Probabilidad Daniel Fraiman Maestría en Ciencia de Datos, Universidad de San Andrés UN RECORRIDO A VUELO DE PÁJARO

POR VECTORES ALEATORIOS

Vectores aleatorios

Vamos a estudiar

- vectores aleatorios discretos.
- vectores aleatorios continuos.

¿Qué hay de nuevo?

• La dependencia entre las coordenadas (o variables) del vector.

Vectores aleatorios

Ejemplos

Elijo una persona al azar de la población y

- le mido (altura, peso) [(X, Y) continuas]
- le "mido" (número de hijos, número de casamientos) [(X, Y) discreta]

Vectores aleatorios en 2D

- (X, Y) vector aleatorio continuo $(X \in Y \text{ continuas})$.
- (X, Y) vector aleatorio discreto $(X \in Y \text{ discretos})$.

	vector discreto	vector continuo
Conjunta	$\mathbb{P}\left(X=x,Y=y\right)$	$f_{X,Y}(x,y)$
Marginal	$\mathbb{P}(X=x) \& \mathbb{P}(Y=y)$	$f_X(x) \& f_Y(y)$
Condicional	$ \mathbb{P}(X = x Y = y) \& \mathbb{P}(Y = y X = x) $	$ f_{X Y=y}(x) \& f_{Y X=x}(y) $

Si la persona tiene una altura de 1.75m, cual seria la densidad del peso Suponiendo que X e Y son peso y altura

Vectores aleatorios en 2D

		_
	la conjunta verifica	
vector discreto	$\sum \mathbb{P}\left(X=x_i,Y=y_j\right)=1$	
vector continuo	$\int_{-\infty}^{i,j} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$	
	definición de la marginal	
vector discreto	$\mathbb{P}(X = x_i) = \sum \mathbb{P}(X = x_i, Y = y_j)$	Calculo de las probabilidades
vector continuo	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$	marginales a partir de las prob. conjuntas
	definición de la condicional	
vector discreto	$\mathbb{P}(X = x Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$	Calculo de las probabilidades condicionales a partir de las prol
vector continuo	$f_{X Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$	conjunta y marginal

Vectores aleatorios en 2D

- (X, Y) vector aleatorio continuo $(X \in Y \text{ continuas})$.
- (X, Y) vector aleatorio discreto $(X \in Y \text{ discretos})$.

	vector discreto	vector continuo	
Conjunta	$\mathbb{P}\left(X=x,Y=y\right)$	$f_{X,Y}(x,y)$	
Marginal	$\mathbb{P}(X=x) \& \mathbb{P}(Y=y)$	$f_X(x) \& f_Y(y)$	
Condicional	$\mathbb{P}(X = x Y = y) \& \mathbb{P}(Y = y X = x)$	$ f_{X Y=y}(x) \& f_{Y X=x}(y)$	

Esperanza matematica

		vector discreto	vector continuo
	$\mathbb{E}\left(\left(X,Y ight) ight)$	$\left(\mathbb{E}\left(X ight),\mathbb{E}\left(Y ight) ight)$	$\left(\mathbb{E}\left(X ight) ,\mathbb{E}\left(Y ight) ight)$
	$\mathbb{E}\left(X ight)$	$\sum x_i \mathbb{P}\left(X=x_i\right)$	$\int_{-\infty}^{\infty} x f_X(x) dx$
4	$\mathbb{E}\left(X Y=y\right)$	$\sum_{i} x_{i}^{i} \mathbb{P} \left(X = x_{i} Y = y \right)$	$\int_{-\infty}^{\infty} x f_{X Y=y}(x) dx$

Esperanza condicional->"en promedio cuanto pesa una persona, si yo se que mide tanto"

Suma de los valores multiplicado por la probabilidad condicional (vector discreto) Integral de los valores, multiplicado por la probabilidad condicional(vector continuo)

Independencia y Covarianza

Independencia

Dos variables X e Y son independientes si

$$\mathbb{P}\left(X \leq a, Y \leq b\right) = \mathbb{P}\left(X \leq a\right) \mathbb{P}\left(Y \leq b\right) \qquad \forall a, b \in \mathbb{R}.$$

Definicion de INDEPENDENCIA

Independencia y Covarianza

$$\begin{aligned} COV(X,Y) &= \mathbb{E}\left((X - \mathbb{E}\left(X\right))(Y - \mathbb{E}\left(Y\right))\right) \\ &= \begin{cases} \sum_{i,j} (x_i - \mathbb{E}\left(X\right))(y_j - \mathbb{E}\left(Y\right))\mathbb{P}\left(X = x_i, Y = y_j\right) & \text{discr.} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mathbb{E}\left(X\right))(y - \mathbb{E}\left(Y\right))f_{X,Y}(x,y)dxdy & \text{contin.} \end{cases} \end{aligned}$$

La covarianza, solo mide el grado de dependencia LINEAL, con lo cual una covarianza de 0, puede ocurrir en un caso donde haya una gran dependencia de los datos, pero que la misma NO SEA LINEAL, y por eso no la puede captar la covarianaza.

