any ground-truth box. Note that a single ground-truth box may assign positive labels to multiple anchors. Usually the second condition is sufficient to determine the positive samples; but we still adopt the first condition for the reason that in some rare cases the second condition may find no positive sample. We assign a negative label to a non-positive anchor if its IoU ratio is lower than 0.3 for all ground-truth boxes. Anchors that are neither positive nor negative do not contribute to the training objective.

With these definitions, we minimize an objective function following the multi-task loss in Fast R-CNN [2]. Our loss function for an image is defined as:

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$
(1)

Here, i is the index of an anchor in a mini-batch and p_i is the predicted probability of anchor i being an object. The ground-truth label p_i^* is 1 if the anchor is positive, and is 0 if the anchor is negative. t_i is a vector representing the 4 parameterized coordinates of the predicted bounding box, and t_i^* is that of the ground-truth box associated with a positive anchor. The classification loss L_{cls} is log loss over two classes (object vs. not object). For the regression loss, we use $L_{reg}(t_i,t_i^*)=R(t_i-t_i^*)$ where R is the robust loss function (smooth L_1) defined in [2]. The term $p_i^*L_{reg}$ means the regression loss is activated only for positive anchors ($p_i^*=1$) and is disabled otherwise ($p_i^*=0$). The outputs of the cls and reg layers consist of $\{p_i\}$ and $\{t_i\}$ respectively.

The two terms are normalized by N_{cls} and N_{reg} and weighted by a balancing parameter λ . In our current implementation (as in the released code), the cls term in Eqn.(1) is normalized by the mini-batch size (i.e., $N_{cls}=256$) and the reg term is normalized by the number of anchor locations (i.e., $N_{reg}\sim 2,400$). By default we set $\lambda=10$, and thus both cls and reg terms are roughly equally weighted. We show by experiments that the results are insensitive to the values of λ in a wide range (Table 9). We also note that the normalization as above is not required and could be simplified.

For bounding box regression, we adopt the parameterizations of the 4 coordinates following [5]:

$$t_{x} = (x - x_{a})/w_{a}, \quad t_{y} = (y - y_{a})/h_{a},$$

$$t_{w} = \log(w/w_{a}), \quad t_{h} = \log(h/h_{a}),$$

$$t_{x}^{*} = (x^{*} - x_{a})/w_{a}, \quad t_{y}^{*} = (y^{*} - y_{a})/h_{a},$$

$$t_{w}^{*} = \log(w^{*}/w_{a}), \quad t_{h}^{*} = \log(h^{*}/h_{a}),$$
(2)

where x, y, w, and h denote the box's center coordinates and its width and height. Variables x, x_a , and x^* are for the predicted box, anchor box, and ground-truth box respectively (likewise for y, w, h). This can

be thought of as bounding-box regression from an anchor box to a nearby ground-truth box.

Nevertheless, our method achieves bounding-box regression by a different manner from previous RoI-based (Region of Interest) methods [1], [2]. In [1], [2], bounding-box regression is performed on features pooled from *arbitrarily* sized RoIs, and the regression weights are *shared* by all region sizes. In our formulation, the features used for regression are of the *same* spatial size (3×3) on the feature maps. To account for varying sizes, a set of k bounding-box regressors are learned. Each regressor is responsible for one scale and one aspect ratio, and the k regressors do *not* share weights. As such, it is still possible to predict boxes of various sizes even though the features are of a fixed size/scale, thanks to the design of anchors.

3.1.3 Training RPNs

The RPN can be trained end-to-end by back-propagation and stochastic gradient descent (SGD) [35]. We follow the "image-centric" sampling strategy from [2] to train this network. Each mini-batch arises from a single image that contains many positive and negative example anchors. It is possible to optimize for the loss functions of all anchors, but this will bias towards negative samples as they are dominate. Instead, we randomly sample 256 anchors in an image to compute the loss function of a mini-batch, where the sampled positive and negative anchors have a ratio of *up to* 1:1. If there are fewer than 128 positive samples in an image, we pad the mini-batch with negative ones.

We randomly initialize all new layers by drawing weights from a zero-mean Gaussian distribution with standard deviation 0.01. All other layers (*i.e.*, the shared convolutional layers) are initialized by pretraining a model for ImageNet classification [36], as is standard practice [5]. We tune all layers of the ZF net, and conv3_1 and up for the VGG net to conserve memory [2]. We use a learning rate of 0.001 for 60k mini-batches, and 0.0001 for the next 20k mini-batches on the PASCAL VOC dataset. We use a momentum of 0.9 and a weight decay of 0.0005 [37]. Our implementation uses Caffe [38].

3.2 Sharing Features for RPN and Fast R-CNN

Thus far we have described how to train a network for region proposal generation, without considering the region-based object detection CNN that will utilize these proposals. For the detection network, we adopt Fast R-CNN [2]. Next we describe algorithms that learn a unified network composed of RPN and Fast R-CNN with shared convolutional layers (Figure 2).

Both RPN and Fast R-CNN, trained independently, will modify their convolutional layers in different ways. We therefore need to develop a technique that allows for sharing convolutional layers between the