

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addiese: COMMISSIONER FOR PATENTS P O Box 1450 Alexandria, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/562,618	05/15/2006	Jan Boer	Boer 7-3-2-3	6192
47386 77590 07/22/2009 RYAN, MASON & LEWIS, LLP 1300 POST ROAD			EXAM	IINER
			CASCA, FRED A	
SUITE 205 FAIRFIELD, CT 06824			ART UNIT	PAPER NUMBER
			2617	
			MAIL DATE	DELIVERY MODE
			07/22/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/562.618 BOER ET AL. Office Action Summary Examiner Art Unit FRED A. CASCA 2617 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status Responsive to communication(s) filed on 2a) ☐ This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-34 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration.

4	a) Oi tile ab	ove ciaiii(s)
5) 🗌 (Claim(s)	is/are allowed

6) Claim(s) 1-34 is/are rejected.

7) Claim(s) _____ is/are objected to.

8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) ☐ The drawing(s) filed on 22 December 2005 is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

Copies of the certified copies of the priority documents have been received in this National Stage

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

a)∏ All	b) Some * c) None of:
1.	Certified copies of the priority documents have been received.
2.	Certified copies of the priority documents have been received in Application No

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.

Atta	chment(s	
		•

	Notice of References Cited (PTO-892)
2)	Notice of Draftsperson's Patent Drawing Review (PTO-948)
37 🔀	Information Disclosure Statement(s) (PTO/SE/FR)

4) Interview Summary (PTO-413) Paper No(s)/Mail Date. ___ 5 Notice of Informal Patent Application 6) Other:

PTOL-326 (Rev. 08-06)

Paper No(s)/Mail Date _

Art Unit: 2617

3 DETAILED ACTION

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
 obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- Claims 1-7, 10-16 and 21-25 are rejected under 35 U.S.C. 103(a) as being unpatentable over Li et al (US 2004/0022174 A1) in view of Sandell (US 2004/0131011 A1).

<u>Referring to claim 1</u>, Li discloses a method for transmitting one or more symbols in a wireless communication system (Par. 4 and 46), said method comprising the step of:

diagonally loading subcarriers from said one or more symbols n wireless communication system (Par. 46, 4 and Figures 1-4, note that diagonally loading is inherent in OFDM).

Li does not specifically disclose that the method is for a multi-antenna system and the loading is across a plurality of antennas in said multiple antenna as claimed.

Sandell discloses a MIMO-OFDM where the plurality of antennas form a diagonal channel matrix (Par. 41, abstract, and Fig. 1-7).

It would have been obvious to a person of ordinary skill in the art at the time of invention to modify the method of Li in the format claimed for the purpose of providing an efficient communication system.

Art Unit: 2617

Referring to claim 2, the combination of Li/Sandell disclose the method of claim 1, wherein said one or more symbols are long training symbols based on a single-antenna long training symbol and wherein each subsequent subcarrier from said single-antenna long training symbol is positioned in a long training symbol for a logically adjacent antenna (Li, Par. 4 and 46 and Fig. 1-4).

Referring to claim 3, the combination of Li/Sandell disclose the method of claim 2, wherein said single-antenna long training symbol is an 802.11 a/g long training symbol (Li, Par. 84).

Referring to claim 4, the combination of Li/Sandell disclose the method of claim 1, wherein said one or more symbols are short training symbols based on a single-antenna short training symbol and wherein each subsequent subcarrier from said single-antenna short training symbol is positioned in a short training symbol for a logically adjacent antenna (Li, Par. 4 and 46 and Fig. 1-4).

Referring to claim 5, the combination of Li/Sandell disclose the method of claim 4, wherein said single-antenna short training symbol is an 802.11 a/g short training symbol (Li, Par. 84).

Referring to claim 6, the combination of Li/Sandell discloses the method of claim 1, wherein said multiple antenna wireless communication system is a MIMO-OFDM system (Sandell, Par. 41).

<u>Referring to claim 7</u>, the combination of Li/Sandell discloses the method of claim 1, further comprising the step of inserting one or more additional subcarriers in at least one of said plurality of symbols (Li, Fig. 1-4 and Par. 4 and 46, note that inserting additional subcarriers is inherent in OFDM).

Art Unit: 2617

Referring to claim 10, the combination of Li/Sandell disclose the method of claim 2, wherein a reduced number of subcarriers are inserted in said at least one of said plurality of long training symbols and wherein a first long training symbol and a second long training symbol are interchanged to position at least one non-nulled subcarrier on at least one side of a hulled subcarrier (Li, Par. 4 and 46 and Fig. 1-4, Sandell, Par. 41).

Referring to claim 11, the combination of Li/Sandell disclose the method of claim 1, wherein said one or more symbols are a SIGNAL-field symbol (Par. 4 and 13, note that preamble and data fields are inherent in OFDM channel estimation).

Referring to claim 12, the combination of Li/Sandell discloses the method of claim 11, wherein said SIGNAL-field symbol includes a system type indicator (Par. 4 and 13, note that the preamble has system type information).

Referring to claim 13, the combination of Li/Sandell discloses the method of claim 2, wherein a number of said long training symbols is a function of the number of transmitters (Li, Par. 4 and 46 and Fig. 1-4).

Referring to claim 14, the combination of Li/Sandell discloses the method of claim 1, further comprising the steps of diagonally loading a remainder of a header of a packet across said logically adjacent antennas; and diagonally loading data sequences of said packet across said logically adjacent antennas (Li, Fig. 1-4, Par. 4 and 46, and Sandell, Par.41).

