Adatbázis-kezelő rendszerek I.

Fogarassyné Vathy Ágnes

Rendszer- és Számítástudományi Tanszék

vathy@dcs.uni-pannon.hu

Iroda: I/914

Adatbázis-kezelő rendszerek I.

BEVEZETÉS

Irodalom

 Elmasri & Navathe: Fundamentals of Database Systems (ref as: EN)

 Silberschatz & Korth & Sudarshan: Database System Concepts (ref as: SKS)

 Thomas M. Connolly, Carolyn E. Begg: Database Systems: A Practical Approach to Design, Implementation, and Management (ref as: CB)

Irodalom

Molina & Ullman & Widom:
 Database Systems: The Complete Book
 (ref as: UW)

Ullman & Widom: A First Course in Database Systems

Molina & Ullman & Widom: Database System Implementation

Magyarul:

Ullman & Widom: Adatbázisrendszerek - Alapvetés

Molina & Ullman & Widom: Adatbázisrendszerek megvalósítása

http://www.inf.unideb.hu/kmitt/konvkmitt/feje zetek az adatbazisrendszerek elmeletebol/boo k.xml.html

Irodalom

• Timár és Tsai: Építsünk könnyen és lassan adatmodellt!

 Kósa Márk, Pánovics János: Fejezetek az adatbázisrendszerek elméletéből http://www.tankonyvtar.hu/hu/tartalom/tamop4 25/0046_fejezetek_az_adatbazisrendszerek_elme letebol/index.html

Adatbázis alkalmazások

- Az adatbázisok jelen vannak életünk minden területén
 - Banki tranzakciók
 - Légitársaságok: foglalások, menetrendek
 - Oktatás: hallgatói adminisztráció, értékelés
 - o e-kereskedelem: vásárlók, termékek, vásárlások, rendelések nyomon követése
 - o Ipar: gyártási folyamatok, rendelések, ellátási lánc
 - Emberi erőforrások: alkalmazottak adatai, jövedelmek, adólevonások

Alapfogalmak

Adat

• A feladat szempontjából fontos, ismert tény, melyet tárolni szeretnénk

Adatbázis (DB, AB):

Egymással összefüggő adatok gyűjteménye

• Adatbázis-kezelő rendszer (DBMS – Database Management System):

 Adatbázisokhoz való hozzáférést, rendszeres és a felhasználói folyamatok zavartalan működést biztosító szoftveralkalmazás.

Adatbázisrendszer (Database System)

 Az adatbázis-kezelő rendszer és a tárolt adatok együtt. Az alkalmazásokat is magában foglalja.

Sémák és előfordulások

- Séma: az adatbázis struktúrája
 - Az adatbázis-tervezés folyamán kerül definiálásra.
 - Várhatóan nem változik gyakran.
- Előfordulás: az adatbázis aktuális tartalma egy adott időpontban
 - Az aktuális adat gyakran változhat.
 - Ugyanazon sémának sok-sok előfordulás feleltethető meg.

Példa adatbázis séma

Példa adatbázis állapot (előfordulás)

DOLGOZÓ

Vnév	Knév	Szsz	Szdátum	Lakcím	Nem	Fizetés	Főnök_szsz	Osz
Kovács	László	$1\ 650109\ 0812$	1965. január 9.	4033 Debrecen	F	390000	$2\ 551208\ 2219$	5
Szabó	Mária	$2\ 551208\ 2219$	1955. december 8.	$1097~{\rm Budapest}$	N	520000	$1\ 371110\ 4519$	5
Kiss	István	$1\ 680119\ 6749$	1968. január 19.	$1172~{\rm Budapest}$	F	325000	$1\ 410620\ 4902$	4
Takács	József	$1\ 410620\ 4902$	1941. június 20.	4027 Debrecen	F	559000	$1\ 371110\ 4519$	4
Horváth	Erzsébet	$2\ 620915\ 3134$	$1962.\ {\rm szeptember}\ 15.$	$1092~{\rm Budapest}$	N	494000	$2\ 551208\ 2219$	5
Tóth	János	$1\ 720731\ 2985$	1972. július 31.	6726 Szeged	F	325000	$2\ 551208\ 2219$	5
Fazekas	Ilona	2 690329 1099	1969. március 29.	3535 Miskolc	N	325000	1 410620 4902	4
Nagy	Zoltán	1 371110 4519	1937. november 10.	$1061~{\rm Budapest}$	F	715000	NULL	1

