Ego motion estimation by radar sensor : Measurements in cartesian coordinates

Contents

DESIGN

Sensor Setup

Inputs Considered

High Level Architecture

Coordinate Transformation

Stationary Measurement Identification

Vehicle Ego-Motion Estimation

CLOSING REMARKS

<u>Present Challenges and Limitations</u>

Alternative Methods

<u>Use-cases</u>

REFERENCES

Sensor Setup

Sensor/ Parameter	Mount x coordinate	Mount y coordinate	Mount yaw angle	Max range	cycle
Radar 1	+3.4	0	0°	250 m	13 Hz
Radar 2	+2.4	+0.8	+90°		
Radar 3	-0.56	+0.62	+180°		
Radar 4	-0.56	-0.62	-180°		
Radar 5	+2.4	-0.8	-90°		

Inputs Considered

Measuremets from radar i at time t in sensor frame

$$Z_{t}^{\mathrm{radar_{i}}} = \{Z_{1} \quad Z_{2} \quad ... \quad Z_{m_{k}}\}$$
 $z_{i} = [px, py, vx, vy, \sigma_{px}, \sigma_{py}, \sigma_{vx}, \sigma_{vy}]^{\mathrm{T}}$
 $(px, py) \rightarrow \text{measurement position}$
 $(vx, vy) \rightarrow \text{measurement relative velocity}$
 $(\sigma_{px}, \sigma_{py}, \sigma_{vx}, \sigma_{vy}) \rightarrow \text{noise std}$

Radar i mount info w.r.t rear wheel base centre

installation coordinates $\rightarrow \begin{pmatrix} x_m^{radar_i} & y_m^{radar_i} \end{pmatrix}$ mounting angle $\rightarrow \theta_m^{radar_i}$

Ego vehicle odometry at time t w.r.t rear wheel base centre (optional)

 $v_t^x \rightarrow lateral velocity$ $\dot{\omega}_t \rightarrow yaw rate$

High Level Architecture

Coordinate Transformation

Udit Bhaskar

6

Stationary Measurement Identification

for each of the locations corresponding to radar measurements compute the predicted velocity as if it was stationary

$$\begin{bmatrix} v_x^{i_pred} \\ v_y^{i_pred} \end{bmatrix} = -\begin{bmatrix} 1 & 0 & -r_y^i \\ 0 & 1 & r_x^i \end{bmatrix} \begin{bmatrix} v_x^{ego_pred} \\ v_x^{ego_pred} \\ v_y^{ego_pred} \\ \dot{\omega}^{ego_pred} \end{bmatrix}$$

Compute predicted measurement covariance by sigma point approximation

 Σ_X , $\Sigma_{\rm p}^{\rm cts}$

 $v_x^{i_pred}$, $v_y^{i_pred}$

 $Z_{stationary}^{i}$ output: preliminary $Z_{stationary}^{i}$

Stationary measurement selection

 $\label{eq:considered} \mbox{if error}^{i} \leq \mbox{threshold}, \\ \mbox{then } Z^{i} \mbox{is considered stationary}$

 $error^i$

Compare the predicted range rate with the measurement range rate

$$error^{i} = \sqrt{V^{T} \Sigma^{-1} V}$$

$$V = egin{pmatrix} v_x^{i_pred} - v_x^i \ v_y^{i_pred} - v_y^i \end{pmatrix} \; \Sigma = \Sigma_v^{cts} + \Sigma_v^{pred}$$

input:
Radar meas

Vehicle Ego-Motion Estimation

Present Challenges and Limitations

• The results clearly indicate that a time varying bias exist in the output. The probable cause and the bias compensation steps are not yet explored

Alternative methods

- Other alternative methods exist such as maintaining a history of clutter free stationary
 measurements, followed by spatially and temporally aligning the measurements and finally solving a
 least squares problem to estimate the ego-motion.
- Utilizing the positions only by ICP, some variant of ICP (Iterative closest point algorithm), NDT, or some graph optimization based techniques.
- The above techniques are not explored in this project since the radar measurements are quite sparse and the above techniques are computationally expensive

Use-cases

- Short-term odometry from radar ego-motion
- Radar only perception for AD/ADAS etc ...

References

- 1. https://www.researchgate.net/publication/269332200 Instantaneous ego-motion estimation using Doppler radar
- 2. Probabilistic ego-motion estimation using multiple automotive radar sensors

The End