

ISMB 2022 - Theory Session

Privacy-Enhancing Techniques

Overview

- 1. Why use privacy enhancing techniques?
- 2. Outdated approaches (k-anonymity)
- 3. Differential Privacy (DP)
- 4. Secure Multi Party Computation (SMPC)
- 5. Homomorphic Encryption
- 6. Summary

Why use privacy enhancing techniques?

Outdated Approaches

De-identification

→ bad bad

 $K-anonymity \ {\scriptstyle \underline{(https://opendp.github.io/cs208/spring2022/presentations/overview-reidentification.pdf)}}$

- Quasi-identifier fallacy (Netflix challenge)
- Other Attacks (composition, downcoding)
- Problems with summary statistics
- Membership attacks
 - Classical
 - Inference of sensitive attributes
- \rightarrow also bad

Outdated Approaches

Basic Idea: De-Identification via Suppression

Name	Age	Height	Sex	Disease
Peter	46	1.70	M	N
Jane	27	1.72	F	N
Joe	30	1.85	М	Y
Liza	24	1.65	F	Y

Basic Idea: De-Identification via Suppression

Name	Age	Height	Sex	Disease
Peter	46	1.70	M	N
Jane	27	1.72	F	N
Joe	30	1.85	М	Y
Liza	24	1.65	F	Y

Name	Age	Height	Sex	Disease
-	46	1.70	M	N
-	27	1.72	F	N
-	30	1.85	M	Y
-	24	1.65	F	Y

Basic Idea: De-Identification via Generalization

Name	Age	Height	Sex	Disease
_	46	1.70	М	N
-	27	1.72	F	N
-	30	1.85	М	Y
-	24	1.65	F	Y

	1		1	
Name	Age	Height	Sex	Disease
-	41–50	1.70	M	N
-	21-30	1.72	F	N
-	21-20	1.85	М	Y
-	21-30	1.65	F	Y

Basic Idea: De-Identification via Generalization

Name	Age	Height	Sex	Disease
_	46	1.70	M	N
_	27	1.72	F	N
_	30	1.85	M	Y
-	24	1.65	F	Y

Name	Age	Height	Sex	Disease
-	41–50	1.7*	M	N
_	21-30	1.7*	F	N
_	21-20	1.8*	M	Υ
_	21-30	1.6*	F	Υ

K-Anonymity

Formally, we say that a dataset D satisfies k-Anonymity for a value of k if:

- For each row $r_1 \in D$, there exists at least k-1 other rows $r_2 \dots r_k \in D$ such that

$$\prod_{qi(D)} r_1 = \prod_{qi(D)} r_2 \, , \ldots , \prod_{qi(D)} r_1 = \prod_{qi(D)} r_k$$

where qi(D) is the quasi-identifiers of D, and $\prod_{qi(D)} r$ represents the columns

of r containing quasi-identifiers (i. e. the projection of the quasi-identifiers).

K-Anonymity

Formally, we say that a dataset D satisfies k-Anonymity for a value of k if:

- For each row $r_1 \in D$, there exists at least k-1 other rows $r_2 \dots r_k \in D$ such that

$$\prod_{qi(D)} r_1 = \prod_{qi(D)} r_2 \, , \ldots , \prod_{qi(D)} r_1 = \prod_{qi(D)} r_k$$

where qi(D) is the quasi-identifiers of D, and $\prod_{qi(D)} r$ represents the columns

of r containing quasi-identifiers (i. e. the projection of the quasi-identifiers).

Quasi-identifiers – 'important' features

- 2006 Netflix 1 Mio \$ movie-recommendation challenge.
- 100,480,507 movie ratings of 480,189 Netflix subscribers from 1999 to 2005
- FAQ: "Is there any customer information in the dataset that should be kept private?"

Answer: "No, all customer identifying information has been removed; all that remains are ratings and dates. This follows our privacy policy. [...] Even if, for example, you knew all your own ratings and their dates you probably couldn't identify them reliably in the data because only a small sample was included [...] and that data was subject to perturbation."

