The number of cyclic configurations of type (v_3) and the isomorphism problem

S. Hiroki Koike-Quintanar *

IAM, University of Primorska Muzejski trg 2, 6000 Koper, Slovenia hiroki.koike@iam.upr.si

István Kovács †

IAM and FAMNIT, University of Primorska Muzejski trg 2, 6000 Koper, Slovenia istvan.kovacs@upr.si

Tomaž Pisanski [‡]

FMF, University of Ljubljana Jadranska 19, 1000 Ljubljana, Slovenia Tomaz.Pisanski@fmf.uni-lj.si

January 14, 2013

Abstract

A configuration of points and lines is cyclic if it has an automorphism which permutes its points in a full cycle. A closed formula is derived for the number of non-isomorphic connected cyclic configurations of type (v_3) , i.e., which have v points and lines, and each point/line is incident with exactly 3 lines/points. In addition, a Bays-Lambossy type theorem is proved for cyclic configurations if the number of points is a product of two primes or a prime power.

Keywords: cyclic configuration, cyclic object, isomorphism.

MSC 2010: 20B25, 51E30, 05C25, 05C60.

^{*}Supported in part by ARRS - Agencija za raziskovanje Republike Slovenija, program no. P1-0285.

[†]Supported in part by ARRS - Agencija za raziskovanje Republike Slovenija, program no. P1-0285 and project N1-0011 (ESF EUROCORES EUROGiga/GReGAS)..

[‡]Supported in part by ARRS - Agencija za raziskovanje Republike Slovenija, program no. P1-0294 and project N1-0011 (ESF EUROCORES EUROGiga/GReGAS).

1 Introduction

An incidence geometry (P, \mathcal{B}) consists of a set of v points $P = \{p_1, ..., p_v\}$ and a collection of b lines (or blocks) $\mathcal{B} = \{B_1, ..., B_b\}$ such that $B_i \subseteq P$ for every $i \in \{1, ..., b\}$, and $|B_i \cap B_j| \le 1$ for every $i, j \in \{1, ..., b\}$ and $i \ne j$. An incidence geometry is called a configuration of type (v_r, b_k) (combinatorial configuration in the sense of [6]) if

- $|\{B_i \in \mathcal{B} : p_i \in B_i\}| = r \text{ for every } i \in \{1, ..., v\}; \text{ and } i \in \{1, ..., v\}$
- $|B_j| = k$ for every $j \in \{1, ..., b\}$ with $k \ge 3$.

A configuration with v = b (and therefore r = k) is called balanced, or a k-configuration, and its type is simply denoted by (v_k) . A configuration (P, \mathcal{B}) is called decomposable if it is the disjoint union of two configurations $(P_r, \mathcal{B}_r), r = 1, 2$, i.e., $P = P_1 \cup P_2, P_1 \cap P_2 = \emptyset$, and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$. Indecomposable configurations are also called connected. An isomorphism between two incidence geometries $(P_r, \mathcal{B}_r), r = 1, 2$, is a bijective mapping $\sigma: P_1 \to P_2$ which maps \mathcal{B}_1 onto \mathcal{B}_2 . Here a block $B \in \mathcal{B}_1$ with $B = \{p_1, ..., p_k\}$ is mapped onto $B^{\sigma} = \{p_1^{\sigma}, ..., p_k^{\sigma}\}$. If $(P_1, \mathcal{B}_1) = (P_2, \mathcal{B}_2)$, then σ is called an automorphism; the group of all automorphisms will be denoted by $\operatorname{Aut}((P_1, \mathcal{B}_1))$. An incidence geometry is cyclic, if it has an automorphism which permutes its points in a full cycle. In this case it is natural to identify the points with elements in the ring \mathbb{Z}_v , and assume that the translation $x \mapsto x + 1$ is an automorphism. Now, two incidence geometries are said to be multiplier equivalent, if there exits a unit $a \in \mathbb{Z}_n^*$ such that the mapping $x \mapsto ax$ induces an isomorphism between them.

The enumeration problem for configurations (both geometrical and combinatorial) attracted considerable attention (see the monograph [6, Chapters 2-3]). The list of all configurations of type (v_3) up to v = 18 was produced in [3], and for an approach based on the respective Levi graphs, we refer to [4, 16, 17]. The latter approach is based on the easy but crucial observation that combinatorial k-configurations are the same things as bipartite k-valent graphs with a given black-and-white coloring. In this paper we are going to calculate the number of cyclic configurations of type (v_3) . For this purpose we set the notation $\#C(v_k)$ for the number of non-isomorphic connected cyclic configurations of type (v_k) . Our main result is the following closed formula for $\#C(v_3)$:

Theorem A. Let v > 4 be an integer with prime factorization $v = p_1^{n_1} \cdots p_k^{n_k}$. Then

$$#C(v_3) = \begin{cases} \frac{v}{6} \prod_{i=1}^k \left(1 + \frac{1}{p_i}\right) + \alpha 2^k - 2 & if \ v \ is \ odd, \\ \frac{v}{6} \prod_{i=1}^k \left(1 + \frac{1}{p_i}\right) + \beta 2^k - 3 & if \ v \ is \ even, \end{cases}$$
(1)

where α is defined for v odd by

$$\alpha = \begin{cases} 5/6 & \text{if every } p_i \equiv 1 (\text{mod } 3), \\ 2/3 & \text{if } p_1^{n_1} = 3 \text{ and if } i > 1, \text{ then } p_i \equiv 1 (\text{mod } 3), \\ 1/2 & \text{otherwise}, \end{cases}$$

and β is defined for v even by

$$\beta = \begin{cases} 1/4 & \text{if } v \equiv 2 \pmod{8} \text{ or } v \equiv 6 \pmod{8}, \\ 1/2 & \text{if } v \equiv 4 \pmod{8}, \\ 1 & \text{if } v \equiv 0 \pmod{8}. \end{cases}$$

The crucial fact towards Theorem A is that the isomorphism problem in this case can be solved entirely by means of multiplier equivalence. More precisely, every two cyclic configurations of type (v_3) are isomorphic if and only if they are multiplier equivalent. This fact we are going to deduce as a direct consequence of a result about circulant matrices proved in [20]. It is interesting to note that this is no longer true for arbitrary cyclic configurations with 3 points on a line. In [19], Phelps gives examples of cyclic 2-(v,3,1) designs which are isomorphic but not multiplier equivalent. In Section 2 we review the relevant results on circulant matrices and explain the relation with configurations. Section 3 is devoted to the proof of Theorem A.

In Section 4 we turn to the following question:

Question 1.1. Given an integer v, is it true that any two balanced cyclic configurations on v points are isomorphic if and only if they are multiplier equivalent?

