

Simplot

Author: D J Allerton

Version: 1.2
Date: 20th August 2017

1 Introduction

Simplot enables flight simulation models to be developed and tested off-line. The main flight dynamics modules (e.g. aerodynamics, engines dynamics, undercarriage dynamics, flight control systems and equations of motion) used in *Simplot* are identical to the modules used in the real-time flight simulator. Additional modules enable specific inputs to be applied to the flight model and data from a simulation to be recorded and displayed. The output from *Simplot* is a GNUPlot script, which can be opened in GNUplot to generate a .png file which can be imported into other packages, for example Microsoft Word.

2 The Simplot Language

A *Simplot* program can record simulator data, set simulator conditions, define inputs and initialise the state of the simulator. A *Simplot* program is written as a standard text file which can be edited using text editors such as Programmers Notepad (http://www.pnotepad.org/). *Simplot* programs are case insensitive and spaces and blanks lines are ignored. A *Simplot* program contains lines of commands, where each command includes optional arguments and where appropriate, arguments can be defined in specific units. Any characters after a semicolon are treated as a comment and ignored for the remainder of the line.

3 Basic Commands

Seven basic commands are provided to control the off-line simulation:

Command	Description
set	Set a flight condition
plot	Plot a variable
engage	Engage an autopilot mode
disengage	Disengage an autopilot mode
time	Set the recording time
autotrim	Set the simulator inputs for steady-state conditions
input	Apply an input

4 Set Command

The *set* command defines initial flight conditions including control inputs. The command has one argument which can be defined in specific units. The arguments are as follows:

Argument	Description	Range
turbulence	Turbulence conditions	0-100%
wind_speed	Wind speed	0-80 kt
wind_direction	Wind direction	0-360°
QNH	QNH pressure setting	950-1050 mbar
mag_var	Magnetic variation	0-360°
OAT	Outside air temperature	-50-50°C
rudder	Rudder input	± rudder range
aileron	Aileron input	± aileron range
elevator	Elevator input	± elevator range
engine_lever	Engine lever input	0-1
altitude	Aircraft altitude	0-50000 ft
heading	Aircraft heading	0-360°
TAS	Aircraft true airspeed	0-500 kt
IAS	Aircraft indicated airspeed	0-500 kt
rate_of_climb	Aircraft rate of climb	±5000 ft/min
cg_position	Centre of gravity position (%)	-100-100%
flaps	Flap position	0-1 (0-up, 1=fully down)
gear	Gear position	0-1 (0-up, 1=fully down)
spoiler	Spoiler (air brake) position	0-1 (0-down, 1=fully up)
parkbrake	Park brake	0-1 (0-off, 1=on)
leftbrake	Left brake	0-1 (0-off, 1=on)
rightbrake	Right Brake	0-1 (0-off, 1=on)
AP_ALT ¹	Autopilot altitude	units default to ft
AP_HDG ¹	Autopilot heading	units default to degrees
AP_SPD ¹	Autopilot speed	units default to kt
AP_VSPD ¹	Autopilot vertical speed	units default to ft/min
Кр	PID control term	n/a
Ki	PID control term	n/a
Kd	PID control term	n/a

¹ Autopilot units have no units but are implicit from their respective FCU panel units.

4.1 Examples of the set command

```
set altitude 5000 ft
set altitude 2000 m
set aileron 10 deg
set AP_HDG 035
set gear 0.667
```

Note: there is no consistency check on units, e.g. it is possible to set altitude to kg.

5 Plot Command

The *plot* command is used to add flight data to be recorded during the simulation. Each variable plotted can be defined in terms of the units and range. The arguments are as follows:

Argument	Description
rudder	Rudder position
aileron	Aileron position
elevator	Elevator position
TAS	Aircraft true airspeed
IAS	Aircraft indicated airspeed
altitude	Aircraft altitude
latitude	Aircraft latitude
longitude	Aircraft longitude
beta_rate	Rate of change of angle of sideslip
beta	angle of sideslip
alpha_rate	Rate of change of angle of attack
alpha	angle of attack
pitch_rate	Rate of change of pitch
roll_rate	Rate of change of roll
yaw_rate	Rate of change of yaw
pitch_accn	Pitch acceleration
roll_accn	roll acceleration
yaw_accn	roll acceleration
pitch	Pitch angle
roll	Roll angle
yaw	Yaw angle
lift	Lift force
thrust	Thrust force
drag	Drag force
sideforce	Side force
engine_lever	Engine lever position
gamma	Flight path angle
vertical_speed	Rate of climb
spoiler	Spoiler (air brake)
parkbrake	Park brake
leftbrake	Left brake
rightbrake	Right Brake

