RNA Seq data analysis

Tanuj Gunturu and Ravi Kumar Gandham

For this analysis use the data sets (fast format) - Gr_11, Gr_12, Gr_13, Gr_31, Gr_32 and Gr_33 (Gr_11, Gr_12 and Gr_13 belong to the 1st group, whereas Gr_31, Gr_32 and Gr_33 belong to the other group)

1. Quality check of sequences

- This is done in FastQC
- Command for running FastQC fastqc *.fastq (in the terminal window)

- FastQC will generate a html and a zip file. The html file of each of the fastq files gives a detailed report of each fastq file.
- Running MultiQC a single summary report to visualise the combined results across all samples can be created
 - Command for running MultiQC multiqc . (multiqc space and dot) It creates a multiqc_report.html file

According to the overall statistics, per base quality is good in all the samples, so there is no requirement of filtering the low quality reads. Whereas, the adapter content in all the samples is bad.

2. Removal of adapters - use cutadapt

The list of adapters can be obtained along with the sequencing data.

Here, the adapters used are - AGATCGGAAGAGCACACGTCTGAACTCCAGTCA and AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT

Command for running Cutadapt

cutadapt -b AGATCGGAAGAGCACACGTCTGAACTCCAGTCA -B
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT -o Gr_32_sub_R1_cutadapt.fastq
-p Gr_32_sub_R2_cutadapt.fastq Gr_32_sub_R1.fastq
Gr_32_sub_R2.fastq

Use the above command for all the paired end fastq files to generate files as below

15 May 2024 at 8:01 PM	2.57 GB
15 May 2024 at 8:01 PM	2.57 GB
15 May 2024 at 7:58 PM	2.57 GB
15 May 2024 at 7:58 PM	2.58 GB
15 May 2024 at 7:31 PM	2.6 GB
15 May 2024 at 7:31 PM	2.6 GB
18 May 2024 at 3:17 PM	2.54 GB
18 May 2024 at 3:17 PM	2.55 GB
15 May 2024 at 7:07 PM	2.53 GB
15 May 2024 at 7:07 PM	2.53 GB
15 May 2024 at 7:23 PM	2.55 GB
15 May 2024 at 7:23 PM	2.56 GB
	15 May 2024 at 8:01 PM 15 May 2024 at 7:58 PM 15 May 2024 at 7:58 PM 15 May 2024 at 7:31 PM 15 May 2024 at 3:17 PM 18 May 2024 at 3:17 PM 18 May 2024 at 3:17 PM 15 May 2024 at 7:07 PM 15 May 2024 at 7:07 PM 15 May 2024 at 7:07 PM

Note :- Go for FastQC with the new files and check for quality again - proceed only after the quality is good

- 3. Mapping to the reference using an aligner Here we use hisat2
 - 1. Build the index of the NDDB_SH_1_genome.fna genome :-
 - Command hisat2-build /Users/rk_gandham_shree/Downloads/ rsem/10Million/NDDB_SH_1_genome.fna NDDB_ht2
 - It builds an index with the prefix NDDB ht2

NDDB_ht2.1.ht2	11 May 2024 at 1:31 PM	878.3 MB
NDDB_ht2.2.ht2	11 May 2024 at 1:31 PM	655.6 MB
NDDB_ht2.3.ht2	11 May 2024 at 1:14 PM	6 KB
NDDB_ht2.4.ht2	11 May 2024 at 1:14 PM	655.6 MB
NDDB_ht2.5.ht2	11 May 2024 at 1:34 PM	1.15 GB
NDDB_ht2.6.ht2	11 May 2024 at 1:34 PM	667.6 MB
NDDB_ht2.7.ht2	11 May 2024 at 1:14 PM	12 bytes
NDDB_ht2.8.ht2	11 May 2024 at 1:14 PM	8 bytes

2. Map the reads to the reference:-

 Command - hisat2 -p 6 -x NDDB_ht2 -1 Gr 11 sub R1 cutadapt.fastq -2 Gr_11_sub_R2_cutadapt.fastq | samtools sort -@ 6 -o Gr11.bam new; hisat2 -p 6 -x NDDB ht2 -1 Gr_12_sub_R1_cutadapt.fastq -2 Gr_12_sub_R2_cutadapt.fastq | samtools sort -@ 6 -o Gr12.bam new ; hisat2 -p 6 -x NDDB ht2 -1 Gr_13_sub_R1_cutadapt.fastq -2 Gr_13_sub_R2_cutadapt.fastq | samtools sort -@ 6 -o Gr13.bam_new ; hisat2 -p 6 -x NDDB_ht2 -1 Gr_31_sub_R1_cutadapt.fastq -2 Gr_31_sub_R2_cutadapt.fastq | samtools sort -@ 6 -o Gr31.bam_new ; hisat2 -p 6 -x NDDB_ht2 -1 Gr_32_sub_R1_cutadapt.fastq -2 Gr_32_sub_R2_cutadapt.fastq | samtools sort -@ 6 -o Gr32.bam_new ; hisat2 -p 6 -x NDDB_ht2 -1 Gr_33_sub_R1_cutadapt.fastq -2 Gr_33_sub_R2_cutadapt.fastq | samtools sort -@ 6 -o Gr33.bam_new

