ПРЕОБРАЗОВАНИЕ КС-ГРАММАТИКИ В LL(1)-ГРАММАТИКУ

Будем определять, по какой причине КС-грамматика не является LL(1)-грамматикой, и устранять эту причину.

1) Леворекурсивная грамматика не может быть LL(1)-грамматикой.

$$A \to \beta$$
$$A \to A\alpha$$

Если
$$\beta = > * t\gamma$$
, то

- 1) $t \in Bblbop(A \rightarrow \beta)$;
- 2) $A\alpha => \beta\alpha => *$ tya и t \in BЫБОР($A \rightarrow A\alpha$).

Следовательно, ВЫБОР(A \rightarrow β) \cap ВЫБОР(A \rightarrow A α) \neq \varnothing .

Если
$$\beta => * \epsilon$$
, то

- 1) СЛЕД(A) \subseteq ВЫБОР(A \rightarrow β);
- 2) A = > * ϵ и ПЕРВ(α) \subseteq ПЕРВ($A\alpha$) \subseteq ВЫБОР($A \rightarrow A\alpha$).

По правилу $A \to A\alpha$ ПЕРВ $(\alpha) \subseteq C$ ЛЕД(A).

Получаем, что ПЕРВ(α) \subseteq СЛЕД(A) \subseteq ВЫБОР($A \rightarrow \beta$)

и ПЕРВ $(\alpha) \subseteq \Pi$ ЕРВ $(A\alpha) \subseteq B$ ЫБОР $(A \to A\alpha)$.

Следовательно, ВЫБОР(A \rightarrow β) \cap ВЫБОР(A \rightarrow A α) \neq \emptyset .

Чтобы преобразовать КС-грамматику в LL(1)-грамматику, нужно устранить левую рекурсию.

2) Если в грамматике хотя бы два правила с одинаковой левой частью имеют общий префикс, из которого выводится непустая цепочка, то такая грамматика не может быть LL(1)-грамматикой.

$$A \to \alpha\beta$$

$$A \rightarrow \alpha \gamma$$

$$\Pi EPB(\alpha) \subseteq \Pi EPB(\alpha\beta) \subseteq BbIbOP(A \rightarrow \alpha\beta).$$

$$\Pi EPB(\alpha) \subseteq \Pi EPB(\alpha\gamma) \subseteq BbIbOP(A \to \alpha\gamma).$$

Следовательно, ВЫБОР(A $\rightarrow \alpha\beta$) \cap ВЫБОР(A $\rightarrow \alpha\gamma$) $\neq \emptyset$.

Чтобы преобразовать КС-грамматику в LL(1)-грамматику, нужно выполнять левую факторизацию.

3) Если в грамматике есть хотя бы два правила с одинаковой левой частью, из правых частей которых выводятся цепочки, имеощие общий префикс, из которого выводится непустая цепочка, то такая грамматика не может быть LL(1)-грамматикой.

$$A \to \alpha$$

$$A \to \beta$$

Пусть
$$\alpha = >* \delta \gamma$$
 и $\beta = >* \delta \phi$

Если $\delta = > * tμ$, то

1)
$$t \in \Pi EPB(\alpha)$$
 и $t \in BЫБОР(A \rightarrow \alpha)$;

2)
$$t \in \Pi EPB(\beta)$$
 и $t \in BЫБОР(A \rightarrow \beta)$.

Следовательно, ВЫБОР(A $\rightarrow \alpha$) \cap ВЫБОР(A $\rightarrow \beta$) $\neq \emptyset$.

Чтобы преобразовать КС-грамматику в LL(1)-грамматику, нужно выполнять замену края и левую факторизацию.

4) Если в грамматике есть два правила

 $A \to \alpha$

 $A \rightarrow \epsilon$

и $x \in \Pi EPB(\alpha) \cap CЛЕД(A)$, то $BbIBOP(A \to \alpha) \cap BbIBOP(A \to \epsilon) \neq \emptyset$ и такая грамматика не может быть LL(1)-грамматикой.

