MINERAÇÃO DE DADOS Redução e transformação dos dados

PROCESSO DE PREPARAÇÃO DOS DADOS

REDUÇÃO DOS DADOS

- Grandes quantidades de objetos e atributos:
 - Impactos negativos nos resultados de algoritmos
 - Alta complexidade de processamento
 - Geração de modelos complexos

REDUÇÃO DOS DADOS

- Exemplo: Algoritmo Apriori
- 2ⁿ 1 possíveis combinações de n atributos
 - n = 3:
 - 7 possíveis combinações
 - n = 20:
 - ~ 1 milhão de possíveis combinações

REDUÇÃO DOS DADOS

	Α	В	С	D	E	F	G	Н	I	J
1										
2										
3									1	
4										
5										
6										
7										
8										
9										
10										

MÉTODOS DE REDUÇÃO DOS DADOS

Seleção de atributos

Compressão de atributos

> Redução do número de dados

> > Discretização

SELEÇÃO DE ATRIBUTOS

- Remover atributos sem relevância ou redundantes
- Exemplos:
 - Identificador de registro (ID)
 - Nome x usuário
 - Data de nascimento x idade

COMPRESSÃO DE ATRIBUTOS

- Compactação dos dados
 - Ex: reduzir precisão das coordenadas de GPS
- Codificação / transformação de atributos
 - Análise de componentes principais (PCA)

COMPRESSÃO DE ATRIBUTOS - MÉTODOS

- Análise de componentes principais (PCA)
 - Correlação entre atributos
 - Ex: Renda x Valor do imóvel componente
 - Número de componentes <= número de atributos
 - Ordenados por variância:
 - Preservar as características dos dados que contribuem mais para a sua variância

REDUÇÃO DO NÚMERO DE DADOS

- Selecionar objetos da base
- Aproximar os objetos de modelos
- Métodos:
 - Amostragem
 - Modelos de aproximação

REDUÇÃO - AMOSTRAGEM

REDUÇÃO - AMOSTRAGEM

- Métodos de amostragem:
 - Aleatória sem substituição
 - Aleatória com substituição
 - Sistemática
 - Por grupo
 - Estratificada

REDUÇÃO - MODELOS DE APROXIMAÇÃO

- Representar ou ajustar os dados
- Substituem os valores dos atributos

REDUÇÃO - MODELOS DE APROXIMAÇÃO

- Paramétrico:
 - Função de aproximação:

REDUÇÃO - MODELOS DE APROXIMAÇÃO

- Não paramétrico:
 - Sem estrutura ou forma definida
 - Ex: k-médias

DISCRETIZAÇÃO

- A discretização também é uma forma de redução de dados
- Veremos mais a seguir

TRANSFORMAÇÃO DOS DADOS

- Bases brutas e integradas:
 - Inconsistências, ruídos
 - Ex:
 - Gênero: Feminino | feminino | F | 0 | Fem
 - Distância: 1 milha | 1,6 quilômetro | 1600 metros
- Atributos não uniformes:
 - Numéricos, categóricos, ...

TRANSFORMAÇÃO DOS DADOS

- Modificar ou consolidar os dados em formas apropriadas para uso nos processos de mineração
- Tipos de transformações:
 - Padronização
 - Normalização

PADRONIZAÇÃO

- Diferenças em unidades e escalas
- Capitalização
- Caracteres especiais
- Formatação
- Conversão de unidades

NORMALIZAÇÃO

- Adequar os dados para uso em algoritmos de mineração
- Tipos de normalização:
 - Max-Min
 - Escore-z
 - Escalonamento decimal
 - Range interquartil (RI)

NORMALIZAÇÃO MAX-MIN

- Mapeia o atributo dentro da faixa de valores definida
- $a' = a min_a$ $max_a min_a$ $max_a min_a$ $max_a min_a$
- Exemplo:
 - [0,1]

NORMALIZAÇÃO ESCORE-Z

- Baseada na média e desvio padrão do atributo
 - Evitar influência de anomalias

•
$$a' = \frac{a - \bar{a}}{\sigma_a}$$

NORMALIZAÇÃO PELO ESCALONAMENTO DECIMAL

- Mover a casa decimal
- Número de casas depende do valor máximo do atributo

•
$$a' = \frac{a}{10^{j}}$$
, onde j é o menor inteiro tal que max($|a'|$) < 1

• Ex: max(a) = 1000, j = 4, max(|a'|) = 0,1

NORMALIZAÇÃO PELO RANGE INTERQUARTIL

Divide os valores dos atributos em quartis

•
$$a' = \frac{a - Q_2}{Q_3 - Q_1}$$
, $RI = Q_3 - Q_1$

NORMALIZAÇÃO

Valor original	Max-Min	Escore-z	Escalonamento decimal	Range interquartil
67	0,85	0,73	0,67	0,40
43	0,33	-0,92	0,43	-0,80
58	0,65	0,11	0,58	-0,05
28	0,00	-1,96	0,28	-1,55
74	1,00	1,21	0,74	0,75
65	0,80	0,59	0,65	0,30

DISCRETIZAÇÃO

- Transformar os valores dos atributos para dados categóricos
 - Valores numéricos
 intervalo

DISCRETIZAÇÃO

- Métodos:
 - Intervalos predeterminados
 - Encaixotamento / Análise de histograma
 - Agrupamento
 - Entropia

DISCRETIZAÇÃO - HISTOGRAMA

Quantidade

Introdução à Mineração de Dados: Conceitos Básicos, Algoritmos e Aplicações: Cap. 2: Pré-processamento de dados. Leandro Nunes de Castro e Daniel Gomes Ferrari. Editora Saraiva, 2016.