José A. Perusquía Cortés



Análisis Multivariado Semestre 2023-2



• Decimos que  $X \sim N(\mu, \sigma^2)$  si tiene función de densidad

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right]$$

- Donde
  - $\mathbb{E}(X) = \mu \in \mathbb{R}$  (parámetro de localización)
  - $Var(X) = \sigma^2 \in \mathbb{R}^+$  (parámetro de escala)



• Decimos que  $\mathbf{x} \sim N_p(\mu, \Sigma)$  (no singular) si tiene función de densidad

$$f(\mathbf{x}) = \frac{1}{|2\pi\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right]$$

- Donde
  - $-\mathbb{E}(\mathbf{x}) = \mu$
  - $Var(\mathbf{x}) = \Sigma > 0$  (positiva definida)

· Para variables normales multivariadas en R podemos usar la librería mytnorm

- dmvnorm(): Evaluar la densidad.

- pmvnorm(): Evaluar la distribución.

-qmvnorm(): Obtener los cuantiles.

-rmvnomr(): Obtener una muestra.

· Por ejemplo, para dibujar la densidad

$$\mu = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

- Creamos un grid expand.grid()
- Evaluamos la densidad en el grid con dmvnorm(grid, mu, sigma)
- Convertimos a una matriz el resultado anterior
- Graficamos con persp()



· Para datos bivariados también se puede crear un scatterplot en 3D con librería scatterplot3d



• Si  $ran(\Sigma) = k < p$  podemos definir la densidad (singular) como

$$f(\mathbf{x}) = \frac{(2\pi)^{-\frac{k}{2}}}{(\lambda_1 \cdots \lambda_k)^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-}(\mathbf{x} - \mu)\right]$$

- Donde
  - $\mathbf{x}$  vive en el híperplano  $\mathbf{N}'(\mathbf{x} \mu)$  donde  $\mathbf{N}$  es una matriz de tamaño  $p \times (p k)$  tal que  $\mathbf{N}^T \Sigma = \mathbf{0}, \mathbf{N}^T \mathbf{N} = \mathbf{I}_{\mathbf{p} \mathbf{k}}$
  - $\Sigma^-$  es la inversa generalizada y  $\lambda_1, \ldots, \lambda_k$  son los eigenvalores diferentes de cero.

### · Definición.

Decimos que  $\mathbf{x}$  tiene una distribución normal p-variada si y solo si  $\mathbf{a}^T\mathbf{x}$  tiene una distribución normal univariada para todos los vectores p-variados (no triviales)  $\mathbf{a}$ 

#### · Definición.

Decimos que  $\mathbf{x}$  tiene una distribución normal p-variada si y solo si  $\mathbf{a}^T\mathbf{x}$  tiene una distribución normal univariada para todos los vectores p-variados (no triviales)  $\mathbf{a}$ 

### · Proposición I

Sea  $\mathbf{x}$  un vector normal p-variado y definamos a  $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$  donde  $\mathbf{A}$  es una matriz de dimensión  $q \times p$ . Entonces  $\mathbf{y}$  tiene una distribución normal q-variada tal que

$$\mathbb{E}(\mathbf{y}) = \mathbf{A}\mu + \mathbf{b}$$

$$Var(\mathbf{y}) = \mathbf{A}\mathbf{\Sigma}\mathbf{A}^T$$

### · Corolario 1

Sea 
$$\mathbf{x} \sim N_p(\mathbf{0}, \mathbf{I}_p)$$
 y definamos a  $\mathbf{y} = \mathbf{\Sigma}^{\frac{1}{2}}\mathbf{x} + \mu$  entonces  $\mathbf{y} \sim N_p(\mu, \mathbf{\Sigma})$ 

#### · Corolario 1

Sea  $\mathbf{x} \sim N_p(\mathbf{0}, \mathbf{I}_p)$  y definamos a  $\mathbf{y} = \Sigma^{\frac{1}{2}}\mathbf{x} + \mu$  entonces  $\mathbf{y} \sim N_p(\mu, \Sigma)$ 

### · Corolario 2

Sea  $\mathbf{x} \sim N_p(\mu, \Sigma)$  ( $\Sigma > 0$ ) y definamos a  $\mathbf{y} = \Sigma^{-\frac{1}{2}}(\mathbf{x} - \mu)$  donde  $\Sigma^{-\frac{1}{2}}$  es la matrix raíz cuadrada de  $\Sigma^{-1}$ . Entonces  $y_1, y_2, ..., y_p$  son variables aleatorias iid N(0,1).

