(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 July 2002 (11.07.2002)

PCT

(10) International Publication Number WO 02/053141 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/US01/48458

(22) International Filing Date:

14 December 2001 (14.12.2001)

(25) Filing Language:

English

A61K 31/00

(26) Publication Language:

English

(30) Priority Data: 60/255,534 14 December 2000 (14.12.2000) U

(71) Applicant: COLEY PHARMACEUTICAL GROUP, INC. [US/US]; Suite 101, 93 Worcester Street, Wellesley, MA 02481 (US).

(72) Inventor: BRATZLER, Robert, L.; 84 Barns Hill Road, Concord, MA 01742 (US).

(74) Agent: TREVISAN, Maria, A.; Wolf, Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: INHIBITION OF ANGIOGENESIS BY NUCLEIC ACIDS

(57) Abstract: The invention relates to methods and products for inhibiting angiogenesis. At least one antiangiogenic nucleic acid molecule is administered to a subject to prevent or treat unwanted angiogenesis. Non-nucleic acid antiangiogenic agents also can be administered.

10

15

20

25

30

INHIBITION OF ANGIOGENESIS BY NUCLEIC ACIDS

Background of the Invention

Blood vessels are the means by which oxygen and nutrients are supplied to living tissues and waste products are removed from living tissue. Angiogenesis refers to the process by which new blood vessels are formed. See, for example, the review by Folkman and Shing, J. Biol. Chem. 267(16):10931-10934, 1992. Thus, where appropriate, angiogenesis is a critical biological process. It is essential in reproduction, development and wound repair. However, inappropriate angiogenesis can have severe negative consequences. For example, it is only after many solid tumors are vascularized as a result of angiogenesis that the tumors have a sufficient supply of oxygen and nutrients that permit it to grow rapidly and metastasize. Because maintaining the rate of angiogenesis in its proper equilibrium is so critical to a range of functions, it must be carefully regulated in order to maintain health. The angiogenesis process is believed to begin with the degradation of the basement membrane by proteases secreted from endothelial cells (EC) activated by mitogens such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). The cells migrate and proliferate, leading to the formation of solid endothelial cell sprouts into the stromal space, then, vascular loops are formed and capillary tubes develop with formation of tight junctions and deposition of new basement membrane.

In adults, the proliferation rate of endothelial cells is typically low compared to other cell types in the body. The turnover time of these cells can exceed one thousand days. Physiological exceptions in which angiogenesis results in rapid proliferation typically occurs under tight regulation, such as found in the female reproduction system and during wound healing.

The rate of angiogenesis involves a change in the local equilibrium between positive and negative regulators of the growth of microvessels. The therapeutic implications of angiogenic growth factors were first described by Folkman and colleagues over two decades ago (Folkman, N. Engl. J. Med. 285:1182-1186, 1971). Abnormal angiogenesis occurs when the body loses at least some control of angiogenesis, resulting in either excessive or insufficient blood vessel growth. For instance, conditions such as ulcers, strokes, and heart attacks may result from the absence of angiogenesis normally required for natural healing. In contrast, excessive blood vessel proliferation can result in tumor growth, tumor spread, blindness, psoriasis and rheumatoid arthritis.

There are instances where a greater degree of angiogenesis is desirable, e.g., increasing blood circulation, wound healing, and ulcer healing. For example, recent investigations have established the feasibility of using recombinant angiogenic growth factors, such as fibroblast growth factor (FGF) family (Yanagisawa-Miwa et al., *Science*, 257:1401-1403, 1992; Baffour et al., *J. Vasc. Surg.* 16:181-91, 1992), endothelial cell growth factor (ECGF; Pu et al., *J. Surg. Res.* 54:575-83, 1993), and more recently, vascular endothelial growth factor (VEGF) to expedite and/or augment collateral artery development in animal models of myocardial and hindlimb ischemia (Takeshita et al., *Circulation*, 90:228-234, 1994; Takeshita et al., *J. Clin. Invest.* 93:662-70, 1994).

Conversely, there are instances where inhibition of angiogenesis is desirable. For example, many diseases are driven by persistent unregulated angiogenesis, also sometimes referred to as "neovascularization". In arthritis, new capillary blood vessels invade the joint and destroy cartilage. In diabetes, new capillaries invade the vitreous of the eye, bleed, and cause blindness. Ocular neovascularization is the most common cause of blindness. Tumor growth and metastasis are angiogenesis-dependent. A tumor must continuously stimulate the growth of new capillary blood vessels for the tumor itself to grow.

The current approved treatment of these diseases is inadequate. Agents which prevent continued angiogenesis, such as drugs (e.g. TNP-470), monoclonal antibodies, antisense nucleic acids and proteins (e.g., angiostatin and endostatin) are currently being tested, but have not been approved. Although preliminary results with the antiangiogenic proteins are promising, they are relatively large in size and are difficult to use and produce. Moreover, proteins are subject to enzymatic degradation. Thus, new agents that inhibit angiogenesis are needed. New antiangiogenic agents that show improvement in size, ease of production, stability and/or potency would be desirable.

Summary of the Invention

It has now been discovered that nucleic acid molecules, including oligonucleotides, have intrinsic antiangiogenesis properties apart from the proteins such nucleic acids may encode.

According to one aspect of the invention, methods for inhibiting angiogenesis are provided. The methods include administering to a subject in need of such treatment at least one antiangiogenic nucleic acid molecule in an amount effective to inhibit angiogenesis in the subject. In some embodiments, two or more antiangiogenic nucleic acid molecules are

administered. In other embodiments, non-nucleic acid antiangiogenic agents also are administered and agents that are effective against other aspects of an angiogenic condition (e.g., anticancer agents) can also be administered. In some embodiments, the angiogenesis is associated with a condition selected from the group consisting of rheumatoid arthritis, psoriasis, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, Osler-Webber Syndrome, myocardial angiogenesis, plaque neovascularization, telangiectasia, hemophiliac joints, angiofibroma, and wound granulation. In other embodiments, the angiogenesis is not associated with a cancer or tumor, but may be associated with an eye or ocular disorder such as those described herein. In still other embodiments, the angiogenesis is associated with embryo implantation. In certain embodiments, the angiogenesis is associated with conditions involving excessive or abnormal stimulation of endothelial cells such as but not limited to intestinal adhesions, atherosclerosis, scleroderma, and hypertrophic scars, i.e., keloids.

In other aspects of the invention, compositions are provided that include at least one antiangiogenic nucleic acid molecule, formulated in a pharmaceutically-acceptable carrier and in an effective amount for inhibiting angiogenesis. The compositions in certain embodiments include non-nucleic acid antiangiogenic agents and/or agents that are effective against other aspects of an angiogenic condition (e.g., anticancer agents).

According to still other aspects the invention, kits are provided that include a first container housing at least one antiangiogenic nucleic acid molecule and instructions for administering the antiangiogenic nucleic acid molecule to a subject having unwanted angiogenesis. In certain embodiments, a second container housing at least one non-nucleic acid antiangiogenic agent is also provided. In other embodiments of the foregoing kits, another container housing at least one anticancer agent is provided. In certain embodiments, the instructions relate to administering the antiangiogenic nucleic acid to a subject having a condition that is not cancer or a tumor, and examples of such conditions are listed throughout the specification.

A nucleic acid molecule is an element of each aspect of the invention. Preferred nucleic acid molecules include at least one sequence set forth as SEQ ID NOs: 1-1093. The nucleic acids useful according to the invention are synthetic or natural (isolated) nucleic acids. The nucleic acid may be administered alone or in conjunction with a pharmaceutically-acceptable carrier and optionally other therapeutic agents. In some embodiments the nucleic

acid is a CpG nucleic acid, including those having an unmethylated CpG motif, a T-rich nucleic acid, or a poly G nucleic acid.

The nucleic acid in some embodiments has a nucleotide backbone which includes at least one backbone modification, such as a phosphorothicate modification or other phosphate modification. In some embodiments the modified backbone is a peptide modified oligonucleotide backbone. The nucleotide backbone may be chimeric, or the nucleotide backbone is entirely modified.

The nucleic acid can have any length greater than 6 nucleotides, but in some embodiments is between 8 and 100 nucleotide residues in length. In other embodiments the nucleic acid comprises at least 20 nucleotides, at least 24 nucleotides, at least 27, nucleotides, or at least 30 nucleotides. The nucleic acid may be single stranded or double stranded. In some embodiments the nucleic acid is isolated and in other embodiments the nucleic acid may be a synthetic nucleic acid. The antiangiogenic nucleic acids in some instances are not antisense molecules.

The CpG nucleic acid in one embodiment contains at least one unmethylated CpG dinucleotide having a sequence including at least the following formula: $5' X_1 X_2 CGX_3 X_4 3'$ wherein C is unmethylated, wherein X_1, X_2, X_3 , and X_4 are nucleotides. In one embodiment the $5' X_1 X_2 CGX_3 X_4 3'$ sequence of the CpG nucleic acid is a non-palindromic sequence, and in other embodiments it is a palindromic sequence.

In some embodiments X_1X_2 are nucleotides selected from the group consisting of: GpT, GpG, GpA, ApA, ApT, ApG, CpT, CpA, CpG, TpA, TpT, and TpG; and X_3X_4 are nucleotides selected from the group consisting of: TpT, CpT, ApT, TpG, ApG, CpG, TpC, ApC, CpC, TpA, ApA, and CpA. In other embodiments X_1X_2 are GpA or GpT and X_3X_4 are TpT. In yet other embodiments X_1 or X_2 or both are purines and X_3 or X_4 or both are pyrimidines or X_1X_2 are GpA and X_3 or X_4 or both are pyrimidines. In one embodiment X_2 is a T and X_3 is a pyrimidine.

In other embodiments the CpG nucleic acid has a sequence selected from the group consisting of SEQ ID NO: 1, 3, 4, 14-16, 18-24, 28, 29, 33-46, 49, 50, 52-56, 58, 64-67, 69, 71, 72, 76-87, 90, 91, 93, 94, 96, 98, 102-124, 126-128, 131-133, 136-141, 146-150, 152-153, 155-171, 173-178, 180-186, 188-198, 201, 203-214, 216-220, 223, 224, 227-240, 242-256, 258, 260-265, 270-273, 275, 277-281, 286-287, 292, 295-296, 300, 302, 305-307, 309-312, 314-317, 320-327, 329, 335, 337-341, 343-352, 354, 357, 361-365, 367-369, 373-376, 378-385, 388-392, 394, 395, 399, 401-404, 406-426, 429-433, 434-437, 439, 441-443, 445, 447,

448, 450, 453-456, 460-464, 466-469, 472-475, 477, 478, 480, 483-485, 488, 489, 492, 493, 495-502, 504-505, 507-509, 511, 513-529, 532-541, 543-555, 564-566, 568-576, 578, 580, 599, 601-605, 607-611, 613-615, 617, 619-622, 625-646, 648-650, 653-664, 666-697, 699-706, 708, 709, 711-716, 718-732, 736, 737, 739-744, 746, 747, 749-761, 763, 766-767, 769, 772-779, 781-783, 785-786, 7900792, 798-799, 804-808, 810, 815, 817, 818, 820-832, 835-846, 849-850, 855-859, 862, 865, 872, 874-877, 879-881, 883-885, 888-904, and 909-913.

In some embodiments the T rich nucleic acid is a poly T nucleic acid comprising 5' TTTT 3'. In yet other embodiments the poly T nucleic acid comprises 5' X₁ X₂TTTTX₃ X₄ 3' wherein X₁, X₂, X₃ and X₄ are nucleotides. In some embodiments X₁X₂ is TT and/or X₃X₄ is TT. In other embodiments X₁X₂ is selected from the group consisting of TA, TG, TC, AT, AA, AG, AC, CT, CC, CA, CG, GT, GG, GA, and GC; and/or X₃X₄ is selected from the group consisting of TA, TG, TC, AT, AA, AG, AC, CT, CC, CA, CG, GT, GG, GA, and GC.

The T rich nucleic acid may have only a single poly T motif or it may have a plurality of poly T nucleic acid motifs. In some embodiments the T rich nucleic acid comprises at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 T motifs. In other embodiments it comprises at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, or at least 8 CpG motifs. In some embodiments the plurality of CpG motifs and poly T motifs are interspersed.

In yet other embodiments at least one of the plurality of poly T motifs comprises at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, or at least 9 contiguous T nucleotide residues. In other embodiments the plurality of poly T motifs is at least 3 motifs and wherein at least 3 motifs each comprises at least 3 contiguous T nucleotide residues or the plurality of poly T motifs is at least 4 motifs and wherein the at least 4 motifs each comprises at least 3 contiguous T nucleotide residues.

The T rich nucleic acid may include one or more CpG motifs. The motifs may be methylated or unmethylated. In other embodiments the T rich nucleic acid is free of one or more CpG dinucleotides.

In other embodiments the T rich nucleic acid has poly A, poly G, and/or poly C motifs. In other embodiments the T rich nucleic acid is free of two poly C sequences of at least 3 contiguous C nucleotide residues. Preferably the T rich nucleic acid is free of two poly A sequences of at least 3 contiguous A nucleotide residues. In other embodiments the T rich nucleic acid comprises a nucleotide composition of greater than 25% C or greater than 25%

A. In yet other embodiments the T rich nucleic acid is free of poly-C sequences, poly G sequences or poly-A sequences.

In some cases the T rich nucleic acid may be free of poly T motifs, but rather, comprises a nucleotide composition of greater than 25% T. In other embodiments the T rich nucleic acid may have poly T motifs and also comprise a nucleotide composition of greater than 25% T. In some embodiments the T rich nucleic acid comprises a nucleotide composition of greater than 25% T, greater than 30% T, greater than 40% T, greater than 50% T, greater than 60% T, greater than 80% T, or greater than 90% T nucleotide residues. The T rich nucleic acid in some embodiments is selected from the group consisting of SEQ ID NOs: 59-63, 73-75, 142, 215, 226, 241, 267-269, 282, 301, 304, 330, 342, 358, 370-372, 393, 433, 471, 479, 486, 491, 497, 503, 556-558, 567, 694, 793-794, 797, 833, 852, 861, 867, 868, 882, 886, 905, 907, 908, and 910-913. In other embodiments the T rich nucleic acids are sequence selected from the group consisting of SEQ ID NOs: 64, 98, 112, 146, 185, 204, 208, 214, 224, 233, 244, 246, 247, 258, 262, 263, 265, 270-273, 300, 305, 316, 317, 343, 344, 350, 352, 354, 374, 376, 392, 407, 411-413, 429-432, 434, 435, 443, 474, 475, 498-501, 518, 687, 692, 693, 804, 862, 883, 884, 888, 890, and 891.

In some embodiments the poly G nucleic acid comprises: 5' $X_1X_2GGGX_3X_4$ 3' wherein X_1, X_2, X_3 , and X_4 are nucleotides. In embodiments at least one of X_3 and X_4 are a G or both of X_3 and X_4 are a G. In other embodiments the poly G nucleic acid comprises the following formula: 5' GGGNGGG 3' wherein N represents between 0 and 20 nucleotides. In yet other embodiments the poly G nucleic acid comprises the following formula: 5' GGGNGGGNGGG 3' wherein N represents between 0 and 20 nucleotides. The poly G nucleic acid in some embodiments is selected from the group consisting of SEQ ID NOs.: 5, 6, 73, 215, 267-269, 276, 282, 288, 297-299, 355, 359, 386, 387, 444, 476, 531, 557-559, 733, 768, 795, 796, 914-925, 928-931, 933-936, and 938. In other embodiments the poly G nucleic acid includes a sequence selected from the group consisting of SEQ ID NOs; 67, 80-82, 141, 147, 148, 173, 178, 183, 185, 214, 224, 264, 265, 315, 329, 434, 435, 475, 519, 521-524, 526, 527, 535, 554, 565, 609, 628, 660, 661, 662, 725, 767, 825, 856, 857, 876, 892, 909, 926, 927, 932, and 937.

The poly G nucleic acid may include one or more CpG motifs or T-rich motifs. The CpG motifs may be methylated or unmethylated. In other embodiments the poly G nucleic acid is free of one or more CpG dinucleotides or poly-T motifs.

The nucleic acid molecules and optionally other agents may be administered by any route known in the art for delivering medicaments. The medicaments may be administered separately or together, in the same pharmaceutical formulation or separate formulations, by the same route or by different routes. In one embodiment the nucleic acid molecule(s) is administered on a routine schedule. In another embodiment the other agent(s) (e.g., antiangiogenesis agents, anticancer agents) is administered on a routine schedule.

Each of the limitations of the invention can encompass various embodiments of the invention. It is, therefore, anticipated that each of the limitations of the invention involving any one element or combinations of elements can be included in each aspect of the invention.

10

5

Brief Description of the Drawings

Figure 1 is a histogram showing the effect of a CpG nucleic acid on angiogenesis as measured by hemoglobin content.

The drawing is not required for enablement of the claimed invention.

15

20

25

30

Detailed Description of the Invention

The present invention includes compositions that include antiangiogenic nucleic acids and methods of using the antiangiogenic nucleic acids for the treatment of diseases that are mediated by angiogenesis. The invention includes antiangiogenic nucleic acids having various nucleotide sequences. The present invention comprises a method of treating undesired angiogenesis in a human or animal comprising the steps of the administering to the human or animal with the undesired angiogenesis a composition comprising an effective amount of, for example, an antiangiogenic nucleic acid.

As used herein, the term "angiogenesis" means the generation of new blood vessels into a tissue or organ. Under normal physiological conditions, humans or animals undergo angiogenesis only in very specific restricted situations. For example, angiogenesis is normally observed in wound healing, fetal and embryonal development and formation of the corpus luteum, endometrium and placenta. The term "endothelium" means a thin layer of flat epithelial cells that lines serous cavities, lymph vessels, and blood vessels. The term "endothelial inhibiting activity" means the capability of a molecule to inhibit angiogenesis in general and, for example, to inhibit the growth of bovine capillary endothelial cells in culture in the presence of fibroblast growth factor.

Antiangiogenic nucleic acids are effective in treating diseases or processes that are mediated by, or involve, angiogenesis. The present invention includes the method of treating an angiogenesis mediated disease with an effective amount of antiangiogenic nucleic acids. The angiogenesis mediated diseases include, but are not limited to, solid tumors; blood born tumors such as leukemias; tumor metastasis; benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; pre-malignant tumors; rheumatoid arthritis; psoriasis; ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis; Osler-Webber Syndrome; myocardial angiogenesis; plaque neovascularization; telangiectasia; hemophiliac joints; angiofibroma; and wound granulation.

5

10

15

20

25

30

Antiangiogenic nucleic acids may be useful in the treatment of disease of excessive or abnormal stimulation of endothelial cells. These diseases include, but are not limited to, intestinal adhesions, atherosclerosis, scleroderma, and hypertrophic scars, i.e., keloids. Antiangiogenic nucleic acid can be used as a birth control agent by preventing vascularization required for embryo implantation.

Antiangiogenic nucleic acids may be useful in the treatment of conditions characterized by abnormal epithelial cell proliferation, such as proliferative dermatologic disorders. These include conditions such as keloids, seborrheic keratosis, papilloma virus infection (e.g. producing verruca vulbaris, verruca plantaris, verruca plana, condylomata, etc.) and eczema.

Antiangiogenic nucleic acids may be useful in the treatment of precancerous lesions such as epithelial precancerous lesions. An epithelial precancerous lesion is a lesion of epithelial cell origin that has a propensity to develop into a cancerous condition. An example is a precancerous skin lesion. Epithelial precancerous skin lesions also arise from other proliferative skin disorders such as hemangiomas, keloids, eczema and papilloma virus infections producing verruca vulbaris, verruca plantaris and verruca planar. The symptoms of the epithelial precancerous lesions include skin-colored or red-brown macule or papule with dry adherent scales. Actinic keratosis is the most common epithelial precancerous lesion among fair skinned individuals. It is usually present as lesions on the skin which may or may not be visually detectable. The size and shape of the lesions varies. It is a photosensitive disorder and may be aggravated by exposure to sunlight. Bowenoid actinic keratosis is another form of an epithelial precancerous lesion. In some cases, the lesions may develop

10

15

20

25

30

into an invasive form of squamous cell carcinoma and may pose a significant threat of metastasis. Other types of epithelial precancerous lesions include hypertrophic actinic keratosis, arsenical keratosis, hydrocarbon keratosis, thermal keratosis, radiation keratosis, viral keratosis, Bowen's disease, erythroplaquia of queyrat, oral erythroplaquia, leukoplakia, and intraepidermal epithelialoma.

Antiangiogenic nucleic acids may be used in combination with other compositions and procedures for the treatment of diseases. For example, a tumor may be treated conventionally with surgery, radiation or chemotherapy combined with antiangiogenic nucleic acids and then antiangiogenic nucleic acids may be subsequently administered to the patient to extend the dormancy of micrometastases and to stabilize any residual primary tumor. In some instances it may be preferable to administer the antiangiogenic nucleic acids specifically to a site likely to harbor a metastatic lesion (that may or may not be clinically discernible at the time). A sustained release formulation implanted specifically at the site (or the tissue) where the metastatic lesion is likely to be would be suitable in these latter instances.

In some embodiments, the antiangiogenic nucleic acids of the invention do not interfere with specific receptor-ligand interactions at the cell surface of a cell, thereby causing the stimulation or inhibition of signaling through such receptors. These interactions include those involving heparin binding receptor, VEGF receptor, or EGF receptor.

In still other embodiments, the antiangiogenic nucleic acids are not antisense nucleic acids, meaning that they do not function by binding to complementary genomic DNA or RNA species within a cell and thereby inhibiting the function of said genomic DNA or RNA species. In important embodiments, the antiangiogenesis nucleic acid does not comprise a nucleic acid sequence that corresponds to a VEGF encoding sequence (or is complementary to a VEGF encoding sequence).

The effective dosage for inhibition of angiogenesis *in vivo*, which can be defined as inhibition of capillary endothelial cell proliferation and/or migration and/or blood vessel ingrowth, can be extrapolated from *in vitro* inhibition assays. *In vitro* assays have been developed to screen for inhibition of angiogenesis. Events that can be tested to assess angiogenesis inhibitors include proteolytic degradation of extracellular matrix and/or basement membrane, proliferation of endothelial cells, migration of endothelial cells, and capillary tube formation. The chick chorioallantoic membrane assay (CAM), described by Taylor and Folkman (*Nature* 297:307-312, 1982), can be used to determine whether the compound is capable of inhibiting neovascularization *in vivo*.

In some embodiments, the antiangiogenic nucleic acids are administered in doses, routes and schedules (and also in therapeutic cocktails) that would not result in the stimulation of an immune response.

The effective dosage is dependent not only on the sequence of the nucleic acid molecules used for inhibition of angiogenesis, but also on the method and means of delivery, which can be localized or systemic. For example, in some applications, as in the treatment of psoriasis or diabetic retinopathy, the inhibitor preferably is delivered in a topical or ophthalmic carrier. In other applications, as in the treatment of solid tumors, the inhibitor preferably is delivered by means of a biodegradable, polymeric implant.

5

10

15

20

25

30

An "antiangiogenic nucleic acid" as used herein is any nucleic acid containing an antiangiogenic motif or backbone that inhibits capillary endothelial cell proliferation and/or migration and/or blood vessel ingrowth.

The compounds useful according to the invention are nucleic acids. The nucleic acids may be double-stranded or single-stranded. Generally, double-stranded molecules may be more stable *in vivo*, while single-stranded molecules may have increased activity. The terms "nucleic acid" and "oligonucleotide" refer to multiple nucleotides (i.e. molecules comprising a sugar (e.g. ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g. cytosine (C), thymine (T) or uracil (U)) or a substituted purine (e.g. adenine (A) or guanine (G)) or a modified base. As used herein, the terms refer to oligoribonucleotides as well as oligodeoxyribonucleotides. The terms shall also include polynucleosides (i.e. a polynucleotide minus the phosphate) and any other organic base containing polymer. Nucleic acid molecules as used herein include vectors, e.g., plasmids, as well as oligonucleotides.

The terms "nucleic acid" and "oligonucleotide" also encompass nucleic acids or oligonucleotides with a covalently modified base and/or sugar. For example, they include nucleic acids having backbone sugars which are covalently attached to low molecular weight organic groups other than a hydroxyl group at the 3' position and other than a phosphate group at the 5' position. Thus modified nucleic acids may include a 2'-O-alkylated ribose group. In addition, modified nucleic acids may include sugars such as arabinose instead of ribose. Thus the nucleic acids may be heterogeneous in backbone composition thereby containing any possible combination of polymer units linked together such as peptide- nucleic acids (which have amino acid backbone with nucleic acid bases). In some embodiments the nucleic acids are homogeneous in backbone composition.

10

15

20

25

30

The substituted purines and pyrimidines of the nucleic acids include standard purines and pyrimidines such as cytosine as well as base analogs such as C-5 propyne substituted bases (Wagner et al., *Nature Biotechnology* 14:840- 844, 1996). Purines and pyrimidines include but are not limited to adenine, cytosine, guanine, thymine, 5-methylcytosine, 2-aminopurine, 2-amino-6-chloropurine, 2,6-diaminopurine, hypoxanthine, and other naturally and non-naturally occurring nucleobases, substituted and unsubstituted aromatic moieties.

The nucleic acid is a linked polymer of bases or nucleotides. As used herein with respect to linked units of a nucleic acid, "linked" or "linkage" means two entities are bound to one another by any physicochemical means. Any linkage known to those of ordinary skill in the art, covalent or non-covalent, is embraced. Such linkages are well known to those of ordinary skill in the art. Natural linkages, which are those ordinarily found in nature connecting the individual units of a nucleic acid, are most common. The individual units of a nucleic acid may be linked, however, by synthetic or modified linkages.

Whenever a nucleic acid is represented by a sequence of letters it will be understood that the nucleotides are in 5' >> 3' order from left to right and that "A" denotes adenosine, "C" denotes cytosine, "G" denotes guanosine, "T" denotes thymidine, and "U" denotes uracil unless otherwise noted.

Nucleic acid molecules useful according to the invention can be obtained from natural nucleic acid sources (e.g. genomic nuclear or mitochondrial DNA or cDNA), or are synthetic (e.g. produced by oligonucleotide synthesis). Nucleic acids isolated from existing nucleic acid sources are referred to herein as native, natural, or isolated nucleic acids. The nucleic acids useful according to the invention may be isolated from any source, including eukaryotic sources, prokaryotic sources, nuclear DNA, mitochondrial DNA, etc. Thus, the term nucleic acid encompasses both synthetic and isolated nucleic acids.

The term "isolated" as used herein refers to a nucleic acid which is substantially free of or which is separated from components which it is normally associated with in nature e.g., nucleic acids, proteins, lipids, carbohydrates or *in vivo* systems to an extent practical and appropriate for its intended use. In particular, the nucleic acids are sufficiently pure and are sufficiently free from other biological constituents of host cells so as to be useful in, for example, producing pharmaceutical preparations. Because an isolated nucleic acid of the invention may be admixed with a pharmaceutically-acceptable carrier in a pharmaceutical preparation, the nucleic acid may comprise only a small percentage by weight of the

preparation. The nucleic acid is nonetheless substantially pure in that it has been substantially separated from the substances with which it may be associated in living systems. The nucleic acids can be produced on a large scale in plasmids, (see Sambrook, T., et al., "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor laboratory Press, New York, 1989) and separated into smaller pieces or administered whole. After being administered to a subject the plasmid can be degraded into oligonucleotides. One skilled in the art can purify viral, bacterial, eukaryotic, etc. nucleic acids using standard techniques, such as those employing restriction enzymes, exonucleases or endonucleases.

5

10

15

20

25

30

For use in the instant invention, the nucleic acids can be synthesized *de novo* using any of a number of procedures well known in the art. For example, the b-cyanoethyl phosphoramidite method (Beaucage, S.L., and Caruthers, M.H., *Tet. Let.* 22:1859, 1981); nucleoside H-phosphonate method (Garegg *et al.*, *Tet. Let.* 27:4051-4054, 1986; Froehler *et. al.*, *Nucl. Acid. Res.* 14:5399-5407, 1986, ; Garegg *et al.*, *Tet. Let.* 27:4055-4058, 1986, Gaffney *et al.*, *Tet. Let.* 29:2619-2622, 1988). These chemistries can be performed by a variety of automated oligonucleotide synthesizers available in the market.

In some embodiments, the nucleic acids useful according to the invention may function as immunostimulatory nucleic acids. An immunostimulatory nucleic acid is any nucleic acid, as described herein, which is capable of modulating an immune response. A nucleic acid which modulates an immune response is one which produces any form of immune stimulation, including, but not limited to, induction of a cytokine, B cell activation, T cell activation, monocyte activation. Immunostimulatory nucleic acids include, but are not limited to, CpG nucleic acids, T-rich nucleic acids, poly G nucleic acids, and nucleic acids having phosphate modified backbones, such as phosphorothioate backbones.

A "CpG nucleic acid" or a "CpG antiangiogenic nucleic acid" as used herein is a nucleic acid containing at least one unmethylated CpG dinucleotide (cytosine-guanine dinucleotide sequence, i.e. "CpG DNA" or DNA containing a 5' cytosine followed by 3' guanosine and linked by a phosphate bond) and inhibits angiogenesis. The entire CpG nucleic acid can be unmethylated or portions may be unmethylated but at least the C of the 5' CG 3' must be unmethylated.

In one embodiment the invention provides a CpG nucleic acid represented by at least the formula:

5'N₁X₁CGX₂N₂3'

10

15

20

30

wherein X_1 and X_2 are nucleotides and N is any nucleotide and N_1 and N_2 are nucleic acid sequences composed of from about 0-25 N's each. In some embodiments X_1 is adenine, guanine, or thymine and/or X_2 is cytosine, adenine, or thymine. In other embodiments X_1 is cytosine and/or X_2 is guanine.

In other embodiments the CpG nucleic acid is represented by at least the formula: 5'N₁X₁X₂CGX₃X₄N₂3'

wherein X_1 , X_2 , X_3 , and X_4 are nucleotides. In some embodiments, X_1X_2 are nucleotides selected from the group consisting of: GpT, GpG, GpA, ApA, ApT, ApG, CpT, CpA, CpG, TpA, TpT, and TpG; and X_3X_4 are nucleotides selected from the group consisting of: TpT, CpT, ApT, TpG, ApG, CpG, TpC, ApC, CpC, TpA, ApA, and CpA; N is any nucleotide and N_1 and N_2 are nucleic acid sequences composed of from about 0-25 N's each. In some embodiments, X_1X_2 are GpA or GpT and X_3X_4 are TpT. In other embodiments X_1 or X_2 or both are purines and X_3 or X_4 or both are pyrimidines.

In another embodiment the CpG nucleic acid has the sequence $5'TCN_1TX_1X_2CGX_3X_43'$.

Examples of CpG nucleic acids according to the invention include but are not limited to those listed in Table 1, such as SEQ ID NOs: 1, 3, 4, 14-16, 18-24, 28, 29, 33-46, 49, 50, 52-56, 58, 64-67, 69, 71, 72, 76-87, 90, 91, 93, 94, 96, 98, 102-124, 126-128, 131-133, 136-141, 146-150, 152-153, 155-171, 173-178, 180-186, 188-198, 201, 203-214, 216-220, 223, 224, 227-240, 242-256, 258, 260-265, 270-273, 275, 277-281, 286-287, 292, 295-296, 300, 302, 305-307, 309-312, 314-317, 320-327, 329, 335, 337-341, 343-352, 354, 357, 361-365, 367-369, 373-376, 378-385, 388-392, 394, 395, 399, 401-404, 406-426, 429-433, 434-437, 439, 441-443, 445, 447, 448, 450, 453-456, 460-464, 466-469, 472-475, 477, 478, 480, 483-485, 488, 489, 492, 493, 495-502, 504-505, 507-509, 511, 513-529, 532-541, 543-555, 564-566, 568-576, 578, 580, 599, 601-605, 607-611, 613-615, 617, 619-622, 625-646, 648-650, 653-664, 666-697, 699-706, 708, 709, 711-716, 718-732, 736, 737, 739-744, 746, 747, 749-761, 763, 766-767, 769, 772-779, 781-783, 785-786, 7900792, 798-799, 804-808, 810, 815, 817, 818, 820-832, 835-846, 849-850, 855-859, 862, 865, 872, 874-877, 879-881, 883-885, 888-904, and 909-913.

A "T rich nucleic acid" or "T rich antiangiogenic nucleic acid" is a nucleic acid which includes at least one poly T sequence and/or which has a nucleotide composition of greater than 25% T nucleotide residues and which inhibits angiogenesis. A nucleic acid having a

- 14 -

poly-T sequence includes at least four Ts in a row, such as 5'-TTTT-3'. Preferably the T rich nucleic acid includes more than one poly T sequence. In preferred embodiments the T rich nucleic acid may have 2, 3, 4, etc poly T sequences, such as SEQ ID NO:246 or SEQ ID NO:433. Other T rich nucleic acids have a nucleotide composition of greater than 25% T nucleotide residues, but do not necessarily include a poly T sequence. In these T rich nucleic acids the T nucleotide resides may be separated from one another by other types of nucleotide residues, i.e., G, C, and A. In some embodiments the T rich nucleic acids have a nucleotide composition of greater than 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 99%, T nucleotide residues and every integer % in between. Preferably the T rich nucleic acids have at least one poly T sequence and a nucleotide composition of greater than 25% T nucleotide residues.

In one embodiment the T rich nucleic acid is represented by at least the formula: $5'X_1X_2TTTX_3X_43'$

10

15

20

25

30

wherein X₁, X₂,X₃, and X₄ are nucleotides. In one embodiment X₁X₂ is TT and/or X₃X₄ is TT. In another embodiment X₁X₂ are any one of the following nucleotides TA, TG, TC, AT, AA, AG, AC, CT, CC, CA, CG, GT, GG, GA, and GC; and X₃X₄ are any one of the following nucleotides TA, TG, TC, AT, AA, AG, AC, CT, CC, CA, CG, GT, GG, GA, and GC.

In some embodiments it is preferred that the T-rich nucleic acid does not contain poly C (CCCC), poly A (AAAA), poly G (GGGG), CpG motifs, or multiple GGs. In other embodiments the T-rich nucleic acid includes these motifs. Thus in some embodiments of the invention the T rich nucleic acids include CpG dinucleotides and in other embodiments the T rich nucleic acids are free of CpG dinucleotides. The CpG dinucleotides may be methylated or unmethylated.

Examples of T rich nucleic acids that are free of CpG nucleic acids include but are not limited to those listed in Table 1, such as SEQ ID Nos: 59-63, 73-75, 142, 215, 226, 241, 267-269, 282, 301, 304, 330, 342, 358, 370-372, 393, 433, 471, 479, 486, 491, 497, 503, 556-558, 567, 694, 793-794, 797, 833, 852, 861, 867, 868, 882, 886, 905, 907, 908, and 910-913. Examples of T rich nucleic acids that include CpG nucleic acids include but are not limited to those listed in Table 1, such as SEQ ID Nos: 64, 98, 112, 146, 185, 204, 208, 214, 224, 233, 244, 246, 247, 258, 262, 263, 265, 270-273, 300, 305, 316, 317, 343, 344, 350, 352, 354, 374, 376, 392, 407, 411-413, 429-432, 434, 435, 443, 474, 475, 498-501, 518, 687, 692, 693, 804, 862, 883, 884, 888, 890, and 891.

.

15

20

25

30

Poly G containing nucleic acids are also useful in accordance with the invention. A "poly G nucleic acid" or "poly G antiangiogenic nucleic acid" is a nucleic acid which includes at least one poly G sequence and/or which has a nucleotide composition of greater than 25% G nucleotide residues and which inhibits angiogenesis. A variety of references, including Pisetsky and Reich, 1993 *Mol. Biol. Reports*, 18:217-221; Krieger and Herz, 1994, *Ann. Rev. Biochem.*, 63:601-637; Macaya et al., 1993, *PNAS*, 90:3745-3749; Wyatt et al., 1994, *PNAS*, 91:1356-1360; Rando and Hogan, 1998, In Applied Antisense Oligonucleotide Technology, ed. Krieg and Stein, p. 335-352; and Kimura et al., 1994, *J. Biochem.* 116, 991-994 describe the properties of poly G nucleic acids.

Poly G nucleic acids preferably are nucleic acids having the following formulas: $5' X_1 X_2 GGG X_3 X_4 3'$

wherein X_1, X_2, X_3 , and X_4 are nucleotides. In preferred embodiments at least one of X_3 and X_4 are a G. In other embodiments both of X_3 and X_4 are a G. In yet other embodiments the preferred formula is 5' GGGNGGG 3', or 5' GGGNGGGNGGG 3' wherein N represents between 0 and 20 nucleotides. In other embodiments the Poly G nucleic acid is free of unmethylated CG dinucleotides, such as, for example, the nucleic acids listed below as SEQ ID Nos: 5, 6, 73, 215, 267-269, 276, 282, 288, 297-299, 355, 359, 386, 387, 444, 476, 531, 557-559, 733, 768, 795, 796, 914-925, 928-931, 933-936, and 938. In other embodiments the poly G nucleic acid includes at least one unmethylated CG dinucleotide, such as, for example, the nucleic acids listed above as SEQ ID Nos; 67, 80-82, 141, 147, 148, 173, 178, 183, 185, 214, 224, 264, 265, 315, 329, 434, 435, 475, 519, 521-524, 526, 527, 535, 554, 565, 609, 628, 660, 661, 662, 725, 767, 825, 856, 857, 876, 892, 909, 926, 927, 932, and 937.

The antiangiogenic nucleic acids of the invention can also be those which do not possess CpG, poly-G, or T-rich motifs.

Nucleic acids having modified backbones, such as phosphorothioate backbones, also fall within the class of immunostimulatory nucleic acids. U.S. Patents Nos. 5,723,335 and 5,663,153 issued to Hutcherson, et al. and related PCT publication WO95/26204 describe immune stimulation using phosphorothioate oligonucleotide analogues. These patents describe the ability of the phosphorothioate backbone to stimulate an immune response in a non-sequence specific manner.

The antiangiogenic nucleic acid molecules may be any size of at least 6 nucleotides but in some embodiments are in the range of between 6 and 100 or in some embodiments between 8 and 35 nucleotides in size. Nucleic acids can be produced on a large scale in

plasmids. These may be administered in plasmid form or alternatively they can be degraded into oligonucleotides before administration.

5

10

15

20

25

30

"Palindromic sequence" shall mean an inverted repeat (i.e. a sequence such as ABCDEE'D'C'B'A' in which A and A' are bases capable of forming the usual Watson-Crick base pairs and which includes at least 6 nucleotides in the palindrome. *In vivo*, such sequences may form double-stranded structures. In one embodiment the nucleic acid contains a palindromic sequence. In some embodiments when the nucleic acid is a CpG nucleic acid, a palindromic sequence used in this context refers to a palindrome in which the CpG is part of the palindrome, and optionally is the center of the palindrome. In another embodiment the nucleic acid is free of a palindrome. A nucleic acid that is free of a palindrome does not have any regions of 6 nucleotides or greater in length which are palindromic. A nucleic acid that is free of a palindrome can include a region of less than 6 nucleotides which are palindromic.

A "stabilized nucleic acid molecule" shall mean a nucleic acid molecule that is relatively resistant to *in vivo* degradation (e.g. via an exo- or endo-nuclease). Stabilization can be a function of length or secondary structure. Nucleic acids that are tens to hundreds of kbs long are relatively resistant to *in vivo* degradation. For shorter nucleic acids, secondary structure can stabilize and increase their effect. For example, if the 3' end of an oligonucleotide has self-complementarity to an upstream region, so that it can fold back and form a sort of stem loop structure, then the oligonucleotide becomes stabilized and therefore exhibits more activity.

Some stabilized oligonucleotides of the instant invention have a modified backbone. It has been demonstrated that modification of the oligonucleotide backbone provides enhanced activity of the nucleic acids when administered *in vivo*. Nucleic acids, including at least two phosphorothioate linkages at the 5' end of the oligonucleotide and multiple phosphorothioate linkages at the 3' end, preferably 5, may provide maximal activity and protect the oligonucleotide from degradation by intracellular exo- and endo-nucleases. Other modified oligonucleotides include phosphodiester modified oligonucleotide, combinations of phosphodiester and phosphorothioate oligonucleotide, methylphosphonate, methylphosphorothioate, phosphorodithioate, and combinations thereof. Each of these combinations and their particular effects on immune cells is discussed in more detail in PCT Published Patent Applications claiming priority to U.S. Patent Nos. 6,207,646B1 and 6,239,116B1, the entire contents of which are hereby incorporated by reference. It is believed that these modified oligonucleotides may show more antiangiogenic activity due to enhanced

10

15

20

25

30

nuclease resistance, increased cellular uptake, increased protein binding, and/or altered intracellular localization.

Other stabilized oligonucleotides include: nonionic DNA analogs, such as alkyl- and aryl-phosphates (in which the charged phosphonate oxygen is replaced by an alkyl or aryl group), phosphodiester and alkylphosphotriesters, in which the charged oxygen moiety is alkylated. Oligonucleotides which contain diol, such as tetraethyleneglycol or hexaethyleneglycol, at either or both termini have also been shown to be substantially resistant to nuclease degradation.

For use *in vivo*, nucleic acids are preferably relatively resistant to degradation (*e.g.*, via endo-and exo-nucleases). Secondary structures, such as stem loops, can stabilize nucleic acids against degradation. Alternatively, nucleic acid stabilization can be accomplished via phosphate backbone modifications. One type of stabilized nucleic acid has at least a partial phosphorothioate modified backbone. Phosphorothioates may be synthesized using automated techniques employing either phosphoramidate or H-phosphonate chemistries. Aryl-and alkyl-phosphonates can be made, *e.g.*, as described in U.S. Patent No. 4,469,863; and alkylphosphotriesters (in which the charged oxygen moiety is alkylated as described in U.S. Patent No. 5,023,243 and European Patent No. 092,574) can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described (Uhlmann, E. and Peyman, A., *Chem. Rev.* 90:544, 1990; Goodchild, J., *Bioconjugate Chem.* 1:165, 1990).

Other sources of nucleic acids useful according to the invention include standard viral and bacterial vectors, many of which are commercially available. In its broadest sense, a "vector" is any nucleic acid material which is ordinarily used to deliver and facilitate the transfer of nucleic acids to cells. The vector as used herein may be an empty vector or a vector carrying a gene which can be expressed. In the case when the vector is carrying a gene the vector generally transports the gene to the target cells with reduced degradation relative to the extent of degradation that would result in the absence of the vector. In this case the vector optionally includes gene expression sequences to enhance expression of the gene in target cells such as immune cells, but it is not required that the gene be expressed in the cell.

