Interrogation écrite n°06

NOM: Prénom: Note:

1. Soit f un endomorphisme d'un espace vectoriel E de dimension finie. On suppose que $f^3 + f^2 + f = 0$. Montrer que

$$\mathbf{E} = \operatorname{Ker} f \oplus \operatorname{Ker} (f^2 + f + \operatorname{Id}_{\mathbf{E}}) = \operatorname{Ker} f \oplus \operatorname{Im} f$$

On sait que $X^3 + X^2 + X = X(X^2 + X + 1)$ annule f. De plus $X \land (X^2 + X + 1) = 1$ en vertu de la relation de Bézout $1 \times (X^2 + X + 1) - (X + 1) \times X = 1$. D'après le lemme des noyaux :

$$E = Ker(f^3 + f^2 + f) = Ker f \oplus Ker(f^2 + f + Id_E)$$

Notamment, d'après le théorème du rang,

$$\dim \operatorname{Ker}(f^2 + f + \operatorname{Id}_{E}) = \dim E - \dim \operatorname{Ker}(f) = \dim \operatorname{Im} f$$

$$De\ plus,\ (f^2+f+\mathrm{Id_E})\circ f=f^3+f^2+f=0\ donc\ \mathrm{Im}\ f\subset \mathrm{Ker}(f^2+f+\mathrm{Id_E}).\ Ainsi\ \mathrm{Im}\ f=\mathrm{Ker}(f^2+f+\mathrm{Id_E}),\ ce\ qui\ conclut.\ \blacksquare$$

2. Soient un entier $n \geq 2$ et $u \colon M \in \mathcal{M}_n(\mathbb{K}) \mapsto \operatorname{tr}(M)I_n$. Montrer que u est un endomorphisme diagonalisable de $\mathcal{M}_n(\mathbb{K})$ et déterminer son polynôme minimal.

Pour tout $M \in \mathcal{M}_n(\mathbb{K})$, $u^2(M) = tr(M)u(I_n) = n tr(M)I_n = nu(M)$. Ainsi $u^2 - nu = 0$. Le polynôme simplement scindé $X^2 - nX = X(X - n)$ annule u donc u est diagonalisable. De plus, π_u est unitaire et divise X(X - n).

De plus, $u(I_n) = nI_n$ donc $n \in Sp(u)$ de sorte que n est une racine de π_u . Enfin, en choisissant une matrice A non nulle de trace nulle (il en existe car $n \ge 2$), u(A) = 0 donc $0 \in Sp(A)$ de sorte que 0 est une racine de π_u .

On en déduit que $\pi_u = X(X - n)$.

3. Déterminer le polynôme minimal de A = $\begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & 0 \end{pmatrix}.$

On trouve $\chi_A = X(X-1)^2$ de sorte que $Sp(A) = \{0,1\}$. On sait que π_A divise χ_A et que les racines de χ_A sont 0 et 1. Ainsi le polynôme minimal de A vaut X(X-1) ou $X(X-1)^2$. On vérifie que $A(A-I_3) = 0$ donc $\pi_A = X(X-1)$.

4. On pose $f_n: x \mapsto \frac{2nx}{1+n^2x^2}$. Montrer que la suite de fonctions (f_n) converge simplement mais pas uniformément sur \mathbb{R} .

Tout d'abord, $f_n(0) = 0$ pour tout $n \in \mathbb{R}$. De plus, pour $x \in \mathbb{R}^*$, $f_n(x) \underset{n \to +\infty}{\sim} \frac{2nx}{n^2x^2} = \frac{2}{nx}$ de sorte que $f_n(x) \underset{n \to +\infty}{\longrightarrow} 0$. Ainsi (f_n) converge simplement vers la fonction nulle sur \mathbb{R} .

Par contre, $f_n(1/n) = 1$ pour tout $n \in \mathbb{N}^*$. Par conséquent, $(f_n(1/n))$ ne converge vers 0 et (f_n) ne converge pas uniformément sur \mathbb{R} .

5. Soit $\zeta \colon x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^x}$. Déterminer le domaine de définition de ζ et montrer que ζ est continue sur son domaine de définition.

La série $\sum_{n\in\mathbb{N}^*}\frac{1}{n^x}$ converge si et seulement si x>1 donc le domaine de définition de ζ est $]1,+\infty[$. Soit $f_n:x\mapsto\frac{1}{n^x}$ pour $n\in\mathbb{N}^*$.

Pour tout $n \in \mathbb{N}^*$, f_n est continue sur $]1, +\infty[$. Soit a > 1. Alors $||f_n||_{\infty,[a,+\infty[} = \frac{1}{n^a}$ et $\sum_{n \in \mathbb{N}^*} \frac{1}{n^a}$ converge puisque a > 1. Ainsi

 $\sum_{n\in\mathbb{N}^*} f_n \text{ converge normalement et donc uniformément sur } [a,+\infty[\text{ pour tout } a>1.$

Par conséquent, ζ est continue sur $]1, +\infty[$.