

大数据分析技术

Chap. 10 Basic concept

王怡洋 副教授 大连海事大学 信息科学技术学院

内容提纲

Chap. 10.1 What is data science?

Chap. 10.2 Data analysis in "Practice"

Chap. 10.3 Descriptive Statistics

Chap. 10.4 First look of linear regression

Chap. 10.5 How's the results?

Chap. 10.6 Where does the error come from?

Chap. 10.7 Performance measurements

注:该ppt请不要传播,◎。

10.1 What is data science?

- Collecting data from a wide variety of sources and putting them into a consistent format?
- Making observations about patterns in data?
- Visualizing trends in data?
- Making predictions about the tendency in the future?
- Identifying similarities between data points?
- Developing new machine learning and data mining algorithms?
- Accelerating algorithms?

10.2 Data analysis in "Practice"

Data of Vessel "Pacific Vision"

Buta of Vesser Telegre Vision																			
C	D	E	F	G		H I	J	K	L	M	N	0	P	Q	R	S	T	U	
1 POSITION (LON)	POSITION(LAT)	COG	HDG	SOG	TRUE WIN			WAVE(°)	WAVE (M)	SWELL(°)	SWELL (M)	SEAS (M)	CURRENT(°)	CURRENT (KN)		TIME (HOURS)	SPEED (KN)	DRAUGHT (M)	
2 029° 39.07W	08° 56.41S		126	10.8	291.9	6.04	6.65	111.0	0.68	94.5	1.68	1.8	180.0	0.23	1.91	0.17	11.22	23.1	
3 029° 37.58W	08° 57.56S		127	10.8	291.9	6.04	6.65	111.0	0.68	94.5	1.68	1.8	180.0	0.23	1.88	0.17	11.04	23.1	
4 029° 35.76W	08° 58.99S		127	10.8	291.9	6.04	6.4	114.0	0.6	96.0	1.72	1.8	180.0	0.23	2.29	0.21	10.92	23.1	
5 029° 32.92W	09° 01.20S		127	10.7	291.9	6.04	6.4	114.0	0.6	96.0	1.72	1.8	198.4	0.25	3.57	0.33	10.83	23.1	
6 029° 31.18W	09° 02.54S		127	10.8	291.9	6.04	6.4	114.0	0.6	96.0	1.72	1.8	198.4	0.25	2.19	0.2	10.93	23.1	
7 029° 29.66W	09° 03.72S		127	10.6	290.9	6.31	6.7	114.0	0.6	96.0	1.72	1.8	198.4	0.25	1.91	0.17	11.23	23.1	
8 029° 28.10W	09° 04.91S		127	10.7	290.9	6.31	6. 7	114.0	0.6	96.0	1.72	1.8	213.7	0.28	1.95	0.18	10.83	23.1	
9 029° 26.59W	09° 06.06S		127	10.7	290.9	6.31	6. 7	114.0	0.6	96.0	1.72	1.8	213.7	0.28	1.88	0.17	11.08	23.1	
10 029° 25.09W	09° 07.22S		127	10.7	290.9	6.31	6. 7	114.0	0.6	96.0	1.72	1.8	213.7	0.28	1.88	0.17	11.07	23.1	
11 029° 23.24W	09° 08.69S		127	10.6	288.7	6.23	6.5	108.0	0.48	97.5	1.72	1.8	198.4	0.25	2.35	0.22	10.67	23.1	
12 029° 21.71W	09° 09.90S		127	10.5	288.6	6.44	6. 75	109.5	0.48	99.0	1.72	1.8	198.4	0.25	1.94	0.18	10.78	23.1	
13 029° 20.32W	09° 11.02S		127	10.5	288.6	6.44	6.75	109.5	0.48	99.0	1.72	1.8	198.4	0.25	1.77	0.16	11.06	23.1	
14 029° 18.79W	09° 12.24S		127	10.5	288.6	6.44	6.75	109.5	0.48	99.0	1.72	1.8	198. 4	0.25	1.94	0.18	10.78	23.1	
15 029° 17.10W	09° 13.61S		126	10.6	288.6	6.44	6. 75	109.5	0.48	99.0	1.72	1.8	198.4	0.25	2.16	0.2	10.81	23.1	
16 029° 15.64W	09° 14.77S		127	10.7	288.6	6.44	6. 75	109.5	0.48	99.0	1.72	1.8	198.4	0.25	1.85	0.17	10.91	23.1	
17 029° 14.17W	09° 15.91S		125	10.6	288.6	6.44	6.75	109.5	0.48	99.0	1.72	1.8	198.4	0.25	1.84	0.17	10.84	23.1	
18 029° 12.59W	09° 17.08S		125	10.7	287.9	6. 67	7.0	103.5	0.4	94.5	1.7	1.74	270.0	0.31	1.95	0.18	10.85	23.1	
19 029° 11.14W	09° 18.18S		125	10.6	287.9	6. 67	7.0	103.5	0.4	94.5	1.7	1.74	270.0	0.31	1.81	0.16	11.32	23.1	
20 029° 09.60W	09° 19.27S		123	10.6	287.9	6. 67	7.0	103.5	0.4	94.5	1.7	1.74	270.0	0.31	1.87	0.17	11.02	23.1	
21 029° 08.04W	09° 20.39S		123	10.7	287.9	6. 67	7.0	103.5	0.4	94.5	1.7	1.74	219.8	0.3	1.9	0.17	11.2	23.1	
