Devoir à la maison n° 11

À rendre le 30 janvier

I. Un exercice sur la continuité.

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue et surjective. Montrer que, pour tout $y \in \mathbb{R}$, l'équation y = f(x) admet une infinité de solutions dans \mathbb{R}_+ .

II. Une équation sur les polynômes.

Soit $\mathbb{C}[X]$ l'ensemble des polynômes à coefficients complexes. Dans tout cet exercice, on identifie les éléments de $\mathbb{C}[X]$ et leurs fonctions polynomiales associées. Soit $P \in \mathbb{C}[X]$ un polynôme non nul vérifiant la relation

(*)
$$P(X^2 - 1) = P(X - 1)P(X + 1)$$

- 1) Montrer que si a est racine de P alors $(a+1)^2 1$ et $(a-1)^2 1$ sont aussi des racines de P.
- 2) Soit $a_0 \in \mathbb{C}$. On définit la suite de nombres complexes $(a_n)_{n\geqslant 0}$ en posant, pour tout $n\geqslant 0$, $a_{n+1}=a_n^2+2a_n$.
 - a) Vérifier que lorsque a_0 est une racine, pour tout entier naturel n le nombre complexe a_n est une racine de P.
 - b) Montrer que lorsque a_0 est un réel strictement positif, la suite $(a_n)_{n\geqslant 0}$ est une suite strictement croissante de réels positifs.
 - \mathbf{c}) En déduire que P n'admet pas de racine réelle strictement positive.
 - d) Montrer que -1 n'est pas racine de P.
 - e) Montrer que pour tout $n \in \mathbb{N}$, $a_n + 1 = (a_0 + 1)^{2^n}$.
- 3) Déduire des questions précédentes que si a est une racine complexe de P alors |a+1|=1. On admettra que l'on a aussi |a-1|=1.
- 4) Montrer que si le degré de P est strictement positif alors P a pour unique racine 0.
- 5) Déterminer tous les polynômes $P \in \mathbb{C}[X]$ qui vérifient la relation (*).

— FIN —