Lista de Exercícios 01 Macroeconomia III

CE 572 1º Semestre de 2020

Capítulo 11

Questão 1 Qual a ideia do modelo de Solow? Tenha em mente as principais conclusões do modelo para responder a esta pergunta.

Resposta

No modelo de Solow, a taxa de crescimento do produto per capita é determinada pela acumulação de capital associada a uma função de produção. Esta, por sua vez, possui rendimentos marginais decrescente dos fatores que são substituíveis entre si. O investimento das firmas é o principal determinante do produto é induzido pela renda e contabilmente idêntico a poupança. Para obter-se o estoque de capital líquido, desconta-se a depreciação.

Neste modelo, no entanto, acumulação de capital não é suficiente para manter um crescimento no *steady state* (ou um *steady growth*) devido aos rendimentos marginais decrescentes dos fatores de produção. Assim, Solow lança mão do progresso tecnológico (crescendo a uma taxa **exógena**, o resíduo de Solow) para explicar os determinantes do crescimento em *steady state*. Como consequência do modelo, a taxa de poupança não altera a taxa de crescimento, altera apenas o **nível** do produto. Por fim, vale notar que são os fatores de produção (oferta) que determinam o crescimento no longo prazo.

Questão 2 Defina a ideia de *steady state* (estado estacionário) para Solow.

Resposta

Steady state ocorre quando todo o investimento é suficiente para cobrir a depreciação, a taxa de crescimento populacional junto do progresso tecnológico, ou seja, produto por trabalhador efetivo.

$$s \cdot Y = (\delta + g_N + g_A) \cdot K$$

É o estado em que não acumulação de capital por trabalhador efetivo, ou seja, a taxa de crescimento do produto ou capital por trabalhador é igual a taxa do progresso técnico. Outra maneira de entender o *steady state* é quando os fluxos (*e.g.* investimento) e estoques (capital) crescem a mesma taxa

$$\frac{I}{\kappa} = cte \Leftrightarrow g_K = cte$$

Questão 3 Quais as hipóteses básicas do modelo de Solow?

Resposta

Tal como mencionado anteriormente, as hipóteses são:

- Investimento (das firmas) é induzido pela renda e definido como uma função da propensão marginal à poupar;
- Não existem gastos autônomos (criadores e não criadores de capacidade produtiva). Logo, a propensão marginal e média à poupar são idênticas (isso será importante na aula so supermultiplicador sraffiano);

- Existem rendimentos marginais decrescentes dos fatores, mas rendimentos de escala constantes (se ambos os fatores crescem **conjuntamente**);
- Capital e trabalho são fatores substituíveis (importante para entender controvérsia do capital de Cambridge);
- Progresso tecnológico e crescimento populacional são definidos exogenamente;
- Remuneração real dos fatores, logo distribuição funcional, depende de fatores técnicos (produtividades marginais).

Questão 4 Explique por que razão, no modelo de Solow, sem crescimento populacional e sem progresso técnico, há um limite ao produto agregado e ao nível de renda por trabalhador, para uma dada taxa de poupança. Descreva o impacto de um aumento na taxa de poupança, explicando por que razão gera uma aceleração temporária do crescimento e possibilita um nível de produto por trabalhador mais elevado no *steady state*, sem contudo determinar um processo de crescimento sustentado dessa relação.

Questão 5 Dado um modelo de Solow com as seguintes especificações:

$$y = k^{1/2}$$

com

- s = 0.2
- $\delta = 0.05$
- n = 0

em que y corresponde à produção per capita, k ao capital per capita, s é a taxa de poupança, δ é a taxa de depreciação e n é a taxa de crescimento populacional, pergunta-se: qual será o nível de produção per capita no estado estacionário?

