Quora Question Pair Duplicate Detection

Project Documentation

By Omar Baig

Contents

1	Project Overview	2
2	Dataset	2
3	Preprocessing	2
4	Feature Scaling	3
5	Model Training	3
6	RandomForest Report	3
7	Conclusion	4

1 Project Overview

This project aims to determine whether a pair of questions from Quora are duplicates. Given a dataset of question pairs, various machine learning models were trained and evaluated to achieve the highest accuracy in predicting duplicate questions. The final model chosen was a Random Forest classifier due to its superior performance compared to other models.

2 Dataset

The dataset used in this project consists of 404,000 rows and 5 columns. The data was split into training and test sets in an 80-20 ratio. The key columns in the dataset include:

- question1: The first question in the pair.
- question2: The second question in the pair.
- is_duplicate: A label indicating whether the questions are duplicates (1) or not (0).

3 Preprocessing

Data preprocessing involved several steps to clean and prepare the text data for model training:

1. Text Cleaning:

- Lowercasing the text.
- Replacing special characters and numbers with their string equivalents.
- Decontracting words (e.g., converting "can't" to "cannot").
- Removing HTML tags.
- Removing punctuations.

2. Tokenization:

- Tokenizing the text into words.
- Removing stopwords.

3. Feature Engineering:

- Basic Features:
 - word_common: The number of common words between the two questions.
 - word_total: The total number of words in both questions.

- word_share: The ratio of common words to the total words.
- Advanced Token Features: Common non-stopwords and stopwords, common tokens, matching first and last words.
- Fuzzy Features: Fuzzy string matching ratios using the fuzzywuzzy library.

4 Feature Scaling

Feature scaling was performed to normalize the numerical features. The methods used included:

- Word Embeddings: Using Word2Vec embeddings with dimensions of 50, 100, and 300. The 300-dimensional embeddings performed the best and were chosen for the final model.
- Standardization: Standardizing features to have zero mean and unit variance.

5 Model Training

Multiple models were trained and evaluated using the preprocessed features:

- 1. Neural Network:
 - Test Loss: 0.4847
 - Test Accuracy: 0.7308
- 2. XGBoost:
 - Logloss (Train): 0.1759
 - Logloss (Validation): 0.4889
- 3. Decision Tree:
 - Test Accuracy: 0.6802
- 4. Random Forest:
 - Test Accuracy: 0.8372

6 RandomForest Report

Accuracy: 0.83723259552368

Confusion Matrix: [[45048 6192] [6971 22659]]

Classification Report:

	precision	recall	f1-score	support
0	0.87	0.88	0.87	51240
1	0.79	0.76	0.77	29630
accuracy			0.84	80870
macro avg	0.83	0.82	0.82	80870
weighted avg	0.84	0.84	0.84	80870

F1 Score: 0.7749183495494263 Log-Loss: 0.3739482366573238

7 Conclusion

This project successfully implemented a machine learning solution to identify duplicate questions on Quora. The Random Forest model demonstrated the best performance and was deployed using a Flask web application, making it accessible for real-time predictions. The combination of extensive preprocessing, feature engineering, and model evaluation ensured the robustness and accuracy of the final solution.