OSZTÁLY

Onév	$\underline{\mathrm{Oszám}}$	Vez_szsz	Vez_kezdő_dátum
Kutatás	5	$2\ 551208\ 2219$	1988. május 22.
Humán erőforrás	4	2 690329 1099	1995. január 1.
Központ	1	1 371110 4519	1981. június 19.

$DOLGOZIK_RAJTA$

Dszsz	$\underline{\text{Psz}}$	Órák
1 650109 0812	1	32.5
1 650109 0812	2	7.5
2 620915 3134	3	40.0
1 720731 2985	1	20.0
1 720731 2985	2	20.0
2 551208 2219	2	10.0
2 551208 2219	3	10.0
2 551208 2219	10	10.0
2 551208 2219	20	10.0
1 680119 6749	30	30.0
1 680119 6749	10	10.0
2 690329 1099	10	35.0
2 690329 1099	30	5.0
1 410620 4902	30	20.0
1 410620 4902	20	15.0
1 371110 4519	20	NULL

OSZT HELYSZÍNEK

	-
$\underline{\mathrm{Oszám}}$	$\underline{\rm Ohelyszín}$
1	Budapest
4	Kecskemét
5	Vác
5	Tiszafüred
5	Budapest

PROJEKT

Pnév	$\underline{\mathrm{Pszám}}$	Phelyszín	Osz
X termék	1	Vác	5
Y termék	2	Tiszafüred	5
Z termék	3	Budapest	5
Komputerizáció	10	Kecskemét	4
Reorganizáció	20	Budapest	1
Új fejlesztések	30	Kecskemét	4

HOZZÁTARTOZÓ

Dszsz	Hozzátartozó_név	Nem	Szdátum	Kapcsolat
$2\ 551208\ 2219$	Anna	N	1986. április 5.	lánya
2 551208 2219	Bence	F	1983. október 25.	fia
$2\ 551208\ 2219$	Máté	F	1958. május 3.	házastársa
$1\ 410620\ 4902$	Viktória	N	1942. február 28.	házastársa
$1\ 650109\ 0812$	Balázs	F	1988. január 4.	fia
1 650109 0812	Anna	N	1988. december 30.	lánya
$1\ 650109\ 0812$	Réka	N	1967. május 5.	házastársa

Adat és Metaadat

Adatbázis megközelítés vs. Hagyományos programozás (fájl-feldolgozó megközelítés)

Az adatbázisrendszerek önleíró tulajdonsága:

- A DBMS katalógus tárolja az egyes adatbázisok leírásait is
- Ez a leírás a metaadat, tartalmazza pl:
 - o adatstruktúrák,
 - o típusok,
 - o szabályok, korlátozások
 - O ...
- Ez teszi lehetővé, hogy a DBMS különböző adatbázisokkal dolgozzon.
- A hagyományos fájl-feldolgozó megközelítésű programok csak meghatározott adatbázissal tudnak dolgozni.