Gr33.bam	19 May 2024 at 11:33 AM	969.1 MB
Gr32.bam	19 May 2024 at 11:30 AM	1.08 GB
Gr31.bam	19 May 2024 at 11:27 AM	1.03 GB
Gr13.bam	19 May 2024 at 11:25 AM	970.6 MB
Gr12.bam	19 May 2024 at 11:23 AM	856.5 MB
Gr11.bam	19 May 2024 at 11:21 AM	888.8 MB

Note: The mapping quality improved after removing the adapters - Below is before removing

```
10000000 reads; of these:
10000000 (100.00%) were paired; of these:
2465926 (24.66%) aligned concordantly 0 times
7033153 (70.33%) aligned concordantly exactly 1 time
500921 (5.01%) aligned concordantly >1 times
----
2465926 pairs aligned concordantly 0 times; of these:
444592 (18.03%) aligned discordantly 1 time
----
2021334 pairs aligned 0 times concordantly or discordantly; of these:
4042668 mates make up the pairs; of these:
3402879 (84.17%) aligned 0 times
449551 (11.12%) aligned exactly 1 time
190238 (4.71%) aligned >1 times
82.99% overall alignment rate
```

Before removing the adapters the mapping percentage was 82.99% and after removing the adapters the mapping percentage increased to 95.05%

Mapping quality after removal of adapters is given below:

4. **Getting the counts from the bam file -** Here we use featureCounts

- **Command** ./featureCounts -T 10 -p -a NDDB_SH_1.gtf -o FeatureCounts_out.txt Gr11.bam Gr12.bam Gr13.bam Gr31.bam Gr32.bam Gr33.bam
- FeatureCounts_out.txt opened in excel is given below

Geneid	Chr	Start	End	Strand	Length	Gr11.bam	Gr12.bam	Gr13.bam	Gr31.bam	Gr32.bam	Gr33.bam		
OC112587351	NC_059157.1	155792	155901	+	110	0	0	0	0	0	C)	
TRNAS-GCU	NC_059157.1	826279	826349	-	71	0	0	0	0	0	C)	
ZNF385D	NC_059157.1	1176546;117	1179512;117951	-;-;-;-;-;-;-;-;-	4831	6	14	10	36	2	68	3	
LOC123335215	NC_059157.1	1179405;118	1179539;118260	+;+	447	2	0	0	0	0	C)	
LOC123335224	NC_059157.1	1981302;198	1981446;198172	-)-)-	487	0	0	0	0	0	2		
LOC123332535	NC_059157.1	2495827;249	2496018;249720	-)-)-	384	2	0	0	0	0	C)	
LOC102395814	NC_059157.1	2908615;290	2908784;290878	+;+;+;+;+;+;+	; 1119	122	103	92	494	234	775	i	
LOC112581109	NC_059157.1	3076802;307	3079102;308094	+;+	3369	81	21	160	12	14	12		
LOC123335288	NC_059157.1	3396434;340	3396563;340593	+;+;+	309	0	0	0	0	0	C)	
LOC102395276	NC_059157.1	3475058;347	3475228;347522	+;+;+;+;+;+;+	3612	320	316	375	173	210	174	1	
NKIRAS1	NC_059157.1	3542666;354	3543208;354320	-;-;-;-;-;-;-;-;-	2136	27	9	25	14	7	20)	
RPL15	NC_059157.1	3562654;356	3562791;356338	+;+;+;+	813	2637	3415	1462	1951	1973	1884	ı	
NR1D2	NC_059157.1	3605622;360	3605888;360668	+;+;+;+;+;+	5440	321	194	292	531	264	722		
THRB	NC_059157.1	3718591;371	3722613;372261	-;-;-;-;-;-;-;-;-	17909	40	13	4	137	88	174	ı	
LOC123327847	NC_059157.1	3816322;381	3816450;382007	+;+;+	406	0	0	0	0	0	C)	
TRNAC-ACA	NC_059157.1	3855161	3855233	+	73	0	0	0	0	0	C)	
LOC112585641	NC_059157.1	4162975	4163751	+	777	0	0	0	0	1	1		
LOC112585688	NC_059157.1	4194849;419	4195038;419506	+;+;+;+;+;+	1159	0	0	0	0	0	C)	
LOC102399924	NC_059157.1	4257965;425	4258741;426064	-;-	2582	285	268	109	124	86	180)	
OC123328099	NC_059157.1	4639958;464	4640520;464138	-;-	702	0	0	0	0	0	C)	
LOC123328110	NC_059157.1	4807799;480	4808006;480799	+;+;+;+;+;+	2822	0	0	0	0	0	C)	
OC123328059	NC_059157.1	4883271;488	4883493;488435	+;+;+;+;+;+	3272	0	0	0	0	0	C)	
RARB	NC_059157.1	4991411;525	4991603;525595	+;+;+;+;+;+	3374	117	10	23	44	17	79)	
TRNAG-CCC	NC_059157.1	5247117	5247189	-	73	0	0	0	0	0	C)	
OC123328106	NC_059157.1	5380263;538	5384536;538605	+;+	4844	6	0	0	16	0	32		
TRNAG-GCC	NC_059157.1	5395519	5395590	-	72	0	0	0	0	0)	
ГОР2В	NC 059157.1	5443207:544	5443695;544369	-:-:-:-:-:-:-:-:	5377	2533	2010	2450	1803	1056	2559)	

