Matematická Analýza III

Poznámky z přednášek

Letní semestr2020/2021

Viktor Soukup

Obsah

1	První přednáška	2
2	Druhá přednáška	4
	2.1 Charakterizace kompaktních množin v Euklidovckých metrických prostorech	5

1 První přednáška

Definice (Metrický prostor): Metrický prosto je dvojice (M,d) množiny $M \neq \emptyset$ a zobrazení $d: M \times M \to \mathbb{R}$ zvaného metrika či vzdálenost, které $\forall x,y,z \in M$ splňuje:

- 1. $d(x,y) = 0 \Leftrightarrow x = y$
- 2. d(x,y) = d(y,x)
- 3. $d(x,y) \le d(x,z) + d(z,y)$

Z této definice plyne i nezápornost.

Definice (Podprostor): Každá podmnožina $X \subset M$ určuje nový metrický prostor (x, d'), tak zvaný podprostor metrického prostoru (M, d): pro $x, y \in X$ klademe d'(x, y) := d(x, y). Obě metriky označíme stejným symbolem a máme (X, d).

Definice (Izometrie f): Izometrie f dvou metrických prostorů (M,d) a (N,e) je bijekce $f:M\to N$, jež zachovává vzdálenosti:

$$\forall x, y \in M : d(x, y) = e(f(x), f(y))$$

Pokud existuje, prostory (M, d) a (N, e) jsou izometrické.

Příklad (Euklidovský prostor (\mathbb{R}^n, e_n)): Jedním z nejdůležitějších příkladů metrických prostorů je (n-rozměrný) Euklidovský prostor $(\mathbb{R}^n, e_n), n \in \mathbb{N}$ s metrikou e_n danou pro $\overline{x} = (x_1, ..., x_n), \overline{y} = (y_1, ...y_n) \in \mathbb{R}^n$ formulí

$$e_n(\overline{x}, \overline{y}) := \sqrt{\sum_{i=1}^n (x_i - y_i)^2}.$$

Geometricky je e_n délka úsečky určené body \overline{x} a \overline{y} . Euklidovským prostorem pak rozumíme obecněji každý podprostor (x, e_n) , když $X \subset \mathbb{R}^n$.

Tvrzení ((\mathbb{R}^n, e_n) je MP.): (\mathbb{R}^n, e_n) je Metrický prostor.

Příklad (Sférická metrika): Jako

$$S := \{(x_1, x_2, x_3) \in \mathbb{R}^3 | x_1^2 + x_2^2 + x_3^2 = 1\}$$

označíme jednotkovou sféru (s poloměrem 1) v Euklidovském prostoru \mathbb{R}^3 . Funkci $s: S \times S \to [0, \pi]$ definujeme pro $\overline{x}, \overline{y} \in S$ jako

$$s(\overline{x}, \overline{y}) = \begin{cases} 0 & \dots & \overline{x} = \overline{y} \\ \varphi & \dots & \overline{x} \neq \overline{y} \end{cases}$$

kde φ je úhel sevřený dvěma polopřímkami vycházejícími z počátku $\overline{0} := (0,0,0)$ a body \overline{x} a \overline{y} . Tento úhel je vlastně délka kratšího z oblouků mezi body \overline{x} a \overline{y} na jednotkové kružnici vytknuté na S rovinou určenou počátkem a body \overline{x} a \overline{y} . Funkci nazveme sférickou metrikou.

Tvrzení (S je Metrický Prostor): (S, s) je metrický prostor.

Definice ((Horní) hemisféra H): (Horní) hemisféra H je množina

$$H := \{(x_1, x_2, x_3) \in S | x_3 \ge 0\} \subset S.$$

Věta (H není plochá): Metrický prostor (H,s) není izometrický žádnému Euklidovskému prostoru (X, e_n) s $X \subset \mathbb{R}^n$

Důkaz: TODO □

Definice (Ultrametrika): Metrika d v metrickém prostoru (M, d) je ultrametrika nebo také nearchimédovská metrika, pokud splňuje silnou trojúhélníkovou nerovnost

$$\forall x, y, z \in M : d(x, y) \le \max(d(x, z), d(z, y)).$$

Protože $\max(d(x,z),d(z,y)) \leq d(x,z) + d(z,y)$, je každá ultrametrika metrika.

Poznámka: V ultrametrických prostorech, krátce UMP, neplatí intuice založená na Euklidovských prostorech.

