Interpolation and polynomial approximation

Theorem: (Weierstrass approximation theorem)

If f(x) is defined and continuous on [a, b], then there exists a polynomial p(x) defined on [a, b], with the property that

$$|f(x)-P(x)|<\varepsilon \quad \forall x\in[a,b],\ \varepsilon>0$$

One of the most useful and well-known classes of functions mapping the set of R into R is the class of algebraic polynomials

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Example: According the following table, Find f(4) by using quadratic and cubic interpolation respectively

X	1	3	5	6
F(x)	0	4	12	19

let
$$p(x) = a_0 + a_1 x + a_2 x^2$$

Then
$$P(1)=f(1)=0=a_0+a_1+a_2$$

 $P(3)=f(3)=4=a_0+3a_1+9a_2$
 $P(5)=f(5)=12=a_0+5a_1+25a_2$

Using Gauss elimination we have

$$a_0 = -0.5$$
, $a_1 = 0$, $a_2 = 0.5$

Hence
$$P(x) = -0.5 + 0.5x^2 \Longrightarrow f(4) = P(4) = 7.5$$

Secondly, let $p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$

$$P(1)=f(1)=0=a_0+a_1+a_2+a_3$$

Then

$$P(3)=f(3)=4=a_0+3a_1+9a_2+27a_3$$

$$P(5)=f(5)=12=a_0+5a_1+25a_2+125a_3$$

$$P(6)=f(6)=19=a_0+6a_1+36a_2+216a_3$$

Using Gauss elimination we have

$$a_0 = -2$$
, $a_1 = 2.3$, $a_2 = -\frac{2}{5}$, $a_3 = 1.5$

Hence
$$P(x) = -2 + 2.3x - 0.4x^2 + 1.5x^3$$

Lagrange interpolating polynomial

Theorem: If $\mathcal{X}_0, \mathcal{X}_1, \dots, \mathcal{X}_n$ are (n+1) distinct numbers and f(x) is the function whose values are given at these

numbers, then there exists a unique polynomial P(x) of degree at most n with the property that $f(x_k) = P(x_k)$, $\forall k = 0, 1, ..., n$

This polynomial is given by
$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + \dots + L_n(x)f(x_n)$$

$$= \sum_{k=0}^n L_k(x)f(x_k)$$

where

$$L_{k}(x) = \frac{(x - x_{0})(x - x_{1})...(x - x_{k-1})(x - x_{k+1})...(x - x_{n})}{(x_{k} - x_{0})(x_{k} - x_{1})...(x_{k} - x_{k-1})(x_{k} - x_{k+1})...(x_{k} - x_{n})}$$

$$= \prod_{\substack{i \neq k \\ i = 0}} \frac{(x - x_{i})}{(x_{k} - x_{i})}$$

Example: Using the following table and Lagrange polynomial to find f(3)

x	2	2.5	4
F(x)	0.5	0.4	0.25

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x - 2.5)(x - 4)}{(2 - 2.5)(2 - 4)} \implies L_0(3) = -0.5$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = \frac{(x - 2)(x - 4)}{(2.5 - 2)(2.5 - 4)} \implies L_1(3) = \frac{7}{6}$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{(x - 2)(x - 2.5)}{(4 - 2)(4 - 2.5)} \implies L_2(3) = 0.1667$$

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2)$$

$$=-0.5(0.5)+\frac{7}{6}(0.4)+0.1667(0.25)=0.325$$

Exercises: Using Lagrange interpolating polynomials to approximate the following

1] Find f(2.5)

Х	2	2.2	2.4	2.6	2.8
F(x)	0.52	0.63	0.85	1.1	1.3

2] find cosh (1.1)

X	1	1.2	1.3	1.4	1.5
Cosh(x)	1.543	1.811	1.971	2.151	2.352

3] find $e^{2.2}$

x	1.7	1.9	2	2.1	2.3
e^{x}	5.474	6.686	7.389	8.166	9.974

Divided Differences Method

Methods for determining the explicit representation of an interpolating polynomial from tabulated data are known as divided-differences method. The divided-differences of f(x) with respect to $x_0, x_1, ..., x_n$ are divided by showing P(x) as follows

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + ... + a_n(x - x_0)(x - x_{n-1})$$

