UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

SÃO TOTALMENTE VÁLIDAS ALGUMAS DAS CONSIDERAÇÕES SOBRE A CORRELAÇÃO DE PEARSON PRESENTES NA LITERATURA?

Relatório do primeiro laboratório de MC920

Aluno: Carlos Eduardo Machado RA: 059582
Aluno: Tiago Chedraoui Silva RA: 082941
Aluno: William Marques Dias RA: 065106

Resumo

O coeficiente de correlação de Pearson é amplamente usado para comparar imagens, contudo ele apresenta sérias limitações. Esse trabalho consistiu na validação da análise realizada no Artigo "The Ineffectiveness of the Correlation Coefficient for Image Comparisons".

Sumário

1	Intr	odução		1		
2	Mét	odos		1		
3 Comparação de imagens						
	3.1	Figura	s do artigo	2		
	3.2	Sobrep	osição de imagem	3		
	3.3 Remoção de objeto		4			
	3.4	Detecç	ão de movimento	5		
		3.4.1	Abertura de uma porta	5		
		3.4.2	Passagem de uma pessoa	6		
	3.5	Fator I	uminosidade	8		
4	Resu	ıltados		9		
5	Con	clusão		10		

1 Introdução

O coeficiente de correlação de Pearson é amplamente utilizado na análise estatística, reconhecimento de padrões e processamento de imagens. Na área de processamento de imagens ele é utilizado na comparação de duas imagens para fins de registro de imagens, reconhecimento de objetos, e medição disparidade. Para imagens digitais monocromáticas, a correlação de Pearson é definido como :

$$r = \frac{\sum_{i} (x_i - \bar{x})(y_i - \bar{y})}{\left[\sum_{i} (x_i - \bar{x})^2 \sum_{i} (y_i - \bar{y})^2\right]^{1/2}}$$
(1)

Onde x_i é a intensidade dos pixels na imagem 1, y_i é a intensidade dos pixels na imagem 2, \bar{x} é a intensidade média da imagem 1 e \bar{y} é a intensidade média da imagem 2.

O coeficiente tem valor r = 1 se as duas imagens são absolutamente idênticas, r = 0 se são totalmente não correlacionadas e r = -1 se elas são totalmente anti-correlacionadas, por exemplo se uma imagem é o negativo da outra.

O coeficiente de Pearson pode ser utilizado em aplicações de segurança, como, por exemplo, vigilância. Normalmente, o coeficiente de relação é usado para comparar duas imagens do mesmo objeto ou cena durante vários momentos diferentes.

Não obstante à sua utilização, o coeficiente de correlação possui diversas limitações, sendo considerado ineficaz em alguns papers.

Assim, o objetivo deste trabalho é apresentar, através de exemplos, o desempenho do coeficiente para comparações de imagens, especialmente em aplicações de segurança e, posteriormente, compará-las às considerações existentes na literatura.

O paper é organizado como segue: a seção 2 apresenta os métodos usados para analisar a eficiência do coeficiente de correlação, a seção 3 contém os testes realizados para a obtenção de dados, a seção 4 contém uma análise dos dados coletados, a seção 5 conclui o paper destacando os principais resultados.

2 Métodos

Desenvolveu-se em python [2] dois programas de análise de imagens baseado no coeficiente de correlação de Pearson. Para o primeiro, dado duas imagens para analisar duas imagens, sendo a imagem original dada por x e a imagem modificada por y na equação (1), retorna-se o valor de r.

Inicialmente, para a análise do coeficiente, utilizou-se algumas imagens previamente analisadas no artigo "The Ineffectiveness of the Correlation Coefficient for Image Comparisons" através do qual pretendíamos confirmar os resultados obtidos.

Posteriormente, procurou-se alterar outra imagem com a sobreposição de outra imagem. Alterou-se algumas características da imagem sobreposta, como por exemplo, a posição, a opacidade, para analisar os efeitos no cálculo do coeficiente produzidos por tais modificações.

Já o segundo programa simula uma câmera de vigilância, calculando o coeficiente em tempo real usando a webcam. Fez-se testes de iluminação, movimentação e remoção de objetos.

A seguir são descritos todos os testes realizados para a avaliação do coeficiente.

3 Comparação de imagens

Para a comparação de imagens através do coeficiente, foram realizados diferentes testes . As seções a seguir apresentam as variações dos testes: utilização das mesmas figuras do artigo ´The Ineffectiveness of the Correlation Coefficient for Image Comparisons', sobreposição de imagem, remoção de objetos, detecção de movimentos e alteração de luminosidade.

3.1 Figuras do artigo

Utilizando as figuras 1a e 1b usados no artigo "The Ineffectiveness of the Correlation Coefficient for Image Comparisons", na qual há uma simples sobreposição de uma palavra sobre a imagem, obtemos um valor de r de aproximadamente 0.89, enquanto no artigo o valor de r obtido vale 0.94.

