Дискретные структуры

МФТИ, осень 2013

Александр Дайняк

www.dainiak.com

Раскраски вершин и рёбер

- Раскраска вершин (мульти)графа G в (не более чем) k цветов это отображение ϕ из V(G) в некоторое k-элементное множество цветов
- Вершинная раскраска ϕ называется *правильной*, если $\forall v' \forall v'' \left(v'v'' \in E(G) \Rightarrow \phi(v') \neq \phi(v'') \right)$

Правильная раскраска вершин графа в k цветов задаёт разбиение множества вершин графа на k независимых множеств.

Раскраски вершин и рёбер

- Раскраска рёбер (мульти)графа G в (не более чем) k цветов это отображение ψ из E(G) в некоторое k-элементное множество
- Рёберная раскраска ψ называется *правильной*, если $\forall e' \forall e'' \big(e' \cap e'' \neq \emptyset \ \Rightarrow \ \psi(e') \neq \psi(e'') \big)$

Правильная раскраска рёбер графа в k цветов задаёт разбиение множества рёбер графа на k паросочетаний.

Примеры задач о раскраске

- Сотовый оператор установил в городе свои антенны. Некоторые пары антенн расположены близко друг к другу и вынуждены использовать разные частоты. Сколько радиочастот придётся выкупить сотовому оператору у
 - Сколько радиочастот придется выкупить сотовому оператору у городских властей?
- Лидеры стран G-20 собрались на саммит. Некоторые пары участников хотят побеседовать друг с другом наедине. У каждого участника на одну такую встречу уходит один день.
 - Во сколько дней можно уложить саммит?

Примеры задач о раскраске

Исторически первая задача о раскраске:

• Сколько цветов достаточно использовать в типографии, чтобы можно было напечатать любую географическую карту (так, чтобы граничащие друг с другом страны не сливались на карте)?

Примеры задач о раскраске

Задачу о раскраске карт можно переформулировать на языке раскрасок, рассмотрев планарный граф, двойственный карте:

• Сколькими цветами можно правильно раскрасить любой планарный граф?

Хроматическое число

- Хроматическое число $\chi(G)$ это минимальное число цветов, в которое можно правильно раскрасить вершины графа G.
- Хроматический индекс $\chi'(G)$ это минимальное число цветов, в которое можно правильно раскрасить рёбра графа G.

Рассмотренные ранее «жизненные» задачи сводятся к нахождению хроматического числа или хроматического индекса некоторых графов.

Хроматическое число

Хроматическое число — это минимальное количество независимых множеств, на которое можно разбить множество вершин графа.

Хроматический индекс — это минимальное количество паросочетаний, на которое можно разбить множество рёбер графа.

Нижние оценки хроматического числа

•
$$\chi(C_{2k}) = 2$$
, $\chi(C_{2k+1}) = 3$

- $\chi(K_n) = n$
- Если H подграф G, то $\chi(G) \geq \chi(H)$
- $\chi(G) \ge \omega(G)$
- $\chi(G) \geq \frac{|V(G)|}{\alpha(G)}$, поскольку $|V(G)| \leq \chi(G) \cdot \alpha(G)$

```
Упорядочиваем вершины графа: v_1, ..., v_{|V|}. for i \coloneqq 1 to |V|: badColors \coloneqq \{\operatorname{color}(v_j) \mid j < i \ \bowtie \ v_j v_i \in E\} \operatorname{color}(v_i) \coloneqq \min(\mathbb{N} \setminus \operatorname{badColors})
```

(Т.е. при раскраске очередной вершины используется первый по счёту цвет, отсутствующий среди соседей вершины.)

```
for i := 1 to |V|:
    badColors := \{ \text{color}(v_i) \mid j < i \text{ и } v_i v_i \in E \}
    color(v_i) := min(\mathbb{N} \setminus badColors)
```

```
for i \coloneqq 1 to |V|:

badColors \coloneqq \{ \operatorname{color}(v_j) \mid j < i \text{ и } v_j v_i \in E \}

\operatorname{color}(v_i) \coloneqq \min(\mathbb{N} \setminus \operatorname{badColors})
```

Утверждение.

При любом упорядочении вершин графа указанный алгоритм строит правильную раскраску в не более чем $\left(1+\Delta(G)\right)$ цветов. (Т.к. всегда выполнено $|\mathrm{badColors}| \leq \Delta(G)$.)

