Combinator Calculus

CS242

Lecture 2

```
fun innerproduct(a, b, n):
c := 0
for i := 1 step 1 until n do
    c := c + a[i] * b[i]
return C
```

- Statements operate on invisible state
- Computes word-at-a-time by repetition of assignment/modification
- Requires names for arguments, iterator, return value

```
let innerproduct = zip |> (map *) |> (reduce +)
```

- Built from composable functions (map, reduce, pipe)
- Operates on whole conceptual units (lists), no repeated steps
- No names for arguments or temporaries

Combinator Calculus

• Calculus:

"A method of computation or calculation in a special notation"

• Combinator:

"A primitive function without free variables"

Overview

- A variable-free programming language using only functions
- A simple Turing-complete computational formalism
- A starting point for more involved languages
- And something different!

SKI Calculus

$$I \times \rightarrow \times$$

$$K \times y \rightarrow x$$

$$S \times y z \rightarrow (x z) (y z)$$

Definition

- The terms of the SKI calculus are the smallest set such that
 - S, K, and I are terms
 - If x and y are terms, then x y is a term

- Terms are trees, not strings
 - Parentheses show association where necessary
 - In the absence of parentheses, association is to the left
 - i.e., $S \times y z = (((S \times) y) z)$

Example

SKxy

(((S K) x) y)

Context Free Grammar

Expr \rightarrow S

 $Expr \rightarrow K$

Expr \rightarrow I

 $Expr \rightarrow Expr Expr$

 $Expr \rightarrow S \mid K \mid I \mid Expr Expr$

Rewrite Rules

- The three rules of the SKI calculus are an example of a rewrite system
 - Any expression (or subexpression) that matches the left-hand side of a rule can be replaced by the right-hand side
- The symbol → stands for a single rewrite
- The symbol \rightarrow^* stands for the reflexive, transitive closure of \rightarrow

Example

$$S K x y \rightarrow (K y) (x y) \rightarrow y$$

Example

$$S K x y \rightarrow (K y) (x y) \rightarrow y$$

Another Example

$$S \mid I \mid X \rightarrow (I \mid X) (I \mid X) \rightarrow X (I \mid X) \rightarrow X X$$

So ...

 $(SII)(SII) \rightarrow (I(SII))(I(SII)) \rightarrow (SII)(I(SII)) \rightarrow (SII)(SII)$

What a Strange Language!

- A language of functions
 - Functions are all there is to work with
- Minimalist
 - Typical of languages designed for study
 - Clears away the complexity of ``real" languages
 - Allows for very direct illustration of key ideas

Programming

Recursion

Conditionals

Data structures

Recursion

- (SII) (SII) is a non-terminating expression
 - Can always be rewritten, since it rewrites to itself
 - A form of looping
- Proper recursion is just a little more involved

$$x = S(Kf)(SII)$$

Then
$$S \mid I \mid X \rightarrow^* X \mid X = S \mid (K \mid f) \mid (S \mid I) \mid X \rightarrow^* f \mid (X \mid X) \rightarrow^* f \mid (f \mid (X \mid X)) \rightarrow^* \dots$$

Conditionals

• To have branching behavior, we need Booleans.

- We use an *encoding*.
 - We choose combinators to represent true, false, or, and, etc.
 - We need to check that our choices are consistent with the expected behavior of Boolean tests and branching

Booleans

- Represent true (false) by a function that given two arguments picks the first (second)
- Combines Boolean with if-then-else
- True $T x y \rightarrow x$
- False $F x y \rightarrow y$
- T = K
- F = S K

Boolean Operations

• Let B be a Boolean (T or F)

• Not(B) = B F T

Boolean Operations

• Let B be a Boolean (T or F)

• B1 OR B2 = B1 T B2

Boolean Operations

• Let B be a Boolean (T or F)

• B1 AND B2 = B1 B2 F = B1 B2 (S K)

Example

(NOT F) AND T = (F F T) T F

Abstraction

• Our encodings of Booleans and Boolean operators are abstractions

- We require that the Boolean operators produce valid representations of Booleans if they are are applied to Boolean inputs
 - But nothing explicitly enforces this property
 - It is up to use to choose an encoding so that this property holds

Integers

N applies its first argument N times to its second argument

$$n f x = f^n(x)$$

$$0 f x = x$$
 so $0 = S K$
Succ $n f x = f (n f x)$ Succ $= S (S (K S) K)$

$$S(S(KS)K) n f x \rightarrow (S(KS)Kf)(n f) x \rightarrow ((KS)f)(Kf)(n f) x \rightarrow ((Kf)(n f) x) \rightarrow (($$

Order of Evaluation

More than one rule may apply to an expression

- A process for choosing where to apply the rules is a reduction strategy
 - Each rule application is one reduction
- Most languages have a fixed reduction/evaluation order
 - So people forget that there might be more than one choice
 - But any program transformation (e.g., for optimization) is based on changing the order in which computation happens

Order of Evaluation

- What is a good reduction strategy?
 - There are multiple sensible choices

- In general, applying rules as close to the root as possible will terminate if any reduction strategy terminates
 - By avoiding work on expressions that are thrown away (e.g., by K)
 - And reducing the potential for parallelism

Confluence

 But could different choices of evaluation order change the result of the program?

