Chapitre 7

Probabilité

Première partie

Cours

0 Dénombrabilité

Remarque 1:

Un ensemble E est dit *dénombrable* s'il existe une bijection de E dans \mathbb{N} . L'ensemble \mathbb{Z} des entiers relatifs, 1 et l'ensemble \mathbb{N}^2 des couples d'entiers 2 sont dénombrables.

Par suite, le produit cartésien $E \times F$ de deux ensembles dénombrables E et F est aussi dénombrable. Mieux : une union dénombrable d'ensembles dénombrable est aussi dénombrable.

Ainsi, on peut en conclure que $\mathbb{Q}=\bigcup_{\substack{p\in\mathbb{Z}\\q\in\mathbb{N}^*}}\frac{p}{q}$ est dénombrable car cet union est dénombrable.

\mathbf{Mais} , \mathbbm{R} n'est pas dénombrable.

Démonstration (une preuve de Cantor pour la non-dénombrabilité de \mathbb{R}):

Par l'absurde, on suppose $\mathbb R$ dénombrable. On pose donc $\mathbb R=\{u_0,u_1,u_2,\ldots\}$. On construit par récurrence une suite $(a_n)_{n\in\mathbb N}$ croissante majorée par 1 et et une suite $(b_n)_{n\in\mathbb N}$ décroissante minorée par 0, telles que $u_n\not\in [a_{n+1},b_{n+1}]$. Donc, $(a_n)_{n\in\mathbb N}$ converge vers un réel A, et de même $(b_n)_{n\in\mathbb N}$ converge vers un réel B. Or, par construction, $\nexists n, A=u_n$.

Figure 1 – Démonstration de la non-dénombrabilité de $\mathbb R$

1 Résultats et événements

Exemple 2:

« On lance un dé » est une expérience aléatoire. Son univers (des résultats possibles) est $\Omega = [\![1,6]\!].$

« Le dé est tombé sur un numéro pair » est l'événement $E=\{2,4,6\}\subset\wp(\Omega)$. Un événement, c'est l'ensemble des résultats favorables à cet événement. « Le dé est tombé sur 3 » est aussi un événement (c'est l'événement $\{3\}$), et non un résultat 3.

Vocabulaire des probabilités	Notation	Vocabulaire des ensembles
Événement certain	Ω	Univers
Événement impossible	Ø	Ensemble vide
Événement contraire	$\Omega \setminus A = \bar{A}$	Complémentaire
Événement élémentaire	$\{\omega\}$	Singleton
A implique B	$A \subset B$	A est une partie de B
Le résultat ω réalise l'événement A	$\omega \in A$	ω appartient à A
ET	\cap	Intersection
OU	U	Réunion (ou union)
Événements incompatibles	$A \cap B = \emptyset$	Parties disjointes

Table 1 – Traduction vocabulaire ensembles-probabilités

$$k \longmapsto \begin{cases} 2k-1 & \text{si } k>0 \\ -2k & \text{si } k\leqslant 0 \end{cases}$$

est bijective.

 $^{1.\,}$ on compte sur chaque côtés simultanément : l'application

^{2.} On place les entiers sur les diagonales : l'application $(x,y)\mapsto \sum_{k=1}^{x+y}k+y$ de $\mathbb{N}\times\mathbb{N}$ dans \mathbb{N} est bijective.

Remarque 3 (unions et intersections):

Par définition,

$$\omega \in \bigcap_{i \in I} A_i \iff \forall i \in I, \omega \in A_i$$

et

$$\omega \in \bigcup_{i \in I} A_i \iff \exists i \in I, \omega \in A_i.$$

On dit que l'union $\bigcup_{i\in I}A_i$ est disjointe si les ensembles événements A_i sont disjoints deux à deux : $\forall i\neq j, A_i\cap A_j=\varnothing$ i.e. les événements A_i et A_j sont incompatibles (\neq indépendants). On note alors cette union $\bigcup_{i\in I}A_i$.

L'opération \cup est distributive par rapport à l'opération \cap , et l'opération \cap est distributive par rapport à l'opération \cup .

