CR. 134195

Carbon Deposition Model For Oxygen-Hydrocarbon Combustion

Contract NAS 8-34715 Bimonthly Progress Report 2427-BM-6 October 1988

Prepared for:

National Aeronautics And Space Administration George C. Marshall Space Flight Center

By:

J.A. Bossard

(NASA-63-184195) CARREN DEFOSITION MODEL FOR DXYGEN-HYDROLAROUN CEMPOSITION elimonthly Progress Peport, 1 Sep. - 31 Oct. 1988 (Aerojet TechSystems Co.) 95 p CSCL 218

N92-13294

Unclas G3/25 0040102

Aerojet TechSystems Company Report No. 2427-BM-6

October 1988

Reporting Period 9/1/88 - 10/31/88

Carbon Deposition Model For Oxygen-Hydrocarbon Combustion

Contract NAS 8-34715

Bimonthly Progress Report

Prepared For

NASA/George C. Marshall Space Flight Center Huntsville, Alabama 35812

Prepared By:

J. A. Bossard

Project Engineer

Approved By:

Dr. M. F. Young

Program Manager

Aerojet TechSystems Company P.O. Box 13222 Sacramento, California 95813

RPT/AA0570.3

TABLE OF CONTENTS

		<u>Page</u>			
Int	roduction	1			
	Objectives	2			
В.	Approach	3			
C.	Program Schedule	3			
D.	Detailed Task Descriptions	3			
D.	1. Task 1 - Requirements	3			
	To a series of Tomories and Hardware	5			
		8			
	3. Task 3 - Testing	8			
	4. Task 4 - Data Analysis	8			
	5. Task 5 - Reporting	9			
E.	Current Status	17			
F.	Problems	17			
Appendices Appendices					
	A Critical Experiment Review B Liquid-Liquid Coax Injector Concept Review	B-1			

LIST OF TABLES

T-ble No		<u>Page</u>
Table No.	Carbon Deposition Study Added Scope Hardware List	7
I	Carbon Deposition of the	
	LIST OF FIGURES	
m No		<u>Page</u>
Figure No.		4
1	Program Schedule	10
2	Proof Test Schematic	11
3A	Ox Circuit	12
3B	Fuel Circuit	13
3C	Both Ox and Fuel Circuits	15
4	Assembly Schematic	16
5	Gas Sampling System	18
6	Coax Injector Schedule	10

INTRODUCTION

This report describes Aerojet TechSystems Company's (ATC) progress and current status for the follow-on program for Contract NAS 8-34715, "Carbon Deposition Model for Oxygen-Hydrocarbon Combustion."

The status report is comprised of six subsections: A, Objectives; B, Approach; C, Schedule; D, Task Descriptions; E, Current Status. Appendix A contains the CER Package. The Liquid-Liquid Coax Injector Concept Review is found in Appendix B. For the purposes of the present Status Report, the original study refers to Report No. 2427-PP, 28 May 1982, the added scope program refers to Report No. 2427PP, September 1985, and the follow-on program to the present discussion.

Understanding how and why soot is formed with certain hydrocarbon rocket propellants is pertinent to the selection of the best hydrocarbon fuel for future engines as well as the selection of the engine cycle and operating conditions. Prior to the original Carbon Deposition program a consistent set of data had not been generated over a wide range of operating conditions. The original program generated this consistent set of data with LO₂/RP-1 propellants over a wide range of operating conditions using subscale hardware. The range of conditions covered both main chamber and fuel-rich preburner or gas generator operating conditions.

In the original program, deposition on the combustion chamber wall was investigated under main chamber operating conditions at mixture ratios of 2.0 to 4.0 and chamber pressures of 1000 to 1500 psia. The results from this effort indicated a lack of significant carbon deposition on the chamber wall with LO₂/RP-1 propellants. These results showed that chamber designs cannot depend on carbon deposition to reduce the "clean wall" heat flux for chamber pressures over 1000 psia and for combustion efficiencies greater than 95%.

An added scope program focused on carbon deposition in gas generators and preburners. This program included propane and methane testing and comparisons to the RP-1 database. The preburner test data from the added scope program revealed that methane gives a C* performance within 10% of the value predicted by the One Dimensional Equilibrium (ODE) program, while propane and RP-1 test data

Introduction (cont.)

are within 14% and 40%, respectively, of their ODE predicted C* performances. Both propane and methane exhibited C* performances between 3000 to 4000 fps, while RP-1 showed C* performances between 1600 to 3000 fps. Gas temperatures were highest for propane (1100 to 1900°F) (866 to 1311 K) while with both methane and RP-1 between 800 to 1300°F (700 to 977 K). Methane produced no carbon, while both RP-1 and propane deposited carbon above a certain threshold mixture ratio.

The results indicated that LO₂/RP-1 cannot be operated in the desirable temperature range (1400 - 1600°F) for gas generators without incurring substantial carbon buildup. On the other hand, LO₂/propane can be operated in the desired temperature range up to a maximum of 1500°F (1088 K), without carbon buildup. Operation with LO₂/methane is unrestricted over the desired gas generator operating temperature range. At the conclusion of the added scope test program, there were questions over the carbon deposition characteristics of high propellant injection density systems. The original and added scope programs used low propellant injection density gas generators. The desire to support full scale gas generator studies resulted in the recommendation to test high injection density gas generators on the follow-on program. In addition, at the conclusion of the added scope program it was recommended that additional testing be conducted using liquefied natural gas (LNG) to determine carbon buildup characteristics of low purity methane fuel, and that fuel-rich tests be conducted using propane to further define the sharp transition from no carbon buildup to excessive buildup. Also, it was recommended that the fuel chemistry for both propane and methane be incorporated into the Fuel Rich Combustion Model.

A. OBJECTIVES

The objectives of this follow-on contract are to use the existing hardware to verify and extend the database generated on the original test programs. The data to be obtained is the carbon deposition characteristics when methane is used at injection densities comparable to full scale values. The data base will be extended to include LNG testing at low injection densities for gas generator/preburner conditions. The testing shall be performed at mixture ratios between 0.25 and 0.60, and at chamber pressures between 750 and 1500 psia.

Introduction (cont.)

B. APPROACH

Aerojet TechSystems Company (ATC) will conduct a five task follow-on program to extend the carbon deposition database to include the use of LNG at low injection densities and methane at injection densities that replicate full scale gas generator operation with as much fidelity as is possible within the current hardware constraints. The LNG testing will be performed using the existing hardware. The high injection density methane testing will be performed by high injection flow rate constructing a new injector to meet the requirements. This injector will be used in conjunction with the existing carbon deposition hardware to evaluate carbon deposition of LO₂/methane as a function of mixture ratio and chamber pressure.

C. PROGRAM SCHEDULE

The program schedule includes 23 additional tests in Task III. Fifteen of the tests are scheduled for the high injection density testing and the remaining eight tests will occur during the LNG test series. The test activity and its accompanying support activities are shown in Figure 1. The scheduled technical period of performance is 20 months including one and one half months to obtain NASA/MSFC final report approval prior to publication. Timephasing and the task interrelationships are described in the next section.

D. DETAILED TASK DESCRIPTIONS

In support of the test activity, Task III, several activities must be completed: 1) gas generator requirements review; 2) hardware design and fabrication; 3) facility preparation and testing; 4) data analysis, and 5) reporting. This section describes in detail the scope of effort that will be performed on each task and its associated timephasing.