Resposta

$$\Delta K = s \cdot Y - (\delta + n) \cdot K_{-1}$$

No steady state:

$$K_t = K_{t-1} = K^* \Rightarrow \Delta K = 0$$

Assim,

$$s \cdot Y = (\delta + n) \cdot K^*$$

Substituindo a função de produção e dividindo pelo número de trabalhadores:

$$s \cdot \sqrt{\frac{K^*}{N}} = (\delta + n) \cdot \frac{K^*}{N}$$

Por simplificação, considere

$$k^* = \frac{K^*}{N}$$

Reescrevendo a equação anterior

$$s \cdot \sqrt{k^*} = (\delta + n) \cdot k$$

Rearranjando

$$k^* = \left(\frac{s}{\delta + n}\right)^2$$

Substituindo os valores iniciais, obtemos o estoque de capital per capita:

$$k^* = \left(\frac{0.2}{0.05 + 0}\right)^2 \tag{1}$$

$$\therefore k^* = 4^2 \Rightarrow k^* = 16$$

No entanto, a questão pede o **produto per capita** e não o estoque de capital por trabalhador. Para isso, basta substituir o resultado obtido em 1 na função de produção:

$$y^* = \sqrt{k^*}$$

$$y^* = 4$$

Questão 6 Considere o modelo de crescimento de Solow com função de produção dada por $Y = K^{\frac{1}{2}} \cdot L^{\frac{1}{2}}$, sendo Y = produto, K = estoque de capital, L = número de trabalhadores. Nessa economia, a população cresce a uma taxa constante igual a 5%, a taxa de depreciação do estoque de capital é de 5%, e a taxa de poupança é de 20%. Calcule o valor do <u>salário real</u> no estado de crescimento equilibrado.

Dica: Salário real é calculado de forma semelhante dos manuais de microeconomia.

Resposta

Valores Iniciais
$$\begin{cases} g_N = 5\% \\ \delta = 5\% \\ s = 20\% \end{cases}$$

De acordo com os microfundamentos neoclássicos, o rendimento de um fator é dado por sua produtividade marginal. Neste caso, o rendimento do trabalho (salário real, w) é dado por

$$w = \frac{\partial Y}{\partial I} \tag{2}$$

Substituindo a função de produção na equação anterior, temos

$$w = \frac{\partial \left(K^{0.5} \cdot L^{0.5} \right)}{\partial L}$$

$$\frac{\partial \left(K^{0.5} \cdot L^{0.5}\right)}{\partial L}$$

$$w = 0.5 \cdot \left(\frac{K}{L}\right)^{0.5}$$

seja k^* a relação capital por trabalhador no *steady state*, podemos reescrever o resultado anterior nos seguintes termos

$$w^* = 0.5 \cdot \sqrt{k^*} \tag{3}$$

Sendo assim, para resolver a questão, precisamos encontrar o capital per capita.

$$\Delta K = s \cdot Y - (\delta + g_N) \cdot K \qquad : L$$

$$\frac{\Delta K}{L} = s \cdot \frac{Y}{L} - (\delta + g_N) \cdot \frac{K}{L}$$

No steady state, por definição, temos

$$\Delta K = 0$$

$$\therefore s \frac{Y}{L} = (\delta + g_N) \cdot \frac{K}{L}$$

Substituindo a equação de produção:

$$s \cdot \frac{\sqrt{K \cdot L}}{L} = (\delta + g_N) \cdot \frac{K}{L}$$

$$s \cdot \sqrt{k} = (\delta + g_N) \cdot k$$

Deixando k em evidência

$$\frac{k}{\sqrt{k}} = \left(\frac{s}{\delta + g_N}\right)$$

$$\sqrt{k} = \left(\frac{s}{\delta + g_N}\right)$$

$$\therefore k^* = \left(\frac{s}{\delta + g_N}\right)^2$$
(4)

Substituindo os valores do enunciado na equação anterior

$$k^* = \left(\frac{0.2}{0.05 + 0.05}\right)^2$$
$$k^* = 4$$

Substituindo o resultado anterior na Equação 3

$$w^* = 0.5 \cdot \sqrt{k^*} \Rightarrow 0.5 \cdot 2$$

$$w^* = 1$$

Capítulo 12

Questão 7 Explique as características do *steady state* na ausência de progresso técnico mas com crescimento da população. Qual a relação entre a taxa de crescimento da renda e a taxa de crescimento da população? Descreva o que ocorre no caso de um aumento da taxa de crescimento da população.

