Action constrained quasi-Newton methods

Robert Gower

EUROPT 2014 Workshop on Advances in Continuous Optimization

July 10, 2014

What and why quasi-Newton?

Classic quasi-Newton

New Action Constrained quasi-Newton

Implementing a Preconditioned Newton-CG with new metric

What's new

- \blacktriangleright A few Hessian-vector products are cheap \Rightarrow use a handful to build Hessian approximation 1
- Framework for "tracking" inverses of matrix fields
- General purpose Newton-CG preconditioners
- Good results on regularized logistic regression (compared to BFGS or Newton-CG)

 $^{^{1}}$ Walther, A. (2008). Computing sparse Hessians with automatic differentiation. ACM Trans. Math. Software, 34(1), Art. 3, 15.

$$f(x)$$
 (C^2 – diffeomorphism

min
$$f(x)$$
 (C^2 – diffeomorphism)
$$f(x_k + d) \approx f_k + \nabla f_k^T d + \frac{1}{2} d^T \nabla^2 f_k d$$

 X_0

 X_0

Solving sequences of linear systems

The quadratic model "slowly" changes; how to take advantage?

The quadratic model "slowly" changes; how to take advantage? Maintain an approximation of the inverse: $H_{k+1} \approx \nabla^2 f_{k+1}^{-1}$. "Slowly" update with cheap low rank matrices: $H_{k+1} = H_k + E_k$ H_k is a *metric* matrix.

The quadratic model "slowly" changes; how to take advantage? Maintain an approximation of the inverse: $H_{k+1} \approx \nabla^2 f_{k+1}^{-1}$. "Slowly" update with cheap low rank matrices: $H_{k+1} = H_k + E_k$. H_k is a *metric* matrix.

$$\mathcal{A}\nabla^2 f_{k+1} = \int_0^1 \nabla^2 f(x_k + t d_k) dt, \quad \gamma_k = (\nabla f_{k+1} - \nabla f_k).$$

Fundamental Theorem of Calculus says

$$\mathcal{A}\nabla^{2}f_{k+1}\cdot d_{k} = \gamma_{k} \Rightarrow$$

$$d_{k} = (\mathcal{A}\nabla^{2}f_{k+1})^{-1}\gamma_{k} \approx (\nabla^{2}f_{k+1})^{-1}\gamma_{k}$$

²Fletcher, B. R., & Powell, M. J. D. (1960). A rapidly convergent descent method for minimization, (1).

$$\mathcal{A}\nabla^2 f_{k+1} = \int_0^1 \nabla^2 f(x_k + t d_k) dt, \quad \gamma_k = (\nabla f_{k+1} - \nabla f_k).$$

Fundamental Theorem of Calculus says

$$\mathcal{A}\nabla^{2}f_{k+1}\cdot d_{k} = \gamma_{k} \Rightarrow$$

$$d_{k} = (\mathcal{A}\nabla^{2}f_{k+1})^{-1}\gamma_{k} \approx (\nabla^{2}f_{k+1})^{-1}\gamma_{k}$$

Choose a metric that satisfies

The Secant Equation

$$d_k = H_{k+1}\gamma_k = H_{k+1}A\nabla^2 f_{k+1}d_k$$

Still under-determined. Least squares idea + slowly changing ²

$$\mathcal{A}\nabla^2 f_{k+1} = \int_0^1 \nabla^2 f(x_k + t d_k) dt, \quad \gamma_k = (\nabla f_{k+1} - \nabla f_k).$$

Fundamental Theorem of Calculus says

$$\mathcal{A}\nabla^{2}f_{k+1}\cdot d_{k} = \gamma_{k} \Rightarrow$$

$$d_{k} = (\mathcal{A}\nabla^{2}f_{k+1})^{-1}\gamma_{k} \approx (\nabla^{2}f_{k+1})^{-1}\gamma_{k}$$

Choose a metric that satisfies

The Secant Equation

$$d_k = H_{k+1}\gamma_k = H_{k+1}A\nabla^2 f_{k+1}d_k$$

Still under-determined. Least squares idea + slowly changing ²

²Fletcher, B. R., & Powell, M. J. D. (1960). A rapidly convergent descent method for minimization, (1).

$$\mathcal{A}\nabla^2 f_{k+1} = \int_0^1 \nabla^2 f(x_k + t d_k) dt, \quad \gamma_k = (\nabla f_{k+1} - \nabla f_k).$$

Fundamental Theorem of Calculus says

$$\mathcal{A}\nabla^{2}f_{k+1}\cdot d_{k} = \gamma_{k} \Rightarrow$$

$$d_{k} = (\mathcal{A}\nabla^{2}f_{k+1})^{-1}\gamma_{k} \approx (\nabla^{2}f_{k+1})^{-1}\gamma_{k}$$

Choose a metric that satisfies

The Secant Equation

$$d_k = H_{k+1}\gamma_k = H_{k+1}\mathcal{A}\nabla^2 f_{k+1}d_k$$

Still under-determined. Least squares idea + slowly changing ²

²Fletcher, B. R., & Powell, M. J. D. (1960). A rapidly convergent descent method for minimization, (1).

