EE371 Debug Examples

Intel Corporation jstinson@mipos2.intel.com

J. Stinson © 2007

EE 371: Debug Examples

Agenda

- Speedpath Failure
- · Circuit Marginality: Noise
- Functional Failure
- · Circuit Marginality: Multiple
- PowerUp Problems

J. Stinson © 2007

EE 371: Debug Examples

Speedpath Failure

J. Stinson © 2007

EE 371: Debug Examples

Speedpath Example: The Wall Shmoo

J. Stinson © 2007

EE 371: Debug Examples

X - other fail

+ - pass \tag{\footnote{\text{Vall fail}}}

4

Bus Period

Skew Insensitive wall

Fast Transistor Part

Slow Transistor Part

J. Stinson © 2007

EE 371: Debug Examples

5

The Wall Debug

- Production test platform suspected
 - A timing setup problem
 - How could silicon act this way?

However...

- Debug test platform confirmed
 - Unlikely two diff't platforms had same timing error
 - Now we had to do the debug...

J. Stinson © 2007

EE 371: Debug Examples

Why was it a wall?

- Long Interconnect Line
 - RC Delay less sensitive to driver strength
 - Voltage/process only improve driver

Why was it a wall?

- · Jam sustainer at end of the line
 - Fights transition of signal
 - Sustainer gets stronger with voltage/skew
 - Adds to "wall" characteristics

Wall Follow-up

- Two FIB experiments
 - Driver speedup wall moved
 - Cut sustainer wall "leaned"

Shmoo with Cut Sustainer

J. Stinson © 2007

EE 371: Debug Examples

13

Circuit Marginality: Noise

Noise Example

EE 371: Debug Examples

Noise Debug

- · EBeam confirmed branch array read
 - Visibility limited in array
- · Bit 4 resolved later than other bits
 - Based on EBeam waveforms
- Signals on either side of read lines transistioned in opposite direction
 - Suspected coupling problem

J. Stinson © 2007

EE 371: Debug Examples

BTB Coupling Debug

- · Parameters data checked at problematic FAB
 - M2 CD's wider than normal
 - ILD1 and ILD2 thicker than normal
 - More sensitive to coupling
- · Audit of original design
 - Simulations ignored some coupling
 - New simulations showed failure

J. Stinson © 2007

EE 371: Debug Examples

19

BTB Coupling Validation: FIB experiments

- · Deposit extra capacitance on read line
 - Resists coupling from neighbors
- · Extend sense amp pulse width
 - Gives more time for read to resolve

Functionality Problem

- · "Dash stepping" first silicon non-functional
 - Stepping was supposed to fix a min-delay race
- · Suspected inadequate race fix
 - Scandiff confirmed same circuitry
 - EBeam also confirmed...
 - But visibility was limited

J. Stinson © 2007

EE 371: Debug Examples

23

Functionality Debug

- · Design team was confident in fix, so...
- Plan to strip back the entire block
 - Look for possible mask defect
 - Takes 4-10 days in FIB

However...

Noticed a floating node in EBeam scope

J. Stinson © 2007

EE 371: Debug Examples

Floating Node Debug

- · Node should NOT have been floating
- · A0 and A1 layout compared
 - Via1 or M1 could cause error
- FIB strip back focused on this node

J. Stinson © 2007

EE 371: Debug Examples

27

FIB Stripback Results

- Should be 3 via1's
- FAB contacted
 - Accidentally used A0 via1 mask
- Problem fixed
 - New silicon arrived shortly

J. Stinson © 2007

EE 371: Debug Examples

FIB Stripback Results

Functionality Summary

- Notice details
 - Focused stripback saved days of work
 - Very important during time critical debug

J. Stinson © 2007

EE 371: Debug Examples

Circuit Marginality

- Observed High Vcc failures
 - Frequency Insensitive
- TDO only failure
 - All signature mode tests were failing
 - Turning off signature mode allowed test to pass

J. Stinson © 2007

EE 371: Debug Examples

High Vcc Shmoo

Marginality Root Cause

EE 371: Debug Examples

- · Scanout stopped working in failure region
 - Deduce scan chain itself was broken
- Probing was only way to root cause
 - Laser Voltage Probe was able to narrow failure down to Scan MSFF
 - Three different mechanisms observed

J. Stinson © 2007

J. Stinson © 2007

EE 371: Debug Examples

Scan MSFF "Backwriting"

- · Slave "backwrites" value into Master
 - Combination of three mechanisms to cause failure
- Re-simulated all standard cell MSFF's
 - Two other cells flagged with same problem
- Circuit was a direct "shrink" from a previous process
 - Discovered same issue on prior process—but at a MUCH higher voltage

J. Stinson © 2007

EE 371: Debug Examples

30

PowerUp and Initialization

PowerUp Issue

- · Observed *some* systems wouldn't boot
 - Toggling RESET always enabled boot
 - Toggling power did not guarantee boot
- · Nasty problem to debug
 - System level issue (not seen on tester)
 - Intermittent failure (occurred 1 out of 100 times)
 - Debug tools not enabled (part hasn't booted)
- Started with oscilloscope waveforms...