- For differential we need the count in each sample for all the genes
- Command awk '{ print \$1, \$7, \$8, \$9, \$10, \$11, \$12 }' FeatureCounts_out.txt > FeatureCounts_final.txt

Geneid	Gr11.bam	Gr12.bam	Gr13.bam	Gr31.bam	Gr32.bam	Gr33.bam
LOC1125873	0	0	0	0	0	0
TRNAS-GCU	0	0	0	0	0	0
ZNF385D	6	14	10	36	2	68
LOC1233352	2	0	0	0	0	0
LOC1233352	0	0	0	0	0	2
LOC1233325	2	0	0	0	0	0
LOC1023958	122	103	92	494	234	775
LOC1125811	81	21	160	12	14	12
LOC1233352	0	0	0	0	0	0
LOC1023952	320	316	375	173	210	174
NKIRAS1	27	9	25	14	7	20
RPL15	2637	3415	1462	1951	1973	1884
NR1D2	321	194	292	531	264	722
THRB	40	13	4	137	88	174
LOC1233278	0	0	0	0	0	0
TRNAC-ACA	0	0	0	0	0	0
LOC1125856	0	0	0	0	1	1
LOC1125856	0	0	0	0	0	0
LOC1023999	285	268	109	124	86	180

5. After getting the counts - do a PCA to see whether the samples cluster as per the requirement - the treatment samples are expected to cluster together and the control samples together

R-Script for PCA

```
library(DESeq2)
library(ggplot2)
library(ggrepel)
pdf("dfn.pdf",width=6,height = 4)
counts <- read.table('FeatureCounts_final.txt', header = TRUE,</pre>
row.names = 1)
class(counts)
head(counts)
countdata <- data.matrix(counts)</pre>
class(countdata)
countdata <- round(countdata)</pre>
Design <- data.frame(</pre>
  row.names = colnames(countdata),
  condition = c("Control", "Control", "Control", "Case", "Case",
"Case"),
  libType = c("Single-end", "Single-end", "Single-end", "Single-
end", "Single-end", "Single-end"))
Design
dds <- DESeqDataSetFromMatrix(countData = countdata, colData =</pre>
Design, design = \sim condition)
dds
vsd <- vst(dds, blind=FALSE)</pre>
```

```
pcaData <- plotPCA(vsd, intgroup = c("condition"), returnData =</pre>
TRUE)
percentVar <- round(100 * attr(pcaData, "percentVar"))</pre>
custom_colors <- c("Control" = "dodgerblue", "Case" = "tomato")</pre>
pcaPlot <- ggplot(pcaData, aes(PC1, PC2, color = condition,</pre>
label = name)) +
  geom\ point(size = 3) +
  geom text repel(size = 3) +
  scale color manual(values = custom colors) +
  theme classic() +
  xlab(paste0("PC1: ", percentVar[1], "% variance")) +
  ylab(paste0("PC2: ", percentVar[2], "% variance")) +
  coord fixed() +theme(legend.position = "right",
      legend.background = element rect(color = "black",
                                         fill = "white",
                                         size = 0.5,
                                         linetype =
"solid"),panel.border = element rect(color = "black", fill = NA,
size = 1)
p<-pcaPlot+
theme(axis.title=element_text(size=12,face="bold"),axis.text.x =
element text(size = 10, face="bold"),axis.text.y =
element text(size = 10, face="bold"),axis.line = element blank())
print(p)
dev.off()
```

The PCA for counts using the above script showed that G31 is clustering with Control (figure below). Therefore, this sample cannot be considered for further analysis.

