M1 Systèmes dynamiques

Raphaël KRIKORIAN

20 octobre 2021

 Introduction générale : divers exemples d'EDO, linéaire vs. non-linéaire, stabilité.

- Introduction générale : divers exemples d'EDO, linéaire vs. non-linéaire, stabilité.
- Rappels de topologie, d'algèbre linéaire et de calcul différentiel.

- Introduction générale : divers exemples d'EDO, linéaire vs. non-linéaire, stabilité.
- Rappels de topologie, d'algèbre linéaire et de calcul différentiel.
- Théorème du point fixe de Picard et théorèmes des fonctions implicites et d'inversion locale.

- Introduction générale : divers exemples d'EDO, linéaire vs. non-linéaire, stabilité.
- Rappels de topologie, d'algèbre linéaire et de calcul différentiel.
- Théorème du point fixe de Picard et théorèmes des fonctions implicites et d'inversion locale.
- Théorème d'existence de Cauchy-Lipschitz, critère d'existence et d'unicité globales, dépendance par rapport aux paramètres (cas linéaire)

- Introduction générale : divers exemples d'EDO, linéaire vs. non-linéaire, stabilité.
- Rappels de topologie, d'algèbre linéaire et de calcul différentiel.
- Théorème du point fixe de Picard et théorèmes des fonctions implicites et d'inversion locale.
- Théorème d'existence de Cauchy-Lipschitz, critère d'existence et d'unicité globales, dépendance par rapport aux paramètres (cas linéaire)
- E.D.O. à coefficients constants.

- Introduction générale : divers exemples d'EDO, linéaire vs. non-linéaire, stabilité.
- Rappels de topologie, d'algèbre linéaire et de calcul différentiel.
- Théorème du point fixe de Picard et théorèmes des fonctions implicites et d'inversion locale.
- Théorème d'existence de Cauchy-Lipschitz, critère d'existence et d'unicité globales, dépendance par rapport aux paramètres (cas linéaire)
- E.D.O. à coefficients constants.
- E.D.O. linéaires : résolvante, théorie des perturbations.

- Introduction générale : divers exemples d'EDO, linéaire vs. non-linéaire, stabilité.
- Rappels de topologie, d'algèbre linéaire et de calcul différentiel.
- Théorème du point fixe de Picard et théorèmes des fonctions implicites et d'inversion locale.
- Théorème d'existence de Cauchy-Lipschitz, critère d'existence et d'unicité globales, dépendance par rapport aux paramètres (cas linéaire)
- E.D.O. à coefficients constants.
- E.D.O. linéaires : résolvante, théorie des perturbations.
- E.D.O. linéaires à coefficients périodiques. Théorème de Floquet, résonnance paramétrique.

- Introduction générale : divers exemples d'EDO, linéaire vs. non-linéaire, stabilité.
- Rappels de topologie, d'algèbre linéaire et de calcul différentiel.
- Théorème du point fixe de Picard et théorèmes des fonctions implicites et d'inversion locale.
- Théorème d'existence de Cauchy-Lipschitz, critère d'existence et d'unicité globales, dépendance par rapport aux paramètres (cas linéaire)
- E.D.O. à coefficients constants.
- E.D.O. linéaires : résolvante, théorie des perturbations.
- E.D.O. linéaires à coefficients périodiques. Théorème de Floquet, résonnance paramétrique.
- Temps de vie des solutions, intervalle maximal, estimation de temps de vie.

20 octobre 2021 2 / 32

• ODE non-linéaires : linéarisation et théorie des perturbations.

- ODE non-linéaires : linéarisation et théorie des perturbations.
- Flots, champs de vecteurs, application de premier retour, application
 à la stabilité.

- ODE non-linéaires : linéarisation et théorie des perturbations.
- Flots, champs de vecteurs, application de premier retour, application
 à la stabilité.
- Sous-variétés, espace tangent, point critique, champs de vecteurs sur les sous-variétés, sous-variétés à bord.

- ODE non-linéaires : linéarisation et théorie des perturbations.
- Flots, champs de vecteurs, application de premier retour, application à la stabilité.
- Sous-variétés, espace tangent, point critique, champs de vecteurs sur les sous-variétés, sous-variétés à bord.
- Stabilité (critère de Routh, fonctions de Lyapunov), champs de vecteurs en dimension 2 (perturbations des applications conservatives et théorème de Poincaré-Bendixon)

- ODE non-linéaires : linéarisation et théorie des perturbations.
- Flots, champs de vecteurs, application de premier retour, application à la stabilité.
- Sous-variétés, espace tangent, point critique, champs de vecteurs sur les sous-variétés, sous-variétés à bord.
- Stabilité (critère de Routh, fonctions de Lyapunov), champs de vecteurs en dimension 2 (perturbations des applications conservatives et théorème de Poincaré-Bendixon)
- Redressement des flots, points fixes hyperboliques. Le théorème de la variété stable, théorème de Hartman-Grobman. Régularité et chaos.

Sommaire Plan du cours 3

- E.D.O. linéaires dépendant du temps
 - La résolvante
 - Variation de la constante
- Théorie des perturbations (cas linéaire)
- 3 E.D.O. linéaires périodiques
- 4 La résonance paramétrique

E.D.O. affines:

$$\begin{cases} \dot{X}(t) = A(t)X(t) + b(t) \\ X(t_0) = X_0 \end{cases}$$

où
$$A \in C^0(I, M(n, \mathbb{K}))$$
, $b \in C^0(I, \mathbb{K}^n)$

E.D.O. affines:

$$\begin{cases} \dot{X}(t) = A(t)X(t) + b(t) \\ X(t_0) = X_0 \end{cases}$$

où $A \in C^0(I, M(n, \mathbb{K})), b \in C^0(I, \mathbb{K}^n)$ EDO linéaires

$$\begin{cases} \dot{X}(t) = A(t)X(t) \\ X(t_0) = X_0 \end{cases}$$

• $\mathcal{E}_{A(\cdot)}=\{X(\cdot)\in C^1(I,\mathbb{K}^n) \text{ sol. de } \dot{X}(t)=A(t)X(t)\}:\mathbb{K}$ -espace vectoriel.