Утверждение-упражнение.

Качество раскраски, построенной алгоритмом, сильно зависит от упорядочения вершин:

Всегда существует упорядочение, при котором алгоритм использует ровно $\chi(G)$ цветов.

Для любого k можно предъявить $\partial в y \partial o n b + b u$ граф G и такое упорядочение его вершин, что раскраска, построенная алгоритмом, будет задействовать более k цветов.

Теорема Брукса

Теорема (без доказательства). (R. L. Brooks) Пусть граф G

- связен,
- не является полным,
- не является циклом нечётной длины.

Тогда

$$\chi(G) \leq \Delta(G)$$

O нижних оценках χ

- Нижняя оценка $\chi(G)$ через $\alpha(G)$ оказывается во многих случаях гораздо лучше, чем оценка через $\omega(G)$
- $\chi(G)$ в общем случае никак нельзя оценить снизу через $\Delta(G)$. Например, для $K_{n,n}$ имеем $\Delta(K_{n,n}) = n$, но $\chi(K_{n,n}) = 2$.

Оценки хроматического индекса

•
$$\chi'(C_{2k}) = 2$$
, $\chi'(C_{2k+1}) = 3$

- Если H подграф G, то $\chi'(G) \geq \chi'(H)$
- $\chi'(G) \geq \Delta(G)$
- $\chi'(G) \geq \frac{|E(G)|}{\alpha'(G)}$, где $\alpha'(G)$ размер наибольшего паросочетания в G

Теорема Визинга

Теорема (без доказательства). (В. Г. Визинг)

Для любого G выполнено неравенство

$$\chi'(G) \leq \Delta(G) + 1$$

На заметку

- Жадный алгоритм: простой, иногда даёт хороший результат, но может и не повезти
- $\chi(G)$ есть оценка сверху через $\Delta(G)$, нет общей оценки снизу $\chi'(G)$ есть оценки сверху и снизу через $\Delta(G)$
- Оценка $\chi(G)$ через $\alpha(G)$ часто лучше, чем через $\omega(G)$

Укладки графов

Укладкой графа на поверхности называется сопоставление

- вершинам графа точек поверхности
- рёбрам графа гладких кривых без самопересечений так, чтобы
- для любого ребра xy концы соответствующей кривой совпадали с точками, сопоставленными вершинам x и y,
- кривые, соответствующие рёбрам, не пересекались (за исключением, быть может, своих концов).

Укладки графов

Пример укладок на плоскости:

• Укладка графа K_4 :

• Изображение графа K_4 , не являющееся укладкой:

Планарные графы

Планарный граф — это граф, для которого существует плоская укладка.

Например, граф

Планарные графы

Грань укладки — это область поверхности, отделяемая укладкой.

Пример:

Планарные графы на сферах

графа и не лежал на ребре.

Утверждение. Граф планарен т. и т.т., когда его можно уложить на сфере.

Идея доказательства.
Используем стереографическую проекцию. Единственное требование — чтобы центр проекции не совпадал с вершиной

Циклы в планарных графах

Утверждение. Пусть в некоторой укладке планарного графа внутри некоторого цикла C лежит множество рёбер E_{int} , а снаружи множество рёбер E_{ext} . Тогда существует и укладка этого графа, в которой внутри C лежат рёбра E_{ext} , а снаружи рёбра E_{int} .

Пример:

Циклы в планарных графах

Идея доказательства.

Сначала деформируем изображение графа, так, чтобы изображение цикла ${\cal C}$ стало окружностью, и при этом через центр окружности не проходили никакие рёбра.

Затем выполняем инверсию плоскости относительно этой окружности.

Циклы в планарных графах

Утверждение. Пусть в некоторой укладке планарного графа внутри некоторого цикла C лежит множество рёбер E_{int} , а снаружи множество рёбер E_{ext} . Тогда существует и укладка этого графа, в которой внутри C лежат рёбра E_{ext} , а снаружи рёбра E_{int} .

Следствие. Если некоторый цикл графа ограничивает грань в некоторой укладке, то существует укладка, в которой этот цикл ограничивает внешнюю грань.

Формула Эйлера.

Для любого связного планарного графа #вершин — #рёбер + #граней = 2

Формула Эйлера.

