QUIZ 11

ADRIAN PĂCURAR

Time: 20 minutes

Problem 1. Given $f(x) = x^2 - 2$ and initial guess $x_1 = 1$, use Newton's method to the approximations x_2 and x_3 for roots of f.

Problem 2. Notice that $f(x) = x^2 - 1$ has two roots, ± 1 . Using initial guess $x_1 = 1$, use Newton's Method to find x_{2016} . (Hint: what happens if you plug in the root of f into Newton's formula. Compute x_2 and x_3 , then give an answer based on any pattern you see).

Problem 3. The equation for the slant asymptote of the curve $y = \frac{2x^3 + 4}{x^2 - x + 1}$ is (b) 2 (c) $x^2 - x + 1$ (a) 2x - 2(d) 2x (e) 2x + 2

Problem 4. Find the antiderivatives of the following functions

a)
$$f(x) = 2x$$
, so $F(x) =$ ______

b)
$$f(x) = \cos x$$
, so $F(x) =$ _____

c)
$$f(x) = 3^x \ln 3$$
 so $F(x) =$ ______

d)
$$f(x) = \frac{1}{\cos^2 x}$$
, so $F(x) =$ ______

e)
$$f(x) = x^4$$
, so $F(x) =$ _____

f)
$$f(x) = 2x\sqrt{x^2 + 8}$$
, so $F(x) =$ ______

Problem 5. Which one of the following functions has a slant asymptote?

(a)
$$\frac{3x^2 + x + 3}{x^2 + 4}$$

(a)
$$\frac{3x^2 + x + 3}{x^2 + 4}$$
 (b) $\frac{2x^3 + x^2 + 1}{x^2 + 2}$ (c) $\frac{x^6 + x + 3}{x^3 + 2x}$

(c)
$$\frac{x^6 + x + 3}{x^3 + 2x}$$