# 微分積分学俗論 II

### 米田亮介

### 2019年1月10日

## 1 11/14 の微積続論Ⅱ小テスト

次の微分方程式を解け。

1.

$$\frac{dx}{dt} = x \log t \tag{1}$$

2.

$$\frac{dx}{dt} = x \log t + t^t \tag{2}$$

1. x = 0 は解である。 $x \neq 0$  のとき両辺を変数分離すると、

$$\frac{dx}{x} = \log t dt \tag{3}$$

であり、これを積分すると、

$$\log|x| = t\log t - t + C' \tag{4}$$

である。ここで C' は積分定数である。これより、解は

$$|x(t)| = Ce^{t\log t - t} = Ce^{-t}t^t \tag{5}$$

となる。ここで C>0 は定数。 x=0 の解もまとめると、任意の  $C\in\mathbb{R}$  に対して

$$x(t) = Ce^{-t}t^t (6)$$

となる。

2. この問題には定数変化法を使う。つまり、解の形を

$$x(t) = C(t)e^{-t}t^t (7)$$

の形に決め打ちして、C(t) を求めるという算段である。このとき、

$$C'(t)e^{-t}t^t + x\log t = x\log t + t^t \tag{8}$$

である。これより、C(t) に関しての微分方程式

$$C'(t) = e^t (9)$$

が得られる。故に

$$C(t) = e^t + C (10)$$

となる。ここでCは積分定数である。以上より、はじめの微分方程式の解は

$$x(t) = (e^t + C)e^{-t}t^t = t^t + Ce^{-t}t^t$$
(11)

と求まった。

## 2 テキスト第3章問5

 $a_i(t)(j=1,2)$  と q(t) を t のある関数として 2 階非同次方程式

$$x'' + a_1(t)x' + a_2(t)x = q(t), \quad t \neq -1$$
(12)

を考える。 $x = t, t^2, t^3$  が解であるとき、次の問いに答えよ。

- 1. 関数  $a_i(t)$  と q(t) を定めよ。
- 2. 一般解を求めよ。
- 1.  $x = t, t^2, t^3$  を代入して連立方程式を解くだけ。

$$a_1(t) = -\frac{2(2t-1)}{t(t-1)},\tag{13}$$

$$a_2(t) = \frac{2(3t^2 - 3t + 1)}{t^2(t - 1)^2},\tag{14}$$

$$q(t) = \frac{2t}{(t-1)^2} \tag{15}$$

2. 非同時方程式の一般解は、同次方程式の一般解と特殊解の和になる。そのために同次方程式

$$x'' + a_1(t)x' + a_2(t)x = 0 (16)$$

を解きたいが、そのまま解くのは難しい。そこで次のように考える。非同次方程式の解  $t,t^2$  を同次方程式の基本解  $x_1,x_2$  を用いて表してみる。特殊解は  $t^3$  であるから、

$$t = c_1 x_1 + c_2 x_2 + t^3, (17)$$

$$t^2 = c_1' x_1 + c_2' x_2 + t^3 (18)$$

とかける。ここで  $c_1, c_2, c'_1, c'_2$  は適当な定数である。両辺を引くと、

$$t - t^2 = (c_1 - c_1')x_1 + (c_2 - c_2')x_2 \tag{19}$$

となる。これより、 $t-t^2$  は基本解の線形和で表せることがわかった。よって、 $t-t^2$  も同次方程式の解である。同様の考えによって、 $t-t^3$  も同次方程式の解である。

 $t-t^2, t-t^3$  はそれぞれ独立であるから、同次方程式の基本解になる。非同次方程式の特殊解として  $t^3$  を選ぶと、一般解は

$$c_1(t-t^2) + c_2(t-t^3) + t^3 (20)$$

になる。

**Remark 1** 最後の答えを書くところで非同次方程式の特殊解として、 $t^3$  を選んだが、 $t,t^2$  でも良い。どれを選んでも結局  $c_1,c_2$  の任意性から解空間はおなじになる。

**Remark 2** 問題文のはじめにある  $t \neq -1$  が意味不明。 $t \neq 0,1$  の間違い。 t = 0,1 では与えられた特解が独立でなくなるからだめ。

## 3 テキスト第3章問6

2 階同次方程式

$$x'' - \frac{1}{t+1}x' + \frac{1}{(t+1)^2}x = 0, \quad t \neq -1$$
(21)

