

Practice: Value Functions and Bellman Equations

TOTAL POINTS 10

1.	A policy is a function which maps to	1 point		
	Actions to probability distributions over values.			
	States to actions.			
	Actions to probabilities.			
	○ States to values.			
	States to probability distributions over actions.			
2.	The term "backup" most closely resembles the term in meaning.	1 point		
	○ Value			
	Update			
	O Diagram			
3.	At least one deterministic optimal policy exists in every Markov decision process.	1 point		
	○ True			
	○ False			
4.	The optimal state-value function:	1 point		
	Is not guaranteed to be unique, even in finite Markov decision processes.			
	Is unique in every finite Markov decision process.			
5.	Does adding a constant to all rewards change the set of optimal policies in episodic tasks?	1 point		
	Yes, adding a constant to all rewards changes the set of optimal policies.			
	No, as long as the relative differences between rewards remain the same, the set of optimal policies is the same.			
6.	Does adding a constant to all rewards change the set of optimal policies in continuing tasks?	1 point		
	No, as long as the relative differences between rewards remain the same, the set of optimal policies is the same.			
	Yes, adding a constant to all rewards changes the set of optimal policies.			
7.	Select the equation that correctly relates v_* to q_* . Assume π is the uniform random policy.	1 point		

$\bigcirc v_*$	$(s) = \sum_{a,r,}$	$_{s}$, $\pi(a s)p(s)$	$s', r s, a)q_*$	s')
$\bigcirc v_*$	$(s) = \sum_{a,r,}$	$_{s}$, $\pi(a s)p(s)$	s',r s,a)[r+	$\gamma q_*(s')]$
○ v _*	$(s) = \sum_{a,r,}$	$_{s}$, $\pi(a s)p(s)$	s',r s,a)[r+	$-q_*(s')]$
$\bigcirc v_*$	(s) = max	$q_*(s,a)$		

8. Select the equation that correctly relates q_{st} to v_{st} using four-argument function p.

1 point

$$igcup q_*(s,a) = \sum_{s',r} p(s',r|a,s)[r+v_*(s')]$$

$$\bigcirc \ q_*(s,a) = \sum_{s',r} p(s',r|a,s) \gamma[r+v_*(s')]$$

$$\bigcirc q_*(s,a) = \sum_{s',r} p(s',r|a,s)[r + \gamma v_*(s')]$$

9. Write a policy π_* in terms of q_* .

1 point

$$\bigcirc \ \pi_*(a|s) = q_*(s,a)$$

$$\bigcirc \ \pi_*(a|s) = \operatorname{max}_{a'} q_*(s,a')$$

- $\bigcap \pi_*(a|s) = 1 \text{ if } a = \operatorname{argmax}_{a'} q_*(s, a'), \text{ else } 0$
- 10. Give an equation for some π_* in terms of v_* and the four-argument p.

1 point

$$\pi_*(a|s) = 1 \text{ if } v_*(s) = \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')], \text{ else } 0$$

$$\bigcap \ \pi_*(a|s) = \max_{a'} \sum_{s',r} p(s',r|s,a') [r + \gamma v_*(s')]$$

$$\bigcap \ \pi_*(a|s) = 1 \text{ if } v_*(s) = \max_{a'} \sum_{s',r} p(s',r|s,a')[r + \gamma v_*(s')], \text{ else } 0$$

$$\bigcirc \ \pi_*(a|s) = \sum_{s'.r} p(s',r|s,a)[r + \gamma v_*(s')]$$

I, Dhawal Gupta, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. 3 R P

Learn more about Coursera's Honor Code

Save

Submit