Exercice 4:

Voici une expérience aléatoire. On lance une pièce indéfiniment. À chaque lancer, la pièce tombe sur PILE ou FACE. Quel est l'univers Ω de cette expérience?

L'ensemble Ω est l'ensemble des résultats, et un résultat est une suite de Pile ou Face. D'où, $\Omega = \{\text{Pile}, \text{Face}\}^{\mathbb{N}}$.

On pose, pour tout $n \in \mathbb{N}^*$, les événements $A_n:$ « le premier Face est au n-ième lancer » et $B_n:$ « les n premiers lancers donnent Pile. »

- 1. Quel est l'événement $\bigcup_{n\in\mathbb{N}^*}A_n$? Cet événement correspond à « la pièce est tombée au moins une fois sur FACE. » Cette union est disjointe.
- 2. Quel est l'événement $\bigcap_{n\in\mathbb{N}^*}B_n$? Cet événement correspond à « on n'obtient que des PILES. »
- 3. Exprimer \bar{B}_n en fonction des événements A_k . On a $\bar{B}_n = \bigcup_{k=1}^n A_k$.
- 4. Quel est l'événement $B_n \cap \bar{B}_{n+1}$? On a $B_n \cap \bar{B}_{n+1} = A_{n+1}$.

Définition 5:

Soit un ensemble Ω . On dit qu'une partie \mathcal{A} de $\wp(\Omega)$ est une tribu sur Ω si :

- 1. $\Omega \in \mathcal{A}$;
- 2. si $A \in \mathcal{A}$, alors $\bar{A} \in \mathcal{A}$;

(stabilité par passage au complémentaire)

3. si $\forall n \in \mathbb{N}, A_n \in \mathcal{A}, \text{ alors } \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}.$

(stabilité par union dénombrable)

On appelle événement tout élément de la tribu.

Proposition 6:

Il en résulte que

- 1. $\varnothing \in \mathscr{A}$;
- 2. si $\forall n \in \mathbb{N}, A_n \in \mathcal{A}, \text{ alors } \bigcap_{n \in \mathbb{N}} A_n \in \mathcal{A};$
- 3. si $A \in \mathcal{A}$ et $B \in \mathcal{A}$, alors $A \setminus B \in \mathcal{A}$.

Démonstration: 1. On a $\bar{\Omega} = \emptyset$.

- 2. On a $\overline{\bigcap_{n\in\mathbb{N}} B_n} = \bigcup_{n\in\mathbb{N}} \bar{B}_n$, et $\forall n\in\mathbb{N}, \bar{B}_n\in\mathcal{A}$.
- 3. L'ensemble $A\setminus B$, c'est l'ensemble des éléments qui sont dans A sans être dans B. On a donc $A\setminus B=A\cap \bar{B}$.

2 Probabilité

Définition 7:

Le couple (Ω, \mathcal{A}) est appelé espace probabilisable. On le munit d'une probabilité P (définie ci-dessous). Ainsi, le triplet (Ω, \mathcal{A}, P) est dit espace probabilisable.

Une probabilité P sur (Ω, \mathcal{A}) est une application $P : \mathcal{A} \longrightarrow [0, 1]$ telle que

- 1. $P(\Omega) = 1$;
- 2. Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'événements deux-à-deux incompatibles,

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}P(A_n).$$
 (\sigma-additivit\elli).

Ι Cours

Remarque 8:

Une union, finie ou dénombrable, est toujours commutative et on peut donc la notera indifféremment $\bigcup_{n\in\mathbb{N}}$ ou $\bigcup_{n=1}^{\infty}$. Une somme finie de scalaires est commutative, une somme dénombrable aussi si la série est absolument convergente (c'est le cas de la série $\sum P(A_n)$ dans la définition précédente) : on peut noter in différemment $\sum_{n=0}^{\infty}$ ou $\sum_{n\in\mathbb{N}}$

Proposition 9: 1. $P(\emptyset) = 0$.