Egyszerű (relációs) adatbázis

HALLGATÓ

Név	Hallgatói_azonosító	Évfolyam	Szak
Kovács	17	1	PTI
Szabó	8	2	PTI

TÁRGY

Tárgynév	Tárgykód	Kredit	Tanszék
Bevezetés az informatikába	INDK201	5	IT
Adatszerkezetek	INDK421	5	IT
Diszkrét matematika	INDK101	4	AM
Adatbázisrendszerek	INDK501	4	IT

KURZUS

Kurzuskód	Tárgykód	Félév	Tanév	Oktató
85	INDK101	őszi	2009/10	Bácsó
92	INDK201	őszi	2009/10	Terdik
102	INDK421	tavaszi	2010/11	Kósa
112	INDK101	őszi	2010/11	Bácsó
119	INDK201	őszi	2010/11	Csernoch
135	INDK501	őszi	2010/11	Adamkó

INDEXSOR

Hallgatói_azonosító	Kurzuskód	Érdemjegy
17	112	4
17	119	3
8	85	5
8	92	5
8	102	4
8	135	5

ELŐFELTÉTEL

Tárgykód	Előfeltétel_kód
INDK501	INDK421
INDK501	INDK101
INDK421	INDK201

Egyszerűsített adatbázis katalógus - példa

TÁBLÁZATOK

Táblanév	Oszlopsz ám
HALLGATÓ	4
TÁRGY	4
KURZUS	5
INDEXSOR	3
ELŐFELTÉT EL	2

OSZLOPOK

Oszlopnév	Adattípus	Táblázat
Név	Character(30)	HALLGATÓ
Hallgatói_azonosító	Character(4)	HALLGATÓ
Évfolyam	Integer(1)	HALLGATÓ
Szak	Szaktípus	HALLGATÓ
Tárgynév	Character(30)	TÁRGY
Tárgykód	XXXXNNN	TÁRGY
	•••	
Előfeltétel_kód	XXXXNNN	ELŐFELTÉTEL

Egyszerűsített adatbázisrendszer

Az adatbázis-kezelő rendszerek szolgáltatásai

- Az adatbázis definiálása: az adatok típusának, szerkezetének, és rájuk vonatkozó korlátozásoknak a meghatározása
 - Metaadat: leíró jellegű információk az adatbázisról (a tárolandó adatról) az adatokat leíró adatok
- Az adatbázis létrehozása: A DBMS által kontrollált folyamat, melynek során az adatbázis fizikailag is létrejön valamely adattároló eszközön
- Az adatbázis manipulálása:
 - o Információ kinyerése: lekérdezések, riportok
 - Adatmanipuláció: Beszúrás, törlés és módosítás
- Az adatbázis megosztása és tranzakciók: Lehetővé teszi, hogy az adatbázist egyszerre több felhasználó érje el és tudja használni oly módon, hogy az adatok mindvégig konzisztensek maradjanak

Az adatbázis-kezelő rendszerek szolgáltatásai (folyt.)

- Egyéb jellemzők:
 - Az adatbázisok védelme:
 - Rendszervédelem: hibás hardware, vagy software működése esetén
 - ➤ Biztonsági védelem: jogosulatlan felhasználás vagy rosszindulatú támadással szemben
 - Az adatbázis és a kapcsolódó programok fenntartása az adatbázis alkalmazás teljes élettartama során
 - Az adatok megjelenítése (karakteresen és grafikusan)

Tranzakciókezelés

- A DBMS támogatja a több felhasználós környezetet, és az adat megosztását:
 - OLTP (Online Transaction Processing) Tranzakciókezelő: Az adatbázis alkalmazások fontos része, mely lehetővé teszi egymással konkuráló tranzakciók százainak egyidejű végrehajtását.
 - A DBMS támogatja, hogy az egymással versengő felhasználók az adatbázist elérjék és manipulálják.
 - A DBMS biztosítja hogy minden egyes **tranzakció** vagy tökéletesen végrehajtódjon, vagy az eredeti állapot állítódjon vissza.
 - A *tárkezelő* biztosítja, hogy minden egyes teljesített tranzakció esetén a végrehajtott módosítások az adatbázisban <u>tartósan rögzüljenek</u>.

Adatabsztrakció

Adatabsztrakció

 A DBMS a felhasználók számára biztosítja az adatok olyan absztrakt ábrázolását, amely nem tartalmaz sok részletet (pl: hogyan tárolják az adatot, hogyan ágyazzák be a műveletet).

