

ATMOSPHERIC, LITHIC AND SOLAR ENERGY SOURCES, DRIVE MICROBIAL MAT FORMATION IN A HYPERSALINE LAKE

M. Nayeli Luis-Vargas¹, Juliana Mendez-Monteiro², Ryan Vogwill², Deirdre B. Gleeson² & Sean K Bay¹

1. School of Agriculture, Biomedicine and Environment, La Trobe University. 2. School of Agriculture and Environment, The University of Western Australia.

Objective:

 To investigate the energy and carbon sources sustaining microbial communities in lithifying and non-lithifying microbial mats in a hypersaline lake.

Methods:

- Collected 11 non-lithifying and 28 lithifying microbial mats across 8 sites in hypersaline lakes on Rottnest Island, Australia.
- Performed shotgun metagenomics sequencing.
- Conducted bioinformatics analysis: short read processing, taxonomic, functional profiling, ML modeling, and MAGs reconstruction.

Results:

- Diversity and functional profile analyses show differences between lithifying and non-lithifying microbial mats.
- There are differences in energy and carbon sources utilization based on the type of microbial mat, whether lithifying or non-lithifying.

Methods **Rottnest Island** Microbial mats Non-Lithifying Lithifying Sampling Sediment Carbonates Sequencing: DNA extraction Illumina HiSeq 2500 paired-end Water composition pH: 7.8 - 8.06

Results

Taxonomy profile - SingleM

Short read analysis

ML modeling

MAGs reconstruction

Functional profile

Alpha diversity

Random Forest model

Beta diversity

Trace gas metabolism

f(x) = 0.22

 HbsC

RbcL IA

RbcL III

Other

E[f(X)] = 0.66

f(x) = 0.01

Sqr Sulfide oxidation

Thiosulfate oxidation

Sulfide oxidation

Sulfite reduction

Sulfur disprop.

SoxB

FCC

AsrA

- Significant differences in community structure suggest a shift likely associated with the process of lithification.
- Despite similar gene presence, ML analysis shows lower gene abundance in lithifying mats, suggesting reduced activity.
- Trace gases, lithic compounds, and solar energy appear to be crucial energy sources for lithifying processes.

References:

Mendes Monteiro, J., Vogwill, R., Bischoff, K., & Gleeson, D. B. (2020). Comparative metagenomics of microbial mats from hypersaline lakes at Rottnest Island (WA, Australia), advancing our understanding of the effect of mat community and functional genes on microbialite accretion. Limnology and Oceanography, 65(S1). https://doi.org/10.1002/lno.11323

Mat type Lithifying Non-Lithifying