References

- [1] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, fourth edition, 2016. 55
- [2] José M. Amigó, Roberto Dale, and Piergiulio Tempesta. A generalized permutation entropy for random processes. *Preprint*, pages 1–9, 2012. arXiv:2003.13728. 17
- [3] Adrian Baddeley. Spatial point processes and their applications. In Weil W., editor, *Stochastic Geometry*. Lecture Notes in Mathematics, pages 1–75. Springer, Berlin, 2007. 14
- [4] David Bailey, Jonathan Borwein, and Neil Calkin. Experimental Mathematics in Action. A K Peters, 2007.
- [5] N. Balakrishnan and C.R. Rao (Editors). Order Statistics: Theory and Methods. North-Holland, 1998. 40, 46, 55
- [6] Miklos Bona. Combinatorics of Permutations. Routledge, second edition, 2012. 17
- [7] Jonathan Borwein and David Bailey. Mathematics by Experiment. A K Peters, 2008. 18
- [8] Bartłomiej Błaszczyszyn and Dhandapani Yogeshwaran. Clustering and percolation of point processes. *Preprint*, pages 1–20, 2013. Project Euclid. 14
- [9] Bartłomiej Błaszczyszyn and Dhandapani Yogeshwaran. On comparison of clustering properties of point processes. *Preprint*, pages 1–26, 2013. arXiv:1111.6017. 14
- [10] Bartłomiej Błaszczyszyn and Dhandapani Yogeshwaran. Clustering comparison of point processes with applications to random geometric models. *Preprint*, pages 1–44, 2014. arXiv:1212.5285. 14
- [11] Oliver Chikumbo and Vincent Granville. Optimal clustering and cluster identity in understanding highdimensional data spaces with tightly distributed points. *Machine Learning and Knowledge Extraction*, 1(2):715–744, 2019. 3, 35
- [12] Yves Coudène. Ergodic Theory and Dynamical Systems. Springer, 2016. 10
- [13] Noel Cressie. Statistic for Spatial Data. Wiley, revised edition, 2015. 14
- [14] H.A. David and H.N. Nagaraja. Order Statistics. Wiley, third edition, 2003. 46
- [15] Robert Devaney. An Introduction to Chaotic Dynamical Systems. Chapman and Hall/CRC, third edition, 2021. 10
- [16] D.J.Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes Volume I: Elementary Theory and Methods. Springer, second edition, 2013. 14
- [17] D.J.Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes Volume II: General Theory and Structure. Springer, second edition, 2014. 14
- [18] David Coupier (Editor). Stochastic Geometry: Modern Research Frontiers. Wiley, 2019. 53
- [19] Ding-Geng Chen (Editor), Jianguo Sun (Editor), and Karl E. Peace (Editor). *Interval-Censored Time-to-Event Data: Methods and Applications*. Chapman and Hall/CRC, 2012. 12
- [20] W. Feller. On the Kolmogorov-Smirnov limit theorems for empirical distributions. *Annals of Mathematical Statistics*, 19(2):177–189, 1948. 31, 55
- [21] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor search using GPU. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops*, Anchorage, AK, 2008. 32, 71
- [22] B.V. Gnedenko and A. N. Kolmogorov. Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, 1954. 34
- [23] Michel Goemans and Jan Vondrák. Stochastic covering and adaptivity. In *Proceedings of the 7th Latin American Theoretical Informatics Symposium*, pages 532–543, Valdivia, Chile, 2006. 53
- [24] R. Goodman. Introduction to Stochastic Models. Dover, second edition, 2006. 9
- [25] Vincent Granville. Estimation of the intensity of a Poisson point process by means of nearest neighbor distances. Statistica Neerlandica, 52(2):112–124, 1998. 14
