Graph Algorithms (Chapter 26) Maximum Flow

Graph Algorithms (Chapter 26) Maximum Flow

Goals

The maximum flow problem

Antiparallel edges issues

Multiple sources and sinks

The Ford-Fulkerson method

Residual networks

Augmenting paths

Max-flow min-cut theorem

Forld-Flkerson algorithm and its runtime

Edmonds-Karp algorithm and its runtime

Summary

Graph Algorithms (Chapter 26) Maximum Flow Problem

Given a directed graph G = (V, E) where:

- If $(u, v) \in E$ then $(v, u) \notin E$ (antiparallel edge, we will fix this!)
- Each $(u, v) \in E$, has a capacity $c(u, v) \in \mathbb{R}^+$
- There is a source vertex s and a sink vertex t
- A flow along any edge f(u, v) must satisfy:
 - Capacity constraint: $0 \le f(u, v) \le c(u, v)$
 - Flow conservation: $\forall u \in V \{s, t\}$ $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$

• Goal:
$$\max \sum_{v \in adj^+[s]} f(s, v)$$
, or $\max \sum_{v \in adj^-[t]} f(v, t)$

• Note: adj^+ for outgoing edges, adj^- incoming edges

Graph Algorithms (Chapter 26) Maximum Flow Problem

Example

- A flow along any edge f(u, v) must satisfy:
 - Capacity constraint: $0 \le f(u, v) \le c(u, v)$
 - Flow conservation: $\forall u \in V \{s, t\}$ $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$
 - Goal: $\max \sum_{v \in adj^+[s]} f(s, v)$, or $\max \sum_{v \in adj^-[t]} f(v, t)$
 - Note: adj^+ for outgoing edges, adj^- incoming edges

Graph Algorithms (Chapter 26) Maximum Flow Problem

Example

- A flow along any edge f(u, v) must satisfy:
 - Capacity constraint: $0 \le f(u, v) \le c(u, v)$
 - Flow conservation: $\forall u \in V \{s, t\}$ $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$
 - Goal: $\max \sum_{v \in adj^+[s]} f(s, v)$, or $\max \sum_{v \in adj^-[t]} f(v, t)$
 - Note: adj^+ for outgoing edges, adj^- incoming edges

Graph Algorithms (Chapter 26) Antiparallel edges

If $(u, v) \in E$ then $(v, u) \notin E$ (antiparallel edge, we will fix this!)

Graph Algorithms (Chapter 26) Antiparallel edges

If $(u, v) \in E$ then $(v, u) \notin E$ (antiparallel edge, we will fix this!)

Graph Algorithms (Chapter 26) Multiple sources and sinks

Intuition

As long as there is a path from source to sink on the "residual network" increase the flow (augmenting path) on that path.

Residual network?

Augmenting path?

FORD-FULKERSON-METHOD (G, s, t)

- 1 initialize flow f to 0
- while there exists an augmenting path p in the residual network G_f
- augment flow f along p
- 4 return f

Residual network

Given a network G and a flow f, the residual network G_f consists of edges representing how we can change the flow on them.

- G_f may contain edges from G with residual capacity $c_f(u,v)=c(u,v)-f(u,v)$ if $c_f(u,v)$ is positive
- G_f may contain edges that are not in G to represent a possible decrease of flow with $c_f(u,v)=f(u,v)$. Explanation!

$$(u) f(u,v) = 11$$

$$c(u,v) = 16$$

$$(u,v) \text{ in } G_f?$$

Network
$$G$$

 $(u, v) \in G . E$

Residual network

Given a network G and a flow f, the residual network G_f consists of edges representing how we can change the flow on them.

- G_f may contain edges from G with residual capacity $c_f(u,v)=c(u,v)-f(u,v)$ if $c_f(u,v)$ is positive
- G_f may contain edges that are not in G to represent a possible decrease of flow

Residual network Example

 (s, v_1) update

Network G

Network G $(u, v) \in G . E$

Residual Network G_f

What we can increase

Residual network Example

Network G

Network G $(u, v) \in G.E$

Residual Network G_f

Residual network Example

Network G

Network G $(u, v) \in G . E$

Residual Network G_f

Augmenting paths

An augmenting path p is a simple path (no repeated vertices) from s to t in the residual network G_f . The residual capacity $c_f(p)$ is the maximum flow by which we can increase the flow on each edge in p.

