Введение в ML

Как устроено машинное обучение?

Политология, 3 курс Татьяна Рогович

Как машины узнают правильные ответы для данных?

Разметка

- Чтобы компьютер научился выделять объекты, ему нужны примеры с правильными ответами
- Проставление таких ответов разметка данных

Мы сами размечаем данные

Мы сами размечаем данные

https://www.dailydot.c om/debug/face-detect ion-algorithm-image-s earch/

Кто лучше разбирается в хрущевках?

Как это работает? https://yandex.ru/blog/company/cities-game

Еще игры с Алисой! https://alice.yandex.ru/games

Что делать, когда вы не Google?

- Разметка силами большого количества людей за небольшую оплату
- Примеры: Amazon Mechanical Turk, Яндекс.Толока

ImageNet

Изображения и разметка объектов на них;

Соревнования — с 2010 года;

Собрано более 10 миллионов размеченных изображений;

Качество улучшилось с 72% почти до 98%;

Сбор разметки для ImageNet — ключевой шаг в развитии компьютерного зрения.

Люди, кстати, несовершенны

Модель машинного обучения

Некоторая функция, которая предсказывает ответ на основе данных.

Признаки -> Модель -> Предполагаемый ответ

Площадь	Расстояние до метро	Район	Стоимость
50	1	Черёмушки	5.000.000
100	2	Щукино	9.000.000
50	0.5	Мясницкая	20.000.000
100	1	Хамовники	50.000.000

Площадь	Расстояние до метро	Район	Стоимость
50	1	Черёмушки	5.000.000
100	2	Щукино	9.000.000
50	0.5	Мясницкая	20.000.000
100	1	Хамовники	50.000.000

прогноз = 100 000 * площадь

Площадь	Расстояние до метро	Район	Стоимость	Прогноз
50	1	Черёмушки	5.000.000	5.000.000
100	2	Щукино	9.000.000	10.000.000
50	0.5	Мясницкая	20.000.000	5.000.000
100	1	Хамовники	50.000.000	10.000.000

прогноз = 100 000 * площадь

Площадь	Расстояние до метро	Район	Стоимость
50	1	Черёмушки	5.000.000
100	2	Щукино	9.000.000
50	0.5	Мясницкая	20.000.000
100	1	Хамовники	50.000.000

прогноз = $100\,000$ * площадь - $1\,000\,000$ * расстояние до метро + $1\,000\,000$

Площадь	Расстояние до метро	Район	Стоимость	Прогноз
50	1	Черёмушки	5.000.000	5.000.000
100	2	Щукино	9.000.000	9.000.000
50	0.5	Мясницкая	20.000.000	5.500.000
100	1	Хамовники	50.000.000	10.000.000

прогноз = 100 000 * площадь - 1 000 000 * расстояние до метро + 1 000 000

Площадь	Расстояние до метро	Район	Стоимость
50	1	Черёмушки	5.000.000
100	2	Щукино	9.000.000
50	0.5	Мясницкая	20.000.000
100	1	Хамовники	50.000.000

прогноз = 100 000 * площадь - 1 000 000 * расстояние до метро + + 300 000 *(в ЦАО?) * площадь + 1 000 000

Площадь	Расстояние до метро	Район	Стоимость	Прогноз
50	1	Черёмушки	5.000.000	5.000.000
100	2	Щукино	9.000.000	9.000.000
50	0.5	Мясницкая	20.000.000	20.500.000
100	1	Хамовники	50.000.000	40.000.000

прогноз = $100\,000$ * площадь - $1\,000\,000$ * расстояние до метро + $+\,300\,000$ *(в ЦАО?) * площадь + $1\,000\,000$

Что же у нас получилось? Линейная модель!

Параметры модели — величины, которые можно подбирать для повышения качества прогнозов

прогноз = 100.000 * площадь

1.000.000 * (расстояние до метро)

+ 300.000 * (в ЦАО?) * площадь

+ 1.000.000

Параметры очень важны для модели

прогноз = 100.000 * площадь

- **1.000.000** * (расстояние до метро)

+ 0 * (в ЦАО?) * площадь

+ 1.000.000

Площадь	Расстояние до метро	Район	Стоимость	Прогноз
50	1	Черёмушки	5.000.000	5.000.000
100	2	Щукино	9.000.000	9.000.000
50	0.5	Мясницкая	20.000.000	5.500.000
100	1	Хамовники	50.000.000	10.000.000

Изменили параметр стоимости квартиры в ЦАО на менее удачный и модель сразу стала хуже предсказывать

Наша линейная модель в общем виде

прогноз = a * площадь

– **b** * (расстояние до метро)

+ с * (в ЦАО?) * площадь

+d

Давайте посмотрим еще на какой-нибудь алгоритм

Вам нужно предсказать цвет белой точки (красный или синий). Какие есть идеи?

