logistic-regression

April 5, 2019

```
In [102]: import numpy as np
          import pandas as pd
          from sklearn.preprocessing import StandardScaler
          import matplotlib.pyplot as plt
          from sklearn.linear_model import LogisticRegression
          from sklearn.calibration import calibration_curve
In [103]: from logreg_skeleton import fit_logistic_reg, f_objective
```

3.3 Regularized Logistic Regression

3.3.1

Prove that the objective function is convex.

```
J_{\text{logistic}}(w) = \frac{1}{n} \sum_{i=1}^{n} \log \left( 1 + \exp \left( -y_i w^T x_i \right) \right) + \lambda ||w||^2
```

LogSumExp is convex, therefore $\log (1 + \exp(-y_i w^T x_i))$ is convex. Sum of convex functions is convex, therefore $\sum_{i=1}^n \log (1 + \exp(-y_i w^T x_i))$ is convex.

Dividing a convex function by a positive constant is convex, therefore $\frac{1}{n}\sum_{i=1}^n \log (1 + \exp(-y_i w^T x_i))$ is convex.

Norms are convex, therefore $||w||^2$ is convex.

Multiplying a convex function by a positive constant is convex, therefore $\lambda \|w\|^2$ is convex. Thus $J_{\text{logistic}}(w) = \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp\left(-y_i w^T x_i\right)\right) + \lambda \|w\|^2$ is convex.

Complete the f_objective function

Complete the fit_logistic_reg function and use it to train a model on the procided data.

```
In [19]: def fit_logistic_reg(X, y, objective_function, l2_param=1):
             Args:
                 X: 2D numpy array of size (num_instances, num_features)
                 y: 1D numpy array of size num_instances
                 objective_function: function returning the value of the objective
                 12_param: regularization parameter
             Returns:
                 optimal_theta: 1D numpy array of size num_features
             objective_function = partial(objective_function, X=X, y=y, 12_param=12_param)
             n_features = X.shape[1]
             theta_0 = np.zeros(n_features)
             theta = minimize(objective_function, theta_0).x
             return theta
In [104]: # Load the data
          x_train = np.loadtxt('X_train.txt', delimiter=',')
         x_val = np.loadtxt('X_val.txt', delimiter=',')
         y_train = np.loadtxt('y_train.txt', delimiter=',')
         y_val = np.loadtxt('y_val.txt', delimiter=',')
In [105]: # Standardize data
          ss = StandardScaler()
          x_train = ss.fit_transform(x_train)
         x_val = ss.transform(x_val)
         y_train[y_train==0] = -1
         y_val[y_val==0] = -1
In [106]: # Add bias term
          x_train = np.append(10*np.ones((len(x_train),1)), x_train, axis=1)
         x_val = np.append(10*np.ones((len(x_val),1)), x_val, axis=1)
In [107]: # Train model
          theta = fit_logistic_reg(x_train, y_train, f_objective)
In [108]: theta
Out[108]: array([ 0.00236204,  0.00095657, -0.00030132,  0.00302058,  0.10533832,
                 -0.00358714, -0.00135921, -0.00385466, -0.00079028, -0.0011443,
                 -0.07179551, 0.00655072, -0.004512 , 0.01125831, -0.003866
                 -0.00271356, 0.00150264, -0.00278385, -0.00919238, -0.00682348,
                 -0.01027393])
```

Find the l2 regulrization term that minimizes the log-likelihood on the validation set. Plot the log-likelihood for different values.

Based on this, I'll choose 0.011 as my 12 reg

Calibration plot

It appears that the model unerconfident as hown by the sigmoid shape of the calibration curve. Sigmoid calibration may help correct and calibrate the predictions.