In general, vectors include, but are not limited to, plasmids, phagemids, viruses, other vehicles derived from viral or bacterial sources. Viral vectors are one type of vector and include, but are not limited to, nucleic acid sequences from the following viruses: retrovirus, such as Moloney murine leukemia virus, Harvey murine sarcoma virus, murine mammary

10

15

20

25

30

tumor virus, and Rous sarcoma virus; adenovirus, adeno-associated virus; SV40-type viruses; polyoma viruses; Epstein-Barr viruses; papilloma viruses; herpes virus; vaccinia virus; polio virus; and RNA virus such as a retrovirus. One can readily employ other vectors not named but known to the art. Some viral vectors are based on non-cytopathic eukaryotic viruses in which non-essential genes have been replaced with a nucleic acid to be delivered. Non-cytopathic viruses include retroviruses, the life cycle of which involves reverse transcription of genomic viral RNA into DNA.

Standard protocols for producing empty vectors or vectors carrying genes (including the steps of incorporation of exogenous genetic material into a plasmid, transfection of a packaging cell line with plasmid, production of recombinant retroviruses by the packaging cell line, collection of viral particles from tissue culture media, and/or infection of the target cells with viral particles) are provided in Kriegler, M., "Gene Transfer and Expression, A Laboratory Manual," W.H. Freeman C.O., New York (1990) and Murry, E.J. Ed. "Methods in Molecular Biology," vol. 7, Humana Press, Inc., Cliffton, New Jersey (1991).

Other vectors include plasmid vectors. Plasmid vectors have been extensively described in the art and are well-known to those of skill in the art. See e.g., Sambrook et al., "Molecular Cloning: A Laboratory Manual," Second Edition, Cold Spring Harbor Laboratory Press, 1989. In the last few years, plasmid vectors have been found to be particularly advantageous for delivering genes to cells *in vivo* because of their inability to replicate within and integrate into a host genome. Some plasmids, however, having a promoter compatible with the host cell, can express a peptide from a gene operatively encoded within the plasmid. Some commonly used plasmids include pBR322, pUC18, pUC19, pcDNA3.1, SV40, and pBlueScript. Other plasmids are well-known to those of ordinary skill in the art. Additionally, plasmids may be custom designed using restriction enzymes and ligation reactions to remove and add specific fragments of DNA.

Exemplary antiangiogenic nucleic acid sequences include but are not limited to those antiangiogenic sequences shown in Table 1 (SEQ ID NO: 1 to SEQ ID NO:1093). The Table lists the SEQ ID NO, nucleotide sequence of the oligonucleotide (ODN sequence), and backbone modification, if any.

Backbone modifications are abbreviated as follows:

S = phosphorothioate

O = phosphodiester

SOS = phosphorothioate and phosphodiester chimeric with phosphodiester in middle

La dimensional della Si

SO = phosphorothioate and phosphodiester chimeric with phosphodiester on 3' end

OS = phosphorothioate and phosphodiester chimeric with phosphodiester on 5' end

S2 = phosphorodithioate

S2O = phosphorodithioate and phosphodiester chimeric with phosphodiester on 3' end

OS2 = phosphorodithioate and phosphodiester chimeric with phosphodiester on 5' end

X = unknown

p-ethoxy = p-ethoxy backbone; see, e.g., US patent 6,015,886

PO = phosphodiester

ODN sequence symbols, other than a, c, g and t, are as follows:

i = inosine

5

20

n = a, c, g, or t

d = a, g or t

h = a, c or t

b = c, g or t; if "b" is single and is listed on 5' or 3' end of oligonucleotide, then "b"

15 indicates a biotin moiety attached to that end of the oligonucleotide

q = 5-methyl-cytosine

m = a or c

s = c or g

x = if "x" is single and is listed on 5' or 3' end of oligonucleotide, then "x" indicates a biotin moiety attached to that end of the oligonucleotide

z = 5-methyl-cytidine

f=FITC moiety attached to 5' or 3' end of oligonucleotide

Table 1

SEQ ID NO:	ODN SEQUENCE	BACKBONE
1	tctcccagcgtgcgccat	S
2	ataatccagcttgaaccaag	S
3	ataatcgacgttcaagcaag	S
4	taccgcgtgcgaccctct	S
5	ggggagggt	S
6	ggggaggg	S
7	ggtgaggtg	S
8	tccatgtzgttcctgatgct	0
9	gctaccttagzgtga	0
10	tccatgazgttcctgatgct	0
11	tccatgacgttcztgatgct	0
12	gctagazgttagtgt	0
13	agctccatggtgctcactg	s
14	ccacgtcgaccctcaggcga	s
15	gcacatcgtcccgcagccga	s
16	gtcactcgtggtacctcga	s

17	gttggatacaggccagactttgttg	<u> </u>
18	gattcaacttgcgctcatcttaggc	
19	accatggacgaactgtttcccctc	s
20	accatggacgagctgtttcccctc	s
21	accatggacgacctgtttcccctc	s
22	accatggacgtactgtttcccctc	· s
23	accatggacggtctgtttcccctc	s
24	accatggacgttctgtttcccctc	. s
25	ccactcacatctgctgctccacaag	0
26	acttctcatagtccctttggtccag	0
27	tccatgagcttcctgagtct	
28	gaggaaggigiggaigacgt	0
29	gtgaaticgttcicgggict	0
. 30	aaaaaa	s
31	ccccc	· s
32	ctgtca	S
33	tcgtag	s .
34	tcgtgg	s
35	cqtcqt	s
36	tccatgtcggtcctgagtct	sos
37	tccatgccggtcctgagtct	sos
38	tccatgacggtcctgagtct	sos
39	tccatgacggtcctgagtct	sos
40	tccatgtcgatcctgagtct	sos
41	tccatgtcgctcctgagtct	sos
42	tccatgtcgttcctgagtct	sos
43	tccatgacgttcctgagtct	·sos
44	tccataacgttcctgagtct	sos
45	tccatgacgtccctgagtct	sos
46	tccatcacgtgcctgagtct	sos
47	tccatgctggtcctgagtct	sos
48	tccatgtzggtcctgagtct	sos
49	ccgcttcctccagatgagctcatgggtttctccaccaag	0
50	cttggtggagaaacccatgagctcatctggaggaagcgg	0
51	ccccaaaggatgagaagtt	0
52	agatagcaaatcggctgacg	0
53	ggttcacgtgctcatggctg	0
54	teteceagegtgegecat	s
55	tctcccagcgtgcgccat	S
56	taccgcgtgcgaccctct	S
57	ataatccagcttgaaccaag	S
58	ataatcgacgttcaagcaag	S
59	tccatgattttcctgatttt	0
60	ttgttttttgtttttt	s
61	tttttttgtttttt	0
62	tgctgcttttgtgcttttttt	s
63	tgetgettttgtgetettgtgett	-
64	gcattcatcaggcgggcaagaat	0
65	taccgagcttcgacgagatttca	0
66	gcatgacgttgagct	s
67	cacgttgaggggcat	s
68	ctgctgaggctag	s
69		s
		0
70	gcatgagcttgagctga	S
	tcagcgtgcgcc	
72	atgacgttcctgacgtt	S S
73	ttttggggttttt	S

74	tctaggctttttaggcttcc	
75	tgcattttttaggccaccat	s
76	tctcccagcgtgcgtccat	S
77	tctcccagegggcgcat	<u>s</u>
78	tctcccagcgagcgccat	<u>s</u>
79	teteccagegegegecat	s
80		s
81	ggggtgacgttcagggggg	sos
82	ggggtccagcgtgcgccatggggg	sos
83	ggggtgtcgttcagggggg	sos
84	tccatgtcgttcctgtcgtt	s
85	tccatagcgttcctagcgtt	s
	tcgtcgctgtctccgcttctt	· s
86	gcatgacgttgagct	Sos
87	tctcccagcgtgcgccatat	Sos
88	tccatgazgttcctgazgtt	S
89	gcatgazgttgagct	0
90	tccagcgtgcgccata	sos
91	tctcccagcgtgcgccat	0
92	tccatgagcttcctgagtct	0
93	gcatgtcgttgagct	sos
94	tcctgacgttcctgacgtt	S
95	gcatgatgttgagct	
96	gcatttcgaggagct	_ 0
97	gcatgtagctgagct	0
98	tccaggacgttcctagttct	0
99	tccaggagcttcctagttct	0
100	tccaggatgttcctagttct	0
101	tccagtctaggcctagttct	0
102	tccagttcgagcctagttct	0
103	gcatggcgttgagct	sos
104	gcatagcgttgagct	sos
105	gcattgcgttgagct	sos
106	gcttgcgttt	sos
107	tctcccagcgttgcgccatat	sos
108	tctcccagcgtgcgttatat	sos
109	tctccctgcgtgcgccatat	sos
110	tctgcgtgcgtgcgccatat	sos
111	tctcctagcgtgcgccatat	sos
112	tctcccagcgtgcgcctttt	sos
113	gctandcghhagc	0
114	tectgaegttece	
115	ggaagacgttaga	
116	tcctgacgttaga	
117	tcagaccagctggtcgggtgttcctga	
118	tcaggaccagccagctggtctga	
119	gctagtcgatagc	0
120		
121	gctagtcgctagc . gcttgacgtctagc	
122	gcttgacgtttagc	0
123		
124	gcttgacgtcaagc	· · · · · · · · · · · · · · · · · · ·
	gctagacgtttagc	
125	tccatgacattcctgatgct	0
126	gctagacgtctagc	0
127	ggctatgtcgttcctagcc	0
128	ggctatgtcgatcctagcc	0
129	ctcatgggtttctccaccaag	. 0
130	cttggtggagaaacccatgag	0

131		7
131	tccatgacgttcctagttct	<u> </u>
132	ccgcttcctccagatgagctcatg	<u> </u>
133	catgagctcatctggaggaagcgg	<u> </u>
134	ccagatgagctcatgggtttctcc	<u> </u>
135	ggagaaacccatgagctcatctgg	-
136	agcatcaggaacgacatgga	0
137	tccatgacgttcctgacgtt	RNA
138	gcgcgcgcgcgcgcg	<u> </u>
139	ccggccggccggccgg	0
140	ttccaatcagccccaccgctctggccccaccctcaccctcca	0
141	tggagggtgagggtggggccagagcgggtggggctgattggaa	<u> </u>
142	tcaaatgtgggattttcccatgagtct	<u> </u>
143	agactcatgggaaaatcccacatttga	<u> </u>
144	tgccaagtgctgagtcactaataaaga	<u> </u>
145	tctttattagtgactcagcacttggca	0
146	tgcaggaagtccgggttttccccaacccccc	0
147	ggggggttggggaaaacccggacttcctgca	0
148	ggggactttccgctggggactttccagggggactttcc	Sos
149	tccatgacgttcctctccatgacgttcctc	0
150	gaggaacgtcatggagaggaacgtcatgga	0
151	ataatagagcttcaagcaag	s
152	tccatgacgttcctgacgtt	s
153	tccatgacgttcctgacgtt	sos
154	tccaggactttcctcaggtt	s
155	tcttgcgatgctaaaggacgtcacattgcacaatcttaataaggt	0
156	accttattaagattgtgcaatgtgacgtcctttagcatcgcaaga	0
157	tcctgacgttcctggcggtcctgtcgct	0
158	tcctgtcgctcctgtcgct	0
159	tcctgacgttgaagt	0
160	tcctgtcgttgaagt	. 0
161	tcctggcgttgaagt	0
162	tcctgccgttgaagt	0
163	tccttacgttgaagt	0
164	tcctaacgttgaagt	0
165	tcctcacgttgaagt	0
166	tcctgacgatgaagt	0
167	tcctgacgctgaagt	0
168	tcctgacggtgaagt	0
169	tcctgacgtagaagt	0
170	tcctgacgtcgaagt	0
171	tcctgacgtggaagt	0
172	tcctgagcttgaagt	0
173	gggggacgttggggg	0
174	tcctgacgttccttc	0
175	tctcccagcgagcgagcgccat	S
176	tcctgacgttcccctggcggtcccctgtcgct	0
177	teetgtegeteetgteget	0
178	tcctggcgggaagt	0
179	tcctgazgttgaagt	0
180	tcztgacgttgaagt	0
181	tcctagcgttgaagt	0
182	tccagacgttgaagt	0
183	tcctgacggggaagt	0
184	tcctggcggtgaagt	0
	ggctccggggagggaatttttgtctat	-
185		
185 186	atagacaaaaattccctccccggagcc	0

100		
188	tcgtcgctgtctccgcttctt	so
189	tcgtcgctgtctccgcttctt	s20
190	tcgagacattgcacaatcatctg	0
191	cagattgtgcaatgtctcga	0
192	tccatgtcgttcctgatgcg	0
193	gcgatgtcgttcctgatgct	0
194	gcgatgtcgttcctgatgcg	0
195	tccatgtcgttccgcgcgcg	0
196	tccatgtcgttcctgccgct	0
197	tccatgtcgttcctgtagct	0
198	gcggcggcgcgcgccc	0
199	atcaggaacgtcatgggaagc	0
200	tccatgagcttcctgagtct	p-ethoxy
201	tcaacgtt	p-ethoxy
202	tcaagctt	p-ethoxy
203	tcctgtcgttcctgtcgtt	S
204	tccatgtcgtttttgtcgtt	S
205	tcctgtcgttccttgtcgtt	S
206	tccttgtcgttcctgtcgtt	s
207	btccattccatgacgttcctgatgcttcca	os
208	tcctqtcqtttttqtcqtt	S
209	tcgtcgctgtctccgcttctt	S
210	tegtegetgtetgecettett	s
211	tcgtcgctgttgtcgtttctt	s
212	tcctgtcgttcctgtcgttggaacgacagg	0
213	tcctgtcgttcctgtcgtttcaacgtcaggaacgacagga	0
214	ggggtctgtcgttttgggggg	sos
215	ggggtctgtgcttttgggggg	
216	tccggccgttgaagt	sos
217	tccggacggtgaagt	
218	tcccgccgttgaagt	0
219	tccagacggtgaagt	0
220	tcccgacggtgaagt	0
221	tccagagcttgaagt	0
222	tccatgtzgttcctgtzgtt	0
223	tccatgacgttcctgacgtt	s
224		sos
225	ggggttgacgttttgggggg	sos
226	tccaggacttctctcaggtt	s
	tttttttttttttttt	s
227	tccatgccgttcctgccgtt	s
L	tccatggcgggcctggcggg	s
229	tccatgacgttcctgccgtt	s
230	tccatgacgttcctggcggg	s
231	tccatgacgttcctgcgttt	s
232	tccatgacggtcctgacggt	s
233	tccatgcgtgcgtttt	s
234	tccatgcgttgcgtt	s
235	Btccattccattctaggcctgagtcttccat	os
236	tccatagcgttcctagcgtt	0
237	tccatgtcgttcctgtcgtt	0
238	tccatagcgatcctagcgat	0
239	tccattgcgttccttgcgtt	0
240	tccatagcggtcctagcggt	0
241	tccatgattttcctgcagttcctgatttt	
242	tccatgacgttcctgcagttcctgacgtt	s
243	ggcggcggcggcgg	0
244	tccacgacgttttcgacgtt	

		
245	tcgtcgttgtcgtt	S
246	tcgtcgttttgtcgttt	S
247	tegtegttgtegttttgtegtt	S
248	gcgtgcgttgtcgtt	S
249	czggczgggczccgg	0
250	geggeggegegeee	S
251	agicccgigaacgiattcac	0
252	tgtcgtttgtcgttt	S
253	tgtcgttgtcgttgtcgtt	S
254	tgtcgttgtcgttgtcgtt	S
255	tcgtcgtcgtt	s
256	tgtcgttgtcgtt	s
257	cccccccccccccc	s
258	tctagcgtttttagcgttcc	sos
259	tgcatccccaggccaccat	s
260	tegtegtegtegtegtt	sos
261	tcgtcgttgtcgtt	sos
262	tcgtcgttttgtcgttt	sos
263	tcgtcgttgtcgttttgtcgtt	sos
264	ggggagggaggaacttcttaaaattcccccagaatgttt	0
265	aaacattctgggggaattttaagaagttcctccctcccc	0
266	atgtttacttcttaaaattcccccagaatgttt	0
267	aaacattctgggggaattttaagaagtaaacat	0
268	atgtttactagacaaaattcccccagaatgttt	0
269	aaacattctgggggaattttgtctagtaaacat	0
270	aaaattgacgttttaaaaaa	sos
271	cccttgacgttttccccc	sos
272	ttttcgttgtttttgtcgtt	
273	tcgtcgttttgtcgttt	sos
274	ctgcagcctgggac	0
275	acccgtcgtaattatagtaaaaccc	
276	ggtacctgtggggacattgtg	0
277	agcaccgaacgtgagagg	-
278	tccatgccgttcctgccgtt	0
279	tccatgacggtcctgacggt	0
280	tecatgacggtectgacggt	
281		
282	tccatgcgcgtcctgcgcgt ctggtctttctggtttttttctgg	s
283		sos
284	tcaggggtggggaacctt	0
285	tccatgazgttcctagttct	
	tccatgatgttcctagttct cccgaagtcatttcctcttaacctgg	
286		
287	ccaggttaagaggaaatgacttcggg	
288	tcctggzgggaagt	
289	gzggzggzgzgzgccc	x
290	tccatgtgcttcctgatgct	
291	tccatgtccttcctgatgct	
292	tccatgtcgttcctagttct	
293	tccaagtagttcctagttct	<u> </u>
294	tccatgtagttcctagttct	·
295	tcccgcgcgttccgcgcgtt	s
296	teetggeggteetggeggtt	s
297	tcctggagggaagt	
298	tcctggggggaagt	<u>o`</u>
299	tcctggtggggaagt	
300	tcgtcgttttgtcgttt	0
301	ctggtctttctggtttttttctgg	0

302	tccatgacgttcctgacgtt	
303	tecaggaetteteteaggtt	
304	tzgtzgttttgtzgttttgtzgtt	sos
305	btcgtcgttttgtcgttttttt	
306	gctatgacgttccaaggg	os
307	teaacgtt	s
308	tccaggactttcctcaggtt	s
309	ctctctctccccaggtt	0
310	ctctctgtaggcccgcttgg	s
311	ctttccgttggacccctggg	·s
312	gtccgggccaggccaaagtc	s
313	gtgcgcgagcccgaaatc	s
~	tccatgaigttcctgaigtt	s
314	aatagtcgccataacaaaac	0
315	aatagtcgccatggcggggc	
316	btttttccatgtcgttcctgatgcttttt	os
317	tcctgtcgttgaagtttttt	0
318	gctagctttagagctt	
319	tgctgcttcccccccccc	0
320	tcgacgttcccccccccc	0
321	tcgtcgttcccccccccc	. 0
322	tegtegttecececece	
323	tegeegtteeeceeece	0
324	tegtegatecececece	0
325	tcctgacgttgaagt	s
326	tcctgccgttgaagt	s
327	tcctgacggtgaagt	S
328 ·	tcctgagcttgaagt	s
329	tcctggcggggaagt	s
330	aaaatctgtgcttttaaaaaa	sos
331	gatccagtcacagtgacctggcagaatctggat	0
332	gatccagattctgccaggtcactgtgactggat	0
333	gatccagtcacagtgactcagcagaatctggat	
334	gatccagattctgctgagtcactgtgactggat	. 0
335	tcgtcgttcccccccccc	0
336	tzgtqgttccccccccc	0
337	tzgtcgttccccccccc	0
338	tegtzgttecececece	0
339	tcgtcgctccccccccc	0
340	tcgtcggtccccccccc	0
341	teggegtteeceecee	0
342	ggccttttcccccccccc	0
343	tcgtcgttttgacgttttgtcgtt	s
344	tcgtcgttttgacgttttgacgtt	S
345	ccgtcgttccccccccc	0
346	gcgtcgttccccccccc	0
347	tcgtcattcccccccccc	0
	acgtcgttccccccccc	- 0
348		
	ctgtcgttcccccccccc	
348 349	ctgtcgttccccccccccccccccbtttttcgtcgttcccccccc	0
348 349 350	btttttcgtcgttcccccccccc	0.5
348 349 350 351	btttttcgtcgttcccccccccccccccccccccccccc	0 <i>S</i>
348 349 350 351 352	btttttcgtcgttcccccccccccccccccb tcgtcgttttgtcgttttgtcgttb	0 <i>S</i> 0
348 349 350 351 352 353	bttttcgtcgttccccccccccccccccccccccccccc	0 S O O O
348 349 350 351 352 353 354	bttttcgtcgttccccccccccccccccccccccccccc	05 0 0 0
348 349 350 351 352 353 354 355	bttttcgtcgttccccccccccccccccccccccccccc	05 0 0 0 0
348 349 350 351 352 353 354	bttttcgtcgttccccccccccccccccccccccccccc	05 0 0 0

359	ggggtcaagcttgaggggg	sos
360	tgctgcttcccccccccc	
361	tcgtcgtcgtt	s s2
362	tcgtcgtcgtt	s20
		
363	tcgtcgtcgtt	os2
364	tcaacgttga	s
365	tcaacgtt	s
366	atagttttccattttttac	
367	aatagtcgccatcgcgcgac	0
368	aatagtcgccatcccgggac	<u> </u>
369	aatagtcgccatccccccc	0
370	tgctgcttttgtgcttt	
371	ctgtgctttctgtgtttttctgtg	s
372	ctaatctttctaattttttctaa	s
373	tegtegttggtgttggtgtegtt	. s
374	tcgtcgttggttgtcgttttggtt	s
375	accatggacgagctgtttcccctc	
376	tcgtcgttttgcgtgcgttt	s
377	ctgtaagtgagcttggagag	
378	gagaacgctggaccttcc	
379	cgggcgactcagtctatcgg	
380	gttctcagataaagcggaaccagcaacagacacagaa	
381	ttctgtgtctgttgctggttccgctttatctgagaac	
382	cagacacagaagcccgatagacg	
383	agacagacacgaacgaccg	
384	gtctgtcccatgatctcgaa	
385	gctggccagcttacctcccg	
386	ggggcctctatacaacctggg	
387	ggggtccctgagactgcc	
388	gagaacgctggaccttccat	
389	tccatgtcggtcctgatgct	
390	ctcttgcgacctggaaggta	
391	aggtacagccaggactacga	
392	accatggacgacctgtttcccctc	
393	accatggattacctttttcccctt	
394	atggaaggtccagcgttctc	0
395	agcatcaggaccgacatgga	
396	ctctccaagctcacttacag	
397	tccctgagactgcccacctt	
398	gccaccaaaacttgtccatg	
399	gtccatggcgtgcgggatga	
400	cetetatacaacetgggac	
401		
401	gegetaceggtageetgagt	
402		
	cgactgccgaacaggatatcggtgatcagcactgg	
404	ccagtgctgatcaccgatatcctgttcggcagtcg	
	ccaggttgtatagaggc	
406	teteceagegtacgccat	S
407	tctcccagcgtgcgtttt	s
408	tctcccgacgtgcgccat	s
409	tctcccgtcgtgcgccat	s
410	ataatcgtcgttcaagcaag	s
411	tcgtcgttttgtcgttttgtcgt	s2
412	tcgtcgttttgtcgttt	s2
413	tcgtcgttttgtcgttt	s2
414	tentegtnttntegtnttntegtn	s
415	tctcccagcgtcgccat	s

416		
416	tctcccatcgtcgccat	s
417	ataatcgtgcgttcaagaaag	s
	ataatcgacgttccccccc	s
419	tctatcgacgttcaagcaag	s
420	tcc tga cgg gg agt	s
421	tccatgacgttcctgatcc	
422	tccatgacgttcctgatcc	
423	tccatgacgttcctgatcc	
424	tcc tgg cgt gga agt	s
425	tccatgacgttcctgatcc	
426	tcgtcgctgttgtcgtttctt	s
427	agcagctttagagctt	s
428	cccccccccccccccc	s
429	tcgtcgttttgtcgttttgtcgtt	s
430	tcgtcgttttttgtcgttttttgtcgtt	s
431	tcgtcgttttttttttt	s
432	tttttcaacgttgattttt	sos
433	ttttttttttttttttttt	S .
434	ggggtcgtcgttttgggggg	
435	tcgtcgttttgtcgttttgggggg	
436	tcgtcgctgtctccgcttcttcttgcc	s
437	tcgtcgctgtctccg	s
438	ctgtaagtgagcttggagag	
439	gagaacgctggaccttccat	
440	ccaggttgtatagaggc	
• 441	gctagacgttagcgtga	
442	ggagctcttcgaacgccata	
443	tctccatgatggttttatcg	
444	aaggtggggcagtctcaggga	
445	atcggaggactggcgccg	
446	ttaggacaaggtctagggtg	
447	accacaacgagaggaacgca	
448	ggcagtgcaggctcaccggg	
449	gaaccttccatgctgtt	
450	gctagacgttagcgtga	
451	gcttggagggcctgtaagtg	
452	gtagccttccta	
453	cggtagccttccta	
454	cacggtagccttccta	
455	agcacggtagccttccta	
456	gaacgctggaccttccat	
457	gaccttccat	
458	tggaccttccat	
459	gctggaccttccat	
460	acgctggaccttccat	
461	taagctctgtcaacgccagg	
462	gagaacgctggaccttccatgt	
463	tccatgtcggtcctgatgct	
464	ttcatgccttgcaaaatggcg	
465	tgctagctgtgcctgtacct	
466	agcatcaggaccgacatgga	
467	gaccttccatgtcggtcctgat	
468	acaaccacgagaacgggaac	
469	gaaccttccatgctgttccg	
470	caatcaatctgaggagaccc	
471	tcagctctggtacttttca	
472	tggttacggtctgtcccatg	
-		

473	gtctatcggaggactggcgc	
474	cattttacgggcgggcgggc	
475	gaggggaccattttacgggc	
476	tgtccagccgaggggaccat	
477	cgggcttacggcggatgctg	
478	tggaccttctatgtcggtcc	
479	tgtcccatgttttagaagc	
480	gtggttacggtcgtgcccat	
481	cctccaaatgaaagaccccc	
482	ttgtactctccatgatggtt	
483	ttccatgctgttccggctgg	
484	gaccttctatgtcggtcctg	
485	qagaccgctcgaccttcgat	
486	ttgccccatattttagaaac	
487	ttgaaactgaggtgggac	
488	ctatcggaggactggcgcc	
489	cttggagggcctcccggcgg	
490	gctgaaccttccatgctgtt	
491		
491	tagaaacagcattcttcttttagggcagcaca agatggttctcagataaagcggaa	
		
493	ttccgctttatctgagaaccatct	
494	gtcccaggttgtatagaggctgc	
495	gcgccagtcctccgatagac	
496	atcggaggactggcgccg	
497	ggtctgtcccatatttttag	
498	ttttcaacgttgaggggg	sos
499	ttttcaagcgttgattttt	sos
500	ggggtcaacgttgatttttt	sos
501	ggggttttcaacgttttgaggggg	sos
502	ggttacggtctgtcccatat	
503	ctgtcccatatttttagaca	
504	accatcctgaggccattcgg	
505	cgtctatcgggcttctgtgtctg	
506	ggccatcccacattgaaagtt	
507	ccaaatatcggtggtcaagcac	
508	gtgcttgaccaccgatatttgg	
509	gtgctgatcaccgatatcctgttcgg	
510	ggccaactttcaatgtgggatggcctc	
511	ttccgccgaatggcctcaggatggtac	
512	tatagtccctgagactgcccaccttctcaacaacc	
513	gcagcctctatacaacctgggacggga	
514	ctatcggaggactggcgccg	
515	tatcggaggactggcgccg	
516	gatcggaggactggcgccg	
517	ccgaacaggatatcggtgatcagcac	
518	ttttggggtcaacgttgaggggg	
519	ggggtcaacgttgaggggg	sos
520	cgcgcgcgcgcgcgcg	s
521	ggggcatgacgttcgggggg	ss
522	ggggcatgacgttcaaaaaa	s
523	ggggcatgagcttcgggggg	s
524	ggggcatgacgttcgggggg	sos
525	aaaacatgacgttcaaaaaa	sos
526	aaaacatgacgttcgggggg	sos
527	ggggcatgacgttcaaaaaa	sos
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 303
1 57X		6
528 529	accatggacgatctgtttcccctc gccatggacgaactgttccccctc	S S