Task 1 - Requirements

The requirements review will be performed in two parts. At the program inception the existing Carbon Deposition hardware will be evaluated to determine the feasibility of using the existing turbine simulator, turbulence ring,

Figure 1. Program Schedule

D, Detailed Task Descriptions (cont.)

and exit nozzles with the increased flow rates. Life analysis predictions and verification of the existing hardware will be performed and will be based on the testing performed to date. The open literature will be reviewed to determine the applicable injection density to be used with the Carbon Deposition hardware to simulate full scale gas generators. The task will conclude with a conceptual Design Review where an overview of the gas generator requirements and hardware evaluation will be presented. The task outputs will be a conceptual design approach for the injector, recommended test conditions, and determination of the adequacy of using the existing hardware for the higher flowrates.

2. Task 2 - Design and Fabrication of Experimental Hardware

Hardware design is scheduled to begin at program inception. This is possible because: (1) existing hardware is used as much as possible, (2) additional hardware pieces conform to existing hardware interfaces, (3) new hardware requirements were defined prior to program initiation, and (4) additional hardware requirements are less stringent than the original water-cooled designs. Wherever possible the hardware designs are direct derivatives of designs successfully demonstrated in one of the current or recently completed Aerojet LO₂/Hydrocarbon contracts. This has been done intentionally to provide justification of a design concept prior to its use.

The objective of this task is to produce detailed drawings for fabrication of the additional test hardware. The task involves analyses and mechanical design activity. This section describes the factors considered during the design stage, the supporting analyses, and the design details and features of the original hardware and, the new, uncooled hardware.

Three basic test assemblies are planned, one to simulate gas generator or preburner at low injection density conditions consistent with the current database and two at high injector densities. The two high injection density injectors are of the triplet and coax designs. To obtain the maximum experimental test data at minimum cost, the proposed test hardware is of modular design. The bolted module concept provides the greatest test hardware flexibility. Many of the components of the preburner assembly are interchangeable.

D, Detailed Task Descriptions (cont.)

a. Hardware Preparation

The hardware preparation will be performed in two parts. Beginning in the middle of program month two, the design modifications to existing hardware (turbine simulator, turbulence ring, and exit nozzle) will be performed. During this period the access port will be designed. Its function is to provide access to the upstream side of the turbine simulator to permit photographic documentation of carbon buildup after each test.

The detailed injector design will begin in month four. The design modifications to the existing injector manifold and faceplate will be performed. The injector faceplate design will incorporate elements as similar as possible to those identified for use in full scale, state-of-the-art LO₂/hydrocarbon booster engines. Detail drawings of the injector shall be prepared and existing drawings modified as required. Completion of the drawing package will be supported by the Project Office, Design, Thermodynamic and Stress analysis, and producibility. A Final Design Review of the injector will be conducted with the participation of the Project Office, Design, Analysis, Producibility, the Development Labs, Drafting, "A" Test Area, and Data Services.

b. Hardware Fabrication

A list of test hardware to be fabricated or modified for the follow-on contract is shown in Table I. Hardware fabrication will be initiated in the middle of the third program month. Fabrication of the high injection density injector was begun at the start of program month eight and will be completed by the end of program month eleven. Fab of the liq/liq coax is planned to begin in program month fourteen and be completed after month seventeen.

Test hardware will be fabricated at Aerojet TechSystems' approved vendor shops. Vendors will be selected on the basis of schedule requirements, quality requirements, and cost. The project engineer will coordinate the fabrication effort utilizing the Task 2 engineering drawings produced by the mechanical design department.

TABLE I CARBON DEPOSITION STUDY ADDED SCOPE HARDWARE LIST

	Quantity			
Preburner/Gas Generator	2			
Turbine Simulator	2			
Exit Nozzle	1			
Turbulence Ring	1			
Access Port	1			

D, Detailed Task Descriptions (cont.)

3. Task 3 - Testing

Testing will be divided into five activities: (1) facility preparation, (2) test planning and critical experiment reviews, (3) checkout tests, (4) high injection density carbon deposition tests, and (5) LNG carbon deposition testing. Hardware facility preparation for the high injection density testing will begin in the middle of the tenth program month. The facility preparation and test planning will be conducted with a critical experiment review in the middle of the eleventh program month. Checkout for the high injection density testing is scheduled for the twelfth month. The high injection density carbon deposition testing is scheduled to begin at the start of the thirteenth month. Two months are allocated to the test series. Facility preparation for the LNG testing began on the third program month. The test planning was concluded at the end of the fifth month with a critical experiment review.

4. Task 4 - Data Analysis

Task 4 is scheduled to begin in the thirteenth program month and be completed at the end of the sixteenth month.

The objective of this task is to perform detailed data analysis. The data analysis effort will include: (1) comparison of measured and predicted combustion (C*) efficiency and combustion gas temperature, (2) flow data analysis to infer turbine simulator C_DA and carbon deposition rate, and (3) comparison of the results with the existing database.

5. Task 5 - Reporting

Eight bimonthly technical status reports will be published; eleven monthly fiscal reports will be distributed. Two program status reviews will be conducted as shown in Figure 1. The program final report draft will be submitted 30

D, Detailed Task Descriptions (cont.)

days after completion of the program technical effort. Another 45 days will be scheduled for NASA review and subsequent ATC publication.

E. CURRENT STATUS

High Injection Density Injector

Originally scheduled for completion at the beginning of August, the high injection density injector was finally completed on 9/14/88. The schedule slip of 6 weeks was due largely due to a failure of the braze process by which the injector faceplate is attached to the body. This problem was solved after a delay of about 3 weeks. The remainder of the schedule slippage resulted from schedule slippages on the part of the fabrication vendors. Once the injector was completed, the final step was the proof test. This test was performed by attaching the backflush fixture and the injector and pressurizing with water. A schematic of this arrangement is shown in Figure 2. The proof test was completed on 9/14/88 with the injector being proof to 3300 psi. A leak check using GN₂ was also performed. The injector was pressurized with 100 psi nitrogen and held for 2 minutes. Because of the inability to separately seal-off the ox and fuel circuits at the faceplate, both circuits were checked simultaneously at the same pressure. With the completion of the proof and leak checks, the carbon deposition program high injection density injector was finished.

High Injection Density Testing

Although some work could be done, the majority of the preparation work required for the high injection density testing had to wait until the injector was completed. The first tasks were to perform a pattern check and measure the Kw values for both the ox and fuel circuits on the injector. The pattern check showed a good pattern on both ox and fuel circuits. Photographs of the pattern check are shown in Figure 3. The Kw measured for the fuel circuit was within 4% of the predicted value of .578 vs. .615, while the ox circuit Kw was within 2% of predicted, .155 vs. .157.

After the Kw measurements, the injector was cleaned to Level 400 and was then ready for installation. The injector was attached to the front end of the test

Figure 2. Proof Test Schematic

Figure 3A. Ox Circuit

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Figure 3B. Fuel Circuit

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Figure 3C. Both Ox and Fuel Circuits

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

E, Current Status (cont.)

apparatus; subsequent pieces of the modular hardware were bolted into place, as shown in Figure 4. A total of 5 new pieces of hardware were installed to accommodate the high flowrate testing, relative to the previous methane and LNG testing. These were the injector, turbulence ring insert, upstream L' section, turbine simulator, and the exit nozzle. The pieces underwent, with the exception of the L' section, an enlargement of their respective flow areas. Boroscope ports into the upstream L' section were enlarged from 1/4" to 1/2", allowing the passage of a larger boroscope. Some of the thermocouples in the L' section were damaged during this machining process. These were removed and replaced, and more durable fittings were welded into place. Additionally, pitting on the O-ring surfaces of the L' section had not allowed proper sealing of the test apparatus, a problem compounded by the use of metal O-rings. The O-ring surfaces were machined to remove the pitting, which eliminated the problem. For the test apparatus itself, the only major refitting, other than the modular components mentioned, was that of the fuel and ox supply lines. Since the flow rates are 10 times higher than the previous testing, it was necessary to install larger lines. These lines transport propellant from the fuel and ox run tanks to the injector. The ox line went from a 1/2" line to a 3/4" line, which also required a larger flowmeter. The fuel line went from 1" to 1-1/2" line, and a filter and larger flowmeter were also installed. To accommodate the gas sampling to be done during the testing, a gas sampling system was installed. This consisted of a liter bottle made from 2" schedule 40 pipe, fitted with end caps and a pressure gauge. Hand valves on both ends allowed the bottle to be removed and taken to the Gas Chromatograph Lab. Solenoid valves in series with the hand valves allowed the bottle to be filled from the control room while the test was in progress. Figure 5 shows this arrangement. The boroscope apparatus for taking internal photographs remains largely as it was in the previous LNG testing, with the exception that the enlarged ports of the upstream L' section allows the use of a larger boroscope. The apparatus will accept both the video camera and a 35 mm camera.

