- 1. Należy zawsze uzasadniać rozwiązanie, to znaczy napisać w jaki sposób zostało otrzymane.
- 2. Zadania z * są dla ambitnego studenta, pozostałe dla leniwego.

Zadania do Wykładu 0, powtórzenie, funkcje rzeczywiste

FUNDO IF FURNITARNIE

FUNKCJE ELEMENTARNE

1. Funkcje wielomianowe $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$

2. Funkcja wykładnicza $f(x) = a^x$, $a^x: (-\infty, \infty) \to (0, \infty), \ a > 0, \ a \neq 1$

1.
$$a^{0} = 1$$

2. $a^{-p} = \frac{1}{a^{p}}$ 3. $a^{\frac{1}{p}} = \sqrt[p]{a}$
4. $(a^{p})^{q} = a^{pq}$
5. $(ab)^{p} = a^{p}b^{p}$
6. $a^{p}a^{q} = a^{p+q}$

- 3. Funkcja logarytmiczna $f(x) = \log_a(x)$,
- $\log_a x : (0, \infty) \to (-\infty, \infty), \ a > 0, a \neq 1.$

$$a^{\log_a x} = x$$
$$\log_a(a^x) = x$$

- $1. \log_a(xy) = \log_a x + \log_a y$
- $2. \log_a(\frac{x}{y}) = \log_a x \log_a y$
- 3. $\log_a(x^r) = r \cdot \log_a x$
- 4. $\log_a(x) = \frac{\log_b x}{\log_b a}$

 $\log_a x < x < a^x, \ a > 1$!!!

4. Funkcje trygonometryczne sin(x), cos(x), tan(x), cot(x)

5. **Funkcje cyklometryczne** – odwrotne do trygonometrycznych $\arcsin(x)$, $\arccos(x)$, $\arctan(x)$, $\arctan(x)$.

 $\arcsin x : [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$arc cos x: [-1,1] \to [0,\pi]$$

arc tg
$$x: R \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 $\operatorname{arc}\operatorname{ctg} x: R \to [0, \pi]$

PRZYPOMNIENIE

1. Oblicz następujące wartości

b)
$$\log_4 \frac{1}{4}$$

a)
$$\log_4 16$$
, b) $\log_4 \frac{1}{4}$; c) $\log_4 2$; d) $\log_4 (4)^{\sin x}$;

$$e) 5^{\log_5 77}$$

$$f) 3^{\log_3(x^4+6)}$$

h) 5
$$^{x+\log_5 2}$$

$$i)$$
 $7^{-\log_7 x}$

h)
$$5^{x+\log_5 2}$$
 i) $7^{-\log_7 x}$ j) $\frac{3^{2x}}{3}$

$$k) (9^7)^x$$

- l) która liczba jest większa: $\log_4 5$ or $\log_5 4$?
- 2. Rozwiąż następujące równania

a)
$$2^{x}(x^{2}+6x+8)=0$$
, b) $\sqrt[8]{t}=1$ c) $\frac{z^{2}-16}{z^{4}}=0$ d) $\frac{4x-6}{2x^{2}-x+4}=0$.

$$b) \quad \sqrt[8]{t} = 1$$

c)
$$\frac{z^2-16}{z^4}=0$$

$$d) \quad \frac{4x-6}{2x^2-x+4} = 0.$$

3. Rozwiąż następujące nierówności

a)
$$(x-2)(3x+2)(x^2+10) > 0$$
 b) $y^3 + 4y^2 + 4y \le 0$ c) $2^x(x^2-6x+8) \ge 0$

$$b) \ y^3 + 4y^2 + 4y \le 0$$

c)
$$2^x(x^2 - 6x + 8) \ge 0$$

d)
$$(x+1)(x^2-4) \le 0$$

d)
$$(x+1)(x^2-4) \le 0$$
 e) $(a+2)^2(1-3a)^2 \le 0$ f) $x^9-1 < 0$ g) $\frac{x-3}{x+5} < 0$

$$f) x^9 - 1 < 0$$

$$g) \frac{x-3}{x+5} < 0$$

$$h) \log_5(5-3x) > 1$$

FUNKCJE CYKLOMETRYCZNE

arc sin:
$$[-1,1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
, arc cos: $[-1,1] \rightarrow [0,\pi]$, arc tg: $(-\infty, \infty) \rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, arc ctg: $(-\infty, \infty) \rightarrow (0, \pi)$

$$\sin\frac{\pi}{6} = \frac{1}{2}$$
; $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$; $\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$; $\cos\frac{\pi}{3} = \frac{1}{2}$.

4. Oblicz wartości

a)
$$\arcsin\left(\frac{1}{2}\right)$$
, $\arcsin\left(\frac{\sqrt{3}}{2}\right)$; $\arctan 1$, $\arcsin\left(-\frac{1}{2}\right)$,

b) arccos(1.4)

c)
$$\arcsin(\sin \pi)$$

c)
$$\arcsin(\sin \pi)$$
, d) $\sin\left(\arcsin\left(\frac{1}{2}\right)\right)$ e) $\arcsin\left(\sin\frac{3\pi}{2}\right)$ f) $\sin(\arcsin(-1))$

e)
$$\arcsin\left(\sin\frac{3\pi}{2}\right)$$

$$f) \sin(\arcsin(-1))$$

5. Wyznacz x:

a)
$$\arcsin(\sin x) = \frac{\pi}{2}$$

a)
$$\arcsin(\sin x) = \frac{\pi}{2}$$
, b) $\sin(\arcsin(x)) = -1$, c) $\sin(2x) = 0.56$.

