Met	Asp	Ala	Lys	Glu 250	Phe	Glu	Pro	Lys	Asp 255	Val
Leu	Pro	Asn	Gly 260	Asp	Gly	Thr	Tyr	Gln 265	Gly	Trp	Ile	Thr	Leu 270		Val
Pro	Pro	Gly 275	Glu	Glu	Gln	Arg	Tyr 280	Thr	Cys	Gln	Val	Glu 285	His	Pro	Gly
Leu	Asp 290	Gln	Pro	Leu	Ile	Val 295	Ile	Trp	Glu	Pro	Ser 300	Pro	Ser	Gly	Thr
Leu 305	Val	Ile	Gly	Val	Ile 310	Ser	Gly	Ile	Ala	Val 315	Phe	Val	Val	Ile	Leu 320
Phe	Ile	Gly	Ile	Leu 325	Phe	Ile	Ile	Leu	Arg 330	Lys	Arg	Gln	Gly	Ser 335	Arg
Gly	Ala	Met	Gly 340	His	Tyr	Val	Leu	Ala 345	Glu	Arg	Glu				

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 10825 base pairs
 (B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: join(361436, 37624025, 42354510, 56065881</pre>
<pre>(ix) FEATURE: (A) NAME/KEY: - (B) LOCATION: 1407319 (D) OTHER INFORMATION: /note= "start and stop positions for 24d1 allele cDNA (SEQ ID NO:10)"</pre>
<pre>(ix) FEATURE: (A) NAME/KEY: - (B) LOCATION: 38523891 (D) OTHER INFORMATION: /note= "start and stop positions for genomic sequence surrounding variant for 24d2(C) allele (SEQ ID NO:41)"</pre>
(ix) FEATURE: (A) NAME/KEY: - (B) LOCATION: 55076023 (D) OTHER INFORMATION: /note= "start and stop positions for genomic sequence surrounding variant for 24d1(A) allele (SEQ ID NO:21)"
<pre>(ix) FEATURE: (A) NAME/KEY: allele (B) LOCATION: replace(5834, "a") (D) OTHER INFORMATION: /phenotype= "Hereditary Hemochromatosis</pre>
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
TCTAAGGTTG AGATAAAATT TTTAAATGTA TGATTGAATT TTGAAAATCA TAAATATTTA 60
AATATCTAAA GTTCAGATCA GAACATTGCG AAGCTACTTT CCCCAATCAA CAACACCCCT 120 TCAGGATTTA AAAACCAAGG GGGACACTGG ATCACCTAGT GTTTCACAAG CAGGTACCTT 180
CTGCTGTAGG AGAGAGAGA CTAAAGTTCT GAAAGACCTG TTGCTTTTCA CCAGGAAGTT 240
TTACTGGGCA TCTCCTGAGC CTAGGCAATA GCTGTAGGGT GACTTCTGGA GCCATCCCCG 300
TTTCCCCGCC CCCCAAAAGA AGCGGAGATT TAACGGGGAC GTGCGGCCAG AGCTGGGGAA 360
ATG GGC CCG CGA GCC AGG CCG GCG CTT CTC CTC CTG ATG CTT TTG CAG Met Gly Pro Arg Ala Arg Pro Ala Leu Leu Leu Met Leu Leu Gln 1 5 10 15

ACC GCG GTC CTG CAG GGG CGC TTG CTG C GTGAGTCCGA GGGCTGCGGG 456 Thr Ala Val Leu Gln Gly Arg Leu Leu CGAACTAGGG GCGCGGGG GGTGGAAAAA TCGAAACTAG CTTTTTCTTT GCGCTTGGGA 516 GTTTGCTAAC TTTGGAGGAC CTGCTCAACC CTATCCGCAA GCCCCTCTCC CTACTTTCTG 576 CGTCCAGACC CCGTGAGGGA GTGCCTACCA CTGAACTGCA GATAGGGGTC CCTCGCCCCA 636 GGACCTGCCC CCTCCCCGG CTGTCCCGGC TCTGCGGAGT GACTTTTGGA ACCGCCCACT 696 756 AAGCCTGGGG CTCCTTGAAC CTGGAACTCG GGTTTATTTC CAATGTCAGC TGTGCAGTTT 816 TTTCCCCAGT CATCTCCAAA CAGGAAGTTC TTCCCTGAGT GCTTGCCGAG AAGGCTGAGC 876 AAACCCACAG CAGGATCCGC ACGGGGTTTC CACCTCAGAA CGAATGCGTT GGGCGGTGGG 936 GGCGCGAAAG AGTGGCGTTG GGGATCTGAA TTCTTCACCA TTCCACCCAC TTTTGGTGAG 996 ACCTGGGGTG GAGGTCTCTA GGGTGGGAGG CTCCTGAGAG AGGCCTACCT CGGGCCTTTC 1056 CCCACTCTTG GCAATTGTTC TTTTGCCTGG AAAATTAAGT ATATGTTAGT TTTGAACGTT 1116 TGAACTGAAC AATTCTCTTT TCGGCTAGGC TTTATTGATT TGCAATGTGC TGTGTAATTA 1176 AGAGGCCTCT CTACAAAGTA CTGATAATGA ACATGTAAGC AATGCACTCA CTTCTAAGTT 1236 ACATTCATAT CTGATCTTAT TTGATTTTCA CTAGGCATAG GGAGGTAGGA GCTAATAATA 1296 CGTTTATTTT ACTAGAAGTT AACTGGAATT CAGATTATAT AACTCTTTTC AGGTTACAAA 1356 GAACATAAAT AATCTGGTTT TCTGATGTTA TTTCAAGTAC TACAGCTGCT TCTAATCTTA 1416 GTTGACAGTG ATTTTGCCCT GTAGTGTAGC ACAGTGTTCT GTGGGTCACA CGCCGGCCTC 1476 AGCACAGCAC TTTGAGTTTT GGTACTACGT GTATCCACAT TTTACACATG ACAAGAATGA 1536 GGCATGGCAC GGCCTGCTTC CTGGCAAATT TATTCAATGG TACACTGGGC TTTGGTGGCA 1596 GAGCTCATGT CTCCACTTCA TAGCTATGAT TCTTAAACAT CACACTGCAT TAGAGGTTGA 1656 ATAATAAAAT TTCATGTTGA GCAGAAATAT TCATTGTTTA CAAGTGTAAA TGAGTCCCAG 1716 CCATGTGTTG CACTGTTCAA GCCCCAAGGG AGAGAGCAGG GAAACAAGTC TTTACCCTTT 1776 GATATTTTGC ATTCTAGTGG GAGAGATGAC AATAAGCAAA TGAGCAGAAA GATATACAAC 1836 ATCAGGAAAT CATGGGTGTT GTGAGAAGCA GAGAAGTCAG GGCAAGTCAC TCTGGGGCTG 1896 ACACTTGAGC AGAGACATGA AGGAAATAAG AATGATATTG ACTGGGAGCA GTATTTCCCA 1956 GGCAAACTGA GTGGGCCTGG CAAGTTGGAT TAAAAAGCGG GTTTTCTCAG CACTACTCAT 2016 GTGTGTGTG GTGGGGGGGG GGGGCGGCGT GGGGGTGGGA AGGGGGACTA CCATCTGCAT 2076 GTAGGATGTC TAGCAGTATC CTGTCCTCCC TACTCACTAG GTGCTAGGAG CACTCCCCCA 2136 GTCTTGACAA CCAAAAATGT CTCTAAACTT TGCCACATGT CACCTAGTAG ACAAACTCCT 2196

GGTTAAGAAG	CTCGGGTTGA	AAAAAAAA	CAAGTAGTGC	TGGGGAGTAG	AGGCCAAGAA	2256
GTAGGTAATG	GGCTCAGAAG	AGGAGCCACA	AACAAGGTTG	TGCAGGCGCC	TGTAGGCTGT	2316
GGTGTGAATT	CTAGCCAAGG	AGTAACAGTG	ATCTGTCACA	GGCTTTTAAA	AGATTGCTCT	2376
GGCTGCTATG	TGGAAAGCAG	AATGAAGGGA	GCAACAGTAA	AAGCAGGGAG	CCCAGCCAGG	2436
AAGCTGTTAC	ACAGTCCAGG	CAAGAGGTAG	TGGAGTGGGC	TGGGTGGGAA	CAGAAAAGGG	2496
AGTGACAAAC	CATTGTCTCC	TGAATATATT	CTGAAGGAAG	TTGCTGAAGG	ATTCTATGTT	2556
GTGTGAGAGA	AAGAGAAGAA	TTGGCTGGGT	GTAGTAGCTC	ATGCCAAGGA	GGAGGCCAAG	2616
GAGAGCAGAT	TCCTGAGCTC	AGGAGTTCAA	GACCAGCCTG	GGCAACACAG	CAAAACCCCT	2676
TCTCTACAAA	AAATACAAAA	ATTAGCTGGG	TGTGGTGGCA	TGCACCTGTG	ATCCTAGCTA	2736
CTCGGGAGGC	TGAGGTGGAG	GGTATTGCTT	GAGCCCAGGA	AGTTGAGGCT	GCAGTGAGCC	2796
ATGACTGTGC	CACTGTACTT	CAGCCTAGGT	GACAGAGCAA	GACCCTGTCT	CCCCTGACCC	2856
CCTGAAAAAG	AGAAGAGTTA	AAGTTGACTT	TGTTCTTTAT	TTTAATTTTA	TTGGCCTGAG	2916
CAGTGGGGTA	ATTGGCAATG	CCATTTCTGA	GATGGTGAAG	GCAGAGGAAA	GAGCAGTTTG	2976
GGGTAAATCA	AGGATCTGCA	TTTGGGACAT	GTTAAGTTTG	AGATTCCAGT	CAGGCTTCCA	3036
AGTGGTGAGG	CCACATAGGC	AGTTCAGTGT	AAGAATTCAG	GACCAAGGCT	GGGCACGGTG	3096
GCTCACTTCT	GTAATCCCAG	CACTTTGGTG	GCTGAGGCAG	GTAGATCATT	TGAGGTCAGG	3156
AGTTTGAGAC	AAGCTTGGCC	AACATGGTGA	AACCCCATGT	CTACTAAAAA	TACAAAAATT	3216
AGCCTGGTGT	GGTGGCGCAC	GCCTATAGTC	CCAGGTTTTC	AGGAGGCTTA	GGTAGGAGAA	3276
TCCCTTGAAC	CCAGGAGGTG	CAGGTTGCAG	TGAGCTGAGA	TTGTGCCACT	GCACTCCAGC	3336
CTGGGTGATA	GAGTGAGACT	CTGTCTCAAA	ааааааааа	AAAAAAAAA	AAAAAACTGA	3396
AGGAATTATT	CCTCAGGATT	TGGGTCTAAT	TTGCCCTGAG	CACCAACTCC	TGAGTTCAAC	3456
TACCATGGCT	AGACACACCT	TAACATTTTC	TAGAATCCAC	CAGCTTTAGT	GGAGTCTGTC	3516
TAATCATGAG	TATTGGAATA	GGATCTGGGG	GCAGTGAGGG	GGTGGCAGCC	ACGTGTGGCA	3576
GAGAAAAGCA	CACAAGGAAA	GAGCACCCAG	GACTGTCATA	TGGAAGAAAG	ACAGGACTGC	3636
AACTCACCCT	TCACAAAATG	AGGACCAGAC	ACAGCTGATG	GTATGAGTTG	ATGCAGGTGT	3696
GTGGAGCCTC	AACATCCTGC	TCCCCTCCTA	CTACACATGG	TTAAGGCCTG	TTGCTCTGTC	3756
TCCAG GT Arg	TCA CAC TCT Ser His Ser	CTG CAC TA Leu His Ty 30	r Leu Phe M	TG GGT GCC et Gly Ala 35	TCA GAG Ser Glu	3802
CAG GAC CT Gln Asp Le 40	T GGT CTT T u Gly Leu S	CC TTG TTT er Leu Phe 45	GAA GCT TTG Glu Ala Leu 50	Gly Tyr Va	G GAT GAC l Asp Asp 55	3850
CAG CTG TT	C GTG TTC T e Val Phe T	AT GAT CAT yr Asp His	GAG AGT CGC Glu Ser Arg	CGT GTG GA	G CCC CGA u Pro Arg	3898

60 65 70 ACT CCA TGG GTT TCC AGT AGA ATT TCA AGC CAG ATG TGG CTG CAG CTG 3946 Thr Pro Trp Val Ser Ser Arg Ile Ser Ser Gln Met Trp Leu Gln Leu 80 AGT CAG AGT CTG AAA GGG TGG GAT CAC ATG TTC ACT GTT GAC TTC TGG 3994 Ser Gln Ser Leu Lys Gly Trp Asp His Met Phe Thr Val Asp Phe Trp 95 ACT ATT ATG GAA AAT CAC AAC CAC AGG G GTATGTGGAG AGGGGGCCTC 4045 Thr Ile Met Glu Asn His Asn His Ser Lys ACCTTCCTGA GGTTGTCAGA GCTTTTCATC TTTTCATGCA TCTTGAAGGA AACAGCTGGA 4105 AGTCTGAGGT CTTGTGGGAG CAGGGAAGAG GGAAGGAATT TGCTTCCTGA GATCATTTGG 4165 TCCTTGGGGA TGGTGGAAAT AGGGACCTAT TCCTTTGGTT GCAGTTAACA AGGCTGGGGA 4225 TTTTTCCAG AG TCC CAC ACC CTG CAG GTC ATC CTG GGC TGT GAA ATG 4272 Glu Ser His Thr Leu Gln Val Ile Leu Gly Cys Glu Met CAA GAA GAC AAC AGT ACC GAG GGC TAC TGG AAG TAC GGG TAT GAT GGG 4320 Gln Glu Asp Asn Ser Thr Glu Gly Tyr Trp Lys Tyr Gly Tyr Asp Gly 130 135 140 CAG GAC CAC CTT GAA TTC TGC CCT GAC ACA CTG GAT TGG AGA GCA GCA 4368 Gln Asp His Leu Glu Phe Cys Pro Asp Thr Leu Asp Trp Arg Ala Ala 145 GAA CCC AGG GCC TGG CCC ACC AAG CTG GAG TGG GAA AGG CAC AAG ATT 4416 Glu Pro Arg Ala Trp Pro Thr Lys Leu Glu Trp Glu Arg His Lys Ile CGG GCC AGG CAG AAC AGG GCC TAC CTG GAG AGG GAC TGC CCT GCA CAG 4464 Arg Ala Arg Gln Asn Arg Ala Tyr Leu Glu Arg Asp Cys Pro Ala Gln CTG CAG CAG TTG CTG GAG CTG GGG AGA GGT GTT TTG GAC CAA CAA G 4510 Leu Gln Gln Leu Leu Glu Leu Gly Arg Gly Val Leu Asp Gln Gln 195 200 GTATGGTGGA AACACACTTC TGCCCCTATA CTCTAGTGGC AGAGTGGAGG AGGTTGCAGG 4570 GCACGGAATC CCTGGTTGGA GTTTCAGAGG TGGCTGAGGC TGTGTGCCTC TCCAAATTCT 4630 GGGAAGGGAC TTTCTCAATC CTAGAGTCTC TACCTTATAA TTGAGATGTA TGAGACAGCC 4690 ACAAGTCATG GGTTTAATTT CTTTTCTCCA TGCATATGGC TCAAAGGGAA GTGTCTATGG 4750 CCCTTGCTTT TTATTTAACC AATAATCTTT TGTATATTTA TACCTGTTAA AAATTCAGAA 4810 ATGTCAAGGC CGGGCACGGT GGCTCACCCC TGTAATCCCA GCACTTTGGG AGGCCGAGGC 4870 GGGTGGTCAC AAGGTCAGGA GTTTGAGACC AGCCTGACCA ACATGGTGAA ACCCGTCTCT 4930 AAAAAAATAC AAAAATTAGC TGGTCACAGT CATGCGCACC TGTAGTCCCA GCTAATTGGA 4990 AGGCTGAGGC AGGAGCATCG CTTGAACCTG GGAAGCGGAA GTTGCACTGA GCCAAGATCG 5050

