Temporal Difference Learning

Temporal difference learning is central to reinforcement learning, allowing for incremental updates to value estimates without waiting for the end of an episode.

The TD error, denoted as δ_t , represents the difference between the estimated value of a state and the value of the next state.

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)] \leftarrow \delta_t$$

Reminder: $G_t \approx R_{t+1} + \gamma V(S_{t+1})$

Tabular TD(0) for estimating v_π

Input: the policy π to be evaluated

Algorithm parameter: step size $\alpha \in (0,1]$

Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop for each episode:

Initialize S

Loop for each step of the episode:

 $A \leftarrow$ action given by π for S

Take action A, observe R, S'

$$V(S) \leftarrow V(S) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

 $S \leftarrow S'$

Until S is terminal

The advantages of Temporal Difference

Temporal Difference combines key ideas from Monte Carlo methods and Dynamic programming together, making it able to update from the previous parameters and learn directly from experience at once.

Feature	Monte Carlo (MC)	Dynamic	Temporal
		Programming (DP)	Difference (TD)
Model	Does not need a	Requires full model	Does not need a
Requirement	model		model
When It Updates	Only after episode	Iteratively over full	Step-by-step,
	ends	state space	during episode

Use in Continuing	Not suitable	Suitable	Suitable
Tasks			
Works in Real-Time	No (waits for	No	Yes
	episode to finish)		
Learning Efficiency	Slower (uses full	Fast if model is	Faster (bootstraps
	returns)	accurate	estimates)
Sample Efficiency	Less efficient	High (requires full	More efficient
		sweeps)	
Bias/Variance	Low bias, high	Low variance, higher	Moderate bias and
	variance	bias	variance
Scalability	Moderate (with	Poor in large state	High (learns from
	enough samples)	spaces	samples)
Flexibility	Works with	Only in known	Works with
	unknown	environments	unknown
	environments		environments
Responsiveness to	Slower to adapt	Depends on full	Quickly adapts with
Change		environment update	each step