This is part of the more general question which asks if a given finite group G has the CI-property for a given class \mathcal{K} of relational structures on G (see [1, 15]). This question has been extensively studied under various choices of G and \mathcal{K} (see, e.g. [8, 9, 11, 14, 19], just to mention those papers that will be invoked in the sequel). The finite groups having the CI-property for all relational structures (for short the CI-groups) were characterized by Pálfy in [15]. It turns out that these are the cyclic groups of order n with n=4 or $\gcd(n,\phi(n))=1$ where ϕ denotes Euler's ϕ function. Consequently, Question 1.1 is answered in the positive if $v\geq 7$ and $\gcd(v,\phi(v))=1$. In Section 4 we provide further values of v inducing a positive answer by proving the following theorem:

Theorem B. If v = pq or $v = p^n$, p, q are primes, then any two balanced cyclic configurations on v points are isomorphic if and only if they are multiplier equivalent.

Remark 1.2. Theorem B can be viewed as a Bays-Lambossy type theorem for balanced cyclic configurations. It was proved first by Bays in [2] and Lambossy in [13] that two cyclic Steiner triple systems on a prime number of points are isomorphic if and only if they are multiplier equivalent. It is worth noted that the Bays-Lambossy Theorem was generalized to abelian projective planes (see [11, Corollary 2.2]).

2 Circulant matrices

Lemma 2.1. Let $C = (\mathbb{Z}_v, \mathcal{B})$ be a balanced configuration with the translation $x \mapsto x+1$ in $\operatorname{Aut}(C)$. Then there exists a subset S of \mathbb{Z}_v such that \mathcal{B} consists of the sets in the form S+i, $i \in \mathbb{Z}_v$.

PROOF: Denote by G the group generated by the translation $x \mapsto x + 1$. Choose a line $B \in \mathcal{B}$ such that $0 \in B$, where 0 is the zero element of \mathbb{Z}_v . Assume for the moment that B satisfies

$$B^g = B \text{ or } B^g \cap B = \emptyset \text{ for every } g \in G.$$
 (2)

In other words, B is a block for the permutation group G (see [5, page 12.]). This gives that B is an orbit of a subgroup of G of size k (see [5, Theorem 1.5A]), where k is the size of the lines. Since G is a cyclic group, the set B is uniquely determined. Choose next a line $B' \in \mathcal{B}$ for which $0 \in B'$ and $B' \neq B$. Then (2) does not hold for B', i.e., there exists $g \in G$ such that B' and B' intersects at a unique point, say i ($i \in \mathbb{Z}_v$).

Let us consider the action of G on the set \mathcal{B} . We denote by $G_{B'}$ the stabilizer of the line B' in this action, i.e., $G_{B'} = \{g \in G : B'^g = B'\}$. Then $G_{B'^g} = g^{-1}G_{B'}g$, $|G_{B'^g}| = |G_{B'}|$, and so $G_{B'^g} = G_{B'}$ (again, G is a cyclic group). Clearly, every element in $G_{B'} \cap G_{B'^g}$ fixes the point i. Since G is regular on the points, we obtain $G_{B'} = G_{B'} \cap G_{B'^g} = 1$. The orbit-stabilizer property (see [5, Theorem 1.4A]) gives that the orbit of B' under G is of length $|G| = |P| = |\mathcal{B}|$. Letting S = B', the lemma follows.

We shall refer to the set S in Lemma 6 as a base line of C, and use the symbol $Con(\mathbb{Z}_v, S)$ for C. Base lines are characterized in the next lemma.

Lemma 2.2. [7] The following (1)-(2) are equivalent for every subset S of \mathbb{Z}_v .

(1) S is a base line of a cyclic configuration of type (v_k) .

(2)
$$|S| = k$$
 and $|S - S| = k^2 - k + 1.1$

Suppose that S is a base line such that $0 \in S$ (clearly, every configuration admits base lines with this property). The set S generates a subgroup of \mathbb{Z}_v , say of order d, and denote it by \mathbb{Z}_d . Then $\operatorname{Con}(\mathbb{Z}_d, S)$ is a connected configuration. Also, $\operatorname{Con}(\mathbb{Z}_v, S)$ decomposes to the union of v/d copies of $\operatorname{Con}(\mathbb{Z}_d, S)$:

$$\operatorname{Con}(\mathbb{Z}_v, S) \cong \operatorname{Con}(\mathbb{Z}_d, S) \cup \cdots \cup \operatorname{Con}(\mathbb{Z}_d, S).$$
 (3)

Note that, if S is an arbitrary base line (0 is not necessarily in S), then it holds:

$$\operatorname{Con}(\mathbb{Z}_v, S)$$
 is connected $\iff \langle S - S \rangle = \mathbb{Z}_v.$ (4)

The following necessary condition for a set to be a base line will be used frequently through the paper. It follows promptly from the second part in (2) of Lemma 2.2.

Corollary 2.3. If a subset S of \mathbb{Z}_v is a base line of a cyclic configuration, then S contains no H-coset for every nontrivial subgroup $H \leq \mathbb{Z}_v$.

For positive integers v and k denote by B(v, k) the set of all base lines of \mathbb{Z}_v of size k, and by $B_{\text{con}}(v, k)$ the set of those which define connected configurations. More formally,

$$B(v,k) = \{X \subseteq \mathbb{Z}_v : |X| = k \text{ and } |X - X| = k^2 - k + 1\},$$

$$B_{\text{con}}(v,k) = \{X \in B(v,k) : \langle X - X \rangle = \mathbb{Z}_v\}.$$

¹Here $S - S = \{s_1 - s_2 : s_1, s_2 \in S\}.$

Notice that, if $X \in B(v, k)$, $a \in \mathbb{Z}_v^*$ and $b \in \mathbb{Z}_v$, then the set aX + b is also in B(v, k). Hence the mapping $X \mapsto aX + b$ defines an action of the affine group $AGL_1(v)$ on B(v, k). Clearly, the subset $B_{con}(v, k)$ of B(v, k) is invariant with respect to this action.

Next, we review the definition of a circulant matrix. Let A be an v-by-v matrix. The matrix A is a permutation matrix if it is a (0,1) matrix, and every row and column contains exactly one 1's. Furthermore, $A = (a_{i,j})$ is a circulant matrix if $a_{i+1,j+1} = a_{i,j}$ holds for every $i, j \in \{0, 1, ..., v-1\}$, where the additions in subscripts are modulo v. Here we label rows and columns by elements of \mathbb{Z}_v . We let $\mathbb{Z}_v = \{0, 1, ..., v-1\}$, the leftmost column is labeled 0, the next is 1 and so on. If $A = (a_{i,j})$ is an v-by-v (0,1) circulant matrix, then denote by S_A the subset of \mathbb{Z}_v defined by

$$S_A = \{ i \in \mathbb{Z}_v : a_{0,i} = 1 \}.$$

The cardinality $|S_A|$ is also called the *weight* of A. Also, A^T denotes the transpose of the matrix A.

Let $S \in B(v, k)$, and let A be the (0, 1) circulant matrix defined by $S_A = S$. Then it follows immediately from the definitions that, A is a line-point incidence matrix of the cyclic configuration $Con(\mathbb{Z}_v, S)$ (see [6]).

