– Problem Set 8 –

- 1. Let $S = \{1, 2, 3, 4, 5\}$. Is $R = \{(1, 2), (2, 3), (3, 5), (2, 4), (5, 1)\}$ a binary relation? Find the domain $\mathcal{D}R$ and the range $\mathcal{Z}R$ of R. Determine the inverse relation R^{-1} and $\mathcal{D}R^{-1}$ and $\mathcal{Z}R^{-1}$.
- 2. Let $R = \{(1,1), (2,1), (3,3), (1,5)\}$ and $T = \{(1,4), (2,1), (2,2), (2,5)\}$ be binary relations. Determine the compositions $R \circ T$ and $T \circ R$. Is it true that $R \circ T = T \circ R$?
- 3. Let $S = \{1, 2, 3, 4, 5, 6, 7\}$. Define

$$R = \{(x, y) | x - y \text{ is divisible by 3} \}$$
 in $T = \{(x, y) | x - y \ge 3\}.$

Determine $R, T, R \circ R$.

4. Let $S = \mathbb{R}$. On S we define the relation R as follows

$$(\forall x)(\forall y)(xRy \Leftrightarrow y > x + 3).$$

Is R reflexive, symmetric, transitive or strict total?

- 5. Let $S = \{1, 2, 3, 4\}$. We have the following relations
 - (i) $R_1 = \{(1,1), (1,2), (2,3), (1,3), (4,4)\},\$
 - (ii) $R_2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\},\$
 - (iii) $R_3 = \{(1,3), (2,1)\},\$
 - (iv) $R_4 = \emptyset$,
 - (v) $R_5 = S \times S$.

Which of the following properties hold for each relation: reflexive, symmetric, anti-symmetric, transitive?

- 6. Let R and S be symmetric relations. Show: $R \circ S$ symmetric $\Leftrightarrow R \circ S = S \circ R$.
- 7. Let $S = \{m \in \mathbb{N} \mid 1 \le n \le 10\}$ in $R = \{(m, n) \in S \times S \mid 3 \mid m n\}$. Is R an equivalence relation? If yes, determine the corresponding equivalence classes and the factor set.
- 8. Let $S = \mathbb{Z} \times \mathbb{Z}$ and define the relation R as follows

$$(a,b)R(c,d) \Leftrightarrow ad = bc.$$

Show that R is an equivalence relation and find the corresponding equivalence classes.

9. Let $S = \mathbb{R}^2$ and define the relation R as follows

$$(x_1, y_1)R(x_2, y_2) \Leftrightarrow x_1^2 + y_1^2 = x_2^2 + y_2^2.$$

Show that R is an equivalence relation and find the equivalence class R[(7,1)].