Статистическое обучение Задание 1

Сергей Володин, 374 гр. задано 2017.02.19

Meta

Делал один. Список ссылок:

- 1. http://www.stat.cmu.edu/~arinaldo/36788/subgaussians.pdf
- 2. https://en.wikipedia.org/wiki/Holder's_inequality

Упражнение 1

- 1. Неравенство Маркова: Если $X\geqslant 0$, то $P(X\geqslant \varepsilon)\leqslant \frac{\mathbb{E}X}{\varepsilon}$. Нужно: $P(X\geqslant \varepsilon)=\frac{\mathbb{E}X}{\varepsilon}$. Найдем $P(X<\varepsilon)=1-\frac{\mathbb{E}X}{\varepsilon}$, $f_X(x)=\frac{\mathbb{E}X}{x^2}$. Тогда $\mathbb{E}X=\int\limits_0^\infty xf_X(x)dx=\int\limits_0^\infty \mathbb{E}X\frac{dx}{x}$. Поскольку интеграл $\int\limits_0^\infty \frac{dx}{x}$ расходится, то $\mathbb{E}X=0$. Значит, X=0. Проверим: X=00 X=01. Проверим: X=02.
- 2. Неравенство Чебышева: $P(|X \mathbb{E}X| \geqslant a) \leqslant \frac{\sigma^2}{a^2}$. Если обозначить $\eta = |X \mathbb{E}X|^2$, то получим неравенство Маркова. Возьмем предыдущий пример $\Rightarrow \eta = 0 \Rightarrow X = c$ (константа). Проверим: $0 = P(0 \geqslant a) = \frac{0}{a^2}$ (для константы $\sigma = 0$)

Упражнение 2.1

Имеем: $Y\geqslant 0$ — случайная величина, числа $A\geqslant 2,\ B>0.\ \forall \varepsilon\geqslant 0\hookrightarrow P(Y\geqslant \varepsilon)\leqslant A\exp(-\frac{\varepsilon^2}{B^2}).$

- 1. Оценим $\mathbb{E}e^{\lambda Y^2}=1+\int\limits_1^\infty P(e^{\lambda Y^2}>x)dx$. Перепишем $e^{\lambda Y^2}>x\Leftrightarrow \lambda Y^2>\ln x\Leftrightarrow Y>\sqrt{\frac{\ln x}{\lambda}}$. Значит, $\mathbb{E}e^{\lambda Y^2}\leqslant 1+A\int\limits_1^\infty x^{-1/\lambda B^2}dx=1+A\frac{1}{1/\lambda B^2-1}$ при условии $\lambda\in(0,1/B^2)$. Берём $\lambda=1/2B^2$. Тогда $\mathbb{E}e^{\lambda Y^2}\leqslant 1+A\leqslant 2A$ при $A\geqslant 2$
- 2. $\mathbb{E}Y = \sqrt{\frac{1}{\lambda} \ln e^{\lambda(\mathbb{E}Y)^2}}$ $\underset{\text{Йенс. } e^{\lambda x^2}}{\leqslant} \sqrt{\frac{1}{\lambda} \ln \mathbb{E} e^{\lambda Y^2}} \underset{(1)}{\leqslant} \sqrt{2B^2 \ln 2A} = \sqrt{2}B\sqrt{\ln 2A}$. Заметим, что при $A \geqslant 2$, $\sqrt{\ln 2A} \leqslant \sqrt{2 \ln A}$. Тогда $\mathbb{E}Y \leqslant \boxed{2B\sqrt{\ln A}}$. То есть, проведено доказательство для C=2.

Упражнение 2.2

Имеем: $Y \geqslant 0$ — случайная величина, числа $A \geqslant 2$, B > 0. $\forall \varepsilon \geqslant 0 \hookrightarrow P(Y \geqslant \varepsilon) \leqslant A \exp(-\frac{\varepsilon}{B})$.

