



Issue Date: 2009-11-27

**Page 1 of 78** 

# Full SAR Test Report

Applicant Name: CC&C Technologies, Inc.

Applicant Address: No.9 Building,3<sup>rd</sup> Main Street,Kunshan Export Processing Zone,

P.R.China

The following samples were submitted and identified on behalf of the client as:

| Sample Description            | WLAN 11n Micro USB Adapter,1T1R              |
|-------------------------------|----------------------------------------------|
| SGS Ref                       | SHEMO09080095103                             |
| Model Number                  | WL-6201-V1                                   |
| FCC ID                        | WKLWL6201V1                                  |
| Final Software Version Tested | MP_Kit_RTL11n_SingleChip_USB_v026            |
| Final Hardware Version Tested | WLAN 11n Micro USB Adapter,1t1r(wl-6201-v1)) |
| Date Initial Sample Received  | 2009-11-10                                   |
| Testing Start Date            | 2009-11-13                                   |
| Testing End Date              | 2009-11-13                                   |

#### According to:

FCC 47CFR § 2.1093, IEEE Std C95.1-2005

IEEE1528-2003, OET Bulletin 65 Supplement C

#### Comments/ Conclusion:

The configuration tested complied to the certification requirements specified in this report.

Signed for on behalf of SGS

**Project Manager** 

Technical Manager

bler Xue

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/terms\_and\_conditions.htm. and, for electronic format documents to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained heron reflects the company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligation under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorizaed alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fulest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only





# **Table of Contents**

| Cha | •    | listory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.  | •    | ort Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 2.  |      | Lab Declaration or Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 3.  |      | icant Declaration or Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| 4.  |      | Test Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| 5.  |      | al Test Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| 6.  |      | surement Uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 7.  |      | ing Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| 8.  |      | ary Test Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 9.  |      | ils of Applicant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 10. |      | ils of Manufacturer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 11. |      | er testing Locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 12. |      | renced Documents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 13. |      | ary Laboratory Accreditation Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| 14. |      | Shanghai Wireless Telecommunications lab, Personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| 15. |      | Equipment Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|     |      | Antennessa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|     | 15.2 | The SAR Measurement System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|     | 15.3 | Isotropic E-field Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|     | 15.4 | SAM Twin Phantom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|     | 15.5 | Device Holder for Transmitters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| 16. |      | iled Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|     |      | Summary of Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|     | 16.2 | Maximum Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|     | 16.3 | Operation Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|     | 16.4 | Measurement procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|     | 16.5 | Detailed Test Results-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|     |      | tification of Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| 18. |      | ographs of EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|     | ex A | <b>5</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| Ann |      | Tissue Simulant Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|     | Anne | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| _   | Anne |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|     |      | SAR System Validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| Ann | ex D | Description of Test Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|     | Anne |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|     | Anne |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|     | Anne | Francisco Programme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| _   | Anne | The state of the s |    |
| Ann | ex E | Calibration certificate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62 |



Issue Date: 2009-11-27

Page 3 of 78

| Annex E.1    | Probe Calibration certificate    | 62 |
|--------------|----------------------------------|----|
| Annex E.2    | Dipole Calibration certification | 74 |
| END OF REPOR | T                                | 78 |



Issue Date: 2009-11-27

Page 4 of 78

# **Change History**

| Version | Change Contents | Author   | Date       |
|---------|-----------------|----------|------------|
| V1.0    | First edition   | Ken Wang | 2009-11-27 |
|         |                 |          |            |
|         |                 |          |            |
|         |                 |          |            |
|         |                 |          |            |



Issue Date: 2009-11-27

Page 5 of 78

#### **Report Overview**

This report details the results of testing carried out on the samples listed in section 17, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of SGS Shanghai Wireless Telecommunications lab or testing done by SGS Shanghai Wireless Telecommunications lab made in connection with the distribution or use of the tested product must be approved in writing by SGS Shanghai Wireless Telecommunications lab.

#### **Test Lab Declaration or Comments**

The manufacturer declares that the equipment WL-6201-V1 is an initial model with test report number SHEMO09080095103 and structurally identical to the basic one.

#### 3. **Applicant Declaration or Comments**

None

### 4. Full Test Report

A full test report contains, within the results section, all the applicable test cases from the certification requirements of the permanent reference documents of the listed certification bodies.

#### 5. Partial Test Report

A partial test report contains within the results section a sub-set of all the applicable test cases from the certification requirements of the permanent reference documents of the listed certification bodies.

#### **Measurement Uncertainty**

Measurements and results are all in compliance with the standards listed in section 12 of this report. All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/ fail criteria.

| 1 0                   |       |     |       |          |         |       |       |        |    |
|-----------------------|-------|-----|-------|----------|---------|-------|-------|--------|----|
| a                     | b     | c   | d     | e=f(d,k) | f       | g     | h=    | i=     | k  |
|                       |       |     |       |          |         |       | c*f/e | c*g/e  |    |
| Uncertainty Component | Sec.  | Tol | Prob. | Div.     | Ci (1g) | Ci    | 1g Ui | 10g Ui | Vi |
|                       |       | (+- | Dist. |          |         | (10g) | (+-%) | (+-%)  |    |
|                       |       | %)  |       |          |         |       |       |        |    |
| Measurement System    |       |     |       |          |         |       |       |        |    |
| Probe calibration     | E.2.1 | 6.0 | N     | 1        | 1       | 1     | 6.0   | 6.0    | 00 |



Page 6 of 78

| odo                                                                             |          |     |     |            |                 |                 |      |      |     |
|---------------------------------------------------------------------------------|----------|-----|-----|------------|-----------------|-----------------|------|------|-----|
| Axial Isotropy                                                                  | E.2.2    | 2.5 | R   | <b>V</b> 3 | (1 Cp) 1/2      | (1 Cp) 1/2      | 1.0  | 1.0  |     |
| Hemispherical Isotropy                                                          | E.2.2    | 4.0 | R   | ¥3         | √C <sub>p</sub> | √C <sub>p</sub> | 1.6  | 1.6  |     |
| Boundary effect                                                                 | E.2.3    | 1.0 | R   | 13<br>13   | 1               | 1               | 0.6  | 0.6  |     |
| Linearity                                                                       | E.2.4    | 5.0 | R   | ¥3         | 1               | 1               | 2.9  | 2.9  | 00  |
| System detection limits                                                         | E.2.5    | 1.0 | R   | ¥3         | 1               | 1               | 0.6  | 0.6  |     |
| Readout Electronics                                                             | E.2.6    | 0.5 | N   | 1          | 1               | 1               | 0.5  | 0.5  |     |
| Reponse Time                                                                    | E.2.7    | 0.2 | R   | ¥3         | 1               | 1               | 0.1  | 0.1  |     |
| Integration Time                                                                | E.2.8    | 2.0 | R   | ¥3         | 1               | 1               | 1.2  | 1.2  |     |
| RF ambient Conditions                                                           | E.6.1    | 3.0 | R   | V3         | 1               | 1               | 1.7  | 1.7  |     |
| Probe positioner Mechanical<br>Tolerance                                        | E.6.2    | 2.0 | R   | √3         | 1               | 1               | 1.2  | 1.2  | 00  |
| Probe positioning with respect to<br>Phantom Shell                              | E.6.3    | 1.0 | R   | √3         | 1               | 1               | 0.6  | 0.6  | 00  |
| Extrapolation, interpolation and integration Algoritms for Max.  SAR Evaluation | E.5.2    | 1.5 | R   | √3         | 1               | 1               | 0.9  | 0.9  | 00  |
| Test sample Related                                                             | L        | ı   | I   | L          |                 | 1               | 1    | I    |     |
| Test sample positioning                                                         | E.4.2.1  | 1.5 | N   | 1          | 1               | 1               | 1.5  | 1.5  | N-1 |
| Device Holder Uncertainty                                                       | E.4.1.1  | 5.0 | N   | 1          | 1               | 1               | 5.0  | 5.0  |     |
| Output power Variation - SAR drift measurement                                  | 6.6.2    | 3.9 | R   | √3         | 1               | 1               | 2.3  | 2.3  | 00  |
| Phantom and Tissue Parameters                                                   | <u> </u> |     |     |            |                 | 1               | 1    |      |     |
| Phantom Uncertainty (Shape and thickness tolerances)                            | E.3.1    | 4.0 | R   | √3         | 1               | 1               | 2.3  | 2.3  | 00  |
| Liquid conductivity - deviation from target value                               | E.3.2    | 2.1 | R   | √3         | 0.64            | 0.43            | 0.8  | 0.5  | 00  |
| Liquid conductivity - measurement uncertainty                                   | E.3.3    | 2.5 | N   | 1          | 0.64            | 0.43            | 1.6  | 1.1  | M   |
| Liquid permitivity - deviation from target value                                | E.3.2    | 4.1 | R   | √3         | 0.6             | 0.49            | 1.4  | 1.2  | 00  |
| Liquid permitivity - measurement uncertainty                                    | E.3.3    | 2.5 | N   | 1          | 0.6             | 0.49            | 1.5  | 1.2  | M   |
| Combined Standard Uncertainty                                                   |          |     | RSS |            |                 |                 | 9.7  | 9.6  |     |
| Expanded Uncertainty (95% Confidence interval)                                  |          |     | k   |            |                 |                 | 19.0 | 18.8 |     |



Report No.: SHEMO09080095103 Issue Date: 2009-11-27

Page 7 of 78



#### 7. Testing Environment

| Normal Temperature | +20 to +24 °C |
|--------------------|---------------|
| Relative Humidity  | 35 to 60 %    |

## **Primary Test Laboratory**

| Name:      | Wireless Telecommunications Laboratory                         |
|------------|----------------------------------------------------------------|
|            | SGS-CSTC Standards Technical Services(Shanghai) Co., Ltd       |
| Address:   | 9F, 3rd Building, No.889, Yishan Rd, Xuhui District, Shanghai, |
|            | China 200233                                                   |
| Telephone: | +86 (0) 21 6140 2666                                           |
| Fax:       | +86 (0) 21 5450 0149                                           |
| Internet:  | http://www.cn.sgs.com                                          |
| Contact:   | Mr. Peter Xue                                                  |
| Email:     | peter.xue@sgs.com                                              |