22 029° 06.52W	09° 21.52S		125	10.7	288.7	6.39	7.0	109.5	0.5	94.5	1.7	1.74	219.8	0.3	1.88	0.17	11.08	23.1	
23 029° 02.65W	09° 24.43S		124	10.7	288.0	6. 47	7. 15	112.5	0.36	94.5	1.7	1.74	219.8	0.3	4.8	0.44	10.91	23.1	
24 029° 00.99W	09° 25.69S	127.1	125	10.7	288.0	6.47	7.15	112.5	0.36	94.5	1.7	1.74	219.8	0.3	2.07	0.19	10.91	23.1	
25 028° 59.38W	09° 26.91S		126	10.7	288.0	6.47	7. 15	112.5	0.36	94.5	1.7	1.74	219.8	0.3	2.0	0.18	11.12	23.1	
26 028° 57.85W	09° 28.08S		126	10.7	288.0	6.47	7. 15	112.5	0.36	94.5	1.7	1.74	219.8	0.3	1.91	0.17	11.23	23.1	
27 028° 56.27W	09° 29.28S		126	10.6	288.6	6. 91	7.35	112.5	0.36	94.5	1.7	1.74	219.8	0.3	1.97	0.18	10.92	23.1	
28 028° 54.75W	09° 30.45S		127	10.6	288.6	6. 91	7.35	112.5	0.36	94.5	1.7	1.74	219.8	0.3	1.91	0.17	11.24	23.1	
29 028° 51.03W	09° 33.28S		127	10.4	289.2	6. 67	7.35	118.5	0.36	96.0	1.7	1.74	219.8	0.3	4.64	0.43	10.79	23.1	
30 028° 49.63W	09° 34.37S		128	10.5	289.2	6. 67	7.35	118.5	0.36	96.0	1.7	1.74	219.8	0.3	1.76	0.16	10.99	23.1	
31 028° 48.00W	09° 35.62S		128	10.4	289.7	6.69	7. 15	124.5	0.7	82.5	1.58	1.7	213.7	0.28	2.04	0.19	10.72	23.1	
32 028° 46.41W	09° 36.82S		128	10.4	289.7	6.69	7.15	124.5	0.7	82.5	1.58	1.7	213.7	0.28	1.98	0.18	10.99	23.1	
33 028° 44.92W	09° 37.95S		128	10.5	289.7	6.69	6.95	126.0		84.0	1.58	1.7	213.7	0.28	1.86	0.17	10.93	23.1	
34 028° 43.46W	09° 39.06S		128 128	10.4 10.5	289. 7 289. 7	6. 69 6. 69	6.95 6.95	126.0 126.0	0.6	84.0 84.0	1.58	1.7	213.7 213.7	0.28 0.28	1.82	0.17	10.7	23. 1 23. 1	
35 028° 42.01W 36 028° 40.57W	09° 40.18S	127.9 127.1	128		289.7		6.95	126.0	0.6	84.0	1.58 1.58	1.7	213.7	0.28	1.82 1.8	0.17 0.16	10.69 11.23	23.1	-H
37 028° 39.06W	09° 41.28S		128	10.6	289.7	6.69			0.6	84.0		1.7	213.7		1.8	0.16		23.1	-H
38 028° 37.57W	09° 42.41S 09° 43.53S		128	10.6 10.6	289.8	6. 64 6. 64	7.15 7.15	126.0 126.0	0.6	84.0	1.58 1.58	1.7	213.7	0.28 0.28	1.87	0.17	11.0 10.85	23.1	
	09° 43.535		128	10.6	289.8	6.64	7.15	126.0	0.6	84.0	1.58	1.7	213.7	0.28	2.01	0.17	11.19	23.1	
39 028° 35.95W 40 028° 34.45W			128	10.6	289.8	6.64	7.15	127.5	0.6	87.0	1.58	1.7	213.7	0.28	1.87	0.18	11.19	23.1	
	09° 45.90S		129	10.6	289.8	6.64	7.15	127.5	0.6	87.0	1.58	1. 7	213.7	0.28	1.87	0.17	10.78	23.1	
41 028° 32.99W	09° 47.04S		128	10.6	289.8	5. 54 7. 19	7.15	127.5	0.6	87.0	1.58		213.7	0.28	2.39	0.17	10.78	23.1	-
42 028° 31.09W	09° 48.52S		129	10.7	287.8	7. 19 7. 19	7.5	127.5	0.6	87.0	1.58	1.7	213.7	0.28	2.39	0.22	11.09	23.1	-
43 028° 29.51W 44 028° 28.00W	09° 49.76S		129		287.8	7. 19	7.5	127.5	0.6	87.0		1. 7	213.7	0.28	1.9	0.18	11. 09	23.1	-
	09° 50.94S		129	10.8	287.8	7. 19	7.5		0.6	87. U 87. O	1.58 1.58	1.7		0.28	2.04			23.1	
45 028° 26.37W 46 028° 24.64W	09° 52.19S	128.0 127.6	128	10.8	287.8	7. 19 6. 91	7.35	127.5 127.5	0.6	87. U 87. O	1.58	1. 7	213.7 213.7	0.28	2.04	0.18 0.19	11.34 11.28	23.1	
46 028° 24.64W 47 028° 22.29W	09° 53.49S 09° 55.29S		128	10.8	288.6	7.1	7.4	120.0	0.5	87. U 85. 5	1.58	1.64	213.7	0.28	2.14	0.19	10.89	23.1	
47 U28 22.29W	09 00.295		128	10.7	290.0 200.6	7. 1 7. 1	7. 4 7. A	120.0	0.76	80.0 85.5	1.54	1.08	239.U 530 N	0.23	2.94 2.06	0.27 n 10	10.89	23. I 23. 1	
	019-05 2019-06	2019-07				2019-10 2019-11				020-04 2020-05			2020-08						

