THE EFFECT OF ELECTRONIC HEALTHCARE RECORD ADOPTION ON PATIENT-SPECIFIC HEALTH EDUCATION PRESCRIPTION, TIME UTILIZATION, AND RETURNED APPOINTMENTS: A PROPENSITY SCORE WEIGHTED ANALYSIS

A Thesis
submitted to the Faculty of the
Graduate School of Arts and Sciences
of Georgetown University
in partial fulfillment of the requirements for the
degree of
Master of Public Policy
in Public Policy

By

Huade Huo, B.Mg.

Washington, DC April 11, 2015 Copyright © 2015 by Huade Huo All Rights Reserved

THE EFFECT OF ELECTRONIC HEALTHCARE RECORD ADOPTION ON

PATIENT-SPECIFIC HEALTH EDUCATION PRESCRIPTION, TIME

Utilization, and Returned Appointments: A Propensity Score

Weighted Analysis

Huade Huo, B.Mg.

Thesis Advisor: Yuriy Pylypchuk

Abstract

This is the abstract, a brief summary of the contents of the entire thesis. It is

limited to 350 words.

The abstract page(s) are not numbered and are not necessarily included in the

bound copies. Likewise, the signature page is not counted in page numbering because

not all copies contain it.

Throughout this sample thesis, please note that the layout obtained with

LATEX is not meant to be a perfect duplicate of the Microsoft Word exam-

ples in the Graduate School Style Manual. LATEX has additional typographic

tools at its disposal, such as SMALL CAPITALS and various subtle adjustments of

spacing, which are used by the Georgetown LATEX style sheet in accordance with the

standard practices of the book-printing industry.

The index words at the bottom of the abstract should be chosen carefully, prefer-

ably with the help of one or two of your colleagues. They are the words by which

people will find your thesis when searching the scientific literature. If you want to get

credit for your ideas, be sure to choose a good set of index words so that people doing

related work will know about yours.

INDEX WORDS:

Electronic Healthcare Record, Patient-specific Health

Education, Time Utilization, Returned Appointments,

Propensity Score Weighting, Theses (academic)

iii

DEDICATION

The Dedication is optional, but if it is included, it should have a roman numeral page number but not be included in the table of contents. To achieve that, we declare it as a \chapter* in LATEX.

ACKNOWLEDGMENTS

In a real thesis, this section would contain acknowledgments such as, "This work was funded by National Science Foundation Grant Number AAA-00-00000 (Benjamin Franklin, Principal Investigator)," and "I would like to thank John Doe for helping me proofread my thesis and Mary Roe for drawing my graphs."

The acknowledgments are included in the table of contents but do not have a chapter number. To achieve that, we declare them to be a \pseudochapter (which is defined only in guthesis.sty).

I (Mark Maloof) would like to thank Michael Covington for developing this LATEX style sheet for the University of Georgia. Zachary Hunter deserves special thanks for revising the UGA style file to work with the new version of LATEX (2e) as well as the previous version (2.09). The revisions in Version 3.0 of guthesis.sty are largely the work of Isidor Ruderfer. Other credits appear in the style sheet itself.

TABLE OF CONTENTS

Acknow	edgments
List of	$_{ m igures}$
List of	lables vii
Снарт	R
1 I	troduction (working)
2 I	tterature review
3 A	nalysis Plan
4 I	escriptive Statistics
5 I	ropensity score balance
6 I	egression results
7 A	ppendix 3 7.1 Sensitivity test results 3
Bibliogr	phy

LIST OF FIGURES

5.1	GBM iterations and balance measure	27
5.2	Propensity score overlapping assumption	28
5.3	Propensity score balancing	29
5.4	Propensity score balancing by treatment group	30

LIST OF TABLES

4.1	Descriptive Statistics (Nominal and Ordinal Variables)	19
4.2	Descriptive Statistics (Continuous Variables)	24
5.1	Effective sample size by treatment group	31
5.2	Propensity Score Balance Statistics	32
6.1	Estimated effect of EMR adoption with multinomial propensity score	
	weighted OLS models	36

Chapter 1

Introduction (working)

The US spend 17.9% of GDP on health expenditure in 2013, according to the World Bank, and it is continuing to growth. Some scholars proposed that one way to reduce health care spending and improve health care efficiency is to adopt the Electronic Healthcare Record (EHR). The Obama Administration has prioritized the improvement of quality and efficiency of the health care system. President Obama signed the American Recovery and Reinvestment Act of 2009 which provides financial incentive for adoption and meaningful use of electronic health records. The adoption of EHR increased rapidly [CITATION NEEDED].

Given the increasing adoption of EHR, and the implementation of EHR incentive programs, the effect of electronic health care record on health outcomes are of interest. Empirically measured effect of adopting EHR on cost is still very limited, and the results are mixed.

Chapter 2

LITERATURE REVIEW

2.1 Background

In 2009, the US Congress passed the American Recovery and Reinvestment Act (ARRA), which appropriates funds to promote the adoption and use of health information technology (HIT). The American Recovery and Reinvestment Act has set aside \$2 billion which will go towards programs developed by the National Coordinator and Secretary to help health care providers implement HIT and provide technical assistance through various regional centers (HHS, 2013).

The Centers for Medicare & Medicaid Services launched the Medicare and Medicaid Electronic Health Care Record (EHR) Incentive Programs after the passage of ARRA in 2009. These programs provide incentive payments to eligible professionals, eligible hospitals, and critical access hospitals (CAHs) as they adopt, implement, upgrade or demonstrate meaningful use of certified EHR technology. In order to receive the EHR stimulus money, the HITECH act (ARRA) requires eligible physicians to show "meaningful use" of an EHR system.

Take the Medicare EHR incentive program as an example. Eligible physicians must attest yearly that they demonstrate meaningful use to receive the EHR incentive and avoid a Medicare payment adjustment. In order to demonstrate meaningful use in 2014 Stage 1, eligible professionals must meet 13 required core objectives and 5 menu objectives from a list of 9. The core objectives includes recording selected patient

demographics, maintaining active medication lists, protecting electronic health information, etc. The menu objectives include using certified EHR technology to identify patient-specific education resources, sending patient reminders, and implementing drug formulary checks, etc. (CMS, 2014c).