2. Pour toute suite finie
$$(A_1, \dots, A_n) \in \mathcal{A}^n$$
 d'événements deux-à-deux incompatibles,
$$P\Big(\bigcup_{i=1}^n A_n\Big) = \sum_{i=1}^n P(A_n) \tag{additivit\'e}.$$

- 3. Pour tout événement $A \in \mathcal{A}$, $P(\bar{A}) = 1 P(A)$.
- 4. Pour tout couple $(A, B) \in \mathcal{A}^2$ d'événements,

$$A \subset B \implies P(A) \leqslant P(B)$$
. (croissance de la probabilité)

- 5. Pour tout couple $(A, B) \in \mathcal{A}^2$ d'événements, $P(A \cup B) = P(A) + P(B) + P(A \cap B)$.
- 6. Pour toute famille finie d'événements $(A_1, \ldots, A_n) \in \mathcal{A}^n$,

$$P\Big(\bigcup_{n=1}^{n} A_n\Big) \leqslant \sum_{n=1}^{n} P(A_n)$$
 (sous-additivité).

1. On utilise le point 3. : $P(\emptyset) = P(\bar{\Omega}) = 1 - P(\Omega) = 0$. DÉMONSTRATION:

- 2. *c.f.* poly
- 3. On utilise le point 5. : $1 = P(A \cup \bar{A}) = P(A) + P(\bar{A}) + P(A \cap \bar{A}) = P(A) + P(\bar{A})$, d'où $P(\bar{A}) = 1 - P(A).$
- 4. Si $A \subset B$, on a $B = A \cup (B \setminus A)$, et donc $P(B) = P(A) + P(B \setminus A) \ge P(A)$.
- 5. On a, d'une part $A = (A \cap B) \cup (A \setminus B)$, donc $P(A) = P(A \cap B) + P(A \setminus B)$, et d'autre part, $B = (B \cap A) \cup (B \setminus A)$, d'où $P(B) = P(B \cap A) + P(B \setminus A)$. Or, $(A \setminus B) \cup (B \setminus A) \cup (A \cap B) = P(B \cap A)$ $A \cup B$, d'où

$$P(A \setminus B) + P(B \setminus A) + P(A \cap B)$$
.

La continuité (dé)croissante 3

Théorème 10:

Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements.

- (continuité croissante)
- 1. Si $\forall n, A_n \subset A_{n+1}$, alors $P\Big(\bigcup_{n \in \mathbb{N}} A_n\Big) = \lim_{n \to \infty} P(A_n)$. 2. Si $\forall n, A_n \supset A_{n+1}$, alors $P\Big(\bigcap_{n \in \mathbb{N}} A_n\Big) = \lim_{n \to \infty} P(A_n)$. (continuité décroissante)

Démonstration:

On crée une suite d'événements $(B_n)_{n\in\mathbb{N}}$: on pose $B_0=A_0$, et pour $n\in\mathbb{N}^*$, on pose $B_n = A_{n+1} \setminus A_n$. L'union $\bigcup_{n \in \mathbb{N}} B_n$ est disjointe. D'où

$$P\left(\bigcup_{n\in\mathbb{N}}B_n\right) = \sum_{n=0}^{\infty}P(B_n) = \lim_{N\to\infty}\sum_{n=0}^{N}P(B_n).$$

De plus, $\bigcup_{n\in\mathbb{N}}A_n=\bigcup_{n\in B_n}$, d'où $P\left(\bigcup_{n\in\mathbb{N}}A_n\right)=P\left(\bigcap_{n\in\mathbb{N}}B_n\right)$. Enfin (télescope), comme $A_n=A_{n-1}\cup B_n$ (par construction), d'où

$$P(A_n) = P(A_{n-1}) + P(B_n)$$
 i.e. $P(B_n) = P(A_n) - P(A_{n-1})$

Ainsi, $\sum_{n=0}^{N} P(B_n) = P(A_N) - P(A_0) + P(B_0) = P(A_N)$. On en déduit que

$$P\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)=\lim_{n\to\infty}P(A_n).$$

Pour la continuité croissante, on passe au complémentaire c.f. poly.