Resposta

Na ausência do progresso e com crescimento populacional, o *steady state* apresenta uma taxa crescimento do produto e do capital equivalente a taxa de crescimento populacional, ou seja, o produto por trabalhador é constante. Esta relação pode ser expressa como:

Taxa de crescimento do produto: $g_N + g_A$

Com
$$g_A = 0$$
:

$$g_Y = g_N$$

Taxa de crescimento do produto per capita: 0

$$g_y = g_Y - g_N$$

Como o produto e a população crescem a uma mesma taxa, o produto per capita cresce a uma taxa constante

Um aumento da taxa de crescimento populacional aumenta a taxa de crescimento do produto, mas tem um efeito temporário sobre a taxa de crescimento do produto per capital.

Questão 8 Defina "crescimento endógeno" e compare esta visão com o modelo de crescimento de Solow.

Resposta

Crescimento endógeno significa que alguns parâmetros do modelo afetam a taxa de crescimento. Em outras palavras, a própria acumulação de capital é capaz de explicar o crescimento de longo prazo por si só. Já no modelo de Solow, o crescimento de longo prazo é explicado pelo progresso tecnológico e pelo crescimento populacional, ambos fatores exógenos. A taxa de poupança tem efeitos apenas temporários, mas não altera a taxa de crescimento.

Questão 9 O quê os modelos de crescimento endógeno incluem que, até o modelo de Solow, não havia sido considerado?

Resposta

Resumidamente, os modelos de crescimento endógeno incluem capital humano na função de produção. Como consequência, mudanças na taxa de poupança tem efeitos sobre a taxa de crescimento, não só um efeito nível como no modelo de Solow canônico. Sendo assim, ao alterarem a taxa de poupança, políticas públicas podem ter efeitos persistentes sobre a taxa de crescimento.

Questão 10

(ANPEC 2004, Ex. 14) Considere uma economia cuja função de produção é dada por Y = $\sqrt{K}\sqrt{NA}$, em que Y, K, N e A representam, respectivamente, o produto, o estoque de capital, o número de trabalhadores e o estado da tecnologia. Por sua vez, a taxa de poupança é igual a 20%, a taxa de depreciação é igual a 5%, a taxa de crescimento do número de trabalhadores é igual a 2,5% e a taxa de progresso tecnológico é igual a 2,5%. Calcule valor do capital por trabalhador efetivo no estado estacionário.

Resposta

Valores Iniciais =
$$\begin{cases} s = 0.2 \\ \delta = 0.05 \\ g_N = 0.025 \\ g_A = 0.025 \end{cases}$$

$$\Delta K = s \cdot Y - (\delta + g_N + g_A) \cdot K_{t-1}$$

No estado estacionário:

$$K_t = K_{t-1} = K^* \Rightarrow \Delta K = 0$$

$$s \cdot Y = (\delta + g_N + g_A) \cdot K^*$$

Substituindo a função de produção

$$s \cdot \sqrt{K} \sqrt{NA} = (\delta + g_N + g_A) \cdot K^*$$

Dividindo pelo número de trabalhadores efetivos (NA).

$$s \cdot \frac{\sqrt{K}\sqrt{NA}}{NA} = (\delta + g_N + g_A) \cdot \frac{K^*}{NA}$$
$$s \cdot \frac{\sqrt{K}}{\sqrt{NA}} = (\delta + g_N + g_A) \cdot \frac{K^*}{NA}$$

Considere k^{\sim} o estoque de capital por trabalhador efetivo no *steady state*:

$$s \cdot \sqrt{k^{\sim}} = (\delta + g_N + g_A) \cdot k^{\sim}$$

Isolando k^{\sim}

$$k^{\sim} = \left(\frac{s}{\delta + g_N + g_A}\right)^2 \tag{5}$$

Substituindo os valores na equação 5:

$$k^{\sim} = \left(\frac{0.2}{0.025 + 0.025 + 0.05}\right)^{2}$$

$$k^{\sim} = 4$$