- 1. Оценим $\mathbb{E}e^{\lambda Y}=1+\int\limits_{1}^{\infty}P(e^{\lambda Y}>x)dx$. Рассмотрим $e^{\lambda Y}>x\Leftrightarrow Y>\frac{\ln x}{\lambda}$. $P(Y>\frac{\ln x}{\lambda})\leqslant Ae^{-\frac{\ln x}{\lambda B}}=Ax^{-1/\lambda B}$. Тогда $\mathbb{E}e^{\lambda Y}\leqslant 1+A\int\limits_{1}^{\infty}x^{-1/\lambda B}dx$ при $\lambda B<1$. Берем $\lambda=1/2B$. Тогда $\mathbb{E}e^{\lambda Y}\leqslant 1+A\leqslant 2A$
- 2. $\mathbb{E}Y = \frac{1}{\lambda} \ln e^{\lambda \mathbb{E}Y} \leqslant \frac{1}{\lambda} \ln \mathbb{E}e^{\lambda Y} \leqslant \frac{1}{\lambda} 2A = 2B \ln 2A \leqslant \boxed{4B \ln A}$

Упражнение 3.1

http://www.stat.cmu.edu/~arinaldo/36788/subqaussians.pdf

https://en.wikipedia.org/wiki/Holder's_inequality

Случайная величина X — субгауссовская с параметром $\sigma \Leftrightarrow \mathbb{E} e^{\lambda X} \leqslant e^{\frac{\lambda^2 \sigma^2}{2}}$.

Пусть X_1, X_2 — субгауссовские с параметрами σ_1 и σ_2 . $Y = X_1 + X_2$. Доказать: Y — субгауссовская для некоторого σ . $\mathbb{E}e^{\lambda Y} = \mathbb{E}e^{\lambda X_1}e^{\lambda X_2}$.

Неравенство Гёльдера для мат.ожиданий $\xi, \eta \geqslant 0, \, 1/p + 1/q = 1$:

 $\mathbb{E}\xi\eta\leqslant (\mathbb{E}\xi^p)^{1/p}(\mathbb{E}\eta^q)^{1/q}$

 $\text{Тогда } \mathbb{E} e^{\lambda Y} \leqslant (\mathbb{E} e^{p\lambda X_1})^{1/p} (\mathbb{E} e^{q\lambda X_2})^{1/q} \leqslant (e^{(p\lambda)^2 \sigma_1^2/2})^{1/p} (e^{(q\lambda)^2 \sigma_2^2/2})^{1/q} = e^{\frac{\lambda^2}{2}(p\sigma_1^2 + q\sigma_2^2)} \to \min_{1/p+1/q=1} e^{\frac{\lambda^2}{2}(p\sigma_1^2 + q\sigma_2^2)} = e^{\frac{\lambda^2}{2}(p\sigma_1$

Поскольку 1/p + 1/q = 1, $q = \frac{p}{p-1}$. Тогда $p\sigma_1^2 + q\sigma_2^2 = p\sigma_1^2 + \frac{p}{p-1}\sigma_2^2 \to \min_{p} \Rightarrow p = \frac{\sigma_1 + \sigma_2}{\sigma_1}$, $q = \frac{\sigma_1 + \sigma_2}{\sigma_2}$. Тогда $\mathbb{E}e^{\lambda Y}\leqslant e^{\frac{\lambda^2(\sigma_1+\sigma_2)^2}{2}}$ Тогда $\sigma=\sigma_1+\sigma_2$

Упражнение 3.1.1

Пусть $X_1 = X_2 \sim N(0, \sigma_0^2)$. Тогда $\mathbb{E}e^{\lambda X_i} = e^{\lambda^2 \sigma_0^2/2}$. А $\mathbb{E}e^{\lambda (X_1 + X_2)} = \mathbb{E}e^{2\lambda X_i} = e^{\lambda^2 (2\sigma_0)^2/2}$. В этом примере $\sigma = 2\sigma_0$

Упражнение 3.2

Пусть $X \sim N(0,1)$. Тогда X — субгауссовская с параметром 1. Определим $X_1 = X, X_2 = X$ — две субгауссовские величины. Определим $Y=X_1X_2$. Но $\mathbb{E}Y=\mathbb{E}X^2=1\neq 0$, значит, Y не может быть субгауссовской

