Modulação por Código de Pulsos - PCM

- Na Modulação por Código de Pulsos (PCM) as amostras do sinal mensagem são representadas por uma seqüência de pulsos codificados digitalmente e transmitidas através de um canal.
- As operações básicas realizadas por um sistema PCM são:
 - ∠ Filtragem Amostragem Quantização e Codificação Multiplexação Codificação de linha.

O transmissor PCM para 30 canais de Voz

32 canais: Brasil - Europa

24 canais: USA - Canada - Japão

← Princípios Básicos

☞ Filtragem:

∠ Filtro passa-baixas para evitar 'aliasing'.

Amostragem: canais telefônicos.

- ∠ Sinais de voz: são limitados em 3.4 kHz
- ∠ banda de guarda (1.2 kHz)
- ∠ Freqüência de amostragem:
 (2*3.4+1.2)kHz = 8 kHz

Quantização:

∠ Realizada por um Conversor AD (CODEC)

\Box Taxa de bits (R_b ou f_b):

- ∠ 8(bits) x1(canal) x8(kHz) ☑ 64 kbps.
- ∠ 8(bits) x32(canais) x8(kHz)) 2.048 Mbps. (BR)
- ∠ [8(bits) x24(canais)+(1bit)] x8(kHz) ☑1.544 Mbps.(USA)

Multiplexagem:

☑ Cada canal: é transmitido a cada 125 us (1/fa)

☑ N - canais: são transmitidos sucessivamente no intervalo de um período de amostragem. (quadro).

☑ 32 - canais: Os canais "0" e "16" são utilizados para sincronismo.

☑ Canal ' 0 ': "x0011011" (transmitida a cada 2 quadros) quadros ímpares: alarmes

☑ Canal '16 ': Sincronismo de multiquadro (16 quadros)

Largura de faixa mínima para transmissão:

$$B_{MIN} = \frac{f_b}{2} = vN\frac{f_a}{2} = vNW$$

f_b: taxa de bits.

v: número de dígitos da palavra.

N: número de canais.

W: largura de faixa absoluta do sinal

← Transmissão e Recepção

PCM

← Quantização

É o processo de transformação da amplitude de uma amostra (dentro de uma faixa contínua de valores) em uma amplitude discreta tomada de um conjunto finito valores.

$$m_k < v_i \le m_{k+1} \Rightarrow v_o = m_{k+1}$$

Passo de quantização $\Rightarrow m_{k+1}$ - m_k

← Quantização Linear:

Quantizador de 3 bits

No. de níveis: $Q = 2^N = 8$

0 🕻 000
1 C 001
2 C 010
3 C 011
4 C 100
5 C 101
6 C 110
7 🔼 111

← Ruído de quantização:

- ☑ A quantização introduz um erro nas amplitudes do sinal.
- ☑ Este erro é definido como a diferença entre o sinal de entrada e o sinal de saída.
- ☑ Ele é chamado de ruído de quantização.

 \square q(t): variável aleatória uniformemente distribuída entre $\pm \delta/2$

$$p(q) = \begin{cases} 1/\delta, & -\delta/2 \le q \le \delta/2 \\ 0, & c.c. \end{cases}$$

✔ Variância do ruído de quantização

$$E[q^{2}] = \int_{-\infty}^{\infty} q^{2} p(q) dq$$

$$E[q^{2}] = \sigma_{q}^{2} = \int_{-\delta/2}^{\delta/2} q^{2} \frac{1}{\delta} dq = \frac{\delta^{2}}{12}$$

 \square Admitindo um conversor de N bits e excursão entre $\pm V_q$ tem-se:

Níveis de quantização:
$$Q = 2^N$$

$$\delta = 2V_q / 2^N$$

$$\sigma_q^2 = \frac{1}{3}V_q^2 2^{-2N}$$

☑ Relação Sinal - Ruído (SNR):

$$SNR = \frac{\langle m^2(t) \rangle}{\sigma_a^2} = \frac{E[m^2(t)]}{\sigma_a^2}$$

$$SNR_{dB} = 10\log(SNR)$$

← Exemplo: Admitindo m(t) um sinal senoidal

✓ Potência do sinal:
$$m(t) = A \operatorname{sen}(w_0 t) \implies \langle m^2(t) \rangle = \frac{A^2}{2}$$

$$oxed{\Box}$$
 Potência do ruído: $\sigma_q^2 = \frac{1}{3}V_q^2 2^{-2N}$

$$SNR = \frac{\langle m^2(t) \rangle}{\sigma_q^2} = \frac{\frac{1}{2}A^2}{\frac{1}{3}V_q^2 2^{-2N}} = \frac{3}{2}2^{2N} \left(\frac{A}{V_q}\right)^2$$

$$SNR_{dB} = 1.76 + 6N + 20\log\left(\frac{A}{V_q}\right)$$

$$Admitindo: N = 8 \Rightarrow Q = 256$$

$$\begin{cases} A = V_Q & \rightarrow & SNR_{dB} = 50dB \\ A = V_Q / 100 & \rightarrow & SNR_{dB} = 10dB \end{cases}$$

← Compressão

Sinais de Voz ✓ Faixa dinâmica grande [1 : 1000 ou 60 dB]

∠ Causas: Diferentes pontos emissão - Pessoas diferentes

- Solução: Compressão Logarítmica para manter a SNR constante.

$$SNR_{dB} = 1.76 + 20\log\left(\frac{QA}{V_Q}\right) \approx cte$$

13 bits - linear = 8 bits logarítmica

← Leis de Compressão

PCM

☑ Lei u: PCM de 24 canais

$$v_o = \frac{\log(1 + uv_i)}{\log(1 + u)}, \quad 0 \le v_i < 1 \qquad u = 255$$

Aproximada por 15 segmentos de reta (8 positivos)

☑ Lei A: PCM de 32 canais

$$\begin{cases} v_o = \frac{Av_i}{1 + \log(A)}, & 0 \le v_i < \frac{1}{A} \\ v_o = \frac{1 + \log(Av_i)}{1 + \log(A)}, & \frac{1}{A} \le v_i < 1 \end{cases}$$

$$A = 87.6$$

Aproximada por 13 segmentos de reta (7 positivos)

Lei A: 32 canais: Brasil - Europa

Lei u: 24 canais: USA - Canada - Japão

$$\begin{cases} v_o = \frac{Av_i}{1 + \log(A)}, & 0 \le v_i < \frac{1}{A} \\ v_o = \frac{1 + \log(Av_i)}{1 + \log(A)}, & \frac{1}{A} \le v_i < 1 \end{cases}$$

PCM

← Exemplo: Sinal com amplitude igual 0.73

Palavra Código 2 1 111 0111

☑ Sinal com amplitude igual a : - 0.73

Palavra Código Ø 0 111 0111

OBS: Aproxima-se para o nível de quantização mais alto.

← Vantagens e Desvantagens PCM

- Robustez contra ruído do canal e distorções.
- Regeneração eficiente do sinal codificado ao longo do canal.
- Formato uniforme para diferentes classes de sinais.
- Comunicação segura (criptografia).
- Outros tipos: DPCM ADPCM (taxa de bits mais baixa).
- Aumento na largura de faixa é compensado pela melhora na relação sinalruído.
- Possibilidade de se adequar a diferentes tipos de sinais mensagens (voz, vídeo, dados).
- Aumento da complexidade.
- Aumento da largura faixa do canal (para telefonia passa de 4 kHz para 64 kHz).

Apêndice 1

Equações dos Segmentos de Reta

Segmento Sinal de Entrada Equação do Segmento

Apêndice 2

- Filtro para limitar faixa em codificafores PCM,
- ← Recomendação do CCITT,
- ← Note a atenuação de 14 dB em 4kHz.

Lei - A

