Bryan Ngo

Stability

Feedback

Least Square

EECS 16B CSM

Bryan Ngo

UC Berkeley

2020-10-25

Bryan Ngo

Stability

Feedback

Least Squares

Stability

Continuous

EECS 16B CSM

Bryan Ngo

Stability

Feedback

Least Square

Discrete

EECS 16B CSM

Bryan Ng

Stability

Feedback

Least Squares

Bryan Ngo

Stability

Feedback

Least Squares

Feedback

Open-Loop

EECS 16B CSM

Bryan Ngo

Stability

Feedback

Least Squar

$$x[t+1] = Ax[t] + Bu[t]$$
(1)

- define a certain range of use
- simpler
- no restraints apart from stability

Closed-Loop

EECS 16B CSM

Bryan Ng

Stabilit

Feedback

Least Square

$$\boldsymbol{u}[t] = \begin{bmatrix} k_1 & k_2 & \cdots & k_n \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \\ \vdots \\ x_n[t] \end{bmatrix}$$

$$(2)$$

$$x[t+1] = Ax[t] + BKx[t] = (A+BK)x[t]$$
(3)

- adaptable to a wide range of use
- more complex
- self-correcting
- requires more constraints

Controller Canonical Form

EECS 16B CSM

Bryan Ng

Stability

Feedback

Least Squares

$$\boldsymbol{x}[t+1] = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n \end{bmatrix} \boldsymbol{x}[t] + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \boldsymbol{u}[t]$$
(4)

$$\det(\mathbf{A} + \mathbf{B}\mathbf{K} - \lambda \mathbf{I}) = \lambda^n - \sum_{i=1}^n (a_i + k_i)\lambda^i$$
(5)

Bryan Ngo

Stability

Feedback

Least Squares

Least Squares

Quick Review

EECS 16B CSM

Bryan Ng

Stability

Feedbac

Least Squares

$$\mathbf{A}\mathbf{x} = \mathbf{b} \implies \hat{\mathbf{x}} \approx ([\mathbf{A}]^{\mathsf{T}}\mathbf{A})^{-1} [\mathbf{A}]^{\mathsf{T}}\mathbf{b}$$
 (6)

lacksquare we want to minimize the error vector $e=b-A\hat{x}$