Consider the piecewise function defined by

$$f(t) = \begin{cases} t, & \text{if } 0 \le t < 2\\ t^2, & \text{if } 2 \le t < 6\\ t^3, & \text{if } 6 \le t \end{cases}$$

The function f(t) is expressed in the form of unit step function U(t) as

$$t+(t^2-t)U(t-2)+(t^3-t^2)U(t-6)$$

$$t+(t^2-t)U(t-2)+t^3U(t-6)$$

..

O ..

$$t+t^2U(t-2)+t^3U(t-6)$$

$$t+(t-2)^2U(t-2)+(t-6)^3U(t-6)$$

() .

2 points

Let us consider a periodic function f(t), which is defined as

$$f(t) = \begin{cases} 1, & \text{if } 0 \le t < a \\ -1, & \text{if } a \le t < 2a \end{cases}$$

If the Laplace transform of f(t) is $\frac{\tanh(\frac{3s}{8})}{s}$ then the period of the

function is

- 3/4
- 3/2
- 1/2
- 3/8

The Fourier coefficients $\{a_n\}$ and $\{b_n\}$ of the Fourier series corresponding to the function $f(x) = e^{-x}$, $0 < x < 2\pi$ are

$$a_n = \frac{1 - e^{-2\pi}}{\pi} \cdot \frac{1}{n^2 - 1}, \ n \ge 0$$

 $a_n = \frac{1 - e^{-2\pi}}{\pi} \cdot \frac{1}{n^2 + 1}, \ n \ge 0$

 \square .

✓ .

$$b_n = \frac{1 - e^{-2\pi}}{\pi} \cdot \frac{n}{n^2 - 1}, \ n \ge 1$$

 $b_n = \frac{1 - e^{-2\pi}}{\pi} \cdot \frac{n}{n^2 + 1}, \ n \ge 1$

 \square .

✓

If
$$L^{-1}\left\{\frac{4(3s^3-4s)}{(s^2+4)^4}\right\} = L^{-1}\left\{F(s).G(s)\right\}$$
, where $F(s) = L\left\{f(t)\right\}$ and

 $G(s) = L(\cos 2t)$, then f(t) is given by

t sin 2t

 $t^3 \sin 2t$

.

O ...

 $t^2 \sin 2t$

None of these.

...

If
$$L\{f(t)\} = \frac{s+1}{(s^2+2s+2)(s^2+1)}$$
, then $f(t)$ is given by

 $\frac{1}{5}[e^{-t}(\sin t + 2\cos t) + (\sin t - 2\cos t)]$

 $\frac{1}{5} [e^{-t}(\cos t - 2\sin t) + (3\sin t - \cos t)]$

0 .

.

 $\frac{1}{5}[-e^{-t}(\sin t + 2\cos t) + (\sin t - 2\cos t)]$

None of these.

 \bigcirc .

If the differential equation is given by

$$\frac{d^2y(t)}{dt^2} + ty(t) = 0, \quad y(0) = y'(0) = 0$$

Then the Laplace transform of y(t) is

 $ce^{\frac{z^2}{2}}$, c is an arbitrary constant

 $c_1e^s + c_2e^{-s}$, c_1 , c_2 are arbitrary constants

O .

0 .

 $(c_1 + c_2 s)e^s$, c_1 , c_2 are arbitrary constants

 $ce^{\frac{s^3}{3}}$, c is an arbitrary constant

 \bigcirc .

...

If $P_i(i=0,1,2)$ denote the Legendre polynomial of order i and f(x) is defined as

$$f(x) = \begin{cases} 4P_2 + 3P_1 + 11P_0, & |x| \le 1\\ 0, & |x| > 1 \end{cases}$$

then the value of

$$\int_{\frac{5}{2}}^{\frac{5}{2}} (2x+1)f(x)dx$$
 is

- \bigcirc 0
- 2
- (4
- 0 8

Let Fourier transform of f(x) and its inverse transform be defined below as respectively

$$F\{f(x)\} \equiv \widetilde{f}(p) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ipx} f(x) dx.$$

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ipx} \widetilde{f}(p) dp$$

If f(x)=1, |x|<2, then the value of the integral $\int_{-\infty}^{\infty} \frac{\sin p \cos \frac{px}{2}}{p} dp$ is given by

 π , $\forall x \in (-2,0] \cup (0,2)$

 $\frac{\pi}{2}$, $\forall x \in [0,2] \cup (-2,0]$

11.

 π , $\forall x \in (-2,0)$

 $\frac{\pi}{2}$, $\forall x \in [0,2)$

| | .

Which of the following statement(s) is/are correct?

For the function $f(x)=|x|, -L < x \le L$, the integral $\int_{-L}^{L} |f(x)| \, dx$ does not exist.

The conditions for the convergence of Fourier series (Dirichlet Conditions) provide the set of sufficient but not necessary conditions.

✓ ..

✓ ..

 $\ln x$ cannot be expanded into a Fourier series in the interval [0, 1].

 $\cos(\frac{2\pi\,nx}{L}) \quad \text{and} \quad \sin(\frac{2\pi\,mx}{L}) \quad \text{defined in} \\ -L \leq x \leq L \;, \quad \text{represents} \quad \text{two} \quad \text{non-orthogonal} \\ \text{functions}.$

11.

✓ ...

If the function $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ represented by the trigonometrical series then consider the following statements:

- A. f(x) is periodic with period 2π .
- **B.** $V = 1 \frac{1}{3} + \frac{1}{5} \dots$
- C. At x=0, the trigonometrical series converges to

$$\frac{1}{2} \left[\lim_{x \to 0+} f(x) + \lim_{x \to 0-} f(x) \right].$$

A is true and $V = \frac{3\pi}{4}$

C is true and $V = \frac{\pi}{4}$

| | .

✓ .

A is true and C is false.

 $V = \frac{\pi}{\Lambda}$.

1 1 .

✓

Back Submit

Never submit passwords through Google Forms.

This form was created inside of Delhi Technological University. Report Abuse

Google Forms