#### 9. Details of Applicant

| Name:      | CC&C Technologies,Inc.                                                    |
|------------|---------------------------------------------------------------------------|
| A -1 -1    | No.9 Building,3 <sup>rd</sup> Main Street,Kunshan Export Processing Zone, |
| Address:   | P.R.China                                                                 |
| Telephone: | 86-21-5188-6310#100                                                       |
| Contact:   | Kenny Chou                                                                |
| Email:     | Kenny chou@ccandc.co                                                      |

# 10. Details of Manufacturer

| Name:        | CC&C Technologies,Inc.                                                    |
|--------------|---------------------------------------------------------------------------|
| A dalage age | No.9 Building,3 <sup>rd</sup> Main Street,Kunshan Export Processing Zone, |
| Address:     | P.R.China                                                                 |
| Telephone:   | 86-21-5188-6310#100                                                       |
| Contact:     | Kenny Chou                                                                |
| Email:       | Kenny chou@ccandc.co                                                      |

# 11. Other testing Locations

| Name:      | SIMT EMC Laboratory,                     |
|------------|------------------------------------------|
| Address:   | No.716 Yi shan Road, Shanghai, P.R.China |
| Telephone: | +86 21 64701390                          |
| Contact:   | Yuehai LI                                |
| Email:     | liyuehai@simit.com.cn                    |



Issue Date: 2009-11-27

Page 8 of 78

#### 12. Referenced Documents

The Equipment under Test (EUT) has been tested at SGS's (own or subcontracted) laboratories according to FCC 47CFR § 2.1093, IEEE Std C95.1-2005, IEEE1528-2003, OET Bulletin 65 Supplement C, KDB447498, KDB248227.

The following table summarizes the specific reference documents such as harmonized standards or test specifications which were used for testing as SGS's (own or subcontracted) laboratories.

| Identity                      | Document Title                                                                                                                                                                   | Version |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| FCC 47CFR §<br>2.1093         | Radiofrequency radiation exposure evaluation:portable devices                                                                                                                    | 2001    |
| IEEE Std C95.1                | IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.                                                      | 2005    |
| IEEE1528                      | IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques | 2003    |
| OET Bulletin 65 Supplement C, | Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions                                   | 2001    |
| KDB447498                     | Mobile and Portable Device RF Exposure Procedure and Equipment Authorization Policies                                                                                            | -       |
| KDB248227                     | SAR Measurement Procedures for 802.11 a/b/g Transmitters                                                                                                                         | -       |

| Human Exposure   | Uncontrolled Environment General Population |
|------------------|---------------------------------------------|
| Spatial Peak SAR | 1.60 mW/g<br>(averaged over a mass of 1g)   |

#### Notes:

1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Page 9 of 78



#### 13. Primary Laboratory Accreditation Details



#### 14. SGS Shanghai Wireless Telecommunications lab, Personnel

SGS Wireless Shanghai Project Management Team and list of approved Testers for SGS Wireless Shanghai.

| Surname | Forename | Initials |
|---------|----------|----------|
| CAI     | CAI      | CAICAI   |
| Xue     | Peter    | PETERXUE |
| Xu      | Anya     | ANYA     |
| Ni      | Lemon    | LEMONNI  |
| Тао     | Kevin    | KEVINTAO |

SHGSM

Member of the SGS Group (Société Générale de Surveillance)



Issue Date: 2009-11-27

Page 10 of 78

| Wang     | Lawrence  | LAWRENCE    |
|----------|-----------|-------------|
| Zhang    | Sean      | SEANZH      |
| Liu      | Felix     | FILEX       |
| Ruan     | Roger     | ROGER       |
| Tan      | Terry     | TERRY       |
| Zhang    | Zenger    | ZENGER      |
| Wang     | Ken       | KENWANG     |
| Gao      | Keilefen  | KEILEFENGAO |
| Tang     | Eva       | EVATANG     |
| Но       | James     | JAMESHO     |
| Tang     | Kenny     | KENNY       |
| Hailiang | Cai       | HAILIANG    |
| Kuang    | Connie    | CONNIE      |
| Chan     | Hik Kwong | НКС         |
| Nie      | Neo       | Neo         |

Version 2009-10-20

# 15. Test Equipment Information

#### 15.1 **Antennessa**

| Test Platform               | Antennessa                                  |                      |            |  |  |  |
|-----------------------------|---------------------------------------------|----------------------|------------|--|--|--|
| Manufacture                 | Antennessa                                  | Antennessa           |            |  |  |  |
| Description                 | SAR Test System (                           | Frequency range 30   | 0MHz-3GHz) |  |  |  |
| Description                 | 835, 900, 1800, 19                          | 00, 2000, 2450 frequ | iency band |  |  |  |
| Software Reference          | Open SAR V2.0.16                            | )                    |            |  |  |  |
| Hardware Reference          |                                             |                      |            |  |  |  |
| Equipment                   | Model Serial Number Due date of calibration |                      |            |  |  |  |
| Isotropic E-Field Probe     | E-FIELD PROBE SN_4606_EP_61 2009-12-24      |                      |            |  |  |  |
| 2450 MHz Reference Dipole   | Dipole 2450 SN 36/05 DIP J25 2010-10-20     |                      |            |  |  |  |
| Signal Generator            | SMT 06 100836 2010-6-25                     |                      |            |  |  |  |
| Power Meter                 | NRVD 101311 2010-6-23                       |                      |            |  |  |  |
| Solid State Power Amplifier | BLMA 2060-2 056060B-01 2010-6-25            |                      |            |  |  |  |
| Millivoltmeter              | 2000 1062728 2010-6-18                      |                      |            |  |  |  |
| Vector Network Analyzer     | ZVB 8                                       | 100154               | 2010-6-23  |  |  |  |



Page 11 of 78

# The SAR Measurement System

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system(SAR Handset Assessment Systems from Antennessa). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= $\sigma$  (|Ei|2)/  $\rho$  where  $\sigma$ and p are the conductivity and mass density of the tissue simulating liquid.



Figure 15-1: SAR Measurement System

During SAR test, The EUT is commanded to operate at maximum transmitting power. The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 35 dB.

#### 15.3 **Isotropic E-field Probe**



Figure 15-2: Antennessa probe



Page 12 of 78

E-field probes are constructed with a triangular section bar in alumina. On each face, a dipole and a resistive line are printed. A Schottky diode is placed in the center of each dipole. This probe is designed to fulfill CENELEC and IEEE recommendations for the measurement of electromagnetic fields radiated by mobile phones and base stations. The E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standard. These uncoupled dipoles perform the isotropic and wide-band measurements necessary to assess mobile



Figure 15-3:Typical E-field probe construction

| The characteristics of the probes                  |                            |  |  |  |
|----------------------------------------------------|----------------------------|--|--|--|
| Frequency range                                    | 100 MHz-30 GHz             |  |  |  |
| Maximum external diameter                          | 8 mm                       |  |  |  |
| Probe tip external diameter                        | 5 mm                       |  |  |  |
| Distance between dipoles and the probe tip         | <2.7 mm                    |  |  |  |
| Dipole resistance(in the connector plane)          | 1M to 2M                   |  |  |  |
| Axial isotropy in human-equivalent liquids         | +/-0.25 dB                 |  |  |  |
| Hemispherical Isotropy in human-equivalent liquids | +/-0.5 dB                  |  |  |  |
| Linearity                                          | +/-0.5 dB                  |  |  |  |
| Maximum operating SAR                              | 100 Watts/Kg               |  |  |  |
| Low SAR detection threshold                        | 0.0015 Watts/Kg            |  |  |  |
| Connectors                                         | 6 male wires (Hirose SR30) |  |  |  |

#### 15.4 **SAM Twin Phantom**



Page 13 of 78





Figure 15-4:SAM phantom

The SAM phantom(Antennessa SN:SN\_36\_05\_SAM25) is used to measure the SAR relative to persons exposure to electro-magnetic field radiated by mobile phones. For thickness control purpose, the phantom has several integrated thickness control points(see crosses on the picture below)

| Shell thickness                                                                    | 2 mm +/-0.2 mm                                  |  |  |
|------------------------------------------------------------------------------------|-------------------------------------------------|--|--|
| Filling volume                                                                     | 27 liters                                       |  |  |
| Dimensions                                                                         | 1000mm(length);500mm (width);200<br>mm (height) |  |  |
| 5 molded plastic points for high precision reference Delivered with 4 nylon screws |                                                 |  |  |
| CENELEC 50361 or IEEE 1528-200X versions                                           |                                                 |  |  |

#### 15.5 **Device Holder for Transmitters**

The SAR value is approximatively inversely proportional to the square of the distance between the source and the internal phantom surface. For a source at 5 mm distance, a positioning uncertainty of +/-0.5 mm would produce a SAR uncertainty of +/-20%. An accurate device positioning is therefore essential for accurate and repeatable measurements



Page 14 of 78



Figure 15-5:device holder



This positioning system allows the translation of the mobile phone along the X,Y and Z axis, as well as the required rotation around the phantom ear, for the 2 positions defined by standards(0° "cheek" position and 15° "tilt" position).



