LpSolve: A Package to Solve Linear Programming

Jiyanglin Li

School of Statistics and Management Shanghai University of Finance and Economics

December 10, 2015

Outline

1 Introduction to Linear Programming

- 2 Introduction to LpSolve
- 3 Examples

Linear Programming

$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

s. t. $a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le b_1$ (Constraint 1)
 $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le b_2$ (Constraint 2)
 \vdots
 $a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le b_m$ (Constraint m)
 $x_i \ge 0 (j = 1, 2, ..., n)$

Remark:

- The direction of the constraint can be $<, \le, =, \ge, >$.
- The variables can be unrestricted-in-sign.

Standard Form of Linear Programming

max
$$z = c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

s. t. $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$
 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$
 $x_j \ge 0 (j = 1, 2, ..., n)$

How to convert a LP to Standard Form

Assume $b_i \ge 0, \forall i$, otherwise we can multiple all the terms in the equation by -1.

- If the constraints is $a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \le b_i$, add a slack variable $s_i \ge 0$, then the original constraint is equivalent to $a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n + s_i = b_i$.
- If the constraints is $a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \ge b_i$, add an excess variable $e_i \ge 0$, then the original constraint is equivalent to $a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n e_i = b_i$.
- If x_i is unrestricted-in-sign, we can replace x_i with $x_i^{'} x_i^{''}$, where $x_i^{'}, x_i^{''} \ge 0$.

Pure Integer Programming

$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
s.t.
$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le b_2$$

$$\vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le b_m$$

$$x_j \ge 0 (j = 1, 2, ..., n); x_j \in \mathbb{Z}, \forall j$$

Mixed Integer Programming

$$\max z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
s.t.
$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le b_2$$

$$\vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le b_m$$

$$x_j \ge 0 (j = 1, 2, \dots, n); x_j \in \mathbb{Z}, \forall j \in \mathcal{I}$$

$$\mathcal{I} \subset \{1, 2, \dots, n\}$$

What can LpSolve do?

LpSolve is a package for solving linear, integer and mixed integer programs.

- lp
- lp.assign
- lp.transport
- make.q8 (8-queens problem)
- print.lp

lр

lp (direction = "min", objective.in, const.mat, const.dir, const.rhs,
transpose.constraints = TRUE, int.vec, presolve=0,
compute.sens=0, binary.vec, all.int=FALSE, all.bin=FALSE, scale
= 196, dense.const, num.bin.solns=1, use.rw=FALSE)

lp.transport & lp.assign

- lp.transport (cost.mat, direction="min", row.signs, row.rhs, col.signs, col.rhs, presolve=0, compute.sens=0, integers = 1:(nc*nr))
- lp.assign (cost.mat, direction = "min", presolve = 0, compute.sens = 0)

8-Queens Problem

Figure: One solution to the eight queens puzzle.

make.q8

Introduction to Linear Programming

make.q8()

Description:

Generate sparse constraint matrix for 8-queens problem

print.lp

print(x, ...)

A simple Linear Programming Problem

Example 1

max
$$z = 4x_1 + 3x_2$$

s. t. $x_1 + x_2 \le 40$
 $2x_1 + x_2 \le 60$
 $x_1, x_2 \ge 0$

A simple Linear Programming Problem I

```
> f.obj <- c(4,3)
> f.con <- matrix (c(1,2,1,1), nrow=2)
> f.dir <- c("<=", "<=")
> f.rhs <- c(40.60)
> b = lp("max", f.obj, f.con, f.dir, f.rhs)
> print(b)
Success: the objective function is 140
> b$solution
[1] 20 20
> b$objval
[1] 140
> b$x.count
[1] 2
```

A simple Linear Programming Problem II

```
> b$direction # Optimization direction
[1] 1
> b$const.count
[1] 2
> b$objective
[1] 4 3
> b$constraints
               [,1] [,2]
const.dir.num
const.rhs
                 40
                      60
```

• Remark: the value of const.dir.num 1:<, <=; 2:>, >=; 3:=.

A simple Linear Programming Problem

Figure: Feasible Region.