Tvrzení (trojúhelníky v UMP): V ultrametrickém prostoru (M,d) je každý trojúhélník rovnoramenný $(m\acute{a}\ dv\'{e}\ stejn\'{e}\ dlouh\'{e}\ strany).$

Důkaz: TODO □

Definice (Koule): (Otevřená) koule se středem $a \in M$ a poloměrem r > 0 b metrickém prostoru (M,d) je podmnožina

$$B(a,r) := \{x \in M | d(x,a) < r\} \subset M.$$

Vždy platí, že $B(a,r) \neq \emptyset$, protože $a \in B(a,r)$.

Příklad (p-adické metriky): Nechť $p \in \{2, 3, 5, 7, 11, \dots\}$ je prvočíslo a nechť $n \in \mathbb{Z}$ je nenulové celé číslo. Definujeme p-adický řád čísla n:

$$\operatorname{ord}_{p}(n) := \max(\{m \in \mathbb{N}_{0} : p^{m}|n\})^{1}$$

Pro každé p definujeme $\operatorname{ord}_p(0) := +\infty$.

Funkci $\operatorname{ord}_p(\cdot)$ rozšíříme na zlomky. Pro nenulové $\alpha = \frac{a}{b} \in \mathbb{Q}$ definujeme

$$\operatorname{ord}_{n}(\alpha) := \operatorname{ord}_{n}(a) - \operatorname{ord}_{n}(a)$$

a jinak znovu definujeme $\operatorname{ord}_p(0) = \operatorname{ord}_p(\frac{0}{b}) := +\infty.$

Tvrzení (Aditivita $\operatorname{ord}_n(\cdot)$): *Platí*, že

$$\forall \alpha, \beta \in \mathbb{Q} : ord_p(\alpha\beta) = ord_p(\alpha) + ord_p(\beta),$$

 $kde(+\infty) + (+\infty) = (+\infty) + n = n + (+\infty) := +\infty \text{ pro každ\'e } n \in \mathbb{Z}.$

Důkaz: TODO □

Definice (p-adické normy): Fixujeme reálnou konstantu $c \in (0,1)$ a definujeme funkci $|\cdot|_p : \mathbb{Q} \to [0,+\infty)$, tzv. p-adickou normu, jako

$$\left| \frac{a}{b} \right|_p := c^{\operatorname{ord}_p(\frac{a}{b})},$$

speciálně $|0|_p = c^{+\infty :=0}$

Definice (Normované tělěso F): Normované těleso $F = (F, 0_F, 1_F, +_F, \cdot_F, |\cdot|_F)$, psáno zkráceně $(F, |\cdot|_F)$, je těleso F vybavené normou $|\cdot|_F : F \to [0, +\infty)$, jež splňuje tři následující požadavky:

 $^{^1\}mathbf{Z}$ de · |· značí relaci dělitelnosti na $\mathbb{Z},$ kde $a,b\in\mathbb{Z}$ je $a|b\Leftrightarrow \exists c\in\mathbb{Z}:b=ac.$

- 1. $\forall x \in F : |x|_F = 0 \Leftrightarrow x = 0_F$
- 2. $\forall x, y \in F : |x \cdot_F y|_F = |x|_F \cdot |y|_F$
- 3. $\forall x, y \in F : |x +_F y|_F < |x|_F + |y|_F$

Příklad: Základní příklady normovaných těles jsou např. \mathbb{Q}, \mathbb{R} nebo \mathbb{C} , kde je normou obvyklá absolutní hodnota $|\cdot|$

Tvrzení (o $|\cdot|_p$): Pro každé prvočíslo p a každé $c \in (0,1)$ je $(\mathbb{Q},|\cdot|_p)$ normované těleso. Příslušný metrický prostor (\mathbb{Q},d) , je ultrametrický prostor.

Důkaz: TODO □

Úlohy 1, 3, 5, 7 a 19 jsou $D\dot{U}(slajdy)$ do 9.3.

2 Druhá přednáška

Definice (Triviální norma): Triviální norma na libovolném tělěse F je funkce $||\cdot||$ s $||0_F|| = 0$ a ||x|| = 1 pro $x \neq 0_F$.

Definice (Kanonická p-adická norma): Pro $\alpha \in \mathbb{Q}$ a prvočíslo p je kanonická p-adická norma $||\cdot||_p$ definovaná jako

$$||\alpha||_p := p^{-\operatorname{ord}_p(\alpha)}$$

to jest v obecné p-adické normě $|\cdot|_p$ klademe $c:=\frac{1}{n}$.

