MATH 55A NOTES

JONATHAN WANG

Contents

1. Maps	1
2. Rings	2
3. Modules	3
4. Fields	5
5. Linear algebra	6
6. Dual vector spaces	8
7. Tensor products	8
8. Groups	11
8.1. Group actions	12
9. Tensor products and powers	15
9.1. Exterior product	15
9.2. k -Algebras	17
10. Field extensions	20
10.1. Fundamental theorem of algebra	22
11. Linear algebra revisited	23
11.1. Eigenvalues and characteristic polynomial	23
11.2. Generalized eigenvectors	24
11.3. Inner products	27
12. Group representations	30

1. Maps

A map f (morphism, function) from X to Y is an assignment $\forall x \in X$ to an element $f(x) \in Y$.

Definition. f is called injective (monomorphism, 1-1) if $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$. f is called surjective (epimorphism, onto) if $\forall y \in Y, \exists x \in X \text{ st } y = f(x)$. f is called bijective (isomorphism) if it is both inj and sur.

Let $\mathrm{Maps}(X,Y)$ denote the set of all maps $f:X\to Y$.

Definition. $X_1 \times X_2$ is the set whose elements are pairs (x_1, x_2) .

Lemma. For a set Y a function $Y \xrightarrow{f} (X_1 \times X_2)$ is the same as a pair of functions $f_1: Y \to X_1$ and $f_2: Y \to X_2$.

Date: Fall 2007.

1

This shows that $\operatorname{Maps}(Y, X_1 \times X_2) \simeq \operatorname{Maps}(Y, X_1) \times \operatorname{Maps}(Y, X_2)$.

Given a set X we can construct a new set Subsets(X) whose elements are all subsets of X (including \emptyset).

Lemma. There exists an isomorphism between Subsets(X) and $Maps(X, \{0, 1\})$.

Theorem. There is no isomorphism between X and Subsets(X) (Cantor diagonalization).

A relation on X is a subset $S \subset X \times X$: we specify which ordered pairs (x_1, x_2) relate by $x_1 \sim x_2$.

Definition. An equivalence relation is a relation that satisfies reflexivity, symmetry, transitivity.

 X/\sim a particular subset in Subsets(X).

Definition. An element $U \in \text{Subsets}(X)$ is called a cluster wrt \sim if (1) $U \neq \emptyset$, (2) $y, z \in U \Rightarrow y \sim z$, (3) $y \in U, z \sim y \Rightarrow z \in U$.

Definition. X/\sim consists of clusters. $\pi:X\to X/\sim$ defined by $\pi(x)=\{x'\in X\mid x\sim x'\}.$

2. Rings

A ring is a set R with a function

- (1) $R \times R \xrightarrow{+} R$ and +(a,b) =: a+b
- (2) a + b = b + a
- (3) a + (b + c) = (a + b) + c
- (4) $\exists 0 \in R \text{ st } a + 0 = a$
- (5) $\forall a \exists -a \text{ st } a + (-a) = 0. \ a b := a + (-b)$ Items 1-5 is definition of abelian group.
- (6) $R \times R \xrightarrow{\cdot} R$ and $\cdot (a, b) =: a \cdot b$
- (7) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- (8) $\exists 1 \in R \text{ st } 1 \cdot a = a \cdot 1 = a$
- (9) $(a+b) \cdot c = a \cdot c + b \cdot c$ $c \cdot (a+b) = c \cdot a + c \cdot b$

Example.

- (1) $R = \mathbb{Z}$
- (2) $R = \mathbb{Q}, \mathbb{C}, \mathbb{R}$
- (3) $\mathbb{Z}/n\mathbb{Z}$ where for $a \in \mathbb{Z}$, $\bar{a} = \pi(a)$. Check that $\bar{a} + \bar{b} = \pi(a+b)$ and $\bar{a} \cdot \bar{b} = \pi(ab)$ works.
- (4) R[t] So far all commutative rings.

Definition. A ring R is commutative if $a \cdot b = b \cdot a$.

(5) $\operatorname{Mat}_{n\times n}(\mathbb{R})$ non-commutable.

$$R_1 \xrightarrow{\varphi} R_2$$

Definition. A ring homomorphism φ is a map of sets from R_1 to R_2 st

- $\varphi(a_1 + a_2) = \varphi(a_1) + \varphi(a_2)$
- $\varphi(a_1a_2) = \varphi(a_1)\varphi(a_2)$

•
$$\varphi(1_{R_1}) = 1_{R_2}$$

 $\mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/n\mathbb{Z}$ is a ring homomorphism.

3. Modules

Fix a ring R. An R-module is a set M together with the following data:

(1)
$$M \times M \xrightarrow{+} M + (m_1, m_2) =: m_1 + m_2$$

 $m_1 + m_2 = m_2 + m_1$
 $m_1 + (m_2 + m_3) = (m_1 + m_2) + m_3$
 $\exists 0 \in M \text{ st } 0 + m = m$
 $\forall m \in M, \exists -m \in M \text{ st } m + (-m) = 0$

(2)
$$R \times M \xrightarrow{\cdot} M$$
 written $a \cdot m$
 $1_R \cdot m = m$
 $a_1 \cdot (a_2 \cdot m) = (a_1 \cdot a_2) \cdot m$
 $(a_1 + a_2)m = a_1m + a_2m$
 $a(m_1 + m_2) = am_1 + am_2$

Example.

 $M = \{0\}$

M=R using old addition and multiplication.

Given two modules M_1 and M_2 an R-module homomorphism $M_1 \xrightarrow{f} M_2$ is a map of sets st

(1)
$$f(m' + m'') = f(m') + f(m'')$$

(2)
$$f(am) = af(m) \ \forall a \in R$$

$$M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3$$

 $g \circ f: M_1 \to M_3$

(1)
$$g(f(m_1 + m_2)) = g(f(m_1) + f(m_2)) = g(f(m_1)) + g(f(m_2))$$

(2)
$$q(f(am)) = q(af(m)) = aq(f(m))$$

Proposition. For any R-module M, \exists a bijection between $\operatorname{Hom}_R(R,M) = \{R\text{-}module\ homo\ R \to M\}$ and M. $\operatorname{Hom}_R(R,M) \simeq M$

Proof. $M \xrightarrow{\Phi} \operatorname{Hom}_R(R, M)$ defined by $\Phi(m)(a) = am$. It is a map of R-modules by axioms. $\operatorname{Hom}_R(R, M) \xrightarrow{\Psi} M$ defined by $\Psi(f) = f(1_R)$.

$$\Psi(\Phi(m)) = \Phi(m)(1_R) = 1_R m = m$$

$$\Phi(\Psi(f))(a) = \Phi(f(1_R))(a) = a \cdot f(1_R) = f(a)$$

so $\Phi \circ \Psi = \mathrm{id}_{\mathrm{Hom}_R(R,M)}$ and $\Psi \circ \Phi = \mathrm{id}_M$.

Given R-modules M_1 and M_2 , we introduce a new R-module $M_1 \oplus M_2$ as a set $M_1 \oplus M_2 := M_1 \times M_2$ with

- $\bullet \ (m_1',m_2')+(m_1'',m_2'')=(m_1'+m_1'',m_2'+m_2'')$
- $0_{M_1 \oplus M_2} = (0_{M_1}, 0_{M_2})$
- $a(m_1, m_2) = (am_1, am_2)$

Proposition. For any R-module N, \exists the following two bijections

I.
$$\operatorname{Hom}_R(M_1 \oplus M_2, N) \simeq \operatorname{Hom}_R(M_1, N) \times \operatorname{Hom}(M_2, N)$$

II.
$$\operatorname{Hom}_R(N, M_1 \oplus M_2) \simeq \operatorname{Hom}_R(N, M_1) \times \operatorname{Hom}_R(N, M_2)$$

Proof. II.

$$\operatorname{Hom}_R(N, M_1 \oplus M_2) \xrightarrow{\phi} \operatorname{Hom}_R(N, M_1) \times \operatorname{Hom}_R(N, M_2)$$

defined by $\phi(f) = (f_1, f_2)$ where $f(n) = (f_1(n), f_2(n))$. And $\psi(f_1, f_2)(n) = f(n) = (f_1(n), f_2(n))$.

I.

$$\operatorname{Hom}_R(M_1 \oplus M_2, N) \xrightarrow{\phi} \operatorname{Hom}_R(M_1, N) \times \operatorname{Hom}_R(M_2, N)$$

with $\phi(f) = (f_1, f_2)$, $f_1(m_2) = f(m_1, 0_{M_2})$, $f_2(m_2) = f(0_{M_1}, m_2)$. In the other direction, $\psi(f_1, f_2)(m_1, m_2) = f_1(m_1) + f_2(m_2)$.

 $\mathbb{Z}/n\mathbb{Z}$ is a $\mathbb{Z}\text{-module}$ and \mathbb{C} is an $\mathbb{R}\text{-module}.$

If
$$M_1 = R^{\oplus n}$$
 and $M_2 = R^{\oplus m}$, then $\operatorname{Hom}_R(M_1, M_2) \simeq \operatorname{Mat}_{m \times n}(R)$.

Lemma. φ is injective $\Leftrightarrow \varphi^{-1}(0_{M_2}) = \{0_{M_1}\}.$

Proof. $(\Leftarrow =)$

$$\varphi(m_1) = \varphi(m_1') \Rightarrow \varphi(m_1 - m_1') = 0_{M_2} \Rightarrow m_1 - m_1' = 0_{M_1} \Rightarrow m_1 = m_1'$$
(\Longrightarrow) is obvious.

Given $m_1, m_2, \ldots, m_n \in M$ we have $R^{\oplus n} \xrightarrow{\varphi} M$ given by $a_1 m_1 + a_2 m_2 + \cdots + a_n m_n$.

Definition. m_1, \ldots, m_n are linearly independent if this map is injective.

Lemma. m_1, \ldots, m_n are linearly dependent if and only if $\exists a_1, \ldots, a_n \in R$ not all 0 st $\sum_i a_i m_i = 0$.

Proof. Suppose $\exists a_1, \ldots, a_n$ not all 0. Therefore $\varphi(a_1, \ldots, a_n) = \varphi(0, \ldots, 0) = 0 \Rightarrow \varphi$ non-injective.

Definition. A homomorphism $\varphi: M_1 \to M_2$ is surjective if it is surjective as a map of sets.

 $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}) = \{0\}: \ \varphi(i) = a \Rightarrow \varphi(ni) = na \ \operatorname{but} \ \varphi(ni) = \varphi(0) = 0 \neq na, \ \operatorname{a contradiction}.$

Definition. m_1, \ldots, m_n span M if the corresponding map $R^{\oplus n} \stackrel{\varphi}{\to} M$ is surjective.

Lemma. m_1, \ldots, m_n span M iff $\forall m \in M, \exists a_1, \ldots, a_n \in R$ st $\sum_i a_i m_i = m$.

Bijective homomorphisms = bijective maps.

Lemma. $\exists ! \psi \ st \ \varphi \circ \psi = id_X, \ \psi \circ \varphi = id_X.$

by letting ψ be the inverse map of sets of φ .

Definition. m_1, \ldots, m_n are a basis for M if the corresponding map $R^{\oplus n} \to M$ is an isomorphism.

Lemma. m_1, \ldots, m_n is a basis iff $\forall m \in M, \exists ! a_1, \ldots, a_n \in R$ such that $\sum_i a_i m_i = m$

 $M' \subset M$ if $m_1, m_2 \in M' \Rightarrow m_1 + m_2 \in M'$ and $a \in R, m \in M' \Rightarrow a \cdot m \in M'$. $M_1 \xrightarrow{\varphi} M_2$

$$\ker(\varphi) = \{ m \in M_1 \mid \varphi(m) = 0 \}$$

$$\operatorname{Im}(\varphi) = \{ m \in M_2 \mid \exists m_1 \in M_1, \varphi(m_1) = m \}$$

 $M' \subset M$. Introduce M/M'. Define \sim on M by $m_1 \sim m_2$ if $m_1 - m_2 \in M'$.

Lemma. $M \xrightarrow{\pi} M/\sim$. $\exists !\ R$ -module structure on M/\sim for which π is a homomorphism.

$$M/M' = M/\sim$$

Proposition. If $M_1 \stackrel{f}{\twoheadrightarrow} M_2$, there exists an isomorphism $M_1/\ker(f) \simeq M_2$.

Proposition. Every R-module M is isomorphic to $\operatorname{coker}(f)$ for some $R^I \xrightarrow{f} R^J$

Proof. There is surjection $R^M \stackrel{g}{\to} M$. Let $K = \ker g \subset R^M$ and define $f: R^K \to K \hookrightarrow R^M$. Then $\operatorname{coker}(f) = R^M / \operatorname{Im} f = R^M / \ker g \simeq M$.

4. Fields

Let R be a commutative ring.

Definition. R is called a field if $\forall a \neq 0, \exists a^{-1} \text{ st } a^{-1} \cdot a = 1_R$.

Lemma. If k is a field and $a, b \neq 0 \Rightarrow a \cdot b \neq 0$.

$$1 = (ab)(a^{-1}b^{-1}) = 0$$
 is a contradiction.

Lemma. If p is a prime then $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$ is a field.

Proof 1. $\forall x \in \mathbb{F}_p - \{0\}$ the map $\mathbb{F}_p - \{0\} \to \mathbb{F}_p - \{0\}$, $y \mapsto xy$ is injective. $y_1x = y_2x \Rightarrow (y_1 - y_2)x = 0 \Rightarrow y_1 = y_2$. Therefore since $\mathbb{F}_p - \{0\}$ is finite the map is surjective.

Proof 2.
$$x = \bar{n}, n \in \mathbb{Z} \ (x \neq 0)$$
. $\exists y, m \text{ with } yn + mp = 1 \Rightarrow \bar{y}\bar{n} = 1$.

$$R = \mathbb{R}[t]/(t^2 + 1) \simeq \mathbb{C}$$

Definition. A polynomial p(t) is irreducible if there does not exist p_1, p_2 with $\deg p_1, p_2 < \deg p$ st $p(t) = p_1(t)p_2(t)$.

 $\mathbb{R}[t]/p(t)$ is a field iff p(t) is irreducible.

Definition. $I \subset R$ is a left ideal if I is additive subgroup of R and $rx \in I$ for all $x \in I$, $r \in R$.

A field k has characteristic 0 if homomorphism $\phi: \mathbb{Z} \to k$ is injective. Otherwise k has positive characteristic.

Consider $\ker \phi$. It is an ideal in \mathbb{Z} . Any ideal in \mathbb{Z} has the form $n\mathbb{Z}$ for some $n \in \mathbb{Z}$.

Proof. Consider the smallest non-zero (positive) element n in I. If we have m = nm' + m'' then $m'' \in I$ but m'' < n, a contradiction.

 $n\mathbb{Z}$ is kernel so $\mathbb{Z}/\ker\phi=\mathbb{Z}/n\mathbb{Z}\to k.$ This map is injective.

Assume that k does not have characteristic 0. Claim: n is prime.

Proof. n = ab with a, b < n. $\phi(ab) = \phi(n) = 0 \Rightarrow \phi(a) = 0$ or $\phi(b) = 0$, a contradiction.

So if $\phi: \mathbb{Z} \to k$ is non-injective, then $\mathbb{F}_p \to k$. p is called the characteristic.

Example.

- (1) k field and t an indeterminate. $k(t) = \frac{p(t)}{q(t)}$ where $\frac{p_1(t)}{q_1(t)} = \frac{p_2(t)}{q_2(t)}$ if $p_1(t)q_2(t) = q_1(t)p_2(t)$.
- $\mathbb{F}_p(t)$ another field of characteristic p. (2) $\mathbb{Q}[\sqrt{2}] = \bigcap_{k \subset \mathbb{C}, \sqrt{2} \in k} k$. Claim: $\mathbb{Q} \subset \mathbb{Q}[\sqrt{2}]$. $1 \in k$, $1 + \cdots + 1 = n \in k \Rightarrow \frac{1}{k} \in k$, so $\mathbb{Q} \subset k$.

5. Linear algebra

For R = k (k is a field), we call R-modules k-vector spaces.

Definition. A vector space V is finite dimensional if \exists surjection $k^n \twoheadrightarrow V$ for some $n \in \mathbb{N}$. $k^{\oplus n} := k^n$.