$$\begin{aligned} \min_{H_{k+1}} & & \|H_{k+1} - H_k\|_{Frobenius(W)}^2 = \|E_k\|_{Frobenius(W)}^2 = \sum_{i,j} E_{i,j}^2 W_{i,j}^2 \\ \text{s.t.} & & H_{k+1} \mathcal{A} \nabla^2 f_{k+1} d_k = d_k, & H_{k+1} = H_{k+1}^T. \end{aligned}$$

▶ Iteratively updating metric; changes "slowly" ³

Goldfarb, D. (1970). A Family of Variable-Metric Methods Derived by Variational Means. Mathematics of Computation, 24(109), 23.

$$\begin{aligned} \min_{H_{k+1}} & & \|H_{k+1} - H_k\|_{Frobenius(W)}^2 = \|E_k\|_{Frobenius(W)}^2 = \sum_{i,j} E_{i,j}^2 W_{i,j}^2 \\ \text{s.t.} & & H_{k+1} \mathcal{A} \nabla^2 f_{k+1} d_k = d_k, & H_{k+1} = H_{k+1}^T. \end{aligned}$$

- ▶ Iteratively updating metric; changes "slowly" ³
- ► Secant equation Must be symmetric

 $^{^3}$ Goldfarb, D. (1970). A Family of Variable-Metric Methods Derived by Variational Means. Mathematics of Computation, 24(109), 23.

$$\min_{H_{k+1}} \quad \|H_{k+1} - H_k\|_{Frobenius(W)}^2 = \|E_k\|_{Frobenius(W)}^2 = \sum_{i,j} E_{i,j}^2 W_{i,j}^2$$
s.t.
$$H_{k+1} \mathcal{A} \nabla^2 f_{k+1} d_k = d_k, \qquad H_{k+1} = H_{k+1}^T.$$

- ▶ Iteratively updating metric; changes "slowly" ³
- ► Secant equation Must be symmetric

BFGS by choosing $W = A\nabla^2 f_{k+1}$,

$$H_{k+1} = \frac{d_k d_k^T}{d_k^T \gamma_k} + \left(I - \frac{d_k \gamma_k^T}{d_k^T \gamma_k}\right) H_k \left(I - \frac{\gamma_k d_k^T}{d_k^T \gamma_k}\right).$$

 $^{^3}$ Goldfarb, D. (1970). A Family of Variable-Metric Methods Derived by Variational Means. Mathematics of Computation, 24(109), 23.

$$\min_{H_{k+1}} \quad \|H_{k+1} - H_k\|_{Frobenius(W)}^2 = \|E_k\|_{Frobenius(W)}^2 = \sum_{i,j} E_{i,j}^2 W_{i,j}^2$$
s.t.
$$H_{k+1} \mathcal{A} \nabla^2 f_{k+1} d_k = d_k, \qquad H_{k+1} = H_{k+1}^T.$$

- ▶ Iteratively updating metric; changes "slowly" ³
- Secant equation Must be symmetric

BFGS by choosing $W = A\nabla^2 f_{k+1}$,

$$H_{k+1} = \frac{d_k d_k^T}{d_k^T \gamma_k} + \left(I - \frac{d_k \gamma_k^T}{d_k^T \gamma_k}\right) H_k \left(I - \frac{\gamma_k d_k^T}{d_k^T \gamma_k}\right).$$

 $^{^3}$ Goldfarb, D. (1970). A Family of Variable-Metric Methods Derived by Variational Means. Mathematics of Computation, 24(109), 23.

$$\min_{H_{k+1}} \quad \|H_{k+1} - H_k\|_{Frobenius(W)}^2 = \|E_k\|_{Frobenius(W)}^2 = \sum_{i,j} E_{i,j}^2 W_{i,j}^2$$
s.t.
$$H_{k+1} \mathcal{A} \nabla^2 f_{k+1} d_k = d_k, \qquad H_{k+1} = H_{k+1}^T.$$

- ► Iteratively updating metric; changes "slowly" ³
- ► Secant equation Must be symmetric

BFGS by choosing
$$W = \mathcal{A}\nabla^2 f_{k+1}$$
, $H_{k+1} = \operatorname{proj}_{d_k}^{\mathcal{A}\nabla^2 f_k} + \left(I - \operatorname{proj}_{d_k}^{\mathcal{A}\nabla^2 f_k} \mathcal{A}\nabla^2 f_k\right) H_k \left(I - \mathcal{A}\nabla^2 f_k \operatorname{proj}_{d_k}^{\mathcal{A}\nabla^2 f_k}\right)$. $\operatorname{proj}_{d}^{\mathcal{A}} A := d(d^T A d)^{-1} d^T A = \operatorname{oblique} A - \operatorname{projection} \operatorname{onto} \operatorname{span}(d)$.

