Index Compression

Lecture 4

Why compression (in general)?

- Use less disk space
 - Save a little money; give users more space
- Keep more stuff in memory
 - Increases speed
- Increase speed of data transfer from disk to memory
 - [read compressed data | decompress] is faster than [read uncompressed data]
- Premise: Decompression algorithms are fast
 - True of the decompression algorithms we use

Sec. 5.3

Postings compression

- A posting for our purposes is a docID.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use log₂ 800,000 ≈ 20 bits per docID.
- Our goal: use far fewer than 20 bits per docID.

Compression Example

 Fixed Length encoding –clear how to decode since number of bits is fixed

01010011101011001101

01010, 01110, 10110, 01101

10, 14, 22, 13

Number	Fixed Length Code (5 bit)
1	00001
2	00010
15	01111
17	10001
25	11001
31	11111

Fixed Length Encoding

- How many total bits are required for encoding for 10 million numbers using 20 bits for each number?
- 200 million bits = $2*10^8$ bits
- What if most numbers are small?
- We are wasting many bits by storing small numbers in 20 bits.

Variable Length Encoding

• Decode 10110011

•
$$1011, 0,0,11 = 11, 0,0,3$$

•	10,	1100,	11 =	2,	12,	3
---	-----	-------	------	----	-----	---

•	101	,100,	11	= 5,	4,	3
---	-----	-------	----	------	----	---

• 10,11,0,0,11 = 2, 3, 0, 0, 3

Number	Variable Length code
1	1
2	10
10	1010
16	10000

6

Compression Example

Decode 0101011101100

• use unambiguous code:

Prefix free code

• which gives:

0 101 0 111 0 110 0

Postings: two conflicting forces

- A term like arachnocentric occurs in maybe one doc out of a million – we would like to store this posting using log₂ 1M ≈ 20 bits.
- A term like *the* occurs in virtually every doc, so
 20 bits/posting ≈ 2MB is too expensive.

Gap encoding of postings file entries

- We store the list of docs containing a term in increasing order of docID.
 - *computer*: 33,47,154,159,202 ...
- Consequence: it suffices to store gaps.
 - **–** 33,**14**,107,5,43 ...
- Hope: most gaps can be encoded/stored with far fewer than 20 bits.
 - Especially for common words

Three postings entries

	encoding	postings	list								
THE	docIDs			283042		283043		283044		283045	
	gaps				1		1		1		
COMPUTER	docIDs			283047		283154		283159		283202	
	gaps				107		5		43		
ARACHNOCENTRIC	docIDs	252000		500100							
	gaps	252000	248100								

Index compression

- Observation of posting files
 - Instead of storing docID in posting, we store gap between docIDs, since they are ordered
 - Zipf's law again:
 - The more frequent a word is, the smaller the gaps are
 - The less frequent a word is, the shorter the posting list is
 - Heavily biased distribution gives us great opportunity of compression!

Information theory: entropy measures compression difficulty.

Delta Encoding

- Word count data is good candidate for compression
 - many small numbers and few larger numbers
 - encode small numbers with small codes
- Document numbers are less predictable
 - but differences between numbers in an ordered list are smaller and more predictable
- Delta encoding:
 - encoding differences between document numbers (*d-gaps*)

Delta Encoding

Inverted list (without counts)

Differences between adjacent numbers

 Differences for a high-frequency word are easier to compress, e.g.,

$$1, 1, 2, 1, 5, 1, 4, 1, 1, 3, \dots$$

- Differences for a low-frequency word are large, e.g., 109,3766,453,1867,992,...

Practice Question

- Delta encode following numbers:
- 40, 45, 405, 411, 416
- 40, 5, 360, 6, 5

- Decode following numbers encoded using delta encoding
- 20, 10, 30, 4, 8
- 20, 30, 60, 64, 72

Variable length encoding

• Aim:

- For arachnocentric, we will use ~20 bits/gap entry.
- For the, we will use ~1 bit/gap entry.
- If the average gap for a term is G, we want to use ~log₂G bits/gap entry.
- <u>Key challenge</u>: encode every integer (gap) with about as few bits as needed for that integer.
- This requires a variable length encoding
- Variable length codes achieve this by using short codes for small numbers

Unary Codes

- Breaks between encoded numbers can occur after any bit position
- Unary code
 - Encode k by k 1s followed by 0
 - 0 at end makes code unambiguous

Number	Code	1110111010110
0	0	11101111010110
1	10	
2	110	1110 1110 10 110
3	1110	1110, 1110, 10, 110
4	11110	3, 3, 1, 2
5	111110	·, ·, -, -

Unary Codes

- Unary is very efficient for small numbers such as 0 and 1, but quickly becomes very expensive
 - 1023 can be represented in 10 binary bits, but requires 1024 bits in unary

Binary Codes

- Variable Length Binary Codes:
 - Variable length Binary is more efficient for large numbers, but it may be ambiguous
 - E.g. 2 encoded as 10 and 5 encoded as 101
 - 10101, how to decode, we don't know the word bound
- Fixed Length Binary Codes:
 - For example use 15 bits to encode each number
 - Cannot encode large numbers that required more than 15 bits
 - Too much space is wasted for encoding small numbers

