CS345 Special Assignment

Siddharth Agrawal (150716) AviRaj (150168)

October, 15 2017

Part 3

Brute-Force Algorithm

Figure 1: Plot for Running Time of the algorithm for various values of n

Assume, the Running Time (T) is proportional to a polynomial function of n. Hence we check the linearity of graphs - 'T vs n^2 ', 'T vs n^3 ' & 'T vs n^4 '.

Figure 2: From left to right: 'T vs n^2 ', 'T vs n^3 ' & 'T vs n^4 '

From the above graphs, we can see that $T \propto n^3$ for n in the range 1 to 1000.

When we tried fitting $O(n^4)$ curve to this distribution, the coefficient of n^4 came out to be $3.025\,364\,92\times10^{-11}$. Thus, this distribution (for n in the range 1 to 1000) is closer to n^3 than n^4 .

Theoretically we know that the time bound is $O(n^4)$. But due to hardware constraints, it is not really evident in our graphs.

Randomized Algorithm

Randomized Algorithm

Figure 3: Plot for Running Time of the algorithm for various values of n

Number of Points (n)

From the above graph, it can be clearly seen that $T \propto n$. Thus, time complexity for this algorithm is O(n).

Part 4

In Figure 3, the red curve is the best possible regression curve for the given distribution. Its equation is:

$$T(n) = (4.697\,008\,58\times10^{-5}) + (1.159\,335\,27\times10^{-7})n$$

The distribution deviates from the regression curve with variance = $9.483\,645\,598\,090\,948 \times 10^{-5}$. The empirical distribution of the running time of this algorithm for n=10000 is:

Frequency of running time for n = 10000

Figure 4: Distribution of Running Time of the algorithm for n = 10000