Quasi-identifiers – 'important' features

Narayanan-Shmatikov Set-Up (Narayanan & Shmatikov, 2008)

Dataset: x = set of records r (e.g. Netflix ratings)

Adversary's inputs:

x' = subset of x, possibly distorted aux = auxiliary information about record r (e.g. public IMDB ratings)

Adversary's goals:

Output either r' that is close to r or output 'no match'

Quasi-identifiers – 'important' features

Sampled 50 IMDB users → identified 2 in Netflix dataset

(→Class action lawsuit, no Netflix Challenge II)

→ every feature can be a quasi identifier!

Better working approaches

a) Homomorphic encryption

Dataset INCLUDING a specific individual

Training Model

?

Adversary

Dataset EXCLUDING a specific individual

b) Secure multiparty computation

https://arxiv.org/pdf/20 07.11621v2.pdf

c) Differential privacy

d) Federated learning

Differential privacy (http://people.seas.harvard.edu/~salil/cs208/spring19/)

- introduce concepts (http://people.seas.harvard.edu/~salil/cs208/spring19/DP-foundations1-lecture.pdf)
- And application examples (http://people.seas.harvard.edu/~salil/cs208/spring19/DP-foundations2-lecture.pdf)
- Programming example (?) (https://gist.github.com/julianspaeth/5f410cd706fdf2d9bec73c8b794cd357)
- Attack vectors (Privacy budget attack) (https://css.csail.mit.edu/6.858/2013/readings/dp-under-fire.pdf) (?)
- Pro/Con

Height	Sex		Disease
1.70	М		N
1.72	F		N
1.85	М		Υ
1.65	F		Υ
1.69	М		N
1.79	F		Υ
1.58	F		Υ
	1.70 1.72 1.85 1.65 1.69 1.79	1.70 M 1.72 F 1.85 M 1.65 F 1.69 M 1.79 F	1.70 M 1.72 F 1.85 M 1.65 F 1.69 M 1.79 F

data scientists

mechanism

Age	Height	Sex	 Disease
7.90	rioigiit	CCA	 Diocasc
46	1.70	M	 N
27	1.72	F	 N
30	1.85	М	 Υ
24	1.65	F	 Υ
57	1.69	М	 N
32	1.79	F	 Υ
40	1.58	F	 Υ

→ effect of each individual should be 'hidden'

Age	Height	Sex	 Disease
46	1.70	М	 N
27	1.72	F	 N
30	1.85	М	 Υ
24	1.65	F	 Υ
57	1.69	М	 N
32	1.79	F	 Υ
40	1.58	F	 Υ

Age	Height	Sex	 Disease
46	1.70	М	 N
27	1.72	F	 N
30	1.85	М	 Υ
24	1.65	F	 Υ
57	1.69	М	 N
32	1.79	F	 Υ
40	1.58	F	 Υ

Age	Height	Sex	 Disease
46	1.70	М	 N
27	1.72	F	 N
24	1.65	F	 Υ
57	1.69	М	 N
32	1.79	F	 Υ
40	1.58	F	 Υ

Age	Height	Sex	 Disease
46	1.70	М	 N
27	1.72	F	 N
66	1.55	F	 N
24	1.65	F	 Υ
57	1.69	М	 N
32	1.79	F	 Υ
40	1.58	F	 Υ

Differential Privacy – output perturbation

Age	Height	Sex		Disease			'What fraction of people are Male and have Disease?'
46	1.70	М		N			◀
27	1.72	F		N		N A	
66	1.55	F		N		M	
24	1.65	F		Y	-		Answer + Noise
57	1.69	М		N			
	!		1			mechanism	

- Very little noise needed as number of entries $n \to \infty$.
- This is just for **one** query

Differential Privacy – Laplace Mechanism

For a function f(x) that returns a number, this definition of F(x) satisfies ϵ -differential privacy:

$$F(x) = f(x) + \mathrm{Lap}\Big(rac{s}{\epsilon}\Big)$$

where Lap(S) samples from the Laplace distribution and s is the sensitivity of f. The sensitivity s of f denotes the amount f's output changes when its input changes by 1.

