Makine Öğrenmesi

Tekrar Örnekleme ve Model Değerlendirme

İlker Birbil ve Utku Karaca

Erasmus Üniversitesi Rotterdam

İstanbul'da Makine Öğrenmesi

27 Ocak – 2 Şubat, 2020

Sıkça Sorulan Sorular

- Hangi tahminleyiciyi/sınıflandırıcıyı kullanmalıyız?
- Performans genellemesi nedir?
- Görülmemiş (gelecek) veri seti derken neyi kastediyoruz?
- Algoritmaların parametrelerini nasıl seçeriz?
- Birden fazla algoritmayı nasıl deneriz ve birbirleriyle nasıl kıyaslarız?
- Adil bir performans değerlendirmesi ve karşılaştırması nasıl olur?

Bu ders notlarında, Sebastian Ranschka'nın <u>çalışmasından</u>* pek çok fikir kullandım. Aynı zamanda, Python kodlarını yazarken de yine kendisinin <u>kodlarından</u> faydalandım.

*Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning, S. Raschka, arXiv:1811.1280v2, 3 Aralık 2018.

Son Ürüne Doğru Adımlar

■ Performans Genellemesi (algoritma ve parametreleri belirlenmiş)

Örnek 1: *K*-En Yakın Komşu (sabit *K*)

Örnek 2: *m*. dereceden polinom kullanarak eğri uydurumu (sabit *m*)

■ Model Seçimi (algoritma belirlenmiş, 'en iyi' parametreler aranıyor)

Hiperparametreler: K=?, m=?, $\lambda=?$, $\alpha=?$, ...

Farklı hiperparametreler (≠ model parametreleri), farklı modeller demek

Algoritma Seçimi

K-EYK?, eğri uydurumu?, lasso?, yapay sinir ağları?, ...

Performans Genellemesi

Tekrar Yerine Koyma (Resubstitution)

iyimser yanlılık
(optimistic bias)

Performans Genellemesi

Ayırma (Holdout)

Model Seçimi

Algoritma Seçimi

■ Eğitim (EV) - Doğrulama (DV) - Test (TV)

- İstatistiksel testler
- Tekrar örnekleme
 - Çapraz Geçerlilik Sınaması (Cross-validation)
 - Zorlama Tekniği (Bootstrapping)
- Yanlılık Varyans ikilemi

Ayarlar ve Kurallar

 $\{(x_i,y_i):1,\ldots,n\}$

Bağımsız özdeşçe dağılmış veri ile sınıflandırma problemi

■ **Doğruluk:** Doğru sınıflandırılmış verilerin oranı

$$\delta = 1 - \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

Yanlılığı önlemek için test setini sadece bir kere kullan

Performans Genellemesi

(algoritma ve parametreleri belirlenmiş)

Ayırma (Holdout)

Son Eğitim

Verinin rastgele bölünmesinden dolayı ortaya çıkan belirsizlik?

Tekrarlı Ayırma (Repeated Holdout)

$$i = 1, \ldots, k$$

$$\delta = \frac{1}{k} \sum_{i=1}^k \delta_i$$
 Son Eğitim Son Model teslim

(Tekrarlı) Ayırma Üzerine Notlar

- Tek bölme: nokta tahmini (yüksek varyans)
- Tekrarlı bölmeler: ortalama tahmin (düşük varyans)
- Büyük Test Verisi Kötümser Yanlılık vs. Küçük Test Verisi Yüksek Varyans

- Katmanlama: Eğitim ve test verilerinde sınıf oranlarını koruma
- Diğer tekrar örnekleme yöntemleri: çapraz geçerlilik sınaması, zorlama tekniği

^{*} Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning, S. Raschka, arXiv:1811.1280v2, pg.15, 3 Dec 2018. (link)

