Dağıtık Sistemler

1. Hafta: Dağıtık Sistemlere Giriş

★ Teorik İçerik:

- Dağıtık sistem nedir?
- Merkezi, dağıtık ve paralel sistemler arasındaki farklar
- Dağıtık sistemlerin avantajları ve zorlukları
- Gerçek dünya örnekleri: Google, Amazon, Facebook, Netflix

Laboratuvar:

- ✓ Linux'ta temel terminal komutları (SSH, SCP, rsync)
- ✓ Basit bir istemci-sunucu modeli Python ile uygulama
- ✓ Python'da socket programlama ile basit TCP bağlantısı

2. Hafta: Dağıtık Sistem Mimarileri

★ Teorik İçerik:

- Monolitik, Mikroservis ve SOA Mimarileri
- P2P (Eşler Arası) ve Merkezi Mimariler
- Katmanlı ve Paylaşımlı Mimariler
- Veri Dağıtımı: Replikasyon, Fragmentasyon

Laboratuvar:

- ✓ Docker ile basit bir dağıtık servis çalıştırma
- ✓ Nginx kullanarak Load Balancing yapılandırma
- ✓ Basit bir gRPC servisi geliştirme

3-4. Hafta: Paralel ve Dağıtık Hesaplama

* Teorik İçerik:

- Paralel ve dağıtık hesaplama farkları
- Paralelleştirmenin temelleri: Task Parallelism ve Data Parallelism
- Dağıtık algoritmaların sınıflandırılması
- Moore Yasası ve Amdahl Yasası
- Paralel Programlama Modelleri: Paylaşımlı Bellek, Mesaj Geçişli (MPI)
- SIMD, MIMD, SPMD modelleri
- GPU vs. CPU hesaplama

Laboratuvar:

- ✓ Python multiprocessing kütüphanesi ile çoklu işlem uygulamaları
- ✓ Bash script ile çoklu işlem (fork, exec) uygulaması
- ✓ Linux htop ile CPU çekirdek kullanımını gözlemleme

- ✓ Python'da NumPy ile vektör işlemleri (SIMD örneği)
- ✓ OpenMP için temel programlama ortamı kurulumu

5. Hafta: OpenMP

★ Teorik İçerik:

- OpenMP temel komutları
- Fork-Join modeli
- OpenMP direktifleri (#pragma omp parallel)
- Hata ayıklama ve performans ölçümü

Laboratuvar:

- ✓ OpenMP ile "Hello World" programı
- ✓ Paralel matris çarpımı uygulaması
- ✓ OpenMP ile kritik bölgeler (critical sections) ve deadlock örnekleri

6. Hafta: MPI (Message Passing Interface)

★ Teorik İçerik:

- MPI'nin temel özellikleri
- Noktadan Noktaya (Point-to-Point) ve Kolektif (Collective) İletişim
- Senkron ve asenkron mesajlaşma
- MPI'de hata yönetimi

Laboratuvar:

- ✓ MPI ortamı kurulumu ve mpirun komutları
- ✓ MPI ile "Hello World" programı
- **⊘** MPI ile paralel matris carpımı

7. Hafta: İsimlendirme

* Teorik İçerik:

- Dağıtık sistemlerde adlandırma türleri
- DNS ve merkezi isimlendirme sistemleri
- Konsistent Hashing

Laboratuvar:

- ✓ Python'da kendi DNS sistemimizi oluşturma
- ✓ Etcd ve Zookeeper kullanarak dağıtık yapılandırma

8. Hafta: Senkronizasyon

★ Teorik İçerik:

- Mutex, Semaphore, Spinlock
- Raft ve Paxos Algoritmaları
- Koordinasyon problemleri

Laboratuvar:

- ✓ Python'da semafor ve mutex ile yarış koşullarını engelleme
- ✓ Zookeeper ile dağıtık senkronizasyon

9. Hafta: Tutarlılık

★ Teorik İçerik:

- ACID ve BASE modelleri
- Tutarlılık protokolleri (Eventual, Strong, Causal)
- CAP Teoremi

Laboratuvar:

- ✓ Redis ve Cassandra ile Eventual Consistency testi
- ✓ Amazon DynamoDB replikasyon deneyleri

10. Hafta: Hata Toleransı ve Güvenlik

★ Teorik İçerik:

- Hata Toleransı
 - Çökmeye karşı dayanıklılık
 - o Leader Election (Raft, Paxos)
 - o Dağıtık hata yönetimi (Timeout, Checkpointing)
- Güvenlik
 - o Kimlik doğrulama (Authentication)
 - Yetkilendirme (Authorization)
 - o TLS/SSL ile güvenli iletişim
 - o Veri bütünlüğü ve şifreleme

Laboratuvar:

- ✓ RabbitMQ ile mesaj kuyruğunda hata toleransı
- ✓ OpenSSL ile veri şifreleme ve sertifikalar

11-12. Hafta: Blockchain ve Dağıtık Defter Teknolojisi

★ Teorik İçerik:

- Blockchain Nedir?
 - o Merkezi olmayan yapı
 - o Konsensüs algoritmaları (Proof of Work, Proof of Stake, PBFT)
 - o Akıllı sözleşmeler ve dApp'ler
- Blockchain'in Dağıtık Sistemlerle İlişkisi
 - o Dağıtık güvenlik modeli
 - o Byzantine Hata Toleransı
 - Veri değişmezliği (immutability)
- Gerçek Hayat Kullanım Alanları
 - o Kripto paralar (Bitcoin, Ethereum)
 - o Tedarik zinciri yönetimi
 - o Dijital kimlik doğrulama

Laboratuvar:

- ✓ Python ile basit bir blockchain oluşturma
- ✓ Solidity ile akıllı sözleşme geliştirme
- ✓ Ethereum ağına test kontratı dağıtma (Remix, Metamask)
- ✓ Hyperledger Fabric kurulumu ve basit bir blockchain ağı oluşturma

13-14. Hafta: Proje Sunumları

★ Her öğrenci, Blockchain ilgili bir proje geliştirecek ve sunacaktır.