A different biological replicate was sequenced and counts for the same were obtained as above and the PCA was redone (Figure below). Now, the samples of case and control clearly clustered separately. The samples can be considered for further analysis

6. Differential expression using DESeq2 and EdgeR

```
library(DESeq2)
counts <- read.table('FeatureCounts final.txt', header=TRUE,</pre>
row_names=1)
class(counts)
head(counts)
countdata=data.matrix(counts)
class(countdata)
Design <- data.frame(row.names =colnames(counts), condition =</pre>
c("Control", "Control", "Treated", "Treated", "Treated"),
libType = c("paired-end", "paired-end","paired-
end","paired-end", "paired-end"))
Design
dds <- DESeqDataSetFromMatrix(countData = round(countdata),colData</pre>
= Design,design = ~condition)
dds
dds <- DESeq(dds)
res <- results(dds)
resOrdered <- res[order(res$padi),]
head(res0rdered)
write.table(res0rdered,"
DESeq2_FC.txt", sep="\t", quote=F, col.names=T)
```

```
baseMean log2FoldChange
                               1fcSE
                                         stat
                                                  pvalue
                                                               padj
                                                <numeric>
     <numeric>
                   <numeric> <numeric> <numeric>
                                                           <numeric>
LRP2
       6843.09
                   -10.08694
                             0.476869
                                      -21.1524 2.62113e-99 5.00689e-95
FST
       6191.14
                    -9.72989
                            0.505323
                                      -19.2548 1.28736e-82 8.19704e-79
MKI67
       1085.24
                    TOP2A
                    -6.25456 0.325882 -19.1927 4.25647e-82 2.03268e-78
       1300.86
                    -6.20660 0.327056
TUB
       1398.14
                                     -18.9772 2.63276e-80 1.00582e-76
ESM1
       3321.13
                    -8.46697
                                      -18.9240 7.23776e-80 2.30426e-76
                             0.447420
```

```
counts <- read.table('FeatureCounts_final.txt', header = TRUE,
row.names = 1)
countdata <- data.matrix(counts)
head(counts)</pre>
```

library(edgeR)

```
Design <- data.frame(row.names = colnames(counts), condition =
c("Control", "Control", "Treated", "Treated"),</pre>
libType = c("paired-end", "paired-end", "paired-
end","paired-end", "paired-end"))
dge <- DGEList(counts = countdata, group = Design$condition)</pre>
keep \leftarrow rowSums(cpm(dge) > 1) >= 2
dge <- dge[keep,]</pre>
dge <- calcNormFactors(dge)</pre>
head(dge)
design <- model.matrix(~condition, data = Design)</pre>
dge <- estimateGLMCommonDisp(dge, design)</pre>
dge <- estimateGLMTrendedDisp(dge, design)</pre>
dge <- estimateGLMTagwiseDisp(dge, design)</pre>
fit <- glmFit(dge, design)</pre>
lrt \leftarrow glmLRT(fit, contrast = c(0, 1))
DEGs <- topTags(lrt, n = Inf)$table</pre>
head(DEGs)
write.table(DEGs, "EdgeR FC.txt", sep = "\t", quote = FALSE,
col.names = TRUE)
```

FDR
3e-62
1e-61
9e-59
'2e-59
.0e-59
'3e-59
3

Note: padj and FDR are considered respectively from DESeq2 and EdgeR. - 6157 genes below 0.05 padj and 6221 genes below FDR

The list of 5864 genes were taken for further analysis - 4729 left after removing the LOC lds - 1409 genes are positively regulated $log_2FC > 2.0$ and 1203 genes are -vely regulated with $log_2FC > -2.0$