Pratikte (ayırma)

```
import numpy as np
     from sklearn.datasets import load digits
                                                                           paketler ve fonksiyonlar
     from sklearn.model selection import train test split
     from sklearn.neighbors import KNeighborsClassifier
     digits = load digits()
                                                                           MNIST verisinin yüklenmesi
     print(digits.data.shape)
     X, y = digits.data, digits.target
     X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                                           katmanlı veri ayrımı
                                                                           (eğitim: %70 - test: %30)
                                                     stratify=y)
15
     KNN classifier = KNeighborsClassifier(n neighbors=3,
                                weights='uniform',
                                algorithm='kd tree',
                                                                           tek algoritma (K-EYK)
                                                                           belirli hiperparametreler
                                metric='minkowski',
                                metric_params=None,
                                n jobs=1)
25
                                                                           model eğitilmesi
     KNN classifier.fit(X train, y train)
28 # Predict with the trained model
                                                                           model test edilmesi
     KNN y pred = KNN classifier.predict(X test)
30 # Evaluate the prediction accuracy
                                                                           performans değerlendirmesi
     KNN y pred acc = np.mean(y test == KNN y pred)
32
     print("Holdout prediction accuracy: ", KNN y pred acc)
                                                                           son model elde edilmesi
     KNN classifier.fit(X, y)
```

Pratikte (tekrarlı ayırma)

```
import numpy as np
     from sklearn.datasets import load digits
                                                                                           paket ve fonksiyonlar
    from sklearn.model_selection import train_test_split
     from sklearn.neighbors import KNeighborsClassifier
                                                                                           MNIST verisinin yüklenmesi
    digits = load digits()
    X, y = digits.data, digits.target
    KNN_classifier = KNeighborsClassifier(n_neighbors=3,
                                weights='uniform',
                                algorithm='kd tree',
                                                                                           tek algoritma (K-EYK)
                                                                                           belirlenmiş hiperparametreler
                                metric='minkowski',
                                metric params=None,
                                n jobs=1)
17
     rng = np.random.RandomState(seed=12345)
                                                                                            Tekrarlar için rastgele tohumlar
     seeds = np.arange(10**5); rng.shuffle(seeds); seeds = seeds[:50] # Select the first 50
20
                                                                                                                       (seed)
    accuracies = []
    for i in seeds:
         X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                                                            katmanlı veri ayrımı
                                                           test size=split ratio,
                                                                                            (eğitim: %70 - test: %30)
                                                           stratify=y)
         KNN classifier.fit(X train, y train)
                                                                                            her bir modelin eğitilip,
         KNN_y_pred_i_acc = KNN_classifier.score(X_test, y_test)
         accuracies.append(KNN y pred i acc)
                                                                                            test edilmesi
     accuracies = np.asarray(accuracies)
                                                                                            modellerin ortalama performansı
    print("Repeated holdout average prediction accuracy: ", accuracies.mean())
    # Final model trained on the entire data set (deployment)
                                                                                            son modelin elde edilmesi
     KNN classifier.fit(X, y)
    print('Resubstitution (optimistic) prediction accuracy: ', KNN classifier.score(X, y))
```

Tekrar Örnekleme

Katmanlama (Stratification)

Tekrar Örnekleme

 $\{(x_i, y_i) : 1, \dots, n\}$

Tek satır veri

Biri-Hariç (Leave-One-Out) ÇGS

$$\delta = 1 - \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

k-Katlı (*k*-Fold) ÇGS

$$\delta = \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

Genellikle ÇGS uygulamadan önce veri rastgele karıştırılır

Yanlılık-Varyans İkilemi

Test Hatası

$$\left(\frac{k-1}{k}\right)n$$
: eğitim verisi boyutu

$$\delta = \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

k-katlı Çapraz Geçerlilik Sınaması

$$i = 1, \ldots, k$$

$$\delta = \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

Tekrarlı Ayırma vs. k-katlı ÇGS

Zorlama Tekniği (Bootstrap)

- Yerine koyarak seçme
- **eğitim** verisi sayısı genellikle *n*
- dışarıda kalanlar (out-ofbag) test verisi
- İstatistik toplama (örn., bağlanım parametrelerinin varyansları)
- veri az olduğunda tercih sebebi

