

Recap (Descriptive Statistics)

9.6 Types of Statistics

Descriptive statistics do not generalize because they deal with the population itself.

Population of 10,0000

10.1 Introduction

Tabular and graphical methods

- to summarize both qualitative and quantitative data
- in annual reports, newspaper articles, and research studies

10.2 Summarizing Qualitative Data or Categorical Data

Table

Table 10.1 Data from A Sample of 50 Soft Drink Purchases

Coke Classic	Coke Classic	Coke Classic	Sprite	Coke Classic
Diet Coke	Dr. Pepper	Diet Coke	Dr. Pepper	Diet Coke
Pepsi-Cola	Sprite	Coke Classic	Pepsi-Cola	Pepsi-Cola
Diet Coke	Coke Classic	Sprite	Diet Coke	Pepsi-Cola
Coke Classic	Diet Coke	Pepsi-Cola	Pepsi-Cola	Pepsi-Cola
Coke Classic	Coke Classic	Coke Classic	Coke Classic	Pepsi-Cola
Dr. Pepper	Coke Classic	Coke Classic	Coke Classic	Coke Classic
Diet Coke	Sprite	Coke Classic	Coke Classic	Dr. Pepper
Pepsi-Cola	Coke Classic	Pepsi-Cola	Pepsi-Cola	Pepsi-Cola
Pepsi-Cola	Diet Coke	Coke Classic	Dr. Pepper	Sprite

How can we organize these data?

frequency distribution table - lists all categories and the number of elements that belong to each of the categories

10.2 Summarizing Qualitative Data or Categorical Data

Frequency Distribution Table of Soft Drink Purchases

Soft Drink	Frequency (f)	Relative Frequency	Percent (%)
Coke Classic	19	19/50 = 0.38	38.0
Diet Coke	8	8/50 = 0.16	16.0
Dr. Pepper	5	5/50 = 0.10	10.0
Pepsi-Cola	13	13/50 = 0.26	26.0
Sprite	5	5/50 = 0.10	100
Total	50	1.00	100.0

The percent frequency of a class is the relative frequency multiplied by 100.

10.2 Summarizing Qualitative Data or Categorical Data

Graph

Bar Chart

Bar Chart of Soft Drink Purchases

Pie Chart

PIE CHART OF SOFT DRINK PURCHASES

Table

frequency distribution table - group the data into categories showing the number of observations in each mutually exclusive category

- 1. Find the range = the largest data value minus the smallest data value. $\frac{33-12}{2} = \frac{71}{2}$
- 2. Decide on a suitable number of the classes (between 5 and 20). To estimate the number of classes, we can select the smallest integer such that $2^k \ge n$, where n is the total number of observations.

Table

3. Find class width (i) by use the following formula

Class Width (i) =
$$\frac{\text{Largest Data Value - Smallest Data Value}}{\text{Number of Classes}}$$
or Class Width (i) =
$$\frac{\text{Range}}{\text{Number of Classes}} = \frac{21}{5} = 4.2 \%$$

Class Tally
Limit

12 - 16 /W/ //
-17 - 21 /// //
+5 -22 - 26 ///
+5 -32 - 36 //

or Class width (i) = upper class boundary - lower class boundary

4. Find class limit which consist of the lower and the upper class limit. Any convenient number, which is equal to or less than the smallest value in the data set, can be used as the lower limit of the first class.

Note that the smallest data value is included in the first class and the largest data value is included in the last class.

5. Tally each observation into each class limit. (one observation will fall into only one class).

Table

- 6. Count the frequency and calculate the relative frequency of each class
- 7. Compute class boundary and midpoint.
- The class boundary is given by the midpoint of the upper limit of one class and the lower limit of the next class.
 - Class midpoint = Lower limit + Upper limit

Frequency Distribution Table

Note that when we present the data in the form of a frequency distribution table, we lose the information on individual observations.

Class	Class	Tally	Class-0.5	Midpoint	Frequency	Kelative	
	Limit		Boundary	_	(f)	Frequency (%)	
1	12 - 16	M/ //	11.5 - 16.5	14	7	35.0	
2	17 - 21	M //	16.5 - 21.5	19	7	35.0	
3	22 - 26	///	21.5 - 26.5	24	3	15.0	
4	27 - 31	//	26.5 - 31.5	29	2	10.0	
5	32 - 36	/	31.5 - 36.5	34	1	5.0	
	•	•	•		20	100.0	

Graph

Histogram

- is a vertical rectangle at each value (or mark classes), and the height of the rectangle equal to relative frequency.

Class	Frequency
Boundary	(f)
11.5 - 16.5	7
16.5 - 21.5	7
21.5 - 26.5	3
26.5 - 31.5	2
31.5 - 36.5	1
1	20

Class Boundaries

Stem-and-Leaf Display

- is a statistical technique for displaying a set of data. Each value is divided into two parts: the leading digits become the stem and the trailing digits become the leaf.

