Exploiting Glue Clauses to Design Effective CDCL Branching Heuristics

Md Solimul Chowdhury Martin Müller Jia-Huai You

Department of Computing Science, The University of Alberta.

February 22, 2022

Outline

- Introduction
- 2 Empirical Observations
- Proposed Branching Heuristics
- 4 Empirical Evaluation
- 5 Additional Experiments
- 6 Conclusions and Future Work

Introduction

- In this work, I study Boolean Satisfiability (SAT)
 - Given a Boolean formula, the task is to **determine assignments** of the variables to satisfy that boolean formula, if one exists. Otherwise, report unsatisfiability
- SAT solving is NP-Complete → Intractable, in general.
- Modern SAT solvers \rightarrow Conflict Directed Clause Learning (CDCL) Solvers.
 - **Applications in many domains**: Hardware design verification, Software testing, encryption, planning ..

Introduction

- Two basic SAT operations: decision and propagation.
- CDCL workflow:
 - decide \rightarrow propagate \rightarrow decide \rightarrow propagate
 - decide → propagate → conflict
 - conflict: a clause cannot be satisfied wrt. the current partial assignment.
 - ullet conflict analysis o clause learning and back-jumping.
- Conflict Generation at a fast rate is crucial for CDCL SAT solvers.
 - conflict \rightarrow learned clause \rightarrow space pruning.
- A CDCL SAT solver learns clauses at a fast rate.
 - May affect the overall speed of a solver.
 - Learnt clause DB management is necessary \rightarrow **periodic reduction**.

Introduction

- One criterion for clause DB management is Literal Block Distance (LBD) score of the learned clauses.
 - Number of distinct decision levels in a learned clause.
 - The learned clause **X** has 4 decision levels: *P*, *Q*, *R* and *S*.

- Lower the better.
- Glue Clause: Learned clauses with LBD score 2.
 - are known to possess high pruning power.
- In this work, we relate **Glue clauses to branching decisions**.
 - At any given state of the search:
 - Glue Variable: a variable that appears in at least one glue clauses.
 - NonGlue Variable: never appears in any of the glue clauses.

Contributions

Contribution I:

- We empirically show that
 - Decisions with glue variables are more conflict efficient.
 - CDCL branching heuristics show a clear bias toward Glue variables.

Contribution II:

- Developed a structure aware variable bumping scheme Glue Bumping (GB)
 - prioritizes selection of Glue variables
- Empirically evaluated the GB method on four state-of-the-art CDCL SAT solvers.

Contribution III:

- Have introduced the Glue to Learned (G2L) metric
 - G2L: fraction of the learned clauses that are glue.
 - consistently explain the performance of the GB method.

Notations

- For a run of a solver with a given SAT formula
 - Learning Rate (LR)
 - number of conflicts per decisions.
 - Average LBD (aLBD)
 - average LBD scores of the learned clauses derived from the generated conflicts.
 - Glue and NonGlue decisions

The branching decision that selects

- a Glue variable is called a Glue decision.
- a NonGlue variable is called a NonGlue decision.

Contribution I: Conflict Efficiency of Glue Variables

- We study LR and aLBD over Glue and NonGlue decisions.
 - For all the maintrack instances from SAT-2017 and 2018 (750).
 - Using four state-of-the-art solvers:
 - Glucose,
 - MaplePureLRB (MapleLRB),
 - MapleLCMDist (MLD, winner of SAT-2017) and
 - MapleLCMDistChronoBT (MLD_CBT, winner of SAT-2018).
- For each run (time limit=5000s), we separately measure LR and aLBD over Glue and NonGlue decisions.

Conflict Efficiency of Glue Variables (LR)

Conflict Efficiency of Glue Variables (aLBD)

Biased Selection of Glue Variables

 \bullet For a run with a given solver for a given instance ${\cal F},$ we define

• Glue Percentage (GP): $GP = \frac{\#Glue_Variables_in_F}{\#Variable_in_F}$ *100

(A) Systems	(B) Average for Glue Variable					
	GP (B1)	Glue Decisions % (B2)				
Glucose	25.32%	65.43%				
MapleLRB	21.8%	63.14%				
MLD	22.05%	47.60%				
MLD_CBT	22.19%	48.76%				

Contribution II: The Glue Bumping (GB) method

- How can we exploit this empirical characteristics of glue variables?
 - Glue Bumping: which bumps the activity score of glue variables
 - based on appearance count of a variable in glue clauses and its current activity score.
- Glue Level (gl):
 - Let G be the **set of learned glue clauses** so far.
 - gl(v) of a variable v is the appearance count of v in the glue clauses in G.