La résolvante

La résolvante

- $\mathcal{E}_{A(\cdot)}=\{X(\cdot)\in C^1(I,\mathbb{K}^n) \text{ sol. de } \dot{X}(t)=A(t)X(t)\}:\mathbb{K}\text{-espace vectoriel.}$
- dim $\mathcal{E}_{A(\cdot)} = n$

La résolvante

- $\mathcal{E}_{A(\cdot)}=\{X(\cdot)\in C^1(I,\mathbb{K}^n) \text{ sol. de } \dot{X}(t)=A(t)X(t)\}:\mathbb{K}\text{-espace vectoriel.}$
- dim $\mathcal{E}_{A(\cdot)} = n$
- car $\mathbb{K}^n \to \mathcal{E}_{A(\cdot)}$, $v \mapsto X_v(\cdot)$ t.q $X_v(t_0) = v$ est un isomorphisme (linéarité $+ \exists !$)

La résolvante

- $\mathcal{E}_{A(\cdot)}=\{X(\cdot)\in C^1(I,\mathbb{K}^n) \text{ sol. de } \dot{X}(t)=A(t)X(t)\}:\mathbb{K}\text{-espace vectoriel.}$
- dim $\mathcal{E}_{A(\cdot)} = n$
- car $\mathbb{K}^n \to \mathcal{E}_{A(\cdot)}$, $v \mapsto X_v(\cdot)$ t.q $X_v(t_0) = v$ est un isomorphisme (linéarité $+ \exists !$)

Définition

Résolvante
$$R_A(t,s) \in GL(n,\mathbb{K})$$
 $(t,s\in I)$ de $\dot{X}(t)=A(t)X(t)$

$$X(\cdot) \in \mathcal{E}_A \iff \forall t, s \in I, \quad X(t) = R_A(t, s)X(s).$$

Propriétés de la résolvante

(1) (Chasles):
$$t_1, t_2, t_3 \in I$$
,
$$R_A(t_3, t_1) = R_A(t_3, t_2)R_A(t_2, t_1)$$
$$(R(t_1, t_2) = R(t_2, t_1)^{-1}.)$$

Propriétés de la résolvante

(1) (Chasles) : $t_1, t_2, t_3 \in I$,

$$R_A(t_3, t_1) = R_A(t_3, t_2)R_A(t_2, t_1)$$

$$(R(t_1, t_2) = R(t_2, t_1)^{-1}.)$$

(2) $t_0 \in I$ fixé, $t \mapsto R_A(t, t_0)$ vérifie l'EDO matricielle (attention l'espace des phases est $M(n, \mathbb{K})$)

$$\begin{cases} \frac{d}{dt}R_A(t,t_0) = A(t)R_A(t,t_0) \\ R_A(t_0,t_0) = I \end{cases}$$

Propriétés de la résolvante

(3) (Cas scalaire) si n=1 (E.D.O. x'(t)=a(t)x(t), $a(\cdot)$, $x(\cdot)$ à valeurs réelles ou complexes) on a $R(t,t_0)=e^{\int_{t_0}^t a(s)ds}$.

Propriétés de la résolvante

- (3) (Cas scalaire) si n=1 (E.D.O. x'(t)=a(t)x(t), $a(\cdot)$, $x(\cdot)$ à valeurs réelles ou complexes) on a $R(t,t_0)=e^{\int_{t_0}^t a(s)ds}$.
- (4) (Cas constant) Si $A(\cdot) \equiv constante$ on a $R_A(t, t_0) = e^{(t-t_0)A}$. (cf. Transparents cours 2)

Propriétés de la résolvante

- (3) (Cas scalaire) si n=1 (E.D.O. x'(t)=a(t)x(t), $a(\cdot)$, $x(\cdot)$ à valeurs réelles ou complexes) on a $R(t,t_0)=e^{\int_{t_0}^t a(s)ds}$.
- (4) (Cas constant) Si $A(\cdot) \equiv constante$ on a $R_A(t, t_0) = e^{(t-t_0)A}$. (cf. Transparents cours 2)
- (5) (Liouville) On a

$$\det R(t,t_0)=e^{\int_{t_0}^t \operatorname{tr}(A(s))ds}$$

Propriétés de la résolvante

- (3) (Cas scalaire) si n=1 (E.D.O. x'(t)=a(t)x(t), $a(\cdot)$, $x(\cdot)$ à valeurs réelles ou complexes) on a $R(t,t_0)=e^{\int_{t_0}^t a(s)ds}$.
- (4) (Cas constant) Si $A(\cdot) \equiv constante$ on a $R_A(t, t_0) = e^{(t-t_0)A}$. (cf. Transparents cours 2)
- (5) (Liouville) On a

$$\det R(t,t_0) = e^{\int_{t_0}^t \operatorname{tr}(A(s))ds}$$

(6) (Groupes et algèbres de Lie) Soit $U \in GL(n, \mathbb{K})$. Si $A(\cdot)$ est à valeurs dans (l'algèbre de Lie) $\mathfrak{g}_U = \{M \in M(n, \mathbb{K}) : {}^tMU + UM = 0\}$ alors $R_A(\cdot, t_0)$ est à valeurs dans le groupe (de Lie) $G_U = \{P \in GL(n, \mathbb{K}) : {}^tPUP = U\}.$