#### · Corolario 1

Sea  $\mathbf{x} \sim N_p(\mathbf{0}, \mathbf{I}_p)$  y definamos a  $\mathbf{y} = \Sigma^{\frac{1}{2}}\mathbf{x} + \mu$  entonces  $\mathbf{y} \sim N_p(\mu, \Sigma)$ 

### · Corolario 2

Sea  $\mathbf{x} \sim N_p(\mu, \Sigma)$  ( $\Sigma > 0$ ) y definamos a  $\mathbf{y} = \Sigma^{-\frac{1}{2}}(\mathbf{x} - \mu)$  donde  $\Sigma^{-\frac{1}{2}}$  es la matrix raíz cuadrada de  $\Sigma^{-1}$ . Entonces  $y_1, y_2, ..., y_p$  son variables aleatorias iid N(0,1).

 $\cdot$  En  $m{R}$  la librería expm proporciona la función requerida para obtener  $m{\Sigma}^{-\frac{1}{2}}$  con sqrtm()

$$\mathbf{x} \sim N_p(\mu, \Sigma)$$
  $\mu = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$   $\Sigma = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$ 



$$\mathbf{y} = \mathbf{\Sigma}^{-\frac{1}{2}}(\mathbf{x} - \mu)$$



### Observación

La distribución normal multivariada tiene densidad constante en elipses (elipsoides)

$$(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) = k$$

### Observación

La distribución normal multivariada tiene densidad constante en elipses (elipsoides)

$$(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) = k$$

- · En R podemos graficar las curvas mediante la función contour()
  - Generar vectores x, y donde evaluar la densidad (e.g. x=seq(0,6,length.out=40)), y=seq(0,6,length.out=40))
  - Evaluar la densidad en estos puntos con z=dmvnorm()
  - Usar la función contour(x,y,z)



- · Otra alternativa es usar la librería plotly para una gráfica más interactiva
  - Generar vectores x, y donde evaluar la densidad (e.g. x=seq(0,6,length.out=40)), y=seq(0,6,length.out=40))
  - Evaluar la densidad en estos puntos con z=dmvnorm()
  - Usar la función plot\_ly(x,y,z,type = "contour")



### · Proposición 2

Sea 
$$\mathbf{x} \sim N_p(\mu, \Sigma)$$
 entonces  $U = (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \sim \chi_p^2$ .

### · Proposición 2

Sea 
$$\mathbf{x} \sim N_p(\mu, \Sigma)$$
 entonces  $U = (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \sim \chi_p^2$ .

### Observación

Podemos fácilmente evaluar la probabilidad de que x este en un elipsoide, i.e.

$$\mathbb{P}[(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) < k]$$

### · Proposición 3 (Otras propiedades)

Sea 
$$\mathbf{x} \sim N_p(\mu, \Sigma)$$
 y sea

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{pmatrix} \qquad \qquad \mu = \begin{pmatrix} \mu^{(1)} \\ \mu^{(2)} \end{pmatrix} \qquad \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

### Entonces

1. Cualquier subconjunto de  ${\bf x}$  se distribuye normal multivariado. En particular  ${\bf x}^{(1)} \sim N_p(\mu^{(1)}, \Sigma_{11})$ .

· Proposición 3 (Otras propiedades)

Sea 
$$\mathbf{x} \sim N_p(\mu, \Sigma)$$
 y sea

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{pmatrix} \qquad \qquad \mu = \begin{pmatrix} \mu^{(1)} \\ \mu^{(2)} \end{pmatrix} \qquad \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

#### Entonces

- 1. Cualquier subconjunto de  ${\bf x}$  se distribuye normal multivariado. En particular  ${\bf x}^{(1)} \sim N_p(\mu^{(1)}, \Sigma_{11})$ .
- 2.  $\mathbf{x}^{(1)}$  y  $\mathbf{x}^{(2)}$  son independientes si y solo si  $Cov(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = \mathbf{O}$ .