7. Valcano plot of the DE genes

Input file format : For_valcanofn.txt

Genes	log2FoldChai	nvalue
LRP2	-10.086938	2.62E-99
FST	-9.7298872	1.29E-82
MKI67	-6.0810219	1.28E-82
TOP2A	-6.2545586	4.26E-82
TUB	-6.2065996	2.63E-80
ESM1	-8.4669663	7.24E-80
LOC1023901	-11.431847	5.44E-76
TC2N	6.45377261	2.27E-74
SATB2	-5.2441532	1.39E-73
LOC1024125	-12.326781	3.48E-73
LOC1023976	-12.830654	4.77E-71
PAG3	-11.887434	6.32E-71
PFKFB3	6.06548093	7.43E-70
MAFF	5.86410494	9.26E-70
LOC1233350	-13.91811	7.81E-69
PAG19	-12.170126	5.05E-68
JUNB	5.47122992	8.30E-68
SOX9	7.25443838	2.13E-66
CTSL	-10.782514	6.75E-65
ADRB2	7.27889073	1.07E-64
PRXL2A	-5.5594182	3.54E-64

```
library(ggplot2)
library(dplyr)
library(readr)
library(ggrepel)
df <- read_delim("For_valcanofn.txt", delim = "\t")</pre>
df <- df %>%
  mutate(padj = p.adjust(pvalue, method = "BH"))
df <- df %>%
  filter(!is.na(log2FoldChange) & !is.na(padj))
log2FoldChange_limit <- 10</pre>
padj limit <- 1e-300
df <- df %>%
  filter(abs(log2FoldChange) <= log2FoldChange limit & padj >=
padj_limit)
df <- df %>%
  mutate(
    regulation = case_when(
      padj < 0.05 & \log 2FoldChange > 2 ~ "Up-regulated",
      padj < 0.05 & log2FoldChange < -2 ~ "Down-regulated",</pre>
      TRUE ~ "Not significant"
    )
genes_to_annotate <- c("SOX9", "FST", "PDPN")</pre>
volcano_plot <- ggplot(df, aes(x = log2FoldChange, y =</pre>
-log10(padj), color = regulation)) +
  geom point(alpha = 0.8, size = 2) +
```

```
scale color manual(values = c("Not significant" = "grey", "Up-
regulated" = "red", "Down-regulated" = "green4")) +
  theme minimal() +
  labs(
    title = "Volcano Plot of Differentially Expressed Genes",
    x = expression(Log[2]~Fold~Change),
    y = expression(-Log[10]~Adjusted~P-value)
  ) +
  theme(
    plot.title = element_text(hjust = 0.5),
    legend.title = element blank(),
    legend.position = "right",
    legend.background = element rect(color = "black", size = 0.5,
linetype = "solid"),
    legend.text = element text(face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 12),
    axis.title.y = element text(face = "bold", size = 12),
    axis.text = element text(size = 12, face = "bold")
  geom vline(xintercept = 0, linetype = "dashed", color = "blue")
geom text repel(
  data = df %>% filter(Genes %in% genes to annotate),
  aes(label = Genes),
  box.padding = 0.5,
  point.padding = 0.5,
  segment.color = 'grey50',
  max.overlaps = Inf,
  fontface = "bold",
  size = 3
print(volcano plot)
ggsave("volcano_plot.pdf", plot = volcano_plot, width = 8, height
= 6)
```


8. Functional annotation of the DE genes

Functional annotation can be done in any of the available tools. Here it was done by Cluego the

Input file format: fa.txt

GO_Term	Ratio	PValue
Regulation o	0.14293305	7.92E-24
Cell surface i	0.13172175	4.52E-18
Cell different	0.12	3.50E-17
Positive regu	0.1592742	6.53E-17
Cell developr	0.13155022	1.00E-15
Positive regu	0.10685249	2.31E-15
Regulation o	0.13409962	3.00E-14
Positive regu	0.10792105	3.55E-14
Multicellular	0.11478202	4.81E-14
Anatomical s	0.12707182	4.03E-13

```
library(ggplot2)
library(stringr)
data <- read.delim("fa.txt", header = TRUE, sep = "\t")</pre>
qq \leftarrow qqplot(data, aes(x = -loq10(PValue), y = GO Term, size =
Ratio, fill = -\log 10(PValue))) +
  geom point(shape = 21, alpha = 0.7) +
  #labs(title = "GO Term Enrichment", x = "Enrichment", y = "GO
Term'') +
  scale size continuous(range = c(2, 12), guide =
quide legend(override.aes = list(fill = "black"))) +
  scale_fill_gradient(low = "red", high = "green4", name =
"Significance") +
  scale_y_discrete(labels = function(y) str_wrap(y, width = 25)) +
  theme minimal() +
  theme(legend.text = element_text(size = 12), legend.title =
element_text(size = 12, face = "bold"),
        axis.text.x = element_text(size = 14, face = "bold",colour
= "Black"), axis.text.v = element text(size = 12, face =
"bold",colour = "Black"),
        legend.margin = margin(b = 5),panel.border =
element_rect(color = "black", fill = NA, size = 1.0),axis.ticks =
element line(),axis.title.x=element blank(),axis.title.y=element b
lank())
ggsave("G_Inf_CD4_bubble.pdf", gg, width = 9, height = 10, units =
"in", bg = "white")
```