#### 16. Detailed Test Results

# 16.1 Summary of Results

#### 16.1.1 Measurement of RF conducted Power

Test Results (802.11b) 1M

| СН   | Frequency<br>(MHz) | Reading<br>Power(dB<br>m) | Cable<br>Loss<br>(dB) | Output<br>Power<br>(dBm) |
|------|--------------------|---------------------------|-----------------------|--------------------------|
| LOW  | 2412               | 15.55                     | 0.00                  | 15.55                    |
| MID  | 2437               | 15.36                     | 0.00                  | 15.36                    |
| HIGH | 2462               | 15.72                     | 0.00                  | 15.72                    |

Test Results (802.11g) 6M

| 9/ 5 |                   |          |       |        |
|------|-------------------|----------|-------|--------|
|      | Fraguency         | Reading  | Cable | Output |
| CH   | H Frequency (MHz) | Power(dB | Loss  | Power  |
|      |                   | m)       | (dB)  | (dBm)  |
| LOW  | 2412              | 12.12    | 0.00  | 12.12  |
| MID  | 2437              | 11.53    | 0.00  | 11.53  |
| HIGH | 2462              | 12.02    | 0.00  | 12.02  |

Test Results (802.11n\_20M) 6.5M

| СН   | Frequency<br>(MHz) | Reading<br>Power(dB<br>m) | Cable<br>Loss<br>(dB) | Output<br>Power<br>(dBm) |
|------|--------------------|---------------------------|-----------------------|--------------------------|
| LOW  | 2412               | 12.58                     | 0.00                  | 12.50                    |
| MID  | 2437               | 12.67                     | 0.00                  | 12.67                    |
| HIGH | 2462               | 13.21                     | 0.00                  | 13.21                    |

Test Results (802.11n\_40M) 13.5M

| СН   | Frequency<br>(MHz) | Reading<br>Power(dB<br>m) | Cable<br>Loss<br>(dB) | Output<br>Power<br>(dBm) |
|------|--------------------|---------------------------|-----------------------|--------------------------|
| LOW  | 2422               | 11.25                     | 0.00                  | 11.25                    |
| MID  | 2437               | 11.56                     | 0.00                  | 11.56                    |
| HIGH | 2452               | 11.87                     | 0.00                  | 11.87                    |

Member of the SGS Group (Société Générale de Surveillance)



#### 16.1.2 Measurement of SAR average value

#### 2.4GHz ISM Band

|      |              | ion Test Configuration |              | Averaged | SAR over 1 | g (W/kg) |                     |         |
|------|--------------|------------------------|--------------|----------|------------|----------|---------------------|---------|
| Band | EUT Position |                        |              | Low      | Middle     | High     | SAR limit<br>(W/kg) | Verdict |
|      |              |                        |              | 2412 MHz | 2437 MHz   | 2462 MHz |                     |         |
|      |              | P1                     | 802.11 b     | -        | -          | 0.360113 | 1.6                 | Passed  |
|      |              |                        | 802.11 b     | 0.540494 | 0.483883   | 0.576881 | 1.6                 | Passed  |
|      |              | P2                     | 802.11 g     | 0.950160 | 0.880265   | 0.853215 | 1.6                 | Passed  |
| 2450 | Body Worn    |                        | 802.11 n_20M | 0.924580 | 0.878442   | 0.860234 | 1.6                 | Passed  |
|      |              | P3                     | 802.11 b     | -        | -          | 0.324239 | 1.6                 | Passed  |
|      |              | P4                     | 802.11 b     | -        | -          | 0.207875 | 1.6                 | Passed  |
|      |              | P5                     | 802.11 b     | -        | -          | 0.055247 | 1.6                 | Passed  |

#### 2.4GHz ISM Band

|      |              | Test Configuration |                 | Averaged | SAR over 1g | ı (W/kg) |                     |         |
|------|--------------|--------------------|-----------------|----------|-------------|----------|---------------------|---------|
| Band | EUT Position |                    |                 | Low      | Middle      | High     | SAR limit<br>(W/kg) | Verdict |
|      |              |                    |                 | 2422 MHz | 2437 MHz    | 2452 MHz |                     |         |
| 2450 | Body Worn    | P2                 | P2 802.11 n_40M |          | 0.851307    | 0.854594 | 1.6                 | Passed  |

#### 16.2 Maximum Results

The maximum measured SAR values for Body configuration is given in section 16.2.1.

# 16.2.1 Body configuration

| Frequency<br>Band | EUT Position                 | SAR,<br>Averaged<br>over 1g<br>(W/Kg) | Power<br>Drift<br>(%) | SAR<br>limit<br>(W/kg) | Verdict |
|-------------------|------------------------------|---------------------------------------|-----------------------|------------------------|---------|
| 2450              | Body Worn, P2, 802.11 g, Low | 0.950160                              | -1.4400               | 1.6                    | Passed  |

#### 16.2.2 Maximum Drift



Issue Date: 2009-11-27

Page 17 of 78

#### 16.2.3 Measurement Uncertainty

| Extended Uncertainty (k=2) 95% | 19.0 |
|--------------------------------|------|
|--------------------------------|------|

#### 16.3 Operation Configurations

The EUT is controlled by using the software supplied by applican, and the EUT is set to maximum output power by the software supplied by applicant during all tests.

The tests in the band of 2450 are performed in the 802.11b, g, n mode. In which the EUT is set to maximum output power with the lowest transmitter rate .all other transmitter rate mode is not necessary because of the maximum output power is less than 1/4 dB higher than the lowest transmitter rate.

- 1. Testing Body Worn SAR at low, middle, high channel with all conditions: P1, P2, P3, P4, P5.
- In all bands, Low and High channels configurations are not necessary due to the Middle channel produce SAR less than -3dB of the applicable SAR limits.

#### Note:

- (1) position 1-P1, position 2-P2, position 3-P3, position 4-P4, position 5-P5
- (2) An IBM laptop (T42) was used in configuration P2&P5
- (3) A short USB cable was used in configuration P1&P3&P4
- (4) Distance separation for each position

P1=P2=P3=P4=P5=5mm



Page 18 of 78





Side2 (P2)

Side4 (P4)



Issue Date: 2009-11-27

Page 19 of 78

#### 16.4 Measurement procedure

#### **Step 1: Power reference measurement**

The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.

#### Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 8mm\*8mm. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

#### Step 3: Zoom scan

Around this point, a volume of 30mm\*30mm\*30mm (fine resolution volume scan, zoom scan) was assessed by measuring 7\*7\*7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

#### Step 4: Power reference measurement (drift)

The SAR value at the same location as in step 1 was again measured. (If the value changed by more than 5%, the evaluation should be done repeatedly)



Issue Date: 2009-11-27

Page 20 of 78



# 16.5 Detailed Test Results-16.5.1 802.11.b-BodyWorn-P1-High

802.11.b-BodyWorn-P1-High

Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 14 minutes 43 seconds

Mobile Phone IMEI number: --

#### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |  |
|-----------------|-------------------|--|
| Phantom         | Validation plane  |  |
| Device Position | P1                |  |
| Band            | 2450              |  |
| Channels        |                   |  |
| Signal          | Duty Cycle: 1.00  |  |

#### B. Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |
|------------------|----------------------------------------|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |
| Voltmeter        | Keithley (2000, SN:1000572)            |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |
| Amplifier        | Bonn (BLMA, SN:10800)                  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |

### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2462.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.814999   |
| Relative permitivity (imaginary part) | 14.994000   |
| Conductivity (S/m)                    | 2.050846    |
| Variation (%)                         | -2.130000   |



Page 21 of 78



Maximum location: X=17.00, Y=0.00

| SAR 10g (W/Kg) | 0.171435 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.360113 |

Z Axis Scan







Issue Date: 2009-11-27

Page 22 of 78



#### 16.5.2 802.11.b-BodyWorn-P2-High

802.11.b-BodyWorn-P2-High

Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 14 minutes 28 seconds

Mobile Phone IMEI number: ---

#### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |  |
|-----------------|-------------------|--|
| Phantom         | Validation plane  |  |
| Device Position | P2                |  |
| Band            | 2450              |  |
| Channels        |                   |  |
| Signal          | Duty Cycle: 1.00  |  |

# **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

#### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2462.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.814999   |
| Relative permitivity (imaginary part) | 14.994000   |
| Conductivity (S/m)                    | 2.050846    |
| Variation (%)                         | -2.350000   |

SHGSM

f (86 -21) 54500149 ww.cn.sgs.com

Page 23 of 78





Maximum location: X=2.00, Y=16.00

| SAR 10g (W/Kg) | 0.260572 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.576881 |

#### Z Axis Scan







Issue Date: 2009-11-27

Page 24 of 78



#### 16.5.3 802.11.b-BodyWorn-P3-High

802.11.b-BodyWorn-P3-High

Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 14 minutes 6 seconds

Mobile Phone IMEI number: --

#### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |  |
|-----------------|-------------------|--|
| Phantom         | Validation plane  |  |
| Device Position | P3                |  |
| Band            | 2450              |  |
| Channels        |                   |  |
| Signal          | Duty Cycle: 1.00  |  |

#### **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

#### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2462.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.814999   |
| Relative permitivity (imaginary part) | 14.994000   |
| Conductivity (S/m)                    | 2.050846    |
| Variation (%)                         | 0.890000    |

Page 25 of 78





Maximum location: X=5.00, Y=0.00

| SAR 10g (W/Kg) | 0.151690 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.324239 |

#### Z Axis Scan





Issue Date: 2009-11-27

Page 26 of 78



### 16.5.4 802.11.b-BodyWorn-P4-High

802.11.b-BodyWorn-P4-High

Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 14 minutes 2 seconds

Mobile Phone IMEI number: --

#### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |
|-----------------|-------------------|
| Phantom         | Validation plane  |
| Device Position | P4                |
| Band            | 24510             |
| Channels        |                   |
| Signal          | Duty Cycle: 1.00  |

#### **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

#### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2462.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.814999   |
| Relative permitivity (imaginary part) | 14.994000   |
| Conductivity (S/m)                    | 2.050846    |
| Variation (%)                         | -1.460000   |





Maximum location: X=0.00, Y=0.00

| SAR 10g (W/Kg) | 0.097195 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.207875 |

#### Z Axis Scan





Issue Date: 2009-11-27

Page 28 of 78



# 16.5.5 802.11.b-BodyWorn-P5-High

802.11.b-BodyWorn-P5-High

Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 14 minutes 25 seconds

Mobile Phone IMEI number: --

#### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |
|-----------------|-------------------|
| Phantom         | Validation plane  |
| Device Position | P5                |
| Band            | 2450              |
| Channels        |                   |
| Signal          | Duty Cycle: 1.00  |

