Static Analysis by Abstract Interpretation and Decision Procedures

Julien Henry

University of Grenoble

October 13, 2014

Jury

David Monniaux Matthieu Moy Antoine Miné Cesare Tinelli Hugues Cassé Roland Groz Andreas Podelski Director Co-Advisor Reviewer Reviewer Examiner Examiner Examiner

CNRS Grenoble-INP ENS Paris

University of Iowa

IRIT

Grenoble-INP

University of Freiburg

Static Analysis

Objective:

- Discover properties on programs (invariants)
- Find possible bugs, or prove their absence.

Principle:

Statically compute a set containing the reachable states of the program.

Example - PAGAI Screenshot

```
File Edit View Search Terminal Help
t cat example.c
                                                  ± pagai -i example.c
#include "../../pagai assert.h"
                                                  // analysis: Alopt
                                                  /* processing Function main */
int input();
                                                  #include "../../pagai assert.h"
int main()
                                                 int input();
 int x=1; int y=1;
                                                  int main()
 while(input()) {
   int t1 = x:
                                                   int x=1; int y=1;
                                                   /* reachable */
   int t2 = v;
   x = t1 + t2:
                                                   while(/* invariant:
   y = t1 + t2;
                                                         -x+v = 0
                                                         2147483647-x >= 0
                                                         -1+x >= 0
 assert(y >= 1);
 return 0;
                                                         input()) {
                                                     int t1 = x;
                                                     int t2 = y;
                                                     // unsafe: possible undefined behavior
                                                     x = t1 + t2:
                                                     // safe
                                                     v = t1 + t2;
                                                   /* assert OK */
                                                   assert(y >= 1);
                                                   /* reachable */
                                                   return 0:
```

Summary

- Introduction
- Improving Abstract Interpretation using SMT
- Modular Static Analysis
- 4 The PAGAI Static Analyzer
- 5 Application: Worst-Case Execution Time (WCET) estimation

Cousot & Cousot 1977

Abstract domain to represent sets of states:

Intervals:
$$\pm x \leq C$$

Octagons:
$$\pm x \pm y \leq C$$

Convex Polyhedra:
$$\sum \alpha_i x_i \leq C$$

Cousot & Cousot 1977

Abstract domain to represent sets of states:

Intervals:
$$\pm x < C$$

Octagons:
$$\pm x \pm y \leq C$$

Convex Polyhedra:
$$\sum \alpha_i x_i \leq C$$

⇒ Over-approximation of the set of states

Summary

- Introduction
- Improving Abstract Interpretation using SMT
- Modular Static Analysis
- The PAGAI Static Analyzer
- Application: Worst-Case Execution Time (WCET) estimation

```
x = 0;
while (x < 1000)
{
    x++;
}</pre>
```


$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\}$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\}$

```
x = 0;
while (x < 1000)
{
    x++;
}</pre>
```


- All abstract values initialized to Ø
- Update until the ⊆ is correct

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq \emptyset$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq \emptyset$

```
x = 0;
while (x < 1000)
{
    x++;
}</pre>
```


- All abstract values initialized to Ø
- Update until the ⊆ is correct

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, 0]$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq \emptyset$

```
x = 0;
while (x < 1000)
{
    x++;
}</pre>
```


- All abstract values initialized to Ø
- Update until the ⊆ is correct

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, 0]$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 0]$

```
x = 0;
while (x < 1000)
{
    x++;
}</pre>
```


- All abstract values initialized to Ø
- Update until the ⊆ is correct

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, 1]$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 0]$

```
x = 0;
while (x < 1000)
{
    x++;
}</pre>
```


- All abstract values initialized to Ø
- Update until the ⊆ is correct

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, 1]$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 1]$

- All abstract values initialized to Ø
- Update until the ⊆ is correct

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, 2]$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 1]$

- All abstract values initialized to Ø
- Update until the ⊆ is correct

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, 2]$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 2]$

- All abstract values initialized to Ø
- Update until the ⊆ is correct

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, 3]$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 2]$

```
x = 0;
while (x < 1000)
{
    x++;
}</pre>
```


