When MAML Learns Quickly Does It Generalize Well?

O. Taylan Turan*, David M.J. Tax*, and Marco Loog*

Pattern Recognition Laboratory, Delft University of Technology, Van Mourik Broekmanweg 6, Delft 2628 XE, The Netherlands

1. Introduction

- Meta-learning: leverages similar learning problems (tasks) for a specific similar data-scarce target learning problem (task).
- MAML: tackles meta-learning problems by providing an initialization for model parameters that facilitates quick adaptation and good generalization.
- AIM: Investigating the effect of gradient step limitation.

3. Experimental Setup

• Tasks: linear/nonlinear regression problems with noisy ($\varepsilon \sim \mathcal{N}(0, \sigma^2)$) observations of functions $f(\mathbf{x})$

$$\mathbf{y} = f(\mathbf{x}) + \varepsilon, \tag{1}$$

- Estimator: model \hat{M} trained with a given dataset $\mathcal{Z} := \{\mathbf{x}_i, y_i\}_{i=0}^N$
- Performance: expected error over the task distribution $p_{\mathcal{T}}$ and data distribution $p_{\mathcal{Z}}$

$$\mathcal{E} := \iiint (\hat{\mathcal{M}}(\mathbf{x}) - y)^2 p(\mathbf{x}, y) p_{\mathcal{Z}} p_{\mathcal{T}} d\mathbf{x} dy d\mathcal{Z} d\mathcal{T}$$
(2)

5. Results for Task Variances c and c_2 (N=1, 10, 50)

• Linear problem: $f(\mathbf{x}) := \mathbf{x}^\mathsf{T} \mathbf{a}$

• Nonlinear problem: $f(\mathbf{x}) := \sin(\mathbf{x} + \boldsymbol{\phi})^\mathsf{T} \mathbf{a}$

2. MAML[1]

- From M tasks $\{\mathcal{T}_i\}_{i=0}^M$
- Learn a model initialization $\bar{\mathbf{w}}_{meta}$

4. Baselines

- Linear/Kernelized Ridge Regression
- Randomly Initialized Gradient Descent

6. Conclusions

- Given enough data single-task learners can outperform MAML in expectation in most the cases
- Task variance highly influences the performance of MAML in expectation.

7. Experimentation

8. References

- Ridge- λ :0.0001

-random GD- η :0.4737

- MAML- η :0.4445