Since the flowrates of this test series are considerably larger than that of the previous tests, the test durations have become limited by the fuel run tank capacity. The fuel run tank can hold 150 gallons of propellant, or about 440 lbm of liquid methane. This means that at the maximum fuel flowrate of 13.7 lbm/sec, the duration of the test is slightly over 32 seconds. The maximum test duration however is

NOTE: SKETCH NOT TO SCALE Unshaded parts are new hardware

Figure 4. Assembly Schematic

Figure 5. Gas Sampling System

E, Current Status (cont.)

about 100 seconds. All other tests fall in between these durations. These test durations, because of the very high flow rates, will provide sufficient time to determine whether carbon deposition is occurring. At this writing, the test control sequence will be programmed with the calculated fuel depletion time. This will allow the most reliable test run.

The entire test series was reviewed and examined at a Critical Experiment Review (CER) held on 5 October 1988. The review package is found in Appendix A. Currently, it is anticipated that the testing will be completed by mid November, two weeks ahead of schedule and in spite of the six week delay of the high injection density injector.

Liquid-Liquid Coax Injector

Concurrent with the testing being done, work on the liquid-liquid coaxial injector is nearing completion. A concept review for the injector design was held on 30 September 1988. Appendix B contains the Concept Review Handout and the action item list. In general, the review was successful and the design was well received. Nevertheless, a number of action items came out of the review. All proved to be resolvable and the closeout of the items is imminent. The final design review is currently scheduled for 18 November 1988. At this review, the final design will be approved and, pending the closeout of any resulting action items, the liquid-liquid coax injector will be ready for fabrication. Figure 6 shows the current coax injector schedule. The drawings for the injector will be completed after the final design review and prior to the fabrication phase.

F. PROBLEMS

There were no problems during this reporting period.

Figure 6. Coax Injector Schedule

APPENDIX A

CRITICAL EXPERIMENT REVIEW

CRITICAL EXPERIMENT REVIEW

CARBON DEPOSITION OF LOX/METHANE

NUMBER 10006

05 OCTOBER 1988

AGENDA

INTRODUCTION/TEST OBJECTIVEwerLing
TEST HARDWARE
TEST MATRIXBOSSARD
FACILITY OVERVIEWKELLER
INSTRUMENTATIONTHOMPSON
.TS
IGNITER OPERATING CONDITIONS
OPERATING SEQUENCETHOMPSON
DATA REQUIREMENTSBOSSARD
PHOTOGRAPHYB0SSARD
ENVIRONMENTALKELLER
OPERATING PROCEDURESKELLER
SCHEDULEWERLING
ACTION ITEM REVIEW

INTRODUCTION

- O CARBON DEPOSITION MODEL FOR OXYGEN HYDROCARBON COMBUSTION
- o LIQUID OXYGEN METHANE
- O SECOND FOLLOW-ON CONTRACT FOR PROGRAM
- 1982 BOTH MAIN ENGINE AND PREBURNER MODEL TESTING
- LIQUID OXYGEN RP-1
- o 1985 FIRST FOLLOM-ON CONTRACT, PREBURNER MODEL TESTING
- LIQUID OXYGEN LIQUID METHANE/LIQUID PROPANE
- o EXISTING TEST STAND AND TEST HARDWARE WILL BE USED O HIGH INJECTION DENSITY INJECTOR WILL BE USED
- O PROPELLANT FEED SYSTEMS UPGRADED

CRITICAL EXPERIMENT REVIEW.

i

PROGRAM OBJECTIVE

QUANTIFY CARBON DEPOSITION AT FLOW RATES REPRESENTATIVE OF FULL-SCALE HARDWARE 0

15 TESTS 20.25 < MR < 0.6

0

1000 PSIA \leq PC \leq 2000 PSIA

GAS SAMPLING 0

VWG: AA0798

ASSEMBLY SCHEMATIC

NOTE: SKETCH NOT TO SCALE
SHADE PARTS ARE EXISTING HARDWARE

VWG: AA0798

GAS SAMPLING SYSTEM

© TechSystems

O to over cert often your of the ratio CRITICAL EXPERIMENT REVIEW CARBON DEPOSITION OF LOX/METHANE

	METHANE								140									
	W METHANE						98*9	98*9	98.9	5.04	3.85	10.28	7.54	6.63	90.9	5.76	5.24	
	LOX								6									
	W OXID						1.37	1.37	1.37	1.87	2.31	2.05	2.79	3.12	3,33	3,45	3.67	
	DURATION						-	10	09									
	NOMI NAL MR						0.20	0.20	0.20	0.37	09.0	0.20	0.37	0.47	0.55	09.0	0.70	
PLAN	NOMINAL PC (PSTA)						1000	1000	1000	1000	1000	1500	1500	1500	1500	1500	1500	
TEST	P _T FUEL ESTIMATE (PSIA)			1250 GH ₂			1346	1346	1346	1187	1109	2276	1918	1823	1770	1744	1502	
	PT OXID ESTIMATE (PSIA)			1200 60x			1066	1066	1066	1123	1688	1648	1775	1843	1891	1920	1975	
	TEST OBJECTIVES	IGNITER COLD FLOW AND VALVE SEQUENCING	IGNITER COLD FLOW AND VALVE SEQUENCING	IGNITER CHECKOUT HOT FIRING	INJECTOR COLD FLOW AND VALVE SEQUENCING - OXID	INJECTOR COLD FLOW AND VALVE SEQUENCING - FUEL	INJECTOR CHECKOUT FIRING	INJECTOR CHECKOUT FIRING	1000 P _C TESTS	1000 P _C TESTS	1000 P _C TESTS	1500 P _C TESTS	1500 P, TESTS	1500 P _C TESTS				
	TEST NUMBER	100	005	101	003	004	102	103	104	105	106	107	108	109	110	111	112	VWG: AA0798
	TEST	CHECKOUT			СНЕСКООТ	CHECKOUT		*										3

VWG: AA0798

TEST PLAN (CONT)

4ETHANE GALLON						
W METHANE M	13.69	10.04	8.82	8.05	7.65	6.97
COX						
W OXID	2.74	3.71	4.15	4.43	4.59	4.88
DURAT 10N SECONDS						
NOM I NAL MR	0.2	0.37	0.47	0.55	09.0	0.70
NOMINAL P (PSTA)	2000	2000	2000	2000	2000	2000
P. FUEL ESTIMATE (PSIA)	3376	2740	2571	2476	2430	2357
PT OXID ESTINATE (PSIA)	2265	2486	2608	2692	2743	2840
TEST OBJECTIVES	2000 P _C TESTS					
TEST NUMBER	113	114	115	116	117	118

