Chapter

Managing the Information System Infrastructure

Based on results of survey data from 2004, 70% of respondents had stolen key information from an employer

Ibas - Data forensics firm, UK

Learning Objectives

- 1 List the essential information systems infrastructure components and describe why they are necessary for satisfying an organization's informational needs.
- Describe solutions organizations use to design a reliable, robust, and secure infrastructure.
- Oescribe how organizations can ensure a reliable and secure infrastructure, plan for potential disasters, and establish IS controls.

Learning Objectives

- 1 List the essential information systems infrastructure components and describe why they are necessary for satisfying an organization's informational needs.
- Describe solutions organizations use to design a reliable, robust, and secure infrastructure.
- Oescribe how organizations can ensure a reliable and secure infrastructure, plan for potential disasters, and establish IS controls.

<u>Infrastructure</u>

 Interconnection of basic facilities and services enabling the area to function properly

The IS Infrastructure

- Google's newest data center The Dalles, OR
- Why there?
 - Fiber-optic network connectivity
 - Access to water for cooling needs
 - Cheap, uninterrupted power from a nearby hydroelectric dam

The Need for an IS Infrastructure

 Businesses rely on IS infrastructure to support business processes, decision making and competitive strategy

Business Processes

- Activities that organizations perform to achieve business goals
 - Core Processes
 - SupportingProcesses

IS Infrastructure

- IS infrastructure components include:
 - 1. Hardware
 - 2. Software
 - 3. Networks
 - 4. Data
 - 5. Facilities
 - 6. Human resources
 - 7. Services

IS Infrastructure: Hardware

- Integral part of the infrastructure:
 - O Computers
 - Networking hardware

IS Infrastructure: Hardware (II)

Issues:

- What technologies to choose
- When to replace equipment
- How to secure infrastructure
- How to assure reliability
- o Etc.

IS Infrastructure: Software

- Software enables companies to utilize their IS hardware
- Issues:
 - O Updates
 - o Fixing bugs
 - O Software licenses
 - o Etc.

IS Infrastructure: Communication and Collaboration

- Help organizations to become powerful
- Enabled by networking hardand software
- Also
 - o Email servers
 - Communication software
 - o Etc.

IS Infrastructure: Communication and Collaboration (II)

Key issue o What types of communication technologies support the organization's goals?

IS Infrastructure: Facilities

- Need for specialized facilities, including:
 - O Electricity
 - O Cooling
 - o Etc.

Potential Threats to IS Facilities

- Key issues:
 - Where to house data centers, etc.
 - O Threats to IS facilities
 - Outside intruders
 - Environmental elements

IS Infrastructure: Human Resources

Need for trained workforceo Influences location decision

IS Infrastructure: Services

 Processes which are not core competencies are often delegated to companies with more experience

Learning Objectives

- 1 List the essential information systems infrastructure components and describe why they are necessary for satisfying an organization's informational needs.
- Describe solutions organizations use to design a reliable, robust, and secure infrastructure.
- ② Describe how organizations can ensure a reliable and secure infrastructure, plan for potential disasters, and establish IS controls.

Managing the Hardware Infrastructure

- Issues to consider:
 - Fluctuating computing demand
 - Large-scale problems
 - System complexity

Fluctuating Computing Demand

- On-demand computing
 - Available resources allocated based on user needs
 - Utility computing
 - On-demand computing rented from external provider
 - Paid on as-needed basis

Solving Large-Scale Problems

Grid Computing

- Combines computing power of a large number of smaller, independent, networked computers
 - Tasks broken down into smaller chunks
- Dedicated vs. heterogeneous grids
 - Acquisition vs. management costs
- O Edge computing
 - Save bandwidth
 - Improved Response time

Managing System Complexity

- Autonomic computing
 - Self-managing systems requiring minimal human intervention to operate

Managing the Software Infrastructure

- Primary issues to consider:
 - O Cost of software
 - O Integration
 - Managing bugs and licenses
 - Fluctuating computing needs

Open-Source Software

- Open-source movement aided by the advent of the Internet
- Source code is freely available for use and/or modification
 - Open-source operating system
 - Linux
 - Used in everything from fridges to personal computers to supercomputers

Open-Source Application Software

- Open-source application software
 - O Apache Web server
 - o Firefox Web browser
 - OpenOffice
- Drawback:
 - Finding customer support may be difficult

Web Services

- Web-based software systems allowing for an interaction of different programs and databases over a network
- Service-oriented architecture