Чтобы преобразовать такую КС-грамматику в LL(1)-грамматику, нужно;

- 1) преобрзовать грамматику так, чтобы в правилах грамматики после нетерминала А стоял терминал х (используем замену нетерминала, который стоит после нетерминала А);
- 2) каждое правило вида $B \to \alpha A x \beta$ заменить на правило $B \to \alpha N \beta$, где N новый нетерминал, и добавить правило $N \to A x$;
- 3) к правилу вида $N \to Ax$ применять замену края и левую факторизацию. Если в процессе преобразований получится правило, содержащее в правой части цепочку Ax, то заменить её на нетерминал N.

Таким образом, получаем последовательность действий, которая может преобразовать произвольную КС-грамматику в LL(1)-грамматику (а может и не преобразовать):

- 1) устранить левую рекурсию;
- 2) выполнить левую факторизацию;
- 3) выполнить замену края;
- 4) п. 2 и 3 выполнять, пока можно;
- 5) пока в грамматике есть правила

$$A \rightarrow \alpha$$

$$A \rightarrow \epsilon$$

и ВЫБОР(A
$$\rightarrow \alpha$$
) \cap ВЫБОР(A $\rightarrow \epsilon$) $\neq \emptyset$, то

1) преобрзовать грамматику так, чтобы в правилах грамматики после нетерминала А стоял терминал

$$x \in BbIbOP(A \rightarrow \alpha) \cap BbIbOP(A \rightarrow \epsilon)$$

(используем замену нетерминала, который стоит после нетерминала А);

- 2) каждое правило вида $B \to \alpha A x \beta$ заменить на правило $B \to \alpha N \beta$, где N новый нетерминал, и добавить правило $N \to A x$;
- 3) к правилу вида $N \to Ax$ применять замену края и левую факторизацию. Если в процессе преобразований получится правило, содержащее в правой части цепочку Ax, то заменить её на нетерминал N.

Пример 1.

	Шаг 1	Шаг 2	Шаг 3
$A \rightarrow BaC \{b,a\}$	$A \rightarrow BaC$	$A \rightarrow BabN_1$	$A \rightarrow bN_1aBabN_1$
$A \rightarrow bA$	$A \rightarrow bA$	$A \rightarrow bA$	$A \rightarrow abN_1$
$A \rightarrow aC$	$A \rightarrow aC$	$A \rightarrow abN_1$	$A \rightarrow bA$
$B \rightarrow CaB $ $\{b\}$	$B \rightarrow CaB$	$B \rightarrow bN_1aB$	$B \rightarrow bN_1aB$
$B \rightarrow \varepsilon$ {a}	$B \rightarrow \epsilon$	$B \rightarrow \varepsilon$	$B \rightarrow \varepsilon$
$C \rightarrow ba$	$C \rightarrow bN_1$	$N_1 \rightarrow a$	$N_1 \rightarrow a$
$C \rightarrow bC$	$N_1 \rightarrow a$	$N_1 \rightarrow bN_1$	$N_1 \rightarrow bN_1$
	$N_1 \rightarrow C$		
Шаг 4	Шаг 5	Шаг 6	Шаг 7
$A \rightarrow bN_2$	$A \rightarrow bN_2$	$A \rightarrow bN_2$	$A \rightarrow bN_2$
$A \rightarrow abN_1$	$A \rightarrow abN_1$	$A \rightarrow abN_1$	$A \rightarrow abN_1$
$B \rightarrow bN_1aB$	$B \rightarrow bN_1aB$	$B \rightarrow bN_1aB$	$B \rightarrow bN_1aB$
$B \rightarrow \epsilon$	$B \rightarrow \epsilon$	$B \rightarrow \varepsilon$	$B \rightarrow \varepsilon$
$N_1 \rightarrow a$	$N_1 \rightarrow a$	$N_1 \rightarrow a$	$N_1 \rightarrow a$
$N_1 \rightarrow bN_1$	$N_1 \rightarrow bN_1$	$N_1 \rightarrow bN_1$	$N_1 \rightarrow bN_1$
$N_2 \rightarrow N_1 a B a b N_1$	$N_2 \rightarrow aaBabN_1$	$N_2 \rightarrow aN_3$	$N_2 \rightarrow aN_3$
$N_2 \rightarrow A$	$N_2 \rightarrow bN_1aBabN_1$	$N_2 \rightarrow bN_4$	$N_2 \rightarrow bN_2$
	$N_2 \rightarrow abN_1$	$N_3 \rightarrow aBabN_1$	$N_3 \rightarrow aBabN_1$
А берём с шага 3	$N_2 \rightarrow bA$	$N_3 \rightarrow bN_1$	$N_3 \rightarrow bN_1$
		$N_4 \rightarrow N_1 a B a b N_1$	
		$N_4 \rightarrow A$	
		$L(N_4) = L(N_2)$ См шаг 4	