2.2 Effect of EHR on health expenditure

Limited empirical studies have estimated the potential net benefits that could arise from adopting health information technologies (HITs), including EHR at the national level. The RAND Corporation estimated that annual net savings to the health care sector from efficiencies alone could be \$77 billion or more based on surveys, publications, interviews, and an expert panel review (RAND, 2005). Hillestad et al. claimed that effective EHR implementation and networking could eventually save more than \$81 billion annually by improving health care efficiency and safety. Savings could be doubled by using health information technology to preventive care and chronic disease management (Hillestad et al., 2005). However, some other researchers do not find that the adoption of EHR has a positive cost saving effect on national health expenditure. For example, Adler-Milstein et al. found that ambulatory EHR adoption did not impact the total cost, although it slowed ambulatory cost growth (Adler-Milstein et al., 2013b). Sidorov claimed that much of the literature on EHRs fails to support the primary rationales for using it, and it is unlikely that the U.S. health care bill will decline as a result of EHR alone (Sidorov, 2006). There are also researchers that suggest the adoption of EHR has a negative effect on cost-reduction (Teufel et al., 2012).

EHR also provides a platform for predictive analysis, saving health care spending by allocating medical resources efficiently. Bates et al. proposed there are unprecedented opportunities to use big data, acquired from EHR, to reduce the costs of health care in the United States (Bates et al., 2014). Roski et al. also pointed out big data has the potential to create significant value in health care by improving outcomes while lowering costs (Roski et al., 2014). However, the integration of EHR into predictive analytics is still challenging. Roski et al. claimed that big data's success in creating value in the health care sector may require changes in current policies to balance the potential societal benefits of big-data approaches and the protection of patients' confidentiality (Roski et al., 2014).

2.3 Effect of EHR on healthcare efficiency and quality

The effect of EHR on efficiency is mixed. A systematic literature review suggested that 92 percent of the recent articles on health information technology show measurable benefits emerging from its adoption (Buntin et al., 2011). For example, a study found that hospitals with more advanced health IT had fewer complications, lower mortality, and lower costs than their counterparts (Amarasingham et al., 2009). Others suggest that simply adopting electronic health records is likely to be insufficient to drive substantial gains in quality or efficiency (DesRoches et al., 2010).

Time efficiency is one of the possible outcomes of EHR adoption. Physicians spend time on patient interactions and the documentation of clinical information. Clinicians hope that an EHR could increase patient interaction time, which improves the quality of health care, while reducing documentation time (Leung et al., 2003). However, EHR is unlikely to reduce documentation time (Poissant et al., 2005) and the effect of EHR system adoption on time efficiency is mixed and varies among different institutions (Chaudhry et al., 2006).

Another important factor in healthcare efficiency and quality is the likelihood of follow-up health care appointments. Low "kept appointment" rates adversely affect continuity of care and lead to inefficient clinic scheduling processes (Myers and Heffner, 2001). Although the CMS listed "send reminders to patients per patient preference for preventive/follow-up care" as an objective in measuring the meaningful use of the EHR system (CMS, 2014a), evaluations of the effect of EHR on patient follow-up rate are limited.

Patient-centered education, which is provided by an EHR-based system, allows patients to understand their health better and make informed lifestyle adjustments. CMS requires eligible physicians to provide patient-specific education resources to more than 10 percent of all unique patients in order to obtain the EHR incentive program funding (CMS, 2014b). Very limited literature evaluated the effect of EHR on the utilisation of patient-specific education resources.

2.3.1 Physicians' financial incentives on EHR

On the micro level, EHR has a mixed effect on cost-saving in physician practices.

Some scholars claimed that the long-term return on adoption of EHR is positive. For example, Wang et al. estimated that a provider could gain \$86,400 in net benefits from using an electronic medical record for a 5-year period, resulting in a positive financial return on investment to the health care organization (Wang et al., 2003). Bell and Thornton claimed that, based on the size of a health system and the scope of implementation, the benefits of HITs for large hospitals can range from \$37M to \$59M over a five-year period in addition to incentive payments (Bell and Thornton, 2011).

However, more researchers have argued that physicians have an insufficient financial incentive to implement EHR in the first place. Gans et al. surveyed a nationally representative sample of medical group practices and suggested that the adoption of EHR is progressing slowly, at least in smaller practices (Gans et al., 2005). Jha et al. found a similar result, on the basis of responses from 63.1% of hospitals surveyed, only 1.5% of U.S. hospitals have a comprehensive electronic-records system (Jha et al., 2009). Using survey data from 49 community practices, Adler-Milstein et al. found electronic health records will yield revenue gains for some practices and losses for many others. Practices encountered greater-than-expected barriers to adopting an EHR system (Adler-Milstein et al., 2013a).

2.4 Contribution to literature

Given increased participation in the Medicare and Medicaid Electronic Health Records (EHR) Incentive Programs, and increased policy interest in controlling health expenditures, the evaluation of the effect of EHR on physician behavior are of interest.

Although the number of health information technology evaluation studies is rapidly increasing, empirically measured behavior data are limited and inconclusive. Some research projected the potential benefit of the adoption of EHR with data from surveys, publications, interviews, and expert panel reviews. However, there is limited research focused on the empirical analysis of nationalwide data. Literature on the outcomes of adopting EHR, especially the effect of EHR on patient-specific health education prescription, is limited. This paper contributes to the literature with a national-level perspective, evaluating the outcome of EHR adoption on the patient-specific health education prescription, patient interaction time, and returned appointment rate.

Another major limitation of the literature is its generalization. Insufficient reporting of contextual and implementation factors makes it impossible to determine why most health IT implementations are successful but some are not. This paper will consider which factors may contribute to a better outcome of EHR adoption. It could help to make government incentive programs more efficient by selecting proper physician practices.

Chapter 3

Analysis Plan

3.1 Data

The data source for this study was the National Ambulatory Medical Care Survey (NAMCS) public use micro-data files. NAMCS is a national probability sample survey of visits to office-based physicians conducted by the National Center for Health Statistics, Centers for Disease Control and Prevention. NAMCS has information at visit level, including whether the physician practice has an Electronic Healthcare Record (EHR) system, health education prescription, the breakdown of patients by different payment type, time spent with physician for each visit, and whether the visit is a returned appointment, etc. The sample size for the 2008, 2009, and 2010 public use micro-data files, which include information about adopting EMR, are 28,741, 32,281, and 31,229 respectively.

We used information on the adoption of an EMR system to identify the treatment groups and potential comparison groups. The survey question was described as "Does your practice use an electronic medical record or health record (EMR/EHR) system? (Not including billing records system)" (CDC, 2010). Three possible groups in this treatment variable included "Yes, all electronic," "Yes, part paper and part electronic," and "No." The other characteristics were used as covariates in the propensity score estimation and models.