5310 cccccccccccccccccccccccccccccccccccc	520		
532 gctgtaaaatgatcgccq sos 533 ttcggcgqactcctcatt sos 534 tatgcgcqcccggattat sos 535 ggggtaatcgatggggg sos 536 tttgagaacgtggggctt sos 537 gatcgtgatctaatgctgtcc sos 538 gtcgtcdtcgatgtcgttcc sos 539 tcgtcgtcagttcgttgc sos 540 ctgaacttccatgtcg sos 541 gctcgtcagcggtct sos 542 ctgaaccttccatgtcg sos 543 catgtccttcatgtcg sos 544 ctgcgaccttccatgtcg sos 543 catgtccttcatgtcg sos 544 cyctgaaccttccatgtcg sos 545 gctgaaccttcatgtcg sos 546 catgtccttcatgtc sos 547 tcatgccgtaacagtct sos 548 cctccatgtgtatgccttcat sos 549 tacttctgcgtccttga sos 550 ttcattctggtccttgg sos	530	cccccccccccc	sos
533 thtggggggacteteatt 508 534 tatgcggcgggactta 508 535 gggtaatcgatggggg sos 536 tttgagaacgtggacette sos 537 gatcgctgatcgatcttec sos 538 gtcgtcctgatgctgttec sos 540 ctggacettccatgtegg sos 541 gtcgacettccatgteg sos 541 gtcgacettccatgte sos 542 ctggacettccatgteg sos 543 cactgtcttctgtga sos 544 cgtggacettccatgtcg sos 545 gtgagctcatgcctgtcg sos 546 cactggacettccatgtcg sos 547 tgcatgccggtctgac sos 548 catcatgcggtcatgat sos 549 tactcttagtggtcctat sos 540 ctgattgcttctctgtg sos 541 tgctgttgttctcttgtg sos 551 ctgattgtttctcttgtg sos 552 gggttatttttttttttttt o <		aaaaaaaaaaaaaaaa	sos
534 tatgoogcccggacttat sos 535 ggggtaatcgacggggg sos 536 tttgagaacgctggaccttc sos 537 gatcgctgatctaatgctcg sos 538 gtcgtcctgatctaatgctcg sos 539 gtcgtcctgatgtggtgttcc sos 540 ctggaccttccatgtcg sos 541 gctggaccttcatgcg sos 541 gctggaccttcatgcg sos 542 ctggaccttcatgcg sos 543 cactgtccttcatgtcg sos 544 cgctggaccttcatgtcg sos 545 gctgagctcatgccttcatg sos 545 gctgagctcatgccttcatg sos 546 cactgcagtctcatgcg sos 547 tgcatgcctataccattct sos 548 ccttccatgtcgtgtcctgat sos 550 ttccatgtcgtcdctat sos 551 ctgattgctctctgag sos 552 ggcgttattcctgg sos 553 ctcatytgattgccctacct o <tr< td=""><td></td><td></td><td>sos</td></tr<>			sos
535 ggggtaatcgacqgggg 505 536 tttgagaacqtoqaccttc 808 537 gatcgctqatctaatqctg sos 538 gtcggtccttagctgttcg sos 539 tcgtcgtcagttcqctgtg sos 540 ctggaccttccatgtcg sos 541 gctggaccttccatgtcg sos 542 ctggaccttccatgtcg sos 543 cactgctcttcqtgg sos 544 egctggaccttccatgtcg sos 545 gctggtctagctctgtg sos 546 aacgttgaccttccatgtcg sos 547 tgcattgctcatgcctgtg sos 548 ccttccatgtcggtctgat sos 547 tgcattgctcatgtcgtg sos 548 ccttcatgtcggtctgat sos 549 tactttcggatccttcdgg sos 551 tccatgtggtctgatcttcdgg sos 551 tccatgtggtcttgatgcegat sos 551 tcggttattcttdgtgtggggggggggggggggggggggg		ttcgggcggactcctccatt	sos
S36			sos
537 gategetgatetatgeteg sos 538 gteggtectgategtytee sos 539 tegtegteagtegtegteg sos 540 etggacettecatgteg sos 541 getegtteagegetet sos 542 etggacettecatgte sos 543 cactgetetagegetetg sos 544 cgetggacettecatgeg sos 545 gctgagectaagegetetg sos 546 aacgetggacettecatgeg sos 547 tgeatgegtacaagegetet sos 548 cettecatgteggtectgat sos 549 tactetteggatecettgg sos 550 ttecatgtegtectgat sos 551 ctgattgetectetgat sos 551 ctgattgetectetgat sos 550 ttecatgtgetectgat sos 551 ctgattgetetetetgg sos 551 ctgattgetetetetgg sos 552 ggegttttetgtgeceaget o 554 tggggtttttttetgtggeceaget o			sos
537 gategactgatctatatgcteq sos 538 gteggtactgattetgtteq sos 539 tegtagtagttegetgteg sos 540 ctggaccttccatgteg sos 541 getegtteagcegetet sos 541 getegteagcegetgeg sos 542 ctggacttactgteg sos 543 cactgtectteatgteg sos 544 cgctggaccttccatgtegg sos 545 getggeteatgecgtetge sos 546 aacgetggaccttccatgte sos 547 tgatgecgtacacaget sos 548 cettccatgteggtectgat sos 549 tactcttcggatcocttegg sos 551 tccatgtegtectgat sos 551 tctagtegtectgat sos 551 tctagtegtectgat sos 551 tctagtegtgactcoctga o 552 gegttattectgatgctga o 553 cstagttatgaggagg o 554 tgggacttattectctagt o			sos
538 gtcggtcctgatgctgtg sos 540 ctggaccttccatgtg sos 541 gctggtcagcgctct sos 542 ctggaccttccatgtc sos 543 cactgtcctctgtcga sos 544 cgtggacttcatgcgtctgc sos 544 cgtgagctcatgcgtctgc sos 546 aacgtgagcttcatgcgtctgc sos 547 tgcatgcgtacacagctct sos 548 ccttccatgtcggtcctgat sos 549 tacttccatgtcggtcctgat sos 550 ttccatgtcggtcctgat sos 551 ctgattgctcttctgga sos 552 ggcgttattccttgad sos 553 ctcatgttgtatgcgccagt o 554 ggggtattccgagaggggggggggggggggggggggggg			
539 tegteqteagttegetyteg sos 540 etgaactteagtgg sos 541 getegtteagegetet sos 542 etgaactteatgte sos 543 cactgtectteatgte sos 544 egetgageteatgeegtetge sos 545 getgageteatgeegtetge sos 546 aacgetgaacetteeatge sos 547 tgeatgeegtaeatgetet sos 548 cettecatgteggteetgat sos 549 tactetteggateettetga sos 550 ttecatgteggteetgat sos 551 tecatgtegteetgat sos 551 tetagtegteatgageaggeg o 553 cetagttgatgagagggggggggggggggggggggggggg			
540 ctgacettecatgteg sos 541 getegtecatgegett sos 542 ctgacettecatgte sos 543 cactgtecttecatgteg sos 544 cgtgacettecatgteggtetg sos 545 gctgageteatgecgtetge sos 546 aacgtgageteteatget sos 547 tgcatgecgtacacagetet sos 548 ccttccatgteggtectgat sos 549 tacteteggatecttgt sos 550 ttccatgteggtectgt sos 551 ctgattgetetetgt sos 552 ggegttattectgategec o 553 cotacgttgatgegecaget o 554 qggdtattegatgaggggg o 555 tgggdtattettttttttttttt o 555 tgggggttttttttttttttttt o 557 gggggtttttttttttttttttt o 558 tttttttyttttttttttttt o 559 gggggggggggggggggggt o 560 aaaaacaaaaaaaaaaaaa o		tcgtcgtcagttcgctgtcg	
541 gctcgtcacqcgctct sos 542 ctgaccttccatqtc sos 543 cactqtccttcqtcqa sos 544 cqctgaccttccatqtcq sos 545 gctgaqctcatqcqttcq sos 546 aacgctgaccttccatqtc sos 547 tgcatqccatqcacqtct sos 548 ccttccatqtggtcctqat sos 549 tactcttcggtccttqa sos 550 ttccatqtcgtccttqa sos 551 ctgattgctctctqga sos 551 ctgattgctcttqactgc o 552 gggttattctttqactgc o 553 ctacqttgtatgqgqgqg o 554 gggtaatcqtgagggggqg o 555 tttggqcqactcctcatt o 555 ttttggqtcatttttttttttttt c 555 ttttggqtcatqqaggggtttt o 555 ttttggqtcatttttttttttttttt c 557 gggggaggggggttttttttttttttttttt o 558 tttttttggggggggttttttttttttttttttttt			
542 ctggaccttccatgtcg sos 543 cactgtccttcqtcq sos 544 cgctggaccttccatgtcg sos 545 gctgagctcatgccgtctgc sos 546 aacgctggaccttccatgtc sos 547 tgcatgccgtacacaagctct sos 548 ccttccatgtcggtccttgat sos 559 ttccatgtcggtcctgat sos 550 ttccatgtcggtcctga sos 551 ctgattgctctctcqtga sos 552 gcgqttattctctqcqc o 553 ctaagttgtatgcgccagt o 554 qsgqtaatcqtcatgaggggg o 555 ctacgttgtatgcgccagt o 554 qsgqtattttttttttgggg o 555 tttttttgtttttttttgggg o 556 ttttttttttttttttt t 557 gsggggtgggggggtgggggt o 558 tttttgggggggtggggggt o 560 aaaaccccccccccaaaaa o 561 cccccaaaaaaaaacccc o	541	gctcgttcagcgcgtct	
543 cactgtcctctcqtqq sos 544 cgctgagacttcatgcgtctg sos 545 gctgagacttcatgcgtctgc sos 546 aacgctggaccttcatgtc sos 547 tgcatgacacagactct sos 548 ccttccatgtggtccttgat sos 549 tactcttcggtccttgat sos 550 ttccatgtggtccttgat sos 551 ctgattgtctctcqtga sos 551 ctgattgtctctcqtga sos 552 ggcqttattcctcatgcc o 553 ctactgttgtatgcgccagt o 554 gggqtaatcatcatgaggggg o 555 ttoggacggactcctccatt o 555 ttoggacggactcctccatt o 557 gggggtatttttttttttttttttttttttttttt o 557 ggggggtggggggggggggggggggggggggggggg			
544 cgctggaccttccatgtcg sos 545 gctgagctcatgcgtctgc sos 546 aacgctggaccttccatgtc sos 547 tgcatgccgtacacagctct sos 548 ccttccatggtcctgat sos 549 tactcttcggatccttgcg sos 550 ttccatgtggtctgat sos 551 ctgattgctctctga sos 551 ctgattgctctctga o 552 ggcgttattcctgatggg o 553 cctacgttgtatggggggg o 554 ggggtaatcatcatcatt o 555 tcggggactctcccatt o 556 tttttttttttggggg o 557 gggggtattttttttttgggg o 558 ttttttgggggggggggggggggggggggggggggg		cactgtccttcgtcga	
545 gctgagctcategcgtctgc sos 546 aacgctgaccttccatgtc sos 547 tgcatgccgtacacagctct sos 548 ccttccatgtcggtcctgat sos 559 tactctctcggatcccttcgat sos 550 ttccatgtcgtcctgat sos 551 ctgattgctctctctgat sos 552 ggcgttattcctgaccagc o 553 cctacgttgtatgggggggg o 554 ggggtaatcatgaggggg o 555 ttcggqcggactcctccatt o 557 ggggggttttttttttttttttttttt o 557 gggggtgggggggggggggggggggggggggggggg		cgctggaccttccatgtcgg	
546 aacgctgaccttcatgtc sos 547 tgcatgcgtacacagctct sos 548 ccttccatgtggtcctgat sos 549 tactcttcggatccttgg sos 550 ttccatgtgtcctgtat sos 551 ctgattgctctctcgtga sos 551 ctgattgctctctcgtga sos 552 ggcgttattcctgactgcc c 553 cctacgttgtatggccagct c 554 ggggtattcgtatggggggg o 555 ttcgggcggactcctccatt o 556 tttttttttttttttt o 557 gggggttttttttttttgggg o 558 ttttttggggggggtgtttt o 559 gggggggggggggggggggggggggggggggggggg	545	gctgagctcatgccgtctgc	
547 tgcatgccgtacacagctct sos 548 ccttccatgcggtcctgat sos 559 tactcttcggatccttgat sos 551 ctgattgctctctctgtga sos 551 ctgattgctctctctgtga sos 552 ggcgttattcctgactcgc o 553 cctacgttgtatgcgccagct o 554 ggggtattcctcatt o 555 tttgggcgactcctcatt o 555 tttttttttttttttttt o 557 gggggttttttttttgggg o 558 tttttgggggggggggttttt o 559 gggggggggggggggggggggggggggggggggggg	546	aacgctggaccttccatgtc	
548 ccttccatgtcgtccttqcg sos 549 tactcttcggtccttgtg sos 550 ttccatgtcgtcctgt sos 551 ctgattgctctctcgtga sos 552 ggcgttattcctgactcgc o 553 cctacgttgtatgaggggg o 554 ggggtaatcgatgagggggg o 555 ttcggcggactcctccatt o 557 gggggagttttttttttttt o 558 tttttggggg o 559 gggggggggggggggggggggggggggggggggggg	547		
549 tactetteggatecettage sos 550 ttecattetegtecetat sos 551 ctgattgetetetetettage sos 552 ggegtattecetgaetege o 553 cetacgttgtatgegeceaget o 554 ggggtaategatgaggggg o 555 ttegggggatecetecatt o 555 ttetttittttttttttt o 557 gggggtttttttttgggg o 558 tttttggggggggggtttt o 559 gggggggggggggggggggggggggggggggggggg	548		
550 ttccattcctgtga sos 551 ctgattgctctctctgtga sos 552 ggcgttattcctgactcgcc c 553 cctacgttgtatgcgccagct o 554 ggggtaatcgatgaggggg o 555 ttcgggcgactcctcatt o 556 ttttttttttttttttttttt o 557 gggggtagtttttttttttttttt o 558 tttttggggggggtgggggg o 559 gggggggggggggggggggggggggggggggggggg	549		
551 ctgattgctctctcgtga sos 552 ggcgttattcctgactcgcc o 553 cctacgttgtatgcgccacqct o 554 ggggtaatcgatgaggggg o 555 ttcgggcggactcctcatt o 556 ttttttitttttttttttt o 557 gggggttttttttttttttttt o 559 gggggggggggggggggtg o 560 aaaaaaaaaaaaaaaa o 561 ccccaaaaaaaaaacccc o 562 aaaaacccccccccaaaaa o 563 tttgaattcaggactggtgaggttgag o 564 ttttaaatcctcagcggtctccagtgc o 565 aattcctatcggggcttctgtgtgtgtgtgtgag o 561 aattcctatcggggcttctgtgttgtgtgttgtgttcgttttat o 562 aaaaacccccaccccaaaaa o 563 tttgaatcaggggggttccaggggttgtggggggggggg	550		
552 ggcgttattcctgactcccc o 553 cctacqttgtatgcgccaqct o 554 ggggtaatcqtagagggg o 555 ttcggcggactcctccatt o 556 ttttttttttttttttttt o 557 gggggttttttttgggg o 558 tttttggggggggggttttt o 559 ggggggggggggggggggggt o 560 aaaaaaaaaaaaaaa o 561 ccccaaaaaaaaaaacccc o 562 aaaaacccccccccaaaaa o 563 tttgaattcaggactgtgaggttgag o 564 tttgaattcaggactgtccagtgtccagtgc o 565 aattctctatcggggctctctgtgtctgttgctgttccgtttat o 566 ctagataaagcggaccagcaacagacacagaagccccqatagag o 567 ttttctagagagttgaccatctgg o 568 tttgggccgctagacttaacctgagagac o 570 tttgggcccactgagacacagacacatc o 571 tttgggcccacatgactcac s 572 gagaacgctggacctactcac s 573	551		
553 cctacgttgtatgcgccagct o 554 gggtatatcgatgagggg o 555 ttcggacggatcctccatt o 556 ttttttttttttttttt o 557 gggggtttttttttttgggg o 558 tttttggggggggttttt o 559 ggggggggggggggggggggg o 560 aaaaaaaaaaaaaaacccc o 562 aaaaaccccccccccaaaaa o 563 tttgaattcaggagtgtgaggttgag o 564 tttgaatcctaggggttctcagtggc o 565 aattctctatcggggttctcagtggtctgtgttgtgttg	552		
554 gggqtaatcqatgaggggg o 555 ttcgqqqgactcctccatt o 556 ttttttitttttttttttt o 557 gggggtttttttttttttttttgggg o 558 tttttgggggggggtttt o 559 ggggggggggggggggt o 560 aaaaaaaaaaaaaaaaa o 561 cccccaaaaaaaaaacccc c 562 aaaaaccccccccccaaaaa o 563 tttgaattcaggactggtgaggttgag o 564 tttgaattcaggactggtgtgtgtgtgtgtgtgtgtgtgt	553		
555 ttcggcggactcctcatt 0 556 ttttttttttttttttt 0 557 gggggtttttttttttgggg 0 558 tttttggggggggggggggggggggggggggggggg	554	ggggtaatcgatgaggggg	
556 tttttttttttttttttt 0 557 gggggttttttttttggggg 0 558 tttttgggggggggtttt 0 559 ggggggggggggggggt 0 560 aaaaaaaaaaaaaaaaaaa 0 561 cccccaaaaaaaaacccc 0 562 aaaaaccccccccccaaaaa 0 563 tttgaatcaggtgtgggttggg 0 564 tttgaatcctaggggttctcagtgtcgttccgtttat 0 566 ctagataaagggacaggacaagaacaagaacaagaaccagaaccagaaga	555		
557 gggggttttttttttttggggg o 558 tttttgggggggggtttt o 559 gggggggggggggggggggggggggggggggggggg	556		
558 tttttggggggggggttttt 0 559 gggggggggggggggggggggggggggggggggggg	557		
559 gggggggggggggggggggggggggggggggggggg	558		
560 aaaaaaaaaaaaaaaaaaa o 561 cccccaaaaaaaaaaaacccc o 562 aaaaaccccccccccccaaaaa o 563 tttgaattcaggactggtgaggttgag o 564 tttgaatcctcagcggtctccagtggc o 565 aattctctatcggggcttctgtgtcgtgttccgctttat o 566 ctagataaagcggaaccagcaacaagaccagaaccagaaccagaagcccgatagag o 567 ttttctagagaggtgcacaatgctctgg o 568 tttgaattccgtgtaccagaagagaagc o 570 tttgggccgctagacttaacctgagagta o 571 tttgggccgcttctcgttctgttacacg o 572 gagaacgtggaccttccat s 573 tccatgtcgtgaccttcat s 574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct s 578 cgtcga o 579 agtgct o 581 tcgtga o 582 gagaacgctcagctccagcttccat o <td></td> <td></td> <td></td>			
561 cccccaaaaaaaaaacccc o 562 aaaaaccccccccccaaaaa o 563 tttgaattcaggactggagttgag o 564 tttgaatcctcagcgtctccagtggc o 565 aattctctatcgggcttctgtgtctgtgtgtgtccgetttat o 566 ctagataaagcggaccagcaacaagaaccagaagcccgatagag o 567 ttttctagagagtgcacaatgctctgg o 568 tttgaattccgtgtacagaagcgagaagc o 570 tttgggccgctagacttaacctgaggata o 571 tttgggcccacagagaagaagaacactc o 571 tttgggcccgcttctcgettctgatcacg o 572 gagaacgtggaccttccat s 573 tccatgtcggtcctgatgt s 574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct s 578 ctgtcg o 580 cgtcga o 581 tcgtga o 582 gagaacgctcgacttcat o			
562 aaaaaccccccccccaaaaa o 563 tttgaattcaggactggtgaggttgag o 564 tttgaatcctcagcggtctccagtggc o 565 aattctctatcggggtctctgtgtgtgtgttgtgttccgctttat o 566 ctagataaagcggaccagcaacagaaccagaagcccgatagag o 567 ttttctagagaggtgcacaatgctctgg o 568 tttgaattccgtgtacagaagcgagaag o 570 tttgggcccgctagacttaacctgagagat o 571 tttgggcccgctagacttctgttacacg o 572 gagaacgtggaccttccat s 573 tccatgtcggtcctgatgt s 574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct s 578 ctgtcg o 580 cgtcga o 581 tcgtg o 582 gagaacgctccagctccatcat o 583 gctagacgtaacgctgacctaccat o 584 gagaacgctgacctaccat o <t< td=""><td></td><td></td><td></td></t<>			
563 tttgaattcaggactggtgaggttgag o 564 tttgaatcctcagcggtctccagtggc o 565 aattctctatcggggcttctgtgttgttgttgttgttgttgttgttgtt	562		
564 tttgaatcctcagcggtctccagtggc o 565 aattctctatcggggcttctgtgttgttgttgttgttgttat o 566 ctagataaagcggaaccagcaacagaaccagaagcccgatagag o 567 ttttctagagaggtgcacaatgctctgg o 568 tttgaattccgtgtacagaagcgagaagc o 569 tttgggccgctagacttaacctgagagacag o 570 tttgggcccacagagacagagacacttc o 571 tttgggcccgcttctcgttctgttcaacg o 572 gagaacgcttgaccttccat s 573 tccatgtcggtcctgatgct s 574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct o 579 agtgct o 580 cgtcga o 581 tcgtga o 582 gagaacgctcagcttcat o 584 gagaacgctggaccttccat o 585 gagaacgctggacctatccat o 586 gctagacgttgacctatccat o <td>563</td> <td></td> <td></td>	563		
565 aattctctatcggggcttctgtgtctgttgctgttccgctttat o 566 ctagataaagcggaaccagcaacagaagccccgatagag o 567 ttttctagagaggtgcacaatgctctgg o 568 tttgaattccgtgtacagaagcgagaagc o 569 tttgcggccgctagacctaacctgagagaacag o 570 tttgggcccacgagagaacagagacacttc o 571 tttgggcccacttccgttctgttcacacg o 572 gagaacgcttggaccttccat s 573 tccatgtcggtcctgatgct s 574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct o 578 ctgtcg o 579 agtgct o 580 cgtcga o 581 tcgtga o 582 gagaacgctcagcttcgat o 584 gagaacgctggaccttccat o 585 gagaacgctggacctatccat o 586 gctagacgttgaccttaccat o	564	tttgaatcctcagcggtctccagtggc	
566 ctagataaagcggaaccagcaacagaagccccgatagag o 567 ttttctagagagttgcacaatgctctgg o 568 tttgaattccgtgtacagaagcgagaagc o 569 tttgcggccgctagacttaacctgagagata o 570 tttgggccacagagagacagagacacttc o 571 tttgggccgcttctcgttctgtacacg o 572 gagaacgctggaccttccat s 573 tccatgtcggtcctgatgct s 574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct o 578 ctgtcg o 580 cgtcga o 581 tcgtga o 582 gagaacgctccagctcgat o 583 gctagacgtaagcgtga o 584 gagaacgctggacctatccat o 586 gctagaggttaggctataccat o 586 gctagaggttaggctataccat o			
567 ttttctagagaggtgcacaatgctctgg o 568 tttgaattccgtgtacagaaggagaagc o 569 tttgggccgctagacttaacctgagagata o 570 tttgggccacgagagacagagacacttc o 571 tttgggccgcttctcgcttctgtacacg o 572 gagaacgctggaccttccat s 573 tcatgtcggtcctgatgct s 574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct s 578 ctgtcg o 579 agtgct o 580 cgtcga o 581 tcgtga o 582 gagaacgctccagcttcgat o 583 gctagacgtaacgtagcttccat o 584 gagaacgctcgaccttccat o 585 gagaacgctggacctatccat o 586 gctagaggttagcactatccat o		Ctagataaagcggaaccagaagagagagagagagataaa	
568 tttgaattccgtgtacagaagcgaagag 0 569 tttgcggccgctagacttaacctgagagata 0 570 tttgggccacgagagacagagacacttc 0 571 tttgggccacttccgttctgtacacg 0 572 gagaacgctggaccttccat s 573 tccatgtcggtcctgatgct s 574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct s 578 ctgtcg o 580 cgtcga o 581 tcgtga o 582 gagaacgctccagcttcgat o 583 gctagacgtaagcgtga o 584 gagaacgctggaccttccat o 585 gagaacgctggacctatccat o 586 gctagaggtaggactagcactaccat o		tttctagagaggtgcacaatgctctgg	
569 tttgcggccgctagacttaacctgagagata 0 570 tttgggccacgagagacagagacacttc 0 571 tttgggccgcttctegettctgtacacg 0 572 gagaacgctggaccttccat s 573 tccatgtcggtcctgatgct s 574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct s 578 ctgtcg o 579 agtgct o 580 cgtcga o 581 tcgtga o 582 gagaacgctccagcttcgat o 583 gctagacgtaagcgtga o 584 gagaacgctcgaccttccat o 585 gagaacgcttagacttaccat o 586 gctagaggttagagttagacttaccat o		tttgaattcggtgtagaagggggaagg	
570 tttgggccacgagagacagtgacactte 0 571 tttgggccgcttctcgcttctgtacacg 0 572 gagaacgctggaccttccat s 573 tccatgtcggtcctgatgct s 574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct s 578 ctgtcg o 579 agtgct o 580 cgtcga o 581 tcgtga o 582 gagaacgctccagcttcgat o 583 gctagacgtaagcgtga o 584 gagaacgctcgaccttccat o 585 gagaacgctgacctatccat o 586 gctagagattagagtagacctatccat o		tttgcggcggtaggttagggtgaggggagg	
571 tttgggccgcttctcgcttctgtacacg 0 572 gagaacgctggaccttccat s 573 tccatgtcggtcctgatgct s 574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct s 578 ctgtcg o 579 agtgct o 580 cgtcga o 581 tcgtga o 582 gagaacgctccagcttcgat o 583 gctagacgtaagcgtga o 584 gagaacgctcgaccttccat o 585 gagaacgctgacctatccat o 586 gctagaggttacagacctacacct o		tttagacccacgagagagagagagagagagagagagagag	
572 gagaacgctggaccttccat s 573 tccatgtcggtcctgatgct s 574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct s 578 ctgtcg o 579 agtgct o 580 cgtcga o 581 tcgtga o 582 gagaacgctccagcttcgat o 583 gctagacgtaagcgtga o 584 gagaacgctcgaccttccat o 585 gagaacgctgacctatccat o 586 gctagaggttaggttagcat o		tttagacccacttataactatatacca	
573 tccatgtcggtcctgatgct s 574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct s 578 ctgtcg o 579 agtgct o 580 cgtcga o 581 tcgtga o 582 gagaacgctccagcttcgat o 583 gctagacgtaagcgtga o 584 gagaacgctcgaccttccat o 585 gagaacgctgacctatccat o 586 gctagaggttaggactatccat o			+
574 ctgtcg s 575 tcgtga s 576 cgtcga s 577 agtgct s 578 ctgtcg o 579 agtgct o 580 cgtcga o 581 tcgtga o 582 gagaacgctccagcttcgat o 583 gctagacgtaagcgtga o 584 gagaacgctcgaccttccat o 585 gagaacgctggacctatccat o 586 gctagaggttaggactatccat o			
575 tcgtga s 576 cgtcga s 577 agtgct s 578 ctgtcg o 579 agtgct o 580 cgtcga o 581 tcgtga o 582 gagaacgctccagcttcgat o 583 gctagacgtaagcgtga o 584 gagaacgctcgaccttccat o 585 gagaacgctggacctatccat o 586 gctagaggttagcctatccat o			
576 cgtcga s 577 agtgct s 578 ctgtcg o 579 agtgct o 580 cgtcga o 581 tcgtga o 582 gagaacgctccagcttcgat o 583 gctagacgtaagcgtga o 584 gagaacgctcgaccttccat o 585 gagaacgctggacctatccat o 586 gctagaggttaggactatccat o		·· ·	
577 agtgct s 578 ctgtcg o 579 agtgct o 580 cgtcga o 581 tcgtga o 582 gagaacgctccagcttcgat o 583 gctagacgtaagcgtga o 584 gagaacgctcgaccttccat o 585 gagaacgctggacctatccat o 586 gctagaggttaggactatccat o			
578 ctgtcg o 579 agtgct o 580 cgtcga o 581 tcgtga o 582 gagaacgctccagcttcgat o 583 gctagacgtaagcgtga o 584 gagaacgctcgaccttccat o 585 gagaacgctggacctatccat o 586 gctagaggttaggactatcatc o			
579 agtgct 0 580 cgtcga 0 581 tcgtga 0 582 gagaacgctccagcttcgat 0 583 gctagacgtaagcgtga 0 584 gagaacgctcgaccttccat 0 585 gagaacgctggacctatccat 0 586 gctagaggttaggactatccat 0			
580 cgtcga 0 581 tcgtga 0 582 gagaacgctccagcttcgat 0 583 gctagacgtaagcgtga 0 584 gagaacgctcgaccttccat 0 585 gagaacgctggacctatccat 0 586 gctagaggttaggactatccat 0			
581 tcgtga o 582 gagaacgctccagcttcgat o 583 gctagacgtaagcgtga o 584 gagaacgctcgaccttccat o 585 gagaacgctggacctatccat o			
582 gagaacgctccagcttcgat o 583 gctagacgtaagcgtga o 584 gagaacgctgaccttccat o 585 gagaacgctggacctatccat o			
583 gctagacgtaagcgtga o 584 gagaacgctcgaccttccat o 585 gagaacgctggacctatccat o			0
584 gagaacgctcgaccttccat o 585 gagaacgctggacctatccat o 586 gctagaggttagcgtg		yayaacgctccagcttcgat	0
585 gagaacgctggacctatccat o			0
586 gctagaggttagggtga			0
o gctagaggttagcgtga		gagaacgctggacctatccat	0
	286	gctagaggttagcgtga	0

		₁
587	gagaacgctggacttccat	0
588	tcacgctaacgtctagc	
589	bgctagacgttagcgtga	0
590	atggaaggtcgagcgttctc	0
591	gagaacgctggaccttcgat	0
592	gagaacgatggaccttccat	0
593	gagaacgctggatccat	0
594	gagaacgctccagcactgat	0
595	tccatgtcggtcctgctgat	
596	atgtcctcggtcctgatgct	0
597	gagaacgctccaccttccat	0
598	gagaacgctggaccttcgta	0
599	batggaaggtccagcgttctc	
600	tcctga	0
601	tcaacgtt	0 .
602	aacgtt	0
603	aacgttga	0
604	tcacgctaacctctagc	0
605	gagaacgctggaccttgcat	0
606	gctggaccttccat	0
607	gagaacgctggacctcatccat	0
608	gagaacgctggacgctcatccat	0
609	aacgttgaggggcat	0
610	atgcccctcaacgtt	0
611	tcaacgttga	0
612	gctggaccttccat	0
613	caacgtt	0
614	acaacgttga	0
615	tcacgt	0
616	tcaagctt	0
617	tcgtca	0
618	aggatatc	0
619	tagacgtc	0
620	gacgtcat	0
621	ccatcgat	0
622	atcgatgt	0
623	atgcatgt	0
624	ccatgcat	0
625	agcgctga	0
626	tcagcgct	0
627	ccttcgat	0
628	gtgccggggtctccgggc	s
629	gctgtggggcggctcctg	S
630	btcaacgtt	0
631	ftcaacgtt	0
632	faacgttga	0
633	tcaacgt	s
634	aacgttg	s
635	cgacga	0
636	tcaacgtt	0
637	togga	0
638	agaacgtt	0
639	tcatcgat	0
640	taaacgtt	S
641	ccaacgtt	s
642	gctcga	S
643	cgacgt	s

644	cgtcgt	s
645	acgtgt	S
646	cgttcg	s
647	gagcaagctggaccttccat	s
648	cgcgta	s
649	cgtacg	s
650	tcaccggt	s
651	caagagatgctaacaatgca	s
652	acccatcaatagctctgtgc	s
653	ccatcgat	0
654	tcgacgtc	0
655	ctagcgct	0
656	taagcgct	0
657	tcgcgaattcgcg	0
658	atggaaggtccagcgttct	0
659	actggacgttagcgtga	0
660	cgcctggggctggtctgg	0
661	gtgtcggggtctccgggc	0
662	gtgccggggtctccgggc	0
663	cgccgtcgcggcttgg	0
664	gaagttcacgttgaggggcat	0
665	atctggtgagggcaagctatg	s
666	gttgaaacccgagaacatcat	s
667	gcaacgtt	0
668	gtaacgtt	
669	cgaacgtt	0
670	gaaacqtt	
671	caaacgtt	0
672	ctaacgtt	0
673	ggaacgtt	
674	tgaacgtt	0
675	acaacqtt	0
676	ttaacgtt	
677	aaaacqtt	0
678	ataacgtt	0
679	aacgttct	
680	tccgatcg	-
681	tecgtacg	
682	gctagacgctagcgtga	0
683		· · ·
684	gagaacgctagacctcatcatcat	0
685	actagacqttaqtqtqa	0
686		
687	tetecatectatestatestates	
688	tctccatcctatggttttatcg cgctggaccttccat	<u> </u>
689		<u> </u>
690	caccaccttggtcaatgtcacgt	0
691	gctagacgttagctgga	<u> </u>
692	agtgcgattgcagatcg	
	ttttcgttttgtggttt	ļ
693	ttttcgtttgtcgttttgtcgtt	ļ
694	tttttgttgtggttttgtggtt	
695	accgcatggattctaggcca	S
696	gctagacgttagcgt	0
697	aacgctggaccttccat	0
698	tcaazgtt	0
699	ccttcgat	0
700	actagacgttagtgta	s

701 gctagaggttagctya		T	,
703 ategactetegagegttete o 704 getagaegttage o 705 getagaegt o 706 agtgegattegagateg o 707 teagaget o 708 etgattgetetetegtga o 709 tzaaegtt o 709 tzaaegtt o 710 gagaazgetggaeetteet o 711 getagaegttaggetga o 711 getacttagegtga o 712 getacttagegtga o 713 getacettagegtga o 714 ategaetetagegttete o 715 atgaetetegagegttete o 716 agtgaetetegagegttete o 717 gecagatgtteted o 718 ategaetetegagegttete o 719 ategaetetegagegttete o 720 bagaacgtegaettetegat o 721 getagegttetegagegtete sos 722 ategaetetegagegtete o <td>701</td> <td>gctagaggttagcgtga</td> <td>s</td>	701	gctagaggttagcgtga	s
704 gctagacgttagc 0 705 gctagacgt 0 706 agtgcgattogagatcg 0 707 tcagzgct 0 708 ctgattgctctctctgtga 0 709 tzaacgtt 0 710 gagaazgctggaccttccat 0 711 gctacgagtgagctgagctgag 0 711 gctaccttagcgtga 0 711 gctaccttagcgtga 0 711 gctaccttagcgtga 0 711 gctagacgttagctga 0 711 gctagacgttagctgag 0 711 atcgacctagcgttctc 0 711 atcgacttagcgtga 0 711 atcgacttagcgtttcc 0 716 attgacttcagacgtttcc 0 716 attgacttagcgtga 0 717 gcagaattagcgttcc 0 718 atcgacttagcgttctc 0 719 atcgacttagcgttctc 0 720 bgagaacgttgatgttcc 0 <			
705 gctagacgt 0 706 agtgcgattcgagatcg 0 707 tcagzgct 0 708 ctgattgctctctgtga 0 709 tzaacgtt 0 710 gagaazgttaggctga 0 711 gctacttagcgtga 0 712 gctacttagcgtga 0 713 gctaccttagcgtga 0 714 atcgactctagcgttctc 0 715 atgcactctgcagcgttctc 0 716 agtgactctcagcgttctc 0 717 gccagatgttagctgga 0 718 atcgactctgagcgttctc 0 719 atcgactgtagctggda 0 721 gctagacgttagctgga sos 721 gctagacgttagcgtga sos 722 atcgacttcgagcgttctc sos 723 tagacgttagcgttgacgttctc sos 723 tagacgttagcgttctc o 724 cgactctcgagcgttcc o 725 ggggtcattcctagcgtg o </td <td></td> <td></td> <td></td>			
706 agtgcgattcgagatcg o 707 tcagzgct o 708 ctgattgctctctctgtga o 709 tzaacytt o 710 gagaazgtgagccttccat o 711 gctaacttagcgtga o 712 gctacttagcgtga o 713 gctacttagcgtga o 714 atcgactctgacgttctc o 715 atcgactctcagcgttctc o 716 agtgactctcagacgttctc o 717 gccagatgttagctgga o 718 atcgactctgagcgttctc o 719 atcgatctgagcgttctc o 719 atcgatcttcgagcgttctc o 720 bagaacgttagctgac sos 721 gctagacgttagctga sos 722 atcgacttcgagcgttctc sos 723 tagacgttagcgtga sos 724 cgactctcgagcgttctc o 725 ggggt cs 726 gctagacgtagcgtgtctcat o </td <td></td> <td></td> <td>0</td>			0
707 tcagatgct o 708 ctgattgctctctgga o 709 tzaacgtt o 710 gagaazgctgagccttcat o 711 gctaacgtagagcgtagag o 712 gctacttagcgtga o 713 gctaccttagcgtga o 714 atcgacttagcgtgag o 714 atcgacttctgagcgttctc o 715 atgactctcagacgttctc o 716 aytgactctcagcgttctc o 717 gccagatgttagctgga o 718 atcgactctgacgttctc o 719 atcgacgttgcgtga o 719 atcgacgttgcgttcc o 720 bgagaacgcttgacgttctc sos 721 gctagacgttagcttga sos 722 atcgacttcgagcgttctc sos 723 tagacgttagctttcc o 724 cgacttcgagcgttctc o 725 gggttagccttgagcgttcca o 726 gctagcttagcttctcat		<u> </u>	0
708 ctgattgctctctgga o 709 tzaacgtt o 710 gagaazgctgaccttccat o 711 gctaccttagcgtga o 712 gctaccttagcgtga o 713 gctaccttagcgtga o 714 atcgactctgagcgttctc o 715 atgcactctgagcgttctc o 716 agtgactctccagcgttctc o 717 gccagatgttagctgga o 718 atcgactctgagcgttctc o 719 atcgatctgagcgttctc o 719 atcgatctgagcgttctc o 720 bgagaacgctgaccttcga sos 721 gctagacgttagctga sos 722 atcgacttcgagcgttctc sos 723 tagacgtagcgtgatctc o 724 cgactctcgagcgttctc o 725 gggtcaccttgagggggg sos 726 gctacgttgct o 727 cgtcgtcgtct o 728 gagaacgtggacttccat	h		0
709 tzaacytt 0 710 gagaazgetggacettecat 0 711 gctagcttaggettga 0 712 gctacettaggetga 0 713 gctacettaggetga 0 714 atcgacettegaggettete 0 715 atgaactetcgaggettete 0 716 agtgacettecagettete 0 717 gcagaatgttagctgga 0 718 atcgactcgacgttete 0 719 atcgactgagcgttete 0 720 bgagaacgetcgaccttegat 0 721 gctagacgttagctga sos 722 atcgacttcgagcgttete sos 721 gctagacgttagctgag sos 722 atcgacttaggaggt sos 723 tagacttagcgtgaggettete 0 724 cgacttctgaggggttete 0 725 gggtgtagcettgggggggggggggggggggggggggggg			0
710 gagaazgetgaacettecat o 711 getaagacgttaggetga o 712 getacttaggetga o 713 getacttagegtga o 714 ategacttegagegttete o 715 atgacettegagegttete o 716 agtgacteceagegttete o 717 gecagatgttagetgag o 718 ategactegagegttete o 719 ategactegagegttete o 720 bagaacgetegacettegat o 721 getagacgttagetga sos 722 ategacettegacgttete sos 723 tagacgttagegtga o 723 tagacettegagegttete o 723 tagacettegagggggg sos 724 cgactetegagegttete o 725 ggggtagacgtegaggggggg sos 726 getaccttageggtgg o 727 cgtcgtcgtcte o 728 gagaacgtggacttecat o 729 ategactagt			0
711 gctagacgttaggctga o 712 gctacttaggctga o 713 gctaccttaggctga o 714 atcgactctgagcttctc o 715 atgcactctgagcgttctc o 716 agtgactctccagcgttctc o 717 gccagatgttagctgga o 718 atcgactcgagcgttctc o 719 atcgatctgagcgttctc o 720 bgagaacgcttggaccttcga o 721 gctagacgttagctgga sos 721 gctagacgttagctga o 721 gctagacgttagctga o 721 gctagcgttagctga o 722 atcgacttctgagcgttac o 724 cgacttctgagcgttac o 725 ggggtcgaccttgaggggggg sos 726 gctggtgtcgcttcct o 727 cgtcgtcgt o 728 gagaacgtggacttccat o 730 atzgactacgtggttcc o 731 gctagactacgtggttcc			0
712 gctacttagcgtga 0 713 gctaccttagcgttga 0 714 atcgacttcgagcgttctc 0 715 atgcactctcgagcgttctc 0 716 agtgactctccagcgttctc 0 717 gccagatgttagctgga 0 718 atcgactcgagcgttctc 0 719 atcgactgagcgttctc 0 720 bgagaacgctcgaccttcgat 0 721 gctagacgttagctga sos 722 atcgacttagcgtga sos 723 tagacgttagcgttcc 0 723 tagacgttagcgttcc 0 724 cgactctcgagcgttctc 0 725 ggggtcgaccttggaggggg sos 726 gctaacgttagcgtgac 0 727 cgtcgtcgt 0 728 gagaacgctggacttccat 0 729 atcgactcactgtggcttct 0 731 gctagatgtagctagcgt 0 732 atcgactctagcgtgttc 0 733 ggggtatagcatcag		gagaazgctggaccttccat	0
713 gctaccttagcgtg o 714 atcgacttcgagcgttctc o 715 atgcactctcgagcgttctc o 716 agtgactctcagcgttctc o 717 gccagatgttagctgga o 718 atcgactcagcgttctc o 719 atcgactcagcgttctc o 720 bgagaacgctcagccttcgat o 721 gctagcgttagcdga sos 722 atcgactctcgagcgttctc sos 723 tagacgttagcgtga o 724 cgactctcgagcgttctc o 724 cgactctgagcgttctc o 725 ggggtcgaccttggaggggg sos 726 gctaacgttagcgtga o 727 cgtcgtcgt o 728 gagaacgctggaczttccat o 730 atcgacctacgtgcgttctc o 731 gctagctgtagcgtgcttcc o 732 atcgactcacgtggggtg sos 733 ggggtaatgactcacgtgggg sos 734 gc			00
714 atcgacttcgaccttctc o 715 atgcactctgcaccttctc o 716 agtgactctcaccqccttctc o 717 gccagatgttagctgga o 718 atcgactcgagcttctc o 719 atcgactgagcgttctc o 720 bgagaacgtcgaccttcgat o 721 gctagacgttagctga sos 721 gctagacgttagctga sos 722 atcgacttcgagcgttctc o 723 tagacgttagcgtga sos 724 cgactctcgagcgttctc o 725 ggggtcgaccttggaggggg sos 726 gctaacgttagcgtga o 727 cgtcgtcgt o 728 gagaacgtggaczttccat o 729 atcgactacgtgcgttcc o 730 atzgactacgtgcgttctc o 731 gctagazgttagcgtggtctcc o 733 ggttgtattcctgazgtgtcc s 734 ggctgtagttccgtggtg o 735 cc			0
715 atgcactctgcagcttctc 0 716 agtgactctccagcgttctc 0 717 gccagatgttagctgga 0 718 atcgactcgagcgttctc 0 719 atcgatcgagcgttctc 0 710 bgagaacgtcagccttcgat 0 720 bgagaacgttagctga sos 721 gctagacgttagctga sos 722 atcgactctcgagcgttctc sos 723 tagacgttagcgtgac 0 724 cgactctcgagcgttctc 0 725 ggggtacgaccttggaggggg sos 726 gctaacgttagcgtga 0 727 cgtcgtcgt 0 728 gagaacgtggaczttccat 0 730 atzgacctacgtgcgtttcc 0 731 gctagzgttagcgt 0 732 atcgacttcgaggtgttcc 0 733 ggggtaatgcatcaggggg sos 734 gctagtatcactctagc 0 735 catgctactacgtgaggt 0 736 gctaga		gctaccttagcgtga	0
716 agtgactctccagcgttctc 0 717 gccagatgttagctgga 0 718 atcgactcgagcgttctc 0 719 atcgatcgagcgttctc 0 720 bgagaacgctcgaccttcgat 0 721 gctagacgttagctgga sos 722 atcgactctcgagcgttctc sos 723 tagacgttagcgtga o 724 cgactctcgagcgttctc o 725 ggggtcgaccttggaggggg sos 726 gctaacgttagcgtg o 727 cgtcgtcgt o 728 gagaacgtggaczttcat o 729 atcgactacgtgcgttctc o 730 atzgactacgtgcgttctc o 731 gctagacgtagcgt sos 732 atcgactctcgagzgttcc o 733 ggggtatagcatcagggggg sos 734 ggctagactaccaggggg sos 735 ccatgctaacctcgacc s 735 ccatgctaacctctagc o 736 gctag		atcgacttcgagcgttctc	0
717 gccagatgttagctgga 0 718 atcgactcgagcgttctc 0 719 atcgactgagcgttctc 0 720 bgagaacgctcgaccttcgat 0 721 gctagacgttagctgga sos 722 atcgactctcgagcgttctc sos 723 tagacgttagcgtga o 724 cgactctcgagcgttctc o 725 ggggtcgaccttggaggggg sos 726 gctaacgttagcgtga o 727 cgtcgtcgt o 728 gagaacgctggaczttccat o 729 atcgacctacgtgcgttztc o 730 atzgacctacgtgcgttctc o 731 gctagazgttagcgt o 732 atcgactctcgagzgttctc o 733 gggtaatgcatcaggggg sos 734 ggctgattcctgactgcc s 735 ccatgctacctcagctgcc s 736 gctagatgtagcgta o 737 cgtaccttacggtg o 738 tccatgctac	715	atgcactctgcagcgttctc	_ 0
718 atcgactcgagcgttctc 0 719 atcgatcgagcgttctc 0 720 bgagaacgctcgacttcgat 0 721 gctagacgttagctgga sos 722 atcgactctcgagcgttctc sos 723 tagacgttagcgtga 0 724 cgactctcgagcgttctc 0 725 ggggtcgaccttgagggggg sos 726 gctaacgttagcgtg 0 727 cgtcgtcgt 0 728 gagaacgtggaczttcat 0 729 atcgactacgtgcgttztc 0 730 atzgactacgtgcgttctc 0 731 gctagazgttagcgt 0 732 atcgacttcgagzgttctc 0 733 gggtgtattcctgagcgttctc 0 734 ggctgtattcctgactgccc s 735 ccatgctaaccttagc 0 736 gctagatgttagcgtg 0 737 cytaccttacgtgt 0 738 tccatgctggtctcgatgt 0 740 gctagagctggac	716	agtgactctccagcgttctc	0
719 atcgatcgacgttctc 0 720 bgagaacgctcgaccttcgat 0 721 gctagacgttagctgga sos 722 atcgactctcgagcgttctc sos 723 tagacgttagcgtga o 724 cgactctcgagcgttctc o 725 ggggtcgaccttggaggggg sos 726 gctaacgttagcgtga o 727 cgtcgtcgt o 728 gagaacgttgaczttccat o 729 atcgacctacgtgcgttctc o 730 atzgacctacgtgcgttctc o 731 gctagazgttagcgt o 732 atcgactctcgagzgttcc o 733 gggtaatgcatcaggggg sos 734 ggctgtattcctgactgccc s 735 ccatgctaacctctagc o 736 gctagatgttagcgtga o 737 cgtaccttacgtgtg o 738 tccatgctgtctcgtctcatc o 740 gctagagcttctcgagcttcc o 741 atc	717	gccagatgttagctgga	0
720 bgagaacgetegacettegat o 721 getagaegettagetgag sos 722 ategaetetegagegtete sos 723 tagaegetgagegtga o 724 egaetetegagegtete o 725 ggggtegaeettgagggggg sos 726 getaacgttagegtga o 727 egtegtegt o 728 gagaacgetggaezttecat o 729 ategaeetaegtgegtete o 730 atzgaeetaegtgegtete o 731 getagazgttagegt o 732 ategaetetegagzgtete o 733 gggtaatgeateagggggg sos 734 ggetgtatteetgategee o 735 ceatgetaacetetage o 736 getagatgtagegta o 737 egtacettaegtga o 738 tecatgetggteetggtee o 740 getagagettagegtg o 741 ategaetetegggettete o 742 aacgeteggae	718	atcgactcgagcgttctc	0
720 bgagaacgctcgaccttcgat o 721 gctagacgttagctgga sos 722 atcgacctcgagcgtcc sos 723 tagacgttagcgtga o 724 cgactctcgagcgttcc o 725 ggggtcgaccttgagggggg sos 726 gctaacgttagcgtga o 727 cgtcgtcgt o 728 gagaacgctggaczttccat o 729 atcgacctacgtgcgttcc o 730 atzgacctacgtgcgttcc o 731 gctagazgttagcgt s 732 atcgactctcgagzgttcc o 733 gggtaatgcatcagggggg sos 734 ggctgtattcctgatgccc s 735 ccatgctaacctctagc o 736 gctagatgttagcgtga o 737 cgtaccttacgtga o 738 tccatgctggtctctgatgct o 740 gctagagctagacgtgctctcagt o 741 atcgacctctcgagcgttcc o 742 aa	719	atcgatcgagcgttctc	_ 0
721 getagacgttagetgga sos 722 ategacetetegagegttete sos 723 tagacgttagegtga o 724 cgactetegagegtete o 725 ggggtegacettggaggggg sos 726 getaacgttagegtga o 727 cgtegtegt o 728 gagaacgetggaczttecat o 729 ategacetacgtgegttzte o 730 atzgacctacgtgegtete o 731 getagazgttagegt o 732 ategactetegagzgtee o 733 gggtaatgeateagggggg sos 734 ggctgtatteetgacgtegeg so 735 ccatgetaacetetage o 736 getagatgttagegtga o 737 cgtacettacggtga o 738 tecatgetggtectgatyte o 739 ategactetetegagegttete o 740 getagagttagegtga o 741 ategacgtegacettecat o 743 cte	720		0
722 atcgactetcgagcgttctc sos 723 tagacgttagcgtga o 724 cgactetcgagcgttctc o 725 ggggtcgaccttggaggggg sos 726 gctaacgttagcgtga o 727 cgtcgtcgt o 728 gagaacgetggaczttccat o 729 atcgacctacgtgcgttztc o 730 atzgacctacgtgcgttctc o 731 gctagazgttagcgt o 732 atcgactctcgagzgttctc o 733 gggttatcctgagggg sos 734 ggctgtattcctgacgggg sos 734 gctagatgtaccttagcgcc s 735 ccatgctaacctctagc o 736 gctagatgttagcgtga o 737 cgtacttacgtgtg o 738 tccatgctggtctgagtgt o 740 gctagagttagcgtgtctcc o 741 atcgactctcgagttctc o 742 aacgctggacttccat o 743 ctcaacgc	721		sos
723 tagacgttagcgtga o 724 cgactctcgagcgttctc o 725 ggggtcgaccttggaggggg sos 726 gctaacgttagcgtga o 727 cgtcgtcgt o 728 gagaacgctggaczttccat o 729 atcgacctacgtgcgttztc o 730 atzgacctacgtgcgttctc o 731 gctagazgttagcgt o 732 atcgactctcgagzgttctc o 733 gggtaatgcatcagggggg sos 734 ggctgtattcctgactgcc s 735 ccatgctaacctctagc o 736 gctagatgttagcgtga o 737 cgtaccttacggtga o 738 tccatgctggtcctgatgct o 739 atcgactctcgagcgttctc o 740 gctagagcttagcgtga o 741 atcgactctggacttcat o 742 acgctggacttcgt o 743 ctcaccgtagcttcat o 744 atcgacctcgtgactt	722		sos
724 cgactctcgagcgttctc o 725 ggggtcgaccttggaggggg sos 726 gctaacgttagcgtga o 727 cgtcgtcgt o 728 gagaacgctggaczttccat o 729 atcgacctacgtgcgttztc o 730 atzgacctacgtgcgttctc o 731 gctagazgttagcgt o 732 atcgactctcgagzgttctc o 733 ggggtaatgcatcaggggg sos 734 gctgtattcctgactgcc s 735 ccatgctaacctctagc o 736 gctagatgttagcgtga o 737 cgtacttacggtga o 738 tccatgctggtcctgatgt o 739 atcgactctctcgagtgtct o 740 gctagagcttagcgtga o 741 atcgactctcgagtgttctc o 742 aacgctggacttcgat o 743 ctcaacgctggacttccat o 744 atcgacctacgtggcttccat o 745 gagaat	723		0
725 ggggtcgaccttggagggggg sos 726 gctaacgttagcgtga o 727 cgtcgtcgt o 728 gagaacgctggaczttccat o 729 atcgacctacgtgcgttztc o 730 atzgacctacgtgcgttctc o 731 gctagazgttagcgt o 732 atcgacctctegagzgtctcc o 733 ggggtaatgcatcaggggg sos 734 gctgtattcctgacgcc s 735 ccatgctaacctctagc o 736 gctagatgttagcgtga o 737 cgtaccttacgtgtcctgatgct o 738 tccatgctgtctctgatgct o 739 atcgactctctcgagcgttctc o 740 gctagagcttagcgtga o 741 atcgactctggaccttcgat o 742 aacgctcgaccttcgat o 743 ctcaacgctggaccttccat o 744 atcgactacctctgac o 745 gagaatgctgacctccat o 746		<u> </u>	0
726 gctaacgttagcgtga o 727 cgtcgtcgt o 728 gagaacgctggaczttccat o 729 atcgacctacgtgcgttztc o 730 atzgacctacgtgcgttctc o 731 gctagazgttagcgt o 732 atcgactctcgagzgttctc o 733 ggggtaatgcatcagggggg sos 734 ggctgtattcctgactgcc s 735 ccatgctaacctctagc o 736 gctagatgttagcgtga o 737 cgtaccttacggtga o 738 tccatgctggtcctgatgct o 739 atcgactctctcgagcgttctc o 741 atcgactctcgagtgttctc o 742 aacgctcgaccttcgat o 743 ctcaacgctggaccttccat o 744 atcgactacgtggaccttccat o 745 gagaatgctggaccttccat o 747 bgagaacgtcacctcgac o 748 bgagcaagctggacctccat o 749			
727 cgtcgtcgt 0 728 gagaacgctggaczttccat 0 729 atcgacctacgtgcgttztc 0 730 atzgacctacgtgcgttctc 0 731 gctagazgttagcgt 0 732 atcgactctcgazgtctc 0 733 ggggtaatgcatcaggggg sos 734 ggctgtattcctgactgcc s 735 ccatgctaacctctagc 0 736 gctagatgttagcgtga 0 737 cgtaccttacgtga 0 738 tccatgctgtctgatgtc 0 739 atcgactctctcgagcgttctc 0 740 gctagagcttagcgtg 0 741 atcgactctcgagtgtctc 0 742 aacgctcgaccttcgat 0 743 ctcaacgctggaccttccat 0 744 atcgactactctggcttcc 0 745 gagaatgctgacctccat 0 747 bgagaacgtcacctcagactgat 0 748 bgagcaagctgacctccat 0 749 cgct		+	
728 gagaacgctggaczttccat o 729 atcgacctacgtgcgttztc o 730 atzgacctacgtgcgttctc o 731 gctagazgttagcgt o 732 atcgactctcgagzgttctc o 733 ggggtaatgcatcaggggg sos 734 ggctgtattcctgactgcc s 735 ccatgctaacctctagc o 736 gctagatgttagcgtga o 737 cgtaccttacgtgac o 738 tccatgctggtcctgatgct o 740 gctagagcttagcgtga o 741 atcgactctcgagtgttctc o 742 aacgctgagttgttctc o 743 ctcaacgctggaccttccat o 744 atcgacctacgtggcttcc o 745 gagaatgctggaccttccat o 746 tcacgctaacctctgac o 747 bgagaacgctccagcactgat o 748 bgagcaagctggaccttccat o 749 cgctagaggttagcgtg o 750			0
729 atcgacctacgtgcgttctc 0 730 atzgacctacgtgcgttctc 0 731 gctagazgttagcgt 0 732 atcgactctcgagzgttctc 0 733 ggggtaatgcatcagggggg sos 734 ggctgtattcctgactgcc s 734 ggctgtattcctgactcc s 735 ccatgctaacctctagc 0 736 gctagatgttagcgtga 0 737 cgtaccttacggtga 0 738 tccatgctggtcctgatgtc 0 739 atcgactctccgagtgttcc 0 740 gctagagcttagcgtga 0 741 atcgactctcgagtgttcc 0 742 aacgctcgaccttcgat 0 743 ctcaacgctggaccttccat 0 744 atcgactacgtggaccttcct 0 745 gagaatgctggaccttccat 0 747 bgagaacgctcaacctctgac 0 748 bgagcaagctggaccttccat 0 749 cgctagaggttagctgta 0 750			
730 atzgacctacgtgcgttctc o 731 gctagazgttagcgt o 732 atcgactctcgagzgttctc o 733 ggggtaatgcatcaggggg sos 734 ggctgtattcctgactgcc s 735 ccatgctaacctctagc o 736 gctagatgttagcgtga o 737 cgtaccttacggtga o 738 tccatgctggtcctgatgct o 739 atcgactctctcgagcgttctc o 740 gctagagcttagcgtga o 741 atcgactctgagttetc o 742 aacgctcgacttcgat o 743 ctcaacgctggaccttcat o 744 atcgactacgtgggttetc o 745 gagaatgctggaccttcat o 746 tcacgctaacctctgac o 747 bgagaacgctccagcactgat o 748 bgagcaagttgagcttccat o 749 cgctagagttagcgtga o 750 gctagatgttaacgt o			
731 gctagazgttagcgt 0 732 atcgactctcgagzgttctc 0 733 ggggtaatgcatcaggggg sos 734 ggctgtattcctgactgcc s 735 ccatgctaacctctagc o 736 gctagatgttagcgtga o 737 cgtaccttacggtga o 738 tccatgctggtcctgatgct o 739 atcgactctctgagcgttctc o 740 gctagagcttagcgtga o 741 atcgactctcgagtgttctc o 742 aacgctcgaccttcgat o 743 ctcaacgctggaccttccat o 744 atcgactacgtggcttcc o 745 gagaatgctggaccttccat o 746 tcacgctaacctctgac o 747 bgagaacgctccagcactgat o 748 bgagcaagctggaccttccat o 749 cgctagagttagcgtga o 750 gctagatgttaacgt o			
732 atcgactctcgagzgttctc o 733 ggggtaatgcatcaggggg sos 734 ggctgtattcctgactgcc s 735 ccatgctaacctctagc o 736 gctagatgttagcgtga o 737 cgtaccttacggtga o 738 tccatgctggtcctgatgct o 739 atcgactctctcgagcgttctc o 740 gctagagcttagcgtga o 741 atcgactctcgatgtctc o 742 aacgctcgaccttcgat o 743 ctcaacgctggaccttccat o 744 atcgactacgtggcttcc o 745 gagaatgctggaccttccat o 746 tcacgctaacctctgac o 748 bgagaagctggaccttcat o 749 cgctagaggttagcgtga o 750 gctagatgttaacgt o		 	
733 ggggtaatgcatcagggggg sos 734 ggctgtattcctgactgcc s 735 ccatgctaacctctagc o 736 gctagatgttagcgtga o 737 cgtaccttacggtga o 738 tccatgctggtcctgatgct o 739 atcgactctctcgagcgttctc o 740 gctagagcttagcgtga o 741 atcgactctcgagtgttctc o 742 aacgctcgaccttcgat o 743 ctcaacgctggaccttccat o 744 atcgactacgtggcttccat o 745 gagaatgctggaccttccat o 746 tcacgctaacctctgac o 747 bgagaacgctccagcactgat o 748 bgagcaagctggaccttccat o 749 cgctagaggttagcgtga o 750 gctagatgttaacgt o			
734 ggctgtattcctgactgcc s 735 ccatgctaacctctagc o 736 gctagatgttagcgtga o 737 cgtaccttacggtga o 738 tccatgctggtcctgatgct o 739 atcgactctctcgagcgttctc o 740 gctagagcttagcgtga o 741 atcgactctcgatgtgtctc o 742 aacgctcgaccttcgat o 743 ctcaacgctggaccttccat o 744 atcgacctacgtgcgttctc o 745 gagaatgctggaccttccat o 746 tcacgctaacctctgac o 748 bgagaacgctccagcactgat o 749 cgctagaggttagcgtga o 750 gctagatgttaacgt o			·
735 ccatgctaacctctagc 0 736 gctagatgttagcgtga 0 737 cgtaccttacggtga 0 738 tccatgctggtcctgatgct 0 739 atcgactctcgagcgttctc 0 740 gctagagcttagcgtga 0 741 atcgactctcgattgtctc 0 742 aacgctcgaccttcgat 0 743 ctcaacgctggaccttccat 0 744 atcgacctacgtggttctc 0 745 gagaatgctggaccttccat 0 746 tcacgctaacctctgac 0 747 bgagaacgctccagcactgat 0 748 bgagcaagctggaccttccat 0 749 cgctagaggttagcgtga 0 750 gctagatgttaacgt 0			
736 gctagatgttagcgtga o 737 cgtaccttacggtga o 738 tccatgctggtcctgatgct o 739 atcgactctccgagcgttctc o 740 gctagagcttagcgtga o 741 atcgactctcgagtgttctc o 742 aacgctcgaccttcgat o 743 ctcaacgctggaccttccat o 744 atcgacctacgtggttctc o 745 gagaatgctggaccttccat o 746 tcacgctaacctctgac o 748 bgagcaagctggaccttccat o 749 cgctagaggttagcgtga o 750 gctagatgttaacgt o		 	
737 cgtaccttacggtga 0 738 tccatgctggtcctgatgct 0 739 atcgactctctcgagcgttctc 0 740 gctagagcttagcgtga 0 741 atcgactctcgagtgttctc 0 742 aacgctcgaccttcgat 0 743 ctcaacgctggaccttccat 0 744 atcgacctacgtggttctc 0 745 gagaatgctggaccttccat 0 746 tcacgctaacctctgac 0 747 bgagaacgctccagcactgat 0 748 bgagcaagctggaccttccat 0 749 cgctagaggttagcgtga 0 750 gctagatgttaacgt 0			
738 tccatgctggtcctgatgct 0 739 atcgactctctcgagcgttctc 0 740 gctagagcttagcgtga 0 741 atcgactctcgagtgttctc 0 742 aacgctcgaccttcgat 0 743 ctcaacgctggaccttccat 0 744 atcgacctacgtggttctc 0 745 gagaatgctggaccttccat 0 746 tcacgctaacctctgac 0 747 bgagaacgctccagcactgat 0 748 bgagcaagctggaccttccat 0 749 cgctagaggttagcgtga 0 750 gctagatgttaacgt 0			
739 atcgactctctcgagcgttctc o 740 gctagagcttagcgtga o 741 atcgactctcgagtgttctc o 742 aacgctcgaccttcgat o 743 ctcaacgctggaccttccat o 744 atcgacctacgtgcgttctc o 745 gagaatgctggaccttccat o 746 tcacgctaacctctgac o 747 bgagaacgctccagcactgat o 748 bgagcaagctggaccttccat o 749 cgctagaggttagcgtga o 750 gctagatgttaacgt o			
740 gctagagcttagcgtga o 741 atcgactctcgagtgttctc o 742 aacgctcgaccttcgat o 743 ctcaacgctggaccttccat o 744 atcgacctacgtgcgttctc o 745 gagaatgctggaccttccat o 746 tcacgctaacctctgac o 747 bgagaacgctccagcactgat o 748 bgagcaagctggaccttccat o 749 cgctagaggttagcgtga o 750 gctagatgttaacgt o			
741 atcgactctcgagtgttctc o 742 aacgctcgaccttcgat o 743 ctcaacgctggaccttccat o 744 atcgacctacgtgcgttctc o 745 gagaatgctggaccttccat o 746 tcacgctaacctctgac o 747 bgagaacgctccagcactgat o 748 bgagcaagctggaccttccat o 749 cgctagaggttagcgtga o 750 gctagatgttaacgt o			
742 aacgctcgaccttcgat o 743 ctcaacgctggaccttccat o 744 atcgacctacgtgcgttctc o 745 gagaatgctggaccttccat o 746 tcacgctaacctctgac o 747 bgagaacgctccagcactgat o 748 bgagcaagctggaccttccat o 749 cgctagaggttagcgtga o 750 gctagatgttaacgt o			
743 ctcaacgctggaccttccat o 744 atcgacctacgtgcgttctc o 745 gagaatgctggaccttccat o 746 tcacgctaacctctgac o 747 bgagaacgctccagcactgat o 748 bgagcaagctggaccttccat o 749 cgctagaggttagcgtga o 750 gctagatgttaacgt o			
744 atcgacctacgtgcgttctc o 745 gagaatgctggaccttccat o 746 tcacgctaacctctgac o 747 bgagaacgctccagcactgat o 748 bgagcaagctggaccttccat o 749 cgctagaggttagcgtga o 750 gctagatgttaacgt o		<u> </u>	
745 gagaatgctggaccttccat 0 746 tcacgctaacctctgac 0 747 bgagaacgctccagcactgat 0 748 bgagcaagctggaccttccat 0 749 cgctagaggttagcgtga 0 750 gctagatgttaacgt 0			
746 tcacgctaacctctgac 0 747 bgagaacgctccagcactgat 0 748 bgagcaagctggaccttccat 0 749 cgctagaggttagcgtga 0 750 gctagatgttaacgt 0			
747bgagaacgctccagcactgato748bgagcaagctggaccttccato749cgctagaggttagcgtgao750gctagatgttaacgto			
748 bgagcaagctggaccttccat o 749 cgctagaggttagcgtga o 750 gctagatgttaacgt o			
749 cgctagaggttagcgtga o 750 gctagatgttaacgt o			
750 gctagatgttaacgt o			
/51atggaaggtccacgttctco		 	
752 gctagatgttagcgt o			
753 gctagacgttagtgt o			0
754 tccatgacggtcctgatgct o			0
755 tccatggcggtcctgatgct o	1		0
756 gctagacgatagcgt o		 	0
757 gctagtcgatagcgt o	757	gctagtcgatagcgt	0

