信息安全数学基础

同济大学 杨礼珍

作业

- 阅读《密码学原理与实践》2-3页中1.1.1节部分。
- 阅读《抽象代数基础教程》89-90页中2.3节部分、154-155页、163页中3.2节概念部分。
- 练习1.1 计算下列数值:
 - □ (a) 7503 mod 81
 - □ (b)(-7503)mod 81
 - □ (c)81 mod 7503
 - □ (d)(-81)mod 7503
- 练习1.2 判断对错:
 - \Box (a)3 \equiv 5(mod 2)
 - \Box (b) 7=13(mod 5)
- 练习1.3 设A是所有奇数构成的集合,B是所有偶数构成的集合。请问A、B关于整数的加法运算是否是群?请证明你的结论。
- 练习1.4 证明S₄不是Abel群。

RSA公钥密码算法		所涉数学概念与原理
公钥(n,b) 私钥(a,p,q) 加密e _k (x) 解密d _k (y)	●p、q为素数 ■n=pq ■b与(p-1)(q-1)互素 ■a=b ⁻¹ mod(p-1)(q-1) y=x ^b mod n x=y ^a mod n	 ■a≡b(mod n): 表示n整除b-a, 读作 "a与b模n同余", n称为模数 ■a mod n: 表示a除以n所得到的余数。 ■a=b⁻¹ mod m 当且仅当ab mod m=1 ■Z_n={0,1,,n-1} ■φ(n): 欧拉函数, Z_n中与n互素的整数的个数。 ■x^{φ(n)}≡1(mod n): 欧拉定理, 费马小定理(n为
		素数)的推广

RSA公钥密码算法		所涉算法
	p、q为素数	使用素性测试算法生成随机素数
公钥(n,b)	n=pq	大整数的算术运算
私钥(a,p,q)	■b与(p-1)(q-1)互素	欧几里德算法
	■a=b ⁻¹ mod(p-1)(q-1)	扩展欧几里德算法
加密e _k (x)	y=x ^b mod n	平方-乘算法
解密d _k (y)	x=y ^a mod n	中国剩余定理(用于加快解密速度)

乘法群G上的ElGamal公钥密码体 制		所涉数学原理与概念
私钥a	a∈{1,,n-1}	群(G,·):集合G及定义在其上的二元运算·,且满足某些性质。运算为乘
公钥 (G,α,β)	乘法群G中的n阶 元素α,β= α ^a	法时,称为乘法群。 α ∈ G的 阶为n 定义为满足α ⁿ =1(1为 G中的单位元)的最小正整数。α的阶
加密运算	选取随机数k ∈{1,,n-1} y ₁ = α ^k y ₂ =x β ^k	为 G 时称α为群G的 生成元、本原元 , 或者 原根 (常见于数论中) 以下群在密码学中最为重要: •(Z * _p , •), p为素数, <i>Z</i> * _p = <i>Z</i> _p /{0} •(F * ₂ n, •), F* ₂ n 表示 有限域 F ₂ n的乘
解密运算	y ₂ (y ₁ ^a) ⁻¹	法群 •(E,+), 其中E是模素数p的一个椭圆 曲线

乘法群G上的ElGamal公钥密码体制所基于的 离散问题	备注
$α,β ∈ G 且 α 的 阶 为 n , 求 a ∈ Zn满 足 αa=β , 记 a=log_αβ , 称 为 β 的 离 散 对 数$	在数论中, log _α β写 成ind _α β, 称为β的指 数

常见素性测试算法	所基于的数论内容
Solovay-Strassen算法	二次剩余
Fetmat素性测试	费马(Fetmat)小定理
Miller-Rabin算法	费马小定理

乘法群G上的ElGamal公钥密码体 制		所涉数学计算
私钥a	a∈{1,,n-1}	生成伪随机数(密码学伪随机数生成 器部分)
公钥 (G,α,β)	乘法群G中的n阶 元素α,β= α ^a	生成G中的本原元,由本原元生成n 阶元素
加密运算	选取随机数k ∈{1,,n-1} y ₁ = α ^k	G上的平方-乘算法: 求α ^{k、} β ^k
	$y_2=x \beta^k$	群G上的乘法运算
解密运算	y ₂ (y ₁ ^a) ⁻¹	

