

Variation and Conservation in MSAs: Positional Prefix and Divergence Arrays

Algorithms for Sequence Analysis

Sven Rahmann

Summer 2021

Overview

Previously

Building Multiple Sequence Alignments (MSAs)

Today

How can we use multiple sequence alignments once we have them?

- MSAs have the potential to represent genetic diversity in a population
- Calling variants for each sample relative to a reference genome implicitly constructs an MSA with the reference genome at its center

Indexing a Collection of Sequences

In order to use an MSA, we need efficient ways of searching it.

Applications

- Searching for common sequences
- Compressing the whole collection / MSA
- Finding intervals that are conserved between many samples

Literature

Richard Durbin. Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT). Bioinformatics, 30(9), pp. 1266-72, 2014.

Tools we have so far

Approach

Use generalized suffix tree, suffix array, or BWT/FM index

Reminder: Generalized Index

- 1 Concatenate sequences: $S = s_1 \$_1 s_2 \$_2 \dots s_n \$_n$
- 2 Build your favorite index on S

Disadvantages

- Does not take alignment of sequences into account,
 i.e. no notion of a common position or a common occurrence of a substring.
- Cannot exploit alignment for compression

AGATAGTTGCTTTAA-CCTAATGGACAGAT-CTGCTCTGTGACGCCGGGT AGATAGTTACTTTAAGCCTAATGGACAGAT-CTGCTCTGTGACGCCGGGT AGATAGTTGCTTTAA-CCTAATGGACAGATGCTGCTCTGTGACGCCGGGT AGATAGTTGCTTTAA-CCTAATGGACAGATGCTGCTCTGTGACGCCGGGT AGATAGTTGCTTTAAGCCTAATGGACAGATGCTGCTCTGTGAAGCCGGGT

AGATAGTTGCTTTAA - CCTAATGGACAGAT - CTGCTCTGTGACGCCGGGT
AGATAGTTACTTTAAGCCTAATGGACAGAT - CTGCTCTGTGACGCCGGGT
AGATAGTTACTTTAAGCCTAATGGACAGATGCTGCTCTGTGACGCCGGGT
AGATAGTTGCTTTAA - CCTAATGGACAGATGCTGCTCTGTGACGCCGGGT
AGATAGTTGCTTTAA - CCTAATGGACAGATGCTGCTCTGTGACGCCGGGT
AGATAGTTGCTTTAAGCCTAATGGACAGATGCTGCTCTGTGAAGCCGGGT

AGATAGTTGCTTTAA - CCTAATGGACAGAT - CTGCTCTGTGACGCCGGGT
AGATAGTTACTTTAAGCCTAATGGACAGAT - CTGCTCTGTGACGCCGGGT
AGATAGTTACTTTAAGCCTAATGGACAGATGCTGCTCTGTGACGCCGGGT
AGATAGTTGCTTTAA - CCTAATGGACAGATGCTGCTCTGTGACGCCGGGT
AGATAGTTGCTTTAA - CCTAATGGACAGATGCTGCTCTGTGACGCCGGGT
AGATAGTTGCTTTAAGCCCTAATGGACAGATGCTGCTCTGTGAAGCCGGGT

AGATAGTTGCTTTAA - CCTAATGGACAGAT - CTGCTCTGTGACGCCGGGT
AGATAGTTACTTTAAGCCTAATGGACAGAT - CTGCTCTGTGACGCCGGGT
AGATAGTTACTTTAAGCCTAATGGACAGATGCTGCTCTGTGACGCCGGGT
AGATAGTTGCTTTAA - CCTAATGGACAGATGCTGCTCTGTGACGCCGGGT
AGATAGTTGCTTTAA - CCTAATGGACAGATGCTGCTCTGTGACGCCGGGT
AGATAGTTGCTTTAAGCCTAATGGACAGATGCTGCTCTGTGAAGCCGGGT

AGATAGTTGCTTTAA - CCTAATGGACAGAT - CTGCTCTGTGACGCCGGGT
AGATAGTTACTTTAAGCCTAATGGACAGAT - CTGCTCTGTGACGCCGGGT
AGATAGTTACTTTAAGCCTAATGGACAGATGCTGCTCTGTGACGCCGGGT
AGATAGTTGCTTTAA - CCTAATGGACAGATGCTGCTCTGTGACGCCGGGT
AGATAGTTGCTTTAA - CCTAATGGACAGATGCTGCTCTGTGACGCCGGGT
AGATAGTTGCTTTAAGCCTAATGGACAGATGCTGCTCTGTGAAGCCGGGT

