Introduction to Algorithms

William Hendrix

Syllabus

- Read at: usflearn.instructure.com
- Contact: ENB 344F or whendrix@usf.edu
- Office hours: Immediately after class
- TAs: Mehrad Eslami and Martin Llofriu
- Office hours: TBD
- Feedback forms
- Course objectives, grading scale, exams, etc.
- Class participation
- Attendance policy
- Piazza

What will we learn in this class?

- How to determine if an algorithm is correct
 - Proofs of correctness
 - Loop invariants
- How to determine if an algorithm is efficient
 - RAM model
 - Big-Oh definition and properties
- How to develop your own algorithms
 - Greedy algorithms
 - Divide-and-conquer
 - Dynamic programming
 - Graph traversals
 - Backtracking
- Whether you should develop your own algorithm
 - Canonical algorithms
 - Complexity theory

A Word of Warning

- Algorithms is not an easy class
- It requires:
 - Strong mathematical background
 - Writing proofs
 - Understanding graphs
 - An understanding of data structures
 - Arrays, lists, trees, graphs
 - Creativity!
 - Good work ethic and academic integrity
- The projects require:
 - Strong programming skills
 - C, C++, or Java

Resources

- Read the textbook
- Ask questions on Piazza
- Visit office hours
- Solve practice problems
 - From the textbook or the web
- Contact me via email or Canvas

Proof review

- Induction
 - Proof technique for statements of the form "P(i), for all $i \ge b$."
 - Two parts (both required)
 - Base case: prove P(b)
 - Inductive step: assume P(k) for some $k \ge b$
 - Strong induction: assume P(x) for all x from b up to k
 - Prove P(k+1)

- Contradiction
 - Assume claim is false
 - Show something impossible must be true
- Example/counterexample
 - Used to prove existence/nonexistence
 - Construct an example and show it meets the criteria

Induction exercise

Prove that $n! > 2^{n+1}$ for all $n \ge 5$.

Induction solution

Prove that $n! > 2^{n+1}$ for all $n \ge 5$.

Proof. (Base case) 5! = 120, and $2^{5+1} = 2^6 = 64$. Since 120 > 64, $n! > 2^{n+1}$ for n = 5.

(Inductive step) Suppose that $k! > 2^{k+1}$, for some $k \ge 5$, and consider n = k + 1. n! = (k + 1)! = (k + 1)k!, while $2^{n+1} = 2^{k+2} = 2(2^{k+1})$.

$$n! = (k+1)k! \tag{1}$$

$$> (k+1)2^{k+1}$$
 (2)

$$> 2(2^{k+1})$$
 (3)

$$=2^{n+1} \tag{4}$$

(Note: in line 3, k+1 > 2 because $k \ge 5$.) Since $k! > 2^{k+1}$ implies that $(k+1)! > 2^{k+2}$, $n! > 2^{n+2}$ for all $n \ge 5$, by induction.

8

Strong induction exercise

- Consider a two-player game where stones are arranged into piles. On their turn, a player chooses a pile with two or more stones and divides it into two piles, each with at least one stone. The game ends when all of the piles only have one stone.
- Prove the following:
 - A pile with n stones will always take n 1 turns to split up into n piles of one stone, for all $n \ge 1$.

Strong induction solution

• A pile with n stones will always take n-1 turns to split up into n piles of one stone, for all $n \ge 1$.

Proof. (Base case) When n = 1, the pile has 1 stone, and no moves are required to split it into piles of size 1, so it takes 0 = n - 1 moves.

(Inductive step) Suppose that all piles of x stones take x-1 moves to divide into piles of size 1, for any $x \leq k$.

Consider a pile with k+1 stones. On their first move, a player will divide this pile into piles of size a and b, where a and b are both at least one and a+b=k+1. Since a and b are both at least one and a+b=k+1, they can't be any larger than k, so the inductive hypothesis applies. Hence, the pile with a stones will take a-1 moves to fully split, and the pile with b stones will take b-1 moves to fully split. Thus, the total number of moves to split k+1 is 1+(a-1)+(b-1)=a+b-1=(k+1)-1=k. Therefore, by induction, all piles with a stones will take a and a and a are both at least one and a are both at least one and a and a are both at least one and a and b are both at least one and a and b are both at least one and a and b are both at least one and a and b are both at least one and a and b are both at least one and a and b are both at least one and a and b are both at least one and a and b are both at least one and b are both at least one

Contradiction exercise

• Prove that if n is composite, n must have a factor no larger than \sqrt{n} .

Contradiction solution

• Prove that if n is composite, n must have a factor no larger than \sqrt{n} .

Proof. We prove the claim by contradiction.

Suppose n is a composite number that does not have a factor less than or equal to \sqrt{n} . Since n is composite, n=ab, for some integers a,b>1. Since a and b are factors of n, they must be larger than \sqrt{n} , so $ab>\sqrt{n}\sqrt{n}=n$. However, it's not possible for ab>n, since n=ab. $\Rightarrow \Leftarrow$

Hence, every composite number must have a factor no larger than its square root. \Box

Counterexample exercise

• **Disprove** the claim that if b and p are positive integers such that b is not a multiple of p, then b^{p-1} must be 1 more than a multiple of p.

Counterexample solution

• **Disprove** the claim that if b and p are positive integers such that b is not a multiple of p, then b^{p-1} must be 1 more than a multiple of p.

Any example where b and p have a factor in common will fail. E.g., when p = 6 and b = 3, $b^{p-1} = 3^5 = 243$, which has remainder of 3 mod 6, not 1.

Coming up

- Essential definitions
- Proving correctness
- Loop invariants
- Sign today's sign-in sheet!
- Homework 1 will be posted later this evening
 - Due next Tuesday
- Feedback form 1 is posted on Canvas
 - Due at Exam 1
- Recommended readings: Section 2.1
- Practice Problems: 2.1-3