MATH50003 Numerical Analysis

VI.2 Classical Orthogonal Polynomials

Dr Sheehan Olver

Part VI

Orthogonal Polynomials

- 1. General Orthogonal Polynomials and basic properties
- 2. Classical Orthogonal Polynomials with special structure
- 3. Gaussian Quadrature for high-accuracy integration

VI.2 Classical Orthogonal Polynomials

Special families of orthogonal polynomials

- There are 3 classical weights: Jacobi, Laguerre, and Hermite
 - With 3 special types of Jacobi: Ultraspherical, Chebyshev, Legendre
- Classical OPs can be defined by special properties:
 - Derivatives are also OPs
 - Eigenfunctions of simple differential operators
- Classical OPs are fundamental in computations
 - Especially Chebyshev!

igital
ibrary of

athematical
unctions

Index
Notations

Search
Help?
Citing
Customize

Annotaate

About the Project

Past exan (ruseen) Table 18.3.1: Orthogonality properties for classical OP's: intervals, weight functions, normalizations, leading coefficients, and parameter constraints. In the second row \mathcal{A}_n denotes $2^{\alpha+\beta+1}\Gamma(n+\alpha+1)\Gamma(n+\beta+1)/((2n+\alpha+\beta+1)\Gamma(n+\alpha+\beta+1)n!)$, with $\mathcal{A}_0 = 2^{\alpha+\beta+1}\Gamma(\alpha+1)\Gamma(\beta+1)/\Gamma(\alpha+\beta+2)$. For further implications of the parameter constraints see the *Note* in §18.5(iii).

					<u> </u>			_	
	Name	$p_n(x)$	(a, b)	(w(x))	h_n	(kn) Posted	\widetilde{k}_n/k_n	Constraints	
	Jacobi	$P_n^{(\alpha,\beta)}(x)$	(-1,1)	$(1-x)^{\alpha}(1+x)^{\beta}$	\mathcal{A}_n	$\frac{\left(n+\alpha+\beta+1\right)_n}{2^n n!}$	$\frac{n(\alpha-\beta)}{2n+\alpha+\beta}$	$\alpha, \beta > -1$	_
	Ultraspherical (Gegenbauer)	$C_n^{(\lambda)}(x)$	(-1,1)	$(1-x^2)^{\lambda-\frac{1}{2}}$	$\frac{2^{1-2\lambda}\pi\Gamma(n+2\lambda)}{(n+\lambda)\big(\Gamma(\lambda)\big)^2n!}$	$\frac{2^n(\lambda)_n}{n!}$	0	$\lambda > -\frac{1}{2}, \lambda \neq 0$	
	Chebyshev of first kind	$T_n(x)$	(-1,1)	$(1-x^2)^{-\frac{1}{2}}$	$\begin{cases} \frac{1}{2}\pi, & n > 0 \\ \pi, & n = 0 \end{cases}$	$\begin{cases} 2^{n-1}, & n > 0 \\ 1, & n = 0 \end{cases}$	0		
	Chebyshev of second kind	$U_n(x)$	(-1,1)	$(1-x^2)^{\frac{1}{2}}$	$rac{1}{2}\pi$	2 ⁿ	0		V
5	Chebyshev of third kind	$V_n(x)$	(-1,1)	$(1-x)^{-\frac{1}{2}}(1+x)^{\frac{1}{2}}$	π	2 ⁿ	$-\frac{1}{2}$		
•	Chebyshev of fourth kind	$W_n(x)$	(-1,1)	$(1-x)^{\frac{1}{2}}(1+x)^{-\frac{1}{2}}$	π	2 ⁿ	$\frac{1}{2}$		
	Shifted Chebyshev of first kind	$T_n^*(x)$	(0,1)	$(x-x^2)^{-\frac{1}{2}}$	$\begin{cases} \frac{1}{2}\pi, & n > 0 \\ \pi, & n = 0 \end{cases}$	$\begin{cases} 2^{2n-1}, & n > 0 \\ 1, & n = 0 \end{cases}$	$-\frac{1}{2}n$		
	Shifted Chebyshev of second kind	$U_n^*(x)$	(0,1)	$(x-x^2)^{\frac{1}{2}}$	$rac{1}{8}\pi$	2^{2n}	$-\frac{1}{2}n$		_
Ī	Legendre	$P_n(x)$	(-1,1)	1	2/(2n+1)	$2^n \left(\frac{1}{2}\right)_n / n!$	0		
_	Shifted Legendre	$P_n^*(x)$	(0, 1)	1	1/(2n+1)	$2^{2n}\left(\frac{1}{2}\right)_n/n!$	$-\frac{1}{2}n$		
	Laguerre	$L_n^{(\alpha)}(x)$	(0,∞)	$e^{-x}x^{\alpha}$	$\Gamma(n+\alpha+1)/n!$	$\left(-1\right)^{n}/n!$	$-n(n+\alpha)$	$\alpha > -1$	_
	Hermite	$H_n(x)$	$(-\infty,\infty)$	e^{-x^2}	$\pi^{\frac{1}{2}}2^nn!$	2^n	0		_
	Hermite	$He_n(x)$	$(-\infty,\infty)$	$e^{-\frac{1}{2}x^2}$	$(2\pi)^{\frac{1}{2}}n!$	1	0		