TEST TYPE

TEST STAND DETAIL

- O LIQUID OXYGEN SYSTEM DESIGN REQUIREMENTS
- SUPPLY LOX TO GAS GENERATOR INLET
- o 2800 PSIA, 200°R, 5.0 POUNDS/SECOND MAXIMUM
- SAFETY PROCEDURE 13 "PRESSURIZED EQUIPMENT" APPLIES
- ALL COMPONENTS LOX COMPATIBLE
- O LINE VELOCITY 50 FT/SECOND MAXIMUM
- DRECLUDE CRYOGENIC LOCKUP

TEST STAND DETAIL (CONT)

O LIQUID OXYGEN SYSTEM COMPONENT REVIEW

o LIQUID OXYGEN STORAGE TANK

HERRICK JOHNSTON 1800 GALLON, VACUUM JACKETED TANK

o 50 PSI WORKING PRESSURE, RUPTURE DISK RELIEVED

EXISTING FACILITY INSTALLED IN 1985

LOX LINE FILL VALVE - ISOLATES STORAGE TANK

0

1 INCH CCI RSOV, 6000 PSI WORKING PRESSURE

o STAINLESS STEEL BODY SEAT AND PINTEL, TEFLON SOFT GOODS

CCI RSOVS USED WITHOUT INCIDENT FOR YEARS

TEST STAND DETAIL (CONT)

- o LIQUID OXYGEN SYSTEM COMPONENT REVIEW (CONT)
- o LIQUID OXYGEN RUN TANK
- SOUTHWEST WELDING, 50 GALLON, VACUUM JACKETED
- O 5500 PSI WORKING PRESSURE, PRESSURE RELIEF VALVE
- VACUUM JACKET, RUPTURE DISK RELIEVED

0

- O LOX TANK SAFETY VALVE
- o 1 INCH CCI RSOV, 6000 PSI WORKING PRESSURE
- o STAINLESS STEEL BODY SEAT AND PINTEL, TEFLON SOFT GOODS
- o CCI RSOVS USED WITHOUT INCIDENT FOR YEARS
- STAINLESS STEEL WELDS PICKLED AND BRUSHED
- o LINE PROOF PRESSURE TESTED TO 5500 PSI
- O LOX SUPPLY LINE FILTER 10 MICRON
- o 1 INCH MICROPORUS, 6000 PSI WORKING PRESSURE
- STAINLESS STEEL BODY AND FILTER

TEST STAND DETAIL (CONT)

- o LIQUID OXYGEN SYSTEM COMPONENT REVIEW (CONT)
- o LOX LINE BLEED CHILL DOWN AND RUN SYSTEM
- o 1/2 INCH CCI RSOV, 6000 PSI WORKING PRESSURE BLEED VALVE
- o 1 INCH CCI RSOV, 6000 PSI WORKING PRESSURE OTCV
- o STAINLESS STEEL BODY PINTEL AND SEAT, TEFLON SOFT GOODS
- o CCI RSOVS USED WITHOUT INCIDENT FOR YEARS
- O FLOW MEASURING
- 3/4 INCH TURBINE FLOWMETER
- O OXIDIZER THRUST CHAMBER VALVE
- o 1 INCH CCI RSOV, 6000 PSI WORKING PRESSURE
- o STAINLESS STEEL BODY PINTEL AND SEAT, TEFLON SOFT GOODS

TEST STAND DETAIL (CONT)

- o LIQUID OXYGEN SYSTEM COMPONENT REVIEW (CONT)
- RUN LINE TANK SAFETY
- 3/4 INCH STAINLESS STEEL TUBING, 0.065 WALL, 3500 PSI WORKING PRESSURE 0
- AN 37° FLARED FITTINGS
- LOX FLOWMETER BYPASS PREVENTS FLOWMETER OVERSPEED DURING CHILL IN 0
- 1/2 INCH CCI RSOV, 6000 PSI VALVE
- VALVE PREVIOUSLY USED IN LOX SERVICE
- RUN LINE RELIEF VALVE PREVENTS OVERPRESSURE DUE TO CRYOGENIC LOCKUP 0
- SET TO RETURN AT 4500 PSI

TEST STAND DETAIL (CONT)

o. LIQUID OXYGEN SYSTEM FAILURE ANALYSIS

FAILURE MODE	INDICATOR	I DW P. KILL
LUX IANK SAFEIT DUES NUI OPEN OR CLOSE PREMATURELY	, , , , , , , , , , , , , , , , , , ,	
LOX TANK REGULATOR FAILS OPEN	нIGH РОЈ, Р _С	HIGH PC KILL, HIGH TCR-1, 5 KILL POSSIBLE HARDWARE DAMAGE
LOX TANK REGULATOR FAILS CLOSED	LOW POJ, P _C	LOW P _C KILL
LOX FLOWMETER BYPASS DOES NOT OPEN	NO TEMPERATURE DROP	CHILL IN DOES NOT BEGIN
LOX FLOWMETER BYPASS DOES NOT CLOSE	LOW OXIDIZER FLOW	INACCURATE FUEL FLOW MEASUREMENT. ALL OTHER PARAMETERS LOOK GOOD, SLIGHTLY HIGH OXIDIZER FLOW
		POSSIBLE

TEST STAND DETAIL (CONT)

LIQUID OXYGEN SYSTEM FAILURE ANALYSIS (CONT) 0

EFFECT	NO EFFECT ON TEST HARDWARE, RESULTS IN FUEL RICH MR LOW P _C KILL	TEST TERMINATED	NO IGNITION, LOW P _C KILL
INDICATOR	VISUAL VENTING PRIOR TO ${\sf FS}_1$	T _{OX} DOES NOT REACH TARGET TEMPERATURE	OLVDT, LOW P _C
FAILURE MODE	LOX LINE BLEED DOES NOT CLOSE	LOX LINE BLEED DOES NOT OPEN	OTCV FAILS TO OPEN OR CLOSES PREMATURELY

TEST STAND DETAIL (CONT)

O LIQUID OXYGEN SYSTEM FAILURE ANALYSIS (CONT)

OTCV FAILS TO CLOSE AT FS2 OLVDT, PC CONTINUES,

EFFECT

OX RICH SHUTDOWN, POSSIBLE
HARDWARE DAMAGE. HAZARDOUS
CONDITION MINIMIZED BY RAPID GN2
PURGE OF ENGINE, BOTH OXIDIZER
AND FUEL CIRCUITS SEQUENCED ON BY
COMPUTER. SINGLE POINT SAFETY
BACKUP BY SEQUENCED OF POT
SAFETY CLOSED AT FS2. LOX FLOW
CAN BE TERMINATED BY CLOSURE OF
OXIDIZER TANK SAFETY.

TEST STAND DETAIL (CONT)

- O LIQUID METHANE SYSTEM DESIGN REQUIREMENTS
- SUPPLY LIQUID METHANE TO GAS GENERATOR INLET
- O SAFETY PROCEDURE 13 "PRESSURIZED EQUIPMENT" APPLIES
- O EXISTING RUN TANK, STORAGE TANK AND FILL SYSTEM USED AS IS

TEST STAND DETAIL (CONT)

- O LIQUID METHANE SYSTEM COMPONENT REVIEW
- FUEL RUN TANK SAFETY ISOLATES RUN TANK FROM RUN LINE
- 2 INCH CALMEC RSOV, 7000 PSI VALVE
- VALVE PREVIOUSLY USED IN LNG SERVICE
- FUEL FLOWMETER BYPASS PREVENTS FLOWMETER OVERSPEED DURING CHILL IN 0
- 1 INCH CCI RSOV, 6000 PSI VALVE