Давайте покрасим ее в цвет ближайшего соседа!

Давайте покрасим ее в цвет ближайшего соседа!

Такая модель будет называться методом ближайших соседей, а параметром, который мы подбираем, будет количество соседей, по которому мы будем определять цвет точки

Здесь нам надо не предсказать цвет точки, а нарисовать такие линии, которые лучше всего изолируют красные точки от синих.

Давайте начнем со шкалы X. Где нужно нарисовать линию, чтобы слева и справа от нее состав точек был максимально однородным (насколько это возможно)?

Такая модель называется решающее дерево, а подбираем мы пороги, по которым мы можем максимально однородно разбить наши данные.

Резюме

- 1. Модель это некоторая функция, которая предсказывает прогноз на основе признаков.
- 2. Качество (точность модели) зависит от параметров, которые мы смогли подобрать (насколько хорошо они описывают наши данные)

Как поставить задачу машинного обучения?

Типы задач в машинном обучении

ML

это название для огромного числа методов и инструментов, которые могут обучаться на данных и делать предсказания.

Типы задач в машинном обучении

- Supervised learning (обучение с учителем)
 - предсказывает или оценивает зависимую переменную, которая обычно либо непрерывная (заработная плата) или категориальная (республиканец/демократ), базируясь на наборе признаков. У нас есть метки для зависимой переменных для обучения или они будут известны спустя какое-то время.
- Unsupervised learning (обучение без учителя):
 - У нас нет меток для зависимой переменной, должны понять структуру данных и правильно ее предсказать (по сути задачи традиционной статистики)

Задача с разметкой: найти котика на фотографии

Задача без разметки: найти похожих студентов

Терминология ML

Мы хотим построить такую модель, которая будет предсказывать цену (например, чтобы помочь с оценкой квартиры продавцу).

Объектом нашего предсказания будет квартира.

У нас есть одна квартира и ее характеристики (признаки), на основе которых мы будем предсказывать признаки. В статистике мы еще называли объект **наблюдением**.

Терминология ML

Целью нашего предсказания будет: цена квартиры.

В терминологии ML это ответ, прогноз или target.

В статистике — целевая или зависимая переменная

Терминология ML

Предсказывать цену (ответ) мы будем с помощью признаков (характеристик) нашего объекта. В статистике мы называли признаки независимыми и контрольными переменными

Что будет признаками наших квартир?

Площадь	Расстояние до метро	Район	Стоимость
50	1	Черёмушки	5.000.000
100	2	Щукино	9.000.000
50	0.5	Мясницкая	20.000.000
100	1	Хамовники	50.000.000

Какие бывают признаки?

Виды переменных

Площадь	Расстояние до метро	Район	Стоимость
50	1	Черёмушки	5.000.000
100	2	Щукино	9.000.000
50	0.5	Мясницкая	20.000.000
100	1	Хамовники	50.000.000

Упражняемся

Что будет объектом, целевой переменной и признаком в следующих задачах? Какого типа целевая переменная?

- 1. Рекомендация музыки
- 2. Определение котика на фотографии
- 3. Одобрение кредита

Зачем знать тип целевой переменной?

- Классификация: назначить категорию каждому объекту (предсказываем категориальную переменную)
- **Регрессия:** предсказать значение непрерывной переменной для каждого объекта

Тип задачи определяет тип алгоритмов, которые мы можем использовать.

Тип признаков тоже может влиять на выбор (например, есть модели, которые лучше работают с категориальными признаками).

Резюме

- 1. В задачах обучения с учителем мы можем предсказывать категориальную переменную и решать задачи классификации или количественную в задачах регрессии.
- 2. Целевую переменную мы предсказываем на основе известных нам объектов и их признаков.

Как мы выбираем признаки и параметры?

Скучали по "Титанику"?

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S

Разведывательный анализ данных (EDA)

• Exploratory Data Analysis: процесс, где мы изучаем наши данные (дескриптивные статистики, распределения переменных), пытаемся выявить и решить проблемы, связанные с данными (например, преобразование шкал, работа с пропущенными значениями) и понять, какие независимые переменные могут влиять на нашу целевую.

Какое предположение можем выдвинуть о связи этих двух признаков?