5110

5170

6203

AAAAAAAGAG AATTCAGAGA TCTCAGCTAT CATATGAATA CCAGGACAAA ATATCAAGTG

TCA A GTGAGTAGGA ACAAGGGGGA AGTCTCTTAG TACCTCTGCC CCAGGGCACA

					ATTIATATIC	
TTTGGGGACA	CCAGCAGCTC	CCTGGGAGAC	AGAAAATAAT	GGTTCTCCCC	AGAATGAAAG	6323
TCTCTAATTC	AACAAACATC	TTCAGAGCAC	CTACTATTTT	GCAAGAGCTG	TTTAAGGTAG	6383
TACAGGGGCT	TTGAGGTTGA	GAAGTCACTG	TGGCTATTCT	CAGAACCCAA	ATCTGGTAGG	6443
GAATGAAATT	GATAGCAAGT	AAATGTAGTT	AAAGAAGACC	CCATGAGGTC	CTAAAGCAGG	6503
CAGGAAGCAA	ATGCTTAGGG	TGTCAAAGGA	AAGAATGATC	ACATTCAGCT	GGGGATCAAG	6563
ATAGCCTTCT	GGATCTTGAA	GGAGAAGCTG	GATTCCATTA	GGTGAGGTTG	AAGATGATGG	6623
GAGGTCTACA	CAGACGGAGC	AACCATGCCA	AGTAGGAGAG	TATAAGGCAT	ACTGGGAGAT	6683
TAGAAATAAT	TACTGTACCT	TAACCCTGAG	TTTGCGTAGC	TATCACTCAC	CAATTATGCA	6743
TTTCTACCCC	CTGAACATCT	GTGGTGTAGG	GAAAAGAGAA	TCAGAAAGAA	GCCAGCTCAT	6803
ACAGAGTCCA	AGGGTCTTTT	GGGATATTGG	GTTATGATCA	CTGGGGTGTC	ATTGAAGGAT	6863
CCTAAGAAAG	GAGGACCACG	ATCTCCCTTA	TATGGTGAAT	GTGTTGTTAA	GAAGTTAGAT	6923
GAGAGGTGAG	GAGACCAGTT	AGAAAGCCAA	TAAGCATTTC	CAGATGAGAG	ATAATGGTTC	6983
TTGAAATCCA	ATAGTGCCCA	GGTCTAAATT	GAGATGGGTG	AATGAGGAAA	ATAAGGAAGA	7043
GAGAAGAGGC	AAGATGGTGC	CTAGGTTTGT	GATGCCTCTT	TCCTGGGTCT	CTTGTCTCCA	7103
	A GCC ATG GC					7144
	y Ala Met Gi		345	Glu Arg Glu	1	
		10	345			7204
TGACACGCAG	34	CACTGTGGGA	345 AGGAGACAAA	ACTAGAGACT	CAAAGAGGGA	7204 7264
TGACACGCAG GTGCATTTAT	34 CCTGCAGACT	CACTGTGGGA TGTTTCAGGA	345 AGGAGACAAA GAGAGTTGAA	ACTAGAGACT CCTAAACATA	CAAAGAGGGA GAAATTGCCT	
TGACACGCAG GTGCATTTAT GACGAACTCC	34 CCTGCAGACT GAGCTCTTCA	CACTGTGGGA TGTTTCAGGA CCTTCTCTGT	345 AGGAGACAAA GAGAGTTGAA TCATTTCCTC	ACTAGAGACT CCTAAACATA AAAAAGATTT	CAAAGAGGGA GAAATTGCCT CCCCATTTAG	7264
TGACACGCAG GTGCATTTAT GACGAACTCC GTTTCTGAGT	34 CCTGCAGACT GAGCTCTTCA TTGATTTTAG	CACTGTGGGA TGTTTCAGGA CCTTCTCTGT CGGTGATCCC	345 AGGAGACAAA GAGAGTTGAA TCATTTCCTC TAGCTGTGAC	ACTAGAGACT CCTAAACATA AAAAAGATTT CTCTCCCCTG	CAAAGAGGGA GAAATTGCCT CCCCATTTAG GAACTGTCTC	7264 7324
TGACACGCAG GTGCATTTAT GACGAACTCC GTTTCTGAGT TCATGAACCT	34 CCTGCAGACT GAGCTCTTCA TTGATTTTAG TCCTGCATGC	CACTGTGGGA TGTTTCAGGA CCTTCTCTGT CGGTGATCCC CTAGAGGCTT	345 AGGAGACAAA GAGAGTTGAA TCATTTCCTC TAGCTGTGAC CCTTCATTTC	ACTAGAGACT CCTAAACATA AAAAAGATTT CTCTCCCCTG CTCCGTCACC	CAAAGAGGGA GAAATTGCCT CCCCATTTAG GAACTGTCTC TCAGAGACAT	7264 7324 7384
TGACACGCAG GTGCATTTAT GACGAACTCC GTTTCTGAGT TCATGAACCT ACACCTATGT	CCTGCAGACT GAGCTCTTCA TTGATTTTAG TCCTGCATGC CAAGCTGCAT	CACTGTGGGA TGTTTCAGGA CCTTCTCTGT CGGTGATCCC CTAGAGGCTT CCTATTTTG	345 AGGAGACAAA GAGAGTTGAA TCATTTCCTC TAGCTGTGAC CCTTCATTTC GAAGAGGACT	ACTAGAGACT CCTAAACATA AAAAAGATTT CTCTCCCCTG CTCCGTCACC CCTTAAATTT	CAAAGAGGGA GAAATTGCCT CCCCATTTAG GAACTGTCTC TCAGAGACAT GGGGGACTTA	7264 7324 7384 7444
TGACACGCAG GTGCATTTAT GACGAACTCC GTTTCTGAGT TCATGAACCT ACACCTATGT CATGATTCAT	CCTGCAGACT GAGCTCTTCA TTGATTTTAG TCCTGCATGC CAAGCTGCAT CATTTCATTT	CACTGTGGGA TGTTTCAGGA CCTTCTCTGT CGGTGATCCC CTAGAGGCTT CCTATTTTG GAGAAAAGCT	345 AGGAGACAAA GAGAGTTGAA TCATTTCCTC TAGCTGTGAC CCTTCATTTC GAAGAGGACT TTGAACCCTG	ACTAGAGACT CCTAAACATA AAAAAGATTT CTCTCCCCTG CTCCGTCACC CCTTAAATTT GGACGTGGCT	CAAAGAGGGA GAAATTGCCT CCCCATTTAG GAACTGTCTC TCAGAGACAT GGGGGACTTA	7264 7324 7384 7444 7504
TGACACGCAG GTGCATTTAT GACGAACTCC GTTTCTGAGT TCATGAACCT ACACCTATGT CATGATTCAT	CCTGCAGACT GAGCTCTTCA TTGATTTTAG TCCTGCATGC CAAGCTGCAT CATTTCATTT	CACTGTGGGA TGTTTCAGGA CCTTCTCTGT CGGTGATCCC CTAGAGGCTT CCTATTTTG GAGAAAAGCT TATCTATGCA	345 AGGAGACAAA GAGAGTTGAA TCATTTCCTC TAGCTGTGAC CCTTCATTTC GAAGAGGACT TTGAACCCTG TTTTCTGGAC	ACTAGAGACT CCTAAACATA AAAAAGATTT CTCTCCCCTG CTCCGTCACC CCTTAAATTT GGACGTGGCT CCGTTCAACT	CAAAGAGGGA GAAATTGCCT CCCCATTTAG GAACTGTCTC TCAGAGACAT GGGGGACTTA AGTCATAACC	7264 7324 7384 7444 7504
TGACACGCAG GTGCATTTAT GACGAACTCC GTTTCTGAGT TCATGAACCT ACACCTATGT CATGATTCAT TTACCAGATT	CCTGCAGACT GAGCTCTTCA TTGATTTTAG TCCTGCATGC CAAGCTGCAT CATTTCATTT	CACTGTGGGA TGTTTCAGGA CCTTCTCTGT CGGTGATCCC CTAGAGGCTT CCTATTTTG GAGAAAAGCT TATCTATGCA AGTAACTCAT	345 AGGAGACAAA GAGAGTTGAA TCATTTCCTC TAGCTGTGAC CCTTCATTTC GAAGAGGACT TTGAACCCTG TTTTCTGGAC CTGTCACCAA	ACTAGAGACT CCTAAACATA AAAAAGATTT CTCTCCCCTG CTCCGTCACC CCTTAAATTT GGACGTGGCT CCGTTCAACT CCGTTCAACT	CAAAGAGGGA GAAATTGCCT CCCCATTTAG GAACTGTCTC TCAGAGACAT GGGGGACTTA AGTCATAACC TTTCCTTTGA	7264 7324 7384 7444 7504 7564 7624
TGACACGCAG GTGCATTTAT GACGAACTCC GTTTCTGAGT TCATGAACCT ACACCTATGT CATGATTCAT TTACCAGATT ATCCTCTCT TGATTGTGAT	CCTGCAGACT GAGCTCTTCA TTGATTTTAG TCCTGCATGC CAAGCTGCAT CATTTCATTT	CACTGTGGGA TGTTTCAGGA CCTTCTCTGT CGGTGATCCC CTAGAGGCTT CCTATTTTG GAGAAAAGCT TATCTATGCA AGTAACTCAT CAGCTATGAA	345 AGGAGACAAA GAGAGTTGAA TCATTTCCTC TAGCTGTGAC CCTTCATTTC GAAGAGGACT TTGAACCCTG TTTTCTGGAC CTGTCACCAA GGCTGTACAC	ACTAGAGACT CCTAAACATA AAAAAGATTT CTCTCCCCTG CTCCGTCACC CCTTAAATTT GGACGTGGCT CCGTTCAACT CCGTTCAACT CCGTTCAACT	CAAAGAGGGA GAAATTGCCT CCCCATTTAG GAACTGTCTC TCAGAGACAT GGGGGACTTA AGTCATAACC TTTCCTTTGA TTCTTCCATC	7264 7324 7384 7444 7504 7564 7624
TGACACGCAG GTGCATTTAT GACGAACTCC GTTTCTGAGT TCATGAACCT ACACCTATGT CATGATTCAT TTACCAGATT ATCCTCTCT TGATTGTGAT CTGTCCCAGA	CCTGCAGACT GAGCTCTTCA TTGATTTTAG TCCTGCATGC CAAGCTGCAT CATTTCATTT	CACTGTGGGA TGTTTCAGGA CCTTCTCTGT CGGTGATCCC CTAGAGGCTT CCTATTTTG GAGAAAAGCT TATCTATGCA AGTAACTCAT CAGCTATGAA TGGCTATCTG	345 AGGAGACAAA GAGAGTTGAA TCATTTCCTC TAGCTGTGAC CCTTCATTTC GAAGAGGACT TTGAACCCTG TTTTCTGGAC CTGTCACCAA GGCTGTACAC TGGGTAGTAT	ACTAGAGACT CCTAAACATA AAAAAGATTT CTCTCCCCTG CTCCGTCACC CCTTAAATTT GGACGTGGCT CCGTTCAACT CCGTTCAACT GCCTTGGGGA TGCACGAATG GATGGGTGTT	CAAAGAGGGA GAAATTGCCT CCCCATTTAG GAACTGTCTC TCAGAGACAT GGGGGACTTA AGTCATAACC TTTCCTTTGA TTCTTCCATC GAAGAGGCAC	7264 7324 7384 7444 7504 7564 7624 7684
TGACACGCAG GTGCATTTAT GACGAACTCC GTTTCTGAGT TCATGAACCT ACACCTATGT CATGATTCAT TTACCAGATT ATCCTCTCT TGATTGTGAT CTGTCCCAGA AGGAGGCAAA	CCTGCAGACT GAGCTCTTCA TTGATTTTAG TCCTGCATGC CAAGCTGCAT CATTTCATTT	CACTGTGGGA TGTTTCAGGA CCTTCTCTGT CGGTGATCCC CTAGAGGCTT CCTATTTTG GAGAAAAGCT TATCTATGCA AGTAACTCAT CAGCTATGAA TGGCTATCTG	345 AGGAGACAAA GAGAGTTGAA TCATTTCCTC TAGCTGTGAC CCTTCATTTC GAAGAGGACT TTGAACCCTG TTTTCTGGAC CTGTCACCAA GGCTGTACAC TGGGTAGTAT AGAGGTGTTT	ACTAGAGACT CCTAAACATA AAAAAGATTT CTCTCCCCTG CTCCGTCACC CCTTAAATTT GGACGTGGCT CCGTTCAACT GCCTTGGGGA TGCACGAATG GATGGGTGTT TTTCTAATTG	CAAAGAGGGA GAAATTGCCT CCCCATTTAG GAACTGTCTC TCAGAGACAT GGGGGACTTA AGTCATAACC TTTCCTTTGA TTCTTCCATC GAAGAGGCAC TTTAGCAGGT	7264 7324 7384 7444 7504 7564 7624 7684 7744 7804

LEBERT TO THE REST OF THE PROPERTY OF THE PROP

TGATAAGGAT	GATAAAAGCA	CTTACTTCGT	GTCCGACTCT	TCTGAGCACC	TACTTACATG	8044
CATTACTGCA	TGCACTTCTT	ACAATAATTC	TATGAGATAG	GTACTATTAT	CCCCATTTCT	8104
TTTTTAAATG	AAGAAAGTGA	AGTAGGCCGG	GCACGGTGGC	TCACGCCTGT	AATCCCAGCA	8164
CTTTGGGAGG	CCAAAGCGGG	TGGATCACGA	GGTCAGGAGA	TCGAGACCAT	CCTGGCTAAC	8224
ATGGTGAAAC	CCCATCTCTA	ATAAAAATAC	AAAAAATTAG	CTGGGCGTGG	TGGCAGACGC	8284
CTGTAGTCCC	AGCTACTCGG	AAGGCTGAGG	CAGGAGAATG	GCATGAACCC	AGGAGGCAGA	8344
GCTTGCAGTG	AGCCGAGTTT	GCGCCACTGC	ACTCCAGCCT	AGGTGACAGA	GTGAGACTCC	8404
ATCTCAAAAA	ATAAAAATAA	AAAATAAAA	AATGAAAAA	AAAAGAAAGT	GAAGTATAGA	8464
GTATCTCATA	GTTTGTCAGT	GATAGAAACA	GGTTTCAAAC	TCAGTCAATC	TGACCGTTTG	8524
ATACATCTCA	GACACCACTA	CATTCAGTAG	TTTAGATGCC	TAGAATAAAT	AGAGAAGGAA	8584
GGAGATGGCT	CTTCTCTTGT	CTCATTGTGT	TTCTTCTGAG	TGAGCTTGAA	TCACATGAAG	8644
GGGAACAGCA	GAAAACAACC	AACTGATCCT	CAGCTGTCAT	GTTTCCTTTA	AAAGTCCCTG	8704
AAGGAAGGTC	CTGGAATGTG	ACTCCCTTGC	TCCTCTGTTG	CTCTCTTTGG	CATTCATTTC	8764
TTTGGACCCT	ACGCAAGGAC	TGTAATTGGT	GGGGACAGCT	AGTGGCCCTG	CTGGGCTTCA	8824
CACACGGTGT	CCTCCCTAGG	CCAGTGCCTC	TGGAGTCAGA	ACTCTGGTGG	TATTTCCCTC	8884
AATGAAGTGG	AGTAAGCTCT	CTCATTTTGA	GATGGTATAA	TGGAAGCCAC	CAAGTGGCTT	8944
AGAGGATGCC	CAGGTCCTTC	CATGGAGCCA	CTGGGGTTCC	GGTGCACATT	АААААААА	9004
TCTAACCAGG	ACATTCAGGA	ATTGCTAGAT	TCTGGGAAAT	CAGTTCACCA	TGTTCAAAAG	9064
AGTCTTTTTT	TTTTTTTGA	GACTCTATTG	CCCAGGCTGG	AGTGCAATGG	CATGATCTCG	9124
GCTCACTGTA	ACCTCTGCCT	CCCAGGTTCA	AGCGATTCTC	CTGTCTCAGC	CTCCCAAGTA	9184
GCTGGGATTA	CAGGCGTGCA	CCACCATGCC	CGGCTAATTT	TTGTATTTTT	AGTAGAGACA	9244
GGGTTTCACC	ATGTTGGCCA	GGCTGGTCTC	GAACTCTCCT	GACCTCGTGA	TCCGCCTGCC	9304
TCGGCCTCCC	AAAGTGCTGA	GATTACAGGT	GTGAGCCACC	CTGCCCAGCC	GTCAAAAGAG	9364
TCTTAATATA	TATATCCAGA	TGGCATGTGT	TTACTTTATG	TTACTACATG	CACTTGGCTG	9424
CATAAATGTG	GTACAAGCAT	TCTGTCTTGA	AGGGCAGGTG	CTTCAGGATA	CCATATACAG	9484
CTCAGAAGTT	TCTTCTTTAG	GCATTAAATT	TTAGCAAAGA	TATCTCATCT	CTTCTTTTAA	9544
ACCATTTTCT	TTTTTTGTGG	TTAGAAAAGT	TATGTAGAAA	AAAGTAAATG	TGATTTACGC	9604
TCATTGTAGA	AAAGCTATAA	AATGAATACA	ATTAAAGCTG	TTATTTAATT	AGCCAGTGAA	9664
AAACTATTAA	CAACTTGTCT	ATTACCTGTT	AGTATTATTG	TTGCATTAAA	AATGCATATA	9724
CTTTAATAAA	TGTATATTGT	ATTGTATACT	GCATGATTTT	ATTGAAGTTC	TTGTTCATCT	9784
TGTGTATATA	CTTAATCGCT	TTGTCATTTT	GGAGACATTT	ATTTTGCTTC	TAATTTCTTT	9844

ACATI	TTGTC	TTACGGAATA	TTTTCATTCA	ACTGTGGTAG	CCGAATTAAT	CGTGTTTCTT	9904
CACTO	TAGGG	ACATTGTCGT	CTAAGTTGTA	AGACATTGGT	TATTTTACCA	GCAAACCATT	9964
CTGAA	AGCAT	ATGACAAATT	ATTTCTCTCT	TAATATCTTA	CTATACTGAA	AGCAGACTGC	10024
TATAP	GGCTT	CACTTACTCT	TCTACCTCAT	AAGGAATATG	TTACAATTAA	TTTATTAGGT	10084
AAGCA	TTTGT	TTTATATTGG	TTTTATTTCA	CCTGGGCTGA	GATTTCAAGA	AACACCCCAG	10144
TCTTC	CACAGT	AACACATTTC	ACTAACACAT	TTACTAAACA	TCAGCAACTG	TGGCCTGTTA	10204
ATTTI	TTTAA	TAGAAATTTT	AAGTCCTCAT	TTTCTTTCGG	TGTTTTTAA	GCTTAATTTT	10264
TCTGG	CTTTA	TTCATAAATT	CTTAAGGTCA	ACTACATTTG	AAAAATCAAA	GACCTGCATT	10324
TTAA	TTCTT	ATTCACCTCT	GGCAAAACCA	TTCACAAACC	ATGGTAGTAA	AGAGAAGGGT	10384
GACAC	CTGGT	GGCCATAGGT	AAATGTACCA	CGGTGGTCCG	GTGACCAGAG	ATGCAGCGCT	10444
GAGGG	TTTTC	CTGAAGGTAA	AGGAATAAAG	AATGGGTGGA	GGGGCGTGCA	CTGGAAATCA	10504
CTTGT	TAGAGA	AAAGCCCCTG	AAAATTTGAG	AAAACAAACA	AGAAACTACT	TACCAGCTAT	10564
TTGA	ATTGCT	GGAATCACAG	GCCATTGCTG	AGCTGCCTGA	ACTGGGAACA	CAACAGAAGG	10624
AAAA	CAAACC	ACTCTGATAA	TCATTGAGTC	AAGTACAGCA	GGTGATTGAG	GACTGCTGAG	10684
AGGT	ACAGGC	CAAAATTCTT	ATGTTGTATT	ATAATAATGT	CATCTTATAA	TACTGTCAGT	10744
ATTT	AAATA7	ACATTCTTCA	CAAACTCACA	CACATTTAAA	AACAAAACAC	TGTCTCTAAA	10804
ATCC	CAAAT	TTTTCATAAA	С				10825