Lemma 2.4. For r = 1, 2, let $S_r \in B(v, k)$, and let A_r be the (0, 1) circulant matrix defined by $S_{A_r} = S_r$. The following equivalence holds:

$$\operatorname{Con}(\mathbb{Z}_v, S_1) \cong \operatorname{Con}(\mathbb{Z}_v, S_2) \iff A_1 = PA_2Q$$

for some v-by-v permutation matrices P and Q.

PROOF: Let P and Q arbitrary v-by-v permutation matrices. Associate then the permutation π of \mathbb{Z}_v with P and the permutation σ of \mathbb{Z}_v with Q as follows:

$$i^{\pi} = j \iff P_{i,j} = 1 \text{ and } i^{\sigma} = j \iff Q_{j,i} = 1 \text{ for evey } i, j \in \mathbb{Z}_v.$$

Then

$$(PA_2Q)_{i,j} = \sum_{k,l=0}^{v-1} P_{i,k}(A_2)_{k,l}Q_{l,j} = (A_2)_{i^{\pi},j^{\sigma}}.$$

Now, $A_1 = PA_2Q$ can be interpreted as the permutation σ maps the line $S_1 + i$ to the line $S_2 + i^{\pi}$. Equivalently, σ induces an isomorphism from $\text{Con}(\mathbb{Z}_v, S_1)$ to $\text{Con}(\mathbb{Z}_v, S_2)$. The lemma follows.

Lemma 2.4 brings us to the following result of Wiedman and Zieve:

Theorem 2.5. [20, Theorem 1.1] The following (1)-(4) are equivalent for every two v-by-v (0, 1) circulant matrices A_1 and A_2 of weight at most 3.

- (1) There is $a \in \mathbb{Z}_v^*$ and $b \in \mathbb{Z}_v$ such that $S_{A_1} = aS_{A_2} + b$.
- (2) There are v-by-v permutation matrices P, Q such that $A_1 = PA_2Q$.

- (3) There is an v-by-v permutation matrix P such that $A_1A_1^T = PA_2A_2^TP^{-1}$.
- (4) The complex matrices $A_1A_1^T$ and $A_2A_2^T$ are similar.

Notice that, the configurations $\operatorname{Con}(\mathbb{Z}_v, S_1)$ and $\operatorname{Con}(\mathbb{Z}_v, S_2)$ are multiplier equivalent if and only if $S_1 = aS_2 + b$ for some $a \in \mathbb{Z}_v^*$ and $b \in \mathbb{Z}_v$. Combining this with Lemma 2.4 and Theorem 2.5, we obtain the required equivalence for configurations of type (v_3) :

Corollary 2.6. Any two cyclic configurations of type (v_3) are isomorphic if and only if these are multiplier equivalent.

As pointed out in [20], the equivalences in Theorem 2.5 do not hold when the weight $k \geq 4$. The following theorem settles the case k = 4. It is was proved by the first two authors in the context of cyclic Haar graphs (see [12, Theorem 1.1]), below it is rephrased in terms of circulant matrices.

Theorem 2.7. The following (1)-(2) are equivalent for two v-by-v (0,1) circulant matrices A_1 and A_2 of weight 4 such that $\langle S_{A_r} - S_{A_r} \rangle = \mathbb{Z}_v$ for both r = 1, 2.

- (1) There exist $a_1, a_2 \in \mathbb{Z}_v^*$ and $b_1, b_2 \in \mathbb{Z}_v$ such that
 - (1a) $S_{A_1} = a_1 S_{A_2} + b_1$; or
 - (1b) $a_1S_{A_1} + b_1 = \{0, x, y, y + u\}$ and $a_2S_{A_2} + b_2 = \{0, x + u, y, y + u\}$, where v = 2u, $\mathbb{Z}_v = \langle x, y \rangle$, $2 \mid x$, $(2x) \mid u$ and $x/2 \not\equiv y + u/(2x) \pmod{u/x}$.
- (2) There are v-by-v permutation matrices P, Q such that $A_1 = PA_2Q$.

Corollary 2.8. Any two cyclic configurations of type (v_4) are isomorphic if and only if these are multiplier equivalent.

PROOF: We prove the statement for connected configurations. The general case follows then by using the decomposition in (3) and induction on v.

Let $Con(\mathbb{Z}_v, S_r)$, r = 1, 2, be two connected configurations of type (v_4) . Then $\langle S_r - S_r \rangle = \mathbb{Z}_v$, see (4), and we apply Theorem 2.7 to the respective line-point incidence matrices. Now, one only needs to exclude the possibility that the sets S_r are described by part (1b) of Theorem 2.7. That this is indeed the case follows from Corollary 2.3 where choose H to be the subgroup of order 2.

Remark 2.9. As noted in the introduction, cyclic configurations are equivalent to cyclic Haar graphs of girth 6, and therefore each of our results has a counterpart in the context of cyclic Haar graphs. In this spirit [18, Theorem 5.23] summarizes Corollaries 2.6 and 2.8.

3 Proof of Theorem A

Recall that, two configurations $Con(\mathbb{Z}_v, S_r)$, r = 1, 2, are multiplier equivalent if and only if their base lines S_r are in the same orbit of $AGL_1(v)$. Thus Corollary 2.6 gives that $\#C(v_3)$ is equal to the number of orbits of $AGL_1(v)$ acting on $B_{con}(v,3)$.

Lemma 3.1. Let v and k be integers such that $k \geq 3$ and $v \geq k^2 - k + 1$, and denote by \mathcal{N} the number of orbits of $AGL_1(v)$ acting on $B_{con}(v,k)$. Then

$$\mathcal{N} = \frac{1}{k\phi(v)} \sum_{l \in \mathbb{Z}_v^*} N(v, k, l),$$

where $N(v, k, l) = \{X \in B_{con}(v, k) : 0 \in X \text{ and } lX = X - x \text{ for some } x \in X\}.$

PROOF: For short we put $B_0 = \{X \in B_{con}(v, k) : 0 \in X\}$, and for $X \in B_0$ with $X = \{x_1, x_2, ..., x_k\}$, define the set

$$\widehat{X} = \{X - x_1, X - x_2, ..., X - x_k\}.$$

It is easily seen that for every set $Y = X - x_i$ it holds $\widehat{Y} = \widehat{X}$. It follows from this that the sets $\widehat{X}, X \in B_0$, form a partition of B_0 . This partition will be denoted by π . Notice also that $|\widehat{X}| = k$ holds for every class $\widehat{X} \in \pi$ because $|X - X| = k^2 - k + 1$ (see (2) in Lemma 2.2). Let us consider the action of \mathbb{Z}_v^* on B_0 defined by $X^l = l X = \{lx : x \in X\}$ for every $l \in \mathbb{Z}_v^*$ and $X \in B_0$. The partition π is preserved by \mathbb{Z}_v^* in this action, denote by $\mathrm{Orb}(\mathbb{Z}_v^*, \pi)$ the set of the corresponding orbits. For $X \in B_0$, denote by O(X) the orbit of X under $AGL_1(v)$, and by $O(\widehat{X})$ the orbit of \widehat{X} under \mathbb{Z}_v^* .