• What might we want to learn about them?

10.2.1 Descriptive Statistics

- What is the mean SOG of these data of *the whole/each voyage/each day*?
- How far are the data (whole, voyage, day) spread out from their average mean?
- What is the distribution of each metocean factor (whole, voyage, day)?
- Does there exist correlation among these variables?
- •

10.2.2 Reasoning about data

- How does the mean SOG (whole, voyage, day) compare to the service speed? Is it higher or lower?
- Does there exists relation with the metocean conditions?
- Where does the variance of data come from?
- Anything to say about the metocean distribution?
- If there exists a correlation between variables, does it make sense?

•

10.2.3 Making predictions

- Can we make a good prediction of SOG?
- How do we choose which predictor (method) to use?
- How do we measure the performance of the method? (statistic measurements, ...)
- If there contains a train phase, how do we train? (data, parameter tuning, ...)
- Do we need to put all the metocean factors as the input?
 Difference between using more or less input features?
 Can we tell the best combination of the inputs?

• ...

- Does there exists any anomaly in the data (whole, voyage, day)?
- What caused these anomalies?
- How can we recognize them automatically?
- Do they affect the results of predictors?Do we need to remove them from the training phase?
- How can we develop a more reliable model?
- •

10.3 Descriptive statistics

Data:
$$\{x_1, x_2, \dots, x_n\}; \{y_1, y_2, \dots, y_n\}$$

Average mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Variance (standard deviation)

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

• Box plot

Distribution

• (Pearson) Correlation coefficient

$$\rho_{xy} = \frac{Cov(x, y)}{\sigma_x \sigma_y}$$

Notice:

- linear correlation: it cannot capture nonlinear relationships between two variables
- [-1, 1]

10.3 Descriptive statistics

On data

On prediction

On error

Error = Prediction - ground truth (data)