Corollaire 11:

Pour toute suite $(B_n)_{n\in\mathbb{N}}$ d'événements, on a

$$P\Big(\bigcup_{n\in\mathbb{N}}B_n\Big)=\lim_{n\to\infty}P\Big(\bigcup_{k=1}^nB_k\Big)\quad\text{et}\quad P\Big(\bigcap_{n\in\mathbb{N}}B_n\Big)=\lim_{n\to\infty}P\Big(\bigcap_{k=1}^nB_n\Big).$$

DÉMONSTRATION:

Soit $A_n = \bigcup_{k=1}^n B_k$, alors $A_{n+1} = A_n \cup B_{n+1}$, d'où $A_{n+1} \subset A_n$. Et, $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n$. On conclut à l'aide du théorème 10.

Exercice 12:

On lance indéfiniment une pièce qui tombe de manière équiprobable sur PILE ou FACE. Montrer que la probabilité d'obtenir toujours PILE est nulle.

On pose l'événement A_n : « la pièce est tombée sur Pile aux n premiers lancers. » Ainsi, l'événement « obtenir toujours Pile » vaut $E=\bigcap_{n\in\mathbb{N}^*}A_n$. On a aussi $A_{n+1}\subset A_n$. D'où, par continuité décroissante, $P(E)=\lim_{n\to\infty}P(A_n)$. Or, il y a équiprobabilité, d'où

$$P(A_n) = \frac{\# \text{ résultats favorables}}{\# \text{ résultats possibles}} = \frac{\operatorname{Card}(A_n)}{\operatorname{Card}(\Omega)} = \frac{1}{2^n}.$$

On en déduit que $P(E) = \lim_{n \to \infty} 2^{-n} = 0$

L'événement E n'est pas impossible $(E \neq \emptyset)$ mais sa probabilité est nulle.

Définition 13:

On dit qu'un événement est :

- négligeable ou presque impossible si sa probabilité est nulle;
- presque certain si sa probabilité vaut 1.

Proposition 14 (σ -sous-additivé):

Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements. Si la série $\sum P(A_n)$ converge, alors

$$P\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)\leqslant \sum_{n\in\mathbb{N}}P(A_n).$$

DÉMONSTRATION:

Par récurrence avec $P(A \cup B) \leq P(A) + P(B)$, on peut démontrer que

$$P\Big(\bigcup_{n=1}^{N} A_n\Big) \leqslant \sum_{n=1}^{N} P(A_n).$$

Montrons que les limites, quand $N \to \infty$, existent.

- $\lim_{n\to\infty} \sum_{k=0}^n P(A_k)$ existe par hypothèse.
- D'après le théorème de la continuité croissante (corolaire 11), on a $\lim_{n\to\infty} P(\bigcup_{k=0}^n A_k) = P(\bigcup_{n\in\mathbb{N}} A_n)$.

COROLLAIRE 15: 1. Une union finie ou dénombrable d'événements négligeables est un événement négligeable.

2. Une intersection finie ou dénombrable d'événements presque certains est un événement presque certain.

Démonstration: 1. La série $\sum P(A_n) = \sum 0$ converge, et donc $0 \leqslant P(\bigcup_{n \in \mathbb{N}} A_n) \leqslant \sum_{n=0}^{\infty} 0 = 0$. On en déduit que $P(\bigcup_{n \in \mathbb{N}} A_n) = 0$.

2. On passe aux événements contraires : le contraire d'un événement presque certain est un événement négligeable et le contraire de l'union est l'intersection des contraires.

4 L'indépendance

Définition 16:

Soit (Ω, \mathcal{A}, P) un espace probabilisé.

On dit que deux événements $A, B \in \mathcal{A}$ sont indépendants si $P(A \cap B) = P(A) \times P(B)$.

On dit qu'une famille d'événements $(A_i)_{i\in I}$ est

- deux-à-deux indépendants si $\forall i \neq j, \ P(A_i \cap A_j) = P(A_i) \times P(A_j);$
- indépendants si, pour toute partie $J \subset I$ finie,

$$P\Big(\bigcap_{j\in J} A_j\Big) = \prod_{j\in J} P(A_j).$$

EXERCICE 17: 1. Si A et B indépendants, alors A et \bar{B} aussi. On a $P(A \cap B) = P(A) \times P(B)$. Or, $P(A \cap B) + P(A \cap \bar{B}) = P(A)$ car $(A \cap B) \cup (A \cap \bar{B}) = A$. D'où,

$$\begin{split} P(A \cap \bar{B}) &= P(A) - P(A \cap B) \\ &= P(A) - P(A) \times P(B) \text{ par hypothèse} \\ &= P(A) \times \left(1 - P(B)\right) \\ &= P(A) \times P(\bar{B}) \end{split}$$

Donc A et \bar{B} sont indépendants.