Упражнение 3.3

Обозначим $f(\lambda) = \mathbb{E} e^{\lambda X}, \ g(\lambda) = e^{\sigma^2 \lambda^2/2}.$ $f(\lambda) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} \mathbb{E} X^k = 1 + \lambda \mathbb{E} X + \frac{\lambda^2}{2} \mathbb{E} X^2 + \dots$ Значит, $f'(0) = \mathbb{E} X$. Найдём $g'(\lambda)=\lambda g(\lambda)$. Найдём f(0)=g(0)=1. Значит, $g'(0)\stackrel{\kappa=0}{=}0$. Обозначим $h(\lambda)=f(\lambda)-g(\lambda)$. По условию, $h(\lambda)\leqslant 0$. Поскольку h(0) = 0, то h'(0) = 0. Но $h'(0) = f'(0) - g'(0) = \mathbb{E}X$. Значит, $\mathbb{E}X = 0$

Упражнение 3.4

Source: http://www.stat.cmu.edu/~arinaldo/36788/subqaussians.pdf

Пусть $\xi\geqslant 0$ — случайная величина, $f(\xi)$ — функция: f(0)=0. Докажем, что $\mathbb{E}f(\xi)=\int\limits_0^\infty f'(t)P(\xi>t)dt$

$$\int\limits_0^\infty f'(t)P(\xi>t)dt=\int\limits_0^\infty dt f'(t)\int\limits_t^\infty dq f_\xi(q)=\int\limits_0^\infty dq f_\xi(q)\underbrace{\int\limits_0^q f'(t)dt}_{f(q)-f(\theta)}=\int\limits_0^\infty f_\xi(q)f(q)dq=\mathbb{E}f(\xi)\blacksquare$$

Тогда
$$\mathbb{E}|X|^p=\left|f(y)=y^p,\,\xi=|X|\right|=\int\limits_0^\infty py^{p-1}P(|X|>y)dy$$

Поскольку X — субгауссовская с параметром σ , то по неравенству Чернова $P(|X|>y)\leqslant 2e^{-y^2/2\sigma^2}$. Подставим в интеграл: $\mathbb{E}|X|^p\leqslant \int\limits_0^\infty py^{p-1}2e^{-y^2/2\sigma^2}dy = \left|t=\frac{y^2}{2\sigma^2},\,dy=\sqrt{\frac{\sigma^2}{2t}}dt\right| = \int\limits_0^\infty p(2t\sigma^2)^{(p-1)/2}2e^{-t}\sqrt{\sigma^2/2t}dt = p(2\sigma^2)^{p/2}\int\limits_0^\infty t^{p/2-1}e^{-t}dt = p(2\sigma^2)^{p/2}\int\limits_0^\infty t^{p/2$

Поскольку $\Gamma(n+1)=n!\sim \sqrt{2\pi n}(\frac{n}{\epsilon})^n$ (Формула Стирлинга).

Тогда $\mathbb{E}|X|^p\leqslant C(\sigma)p(2\sigma^2)^{p/2}\sqrt{\pi p}(\frac{p}{2e})^{p/2}$ и $C(\sigma)\geqslant 1$

Значит, $(\mathbb{E}|X|^p)^{p/2} \leqslant C^{1/p}(\sigma)p^{3/2p}(2\sigma^2)^{1/2}\sqrt{\pi}(2e)^{-1/2}p^{1/2}$

Поскольку $C \geqslant 1$ и $p \geqslant 1$, $C^{1/p} \leqslant p$

Поскольку $C\geqslant 1$ и $p\geqslant 1$, C , $p^{3/2p}\leqslant D$ — ограниченная функция Получаем $(\mathbb{E}|X|^p)^{p/2}\leqslant\underbrace{C(\sigma)D(2\sigma^2)^{1/2}\sqrt{pi/2e}}_{K(\sigma)}p^{1/2}=K(\sigma)\sqrt{p}$

Упражнение 4.1

Плотность нормального распределения: $\psi(x) = f_{N(0,1)}(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$. Тогда $\frac{d}{dx}\psi(x) = \frac{1}{\sqrt{2\pi}}(-2x/2)e^{-\frac{x^2}{2}} = -x\psi(x)$. Значит, $x\psi(x) + \psi'(x) = 0$