10.4 First look of linear regression

NAME	NOTES
SOG (kn)	Speed over ground,对地速度
DRAUGHT (m)	吃水
COG (°)	Course over ground,对地航向
HDG (°)	Heading, 船艏向
CURRENT (°)	流向
TRUE WIND (°)	风向
WAVE (°)	风浪方向
SWELL (°)	涌浪方向
CURRENT (kn)	流速
TRUE WIND (m/s)	风速
WAVE (m)	浪高
SWELL (m)	涌浪高度
GUST (m/s)	阵风风速
SEAS (m)	耦合浪高

• Wind speed \rightarrow SOG

- Supervised learning: Give the "right answer" for each example in the data;
- Regression problem: Predict real-valued output

(Vs. *Classification* problem)

10.4.1 Dataset notations

• Wind speed \rightarrow SOG

TRUE WIND(m/s)	SOG
6.04	10.8
6.04	10.8
6.04	10.8
6.04	10.7
5.04	10.8
3.31	10.6
5. 31	10.7
3. 31	10.7
5. 31	10.7
3.23	10.6
5. 44	10.5
3. 44	10.5
5. 44	10.5
3. 44	10.6
5. 44	10.7
3. 44	10.6
6.67	10.7
3.67	10.6
6.67	10.6
3.67	10.7
. 39	10.7
3.47	10.7
. 47	10.7
3.47	10.7
5. 47	10.7
. 91	10.6
. 91	10.6
6.67	10.4
6.67	10.5
69	10.4
. 69	10.4
6.69	10.5
6.69	10.4
69	10.5
6. 69	10.6
6.64	10.6
6.64	10.6
3.64	10.6

- Dataset (Training set)
- Notations:

m: the number of training examples

```
x: "input" variable/feature (wind speed) \mathbf{x} = (x_1, x_2, \dots, x_m)^{\mathsf{T}}
```

 \mathbf{y} : ground truth/label (SOG) $\mathbf{y} = (y_1, y_2, \dots, y_m)^{\mathsf{T}}$

z: "output" variable/target (prediction) $\mathbf{z} = (z_1, z_2, \dots, z_m)^{\mathsf{T}}$

 $\{(x_i, y_i)\}_{i=1,\dots,m}$: the ith training example

10.4.2 Our goal

• Notations:

m: the number of training examples

x: "input" variable/feature (wind speed)

y: ground truth/label (SOG)

z: "output" variable/target (prediction)

$$\mathbf{x} = (x_1, x_2, \dots, x_m)^{\mathsf{T}}$$

$$\mathbf{y} = (y_1, y_2, \dots, y_m)^{\mathsf{T}}$$

$$\mathbf{z} = (z_1, z_2, \dots, z_m)^{\mathsf{T}}$$

$$\{(x_i, y_i)\}_{i=1,\dots,m} : \text{the i}^{\text{th}} \text{ training example}$$

Goal: predict SOG by wind speed

$$f(x_i) = z_i \approx y_i$$
$$\varepsilon_i = z_i - y_i$$

A good predictor f means: ε_i as small as possible

10.4.3 How do we present a linear predictor

Goal: predict SOG by wind speed

$$f(x_i) = z_i \approx y_i$$
$$\varepsilon_i = z_i - y_i$$

A good predictor f means: ε_i as small as possible

How do we present f?

$$f(x; \mathbf{w}) = w_o + w_1 x$$
$$\mathbf{w} = (w_0, w_1)^{\mathsf{T}}$$

- Linear regression with one variable
- Univariate linear regression

10.4.4 How to choose the parameter

Univariate linear regression

$$f(x; \mathbf{w}) = w_o + w_1 x$$
 $\mathbf{w} = (w_0, w_1)^{\mathsf{T}}$

Goal: predict SOG by wind speed

$$f(x_i; \mathbf{w}) = z_i \approx \rightarrow y_i$$

$$\varepsilon_i = z_i - y_i$$

• A good predictor f means: ε_i as small as possible

• How to choose the parameter **w**?

$$f(x; \mathbf{w}) = w_o + w_1 x$$

• Choose w_o and w_1 so that $f(x; \mathbf{w})$ is close to the ground truth for our training examples

• ε_i as small as possible

10.4.5 How do we present a linear predictor

• How to choose the parameter **w**?

$$f(x; \mathbf{w}) = w_o + w_1 x$$

• Choose w_o and w_1 so that $f(x; \mathbf{w})$ is close to the ground truth for our training examples

• ε_i as small as possible

1055/ cost function (squared error funct

- Different hypothesis on f, different \mathcal{L}
- Different w_0 and w_1 , different value of \mathcal{L} .
- The best w_o and w_1 are corresponding to the lowest value of \mathcal{L} , which are defined as \mathbf{w}^* , i.e.