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 348 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Gly Pro Arg Ala Arg Pro Ala Leu Leu Leu Met Leu Leu Gln
1 5 10 15

Thr Ala Val Leu Gln Gly Arg Leu Leu Arg Ser His Ser Leu His Tyr 20 25 30

Leu Phe Met Gly Ala Ser Glu Gln Asp Leu Gly Leu Ser Leu Phe Glu 35 40 45

Ala Leu Gly Tyr Val Asp Asp Gln Leu Phe Val Phe Tyr Asp His Glu 50 55 60

Ser Arg Arg Val Glu Pro Arg Thr Pro Trp Val Ser Ser Arg Ile Ser 65 70 75 80

Ser Gln Met Trp Leu Gln Leu Ser Gln Ser Leu Lys Gly Trp Asp His

				85					90					95	
Met	Phe	Thr	Val 100	Asp	Phe	Trp	Thr	Ile 105	Met	Glu	Asn	His	Asn 110	His	Ser
Lys	Glu	Ser 115	His	Thr	Leu	Gln	Val 120	Ile	Leu	Gly	Cys	Glu 125	Met	Gln	Glu
Asp	Asn 130	Ser	Thr	Glu	Gly	Tyr 135	Trp	Lys	Tyr	Gly	Tyr 140	Asp	Gly	Gln	Asp
His 145	Leu	Glu	Phe	Cys	Pro 150	Asp	Thr	Leu	Asp	Trp 155	Arg	Ala	Ala	Glu	Pro 160
Arg	Ala	Trp	Pro	Thr 165	Lys	Leu	Glu	Trp	Glu 170	Arg	His	Lys	Ile	Arg 175	Ala
Arg	Gln	Asn	Arg 180	Ala	Tyr	Leu	Glu	Arg 185	Asp	Cys	Pro	Ala	Gln 190	Leu	Gln
Gln	Leu	Leu 195	Glu	Leu	Gly	Arg	Gly 200	Val	Leu	Asp	Gln	Gln 205	Val	Pro	Pro
Leu	Val 210	Lys	Val	Thr	His	His 215	Val	Thr	Ser	Ser	Val 220	Thr	Thr	Leu	Arg
Cys 225	Arg	Ala	Leu	Asn	Tyr 230	Tyr	Pro	Gln	Asn	11e 235	Thr	Met	Lys	Trp	Leu 240
Lys	Asp	Lys	Gln	Pro 245	Met	Asp	Ala	Lys	Glu 250	Phe	Glu	Pro	Lys	Asp 255	Val
Leu	Pro	Asn	Gly 260	Asp	Gly	Thr	Tyr	Gln 265	Gly	Trp	Ile	Thr	Leu 270	Ala	Val
Pro	Pro	Gly 275	Glu	Glu	Gln	Arg	Tyr 280	Thr	Tyr	Gln	Val	Glu 285	His	Pro	Gly
Leu	Asp 290	Gln	Pro	Leu	Ile	Val 295	Ile	Trp	Glu	Pro	Ser 300	Pro	Ser	Gly	Thr
Leu 305	Val	Ile	Gly	Val	Ile 310	Ser	Gly	Ile	Ala	Val 315	Phe	Val	Val	Ile	Leu 320
Phe	Ile	Gly	Ile	Leu 325	Phe	Ile	Ile	Leu	Arg 330	Lys	Arg	Gln	Gly	Ser 335	Arg
Gly	Ala	Met	Gly	His	Tyr	Val	Leu	Ala	Glu	Arg	Glu				

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10825 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: join(361436, 37624025, 42354510, 560658 60406153, 71077147) (D) OTHER INFORMATION: /product= "Hereditary Hemochromatosis (HH) protein containing the 24d2 mutation" /note= "Hereditary Hemochromatosis (HH) gene 24d2 allele"	
(ix)	FEATURE: (A) NAME/KEY: - (B) LOCATION: 1407319 (D) OTHER INFORMATION: /note= "start and stop positions for 24d2 allele cDNA (SEQ ID NO:11)"	
(ix)	FEATURE: (A) NAME/KEY: - (B) LOCATION: 38523891 (D) OTHER INFORMATION: /note= "start and stop positions for genomic sequence surrounding variant for 24d2(G) allele (SEQ ID NO:42)"	
(ix)	FEATURE: (A) NAME/KEY: - (B) LOCATION: 55076023 (D) OTHER INFORMATION: /note= "start and stop positions for genomic sequence surrounding variant for 24d1(G) allele (SEQ ID NO:20)"	
(ix)	FEATURE: (A) NAME/KEY: allele (B) LOCATION: replace(3872, "g") (D) OTHER INFORMATION: /phenotype= "Hereditary Hemochromatosi (HH)" /label= 24d2	is
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:5:	
TCTAAGGT	TG AGATAAAATT TTTAAATGTA TGATTGAATT TTGAAAATCA TAAATATTTA	60
AATATCTA	AA GTTCAGATCA GAACATTGCG AAGCTACTTT CCCCAATCAA CAACACCCCT	L20
TCAGGATT	TA AAAACCAAGG GGGACACTGG ATCACCTAGT GTTTCACAAG CAGGTACCTT	180
CTGCTGTA	GG AGAGAGAAA CTAAAGTTCT GAAAGACCTG TTGCTTTTCA CCAGGAAGTT	240
TTACTGGG	CA TCTCCTGAGC CTAGGCAATA GCTGTAGGGT GACTTCTGGA GCCATCCCCG	300
TTTCCCCG	CC CCCCAAAAGA AGCGGAGATT TAACGGGGAC GTGCGGCCAG AGCTGGGGAA	360
ATG GGC Met Gly	CCG CGA GCC AGG CCG GCG CTT CTC CTC CTG ATG CTT TTG CAG Pro Arg Ala Arg Pro Ala Leu Leu Leu Leu Met Leu Leu Gln 5 10 15	408

ACC GCG GTC CTG CAG GGG CGC TTG CTG C GTGAGTCCGA GGGCTGCGGG

CGAACTAGGG GCGCGGCGGG GGTGGAAAAA TCGAAACTAG CTTTTTCTTT GCGCTTGGGA

Thr Ala Val Leu Gln Gly Arg Leu Leu 20 25 456

GTTTGCTAAC	TTTGGAGGAC	CTGCTCAACC	CTATCCGCAA	GCCCCTCTCC	CTACTTTCTG	576
CGTCCAGACC	CCGTGAGGGA	GTGCCTACCA	CTGAACTGCA	GATAGGGGTC	CCTCGCCCCA	636.
GGACCTGCCC	CCTCCCCGG	CTGTCCCGGC	TCTGCGGAGT	GACTTTTGGA	ACCGCCCACT	696
CCCTTCCCCC	AACTAGAATG	CTTTTAAATA	AATCTCGTAG	TTCCTCACTT	GAGCTGAGCT	756
AAGCCTGGGG	CTCCTTGAAC	CTGGAACTCG	GGTTTATTTC	CAATGTCAGC	TGTGCAGTTT	816
TTTCCCCAGT	CATCTCCAAA	CAGGAAGTTC	TTCCCTGAGT	ĢCTTGCCGAG	AAGGCTGAGC	876
AAACCCACAG	CAGGATCCGC	ACGGGGTTTC	CACCTCAGAA	CGAATGCGTT	GGGCGGTGGG	936
GGCGCGAAAG	AGTGGCGTTG	GGGATCTGAA	TTCTTCACCA	TTCCACCCAC	TTTTGGTGAG	996
ACCTGGGGTG	GAGGTCTCTA	GGGTGGGAGG	CTCCTGAGAG	AGGCCTACCT	CGGGCCTTTC	1056
CCCACTCTTG	GCAATTGTTC	TTTTGCCTGG	AAAATTAAGT	ATATGTTAGT	TTTGAACGTT	1116
TGAACTGAAC	AATTCTCTTT	TCGGCTAGGC	TTTATTGATT	TGCAATGTGC	TGTGTAATTA	1176
AGAGGCCTCT	CTACAAAGTA	CTGATAATGA	ACATGTAAGC	AATGCACTCA	CTTCTAAGTT	1236
ACATTCATAT	CTGATCTTAT	TTGATTTTCA	CTAGGCATAG	GGAGGTAGGA	GCTAATAATA	1296
CGTTTATTTT	ACTAGAAGTT	AACTGGAATT	CAGATTATAT	AACTCTTTTC	AGGTTACAAA	1356
GAACATAAAT	AATCTGGTTT	TCTGATGTTA	TTTCAAGTAC	TACAGCTGCT	TCTAATCTTA	1416
GTTGACAGTG	ATTTTGCCCT	GTAGTGTAGC	ACAGTGTTCT	GTGGGTCACA	CGCCGGCCTC	1476
AGCACAGCAC	TTTGAGTTTT	GGTACTACGT	GTATCCACAT	TTTACACATG	ACAAGAATGA	1536
GGCATGGCAC	GGCCTGCTTC	CTGGCAAATT	TATTCAATGG	TACACTGGGC	TTTGGTGGCA	1596
GAGCTCATGT	CTCCACTTCA	TAGCTATGAT	TCTTAAACAT	CACACTGCAT	TAGAGGTTGA	1656
TAAAAAAT	TTCATGTTGA	GCAGAAATAT	TCATTGTTTA	CAAGTGTAAA	TGAGTCCCAG	1716
CCATGTGTTG	CACTGTTCAA	GCCCCAAGGG	AGAGAGCAGG	GAAACAAGTC	TTTACCCTTT	1776
GATATTTTGC	ATTCTAGTGG	GAGAGATGAC	AATAAGCAAA	TGAGCAGAAA	GATATACAAC	1836
ATCAGGAAAT	CATGGGTGTT	GTGAGAAGCA	GAGAAGTCAG	GGCAAGTCAC	TCTGGGGCTG	1896
ACACTTGAGC	AGAGACATGA	AGGAAATAAG	aatgatattg	ACTGGGAGCA	GTATTTCCCA	1956
GGCAAACTGA	GTGGGCCTGG	CAAGTTGGAT	TAAAAAGCGG	GTTTTCTCAG	CACTACTCAT	2016
GTGTGTGTGT	GTGGGGGGG	GGGGCGGCGT	GGGGGTGGGA	AGGGGGACTA	CCATCTGCAT	2076
GTAGGATGTC	TAGCAGTATC	CTGTCCTCCC	TACTCACTAG	GTGCTAGGAG	CACTCCCCCA	2136
GTCTTGACAA	CCAAAAATGT	CTCTAAACTT	TGCCACATGT	CACCTAGTAG	ACAAACTCCT	2196
GGTTAAGAAG	CTCGGGTTGA	AAAAAATAAA	CAAGTAGTGC	TGGGGAGTAG	AGGCCAAGAA	2256
GTAGGTAATG	GGCTCAGAAG	AGGAGCCACA	AACAAGGTTG	TGCAGGCGCC	TGTAGGCTGT	2316
GGTGTGAATT	CTAGCCAAGG	AGTAACAGTG	ATCTGTCACA	GGCTTTTAAA	AGATTGCTCT	2376

GGCTGCTATG TGGAAAGCAG AATGAAGGGA GCAACAGTAA AAGCAGGGAG CCCAGCCAGG	2436
AAGCTGTTAC ACAGTCCAGG CAAGAGGTAG TGGAGTGGGC TGGGTGGGAA CAGAAAAGGG	2496
AGTGACAAAC CATTGTCTCC TGAATATATT CTGAAGGAAG TTGCTGAAGG ATTCTATGTT	2556
GTGTGAGAGA AAGAGAAGAA TTGGCTGGGT GTAGTAGCTC ATGCCAAGGA GGAGGCCAAG	2616
GAGAGCAGAT TCCTGAGCTC AGGAGTTCAA GACCAGCCTG GGCAACACAG CAAAACCCCT	2676
TCTCTACAAA AAATACAAAA ATTAGCTGGG TGTGGTGGCA TGCACCTGTG ATCCTAGCTA	2736
CTCGGGAGGC TGAGGTGGAG GGTATTGCTT GAGCCCAGGA AGTTGAGGCT GCAGTGAGCC	2796
ATGACTGTGC CACTGTACTT CAGCCTAGGT GACAGAGCAA GACCCTGTCT CCCCTGACCC	2856
CCTGAAAAAG AGAAGAGTTA AAGTTGACTT TGTTCTTTAT TTTAATTTTA TTGGCCTGAG	2916
CAGTGGGGTA ATTGGCAATG CCATTTCTGA GATGGTGAAG GCAGAGGAAA GAGCAGTTTG	2976
GGGTAAATCA AGGATCTGCA TTTGGGACAT GTTAAGTTTG AGATTCCAGT CAGGCTTCCA	3036
AGTGGTGAGG CCACATAGGC AGTTCAGTGT AAGAATTCAG GACCAAGGCT GGGCACGGTG	3096
GCTCACTTCT GTAATCCCAG CACTTTGGTG GCTGAGGCAG GTAGATCATT TGAGGTCAGG	3156
AGTTTGAGAC AAGCTTGGCC AACATGGTGA AACCCCATGT CTACTAAAAA TACAAAAATT	3216
AGCCTGGTGT GGTGGCGCAC GCCTATAGTC CCAGGTTTTC AGGAGGCTTA GGTAGGAGAA	3276
TCCCTTGAAC CCAGGAGGTG CAGGTTGCAG TGAGCTGAGA TTGTGCCACT GCACTCCAGC	3336
CTGGGTGATA GAGTGAGACT CTGTCTCAAA AAAAAAAAA AAAAAAAAA AAAAAAACTGA	3396
AGGAATTATT CCTCAGGATT TGGGTCTAAT TTGCCCTGAG CACCAACTCC TGAGTTCAAC	3456
TACCATGGCT AGACACACCT TAACATTTTC TAGAATCCAC CAGCTTTAGT GGAGTCTGTC	3516
TAATCATGAG TATTGGAATA GGATCTGGGG GCAGTGAGGG GGTGGCAGCC ACGTGTGGCA	3576
GAGAAAAGCA CACAAGGAAA GAGCACCCAG GACTGTCATA TGGAAGAAAG ACAGGACTGC	3636
AACTCACCCT TCACAAAATG AGGACCAGAC ACAGCTGATG GTATGAGTTG ATGCAGGTGT	3696
GTGGAGCCTC AACATCCTGC TCCCCTCCTA CTACACATGG TTAAGGCCTG TTGCTCTGTC	3756
TCCAG GT TCA CAC TCT CTG CAC TAC CTC TTC ATG GGT GCC TCA GAG Arg Ser His Ser Leu His Tyr Leu Phe Met Gly Ala Ser Glu 30 35	3802
CAG GAC CTT GGT CTT TCC TTG TTT GAA GCT TTG GGC TAC GTG GAT GAC Gln Asp Leu Gly Leu Ser Leu Phe Glu Ala Leu Gly Tyr Val Asp Asp 40 45 50 55	3850
CAG CTG TTC GTG TTC TAT GAT GAT GAG AGT CGC CGT GTG GAG CCC CGA Gln Leu Phe Val Phe Tyr Asp Asp Glu Ser Arg Arg Val Glu Pro Arg 60 65 70	3898
ACT CCA TGG GTT TCC AGT AGA ATT TCA AGC CAG ATG TGG CTG CAG CTG Thr Pro Trp Val Ser Ser Arg Ile Ser Ser Gln Met Trp Leu Gln Leu 75 80 85	3946

AGT CAG AGT CTG AAA GGG TGG GAT CAC ATG TTC ACT GTT GAC TTC TGG Ser Gln Ser Leu Lys Gly Trp Asp His Met Phe Thr Val Asp Phe Trp 90 95 100	3994
ACT ATT ATG GAA AAT CAC AAC CAC AGC AAG G GTATGTGGAG AGGGGGCCTC Thr Ile Met Glu Asn His Asn His Ser Lys 105	4045
ACCTTCCTGA GGTTGTCAGA GCTTTTCATC TTTTCATGCA TCTTGAAGGA AACAGCTGGA	4105
AGTCTGAGGT CTTGTGGGAG CAGGGAAGAG GGAAGGAATT TGCTTCCTGA GATCATTTGG	4165
TCCTTGGGGA TGGTGGAAAT AGGGACCTAT TCCTTTGGTT GCAGTTAACA AGGCTGGGGA	4225
TTTTTCCAG AG TCC CAC ACC CTG CAG GTC ATC CTG GGC TGT GAA ATG Glu Ser His Thr Leu Gln Val Ile Leu Gly Cys Glu Met 115 120 125	4272
CAA GAA GAC AAC AGT ACC GAG GGC TAC TGG AAG TAC GGG TAT GAT GGG Gln Glu Asp Asn Ser Thr Glu Gly Tyr Trp Lys Tyr Gly Tyr Asp Gly 130 135 140	4320
CAG GAC CAC CTT GAA TTC TGC CCT GAC ACA CTG GAT TGG AGA GCA GCA Gln Asp His Leu Glu Phe Cys Pro Asp Thr Leu Asp Trp Arg Ala Ala 145	4368
GAA CCC AGG GCC TGG CCC ACC AAG CTG GAG TGG GAA AGG CAC AAG ATT Glu Pro Arg Ala Trp Pro Thr Lys Leu Glu Trp Glu Arg His Lys Ile 160 165 170	4416
CGG GCC AGG CAG AAC AGG GCC TAC CTG GAG AGG GAC TGC CCT GCA CAG Arg Ala Arg Gln Asn Arg Ala Tyr Leu Glu Arg Asp Cys Pro Ala Gln 175 180 185 190	4464
CTG CAG CAG TTG CTG GAG CTG GGG AGA GGT GTT TTG GAC CAA CAA G Leu Gln Gln Leu Leu Glu Leu Gly Arg Gly Val Leu Asp Gln Gln 195 200 205	4510
GTATGGTGGA AACACACTTC TGCCCCTATA CTCTAGTGGC AGAGTGGAGG AGGTTGCAGG	4570
GCACGGAATC CCTGGTTGGA GTTTCAGAGG TGGCTGAGGC TGTGTGCCTC TCCAAATTCT	4630
GGGAAGGGAC TTTCTCAATC CTAGAGTCTC TACCTTATAA TTGAGATGTA TGAGACAGCC	4690
ACAAGTCATG GGTTTAATTT CTTTTCTCCA TGCATATGGC TCAAAGGGAA GTGTCTATGG	4750
CCCTTGCTTT TTATTTAACC AATAATCTTT TGTATATTTA TACCTGTTAA AAATTCAGAA	4810
ATGTCAAGGC CGGGCACGGT GGCTCACCCC TGTAATCCCA GCACTTTGGG AGGCCGAGGC	4870
GGGTGGTCAC AAGGTCAGGA GTTTGAGACC AGCCTGACCA ACATGGTGAA ACCCGTCTCT	4930
AAAAAAATAC AAAAATTAGC TGGTCACAGT CATGCGCACC TGTAGTCCCA GCTAATTGGA	4990
AGGCTGAGGC AGGAGCATCG CTTGAACCTG GGAAGCGGAA GTTGCACTGA GCCAAGATCG	5050
CGCCACTGCA CTCCAGCCTA GGCAGCAGAG TGAGACTCCA TCTTAAAAAA AAAAAAAAAA	5110
AAAAAAAGAG AATTCAGAGA TCTCAGCTAT CATATGAATA CCAGGACAAA ATATCAAGTG	5170
AGGCCACTTA TCAGAGTAGA AGAATCCTTT AGGTTAAAAG TTTCTTTCAT AGAACATAGC	5230