For appropriate constants a_0 , a,..., a_n

At
$$x=x_0$$
 in P(x), we have

$$a_0 = P(x_0) = f(x_0) = f[x_0]$$

Similarly, at $x=x_1$ in P(x), we have

$$f(x_1) = P(x_1) = a_0 + a_1(x_1 - x_0)$$

$$f(x_1) = f(x_0) + a_1(x_1 - x_0)$$

$$\therefore a_1 = \frac{f(x_1) - f(x_0)}{(x_1 - x_0)} = f[x_0, x_1]$$

Similarly, at $x=x_2$ in P(x), we have

$$f(x_2) = P(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$f(x_2) = f(x_0) + f[x_0, x_1](x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$\therefore a_2 = \frac{f[x_1, x_2] - f[x_0, x_1]}{(x_2 - x_0)} = f[x_0, x_1, x_2]$$

In general we have

$$P(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$
(1)

This equation is Newton's interpolating divided difference formula

x_0	$F(x_0)$			
		$F[x_0 \ , x_1 \]$		
x_1	F(<i>x</i> ₁)		$F[x_0,x_1,x_2]$	
		$F[x_1 , x_2]$		$F[x_0, x_1, x_2, x_3]$
x_2	$F(x_2)$		$F[x_1,x_2,x_3]$	
		$F[x_2 \ , x_3 \]$		
x_3	$F(x_3)$			

Example: Using the following table to find f(1.5) by using Newton's divided difference formula

X	1	1.3	1.7	1.9
F(x)	2.56	3.42	5.76	6.88

Solution:

1	2.56			
		$\frac{43}{15}$		
1.3	3.42		$\frac{179}{42}$	
		5.85		$\frac{-655}{126}$
1.7	5.76		$\frac{-5}{12}$	
		5.6		
1.9	6.88			

$$P(x) = 2.56 + \frac{43}{15}(x-1) + \frac{179}{42}(x-1)(x-1.3) - \frac{655}{126}(x-1)(x-1.3)(x-1.7)$$
$$f(1.5) = P(1.5) = 4.52349$$

Differences:

Forward-Differences operator Δ

$$\Delta f(x_n) = f(x_{n+1}) - f(x_n)$$

$$\Delta f(x_0) = f(x_1) - f(x_0)$$

$$\Delta f(x_0) = \Delta f(x_1) - \Delta f(x_0)$$

$$\Delta f(x_0) = \Delta f(x_1) - \Delta f(x_0)$$

$$\Delta f(x_0) = \Delta^2 f(x_1) - \Delta^2 f(x_0)$$

Newton's forward divided difference

When x_0, x_1, \dots, x_n are arranged consecutively with equal spacing, that is

$$x_1 = x_0 + h$$
, $x_2 = x_1 + h$,...., $x_{n+1} = x_n + h$

And so on we have

$$\Delta^{n} f(x_{0}) = \Delta^{n-1} f(x_{1}) - \Delta^{n-1} f(x_{0})$$

Then
$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{1}{h} \Delta f(x_0)$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{1}{2h} [\frac{1}{h} \Delta f(x_1) - \frac{1}{h} \Delta f(x_0)] = \frac{1}{2h^2} \Delta^2 f(x_0)$$
Similarly we can prove
$$f[x_0, x_1, x_2, x_3] = \frac{1}{3!h^3} \Delta^3 f(x_0)$$

$$f[x_0, x_1, x_2, x_3, ..., x_n] = \frac{1}{n!h^n} \Delta^n f(x_0)$$

Substituting from above equations in the following Newton's interpolating divided difference formula

$$P(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

Then we have

$$P(x) = f[x_0] + \frac{1}{h} \Delta f(x_0)(x - x_0) + \frac{1}{2!h^2} \Delta^2 f(x_0)(x - x_0)(x - x_1) + \dots + \frac{1}{n!h^n} \Delta^n f(x_0)(x - x_0) \dots (x - x_{n-1})$$
(2)

Assume $x = x_0 + s h$ then $x - x_0 = s h$. Also we can prove that

$$x-x_1 = x_0 + sh-x_1 = x_0 - x_1 + sh = -h + sh = h(s-1)$$

 $x-x_2 = x_0 + sh-x_2 = x_0 - x_2 + sh = -2h + sh = h(s-2)$
 $x-x_{n-1} = x_0 + sh-x_{n-1} = x_0 - x_{n-1} + sh = -(n-1)h + sh = h(s-(n-1))$