The sampling of NAMCS is a multistage process. The first-stage sample included 112 primary sampling units (PSUs) by geographical distribution. The second stage stratified physicians into 15 groups and selected physicians within each PSU. The final stage is the selection of patient visits within the annual practices of sample physicians. The basic sampling unit for the NAMCS is the physician-patient encounter or visit.

Starting from 2005, NAMCS includes the provider weight, which allow researchers to produce aggregated visit statistics at the physician level. In this analysis, we summarized visit level data to physician level data based on recommendation provided by the Ambulatory Statistics Branch of Centers for Disease Control and Prevention (CDC, 2012). There were 3,777 physicians' information available after the aggregation. 157 cases were dropped afterward due to incompleteness and 1 case was ignored due to negative physician weight. 3619 observations were available for further analysis.

3.2 Estimating treatment effect with observational data

Ideally, we would observe a physician in three possible conditions: one in which she has fully adopted the EHR system, one in which she has partially adopted the EHR system, and one in which she has not. We can express our evaluation problem as follows: let $W_i = 1$ for physician i who has fully adopted the EHR system, let $W_i = 2$ for physician i who has partially adopted the EHR system, and let $W_i = 0$ for physician i who has not yet adopted the ENR system. Let $Y_i(1)$ refer to the time efficiency of physician i who has fully adopted the EHR system, let $Y_i(2)$ refer to the time efficiency of physician i who has partially adopted the EHR system, and let $Y_i(0)$ refer to the patient interaction time of physician i who has not adopted the EHR system. Although all outcomes are possible in theory, we cannot observe all possible outcomes $Y_i(0)$, $Y_i(1)$, and $Y_i(2)$ for physician i while holding all other conditions

constant. We only observe $Y_i(0)$ if $W_i = 0$, $Y_i(1)$ if $W_i = 1$, and $Y_i(2)$ if $W_i = 2$ with our data (Imbens and Wooldridge, 2008). People in "treatment 1", "treatment 2", and "control" groups likely different in both observed and unobserved ways.

3.3 Assumption of Causal Inference

There are two assumptions associated with estimating treatment effect. The first assumption is the stable unit treatment value assumption (SUTVA). The SUTVA requires that there is no interference between units, that is, the treatment assignment of one unit does not affect the potential outcomes of another unit. We cannot test this statistically with our data. This is a strong assumption in our analysis since (1) there is a possibility of communication between different physician practices about the adoption of the EHR system, which could possibly affect the outcome; (2) there are different versions of the EHR system within different practices.

The second assumption is that there are no unmeasured confounders. An estimate of the EHR's effect on doctors' behavior relies on an assumption of no unmeasured confounders of treatment assignment, that is, $W_i \perp (Y_i(0), Y_i(1), Y_i(2))$ (Imbens and Wooldridge, 2008). In other words, the assignment of study participants to treatment conditions (i.e. fully adopted EHR, partially adopted EHR, and no adoption) is independent of the outcome of these three groups. In experimental settings, treatment groups (in this case, physicians who partially or fully adopted the EHR system) and control group were randomly assigned, which ensured that both observed and unobserved factors of treatment and control groups have a similar distribution. If the assignment to adopt the EHR system is based on randomization, this assumption is easy to statisfy and the causal inference would be straightforward. However, this assumption is often violated in a in non-experimental setting. This is also a strong

assumption in the evaluation of the EHR effect since a national level experiment on the effectiveness of EHR adoption is expensive and unfeasible. Violation of unconfoundedness could bias results because of the omitted variable bias.

To estimate the effect of EHR adoption on physician behavior, we can obtain the following model:

$$Y_i = \beta_0 + \beta_1 W_i + \sum_{i=2}^k \beta_k X_{ik} + \epsilon_i$$

In this model, Y_i is the outcome of interest for physician i, including the percentage rate of patient-specific education resources prescribed, time spent with the physician, and the percentage rate of returned patients. W_i is the EHR adoption status of physician i, including fully adopted EHR ($W_i = 1$), partially adopted EHR ($W_i = 2$), and no EHR adoption ($W_i = 0$). X_{ik} is k observable characteristics for physician i, including MSA status, physician specialty, solo status, etc. We will the describe more details in descriptive statistics section. Coefficient β_1 estimates the treatment effect of EHR adoption on three outcome variables if the model is correct and satisfies the assumption of unconfoundedness.

This condition is unlikely with NAMCS data. For example, physicians in treatment group 1, which have fully adopted the EHR systems, may be systematically different than physicians in the control group. This difference could be in both observed and unobserved ways. With large number of covariates that have an unknown functional relationship with treatment and outcome, it is hard to specify regression adjustment model. Without an appropriate instrumental variable or regression discontinuity cutoff available, the propensity score matching method is one of the few available techniques that can be used to access the treatment effect of the EHR system on physician behavior.

3.4 Propensity score estimation

As described above, estimating causal effects with observational data is challenging since it involves estimating unobserved potential outcomes. Propensity score methods attempt to replicate two features of randomized experiments. On the one hand, propensity score methodologies can create groups that look only randomly different from one another (at least on observed variables). On the other hand, propensity score methods do not use outcome variables when setting up the design. With these two features, treatment assignment and observed covariates are conditionally independent given the propensity score (Guo and Fraser, 2014):

$$\boldsymbol{X_i} \perp W_i \mid e(X_i)$$

Conditional on the propensity score, each physician has the same probability of assignment to treatment, as in a randomized experiment setting. After the propensity score estimation, physicians in the control group who have not adopted the EHR system are comparable with those in treatment groups with similar propensity scores, at least on observable characteristics.

Hirano et al. claimed that the resulting estimate is asymptotically efficient if the propensity score is estimated non-parametrically using a series estimator (Hirano et al., 2003). McCaffrey et al. summarized that recent studies of propensity score estimation in a binary case of two treatments show that, in terms of bias reduction and mean squared error (MSE), machine learning methods outperform simple logistic regression models with iterative variable selection (McCaffrey et al., 2013). One application that uses machine learning algorithms to estimate the propensity score is Generalized Boosted Machine models (GBM).