Tekrar Örnekleme

İstatistikler

iyimser yanlılık

$$\delta^r = \frac{1}{b} \sum_{j=1}^b \delta_j^r$$

tekrar yerine koyma doğruluğu (resubstitution accuracy)

$$\delta^h = \frac{1}{b} \sum_{j=1}^b \delta_j^h$$
ayırma
doğruluğu

kötümser yanlılık

$$\delta^{\bullet} \pm t \sqrt{\frac{1}{b-1} \sum_{j=1}^{b} (\delta_{j}^{\bullet} - \delta^{\bullet})^{2}}$$
güven aralığı

(normallik varsayımı altında)

Örnek : $b = 100, t_{95} = 1.984$

Tekrar Örnekleme

.632 Tahmini (Estimate)

$$\mathbb{P}(\text{bir \"{o}rnek seçilmesi}) = 1 - \left(1 - \frac{1}{n}\right)^n \underset{n >> 0}{\approx} 0.632$$

$$\delta = \frac{1}{b} \sum_{j=1}^{b} (0.632 \ \delta_j^h + 0.368 \ \delta_j^r)$$
 biraz daha
$$= 0.632 \ \delta^h + 0.368 \ \delta^r$$
 iyimser yanlılık

.632+ yöntemi (Efron and Tibshirani, 1997)

Pratikte (zorlama tekniği)

```
import numpy as np
     import seaborn as sns
     from sklearn.datasets import load digits
    from sklearn.model selection import train test split
    from sklearn.neighbors import KNeighborsClassifier
    digits = load_digits()
    X, y = digits.data, digits.target
    KNN classifier = KNeighborsClassifier(n neighbors=3,
                                  weights='uniform',
                                  algorithm='kd tree',
                                  metric params=None,
                                  n_{jobs=1}
18
    rng = np.random.RandomState(seed=12345)
    idx = np.arange(y.shape[0])
    accuracies = []
    for i in range(200):
        train_idx = rng.choice(idx, size=idx.shape[0], replace=True)
         test_idx = np.setdiff1d(idx, train_idx, assume_unique=False)
         boot_train_X, boot_train_y = X[train_idx], y[train_idx]
        boot_test_X, boot_test_y = X[test_idx], y[test_idx]
         KNN classifier.fit(boot train X, boot train y)
         acc = KNN classifier.score(boot test X, boot test y)
        accuracies.append(acc)
     mean = np.mean(accuracies)
    print("Bootstrap average prediction accuracy: ", mean)
    KNN_classifier.fit(X, y)
```

paketler ve fonksiyonlar

MNIST verisinin yüklenmesi

tek algoritma (*K*-EYK) belirli hiperparametreler

zorlama tekniği için rastgele tohumlar

yerine koyarak örnekleme (eğitim verisi) kalanları test için işaretleme

her bir model eğitilip, test edilmesi

modellerin ortalama performansı

son model elde edilmesi

Model Seçimi

(algoritma belirlenmiş, 'en iyi' parametreler aranıyor)

 $\begin{aligned} & \text{Hipotez Uzayı} \\ & (\text{Hipotez} \cong \text{Model}) \end{aligned}$