#### **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

#### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2462.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.814999   |
| Relative permitivity (imaginary part) | 14.994000   |
| Conductivity (S/m)                    | 2.050846    |
| Variation (%)                         | -3.940000   |

Page 29 of 78





Maximum location: X=-9.00, Y=8.00

| SAR 10g (W/Kg) | 0.026786 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.055247 |

#### Z Axis Scan





Issue Date: 2009-11-27

Page 30 of 78



# 16.5.6 802.11.b-BodyWorn-P2-Low

802.11.b-BodyWorn-P2-Low

Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 14 minutes 27 seconds

Mobile Phone IMEI number: --

### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |
|-----------------|-------------------|
| Phantom         | Validation plane  |
| Device Position | P2                |
| Band            | 2450              |
| Channels        |                   |
| Signal          | Duty Cycle: 1.00  |

#### **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

#### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2412.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.595001   |
| Relative permitivity (imaginary part) | 14.659050   |
| Conductivity (S/m)                    | 1.964313    |
| Variation (%)                         | 1.500000    |



Page 31 of 78





Maximum location: X=3.00, Y=17.00

| SAR 10g (W/Kg) | 0.246846 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.540494 |

# **Z** Axis Scan

# SAR, Z Axis Scan (X = 3, Y = 17)





Issue Date: 2009-11-27

Page 32 of 78



802.11.b-BodyWorn-P2-Middle

Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 14 minutes 26 seconds

Mobile Phone IMEI number: --

### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |
|-----------------|-------------------|
| Phantom         | Validation plane  |
| Device Position | P2                |
| Band            | 2450              |
| Channels        |                   |
| Signal          | Duty Cycle: 1.00  |

#### **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

#### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2437.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.686001   |
| Relative permitivity (imaginary part) | 14.811300   |
| Conductivity (S/m)                    | 2.005285    |
| Variation (%)                         | 0.150000    |

**SHGSM** 

f (86 -21) 54500149 ww.cn.sgs.com



Page 33 of 78





Maximum location: X=3.00, Y=18.00

| SAR 10g (W/Kg) | 0.221199 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.483883 |

# **Z** Axis Scan



Z(mm)





### 16.5.8 802.11g-BodyWorn-P2-Low

802.11g-BodyWorn-P2-Low

Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 14 minutes 31 seconds

Mobile Phone IMEI number: --

#### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |
|-----------------|-------------------|
| Phantom         | Validation plane  |
| Device Position | P2                |
| Band            | 2450              |
| Channels        |                   |
| Signal          | Duty Cycle: 1.00  |

#### **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

# C. SAR Measurement Results

| Frequency (MHz)                       | 2412.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.595001   |
| Relative permitivity (imaginary part) | 14.659050   |
| Conductivity (S/m)                    | 1.964313    |
| Variation (%)                         | -1.440000   |



Page 35 of 78





Maximum location: X=3.00, Y=18.00

| SAR 10g (W/Kg) | 0.437435 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.950160 |

#### Z Axis Scan







Issue Date: 2009-11-27

Page 36 of 78

#### 16.5.9 802.11g-BodyWorn-P2-Middle

802.11g-BodyWorn-P2-Middle

Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 15 minutes 13 seconds

Mobile Phone IMEI number: --

#### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |
|-----------------|-------------------|
| Phantom         | Validation plane  |
| Device Position | P2                |
| Band            | 2450              |
| Channels        |                   |
| Signal          | Duty Cycle: 1.00  |

# **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

#### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2437.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.686001   |
| Relative permitivity (imaginary part) | 14.811300   |
| Conductivity (S/m)                    | 2.005285    |
| Variation (%)                         | 0.250000    |

Page 37 of 78





Maximum location: X=3.00, Y=18.00

| SAR 10g (W/Kg) | 0.405438 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.880265 |

### Z Axis Scan







Report No.: SHEMO09080095103

Issue Date: 2009-11-27

Page 38 of 78



# 16.5.10 802.11g-BodyWorn-P2-High

802.11g-BodyWorn-P2-High

Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 14 minutes 55 seconds

Mobile Phone IMEI number: --

### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |
|-----------------|-------------------|
| Phantom         | Validation plane  |
| Device Position | P2                |
| Band            | 2450              |
| Channels        |                   |
| Signal          | Duty Cycle: 1.00  |

#### **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2462.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.814999   |
| Relative permitivity (imaginary part) | 14.994000   |
| Conductivity (S/m)                    | 2.050846    |
| Variation (%)                         | -0.150000   |

Page 39 of 78





Maximum location: X=3.00, Y=17.00

| SAR 10g (W/Kg) | 0.391840 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.853215 |

### Z Axis Scan







### 16.5.11 802.11n(20MHz)-BodyWorn-P2-Low

802.11n(20MHz)-BodyWorn-P2-Low Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 15 minutes 53 seconds

Mobile Phone IMEI number: --

#### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |
|-----------------|-------------------|
| Phantom         | Validation plane  |
| Device Position | P2                |
| Band            | 2450              |
| Channels        |                   |
| Signal          | Duty Cycle: 1.00  |

#### **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

#### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2412.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.595001   |
| Relative permitivity (imaginary part) | 14.659050   |
| Conductivity (S/m)                    | 1.964313    |
| Variation (%)                         | 0.280000    |

Page 41 of 78





Maximum location: X=3.00, Y=18.00

| SAR 10g (W/Kg) | 0.426289 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.924580 |

### Z Axis Scan







Report No.: SHEMO09080095103

Issue Date: 2009-11-27

Page 42 of 78



# 16.5.12802.11n(20MHz)-BodyWorn-P2-Middle

802.11n(20MHz)-BodyWorn-P2-Middle Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 14 minutes 30 seconds

Mobile Phone IMEI number: --

### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |
|-----------------|-------------------|
| Phantom         | Validation plane  |
| Device Position | P2                |
| Band            | 2450              |
| Channels        |                   |
| Signal          | Duty Cycle: 1.00  |

# **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2437.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.686001   |
| Relative permitivity (imaginary part) | 14.811300   |
| Conductivity (S/m)                    | 2.005285    |
| Variation (%)                         | 0.150000    |





Maximum location: X=3.00, Y=18.00

| SAR 10g (W/Kg) | 0.407113 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.878442 |

### Z Axis Scan







Report No.: SHEMO09080095103

Issue Date: 2009-11-27

Page 44 of 78



# 16.5.13802.11n(20MHz)-BodyWorn-P2-High

802.11n(20MHz)-BodyWorn-P2-High Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 15 minutes 1 seconds

Mobile Phone IMEI number: --

### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |
|-----------------|-------------------|
| Phantom         | Validation plane  |
| Device Position | P2                |
| Band            | 2450              |
| Channels        |                   |
| Signal          | Duty Cycle: 1.00  |

#### **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2462.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.814999   |
| Relative permitivity (imaginary part) | 14.994000   |
| Conductivity (S/m)                    | 2.050846    |
| Variation (%)                         | -0.520000   |

Page 45 of 78





Maximum location: X=3.00, Y=17.00

| SAR 10g (W/Kg) | 0.394415 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.860234 |

### Z Axis Scan







Report No.: SHEMO09080095103

Issue Date: 2009-11-27

Page 46 of 78



# 16.5.14802.11n(40MHz)-BodyWorn-P2-Low

802.11n(40MHz)-BodyWorn-P2-Low Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 15 minutes 2 seconds

Mobile Phone IMEI number: --

# A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |
|-----------------|-------------------|
| Phantom         | Validation plane  |
| Device Position | P2                |
| Band            | 2450              |
| Channels        |                   |
| Signal          | Duty Cycle: 1.00  |

# **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2422.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.595001   |
| Relative permitivity (imaginary part) | 14.659050   |
| Conductivity (S/m)                    | 1.964313    |
| Variation (%)                         | 0.080000    |

Page 47 of 78





Maximum location: X=3.00, Y=18.00

| SAR 10g (W/Kg) | 0.387664 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.843415 |

# Z Axis Scan

# SAR, Z Axis Scan (X = 3, Y = 18)





### 16.5.15 802.11n(40MHz)-BodyWorn-P2-Middle

802.11n(40MHz)-BodyWorn-P2-Middle Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 14 minutes 59 seconds

Mobile Phone IMEI number: --

### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |
|-----------------|-------------------|
| Phantom         | Validation plane  |
| Device Position | P2                |
| Band            | 2450              |
| Channels        |                   |
| Signal          | Duty Cycle: 1.00  |

#### **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |
|------------------|----------------------------------------|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |

### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2437.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.686001   |
| Relative permitivity (imaginary part) | 14.811300   |
| Conductivity (S/m)                    | 2.005285    |
| Variation (%)                         | 0.500000    |

Page 49 of 78





Maximum location: X=3.00, Y=18.00

| SAR 10g (W/Kg) | 0.393575 |  |
|----------------|----------|--|
| SAR 1g (W/Kg)  | 0.851307 |  |

### Z Axis Scan



Report No.: SHEMO09080095103

Issue Date: 2009-11-27

Page 50 of 78

# 16.5.16802.11n(40MHz)-BodyWorn-P2-High

802.11n(40MHz)-BodyWorn-P2-High Type: Phone measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 15 minutes 10 seconds

Mobile Phone IMEI number: --

### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |  |  |
|-----------------|-------------------|--|--|
| Phantom         | Validation plane  |  |  |
| Device Position | P2                |  |  |
| Band            | 2450              |  |  |
| Channels        |                   |  |  |
| Signal          | Duty Cycle: 1.00  |  |  |

#### **B.** Instrumentations.

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |  |  |
|------------------|----------------------------------------|--|--|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |  |  |
| Voltmeter        | Keithley (2000, SN:1000572)            |  |  |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |  |  |
| Amplifier        | Bonn (BLMA, SN:10800)                  |  |  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |  |  |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |  |  |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |  |  |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |  |  |

