

(12) NACH DEM VERTRÄG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
8. April 2004 (08.04.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/028368 A1

(51) Internationale Patentklassifikation⁷: A61B 6/00, 6/02

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).

(21) Internationales Aktenzeichen: PCT/DE2003/003138

(72) Erfinder; und

(22) Internationales Anmeldedatum:
22. September 2003 (22.09.2003)

(75) Erfinder/Anmelder (nur für US): ATZINGER, Franz [DE/DE]; Strindbergstr. 27, 90482 Nürnberg (DE). HERRMANN, Roland [DE/DE]; Riemenschneider Str. 5, 95615 Marktredwitz (DE). KÖHLER, Volkmar [DE/DE]; Am Steinberg 5, 91341 Röttenbach (DE). SCHRAMM, Helmuth [DE/DE]; Muldenweg 8, 91077 Neunkirchen (DE).

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 44 609.1 25. September 2002 (25.09.2002) DE

[Fortsetzung auf der nächsten Seite]

(54) Title: RADIATION IMAGE RECORDING DEVICE

(54) Bezeichnung: BESTRAHLUNGSBILDAUFNAHMEINRICHTUNG

wobei zur Aufnahme eine die Höhe der aktiven Fläche des

(57) Abstract: Disclosed is a radiation image recording device comprising a source of radiation and a radiation receiver which are movable in a vertical direction in order to be positioned relative to a standing patient, and an image processing device for creating an output image based on the recorded image data. The source of radiation (2) and the radiation receiver (3) are movable in a controlled manner into successive image recording positions (I, II, III) via a control device (10) so as to record an area of analysis which exceeds the height of the active area of the digital radiation receiver (3), one radiation image (B1, B2, B3) being recorded in each image recording position. The positions (I, II, III) are defined in such a way that the recorded radiation images (B1, B2, B3) cover the area of analysis while the image processing device (11) is embodied so as to create a full image (G) representing the entire area of analysis based on the image data of the individual radiation images (B1, B2, B3).

(57) Zusammenfassung: Strahlungsbilddaufnahmeeinrichtung mit einer Strahlungsquelle und einem Strahlungsempfänger, die zur Positionierung bezüglich eines stehenden Patienten vertikal bewegbar sind, und mit einer Bildverarbeitungseinrichtung zur Erzeugung eines ausgebaren Bilds anhand der aufgenommenen Bilddaten,

[Fortsetzung auf der nächsten Seite]

WO 2004/028368 A1

(74) Gemeinsamer Vertreter: SIEMENS AKTIENGESELLSCHAFT; Postfach 22 16 34, 80506 München (DE).

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,

TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

digitalen Strahlungsempfängers (3) übersteigenden Untersuchungsbereichs die Strahlungsquelle (2) und der Strahlungsempfänger (3) in aufeinander folgende Bildaufnahmepositionen (I, II, III) über eine Steuerungseinrichtung (10) gesteuert bewegbar sind, in denen jeweils ein Strahlungsbild (B1, B2, B3) aufgenommen wird, wobei die Positionen (I, II, III) derart definiert sind, dass die aufgenommenen Strahlungsbilder (B1, B2, B3) den Untersuchungsbereich abdecken, und wobei die Bildverarbeitungseinrichtung (11) zur Erzeugung eines den gesamten Untersuchungsbereich darstellenden Gesamtbilds (G) anhand der Bilddaten der einzelnen Strahlungsbilder (B1, B2, B3) ausgebildet ist.

Beschreibung

Bestrahlungsbildaufnahmeeinrichtung

5 Die Erfindung betrifft eine Bestrahlungsbildaufnahmeeinrich-
tung mit einer Strahlungsquelle und einem Strahlungsempfän-
ger, die zur Positionierung bezüglich eines stehenden Patien-
ten vertikal bewegbar sind, und mit einer Bildverarbeitungs-
10 einrichtung zur Erzeugung eines ausgebaren Bilds anhand der
aufgenommenen Bilddaten.

In der modernen röntgengestützten Diagnostik kommt es immer häufiger vor, große Untersuchungsbereiche wie beispielsweise die komplette Wirbelsäule oder den Beinbereich, zur Diagnose
15 von Knochenstellungen zu untersuchen. Hierbei wird der Pati-
ent stehend mit der Strahlungsbildaufnahmeeinrichtung, also
einer üblichen Röntgeneinrichtung umfassend eine Röntgenröhre
und einem Röntgenstrahlenempfänger, abgetastet. Der Empfänger
weist in der Regel eine 40 x 120 cm große Filmkassette auf,
20 sofern diese Größe ausreicht, den gesamten Untersuchungsbe-
reich abzubilden. Alternativ ist es bekannt, unter Verwendung
kleinerer Filmkassetten mehrere Speicherfolienbilder, die den
Untersuchungsbereich abbilden, aufzunehmen und diese an-
schließend zusammen zu kleben, so dass sich ein Gesamtbild
25 ergibt. Dieses Vorgehen ist umständlich und kompliziert, im
Übrigen bedarf die Speicherfolie der nachfolgenden Entwick-
lung, was relativ lange Zeit in Anspruch nimmt, so dass die
Diagnose nicht zeitnah zur Aufnahme erfolgen kann.

