Heat and Temperature

Of the many possible temperature scales, the Celsius and Kelvin scales are preferred $\,$

$$F = (9/5)C + 32$$

$$C = (5/9)(F - 32)$$

$$K = C + 273.15$$

$$C = K - 273.15$$

Thermometric properties are linear in small increments; simplest is thermal expansion $\,$

The difference between temperature and heat: heat capacity and internal energy

$$1~\mathrm{cal} = 4.186~\mathrm{J}$$

Phase changes also show the distinction between heat energy and temperature

Heat energy is transported via conduction (solids) and convection (fluids)

The electromagnetic field is also able to transport heat energy via radiation

$$P = \frac{Q}{t} = \epsilon \sigma A T^4$$

$$5.67 \times 10^{-8}$$

Very high temperatures can rip apart the atoms in a gas to create plasma

Very low temperatures reveal a new world of superconductivity and other effects