### · Proposición 3 (Otras propiedades)

Sea  $\mathbf{x} \sim N_p(\mu, \Sigma)$  y sea

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{pmatrix} \qquad \qquad \mu = \begin{pmatrix} \mu^{(1)} \\ \mu^{(2)} \end{pmatrix} \qquad \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

#### Entonces

- 1. Cualquier subconjunto de  ${\bf x}$  se distribuye normal multivariado. En particular  ${\bf x}^{(1)} \sim N_p(\mu^{(1)}, \Sigma_{11})$ .
- 2.  $\mathbf{x}^{(1)}$  y  $\mathbf{x}^{(2)}$  son independientes si y solo si  $Cov(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = \mathbf{O}$ .

3. 
$$\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x} \sim \chi_p^2(\mu^T \mathbf{\Sigma}^{-1} \mu)$$

### · Proposición 3 (Otras propiedades)

Sea  $\mathbf{x} \sim N_p(\mu, \Sigma)$  y sea

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{pmatrix} \qquad \mu = \begin{pmatrix} \mu^{(1)} \\ \mu^{(2)} \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

#### Entonces

- 1. Cualquier subconjunto de  ${\bf x}$  se distribuye normal multivariado. En particular  ${\bf x}^{(1)} \sim N_p(\mu^{(1)}, \Sigma_{11})$ .
- 2.  $\mathbf{x}^{(1)}$  y  $\mathbf{x}^{(2)}$  son independientes si y solo si  $Cov(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = \mathbf{O}$ .

3. 
$$\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x} \sim \chi_p^2 (\mu^T \mathbf{\Sigma}^{-1} \mu)$$

4. 
$$\mathbf{x}^{(2)} | \mathbf{x}^{(1)} \sim N_{p-k} (\mu^{(2)} + \Sigma_{21} \Sigma_{11}^{-1} [\mathbf{x}^{(1)} - \mu^{(1)}], \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12})$$

### · Teorema (Teorema Central del Límite)

Sean  $\mathbf{x}_1, \mathbf{x}_2, \ldots \in \mathbb{R}^p$  vectores aleatorios independientes e idénticamente distribuidos con media  $\mu$  y matriz (finita) de varianza  $\Sigma$ . Entonces se tiene que

$$\sqrt{n}(\bar{\mathbf{x}} - \mu) \to N_p(\mathbf{0}_p, \Sigma)$$

### Definición

Sea  ${f x}$  un vector p-variado. Entonces la función característica está definida para  ${f t} \in \mathbb{R}^p$  como

$$\phi(\mathbf{t}) = \mathbb{E}[\exp(i\mathbf{t}^T\mathbf{x})] = \int \exp(i\mathbf{t}^T\mathbf{x})f(\mathbf{x})d\mathbf{x}$$

#### Definición

Sea  ${f x}$  un vector p-variado. Entonces la función característica está definida para  ${f t} \in \mathbb{R}^p$  como

$$\phi(\mathbf{t}) = \mathbb{E}[\exp(i\mathbf{t}^T\mathbf{x})] = \int \exp(i\mathbf{t}^T\mathbf{x})f(\mathbf{x})d\mathbf{x}$$

### · Propiedades (algunas)

 $-\phi(\mathbf{t})$  siempre existe,  $\phi(\mathbf{0}) = 1$  y  $|\phi(\mathbf{t})| \le 1$ .

#### Definición

Sea  ${f x}$  un vector p-variado. Entonces la función característica está definida para  ${f t} \in \mathbb{R}^p$  como

$$\phi(\mathbf{t}) = \mathbb{E}[\exp(i\mathbf{t}^T\mathbf{x})] = \int \exp(i\mathbf{t}^T\mathbf{x})f(\mathbf{x})d\mathbf{x}$$

- $-\phi(\mathbf{t})$  siempre existe,  $\phi(\mathbf{0}) = 1$  y  $|\phi(\mathbf{t})| \le 1$ .
- (Teorema de unicidad)  $F(\mathbf{x}) = F(\mathbf{y}) \Leftrightarrow \phi_{\mathbf{x}}(\mathbf{t}) = \phi_{\mathbf{y}}(\mathbf{t})$

