Efficient Solutions to Factored MDP with Imprecise Transition Probabilities

Karina Valdivia Delgado ^{1,2} Scott Sanner 2 Leliane Nunes de Barros ¹ Fabio G. Cozman 1

- 1. University of Sao Paulo
 - 2 NICTA & ANU

Markov Decision Processes (MDPs)

- Markov Decision Processes (MDPs)
- MDPs with Imprecise Probabilities (MDPIPs)

- Markov Decision Processes (MDPs)
- MDPs with Imprecise Probabilities (MDPIPs)
- Representing Factored MDPIPs

- Markov Decision Processes (MDPs)
- MDPs with Imprecise Probabilities (MDPIPs)
- Representing Factored MDPIPs
- Efficient Solutions for Factored MDPIPs

- Markov Decision Processes (MDPs)
- MDPs with Imprecise Probabilities (MDPIPs)
- Representing Factored MDPIPs
- Efficient Solutions for Factored MDPIPs
- Summary

MDP - Formal model

MDP is defined by $\mathcal{M} = (S, A, R, P, \gamma)$:

- *S* is a set of states.
- A is a set of actions.
- R(s, a) is a reward function.
- P(s'|s,a) are transition probabilities $\forall s,s' \in S$ and $\forall a \in A$
- \bullet γ discount factor

Conclusion

MDP - Formal model

MDP is defined by $\mathcal{M} = (S, A, R, P, \gamma)$:

- S is a set of states.
- A is a set of actions.
- R(s, a) is a reward function.
- P(s'|s,a) are transition probabilities $\forall s,s'\in S$ and $\forall a\in A$
- \bullet γ discount factor

How to act in an MDP?

- Policy $\pi: S \to A$
- But what criteria to optimize?

MDP - Value Function

• Define value of a policy π :

$$V_{\pi}(s) = E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r_t | s = s_0 \right]$$

MDP - Value Function

• Define value of a policy π :

$$V_{\pi}(s) = E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r_t | s = s_0 \right]$$

• MDP optimal policy π^* :

$$V_{\pi^*}(s) \geq V_{\pi'}(s) \ \forall \pi', s$$

MDP - Value Iteration

- ullet Given optimal t-1-stage-to-go value function
 - How to act optimally with t decisions?

MDP - Value Iteration

- ullet Given optimal t-1-stage-to-go value function
 - How to act optimally with t decisions?

$$Q^{t}(s, a) = R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{t-1}(s')$$

MDP - Value Iteration

- Given optimal t-1-stage-to-go value function
 - How to act optimally with t decisions?

$$Q^{t}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^{t-1}(s')$$

$$V^t(s) = \max_{a \in A} Q^t(s, a)$$

- Given optimal t-1-stage-to-go value function
 - How to act optimally with t decisions?

$$Q^{t}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^{t-1}(s')$$

$$V^{t}(s) = \max_{a \in A} Q^{t}(s, a)$$

• At $t = \infty$, convergence:

$$\lim_{t \to \infty} \max_{s} |V^t(s) - V^{t-1}(s)| = 0$$

Why imprecision in transition probabilities?

Why imprecision in transition probabilities?

• Imprecise or conflicting expert elicitations

Why imprecision in transition probabilities?

- Imprecise or conflicting expert elicitations
- Insufficient data to estimate precise transition models

Why imprecision in transition probabilities?

- Imprecise or conflicting expert elicitations
- Insufficient data to estimate precise transition models
- Non-stationary (but bounded) transition probabilities

Example: non-stationarity in traffic arrival & turn probabilities

- fluctuate each hour of the day
- drift over time (probabilities measured every 2-3 years)

• MDPIP is defined by $\mathcal{M} = (S, A, R, K, \gamma)$

- MDPIP is defined by $\mathcal{M} = (S, A, R, K, \gamma)$
- What's new?
 - Credal set $K = \{P\}$ of possible transition probabilities

Conclusion

MDPIP Value Iteration

• Be as robust as possible, given uncertainty:

$$V^{t}(s) = \max_{a \in A} \min_{P \in K} \left\{ R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{t-1}(s') \right\}$$

Conclusion

Representing large MDPIPs

- Compact representation:
 - Factored state and action variables
 - Decision diagrams (DDs) for reward and transition

