Formulações em Programação Inteira

Alguns Problemas Clássicos a Formular:

- Problema de Atribuição.
- ▶ Problema da Mochila 0-1.
- Problema da Mochila Inteira.
- Problema de Cobertura de Conjuntos.
- Problema do Caixeiro Viajante.
- Custos Fixos.
- Problema do Lote Econômico Não Capacitado.
- ▶ Problema de Localização Não Capacitado.
- Alternativas Discretas ou Disjunções.

O Problema da Atribuição

Problema de Atribuição:

- n pessoas para executar n tarefas distintas.
- Cada pessoa deve executar uma única tarefa.
- ▶ Algumas pessoas são mais aptas a executar certas tarefas.
- $ightharpoonup c_{ij}$: custo estimado para o indivíduo i executar a tarefa j.

Objetivo: atribuir tarefas a pessoas, ao menor custo total possível.

Formulação do Problema de Atribuição

Definição das Variáveis:

 $ightharpoonup x_{ij} \in \{0,1\}$: atribuição da tarefa j para a pessoa i

Definição das Restrições:

► Cada pessoa deve efetuar uma única tarefa :

$$\sum_{i=1}^{n} x_{ij} = 1, \ \forall i = 1, \ldots, n$$

Cada tarefa será efetuada por uma única pessoa:

$$\sum_{i=1}^{n} x_{ij} = 1, \ \forall j = 1, \ldots, n$$

As variáveis x_{ij} são binárias 0-1:

$$x_{ij} \in \{0,1\}, \forall i = 1,\ldots,n, \ \forall j = 1,\ldots,n$$

Definição da Função Objetivo:

▶ O custo das atribuições deve ser minimizado: min $\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$.

Formulação do Problema de Atribuição

$$\min \left\{ \sum_{i=1}^n \sum_{i=1}^n c_{ij} x_{ij} : x \in P \cap \mathbb{B}^{n \times n} \right\}$$

Onde P é uma região poliédrica (ou seja, uma região de \mathbb{R}^{n^2} definida pela interseção de um conjunto de restrições lineares) dada por:

$$\sum_{j=1}^n x_{ij} = 1, \ \forall i = 1, \ldots, n$$
 $\sum_{j=1}^n x_{ij} = 1, \ \forall j = 1, \ldots, n$ $x_{ij} \geq 0, \ \forall j = 1, \ldots, n, \ \forall j = 1, \ldots, n$

O Problema da Mochila 0-1

Problema da Mochila 0-1:

- ▶ Uma empresa dispõe de *b* reais para investir.
- ▶ *n* projetos *atraentes* foram pre-selecionados para investimento.
- ▶ Investir no projeto j custa a_i e produz um retorno c_i .

Objetivo: selecione um subconjunto de projetos de máximo retorno (sem exceder o orçamento disponível).

Formulação do Problema da Mochila 0-1

Definição das variáveis:

• $x_j \in \{0,1\}$: investir ou não no projeto j

Definição das restrições:

▶ Não é possível investir mais do que *b*:

$$\sum_{i=1}^n a_j x_j \le b$$

▶ Todas as variáveis x_j são binárias 0-1: $x_j \in \{0,1\}, \ \forall j=1,\ldots,n$

Definição da função objetivo:

▶ O retorno do investimento deve ser maximizado: $\max \sum_{i=1}^{n} c_i x_i$.

Formulação do Problema da Mochila 0-1

$$\max\left\{\sum_{j=1}^n c_j x_j : x \in P \cap \mathbb{B}^n\right\}$$

onde P é dado por:

$$\sum_{j=1}^{n} a_j x_j \le b$$

$$0 \le x_i \le 1, \ \forall j = 1, \dots, n$$

O Problema de Localização Não Capacitado

Dados de entrada:

- ▶ Conjunto $M = \{1, ..., m\}$: clientes.
- ▶ Conjunto $N = \{1, ..., n\}$: locais candidatos a sediar depósitos.
- ▶ f_i : custo fixo a pagar se o depósito $j \in N$ é aberto.
- ▶ c_{ij} : custo unitário de transporte entre $j \in N$ e $i \in M$.

Objetivo: minimizar os custos de instalação de depósitos e de transporte para suprir todos os clientes.

Modelo para o Problema de Localização Não Capacitado

Definição das variáveis:

- ▶ $y_j \in \{0,1\}$, $\forall j \in N$: abrir ou não um depósito em j.
- ▶ $x_{ij} \ge 0$, $\forall i \in M$, $\forall j \in N$: fração da demanda do cliente i atendida pelo depósito j.

Definição das restrições:

- ▶ 100% da demanda de $i \in M$ deve ser atendida: $\sum_{i \in N} x_{ij} = 1, \forall i \in M$.
- ▶ m é o número máximo de clientes que $j \in N$ pode atender: $\sum_{i \in M} x_{ij} \leq my_j, \forall j \in N.$

Definição da função objetivo:

Minimizar custos de instalação e transporte:

$$\min \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} + \sum_{i \in N} f_j y_j$$

Modelo para o Problema de Localização Não Capacitado

$$\min \left\{ \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} + \sum_{j \in N} f_j y_j : (x, y) \in \mathcal{P} \cap \mathbb{R}_+^{mn} \times \mathbb{B}^n \right\}$$

onde a formulação \mathcal{P} é dada por:

$$\sum_{j \in N} x_{ij} = 1, \forall i \in M$$

$$\sum_{i \in M} x_{ij} \le my_j, \forall j \in N$$

$$x_{ij} \ge 0, \ \forall i \in M, \ \forall j \in N$$

$$0 \le y_j \le 1, \ \forall j \in N$$

Por que não precisamos impor que $x_{ij} \in \{0,1\}, \ \forall i \in M, \ \forall j \in N$? Se j_i é o depósito aberto mais próximo de i, então $x_{ij_i} = 1$!

Exemplo da Mochila 0-1

Considere o conjunto de pontos:

$$X = \{(0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,1,0,1), (0,0,1,1)\}$$

Os poliedros abaixo definem formulações para X?

$$\mathcal{P}_{1} = \left\{ x \in \mathbb{R}^{4} : 0 \le x \le 1, \ 83x_{1} + 61x_{2} + 49x_{3} + 20x_{4} \le 100 \right\}$$

$$\mathcal{P}_{2} = \left\{ x \in \mathbb{R}^{4} : 0 \le x \le 1, \ 4x_{1} + 3x_{2} + 2x_{3} + 1x_{4} \le 4 \right\}$$

$$\mathcal{P}_{3} = \left\{ \begin{array}{ccc} x \in \mathbb{R}^{4} : & 0 \le x \le 1 \\ & 4x_{1} + 3x_{2} + 2x_{3} + x_{4} & \le 4 \\ & x_{1} + x_{2} + x_{3} & \le 1 \\ & x_{1} + x_{4} & \le 1 \end{array} \right\}$$

 $\mathcal P$ é uma formulação para X se e somente se $X=\mathcal P\cap\mathbb Z^4.$