

$\begin{array}{c} {\bf Python~calculation~for~heat~pump}\\ {\bf HP06L\text{-}K\text{-}BC} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@solarenergy.ch

2019/02/26 at: 11:07:44 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
	•	[kW]
$\overline{PQ_1}$	1 st condenser polynomial coefficient	5.7318e+00
PQ_2	2^{st} condenser polynomial coefficient	6.0957e + 01
PQ_3	3^{st} condenser polynomial coefficient	2.8445e + 01
PQ_4	4^{st} condenser polynomial coefficient	9.5982e+00
PQ_5	5^{st} condenser polynomial coefficient	5.1491e + 01
PQ_6	6^{st} condenser polynomial coefficient	-1.5297e + 02
$PCOP_1$	1 st COP polynomial coefficient	8.4084e+00
$PCOP_2$	2^{st} COP polynomial coefficient	7.1520e+01
$PCOP_3$	3 st COP polynomial coefficient	-3.6218e + 01
$PCOP_4$	4 st COP polynomial coefficient	-2.6541e + 02
$PCOP_5$	5^{st} COP polynomial coefficient	6.6681e + 01
$PCOP_6$	6 st COP polynomial coefficient	1.9120e + 01
\dot{m}_{cond}	$1200.00 \ [kg/h]$	
\dot{m}_{evap}	$3000.00 \ [kg/h]$	
$\overline{COP_{nom} \text{ (B0W35)}}$	4.00	
$Q_{c,nom}$ (B0W35)	$6.40~\mathrm{kW}$	
COP_{nom} (B2W35)	4.28	
$Q_{c,nom}$ (B2W35)	$6.81~\mathrm{kW}$	
COP_{nom} (B10W35)	5.44	
$Q_{c,nom}$ (B10W35)	8.48 kW	

Table 2: Predicting results of the heat pump.

$T_{evap,in}$ ${}^{o}C$	$T_{\substack{evap,out\\ {}^{o}C}}$	$T_{cond,in}$ ${}^{o}C$	$T_{cond,out}$ ${}^{o}C$	COP [-]	Q_{cond} $[kW]$	Q_{evap} $[kW]$	W_{comp} $[kW]$	\dot{m}_{cond} kg/h	\dot{m}_{evap} kg/h	$\begin{array}{c} \Delta T_{evap} \\ \mathrm{K} \end{array}$	ΔT_{cond} K
-7.00	-8.99	47.02	50.00	1.92	4.17	2.00	2.17	1200	3000	2.0	3.0
-7.00	-7.88	55.05	57.50	1.35	3.42	0.89	2.54	1200	3000	0.9	2.5
-7.00	-6.29	63.23	65.00	0.78	2.47	-0.71	3.19	1200	3000	-0.7	1.8
7.00	2.16	44.90	50.00	3.14	7.12	4.85	2.27	1200	3000	4.8	5.1
7.00	3.44	52.88	57.50	2.24	6.46	3.57	2.88	1200	3000	3.6	4.6
7.00	5.55	60.96	65.00	1.35	5.64	1.45	4.19	1200	3000	1.4	4.0

Figure 1: COP Results for the heat pump at the selected points

Figure 2: Q_c Results for the heat pump at the selected points