- [26] Vincent Granville. Applied Stochastic Processes, Chaos Modeling, and Probabilistic Properties of Numeration Systems. Data Science Central, 2018. 10, 18, 34
- [27] Vincent Granville. Statistics: New Foundations, Toolbox, and Machine Learning Recipes. Data Science Central, 2019. 3, 31
- [28] Vincent Granville, Mirko Krivanek, and Jean-Paul Rasson. Simulated annealing: A proof of convergence. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16:652–656, 1996. 33
- [29] Peter Hall. Introduction to the theory of coverage processes. Wiley, 1988. 53
- [30] Jane Hawkins. Ergodic Dynamics: From Basic Theory to Applications. Springer, 2021. 10

- [31] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, 2002. 49
- [32] Aleksandar Ivić. The Riemann's Zeta Function: Theory and Applications. Dover, reprint edition, 2003. 22
- [33] Timothy D. Johnson. Introduction to spatial point processes. *Preprint*, page 2008. NeuroImaging Statistics Oxford (NISOx) group. 14
- [34] Paul Keeler. Simulating a Matérn cluster point process. www.hpaulkeeler.com, 2018. Personal blog. 14
- [35] Paul Keeler. Simulating a Thomas cluster point process. www.hpaulkeeler.com, 2019. Personal blog. 14
- [36] Richard Kershner. The number of circles covering a set. American Journal of Mathematics, 61(2):665–671, 1939. 53
- [37] Samuel Kotz, Tomasz Kozubowski, and Krzystof Podgorski. The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance. Springer, 2001. 50
- [38] K. Krishnamoorthy. Handbook of Statistical Distributions with Applications. Routledge, second edition, 2015. 62
- [39] Faraj Lagum. Stochastic Geometry-Based Tools for Spatial Modeling and Planning of Future Cellular Networks. PhD thesis, Carleton University, 2018. 14
- [40] Günther Last and Mathew Penrose. Lectures on the Poisson Process. Cambridge University Press, 2017.
- [41] G. Last M.A. Klatt and D. Yogeshwaran. Hyperuniform and rigid stable matchings. Random Structures and Algorithms, 2:439–473, 2020. 14
- [42] J. Mateu, C. Comas, and M.A. Calduch. Testing for spatial stationarity in point patterns. In *International Workshop on Spatio-Temporal Modeling*, 2010. 9
- [43] Jesper Møller. Introduction to spatial point processes and simulation-based inference. In *International Center for Pure and Applied Mathematics (Lecture Notes)*, Lomé, Togo, 2018. 14, 22, 25
- [44] Jesper Møller and Frederic Paik Schoenberg. Thinning spatial point processes into Poisson processes. Random Structures and Algorithms, 42:347–358, 2010. 10
- [45] Jesper Møller and Rasmus P. Waagepetersen. An Introduction to Simulation-Based Inference for Spatial Point Processes. Springer, 2003. 14, 22
- [46] Jesper Møller and Rasmus P. Waagepetersen. Statistical Inference and Simulation for Spatial Point Processes. CRC Press, 2007. 14, 22
- [47] Saralees Nadarajah. A modified Bessel distribution of the second kind. Statistica, 67(4):405–413, 2007. 50
- [48] Melvyn B. Nathanson. Additive Number Theory: The Classical Bases. Springer, reprint edition, 2010. 53
- [49] Yosihiko Ogata. Cluster analysis of spatial point patterns: posterior distribution of parents inferred from offspring. Japanese Journal of Statistics and Data Science, 3:367–390, 2020. 14
- [50] Vamsi Paruchuri, Arjan Durresi, and Raj Jain. Optimized flooding protocol for ad hoc networks. *Preprint*, pages 1–10, 2003. arXiv:cs/0311013v1. 53
- [51] Yuval Peres and Allan Sly. Rigidity and tolerance for perturbed lattices. *Preprint*, pages 1–20, 2020. arXiv:1409.4490. 6, 14