Covarianza

Propiedades

- \bigcirc COV(X, Y) = COV(Y, X)
- OV(X,X) = Var(X)
- $OV(aX, bY) = a \cdot b \cdot COV(X, Y)$
- OV(X+a,Y+b) = COV(X,Y)
- COV(X+Y,Z+W) = COV(X,Z) + COV(X,W) + COV(Y,Z) + COV(Y,W) [4 variables]
- Si X e Y son independientes entonces COV(X, Y) = 0

Covarianza

La versión normalizada de la covarianza es el coeficiente de correlación lineal,

$$\rho = \frac{COV(X, Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}.$$

- $oldsymbol{0}$ ρ mide el grado de dependencia lineal entre X e Y
- **2** $-1 \le \rho \le 1$
- **3** X e Y caen en un recta si $|\rho| = 1$

Covarianza

Σ = matriz de covarianza

$$\Sigma = \begin{pmatrix} COV(X,X) & COV(X,Y) \\ COV(Y,X) & COV(Y,Y) \end{pmatrix} = \begin{pmatrix} Var(X) & COV(X,Y) \\ COV(X,Y) & Var(Y) \end{pmatrix} = \begin{pmatrix} Var(X) & \rho\sqrt{Var(X)Var(Y)} \\ \rho\sqrt{Var(X)Var(Y)} & Var(Y) \end{pmatrix}$$

Si tenemos un vector en dimensión 4(X, Y, Z, W)

$$\Sigma = \left(\begin{array}{cccc} Var(X) & COV(X,Y) & COV(X,Z) & COV(X,W) \\ COV(X,Y) & Var(Y) & COV(Y,Z) & COV(Y,W) \\ COV(X,Z) & COV(Y,Z) & Var(Z) & COV(Z,W) \\ COV(X,W) & COV(Y,W) & COV(Z,W) & Var(W) \end{array} \right)$$

Vectores aleatorios muy utilizados

Vectores aleatorios continuos muy utilizados

Normal Multivariada

Vectores aleatorios discretos muy utilizados

• Multinomial (generalización de la Binomial)

Normal Multivariada

$$(X,Y) \sim N((0,0),\Sigma)$$

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} - 2\frac{\rho xy}{\sigma_x\sigma_y})}$$

$$\vec{X} \sim N(\vec{0}, \Sigma)$$

$$ec{X} \sim N(ec{0}, \Sigma)$$

$$f_{\vec{X}}(\vec{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2} \vec{x}^T \Sigma^{-1} \vec{x}}$$

$$ec{X} \sim N(ec{\mu}, \Sigma)$$

$$f_{\vec{X}}(\vec{x}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu})^T \Sigma^{-1}(\vec{x} - \vec{\mu})}$$

Normal Multivariada

rho(coef de correlacion lineal) me dice el nivel de correlacion lineal que tiene, a mayor rho, mayor correlacion y mejor nivel de prediccion lineal

Normal Multivariada

Normal Multivariada

matriz de covarianza

Pregunta

- $(X,Y) \sim N(\vec{\mu}, \Sigma)$, ¿Cómo tiene que ser Σ para que X e Y sean indep?
- ¿Cómo serán las distribuciones marginales de una Normal Multivariada? quedaria una matriz diagonal
- ¿Cómo serán las distribuciones condicionales de una Normal Multivariada? quedaria una distribucion normal

Multinomial

Ahora cada categoria (A, B, C,...,), tendra su propia probabilidad de exito, pero PA+PB+PC+...+Pn = 1

$\vec{X} \sim Multinomial(n, \vec{p})$

Ahora tenemos K categorías (en vez de 2) y realizamos n experimentos independientes.

Llamemos X_i = número de veces que salió la categoría i en n exp.

$$\mathbb{P}\left(\vec{X}=(x_1,x_2,\ldots,x_K)\right)=\frac{n!}{x_1!x_2!\ldots x_K!}p_1^{x_1}p_2^{x_2}\ldots p_K^{x_K}$$

$$con \sum_{i=1}^{K} x_i = n \text{ y } \sum_{i=1}^{K} p_i = 1.$$

Multinomial

$\vec{X} \sim Multinomial(n, \vec{p})$

$$\mathbb{P}\left(\vec{X} = (x_1, x_2, \dots, x_K)\right) = \frac{n!}{x_1! x_2! \dots x_K!} p_1^{x_1} p_2^{x_2} \dots p_K^{x_K}$$

$$con \sum_{i=1}^{K} x_i = n \text{ y } \sum_{i=1}^{K} p_i = 1.$$

Preguntas

- λX_i y λX_j son independientes?
- ¿ Cuál será la distribución marginal?
- ¿ Cuál será la distribución condicional?

Xi y Xj, me dicen cuantos experimentos cayeron en cada categoria—> Son DEPENDIENTES, ya que la suma de todas las categorias debe ser n

La distribución marginal, seria hacer una binomial. pd(si estudiara la categoria "d"), y n seria el total.

n =100 Xmultinomial(100, (p1, p2, p3, p4))

P(x1,x2,x3,x4) = (...))

 $P((x1,x2,x3) = (x1, x2,x3)|(x4 = 5)) \longrightarrow Y=(x1,x2,x3) \text{ multinom}(95, (p1, p2, p3)/p1+p2+p3))$