³Goldfarb, D. (1970). A Family of Variable-Metric Methods Derived by Variational Means. Mathematics of Computation, 24(109), 23.

$$\min_{H_{k+1}} \quad \|H_{k+1} - H_k\|_{Frobenius(W)}^2 = \|E_k\|_{Frobenius(W)}^2 = \sum_{i,j} E_{i,j}^2 W_{i,j}^2$$
s.t.
$$H_{k+1} \mathcal{A} \nabla^2 f_{k+1} d_k = d_k, \qquad H_{k+1} = H_{k+1}^T.$$

- ► Iteratively updating metric; changes "slowly" ³
- Secant equation Must be symmetric

BFGS by choosing
$$W = A\nabla^2 f_{k+1}$$
, $H_{k+1} = \operatorname{proj}_{d_k}^{A\nabla^2 f_k} + \left(I - \operatorname{proj}_{d_k}^{A\nabla^2 f_k} A\nabla^2 f_k\right) H_k \left(I - A\nabla^2 f_k \operatorname{proj}_{d_k}^{A\nabla^2 f_k}\right)$. $\operatorname{proj}_{d}^{A} A := d(d^T A d)^{-1} d^T A = \text{oblique } A - \text{projection onto span}(d)$.

³Goldfarb, D. (1970). A Family of Variable-Metric Methods Derived by Variational Means. Mathematics of Computation. 24(109). 23.

$$\min_{H_{k+1}} \quad \|H_{k+1} - H_k\|_{Frobenius(W)}^2 = \|E_k\|_{Frobenius(W)}^2 = \sum_{i,j} E_{i,j}^2 W_{i,j}^2$$
s.t.
$$H_{k+1} \mathcal{A} \nabla^2 f_{k+1} d_k = d_k, \qquad H_{k+1} = H_{k+1}^T.$$

- ► Iteratively updating metric; changes "slowly" ³
- ► Secant equation Must be symmetric

BFGS by choosing $W = \mathcal{A}\nabla^2 f_{k+1}$, $H_{k+1} = \operatorname{proj}_{d_k}^{\mathcal{A}\nabla^2 f_k} + \left(I - \operatorname{proj}_{d_k}^{\mathcal{A}\nabla^2 f_k} \mathcal{A}\nabla^2 f_k\right) H_k \left(I - \mathcal{A}\nabla^2 f_k \operatorname{proj}_{d_k}^{\mathcal{A}\nabla^2 f_k}\right)$. $\operatorname{proj}_{d}^{\mathcal{A}} A := d(d^T A d)^{-1} d^T A = \text{oblique } A - \text{projection onto span}(d)$.

³Goldfarb, D. (1970). A Family of Variable-Metric Methods Derived by Variational Means. Mathematics of Computation, 24(109), 23.

$$\begin{aligned} &\min_{H_{k+1}} & & \|H_{k+1} - H_k\|_{Frobenius(W)}^2 \\ &\text{s.t.} & & H_{k+1} \nabla^2 f_{k+1} D_k = D_k, & H_{k+1} = H_{k+1}^T. \end{aligned}$$

- ► Iteratively updating metric; changes "slowly"
- Same action of $\nabla^2 f_{k+1}^{-1}$ and H_{k+1} over $\nabla^2 f_{k+1} D_k$ where $D_k \in \mathbb{R}^{n \times p}, p << n$ is a tall thin matrix . Must be symmetric

$$H_{k+1} = H_k + W^{-1} \operatorname{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} (I - H_k \nabla^2 f_{k+1}) \left(I - \operatorname{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} W^{-1} \right)$$

$$+ (I - H_k \nabla^2 f_{k+1}) \operatorname{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} W^{-1}$$

$$\begin{aligned} \min_{H_{k+1}} & & \|H_{k+1} - H_k\|_{Frobenius(W)}^2 \\ \text{s.t.} & & H_{k+1} \nabla^2 f_{k+1} D_k = D_k, & H_{k+1} = H_{k+1}^T. \end{aligned}$$

- Iteratively updating metric; changes "slowly"
- ▶ Same action of $\nabla^2 f_{k+1}^{-1}$ and H_{k+1} over $\nabla^2 f_{k+1} D_k$ where $D_k \in \mathbb{R}^{n \times p}$, $p \ll n$ is a tall thin matrix. Must be symmetric

$$\begin{split} H_{k+1} &= H_k + W^{-1} \mathsf{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} (I - H_k \nabla^2 f_{k+1}) \left(I - \mathsf{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} W^{-1} \right) \\ &+ (I - H_k \nabla^2 f_{k+1}) \mathsf{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} W^{-1} \end{split}$$

 $\operatorname{proj}_{D}^{A}A := D(D^{T}AD)^{-1}D^{T}A.$

$$\begin{aligned} \min_{H_{k+1}} & & \|H_{k+1} - H_k\|_{Frobenius(W)}^2 \\ \text{s.t.} & & H_{k+1} \nabla^2 f_{k+1} D_k = D_k, & H_{k+1} = H_{k+1}^T. \end{aligned}$$