30 In der DE 42 31 583 A1 ist eine angiographische Röntgendi-
agnostikeinrichtung beschrieben, bei der bei einem liegenden
Patienten durch Schrittverschiebung mehrere Einzelbilder er-
zeugt werden. Die Einzelbilder werden in einen Bildspeicher
einer Laser-Bildwiedergabevorrichtung eingespeichert, wobei
35 Bildzeilen an den Bildrändern weggelassen werden, so dass ein
Bild des gesamten Untersuchungsbereiches auf der Laser-Bild-

wiedergabevorrichtung überlappungsfrei ausgedruckt werden kann.

Der Erfindung liegt damit das Problem zugrunde, eine Strahlungsbildaufnahmeeinrichtung anzugeben, die hier Abhilfe schafft.

Zur Lösung dieses Problems ist bei einer Strahlungsbildaufnahme der eingangs genannten Art umfassend einen digitalen Strahlungsempfänger, also einen bekannten Halbleiter-Flachdetektor, erfindungsgemäß vorgesehen, dass zur Aufnahme eines die Höhe der aktiven Fläche des Strahlungsempfängers übersteigenden Untersuchungsbereichs die Strahlungsquelle und der Strahlungsempfänger in aufeinander folgende Bildaufnahmepositionen über eine Steuerungseinrichtung gesteuert bewegbar sind, in denen jeweils ein Strahlungsbild aufgenommen wird, wobei die Positionen derart definiert sind, dass die aufgenommenen Strahlungsbilder den Untersuchungsbereich abdecken, und wobei die Bildverarbeitungseinrichtung zur Erzeugung eines den gesamten Untersuchungsbereich darstellenden Gesamtbilds anhand der Bilddaten der einzelnen Strahlungsbilder ausgebildet ist.

Die Erfindung schlägt vorteilhaft die schrittweise Abtastung des Untersuchungsbereichs auf, wobei in jeder definierten Bildaufnahmeposition ein Strahlungsbild aufgenommen wird. Eine zentrale Steuerungseinrichtung steuert die Strahlungsquelle und den Strahlungsempfänger in die jeweils definierte Position, nach Aufnahme des Bildes wird dieses aus dem Strahlungsempfänger ausgelesen und in die Bildverarbeitungseinrichtung übertragen. Ist der gesamte Untersuchungsbereich unter Aufnahme mehrerer Bilder abgetastet, erfolgt in der Bildverarbeitungseinrichtung die rechnerische Erzeugung eines den gesamten Untersuchungsbereichs darstellenden Gesamtbilds anhand der Daten der einzelnen Strahlungsbilder. Dieses Gesamtbild kann anschließend ausgegeben und die Diagnose erstellt werden.

Gegenüber dem Stand der Technik weist die erfindungsgemäße Strahlungsbildaufnahmeeinrichtung eine Reihe von Vorteilen auf. Zum einen geht die Erzeugung des Gesamtbilds sehr

5 schnell, da die Bildverarbeitungseinrichtung bei hinreichender Auslegung das Gesamtbild unmittelbar nach Erstellen des letzten Einzelbilds sofort errechnen kann. Die Diagnose kann also quasi unmittelbar nach der Aufnahme des letzten Einzelbilds erfolgen. Darüber hinaus wird vorteilhaft von der Bildverarbeitungseinrichtung ein einziges Gesamtbild, das nach

10 seiner Erstellung sofort ausgegeben werden kann, erzeugt, es muss also nicht mehr umständlich entweder zeitaufwendig entwickelt oder nach dem Entwickeln zusätzlich noch Einzelbilder zusammen geklebt werden etc. Ein weiterer beachtlicher Vor-

15 teil liegt ferner darin, dass dieses Gesamtbild ohne weiteres in einer geeigneten Patientendatenverwaltung archiviert werden kann, was wesentlich einfacher durch Abspeichern auf einem geeigneten Datenträger erfolgen kann, als bisher die übliche Archivierung der Speicherfolienbilder.

20 Ein weiterer beachtlicher Vorteil ist ferner, dass als eine Einrichtung, die zur Durchführung der oben definierten Aufnahmetechnik verwendet werden kann, eine übliche Torax- oder Skelettaufnahmeeinrichtung verwendet werden kann, die nicht

25 allzu sehr hierfür modifiziert werden muss, außer primär hinsichtlich der Bildverarbeitungseinrichtung, die entsprechend ausgelegt sein muss.

30 Insgesamt lässt die erfindungsgemäße Strahlungsbildaufnahmeeinrichtung das schnelle und unkomplizierte und sofort aussagekräftige Erzeugen eines Gesamtbilds eines großen Untersuchungsbereichs, der deutlich größer als die aktive Fläche des Strahlungsempfängers ist, zu.

35 In Weiterbildung der Erfindung kann vorgesehen sein, dass die Steuerungseinrichtung zur automatischen Bestimmung der jeweiligen Positionen anhand der Höhe des Untersuchungsbereichs

sowie der Höhe der aktiven Fläche des Strahlungsdetektors ausgebildet ist. Vor der eigentlichen Bildaufnahme bestimmt der Arzt also, welchen Untersuchungsbereich er abtasten möchte. Beispielsweise soll das linke Bein von der Ferse bis zum 5 Oberschenkelhalsknochen untersucht werden. Er gibt diese Parameter des Patienten in die Steuerungseinrichtung ein, die dann anhand der ihr bekannten aktiven Fläche des Strahlungsdetektors, also der Detektorfläche, die aktiv zur Bildaufnahme genutzt wird, wo also Röntgenstrahlung in Bilddaten umgewandelt wird, die Position errechnet, in die die Strahlungsquelle und der Strahlungsempfänger automatisch bewegt werden muss. Dieses Vorgehen ist sowohl dann möglich, wenn die aktive Fläche des Strahlungsdetektors nicht variabel ist, wie auch bei Detektoren, wo die aktive Fläche variabel ist, d.h. 10 15 wo der Arzt einen bestimmten Detektorbereich auswählen kann, den er zur eigentlichen Bildaufnahme verwenden möchte. Diese Fläche ist wie ausgeführt der Steuerungseinrichtung bekannt, mithin also auch die Höhe der Fläche bezogen auf die Vertikalbewegung, so dass ohne weiteres die relevanten Aufnahmepositionen automatisch ermittelt und automatisch angefahren 20 25 werden können.

