Enhanced Quantum Interface with Collective Ion-Cavity Coupling

150316

What they have done in this paper

Made entangled two-ion state

1. Observed enhanced/suppressed emission by making $|\psi_{super}\rangle/|\psi_{sub}\rangle$

2. Transferred quantum information onto a single ph oton with enhanced emission probability

Level tree of Ca⁺

•
$$g_{\rm eff} = \frac{\zeta_{SD}\Omega g_{PD}}{2\Delta}$$

•
$$\gamma_{\rm eff} = \gamma \left(\frac{\Omega}{2\Delta}\right)^2$$

- $\Omega = 19 \text{ MHz}$
- $\Delta = 400 \text{ MHz}$
- $\gamma = 11.5 \text{ MHz}$
- $g_{PD} = 1 \text{ MHz}$

• $(g_{\mathrm{eff}}, \kappa, \gamma_{\mathrm{eff}}) = 2\pi \times (18,50,6)kHz$

Schematic view

 $(g_{\rm eff},\kappa,\gamma_{\rm eff})=2\pi\times(18,50,6)kHz$

Linear Paul trap axis

Global/Addressing 729 / Prepares superposition state Raman beam : Controls spontaneous/coupling emission

State preparation

- By using Mølmer-Sørensen gate operation,
- prepares $|\Phi\rangle = (|S\rangle|S\rangle + i|D\rangle|D\rangle)/\sqrt{2}$
- "global" 729 nm laser rotates the state $\pi/2$.
- $|\Psi^+\rangle = (|S\rangle|D\rangle + |D\rangle|S\rangle)/\sqrt{2}$

- "addressing" 729 nm laser, coupled only one ion, contributes a phase ϕ t o the entangled state. (By inducing ac-Stark shifts)
- $|\Psi(\phi)\rangle = (|S\rangle|D\rangle + e^{i\phi}|D\rangle|S\rangle)/\sqrt{2}$

Mølmer-Sørensen gate operatio n

- The ions are initialized in $|S\rangle|S\rangle$.
- After a time T=1/ δ =55us, with a detuning δ = 18.2 kHz, the two ions are prepared in the entangled state $|\Phi\rangle$ = $(|S\rangle|S\rangle + i|D\rangle|D\rangle)/\sqrt{2}$.

Populations of the states $|S\rangle|S\rangle$ (red diamonds), $|D\rangle|D\rangle$ (blue circles), and $|S\rangle|D\rangle$ or $|D\rangle|S\rangle$ (green triangles) as a function of the Mølmer–Sørensen gate duration.

State preparation

- By using Mølmer-Sørensen gate operation,
- prepares $|\Phi\rangle = (|S\rangle|S\rangle + i|D\rangle|D\rangle)/\sqrt{2}$
- "global" 729 nm laser rotates the state $\pi/2$.
- $|\Psi^+\rangle = (|S\rangle|D\rangle + |D\rangle|S\rangle)/\sqrt{2}$

- "addressing" 729 nm laser, coupled only one ion, contributes a phase ϕ t o the entangled state. (By inducing ac-Stark shifts)
- $|\Psi(\phi)\rangle = (|S\rangle|D\rangle + e^{i\phi}|D\rangle|S\rangle)/\sqrt{2}$

$$|Super\rangle = (|S\rangle|D\rangle + |D\rangle|S\rangle)/\sqrt{2}$$

 $|Sub\rangle = (|S\rangle|D\rangle - |D\rangle|S\rangle)/\sqrt{2}$

Sub/Superradiant states

Interaction Hamiltonian

$$H_{\text{int}} = g_{PD} \left(\sigma_{PD}^{(1)} - \sigma_{PD}^{(2)} \right) a^{\dagger} +$$

$$\Omega \left(e^{i\phi_{R_1}} \sigma_{SP}^{(1)} + e^{i\phi_{R_2}} \sigma_{SP}^{(2)} \right) + \text{h.c.},$$
Under Raman resonance condition}
$$= H_{\text{int}} = \hbar g \left(\sigma_{-}^{(1)} + e^{i\zeta} \sigma_{-}^{(2)} \right) a^{\dagger} + \text{H.c.},$$

$$\text{Where } \zeta = \phi_{R_1} - \phi_{R_2}$$

$$|\Psi_{super}\rangle = |\Psi(\phi = -\zeta)\rangle$$

$$|\Psi_{sub}\rangle = |\Psi(\phi = -\zeta + \pi)\rangle$$

Photon detection prob.

- Photon detection prob. had been measured on states, $|\Psi(\phi)\rangle$, $|\Psi_1\rangle$ and $|\Psi_2\rangle$.
 - Where, $|\Psi_1\rangle = |S\rangle|D'\rangle$, $|\Psi_2\rangle = |D'\rangle|S\rangle$, $|D'\rangle \equiv |3^2D_{5/2}$, $m_j = 3/2\rangle$
- For $\phi = 0.68\pi$, the ratio is $0.22(9) => |\Psi_{sub}\rangle = |\Psi(\phi = 0.68\pi)\rangle$
- For $\phi = 1.58\pi$, the ratio is $1.84(4) \Rightarrow |\Psi_{super}\rangle = |\Psi(\phi = 1.58\pi)\rangle$
- A temporal shape is determined by $g_{\rm eff}$ for initial time.
- A temporal shape is determined by cavity decay rates and off-resonant scatte ring rates for later time.

A quantum interface

with enhanced coupling of the superradiant state

•
$$|\Psi(\phi)\rangle = (|S\rangle|D\rangle + e^{i\phi}|D\rangle|S\rangle)/\sqrt{2}$$

•
$$|S\rangle \rightarrow |\alpha, \beta\rangle \equiv \cos \alpha |S\rangle + e^{i\beta} \sin \alpha |S'\rangle$$

- $|S\rangle \rightarrow |D\rangle$ transition produces a horizontally polarized photon $|H\rangle$
- $|S'\rangle \rightarrow |D\rangle$ transition produces a vertically polarized photon $|V\rangle$
- $(|\alpha,\beta\rangle|D\rangle + e^{i\phi}|D\rangle|\alpha,\beta\rangle)|0\rangle/\sqrt{2}$
- $\rightarrow |D\rangle|D\rangle(\cos\alpha|H\rangle + e^{i\beta}\sin\alpha|V\rangle)$
 - Where $\phi = 1.58\pi$

$$|S\rangle \equiv \left|4^2S_{1/2}, m = -1/2\right\rangle$$

 $|S'\rangle \equiv \left|4^2S_{1/2}, m = +1/2\right\rangle$

A quantum interface

with enhanced coupling of the superradiant state

- Reconstruct process matrix by using 4 orthogonal states
- $|\alpha,\beta\rangle = |S\rangle, |S'\rangle, |S\rangle + |S'\rangle, |S\rangle |S'\rangle$
- Reference state : $|\alpha, \beta\rangle |D'\rangle |0\rangle \rightarrow |D\rangle |D'\rangle (\cos\alpha |H\rangle + e^{i\beta}\sin\alpha |V\rangle)$

Fidelity between 6 us time window: 93.3% vs. 90.9%

Enhanced coupling also increases cumulative process efficiency in the short time window (~55 us)

$$g\sqrt{N/2\big((N/2)+1\big)}$$

