МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Інститут **КНІТ** Кафедра **ПЗ**

3BIT

До лабораторної роботи № 5 **На тему**: "*Метод сортування злиттям*" **3 дисципліни**: "Алгоритми та структури даних"

> **Лектор**: доцент кафедри ПЗ Коротеєва Т.О.

> > Виконав:

студент групи ПЗ-22 Коваленко Д.М.

Прийняв:

асистент кафедри $\Pi 3$ Франко А.В.

Тема. Метод сортування злиттям.

Мета. Вивчити алгоритм сортування злиттям. Здійснити програмну реалізацію алгоритму сортування злиттям. Дослідити швидкодію алгоритму сортування злиттям.

Лабораторне завдання

Створити віконний проект та написати програму, яка реалізує алгоритм сортування Шелла.

6. Задано одномірний масив дійсних чисел. До від'ємних елементів масиву застосувати функцію sin(x). Отриманий масив посортувати в порядку спадання.

Теоретичні відомості

Сортування злиттям (англійською «Merge Sort») — алгоритм сортування, в основі якого лежить принцип «розділяй та володарюй» (англійською «Divide and Conquer»). В основі цього способу сортування лежить злиття двох упорядкованих ділянок масиву в одну впорядковану ділянку іншого масиву.

Під час сортування в дві допоміжні черги з основної поміщаються перші дві відсортовані підпослідовності, які потім зливаються в одну і результат записується в тимчасову чергу. Потім з основної черги беруться наступні дві відсортовані підпослідовності і так до тих пір доки основна черга не стане порожньою. Після цього послідовність з тимчасової черги переміщається в основну чергу. І знову продовжується сортування злиттям двох відсортованих підпослідовностей. Сортування триватиме до тих пір поки довжина відсортованої підпослідовності не стане рівною довжині самої послідовності.

Сортування злиттям можна задати рекурсивно: масив поділяється на дві приблизно рівні частини, які після сортування (тим самим способом) зливаються. Коли ж довжина частини масиву зменшується до 1, відбувається повернення з рекурсії. Завершуючи описання сортування злиттям, скажемо, що цей алгоритм є першим із ефективних алгоритмів сортування. У 1945 році його винайшов Джон фон Нейман, один із піонерів програмування.

Час роботи алгоритму T(n) по впорядкуванню n елементів задовільняє рекурентному співвідношенню: $T(n) = 2 \cdot T(\frac{1}{2} \cdot n) + O(n), T(\frac{1}{2} \cdot n)$ - час на впорядкування половини масиву, O(n) - час на злиття цих половинок.

Покроковий опис роботи алгоритму сортування злиттям

Алгоритм S - сортування злиттям

- **S1** Ініціалізація індексів i = 1, j = 1, k = 1.
- **S2** Виконувати S3-S4 доки k < (n+m).
- **S3** Присвоїти змінні i = 1, j = n.
- **S4** Якщо xi < yj, то zk = xi; i = i+1, інакше zk = yj, j = j+1.
- **S5** k = k + 1.
- **S6** Вихід.

Хід роботи

Файл sort.rs

```
use crate::data::Data;
pub fn sort(input: &mut [Data], res: &mut Vec<Vec<Data>>) {
     if input.len() < 2 {return;}</pre>
     let len = input.len();
     let mid = len / 2;
     sort(&mut input[..mid], res);
     sort(&mut input[mid..], res);
     let mut tmp = Vec::with_capacity(len);
     let mut i = 0;
     let mut j = mid;
    \mathbf{while} \;\; \mathrm{i} \; < \; \mathrm{mid} \;\; \&\& \;\; \mathrm{j} \; < \; \mathrm{len} \;\; \big\{
         if input[i] < input[j] {</pre>
              tmp.push(input[i]);
              i += 1;
         } else {
              tmp.push(input[j]);
              j += 1;
         res.push(tmp.to_vec());
     if i < mid 
         tmp.extend_from_slice(&input[i..mid]);
     } else if j < len {}
         tmp.extend from slice(&input[j..len]);
    input.copy_from_slice(&tmp[..]);
}
```

Результат роботи

Рис. 1: Виконання програми

Висновок

Під час виконання лабораторної роботи я вивчив алгоритм сортування злиттям. Здійснив програмну реалізацію алгоритму сортування злиттям. Дослідив швидкодію алгоритму сортування злиттям.