Equivalently,

Lemma. V is finite dimensional if \exists finitely many vectors $v_1, \ldots, v_n \in V$ that span it

Proposition. Let V be fin-dim. Then \exists an isomorphism $k^n \stackrel{\sim}{\to} V$.

Proof. Take the minimal $n \in \mathbb{N}$ st $k^n \stackrel{\varphi}{\to} V$ exists.

Claim: φ is an isomorphism. Need to show that it is injective.

Suppose $\varphi(a_1,\ldots,a_n)=\sum a_iv_i=0$ where $v_i=\varphi(0,\ldots,1,\ldots,0)$. Assume $a_1\neq 0$. Then $a_1v_1=-\sum_{i=2}^n a_iv_i\Rightarrow v_1=-\sum_{i=2}^n b_iv_i$ where $b_i=a_i/a_1$. Claim that

$$k^{n} \xrightarrow{\varphi} V$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

contradicts minimality.

Corollary. Let V be a fin-dim vector space, and let $V' \subset V$ be a subspace. Then $\exists W \subset V \text{ such that } V' \oplus W \xrightarrow{\sim} V$.

Proof. $(0 \to V' \to V \xrightarrow{\pi} V/V' \to 0$; short exact sequence can be split) Reformulation: π admits a right inverse j. Proof from homework problem 3.

$$0 \longrightarrow V' \longrightarrow V \stackrel{\pi}{\Longrightarrow} V/V' \longrightarrow 0$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad$$

Obtain V/V' is finite dimensional, so by proposition $V/V' \simeq k^n$. Set W = Im(j). $\pi \circ j = id$ so j is injective, and $V/V' \xrightarrow{j} V$ by

$$V/V' \xrightarrow{\sim} W \hookrightarrow V$$

Claim that $V/V' \oplus V' \xrightarrow{j \oplus i} V$ is isomorphism.

Theorem. Let $f: k^m \to k^n$ be an injective map. Then $m \le n$.

Proof. Suppose the statement is true for injective maps $k^{m'} \to k^{n'}$ with $n' < n \Rightarrow m' \le n'$. We start with f and produce $f' : k^{m-1} \to k^{n-1}$ st if f is injective then f' is also injective.

 $f(1,0,\ldots,0)=v\in k^n$ and $\operatorname{span}(v)=\{av,a\in k\}\subset k^n.\ v=(a_1,\ldots,a_n).$ Assume $a_1\neq 0.\ k^{n-1}\subset k^n\supset\operatorname{span}(v).$

$$k^{n-1} \oplus (\operatorname{span}(v) \simeq k) \xrightarrow{\sim} k^n$$

Claim: this is an isomorphism.

Injectivity: $(0, b_2, \dots, b_n) + b(a_1, \dots, a_n) = 0 \Rightarrow b = 0 \Rightarrow b_i = 0.$

Surjectivity: $(0, b_2, \ldots, b_n) + (a_1, \ldots, a_n) = (c_1, \ldots, c_n)$. $b = c_1/a_1$. Choose b_2, \ldots, b_n so the others match.

So we have $k \oplus k^{m-1} \xrightarrow{f} \operatorname{span}(v) \oplus k^{n-1}$. Then the restriction and projection $f': k^{m-1} \to k^{n-1}$ is injective: suppose $\exists w \in k^{m-1}$ st f'(w) = 0. Consider the initial map $f \upharpoonright_{k^{m-1}} (w) = (g(w), f'(w))$ where $g(w) = bv = bf(1, 0, \dots, 0)$. $f(-b, w) = -bf(1, 0, \dots, 0) + f(0, w) = -bv + g(w) + f'(w) = 0 \Rightarrow w = 0$.

Theorem. If $k^n \stackrel{f}{\rightarrow} k^m$ then $m \leq n$.

Proof. f admits a right inverse g. $f \circ g = id_{k^m} \Rightarrow g$ is injective.

Corollary. If $k^m \simeq k^n$ then m = n.

Definition. Let V be a fin. dim. vector space (it is isomorphic to k^n). Then $\dim V := n$ is a well-defined dimension.

Corollary. If $\dim V = n$ then any collection of more then n vectors is linearly dependent.

Proof. If m vectors, $k^m \hookrightarrow V \simeq k^n \Rightarrow m < n$.

Proposition. If V is fin. dim., it admits a basis.

Lemma. V fin. dim., $V' \subset V \Rightarrow V'$ fin. dim.

Corollary. Every lin. independent collection of vectors can be completed to a basis.

Since $V \simeq V' \oplus V/V'$, take a basis for V/V' and add it to the collection.

Theorem. $k^m \hookrightarrow k^n \Rightarrow m \leq n$.

Proof. Suppose statement is true for maps $k^{m'} \to k^{n'}$, n' < n. Then let $v_i = (a_1^i, \ldots, a_n^i)$ for $i = 1, \ldots, m$. Doing Gauss elimination on the matrix with rows v_i and inducting proves theorem.

Lemma. The following are equivalent:

- (1) v_1, \ldots, v_m are lin. ind. and $m \geq d$
- (2) v_1, \ldots, v_m span and $m \leq d$
- (3) v_1, \ldots, v_m form a basis (m = d)

Let R be commutative.

Lemma. If M_1, M_2 are R-modules, $Hom_R(M_1, M_2)$ has the structure of R-module.

Proof.

$$(\varphi + \psi)(m_1) = \varphi(m_1) + \psi(m_1)$$
$$(a \cdot \varphi)(m_1) = a \cdot \varphi(m_1) = \varphi(a \cdot m_1)$$

Must check that

$$(a \cdot \varphi)(a' \cdot m) = \varphi(a \cdot a' \cdot m) = (a \cdot a')\varphi(m) = (a' \cdot a)\varphi(m) = a' \cdot (a \cdot \varphi)(m) \blacksquare$$

- (1) $\operatorname{Hom}_R(N, M_1 \oplus M_2) \simeq \operatorname{Hom}_R(N, M_1) \oplus \operatorname{Hom}_R(N, M_2)$
- (2) $\operatorname{Hom}_R(M_1 \oplus M_2, N) \simeq \operatorname{Hom}_R(M_1, N) \oplus \operatorname{Hom}_R(M_2, N)$
- (3) $\operatorname{Hom}_R(R,N) \simeq N$

Proof. Define $\Phi: N \to \operatorname{Hom}_R(R, N)$ by $\Phi(n)(a) = a \cdot n$.

$$\Phi(b \cdot n)(a) = (ab)n = (ba)n = b \cdot \Phi(n)(a) \Rightarrow \Phi(bn) = b \cdot \Phi(n)$$

6. Dual vector spaces

For a vector space $V, V^* := \text{Hom}_k(V, k)$ is the dual.

Lemma. Let V be fin. dim., then V^* is of the same dimension.

Proof. Case 1:
$$V = k$$
. Then $\operatorname{Hom}(k, k) \simeq k$ by (3). Case 2: $V \simeq k^n$. $(k^n)^* = (k^*)^{\oplus n} = k^n$.

Definition. If v_1, \ldots, v_d is basis of V, then $v_i^* \in V^*$ defined by

$$v_i^*(v_j) = \begin{cases} 0 & j \neq i \\ 1 & j = i \end{cases}$$

is basis of V^* . $\varphi \in V^*$ has $\varphi = \sum a_i v_i^*$ where $a_i = \varphi(v_i)$.

 $V_1 \xrightarrow{T} V_2$ induces $T^*: V_2^* \to V_1^*$. Given $\varphi \in V_2^*$, define $[T^*(\varphi)](v_1) = \varphi(Tv_1) \in k$ for $v_1 \in V_1$. Also check that

$$T^*(\varphi)(a \cdot v_1) = \varphi(Tav_1) = a\varphi(Tv_1) = a \cdot T^*(\varphi)(v_1)$$

This map $T \mapsto T^*$ from $\operatorname{Hom}_k(V_1, V_2) \to \operatorname{Hom}_k(V_2^*, V_1^*)$ is actually a homomorphism of k-modules (homework).

$$\Phi: V \to (V^*)^*$$
 defined by $\Phi(v)(\varphi) = \varphi(v)$ is k-linear (check).

Lemma. If V, W fin. dim., then $\operatorname{Hom}_k(V, W)$ is fin. dim.

Proof 1.
$$\operatorname{Hom}(k^n, k^m) = \operatorname{split}$$
.

Proof 2. v_1, \ldots, v_n basis of V and w_1, \ldots, w_m basis of W. Then define $T_{ij}(v_i) = w_j$ and $T_{ij}(v_{i'}) = 0$ for $i' \neq i$.

7. Tensor products

A bilinear pairing $U, V \xrightarrow{B} W$ is $B: U \times V \to W$ with

$$B(u + u', v) = B(u, v) + B(u', v) \qquad B(u, v + v') = B(u, v) + B(u, v')$$
$$B(a \cdot u, v) = a \cdot B(u, v) = B(u, a \cdot v)$$

Example.

- (1) $V, V^* \to k$ by $v, \varphi \mapsto \varphi(v)$
- (2) $U, \operatorname{Hom}(U, V) \to V$ by $u, T \mapsto T(u)$

- (3) $\operatorname{Hom}(U, V), \operatorname{Hom}(V, W) \to \operatorname{Hom}(V, W)$ by $T, S \mapsto S \circ T$
- (4) $V \times V \stackrel{(\cdot, \cdot)}{\to} k$ scalar products

 $U \otimes V$ is the tensor product of U, V if we are given $U, V \xrightarrow{B_{univ}} U \otimes V$ with the universal property $\forall W$, the assignment $f \in \text{Hom}(U \otimes V, W) \mapsto f \circ B_{univ}$ is a bijection between $\text{Hom}(U \otimes V, W)$ and $\text{Bil}(U, V \to W)$.

$$U, V \xrightarrow{B_{univ}} U \otimes V$$

$$\downarrow f$$

$$\downarrow g$$

$$\downarrow W$$

Tensor product is unique:

$$U, V \xrightarrow{\widetilde{B_{univ}}} (\widetilde{U \otimes V})$$

$$\underset{\widetilde{B_{univ}}}{\underbrace{\widetilde{U \otimes V}}} (\widetilde{U \otimes V})$$

Claim: $\exists ! f, g \text{ st } f \circ g = id, g \circ f = id \text{ and diagram commutes.}$

Proof. By universal property of $(\widetilde{U \otimes V})$, $\exists ! g$ st $\widetilde{B_{univ}} = g \circ \widetilde{B_{univ}}$. Similarly $\exists ! f$ st $\widetilde{B_{univ}} = f \circ \widetilde{B_{univ}}$. Since $\widetilde{B_{univ}} = (f \circ g) \circ \widetilde{B_{univ}}$ and $\widetilde{B_{univ}} = id \circ \widetilde{B_{univ}}$, $f \circ g = id$.

This reasoning is called the Yoneda Lemma.

Define $B_{univ}(u,v) =: u \otimes v$.

Lemma. $(u' + u'') \otimes v = u' \otimes v + u'' \otimes v$

Proof. Follows from bilinearity of B_{univ} .

If we have V = k and $B_{univ}: U, k \to U$ defined by $B_{univ}(u, a) = a \cdot u$, then

Lemma. $U \otimes k = U$ using B_{univ} above satisfies the universal property.

Proof. Need to show taht the assignment $f \in \text{Hom}(U, W) \mapsto f \circ B_{univ}$ is a bijection between $\text{Hom}(U, W) \leftrightarrow \text{Bil}(U, k \to W)$.

Given $B: U, k \to W$, define f(u) = B(u, 1). We will show $f \mapsto B \mapsto f'$. $f'(u) = B(u, 1) = f \circ B_{univ}(u, 1) = f(u)$.

Now for $B \mapsto f \mapsto B'$. $a \cdot B'(u,1) = B'(u,a) = f \circ B_{univ}(u,a) = f(a \cdot u) = B(a \cdot u,1) = a \cdot B(u,1)$. So we have bijection, and $U \otimes k = U$.

Lemma. If $(U \otimes V_1, B^1_{univ})$ and $(U \otimes V_2, B^2_{univ})$ exist, then $U \otimes (V_1 \oplus V_2)$ exists and is isomorphic to $(U \otimes V_1) \oplus (U \otimes V_2)$ with

$$B_{univ}: U \times (V_1 \oplus V_2) \to U \otimes (V_1 \oplus V_2) = (U \otimes V_1) \oplus (U \otimes V_2)$$

defined by $B_{univ}(u, (v_1, v_2)) = (B_{univ}^1(u, v_1), B_{univ}^2(u, v_2)).$

Proof. For all W,

$$U, V_1 \oplus \underbrace{V_2 \longrightarrow (U \otimes V_1) \oplus (U \otimes V_2)}_{B} \downarrow_{W}^{f}$$

Given B, we have
$$B_1(u, v_1) = B(u, (v_1, 0))$$
 and $B_2(u, v_2) = B(u, (0, v_2))$. Then $f_1 \leftrightarrow B_1$ and $f_2 \leftrightarrow B_2$, $f_1 : U \otimes V_1 \to W$, $f_2 : U \otimes V_2 \to W$.

Corollary. $U \otimes V$ exists for any two fin. dim. vector spaces U, V.

Proof. $V = k \oplus \cdots \oplus k$. $U \otimes k$ exists. So if $U \simeq k^n, V \simeq k^m$ then

$$U \otimes V \simeq \bigoplus_{1 \le i \le n, 1 \le j \le m} k$$

If $u_1, \ldots, u_n \in U$, $v_1, \ldots, v_m \in V$ are bases, then corresponding basis of $U \otimes V$ is $u_i \otimes v_j$.

If we are given $U_1 \otimes V_1, U_2 \otimes V_2$ and maps $f: U_1 \to U_2, g: V_1 \to V_2$, can we construct a map $f \otimes g$ between $U_1 \otimes V_1$ and $U_2 \otimes V_2$? Consider

$$U_1, V_1 \longrightarrow U_1 \otimes V_1$$

$$V_1 \otimes V_2 \otimes V_2$$

$$W = U_2 \otimes V_2$$

where $B(u_1, v_1) := B_{univ}^2(f(u_1), g(v_1)).$

Lemma. $(f \otimes g)(u_1 \otimes v_1) = f(u_1) \otimes g(v_1).$

Proof.
$$B_{univ}^2(f(u_1), g(v_1)) = f(u_1) \otimes g(v_1)$$
.

Given $U \otimes V$ exists, we define a map $\operatorname{Hom}(U \otimes V, W) \to \operatorname{Hom}(U, \operatorname{Hom}(V, W))$. Given $f: U \otimes V \to W$, define $\varphi: U \to \operatorname{Hom}(V, W)$ by $\varphi(u) = B(u, \cdot)$. Linearity in the 2nd argument shows that $\varphi(u)$ is k-linear. Linearity in 1st argument shows that φ is k-linear. The map defined is also k-linear.

Define $U^* \otimes V \xrightarrow{T} \operatorname{Hom}_k(U, V)$. Need a bilinear $B: U^*, V \to \operatorname{Hom}(U, V)$. Define $B(\varphi, v)(u) = \varphi(u) \cdot v$.

Define $U^* \otimes V^* \to (U \otimes V)^*$. Need $B: U^*, V^* \to (U \otimes V)^*$ so $B(\varphi, \psi) = ?$ To define $U \otimes V \to k$, let $(B(\varphi, \psi))(u, v) = \varphi(u) \cdot \psi(v)$.

Lemma. If $U \otimes V$ exists, then $V \otimes U$ exists and $\exists !$ isomorphism S where $S(u \otimes v) = v \otimes u$.

Proof. Existence: Let $V\otimes U=U\otimes V$ and define $B^{V\otimes U}_{univ}:V,U\to U\otimes V$ by

$$B_{univ}^{V\otimes U}(v,u) = B_{univ}^{U\otimes V}(u,v)$$

Uniqueness of isomorphism follows from previous lemma.

Proposition. $U \otimes V$ is equal to the span of pure tensors (finite sums of $u \otimes v$).

Proof. Let $W=U\otimes V/\{$ span of pure tensors $\}$ with projection $U\otimes V\stackrel{\pi}{\to} W.$ Then the following diagram commutes

$$U, V \xrightarrow{Buniy} U \otimes V$$

$$\downarrow 0 \qquad \qquad \downarrow \pi$$

$$W$$

so $\pi=0$ by universal property, which implies $U\otimes V$ equals the span of pure tensors.