Figura 1: Comparação entre uma imagem original e outra com sobreposição de palavra

Para as imagens 2a e 2b, na qual retira-se um clips da imagem original, obteu-se um valor de $r \approx 0.90$ enquanto no artigo $r \approx 0.98$.

Figura 2: Comparação entre imagem com um objeto e outra sem esse objeto

Os valores calculados em ambos os casos diferem consideravelmente, pois não utilizou-se as imagens originais em nossas avaliações, logo no processo de conversão das imagens do artigo houve perda de informação o que pode ter causado tal diferença nos valores.

3.2 Sobreposição de imagem

Para a imagem original 3.2, houve uma sobreposição da palavra "CTW" na imagem 4a e na imagem 4b, porém em posição diferente. Obteve-se para a imagem 4a um valor de $r \approx 0.99$ se comparado à original e para a imagem 4b um valor de $r \approx 0.98$.

Figura 3: Figura original a ser comparada

Figura 4: Comparação entre a foto original e duas fotos compostas pela sobreposição de uma palavra à imagem original

Para a imagem original 3.2, a imagem de Lena foi sobreposta nas imagens 5a e 5b, sendo a primeira mais transparente. Se comparadas à imagem original as imagens 5a e 5b apresentam, respectivamente, $r \approx 0.93$ e $r \approx 0.90$.

(a) Sobreposição da foto de Lena com grau de transparência maior

(b) Sobreposição da foto de Lena com grau de transparência menor

Figura 5: Comparação entre a imagem original e duas imagens compostas pela sobreposição de uma outra imagem à imagem original

3.3 Remoção de objeto

Para a análise da remoção de um objeto da imagem, utilizou-se uma sequência de imagens fotografadas a cada 10 frames durante as quais é retirada um livro de uma estante de livro. Para isso foi utilizado um programa em python desenvolvido. A figura 7a é muito semelhante à imagem original, nas figuras posteriores fez-se o movimento para a retirada do livro da imagem, que é concluída na imagem 8b. Os valores de r podem ser vistos na tabela I.

Figura 6: Remoção de item: figura original a ser comparada

(b) Número de frames que se passaram: 10

Figura 7: Comparação entre a imagem original: frames 0 e 10

(a) Número de frames que se passaram: 20

(b) Livro retirado: frames passados = 30

Figura 8: Comparação entre a imagem original: frames 20 e 30

Tabela I: Valor do coeficiente de Pearson para as várias imagens de remoção de um livro da estante

Figura original	Figura modificada	r
6	7a	0.999600
6	7b	0.917454
6	8a	0.952869
6	8b	0.983264

3.4 Detecção de movimento

As comparações a seguir foram feitas para analisar a movimentação de uma cena, como, por exemplo, em câmeras de vigilância. Ou seja, foi realizada uma comparação entre uma sequência de imagens.

3.4.1 Abertura de uma porta

As imagens abaixo são uma sequência de imagens da abertura de uma porta.

Figura 9: Detecção de movimento de um objeto da imagem: figura original a ser comparada

(a) Número de frames que se passaram: 0

(b) Número de frames que se passaram: 10

Figura 10: Comparação entre a imagem original: frames 0 e 10

(a) Imagem em t=20s

(b) Porta aberta: frames ocorridos: 30

Figura 11: Comparação entre a imagem original: frames 20 e 30

(a) Imagem em t=40s

(b) Imagem em t=50s

Figura 12: Comparação entre a imagem original: tempos 40s e 50s

Tabela II: Valor do coeficiente de Pearson para sequência de imagens de abertura de um porta

T'	E' 1'C 1.	
Figura original	Figura modificada	r
9	10a	0.996326
9	10b	0.995717
9	11a	0.952222
9	11b	0.862955
9	12a	0.798436
9	12b	0.818334

3.4.2 Passagem de uma pessoa

Para um outro teste dinâmico, obteve-se as sequências de imagens da passagem de uma pessoa.

Figura 13: Detecção de movimento de uma pessoa: figura original a ser comparada

(a) Número de frames que se passaram: 0

(b) Número de frames que se passaram: 10

Figura 14: Comparação entre a imagem original: frames 0 e 10

(a) Número de frames que se passaram: 20

(b) Número de frames que se passaram:30

Figura 15: Comparação entre a imagem original: frames 20 e 30

Tabela III: Valor do coeficiente de Pearson para sequência de imagens da passagem de uma pessoa

Figura original	Figura modificada	r
13	14a	0.999314
13	14b	0.972234
13	15a	0.971343
13	15b	0.986933

3.5 Fator Luminosidade

Para um outro teste dinâmico, obteve-se as sequências de imagens para a iluminação do local.