Для любого связного планарного графа #вершин — #рёбер + #граней = 2

Доказательство:

<u>индукция по величине (#рёбер — #вершин)</u>

Если (#рёбер — #вершин) = -1, то наш граф является деревом и грань в его укладке ровно одна.

Индуктивный переход:

Если (#рёбер — #вершин) = $t \ge 0$, то в нашем графе G есть цикл. Удаление любого ребра из этого цикла приводит к связному графу G', для которого (#рёбер в G' — #вершин в G') = t-1

И

#граней в
$$G' =$$
#граней в $G - 1$

(т.к. удаление ребра из G привело к «слиянию» двух граней).

Итак,

```
(#рёбер в G — #вершин в G )=t (#рёбер в G' — #вершин в G' )=t-1 #граней в G' = #граней в G-1
```

По предположению индукции, для G' имеем G' - Hрёбер в G' + Hграней в G' = 2

Отсюда

(#вершин в G — #рёбер в G) + 1 + (#граней в G — 1) = 2,

что и требовалось.

Рёбра и грани

Утверждение.

Для любого планарного графа, в котором минимальная длина циклов равна t, выполнено неравенство

#рёбер
$$\geq \frac{t}{2} \cdot$$
#граней

Доказательство:

Для i-й грани рассмотрим величину n_i — количество рёбер, отделяющих её от других граней. Тогда

$$\sum_{i} n_i \geq t \cdot \#$$
граней

При этом в сумме слева каждое ребро графа посчитано максимум дважды.

Число рёбер в планарных графах

Утверждение.

Если в планарном графе минимальная длина циклов равняется t, то

#рёбер
$$\leq \frac{t}{t-2} \cdot ($$
#вершин — 2)

Доказательство. Считаем, что граф связен.

Из формулы Эйлера и предыдущего утверждения получаем:

$$2 = \#$$
вершин — $\#$ рёбер + $\#$ граней \leq $\leq \#$ вершин — $\#$ рёбер + $\frac{2}{t} \cdot \#$ рёбер

Отсюда легко следует доказываемое неравенство.

Непланарные графы

Утверждение.

Если в планарном графе минимальная длина циклов равняется t, то

#рёбер
$$\leq \frac{t}{t-2} \cdot ($$
#вершин $-2)$

Следствие. Графы K_5 и $K_{3,3}$ непланарны.

Доказательство:

В графе K_5 всего 5 вершин и 10 рёбер, так что неравенство не выполнено даже при t=3.

В графе $K_{3,3}$ нет циклов длины меньше четырёх, при этом 6 вершин и 9 рёбер, поэтому и для него неравенство не выполняется.

Непланарные графы

Утверждение.

Если в планарном графе минимальная длина циклов равняется t, то

#рёбер
$$\leq \frac{t}{t-2} \cdot ($$
#вершин $-2)$

Следствие. В любом планарном графе на $n \ (n \ge 3)$ вершинах число рёбер не превосходит (3n-6).

Стягивание рёбер

Стягивание ребра e в графе G — это операция, результатом которой является граф G/e, получаемый из G удалением e и отождествлением его концов. Если при этом образуются кратные рёбра, оставляем из них только одно.

Стягивание рёбер

• Граф G является cmягиваемым к графу <math>G', если G' можно получить из G, применив некоторое количество раз операцию стягивания ребра

• Если граф G планарен, то и граф G' планарен:

Стягивание рёбер

• Граф G является стягиваемым к графу G', если вершины графа G можно разбить на связные множества, каждое из которых соответствует одной вершине графа G', и при этом $(u,v) \in E(G')$, если между соответствующими множествами в G есть ребро.

Миноры

• Граф H является mинором графа G, если в G есть подграф H', который можно стянуть к H

Планарные графы и миноры

• Если G планарен и G' — подграф графа G, то и G' также планарен

(поскольку любая укладка графа G содержит некоторую укладку графа G')

- Аналогично, любой минор планарного графа также планарен
- Следовательно, если у графа есть непланарный минор, то и сам граф непланарен

Планарные графы и миноры

Критерий Вагнера (без доказательства).

Граф планарен *тогда и только тогда,* когда K_5 и $K_{3,3}$ не являются его минорами.

Необходимость очевидна:

- Если у графа есть непланарный минор, то и сам граф непланарен
- Графы K_5 и $K_{3,3}$ непланарны

Достаточность — без доказательства.