Propriétés de la résolvante

On ne sait pas en général calculer R_A mais

(7) Si
$$\forall t,s \in I$$
 $A(t)$ et $A(s)$ commutent $R_A(t,t_0) = e^{\int_{t_0}^t (A(s))ds}$

On ne sait pas en général calculer R_A mais

(7) Si
$$\forall t, s \in I$$
 $A(t)$ et $A(s)$ commutent $R_A(t, t_0) = e^{\int_{t_0}^t (A(s))ds}$ (8)

$$R_{A}(t,t_{0}) = I + \sum_{n=1}^{\infty} \int_{t_{0} \leqslant s_{1} \leqslant \cdots \leqslant s_{n} \leqslant t} A(s_{n}) \cdots A(s_{1}) ds_{1} \cdots ds_{n}$$

$$= I + \sum_{n=1}^{\infty} \frac{1}{n!} \int_{s_{1},\ldots,s_{n} \in [t_{0},t]} T(A(s_{1}) \cdots A(s_{n})) ds_{1} \cdots ds_{n}$$

où
$$T(A(s_1)\cdots A(s_n))=A(s_{\sigma(1)})\cdots A(s_{\sigma(n)})$$
, (produit chronologique) $s_{\sigma(1)}>\cdots>s_{\sigma(n)}$

Variation de la constante

La résolvante : résoudre toutes les équations affines

Variation de la constante

La résolvante : résoudre toutes les équations affines

Théorème (Variation de la constante)

$$X'(t) = A(t)X(t) + b(t)$$
 ssi

$$\forall t, \ X(t) = R_A(t,t_0)X_0 + \int_{t_0}^t R_A(t,s)b(s)ds.$$

Sommaire Plan du cours 3

- 1 E.D.O. linéaires dépendant du temps
- Théorie des perturbations (cas linéaire)Principe
- 3 E.D.O. linéaires périodiques
- 4 La résonance paramétrique

$$A_{\epsilon}(\cdot) = A_0 + \epsilon F(\cdot)$$

$$A_{\epsilon}(\cdot) = A_0 + \epsilon F(\cdot)$$

$$A_{\epsilon}(\cdot) = A_0 + \epsilon F(\cdot)$$

• A₀ constante (ou de résolvante connue);

$$A_{\epsilon}(\cdot) = A_0 + \epsilon F(\cdot)$$

- A₀ constante (ou de résolvante connue);
- $F(\cdot) \in C^0(I, M(n, \mathbb{K}))$

$$A_{\epsilon}(\cdot) = A_0 + \epsilon F(\cdot)$$

- A₀ constante (ou de résolvante connue);
- $F(\cdot) \in C^0(I, M(n, \mathbb{K}))$
- \bullet ϵ petit paramètre réel.

$$A_{\epsilon}(\cdot) = A_0 + \epsilon F(\cdot)$$

- A₀ constante (ou de résolvante connue);
- $F(\cdot) \in C^0(I, M(n, \mathbb{K}))$
- ullet petit paramètre réel.

Problème:

$$A_{\epsilon}(\cdot) = A_0 + \epsilon F(\cdot)$$

- A₀ constante (ou de résolvante connue);
- $F(\cdot) \in C^0(I, M(n, \mathbb{K}))$
- ullet petit paramètre réel.

Problème : estimer la résolvante $R_{A_{\epsilon}}$;

Théorème de dépendance différentiable (cas linéaire) :

Théorème de dépendance différentiable (cas linéaire) :

$$\epsilon \mapsto R_A(\cdot,0)$$
 C^{∞} (analytique).

Théorème de dépendance différentiable (cas linéaire) :

$$\epsilon \mapsto R_A(\cdot,0)$$
 C^{∞} (analytique).

Développement limité

Théorème de dépendance différentiable (cas linéaire) :

$$\epsilon \mapsto R_A(\cdot,0)$$
 C^{∞} (analytique).

Développement limité

$$R_{A_{\epsilon}}(t,0) = R_{A_0}(t,0) + \epsilon Y_1(t) + \dots + \epsilon^k Y_k(t) + O(\epsilon^{k+1},t)$$

Théorème de dépendance différentiable (cas linéaire) :

$$\epsilon \mapsto R_A(\cdot,0)$$
 C^{∞} (analytique).

Développement limité

$$R_{A_{\epsilon}}(t,0) = R_{A_0}(t,0) + \epsilon Y_1(t) + \cdots + \epsilon^k Y_k(t) + O(\epsilon^{k+1},t)$$

où
$$||O(\epsilon^{k+1}, \cdot)||_{C^1(I)} \leqslant \operatorname{cste} \cdot \epsilon^{k+1}$$
.

Théorème de dépendance différentiable (cas linéaire) :

$$\epsilon \mapsto R_A(\cdot,0)$$
 C^{∞} (analytique).

Développement limité

$$R_{A_{\epsilon}}(t,0) = R_{A_0}(t,0) + \epsilon Y_1(t) + \cdots + \epsilon^k Y_k(t) + O(\epsilon^{k+1},t)$$

où
$$||O(\epsilon^{k+1}, \cdot)||_{C^1(I)} \leqslant \operatorname{cste} \cdot \epsilon^{k+1}$$
.

Déterminer

Théorème de dépendance différentiable (cas linéaire) :

$$\epsilon \mapsto R_A(\cdot,0)$$
 C^{∞} (analytique).