<u>Referring to claim 15</u>, the combination of Li/Sandell discloses the method of claim 1, wherein said plurality of antennas are logically adjacent (Sandell, Par. 41, note that in MIMO antennas are logically adjacent).

Art Unit: 2617

Referring to claim 16, the combo of Li/Sandell discloses the method of claim 1, whereby a lower order receiver can interpret said transmitted diagonally loaded symbols as a normal OFDM

frame (Sandell, Par. 41 and Li, Fig. 1-4 and Par. 4 and 46, note both lower order and upper oder

receivers can interpret and diagonally transmitted signal).

Claim 21-25 are analogous to the features of claim 1, 2, 6, 11 and 14, thus they are rejected for the same reason used in the rejection of claims 1, 2, 6, 11 and 14.

Claims 8, 17, 18 and 20 are rejected under 35 U.S.C. 103(a) as being unpatentable over
 Li et al (US 2004/0022174 A1) in view of Sandell (US 2004/0131011 A1) and further in view of
 Joo (US 2004/0208253 A1).

Referring to claim 8, the combination of Li/Sandell disclose the method of claim 7.

The above combination does not specifically disclose where said one or more additional subcarriers

are inserted to ensure that any subcarrier that was nulled by said diagonal loading is surrounded by subcarriers that are not nulled.

Joo discloses nulling subcarriers that are not diagonally loaded and inserting non-nulled subcarriers adjacent to nulled subcarriers (abstract and Par. 25).

It would have been obvious to a person of ordinary skill in the art at the time of invention to modify the method of Li in the format disclosed for the purpose of providing an efficient communication system.

Art Unit: 2617

Referring to claim 17, Li discloses a method for generating a plurality of long training symbols in a in a multiple antenna wireless communication system (Par. 4), said method comprising the step of:

diagonally loading subcarriers from a single-antenna long training symbol across long training symbols associated with logically adjacent antennas in said multiple antenna wireless communication system (Par. 4-5, note that diagonally loading subcarriers is inherent in OFDM. Further note that there is at least one transmitter and one receiver, thus a multiple antenna system);

Li does not specifically disclose that the method is for a multi-antenna system and the loading is across a plurality of antennas in said multiple antenna as claimed.

Sandell discloses a MIMO-OFDM where the plurality of antennas form a diagonal channel matrix (Par. 41, abstract, and Fig. 1-7).

It would have been obvious to a person of ordinary skill in the art at the time of invention to modify the method of Li in the format claimed for the purpose of providing an efficient communication system.

Li does not specifically disclose nulling subcarriers in said plurality of long training symbols that are not diagonally loaded; and inserting at least one additional subcarrier to ensure that a nulled subcarrier has at least one subcarrier located on each side of said nulled subcarrier.

Joo discloses nulling subcarriers that are not diagonally loaded and inserting non-nulled subcarriers adjacent to nulled subcarriers (abstract and Par. 25).

Art Unit: 2617

It would have been obvious to a person of ordinary skill in the art at the time of invention

to modify the method of Li in the format disclosed for the purpose of providing an efficient

communication system.

Referring to claim 18, the combo of Li/Sandell/Joo discloses the method of claim 17, wherein

said single-antenna long training symbol is an 802.11 a/g long training symbol (Li, Par. 84).

Referring to claim 20, the combo of Li/Sandell/Joo discloses the method of claim 17 and

further disclose wherein a reduced number of subcarriers are inserted in at least one of said

plurality of long training symbols and wherein a first long training symbol and a second long

training symbol are interchanged to position at least one non-nulled subcarrier on at least one

side of a nulled subcarrier (Joo, Par. 25).

It would have been obvious to a person of ordinary skill in the art at the time of invention

to modify the method of Li in the format disclosed for the purpose of providing an efficient

communication system.

Claims 26 and 27 are rejected for the same reason as claims 1 and 17.

Claim 28 is rejected for the same reason as claim 14.

Claims 29-30 are rejected for the same reasons as claims 17 and 14.

Claims 31-32 are rejected for the same reasons as claims 17 and 14.

Claims 33-34 are rejected for the same reasons as claims 17 and 14.

Art Unit: 2617

4. Claims 9 and 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Li et al

(US 2004/0022174 A1) in view of Sandell (US 2004/0131011 A1) and further in view of well

known prior art (MPEP 2144.03).

Referring to claim 19, the combo of Li/Sandell/Joo discloses the method of claim 17.

The combination does not specifically disclose where said at least one additional subcarrier

allows nulled subcarriers to be estimated using an interpolation-based channel estimation

technique.

Examiner takes official notice of the fact using an interpolation-based channel estimation is well

known in the art.

It would have been obvious to a person of ordinary skill in the art at the time of invention to

modify the above combination by using the well known interpolation technique for the purpose

of providing an efficient communication system.

Claim 9 is rejected for the same reasons that claim 19 is rejected.

Conclusion

5. Any inquiry concerning this communication or earlier communications from the

examiner should be directed to Fred A. Casca whose telephone number is (571) 272-7918. The

examiner can normally be reached on Monday through Friday from 9 to 5.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Paul Harper, can be reached at (571) 272-7605. The fax number for the organization

where this application or proceeding is assigned is (571) 273-8300.

Information regarding the status of an application may be obtained from the Patent

Page 9

Application Information Retrieval (PAIR) system. Status information for published applications

may be obtained from either Private PAIR or Public PAIR. Status information for unpublished

applications is available through Private PAIR only. For more information about the PAIR

system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR

system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

/VINCENT P. HARPER/

Supervisory Patent Examiner, Art Unit 2617