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathcal{L}(\mathbf{w})$$

• $\mathcal{L}(w_0^*, w_1^*)$ is the best predictor under the linear hypothesis

10.4.6 How to get the best parameter

$$\min_{\mathbf{w}_{o}, \mathbf{w}_{1}} (f(x_{i}; \mathbf{w}) - y_{i})^{2}$$

$$\min_{\mathbf{w}} \sum_{i=1}^{m} (f(x_{i}; \mathbf{w}) - y_{i})^{2}$$

$$\vdots$$

$$\min_{\mathbf{w}_{o}, \mathbf{w}_{1}} \frac{1}{2m} \sum_{i=1}^{m} (w_{o} + w_{1}x_{i} - y_{i})^{2}$$

Let's define:
$$\mathcal{L}(w_o, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (w_o + w_1 x_i - y_i)^2$$

$$\min_{w_o, w_1} \mathcal{L}(w_o, w_1)$$

loss/cost function (squared error function)

- Different hypothesis on f, different \mathcal{L}
- Different w_0 and w_1 , different value of \mathcal{L} .
- The best w_o and w_1 are corresponding to the lowest value of \mathcal{L} , which are defined as \mathbf{w}^* , i.e.

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathcal{L}(\mathbf{w})$$

• $\mathcal{L}(w_0^*, w_1^*)$ is the best predictor under the linear hypothesis

• Goal: $\mathcal{L}(\mathbf{w}^1) \ll \mathcal{L}(\mathbf{w}^0)$

- $\mathcal{L}(\mathbf{w}^1)$ - $\mathcal{L}(\mathbf{w}^0) < 0$
- For faster descent: $\mathcal{L}(\mathbf{w}^1) \mathcal{L}(\mathbf{w}^0)$ as small as possible $(\mathbf{w}^1 \mathbf{w}^0) = -\nabla \mathcal{L}(\mathbf{w}^0)$

$$(\mathbf{w}^{1} - \mathbf{w}^{0}) = -\nabla \mathcal{L}(\mathbf{w}^{0})$$
$$\mathbf{w}^{1} = \mathbf{w}^{0} - \nabla \mathcal{L}(\mathbf{w}^{0})$$

Gradient descent Alg.:
$$\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \nabla \mathcal{L}(\mathbf{w}^t)$$
Learning rate

10.4.7 A review of linear regression

• Wind speed \rightarrow SOG

• A good predictor f means: ε_i as small as possible

$$\min_{\mathbf{w}} \sum_{i=1}^{m} (f(x_i; \mathbf{w}) - y_i)^2$$

Let's define: $\mathcal{L}(w_o, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (w_o + w_1 x_i - y_i)^2$

$$\min_{w_o, w_1} \mathcal{L}(w_o, w_1)$$

• The best w_o and w_1 are corresponding to the lowest value of \mathcal{L} , which are defined as \mathbf{w}^* , i.e.

 $\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathcal{L}(\mathbf{w})$

Gradient descent Alg.: $\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha \nabla \mathcal{L}(\mathbf{w}^t)$

10.5 How's the results?

$$z_i = f(x_i; \mathbf{w}^*)$$

$$\varepsilon_i = f(x_i; \mathbf{w}^*) - y_i$$

• Average error on training data:

$$\sum_{i=1}^{m} \varepsilon_i = \sum_{i=1}^{m} (f(x_i; \mathbf{w}^*) - y_i)$$

- However, we care less on the error on training data 😌
- What we really care about is the error on new data (testing data)!

	dataset	function	prediction	error
training stage	$\{x_i,y_i\}_{i=1,\cdots,m}$	$f(x; \mathbf{w}^*)$	$\{z_i\}_{i=1,\cdots,m}$	$\{\varepsilon_i\}_{i=1,\cdots,m}$
testing stage	$\{\tilde{x}_i,\tilde{y}_i\}_{i=1,\cdots,n}$	$f(x; \mathbf{w}^*)$	$\{\tilde{z}_i\}_{i=1,\cdots,m}$	$\{\tilde{\varepsilon}_i\}_{i=1,\cdots,m}$

- Use another hypothesis to create a new function: $f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + w_5 x^5$
- Then we have different error (average error) for each function

10.5 How's the results?

- Use another hypothesis to create a new function: $f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + w_5 x^5$
- Then we have different error (average error) for each function
- How's the error on training data?
- Why?
- A more complex model yields lower error on training data © (If we can truly find the best function)
- But how's the results on testing data?
- A more complex model does not always lead to better performance on testing data 🕾
- That is called *overfitting*!
- So, choose an appropriate model ©
- (Taking a driving license exam...)