### **C. SAR Measurement Results**

| Frequency (MHz)                       | 2452.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.814999   |
| Relative permitivity (imaginary part) | 14.994000   |
| Conductivity (S/m)                    | 2.050846    |
| Variation (%)                         | -0.180000   |

| SURFACE SAR | VOLUME SAR |
|-------------|------------|
|-------------|------------|



Page 51 of 78





Maximum location: X=3.00, Y=17.00

| SAR 10g (W/Kg) | 0.390295 |  |
|----------------|----------|--|
| SAR 1g (W/Kg)  | 0.854594 |  |

# **Z** Axis Scan

# SAR, Z Axis Scan (X = 3, Y = 17)









| Product Name                   | WLAN 11n Micro USB Adapter,1T1R                                                    |
|--------------------------------|------------------------------------------------------------------------------------|
| Brand Name                     | -                                                                                  |
| Model Name                     | WL-6201-V1                                                                         |
| Final Hardware Version         | WLAN 11n Micro USB<br>Adapter,1t1r(wl-6201-v1))                                    |
| Final Software Version         | MP_Kit_RTL11n_SingleChip_USB_v026                                                  |
| Power Supply:                  | 5V DC from USB of host PC                                                          |
| Antenna Type                   | Inner Antenna                                                                      |
| Frequency Band :               | 2.4GHz ISM Band                                                                    |
| Modulation tye                 | CCK,DQPSK,DBPSK for DSSS<br>64QAM,16QAM,QPSK,BPSK for OFDM                         |
| Spread Spectrum:               | IEEE 802.11b:DSSS<br>IEEE 802.11g/n :OFDM                                          |
| Frequency Range&Channel number | 802.11b/g/n_20M:2412-2462MHz,11 channels<br>802.11 n_40M:2422-2452 MHz, 7 channels |
| Reference Number               | SHEMO09080095103                                                                   |
| Serial Number                  | SHEMO090800951IT-1                                                                 |
| IMEI                           |                                                                                    |
| Date of receipt                | 2009-11-10                                                                         |
| Date of Testing Start          | 2009-11-13                                                                         |
| Date of Testing End            | 2009-11-13                                                                         |

# 18. Photographs of EUT





Fig.17-1 Front View

Fig.17-2 Back View



Page 53 of 78

# Annex A Photographs of Test Setup



Fig.A-1 Photograph of the SAR measurement System



Fig.A-2 Photograph of the Tissue Simulant Liquid depth 15cm for Body Worn

Page 54 of 78



Fig.A-3a Photograph of the BodyWorn status P1



Fig.A-3b Photograph of the BodyWorn status P2



Fig.A-3c Photograph of the BodyWorn status P3



Fig.A-3d Photograph of the BodyWorn status P4



Fig.A-3e Photograph of the BodyWorn status P5



#### Annex B Tissue Simulant Liquid

#### **Annex B.1 Recipes for Tissue Simulant Liquid**

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands.

| Frequency (MHz)                                                                      | 835                               |       | 900         |           | 1800-2000 |       | 2450  |       |
|--------------------------------------------------------------------------------------|-----------------------------------|-------|-------------|-----------|-----------|-------|-------|-------|
| Tissue Type                                                                          | Head                              | Body  | Head        | Body      | Head      | Body  | Head  | Body  |
|                                                                                      |                                   | Ingre | edient (% l | y weight) |           |       |       |       |
| Water                                                                                | 40.30                             | 50.75 | 40.30       | 50.75     | 55.24     | 70.17 | 55.00 | 68.64 |
| Salt (NaCl)                                                                          | 1.38                              | 0.94  | 1.38        | 0.94      | 0.31      | 0.39  | 0     | 0     |
| Sucrose                                                                              | 57.90                             | 48.21 | 57.90       | 48.21     | 0         | 0     | 0     | 0     |
| HEC                                                                                  | 0.24                              | 0     | 0.24        | 0         | 0         | 0     | 0     | 0     |
| Bactericide                                                                          | 0.18                              | 0.10  | 0.10        | 0.10      | 0         | 0     | 0     | 0     |
| DGBE                                                                                 | 0                                 | 0     | 0           | 0         | 44.45     | 29.44 | 45.00 | 31.37 |
|                                                                                      | Measurement dielectric parameters |       |             |           |           |       |       |       |
| Dielectric Constant                                                                  | 41.9                              | 55.0  | 41.1        | 54.5      | 39.2      | 53.2  | 38.9  | 53.0  |
| Conductivity (S/m)                                                                   | 0.93                              | 0.97  | 1.04        | 1.06      | 1.45      | 1.59  | 1.82  | 1.93  |
| Target values                                                                        |                                   |       |             |           |           |       |       |       |
| Dielectric Constant                                                                  | 41.5                              | 55.2  | 41.5        | 55.0      | 40.0      | 53.3  | 39.2  | 52.7  |
| Conductivity (S/m)                                                                   | 0.90                              | 0.97  | 0.97        | 1.05      | 1.40      | 1.52  | 1.80  | 1.95  |
| Salt: 99 <sup>+</sup> % Pure Sodium Chloride Sucrose: 98 <sup>+</sup> % Pure Sucrose |                                   |       |             |           |           |       |       |       |

Salt: 99 % Pure Sodium Chloride Sucrose: 98 % Pure Sucrose Water: De-ionized,  $16 \text{ M}\Omega^+$  resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99<sup>+</sup>% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Table B-1 Recipe of Tissue Simulant Liquid

#### **Annex B.2 Measurement for Tissue Simulant Liquid**

The dielectric properties for this Tissue Simulant Liquids were measured by using the Agilent Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Agilent Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 1.For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was 22±2°C.

| Frequency<br>(MHz) | Tissue Type | Limit/Measured       | Permittivity (ρ)          | Conductivity (σ)       | Temp (°C) |
|--------------------|-------------|----------------------|---------------------------|------------------------|-----------|
| 2450               | Body        | Recommended Limit    | 52.7±5%<br>(50.07~55.33)) | 1.95±5%<br>(1.85~2.04) | 22±2      |
|                    |             | Measured, 2009-11-13 | 53.686001                 | 2.005285               | 22.2      |

Table B-2 Measurement result of Tissue electric parameters

Page 56 of 78



#### **SAR System Validation**

The microwave circuit arrangement for system verification is sketched in Fig. C-1. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 2450 MHz. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table C-1 (A power level of 1w was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.



Fig. C-1 the microwave circuit arrangement used for SAR system verification

| Validation | Frequency | Quency Tissue Type Limit/Measurement |                      |               |               |
|------------|-----------|--------------------------------------|----------------------|---------------|---------------|
| Kit        | (MHz)     | rissue rype                          |                      | 1g            | 10g           |
|            |           |                                      | Recommended Limit    | 50.14±10%     | 23.03±10%     |
| D2450V2    | 2450      | Body                                 | Resolutionaea Emili  | (45.13~55.15) | (20.73~25.33) |
|            |           |                                      | Measured, 2009-11-13 | 50.895515     | 23.102520     |

Table C-1 SAR System Validation Result



# System Validation for 2450MHz Body

Type: Validation measurement (Complete) Date of measurement: 13/11/2009

Measurement duration: 15 minutes 18 seconds

Mobile Phone IMEI number: --

#### A. Experimental conditions.

| Phantom File    | surf_sam_plan.txt |  |  |
|-----------------|-------------------|--|--|
| Phantom         | Validation plane  |  |  |
| Device Position | Dipole            |  |  |
| Band            | 2450              |  |  |
| Channels        |                   |  |  |
| Signal          | Duty Cycle: 1.00  |  |  |

#### **B.** Instrumentations

| PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |
|------------------|----------------------------------------|
| Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |
| Voltmeter        | Keithley (2000, SN:1000572)            |
| Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |
| Amplifier        | Bonn (BLMA, SN:10800)                  |
| Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |
| Probe            | Antennessa (SN:SN_4606_EP_61)          |
| Phantom          | Antennessa (SN:SN_36_05_SAM25)         |
| Liquid           | SIMT (Last Calibration:2009.11.13)     |

### C. SAR Measurement Results

| Frequency (MHz)                       | 2437.000000 |
|---------------------------------------|-------------|
| Relative permitivity (real part)      | 53.686001   |
| Relative permitivity (imaginary part) | 14.811300   |
| Conductivity (S/m)                    | 2.005285    |
| Variation (%)                         | -0.050000   |



Page 58 of 78





Maximum location: X=0.00, Y=0.00

| SAR 10g (W/Kg) | 23.102520 |
|----------------|-----------|
| SAR 1g (W/Kg)  | 50.895515 |

# Z Axis Scan





Page 59 of 78

# **Description of Test Position**

#### Annex D.1 **SAM Phantom Shape**



Figure D-1 front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup of Figure D-2. Note: The center strip including the nose region has a different thickness tolerance.



