1. Cho động cơ 1 chiều kích từ độc lập có các thông số sau: $P_{dm} =$

$$31.5(kW)$$
, $n_{rate}=995(rpm)$, $T_{rate}=302(Nm)$, $I_{rate}=90(A)$, Hiệu suất $\eta=79\%$, $R_A=0.65(\Omega)$, $L_A=6.6(mH)$. a. Vẽ đặc tính cơ điện tự nhiên của động cơ

- b. Tính toán điện trở phụ để dòng điện đỉnh lúc khởi động $I_{LR}=2.5I_{rate}$
- c. Giả sử tải thế năng có $T_{Load} = 0.5T_{rate}$.
 - Tính điện trở phụ để hạ tải với vận tốc $n_h = -0.5 n_{rate}$.
 - Vẽ sơ đồ thực hiện và đặc tính cơ điện tương ứng

GIÅI

a. Điện áp định mức của động cơ:

$$U_{dm} = \frac{P_{dm}}{I_{rate}\eta} = \frac{31500}{90 \times 0.79} = 443.04 (V)$$

Tốc độ định mức của động cơ:

$$\omega_{dm} = \frac{n_{rate}}{9.55} = 100 \ (rad/s)$$
 $9.55 \quad 9.55$

Phương trình đặc tình cơ điện: $\omega = \frac{U\underline{a} - R\underline{a}I\underline{a}}{K\phi}$

$$\Rightarrow K\phi = \frac{U_{\text{d}m} - I_{rate} \times R_a}{\omega_{\text{d}m}} \qquad \frac{443.04 - 90 \times 0.65}{100} = 3.85 \ (V. \ s/rad)$$

Phương trình đặc tính cơ:
$$\omega = \frac{U_{\underline{a}} - \underline{\qquad}_{Ra_2} T}{K\phi \qquad (K\phi)}$$

Đặc tính cơ tự nhiên của động cơ là đường thẳng đi qua 2 điểm sau:

• Điểm 1:
$$A(\omega = \omega_0; T=0)$$

$$U_{dm} = 443.04$$

$$\omega = \underline{\qquad} = 115.08(rad/s)$$

$$K\phi = 3.85$$

$$\Rightarrow A (115.08; 0)$$

• Điểm 2: $B(\omega = \omega_{dm}; T = T_{dm})$ $\Rightarrow B (100; 302)$

Từ hai điểm trên, ta có đường đặc tính cơ của động cơ như sau:

b. Chọn dòng điện khởi động lớn nhất: $I_{LR} = 2.5I_{rate} = 2.5 \times 90 = 225$ (A)

Chọn dòng điện khởi động nhỏ nhất: $I_2 = 1.1 I_{rate} = 1.1 \times 90 = 9.9(A)$ Điện trở ứng với giá trị I_{LR} :

$$R_{Max} = \frac{U_{dm}}{I_{LR}} = \frac{443.04}{225} = 1.97(\Omega)$$

Lấy tỉ số các dòng điện khởi động không đổi: $\lambda = \frac{I_{LR}}{9.9} = 2.27$

Điện trở các bậc khởi động:

$$R_1 = \lambda R_A = 2.27 \times 0.65 = 1.4755 \ (\Omega)$$

$$R_2 = \lambda R_1 = 2.27 \times 1.4755 = 3.35 \,(\Omega) > R_{Max}$$

Các điện trở phụ:

$$R_{st1} = R_1 - R_A = 1.48 - 0.65 = 0.83 (\Omega)$$

$$R_{st2} = R_2 - R_1 = 3.35 - 1.48 = 1.87 (\Omega)$$

Sơ đồ thực hiện:

Đường đặc tính cơ điện:

c. Tải thế năng: $T_{load}=0.5T_{rate}=0.5\times302=151(\textit{N. m})$ Vận tốc hạ tải: $\omega_h=-0.5\omega_{rate}=-0.5\times100=-50~(rad/s)$ Áp dụng công thức hãm ngược do thế năng:

$$V_{dm} \quad R_a - R_{adj}$$

$$\omega_h = \underline{\qquad} \quad K\phi - (K\phi)_2 \quad T_L$$

$$\Rightarrow R_{adj} = (\underline{\qquad} - \omega_h) \quad -R_a = (\frac{443.04}{3.85} + 50) \quad -0.65 = 15.56 \; (\Omega)$$

$$T_L = \frac{V_{dm}}{K\phi} \quad -0.65 = 15.56 \; (\Omega)$$

Vậy điện trở phụ để hạ tải với vận tốc -50 rad/s là 15.56 □

Sơ đồ thực hiện:

Đường đặc tính cơ điện:

2. Cho động cơ 1 chiều kích từ độc lập có các thông số sau:

$$P_{\text{dm}}=127 (kW),\, n_{\text{rate}}=1420 (rpm),\, T_{\text{rate}}=885 (Nm),\, I_{\text{rate}}=326 (A),\,\, Hiệu$$
 suất $\eta=91\%,\, R_{A}=0.074 (\Omega),\, L_{A}=1.91 (mH).$

- a. Vẽ đặc tính cơ điện tự nhiên của động cơ.
- b. Giả sử động cơ đang vận hành ở chế độ định mức thì đột ngột giảm một nửa điện áp phần ứng. Hãy tính dòng điện ở thời điểm chuyển trạng thái và vẽ đặc tính cơ điện trong quá trình chuyển điểm làm việc.

GIÅI

a. Điện áp định mức của động cơ:

$$U_{dm} = \frac{P_{dm}}{I_{rate}\eta} = \frac{127000}{326 \times 0.91} = 428.1 (V)$$

Tốc đô đinh mức của đông cơ:

$$\omega_{dm} = \frac{n_{rate}}{9.55} = \frac{1420}{9.55}$$
== 148.69 (rad/s)

Phương trình đặc tình cơ điện: $\omega = U_{\underline{a}-R_{\underline{a}}I_{\underline{a}}}$

$$\Rightarrow K\phi = \frac{U_{\text{d}m} - I_{rate} \times R_a}{s/rad) \ \omega_{\text{d}m}} \frac{428.1 - 326 \times 0.074}{148.69} = 2.717 \ (V.$$

Phương trình đặc tính cơ: $\omega = \kappa \phi^{U}\underline{a} - (\underline{\qquad} \kappa \phi^{Ra})_2 T$

Đặc tính cơ tự nhiên của động cơ là đường thẳng đi qua 2 điểm sau:

• Điểm 1:
$$A(\omega = \omega_0; T=0)$$

$$U_{dm} = 428.1$$

$$\omega = \underline{\qquad} = 157.56(rad/s)$$

$$K\phi = 2.717$$

$$\Rightarrow A (157.56; 0)$$

• Điểm 2: $B(\omega = \omega_{dm}; T = T_{dm})$ $\Rightarrow B (148.69; 885)$

Từ hai điểm trên, ta có đường đặc tính cơ của động cơ như sau:

b. Ở chế độ định mức: đặc tính cơ điện của động cơ là đường thẳng có phương trình:

$$\omega_1 = \frac{U_a - R_a I_a}{\omega_1} = \frac{428.1}{\omega_2} = \frac{0.074}{\omega_2} = 0.074$$
 $K\phi = \frac{I_a = 157.563}{\omega_2 = 157.563}$

 $-0.027I_a$

Giả sử động cơ đang vận hành ở chế độ định mức thì đột ngột giảm một nửa điện áp phần ứng. Đường đặc tính cơ điện tương ứng với điện áp giảm một nửa có phương trình:

$$\omega_2 = 78.782 - 0.027I_a$$

Ở thời điểm chuyển trạng thái:

$$\omega_2 = \omega_1 = 148.69 \ (rad/s)$$

 $\Rightarrow 78.782 - 0.027 I_a = 148.69 \Rightarrow I_a = -2589.185 \ (A)$

Đặc tính cơ điện:

3. Cho động cơ không đồng bộ 3 pha rotor lồng sóc có thông số sau:

$$f_{rate} = 50Hz, \Delta/Y: 230/400V$$

$$P_{rate} = 15kW$$
, $n_{rate} = 1475rpm$, $T_{rate} = 97Nm$, $cos\phi_{rate} = 0.85$, $I_{rate} = 28A$,

Hệ số dòng khởi động: $\lambda_I = I_{rate}I_{LR} = 7.3$

Hệ số mômen khởi động: $\lambda_{LR} = T^{T_{rate}LR} = 2.3$

Hệ số quá tải: $\lambda_B = {}_{Trate}{}^T{}_{\underline{B}} = 3.0$

Coi đoạn đặc tính có $s \le s_{th}$ là thẳng và bỏ qua điện trở stator. a.

Vẽ đường đặc tính cơ tự nhiên của động cơ

- b. Tính tốc độ động cơ khi mômen tải bằng $0.5T_{\text{rate}}$
- c. Nếu điện áp giảm còn $0.5U_{rate}$, động cơ khởi động được với mômen tải trong dải nào?

