DATA605: Fundamentals of Computational Mathematics Assignment 11

Donald Butler

05/07/2022

Regression Analysis

Using the cars dataset in R, build a linear model for stopping distance as a function of speed and replicate the analysis of your textbook Chapter 3 (visualization, quality evaluation of the model, and residual analysis).

Load cars dataset

The cars dataset was collected in the 1920s and contains the speed in miles per hour and the stopping distance in feet.

summary(cars)

```
##
       speed
                      dist
         : 4.0
                 Min. : 2.00
   1st Qu.:12.0
                 1st Qu.: 26.00
                 Median : 36.00
  Median:15.0
##
   Mean :15.4
                 Mean : 42.98
##
  3rd Qu.:19.0
                 3rd Qu.: 56.00
  Max.
          :25.0
                 Max.
                       :120.00
```

Construct Linear Model

```
cars.lm = lm(formula = dist ~ speed, data = cars)
plot(formula = dist ~ speed, data = cars, main = 'Speed vs Stopping Distance', xlab = 'Speed (mph)', yl
abline(cars.lm)
```

Speed vs Stopping Distance

Model Evaluation

```
summary(cars.lm)
```

```
##
## Call:
## lm(formula = dist ~ speed, data = cars)
##
## Residuals:
##
                1Q
                    Median
                                3Q
                                       Max
   -29.069
           -9.525
                    -2.272
                             9.215
                                    43.201
##
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -17.5791
                            6.7584
                                    -2.601
                                              0.0123 *
                            0.4155
                                     9.464 1.49e-12 ***
##
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
```

The p-value of 1.5e-12 is less than .05 which indicates that speed is a significant variable. The \mathbb{R}^2 value

indicates that variations in speed account for 65% of the variation in stopping distance. The inter-quartile range is consistent with the residual standard error which supports that the residuals are normally distributed.

Residual Analysis

Viewing a histogram of the residuals shows that they are nearly normal centered at 0.

hist(resid(cars.lm))

The residuals appear to have constant variability.

plot(fitted(cars.lm),resid(cars.lm))

The Q-Q plot of residuals shows that they are distributed nearly normal. There are a few outliers at higher speeds, but not too concerning.

```
qqnorm(resid(cars.lm))
qqline(resid(cars.lm))
```

Normal Q-Q Plot