Substituting in (2) we have

$$P(x) = f[x_0] + \frac{1}{h} \Delta f(x_0)(sh) + \frac{1}{2!h^2} \Delta^2 f(x_0) s(s-1)h^2 + \dots + \frac{1}{n!h^n} \Delta^n f(x_0) s(s-1) \dots (s-(n-1))h^n$$

Hence we have the following polynomial which is known Newton's forward divided difference

$$P(x) = f(x_0) + \Delta f(x_0)s + \frac{1}{2!}\Delta^2 f(x_0)s(s-1) + \dots + \frac{1}{n!}\Delta^n f(x_0)s(s-1) + \dots + (n-1)(s-n-1)$$
(3)

$f(x_0)$				
	$\Delta f(x_0)$			
$f(x_1)$		$\Delta^2 f(x_0)$		
	$\Delta f(x_1)$		$\Delta^3 f(x_0)$	
$f(x_2)$		$\Delta^2 f(x_1)$		$\Delta^4 f(x_0)$
	$\Delta f(x_2)$		$\Delta^3 f(x_1)$	
$f(x_3)$		$\Delta^2 f(x_2)$		
	$\Delta f(x_3)$			
$f(x_4)$				

Example I: Using Newton's forward divided difference interpolation to find f(1.5) according to the following table

x	1	3	5	7	9
F(x)	4	5	8	11	16

Solution: since h=2, x=1.5, $x_0=1$, x= x_0 +s h, then 1.5=1+s(2), hence s=0.25

4				
	1			
5		2		
	3		-2	
8		0		4
	3		2	
11		2		
	5			
16				

Since

$$P(x) = f(x_0) + \Delta f(x_0)s + \frac{1}{2!}\Delta^2 f(x_0)s(s-1) + \frac{1}{3!}\Delta^3 f(x_0)s(s-1)(s-2) + \frac{1}{4!}\Delta^4 f(x_0)s(s-1)(s-2)(s-3)$$

Then

$$P(1.5) = 4 + (1)(0.25) + \frac{1}{2!}(2)(0.25)(0.25 - 1) + \frac{1}{3!}(-2)(0.25)(0.25 - 1)(0.25 - 2) + \frac{1}{4!}(4)(0.25)(0.25 - 1)(0.25 - 2)(0.25 - 3)$$

backward-Differences operator ∇

$$\nabla f(x_n) = f(x_n) - f(x_{n-1})$$

$$\therefore \nabla^2 f(x_n) = \nabla f(x_n) - \nabla f(x_{n-1})$$

Newton's backward divided difference

If the interpolating nodes are reordered as x_n, x_{n-1}, \dots, x_0 then Newton's interpolating divided difference formula (1) can be written as follows

$$P(x) = f[x_n] + f[x_{n-1}, x_n](x - x_n) + f[x_n, x_{n-1}, x_{n-2}](x - x_n)(x - x_n) + \dots + f[x_0, x_1, \dots, x_n](x - x_n) \dots (x - x_1)$$
(4)

Similarly as forward difference we can say

$$f[x_{n-1}, x_n] = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} = \frac{1}{h} \nabla f(x_n)$$

$$f[x_{n-2}, x_{n-1}, x_n] = \frac{1}{2!h^2} \nabla^2 f(x_n)$$

$$f[x_0, ..., x_{n-1}, x_n] = \frac{1}{n!h^n} \nabla^n f(x_n)$$

Substituting from above equations in Newton's interpolating divided difference formula (4) Then we have

$$P(x) = f(x_n) + \frac{1}{h} \nabla f(x_n)(x - x_n) + \frac{1}{2!h^2} \nabla^2 f(x_n)(x - x_n)(x - x_n) + \dots + \frac{1}{n!h^n} \nabla^2 f(x_n)(x - x_n) \dots (x - x_1)$$
 (5)

