PRIMARY MATERIAL

There are 11 full weeks in the semester and an additional three half-weeks. With this way of counting, the midterm takes place after Week 5.

Wk $1-4$	$\mathbb{C}, \bar{z}, z^2, \sqrt{z}, \text{ argument(s)}, \text{ branches}$	§1–11	Ch 1
	intro to exp, limits and continuity	$\S12-18$	Ch 2
	$1/z$, FLTs/Möbius transformations, $\hat{\mathbb{C}}$	§90–93	Ch 8
	Cauchy–Riemann, analyticity, harmonicity	$\S19-26$	Ch 2
	analytic continuation, reflection principle	$\S 27-28$	Ch 2
Wk $5-6$	exp, log, sin, cos, sinh, cosh as functions	$\S 29-36$	Ch 3
	viewed as transformations; conformality	§95–97, 101–103	Ch 8,9
Wk $7-9$	integration, contour integrals	§37–41	Ch 4
	branch cuts, Cauchy–Goursat Theorem	$\S42-47$	Ch 4
	Cauchy Integral Formula, Liouville's Theorem	$\S48-53$	Ch 4
	Maximum Modulus Principle	$\S 54$	Ch 4
Wk 10	residues and poles, Cauchy's Residue Theorem	$\S68-71$	Ch 6
	classification of singularities, behavior at zeros	$\S72-77$	Ch 6
Wk 11	Riemann surfaces	§99-100	Ch 8

PROJECTS

There will be optional projects available: preparing lectures on material from the text not covered in class, especially from Chapters 5 and 7 if the above schedule holds. Graduate students are strongly encouraged to take on projects.

Possible supplementary topics.

- Taylor and Laurent series
- $\bullet\,$ Absolute and uniform convergence
- Argument Principle and Rouché's Theorem
- Schwarz-Christoffel Transformation
- Dirichlet Problem
- Gamma function, Riemann zeta function (not in book)
- Quasi-conformal functions and Grötzsch's Theorem (not in book)