업데이터 통계학 스터디: ASSIGNMENT 3

- **1.** $X \sim Exponential(\lambda)$. Find
 - (a) PDF of X
 - (b) MGF of *X* (Proof)
 - (c) E(X) and Var(X), by using the MGF
 - (d) Write what you know about the Exponential distribution.
- **2.** $Y \sim Gamma(\alpha, \beta)$. Find
 - (a) PDF of Y
 - (b) MGF of Y (Proof)
 - (c) E(Y) and Var(Y), by using the MGF
 - (d) Write what you know about the Gamma distribution.
- **3.** Compare the MGF of the Exponential distribution with the MGF of the Gamma distribution. And explain the relationship between the two distributions as you know it.
- **4.** $U \sim \chi^2(v)$. Find
 - (a) PDF of U
 - (b) MGF of U
 - (c) E(U) and Var(U), by using the MGF
 - (d) Write what you know about the Chi-Square distribution.
 - (e) Is there a relationship between the Chi-Square distribution and the Gamma distribution? If a relationship exists, write what you know about it.

- **5.** $W \sim Beta(\alpha, \beta)$. Find
 - (a) PDF of W
 - (b) E(W) and Var(W)
- **6.** $X \sim N(\mu, \sigma^2)$. Find
 - (a) PDF of X
 - (b) MGF of X (Proof)
 - (c) E(X) and Var(X), by using the MGF
 - (d) Write what you know about the Normal distribution.
- **7.** $Z \sim N(0,1)$. Find
 - (a) PDF of Z
 - (b) MGF of Z
 - (c) Write what you know about the Standard-Normal distribution.
- 8. Use the MGF method to prove that the description below is true. If,
 - (a) X_1, \cdots, X_r are follow i.i.d $Geometric(p) \Rightarrow \sum_{i=1}^r X_i \sim NegBin(r,p)$
 - (b) Y_1, \cdots, Y_n are follow i.i.d $Poisson(\lambda) \Rightarrow \sum_{i=1}^n Y_i \sim Poisson(n\lambda)$
 - (c) W_1, \cdots, W_n are follow $Gamma(\alpha_i, \beta)$ by mutually independently $\Rightarrow \sum_{i=1}^n W_i \sim Gamma(\sum \alpha_i, \beta)$
 - (d) Z_1, \cdots, Z_n are follow i.i.d $N(0,1) \Rightarrow \sum_{i=1}^n Z_i \sim \chi^2(n)$
- 9. (a) Write what you know about the relationship between the Exponential distribution and the Gamma distribution. By using 8.(c)
 - (b) Write what you know about the relationship between the Standard-Normal distribution and the Chi-Square distribution. By using **8.(d)**

- **10.** Show that $T^2 \sim F(1,n)$ when $T \sim t(n)$.
- **11.** Find the PDF of $Y := \tan(X)$ when $X \sim Unif(-\frac{\pi}{2}, \frac{\pi}{2})$
- **12.** Find the PDF of $T := Max(G_i)$ when G_1, \dots, G_n follow i.i.d. $Gamma(1, \beta)$
- **13.** Find the PDF of $W := min(U_i)$ when U_1, \cdots, U_n follow i.i.d. $Unif(0, \theta)$