Programmation Stochastique Rapport

ABOUDOU Hanrifani LENTALI Thomas Master 2 MIMSE Université de Bordeaux

Résumé

Lors de ce projet, nous allons présenter et mettre en œuvre la méthode de résolution L-Shaped. La première partie a pour but d'étudier les principes de résolution de cette méthode. Dans un second temps, nous allons analyser les résultats issus de nos implémentations.

1 Méthode L-shaped

1.1 Formulation déterministe

Nous présentons ici la forme déterministe du problème :

$$\max \sum_{i} b_{i}x_{i} + \sum_{s} ps(\sum_{i} -c_{i}y_{i}^{s})$$

$$\text{s.c}: \sum_{i} (x_{i} - y_{i}^{s})d_{i} \leq D \quad \forall s$$

$$y_{i}^{s} \leq x_{i} \quad \forall i, \forall s$$

$$x_{i}, y_{i}^{s} \in \{0, 1\} \quad \forall i$$

1.2 Formulation Compacte

Dans un premier temps, nous résolvons le problème maître avec $\theta \leq 0$. Programme maître :

$$\max \sum_{i} b_{i} x_{i} + \theta$$

$$\text{s.c}: x_{i} \in \{0, 1\} \quad \forall i$$

$$\theta \in \mathbb{R}$$

La solution généré est soumise au sous-problème. Lorsque la valeur de la solution de départ est supérieure à la valeur optimale du sous-problème, alors on récupère les valeurs duales des contraintes afin de nous permettre d'affiner la valeur de θ .

Sous-problème:

$$\max -\sum_{i} c_{i} y_{i}^{s}$$

$$\text{s.c}: \sum_{i} (x_{i} - y_{i}^{s}) d_{i} \leq D \quad (1)$$

$$y_{i}^{s} \leq x_{i} \quad \forall i \quad (2)$$

$$y_{i}^{s} \in [0, 1] \quad x_{i} \in \{0, 1\}$$

Pour tout s, si $max - \sum_i c_i y_i^s < \theta_s$ est vérifié, alors on ajoute la coupe suivante. Afin de déterminer la coupe, il faut récupérer les valeurs duales, λ pour la contrainte (1) et μ pour la contrainte (2) du sousproblème.

Coupe:

$$\theta_s \le (D - \sum_i d_i^s x_i) \lambda_q^s + \sum_i \mu_{iq}^s x_i$$

Nous résolvons de nouveau le problème maître avec cette nouvelle coupe et ainsi de suite jusqu'à la validité de la solution du programme maître par le sous-problème.

1.3 Integer L-shaped

Nous allons modifier le modèle précédant : les $y_i^s \in \{0,1\}$ et la coupe no good. Nouveaux sous-problèmes :

$$\max -\sum_{i} c_{i} y_{i}^{s}$$

$$\text{s.c}: \sum_{i} (x_{i} - y_{i}^{s}) d_{i} \leq D \quad (1)$$

$$y_{i}^{s} \leq x_{i} \quad \forall i \quad (2)$$

$$y_{i}^{s}, x_{i} \in \{0, 1\}$$

Nouvelle coupe no good : $\theta \leq qs(\sum_{i \in S} x_i - \sum_{i \in \overline{S}} x_i) - qs(|S|-1).$ Ce modèle nous donne la valeur optimale.

Résultats $\mathbf{2}$

Instance0	sous problème relaxé	sous problème Integer
Premier niveau	1 1 0 1 0	0 1 0 1 1
Scenario 1	0 0 0 0 0	0 0 0 0 0
Scenario 2	0.087 0 0 0 0	0 0 0 0 0
Scenario 3	0.029 0 0 0 0	0 0 0 0 0
Objectif	13.5488	13

Instance1	sous problème relaxé	sous problème Integer
Premier niveau	1 1 0 1 0	0 1 0 1 1
Scenario 1	0 0 0 0 0	0 0 0 0 0
Scenario 2	0.087 0 0 0 0	0 0 0 0 0
Scenario 3	0.029 0 0 0 0	0 0 0 0 0
Objectif	13.5488	13

Instance2	sous problème relaxé	sous problème Integer
Premier niveau	0 1 1 1 1	0 1 1 1 1
Scenario 1	$0\ 0.27\ 0\ 0\ 0$	0 0 0 0 1
Scenario 2	0 0 0 0 0	0 0 0 0 0
Scenario 3	0 0 0 0 0	0 0 0 0 0
Objectif	30.8751	27.667

Instance3	sous problème relaxé	sous problème Integer
Premier niveau	1 1 1 0 0	1 1 1 0 0
Scenario 1	0 0 0 0 0	0 0 0 0 0
Scenario 2	0 0 0 0 0	0 0 0 0 0
Scenario 3	0 0 0 0 0	0 0 0 0 0
Objectif	14	14

Instance4	sous problème relaxé	sous problème Integer
Premier niveau	0 1 1 0 1	0 1 1 0 1
Scenario 1	0 0 0 0 0	0 0 0 0 0
Scenario 2	0 0 0 0 0	0 0 0 0 0
Scenario 3	0 0 0 0 0	0 0 0 0 0
Objectif	15	15

Lorsque les objectifs sont égaux, la relaxation a atteint un résultat optimal. Si les objectifs sont différents, alors la relaxation nous donne une borne supérieure de la solution.