

Faculty of Computer Systems & Software Engineering

Formal methods. Introduction to the Temporal Logic of Actions

Vitaliy Mezhuyev

м

History and motivation

- Why formal methods are needed?
- What is mathematical base of formal methods?
- Specification of modern computer systems needs expression of its temporal properties.
- In 1977, Amir Pnueli introduced the use of temporal logic for describing system behaviors.
- In the late 1980's, Lesly Lamport invented the Temporal Logic of Actions (TLA), a variant of Pnueli's original logic.

History and motivation

- TLA is applicable for specifying a wide class of software systems from simple programs to large distributed and concurrent systems.
- TLA is good for describing asynchronous systems
 (systems with components that do not operate in strict lock-step manner).
- TLA allows to write a precise and formal description of almost any kind of discrete system by a single formula.
- TLA uses first order logic and set theory for expressing ordinary mathematics.
- TLA expands ordinary mathematics by temporal operators (like next, always, eventually, etc.).

What we will learn in the course

- how to specify the safety properties of systems (what the system should not do - practically with no temporal logic).
- how to specify liveness properties of systems (what the system should do - with temporal logic).
- how to specify real-time properties of systems with temporal logic.
- TLA+ tools: mostly, the **TLC** model checker.
- The basic book: "Specifying Systems" of Leslie Lamport

References to TLA framework

The TLA Home Page:

http://research.microsoft.com/enus/um/people/lamport/tla/tla.html

TLA+ Tools: http://research.microsoft.com/en-us/um/people/lamport/tla/tools.html

Book of Lamport: http://research.microsoft.com/en-us/um/people/lamport/tla/book.html

The Specification in TLA+

Can be written in two formats:

- the ASCII
- the TLATEX (mathematical) notation

TLATEX	ASCII	Name
٨	\wedge	And
V	V	Or
¬	~	Not
\Rightarrow	=>	Imply
≣	<=>	Equivalence
≜	==	Is defined to equal
	[]	Box
€	\in	In
≠	#	Not equal

Introduction to TLA

- A system specification in TLA consists of ordinary mathematics linked together with temporal logic.
- To write a speciation, we need to learn have to express ordinary math with TLA.
- So lets repeat basic statements of elementary algebra, propositional logic and set theory.

M

Basic math

- Elementary algebra is the mathematics of real numbers and the operators + (addition), - (subtraction),
 * (multiplication), and / (division).
- Propositional logic is the mathematics of the two Boolean values true and false and the operators whose names are

```
    ∧ conjunction (and)
    ⇒ implication (implies)
    ∨ disjunction (or)
    ≡ equivalence (is equivalent to)
    ¬ negation (not)
```

м

Definition of the Boolean operators

- \land $F \land G$ equals TRUE iff both F and G equal TRUE.
- \vee $F \vee G$ equals TRUE iff F or G equals TRUE (or both do).
- \neg $\neg F$ equals TRUE iff F equals FALSE.
- $\Rightarrow F \Rightarrow G$ equals True iff F equals false or G equals True (or both).
- $\equiv F \equiv G$ equals true iff F and G both equal true or both equal false.

Iff means - if, and only if

м

Truth tables

Definition of the Boolean operators can be done by truth tables. For example, for the implication

F	G	$F \Rightarrow G$
TRUE	TRUE	TRUE
TRUE	FALSE	FALSE
FALSE	TRUE	TRUE
FALSE	FALSE	TRUE

M

The sense of implication.

Implication **F** => **G** means F implies G or, equivalently, if F then G.

Example:

if n is greater than 3, then it should be greater than 1, so n > 3 should imply n > 1. Therefore, the formula (n > 3) => (n > 1) is true.

For
$$n = 4$$

$$(4 > 3) => (4 > 1)$$
 is true.

For
$$n = 2$$

$$(2 > 3) => (2 > 1)$$
 is true.

For
$$n = 0$$

$$(0 > 3) => (0 > 1)$$
 is true.

м

Propositional-logic formulas

Just like formulas of algebra, formulas of propositional logic are made up of values, operators, and identifiers (variables) like **x**, which containing values.

Propositional-logic formulas use only the two values: **true** and **false** and the five Boolean operators: Λ , V, \neg , =>, and \equiv .

M

Precedence

In algebraic formulas, * has higher precedence (binds more tightly) than +, so x + y*z means x + (y*z).

Similarly, \neg has higher precedence than \land and \lor , which have higher precedence than => and \equiv , so $\neg F \land G => H$ means $((\neg F) \land G)) => H$.

Other mathematical operators like + and > have higher precedence than the operators of propositional logic, so $n>0 \Rightarrow n-1>=0$ means $(n>0) \Rightarrow (n-1>=0)$.

The rule is – always use parenthesis, if you don't remember precedence.

Sets.

