Homework 8

Math 167 / CS 142: Complexity Theory

- 1. A tally language is a language over a one-letter alphabet (that is, a subset of $\{0\}^*$). Show that $L \in \mathbf{P}^A$ for some sparse oracle A if and only if $L \in \mathbf{P}^B$ for some tally language B.
- 2. A tree is a connected and acyclic undirected graph. Define the tree isomorphism problem ${\tt TI}=\{\langle T,T'\rangle: T \text{ and } T' \text{ are isomorphic trees}\}$. Show that ${\tt TI}\in {\bf P}.$
- 3. Consider fully-parenthesized Boolean formulas with logical connectives \neg , \wedge , \vee , and \oplus (NOT, AND, OR, and EXCLUSIVE OR, for example $((x_1 \lor x) \land (x_1 \oplus (\neg x_2)))$. Define

 $\text{FVP} = \{ \langle \varPhi(x_1, \dots, x_m), c_1, \dots, c_m \rangle : \varPhi(x_1, \dots, x_m) \text{ is a fully-parenthesized formula, and } \varPhi(c_1, \dots, c_m) = 1 \}.$

Show that $\text{FVP} \in L$.