- All abstract values initialized to Ø
- Update until the ⊆ is correct

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, 3]$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 3]$

- All abstract values initialized to Ø
- Update until the ⊆ is correct

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, 4]$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 3]$

- All abstract values initialized to Ø
- Update until the ⊆ is correct

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, 4]$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 4]$

Fixpoint computation:

- All abstract values initialized to Ø
- Update until the \subseteq is correct

WIDENING

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, +\infty[$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 4]$

- All abstract values initialized to Ø
- Update until the ⊆ is correct

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, +\infty[$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 999]$

Narrowing

An inductive invariant has been found: $F(X) \subseteq X$, we can recover precision by iterating once more:

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, +\infty[$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 999]$

Narrowing

An inductive invariant has been found: $F(X) \subseteq X$, we can recover precision by iterating once more:

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1\} \subseteq [0, 1000]$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 999]$

 Limited expressivity of the abstract domain (e.g. linear inequalities)

- Limited expressivity of the abstract domain (e.g. linear inequalities)
- Widening operator
 - Ensures termination, but may induce huge imprecisions
 - Narrowing tends to recover some precision...

- Limited expressivity of the abstract domain (e.g. linear inequalities)
- Widening operator
 - Ensures termination, but may induce huge imprecisions
 - ► Narrowing tends to recover some precision...
- Control flow merges
 - Analysis catches paths that are unfeasible concretely

- Limited expressivity of the abstract domain (e.g. linear inequalities)
- Widening operator
 - Ensures termination, but may induce huge imprecisions
 - ▶ Narrowing tends to recover some precision...
- Control flow merges
 - Analysis catches paths that are unfeasible concretely

In this thesis

Improve precision of the analysis by limiting the bad effects of widenings and least upper bounds

Summary

- Introduction
- Improving Abstract Interpretation using SMT
- Modular Static Analysis
- The PAGAI Static Analyzer
- 5 Application: Worst-Case Execution Time (WCET) estimation

Example

```
if (input())
    x = 1;
else
    x = -1;
    // (here)
if (x == 0)
    abort();
else
    OK();
```


- x can be 1 or -1
- Least upper bound yields $x \in [-1, 1]$ at point (here)
- if (x == 0) seems feasible with traditional Al

Example

```
if (input())
    x = 1;
else
    x = -1;
    // (here)
if (x == 0)
    abort();
else
    OK();
```


- x can be 1 or -1
- Least upper bound yields $x \in [-1, 1]$ at point (here)
- if (x == 0) seems feasible with traditional AI

Path Focusing (Monniaux & Gonnord SAS11)

Idea: delay control-flow merges

- Expand and distinguish every paths inside loops
- Abstraction only at the loop headers
- Succinctly represent the set of paths using a logical formula (SMT)

Algorithm: update an abstract value X until it becomes an inductive invariant: $F(X) \subseteq X$.

Algorithm: update an abstract value X until it becomes an inductive invariant: $F(X) \subseteq X$.

Algorithm: update an abstract value X until it becomes an inductive invariant: $F(X) \subseteq X$.

Algorithm: update an abstract value X until it becomes an inductive invariant: $F(X) \subseteq X$.

Using SMT-solving for Choosing Paths

SMT formula ρ expressing the semantics of the program paths:

- Control-Flow encoded using Booleans
- Over-approximation of the instructions semantics in LIRA

Using SMT-solving for Choosing Paths

SMT formula ρ expressing the semantics of the program paths:

- Control-Flow encoded using Booleans
- Over-approximation of the instructions semantics in LIRA

"Does there exist a path starting inside the candidate invariant, that goes to a state outside the candidate invariant?"