GBM is a general, automated, data-adaptive algorithm that fits several models by way of a regression tree, and then merges the predictions produced by each model. In other words, GBM estimation captures complex and nonlinear relationships using nonparametric estimation, which means the complexity of the fitted model depends on sample size. GBM aims to minimize sample prediction error; that is, the algorithm stops iterations when the sample prediction error is minimized (Guo and Fraser, 2014). Compared with traditional methods, "the GBM model's iterative estimation procedure can be tuned to find the propensity score model leading to the best balance between treated and control groups, where balance refers to the similarity between different groups on their propensity score weighted distributions of pretreatment covariates" (McCaffrey et al., 2013). GBM models can also use all available covariates and are not subject to the particular modeling choices made by the analyst (Hillm et al., 2015).

Two common boost algorithms for propensity score estimation are Stata's boost program and Rand's gbm program. These two different packages do not lead to different results on covariate control and estimates of treatment effects (Guo and Fraser, 2014). In this analysis, we used the Rand's GBM model (McCaffrey et al., 2004) in R (R Core Team, 2014), to estimate the propensity score of each physician. Our boosted model uses the default setting of the twang package (McCaffrey et al., 2013), which has 10,000 GBM interactions, three interactions, a bagging fraction of 1.0, and a shrinkage parameter of 0.01, based on McCaffrey's (2013) recommendation. We use physician weight as the sample weight in the multinomial propensity score estimation procedure.

To assess the quality of propensity score estimation, we used diagnostics to check the balance after propensity score weighting. The goal of propensity score estimation and weighting is to have similar covariate distributions in the matched treated and control groups. We use both numerical and graphic summaries of balance to evaluate the quality of propensity score weighting. We relied primarily on the absolute standardized mean difference (ASMD, also referred to as the Effect Size or the absolute standardized bias) to assess the balance after weighting.

3.5 Propensity score weighted regression model

The essential feature of a propensity score weighting model is the treatment of estimated propensity scores as sampling weights to perform a weighted outcome analysis. Propensity score weighting has two advantages. On the one hand, propensity score weighting permits most types of multivariate outcome analysis and does not require an outcome variable that is continuous or normally distributed. On the other hand, unlike matching techniques, the weighting method maintains sample size (Guo and Fraser, 2014).

With propensity score weighting, the control of selection biases is achieved through weighting and counterfactuals are estimated through a regression model. When the dimension of pre-treatment variables \mathbf{X} is large, it is difficult to ensure both the regression model is correct, and a consistent estimator will be obtained (Rubin, 1997). Also, the estimated modeling leads to extrapolation if the distribution of some confounders do not overlap with each other, since the effect is primarily determined by treated subjects in one region of the \mathbf{X} space and by control subjects in another. In contrast, the regression model with propensity score weighting largely circumvents this since pretreatment variables \mathbf{X} and treatment group variable W should be approximately independent after propensity score estimation. By adding covariates into the regression adjustment, we will obtain "double robustness" that further improves the precision of estimators (Lunceford and Davidian, 2004). We used an estimate of the

propensity score as weights, and used these weights in a weighted regression of the potential outcome on treatment and observed covariates.

We estimated a separate propensity score weighted regression model for each outcome. We included covariates that have maximum ASMD greater than 0.1.

3.6 Sensitivity tests

Finally, we conducted sensitivity tests for the following four cases.

First, we tested the robustness of the result with different covariate controls in multinomial propensity score weighted regression models. We implemented this in two cases: (1) including only treatment variables with no covariates; (2) including all possible covariates and the treatment assignment variable.

Second, we examined whether the results are robust to different multinomial propensity score weighted generalized regression models. Based on the distribution of dependent variables, we used Binomial regression for the EHR adoption status on the health education prescription rate, Poisson regression for the EHR adoption status on time spent with each MD, and Binomial regression for the EHR adoption status on the returned appointment rate.

Third, we checked whether the results are robust to propensity score weighted binary treatment assignments. We created two separated datasets. One with only physicians who have fully adopted EHR and a control group. Another with only physicians who have partially adopted an EHR system and a control group. We estimated the propensity score with binary treatment and estimated the effect of full EHR adoption and partial EHR adoption on outcome variables.

Fourth, we tested the robustness of the result with a propensity score matching approach. We used nearest neighbor matching for binary treatment cases and assessed the treatment effect of EHR adoption.

Chapter 4

DESCRIPTIVE STATISTICS

4.1 Nominal and ordinal variables

As shown in Table 4.1, more physician practices fully adopted the EHR system since 2008. While 54.21% of physicians reported that they had not adopted an EHR system in 2008, 5.75% percentage points fewer physicians reported that they had not adopted an EHR system in 2010, a reduction of 10.6% compared to 2008. Meanwhile, 38.8% of physicians reported they had fully adopted an EHR system in 2010, while only 27.49% of physicians reported that they had fully adopted an EHR system in 2008. Compared with 2008 (18.3%), fewer physicians had partially adopted an EHR system in 2010 (12.73%). The result suggests that the adoption rate of the EHR system is grew rapidly after the implementation of the EHR incentive program.

The adoption of EHR has indicated statistically significant differences between different practice ownerships (p < 0.0001). Physicians or physician groups have a lower likelihood of adopting an EHR system. In our sample, 53.95% of respondents who are physicians or physician groups reported they have not adopted EHR. Health Maintenance Organizations (80.51%) are the most likely to fully adopt the EHR system among all health care practice owners. There is no substantial difference between different practice ownership types for those who partially adopted an EHR system. The full adoption rate among other hospitals (35.26%), other health care corporations (47.59%), or all others (44.14%) are also variable.

There is no statistically significant relationship between the adoption of an EHR system and whether the practice is in a metropolitan statistical area ($\chi^2 = 1.4319$). The full adoption rate of MSA areas (32.93%) and non-MSA areas (33.08%) is close to the national average (32.94%). However, geographic regions have a statistically significant relationship with the adoption of the EHR system ($\chi^2 = 16.41$). Physicians in the West are more likely to adopt an EHR system, while physicians in the Northeast or South region have less likelihood to adopt it, comparing with physicians who are in the Midwest region.

Another characteristic of physician practices that is of interest is the number of managed care contracts. The contract between a physician and a managed care organization can affect payment, office organization, practices and procedures, and confidential records as well as clinical decision-making (DeBlasio, 2008). In general, practices with higher numbers of managed care contracts tend to have higher adoption rates of the EHR system. 38.08% of physician practices with more than ten managed contracts has fully adopted the EHR system while only 20.92% of physician practices with no managed contracts fully adopted the EHR system. There are no statistical or substantial differences between partial adoption rate with difference managed care contracts.

