МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М.Є. Жуковського «Харківський авіаційний інститут»

Кафедра систем управління літальними апаратами

ПОЗИЦІЙНІ СИСТЕМИ ЧИСЛЕННЯ

Пояснювальна записка до розрахунково-графічної роботи

з дисципліни «Алгоритмізація і програмування»

XAI.301.174.312.3PΓP

Виконав сту	у дент гр. 312						
	(№ групи)						
	Колядюк К.О						
(Підпис, дата)	(П.І.Б.)						
Перевірив к.т.н., доцен	łT						
(Науковий ступінь, вчене звання)							
	_О. В. Гавриленко						
(Підпис, дата)	(П.І.Б.)						

ЗАВДАННЯ

Дослідити шляхом власних обчислень, розробити і реалізувати алгоритми роботи з числами в різних позиційних системах числення:

- 1) Перетворити десяткові числа <u>134 і 2010</u> в двійкову систему числення, описати покроково процес перетворень. Виконати перевірку, виконавши зворотне перетворення в десяткову систему.
- 2) Перетворити десяткові числа <u>134 і 2010</u> в шістнадцяткову систему числення, описати покроково процес перетворень. Виконати перевірку шляхом зворотного перетворення в десяткову і двійкову систему.
- 3) Розробити діаграму активності алгоритму перетворення числа з десяткової системи числення в **8**-річну. *Реалізувати алгоритм у вигляді строкової функції DecTo N (D) з вхідним цілочисельним параметром на мові С ++.
- 4) Для двох чисел <u>134 і 2010</u> провести операцію <u>віднімання</u> у двійковій системі числення. Виконати перевірку шляхом перетворення результатів в десяткову систему.
- 5) Зробити висновки.

3MICT

Вступ	4
1 Перетворення чисел в двійкову систему числення	6
1.1 Перетворення трирозрядного десяткового числа	6
1.2 Перетворення чотирирозрядного десяткового числа	7
1.3 Перевірка результатів	7
2 Перетворення чисел в шістнадцяткову систему числення	8
2.1 Перетворення трирозрядного десяткового числа	8
2.2 Перетворення чотирирозрядного десяткового числа	8
2.3 Перевірка результатів	8
3 Перетворення чисел в 8-річну систему числення	9
4 Двійкова арифметика	10
Висновки	11
Додаток А	12
Додаток В	

Вступ

Система числення — це спосіб запису чисел за допомогою певного набору символів і правил. У різних системах числення використовується різна кількість символів, що називається основою системи.

Основні види систем числення:

- Десяткова система (основа 10) найпоширеніша в повсякденному житті. Використовуються цифри від 0 до 9.
- Двійкова система (основа 2) основна система числення в комп'ютерах та цифровій техніці. Використовуються тільки цифри 0 і 1.
- Вісімкова система (основа 8) застосовується в деяких галузях програмування і цифрової електроніки. Використовуються цифри від 0 до 7.
- Шістнадцяткова система (основа 16) широко використовується для подання великих бінарних чисел у компактній формі. Використовуються цифри 0–9 і букви A–F (що позначають числа 10–15).

Перетворення між системами числення ϵ базовою навичкою у комп'ютерних науках і техніці.

Двійкова арифметика — це виконання арифметичних операцій (додавання, віднімання, множення, ділення) над числами, записаними у двійковій системі числення.

Основні правила двійкової арифметики:

```
- Додавання:
```

```
-0+0=0
```

$$-0+1=1$$

$$-1+0=1$$

- -1+1=0 (і перенос 1 у наступний розряд)
- Вілнімання:

$$-0-0=0$$

$$-1 - 0 = 1$$

$$-1 - 1 = 0$$

- 0 - 1 = 1 (і позика 1 із сусіднього старшого розряду)

- Множення:
 - $-0\times0=0$
- $-0 \times 1 = 0$
- $-1 \times 0 = 0$
- $-1 \times 1 = 1$
- Ділення:
- $-0 \div 1 = 0$
- $-1 \div 1 = 1$

Двійкова арифметика ϵ основою для роботи процесорів, мікроконтролерів і будь-яких цифрових пристроїв.

1 Перетворення чисел в двійкову систему числення

1.1 Перетворення трирозрядного десяткового числа

Покроковий опис перетворення наведено у табл.1.1.

Таблиця 1.1 – Перетворення десяткового числа у двійкове

X	X/2	X%2
134	67	0
67	33	1
33	16	1
16	8	0
8	4	0
4	2	0
2	1	0
1	0	1
	$134_{10} = 10000110_2$	

1.2 Перетворення чотирирозрядного десяткового числа

Покроковий опис перетворення наведено у табл. 1.2.