Dabei werden zweckmäßigerweise die Strahlungsquelle und der Strahlungsempfänger synchron bewegt, d.h. sie werden gleichzeitig von einer Position in die nächste verfahren. Natürlich ist auch ein asynchroner Bewegungsbetrieb erforderlich, bei dem zunächst erst die eine und dann anschließend die andere Komponente bewegt wird. Die Bewegung erfolgt stets symmetrisch, d.h. immer um die gleiche Wegstrecke, so dass sich die 30 Strahlungsquelle und der Strahlungsempfänger bei der Aufnahmearbeit, bei der der stehende Patient abgetastet wird, stets in einer horizontalen Ebene gegenüberstehen, sie liegen also immer in der gleichen Ebene.

35 Die Bewegung von einer Aufnahmeposition in die nächste sowie die Bildaufnahme in der jeweiligen Aufnahmeposition erfolgt vorteilhaft automatisch. Wird also die Bildaufnahme angesto-

ßen, so verfährt nach Ermitteln der einzelnen Aufnahmepositionen die Steuerungseinrichtung die Strahlungsquelle und den Strahlungsempfänger, bei dem es sich z.B. um einen 40 x 40 cm Bildempfänger handelt, von einer Ausgangsposition, in die 5 beide Komponenten stets als Grundstellung gefahren werden, in die erste Aufnahmeposition. Ist dies erreicht, erfolgt automatisch die Bildaufnahme, wobei nach Auslesen des aufgenommenen Einzelbilds beide in die nächste Aufnahmeposition verfahren werden, wo erneut die Aufnahme erfolgt etc. Dieses Prozess 10 dore erfolgt so lange, bis das letzte Bild aufgenommen wurde, wonach beide Komponenten z.B. wieder in die Ausgangsstellung verfahren werden. Parallel hierzu beginnt die Bildverarbeitungseinrichtung sofort mit der Verarbeitung der Einzelbild- 15 daten zur Erstellung des Gesamtbilds. Auch dies erfolgt zweckmäßigerweise automatisch, so dass der Arzt ab dem Betätigen des Startknopfes eigentlich nichts mehr bis zur endgültige Bildausgabe unternehmen muss.

Wie beschrieben ist die Bildverarbeitungseinrichtung derart 20 ausgebildet, dass sie anhand der Einzelbilder ein Gesamtbild, das den gesamten Untersuchungsbereich zu diagnostischen Zwecken exakt abgebildet und genau aufgelöst zeigt, ausgebildet. Sie muss also im Stande sein, zwei aneinander grenzende Bilder des Untersuchungsbereichs so bezüglich einander zu positionieren und zu verbinden, dass sich keine Kanten oder Versätze ergeben und der Untersuchungsbereich, z.B. der Unterschenkel, hinsichtlich der aufgenommenen Struktur genau abgebildet ist. Hierzu ist es nach einer ersten Erfindungsausgestaltung zweckmäßig, wenn die Positionen, in denen die Aufnahmen erfolgen, derart definiert sind, dass sich zwei nacheinander aufgenommene Bilder randseitig überlappen. Es finden 25 sich also in zwei nacheinander aufgenommenen Bildern randseitig die gleichen Strukturen wieder, anhand welcher die Bildverarbeitungseinrichtung z.B. durch Verwendung geeigneter Kanten detektionsalgorithmen oder ähnlicher Algorithmen, die 30 diese Gemeinsamkeiten in den Bildern erfassen, die genaue Ausrichtung beider Bilder zueinander ermitteln und diese ex-

akt überlagern kann. Dies erfolgt natürlich derart, dass im erzeugten Gesamtbild keine überlagerungsbedingten Kanten, Helligkeitsunterschiede etc. sichtbar sind. Die Überlagerung sollte dabei nicht allzu groß sein, ausgehend von einem 40 x 5 40 cm Bildempfänger ist eine Überlagerung von beispielsweise 3 - 5 cm denkbar. In einem solchen relativ schmalen Bereich sind bereits hinreichende strukturelle Gemeinsamkeiten vorhanden, die eine exakte Ausrichtung und Überlappung beider Bilder seitens der Bildverarbeitungseinrichtung ermöglichen.

