Proof nets for first-order additive linear logic

Willem Heijltjes University of Bath Dominic Hughes
UC Berkeley

Lutz Straßburger Inria Saclay

 $3rd\,MLA\,Workshop-Nancy-March\,11\text{--}14,2019$

Additive linear logic

Formulas

$$A ::= a \mid \overline{a} \mid A + A \mid A \times A$$

Additive linear logic

Formulas

$$\mathsf{A} \; ::= \; \mathsf{a} \; \mid \; \overline{\mathsf{a}} \; \mid \; \mathsf{A} + \mathsf{A} \; \mid \; \mathsf{A} \times \mathsf{A}$$

Sequents

 $\vdash A, B$

Additive linear logic

Formulas

$$A ::= a \mid \overline{a} \mid A + A \mid A \times A$$

Sequents

Proofs

$$\frac{}{\vdash a, \overline{a}}^{\text{ax}} \qquad \frac{\vdash A, B_i}{\vdash A, B_1 + B_2} + R, i \qquad \frac{\vdash A, B \quad \vdash A, C}{\vdash A, B \times C} \times R$$

Compact: Proof search on \vdash A, B is $\mathcal{O}(|A| \times |B|)$ propositionally¹, and *NP-complete* for first-order²

```
Compact: Proof search on \vdash A, B is \mathcal{O}(|A| \times |B|) propositionally<sup>1</sup>, and NP-complete for first-order<sup>2</sup>
```

```
Rich: Additives +/\times (binary choice),

Duality \overline{\overline{A}} = A (player/opponent),

meta-level linear implication/par \vdash A, B (parallellism)
```

Compact: Proof search on $\vdash A, B$ is $\mathcal{O}(|A| \times |B|)$ propositionally¹, and *NP-complete* for first-order²

Rich: Additives $+/\times$ (binary choice), Duality $\overline{\overline{A}} = A$ (player/opponent), meta-level linear implication/par $\vdash A$, B (parallellism)

Interesting: Two-player parallel games,
Communication along a two-way channel,
the Blass problem (sequential strategies don't compose
associatively)³

Compact: Proof search on $\vdash A, B$ is $\mathcal{O}(|A| \times |B|)$ propositionally¹, and *NP-complete* for first-order²

Rich: Additives $+/\times$ (binary choice), Duality $\overline{\overline{A}} = A$ (player/opponent), meta-level linear implication/par $\vdash A$, B (parallellism)

Interesting: Two-player parallel games,
Communication along a two-way channel,
the Blass problem (sequential strategies don't compose
associatively)³

Well-behaved: Canonical proof nets⁴, also with units⁵, Fixed-point formulae (mu-lattice hierarchy)⁶

 1 [Galmiche & Marion 1995] 2 [Heijltjes & Hughes 2015] 3 [Abramsky 2003] 4 [Hughes & Van Glabbeek 2005] 5 [Heijltjes 2011] 6 [Santocanale 2002]

Proof net = sequent + linking

Proof net = sequent + linking

$$(\overline{a} + \overline{b}) \times (\overline{a} + \overline{c})$$

$$- \overline{a}, \underline{a}^{ax} + \overline{b}, \underline{a}^{+R,1} + \overline{b}, \underline{b} + \underline{c}^{+R,1} + \overline{b}, \underline{b} + \underline{c}^{+R,2} + \overline{a} + \overline{b}, \underline{a} \times (\underline{b} + \underline{c})$$

$$- \overline{a} \times (\underline{b} + \underline{c})$$

$$- \overline{a} \times (\underline{b} + \underline{c}) + \overline{a} \times (\underline{b} + \underline{c})$$

$$- \overline{a} \times (\underline{b} + \underline{c}) + \overline{a} \times (\underline{b} + \underline{c})$$

$$- \overline{a} \times (\underline{b} + \underline{c}) + \overline{a} \times (\underline{b} + \underline{c}) + \overline{a} \times (\underline{b} + \underline{c}) + \overline{a} \times (\underline{b} \times \underline{c}) + \underline{a} \times (\underline{b$$

More examples:

Proof net = sequent + linking

More examples:

These generate all additive proof nets.

Proof net = sequent + linking

Proof net = sequent + linking

Cut elimination = relational composition

(1) Slicing:

[Hughes & Van Glabbeek 2003]

(1) Slicing:

[Hughes & Van Glabbeek 2003]

$$(\overline{a} + \overline{b}) \times (\overline{a} + \overline{c})$$

$$a \times (b + c)$$

(1) Slicing:

[Hughes & Van Glabbeek 2003]

(1) Slicing:

[Hughes & Van Glabbeek 2003]

$$(\overline{a} + \overline{b}) \times (\overline{a} + \overline{c})$$

$$a \times (b + c)$$

(1) Slicing:

[Hughes & Van Glabbeek 2003]

$$(\overline{a} + \overline{b}) \times (\overline{a} + \overline{c})$$
 $a \times (b + c)$

(1) Slicing:

[Hughes & Van Glabbeek 2003]

$$(\overline{a} + \overline{b}) \times (\overline{a} + \overline{c})$$

$$a \times (b + c)$$

(1) Slicing:

[Hughes & Van Glabbeek 2003]

(2) Coalescence:

[Heijltjes & Hughes 2015]

additive linear logic

Formulas

$$A ::= a \mid \overline{a} \mid A + A \mid A \times A$$

Sequents

$$\vdash A, B$$

Proofs

$$\frac{\vdash A, B_i}{\vdash A, B_{\bar{a}}} \xrightarrow{\text{PR}, i} \frac{\vdash A, B \vdash A, C}{\vdash A, B \times C} \times R$$

First-order additive linear logic

Formulas

$$A ::= a \mid \overline{a} \mid A + A \mid A \times A \mid \exists x.A \mid \forall x.A$$

$$a ::= P(t_1, \dots, t_n)$$

$$t ::= f(t_1, \dots, t_n) \mid x$$

Sequents

$$\vdash A, B$$

Proofs

$$\frac{\vdash A, B_i}{\vdash A, B_1 + B_2} + R, i \qquad \frac{\vdash A, B \vdash A, C}{\vdash A, B \times C} \times R$$

$$\frac{\vdash A, B[t/x]}{\vdash A, \exists x.B} \exists R, t \qquad \frac{\vdash A, B}{\vdash A, \forall x.B} \, \forall R \, (x \notin FV(A))$$

What is first-order quantification in proofs?

Commonly: expansion + substitution¹

$$\exists x.A \quad \Rightarrow \quad A[t_1/x] + \ldots + A[t_n/x]$$

What is first-order quantification in proofs?

$$\exists x.A \Rightarrow A[t_1/x] + \ldots + A[t_n/x]$$

$$\frac{\overline{\vdash \overline{P}(s), P(s)}}{\vdash \exists x.\overline{P}(x), P(s)} \xrightarrow{\exists R,s} \frac{\overline{\vdash \overline{P}(t), P(t)}}{\vdash \exists x.\overline{P}(x), P(t)} \xrightarrow{\exists R,t}$$

$$\vdash \exists x.\overline{P}(x), P(s) \times P(t)$$

¹For classical logic: [Herbrand 1930, Miller 1987, Heijltjes 2010]

What is first-order quantification in proofs?

Commonly: expansion + substitution¹

$$\begin{array}{ccc} \exists x.A & \Rightarrow & A[t_1/x] + \ldots + A[t_n/x] \\ \\ & \frac{\overline{\vdash \overline{P}(s), P(s)}}{\vdash \exists x.\overline{P}(x), P(s)} & \frac{\overline{\vdash \overline{P}(t), P(t)}}{\vdash \exists x.\overline{P}(x), P(t)} \\ \\ & \vdash \exists x.\overline{P}(x), P(s) \times P(t) \end{array}$$

Problem: Incompatible with sequent + linking and relational composition

Both expansion and substitution destroy the original formula

¹For classical logic: [Herbrand 1930, Miller 1987, Heijltjes 2010]

Two solutions

$$\frac{ \overline{ \vdash \overline{P}(s), P(s)} }{ \vdash \exists x. \overline{P}(x), P(s)} \underset{\exists R, s}{\exists_{R, s}} \frac{ \overline{ \vdash \overline{P}(t), P(t)} }{ \vdash \exists x. \overline{P}(x), P(t)} \underset{\times R}{\exists_{R, t}}$$

Witness nets: explicit substitution

$$\exists x. \overline{P}(x)$$

$$[t/x]$$

$$P(s) \times P(t)$$

Unification nets: first-order unification¹

$$\exists x.\overline{P}(x)$$
 $P(s) \times P(t)$

¹For MLL: [Hughes 2018]

Proof identity

If any witness will do, is the choice significant?

$$\frac{\overline{\vdash P(s), \overline{P}(s)}}{\vdash \exists x. P(x), \exists y. \overline{P}(y)} \quad \stackrel{?}{\equiv} \quad \frac{\overline{\vdash P(t), \overline{P}(t)}}{\vdash \exists x. P(x), \exists y. \overline{P}(y)}$$

Proof identity

If any witness will do, is the choice significant?

$$\frac{\overline{\vdash P(s), \overline{P}(s)}}{\vdash \exists x. P(x), \exists y. \overline{P}(y)} \quad \stackrel{?}{=} \quad \frac{\overline{\vdash P(t), \overline{P}(t)}}{\vdash \exists x. P(x), \exists y. \overline{P}(y)}$$

What if the quantifier is vacuous?

$$\frac{\overline{\vdash P, \overline{P}}}{\vdash \exists x. P, \overline{P}} \exists R, s \quad \stackrel{?}{=} \quad \frac{\overline{\vdash P, \overline{P}}}{\vdash \exists x. P, \overline{P}} \exists R, t$$

Proof identity

If any witness will do, is the choice significant?

$$\frac{\overline{| -P(s), \overline{P}(s)|}}{| -\exists x. P(x), \exists y. \overline{P}(y)|} \quad \stackrel{?}{\equiv} \quad \frac{\overline{| -P(t), \overline{P}(t)|}}{| -\exists x. P(x), \exists y. \overline{P}(y)|}$$