GIẢI

a. Tốc độ rotor: $n_0 = {}^{60}$ _ p^f với $n_0 \approx n_{rate}$ và $p \in \mathbb{N}$ *

$$\Rightarrow n^{0} = \frac{60f}{p} = \frac{60 \times 50}{2} = 1500 \ (rpm)$$
$$\omega^{0} = \frac{n_{0}}{9.55} = \frac{1500}{9.55} = 157.068 \ (rad/s)$$

Momen tới hạn: $T_B = \lambda_B T_{rate} = 3 \times 97 = 291 \ (N. m)$

Độ trượt động cơ định mức:
$$s_r = \frac{n_{rate} - n_0}{1500 - 1475} = \frac{1}{n_{rate}} - \frac{1}{1500}$$

Coi đoạn đặc tính có $s \le s_{th}$ là thẳng và bỏ qua điện trở stator:

Độ trượt tới hạn:

$$\int_{S_t}^{h} \approx s_r \left(\lambda_B + \sqrt{\lambda_B^2 - 1} \right) = \frac{1}{60} \left(3 + \sqrt{3^2 - 1} \right) = 0.097$$

Áp dụng Phương trình momen giản lược:

$$2T_B$$
 2×291
 $T = \underline{s} + \underline{s}\underline{s}\underline{t}\underline{h} = 0.097\underline{s} + \underline{0.097}\underline{s}$
 S_{th}
 $V \dot{o} i \omega = \omega_0 - \omega_0 \underline{s} = 157.068 - 157.068\underline{s}$

Đặc tính cơ tự nhiên của động cơ đi qua các điểm sau:

- Điểm không tải A: T=0 (Nm) ; s=0 $\Rightarrow \omega = \omega_0 \omega_0 s = 157.068 (rad/s)$ Ta có **A(157.068 ; 0)**
- Điểm định mức B: $T=T_{rate}=97 \text{ (Nm)}$; $s=s_x$

$$2T_B$$
 2×291 $s_x = 0.5654$ $\omega = 68.262 (rad/s)$

$$T_{rate} = \underline{s_x} + \underline{s_{s_{\underline{t}x\underline{h}}}} \Rightarrow 97 = \underline{0.\underline{s}097_{\underline{x}}} + \underline{0.097}_{s_x} \Rightarrow [s_x = 0.0166] \Rightarrow [\omega = 154.461 \ (rad/s)]$$

Sth

$$B_2$$
 (154.461; 97)

• Điểm tới hạn C: T=T_B=291 (Nm); s=s_{th}=0.097

$$\Rightarrow \omega = \omega_0 - \omega_0 s = 141.832 (rad/s)$$

Ta có: C (141.832; 291)
Điểm ngắn mạch D: s=1; T=T_n
 $\Rightarrow \omega = \omega_0 - \omega_0 s = 0 (rad/s)$
 2×291
 $T_n = \frac{0.97}{0.97. + 0.97}$

Đường đặc tính cơ tự nhiên của động cơ:

Ta có: **D** (0; 55.927)

b.
$$T = 0.5T_{rate} = 0.5 \times 97 = 48.5(N.m)$$

 2×291
 $\Rightarrow 48.5 = \Rightarrow s = 0.00814$
 $s = 0.097$
 $0.097 + s$

$$\Rightarrow \omega = \omega_0 - \omega_0 s = 157.068 - 157.068 \times 0.00814 = 155.789 (rad/s)$$

Tốc độ động cơ: $\omega = 155.789 (rad/s)$

c. Ở trạng thái khởi động: $\omega = 0$ hay s = 1

$$= \frac{3V_s^2}{2\omega_0 \left(R_s + \sqrt{R_s^2 + X_{sr}^2}\right)}$$
 Momen tải tới hạn: T_{eMax}

Momen tải khởi động: $T_{start} = \frac{3V_s^2}{2\omega_r(R_s^2 + X_{sr}^2)}$

Với V giảm còn $0.5V_{\text{rate}}$; $T_{\text{eMax}}=0.5^2T_{\text{B}}=0.25 \times 291 = 72.75(N.m)$

 $T_{\text{start}} = 0.5^2 T_{LR} = 0.25 \times 223.1 = 55.775(N.m)$

Vậy động cơ khởi động được với Momen tải trong dải từ 55.775 Nm đến 72.75 Nm

4. Cho động cơ không đồng bộ 3 pha rotor lồng sóc có thông số sau:

$$f_{\text{rate}} = 50 \text{Hz}, \, \Delta/Y : 230/400V$$

$$P_{rate} = 18.5 \text{kW}, n_{rate} = 2955 \text{rpm}, T_{rate} = 60 \text{Nm}, cos \phi_{rate} = 0.88, I_{rate} = 33.5 \text{A},$$

Hệ số dòng khởi động:
$$\lambda_I = I_{ra}I_{LR_{te}} = 7.9$$

Hệ số mômen khởi động:
$$\lambda_{LR} = T^{T_{rate}LR} = 2.9$$

Hệ số quá tải:
$$\lambda_B = {}_{Trate}{}^{T}{}_{\underline{B}} = 3.6$$

Coi đoạn đặc tính có $s \le s_{th}$ là thẳng và bỏ qua điện trở stator. a.