Managing Software Assets

- Managing software bugs
 - Increased complexity of applications prevents errorfree development
 - O Patch management system
- Managing software licensing
 - Hot topic due to problems with piracy
 - O Shrink-wrap license
 - o Enterprise license
 - Software asset management

Application Service Providers

- ASPs provide on-demand software access over the Web
 - Specific software located on the ASP's server
 - Accessed using Web-enabled interfaces
- Benefits:
 - Reduced need to maintain or upgrade software
 - Fixed monthly fee for services
 - Reliability
- Example: Google Calendar

Application Service Providers (II)

- Types of ASPs:
 - O Specialist or functional ASP
 - O Vertical market ASP
 - O Enterprise ASP
 - O Local ASP

Managing the Communication and Collaboration Infrastructure

- Diverse communication needs
- Solution:
 - O Convergence
 - O Increasing mobility

Convergence of Computing and Telecommunication

- Convergence of functionality of devices
 - O Cell phone and PDA
- Convergence within underlying infrastructures
 - O IP convergence
 - Voice over IP
 - Videoconferencing over IP

IP Convergence: VoIP

- Use of Internet technologies for placing telephone calls
 - O High quality of transmission possible
 - Ability to call from any place with Internet connection

IP Convergence: Videoconferencing over IP

- IP used to transmit video data
 - Desktop video conferencing
 - O HP Halo meeting room: \$400,000

Increasing Mobility

- Knowledge workers require access to information from anywhere
 - Communication devices
 - Wireless devices capable of connecting to organization's internal network
- Wireless security concerns

Managing the Data and Knowledge Infrastructure

- Organizations need to find new ways to manage:
 - Data from different sources
 - Data mining
 - O Internal knowledge
 - Knowledge management tools

Data Mining

- Online transaction processing (OLTP)
 - Immediate response to user requests
- Online analytical processing (OLAP)
 - Quickly conducting complex analyses on data stored in a database

Data Mining

 Enhancing business intelligence by combining data from various sources

Operational vs. Informational Systems

Characteristic	Operational System	Informational System
Primary purpose	Run the business on a current basis	Support managerial decision making
Type of data	Current representation of state of the business	Historical or point-in-time (snapshot)
Primary users	Online customers, clerks, salespersons, administrators	Managers, business analysts, customers (checking status, history)
Scope of usage	Narrow and simple updates and queries	Broad and complex queries and analyses
Design goal	Performance	Ease of access and use

Data Warehouses and Data Marts

Data Warehouse

- Integration of multiple large databases and other information sources into a single repository
- Pull together, integrate, and share critical corporate data throughout the firm

Data Mart

- Data warehouse that is limited in scope
- Customized for the decision support applications of a particular end-user group

Increasing Business Intelligence with Knowledge Management

- Knowledge management
 - O The process used to get the greatest value from knowledge assets
- Knowledge management system
 - Collection of tools to generate, store, share, and manage tacit knowledge assets

Knowledge Assets

- Knowledge assets: skills, routines, practices, principles, formulas, methods, heuristics, and intuitions
 - Explicit knowledge assets
 - Tacit knowledge assets

Managing the Facilities Infrastructure

- Ensuring availability
 - High availability facilities
 - O Collocation facilities
- Securing the facilitieso Physical safeguards

Ensuring Availability

High-availability facilities

Collocation facilities

Managing Human Resource Infrastructure

- Need for highly trained workforce may be managed by:
 - o Facility location
 - O Educational grants
 - Human resource policies
 - Outsourcing of human resource services

Managing Human Resource Infrastructure

- Locating facilities in areas with high concentration of people with a certain skill
 - Silicon Valley, CA or Seattle, WA
- Providing education opportunities for existing employees
 - Educational grants
- Human resource policies
 - Flextime, telecommuting
- Outsourcing of human resource services
 - Bangalore, India

Managing the Service Infrastructure

- Increased complexity of IS
 - Services providers address infrastructure needs
 - Outsourcing

Services Providers Addressing Infrastructure Needs

IS Infrastructure Component	Service	Example
Hardware	Utility computing	Organizations pay for processing or data storage on an as-needed basis
Software	Application service provider (ASP)	Organizations use a payroll system hosted on an ASP's server
Communication and collaboration	Videoconferencing	Organizations install HP HALO rooms and pay a monthly fee for usage and support
Data and knowledge	ASP	Data from applications hosted on an ASP's server is stored by the provider
Facilities	Collocation facility	Companies rent space for their servers in a collocation facility

Outsourcing

- Partial or entire responsibility for IS development and/or management given to an outside organization
 - Enables focus on core competencies
 - Outsourced functions
 - Non-core functions
 - E.g., accounting, human resources
 - Some business functions traditionally kept within the organization
 - Information systems security

Learning Objectives

- 1 List the essential information systems infrastructure components and describe why they are necessary for satisfying an organization's informational needs.
- Describe solutions organizations use to design a reliable, robust, and secure infrastructure.
- Oescribe how organizations can ensure a reliable and secure infrastructure, plan for potential disasters, and establish IS controls.