5.1 Examples of the plot command

```
plot pitch degs -10 20
plot TAS kts 100 250
plot altitude ft 2000 4000
plot elevator degs -30 30
```

6 Engage Command

The *engage* command is used to engage autopilot functions. The arguments are as follows:

Argument	Description
ALT_HOLD	Altitude hold
HDG_HOLD	Heading hold
SPD_HOLD	Speed hold
VSPD_HOLD	Vertical speed hold

6.1 Examples of the engage command

```
engage spd_hold
engage hdg_hold
```

7 Disengage Command

The *disengage* command is used to disengage autopilot functions. The arguments are as follows:

Argument	Description
ALT_HOLD	Altitude hold
HDG_HOLD	Heading hold
SPD_HOLD	Speed hold
VSPD_HOLD	Vertical speed hold

7.1 Examples of the disengage command

```
disengage spd_hold
disengage hdg_hold
```

8 Time Command

The *time* command is used to specific the length of time of the simulation. It also corresponds to the time axis for all recorded data. The argument is the time in seconds.

9 Autotrim Command

The *autotrim* command is used to set the aircraft inputs for non-accelerating trimmed flight. The initial conditions should be defined using the *set* commands. By default, the aircraft is <u>not</u> is a trimmed state at the start of the simulation. The *autotrim* command has no arguments.

10 Input Command

The *input* command is used to define elevator, aileron and rudder inputs applied to the simulator. The input can be a step, pulse, doublet, ramp or sinusoidal input. If a constant input is defined (e.g. set elevator -5 deg), the corresponding input should be defined as *off*. By default, no input function is applied. The arguments are as follows:

Argument	Description
off	No inputs are applied
elevator	elevator input
aileron	aileron input
rudder	rudder input

Each input waveform can be defined as follows:

Argument	Description
step	A step input
pulse	A pulse input
doublet	A positive going pulse followed by a negative going pulse
ramp	A ramp
sine	A sinusoidal input

Each waveform is defined by three parameters: the delay before it is applied in seconds, the period of the waveform in seconds and the amplitude of the waveform.

10.1 Examples of the input command

```
input elevator pulse 0.5 10 degs 5 input rudder sine 3 0.2 rad 0.3
```

The first *input* command is a pulse, starting after 0.5s, for a period of 10s with an amplitude of 5°. The second input command is a sinusoidal input after 3s, for a period of 0.2 and an amplitude of 0.3 radians.

11 Units

For the most part, the flight simulator operates in SI units. However, units can be specified in a *Simplot* program that are appropriate to an application. For example, in plotting flight data, the user may optionally specify the recording units, e.g.

```
plot TAS mph 20 30
plot IAS m/s 5 25
```

If the units are omitted, the default simulator units are used, in this case m/s. The units recognised by *Simplot* are summarised in the following table:

Variable	Units	Notes
time	secs, mins, hours	
angle	degs, rads	degrees, radians
angular velocity	deg/s, rad/s, RPM	degrees per second, radians per
		second, revs per minute
angular acceleration	deg/s/s, rad/s/s	
length	m, Ft, Km, nm	metres, feet, kilometres, nautical
		miles
velocity	m/s, fpm, Kts, Km/hr, mph	meters per second, feet per minute,
		Knots, Kilometres per hour, miles per
		hour
acceleration	m/s/s, ft/s/s	
force	N, lbf	Newtons, pounds force
pressure	mb, InHg	millibars, inches of mercury
temperature	deg_C	degrees centigrade
flow rate	kg/hr, lbs/hr	Kilograms per hour, pounds per hour
mass	Kg, lb	Kilograms, pounds

12 Running a Simplot Program

Create a text file to define the simulator initial conditions, the inputs and the variables to be plotted. Make sure a copy of the file simplot.exe is in your current directory. Using either a MinGw terminal (C:\MinGw\msys\1.0\msys.bat) or a Windows command prompt (Windows\run\cmd.exe), type:

where 'filename' is the name of the text file to be executed, for example phugoid.txt. (Note that ./ is not required for the Windows command prompt).

Simplot will generate a script file filename.plt that can be loaded into GNUplot and a data file filename.dat containing the recorded data. Note that the .plt script file is a text file and, if appropriate, can be modified in order to plot data in a different format. Similarly, the .dat data file can be used with alternative plotting

packages. The .plt script file enables GNUplot to generate a .png graphics file, which can be imported into standard packages such as Microsoft Word.