How much $c_f(p)$ can be without violating the capacity constraints?

Augmenting paths

An augmenting path p is a simple path (no repeated vertices) from s to t in the residual network G_f . The residual capacity $c_f(p)$ is the maximum flow by which we can increase the flow on each edge in p.

How much $c_f(p)$ can be without violating the capacity constraints?

$$c_f(p) = \min \{c_f(u, v) : (u, v) \text{ is on } p\}$$

Augmenting paths

We can thus say $\forall (u, v) \in p, f(u, v) += c_f(p)$ will be possible.

$$c_f(p) = \min \{c_f(u, v) : (u, v) \text{ is on } p\}$$

Augmenting paths useful definitions (related to coming algorithms)

Lemma 26.1

Let G = (V, E) be a flow network with source s and sink t, and let f be a flow in G. Let G_f be the residual network of G induced by f, and let f' be a flow in G_f . Then the function $f \uparrow f'$ defined in equation (26.4) is a flow in G with value $|f \uparrow f'| = |f| + |f'|$.

Lemma 26.2

Let G = (V, E) be a flow network, let f be a flow in G, and let p be an augmenting path in G_f . Define a function $f_p: V \times V \to \mathbb{R}$ by

$$f_p(u, v) = \begin{cases} c_f(p) & \text{if } (u, v) \text{ is on } p, \\ 0 & \text{otherwise}. \end{cases}$$
 (26.8)

Then, f_p is a flow in G_f with value $|f_p| = c_f(p) > 0$.

Corollary 26.3

Let G = (V, E) be a flow network, let f be a flow in G, and let p be an augmenting path in G_f . Let f_p be defined as in equation (26.8), and suppose that we augment f by f_p . Then the function $f \uparrow f_p$ is a flow in G with value $|f \uparrow f_p| = |f| + |f_p| > |f|.$

Cuts of flow networks

• A cut(S,T) of G=(V,E) is a partition of V into S and T, such that $s\in S, t\in T$

The net flow across the cut
$$f(S,T) = \sum_{u \in S, v \in T} f(u,v) - \sum_{u \in S, v \in T} f(v,u)$$

The cat capacity
$$c(S,T) = \sum_{u \in S, v \in T} c(u,v)$$

Cuts of flow networks

- A cut(S,T) of G=(V,E) is a portions of V into S and T, such that $s\in S, t\in T$
- The net flow across the cut $f(S,T) = \sum_{u \in S, v \in T} f(u,v) \sum_{u \in S, v \in T} f(v,u)$
- The cat capacity $c(S,T) = \sum_{u \in S, v \in T} c(u,v)$

$$S = \{?\}, T = \{?\}$$

 $f(S, T) = ?$
 $c(S, T) = ?$

Cuts of flow networks

- A cut(S,T) of G=(V,E) is a portions of V into S and T, such that $s\in S, t\in T$
- The net flow across the cut $f(S,T) = \sum_{u \in S, v \in T} f(u,v) \sum_{u \in S, v \in T} f(v,u)$
- The cut capacity $c(S,T) = \sum_{u \in S, v \in T} c(u,v)$

$$S = \{s\}, T = \{v_1, v_2, v_3, v_4, t\}$$

 $f(S, T) = 11 + 8 = 19$
 $c(S, T) = 16 + 13 = 29$

Cuts of flow networks

- A cut(S,T) of G=(V,E) is a portions of V into S and T, such that $s\in S, t\in T$
- The net flow across the cut $f(S,T) = \sum_{u \in S, v \in T} f(u,v) \sum_{u \in S, v \in T} f(v,u)$
- The cat capacity $c(S,T) = \sum_{u \in S, v \in T} c(u,v)$

$$S = \{?\}, T = \{?\}$$

 $f(S, T) = ?$
 $c(S, T) = ?$

Cuts of flow networks

- A cut(S,T) of G=(V,E) is a portions of V into S and T, such that $s\in S, t\in T$
- The net flow across the cut $f(S,T) = \sum_{u \in S, v \in T} f(u,v) \sum_{u \in S, v \in T} f(v,u)$
- The cat capacity $c(S,T) = \sum_{u \in S, v \in T} c(u,v)$