Ensuring a Reliable and Secure Infrastructure

- Variety of threats to IS infrastructure
- Infrastructure reliability may be the most important concern
 - Disaster planning
 - Designing the recovery plan
 - IS controls, auditing and the Sarbanes-Oxley Act

Disaster Planning

- Disaster recovery plan
 - Detailed list of procedures to follow when recovering from a systems-related disaster
- Backup Sites
 - Cold backup site an empty warehouse with all necessary connections for power and communication
 - Hot backup site a fully equipped backup facility
 - Choosing a backup site location
 - different geographic location to minimize the risk of a disaster happening to both systems

Designing the Recovery Plan

- Recovery time objectives
 - Specify the maximum time allowed to recover from a catastrophic event
- Recovery point objectives
 - Specify how current the backup data should be

IS Controls, Auditing and Sarbanes-Oxley Act

- IS controls
 - Specific IT processes designed to ensure reliability of information
 - O Controls should be a combination of three types of controls:
 - Preventive controls
 - Detective controls
 - Corrective controls

Hierarchy of IS Controls

IS Auditing

- IS audit
 - Performed by external auditors to help organizations assess the state of their IS controls
 - To determine necessary changes
 - To assure the IS availability, confidentiality, and integrity
- Risk assessment
 - Determine what type of risks the IS infrastructure faces
- Computer Assisted Auditing Tools (CAAT)
 - Specific software to test applications and data, test data, or simulations.

The Sarbanes-Oxley Act

- Formed as a reaction to large-scale accounting scandals
 - WorldCom, Enron
- Primarily addresses the accounting side of organizations
- COBIT (Control Objectives for Information and Related Technology)
 - Set of best practices
 - Help organizations to maximize the benefits from their IS infrastructure
 - Establish appropriate controls

End of Chapter Content

Opening Case: Managing in the Digital World: "I Googled You!"

- January 1996 Brin and Page create BackRub
- September 1998 Google Inc. began operations
 - PC Magazine named it best search engine of 1998
- 1999 Google has 9 employees
 - more than 500,000 searches a day
- 2000 world's largest search engine
 - 18 million queries a day
- April 2004 Google's first IPO
 - O April 2004 \$85
 - December 2006 \$466

Who Owns Company Data?

- Stealing information from a company is worse than stealing hardware
 - 2004 survey 70% of respondents had stolen key information from an employer
 - 72% reported they had no ethical problems with stealing the information
 - 30% had stolen customer contact information
 - 80% justified their actions by saying they built the database in the first place

Broadband Access Increases

 In 2006, nearly 70% of Internet users in the U.S. had access to broadband connections

Cognitive Radio

- Wireless transmission very popular
- Overcrowding of airways a concern
 - O Dropped calls
 - Wireless frequencies are full
 - Too few wireless towers
 - Environmental interference
- Solution "Cognitive radio"
 - Detects unused portions of signal spectrum
 - Designed for emergency situations
 - Intel the leader in commercialization of the technology

Larry Page and Sergey Brin, Cofounders of Google

- 1st quarter results as a public company: \$805.9 million
- Brin and Page are worth \$12.8 billion each
- Google.org addresses world's most pressing problems
- Developed innovative ways to increase employee morale
 - Roller-hockey games
 - On-site workout and massage rooms
 - One day a week spent on innovation projects

Toyota's Savvy CIO

Problem:

 IT failures due to misalignment between business and IT departments

Solution:

- Creation of cooperative planning process
- Input from corporate headquarters
- Changes in the IT department

Results:

- Deadlines met
- 16% project cost reduction saving millions of dollars

BlackBerry

- Research in Motion (RIM) introduced BlackBerry in 1999
 - More than 3 million users in March 2006
- NTP Inc. sued RIM claiming patent infringement
 - NTP sent notice of their wireless communications patents to wireless companies (including RIM)
 - O RIM agreed to pay NTP \$612.5 million

- Satellite radio
 - O Referred to as "jukebox on steroids"
 - Operates via signal received from loworbiting satellites
 - Prominent players: XM Radio, Sirius, WorldSpace
 - Market share of traditional radio stations is decreasing