The Laplace function with location 0 and scale b has the density:

$$p(x) = rac{1}{2b} \mathrm{exp} \left(-rac{|x|}{b}
ight)$$

Differential Privacy – output perturbation

• Very little noise needed as number of entries $n \to \infty$.

Differential Privacy – Privacy Budget

- If M is ϵ -DP for one query, it is $k^*\epsilon$ -DP for k queries.
- To maintain global privacy loss at most $\epsilon_{\rm global}$, can set $\epsilon = \epsilon_{\rm global}$ /k and stop answering after k queries.
- More queries \rightarrow smaller $\epsilon \rightarrow$ less accuracy Some tradeoff is necessary

Typicall recommendation for 'good' privacy guarantee:

 $0.01 \le \varepsilon \le 1$

Differential Privacy – Summary

- Whatever an adversary learns about me, it could have been learned from everyone else's data
- No leakage of data specific to individuals
- This holds regardless of computational power or auxiliary information But:
- No guarantee that adversary won't infer sensitive attributes.
- No guarantee that subjects won't be 'harmed' by results of analysis
- No protection for information that is not localized to a few rows

- Concept
- Programming example (?) (https://github.com/iamaldi/smpc)
- attack vectors (https://eprint.iacr.org/2020/300.pdf, https://eprint.iacr.org/2020/300.pdf, https://eprint.iacr.org/2020/300.pdf, https://eprint.iacr.org/2020.pdf) (?)
- Pro/Con

Secure Multi Party Computation (SMPC)

Secure Multiparty Computation – Example

	Salary k€/year	
Niklas	50	
Mohammad	60	
Jan	100	
	210 / 3 = 70	

→ Average salary

Secure Multiparty Computation – Example

→ Average salarywithout sharing

	Salary k€/year	Shard 1	Shard 2	Shard3
Niklas	50			
Mohammad	60			
Jan	100			

Niklas
Mohammad
Jan

Salary k€/year	Shard 1	Shard 2	Shard3
50	-20	0	70
60	40	70	-50
100	60	30	10

Niklas	Mohammad	Jan
-20	0	70
40	70	-50
60	30	10

Niklas	Mohammad	Jan
-20	0	70
40	70	-50
60	30	10
80	100	30

Secure Multiparty Computation

Niklas	Mohammad	Jan
-20	0	70
40	70	-50
60	30	10
80	100	30

- Concept (https://www.ibm.com/security/digital-assets/fhe/unlock-value-of-sensitive-data-without-decryption/)
- Application (in FL) (https://developer.nvidia.com/blog/federated-learning-with-homomorphic-encryption/)
- Pro/Con

Homomorphic Encryption

Homomorphic encryption

https://atos.net/en/lp/cybersecurity-magazine-enter-a-new-c ybersecurity-era/the-challenges-of-homomorphic-encryption

Pre FHE timeline

Fig. 1 Homomorphic encryption timeline

FHE timeline

Fig. 2 Fully Homomorphic Encryption timeline

So why aren't we using it?

- Speed.
- Fastest FHE algorithm still factor 1 Mio slower than normal operation
- Normal calculation of 1 sec -> ~11 ½ days of FHE calculation

Summary

Federated Machine Learning

FL FL+DP FL+HE FL+SMPC HE **SMPC** DP Accuracy 5 3 6 Computational efficiency NA Network communication efficiency NA Privacy of exchanged traffic NA Exchanging low sensitive traffic NA Privacy guarantee X X

Comparison of Privacy Enhancing Techniques

Synthetic Data (?)

- General concepts (https://research.aimultiple.com/synthetic-data/)
- Example Methods:
 - VAE (https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73)
 - GAN (https://wiki.pathmind.com/generative-adversarial-network-gan)

Sources:

https://arxiv.org/abs/2105.05734 https://arxiv.org/abs/2007.11621

Inspired by CS208: Applied Privacy for Data Science School of Engineering & Applied Sciences, Harvard University

ISMB 2022 - Tutorial - Federated Learning in Biomedicine

Thank you!