mains-jee2

1. Considering only the principal values of the inverse trigonometric functions, the value of

$$\tan\left(\sin^{-1}\left(-\frac{3}{5}\right) - 2\cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right)$$

is

- $(A) \ \frac{7}{24}$
- (B) $-\frac{7}{24}$
- (C) $-\frac{5}{24}$ (D) $\frac{5}{24}$
- 2. Let

$$S = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x \ge 0, y \ge 0, y^2 \le 4x, y^2 \le 12 - 2x, \text{ and } 3y + \sqrt{8}x \le 5\sqrt{8}\}.$$

If the area of the region S is $\alpha\sqrt{2}$, then α is equal to

- (A) $\frac{17}{2}$
- (B) $\frac{17}{3}$
- (C) $\frac{17}{4}$
- (D) $\frac{17}{5}$
- 3. Let $k \in \mathbb{R}$. If

$$\lim_{x \to 0^+} (\sin(\sin kx) + \cos x + x)^{\frac{2}{x}} = e^6,$$

then the value of k is

- (A) 1
- (B) 2

- (C) 3
- (D) 4
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{\pi}{x^2}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Then which of the following statements is TRUE?

- (A) f(x) = 0 has infinitely many solutions in the interval $\left(\frac{1}{10^{10}}, \infty\right)$.
- (B) f(x) = 0 has no solutions in the interval $(\frac{1}{\pi}, \infty)$.
- (C) The set of solutions of f(x) = 0 in the interval $\left(0, \frac{1}{10^{10}}\right)$ is finite.
- (D) f(x) = 0 has more than 25 solutions in the interval $\left(\frac{1}{\pi^2}, \frac{1}{\pi}\right)$.
- 5. Let S be the set of all $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}$ such that

$$\lim_{x \to \infty} \frac{\sin(x^2)(\log x)^{\alpha} \sin\left(\frac{1}{x^2}\right)}{x^{\alpha}(\log(1+x))^{\beta}} = 0.$$

Then which of the following is (are) correct?

- (A) $(-1,3) \in S$
- (B) $(-1,1) \in S$
- (C) $(1,-1) \in S$
- (D) $(1, -2) \in S$
- 6. A straight line drawn from the point P(1,3,2), parallel to the line

$$\frac{x-2}{1} = \frac{y-4}{2} = \frac{z-6}{1}$$

intersects the plane $L_1: x-y+3z=6$ at the point Q. Another straight line which passes through Q and is perpendicular to the plane L_1 intersects the plane $L_2: 2x-y+z=-4$ at the point R. Then which of the following statements is (are) TRUE?

- (A) The length of the line segment PQ is $\sqrt{6}$.
- (B) The coordinates of R are (1,6,3).
- (C) The centroid of the triangle PQR is $(\frac{4}{3}, \frac{5}{3}, \frac{3}{3})$.
- (D) The perimeter of the triangle PQR is $\sqrt{2} + \sqrt{6} + \sqrt{11}$.

- 7. Let A_1, B_1, C_1 be three points in the xy-plane. Suppose that the lines A_1C_1 and B_1C_1 are tangents to the curve $y^2 = 8x$ at A_1 and B_1 , respectively. If O = (0,0) and $C_1 = (-4,0)$, then which of the following statements is (are) TRUE?
 - (A) The length of the line segment OA_1 is $4\sqrt{3}$.
 - (B) The length of the line segment A_1B_1 is 16.
 - (C) The orthocenter of the triangle $A_1B_1C_1$ is (0,0).
 - (D) The orthocenter of the triangle $A_1B_1C_1$ is (1,0).
- 8. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$, and $g: \mathbb{R} \to (0, \infty)$ be a function such that g(x+y) = g(x)g(y) for all $x, y \in \mathbb{R}$. If

$$f\left(-\frac{3}{5}\right) = 12$$
 and $g\left(-\frac{1}{3}\right) = 2$,

then the value of

$$f\left(\frac{1}{4}\right) + g(-2) - 8g(0)$$

is ____.