0

- O VALVE PREVIOUSLY USED IN LNG SERVICE
- FLOW MEASUREMENT SECTION

0

- 2 INCH SCH 80 PIPE, 3500 PSI WORKING PRESSURE, 5500 PROOF PRESSURE
- o TURBINE TYPE FLOWMETER 2 INCH A.N.
- RUN LINE RELIEF VALVE PREVENTS OVERPRESSURE DUE TO CRYOGENIC LOCKUP 0
- SET TO RELIEVE AT 4500
- O VACUUM JACKETED RUN LINE
- O STAINLESS STEEL 5500 PSI WORKING PRESSURE
- O BURST DISK PREVENTS JACKET RUPTURE

TEST STAND DETAIL (CONT)

- LIQUID METHANE SYSTEM COMPONENT REVIEW (CONT) 0
- INLINE FILTER 25 MICRON
- STAINLESS STEEL, 3600 PSI WORKING PRESSURE
- FUEL LINE BLEED VALVE, NORMALLY OPEN LINE CHILL IN AND VENT 0
- 1/2 INCH CCI RSOV, 6000 PSI WORKING PRESSURE
- OUTLET PLUMBED TO BLEED EXTENSION LINE

0

FUEL THRUST CHABMER VALVE

0

- DUAL 1 INCH CCI RSOV, 6000 PSI WORKING PRESSURE
- LINEAR POSITION INDICATOR INSTALLED 0
- INSULATION FROM TANK TO FTCV 0
- VACUUM JACKETED RUN LINE TO FLOWMETER SECTION
- MECHANICAL INSULATION FLOW SECTION TO FTCV 0

TEST STAND DETAILS (CONT)

O LIQUID METHANE SYSTEM FAILURE ANALYSIS

EFFECT	TANK PRESSURE APPROACHES CASCADE PRESSURE OF 6600 PSI MAXIMUM. LINE PRESSURE RELIEF VALVE WILL OPEN, HIGH P _C KILL	EXCESSIVE GH2 USE. CAN'T ACHIEVE RUN PRESSURE	CHILL IN DOES NOT BEGIN	INACCURATE FUEL FLOW MEASUREMENT. ALL OTHER PARAMETERS LOOK GOOD, SLIGHTLY HIGH FUEL FLOW POSSIBLE
INDICATOR	PFT/CASCADE PRESSURE	AUDIBLE VENTING, LOW PFT	NO TEMPERATURE DROP	LOW FMF
FAILURE MODE	TANK PRESSURE REGULATOR FAILS OPEN	TANK VENT FAILS OPEN	FUEL FLOWMETER BYPASS DOES NOT OPEN	FUEL FLOWMETER BYPASS DOES NOT CLOSE

TEST STAND DETAIL (CONT)

O LIQUID METHANE SYSTEM FAILURE ANALYSIS (CONT)

EFFECT	NO IGNITION - TEST TERMINATION OX RICH SHUTDOWN AS FUEL FLOW DECAYS POSSIBLE HARDWARE DAMAGE, LINE CHILL IN DOES NOT BEGIN	METHANE FLOWS OUT OF FUEL LINE BLEED TO ATMOSPHERE AFTER TANK VENTS TO AMBIENT	SEQUENCE TERMINATION	PROBABLE HIGH MR CONDITION, POSSIBLE TCR-1 > 1900°R KILL
INDICATOR	PFFM	PRESSURE IN RUN LINE	NO VISABLE INDICATION OF FUEL BLEED. T BLEED READING ABOVE DESIRED TEMPERATURE	EXCESSIVE FMF READING, LOW PFJ, HIGH TCR-1
FAILURE MODE	FUEL RUN TANK SAFETY DOES NOT OPEN OR CLOSES PREMATURELY	FUEL RUN TANK SAFETY DOES NOT CLOSE	FUEL BLEED VALVE DOES NOT OPEN	FUEL BLEED VALVE DOES NOT CLOSE

VWG: AA0798

TEST STAND DETAIL (CONT)

O LIQUID METHANE SYSTEM FAILURE ANALYSIS (CONT)

EFFECT	LOW P _C KILL - NO IGNITION OX RICH SHUTDOWN, POSSIBLE HARDWARE DAMAGE, OX RICH CONDITION IN ENGINE SYSTEM AUTOMATIC GN ₂ PURGE OF OXIDIZER AND FUEL CIRCUITS	RAPIDLY COOL GAS GENERATOR CHAMBER, OVERSPEED FMF, FUEL RICH SHUTDOWN, NO HARDWARE DAMAGE, CLOSE RUN TANK SAFETY, AUTOMATIC GN2 PURGE OF ENGINE SYSTEM, BOTH OXIDIZER AND FUEL CIRCUITS
INDICATOR	FLVDT, FMF, HIGH TCR-1, LOW PC	FMF, PFJ, LOW TCR-1
FAILURE MODE	FUEL TCV DOES NOT OPEN OR CLOSES PREMATURELY	FUEL TCV DOES NOT CLOSE

TEST STAND DETAIL (CONT)

LIQUID METHANE SYSTEM CLEANLINESS

ALL WELDED AREAS PICKLED

0

O SYSTEM COMPONENTS UPSTREAM OF FILTER FIELD CLEANED

FILTER AND DOWNSTREAM COMPONENTS CLEANED TO LVL 400 PER ATC-STD-4940 0

PROPELLANT BLEED LINE EXITS SEPARATED BY 50 FEET

0

PROPELLANT LINE BETWEEN TANK SAFETIES AND ENGINE TCV'S ARE PROTECTED BY PRESSURE RELIEF

FLOWMETERS HAVE BYPASS BLEED VALVES TO PROTECT FROM OVERSPEED

SAFETY OF THE HARWARE IS PROTECTED BY KILL PARAMETERS

0

TEST STAND DETAIL (CONT)

o 602/GH2 IGNITER FAILURE ANALYSIS

EFFECT	NO IGNITION IGNITERS, TEST	TERMINATION BY SEQUENCE, NO	HARDWARF DAMAGE
INDICATOR	NO POJ/PFJ OR P _C IGNITER	INCLINATION	
FAILURE MODE	OXIDIZER OR FUEL VALVES FAIL	TO OPEN	

VWG: AA0798

HARDWARE INSTRUMENTATION

TechSystems COMPANY

INSTRUMENTATION

INSTRUMENTATION (CONT)

Parameter	Symbol	Transducer Type	Range	Accuracy + % Reading	Recording Device FM 0-Graph Digital	_
Fuel Control Valve Trace Ox Control Valve Signal Fuel Control Valve Signal Ox Igniter Valve Current Fuel Igniter Valve Current Ox Igniter Valve Signal Fuel Igniter Valve Signal Instrumentation for High Injection	L1FCV V0CV CF1V V01V VF1V	Potentiometer Voltage Voltage Amperage Voltage Voltage	0 to 100% 0 to 100% 0 to 1000% 0 to 1000% 0 to 1000%	1.0	× ××××××	
Density Testing Ox Flow Rate Fuel Flow Rate	MO-1 MF-1	Turbine Turbine	0-10 lb/sec 0-20 lb/sec	0.5 5.5	××	