What if the quantifier is vacuous?

$$\frac{\overline{\vdash P, \overline{P}}}{\vdash \exists x.P, \overline{P}} \exists R, s \quad \stackrel{?}{=} \quad \frac{\overline{\vdash P, \overline{P}}}{\vdash \exists x.P, \overline{P}} \exists R, t$$

What if a quantified variable occurs only in a weakened formula?

$$\frac{\overline{\vdash P, \overline{P}}}{\vdash P + Q(s), \overline{P}} \stackrel{+R,1}{\vdash \exists x. P + Q(x), \overline{P}} \stackrel{\exists R,s}{=} \frac{\overline{\vdash P, \overline{P}}}{\vdash P + Q(t), \overline{P}} \stackrel{+R,1}{\vdash \exists x. P + Q(x), \overline{P}} \stackrel{\exists R,t}{=}$$

Generality

Witness nets: make *none* of these identifications (like sequent calculus)

Unification nets: make *all* of these identifications

Witness nets and Unification nets

Witness net = sequent + linking with substitution

Witness nets and Unification nets

Witness net = sequent + linking with substitution

Unification net = sequent + linking

Witness nets and Unification nets

Witness net = sequent + linking with substitution

Unification net = sequent + linking

(such that "sequent + linking with mgu" forms a witness net)

Coalescence for witness nets (rewrite rules)

$$\overline{\vdash \overline{P}(x,s), P(x,s)} \qquad \overline{\vdash \overline{P}(x,t), P(x,t)}$$

$$\frac{\overline{\vdash \overline{P}(x,s), P(x,s)}}{\vdash \exists y. \overline{P}(x,y), P(x,s)} \exists R,s} \vdash \overline{\overline{P}(x,t), P(x,t)}$$

$$\frac{\overline{| \overline{P}(x,s), P(x,s)}}{| \overline{\exists y.\overline{P}(x,y), P(x,s)}} \exists R,s \qquad \frac{\overline{| \overline{P}(x,t), P(x,t)}}{| \overline{\exists y.\overline{P}(x,y), P(x,t)}} \exists R,t$$

$$\frac{\overline{\vdash \overline{P}(x,s), P(x,s)}}{\vdash \exists y. \overline{P}(x,y), P(x,s)} \xrightarrow{\exists R,s} \frac{\overline{\vdash \overline{P}(x,t), P(x,t)}}{\vdash \exists y. \overline{P}(x,y), P(x,t)} \xrightarrow{\exists R,t} \\ \vdash \exists y. \overline{P}(x,y), P(x,s) \times P(x,t)$$

$$\frac{ \frac{\overline{P}(x,s), P(x,s)}{\overline{P}(x,y), P(x,s)}_{\exists Y.\overline{P}(x,y), P(x,s)} \xrightarrow{\exists R,s} \frac{\overline{P}(x,t), P(x,t)}{\overline{P}(x,y), P(x,t)}_{\exists Y.\overline{P}(x,y), P(x,s)}_{\exists R,x}}{\frac{\overline{P}(x,y), P(x,s) \times P(x,t)}{\overline{P}(x,y), \exists z. P(z,s) \times P(z,t)}_{\exists R,x}}$$

$$\forall x. \exists y. \overline{P}(x,y)$$

$$\exists z. P(z,s) \times P(z,t)$$

$$\frac{ \overline{\vdash \overline{P}(x,s), P(x,s)}}{\vdash \exists y. \overline{P}(x,y), P(x,s)} \xrightarrow{\exists R,s} \frac{\overline{\vdash \overline{P}(x,t), P(x,t)}}{\vdash \exists y. \overline{P}(x,y), P(x,t)} \xrightarrow{\exists R,t} \\ \frac{\vdash \exists y. \overline{P}(x,y), P(x,s) \times P(x,t)}{\vdash \exists y. \overline{P}(x,y), \exists z. P(z,s) \times P(z,t)} \xrightarrow{\exists R,x} \\ \frac{\vdash \exists y. \overline{P}(x,y), \exists z. P(z,s) \times P(z,t)}{\vdash \forall x. \exists y. \overline{P}(x,y), \exists z. P(z,s) \times P(z,t)} \xrightarrow{\forall R}$$

Correctness conditions:

local eigenvariables

Correctness conditions:

local eigenvariables

- local eigenvariables
- exact coverage

- local eigenvariables
- exact coverage
- slice-correctness (every slice is a singleton)

- local eigenvariables
- exact coverage
- slice-correctness (every slice is a singleton)
- dependency-correctness (dependency relation for each link is a partial order)

Composition / cut elimination

Summary

	Monomial nets ¹	Witness nets ²	Unification nets ²
Canonicity	?	✓	√
Generality	X	×	✓
Direct composition	n X	✓	✓
Coalescence	?	✓	✓
Slicing	✓	✓	?

Summary

	Monomial nets ¹	Witness nets ²	Unification nets ²
Canonicity	?	✓	√
Generality	X	×	✓
Direct composition	n X	✓	✓
Coalescence	?	✓	✓
Slicing	✓	✓	?

