

AZ-104

Administer Intersite Connectivity

About this course: Course Outline

Administer Intersite Connectivity Introduction

Configure VNet Peering

Configure Network Routing and Endpoints

<u>Lab 05 - Implement Intersite Connectivity</u>

Configure VNet Peering

Configure VNet Peering Introduction

Determine VNet Peering Uses

Determine Gateway Transit and Connectivity Needs

Create VNet Peering

Determine Service Chaining Uses

Demonstration – VNet Peering

Summary and Resources

Determine VNet Peering Uses

- Two types of peering: Global and Regional
- Connects two Azure virtual networks you can peer across subscriptions and tenants
- Peered networks use the Azure backbone for privacy and isolation
- Easy to setup, seamless data transfer, and great performance

Determine Gateway Transit and Connectivity Needs

Gateway transit allows peered virtual networks to share the gateway and get access to resources

No VPN gateway is required in the peered virtual network

Default VNet peering provides full connectivity

IP address spaces of connected networks can't overlap

Create VNet Peering

Allow virtual network access settings

Configure forwarded traffic settings

To peering links must be created and shown in "connected" status

Peering link name *		
Traff	ic to remote virtual network ①	
ledow	Allow (default)	
\bigcirc	Block all traffic to the remote virtual network	
Traff	fic forwarded from remote virtual network ①	
ledow	Allow (default)	
\bigcirc	Block traffic that originates from outside this virtual network	
Virtu	ual network gateway ①	
\bigcirc	Use this virtual network's gateway	
\bigcirc	Use the remote virtual network's gateway	
ledow	None (default)	
Rem	note virtual network	
Peer	ring link name *	

Determine Service Chaining Uses

Leverage user-defined routes and service chaining to implement custom routing

Implement a VNet hub with a network virtual appliance or a VPN gateway

Service chaining enables you to direct traffic from one virtual network to a virtual appliance, or virtual network gateway, in a peered virtual network, through user-defined routes

Demonstration – VNet Peering

Configure VNet peering on the first virtual network

Configure a VPN gateway

Allow gateway transit

Confirm VNet peering on the second virtual network

Summary and Resources – Configure VNet Peering

Knowledge Check Questions

Microsoft Learn Modules (docs.microsoft.com/Learn)

<u>Distribute your services across Azure virtual networks and integrate them by using virtual network peering (Sandbox)</u>

A sandbox indicates a hands-on exercise.

Configure Network Routing and Endpoints

Configure Network Routing and Endpoints Introduction

- Identify User-Defined Routes
- Demonstration Custom Routing tables
- Determine Service Endpoint Uses
- Identify Private Link Uses
- Summary and Resources

Review System Routes

System routes direct network traffic between virtual machines, on-premises networks, and the internet:

- Traffic between VMs in the same subnet
- Between VMs in different subnets in the same virtual network
- Data flow from VMs to the internet
- Communication between VMs using a VNet-to-VNet VPN
- Site-to-Site and ExpressRoute communication through the VPN gateway

Identify User-Defined Routes

A route table contains a set of rules, called routes, that specifies how packets should be routed in a virtual network

User-defined routes are custom routes that control network traffic by defining routes that specify the next hop of the traffic flow

The next hop can be a virtual network gateway, virtual network, internet, or virtual appliance

Demonstration – Custom Routing Tables

Create a route table

Add a route

Associate a route table to a subnet

Use PowerShell to view your routing information (optional)

Summary and Resources – Configure Network Routing and Endpoints

Knowledge Check Questions

Microsoft Learn Modules (docs.microsoft.com/Learn)

Manage and control traffic flow in your Azure deployment with routes (Sandbox)

Introduction to Azure Private Link

A sandbox indicates a hands-on exercise.

Lab 05 - Implement Intersite Connectivity

Lab 05 – Implement intersite connectivity

Lab scenario

Contoso has its datacenters in Boston, New York, and Seattle offices connected via a mesh wide-area network links, with full connectivity between them. You need to implement a lab environment that will reflect the topology of the Contoso's on-premises networks and verify its functionality

Objectives

Task 1:

Provision the lab environment

Task 2:

Configure local and global virtual network peering

Task 3:

Test intersite connectivity

Lab 05 – Architecture diagram

End of presentation