Physician specialty has statistically significant relationship with the adoption of the EHR system (p < 0.0001). Among all physician specialties, general and family practices are the most likely to fully adopt the EHR system. 43.17% of physicians who are in general or family practice reported they had fully adopted the EHR system. Ophthalmologists are least likely to adopt the EHR system. More than half of ophthalmologists reported they have not adopted the EHR. Among all other physician specialities, oncology (38.36%), internal medicine (37.76%), urology (37.57%), and orthopedic surgery (37.09%) also have a higher likelihood of full EHR adoption.

Compared with group practice, solo practice is also less likely to fully adopt an EHR system. Over half of group practices fully or partially adopted the EHR system, while less than 40% of solo practices adopted the EHR system.

Table 4.1: Descriptive Statistics (Nominal and Ordinal Variables)

Variable	P_{No}	P_{Full}	P_{Part}
Year of Visit			
2008	0.5421	0.2749	0.1830
2009	0.4859	0.3252	0.1889
2010	0.4846	0.3881	0.1273
$\chi_4^2 = 44.95$			
Ownership Type			
Physician or physician group	0.5395	0.2989	0.1616
Health Maintenance Organization (HMO)	0.0647	0.8051	0.1302
Community health center	0.4293	0.3522	0.2185
Medical/academic health center	0.4714	0.3627	0.1659
Other hospital	0.4305	0.3526	0.2169
Other health care corporation	0.3434	0.4759	0.1807
Other	0.3436	0.4414	0.2150
$\chi_{12}^2 = 146.29$			

Metropolitan Statistical Area

 $table\ continues$

Descriptive Statistics (Nominal and Ordinal Variables, Cont'd)

Variable	P_{No}	P_{Full}	P_{Part}
MSA	0.5064	0.3293	0.1644
Non-MSA	0.4823	0.3308	0.1869
$\chi_2^2 = 1.43$			
Managed Care Contracts			
None	0.6234	0.2092	0.1674
Less than 3	0.4939	0.3419	0.1642
3-10	0.5318	0.2994	0.1688
Greater than 10	0.4537	0.3808	0.1655
$\chi_6^2 = 56.82$			
Physician specialties			
General/family practice	0.4238	0.4317	0.1445
Internal medicine	0.4761	0.3776	0.1464
Pediatrics	0.5243	0.3107	0.1650
General surgery	0.5905	0.2494	0.1601
Obstetrics and gynecology	0.5065	0.3218	0.1718
Orthopedic surgery	0.4356	0.3709	0.1935
Cardiovascular diseases	0.4246	0.3037	0.2717
Dermatology	0.6625	0.2297	0.1079
Urology	0.4559	0.3757	0.1684
Psychiatry	0.7140	0.1424	0.1436

 $table\ continues$

Descriptive Statistics (Nominal and Ordinal Variables, Cont'd)

Variable	P_{No}	P_{Full}	P_{Part}
Neurology	0.5539	0.2771	0.1690
Ophthalmology	0.6344	0.1504	0.2152
Otolaryngology	0.5055	0.3483	0.1462
Other specialties	0.5122	0.3148	0.1730
Oncology	0.3444	0.3836	0.2721
$\chi_{28}^2 = 132.67$			
Region			
Northeast	0.5091	0.3080	0.1829
Midwest	0.5204	0.3227	0.1568
South	0.5232	0.3110	0.1658
West	0.4560	0.3814	0.1626
$\chi_6^2 = 16.41$			
Solo			
Yes	0.4386	0.3910	0.1704
No	0.6367	0.2041	0.1592
$\chi_2^2 = 147.56$			
Total	0.5039	0.3294	0.1667

 $table\ continues$

Descriptive Statistics (Nominal and Ordinal Variables, Cont'd)

Variable	P_{No}	P_{Full}	P_{Part}
Obs.	1,853	1,146	620
Weighted Counts	480,645	314,233	159,030

4.2 Continuous variables

As shown in Table 4.2, the adoption status of the EHR system has potential influence on outcome variables. Physicians who have fully or partially adopted the EHR system are more likely to prescribe patient-specific education resources. While 39.7% of patients have received education resources during their visit at practices without the EHR system, more than 44% of patients received education resource during their visit at practices that had adopted EHR. As for patient-physician interaction time, there is no systematical difference between practices. On average, patients spend 22 minutes with their medical doctor, and there is no substantial difference among practices with different EHR adoption statuses. For returned appointment rate, physician practices that have fully adopted the EHR system have a lower returned appointment rate (66.16%), compared with the other groups, whose returned appointment rate is higher than 71 percent.

As for the characteristics of patients, there is no significant age difference between the fully treated group and the control group. Practices with the EHR system partially adopted had a higher than average patient age. This is consistent with patients' insurance status, since practices with a partially adopted EHR system are more likely to accept Medicare patients. There is a significant difference between the average number of chronological diseases between the fully treated group and the control group. Fewer patients patient with complex chronological conditions visited practices without an EHR system.

Physician practices with different EHR adoption status tend to have different payment structures. Practices with full EHR adoption tended to have a higher percentage of privately insured patients. On average, 60.85% of visits are privately insured patients at a practice that has not adopted an EHR system while 64.75% of visits are privately insured patients at a practice that has fully adopted EHR. There is a slight difference in EHR adoption statuses among Medicare, Medicaid, or self-paid patients' visits. Practices that have fully adopted the EHR system are slightly less likely to accept Medicare, Medicaid, or self-paid patients, compared with the control group. Practices that have fully adopted the EHR system are more likely to accept work compensation patients.

Table 4.2: Descriptive Statistics (Continuous Variables)

Variable	$Mean_{No}$	$Mean_{Full}$	$Mean_{Part}$
Outcomes			
Patient education prescription rate	0.3970	0.4418	0.4419
Time spent with MD	22.3401	21.6737	21.8993
Retured appointment rate	0.7245	0.6616	0.7187
Patient insurance type			
Private insurance	0.6086	0.6475	0.6041
Medicare	0.2474	0.2301	0.2827
Medicaid	0.1372	0.1117	0.1417
Self-pay	0.0843	0.0426	0.0602
Workers Compensation	0.0137	0.0155	0.0112
Avg. patient age	46.2783	46.4305	48.0636
Avg. chron cond.	1.1214	1.2606	1.2617
Obs.	1,853	1,146	620
Weighted Counts	480,645	314,233	159,030

Chapter 5

PROPENSITY SCORE BALANCE

5.1 Measuring Propensity Score Balance

The goal of propensity score weighting is to have similar covariate distribution (or "balance") in the weighted treated and control groups. We relied on the absolute standardized mean difference (ASMD, also referred to as the absolute standardized bias or the Effect Size) to assess the balance. The ASMD d_x was calculated as the absolute difference in means between two different groups, divided by the square root of the average sample variances for this two groups using the following formula (Haviland et al., 2007):

$$d_x = \frac{|\Delta M_x|}{S_x}$$

where ΔM_x is the difference of means between two groups, S_x is calculated by:

$$S_x = \sqrt{\frac{S_{xt}^2 + S_{xp}^2}{2}}$$

where S_{xt}^2 and S_{xp}^2 denotes the standard deviations of variable x in group t and group p.