Упражнение 4.2

Обозначим $f_1(x) = \psi(x)(1/x - 1/x^3), f_2(x) = P(X \geqslant x) = \int_{-\infty}^{\infty} \psi(t)dt, f_3(x) = \psi(x)(1/x - 1/x^3 + 3/x^5).$ Доказать: при x > 0 $f_1\leqslant f_2\leqslant f_3$. Обозначим $g(x)=f_2(x)-f_1(x),$ $h(x)=f_3(x)-f_2(x)$ Нужно доказать, что $g,h\geqslant 0$. Тогда $f_1'(x)=-x\psi(x)(1/x-1/x^3)+\psi(x)(-1/x^2+3/x^4)=\psi(x)(3/x^4-1),$ $f_2'(x)=-\psi(x),$ $f_3'(x)=\psi(x)(-15/x^6-1).$ Тогда $g'(x)=-\frac{3\psi(x)}{x^4}<0,$ $h'(x)=-\frac{15\psi(x)}{x^6}<0.$ $g(+0)=+\infty,$ $h(+0)=+\infty.$ $g(+\infty) = \lim_{x \to \infty} f_2(x) - f_1(x) = -\lim_{x \to \infty} \underbrace{\psi(x)}_{\to 0} \underbrace{(1/x - 1/x^3)}_{\to 0} = 0$ $h(+\infty) = \lim_{x \to \infty} f_3(x) - \underbrace{f_2(x)}_{\to 0} = \lim_{x \to \infty} \underbrace{\psi(x)}_{\to 0} \underbrace{(1/x - 1/x^3 + 3/x^5)}_{\to 0} = 0$

Получаем две строго монотонно убывающие непрерывные функции g, h на $(0, +\infty)$, причем обе стремятся к 0. Значит, $\forall x > 0 \hookrightarrow g, h > 0 \blacksquare$

Упражнение 4.3

Рассмотрим $P(X\geqslant x)\leqslant\inf_{\lambda>0}\frac{\mathbb{E}e^{\lambda X}}{e^{\lambda x}}$. Для нормальной случайной величины $\mathbb{E}e^{\lambda X}=e^{\frac{\lambda^2\sigma^2}{2}+\mu x}=e^{\frac{\lambda^2}{2}}$. Значит, $\inf_{\lambda>0}\frac{\mathbb{E}e^{\lambda X}}{e^{\lambda x}}=\inf_{\lambda>0}\exp(\frac{\lambda^2}{2}-\lambda x)$. Находим $\lambda^*=x>0$, получаем $P(X\geqslant x)\leqslant\exp(-\frac{x^2}{2})=\sqrt{2\pi}\psi(x)$

Имеем две оценки:
$$\begin{cases} P(X\geqslant x)\leqslant \psi(x)(1/x-1/x^3+3/x^5)\\ P(X\geqslant x)\leqslant \sqrt{2\pi}\psi(x) \end{cases}$$

Имеем две оценки: $\begin{cases} P(X\geqslant x)\leqslant \psi(x)(1/x-1/x^3+3/x^5)\\ P(X\geqslant x)\leqslant \sqrt{2\pi}\psi(x) \end{cases}$ Поделим $\frac{\psi(x)(1/x-1/x^3+3/x^5)}{\sqrt{2\pi}\psi(x)}=\frac{1}{\sqrt{2\pi}}(1/x-1/x^3+3/x^5)\sim \frac{1}{\sqrt{2\pi}x}$. Значит, оценка в (4.2) <u>лучше</u>, чем оценка в (4.3).

Упражнение 4.4

Рассмотрим $\xi = \sum_{i=1}^{n} \xi_i$, $\{\xi_i\}$ — i.i.d., $\xi_i = \begin{cases} 1, & p \\ 0, & 1-p \end{cases}$. q = 1-p. $\zeta_i = \overline{\xi}_i = \xi_i - \mathbb{E}\xi_i = \xi_i - p$. Тогда $\mathbb{E}\zeta_i = 0$, $\zeta_i \in [-p, 1-p]$ субгауссовская с $\sigma_i^2 = \frac{1}{4}$ по Лемме Хёффдинга

1. Неравенство Хёффдинга.