- ► Iteratively updating metric; changes "slowly"
- Same action of $\nabla^2 f_{k+1}^{-1}$ and H_{k+1} over $\nabla^2 f_{k+1} D_k$ where $D_k \in \mathbb{R}^{n \times p}, p << n$ is a tall thin matrix . Must be symmetric

$$\begin{split} H_{k+1} &= H_k + W^{-1} \mathrm{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} (I - H_k \nabla^2 f_{k+1}) \left(I - \mathrm{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} W^{-1} \right) \\ &+ (I - H_k \nabla^2 f_{k+1}) \mathrm{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} W^{-1} \end{split}$$

$$\operatorname{proj}_D^A A := D(D^T A D)^{-1} D^T A.$$

Reverse Automatic Differentiation $\nabla^2 f_{k+1}(D_k)$ costs O(p)!

$$\begin{aligned} \min_{H_{k+1}} & & \|H_{k+1} - H_k\|_{Frobenius(W)}^2 \\ \text{s.t.} & & H_{k+1} \nabla^2 f_{k+1} D_k = D_k, & H_{k+1} = H_{k+1}^T. \end{aligned}$$

- ► Iteratively updating metric; changes "slowly"
- Same action of $\nabla^2 f_{k+1}^{-1}$ and H_{k+1} over $\nabla^2 f_{k+1} D_k$ where $D_k \in \mathbb{R}^{n \times p}$, p << n is a tall thin matrix . Must be symmetric

$$\begin{split} H_{k+1} &= H_k + W^{-1} \mathrm{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} (I - H_k \nabla^2 f_{k+1}) \left(I - \mathrm{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} W^{-1} \right) \\ &+ (I - H_k \nabla^2 f_{k+1}) \mathrm{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} W^{-1} \end{split}$$

$$\operatorname{proj}_{D}^{A}A := D(D^{T}AD)^{-1}D^{T}A.$$

Reverse Automatic Differentiation $\nabla^2 f_{k+1}(D_k)$ costs O(p)!

A small rank-3p update.

min_{$$H_{k+1}$$} $\|H_{k+1} - H_k\|_{Frobenius(W)}^2$
s.t. $H_{k+1} \nabla^2 f_{k+1} D_k = D_k$, $H_{k+1} = H_{k+1}^T$.

- ► Iteratively updating metric; changes "slowly"
- Same action of $\nabla^2 f_{k+1}^{-1}$ and H_{k+1} over $\nabla^2 f_{k+1} D_k$ where $D_k \in \mathbb{R}^{n \times p}$, p << n is a tall thin matrix . Must be symmetric

$$\begin{split} H_{k+1} &= H_k + W^{-1} \mathrm{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} (I - H_k \nabla^2 f_{k+1}) \left(I - \mathrm{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} W^{-1} \right) \\ &+ (I - H_k \nabla^2 f_{k+1}) \mathrm{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} W^{-1} \end{split}$$

$$\operatorname{proj}_D^A A := D(D^T A D)^{-1} D^T A.$$

Reverse Automatic Differentiation $\nabla^2 f_{k+1}(D_k)$ costs O(p)!

A small rank-3p update. W = ? and $D_k = ?$

$$\begin{aligned} \min_{H_{k+1}} & & \|H_{k+1} - H_k\|_{Frobenius(W)}^2 \\ \text{s.t.} & & H_{k+1} \nabla^2 f_{k+1} D_k = D_k, & H_{k+1} = H_{k+1}^T. \end{aligned}$$

- ► Iteratively updating metric; changes "slowly"
- Same action of $\nabla^2 f_{k+1}^{-1}$ and H_{k+1} over $\nabla^2 f_{k+1} D_k$ where $D_k \in \mathbb{R}^{n \times p}$, p << n is a tall thin matrix . Must be symmetric

$$\begin{split} H_{k+1} &= H_k + W^{-1} \text{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} (I - H_k \nabla^2 f_{k+1}) \left(I - \text{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} W^{-1} \right) \\ &+ (I - H_k \nabla^2 f_{k+1}) \text{proj}_{\nabla^2 f_{k+1} D_k}^{W^{-1}} W^{-1} \end{split}$$

$$\text{proj}_{D}^{A}A := D(D^{T}AD)^{-1}D^{T}A.$$

Reverse Automatic Differentiation $\nabla^2 f_{k+1}(D_k)$ costs O(p)! A small rank-3p update. W = ? and $D_k = ?$

7/19

Build metric H that captures $D = [d_1, \dots, d_p]$ directions of positive curvature

Build metric H that captures $D = [d_1, \dots, d_p]$ directions of positive curvature

Build metric H that captures $D = [d_1, ..., d_p]$ directions of positive curvature

Build metric H that captures $D = [d_1, \dots, d_p]$ directions of positive curvature

Choosing D_k and W

Analogous to BFGS by choosing $W = \nabla^2 f_k$

quNac: quasi-Newton action constrained

$$H_{k+1} = \operatorname{proj}_{D_k}^{\nabla^2 f_{k+1}} + (I - \operatorname{proj}_{D_k}^{\nabla^2 f_{k+1}} \nabla^2 f_{k+1}) H_k (I - \nabla^2 f_{k+1} \operatorname{proj}_{D_k}^{\nabla^2 f_{k+1}}).$$

- ► A rank-2p update
- ▶ Only need to calculate the p columns $\nabla^2 f_{k+1}(D_k)$.

