MATH2001-2020-SM2 > ₱♥ Tests & Quizzes

Tests & Quizzes

Quiz 5.1

Return to Assessment List

Part 1 of 1 - Quiz 5.1 10.0 Points

Question 1 of 5

2.0 Points

Differentiability of a function at a point implies continuity at that point.

~	\bigcirc	True
		False

Answer Key: True

Question 2 of 5

2.0 Points

Let I be an interval, $g:I\to\mathbb{R}$ and let c be in the interior of I. If it is known that g has a local minimum at c and g is not differentiable at c, then we can conclude that g'(c)=0.

Answer Key: False

Question 3 of 5

2.0 Points

The inverse function rule (Theorem 5.7) can be used to determine the derivative of a non-monotonic function.

~	\bigcirc	True
	\bigcirc	False

Answer Key: False

Question 4 of 5

2.0 Points

Let I be an interval, $g:I\to\mathbb{R}$ and let c be in the interior of I. If it is known that g has a local minimum at c and g is differentiable at c, then we can conclude that g'(c)=0.

Answer Key: True

Question 5 of 5

 $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{\frac{d}{dx} f(x)}{\frac{d}{dx} g(x)} \underset{\text{provided } dx}{\underbrace{\frac{d}{dx}} g(x)} \neq 0$

True
False

Answer Key: False

- Gateway
- Mobile View
- · The Sakai Project
- · Powered by Sakai
- Copyright 2003-2020 The Sakai Foundation. All rights reserved. Portions of Sakai are copyrighted by other parties as described in the Acknowledgments screen.

Change Profile Picture

Error removing image

Error uploading image

Upload Choose File No file chosen

You don't have any connnections yet. Search for people above to get started.

You have no pending connections.

←Back to My Connections

Remove

2.0 Points

Search for people ...

\$({cmLoader.getString("connection_manager_no_results")}

Done