CC2

Documents, calculatrices et portables interdits. Les réponses doivent être accompagnées d'une justification.

Durée: 1h

Exercice 1. On définit la fonction $f:]-\infty, 2] \to \mathbb{R}$ par $f(x) = 2x^3 - 3x^2 + 1$. On rappelle que $x_0 \in]-\infty, 2]$ est un point critique de f si $f'(x_0)=0$.

- a) Déterminer les points critiques de f.
- b) Dresser le tableau de variations de f.
- c) Déterminer les points où f atteint un maximum ou un minimum en précisant à chaque fois si ce maximum (resp. minimum) est global ou local.

Exercice 2. a) Résoudre l'équation $3^x = 2^{x+2}$.

b) Résoudre l'inéquation ln(3-2x) > 1.

Exercice 3. On considère la fonction g définie sur \mathbb{R} par $g(x) = \ln(e^x + 1)$.

- a) Calculer g'(x) et g''(x).
- b) Ecrire la formule de Taylor-Young en 0 à l'ordre 2 pour la fonction g.
- c) En déduire la limite de $\frac{2g(x) 2\ln 2 x}{x^2}$ lorsque x tend vers 0.

Exercice 4. Calculer les intégrales suivantes.

a)
$$\int_{1}^{4} (x-2)^{2} dx$$
 b) $\int_{1}^{8} x^{-1/3} dx$ c) $\int_{0}^{\pi/2} \frac{\sin x}{1 + (\cos x)^{2}} dx$

c)
$$\int_0^{\pi/2} \frac{\sin x}{1 + (\cos x)^2} dx$$