Algebraic Decision Diagrams (ADDs)

α	b	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Compact representation for R: ADD

Reward R as an ADD:

Compact representation for K: DCN

Dynamic Credal Networks (DCN) [Cozman00] (DBN extension)

Conclusion

Compact representation for K: DCN

Dynamic Credal Networks (DCN) [Cozman00] (DBN extension)

Note: **product of CPTs** yields **polynomial** expressions $(p_1^2 p_2)$ \implies restricted to **multilinear** $(p_1 p_2 p_3)$ if CPTs do not share p_i

Conclusion

Compact representation for K: DCN + PADD

CPTs represented as Parameterized ADDs (PADDs)

Extending ADDs to PADDs:

Equality testing on leaf expressions

Extending ADDs to PADDs:

- Equality testing on leaf expressions
- Binary operations on leaves:
 - Easy to do +, *, on algebraic expressions

Extending ADDs to PADDs:

- Equality testing on leaf expressions
- Binary operations on leaves:
 - Easy to do +, *, on algebraic expressions
 - Division does not yield a PADD (fractional leaves)

Extending ADDs to PADDs:

- Equality testing on leaf expressions
- Binary operations on leaves:
 - Easy to do +, *, on algebraic expressions
 - Division does not yield a PADD (fractional leaves)
 - max and min do not yield PADDs (inequality decision nodes)
 - but no need to perform these for factored MDPIPs!

Solving large MDPIPs

- Compact representation:
 - Factored state and action variables
 - Decision diagrams (DDs) for reward and transition

Solving large MDPIPs

- Compact representation:
 - Factored state and action variables
 - Decision diagrams (DDs) for reward and transition
- Compact and efficient solutions:
 - SPUDD-IP: Factored value iteration with DDs

Solving large MDPIPs

- Compact representation:
 - Factored state and action variables
 - Decision diagrams (DDs) for reward and transition
- Compact and efficient solutions:
 - SPUDD-IP: Factored value iteration with DDs
- Bounded error approximations:
 - APRICODD-IP: Naive pruning approach
 - OBJECTIVE-IP: Pruning where it counts

Factored MDPIP Value Iteration: SPUDD-IP

SPUDD-IP: Extend SPUDD [HoeyStHuBout99] to MDPIPs

$$V^{t}(\vec{x}) = \max_{a \in A} \left\{ R(\vec{x}, a) \oplus \gamma \min_{\vec{p}} \left[\sum_{\vec{x}'} \bigotimes_{i=1}^{n} P(x'_{i}|pa_{a}(x'_{i}), a, \vec{p}) V^{t-1}(\vec{x}') \right] \right\}$$

First iteration:

First iteration (continued):

$$V^t(\vec{x}) = \max_{a \in A} \left\{ R(\vec{x}, a) \oplus \gamma \min_{\vec{p}} \right\}$$

$$\sum_{x_i'(i\neq 1)} \bigotimes_{i=1(i\neq 1)}^n P(x_i'|pa_a(X_i'), a, \vec{p}) \sum_{x_1'} P(x_1'|pa_a(X_1'), a, \vec{p}) V^{t-1}(\vec{x}')$$

SPUDD-IP vs. Flat MDPIP Value Iteration

Approximate solution for MDPIPs: APRICODD-IP

APRICODD-IP: APRICODD [StHoeyBout00] for MDPIPs

- After each iteration, prune the values that are similar
- Achieves a **bounded** approximate solution

APRICODD-IP sucks (results in a moment)

APRICODD-IP sucks (results in a moment)

• Why? Because nonlinear solution calls dominate time

APRICODD-IP sucks (results in a moment)

- Why? Because nonlinear solution calls dominate time
- APRICODD prunes value ADD

APRICODD-IP sucks (results in a moment)

- Why? Because nonlinear solution calls dominate time
- APRICODD prunes value ADD
 - Need to prune PADDs before nonlinear solver call

APRICODD-IP sucks (results in a moment)

- Why? Because nonlinear solution calls dominate time
- APRICODD prunes value ADD
 - Need to prune PADDs before nonlinear solver call

Objective-IP: approximate PADD objective instead

APRICODD-IP sucks (results in a moment)

