Planche nº 16. Ensembles dénombrables. Corrigé

Exercice nº 1

1) Notons $\mathscr{P}_{f}(\mathbb{N})$ l'ensemble des parties finies de \mathbb{N} .

Pour $n \in \mathbb{N}$, notons $E_n = \{A \in \mathscr{P}_f(\mathbb{N}) \setminus \{\varnothing\} / \operatorname{Max}(A) = n\}$ et $E_{-1} = \{\varnothing\}$. $(E_n)_{n \geqslant -1}$ est une partition de $\mathscr{P}_f(\mathbb{N})$, chaque E_n , $n \in \mathbb{N}$, est fini (de cardinal 2^n) de même que E_{-1} (de cardinal 1). Donc, $\mathscr{P}_f(\mathbb{N})$ est une réunion dénombrable d'ensembles finis. On en déduit que $\mathscr{P}_f(n)$ est dénombrable.

2) Soit $f : \mathbb{N} \to \mathscr{P}(\mathbb{N})$ une application de \mathbb{N} vers $\mathscr{P}(\mathbb{N})$. Soit $A = \{n \in \mathbb{N} / n \notin f(n)\}$. A est une partie de \mathbb{N} (éventuellement vide). Supposons par l'absurde que A ait un antécédent n par f dans \mathbb{N} .

Si $n \in A$, alors $n \notin f(n) = A$ ce qui est impossible. Si $n \notin A$, alors $n \in f(n) = A$ ce qui est impossible. Donc, A n'a pas d'antécédent par f dans \mathbb{N} puis f n'est pas surjective.

Ainsi, si f est une application quelconque de \mathbb{N} vers $\mathscr{P}(\mathbb{N})$, f ne peut être surjective. Donc, il n'existe pas de bijection de \mathbb{N} sur $\mathscr{P}(\mathbb{N})$ ou encore $\mathscr{P}(\mathbb{N})$ n'est pas dénombrable.

Exercice nº 2

 $\{\sin(n),\ n\in\mathbb{N}\}\ \mathrm{est}\ \mathrm{d\acute{e}nombrable}\ \mathrm{et}\ [-1,1]\ \mathrm{ne}\ l'\mathrm{est}\ \mathrm{pas}.\ \mathrm{Donc}, \\ \{\sin(n),\ n\in\mathbb{N}\}\subsetneq [-1,1].$

Exercice nº 3

Soit E un ensemble infini. Montrons par récurrence que pour tout $n \in \mathbb{N}$, E contient n+1 éléments deux à deux distincts x_0, \ldots, x_n .

- \bullet E est infini et en particulier non vide. Donc, E contient un élément x_0 .
- Soit $n \neq 0$. Supposons avoir construit n+1 éléments deux à deux distincts x_0, \ldots, x_n . Si $E = \{x_k, k \in [0, n]\}$, alors E est fini ce qui est faux. Donc, $E \setminus \{x_k, k \in [0, n]\}$ n'est pas vide et il existe un élément x_{n+1} de E, distinct de x_0 , de x_1, \ldots et de x_n .

Le résultat est démontré par récurrence. $A = \{x_n, n \in \mathbb{N}\}$ est une partie dénombrable de E (l'application $x \mapsto x_n$ est une bijection de \mathbb{N} sur A).

Exercice nº 4

Soit $f: \mathbb{R} \to \mathbb{R}$ une application de \mathbb{R} vers \mathbb{R} , croissante sur \mathbb{R} . Soit E l'ensemble des points de discontinuité de f.

1) a) Soit $n \in \mathbb{N}^*$. Si E_n est vide, E_n est fini. Supposons dorénavant $E_n \neq \emptyset$. Soient $p \in \mathbb{N}^*$ puis $x_1 < x_2 < \ldots < x_p$, p éléments de E_n . On note y_0, y_1, \ldots, y_p des éléments de a, b [tels que

$$a < y_0 < x_1 < y_1 < ... < y_{p-1} < x_p < y_p < b.$$

Puisque f est croissante sur [a,b], on sait que pour tout $k \in [0,p-1]$,

$$f(a) \leqslant f(y_k) \leqslant f(x_{k+1}^-) \leqslant f(x_{k+1}^+) \leqslant f(y_{k+1}) \leqslant f(b)$$

et donc, $f(y_{k+1}) - f(y_k) \ge f(x_{k+1}^+) - f(x_{k+1}^-) \ge \frac{1}{n}$. Mais alors,

$$\frac{p}{n} \leqslant \sum_{k=0}^{p-1} (f(y_{k+1}) - f(y_k)) = f(y_p) - f(y_0) \leqslant f(b) - f(a)$$

et donc, $p \le n(f(b) - f(a))$. Ainsi, card $(E_n) \le n(f(b) - f(a)) < +\infty$.

- b) $E \cap a$, b[est la réunion des E_n , $n \in \mathbb{N}^*$. Ainsi, $E \cap a$, b[est une réunion dénombrable d'ensembles finis. $E \cap a$, b[est donc au plus dénombrable.
- 2) Pour $n \in \mathbb{N}^*$, on pose $E'_n = E \cap]-n, n[$. Chaque $E'_n, n \in \mathbb{N}^*$, est au plus dénombrable d'après la question précédente et $E = \bigcup_{n \in \mathbb{N}^*} E'_n$. E est donc une réunion dénombrable d'ensembles au plus dénombrable. A ce titre, E est au plus dénombrable.

Exercice nº 5

Un programme en Python est une succession de caractères appartenant à un alphabet \mathscr{A} fini (lettres, chiffres, ponctuations, espaces, sauts, indentations, ...). Posons $\mathfrak{p} = \operatorname{card}(\mathscr{A})$.

Pour $n \in \mathbb{N}^*$, notons E_n l'ensemble programmes Python composés de n caractères ou encore l'ensemble des mots de longueur n. Pour tout $n \in \mathbb{N}^*$, card $(E_n) = p^n < +\infty$.

L'ensemble des programmes en Python « est » la réunion des ensembles finis non vides E_n , $n \in \mathbb{N}^*$, (puisqu'un programme est constitué d'un nombre fini de caractères). L'ensemble des programmes en Python est donc dénombrable.

Exercice nº 6

 $\mathrm{Notons}\ E\ \mathrm{l'ensemble}\ \mathrm{des}\ \mathrm{indices}\ i\in I\ \mathrm{tels}\ \mathrm{que}\ u_i\neq 0.\ \mathrm{Pour}\ n\in \mathbb{N}^*,\ \mathrm{posons}\ E_n=\bigg\{i\in I/\ |u_i|\geqslant \frac{1}{n}\bigg\}.$

$$\sum_{i \in I} |u_i| \geqslant \sum_{i \in E_n} |u_i| \geqslant \frac{\operatorname{card}\left(E_n\right)}{n}$$

(y compris si E_n est vide avec la convention qu'une somme vide est nulle) et donc, $\operatorname{card}(E_n) \leqslant n \sum_{i \in I} |u_i| < +\infty$. Ainsi, chaque E_n , $n \in \mathbb{N}^*$, est fini (éventuellement vide). Puisque E est la réunion des E_n , $n \in \mathbb{N}^*$, E est au plus dénombrable.