Таблиця 1.2 – Перетворення десяткового числа у двійкове

X	X/2	X%2				
2010	1005	0				
1005	502	1				
502	251	0				
251	125	1				
125	62	1				
62	31	0				
31	15	1				
15	7	1				
7	3	1				
3	1	1				
1	0	1				
	Результат	$2010_{10} = 11111011010_2$				

1.3 Перевірка результатів

$$1000110_2 = 1*2^7 + 0*2^6 + 0*2^5 + 0*2^4 + 0*2^3 + 1*2^2 + 1*2^1 + 0*2^0 = 128 + 4 + 2 = 134_{10};$$

$$11111011010_2 = 1*2^{10} + 1*2^9 + 1*2^8 + 1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 1*2^3 + 0*2^2 \\ + 1*2^1 + 0*2^0 = 1024 + 512 + 256 + 128 + 64 + 16 + 8 + 2 = 2010_{10}.$$

2 Перетворення чисел в шістнадцяткову систему числення

2.1 Перетворення трирозрядного десяткового числа

Покроковий опис перетворення наведено у табл.2.1.

Таблиця 2.1 – Перетворення десяткового числа у шістнадцяткове

X	X /16	X %16			
134	8	6			
8	0	8			
	$134_{10} = 86_{16}$				

2.2 Перетворення чотирирозрядного десяткового числа

Покроковий опис перетворення наведено у табл.2.2.

Таблиця 2.2 – Перетворення десяткового числа у шістнадцяткове

X	X /16	X %16			
2010	125	10(A)			
125	7	13(D)			
7	0	7			
	$2010_{10} = 7DA_{16}$				

2.3 Перевірка результатів

$$86_{16} = 8*16^{1} + 6*16^{0} = 128 + 6 = 134_{10};$$

$$7DA_{16} = 7*16^{2} + 13*16^{1} + 10*16^{0} = 1792 + 208 + 10 = 2010_{10}.$$

3 ПЕРЕТВОРЕННЯ ЧИСЕЛ В 8-РІЧНУ СИСТЕМУ ЧИСЛЕННЯ

Діаграму активності представлено на рис.1 в дод.А. Код на C++ представлено в дод.Б

4 ДВІЙКОВА АРИФМЕТИКА

Покроковий опис 134 і 2010 чисел віднімання представлено в табл.4.1.

Таблиця 4.1 – Віднімання двійкових чисел

перенесення								-1				Перевірка
4розр.	1	1	1	1	1	0	1	1	0	1	0	2010 -
Зрозр.				1	0	0	0	0	1	1	0	134
результат	1	1	1	0	1	0	1	0	1	0	0	1876
$1*2^{10} + 1*2^9 + 1*2^8 + 0*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 0*2^0$												
перевірка $= 1024 + 512 + 256 + 64 + 16 + 4 = 1876$												

Висновки

У процесі виконання розрахункової роботи було закріплено навички роботи з різними позиційними системами числення. Було виконано перетворення десяткових чисел 134 і 2010 у двійкову та шістнадцяткову системи числення. Покрокове перетворення продемонструвало розуміння принципу ділення на основу системи числення та правильного формування числа у новій системі. Зворотне перетворення підтвердило правильність виконаних обчислень.

Було також розроблено діаграму активності алгоритму перетворення числа з десяткової системи числення у восьмирічну систему, що дозволило краще зрозуміти етапи перетворення і реалізувати відповідну строкову функцію на мові C++.

Крім того, виконано віднімання чисел 134 і 2010 у двійковій системі числення з подальшою перевіркою результату шляхом перетворення назад у десяткову систему. Це підтвердило правильність виконання логічних операцій у двійковій системі.

У результаті виконання роботи були поглиблені знання щодо процесів конвертації чисел між системами числення та виконання арифметичних операцій у різних системах, що ϵ основою для вивчення цифрової обробки інформації та програмування.

Додаток А

Рис.1 Діаграма активності перетворення чисел в 8-річну систему числення

Додаток В

```
#include <string>
using namespace std;
string DecTo_N_(int D)
   { if (D == 0) return
   "0"; string result =
   "";
   while (D > 0) {
       int remainder = D % 8;
       result = char(remainder + '0') +
       result; D = D / 8;
   }
   return result;
int main() {
   int number;
   cout << "Введіть десяткове число:
   "; cin >> number;
   cout << "Число у вісімковій системі: " << DecTo_N_(number) <<
   endl; return 0;
}
```