Développement limité

$$R_{A_{\epsilon}}(t,0) = R_{A_0}(t,0) + \epsilon Y_1(t) + \cdots + \epsilon^k Y_k(t) + O(\epsilon^{k+1},t)$$

où
$$||O(\epsilon^{k+1}, \cdot)||_{C^1(I)} \leqslant \operatorname{cste} \cdot \epsilon^{k+1}$$
.

Déterminer $Y_1(\cdot), \ldots, Y_k(\cdot)$.

On injecte

$$R_{A_\epsilon}(t,0)=R_{A_0}(t,0)+\epsilon Y_1(t)+\cdots+\epsilon^k Y_k(t)+O(\epsilon^{k+1},t)$$
 dans

$$\begin{cases} \dot{R}_{A_{\epsilon}}(t,0) = (A_0 + \epsilon F(t))R_{A_{\epsilon}}(t,0) \\ R_{A_{\epsilon}}(0,0) = I \end{cases}$$

On injecte

$$R_{A_{\epsilon}}(t,0) = R_{A_0}(t,0) + \epsilon Y_1(t) + \cdots + \epsilon^k Y_k(t) + O(\epsilon^{k+1},t)$$

dans

$$\begin{cases} \dot{R}_{A_{\epsilon}}(t,0) = (A_0 + \epsilon F(t))R_{A_{\epsilon}}(t,0) \\ R_{A_{\epsilon}}(0,0) = I \end{cases}$$

• et on utilise le fait qu'un développement limité est unique.

Sommaire Plan du cours 3

- E.D.O. linéaires dépendant du temps
- 2 Théorie des perturbations (cas linéaire)
- 3 E.D.O. linéaires périodiques
 - Conséquences de la périodicité
 - Le théorème de Floquet
- 4 La résonance paramétrique

Conséquences de la périodicité : la résolvante

On suppose
$$A(\cdot) \in C^0(I, M(n, \mathbb{K}))$$
 T-périodique, c.-à-d.

$$A(\cdot + T) = A(\cdot)$$

Conséquences de la périodicité : la résolvante

On suppose $A(\cdot) \in C^0(I, M(n, \mathbb{K}))$ *T*-périodique, c.-à-d.

$$A(\cdot + T) = A(\cdot)$$

Théorème

Si $A(\cdot)$ est T-périodique alors,

Conséquences de la périodicité : la résolvante

On suppose $A(\cdot) \in C^0(I, M(n, \mathbb{K}))$ *T*-périodique, c.-à-d.

$$A(\cdot + T) = A(\cdot)$$

Théorème

Si $A(\cdot)$ est T-périodique alors,

i) pour tous $t_1, t_2 \in \mathbb{R}$ on a,

$$R_A(t_2 + T, t_1 + T) = R_A(t_2, t_1);$$

Conséquences de la périodicité : la résolvante

On suppose $A(\cdot) \in C^0(I, M(n, \mathbb{K}))$ *T*-périodique, c.-à-d.

$$A(\cdot + T) = A(\cdot)$$

Théorème

Si $A(\cdot)$ est T-périodique alors,

i) pour tous $t_1, t_2 \in \mathbb{R}$ on a ,

$$R_A(t_2 + T, t_1 + T) = R_A(t_2, t_1);$$

ii) pour tout $t \in \mathbb{R}$,

$$R_A(t+T,t) = R_A(t,0)R(T,0)R_A(t,0)^{-1}.$$

Le théorème de Floquet

Théorème (de Floquet)

Hyp. : $A \in C^k(\mathbb{R}, M_n(\mathbb{K}))$ T-périodique.

Le théorème de Floquet

Théorème (de Floquet)

Hyp. : $A \in C^k(\mathbb{R}, M_n(\mathbb{K}))$ T-périodique.

Conc.

Le théorème de Floquet

Théorème (de Floquet)

Hyp. : $A \in C^k(\mathbb{R}, M_n(\mathbb{K}))$ **T**-périodique.

• $\exists A_0 \in M_n(\mathbb{K}) : e^{TA_0} = R_A(T,0) \text{ si } \mathbb{K} = \mathbb{C}, \text{ (resp. } e^{2TA_0} = R_A(2T,0) \text{ si } \mathbb{K} = \mathbb{R});$

Le théorème de Floquet

Théorème (de Floquet)

Hyp. : $A \in C^k(\mathbb{R}, M_n(\mathbb{K}))$ T-périodique.

- $\exists A_0 \in M_n(\mathbb{K}) : e^{TA_0} = R_A(T,0) \text{ si } \mathbb{K} = \mathbb{C}, \text{ (resp. } e^{2TA_0} = R_A(2T,0) \text{ si } \mathbb{K} = \mathbb{R});$
- $\exists P \in C^k(\mathbb{R}, Gl(n, \mathbb{K}))$ T-périodique si $\mathbb{K} = \mathbb{C}$ (resp. 2T-périodique si $\mathbb{K} = \mathbb{R}$)

Le théorème de Floquet

Théorème (de Floquet)

Hyp. : $A \in C^k(\mathbb{R}, M_n(\mathbb{K}))$ **T**-périodique.