Elias-y Code (Elias Gamma Code)

- Encode number in minimum bits in binary
- 12,
- 1100, 4 bits
- Encode length of the code in unary in begining
- Code of 12 = 111101100
- 23
- 10111, 5 bits
- Code of 23 = 111110101111

Elias-γ Code (Elias Gamma Code)

Decode 1110 101 110 10

```
    1110101, 11010
```

• 5 , 2

Elias-y Code (Elias Gamma Code)

- Encode number in minimum bits in binary
- 12,
- 1100, 4 bits
- 100, leave the leftmost 1 bit, length 3 bits
- Code of 12 = **1110**100
- 23
- 10111, 5 bits
- 0111, 4 bits, leave the leftmost 1 bit
- Code of 23 = **11110**0111

Elias-y Code (Elias Gamma Code)

Decode 111001111000

1110 011, 110 00

011 was actually 1011 = 11

- 00 was actually 100 = 4
- 11, 4

Elias-γ Code (Elias Gamma Code)

- To encode a number k, compute
 - $k_d = \lfloor \log_2 k \rfloor$
 - $k_r = k 2^{\lfloor \log_2 k \rfloor}$
 - Since the leftmost bit is always 1 in binary code so we do not encode it
 - The remaining number becomes $k_r = k 2^{lgk}$
 - We use Unary code for k_d and binary code for k_r

Elias-y Code (Elias Gamma Code)

To encode a number k, compute

•
$$k_d = \lfloor \log_2 k \rfloor$$

•
$$k_r = k - 2^{\lfloor \log_2 k \rfloor}$$

Unary code for k_d and binary code for k_r

Number (k)	k_d	k_r	Code
1	0	0	0
2	1	0	10 0
3	1	1	10 1
6	2	2	110 10
15	3	7	1110 111
16	4	0	11110 0000
255	7	127	11111110 1111111
1023	9	511	1111111110 111111111

Gamma seldom used in practice

- Machines have word boundaries 8, 16, 32, 64 bits
 - Operations that cross word boundaries are slower
- Compressing and manipulating at the granularity of bits can be too slow
- All modern practice is to use byte or word aligned codes
 - Variable byte encoding is a faster, conceptually simpler compression scheme, with decent compression

Variable Byte (VB) codes

- For a gap value G, we want to use close to the fewest bytes needed to hold log₂ G bits
- Begin with one byte to store G and dedicate 1 bit in it to be a continuation bit c
- If $G \le 127$, binary-encode it in the 7 available bits and set c = 1
- Else encode G's lower-order 7 bits and then use additional bytes to encode the higher order bits using the same algorithm
- At the end set the continuation bit of the last byte to 1 (c = 1) and for the other bytes c = 0.

Variable Byte Code

Consider the vByte representation of the postings list L = (80, 400, 431, 686):

$$\Delta(L) =$$

vByte(L) =

(80, 320, 31, 255)

<u>1</u>1010000 <u>0</u>1000000 <u>1</u>0000010 <u>1</u>0011111

<u>0</u>1111111 <u>1</u>0000001

Example

docIDs	824	829		215406
gaps		5		214577
VB code	00000110 10111000	10000101		00001101 00001100 10110001

Postings stored as the byte concatenation 000001101011100010000101000011010000110001

Key property: VB-encoded postings are uniquely prefix-decodable.

For a small gap (5), VB uses a whole byte.

RCV1 compression

Data structure	Size in MB
collection (text, xml markup etc)	3,600.0
collection (text)	960.0
Term-doc incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ–encoded	101.0

Index and dictionary compression for Reuters-RCV1. (Manning et al. Introduction to Information Retrieval)

Group Variable Integer code

- Used by Google around turn of millennium....
 - Jeff Dean, keynote at WSDM 2009
 - Encodes 4 integers in blocks of size 5–17 bytes
- First byte: four 2-bit binary length fields

•
$$L_1 L_2 L_3 L_4$$
 , $L_j \in \{1,2,3,4\}$

- Then, L1+L2+L3+L4 bytes (between 4–16) hold 4 numbers
 - Each number can use 8/16/24/32 bits. Max gap length ~4 billion
- It was suggested that this was about twice as fast as VB encoding
 - Decoding gaps is much simpler no bit masking
 - First byte can be decoded with lookup table or switch

Group Variable Integer code

Consider the vByte representation of the postings list L = (80, 400, 431, 686):

$$\Delta(L) = \langle 80, 320, 31, 255 \rangle$$
 $vByte(L) = \frac{1010000 010000001 100011111 011111111}{10000001}$

For the same postings list as before, the Group VarInt representation is:

Compression Techniques Effectiveness

(All Data from Gov2 Collection)

	Decoding (ns per position)	Cumulative Overhead (decoding + disk I/O)
Gamma	12.81	32.11 ns
vByte	4.34	20.82 ns
Group VarInt	1.9	19.85 ns

Chapter 6, Information Retrieval: Implementing and Evaluating Search Engines, by S. Büttcher, C. Clarke, and G. Cormack.