

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Radici di equazioni non lineari Lezione 1.7a

Criteri di arresto per i metodi iterativi

Metodi numerici per il calcolo delle radici di funzioni non lineari

- Obiettivo: determinare quando arrestare le iterazioni
 - Individuare il minimo valora di $\,n\,$ per una soluzione «accettabile»
 - Indice di iterazione n dove arrestarsi

$$\{x_n\} \longrightarrow \lim_{n\to\infty} x_n = x \quad \exists \bar{n} \text{ t.c. } x_{\bar{n}} \simeq x$$

- Presenteremo: Criteri di arresto delle iterazioni
 - Test di arresto sul Residuo
 - Test di arresto sull'Incremento

Criteri di arresto per i metodi iterativi (Introduzione)

- Abbiamo visto diversi problemi:
 - Ricerca degli zeri per equazioni non lineari f(x) = 0
 - Ricerca degli zeri per sistemi non lineari F(x) = 0
 - Ricerca di punti fissi per equazioni non lineari g(x) = x

Metodi numerici
$$\{x_n\} \longrightarrow \lim_{n \to \infty} x_n = x$$

- Concetto fondamentale:
 - Momento in cui arrestare il metodo
 - Minimo n tale per cui possiamo considerare x_n accurato

$$\exists \bar{n} \text{ t.c. } x_{\bar{n}} \simeq x$$

Criteri di arresto (Errore di approssimazione)

$$\{x_n\} \longrightarrow \lim_{n \to \infty} x_n = x \quad \exists \bar{n} \text{ t.c. } x_{\bar{n}} \simeq x$$

Valutare l'errore di approssimazione

$$e_n = |x - x_n|$$

- x_n soluzione approssimata al passo n
- x soluzione esatta del problema
- > Vogliamo controllare $e_n < \epsilon \;\; |x-x_n| < \epsilon$
- ightharpoonup Spesso non siamo in grado di conoscere a priori la soluzione esatta x
- \blacktriangleright Introdurre dei criteri per controllare l'errore e_n senza conoscere x
 - ✓ Criterio di arresto sul Residuo
 - ✓ Criterio di arresto sull'Incremento

Criterio di arresto dul Residuo

- \blacktriangleright Introdurre dei criteri per controllare l'errore e_n senza conoscere x
- \succ Criterio di arresto basato sul residuo r_n

$$f(x) = 0$$
 \longrightarrow $r_n = |f(x_n)|$

- \blacktriangleright Se x è la soluzione esatta, vale f(x)=0
- ightharpoonup Se $x_n \sim x$ il residuo sarà piccolo $r_n = |f(x_n)| < \epsilon$
- > Analogamente:
- Sistemi di equazioni non lineari $\ F(x)=0$ \Longrightarrow $r_n=||F(x_n)||<\epsilon$
- Iterazioni di punto fisso g(x) = x \longrightarrow $r_n = |g(x_n) x_n| < \epsilon$

Criterio di arresto sull'Incremento

- \succ Introdurre dei criteri per controllare l'errore e_n senza conoscere x
- \succ Criterio di arresto basato sull'incremento δx

$$\delta x = |x_{n+1} - x_n|$$

- La differenza in valore assoluto tra due iterate consecutive
- ightharpoonup Se $\{x_n\} o x$ allora da un certo passo in poi $\, \delta x = |x_{n+1} x_n| < \epsilon \,$
- Analogamente:
- Sistemi di equazioni non lineari $\delta x = ||x_{n+1} x_n|| < \epsilon$
- Iterazioni di punto fisso: <u>in questo caso</u> incremento = residuo

$$\delta x = |x_{n+1} - x_n| = |g(x_n) - x_n| = r_n$$

$$x_{n+1} = g(x_n)$$