- $\exists A_0 \in M_n(\mathbb{K}) : e^{TA_0} = R_A(T,0) \text{ si } \mathbb{K} = \mathbb{C}, \text{ (resp. } e^{2TA_0} = R_A(2T,0) \text{ si } \mathbb{K} = \mathbb{R});$
- $\exists P \in C^k(\mathbb{R}, Gl(n, \mathbb{K}))$ T-périodique si $\mathbb{K} = \mathbb{C}$ (resp. 2T-périodique si $\mathbb{K} = \mathbb{R}$)

t.q.

$$\forall t, t_0 \in \mathbb{R}, \ R_A(t,0) = P(t)e^{tA_0}.$$

Le théorème de Floquet

Remarques:

• $R_A(t,0) = P(t)e^{tA_0}$:

$$X'(t) = A(t)X(t) \iff Y'(t) = A_0Y(t) \text{ avec } Y(\cdot) = P(\cdot)^{-1}X(\cdot)$$

Le théorème de Floquet

Remarques:

• $R_A(t,0) = P(t)e^{tA_0}$:

$$X'(t) = A(t)X(t) \iff Y'(t) = A_0Y(t) \text{ avec } Y(\cdot) = P(\cdot)^{-1}X(\cdot)$$

• Si $A(\cdot)$ à valeurs dans $sl(2,\mathbb{R})$: même chose en remplaçant $M_n(\mathbb{R})$ par $sl(2,\mathbb{R})$ et $Gl(n,\mathbb{R})$ par $SL(2,\mathbb{R})$.

Le théorème de Floquet

Remarques:

• $R_A(t,0) = P(t)e^{tA_0}$:

$$X'(t) = A(t)X(t) \iff Y'(t) = A_0Y(t) \text{ avec } Y(\cdot) = P(\cdot)^{-1}X(\cdot)$$

• Si $A(\cdot)$ à valeurs dans $sl(2,\mathbb{R})$: même chose en remplaçant $M_n(\mathbb{R})$ par $sl(2,\mathbb{R})$ et $Gl(n,\mathbb{R})$ par $SL(2,\mathbb{R})$.

Proposition

 $Si\ \dot{X}(t) = A(t)X(t)\ où\ A(\cdot)\ T$ -périodique : coeff de $X(\cdot) =$ sommes finies de $a_{p,q}(t)t^pe^{t\lambda_q}$ où $a(\cdot)\ T$ -périodique (à valeurs complexes), $0\leqslant p\leqslant n$ et λ_q valeurs propres de A_0 (les exposants de Floquet).

Sommaire Plan du cours 3

- E.D.O. linéaires dépendant du temps
- 2 Théorie des perturbations (cas linéaire)
- 3 E.D.O. linéaires périodiques
- 4 La résonance paramétrique
 - Stabilité/instabilité
 - Cas de la dimension 2
 - Résonance paramétrique

Stabilité des E.D.O. périodiques linéaires

Problème : On considère $A(\cdot) \in C^0(I, M(n, \mathbb{K}))$, T-périodique $(A(\cdot + T) = A(\cdot))$ et on se propose d'étudier la stabilité du système

$$\dot{X}(t) = A(t)X(t).$$

L'origine est-elle

Stabilité des E.D.O. périodiques linéaires

Problème : On considère $A(\cdot) \in C^0(I, M(n, \mathbb{K}))$, T-périodique $(A(\cdot + T) = A(\cdot))$ et on se propose d'étudier la stabilité du système

$$\dot{X}(t) = A(t)X(t).$$

L'origine est-elle

• asymptotiquement stable (en $t \to +\infty$)? : $\forall X(0)$ dans un vois. de 0 $\lim_{t\to\infty} X(t) = 0$?

Stabilité des E.D.O. périodiques linéaires

Problème : On considère $A(\cdot) \in C^0(I, M(n, \mathbb{K}))$, T-périodique $(A(\cdot + T) = A(\cdot))$ et on se propose d'étudier la stabilité du système

$$\dot{X}(t) = A(t)X(t).$$

L'origine est-elle

- asymptotiquement stable (en $t \to +\infty$)? : $\forall X(0)$ dans un vois. de 0 $\lim_{t\to\infty} X(t) = 0$?
- stable? : $\forall \epsilon > 0$, $\exists \delta$, $|X(0)| < \delta \implies \forall t \geqslant 0$, $|X(t)| < \epsilon$?

Stabilité des E.D.O. périodiques linéaires

Problème : On considère $A(\cdot) \in C^0(I, M(n, \mathbb{K}))$, T-périodique $(A(\cdot + T) = A(\cdot))$ et on se propose d'étudier la stabilité du système

$$\dot{X}(t) = A(t)X(t).$$

L'origine est-elle

- asymptotiquement stable (en $t \to +\infty$)? : $\forall X(0)$ dans un vois. de 0 $\lim_{t \to \infty} X(t) = 0$?
- stable? : $\forall \epsilon > 0$, $\exists \delta$, $|X(0)| < \delta \implies \forall t \geqslant 0$, $|X(t)| < \epsilon$?
- instable? Pour certaines conditions initiales arbitrairement proches de 0, les solutions sortent de tout voisinage de 0 prescrit à l'avance.

Stabilité des E.D.O. périodiques linéaires

$$X(t) = R_A(t,0)X(0) = P(t)e^{tA_0}X(0), \qquad P(\cdot + T) = P(\cdot)$$

Stabilité des E.D.O. périodiques linéaires

$$X(t) = R_A(t,0)X(0) = P(t)e^{tA_0}X(0), \qquad P(\cdot + T) = P(\cdot)$$

• 0 est asymptotiquement stable (en $t \to +\infty$) \iff $\Gamma_u(A_0) = \Gamma_c(A_0) = \emptyset \iff$ toutes les valeurs propres de A_0 sont de parties réelles strictement négatives.

Stabilité des E.D.O. périodiques linéaires

$$X(t) = R_A(t,0)X(0) = P(t)e^{tA_0}X(0), \qquad P(\cdot + T) = P(\cdot)$$

- 0 est asymptotiquement stable (en $t \to +\infty$) \iff $\Gamma_u(A_0) = \Gamma_c(A_0) = \emptyset \iff$ toutes les valeurs propres de A_0 sont de parties réelles strictement négatives.
- 0 est stable (en t→+∞) ← Γ_u(A₀) = ∅ et M = 0 ← toutes les valeurs propres de A₀ sont de partie réelle négative et A₀ est diagonalisable en celles de partie réelle nulle.

