

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Metodi numerici per equazioni differenziali ordinarie Lezione 6.2b

Differenze finite in avanti, all'indietro e centrate

 \blacktriangleright Sviluppo in **serie di Taylor in avanti/indietro** della funzione y(x)

(DF in avanti)
Differenza Finita
in avanti

$$y'(x_k) = \frac{y_{k+1} - y_k}{h} + O(h)$$

(DF all'indietro)
Differenza Finita
all'indietro

$$y'(x_k) = \frac{y_k - y_{k-1}}{h} + O(h)$$

Tangente alla curva

Secante tra
i due punti

© Università degli Studi eCampus - Via Isimbardi 10 - 22060 Novedrate (Co) - C.F. 9002752130 - Tel: 031.79421 - Fax: 031.7942501 - Mail: info@uniecampus.it

 \blacktriangleright Sviluppi di Taylor **di ordine superiore** della funzione y(x)

A)
$$y(x+h) = y(x) + y'(x)h + \frac{y''(x)}{2}h^2 + \frac{y'''(\xi)}{6}h^3$$

I)
$$y(x-h) = y(x) - y'(x)h + \frac{y''(x)}{2}h^2 - \frac{y'''(\xi)}{6}h^3$$

 \triangleright Specificando gli sviluppi per x_{k+1} (A) e x_{k-1} (I) e calcolando A + I

(DF centrata)
Differenza Finita
centrata

$$y'(x_k) = \frac{y_{k+1} - y_{k-1}}{2h} + O(h^2)$$

ightharpoonup Errore commesso è dell'ordine di $O(h^2)$

> Differenze finite in avanti/indietro e centrate

(DF in avanti)
Differenza Finita
in avanti

$$y'(x_k) = \frac{y_{k+1} - y_k}{h} + O(h)$$

(DF all'indietro)
Differenza Finita
all'indietro

$$y'(x_k) = \frac{y_k - y_{k-1}}{h} + O(h)$$

(DF centrata)
Differenza Finita
centrata

$$y'(x_k) = \frac{y_{k+1} - y_{k-1}}{2h} + O(h^2)$$

 \succ Ricordando la definizione generica di G

$$y'(x_k) \approx G(y_{k-1}, y_k, y_{k+1})$$

$$G(y_{k-1}, y_k, y_{k+1}) = \begin{cases} \frac{y_{k+1} - y_k}{h} & \text{DF avanti} \\ \frac{y_k - y_{k-1}}{h} & \text{DF indietro} \\ \frac{y_{k+1} - y_{k-1}}{2h} & \text{DF centrate} \end{cases}$$

> Si applicano queste formule per specificare il metodo numerico

$$u_k \to y_k$$

➤ Metodo di Eulero in avanti (EA) ⇒ DF in avanti

$$\frac{u_{k+1} - u_k}{h} = f(x_k, u_k)$$
 $k = 0, ..., n-1$ $u_0 = y_0$

➤ Metodo di Eulero all'indietro (EI) ➡ DF all'indietro

$$\frac{u_{k+1} - u_k}{h} = f(x_{k+1}, u_{k+1}) \qquad k = 0, \dots, n-1$$

$$u_0 = y_0$$