CRITICAL EXPERIMENT REVIEW
CARBON DEPOSITION OF LOX/METHANE

INJECTOR FLOW REQUIREMENTS

PFT (PSIA)	1346	1187	1109	2276	1918	1823	1770	1744	1702	3376	2740	2571	2476	2430	2357
POT (PSIA)	1066	1123	1188	1648	1775	1843	1891	1920	1975	2265	2486	2608	2692	2743	2840
OPF (PSID)	346	187	109	176	418	323	270	244	202	1376	740	571	476	430	357
(PSID)	2.99	123.4	188	148	275	343	391	420	5 475	265	4 486	809	269	743	840
WF (LBM/S)	<i>6</i> .86 <i>6</i> "	5.04 0%	3.85 115	10.28	7.54 51	6.63	£ 90°9	5.75	5.24 €	13.69	10.04	8.82 5	8.05	3. 59. 7	€.97 €.
WOX (LBM/S)	1.37	1.87	2.31	2.05	2.79	3.12	3,33	3,45	3.67	2.74	3,71	4.15	4.43	4.59	4.88
WT (LBM/S)	8.23	6.91	6.16	12.33	10.33	9,75	. 68*6	9.21	8.91	16.43	13.75	12.97	12.48	12.24	11.85
THROAT AREA SQ. INCH	.785	.785	.785	.785	.785	.785	.785	.785	.785	.785	.785	.785	.785	.785	.785
CSTAR (FPS)															
쫎	0.20	0.37	09.0	0.20	0.37	0.47	0.55	09.0	0.70	0.20	0.37	0.47	0.55	09.0	0.70
PC (PSIA)	1000	1000	1000	1500	1500	1500	1500	1500	1500	2000	2000	2000	2000	2000	2000

SPARK PLUG - CHAMPION OR GLA

VWG: AA0798

CRITICAL EXPERIMENT REVIEW CARBON DEPOSITION OF LOX/METHANE

GO2/H2 IGNITER OPERATING CONDITIONS

o FUEL ORIFICE INLET PRESSURE 1250 PSIA

OXIDIZER ORIFICE INLET PRESSURE 1200 PSIA

SPARK ENERGY = 30 MILLIJOULES

0

0

SPARK RATE = 500 SPARKS/SECOND

SPARK VOLTAGE = 6,000 VOLTS, BLACK BOX

MAXIMUM FIRING DURATION = 0.400 SECONDS MAXIMUM TIME FOR IGNITER

GO2/H2 IGNITER OPERATING CONDITIONS CONT

P _C (PSIA)					200	
× ×					45:1	
C* (FT/SEC)					3,300	
We (LBM/SEC)					0.0040	
, ₩ _{OX} (LBM/SEC)					0.181	
Wrotal (LBM/SEC)					0.185	
ORIFICE DIAMETER _F (INCHES) (AT 1700 PSIA)	(INCHES)	(AT	1700	PSIA)	0.0225 (.0250	(,0250
ORIFICE DIAMTEROX (INCHES) (AT 1700 PSIA)	(INCHES)	(AT	1700	PSIA)	0.0750 (.085)	(*082)

CRITICAL EXPERIMENT REVIEW CARBON DEPOSITION OF LOX/METHANE

V.WG: AA0798

wart

JSQ93 LIMITS FOR HOT FIRE TESTING

o 1ST 10 SECONDS

FMW-1 4 TO 12 POUNDS/SECOND COOLANT H20 FLOW RATE

PWI 500 TO 1500 PSIG COOLANT H20 PRESSURE

o P_C-1 300 TO 2000 PSIG

o AFTER 10 SECONDS UNTIL FS2

O FMW-1 4 TO 12 POUNDS/SECOND COOLANT H20 FLOWRATE

PWI 500 TO 1500 PSIG COOLANT H20 PRESSURE

TCR-2 < 2000°F

0 TCR-5 < 2000°F

LOX/METHANE TEST SERIES KILL PARAMETERS

POTENTIAL FAILURE MODE	MEASUREMENT	KILL VALUE
INSTABILITY	KOJ	> 200 PSI PK - PK
LOW P _C	P _C TSU-1	< 80% NOMINAL
HIGH P _C	P _C TSU-1	> 120% NOMINAL
LACK OF IGNITION	PFJ1	· < 140 PSI
HOT GAS TEMPERATURE (PROTECT UNCOOLED HARDWARD)	TCR-1 TCR-5	> 1900°F
LOW WATER FLOW (PLUGGED LINE)	WW1	< 4 LBM/SECOND
HIGH WATER FLOW (BURST LINE, CHAMBER HOLE, TURBINE SIMULATOR HOLE, LOOSE FITTING)	WW1	> 12 LBM/SECOND
LOW WATER PRESSURE	PWI 1	< 500 PSI
HIGH WATER PRESSURE	PWI 1	> 2500 PSI
HOT WALL TEMPERATURE	TC 12	< 1600°F
FUEL EXPENDED	WF-1	LIMIT TEST DURATION

VWG: AA0798

CRITICAL PARAMETERS

THE CARBON DEPOSITION PROGRAM. THE PARAMETERS ARE LISTED IN DESCENDING ORDER OF IMPORTANCE THIS TABLE IDENTIFIES THE CRITICAL PARAMETERS REQUIRED FOR THE LOX/PROPANE TEST SERIES ON

;		
ι ⊥ 33	•	FUEL FLOW RATE
¥0X		OXIDIZER FLOW RATE
Tox	ı	OXIDIZER TEMPERATURE
<u>ተ</u> .	•	FUEL TEMPERATURE
PCTSD	•	CHAMBER PRESSURE DOWNSTREAM OF THE TURBINE SIMULATOR. PREFER PCTSD BUT WILL ACCEPT PCTSD-2
PCTSU	•	CHAMBER PRESSURE UPSTREAM OF THE TURBINE SIMULATOR. PREFER PCTSU BUT WILL ACCEPT PCTSU-2 FOLLOWED BY PCTSU-3
TCR	•	GAS TEMPERATURE; MUST HAVE AT LEAST TWO. PREFER TWO FROM TCR-2, TCR-3 OR TCR-4, BUT WILL ACCEPT ONE FROM TCR-1 OR TCR-5.
P _C -1	1	USE PCTSU. CHECK START UP SEQUENCE FOR TIME KILL PARAMETER.

WILL

VWG: AA0798

MACHINE DATA PLOT PARAMETERS

- O INJECTOR PRESSURE VERSUS TIME
- P_C-1, POJI, PFJI, POJ, PFJ, POT, PFT
- INJECTOR FLOW VERSUS TIME

0

- o WF, WO, WTOT, MR
- O INJECTOR CALCULATIONS VERSUS TIME
- o DPOJ, DPFJ, KWOJ, KWFJ, CSTRPB
- O GAS-SIDE WALL TEMPERATURES VERSUS TIME
- o TC-10, TC-12
- O COOLANT OUTLET TEMEPRATURES VERSUS TIME
- o TWC-2, TWC-26, TWC-27, TWC-31, TWC-32, TWC-33

MACHINE DATA PLOT PARAMETERS CONT

O TURBINE BUILDUP DATA VERSUS TIME

PLOT NUMBER

O CHAMBER PRESSURE RATIOS AND DIFFERENCES

PRIR, PRIS, PRIS CORR, DPIR, DPIS-C, DPIS

O NOZZLE AREA CHANGE

o NA1, NA2, CDA, DTD

TURBINE SIMULATOR PRESSURE MEASUREMENTS

0

DCTSU, PCTSU-2, PCTSU-3, PCTSD, PCTSD-2

O GAS TEMPERATURES VERSUS FIME

TCR-1, TCR-2, TCR-3, TCR-4, TCR-5, TCR-6 (AVAILABLE THERMOCOUPLES)

VWG: AA0798

CRITICAL EXPERIMENT REVIEW CARBON DEPOSITION OF LOX/METHANE

TEST SERIES

CARIDH BULLD UP AND INJECTOR CALCULATION REQUIREMENTS

Carbon Bulld-up

Turbine Simulator Pressure Rates

PR_{TS} * rC1S0/PCTSU

DPTS-C = DPTS measured or (PCTSU-PCTSD) if DPTS measure invalid.