#### Definición

Sea  ${f x}$  un vector p-variado. Entonces la función característica está definida para  ${f t} \in \mathbb{R}^p$  como

$$\phi(\mathbf{t}) = \mathbb{E}[\exp(i\mathbf{t}^T\mathbf{x})] = \int \exp(i\mathbf{t}^T\mathbf{x})f(\mathbf{x})d\mathbf{x}$$

- $-\phi(\mathbf{t})$  siempre existe,  $\phi(\mathbf{0}) = 1$  y  $|\phi(\mathbf{t})| \le 1$ .
- (Teorema de unicidad)  $F(\mathbf{x}) = F(\mathbf{y}) \Leftrightarrow \phi_{\mathbf{x}}(\mathbf{t}) = \phi_{\mathbf{y}}(\mathbf{t})$
- \_(Teorema de inversión) Si  $\phi(\mathbf{t})$  es absolutamente integrable entonces  $f(\mathbf{x}) = \frac{1}{(2\pi)^p} \int_{\mathbb{R}} \exp[-i\mathbf{t}^T\mathbf{x}]\phi(\mathbf{t})d\mathbf{t}$

### · Definición

Sea  ${f x}$  un vector p-variado. Entonces la función característica está definida para  ${f t} \in \mathbb{R}^p$  como

$$\phi(\mathbf{t}) = \mathbb{E}[\exp(i\mathbf{t}^T\mathbf{x})] = \int \exp(i\mathbf{t}^T\mathbf{x})f(\mathbf{x})d\mathbf{x}$$

- $-\phi(\mathbf{t})$  siempre existe,  $\phi(\mathbf{0}) = 1$  y  $|\phi(\mathbf{t})| \le 1$ .
- (Teorema de unicidad)  $F(\mathbf{x}) = F(\mathbf{y}) \Leftrightarrow \phi_{\mathbf{x}}(\mathbf{t}) = \phi_{\mathbf{y}}(\mathbf{t})$
- \_(Teorema de inversión) Si  $\phi(\mathbf{t})$  es absolutamente integrable entonces  $f(\mathbf{x}) = \frac{1}{(2\pi)^p} \int_{\mathbb{R}} \exp[-i\mathbf{t}^T\mathbf{x}]\phi(\mathbf{t})d\mathbf{t}$
- $-\mathbf{x}^{(1)},\mathbf{x}^{(2)}$  son independientes si y solo si  $\phi_{\mathbf{x}}(\mathbf{t})=\phi_{\mathbf{x}^{(1)}}(\mathbf{t}^{(1)})\phi_{\mathbf{x}^{(2)}}(\mathbf{t}^{(2)})$

#### Definición

Sea  ${f x}$  un vector p-variado. Entonces la función característica está definida para  ${f t} \in \mathbb{R}^p$  como

$$\phi(\mathbf{t}) = \mathbb{E}[\exp(i\mathbf{t}^T\mathbf{x})] = \int \exp(i\mathbf{t}^T\mathbf{x})f(\mathbf{x})d\mathbf{x}$$

- $-\phi(\mathbf{t})$  siempre existe,  $\phi(\mathbf{0}) = 1$  y  $|\phi(\mathbf{t})| \le 1$ .
- (Teorema de unicidad)  $F(\mathbf{x}) = F(\mathbf{y}) \Leftrightarrow \phi_{\mathbf{x}}(\mathbf{t}) = \phi_{\mathbf{y}}(\mathbf{t})$
- \_(Teorema de inversión) Si  $\phi(\mathbf{t})$  es absolutamente integrable entonces  $f(\mathbf{x}) = \frac{1}{(2\pi)^p} \int_{\mathbb{R}} \exp[-i\mathbf{t}^T\mathbf{x}]\phi(\mathbf{t})d\mathbf{t}$
- $-\mathbf{x}^{(1)},\mathbf{x}^{(2)}$  son independientes si y solo si  $\phi_{\mathbf{x}}(\mathbf{t})=\phi_{\mathbf{x}^{(1)}}(\mathbf{t}^{(1)})\phi_{\mathbf{x}^{(2)}}(\mathbf{t}^{(2)})$

$$-\phi_{\mathbf{x}^{(1)}}(\mathbf{t}^{(1)}) = \phi_{\mathbf{x}}(\mathbf{t}^{(1)}, \mathbf{0})$$

