Principles of Java Multithreaded Programming

Table Of Contents

Overview

- Why Java
- Parallelism vs. Asynchronous
- Process vs. Thread
- Quick note about Java 8 Lambda Expressions

Java Threads

- Runnable Interface
 - Example
- Sleep, Interrupts, Join
 - Sleep
 - Interrupts
 - Example
 - Creating Interrupts
 - Join
 - Example
- Thread Pools
 - What Do Thread Pools Do?
 - The Optimal Thread Pool Size
 - Little's Law
- Executor Interface
 - Types of Executors
 - Fixed Thread Pool
 - Fork/Join Pool

Java Memory Models

- Thread Sate
- Shared Vs. Local Variables
- Java Object Models
- One Thread / One Object
 - Example
- Multiple Threads / One Object
 - Example
- Locks and Atomic Variables in Java
- Synchronized
- Synchronized Methods

- Example
- Memory Model
- Synchronized Statements
 - Example
- Memory Model
- Example
- Dangers of Improper Locking
- Final Note about Synchronized
- Volatile
- Volatile Cons
 - Example
- Volatile Performance v. Synchronized Performance
 - The Cost of a Volatile Cache flush

Atomic Operations

- Atomic Primatives
- Atomic Class Methods
- LongAdder, LongAccumulator

Futures (Java 8)

- Futures Continued
- Batching Futures

Concurrent Collections

- Common Concurrent Collections
- Java Strings
- Different String Alternatives
- String Alternatives Comparison

Resources

- References
- Thank You

Excluded

Implementation Details of the Java Compiler

- Ordering of Events
- Happens Before
- Expectations
- Compiler Transformations (Practical Example)
 - Example
 - Transformed Example
- How Volatile can help

Immutability

- Final Fields
- Final Field Compiler Optimizations
- Final Field Intialization
 - Example

Software Design Patterns, Tips, and Tricks

- Thread Save Lazy Loading
- Properties that Must hold True for a Multi-Threaded Singleton
- Double Check Locking
 - Example
 - Example
 - Example
- Multi-threaded lazy loading with Java Language Tricks