$$S = \{s, v_2\}, T = \{v_1, v_3, v_4, t\}$$

$$f(S, T) = 11 + 1 + 11 - 4 = 19$$

$$c(S, T) = 16 + 14 + 4 = 34$$

Cuts of flow networks

- A cut(S,T) of G=(V,E) is a portions of V into S and T, such that $s \in S, t \in T$
- The net flow across the cut $f(S,T) = \sum_{i=1}^{n} f(u,v) \sum_{i=1}^{n} f(v,u)$ $u \in S, v \in T$ $u \in S, v \in T$
- The cat capacity $c(S,T) = \sum_{i=1}^{n} c(u,v)$ $u \in S, v \in T$

$$S = \{?\}, T = \{?\}$$

 $f(S,T) = ?$
 $c(S,T) = ?$

Cuts of flow networks

- A cut(S,T) of G=(V,E) is a portions of V into S and T, such that $s\in S, t\in T$
- The net flow across the cut $f(S,T) = \sum_{u \in S, v \in T} f(u,v) \sum_{u \in S, v \in T} f(v,u)$
- The cat capacity $c(S,T) = \sum_{u \in S, v \in T} c(u,v)$

$$S = \{s, v_1, v_2\}, T = \{v_3, v_4, t\}$$

$$f(S, T) = 12 + 11 - 4 = 19$$

$$c(S, T) = 12 + 14 = 26$$

Cuts of flow networks

- A cut(S,T) of G=(V,E) is a portions of V into S and T, such that $s\in S, t\in T$
- The net flow across the cut $f(S,T) = \sum_{u \in S, v \in T} f(u,v) \sum_{u \in S, v \in T} f(v,u)$
- The cat capacity $c(S,T) = \sum_{u \in S, v \in T} c(u,v)$

$$S = \{?\}, T = \{?\}$$

 $f(S, T) = ?$

$$c(S, T) = ?$$

Cuts of flow networks

- A cut(S,T) of G=(V,E) is a portions of V into S and T, such that $s\in S, t\in T$
- The net flow across the cut $f(S,T) = \sum_{u \in S, v \in T} f(u,v) \sum_{u \in S, v \in T} f(v,u)$
- The cat capacity $c(S,T) = \sum_{u \in S, v \in T} c(u,v)$

$$S = \{s, v_1, v_2, v_4\}, T = \{v_4, t\}$$

$$f(S, T) = 12 + 7 + 4 - 4 = 19$$

$$c(S, T) = 12 + 7 + 4 = 23$$

Cuts of flow networks

What is the maximum flow that a network can have?

Cuts of flow networks

The maximum flow that a network can have is the minimum capacity cut!

Corollary 26.5

The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G.

Theorem 26.6 (Max-flow min-cut theorem)

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c(S, T) for some cut (S, T) of G.

MUST THEN BE THE MINIMUM CAPACITY CUT !!!

Cuts of flow networks

The maximum flow that a network can have is the minimum capacity cut!

Corollary 26.5

The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G.

Theorem 26.6 (Max-flow min-cut theorem)

If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:

- 1. f is a maximum flow in G.
- 2. The residual network G_f contains no augmenting paths.
- 3. |f| = c(S, T) for some cut (S, T) of G.

MUST THEN BE THE MINIMUM CAPACITY CUT !!!


```
FORD-FULKERSON(G, s, t)
   for each edge (u, v) \in G.E
        (u, v).f = 0
   while there exists a path p from s to t in the residual network G_f
        c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
4
5
        for each edge (u, v) in p
             if (u, v) \in E
6
                  (u, v).f = (u, v).f + c_f(p)
             else (v, u).f = (v, u).f - c_f(p)
8
```



```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

Network G


```
FORD-FULKERSON(G, s, t)
                                                                                            With DFS
   for each edge (u, v) \in G.E
        (u, v).f = 0
   while there exists a path p from s to t in the residual network G_f
3
        c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
        for each edge (u, v) in p
             if (u, v) \in E
6
                 (u, v).f = (u, v).f + c_f(p)
             else (v, u).f = (v, u).f - c_f(p)
```

Network G