Пример 2.

		Шаг 1	Шаг 2	
$S \rightarrow aBa$		$S \rightarrow aN_1$	$S \rightarrow aN_1$	
$S \rightarrow cbAaSc$		$S \rightarrow cb N_2N_3$	$S \rightarrow cbN_2N_3$	
$S \rightarrow \epsilon$	$\{c, -\}$	$S \rightarrow \varepsilon$	$S \rightarrow \varepsilon$	
A →abA	. 17	A →abA	A →abA	
$A \rightarrow \epsilon$	{a}	$A \rightarrow \epsilon$	$A \rightarrow \epsilon$	
$B \rightarrow aA$		$B \rightarrow aA$	$B \rightarrow aA$	
$B \rightarrow \epsilon$	{a}	$B \rightarrow \varepsilon$	$B \rightarrow \varepsilon$	
		$N_1 \rightarrow Ba$	$N_1 \rightarrow aAa$	
		$N_2 \rightarrow Aa$	$N_1 \rightarrow a$	
		$N_3 \rightarrow Sc$	$N_2 \rightarrow abAa$	
			$N_2 \rightarrow a$	
			$N_3 \rightarrow aN_1c$	
			$N_3 \rightarrow cbN_2N_3c$	
			$N_3 \rightarrow c$	
Шаг 3		Шаг 4	Ⅲar 5	
$S \rightarrow aN_1$		$S \rightarrow aN_1$	$S \rightarrow aN_1$	
$S \rightarrow cbN_2N_3$		$S \rightarrow cbN_2N_3$	$S \rightarrow cbN_2N_3$	
$S \rightarrow \epsilon$		$S \rightarrow \varepsilon$	$S \rightarrow \varepsilon$ $\{ \frac{1}{2} \}$	
A →abA		A →abA	$N_1 \rightarrow aN_4$	
$A \rightarrow \epsilon$		$A \rightarrow \epsilon$	$N_2 \rightarrow aN_5$	
$B \rightarrow aA$		$B \rightarrow aA$	$N_3 \rightarrow aN_1c$	
$B \rightarrow \epsilon$		$B \to \epsilon$	$N_3 \rightarrow cN_6$	
$N_1 \rightarrow aN_2$		$N_1 \rightarrow aN_4$	$N_4 \rightarrow N_2$ {a}	
$N_1 \rightarrow a$		$N_2 \rightarrow aN_5$	$N_4 \rightarrow \varepsilon$ $\{c, -\}$	
$N_2 \rightarrow abN_2$		$N_3 \rightarrow aN_1c$	$N_5 \rightarrow bN_2$	
$N_2 \rightarrow a$		$N_3 \rightarrow cN_6$	$N_5 \rightarrow \varepsilon$ {a,c, $-\frac{1}{3}$ }	
$N_3 \rightarrow aN_1c$		$N_4 \rightarrow N_2$	$N_6 \rightarrow bN_2N_3c$	
$N_3 \rightarrow cbN_2N_3c$		$N_4 \rightarrow \epsilon$	$N_6 \rightarrow \varepsilon$ $\{c, -\}$	
$N_3 \rightarrow c$		$N_5 \rightarrow bN_2$		
		$N_5 \rightarrow \varepsilon$		
		$N_6 \rightarrow bN_2N_3c$		
		$N_6 \rightarrow \varepsilon$		