Choose D_k according to

- ► Hereditary property ⇒ for local convergence
- ▶ Descent property ⇒ for Global stability

If
$$[D_1, \dots, D_k] \in \mathbb{R}^{n \times n}$$
 and $D_i^T Q D_j = 0$ for $1 \leq j < i \leq k$ then

$$H_{k+1}QD_i = D_i$$
, for $i = 1, \dots, k$.

Lemma: $H_{k+1}Q = I \Rightarrow H_{k+1} = Q^{-1}$.

If $[D_1, \dots, D_k] \in \mathbb{R}^{n \times n}$ and $D_i^T Q D_j = 0$ for $1 \leq j < i \leq k$ then

$$H_{k+1}QD_i = D_i$$
, for $i = 1, \dots, k$.

Lemma: $H_{k+1}Q = I \Rightarrow H_{k+1} = Q^{-1}$.

proof:

$$H_{k+1} = H_k + E_k$$

= $H_i + E_i + \dots + E_k$.

If $D_i^T Q D_j = 0$ for j < i then

$$\left(\operatorname{proj}_{D_{j}}^{Q}QD_{i}=0\right)\Rightarrow\left(E_{j}QD_{i}=0\right).$$

$$\Rightarrow H_{k+1}QD_{i}=H_{i+1}QD_{i}=D_{i}. \quad \Box$$

Choose D_k conjugate to $\nabla^2 f_{k+1}$ as an approximation!

If
$$[D_1, \dots, D_k] \in \mathbb{R}^{n \times n}$$
 and $D_i^{\mathsf{T}} Q D_j = 0$ for $1 \leq j < i \leq k$ then

$$H_{k+1}QD_i = D_i$$
, for $i = 1, \ldots, k$.

Lemma: $H_{k+1}Q = I \Rightarrow H_{k+1} = Q^{-1}$.

proof:

$$H_{k+1} = H_k + E_k$$

= $H_i + E_i + \dots + E_k$.

If
$$[D_1, \dots, D_k] \in \mathbb{R}^{n \times n}$$
 and $D_i^{\mathsf{T}} Q D_j = 0$ for $1 \leq j < i \leq k$ then

$$H_{k+1}QD_i = D_i$$
, for $i = 1, \ldots, k$.

Lemma: $H_{k+1}Q = I \Rightarrow H_{k+1} = Q^{-1}$.

proof:

$$H_{k+1} = H_k + E_k$$

= $H_i + E_i + \dots + E_k$.

If $D_i^T Q D_j = 0$ for j < i then

If
$$[D_1, \dots, D_k] \in \mathbb{R}^{n \times n}$$
 and $D_i^{\mathsf{T}} Q D_j = 0$ for $1 \leq j < i \leq k$ then

$$H_{k+1}QD_i = D_i$$
, for $i = 1, \ldots, k$.

Lemma: $H_{k+1}Q = I \Rightarrow H_{k+1} = Q^{-1}$.

proof:

$$H_{k+1} = H_k + E_k$$

= $H_i + E_i + \dots + E_k$.

If $D_i^T Q D_j = 0$ for j < i then

$$\left(\operatorname{proj}_{D_{j}}^{Q}QD_{i}=0\right)\Rightarrow\left(E_{j}QD_{i}=0\right).$$

$$\Rightarrow H_{k+1}QD_{i}=H_{i+1}QD_{i}=D_{i}.\quad \Box$$

Quadratic Hereditary $\nabla^2 f(x) \equiv Q$ property

If $[D_1, \dots, D_k] \in \mathbb{R}^{n \times n}$ and $D_i^T Q D_j = 0$ for $1 \le j < i \le k$ then

$$H_{k+1}QD_i = D_i$$
, for $i = 1, \ldots, k$.

Lemma: $H_{k+1}Q = I \Rightarrow H_{k+1} = Q^{-1}$.

proof:

$$H_{k+1} = H_k + E_k$$

= $H_i + E_i + \dots + E_k$.

If $D_i^T Q D_j = 0$ for j < i then

$$\left(\operatorname{proj}_{D_{j}}^{Q}QD_{i}=0\right)\Rightarrow\left(E_{j}QD_{i}=0\right).$$

$$\Rightarrow H_{k+1}QD_{i}=H_{i+1}QD_{i}=D_{i}.\quad \Box$$

Choose D_k conjugate to $\nabla^2 f_{k+1}$ as an approximation!

Quadratic Hereditary $\nabla^2 f(x) \equiv Q$ property

If $[D_1, \dots, D_k] \in \mathbb{R}^{n \times n}$ and $D_i^T Q D_j = 0$ for $1 \leq j < i \leq k$ then

$$H_{k+1}QD_i = D_i$$
, for $i = 1, \ldots, k$.

Lemma: $H_{k+1}Q = I \Rightarrow H_{k+1} = Q^{-1}$.

proof:

$$H_{k+1} = H_k + E_k$$

= $H_i + E_i + \dots + E_k$.