er an To admind administration ...

759 tecatgacgetectgatget	750	Therete and the state of the st	
760 gctagacgttagzgt	758	tccatgacgttcctgatgct	
761			
762 tccatgtzgtcctgatgct 0 763 tccatgtzgtzctgatgct 0 764 atzgacctzgatgctcc 0 765 atggaagtccagtctcc 0 766 gcatgacgttgagct 0 767 ggggtcaacttgaggggg sos 768 gggtcaacttgaggggg sos 769 gcgcgcgcgcgcgcgcgcgcgcg 0 770 cccccccccccccccccccccccccccccccccccc			
763 tccatgcggtzctggtgtct 764 atzgactctzgagzgttctc 765 atggaaggtccagtgttctc 766 gcatgacgttgagct 767 gcatgacgttgagct 768 ggggtcaacgttgaggggg 769 ggggtcaaggttgaggggg 769 ggggtcaaggttgaggggg 770 cccccccccccccccccccccccccccccccccc			
764 atzgactctagagzgttete			
765 atgaaggtcagttctc			
766			0
767 ggggtcaacgttqaggggg s 768 ggggtcaacttqaggggg sos 769 cgcgcgcgcgcgcgcgcgcg o 770 cccccccccccccccccccccccccccccccccccc			0
768 ggggtcaaqtctgaggggg sos 769 cgcgcgcgcgcgcgcgg o 770 cccccccccccccccccccccccccccccccccccc			0
769 cgcgcgcgcgcgcgcgcg o 770 cccccccccccccccccccccccccccccccccccc			s
1710			sos
771 cccccccccccccccccccccccccccccccccccc		cgcgcgcgcgcgcgcg	0
772 tecatgtegetectgatect 0 773 getaaacgttaget 0 774 tecatgteggtectgatget 0 775 tecatgceggtectgatget 0 776 aaaatcaacgttgaaaaaaa 805 777 tecataacgttectgatget 0 778 tgaggtecaccacgagteggag 0 779 cgtcgtcgtcgtcgtcgtcgtg s 780 ctcgtgctgctgctgctgctg s 781 gagaacgetecgaccttcgat s 781 gagaacgteggact s 781 gagaacgteggact s 782 gctagatgttaget s 8 geagatgtgaget s 8 f82 gcaatattgegt s 783 gcaatgetgaget s 784 tcaacgttgaf o o 785 tcaacgttgaf o o 786 tcaacgttgaf o o 787 gcaatattgcf o o 788 gcattgcgact o		cccccccccccccccccccc	s
773 gctaaacgttagcgt		cccccccccccccccccccccccccc	s
774 tccatgtcgatcctgatgct 0 775 tccatgccggtcctgatgct 0 776 aaaatcaacgttgaaaaaa sos 777 tccataacgttcctgatgct 0 778 tggagtcccaccagaatcggag 0 779 cgtcgtcgtcgtcgtcgtcgt s 780 ctgctgctgctgctgctgctg s 781 gagaacgtcgaccttcgat s 782 gctagatgtagct s 783 gcatgatgtagct s 784 tcaatgttgaf o 785 tcaacgttgaf o 786 tcaacgttgaf o 787 gcaatattgcb o 788 gcaatattgcb o 789 agttgcaact o 790 tcttcgaa o 791 tctcaga o 792 ccatgtcgtcctgatgct o 793 gtttttatataatttgg o 794 tttttgttgtgttttgtcgtt s 795 tggggtgggtt s		tccatgtcgctcctgatcct	0
775 tccatgccggtcctgatgct 0 776 aaaatcaacgttgaaaaaaa sos 777 tccataacgttcctgtcgtgt 0 778 tggaggtcccaccgagatcggag 0 779 cgtcgtcgtcgtcgtcgtgtg s 780 ctgctgctggtcgtcgtgtg s 781 gagaacgtccgaccttcgat s 781 gagaacgtccgaccttcgat s 782 gctagatgttagcgt s 783 gcatgacgttgagct s 784 tcaacgttgaf o 785 tcaacgttgaf o 786 tcaacgttgab o 787 gcaatattgcb o 788 gcaatattgcb o 789 agttgcaact o 789 agttgcaact o 790 tcttcgaa o 791 tcacagt o 792 ccatgtcggact o 793 gtttttataaatttggg o 794 ttttgtgttttgaggtt s		gctaaacgttagcgt	0
776 aaaatcaacgttgaaaaaa sos 777 tccataacgttctgatget o 778 tggagtccaccacgagatcggag o 779 cgtcgtcgtcgtcgtcgtcgt s 780 ctgctgctgctgctgctgctgt s 781 ggaacgctccgaccttcgat s 781 ggaacgctccgaccttcgat s 782 gctagatgttagcgt s 783 gcatgatgtagct s 784 tcaacgttgaf o 785 tcaacgttgaf o 786 tcaacgttgab o 787 gcaatattgcb o 788 gcaatattgcf o 789 agttgcaact o 790 tcttcgaa o 791 tcaacgtc o 792 ccatgtcggtcttgatgt o 793 gtttttatataatttgg o 794 tttttgttgtcgttttgcgtt s 795 ttggggtggggtt s 796 gggttggggtttggggtt s			0
777 tccataacgttcctgatgct o 778 tggaggtcccaccgagatcggag o 779 cgtcgtcgtcgtcgtcgtcgt s 780 ctgctgctgctgctgctgctg s 781 gagaacgctccgaccttcgat s 782 gctagatgtagcgt s 783 gcatgacgttgagct s 784 tcaacgttgaf o 785 tcaacgttgaf o 786 tcaacgttgab o 787 gcaatattgcf o 788 gcaatattgcf o 789 agttgcaact o 790 tcttcgaa o 791 tcaacgtc o 792 ccatgtcggtcctgatgct o 793 gtttttatataatttggg o 794 tttttgtcgttttgcgttt s 796 ggggttggggtt s 797 gtgtgtgaggttt s 80 bgagaazgttgagcttcgat o 798 bgagaazgttgaccttcgt o		tccatgccggtcctgatgct	0
778 tggaggtccaccgagatcggag o 779 cgtcgtcgtcgtcgtcgtcgt s 780 ctgctgctgctgctgctgctg s 781 gagaacgctcgaccttcgat s 782 gctagatgttagcgt s 783 gcatgacgttgagct s 784 tcaacgttgaf o 785 tcaacgttgaf o 786 tcaacgttgab o 787 gcaatattgcb o 788 gcaatattgcf o 789 agttgcaact o 790 tcttcgaa o 791 tcaacgtc o 792 ccatgtcggtctgatgct o 793 gtttttatataatttggg o 794 tttttgtttgtcgttttgtcgtt s 795 ttgggggggtt s 796 ggggttggggtttgggtttgg o 799 tcaacgttaacgttacgttccat o 800 bgagaazgctcacacactcat o 801 bgagaazgctcacacacacta o		aaaatcaacgttgaaaaaaa	sos
779 cgtcgtcgtcgtcgtcgtcgt s 780 ctgctgctgctgctgctgctgt s 781 gagaacgctccgaccttcgat s 782 gctagatgttagcgt s 783 gcatgacgttgagct s 784 tcaatgctgaf o 785 tcaacgttgab o 786 tcaacgttgab o 787 gcaatattgcb o 788 gcaatattgcf o 789 agttgcaact o 790 tcttcgaa o 791 tcaacgtc o 792 ccatgtcggtcctgatgct o 793 gtttttatataatttggg o 794 tttttgttgttgttttgtgtt s 796 ggggttgggggtt s 797 ggtgtggtgtaggttttgg o 799 tcaacgttaacgttcgaccttcgat o 799 tcaacgttaacgtacctgaccttcat o 801 bgagaazgctcaacatgt o 802 tcaazgttgax o <		tccataacgttcctgatgct	
779 cgtcgtcgtcgtcgtcgtcgt s 780 ctgctgtcgtcgtcgtcgtcgt s 781 gagaacgtccgaccttcgat s 782 gctagatgttagcgt s 783 gcatgacgttgagct s 784 tcaatgctgaf o 785 tcaacgttgaf o 786 tcaacgttgab o 787 gcaatattgcb o 788 gcaatattgcf o 790 tcttcgaa o 791 tcacgt o 792 ccatgtcggtcctgatgct o 793 gttttatatatatttggg o 794 tttttgttgtcgttttgtcgtt o 795 ttgggggggtt s 796 ggggttggggtt s 797 gdtgttaacgttttgg o 798 bagaaazgctcgaccttcgat o 800 bgagaazgtgaccttccat o 801 bagaazgttgaccttccat o 802 tcaazgttgax o <td< td=""><td>778</td><td>tggaggtcccaccgagatcggag</td><td>0</td></td<>	778	tggaggtcccaccgagatcggag	0
780 ctgctgctgctgctgctgctgctg s 781 gagaacgctccgaccttcgat s 782 gctagatgttaggct s 783 gcatgacgttgagct s 784 tcaacgttgaf o 785 tcaacgttgab o 786 tcaacgttgab o 787 gcaatattgcf o 788 gcaatattgcf o 789 agttgcaact o 790 tcttcgaa o 791 tcaacgtc o 792 ccatgtcggtcctgatgct o 793 gtttttatataatttggg o 794 tttttgttgtgttttgtgtt s 795 ttgggggggtt s 796 ggggttggggtt s 797 gtgtgtgtaggttttg o 798 bgagaazgctcgaccttcgat o 800 bgagaazgttgaccttccat o 801 bgagaazgttgaccttccat o 802 tcaazgttgax o 803 </td <td>779</td> <td>cgtcgtcgtcgtcgt</td> <td></td>	779	cgtcgtcgtcgtcgt	
781 gagaacgctccgaccttcgat s 782 gctagatgttagcgt s 783 gcatgacgttagct s 784 tcaacgttgaf o 785 tcaacgttgab o 786 tcaacgttgab o 787 gcaatattgcb o 788 gcaatattgcf o 789 agttgcaact o 790 tcttcgaa o 791 tcaacgtc o 792 ccatgtcggtcctgatgct o 792 ccatgtcggtcctgatgct o 793 gtttttatataatttggg o 794 tttttgttgttgttgtgtt s 795 tggggggggtt s 796 ggggttgaggttttgg o 797 gfggtgttaggttttgg o 80 bgagaazgtcgaccttccat o 80 bgagaazgttgaccttccat o 801 bgagaazgtcgaccttccat o 802 tcazgttagcattcgtacct o 8	780		
782 gctagatgttagcgt s 783 gcatgacgttgagct s 784 tcaatgttgaf o 785 tcaacgttgaf o 786 tcaacgttgab o 787 gcaatattgcb o 788 gcaatattgcf o 789 agttgcaact o 790 tcttcgaa o 791 tcaacgtc o 792 ccatgtcggtcctgatgct o 793 gtttttatataatttggg o 794 tttttgttgtcgttttgtcgtt o 795 ttgggggggtt s 796 gggtttggggtt s 797 gtgtgtgtaggttttg o 798 bgagaazgtcgaccttcgat o 800 bgagcaagtgaccttccat o 801 bgagaazgtgacctcagcatgat o 802 tcazgttgax o 803 gzaatattgcx o 804 tgctgctttgcgtacatcgtacatcgt s 805	781		
783 gcatgacgttgagct s 784 tcaatgctgaf c 785 tcaacgttgaf c 786 tcaacgttgab c 787 gcaatattgcb c 788 gcaatattgcf c 789 aqttgcaact c 790 tcttcgaa c 791 tcaacgtc c 792 ccatgtcggtcctgatgct c 793 gtttttatataatttggg c 794 tttttgttgtcgttttgtcgtt c 795 ttggggggggtt s 796 ggggttggggttt s 797 ggtgtgtaggttttgg c 800 bgagaazgctcgaccttcgat c 800 bgagaazgttgaccttccat c 801 bgagaazgttgaccttccat c 802 tcazgttax c 803 gzaatattgcx c 804 tgctgttgtcttgtgttttgtgett s 805 ctgcgttagcattctagatcacagctet s <td< td=""><td>782</td><td></td><td>······································</td></td<>	782		······································
784 tcaacgttgaf 0 785 tcaacgttgaf 0 786 tcaacgttgab 0 787 gcaatattgcb 0 788 gcaatattgcf 0 789 agttgcaact 0 790 tcttcgaa 0 791 tcaacgtc 0 792 ccatgtcggtcctgatgct 0 793 gtttttatataatttggg 0 794 tttttttttttttttttttttttgtcgttt 0 795 ttgggggggtt s 796 ggggttggggtt s 797 ggtggtgaggttttgg o 798 bgagaazgtcactctgat o 800 bgagcaagttgaccttccat o 801 bgagaazgtccagcattgat o 802 tcaazgttgax o 803 gzaatattgcx o 804 tgctgcttttgcgttttgtgtt s 805 ctgcgttagcaattaacgtg s 807 tgcatgccgtacacagctct s	783		
785 tcaacgttgab 0 786 tcaacgttgab 0 787 gcaatattgcb 0 788 gcaatattgcf 0 789 agttgcaact 0 790 tcttcgaa 0 791 tcaacgtc 0 792 ccatgtcggtcctgatgct 0 793 gtttttatataatttggg 0 794 tttttgttgtcgttttgcgtt 0 795 ttgggggggtt s 796 ggggttggggtttgg 0 797 ggtggtgtaggttttgg 0 798 bgagaazgctcgaccttcgat 0 800 bgagcaagztgaccttccat 0 801 bgagcaagztgaccttccat 0 802 tcaacgttgax 0 803 gzaatattgcx 0 804 tgctgcttttgcgttttgtgtt s 805 ctgcgttagcaattaactgtg 0 806 tccatgacgtcaccgtaccgtaccacacct s 807 tgcatgccgtacacacacct s	784		
786 tcaacgttgab o 787 gcaatattgcb o 788 gcaatattgcf o 789 agttgcaact o 790 tcttcgaa o 791 tcaacgtc o 792 ccatgtcggtcctgatgct o 793 gtttttatataatttggg o 794 tttttgttgtcgttttgcgtt o 795 ttggggggggtt s 796 ggggttgggggtt s 797 ggtgtgtagagttttg o 798 bgagaazgctcgaccttcgat o 800 bgagaazgtgaccttccat o 801 bgagaazgttgaccttccat o 802 tcaazgttgax o 803 gzaatattgcx o 804 tgctgcttttgtcgttttgtgett o 805 ctgcttagcattcagtaccatcgt s 806 tccatgacgtcctgatcgtaccacaccet s 807 tgcatgccgtacacacaccet s 808 tgcatcagctc s	785		···
787 gcaatattgcb o 788 gcaatattgcf o 789 agttgcaact o 790 tcttcgaa o 791 tcaacgtc o 792 ccatgtcggtcctgatgct o 793 gtttttatatatttggg o 794 tttttgtttgcgttttgcgtt o 795 ttggggggggtt s 796 ggggttggaggtttgg o 797 ggtgtgtgaggttttgg o 798 bgagaazgctcgaccttcgt o 800 bgagaazgtggaccttccat o 801 bgagaazgtggaccttccat o 802 tcaazgttgax o 803 gzaatattgcx o 804 tgctgcttttgtcgttttgtgett o 805 ctgcqttagcaatttaactgtg o 806 tccatgacgtcctgatacacagetct s 807 tgcatgccgtacacagactct s 808 tgcatgcctcccccc s 810 tgccccccccccccccccc s	786		
788 gcaatattgcf o 789 agttgcaact o 790 tcttcgaa o 791 tcaacgtc o 792 ccatgtcggtcctgatgct o 793 gtttttatataatttggg o 794 tttttgtttgtcgttttgcgtt o 795 tgggggggtt s 796 ggggttggggtttgg o 797 gtgtgtgaggttttgg o 798 bgagaazgctcgaccttcgat o 799 tcaacgttaacgttaacgtt o 800 bgagaazgtcccagcactgat o 801 bgagaazgtccagcactgat o 802 tcaazgttgax o 803 gzaatattgcx o 804 tgctgctttttgtcgttttgtgct o 805 ctgcgttagcatttaactgtg o 806 tccatgacgtcatcgtaccagctct s 807 tgcatgccgtaccagctc s 808 tgcatcagctc s 810 tgcgcccccccccccccccc s			
789 agttgcaact 0 790 tcttcgaa 0 791 tcaacgtc 0 792 ccatgtcggtcctgatgct 0 793 gtttttatataatttggg 0 794 tttttgtttgtcgttttgtcgtt 0 795 ttgggggggtt s 796 ggggttgtggggttt s 797 ggtgtgtaagttttgg 0 798 bgagaazgctcgaccttcgat 0 799 tcaacgttaacgttaacgtt 0 800 bgagaazgctccagcactgat 0 801 bgagaazgctccagcactgat 0 802 tcaazgttgax 0 803 gzaatattgc 0 804 tgctgcttttgcgttttgcgttt 0 805 ctgcgttagcatttaactgtg 0 806 tccatgacgtcctcgtaccgtaccagctct s 807 tgcatcgcgtcaccgtaccagctct s 808 tgcatcgctcccc s 810 tgcgcccc s 811 ccccccccc s	788		
790 tcttcgaa 0 791 tcaacgtc 0 792 ccatgtcggtcctgatgct 0 793 gtttttatataatttggg 0 794 tttttgttgtcgttttgtcgtt 0 795 ttgggggggtt s 796 ggggttgggggtt s 797 gtgtgttaagttttgg 0 798 bgagaazgctcgacctcgat 0 799 tcaacgttaacgttaacgtt 0 800 bgagaazgctccagcactgat 0 801 bgagaazgctccagcactgat 0 802 tcaazgttgax 0 803 gzaatattgcx 0 804 tgctgcttttgcgttttgcgttt 0 805 ctgcgttagcatttactgtg 0 806 tccatgacgtcctcagcactct s 807 tgcatgccgtacacagctct s 808 tgcatcagctc s 810 tgcgctct s 811 cccccccccccccccccccccccccccccccccccc	789		
791 tcaacgtc 0 792 ccatgtcggtcctgatgct 0 793 gttttatataatttggg 0 794 tttttgtttgtcgttttgtcgtt 0 795 ttgggggggtt s 796 gggttgggggtt s 797 ggtggtgtaggttttgg 0 798 bgagaazgtcgaccttcgat 0 800 bgagaazgttgaccttcat 0 801 bgagaazgtccagcactgat 0 802 tcaazgttgax 0 803 gzaatattgcx 0 804 tgctgcttttgtcgttttgtgtt 0 805 ctgcgttagcaattaactgtg 0 806 tccatgacgttcctgatgct s 807 tgcatgccgtgcatccgtacacagctct s 808 tgcatgccgtacacagctct s 809 tgcatcagctc s 810 tgcgctct s 811 cccccccccccccccccccccccccccccccccccc	790		
792 ccatgteggtectgatget 0 793 gtttttatataatttggg 0 794 tttttgttgtegttttgtegtt 0 795 ttgggggggtt s 796 ggggttggggtt s 797 ggtggtgtaggttttgg o 798 bgagaazgetegacettegat o 800 bgagcaagztgacettecat o 801 bgagaazgetecagcaetgat o 802 tcaazgttgax o 803 gzaatattgex o 804 tgetgettttgtegttttgtgett o 805 ctgegttagcaatttaactgtg o 806 tccatgacgttcctgatget s 807 tgeatgccgtgcatcegtaccagetet s 808 tgcatcagetet s 809 tgcatcagetet s 810 tgcgetet s 811 cccccccccccccccccccccccccccccccccccc	791		
793 gtttttatataatttggg o 794 tttttgttgtcgttttgtcgtt o 795 ttggggggtt s 796 ggggttggggtt s 797 ggtggtgtaggttttgg o 798 bgagaazgtcgaccttcgat o 799 tcaacgttaacgttaacgtt o 800 bgagaazgtccagcactgat o 801 bgagaazgtccagcactgat o 802 tcaazgttgax o 803 gzaatattgcx o 804 tgctgcttttgtcgttttgtct o 805 ctgcgttagcaatttaactgtg o 806 tccatgacgtcctagatcct s 807 tgcatgccgtcaccagctct s 808 tgcatcagctc s 809 tgcatcagctc s 810 tgcgctc s 811 cccccccc s 812 ccccccccc s 813 cccccccc s	792		
794 ttttttgtttgtcgttttgtcgtt o 795 ttgggggggtt s 796 ggggttggggtt s 797 ggtggtgtaggttttgg o 798 bgagaazgctcgaccttcgat o 799 tcaacgttaacgttaacgtt o 800 bgagaazgctccagcactgat o 801 bgagaazgctccagcactgat o 802 tcaazgttgax o 803 gzaatattgcx o 804 tgctgcttttgtcgttttgtgtt o 805 ctgcgttagcaattaactgtg o 806 tccatgacgttcctgatgct s 807 tgcatgcgtacacagctct s 808 tgcatcgcgtacacagctct s 809 tgcatcagctct s 810 tgcgctct s 811 ccccccccc s 812 ccccccccc s 813 cccccccc s	793		· · · · · · · · · · · · · · · · · · ·
795 ttgggggggtt s 796 ggggttggggtt s 797 ggtggtgtaggttttgg o 798 bgagaazgctcgaccttcgat o 799 tcaacgttaacgttaacgtt o 800 bgagaazgtggaccttccat o 801 bgagaazgtccagcactgat o 802 tcaazgttgax o 803 gzaatattgcx o 804 tgctgcttttgtcgttttgtgtt o 805 ctgcgttagcaatttaactgtg o 806 tccatgacgttcctgatgct s 807 tgcatgcgtacacagctct s 808 tgcatcagctct s 809 tgcatcagctct s 811 cccccccccccccccccccccccccccccccccccc			
796 ggggttggggtt s 797 ggtggtgtaggttttgg o 798 bgagaazgctcgaccttcgat o 799 tcaacgttaacgttaacgtt o 800 bgagcaagztggaccttccat o 801 bgagaazgctccagcactgat o 802 tcaazgttgax o 803 gzaatattgcx o 804 tgctgcttttgtcgttttgtgett o 805 ctgcgttagcaatttaactgtg o 806 tccatgacgttcctgatget s 807 tgcatgccgtacacagetet s 808 tgcatcagctc s 810 tgcgetct s 811 cccccccccccccccccccccccccccccccccccc			
797 ggtggtgtaggttttgg 0 798 bgagaazgctcgaccttcgat 0 799 tcaacgttaacgttaacgtt 0 800 bgagcaagztggaccttccat 0 801 bgagaazgctccagcactgat 0 802 tcaazgttgax 0 803 gzaatattgcx 0 804 tgctgcttttgtcgttttgtgtt 0 805 ctgcgttagcaatttaactgtg 0 806 tccatgacgttcctgatgct s 807 tgcatgccgtgcatccgtacacagctct s 808 tgcatcagctct s 810 tgcgctct s 811 cccccccccccccccccccccccccccccccccccc			
798 bgagaazgetegacettegat 0 799 tcaacgttaacgttaacgtt 0 800 bgagcaagztgacettecat 0 801 bgagaazgetecagcactgat 0 802 tcaazgttgax 0 803 gzaatattgex 0 804 tgetgettttgtegttttgtgett 0 805 ctgcgttagcaatttaactgtg 0 806 tccatgacgttectgatget s 807 tgcatgcgtgcatccgtacacagetet s 808 tgcatgcgtacacagetet s 809 tgcatcagetet s 810 tgcgetet s 811 cccccccccccccccccccccccccccccccccccc			
799 tcaacgttaacgttaacgtt 0 800 bgagcaagztggaccttccat 0 801 bgagaazgctccagcactgat 0 802 tcaazgttgax 0 803 gzaatattgcx 0 804 tgctgcttttgtcgttttgtgctt 0 805 ctgcgttagcaatttaactgtg 0 806 tccatgacgttcctgatgct s 807 tgcatgccgtacacagctct s 808 tgcatcagctacacagctct s 810 tgcgctct s 811 cccccccccccccccccccccccccccccccccccc			
800 bgagcaagztggaccttccat o 801 bgagaazgctccagcactgat o 802 tcaazgttgax o 803 gzaatattgcx o 804 tgctgcttttgtcgttttgtgett o 805 ctgcgttagcaatttaactgtg o 806 tccatgacgttcctgatgct s 807 tgcatgccgtacacagctct s 808 tgcatcagctacacagctct s 809 tgcatcagctct s 810 tgcgctct s 811 cccccccccccccccccccccccccccccccccccc			
801 bgagaazgctccagcactgat 0 802 tcaazgttgax 0 803 gzaatattgcx 0 804 tgctgcttttgtcgttttgtgett 0 805 ctgcgttagcaatttaactgtg 0 806 tccatgacgttcctgatgct s 807 tgcatgccgtacacagctct s 808 tgcatgccgtacacagctct s 809 tgcatcagctct s 810 tgcgctct s 811 cccccccccccccccccccccccccccccccccccc			·
802 tcaazgttgax 0 803 gzaatattgcx 0 804 tgctgcttttgtcgttttgtgett 0 805 ctgcgttagcaatttaactgtg 0 806 tccatgacgttcctgatget s 807 tgcatgccgtacacagctct s 808 tgcatgccgtacacagctct s 809 tgcatcagctct s 810 tgcgctct s 811 cccccccccccccccccccccccccc s 812 cccccccccccccccccccccccccccccccccccc			
803 gzaatattgcx 0 804 tgctgcttttgtcgttttgtgctt 0 805 ctgcgttagcaatttaactgtg 0 806 tccatgacgttcctgatgct s 807 tgcatgccgtgcatccgtacacagctct s 808 tgcatgccgtacacagctct s 809 tgcatcagctct s 810 tgcgctct s 811 cccccccccccccccccccccccccccccccccccc			
804 tgctgcttttgtcgttttgtgctt o 805 ctgcgttagcaatttaactgtg o 806 tccatgacgttcctgatgct s 807 tgcatgccgtgcatccgtacacagctct s 808 tgcatgccgtacacagctct s 809 tgcatcagctct s 810 tgcgctct s 811 cccccccccccccccccccccccccccccccccccc			
805 ctgcgttagcaatttaactgtg o 806 tccatgacgttcctgatgct s 807 tgcatgccgtgcatccgtacacagctct s 808 tgcatgccgtacacagctct s 809 tgcatcagctct s 810 tgcgctct s 811 cccccccccccccccccccccccccccccccc s 812 cccccccccccccccccccccccccccccccccccc			
806 tccatgacgttcctgatgct s 807 tgcatgccgtgcatccgtacacagctct s 808 tgcatgccgtacacagctct s 809 tgcatcagctct s 810 tgcgctct s 811 ccccccccccccccc s 812 cccccccccccc s 813 cccccccc s			
807 tgcatgccgtgcatccgtacacagctct s 808 tgcatgccgtacacagctct s 809 tgcatcagctct s 810 tgcgctct s 811 cccccccccccccccccc s 812 cccccccccccc s 813 cccccccc s			
808 tgcatgccgtacacagctct s 809 tgcatcagctct s 810 tgcgctct s 811 cccccccccccccccccccccccccc s 812 cccccccccccc s 813 cccccccc s			·
809 tgcatcagctct s 810 tgcgctct s 811 ccccccccccccccccccc s 812 ccccccccccc s 813 cccccccc s 814 tccccccc s			
810 tgcgctct s 811 cccccccccccccccc s 812 cccccccccc s 813 ccccccc s			
811 cccccccccccccc s 812 ccccccccccc s 813 ccccccc s			
812 cccccccccc s 813 ccccccc s 814 tcctcccc s			s
813 ccccccc s			s
914 tegatagatat			s
814 tgcatcagctct sos			s
	814	tgcatcagctct	sos

		
815	tgcatgccgtacacagctct	0
816	gagcaagctggaccttccat	s
817	tcaacgttaacgttaacgttaacgtt	s
818	gagaacgctcgaccttcgat	s
819	gtccccatttcccagaggaggaaat	0
820	ctagcggctgacgtcatcaagctag	0
821	ctagcttgatgacgtcagccgctag	0
822	cggctgacgtcatcaa	s
823	ctgacgtg	0
824	ctgacgtcat	0
825	attcgatcggggcggggcgag	0
826	ctcgccccgcccgatcgaat	0
827	gactgacgtcagcgt	0
828	ctageggetgaegteataaagetage	s
829	ctagctttatgacgtcagccgctagc	s
830	ctagcggctgagctcataaagctagc	s
831	ctagtggctgacgtcatcaagctag	s
832	tccaccacgtggtctatgct-	s
833	gggaatgaaagattttattataag	0
834	tctaaaaaccatctattcttaaccct	0
835	agctcaacgtcatgc	0
836	ttaacggtggtagcggtattggtc	0
837	ttaagaccaataccgctaccaccg	0
838	gatctagtgatgagtcagccggatc	1 0
839	gatccggctgactcatcactagatc	0
840	tccaagacgttcctgatgct	0
841	tccatgacgtccctgatgct	0
842	tccaccacgtggctgatgct	0
843	ccacgtggacctctagc	0.
844	. tcagaccacgtggtcgggtgttcctga	
845	tcaggaacacccgaccacgtggtctga	- 0
846	catttccacgatttccca	0
847	ttcctctgcaagagact	0
848	tgtatctctgaaggact	0
849	ataaagcgaaactagcagcagtttc	0
850	gaaactgctgctagtttcgctttat	0
851	tgcccaaagaggaaaatttgtttcatacag	
852	ctgtatgaaacaaattttcctctttgggca	0
853		0
854	ttagggttagggtt	S
855	tccatgagcttcctgatgct	S
855 856	aaaacatgacgttcaaaaaa	S
	aaaacatgacgttcgggggg	S
857	ggggcatgagcttcgggggg	sos
858	ctaggctgacgtcatcaagctagt	
859	tctgacgtcatctgacgttggctgacgtct	
860	ggaattagtaatagatatagaagtt	0
861	tttaccttttataaacataactaaaacaaa	
862	gcgttttttttgcg	s
863	atatctaatcaaaacattaacaaa	
864	tctatcccaggtggttcctgttag	<u> </u>
865	btccatgacgttcctgatgct	
866	btccatgagcttcctgatgct	0
867	tttttttttf	0
868	ttttttttttf	so
869	ctagcttgatgagctcagccgctag	0
870	ttcagttgtcttgctgcttagctaa	0
871	tccatgagcttcctgagtct	s

--- -: ---

872	ctagcggctgacgtcatcaatctag	0
873	tgctagctgtgcctgtacct	s_
874	atgctaaaggacgtcacattgca	0
875	tgcaatgtgacgtcctttagcat	0
· 876	gtaggggactttccgagctcgagatcctatg	0
877	cataggatctcgagctcggaaagtcccctac	0
878	ctgtcaggaactgcaggtaagg	0
879 ,	cataacataggaatatttactcctcgc	0
880	ctccagctccaagaaaggacg	0
881	gaagtttctggtaagtcttcg	0
882	tgctgcttttgtgctt	s
883	tcgtcgttttgtggttttgtggtt	s
884	tcgtcgtttgtcgtt	s
885	tcctgacgttcggcgcgccc	s
886	tgctgcttttgtgcttt	
887	tccatgagcttcctgagctt	s
888	tcgtcgtttcgtcgttttgacgtt	s
889	tcgtcgtttgcgtgcgtttcgtcgtt	s
890	tcgcgtgcgttttgtcgttttgacgtt	s
891	ttcgtcgttttgtcgttt	s
892	tcctgacggggaagt	s
893	tcctggcgtggaagt	s
894	tcctggcggtgaagt	s
895	tcctggcgttgaagt	s
896	tcctgacgtggaagt	s
897	gcgacgttcggcgcgccc	S
898	gcgacgggcgcgcgccc	s
899	gcggcgtgcgcgcgcgccc	s s
900	gcggcggtcggcgcgccc	
901	gcgacggtcggcgcgccc	s s
902	gcggcgttcggcgcgccc	<u>s</u>
903	gcgacgtgcgcgcgccc	
904	tcgtcgctgtctccg	s S
905	tgtggggttttggttttgg	<u>s</u>
906	aggggagggagggg	S
907	tgtgtgtgtgtgtgtgt	S
908	ctctctctctctctct	
909	ggggtcgacgtcgaggggg	sos
910	atatatatatatatatat	<u>S</u>
911	ttttttttttttttttttttttt	S
912	ttttttttttttttt	s
913	ttttttttttttttt	S
914	gctagagggagggt	s
915		
	gctagatgttagggg	
916	gcatgaggggagct	
917	atggaaggtccagggggctc	
918	atggactctggaggggctc	
919	atggaaggtccaaggggctc	
920	gagaaggggggaccttggat	
921	gagaaggggggaccttccat	
922	gagaaggggccagcactgat	
923	tccatgtggggcctgatgct	
924	tccatgaggggcctgatgct	
925	tccatgtggggcctgctgat	
926	atggactctccggggttctc	
927 928	atggaaggtccggggttctc	
	atggactctggaggggtctc	