AATAATCACT GAAGCTACCT ATCTTACAAG TCCGCTTCTT ATAACAATGC CTCCTAGGTT	5290
GACCCAGGTG AAACTGACCA TCTGTATTCA ATCATTTTCA ATGCACATAA AGGGCAATTT	5350
TATCTATCAG AACAAAGAAC ATGGGTAACA GATATGTATA TTTACATGTG AGGAGAACAA	5410
GCTGATCTGA CTGCTCTCCA AGTGACACTG TGTTAGAGTC CAATCTTAGG ACACAAAATG	5470
GTGTCTCTCC TGTAGCTTGT TTTTTCTGA AAAGGGTATT TCCTTCCTCC AACCTATAGA	5530
AGGAAGTGAA AGTTCCAGTC TTCCTGGCAA GGGTAAACAG ATCCCCTCTC CTCATCCTTC	5590
CTCTTTCCTG TCAAG TG CCT CCT TTG GTG AAG GTG ACA CAT CAT GTG ACC Val Pro Pro Leu Val Lys Val Thr His His Val Thr 210 215	5640
TCT TCA GTG ACC ACT CTA CGG TGT CGG GCC TTG AAC TAC TAC CCC CAG Ser Ser Val Thr Thr Leu Arg Cys Arg Ala Leu Asn Tyr Tyr Pro Gln 220 225 230	5688
AAC ATC ACC ATG AAG TGG CTG AAG GAT AAG CAG CCA ATG GAT GCC AAG Asn Ile Thr Met Lys Trp Leu Lys Asp Lys Gln Pro Met Asp Ala Lys 235 240 245	5736
GAG TTC GAA CCT AAA GAC GTA TTG CCC AAT GGG GAT GGG ACC TAC CAG Glu Phe Glu Pro Lys Asp Val Leu Pro Asn Gly Asp Gly Thr Tyr Gln 250 265	5784
GGC TGG ATA ACC TTG GCT GTA CCC CCT GGG GAA GAG CAG AGA TAT ACG Gly Trp Ile Thr Leu Ala Val Pro Pro Gly Glu Glu Gln Arg Tyr Thr 270 275 280	5832
TGC CAG GTG GAG CAC CCA GGC CTG GAT CAG CCC CTC ATT GTG ATC TGG G Cys Gln Val Glu His Pro Gly Leu Asp Gln Pro Leu Ile Val Ile Trp 285 290 295	5881
GTATGTGACT GATGAGAGCC AGGAGCTGAG AAAATCTATT GGGGGTTGAG AGGAGTGCCT	5941
GAGGAGGTAA TTATGGCAGT GAGATGAGGA TCTGCTCTTT GTTAGGGGGT GGGCTGAGGG	6001
TGGCAATCAA AGGCTTTAAC TTGCTTTTTC TGTTTTAG AG CCC TCA CCG TCT Glu Pro Ser Pro Ser 300	6053
GGC ACC CTA GTC ATT GGA GTC ATC AGT GGA ATT GCT GTT TTT GTC GTC Gly Thr Leu Val Ile Gly Val Ile Ser Gly Ile Ala Val Phe Val Val 305	6101
ATC TTG TTC ATT GGA ATT TTG TTC ATA ATA TTA AGG AAG AGG CAG GGT Ile Leu Phe Ile Gly Ile Leu Phe Ile Leu Arg Lys Arg Gln Gly 320 330	6149
TCA A GTGAGTAGGA ACAAGGGGGA AGTCTCTTAG TACCTCTGCC CCAGGGCACA Ser 335	6203
GTGGGAAGAG GGGCAGAGGG GATCTGGCAT CCATGGGAAG CATTTTTCTC ATTTATATTC	6263
TTTGGGGACA CCAGCAGCTC CCTGGGAGAC AGAAATAAT GGTTCTCCCC AGAATGAAAG	6323
TOTOTA ATTO A ACA A A CATO TOTO ATTO A CACACO CON CONTROL CON A CACACOTO TOTO A CONTROL	6202

TACAGGGGCT TTGAGGTTGA GAAGTCACTG TGGCTATTCT CAGAACCCAA	ATCTGGTAGG	6443
GAATGAAATT GATAGCAAGT AAATGTAGTT AAAGAAGACC CCATGAGGTC	CTAAAGCAGG	6503
CAGGAAGCAA ATGCTTAGGG TGTCAAAGGA AAGAATGATC ACATTCAGCT	GGGGATCAAG	6563
ATAGCCTTCT GGATCTTGAA GGAGAAGCTG GATTCCATTA GGTGAGGTTG	AAGATGATGG	6623
GAGGTCTACA CAGACGGAGC AACCATGCCA AGTAGGAGAG TATAAGGCAT	ACTGGGAGAT	6683
TAGAAATAAT TACTGTACCT TAACCCTGAG TTTGCGTAGC TATCACTCAC	CAATTATGCA	6743
TTTCTACCCC CTGAACATCT GTGGTGTAGG GAAAAGAGAA TCAGAAAGAA	GCCAGCTCAT	6803
ACAGAGTCCA AGGGTCTTTT GGGATATTGG GTTATGATCA CTGGGGTGTC	ATTGAAGGAT	6863
CCTAAGAAAG GAGGACCACG ATCTCCCTTA TATGGTGAAT GTGTTGTTAA	GAAGTTAGAT	6923
GAGAGGTGAG GAGACCAGTT AGAAAGCCAA TAAGCATTTC CAGATGAGAG	ATAATGGTTC	6983
TTGAAATCCA ATAGTGCCCA GGTCTAAATT GAGATGGGTG AATGAGGAAA	ATAAGGAAGA	7043
GAGAAGAGGC AAGATGGTGC CTAGGTTTGT GATGCCTCTT TCCTGGGTCT	CTTGTCTCCA	7103
CAG GA GGA GCC ATG GGG CAC TAC GTC TTA GCT GAA CGT GA Arg Gly Ala Met Gly His Tyr Val Leu Ala Glu Arg Gl 340 345		7144
TGACACGCAG CCTGCAGACT CACTGTGGGA AGGAGACAAA ACTAGAGACT	' CAAAGAGGGA	7204
GTGCATTTAT GAGCTCTTCA TGTTTCAGGA GAGAGTTGAA CCTAAACATA	GAAATTGCCT	7264
GACGAACTCC TTGATTTTAG CCTTCTCTGT TCATTTCCTC AAAAAGATTT	CCCCATTTAG	7324
GTTTCTGAGT TCCTGCATGC CGGTGATCCC TAGCTGTGAC CTCTCCCCTG	GAACTGTCTC	7384
TCATGAACCT CAAGCTGCAT CTAGAGGCTT CCTTCATTTC CTCCGTCACC	TCAGAGACAT	7444
ACACCTATGT CATTTCATTT CCTATTTTTG GAAGAGGACT CCTTAAATTT	GGGGGACTTA	7504
CATGATTCAT TTTAACATCT GAGAAAAGCT TTGAACCCTG GGACGTGGCT	AGTCATAACC	7564
TTACCAGATT TTTACACATG TATCTATGCA TTTTCTGGAC CCGTTCAACT	TTTCCTTTGA	7624
ATCCTCTCTC TGTGTTACCC AGTAACTCAT CTGTCACCAA GCCTTGGGGA	TTCTTCCATC	7684
TGATTGTGAT GTGAGTTGCA CAGCTATGAA GGCTGTACAC TGCACGAATG	GAAGAGGCAC	7744
CTGTCCCAGA AAAAGCATCA TGGCTATCTG TGGGTAGTAT GATGGGTGTT	TTTAGCAGGT	7804
AGGAGGCAAA TATCTTGAAA GGGGTTGTGA AGAGGTGTTT TTTCTAATTG	GCATGAAGGT	7864
GTCATACAGA TTTGCAAAGT TTAATGGTGC CTTCATTTGG GATGCTACTC	TAGTATTCCA	7924
GACCTGAAGA ATCACAATAA TTTTCTACCT GGTCTCTCCT TGTTCTGATA	ATGAAAATTA	7984
TGATAAGGAT GATAAAAGCA CTTACTTCGT GTCCGACTCT TCTGAGCACC	TACTTACATG	8044
CATTACTGCA TGCACTTCTT ACAATAATTC TATGAGATAG GTACTATTAT	CCCCATTTCT	8104
ITTTTAAATG AAGAAAGTGA AGTAGGCCGG GCACGGTGGC TCACGCCTGT	AATCCCAGCA	8164

CTTTGG	GAGG	CCAAAGCGGG	TGGATCACGA	GGTCAGGAGA	TCGAGACCAT	CCTGGCTAAC	8224
ATGGTG	AAAC	CCCATCTCTA	ATAAAAATAC	AAAAAATTAG	CTGGGCGTGG	TGGCAGACGC	8284
CTGTAG	TCCC	AGCTACTCGG	AAGGCTGAGG	CAGGAGAATG	GCATGAACCC	AGGAGGCAGA	8344
GCTTGC	AGTG	AGCCGAGTTT	GCGCCACTGC	ACTCCAGCCT	AGGTGACAGA	GTGAGACTCC	8404
ATCTCA	AAAA	AATAAAAATA	AAAATAAAA	AATGAAAAA	AAAAGAAAGT	GAAGTATAGA	8464
GTATCT	CATA	GTTTGTCAGT	GATAGAAACA	GGTTTCAAAC	TCAGTCAATC	TGACCGTTTG	8524
ATACATO	CTCA	GACACCACTA	CATTCAGTAG	TTTAGATGCC	TAGAATAAAT	AGAGAAGGAA	8584
GGAGAT	GCT	CTTCTCTTGT	CTCATTGTGT	TTCTTCTGAG	TGAGCTTGAA	TCACATGAAG	8644
GGGAAC	AGCA	GAAAACAACC	AACTGATCCT	CAGCTGTCAT	GTTTCCTTTA	AAAGTCCCTG	8704
AAGGAA	GTC	CTGGAATGTG	ACTCCCTTGC	TCCTCTGTTG	CTCTCTTTGG	CATTCATTTC	8764
TTTGGA	CCCT	ACGCAAGGAC	TGTAATTGGT	GGGGACAGCT	AGTGGCCCTG	CTGGGCTTCA	8824
CACACG	STGT	CCTCCCTAGG	CCAGTGCCTC	TGGAGTCAGA	ACTCTGGTGG	TATTTCCCTC	8884
AATGAAG	STGG	AGTAAGCTCT	CTCATTTTGA	GATGGTATAA	TGGAAGCCAC	CAAGTGGCTT	8944
AGAGGA	rgcc	CAGGTCCTTC	CATGGAGCCA	CTGGGGTTCC	GGTGCACATT	АААААААА	9004
TCTAACO	CAGG	ACATTCAGGA	ATTGCTAGAT	TCTGGGAAAT	CAGTTCACCA	TGTTCAAAAG	9064
AGTCTTT	TTTT	TTTTTTTGA	GACTCTATTG	CCCAGGCTGG	AGTGCAATGG	CATGATCTCG	9124
GCTCACT	TGTA	ACCTCTGCCT	CCCAGGTTCA	AGCGATTCTC	CTGTCTCAGC	CTCCCAAGTA	9184
GCTGGGZ	ATTA	CAGGCGTGCA	CCACCATGCC	CGGCTAATTT	TTGTATTTTT	AGTAGAGACA	9244
GGGTTTC	CACC	ATGTTGGCCA	GGCTGGTCTC	GAACTCTCCT	GACCTCGTGA	TCCGCCTGCC	9304
TCGGCCT	rccc	AAAGTGCTGA	GATTACAGGT	GTGAGCCACC	CTGCCCAGCC	GTCAAAAGAG	9364
TCTTAAT	TATA	TATATCCAGA	TGGCATGTGT	TTACTTTATG	TTACTACATG	CACTTGGCTG	9424
CATAAAT	TGTG	GTACAAGCAT	TCTGTCTTGA	AGGGCAGGTG	CTTCAGGATA	CCATATACAG	9484
CTCAGA	AGTT	TCTTCTTTAG	GCATTAAATT	TTAGCAAAGA	TATCTCATCT	CTTCTTTTAA	9544
ACCATT	TCT	TTTTTTGTGG	TTAGAAAAGT	TATGTAGAAA	AAAGTAAATG	TGATTTACGC	9604
TCATTGT	TAGA	AAAGCTATAA	AATGAATACA	ATTAAAGCTG	TTATTTAATT	AGCCAGTGAA	9664
AAACTAT	TAA	CAACTTGTCT	ATTACCTGTT	AGTATTATTG	TTGCATTAAA	AATGCATATA	9724
CTTTAAT	'AAA'	TGTATATTGT	ATTGTATACT	GCATGATTTT	ATTGAAGTTC	TTGTTCATCT	9784
TGTGTAT	CATA	CTTAATCGCT	TTGTCATTTT	GGAGACATTT	ATTTTGCTTC	TAATTTCTTT	9844
ACATTTT	GTC	TTACGGAATA	TTTTCATTCA	ACTGTGGTAG	CCGAATTAAT	CGTGTTTCTT	9904
CACTCTA	\GGG	ACATTGTCGT	CTAAGTTGTA	AGACATTGGT	TATTTTACCA	GCAAACCATT	9964
CTGAAAG	CAT	ATGACAAATT	ATTTCTCTCT	ТААТАТСТТА	CTATACTGAA	AGCAGACTGC	10024

TAT	AAGGCTT	CACTTACTCT	TCTACCTCAT	AAGGAATATG	TTACAATTAA	TTTATTAGGT	10084
AAG	CATTTGT	TTTATATTGG	TTTTATTTCA	CCTGGGCTGA	GATTTCAAGA	AACACCCCAG	10144
TCT	TCACAGT	AACACATTTC	ACTAACACAT	TTACTAAACA	TCAGCAACTG	TGGCCTGTTA	10204
TTA	TTTTTAA	TAGAAATTTT	AAGTCCTCAT	TTTCTTTCGG	TGTTTTTAA	GCTTAATTTT	10264
TCT	GGCTTTA	TTCATAAATT	CTTAAGGTCA	ACTACATTTG	AAAAATCAAA	GACCTGCATT	10324
TTA	AATTCTT	ATTCACCTCT	GGCAAAACCA	TTCACAAACC	ATGGTAGTAA	AGAGAAGGGT	10384
GAC	ACCTGGT	GGCCATAGGT	AAATGTACCA	CGGTGGTCCG	GTGACCAGAG	ATGCAGCGCT	10444
GAG	GGTTTTC	CTGAAGGTAA	AGGAATAAAG	AATGGGTGGA	GGGGCGTGCA	CTGGAAATCA	10504
CTT	GTAGAGA	AAAGCCCCTG	AAAATTTGAG	AAAACAAACA	AGAAACTACT	TACCAGCTAT	10564
TTG	AATTGCT	GGAATCACAG	GCCATTGCTG	AGCTGCCTGA	ACTGGGAACA	CAACAGAAGG	10624
AAA	ACAAACC	ACTCTGATAA	TCATTGAGTC	AAGTACAGCA	GGTGATTGAG	GACTGCTGAG	10684
AGG	TACAGGC	CAAAATTCTT	ATGTTGTATT	ATAATAATGT	CATCTTATAA	TACTGTCAGT	10744
ATT	TTATAAA	ACATTCTTCA	CAAACTCACA	CACATTTAAA	AACAAAACAC	TGTCTCTAAA	10804
ATC	CCCAAAT	TTTTCATAAA	С				10825

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 348 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Gly Pro Arg Ala Arg Pro Ala Leu Leu Leu Leu Met Leu Leu Gln
1 5 10 15

