Computational Data Mining

Fatemeh Mansoori

Course material

• https://github.com/uisf-course/CDM last year

• https://github.com/uisf-course/CDM_Sp404 This year

Reference Book

- Main Reference:
 - Elden, L., Matrix Methods in Data Mining and Pattern Recognition, SIAM, 2007

References book

Textbook: <u>Linear Algebra and Learning</u> <u>from Data</u> by Gilbert Strang (2019). (Additional readings will be posted for each lecture)

MIT Course:

 Matrix Methods In Data Analysis, Signal Processing, And Machine Learning

Course Topics

- Column space, basis, rank, rank-1 matrices, A=CR, and AB=∑(col)(row)
 - Textbook 1.1–1.3
- Matrix multiplication by blocks and columns-times-rows
- The "famous four" matrix factorizations: <u>LU</u>, <u>diagonalization $X\Lambda X^{-1}$ or $Q\Lambda Q^{T}$, QR</u>, and the <u>SVD USV</u>
- The <u>four fundamental subspaces</u> for an m×n matrix A of rank r, mapping "inputs" $x \in \mathbb{R}^n$ to "outputs" $Ax \in \mathbb{R}^m$
- Orthogonal bases and unitary matrices "Q"
- Eigenproblems, diagonalization

Course Topics

- (Symmetric/Hermitian) positive definite ("SPD") matrices
- Low-rank approximation and the Eckart-Young theorem.
- Diagonalizing the covariance matrix: <u>Principal components analysis</u> (<u>PCA</u>).
- pseudo-inverse A⁺=VΣ⁺U^T
- Least-squares solve
- QR factorization : Gram—Schmidt algorithm
- Randomized linear algebra
- Matrix Calculus

Course Topics

- Matrix calculus
- Backpropagation for neural networks.
- Course Project :
 - Choose a topic related to the material in the course
 - Recommender System Using Matrix Factorization with Alternating Least Square Method
 - Non leaner matrix factorization for drug repositioning
 - Matrix Completion Methods for Recommendation Systems