2. Si A est presque impossible, alors A et B sont indépendants. On suppose P(A)=0. On veut montrer que $\forall B \in \mathcal{A}, \ P(A\cap B)=P(A)\times P(B)=0$. Or, $A\cap B\subset A$, d'où, par croissance de la probabilité, $0\leqslant P(A\cap B)\leqslant P(A)=0$. On en déduit que $P(A\cap B)=0=P(A)\times P(B)$.

Exercice 18:

On considère deux lancers d'une pièce. On note les événements

- A: « La pièce tombe la première fois sur Pile, »
- B: « La pièce tombe la deuxième fois sur Face, »
- C: « La pièce tombe au moins une fois sur Face, »
- D : « La pièce tombe deux fois du même côté. »

Montrer que les événements A, B et D sont deux-à-deux indépendants et ne sont pas indépendants. Montrer que les événements A et C ne sont pas indépendants.

L'univers Ω de cette expérience est $\Omega = \{\mathbf{P}, \mathbf{F}\}^2$ i.e. un résultat est un couple (u_1, u_2) où u_1 et u_2 appartiennent à $\{\mathbf{P}, \mathbf{F}\}$. Et, il y a équiprobabilité.

On a
$$A=\{(\mathbf{P},\mathbf{P}),(\mathbf{P},\mathbf{F})\}$$
, d'où $P(A)=\dfrac{\operatorname{Card} A}{\operatorname{Card} \Omega}=\dfrac{2}{4}=\dfrac{1}{2}.$ De même, $P(B)=\dfrac{1}{2}$

On a
$$C=\{(\mathbf{P},\mathbf{F}),(\mathbf{F},\mathbf{P}),(\mathbf{F},\mathbf{F})\},$$
 d'où $P(C)=\frac{3}{4}$

On a
$$D=\{(\mathbf{P},\mathbf{P}),(\mathbf{F},\mathbf{F})\}$$
, d'où $P(D)=\frac{2}{4}=\frac{1}{2}.$

- $A \cap B = \{(\mathbf{P}, \mathbf{F})\}, \text{ d'où } P(A \cap B) = \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = P(A) \times P(B).$
- $B \cap D = \{(\mathbf{F}, \mathbf{F})\}$, d'où $P(B \cap D) = P(B) \times P(D)$.
- $A \cap D = \{(\mathbf{P}, \mathbf{P})\}, \text{ d'où } P(A \cap D) = P(A) \times P(D).$
- $A \cap B \cap D = \emptyset$, mais $P(A) \times P(B) \times P(D) \neq 0 = P(\emptyset) = P(A \cap B \cap D)$.

Proposition 19:

Soit $(B_n)_{n\in\mathbb{N}}$ une suite d'événements indépendants. On a

$$P\Big(\bigcap_{n\in\mathbb{N}}B_n\Big)=\lim_{n\to\infty}\prod_{k=0}^nP(B_k).$$

DÉMONSTRATION:

Par continuité décroissante, on sait que $P(\bigcap_{n\in\mathbb{N}}B_n)=\lim_{n\to\infty}P(\bigcap_{k=0}^nB_k)$. Or, les événements B_k sont indépendants, donc $P(\bigcap_{k=0}^nB_k)=\prod_{k=0}^nP(B_k)$. D'où

$$P\Big(\bigcap_{n\in\mathbb{N}}\Big) = \lim_{n\to\infty} \prod_{k=0}^{n} P(B_k).$$

5 Probabilité conditionnelle

Proposition - Définition 20:

Soit (Ω, \mathcal{A}, P) un espace probabilisé. Soient $A, B \in \mathcal{A}$ deux événements. Si la probabilité de l'événement A n'est pas nulle, alors

1. on appelle probabilité de B sachant A, et on note $P_A(B)$ ou $P(B \mid A)$, le rapport

$$P_A(B) = P(B \mid A) = \frac{P(A \cap B)}{P(A)};$$

2. l'application

$$P_A: \mathcal{A} \longrightarrow [0,1]$$

 $B \longmapsto P(B \mid A)$

est une probabilité sur l'espace probabilisable (Ω, \mathcal{A}) .