O(x"-1)

VS

VI.2.1 Chebyshev polynomials

Simple OPs that are Fourier in disguise

Definition 39 (Chebyshev polynomials, 1st kind). $T_n(x)$ are orthogonal with respect to $1/\sqrt{1-x^2}$ and satisfy:

W(X)

$$T_0(x) = 1,$$
 $T_n(x) = 2^{n-1}x^n + O(x^{n-1})$

W, kn uniquely define Tho(x)

Definition 40 (Chebyshev polynomials, 2nd kind). $U_n(x)$ are orthogonal with respect to $\sqrt{1-x^2}$ and satisfy:

$$U_n(x) = 2^n x^n + O(x^{n-1})$$

Theorem 16 (Chebyshev T are cos). For $-1 \le x \le 1$

$$T_n(x) = \cos(n \cos x)$$

In other words

$$T_n(\cos\theta) = \cos(n\theta)$$

are Ors if

(1) graded polys
(2) or the wrt
$$\int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^{2}}} dx$$

(3)
$$k_b = 2^{n-1}$$
 $k_o = 1$

If
$$f(x) = \sum_{k=0}^{\infty} f_k T_k(x)$$

then $f(\cos \theta) = \sum_{k=0}^{\infty} f_k (\cos k\theta)$

$$P_{n+1}(x) = 2x P_{p}(x) - P_{n-1}(x)$$

$$P_{n}(x) = 2^{n-1}x^{n} + O(x^{n-1}) \qquad \text{then}$$

$$k_{n}$$

$$P_{n+1}(x) = 2x (2^{n-1}) - O(x^{n-1})$$

$$= 2^{n} x^{n+1} + O(x^{n})$$

$$= k_{n+1}$$

Corollary 10 (Chebyshev 3-term recurrence).

$$xT_0(x) = T_1(x)$$

$$xT_n(x) = \frac{T_{n-1}(x) + T_{n+1}(x)}{2}$$

Theorem 17 (Chebyshev U are sin). For $x = \cos \theta$,

$$U_n(x) = \frac{\sin(n+1)\theta}{\sin\theta}$$

which satisfy:

$$xU_0(x) = U_1(x)/2$$

$$xU_n(x) = \frac{U_{n-1}(x)}{2} + \frac{U_{n+1}(x)}{2}.$$

$$W(x) = \sqrt{1-x^2}$$

We can build:

$$T_{0}(x) = 1$$

 $T_{1}(x) = x$
 $T_{2}(x) = 1x T_{1}(x) - T_{0}(x)$
 $= 2x^{2} - 1$
 $T_{3}(x) = 1x T_{2}(x) - T_{1}(x)$
 $= 4x^{3} - 3x$
 $T_{4}(x) = 8x^{4} - 6x^{2}$
 $-2x^{2} + 1$