8. Groups

A set G is a group if

- (1) $G \times G \xrightarrow{\cdot} G$
- (2) $1 \in G$
- (3) $(g_1g_2)g_3 = g_1(g_2g_3)$
- (4) $1 \cdot g = g \cdot 1 = g$ (5) $\forall g \exists g^{-1} \text{ st } gg^{-1} = g^{-1}g = 1$

If $g_1g_2 = g_2g_1 \forall g_1, g_2 \in G$ we say G is abelian.

Example.

- (1) X is a set. $Aut(X) = \{ \varphi : X \to X \mid \varphi \text{ is isomorphism} \}$
- (2) $X = \{1, ..., n\}$. Aut $(X) = S_n$
- (3) $\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}$ under +
- (4) $k^* := k \{0\} \text{ under } \times$
- (5) V vector space. $GL(V) = \{T : V \to V \mid T \text{ isomorphism}\}\$
- (6) $SL(V) = \{g \in Hom(V, V) \mid \det g = 1\}$
- (7) $O(n) = \{ T \in \text{Mat}_{n \times n} : T^T T = TT^T = \text{Id} \}$
- (8) $\operatorname{Aut}_{\mathbb{Z}}(\mathbb{Z}^{\oplus n}) = GL(n, \mathbb{Z})$

 $G_1 \xrightarrow{\varphi} G_2$ if φ is a map of sets and $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$.

Example. (1)

Lemma. $\mathbb{Z}/n\mathbb{Z} \stackrel{\varphi}{\to} G \Leftrightarrow \exists g \in G \mid g^n = 1$

Proof.
$$(\Rightarrow)g = \varphi(1)$$

 (\Leftarrow) Define $\tilde{\varphi}: \mathbb{Z} \to G$ by $\tilde{\varphi}(i) = g^i$, which induces map $\varphi: \mathbb{Z}/n\mathbb{Z} \to G$.

- (2) \mathbb{C} , $+ \to (\mathbb{C} 0)$, \cdot by $z \mapsto \exp(2\pi i z)$
- (3) $S_n \xrightarrow{\varphi} GL(n)$ where $\varphi(\sigma) \in \operatorname{Mat}_{n \times n}$ for $\sigma \in S_n$ defined by $(\varphi(\sigma))(e_i) =$

Definition. A subgroup is a subset with

- $h_1, h_2 \in H \Rightarrow h_1 h_2 \in H$
- $1 \in H$
- $\forall h \in H, h^{-1} \in H$

For $\varphi: G_1 \to G_2$, $\ker \varphi = \{g \in G \mid \varphi(g) = 1_{G_2}\}.$

Lemma. $\ker \varphi$ is subgroup of G_1 and $\operatorname{Im} \varphi$ is subgroup of G_2 .

For $H \subset G$, the set $G/H := G/\sim$ where $g_1 \sim g_2$ if $\exists h \in H$ st $g_1 = g_2 h \Leftrightarrow$ $g_2^{-1}g_1 \in H$. So we have $G \xrightarrow{\pi} G/H$ with $\pi(g) = \bar{g}$. Can we define a group structure on G/H so that π is hom.

$$\bar{g}_1\bar{g}_2=\pi(g_1g_2)$$

suppose $\exists g_2', g_2''$ st $\pi(g_2') = \pi(g_2'')$. Then $g_2'' = g_2'h \Rightarrow g_1g_2'' = g_1g_2'h \Rightarrow \pi(g_1g_2') =$ $\pi(g_1g_2'')$. But in order for $\pi(g_1'g_2) \stackrel{?}{=} \pi(g_1''g_2)$, we need $g_1''g_2 = g_1'g_2h'$. We have $g_1'' = g_1'h \Rightarrow g_1''g_2 = g_1'hg_2$. So for $g_1'hg_2 = g_1''g_2h'$, need

$$hg_2 = g_2 h' \Rightarrow h' = g_2^{-1} hg_2 \in H$$

Definition. $H \subset G$ is normal if $\forall g \in G, h \in H, g^{-1}hg \in H$.

Proposition. \exists a group structure on G/H with π being a homomorphism if and only if H is normal.

Proof. Suppose H is normal. Then by the discussion above we are good. If H were not normal, we would be able to find a g_2 st $g_2^{-1}hg_2 \notin H$.

Lemma. If G is finite, then |G| is finite and $|G| = |H| \cdot |G/H|$.

Proof. For any partition of $X \stackrel{\pi}{\to} X/\sim$,

$$|X| = \sum_{\bar{x} \in X/\sim} |\pi^{-1}(\bar{x})|$$

Observe the sublemma

Lemma. $\forall \bar{g} \in G/H, |\pi^{-1}(\bar{g})| = |H|.$

Proof. Suppose $\bar{g} = \pi(1)$. $\pi^{-1}(\pi(1)) = H$. For any g let us construct an isomorphism between $\pi^{-1}(\pi(g)) \xrightarrow{\sim} H$ by $h \mapsto gh$.

Corollary. If G is finite then |G| is divisible by |H|.

Definition. An *order* of $g \in G$ is infinite if there does not exist n st $g^n = 1$. Otherwise it is the minimal integer n st $g^n = 1$.

Lemma. In a finite group, order of each element divides order of group.

Proof. $\exists n, m \text{ st } g^n = g^m \Rightarrow g^{n-m} = 1 \text{ so order is finite. Consider the set } \{1, g, \dots, g^{n-1}\}, \ g^n = 1 \text{ where } n \text{ is order.}$

Corollary. For prime p and any integer n not dividing p, $n^{p-1} \equiv 1 \in \mathbb{F}_n^*$.

8.1. Group actions.

Given group G and set X, $G \curvearrowright X$ if we are given $G \times X \to X$ st

- $g_1(g_2x) = (g_1g_2)x$
- \bullet $1_G x = x$

Lemma. We have an action of G on X if and only if $G \to Aut(X)$ (as groups).

Proof. Given action, we have $\varphi(g) = g(\cdot)$. Given homomorphism φ , action $gx = (\varphi(g))x$.

$$(g_1g_2)x = (\varphi(g_1g_2))x = (\varphi(g_1)\varphi(g_2))x = g_1(g_2x)$$

 $G \curvearrowright G$ by (left) multiplication $g g_1 = gg_1$.

Let X_1, X_2 be two sets acted on by G. A G-map between them is a map of sets $X_1 \xrightarrow{f} X_2$ where $f(gx_1) = gf(x_1)$. The set of all G-maps is $\text{Hom}_G(X_1, X_2)$.

Proposition. There \exists ! action of G on G/H st $\pi: G \to G/H$ is a G-map.

Proof. Set $\pi(g_1g) = g_1\pi(g)$. Suppose g' and g'' such that $\pi(g') = \pi(g'')$. Need to show that $\pi(g_1g') = \pi(g_1g'')$:

$$g'' = g'h \Rightarrow g_1g'' = g_1g'h \Rightarrow \pi(g_1g'') = \pi(g_1g')$$

Universal property: Let G be a group, H subgroup, and X a set acted on by G.

Proposition. \exists bijection between the sets

$$\operatorname{Hom}_G(G/H, X) \simeq \{x \in X \mid hx = x \ \forall h \in H\}$$

Proof. (\Rightarrow) Given $f: G/H \to X$, let $x:=f(\pi(1))$. Then

$$hx = f(h\pi(1)) = f(\pi(h)) = f(\pi(1)) = x$$

 (\Leftarrow) Given $x \in X$, $\varphi(\bar{g}) = gx$.

$$\pi(g') = \pi(g'') \Rightarrow g'' = g'h \Rightarrow g''x = g'hx = g'x$$

Proposition. Every finite group is isomorphic to a subgroup of S_n for some n.

Proof. Set n = |G|. We want $\varphi : G \hookrightarrow S_n = \operatorname{Aut}(X)$ where X = G. Take φ associated with $G \curvearrowright X$. $\varphi(g_1) \neq \operatorname{Id}_X$ if $g \neq 1$ since $(\varphi(g))(1) = g \cdot 1 = g$.

Define an equiv \sim on X to say that $x_1 \sim x_2$ if $\exists g \in G$ st $x_2 = gx_1$. An *orbit* is an equiv class wrt \sim . The orbit $O \subset X$ is a subset where $\forall x_1, x_2 \in O$, $\exists g$ st $gx_1 = x_2$. We say the action is *transitive* if X is just one orbit.

Example. For $H \subset G$ we can look at G/H where $\bar{g} = g \cdot \bar{1}$, which shows the action is transitive.

Lemma. Every set with a transitive action on G is isomorphic to G/H for some H

Proof. Pick an element $x \in X$. Consider $\operatorname{Stab}_G(x) \subset G$. Define $G/\operatorname{Stab}_G(x) \xrightarrow{f} X$ by $f(\bar{g}) = g \cdot x$ (well-defined by definition of stabilizer). Action is transitive implies f is surjective.

$$f(\bar{g}_1) = f(\bar{g}_2) \Rightarrow g_1 x = g_2 x \Rightarrow g_2^{-1} g_1 x = x \Rightarrow g_2^{-1} g_1 \in \operatorname{Stab}_G(x)$$

so f is an isomorphism.

This lemma implies that every orbit is isomorphic to $G/\operatorname{Stab}_G(x)$ for $x \in O$.

 $g_1 \times g \to g_1 g$ is called the left multiplication action $G \curvearrowright G$.

The adjoint/conjugation action is given by $g_1 \times g \to g_1 \cdot g \cdot g_1^{-1}$. We check this is a valid action: $\mathrm{Ad}_1(g) = 1g1^{-1} = g$, and

$$\operatorname{Ad}_{g_1g_2}(g) = g_1g_2gg_2^{-1}g_1^{-1} = \operatorname{Ad}_{g_1}(g_2gg_2^{-1}) = \operatorname{Ad}_{g_1}(\operatorname{Ad}_{g_2}(g))$$

Definition. g' is conjugate to g'' if they belong to the same orbit under the action of conjugation. Orbits are called conjugacy classes.

Definition. For $g \in G$, define $\mathbb{Z}_G(g) := \mathrm{Stab}_{\mathrm{Ad}(G)}(g) = \{g_1 \in G \mid g_1 g g_1^{-1} = g\} = \{g_1 \in G \mid g_1 g = g g_1\}$. Define $Z_G = \{g \in G \mid \mathbb{Z}_G(g) = G\} = \{g \in G \mid g g_1 = g_1 g \ \forall g_1 \in G\}$.

Example. $Z(GL_n(\mathbb{R})) = \lambda \cdot \mathrm{Id}$.

Proposition. Let G be finite and $|G| = p^n$ for prime p. Then $Z_G \neq \{1\}$.

Proof. $G = \bigcup O \simeq \bigcup G/\operatorname{Stab}_G(x)$ where O are conjugacy classes. $O_1 = \{1\}$. Suppose for contradiction that $Z_G = \{1\}$, so $\forall x \in G, x \neq 1, \mathbb{Z}_G(x) \neq G \Rightarrow |G/\operatorname{Stab}_G(x)| = p^{n'}$ for n' > 0. This is a contradiction since it implies $p^n = 1 + \sum p^{n'}$.

Generalization of above:

Proposition. Suppose $G \cap X$, G is finite with $|G| = p^n$ where prime p satisfies gcd(|X|, p) = 1, then $\exists x \in X$ such that $Stab_G(x) = G \Rightarrow x$ fixed by G.

Proof. Suppose there is no fixed point. Then $X = \bigsqcup O = \bigsqcup G/\operatorname{Stab}_G(x)$, so $|G/\operatorname{Stab}_G(x)| = p^{n'}$ and n' > 0. Then $|X| = \sum p^{n'}$ but |X| is not divisible by p.

Proposition. Let G be a finite group of order p^2 . Then G is abelian.

Proof. We know from the previous proposition that $Z_G \neq \{1\}$. Therefore $|Z_G| = p$ or p^2 since it is a subgroup. If $|Z_G| = p^2$, $Z_G = G$ so G is abelian. Suppose $|Z_G| = p$. Then $\exists x \in G, x \notin Z_G$. But $Z_G \subset \mathbb{Z}_G(x) \neq G$ and $\mathbb{Z}_G(x)$ is a subgroup, so $Z_G = \mathbb{Z}_G(x)$ which is a contradiction since $x \in \mathbb{Z}_G(x)$.

Let $H, H' \subset G$ be two subgroups. We say they are conjugate if $\exists g \in G$ st $gHg^{-1} = H'$ or equivalently $\mathrm{Ad}_q : H \xrightarrow{\sim} H'$.

Lemma. H is normal if and only if it is only conjugate to itself.

Theorem (Sylow). Let G be a finite group and p be prime st $|G| = p^n \cdot r$ where gcd(r,p) = 1.

- (1) There exists a subgroup $H \subset G$ whose order is $|H| = p^n$.
- (2) Every subgroup H' with $|H'| = p^{n'}$ is conjugate to a subgroup of H.

We call a subgroup with order p^n a p-Sylow subgroup.

Corollary. If H_1 and H_2 are two p-Sylow subgroups, they are conjugate.

Proof of 1. Consider the action of left multiplication $G simes ext{Subsets}(G)$. Take

$$Subsets(G) \supset S = \{ s \in Subsets(G) \mid |U_s| = p^n \}$$

From combinatorics we have that

$$|S| = \binom{p^n r}{p^n} = \frac{p^n r \cdot (p^n r - 1) \cdots (p^n r - p^n + 1)}{p^n \cdots 1} = r \frac{(p^n r - 1) \cdots (p^n r - p^n + 1)}{(p^n - 1) \cdots 1}$$

We see that if $p^i \mid (p^n r - m)$, then $p^i \mid m$, so $\gcd(|S|, p) = 1$. Looking at the G-orbits acting on S (since G preserves order of subsets), we see that $S = \bigsqcup O$. Therefore there exists an orbit \mathcal{O} st $\gcd(|\mathcal{O}|, p) = 1$. For $s \in \mathcal{O}$, set $H = \operatorname{Stab}_G(s)$ so $\mathcal{O} \simeq G/H$. Since $|\mathcal{O}|$ is coprime with p and $|G| = p^n \cdot r$, p^n divides |H|.

On the other hand, consider $H \cap U_s$ (where U_s is now the actual subset). This action is well-defined because H is the stabilizer of s. Therefore $U_s = \bigsqcup O'$ and each orbit $O' = H/\operatorname{Stab}_H(g)$ for $g \in O' \subset U_s \subset G$. Now $hg = g \Rightarrow h = 1$ so all stabilizers are trivial, and $|U_s| = |H| \cdot (\text{number of orbits})$, so |H| divides $|U_s| = p^n$. Therefore the subgroup H has order p^n .

Proof of 2. Assuming (1), let H be the subgroup of order p^n . Taking the usual action $G \curvearrowright G/H$, we have the restriction $H' \curvearrowright G/H$. Since |G/H| = r, $|H'| = p^{n'}$, and $\gcd(r,p) = 1$, there exists $\bar{g} \in G/H$ fixed by H' by the previous proposition. Fixing $h' \in H'$, we have

$$h'\bar{g} = \bar{g} \Rightarrow \exists h \in H \text{ st } h'g = gh \Rightarrow g^{-1}h'g = h \Rightarrow h' \in gHg^{-1}$$

so
$$H' \subset gHg^{-1} \Rightarrow g^{-1}H'g \subset H$$
.

9. Tensor products and powers

Recall that $U \otimes V \xrightarrow{f} W$ assigns values to $f(u \otimes v)$ st $f((u_1 + u_2) \otimes v) = f(u_1 \otimes v) + f(u_2 \otimes v)$. There is an isomorphism $U \otimes V \xrightarrow{\sim} V \otimes U$ induced by $u \otimes v \mapsto v \otimes u$. If U = V then we get the non-trivial map $V \otimes V \to V \otimes V$ given by $v_1 \otimes v_2 \mapsto v_2 \otimes v_1$. This map is the identity if and only if dim $V \leq 1$.

We now introduce the space $V_1 \otimes V_2 \otimes V_3$. A map $V_1 \times V_2 \times V_3 \stackrel{Mult}{\to} W$ is multilinear if it is linear in each variable. Then we define $V_1 \otimes V_2 \otimes V_3$ as we defined $V_1 \otimes V_2$:

$$V_1 \times V_2 \times V_3 \xrightarrow{Mult_{univ}} V_1 \otimes V_2 \otimes V_3$$

$$\downarrow f$$

$$\downarrow Mult$$

$$\downarrow W$$

Theorem. $U_1 \otimes U_2 \otimes U_3$ exists and is isomorphic to $(U_1 \otimes U_2) \otimes U_3$.

Proof. Define $U_1 \times U_2 \times U_3 \stackrel{Mult_{univ}}{\longrightarrow} (U_1 \otimes U_2) \otimes U_3$ by

$$Mult_{univ}(u_1, u_2, u_3) = (u_1 \otimes u_2) \otimes u_3$$

Given $Mult: U_1 \times U_2 \times U_3 \to W$, fix u_3 and consider $B(u_1, u_2) := Mult(u_1, u_2, u_3)$ which is in bijection with $U_1 \otimes U_2 \stackrel{f_{u_3}}{\to} W$. Define $U_1 \otimes U_2 \otimes U_3 \stackrel{f}{\to} W$ by $f(w \otimes u_3) = f_{u_3}(w)$. To check f is well-defined, we need

$$f(w \otimes u_3') + f(w \otimes u_3'') = f(w \otimes (u_3' + u_3''))$$

Checking for $w = u_1 \otimes u_2$, we have

$$Mult(u_1, u_2, u_3') + Mult(u_1, u_2, u_3'') = Mult(u_1, u_2, u_3' + u_3'')$$

so
$$f_{u'_3} + f_{u''_3} = f_{u'_3 + u''_3}$$
. This gives a bijection between $Mult$ and f .

Now we can denote $Mult_{univ}(u_1, u_2, u_3) = u_1 \otimes u_2 \otimes u_3$ and we have an isomorphism $(u_1 \otimes u_2) \otimes u_3 \mapsto u_1 \otimes u_2 \otimes u_3$. By the same argument,

$$(U_1 \otimes U_2) \otimes U_3 \simeq U_1 \otimes U_2 \otimes U_3 \simeq U_1 \otimes (U_2 \otimes U_3)$$

We now similarly define $T^nV := V^{\otimes n}$. If V has a basis e_1, \ldots, e_k then $e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_n}$ where $i_j \in \{1, \ldots, k\}$ form a basis of T^nV , so $\dim(T^nV) = k^n$.

To define a map $U_1 \otimes \cdots \otimes U_n \xrightarrow{f} W$ it is necessary and sufficient to define $f(u_1 \otimes \cdots \otimes u_n)$ which is multilinear. We can therefore define an action $S_n \curvearrowright T^n(V)$ by

$$\sigma \cdot (v_1 \otimes \cdots \otimes v_n) = v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}, \quad \sigma \in S_n$$

9.1. Exterior product.

A multilinear map $Alt: V \times \cdots \times V \to W$ is said to be alternating if

$$Alt(v,v) = 0 \Rightarrow Alt(v_1,v_2) = -Alt(v_2,v_1)$$

which further implies $Alt(v_1, \ldots, v_n) = 0$ if $v_i = v_j$ for some $1 \le i < j \le n$.

Proposition. T^nV admits a unique quotient vector space Λ^nV st

where g factors through $\Lambda^n V$ if and only if the corresponding multilinear map $V^n \to W$ is alternating.

Consider the following subspace of T^nV :

$$\operatorname{span}\{v_1 \otimes \cdots \otimes v_n \mid \exists i, j \text{ st } v_i = v_i\}$$

and set $\Lambda^n V := T^n V / \operatorname{span} \{\}.$

Proposition. A map $g: T^n \to W$ factors through $\Lambda^n V$ if and only if the corresponding $Mult: V^n \to W$ is alternating.

Let Alt_{univ} be the composition

$$V^n \stackrel{Mult_{univ}}{\longrightarrow} T^n V \stackrel{\pi}{\rightarrow} \Lambda^n V$$

which then has the universal property that the assignment $f \mapsto f \circ Alt_{univ}$ is a bijection between $\operatorname{Hom}_k(\Lambda^n V, W) \leftrightarrow Alt(V^n, W)$.

$$V^{n} \xrightarrow{Mult_{univ}} T^{n}V \xrightarrow{\pi} \Lambda^{n}V$$

$$\downarrow g \qquad \qquad \downarrow g \qquad \qquad \downarrow$$

Denote $\pi(v_1 \otimes \cdots \otimes v_n) =: v_1 \wedge \cdots \wedge v_n$. It follows that

$$v_1 \wedge \cdots \wedge v_i \wedge \cdots \wedge v_j \wedge \cdots \wedge v_n = -v_1 \wedge \cdots \wedge v_j \wedge \cdots \wedge v_i \wedge \cdots \wedge v_n$$

and $v_1 \wedge \cdots \wedge v_n = 0$ if there is repetition. For $\sigma \in S_n$,

$$v_{\sigma(1)} \wedge \cdots \wedge v_{\sigma(n)} = sign(\sigma)(v_1 \wedge \cdots \wedge v_n)$$

Theorem. Let V be finite dimensional with dimension k and basis e_1, \ldots, e_k .

- (1) If n > k, then $\Lambda^n V = \{0\}$.
- (2) If $n \leq k$, then the set of $e_{i_1} \wedge \cdots \wedge e_{i_n}$ st $1 \leq i_1 < i_2 < \cdots < i_n \leq k$ form a basis of $\Lambda^n V$.

Proof. 1) $e_{i_1} \otimes \cdots \otimes e_{i_n}$ form a basis for T^nV , and by pigeonhole, there will be a repetition, so $\pi(e_{i_1} \otimes \cdots \otimes e_{i_n}) = 0$.

2) $e_{i_1} \otimes \cdots \otimes e_{i_n}$ span T^nV . We eliminate any basis elements with repetitions. If the i_j 's are not in order, applying σ rearranges the order while only changing the sign. Therefore $e_{i_1} \wedge \cdots \wedge e_{i_n}$ $(1 \leq i_1 < \cdots < i_n \leq k)$ span Λ^nV . Observe the fact that

Lemma. Let U be a vector space with u_1, \ldots, u_m spanning it. If for every W and $w_1, \ldots, w_m \in W$ there exists a unique map $U \xrightarrow{T} W$ st $T(u_j) = w_j$, then u_1, \ldots, u_m is a basis.

We will prove the conditions of the previous lemma. Given W and $w_{i_1,...,i_n}$ define $T^nV \xrightarrow{g} W$ by

$$g(e_{i_1} \otimes \cdots \otimes e_{i_n}) = \begin{cases} 0 & \text{if } \exists \text{ repetition} \\ sign(\sigma)w_{\sigma(i_1),\dots,\sigma(i_n)} & \text{otherwise} \end{cases}$$

where σ puts the indices in order. This corresponds to an alternating map $V^n \to W$ so g factors through $\Lambda^n V$.

We have from before that $U_1 \xrightarrow{f} U_2, V_1 \xrightarrow{g} V_2$ induces a map $U_1 \otimes V_1 \xrightarrow{f \otimes g} U_2 \otimes V_2$. Extending, we have that $V_1 \xrightarrow{f} V_2$ induces $T^n V_1 \xrightarrow{T^n f} T^n V_2$ where $f(v_1 \otimes \cdots \otimes v_n) = f(v_1) \otimes \cdots \otimes f(v_n)$.

Proposition. There exists a unique map $\Lambda^n f: \Lambda^n V_1 \to \Lambda^n V_2$ that makes the following diagram commute.

$$T^{n}V_{1} \xrightarrow{T^{n}f} T^{n}V_{2}$$

$$\downarrow^{\pi_{1}} \qquad \downarrow^{\pi_{2}}$$

$$\Lambda^{n}V_{1} \xrightarrow{\Lambda^{n}f} \Lambda^{n}V_{2}$$

Proof. The diagram forces uniqueness, and $\ker \pi_1$ maps into $\ker \pi_2$ so the induced map is well-defined.

If dim V = k, then dim $(\Lambda^n V) = {k \choose n}$. Therefore if dim V = n, dim $(\Lambda^n V) = 1$ and det $(V) := \Lambda^n V$. If dim $V_1 = \dim V_2 = n$ and $V_1 \xrightarrow{T} V_2$, det $T := \Lambda^n T$, where det $(V_1) \xrightarrow{\det T} \det(V_2)$.

Theorem. Let V be any vector space with v_1, \ldots, v_k lin. ind. vectors. Then $v_{i_1} \wedge \cdots \wedge v_{i_n}$ for $1 \leq i_1 < \cdots < i_n \leq k$ are linearly independent in $\Lambda^n V$.

Proof. Extend v_1, \ldots, v_k to a basis of V. Then $v_{i_1} \wedge \cdots \wedge v_{i_n}$ are linearly independent because they are part of the basis of $\Lambda^n V$.

9.2. k-Algebras. Let k be a field. A k-algebra is a ring A together with a (ring) homomorphism $k \xrightarrow{\varphi} A$ st

$$\varphi(x) \cdot a = a \cdot \varphi(x) \qquad \forall x \in k, a \in A$$

Example. $A = \operatorname{Mat}_{n \times n}(k)$ and $x \mapsto x \operatorname{Id} \text{ maps } k \to A$.

A map between k-algebras $A_1 \to A_2$ is a ring homomorphism where the following diagram commutes.

Observe that for $a \in A, x \in k$, defining $x \cdot a = \varphi(x) \cdot a$ makes A a k-vector space.

Lemma. A k-algebra is equivalent to a ring A with the structure of a k-vector space and a map $A \otimes_k A \xrightarrow{m} A$ st the following diagram commutes.

$$A \underset{k}{\otimes} A \underset{k}{\otimes} A \xrightarrow{\operatorname{id} \otimes m} A \underset{k}{\otimes} A$$

$$\downarrow^{m \otimes \operatorname{id}} \qquad \downarrow^{m}$$

$$A \underset{k}{\otimes} A \xrightarrow{m} A$$

and $m(a_1 \otimes a_2) = a_1 a_2$.

Proof. (\Rightarrow) Suppose there is an algebra structure. Then define m by $a_1 \otimes a_2 \mapsto a_1 a_2$. Checking, $(\varphi(x)a_1)a_2 = a_1(\varphi(x)a_2)$ satisfies linearity. We have

$$\begin{array}{cccc} a_1 \otimes a_2 \otimes a_3 \longrightarrow a_1 \otimes a_2 a_3 \\ & & & \downarrow \\ & & & \downarrow \\ a_1 a_2 \otimes a_3 \longrightarrow a_1 a_2 a_3 \end{array}$$

(\Leftarrow) Suppose we have a map $a_1a_2=m(a_1\otimes a_2)$. Then defining $k\stackrel{\varphi}{\to} A$ by $\varphi(x)=x\cdot 1_A$ gives a ring homomorphism:

$$\varphi(x \cdot x') = (x \cdot x')1_A = m((x \cdot x')(1_A \otimes 1_A)) = m(\varphi(x) \otimes \varphi(x'))$$

and

$$\varphi(x) \cdot a = m((x \cdot 1_A) \otimes a) = x \cdot m(1_A \otimes a) = x \cdot a = x \cdot m(a \otimes 1_A) = a \cdot \varphi(x)$$

The previous lemma essentially says that multiplication in a k-algebra A is k-linear.

Let V be a vector space. Then

$$T(V) := k \oplus V \oplus T^2V \oplus \cdots \oplus T^nV \oplus \ldots$$

We define multiplication $T^mV\otimes T^nV\to T^{m+n}V$ by

$$(v_1 \otimes \cdots \otimes v_m) \otimes (v'_1 \otimes \cdots \otimes v'_n) \mapsto (v_1 \otimes \cdots \otimes v_m \otimes v'_1 \otimes \cdots \otimes v'_n)$$

This induces multiplication on

$$TV \underset{k}{\otimes} TV \simeq \bigoplus_{m,n \geq 0} T^m V \otimes T^n V \to \bigoplus_{\ell} T^{\ell} V \simeq TV$$

The multiplication is associative:

$$T^{m}V\otimes T^{n}V\otimes T^{\ell}V\longrightarrow T^{m}V\otimes T^{n+\ell}V$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$T^{m+n}V\otimes T^{\ell}V\longrightarrow T^{m+n+\ell}V$$

We can define φ to be the inclusion $k \hookrightarrow TV$, making TV a k-algebra (with identity $1 \in k$). TV is called the tensor algebra.

T(V) has the universal property that for any k-algebra $A, f \mapsto f \circ i$ forms a bijection between the algebra homomorphisms $T(V) \to A$ and $\operatorname{Hom}(V, A)$, where i is inclusion.

$$V \stackrel{i}{\smile} T(V)$$

$$\downarrow f$$

$$A$$

Next define

$$\Lambda(V) := k \oplus V \oplus \cdots \oplus \Lambda^n V \oplus \ldots$$

Proposition. There exists a unique k-algebra structure st the map $T(V) \to \Lambda(V)$ is a k-algebra homomorphism.

Proof. In order for the map to be a k-algebra homomorphism, we must have

$$\Lambda^{n} \otimes \Lambda^{m} V \longrightarrow \Lambda^{n+m} V$$

$$\uparrow_{\pi_{n} \otimes \pi_{m}} \qquad \uparrow$$

$$T^{n} V \otimes T^{m} V \longrightarrow T^{n+m} V$$

(Side note: $U_1 \stackrel{f}{\twoheadrightarrow} U_2$ and $V_1 \stackrel{g}{\twoheadrightarrow} V_2$ implies $U_1 \otimes V_1 \stackrel{f \otimes g}{\twoheadrightarrow} U_2 \otimes V_2$.)

Lemma. If $U_1 \xrightarrow{f} U_2$ and $V_1 \xrightarrow{g} V_2$ are surjective maps, then $(\ker f \otimes V_1) \oplus (U_1 \otimes \ker g) \to U_1 \otimes V_1$ is a surjection onto $\ker(f \otimes g)$.

Using the lemma and setting $f=\pi_n$ and $g=\pi_m$, it is clear that the map $T^nV\otimes T^mV\to T^{m+n}V\to \Lambda^{m+n}V$ vanishes on $\ker(\pi_n\otimes\pi_m)$. So we have defined $\Lambda^nV\otimes \Lambda^mV\to \Lambda^{n+m}V$ by

$$(v_1 \wedge \cdots \wedge v_n) \otimes (v_1' \wedge \cdots \wedge v_m') \mapsto v_1 \wedge \cdots \wedge v_n \wedge v_1' \wedge \cdots \wedge v_m'$$

which induces the desired k-algebra structure on $\Lambda(V)$.

 $\Lambda(V)$ is called the exterior or wedge algebra.

Proposition. Let $V' \subset V$ be a fin. dim. vector space. Then

- (1) $\Lambda^n V' \to \Lambda^n V$ is injective.
- (2) Suppose $n = \dim V'$. Then the following diagram induces a map.

$$\Lambda^n V' \otimes \Lambda^m V \xrightarrow{\operatorname{id} \otimes \Lambda^m \pi} \Lambda^n V \otimes \Lambda^m V \xrightarrow{\overline{\nearrow}} \Lambda^n V' \otimes \Lambda^m (V/V')$$

(3) The latter map $\Lambda^n V' \otimes \Lambda^m (V/V') \to \Lambda^{n+m}(V)$ is injective.

In the particular case where $m = \dim V/V'$, we have $\dim V = m + n$ and the previous map becomes an isomorphism between $\det(V') \otimes \det(V/V') \simeq \det(V)$

Proof. 1) Take a basis for V' and extend to V. The corresponding basis of $\Lambda^n V'$ is lin. ind. in $\Lambda^n V$, so map is injective.

2) We need to show that $\Lambda^n V' \otimes \ker(\Lambda^m V \to \Lambda^m(V/V'))$ goes to 0 under the $\to \to$ composition. Let e_1, \ldots, e_n form a basis for V' and let f_1, \ldots, f_k be the complementary basis vectors that together form the basis of V. Therefore

$$e_{i_1} \wedge \cdots \wedge e_{i_\ell} \wedge f_{j_1} \wedge \cdots \wedge f_{j_{m-\ell}}$$

form a basis of $\Lambda^m V$. $\ker(\Lambda^m V \to \Lambda^m(V/V'))$ is spanned by $e_{i_1} \wedge \cdots \wedge e_{i_\ell} \wedge f_{j_1} \wedge \cdots \wedge f_{j_{m-\ell}}$ for $\ell \neq 0$. $\Lambda^n V'$ is one dimensional with basis vector $e_1 \wedge \cdots \wedge e_n$, so the result follows.

3) By removing the kernel, we have a basis for $\Lambda^n V' \otimes \Lambda^m (V/V')$ given by

$$(e_1 \wedge \cdots \wedge e_n) \otimes (f_{j_1} \wedge \cdots \wedge f_{j_m}) \mapsto e_1 \wedge \cdots \wedge e_n \wedge f_{j_1} \wedge \cdots \wedge f_{j_m}$$

where $1 \le j_1 < \cdots < j_m \le k$. Each basis element goes to a distinct basis element in $\Lambda^{n+m}V$ so the map is injective.

10. Field extensions

Let k be a field. We have the associated k-algebra k[t] of single variable polynomials in k. For fixed $x \in k$, we can evaluate polynomials, giving a map $k[t] \xrightarrow{\operatorname{ev}_x} k$.

Theorem (Bezout). $p \in k[t]$ is divisible by t - x if and only if p(x) = 0.

Corollary. If $p(x_i)$ vanishes for x_1, \ldots, x_n where $x_i \neq x_j$ and $n > \deg p$, then p = 0.

For finite fields, we can have $p(x) = q(x) \ \forall x \in k \ \text{yet} \ p \neq q$.

Example. $t^p - t \in \mathbb{F}_p[t]$ has $x^{p-1} = 1$ for $x \in \mathbb{F}_p^*$.

Lemma. If A is a k-algebra, then to give a homomorphism $k[t] \xrightarrow{\varphi} A$ is equivalent to specifying an element in A st $\varphi(t) = a$.

Using PS 5, Problem 5d,e, we have the bijection

$$V = k \longrightarrow k[t] \simeq \operatorname{Sym}(V)$$

Lemma. Any ideal in k[t] is of the form I_p for some $p \in k[t]$.

Proof. $I_p = \{q \cdot p \mid q \in k[t]\}$. Given an ideal I, take $p \in I$ to be an element of lowest degree. Given any other $\tilde{p} \in I$, we can divide with remainder

$$\tilde{p} = p \cdot q_1 + q_2 \qquad \deg q_2 < \deg p$$

 $q_2 \in I$ but p has lowest degree, so $q_2 = 0$.

Lemma. Giving a hom. $k[t]/I_p \xrightarrow{\varphi} A$ is equivalent to specifying $a \in A$ st p(a) = 0. Proof. Given φ , set $a = \varphi(t)$. Then

$$0 = \varphi(p(t)) = p(\varphi(t)) = p(a)$$

Conversely, given $a \in A$, by the previous lemma we have a hom. $k[t] \to A$ which factors through to $k[t]/I_p$.

Let R be a commutative ring. An ideal $m \subseteq R$ is called maximal if \nexists ideal $m' \subseteq R$ st $m' \supseteq m$.

Lemma. I_p is maximal if and only if p is irreducible.

Proof. (\Leftarrow) If p is irreducible, suppose $m' \supseteq m$. Then $m' = I_{p'}$, so $I_p \subset I_{p'} \Rightarrow p \in I_{p'} \Rightarrow p'$ divides p, a contradiction.

$$(\Rightarrow)$$
 Suppose I_p is maximal. If p reducible, $p = p'q$ so we have $I_{p'} \supseteq I_p$.

For $x \in k$, the evaluation function $k[t] \xrightarrow{\operatorname{ev}_x} k$ has $\ker(\operatorname{ev}_x) = I_{t-x}$, a maximal ideal.

Proposition. There is an order-preserving (order by inclusion) bijection between ideals in R/I and ideals in R containing I.

Proof. We have
$$R \xrightarrow{\pi} R/I$$
. Send $I_1 \subset R$ to $\pi(I_1) \subset R/I$.

Proposition. A proper ideal $m \subseteq R$ is maximal if and only if R/m is a field.

Proof. (\Leftarrow) Suppose R/m is a field. The only ideals in a field are 0 and the entire field: if $a \in I$ then $aa^{-1} = 1 \in I$. So by the previous proposition the only ideal containing m in R is R.

 (\Rightarrow) If m is maximal, then again the only ideals in R/m are 0 and R/m. So the ideal generated by any $\bar{a} \in R/m$ equals R/m and hence contains $\bar{1}$. Therefore \bar{a} has an inverse, so R/m is a field.

Corollary. Every maximal ideal in k[t] is the kernel of some surjective hom. from $k[t] \rightarrow k' \leftarrow k$ where k' is a field and a k-algebra.

Proof. Given a maximal ideal $M \subsetneq k[t]$, consider $k[t] \twoheadrightarrow k[t]/M = k'$. For any surjective hom. $k[t] \stackrel{\varphi}{\twoheadrightarrow} k'$, its kernel is a maximal ideal because $k' \simeq k[t]/\ker \varphi$.

We therefore have that $k' = k[t]/I_p$ for p irreducible is a field.

Example. For $k = \mathbb{R}$, $p = t^2 + 1$, $k' = k[t]/(t^2 + 1) = \mathbb{C}$. To see this, define $\varphi : \mathbb{R}[t]/(t^2 + 1) \to \mathbb{C}$ by $\varphi(t) := i$.

Proposition. If $k \xrightarrow{f} R$ is nonzero, f is injective.

Proof. If
$$f(a) = 0$$
 for $a \neq 0$, $f(1) = f(aa^{-1}) = 0$ so $f = 0$.

Definition. k is algebraically closed if every polynomial has a root.

Proposition. The following are equivalent:

- (1) k is algebraically closed.
- (2) Every irreducible polynomial is of degree 1.
- (3) Every polynomial factors as $\prod (t x_i)$.

Proof. (1) \Rightarrow (3): Given p, it has a root. Divide by t-x and continue. (3) \Rightarrow (2) is obvious.

 $(2) \Rightarrow (1)$: Take p with no root of lowest degree, which must be irreducible (otherwise a factor would either have a root or be of lower degree). Then deg p=1, a contradiction.

Example. No finite field \mathbb{F} is algebraically closed. If x_1, \ldots, x_n are all the elements of \mathbb{F} , then $\prod (t - x_i) + 1$ has no root.

The following will be proved later:

Theorem (Fundamental theorem of algebra). \mathbb{C} is algebraically closed.

Definition. Let k be a field. A *field extension* is $k \hookrightarrow k'$. A field extension is *finite* if k' is finite dimensional as a k-vector space.

Example. $\mathbb{R} \hookrightarrow \mathbb{C}$ is a field extension.

Example. Take k and an irreducible polynomial $p \in k[t]$. $k \hookrightarrow k' = k[t]/I_p$ is a field extension, and dim $k' = \deg p$ as $1, t, \ldots, t^{\deg p - 1}$ form a basis.

Theorem. k is algebraically closed if and only if any finite field extension is trivial.

Proof. (\Leftarrow) If k is not algebraically closed, \exists an irreducible p of deg p > 1, so $k[t]/I_p$ is a finite extension.

 (\Rightarrow) Suppose k is algebraically closed and $\exists k' \supsetneq k$. Let $y \in k' - k$ and $n = \dim k'$. Then $1, y, y^2, \ldots, y^n$ are linearly dependent and there exist $a_i \in k$ st $\sum_{i=0}^n a_i y^i = 0$. Define

$$p(t) = \sum_{i=0}^{n} a_i t^i$$

By algebraic closure, $p(t) = \prod_{i=1}^{n} (t - b_i)$ for $b_i \in k$. We now have $p(y) = 0 \neq \prod (y - b_i)$ since $y \notin k$, a contradiction.

Lemma. Let k be a field and p a polynomial.

- (1) $\exists k' \supset k$ a finite field extension st p has a root in k'.
- (2) $\exists k'' \supset k$ a finite field extension st p factors completely in k''.

Proof. 1) Take an irreducible factor q of p and set $k' = k[t]/I_q$. Let $\bar{t} \in k'$ be the image of t under the projection $k[t] \longrightarrow k[t]/I_q$. Then $q(\bar{t}) = q(\bar{t}) = 0 \in k'$ so \bar{t} is a root of q and thus p in k'.

2) If we have field extensions $k'' \stackrel{\text{finite}}{\supset} k' \stackrel{\text{finite}}{\supset} k$, then $\dim_{k'}(k'') \cdot \dim_k(k') = \dim_k(k'')$ so $k'' \supset k$ is finite. Therefore we can repeat (1) until p factors completely, which requires at most $\deg p$ times by Bezout's theorem.

10.1. Fundamental theorem of algebra.

Proof 1. Suppose $p(z) = z^n + \cdots + a_1z + a_0$ is a polynomial in \mathbb{C} with no root. Define $f_1: S^1 \to \mathbb{C} - 0$ by $z \mapsto z^n$ and $f_0: S^1 \to \mathbb{C} - 0$ by $z \mapsto a_0$. We use the following result from algebraic topology:

Lemma. f_1 and f_0 are not homotopic.

Assuming p has no root, we construct a homotopy F between f_0 and f_1 using three segments:

$$f_0 \overset{F_{0,1/3}}{\sim} f_{1/3} \overset{F_{1/3,2/3}}{\sim} f_{2/3} \overset{F_{2/3,1}}{\sim} f_1$$

Let $f_{1/3}(z) = p(z)$ and $F_{0,1/3}(t,z) = p(tz)$ for $0 \le t \le 1$. Now for some real R >> 0, set $f_{2/3}(z) = R^{-n}p(Rz)$ and $F_{1/3,2/3}(t,z) = t^{-n}p(tz)$ for $1 \le t \le R$.

$$f_{2/3}(z) = z^n + \frac{a_{n-1}}{R}z^{n-1} + \dots + \frac{a_1}{R^{n_1}}z + \frac{a_0}{R^n}$$

Lastly define

$$F_{2/3,1}(t,z) = \sum_{i=0}^{n-1} \frac{a_i}{R^{n-i}} tz^i + z^n$$

for $0 \le t \le 1$. This last segment is well-defined (i.e., $F_{2/3,1}(t,z) \ne 0$) if

$$|a_0|R^{-n} + \dots + |a_{n-1}|R^{-1} < 1$$

Proof 2. Assume p has real coefficients (if not consider $p\bar{p}$ where \bar{p} is polynomial obtained by conjugating coefficients – the resulting coefficients all equal their conjugates by symmetry), so $p \in \mathbb{R}[t]$. We can write $\deg p = 2^n \cdot d$ where d is odd, and induct on n. Extend \mathbb{C} to \mathbb{C}' so that p factors completely into $\prod (t-a_i)$ for $a_i \in \mathbb{C}'$. Define

$$q_r(t) = \prod_{i < j} (t - (ra_i a_j + a_i + a_j)) \in \mathbb{C}'[t], \ r \in \mathbb{R}$$

Proposition. $q_r(t)$ has coefficients in \mathbb{R} .

Proof. Consider $q_r(t)$ as an element of $\mathbb{R}[t, s_1, \ldots, s_n] = R[t]$ for $R = \mathbb{R}[s_1, \ldots, s_n]$ where s_1, \ldots, s_n are variables for the roots of p. Then the coefficients of $q_r(t)$ in R are symmetric functions in s_1, \ldots, s_n .

Definition. If we expand the polynomial $\prod_{i=1}^{n} (t-s_i)$, we get $\sum_{i=0}^{n} g_i t^i$ for $g_i \in R$. The functions g_i are called the elementary symmetric polynomials.

Theorem. Any symmetric function in R is a scalar multiple of a sum of products of elementary symmetric polynomials.

Since the g_i 's evaluated at a_1, \ldots, a_n are the coefficients of p, they are real, so by the previous theorem, the coefficients of $q_r(t)$ are actually real.

Observe that the degree of $q_r(t)$ is equal to $\binom{\deg p}{2} = (\deg p)(\deg p - 1)/2$, so it is not a multiple of 2^n and satisfies inductive hypothesis. Therefore $q_r(t)$ has a root $z_r \in \mathbb{C}$. From our expansion of q_r we see that any root must equal $ra_ia_j + a_i + a_j = z_{ij}^r$ for some i, j. So by pigeonhole, there must be some i, j such that

$$z_{ij}^{r_1} = r_1 a_i a_j + a_i + a_j$$
 $z_{ij}^{r_2} = r_2 a_i a_j + a_i + a_j$

Solving this pair of equations, we have $a_i a_j, a_i + a_j \in \mathbb{C}$. a_i, a_j are the solutions to the polynomial $(z - a_i)(z - a_j) = z^2 - (a_i + a_j)z + a_i a_j$, so $a_i, a_j \in \mathbb{C}$.

To prove base cases, we must check that all second degree polynomials have complex roots (quadratic formula) and odd degree polynomials have a root (intermediate value theorem).

11. Linear algebra revisited

11.1. Eigenvalues and characteristic polynomial.

Definition. For a map $V \xrightarrow{T} V$, $v \in V$ is an eigenvector for T if $\exists \lambda \in k$ st $Tv = \lambda v$. λ is called the eigenvalue.

Theorem. If k is algebraically closed and V is fin. dim., there always exists an eigenvector.

Counterexample. V = k[t] and T defined by multiplying by t has no eigenvalue. **Counterexample.** Suppose there exists $k' \supseteq k$ and let V = k' be fin. dim. Then for $y \in k' - k$, $T(z) = y \cdot z$ has no eigenvalue.

Proof. For $T \in \text{Hom}_k(V, V)$, the *characteristic polynomial* $ch_T(t)$ is a polynomial in k[t] of degree dim V defined by $ch_T(x) = \det(T - x \operatorname{Id})$. Choose a basis for V and write T as a matrix

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \quad \text{and} \quad A_t = A - tI_{n \times n}$$

Take $ch_T(t) = \det(A_t) \in k[t]$. By construction the value of $ch_T(t)$ at t = x equals $\det(A_x) = \det(T - x \operatorname{Id})$.

Since k is algebraically closed, ch_T has a root $\lambda \in k$. $ch_T(\lambda) = \det(T - \lambda \operatorname{Id}) = 0$ so $T - \lambda \operatorname{Id}$ has a nonzero kernel, so $\exists v \in \ker(T - \lambda \operatorname{Id}) \Rightarrow Tv - \lambda v = 0$.

If V is a k-vector space with $V \xrightarrow{T} V$ and there exists extension $k \xrightarrow{\varphi} k'$, then $V' = k' \otimes V$ is a k'-vector space and induces $V' \xrightarrow{T'} V'$. Then $ch_{T'} \in k'[t]$ equals $\varphi(ch_T)$.

Let $V \xrightarrow{T} V$ with $ch_T \in k[t]$. If we write

$$ch_T(t) = a_n t^n + \dots + a_1 t + a_0$$

then $a_0 = \det T, \dots, a_{n-1} = (-1)^{n-1} \operatorname{Tr}(T), a_n = (-1)^n$. We define the operator $ch_T(T) := a_n T^n + \dots + a_1 T + a_0 \operatorname{Id}$

Theorem (Cayley-Hamilton Theorem). $ch_T(T) = 0$.

Proof. Given a matrix A, define the adjoint matrix A^{adj} by setting a_{ij}^{adj} equal to $(-1)^{i+j}$ times the j, i-minor of A. Therefore we have $A \cdot A^{adj} = A^{adj} \cdot A = \det(A)$ Id. So

$$(A - t \operatorname{Id})^{adj}(A - t \operatorname{Id}) = \det(A - t \operatorname{Id}) \operatorname{Id} = ch_T(t) \operatorname{Id}$$

We can write $(A - t \operatorname{Id})^{adj} = B_n t^n + B_{n-1} t^{n-1} + \dots + B_1 t + B_0$. So

$$\sum B_i t^i (A - t \operatorname{Id}) = -B_n t^{n+1} + \sum (B_i A - B_{i-1}) t^i + B_0 A = ch_T(t) \operatorname{Id}$$

so $B_i A - B_{i-1} = a_i \operatorname{Id}$ for all i. Therefore

$$ch_T(A) = \sum a_i A^i = \sum (B_i A^i A - B_{i-1} A^i) + B_0 A = B_n A^{n+1} = 0$$

For the rest of this section consider V to be fin. dim. with $V \xrightarrow{T} V$.

Lemma. λ is an eigenvalue if and only if λ is a root of ch_T .

Proof. $ch_T(\lambda) = 0 \Leftrightarrow \det(T - \lambda \operatorname{Id}) = 0 \Leftrightarrow T - \lambda \operatorname{Id}$ is not invertible $\Leftrightarrow T - \lambda \operatorname{Id}$ has a nonzero kernel $\Leftrightarrow \exists v \in V$ st $Tv = \lambda v$.

11.2. Generalized eigenvectors.

Definition. T is nilpotent if $\exists m \text{ st } T^m = 0 \text{ } (m \text{ can be taken to be } \dim V).$

Proposition. T is nilpotent if and only if $ch_T = (-1)^n t^n$ where $n = \dim V$.

Proof. Stage 1: Assume ch_T factors over k.

- (⇒) Need to show \nexists nonzero eigenvalue. If $Tv = \lambda v, T^n v = \lambda^n v = 0$ implies $\lambda = 0$.
- (\Leftarrow) Using Cayley-Hamilton, we have $T^n = 0$.

Stage 2: For arbitrary k, extend to $k \hookrightarrow k'$ algebraically closed. Then consider $V' = k' \underset{k}{\otimes} V$ and $V' \xrightarrow{T'} V'$ using Stage 1.

Definition. T is diagonalizable (semi-simple) if there exists a basis v_1, \ldots, v_n st $Tv_i = \lambda_i v_i$.

Example. If T is nilpotent and diagonalizable, then T = 0.

Definition. $v \in V$ is a generalized eigenvector wrt $\lambda \in k$ if for some m $(T - \lambda \operatorname{Id})^m v = 0$. λ is then a generalized eigenvalue.

Example. Let T be nilpotent, then every $v \in V$ is generalized eigenvector with generalized eigenvalue 0.

Lemma. λ is an eigenvalue if and only if λ is a generalized eigenvalue.

Proof. Forward direction is obvious. For the other direction, take v to be a generalized eigenvector. Let m be the minimal integer such that $(T - \lambda \operatorname{Id})^m v = 0$. Then $v' = (T - \lambda \operatorname{Id})^{m-1}v$ is an eigenvector.

Let V_{λ} denote the set of all generalized eigenvectors with gen. eigenvalue λ . Check that V_{λ} is a vector subspace.

Lemma. T maps V_{λ} to itself.

Proof. In general, S maps V_{λ} to itself if S commutes with T.

$$(T - \lambda \operatorname{Id})^m S v = S(T - \lambda \operatorname{Id})^m v = 0$$

Lemma. For $\mu \neq \lambda$, $T - \mu \operatorname{Id}: V_{\lambda} \to V_{\lambda}$ is invertible.

Proof. We show T is injective. If $Tv = \mu v$, then $(T - \lambda \operatorname{Id})^m v = (\mu - \lambda)^m v \neq 0$, a contradiction.

Theorem. Assume ch_T factors in k. Then $\bigoplus_{\lambda} V_{\lambda} \xrightarrow{\sim} V$.

Proof. Injectivity: suppose $\sum_{\lambda} v_{\lambda} = 0$ for $v_{\lambda} \in V_{\lambda}$. Suppose this expression involves a minimal number of distinct λ 's. Then

$$(T - \lambda_1 \operatorname{Id})^{m_1} \sum_{\lambda} v_{\lambda} = \sum_{\lambda \neq \lambda_1} (T - \lambda_1 \operatorname{Id})^{m_1} v_{\lambda} = 0$$

which is a linear combination with fewer terms, so zero is only possibility.

Surjectivity: Define $V' := \operatorname{Im}(\bigoplus V_{\lambda} \to V)$ and V'' := V/V'. Then

Assume $V'' \neq 0$. Then since $ch_T = ch_{T'} \cdot ch_{T''}$, $ch_{T''}$ must factor into linear terms over k, so it has a root λ which is also a root of ch_T . So there exists $v'' \in V''$ st $T''v'' = \lambda v''$. We show that there exists $v \in V$ which is a gen. eigenvector of λ and $\pi(v) = v''$. This is a contradiction since $v \in V_{\lambda} \subset V'$ so $\pi(v) = v'' = 0$.

Take some representative \tilde{v} st $\pi(\tilde{v}) = v''$. Let $m_{\lambda} := \dim V_{\lambda}$. Then set

$$v = \frac{1}{\prod_{\lambda' \neq \lambda} (\lambda - \lambda')^{m_{\lambda'}}} \prod_{\lambda' \neq \lambda} (T - \lambda' \operatorname{Id})^{m_{\lambda'}} \tilde{v}$$

Since $\pi \circ T = T'' \circ \pi$, $\pi(v) = v''$. Next, $(T - \lambda \operatorname{Id})^{m_{\lambda}+1}$ is a constant multiple of

$$(T - \lambda \operatorname{Id})^{m_{\lambda} + 1} \prod_{\lambda' \neq \lambda} (T - \lambda' \operatorname{Id})^{m_{\lambda'}} \tilde{v} = \prod_{\lambda'} (T - \lambda' \operatorname{Id})^{m_{\lambda'}} (T - \lambda \operatorname{Id}) \tilde{v} = 0$$

since
$$\pi((T - \lambda \operatorname{Id})\tilde{v}) = (T - \lambda \operatorname{Id})v'' = 0_{V''}$$
.

Proposition (Cayley-Hamilton). Assume ch_T factors. Then

$$ch_T(t) = \prod_{\lambda} (\lambda - t)^{m_{\lambda}}$$

Proof is in the homework.

Corollary.
$$\prod_{\lambda} (\lambda \operatorname{Id} - T)^{m_{\lambda}} = 0$$
 since $(T - \lambda \operatorname{Id})^{m_{\lambda}}|_{V_{\lambda}} = 0$.

For the rest of the section, assume ch_T factors completely in k.

Since we showed $V = \bigoplus V_{\lambda}$, we want a projection $\pi_{\lambda}: V \to V_{\lambda}$ st $\pi|_{V_{\lambda}} = \mathrm{Id}$ and $\pi|_{V_{\lambda'}}=0 \text{ for } \lambda'\neq\lambda.$

Proposition. $\exists p_{\lambda}(t) \ st \ \pi_{\lambda} = p_{\lambda}(T)$.

Proof. Define

$$q_{\lambda}(t) := \prod_{\lambda' \neq \lambda} (t - \lambda')^{m_{\lambda'}}$$

Then $q_{\lambda}(T)|_{V'_{\lambda}} = 0$ for $\lambda' \neq \lambda$ and $q_{\lambda}(T)|_{V_{\lambda}}$ is invertible. Since $\gcd(q_{\lambda}(t), (t - t))$ $(\lambda)^{m_{\lambda}}) = 1$, there exist r_{λ}, s_{λ} st

$$r_{\lambda}q_{\lambda} + s_{\lambda}(t-\lambda)^{m_{\lambda}} = 1$$

Take $p_{\lambda} := r_{\lambda} q_{\lambda}$. Then $p_{\lambda}(T)|_{V_{\lambda'}} = 0$ and $p_{\lambda}(T)|_{V_{\lambda}} = \mathrm{Id}$.

Let V'_{λ} denote the eigenspace, while V_{λ} denotes gen. eigenspace.

Proposition. The following are equivalent:

- (1) T is semi-simple.
- (2) Every generalized eigenvector is an eigenvector.
- (3) $V'_{\lambda} \subseteq V_{\lambda}$ is equality.
- (4) $\bigoplus V'_{\lambda} \to V$ is isomorphism.

Proof. All are obvious except $(1) \Rightarrow (2)$. Suppose we have basis so $T(v_i) = \lambda_i v_i$. If $(T - \mu \operatorname{Id})^m v = 0, \ v = \sum a_i v_i \text{ then}$

$$\sum (\lambda_i - \mu)^m a_i v_i = 0$$

so the only possibility is that $a_i = 0$ for all i st $\lambda_i \neq \mu$.

Theorem (Jordan Decomposition).

- (1) $\exists !T = T^{nilp} + T^{ss}$ st $[T^{nilp}, T^{ss}] = T^{nilp}T^{ss} T^{ss}T^{nilp} = 0$ and T^{nilp} is $nilpotent\ and\ T^{ss}\ is\ semi-simple.$
- (2) $\exists p^{nilp}(t), p^{ss}(t) \text{ st } T^{nilp} = p^{nilp}(T), T^{ss} = p^{ss}(T).$

Proof. 1) Existence: set $T^{ss}|_{V_{\lambda}} = \lambda \operatorname{Id}$ and $T^{nilp}|_{V_{\lambda}} = T - \lambda \operatorname{Id}$ (is nilpotent).

Uniqueness: Since T^{ss} commutes with T^{nilp} , it commutes with T, so T^{ss} maps $V_{\lambda} \to V_{\lambda}$. Furthermore $T^{ss}|_{V_{\lambda}}$ is semi-simple since every gen. eigenvector is an eigenvector. Suppose $T^{ss}(v) = \mu v$ for $v \in V_{\lambda}, \mu \neq \lambda$. Then by binomial expansion we see that for sufficiently large m,

$$(T - \mu \operatorname{Id})^m v = (T^{nilp} + (T^{ss} - \mu \operatorname{Id}))^m v = 0$$

so
$$(T - \mu \operatorname{Id})|_{V_{\lambda}}$$
 is not injective, a contradiction. Therefore $T^{ss}|_{V_{\lambda}} = \lambda \operatorname{Id}$.
2) $T^{ss} = \sum_{\lambda} \lambda \pi_{\lambda}$ so let $p^{ss}(t) = \sum_{\lambda} \lambda p_{\lambda}(t)$ and $p^{nilp}(t) = t - p^{ss}(t)$.

Definition. $T: V \to V$ is regular nilpotent if $T^{\dim V - 1} \neq 0$.

Proposition. T is regular nilpotent if and only if V admits a basis st $T(e_{i+1}) =$ $e_i, T(e_1) = 0.$

$$\begin{bmatrix} 0 & 1 & & 0 \\ & 0 & 1 & \\ & & 0 & 1 \\ 0 & & & 0 \end{bmatrix}$$

Proof. (\Leftarrow) $T^{n-1}(e_n) = e_1 \neq 0$. (\Rightarrow) Suppose $T^{\dim V - 1} \neq 0$. Take e_n to be any element st $T^{n-1}e_n \neq 0$. Define $e_{n-i} := T^i e_n$. If $\sum_{i=0}^{n-1} a_i T^i e_n = 0$, let k be the smallest number such that $a_k \neq 0$. Then

$$T^{n-1-k}\left(\sum a_i T^i e_n\right) = a_k T^{n-1} e_n = 0$$

which is a contradiction

Note that if T is regular nilpotent, then $\dim(\ker T^i) = i$.

Lemma. Let T be nilpotent. TFAE:

- (1) T is regular nilpotent.
- (2) $\dim(\ker T) = 1$.
- (3) $\dim(\ker T^i) = i$.

Theorem (Jordan Canonical Form). Let $T: V \to V$ be nilpotent.

- (1) $\exists V = \bigoplus V_i \text{ st } T : V_i \to V_i \text{ and } T|_{V_i} \text{ is regular.}$
- (2) $\forall m$, the number of i st dim $V_i = m$ is independent of decomposition (i.e., the decomposition is unique up to the order of the Jordan blocks).

Proof. 2) Observe that $\dim(\ker T^m) - \dim(\ker T^{m-1})$ equals exactly the number of i with dim $V_i \geq m$. Therefore

$$\dim(\ker T^m) - \dim(\ker T^{m-1}) - (\dim(\ker T^{m+1}) - \dim(\ker T^m))$$

determines the number of i st dim $V_i = m$, which is independent of decomposition.

1) Represent V as a direct sum $V = \bigoplus V_i$ with $T: V_i \to V_i$ such that no further decomposition is possible. From the homework, if T nilpotent and indecomposable, then T is regular.

11.3. Inner products.

We now consider V as a fin. dim. k-vector space where $k = \mathbb{R}$ or \mathbb{C} . An inner $product \langle \cdot, \cdot \rangle : V \times V \to k \text{ satisfies}$

- $\langle v_2, v_1 \rangle = \overline{\langle v_1, v_2 \rangle}$ $\langle v, v \rangle \in \mathbb{R}^{\geq 0}$ and $\langle v, v \rangle = 0 \Leftrightarrow v = 0$

Example. For $V = k^n$, define $\langle (a_1, \ldots, a_n), (b_1, \ldots, b_n) \rangle = \sum a_i \bar{b}_i$.

Denote the norm $||v|| := \sqrt{\langle v, v \rangle}$ and say $v \perp u$ if $\langle v, u \rangle = 0$.

Theorem (Pythagorean). $||u + v||^2 = ||u||^2 + ||v||^2$ if $u \perp v$.

Proof.
$$\langle u+v, u+v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle.$$

Theorem (Cauchy Schwarz). $|\langle u, v \rangle| \leq ||u|| ||v||$ with equality if and only if v = aufor $a \in k$.

Proof. Suppose v = au + w where $w \perp u$. Then $\langle v, u \rangle = a\langle u, u \rangle$. Checking, $w = v - \frac{\langle v, u \rangle}{\langle u, u \rangle} u$ works. Set $v_1 = au$ so $v = v_1 + w$.

$$|\langle u, v \rangle| = |\langle u, v_1 \rangle| = ||u|| ||v_1|| \le ||u|| ||v||$$

where the inequality follows from Pythagorean theorem: $||v||^2 = ||v_1||^2 + ||w||^2$, so we have equality if and only if $||w|| = 0 \Leftrightarrow w = 0$.

Theorem (Triangle inequality). $||u+v|| \le ||u|| + ||v||$ with equality if and only if v = au, $a \in \mathbb{R}^{\geq 0}$.

Proof in homework.

If V is a complex vector space, define a new space \overline{V} where $a \cdot v := \overline{a}v$. Then we have $\overline{V} \to V^*$ by $v \mapsto \xi_v$ where $\xi_v(w) := \langle w, v \rangle$.

Proposition. $\overline{V} \to V^*$ is an isomorphism.

Proof. It is injective since $\xi_v(v) = \langle v, v \rangle \neq 0$ if $v \neq 0$. The two spaces have the same dimension, so it is an isomorphism.

Theorem. $\langle u+v, u+v \rangle \leq \langle u, u \rangle + \langle v, v \rangle + 2\|u\|\|v\|$

Proof. $\langle u+v,u+v\rangle=\langle u,u\rangle+\langle v,v\rangle+\langle u,v\rangle+\langle v,u\rangle$ and use Cauchy Schwarz.

For
$$U \hookrightarrow V$$
, let $U^{\perp} = \{v \in V \mid \langle v, u \rangle = 0 \ \forall u \in U\}.$

Proposition. $U \oplus U^{\perp} \stackrel{\sim}{\to} V$.

Proof. Injectivity: u = -v for $v \in U^{\perp}$ implies $u \perp v \Rightarrow \langle u, u \rangle = 0 \Rightarrow u = 0$.

Surjectivity: Enough to show $\dim(U^{\perp}) \geq \dim V - \dim U$. Let e_1, \ldots, e_n be basis for U. Then $U^{\perp} = \ker(V \to k^{\oplus n})$ defined by $v \mapsto (\langle v, e_1 \rangle, \ldots, \langle v, e_n \rangle)$. By rank-nullity, $\dim U^{\perp} \geq \dim V - n$.

Definition. A collection of nonzero vectors $e_1, \ldots, e_k \in V$ is called *orthogonal* if $\langle e_i, e_j \rangle = 0 \ \forall i \neq j$. Any orthogonal collection is linearly independent, since

$$\langle \sum a_i e_i = 0, e_j \rangle = a_j \langle e_j, e_j \rangle = 0 \Rightarrow a_j = 0$$

If $v = \sum a_i e_i$, then $a_i = \frac{\langle v, e_i \rangle}{\langle e_i, e_i \rangle}$. An orthogonal collection is *orthonormal* if $||e_i|| = 1$.

Proposition (Gram-Schmidt). If v_1, \ldots, v_k is a lin. ind. collection, $\exists ! e_1, \ldots, e_k$ orthogonal collection such that $e_i \in \operatorname{span}(v_1, \ldots, v_i)$ and $e_i - v_i \in \operatorname{span}(v_1, \ldots, v_{i-1})$.

Proof. Let $e_1 = v_1$. Suppose e_1, \ldots, e_{i-1} have been found, and $\operatorname{span}(v_1, \ldots, v_{i-1}) = \operatorname{span}(e_1, \ldots, e_{i-1})$. Then using induction it is enough to show that $\exists ! e_i \text{ st } e_i - v_i \in \operatorname{span}(e_1, \ldots, e_{i-1})$. If $e_i = v_i + \sum_j a_j e_j$, then

$$\langle e_i, e_{j < i} \rangle = \langle v_i, e_j \rangle + a_j \langle e_j, e_j \rangle = 0 \Rightarrow a_i = -\frac{\langle v_i, e_j \rangle}{\langle e_i, e_j \rangle}$$

Corollary. V admits an orthogonal basis and consequently an orthonormal basis.

 $T: V_1 \to V_2$ is an isometry if it is an isomorphism and $\langle Tv_1', Tv_1'' \rangle = \langle v_1', v_1'' \rangle$.

Lemma. A basis is orthonormal if and only if $k^n \to V$ is an isometry with dot product on k^n .

Definition. For $T: V \to V$, there $\exists ! T^{adj}: V \to V$ st $\langle v_1, T^{adj}(v_2) \rangle = \langle T(v_1), v_2 \rangle$.

Proof. Consider $\xi \in V^*$ where $\xi(w) := \langle T(w), v \rangle$. Since $\overline{V} \simeq V^*$, $\xi = \xi_u$ for $u \in V$, so $\xi_u(w) = \langle w, u \rangle$. Set $T^{adj}(v) = u$. Checking,

$$\langle w, T^{adj}(cv) \rangle = \langle T(w), cv \rangle = \bar{c} \langle T(w), v \rangle = \bar{c} \langle w, T^{adj}(v) \rangle = \langle w, cT^{adj}(v) \rangle \qquad \blacksquare$$

T is self-adjoint if $T = T^{adj}$.

Lemma. If we choose an orthonormal basis of V and construct the corresponding matrix for T, then T is self-adjoint if and only if $a_{ij} = \overline{a_{ji}}$.

Proof. Observe that $a_{ij} = \langle Te_i, e_j \rangle = \langle e_i, Te_j \rangle = \overline{a_{ji}}$.

Lemma. $(T_1T_2)^{adj} = T_2^{adj}T_1^{adj}$ and $(T^{adj})^{adj} = T$.

An isometry $T: V \to V$ is called *orthogonal* if $k = \mathbb{R}$ and *unitary* if $k = \mathbb{C}$.

Proposition. T is an isometry if and only if $T^{-1} = T^{adj}$.

Proof. T is an isometry iff

$$\langle u, v \rangle = \langle Tu, Tv \rangle = \langle T^{adj}T(u), v \rangle$$

for arbitrary v. Letting v range over an orthonormal basis implies $T^{adj}T = \mathrm{Id}$.

Proposition. ker $T = (\operatorname{Im} T^{adj})^{\perp}$.

 $\begin{array}{lll} \textit{Proof.} \ u \in \ker T \Leftrightarrow Tu = 0 \Leftrightarrow \langle Tu, v \rangle = 0 \ \forall v \Leftrightarrow \langle u, T^{adj}(v) \rangle = 0 \Leftrightarrow u \in (\operatorname{Im} T^{adj})^{\perp}. \end{array}$

Corollary. $\operatorname{Im}(T) = \ker(T^{adj})^{\perp}$.

The proof follows from the following lemma and $(T^{adj})^{adj} = T$.

Lemma. $(U^{\perp})^{\perp} = U$.

Proof. Since $U \oplus U^{\perp} \simeq V \simeq U^{\perp} \oplus (U^{\perp})^{\perp}$, the two spaces have equal dimension and $U \subset (U^{\perp})^{\perp}$ so we have equality.

Corollary. T is injective if and only if T^{adj} is surjective, and T is surjective if and only if T^{adj} is injective.

Definition. For $T: V \to V$, T is normal if $TT^{adj} = T^{adj}T$.

Theorem (Complex Spectral). Over \mathbb{C} , T is normal if and only if T admits an orthonormal basis of eigenvectors.

Proof. (\Leftarrow) Writing T in this basis, $T = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ and $T^{adj} = \operatorname{diag}(\bar{\lambda}_1, \ldots, \bar{\lambda}_n)$ commute.

 (\Rightarrow) Let V'_{λ} be a nonzero λ eigenspace. Then $T:V'_{\lambda}\to V'_{\lambda}$. Let $U=(V'_{\lambda})^{\perp}$. Claim: T sends U to itself. We have

$$U = (\ker(T - \lambda \operatorname{Id}))^{\perp} = \operatorname{Im}(T^{adj} - \bar{\lambda} \operatorname{Id})$$

In general, if S and T commute, then S preserves Im T. T^{adj} commutes with T, so T preserves Im $(T^{adj} - \bar{\lambda} \operatorname{Id})$.

Therefore we have decomposed T into $V = V'_{\lambda} \oplus U$. By induction, $V = \bigoplus V'_{\lambda}$ where V'_{λ} are all mutually orthogonal. Pick an orthonormal basis for each space.

Recall that $V_1 \xrightarrow{T} V_2$ induces the right composition map $T^*: V_2^* \to V_1^*$. The following diagram commutes:

$$V^* \xrightarrow{T^*} V^*$$

$$\uparrow \sim \qquad \uparrow \sim$$

$$\overline{V} \xrightarrow{T^{adj}} \overline{V}$$

30

12. Group representations

For a finite group G, a representation is a vector space V with $\rho: G \to GL(V) = \operatorname{Aut}(V)$ such that $\forall g \in G, T_q = \rho(g): V \to V$ and

$$T_{g_1g_2} = T_{g_1} \cdot T_{g_2} \qquad T_1 = \mathrm{Id}_V$$

Given $(V_1, \rho_1), (V_2, \rho_2), S \in \text{Hom}_G(V_1, V_2)$ if $\forall g, \rho_1(g) = T_g^1, \rho_2(g) = T_g^2$

$$V_1 \xrightarrow{S} V_2$$

$$\downarrow^{T_g^1} \qquad \downarrow^{T_g^2}$$

$$V_1 \xrightarrow{S} V_2$$

Unless stated otherwise, assume all representations are finite dimensional.

Example.

- (1) $(V_1 \oplus V_2, \rho_1 \oplus \rho_2)$
- (2) $V = k, \rho$ is trivial. $G \to \{ \mathrm{Id} \} \in \mathrm{Aut}(k,k)$
- (3) Consider $S \in \text{Hom}_G(k, V)$. Then

$$\begin{array}{ccc}
a & \longrightarrow & S(a) \\
\downarrow^g & & \downarrow^g \\
a & \longrightarrow & S(a) = gS(a)
\end{array}$$

Since $\operatorname{Hom}_G(k, V) \hookrightarrow \operatorname{Hom}_k(k, V) \simeq V$,

$$\operatorname{Hom}_G(k,V) \simeq \{v \in V \mid T_g(v) = v \ \forall g \in G\} := V^G$$

(4) Define a representation on $\operatorname{Hom}_k(V_1, V_2) \ni S$ by $g \cdot S := g \circ S \circ g^{-1}$.

$$V_1 \xrightarrow{\rho_1(g^{-1})} V_1 \xrightarrow{S} V_2 \xrightarrow{\rho_2(g)} V_2$$

Check that (g'g'')S = g'(g''S).

(5) $\operatorname{Hom}_{G}(V_{1}, V_{2}) = (\operatorname{Hom}_{k}(V_{1}, V_{2}))^{G}.$

$$\rho_2(g) \circ S = S \circ \rho_1(g) \ \forall g \Leftrightarrow \rho_2(g) \circ S \circ \rho_1(g^{-1}) = S \ \forall g$$

- (6) Define a representation on $\operatorname{Hom}_k(V,k) = V^* \ni \varphi$ by $(g \cdot \varphi)(v) = \varphi(g^{-1}v)$.
- (7) Define a representation on $V_1 \otimes V_2$ by $g(v_1 \otimes v_2) = gv_1 \otimes gv_2$. The canonical map $V_1^* \otimes V_2 \to \operatorname{Hom}_k(V_1, V_2)$ is actually a homomorphism of representations.

Given G, we construct the k-algebra $k[G] = \operatorname{span}\{\delta_g : g \in G\}$ (formal sum) so $\{\delta_g\}$ is a basis. Then define multiplication by

$$\left(\sum_{i} a_{i} \delta_{g_{i}}\right) \left(\sum_{j} b_{j} \delta_{g_{j}}\right) = \sum_{i,j} a_{i} b_{j} \delta_{g_{i}g_{j}}$$

In particular, $\delta_{g_1}\delta_{g_2}=\delta_{g_1g_2}$. We include $k\hookrightarrow k[G]$ by $a\mapsto a\cdot\delta_1$. This makes k[G] into a k-algebra.

Lemma. On a vector space V, TFAE:

- (1) action of G
- (2) action of k[G]

Proof.
$$(\Rightarrow) (\sum a_i \delta_{g_i})v := \sum a_i(g_i v)$$
. $(\Leftarrow) g \cdot v := \delta_q v$.

Let Fun(G) = set of all k-valued functions on G.

Lemma. $(k[G])^* = \operatorname{Fun}(G)$.

Proof. { Linear maps from $k[G] \to k$ } $\simeq \bigoplus k \delta_g$.

We can define a representation ℓ on $\operatorname{Fun}(G) \ni f$ by $(\ell(g) \cdot f)(g_1) = f(g^{-1}g_1)$:

$$(\ell(g'g'')f)(g_1) = f((g'')^{-1}(g')^{-1}g_1) = (\ell(g'')f)((g')^{-1}g_1) = (\ell(g')(\ell(g'')f))(g_1)$$

Proposition. Given a representation V, $\operatorname{Hom}_G(V, \operatorname{Fun}(G)) \simeq V^*$.

Proof. For $S:V\to \operatorname{Fun}(G)$, define $\varphi(v):=(S(v))(1)$. For $\varphi:V\to k$, define $(S(v))(g)=\varphi(g^{-1}v)$. To check S respects G-actions,

$$S(g_1v)(g) = \varphi(g^{-1}g_1v) = S(v)(g_1^{-1}g) = (\ell(g_1)S(v))(g)$$

To check we have isomorphism, $\varphi \to S \to \varphi'$ where $\varphi'(v) = (S(v))(1) = \varphi(v)$, and $S \to \varphi \to S'$ where $(S'(v))(g) = \varphi(g^{-1}v) = S(g^{-1}v)(1)$. Using the intertwining property of S, we have $S(g^{-1}v)(1) = (\ell(g^{-1})S(v))(1) = S(v)(g)$.

Suppose G is finite and we have a short exact sequence of representations

$$0 \to V_1 \to V \xrightarrow{\rho} V_2 \to 0$$

and V is fin. dim. There \exists splitting as vector spaces, but does there exist a splitting as representations? We must find $i: V_2 \to V$ st $\rho \circ i = \mathrm{Id}_{V_2}$, which gives $V = V_1 \oplus V_2$.

Theorem. A splitting always* exists.

Proof. Step 1: Let $v_2 \in V_2$ be invariant $(v \in V_2^G)$. We will show that $\exists v \in V^G$ and $\rho(v) = v_2$. Let $v' \in V$ be any vector st $\rho(v') = v_2$. Take

$$\tilde{v} := \sum_{g \in G} g \cdot v'$$
 $\rho(\tilde{v}) = \sum g v_2 = |G| v_2$

Define $Av_G: V \to V^G$ by $Av_G(v') := \frac{1}{|G|} \sum gv'$.

*(Theorem is true if characteristic of field $\nmid |G|$. In particular if field has characteristic 0.

Example. $k = \mathbb{F}_2$, $V = \operatorname{span}\{e_1, e_2\}$. $V \to k$ by $(ae_1, be_2) \mapsto a + b$.

Claim: $\nexists(a,b) \in V$ which is invariant and projects to 1. If we have action $\sigma(a,b) = (b,a)$, invariant duals are of the form (a,a). However 2a = 0 in \mathbb{F}_2 .)

Step 2: We know $\exists i: V_2 \to V$ in $\operatorname{Hom}_k(V_2, V)$. Now take $S = Av_G(i) \in \operatorname{Hom}_k(V_2, V)^G = \operatorname{Hom}_G(V_2, V)$. Then

$$\rho \circ S = \frac{1}{|G|} \sum \rho \circ g \circ i \circ g^{-1} = \frac{1}{|G|} \sum g \circ \operatorname{Id}_{V_2} \circ g^{-1} = \operatorname{Id}_{V_2}$$

Given a representation V and a vector space U (or equivalently treating U as trivial representation), we can define representation on $V \otimes U$ by $g(v \otimes u) = gv \otimes u$.

Lemma. $(V \otimes U)^G \simeq V^G \otimes U$.

Proof. The map $V^G \otimes U \to (V \otimes U)^G$ is clear. This map is an isomorphism because $U \simeq k^n$ so

$$V^G \otimes U \simeq V^G \oplus \cdots \oplus V^G \xrightarrow{\sim} (V \oplus \cdots \oplus V)^G \simeq (V \otimes U)^G$$

Lemma. For a vector space V, TFAE:

- (1) An action of $G_1 \times G_2$.
- (2) Action of G_1 and action of G_2 that commute $g_2(g_1v) = g_1(g_2v)$.

Proof. (\Leftarrow) Define $(g_1 \times g_2)v := g_1(g_2v)$.

$$(\Rightarrow)$$
 Define $g_1v := (g_1 \times 1)v$ and $g_2v := (1 \times g_2)v$. G_1, G_2 clearly commute.

Given G_1 -representation V_1 and G_2 -representation V_2 , we can define $G_1 \times G_2$ on $V_1 \otimes V_2$ by $(g_1 \times g_2)(v_1 \otimes v_2) = g_1 v_1 \otimes g_2 v_2$.

Lemma.
$$(V_1 \otimes V_2)^{G_1 \times G_2} \simeq V_1^{G_1} \otimes V_2^{G_2}$$
.

Proof. Method 1. Use the natural map $V_1^{G_1} \otimes V_2^{G_2} \to (V_1 \otimes V_2)^{G_1 \times G_2}$. We have from previous lemma that $W^{G_1 \times G_2} = (W^{G_1})^{G_2}$. Here $W = V_1 \otimes V_2$, so from the other lemma, $W^{G_1} = V_1^{G_1} \otimes V_2$ and $(V_1^{G_1} \otimes V_2)^{G_2} = V_1^{G_1} \otimes V_2^{G_2}$.

Method 2. Observe that for $U_1 \subset V_1, U_2 \subset V_2$,

$$(V_1 \otimes U_2) \cap (U_1 \otimes V_2) = U_1 \otimes U_2 \subset V_1 \otimes V_2$$

 $W^{G_1 \times G_2} = W^{G_1} \cap W^{G_2}$, so

$$(V_1 \otimes V_2)^{G_1 \times G_2} = (V^{G_1} \otimes V_2) \cap (V_1 \otimes V_2^{G_2}) = V_1^{G_1} \otimes V_2^{G_2}$$

Lemma. $\text{Hom}_{G_1 \times G_2}(V_1 \otimes V_2, V_1' \otimes V_2') \simeq \text{Hom}_{G_1}(V_1, V_1') \otimes \text{Hom}_{G_2}(V_2, V_2').$

Proof. Use the natural \leftarrow map. Lemma follows from

$$(\operatorname{Hom}_k(V_1 \otimes V_2, V_1' \otimes V_2'))^{G_1 \times G_2} \simeq (\operatorname{Hom}_k(V_1, V_1') \otimes \operatorname{Hom}_k(V_2, V_2'))^{G_1 \times G_2} \quad \blacksquare$$

Definition. A representation is called *irreducible* if it does not have a non-trivial sub-representation.

Lemma. V is irreducible if and only if $\forall v \in V$, span $\{gv \mid g \in g\} = V$.

Corollary. Assume G is finite and char(k) $\nmid |G|$. Every fin. dim. representation V of G is isomorphic to a direct sum $\bigoplus V_i$, where V_i are irreducible.

Proof. If V is reducible, $\exists V_1 \hookrightarrow V$ and we get the short exact sequence

$$0 \rightarrow V_1 \rightarrow V \rightarrow V/V_1 \rightarrow 0$$

A splitting exists, which implies $V = V_1 \oplus V/V_1$.

Lemma (Schur's Lemma). If V is irreducible and k is alg. closed, then $k \simeq End_G(V)$ (i.e., only scalar multiplication).

Counterexample. $k = \mathbb{R}$ not alg. closed, $V = \mathbb{R}^2 = \mathbb{C}$, $G = \mathbb{Z}/n\mathbb{Z}$. For $m \in G, c \in \mathbb{C}$, let $m \cdot c = \exp\left(\frac{2\pi i m}{n}\right)c$. If V is reducible, there must be c with $\dim \operatorname{span}\{m \cdot c\} = 1$ or $m \cdot c = rc$ for $r \in \mathbb{R}$, which cannot happen if $\exp\left(\frac{2\pi i m}{n}\right) \notin \mathbb{R}$. However there are $|\mathbb{C}|$ different endomorphisms.