Unbounded Linear Programming

Example 2

$$\max z = 50x_1 + 100x_2$$
s. t.
$$7x_1 + 2x_2 \ge 28$$

$$2x_1 + 12x_2 \ge 24$$

$$x_1, x_2 \ge 0$$

Unbounded Linear Programming

```
> f.obj <- c(50,100)
> f.con <- matrix (c(7,2,2,12), nrow=2)
> f.dir <- c(">=", ">=")
> f.rhs <- c(28,24)
> (b=lp ("max", f.obj, f.con, f.dir, f.rhs))
Error: status 3
> b$solution
[1] 0 0
> b$objval
[1] 0
```

Unbounded Linear Programming Problem

Figure: Unbounded Feasible Region.

Infeasible Linear Programming

Example 3

$$\max z = 3x_1 + 2x_2$$
s. t.
$$\frac{1}{40}x_1 + \frac{1}{60}x_2 \le 1$$

$$\frac{1}{50}x_1 + \frac{1}{50}x_2 \le 1$$

$$x_1 \ge 30$$

$$x_2 \ge 20$$

$$x_1, x_2 \ge 0$$

Infeasible Linear Programming

```
> f.obj <- c(3,2)
> f.con \leftarrow matrix (c(1/40,1/50,1,0,1/60,1/50,0,1),
+
                    nrow=4)
> f.dir <- c("<=","<=",">=", ">=")
> f.rhs <- c(1,1,30,20)
> (b=lp ("max", f.obj, f.con, f.dir, f.rhs))
Error: no feasible solution found>
> b$status
[1] 2
> b$solution
[1] 0 0
> b$objval
Γ1 0
```

Infeasible Linear Programming

Figure: Empty Feasible Region((Infeasible LP)).

Transportation Problem

Example 4(Powerco Problem)											
Shipping Costs, Supply, and Demand for Powerco											
	То			Supply							
From	City 1	City 2	City 3	City 4	(million kwh)						
Plant 1	\$8	\$6	\$10	\$9	35						
Plant 2	\$9	\$12	\$13	\$7	50						
Plant 3	\$14	\$9	\$16	\$5	40						
Demand	45	20	30	30							
(million kwh)											

Transportation Problem

```
> costs <- matrix (c(8,6,10,9,9,12,13,7,14,9,16,5),
                  byrow=TRUE, nrow=3)
+
> row.signs <- rep ("<=", 3)
> row.rhs <- c(35,50,40)
> col.signs <- rep (">=", 4)
> col.rhs <- c(45,20,30,30)
> b=lp.transport(costs, "min", row.signs, row.rhs,
+
                col.signs, col.rhs)
> b$solution
     [,1] [,2] [,3] [,4]
[1.] 0 10 25
[2,] 45 0 5 0
[3.] 0 10 0
                     30
> b$objval
[1] 1020
```

Transportation Problem

Figure: Graphical Representation of Powerco Problem and Its Optimal Solution.

Assignment Problem

Example 5(Machine Assignment Problem)

Setup Times for Machineco

	•							
	Time (Hours)							
Machine	Job 1	Job 2	Job 3	Job 4				
1	14	5	8	7				
2	2	12	6	5				
3	7	8	3	9				
4	2	4	6	10				

Assignment Problem

```
> assign.costs<-matrix(c(14,5,8,7,2,12,6,5,
+ 7,8,3,9,2,4,6,10), ncol=4, byrow=TRUE)
> b = lp.assign(assign.costs)
> b$solution
    [,1] [,2] [,3] [,4]
[1,] 0
[2,] 0 0 0
[3,] 0 0 1
[4,] 1 0
> b$objval
[1] 15
```

Examples

Sensitivity Analysis

Once the optimal solution is found, we also hope to know the range of the objective function coefficient that will keep the current basis optimal.

Remark: more specific explanation of sensitivity analysis can be found in WL Winston & JB Goldberg (2004).

