# EECS 467: Autonomous Robotics Design Experience — Fall 2019





Team Members Zhiqi Chen, Sean Huang, Alex Manohar, Tony Pan

Autonomously Detect and Approach Manually Controlled Mobile Agents

# PROJECT OVERVIEW

This project is inspired by the "Push-Button Kitty" Episode from Tom & Jerry. We developed an intelligent mobile robot that can detect and approach a manually controlled moving agent.

### IMPLEMENTATION

### SLAM

We used Simultaneous Localization and Mapping (SLAM) to localize our robot. Our implementation relies on odometry and lidar readings.



#### VISION

We used AprilTags and OpenCV to identify and calculate Jerry's pose relative to the cameras.



#### PID CONTROLLER

We tuned a critically damped controller to drive the robot to its target pose.







# STATE MACHINE (SM)



### **Upon task completion**

### FAULT-TOLERANT SM

- AprilTag detection runs on video thread
- State machines run on logic thread
- Robot commands run on task thread
- SLAM and motion planner are executed on a laptop while motion controller runs on the Pi
- Lightweight Communications and Marshalling is used to send data among the processors

# COORDINATE TRANSFORMATION

- The camera perceives the physical world in the camera coordinate frame
- The robot pose is interpreted using the SLAM coordinate frame
- Homogeneous transformations are used to convert from camera to SLAM coordinates

# MBOT COMPONENTS

- Raspberry Pi 3B
- Beaglebone Green
- RPLidar A2
- Camera mounts (3D printed)
- 2 x ELP 720p USB Camera Module (100 degree field of view)