$$P(\sum_{i=1}^{n} \zeta_i \geqslant \varepsilon) \leqslant e^{-\frac{\varepsilon^2}{2n\sigma_i^2}} = e^{-\frac{2\varepsilon^2}{n}}$$

2. Теорема Муавра-Лапласа:

$$P(\sum \xi_i \geqslant \varepsilon) \approx \frac{1}{\sqrt{2\pi np(1-p)}} \int_{\varepsilon}^{\infty} e^{-\frac{1}{2}\left(\frac{x-np}{\sqrt{npq}}\right)^2} dx$$

Найдем
$$P(\sum \zeta_i \geqslant \varepsilon) = P(\sum \xi_i \geqslant \varepsilon + np) \approx \frac{1}{\sqrt{2\pi npq}} \int\limits_{\varepsilon+np}^{\infty} e^{-\frac{1}{2}\left(\frac{x-np}{\sqrt{npq}}\right)^2} dx = \left|t = x - np\right| = \frac{1}{\sqrt{2\pi npq}} \int\limits_{\varepsilon}^{\infty} e^{-\frac{t^2}{2npq}} dt = \left|x = \frac{t}{\sqrt{npq}}\right| = \frac{1}{\sqrt{2\pi}} \int\limits_{\varepsilon}^{\infty} e^{-\frac{x^2}{2}} dx$$
. Эта оценка не зависит от p .

Упражнение 5.1

 $f^* = \arg\min_{X \in X} L(f)$. $L(f) = \mathbb{E}_{X \times Y}[f(X) \neq Y] = \mathbb{E}_X \mathbb{E}_{Y|X}[f(X) \neq Y] = \mathbb{E}_X P(f(X) \neq Y | X)$. Фиксируем X, т.е. рассмотрим одно слагаемое (или подынтегральный член):

 $P(f(X) \neq Y | X) = P(f = 1 | X, Y = -1)P(Y = -1 | X) + P(f = -1 | X, Y = 1)P(Y = 1 | X)$ Поскольку f зависит только от X, = [f(X) = 1]P(Y = -1|X) + [f(X) = -1]P(Y = 1|X). В этой сумме одна из скобок $\overline{[f(X) = \cdot]}$ равна 1, а другая 0, в зависимости от значения f на X. Значит, для минимизации $\mathbb{E}_{Y|X}[f(X) \neq Y]$ нужно взять $f(X) = \arg\min P(Y = j | X)$

Рассмотрим $\eta(x) = \mathbb{E}[Y|X=x] = P(Y=1\big|X=x) - P(Y=-1\big|X=x)$. Значит, $\operatorname{sign}\eta(x) = \arg\min^{J}P(Y=j\big|X=x)$, то есть, $f^*(x) = \operatorname{sign} \eta(x) \blacksquare$

Упражнение 5.2

Фиксируем x. Обозначим p = P(Y = +1|X = x). Тогда $\eta(x) = P(Y = +1|X = x) - P(Y = -1|X = x) = p - (1-p) = 2p - 1$.

Фиксируем
$$x$$
. Ооозначим $p = P(Y = +1|X = x)$. Тогда $\eta(x) = P(Y = +1|X = x)$. Знаем, что $|2p-1| \geqslant h$. Значит, либо $p \geqslant \frac{h+1}{2}$, либо $p \leqslant \frac{1-h}{2}$. Поскольку $f^* = \text{sign}(2p-1)$, то $[f^* = +1] = [p > 0.5]$, а $[f^* = -1] = [p < 0.5]$. Рассмотрим $L(f^*) = \mathbb{E}_X \left(\underbrace{[p > 0.5](1-p) + [p < 0.5]p}_{l(x)}\right)$.

- 1. Пусть p > 0.5. Но тогда $p \ge \frac{1+h}{2}$. Значит, $l(x) \le 1 p = \frac{1-h}{2}$
- 2. Пусть p<0.5. Тогда $p\leqslant \frac{1-h}{2}$. Значит, $l(x)\leqslant p=\frac{1-h}{2}$

Получаем, что $l(x) \leqslant \frac{1-h}{2}$. Тогда $L(f^*) = \mathbb{E}_X l(x) \leqslant \frac{1-h}{2}$

Задача 1

Имеем $Y = \{-1, 1\}$ — метки классов, K — класс функций, $f^* = \underset{f \in V^X}{\operatorname{arg\,min}} L(f)$.

