Discrete Mathematics (2012 Spring) Final

- 1. (10 points) For each of the following statements, determine whether it is correct or not.
 - $(1)\phi \subset \phi \quad (2)\phi \subseteq \{\phi\} \quad (3)P(A \cup B) = P(A) \cup P(B)$
 - (4) Let $A = \{1, 2, 3, 4, 5, 6\}$, there is an equivalence relation R on A with |R|=8.
 - (5) Let (A, **R**) be a poset. If (A, **R**) is a total order, then it is a lattice.
- 2. (8 points) In how many ways can 30030 (2*3*5*7*11*13) be factored into three or more factors, each greater than 1 and the order of the factors is relevant?
- 3. (12 points) Find (a) the generating function for the number of solutions of 2w + 3x + 5y + 7z = n, $0 \le w$, $2 \le x$, y, $3 \le z$, (b) the exponential generating function for the sequence 0!, 1!, 2!, 3!, ..., (c) the exponential generating function for the number of ways to arrange n letters, $n \ge 0$, selected from the word "MISSISSIPPI" and the arrangement must contain at least two S's and one I.
- 4. (5 points) For n distinct objects, let a(n, r) denote the number of ways we can select, without repetition, r of the n objects when $0 \le r \le n$. Here a(n, r) = 0 when r > n. Please describe a(n, r) in a recurrence relation form.
- 5. (10 points) Suppose the symbols of legal arithmetic expressions include 0, 1,..., 9, +, *, /. Let a_n be the number of legal arithmetic expressions that are made up of n symbols. Solve a_n , a_1 =10 and a_2 =100.
- 6. (10 points) Please determine how many integer solutions for $x_1 + x_2 + x_3 = 10$, $1 \le x_1 \le 4$, $0 \le x_2 \le 6$, $2 \le x_3 \le 7$. (exhaustively list all answers is not allowed.)
- 7. (8 points) Determine (a) the sequence generated by f(x)=1/(2+3x), (b) the coefficient of x^{15} in $(x^3-5x)/(1-x)^3$.
- 8. (*10 points*) Find the number of permutations of 0, 1, 2, 3, ..., 8, 9 in which none of the patterns '1234', '76', '23', '891' occurs.
- 9. (8 points) (10%) Determine the value of $c \in \mathbb{Z}^+$, $10 \le c \le 15$ such that equation 84x + 990y = c has integer solutions. Determine the solutions for this c value.
- 10. (9 points) If $A = \{v, w, x, y, z\}$, determine the number of relations on A that are (a) antisymmetric and contain (x,y), (b) equivalence relations that determine more than three (include three) equivalence classes, (c) reflexive and symmetric but not transitive.
- 11. (10 points) For A={1, 2, 3, 4, 5} and B={u, v, w, x, y, z}, determine the number of one-to-one functions $f: A \rightarrow B$ where $f(1) \neq v$, w, $f(2) \neq u$, w, $f(3) \neq y$ and $f(4) \neq x$, f(5) = z.
- 12. (*5 points*) Please list 2 examples/methods/strategies to improve your (or others') learning motivation/performance.

