МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ Φ ЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

	K	⟨АФЕДРА №51	
ОТЧЕТ ЗАЩИЩЕН С	ОЦЕНКОЙ_		
ПРЕПОДАВАТЕЛЬ			
Доцент, КТН			4 P.O
		WANNAY WATE	А.В.Окатов
должность, уч. степе звание	нь,	подпись, дата	инициалы, фамилия
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №5			
ЦИФРОВЫЕ СЧЕТЧИКИ			
	по курсу:	СХЕМОТЕХНИКА	
СТУДЕНТ ГР. №	5912		И.К. Лобач
	номер группы	подпись, дата	инициалы, фамилия

<u>Цель работы:</u> изучение принципов построения, приемов проектирования и анализа цифровых двоичных счетчиков.

1. Исследовать асинхронные двоичные счетчики с последовательным переносом и коэффициентом пересчета K.

Пусть K=23. Все условия выполняются, т.к. $23 \le K < 2^5$. Тогда N=5.

2. Формирование коэффициента пересчета $K < 2^N$ двоичного счетчика задать установкой в нуль разрядов счетчика после обнаружения требуемой кодовой комбинации. Промоделировать работу двоичного счетчика в системе схемотехнического моделирования Місго-Сар, по временным диаграммам объяснить алгоритм работы счетчика и оценить время задержки счета в схеме, введя задержку в логические элементы схемы счетчика.

Для построения схемы будут использоваться ЈК-триггеры.

После прихода 23_{10} счетных импульсов в разряды счетчика будет записано двоичное число 010111_2 . В результате на выходе элемента И-НЕ появится логический 0, который установит триггеры счетчика в 0.

Схема 1 - Асинхронный двоичный счетчик с установкой в нуль разрядов счетчика

График 1 - Временная диаграмма асинхронного двоичного счетчика.

По временной диаграмме можно сделать вывод о корректной работе схемы.

Оценим время задержки:

График 2 - Задержка на асинхронном двоичном счетчике

Так, задержка составляет 116 наносекунд.

3. Формирование коэффициента пересчета $K < 2^N$ задать посредством записи \underline{a} соответствующие разряды счетчика кода дополнения $D = 2^N$ - K. Построить схему асинхронного двоичного счетчика с коэффициентом пересчета K, промоделировать его работу в системе **Micro-Cap**, по временным диаграммам объяснить алгоритм работы счетчика и оценить время задержки в схеме, введя задержку в логические элементы схемы счетчика. Сравнить полученные результаты (и их особенности) для обоих вариантов построения счетчика.

Схема 2 - Асинхронный двоичный счетчик с формированием коэффициента пересчета посредством записи кода дополнения D

График 3 - Временная диаграмма

Логику можно писать так: для K = 23 и N = 5, $D = 2^5 - 23 = 9_{10} = 01001_2$. После прихода на вход счетчика $2^{N-1} = 16$ счетных импульсов, сигнал обратной связи поступает на установочные входы S триггеров тех разрядов счетчика, для которых разряды кода дополнения D имеют единичные значения. В результате этого в счетчик *принудительно запишется* число $2^{N-1} + D = 16 + 9 = 25$. После прихода еще $2^{N-1} - D = 16 - 9 = 7$ счетных импульсов счетчик вернется в исходное состояние, подсчитав ровно K импульсов. Тем самым в счетчике исключаются D избыточных состояний.

Так, по временной диаграмме можно сделать вывод о том, что схема работает корректно.

Оценим время задержки:

График 4 - Время задержки

Так, задержка составляет 140 наносекунд.

Выводы: счет в счетчиках кода дополнения начинается с нуля, но не все состояния счетчика соответствуют фактическому количеству подсчитанных им счетных импульсов в то время, как на асинхронном двоичном счетчике с формированием коэффициента пересчета *К*, заданного установкой в нуль разрядов счетчика после обнаружения требуемой кодовой комбинации все состояния соответствуют фактическим. Помимо этого, время формирования результата на асинхронном двоичном счетчике происходит быстрее.

4. Для п. 2 задания построить реверсивный счетчик и проверить правильность его работы в системе **Micro-Cap**.

Реверсивный счетчик может работать как суммирующий и вычитающий счетчик.

Схема 3 - Реверсивный счетчик

График 5 -Временная диаграмма реверсивного счетчика

По временной диаграмме можно сделать вывод о корректной работе схемы.

Выводы: в ходе выполнения лабораторной работы исследовала асинхронные двоичные счетчики с последовательным переносом и коэффициентом пересчета *К*. Промоделировать работу асинхронного двоичного счетчика с использованием JK-триггера.

Построила схему формирования коэффициента пересчета K посредством записи в соответствующие разряды счетчика кода дополнения D.

Построила реверсивный счетчик и проверила правильность его работы в системе Micro-Cap.