929	at an agent contagged o	
930	atggaggctccatggggctc atggactctggggggttctc	
931	tccatgtgggtgggatgct	
932	tccatgcgggtgggatgct	
933	tccatgggggtcctgatgct	
934	tccatggggtccctgatgct	
935	tccatggggtgcctgatgct	
936	tccatggggttcctgatgct	
937	tccatcgggggcctgatgct	
938	gctagagggagtgt	
939	ttttttttttttt	s
940	gmggtcaacgttgagggmggg	s
941	ggggagttcgttgagggggg	s
942	tegtegttteeeceecee	s
943	ttggggggtttttttttttttt	s
944	tttaaattttaaaatttaaaata	
945		s
L	ttggtttttttggttttttttgg	s
946	tttcccttttcccctc	s
947	ggggtcatcgatgagggggg s	sos
948	tccatgacgttcctgacgtt	
949	tccatgacgttcctgacgtt	
950	tccatgacgttcctgacgtt	•
951	tccatgacgttcctgacgtt	
952	tccatgacgttcctgacgtt	
953	tccatgacgttcctgacgtt	
954	tccatgacgttcctgacgtt	
955	tccatgacgttcctgacgtt	
956	tccatgacgttcctgacgtt	
957	tccatgacgttcctgacgtt	
958	tccatgacgttcctgacgtt	
959	gggggacgatcgtcggggg	sos
960	gggggtcgtacgacggggg	sos
961	tttttttttttttttttttt	ро
962	aaaaaaaaaaaaaaaaaaaa	ро
963		
964	ccccccccccccccccc	po
	tcgtcgttttgtcgttt	
965	tcgtcgttttgtcgtttt	
966	tcgtcgttttgtcgttt	
967	tcgtcgttttgtcgttt	
968	ggggtcaacgttgaggggg	
969	ggggtcaacgttgaggggg	
970	ggggtcaagcttgaggggg	
971	tgctgcttcccccccccc	
972	ggggacgtcgacgtggggg	sos
973	ggggtcgtcgacgaggggg	sos
974	ggggtcgacgtacgtcgagggggg	sos
975	ggggaccggtaccggtggggg	sos
976	gggtcgacgtcgaggggg	sos
977	ggggtcgacgtcgagggg	sos
978		
L	ggggaacgttaacgttgggggg	sos
979	ggggtcaccggtgaggggg	sos
980	ggggtcgttcgaacgaggggg	sos

981	ggggacgttcgaacgtggggg	sos
982	tcaactttga	s
983	tcaagcttga	s
984	tcacgatcgtga	s
985	tcagcatgctga	s
986	gggggagcatgctgggggg	sos
987	adaadaaaaaaaaadaada	sos
988	gggggacgatatcgtcgggggg	sos
989	gggggacgacgtcgtcgggggg	sos
990	gggggacgagctcgtcgggggg	sos
991	gggggacgtacgtcgggggg	sos
992	tcaacgtt	
993	tccataccggtcctgatgct	
994	tccataccggtcctaccggt	s
995	gggggacgatcgttgggggg	sos
996	ggggaacgatcgtcgggggg	sos
997	ggg ggg acg atc gtc ggg ggg	sos
998	ggg gga cga tcg tcg ggg ggg	sos
999	aaa gac gtt aaa	po
1000	aaagagcttaaa	po
1001	aaagazgttaaa	po
1002	aaattcggaaaa	po
1003	gggggtcatcgatgaggggg	sos
1004	gggggtcaacgttgaggggg	sos
1005	atgtagcttaataacaaagc	po
1006	ggatcccttgagttacttct	po
1007	ccattccacttctgattacc	po
1008	tatgtattatcatgtagata	po
1009	agcctacgtattcaccctcc	po
1010	ttcctgcaactactattgta	po
1011	atagaaggccctacaccagt	po
1012	ttacaccggtctatggaggt	po
1013	ctaaccagatcaagtctagg	po
1014	cctagacttgatctggttag	po
1015	tataagcctcgtccgacatg	po
1016	catgtcggacgaggcttata	po
1017	tggtggtgggagtaagete	po
1018	gagetactecceaccaca	po
1019	gccttcgatcttcgttggga	po
1020	tggacttctctttgccgtct	po
1021	atgctgtagcccagcgataa	po
1022	accgaatcagcggaaagtga	
1023	tccatgacgttcctgacgtt	po
1024	ggagaaacccatgagctcatctgg	
1025	accacagaccagcaggcaga	
1026	gagcgtgaactgcgcgaaga	
1027	teggtaccettgcageggtt	
1028	ctggagccctagccaaggat	
1029	gcgactccatcaccagcgat	
1030	cctgaagtaagaaccagatgt	

1031	ctgtgttatctgacatacacc	<u> </u>
1032	aattagccttaggtgattggg	
1033	acatctggttcttacttcagg	
1034	ataagtcatattttgggaactac	
1035	cccaatcacctaaggctaatt	
1036	ggggtcgtcgacgaggggg	sos
1037		
1037	ggggtcgttcgaacgaggggg	sos
	ggggacgttcgaacgtgggggg	sos
1039	tcctggcgqggaagt	s
1040	ggggaacgacgtcgttgggggg	sos
1041	ggggaacgtacgtcgggggg	sos
1042	ggggaacgtacgttgggggg	sos
1043	ggggtcaccggtgaggggg	sos
1044	ggggtcgacgtacgtcgaggggg	sos
1045	ggggaccggtaccggtggggg	sos
1046	gggtcgacgtcgaggggg	sos
1047	ggggtcgacgtcgagggg	sos
1048	ggggaacgttaacgttgggggg	sos
1049	ggggacgtcgacgtggggg	sos
1050	gcactcttcgaagctacagccggcagcctctgat	
1051	cggctcttccatgaggtctttgctaatcttgg	
1052	cggctcttccatgaaagtctttggacgatgtgagc	
1053	tcctgcaggttaagt	s
1054	gggggtcgttcgttgggggg	sos
1055	gggggatgattgttgggggg	sos
1056	gggggazgatzgttgggggg	sos
1057	gggggagctagcttgggggg	sos
1058	ggttettttggteettgtet	s
1059	ggttettttggteetegtet	s
1060	ggttcttttggtccttatct	s
1061	ggttcttggtttccttgtct	s
1062		
1063	tggtcttttggtccttgtct ggttcaaatggtccttgtct	S
		S
1064	gggtcttttgggccttgtct	s
1065	tccaggacttctctcaggtttttt	s
1066	tccaaaacttctctcaaatt	s
1067	tactacttttatactt	S
1068	tgtgtgtgtgtgtgtgtg	S
1069	ttgttgttgttgttgttg	s
1070	ggctccggggagggaatttttgtctat	s
1071	gggacgatcgtcggggggg	sos
1072	gggtcgtcgacgagggggg	sos
1073	ggtcgtcgacgagggggg	sos
1074	gggtcgtcgtggggggg	sos
1075	ggggacgatcgtcggggggg	sos
1076	ggggacgtcgtcgtggggg	sos
1077	ggggtcgacgtcgacgtcgagggggg	sos
1078	ggggaaccgcggttgggggg	sos
1079	ggggacgacgtcgtgggggg	sos
1080	tcgtcgtcgtcgtgggggg	sos

10

15

20

25

1081	tcctgccggggaagt	s
1082	tcctgcagggaagt	s
1083	tcctgaagggaagt	s
1084	tcctggcgggcaagt	s
1085	tcctggcgggtaagt	. s
1086	tcctggcgggaaagt	s
1087	tccgggcgggaagt	s
1088	tcggggcgggaagt	s
1089	tcccggcgggaagt	s
1090	gggggacgttggggg	s
1091	ggggttttttttttgggggg	sos
1092	ggggcccccccgggggg	sos
1093	ggggttgttgttgggggg	sos

Nucleic acids having modified backbones also are included in the class of nucleic acids having antiangiogenic properties. Modified backbone nucleic acids include those having phosphorothioate, methylphosphonate, methylphosphorothioate, p-ethoxy and/or phosphorodithioate internucleotide or internucleoside bonds. Chimeric oligonucleotides having mixtures of modified and/or unmodified backbones also are included in the invention.

In the case when an antiangiogenic nucleic acid is administered in conjunction with a nucleic acid vector, it is preferred that the backbone of the antiangiogenic nucleic acid be a chimeric combination of phosphodiester and phosphorothioate bonds (or other modification of the internucleotide bonds). This is because the uptake of the plasmid vector by the cell may be hindered by the presence of completely phosphorothioate oligonucleotide. Thus when both a vector and an oligonucleotide are delivered to a subject, it is preferred that the oligonucleotide have chimeric or phosphorothioate internucleotide bonds and that the plasmid be associated with a vehicle that delivers it directly into the cell, thus avoiding the need for cellular uptake. Such vehicles are known in the art and include, for example, liposomes, electroporation devices and gene guns.

For use in the instant invention, the antiangiogenic nucleic acids can be synthesized de novo using any of a number of procedures well known in the art. Such compounds are referred to as "synthetic nucleic acids." For example, the b-cyanoethyl phosphoramidite method (Beaucage, S.L., and Caruthers, M.H., Tet. Let. 22:1859, 1981); nucleoside H-phosphonate method (Garegg et al., Tet. Let. 27:4051-4054, 1986; Froehler et al., Nucl. Acid. Res. 14:5399-5407, 1986, Garegg et al., Tet. Let. 27:4055-4058, 1986, Gaffney et al., Tet. Let. 29:2619-2622, 1988). These chemistries can be performed by a variety of automated oligonucleotide synthesizers available in the market.

10

15

20

25

30

Alternatively, nucleic acids can be produced on a large scale in plasmids, (see, e.g., Sambrook, et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1989) and separated into smaller pieces or administered whole. Nucleic acids can be prepared from existing nucleic acid sequences (e.g., genomic or cDNA) using known techniques, such as those employing restriction enzymes, exonucleases or endonucleases. Nucleic acids prepared in this manner are referred to as isolated nucleic acids. The term "antiangiogenic nucleic acid" encompasses both synthetic and isolated antiangiogenic nucleic acids.

For use *in vivo*, nucleic acids are preferably relatively resistant to degradation (e.g., are stabilized). A "stabilized nucleic acid molecule" as used herein means a nucleic acid molecule that is relatively resistant to *in vivo* degradation (e.g. via an exo- or endo-nuclease). Stabilization can be a function of length or secondary structure. Antiangiogenic nucleic acids that are tens to hundreds of kilobases long are relatively resistant to *in vivo* degradation. For shorter antiangiogenic nucleic acids, secondary structure can stabilize and increase their effect. For example, if the 3' end of a nucleic acid is self-complementary to an upstream region of the same nucleic acid, so that it can fold back and form a stem/loop structure by internal self-hybridization, then the nucleic acid may be stabilized and therefore may exhibit more *in vivo* activity.

Alternatively, nucleic acid stabilization can be accomplished via backbone modifications. Preferred stabilized nucleic acids of the instant invention have a modified backbone. It has been demonstrated that modification of the nucleic acid backbone provides enhanced activity of the antiangiogenic nucleic acids when administered *in vivo*. One type of modified backbone is a phosphate backbone modification. For example, antiangiogenic nucleic acids including at least two phosphorothioate linkages at the 5' end of the oligonucleotide and multiple phosphorothioate linkages at the 3' end, preferably 5 or more, can in some circumstances protect the nucleic acid from degradation by intracellular exo- and endo-nucleases and thereby provide maximal activity. Other phosphate modified nucleic acids include phosphodiester modified nucleic acids, combinations of phosphodiester and phosphorothioate nucleic acids, methylphosphonate, methylphosphorothioate, phosphorodithioate, p-ethoxy and combinations thereof. Some of these combinations in CpG nucleic acids and their particular effects on immune cells is discussed in more detail in PCT Published Patent Applications PCT/US95/01570 and PCT/US97/19791, the entire contents of which are hereby incorporated by reference. Although not intending to be bound by any

particular theory, it is believed that these modified nucleic acids may have increased activity relative to unmodified nucleic acids due to enhanced nuclease resistance, increased cellular uptake, increased protein binding, and/or altered intracellular localization.

5

10

15

20

25

30

Modified backbone nucleic acids, such as those having phosphorothioates bonds may be synthesized using automated techniques employing, for example, phosphoramidate or H-phosphonate chemistries. Aryl-and alkyl-phosphonates can be made, e.g., as described in U.S. Patent No. 4,469,863. Alkylphosphotriesters, in which the charged oxygen moiety is alkylated as described in U.S. Patent No. 5,023,243 and European Patent No. 092,574, can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other nucleic acid backbone modifications and substitutions have been described (Uhlmann, E. and Peyman, A., Chem. Rev. 90:544, 1990; Goodchild, J., Bioconjugate Chem. 1:165, 1990).

Another type of modified backbone, useful according to the invention, is a peptide nucleic acid. The backbone is composed of aminoethylglycine and supports bases which provide the nucleic acid character. The backbone does not include any phosphate and thus may optionally have no net charge. The lack of charge allows for stronger DNA-DNA binding because the charge repulsion between the two strands does not exist. Additionally, because the backbone has an extra methylene group, the oligonucleotides are enzyme/protease resistant. Peptide nucleic acids can be purchased from various commercial sources, e.g., Perkin Elmer, or synthesized de novo.

Another class of backbone modifications include 2'-O-methylribonucleosides (2'-O-Me). These types of substitutions are described extensively in the literature and in particular with respect to their immunostimulating properties in Zhao et al., *Bioorganic and Medicinal Chemistry Letters*, 1999, 9:24:3453. Zhao et al. describes methods of preparing 2'-O-Me modifications to nucleic acids.

The nucleic acid molecules of the invention may include naturally-occurring or synthetic purine or pyrimidine heterocyclic bases as well as modified backbones. Purine or pyrimidine heterocyclic bases include, but are not limited to, adenine, guanine, cytosine, thymidine, uracil, and inosine. Other representative heterocyclic bases are disclosed in US Patent No. 3,687,808, issued to Merigan, et al. The terms "purines" or "pyrimidines" or "bases" are used herein to refer to both naturally-occurring or synthetic purines, pyrimidines or bases.

WO 02/053141 PCT/US01/48458

- 42 -

Other stabilized nucleic acids include non-ionic DNA analogs, such as alkyl- and arylphosphates (in which the charged phosphonate oxygen is replaced by an alkyl or aryl group),
phosphodiester and alkylphosphotriesters, in which the charged oxygen moiety is alkylated.
Nucleic acids which contain diol, such as tetraethyleneglycol or hexaethyleneglycol, at either
or both termini have also been shown to be substantially resistant to nuclease degradation.

5

10

15

20

25

30

The antiangiogenic nucleic acids having backbone modifications useful according to the invention in some embodiments are S- or R-chiral antiangiogenic nucleic acids. An "S chiral antiangiogenic nucleic acid" as used herein is an antiangiogenic nucleic acid wherein at least two nucleotides have a backbone modification forming a chiral center and wherein a plurality of the chiral centers have S chirality. An "R chiral antiangiogenic nucleic acid" as used herein is an antiangiogenic nucleic acid wherein at least two nucleotides have a backbone modification forming a chiral center and wherein a plurality of the chiral centers have R chirality. The backbone modification may be any type of modification that forms a chiral center. The modifications include but are not limited to phosphorothioate, methylphosphonate, methylphosphorothioate, phosphorodithioate, p-ethoxy, 2'-O-Me and combinations thereof.

The chiral antiangiogenic nucleic acids must have at least two nucleotides within the nucleic acid that have a backbone modification. All or less than all of the nucleotides in the nucleic acid, however, may have a modified backbone. Of the nucleotides having a modified backbone (referred to as chiral centers), a plurality have a single chirality, S or R. A "plurality" as used herein refers to an amount greater than 50%. Thus, less than all of the chiral centers may have S or R chirality as long as a plurality of the chiral centers have S or R chirality. In some embodiments at least 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the chiral centers have S or R chirality. In other embodiments at least 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the nucleotides have backbone modifications.

The S- and R- chiral antiangiogenic nucleic acids may be prepared by any method known in the art for producing chirally pure oligonucleotides. Stee et al teach methods for producing stereopure phosphorothioate oligodeoxynucleotides using an oxathiaphospholane. (Stee, W.J., et al., 1995, *J. Am. Chem. Soc.*, 117:12019). Other methods for making chirally pure oligonucleotides have been described by companies such as ISIS Pharmaceuticals. US Patents which disclose methods for generating stereopure oligonucleotides include 5,883,237;

____.<u>__</u>___

10

15

20

25

30

acid encoding the protein.

5,837,856; 5,599,797; 5,512,668; 5,856,465; 5,359,052; 5,506,212; 5,521,302; and 5,212,295, each of which is hereby incorporated by reference in its entirety.

As used herein, administration of an antiangiogenic nucleic acid is intended to embrace the administration of one or more antiangiogenic nucleic acids which may or may not differ in terms of their profile, sequence, backbone modifications and biological effect. As an example, CpG nucleic acids and T-rich nucleic acids may be administered to a single subject along with other antiangiogenic medicament(s), such as endostatin or angiostatin. In another example, a plurality of CpG nucleic acids which differ in nucleotide sequence may also be administered to a subject.

The invention encompasses the administration of the antiangiogenic nucleic acids along with other medicaments in order to provide a synergistic effect useful in the prevention and/or treatment of conditions that involve unwanted angiogenesis, such as cancer. Accordingly, methods for inhibition of angiogenesis are provided. The methods include the administration of at least one antiangiogenic nucleic acid formulated for administration to a subject. Non-nucleic acid antiangiogenesis molecules also can be administered to the subject, including, but not limited to endogenous angiogenesis inhibitors including PD 174073 and PD 166285 (Parke-Davis), SU5416 and SU6668 (Sugen), ZD 4190 and ZD 6474 (Zeneca), PTK 787 (also known as CGP79787or ZK22584) (Novartis), Anti-VEGF mAb (Genentech), Anti-KDR mAb (ImClone), RPI 4610 (Ribozyme), TNP 470 (Abbott/TAP), AG 3340 (Agouron), Marimastat (British Biotech), Bay 12-9566 (Bayer), Neovastat (Aeterna), BMS 275291 (Bristol Myers-Squibb), CGS 27023A (Novartis), D1927 Chiroscience), D2163 (Chiroscience), Isoquinolines (Pfizer), Vitaxin (IXSYS), S-137 (Searle), S-836 (Searle), SM256 (Dupont), SG545 (Dupont), Angiostatin (EntreMed), Endostatin (EntreMed), Thalidomide (EntreMed), Squalamine (Magainin), CAI (National Cancer Institute), CM-101 (CarboMed), U-995 (Gwo-Chyang GMP), Combretastatin A-4 (Oxigene), platelet factor-4, vasostatin, thrombospondin, tissue inhibitors of metalloproteinases (TIMPs), STI412 (Sun and McMahon, Drug Discov. Today 5(8):344-353, 2000; Klohs and Hamby, Curr. Opin. Biotechnol. 10:544-549, 1999), fumagillin, non-glucocorticoid steroids and heparin and heparin fragments and antibodies to oen or more angiogenic peptides such as α-FGF, β-FGF, VEGF, IL-8, and GM-CSF. Some of the foregoing may be administered in the form of nucleic acids encoding proteins; in each case the active agent is a protein and not the nucleic

The antiangiogenic nucleic acid molecules of the invention can be administered concurrently with, or sequentially with, the non-nucleic acid antiangiogenesis molecules described above. Coadministration may be in the form of administration of a composition containing both kinds of antiangiogenic agents, or a plurality of compositions, each of which may contain one or more than one of the antiangiogenic agents.

5

10

15

20

25

30

The invention may be used in the treatment of cancer, but is not so limited. In these methods, an effective amount of at least one antiangiogenic nucleic acid is administered to a subject having cancer, or in other instances a subject at risk of developing cancer. Other non-nucleic acid antiangiogenesis molecules also can be administered, as described above. In addition, in certain embodiments of the invention, anticancer molecules are administered in combination with the antiangiogenesis molecules.

The compounds useful in the invention may be delivered in a mixture with anti-proliferative agents (particularly anticancer agents) which are not antiangiogenic nucleic acids. One of ordinary skill in the art is familiar with a variety of anti-proliferative agents which are used in the medical arts to treat proliferative diseases such as cancer. These anticancer agents may act by directly killing cells, such as cancer cells (i.e., direct action anticancer agents), or alternatively they may act by sensitizing cells to direct action anti-cancer agents (i.e., indirect action anti-cancer agents). Those of skill in the art will recognize the distinction and are familiar with agents of either class. Anticancer agents include, but are not limited to, the following sub-classes of compounds:

Antineoplastic agents such as: Acivicin; Aclarubicin; Acodazole Hydrochloride; Acronine; Adozelesin; Adriamycin; Aldesleukin; Altretamine; Ambomycin; Ametantrone Acetate; Aminoglutethimide; Amsacrine; Anastrozole; Anthramycin; Asparaginase; Asperlin; Azacitidine; Azetepa; Azotomycin; Batimastat; Benzodepa; Bicalutamide; Bisantrene Hydrochloride; Bisnafide Dimesylate; Bizelesin; Bleomycin Sulfate; Brequinar Sodium; Bropirimine; Busulfan; Cactinomycin; Calusterone; Caracemide; Carbetimer; Carboplatin; Carmustine; Carubicin Hydrochloride; Carzelesin; Cedefingol; Chlorambucil; Cirolemycin; Cisplatin; Cladribine; Crisnatol Mesylate; Cyclophosphamide; Cytarabine; Dacarbazine; DACA (N-[2-(Dimethyl-amino)ethyl]acridine-4-carboxamide); Dactinomycin; Daunorubicin Hydrochloride; Daunomycin; Decitabine; Dexormaplatin; Dezaguanine; Dezaguanine Mesylate; Diaziquone; Docetaxel; Doxorubicin; Doxorubicin Hydrochloride; Droloxifene; Droloxifene Citrate; Dromostanolone Propionate; Duazomycin; Edatrexate; Eflornithine Hydrochloride; Elsamitrucin; Enloplatin; Enpromate; Epipropidine; Epirubicin

ALLO SALA PARAMETERS (CONTROL OF THE CONTROL OF THE

Hydrochloride; Erbulozole; Esorubicin Hydrochloride; Estramustine; Estramustine Phosphate Sodium; Etanidazole; Ethiodized Oil I 131; Etoposide; Etoposide Phosphate; Etoprine; Fadrozole Hydrochloride; Fazarabine; Fenretinide; Floxuridine; Fludarabine Phosphate; Fluorouracil; 5-FdUMP; Flurocitabine; Fosquidone; Fostriecin Sodium; Gemcitabine; 5 Gemcitabine Hydrochloride; Gold Au 198; Hydroxyurea; Idarubicin Hydrochloride; Ifosfamide; Ilmofosine; Interferon Alfa-2a; Interferon Alfa-2b; Interferon Alfa-n1; Interferon Alfa-n3; Interferon Beta- I a ; Interferon Gamma- I b; Iproplatin; Irinotecan Hydrochloride; Lanreotide Acetate; Letrozole; Leuprolide Acetate; Liarozole Hydrochloride; Lometrexol Sodium; Lomustine; Losoxantrone Hydrochloride; Masoprocol; Maytansine; Mechlorethamine Hydrochloride; Megestrol Acetate; Melengestrol Acetate; Melphalan; 10 Menogaril; Mercaptopurine; Methotrexate; Methotrexate Sodium; Metoprine; Meturedepa; Mitindomide; Mitocarcin; Mitocromin; Mitogillin; Mitomalcin; Mitomycin; Mitosper; Mitotane; Mitoxantrone Hydrochloride; Mycophenolic Acid; Nocodazole; Nogalamycin; Ormaplatin; Oxisuran; Paclitaxel; Pegaspargase; Peliomycin; Pentamustine; Peplomycin 15 Sulfate; Perfosfamide; Pipobroman; Piposulfan; Piroxantrone Hydrochloride; Plicamycin; Plomestane; Porfimer Sodium; Porfiromycin; Prednimustine; Procarbazine Hydrochloride; Puromycin; Puromycin Hydrochloride; Pyrazofurin; Riboprine; Rogletimide; Safingol; Safingol Hydrochloride; Semustine; Simtrazene; Sparfosate Sodium; Sparsomycin; Spirogermanium Hydrochloride; Spiromustine; Spiroplatin; Streptonigrin; Streptozocin; Strontium Chloride Sr 89; Sulofenur; Talisomycin; Taxane; Taxoid; Tecogalan Sodium; 20 Tegafur; Teloxantrone Hydrochloride; Temoporfin; Teniposide; Teroxirone; Testolactone; Thiamiprine; Thioguanine; Thiotepa; Thymitaq; Tiazofurin; Tirapazamine; Tomudex; TOP-53; Topotecan Hydrochloride; Toremifene Citrate; Trestolone Acetate; Triciribine Phosphate; Trimetrexate; Trimetrexate Glucuronate; Triptorelin; Tubulozole Hydrochloride; Uracil 25 Mustard; Uredepa; Vapreotide; Verteporfin; Vinblastine; Vinblastine Sulfate; Vincristine; Vincristine Sulfate; Vindesine; Vindesine Sulfate; Vinepidine Sulfate; Vinglycinate Sulfate; Vinleurosine Sulfate; Vinorelbine Tartrate; Vinrosidine Sulfate; Vinzolidine Sulfate; Vorozole; Zeniplatin; Zinostatin; Zorubicin Hydrochloride; 2-Chlorodeoxyadenosine; 2'-Deoxyformycin; 9-aminocamptothecin; raltitrexed; N-propargyl-5,8-dideazafolic acid; 2chloro-2'-arabino-fluoro-2'-deoxyadenosine; 2-chloro-2'-deoxyadenosine; anisomycin; 30 trichostatin A; hPRL-G129R; CEP-751; linomide.

Other anti-neoplastic compounds include: 20-epi-1,25 dihydroxyvitamin D3; 5-ethynyluracil; abiraterone; aclarubicin; acylfulvene; adecypenol; adozelesin; aldesleukin;

WO 02/053141 PCT/US01/48458

- 46 -

ALL-TK antagonists; altretamine; ambamustine; amidox; amifostine; aminolevulinic acid; amrubicin; amsacrine; anagrelide; anastrozole; andrographolide; angiogenesis inhibitors; antagonist D; antagonist G; antarelix; anti-dorsalizing morphogenetic protein-1; antiandrogen, prostatic carcinoma; antiestrogen; antineoplaston; antisense oligonucleotides; aphidicolin 5 glycinate; apoptosis gene modulators; apoptosis regulators; apurinic acid; ara-CDP-DL-PTBA; arginine deaminase; asulacrine; atamestane; atrimustine; axinastatin 1: axinastatin 2; axinastatin 3; azasetron; azatoxin; azatyrosine; baccatin III derivatives; balanol; batimastat; BCR/ABL antagonists; benzochlorins; benzoylstaurosporine; beta lactam derivatives; beta-alethine; betaclamycin B; betulinic acid; bFGF inhibitor; bicalutamide; bisantrene; bisaziridinylspermine; bisnafide; bistratene A; bizelesin; breflate; bropirimine; 10 budotitane; buthionine sulfoximine; calcipotriol; calphostin C; camptothecin derivatives (e.g., 10-hydroxy- camptothecin); canarypox IL-2; capecitabine; carboxamide-amino-triazole; carboxyamidotriazole; CaRest M3; CARN 700; cartilage derived inhibitor; carzelesin; casein kinase inhibitors (ICOS); castanospermine; cecropin B; cetrorelix; chlorins; 15 chloroquinoxaline sulfonamide; cicaprost; cis-porphyrin; cladribine; clomifene analogues; clotrimazole; collismycin A; collismycin B; combretastatin A4; combretastatin analogue; conagenin; crambescidin 816; crisnatol; cryptophycin 8; cryptophycin A derivatives; curacin A; cyclopentanthraquinones; cycloplatam; cypemycin; cytarabine ocfosfate; cytolytic factor; cytostatin; dacliximab; decitabine; dehydrodidemnin B; deslorelin; dexifosfamide; 20 dexrazoxane; dexverapamil; diaziquone; didemnin B; didox; diethylnorspermine; dihydro-5-azacytidine; dihydrotaxol, 9-; dioxamycin; diphenyl spiromustine; discodermolide; docosanol; dolasetron; doxifluridine; droloxifene; dronabinol; duocarmycin SA; ebselen; ecomustine; edelfosine; edrecolomab; effornithine; elemene; emitefur; epirubicin; epothilones including desoxyepothilones (A, R = H; B, R = Me); epithilones; epristeride; estramustine 25 analogue; estrogen agonists; estrogen antagonists; etanidazole; etoposide; etoposide 4'phosphate (etopofos); exemestane; fadrozole; fazarabine; fenretinide; filgrastim; finasteride; flavopiridol; flezelastine; fluasterone; fludarabine; fluorodaunorunicin hydrochloride; forfenimex; formestane; fostriecin; fotemustine; gadolinium texaphyrin; gallium nitrate; galocitabine; ganirelix; gelatinase inhibitors; gemcitabine; glutathione inhibitors; hepsulfam; heregulin; hexamethylene bisacetamide; hypericin; ibandronic acid; idarubicin; idoxifene; 30 idramantone; ilmofosine; ilomastat; imidazoacridones; imiquimod; immunostimulant peptides; insulin-like growth factor-1 receptor inhibitor; interferon agonists; interferons: interleukins; iobenguane; iododoxorubicin; ipomeanol, 4-; irinotecan; iroplact; irsogladine;

___.<u>__</u>___

10

15

20

25

30

isobengazole; isohomohalicondrin B; itasetron; jasplakinolide; kahalalide F; lamellarin-N triacetate; lanreotide; leinamycin; lenograstim; lentinan sulfate; leptolstatin; letrozole; leukemia inhibiting factor; leukocyte alpha interferon; leuprolide + estrogen + progesterone; leuprorelin; levamisole; liarozole; linear polyamine analogue; lipophilic disaccharide peptide; lipophilic platinum compounds; lissoclinamide 7; lobaplatin; lombricine; lometrexol; lonidamine; losoxantrone; lovastatin; loxoribine; lurtotecan; lutetium texaphyrin; lysofylline; lytic peptides; maitansine; mannostatin A; marimastat; masoprocol; maspin; matrilysin inhibitors; matrix metalloproteinase inhibitors; menogaril; merbarone; meterelin; methioninase; metoclopramide; MIF inhibitor; mifepristone; miltefosine; mirimostim; mismatched double stranded RNA; mithracin; mitoguazone; mitolactol; mitomycin analogues; mitonafide; mitotoxin fibroblast growth factor-saporin; mitoxantrone; mofarotene; molgramostim; monoclonal antibody, human chorionic gonadotrophin; monophosphoryl lipid A + myobacterium cell wall sk; mopidamol; multiple drug resistance gene inhibitor; multiple tumor suppressor 1-based therapy; mustard anticancer agent; mycaperoxide B; mycobacterial cell wall extract; myriaporone; N-acetyldinaline; N-substituted benzamides; nafarelin; nagrestip; naloxone + pentazocine; napavin; naphterpin; nartograstim; nedaplatin; nemorubicin; neridronic acid; neutral endopeptidase; nilutamide; nisamycin; nitric oxide modulators; nitroxide antioxidant; nitrullyn; O6-benzylguanine; octreotide; okicenone; oligonucleotides; onapristone; ondansetron; ondansetron; oracin; oral cytokine inducer; ormaplatin; osaterone; oxaliplatin; oxaunomycin; paclitaxel analogues; paclitaxel derivatives; palauamine; palmitoylrhizoxin; pamidronic acid; panaxytriol; panomifene; parabactin; pazelliptine; pegaspargase; peldesine; pentosan polysulfate sodium; pentostatin; pentrozole; perflubron; perfosfamide; perillyl alcohol; phenazinomycin; phenylacetate; phosphatase inhibitors; picibanil; pilocarpine hydrochloride; pirarubicin; piritrexim; placetin A; placetin B; plasminogen activator inhibitor; platinum complex; platinum compounds; platinum-triamine complex; podophyllotoxin; porfimer sodium; porfiromycin; propyl bis-acridone; prostaglandin J2; proteasome inhibitors; protein A-based immune modulator; protein kinase C inhibitor; protein kinase C inhibitors, microalgal; protein tyrosine phosphatase inhibitors; purine nucleoside phosphorylase inhibitors; purpurins; pyrazoloacridine; pyridoxylated hemoglobin polyoxyethylene conjugate; raf antagonists; raltitrexed; ramosetron; ras farnesyl protein transferase inhibitors; ras inhibitors; ras-GAP inhibitor; retelliptine demethylated; rhenium Re 186 etidronate; rhizoxin; ribozymes; RII retinamide; rogletimide; rohitukine; romurtide; roquinimex; rubiginone B1; ruboxyl; safingol; saintopin; SarCNU; sarcophytol A;

WO 02/053141 PCT/US01/48458

- 48 -

sargramostim; Sdi 1 mimetics; semustine; senescence derived inhibitor 1; sense oligonucleotides; signal transduction inhibitors; signal transduction modulators; single chain antigen binding protein; sizofiran; sobuzoxane; sodium borocaptate; sodium phenylacetate; solverol; somatomedin binding protein; sonermin; sparfosic acid; spicamycin D; spiromustine; splenopentin; spongistatin 1; squalamine; stem cell inhibitor; stem-cell division inhibitors; stipiamide; stromelysin inhibitors; sulfinosine; superactive vasoactive intestinal peptide antagonist; suradista; suramin; swainsonine; synthetic glycosaminoglycans; tallimustine; tamoxifen methiodide; tauromustine; tazarotene; tecogalan sodium; tegafur; tellurapyrylium; telomerase inhibitors; temoporfin; temozolomide; teniposide; tetrachlorodecaoxide; tetrazomine; thaliblastine; thalidomide; thiocoraline; thrombopoietin; thrombopoietin mimetic; thymalfasin; thymopoietin receptor agonist; thymotrinan; thyroid stimulating hormone; tin ethyl etiopurpurin; tirapazamine; titanocene dichloride; topotecan; topsentin; toremifene; totipotent stem cell factor; translation inhibitors; tretinoin; triacetyluridine; triciribine; trimetrexate; triptorelin; tropisetron; turosteride; tyrosine kinase inhibitors; tyrphostins; UBC inhibitors; ubenimex; urogenital sinus-derived growth inhibitory factor; urokinase receptor antagonists; vapreotide; variolin B; vector system, erythrocyte gene therapy; velaresol; veramine; verdins; verteporfin; vinorelbine; vinxaltine; vitaxin; vorozole; zanoterone; zeniplatin; zilascorb; zinostatin stimalamer.

Anti-cancer Supplementary Potentiating Agents: Tricyclic anti-depressant drugs (e.g., imipramine, desipramine, amitryptyline, clomipramine, trimipramine, doxepin, nortriptyline, protriptyline, amoxapine and maprotiline); non-tricyclic anti-depressant drugs (e.g., sertraline, trazodone and citalopram); Ca⁺⁺ antagonists (e.g., verapamil, nifedipine, nitrendipine and caroverine); Calmodulin inhibitors (e.g., prenylamine, trifluoroperazine and clomipramine); Amphotericin B; Triparanol analogues (e.g., tamoxifen); antiarrhythmic drugs (e.g., quinidine); antihypertensive drugs (e.g., reserpine); Thiol depleters (e.g., buthionine and sulfoximine) and Multiple Drug Resistance reducing agents such as Cremaphor EL. The compounds of the invention also can be administered with cytokines such as granulocyte colony stimulating factor.

Antiproliferative agent: Piritrexim Isethionate.

5

10

15

20

25

30

Radioactive agents: Fibrinogen I 125; Fludeoxyglucose F 18; Fluorodopa F 18; Insulin I 125; Insulin I 131; Iobenguane I 123; Iodipamide Sodium I 131; Iodoantipyrine I 131; Iodocholesterol I 131; Iodohippurate Sodium I 123; Iodohippurate Sodium I 125; Iodohippurate Sodium I 131; Iofotamine

Hydrochloride I 123; Iomethin I 125; Iomethin I 131; Iothalamate Sodium I 125;
Iothalamate Sodium I 131; Iotyrosine I 131; Liothyronine I 125; Liothyronine I 131;
Merisoprol Acetate Hg 197; Merisoprol Acetate Hg 203; Merisoprol Hg 197;
Selenomethionine Se 75; Technetium Tc 99m Antimony Trisulfide Colloid; Technetium Tc 99m Bicisate; Technetium Tc 99m Disofenin; Technetium Tc 99m Etidronate; Technetium Tc 99m Gluceptate;
Technetium Tc 99m Lidofenin; Technetium Tc 99m Mebrofenin; Technetium Tc 99m
Medronate; Technetium Tc 99m Medronate Disodium; Technetium Tc 99m Meritatide;
Technetium Tc 99m Oxidronate; Technetium Tc 99m Pentetate; Technetium Tc 99m
Pentetate Calcium Trisodium; Technetium Tc 99m Sestamibi; Technetium Tc 99m
Siboroxime; Technetium Tc 99m Succimer; Technetium Tc 99m Sulfur Colloid;
Technetium Tc 99m Teboroxime; Technetium Tc 99m Tetrofosmin; Technetium Tc 99m
Tiatide; Thyroxine I 125; Thyroxine I 131; Tolpovidone I 131; Triolein I 125; Triolein I 131.

5

10

15

20

25

30

The present invention further includes nucleic acid molecules formulated into a pharmaceutical composition for the inhibition of angiogenesis. The pharmaceutical compositions of the invention include those suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intratumoral and intradermal) administration.

The nucleic acids are delivered in effective amounts. In general, the term "effective amount" of a nucleic acid refers to the amount necessary or sufficient to realize a desired biologic effect. Specifically, the effective amount is that amount that reduces the rate or inhibits altogether angiogenesis. For instance, when the subject bears a tumor having a blood supply, an effective amount is that amount which decreases or eliminates all together the blood supply to the tumor. Additionally, an effective amount may be that amount which prevents an increase or causes a decrease in new blood vessels, e.g., those vessels supplying a tumor. The effective amount may vary depending upon whether the antiangiogenic nucleic acid is used alone or in combination with other therapeutics, or in single or multiple dosages. In some instances, it is envisioned that the combination of antiangiogenic nucleic acids with other therapeutic agents (which are themselves not antiangiogenic nucleic acids) can result in a synergism between the two compound classes, and thereby would require less of one or both compounds in order to observe the desired biologic effect. Combined with the teachings provided herein, by choosing among the various active compounds and weighing factors such as potency, relative bioavailability, patient body weight, severity of adverse side-effects and

preferred mode of administration, an effective prophylactic or therapeutic treatment regimen can be planned which does not cause substantial toxicity and yet is entirely effective to treat the particular subject. As mentioned above, the effective amount for any particular application can vary depending on such factors as the type of condition having unwanted angiogenesis being treated or prevented, the particular nucleic acid being administered (e.g. the number of unmethylated CpG motifs or their location in the nucleic acid), the use of another antiangiogenesis agent, the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art can empirically determine the effective amount of a particular nucleic acid molecule without necessitating undue experimentation.

5

10

15

20

25

30

Subject doses of the compounds described herein typically range from about 0.1 μg to 10 mg per administration, which depending on the application could be given hourly, daily, weekly, or monthly and any other amount of time therebetween. More typically doses range from about 10 μg to 5 mg per administration, and most typically from about 100 μg to 1 mg, with 2 - 4 administrations being spaced hours, days or weeks apart. In some embodiments, however, parenteral doses for these purposes may be used in a range of 5 to 10,000 times higher than the typical doses described above.

For any compound described herein the therapeutically effective amount can be initially determined from animal models, e.g. the animal models described herein or those well known in the art. A therapeutically effective dose can also be determined from human data for CpG nucleic acids which have been tested in humans (human clinical trials have been initiated and the results publicly disseminated) and for compounds which are known to exhibit similar pharmacological activities, such as other antiangiogenesis agents. Higher doses may be required for parenteral administration, as described above. The applied dose can be adjusted based on the relative bioavailability and potency of the administered compound. Adjusting the dose to achieve maximal efficacy based on the methods described above and other methods as are well-known in the art is well within the capabilities of the ordinarily skilled artisan.

The formulations of the invention are administered in pharmaceutically acceptable solutions, which may routinely contain pharmaceutically acceptable concentrations of salt, buffering agents, preservatives, compatible carriers, adjuvants, and optionally other therapeutic ingredients.

For use in therapy, an effective amount of the nucleic acid can be administered to a subject by any mode that delivers the nucleic acid to a subject. "Administering" the

10

15

20

25

30

pharmaceutical composition of the present invention may be accomplished by any means known to the skilled artisan. Some routes of administration include but are not limited to oral, intranasal, intratracheal, inhalation, ocular, vaginal, rectal, parenteral (e.g. intramuscular, intradermal, intravenous, intratumoral or subcutaneous injection) and direct injection.

For oral administration, the compounds (i.e., antiangiogenic nucleic acid molecules and optionally other antiangiogenesis agents) can be delivered alone without any pharmaceutical carriers or formulated readily by combining the active compound(s) with pharmaceutically acceptable carriers well known in the art. The term "pharmaceutically-acceptable carrier" means one or more compatible solid or liquid filler, diluents or encapsulating substances which are suitable for administration to a human or other vertebrate animal. The term "carrier" denotes an organic or inorganic ingredient, natural or synthetic, with which the active ingredient is combined to facilitate the application. The components of the pharmaceutical compositions also are capable of being commingled with the compounds of the present invention, and with each other, in a manner such that there is no interaction which would substantially impair the desired pharmaceutical efficiency.

Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a subject to be treated. Pharmaceutical preparations for oral use can be obtained as solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Optionally the oral formulations may also be formulated in saline or buffers for neutralizing internal acid conditions.

Dragee cores may be provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, tale, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

10

15

20

25

30

- 52 -

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. Microspheres formulated for oral administration may also be used. Such microspheres have been well defined in the art. All formulations for oral administration should be in dosages suitable for such administration.

For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention may be conveniently delivered in the form of an aerosol spray, from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g. gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The compounds, when it is desirable to deliver them systemically, may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers

or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

Alternatively, the active compounds may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal or vaginal compositions such as suppositories or retention enemas, *e.g.*, containing conventional suppository bases such as cocoa butter or other glycerides.

5

10

15

20

25

30

In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.

Suitable liquid or solid pharmaceutical preparation forms are, for example, aqueous or saline solutions for inhalation, microencapsulated, encochleated, coated onto microscopic gold particles, contained in liposomes, nebulized, aerosols, pellets for implantation into the skin, or dried onto a sharp object to be scratched into the skin. The pharmaceutical compositions may also include granules, powders, tablets, coated tablets, (micro)capsules, suppositories, syrups, emulsions, suspensions, creams, drops or preparations with protracted release of active compounds, in whose preparation excipients and additives and/or auxiliaries such as disintegrants, binders, coating agents, swelling agents, lubricants, flavorings, sweeteners or solubilizers are customarily used as described above. The pharmaceutical compositions are suitable for use in a variety of drug delivery systems. For a brief review of present methods for drug delivery, see Langer, *Science* 249:1527-1533, 1990, which is incorporated herein by reference.

