CO202 – Software Engineering – Algorithms Divide and Conquer - Solutions

Exercise 1: Illustrate the Operations of Merge Sort

$$A = \langle 3, 41, 52, 26, 38, 57, 9, 49 \rangle$$

Exercise 1: Illustrate the Operations of Merge Sort

 $A = \langle 3, 41, 52, 26, 38, 57, 9, 49 \rangle$

$$A = \langle 3, 41, 52, 26, 38, 57, 9, 49 \rangle$$

initial sequence

$$T(n) = 3T(n/4) + cn^2$$

m.socrative.com - room ALGO202

A: $O(\lg n)$ **B**: O(n) **C**: $O(n \lg n)$ **D**: $O(n^2)$ **E**: $O(2^n)$

Total: $\Theta(n^{\log_b a}) + \sum_{j=1}^{n} a^j f(n/b^j)$

61

$$T(n) = 3T(n/4) + cn^2$$

$$T(n) = 3T(n/4) + cn^2$$

Bottom level has $3^{\log_4 n} = n^{\log_4 3}$ nodes, each contributing T(1), which makes $\Theta(n^{\log_4 3})$.

Adding up the costs over all levels

$$cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4}n-1}cn^{2}$$

$$=\sum_{i=0}^{\log_4 n-1} \left(\frac{3}{16}\right)^i cn^2 < \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 = \frac{16}{13} cn^2 = O(n^2)$$

The cost for the entire tree is $O(n^2) + \Theta(n^{\log_4 3}) = O(n^2)$.

$$T(n) = 3T(^n/_4) + cn^2$$

Guess: $O(n^2)$

Prove that $T(n) \leq dn^2$

c is taken, so we use d

Assume this holds for all positive m < n, in particular for $m \le n/4$, yielding $T(n/4) \le d((n/4)^2)$

By substitution:

$$T(n) \le 3(d(^{n}/_{4})^{2}) + cn^{2}$$

$$= 3d^{n^{2}}/_{16} + cn^{2}$$

$$= \frac{3}{16}dn^{2} + cn^{2}$$

$$\le dn^{2}$$

holds for
$$d \ge \frac{16}{13}c$$

Skipping the base case here.

Exercise 3: Master Method

$$T(n) = 3T(n/4) + cn^2$$

1. If
$$d < \log_b a$$
, then $T(n) = \Theta(n^{\log_b a})$.

2. If
$$d = \log_b a$$
, then $T(n) = \Theta(n^d \lg n)$.

3. If
$$d > \log_b a$$
, then $T(n) = \Theta(n^d)$.

•
$$T(n) = 2T(n/4) + \sqrt{n}$$

$$T(n) = 8T(n/2) + n^2$$

$$-T(n) = T(n/2) + 1$$

Exercise 3: Master Method

•
$$T(n) = 3T(n/4) + cn^2$$
 $\log_4 3 \approx 0.7925$
Case 3: $d = 2 > 0.8$ so $T(n) = \Theta(n^2)$.

•
$$T(n) = 2T(n/4) + \sqrt{n}$$
 $\log_4 2 = 0.5$
Case 2: $d = 0.5 = 0.5$ so $T(n) = \Theta(\sqrt{n} \lg n)$.

•
$$T(n) = 8T(n/2) + n^2$$
 $\log_2 8 = 3$
Case 1: $d = 2 < 3$ so $T(n) = \Theta(n^3)$.

•
$$T(n) = T(n/2) + 1$$
 $\log_2 1 = 0$
Case 2: $d = 0 = 0$ so $T(n) = \Theta(\lg n)$.

Exercise 4: Substitution Method

$$T(n) = 2T(n/2) + 1$$

- 1) Obtain the running time using the Master Method
- 2) Confirm with the Substitution Method

Exercise 4: Substitution Method

$$T(n) = 2T(n/2) + 1$$

Case 1: $d < \log_b a$ with a = 2, b = 2, d = 0, so $T(n) = \Theta(n)$

Substitution method will fail:

$$T(n) \le 2c\frac{n}{2} + 1 = cn + 1 \le cn$$

Need to subtract a lower order term d and show $T(n) \le cn - d$

$$T(n) \le 2\left(c\frac{n}{2} - d\right) + 1 = cn - 2d + 1 \le cn - d$$

which holds for $d \ge 1$

1) Write in pseudo-code a recursive function $f(x,n) = x^n$ for powering a number using divide-and-conquer.

Hint:

- $x^n = x^{n/2} \cdot x^{n/2}$ for even n
- $x^n = x^{(n-1)/2} \cdot x^{(n-1)/2} \cdot x$ for odd n

2) Show that the running time complexity is $O(\lg n)$.

• $x^n = x^{n/2} \cdot x^{n/2}$ for even n

1) Write in pseudo-code a recursive function $f(x,n) = x^n$ for powering a number using divide-and-conquer.

Hint:

```
* x<sup>n</sup> = x<sup>(n-1)/2</sup> · x<sup>(n-1)/2</sup> · x for odd n

RECURSIVE-POWER(x, n)

1: if n == 1

2: return x

3: if n is even

4: return RECURSIVE-POWER(x, n/2) * RECURSIVE-POWER(x, n/2)

5: else

6: return RECURSIVE-POWER(x, (n-1)/2) * RECURSIVE-POWER(x, (n-1)/2) * x
```

1) Write in pseudo-code a recursive function $f(x,n) = x^n$ for powering a number using divide-and-conquer.

```
RECURSIVE-POWER(x, n)
1: if n == 1
2:    return x
3: if n is even
4:    y = RECURSIVE-POWER(x, n/2)
5:    return y*y
6: else
7:    y = RECURSIVE-POWER(x, (n-1)/2)
8:    return y*y*x
```

2) Show that the running time complexity is $O(\lg n)$.

$$T(n) = T(n/2) + c$$

Case 2:
$$d = \log_b a$$
 with $a = 1$, $b = 2$, $d = 0$, so $T(n) = \Theta(\lg n)$