SAS'12: "Succinct Representations for Abstract Interpretation"

Imprecision due to widening spreads

Apply narrowing **before** it is too late

 \rightarrow before an invariant for the entire program is found

Compute **precise** invariants for a sequence of subprograms

Extensions:

Disjunctive Invariants

Extensions:

- Disjunctive Invariants
- 2 "Interesting traces" far from the current abstract value

Extensions:

- Disjunctive Invariants
- 2 "Interesting traces" far from the current abstract value

Improve the Decreasing Sequence (Halbwachs & Henry)

SAS'12: "When the Decreasing Sequence Fails"

Decreasing sequence does not always work

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1 \lor x \in X_1\} \subseteq [0, +\infty)$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 999]$

Improve the Decreasing Sequence (Halbwachs & Henry)

SAS'12: "When the Decreasing Sequence Fails"

Decreasing sequence does not always work

Restart an analysis from a different, **well chosen**, initial value

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1 \lor x \in X_1\} \subseteq \bot$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0,999]$

Improve the Decreasing Sequence (Halbwachs & Henry)

SAS'12: "When the Decreasing Sequence Fails"

Decreasing sequence does not always work

Restart an analysis from a different, **well chosen**, initial value

$$X_1 = \{x \mid x = 0 \lor \exists x' \in X_2, x = x' + 1 \lor x \in X_1\} \subseteq [0, 1000]$$

 $X_2 = \{x \mid x \in X_1 \land x < 1000\} \subseteq [0, 999]$

Summary

- Introduction
- 2 Improving Abstract Interpretation using SMT
- Modular Static Analysis
- The PAGAI Static Analyzer
- 5 Application: Worst-Case Execution Time (WCET) estimation

Incremental Analysis

- Abstract Interpretation can be parametrized in many ways
- From very cheap to very expensive techniques/abstract domains

Run cheap techniques first, and refine program portions if needed

Complicated CFG

Select blocks/portions to be abstracted:

- Loops,
- Function calls,
- Complicated program portions

Select blocks/portions to be abstracted:

- Loops,
- Function calls,
- Complicated program portions

Each block has input and output variables

Abstract each block by a logical formula.

 $\mathcal{R}_1(X^i,X^o)$ is a formula involving inputs and outputs

Example: $x^i > 0 \Rightarrow x^o = x^i + 1$

Initialized to true (= safe over-approximation)

SMT query:

"Is there a path to the error state?"

$$Model(X^i) \land Model(X^o) \land \mathcal{R}_1(X^i, X^o)$$

is SAT

SMT query:

"Is there a path to the error state?"

$$Model(X^{i}) \land Model(X^{o}) \land \mathcal{R}_{1}(X^{i}, X^{o})$$
 is SAT

 \rightarrow Improve precision of $\mathcal{R}_1(X^i, X^o)$ s.t. above formula becomes UNSAT

Compute a new relation for the block, with the knowledge of the input context $Model(X^i)$

Of the form: $Model(X^i) \Rightarrow \mathcal{F}(X^i, X^o)$

Compute a new relation for the block, with the knowledge of the input context $Model(X^i)$

Of the form: $Model(X^i) \Rightarrow \mathcal{F}(X^i, X^o)$ Not sufficiently general...

Compute a new relation for the block, with the knowledge of the input context $Model(X^i)$

Of the form: $Model(X^i) \Rightarrow \mathcal{F}(X^i, X^o)$ Not sufficiently general...

Generalize the valid context during analysis:

$$C(X^i) \Rightarrow \mathcal{F}(X^i, X^o)$$

Model $(X^i) \Rightarrow C(X^i)$

Continue and search for new error trace

Continue and search for new error trace

Modular Static Analysis: Overview

Summary

- The PAGAI Static Analyzer

PAGAI, in one slide

TAPAS'12: "PAGAI: a path sensitive static analyser"

Static analyzer for LLVM IR, written in C++, > 20.000 LOC

- Most of the techniques described here are implemented
- PAGAL checks:
 - array out-of-bounds
 - integer overflows
 - assert statements
- Handles real C programs & SV-Comp benchmarks
- Already used outside Verimag