If $D_i^T Q D_j = 0$ for j < i then

$$\left(\operatorname{proj}_{D_{j}}^{Q}QD_{i}=0\right)\Rightarrow\left(E_{j}QD_{i}=0\right).$$

$$\Rightarrow H_{k+1}QD_{i}=H_{i+1}QD_{i}=D_{i}.\quad \Box$$

Choose D_k conjugate to $\nabla^2 f_{k+1}$ as an approximation!

Quadratic Hereditary $\nabla^2 f(x) \equiv Q$ property

If $[D_1, \dots, D_k] \in \mathbb{R}^{n \times n}$ and $D_i^T Q W^{-1} Q D_j = 0$ for $1 \le j < i \le k$ then

$$H_{k+1}QD_i = D_i$$
, for $i = 1, \ldots, k$.

Lemma: $H_{k+1}Q = I \Rightarrow H_{k+1} = Q^{-1}$.

proof:

$$H_{k+1} = H_k + E_k$$

= $H_i + E_i + \dots + E_k$.

If $D_i^T Q W^{-1} Q D_j = 0$ for j < i then

$$\left(\operatorname{proj}_{QD_{j}}^{W}W^{-1}QD_{i}=0\right)\Rightarrow\left(E_{j}QD_{i}=0\right)$$
$$\Rightarrow H_{k+1}QD_{i}=H_{i+1}QD_{i}=D_{i}.\quad \Box$$

Choose D_k conjugate to $\nabla^2 f_{k+1}$ as an approximation!

Descent and Positive Definiteness

Descent: $d_k = -H_k \nabla f_k$ is less then 90^o with $-\nabla f_k$.

Sufficient Descent condition

If
$$H_k \succ 0$$
 then $-d_k^T \nabla f_k = \nabla f_k^T H_k \nabla f_k > 0$.

Classic quasi-Newton

If
$$H_k \succ 0$$
 and $\gamma_k^T d_k = d_k^T \mathcal{A} \nabla^2 f_{k+1} d_k > 0$ then $H_{k+1} \succ 0$.

Descent and Positive Definiteness

Descent: $d_k = -H_k \nabla f_k$ is less then 90° with $-\nabla f_k$.

Sufficient Descent condition

If $H_k \succ 0$ then $-d_k^T \nabla f_k = \nabla f_k^T H_k \nabla f_k > 0$.

Classic quasi-Newton

If $H_k \succ 0$ and $\gamma_k^T d_k = d_k^T \mathcal{A} \nabla^2 f_{k+1} d_k > 0$ then $H_{k+1} \succ 0$.

quNac Descent condition

If $H_k \succ 0$ and D_k columns are directions of positive curvature $D_k^T \nabla^2 f_{k+1} D_k \succ 0$ then $H_{k+1} \succ 0$.

Descent and Positive Definiteness

Descent: $d_k = -H_k \nabla f_k$ is less then 90° with $-\nabla f_k$.

Sufficient Descent condition

If $H_k \succ 0$ then $-d_k^T \nabla f_k = \nabla f_k^T H_k \nabla f_k > 0$.

Classic quasi-Newton

If $H_k \succ 0$ and $\gamma_k^T d_k = d_k^T \mathcal{A} \nabla^2 f_{k+1} d_k > 0$ then $H_{k+1} \succ 0$.

quNac Descent condition

If $H_k \succ 0$ and D_k columns are directions of positive curvature $D_k^T \nabla^2 f_{k+1} D_k \succ 0$ then $H_{k+1} \succ 0$.

- ► Call Conjugate gradients on $\nabla^2 f_{k+1} d = -\nabla f_{k+1}$ to get D_k directions of positive curvature
- ▶ $\operatorname{proj}_{D_k}^{\nabla^2 f_{k+1}} = D_k (D_k^T \nabla^2 f_{k+1} D_k)^{-1} D_k^T$ is $O(p^2)$ because $D_k^T \nabla^2 f_{k+1} D_k = \text{diagonal}!$

- ▶ Call Conjugate gradients on $\nabla^2 f_{k+1} d = -\nabla f_{k+1}$ to get D_k directions of positive curvature
- ▶ $\operatorname{proj}_{D_k}^{\nabla^2 f_{k+1}} = D_k (D_k^T \nabla^2 f_{k+1} D_k)^{-1} D_k^T$ is $O(p^2)$ because $D_k^T \nabla^2 f_{k+1} D_k$ =diagonal!
- ▶ H_{k+1} is positive definite and $H_{k+1}\nabla^2 f_{k+1}D_k = D_k$, thus $H_{k+1}\nabla^2 f_{k+1}$ has concentrated Eigen-values \Rightarrow Good preconditioner CG!

