Exercise # 2. Iterative Methods For Linear Systems.

Alexandre Rodrigues (2039952)

January 8, 2022

Question 1

Using as a test the example usage, with $tol=1\times 10^{-8}$ and limiting the iterations to $maxit=250~\mathrm{I}$ got the following results.

Figure 1: Residual norm vs iteration number for PCG methods, maxit = 250

Method	Iterations	Final Residual	Computational Time
Matlab PCG without preconditioning	183	1.9591×10^{-7}	0.077s
Matlab PCG IC(0)	78	1.5293×10^{-7}	0.068s
My PCG implementation	250	2.3×10^{-3}	0.151s

Table 1: Results of PCG methods, maxit = 250

When maxit is large enough to guarantee convergence in all implementations we get the following results:

Figure 2: Residual norm vs iteration number for PCG methods, maxit = 750

Method	Iterations	Final Residual	Computational Time
Matlab PCG without preconditioning	183	1.9591×10^{-7}	0.054s
Matlab PCG IC(0)	78	1.5293×10^{-7}	0.063s
My PCG implementation	720	9.6833×10^{-9}	0.351s

Table 2: Results of PCG methods, maxit = 750

My implementation is slower to converge but produces better final residual values.

Question 2

The spectral condition number of A is

$$\kappa(A) = \frac{\lambda_{max}(A)}{\lambda_{min}(A)}. (1)$$

In Matlab I used the condest(A) function to estimate the condition number of a sparse matrix A.

n_x	h	$\kappa(A)$	$\sqrt{\kappa(A)}$	CG	PCG(0)	$PCG(10^{-2})$	$PCG(10^{-3})$
102	1.0000×10^{-4}	6.0107×10^3	77.5288	283	87	45	17
202	2.5000×10^{-5}	2.3810×10^4	154.3039	532	159	78	30
402	6.2500×10^{-6}	9.4770×10^4	307.8473	948	282	137	53
802	1.5625×10^{-6}	3.7814×10^5	614.9304	1792	533	258	97

Table 3: Iterations of PCG methods for each value of n_x and respective values of h and $\kappa(A)$

One can note from the table the dependence of the number of iterations on $h = \frac{1}{N} = \frac{1}{(nx-2)^2}$. The number of iterations is halved when n_x approximately doubles.

Question 3

show theoretically ??

When using the Choledsky precontionier with no fill in, I did'nt get the expected results. Both Matlab's and my implementation converged in only one iteration.

Figure 3: Residual norm vs iteration number for PCG methods with IC(0) preconditioner

Due to the bad results, I tried to remove preconditioning form my implementation by setting L as the identity matrix, L = speye(size(L)).

Figure 4: Residual norm vs iteration number for PCG methods without preconditioning

Method	Iterations	Final Residual	Computational Time
Matlab PCG	6	9.2128×10^{-14}	0.021s
My PCG	5	1.2744×10^{-13}	0.012s

Table 4: Results for each value of implementation, no preconditioning

These results show the theoretical calculations, my implementation is still better than expected.

Question 4

Figure 5: Residual norm vs iteration number for PCG methods without preconditioning

Preconditioner	Iterations	Final Residual	Computational Time
None	253	1.1367×10^{-4}	0.254s
Jacobi	36	9.3198×10^{-5}	0.053s
IC(0)	10	1.1155×10^{-4}	0.046s

Table 5: Results for each preconditioner

There is a very clear improvement when using preconditioning. It is also noticeable the superior characteristics of the incomplete Choledsky preconditioner relative to Jacobi.

Question 5

Figure 6: Residual norm vs iteration number for GMRES methods

Method	Iterations	Final Residual	Computational Time
Matlab GMRES	527	1.2073×10^{-12}	9.097s
My GMRES	509	1.2231×10^{-12}	10.032s

Table 6: Results for each GMRES implementation

These results show that the methods have very similar convergence characteristics. My implementation has a smaller number of iterations but the other results are slightly worse than the ones achieved with Matlab's implementation.

Question 6

Figure 7: Residual norm vs iteration number for preconditioned GMRES methods

${f Method}$	Iterations	Final Residual	True Residual	Computational Time
Matlab GMRES	38		4.5350×10^{-13}	
My GMRES	39	2.3797×10^{-13}	7.1893×10^{-14}	4.943s

Table 7: Results for each preconditioned GMRES implementation

There are clear differences in the residuals and computation time values. My implementation is 40 times slower but produces a true residual 5 times smaller.

Solving the linear system in 3b produced the same unexpected results as in that question. When using the Choledsky precontionier with no fill in both Matlab's and my implementation converged in only one iteration.

Method	Iterations	Final Residual	Computational Time
GMRES	1	3.8481×10^{-16}	0.027s
My PCG	1	1.7554×10^{-17}	0.003s

Table 8: Iterations for each value of nx

When I removed preconditioning form my implementation by setting L as the identity matrix, L = speye(size(L)).

Method	Iterations	Final Residual	Computational Time
GMRES	6	3.0413×10^{-14}	0.102s
My PCG	5	1.0468×10^{-13}	0.012s

Table 9: Results for each value of implementation, no preconditioning

Figure 8: Residual norm vs iteration number for GMRES methods without preconditioning

As in 3b, these results show the theoretical calculations, my implementation is still better than expected.

Question 7

restart	Iterations	Final Residual	Computational Time
10	1149	1.9901×10^{-12}	1.735s
20	739	1.9741×10^{-12}	1.443s
30	88	1.3800×10^{-12}	0.242s
50	41	9.9416×10^{-13}	0.135s

Table 10: Results for each value of restart

Figure 9: Residual norm vs iteration number for each value of restart

One can notice a clear improvement in convergence with the increase of the restart value.

Question 8

Using maxit=550, tol=1e-8...

Tolerance	Iterations	Prec. Time	Tsol	Ttotal	Final Residual	ρ
2×10^{-2}	1316	37.92s	44.53s	82.45s	5.2065×10^{-7}	0.4537
1×10^{-2}	4444	40.55s	22.86s	63.42s	5.7213×10^{-7}	0.5807
3×10^{-3}	150	51.78s	7.39s	59.17s	6.4998×10^{-7}	0.9401
1×10^{-3}	67	47.74s	3.63s	51.37s	8.5337×10^{-7}	1.4544
1×10^{-4}	26	43.30s	2.30s	45.60s	9.1517×10^{-7}	3.5140
1×10^{-5}	12	96.73s	2.69s	99.42s	9.4359×10^{-7}	9.0720

Table 11: Results for each value of tolerance

Figure 10: Residual norm vs iteration number for each value of tolerance