

Computación Paralela y Distribuida

John Corredor, PhD ECEI - IS

Objetivos

- Comprender la Arquitectura de Von Neumann
- Conocer los procesadores modernos

Arquitectura de Von Neumann

Describe una arquitectura de diseño para un computador digital electrónico con partes que constan de una unidad de procesamiento que contiene una unidad aritmético lógica y registros del procesador, una unidad de control que contiene un registro de instrucciones y un contador de programa, una memoria para almacenar tanto datos como instrucciones, almacenamiento masivo externo, y mecanismos de entrada y salida.

Características:

- Memoria
- Unidad de Control
- Unidad Aritmética Lógica
- Interface I/O

La arquitectura de Von Neumann es un modelo de diseño para una computadora digital de programas almacenados que utiliza una unidad central de procesamiento (CPU) y una única estructura de almacenamiento separada (memoria) para guardar tanto instrucciones como datos.

Desventaja: Memoria compartida para instrucciones y datos con un bus de datos y un bus de direcciones entre el procesador y la memoria. Las instrucciones y los datos tienen que ser recuperados en orden secuencial (conocido como el cuello de botella de Von Neumann), limitando el ancho de banda de la operación.

Evolución de la Arquitectura

Arquitectura Universal

Esta arquitectura universal conduce a diferentes estructuras para la ASIC y el procesador de propósito general.

Componentes del computador

Datapath:

• Componentes del procesador que realizan operaciones aritméticas y guardan datos.

Control:

• Componente del procesador que gestiona el datapath, la memoria, los dispositivos de E/S según las instrucciones de la memoria.

ASP: Datapath y controlador

- El controlador consiste en un generador de estado y un generador de control-vector.
- El controlador genera los vectores de control según los datos de prueba y el flujo de datos.
- El controlador funciona según el reloj del sistema.

- Datapath consiste en recursos, memorias e interconexiones.
- Datapath realiza una función cálculo según las entradas.
- Datapath funciona según vectores de control desde el controlador.
- Datapath no es directamente controlado por el reloj del sistema.
- Datapath proporciona la información necesaria datos de prueba al controlador.

ASCI: Arquitectura Uniforme

Resumen

- La arquitectura de Von Neumann describe una máquina de computación universal, pero con baja eficiencia.
- Una arquitectura universal para el sistema digital puede ser generada a partir de la arquitectura de Von Neumann que consiste en un datapath y un controlador.
- La metodología de la Síntesis de Alto Nivel es una forma de diseñar el ASIC, que apunta al diseño del hardware.

Preguntas

Arquitecturas de Procesadores Modernos

Los años 60 y 70

- ☐ Las instrucciones tomaron múltiples ciclos
- Sólo una instrucción de vuelo a la vez
- ☐ La optimización significaba minimizar el número de instrucciones ejecutadas
- A veces se sustituyen las instrucciones de uso general por secuencias especializadas de otras más baratas.

Los años 1980

- Las CPUs se convirtieron en pipelines
- ☐ La optimización significaba minimizar las paradas de los pipeline
- ☐ La dependencia se ordena de tal manera que los resultados no se necesitan en la siguiente instrucción
- Los saltos de cómputo se volvieron muy caros cuando no había predicción correcta

A principios de los años 1990

- ☐ Las CPU se volvieron mucho más rápidas que la memoria
- ☐ Caches escondían algo de latencia
- ☐ La optimización significaba maximizar la localidad de referencia, prefetching
- A veces, recalcular los resultados es más rápido que sacarlos de la memoria
- □ Nota: ¡Grandes caches consumen mucha energía!

A mediados de los años 1990

- Las CPU se convirtieron en superescalares
 - o Instrucciones independientes ejecutadas en paralelo
- Las CPU se han quedado fuera de servicio
 - Instrucciones re-ordenadas para reducir las dependencias
- La optimización significaba estructurar el código para el mayor ILP posible
- El desenrollado del bucle ya no es una gran victoria

A finales de los años 1990

- SIMD se convirtió en la corriente principal
- Factor de 2-4× de velocidad cuando se usa correctamente
- La optimización significaba asegurar el paralelismo de los datos
- El desenrollado de bucle comienza a ganar de nuevo, ya que expone oportunidades de optimización posteriores.

A principios de los años 2000

- (Homogéneo) El multinúcleo se convirtió en la corriente principal
- La eficiencia energética se volvió importante
- El paralelismo proporciona tanto un mejor rendimiento como una menor potencia
- La optimización significaba explotar el paralelismo de grano fino

A finales de los años 2000

- Las GPU programables se convirtieron en la corriente principal
- Hardware optimizado para el procesamiento de corrientes en paralelo
- Muy rápido para operaciones de punto flotante en paralelo masivo
- El costo de mover datos entre el CPU y la CPU es alto
- La optimización significaba descargar las operaciones a la GPU

Los años 2010

- Los procesadores modernos vienen con múltiples núcleos de CPU y GPU
- Todos los núcleos detrás de la misma interfaz de memoria, el costo de mover los datos entre ellos son bajos
- Contienen cada vez más aceleradores especializados
- A menudo contienen núcleos de propósito general (programables) para tipos de carga de trabajo especializados (por ejemplo, DSP)
- La optimización es difícil.
- ¡Mucho trabajo para los escritores de compilación!

Evolución de la Arquitectura

Referencias

- Hennessy J L and Patterson D. 2011. Computer Architecture, Fifth Edition: A Quantitative Approach 5th ed (San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.) ISBN 012383872X, 9780123838728.
- David B. Kirk and Wen-mei W. Hwu. 2010. Programming Massively Parallel Processors: A Hands-on Approach, Third Edition. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA ©2010 ISBN:0123814723 9780123814722.
- Michael J. Quinn. 2003. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education Group.
- ★ Victor Eijkhout. 2012. Introduction to High Performance Scientific Computing. Lulu.com.
- Michael McCool, James Reinders, and Arch Robison. 2012. Structured Parallel Programming: Patterns for Efficient Computation (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
- ★ Tutorial online: https://www.tutorialspoint.com/parallel_computer_architecture/index.htm