Proof. Let $T \in End_G(V)$. Then $\exists \lambda \in k$ st eigenspace $V'_{\lambda} \neq \{0\}$. For $v \in V'_{\lambda}$, $\operatorname{span}\{gv\} = V$ and

$$Tgv = gTv = g\lambda v = \lambda gv$$

so T must be a scalar.

Assume G is finite, $char(k) \nmid |G|$, k alg. closed.

Corollary. For fin. dim. V,

(1) Every representation V of G can be written as $\bigoplus_{\pi} \pi \otimes U_{\pi}$ where π are distinct irreducible representations.

(2) If
$$V_1 \simeq \bigoplus \pi \otimes U_{\pi}^1$$
, $V_2 \simeq \bigoplus \pi \otimes U_{\pi}^2$, then $\operatorname{Hom}_G(V_1, V_2) = \bigoplus \operatorname{Hom}_k(U_{\pi}^1, U_{\pi}^2)$.

Proof. 1) Every representation can be written as $\bigoplus \pi$ where π may not be distinct. Grouping distinct irreducible representations together, we have

$$V = \underset{\pi}{\oplus} \pi^{\oplus n_{\pi}} = \underset{\pi}{\oplus} \pi \otimes k^{n_{\pi}}$$

so let $U_{\pi} = k^{n_{\pi}}$. Note that we also have $U_{\pi} = k^{n_{\pi}} = \text{Hom}_{G}(\pi, V)$.

2) We have

$$\operatorname{Hom}_G(\pi \otimes U, \pi' \otimes U') = \operatorname{Hom}_G(\pi, \pi') \otimes \operatorname{Hom}_k(U, U')$$

If $\pi \not\simeq \pi'$, $\operatorname{Hom}_G(\pi, \pi') = 0$. Otherwise $\operatorname{Hom}_G(\pi, \pi') = k$. $k \otimes \operatorname{Hom}_k(U, U') = \operatorname{Hom}_k(U, U')$. The result follows.

Corollary. V is irreducible if and only if $End_G(V)$ is one dimensional.

Proposition. Let V_1, V_2 be an irreducible representations of G_1, G_2 , respectively.

- (1) Then $V_1 \otimes V_2$ is irreducible as a representation of $G_1 \times G_2$.
- (2) Every irreducible representation of $G_1 \times G_2$ is of the form $V_1 \otimes V_2$.

Proof. 1) $End_{G_1 \times G_2}(V_1 \otimes V_2) = End_{G_1}(V_1) \otimes End_{G_2}(V_2) = k \otimes k = k$, so $V_1 \otimes V_2$ is also irreducible.

2) Let W be a representation of $G_1 \times G_2$. Look at W as a representation of only G_1 and decompose into $W = \bigoplus \pi_1 \otimes U_{\pi_1}$, $U_{\pi_1} = \operatorname{Hom}_G(\pi_1, W)$. Now if we consider W as representation of G_2 , $\pi_1 \stackrel{\sim}{\to} g_2(\pi_1)$ since G_2 commutes with G_1 . Therefore G_2 only acts on U_{π_1} . So W splits into $\bigoplus \pi_1 \otimes U_{\pi_1}$ where π_1 is G_1 -representation and U_{π_1} is G_2 -representation. The irreducibility of W then implies that there is only one direct summand $\pi_1 \otimes U_{\pi_1}$, and π_1, U_{π_1} are both irreducible.

Recall the representation $\operatorname{Fun}(G)$ of G with left action ${}^g f(g_1) = f(g^{-1}g_1)$. For a representation V of G, $\operatorname{Hom}_G(V,\operatorname{Fun}(G)) \simeq V^*$ by sending $\phi \mapsto \varphi$ where $\varphi(v) = \phi(v)(1)$. We define a right action of G by $f^g(g_1) = f(g_1g)$. Since

$$f((g_2^{-1}g)g_1) = f(g_2^{-1}(gg_1)) \Rightarrow g_2(f^{g_1}) = (g_2f)^{g_1}$$

the actions commute so $\operatorname{Fun}(G)$ is a representation of $G \times G = G_1 \times G_2$. Then as in PS 9 Problem 4, $\operatorname{Hom}_{G_1}(V', W')$ can be viewed as a G_2 representation. Therefore $\operatorname{Hom}_G(V, \operatorname{Fun}(G))$ is a representation of G by right action.

Proposition. The isomorphism $T: \operatorname{Hom}_G(V, \operatorname{Fun}(G)) \xrightarrow{\sim} V^*$ is compatible with G-actions.

Proof. Suppose $T(\phi) = \varphi$. Then

$$T(g \cdot \phi)(v) = [(g \cdot \phi)(v)](1) = [\phi(v)^g](1) = \phi(v)(g)$$
$$= [g^{-1}\phi(v)](1) = \phi(g^{-1}v)(1) = \varphi(g^{-1}v) = (g \cdot \varphi)(v)$$

so $T(g \cdot \phi) = g \cdot \varphi$.

Corollary. For G finite, $char(k) \nmid |G|$, k alg. closed,

$$G \times G \curvearrowright \operatorname{Fun}(G) \simeq \underset{\pi}{\oplus} \pi \otimes \pi^*$$

since $\operatorname{Hom}_G(\pi, \operatorname{Fun}(G)) \simeq \pi^*$.

We define a new action $G \curvearrowright \operatorname{Fun}(G)$ by $(\operatorname{Ad}_g(f))(g_1) = f(g^{-1}g_1g)$, which is the same as $G \to G \times G \curvearrowright \operatorname{Fun}(G)$ with left and right actions.

Definition. A function is called Ad-invariant if $Ad_g(f) = f \ \forall g$.

Let $G/\operatorname{Ad}(G)$ be the set of conjugacy classes of elements in G.

Lemma. A function $G \xrightarrow{f} k$ is Ad-invariant if and only if it factors as a function $G \xrightarrow{\pi} G/\operatorname{Ad}(G) \to k$ (its value on every conjugacy class is constant).

Corollary. The number of conjugacy classes equals number of pairwise non-isomorphic irreducible representations of G.

Proof. By defining functions equal to 1 on a single conjugacy classes and 0 elsewhere, we form a basis $(\operatorname{Fun}(G))^{\operatorname{Ad}(G)}$ so the number of conjugacy classes equals

$$\dim(\operatorname{Fun}(G))^{\operatorname{Ad}(G)} = \sum_{\pi} \dim(\pi \otimes \pi^*)^{\operatorname{Ad}(G)}$$

Since $\pi \otimes \pi^* \simeq \operatorname{Hom}_k(\pi, \pi)$,

$$(\pi \otimes \pi^*)^{\operatorname{Ad}(G)} = (End_k(\pi, \pi))^G = End_G(\pi, \pi) \simeq k$$

so $\sum \dim(\pi \otimes \pi^*)^{\mathrm{Ad}(G)}$ equals number of irreducible representations.

Since $\operatorname{Hom}_G(V,\operatorname{Fun}(G)) \simeq V^*$ and $V' \otimes \operatorname{Hom}_G(V',W) \to W$ (PS 9, Problem 4), we have $V \otimes \operatorname{Hom}_G(V,\operatorname{Fun}(G)) \to \operatorname{Fun}(G) \Rightarrow V \otimes V^* \stackrel{MC}{\to} \operatorname{Fun}(G)$. This map is the "matrix coefficient" map.

Lemma. $MC(v \otimes \xi)(g) = \xi(g^{-1}v)$.

Proof. $\xi \in V^*$ corresponds to $\Xi \in \operatorname{Hom}_G(V, \operatorname{Fun}(G))$ where $\Xi(v)(g) = \xi(g^{-1}v)$, so $MC(v \otimes \xi) = \Xi(v)$ and the lemma follows.

We can define the bilinear map $B: V \otimes V^*, End(V) \to k$ by

$$B(v \otimes \xi, T) = \langle T(v), \xi \rangle := \xi(T(v))$$

so $MC_V(v \otimes \xi) = B(v \otimes \xi, g^{-1})$. Note that $V \otimes V^* \simeq End_k(V) \ni \mathrm{Id}_V$, and $MC(\mathrm{Id}_V)(g) = \mathrm{Tr}(g^{-1}, V)$ by PS 9. We also have

$$MC_{V\otimes W}((v\otimes w)\otimes(\xi\otimes\psi))=MC_V(v\otimes\xi)\cdot MC_W(w\otimes\psi)$$

which implies $\operatorname{Tr}_{V \otimes W} = \operatorname{Tr}_{V} \cdot \operatorname{Tr}_{W}$ for $\operatorname{Tr}_{V} = MC(\operatorname{Id}_{V})$.

Corollary. (Fun(G))^{Ad(G)} = span(Tr(·, π)). Traces of irreducible representations form a basis of the set of invariant functions.

Proof. Observe that $\operatorname{Fun}(G) \simeq \underset{\pi}{\oplus} \pi \otimes \pi^*$ as $G \times G$ representations, and

$$\pi \otimes \pi^* \stackrel{MC}{\to} \operatorname{Fun}(G)$$

is the inclusion map. Using Schur's Lemma,

$$(\operatorname{Fun}(G))^{\operatorname{Ad}(G)} \simeq \underset{\pi}{\oplus} (\pi \otimes \pi^*)^G \simeq \underset{\pi}{\oplus} (End_k(\pi, \pi))^G$$
$$= \underset{\pi}{\oplus} End_G(\pi, \pi) = \underset{\pi}{\oplus} \operatorname{span}(\operatorname{Id}_{\pi})$$

So $MC(\mathrm{Id}_{\pi}) = \mathrm{Tr}(\cdot, \pi)$ span $(\mathrm{Fun}(G))^{\mathrm{Ad}(G)}$. Since $\dim(\mathrm{Fun}(G))^{\mathrm{Ad}(G)}$ equals the number of irreducible representations, this forms a basis.

For
$$f_1, f_2 \in \text{Fun}(G)^{\text{Ad}(G)}$$
, define $(f_1, f_2) := \frac{1}{|G|} \sum_g f_1(g) \cdot f_2(g^{-1})$. $k = \mathbb{C}$

Lemma. $f(g^{-1}) = \overline{f(g)}$ for $f \in \operatorname{Fun}(G)^{\operatorname{Ad}(G)}$.

Proof. $Tr(g,V) = \overline{Tr(g^{-1},V)}$ by PS 10, Problem 7, and f is a sum of traces.

Therefore $(f_1, f_2) = \frac{1}{|G|} \sum f_1(g) \overline{f_2(g)}$.

Theorem.
$$(\operatorname{Tr}_{\pi_1}, \operatorname{Tr}_{\pi_2}) = \begin{cases} 0 & \pi_1 \not\simeq \pi_2 \\ 1 & \pi_1 \simeq \pi_2 \end{cases}$$

Proof. From PS 10, Problem 5, $Tr(g^{-1}, \pi_2) = Tr(g, \pi_2^*)$ so

$$(\operatorname{Tr}_{\pi_1}, \operatorname{Tr}_{\pi_2}) = \frac{1}{|G|} \sum \operatorname{Tr}(g, \pi_1) \cdot \operatorname{Tr}(g^{-1}, \pi_2) = \frac{1}{|G|} \sum \operatorname{Tr}(g, \pi_1) \cdot \operatorname{Tr}(g, \pi_2^*)$$
$$= \frac{1}{|G|} \sum \operatorname{Tr}(g, \pi_1 \otimes \pi_2^*)$$

Theorem. $\frac{1}{|G|} \sum \text{Tr}(g, W) = \text{dim}(W^G)$.

Proof. We have $B: W \otimes W^*, End(W) \to k$ defined by $B(w \otimes \xi, T) = \langle T(w), \xi \rangle$. Now define a map $W \otimes W^* \to k$ by sending $w \otimes \xi$ to

$$B(w \otimes \xi, Av_G) = \frac{1}{|G|} \sum_C B(w \otimes \xi, g^{-1}) = \frac{1}{|G|} \sum_C MC_W(w \otimes \xi)(g)$$

so $\operatorname{Tr}(Av_G) = B(\operatorname{Id}_W, Av_G) = \frac{1}{|G|} \sum \operatorname{Tr}(g^{-1}, W)$ is the desired value. We can decompose $W = \operatorname{Im}(Av_G) \oplus \ker(Av_G)$ where $\operatorname{Im}(Av_G) = W^G$. Av_G vanishes on kernel and is identity on image, so $Tr(Av_G) = \dim(\operatorname{Im} Av_G) = \dim(W^G)$.

The previous theorem implies that

$$(\operatorname{Tr}_{\pi_1}, \operatorname{Tr}_{\pi_2}) = \dim((\pi_1 \otimes \pi_2^*)^G) = \dim \operatorname{Hom}_G(\pi_2, \pi_1)$$

so we are done by Schur's lemma.

Next we would like to classify all representations of S_n . We know that $|Irr(S_n)| =$ $|S_n/\operatorname{Ad}(S_n)|$, the number of conjugacy classes in S_n , which corresponds to the partitions of n. A partition p of n is of the form $n = n_1 + n_2 + \cdots + n_k$ where $n_i \ge n_{i+1}$. Map $p \mapsto S_p \subseteq S_n$, where $S_p = S_{n_1} \times \cdots \times S_{n_k}$ is the subgroup of all permutations that preserve the "chunks" defined by the partition. If we represent p with bars of height n_i , then $p \mapsto \bar{p}$ by inverting the diagram. Clearly $\bar{p} = p$. We say $p \leq q$ if we can roll blocks down from p to get q. More formally, $p \leq q$ if $\forall k$, the number of

squares below line k in p is \leq the number of squares below line k in q. Using the definition of $\operatorname{Ind}_H^G(U)$ from PS 10, we consider $\operatorname{Ind}_{S_p}^{S_n}(k)$ and $\operatorname{Ind}_{S_{\bar{p}}}^{S_n}(sign)$ where sign is a S_n representation on k given by multiplication by the sign of each factor.

Theorem.

- (1) $\operatorname{Hom}_{S_n}(\operatorname{Ind}_{S_p}^{S_n}(k), \operatorname{Ind}_{S_{\bar{q}}}^{S_n}(sign)) \neq 0$ only if $p \leq q$. (2) $\operatorname{Hom}_{S_n}(\operatorname{Ind}_{S_p}^{S_n}(k), \operatorname{Ind}_{S_{\bar{p}}}^{S_n}(sign))$ is 1 dimensional.

Proof will be given later.

Let π_p be the image of a non-zero map $\operatorname{Ind}_{S_n}^{S_n}(k) \to \operatorname{Ind}_{S_{\bar{n}}}^{S_n}(sign)$.

Proposition. π_p is irreducible.

Proof. By (b) of the previous theorem, there is only one map so if π_p is reducible then we can define another map by projecting onto the sub-representation.

Proposition. $p_1 \leq p_2$ and $\bar{p}_1 \leq \bar{p}_2 \Rightarrow p_1 = p_2$.

Proposition. $p_1 \neq p_2 \Rightarrow \pi_{p_1} \not\simeq \pi_{p_2}$.

Proof. Suppose $\pi_{p_1} \simeq \pi_{p_2}$. We have from definition that

$$\operatorname{Ind}_{S_{p_1}}^{S_n}(k) \twoheadrightarrow \pi_{p_1} \quad \text{and} \quad \pi_{p_2} \hookrightarrow \operatorname{Ind}_{S_{\bar{p}_2}}^{S_n}(sign)$$

are nonzero maps. Since $\pi_{p_1} \simeq \pi_{p_2}$, we can compose to get a nonzero map $\operatorname{Ind}_{S_{p_1}}^{S_n}(k) \to \operatorname{Ind}_{S_{\bar{p}_2}}^{S_n}(sign)$. Then by (a) of the previous theorem, $p_1 \leq p_2$. By symmetry, $p_2 \leq p_1$ so $p_1 = p_2$.

Proposition. The π_p exhaust all irreducible representations of S_n .

Proof. The sets have the same cardinality.

Corollary. π_p is the only constituent of $\operatorname{Ind}_{S_p}^{S_n}(k)$ that does not appear as a constituent of $\operatorname{Ind}_{S_q}^{S_n}(k)$ for q > p.