```
FORD-FULKERSON(G, s, t)
                                                                                            With DFS
   for each edge (u, v) \in G.E
        (u, v).f = 0
   while there exists a path p from s to t in the residual network G_f
3
        c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
        for each edge (u, v) in p
             if (u, v) \in E
6
                 (u, v).f = (u, v).f + c_f(p)
             else (v, u).f = (v, u).f - c_f(p)
```

Network G


```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

Network G


```
FORD-FULKERSON(G, s, t)
                                                                                         With DFS
   for each edge (u, v) \in G.E
        (u, v).f = 0
3
   while there exists a path p from s to t in the residual network G_f
        c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
        for each edge (u, v) in p
            if (u, v) \in E
6
                 (u, v).f = (u, v).f + c_f(p)
            else (v, u).f = (v, u).f - c_f(p)
                                                              Residual G_f and augmented path
                Network G
                                           update G_f
                  8/12
                                                         (c)
                                 4/4
             v_2
                  4/14
```



```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

Network G


```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

Network G


```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

Network G


```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

Network G


```
FORD-FULKERSON(G, s, t)
                                                                                            With DFS
   for each edge (u, v) \in G.E
        (u, v).f = 0
3
   while there exists a path p from s to t in the residual network G_f
        c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
        for each edge (u, v) in p
             if (u, v) \in E
6
                 (u, v).f = (u, v).f + c_f(p)
             else (v, u).f = (v, u).f - c_f(p)
```

Network G


```
FORD-FULKERSON(G, s, t)
                                                                                            With DFS
   for each edge (u, v) \in G.E
        (u, v).f = 0
3
   while there exists a path p from s to t in the residual network G_f
        c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
        for each edge (u, v) in p
             if (u, v) \in E
6
                 (u, v).f = (u, v).f + c_f(p)
             else (v, u).f = (v, u).f - c_f(p)
```

Network G

Residual G_f and augmented path

No more augmented paths (done!)


```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```


Network G

Test

What is the maximum flow?

What is minimum capacity cut?


```
FORD-FULKERSON(G, s, t)
                                                                                          With DFS
   for each edge (u, v) \in G.E
        (u, v).f = 0
3
   while there exists a path p from s to t in the residual network G_f
        c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
        for each edge (u, v) in p
            if (u, v) \in E
6
                                                                  Runtime complexity
                 (u, v).f = (u, v).f + c_f(p)
             else (v, u).f = (v, u).f - c_f(p)
```

Network G

- Time to find a path O(E + V) = O(E), when $|E| \ge |V|$ using DFS
- if $|f^*|$ notion of maximum flow / max step increase

$$O(E \cdot |f^*|)$$


```
FORD-FULKERSON(G, s, t)
                                                                                       With DFS
   for each edge (u, v) \in G.E
        (u, v).f = 0
3
   while there exists a path p from s to t in the residual network G_f
       c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
       for each edge (u, v) in p
            if (u, v) \in E
6
                                                How many times do we have to increase
                (u, v).f = (u, v).f + c_f(p)
                                                the flow? if DFS finds:
            else (v, u).f = (v, u).f - c_f(p)
```

Network G

$$s - u - v - t$$
 followed by $s - v - u - t$

With DFS

```
FORD-FULKERSON(G, s, t)
   for each edge (u, v) \in G.E
        (u, v).f = 0
3
    while there exists a path p from s to t in the residual network G_f
        c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
        for each edge (u, v) in p
             if (u, v) \in E
6
                  (u, v).f = (u, v).f + c_f(p)
             else (v, u).f = (v, u).f - c_f(p)
```

Network G

How many times do we have to increase the flow? if DFS finds:

$$s - u - v - t$$
 followed by $s - v - u - t$

The maximum flow $f = 2.10^6$ increased by units of 1 gives us $|f^*| = 2.10^6$

$$O(E \cdot |f^*|)$$


```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 \mathbf{if}(u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 \mathbf{else}(v, u).f = (v, u).f - c_f(p)
```

Network G


```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

Network G

$10^{6}/10^{6}$ u $10^{6}/10^{6}$ s $0/10^{6}$ $0/10^{6}$ $0/10^{6}$


```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

Network G