群、环、域的概念

群(Group)(G,·),其中G为元素集合,·是定义在G上的二元运算,满足以下性质:

封闭性	对∀a,b ∈G有a · b ∈G
结合律	对∀a,b,c ∈G有(a · b) · c=a ·(b · c)
存在单位元 (单位元通常用 e或1表示)	∃e∈G,使得对于∀ a ∈G有e·a=a· e=a,称e为G的单位元。
可逆性	对∀a ∈G, ∃b∈G满足 a·b= b·a=e, b称为a的逆元,表示 成 b=a -1

Abel群 (又称交换群)

- 为简约起见,在运算符·明确的情况下,群(G,·)经常用G来代替。
- 若群G满足交换性则称为交换群,或者阿贝尔群 (Abel群)。

交换律	对∀a,b ∈G有a · b=b · a

Abel群的例子

■ (Z,+)是Abel群:整数集合Z={...-2,-1,0,1,2,...},以及定义在其上的加法运算+

封闭性	对∀a,b ∈Z有a+b ∈Z
结合律	对∀a,b,c ∈Z有(a+b)+c=a+(b+c)
0是单位元	对于∀ a ∈Z有0+a=a+0=a
可逆性	对∀a ∈Z,有(-a)+a=a+(-a)=0,因 此-a是a的逆元
交换律	对∀a,b ∈Z有a + b=b + a

群的例子

- 当p为素数时(Z*,,·) 是Abel群:其中Z*,={1,2,...,p-1}·表示mod p乘法运算,即a·b=(ab)mod n。如果p不是素数,则不是群,因为不是所有元素都存在逆元。介绍同余性质时再证明。
- (Z_n, +) 是Abel群: 其中+表示mod n加法运算,即a + b表示a+bmod n(这里是Z上的+运算)。介绍同余性质时再证明。
- Mat_n(R)表示R上的所有n×n矩阵的集合,则Mat_n(R)关于 矩阵加法运算是Abel群,单位元是全0矩阵0_{n×n}。
- GL(n,R)表示R上的所有n×n可逆矩阵的集合,则GL(n,R) 关于矩阵乘法运算是群,但不是Abel群,单位元是单位 矩阵I_{n×n}。

群的例子

• 设X是大小为n的有限集合,记 S_n ={集合X上的所有置换}。那么 S_n 关于映射合成运算构成群。 S_1 , S_2 是交换群, S_3 不是Abel群。当n>3时, S_n 不满足交换律。

设X=
$$\{x_1, x_2, x_3\}$$
。令e,e' \in S₃满足 $e(x_1)=x_1, e(x_2)=x_3, e(x_3)=x_2,$ $e'(x_1)=x_2, e'(x_2)=x_3, e'(x_3)=x_1,$ 那么ee'(x_1)= $e(x_2)=x_3,$ $e'(x_1)=e(x_2)=x_3,$ 因此 $e'(x_1)=e'(x_1)=x_2.$

环和域

■ 环(Ring)(R,+,·): R是元素集合,+,·是定义在R上的二元运算,且满足如下性质则称为环:

(R,+)是Abel群 (单位元记为0)		
乘法·满足	封闭性	
	结合律	
	存在单位元,记为1	
+,·满足分配律	对∀a,b,c ∈R,有(a+b)c=(ac)+(bc), c(a+b)=(ca)+(cb)	
女元:\+\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\		

若乘法·满足交换性,则称为交换环

若R为交换环,且R/{0}对乘法运算可逆,则称为<mark>域</mark>。元素个数无限的称为**无限域**,个数有限的域称为**有限域**。

环和域的例子

- 学习过的域:
 - □ 实数域(R,+,.)
 - □ 有理数域(Q,+,.)
 - □ 复数域(C,+,.)
- (Z,+,·)是交换环,但不是域
- (Z_m,+,·)是交换环,但只当m为素数时是域。以后证明。
- (Mat_n(R),+ ,·)是交换环,其中+ ,·分别表示R上的矩阵 加法和乘法,但n>1时不是域。