Assume $x = x_n + s h$ then $x - x_n = s h$. Also we can prove that

$$x-x_{n-1} = x_n + sh-x_{n-1} = x_n - x_{n-1} + sh = h + sh = h(s+1)$$

 $x-x_{n-2} = x_n + sh-x_{n-2} = x_n - x_{n-2} + sh = 2h + sh = h(s+2)$

Substituting in (5) we have

$$P(x) = f(x_n) + \frac{1}{h} \nabla f(x_n)(sh) + \frac{1}{2!h^2} \nabla^2 f(x_n)(sh)(s+1)h + \dots + \frac{1}{n!h^n} \nabla^2 f(x_n)(s)(s+1)(s+2)\dots(s+n-1)h^n$$

Hence we have the following polynomial which is known Newton's backward divided difference

$$P(x) = f(x_n) + \nabla f(x_n)(s) + \frac{1}{2!} \nabla^2 f(x_n)(s)(s+1) + \dots + \frac{1}{n!} \nabla^2 f(x_n)(s)(s+1)(s+2) \dots (s+n-1)$$
 (6)

$f(x_4)$				
	$\nabla f(x_4)$			
$f(x_3)$		$\nabla^2 f(x_4)$		
	$\nabla f(x_3)$		$\nabla^3 f(x_4)$	
$f(x_2)$		$\nabla^2 f(x_3)$		$ abla^4 f(x_4)$
	$\nabla f(x_2)$		$\nabla^3 f(x_3)$	
$f(x_1)$		$\nabla^2 f(x_2)$		
	$\nabla f(x_1)$			
$f(x_0)$				

Example II: Using Newton's backward divided difference interpolation to find f(8) according to the following table

x	1	3	5	7	9
F(x)	4	5	8	11	16

Solution: Since h=2, x=8, x_4 =1, x= x_4 +s h, then 8=9+s(2), hence s= -0.5

16				
	5			
11		2		
	3		2	
8		0		4
	3		-2	
5		2		
	1			
4				

Since

$$P(x) = f(x_4) + \nabla f(x_4)(s) + \frac{1}{2!} \nabla^2 f(x_4)(s)(s+1) + \frac{1}{3!} \nabla^3 f(x_4)(s)(s+1)(s+2) + \frac{1}{4!} \nabla^4 f(x_4)(s)(s+1)(s+2)(s+3)$$

Then

$$P(8) = 16 + (5)(-0.5) + \frac{1}{2!}(2)(-0.5)(-0.5 + 1) + \frac{1}{3!}(2)(-0.5)(-0.5 + 1)(-0.5 + 2) + \frac{1}{4!}(4)(-0.5)(-0.5 + 1)(-0.5 + 2)(-0.5 + 3)$$

Example: Find f(1.5) and f(8) using the following table

x	1	3	5	7	9
F(x)	4	5	8	11	16

Solution: Using one table only to find f(1.5) and f(8) as follows

4				
	1			
5		2		
	3		-2	
8		0		4
	3		2	
11		2		
	5			
16				

To find f(1.5), we follow the same steps in Example I and to find f(8) we follow the same steps in Example II

Exercises: Using Newton's interpolation method to evaluate the following

1] find $e^{1.5}$

X	1.7	1.9	2	2.1	2.3
e^x	5.474	6.686	7.389	8.166	9.974

2] Find f(1.3) and f(1.95)

X	1.1	1.2	1.5	1.7	1.8	2
f(x)	1.112	1.219	1.636	2.054	2.323	3.011

3] Find f(2.5)

x	-1	0	2	4	7
f(x)	2	1	11	117	666

4] Find f(8.35)

X	8.1	8.3	8.6	8.7
f(x)	16.9441	17.56492	18.50515	18.82091

5] Find f(0.05) and f(0.75)

х	0	0.2	0.4	0.6	0.8
f(x)	1	1.2214	1.4918	1.8221	2.2255

6] Find $\sqrt{1.03} \& \sqrt{1.23}$

x	1	1.05	1.1	1.15	1.2
\sqrt{x}	1	1.0247	1.0488	1.0724	1.0954

7] Find In(4.1)& In(4.9)

X	2	2.2	2.4	2.6	2.8	3
In(x+2)	1.3863	1.4351	1.4816	1.5261	1.5686	1.6094

8] Find $\sin(1.2)$ & $\sin(1.85)$

х	0.1	0.3	0.5	0.7	0.9
Sin(x+1)	0.8912	0.9636	0.9975	0.9917	0.9463