Computational requirements

Computational requirements:

1. A computer

- No super-computer
- 8 GM RAM is enough for most cases

2. A routing engine / algorithm

Good news!

Growing number of open-source tools

Routing engines

* network analysis packages

m4ra

Graphhopper

dodgr

openroute service

OSMnx

Our tool of choice:

r5r: rapid realistic routing with R5 in R

CRAN 2.0

downloads 912K

DOI 10.32866/001c.21262

GitHub code

https://ipeagit.github.io/r5r

Conveyal

Fast routing on multimodal transport networks

- Travel time / distance matrices
- Accessibility
- Trip planning
- Isochrones
- Level of traffic stress for cycling
- Terrain elevation
- Monetary costs
- Time window

Blazing fast

Table 3. Performance Analysis Results

Activity	Scenario	ArcGIS Pro	R-OTP	Python- OTP	R5R	Emme
Make/Build Network	All	11m 26s	8m 19s	7m 24s	2m 39s	1m 25s
Calculate OD Matrix and Accessibility	1 x 100	1m 37s	20s	23s	<1s	2m 23s
	1 x 1,000	1m 47s	2m 49s	24s	<1s	4m 46s
	1 x 10,000	2m 51s	22m 37s	28s	1s	28m 36s
	1 x 100,000	12m 59s	7h 12m 15s	1m 4s	7s	not run
Calculate OD Matrix and Accessibility	100 x 100	3m 24s	25m 30s	2m 2s	1s	5m 5s
	1,000 x 1,000	6m 56s	>24h (DNF)	13m 42s	9s	18m 33s
	10,000 x 10,000	49m 53s	not run	4h 49m 18s	7m 50s	13h+
	100,000 x 100,000	not run	not run	not run	18h 15m 43s	not run

r5r is x times faster than:

Number of OD pairs	ArcGis	ОТР-Ру	Emme
100 ²	204	122	305
1.000²	46	91	124
10.000²	6	37	100
100.000 ²	Inf	Inf	Inf

Higgins et al (2022) Calculating Place-Based Transit Accessibility: Methods, Tools and Algorithmic Dependence. Journal of Transport and Land Use https://jtlu.org/index.php/jtlu/article/view/2012

r5r: rapid realistic routing with R5 in R

CRAN 2.0

downloads 912K

DOI 10.32866/001c.21262

GitHub code

https://ipeagit.github.io/r5r

New version v2.0

It requires **Java JDK 21**: several open-source providers – <u>Link</u>

Check your Java version with:

```
rJava::.jinit()
rJava::.jcall("java.lang.System", "S", "getProperty", "java.version")
[1] "21.0.1"
```

If your output points to a JDK 11, you can install the older version of {r5r}

A crash course on Urban accessibility with R

Rafael H. M. Pereira