Hill et al. summarised that ASMDs less than 0.25 were considered acceptable, with values below 0.10 representing a more stringent standard (Hillm et al., 2015).

5.2 Graphic diagnostics of propensity score estimation and balance

5.2.1 Sufficient Iterations of GBM model

As discussed in Chapter 3.4, we use the GBM model to balance pretreatment variables. To optimize the balance statistics of interest, ASMD, we need to make sure the propensity score estimation models run for a sufficiently large number of iterations. We can assess this optimization process by evaluating the relationship between number of iterations and the balance measurement, maximum ASMD, of weighted data. We can have an optimized-balance weighted data if and only if there are sufficient iterations to find global minimum point. In other words, the balance statistic should decrease initially, but should increase after reaching the global minimum point before the end of iteration. Figure 5.1 shows the relationship between number of iteration and balance measurement, maximum ASMD. As shown in Figure 5.1, it appears that each of the maximum ASMD is optimized with substantially fewer than 10,000 iterations.

5.2.2 Overlapping assumption satisfied

One key assumption of propensity score analysis is the overlapping assumption. Propensity score analyses assume that each experiment unit has a non-zero probability of receiving each treatment (Burgette et al., 2015). We can examine the plausibility of this assumption by evaluating the overlap of the empirical propensity score distribution. As shown in the Figure 5.2, although physicians who fully adopted EHR have higher possibility to be in this treatment group, the overlap assumption generally seems to be met for each treatment group.

Figure 5.1: GBM iterations and balance measure

5.2.3 Propensity score balance achieved

Figure 5.3 and Figure 5.4 graphically summarize balance statistics from propensity score estimation with GBM model. In our analysis, each treatment variable of interest has three ASMD statistics, including the difference between non-adopter and fully adaptor, the difference between non-adopter and partially adopted and the difference between partially adopted and fully adopted. Figure 5.3 collapses these three statistics to covariate level and provides an overall comparison of the ASMD between each groups, before and after weighting. Figure 5.4 assesses the balance before and after weighting for each treatment group. The statistically significant difference is indicated by the solid circle.

Non propensity scores by Tx group

Full propensity scores by Tx group

Part propensity scores by Tx group

Figure 5.2: Propensity score overlapping assumption

As shown in the Figure 5.3, covariates in unbalanced data is highly unbalanced. After weighting, the maximum ASMDs significantly decrease for highly unbalanced variables. Some well-balanced variables have slightly worse balances after weighting

because those variables do not predict treatment, led to relatively random matching on them. As shown in the figure, the ASMDs < 0.25 criterion is easily met for all pretreatment variables after propensity score weighting. Some variates have an ASMD greater than 0.1, which will be included in regression analysis later to achieve "double robustness".

Figure 5.3: Propensity score balancing

As shown in the Figure 5.4, observed covariates are well-balanced between each possible pair of treatment in our analysis. Figure 5.4 illustrates the difference in maximum ASMDs by each treatment group before and after propensity score weighting. Physician practices in different treatment group have heterogeneous characterises before propensity score weighting procedure, especially between those who have fully adopted the EHR and those who have no EHR adoption (see left panel). Only one variable has not reached ASMD below 0.1 with statistical difference among all pair-

wise comparisons (see solid dot in weighted data, left panel). Although there are a few variables exceed 0.1 ASMD threshold in the middle and right penal, non of them are statistically significant. All variables in three treatment groups have less then 0.25 ASMD after propensity score weighting.

Figure 5.4: Propensity score balancing by treatment group

5.3 Tabular assessments of balance

Table 5.1 shows the effective sample size (ESS) before and after propensity score weighting. The ESS is approximately the number of observations from a simple

random sample that yields an estimate with sampling variation equal to the sampling variation obtained with the weighted comparison observations (Ridgeway et al., 2015). Overall, the effective has reduced to 60.86% of sample without propensity score weighting. While this may seem like a large loss of sample size, this indicates that many of the physicians were observably unlike their counterparts in different treatment group and, hence, were not useful for isolating the treatment effect of the EHR system.

Table 5.1: Effective sample size by treatment group

Treatment	n	ESS	Proportion
Non	1853	1,116.9608	0.6028
Full	1146	695.7736	0.6071
Part	620	389.6171	0.6284
All	3619	2,202.3515	0.6086

Table 5.3 shows maximum ASMDs of each covariates before and after propensity score weighting. Before propensity score weighting, the maximum ASMDs is 0.4605, which exceeds the 0.25 threshold and be considered as unacceptable. Only a few characteristics of physician practices are well-balanced with maximum ASMDs less than 0.1, including MSA status and average patient age, etc. The ownership type, physician specialities, solo status, and year of visit are highly unbalanced with maximum ASMDs greater than 0.25.

The propensity score weighting procedure significantly improves the balance between each treatment groups. The maximum ASMDs in weighted sample is 0.1259, far below the 0.25 threshold. There are few variables have maximum ASMDs greater than 0.10 after weighting, including ownership type, managed care contracts, solo status, and visit year. MSA status, physician specialties, region, patient chronolog-

ical conditions, physician age, and patient insurance type are considered as good balancing with ASMDs less than 0.1.

Although the observed covariates balanced relatively well, it is possible that unobserved differences between each two of three groups could still remain.