Comparisons of Various Techniques

Figure: Malärdalen benchmarks

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

Software-Verification Competition

Summary

- Application: Worst-Case Execution Time (WCET) estimation

Target: Reactive Control Systems

1 "big" infinite loop

 \sim Loop-free body

Goal: WCET for 1 loop iteration < some bound

Our Method

LCTES'14: "How to Compute Worst-Case Execution Time by Optimization Modulo Theory and a Clever Encoding of Program Semantics"

Input:

- Loop-free control-flow graph of the loop body
- timings for basic blocks (# clock cycles)
 - given by an external tool, e.g. OTAWA
 - runs a panel of static analysis, considering micro-architecture

Principle: Encode the problem into SMT and optimize a cost function

Output:

WCET for the entire CFG + Worst Case path

Optimization modulo Theory:

We search for the trace maximizing the variable cost.

Using any off-the-shelf SMT solver

Optimization modulo Theory:

We search for the trace maximizing the variable cost.

Using any off-the-shelf SMT solver

Dichotomy strategy:

Maintain an interval containing the WCET

Initial interval [0, 100]

0 100

Optimization modulo Theory:

We search for the trace maximizing the variable cost.

Using any off-the-shelf SMT solver

Dichotomy strategy:

- Initial interval [0, 100]
- Is there a trace where *cost* > 50? Yes, 70

Optimization modulo Theory:

We search for the trace maximizing the variable cost.

Using any off-the-shelf SMT solver

Dichotomy strategy:

- Initial interval [0, 100]
- Is there a trace where cost > 50? Yes, 70
- new interval [70, 100]

Optimization modulo Theory:

We search for the trace maximizing the variable cost.

Using any off-the-shelf SMT solver

Dichotomy strategy:

- Initial interval [0, 100]
- Is there a trace where *cost* > 50? Yes, 70
- new interval [70, 100]
- Is there a trace where cost > 85? No

Optimization modulo Theory:

We search for the trace maximizing the variable cost.

Using any off-the-shelf SMT solver

Dichotomy strategy:

- Initial interval [0, 100]
- Is there a trace where cost > 50? Yes, 70
- new interval [70, 100]
- Is there a trace where cost > 85? No
- new interval [70,85]

Optimization modulo Theory:

We search for the trace maximizing the variable cost.

Using any off-the-shelf SMT solver

Dichotomy strategy:

Maintain an interval containing the WCET

- Initial interval [0, 100]
- Is there a trace where cost > 50? Yes, 70
- new interval [70, 100]
- Is there a trace where cost > 85? No
- new interval [70,85]
- ..

100

A Really Simple Example

 b_1, \ldots, b_n unconstrained Booleans, **xi**'s and **yi**'s are the timing costs

```
if (b_1) { /*c1=2*/ } else { /*c1=3*/ } //cost c1 if (b_1) { /*c1'=3*/ } else { /*c1'=2*/ } //cost c1' ... if (b_n) { /*cn=2*/ } else { /*cn=3*/ } //cost cn if (b_n) { /*cn'=3*/ } else { /*cn'=2*/ } //cost cn'
```

"Obviously" all traces take time (3+2)n = 5n.

 b_1, \ldots, b_n unconstrained Booleans, **xi**'s and **yi**'s are the timing costs

```
if (b_1) { /*c1=2*/ } else { /*c1=3*/ } //cost c1
if (b_1) \{ /*c1' = 3*/ \} else \{ /*c1' = 2*/ \} //cost c1'
if (b_n) { /*cn=2*/ } else { /*cn=3*/ } //cost cn
if (b_n) \{ /*cn' = 3*/ \} else \{ /*cn' = 2*/ \} //cost cn'
```

"Obviously" all traces take time (3+2)n=5n.

SMT approach (using DPLL(T)) will find 5n, but in exponential time...