Vẽ đường đặc tính cơ tự nhiên của động cơ.

b. Vẽ đường đặc tính cơ khi giảm điện áp còn 50% giá trị định mức.

GIÅI

a. Tốc độ rotor: $n_0 = {}^{60}$ _ p^f với $n_0 \approx n_{rate}$ và $p \in \mathbb{N} *$

$$\int_{0}^{\infty} \frac{60f}{p} = \frac{60 \times 50}{1} = 3000 \ (rpm)$$

$$\int_{0}^{\infty} \frac{n_0}{9.55} = \frac{3000}{9.55} = 314.14 \ (rad/s)$$

Momen tới hạn:
$$T_B = \lambda_B T_{rate} = 3.6 \times 60 = 216 \ (N.m)$$

Độ trượt động cơ định mức:
$$s_r = \frac{n_{rate} - n_0}{1000 - 2955} = 0.015_{nrate} - \frac{1000}{1000}$$

Coi đoạn đặc tính có $s \le s_{th}$ là thẳng và bỏ qua điện trở stator:

Đô trươt tới han:

$$s_t^h \approx s_r \left(\lambda_B + \sqrt{{\lambda_B}^2 - 1} \right) = 0.015 \left(3.6 + \sqrt{3.6^2 - 1} \right) = 0.1059$$

Áp dụng Phương trình momen giản lược:

$$2T_B$$
 2×216

$$T = \underline{s}^{+} \underline{s}\underline{s}\underline{t}\underline{h} = 0.1059\underline{s}^{+} \underline{0.1059}\underline{s}$$

Với
$$\omega = \omega_0 - \omega_0 s = 314.14 - 314.14s$$

Đặc tính cơ tự nhiên của động cơ đi qua các điểm sau:

- Điểm không tải A: T=0 (Nm) ; s=0 $\Rightarrow \omega = \omega_0 \omega_0 s = 314.14 (rad/s)$ Ta có A(314.14 ; 0)
- Điểm định mức B: $T=T_{rate}=60 \text{ (Nm)}$; $s=s_x$

$$T_{rate} = \underbrace{\frac{2T_B}{s_x + \underline{s}_{S_{\underline{t}x\underline{h}}}}}_{S_{th}} \Rightarrow 60 = \underbrace{\frac{2 \times 216}{0.1059s_x + \underline{0.1059}}}_{S_{th}} s_x = 0.7475 \qquad \omega = 79.32 \; (rad/s)$$

• Điểm tới hạn C:
$$T=T_B=216 \text{ (Nm)}$$
; $s=s_{th}=0.1059$
 $\Rightarrow \omega = \omega_0 - \omega_0 s = 280.87 (rad/s)$
Ta có: **C** (**280.87**; **216**)
Điểm ngắn mạch D: $s=1$; $T=T_n$
 $\Rightarrow \omega = \omega_0 - \omega_0 s = 0 (rad/s)$
 2×216
 $T_n = \frac{1}{1059} \frac{1050}{1} = 45.24 (N. m)$

Ta có: **D** (0; 45.24)

Đường đặc tính cơ tự nhiên của động cơ:

0.

b. Khi điện áp giảm còn 50%:

Tốc độ rotor không đổi: $\omega_0 = 314.14 \ (rad/s)$

Độ trượt tới hạn không đổi: $s_{th} = 0.1059$

Momen tới hạn: $T_B = 0.5^2 \times 216 = 54 (N. m)$

Áp dụng Phương trình momen giản lược:

$$2T_B$$
 2×54

$$T = \underline{s} + \underline{s}s_{th} = 0.\overline{1059s} + \underline{0.1059s}$$

Với $ω = ω_0 - ω_0 s = 314.14 - 314.14s$

Với s=1~0, ta có bảng sau:

S	0	0.1	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
			059									
T	0	53.	54	44.	33.	26.	21.	18.	15.	14.	12.	11.
		911		664	900	720	892	486	973	050	534	310
	214	202	200	251	210	100	157	125	04.2	62.9	21.4	0
ω	314.	282.	280.	251.							31.4	U
	140	726	873	312	898	484	070	656	420	280	140	

Đường đặc tính cơ tự nhiên của động cơ:

