Formal Languages Finite Automata

Chomsky Hierarchy

Type-0: Unrestricted; recursively enumerated; phrase structured; turing m/c

Type-1: CSL;LBA

Type-2: CFL;PDA

Type-3:RL:FA

Finite Automaton

Transition Graph

Initial Configuration

Input String

a b b a

Reading the Input

Input finished

Rejection

Input finished

Acceptance or Rejection?

Initial State

Rejection

Language?

Another Example

Input finished

Rejection Example

Input finished

Languages Accepted by FAs FA M

Definition:

The language L(M) contains all input strings accepted by M

$$L(M)$$
 = { strings that bring M to an accepting state}

Example: L(M) = ?

M

Example

M

Example: L(M) = ?

M

Example

$$L(M) = \{\lambda, ab, abba\}$$

Example: L(M) = ?

Example

$$L(M) = \{a^n b : n \ge 0\}$$

Formal Definition

Finite Automaton (FA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q : set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F: set of accepting states

Input Alphabet Σ

$$\Sigma = \{a, b\}$$

Set of States Q

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Initial State q_0

Set of Accepting States F

$$F = \{q_4\}$$

Transition Function δ

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Function δ

δ	а	Ь
q_0	q_1	q ₅
q_1	<i>q</i> ₅	<i>q</i> ₂
q ₂	q_5	<i>q</i> ₃
<i>q</i> ₃	<i>q</i> ₄	<i>q</i> ₅
<i>q</i> ₄	<i>q</i> ₅	<i>q</i> ₅
q ₅	<i>q</i> ₅	<i>q</i> ₅

Extended Transition Function δ^*

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta^*(q_0,ab) = q_2$$

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Observation: if there is a walk from q to q' with label $\mathcal W$ then

$$\delta * (q, w) = q'$$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} q'$$

Example: There is a walk from q_0 to q_5 with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$

Recursive Definition

$$\delta^*(q,\lambda) = q$$

$$\delta^*(q,w\sigma) = \delta(\delta^*(q,w),\sigma)$$

$$\delta * (q_0, ab) =$$

$$\delta(\delta * (q_0, a), b) =$$

$$\delta(\delta(\delta * (q_0, \lambda), a), b) =$$

$$\delta(\delta(q_0, a), b) =$$

$$\delta(q_1, b) =$$

$$q_2$$

$$q_3$$

$$q_4$$

$$q_4$$

Language Accepted by FAs

For a FA
$$M = (Q, \Sigma, \delta, q_0, F)$$

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

Observation

Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \mathcal{S}^*(q_0, w) \notin F \}$$

L(M)?

Example

L(M)= { all strings with prefix ab }

Try-Starting with a and ending with b

L(M)?

Example

```
L(M) = \{ all strings without substring 001 \}
```

Example

 $L(M) = \{ all strings without substring 001 \}$

L(M)?

Example

$$L(M) = \{awa : w \in \{a,b\}^*\}$$

Regular Languages

Definition:

A language L is regular if there is FA M such that L = L(M)

Observation:

All languages accepted by FAs form the family of regular languages

Examples of regular languages:

```
 \{abba\} \quad \{\lambda, ab, abba\}   \{awa: w \in \{a,b\}^*\} \quad \{a^nb: n \geq 0\}   \{all \ strings \ with \ prefix \ ab\}   \{all \ strings \ without \ substring \quad 001 \}
```

There exist automata that accept these Languages (see previous slides).

There exist languages which are not Regular:

Example:
$$L=\{a^nb^n:n\geq 0\}$$

There is no FA that accepts such a language