- Az absztrakció szintjei:
 - × Fizikai (belső) szint
 - Logikai (fogalmi, koncepcionális) szint
 - ➤ Felhasználó nézetek szintje (külső) szint

Külső szint

- A külső szint a legmagasabb szint, melyen az alkalmazó programok elrejtik a technikai részleteket (pl. adattípusok).
 felhasználói nézetek
 - Alkalmasak az információk biztonsági okokból történő elrejtésére is (pl. az alkalmazottak fizetése).
 - Külső séma: a különféle felhasználói nézetek
- A különféle jogosultsággal rendelkező felhasználók különféle felhasználói felületeket látnak.
 - A külső szint számos különböző külső nézetből áll.
 - Az egyes felhasználók számára a valós világ egy nézete olyan formában jelenik meg, amely a felhasználó számára ismert, fontos.
 - A különböző nézeteknek ugyanazon adatok különböző megjelenési formái lehetnek.

Logikai szint

- A logikai szint a következő legmagasabb szint, amely leírja, hogy az adatbázisban milyen adatokat tárolunk, s az adatok milyen kapcsolatban állnak egymással.
 - Logikai séma: az adatbázis logikai struktúrája
 - Ez a szint az egész adatbázis logikai szerkezetét tartalmazza.
 - o Tartalmazza:
 - Egyedek, attribútumok, kapcsolatok
 - Korlátozások
 - Szemantikus információk
 - Biztonsági információk
 - A logikai szint támogatja a külső felhasználói nézeteket és független bármely adattárolási megfontolástól.

Belső szint

- Az adatbázis fizikai megjelenése a számítógépen.
- Fizikai szint: a legalsó szint, amely azt mondja meg, hogy hogyan tároljuk az adatot.
 - Fizikai séma: az adatbázis szerkezete a fizikai szinten
 - Ez a szint lefedi az adatbázis fizikai megvalósítását, abból a célból, hogy az optimális futási időt és a tárhely kihasználás megvalósuljon.
 - Tartalmazza
 - a tárhely elosztását az adatok és indexek számára
 - a tárolandó rekordok leírását
 - × a rekord elhelyezését
 - adattömörítés és kódolás (titkosítás)
 - A DBMS által vezérelve az operációs rendszer kezeli.

ANSI-SPARC 3-rétegű architektúra

Adatfüggetlenség

• A 3-rétegű architektúra fő előnye az adatfüggetlenség: Az architektúra minden egyes magasabb szintje független az alatta elhelyezkedő szinttől.

- Logikai adatfüggetlenség
- Fizikai adatfüggetlenség

ANSI-SPARC 3-rétegű architektúra

Adatfüggetlenség (folyt.)

- Logikai adatfüggetlenség: A logikai szint változtatása nem vonja maga után a külső szint változtatását.
 - o például: új egyedek, attribútumok, korlátozások vagy kapcsolatok hozzáadása a logikai sémához, vagy eltávolítása a logikai sémából anélkül is lehetséges, hogy a külső sémában, vagy alkalmazói programban változás történjen.
- Fizikai adatfüggetlenség: A fizikai séma megváltoztatása nem vonja maga után a logikai séma megváltoztatását.
 - Például: a belső sémát érintő változások, mint például új fájlrendszer kialakítása, vagy tárolási struktúra, tárterület, indexelés változtatása anélkül megoldható, hogy a logikai sémát változtatni kellene.

2-rétegű és 3-rétegű architektúrák

Bővebben: CB

2-rétegű architektúra

- Hagyományos 2-szintű kliens-szerver architektúra
 - Kliens (1. szint): a felhasználó interfészeket kezeli és futtatja az alkalmazásokat
 - Szerver (2. szint): tartalmazza az adatbázist és a DBMS-t

3-rétegű kliens-szerver

Példa

Hová helyezzük az üzleti logikát?