10.4 Graphic Presentation of a Frequency Distribution

Histogram

Histogram: A graph in which the classes are marked on the horizontal axis and the class frequencies on the vertical axis. The class frequencies are represented by the heights of the bars and the bars are drawn adjacent to each other.

10.4 Graphic Presentation of a Frequency Distribution

A frequency polygon

A frequency polygon consists of line segments connecting the points formed by the class midpoint and the class frequency.

10.4 Graphic Presentation of a Frequency Distribution

A cumulative frequency distribution (Ogive)

20

20

A cumulative frequency distribution (Ogive) is used to determine how many or what proportion of the data values are below or above a certain value.

10.5 Shapes of Histograms

The most common shapes

symmetric

Figure 10.5 Symmetric histograms

skewed

Figure 10.6 (a) Skewed to the right

S SARIABLE

(b) Skewed to the left

uniform or rectangular

Figure 10.7 Uniform or rectangular histogram

- 1. Identify the minimum and the maximum score in the data set.
- Split each score into two parts. The first part contains the first digit, which is called the stem. The second part contains the second digit, which is called the leaf.
- 3. Draw the vertical line and write the stems on the left side, the leaves on the right side of it.
- 4. List the stems in order in a column, starting with the smallest stem and ending with the largest.
- 5. Record the leaf for each score in the appropriate stem on the right side of the vertical line (you may want to record the leaves of each stem in increasing order).

stretched stem-and-leaf display


```
Leaf
Stem
     89
     233
     566
     011234
     56
     12224
     556788
     0024
     66678
     23
 11
     55899
     678
  13
     24
  14
```

Stem-and-Leaf Display

Stem-and-Leaf Display has two primary advantages.

- 1. The stem-and-leaf display is easier to construct by hand.
- 2. Within a class interval, the stem-and-leaf display provides more information than the histogram because the stem-and-leaf shows the actual data values.

Histogram

Note that a single digit is used to define each leaf and that only the first three digits of each observation have been used to construct the display. At the top of the display we have specified Leaf Unit = 10. To illustrate how to interpret the values in the display, consider the first stem, 15, and its associated leaf, 6. Combining these, we obtain the number 156. To reconstruct an approximation of the original observation, we must multiply this number by 10, the value of the leaf unit. Thus, $156 \times 10 = 1560$ is an approximation of the original observation used to construct the stem-and-leaf display.

1. A partial relative frequency distribution is given.

class	Relative Frequency
A	0.22
В	0.18
C	0.40
D	?

- a. What is the relative frequency of class D?
- b. The total sample size is 200. What is the frequency of class D?
- Show the frequency distribution.
- d. Show the percent frequency distribution.

Assignment 11

Deadline for submission: Monday Sep 13, 2021

- Exercises 10
- No.3 Construct Frequency Distribution Table and Draw bar chart and pie chart. (Quali)
- No. 9 Construct Frequency Distribution Table and Draw histogram and stem & leaf display. (Quanti)

7						
3	7 habits	Dad	7 habits	Millionaire	Millionaire	WSJ Guide
	Motley	Millionaire	Tax Guide	7 habits	Dad	Dummies
	Millionaire	Motley	Dad	Dad	Parachute	Dad
	Dad	7 habits	WSJ Guide	WSJ Guide	WSJ Guide	7 habits
	Motley	WSJ Guide	Millionaire	7 habits	Millionaire	Millionaire
	Millionaire	7 habits	Millionaire	7 habits	Motley	Motley
	Motley	7 habits	Dad /	Dad	Dad	Dad
	7 habits	WSJ Guide	Tax Guide	Millionaire	Motley	Tax Guide
	Motley	Motley	Millionaire	Millionaire	Dad	Dummies

Millionaire

Dad

Millionaire

Dad

Nam	7	R	P ('/')
Thank Mutley Much Dad WSJ Tax	109 15 176 ma	100 = 0.16	16 1 / /
Dyni	60	1.0	100.10

Frequency Distribution Table

Milliopaire

Millionaire

Soft Drink	Frequency (f)	Relative Frequency	Percent (%)
<i>u</i> +		7- July	$= \frac{10}{60} \times 360 = 6$
f 15 -		bitley	$-\frac{9}{60} \times 360 = 54$
5 +			
J. M.			

nosthey

54 1 0%

Range =
$$\max$$
 - \min = $178-93 = 85$
More flow \Rightarrow $2^{t} \ge n$; $2^{6} \ge 50$, $64 \ge 50 \Rightarrow no. g derm = 6$
dans width = $\frac{\text{range}}{\text{m-gray}} = \frac{85}{6} = 14.16 \approx 15$

$$midpoint = \frac{93 + 107}{2} = 100$$
(deu - 1)