10

Eine alternative Erfindungsausgestaltung sieht dazu vor, dass die Positionen derart definiert sind, dass zwei nacheinander aufgenommene Bilder im Wesentlichen unmittelbar aneinander anschließen. Die Überlappung beträgt hier also nur wenige 15 Millimeter. Die Erzeugung des Gesamtbilds beruht hier primär darauf, dass zum einen Strahlungsquelle und Strahlungsempfänger exakt in die vordefinierten Positionen verfahren werden können, zum anderen, dass sich der Patient hierbei auch nicht bewegt. Beide Bilder werden quasi unmittelbar aneinander angeschlossen. Auch hier kann natürlich die Bildverarbeitungseinrichtung eine Analyse des Randbereichs hinsichtlich übereinstimmender Strukturen vornehmen, sofern solche in dem nur wenige Millimeter betragenden Überlappungsbereich auftreten. 20 Alternativ zur Analyse der beiden Randbereiche ist es auch 25 denkbar, unter Verwendung geeigneter Algorithmen nach sich im ersten und im zweiten Bild fortsetzenden Strukturen zu suchen. Während beispielsweise im zuerst aufgenommenen Bild die Kanten eines Knochens detektiert, so wird im nachfolgend aufgenommenen Bild ebenfalls diese Kanten ermittelt und beide 30 Bilder so zueinander positioniert, dass die Kanten deckungsgleich positioniert bzw. sich exakt fortsetzen.

Das Gesamtbild kann entweder in gegebenenfalls verkleinertem Format als Hartkopie, z.B. auf eine Speicherfolie geschrieben, 35 auf einen Film aufbelichtet werden oder an einem Monitor ausgebbar sein. Für die schnelle Diagnose ist natürlich die Ausgabe am Monitor zwingend. Dabei kann das Gesamtbild an dem

Monitor im Aufnahmeformat oder in einem größeren Format ausgegeben werden. Da der Monitor natürlich kleiner ist als der aufgenommene Untersuchungsbereich, erfolgt die Betrachtung des deutlich größeren Gesamtbilds durch einfaches Verschieben des Gesamtbilds am Monitor, was durch Scrollen möglich ist. Daneben besteht natürlich auch die Möglichkeit, sich das Gesamtbild gegenüber dem eigentlichen Aufnahmeformat vergrößert darstellen zu lassen, um etwaige Strukturen noch größer gezeigt zu bekommen.

10

Die Strahlungsquelle und der Strahlungsempfänger sind zweckmäßigerweise an gegebenenfalls teleskopierbaren Decken- oder Bodenstativen angeordnet, die eine einfache automatische Verschiebung ermöglichen. Hierfür ist eine geeignete Mechanik vorgesehen, die insbesondere ein exaktes Positionieren beider Komponenten in der jeweils definierten Aufnahmeposition ermöglicht, um die Einzelbilder, wie vorher über der Steuerungseinrichtung definiert, aufnehmen zu können.

20

Aus konstruktiven Gründen kann vor allem der Strahlungsempfänger, also der Festkörperdetektor, nicht bis unmittelbar auf den Boden gefahren werden, d.h. die aktive Fläche liegt immer um eine gewisse Wegstrecke oberhalb des Bodens. Für Beinaufnahmen ist es aber erforderlich, dass zumindest der Fersenknöchen abgebildet wird. Um hier Abhilfe zu schaffen, ist erfindungsgemäß ein den Patienten aufnehmendes Podest mit Halteeinrichtungen für den Patienten vorgesehen. Dieses Podest, auf das sich der Patient zu stellen hat, gleicht diesen konstruktiv bedingten Versatz aus, so dass also ohne weiteres der Fersenknöchen mit aufgenommen sein muss. Die Halteeinrichtungen sind dazu vorgesehen, dass der Patient fest und unbeweglich steht, da er natürlich während der Dauer der Aufnahme der mehreren Einzelbilder seine Position nicht ändern darf.

35

Dabei können die Halteeinrichtungen als Haltegriffe ausgebildet sein, die höhenvariabel sind, so dass sich unterschied-

lich große Personen optimal festhalten können. Auch ist es denkbar, die Haltemittel als entsprechende Bänder oder der gleichen auszulegen, mit denen der Patient in seiner Position festgeschnallt wird.

5

Zweckmäßigerweise ist am Podest ferner an der zum Strahlungsempfänger weisenden Seite eine strahlungstransparente Platte vorgesehen die verhindert, dass der Patient mit dem Strahlungsempfänger in Berührung kommt.

10

Weiter Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus dem im folgenden beschriebenen Ausführungsbeispiel sowie anhand der Zeichnungen. Dabei zeigen:

15

Fig. 1 eine Prinzipskizze einer erfindungsgemäßen Strahlungsbildaufnahmeeinrichtung, und

Fig. 2 eine Prinzipskizze zur Darstellung der "Verschmelzung" dreier Einzelbilder zur Erzeugung eines Gesamtbilds.

20

Fig. 1 zeigt eine erfindungsgemäße Strahlungsbildaufnahme 1 bestehend aus einer Strahlungsquelle 2, hier einem Röntgenstrahler, sowie einem Strahlungsempfänger 3, hier einem digitalen Festkörperbilddetektor. Die Strahlungsquelle 2 ist an einem Stativ 4 mit einer teleskopierbaren Stange 5 angeordnet, kann also wie durch den Doppelpfeil A dargestellt vertikal bewegt werden. Entsprechendes gilt für den Strahlungsempfänger 3, auch er ist an einem Stativ 6 angeordnet und, wie durch den Doppelpfeil B dargestellt, ebenfalls vertikal bewegbar. Während das Stativ 4 deckengestützt ist, handelt es sich bei dem Stativ 6 um ein Bodenstativ.

