Organic Molecules

The Molecules of Life

Inorganic Vs. Organic

- Inorganic molecules do not contain carbon and hydrogen together. Can have either C or H alone, but not both
- Organic molecules do contain C and H bonded together.
- Organic molecules are more complex structures containing carbon atoms arranged in rings or chains.

Inorganic Compounds

salt, NaCl

may or may not contain carbon

sometimes contains sodium, oxygen, or calcium, but without carbon

Both

contained in living organisms

Organic Compounds

must contain carbon

formaldehyde, CH2O

contains carbon and hydrogen

sometimes contains nitrogen, oxygen, sulfur, or phosphorus with carbon

Biochemistry

- Biochemistry is the chemistry of living things.
- Biochemistry is closely linked to organic chemistry.

Macromolecules

- Macromolecules (macro = large) are very large organic molecules.
- Four important kinds of macromolecules:
 - Carbohydrates.
 - Proteins.
 - · Nucleic acids.
 - · Lipids.

Polymers

- Polymers are combinations of many smaller, similar building blocks called monomers (mono = single) bonded together.
- Carbohydrates, proteins, lipids, and nucleic acids are all polymers.
- The monomers in a polymer are usually combined by a dehydration synthesis reaction.

Dehydration Synthesis

Dehydration synthesis (de = remove; Hydro = water; Synthesis = combine) involves combining two molecules through the remove of one molecule of water.

Dehydration Synthesis

- This reaction occurs when two functional groups (smaller molecules) come close enough to have an –OH removed from one and an –H removed from the other.
- These are combined to form a molecule of water and the remaining two segments are combined to form a macromolecule.

Dehydration Synthesis: Carbohydrate

Dehydration Synthesis: Protein

Hydrolysis

- The reverse of a dehydration synthesis reaction is known as hydrolysis (hydro = water; lyse = to split or break).
- Hydrolysis is the process of splitting s larger organic molecule into two or more parts by adding water.

Hydrolysis Of Sucrose

Levels Of Chemical Organization

 Atoms □ molecules □ monomers (small building blocks) □ polymers (macromolecules) □ carbohydrate, protein, or nucleic acid.

Carbohydrates

- Carbohydrates are composed of carbon, hydrogen, and oxygen atoms linked together to form monomers called simple sugars or monosaccharides (mono = single; Saccharine = sweet, sugar).
 - contain carbon, hydrogen, and oxygen (C, H &
 O) in the ratio of 1:2:1 (C₆H₁₂O₆)

Carbohydrate Use In Living Cells

- Immediate source of energy.
- Provide shape to certain cells (I.E. Cellulose in plant walls).
- Components of coenzymes and antibiotics.
- Components of nucleic acids DNA and RNA.

Simple Sugars

- Simple sugars such as glucose, galactose, and fructose provide chemical energy in the human body.
- The ending -ose indicates a sugar.

Glucose

- Glucose is called blood sugar in the human bloodstream.
- It is found in the sap of plants.
- It is the most abundant carbohydrate.
- It is a basic building block for other carbohydrates.

You recognize Carbs by their ring structure!

Complex Carbohydrates

- Complex carbohydrates are formed when simple sugars are combined.
- Disaccharide two simple sugars bonded together.
- Trisaccharide three simple sugars bonded together.
- Polysaccharide more than three simple sugars bonded together.

Examples:

- Starch (form of energy storage in plants)
- Glycogen (form of energy storage in animals)
- Cellulose (provides structural support for plants; not digestible by humans)
- Chitin (found in cell walls of fungi & in the exoskeletons of insects and arthropods)

Cellulose

Glycogen

Proteins

 Amino acid monomers join to form the polymer know as protein.

• There are about 20 different amino

acids.

Proteins

- Dehydration synthesis combines two amino acids to form a protein.
- This bonding forms a peptide bond.

Proteins

- Elements: contain carbon, hydrogen, and oxygen & nitrogen (C, H, O & N)
- Function: promote chemical reactions in your body (enzymes), provide structural support (muscles, collagen, cartilage, hair, nails)
- Monomer: amino acids
- Common food sources: meat, legumes, nuts, vegetables (very small amount)

Denatured Proteins

- Energy in the form of heat or light can break down higher levels of protein structure by breaking hydrogen bonds within the molecule. The protein is then said to be **denatured**.
- Brown bottles and refrigeration protect some medications such as insulin from becoming denatured.

Nucleic Acids

- Nucleic acids are complex organic polymers that store and transfer genetic information within the cell.
- Two types:
 - Deoxyribonucleic acid (DNA).
 - Ribonucleic acid (RNA).
- Nucleic acids are constructed of monomers known as nucleotides.
- Elements: contain carbon, hydrogen, and oxygen, nitrogen & phosphorous (C, H, O, N & P)

Nucleotides

- Three parts of a nucleotide:
 - 1. A 5-carbon simple sugar molecule (either deoxyribose or ribose).
 - 2. A phosphate group.
 - 3. A nitrogenous base.

Draw one on your notes!

- Composed of glycerol and fatty acid chain
- Types of lipids
 - Phospholipids (component of cell membranes)
 - Steroids (some hormones)

- Elements: contain carbon, hydrogen, and oxygen (C, H & O)
- Function: long-term energy storage, makes up cell membranes, makes up our hormones, insulates and protects organs
- Monomer: a typical fat contains glycerol & fatty acids

- Characteristics: not soluble in water, saturated fats are solid at room temperature, unsaturated fats are liquid (oils) at room temperature
- Examples: fats, oils, phospholipids, steroids (ie cholesterol), waxes

made up of subunits

glycerol

fatty acids