We claim that the mapping $f: O(\widehat{X}) \mapsto O(X)$ establishes a bijection from $\operatorname{Orb}(\mathbb{Z}_v^*, \pi)$ to the set of orbits of $AGL_1(v)$ acting on $B_{\operatorname{con}}(v,k)$ (notice that, the mapping f is well-defined). It is clear that f is surjective. To settle that it is also injective choose $X, Y \in B_{\operatorname{con}}(v,k)$ such that O(X) = O(Y). We may assume without loss of generality that $0 \in X \cap Y$. By definition, Y = aX + b for some $a \in \mathbb{Z}_v^*$ and $b \in \mathbb{Z}_v$. Since $0 \in Y$, b = -ax for some $x \in X$. Thus a'Y = X - x, where $aa' \equiv 1 \pmod{v}$, implying that $O(\widehat{X}) = O(\widehat{Y})$, and so f is also injective, hence bijective. We obtain that the required number $\mathcal{N} = |\operatorname{Orb}(\mathbb{Z}_v^*, \pi)|$. Then the orbit-counting lemma applied to $\operatorname{Orb}(\mathbb{Z}_v^*, \pi)$ yields the formula (see [5, Theorem 1.7A]):

$$\mathcal{N} = \frac{1}{\phi(v)} \sum_{l \in \mathbb{Z}_*^*} \left| \left\{ \widehat{X} \in \pi : \widehat{X}l = \widehat{X} \right\} \right|.$$

In order to finish the proof one only needs to observe that $\widehat{X}l = \widehat{X}$ happens exactly when lX = X - x for some $x \in X$; and if this is so, then every set $Y \in \widehat{X}$ satisfies lY = Y - y for some $y \in Y$. This gives us

$$|\{\widehat{X} \in \pi : \widehat{X}l = \widehat{X}\}| = \frac{N(v, k, l)}{k}.$$

The lemma is proved.

By Corollary 2.6 and Lemma 3.1, we find that,

$$#C(v_3) = \frac{1}{3\phi(v)} \sum_{l \in \mathbb{Z}_v^*} N(v, 3, l).$$
 (5)

We compute next the parameters N(v, 3, l) in (5).

Define first the function $\Phi: \mathbb{N} \to \mathbb{N}$ by $\Phi(1) = 1$, and for v > 1 let

$$\Phi(v) = v\left(1 + \frac{1}{p_1}\right) \cdots \left(1 + \frac{1}{p_k}\right),\,$$

where v has prime factorization $v = p_1^{n_1} \cdots p_k^{n_k}$. Obviously, Φ is a multiplicative function, i.e., $\Phi(v_1v_2) = \Phi(v_1)\Phi(v_2)$ whenever $\gcd(v_1, v_2) = 1$.

Lemma 3.2. If v > 4, then

$$N(v,3,1) = \begin{cases} \frac{1}{2}\phi(v)(\Phi(v) - 6) & \text{if } v \text{ is odd,} \\ \frac{1}{2}\phi(v)(\Phi(v) - 6) - 3\phi(v/2) & \text{if } v \text{ is even.} \end{cases}$$

PROOF: Define the sets:

$$S(v) = \{(x,y) \in \mathbb{Z}_v \times \mathbb{Z}_v : \langle x,y \rangle = \mathbb{Z}_v \},$$

$$S^*(v) = \{(x,y) \in S(v) : |\{0,x,y,-x,-y,x-y,y-x\}| < 7\}.$$

We leave for the reader to verify that the function $v \mapsto |S(v)|$ is multiplicative. Let $v = p^n$, p is a prime. Then two elements x, y generate \mathbb{Z}_v if and only if one of them is a generator. By this we calculate that $|S(v)| = 2\phi(v)v - \phi(v)^2 = \phi(v)(2v - \phi(v)) = \phi(v) \Phi(v)$. We find, using that all functions ϕ , Φ and $v \mapsto |S(v)|$ are multiplicative, that $|S(v)| = \phi(v) \Phi(v)$ for every number v.

Now, for every $x, y \in \mathbb{Z}_v$, $\{0, x, y\} \in B_{\text{con}}(v, 3)$ if and only if $(x, y) \in S(v) \setminus S^*(v)$. Therefore,

$$N(v,3,1) = \frac{|S(v)| - |S^*(v)|}{2} = \frac{1}{2} (\phi(v)\Phi(v) - |S^*(v)|).$$
 (6)

It remains to calculate $|S^*(v)|$. Let v be odd. Then $S^*(v)$ can be expressed as

$$S^*(v) = \{(0, x), (x, 0), (x, x), (x, -x), (x, 2x), (2x, x) : x \in \mathbb{Z}_v^*\}.$$

Since v > 4, there is no coincidence between the above pairs, and so $|S^*(v)| = 6\phi(v)$. The formula for N(v, 3, 1) follows by this and (6).

Let v be even, say v = 2u. In this case

$$S^*(v) = \{(0, x), (x, 0), (x, x), (x, -x), (x, 2x), (2x, x) : x \in \mathbb{Z}_v^*\} \cup \{(u, x), (x, u), (x, x + u) : x \in \mathbb{Z}_v \text{ and } \langle x, u \rangle = \mathbb{Z}_v\}.$$

Again, since v > 4, there is no coincidence between the above pairs. A quick computation gives that $|S^*(v)| = 6\phi(v) + 6\phi(u)$. The formula for N(v, 3, 1) follows by this and (6). The lemma is proved.

For $l \in \mathbb{Z}_v^*$, denote by $\operatorname{ord}_{\mathbf{m}}(l)$ the order of l as an element of \mathbb{Z}_v^* . Furthermore, O(l) denotes the set of orbits of \mathbb{Z}_v under l, i.e.,

$$O(l) = \{ \{x, lx, ..., l^{m-1}x\} : x \in \mathbb{Z}_v \} \text{ where } m = \text{ord}_{\mathbf{m}}(l).$$

Lemma 3.3. Let $l \in \mathbb{Z}_{v}^{*}$, $l \neq 1$.

- (i) If $\operatorname{ord}_{m}(l) > 3$, then N(v, 3, l) = 0.
- (ii) If $\operatorname{ord}_{m}(l) = 2$, then

$$N(v,3,l) = \begin{cases} 0 & \text{if } l+1 \equiv 0 (\bmod \ v), \ \text{or } v \equiv 0 (\bmod \ 4) \ \text{and } l \equiv 1 (\bmod \ v/2), \\ \frac{3\phi(v)}{2} & \text{otherwise}. \end{cases}$$

(iii) If $\operatorname{ord}_{m}(l) = 3$, then

$$N(v,3,l) = \begin{cases} 0 & \text{if } l^2 + l + 1 \not\equiv 0 \pmod{v}, \\ \phi(v) & \text{otherwise.} \end{cases}$$

PROOF: Put again $B_0 = \{X \in B_{con}(v,3) : 0 \in X\}$, and let $X \in B_0$ such that $X = \{0, x, y\}$ and

$$lX = X \text{ or } lX = X - x. \tag{7}$$

We consider step-by-step all cases (i)-(iii).