35

Nahe dem Strahlungsempfänger ist ein Podest 7 vorgesehen, auf das sich der Patient P zur Aufnahme stellen muss. Am Podest 7 sind zum einen beidseitige Haltemittel 8 in Form von vertikal bewegbaren Haltegriffen (siehe Doppelpfeil C) angeordnet, an

denen sich der Patient festhalten kann, da er zur Bildaufnahme sehr ruhig stehen muss. Ferner ist eine rückseitige strahlungstransparente Platte 9 vorgesehen, die aus Schutzgründen angeordnet ist und verhindert, dass der Patient den Strahlungsempfänger 3 berührt.

Die erfindungsgemäße Strahlungsbildaufnahmeeinrichtung umfasst ferner eine zentrale Steuerungseinrichtung 10, der eine Bildverarbeitungseinrichtung 11 sowie ein Monitor 12 zugeordnet ist. Die Steuerungseinrichtung 10 dient dazu, die Verschiebung der Strahlungsquelle 2 und des Strahlungsempfängers 3 in der Vertikalen exakt zu steuern, so dass unterschiedliche Aufnahmepositionen angefahren werden können, und um den Bildaufnahmebetrieb zu steuern. Die Bildverarbeitungseinrichtung 11 dient dazu, aus den aufgenommenen Einzelbildern ein Gesamtbild zu errechnen, das anschließend am Monitor 12 aufgenommen wird.

Im gezeigten Ausführungsbeispiel soll das rechte Bein des Patienten P aufgenommen und als Gesamtbild dem Arzt ausgegeben werden. Hierzu gibt der Arzt der Steuerungseinrichtung 10 über ein geeignetes, hier nicht näher gezeigtes Eingabemittel (z.B. eine Tastatur oder dergleichen) die geometrischen Daten des Untersuchungsbereichs, hier also des rechten Beins, ein. Er muss definieren, von wo bis wo der Untersuchungsbereich bezogen auf die Vertikale verläuft. Dieser Untersuchungsbereich ist hier deutlich größer als die aktive Fläche des Strahlungsempfängers 3. Um ihn nun exakt in einem Gesamtbild abbilden zu können ist es erforderlich, mehrere einzelne Aufnahmen in unterschiedlichen Aufnahmepositionen zu erstellen, um daraus ein Gesamtbild errechnen zu können. Ist nun der Untersuchungsbereich in einer vertikalen Position und Länge definiert, so errechnet die Steuerungseinrichtung 10 die Positionen der Strahlungsquelle 2 und des Strahlungsempfängers 3, in die sie gefahren werden müssen, um einzelne Bilder vom Untersuchungsbereich aufzunehmen, die diesen insgesamt abbilden. Dies ist seitens der Steuerungseinrichtung 10 ohne wei-

teres möglich, da sie zum einen aufgrund der Eingabe der entsprechenden Daten über den Arzt den Untersuchungsbereich genau kennt und lokalisieren kann, zum anderen ist ihr die aktive Fläche des Strahlungsempfängers 3, also die Fläche, in der tatsächlich der Untersuchungsbereich abbildende Bilddaten generiert werden, bekannt. Hieraus können nun ohne weiteres die jeweiligen Aufnahmepositionen ermittelt werden, in die die Strahlungsquelle 2 und der Strahlungsempfänger 3 gebracht werden müssen, um den Untersuchungsbereich abzubilden. Im gezeigten Ausführungsbeispiel sind drei Aufnahmepositionen vorgesehen. Ausgehend von einer untersten Aufnahmeposition I, in die die Steuerungseinrichtung den die Strahlungsquelle und den Strahlungsempfänger, ausgehend von einer nicht gezeigten Ausgangsposition, verfährt, erfolgt dort eine erste Bildaufnahme, die das Bein des Patienten vom Fersenknochen bis beispielsweise unterhalb des Knies zeigt. Nach erfolgter Aufnahme, die ebenfalls über die Steuerungseinrichtung 10 gesteuert wird, werden die Bilddaten dieses ersten Bildes ausgelesen und an die Bildverarbeitungseinrichtung 11 gegeben. Anschließend werden Strahlungsquelle 2 und Strahlungsempfänger 3 in die Aufnahmeposition II verfahren, wobei die Positionen über geeignete Positionserfassungsmittel jeweils exakt bestimmt werden. Dort angekommen erfolgt die Aufnahme eines zweiten Einzelbilds, das das Bein des Patienten unterhalb des Knies bis Mitte des Oberschenkels zeigt. Nach erfolgter Aufnahme und Auslesen der Bilddaten erfolgt eine dritte Verschiebung in die dritte Aufnahmeposition III, wo nach Erreichen einer dritten Bildaufnahme erfolgt, die den Untersuchungsbereich von Mitte des Oberschenkels bis zur Hüfte zeigt. Ist auch dieses Bild aufgenommen, wird es ausgelesen und an die Bildverarbeitungseinrichtung 11 gegeben, in der dann drei Einzelbilder vorliegen. Anhand dieser drei Einzelbilder wird nun ein Gesamtbild rechnerisch erzeugt, das dann am Monitor 12 ausgegeben wird.

eine gewisses Stück überlappen. Ausgehend von einem ca. 40 x 40 cm-Bildempfänger, dessen aktive Fläche also z.B. 40 x 40 beträgt, kann die Überlappung beispielsweise 3 oder 5 cm betragen. Dies ist zweckmäßig, damit die Bildverarbeitungs-5 einrichtung 11 unter Verwendung geeigneter Algorithmen deckungsgleiche Bereiche in zwei nacheinander aufgenommenen Bildern detektieren kann und so die Bilder exakt bezüglich einer positionieren kann, so dass sich ein einheitliches Gesamtbild ohne Kanten und Helligkeitsunterschiede etc. ergibt. 10 Alternativ dazu können die Aufnahmepositionen auch so gewählt werden, dass die Bilder quasi nahtlos aneinander schließen, wobei dann die Bildverarbeitungseinrichtung 11 unter Verwendung geeigneter Algorithmen in zwei nacheinander aufgenommenen Bildern nach sich fortsetzenden Strukturen sucht, um bei- 15 de Bilder bezüglich einander ausrichten zu können.