J. Stinson © 2007

EE 371: Debug Examples

Why is TriState determined by PWRGOOD?

- Discovered busclk dependency @ 2
 - ACLOOP[1] directly controls I/O tristate signal
 - · Depends upon busclk for proper initialization
 - While !PWRGOOD, busclk is not generated
 - Power-up initialization @ may generate a busclk → no issue
 - Otherwise, must depend on power-up initialization of ACLOOP[1] (2)
 - "Driven value" on I/O pins will depend on power-up initialization at €

J. Stinson © 2007

EE 371: Debug Examples

4

Why wasn't the part booting?

- PWRGOOD will always clear the ACLOOP
 - Eventually the pins should tristate
 - So, why was the part still not booting?
- Further characterization: Power levels were very low
 - When the part failed to boot, the power was very low
 - Potentially indicated that the PLL wasn't running
 - Discovered secondary effect of ACLOOP initialization problem

J. Stinson © 2007

EE 371: Debug Examples

Final Root Cause

- System drives address pins at PWRGOOD assertion
 - Sets internal PLL frequency
 - Address pins are *supposed* to be tristated by the processor
- If ACLOOP powers up incorrectly, contention can occur
 - Processor is driving a '0 on address pin; system is driving a '1
 - The processor will always win
- PWRGOOD assertion tristates the address bus
 - Too late! It's already been sampled by PWRGOOD assertion
 - Only "illegal" bus fractions will cause failure
 - · Only 7 out of 32 possible bus fractions are "illegal"
- · Failure requires a confluence of diff't events
 - ACLOOP powers up "on"
 - Bus clock does NOT glitch during power up
 - Address pins power up driving an "illegal" bus fraction

2nd PowerUp Issue

- · Observed *some* systems wouldn't boot
 - Toggling RESET never enabled boot
 - Toggling power usually enabled boot
- · Nasty problem to debug
 - Intermittent failure (occurred 1 out of 1000+ times)
- · Some bright spots
 - Able to demonstrate on tester
 - · Enabled "deterministic" behavior
 - Enabled debug tools (scan)

J. Stinson © 2007

EE 371: Debug Examples

47

Vcc Shmoo (100x repeat)

```
NoBoot Shmoo (40C)
1.2V | AAA++++++++++++++++
  | AAAAA+++++++++++++
1.1V | AAAAAAAAAA++++++++
     7.0
        8.0
           9.0
  + - pass
  X - Fail
  A - Other fail
```

J. Stinson © 2007

EE 371: Debug Examples

Vcc Shmoo (10000x repeat)

NoBoot Shmoo (40C) 1.3V |XXXXXXXXXXXXXXXXXXXXXXX | XXXXXXXXXXXXXXXXXXXX 1.2V |XXXXXXXXXXXXXXXXXXXXXXX 7.0 8.0 9.0 + - pass X - Fail A - Other fail

Temperature Shmoo (10000x repeat)

EE 371: Debug Examples

J. Stinson © 2007

J. Stinson © 2007

```
NoBoot Shmoo (40C)
80C | AA++++++++++++++++
   | ++\mathbf{X}+\mathbf{X}\mathbf{X}\mathbf{X}++\mathbf{X}\mathbf{X}\mathbf{X}+\mathbf{X}\mathbf{X}+\mathbf{X}\mathbf{X}+
40C |XXXXXXXXXXXXXXXXXXXXXX
   | ++++XX+XXX++XXX+XX
+^----
        7.0
             8.0
   + - pass
   X - Fail
   A - Other fail
```

EE 371: Debug Examples

Wordline Driver

- Used a fancy self-resetting mechanism
 - Self-reset WL prevented read→write min-delay
 - Pulsed WL read array for short period of time

J. Stinson © 2007

EE 371: Debug Examples

Wordline Driver: Problem

- Self-reset sized diff't than forward path
 - Initial state could flip forward inverter but not feedback (pseudo-metastable state)
- Resolving pseudo-meta state
 - Access WL
 - High temp
 - Low temp

J. Stinson © 2007

EE 371: Debug Examples

53

Summary

Summary

- Debug requires a lot of detective work
 - Review all the evidence
 - Develop experiments to eliminate possible problems
 - Develop theory of failure
 - Validate theory
- · Can't ignore ANY evidence
 - If something doesn't fit, you're missing something
- EVERY problem is different
 - Need to constantly think about alternative methods of validation
 - The Norwegian capacitor
 - · The Kleveland voltmeter

J. Stinson © 2007 EE 371: Debug Examples