- (i): Assume by contradiction that (7) holds for some $l \in \mathbb{Z}_v^*$ with $\operatorname{ord}_{\mathbf{m}}(l) > 3$. If Xl = X, then $l^2x = x$ and $l^2y = y$. This together with $\langle x,y \rangle = \mathbb{Z}_v$ imply that $l^2 \equiv 1 \pmod{v}$, a contradiction to $\operatorname{ord}_{\mathbf{m}}(l) > 2$. Let Xl = X x, and so $\{lx, ly\} = \{-x, y x\}$. Now, if lx = -x and ly = y x, then $l^2x = x$ and $l^2y = y$ which is impossible. If lx = y x and ly = -x, then $l^3x = x$ and $l^3y = y$, implying that $l^3 \equiv 1 \pmod{v}$, which is in contradiction with $\operatorname{ord}_{\mathbf{m}}(l) > 3$.
- (ii): Assume that (7) holds with $\operatorname{ord_m}(l) = 2$. If lX = X, then lx = y and ly = x and so we find X as $X = \{0, x, lx\}$, $x \in \mathbb{Z}_v^*$. Let lX = X x. Then it follows that lx = -x and ly = y x (otherwise $l^3 \equiv 1 \pmod{v}$, a contradiction to $\operatorname{ord_m}(l) = 2$), and so $X = \{0, y, -ly + y\}$ where $y \in \mathbb{Z}_v^*$. Since $X \in B_0$, the elements 0, 1, -1, l, -l, l 1 and 1 l must be pairwise distinct. We conclude from these that, N(v, 3, l) = 0 if $l + 1 = 0 \pmod{v}$ or $l \equiv 1 \pmod{v/2}$, and otherwise N(v, 3, l) is the size of the following set:

$$\{\{0, x, lx\} : x \in \mathbb{Z}_v^*\} \cup \{\{0, x, -lx + x\} : x \in \mathbb{Z}_v^*\}.$$

We observe in turn that, the two sets above are disjoint, the first has size $\phi(v)/2$, while the second has cardinality $\phi(v)$. Then (ii) follows.

(iii): Assume that (7) holds with $\operatorname{ord}_{\mathbf{m}}(l) = 3$. Then X = lX - x, lx = y - x and ly = -x (otherwise $l^2 \equiv 1 \pmod{v}$, see above). Thus $X = \{0, x, x + lx\}$, $x \in \mathbb{Z}_v^*$ and $l^2 + l \equiv -1 \pmod{v}$. We conclude that, N(v, 3, l) = 0 if $l^2 + l + 1 \not\equiv 0 \pmod{v}$, and otherwise $N(v, 3, l) = \left|\left\{\{0, x, lx + x\} : x \in \mathbb{Z}_v^*\right\}\right| = \phi(v)$. Thus (iii) follows, and this completes the proof of the lemma.

PROOF OF THEOREM A: By Lemmas 3.1 and 3.2, the sum in (5) reduces to

$$#C(v_3) = \begin{cases} \frac{1}{6}\Phi(v) - 1 + \frac{1}{2}\gamma_1 + \frac{1}{3}\gamma_2 & \text{if } v \text{ is odd,} \\ \frac{1}{6}\Phi(v) - \frac{\phi(v/2)}{\phi(v)} - 1 + \frac{1}{2}\gamma_1 + \frac{1}{3}\gamma_2 & \text{if } v \text{ is even,} \end{cases}$$
(8)

where γ_1 and γ_2 are defined by

$$\gamma_1 = |\{l \in \mathbb{Z}_v^* : \operatorname{ord_m}(l) = 2, \ l+1 \not\equiv 0 \pmod{v} \text{ and } l \not\equiv 1 \pmod{v/2} \text{ if } v \equiv 0 \pmod{4}\}|,$$

$$\gamma_2 = |\{l \in \mathbb{Z}_v^* : \operatorname{ord_m}(l) = 3 \text{ and } l^2 + l + 1 \equiv 0 \pmod{v}\}|.$$

In calculating γ_1 and γ_2 below we shall use the fact \mathbb{Z}_v^* can be written as $\mathbb{Z}_v^* = \mathbb{Z}_{p_1^{n_1}}^* \times \cdots \times \mathbb{Z}_{p_k^{n_k}}^*$, and every $l \in \mathbb{Z}_v^*$ can be expressed as

$$l = (l_1, ..., l_k), \text{ where } l_i \in \mathbb{Z}_{p^{n_i}}^* \text{ for every } i \in \{1, ..., k\}.$$
 (9)

Note that, we may assume that $l_i \equiv l \pmod{p_i^{n_i}}$ for every $i \in \{1, ..., k\}$.

Case 1. v is odd.

Since v is odd, there are exactly $2^k - 1$ elements $l \in \mathbb{Z}_v^*$ such that $\operatorname{ord}_{\mathbf{m}}(l) = 2$, and all but one contributes to γ_1 (namely, l = v - 1 is excluded in the definition of γ_1). Thus $\gamma_1 = 2^k - 2$. The value of γ_2 depends solely on the residue of v modulo 9 and the residue of prime factors p_i modulo 3. Let $l \in \mathbb{Z}_v^*$ such that $\operatorname{ord}_{\mathbf{m}}(l) = 3$ and write $l = (l_1, ..., l_k)$ as described in (9). Thus l_i is of order 1 or 3 in $\mathbb{Z}_{p^{n_i}}^*$.

Case 1.1. $p_i \equiv 1 \pmod{3}$ for every $i \in \{1, ..., k\}$.

If l_i is of order 1 in $\mathbb{Z}_{p_i^{n_i}}^*$, then $l \equiv l_i \equiv 1 \pmod{p_i^{n_i}}$, from which $l^2 + l + 1 \equiv 3 \pmod{p_i^{n_i}}$, hence $l^2 + l + 1 \not\equiv 0 \pmod{v}$, so l cannot contribute to γ_2 . If l_i is of order 3 in $\mathbb{Z}_{p_i^{n_i}}^*$, then $l^2 + l + 1 \equiv l_i^2 + l_i + 1 \equiv 0 \pmod{p_i^{n_i}}$ for every $i \in \{1, ..., k\}$, hence $l^2 + l + 1 \equiv 0 \pmod{v}$. Since there are exactly two elements in $\mathbb{Z}_{p_i^{n_i}}$ of order 3, $\gamma_2 = 2^k$. Substitute this and $\gamma_1 = 2^k - 2$ in (8). We obtain that $\#C(v_3) = \frac{1}{6}\Phi(v) + \frac{5}{6}2^k - 2$.

Case 1.2. $v \equiv 3 \pmod{9}$ and $p_i \equiv 0/1 \pmod{3}$ for every $i \in \{1,...,k\}$.