FOR THE FINAL TIME - YES I DID NOTICE HOW WELL YOU OPENED TH DOOR WHEN YOU GOT IN

10.6 Where does the error come from?

• Wind speed \rightarrow SOG

- In theory, there exists an optimal function f^* such that $f^*(x_i) = y_i$, but we don't know its exact form
- From training data, we try to find an \hat{f} to approach f^* , i.e., \hat{f} is an estimator of f^*

- For a given training dataset, suppose we can get the optimal \hat{f}
- Bias + variance
- What's the meaning of bias and variance of an estimator?

10.6.1 Bias and variance of an estimator

- For a given training dataset, suppose we can get the optimal \hat{f}
- Bias + variance

 m_1

 m_4

 m_2 m_3

What's the meaning of bias and variance of an estimator?

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimate the mean μ
 - sample *N* points: x_1, x_2, \dots, x_N
 - The mean of *N* samples is:

$$m = \frac{1}{N} \sum_{i=1}^{N} x_i \neq \mu$$

$$E[m] = E\left[\frac{1}{N}\sum_{i=1}^{N} x_i\right] = \frac{1}{N}\sum_{i=1}^{N} E[x_i] = \mu$$

• So, the estimator m is unbiased \odot

• The variance of *N* samples is:

$$s^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - m)^2$$

$$E[s^2] = \frac{N-1}{N}\sigma^2 \neq \sigma^2$$

• the estimator s^2 is biased \otimes

10.6.1 Bias and variance of an estimator

Low variance

2" 3" 4" 5" 6" 7"

2 3 4 5 6 7

High variance

- For a given training set, we get one \hat{f}
- So, the error comes from both the bias and variance.

Low bias

10.6.1 Bias and variance of an estimator

- For a given dataset \mathcal{D} , let $f(x; \mathcal{D})$ be the well-trained model on \mathcal{D} .
- So x is the input feature, y_D is the label of D, and y is the ground true data of x.
- Then for different dataset, we have an expected prediction of f, i.e.,

$$\bar{f}(x) = E_{\mathcal{D}}[f(x; \mathcal{D})]$$

 $= bias^2 + var(x) + \varepsilon^2$

And its variance is:

$$var(x) = E_{\mathcal{D}}\left[\left(f(x; \mathcal{D}) - \bar{f}(x)\right)^{2}\right]$$

• The noise is:

$$\varepsilon^2 = E_{\mathcal{D}}[(y_{\mathcal{D}} - y)^2]$$

and we suppose:

$$E_{\mathcal{D}}[y_{\mathcal{D}} - y] = 0$$

• The bias from prediction and the ground truth is:

$$bias^2 = \left(\bar{f}(x) - y\right)^2$$

• So let's see the error of predictor $f(x; \mathcal{D})$ on \mathcal{D} :

$$E_{\mathcal{D}}[(f(x; \mathcal{D}) - y_{\mathcal{D}})^{2}]$$

$$= E_{\mathcal{D}} \left[(f(x; \mathcal{D}) - f(x) + f(x) - y_{\mathcal{D}})^{2} \right]$$

$$= E_{\mathcal{D}} \left[(f(x; \mathcal{D}) - f(x))^{2} \right] + E_{\mathcal{D}} \left[(f(x) - y_{\mathcal{D}})^{2} \right]$$

$$= E_{\mathcal{D}} \left[(f(x; \mathcal{D}) - f(x))^{2} \right] + E_{\mathcal{D}} \left[(f(x) - y + y - y_{\mathcal{D}})^{2} \right]$$

$$= E_{\mathcal{D}} \left[(f(x; \mathcal{D}) - f(x))^{2} \right] + E_{\mathcal{D}} \left[(f(x) - y)^{2} \right] + E_{\mathcal{D}} \left[(y - y_{\mathcal{D}})^{2} \right]$$

$$+ 2E_{\mathcal{D}} \left[(f(x) - y)(y - y_{\mathcal{D}}) \right]$$

$$= E_{\mathcal{D}} \left[(f(x; \mathcal{D}) - f(x))^{2} \right] + (f(x) - y)^{2} + E_{\mathcal{D}} \left[(y - y_{\mathcal{D}})^{2} \right]$$

10.6.2 Parallel universes

- In each universe, "I" kept recording the data in a regular cycle, i.e, different universes will have different training data
- In different universes, we use the same model, but obtain different \hat{f}
- \hat{f} in 100 "universes"?