Table 5.2: Propensity Score Balance Statistics

Variable	Max Std. ES	Max Std. ES
	(UNW)	(PSW)
Ownership Type		
Physician or physician group	0.3123***	0.1259*
Health Maintenance Organization (HMO)	0.2530***	0.1033*
Community health center	0.1089*	0.0725
Medical/academic health center	0.0680	0.0337
Other hospital	0.0754	0.0524
Other health care corporation	0.1693*	0.0549
Other	0.0922	0.0470
Metropolitan Statistical Area		
MSA	0.0427	0.0643
Non-MSA	0.0427	0.0643
Managed Care Contracts		
None	0.2372*	0.1006*
Less than 3	0.0111	0.0285
3-10	0.1209*	0.0235

 $table\ continues$

Propensity Score Balance Statistics (Cont'd)

Variable	Max Std. ES	Max Std. ES	
	(UNW)	(PSW)	
Greater than 10	0.2452*	0.0853	
Physician specialties			
General/family practice	0.1913*	0.0776	
Internal medicine	0.0818	0.0702	
Pediatrics	0.0167	0.0145	
General surgery	0.0893	0.0032	
Obstetrics and gynecology	0.0070	0.0208	
Orthopedic surgery	0.0632	0.0364	
Cardiovascular diseases	0.2011*	0.0520	
Dermatology	0.1907^*	0.0615	
Urology	0.0730	0.0219	
Psychiatry	0.3280***	0.0998	
Neurology	0.1297*	0.0168	
Ophthalmology	0.1840^{*}	0.0435	
Otolaryngology	0.0384	0.0048	
Other specialties	0.0206	0.0516	
Oncology	0.1266*	0.0624	
Solo	0.4605***	0.1233*	
Region			
Northeast	0.0568	0.0395	

 $table\ continues$

Propensity Score Balance Statistics (Cont'd)

Variable	Max Std. ES	Max Std. ES
	(UNW)	(PSW)
Midwest	0.1122*	0.0680
South	0.0331	0.0191
West	0.1146*	0.0850
Avg. chron cond.	0.1618*	0.0199
Avg. patient age	0.0768	0.0306
Patient insurance type		
Private insurance	0.0837	0.0457
Medicare	0.1882^*	0.0815
Medicaid	0.1398*	0.0526
Workers Compensation	0.0440	0.0199
Self-pay	0.1860*	0.0727
Visit Year	0.2630***	0.1199*

Note: * Std. ES > 0.1000

Chapter 6

REGRESSION RESULTS

Table 6.1: Estimated effect of EMR adoption with multinomial propensity score weighted OLS models $\frac{1}{2}$

	Dependent variable:		
	Health Edu.	Time Utilization	Ret. Appt. Rate
	(1)	(2)	(3)
Full EMR	0.034*	0.222	-0.031**
	(0.018)	(0.532)	(0.015)
Partial EMR	0.033	0.189	-0.008
	(0.020)	(0.574)	(0.018)
SOLO	$-0.007^{'}$	2.158***	$0.023^{'}$
	(0.020)	(0.545)	(0.015)
HMO^a	0.074^{*}	$0.647^{'}$	-0.142^{***}
	(0.043)	(0.971)	(0.049)
Community health center ^a	$0.007^{'}$	-3.222^{***}	$0.031^{'}$
v	(0.028)	(0.676)	(0.023)
$Medical/academic health center^a$	$-0.015^{'}$	3.993^{*}	0.074^{*}
,	(0.049)	(2.081)	(0.040)
Other hospital a	$0.037^{'}$	-1.920^{***}	$0.033^{'}$
•	(0.047)	(0.644)	(0.029)
Other health care corporation a	$0.005^{'}$	$0.223^{'}$	-0.071^{**}
r	(0.035)	(0.775)	(0.030)
Other owner type ^{a}	0.029	3.438	$0.030^{'}$
<i>J</i> 1	(0.050)	(2.094)	(0.052)
MCC less than b 3	$-0.008^{'}$	$-1.894^{'}$	$0.030^{'}$
	(0.040)	(1.319)	(0.032)
$MCC 3-10^{b}$	$-0.048^{'}$	-4.217^{***}	$0.020^{'}$
	(0.032)	(1.119)	(0.028)
MCC greater than 10^b	-0.063^{**}	-5.571^{***}	$0.003^{'}$
0	(0.031)	(1.088)	(0.028)
2009^{c}	0.033^{*}	$-0.385^{'}$	0.031^{*}
	(0.019)	(0.528)	(0.016)
2010^{c}	0.075***	$0.576^{'}$	0.033^{*}
	(0.021)	(0.573)	(0.017)
Constant	0.411***	25.074***	0.679***
	(0.031)	(1.102)	(0.026)
Observations	3,619	3,619	3,619
Log Likelihood	-2,048.801	-14,216.760	-1,394.416
Akaike Inf. Crit.	4,127.603	28,463.530	2,818.832

Note: ^a Comparing with physician or physician group. ^b Comparing with practices with non managed care contracts. ^c Comparing with year 2008. *p<0.1; **p<0.05; ***p<0.01

Chapter 7

Appendix

7.1 Sensitivity test results

BIBLIOGRAPHY

Julia Adler-Milstein, Carol E. Green, and David W. Bates. A survey analysis suggests that electronic health records will yield revenue gains for some practices and losses for many. *Health Affairs*, 32(3):562–570, 2013a. doi: 10.1377/hlthaff.2012.0306. URL http://content.healthaffairs.org/content/32/3/562.abstract.

Julia Adler-Milstein, Claudia Salzberg, Calvin Franz, E. John Orav, and David Westfall Bates. The impact of electronic health records on ambulatory costs among medicaid beneficiaries. *Medicare & Medicaid Research Review*, 3(2), 2013b.

Ruben Amarasingham, Laura Plantinga, Marie Diener-West, Darrell J Gaskin, and Neil R Powe. Clinical information technologies and inpatient outcomes: a multiple hospital study. *Archives of Internal Medicine*, 169(2):108–114, 2009.

David W. Bates, Suchi Saria, Lucila Ohno-Machado, Anand Shah, and Gabriel Escobar. Big data in health care: Using analytics to identify and manage high-risk and high-cost patients. *Health Affairs*, 33(7):1123–1131, 2014.

Beverly Bell and Kelly Thornton. From promise to reality achieving the value of an ehr. *Healthcare Financial Management*, 65(2):51–56, 2011.

Melinda Beeuwkes Buntin, Matthew F. Burke, Michael C. Hoaglin, and David Blumenthal. The benefits of health information technology: A review of the

recent literature shows predominantly positive results. *Health Affairs*, 30(3): 464–471, 2011.

Lane Burgette, Beth Ann Griffin, and Dan McCaffrey. Propensity scores for multiple treatments: A tutorial for the mnps function in the twang package, 2015.

