Problem Set 3

Problem 1. Find voltage U.

Answer. $U = E\left(\frac{R_2}{R_1 + R_2} - \frac{R_4}{R_3 + R_4}\right)$.

Problem 2. Find the value of R for which U=0. Use the voltage divider formula. The following data is given: $E_1=15\,\mathrm{V},\,E_2=4\,\mathrm{V},\,R_1=2\,\mathrm{k}\Omega,\,R_2=6\,\mathrm{k}\Omega,\,R_3=4\,\mathrm{k}\Omega.$

Answer. $R = 2 k\Omega$.

Problem 3. Using superposition rule, find current I_E . Give the conditions under which $I_E = 0$.

$$\begin{array}{c|c} & R_1 & R_2 \\ & I_E & R_3 \\ \end{array}$$

Answer. $I_E = E\left(\frac{1}{R_1 + R_2} + \frac{1}{R_3 + R_4}\right) + J\left(\frac{R_2}{R_1 + R_2} - \frac{R_3}{R_3 + R_4}\right)$. $I_E = 0$ if $E = J\frac{R_1R_3 - R_2R_4}{R_1 + R_2 + R_3 + R_4}$.

Problem 4. Using superposition rule find current I. The following data is given: E = 24 V, J = 1.2 A, $R = 1 \Omega$.

Answer. $I = \frac{J}{2} + \frac{E}{10R}$.

Problem 5. Using superposition rule find voltages across the following 1-ports.

Answer. $E + J_2(R_1 + R_2) + J_1R_1$,

26 V.