Sensitivity Analysis(Continued with Example 1)

```
> f.obj <- c(4,3)
> f.con <- matrix (c(1,2,1,1), nrow=2)
> f.dir <- c("<=", "<=")
> f.rhs <- c(40,60)
> b=lp ("max", f.obj, f.con, f.dir, f.rhs,
+ compute.sens=TRUE)
> b$sens.coef.from
[1] 3 2
> b$sens.coef.to
[1] 6 4
```

Pure Integer Programming

Example 6

$$\max z = 8x_1 + 5x_2$$
s. t. $x_1 + x_1 \le 6$
 $9x_1 + 5x_2 \le 45$
 $x_1, x_2 \ge 0; x_1, x_2 \text{ integer}$

Pure Integer Programming

```
> f.obj <- c(8,5)
> f.con <- matrix (c(1,9,1,5), nrow=2)
> f.dir <- c("<=", "<=")
> f.rhs <- c(6,45)
> b=lp ("max", f.obj, f.con, f.dir, f.rhs,all.int=TRUE)
> ### all.int=TRUE can be substituted by int.vec=1:2
> b$solution
[1] 5 0
> b$objval
[1] 40
```

 Remark: We can get sensitivities in the integer case, but they're harder to interpret.

Mixed Integer Programming

Example 7

$$\max z = 2x_1 + x_2$$
s. t. $5x_1 + x_2 \le 8$
 $2x_1 + x_2 \le 3$
 $x_1, x_2 \ge 0; x_1 \text{ integer}$

Mixed Integer Programming

```
> f.obj <- c(2,1)
> f.con <- matrix (c(5,1,2,1), nrow=2)
> f.dir <- c("<=", "<=")
> f.rhs <- c(8,3)
> b=lp ("max", f.obj, f.con, f.dir, f.rhs,int.vec=1)
> b$solution
[1] 1.0 1.5
> b$objval
[1] 3.5
```

0-1 Integer Programming

Example 8

$$\max z = 16x_1 + 22x_2 + 12x_3 + 8x_4$$

s. t.
$$5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$$
$$x_i = 0 \text{ or } 1, i = 1, 2, 3, 4$$

0-1 Integer Programming

```
> f.obj <- c(16,22,12,8)
> f.con <- matrix (c(5,7,4,3), nrow=1)
> f.dir <- "<="
> f.rhs <- 14
> b=lp ("max", f.obj, f.con, f.dir, f.rhs,all.bin=1)
> ### all.bin=TRUE can be substituted by binary.vec=1:2
> b$solution
[1] 0 1 1 1
> b$objval
[1] 42
```

Number of solutions > 1 case

Example 9

max
$$z = x_1 + x_2 + x_3$$

s. t. $x_1 + x_2 + x_3 \le 1$
 $x_i = 0$ or $1, i = 1, 2, 3$

Number of solutions > 1 case

```
> f.obj = c(1,1,1)
> f.con = matrix(c(1,1,1),nrow=1)
> f.dir = "<="
> f.rhs = 1
> x = lp ("max", f.obj, f.con, f.dir, f.rhs, all.bin=TRUE,
      num.bin.solns=3)
+
> x$solution
 [1] 0 0 1 0 1 0 1 0 0 -1
> x$num.bin.solns
[1] 3
> y = lp ("max", f.obj, f.con, f.dir, f.rhs, all.bin=TRUE,
      num.bin.solns=2)
> y$solution
[1] 0 0 1 0 1 0 1
> y$num.bin.solns
[1] 2
```

Eight Queens Problem I

```
> chess.obj <- rep (1, 64)
> q8 <- make.q8 ()
> chess.dir <- rep (c("=", "<="), c(16, 26))
> chess.rhs <- rep (1, 42)
> b = lp ('max', chess.obj, , chess.dir, chess.rhs,
+ dense.const = q8, all.bin=TRUE,
+ num.bin.solns=100)
> b$num.bin.solns
[1] 92
> a = matrix(b$solution[1:64],ncol=8,byrow=T)
```

Eight Queens Problem II

Eight Queens Problem III

```
> q8
     const.ctr
  [1,]
  [2,]
  [3,]
                   3 1
  [4,]
                    4 1
  [5,]
                 1 5 1
  [6,]
                 1 6 1
  [7,]
                 1 7 1
  [8,]
                    8 1
```

Remark: There are 252 rows in this matrix, we only show the first 8 rows here.

Thanks!