

1)
$$((c) - \log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right)$$

1) $\log_2 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

1) $\log_2 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

1) $\log_2 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

2) $\log_2 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

2) $\log_2 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

2) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

1) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

1) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

2) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

3) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

2) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

3) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

4) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

3) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

4) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

3) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

4) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

3) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

4) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

3) $\log_3 \left(\frac{x+1}{2-v}\right) - \log_3 \left(\frac{x+1}{2-v}\right) = 0$

4) $\log_3 \left(\frac{x+$