9. A bag contains N balls out of which 3 balls are white, 6 balls are green, and the remaining balls are blue. Assume that the balls are identical otherwise. Three balls are drawn randomly one after the other without replacement. For i=1,2,3, let W_i,G_i , and B_i denote the events that the ball drawn in the i^{th} draw is a white ball, green ball, and blue ball, respectively. If the probability

$$P(W_1 \cap G_2 \cap B_3) = \frac{2}{5N}$$

and the conditional probability

$$P(B_3 \mid W_1 \cap G_2) = \frac{2}{9},$$

then N equals ____.

10. Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \frac{\sin x}{e^x} \cdot \frac{x^{2023} + 2024x + 2025}{(x^2 - x + 3)} + \frac{x^{2023} + 2024x + 2025}{e^x(x^2 - x + 3)}.$$

Then the number of solutions of f(x) = 0 in \mathbb{R} is ____.

11. Let $\mathbf{p} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $\mathbf{q} = \mathbf{i} - \mathbf{j} + \mathbf{k}$. If for some real numbers α, β , and γ , we have

$$15\mathbf{i} + 10\mathbf{j} + 6\mathbf{k} = \alpha(2\mathbf{p} + \mathbf{q}) + \beta(\mathbf{p} - 2\mathbf{q}) + \gamma(\mathbf{p} \times \mathbf{q}),$$

then the value of γ is ____.

- 12. A normal with slope $\frac{1}{\sqrt{6}}$ is drawn from the point $(0, -\alpha)$ to the parabola $x^2 = -4\alpha y$, where a > 0. Let L be the line passing through $(0, -\alpha)$ and parallel to the directrix of the parabola. Suppose that L intersects the parabola at two points A and B. Let r denote the length of the latus rectum and s denote the square of the length of the line segment AB. If r: s = 1: 16, then the value of 24a is ____.
- 13. Let the function $f:[1,\infty)\to\mathbb{R}$ be defined by

$$f(t) = \begin{cases} (-1)^{n+1}2, & \text{if } t = 2n-1, n \in \mathbb{N}, \\ \frac{(2n+1)-t}{2}f(2n-1) + \frac{(t-(2n-1))}{2}f(2n+1), & \text{if } 2n-1 < t < 2n+1, n \in \mathbb{N}. \end{cases}$$

Define $g(x) = \int_1^x f(t) dt$, $x \in (1, \infty)$. Let α denote the number of solutions of the equation g(x) = 0 in the interval (1, 8] and

$$\beta = \lim_{x \to 1^+} \frac{g(x)}{x - 1}.$$

Then the value of $\alpha + \beta$ is ____.

PARAGRAPH "I"

Let $S = \{1, 2, 3, 4, 5, 6\}$ and X be the set of all relations R from S to S that satisfy both the following properties:

- \bullet R has exactly 6 elements.
- For each $(a, b) \in R$, we have $|a b| \ge 2$.

Let $Y = \{R \in X : \text{The range of } R \text{ has exactly one element} \}$ and $Z = \{R \in X : R \text{ is a function from } S \text{ to } S\}.$

Let n(A) denote the number of elements in a set A.

14. If $n(X) = {m \choose 6}$, then the value of m is _____.

PARAGRAPH "I"

Let $S = \{1, 2, 3, 4, 5, 6\}$ and X be the set of all relations R from S to S that satisfy both the following properties:

- \bullet R has exactly 6 elements.
- For each $(a, b) \in R$, we have $|a b| \ge 2$.

Let $Y=\{R\in X: \text{The range of }R\text{ has exactly one element}\}$ and $Z=\{R\in X: R\text{ is a function from }S\text{ to }S\}.$

Let n(A) denote the number of elements in a set A.

15. If the value of n(Y) + n(Z) is k^2 , then |k| is _____.