The nucleic acid molecules and/or agents (e.g., antiangiogenesis agents, anticancer agents) may be administered <u>per se</u> (neat) or in the form of a pharmaceutically acceptable salt. When used in medicine the salts should be pharmaceutically acceptable, but non-pharmaceutically acceptable salts may conveniently be used to prepare pharmaceutically acceptable salts thereof. Such salts include, but are not limited to, those prepared from the

10

15

20.

25

30

following acids: hydrochloric, hydrobromic, sulphuric, nitric, phosphoric, maleic, acetic, salicylic, p-toluene sulphonic, tartaric, citric, methane sulphonic, formic, malonic, succinic, naphthalene-2-sulphonic, and benzene sulphonic. Also, such salts can be prepared as alkaline metal or alkaline earth salts, such as sodium, potassium or calcium salts of the carboxylic acid group.

Suitable buffering agents include: acetic acid and a salt (1-2% w/v); citric acid and a salt (1-3% w/v); boric acid and a salt (0.5-2.5% w/v); and phosphoric acid and a salt (0.8-2% w/v). Suitable preservatives include benzalkonium chloride (0.003-0.03% w/v); chlorobutanol (0.3-0.9% w/v); parabens (0.01-0.25% w/v) and thimerosal (0.004-0.02% w/v).

The nucleic acids or other therapeutics useful in the invention may be delivered in mixtures with additional antiangiogenesis agent(s). A mixture may consist of several antiangiogenesis agents in addition to the nucleic acid.

A variety of administration routes are available. The particular mode selected will depend, of course, upon the particular nucleic acid molecules or other agents selected, the particular condition being treated and the dosage required for therapeutic efficacy. The methods of this invention, generally speaking, may be practiced using any mode of administration that is medically acceptable, meaning any mode that produces effective levels of an immune response without causing clinically unacceptable adverse effects. Preferred modes of administration are discussed above.

The compositions may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the compounds into association with a carrier which constitutes one or more accessory ingredients. In general, the compositions are prepared by uniformly and intimately bringing the compounds into association with a liquid carrier, a finely divided solid carrier, or both, and then, if necessary, shaping the product. Liquid dose units are vials or ampoules. Solid dose units are tablets, capsules and suppositories.

Other delivery systems can include time-release, delayed release or sustained release delivery systems. Such systems can avoid repeated administrations of the compounds, increasing convenience to the subject and the physician. Many types of release delivery systems are available and known to those of ordinary skill in the art. They include polymer base systems such as poly(lactide-glycolide), copolyoxalates, polycaprolactones, polyesteramides, polyorthoesters, polyhydroxybutyric acid, and polyanhydrides.

Microcapsules of the foregoing polymers containing drugs are described in, for example, U.S.

10

15

20

25

30

Patent 5,075,109. Delivery systems also include non-polymer systems that are: lipids including sterols such as cholesterol, cholesterol esters and fatty acids or neutral fats such as mono-di-and tri-glycerides; hydrogel release systems; sylastic systems; peptide based systems; wax coatings; compressed tablets using conventional binders and excipients; partially fused implants; and the like. Specific examples include, but are not limited to: (a) erosional systems in which an agent of the invention is contained in a form within a matrix such as those described in U.S. Patent Nos. 4,452,775, 4,675,189, and 5,736,152, and (b) diffusional systems in which an active component permeates at a controlled rate from a polymer such as described in U.S. Patent Nos. 3,854,480, 5,133,974 and 5,407,686. In addition, pump-based hardware delivery systems can be used, some of which are adapted for implantation. In still other embodiments, the agents and nucleic acids are formulated with GELFOAM, a commercial product consisting of modified collagen fibers that degrade slowly.

The nucleic acid may be directly administered to the subject or may be administered in conjunction with a pharmaceutically acceptable carrier or a delivery vehicle. The nucleic acid and optionally other therapeutic agents may be administered alone (e.g. in saline or buffer) or using any delivery vehicles known in the art. One type of delivery vehicle is referred to herein as a nucleic acid delivery complex. A "nucleic acid delivery complex" shall mean a nucleic acid molecule associated with (e.g. ionically or covalently bound to; or encapsulated within) a targeting means (e.g. a molecule that results in higher affinity binding to target cell (e.g. dendritic cell surfaces and/or increased cellular uptake by target cells). Examples of nucleic acid delivery complexes include nucleic acids associated with: a sterol (e.g. cholesterol), a lipid (e.g. a cationic lipid, virosome or liposome), or a target cell specific binding agent (e.g. a ligand recognized by target cell specific receptor). Preferred complexes may be sufficiently stable *in vivo* to reduce significant uncoupling prior to internalization by the target cell. However, the complex may be cleavable under appropriate conditions within the cell so that the nucleic acid may be released in a functional form.

The nucleic acid molecules may be delivered by non-invasive methods as described above. Non-invasive delivery of compounds is desirable for treatment of children, elderly, animals, and even adults and also to avoid the risk of needle-stick injury. Delivery vehicles for delivering compounds to mucosal surfaces have been described and include but are not limited to: cochleates, emulsomes, ISCOMs, liposomes, live bacterial vectors (e.g., Salmonella, Escherichia coli, Bacillus calmatte-guerin, Shigella, Lactobacillus), live viral vectors (e.g., Vaccinia, adenovirus, Herpes Simplex), microspheres, nucleic acid vaccines,

polymers (e.g. carboxymethylcellulose, chitosan), polymer rings, proteosomes, sodium fluoride, transgenic plants, virosomes, and virus-like particles.

Examples

5 1. Background

10

15

20

25

30

1.1. Angiogenesis

Angiogenesis describes the active biological process of blood vessel formation from pre-existing microvasculature (1, 2). In multi-celled organisms this is a highly organized and tightly regulated process that occurs normally during development, inflammation, and tissue repair. The importance of angiogenesis is reflected in the need of mammalian cells for oxygen and nutrients. Mammalian cells must be within a 200 µM distance of blood vessels, which is the diffusion limit for oxygen (3). Thus the overall driving factor for angiogenesis is the requirement for oxygen and nutrients. The normal regulation of angiogenesis is mediated by the balance between pro- and anti-angiogenic factors that are released in the tissues and are influenced by local environmental factors.

1.2. Angiogenesis and neoplasms

In a neoplastic situation, the balances of these pro- and anti-angiogenic factors are generally skewed in favor of angiogenesis. In this setting, angiogenesis is generally a highly disorganized and loosely regulated process that is an absolute requirement for the continued growth of neoplasms (3). Further, there is a direct correlation between the extent of vascularization found in neoplasms and the potential for metastasis (4).

1.3. Angiogenesis and chemokines

There are a number of pro- and anti-angiogenic factors that have been described to date (3). The focus of this analysis will be on the chemokines interferon-γ-inducible protein (IP-10) and monokine induced by interferon-γ (MIG). Chemokines are a collection of cytokines that possess chemoattracting properties (for review see (5)). Chemokines are classified on the basis of the motif displayed by the first two cysteine residues present in the protein (CXC, CC, C, or CX3C), and they signal through G-protein coupled, seven-transmembrane receptors. Initially identified for their influence on hemopoietic cell migration, chemokines are now known to influence a number of physiological and pathological process including angiogenesis and angiostasis (5).

IP-10 and MIG belong to a subset of the family of CXC chemokines (2) that bind the chemokine receptor CXCR3 (6). The CXC chemokine family can be further subdivided based on the presence or absence of a Glu-Leu-Arg or ELR motif at the NH2 terminus of the chemokine. CXC chemokines that contain the ELR motif are potent promoters of angiogenesis whereas CXC chemokines that lack the ELR motif, as is the case for IP-10 and MIG, are potent inhibitors of angiogenesis (2).

2. Material and Methods

2.1. ODNs

5

15

10 ODN 1826 (TCCATGACGTTCCTGACGTT; SEQ ID NO: 69)

2.2 Matrigel® - (BD)

Matrix solution is liquid at 4°C and solidifies at room temperature. When injected *in vivo* Matrigel solidifies to form a plug. Matrigel allows for the delivery of angiogenic promoters such as basic fibroblastic growth factor (bFGF) for the induction of angiogenesis. Plugs can then be removed to evaluate the level of angiogenesis as identified by the concentration of hemoglobin present. This system can be used to evaluate the anti-angiogenic potential of different compounds.

2.3 Hemoglobin quantification kit

Drabkin method reagent kit (Sigma)

20 2.4 Protein quantification

Protein quantification kit (BioRad)

2.5 Experimental design

For each group of 5 mice, the Matrigel was prepared as follows:

Group 1 - Matrigel alone.

25 3.5 mL of Matrigel

500 μL/mouse was injected subcutaneously (SC) right of center of the abdomen

Group 2 - Matrigel + bFGF (150ng/mL) + heparin (40 units/mL)

52.5 μL bFGF (10μg/mL)

23.2 µL heparin (6039 units/mL)

30 3.42 mL Matrigel

500 μL/mouse was injected SC right of center of the abdomen

Group 3 - Matrigel + bFGF (150 ng/mL) + heparin (40 units/mL) + oligo 1826 (1mg/mL)

¥

52.5 μ L bFGF (10 μ g/mL)

23.2 µL heparin (6039 units/mL)

233 μL oligo 1826 (15mg/mL)

3.19 mL Matrigel

5 500μL/mouse was injected SC right of center of the abdomen

Group 4 - Matrigel + bFGF (150ng/mL) + heparin (40 units/mL)

 $52.5 \mu L bFGF (10\mu g/mL)$

23.2 µL heparin (6039 units/mL)

3.42 mL Matrigel

15

25

30

10 500 μL/mouse was injected SC right of center of the abdomen

This group received daily SC injections, for 6 days, of 100 μ L of ODN 1826 (1mg/mL) on the opposite flank from the Matrigel plug.

2.6 Determination of Hemoglobin and total protein content of Matrigel plugs

On day 6 the animals were euthanised and the Matrigel plugs collected. The plugs were placed in 0.3 mL of sterile PBS and placed at 4°C over night to allow the Matrigel to liquify. The hemoglobin and total protein content of the Matrigel plugs was determined using the methods described above. The hemoglobin content of the Matrigel plugs was expressed as (mg/mL)/mg of total protein.

20 3. Preliminary Results

When angiogenic factors were added to the Matrigel (Group 2), there was a significant increase in the amount of hemoglobin present in the Matrigel plug at 6 days when compared to Matrigel alone (Group 1) (p<0.05). (See Figure 1.)

When CpG was included in the Matrigel plug along with the angiogenic factors (Group 3), there was a greater than 2 fold decrease in the amount of hemoglobin present in the Matrigel plug at 6 days when compared to the Matrigel containing the angiogenic factors (Group 2). (See Figure 1.)

When CpG was administered daily by subcutaneous injection, rather than present in the Matrigel plug, to the mouse in the flank opposite to the Matrigel plug which contained angiogenic factors (Group 4) there was no significant difference in the amount of hemoglobin present in the Matrigel plug at 6 days when compared to Matrigel containing the angiogenic factors (Group 2). (See Figure 1.)

These preliminary results suggest that the inclusion of CpG ODN directly within the Matrigel (Group 3) had a negative influence on angiogenesis. Although daily delivery of CpG to the opposite flank from the Matrigel plug did not appear to influence angiogenesis, it is possible that CpG administered intravenously or subcutaneously in a region closer to the plug (and accordingly tumor mass) would manifest anti-angiogenic activity. CpG ODN may have to be present in the vicinity of active angiogenesis in order to have a negative influence.

4. References

5

10

15

- 1. Carmeliet, P. 2000. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 6: 389-95.
- 2. Belperio, J. A., et al. 2000. CXC chemokines in angiogenesis. J Leukoc Biol. 68: 1-8.
 - 3. Carmeliet, P., R. K. Jain. 2000. Angiogenesis in cancer and other diseases. *Nature*. 407: 249-57.
 - 4. Zetter, B. R. 1998. Angiogenesis and tumor metastasis. Annu Rev Med. 49: 407-24.
 - 5. Rossi, D., A. Zlotnik. 2000. The biology of chemokines and their receptors. *Annu Rev Immun*. 18: 217-42.
 - 6. Loetscher, M., et al. 1996. Chemokine receptor specific for IP10 and MIG: structure, function, and expression in activated T-lymphocytes. *J Exp Med*. 184: 963-9.
 - 7. Coughlin, C. M., et al. 1998. Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. *Immunity*. 9: 25-34.
- 8. Strasly, M., et al. 2001. IL-12 inhibition of endothelial cell functions and angiogenesis depends on lymphocyte-endothelial cell cross-talk. *J Immunol*. 166: 3890-9.
 - 9. Kanegane, C., et al. 1998. Contribution of the CXC chemokines IP-10 and Mig to the antitumor effects of IL-12. *J Leukoc Biol.* 64: 384-92.

25

30

Equivalents

It should be understood that the preceding is merely a detailed description of certain preferred embodiments. It therefore should be apparent to those of ordinary skill in the art that various modifications and equivalents can be made without departing from the spirit and scope of the invention. It is intended that the invention encompass all such modifications within the scope of the appended claims. All references, patents and patent applications and publications that are cited or referred to in this application are incorporated in their entirety herein by reference.

WO 02/053141

PCT/US01/48458

- 60 -

I claim:

25

30

STATEMENT TO SEE

Claims

- 1. A method of inhibiting angiogenesis in a subject in need of such treatment comprising administering to the subject at least one antiangiogenic nucleic acid molecule in an amount effective to inhibit angiogenesis in the subject.
- 2. The method of claim 1, wherein the at least one antiangiogenic nucleic acid molecule comprises at least one sequence set forth as SEQ ID NOs: 1-1093.
- 3. The method of claim 1, wherein two or more antiangiogenic nucleic acid molecules are administered.
 - 4. The method of claim 1, further comprising administering to the subject at least one non-nucleic acid angiogenesis inhibitor molecule.
- 5. The method of claim 1, wherein the angiogenesis is associated with a condition selected from the group consisting of a solid tumor growth, a tumor metastasis, and a precancerous lesion.
- 6. The method of claim 1, wherein the nucleic acid is a CpG nucleic acid having an unmethylated CpG motif.
 - 7. The method of claim 1, wherein the nucleic acid is a T-rich nucleic acid.
 - 8. The method of claim 1, wherein the nucleic acid is a poly G nucleic acid.
 - 9. The method of claim 1, wherein the nucleic acid is isolated.
 - 10. The method of claim 1, wherein the nucleic acid does not encode a protein having antiangiogenesis activity.

......

11. The method of claim 1, wherein the nucleic acid has a modified backbone.

- 12. The method of claim 11, wherein the modified backbone is a phosphate backbone modification.
- 13. The method of claim 11, wherein the modified backbone is a peptide modified oligonucleotide backbone.
 - 14. The method of claim 1, further comprising administering to the subject at least one anticancer agent.
- 15. The method of claim 1, further comprising administering to the subject at least one antiarthritis agent.
 - 16. The method of claim 6, wherein the CpG nucleic acid comprises:
 5' X₁ X₂CGX₃ X₄ 3'
- wherein C is unmethylated, and wherein X_1X_2 and X_3X_4 are nucleotides.

- 17. The method of claim 16, wherein the 5' X_1 X_2 CG X_3 X_4 3' sequence is a non-palindromic sequence.
- 20 18. The method of claim 16, wherein the CpG nucleic acid has 8 to 100 nucleotides.
 - 19. The method of claim 16, wherein X₁X₂ are nucleotides selected from the group consisting of: GpT, GpG, GpA, ApA, ApT, ApG, CpT, CpA, CpG, TpA, TpT, and TpG; and X₃X₄ are nucleotides selected from the group consisting of: TpT, CpT, ApT, TpG, ApG, CpG, TpC, ApC, CpC, TpA, ApA, and CpA.
 - 20. The method of claim 16, wherein X_1X_2 are selected from the group consisting of GpA and GpT and X_3X_4 are TpT.
- 30 21. The method of claim 16, wherein X_1X_2 are both purines and X_3X_4 are both pyrimidines.
 - 22. The method of claim 16, wherein X_2 is a T and X_3 is a pyrimidine.

- 23. The method of claim 16, wherein the CpG nucleic acid is 8 to 40 nucleotides in length.
- 24. The method of claim 16, wherein the CpG nucleic acid has a sequence selected from the group consisting of SEQ ID NOs: 1, 3, 4, 14-16, 18-24, 28, 29, 33-46, 49, 50, 52-56, 58, 5 64-67, 69, 71, 72, 76-87, 90, 91, 93, 94, 96, 98, 102-124, 126-128, 131-133, 136-141, 146-150, 152-153, 155-171, 173-178, 180-186, 188-198, 201, 203-214, 216-220, 223, 224, 227-240, 242-256, 258, 260-265, 270-273, 275, 277-281, 286-287, 292, 295-296, 300, 302, 305-307, 309-312, 314-317, 320-327, 329, 335, 337-341, 343-352, 354, 357, 361-365, 367-369, 373-376, 378-385, 388-392, 394, 395, 399, 401-404, 406-426, 429-433, 434-437, 439, 441-10 443, 445, 447, 448, 450, 453-456, 460-464, 466-469, 472-475, 477, 478, 480, 483-485, 488, 489, 492, 493, 495-502, 504-505, 507-509, 511, 513-529, 532-541, 543-555, 564-566, 568-576, 578, 580, 599, 601-605, 607-611, 613-615, 617, 619-622, 625-646, 648-650, 653-664, 666-697, 699-706, 708, 709, 711-716, 718-732, 736, 737, 739-744, 746, 747, 749-761, 763. 766-767, 769, 772-779, 781-783, 785-786, 7900792, 798-799, 804-808, 810, 815, 817, 818, 15 820-832, 835-846, 849-850, 855-859, 862, 865, 872, 874-877, 879-881, 883-885, 888-904, and 909-913.
- 25. The method of claim 7, wherein the T-rich nucleic acid is a poly T nucleic acid comprising

5' TTTT 3'.

- 26. The method of claim 25, wherein the poly T nucleic acid comprises 5' X₁ X₂TTTTX₃ X₄ 3'
- wherein X_1 , X_2 , X_3 and X_4 are nucleotides.
 - 27. The method of claim 25, wherein the T rich nucleic acid comprises a plurality of poly T nucleic acid motifs.
- 30 28. The method of claim 26, wherein X_1X_2 is TT.
 - 29. The method of claim 26, wherein X_3X_4 is TT.

PCT/US01/48458

15

30

- 30. The method of claim 26, wherein X₁X₂ is selected from the group consisting of TA, TG, TC, AT, AA, AG, AC, CT, CC, CA, CG, GT, GG, GA, and GC.
- 31. The method of claim 26, wherein X₃X₄ is selected from the group consisting of TA, 5 TG, TC, AT, AA, AG, AC, CT, CC, CA, CG, GT, GG, GA, and GC.
 - 32. The method of claim 25, wherein the T rich nucleic acid comprises a nucleotide composition of greater than 25% T.
- 10 33. The method of claim 7, wherein the T rich nucleic acid comprises a nucleotide composition of greater than 25% T.
 - 34. The method of claim 33, wherein the T rich nucleic acid comprises a nucleotide composition of greater than 30% T.
 - 35. The method of claim 33, wherein the T rich nucleic acid comprises a nucleotide composition of greater than 50% T.
- 36. The method of claim 33, wherein the T rich nucleic acid comprises a nucleotide composition of greater than 60% T.
 - 37. The method of claim 33, wherein the T rich nucleic acid comprises a nucleotide composition of greater than 80% T.
- 25 38. The method of claim 7, wherein the T rich nucleic acid comprises at least 20 nucleotides.
 - 39. The method of claim 7, wherein the T rich nucleic acid comprises at least 24 nucleotides.
 - 40. The method of claim 8, wherein the poly G nucleic acid comprises:

 5' X₁X₂GGGX₃X₄ 3'

wherein X₁, X₂, X₃, and X₄ are nucleotides.

- 41. The method of claim 40, wherein at least one of X_3 and X_4 are a G.
- 42. The method of claim 40, wherein both of X_3 and X_4 are a G.
- 43. The method of claim 8, wherein the poly G nucleic acid comprises the following formula:

5' GGGNGGG3'

wherein N represents between 0 and 20 nucleotides.

10

5

44. The method of claim 8, wherein the poly G nucleic acid comprises the following formula:

5' GGGNGGGNGGG3'

wherein N represents between 0 and 20 nucleotides.

15

- 45. The method of claim 8, wherein the poly G nucleic acid is free of unmethylated CG dinucleotides
- 46. The method of claim 45, wherein the poly G nucleic acid is selected from the group consisting of SEQ ID NOs: 5, 6, 73, 215, 267-269, 276, 282, 288, 297-299, 355, 359, 386, 387, 444, 476, 531, 557-559, 733, 768, 795, 796, 914-925, 928-931, 933-936, and 938.
 - 47. The method of claim 8, wherein the poly G nucleic acid includes at least one unmethylated CG dinucleotide.

25

48. The method of claim 47, wherein the poly G nucleic acid is selected from the group consisting of SEQ ID NOs: 67, 80-82, 141, 147, 148, 173, 178, 183, 185, 214, 224, 264, 265, 315, 329, 434, 435, 475, 519, 521-524, 526, 527, 535, 554, 565, 609, 628, 660, 661, 662, 725, 767, 825, 856, 857, 876, 892, 909, 926, 927, 932, and 937.

30

- 49. The method of claim 1, wherein the nucleic acid is a synthetic nucleic acid.
- 50. The method of claim 9, wherein the nucleic acid is administered on a routine schedule.

WO 02/053141 PCT/US01/48458

- 66 -

- 51. The method of claim 1, wherein the angiogenesis is associated with a condition selected from the group consisting of rheumatoid arthritis, psoriasis, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, Osler-Webber Syndrome, myocardial angiogenesis, plaque neovascularization, telangiectasia, hemophiliac joints, angiofibroma, wound granulation, intestinal adhesions, atherosclerosis, scleroderma, and hypertrophic scars.
- 52. The method of claim 1, wherein the nucleic acid is not an antisense molecule.

10

5

- 53. A pharmaceutical composition comprising an amount of at least one antiangiogenic nucleic acid molecule effective to inhibit angiogenesis and a pharmaceutically acceptable carrier.
- 15 54. The pharmaceutical composition of claim 53, wherein the at least one antiangiogenic nucleic acid molecule comprises at least one sequence set forth as SEQ ID NOs: 1-1093.
 - 55. The pharmaceutical composition of claim 53, wherein two or more antiangiogenic nucleic acid molecules are administered.

20

- 56. The pharmaceutical composition of claim 53, further comprising at least one non-nucleic acid angiogenesis inhibitor molecule.
- 57. The pharmaceutical composition of claim 53, wherein the antiangiogenic nucleic acid molecule has a modified backbone.
 - 58. The pharmaceutical composition of claim 57, wherein the modified backbone is a phosphate modified backbone.
- 30 59. The pharmaceutical composition of claim 58, wherein the phosphate modified backbone is a phosphorothioate modified backbone.
 - 60. The pharmaceutical composition of claim 53, further comprising an anticancer agent.

15

20

25

- 61. The pharmaceutical composition of claim 53, wherein the nucleic acid is a CpG nucleic acid.
- 5 62. The pharmaceutical composition of claim 53, wherein the nucleic acid is a T-rich nucleic acid.
 - 63. The pharmaceutical composition of claim 53, wherein the nucleic acid is a poly G nucleic acid.
 - 64. The pharmaceutical composition of claim 53, wherein the nucleic acid is isolated.
 - 65. The pharmaceutical composition of claim 53, wherein the nucleic acid is not an antisense molecule.
 - 66. A kit comprising
 a first container housing at least one antiangiogenic nucleic acid molecule, and
 instructions for administering the antiangiogenic nucleic acid to a subject having a
 condition characterized by unwanted angiogenesis.
 - 67. The kit of claim 66, wherein the antiangiogenic nucleic acid has a modified backbone.
 - 68. The kit of claim 67, wherein the modified backbone is a phosphate modified backbone.
 - 69. The kit of claim 67, wherein the phosphate modified backbone is a phosphorothioate modified backbone.
- 70. The kit of claim 65, further comprising a second container housing at least one nonnucleic acid antiangiogenic agent.
 - 71. The kit of claim 65, further comprising a second container housing at least one anticancer agent.

WO 02/053141 PCT/US01/48458

- 68 -

- 72. The kit of claim 69, further comprising a third container housing at least one anticancer agent.
- 5 73. The kit of claim 65, wherein the nucleic acid is not an antisense molecule.
- 74. The kit of claim 65, wherein the instructions relate to administering the antiangiogenic nucleic acid to a subject having a condition selected from the group consisting of rheumatoid arthritis, psoriasis, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, Osler-Webber Syndrome, myocardial angiogenesis, plaque neovascularization, telangiectasia, hemophiliac joints, angiofibroma, wound granulation, intestinal adhesions, atherosclerosis, scleroderma, and hypertrophic scars.

Figure 1

SEQUENCE LISTING

The Control of the Co

<110> Coley Pharmaceutical Group, Inc. <120> Inhibition of Angiogenesis by Nucleic Acids <130> C1037/7025WO (HCL/MAT) <150> US 60/255,534 <151> 2000-12-14 <160> 1093 <170> FastSEQ for Windows Version 3.0 <210> 1 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1 18 teteceageg tgegecat <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 2 20 ataatccagc ttgaaccaag <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 3 20 ataatcgacg ttcaagcaag <210> 4 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 4 18 taccgcgtgc gaccctct

Anna Carlos Control Co.

Sometiment of the Committee of the State of

```
<210> 5
      <211> 9
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 5
                                                                          9
ggggagggt
      <210> 6
      <211> 9
    · <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 6
                                                                          9
ggggagggg
      <210> 7
      <211> 9
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 7
                                                                          9
ggtgaggtg
      <210> 8
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified_base
      <222> (8)...(8)
      <223> m5c
      <223> Synthetic Sequence
      <400> 8
                                                                         20
tccatgtngt tcctgatgct
      <210> 9
      <211> 15
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified base
      <222> (11)...(11)
      <223> m5c
      <223> Synthetic Sequence
```

<210> 14 <211> 20 The state of the s

WO 02/053141		PCT/US0	1/48458
	- 5 -		
<400> 19 accatggacg aactgtttcc cctc			24
<210> 20			
<210 20 <211> 24			
<212> DNA			
<213> Artificial Sequence			
<220> <223> Synthetic Sequence			
<400> 20 accatggacg agctgtttcc cctc			24
accatggacy agetgeeess sees			
<210> 21			
<211> 24 <212> DNA			
<213> Artificial Sequence			
<220>			
<223> Synthetic Sequence			•
<400> 21		•	24
accatggacg acctgtttcc cctc			
<210> 22			
<211> 24			
<212> DNA <213> Artificial Sequence			
(213) Altificial Software			
<220>			
<223> Synthetic Sequence		•	
<400> 22			24
accatggacg tactgtttcc cctc			
<210> 23			
<211> 24			
<212> DNA <213> Artificial Sequence			
<220>			
<223> Synthetic Sequence			
<400> 23			
accatggacg gtctgtttcc cctc			24
<210> 24			
<211> 24			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Synthetic Sequence			
<400> 24			24
accatggacg ttctgtttcc cctc			
<210> 25			
<211> 25 <212> DNA			
72127 DNU			•
			-

WO 02/053141	PCT/US01/48458
	- 6 -
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 25 ccactcacat ctgctgctcc acaag	25
<210> 26	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	•
<223> Synthetic Sequence	
<400> 26	25
acttctcata gtccctttgg tccag	
<210> 27	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	·
<223> Synthetic Sequence	
· <400> 27	
tccatgagct tcctgagtct	20
<210> 28	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<221> modified base	
<222> (9)(9)	•
<223> I	
<221> modified_base	
$\langle 222 \rangle \ (11) \dots (\overline{11})$	
<223> I	
<221> modified base	
$\langle 222 \rangle \ (15) \dots (\overline{1}5)$	•
<223> I	
<400> 28	
gaggaaggng nggangacgt	20
<210> 29	
<211> 20	•
<212> DNA <213> Artificial Sequence	
/213/ ALCITICIAL Sequence	
<220>	
<223> Synthetic Sequence	

and an account of the second s

Continuos de la Continuo de la Conti

the state of the s

<223> Synthetic Sequence

فقعمه فيكتبون والواوم فعصمه ومزان وسيستمد أأراء أأراء أخرات والميان والانتاج والمدام والمعارف

__ ..__ _

entropy of the control of the contro

a server and a server a server and a server

WO 02/053141	PCT/US01/48458 ,
	- 13 -
<223> Synthetic Sequence	
<400> 61 tttttttgt ttttttgttt tt	22
<210> 62 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 62 tgctgctttt gtgcttttgt gctt	24
<210> 63 <211> 22 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Synthetic Sequence</pre>	
<400> 63 tgctgcttgt gcttttgtgc tt	22
<210> 64 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 64 gcattcatca ggcgggcaag aat	23
<210> 65 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 65 taccgagctt cgacgagatt tca	23
<210> 66 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 66 gcatgacgtt gagct	. 15
<210> 67	

The control of the co

and the control of th

e la companya de la c

The state of the s

المرابط فيال المسا

CONTROL OF THE STATE OF THE STA

PCT/US01/48458
- 18 -
20
15
16
18
•
20

MANAGEMENT OF THE COLOR OF THE

A CONTROL OF THE PRODUCTION OF THE PROPERTY OF

The Control of the Co

WO 02/053141

PCT/US01/48458

AND AND CONTROL OF A CONTROL OF

__ .____

The first transfer of the Commence of the Comm

read the second control of the contr

WO 02/053141		PC17US01/48458
	- 23 -	· ·
teetgaegtt eee	13	
-010× 115		
<210> 115 <211> 13		
<211> 13 <212> DNA		
<213> Artificial Sequence		
<220> .		
<223> Synthetic Sequence		
<400> 115		13
ggaagacgtt aga		
<210> 116		
<211> 13		
<212> DNA <213> Artificial Sequence		
ZZ137 AICHTETAT BEGGENEE		
<220>		
<223> Synthetic Sequence		
<400> 116		13
teetgaegtt aga		
<210> 117		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 117		27
tcagaccagc tggtcgggtg ttcctga		
<210> 118		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 118		27
tcaggaacac ccgaccagct ggtctga		21
<210> 119		
<211> 13		
<212> DNA	•	
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 119	•	13
gctagtcgat agc		13
<210> 120		
<211> 13		
<212> DNA <213> Artificial Sequence		
CSTON WITTITITE DEGREENCE		

Contract the Contract Contract

e valuation control de la cont

<210> 126		
<211> 14		
<212> DNA		
<213> Artificial S	Sequence	,
<220>		
<223> Synthetic Se	emience	
(223) Bynthetic C.	04.0	
<400> 126		14
gctagacgtc tagc		7.7
<210> 127		•
<211> 19		•
<212> DNA		
<213> Artificial	Sequence	
<220>	•	
<223> Synthetic S	equence .	
<400> 127		
ggctatgtcg ttcctagcc		19
3900003013		
<210> 128		
<211> 19		
<212> DNA		
<213> Artificial	Sequence	
<220>		
<223> Synthetic S	Sequence	
	-	
<400> 128		
ggctatgtcg atcctagcc		19
2010: 100		
<210> 129		
<211> 21		
<212> DNA	•	
<213> Artificial	Sequence	
<220>	•	
<223> Synthetic S	Sequence	
	•	
<400> 129	_	21
ctcatgggtt tctccaccaa g	J.	2.3
<210> 130		
<211> 21		
<211> 21 <212> DNA		
<213> Artificial	Sequence	
VEIDY MICHILLIAI		
<220>		
<223> Synthetic S	Sequence	
<400> 130		
cttggtggag aaacccatga	g	23
	-	
<210> 131		
<211> 20		
<212> DNA		
2012\ Artificial	Seguence	

The Control of the Co

WO 02/053141	PCT/US01/48458
- 28 -	•
<223> Synthetic Sequence	
<400> 142 tcaaatgtgg gattttccca tgagtct	27
<210> 143 <211> 27 <212> DNA	
<213> Artificial Sequence	
<pre><220> <223> Synthetic Sequence</pre>	
<400> 143 agactcatgg gaaaatccca catttga	27
<210> 144 <211> 27 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 144 tgccaagtgc tgagtcacta ataaaga	27
<210> 145 <211> 27	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 145 totttattag tgactcagca ottggca	27
<210> 146 <211> 31	•
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 146 tgcaggaagt ccgggttttc cccaaccccc c	31
<210> 147 <211> 31	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 147 ggggggttgg ggaaaacccg gacttcctgc a	31
<210> 148	

the first of the state of the s

.....

engin ngaran sa manakan kanala sa kalang kanala merenasa kanala kanan nakala sebebahan menerahan meneraha

WO 02/053141	PCT/US01/48458
	- 32 -
<400> 164	
tcctaacgtt gaagt	15
<210> 165	
<211> 15	
<212> DNA	
<213> Artificial Sequence	•
<220>	
<223> Synthetic Sequence	
<400> 165	
teetcaegtt gaagt	15
<210> 166	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 166	
tcctgacgat gaagt	15
<210> 167	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 167	
tcctgacgct gaagt	15
<210> 168	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
	,
<220> <223> Synthetic Sequence	
<400> 168	
tectgaeggt gaagt	13
<210> 169	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	•
<400> 169	
tcctgacgta gaagt	. 15
<210> 170	
<210> 170 <211> 15	
<211> 13 <212> DNA	

;

the second of th

<223> Synthetic Sequence

appearance of the second control of the second control of the

PCT/US01/48458

.: .::.... ..

WO 02/053141

<211> 27

TOTAL STATE OF THE STATE OF THE

<212> DNA

...

<400> 202

29

<223> Synthetic Sequence

tccattccat gacgttcctg atgcttcca

<400> 207

The state of the s

CONTROL OF A STATE OF A STATE OF THE STATE O

MONETALISTICAL PROPERTIES PROPERTIES PROPERTIES POR MONETALISTICAL PROPERTIES PROPERTIES PROPERTIES PROPERTIES POR MONETALISTICAL PROPERTIES POR PORTALISTICAL PROPERTIES POR PORTALISTICAL PROPERTIES PORTALISTICAL PRO

	<210> 224	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	(213) Aftilitial Sequence	
	<220>	
	<223> Synthetic Sequence	
aaaat	<400> 224	20
ggggu	ttgacg ttttgggggg	
	<210> 225	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 225	20
tccag	ggactt ctctcaggtt	20
	<210> 226	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 226	
tttt	ttttt ttttttt	20
	<210> 227	
	<211> 20	
	<212> DNA <213> Artificial Sequence	
	(213) Altilitia Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 227	20
tcca	atgeegt teetgeegtt	•
	<210> 228	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<pre><220> <223> Synthetic Sequence</pre>	
	· · · · · · · · · · · · · · · · · · ·	
	<400> 228	20
tcca	atggcgg gcctggcggg	20
	(210) 220	
	<210> 229 <211> 20	•
	<211> 20 <212> DNA	
	<213> Artificial Sequence	

بالمعاد الأساسان المشششششين المستعدد ال

-

era esta dua universada con como con tras conceptada de la como con la constanta de la constanta de la como con constanta de la como con constanta de la constanta della constanta della constanta de la const

tcgtcgttgt cgttgtcgtt	20
<210> 246	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
(223) Synthetic Bequence	
<400> 246	24
tcgtcgtttt gtcgttttgt cgtt	24
<210> 247 <211> 22	
<211> 22 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 247	22
tcgtcgttgt cgttttgtcg tt	22
<210> 248	
<210> 248	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 248	0.1
gcgtgcgttg tcgttgtcgt t	21
<210> 249	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<221> modified_base	
$\langle 222 \rangle (2) \dots (2)$	
<223> m5c	
<221> modified base	
<222> (6)(6)	
<223> m5c	
<221> modified_base	
<222> (10)(10)	
<223> m5c	
<221> modified_base	
<222> (15)(15)	
<223> m5c	
<400> 249	

The Contract Contract Contract of Contract Contr

:

A CONTRACTOR STATE OF

<220>

<400> 259

<223> Synthetic Sequence

....

The second contract of the second contract of

and the second of the color of

	<220> <223> Synthetic Sequence	
	<400> 265	•
	totg ggggaatttt aagaagttoc toootooco	39
	<210> 266	
•	<211> 33	
•	<212> DNA	
•	<213> Artificial Sequence	
,	<220>	
•	<223> Synthetic Sequence	
	<400> 266	
atgttt	actt cttaaaattc ccccagaatg ttt	33
	<210> 267	
	<211> 33	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 267	
	totg ggggaatttt aagaagtaaa cat	33
	<210> 268	
	<211> 33	
	<212> DNA	
	<213> Artificial Sequence	
,	<220>	
	<223> Synthetic Sequence	
	ZADDS 260	
	<400> 268	33
atgttt	acta gacaaaattc ccccagaatg ttt	33
	<210> 269	
	<211> 33	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 269	
aaacat	tctg ggggaatttt gtctagtaaa cat	33
	<210> 270	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 270	
	gacg ttttaaaaaa	20

	<210> 271	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	• • •	
	<220>	
	<223> Synthetic Sequence	
	<400> 271	
cccctt	gacg ttttccccc	20
	<210> 272	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
•		
	<400> 272	
ttttcg	ttgt ttttgtcgtt	20
	.010	
	<210> 273	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	1220 Synthetic Beddence	
	<400> 273	
	tttt gtcgttttgt cgtt	24
99	Teed gaogettege aget	24
•	<210> 274	
	<211> 14	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	-	
	<400> 274	
ctgcage	cctg ggac	14
	<210> 275	
	<211> 25	
	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
<	<223> Synthetic Sequence	
	(400) 077	
	<400> 275	
acccgto	egta attatagtaa aaccc	25
	(210) 276	
	<210> 276 <211> 21	
	<211> 21 <212> DNA	
<	<pre><213> Artificial Sequence</pre>	

....

Control of the Contro

Company of the Company of

11 0 02/000141			FC1/0301/4	0430	,
		n - :.			;
	- 54 -				
<210> 282					
<211> 24					
<212> DNA					
<213> Artificial Seque	nce				
<220>					
<223> Synthetic Sequen	CO.				
vezas dynchetic bequen	Ce				
<400> 282	•				
				0.4	
ctggtctttc tggttttttt ctgg				24	
(210) 202					
<210> 283					
<211> 20					
<212> DNA					
<213> Artificial Seque	nce			•	
.000					
<220>					
<223> Synthetic Sequence	ce				
<400> 283					
tcaggggtgg ggggaacctt				20	
<210> 284					
<211> 20					
<212> DNA					
<213> Artificial Sequer	nce				
-					
<220>				•	
<221> modified base					
<222> (8)(8)					
<223> m5c					
<223> Synthetic Sequence	ce	•			
<400> 284					
tccatgangt tcctagttct				20	
.seemegange coolagecoo				20	
<210> 285					
<211> 20					
<211> 20 <212> DNA					
<213> Artificial Sequen	200				
verso Arcilicial Sequen	ice				
<220>					
<223> Synthetic Sequenc	ce				
<400> 285					
tccatgatgt tcctagttct	•			20	
<210× 200					
<210> 286					
<211> 26					
<212> DNA					
<213> Artificial Sequen	ice		•		
<220>					
<223> Synthetic Sequenc	:e				
<400> 286					
cccgaagtca tttcctctta acctgg				26	
<210> 287					
<211> 26					

WO 02/053141 PCT/US01/48458

THE PARTIES AND THE PARTY OF TH

- 55 - . .

```
<212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 287
                                                                              26
ccaggttaag aggaaatgac ttcggg
      <210> 288
      <211> 15
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified_base
      <222> (7)...(7)
      <223> m5c
      <223> Synthetic Sequence
      <400> 288
                                                                              15
tcctggnggg gaagt
      <210> 289
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified base
      <222> (2)...(2)
      <223> m5c
      <221> modified base
      <222> (5)...(5)
<223> m5c
      <221> modified base
      <222> (9)...(9)
      <223> m5c
      <221> modified_base
<222> (12)...(12)
<223> m5c
      <221> modified base
      <222> (14)...(14)
      <223> m5c
      <221> modified base
      <222> (16)...(16)
<223> m5c
      <223> Synthetic Sequence
      <400> 289
                                                                              20
gnggngggng gngngngccc
      <210> 290
      <211> 20
```

die lander der transport der transport de la company de la

TOTAL CONTRACTOR OF THE CONTRA

20

<400> 294
tccatgtagt tcctagttct

<210> 295
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Sequence

الماليات المسا

.....

mesoca (article)

LL L CONTROL CONTROL

	<220>	
	<221> misc_feature	
	<222> (1)(3)	
	<223> Conjugated to biotin moiety.	
	<223> Synthetic Sequence	
+ a = + = =	<400> 305	20
cogcog	tttt gtcgttttgt cgtttttt	29
	<210> 306	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 306	
gctatg	acgt tccaaggg	18
	<210> 307	
	<211> 8	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 307	-
tcaacg		8
	<210> 308	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	•	
	<220> <223> Synthetic Sequence	
	7522 plurierro pedaeuce	
	<400> 308	
tccagg	actt tcctcaggtt	20
	<210> 309	
	<211> 20 .	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 309	
ctctct	gtag gcccgcttgg	20
	<210> 310	
	<211> 20 · ·	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	16607	

Make the first of the first of

A - NAMES OF THE PROPERTY OF T

```
<220>
      <223> Synthetic Sequence
      <400> 315
                                                                         20 .
aatagtcgcc atggcggggc
      <210> 316
      <211> 28
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc difference
      <222> (1)...(3)
      <223> Biotin moiety attached at 5' end of sequence.
      <223> Synthetic Sequence
      <400> 316
                                                                         28
tttttccatg tcgttcctga tgcttttt
      <210> 317
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 317
                                                                         20
tcctgtcgtt gaagtttttt
      <210> 318
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 318
                                                                         24
gctagcttta gagctttaga gctt
      <210> 319
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 319
                                                                         20
tgctgcttcc cccccccc
      <210> 320
      <211> 20
     <212> DNA
      <213> Artificial Sequence
      <220>
```

Committee Commit

والمراجع والمناز والمراجع والم

;

...