We may write $p_1^{n_1}=3$. We obtain, by the same argument as in the previous case, that l contributes to γ_2 if and only if l_1 is of order 1 in $\mathbb{Z}_{p_1^{n_1}}$, and l_i is of order 3 in $\mathbb{Z}_{p_i^{n_i}}^*$ if $i \geq 2$. Thus $\gamma_2 = 2^{k-1}$, which together with $\gamma_1 = 2^k - 2$ yield in (8) that $\#C(v_3) = \frac{1}{6}\Phi(v) + \frac{2}{3}2^k - 2$.

Case 1.3. $v \equiv 0 \pmod{9}$ or $p_i \equiv 2 \pmod{3}$ for some $i \in \{1, ..., k\}$.

We show that in this case $l^2 + l + 1 \not\equiv 0 \pmod{v}$ independently of the choice l. Thus $\gamma_2 = 0$, and so $\#C(v_3) = \frac{1}{6}\Phi(v) + \frac{1}{2}2^k - 2$.

Suppose first that $v \equiv 0 \pmod{9}$. We may write $p_1 = 3$, now $n_1 \geq 2$. Since $\operatorname{ord}_{\mathbf{m}}(l) = 3$, $l_1 \equiv 1 \pmod{3^{n_1-1}}$. We claim that $l_1^2 + l_1 + 1 \equiv 3 \pmod{3^{n_1}}$. Indeed, $l_1 \equiv 3^{n_1-1}k + 1 \pmod{3^{n_1}}$ for some $k \in \{0, 1, 2\}$. Hence

$$l_1^2 + l_1 + 1 \equiv (k+2k)3^{n_1-1} + 3 \equiv 3 \pmod{3^{n_1}}.$$

Therefore, $l^2 + l + 1 \equiv l_1^2 + l_1 + 1 \equiv 3 \pmod{3^{n_1}}$, and since $n_1 \geq 2$, $l^2 + l + 1 \not\equiv 0 \pmod{3_1^{n_1}}$, and so $l^2 + l + 1 \not\equiv 0 \pmod{v}$.

Suppose next that $p_i \equiv 2 \pmod{3}$ for some $i \in \{1, ..., k\}$. Then l_i must be of order 1 in $\mathbb{Z}_{p_i^{n_i}}$, and hence $l^2 + l + 1 \equiv l_i^2 + l_i + 1 \equiv 3 \pmod{p_i^{n_i}}$, and so $l^2 + l + 1 \not\equiv 0 \pmod{v}$.

Case 2. v is even.

Since v is even, l is odd, and thus $l^2 + l + 1 \not\equiv 0 \pmod{v}$. We obtain that $\gamma_2 = 0$. The value of γ_1 depends on the residue of n modulo 8. The number of elements of order 2 in \mathbb{Z}_v^* is $2^{k-1} - 1$ if $v \equiv 2/6 \pmod{8}$, $2^k - 1$ if $v \equiv 4 \pmod{8}$, and $2^{k+1} - 1$ if $v \equiv 0 \pmod{8}$ (see [10, Exercise 6.12]). Thus

$$\gamma_1 = \begin{cases}
2^{k-1} - 2 & \text{if } v \equiv 2/6 \pmod{8}, \\
2^k - 3 & \text{if } v \equiv 4 \pmod{8}, \\
2^{k+1} - 3 & \text{if } v \equiv 0 \pmod{8}.
\end{cases}$$
(10)

Obviously, $\phi(v/2)/\phi(v) = 1$ if $v \equiv 2 \pmod{4}$ and it is 1/2 if $v \equiv 0 \pmod{4}$. Substituting this, (10) and $\gamma_2 = 0$ in (8) yields formula (1). The theorem is proved.

4 Proof of Theorem B

We consider cyclic configurations in the wider context of cyclic objects, where by a cyclic object of order v we mean a relational structure on \mathbb{Z}_v which is invariant under the translation $\tau: x \mapsto x+1$. The set of all cyclic objects of order v will be denoted by $\mathrm{Obj}(\tau, \mathbb{Z}_v)$ (see [14]). An isomorphism between two cyclic objects $X_r, r=1,2$, is a permutation σ of \mathbb{Z}_v which maps X_1 onto X_2 , if $X=X_1=X_2$, then σ is an automorphism, the group of all automorphisms will be denoted by $\mathrm{Aut}(X)$. Given a class \mathcal{K} of objects in $\mathrm{Obj}(\tau, \mathbb{Z}_v)$, a solving set for \mathcal{K} is a set Δ of permutations of \mathbb{Z}_v satisfying the following property (see [14]):

$$(\forall X \in \mathcal{K}) \ (\forall Y \in \text{Obj}(\tau, \mathbb{Z}_v)) \ (X \cong Y \iff X^{\sigma} = Y \text{ for some } \sigma \in \Delta).$$

Pálfy's characterization of CI-groups (see the paragraph before Theorem B) yields the following theorem:

Theorem 4.1. [15] The set \mathbb{Z}_v^* is a solving set for $\mathrm{Obj}(\tau, \mathbb{Z}_v)$ if and only if v = 4 or $\gcd(v, \phi(v)) = 1$.²

Let p and q be distinct primes. For every object $X \in \text{Obj}(\tau, \mathbb{Z}_{pq})$, a solving set for X was determined by Huffman [8]. Before stating the relevant results, let us recall the required notations. For $j \in \mathbb{Z}_v^*$, let μ_j be the permutation $\mu_j : x \mapsto jx$. For $i \in \{0, 1, ..., q-1\}$, define the permutation τ_i by

$$\tau_i : x \mapsto \begin{cases} x + q & \text{if } x \equiv i \pmod{q}, \\ x & \text{otherwise,} \end{cases}$$

and if in addition $j \in \mathbb{Z}_v^*$ with $j \equiv 1 \pmod{q}$, then define the permutation $\mu_{i,j}$ by

$$\mu_{i,j}: x \mapsto \begin{cases} jx & \text{if } x \equiv i \pmod{q}, \\ x & \text{otherwise.} \end{cases}$$

For the next two theorems suppose in addition that q divides p-1. Furthermore, fix an element $a \in \mathbb{Z}_v^*$ of order $\operatorname{ord}_{\mathbf{m}}(a) = p-1$ for which $a \equiv 1 \pmod{q}$, and put $b = a^{(p-1)/q}$.

Theorem 4.2. [8, Theorem 1.1] Let v = pq, where p, q are primes such that q divides p-1, and let $X \in \text{Obj}(\tau, \mathbb{Z}_v)$ such that $\mu_b \notin \text{Aut}(X)$, where b is defined above. Then \mathbb{Z}_v^* is a solving set for X.

The powers $a, a^2, ..., a^p$ are pairwise distinct modulo p. Let α be the positive integer in $\{1, 2, ..., p\}$ that $a^{\alpha} \equiv -s \pmod{p}$, where s = (p-1)/q. For $i \in \{0, 1, ..., q-1\}$ define $\nu_i = \prod_{j=0}^{q-1} \mu_{j,a^{\alpha}b^{-ij}}$. Notice that, $\nu_0 = \mu_{a^{\alpha}}$. The next theorem is [8, Theorem 1.2], which, for our convenience, is formulated slightly differently.