10.6.3 Variance

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + w_5 x^5$$

small variance

large variance

- Simpler model is less influenced by the sampled data
- Consider the extreme case: f(x) = c

10.6.4 Bias

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + w_5 x^5$$

10.6.4 Bias

 $+w_3x^3$

$$f(x; \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + w_5 x^5$$

Black curve: the true function f^*

Red curves: $5000 \, \hat{f}$

Blue curve: the average of $5000 \, \hat{f}$

large bias

small bias

10.6.5 Diagnosis and what to do

Diagnosis:

- If your model cannot even fit the training examples, then you have large bias (underfitting!)
- If you van fit the training data, but large error on testing data, then you probably have large variance (overfitting!)

• What to do:

- Redesign your model: add more features as input; a more complex model... (underfitting!)
- Collect more data; generate "fake" data; add regularizations (constraints on model space) (overfitting!)

10.6.6 Model selection

underfitting

- There is usually a trade-off between bias and variance
- Select a model that balances two kinds of error to minimize total error
- What you should not do:

10.6.7 Cross validation

• What you should do:

10.6.8 K-fold Cross validation

• If we do three-fold cross validation:

10.7 Performance measurements

input data	output variable	ground truth
$\{x_i\}_{i=1,\cdots,n}$	$\{z_i\}_{i=1,\cdots,n}$	$\{y_i\}_{i=1,\cdots,n}$
mean	$ar{Z}$	$ar{y}$
std.	$\sigma_{\!\scriptscriptstyle Z}$	$\sigma_{\mathcal{y}}$

Mean absolute error

$$\mathbf{MAE} = \frac{1}{n} \sum_{i=1}^{n} |z_i - y_i|$$

• Mean absolute percentage error

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{z_i - y_i}{y_i} \right| \cdot 100\%$$

- MAPE is scale independent
- It derives infinity or undefined value when $y_i = 0$
- But for this study, it doesn't matter

Coefficient of determination

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (z_{i} - y_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

- From 0 to 1, higher is better
- Defines the proportion that a model can explain of total variation
- Anomaly correlation coefficient

$$ACC = \frac{1}{n} \frac{\sum_{i=1}^{n} (z_i - z)(y_i - \bar{y})}{\sigma_z \sigma_y}$$

- From -1 to 1, higher is better
- It indicates linear correlativity between two variables
- (Root) mean square error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (z_i - y_i)^2$$

10.7 Performance measurements

	output variable $\{z_i\}_{i=1,\dots,n}$	
mean std.	$ar{z}$ σ_z	$ar{y} \ \sigma_{ m v}$

• (Root) mean square error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (z_i - y_i)^2$$

$$\begin{aligned} \mathbf{MSE} &= \frac{1}{n} \sum_{i=1}^{n} (z_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} [(z_i - \bar{z}) - (y_i - \bar{y}) + (\bar{z} - \bar{y})]^2 \\ &= \frac{1}{n} \sum_{i=1}^{n} (z_i - \bar{z})^2 + \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 + (\bar{z} - \bar{y}) + \frac{2}{n} \sum_{i=1}^{n} [(z_i - \bar{z}) - (y_i - \bar{y})] (\bar{z} - \bar{y}) - \frac{2}{n} \sum_{i=1}^{n} (z_i - \bar{z})(y_i - \bar{y}) \end{aligned}$$

$$MSE = \sigma_z^2 + \sigma_y^2 + (z - \bar{y}) - 2\sigma_z\sigma_yACC = E_m^2 + E_p^2$$

where

$$E_m^2 = (z - \bar{y})$$

$$E_p^2 = \sigma_z^2 + \sigma_y^2 - 2\sigma_z \sigma_y ACC$$

indicates MSE by mean difference

denotes MSE caused by pattern variation