Stabilité des E.D.O. périodiques linéaires

$$X(t) = R_A(t,0)X(0) = P(t)e^{tA_0}X(0), \qquad P(\cdot + T) = P(\cdot)$$

- 0 est asymptotiquement stable (en t → +∞) ⇐⇒
 Γ_u(A₀) = Γ_c(A₀) = ∅ ⇐⇒ toutes les valeurs propres de A₀ sont de parties réelles strictement négatives.
- 0 est stable (en t → +∞) ← Γ_u(A₀) = ∅ et M = 0 ← toutes les valeurs propres de A₀ sont de partie réelle négative et A₀ est diagonalisable en celles de partie réelle nulle.
- 0 est instable

 A₀ a au moins valeur propre de partie réelle strictement positive ou une valeur propre de partie réelle nulle où elle n'est pas diagonalisable.

Stabilité des E.D.O. périodiques linéaires

Comme $e^{TA_0} = R_A(T,0)$ (ou $e^{2TA_0} = R(T,0)^2$), les valeurs propres ρ_i de $R_A(T,0)$ son reliées à celles λ_i de A_0 par la relation

$$e^{T\lambda_i} = \rho_i$$
.

Stabilité des E.D.O. périodiques linéaires

Comme $e^{TA_0} = R_A(T,0)$ (ou $e^{2TA_0} = R(T,0)^2$), les valeurs propres ρ_i de $R_A(T,0)$ son reliées à celles λ_i de A_0 par la relation

$$e^{T\lambda_i} = \rho_i$$
.

Proposition

Stabilité des E.D.O. périodiques linéaires

Comme $e^{TA_0} = R_A(T,0)$ (ou $e^{2TA_0} = R(T,0)^2$), les valeurs propres ρ_i de $R_A(T,0)$ son reliées à celles λ_i de A_0 par la relation

$$e^{T\lambda_i} = \rho_i$$
.

Proposition

• 0 est asymptotiquement stable (en $t \to +\infty$) \iff toutes les valeurs propres de $R_A(T,0)$ sont de module < 1.

Stabilité des E.D.O. périodiques linéaires

Comme $e^{TA_0} = R_A(T,0)$ (ou $e^{2TA_0} = R(T,0)^2$), les valeurs propres ρ_i de $R_A(T,0)$ son reliées à celles λ_i de A_0 par la relation

$$e^{T\lambda_i} = \rho_i$$
.

Proposition

- 0 est asymptotiquement stable (en $t \to +\infty$) \iff toutes les valeurs propres de $R_A(T,0)$ sont de module < 1.
- 0 est stable (en $t \to +\infty$) \iff toutes les valeurs propres de $R_A(T,0)$ sont de module $\leqslant 1$ et $R_A(T,0)$ est diagonalisable en celles de module 1.

Stabilité des E.D.O. périodiques linéaires

Comme $e^{TA_0} = R_A(T,0)$ (ou $e^{2TA_0} = R(T,0)^2$), les valeurs propres ρ_i de $R_A(T,0)$ son reliées à celles λ_i de A_0 par la relation

$$e^{T\lambda_i} = \rho_i$$
.

Proposition

- 0 est asymptotiquement stable (en $t \to +\infty$) \iff toutes les valeurs propres de $R_A(T,0)$ sont de module < 1.
- 0 est stable (en $t \to +\infty$) \iff toutes les valeurs propres de $R_A(T,0)$ sont de module $\leqslant 1$ et $R_A(T,0)$ est diagonalisable en celles de module 1.
- 0 est instable \iff au moins une des valeurs propres de $R_A(T,0)$ est de module > 1 ou est de module 1 mais $R_A(T,0)$ n'y est pas diagonalisable.

Stabilité des E.D.O. périodiques linéaires

Conséquence :

Stabilité des E.D.O. périodiques linéaires

Conséquence : si A_{ϵ} dépend continûment (ou C^k) d'un paramètre $\epsilon \in (-\epsilon_0, \epsilon_0)$, par exemple

$$A_{\epsilon}(\cdot) = A + \epsilon F(\cdot), \quad A = cste, \quad F(\cdot + T) = F(\cdot).$$

Stabilité des E.D.O. périodiques linéaires

Conséquence : si A_{ϵ} dépend continûment (ou C^k) d'un paramètre $\epsilon \in (-\epsilon_0, \epsilon_0)$, par exemple

$$A_{\epsilon}(\cdot) = A + \epsilon F(\cdot), \quad A = cste, \quad F(\cdot + T) = F(\cdot).$$

Proposition

Les propriétés "être asymptotiquement stable" ou "être instable" sont robustes c'est-à-dire ouvertes dans l'espace des paramètres.

Stabilité des E.D.O. périodiques linéaires

Qu'en est-il de la stabilité? :

Stabilité des E.D.O. périodiques linéaires

Qu'en est-il de la stabilité? : En général, on ne peut rien dire.

Stabilité des E.D.O. périodiques linéaires

Qu'en est-il de la stabilité? : En général, on ne peut rien dire. Mais, dans les problèmes qui proviennent de la Physique, les E.D.O. que l'on obtient ont souvent une structure supplémentaire ("hamiltonienne") liée à la conservation de l'énergie et les matrices qui apparaissent sont "symplectiques".

Stabilité des E.D.O. périodiques linéaires

Qu'en est-il de la stabilité? : En général, on ne peut rien dire. Mais, dans les problèmes qui proviennent de la Physique, les E.D.O. que l'on obtient ont souvent une structure supplémentaire ("hamiltonienne") liée à la conservation de l'énergie et les matrices qui apparaissent sont "symplectiques".