Haplotype Panel:

0000

Set of Haplotype Sequences (Haplotype Panel)

Given

Set X of M haplotype sequences over $\Sigma = \{0, 1\}$, each of them with N sites

Note

Here we assume a binary alphabet, but the ideas extend to larger alphabets as well. (See Mäkinen and Norri, 2019, https://doi.org/10.1016/j.ipl.2019.02.003).

Reversed Prefix Sorting

Reminder: Suffix Array

```
0123456
s = banana$
    pos[r]
              s[pos[r]..]
    6
    5
              a$
    3
              ana$
3
              anana$
    0
              banana$
    4
              na$
              nana$
```

The suffix array contains the starting positions of all suffixes in lexicographic order.

New Concept: Reversed Prefix Sorting

Pick a prefix length k.

Consider the *k*-prefixes and sort their **reverses** lexicographically.

Reversed Prefix Sorting: Why?

Observations

- Matches between two sequences are adjacent in the sorting,
- ... comparable to the sorted suffixes in the suffix array,
- ... but here the matches are positional/aligned.

unsorted:

k ⊥

- 0 0010 11
- 1 1000 10
- 2 1100 00
- 3 0100 01

unsorted:		sorted:	
	k	k	
0 00	10 11	1000 10	
	00 10	0100 01	
	00 00 00 01	1100 00 0010 11	

$$a_k[0] = 1$$
, $a_k[1] = 3$
 $a_k[2] = 2$, $a_k[3] = 0$

$$a_k = egin{pmatrix} 1 \ 3 \ 2 \ 0 \end{pmatrix}$$

Definition: Positional prefix array

For an input set of strings $x_0, \ldots, x_{M-1} \in \Sigma^N$, the **positional prefix array** a_k for position k lists the sequence indices in lexicographic order with respect to the **reversed prefix** of the length-k prefixes:

$$rev(x_{a_k[0]}[0..k)) \le rev(x_{a_k[1]}[0..k)) \le \cdots \le rev(x_{a_k[M-1]}[0..k))$$

Reminder: Induced Sorting Idea for Suffix Arrays

Code: Building a_{k+1} from a_k

```
def build_reverse_prefix_array_column(X, k, a_k):
    """Take a_k and return a_{k+1}."""
    M = len(X)  # number of strings
    a = [[],[]]  # a[0] and a[1] are both empty lists
    for r in range(M):
        i = a_k[r]  # index of string at rank r
        j = int(X[i][k])  # 0 or 1?
        a[j].append(i)  # put i into correct list a[j]
    return a[0] + a[1]  # concatenate lists
```


Code: Complete procedure

```
def build_reverse_prefix_array(X):
     M = len(X) # number of strings
     N = len(X[0]) # number of columns
     # column 0 of prefix array: same order as input
     a = [list(range(M))] # [[0,1,...,M-1]]
     for k in range(N):
          # Build a[k+1] from a[k]
          a_next = build_reverse_prefix_array_column(X, k, a[k])
          a.append(a_next)
     return a
10
```


The Divergence Array

Reminder: LCP Array

```
pos[r]
             lcp[r]
                     s[pos[r]..]
                                                  0123456
r
    6
                                              s = banana$
    5
                     a$
    3
                     ana$
3
                     anana$
    0
                     banana$
                     na$
                     nana$
             -1
```

The longest common prefix (LCP) array at rank r contains the length of the longest common prefix between the suffixes at ranks r and r-1.

The Divergence Array

Definition

 $d_k[i]$: leftmost column j such that $y_i[j,k) = y_{i-1}[j,k)$, where $y_i := x_{a_k[i]}$.

The Divergence Array

Definition

 $d_k[i]$: leftmost column j such that $y_i[j,k) = y_{i-1}[j,k)$, where $y_i := x_{a_k[i]}$.