In jedem Fall erfolgt der gesamte Betrieb automatisch über die Steuerungseinrichtung 10. Sind dieser die eingangs genannten Parameter bezüglich des Untersuchungsbereichs be-20 kannt, so erfolgt die automatische Ermittlung der Aufnahmepositionen je nachdem, welcher Bildverarbeitungsmodus (also kantenüberlappend oder unmittelbar anschließend) gewählt wird, was z.B. der Arzt selber wählen kann. Ist dies alles definiert, so muss der Arzt lediglich noch den Start-Knopf an 25 der Steuerungseinrichtung 10 drücken, wonach der gesamte Bildaufnahme- sowie Verschiebe- wie auch Bildauswerteprozess automatisch abläuft.

Alternativ zur Eingabe etwaiger Parameter bezüglich des Untersuchungsbereichs ist es natürlich auch denkbar, dass der Arzt den Untersuchungsbereich dadurch definiert, dass er den Strahlungsdetektor in eine erste Position und in eine zweite Position verfährt, die quasi die Positionen für das erste sowie für das letzte aufgenommene Bild definieren. Hier erfolgt 30 also quasi die Festlegung des Untersuchungsbereichs unmittelbar im Koordinatensystem der Bewegungsmimik des Strahlungsempfängers. Ausgehend von diesen beiden Positionen können 35

dann die jeweiligen dazwischen liegenden Aufnahmepositionen ermittelt werden. Dabei ist es natürlich möglich, dass die gesamte Länge des Untersuchungsbereichs nicht genau ein Vielfaches der Höhe der aktiven Fläche des Empfängers, unter Berücksichtigung etwaiger Überlappungen, darstellt. Zu diesem Zweck ist es denkbar, durch entsprechende Blenden an der Strahlungsquelle bei der letzten Aufnahme nur einen Teilbereich zu bestrahlen etc. Es sind also unterschiedliche Varianten denkbar, wie die Definition der Position sowie der Länge des Untersuchungsbereichs erfolgen kann.

Fig. 2 zeigt nun in Form einer Prinzipskizze, wie anhand dreier Einzelbilder ein Gesamtbild erzeugt wird. Im gezeigten Beispiel wurden drei Einzelbilder B1, B2 und B3 aufgenommen. Als erstes wurde das Einzelbild B1 aufgenommen, das den größten Teil des Unterschenkels bis kurz unterhalb des Knies zeigt. Nachfolgend wird das Einzelbild B2 aufgenommen, das nun das Knie mit einem Teil des Oberschenkels zeigt. Schließlich wird Einzelbild B3 aufgenommen, das den Rest des Oberschenkels mit dem Oberschenkelhalsknochen zeigt.

Zur einfachen Anordnung der Einzelbilder zueinander wurden die Bilder so aufgenommen, dass sie sich teilweise überlappen. In jedem Bild findet sich ein Überlappungsbereich zum davor aufgenommenen Bild, also ein Bereich, wo die aufgenommene Struktur insoweit deckungsgleich ist. Dies ist im Bild B1 der obere schmale Randbereich Ü1, Einzelbild B2 weist ebenfalls den Überlappungsbereich Ü1 am unteren Rand auf, am oberen Rand findet sich ein Überlappungsbereich Ü2, der sich gleichermaßen im danach aufgenommenen Einzelbild B3 wiederfindet. Anhand dieser Überlappungsbereiche ist nun die Bildverarbeitungseinrichtung 11 imstande, unter Verwendung geeigneter Analysealgorithmen zwei nachfolgende Bilder exakt bezüglich einander auszurichten und diese im Bereich der Überlappungsbereiche zu überlappen und so ein Gesamtbild G zu erzeugen, das den gesamten Untersuchungsbereich vom Fuß bis zum Oberschenkelhals zeigt. Dabei ist die Bildverschmelzung der-

art, dass sich im Bereich der Übergänge eines Einzelbilds zum anderen keine Kanten, Helligkeitsunterschiede etc. ergeben.

Das auf diese Weise erzeugte Gesamtbild wird nun zweckmäßig-
5 gerweise am Monitor 12 ausgegeben. Da dieser von seiner Bild-
fläche kleiner ist als das Gesamtbild G, das zweckmäßigerwei-
se den Untersuchungsbereich 1 : 1 zeigt, kann am Monitor 12
nur ein Teil des Gesamtbilds G dargestellt werden. Über eine
geeignete Scroll-Einrichtung kann nun das Bild ohne weiteres
10 am Monitor 12 verschoben werden, wie durch den Doppelpfeil D
dargestellt ist.

Neben der Darstellung des digitalen Gesamtbilds B am Monitor
ist es auch ohne weiteres möglich, dieses zu archivieren und
15 auf einen Datenträger, im gezeigten Beispiel eine CD-ROM 13,
zu speichern. Aufgrund des immensen Speicherplatzes, den ein
solcher Datenträger aufweist, können natürlich eine Vielzahl
weiterer Gesamtbilder (wie auch natürlich Einzelbilder) dort
20 abgelegt werden, so dass sich hierdurch eine wesentlich
zweckmäßigeren und komfortableren Archivierung erzielen lässt,
als wenn die im Stand der Technik verwendeten Speicherfolien
abgelegt werden müssten.