VI.2.2 Legendre polynomials

OPs with respect to uniform weight

Definition 41 (Legendre). Legendre polynomials $P_n(x)$ are orthogonal polynomials with respect to w(x) = 1 on [-1, 1], with

$$k_n = \frac{1}{2^n} \binom{2n}{n} = \frac{(2n)!}{2^n (n!)^2}$$

IQ

$$P_n(x) = k_n x^n + O(x^{n-1})$$

Lemma 9 (Legendre Rodriguez formula).

$$P_n(x) = \frac{1}{(-2)^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (1 - x^2)^n \qquad = \qquad \frac{1}{2^n n!} \qquad \frac{\partial}{\partial x^n} \qquad \left(x^2 - \gamma \right)^N$$

P100f

Theorem 12: noud to show

696110 D

2) Orthogonal to all lower degree polys.

$$3 \quad k_n = \frac{1}{2^n} \begin{pmatrix} 2n \\ n \end{pmatrix}$$

$$\left(\frac{4}{7}\right)_{N}$$

$$(x^1 - 1)^n$$

$$\left(\frac{dx}{dx}\right)^{n} \left(x^{2}-1\right)^{n} = \left(\frac{dx}{dx}\right)^{n-1} \left(2nx^{n-1}+0(x^{2n-3})\right)$$

$$= ln(2n-1)-(n+1)x^{n}+O(x^{n-2})$$

(2m)! = 2 m! km wal more der vatoris vomisbec Poly to (n-1) derivatives at $= \left(\frac{dx}{dx}\right) \left(\frac{dx}{dx}\right$ $= \left(\frac{1}{2} \right)^{n} \left(\frac{1}{$ tomoc

Lemma 10 (Legendre monomial coefficients).

$$P_0(x) = 1$$

$$P_1(x) = x$$

$$P_n(x) = \underbrace{\frac{(2n)!}{2^n(n!)^2}}_{k_n} x^n - \underbrace{\frac{(2n-2)!}{2^n(n-2)!(n-1)!}}_{k_n} x^{n-2} + O(x^{n-4}).$$

Proof

$$\left(\frac{d}{dx}\right)^{n}$$
 $\left(x^{2}-1\right)^{n}$ $\left(\frac{dx}{dx}\right)^{n}$ $\left(\frac{dx}$

$$= \frac{(2n)!}{n!} \times n - n(2n-2)(2n-3) - \cdot \cdot (n-1) \times n-1 + 0$$

Theorem 18 (Legendre 3-term recurrence).

re 3-term recurrence).
$$(2n+1)xP_n(x)=P_{n-1}(x)+(n+1)P_{n+1}(x)$$

Proof Consider

$$(n(x)) := (2n+1) \times P_n(x) - n P_{n-1}(x) - (n+1) P_{n+1}(x)$$

First show degree n-2. Because then

 $\langle r_n, P_k \rangle = (2_{m+1}) \langle P_n, \sqrt{P_k} \rangle - n \langle P_{n-1}, P_k \rangle$

$$-(n+1) < p_{n+1}, p_k >$$

We hove

$$=$$

$$\begin{array}{l}
(n(x)) = \left[(2n+1) k_n - (n+1) k_{n+1} \right] \times^{h+1} + \\
\left[(2n+1) k_n - n k_{n-1} - (n+1) k_{n+1} \right] \times^{h-1} + (n+1) \\
= 0 \quad (exercise)$$

$$\begin{array}{l}
\text{On is degice} \quad h-2 \quad \text{On } \\
\text{On } \\$$