- ▶ Call Conjugate gradients on $\nabla^2 f_{k+1} d = -\nabla f_{k+1}$ to get D_k directions of positive curvature
- ▶ $\operatorname{proj}_{D_k}^{\nabla^2 f_{k+1}} = D_k (D_k^T \nabla^2 f_{k+1} D_k)^{-1} D_k^T$ is $O(p^2)$ because $D_k^T \nabla^2 f_{k+1} D_k$ =diagonal!
- ▶ H_{k+1} is positive definite and $H_{k+1}\nabla^2 f_{k+1}D_k = D_k$, thus $H_{k+1}\nabla^2 f_{k+1}$ has concentrated Eigen-values \Rightarrow Good preconditioner CG!
- ▶ Use $H_k \approx \nabla^2 f_{k+1}$ as a preconditioner in a Newton-CG framework!

- ▶ Call Conjugate gradients on $\nabla^2 f_{k+1} d = -\nabla f_{k+1}$ to get D_k directions of positive curvature
- ▶ $\operatorname{proj}_{D_k}^{\nabla^2 f_{k+1}} = D_k (D_k^T \nabla^2 f_{k+1} D_k)^{-1} D_k^T$ is $O(p^2)$ because $D_k^T \nabla^2 f_{k+1} D_k$ =diagonal!
- ▶ H_{k+1} is positive definite and $H_{k+1}\nabla^2 f_{k+1}D_k = D_k$, thus $H_{k+1}\nabla^2 f_{k+1}$ has concentrated Eigen-values \Rightarrow Good preconditioner CG!
- ▶ Use $H_k \approx \nabla^2 f_{k+1}$ as a preconditioner in a Newton-CG framework!

Implementing a Preconditioned Newton-CG with new metric

quNac quasi-Newton action Constrained

 $\qquad \qquad H_0, x_0 \in \mathbb{R}, \ k = 0$

- $\blacktriangleright \ H_0, x_0 \in \mathbb{R}, \ k = 0$
- While $|\nabla f_k|/|\nabla f_0| > \epsilon$

- ▶ $H_0, x_0 \in \mathbb{R}, k = 0$
- ▶ While $|\nabla f_k|/|\nabla f_0| > \epsilon$
 - ▶ **If** k = 0

- ▶ $H_0, x_0 \in \mathbb{R}, k = 0$
- While $|\nabla f_k|/|\nabla f_0| > \epsilon$
 - ▶ If k = 0
 - $ightharpoonup s_0 = -H_0 \nabla f_0$

- ▶ $H_0, x_0 \in \mathbb{R}, k = 0$
- While $|\nabla f_k|/|\nabla f_0| > \epsilon$
 - If k = 0

$$ightharpoonup s_0 = -H_0 \nabla f_0$$

- ▶ $H_0, x_0 \in \mathbb{R}, k = 0$
- While $|\nabla f_k|/|\nabla f_0| > \epsilon$
 - If k = 0

$$ightharpoonup s_0 = -H_0 \nabla f_0$$

- ► Else
 - \triangleright $s_0 = d_{CG}$

- ▶ $H_0, x_0 \in \mathbb{R}, k = 0$
- While $|\nabla f_k|/|\nabla f_0| > \epsilon$
 - If k = 0

$$ightharpoonup s_0 = -H_0 \nabla f_0$$

- Else
 - $ightharpoonup s_0 = d_{CG}$
- ► Select step-size *a_k*

- ▶ $H_0, x_0 \in \mathbb{R}, k = 0$
- While $|\nabla f_k|/|\nabla f_0| > \epsilon$
 - If k = 0

$$ightharpoonup s_0 = -H_0 \nabla f_0$$

Else

$$ightharpoonup s_0 = d_{CG}$$

- ► Select step-size *a_k*

- ▶ $H_0, x_0 \in \mathbb{R}, k = 0$
- While $|\nabla f_k|/|\nabla f_0| > \epsilon$
 - If k = 0

$$ightharpoonup s_0 = -H_0 \nabla f_0$$

$$ightharpoonup s_0 = d_{CG}$$

- ▶ Select step-size *a_k*
- $\triangleright x_{k+1} = x_k + a_k s_k$
- ightharpoonup Calculate d_{CG} by applying CG to preconditioned system

- ▶ $H_0, x_0 \in \mathbb{R}, k = 0$
- While $|\nabla f_k|/|\nabla f_0| > \epsilon$
 - If k = 0

$$ightharpoonup s_0 = -H_0 \nabla f_0$$

$$ightharpoonup s_0 = d_{CG}$$

- ▶ Select step-size *a_k*
- $x_{k+1} = x_k + a_k s_k$
- \blacktriangleright Calculate d_{CG} by applying CG to preconditioned system

- ▶ $H_0, x_0 \in \mathbb{R}, k = 0$
- While $|\nabla f_k|/|\nabla f_0| > \epsilon$
 - If k = 0

$$ightharpoonup s_0 = -H_0 \nabla f_0$$

$$ightharpoonup s_0 = d_{CG}$$

- ▶ Select step-size a_k
- $\triangleright x_{k+1} = x_k + a_k s_k$
- Calculate d_{CG} by applying CG to preconditioned system

 - ▶ Store conjugate directions in D and store $\nabla^2 f_{k+1}D$.