### · Teorema (Crámer-Wold)

La distribución de un vector aleatorio p-variado  $\mathbf{x}$  está completamente determinado por el conjunto de todas las distribuciones de combinaciones lineales  $\mathbf{t}^T\mathbf{x}$ , con  $\mathbf{t} \in \mathbb{R}^p$ 

### · Proposición 4

Sea  $\mathbf{x} \sim N_p(\mu, \Sigma)$  entonces

$$\phi(\mathbf{t}) = \exp\left(i\mathbf{t}^T \mu - \frac{1}{2}\mathbf{t}^T \Sigma \mathbf{t}\right)$$

### · Proposición 5 (Asimetría y Curtosis)

Sea  $\mathbf{x} \sim N_p(\mu, \Sigma)$  entonces los coeficientes de asimetría y curtosis están dados respectivamente por

$$\beta_{1,p} = 0$$

$$\beta_{2,p} = p(p+2)$$

- Todas las distribuciones univariadas son normales
  - \* applot
  - \* histogramas
  - \* Pruebas de normalidad (e.g. Anderson-Darling, Shapiro-Wilk, Lilliefors, etc.)

- Todas las distribuciones univariadas son normales
  - \* applot
  - \* histogramas
  - \* Pruebas de normalidad (e.g. Anderson-Darling, Shapiro-Wilk, Lilliefors, etc.)
- Prueba basada en los coeficientes de asimetría y curtosis (Prueba de Mardia)

### · Checar normalidad

- Todas las distribuciones univariadas son normales
  - \* applot
  - \* histogramas
  - \* Pruebas de normalidad (e.g. Anderson-Darling, Shapiro-Wilk, Lilliefors, etc.)
- Prueba basada en los coeficientes de asimetría y curtosis (Prueba de Mardia)

$$-(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu) \sim \chi_p^2$$

\* applot

- Todas las distribuciones univariadas son normales
  - \* applot
  - \* histogramas
  - \* Pruebas de normalidad (e.g. Anderson-Darling, Shapiro-Wilk, Lilliefors, etc.)
- Prueba basada en los coeficientes de asimetría y curtosis (Prueba de Mardia)

$$-(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu) \sim \chi_p^2$$

- \* applot
- Otras pruebas de normalidad multivariadas

· En R la librería mvn provee todas las herramientas esto

mvn(multnorm.sample,mvnTest="mardia",multivariatePlot = "qq")

```
$multivariateNormality
                        Statistic
                                            p value Result
             Test
1 Mardia Skewness 3.47421629178296 0.481809628750315
2 Mardia Kurtosis 0.29380065853414 0.768910231846389
                                                       YES
              MVN
$univariateNormality
              Test Variable Statistic
                                      p value Normality
1 Anderson-Darling Column1
                                                   YES
2 Anderson-Darling Column2
                               0.2388
                                         0.7793
                                                   YES
```



mvn(iris[,-5],mvnTest="mardia",univariatePlot = "qqplot")

| <pre>\$multivariateNorm</pre> | ality              |                       |        |
|-------------------------------|--------------------|-----------------------|--------|
| Test                          | Statistic          | p value               | Result |
| 1 Mardia Skewness             | 67.4305087780629   | 4.75799820400705e-07  | NO     |
| 2 Mardia Kurtosis             | -0.230112114480775 | 0.818004651478188     | YES    |
| 3 MVN                         | <na></na>          | <na></na>             | NO     |
|                               |                    |                       |        |
| \$univariateNormality         |                    |                       |        |
| Tes                           | t Variable Stati   | istic 🏻 p value Norma | lity   |
| 1 Anderson-Darlin             | g Sepal.Length 0   | .8892 0.0225 NO       |        |
| 2 Anderson-Darlin             | g Sepal.Width 0    | .9080 0.0202 NO       |        |
| 3 Anderson-Darlin             | g Petal.Length 7   | .6785 <0.001 NO       |        |
| 4 Anderson-Darlin             | g Petal.Width 5    | .1057 <0.001 NO       |        |
|                               |                    |                       |        |