OP CORR = [(OPIS-C) - (PCTSU - PCTSO)] /2

PRIS CORR =(PCTSO - OP CORR)/(PCTSU + OP CORR)

Turbine Simulator Pressure Drop ۶;

OP_{TS} = PCTSU - PCTSO

PR_{TR} = (PCTSU/PC-1)

Turbulence Ring Pressure Ratio

m;

Turbulence Ring Pressure Brop

0PTR = (PC-1) -. PCTSU

Nozzle Area

NA1 = WTOT * C/(PC-1)/9c NAZ - WTOT * C/PCTSD/gc

Turbine Simulator Area ö

 $\begin{bmatrix} \frac{r+1}{2} & \frac{r+1}{r-1} \\ 2 & (\frac{r+1}{2}) & ((PR_{TSC})^{2/r} - (PR_{BC}) \end{bmatrix}$

Calculate C_0A for $\begin{array}{cccc} v = 1.1 \\ & v = 1.2 \\ & v = 1.3 \end{array}$

At will be provided by the Project Engineer

TEST SERIES (CONT)

7. New Turbine Simulator Pressure Ratio

PRTS-2 = (PCTS0-2)/(PCTSU-2)

OPTS2-C = (PCTSU-2) - (PCTS0-2)

DP-2 CORR = [(DPTS-2) - (DPT2-C)] /2

DPTS-2 is measured

PRTS2 CORR = [(PCTS0-2) - (OP-2 CORR)] / [(PCTSU-2) + (OP-2 CORR)]

INJECTOR

$$1.0003 = P03 - (PC-1)$$

(Momentum outer/inner)

PHOTOGRAPHIC COVERAGE REQUIREMENTS

FACILITY AND TEST STAND SETUP

DALL HARDWARE PRIOR TO THE HIGH FLOW RATE TEST SERIES

1500 PSI FOR MR = .20, .37, .47, .55, .60 AND .70, P = 2000 PSI FOR MR = .20, .37, .47, .55, PHOTOGRAPHIC STILLS OF THE EXHAUST PLUME AT P = 1000 PSI FOR MR = .20, .37, AND .60, P = .60 AND .70 AS A MINIMUM. PHOTOGRAPH OF THE THERMOCOUPLE RAKE AFTER COMPLETION OF THE GAS TEMPERATURE CHARACTERIZATION . TESTING IF THE TEST SCHEDULE IS NOT DELAYED

PHOTOGRAPH OF THE THERMOCOUPLE RAKE DURING THE NOZZLE CHANGE IF IIME PERMITS

PHOTOGRAPH OF ALL HARDWARE AT THE COMPLETION OF THE LOX/LNG TEST SERIES

VIDEOTAPE OF TURBINE SIMULATOR THROUGH BOROSCOPE ACCESS PORT AT P = 1000, 1500 AND 2000 PSI

VWG: AA0798

ENVIRONMENTAL

- O EMMISSIONS ARE WITHIN PERMIT LIMITS
- O FLUSH OF LOX CIRCUIT. ALL EFFLUENT WILL BE CONTAINED.
- o FLUSH FLUID AND DEGREASE PROCEDURE

ALBORRA TO FRENCH BY, COMPANY LIST CONTROLLER FOR THE CONTROL MANAGEMENT

18 February 1988 9510;3493;ARK; jcm

TO: T. C. Trafzer

FROM: A. R. Keller

Carbon Deposition Propellants

SUBJECT:

DISTRIBUTION: E.M. VanderWall

Here is the information you requested for the upcoming testing in A Area. The propellants are liquid natural gas, and liquid oxygen. The testing is scheduled for mid March to April.

If there is a problem with the exhaust product release permit, please let us know.

2 R Keen

A. R. Keller Test Engineer A Zone Test Operations

WI VanderHall, Hanager

Test Operations

2.25- 88

a riving the late submited in speak to the property of the 1-zer air parts and the summing pergraph of the limited of the property to the limited of the property of the limited of the present of the limited of the present of the limited of the li

VWG: AA0798

EMMI SSIONS

TOTAL PROJECTED EMISSIONS AND SPECIES FOR THE LOX/CH $_{\bf 4}$ HIGH DENSITY INJECTOR TEST SERIES

= 11996 POUNDS	= 28320 POUNDS	= 3008 SECONDS
TOTAL 02 PROJECTED	TOTAL CH4 PROJECTED	TOTAL TEST TIME

		lolar De Un/Day	2				
% MASS	0.49	0.10	0.08	0.03	0.21	60.0	1.00
TOTAL POUNDS	19702	4137	3354	1150	8206	3767	
SPECIES	СН4	00	² 00	. Н2	H ₂ 0	C (GRAPHITE)	

VWG: AA0798

OPERATIONAL PROCEDURES

- o VISITOR INFORMATION
- SIGN IN AND OUT OF TEST ZONE
- LOG LOCATED IN BUILDING 30003
- BUILDING 30003 IS EMERGENCY CONTROL CENTER
- REPORT TO LOBBY IMMEDIATELY DURING GAS EMERGENCY
- O ALL AREA WARBLER SIREN AND PAGE WILL ALERT PERSONNEL
- HARD HATS REQUIRED IN TEST BAYS

0

- OBSERVE WARNINGLIGHTS
- GREEN NO RESTRICTIONS
- YELLOW RESTRICTED TO ALL BUT THOSE AUTHORIZED BY TEST CONDUCTOR
- RED RESTRICTED TO ALL PERSONNEL
- CONTROL ROOM ACTIVITES

0

- FOLLOWING 10 MINUTE WARNING LIMIT CONVERSATIONS TO THAT REQUIRED TO PERFORM THE
- TECTING

0

POST TEST HARDWARE INSPECTION AFTER TEST BAY IS CLEARED TO ALL PERSONNEL

CRITICAL EXPERIMENT REVIEW CARBON DEPOSITION OF LOX/METHANE

Signature 10/10/18 18.50			SCHEDULE
A-5	@TechSystems	8	10/03/88 T
A	COMPANY	٥	3 4 6 6 7 8 8 10 11 12 13 14 16 16 17 18 18 20 21 22 23 24 26 26 27
A			CXXXXX CARREST CONTRACTOR CONTRAC
A-5	- 1	A-4	
A-5	SSNE HEX-STE GG/HEX	A-5	
ES CKUT CKUT CONTRUCTOR		9 8	
ES CKUIT A-7 CKUIT CONTRUCTOR CONT	SSME HEX	`	A SEE OF
A - 7	CARBON DEPOSITION	A-6 K	
ES ESK A-INERT EXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	AND COURSE COME	A-6	
FUEL TPA	DAY OTO	A-7	The state of the s
LINES LI		4.7	
POSITION	XLR-134 FUEL IPA		
POSITION FROOF & LEAK POSITION FORTION INSTALLATION INSTA			K
POSITION INTERED LINES WATTON CHECKOUT TURNOVER TORNOVER TORN	-5	A-1NEKI	1
POSITION IT FEED LINES WATTION INSTALLATION WATTION CHECKOUT TURNOVER CONSTRUCTOR CONSTRUC			+
TURNOVER TURNOVER TURNOVER TOWNSTALLATION	CARBON DEPOSITION		
TURNOVER TURNOVER TURNOVER TOURNOVER TOU	FNGINE ASSEMBLY		
TURNOVER TOTAL CONSTRUCTION TOTAL CONSTRUCTI			1
CK NTATION INSTALLATION TURNOVER TURNOVER TURNOVER CONSTRUCTION CO	PROPELLANT FEED LINES	1	
TURNOVER TURNOVER TOURNOVER TO	INSTRUMENTATION INSTALLATION	1	1
TURNOVER TURNOVER TORNOVER CONSTRUCTION	LEAK CHECK		
TURNOVER ZZZZZZZZ XXXXXXXX CONSTRUCTION CON	INSTRUMENTATION CHECKOUT		
CONSTRUCTION CAT-UP INCO CONTRUINUS INTESTION WORK TEST MANGENS CONTRUINUS CO	FACILITY TURNOVER		
CONSTRUCTION SET-UP PROP CONTRILOUS EVENT CONFLETED TEST HAMBERS CONTRILOUS EVENT EVENT ZONE MANAGES ACTIVATION SET-UP PROP TEST MANGENS ACTIVATION SET-UP PROP TESTING EVENT CONFLETED TEST MANGENS ACTIVATION SET-UP PROP TEST MANGENS ACTIVATION SET-UP PROPERTY CONFLETED TEST MANGENS ACTIVATION SET-UP PROPERTY AC	TESTING		
CONSTRUCTION SET-UP PRED CONTINUOUS NUMBERS CONFILED TEST MANAGERS CONFIGURATION EXPERIENT EXPER	**************************************		
ZONE MANAGES (V) () GASTILIDATE	SYMBOLS CONSTRUCTION SET-UP PRES	CONTINUOUS	NATIONE WORK TEST MANAGERS ONCHÜNE EXPENSATE REVENT
			ZONE MANAGERSTA LAMILIALIDATE