- Set is a collection of elements. x ∈ S means that x is an element of S
- A set can have a finite or infinite number of elements.
- A set is completely determined by its elements. Two sets are equal if they have the same elements.
- The empty set, which has no elements, we will designate { }.
- The common operations on sets are

```
\cap intersection \cup union \subset subset \setminus set difference
```

M

Predicate Logic

Predicate logic extends propositional logic with the two quartiers

- ∀ universal quantification (for all)
- \exists existential quantification (there exists)

These allow to say that a formula is true for all the elements of a set, or for some of the elements of a set

TLATEX	ASCII	Name
А	\A	For all
3	\E	There exists

м

Formulas of Predicate Logic

The formula $\forall x \in S : F$ asserts that formula F is true for every element x in the set S.

The formula $\exists x \in S : F$ asserts that formula F is true for at least one element x in S.

Formula F is true for some x in S iff F is not false for all x, in S, i.e., if it's not the case that \neg F is true for all x in S.

$$(\exists x \in S : F) \equiv \neg(\forall x \in S : \neg F)$$

Such the formulas are called *tautologies*, meaning that it is true for all values of the identifiers S and F

Specifying behavior of a system

- To describe behavior of a system we use equations that determine how its state evolves with time, where the state consists of the values of variables.
- For example, the behavior of the earth-moon system can be described by a function F from time to states, where F(t) represents the state of the system at time t.
- State of a computer system changes in discrete steps. So, we represent the behavior of a system as a sequence of states, where a state is defined by assignment of values to variables.

An Hour Clock System

- Let's specify a simple system a digital clock that displays only the hour.
- The value of the hour changes through the values 1 through 12.
- Let the variable hr represent the clock's display. We can present a behavior of the clock as the sequence

$$[hr=11] \rightarrow [hr=12] \rightarrow [hr=1] \rightarrow [hr=2] \rightarrow \cdots$$

- where e.g. [hr = 11] is a state in which the variable hr has the value 11.
- A pair of successive states, such as [hr = 1] -> [hr = 2], we will call a step.

An Hour Clock – initial predicate

- To specify the hour clock, we describe all its possible behaviors.
- We write an initial predicate that species the initial values of hr, and a next-state relation that species how the value of hr can change in any step.
- Initially, hr can have any value from 1 to 12. Lets fix it in initial predicate HCini

$$HCini \triangleq hr \in \{1, \dots, 12\}$$

The symbol ≜ means is defined HCini to equal.

Note, in ASCII the symbol $\stackrel{\triangle}{=}$ is represented by ==

An Hour Clock – next state predicate

- The next-state predicate **HCnxt** is a formula expressing the relation between the values of **hr** in the previous (old) state and the next (new) state of a system.
- Let hr represent the value of hr in the old state and hr' represent its value in the new state.
- The symbol 'in hr' is read prime.
- The next-state relation is that hr 'equals hr+1 except if hr equals 12, in which case hr 'should equal 1.

An Hour Clock - next state predicate

 Using typical If/Then/Else constructs, we can define HCnxt to be the next-state relation

$$HCnxt \triangleq hr' = \text{if } hr \neq 12 \text{ Then } hr + 1 \text{ else } 1$$

- HCnxt is an ordinary mathematical formula, except that it contains primed and unprimed variables. Such a formula is called an action.
- An action formula (HCnxt) can be true or false of a step.
- When an HCnxt step occurs, we can say that action HCnxt is executed.

An Hour Clock - full specification

- The idea is to specify a system by single formula, combining asserts that (1) its initial state satisfies
 HCini, and that (2) each of its steps satisfies HCnxt.
- To express (2) we will use the temporal-logic operator
 pronounced box).
- HCini Λ □ HCnxt is true of a behavior, if the initial state satisfies HCini and every step satisfies HCnxt.

An Hour Clock – stuttering steps

- Lets the display shows not only the current hour but also temperature. The state of the clock is described by two variables: hr, representing the hour, and tmp, representing the temperature.
- The example of behavior of the system is

$$\begin{bmatrix} hr & = 11 \\ tmp & = 23.5 \end{bmatrix} \rightarrow \begin{bmatrix} hr & = 12 \\ tmp & = 23.5 \end{bmatrix} \rightarrow \begin{bmatrix} hr & = 12 \\ tmp & = 23.4 \end{bmatrix} \rightarrow \begin{bmatrix} hr & = 12 \\ tmp & = 23.3 \end{bmatrix} \rightarrow \begin{bmatrix} hr & = 1 \\ tmp & = 23.3 \end{bmatrix} \rightarrow \cdots$$

 In the second and third steps, tmp changes but hr remains the same.

An Hour Clock – stuttering steps

- Thus, the formula HCini ∧ □ HCnxt does not describe the measuring temperature clock behavior.
- A formula that describes it must allow steps that leave hr unchanged, i.e. hr` = hr steps. These are called stuttering steps.
- A specification of the measuring temperature hour clock should allow both **HCnxt** steps and stuttering steps, i.e.