$$\hat{Y} = \hat{f}(X)$$

Üçlü Ayırma

$$j = 1, \ldots, m$$

$$j^* = \arg\max\{\delta_j : j = 1, \dots, m\}$$

Son Eğitim

k-katlı ÇGS

$$j=1,\ldots,m$$

$$j^* = \arg\max\{\delta_j : j = 1, \dots, m\}$$

Son Eğitim

Pratikte (k-katlı ÇGS)

```
sklearn.datasets import load_digits
     from sklearn.model_selection import train_test_split
    from sklearn.model_selection import StratifiedKFold
         sklearn.neighbors import KNeighborsClassifier
    digits = load_digits()
    X, y = digits.data, digits.target
9 # Hyperparameter K = 1, 2, \ldots, 7
10 params = range(1, 8)
11   cv_acc, cv_std, cv_stderr = [], [], []
    X_train, X_test, y_train, y_test = train_test_split(X, y,
    # 10-fold stratified cross validation
    for c in params:
         KNN_classifier = KNeighborsClassifier(n_neighbors=c,
                                  weights='uniform',
                                  metric='minkowski',
        all acc = []
         for train index, valid index in cv.split(X train, y train):
             pred = KNN_classifier.fit(X_train[train_index], y_train[train_index])\
                    .predict(X_train[valid_index])
             acc = np.mean(y_train[valid_index] == pred)
             all_acc.append(acc)
        all_acc = np.array(all_acc)
        y_pred_cv10_mean = all_acc.mean(); y_pred_cv10_std = all_acc.std()
        y pred cv10 stderr = y pred cv10 std / np.sqrt(10)
        cv acc.append(y pred cv10 mean); cv std.append(y pred cv10 std)
        cv_stderr.append(y_pred_cv10_stderr)
     best K = np.argmax(cv acc)
     KNN classifier = KNeighborsClassifier(n neighbors=params[best K],
                                           algorithm='kd_tree',
    KNN_classifier.fit(X_train, y_train)
    KNN_y_pred_acc = KNN_classifier.score(X_test, y_test)
50 print("K-fold prediction accuracy: ", KNN_y_pred_acc)
    KNN classifier.fit(X, y)
```

paketler ve fonksiyonlar

MNIST verisinin yüklenmesi hiperparametre aralığı

katmanlı veri ayrımı (%70 - %30)

10-katlı ÇGS hazırlığı

tek algoritma (*K*-EYK) farklı hiperparametreler

10-katlı ÇGS uygulaması

istatistikleri kaydetme

'en iyi' parametrelerle eğitme

performans değerlendirmesi

son modelin elde edilmesi

Pratikte (tekrarlı k-katlı ÇGS)

```
import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.datasets import load_digits
    from sklearn.model selection import train test split
     from sklearn.model_selection import StratifiedKFold
    from sklearn.neighbors import KNeighborsClassifier
    digits = load_digits()
    X, y = digits.data, digits.target
9 # Hyperparameter K = 1, 2, ..., 7
    params = range(1, 8); cv_acc, cv_std, cv_stderr = [], [], []
11 params_by_seed = []
    X_train, X_test, y_train, y_test = train_test_split(X, y,
     rng = np.random.RandomState(seed=12345); seeds = np.arange(10**5)
     rng.shuffle(seeds); seeds = seeds[:5] # Select the first
     for seed in seeds:
         cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)
         acc_by_param = []
22
         for c in params:
             KNN_classifier = KNeighborsClassifier(n_neighbors=c,
                                                   weights='uniform',
                                                   algorithm='kd_tree',
31
             all acc = []
             for train index, valid index in cv.split(X train, y train):
                 pred = KNN_classifier.fit(X_train[train_index], y_train[train_index])\
                        .predict(X train[valid index])
                 acc = np.mean(y_train[valid_index] == pred)
                 all acc.append(acc)
             all acc = np.array(all acc)
             acc_by_param.append(all_acc.mean())
         params by seed.append(acc by param)
     best K = np.argmax(np.mean(params by seed, 0))
     KNN_classifier = KNeighborsClassifier(n_neighbors=params[best_K],
                                           weights='uniform',
                                           algorithm='kd_tree',
                                           metric='minkowski',
     KNN_classifier.fit(X_train, y_train)
     KNN_y_pred_acc = KNN_classifier.score(X_test, y_test)
    print("Repeated K-fold prediction accuracy: ", KNN_y_pred_acc)
     KNN_classifier.fit(X, y)
```

paketler ve fonksiyonlar

MNIST veri setinin yüklenmesi hiperparametrele aralığı katmanlı veri ayrımı (%70 - %30) tekrarlar için rastgele tohumlar farklı seed'ler ile 10-katlı ÇGS hazırlığı