Рассмотрим различные элементы $x_1, x_2, x_3 \in X$.

Определим
$$f_i(x) = \begin{cases} \overline{f^*(x)}, & x \neq x_i \\ f^*(x), & x = x_i \end{cases}$$
, где $\overline{1} = -1, \overline{-1} = 1$.

Определим $F = \{f^*, \overline{f^*}, f_1, f_2, f_3\}.$

- 1. Halving (большинство). Рассмотрим произвольный $x \in X$ (первый шаг алгоритма). Если $x = x_i$, то получим значения функций $(f^*, \overline{f^*}, \overline{f^*}, f^*, \overline{f^*}, \overline{f^*})$. Halving выдаст неверный ответ (3>2), то есть, $\overline{f^*}$. Если $x \neq x_i$, то получим значения функций $(f^*, \overline{f^*}, \overline{f^*}, \overline{f^*}, \overline{f^*}, \overline{f^*})$. Halving снова выдаст неверный ответ. То есть, количество ошибок Halving на произвольной выборке как минимум 1
- 2. Меньшинство без удалений. Алгоритм: голосуем меньшинством функций из F, не удаляем функции при неверном ответе. Пусть $x=x_i$. Получим значения $(f^*,\overline{f^*},\overline{f^*},f^*,\overline{f^*})$. Меньшинство: f^* (2 против 3). Получим правильный ответ. Пусть $x\neq x_i$. Получим значения $(f^*,\overline{f^*},\overline{f^*},\overline{f^*},\overline{f^*})$. Меньшинство: f^* (1 против 4). Снова правильный ответ. Поскольку удалений нет, на последующих объектах также не будет ошибок.

Построен алгоритм, который для данного F делает 0 ошибок, когда Halving делает как минимум 1

Задача 2

Пусть X — объекты, $Y = \{-1, 1\}$ — метки классов. Пусть $F \subseteq Y^X$ — класс функций. $\exists f^* \in F \colon Y = f^*(X)$. Определения обучаемости F:

$$1 - \delta \colon \exists A_n \colon (X \times Y)^n \to Y^X \, \exists n(\varepsilon, \delta) \, \forall \varepsilon > 0 \, \forall \delta \in (0, 1) \, \forall N \geqslant n(\varepsilon, \delta) \hookrightarrow P(L(A(X_N)) - \inf_{f \in F} L(f) \leqslant \varepsilon) \geqslant 1 - \delta$$

$$\frac{1}{2} \colon \exists A_n \colon (X \times Y)^n \to Y^X \, \exists n(\varepsilon) \, \forall \varepsilon > 0 \, \forall N \geqslant n(\varepsilon) \hookrightarrow P(L(A(X_N)) - \inf_{f \in F} L(f) \leqslant \varepsilon) \geqslant \frac{1}{2}$$

Докажем, что $(1 - \delta) \Leftrightarrow (\frac{1}{2})$

1. $(1-\delta)\Rightarrow \frac{1}{2}$: определим A_n во втором определении как A_n из первого, определим $n(\varepsilon)=n(\varepsilon,\frac{1}{2})$. Тогда

$$\forall \varepsilon > 0 \,\forall N \geqslant n(\varepsilon, \frac{1}{2}) \hookrightarrow P(L(A(X_N)) - \inf_{f \in F} L(f) \leqslant \varepsilon) \geqslant \frac{1}{2} \blacksquare$$

2. $\frac{1}{2} \Rightarrow (1 - \delta)$: Пусть $\overline{1 - \delta}$ и $\frac{1}{2}$:

$$\exists A_n \colon (X \times Y)^n \to Y^X \ \exists n(\varepsilon) \ \forall \varepsilon > 0 \ \forall N \geqslant n(\varepsilon) \hookrightarrow P(L(A(X_N)) - \inf_{f \in F} L(f) \leqslant \varepsilon) \geqslant \frac{1}{2}$$

$$\forall A_n \colon X^n \to Y^X \ \forall n \ \exists \varepsilon > 0 \ \exists \delta \in (0,1) \ \exists N \geqslant n \colon P(L(A(X_N)) - \inf_{f \in F} L(f) \leqslant \varepsilon) < 1 - \delta$$