DÉMONSTRATION:

c.f. poly.

Proposition 21:

Soient A et B deux événements, où $P(A) \neq 0$.

- 1. Si A et B sont indépendants, alors $P(B) = P_A(B)$.
- 2. Si $A \subset B$, alors $P_A(B) = 1$.

DÉMONSTRATION: 1. On a $P_A(B) = P(A \cap B) / P(A) = P(A) \times P(B) / P(A) = P(B)$.

2. On a $A \cap B = A$, donc $P_A(B) = P(A \cap B) / P(A) = P(A) / P(A) = 1$.

Remarque 22:

Attention : $B \mid A$ n'est pas un événement, c'est une notation différente. « Calculer une probabilité conditionnelle, c'est changer d'observateur. »

Exercice 23:

On lance deux fois une pièce. Calculer

- 1. la probabilité que la pièce tombe deux fois sur Pile sachant qu'elle tombe la première fois sur Pile;
- 2. la probabilité que la pièce tombe deux fois sur Pile sachant qu'elle tombe au moins une fois sur Pile.
- 1. On note A l'événement « la pièce tombe deux fois sur PILE, » et B l'événement « la pièce tombe la première fois sur PILE. »

$$P_B(A) = P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{1/4}{1/2} = \frac{1}{2}.$$

2. On note C l'événement « la pièce tombe au moins une fois sur PILE. » Ainsi,

$$P(A \mid C) = \frac{P(A \cap C)}{P(C)} = \frac{1/4}{3/4} = \frac{1}{3}.$$

6 La formule des probabilités totales

Définition 24:

Soit I un ensemble fini ou dénombrable. On dit qu'une famille d'événements $(A_i)_{i\in I}$ est un système complet d'événements si leur union est disjointe et certaine, autrement dit :

$$\forall i \neq j, \; A_i \cap A_j = \varnothing \qquad \text{ et } \qquad \bigcup_{i \in I} A_i = \Omega.$$

On dit que c'est un $syst\`eme quasi complet$ d'événements si leur union est disjointe et presque certaine, autrement dit :

$$\forall i \neq j, \ A_i \cap A_j = \emptyset$$
 et $P\Big(\bigcup_{i \in I} A_i\Big) = 1.$

Remarque 25: 1. Si on fait une expérience aléatoire, alors un unique événement du système complet se réalise.

- 2. Si A est un événement, alors $\{A, \bar{A}\}$ est un système complet d'événements.
- 3. Pour tout système quasi complet d'événements, $\sum_{i \in I} P(A_i) = 1$ par σ -additivité.

MÉTHODE 26

Un système complet d'événements $(A_i)_{i\in I}$ permet de décomposer un événement B quelconque : on a $\bigcup_{i\in I}A_i=\Omega$, d'où $\forall B\in\mathcal{A}, \ \bigcup_{i\in I}(B\cap A_i)=B\cap \big(\bigcup_{i\in I}A_i\big)=B\cap\Omega=B$, par distributivité de \cap par rapport à \cup . Ainsi, on a $P(B)=\sum_{i\in I}P(B\cap A_i)$.