Figure D-2 Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)



Figure D-3 Close-up side view of phantom showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations



Figure D-4 Side view of the phantom showing relevant markings and seven cross-sectional plane locations



Page 60 of 78



#### Annex D.2 **EUT constructions**



Figure D-5a Handset vertical and horizontal reference lines-"fixed case"

Figure D-5b Handset vertical and horizontal reference lines-"clam-shell case"

#### Annex D.3 Definition of the "cheek" position

- a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position" see Figure 1-7). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE;
- b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until the phone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

#### Annex D.4 Definition of the "tilted" position

- a) Position the device in the "cheek" position described above;
- b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

Page 61 of 78





Figure D-6 Definition of the reference lines and points, on the phone and on the phantom and initial position



Figure D-7 "Cheek" and "tilt" positions of the mobile phone on the left side

Page 62 of 78



#### **Calibration certificate**

#### **Annex E.1 Probe Calibration certificate**





Page 63 of 78



| SIMT                                                                                                                                                                                                                                    |                                        | ZREE 1546   | 15: 2008J10-10-91200                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------|------------------------------------------|
| MONTH CRITER OF READINGS HAVE AND JUSTINE STORAGED IN                                                                                                                                                                                   |                                        |             | a sees see                               |
| 国家法定计量检定机构计量授权证书号(中心/说): (国)<br>The number of the Continues of Medicingue Automation in the Lagor Memorgani Automation<br>中国实验室国家认可委员会(CNU)实验室认可证书 <sup>4</sup><br>The number of the cartifician according by ONA is No.10194           |                                        |             | ∯/ (2007) 01019 ∯<br>-1000: 1100         |
| 本次校准所依据的技术规范(代号、名称);                                                                                                                                                                                                                    |                                        |             |                                          |
| JCJ/J101001.1/0-2007 SAR 电场探头校准规范 (SAF                                                                                                                                                                                                  | E-FIELD                                | PROBE (     | calibration criterion)                   |
| IEC 62209-1: 2003 Procedure to measure the Spe<br>frequency range<br>of 300 MHz to 3 GHz Part 1: has<br>IEEE 1528: 2003 IEEE Recommended Practice to<br>Specific<br>Absorption Rate (SAR) in the Hum<br>Devices: Measurement Technique: | nd-heid mo<br>or Determin<br>on Head f | obile wirel | ess communication<br>eak Spatial-Average |
| 本次校准所使用的主要计量标准器具:                                                                                                                                                                                                                       |                                        |             |                                          |
| 参见粉录 (Refer to attachment 1)                                                                                                                                                                                                            |                                        | M.          |                                          |
| 以上计量标准委員的量值演游至国家基准。                                                                                                                                                                                                                     | cy desendo o the Fi                    | t Dee       |                                          |
| 校准地点及环境条件。                                                                                                                                                                                                                              |                                        |             |                                          |
| 地点: 宜山路 716 号 (No. 718 Yishan Road                                                                                                                                                                                                      | f, Shangh                              | ai)         |                                          |
| 温度: 21 ℃, 温度: 50                                                                                                                                                                                                                        | %RH:                                   | 我它:         | 7                                        |
| 本次核准结果的扩展不确定度。<br>Equated unstants                                                                                                                                                                                                      |                                        | 9191        |                                          |
| Antenna coefficient (Voltage): k=2, U=2Uc(E)=0.92di                                                                                                                                                                                     | 9                                      |             |                                          |
| 校准结果/说明。<br>Penulis of Carlondon and approximation                                                                                                                                                                                      |                                        |             |                                          |
| Assults of Carbinium and Editorium expension                                                                                                                                                                                            |                                        |             |                                          |
| Pass                                                                                                                                                                                                                                    |                                        |             |                                          |
| The requirements of the calibration criterion:<br>Linearity less than 0.25dB<br>Isotropy less than 0.25dB<br>Sensitivity less than the Low                                                                                              | v limit dete                           | ction (12   | mW/Kg)                                   |
|                                                                                                                                                                                                                                         |                                        |             |                                          |
| 本证书提供的结果仅对本次被较的器具有效。<br>Transaction action removed                                                                                                                                                                                      |                                        |             |                                          |



Page 64 of 78



校准证书编号,2008J10-10-912001

#### 校准结果/说明(续页):

2.11 Calibration Frequency: 2450.00MHz BODY

#### 2.11.1 Calibration basic information

| S/N | Calibration                     |
|-----|---------------------------------|
| 1   | Epsilon: 52.42                  |
| 2   | Sigma: 2.00 S/m                 |
| 3   | Temperature: 21°C               |
| 4   | Cable loss: 0.20dB              |
| 5   | Coupler loss: 20.01dB           |
| 6   | Wavegulde Return Loss: -12.00dB |

#### 2.11.2 Calibration parameters

2.11.2.1 Sensitivity (Low limit detection): 0.80V/m (1.27mW/Kg)

#### 2.11.2.2 Linearity: 0.04dB

#### Calibration curves of linearization:

Calibration curves el=f(V) (l=1,2,3) allow to obtain E-field value using the formula: E=(e1"e1+e2"e2+e3"e3)pow(1/2)



Remark: Dipole 1: calibration curves of the dipole 1; Dipole 2: calibration curves of the dipole 2;

Dipole 3: calibration curves of the dipole 3

<sup>页</sup>校准证书供页专用

第 88 页 共 102





Page 65 of 78



校准结果/说明(续页):

#### Calibration data of linearization (including probe Factor)

| $V_1(V)$ | e <sub>1</sub> (V/m) | V <sub>2</sub> (V) | e <sub>2</sub> (V/m) | V <sub>3</sub> (V) | e <sub>3</sub> (V/m) |
|----------|----------------------|--------------------|----------------------|--------------------|----------------------|
| 0.655847 | 428.548830           | 0.556055           | 390.836704           | 0.556167           | 357.123996           |
| 0.524141 | 348.415504           | 0.450954           | 322.767314           | 0.445741           | 291.691269           |
| 0.426106 | 288.669403           | 0.363645           | 266.102980           | 0.356019           | 238.411807           |
| 0.338265 | 235.005991           | 0.295284           | 221.604423           | 0.283873           | 195.432656           |
| 0.270398 | 193.393959           | 0.235058           | 182.231089           | 0.230079           | 163.245378           |
| 0.217076 | 160.532567           | 0.189295           | 152.126513           | 0.182692           | 134.713740           |
| 0.174701 | 134.234656           | 0.152808           | 127.924135           | 0.148164           | 113.745434           |
| 0.138800 | 111.735244           | 0.123229           | 108.085176           | 0.118753           | 95.680543            |
| 0.111783 | 94.577703            | 0.099488           | 91.926926            | 0.094606           | 8D.615321            |
| 0.089747 | 80.344038            | 0.080204           | 78,552166            | 0.076087           | 68.825019            |
| 0.072352 | 68.86178D            | 0.063663           | 66.790253            | 0.060448           | 58.607965            |
| 0.057740 | 58.947676            | 0.051247           | 57.681745            | 0.048887           | 50.812700            |
| 0.045930 | 50.649288            | 0.040943           | 49.835809            | 0.031348           | 38.391308            |
| 0.029375 | 38.347133            | 0.026768           | 38,391308            | 0.029999           | 37.259147            |
| 0.028103 | 37.216275            | 0.025605           | 37.302068            | 0.028273           | 35.870126            |
| 0.026413 | 35.828853            | 0.024064           | 35.911447            | 0.026041           | 34.137593            |
| 0.024303 | 34.098314            | 0.022158           | 34.176918            | 0.023441           | 32.079893            |
| 0.021874 | 32.042980            | 0.019888           | 32.116847            | 0.020409           | 29.630085            |
| 0.018998 | 29.595992            | 0.017282           | 29.664218            | 0.017165           | 26.806055            |
| 0.015928 | 26.775211            | 0.014466           | 26.867850            | 0.014098           | 24.028846            |
| 0.013032 | 23.973581            | 0.011819           | 24.056526            | 0.011450           | 21.415731            |
| 0.010578 | 21.366476            | 0.009573           | 21.440401            | 0.009185           | 19.064829            |
| 0.008501 | 19.020981            | 0.007690           | 19.086790            | 0.007393           | 16.971995            |
| 0.006840 | 16.932961            | 0.006158           | 16.991547            | 0.005910           | 15.091518            |
| 0.005446 | 15.056808            | 0.004907           | 15.108902            | 0.004681           | 13.388531            |
| 0.004295 | 13.310439            | 0.003873           | 13.403953            | 0.003714           | 11.918810            |
| 0.003395 | 11.854485            | 0.003066           | 11.932540            | 0.002947           | 10.598220            |
| 0.002710 | 10.613315            | 0.002433           | 10.617906            | 0.002262           | 9.306208             |
| 0.002106 | 9.383690             | 0.001873           | 9.354853             | 0.001730           | 8.172895             |
| 0.001610 | 8.237808             | 0.001417           | 8.183617             | 0.001327           | 7.196549             |
| 0.001213 | 7.190244             | 0.001076           | 7.184035             | 0.001037           | 6.402502             |
| 0.000935 | 6.354701             | 0.000821           | 6.334289             | 0.000805           | 5.688004             |
| 0.000718 | 5.616775             | 0.000631           | 5.618201             | 0.000625           | 5.064682             |
| 0.000553 | 4.983073             | 0.000481           | 4.980667             | 0.000477           | 4.487778             |
| 0.000422 | 4.415655             | 0.000376           | 4.480741             | 0.000361           | 3.977542             |
| 0.000327 | 3.953550             | 0.000286           | 4.002844             | 0.000276           | 3.557502             |
| 0.000254 | 3.557910             | 0.000209           | 3.543176             | 0.000191           | 3.080715             |
| 0.000184 | 3.131937             | 0.000155           | 3.181435             | 0.000158           | 2.874376             |
| 0.000122 | 2.699075             | 0.000115           | 2.884376             | 0.000109           | 2.537222             |
| 0.000061 | 2.191278             | 0.000077           | 2.570567             | 0.000063           | 2.173629             |

页 校准证书续页专用 Generalists and services





Page 66 of 78



校准证书编号: 2008J10-10-912001

|          |          |          |          | Cattlenged-continues socies to | ė.       |
|----------|----------|----------|----------|--------------------------------|----------|
| 0.000031 | 1.892499 | 0.000045 | 2.272948 | 0.000037                       | 1.938180 |

#### 校准结果/说明(续页):

| V <sub>1</sub> (V) | e <sub>1</sub> (V/m) | V <sub>2</sub> (V) | e <sub>2</sub> (V/m) | V <sub>2</sub> (V) | e <sub>3</sub> (V/m) |
|--------------------|----------------------|--------------------|----------------------|--------------------|----------------------|
| 800000.0           | 1.622610             | 0.000006           | 1.846466             | -0.000001          | 1.530226             |
| -0.000010          | 1.379908             | -0.000015          | 1.570428             | -0.000017          | 1.320981             |
| -0.000022          | 1.185150             | -0.000030          | 1.340787             | -0.000030          | 1.129313             |
| -0.000032          | 1.016119             | -0.000040          | 1.154990             | -0.000038          | 0.977716             |
| -0.000038          | 0.874571             | -0.000048          | 0.986403             | -0.000045          | 0.842730             |
| -0.000043          | 0.745701             | -0.000054          | 0.848265             | -0.000050          | 0.716471             |
| -0.000047          | 0.638640             | -0.000058          | 0.729004             | -0.000054          | 0.619351             |
| -0.000050          | 0.547536             | -0.000061          | 0.626152             | -0.000056          | 0.525965             |
| -0.000052          | 0.467431             | -0.000063          | 0.539907             | -0.000058          | 0.453950             |
| /                  | 1                    | -0.000065          | 0.459473             | I                  | 1                    |