tek algoritma (*K*-EYK) farklı hiperparametreler

10-katlı ÇGS uygulaması ve istatistiklerin kaydedilmesi

'en iyi' parametre ile eğitme

performans değerlendirmesi son modelin elde edilmesi

Model Seçimi Notları

- Etraflı performans genellemesi test setine bağlıdır
- k-katlı ÇGS büyük veriyle veya yavaş algoritmalarla çok zaman alır
- Veri büyük olduğunda üçlü ayırma yöntemi daha hızlıdır
- Ayırma yöntemi 2-katlı ÇGS olarak da anılır (tam olarak doğru olmasa da)
- k-katlı ÇGS için genelgeçer bir k değeri yoktur (genellikle 5 veya 10)
- Kabaca: Biri-hariç ÇGS (küçük veri), k-katlı ÇGS ya da üçlü ayırma (büyük veri)

Algoritma Seçimi

Model Kıyaslaması

- İki modeli kıyaslarken
 - z-skorlarına dayalı fark testleri
 - McNemar Testi
- İkiden fazla modeli kıyaslarken
 - Cochran Q Testi
 - F-testi
 - Bağımlı *t*-testi, birleştirilmiş *F*-testi
 - İç içe çapraz geçerlilik sınaması
- Ve dahası...

İki modeli kıyaslama

McNemar Testi

Test istatistiği :
$$\chi^2 = \frac{(|b-c|-1)^2}{b+c}$$

- 1. Anlamlılık düzeyi seçimi (örneğin, 0.05)
- 2. Test: p-değeri değerlendirmesi
- 3. Sıfır hipotezini kabul etme ya da reddetme

İç içe k-katlı ÇGS (Nested k-fold CV)

$$s = 1, \ldots, r$$

 δ_{ℓ} : Algoritma $\ell = 1, ..., K$ performansı

Daha sonra K algoritma arasından en iyi performans gösteren seçilir

Pratikte (iç içe k-katlı ÇGS)


```
clf1 = LogisticRegression(..)
clf2 = KNeighborsClassifier(...)
      param grid1 = [{'clf1 penalty': ['12'],
      'clf1_C': np.power(10., np.arange(-4, 4))}]
param_grid2 = [{'clf2_n_neighbors': list(range(1, 10)),
      param_grid3 = [{'max_depth': list(range(1, 10)) + [None],
                           'criterion': ['gini', 'entropy']}]
      param_grid4 = [{'clf4_kernel': ['rbf'],
                          'clf4_C': np.power(10., np.arange(-4, 4)),
'clf4_gamma': np.power(10., np.arange(-5, 0))},
      for pgrid, est, name in zip((param_grid1, param_grid2,
                                          param_grid3, param_grid4),
                                          (pipe1, pipe2, clf3, pipe4),
                                          ('Softmax', 'KNN', 'DTree', 'SVM')):
                                  param_grid=pgrid,
scoring='accuracy',
                                   verbose=0,
           gridcvs[name] = gcv
      for name, gs_est in sorted(gridcvs.items()):
           nested score = cross val score(gs est,
                                                  X=X train,
           print('%s | outer ACC %.2f% +/- %.2f'
      best_algo = gridcvs['SVM']
48 best_algo.fit(X train, y train)
     train_acc = accuracy_score(y_true=y_train, y_pred=best_algo.predict(X_train))
test_acc = accuracy_score(y_true=y_test, y_pred=best_algo.predict(X_test))
      best algo.fit(X, y)
```

aday algoritmalar

hiperparametre kümelerinin belirlenmesi

en iyi algoritmanın performansının belirlenmesi son modelin elde edilmesi ve...

Follow

When you use a 10 layer Deep Neural Network where Logistic Regression would suffice

Özet

- Performans genellemesi
- Model seçimi hiperparametre ayarlaması (tuning)
- Ayırma yöntemleri
- Tekrar örnekleme: zorlama yöntemi, ÇGS
- Algoritma seçimi
- Fark testleri
- Diğer yöntemler