Survived	0	1	All
Pclass			
1	80	136	216
2	97	87	184
3	372	119	491
All	549	342	891

А для этих?

Survived	0	1	All		Pclass	1	2	3	All
	U	1	All	Sex	Survived				
Pclass					0	3	6	72	81
1	80	136	216	female					
2	97	87	184		1	91	70	72	233
				male	0	77	91	300	468
3	372	119	491	male	1	45	17	47	109
All	549	342	891	All		216	184	491	891

Формулируем гипотезы

- 1. Женщины в первом классе почти наверняка выживали.
- 2. Женщины в третьем классе имели шансы 50/50
- 3. У мужчин больше шансы погибнуть независимо от класса, но в третьем классе эти шансы растут.
- 4. У детей до 12 лет шансы выжить выше.

Проверяем гипотезы

Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С
3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S

X: матрица всех значений признаков (независимых переменных)

у: вектор со значениями целевой переменной

 \mathbf{X}_{j}^{-} наблюдение (набор значений независимых переменных для одного объекта выборки)

Обучающая и тестовая выборки

- Training data: данные, на которых обучаем алгоритм.
 Мы даем алгоритму данные, в которых есть значение целевой переменной (labels, output, target), чтобы научить его находить такие признаки, которые могут быть связаны со значением целевой переменной.
- **Test data**: данные, значение целевой переменной которых мы знаем, на которых тестируем алгоритм и принимаем решение о его пригодности.

Обычно мы делим наш датасет на два - на одной части тренируемся (обучаемся), а на второй проверяем, чему научились (валидация).

Тестовая выборка

Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S

Этих данных наш алгоритм раньше не видел и именно на них мы проверяем, хорошо ли мы подобрали параметры.

Survived

Y hat предсказанное моделью значение целевой переменной

Алгоритм обучения модели

- Define / Определи.
- Fit / Обучи.
- Predict / Предскажи.
- Evaluate / Оцени.

Если модель прошла оценивание успешно, то ее можно отправлять в бой (на неведомые данные, для которых значения целевой переменной мы не знаем).

Для некоторых данных в будущем мы можем узнать значение целевой переменной и еще раз проверить качество нашей модели.

Как оценить модель?

Функция потерь - измерение ошибки нашей модели. Выбор конкретной функции зависит от задачи, которую решаем.

Наша цель — минимизировать ее.

Площадь	Расстояние до метро	Район	Стоимость	Прогноз
50	1	Черёмушки	5.000.000	5.000.000
100	2	Щукино	9.000.000	9.000.000
50	0.5	Мясницкая	20.000.000	5.500.000
100	1	Хамовники	50.000.000	10.000.000

Площадь	Расстояние до метро	Район	Стоимость	Прогноз
50	1	Черёмушки	5.000.000	5.000.000
100	2	Щукино	9.000.000	9.000.000
50	0.5	Мясницкая	20.000.000	20.500.000
100	1	Хамовники	50.000.000	40.000.000

Считаем среднюю абсолютную ошибку (МАЕ)

Площадь	Расстояни е до метро	Район	Стоимость	Прогноз	Ошибка
50	1	Черёмушки	5.000.000	5.000.000	0
100	2	Щукино	9.000.000	9.000.000	0
50	0.5	Мясницкая	20.000.000	5.500.000	14.500.000
100	1	Хамовники	50.000.000	10.000.000	40.000.000

Средняя ошибка:
$$\frac{0+0+14500000+40000000}{4} = 13625000$$

Считаем среднюю абсолютную ошибку (МАЕ)

Площадь	Расстояни е до метро	Район	Стоимость	Прогноз	Ошибка
50	1	Черёмушки	5.000.000	5.000.000	0
100	2	Щукино	9.000.000	9.000.000	0
50	0.5	Мясницкая	20.000.000	20.500.000	500.000
100	1	Хамовники	50.000.000	40.000.000	10.000.000

Средняя ошибка: $\frac{0+0+500000+10000000}{4} = 2625000$

Что же такое обучение модели?

Подбор таких параметров, при которых значение ошибки минимально!

```
прогноз = a * площадь

– b * (расстояние до метро)

+ c * (в ЦАО?) * площадь

+ d
```

Резюме

- 1. Для ML очень важны размеченные данные данные, для которых значение целевой переменной уже известно.
- 2. Мы исследуем наши данные, чтобы понять, какие признаки важные.
- 3. Мы обучаем нашу модель на выбранных признаков и оцениваем ее качество на основе ошибки.
- 4. После этого мы принимаем решение, насколько наша модель хорошо справляется со своей задачей.