Théorème 27 (Probabilités totales):

Soit $(A_i)_{i \in I}$ un système quasi complet d'événements. Alors,

$$P(B) = \sum_{i \in I} P(B \cap A_i).$$

Si les événements A_i ne sont pas de probabilités nulles, alors

$$P(B) = \sum_{i \in I} P(A_i) \times P(B \mid A_i).$$

DÉMONSTRATION:

On complète la famille d'événements $(A_i)_{i\in I}$ en un système complet d'événements en posant $C=\Omega\setminus\bigcup_{i\in I}A_i$. Alors, $(\bigcup_{i\in I}A_i)\cup C=\Omega$, et cet union est disjointe. D'où, pour tout événement $B\in \mathcal{A}$, $P(B)=P(B\cap C)+\sum_{i\in I}P(B\cap A_i)$. Or, $P(B\cap C)=0$, car $\sum_{i\in I}P(A_i)=1$, et $\Omega=C\cup\bigcup_{i\in I}A_i$ et cette union est disjointe, d'où $P(\Omega)=1=P(C)+1$, donc P(C)=0; mais, comme $B\cap C\subset C$, alors $P(B\cap C)\leqslant P(C)=0$. On a donc bien $P(B\cap C)=0$.

Exercice 28:

On lance un dé à cinq faces. Calculer, pour chaque $n \in \mathbb{N}^*$, la probabilité u_n de l'événement S_n : « la somme des résultats obtenus lors des n premiers lancers est paire. »

On considère le système complet d'événements $\{S_n, \bar{S}_n\}$. On a $P_{S_n}(S_{n+1}) = \frac{2}{5}$, et $P_{\bar{S}_n}(S_{n+1}) = \frac{3}{5}$. Or, $S_{n+1} = (S_{n+1} \cap S_n) \cup (S_{n+1} \cap \bar{S}_n)$, et cette union est disjointe. D'où

$$\overbrace{P(S_{n+1})}^{u_{n+1}} = P(S_{n+1} \cap S_n) + P(S_{n+1} \cap \bar{S}_n)
= P(S_n) \times P_{S_n}(S_{n+1}) + P(\bar{S}_n) \times P_{\bar{S}_n}(S_{n+1})
= \frac{2}{5}u_n + \frac{3}{5}(1 - u_n)
= \frac{3}{5} - \frac{1}{5}u_n$$

On résout cette suite définie par une relation de récurrence arithmético-géométrique. Pour cela, on commence par chercher un point fixe de cette relation (une suite constante vérifiant cette relation) : on résout

$$\ell = \frac{3}{5} - \frac{1}{5}\ell \iff \frac{6}{5}\ell = \frac{3}{5} \iff \ell = \frac{1}{2}.$$

D'où,

On a donc $v_n = \left(-\frac{1}{5}\right)^{n-1} v_1$, d'où

$$u_n - \ell = \left(-\frac{1}{5}\right)^{n-1} (u_1 - \ell)$$

donc

$$u_n = \left(-\frac{1}{5}\right)^{n-1} (u_1 - \ell) + \ell = -\left(-\frac{1}{5}\right)^{n-1} \left(\frac{3}{5}\right) + \frac{1}{2} = 3\left(-\frac{1}{5}\right)^n + \frac{1}{2}.$$

7 La formule des probabilités composées

Exercice 29:

Une urne contient 5 boules blanches et 2 boules noires. On tire 2 boules l'une après l'autre et sans remise. Calculer la probabilité que les deux premières boules tirées soient blanches.

On pose B_1 : « la première boule est blanche » et B_2 : « la seconde boule est blanche. » On a, d'après la formule des probabilités composées,

$$P(B_1 \cap B_2) = P(B_1) \times P(B_2 \mid B_1).$$

Or, par équiprobabilité, $P(B_1) = 5/7$, et $P(B_2 \mid B_1) = 4/6$. On en déduit que

$$P(B_1 \cap B_2) = \frac{5}{7} \times \frac{4}{6} = \frac{10}{21}.$$

Théorème 30 (Formule des probabilités composées):

Soit (Ω, \mathcal{A}, P) un espace probabilisé, et soit (A_1, \dots, A_n) une famille finie d'événements. Si la probabilité de $A_1 \cap A_2 \cap \dots \cap A_n$ n'est pas nulle, alors

$$P(A_1 \cap \cdots \cap A_n) = P(A_1) \times P(A_1 \mid A_2) \times P(A_3 \mid A_1 \cap A_2) \cdots P(A_n \mid A_1 \cap \cdots \cap A_{n-1}).$$

Démonstration (par récurrence sur n): — On a bien $P(A_1 \cap A_2) = P(A_1) \times P(A_2 \mid A_1)$ par définition de $P(A_2 \mid A_1)$.