- [52] Brian Ripley. Stochastic Simulation. Wiley, 1987. 62
- [53] Karl Sigman. Notes on the Poisson process. New York NY, 2009. IEOR 6711: Columbia University course. 10, 14
- [54] J. Michael Steele. Le Cam's inequality and Poisson approximations. The American Mathematical Monthly, 101(1):48–54, 1994. 19, 45
- [55] Dietrich Stoyan, Wilfrid S. Kendall, Sung Nok Chiu, and Joseph Mecke. Stochastic Geometry and Its Applications. Wiley, 2013. 53
- [56] Gerald Tenenbaum. Introduction to Analytic and Probabilistic Number Theory. American Mathematical Society, third edition, 2015. 18
- [57] Remco van der Hofstad. Random Graphs and Complex Networks. Cambridge University Press, 2016. 55
- [58] Robert Williams. The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover, 1979. 53
- [59] Oren Yakir. Recovering the lattice from its random perturbations. *Preprint*, pages 1–18, 2020. arXiv:2002.01508. 14, 45

- [60] Ruqiang Yan, Yongbin Liub, and Robert Gao. Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines. *Mechanical Systems and Signal Processing*, 29:474–484, 2012. 17
- [61] D. Yogeshwaran. Geometry and topology of the boolean model on a stationary point processes : A brief survey. *Preprint*, pages 1–13, 2018. Researchgate. 14

Index

<i>m</i> -interlacing, 12, 28, 30, 32, 52–54, 64 <i>m</i> -mixture, 28, 30, 52, 53	edge (graph theory), 54 edge effect (statistics), 12, 36 elbow rule, 12, 28, 30, 33
anisotropy, 11, 17, 29	empirical distribution, 8, 17, 25, 30, 38, 40, 43, 47, 54
attractive process, 8	entropy, 17
attractor (distribution), 30, 34, 40, 55	ergodicity, 10, 25, 29, 40 extreme values, 34, 38
Bessel function, 50	, ,
Beta function, 16	filtering (image processing), 32
bias, 36	fixed point algorithm, 40
binomial distribution, 8, 30, 52	Fourier transform, 50
boundary effect, 11–13, 17, 23, 24, 26, 29, 30, 36, 38, 45, 51, 55, 59, 64, 70	fractal dimension, 35
45, 51, 55, 55, 64, 70 Brownian motion, 33	Fréchet distribution, 34
Brownian motion, 50	Gamma function, 34
Cauchy distribution, 34, 43	GPU-based clustering, 28, 32
censored data, 12, 36, 51	graph, 13, 54
central limit theorem, 34, 45, 48	connected components, 13, 29, 54, 58, 67
chaotic convergence, 22, 56	edge, 13
characteristic function, 50	node, 13, 55
child process, 13, 14	path, 13
cluster process, 12–14, 28, 29	random graph, 54
clustering, 32	random NN graph, 54
GPU-based, 28	undirected, 13, 29, 30, 54, 58, 67
supervised, 28 unsupervised, 28	vertex, 13
confidence band, 31	graph theory, 12, 13, 54
confidence interval, 24, 29	grid, 6, 7
connected components, 13, 29, 30, 40, 54, 58, 67	hash table, 17, 57
convergence acceleration, 56	hexagonal lattice, 13
convolution of distributions, 44, 49, 50	hidden model, 13, 17, 25, 39, 45
counting measure, 8	homogeneity, 10, 11, 14
covering (stochastic), 53	homogeneous, 30
density estimation, 14	identifiability, 11, 16, 24, 52
deviate, 62	independent increments, 10, 29
Dirichlet eta function, 18, 21, 35, 57	index, 17, 45
distribution	index discrepancy, 17
binomial, 8, 30, 52	index process, 17
Cauchy, 34, 43, 45, 62	index space, 7, 11, 38, 64, 69
empirical, 47	inhibition, 6
exponential-binomial, 6, 42	intensity function, 7, 14, 23, 29, 30, 32, 33, 58
Fréchet, 34 generalized logistic, 6, 13, 15, 16, 24, 48, 56	interarrival time, 8, 10, 49, 55 standardized, 50
Laplace, 46, 47, 50, 56	interarrival times, 23, 25, 29, 33, 58
location-scale, 7, 11	interlaced processes, 11, 28
logistic, 12, 15, 62	inverse model, 13