- Why? Because nonlinear solution calls dominate time
- APRICODD prunes value ADD
 - Need to prune PADDs before nonlinear solver call

Objective-IP: approximate PADD objective instead

• PADD approximation techniques (see paper for alg/theorem)

APRICODD-IP sucks (results in a moment)

- Why? Because nonlinear solution calls dominate time
- APRICODD prunes value ADD
 - Need to prune PADDs before nonlinear solver call

Objective-IP: approximate PADD objective instead

- PADD approximation techniques (see paper for alg/theorem)
- Produces bounded approximately optimal solution

Objective-IP vs. APRICODD-IP

Objective-IP vs. APRICODD-IP

Objective-IP vs. APRICODD-IP

- Bounded Parameter MDPs (Givan, Leach, & Dean, 2000)
 - Flat transition probabilities are interval bounded

- Bounded Parameter MDPs (Givan, Leach, & Dean, 2000)
 - Flat transition probabilities are interval bounded
- Markov Decision Process with Set-valued Transitions (Trevizan, Cozman, & de Barros, 2007)
 - Flat finite belief set of transition probabilities

- Bounded Parameter MDPs (Givan, Leach, & Dean, 2000)
 - Flat transition probabilities are interval bounded
- Markov Decision Process with Set-valued Transitions (Trevizan, Cozman, & de Barros, 2007)
 - Flat finite belief set of transition probabilities
- Zero-sum Alternating Markov Games (Littman, 1994)
 - A subset of flat MDPIPs
 - More computationally feasible when Nature's effects can be modeled as explicit action

- Bounded Parameter MDPs (Givan, Leach, & Dean, 2000)
 - Flat transition probabilities are interval bounded
- Markov Decision Process with Set-valued Transitions (Trevizan, Cozman, & de Barros, 2007)
 - Flat finite belief set of transition probabilities
- Zero-sum Alternating Markov Games (Littman, 1994)
 - A subset of flat MDPIPs
 - More computationally feasible when Nature's effects can be modeled as explicit action

⇒ Above are strict subsets of Factored MDPIPs

• Transition probabilities are polynomial expressions of linearly constrained variables (i.e., from multiplying CPTs in DCN)

- Contributions
 - Parameterized ADDs

- Contributions
 - Parameterized ADDs
 - Factored MDPIP Value Iteration:
 - SPUDD-IP

- Parameterized ADDs
- Factored MDPIP Value Iteration:
 - SPUDD-IP
 - Up to 2 orders improvement over flat VI!

- Parameterized ADDs
- Factored MDPIP Value Iteration:
 - SPUDD-IP
 - Up to 2 orders improvement over flat VI!
- Factored MDPIP Approximate Value Iteration
 - APRICODD-IP: extension of previous ideas

- Parameterized ADDs
- Factored MDPIP Value Iteration:
 - SPUDD-IP
 - Up to 2 orders improvement over flat VI!
- Factored MDPIP Approximate Value Iteration
 - APRICODD-IP: extension of previous ideas
 - OBJECTIVE-IP: pruning where it counts, lower error & faster!

- Parameterized ADDs
- Factored MDPIP Value Iteration:
 - SPUDD-IP
 - Up to 2 orders improvement over flat VI!
- Factored MDPIP Approximate Value Iteration
 - APRICODD-IP: extension of previous ideas
 - OBJECTIVE-IP: pruning where it counts, lower error & faster!
- Future Work

Contributions

- Parameterized ADDs
- Factored MDPIP Value Iteration:
 - SPUDD-IP
 - Up to 2 orders improvement over flat VI!
- Factored MDPIP Approximate Value Iteration
 - APRICODD-IP: extension of previous ideas
 - OBJECTIVE-IP: pruning where it counts, lower error & faster!

Future Work

• More targeted approximations, more cache reuse

Contributions

- Parameterized ADDs
- Factored MDPIP Value Iteration:
 - SPUDD-IP
 - Up to 2 orders improvement over flat VI!
- Factored MDPIP Approximate Value Iteration
 - APRICODD-IP: extension of previous ideas
 - OBJECTIVE-IP: pruning where it counts, lower error & faster!

Future Work

- More targeted approximations, more cache reuse
- Trading off robustness with average-case