Patentansprüche

1. Strahlungsbildaufnahmeeinrichtung mit einer Strahlungsquelle und einem Strahlungsempfänger, die zur Positionierung bezüglich eines stehenden Patienten vertikal bewegbar sind, und mit einer Bildverarbeitungseinrichtung zur Erzeugung eines ausgebaren Bilds anhand der aufgenommenen Bilddaten, dadurch gekennzeichnet, dass zur Aufnahme eines die Höhe der aktiven Fläche des digitalen Strahlungsempfängers (3) übersteigenden Untersuchungsbereichs die Strahlungsquelle (2) und der Strahlungsempfänger (3) in aufeinander folgende Bildaufnahmepositionen (I, II, III) über eine Steuerungseinrichtung (10) gesteuert bewegbar sind, in denen jeweils ein Strahlungsbild (B1, B2, B3) aufgenommen wird, wobei die Positionen (I, II, III) derart definiert sind, dass die aufgenommenen Strahlungsbilder (B1, B2, B3) den Untersuchungsbereich abdecken, und wobei die Bildverarbeitungseinrichtung (11) zur Erzeugung eines den gesamten Untersuchungsbereich darstellenden Gesamtbilds (G) anhand der Bilddaten der einzelnen Strahlungsbilder (B1, B2, B3) ausgebildet ist.
2. Strahlungsbildaufnahmeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Steuerungseinrichtung (10) zur automatischen Bestimmung der jeweiligen Positionen (I, II, III) anhand der Höhe des Untersuchungsbereichs sowie der Höhe der aktiven Fläche des Strahlungsdetektors (3) ausgebildet ist.
- 30 3. Strahlungsbildaufnahmeeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Strahlungsquelle (2) und der Strahlungsempfängers (3) synchron bewegbar sind.
- 35 4. Strahlungsbildaufnahmeeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Bewegung von einer Aufnahmeposition (I,

II, III) in die nächste sowie die Bildaufnahme in der jeweiligen Aufnahmeposition (I, II, III) automatisch erfolgt.

5. Strahlungsbildaufnahmeeinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Positionen derart definiert sind, dass sich zwei nacheinander aufgenommene Bilder (B1, B2, B3) randseitig überlappen.

10 6. Strahlungsbildaufnahmeeinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Positionen (I, II, III) derart definiert sind, dass zwei nacheinander aufgenommene Bilder (B1, B2, B3) im Wesentlichen unmittelbar aneinander anschließen.

15 7. Strahlungsbildaufnahmeeinrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Bildverarbeitungseinrichtung (11) zur Aneinanderreihung zweier nacheinander aufgenommener Bilder (B1, B2, B3) durch Analyse der Überlappungsbereiche (Ü1, Ü2) oder durch Analyse der Bilder (B1, B2, B3) im aneinanderzureihenden Randbereich sowie durch nachfolgende Ausrichtung der Bilder (B1, B2, B3) ausgebildet ist.

25 8. Strahlungsbildaufnahmeeinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Gesamtbild (G) in gegebenenfalls verkleinertem Format als Hartkopie oder an einem Monitor (12) ausgebbar ist.

30 9. Strahlungsbildaufnahmeeinrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Gesamtbild (G) an einem Monitor (12) im Aufnahmeformat oder einem größeren Format ausgebbar und durch 35 Scrollen am Monitor (12) verschiebbar ist.

10. Strahlungsbildaufnahmeeinrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Strahlungsquelle (2) und der Strahlungsempfänger (3) an gegebenenfalls teleskopierbaren Decken- oder

5 Bodenstativen (4, 6) angeordnet sind.

11. Strahlungsbildaufnahmeeinrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass ein den Patienten (P) aufnehmendes Podest (7)

10 mit Halteeinrichtungen (8) für den Patienten vorgesehen ist.

12. Strahlungsbildaufnahmeeinrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Halteeinrichtungen als Haltegriffe (8) ausgebildet sind.

15

13. Strahlungsbildaufnahmeeinrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass am Podest (7) an der zum Strahlungsempfänger (3) weisenden Seite eine strahlungstransparente Platte (9) angeordnet

20 ist.

FIG 1

FIG 2

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61B6/00 A61B6/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 6 078 699 A (VAN EEUWIJK ALEXANDER H W ET AL) 20 June 2000 (2000-06-20) column 5, line 46 -column 66 -----	1,3,5-13
Y	EP 1 223 751 A (EASTMAN KODAK CO) 17 July 2002 (2002-07-17) paragraphs '0005!, '0006!, '0009! -----	1,3,5-13
A	US 2002/018589 A1 (BEUKER ROB ANNE ET AL) 14 February 2002 (2002-02-14) paragraphs '0031!-'0033! -----	2,4
A		1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the International search report

22 January 2004

29/01/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Knüpling, M

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 03/03138

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 6078699	A	20-06-2000	EP	0861556 A2		02-09-1998
			WO	9808338 A2		26-02-1998
			JP	11514191 T		30-11-1999
EP 1223751	A	17-07-2002	US	2002081010 A1		27-06-2002
			EP	1223751 A1		17-07-2002
US 2002018589	A1	14-02-2002	WO	0195109 A2		13-12-2001
			EP	1290557 A2		12-03-2003
			JP	2003536134 T		02-12-2003