Figura 16: Alteração na iluminação do ambiente: figura original a ser comparada

(a) Número de frames que se passaram: 0

(b) Número de frames que se passaram: 10

Figura 17: Comparação entre a imagem original: frames 0 e 10

(a) Número de frames que se passaram: 20

(b) Número de frames que se passaram: 30

Figura 18: Comparação entre a imagem original: frames 20 e 30

(b) Número de frames que se passaram: 50

Figura 19: Comparação entre a imagem original: frames 40 e 50

Tabela IV: Valor do coeficiente de Pearson para sequência de imagens de iluminação do local

Figura original	Figura modificada	r
16	17a	0.997034
16	17b	0.942520
16	18a	0.940545
16	18b	0.933452
16	19a	0.975879
16	19b	0.976802

4 Resultados

Agrupando os resultados na tabela 4 percebe-se que o coeficiente de correlação de Pearson é realmente ineficaz, já que a comparação cujo coeficiente foi o menor é próximo a $r \approx 0.8$, referente ao teste teste de movimentação no qual existiu a abertura de uma porta.

A sobreposição de imagens pouco modificou o valor do coeficiente, sendo que a sobreposição de um texto é literalmente imperceptível enquanto a sobreposição de uma imagem só começa a ser perceptível se sua transparência é mínima. Mesmo assim a alteração do coeficiente não passa de 10%.

A remoção de um objeto da figura, em nosso caso a remoção de um livro na prateleira, só teve uma variação próxima a 8% no momento em que o braço de uma pessoa apareceu na imagem. Contudo, quando somente o livro sumiu o valor de *r* é próximo a 98% o que implica na não percepção de uma mudança simples.

Na seção de detecção de movimento, a passagem de uma pessoa também apresenta baixa mudança no valor do coeficiente ($r \approx 0.97$), apenas mudanças bruscas de mudança no ambiente como a abertura de uma porta causaram impacto maior no valor do coeficiente.

Por fim, a iluminação do ambiente provocou mudanças diferentes a cada tempo. Ao ligar a luz do local, os valores dos coeficientes em imagens em sequência, se comparadas à imagem original, chegou a $r \approx 0.94$. Já a abertura de uma geladeira apesar de além de iluminar alterar uma grande área da figura, o valor de r aproxima-se de $r \approx 0.97$, aparentando grande semelhança à imagem original.

Tabela V: Valor do coeficiente de Pearson para todos as comparações

Figura original	Figura modificada	r
1a	1b	0.887291
2a	2b	0.907154
3	4a	0.994465
3	4b	0.985331
3	5a	0.936883
3	5b	0.905874
6	7a	0.999600
6	7b	0.917454
6	8a	0.952869
6	8b	0.983264
9	10a	0.996326
9	10b	0.995717
9	11a	0.952222
9	11b	0.862955
9	12a	0.798436
9	12b	0.818334
13	14a	0.999314
13	14b	0.972234
13	15a	0.971343
13	15b	0.986933
16	17a	0.997034
16	17b	0.942520
16	18a	0.940545
16	18b	0.933452
16	19a	0.975879
16	19b	0.976802

5 Conclusão

Utilizamos o coeficiente de correlação de Pearson como método de comparação de imagens. Foram feitas diversas comparações de forma a obter-se uma gama de resultados suficientes para a análise do coeficiente.

Os valores obtidos demonstram que o cálculo do coeficiente é extremamente limitado, pois em situações como a passagem de uma pessoa por um local ou a retirada de um objeto o valor de r é próximo a 1. O que significa uma alta semelhança entre as imagens. O que não é verdade. Logo, para sistemas de vigilância o coeficiente de correlação de Pearson é uma técnica sem os efeitos esperados.

Além disso, a escolha de um limite no coeficiente pra detectar "situação de perigo" é empírico e depende muito da localidade. E mesmo assim, a escolha de um valor bom é muito difícil. Por exemplo, nos testes de movimentação o valor de r seria $r \approx 0.97$, contudo pelos testes de iluminação percebe-se o valor de r depende dela. Ou seja, para uma situação de dia o valor do limite de r deveria ser um enquanto para a mesma situação de noite esse valor possivelmente seria outro.

Assim, através dos testes realizados, o coeficiente de correlação de Pearson, assim como em outras avaliações na literatura, demonstrou-se inefetivo. Portanto, os resultados corroboram o artigo de Eugene K. Yen e Roger G. Johnston.

Referências

- [1] Eugene K. Yen e Roger G. Johnston *The Ineffectiveness of the Correlation Coefficient for Image Comparisons*. Disponível em http://www.ic.unicamp.br/neucimar/cursos/MO443/2011-s01/tp1/artigo1.pdf, [Último acesso: 26/03/2011].
- [2] Python Programming Language Official Website. Disponível em http://www.python.org/.