- *c.f.* le poly

8 Formule de Bayes

THÉORÈME 31 (Formule de BAYES):

Soient A et B deux événements de probabilités non-nulles. Alors,

$$P(A \mid B) = \frac{P(A) \times P(B \mid A)}{P(B)}.$$

DÉMONSTRATION:

Par définition, on a

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 et $P(B \mid A) = \frac{P(A \cap B)}{P(A)}$.

Ainsi, par produit en croix, on a

$$P(A \mid B) = \frac{P(A) \times P(B \mid A)}{P(B)}.$$

Ме́тноре 32:

On peut utiliser la formule de Bayes avec la formule des probabilités totales, comme dans l'exercice suivant.

EXERCICE 33:

Un joueur tire une carte dans un jeu de 52 cartes (il y a 4 as dans ce jeu). On suppose qu'un tricheur est certain de tirer un as et qu'il y a, parmi les joueurs, une proportion $p \in]0,1[$ de tricheurs :

- quelle est la probabilité qu'un joueur, pris au hasard, tire un as?
- le joueur vient de tirer un as, quelle est la probabilité qu'il ait triché?

On pose les événements T: « le joueur est un tricheur » et A: « le joueur tire un as. » On a donc $P(A\mid T)=1$, et $P(A\mid \bar{T})=\frac{4}{52}=\frac{1}{13}$. (T,\bar{T}) est un système complet d'événements, d'où

$$P(A) = P(T) \times P(A \mid T) + P(\bar{T}) \times P(A \mid \bar{T}),$$

d'après la formule des probabilités totales. D'où,

$$P(A) = p + \frac{1-p}{13} = \frac{12}{13}p + \frac{1}{13}.$$

On nous demande $P(T \mid A)$. On a calculé $P(A \mid T)$, et d'après la formule de Bayes, on a

$$P(T) \times P(A \mid T) = P(A) \times P(T \mid A).$$

D'où,

$$P(T \mid A) = \frac{P(T) \times P(A \mid T)}{P(A)}$$
$$= \frac{p}{\frac{12}{13}p + \frac{1}{13}}$$
$$= \frac{13p}{12p + 1}$$

II T.D.

Deuxième partie

T.D.

Exercice 4

On a

$$\begin{cases} a_{n+1} = \frac{1}{2}b_n + \frac{1}{2}c_n \\ b_{n+1} = \frac{1}{2}a_n + \frac{1}{2}c_n \\ c_{n+1} = \frac{1}{2}a_n + \frac{1}{2}b_n. \end{cases}$$

D'où,

$$\underbrace{\begin{pmatrix} a_{n+1} \\ b_{n+1} \\ c_{n+1} \end{pmatrix}}_{U_{n+1}} = \frac{1}{2} \underbrace{\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}}_{M} \cdot \underbrace{\begin{pmatrix} a_{n} \\ b_{n} \\ c_{n} \end{pmatrix}}_{U_{n}}.$$

Diagonalisons cette matrice M. On a

$$\chi_M(X) = (X - 1)^2 \cdot (X + 2).$$

En effet, soit $\lambda \in \mathbb{R}$, on calcule

$$\det(\lambda I_3 - M) = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{vmatrix}$$

$$= \begin{vmatrix} \lambda + 1 & -\lambda - 1 & 0 \\ 0 & \lambda + 1 & -\lambda - 1 \\ -1 & -1 & \lambda \end{vmatrix}$$

$$= (\lambda + 1) \left(\begin{vmatrix} \lambda + 1 & -\lambda - 1 \\ -1 & \lambda \end{vmatrix} + \begin{vmatrix} 0 & -\lambda - 1 \\ -1 & \lambda \end{vmatrix} \right)$$

$$= (\lambda + 1)(\lambda^2 + \lambda - \lambda - 1 - \lambda - 1)$$

$$= (\lambda + 1)(\lambda^2 - \lambda + 2)$$

$$= (\lambda + 1)^2 \cdot (\lambda - 2)$$

D'où, $Sp(M) = \{1, -2\}.$