Teoría de funciones de una variable real

Pablo Pallàs

22 de junio de 2023

Índice

1.	Introducción	1
2.	Conceptos previos	1
3.	Sucesiones	1
4.	Continuidad 4.1. Límites de funciones	1
1.	Introducción	

2. Conceptos previos

3. Sucesiones

4. Continuidad

4.1. Límites de funciones

Definición 4.1. Dado un $a \in \mathbb{R}$, un conjunto $V \subseteq \mathbb{R}$ es un **entorno** de a si contiene un intervalo de la forma $(a - \varepsilon, a + \varepsilon)$ para algún $\varepsilon > 0$. Si V es un entorno de a, diremos que $V \setminus \{a\}$ es un **entorno reducido** de a.

Notar que todo conjunto que contenga un entorno de un punto también será a su vez entorno de ese punto.

Definición 4.2. Sea $D \subseteq \mathbb{R}$ y $a \in \mathbb{R}$, entonces diremos que a es un **punto de** acumulación de D si todo entorno reducido de a contiene puntos de D. Dicho de otra forma, si para cada $\varepsilon > 0$ existe algún $y \in D$ tal que $y \neq a$, con $|y - a| < \varepsilon$, es decir, $0 < |y - a| < \varepsilon$.

Definición 4.3. El conjunto de puntos de acumulación de un conjunto D suele denominarse **conjunto derivado** y se denota por D'.

Así, podemos decir de forma intuitiva que $a \in D'$ si y sólo si hay puntos de D, distintos de a, arbitrariamente próximos al punto a.

Ejemplo 4.3.1. Veamos algunos ejemplos:

- 1. Si D es finito, entonces $D' = \emptyset$.
- 2. $\mathbb{N}' = \mathbb{Z}' = \emptyset$, $y \mathbb{Q}' = \mathbb{R}$.
- 3. (a,b)' = [a,b]' = [a,b].
- 4. Si $D = \{1/n : n \in \mathbb{N}\}$, entonces $0 \in D'$ a pesar de que $0 \notin D$ y $1 \notin D'$ a pesar de que $1 \in D$.

Podemos probar que $a \in D'$ si y sólo si existe una sucesión (x_n) de puntos de D distintos de a que converge al punto a.

Definición 4.4 (*Límite de una función en un punto*). Sea $D \subseteq \mathbb{R}$, $f: D \longrightarrow \mathbb{R}$, $a \in D'$, $b \in \mathbb{R}$. Escribiremos

$$\lim_{x \to a} f(x) = b$$

cuando se cumpla que para cada $\varepsilon > 0$ existe algún $\delta > 0$ tal que $\forall x \in D$ con $0 < |x - a| < \delta$ se tiene $|f(x) - b| < \varepsilon$.

Entonces diremos que b es el **límite** de f(x) cuando x tiende al punto a.

La condición de que $|f(x) - b| < \varepsilon$ para todo $x \in D$ con $0 < |x - a| < \delta$ se puede escribir de otra forma:

$$f(U) \subset (b-\varepsilon, b+\varepsilon), \quad U = [D \cap (a-\delta, a+\delta)] \setminus \{a\}.$$

Podemos decir de forma resumida que b será el límite de f(x) cuando x tiende a a si f(x) se acerca a b cuando x se acerca al punto a, aunque sin tomar su valor, dentro del dominio de f. Esto último es muy importante.

Proposición 4.5 (*Unicidad del límite*). Sea $D \subseteq \mathbb{R}$, $f: D \longrightarrow \mathbb{R}$, $a \in D'$, $b_1, b_2 \in \mathbb{R}$. Si

$$\lim_{x \to a} f(x) = b_1, \quad \lim_{x \to a} f(x) = b_2,$$

entonces $b_1 = b_2$.

Demostración. Supongamos, por ejemplo, que $b_1 < b_2$. Elijamos $\varepsilon = \frac{b_2 - b_1}{2}$. Deben existir entonces $\delta_1 > 0$ tal que para todo $x \in D$ con $0 < |x - a| < \delta_1$ tenemos $f(x) < b_1 + \varepsilon = \frac{b_1 + b_2}{2}$ y un $\delta_2 > 0$ tal que para todo $x \in D$ con $0 < |x - a| < \delta_2$ se tiene que $\frac{b_1 + b_2}{2} = b_2 - \varepsilon < f(x)$. Definiendo $\delta = \min \delta_1, \delta_2$, resulta que para todo $x \in D$ con $0 < |x - a| < \delta$ tenemos $\frac{b_1 + b_2}{2} < f(x) < \frac{b_1 + b_2}{2}$, esto es absurdo. Análogo si $b_2 < b_1$.

Proposición 4.6. Sea $D \subseteq \mathbb{R}$, $f: D \longrightarrow \mathbb{R}$, $a \in D'$, $b \in \mathbb{R}$. Son equivalentes:

- 1. $\lim_{x\to a} f(x) = b$.
- 2. Para cada sucesión (s_n) de puntos de $D \setminus \{a\}$ tal que $\lim_n s_n = a$ se verifica $\lim_n f(s_n) = b$.

Demostración. Supongamos que $\lim_{x\to a} f(x) = b$. Para cualquier $\varepsilon > 0$ se puede encontrar un $\delta > 0$ de modo que para todo $x \in D$ con $0 < |x - a| < \delta$ se cumple $|f(x) - b| < \varepsilon$. Sea (s_n) una sucesión de puntos de $D \setminus \{a\}$ tal que $\lim_n s_n = a$. Dado $\delta > 0$, existirá un $N \in \mathbb{N}$ tal que para todo n > N se verifica $|s_n - a| < \delta$, y como $s_n \neq a$, deducimos que $|f(s_n) - b| < \varepsilon$, es decir, $\lim_n f(s_n) = b$.

Recíprocamente, probaremos que si 1. no se cumple entonces 2. tampoco. Que no se cumpla 1. quiere decir que existe algún $\varepsilon > 0$ tal que para todo $\delta > 0$ hay al menos un $x_{\delta} \in D$ que cumple $0 < |x_{\delta} - a| < \delta$ y, sin embargo, $|f(x_{\delta}) - b| \ge \varepsilon$. Para cada $n \in \mathbb{N}$, elegimos $\delta = 1/n$. Hay algún punto $s_n \in D$ que cumple $0 < |s_n - a| < 1/n$ y, sin embargo, $|f(s_n) - b| \ge \varepsilon$. La sucesión (s_n) así obtenida tiene las siguientes propiedades:

- 1. Está contenida en $D \setminus \{a\}$, porque $s_n \in D$, pero $0 < |s_n a|$.
- 2. $\lim_n s_n = a$ porque $0 < |s_n a| < 1/n$ (basta aplicar la definición de límite).
- 3. La sucesión $f(s_n)$ no tiende a b porque para todos los $n \in \mathbb{N}$, $|f(s_n) b| \ge \varepsilon$.

Por lo tanto, no se cumple 2.