• The answer is no!

• A set of rewrite rules is *confluent* if for any expression E_0 , if $E_0 \rightarrow^* E_1$ and $E_0 \rightarrow^* E_2$, then there exists E_3 such that $E_1 \rightarrow^* E_3$ and $E_2 \rightarrow^* E_3$.

Proving Confluence

Thm: If for all A, A \rightarrow B & A \rightarrow C implies there exists a D such that B \rightarrow D and C \rightarrow D (in one step), then \rightarrow is confluent.

Proof: Assume A \rightarrow^* X & A \rightarrow^* Y. The proof is by induction on the length of the derivations.

Diagram

Confluence of SKI: Case I x

Case K x y (1 of 2)

Case K x y (2 of 2)

Case Sxyz (1 of 3)

Case Sxyz (2 of 3)

Case Sxyz (3 of 3)

A New Relation

- Define X >> Y if
 - $X \rightarrow Y$ via a rewrite at the root node
 - X = A B and A >> A' and B >> B'
- Clearly A >>* B iff A \rightarrow * B
- Thm: >> has the one step diamond property.

Case Sxyz (3 of 3)

- Combinator calculus has the advantage of having no variables
 - Compositional!
- All computations are local rewrite rules
 - Compute by pattern matching on the shape and contents of a tree
 - All operations are local and there are few cases
 - No need to worry about variables, scope, renaming ...
- Many proofs of properties are easier in combinator systems
 - E.g., confluence

- Combinator calculus has the disadvantage of having no variables
- Consider the S combinator: $S \times y z \rightarrow (x z) (y z)$
- Note how z is ``passed'' to both x and y before the final application
- In a combinator calculus, this is the *only* way to pass information
 - In a language with variables, we would simply stash z in a variable and use it in x and y as needed
 - In a combinator-based language, z must be explicitly passed down to all parts of the subtree that need it

 Thus, what can be done in one step with a variable requires many steps (in general) in a pure combinator system

- Why does this matter?
 - Combinator calculus is not a direct match to the way we build machines
 - Our machines have memory locations and can store things in them
 - Languages with variables take advantage of this

- Another advantage of combinators is working at the function level
 - Avoid reasoning about individual data accesses
- A natural fit for parallel and distributed bulk operations on data
 - Map a function over all elements of a dataset
 - Reduce a dataset to a single value using an associative operator
 - Transpose a matrix
 - Convolve an image
 - ...
- Note that in parallel/distributed operations, variables can be a problem ...

History

- SKI calculus was developed by Schoenfinkel in the 1920's
 - One of Hilbert's students

• The properties of SKI were known before any computers were built ...

History

- First combinator-based programming language was APL
 - Designed by Ken Iverson in the 1960's

- Designed for expressing pipelines of operations on bulk data
 - Basic data type is the multidimensional array
- Trivia: Special APL keyboards accommodated the many 1 character combinators
 - APL programs can be unreadable strings of Greek letters
- Highly influential
 - On functional programming (several languages), successors to APL, MatLab, Map-Reduce

FP

- John Backus's Turing Award lecture brought new attention to combinator languages
- Backus developed FORTRAN, the first successful high-level language
- But late in his career he advocated for functional programming
 - Encouraging thinking at the function level
 - And getting away from a word-at-a-time model of computation
- Proposed FP, a combinator-based functional language
 - And emphasized an "algebra of programs"

FP's Algebra

FP's basic data structure is the vector (or list)

• map f [x, y, z] = [f x, f y, f z]

• Combinators enable simple and powerful program transformations:

$$(map f) o (map g) = map (f o g)$$

Think about how you could describe this transformation in C!

Summary

- Combinator calculi are among the simplest formal computation systems
- Also important in practice for large scale distributed/parallel programming
 - Where thinking in terms of bulk operations is beneficial
- Not used as a model for sequential computation
 - Where we often want to take advantage of temporary storage/variables
- Combinators are also important in program transformations
 - Much easier to design combinator-based transformation systems
 - Some compilers (Haskell's GHC) even translate into an intermediate combinator-based form for some optimizations