Thr Ala Val Leu Gln Gly Arg Leu Leu Arg Ser His Ser Leu His Tyr 20 25 30

Leu Phe Met Gly Ala Ser Glu Gln Asp Leu Gly Leu Ser Leu Phe Glu 35 40

Ala Leu Gly Tyr Val Asp Asp Gln Leu Phe Val Phe Tyr Asp Asp Glu 50 55 60

Ser Arg Arg Val Glu Pro Arg Thr Pro Trp Val Ser Ser Arg Ile Ser 65 70 75 80

Ser Gln Met Trp Leu Gln Leu Ser Gln Ser Leu Lys Gly Trp Asp His
85 90 95

Met Phe Thr Val Asp Phe Trp Thr Ile Met Glu Asn His Asn His Ser 100 105 110

Lys Glu Ser His Thr Leu Gln Val Ile Leu Gly Cys Glu Met Gln Glu

Length of the property of the

		115					120					125			
Asp	Asn 130	Ser	Thr	Glu	Gly	Tyr 135	Trp	Lys	Tyr	Gly	Tyr 140	Asp	Gly	Gln	Asp
His 145	Leu	Glu	Phe	Cys	Pro 150	Asp	Thr	Leu	Asp	Trp 155	Arg	Ala	Ala	Glu	Pro 160
Arg	Ala	Trp	Pro	Thr 165	Lys	Leu	Glu	Trp	Glu 170	Arg	His	Lys	Ile	Arg 175	Ala
Arg	Gln	Asn	Arg 180	Ala	Tyr	Leu	Glu	Arg 185	Asp	Cys	Pro	Ala	Gln 190	Leu	Gln
Gln	Leu	Leu 195	Glu	Leu	Gly	Arg	Gly 200	Val	Leu	Asp	Gln	Gln 205	Val	Pro	Pro
Leu	Val 210	Lys	Val	Thr	His	His 215	Val	Thr	Ser	Ser	Val 220	Thr	Thr	Leu	Arg
Cys 225	Arg	Ala	Leu	Asn	Tyr 230	Tyr	Pro	Gln	Asn	Ile 235	Thr	Met	Lys	Trp	Leu 240
Lys	Asp	Lys	Gln	Pro 245	Met	Asp	Ala	Lys	Glu 250	Phe	Glu	Pro	Lys	Asp 255	Val
Leu	Pro	Asn	Gly 260	Asp	Gly	Thr	Tyr	Gln 265	Gly	Trp	Ile	Thr	Leu 270	Ala	Val
Pro	Pro	Gly 275	Glu	Glu	Gln	Arg	Tyr 280	Thr	Cys	Gln	Val	Glu 285	His	Pro	Gly
Leu	Asp 290	Ġln	Pro	Leu	Ile	Val 295	Ile	Trp	Glu	Pro	Ser 300	Pro	Ser	Gly	Thr
Leu 305	Val	Ile	Gly	Val	Ile 310	Ser	Gly	Ile	Ala	Val 315	Phe	Val	Val	Ile	Leu 320
Phe	Ile	Gly	Ile	Leu 325	Phe	Ile	Ile	Leu	Arg 330	Lys	Arg	Gln	Gly	Ser 335	Arg
Gly	Ala	Met	Gly 340	His	Tyr	Val	Leu	Ala 345	Glu	Arg	Glu				

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10825 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:

 - (A) NAME/KEY: CDS
 (B) LOCATION: join(361..436, 3762..4025, 4235..4510, 5606..5881, 6040..6153, 7107..7147)
 - (D) OTHER INFORMATION: /product= "Hereditary Hemochromatosis (HH) protein containing both the 24d1

and 24d2 mutations"
/note= "Hereditary Hemochromatosis (HH)
gene containing a combination of both
24d1 and 24d2 alleles"

(ix) FEATURE:

- (A) NAME/KEY: -
- (B) LOCATION: 140..7319
- (D) OTHER INFORMATION: /note= "start and stop positions for cDNA containing a combination of both 24d1 and 24d2 alleles (SEQ ID NO:12)"

(ix) FEATURE:

- (A) NAME/KEY: -
- (B) LOCATION: 3852..3891
- (D) OTHER INFORMATION: /note= "start and stop positions for genomic sequence surrounding variant for 24d2(G) allele (SEQ ID NO:42)"

(ix) FEATURE:

- (A) NAME/KEY: -
- (B) LOCATION: 5507..6023
- (D) OTHER INFORMATION: /note= "start and stop positions for genomic sequence surrounding variant for 24d1(A) allele (SEQ ID NO:21)"

(ix) FEATURE:

- (A) NAME/KEY: allele
- (B) LOCATION: replace (3872, "g")
- (D) OTHER INFORMATION: /phenotype= "Hereditary Hemochromatosis (HH)" /label= 24d2

(ix) FEATURE:

(A) NAME/KEY: allele

Thr Ala Val Leu Gln Gly Arg Leu Leu

- (B) LOCATION: replace(5834, "a")
- (D) OTHER INFORMATION: /phenotype= "Hereditary Hemochromatosis (HH)" /label= 24d1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

TCTAAGGTTG AGATAAAATT TTTAAATGTA TGATTGAATT TTGAAAATCA TAAATATTTA	60
AATATCTAAA GTTCAGATCA GAACATTGCG AAGCTACTTT CCCCAATCAA CAACACCCCT	120
TCAGGATTTA AAAACCAAGG GGGACACTGG ATCACCTAGT GTTTCACAAG CAGGTACCTT	180
CTGCTGTAGG AGAGAGAA CTAAAGTTCT GAAAGACCTG TTGCTTTTCA CCAGGAAGTT	240
TTACTGGGCA TCTCCTGAGC CTAGGCAATA GCTGTAGGGT GACTTCTGGA GCCATCCCCG	300
TTTCCCCGCC CCCCAAAAGA AGCGGAGATT TAACGGGGAC GTGCGGCCAG AGCTGGGGAA	360
ATG GGC CCG CGA GCC AGG CCG GCG CTT CTC CTC CTG ATG CTT TTG CAG Met Gly Pro Arg Ala Arg Pro Ala Leu Leu Leu Met Leu Leu Gln 1 5 10 15	408
ACC GCG GTC CTG CAG GGG CGC TTG CTG C GTGAGTCCGA GGGCTGCGGG	456

	_•					
CGAACTAGGG	GCGCGGCGGG	GGTGGAAAAA	TCGAAACTAG	CTTTTTCTTT	GCGCTTGGGA	516
GTTTGCTAAC	TTTGGAGGAC	CTGCTCAACC	CTATCCGCAA	GCCCCTCTCC	CTACTTTCTG	576
CGTCCAGACC	CCGTGAGGGA	GTGCCTACCA	CTGAACTGCA	GATAGGGGTC	CCTCGCCCCA	636
GGACCTGCCC	CCTCCCCGG	CTGTCCCGGC	TCTGCGGAGT	GACTTTTGGA	ACCGCCCACT	696
CCCTTCCCCC	AACTAGAATG	CTTTTAAATA	AATCTCGTAG	TTCCTCACTT	GAGCTGAGCT	756
AAGCCTGGGG	CTCCTTGAAC	CTGGAACTCG	GGTTTATTTC	CAATGTCAGC	TGTGCAGTTT	816
TTTCCCCAGT	CATCTCCAAA	CAGGAAGTTC	TTCCCTGAGT	GCTTGCCGAG	AAGGCTGAGC	876
AAACCCACAG	CAGGATCCGC	ACGGGGTTTC	CACCTCAGAA	CGAATGCGTT	GGGCGGTGGG	936
GGCGCGAAAG	AGTGGCGTTG	GGGATCTGAA	TTCTTCACCA	TTCCACCCAC	TTTTGGTGAG	996
ACCTGGGGTG	GAGGTCTCTA	GGGTGGGAGG	CTCCTGAGAG	AGGCCTACCT	CGGGCCTTTC	1056
CCCACTCTTG	GCAATTGTTC	TTTTGCCTGG	AAAATTAAGT	ATATGTTAGT	TTTGAACGTT	1116
TGAACTGAAC	AATTCTCTTT	TCGGCTAGGC	TTTATTGATT	TGCAATGTGC	TGTGTAATTA	1176
AGAGGCCTCT	CTACAAAGTA	CTGATAATGA	ACATGTAAGC	AATGCACTCA	CTTCTAAGTT	1236
ACATTCATAT	CTGATCTTAT	TTGATTTTCA	CTAGGCATAG	GGAGGTAGGA	GCTAATAATA	1296
CGTTTATTTT	ACTAGAAGTT	AACTGGAATT	CAGATTATAT	AACTCTTTTC	AGGTTACAAA	1356
GAACATAAAT	AATCTGGTTT	TCTGATGTTA	TTTCAAGTAC	TACAGCTGCT	TCTAATCTTA	1416
GTTGACAGTG	ATTTTGCCCT	GTAGTGTAGC	ACAGTGTTCT	GTGGGTCACA	CGCCGGCCTC	1476
AGCACAGCAC	TTTGAGTTTT	GGTACTACGT	GTATCCACAT	TTTACACATG	ACAAGAATGA	1536
GGCATGGCAC	GGCCTGCTTC	CTGGCAAATT	TATTCAATGG	TACACTGGGC	TTTGGTGGCA	1596
GAGCTCATGT	CTCCACTTCA	TAGCTATGAT	TCTTAAACAT	CACACTGCAT	TAGAGGTTGA	1656
ATAATAAAAT	TTCATGTTGA	GCAGAAATAT	TCATTGTTTA	CAAGTGTAAA	TGAGTCCCAG	1716
CCATGTGTTG	CACTGTTCAA	GCCCCAAGGG	AGAGAGCAGG	GAAACAAGTC	TTTACCCTTT	1776
GATATTTTGC	ATTCTAGTGG	GAGAGATGAC	AATAAGCAAA	TGAGCAGAAA	GATATACAAC	1836
ATCAGGAAAT	CATGGGTGTT	GTGAGAAGCA	GAGAAGTCAG	GGCAAGTCAC	TCTGGGGCTG	1896
ACACTTGAGC	AGAGACATGA	AGGAAATAAG	AATGATATTG	ACTGGGAGCA	GTATTTCCCA	1956
GGCAAACTGA	GTGGGCCTGG	CAAGTTGGAT	TAAAAAGCGG	GTTTTCTCAG	CACTACTCAT	2016
GTGTGTGTGT	GTGGGGGGG	GGGGCGCGT	GGGGGTGGGA	AGGGGGACTA	CCATCTGCAT	2076
GTAGGATGTC	TAGCAGTATC	CTGTCCTCCC	TACTCACTAG	GTGCTAGGAG	CACTCCCCCA	2136
GTCTTGACAA	CCAAAAATGT	CTCTAAACTT	TGCCACATGT	CACCTAGTAG	ACAAACTCCT	2196
GGTTAAGAAG	CTCGGGTTGA	AAAAAATAAA	CAAGTAGTGC	TGGGGAGTAG	AGGCCAAGAA	2256

GTAGGTAATG	GGCTCAGAAG	AGGAGCCACA	AACAAGGTTG	TGCAGGCGCC	TGTAGGCTGT	2316
GGTGTGAATT	CTAGCCAAGG	AGTAACAGTG	ATCTGTCACA	GGCTTTTAAA	AGATTGCTCT	2376
GGCTGCTATG	TGGAAAGCAG	AATGAAGGGA	GCAACAGTAA	AAGCAGGGAG	CCCAGCCAGG	2436
AAGCTGTTAC	ACAGTCCAGG	CAAGAGGTAG	TGGAGTGGGC	TGGGTGGGAA	CAGAAAAGGG	2496
AGTGACAAAC	CATTGTCTCC	TGAATATATT	CTGAAGGAAG	TTGCTGAAGG	ATTCTATGTT	2556
GTGTGAGAGA	AAGAGAAGAA	TTGGCTGGGT	GTAGTAGCTC	ATGCCAAGGA	GGAGGCCAAG	2616
GAGAGCAGAT	TCCTGAGCTC	AGGAGTTCAA	GACCAGCCTG	GGCAACACAG	CAAAACCCCT	2676
TCTCTACAAA	AAATACAAAA	ATTAGCTGGG	TGTGGTGGCA	TGCACCTGTG	ATCCTAGCTA	2736
CTCGGGAGGC	TGAGGTGGAG	GGTATTGCTT	GAGCCCAGGA	AGTTGAGGCT	GCAGTGAGCC	2796
ATGACTGTGC	CACTGTACTT	CAGCCTAGGT	GACAGAGCAA	GACCCTGTCT	CCCCTGACCC	2856
CCTGAAAAAG	AGAAGAGTTA	AAGTTGACTT	TGTTCTTTAT	TTTAATTTTA	TTGGCCTGAG	2916
CAGTGGGGTA	ATTGGCAATG	CCATTTCTGA	GATGGTGAAG	GCAGAGGAAA	GAGCAGTTTG	2976
GGGTAAATCA	AGGATCTGCA	TTTGGGACAT	GTTAAGTTTG	AGATTCCAGT	CAGGCTTCCA	3036
AGTGGTGAGG	CCACATAGGC	AGTTCAGTGT	AAGAATTCAG	GACCAAGGCT	GGGCACGGTG	3096
GCTCACTTCT	GTAATCCCAG	CACTTTGGTG	GCTGAGGCAG	GTAGATCATT	TGAGGTCAGG	3156
AGTTTGAGAC	AAGCTTGGCC	AACATGGTGA	AACCCCATGT	CTACTAAAAA	TACAAAAATT	3216
AGCCTGGTGT	GGTGGCGCAC	GCCTATAGTC	CCAGGTTTTC	AGGAGGCTTA	GGTAGGAGAA	3276
TCCCTTGAAC	CCAGGAGGTG	CAGGTTGCAG	TGAGCTGAGA	TTGTGCCACT	GCACTCCAGC	3336
CTGGGTGATA	GAGTGAGACT	CTGTCTCAAA	ААААААААА	AAAAAAAA	AAAAAACTGA	3396
AGGAATTATT	CCTCAGGATT	TGGGTCTAAT	TTGCCCTGAG	CACCAACTCC	TGAGTTCAAC	3456
TACCATGGCT	AGACACACCT	TAACATTTTC	TAGAATCCAC	CAGCTTTAGT	GGAGTCTGTC	3516
TAATCATGAG	TATTGGAATA	GGATCTGGGG	GCAGTGAGGG	GGTGGCAGCC	ACGTGTGGCA	3576
GAGAAAAGCA	CACAAGGAAA	GAGCACCCAG	GACTGTCATA	TGGAAGAAAG	ACAGGACTGC	3636
AACTCACCCT	TCACAAAATG	AGGACCAGAC	ACAGCTGATG	GTATGAGTTG	ATGCAGGTGT	3696
GTGGAGCCTC	AACATCCTGC	TCCCCTCCTA	CTACACATGG	TTAAGGCCTG	TTGCTCTGTC	3756
TCCAG GT Arg	TCA CAC TCT Ser His Ser	CTG CAC TA Leu His Ty 30	C CTC TTC A	TG GGT GCC let Gly Ala 35	TCA GAG Ser Glu	3802
CAG GAC CT Gln Asp Le 40	T GGT CTT I u Gly Leu S	CCC TTG TTT er Leu Phe 45	GAA GCT TTG Glu Ala Leu 50	Gly Tyr Va	G GAT GAC 1 Asp Asp 55	3850
CAG CTG TT Gln Leu Ph	C GTG TTC T le Val Phe T 60	'AT GAT GAT 'Yr Asp Asp	GAG AGT CGC Glu Ser Arg 65	CGT GTG GA Arg Val Gl	AG CCC CGA LU Pro Arg 70	3898

ACT CCA TGG GTT TCC AGT AGA ATT TCA AGC CAG ATG TGG CTG CAG CTG Thr Pro Trp Val Ser Ser Arg Ile Ser Ser Gln Met Trp Leu Gln Leu 75 80 85	3946
AGT CAG AGT CTG AAA GGG TGG GAT CAC ATG TTC ACT GTT GAC TTC TGG Ser Gln Ser Leu Lys Gly Trp Asp His Met Phe Thr Val Asp Phe Trp 90 95 100	3994
ACT ATT ATG GAA AAT CAC AAC CAC AGC AAG G GTATGTGGAG AGGGGGCCTC Thr Ile Met Glu Asn His Asn His Ser Lys 105	4045
ACCTTCCTGA GGTTGTCAGA GCTTTTCATC TTTTCATGCA TCTTGAAGGA AACAGCTGGA	4105
AGTCTGAGGT CTTGTGGGAG CAGGGAAGAG GGAAGGAATT TGCTTCCTGA GATCATTTGG	4165
TCCTTGGGGA TGGTGGAAAT AGGGACCTAT TCCTTTGGTT GCAGTTAACA AGGCTGGGGA	4225
TTTTTCCAG AG TCC CAC ACC CTG CAG GTC ATC CTG GGC TGT GAA ATG Glu Ser His Thr Leu Gln Val Ile Leu Gly Cys Glu Met 115 120 125	4272
CAA GAA GAC AAC AGT ACC GAG GGC TAC TGG AAG TAC GGG TAT GAT GGG Gln Glu Asp Asn Ser Thr Glu Gly Tyr Trp Lys Tyr Gly Tyr Asp Gly 130	4320
CAG GAC CAC CTT GAA TTC TGC CCT GAC ACA CTG GAT TGG AGA GCA GCA Gln Asp His Leu Glu Phe Cys Pro Asp Thr Leu Asp Trp Arg Ala Ala 145 150 155	4368
GAA CCC AGG GCC TGG CCC ACC AAG CTG GAG TGG GAA AGG CAC AAG ATT Glu Pro Arg Ala Trp Pro Thr Lys Leu Glu Trp Glu Arg His Lys Ile 160 165 170	4416
CGG GCC AGG CAG AAC AGG GCC TAC CTG GAG AGG GAC TGC CCT GCA CAG Arg Ala Arg Gln Asn Arg Ala Tyr Leu Glu Arg Asp Cys Pro Ala Gln 185 190	4464
CTG CAG CAG TTG CTG GAG CTG GGG AGA GGT GTT TTG GAC CAA CAA G Leu Gln Gln Leu Leu Glu Leu Gly Arg Gly Val Leu Asp Gln Gln 195 200 205	4510
GTATGGTGGA AACACACTTC TGCCCCTATA CTCTAGTGGC AGAGTGGAGG AGGTTGCAGG	4570
GCACGGAATC CCTGGTTGGA GTTTCAGAGG TGGCTGAGGC TGTGTGCCTC TCCAAATTCT	4630
GGGAAGGGAC TTTCTCAATC CTAGAGTCTC TACCTTATAA TTGAGATGTA TGAGACAGCC	4690
ACAAGTCATG GGTTTAATTT CTTTTCTCCA TGCATATGGC TCAAAGGGAA GTGTCTATGG	4750
CCCTTGCTTT TTATTTAACC AATAATCTTT TGTATATTTA TACCTGTTAA AAATTCAGAA	4810
ATGTCAAGGC CGGGCACGGT GGCTCACCCC TGTAATCCCA GCACTTTGGG AGGCCGAGGC	4870
GGGTGGTCAC AAGGTCAGGA GTTTGAGACC AGCCTGACCA ACATGGTGAA ACCCGTCTCT	4930
AAAAAAATAC AAAAATTAGC TGGTCACAGT CATGCGCACC TGTAGTCCCA GCTAATTGGA	4990
AGGCTGAGGC AGGAGCATCG CTTGAACCTG GGAAGCGGAA GTTGCACTGA GCCAAGATCG	5050
CGCCACTGCA CTCCAGCCTA GGCAGCAGAG TGAGACTCCA TCTTAAAAAA AAAAAAAAAA	5110