Theorem 4.3. Let v = pq, where p,q are primes such that q divides p-1, and let $X \in \text{Obj}(\tau, \mathbb{Z}_v)$ such that $\mu_b \in \text{Aut}(X)$ and $\tau_0 \notin \text{Aut}(X)$, where b is defined above. Let β be the smallest positive integer such that $\mu_a^{\beta} \in \text{Aut}(X)$. Then X admits a solving set Δ in the form:

$$\Delta = \left\{ \mu_a^i \, \nu_k \, \mu_j^{-1} : 0 \le i < \beta, \ 0 < j \le q - 1, \ 0 \le k \le q - 1, \ \prod_{l=0}^{q-1} \tau_l^{b^{(l+1)k}} \in \operatorname{Aut}(X) \right\}. \tag{11}$$

The last result before we prove Theorem B is a special case of [1, Lemma 3.1].

Lemma 4.4. The following (1)-(2) are equivalent for every object $X \in \text{Obj}(\tau, \mathbb{Z}_v)$.

- (1) \mathbb{Z}_v^* is a solving set for X.
- (2) Every two regular cyclic subgroup of Aut(X) are conjugate in Aut(X).

²Here \mathbb{Z}_v^* denotes the set of permutations $x \mapsto ax$ where a goes over the set of all units in \mathbb{Z}_v .

PROOF OF THEOREM B: Obviously, the theorem can be rephrased as follows: \mathbb{Z}_v^* is a solving set for the class of cyclic configurations on v points if v = pq or $v = p^n$, where p, q are primes.

THE CASE v = pq: We prove the above statement for connected configurations. The general case follows then by using the decomposition in (3) and the fact that the statement is true for configurations with a prime number of points, so let $\mathcal{C} = \operatorname{Con}(\mathbb{Z}_{pq}, S)$ be a connected cyclic configuration.

Towards a contradiction assume that \mathbb{Z}_{pq}^* is not a solving set for \mathcal{C} . Because of Theorem 4.1 we may also assume that q divides p-1. In the rest of the proof we keep the previous notations: τ_0, a, b, α and $\nu_0, \nu_1, ..., \nu_{q-1}$. Let $P = \{0, q, ..., (p-1)q\}$, i.e., the subgroup of \mathbb{Z}_{pq} of order p. Replace S with a suitable line S + i if necessary to ensure that $S \cap P \neq \emptyset$. Also, $S \not\subseteq P$ by the connectedness of X, i.e., there exists $t \in \{1, ..., q-1\}$ such that

$$S \cap P \neq \emptyset$$
 and $S \cap (P+t) \neq \emptyset$. (12)

Suppose for the moment that $\tau_0 \in \operatorname{Aut}(\mathcal{C})$. Using that τ_0 fixes every point outside P, (12) and that $|S| \geq 3$, we conclude $|S^{\tau_0^k} \cap S| \geq 2$ for some $k \in \{1, ..., q-1\}$. Hence $S^{\tau_0^k} = S$. As P is an orbit of τ_0^k , $P \subseteq S$, which contradicts Corollary 2.3. Thus $\tau_0 \notin \operatorname{Aut}(\mathcal{C})$.

Therefore, Theorems 4.2 and 4.3, together with the assumption that \mathbb{Z}_{pq}^* is not a solving set, imply that \mathcal{C} admits a solving set Δ defined in (11). Consider the permutation $\sigma = \prod_{l=0}^{q-1} \tau_l^{b^{(l+1)k}}$, $k \in \{0, 1, ..., q-1\}$. If k=0, then $\sigma = \tau^q$ which is clearly in $\operatorname{Aut}(\mathcal{C})$. The corresponding permutations in Δ are $\mu_a^i \nu_0 \mu_j^{-1} = \mu_a^i \mu_{a^{\alpha}} \mu_j^{-1}$. Since $\Delta \not\subseteq \mathbb{Z}_v^*$, there must exist k>0 for which $\sigma = \prod_{l=0}^{q-1} \tau_l^{b^{(l+1)k}}$ belongs to $\operatorname{Aut}(\mathcal{C})$. Notice that,

$$\forall i, j \in \{0, 1, ..., q - 1\}: i \neq j \implies b^{ik} \not\equiv b^{jk} \pmod{p}. \tag{13}$$

For otherwise, $b^{(i-j)k} \equiv 1 \pmod{p}$. Since $\operatorname{ord}_{\mathbf{m}}(a) = p-1$, $a \equiv 1 \pmod{q}$ and $b = a^{(p-1)/q}$, we find from $a^{(p-1)(i-j)k/q} = b^{(i-j)k} \equiv 1 \pmod{p}$ that p-1 divides (p-1)(i-j)k/q, and so q divides (i-j)k, a contradiction.

Consider the product $\sigma' = \sigma \tau^{-b^k}$. Now, σ' fixes each point in P, but because of (13) it permutes the points of P+t in a p-cycle. Unless $|S \cap (P+x)| \leq 1$ for every $x \in \{0, 1, ..., q-1\}$, we may also assume that $|S \cap P| \geq 2$. However, if $|S \cap P| \geq 2$, then σ' fixes S, implying that $(P+t) \subseteq S$, which is impossible.

We are left with the case that $|S \cap (P+x)| \leq 1$ for every $x \in \{0, 1, ..., q-1\}$. Note that, then the same holds for all lines S+i. It is obvious that $|S| \leq q$. Let $\{s\} = S \cap P$. As \mathcal{C} is balanced, there are exactly |S| lines through s. Now, each of the lines $S, S^{\sigma'}, ..., S^{\sigma'^{p-1}}$ contains s, while they intersect P+t at distinct points. These imply in turn that, they are pairwise distinct, hence $|S| \geq p$, and so $p \leq |S| \leq q$, a contradiction. This completes the proof of case v = pq.

We turn next to the case $v = p^n$. Now, we cannot relay on a list of solving sets covering all cyclic objects as such list is available only when $v = p^2$ (see [9]). The argument below will be a combination of Lemma 4.4 with Sylow's theorems.

THE CASE $v = p^n$: Again, it is sufficient to consider connected configurations, the general case follows then by using the decomposition in (3) and induction on n. Let $C = \operatorname{Con}(\mathbb{Z}_{p^n}, S)$ be a connected cyclic configuration, $G = \operatorname{Aut}(C)$ and C be the group generated by $\tau : x \mapsto x + 1$. Let G_p be a Sylow p-subgroup of G such that $C \leq G_p$. By Lemma 4.4 and Sylow's theorems it is sufficient to prove that $G_p = C$.