- Különféle lehetőségek:
 - ORM: Object Relational Mapper (pl. Entity Framework)
 - ▼ LINQ (Language Integrated Query) adatbázis elérés SQL nélkül, paraméteres kérdésekkel
 - Kevesebb kézzel írt kód
 - Gyors alkalmazásfejlesztés
 - ORM által generált objektumokhoz kötött üzleti logika

Tárolt eljárások

- ▼ Teljesítmény: gyorsabb futás teljesítményoptimalizáció a DBMS-ben
- Biztonság
- Kód újrafelhasználhatóság

Adatbázis szereplők

DB felhasználók

- Az alábbi felhasználók különböztethetőek meg:
 - azok, akik használják és ellenőrzik az adatbázis tartalmát, és azok, akik tervezik, fejlesztik és fenntartják az adatbázis alkalmazásokat, és
 - azok, akik tervezik és fejlesztik a DBMS szoftvert és a kapcsolódó eszközöket (tools).

Felhasználók

ODBMS fejlesztők:

Az adatbázis-kezelő rendszerek implementálását végzik.

Adatbázis-tervezők:

- Felelősek a konkrét adatbázisok tartalmi, strukturális kialakításáért, továbbá korlátozásokat, eljárásokat és tranzakciókat definiálnak.
- Kommunikálnak a végfelhasználókkal, hogy felmérjék az igényeiket.

Adatbázis programozók:

Számítógépes szakemberek, akik az alkalmazói programokat írják.

Felhasználók (folyt.)

Adatbázis adminisztrátorok (DBA):

- Központi szereppel rendelkezik az adatok, programok és hozzáférés tekintetében.
- × Felelős/feladatai:
 - o az adatbázishoz való hozzáférések biztosítása
 - o koordinálja és monitorozza a működést
 - hatékony működés
 - o az adatbázis periodikus mentése és visszaállítása
 - figyelemmel kíséri, hogy a normál működéshez elegendő tárhely áll-e rendelkezésre

0 ...

Felhasználók (folyt.)

• Végfelhasználók:

➤ Az adatokat lekérdezésekre, jelentésekre használják, néhányan közülük az adatbázis tartalmát is frissítik.

DBMS használatának előnyei és hátrányai

Az adatbázis-kezelő rendszerek használatának előnyei

- Logikai és fizikai adatfüggetlenség
- Korlátozott jogtalan hozzáférés
- Tartós tárolás biztosított a program és objektumok számára
- Hatékony tárolási struktúrák (pl. indexek) hatékony lekérdező folyamatok
- Adatok mentésének és visszaállításának támogatása
- Különböző felhasználói csoportok különböző felhasználói nézetek
- Az adatok komplex kapcsolatrendszerének modellezése
- Hivatkozási korlátozások kezelése
- A tárolt adatokból levonható következtetések deduktív és aktív szabályok által.
 - Aktív adatbázisok, tárolt eljárások, triggerek

Mikor NE használjuk DBMS-t?

• Főbb ellenérvek:

- Magas kezdő beruházási költség és további esetleges hardware igények
- Alapköltségek a rendszer üzemeltetéséhez
- Amikor a DBMS nem szükségszerű
 - Ha az adatbázis nagyon egyszerű, jól meghatározott és ebben változás nem várható
 - O Amikor a DBMS is kevés:
 - ➤ Ha az adatbázis rendszer nem képes kezelni az adatok összetettségét az alkalmazható modellek határai miatt.
 - × Amikor az adatbázis felhasználók speciális igényeit nem tudja a DBMS kiszolgálni.

Kiterjesztett lehetőségek

- Hagyományos alkalmazások
 - Numerikus és szöveges adatbázisok
- Kapcsolódó területek, témák:
 - Tudományos területek
 - XML (eXtensible Markup Language), JSON
 - Képfeldolgozás
 - Audio és Video adatok tárolása és feldolgozása
 - Adattárházak és adatbányászat
 - Térbeli adatbázisok
 - Idősor és hisztorikus adatok
 - Big Data technológiák
 - RDF