<sup>页</sup>校准证书续页专用



Page 67 of 78



校准证书编号, 2008J10-10-912001

校准结果/说明(续页):

2.11.2.3 Isotropy

- Axial Isotropy: 0.21dB

- Hemispherical Isotropy: 0.24 dB

#### Calibration data of Isotropy

| Axlal (*) | Hemispherical<br>(*) | V <sub>1</sub> (V) | V <sub>2</sub> (V) | V <sub>3</sub> (V) | E (V/m)   |
|-----------|----------------------|--------------------|--------------------|--------------------|-----------|
| -180      | -30                  | 0.001006           | 0.001359           | 0.030868           | 39.376134 |
| -180      | -15                  | -0.000022          | 0.004945           | 0.028248           | 38.944802 |
| -180      | 0                    | 0.000691           | 0.009985           | 0.022727           | 38.773079 |
| -180      | 15                   | 0.002444           | 0.015221           | 0.015371           | 38.707595 |
| -180      | 30                   | 0.004476           | 0.019837           | 0.007771           | 38.938313 |
| -165      | -30                  | -0.000058          | 0.000117           | 0.033232           | 39.834199 |
| -165      | -15                  | 0.001133           | 0.001847           | 0.030166           | 39.156682 |
| -165      | 0                    | 0.003811           | 0.005291           | 0.024371           | 38.469849 |
| -165      | 15                   | 0.006761           | 0.009895           | 0.016692           | 38.141929 |
| -165      | 30                   | 0.009042           | 0.014604           | 0.008670           | 38.151660 |
| -150      | -30                  | 0.000816           | 0.000209           | 0.033049           | 40.196706 |
| -150      | -15                  | 0.004087           | 0.000014           | 0.029496           | 39.119657 |
| -150      | 0                    | 0.008338           | 0.001543           | 0.023485           | 38.180373 |
| -150      | 15                   | 0.012174           | 0.004604           | 0.015770           | 37.386412 |
| -150      | 30                   | 0.014733           | 0.008753           | 0.007892           | 37.165603 |
| -135      | -30                  | 0.002613           | 0.001980           | 0.030347           | 40.132961 |
| -135      | -15                  | 0.007544           | 0.000489           | 0.026180           | 38.927627 |
| -135      | 0                    | 0.013020           | 0.000009           | 0.019887           | 37.800299 |
| -135      | 15                   | 0.017690           | 0.000894           | 0.012494           | 36.787449 |
| -135      | 30                   | 0.020373           | 0.003560           | 0.005537           | 36.381884 |
| -120      | -30                  | 0.004223           | 0.005751           | 0.025762           | 39.908536 |
| -120      | -15                  | 0.010226           | 0.003514           | 0.020721           | 38.668018 |
| -120      | 0                    | 0.016667           | 0.001323           | 0.014254           | 37.422595 |
| -120      | 15                   | 0.021885           | 0.000132           | 0.007729           | 36.577664 |
| -120      | 30                   | 0.024738           | 0.000517           | 0.002637           | 36.245990 |
| -105      | -30                  | 0.005028           | 0.011232           | 0.019008           | 39.515128 |
| -105      | -15                  | 0.011580           | 0.008812           | 0.013516           | 38.380820 |
| -105      | 0                    | 0.018315           | 0.005528           | 0.007694           | 37.372488 |
| -105      | 15                   | 0.023822           | 0.002266           | 0.002932           | 36.765510 |
| -105      | 30                   | 0.026857           | 0.000284           | 0.000445           | 36.671085 |
| -90       | -30                  | 0.004645           | 0.017574           | 0.011307           | 39.245366 |
| -90       | -15                  | 0.010987           | 0.014996           | 0.006165           | 38.253836 |
| -90       | 0                    | 0.017656           | 0.010809           | 0.002185           | 37.569900 |
| -90       | 15                   | 0.023119           | 0.006050           | 0.000218           | 37.269878 |

<sup>页</sup>校准证书续页专用



Page 68 of 78



#### 校准结果/说明(续页):

Results of salibration and additional explanation. Continued page?

| Axial (*) | Hemispherical (*) | V <sub>1</sub> (V) | V <sub>2</sub> (V) | V <sub>3</sub> (V) | E (V/m)   |
|-----------|-------------------|--------------------|--------------------|--------------------|-----------|
| -75       | -30               | 0.003205           | 0.023562           | 0.004335           | 39,433329 |
| -75       | -15               | 0.008656           | 0.020653           | 0.001029           | 38.545477 |
| -75       | 0                 | 0.014760           | 0.015670           | -0.000012          | 38.041516 |
| -75       | 15                | 0.020239           | 0.009658           | 0.000723           | 37.851301 |
| -75       | 30                | 0.024129           | 0.004121           | 0.002462           | 37.910884 |
| -60       | -30               | 0.001436           | 0.027902           | 0.000419           | 40.291958 |
| -60       | -15               | 0.005248           | 0.024497           | 0.000184           | 39.304720 |
| -60       | 0                 | 0.010340           | 0.018922           | 0.001988           | 38.667325 |
| -60       | 15                | 0.015594           | 0.012210           | 0.004586           | 38.392895 |
| -60       | 30                | 0.019931           | 0.005807           | 0.007015           | 38.295996 |
| -45       | -30               | 0.000151           | 0.029835           | 0.000296           | 41.133372 |
| -45       | -15               | 0.002049           | 0.025961           | 0.003020           | 40.212517 |
| -45       | 0                 | 0.005641           | 0.019965           | 0.006915           | 39.223866 |
| -45       | 15                | 0.010154           | 0.012997           | 0.010594           | 38.706277 |
| -45       | 30                | 0.014738           | 0.006322           | 0.013020           | 38.475565 |
| -30       | -30               | 0.000152           | 0.029545           | 0.002621           | 41.942984 |
| -30       | -15               | 0.000162           | 0.025010           | 0.007617           | 40.713423 |
| -30       | 0                 | 0.001768           | 0.018982           | 0.013024           | 39.736574 |
| -30       | 15                | 0.004850           | 0.011950           | 0.017281           | 38.854721 |
| -30       | 30                | 0.008984           | 0.005476           | 0.019486           | 38.323512 |
| -15       | -30               | 0.001912           | 0.027021           | 0.005355           | 42.125662 |
| -15       | -15               | 0.000397           | 0.022146           | 0.012086           | 40.886194 |
| -15       | 0                 | -0.000063          | 0.015896           | 0.018587           | 39.835513 |
| -15       | 15                | 0.001078           | 0.009306           | 0.023341           | 38.930515 |
| -15       | 30                | 0.003914           | 0.003738           | 0.025500           | 38.348355 |
| 0         | -30               | 0.005486           | 0.022812           | 0.007538           | 41.608315 |
| 0         | -15               | 0.003045           | 0.017491           | 0.015311           | 40.607184 |
| 0         | 0                 | 0.000964           | 0.011282           | 0.022457           | 39.613683 |
| 0         | 15                | -0.000065          | 0.005696           | 0.027597           | 38.924432 |
| 0         | 30                | 0.000681           | 0.001744           | 0.029845           | 38.606177 |
| 15        | -30               | 0.010741           | 0.017077           | 0.008399           | 40.757603 |
| 15        | -15               | 0.007925           | 0.011545           | 0.016565           | 39.849650 |
| 15        | 0                 | 0.004428           | 0.006250           | 0.024050           | 39.189791 |
| 15        | 15                | 0.001463           | 0.002282           | 0.029413           | 38.994252 |
| 15        | 30                | -0.000063          | 0.000289           | 0.031790           | 38.915493 |
| 30        | -30               | 0.017049           | 0.010569           | 0.007490           | 39.696225 |
| 30        | -15               | 0.013900           | 0.005544           | 0.015487           | 38.901058 |
| 30        | 0                 | 0.009429           | 0.001893           | 0.023013           | 38.705987 |

第 90 页 共 102

<sup>頁</sup>校准证书续页专用



Page 69 of 78



校准证书编号, 2008J10-10-912001

| 30 | 15 | 0.004766 | 0.000078 | 0.028553 | 38.810092 |
|----|----|----------|----------|----------|-----------|
| 30 | 30 | 0.001158 | 0.000084 | 0.031342 | 39.112081 |

