

Aula 5 - Circuitos combinacionais e seqüenciais

Prof. Danilo Reis

Decodificadores

É um circuito lógico que recebe um conjunto de entradas, que representa um número binário, e ativa em alto apenas a saída que corresponde ao número recebido.

Decodificador ativo em alto (2 x4)

$S_1 S_0$	D_3	D_2	D_1	D_0
0 0	0	0	0.	I
0 1	0	0	.1.	0
1.0	0	1	0	0
1 1	1	0	0	0

(a) Decodificador 2/4

(b) Tabela verdade

Decodificador ativo em alto (2 x4)

$$D_0 = \overline{S_1} \cdot \overline{S_1}$$

$$D_1 = \overline{S_1} \cdot S_1$$

$$D_2 = S_1 \cdot \overline{S_2}$$

$$D_3 = S_3 \cdot S_4$$

Decodificador ativo em alto (3x8)

Tabela da Verdade

C	8	A	O ₂	\Box_{i}	$\mathfrak{O}_{\mathbb{S}}$	Θ_{\downarrow}	O _y	09	$\theta_{\mathtt{T}}$	$\langle O_{\alpha} \rangle$
ū	ij.	Ü	0	0	0	0	0	0.	:0	+
0	0	1	0	0	D	TJ.	D	Θ.	3	18:
.0	0	O.	6	O.	0	Ð	0	1.	0	. 0.
G.	1.	1	10	O:	-13	-0	17	0	30	. 0
4.	0	4	100	03	0	1	0	(3)	0	0
15	0	(1)	0	0.	1	0	0	0	-0	0
1	1	0	0	10	D	0	0	O.	-0	0.0
T	1	1	1.	0.4	0	10	0.	0	-0	Œ.

Decodificador ativo em baixo (2x4)

$S_1 S_0$	D_3	D_2	D_1	D_0
0 0	1	i	Ī.	()
0 1	1	1	0	1_
1 0	1	0	1	1
1 1	0	1	1	1

(a) Símbolo

(b) Tabela verdade

Decodificador ativo em baixo (2x4)

$$D_0 = \overline{S_1 \cdot \overline{S_0}}$$

$$D_1 = \overline{S_1 \cdot \overline{S_0}}$$

$$D_2 = \overline{S_1 \cdot \overline{S_0}}$$

$$D_3 = \overline{S_1 \cdot \overline{S_0}}$$

$$D_0 = \overline{S_1 + \overline{S_0}}$$

$$D_1 = \overline{S_1 + \overline{S_0}}$$

$$D_2 = \overline{S_1 + \overline{S_0}}$$

$$D_2 = \overline{S_1 + \overline{S_0}}$$

$$D_3 = \overline{S_1 + \overline{S_0}}$$

$$D_3 = \overline{S_1 + \overline{S_0}}$$

Multiplexadores (MUX)

Ou simplesmente MUX, é um circuito lógico que recebe diversos dados digitais de entrada e seleciona um deles, em um determinado instante, para transferí-lo para a saída

MUX (2 x1)

MUX (4x1)

MUX (8x1)

	Impo	dia		Saida			
E	Sy	81	50	Ž	Z		
HULLILLI	* TITLETT	X	TUTUTUTUX	H 10 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E 10 11 12 15 16 16 16		

MUX (16x1) usando 2 x MUX (8x1)

Roteamento de dados

Conversão paralelo/serie (comunicação)

- Muitos sistemas processam dados binários de forma paralela.
 - Entretanto, quando se transmitem dados em distâncias relativamente longas, a configuração paralela não é desejável porque é necessário um grande número de linhas para transmissão.

Implementação de funções lógicas

MUX usado para implementar a função lógica da tabela ao lado

Demultiplexadores (DEMUX)

Ou simplesmente DEMUX, é um circuito lógico que realiza a operação inversa do MUX: ele recebe uma única entrada e a distribui para várias saídas. Em outras palavras, o DEMUX recebe uma fonte de dados e a distribui seletivamente para 1 dos N canais de saída como se fosse uma chave de várias posições.

Demultiplexadores (DEMUX)

DEMUX - 1 x 8

Codgo de SELEÇÃO			SAIDAS							
S	8,	S ₀	O _j	O ₄	0,	O_4	0,	O_2	0,	Oil
0	O	0	0	0	0	0	Ü	0	0	Ü.,
0.	0	1	0	0	0	0 0	0	0	-1	0
0	3	a.	0	Ď.	0	0	-0	31	-0	-6
0	1	. 1	0	0	0	0	1	0	-0	0
1	0	0	-0	0	0	1	0	0	-0	0
- 1	0	1	0	0	1	Ď.		0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	.0	Ü	.0	0

FUNDAÇÃO EDSON QUEIROZ T566 —SISTEMAS DIGITAIS AVANÇADOS UNIVERSIDADE DE FORTALEZA

DEMUX - 1 x 8

Comparadores

É um circuito lógico combinacional que compara duas quantidades binárias e gera saídas para indicar qual delas tem a maior magnitude.

- Porta Lógica XOR
 - É o OU Exclusivo
 - Operador:

$$F = (A \oplus B)$$

Tabela da Verdade

А	В	F = (A⊕B)
0	0	0
0	1	1
1	0	1
1	1	0

Comparadores

Comparadores

ENTRADAS DE COMPARAÇÃO			ENTRADAS	ENTRAGAS DE CASCATEAMENTO			SAIDAS		
A1, B2	Ap Br	An Ba	A ₀ B ₀	Terre	James :	Seen	Q _{A+B}	O _{ACLE}	Own
A ₂ =6 ₂ A ₂ =8 ₃ A ₃ =8 ₃ A ₂ =6 ₃	8 X A ₂ >B ₂ A ₃ <b<sub>3</b<sub>	N N N	X X X	8. X X	X X X	X X X	HLHL	H H	1.0 L
A ₁ +8 ₃ A ₁ =6 ₃ A ₁ =6 ₃ A ₁ +8 ₃	Az=Bz Az=Bz Az=Bz Az=Bz	A12B1 A12B1 A12B1 A12B1	X X A _Q ×B _Q A _m ×B _D	X X X	××××	X X X	HHHH	H	2
A ₂ =B ₃ A ₂ ×B ₂ A ₃ =B ₃ A ₃ =B ₁ A ₃ =B ₃	Ay=B ₂ Ay=B ₂ A ₂ =B ₂ A ₂ =B ₂ Ay=B ₃	A 1=01 A 1=01 A 1=01 A 1=01 A 1=01	A ₀ =B ₀ A ₀ =B ₀ A ₀ =B ₀ A ₀ =B ₀	H X L H	H X L H	1 1 1	11111	H H H	44144

i-i = Nivei de tensão ACIO.
 i- Nivei de tensão SACIO.

DC – hr ishirkantu.

Aplicação em controle

Comparadores em cascata

Referências

- http://pt.wikipedia.org/wiki/George Boole
- http://www.cin.ufpe.br/~agsf/Sistemas Digitais.htm