に対して次の問いに答えよ。

- 1. x = t + 1 が解であることを示せ。
- 2. 定数変化法を用いて一般解を求めよ。
- 3. 初期条件  $x(0) = x_0, x'(0) = v_0$  を満足する解を求めよ。
- 1. 代入するだけ。
- 2. 与えられた微分方程式はx について線形だから、x = t + 1 が解であればx = C(t + 1) も解である。このとき、定数変化法を用いて一般解を求めたいので、

$$x = C(t)(t+1) \tag{22}$$

として、C(t) を求める。式 (21) に代入すると、C(t) に関する微分方程式

$$(t+1)C'' + C' = 0 (23)$$

が得られる。まず、C'についての微分方程式だと思って、変数分離法で解くと、

$$C'(t) = \frac{c_2}{t+1} \tag{24}$$

が得られる。 $c_2$  は任意定数。よって、

$$C(t) = c_1 + c_2 \log|t+1| \tag{25}$$

が得られる。 $c_1$  も任意定数 $^{*1}$ 。 $t \neq -1$  で  $\log |t+1|$  もきちんと定義されるので問題ない。以上より、

一般解は、

$$x = c_1(t+1) + c_2(t+1)\log|t+1| \tag{26}$$

である。

3. t=0 における x,x' の値を実際に計算して任意定数を求めればよい。

$$x_0 = x(0) = c_1, (27)$$

$$v_0 = x'(0) = C(0) + C'(0) = c_1 + c_2$$
(28)

であるから、 $c_1=x_0,c_2=v_0-x_0$  と求まる。以上より、初期条件  $x(0)=x_0,x'(0)=v_0$  を満足する解は、

$$x = x_0(t+1) + (v_0 - x_0)(t+1)\log|t+1|$$
(29)

である。

## 4 テキスト第3章問7

2 階非同次方程式

$$x'' - \frac{2}{t+1}x' + \frac{2}{(t+1)^2}x = t+1, \quad t \neq -1$$
(30)

に対して次の問いに答えよ。

- 1. 定数変化法を用いて一般解を求めよ(間2を参照せよ)。
- 2. 初期条件  $x(0) = x_0, x'(0) = v_0$  を満足する解を求めよ。
- 1. まず、同次方程式に対する解として  $x=t+1,(t+1)^2$  がある。次に、非同次方程式の一般解を求めるためには、非同次方程式の特殊解をひとつ求めれば良い。そのために、x=t+1 に対して定数変化法を用いることを考える。先程と同じように x=C(t)(t+1) として、式 (30) に代入すると、C(t) に関する微分方程式

$$C'' = 1 \tag{31}$$

が得られる。この微分方程式の解のひとつは、 $C(t)=rac{1}{2}t^2$ となるので、特殊解は

$$x = \frac{1}{2}t^2(t+1)^2 \tag{32}$$

である。以上より、式 (30) の一般解は

$$x = \frac{1}{2}t^{2}(t+1) + c_{1}(t+1) + c_{2}(t+1)^{2}$$
(33)

である。

2. t=0 における x,x' の値を実際に計算して任意定数を求めればよい。

$$x_0 = x(0) = c_1 + c_2, (34)$$

$$v_0 = x'(0) = c_1 + 2c_2 (35)$$

なので、 $c_1=2x_0-v_0, c_2=v_0-x_0$  が分かる。よって、初期条件  $x(0)=x_0, x'(0)=v_0$  を満足する解は

$$x = \frac{1}{2}t^{2}(t+1) + (2x_{0} - v_{0})(t+1) + (v_{0} - x_{0})(t+1)^{2}$$
(36)