HCnxt V (hr' = hr)

An Hour Clock – stuttering steps

- Lets adopt HCini Λ □ HCnxt, we will have HCini Λ (□ HCnxt V (hr` = hr))
- Or, in TLA syntax we need write
 HCini ∧ □[HCnxt]_{hr}

This formula allows stuttering steps

$$[hr=10] \rightarrow [hr=11] \rightarrow [hr=11] \rightarrow [hr=11] \rightarrow \cdots$$

 For example, it will allow us to add the min variable to specification of Hour Clock system. It will change from 1..60, while hr remains unchanged.

A Closer Look at the Specification

- A state is defined by assignment of values to variables, as e.g. [hr = 11]
- A behavior is a (infinite or finite) sequence of states, e.g.:

$$[hr=11] \rightarrow [hr=12] \rightarrow [hr=1] \rightarrow [hr=2] \rightarrow \cdots$$

Specification of the Hour clock is a temporal formula HC.

$$HC \triangleq HCini \wedge \Box [HCnxt]_{hr}$$

 A temporal formula is an assertion about behavior. Behavior satisfies HC iff this formula is true in all states of Hour Clock.

×

A Closer Look at the Speciation

- Thus hr has a value from 1 through 12 in every state of any behavior satisfying the specification HC.
- Formula HCini asserts that hr has value from 1 through 12, and □HCini asserts that HCini is always true. Or in other words HC implies □HCini for any behavior.
- A temporal formula satisfied by every behavior is called a theorem, so HC => □ HCini is a theorem.

THEOREM $HC \Rightarrow \Box HCini$

Comparison of ASCII and TLATEX (HourClock.tla)

------ MODULE HourClock -----EXTENDS Naturals
VARIABLE hr
HCini == hr \in (1 .. 12)

HCnxt == hr' = IF hr # 12 THEN hr + 1 ELSE 1

HC == HCini /\ [][HCnxt]_hr

THEOREM HC => [] HCini

———— MODULE HourClock ————

EXTENDS Naturals

VARIABLE hr

$$HCini \stackrel{\triangle}{=} hr \in (1 \dots 12)$$

$$HCnxt \triangleq hr' = \text{if } hr \neq 12 \text{ Then } hr + 1 \text{ else } 1$$

$$HC \triangleq HCini \wedge \Box [HCnxt]_{hr}$$

THEOREM $HC \Rightarrow \Box HCini$

File of configuration - HourClock.cfg

SPECIFICATION HC

* This statement tells TLC that HC is the specification that it * should check.

INVARIANT HCini

- * This statement tells TLC to check that formula HCini is an
- * invariant of the specification--in other words, that the
- * specification implies []HCini.

Using TLA ToolBox

TLA ToolBox allows to specify behaviour by initial predicate (HCini) and next state relation (HCNext).

м

Using EXTENDS

The specification of the Hour Clock is the definition of formula HC, which using the operators .. and +.

To use them we need include the module **Naturals** by the special keyword **EXTENDS**

TLC asserts that the formula HC follows logically from the definitions in this module, the definitions in the Naturals module, and also the general rules of TLA.

r,

An Alternative Specification

The Naturals module also defines the modulus operator %. The formula i % n, which mathematicians write i mod n, is the remainder when i is divided by n.

$$HCnxt2 \triangleq hr' = (hr \% 12) + 1$$

$$HC2 \triangleq HCini \wedge \Box [HCnxt2]_{hr}$$

Formulas HC and HC2 are equivalent. In other words, HC <=> HC2 is a theorem.

An Alternative Specification - HourClock2.tla

------ MODULE HourClock2 ------

EXTENDS HourClock

HCnxt2 == hr' = (hr % 12) + 1 HC2 == HCini ∧ [][HCnxt2]_hr

THEOREM HC <=> HC2

Note, using Extends allows us to make composition of specifications

w

An Alternative Speciation - HourClock2.cfg

SPECIFICATION HC

* This statement tells TLC that it is to take formula HC as * the specification it is checking.

PROPERTY HC2

* This statement tells TLC to check that the specification * implies the property HC2.

* (In TLA, a specification is also a property.)

Thank you for your attention! Please ask questions

Questions for control

- 1. What is TLA and why TLA is needed?
- 2. For what kind of systems TLA is good?
- 3. What is the basic math inside TLA?
- 4. Explain the implication operation.
- 5. What is tautology?
- 6. How we can specify behavior of a system?
- 7. What is a state of a system?
- 8. What is a step?
- 9. What is initial predicate in specification?
- 10. What is next-state predicate?
- 11. How to link the previous and the next state of a system?
- 12. What is an action?
- 13. What means operator □ (box)?
- 14. Explain formula HCini ∧ □ HCnxt
- 15. What is stuttering steps? Why we need specify it?
- 16. Explain formula HCini ∧ □[HCnxt]_{hr.}
- 17. What is a theorem?