AAAAAAAGAG AATTCAGAGA TCTCAGCTAT CATATGAATA CCAGGACAAA ATATCAAGTG	5170
AGGCCACTTA TCAGAGTAGA AGAATCCTTT AGGTTAAAAG TTTCTTTCAT AGAACATAGC	5230
AATAATCACT GAAGCTACCT ATCTTACAAG TCCGCTTCTT ATAACAATGC CTCCTAGGTT	5290
GACCCAGGTG AAACTGACCA TCTGTATTCA ATCATTTTCA ATGCACATAA AGGGCAATTT	5350
TATCTATCAG AACAAAGAAC ATGGGTAACA GATATGTATA TTTACATGTG AGGAGAACAA	5410
GCTGATCTGA CTGCTCTCCA AGTGACACTG TGTTAGAGTC CAATCTTAGG ACACAAAATG	5470
GTGTCTCTCC TGTAGCTTGT TTTTTTCTGA AAAGGGTATT TCCTTCCTCC AACCTATAGA	5530
AGGAAGTGAA AGTTCCAGTC TTCCTGGCAA GGGTAAACAG ATCCCCTCTC CTCATCCTTC	5590
CTCTTTCCTG TCAAG TG CCT CCT TTG GTG AAG GTG ACA CAT CAT GTG ACC Val Pro Pro Leu Val Lys Val Thr His His Val Thr 210 215	5640
TCT TCA GTG ACC ACT CTA CGG TGT CGG GCC TTG AAC TAC TAC CCC CAG Ser Ser Val Thr Thr Leu Arg Cys Arg Ala Leu Asn Tyr Tyr Pro Gln 220 225 230	5688
AAC ATC ACC ATG AAG TGG CTG AAG GAT AAG CAG CCA ATG GAT GCC AAG Asn Ile Thr Met Lys Trp Leu Lys Asp Lys Gln Pro Met Asp Ala Lys 235 240 245	5736
GAG TTC GAA CCT AAA GAC GTA TTG CCC AAT GGG GAT GGG ACC TAC CAG Glu Phe Glu Pro Lys Asp Val Leu Pro Asn Gly Asp Gly Thr Tyr Gln 250 265	5784
GGC TGG ATA ACC TTG GCT GTA CCC CCT GGG GAA GAG CAG AGA TAT ACG Gly Trp Ile Thr Leu Ala Val Pro Pro Gly Glu Glu Gln Arg Tyr Thr 270 275 280	5832
TAC CAG GTG GAG CAC CCA GGC CTG GAT CAG CCC CTC ATT GTG ATC TGG G Tyr Gln Val Glu His Pro Gly Leu Asp Gln Pro Leu Ile Val Ile Trp 285 290 295	5881
GTATGTGACT GATGAGAGCC AGGAGCTGAG AAAATCTATT GGGGGTTGAG AGGAGTGCCT	5941
GAGGAGGTAA TTATGGCAGT GAGATGAGGA TCTGCTCTTT GTTAGGGGGT GGGCTGAGGG	6001
TGGCAATCAA AGGCTTTAAC TTGCTTTTTC TGTTTTAG AG CCC TCA CCG TCT Glu Pro Ser Pro Ser 300	6053
GGC ACC CTA GTC ATT GGA GTC ATC AGT GGA ATT GCT GTT TTT GTC GTC Gly Thr Leu Val Ile Gly Val Ile Ser Gly Ile Ala Val Phe Val Val 305 310 315	6101
ATC TTG TTC ATT GGA ATT TTG TTC ATA ATA TTA AGG AAG AGG CAG GGT Ile Leu Phe Ile Gly Ile Leu Phe Ile Ile Leu Arg Lys Arg Gln Gly 320 325 330	6149
TCA A GTGAGTAGGA ACAAGGGGGA AGTCTCTTAG TACCTCTGCC CCAGGGCACA Ser 335	6203
GTGGGAAGAG GGGCAGAGGG GATCTGGCAT CCATGGGAAG CATTTTCTC ATTTATATTC	6263

ITTGGGGACA CCAGCAGCTC CCTGGGAGAC AGAAAATAAT GGTTCTCCCC AGAATGAAAG	6323
TCTCTAATTC AACAAACATC TTCAGAGCAC CTACTATTTT GCAAGAGCTG TTTAAGGTAG	6383
TACAGGGGCT TTGAGGTTGA GAAGTCACTG TGGCTATTCT CAGAACCCAA ATCTGGTAGG	6443
GAATGAAATT GATAGCAAGT AAATGTAGTT AAAGAAGACC CCATGAGGTC CTAAAGCAGG	6503
CAGGAAGCAA ATGCTTAGGG TGTCAAAGGA AAGAATGATC ACATTCAGCT GGGGATCAAG	6563
ATAGCCTTCT GGATCTTGAA GGAGAAGCTG GATTCCATTA GGTGAGGTTG AAGATGATGG	6623
GAGGTCTACA CAGACGGAGC AACCATGCCA AGTAGGAGAG TATAAGGCAT ACTGGGAGAT	6683
TAGAAATAAT TACTGTACCT TAACCCTGAG TTTGCGTAGC TATCACTCAC CAATTATGCA	6743
TTTCTACCCC CTGAACATCT GTGGTGTAGG GAAAAGAGAA TCAGAAAGAA GCCAGCTCAT	6803
ACAGAGTCCA AGGGTCTTTT GGGATATTGG GTTATGATCA CTGGGGTGTC ATTGAAGGAT	6863
CCTAAGAAAG GAGGACCACG ATCTCCCTTA TATGGTGAAT GTGTTGTTAA GAAGTTAGAT	6923
GAGAGGTGAG GAGACCAGTT AGAAAGCCAA TAAGCATTTC CAGATGAGAG ATAATGGTTC	6983
TTGAAATCCA ATAGTGCCCA GGTCTAAATT GAGATGGGTG AATGAGGAAA ATAAGGAAGA	7043
GAGAAGAGGC AAGATGGTGC CTAGGTTTGT GATGCCTCTT TCCTGGGTCT CTTGTCTCCA	7103
CAG GA GGA GCC ATG GGG CAC TAC GTC TTA GCT GAA CGT GAG Arg Gly Ala Met Gly His Tyr Val Leu Ala Glu Arg Glu 340 345	7144
. TGACACGCAG CCTGCAGACT CACTGTGGGA AGGAGACAAA ACTAGAGACT CAAAGAGGGA	7204
GTGCATTTAT GAGCTCTTCA TGTTTCAGGA GAGAGTTGAA CCTAAACATA GAAATTGCCT	7264
GACGAACTCC TTGATTTTAG CCTTCTCTGT TCATTTCCTC AAAAAGATTT CCCCATTTAG	7324
GTTTCTGAGT TCCTGCATGC CGGTGATCCC TAGCTGTGAC CTCTCCCCTG GAACTGTCTC	7384
TCATGAACCT CAAGCTGCAT CTAGAGGCTT CCTTCATTTC CTCCGTCACC TCAGAGACAT	7444
ACACCTATGT CATTTCATTT CCTATTTTTG GAAGAGGACT CCTTAAATTT GGGGGACTTA	7504
CATGATTCAT TTTAACATCT GAGAAAAGCT TTGAACCCTG GGACGTGGCT AGTCATAACC	7564
TTACCAGATT TTTACACATG TATCTATGCA TTTTCTGGAC CCGTTCAACT TTTCCTTTGA	7624
ATCCTCTCTC TGTGTTACCC AGTAACTCAT CTGTCACCAA GCCTTGGGGA TTCTTCCATC	
TGATTGTGAT GTGAGTTGCA CAGCTATGAA GGCTGTACAC TGCACGAATG GAAGAGGCAC	7684
CTGTCCCAGA AAAAGCATCA TGGCTATCTG TGGGTAGTAT GATGGGTGTT TTTAGCAGGT	7684
AGGAGGCAAA TATCTTGAAA GGGGTTGTGA AGAGGTGTTT TTTCTAATTG GCATGAAGGT	7744
	7744 7804
AGGAGGCAAA TATCTTGAAA GGGGTTGTGA AGAGGTGTTT TTTCTAATTG GCATGAAGGT	7744 7804 7864

CATTACTGCA	TGCACTTCTT	ACAATAATTC	TATGAGATAG	GTACTATTAT	CCCCATTTCT	8104
TTTTTAAATG	AAGAAAGTGA	AGTAGGCCGG	GCACGGTGGC	TCACGCCTGT	AATCCCAGCA	8164
CTTTGGGAGG	CCAAAGCGGG	TGGATCACGA	GGTCAGGAGA	TCGAGACCAT	CCTGGCTAAC	8224
ATGGTGAAAC	CCCATCTCTA	ATAAAAATAC	AAAAAATTAG	CTGGGCGTGG	TGGCAGACGC	8284
CTGTAGTCCC	AGCTACTCGG	AAGGCTGAGG	CAGGAGAATG	GCATGAACCC	AGGAGGCAGA	8344
GCTTGCAGTG	AGCCGAGTTT	GCGCCACTGC	ACTCCAGCCT	AGGTGACAGA	GTGAGACTCC	8404
ATCTCAAAAA	ААТАААААТА	AAAATAAAA	AATGAAAAA	AAAAGAAAGT	GAAGTATAGA	8464
GTATCTCATA	GTTTGTCAGT	GATAGAAACA	GGTTTCAAAC	TCAGTCAATC	TGACCGTTTG	8524
ATACATCTCA	GACACCACTA	CATTCAGTAG	TTTAGATGCC	TAGAATAAAT	AGAGAAGGAA	8584
GGAGATGGCT	CTTCTCTTGT	CTCATTGTGT	TTCTTCTGAG	TGAGCTTGAA	TCACATGAAG	8644
GGGAACAGCA	GAAAACAACC	AACTGATCCT	CAGCTGTCAT	GTTTCCTTTA	AAAGTCCCTG	8704
AAGGAAGGTC	CTGGAATGTG	ACTCCCTTGC	TCCTCTGTTG	CTCTCTTTGG	CATTCATTTC	8764
TTTGGACCCT	ACGCAAGGAC	TGTAATTGGT	GGGGACAGCT	AGTGGCCCTG	CTGGGCTTCA	8824
CACACGGTGT	CCTCCCTAGG	CCAGTGCCTC	TGGAGTCAGA	ACTCTGGTGG	TATTTCCCTC	8884
AATGAAGTGG	AGTAAGCTCT	CTCATTTTGA	GATGGTATAA	TGGAAGCCAC	CAAGTGGCTT	8944
AGAGGATGCC	CAGGTCCTTC	CATGGAGCCA	CTGGGGTTCC	GGTGCACATT	АААААААА	9004
TCTAACCAGG	ACATTCAGGA	ATTGCTAGAT	TCTGGGAAAT	CAGTTCACCA	TGTTCAAAAG	9064
AGTCTTTTT	TTTTTTTGA	GACTCTATTG	CCCAGGCTGG	AGTGCAATGG	CATGATCTCG	9124
GCTCACTGTA	ACCTCTGCCT	CCCAGGTTCA	AGCGATTCTC	CTGTCTCAGC	CTCCCAAGTA	9184
GCTGGGATTA	CAGGCGTGCA	CCACCATGCC	CGGCTAATTT	TTGTATTTT	AGTAGAGACA	9244
GGGTTTCACC	ATGTTGGCCA	GGCTGGTCTC	GAACTCTCCT	GACCTCGTGA	TCCGCCTGCC	9304
TCGGCCTCCC	AAAGTGCTGA	GATTACAGGT	GTGAGCCACC	CTGCCCAGCC	GTCAAAAGAG	9364
TCTTAATATA	TATATCCAGA	TGGCATGTGT	TTACTTTATG	TTACTACATG	CACTTGGCTG	9424
CATAAATGTG	GTACAAGCAT	TCTGTCTTGA	AGGGCAGGTG	CTTCAGGATA	CCATATACAG	9484
CTCAGAAGTT	TCTTCTTTAG	GCATTAAATT	TTAGCAAAGA	TATCTCATCT	CTTCTTTTAA	9544
ACCATTTTCT	TTTTTTGTGG	TTAGAAAAGT	TATGTAGAAA	AAAGTAAATG	TGATTTACGC	9604
TCATTGTAGA	AAAGCTATAA	AATGAATACA	ATTAAAGCTG	TTATTTAATT	AGCCAGTGAA	9664
AAACTATTAA	CAACTTGTCT	ATTACCTGTT	AGTATTATTG	TTGCATTAAA	AATGCATATA	9724
СТТТААТААА	TGTATATTGT	ATTGTATACT	GCATGATTTT	ATTGAAGTTC	TTGTTCATCT	9784
TGTGTATATA	CTTAATCGCT	TTGTCATTTT	GGAGACATTT	ATTTTGCTTC	TAATTTCTTT	9844
ACATTTTGTC	TTACGGAATA	TTTTCATTCA	ACTGTGGTAG	CCGAATTAAT	CGTGTTTCTT	9904

CACTCTAGGG	ACATTGTCGT	CTAAGTTGTA	AGACATTGGT	TATTTTACCA	GCAAACCATT	9964
CTGAAAGCAT	ATGACAAATT	ATTTCTCTCT	TAATATCTTA	CTATACTGAA	AGCAGACTGC	10024
TATAAGGCTT	CACTTACTCT	TCTACCTCAT	AAGGAATATG	TTACAATTAA	TTTATTAGGT	10084
AAGCATTTGT	TTTATATTGG	TTTTATTTCA	CCTGGGCTGA	GATTTCAAGA	AACACCCCAG	10144
TCTTCACAGT	AACACATTTC	ACTAACACAT	TTACTAAACA	TCAGCAACTG	TGGCCTGTTA	10204
ATTTTTTAA	TAGAAATTTT	AAGTCCTCAT	TTTCTTTCGG	TGTTTTTTAA	GCTTAATTTT	10264
TCTGGCTTTA	TTCATAAATT	CTTAAGGTCA	ACTACATTTG	AAAAATCAAA	GACCTGCATT	10324
TTAAATTCTT	ATTCACCTCT	GGCAAAACCA	TTCACAAACC	ATGGTAGTAA	AGAGAAGGGT	10384
GACACCTGGT	GGCCATAGGT	AAATGTACCA	CGGTGGTCCG	GTGACCAGAG	ATGCAGCGCT	10444
GAGGGTTTTC	CTGAAGGTAA	AGGAATAAAG	AATGGGTGGA	GGGGCGTGCA	CTGGAAATCA	10504
CTTGTAGAGA	AAAGCCCCTG	AAAATTTGAG	AAAACAAACA	AGAAACTACT	TACCAGCTAT	10564
TTGAATTGCT	GGAATCACAG	GCCATTGCTG	AGCTGCCTGA	ACTGGGAACA	CAACAGAAGG	10624
AAAACAAACC	ACTCTGATAA	TCATTGAGTC	AAGTACAGCA	GGTGATTGAG	GACTGCTGAG	10684
AGGTACAGGC	CAAAATTCTT	ATGTTGTATT	ATAATAATGT	CATCTTATAA	TACTGTCAGT	10744
ATTTTATAAA	ACATTCTTCA	CAAACTCACA	CACATTTAAA	AACAAAACAC	TGTCTCTAAA	10804
ATCCCCAAAT	TTTTCATAAA	C				10825

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 348 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Gly Pro Arg Ala Arg Pro Ala Leu Leu Leu Leu Met Leu Leu Gln

Thr Ala Val Leu Gln Gly Arg Leu Leu Arg Ser His Ser Leu His Tyr
20 25 30

Leu Phe Met Gly Ala Ser Glu Gln Asp Leu Gly Leu Ser Leu Phe Glu 35 40 45

Ala Leu Gly Tyr Val Asp Asp Gln Leu Phe Val Phe Tyr Asp Asp Glu 50 60

Ser Arg Arg Val Glu Pro Arg Thr Pro Trp Val Ser Ser Arg Ile Ser 65 70 75 80

Ser Gln Met Trp Leu Gln Leu Ser Gln Ser Leu Lys Gly Trp Asp His
85 90 95

Met Phe Thr Val Asp Phe Trp Thr Ile Met Glu Asn His Asn His Ser 100 105 110

Lys Glu Ser His Thr Leu Gln Val Ile Leu Gly Cys Glu Met Gln Glu 115 120 125

Asp Asn Ser Thr Glu Gly Tyr Trp Lys Tyr Gly Tyr Asp Gly Gln Asp 130 135 140

His Leu Glu Phe Cys Pro Asp Thr Leu Asp Trp Arg Ala Ala Glu Pro 145 150 155 160

Arg Ala Trp Pro Thr Lys Leu Glu Trp Glu Arg His Lys Ile Arg Ala 165 170 175

Arg Gln Asn Arg Ala Tyr Leu Glu Arg Asp Cys Pro Ala Gln Leu Gln 180 185 190

Gln Leu Leu Glu Leu Gly Arg Gly Val Leu Asp Gln Gln Val Pro Pro 195 200 205

Leu Val Lys Val Thr His His Val Thr Ser Ser Val Thr Thr Leu Arg 210 215 220

Cys Arg Ala Leu Asn Tyr Tyr Pro Gln Asn Ile Thr Met Lys Trp Leu 225 230 235 240

Lys Asp Lys Gln Pro Met Asp Ala Lys Glu Phe Glu Pro Lys Asp Val 245 250 255

Leu Pro Asn Gly Asp Gly Thr Tyr Gln Gly Trp Ile Thr Leu Ala Val 260 265 270

Pro Pro Gly Glu Glu Gln Arg Tyr Thr Tyr Gln Val Glu His Pro Gly 275 280 285

Leu Asp Gln Pro Leu Ile Val Ile Trp Glu Pro Ser Pro Ser Gly Thr 290 295 300

Leu Val Ile Gly Val Ile Ser Gly Ile Ala Val Phe Val Val Ile Leu 305 310 315 320

Phe Ile Gly Ile Leu Phe Ile Ile Leu Arg Lys Arg Gln Gly Ser Arg 325 330 335

Gly Ala Met Gly His Tyr Val Leu Ala Glu Arg Glu 345

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1440 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS

(B) LOCATION: 222..1268

(ix)	FEATURE:
------	----------

- (A) NAME/KEY: allele
 (B) LOCATION: replace(408, "c")
- (D) OTHER INFORMATION: /phenotype= "normal or wild-type (unaffected) " /label= 24d2

(ix) FEATURE:

- (A) NAME/KEY: allele
- (B) LOCATION: replace(414, "a")
- (D) OTHER INFORMATION: /phenotype= "normal or wild-type (unaffected) " /label= 24d7

(ix) FEATURE:

- (A) NAME/KEY: allele
- (B) LOCATION: replace(1066, "g")
- (D) OTHER INFORMATION: /phenotype= "normal or wild-type (unaffected) " /label= 24d1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GGGG	ACAC	CTG (GATC	ACCT	AG T	GTTT	CACA	A GC	AGGT	ACCT	TCT	GCTG'	rag (GAGA	gagaga	60
ACTA	AAGI	TTC :	rgaa <i>i</i>	AGAC	CT G	rtgc:	rttt(CAC	CAGG	AAGT	TTT	ACTG	GGC 2	ATCT	CCTGAG	120
CCTA	GGCZ	AAT A	AGCT	GTAG	G T	GACT'	rctg	G AG	CCAT	cccc	GTT:	rccc	CGC (cccc	CAAAAG	180
AAGC	GGAC	SAT :	TAA(CGGG(GA C	GTGC	GCC1	A GA	GCTG(GGGA				CG CO		233
GCC A Ala A 5																281
CAG (329
GCC T																377
GTG (425
GAG (473
CTG (Leu (85																521

GAC TTC TGG ACT ATT ATG GAA AAT CAC AAC CAC AGC AAG GAG TCC CAC

Asp	Phe	Trp	Thr	Ile 105	Met	Glu	Asn	His	Asn 110	His	Ser	Lys	Glu	Ser 115	His	
				ATC Ile												617
				AAG Lys												665
				CTG Leu												713
				TGG Trp												761
				AGG Arg 185												809
				GTT Val												857
				ACC Thr												905
				CAG Gln												953
				AAG Lys												1001
				CAG Gln 265											GAA Glu	1049
				ACG Thr												1097
															GGA Gly	1145
				ATT Ile												1193
															GGG Gly 340	1241
				GCT Ala 345					CACG	CAG	CCTG	CAGA	CT C	ACTG	TGGGA	1295

AGGAGACAAA	ACTAGAGACT	CAAAGAGGGA	GTGCATTTAT	GAGCTCTTCA	TGTTTCAGGA	1355
GAGAGTTGAA	CCTAAACATA	GAAATTGCCT	GACGAACTCC	TTGATTTTAG	CCTTCTCTGT	1415
TCATTTCCTC	AAAAAGATTT	CCCCA				1440

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1440 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:

 - (A) NAME/KEY: CDS
 (B) LOCATION: 222..1268
- (ix) FEATURE:

 - (A) NAME/KEY: allele
 (B) LOCATION: replace(1066, "a")
 - (D) OTHER INFORMATION: /phenotype= "Hereditary Hemochromatosis (HH)" /label= 24d1

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

ACTAAAGTTC TGAAAGACCT GTTGCTTTTC ACCAGGAAGT TTTACTGGGC ATCTCCTGAG	120
ACTAMAGITE IGAMAGACET GITGETTITE ACCAGGAMGI ITTACIGGGE ATETECIGAG	120
CCTAGGCAAT AGCTGTAGGG TGACTTCTGG AGCCATCCCC GTTTCCCCGC CCCCCAAAAG	180
AAGCGGAGAT TTAACGGGGA CGTGCGGCCA GAGCTGGGGA A ATG GGC CCG CGA Met Gly Pro Arg 1	233
GCC AGG CCG GCG CTT CTC CTC CTG ATG CTT TTG CAG ACC GCG GTC CTG Ala Arg Pro Ala Leu Leu Leu Met Leu Leu Gln Thr Ala Val Leu 5	281
CAG GGG CGC TTG CTG CGT TCA CAC TCT CTG CAC TAC CTC TTC ATG GGT Gln Gly Arg Leu Leu Arg Ser His Ser Leu His Tyr Leu Phe Met Gly 25 30 35	329
GCC TCA GAG CAG GAC CTT GGT CTT TCC TTG TTT GAA GCT TTG GGC TAC Ala Ser Glu Gln Asp Leu Gly Leu Ser Leu Phe Glu Ala Leu Gly Tyr 40 45 50	377
GTG GAT GAC CAG CTG TTC GTG TTC TAT GAT CAT GAG AGT CGC CGT GTG Val Asp Asp Gln Leu Phe Val Phe Tyr Asp His Glu Ser Arg Arg Val 55 60 65	425
GAG CCC CGA ACT CCA TGG GTT TCC AGT AGA ATT TCA AGC CAG ATG TGG Glu Pro Arg Thr Pro Trp Val Ser Ser Arg Ile Ser Ser Gln Met Trp 70 75 80	473

GGGGACACTG GATCACCTAG TGTTTCACAA GCAGGTACCT TCTGCTGTAG GAGAGAGAGA

CTG Leu 85	CAG Gln	CTG Leu	AGT Ser	CAG Gln	AGT Ser 90	Leu	AAA Lys	GGG Gly	TGG Trp	GAT Asp 95	CAC His	ATG Met	TTC Phe	ACT Thr	GTT Val 100	521
GAC Asp	TTC Phe	TGG Trp	ACT Thr	ATT Ile 105	ATG Met	GAA Glu	AAT Asn	CAC His	AAC Asn 110	CAC His	AGC Ser	AAG Lys	GAG Glu	TCC Ser 115	CAC His	569
ACC Thr	CTG Leu	CAG Gln	GTC Val 120	ATC Ile	CTG Leu	GGC Gly	TGT Cys	GAA Glu 125	ATG Met	CAA Gln	GAA Glu	GAC Asp	AAC Asn 130	AGT Ser	ACC Thr	617
			TGG Trp													665
			ACA Thr													713
ACC Thr 165	AAG Lys	CTG Leu	GAG Glu	TGG Trp	GAA Glu 170	AGG Arg	CAC His	AAG Lys	ATT Ile	CGG Arg 175	GCC Ala	AGG Arg	CAG Gln	AAC Asn	AGG Arg 180	761
			GAG Glu													809
			GGT Gly 200													857
ACA Thr	CAT His	CAT His 215	GTG Val	ACC Thr	TCT Ser	TCA Ser	GTG Val 220	ACC Thr	ACT Thr	CTA Leu	CGG Arg	TGT Cys 225	CGG Arg	GCC Ala	TTG Leu	905
AAC Asn	TAC Tyr 230	TAC Tyr	CCC Pro	CAG Gln	AAC Asn	ATC Ile 235	ACC Thr	ATG Met	AAG Lys	TGG Trp	CTG Leu 240	AAG Lys	GAT Asp	AAG Lys	CAG Gln	953
CCA Pro 245	ATG Met	GAT Asp	GCC Ala	AAG Lys	GAG Glu 250	TTC Phe	GAA Glu	CCT Pro	AAA Lys	GAC Asp 255	GTA Val	TTG Leu	CCC Pro	AAT Asn	GGG Gly 260	1001
GAT Asp	GGG Gly	ACC Thr	TAC Tyr	CAG Gln 265	GGC Gly	TGG Trp	ATA Ile	ACC Thr	TTG Leu 270	GCT Ala -	GTA Val	CCC Pro	CCT Pro	GGG Gly 275	GAA Glu	1049
			TAT Tyr 280													1097
CTC Leu	ATT Ile	GTG Val 295	ATC Ile	TGG Trp	GAG Glu	CCC Pro	TCA Ser 300	CCG Pro	TCT Ser	GGC Gly	ACC Thr	CTA Leu 305	GTC Val	ATT Ile	GGA Gly	1145
GTC Val	ATC Ile 310	AGT Ser	GGA Gly	ATT Ile	GCT Ala	GTT Val 315	TTT Phe	GTC Val	GTC Val	ATC Ile	TTG Leu 320	TTC Phe	ATT Ile	GGA Gly	ATT Ile	1193
TTG Leu	TTC Phe	ATA Ile	ATA Ile	TTA Leu	AGG Arg	AAG Lys	AGG Arg	CAG Gln	GGT Gly	TCA Ser	AGA Arg	GGA Gly	GCC Ala	ATG Met	GGG Gly	1241

CAC TAC GTC TTA GCT GAA CGT GAG TGACACGCAG CCTGCAGACT CACTGTGGGA

and the second s

His Tyr Val Leu Ala Glu Arg Glu 345	
AGGAGACAAA ACTAGAGACT CAAAGAGGGA GTGCATTTAT GAGCTCTTCA TGTTTCAGGA	1355
GAGAGTTGAA CCTAAACATA GAAATTGCCT GACGAACTCC TTGATTTTAG CCTTCTCTGT	1415
TCATTTCCTC AAAAAGATTT CCCCA	1440
(2) INFORMATION FOR SEQ ID NO:11:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1440 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 2221268	
<pre>(ix) FEATURE: (A) NAME/KEY: allele (B) LOCATION: replace(408, "g") (D) OTHER INFORMATION: /phenotype= "Hereditary Hemochromato"</pre>	sis
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
GGGGACACTG GATCACCTAG TGTTTCACAA GCAGGTACCT TCTGCTGTAG GAGAGAGAGA	60
ACTAAAGTTC TGAAAGACCT GTTGCTTTTC ACCAGGAAGT TTTACTGGGC ATCTCCTGAG	120
CCTAGGCAAT AGCTGTAGGG TGACTTCTGG AGCCATCCCC GTTTCCCCGC CCCCCAAAAG	180
AAGCGGAGAT TTAACGGGGA CGTGCGGCCA GAGCTGGGGA A ATG GGC CCG CGA Met Gly Pro Arg 1	233
GCC AGG CCG GCG CTT CTC CTC CTG ATG CTT TTG CAG ACC GCG GTC CTG Ala Arg Pro Ala Leu Leu Leu Met Leu Leu Gln Thr Ala Val Leu 5 10 15 20	281
CAG GGG CGC TTG CTG CGT TCA CAC TCT CTG CAC TAC CTC TTC ATG GGT Gln Gly Arg Leu Leu Arg Ser His Ser Leu His Tyr Leu Phe Met Gly 25 30 35	329
GCC TCA GAG CAG GAC CTT GGT CTT TCC TTG TTT GAA GCT TTG GGC TAC Ala Ser Glu Gln Asp Leu Gly Leu Ser Leu Phe Glu Ala Leu Gly Tyr 40 45 50	377
GTG GAT GAC CAG CTG TTC GTG TTC TAT GAT GAT GAG AGT CGC CGT GTG	425

Val	Asp	Asp 55	Gln	Leu	Phe	Val	Phe 60	Tyr	Asp	Asp	Glu	Ser 65	Arg	Arg	Val	
			ACT Thr													473
			AGT Ser													521
			ACT Thr													569
			GTC Val 120													617
			TGG Trp													665
			ACA Thr													713
			GAG Glu													761
			GAG Glu													809
			GGT Gly 200													857
			GTG Val													905
			CCC Pro													953
			GCC Ala													1001
			TAC Tyr													1049
			TAT Tyr 280													1097
			ATC Ile													1145

GTC Val	ATC Ile 310	AGT Ser	GGA Gly	ATT Ile	GCT Ala	GTT Val 315	TTT Phe	GTC Val	GTC Val	ATC Ile	TTG Leu 320	TTC Phe	ATT Ile	GGA Gly	ATT Ile	1193
TTG Leu 325	TTC Phe	ATA Ile	ATA Ile	TTA Leu	AGG Arg 330	AAG Lys	AGG Arg	CAG Gln	GGT Gly	TCA Ser 335	AGA Arg	GGA Gly	GCC Ala	ATG Met	GGG Gly 340	1241
			TTA Leu					TGA	CACGO	AG C	CCTG	CAGA	CT C	\CTG]	rggga	1295
AGGI	AGAC	AAA A	ACTAC	BAGA	CT CA	\AAGI	AGGGZ	A GTO	CATI	TAT	GAG	CTCT:	CA :	rgtti	rcagga	1355
GAGI	GTT	SAA (CCTA	AACA:	ra G	AAT'	rgcc:	GAG	CGAAC	CTCC	TTG	ATTT	rag (CCTT	CTCTGT	1415
TCAT	TTTC	CTC A	AAAA	AGAT:	T C	CCA										1440

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1440 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 222..1268
- (ix) FEATURE:
 - (A) NAME/KEY: allele
 - (B) LOCATION: replace(408, "g")
 - (D) OTHER INFORMATION: /phenotype= "Hereditary Hemochromatosis (HH) " /label= 24d2
- (ix) FEATURE:

 - (A) NAME/KEY: allele
 (B) LOCATION: replace(1066, "a")
 - (D) OTHER INFORMATION: /phenotype= "Hereditary Hemochromatosis (HH)" /label= 24d1
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GGGGACACTG GATCACCTAG	TGTTTCACAA	GCAGGTACCT	TCTGCTGTAG	GAGAGAGAGA	60
ACTAAAGTTC TGAAAGACCT	GTTGCTTTTC	ACCAGGAAGT	TTTACTGGGC	ATCTCCTGAG	120
CCTAGGCAAT AGCTGTAGGG	TGACTTCTGG	AGCCATCCCC	GTTTCCCCGC	CCCCCAAAAG	180
AAGCGGAGAT TTAACGGGGA	CGTGCGGCCA	GAGCTGGGGA	A ATG GGC (233

GCC Ala 5	AGG Arg	CCG Pro	GCG Ala	CTT Leu	CTC Leu 10	CTC Leu	CTG Leu	ATG Met	CTT Leu	TTG Leu 15	CAG Gln	ACC Thr	GCG Ala	GTC Val	CTG Leu 20	281
CAG Gln	GGG Gly	CGC Arg	TTG Leu	CTG Leu 25	CGT Arg	TCA Ser	CAC His	TCT Ser	CTG Leu 30	CAC His	TAC Tyr	CTC Leu	TTC Phe	ATG Met 35	GGT Gly	329
GCC Ala	TCA Ser	GAG Glu	CAG Gln 40	GAC Asp	CTT Leu	GGT Gly	CTT Leu	TCC Ser 45	TTG Leu	TTT Phe	GAA Glu	GCT Ala	TTG Leu 50	GGC Gly	TAC Tyr	377
GTG Val	GAT Asp	GAC Asp 55	CAG Gln	CTG Leu	TTC Phe	GTG Val	TTC Phe 60	TAT Tyr	GAT Asp	GAT Asp	GAG Glu	AGT Ser 65	CGC Arg	CGT Arg	GTG Val	425
GAG Glu	CCC Pro 70	CGA Arg	ACT Thr	CCA Pro	TGG Trp	GTT Val 75	TCC Ser	AGT Ser	AGA Arg	ATT Ile	TCA Ser 80	AGC Ser	CAG Gln	ATG Met	TGG Trp	473
CTG Leu 85	CAG Gln	CTG Leu	AGT Ser	CAG Gln	AGT Ser 90	CTG Leu	AAA Lys	GGG Gly	TGG Trp	GAT Asp 95	CAC His	ATG Met	TTC Phe	ACT Thr	GTT Val 100	521
GAC Asp	TTC Phe	TGG Trp	ACT Thr	ATT Ile 105	ATG Met	GAA Glu	AAT Asn	CAC His	AAC Asn 110	CAC His	AGC Ser	AAG Lys	GAG Glu	TCC Ser 115	CAC His	569
ACC Thr	CTG Leu	CAG Gln	GTC Val 120	ATC Ile	CTG Leu	GGC Gly	TGT Cys	GAA Glu 125	ATG Met	CAA Gln	GAA Glu	GAC Asp	AAC Asn 130	AGT Ser	ACC Thr	617
GAG Glu	GGC Gly	TAC Tyr 135	TGG Trp	AAG Lys	TAC Tyr	GGG Gly	TAT Tyr 140	GAT Asp	GGG Gly	CAG Gln	GAC Asp	CAC His 145	CTT Leu	GAA Glu	TTC Phe	665
TGC Cys	CCT Pro 150	GAC Asp	ACA Thr	CTG Leu	GAT Asp	TGG Trp 155	AGA Arg	GCA Ala	GCA Ala	GAA Glu	CCC Pro 160	AGG Arg	GCC Ala	TGG Trp	CCC Pro	713
ACC Thr 165	AAG Lys	CTG Leu	GAG Glu	TGG Trp	GAA Glu 170	Arg	CAC His	AAG Lys	ATT Ile	CGG Arg 175	GCC Ala	AGG Arg	CAG Gln	AAC Asn	AGG Arg 180	761
GCC Ala	TAC Tyr	CTG Leu	GAG Glu	AGG Arg 185	GAC Asp	TGC Cys	CCT Pro	GCA Ala	CAG Gln 190	CTG Leu	CAG Gln	CAG Gln	TTG Leu	CTG Leu 195	GAG Glu	809
CTG Leu	GGG Gly	AGA Arg	GGT Gly 200	GTT Val	TTG Leu	GAC Asp	CAA Gln	CAA Gln 205	Val	CCT Pro	CCT Pro	TTG Leu	GTG Val 210	AAG Lys	GTG Val	857
ACA Thr	CAT His	CAT His 215	GTG Val	ACC Thr	TCT Ser	TCA Ser	GTG Val 220	Thr	ACT Thr	CTA Leu	CGG Arg	TGT Cys 225	CGG Arg	GCC Ala	TTG Leu	905
AAC Asn	TAC Tyr 230	Tyr	CCC Pro	CAG Gln	AAC Asn	ATC Ile 235	ACC Thr	ATG Met	AAG Lys	TGG Trp	CTG Leu 240	Lys	GAT Asp	AAG Lys	CAG Gln	953
CCA Pro	ATG Met	GAT Asp	GCC Ala	AAG Lys	GAG Glu	TTC Phe	GAA Glu	CCT Pro	AAA Lys	GAC Asp	GTA Val	TTG Leu	CCC	AAT Asn	GGG Gly	1001