Lévy, 34	inverse transform sampling, 15, 47, 56, 62
metalog, 16	P (3) -1) -1) -1
modified Bessel, 50	Kolmogorov-Smirnov test, 55
Poisson, 18	T 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7 7 7 7
Poisson-binomial, 6, 8, 13, 18, 40	Laplace distribution, 50
Rayleigh, 30, 39, 52	lattice, 6, 7, 11, 14
stable distribution, 50	lattice space, 40 Brayaic lattice, 53
triangular, 49	Bravais lattice, 53 congruences, 54
truncated, 43, 49	group theory, 54
uniform, 46, 62	hexagonal, 13, 53
Weibull, 30, 34, 40	index space, 37
domain of attraction, 55 dynamical systems 10, 35, 40, 55	lattice index, 64

lattice space, 11, 12, 28, 38, 52, 54, 66	shifted, 11, 28
perturbed lattice, 6	stationary, 7, 9
semi-regular, 54	stretched, 11, 12
shifted, 12, 13	superimposed, 11 , 28 , 53
stretched, 12	thinned, $\frac{10}{10}$
vertex, 13	point process operations, 10, 14
lattice space, 13	Poisson distribution, 18
Le Cam's theorem, 13, 19, 45, 50	Poisson point process, 18
location-scale distribution, 7, 11	Poisson-binomial distribution, 18, 40
logistic map, 40	Poisson-binomial point process, 18
Lévy distribution, 34	standardized, 11
Lévy flight, 34	pseudo-random number generator, 40
Mahalanobis transformation, 11	quantile, 15
marked point process, 10	fundamental theorem, 15, 47
metalog distribution, 16	quantile function, 13, 15, 30, 47, 49
minimum contrast estimation, 25	quantific function, 15, 15, 50, 47, 45
mixture model, 11, 12, 28	radial distribution, 14, 28
model identifiability, 11, 16	random function, 13, 18, 21
	random graph, 54
moment generating function, 8, 15	random numbers, 40
nearest neighbors, 6, 23, 29, 36, 40, 43, 52, 55	
numerical stability, 40, 46, 49, 56	random permutation, 17
numerical stability, 40, 40, 40, 50	random walk, 34
order statistics, 38, 46	Rayleigh distribution, 30, 39, 52
outliers, 38	Rayleigh test, 30
overfitting, 25	records, 38
overmoning, 20	renewal process, 10, 14
parent process, 13, 14, 30	repulsive process, 6, 8, 31
partition, 52	resampling, 31
permutation	Riemann zeta function, 13, 18, 21, 35
entropy, 17	1
random permutation, 13, 17	scaling factor, 6, 7, 12, 23, 29, 36, 38, 40, 52, 53, 55, 58
perturbed lattice, 6	shifted process, 11, 32, 33, 53
	simulations, 40
perturbed lattice process, 6	spatial process, 28
point count distribution, 8, 23, 25, 29, 30, 36, 52, 55, 58	spatial statistics, 14
	stable distribution, 34, 45, 50
point distribution, 8, 29	standardized arrival times, 50
point process, 6	standardized point process, 11, 30
anisotropic, 11	state space, 6, 23, 24, 28–30, 32, 37, 38, 44, 69, 71
attractive, 8	stationarity, 7, 9, 51, 54
binomial, 6, 8	stochastic geometry, 53
cluster process, 14	stochastic residues, 28
child process, 14	stretching (point process), 11, 12, 30
Matérn, 14	superimposition, 11, 28
Neyman-Scott, 14	symbolic math, 40
parent process, 14	by moone main, 10
ergodic, 10	tessellation, 53
intensity, 58	thinning (point process), 10
interarrival times, 58	tiling, 54
interlaced, 11	transcendental number, 40
marked process, 10	truncated distribution, 43, 49
mixture, 11, 28, 52, 53	truncated distribution, 45, 45
non-homogeneous, 14	vertex (graph theory), 12, 54
perturbed lattice process, 6, 13, 14	visualization, 12
point count distribution, 6, 52	Voronoi tessellation, 53
Poisson, 6, 18, 38, 44	voronoi ucaschaulon, dd
non homogeneous, 10	Weibull distribution, 30, 34, 40
	Wiener process, 33
Poisson-binomial, 6, 18	Within process, 90
radial, 13, 14	
renewal process, 10, 14	
repulsive, 8	