Dictionary

Abstract Data Types Seen So Far

	Insert	Min	Extract_Min	Union
Priority Queues				X
Mergeable Priority Queues				

• Object : Set S of (elements with) keys

• Object : Set S of (elements with) keys

• Operations:

• Object : Set S of (elements with) keys

- Operations:
 - **Search**(S, x): Returns element with key x, if x is in S; else return "Not Found"

• Object : Set S of (elements with) keys

Operations:

- **Search**(S, x): Returns element with key x, if x is in S; else return "Not Found"
- Insert(S, x): Inserts x in S

• Object : Set S of (elements with) keys

Operations:

- **Search**(S, x): Returns element with key x, if x is in S; else return "Not Found"
- Insert(S, x): Inserts x in S
- **Delete**(S, x): Deletes x from S

Linked List

Linked List

Insert

Linked List

• Insert : $\Theta(1)$

Linked List

- Insert : $\Theta(1)$
- Search

Linked List

• Insert : $\Theta(1)$

• Search : $\Theta(n)$

Linked List

- Insert : $\Theta(1)$
- Search : $\Theta(n)$
- Delete:

Linked List

• Insert : $\Theta(1)$

• Search : $\Theta(n)$

• **Delete** : $\Theta(n)$

Linked List

• Insert : $\Theta(1)$

• Search : $\Theta(n)$

• **Delete** : $\Theta(n)$

Goal: Data Structure that does each operation in $\Theta(\log n)$ time

Binary Search Trees

For each node

For each node: keys in left subtree <= the node's key</pre>

• Traverse node's left subtree recursively

• Traverse node's left subtree recursively

• Visit node

• Traverse node's left subtree recursively

• Visit node

• Traverse node's right subtree recursively

Traverse node's left subtree recursively

Visit node

Traverse node's right subtree recursively

Fact: In-order traversal of a BST visits keys in ascending sorted order

S: {2, 4, 5, 6, 7, 9}

S: {2, 4, 5, 6, 7, 9}

S: {2, 4, 5, 6, 7, 9}

Operations on Binary Search Tree T

- Search(T, x)
- Insert(T, x)
- Delete(T, x)

We show how they work by examples.

Search(T, 5)

Search(T, 5)

Search(T, 5)

Search(T, 5)

Search(T, 5)

Search(T, 5)

Search(T, 5)

Insert(T, 10)

Delete(T,x)

Several possible cases

Delete(T, 9)

If node to be deleted is a leaf remove the leaf

Delete(T, 5)

Delete(T, 4)

If node to be deleted has two children:

If node to be deleted has two children:

If node to be deleted has two children:

If node to be deleted has two children:

• Find the "successor" of the node

If node to be deleted has two children:

- Find the "successor" of the node
 - Go one step down right

If node to be deleted has two children:

- Find the "successor" of the node
 - Go one step down right
 - Go all the way down to the left

If node to be deleted has two children:

- Find the "successor" of the node
 - Go one step down right
 - Go all the way down to the left
- Copy successor's key into node's key

If node to be deleted has two children:

- Find the "successor" of the node
 - Go one step down right
 - Go all the way down to the left
- Copy successor's key into node's key

If node to be deleted has two children:

- Find the "successor" of the node
 - Go one step down right
 - Go all the way down to the left
- Copy successor's key into node's key
- Delete successor node

If node to be deleted has two children:

- Find the "successor" of the node
 - Go one step down right
 - Go all the way down to the left

Delete(T, 4)

If node to be deleted has two children:

- Find the "successor" of the node
 - Go one step down right

 Go all the way down to the left 5 Copy successor's key into node's key Delete successor node Has at most one child! 6

Delete(T, x)

- Case 1: x is a leaf: Remove x
- Case 2: x has one child: Replace x with child and its subtree
- Case 3: x has two children :
 - y ← Successor(x) [Leftmost child in the right subtree of x]
 - Replace x with y
 - Delete successor node containing y (using Case 1 or 2)

Has at most one child!

• Worst-Case time complexity of each operation is $\Theta($

• Worst-Case time complexity of each operation is Θ (height of tree)

- Worst-Case time complexity of each operation is Θ (height of tree)
- Maximum height of a BST with n nodes?

- Worst-Case time complexity of each operation is Θ (height of tree)
- Maximum height of a BST with n nodes?

1

- Worst-Case time complexity of each operation is Θ (height of tree)
- Maximum height of a BST with n nodes?

- Worst-Case time complexity of each operation is Θ (height of tree)
- Maximum height of a BST with n nodes?

- Worst-Case time complexity of each operation is Θ (height of tree)
- Maximum height of a BST with n nodes?

- Worst-Case time complexity of each operation is Θ (height of tree)
- Maximum height of a BST with n nodes?

- Worst-Case time complexity of each operation is Θ (height of tree)
- Maximum height of a BST with n nodes? n-1

Insert(T, n)

- Worst-Case time complexity of each operation is $\Theta(n)$
- Maximum height of a BST with n nodes? n-1

Next Week...

Variant of BST that ensures maximum height is O(log n)!