245					250					255					260	
GAT (1049
GAG (1097
CTC I							-									1145
GTC Z																1193
TTG 1 Leu 1 325																1241
CAC !								TGA	CACG	CAG (CCTG	CAGA	CT C	ACTG'	rggga	1295
AGGA	GACA	AA A	CTAC	GAGA	CT C	\AAG!	AGGG?	A GT	CAT	TAT	GAG	CTCT'	rca '	rgtt'	rcagga	1355
GAGA	GTTG	AA (CTA	AACA:	ra ga	TAAL	rgcci	r ga	CGAA	CTCC	TTG	ATTT	rag (CCTT	CTCTGT	1415
TCAT'	TTCC	TC F	(AAA)	AGAT"	rt co	CCA										1440
(2)	TNFC	RMAT	TON	FOR	SEO	TD 1	IO:13	3 :								

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

TGGCAAGGGT AAACAGATCC

20

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CTCAGGCACT CCTCTCAACC	20
(2) INFORMATION FOR SEQ ID NO:15:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
<pre>(ix) FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 1 (D) OTHER INFORMATION: /mod_base= OTHER</pre>	ine
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
NGAAGAGCAG AGATATACGT G	21
(2) INFORMATION FOR SEQ ID NO:16:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
<pre>(ix) FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 1 (D) OTHER INFORMATION: /mod_base= OTHER</pre>	ine
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
NGAAGAGCAG AGATATACGT A	21
(2) INFORMATION FOR SEQ ID NO:17:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: DNA

ALIDA DI DELLE DEL

	(ix)	FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 1 (D) OTHER INFORMATION: /mod_base= OTHER /note= "N = 5'-phosphorylated cytosine (p-C)"	:
	(ix)	FEATURE: (A) NAME/KEY: modified_base (B) LOCATION: 18 (D) OTHER INFORMATION: /mod_base= OTHER	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:17:	
NCAG	GTGG!	AG CACCCAGN	18
(2)	INFO	RMATION FOR SEQ ID NO:18:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	
		SEQUENCE DESCRIPTION: SEQ ID NO:18:	_1
CTGA	AAAGG	GGGATCACAT	20
(2)	INFO	RMATION FOR SEQ ID NO:19:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:19:	
CAAC	GAGT"	IC GTCAGGCAAT	20
(2)	INFO	RMATION FOR SEQ ID NO:20:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 517 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (genomic)	

(ix)	FEATURE	:

- (A) NAME/KEY: -(B) LOCATION: 1..517
- (D) OTHER INFORMATION: /note= "normal or wild-type (unaffected) genomic sequence surrounding variant for 24d1(G) allele corresponding to positions 5507-6023 of genomic sequence containing

the HH gene (SEQ ID NO:1)"

(ix) FEATURE:

- (A) NAME/KEY: allele
- (B) LOCATION: replace(328, "g")
- (D) OTHER INFORMATION: /phenotype= "normal or wild-type (unaffected) " /label= 24d1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

TATTTCCTTC	CTCCAACCTA	TAGAAGGAAG	TGAAAGTTCC	AGTCTTCCTG	GCAAGGGTAA	60
ACAGATCCCC	TCTCCTCATC	CTTCCTCTTT	CCTGTCAAGT	GCCTCCTTTG	GTGAAGGTGA	120
CACATCATGT	GACCTCTTCA	GTGACCACTC	TACGGTGTCG	GGCCTTGAAC	TACTACCCC	180
AGAACATCAC	CATGAAGTGG	CTGAAGGATA	AGCAGCCAAT	GGATGCCAAG	GAGTTCGAAC	240
CTAAAGACGT	ATTGCCCAAT	GGGGATGGGA	CCTACCAGGG	CTGGATAACC	TTGGCTGTAC	300
CCCCTGGGGA	AGAGCAGAGA	TATACGTGCC	AGGTGGAGCA	CCCAGGCCTG	GATCAGCCCC	360
TCATTGTGAT	CTGGGGTATG	TGACTGATGA	GAGCCAGGAG	CTGAGAAAAT	CTATTGGGGG	420
TTGAGAGGAG	TGCCTGAGGA	GGTAATTATG	GCAGTGAGAT	GAGGATCTGC	TCTTTGTTAG	480
GGGGTGGGCT	GAGGGTGGCA	ATCAAAGGCT	TTAACTT			517

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 517 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: -
- (B) LOCATION: 1..517
- (D) OTHER INFORMATION: /note= "genomic sequence surrounding variant for 24d1(A) allele corresponding to positions 5507-6023 of genomic sequence containing the HH gene (SEQ ID NO:3)"

(ix) FEATURE:

- (A) NAME/KEY: allele
 (B) LOCATION: replace(328, "a")
- (D) OTHER INFORMATION: /phenotype= "Hereditary Hemochromatosis

(HH)" /label= 24d1

(xi) S	EQUENCE DESC	CRIPTION: SI	EQ ID NO:21	:		
TATTTCCTTC	CTCCAACCTA	TAGAAGGAAG	TGAAAGTTCC	AGTCTTCCTG	GCAAGGGTAA	60
ACAGATCCCC	TCTCCTCATC	CTTCCTCTTT	CCTGTCAAGT	GCCTCCTTTG	GTGAAGGTGA	120
CACATCATGT	GACCTCTTCA	GTGACCACTC	TACGGTGTCG	GGCCTTGAAC	TACTACCCCC	180
AGAACATCAC	CATGAAGTGG	CTGAAGGATA	AGCAGCCAAT	GGATGCCAAG	GAGTTCGAAC	240
CTAAAGACGT	ATTGCCCAAT	GGGGATGGGA	CCTACCAGGG	CTGGATAACC	TTGGCTGTAC	300
CCCCTGGGGA	AGAGCAGAGA	TATACGTACC	AGGTGGAGCA	CCCAGGCCTG	GATCAGCCCC	360
TCATTGTGAT	CTGGGGTATG	TGACTGATGA	GAGCCAGGAG	CTGAGAAAAT	CTATTGGGGG	420
TTGAGAGGAG	TGCCTGAGGA	GGTAATTATG	GCAGTGAGAT	GAGGATCTGC	TCTTTGTTAG	480
GGGGTGGGCT	GAGGGTGGCA	ATCAAAGGCT	TTAACTT			517

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 361 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:

THE REPORT OF THE PROPERTY.

`....

;;

1.3

- (A) NAME/KEY: Protein
- (B) LOCATION: 1..361
- (D) OTHER INFORMATION: /note= "Rabbit leukocyte antigen (RLA)"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
- Met Gly Ser Ile Pro Pro Arg Thr Leu Leu Leu Leu Leu Ala Gly Ala 1 5 10 15
- Leu Thr Leu Lys Asp Thr Gln Ala Gly Ser His Ser Met Arg Tyr Phe 20 25 30
- Tyr Thr Ser Val Ser Arg Pro Gly Leu Gly Glu Pro Arg Phe Ile Ile 35 40 45
- Val Gly Tyr Val Asp Asp Thr Gln Phe Val Arg Phe Asp Ser Asp Ala 50 55 60
- Ala Ser Pro Arg Met Glu Gln Arg Ala Pro Trp Met Gly Gln Val Glu
- Pro Glu Tyr Trp Asp Gln Gln Thr Gln Ile Ala Lys Asp Thr Ala Gln 85 90 95

Thr Phe Arg Val Asn Leu Asn Thr Ala Leu Arg Tyr Tyr Asn Gln Ser Ala Ala Gly Ser His Thr Phe Gln Thr Met Phe Gly Cys Glu Val Trp Ala Asp Gly Arg Phe Phe His Gly Tyr Arg Gln Tyr Ala Tyr Asp Gly Ala Asp Tyr Ile Ala Leu Asn Glu Asp Leu Arg Ser Trp Thr Ala Ala 150 Asp Thr Ala Ala Gln Asn Thr Gln Arg Lys Trp Glu Ala Ala Gly Glu 165 Ala Glu Arg His Arg Ala Tyr Leu Glu Arg Glu Cys Val Glu Trp Leu Arg Arg Tyr Leu Glu Met Gly Lys Glu Thr Leu Gln Arg Ala Asp Pro Pro Lys Ala His Val Thr His His Pro Ala Ser Asp Arg Glu Ala Thr 210 215 Leu Arg Cys Trp Ala Leu Gly Phe Tyr Pro Ala Glu Ile Ser Leu Thr 235 Trp Gln Arg Asp Gly Glu Asp Gln Thr Gln Asp Thr Glu Leu Val Glu Thr Arg Pro Gly Gly Asp Gly Thr Phe Gln Lys Trp Ala Ala Val Val Val Pro Ser Gly Glu Glu Gln Arg Tyr Thr Cys Arg Val Gln His Glu 280 Gly Leu Pro Glu Pro Leu Thr Leu Thr Trp Glu Pro Pro Ala Gln Pro 290 Thr Ala Leu Ile Val Gly Ile Val Ala Gly Val Leu Gly Val Leu Leu Ile Leu Gly Ala Val Val Ala Val Val Arg Arg Lys Lys His Ser Ser Asp Gly Lys Gly Gly Arg Tyr Thr Pro Ala Ala Gly Gly His Arg Asp 345 Gln Gly Ser Asp Asp Ser Leu Met Pro

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 365 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(ix) FEATURE:

- (A) NAME/KEY: Protein
- (B) LOCATION: 1..365
- (D) OTHER INFORMATION: /note= "Human Major Histocompatability Class I (MHC) protein"

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Ala Val Met Ala Pro Arg Thr Leu Val Leu Leu Leu Ser Gly Ala 1 5 10 15

Leu Ala Leu Thr Gln Thr Trp Ala Gly Ser His Ser Met Arg Tyr Phe 20 25 30

Phe Thr Ser Val Ser Arg Pro Gly Arg Gly Glu Pro Arg Phe Ile Ala 35 40 45

Val Gly Tyr Val Asp Asp Thr Gln Phe Val Arg Phe Asp Ser Asp Ala 50 55 60

Ala Ser Gln Arg Met Glu Pro Arg Ala Pro Trp Ile Glu Gln Glu Gly 65 70 75 80

Pro Glu Tyr Trp Asp Gly Glu Thr Arg Lys Val Lys Ala His Ser Gln 85 90 95

Thr His Arg Val Asp Leu Gly Thr Leu Arg Gly Tyr Tyr Asn Gln Ser

Glu Ala Gly Ser His Thr Leu Gln Met Met Phe Gly Cys Asp Val Gly
115 120 125

Ser Asp Trp Arg Phe Leu Arg Gly Tyr His Gln Tyr Ala Tyr Asp Gly 130 135 140

Lys Asp Tyr Ile Ala Leu Lys Glu Asp Leu Arg Ser Trp Thr Ala Ala 145 150 155 160

Asp Met Ala Ala Gln Thr Thr Lys His Lys Trp Glu Ala Ala His Val 165 170 175

Ala Glu Gln Leu Arg Ala Tyr Leu Glu Gly Thr Cys Val Glu Trp Leu 180 185 190

Arg Arg Tyr Leu Glu Asn Gly Lys Glu Thr Leu Gln Arg Thr Asp Ala 195 200 _ 205

Pro Lys Thr His Met Thr His His Ala Val Ser Asp His Glu Ala Thr 210 215 220

Leu Arg Cys Trp Ala Leu Ser Phe Tyr Pro Ala Glu Ile Thr Leu Thr 225 230 235 240

Trp Gln Arg Asp Gly Glu Asp Gln Thr Gln Asp Thr Glu Leu Val Glu 245 250 255

Thr Arg Pro Ala Gly Asp Gly Thr Phe Gln Lys Trp Ala Ala Val Val 260 265 270

Val Pro Ser Gly Gln Glu Gln Arg Tyr Thr Cys His Val Gln His Glu 275 280 285

									53								
	Gly	Leu 290	Pro	Lys	Pro	Leu	Thr 295	Leu	Arg	Trp	Glu	Pro 300	Ser	Ser	Gln	Pro	
	Thr 305	Ile	Pro	Ile	Val	Gly 310	Ile	Ile	Ala	Gly	Leu 315	Val	Leu	Phe	Gly	Ala 320	
	Val	Ile	Thr	Gly	Ala 325	Val	Val	Ala	Ala	Val 330	Met	Trp	Arg	Arg	Lys 335	Ser	
	Ser	Asp	Arg	Lys 340	Gly	Gly	Ser	Tyr	Ser 345	Gln	Ala	Ala	Ser	Ser 350	Asp	Ser	
	Ala	Gln	Gly 355	Ser	Asp	Val	Ser	Leu 360	Thr	Ala	Cys	Lys	Val 365				
(2)	INFO	RMAT	ON 1	FOR S	SEQ :	ID NO	0:24	:									
	(i)	(B)	LEI TYI STI	NGTH PE: 1 RAND	: 20 nucle EDNE	TERIS base eic a SS: s	e pa: acid sing:	irs									
	(ii)	MOLI	ECULI	E TY	PE: 1	DNA											
	(xi)	SEQ	JENCI	E DE	SCRI	PTIO	N: S	EQ II	D NO	:24:							
ACAT	rggtt?	AA GO	3CCT(GTTG(C							-					20
(2)	INFO	RMAT:	ION 1	FOR a	SEQ :	ID N	0:25	:									
	(i)	(B)	LEI TYI STI	NGTH PE: 1 RAND	: 20 nucle EDNE:	TERI: base eic : SS: :	e par acid sing	irs									
	(ii)	MOLI	ECULI	E TY	PE: 1	DNA											
	(xi)	SEQ	JENCI	E DE	SCRI	PTIO	N: S	EQ II	D NO	:25:							
GCCZ	ACATC!	rg go	CTTG	TAAA	Г												20
(2)	INFO	RMAT:	ION 1	FOR a	SEQ :	ID N	0:26	:		-							
	(i)	SEO	JENCI	E CH	ARAC'	TERI	STIC	s:							•		

(2)

- (A) LENGTH: 21 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA
- (ix) FEATURE:
 (A) NAME/KEY: modified_base
 (B) LOCATION: 1

(bio-A)"

/note= "N = 5'-biotinylated adenine

21

21

(D) OTHER INFORMATION: /mod base= OTHER

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

NGCTGTTCGT GTTCTATGAT C

```
(2) INFORMATION FOR SEQ ID NO:27:
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 21 base pairs
                 (B) TYPE: nucleic acid
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: DNA
          (ix) FEATURE:
                 (A) NAME/KEY: modified base
                 (B) LOCATION: 1
                 (D) OTHER INFORMATION: /mod base= OTHER
                                        /note = "N = 5'-biotinylated adenine"
                                         (bio-A)"
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:
      NGCTGTTCGT GTTCTATGAT G
٠, إ
     (2) INFORMATION FOR SEQ ID NO:28:
ľ
           (i) SEQUENCE CHARACTERISTICS:
ij
                 (A) LENGTH: 19 base pairs
::=
                 (B) TYPE: nucleic acid
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: DNA
          (ix) FEATURE:
                 (A) NAME/KEY: modified base
                 (B) LOCATION: 1
                 (D) OTHER INFORMATION: /mod_base= OTHER
                                        /note= "N = 5'-phosphorylated adenine
                                         (p-A)"
          (ix) FEATURE:
                 (A) NAME/KEY: modified base
                 (B) LOCATION: 19
                 (D) OTHER INFORMATION: /mod base= OTHER
                                        /note= "N = 3'-digoxigenin-conjugated
                                        adenine (A-dig)"
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

NTGAGA	GTCG CCGTGTGGN	19
(2) IN	FORMATION FOR SEQ ID NO:29:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(i	i) MOLECULE TYPE: DNA (genomic)	
(x	:i) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
GGAAGA	GCAG AGATATACGT GCCAGGTGGA GCACCCAGG	39
(2) IN	FORMATION FOR SEQ ID NO:30:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(i	i) MOLECULE TYPE: DNA (genomic)	
(x	SEQUENCE DESCRIPTION: SEQ ID NO:30:	
GGAAGA	AGCAG AGATATACGT ACCAGGTGGA GCACCCAGG	39
(2) IN	FORMATION FOR SEQ ID NO:31:	
((i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(i	i) MOLECULE TYPE: DNA (genomic)	
(x	:i) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
CAAAAG	BAAGC GGAGATTTAA CG	22
(2) IN	FORMATION FOR SEQ ID NO:32:	
((i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(i	i) MOLECULE TYPE: DNA	

(x	i) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
AGATTT	AACG GGGACGTGC	19
(2) IN	FORMATION FOR SEQ ID NO:33:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(i	i) MOLECULE TYPE: DNA	
(x	i) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
AGAGGT	CACA TGATGTGTCA CC	22
(2) IN	FORMATION FOR SEQ ID NO:34:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(i	i) MOLECULE TYPE: DNA	
(х	(i) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
AGGAGG	SCACT TGTTGGTCC	19
(2) IN	FORMATION FOR SEQ ID NO:35:	
((i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
·(i	Li) MOLECULE TYPE: DNA	
к)	ci) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
TAAAA	CACAA CCACAGCAAA G	21
(2) IN	NFORMATION FOR SEQ ID NO:36:	
((i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(i)	ii) MOLECULE TYPE: DNA	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
TTCCCACAGT GAGTCTGCAG	20
(2) INFORMATION FOR SEQ ID NO:37:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
CAATGGGGAT GGGACCTAC	19
(2) INFORMATION FOR SEQ ID NO:38:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
ATATACGTGC CAGGTGGAGC	20
(2) INFORMATION FOR SEQ ID NO:39:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
CCTCTTCACA ACCCCTTTCA	20
(2) INFORMATION FOR SEQ ID NO:40:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

...

(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
CATAGCTGTG CAACTCACAT CA	22
(2) INFORMATION FOR SEQ ID NO:41:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
AGCTGTTCGT GTTCTATGAT CATGAGAGTC GCCGTGTGGA	40
(2) INFORMATION FOR SEQ ID NO:42:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
AGCTGTTCGT GTTCTATGAT GATGAGAGTC GCCGTGTGGA	40
(2) INFORMATION FOR SEQ ID NO:43:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
TGTTCTATGA TCATGAGAGT CGCCGTGTGG AG	32
(2) INFORMATION FOR SEQ ID NO:44:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 32 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

TGTTCTATGA TCATGAGTGT CGCCGTGTGG AG