- ▶ $H_0, x_0 \in \mathbb{R}, k = 0$
- While $|\nabla f_k|/|\nabla f_0| > \epsilon$
 - If k = 0

$$ightharpoonup s_0 = -H_0 \nabla f_0$$

$$ightharpoonup s_0 = d_{CG}$$

- ► Select step-size a_k
- $x_{k+1} = x_k + a_k s_k$
- Calculate d_{CG} by applying CG to preconditioned system
 - $H_k \nabla^2 f_{k+1} d = -H_k \nabla f_{k+1}.$
 - ▶ Store conjugate directions in D and store $\nabla^2 f_{k+1}D$.
- $H_{k+1} = H_k + E_k (D, \nabla^2 f_{k+1}(D))$

- ▶ $H_0, x_0 \in \mathbb{R}, k = 0$
- While $|\nabla f_k|/|\nabla f_0| > \epsilon$
 - If k = 0

$$ightharpoonup s_0 = -H_0 \nabla f_0$$

$$ightharpoonup s_0 = d_{CG}$$

- ► Select step-size a_k
- $x_{k+1} = x_k + a_k s_k$
- Calculate d_{CG} by applying CG to preconditioned system
 - $H_k \nabla^2 f_{k+1} d = -H_k \nabla f_{k+1}.$
 - ▶ Store conjugate directions in D and store $\nabla^2 f_{k+1}D$.
- ► $H_{k+1} = H_k + E_k (D, \nabla^2 f_{k+1}(D))$

LquNac Limited quasi-Newton action Constrained

- ▶ $H_0, x_0 \in \mathbb{R}, k = 0$
- While $|\nabla f_k|/|\nabla f_0| > \epsilon$
 - If k = 0

$$ightharpoonup s_0 = -H_0 \nabla f_0$$

$$ightharpoonup s_0 = d_{CG}$$

- ► Select step-size a_k
- $x_{k+1} = x_k + a_k s_k$
- Calculate d_{CG} by applying CG to preconditioned system

 - ▶ Store conjugate directions in D and store $\nabla^2 f_{k+1}D$.

Logistic L2 Regression tests:

$$\min_{w} L_w(y,X) + \|w\|_2^2$$

$$L_w(y,X) = \sum_{i=1}^m \ln \left(1 + \exp(-y_i \langle x^i, w \rangle)\right).$$

quNac vs	BFGS
41	3
quNac vs	Newton_CG
31	12
LquNac vs	LBFGS
27	17
LquNac v	Newton_CG
14	29

Table: # fastest runs on 44 binary classifications problems from LibSVM

Logistic pseudo-Huber Regression tests:

$$\min_{w} L_{w}(y,X) + R_{\mu}(w) := \mu \sum_{i=1}^{n} \left(\sqrt{1 + x_{i}^{2}/\mu^{2}} - 1 \right).^{4}$$

quNac v	s BFGS
32	10
quNac v	s Newton_CG
37	4
LquNac v	LBFGS
18	25
LquNac v	rs Newton₋CG
24	16

Table: # fastest runs on 44 binary classifications problems from LibSVM

⁴Fountoulakis, K., & Gondzio, J. (2013). A Second-Order Method for Strongly Convex I1-regularization Problems.

Conclusion

- Framework for approximating a changing inverse Hessian.
- ► Has good properties: **Hereditary** and **Descent**.
- Variable amount of curvature information at each iteration (depends on CG error).
- Developed Newton-CG Preconditioner for smooth functions.

In the works:

- ► Full and limited memory implementations for non-convex unconstrained.
- ► How does extra flexibility help mesh into globalization strategies: Interior point, Trust region, Sequential Quadratic?
- Connections to other problems: Matrix completion?

Conclusion

- Framework for approximating a changing inverse Hessian.
- Has good properties: Hereditary and Descent.
- Variable amount of curvature information at each iteration (depends on CG error).
- Developed Newton-CG Preconditioner for smooth functions.

In the works:

- ► Full and limited memory implementations for non-convex unconstrained.
- How does extra flexibility help mesh into globalization strategies: Interior point, Trust region, Sequential Quadratic?
- Connections to other problems: Matrix completion?

References

Gower, R. M., (2014).

New quasi-Newton family through action constraints (in preparation)

Fletcher, B. R., Powell, M. J. D. (1960).

A rapidly convergent descent method for minimization.

Davidon, W. C. (1959). Variable metric method for minimization.

Goldfarb, D. (1970).

A Family of Variable-Metric Methods Derived by Variational Means. Mathematics of Computation, 24(109), 23.

Shanno, D. F. (1971).

Conditioning of Quasi-Newton Methods for Function Minimization. Mathematics of Computation, 24(111), 647656.

Underlying Matrix Optimization Problem

$$\min_{E} ||E||_{Frobenius(W)}^{2}$$
s.t. $ED = RD$

$$E = E^{T}$$

Which has a low rank-3p solution.

$$E = W^{-1}\operatorname{proj}_D^{W^{-1}}R\left(I - \operatorname{proj}_D^{W^{-1}}W^{-1}\right) + R\operatorname{proj}_D^{W^{-1}}W^{-1}.$$

This is a matrix completion problem where one knows the desired matrix is symmetric and can only observe its action on a small subspace.