1 Things Past

1.1 Some Number Theory

Definition. The set of natural numbers \mathbb{N} is defined by

$$\mathbb{N} = \{integers \ n : n \ge 0\}$$

Least Integer Axiom¹. There is a smallest number n in every non-empty subset C of \mathbb{N} .

Definition. A natural number is **prime** if $p \ge 2$ and there is no factorization p = ab where a < p and b < p are natural numbers.

Proposition 1.1. Every integer $n \geq 2$ is either a prime or a product of primes.

Proof. Let C be the subset of \mathbb{N} consisting of all those $n \geq 2$ for which the proposition is false. If C is non-empty, then there exists a smallest number k in C. Since k is not a prime, then there are natural numbers a and b such that k = ab, where a < k and b < k. But a and b are not in C since k is the smallest in C, then a and b are primes or product of primes. Therefore, the smallest number k in C is a product of primes, contradicting the proposition.

Theorem 1.2 (Mathematical Induction). Let S(n) be a family of statements, one for each integer $n \geq m$, where m is some fixed number. If

- (i) S(m) is true, and
- (ii) if S(n) is true implies S(n+1) is ture,

then S(n) is true for all integers $n \geq m$.

Proof. Let C be the set of all integers $n \ge m$ for which S(n) is false. If C is not empty, there is a smallest integer k in C such that S(k) is false. By (i) we have k > m, then there exists an integer $k-1 \notin C$ such that S(k-1) is true. By (ii), we have S((k-1)+1) = S(k), where $(k-1)+1 = k \notin C$ is also true. This contradicts the assumption that C is non-empty, thus C is empty. Therefore, the proposition is true.

Theorem 1.3 (Second Form of Induction). Let S(n) be a family of statements, one for each integer $n \ge m$, where m is some fiexed integer. If

- 1. S(m) is true, and
- 2. if S(k) is true for all k with $m \le k < n$, then S(n) is itself true,

then S(n) is true for all integers $n \geq m$.

Proof. Let C be the set of all integers $n \ge m$ for which S(n) is false. If C is not empty, there is a smallest integer k in C such that S(k) is false. By (i) we have k > m, then there exists an integer $k-1 \notin C$ such that S(k-1) is true. Then by (ii), since S(i) is true for all i with $m \le i < k$, then S(k) is itself true, contradicting the assumption that S(k) is false.

Theorem 1.4 (Division Theorem). Given integers a and b with $a \neq 0$, there exist unique integers q and r with

$$b = qa + r$$
 and $0 \le r < |a|$

 $^{^1\}mathrm{This}$ property is usually called the well-ordering principle

Proof. Suppose there exist another pair of integers q' and r' with b = q'a + r' where $0 \le r' < |a|$. Then $qa+r = q'a+r' \implies |(q-q')a| = |r'-r|$. Since $0 \le |r'-r| < |r'| < |a| \implies 0 \le |(q-q')a| < |a|$, if a > 0, then $0 \le |q-q'| < 1$, recall that q and q' are both integers, then q = q'; if a < 0, then $-1 < |q-q'| \le 0 \implies q = q'$. Both cases implies r = r' as well. This contradicts the assumption, therefore, the integers are unique.

Definition. If a and b are integers with $a \neq 0$, then the integers q and r occurring in the division algorithm are called **quotient** and **remainder** after dividing b by a.

Corollary 1.5. There are infinitely many primes.

Proof. (**Euclid**) Suppose there are k finite primes p_1, p_2, \dots, p_k . Then define $M = \prod_{i=1}^k p_i + 1$, by Proposition 1.1, it is either a prime or a product of primes. Since our assumption indicates M is not a prime, then it must be a product of primes. But the fact that $\frac{M}{\prod_{i=1}^k p_i}$ gives remainder not 0 but 1 shows M cannot be divided by the existing product of primes, by definition, M is a prime, which contradicting the assumption. So there must be infinite number of primes.

Definition. If a and b are integers, then a is a **divisor** of b if there is an integer d with b = ad. We also say that a **divides** b or that b is a **multiple** of a, and we denote this by $a \mid b$

Definition. A common divisor of integers a and b is an integer c with $c \mid a$ and $c \mid b$. The greatest common divisor or gcd of a and b, denoted by (a,b), is defined by

$$(a,b) = \begin{cases} 0 \text{ if } a = 0 = b \\ the \text{ largest common divisor of a and b otherwise} \end{cases}$$

Proposition 1.6. If p is a prime and b any given integer, then

$$(p,b) = \begin{cases} p & if \ p \mid b \\ 1 & otherwise \end{cases}$$

Proof. Since p is a prime, i.e., $p = p \cdot 1$ then (p, p) = p. If $p \mid b$, then we have $p \mid p$ and $p \mid b$ thus (p, b) = p; otherwise, if $p \nmid b$, then we have $1 \mid p$ and $1 \mid b$ thus (p, b) = 1.

Theorem 1.7. If a and b are integers, then (a,b) = d is a linear combination of a and b; that is, there are integers s and t with d = sa + tb.

Proof. Since (a,b)=d, by division algorithm, we have $a=dq_a$ and $b=dq_b$ where $q_a,\ q_b\in\mathbb{Z}$. If $q_a=0=q_b$, the statement is obviously true. Then, $\forall q_a,\ q_b\in\mathbb{Z},\ \exists s,\ t\in\mathbb{Z}$ such that $sq_a=1-tq_b$. Thus

$$d = \frac{a}{q_a} = \frac{b}{q_b}$$

$$aq_b = bq_a \implies saq_b = sbq_a = (1 - tq_b)b$$

$$saq_b + tq_bb = b \implies sa + tb = \frac{b}{q_b} = d$$

Proposition 1.8. Let a and b be integers. A nonnegative common divisor d is their gcd if and only if $c \mid d$ for every common divisor c.

Proof. Suppose c is a common divisor of both a and b, and C a set of all common divisors of a and b. By definition of gcd we have $d = \max S$, $\forall c \in S$, thus $c \mid d$. Conversely, if $c \mid d$ for every common divisor c, then $d = \max S$.

Corollary 1.9. Let I be a subset of \mathbb{Z} such that

- 1. $0 \in I$;
- 2. if $a, b \in I$, then $a b \in I$;
- 3. if $a \in I$ and $q \in \mathbb{Z}$, then $qa \in I$.

Then there is a natural number $d \in I$ consisting precisely of all the multiples of d.