Why such high cost?

$$\begin{array}{l} (b_1 \Rightarrow c_1 = 2) \wedge (\neg b_1 \Rightarrow c_1 = 3) \wedge (b_1 \Rightarrow c_1' = 3) \wedge (\neg b_1 \Rightarrow c_1' = 2) \wedge \\ \cdots \wedge \\ (b_n \Rightarrow c_n = 2) \wedge (\neg b_n \Rightarrow c_n = 3) \wedge (b_n \Rightarrow c_n' = 3) \wedge (\neg b_n \Rightarrow c_n' = 2) \wedge \\ c_1 + c_1' + \cdots + c_n + c_n' > 5n \end{array}$$

A SMT-solver based on "DPLL(\mathcal{T})":

- enumerates a Boolean choice tree over b_1, \ldots, b_n
- cuts branches when encountering inconsistent numerical constraints.

What are the inconsistent numerical constraints here (**blocking clauses**)?

Take the satisfying assignment where all the b_i 's are set to true (the c_i 's = 2 and c_i 's = 3)

THEORY ATOMS

$$c_1 \leq 2$$
 $c_n \leq 2$

$$c_1 \leq 3 \qquad \cdots \qquad c_n \leq 3$$

$$\neg (c_1' \leq 2) \qquad \neg (c_n' \leq 2)$$

$$c_1' \leq 3$$
 $c_n' \leq 3$

$$c_1 + c'_1 + \cdots + c_n + c'_n > 5n$$

BLOCKING CLAUSE

Take the satisfying assignment where all the b_i 's are set to true (the c_i 's = 2 and c'_i 's = 3)

THEORY ATOMS

$$c_1 < 2$$

$$c_1 \leq 2$$
 $c_n \leq 2$

$$c_1 \leq 3 \qquad \cdots \qquad c_n \leq 3$$

$$c_n < 3$$

$$\neg (c_1' \leq 2) \qquad \neg (c_n' \leq 2)$$

$$\neg (c'_n < 2)$$

$$c_1' < 3$$

$$c_1' \leq 3$$
 $c_n' \leq 3$

$$c_1 + c'_1 + \cdots + c_n + c'_n > 5n$$

BLOCKING CLAUSE

$$c_1 < 2$$

$$c_1 \leq 2$$
 $c_n \leq 2$

$$c_1 \leq 3 \qquad \cdots \qquad c_n \leq 3$$

$$c_n < 3$$

$$\neg (c_1' \leq 2)$$
 $\neg (c_n' \leq 2)$

$$\frac{1}{1}(c_n^2 < 2)$$

$$c_1' \leq 3$$
 $c_n' \leq 3$

$$c_{n}' < 3$$

$$c_1 + c'_1 + \cdots + c_n + c'_n > 5n$$

Only cuts one single program trace...

Take the satisfying assignment where all the b_i 's are set to true (the c_i 's = 2 and c_i 's = 3)

THEORY ATOMS $c_1 \leq 2 \qquad c_n \leq 2$ $c_1 \leq 3 \qquad \cdots \qquad c_n \leq 3$ $c_1 \leq 2 \qquad \cdots \qquad c_n \leq 3$ $c_1 \leq 3 \qquad \cdots \qquad c_n \leq 3$ $c_1 \leq 2 \qquad \cdots \qquad c_n \leq 3$ $c_1 \leq 3 \qquad \cdots \qquad c_n \leq 3$ $c_1 \leq 3 \qquad c_n \leq 2$ $c_1 \leq 3 \qquad c_n \leq 3$ $c_1 \leq 3 \qquad c_n \leq 3$

Only cuts one single program trace... 2^n of them. The solver has to prove them inconsistent one by one.

Untractability Issue

SMT solvers miss "obvious" properties

```
if (b_i) { /* ci=2 */ } else { /* ci=3*/ } if (b_i) { /* ci'=3 */ } else { /* ci'=2*/ }
```

Human remark: "**obviously**, $c_i + c_i' \le 5$ "

"Normal" DPLL(T)-based SMT solvers do not invent new atomic predicates: they can't learn it...

Untractability Issue

SMT solvers miss "obvious" properties

```
if (b_i) { /* ci=2 */ } else { /* ci=3*/ } if (b_i) { /* ci'=3 */ } else { /* ci'=2*/ }
```

Human remark: "**obviously**, $c_i + c_i' \le 5$ "

"Normal" DPLL(T)-based SMT solvers do not invent new atomic predicates: they can't learn it...