13 An Example of a Simplot Program

The following program positions the aircraft at 3000 ft, with an airspeed of 180 kt. The flaps are set at 20° (by default the gear is up). The simulation will record pitch in degrees in the range -10° to +20°, true airspeed in Kt in the range 100 Kt to 250 Kt, altitude in feet in the range 2000 ft to 4000 ft and elevator in degrees in the range -30° to +30°. The simulation runs for 120 seconds. Prior to starting, the simulation is auto-trimmed so that the engine lever input and elevator inputs will be set at trim values (by default, the aileron and rudder are zero). An elevator pulse of -10° is applied after 5s for 5s.

```
set altitude 3000 ft
set TAS 180 kts
set flaps 20
plot pitch degs -10 20
plot TAS kts 100 250
plot altitude ft 2000 4000
plot elevator degs -30 30
time 120 secs
autotrim
input elevator pulse 5 5 -10
```

The GNUplot script generated by *Simplot* is shown below:

```
set terminal png truecolor font arial 8 size 600,800
set output "ft4.png"
set size 1,1
set origin 0,0
set lmargin 10
set multiplot
set grid
set format y "%5g"
set size 1.0, 0.250000
set origin 0, 0.750000
set ylabel "PITCH DEGS"
set xr[0.0:120.000000]
set yr[-10.000000:20.000000]
plot 'ft4.dat' using 1:2 title 'PITCH' with lines
```

```
set origin 0, 0.500000
set ylabel "TAS KTS"
set xr[0.0:120.000000]
set yr[100.000000:250.000000]
plot 'ft4.dat' using 1:3 title 'TAS' with lines
set origin 0, 0.250000
set ylabel "ALTITUDE FT"
set xr[0.0:120.000000]
set yr[2000.000000:4000.000000]
plot 'ft4.dat' using 1:4 title 'ALTITUDE' with lines
set origin 0, 0.000000
set ylabel "ELEVATOR DEGS"
set xr[0.0:120.000000]
set yr[-30.000000:30.000000]
plot 'ft4.dat' using 1:5 title 'ELEVATOR' with lines
unset multiplot
reset
```

Finally, the output produced by GNUplot is the following .png file:

14 The Simplot Package

Simplot comprises the following source files written in C:

```
-rw-r--r-- 1 dave Administrators 9712 Aug 15 12:25 aero.c
-rw-r--r-- 1 dave Administrators 1300 Aug 14 18:40 aerolink.c
-rw-r--r-- 1 dave Administrators 3460 Jan 17 2017 clocks.c
-rw-r--r-- 1 dave Administrators 11477 Aug 13 10:35 engines.c
-rw-r--r-- 1 dave Administrators 3198 Aug 10 15:22 englink.c
-rw-r--r-- 1 dave Administrators 17398 Aug 8 08:34 fcs.c
-rw-r--r-- 1 dave Administrators 12182 Apr 3 17:37 gear.c
-rw-r--r-- 1 dave Administrators 7941 Aug 10 14:52 iolib.c
-rw-r--r-- 1 dave Administrators 2631 Mar 30 2016 maths.c
-rw-r--r-- 1 dave Administrators 18740 Aug 15 08:53 model.c
-rw-r--r-- 1 dave Administrators 29283 Aug 14 21:43 simplot.c
-rw-r--r-- 1 dave Administrators 17868 Aug 14 19:27 simulate.c
-rw-r--r-- 1 dave Administrators 2053 Aug 13 10:21 systems.c
-rw-r--r-- 1 dave Administrators 2053 Aug 13 10:21 systems.c
```

The files aero.c, engines.c, fcs.c, gear.c and model.c are identical to the real-time modules used in the flight simulator.

The files clocks.c, maths.c and weather.c are identical to the real-time library modules used in the flight simulator

The files aerolink.c, englink.c, iolib.c and systems.c are similar to the real-time flight simulator modules but are simplified to contain only the code necessary to run *Simplot*.

The files simplot.c, simulate.c and stab.c are specific to *Simplot* and perform the following functions:

Module	Function
simplot.c	The main program – reads the <i>Simplot</i> file, parsing the code, initialising the variables defined in the <i>Simplot</i> file and generating the output files (.dat and .plt) for GNUplot.
simulate.c	Responsible for auto-trimming and setting up the environment for the main simulator modules. This module manages the scheduling of the simulator modules aero.c, engines.c, fcs.c, gear.c and model.c and provides overall initialisation and management of the simulation.
stab.c	Computes and displays the non-dimensional aerodynamic derivatives prior to the simulation.