校准结果/说明(续页):

| Axial (*) | Hemispherical<br>(*) | V <sub>1</sub> (V) | V <sub>2</sub> (V) | V <sub>3</sub> (V) | E (V/m)   |
|-----------|----------------------|--------------------|--------------------|--------------------|-----------|
| 45        | -30                  | 0.023283           | 0.004388           | 0.005087           | 38.760336 |
| 45        | -15                  | 0.019901           | 0.001163           | 0.012031           | 38.220733 |
| 45        | 0                    | 0.014551           | -0.000080          | 0.019207           | 38.270221 |
| 45        | 15                   | 0.008411           | 0.000398           | 0.024985           | 38.568905 |
| 45        | 30                   | 0.003166           | 0.001772           | 0.028626           | 38.996346 |
| 60        | -30                  | 0.027881           | 0.000636           | 0.002132           | 38.533384 |
| 60        | -15                  | 0.024373           | -0.000016          | 0.007087           | 38.000866 |
| 60        | 0                    | 0.018176           | 0.001281           | 0.013376           | 37.895082 |
| 60        | 15                   | 0.011189           | 0.003354           | 0.019208           | 38.16988D |
| 60        | 30                   | 0.004791           | 0.005449           | 0.023735           | 38.671731 |
| 75        | -30                  | 0.029868           | 0.000080           | 0.000185           | 38.919439 |
| 75        | -15                  | 0.026099           | 0.002054           | 0.002563           | 38.185601 |
| 75        | 0                    | 0.019802           | 0.005208           | 0.006864           | 37.746594 |
| 75        | 15                   | 0.012432           | 0.008233           | 0.012162           | 37.742142 |
| 75        | 30                   | 0.005600           | 0.010468           | 0.017162           | 38.169146 |
| 90        | -30                  | 0.029300           | 0.001590           | 0.000391           | 39.455273 |
| 90        | -15                  | 0.025317           | 0.005691           | 0.000105           | 38.622113 |
| 90        | 0                    | 0.018905           | 0.010246           | 0.001759           | 37.849797 |
| 90        | 15                   | 0.011740           | 0.014092           | 0.005243           | 37.579578 |
| 90        | 30                   | 0.005132           | 0.016351           | 0.009847           | 37.798345 |
| 105       | -30                  | 0.026792           | 0.003718           | 0.002889           | 39.852952 |
| 105       | -15                  | 0.022060           | 0.009186           | 0.000916           | 38.889536 |
| 105       | 0                    | 0.015871           | 0.014801           | -0.000108          | 38.131745 |
| 105       | 15                   | 0.009168           | 0.019288           | 0.000737           | 37.633359 |
| 105       | 30                   | 0.003564           | 0.021682           | 0.003547           | 37.698028 |
| 120       | -30                  | 0.022267           | 0.005278           | 0.007555           | 39.851868 |
| 120       | -15                  | 0.017095           | 0.011411           | 0.004911           | 38.979353 |
| 120       | 0                    | 0.011277           | 0.017655           | 0.002044           | 38.313587 |
| 120       | 15                   | 0.005752           | 0.022626           | 0.000188           | 38.026498 |
| 120       | 30                   | 0.001670           | 0.025182           | 0.000265           | 38.019508 |
| 135       | -30                  | 0.016550           | 0.005591           | 0.013676           | 39.570362 |
| 135       | -15                  | 0.011223           | 0.012004           | 0.010931           | 38.862933 |
| 135       | 0                    | 0.006273           | 0.018503           | 0.007104           | 38.557365 |
| 135       | 15                   | 0.002372           | 0.023723           | 0.003087           | 38.515618 |
| 135       | 30                   | 0.000249           | 0.026660           | 0.000415           | 38.682480 |
| 150       | -30                  | 0.010212           | 0.004827           | 0.020278           | 39.173068 |
| 150       | -15                  | 0.005650           | 0.010899           | 0.017720           | 38.833658 |

页 校准证书续页专用 Generalists and services



Report No.: SHEMO09080095103

Issue Date: 2009-11-27 Page 70 of 78



校准证书编号, 2008J10-10-912001

| 150 | 0  | 0.002147 | 0.017254 | 0.013128 | 38.732972 |
|-----|----|----------|----------|----------|-----------|
| 150 | 15 | 0.000216 | 0.022696 | 0.007731 | 38.916215 |
| 150 | 30 | 0.000063 | 0.026077 | 0.002729 | 39.157193 |

校准结果/说明(续页):

|           | Hemispherical |                    |                    |                    |           |
|-----------|---------------|--------------------|--------------------|--------------------|-----------|
| Axial (*) | (*)           | V <sub>1</sub> (V) | V <sub>2</sub> (V) | V <sub>3</sub> (V) | E (V/m)   |
| 165       | -30           | 0.004701           | 0.003121           | 0.026353           | 38.996023 |
| 165       | -15           | 0.001513           | 0.008319           | 0.023775           | 38.791840 |
| 165       | 0             | 0.000032           | 0.014210           | 0.018654           | 38.739183 |
| 165       | 15            | 0.000226           | 0.019688           | 0.012074           | 38.939948 |
| 165       | 30            | 0.001411           | 0.023671           | 0.005547           | 39.196899 |
| 180       | -30           | 0.001040           | 0.001350           | 0.030682           | 39.237848 |
| 180       | -15           | -0.000044          | 0.004979           | 0.028050           | 38.81208D |
| 180       | 0             | 0.000665           | 0.009931           | 0.022521           | 38.588006 |
| 180       | 15            | 0.002452           | 0.015251           | 0.015199           | 38.632053 |
| 180       | 30            | 0.004452           | 0.019797           | 0.007693           | 38.853739 |
| 100       |               | 0.004402           | 0.012121           | 0.007020           | 00.000100 |

<sup>页</sup>校准证书续页专用



Report No.: SHEMO09080095103

Issue Date: 2009-11-27

Page 71 of 78









#### Attachment 1

| Attachment 1                                |          |                                   |                                                                                                                                                                                                                                   |
|---------------------------------------------|----------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 名称/型号<br>Formulation                        | 编号       | 证书编号/有效期限<br>Ceditate its One day | 测量范围/推确度等级或<br>最大允差或不确定度                                                                                                                                                                                                          |
| 6 axis Robot<br>KR3                         | 容-027-01 | 1                                 | 6 axes, Repeatability: ± 0.05<br>mm, Nominal payload: 3 kg                                                                                                                                                                        |
| Vector Network<br>Analyzer<br>ZVB 8         | 容-027-27 | 2008F31-10-001907<br>2009.06.26   | 300 kHz ~ 8 GHz, Frequency resolution; 100 μHz, Measurement time; < 8 ms, Measurement bandwidths; 1 Hz ~ 500 kHz / uncertainty: +10 dB ~ +3 dB; 0.6 dB; +3 dB ~ -15 dB; 0.4 dB; -15 dB ~ -25 dB; 1 dB; -25 dB ~ -35 dB; 3 dB      |
| Signal Generator<br>SMT 06                  | 容-027-15 | 2008F33-10-001469<br>2009.06.26   | 5 kHz ~ 6 GHz,Resolution:0.1Hz,-144dBm ~ + 13 dBm,Max.RF power:1W,Max.DC voltage:0V / Level > -127 dBm:f<1.5 GHz:< 1dB; F>1.5 GHz:< 1.5dB; f> 3GHz:< 2dB                                                                          |
| Power Meter<br>NRVD                         | 容-027-16 | 2008F31-10-001906<br>2009.06.24   | 100 kHz ~ 6 GHz,10nW ~ 500mW                                                                                                                                                                                                      |
| Millivoltmeter<br>2000                      | 容-027-26 | 2008F11-10-001004<br>2009.06.18   | Voltage range:<br>100.0000mV~1000.000V<br>Measurement Sensibility:<br>0.1 µ V~1m V                                                                                                                                                |
| isotropic E-Field<br>Probe<br>E-FIELD PROBE | 容-027-02 | 2008J10-10-802003<br>2009.02.17   | Dipole resistance (in the connector plane); 1M , to 2M Axial isotropy in human-equivalent liquids; <0.25dBHemispherical isotropy in humanequivalent liquids<0.5dB,Linearity<0.5dB,L ower SAR detection threshold: 0.0015 Watts/kg |

<sup>页</sup>校准证书续页专用



Page 73 of 78



校准证书编号: 2008J10-10-912001

|                                               |          | California de California series No.                                                                                    |
|-----------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------|
| Solid State Power<br>Amplifier<br>BLMA 0820-6 | 容-027-18 | 0.8 GHz ~ 2 GHz; Output:6W;<br>Gain:min 37.8 / typ 40, ± 2 dB;<br>Harmonics:2nd:20dBc,<br>3rd:20dBc; Line power:125 W. |

| 名称/型号<br>NameMade                                 | 编号       | 证书编号/有效期限<br>Gestione Hu. Due date | 测量范围/推确度等级或<br>最大允差或不确定度 |
|---------------------------------------------------|----------|------------------------------------|--------------------------|
| Directional Coupler<br>CPL-5220-20-SMA-<br>79     | 容-027-31 | 2008J10-10-906002<br>2009.06.24    | 0.5 GHz ~ 2.0 GHz        |
| Wavegulde<br>069Y7-15892-714/0<br>69Y7-628415-724 | 容-027-39 | 2008F31-10-001904<br>2009.06.23    | 800 MHz ~ 950 MHz        |

<sup>页</sup>校准证书续页专用



Page 74 of 78



# **Annex E.2 Dipole Calibration certification**

#### D 2450





Page 75 of 78





Page 76 of 78





校准证书编号: 2009J10-10-910008

#### 校准结集/说明(续页);

#### Calibration procedure:

Return Loss is measured with the dipole mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. During calibration, the flat phantom is filled with the liquid whose parameters are calibrated relative to different frequency.

#### 2. Calibration Conditions:

A. The spacer from Dipole center to TSL:

| Distance Dipole Center - TSL | Frequency |  |
|------------------------------|-----------|--|
| 10mm±0.2mm with spacer       | 2450 MHz  |  |

#### 3. Head TSL parameters:

The following parameters and calculation were applied.

Head TSL temperature change is well controlled to be within 22±0.2°C during test.

| Frequency | Nominal Head TSL<br>Parameters<br>(Permittivity/ Conductivity) | Measurement Head TSL<br>parameters<br>(Permittivity/ Conductivity) |
|-----------|----------------------------------------------------------------|--------------------------------------------------------------------|
| 2450 MHz  | 39.20/1.80                                                     | 40.03/1.80                                                         |

#### C. Body TSL parameters:

The following parameters and calculation were applied.

Body TSL temperature change is well controlled to be within 22±0.2°C during test.

| Frequency | Nominal Body TSL<br>Parameters<br>(Permittivity/ Conductivity) | Measurement Body TSL<br>parameters<br>(Permittivity/ Conductivity) |
|-----------|----------------------------------------------------------------|--------------------------------------------------------------------|
| 2450 MHz  | 52.70/1.95                                                     | 53.45/2.00                                                         |

#### Measurement Results:

| Frequency | Return Loss with Head TSL | Return Loss with Body TSL |
|-----------|---------------------------|---------------------------|
| 2450 MHz  | -40.74 dB                 | -29.07 dB                 |



校排证书读页专用





Page 77 of 78





Page 78 of 78



#### **END OF REPORT**