$$c) \sin(2x) = 0.56$$

6*. Wyznacz x

a)
$$\arcsin(x) > \frac{1}{2}$$
 b) $\arctan(2x) < \frac{\pi}{4}$ c) $\arccos(x) > 4$

b)
$$arctg(2x) < \frac{\pi}{4}$$

c)
$$arccos(x) > 4$$

7. Wyznacz dziedzinę naturalną następujących funkcji, dodatkowo określ zbiór wartości funkcji z przykładów a), c), e);

$$a) f(x) = \sqrt{x}$$

a)
$$f(x) = \sqrt{x}$$
 b) $f(t) = \frac{1}{2t^2 + 4t + 5}$ c) $f(x) = \log_{10}(x^2 - 1)$

$$c) f(x) = \log_{10}(x^2 - 1)$$

d)
$$f(x) = \log_2(\log_3 x)$$
 e) $f(y) = 3^{y^2+y+1}$

$$e) f(y) = 3^{y^2+y+1}$$

8. Naszkicuj wykresy następujących funkcji (pamiętaj o oznaczeniach osi)

a)
$$f(x) = y = x^2 + 1$$
, b) $f(z) = y = z^2 - 1$ c) $g(s) = t = \sqrt{s}$ d) $h(l) = m = 2l + 3$

b)
$$f(z) = y = z^2 - 1$$

c)
$$q(s) = t = \sqrt{s}$$

$$d) h(l) = m = 2l + 3$$

$$e) f(y) = z = \log_2 y$$

$$f) g(z) = x = e^{z}$$

$$e) f(y) = z = \log_2 y$$
 $f) g(z) = x = e^z$ $g) p(x) = z = \arcsin x$

9. Określ funkcje, z których są złożone podane poniżej funkcje, tj. wskaż wewnętrzne i zewnętrzną funkcję (funkcji może być więcej niż dwie)

a)
$$(\sin x + 1)^5$$

b)
$$\sin(x^5 + 1)$$

c)
$$3^{\sin x}$$

a)
$$(\sin x + 1)^5$$
 b) $\sin(x^5 + 1)$ c) $3^{\sin x}$ d) $\log_2(tg(x^2 - 5))$

$$e) \sqrt[3]{(\log_{10}(3x^5+3))}$$

$$f) \sin^4(\log_2(x+2))$$

e)
$$\sqrt[3]{(\log_{10}(3x^5+3)}$$
 f) $\sin^4(\log_2(x+2))$ g) $\left(\frac{1}{4x^4+x}\right)^{88}$

10. Wyznacz złożenie wskazanych funkcji oraz ich dziedziny

a)
$$f(x) = \sqrt[3]{x^2 - 3}$$
, $g(x) = \frac{1}{x+2}$ $f(g(x))$, $g(f(x))$

$$g(x) = \frac{1}{x+2}$$

$$f(g(x)), \quad g(f(x))$$

b)
$$f(x) = \frac{x}{2x+1}$$
, $g(x) = 3^x$ $f(g(x))$, $g(f(x))$

$$g(x) = 3^x$$

$$c) f(x) = \log_5(x+1)$$

c)
$$f(x) = \log_5(x+1)$$
, $g(x) = \sqrt{x}$, $h(x) = \sin(x-1)$ $f(g(h(x)))$, $h(g(f(x)))$

11*. Sprawdź czy podane funkcje są do siebie odwrotne $i.e. f(f^{-1}(x)) = x$ i $f^{-1}(f(x)) = x$.

a)
$$f(x) = \frac{1}{2}(x+1)$$
 $f^{-1}(x) = 2x - 1$

b)
$$f(x) = \sqrt[3]{x-1}$$
, $f^{-1}(x) = x^3 + 1$

c)
$$f(x) = 3^x + 2$$
, $f^{-1}(x) = \log_3(x - 2)$

12*. Naszkicuj wykres pewnej funkcji f takiej, że

a) $f: [2,3] \rightarrow [1,2]$ nie jest "na" [1,2] i nie jest różnowartościowa

b) $f: [2,3] \rightarrow [0,2]$ nie jest "na" [0,2] i nie jest różnowartościowa

c) $f: [1,2] \rightarrow [1,2]$ jest "na" [1,2] i nie jest różnowartościowa

d) $f: [2,3] \rightarrow [2,3]$ nie jest "na" [2,3] i jest różnowartościowa

e) $f: [1,2] \rightarrow [2,3]$ posiada funkcję odwrotną.

13*. Niech $f: X \to Y$, $f(x) = \cos x$ Podaj przykłady takich zbiorów X,Y, że

a) funkcja f jest różnowartościowa i jest typu "na";

- b) funkcja f nie jest różnowartościowa i jest typu "na";
- c) funkcja f jest różnowartościowa i nie jest typu "na";
- d) funkcja f nie jest różnowartościowa i nie jest typu "na";

14*. Wyznacz funkcje odwrotne do danych oraz podaj ich dziedzinę

$$a) f(x) = 5x + 4$$

$$b) f(x) = \frac{1}{x^2 - 2}$$

$$c) f(x) = 2 - 4^{x^2}$$

$$d) f(x) = x^2 - 2x + 1$$

$$e) f(x) = \log_2(\log_3 x)$$

a)
$$f(x) = 5x + 4$$
 b) $f(x) = \frac{1}{x^2 - 2}$ c) $f(x) = 2 - 4^{x^2}$ d) $f(x) = x^2 - 2x + 1$
e) $f(x) = \log_2(\log_3 x)$ f) $f(x) = \frac{1}{2x + 4} - 3$ g) $f(x) = \sqrt{x^2 - 1}$

$$g) f(x) = \sqrt{x^2 - 1}$$