A. KLASIFIZIERUNG DES ANMELDUNGS-
IPK 7 A61B6/00 A61B

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 A61B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, INSPEC, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	US 6 078 699 A (VAN EEUWIJK ALEXANDER H W ET AL) 20. Juni 2000 (2000-06-20) Spalte 5, Zeile 46 -Spalte 66	1,3,5-13
Y	EP 1 223 751 A (EASTMAN KODAK CO) 17. Juli 2002 (2002-07-17)	1,3,5-13
A	Absätze '0005!, '0006!, '0009!	2,4
A	US 2002/018589 A1 (BEUKER ROB ANNE ET AL) 14. Februar 2002 (2002-02-14) Absätze '0031!-'0033!	1

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des internationalen Recherchenberichts

22. Januar 2004

29/01/2004

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Knüpling, M

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/DE 03/03138

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 6078699	A	20-06-2000	EP WO JP	0861556 A2 9808338 A2 11514191 T		02-09-1998 26-02-1998 30-11-1999
EP 1223751	A	17-07-2002	US EP	2002081010 A1 1223751 A1		27-06-2002 17-07-2002
US 2002018589	A1	14-02-2002	WO EP JP	0195109 A2 1290557 A2 2003536134 T		13-12-2001 12-03-2003 02-12-2003

10/527434

DT15 Rec'd PCT/PTO 11 0 MAR 2005

14

Neue Patentansprüche

1. Strahlungsbildaufnahmeeinrichtung mit einer Strahlungsquelle und einem digitalen Strahlungsempfänger, die zur Positionierung bezüglich eines stehenden Patienten vertikal bewegbar sind, und mit einer Bildverarbeitungseinrichtung zur Erzeugung eines ausgebaren Bilds anhand der aufgenommenen Bilddaten, dadurch gekennzeichnet, dass zur Aufnahme eines die Höhe der aktiven Fläche des digitalen Strahlungsempfängers (3) übersteigenden Untersuchungsbereichs die Strahlungsquelle (2) und der Strahlungsempfänger (3) in aufeinander folgende Bildaufnahmepositionen (I, II, III) über eine Steuerungseinrichtung (10), die zur automatischen Bestimmung der jeweiligen Positionen (I, II, III) anhand der Höhe des Untersuchungsbereichs sowie der Höhe der aktiven Fläche des Strahlungsdetektors (3) ausgebildet ist, gesteuert bewegbar sind, in denen jeweils ein Strahlungsbild (B1, B2, B3) aufgenommen wird, wobei die Positionen (I, II, III) derart definiert sind, dass die aufgenommenen Strahlungsbilder (B1, B2, B3) den Untersuchungsbereich abdecken, und wobei die Bildverarbeitungseinrichtung (11) zur Erzeugung eines den gesamten Untersuchungsbereich darstellenden Gesamtbilds (G) anhand der Bilddaten der einzelnen Strahlungsbilder (B1, B2, B3) ausgebildet ist.
2. Strahlungsbildaufnahmeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Strahlungsquelle (2) und der Strahlungsempfänger (3) synchron bewegbar sind.
3. Strahlungsbildaufnahmeeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Bewegung von einer Aufnahmeposition (I, II, III) in die nächste sowie die Bildaufnahme in der jeweiligen Aufnahmeposition (I, II, III) automatisch erfolgt.

4. Strahlungsbildaufnahmeeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Positionen derart definiert sind, dass sich zwei nacheinander aufgenommene Bilder (B1, B2, B3) randseitig überlappen.

5. Strahlungsbildaufnahmeeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Positionen (I, II, III) derart definiert sind, dass zwei nacheinander aufgenommene Bilder (B1, B2, B3) im Wesentlichen unmittelbar aneinander anschließen.

6. Strahlungsbildaufnahmeeinrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Bildverarbeitungseinrichtung (11) zur Aneinanderreihung zweier nacheinander aufgenommener Bilder (B1, B2, B3) durch Analyse der Überlappungsbereiche (Ü1, Ü2) oder durch Analyse der Bilder (B1, B2, B3) im aneinanderzureihenden Randbereich sowie durch nachfolgende Ausrichtung der Bilder (B1, B2, B3) ausgebildet ist.

7. Strahlungsbildaufnahmeeinrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Gesamtbild (G) in gegebenenfalls verkleinertem Format als Hartkopie oder an einem Monitor (12) ausgebbar ist.

8. Strahlungsbildaufnahmeeinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Gesamtbild (G) an einem Monitor (12) im Aufnahmeformat oder einem größeren Format ausgebbar und durch Scrollen am Monitor (12) verschiebbar ist.

9. Strahlungsbildaufnahmeeinrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Strahlungsquelle (2) und der Strahlungs-

empfänger (3) an gegebenenfalls teleskopierbaren Decken- oder Bodenstativen (4, 6) angeordnet sind.

10. Strahlungsbildaufnahmeeinrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein den Patienten (P) aufnehmendes Podest (7) mit Halteeinrichtungen (8) für den Patienten vorgesehen ist.

11. Strahlungsbildaufnahmeeinrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Halteeinrichtungen als Haltegriffe (8) ausgebildet sind.

12. Strahlungsbildaufnahmeeinrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass am Podest (7) an der zum Strahlungsempfänger (3) weisenden Seite eine strahlungstransparente Platte (9) angeordnet ist.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.