Curl, Divergence, Green's Theorem

Lecture for 7/7

Curl and Divergence

Consider ∇ as a operator and F = (A, B, C)

- Define div $F = \nabla \cdot F = A_x + B_v + C_z$
- Define curl $F = \nabla x F = (C_y B_z, A_z C_x, B_x A_y)$ • Only for vector fields on R^3
- Let's see what happens to scalar functions

$$\circ \quad \nabla \cdot \mathbf{f}\mathbf{G} = (\nabla \mathbf{f}) \cdot \mathbf{G} + \mathbf{f}(\nabla \cdot \mathbf{G})$$

○ ∇ x fG = ∇ f x G + f(∇ x G)https://en.wikipedia.org/wiki/Divergence

Properties of Curl and Divergence

- Let's see what happens to scalar functions
 - $\circ \quad \nabla \cdot \mathbf{fG} = (\nabla \mathbf{f}) \cdot \mathbf{G} + \mathbf{f}(\nabla \cdot \mathbf{G})$
 - $\circ \quad \nabla \times fG = \nabla f \times G + f(\nabla \times G)$
- Let's see how curl and div interact
- - Consequence: $\nabla \cdot (\nabla \times F)$
 - $\circ \quad \nabla \mathbf{x} \nabla \mathbf{f} = \mathbf{0}$

Green's Theorem General Idea

It's often useful to switch between line and double integrals

- Double to Line: you're reducing number of integrations
- Line to Double: function may be simpler to integrate

But how can we do this? Green's Theorem will tell us

Green's Theorem

Suppose C is a simple closed curve oriented counterclockwise. Suppose

- Further suppose C encloses D
- Further suppose Q_x, P_v are Riemann integrable

Green's Theorem: $\int_C Pdx + Qdy = \iint_D (Q_x - P_y) dA$

Decomposition Principle

- If GT holds on D_1 and D_2 , we can consider $D = D_1 u D_2$
- To find integrals, break D into smaller regions where GT applies

Theorem Derivation

Vector Forms of Green's Theorem

Pretend F = (P, Q) is a vector field in R^3 , with F = (P, Q, 0)

- $\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_D (\nabla \times \mathbf{F}) \cdot \mathbf{e}_z d\mathbf{A}$ where $\mathbf{e}_z = (0, 0, 1)$
 - We shall use this later to build Stokes' Theorem
- $\int_C (\mathbf{F} \cdot \mathbf{n}) d\mathbf{s} = \iint_D (\nabla \cdot \mathbf{F}) d\mathbf{A}$ where n is unit normal to r
- We shall use this later to build Divergence Theorem

Practice Problems

Evaluate $\int_C (y^4-2y) dx - (6x-4xy^3) dy$ where C is the rectangle with coordinates (0,0), (6,0), (6,4), (0,4) oriented clockwise

Let C be the triangle with vertices (-3, 0), (0,0), (0,3) oriented clockwise. Verify Green's Theorem for $\int_C (xy^2+x^2) dx + (4x-1) dy$ by computing both the line integral and the corresponding double integral

Find a formula for ∇ x (∇ x F) and justify your claim

Scratchwork