What if we simply conjoin these predicates to the SMT formula?

Again, take the satisfying assignment where all the b_i 's are set to true (the c_i 's = 2 and c_i 's = 3)

THEORY ATOMS

$$c_1 \leq 2$$
 $c_n \leq 2$

$$c_1 \leq 3 \qquad \cdots \qquad c_n \leq 3$$

$$\neg (c_1' \leq 2) \qquad \neg (c_n' \leq 2)$$

$$c_1' \leq 3$$
 $c_n' \leq 3$

$$c_1+c_1'\leq 5 \qquad c_n+c_n'\leq 5$$

$$c_1 + c'_1 + \cdots + c_n + c'_n > 5n$$

BLOCKING CLAUSE

Again, take the satisfying assignment where all the b_i 's are set to true (the c_i 's = 2 and c'_i 's = 3)

THEORY ATOMS

$$c_1 \leq 2$$

$$c_n \leq 2$$

$$c_1 \leq 3$$
 \cdots $c_n \leq 3$

$$c_n \leq 3$$

$$\neg (c_1' \leq 2) \qquad \neg (c_n' \leq 2)$$

$$c_1' \leq 3$$
 $c_n' \leq 3$

$$c_1 + c_2' < 5$$

$$c_1+c_1'\leq 5 \qquad c_n+c_n'\leq 5$$

$$c_1 + c'_1 + \cdots + c_n + c'_n > 5n$$

BLOCKING CLAUSE

$$\alpha < 2$$

$$c_1 < 2$$
 $c_n < 2$

$$c_1 \leq 3 \qquad \cdots \qquad c_n \leq 3$$

$$\neg (c_1' \leq 2) \qquad \neg (c_n' \leq 2)$$

$$c_1 \leq 3$$
 $c_2 \leq 3$

$$c_1 + c_1' < 5$$

$$c_1 + c_1' \le 5$$
 $c_n + c_n' \le 5$

$$c_1 + c'_1 + \cdots + c_n + c'_n > 5n$$

Prunes all the 2ⁿ traces at once.

Solution

- Distinguish "portions" in the program.
- Compute upper bound B_i on WCET for each portion i (recursive call or rougher bound)
- Conjoin these constraints to the previous SMT formula $c_1 + \cdots + c_5 < B_1$, $c_6 + \cdots + c_{10} < B_2$, etc.
- The obtained formula is equivalent
- Do the binary search as before

Solving time from "nonterminating after one night" to "a few seconds".

Experiments with ARMv7

OTAWA for Basic Block timings Z3 SMT solver

Cuts: only syntactic criterion

	WCET bounds (#cycles)			Analysis time (seconds)		
Benchmark name	ILP IPET	SMT	diff	with cuts	no cuts	#cuts
statemate	3297	3211	2.6%	943.5	+∞	143
nsichneu (1 iteration)	17242	13298	22.7%	6hours	$+\infty$	378
cruise-control	881	873	0.9%	0.1	0.2	13
digital-stopwatch	1012	954	5.7%	0.6	2104.2	53
autopilot	12663	5734	54.7%	1808.8	$+\infty$	498
fly-by-wire	6361	5848	8.0%	10.8	$+\infty$	163
miniflight	17980	14752	18.0%	40.9	$+\infty$	251
tdf	5789	5727	1.0%	13.0	$+\infty$	254

- Malardalen WCET Benchmarks
- Scade designs
- Industrial Code

Conclusion

SMT can be used for static analysis in many ways:

- Improve precision of abstract interpreters (least upper bounds)
- Find program traces that violate some property
- Counter-Example Guided approaches
- Worst-Case Execution Time estimation using optimization

PAGAI static analyzer for LLVM IR, open-source

- Checks array out-of-bounds & integer overflows
- Proves assert statements over numerical variables
- Binaries for Linux/Mac and source code:

http://pagai.forge.imag.fr