Jiadong, You (Tony)

Eric Kean

Math 125

Apr 6, 2020

Homework 1 – 5.1 Measuring Distance Traveled

Introduction:

For this chapter, I learned about how to calculate distance traveled, velocities. Bad and better estimate, underestimate and overestimate, left sum and right sum and the scientific way to address a formula.

Homework:

- Figure 5.11 shows the velocity of a car for 0 ≤ t ≤ 12 and the rectangles used to estimate the distance traveled.
 - (a) Do the rectangles represent a left or a right sum?
 - (b) Do the rectangles lead to an upper or a lower estimate?
 - (c) What is the value of n?
 - (d) What is the value of Δt ?
 - (e) Give an approximate value for the estimate.

Figure 5.11

- (a) Left Sum
- (b) Upper estimate (Overestimate)
- (c) 6

(d)
$$\Delta t = (12 - 0) / 6$$

= 2

(e) Upper estimate (Overestimate) = 4 * 2 + 2.8 * 2 + 2 * 2 + 1.5 * 2 + 1.1 * 2 + 0.7 * 2 = 24.2

Lower estimate (Underestimate) = 2.8 * 2 + 2 * 2 + 1.5 * 2 + 1.1 * 2 + 0.7 * 2 + 0.5 * 2 = 17.2

- Figure 5.13 shows the velocity of an object for 0 ≤ t ≤ 6. Calculate the following estimates of the distance the object travels between t = 0 and t = 6, and indicate whether each result is an upper or lower estimate of the distance traveled.
 - (a) A left sum with n = 2 subdivisions
 - **(b)** A right sum with n = 2 subdivisions

Figure 5.13

- (a) Left sum (Upperestimate) = 10 * 2 + 9 * 2 + 6.5 * 2 = 51 meters
- (b) Right sum (Underestimate) = 9 * 2 + 6.5 * 2 + 2 * 2 = 35 meters
 - 5. Figure 5.15 shows the velocity, v, of an object (in meters/sec). Estimate the total distance the object traveled between t = 0 and t = 6.

Figure 5.15

(a)
$$\Delta t = (6-0) / 6$$

= 1

Upperestimate =
$$15 * 1 + 21 * 1 + 26 * 1 + 30 * 1 + 34 * 1 + 38 * 1 = 164$$
 meters
Underestimate = $4 * 1 + 15 * 1 + 21 * 1 + 26 * 1 + 30 * 1 + 34 * 1 = 130$ meters

Approximately the total distance the object traveled between t=0 and t=6 is 130 m \sim 164 m.

- A bicyclist accelerates at a constant rate, from 0 ft/sec to 15 ft/sec in 10 seconds.
 - (a) Figure 5.17 shows the velocity of the bike while it is accelerating. What is the value of b in the figure?
 - (b) How far does the bike travel while it is accelerating?

Figure 5.17

- (a) b = 15 because b is on the 10th second.
- (b) Becasue the cyclist accelerates at a constant rate, so I only have to calculate the value of the rectangle.

Thus, Distance = $\frac{1}{2}$ vt = $\frac{1}{2}$ * 15 * 10 = 75 meters.

- A car slows down at a constant rate from 90 ft/sec to 20 ft/sec in 12 seconds.
 - (a) Figure 5.19 shows the velocity of the car while it is slowing down. What are the values of a, b and c in the figure?
 - (b) How far does the car travel while it is slowing down?

Figure 5.19

(a) According to the question, the car slows down from 90 ft/sec to 20 ft/sec in 12 seconds.

So,
$$b = 90$$
, $a = 20$, $c = 12$.

(b) Same as the previous question, Distance = $\frac{1}{2}$ vt = $\frac{1}{2}$ * (90 – 20) * 12 = 420 meters

- 11. The velocity v(t) in Table 5.4 is decreasing, $2 \le t \le 12$. Using n = 5 subdivisions to approximate the total distance traveled, find
 - (a) An upper estimate (b) A lower estimate

Table 5.4

t	2	4	6	8	10	12
v(t)	44	42	41	40	37	35

(a)
$$\Delta t = (b-a) / n = (12-2) / 5 = 2$$

Upperestimate = 44 * 2 + 42 * 2 + 41 * 2 + 40 * 2 + 37 * 2 = 408

- (b) Lowerestimate = 42 * 2 + 41 * 2 + 40 * 2 + 37 * 2 + 35 * 2 = 390
 - 13. Table 5.5 gives the ground speed of a small plane accelerating for takeoff. Find upper and lower estimates for the distance traveled by the plane during takeoff.

Table 5.5

Time (sec)	0	2	4	6	8	10
Speed (m/s)	2.7	2.7	4	6.3	8.5	11.6
Time (sec)	12	14	16	18	20	
Speed (m/s)	13.4	17.4	21.9	29.1	32.6	

(a)
$$\Delta t = (b-a) / n = (20-0) / 10 = 2$$

Upperestimate = 2.7 * 2 + 4 * 2 + 6.3 * 2 + 8.5 * 2 + 11.6 * 2 + 13.4 * 2 +17.4 * 2 + 21.9 * 2 + 29.1 * 2 + 32.6 * 2 = 295.0 meters

(b) Lowerestimate =
$$2.7 * 2 + 2.7 * 2 + 4 * 2 + 6.3 * 2 + 8.5 * 2 + 11.6 * 2 + 13.4 * 2 + 17.4 * 2 + 21.9 * 2 + 29.1 * 2 = 235.2 meters$$

- Use the expressions for left and right sums on page 277 and Table 5.6.
 - (a) If n = 4, what is Δt ? What are t_0, t_1, t_2, t_3, t_4 ? What are $f(t_0), f(t_1), f(t_2), f(t_3), f(t_4)$?
 - (b) Find the left and right sums using n = 4.
 - (c) If n = 2, what is Δt? What are t₀, t₁, t₂? What are f(t₀), f(t₁), f(t₂)?
 - (d) Find the left and right sums using n = 2.

Table 5.6

t	15	17	19	21	23
f(t)	10	13	18	20	30

(a)
$$\Delta t = (b - a) / n = (23 - 15) / 4 = 2$$

$$t0 = 15$$
, $t1 = 17$, $t2 = 19$, $t3 = 21$, $t4 = 23$
 $f(t0) = 10$, $f(t1) = 13$, $f(t2) = 18$, $f(t3) = 20$. $f(t4) = 30$

- (b) Leftestimate (Underestimate) = 10 * 2 + 13 * 2 + 18 * 2 + 20 * 2 = 122Rightestimate (Overestimate) = 13 * 2 + 18 * 2 + 20 * 2 + 30 * 2 = 162
- (c) $\Delta t = (b-a) / n = (23-15) / 2 = 4$ t0 = 15, t1 = 19, t2 = 23f(t0) = 10, f(t1) = 18, f(t2) = 30
- (d) Leftestimate (Underestimate) = 10 * 4 + 18 * 4 = 112Rightestimate (Overestimate) = 18 * 4 + 30 * 4 = 192

Conclusion:

The amount of daily homework is massive... But it for sure helps me to get more familiar with the knowladge of chapter 5.1