W O 02/033141			PC 1/US01/48458
		- 64 -	
-400°	. 221		
	> 331 cagtgacctg gcagaatctg	· cat	3:
J		gac	3.
	> 332		
<211:			
	> DNA		
<213.	> Artificial Sequence		
<220	>		
<223	> Synthetic Sequence		
<400	> 332		
	ctgccaggtc actgtgactg	gat	33
		940	33
<210		·	
<2112			
<212			
\213 /	Artificial Sequence		
<220>	•		•
<223>	Synthetic Sequence		
<400>	ູ່ສຸສຸສຸ		
	cagtgactca gcagaatctg	gat	. ၁၁
J	Juguetus geagaaceeg	gac	33
<210>			
<211>			
<212>			
<213>	· Artificial Sequence		
<220>	•		
<223>	Synthetic Sequence		
<400>	224	•	
	ctgctgagtc actgtgactg	qat	33
J		gue	, 33
<210>			
<211>			
<212>			
\Z13>	Artificial Sequence		
<220>			
<221>	modified_base	•	
	$(16)\ldots(\overline{1}6)$		
<223>	m5c		
<223>	Synthetic Sequence		
<400>	225		
<400> togtogttoc			
Legicgicce	ceeceneeee		20
<210>	336		
<211>			
<212>			•
<213>	Artificial Sequence		
<220>			
<221>	modified base		
<222>	(2)(2)		
<223>	m5c		

20

المراج ويجمد مستمسم ومعران والريوا ييوني المراي

<213> Artificial Sequence

<223> Synthetic Sequence

<400> 340 '

tcgtcggtcc cccccccc

. A steel descention of

	<210> 341	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	1220 Incittorat peddence	
	<220>	
	<223> Synthetic Sequence	
	1223 Synthetic Sequence	
	<400> 341	
+ ~~~		
cegge	egttee ecceecec	2
	<210> 342	
	<210> 342 <211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 342	
aaaat	· · · · · · · · · · ·	
ggcct	tttcc cccccccc	20
	<210> 343	
	<211> 24	
	<211> 24 <212> DNA	
	<213> Artificial Sequence	
	value metricial bequence	
	<220>	
	<223> Synthetic Sequence	
	-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	<400> 343	
tcatc	gtttt gacgttttgt cgtt	2.4
9	geood gaogacaga agaa	24
	<210> 344	
	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	boquone	
	<220>	
	<223> Synthetic Sequence	
	<400> 344	
tcgtc	gtttt gacgttttga cgtt	24
-	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	24
	<210> 345	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	• • • •	
	<220>	
	<223> Synthetic Sequence	
	<400> 345	
ccgtc	gttcc cccccccc	20
		20
	<210> 346	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	

__ ...__

```
<220>
      <223> Synthetic Sequence
      <400> 346
gegtegttee ecceecee
                                                                         20
      <210> 347
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 347
                                                                        20
tcgtcattcc cccccccc
      <210> 348
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 348
                                                                        20
acgtcgttcc cccccccc
      <210> 349
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 349
                                                                        20
étgtegttee eeceecee
      <210> 350
      <211> 24
      <212> DNA -
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (1) ... (3)
      <223> Biotin moiety attached at 5' end of sequence.
      <223> Synthetic Sequence
      <400> 350
                                                                        24
tttttcgtcg ttccccccc cccc
      <210> 351
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc feature
```

encommence and a second second second

```
<222> (18)...(20)
      <223> Biotin moiety attached at 3' end of sequence.
      <223> Synthetic Sequence
      <400> 351
tegtegttee ecceecee
                                                                         20
      <210> 352
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (22) ... (24)
      <223> Biotin moiety attached at 3' end of sequence.
      <223> Synthetic Sequence
      <400> 352
tcgtcgtttt gtcgttttgt cgtt
                                                                         24
      <210> 353
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 353
tccagttcct tcctcagtct
                                                                         20
      <210> 354
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <221> modified base
      <222> (2)...(2)
      <223> m5c
      <223> Synthetic Sequence
      <400> 354
tngtcgtttt gtcgttttgt cgtt
                                                                         24
      <210> 355
      <211> 15
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 355
tcctggaggg gaagt
                                                                        15
      <210> 356
```

20 Mar - Control of the Control of t

ODDON KALADAN OM DE OM ODDON SKRIKENSKERSKERSKERSKERSKALDE (* 1979) FOR NOOM DE LEGGESKE SKRIKE FAN DE SEN SE F

The second secon

and the second of the second o

<220>	
<223> Synthetic Sequence	
<400> 382	
cagacacaga agcccgatag acg	23
101.05	
<210> 383	
<211> 20 <212> DNA	
<213> Artificial Sequence	
(213) Altilitial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 383	
agacagacac gaaacgaccg	20
(210) 204	
<210> 384	
<211> 20 <212> DNA	
<212> DNA <213> Artificial Sequence	
(213) Artificial bequence	
<220>	
<223> Synthetic Sequence	
-	
<400> 384	
gtctgtccca tgatctcgaa	20
4010) 205	
<210> 385	
<211> 20 <212> DNA	
<213> Artificial Sequence	
varos interretar bequence	
<220>	
<223> Synthetic Sequence	
<400> 385	
gctggccagc ttacctcccg	20
<210> 386	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	i
<223> Synthetic Sequence	
.100	
<400> 386	
ggggcctcta tacaacctgg g	21
<210> 387	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
.400	
<400> 387	
ggggtccctg agactgcc	18

<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> gagaacgctg		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> tccatgtcgg		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> ctcttgcgac		20
<210> <211> <212> <213>	20	
<220> <223>	Synthetic Sequence	
<400> aggtacagcc		20
<210> <211> <212> <213>	24	
<220> <223>	Synthetic Sequence	
<400> accatggacg	392 acctgtttcc cctc	24
<210> <211> <212> <213>	24	

WO 02/053141		PCT/US01/48458
	- 76 -	·· .
<220>	- 70 -	
<223> Synthetic Sequence		
<400> 202		
<400> 393		
accatggatt acctttttcc cctt		24
1010. 004		
<210> 394		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 394		
atggaaggtc cagcgttctc		20
		20
<210> 395		• ,
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 395		
agcatcagga ccgacatgga		0.0
agearaagga cogacacgga		20
<210> 396		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
de la caracter pequence		
<220>		
<223> Synthetic Sequence		
sales synthetic bequence.		
<400> 396		
ctctccaagc tcacttacag		0.0
		20
<210> 397		•
<211> 21	•	
<212> DNA		•
<213> Artificial Sequence		
varax merricular sequence	•	
<220>		
<223> Synthetic Sequence		
. Assor pluchests seddense		
<400> 397		
tecetgagae tgeeceacet t		
·		21
<210> 398		
<211> 20		
<211> 20 <212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 200		
<400> 398		
gccaccaaaa cttgtccatg		20

The second secon

-77- (210) 399 (211) 20 (212) DNA (213) Artificial Sequence (220) (223) Synthetic Sequence (400) 399 (210) 400 (211) 19 (212) DNA (213) Artificial Sequence (220) (223) Synthetic Sequence (400) 400 (211) 20 (211) 20 (212) DNA (213) Artificial Sequence (220) (212) DNA (213) Artificial Sequence (220) (223) Synthetic Sequence (400) 401 (200) 401 (200) 402 (211) 20 (212) DNA (213) Artificial Sequence (200) (213) Artificial Sequence (210) 402 (211) 20 (212) DNA (213) Artificial Sequence (220) (223) Synthetic Sequence (201) 403 (211) 35 (212) DNA (213) Artificial Sequence (201) 403 (213) Artificial Sequence (220) (223) Synthetic Sequence (220) (212) DNA (213) Artificial Sequence (200) 403 (211) 35 (212) DNA (213) Artificial Sequence (200) 403 (211) 35 (212) DNA (213) Artificial Sequence (201) 404 (211) 35 (212) DNA (213) Artificial Sequence (210) 404 (211) 35 (212) DNA (213) Artificial Sequence (210) 404 (211) 35 (212) DNA (213) Artificial Sequence (210) 404 (211) 35 (212) DNA (213) Artificial Sequence (210) 404 (211) 35 (212) DNA (213) Artificial Sequence (210) 404 (211) 35 (212) DNA (213) Artificial Sequence (210) 404 (211) 35 (212) DNA (213) Artificial Sequence (210) 403 (211) 404 (212) 504 (212) 505 (213) 404 (213) 405 (213) 407	WO 02/053141	PCT/US01/48458
<pre></pre>	<i>- 77 -</i>	
<pre></pre>	<210> 399 <211> 20	
<pre> <223> Synthetic Sequence 4400> 399 gtccatggcg tgegggatga</pre>	_	
Secretaging tiggggating Secretaging Secretaging tigggraph Secretaging Secretaging tigggraph Secretaging Secretaging tigggraph Secretaging Secretaging	· 	•
<pre></pre>	<400> 399	
<pre> <211> 19</pre>	gtccatggcg tgcgggatga	20
<pre><212> DNA</pre>		
<pre> <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 400 cctctataca acctgggac</pre>		
<pre> <223> Synthetic Sequence <400> 400 cctctataca acctgggac 19 <210> 401</pre>		
<pre><400> 400 cctctataca acctgggac</pre>		
cetetataca acctggac (210> 401 (211> 20 (212> DNA (213> Artificial Sequence (220> (223> Synthetic Sequence (400> 401 cgggcgactc agtctatcgg (211> 20 (211> 20 (212> DNA (213> Artificial Sequence (220> (221> DNA (213> Artificial Sequence (220> (223> Synthetic Sequence (220> (212> DNA (213> Artificial Sequence (200> 403 (211> 35 (212> DNA (213> Artificial Sequence (220> (223> Synthetic Sequence (220> (223> Synthetic Sequence (210> 403 (211> 35 (212> DNA (213> Artificial Sequence (200> (210> 403 (211> 35 (212> DNA (213> Artificial Sequence (210> 404 (211> 35 (212> DNA (213> Artificial Sequence (210> A04 (211> 35 (212> DNA (213> Artificial Sequence (210> A04 (211> 35 (212> DNA (213> Artificial Sequence	<223> Synthetic Sequence	
<pre></pre>		
<pre></pre>	cctctataca acctgggac	19
<pre></pre>		
<pre></pre>		
<pre></pre>		
<pre></pre>	<213> Artificial Sequence	
<pre></pre>		
<pre>cgggcgactc agtctatcgg</pre>	<223> Synthetic Sequence	
<pre></pre>		0.0
<pre></pre>	cgggcgactc agtctatcgg	20
<pre></pre>	<210> 402	
<pre></pre>		
<pre></pre>		
<pre> <223> Synthetic Sequence <400> 402 gcgctaccgg tagcctgagt 20 <210> 403</pre>	<213> Artificial Sequence	
<pre></pre>	· · · · · · · · · · · · · · · · · · ·	
<pre>gcgctaccgg tagcctgagt 20 <210> 403 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 403 cgactgccga acaggatatc ggtgatcagc actgg 35 <210> 404 <211> 35 <212> DNA <213> Artificial Sequence</pre>	<223> Synthetic Sequence	
<pre> <210> 403 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 403 cgactgccga acaggatatc ggtgatcage actgg <210> 404 <211> 35 <212> DNA <213> Artificial Sequence </pre> 35		20
<pre> <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 403 cgactgccga acaggatatc ggtgatcagc actgg <210> 404 <211> 35 <212> DNA <213> Artificial Sequence </pre> <pre> 35</pre>	gegeracegg rageergage	20
<pre><212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 403 cgactgccga acaggatatc ggtgatcagc actgg <210> 404 <211> 35 <212> DNA <213> Artificial Sequence</pre>		
<pre><213> Artificial Sequence <220> <223> Synthetic Sequence <400> 403 cgactgccga acaggatatc ggtgatcagc actgg <210> 404 <211> 35 <212> DNA <213> Artificial Sequence</pre> <pre>35</pre>		
<220> <223> Synthetic Sequence <400> 403 cgactgccga acaggatatc ggtgatcagc actgg <210> 404 <211> 35 <212> DNA <213> Artificial Sequence		•
<pre><223> Synthetic Sequence <400> 403 cgactgccga acaggatatc ggtgatcagc actgg</pre>		
<400> 403 cgactgccga acaggatatc ggtgatcagc actgg <210> 404 <211> 35 <212> DNA <213> Artificial Sequence	_	
cgactgccga acaggatatc ggtgatcagc actgg <210> 404 <211> 35 <212> DNA <213> Artificial Sequence		
<210> 404 <211> 35 <212> DNA <213> Artificial Sequence		35
<211> 35 <212> DNA <213> Artificial Sequence		30
<212> DNA <213> Artificial Sequence		
<213> Artificial Sequence		
	<220>	

ί

tctcccgtcg tgcgccat

<210> 410

and the state of the commentation of the state of the sta

<223> n is a or c or g or t/u

PCT/US01/48458

١

edition is this control of the even of the

WO 02/053141

MERCHANIC CONTROL OF A CONTROL OF THE STREET OF THE STREET

The first term of the second o

<211	> 28	
	> DNA	
<213	> Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
	•	
<400	> 430	
		28
tegtegtttt	ttgtcgtttt ttgtcgtt	2.
	> 431	
<211	> 20	
<212	> DNA	
<213	> Artificial Sequence	
	•	
<220	·	
\223	> Synthetic Sequence	
<400	> 431	
tcgtcgtttt	tttttttt	20
<210	> 432	
<211	> 20	
	> DNA	
<213	> Artificial Sequence	
<220	>	
<223	> Synthetic Sequence	
<400	> 432	
	ttgatttttt	20
cccccaacy	cegaceeeee	
2010	> 433	
<211		
	> DNA	
<213	> Artificial Sequence	
<220	>	
	> Synthetic Sequence	
1223	by Bynemetra Bedaenea	
4400	422	
	> 433	2
tttttttt	ttttttttt tttt	24
<210	> 434	
<211	> 20	
<212	> DNA	
	> Artificial Sequence	
\213	Altificial bequence	
<220		
<223	> Synthetic Sequence	
<400	> 434	
aggateatea	ttttgggggg	20
2222222		
-21A	> 435	
	> 24	
	> DNA	
<213	> Artificial Sequence	
<220	>	
	> Synthetic Sequence	
~~~ <i>~</i>	· Farence English Engl	

	00> 435 Et gtcgttttgg gggg	24
<b>~21</b>	10> 436	
	11> 27	
	12> DNA	
	3> Artificial Sequence	
<22	20>	
<22	3> Synthetic Sequence	
<40	00> 436	
tegtegetg	t ctccgcttct tcttgcc	27
~21	.0> 437	
	1> 15	
	2> DNA	
	3> Artificial Sequence	
	or included bedaence	
<22		
<22	3> Synthetic Sequence	
<40	0> 437	
tcgtcgctg	t ctccg	15
<i>-</i> 221	0> 438	
	1> 20	
	2> DNA	
	3> Artificial Sequence	
\21	ov vicilicial peddeuce	
<22		
<22	3> Synthetic Sequence	
<40	0> 438	
	a gcttggagag	20
J J J	353-5-9	20
<21	0> 439	
	1> 20	
	2> DNA	
<21:	3> Artificial Sequence	
<220	0>	
<223	3> Synthetic Sequence	
<400	0> 439	
		20
<b>J</b> J - 1.		20
<210	0> 440	
	1> 17	
	2> DNA	
<213	3> Artificial Sequence	
<220	)>	
	3> Synthetic Sequence	
	O>_ 440 .	
ccaggttgta	a tagagge	17
<210	O> 441	
	l> 17	

<211> 20 <212> DNA

<220>

<213> Artificial Sequence

<223> Synthetic Sequence

The state of the second of the

Commence of the contract of th

WO 02/053141 PCT/US01/48458 - 87 -<213> Artificial Sequence <220> <223> Synthetic Sequence <400> 452 12 . gtagccttcc ta <210> 453 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 453 cggtagcctt ccta 14 <210> 454 <211> 16 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 454 cacggtagcc ttccta 16 <210> 455 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 455 18 agcacggtag ccttccta <210> 456 <211> 18 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 456 gaacgctgga ccttccat 18 <210> 457 <211> 10 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence

in the first program of the control of the control

<400> 457

___.____

the Area of the

. į

ti ett tip valatat salasti avvi ette i en er er er er er er er er er ett ett til til ett til salat ett ett er

<220> <223> Synthetic Sequence	
<400> 463	
tccatgtcgg tcctgatgct	20
<210> 464	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 464	
ttcatgcctt gcaaaatggc g	21
<210> 465	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 465	
tgctagctgt gcctgtacct	20
<210> 466	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 466	
agcatcagga ccgacatgga	20
<210> 467	
<211> 22	
<212> DNA	
<213> Artificial Sequence .	
<220>	
<223> Synthetic Sequence	
<400> 467	
gacettecat gteggteetg at	22
<210> 468	
<210> 468 <211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 468	
acaaccacga gaacgggaac	20

<210> 469	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
1223/ Synthetic Sequence	
<400> 469	
gaaccttcca tgctgttccg	20
	20
<210> 470	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
(223) Synthetic Sequence	
<400> 470	
caatcaatct gaggagaccc	20
	20
<210> 471	•
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
—— <del>-</del>	
<223> Synthetic Sequence	
<400> 471	
tcagctctgg tacttttca .	20
, ,,,	20
<210> 472	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 472	
tggttacggt ctgtcccatg	
·	20
<210> 473	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 473	
gtctatcgga ggactggcgc	
,	20
<210> 474	
<211> 20	
<212> DNA .	
<213> Artificial Sequence	

and the state of the state of the common the second state of the state

in the control of the

A ANDREAD CONTROL OF THE CONTROL OF

_____

į

NEW CONTROL OF THE CO

gctgaacctt ccatgctgtt
<210> 491

WO 02/053141		PCT/US01/48458
	- 94 -	
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
olumerze gedreuee		
<400> 491		
tagaaacagc attettettt tagggcagca	ca	32
<210> 492		
<211> 24		
<212> DNA	•	
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 492		
agatggttct cagataaagc ggaa	·	24
<210> 493		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 493		
ttccgcttta tctgagaacc atct		24
3		23
<210> 494		
<211> 23		
<212> DNA <213> Artificial Sequence	·	
(213) Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 494		
gtcccaggtt gtatagaggc tgc		23
<010> 405		
<210> 495 <211> 20		
<212> DNA		
<213> Artificial Sequence		
<220		
<220> <223> Synthetic Sequence		
(223) Synthetic Sequence		
<400> 495		
gcgccagtcc tccgatagac		20
<210> 496		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		

<400> 496 atcggaggac tggcgccg	20
<210> 497 <211> 20	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 497	
ggtctgtccc atattttag	20
gycotyassa acatoccuay	
<210> 498	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 498	
tttttcaacg ttgagggggg	20
•	
<210> 499	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
and officers and	
<400> 499	
tttttcaagc gttgatttt t	21
<210> 500	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
\213> Artificial Sequence	
<220>	•
<223> Synthetic Sequence	
<400> 500 · · · · · · · · · · · · · · · · · ·	20
ggggtcaacg ttgattttt	20
<210> 501	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	•
<400> 501	
ggggttttca acgttttgag ggggg	25
2222444444	23
<210> 502	
<211> 20	

	- 70 -
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 502 ggttacggtc tgtcccatat	20
<210> 503	
<211> 20	·
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 503	•
ctgtcccata tttttagaca	20
<210> 504	
<211> 20	
<212> DNA	
<213> Artificial Sequence	•
<220>	
<223> Synthetic Sequence	
<400> 504	
accatcctga ggccattcgg	. 20
<210> 505	
<211> 23	
<212> DNA	
<213> Artificial Sequence	·
<220>	
<223> Synthetic Sequence	
<400> 505	
cgtctatcgg gcttctgtgt ctg	23
<210> 506	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 506	
ggccatccca cattgaaagt t	. 21
<210> 507	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	

حاشفان سا

<400> 518

antina a la constitui de la co

____

The state of the s

	·	
<22	20>	
	23> Synthetic Sequence	
<40	00> 524	
ggggcatga	ac gttcggggg	20
	10> 525	
	11> 20	
	L2> DNA	
<21	13> Artificial Sequence	
<22		
	23> Synthetic Sequence	
~22	23> SAUCHECIC Seduence	
<40	00> 525	
	ac gttcaaaaa	20
_		20
<21	.0> 526	
<21	1> 20	
	.2> DNA	
<21	.3> Artificial Sequence	
<22		
\22	3> Synthetic Sequence	
<40	00> 526	
	c gttcgggggg	20
_		20
<21	0> 527	
	1> 20	
	2> DNA	
<21	3> Artificial Sequence	
<22	0.	
	3> Synthetic Sequence	
122	3> plucuette peddeuce	
<40	0> 527	
ggggcatga	c gttcaaaaaa	20
	0> 528	
	1> 24	
	2> DNA	
· <21	3> Artificial Sequence	
<22	0	
	3> Synthetic Sequence	
\	op plucueric pedmence	
<40	0> 528	
accatggac	g atctgtttcc cctc	24
	0> 529	
	1> 24	
	2> DNA	
<213	3> Artificial Sequence	
<220	0.5	
	u> 3> Synthetic Sequence	
~22.	o. olucueric seducation	
<400	0> 529	
	g aactgttccc cctc	24

	<210>	530	
	<211>	20	
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
		Complete Company	
	<223>	Synthetic Sequence	
	<400>	530	
ccccc	cccc o	cacacacac	20
	<210>		
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>		
		Synthetic Sequence	
	<400>	531	
ggggg	aggag d	399999999	20
	<210>	532	
	<211>		
	<212>	·	
		Artificial Sequence	
	12107	Interrocal poquenos	
	<220>		
	<223>	Synthetic Sequence	
	<400>	522	
~~+ ~+ -			20
gerge	idaat (	gaateggeeg	20
	<210>	533	
	<211>	20	
	<212>	DNA	
	<213>	Artificial Sequence	
	40005		
	<220>	C-thabia Company	
	<223>	Synthetic Sequence	
	<400>	533	
ttcggg		ctcctccatt	20
35.			
	<210>	534	
	<211>		
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
		Synthetic Sequence	
	~~~3>	PAULINECTO pedaguos	
	· <400>	534	
tatgc		ccggacttat	20
	40 7 0:	``rne	
	<210>		
	<211>		
	<212>	DNA Artificial Sequence	
	<213>	ALCILICIAT SEGUENCE	

Commission of the commission o

والمحافظ فللمستعمل والمراب والمستحيث المركب والمحاج المرابطي

<211> 20 <212> DNA

<220>

<213> Artificial Sequence

WO 02/053141	PCT/US01/48458
- 104 -	, , , , , , , , , , , , , , , , , , , ,
<223> Synthetic Sequence	
<400> 546 aacgctggac cttccatgtc	20
<210> 547 <211> 20 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 547 tgcatgccgt acacagctct	20 ·
<210> 548 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 548 ccttccatgt cggtcctgat	20
<210> 549 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 549 tactcttcgg atcccttgcg	20
<210> 550 <211> 18	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 550 ttccatgtcg gtcctgat	18
<210> 551 <211> 18 <212> DNA	
<213> Artificial Sequence <220>	
<223> Synthetic Sequence	
<400> 551 ctgattgctc tctcgtga	18
<210> 552	

- 105 -<211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 552 20 ggcgttattc ctgactcgcc <210> 553 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 553 22 cctacgttgt atgcgcccag ct <210> 554 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 554 20 ggggtaatcg atgagggggg <210> 555 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 555 20 ttcgggcgga ctcctccatt <210> 556 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 556 20 tttttttt tttttt <210> 557 <211> 20 <212> DNA <213> Artificial Sequence <220>

PCT/US01/48458

Control of the Contro

<223> Synthetic Sequence

WO 02/053141

wa	02/053141	
***	V2/V33141	

PCT/US01/48458

- 106 -

ggggg	<400> 557 yttttt tttttggggg	20
	<210> 558	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	Jiminotto oddanoc	
	<400> 558	
ttttt	ggggg gggggttttt	20
	<210> 559	
	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	(223) Synthetic Bequence	
	<400> 559	
ggggg	ggggg gggggggt	19
	<210> 560	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	.000	
	<220>	
	<223> Synthetic Sequence	
	<400> 560	
aaaaa	aaaaa aaaaaaaaa	20
		20
	<210> 561	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	1223/ Dynchecic Sequence	
	<400> 561	
cccc	aaaaa aaaaaccccc	20
	<210> 562	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	.000	
	<220>	
	<223> Synthetic Sequence	
	<400> 562	
aaaaa	cccc ccccaaaaa	20
		20
	<210> 563	
	<211> 27	

.... ...

المراكب والمستقيمة ومرافع والمراكبة والمعتبر معاملها والمراكب والمراكبة والمراكبة والمراكبة والمستقيل والمراكبة والم

<210> 568 <211> 29 <212> DNA

<220>

<213> Artificial Sequence

<223> Synthetic Sequence

___._____

WELLOW TRANSPORTED TO A SECOND TO THE TRANSPORT TO THE PROPERTY OF THE PROPERT

The first of the f

<400> 579

and the control of the commence of the control of t

<213> Artificial Sequence

	<220> <223>	Synthetic Sequence	
	<400>	EOE	
		gacctatcca t	2
	<210>		
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>		
	<223>	Synthetic Sequence	
	<400>	586	
gctaga	ıggtt a	agcgtga	17
	<210>	587	
	<211>	19	
	<212>		
	<213>	Artificial Sequence	
	<220>		
	<223>	Synthetic Sequence	
	<400>	587	
gagaac	gctg g	gacttccat	19
	<210>	588	
	<211>		
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
		Synthetic Sequence	
	<400>		
tcacgo	taac g	tctagc	1,7
	<210>	589	
	<211>	•	
	<212>		
	<213>	Artificial Sequence	
	<220>		
	<221>	misc_feature	
	<222>	(1)(3)	
	<223>	Conjugated to biotin moiety.	
	<223>	Synthetic Sequence	
	<400>	589	
gctaga	cgtt a	agegtga	17
	<210>	590	
	<211>		
	<212>		
		Artificial Sequence	
	<220>		

WO 02/053141 PCT/US01/48458 - 113 -<211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 596 20 atgtcctcgg tcctgatgct <210> 597 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 597 gagaacgctc caccttccat 20 <210> 598 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 598 gagaacgctg gaccttcgta 20 <210> 599 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> misc feature <222> (1) ... (3) <223> Conjugated to biotin moiety. <223> Synthetic Sequence <400> 599 atggaaggtc cagcgttctc 20 <210> 600 <211> 6 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 600 tcctga 6 <210> 601

<211> 8 <212> DNA

The communication of the contraction of the communication of the contraction of the communication of the contraction of the con

المائيمينيوووا والماد كالمتتثنيتينيون

المراجع والمعاوم ومحوور ويرومون والأراب المعاون والمتاعين والمعارف والمعارب والمعارف

The second contract of the second contract of

```
<210> 618
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 618
aggatatc
                                                                           8
      <210> 619
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 619
tagacgtc
                                                                           8
      <210> 620
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 620
                                                                           8
gacgtcat
      <210> 621
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 621
                                                                           8
ccatcgat
      <210> 622
      <211> 8
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
      <400> 622
                                                                           8
atcgatgt
      <210> 623
      <211> 8
      <212> DNA
      <213> Artificial Sequence
```

The first of the programment of the first of

and the state of the second second

<212> DNA

<213> Artificial Sequence

PCT/US01/48458

WO 02/053141 PCT/US01/48458 - 121 -<210> 639 <211> 8 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 639 8 tcatcgat <210> 640 <211> 8 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 640 8 taaacgtt <210> 641 <211> 8 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 641 8 ccaacgtt <210> 642 <211> 6 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 642 6 gctcga <210> 643 <211> 6 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 643 6 cgacgt <210> 644 <211> 6 <212> DNA <213> Artificial Sequence <220>

<400> 649

<210> 650

cgtacg

AND AND THE THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PROPERTY OF THE PARTY OF THE PARTY

6

...

to the first of the second of

<400> ctagcgct	655
<210> <211>	8
<212> <213>	DNA Artificial Sequence
<220> <223>	Synthetic Sequence
<400>	
taageget	•
<210>	
<211> <212>	
	Artificial Sequence
<220>	Country and the country of the count
	Synthetic Sequence
<400> tcgcgaattc g	
<210>	
<211>	
<212>	
<213>	Artificial Sequence
<220>	
<223>	Synthetic Sequence
<400>	
atggaaggtc c	agcgttct 19
<210>	
<211> <212>	
	Artificial Sequence
<220>	
<223>	Synthetic Sequence
<400>	
actggacgtt a	gcgtga 17
<210>	
<211>	
<212> < < 213> /	DNA Artificial Sequence
<220>	
	Synthetic Sequence
<400>	
cgcctggggc to	ggtctgg 18
<210>	
<211>	18

<223> Synthetic Sequence

.........

<400> 677

والمنظ المستعملين مترجع ومام وموريقة فوالقولون أوالمعتقل والمؤافئة الأمرائية فالمتعلق فالمتعلق فالمتادي

is the first of the control of the feet of the control of the cont

WO 02/053141 PCT/US01/48458

- 129 -

and Made and the control of the control

	220> 223> Synthetic Sequence	
	:400> 683 pctg gacctcatca tccat	25
<	2210> 684 2211> 20	
<	2212> DNA 2213> Artificial Sequence	
	220> 223> Synthetic Sequence	
	400> 684	
gagaacg	cta gaccttctat	20
<	2210> 685	
<	221> 17	
<	2212> DNA	
<	213> Artificial Sequence	
_	220>	
	223> Synthetic Sequence	
-	:400> 685	
		17
~~~~	-gggg	
<	2210> 686	
<	2211> 22	
<	212> DNA	
<	213> Artificial Sequence	
_	:220>	
	223> Synthetic Sequence	
<	:400> 686	
cacacct	tgg tcaatgtcac gt	22
-	210> 687	
	2211> 22	
	2212> DNA	
	2213> Artificial Sequence	
	:220>	
	223> Synthetic Sequence	
	4400 - 607	
	:400> 687 :cct atggttttat cg	22
tetecat	eet atggtttat og	~~
	2210> 688	
	2211> 15	
	(212> DNA	
<	2213> Artificial Sequence	
<	220>	
	2223> Synthetic Sequence	
	×100× 600	
	<pre>c400&gt; 688 acct tccat</pre>	15
-2230		

1110	03/05314	
wu	02/05314	ı

estuation and ex-

## PCT/US01/48458

- 130 -

	<210>	689	
	<211>		
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
	<223>	Synthetic Sequence	
	44005	600	
	<400>		
Caccat	cerra	gtcaatgtca cgt	23
	<210>	690	
	<211>		
	<212>	·	
	<213>	Artificial Sequence	
		•	
	<220>		
	<223>	Synthetic Sequence	
	<400>		
gctaga	acgtt	agctgga · · ·	17
	<210>	601	
	<211>		
	<212>		
	<213>	Artificial Sequençe	
		•	
	<220>		
	<223>	Synthetic Sequence	
	<400×	601	
~ ~ <b></b>	<400>		
agryci	gatty (	cagatcg	17
	<210>	692	
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>		
	<223>	Synthetic Sequence	
	<400×	C00	
	<400>		~ ~
cccccg	leer i	gtggttttgt ggtt	24
	<210>	693	
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>		
	<223>	Synthetic Sequence	
	<400>		
	<400>		
LLTTCG	iccg t	ccgttttgtc gtt	23
	<210>	694	
	<211>		
	<212>		
		Artificial Sequence	
		·	

_____

<223> Synthetic Sequence

The Control of the Co

,

		-	C170501740450
		- 132 -	• • •
<400>	699		
ccttcgat	033	•	8
<210>	700		
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	700		
actagacgtt a	agtgtga		17
<210>	701		
<211>	17		
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	701		
gctagaggtt a	agcgtga		17
<210>	702		
<211>	20		
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	702		
atggactctc c			20
<210>	703		
<211>			
<212>	==		
<213>	Artificial Sequence		
<220>			•
<223>	Synthetic Sequence		•
<400>	703		
atcgactctc g	agcgttctc		20
<210>			
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>			
gctagacgtt a	gc		13
<210>			
<211>			

<223> Synthetic Sequence

<400> 709

tnaacgtt

(i) The second of the secon

______

<211> 20

. . . . . . . . . . . . . . . .

- 135 -

			- 133 -	
	<212>	DNA		
		Artificial Sequence		
	12201	.merane coque		
	<220>			
		Synthetic Sequence		
	\ZZJ/	Synthetic Bedgence		
		215		
_	<400>			
atgca	ctctg	cagcgttctc.		20
	<210>			
	<211>	20		
	<212>	DNA		
	<213>	Artificial Sequence		
	<220>			
	<223>	Synthetic Sequence		
		-1		
	<400>	716		
aataa		cagcgttctc	2	20
aycya		cagegeeee	<u>-</u>	
	<b>2010</b> 5	717		
	<210>			
	<211>			
	<212>			
	<213>	Artificial Sequence		
	<220>			
	<223>	Synthetic Sequence		
	<400>	717		
gccag	atgtt .	agctgga	1	۱7
	_			
	<210>	718		
	<211>			
	<212>			
		Artificial Sequence		
	(213)	THEITICEAL DOQUES		
	<220>		•	
	<2237	Synthetic Sequence		
	44005	710		
	<400>		1	
atcga	ctcga	gcgttctc	1	1.8
	<210>			
	<211>			
	<212>	DNA		
	<213>	Artificial Sequence		
	<220>			
		Synthetic Sequence		
	<400>	719		
atona		cgttctc	1	17
accya	coyay	- Gerece	·	
	<210>	720		
	<211>		·	
	<212>			
	<213>	Artificial Sequence		
	_			
	<220>		•	
		misc_feature	•	
		/11 /31		

The state of the s

```
<210> 726
      <211> 16
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Synthetic Sequence
     <400> 726
                                                                         16
gctaacgtta gcgtga
      <210> 727
      <211> 9
      <212> DNA
      <213> Artificial Sequence
      <223> Synthetic Sequence
      <400> 727
                                                                          9
cgtcgtcgt
      <210> 728
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified base
      <222> (14)...(14)
      <223> m5c
      <223> Synthetic Sequence
      <400> 728
                                                                          20
gagaacgctg gacnttccat
      <210> 729
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <221> modified_base
      <222> (18)...(18)
      <223> m5c
      <223> Synthetic Sequence
      <400> 729
                                                                          20
atcgacctac gtgcgttntc
      <210> 730
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> modified_base
      <222> (3)...(3)
```

	- 138 -	
<223> m5c		
<223> Synthetic Sequence		
<400× 720		
<400> 730		
atngacctac gtgcgttctc		20
<210> 731	•	
<211> 15		
<212> DNA		
<213> Artificial Sequence		
in the same of the		
<220>		
<221> modified base		
<222> (7)(7)		
<223> m5c		
<223> Synthetic Sequence	•	
<400> 731		
gctagangtt agcgt		
geraganger agege		15
<210> 732	·	
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> modified base		
<222> (14)(14)		
<223> m5c	·	
4000× 0 - 12 - 12 - 0		
<223> Synthetic Sequence		
<400> 732		
ategactete gagngttete		20
	•	20
<210> 733		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<del>-</del>		
<220>		
<223> Synthetic Sequence		
<400× 722		
<400> 733		
ggggtaatgc atcagggggg	;	20
<210> 734		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence	•	
4400× 501		
<400> 734		
ggctgtattc ctgactgccc	:	20
<210> 735		
7610× 100		

<220>

<223> Synthetic Sequence

The state of the s

WO 02/053141		e PCT/US01	
•		,,	i
<400> 740	- 140 -		
gctagagctt agcgtga			17
gotagagott agogaga			17 .
<210> 741			
<211> 20		•	
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Synthetic Sequence			•
-			
<400> 741			
atcgactctc gagtgttctc			20
<210> 742			
<211> 17			
<212> DNA			
<213> Artificial Sequence			·
40005			
<220> <223> Synthetic Sequence			
(223) Synthetic Sequence			
<400> 742			
aacgctcgac cttcgat			17
102.01			
<210> 743 <211> 20			
<211> 20 <212> DNA			
<213> Artificial Sequence			
,			•
<220>			
<223> Synthetic Sequence			
<400> 743			
ctcaacgctg gaccttccat			20
			20
<210> 744			
<211> 20			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Synthetic Sequence			
4400- 744			•
<400> 744 atcgacctac gtgcgttctc	•		
accyacocac grycycrorc			20
<210> 745			
<211> 20			
<212> DNA			
<213> Artificial Sequence			•
<220>			
<223> Synthetic Sequence			
tyninstro boddonce			
<400> 745			
gagaatgctg gaccttccat			20
<210> 746			
<211> 17			
<212> DNA			

<210> 751

Parameter of the State of the S

delication of the second

;

_____

The second complete the second control of the second control of the second control of the second control of the

. 55 10000000000

<b>\4</b> 00.	> 100			
gctagacgat	agcgt		1	5
<210	> 757			
<211:	> 15			
<212	> DNA			
	> Artificial Sequence			
<b>\213</b> .	Artificial beddence			
<220	>			
	> Synthetic Sequence			
\223.	> Synthetic bequence			
<400	> 757		•	
gctagtcgat			1	5
gccagccgac	agoge		_	_
<210	> 758			
<211				
	> DNA			
<213	> Artificial Sequence			
1000				
<220		•		
<223	> Synthetic Sequence			
.400	750			
	> 758		2	_
tccatgacgt	tcctgatgct		2	0
	> 759			
<211	> 20			
<212	> DNA			
<213	> Artificial Sequence			
	-			
<220	>			
<223	> Synthetic Sequence		,	
1220	oj			
<400	> 759			
	tcctgatgct		2	0
cccatgicge	ccccgacgcc		-	Ŭ
~210°	> 760			
<211				
<212	> DNA			
<213	> Artificial Sequence			
. <220				
<221	<pre>&gt; modified base</pre>			
	> (13)(13)			
	> m5c			
\225				
<223	> Synthetic Sequence			
1020	0,			
<400	> 760			
gctagacgtt			1	5
gotagacytt	~91.19 c		-	_
<210	> 761			
<211				
			•	
	> DNA			
<213	> Artificial Sequence			
-000				
<220				
<223	> Synthetic Sequence			
<400	> 761			

AND THE CONTROL OF TH

gctaggcgtt agcgt <210> 762 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> modified_base <222> (8)...(8) <223> m5c <223> Synthetic Sequence <400> 762 tccatgtngg tcctgatgct 20 <210> 763 <211> 20 <212> DNA <213> Artificial Sequence <220> <221> modified base <222> (12)...(12) <223> m5c <223> Synthetic Sequence <400> 763 tecatgtegg tnetgatget 20 <210> 764 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <221> modified base <222> (3)...(3) <223> m5c <221> modified base <222> (10)...(10) <223> m5c <221> modified_base <222> (14)...(14) <223> m5c <400> 764 atngactctn gagngttctc 20 <210> 765 <211> 20 <212> DNA <213> Artificial Sequence

<220>

THE RESERVE OF THE PROPERTY OF

_____

.:.

A CALLER SAN DECEMBER 2015 A STORE OF STORE STORE STATE OF A STATE OF STATE

<400	> 776	
aaaatcaacg	ttgaaaaaa	20
	-	
<210°	> 777	
<211		
	> DNA	
<213	> Artificial Sequence	
	-	
<220		
<223	> Synthetic Sequence	
<400	> 777	
tccataacgt	toctgatget	20
tecataacgt	Coccyatget	
	> 778	
<211	> 23	
	> DNA	
<213.	> Artificial Sequence	
	-	
<220:	>	
	> Synthetic Sequence	
\225	bynthetic bequeine	
<400	> 778	
tagaagtccc	accgagatcg gag	23
- 93 33		
<21A	770	
	> 779	
<211		
<212	> DNA	
<213	> Artificial Sequence	
1210		
<220	>	
<223	> Synthetic Sequence	
	•	
<b>~400</b>	> 779	
		21
cgtcgtcgtc	gtcgtcgtcg t	21
<210	> 780 .	
<211		
	> DNA	
<213	> Artificial Sequence	
<220	·	
	•	
<223.	> Synthetic Sequence	
<400	> 780	
ctactactac	tgctgctgct g	21
cegeegeege	egoegoegoe g	
	> 781	
<211	> 21	
	> DNA	
<213	> Artificial Sequence	
<220	>	
	> Synthetic Sequence	
1223		
	701	
	> 781 .	
gagaacgctc	cgaccttcga t	21
- · -		
<b>-210</b>	> 782	
	> 162 > 15	
<i>&lt;</i> 711	רו כ	

<213> Artificial Sequence <220> <223> Synthetic Sequence <400> 782 gctagatgtt agcgt 15 <210> 783 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 783 gcatgacgtt gagct 15 <210> 784 <211> 10 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <222> (8) ... (10) <223> Conjugated to FITC moiety. <223> Synthetic Sequence <400> 784 tcaatgctga 10 <210> 785 <211> 10 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <222> (8) ... (10) <223> Conjugated to FITC moiety. <223> Synthetic Sequence <400> 785 tcaacgttga 10 <210> 786 <211> 10 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <222> (8)...(10) <223> Conjugated to biotin moiety.

<223> Synthetic Sequence

_____

TO THE REPORT OF THE TOTAL TOTAL TO A CONTROL OF THE TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TO THE TOTAL TOTA

<400> 786 10 tcaacgttga <210> 787 <211> 10 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <222> (8) ... (10) <223> Conjugated to biotin moiety. <223> Synthetic Sequence <400> 787 10 gcaatattgc <210> 788 <211> 10 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <222> (8) ... (10) <223> Conjugated to FITC moiety. <223> Synthetic Sequence <400> 788 10 gcaatattgc <210> 789 <211> 10 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 789 10 agttgcaact <210> 790 <211> 8 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 790 8 tcttcgaa <210> 791 <211> 8 <212> DNA <213> Artificial Sequence

____

WO 02/053141	PCT/US01/48458
	- 150 -
<220>	
<223> Synthetic Sequence	
<400> 791	_
tcaacgtc	8
<210> 792	
<211> 19 <212> DNA	•
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 792	
ccatgtcggt cctgatgct	19
<210> 793	
<211> 18 <212> DNA	
<212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Sequence	
	•
<400> 793 gtttttatat aatttggg	18
	10
<210> 794	
<211> 23 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 794	
tttttgtttg tcgttttgtc gtt	23
<210> 795	·
<211> 12	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 795	
ttggggggg tt	12
<210> 796	
<211> 13	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 796	
ggggttgggg gtt	13

and the second contraction of the second con

_____

The second secon

10 december 2010 1997

gnaatattgc <210> 804 <211> 24 <212> DNA <213> Artificial Sequence

<223> Synthetic Sequence

<400> 803

. . . . . . . . . . . . . . . . . . .