```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

Network G


```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in G.E

2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network G_f

4 c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}

5 for each edge (u, v) in p

6 if (u, v) \in E

7 (u, v).f = (u, v).f + c_f(p)

8 else (v, u).f = (v, u).f - c_f(p)
```

Network G


```
FORD-FULKERSON(G, s, t)
   for each edge (u, v) \in G.E
2
        (u, v).f = 0
3
   while there exists a path p from s to t in the residual network G_f
4
        c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
5
        for each edge (u, v) in p
                                                                                         With BFS
            if (u, v) \in E
6
                                                                 Runtime complexity
                 (u, v).f = (u, v).f + c_f(p)
            else (v, u).f = (v, u).f - c_f(p)
```

- Time to find a path O(E + V) = O(E), when $|E| \ge |V|$ using BFS
- Total number of flow augmentation O(V.E) (read page 729)

 $O(V.E^2)$ Why!?


```
FORD-FULKERSON(G, s, t)
   for each edge (u, v) \in G.E
2
       (u, v).f = 0
3
   while there exists a path p from s to t in the residual network G_f
4
       c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
                                                               Runtime complexity
       for each edge (u, v) in p
            if (u, v) \in E
6
                                                                O(V.E^2) Why!?
                (u, v).f = (u, v).f + c_f(p)
            else (v, u).f = (v, u).f - c_f(p)
                                                Lemma 26.7 states that the shortest paths
                                                keep increasing in size! Proof in page 728
```

Lemma 26.7

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then for all vertices $v \in V - \{s, t\}$, the shortest-path distance $\delta_f(s, v)$ in the residual network G_f increases monotonically with each flow augmentation.


```
FORD-FULKERSON(G, s, t)
   for each edge (u, v) \in G.E
2
       (u, v).f = 0
3
   while there exists a path p from s to t in the residual network G_f
4
       c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
                                                              Runtime complexity
5
       for each edge (u, v) in p
           if (u, v) \in E
6
                                                               O(V.E^2) Why!?
                (u, v).f = (u, v).f + c_f(p)
           else (v, u).f = (v, u).f - c_f(p)
                                               Lemma 26.8 states the number of flow
                                               augmentations O(VE) in the worst case.
                                               Proof on page 729
```

Theorem 26.8

If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then the total number of flow augmentations performed by the algorithm is O(VE).

Proof direction of Lemma 26.8 states the number of flow augmentations O(VE):

- 1. We use lemma 26.7: shortest path increases monotonically
- 2. An edge (u, v) that is augmented will disappear from the residual graph until the flow on it is decreased \Rightarrow (v, u) happens to appear on a subsequent shortest path.
- 3. Point 2, leads the fact that (u, v) can become critical again (minimum flow on the shortest path) at best 2 distances away from the previous time when it was.
- 4. This means that (u, v) can become critical at most the number of edges on the shortest path |E|/2, because the number of edges in a shortest path is at most |V|-1, and edge can become critical every second time, we have |V|/2-1 $\longrightarrow O(V)$
- 5. Every edge can eventually become critical O(V) times, leading to $O(E \cdot V)$ possible flow augmentations.

More formally (simplified)

- 1. $\delta_f(s, v) = \delta_f(s, u) + 1$ the first time (u, v) is critical (augmented and not any more in residual graph)
- 2. $\delta_{f'}(s, u) = \delta_f(s, u) + 2$ the next time (u, v) becomes critical
- 3. The maximum distance of the shortest path is at most O(V)
- 4. An edge can become critical $|V|/2 \rightarrow O(V)$ because of point 2
- 5. There are $|E| \rightarrow O(E)$ possible edges that can become critical.
- 6. Total: There are O(E) edges than can become critical O(V) times, i.e $O(E \cdot V)$, each time requires a BFS search O(E + V) > O(E), |E| > |V|———Result: $O(V \cdot E^2)$

Summary Chapter 26

The maximum flow problem

Antiparallel edges issues

Multiple sources and sinks

The Ford-Fulkerson method

Residual networks

Augmenting paths

Max-flow min-cut theorem

Forld-Flkerson algorithm and its runtime

Edmonds-Karp algorithm and its runtime

Exercices

Will come