ĐỀ THI HỌC KỲ 2/2010-2011 – Lớp Dự thính

Môn: Tín hiệu và hệ thống – ngày thi: 20/06/2011 Thời gian: 110 phút không kể chép đề

Bài 1. Cho sơ đồ hệ thống điều chế như hình 1a: (a) Với ngõ vào là f(t) có phổ như hình 1b, giả sử $\omega_c > 2\omega_M$, hãy xác định và vẽ phổ của ngỏ ra $Y(\omega)$ nếu $H(\omega) = j$; (b) Nếu ngõ vào là $f_1(t)$ có phổ $F_1(\omega) = Y(\omega)$ của câu (a), hãy tính và vẽ phổ và vẽ phổ của ngõ ra $Y_1(\omega)$ khi $H(\omega) = -j$.

Bài 2. Cho sơ đồ lấy mẫu hình 2(a), tín hiệu f(t) có phổ F(ω) trên hình 2(b) được lấy mẫu bằng chuỗi xung p(t) = $2\sum_{k=-\infty}^{+\infty} \delta(t-kT) - \sum_{k=-\infty}^{+\infty} \delta(t-\frac{T}{2}-kT)$. (a) Hãy xác định chuỗi Fourier phức của p(t) và tính ra phổ P(ω) của nó. (b) Hãy xác định và vẽ phổ Y(ω), giả sử T< π/ω_M . (c) Xác định giá trị lớn nhất của T để có thể khôi phục lại f(t) từ y(t). (d) Hãy vẽ đáp ứng tần số H(ω) của bộ lọc khôi phục f(t) từ y(t).

Bài 3. Cho hệ thống tuyến tính bất biến (LTI) được mô tả bởi sơ đồ khối như hình 3. Hãy xác định: (a) Hàm truyền H(s) của hệ thống; (b) Đáp ứng của hệ thống với ngỏ vào là u(t); (c) Sơ đồ khối thực hiện hệ thống ở dạng trực tiếp; (d) Mạch điện dùng Op-amp để thực hiện hệ thống.

Bài 4. Vẽ đáp ứng biên độ và đáp ứng pha của hệ thống LTI có $H(s) = \frac{10^4(s+10)^2}{s^2(s^2+100s+10^4)}$.

Bài 5. Thiết kế bộ lọc thông thấp Butterworth có đáp ứng biên độ thỏa các yêu cầu sau: dải thông từ 0 đến 45rad/s, độ lợi trong dải thông không được phép nhỏ hơn -1.5dB; dải chắn từ 450rad/s đến ∞, độ lợi trong dải chắn không được phép lớn hơn -75dB. Tính độ lợi nhỏ nhất trong dải thông và độ lợi lớn nhất trong dải chắn của bộ lọc đã được thiết kế.

Ghi chú: - Sinh viên không được sử dụng tài liệu, được xem bảng CT ở mặt sau của đề thi.

- Cán bộ coi thi không được giải thích đề thi

Duyệt của bộ môn