Поскольку $\exists f^* \in F \colon f^*(X) = Y$, то $\inf_{f \in F} L(f) = 0$

Обозначим
$$Q(X_N) = L(A(X_N)) = \mathbb{E}_{X \times Y}[A(X_N)(x) \neq y] = P_{X \times Y}(A(X_N)(x) \neq y) = P_X(A(X_N)(x) \neq f^*(x))$$

Обозначим
$$\alpha_{AFL}(\varepsilon, N) = P\left(L(A(X_N)) \leqslant \varepsilon\right) = P_{X_N}(\underbrace{P_X(A(X_N)(x) \neq f^*(x))}_{L(A(X_N))} \leqslant \varepsilon) = P_{X_N}(Q(X_N) \leqslant \varepsilon)$$

Тогда имеющиеся условия можно переписать:

$$\left\{ \begin{array}{lll} \exists (A,n(\varepsilon)) & \forall (\varepsilon,N\geqslant n(\varepsilon)) & \hookrightarrow & \alpha(\varepsilon,N) & \geqslant & \frac{1}{2} \\ \forall (A,n(\varepsilon,\delta)) & \exists (\varepsilon,\delta,N\geqslant n(\varepsilon,\delta)) & : & \alpha(\varepsilon,N) & < & 1-\delta \end{array} \right.$$

Возьмем $(A, n(\varepsilon))$ для (2) из (1). Тогда $\exists (\varepsilon, N \geqslant n(\varepsilon), \delta) \colon \frac{1}{2} \leqslant \alpha(\varepsilon, N) < 1 - \delta$. Значит, $\delta < \frac{1}{2}$

В качестве алгоритма A выберем алгоритм из (1). Фиксируем $\varepsilon > 0$, $\delta > 0$.

Найдем $n(\varepsilon, \delta)$, такое что $\forall N \geqslant n(\varepsilon, \delta) \hookrightarrow \alpha(\varepsilon, N) \geqslant 1 - \delta$.

Выберем $N\geqslant \max\{n(t),n(\varepsilon)\}$. Величину $t<\varepsilon$ выберем позже (при выборе нового t допустимые N могут только увеличиться, что только увеличит $\alpha(\varepsilon,N)$)

Тогда $\alpha(\varepsilon,N)\geqslant \frac{1}{2}$, так как $N\geqslant n(\varepsilon)$. Также $\alpha(t,N)\geqslant \frac{1}{2}$

Рассмотрим
$$\alpha(\varepsilon,N) = \underbrace{P_{X_N}(Q(X_N)=0) + P_{X_N}(Q(X_N)\in(0,t])}_{\alpha(t,N)\geqslant 1/2} + P_{X_N}(Q(X_N)\in(t,\varepsilon]) = p_0 + p_t + q_t \geqslant 1/2.$$

Пусть $t \to 0$. Тогда $p_t \to 0$, $q_t \to \alpha(\varepsilon, N) - p_0$ Пусть $t \to \varepsilon$. Тогда $p_t \to \alpha(\varepsilon, N) - p_0$, $q_t \to 0$

- (a) $p_0 < \delta$. Тогда $q_t \stackrel{t \to 0}{\longrightarrow} \alpha(\varepsilon, N) p_0 \geqslant 1/2 p_0 > 1/2 \delta$. Значит, можно выбрать t, такое что $q_t \geqslant 1/2 \delta$. После выбора t получим $N \geqslant n(t)$ и $\alpha(t, N) = p_0 + p_t \geqslant 1/2$. Значит, $\alpha(\varepsilon, N) = \underbrace{p_0 + p_t}_{\alpha(t, N) \geqslant 1/2} + \underbrace{q_t}_{\geqslant 1/2 \delta} \geqslant 1 \delta$
- (b) $p_0 \geqslant \delta$. Тогда возможен случай $\forall N \geqslant n_0 \ P(Q(X_N) = 0) \geqslant 1/2$.