Věta (A. Ostrowski): Nechť $||\cdot||$ je norma na tělese racionálních čísel \mathbb{Q} . Pak nastává právě jedna ze tří následujícich možností:

- 1. Je to triviální norma.
- 2. Existuje reálné $c \in (0,1]$ takové, že $||x|| = |X|^c$.
- 3. Existuje reálné $c \in (0,1)$ a prvočíslo p takové, že $||x|| = |x|_p = c^{ord_p(x)}$

Modifikovaná absolutní hodnota a p-adické normy jsou tedy jediné netriviální normy na tělese racionálních čísel.

Důkaz: TODO □

Poznámka (Konvence): $\varepsilon > 0$ a $\delta > 0$ jsou reálná čísla a $n, n_0 \in \mathbb{N}$. Limitu píšeme jako $\lim a_n = a$ nebo $\lim_{n \to \infty} a_n = a$.

Definice (Limita): Nechť je (M,d) metrický prostor, $(a_n) \subset M$ je posloupnost bodů v něm a $a \in M$ je bod. (a_n) má limitu v (M,d), pokud

$$\forall \varepsilon \exists n_0 : n \ge n_0 \Rightarrow d(a_n, a) < \varepsilon$$

٠

Definice (Konvergence, Divergence): Pokud má (a_n) limitu, řekneme, že je konvergentní. Pokud limitu nemá, je divergentní.

Definice (Kompaktní metrický prostor): Buď (M,d) metrický prostor a $X\subset M$. Řekneme, že X je kompaktní, pokud

$$\forall (a_n) \subset X \exists (a_{m_n}) \exists a \in X : \lim_{n \to \infty} a_{m_n} = a.$$

Jinak řečeno, každá posloupnost bodů množiny X má konvergentní podposloupnost s limitou v X. Metrický prostor (M,d) je kompaktní, pokud M je kompaktní.

Definice (Spojité zobrazení mezi Metrickými prostory): Buďte (M, d) a (N, e) metrické prostory a buď $f: M \to N$ zobrazení mezi nimi. f je spojité v $a \in M$, pokud

$$\forall \varepsilon \exists \delta \forall x \in M : d(x, a) < \delta \Rightarrow e(f(x), f(a)) < \varepsilon$$

Zobrazení f je spojité, pokud je spojité v každém bodě $a \in M$.

Věta (Princip maxima): Nechť (M, d) je metrický prostor,

$$f:M\to\mathbb{R}$$

je funkce z M do reálné osy a $X \subset M$ je neprázdná kompaktní množina. Pak

$$\exists a, b \in X \forall x \in X : f(a) \le f(x) \le f(b)$$

Funkce f tedy na X nabývá svou nejmenší hodnotu f(a) a největší hodnotu f(b).

Důkaz: TODO □

Definice (Součin metrických prostorů): Pro metrické prostory (M, d) a (N, e) definujeme jejich součin $(M \times N, d \times e)$ tak, že $M \times N$ je kartézský součin množin M a N a metrika $d \times e$ je na něm dána jako

$$(d \times e)((a_1, a_2), (b_1, b_2)) := \sqrt{d(a_1, b_1)^2 + e(a_2, b_2)^2}$$

2.1 Charakterizace kompaktních množin v Euklidovckých metrických prostorech

Definice (Otevřená množina): Množina $X \in M$ v metrickém prostoru (M, d) je otevřená, pokud

$$\forall a \in X \exists r > 0 : B(a, r) \subset X.$$

Definice (Uzavřená množina): Množina X je uzavřená, pokud $M \setminus X$ je otevřená.

Definice (Omezená množina): Množina X je omezená, pokud

$$\exists a \in M \exists r > 0 : X \subset B(a,r)$$

Definice (Diametr): Diametr(průměr) množiny X je s $V:=\{d(a,b)|a,b\in X\}\subset [0,+\infty)$ definovaný jako

$$\operatorname{diam}(X) := \begin{cases} \sup(V) & \dots & \operatorname{množina} V \text{ je shora omezená} \\ +\infty & \dots & \operatorname{množina} V \text{ není shora omezená} \end{cases}$$

Věta (Kompaktní ⇒ uzavřená a omezená, součin): *Platí následující:*

- 1. $Když\ X\subset M$ je kompaktní množina v metrickém prostoru (M,d), pak X je uzavřená a omezená. Opačná implikace obecně neplatí.
- 2. Jsou-li (M,d) a (N,e) dva kompaktní metrické prostory, pak i jejich součin $(M\times N, d\times e)$ je kompaktní metrický prostor.

Důkaz: TODO □

Věta (Kompaktní množina v \mathbb{R}^n): V každém Euklidovském metrickém prostoru (\mathbb{R}^n, e_n) je množina $X \subset \mathbb{R}^n$ kompaktní, právě když je omezená a uzavřená.

Důkaz: TODO □

The End