Dados longitudinais: introdução a *anova de medidas repetidas (ANOVA-MR)*

Pedro S.R. Martins Lavis 2023

Roteiro

- Dados longitudinais
- Comparações com medidas repetidas

Dados Transversais

- Dados longitudinais são aqueles em que as mesmas pessoas são avaliadas mais de uma vez
- Dados em painel (panel dada), termo mais usado em econometria e faz referência a dados longitudinais
- Cuidado: "medidas repetidas" não é sinônimo de dado longitudinal

A pessoa pode ser avaliada uma vez só em diferentes condições experimentais

RT em diferentes condições experimentais para reconhecer perigo

- Dados longitudinais são aqueles em que as mesmas pessoas são avaliadas mais de uma vez
- Dados em painel (panel dada), termo mais usado em econometria e faz referência a dados longitudinais
- Cuidado: "medidas repetidas" não é sinônimo de dado longitudinal

A pessoa pode ser avaliada uma vez só em diferentes condições experimentais

Outros nomes: delineamento intra-participante ou intrassujeito

RT em diferentes condições experimentais para reconhecer perigo

Vantagens

- Pode necessitar de menos indivíduos para achar um efeito
- Cada sujeito serve como seu próprio controle, within subject design
- Oferece informações sobre padrões de mudança
- Possibilidades de avaliar a confiabilidade das medidas (e.g., McCrae e Mõttus, 2019, McCrae, 2015)*

Desvantagens

- Diferenças entre efeitos marginais e condicionais
- Dados desbalanceados (e.g., diferenças entre N nos tempos)
- Dificuldades para analisar e interpretar dados longitudinais
- \$

Estrutura do banco de dados

Dados em formato wide (largo)

Id	Medida_av1	Medida_av2	Medida_av3	Medida_avn
1	2	3	6	20
2	5	6	3	1
3	7	5	6	2
4	10	5	6	5

Estrutura do banco de dados

Dados em formato *long* (longo)

Id	Medida_av1	Medida_av2	Medida_av3	Medida_avn
1	2	3	6	20
2	5	6	3	1
3	7	5	6	2
4	10	5	6	5

Id	Tempo	Medida
1	av1	2
1	av2	3
1	av3	6
1	avn	20
2	av1	5
2	av2	6
2	av3	3
2	avn	1
3	av1	7
3	av2	5
3	av3	6
3	avn	2
4	av1	10
4	av2	5
4	av3	6
4	avn	5

Estrutura do banco de dados

- O formato do banco pode variar de acordo com o programa e com a análise que será realizada. Não existe um formato melhor do que outro.
- O mais importante é saber que os dois existem e entender como cada programa trabalha os dados

ld	Medida_av1	Medida_av2	Medida_av3	Medida_avn
1	2	3	6	20
2	5	6	3	1
3	7	5	6	2
4	10	5	6	5

Recurso extra:
https://github.com/Pedro-SR-
Martins/Grupo Estudos Estatistica 2023/tree/main/manipula% C3% A7% C3% A30% 20 banco% 20 de% 20 dados

ld	Tempo	Medida
1	av1	2
1	av2	3
1	av3	6
1	avn	20
2	av1	5
2	av2	6
2	av3	3
2	avn	1
3	av1	7
3	av2	5
3	av3	6
3	avn	2
4	av1	10
4	av2	5
4	av3	6
4	avn	5

Modelos de regressão

Todas as análises mencionadas anteriormente são extrapolações dos modelos de regressão

$$\bullet y = a.x + b$$

$$\bullet Y = \beta_0 + \beta_{x1} + \varepsilon$$

- Em dados longitudinais, o fato de ser a mesma pessoa variáveis vezes aparece no termo do erro.
- Na regressão, os erros não devem ser correlacionados
- Em dados longitudinais, esse pressuposto é quebrado

- Duas tradições para o uso de dados longitudinais usando os modelos lineares
 - Alterações na equação para inserir a variabilidade intra participantes
 - Imposição de pressupostos adicionais para calcular a variabilidade intra participantes

Comparações dados longitudinais

	•	•
112400	trancularce	710
コノはいいろ	transversa	71 5
		<i>_</i>

Dados longitudinais

	*		
2 grupos	Distribuição normal – teste t	2 tempos	Distribuição normal – teste t pareado
	Não paramétrico — Mann- Whitney		Não paramétrico – Wilcoxon
3 + grupos	Distribuição normal – ANOVA	3 + tempos	Distribuição normal – ANOVA de medidas repetidas
	Não paramétrico – Kruskall- Wallis		Não paramétrico – ANOVA de Friedman

ANOVA de medidas repetidas

Id	Medida_av1	Medida_av2	Medida_av3	Medida_avn
1	2	3	6	20
2	5	6	3	1
3	7	5	6	2
4	10	5	6	5

Pressupostos

- VD quantitativa e intervalar
- VD com Distribuição normal multivariada
- Igualdade das variâncias entre os momentos de avaliação
- Covariância constante entre os tempos de avaliação (esfericidade)

Esfericidade

T1 T2 T3

T1
$$\begin{bmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \end{bmatrix}$$

T2 $\begin{bmatrix} \rho & 1 & \rho \\ \rho & \rho & 1 \end{bmatrix}$

Efeitos lineares

Correlação é a mesma entre todos os tempos

Variância similar ao longo do tempo

Esfericidade

Esfericidade

- Em caso de violação do pressuposto, existem correções para a estatística F (não para os dados)
- Greenhouse–Geisser correction ($\hat{arepsilon}$)
- Greenhouse–Geisser: $\hat{\varepsilon}$ < 0.75
- Huynh–Feldt $\hat{\varepsilon} > 0.75$

Post-hoc

Esfericidade OK	Esfericidade não OK
Tukey	Games-Howell
Bonferroni	Bonferroni

Indicações de livros

Jeffrey R. Wilson
Elsa Vazquez-Arreola
(Din) Ding-Geng Chen

Marginal Models
in Analysis of
Correlated Binary
Data with Time

Dependent

Covariates

Recursos adicionais

- Podcast sobre invariância longitudinal: https://quantitudepod.org/s4e24-longitudinal-invar/
- Liu, Y., Millsap, R. E., West, S. G., Tein, J.-Y., Tanaka, R., & Grimm, K. J. (2016, May 23). Testing Measurement Invariance in Longitudinal Data With Ordered-Categorical Measures. Psychological Methods. Advance online publication. http://dx.doi.org/10.1037/met0000075
- https://github.com/Pedro-SR-Martins/GrupoEstudosEstatistica2023/blob/main/Inv ariancia/longitudinal%20invariance%20example.R