L'exemple le plus simple de matrices symplectiques se trouve en dimension 2: ces matrices s'identifient à l'ensemble des matrices 2×2 à coefficients réels et de trace nulle $sl(2,\mathbb{R})$ (resp. de déterminant $1:SL(2,\mathbb{R})$).

"Rappels" sur $SL(2,\mathbb{R})$

Les v.p. de $R \in SL(2,\mathbb{R})$ sont racines de $\rho^2 - \operatorname{tr}(R)\rho + 1 = 0$.

"Rappels" sur $SL(2,\mathbb{R})$

Les v.p. de $R \in SL(2,\mathbb{R})$ sont racines de $\rho^2 - \operatorname{tr}(R)\rho + 1 = 0$.

• $|tr(R)| > 2 \implies \text{v.p. de } R \text{ sont } \{\lambda, 1/\lambda\}, \ \lambda > 0$: hyperbolique

"Rappels" sur $SL(2,\mathbb{R})$

Les v.p. de $R \in SL(2,\mathbb{R})$ sont racines de $\rho^2 - \operatorname{tr}(R)\rho + 1 = 0$.

- $|tr(R)| > 2 \implies \text{v.p. de } R \text{ sont } \{\lambda, 1/\lambda\}, \ \lambda > 0$: hyperbolique
- $|tr(R)| < 2 \implies \text{v.p. de } R \text{ sont } \{e^{i\alpha}, e^{-i\alpha}\}, \ \alpha \in \mathbb{R} : \text{elliptique}$

"Rappels" sur $SL(2,\mathbb{R})$

Les v.p. de $R \in SL(2,\mathbb{R})$ sont racines de $\rho^2 - \operatorname{tr}(R)\rho + 1 = 0$.

- $|tr(R)| > 2 \implies \text{v.p. de } R \text{ sont } \{\lambda, 1/\lambda\}, \ \lambda > 0$: hyperbolique
- $|tr(R)| < 2 \implies$ v.p. de R sont $\{e^{i\alpha}, e^{-i\alpha}\}$, $\alpha \in \mathbb{R}$: elliptique
- $|tr(R)| = 2 \implies v.p.$ de R sont (1,1) ou (-1,-1): parabolique.

Stabilité des E.D.O. périodiques linéaires

Comme
$$R_A(T,0) = e^{TA}$$
 ou $R_A(T,0)^2 = e^{2TA}$ on a donc

Théorème

Le système X'(t) = A(t)X(t) avec $A(\cdot + T) = A(\cdot)$, $A(\cdot)$ à valeurs dans $sl(2,\mathbb{R})$, est

Stabilité des E.D.O. périodiques linéaires

Comme
$$R_A(T,0) = e^{TA}$$
 ou $R_A(T,0)^2 = e^{2TA}$ on a donc

Théorème

Le système X'(t) = A(t)X(t) avec $A(\cdot + T) = A(\cdot)$, $A(\cdot)$ à valeurs dans $sl(2,\mathbb{R})$, est

• stable si et seulement si il est elliptique $|tr(R_A(T,0))| < 2$ ou si $R_A(T,0) = \pm I$.

Stabilité des E.D.O. périodiques linéaires

Comme
$$R_A(T,0) = e^{TA}$$
 ou $R_A(T,0)^2 = e^{2TA}$ on a donc

Théorème

Le système X'(t) = A(t)X(t) avec $A(\cdot + T) = A(\cdot)$, $A(\cdot)$ à valeurs dans $sl(2,\mathbb{R})$, est

- stable si et seulement si il est elliptique $|tr(R_A(T,0))| < 2$ ou si $R_A(T,0) = \pm I$.
- instable si et seulement si il est hyperbolique $|tr(R_A(T,0))| > 2$ ou $|tr(R_A(T,0))| = 2$ parabolique $\neq \pm I$.

Stabilité des E.D.O. périodiques linéaires

La nouveauté dans le cas où $A(\cdot)$ est à valeurs dans $sl(2,\mathbb{R})$: est

Théorème

L'ensemble des matrices elliptiques de $SL(2,\mathbb{R})$ est ouvert dans $SL(2,\mathbb{R})$.

Stabilité des E.D.O. périodiques linéaires

La nouveauté dans le cas où $A(\cdot)$ est à valeurs dans $sl(2,\mathbb{R})$: est

Théorème

L'ensemble des matrices elliptiques de $SL(2,\mathbb{R})$ est ouvert dans $SL(2,\mathbb{R})$.

On a donc par le théorème de dépendance continue par rapport aux paramètres :

Corollaire

L'ensemble des $A \in C^0_{T-per}(\mathbb{R}, sl(2, \mathbb{R}))$ pour lesquels X'(t) = A(t)X(t) est elliptique est ouvert (dans $C^0_{T-per}(\mathbb{R}, sl(2, \mathbb{R}))$).

Stabilité des E.D.O. périodiques linéaires

Conséquences pour

$$A_{\epsilon}(\cdot) = A + \epsilon F(\cdot), \quad A = cste, \quad F(\cdot + T) = F(\cdot) \qquad (PP)_{\epsilon} :$$

Stabilité des E.D.O. périodiques linéaires

Conséquences pour

$$A_{\epsilon}(\cdot) = A + \epsilon F(\cdot), \quad A = cste, \quad F(\cdot + T) = F(\cdot) \quad (PP)_{\epsilon} :$$

• Si $e^{TA} \in SL(2,\mathbb{R})$ est hyperbolique ($|\operatorname{tr}(e^{TA})| > 2$), l'origine reste un point d'équilibre instable du système $(PP)_{\epsilon}$ pour ϵ assez petit.