Towards a contradiction assume that $C < G_p$. Then the normalizer $N_{G_p}(C) > C$. Let us put $N = N_{G_p}(C)$ and let N_0 be the stabilizer of 0 in N. Then N_0 is non-trivial, and we may choose σ from N_0 of order p. Since σ normalizes the regular subgroup C and fixes 0, $\sigma = \mu_a$ for some $a \in \mathbb{Z}_{p^n}^*$ (see [5, Exercise 2.5.6]). Then $\operatorname{ord}_{\mathbf{m}}(a) = p$. Using the well-known structure of $\mathbb{Z}_{p^n}^*$ (cf. [10, Theorem 6.7 and Exercise 6.12]) we deduce that $n \geq 2$, and either

$$a = a'p^{n-1} + 1$$
 for some $a' \in \{1, \dots, p-1\},\$

or $n \ge 3$, p = 2 and $a \in \{2^n - 1, 2^{n-1} - 1\}$.

Assume for the moment that the latter case holds. Let $Q = \langle C, \sigma \rangle$. It is a routine exercise to show that C is the only cyclic subgroup of Q of order 2^n . This implies that the normalizer $N_{G_2}(Q) \leq N_{G_2}(C) = N$. Let H be an arbitrary regular cyclic subgroup of G. If $Q = G_2$, then, by Sylow's theorems, $H^g < Q$ for some $g \in G$, and so $H^g = C$, and we are done by Lemma 4.4. Thus we may assume that $Q < G_2$. Then $Q < N_{G_2}(Q) \leq N$. Choose an element $\sigma' \in N_0$ such that $\sigma' \neq \sigma$. It is well-known that $5^{2^{n-3}} \equiv 2^{n-1} + 1 \pmod{2^n}$ (see [10, Lemma 6.9]), and that $\mathbb{Z}_{2^n}^* = \langle 5 \rangle \times \langle -1 \rangle \cong \mathbb{Z}_{2^{n-2}} \times \mathbb{Z}_2$ (see [10, Theorem 6.10]). These imply that $\mu_{2^{n-1}+1} \in \langle \sigma, \sigma' \rangle$, and so $\mu_{2^{n-1}+1} \in N_0$. Therefore, we may assume that $\mu_a \in \text{Aut}(\mathcal{C})$ where $a = a'p^{n-1} + 1$ for some $a' \in \{1, \ldots, p-1\}$.

Now, μ_a maps S to a line of C, hence we may write aS + b = S for some $b \in \mathbb{Z}_{p^n}$. Equivalently, S is a union of orbits of the affine transformation $\varphi : x \mapsto ax + b$. Then φ^p is equal to the translation $x \mapsto x + (1 + a + \cdots + a^{p-1})b$. By Corollary 2.3, S contains no non-trivial cosets. Form this and that S is a union orbits of φ^p , we find that $(1 + a + \cdots + a^{p-1})b \equiv 0 \pmod{p^n}$. This quickly implies that p^{n-1} divides b, hence we may write $b = b'p^{n-1}$ for some $b' \in \{0, 1, ..., p-1\}$. Also,

$$\varphi: x \mapsto ax + b = x + (a'x + b')p^{n-1}.$$

From this we easily find the orbits of φ . For $x \in \mathbb{Z}_v$, let O be the orbit which contains x. Then

$$O = \begin{cases} \{x\} & \text{if } a'x + b' \equiv 0 \pmod{p}, \\ P + x & \text{otherwise,} \end{cases}$$

where $P = \{0, p^{n-1}, ..., (p-1)p^{n-1}\}$, i.e., the subgroup of \mathbb{Z}_{p^n} of order p. Since X is connected, $\langle S - S \rangle = \mathbb{Z}_{p^n}$. This implies that $a's + b' \not\equiv 0 \pmod{p}$ for some $s \in S$. But then the coset $(P+s) \subseteq S$, contradicting Corollary 2.3. The theorem is proved

References

- [1] L. Babai, Isomorphism problem for a class of point-symmetric structures, *Acta Math. Acad. Sci. Hungar.* **29** (1977), 329–336.
- [2] S. Bays, Sur les systèmes cycliques des triples de Steiner différents pour N premier (ou puissance du nombre premier) de la forme 6n + 1, I. Comment. Math. Helv. 2 (1930), 294–305.
- [3] A. Betten, G. Brinkmann, and T. Pisanski, Counting symmetric configurations v_3 , Discrete Appl. Math. **99** (2000), 331–338.
- [4] M. Boben, T. Pisanski, A. Žitnik, I-graphs and the corresponding configurations, *J. Combin. Designs* **13** (2005), 406–424.
- [5] J. D. Dixon, B. Mortimer, Permutation groups, Graduate Texts in Mathematics vol 163, Springer-Verlag, New York, 1996.
- [6] B. Grünbaum, Configurations of points and lines, AMS, Graduate Studies in Mathematics vol. 103, 2009.
- [7] M. Hladnik, D. Marušič, and T. Pisanski, Cyclic Haar graphs, *Discrete Math.* **244** (2002), 137–152.
- [8] W. C. Huffman, The equivalence of two cyclic objects on pq elements, Discrete Math. 154 (1996), 103–127.
- [9] W. C. Huffman, V. Job, V. Pless, Multipliers and generalized multipliers of cyclic objects and cyclic codes, *J. Combin. Theory Ser. A* **62** (1993), 183–215.
- [10] G. A. Jones, J. M. Jones, Elementary number theory, Springer Undergraduate Mathematic Series, Springer-Verlag, London, 1998.
- [11] D. Jungnickel, The isomorphism problem for abelian projective planes, *Applicable Algebra in Eng.*, Comm. and Comp. 19, (2008), 195–200.
- [12] S. H. Koike-Quintanar, I. Kovács, Isomorphic tetravalent circulant Haar graphs, submitted to *Ars Math. Contemporanea* (preprint arXiv:1212.3208v1 [math. CO] (2012)).
- [13] P. Lambossy, Sur une manière de différent cier les fonctions cycliques de 'une forme donnée, *I. Comment. Math. Helv.* **3** (1931), 69–102.
- [14] M. Muzychuk, On the isomorphism problem for cycic combinatorial objects, *Discrete Math.* **197/198** (1999), 589–606.
- [15] P. P. Pálfy, Isomorphism problem for relational structures with a cyclic automorphism, Eur. J. Combin. 8 (1987), 35–43.

- [16] M. Petkovšek, T. Pisanski, Counting disconnected structures: chemical trees, fullerenes, I-graphs, and others, *Croat. Chem. Acta.* **78** (2005), 563–567.
- [17] M. Petkovšek, H. Zakrajšek, Enumeration of I-graphs: Burnside does it again, Ars Math. Contemp. 2 (2009), 241262
- [18] T. Pisanski, B. Servatius, Configurations from a graphical viewpoint, Birkhäuser, 2013.
- [19] K. T. Phelps, Isomorphism problems for cyclic block designs, *Ann. Discrete Math.* **34** (1987), 385–392.
- [20] D. Wiedemann and M. E. Zieve, Equivalence of sparse circulants: the bipartite Ádám problem, preprint arXiv:0706.1567v1 [math. CO] (2007).