である。

## 5 テキスト第3章問12

次の微分方程式の一般解を求めよ。

- 1. x'' + x = 1
- 2.  $x'' x' 2x = t^2$
- 3.  $x'' + x' 2x = (3t^4 + 4t^3)e^t$
- 4.  $x'' + x' + x = te^{-t}$
- 1. 対応する同次方程式の特性方程式は

$$\lambda^2 + 1 = 0 \tag{37}$$

である。これを解くと、 $\lambda = \pm i$  であり、基本解は

$$x = \cos t, \sin t \tag{38}$$

である。また、特性解はx=1である。よって、一般解は

$$x = c_1 \cos t + c_2 \sin t + 1 \tag{39}$$

である。 $c_1, c_2$  は任意定数である。

2. 対応する同次方程式の特性方程式の特性指数は  $\lambda=2,-1$  なので、基本解は

$$x = e^{2t}, e^{-t} (40)$$

である。特性解として $c_1t^2+c_2t+c_3$ の形のものを考える。微分方程式に特性解を代入すると、

$$-2c_1t^2 + (-2c_1 + -2c_2)t + (2c_1 - c_2 - 2c_3) = t^2$$

$$\tag{41}$$

となるので、係数比較をして連立方程式を解くと、

$$c_1 = -\frac{1}{2}, c_2 = \frac{1}{2}, c_3 = -\frac{3}{4} \tag{42}$$

である。以上より、一般解は

$$x = c_1 e^{2t} + c_2 e^{-t} - \frac{1}{2} t^2 + \frac{1}{2} t - \frac{3}{4}$$

$$\tag{43}$$

である。

3. 対応する同次方程式の特性方程式の特性指数は  $\lambda = -2.1$  なので、基本解は

$$x = e^{-2t}, e^t (44)$$

である。次に非同次方程式の解を

$$x = u_1 e^{-2t} + u_2 e^t (45)$$

と置いてみる。また、

$$u_1'e^{-2t} + u_2'e^t = 0 (46)$$

を仮定する。微分方程式にこれを代入すると、 $u'_1, u'_2$ について、

$$u_1'e^{-2t} + u_2'e^t = 0, (47)$$

$$-2u_1'e^{-2t} + u_2'e^t = (3t^4 + 4t^3)e^t (48)$$

となるから、

$$u_1' = -\left(t^4 + \frac{4}{3}t^3\right)e^{3t},\tag{49}$$

$$u_2' = t^4 + \frac{4}{3}t^3 \tag{50}$$

それぞれを積分すると、

$$u_1 = -\frac{1}{3}e^{3t}t^4, (51)$$

$$u_2 = \frac{1}{5}t^5 + \frac{1}{3}t^4 \tag{52}$$

である。よって、特殊解は

$$x = \frac{1}{5}t^5e^t \tag{53}$$

である。以上より一般解は、

$$x = c_1 e^{-2t} + \left(c_2 + \frac{1}{5}t^5\right)e^t \tag{54}$$

である。

4. 対応する同次方程式の特性方程式の特性指数は  $\lambda = -\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$  なので、基本解は

$$x = e^{-\frac{t}{2}}\cos\left(\frac{\sqrt{3}}{2}t\right), e^{-\frac{t}{2}}\sin\left(\frac{\sqrt{3}}{2}t\right)$$
(55)

である。次に非同次方程式の解を

$$x = (c_1 t + c_2)e^{-t} (56)$$

と仮定する。非同次方程式に代入して係数比較すると、

$$c_1 = 1, (57)$$

$$-c_1 + c_2 = 0 (58)$$

となる。これより  $c_1=c_2=1$  なので、特殊解は

$$x = (t+1)e^{-t} (59)$$

である。以上より一般解は

$$x = e^{-\frac{t}{2}} \left[ c_1 \cos\left(\frac{\sqrt{3}}{2}t\right) + c_2 \sin\left(\frac{\sqrt{3}}{2}t\right) \right] + (t+1)e^{-t}$$
 (60)

である。