VWG: AA0798

ACTION ITEMS

		Person(s) Assigned
1.	Duration limits; fuel exhaustion	Keller Werling Bossard
2.	Max allowable ΔP	Bossard
3.	Boroscope checkout	Keller Bossard
4.	Caron monoxide emissions less than 550 lbm/day	Werling
5.	Methane lead time	Werling

APPENDIX B

LIQUID-LIQUID COAX INJECTOR CONCEPT REVIEW

CARBON DEPOSITION PROGRAM LIQUID-LIQUID COAX INJECTOR DESIGN CONCEPT REVIEW

30 SEPTEMBER 1988

CARBON DEPOSITION LIQUID-LIQUID COAX INJECTOR **CONCEPT REVIEW AGENDA**

INTRODUCTION

ANALYSIS

K. NIIYA

J. BOSSARD

B. CAROTHERS

DESIGN

SUMMARY

ACTION ITEMS

CARBON DEPOSITION LIQUID-LIQUID COAX INJECTOR **DESIGN REVIEW BOARD MEMBERS**

CHAIRMAN

J. L. PIEPER

PERFORMANCE ANALYSIS

R. E. WALKER

THERMAL ANALYSIS

F. F. CHEN

STRESS ANALYSIS

J. E. JELLISON

MATERIALS

R. M. HORN

PRODUCIBILITY

J. A. PHIPPS

DESIGN

L. C. FEMLING

INTRODUCTION

JOHN BOSSARD

PROGRAM OBJECTIVES

PERFORM LNG TESTS AND COMPARE WITH PREVIOUS METHANE RESULTS VERIFY LACK OF CARBON BUILD-UP FOR LOX/METHANE PROPELLANTS ON TURBINE SIMULATOR AT FULL SCALE INJECTION RATES WITH STBE GG TYPE INJECTOR

UPDATE FUEL RICH COMBUSTION MODEL (FRCM) TO INCLUDE METHANE

INJECTOR TO OPERATE AT FULL SCALE INJECTION RATES DESIGN, FABRICATE, AND BUILD A LIQUID-LIQUID COAX

COAX INJECTOR OBJECTIVES

RUN LOX/METHANE IN A LIQ-LIQ COAX INJECTOR

Pc 'S AS IN THE PREVIOUS LOX/METHANE TESTING **OPERATE AT SIMILIAR FLOW RATES AND**

COAX INJECTOR TO THE IMPINGING TRIPLET INJECTOR COMPARE CARBON DEPOSTION EFFECTS OF THE

COMPATIBILITY WITH ALS TECHNOLOGY WHERE POSSIBLE

INJECTOR REQUIREMENTS

PARAMETER	REQUIREMENT	SOURCE
PROPELLANT	LOX/METHANE	CONTRACT MOD.
INJECTOR ELEMENT	LIQ/LIQ COAX	CONTRACT MOD.
M _{TOTAL}	13 - 16 lbm/sec	PREVIOUS TESTING
Рс	2000 psi	PREVIOUS TESTING
MR	.2060	PREVIOUS TESTING
FUEL AND OX SUPPLY LINE PRESSURE	< 3000 psi	TEST EQUIPMENT LIMITATION
INJECTOR DIAMETER	2.38 in	HARDWARE INTERFACE
IGNITER	GOX/GH ₂	PREVIOUS TESTING
CHAMBER LENGTH	20 in max.	HARDWARE
THRUST LEVEL	2 - 3 k lbf.	PREVIOUS TESTING

ANALYSIS

KAREN NIIYA

SWIRL COAX INJECTOR ELEMENT DESIGN CRITERIA

ELEMENT TYPE: DOUBLE SWIRL COAX

OXIDIZER: LO₂

FUEL: LCH4

OXIDIZER FLOWRATE = 3.85 lbm/s

FUEL FLOWRATE = 10.39 lbm/s

MIXTURE RATIO = 0.37

 $P_c = 2000 \text{ psia}$

 $\triangle P_{OX} = 300 \text{ psid}$

 $\Delta P_{f} = 600 \text{ psid}$

INJECTOR FACE DIAMETER = 2.175"

NUMBER OF ELEMENTS = 18

CONE ANGLE PARAMETRIC STUDY:

OXIDIZER HALF CONE ANGLE RANGE = 15° TO 60°

FUEL HALF CONE ANGLE RANGE = 15° TO 60°

LO2 VAPORIZATION PROFILE IS A FUNCTION OF CONE ANGLE

Vaporization rate increases with cone angle
Atomization distance decreases with cone angle

METHANE VAPORIZATION PROFILE IS A FUNCTION OF CONE ANGLE

 For a given cone angle, the ox vaporization rate is higher than the fuel vaporization rate

FOR $\Theta_{OX} = 200$, PREFERRED FUEL CONE ANGLE RANGE FOR INJECTOR FACE THERMAL COMPATIBILITY IS 450 TO 600

FOR $\Theta_{OX} = 30^{\circ}$, PREFERRED FUEL CONE ANGLE RANGE FOR INJECTOR FACE THERMAL COMPATIBILITY IS 60°

1

PARAMETRIC STUDY CONCLUSIONS

HYDRAULIC AND MECHANICAL DESIGN ANALYSES INDICATE MAXIMUM ALLOWABLE FUEL HALF CONE ANGLE = 450

 Due to tight fit between elements, the fuel sleeve outer diameter is restricted to less than or equal to 0.330".

• Fuel sleeve O.D. is dependent on desired fuel cone angle.

TechSystems COMPANY

ROUGH SKETCH OF OX POST AND FUEL ANNULUS GEOMETRIES (NOT TO SCALE)

CARBON DEPOSITION SWIRL COAX INJECTOR **CURRENT DESIGN POINT**

$$P_c = 2000 \text{ psia}$$

OX FLOWRATE =
$$3.85 \, \text{lbm/s}$$

$$\Delta P_{ox} = 300 \text{ psi}$$

$$\triangle P_f = 600 \text{ psi}$$

$$D_{ox} POST = 0.100 in.$$

DESIGN

BRIAN CAROTHERS

SWIRL ELEMENT ACCESSIBILITY

RISK ASSESSMENT

-YSIS
ANA
NCE
SEMA
PERF(

NO → YES
COLD FLOW TESTING 1) CONE ANGLES

THERMAL ANALYSIS

COMPLETED STRESS ANALYSIS F-O-F TRIPLET EXPERIENCE NO → YES STRESS ANALYSIS

MATERIALS

YES

PRODUCIBILITY

8 1) FACE NUTS DESIGN

0X 2) CONFINED ENVELOPE

Q

2 **FABRICATION**

B-25