Math 550 Homework 3

Dr. Fuller

Due September 18

1. Suppose that $1 \le i_1 < i_2 < \dots < i_k \le n$ and $1 \le j_1 < j_2 < \dots < j_k \le n$. Prove that

$$(dx_{i_1} \wedge \cdots \wedge dx_{i_k})_p (e_{j_1}, \dots, e_{j_k})_p = \begin{cases} 1 & \text{if } i_1 = j_1, i_2 = j_2, \dots, i_k = j_k \\ 0 & \text{otherwise} \end{cases}$$

- 2. Let u = (1,2,3), v = (-4,-5,-6), w = (0,0,-2).
 - (a) Let $\omega \in \Omega^1(\mathbf{R}^3)$ be $\omega(x,y,z) = (y+z) dx$. Calculate $\omega(u)(v)_u$ and $\omega(v)(u)_v$.
 - (b) Let $\omega \in \Omega^2(\mathbf{R}^3)$ be $\omega(x,y,z) = z \, dx \wedge dy + e^x \, dy \wedge dz$. Compute $\omega(w)(u,v)_w$.
- 3. Let $V(x,y,z) = 2y(e_1) z(e_3)$ and $W(x,y,z) = z(e_1) (e_2) + xy(e_3)$ be vector fields on \mathbb{R}^3 . Let V(x,y,z) = (y+z) dx and $\omega(x,y,z) = x^2y dx \wedge dy xz dy \wedge dz$ be forms on \mathbb{R}^3 .
 - (a) Evaluate v(1,2,3)(V(1,2,3))
 - (b) Evaluate $\omega(1,2,3)(V(1,2,3),W(1,2,3))$
 - (c) The evaluations v(V) and $\omega(V,W)$ each describe a function $\mathbf{R}^3 \to \mathbf{R}$. Find those functions.
- 4. Simplify the following differential forms.
 - (a) $(a_1 dx + a_2 dy) \wedge (b_1 dx + b_2 dy)$ $(a_1, a_2, b_1, b_2 \text{ are constants.})$
 - (b) $(x dx y dy) \wedge (z dx \wedge dy + x^2 dy \wedge dz)$
 - (c) $(dx_1 \wedge dx_2 + dx_3 \wedge dx_4) \wedge (dx_1 \wedge dx_2 + dx_3 \wedge dx_4)$
- 5. (a) Let $\omega \in \Omega^k(\mathbf{R}^n)$, with k odd and $2k \le n$. Show that $\omega \wedge \omega = 0$.
 - (b) Show by example that the conclusion in part (a) is false if k is even.
- 6. (a) For all $p \in \mathbf{R}^n$, we can define a function $\mathbf{R}_p^n \to (\mathbf{R}_p^n)^*$ that sends any $v \in \mathbf{R}_p^n$ to the linear functional $T(w) = \langle v, w \rangle$. (Here " \langle , \rangle " denotes the usual inner product on \mathbf{R}^n .) Prove that this is an isomorphism between the vector spaces \mathbf{R}_p^n and $(\mathbf{R}_p^n)^*$.
 - (b) Let $X(p) = f_1(p)(e_1)_p + ... + f_n(p)(e_n)_p$ be a vector field on \mathbb{R}^n . By applying the isomorphism in part (a) at each point p, we get a 1-form ω_X on \mathbb{R}^n . Give a formula for ω_X .