

Lógica proposicional

Proposiciones en lenguaje natural

Dr. José Lázaro Martínez Rodríguez

Traducción de frases del lenguaje natural

- Trasladar frases del lenguaje natural a expresiones proposicionales nos permite evitar ambigüedades que existen en los lenguajes del ser humano.
- Además, permiten analizar estas expresiones para determinar sus valores de verdad.
- Hay varias formas de representar una misma frase en lógica proposicional.
- Ejemplo:
 - "Puedes acceder a internet desde la facultad solo si estudias telemática o no eres alumno de primero"
 - Primero debemos representar cada una de las frases en formas de proposiciones:
 - p:"puedes acceder a internet" q: "estudias telemática" r: "eres alumno de primero"
 - $(q \ V \neg r) \Rightarrow p$

- Elija las proposiciones para cada átomo y traduzca al español las siguientes fórmulas:
- $(p \land \neg q) \Rightarrow r$
- ¬(p ∧ q)
- $p \Rightarrow (q \land r \lor s)$
- ¬(¬p ∨ ¬q)

Simbolice las siguientes proposiciones:

- 1. Si no llueve, entonces el campo estará seco
- 2. El equipo mexicano perdió en el mundial, sin embargo el equipo se lleva bien
- 3. No obstante el coche es nuevo, se descompuso
- 4. Estoy cansado, aunque con ganas de salir al cine
- 5. Mi perro no quiere comer, ni ladrar, ni jugar
- 6. No es cierto que a la vez Martín juega y cuida a su hermanita
- 7. Que el color de la casa sea blanco implica que guarda menos el calor
- No puedes montar en la montaña rusa si mides menos de 1.20 metros, a no ser que seas mayor de 16 años
- 9. No es cierto que niego que plagié ese párrafo

Represente simbólicamente la proposición definiendo p: Hay huracán. q: Está lloviendo.

- No hay huracán.
- Hay huracán y está lloviendo.
- Hay huracán, pero no está lloviendo.
- No hay huracán y no está lloviendo.
- Hay huracán o está lloviendo (o ambas).
- Hay huracán o está lloviendo, pero no hay huracán.

• Construye las tablas de verdad para cada una de las siguientes formulas.

- $p \Rightarrow \neg p$
- $p \Leftrightarrow \neg p$
- $p \oplus (p \vee q)$
- $(p \land q) \Rightarrow (p \lor q)$
- $(q \Rightarrow \neg p) \Leftrightarrow (p \Leftrightarrow q)$
- $(p \Leftrightarrow q) \oplus (p \Leftrightarrow \neg q)$
- p ⊕ p
- $p \oplus \neg p$
- $p \oplus \neg q$
- $\neg p \oplus \neg q$
- $(p \oplus q) \lor (p \oplus \neg q)$
- $(p \oplus q) \land (p \oplus \neg q)$

Construye las tablas de verdad para cada una de las siguientes formulas.

- (p V q) V r
- (p ∨ q) ∧ r
- (p ∧ q) ∨ r
- (p ∧ q) ∧ r
- (p ∨ q) ∧ ¬r
- (p ∧ q) V ¬r

Equivalencias proposicionales

• Un proceso importante en lógica proposicional es la sustitución de una sentencia por otra de igual valor.

Verdad lógica o Tautología.

- Una oración válida o tautología es una oración que es Verdadera bajo todas las interpretaciones, independientemente de cómo sea el mundo en realidad o de cómo se defina la semántica.
- Ejemplo: "Llueve o no llueve".

Consideremos la proposición $((p \land q) \rightarrow p)$

р	q	p ∧ q	(p∧q)→p
V	V	V	V
V	F	F	V
F	V	F	V
F	F	F	V

Contingencia

• Son aquellas proposiciones que pueden ser verdad o falso, dependiendo de los valores de verdad de las proposiciones que le componen.

Contradicciones

 Son aquellas proposiciones que siempre son falsas, sin importar los valores de verdad de las proposiciones que la componen.

Álgebra de proposiciones

$$p \rightarrow q \equiv p \lor q$$

р	q	$p \rightarrow q$	p	q	- q
V	V				
V	F				
F	V				
F	F				

En resumen

- Tautología: Formula que siempre es verdadera, independientemente de los valores de las proposiciones que la componen.
- Contradicción: Formula que siempre es falsa, independientemente de los valores de las proposiciones que la componen.
- Contingencia: Formula cuyo valor puede ser falso o verdadero.

Ejercicio:

- Construya las tablas de verdad para p V ¬p y p ∧ ¬p
- ¿Cuál de las dos fórmulas es una tautología y cual una contradicción?

- Indique si cada una de las siguientes formulas son una tautología, contradicción o contingencia:
- $\neg(p \Rightarrow q)$
- $((p \Rightarrow q) \land p) \Rightarrow q$
- $((p \lor q) \land \neg q) \Rightarrow \neg p$

- Considere el siguiente ejemplo:
 "Si termino mi tarea, entonces salgo a jugar"
- Ahora considere la siguiente frase:
 "Si no salgo a jugar, entonces no he terminado mi tarea"
- Ambas frases
 ¿Son -mas o menos- lo mismo o son diferentes?

• Simboliza las frases anteriores y construye sus tablas de verdad.

• ¿Son iguales o son diferentes?

- En algunos casos, dos proposiciones diferentes tienen los mismos valores de verdad sin importar qué valores de verdad tengan las proposiciones que las constituyen.
- Tales proposiciones se conocen como equivalentes lógicos.
- El símbolo de la equivalencia lógica es ≡

Equivalencia	Nombre		
$p \wedge \mathbf{V} \equiv p$ $p \vee \mathbf{F} \equiv p$	Leyes de identidad		
$p \lor \mathbf{V} \equiv \mathbf{V}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Leyes de dominación		
$p \lor p \equiv p$ $p \land p \equiv p$	Leyes idempotentes		
$\neg(\neg p) \equiv p$	Ley de la doble negación		
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Leyes conmutativas		
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Leyes asociativas		
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Leyes distributivas		
$\neg(p \land q) \equiv \neg p \lor \neg q$ $\neg(p \lor q) \equiv \neg p \land \neg q$	Leyes de De Morgan		
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Leyes de absorción		
$p \lor \neg p \equiv \mathbf{V}$ $p \land \neg p \equiv \mathbf{F}$	Leyes de negación		

Tabla 6. Equivalencias lógicas relacionadas con implicaciones.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

Tabla 7. Equivalencias lógicas relacionadas con implicaciones.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

• Construya las tablas de verdad para las Tablas 6 y 7, de las equivalencias lógicas.