Stabilité des E.D.O. périodiques linéaires

Conséquences pour

$$A_{\epsilon}(\cdot) = A + \epsilon F(\cdot), \quad A = cste, \quad F(\cdot + T) = F(\cdot) \qquad (PP)_{\epsilon} :$$

- Si $e^{TA} \in SL(2,\mathbb{R})$ est hyperbolique ($|\operatorname{tr}(e^{TA})| > 2$), l'origine reste un point d'équilibre instable du système $(PP)_{\epsilon}$ pour ϵ assez petit.
- Si $e^{TA} \in SL(2,\mathbb{R})$ est elliptique ($|\operatorname{tr}(e^{TA})| < 2$), l'origine reste un point d'équilibre stable du système (PP) $_{\epsilon}$ pour ϵ assez petit.

Stabilité des E.D.O. périodiques linéaires

Conséquences pour

$$A_{\epsilon}(\cdot) = A + \epsilon F(\cdot), \quad A = cste, \quad F(\cdot + T) = F(\cdot) \qquad (PP)_{\epsilon} :$$

- Si $e^{TA} \in SL(2,\mathbb{R})$ est hyperbolique ($|\operatorname{tr}(e^{TA})| > 2$), l'origine reste un point d'équilibre instable du système $(PP)_{\epsilon}$ pour ϵ assez petit.
- Si $e^{TA} \in SL(2,\mathbb{R})$ est elliptique ($|\operatorname{tr}(e^{TA})| < 2$), l'origine reste un point d'équilibre stable du système (PP) $_{\epsilon}$ pour ϵ assez petit.
- Si $e^{TA} \in SL(2,\mathbb{R})$ est parabolique $(|\operatorname{tr}(e^{TA})| = 2)$: tout peut arriver!

Exemples

Considérons

$$\ddot{x}(t) + (a + \epsilon \cos(\frac{2\pi t}{T}))x(t) = 0,$$

qui se récrit

$$\dot{X}(t) = (A + \epsilon F(t))X(t)$$

avec

$$A = \begin{pmatrix} 0 & 1 \\ -a & 0 \end{pmatrix}, \qquad F(t) = \epsilon \cos(\frac{2\pi t}{T}) \begin{pmatrix} 0 \\ -1 & 0 \end{pmatrix}.$$

Si a > 0 on écrit $a = \omega^2$ et on a

$$e^{tA} = egin{pmatrix} \cos(t\omega) & \dfrac{\sin(t\omega)}{\omega} \ -\omega\sin(t\omega) & \cos(t\omega) \end{pmatrix}$$

Exemples

Donc

Proposition (Résonance paramétrique)

$$e^{TA}$$
 elliptique \iff $|tr(e^{TA})| < 2 \iff \omega \notin \frac{\pi}{T}\mathbb{Z}$

et dans ce cas il existe $\epsilon_{\omega} > 0$ tel que pour tout $\epsilon \in (-\epsilon_{\omega}, \epsilon_{\omega})$ le système associé à $A + \epsilon F(\cdot)$ est stable.

Donc

Proposition (Résonance paramétrique)

$$e^{TA}$$
 elliptique \iff $|tr(e^{TA})| < 2 \iff \omega \notin \frac{\pi}{T}\mathbb{Z}$

et dans ce cas il existe $\epsilon_{\omega} > 0$ tel que pour tout $\epsilon \in (-\epsilon_{\omega}, \epsilon_{\omega})$ le système associé à $A + \epsilon F(\cdot)$ est stable.

En revanche, si $\omega = \omega_k := k \frac{\pi}{T}$ (on dit que le système est résonnant), la méthode des perturbations, permet de calculer le développement limité de $R_{A_\epsilon}(T,0)$ et donc de sa trace et de montrer qu'il existe dans le plan (ω,ϵ) une zone d'instabilité d'intérieur non vide dont l'adhérence contient $(\omega_k,0)$.

Exemples

Pour
$$\ddot{x} + (a + \epsilon \cos(2t))x = 0$$
 ($T = \pi$, $a = \omega^2$ si $a > 0$).
Rouge : instable (hyperbolique) Bleu : parabolique Orange : stable

FIGURE: Zones de stabilité-instabilité

Exemples de la Physique

• Pendule de Kapitsa : pendule inversé dont le point d'attache oscille périodiquement (oscillations de faible amplitude mais rapides) ; après changement de variables on peut se trouver dans une zone de stabilité a < 0 et ϵ petits.

Exemples de la Physique

- Pendule de Kapitsa : pendule inversé dont le point d'attache oscille périodiquement (oscillations de faible amplitude mais rapides) ; après changement de variables on peut se trouver dans une zone de stabilité a < 0 et ϵ petits.
- Piégeage des ions (Nobel 1989, Dehmelt, Paul): Dans un champ électrique (quadrupôle) oscillant: même principe que le pendule de Kapitsa.

Exemples de la Physique

- Pendule de Kapitsa : pendule inversé dont le point d'attache oscille périodiquement (oscillations de faible amplitude mais rapides) ; après changement de variables on peut se trouver dans une zone de stabilité a < 0 et ϵ petits.
- Piégeage des ions (Nobel 1989, Dehmelt, Paul): Dans un champ électrique (quadrupôle) oscillant: même principe que le pendule de Kapitsa.
- Propriétés métal-isolant (physique du solide) : Equation stationnaire de Schrödinger 1D, potentiel périodique.
 - $-\psi''(x) + V(x)\psi(x) = E\psi(x)$. Les solutions physiquement acceptables sont celles pour lesquelles ψ est bornée. Le spectre de l'opérateur associé a une structure de bandes.