Example for k = 4

- 0123 k
- y₀ 1000 10
- y₁ 0100 01
- y₂ 1100 00
- y₃ 0010 11

$$d_k[i] = \begin{pmatrix} 4 \\ 2 \\ 1 \\ 3 \end{pmatrix}$$

Note

 $d_k[0] = k$ by definition, corresponding to an "empty common string".

Common Reverse Prefix between y_i and y_j

Observation

Start of maximal match between y_i and y_j : $\max_{i < m \le j} d_k[m]$

Example

```
01234567890123456 k
y<sub>0</sub> 00110000010000010 0
y<sub>1</sub> 0100000010100010 1
y<sub>2</sub> 00110000110100010 1
y<sub>3</sub> 00010000101100010 0
y<sub>4</sub> 10010000101100010 0
```


Common Reverse Prefix between y_i and y_j

Observation

Start of maximal match between y_i and y_j : $\max_{i < m \le j} d_k[m]$

Example

```
01234567890123456 k
y<sub>0</sub> 00110000010000010 0
y<sub>1</sub> 0100000010100010 1
y<sub>2</sub> 00110000110100010 1
y<sub>3</sub> 00010000101100010 0
y<sub>4</sub> 10010000101100010 0
```

```
d_k[1] = 12

d_k[2] = 9

d_k[3] = 11

d_k[4] = 1
```

start of maximal match of y_0 and y_4 :

$$\max_{0 < m \le 4} d_k[m] = 12$$

Code: Efficiently Building Divergence Arrays

```
def build_divergence_array(X, a):
     M, N = len(X), len(X[0]) # number of strings, columns
     D = [[0] * M] # [[0, ..., 0]]
      for k in range(N):
          # compute d = D[k+1] from D[k]
          d = [ [] for _ in range(2) ] # two empty lists
          maxima = [k+1] * 2 # [k+1, k+1]
          for r in range(M):
              i = a[k][r] # index of string at rank r
              maxima = [max(D[k][r], maxima[q]) for q in range(2)]
10
              j = int(X[i][k])
11
              d[j].append(maxima[j])
12
              maxima[i] = 0
13
          D.append(d[0] + d[1])
14
      return D
15
```


Application: Finding all length-*L* matches within *X*

Idea: Finding all length-*L* matches

- Matches are adjacent in the reverse prefix sorting
- For each column k:
 - Iterate through d_k to find runs of matches of length L

Code: Finding all length-L matches

```
def length_L_matches(a, d, L):
      M = len(a[0]) # number of strings
      for k, (a_k, d_k) in enumerate(zip(a,d)):
          start = None
          for r in range(M):
              # match between row r-1 and r ending in column k-1?
              if d k[r] <= k - L:
                  if start is None: start = r-1
              else:
                  if start is not None:
10
                       # yield (interval, [row indices]):
11
                       vield ( (k-L, k),
12
                         [a_k[r] for r in range(start, r)] )
13
                       start = None
14
          # any matches that include the last row?
15
          if start is not None:
16
              vield ((k-L,k), [a_k[r] for r in range(start, M)])
17
```

Running time: Finding all length-L matches

```
for k, (a_k, d_k) in enumerate(zip(a,d)):
    ...

for r in range(M):
    ...

if start is not None:
    yield (k-L, k), [a_k[r] for r in range(start, r)]
    ...

if start is not None:
    yield (k-L,k), [a_k[r] for r in range(start, M)]
```

```
O(NM + Z), where
```

- N: number of sites
- *M*: number of sequences in *X*
- Z: number of length-L matches (output size)

Summary

- MSA gives rise to 2D matrix of (today: binary) characters
- Index structures:
 - **Positional prefix array** a_k is related to suffix arrays, but with reversed prefixes instead
 - **Divergence array** d_k is related to longest common prefix arrays, also with reversed prefixes
- Application: Length-L matches

Possible Exam questions

- How are haplotype panels related to multiple sequence alignments?
- What is a positional prefix array?
- What are commonalities/differences to a suffix array?
- **Explain** how to build the positional prefix arrays for all columns in O(MN) time.
- How does this algorithm relate to induced sorting?
- Define the divergence array.
- What are commonalities and differences between the divergence array and the LCP array?
- How can the divergence array be constructed efficiently?
- Explain how to find all positional length-*L* matches in a binary matrix *X*.