Alg. 1: Increase Glue Level

Input: A newly learned glue clause θ

1 For
$$i \leftarrow 1$$
 to $|\theta|$
2 $v \leftarrow varAt(\theta, i)$

$$3 \quad gl(v) \leftarrow gl(v) + 1$$

4 End

Alg. 2: Bump Glue Variable

Input: A glue variable v

1
$$bf_v \leftarrow activity(v) * \left(\frac{gl(v)}{|G|}\right)$$

2 $activity(v) \leftarrow activity(v) + bf$

$$2 \ activity(v) \leftarrow activity(v) + bf_v$$

Delayed Bumping in GB

- GB delays the bumping of v until it is unassigned by backtracking.
 - ullet θ is the latest learned clause and every variables are currently assigned.
 - $T = d^e d^s > 0$ be the **decision window**.

• Hence, GB method delays the bumping until d^e .

Empirical Evaluation

- Extended Glucose, MapleLRB, MLD and MLD_CBT with the GB.
- Performed experiments (timeout=5000s) \rightarrow Apple-to-Apple comparison.
 - 13 additional instances solved by both MapleLRB^{gb} and MLD^{gb}.

Systems	SAT Comp-2017 and 2018							
Systems	SAT	UNSAT	Total	PAR-2				
Glucose	180	191	371	4167				
Glucose ^{gb}	182 (+2)	193 (+2)	375 (+4)	4141				
MapleLRB	194	190	384	3966				
MapleLRB ^{gb}	204 (+10)	193 (+3)	397 (+13)	3851				
MLD	235	207	442	3442				
MLD^{gb}	246 (+11)	209 (+2)	455 (+13)	3318				
MLD_CBT	238	215	453	3365				
MLD_CBT ^{gb}	240 (+2)	215 (+0)	455 (+2)	3295				

Solve Time Comparison

Solve time comparisons. For any point above 0 in the vertical axis, our extensions solve more instances than their baselines at the time point in the horizontal axis.

Surprising observation for GLR and aLBD

- Better branching heuristics have higher GLR and lower aLBD, on average (Liang 2017 et. al.)
- We take two subsets (Extreme cases) into considerations:
 - GB_{exclusive}: Instances are solved by the GB extension, not by its baseline
 - Baseline_{exclusive}: Instances are solved by the baseline, not by its GB extension.
- Expectations:
 - For GB_{exclusive}, our GB extensions achieve higher GLR and lower aLBD, on average.
 - For Baseline_{exclusive}, our GB extensions achieve lower GLR and higher aLBD, on average.
- We observe almost opposite scenario:
 - Average GLR does not hold the expectations, at all.
 - Average aLBD is also inconsistent for these two subsets.

Contribution III: G2L- A new measure for performance

(4)	(B)	(C)			(D)				
(A) Systems	Employed Heuristics	$GB_{exclusive}$			$Baseline_{exclusive}$				
		#inst	avg. GLR	avg. aLBD	avg. G2L	#inst	avg. GLR	avg. aLBD	avg. G2L
Glucose	{VSIDS}	33	0.56	28.60	0.0005	29	0.59	18.52	0.0015
Glucose ^{gb}	$\{VSIDS\}^{gb}$		0.53	24.69	0.0016		0.62	20.14	0.00078
MapleLRB	{LRB}	27	0.50	26.06	0.00073	14	0.47	30.75	0.00046
MapleLRB ^{gb}	$\{LRB\}^{gb}$	1 27	0.46	20.38	0.00126		0.48	32.02	0.00037
MLD	{Dist/VSIDS/LRB}	28	0.55	23.60	0.00029	15	0.53	26.70	0.0011
MLD^{gb}	{Dist/VSIDS/LRB} ^{gb}		0.51	26.04	0.00032		0.58	23.21	0.0009
MLD_CBT	{Dist,VSIDS,LRB}	26	0.49	26.08	0.0006	24	0.51	29.64	0.00065
MLD_CBT ^{gb}	{Dist/VSIDS/LRB} ^{gb}		0.43	36.24	0.0011		0.55	25.42	0.00037

$$G2L = \frac{\# glue_clauses}{\# learned_clauses}$$

 Better heuristic for an instance set consistently achieves higher G2L.

Peculiarity of Glucose

- Lowest gains with Glucose. → why?
- **Glucose** already increases the score of some of the (glue) variables during conflict analysis.
- Hypothesis: GB in **Glucose**^{gb} creates imbalance.
- We lower the bumping factor with **high normalizing factor** \rightarrow improved performance with **Glucose**^{gb}.
 - Solves 11 additional instances.
 - In comparison, the version with lower normalization factor solves 4 additional instances.

Conclusions and Future Work

Conclusions:

- Decisions with Glue variables are conflict efficient.
- GB method with delayed bumping of Glue variables.
- Empirical evaluation shows performance gain.
- G2L correlates well with performance.

• Future Work:

- Relationships between normalized glue level and other centrality measures.
- Design clause deletion heuristics based on the notion of glue level?
- New branching heuristics based on G2L?