10

A second second

WO 02/053141		•	PC1/US01/48458
		- 154 -	
<210>	810		
<211>			
<212>			
	Artificial Sequence		
12201			
<220>			
<223>	Synthetic Sequence		•
<400>	810		
tgcgctct	810		8
cycycco			
<210>	811		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	811		
cccccccc			20
000000000			2.0
<210>	812		
<211>	12		
<212>	DNA		
<213>	Artificial Sequence		
.000			
<220>	Combbable Commen		
<223>	Synthetic Sequence		•
<400>	812		
cccccccc			12
<210>	813		
<211>	8		
<212>	DNA		
<213>	Artificial Sequence		
			•
<220>			
<223>	Synthetic Sequence	•	
<400>	012		
CCCCCCC	813		8
			U
<210>	814		
<211>	12		
<212>	DNA		
	Artificial Sequence		
<220>			
<223>	Synthetic Sequence		
<400>	914		
tgcatcagct (			12
eguatuagut (	<u>-</u>		12
<210>	815		
<211>			
<212>			
	Artificial Sequence		
<220>			

المراكبين المسا

<212> DNA

<400> 820

<210> 821

ctagcggctg acgtcatcaa gctag

<220>

<213> Artificial Sequence

<223> Synthetic Sequence

a ngang kanang magalang <mark>magalang t</mark>aga na <mark>kalamak</mark>an na 1975 na makalang <mark>kanamakan</mark> na manang mengalang kalama

WO 02/053141		PCT/US01/48458
	- 156 -	, , ,
<211> 25	- 130 -	
<212> DNA		
<213> Artificial Sequence	•	
<220>		
<223> Synthetic Sequence		
<400> 821		
ctagcttgat gacgtcagcc gctag		25
and the same same same same same same same sam		23
<210> 822		•
<211> 16		
<212> DNA		
<213> Artificial Sequence	•	
42205		
<220>		
<223> Synthetic Sequence		
<400> 822		
cggctgacgt catcaa		16
		.10
<210> 823		
<211> 8		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 823		
ctgacgtg		8
<210> 824		
<211> 10		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
vazas ayneneere bequence		
<400> 824		
ctgacgtcat		10
<210> 025		
<210> 825		
<211> 21		
<212> DNA ^L		
<213> Artificial Sequence		•
<220>		
<223> Synthetic Sequence		
2,		
<400> 825		
attcgatcgg ggcgggcga g		21
<210> 826		
<210> 826 <211> 21		
<211> 21 <212> DNA		
<213> Artificial Sequence		
verse writtenar seducince		
<220>		
<223> Synthetic Sequence		

TO A DESCRIPTION OF THE PROPERTY OF THE PARTY OF THE PART

The second secon

WO 02/053141 PCT/US01/48458 - 157 -<400> 826 ctcgcccgc cccgatcgaa t 21 <210> 827 <211> 15 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 827 gactgacgtc agcgt 15 <210> 828 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 828 26 ctagcggctg acgtcataaa gctagc <210> 829 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 829 26 ctagetttat gaegteagee getage <210> 830 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 830 26 ctagcggctg agctcataaa gctagc <210> 831 <211> 25 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 831 ctagtggctg acgtcatcaa gctag 25 <210> 832 <211> 20

tion to the graph graphs are given by the Graph Conference of the contract of

المتعملين. •

WO 02/053141	PC17US01/48458
	- 158 -
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 832	
tccaccacgt ggtctatgct	
ggcccacge:	2
<210> 833	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
vasos bynenecte bequence	
<400> 833	
gggaatgaaa gattttatta taag	24
<210> 834	
<211> 26 <212> DNA	
<212> DNA <213> Artificial Sequence	
vzis> Artificial Sequence	
<220>	·
<223> Synthetic Sequence	
<400> 834	
tctaaaaacc atctattctt aaccct	26
<210> 835	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 835	
agctcaacgt catgc	15
	1.5
<210> 836	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
	•
<400> 836	
ttaacggtgg tagcggtatt ggtc	24
<210\ 927	
<210> 837 <211> 24	
<212> DNA	•
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	

Could describe the Commission of the Commission

and the second

WO 02/053141		PCT/US01/48458
·	- 160 -	
<213> Artificial Sequence		
40005		
<220> <223> Synthetic Sequence		
spreading pedagage		
<400> 843		
ccacgtggac ctctagc		17
<210> 844		•
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 844		
tcagaccacg tggtcgggtg ttcctga		27
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		2.7
<210> 845		
<211> 27 <212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 845		
tcaggaacac ccgaccacgt ggtctga	•	27
<210> 846		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 846		
catttccacg atttccca	•	18
		1.0
<210> 847	•	
<211> 19 <212> DNA		•
<213> Artificial Sequence		
<220>	•	
<223> Synthetic Sequence		
<400> 847		
ttcctctctg caagagact		19
<210> 848		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
_		
<400> 848		

__ .___

<210> 854 <211> 20 <212> DNA

<213> Artificial Sequence

	220> 223> Synthetic Sequence	
	3400> 854 Aget teetgatget	20
	2210> 855	
. <	2211> 20	
	2212> DNA	
<	213> Artificial Sequence	
<	220>	
	223> Synthetic Sequence	
	400> 855	
aaaacat	gac gttcaaaaaa	20
	210> 856	
	211> 20	
	212> DNA	
<	213> Artificial Sequence	
<	220>	
<	223> Synthetic Sequence	
<	400> 856	
aaaacat	gac gttcgggggg	20
<	210> 857	
	211> 20	
	212> DNA	
	213> Artificial Sequence	
<	220>	
	223> Synthetic Sequence	
<	400> 857	
		20
9999	243 00003333333	20
	210> 858	
	211> 24	
	212> DNA	
<:	213> Artificial Sequence	
<2	220>	
<2	223> Synthetic Sequence	
<4	400> 858	
ctaggct	gac gtcatcaagc tagt	24
	210> 859	
	211> 30	
	212> DNA	
<2	213> Artificial Sequence	
<2	220>	
<2	223> Synthetic Sequence	
_,	400> 859	
		30
5 5 1		JU

<210	> 860	
<211		
<212	> DNA	
<213	> Artificial Sequence	
<220		
<b>\223</b> .	> Synthetic Sequence	
<400	> 860	
ggaattagta	atagatatag aagtt	25
	> 861	
<211		
	> DNA Ambificial Semence	
(213)	> Artificial Sequence	
<220	>	
	> Synthetic Sequence	
	· · · · · · · · · · · · · · · · · · ·	
	> 861	
tttacctttt	ataaacataa ctaaaacaaa	30
.010		
<210. <211.	> 862 > 15	
	> DNA	
	> Artificial Sequence	
<220		
<223	> Synthetic Sequence	
4400	0.60	
gcgtttttt	> 862 +taga	15
gegeeeeee	trigog .	
<210	> 863	
<211	> 24	
	> DNA .	
<213	> Artificial Sequence	
<220		
	> Synthetic Sequence	
\ZZJ.	Synthetic Bequence	
<400	> 863	
atatctaatc	aaaacattaa caaa	24
<210		
<2113		
	> DNA > Artificial Sequence	
\213.	> Altiticial Sequence	
<220	• ·	
	> Synthetic Sequence	
<400		_
tctatcccag	gtggttcctg ttag	24
/21A·	> 865	
<211:		
	> DNA	
	> Artificial Sequence	

```
<220>
      <221> misc_feature
      <222> (1)...(3)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 865
tccatgacgt tcctgatgct
                                                                          20
      <210> 866
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (1)...(3)
      <223> Conjugated to biotin moiety.
      <223> Synthetic Sequence
      <400> 866
tccatgagct tcctgatgct
                                                                         20
      <210> 867
      <211> 13
      <212> DNA
      <213> Artificial Sequence
      <220>
      <221> misc_feature
      <222> (11)...(13)
      <223> Conjugated to FITC moiety.
      <221> misc feature
      <222> (0) ... (0)
      <223> Has phosphodiester backbone.
      <223> Synthetic Sequence
      <400> 867
ttttttttt ttt
                                                                         13
      <210> 868
      <211> 13
      <212> DNA
      <213> Artificial Sequence
     <220>
     <221> misc_feature
     <222> (11)...(13)
     <223> Conjugated to biotin moiety.
     <221> misc feature
     <222> (0)...(0)
     <223> Has phosphorothicate and phosphodiester chimeric
           backbone with phosphodiester on 3' end.
     <223> Synthetic Sequence
```

WO 02/053141 PCT/US01/48458 - 165 -<400> 868 ttttttttt ttt 13 <210> 869 <211> 25 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 869 25 ctagettgat gagetcagee getag <210> 870 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 870 ttcagttgtc ttgctgctta gctaa 25 <210> 871 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 871 tccatgagct tcctgagtct 20 <210> 872 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 872 25 ctagcggctg acgtcatcaa tctag <210> 873 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 873 tgctagctgt gcctgtacct 20 <210> 874 <211> 23

The first of the deal will be a common the control of the control

<212> DNA

The second second second second

- 167 -

cataacatag gaatatttac tcctcgc	27
<210> 880	·
<211> 21	
<212> DNA	
<213> Artificial Sequence	
1020	
<220>	
<223> Synthetic Sequence	
<400> 880	0.1
ctccagctcc aagaaaggac g	21
<210> 881	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
(223) Synthetic Bequence	
<400> 881	
gaagtttctg gtaagtcttc g	21
<210> 882	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<223> Synthetic Sequence	
<400> 882	0.4
tgctgctttt gtgcttttgt gctt	24
<210> 883	
<211> 24	
<211> 24 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 883	
tcgtcgtttt gtggttttgt ggtt	24
<210> 884	•
<211> 23	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Synthetic Sequence	
<400> 884	0.3
tcgtcgtttg tcgttttgtc gtt	23
<210> 885	•
<211> 22	
<211> 22 <212> DNA	
<pre>&lt;213&gt; Artificial Segmence</pre>	

<220> <223> Synthetic Sequence <400> 885 tcctgacgtt cggcgcgcgc cc 22 <210> 886 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 886 tgctgctttt gtgcttttgt gctt 24 <210> 887 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 887 tccatgagct tcctgagctt 20 <210> 888 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 888 tcgtcgtttc gtcgttttga cgtt 24 <210> 889 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 889 tcgtcgtttg cgtgcgtttc gtcgtt 26 <210> 890 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 890 tcgcgtgcgt tttgtcgttt tgacgtt 27

<210>	891	
<211>	25	
<212>		
	Artificial Sequence	
(213)	Attitudat bequence	
4000>		
<220>		
<223>	Synthetic Sequence	
<400>	891	
ttcqtcqttt	tgtcgttttg tcgtt	25
3 3		
<210>	892	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
<400>	892	
tcctgacggg		15
ccccgacggg	gaage	
4010	003	
<210>		
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Sequence	
1220	cynemotic boquonos	
<400>	003	
<400>		10
<400> tcctggcgtg		15
tcctggcgtg	gaagt	15
	gaagt	15
tcctggcgtg	gaagt 894	15
tcctggcgtg <210>	gaagt 894 15	15
<pre>tcctggcgtg</pre>	gaagt 894 15 DNA	15
<pre>tcctggcgtg</pre>	gaagt 894 15	15
<pre>tcctggcgtg</pre>	gaagt 894 15 DNA Artificial Sequence	15
<pre>tcctggcgtg</pre>	gaagt 894 15 DNA Artificial Sequence	15
<pre>tcctggcgtg</pre>	gaagt 894 15 DNA Artificial Sequence	15
<pre>tcctggcgtg</pre>	gaagt  894  15  DNA  Artificial Sequence  Synthetic Sequence	15
<pre>tcctggcgtg</pre>	894 15 DNA Artificial Sequence Synthetic Sequence	
<pre>tcctggcgtg</pre>	894 15 DNA Artificial Sequence Synthetic Sequence	15
<pre>tcctggcgtg</pre>	894 15 DNA Artificial Sequence Synthetic Sequence	
<pre>tcctggcgtg</pre>	gaagt  894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt	
<pre>tcctggcgtg</pre>	gaagt  894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt	
<pre>tcctggcgtg</pre>	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15	
<pre>tcctggcgtg</pre>	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15 DNA	
<pre>tcctggcgtg</pre>	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15	
<pre>tcctggcgtg</pre>	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15 DNA Artificial Sequence	
<pre>tcctggcgtg</pre>	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15 DNA Artificial Sequence	
<pre>tcctggcgtg</pre>	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15 DNA Artificial Sequence	
<pre>tcctggcgtg</pre>	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15 DNA Artificial Sequence	
<pre>tcctggcgtg</pre>	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15 DNA Artificial Sequence  Synthetic Sequence	
<pre>tcctggcgtg</pre>	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15 DNA Artificial Sequence  Synthetic Sequence  Synthetic Sequence	
<pre>tcctggcgtg</pre>	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15 DNA Artificial Sequence  Synthetic Sequence  Synthetic Sequence	15
tcctggcgtg	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15 DNA Artificial Sequence  Synthetic Sequence  Synthetic Sequence	15
tcctggcgtg	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15 DNA Artificial Sequence  Synthetic Sequence  Synthetic Sequence	15
tcctggcgtg	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15 DNA Artificial Sequence  Synthetic Sequence  Synthetic Sequence  895 gaagt	15
tcctggcgtg  <210> <211> <212> <213> <220> <223> <400> tcctggcggt  <210> <211> <212> <213> <400> tcctggcggt  <210> <211> <212> <213> <213> <210> <221> <213>	894 15 DNA Artificial Sequence  Synthetic Sequence  894 gaagt  895 15 DNA Artificial Sequence  Synthetic Sequence  Synthetic Sequence  895 gaagt	15

The state of the second control of the secon

Armie incommunication with the control of the control of the

WO 02/053141 - 171 -<210> 902 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 902 20 gcggcgttcg gcgcgcgccc <210> 903⁻ <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 903 20 gcgacgtgcg gcgcgccc <210> 904 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 904 15 tcgtcgctgt ctccg <210> 905 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 905 20 tgtgggggtt ttggttttgg <210> 906 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 906 20 aggggagggg agggggggg <210> 907 <211> 21 <212> DNA <213> Artificial Sequence

<220>

PCT/US01/48458

_____

and the first of the respect to the second of the second o

WO 02/053141	•	PCT/US01/48458
	- 172 -	•
<223> Synthetic Sequence		
<400> 907		
tgtgtgtgtg tgtgtgtgt t		21
<210> 908		
<211> 22		•
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 908		
ctctctct ctctctct ct		22
<210> 909		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 909		
ggggtcgacg tcgaggggg		20
<210> 910		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 910		
atatatata atatatat at		22
· <210> 911		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		•
<223> Synthetic Sequence		
<400> 911		
ttttttttt ttttttttt tttttt		27
<210> 912		
<211> 21		
<211> 21 <212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 912 ttttttttt tttttttt t		21
		21
<210> 913		

PCT/US01/48458 WO 02/053141

			- 1/3 -
	<211>	18	
	<212>		
	(213)	Artificial Sequence	
	<220>		
	<223>	Synthetic Sequence	
•	<400>	913	
		tttttt	1
			<u>.</u>
	<210>		
	<211>	15	
	<212>	DNA	
	<213>	Artificial Sequence	
	<220>		
		Combbatia Company	
	<223>	Synthetic Sequence	•
	<400>	914	
gctaga	gggg a	agggt	1:
•	•		
	<210>	915 .	
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>		
	<223>	Synthetic Sequence	
		-	
	<400>	915	
gctaga			. 1
gctaga	icgic a	19999	
	.010.	01.6	
	<210>		
	<211>	15	
	<212>	DNA	
	<213>	Artificial Sequence	
		-	
	<220>		
		Complete Company	
	<b>\</b> 2237	Synthetic Sequence	
	<400>	916	
gcatga	igggg g	gaget	1
	<210>	917	
	<211>		
	<212>		
	<213>	Artificial Sequence	
		·	
	<220>		
	<223>	Synthetic Sequence	
		_	
	<400>	917	•
ataaaa		=	
acyyda	agget (	cagggggctc	2
		0.1.0	
	<210>		
	<211>	20	
	<212>	DNA	
	<213>	Artificial Sequence	
		-	
	<220>		
		Compliants a Company	
	<223>	Synthetic Sequence	

WA	02/053141	

## PCT/US01/48458

- 174 -

	<400> 918 ctctg gagggggctc	. 20
	<210> 919	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220> <223> Synthetic Sequence	
	<400> 919	
atggaa	aggtc caaggggctc	20
	<21.0 \ 02.0	
	<210> 920 <211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 920	
gagaag	ggggg gaccttggat	20
	<210> 921	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	verso interretar bequence	
	<220>	
•	<223> Synthetic Sequence	•
	<400> 921	
gagaag	gggg gaccttccat	20
	4010× 000	
	<210> 922	
	<211> 20	
	<212> DNA	
`	<213> Artificial Sequence	
	<220>	•
•	<223> Synthetic Sequence	
<	<400> 922	
gagaag	gggc cagcactgat	20
_	<210> 923	
	<210> 923 <211> 20	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	•
Ì	7210/ Imeritoral pedaeuce	
	<220>	
<	<223> Synthetic Sequence	
<	<400> 923	
tccatgt	tggg gcctgatgct	20
	<010 \ 024	
	<210> 924	
<	<211> 20	

WO 02/053141 PCT/US01/48458 - 175 -<212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 924 20 tccatgaggg gcctgatgct <210> 925 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 925 20 tccatgtggg gcctgctgat <210> 926 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 926 20 atggactctc cggggttctc <210> 927 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 927 20 atggaaggtc cggggttctc <210> 928 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 928 ' 20 atggactctg gaggggtctc <210> 929 <211> 20

And the latest the second of the second seco

<212> DNA

<213> Artificial Sequence

<223> Synthetic Sequence

WO 02/053141		PCT/US01/48458
	- 176 <i>-</i>	
<400> 929		
atggaggete catggggete		20
<210> 930		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 930		
atggactctg gggggttctc	•	20
<210> 931		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence	·	
<400> 931		
tccatgtggg tggggatgct		20
<210> 932		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 932		
tccatgcggg tggggatgct		20
<210> 933		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 933		
tecatggggg teetgatget ·		20
<210> 934		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>	•	
<223> Synthetic Sequence	~	
<400> 934		
tccatggggt ccctgatgct		20
<210> 935		
<211> 20		
<212> DNA		

.

WO 02/053141 PCT/US01/48458

CONTRACTOR OF THE PROPERTY OF

- 177 -<213> Artificial Sequence <220> <223> Synthetic Sequence <400> 935 tccatggggt gcctgatgct 20 <210> 936 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 936 tccatggggt tcctgatgct 20 <210> 937 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 937 tccatcgggg gcctgatgct 20 <210> 938 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 938 gctagaggga gtgt 14 <210> 939 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 939 tttttttt tttttt 18 <210> 940 <211> 21 <212> DNA <213> Artificial Sequence <220> <221> misc_difference <222> (2) ... (2) <223> m is a or c

المراسعة والمستوا

<22	1> misc_difference	
<22	2> (18)(18)	
<22	3> m is a or c	
<22	3> Synthetic Sequence	
<400	0> 940	
	g ttgagggmgg g	2
		2
<210	0> 941	
<213	1> 21	
<212	2> DNA	
	3> Artificial Sequence	
<220	N>	
	3> Synthetic Sequence	
	or of monocial poducinos	
<400	0> 941	
ggggagttco	g ttgagggggg g	2:
		۷.
<210	0> 942	
<213	1> 20	
<212	2> DNA	
	3> Artificial Sequence	
	•	
<220	)>	
<223	3> Synthetic Sequence	
<400	D> 942	
	C cccccccc	
		. 20
<210	)> 943	
	L> 25	
	2> DNA	
	3> Artificial Sequence	
<220	)>	
<223	3> Synthetic Sequence	
<400	)> 943	
<b>tt</b> ggggggtt	ttttttttt tttt	25
		2.5
<210	)> 944	
<211	.> 23	
<212	PNA	
<213	> Artificial Sequence	
<220		
	> Synthetic Sequence	
	> 944	
tttaaatttt	aaaatttaaa ata	23
	> 945	
	> 24	
	> DNA	
<213	> Artificial Sequence	
•		
<220		
<223	> Synthetic Sequence	

<400> 945 ttggttttt tggtttttt ttgg	. 24
<210> 946 <211> 24 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Sequence	
<400> 946 tttccctttt ccccttttcc cctc	24
<210> 947	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<221> misc_difference	
<222> (21)(21) <223> s is g or c	
<223> Synthetic Sequence	
<400> 947	
ggggtcatcg atgagggggg s	21
<210> 948	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 948	
tccatgacgt tcctgacgtt	20
<210> 949	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	·
<400> 949	00
tccatgacgt tcctgacgtt	20
<210> 950	
<211> 20	•
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 950	
	. •

the control of the co

The second of th

<220 <223	> > Synthetic Sequence	
-	> 956 tcctgacgtt	20
	> 957	
<211:		
	> DNA > Artificial Sequence	
<220:	<b>&gt;</b>	
	> Synthetic Sequence	
<400	> 957	
		20
	> 958	
<211:		
	> DNA	
<213	> Artificial Sequence	
<220	>	
	> Synthetic Sequence	
	> 958	
tccatgacgt	tcctgacgtt	20
.010	. 0.0	
	> 959	
<2112	> DNA	
	> Artificial Sequence	
1210.	, included podeous	
<220	>	
<223	> Synthetic Sequence	
<400	> 0E0	
	> 959 - ortogram	19
gggggacgat	egregggg	10
<210	> 960	
<211		
	> DNA	
<213	> Artificial Sequence	
<220		
<b>\223</b> .	> Synthetic Sequence	
<400	> 960	
		20
	> 961	
<211:		
	> DNA	
<213	> Artificial Sequence	
<220	>	
	> Synthetic Sequence	
\225.	J	
<400	> 961	
tttttttt	tttttttt tttt	24

WO.	<b>ຄ</b> າ/ດ	531	41

## PCT/US01/48458

- 182 -

<210	0> 962	
<211	1> 24	
<212	2> DNA	
<213	3> Artificial Sequence	
	-	
<220	0>	
<223	3> Synthetic Sequence	
<400	0> 962	
	a aaaaaaaaa aaaa	24
•		۷.
<210	0> 963	
<211	1> 24 ·	
	2> DNA	
	3> Artificial Sequence	
<220	)>	
	3> Synthetic Sequence	
1223	o ynthetic bequence	
<400	0> 963	
CCCCCCCCC	c cccccccc ccc	24
<b>~210</b>	. 064	
	0> 964	
	1> 24	
	2> DNA	
<213	3> Artificial Sequence	
	<b>.</b> .	
<220		
<223.	3> Synthetic Sequence	
	)> 964	
tegtegtttt	gtcgttttgt cgtt	24
-010		
	)> 965	
	> 24	
	P> DNA	
<213	3> Artificial Sequence	
<220:		
<223	3> Synthetic Sequence	
	)> 965	
tcgtcgtttt	gtcgttttgt cgtt	24
	•	
	9> 966 · · · · · · · · · · · · · · · · · ·	
	.> 24	
	> DNA	
<213	> Artificial Sequence	
<220	> ·	
<223	> Synthetic Sequence	
<400	> 966	
tcgtcgtttt	gtcgttttgt cgtt	24
		Z- 'Z
<210	> 967	
<211		
	> DNA	
	> Artificial Sequence	
/	·	

WO 02/053141 PCT/US01/48458

- 183 -

	200	
	<220>	
	<223> Synthetic Sequence	
	<400> 967	
tcatca	egtttt gtegttttgt egtt	24
<b>-</b>		
	<210> 968	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	(213) Altilicial bequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 968	
		20
ggggu	caacg ttgaggggg	20
	<210 \ 060	•
	<210> 969 <211> 20	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	· <del></del> -	
	<223> Synthetic Sequence	
	4400> 060	
	<400> 969	20
ggggt	ccaacg ttgaggggg	20
	· · · · · · · · · · · · · · · · · · ·	
	<210> 970	•
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220	
	<220>	
	<223> Synthetic Sequence	
	<400× 070	
	<400> 970	20
ggggu	caagc ttgaggggg	20
	<210× 071	
	<210> 971	
	<211> 20 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	4400 071	
	<400> 971	20
tgctg	gettee ecceecee	20
	<21.0 \ 0.7.2	
	<210> 972	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	4000	
	<220>	
	<223> Synthetic Sequence	
	<400> 972	
ggggad	egteg aegtggggg	20

But the second of the second o

tion of the contraction of the c

garage e e

And the second s

<210> 984

_____

A PART CONTRACTOR OF THE CONTR

----

	<400> 989 cgac gtcgtcgggg gg	22
	<210> 990 <211> 22	
	<212> DNA <213> Artificial Sequence	
	<220> . <223> Synthetic Sequence .	
	<400> 990 .cgag ctcgtcgggg gg .	22
	<210> 991	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 991	
ggggga	cgta cgtcgggggg	20
	<210> 992	
	<211> 8	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 992	
tcaacg	rtt	8
	<210> 993	
	<211> 20	
	<211> 20	
	<213> Artificial Sequence	
	(213) Artificial peddenoc	
	<220>	
	<223> Synthetic Sequence	
	<400> 993	
tccata	ecgg teetgatget	20
	<210> 994	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
		•
	<400> 994	~ ~
tccata	accgg teetaceggt	20
	<210> 995	
	<211 \ 20	

WO 02/053141		PCT/US01/48458
	- 188 -	

THE PROPERTY OF THE PROPERTY O

<212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 995 gggggacgat cgttgggggg 20 <210> 996 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 996 ggggaacgat cgtcggggg 20 <210> 997 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 997 ggggggacga tcgtcggggg g 21 <210> 998 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 998 gggggacgat cgtcgggggg g 21 <210> 999 <211> 12 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 999 aaagacgtta aa 12 <210> 1000 <211> 12 <212> DNA <213> Artificial Sequence

<223> Synthetic Sequence

____

---

- 189 -

<400> 1000	
aaagagctta aa	12
<210> 1001	
<211> 12	
<212> DNA	
<213> Artificial Sequence	
<220>	
<221> modified_base	
<222> (6)(6)	
<223> m5c	
<223> Synthetic Sequence	
<400> 1001	
aaagangtta aa	12
(210) 1002	
<210> 1002 <211> 12	
<211> 12 <212> DNA	•
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1002	
aaattoggaa aa	12
<210> 1003	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1003	
gggggtcatc gatgaggggg g	21
gggggtcacc gatgaggggg g	
<210> 1004	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
4400 1004	
<400> 1004 .	21
gggggtcaac gttgaggggg g	2.
<210> 1005	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
<400> 1005	
atgtagctta ataacaaagc	20
. •	

and a few materials and the

<210>	1006
<211>	
<212>	
	Artificial Sequence
\Z13/	Merricial Seducine
<220>	
<223>	Synthetic Sequence
	1000
<400>	
ggatcccttg	agttacttct 20
	1007
<210>	1007
<211>	
<212>	DNA .
<213>	Artificial Sequence
<220>	
<223>	Synthetic Sequence
<400>	1007
ccattccact	
CCacccacc	zo zo
<210>	1009
	•
<211>	
<212>	
<213>	Artificial Sequence
<220>	
<223>	Synthetic Sequence
<400>	
tatgtattat 🖟	catgtagata 20
<210>	1009
<211>	20
<212>	DNA
	Artificial Sequence
12201	merrener boguese
<220>	
	Synthetic Sequence
\2237	synthetic sequence
4400s	1000
<400>	·
agcctacgta 1	
	4
<210>	
<211>	
<212>	DNA
<213>	Artificial Sequence
<220>	
	Synthetic Sequence
	• • • • • • • • • • • • • • • • • • • •
<400>	1010
ttcctgcaac t	
	20
<210>	1011
<211>	
<211>	
	Artificial Seguence
C2143	ACCIDICIAL SEGUENCA

______

catgtcggac gaggcttata

A CONTRACTOR OF THE CONTRACTOR

- 192 -<210> 1017 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 1017 tggtggtggg gagtaagctc 20 <210> 1018 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1018 gagctactcc cccaccacca 20 <210> 1019 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1019 gccttcgatc ttcgttggga 20 <210> 1020 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1020 tggacttctc tttgccgtct 20 <210> 1021 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 1021 atgctgtagc ccagcgataa 20 <210> 1022 <211> 20 <212> DNA <213> Artificial Sequence <220>

WO 02/053141	PCT/US01/48458	
	- 193 -	
<223> Synthetic Sequence		
<400> 1022		
accgaatcag cggaaagtga	20	
<210> 1023		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 1023		
tccatgacgt tcctgacgtt	20	
<210> 1024		
<211> 24		
<212> DNA	•	
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 1024		
ggagaaaccc atgagctcat ctgg	24	
<210> 1025		
<211> 20		
<pre>&lt;212&gt; DNA &lt;213&gt; Artificial Sequence</pre>		
<220> <223> Synthetic Sequence		
vazos agrenecia acquence		
<400> 1025	20.	
accacagacc agcaggcaga	20	
<210> 1026		
<211> 20		
<212> DNA <213> Artificial Sequence		
·	·	
<220>		
<223> Synthetic Sequence		
<400> 1026		
gagegtgaae tgegegaaga	20	
<210> 1027		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Sequence		
<400> 1027		
teggtacect tgeageggtt	20	
.010. 1000		

and the control of th

<213	1> 20	
<212	2> DNA	
<213	3> Artificial Sequence	
	•	
<220		
<223	3> Synthetic Sequence	
<400	0> 1028	
	agccaaggat	_
ocygugeeee	a goodayyac	2
<210	O> 1029	
	l> 20	
<212	2> DNA	
<213	3> Artificial Sequence	
<220		
<223	3> Synthetic Sequence	
.400	1000	
	)> 1029	
gegaetecat	caccagcgat	20
<210	> 1030	
	> 21	
	> DNA	
	> Artificial Sequence	
<220		
<223	> Synthetic Sequence	
<400	> 1030	
cctgaagtaa	gaaccagatg t	21
<210	> 1031	
<211		
	> DNA	
	> Artificial Sequence	
<220		
<223	> Synthetic Sequence	
-400·	> 1031	
	> 1031 tgacatacac c	
g-g-tate	cyacacacac c	21
<210	> 1032	
<211		
<212		
	> Artificial Sequence	
<220		
<223	> Synthetic Sequence	
	1020	
	> 1032	
aarrageett	aggtgattgg g	21
<2105	> 1033	
<211>		
	> DNA	
	> Artificial Sequence	•
<220>		
<223>	> Synthetic Sequence	

<400> 1033	
acatctggtt cttacttcag g	21
<210> 1034	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
12137 ALCITICIAL Dequence	
c220	
<220>	
<223> Synthetic Sequence	
<400> 1034	
ataagtcata ttttgggaac tac	23
<210> 1035	-
<211> 21	
<212> DNA	
<213> Artificial Sequence	
. Dec. In our court, polyeones	
<220>	
<223> Synthetic Sequence	
<400> 1035	
cccaatcacc taaggctaat t	21
<210> 1036	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
(22) Synthetic bequence	
(400) 1036	•
<400> 1036	0.0
ggggtcgtcg acgaggggg	20
<210> 1037	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
or of the second	
<400> 1037	
	22
ggggtcgttc gaacgagggg gg	22
<210> 1038	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Sequence	
	•
<400> 1038	
ggggacgttc gaacgtgggg gg	22
ggggacgete gaacgegggg gg	22
<010> 1020	
<210> 1039	ē
<211> 15	•

·· · . - 196 -<212> DNA <213> Artificial Sequence <220> <221> modified base <222> (9)...(9) <223> n is 5-methylcytosine. <223> Synthetic Sequence <400> 1039 tcctggcgng gaagt 15 <210> 1040 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1040 ggggaacgac gtcgttgggg gg 22 <210> 1041 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1041 ggggaacgta cgtcgggggg 20 <210> 1042 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Sequence <400> 1042 ggggaacgta cgtacgttgg gggg 24 <210> 1043 <211> 20 <212> DNA <213> Artificial Sequence <223> Synthetic Sequence <400> 1043 ggggtcaccg gtgaggggg 20 <210> 1044 <211> 24 <212> DNA <213> Artificial Sequence

____

	<220> <223> Synthetic Sequence	
ggggto	<400> 1044 egacg tacgtcgagg gggg	24
	40105 1045	
	<210> 1045 <211> 22	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1045	
ggggad	eggt aceggtgggg gg	22
	<210> 1046	
	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1046	
gggtcg	pacgt cgaggggg	19
	<210> 1047	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1047	
ggggto	gacg tcgagggg	18
	<210> 1048	
	<211> 22	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1048	
ggggaa	acgtt aacgttgggg gg	22
	<210> 1049	
	<211> 19	
	<212> DNA <213> Artificial Seguence	
	<213> Artificial Sequence ·	
	<220>	
Ē	<223> Synthetic Sequence	
	<400> 1049	
ggggac	gtcg acgtggggg	19

## - 198 -

<21: <21:	0> 1050 1> 34 2> DNA 3> Artificial Sequence	
<220 . <221	0> 3> Synthetic Sequence	
	0> 1050 g aagctacagc cggcagcetc tgat	3
<210	0> 1051	
	1> 32	
	2> DNA	
<213	3> Artificial Sequence	
<220		
<223	3> Synthetic Sequence	
	0> 1051	
cggctcttcc	c atgaggtett tgetaatett gg	32
<210	0> 1052	
<211	1> 35	
<212	2> DNA	
<213	3> Artificial Sequence	
<220	)>	
<223	3> Synthetic Sequence	
<400	> 1052	
	c atgaaagtet ttggacgatg tgage	35
<210	> 1053	
<211	> 15	
<212	P> DNA	
<213	3> Artificial Sequence	
<220		
<223	3> Synthetic Sequence	
<400	> 1053	
tcctgcaggt	taagt	15
<210	> 1054	
	> 20	
	> DNA	
<213	> Artificial Sequence	
<220	>	
	> Synthetic Sequence	
<400	> 1054	
	cgttggggg	20
	> 1055	
	> 1055	
	> DNA	
	> Artificial Sequence	
	•	



- 199 -

			- 100 -	
	<220> <223>	Synthetic Sequence		
		- <del>-</del>		
	<400>			_
ggggg	atgat	tgttgggggg		2
	<210>	1056		
	<211>			
	<212>			
	<213>	Artificial Sequence		
	<220>			
		modified base		
	<222>	(7)(7 <del>)</del>		
	<223>	m5c		
	<2215	modified base		
		(11)(11)		
	<223>			
	1000			
	<223>	Synthetic Sequence		
	<400>	1056		
ggggga	ıngat r	nattaaaaaa		20
	<210>	1057		
	<211>			
	<212>			
	<213>	Artificial Sequence		
	<220>			
		Synthetic Sequence		
		-3		
	<400>			
ggggga	igcta c	gcttgggggg	:	20
	<210>	1058		
	<211>	20		
	<212>			
	<213>	Artificial Sequence		
	<220>			
		Synthetic Sequence		
	4400	1050	•	
	<400>			~ ~
ggttet	ittg g	gteettgtet		20
	<210>	1059		
	<211>	20		
	<212>			
	<213>	Artificial Sequence		
	<220>			
		Synthetic Sequence		
	4400:			
aattat	<400>	1059 gtect <b>eg</b> tet		20
ggilli	cury c	jeeeegeee	•	د د
	<210>			
	<211>			
	<212>	DNA		

# PET/US01/48458 = 3

				- 200 -			
	<213>	Artificial	Sequence				
	4000						
	<220>	C					
	<2232	Synthetic S	sequence				
	<400>	1060					
aattei		tccttatct					20
35		,					20
	<210>	1061					
	<211>						
	<212>						
	<213>	Artificial	Sequence				
	<220>						
		Synthetic S	Semience				
	12207	oyneneere E	requence				
	<400>	1061					
ggttct	tggt t	tccttgtct					20
	<210>						
	<211> <212>						
		Artificial	Comiendo				
	\213/	ALCILICIAL	sequence		•		
	<220>						
	<223>	Synthetic S	equence				
	<400>						
tggtct	tttg g	tccttgtct					20
	<210>	1063					
	<211>						
	<212>	DNA					
	<213>	Artificial	Sequence			•	
	<220>	~ ~					
	<223>	Synthetic S	equence				
	<400>	1063					
		tccttgtct					20
33							2.0
	<210>	1064					
	<211>						
	<212>						
	<213> 1	Artificial	Sequence				
	<220>						
		Synthetic S	equence				
		_	<b>,</b>				
	<400>		•				
gggtct	tttg g	gccttgtct					20
	<210>	1065					
	<211> 2						
	<212> 4			•			
		Artificial :	Sequence				
			<del>-</del> -				
	<220>	_					
	<223> \$	Synthetic So	equence				
	<400> 3	1065					
	<b>~4002</b> .	1002					

AND PROPERTY OF SPECIAL SPECIAL CONTROL OF SPECIAL



#### - 201 -

			- <b>201</b> -	
tccagg	actt	ctctcaggtt tttt	24	
	<210>	1066		
	<211>			
	<211>			
	-		20	
	<213>	Artificial Sequenc	.e	
	<220>			
	<223>	Synthetic Sequence	<b>2</b>	
	<400>			
tccaaa	actt	ctctcaaatt		20
	<210>	1067		
	<211>	24		
	<212>	DNA		
		Artificial Sequenc	ce	
	<220>			•
		Synthetic Sequence		
	<400>			
tactac	tttt	atacttttat actt		24
	<210>	1068		
	<211>			
	<212>	-		
		Artificial Sequenc	ce	
		-		
	<220>			
	<223>	Synthetic Sequence		
	<400>	1068		
		tgtgtgtgtg tgtg		24
-5-5-5	- 5 - 5			
	<210>		•	
	<211>	25		
	<212>	DNA		
	<213>	Artificial Sequenc	ce .	
	<0.20×			
	<220>	Simthatia Saguanga		
	<b>\ZZ</b> 3/	Synthetic Sequence	<b>:</b>	
	<400>			
ttgttg	ttgt	tgtttgttgt tgttg		25
	-010>	1070		
	<210><211>			
	<211><212>		·	
			20	
	<213>	Artificial Sequenc		
	<220>		•	
	<223>	Synthetic Sequence	e	
	-400:	1070		
	<400>			27
ggctcc	gggg	agggaatttt tgtctat		21
	<210>	1071		
	<211>		•	
	<212>			
	<213>	Artificial Sequence	ce .	

- 202 -

	<220> <223> Synthetic Sequence	
aaaac	<400> 1071 cgatcg tcggggggg	_
333	-54.09 00933939	1
	<210> 1072	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1072	
gaato	gtcga cgagggggg	~
333		20
	<210> 1073	
	<211> 19	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400× 1072	
aatca	<400> 1073 tcgac gagggggg	
ggccg	cegae gagggggg	19
	<210> 1074	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
aaat o	<400> 1074 ghagt agragana	
gggte	gtcgt cgtgggggg	20
	<210> 1075	
	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
aaaaa	<400> 1075 cgatc gtcggggggg	
ggggac	sgate geegggggg	20
	<210> 1076	
	<211> 20	
	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
	<223> Synthetic Sequence	
	<400> 1076	
uqqqac	cgtcg tcgtgggqq	20

	<210>	1077	
	<211>	. 27	
	<212>		
	<213>	Artificial Sequence	
	<220>		
		Synthetic Sequence	
	<400>	1077	
		tcgacgtcga ggggggg	27
			-
	<210>		
	<211>		
	<212>		
	<513>	Artificial Sequence	
	<220>		
	<223>	Synthetic Sequence	
	<400>	1078	
		ggttgggggg g	21
	<210>		
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<220>		
	<223>	Synthetic Sequence	
	<400>	1079	
		tcgtggggg g	21
	<210>		
	<211>		
	<212>	DNA Artificial Sequence	
	/CT3/	wretiterat seducine	
	<220>		
	<223>	Synthetic Sequence	
	<400>	1080	
		cgtcgtgggg ggg	. 23
	<210>		
	<211>		
	<212>	DNA Artificial Sequence	
,	<b>\Z13&gt;</b>	withiterar seducates	
	<220>		
•	<223>	Synthetic Sequence	
	<400>	1081	
teetge	cggg q		15
	107.05	1000	
	<210>		
	<211> <212>		•
		· DNA · Artificial Sequence	



- 204 -

	•		- 204 -	
	<220>	•		
	<223>	Synthetic Sequence		
		-1enza soduciise		
	-400>	1000	•	
		1082		
tcctg	caggg	gaagt		15
	<210>	1083		
	<211>	15		
	<212>		·	
	<2132	Artificial Sequence		
	<220>		•	
	<223>	Synthetic Sequence		
	<400>	1083		
tacta				
ccccg	aaggg	gaagt		15
	<210>			
	<211>	15		
	<212>	DNA		
	<213>	Artificial Sequence	•	
	<220>			
		Complete and the control of the cont		
	<223>	Synthetic Sequence		
		•		
	<400>	1084		
teetge	geggg (	caagt		15
,		-		13
	<210>	1085		
	<211>			
	<212>			
	<513>	Artificial Sequence		
	<220>			
	<223>	Synthetic Sequence		
		2		
	<400>	1085		
tactac				
Lucing	acada ı	Laayt		15
	<210>			
	<211>	15		
	<212>	DNA		
	<213>	Artificial Sequence		
	<220>			
	<223>	Synthetic Sequence		
	<400>	1086		
cctgg	cggg a	ıaagt		15
		-		13
	<210>	1087		
	<211>			
	<212>			
	<213>	Artificial Sequence		
	<220>			
		Synthetic Sequence		
		-1 Dodacuce		
	<400>	1087		
ccggg	cggg g	aagt		15

			· - 205 -
<b>~</b>	210>	1088	
	211>		
<:	212>	DNA	
<:	213>	Artificial Sequence	
		•	
	000-		
	220>		
<:	223>	Synthetic Sequence	
_	400>	1000	
tcggggc	ggg g	aagt	15
<:	210>	1089	
	211>		
<:	212>	DNA	
<:	213>	Artificial Sequence	
	0005		
-	220>		
<:	223>	Synthetic Sequence	
,	400>	1090	
tecegge	ggg g	aagt	15
٠.	210>	1090	
	211>		
<:	212>	DNA	
<:	213>	Artificial Sequence	
-			
	220>		
<:	223>	Synthetic Sequence	
	400>	1000	
			1.5
gggggac	gtt g	gggg	15
			•
<	210>	1091	
	211>		
<:	212>	DNA	
<:	213>	Artificial Sequence	
-			
	220>		
<:	223>	Synthetic Sequence	
		_	
	400>	1001	
ggggttt	ttt t	tttgggggg	20
	210>	1092	
	211>		
<:	212>	DNA	
<:	213>	Artificial Sequence	
``			
	220>		
<:	223>	Synthetic Sequence	
	-	-	
_	4005	1002	
	400>		
ggggccc	ccc c	cccggggg	20
ر.	210>	1093	
	211>		
<:	212>	DNA	
		Artificial Sequence	
~	<b>41</b>	wretriorar pedaetice	
		•	
	~~~		


- 20ა -

<223> Synthetic Sequence

<400> 1093 ggggttgttg ttgttggggg g

21

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.
Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.