CDC. 2010 names micro-data file documentation, 2010.

CDC. Code to produce aggregated visit statistics at the physician or facility level, 2012.

Basit Chaudhry, Jerome Wang, Shinyi Wu, Margaret Maglione, Walter Mojica, Elizabeth Roth, Sally C. Morton, and Paul G. Shekelle. Systematic review: Impact of health information technology on quality, efficiency, and costs of medical care. *Annals of Internal Medicine*, 144(10):742–752, 2006. doi: 10.7326/0003-4819-144-10-200605160-00125. URL +http://dx.doi.org/10.7326/0003-4819-144-10-200605160-00125.

CMS. Eligible professional meaningful use menu set measures measure 4 of 9, 2014a.

CMS. Eligible professional meaningful use menu set measures measure 5 of 9, 2014b. URL http://www.healthit.gov/providers-professionals/achieve-meaningful-use/menu-measures/patient-education-resources.

CMS. 2014 definition stage 1 of meaningful use, 2014c. URL http://www.cms.gov/Regulations-and-Guidance/Legislation/EHRIncentivePrograms/Meaningful_Use.html.

Susan Leach DeBlasio. Managed care contracts - key provisions for providers, 2008. URL http://corporate.findlaw.com/law-library/managed-care-contracts-key-provisions-for-providers.html.

Catherine M. DesRoches, Eric G. Campbell, Christine Vogeli, Jie Zheng, Sowmya R. Rao, Alexandra E. Shields, Karen Donelan, Sara Rosenbaum, Steffanie J. Bristol, and Ashish K. Jha. Electronic health records' limited successes suggest more targeted uses. *Health Affairs*, 29(4):639–646, 2010.

David Gans, John Kralewski, Terry Hammons, and Bryan Dowd. Medical groups' adoption of electronic health records and information systems. *Health Affairs*, 24(5):1323–1333, 2005.

Shenyang Guo and Mark W Fraser. Propensity score analysis: Statistical methods and applications, volume 11. Sage Publications, 2014.

Amelia Haviland, Daniel S Nagin, and Paul R Rosenbaum. Combining propensity score matching and group-based trajectory analysis in an observational study. *Psychological methods*, 12(3):247, 2007.

HHS. Recovery act-funded programs, 2013. URL http://www.hhs.gov/recovery/programs/.

Richard Hillestad, James Bigelow, Anthony Bower, Federico Girosi, Robin Meili, Richard Scoville, and Roger Taylor. Can electronic medical record systems transform health care? potential health benefits, savings, and costs. *Health Affairs*, 24(5):1103–1117, 2005.

Carolyn J Hillm, William T Gormley, and Shirley Adelstein. Do the short-term effects of a high-quality preschool program persist? *Early Childhood Research Quarterly*, 2015.

Keisuke Hirano, Guido W Imbens, and Geert Ridder. Efficient estimation of average treatment effects using the estimated propensity score. *Econometrica*, 71(4):1161–1189, 2003.

Guido M Imbens and Jeffrey M Wooldridge. Recent developments in the econometrics of program evaluation. Technical report, National Bureau of Economic Research, 2008.

Ashish K. Jha, Catherine M. DesRoches, Eric G. Campbell, Karen Donelan, Sowmya R. Rao, Timothy G. Ferris, Alexandra Shields, Sara Rosenbaum, and David Blumenthal. Use of electronic health records in u.s. hospitals. *New England Journal of Medicine*, 360(16):1628–1638, 2009. doi: 10.1056/NEJMsa0900592. URL http://www.nejm.org/doi/full/10.1056/NEJMsa0900592. PMID: 19321858.

Gabriel M Leung, LH Philip, Irene OL Wong, Janice M Johnston, and Keith YK Tin. Incentives and barriers that influence clinical computerization in hong kong: a population-based physician survey. *Journal of the American Medical Informatics Association*, 10(2):201–212, 2003.

Jared K Lunceford and Marie Davidian. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statistics in medicine, 23(19):2937–2960, 2004.

Daniel F McCaffrey, Greg Ridgeway, and Andrew R Morral. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. *Psychological methods*, 9(4):403, 2004.

Daniel F McCaffrey, Beth Ann Griffin, Daniel Almirall, Mary Ellen Slaughter, Rajeev Ramchand, and Lane F Burgette. A tutorial on propensity score estimation for multiple treatments using generalized boosted models. *Statistics in medicine*, 32(19):3388–3414, 2013.

Esther F Myers and Sharon M Heffner. Strategies for improving follow-up client appointment-keeping compliance. *Journal of the American Dietetic Association*, 101(8):935–939, 2001.

Lise Poissant, Jennifer Pereira, Robyn Tamblyn, and Yuko Kawasumi. The impact of electronic health records on time efficiency of physicians and nurses: a systematic review. *Journal of the American Medical Informatics Association*, 12(5):505–516, 2005.

R Core Team. R: A language and environment for statistical computing, 2014. URL http://www.R-project.org/.

RAND. Health Information Technology Health Information Technology: Can HIT Lower Costs and Improve Quality? RAND, 2005.

Greg Ridgeway, Dan McCaffrey, Andrew Morral, Lane Burgette, and Beth Ann Griffin. Toolkit for weighting and analysis of nonequivalent groups: A tutorial for the twang package, 2015.

Joachim Roski, George W. Bo-Linn, and Timothy A. Andrews. Creating value in health care through big data: Opportunities and policy implications. *Health Affairs*, 33(7), 2014.

Donald B Rubin. Estimating causal effects from large data sets using propensity scores. *Annals of internal medicine*, 127(8 Part 2):757–763, 1997.

Jaan Sidorov. It ain't necessarily so: The electronic health record and the unlikely prospect of reducing health care costs. *Health Affairs*, 25(4):1079–1085, 2006.

Ronald J Teufel, Abby Swanson Kazley, Myla D Ebeling, and William T Basco. Hospital electronic medical record use and cost of inpatient pediatric care. *Academic pediatrics*, 12(5):429–435, 2012.

Samuel J. Wang, Blackford Middleton, Lisa A. Prosser, Christiana G. Bardon, Cynthia D. Spurr, Patricia J. Carchidi, Anne F. Kittler, Robert C. Goldszer, David G. Fairchild, Andrew J. Sussman, Gilad J. Kuperman, and David W. Bates. A cost-benefit analysis of electronic medical records in primary care. *The American Journal of Medicine*, 114(5):397–403, 2003.