

Ayudantía 10 Análisis Funcional

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

11 de noviembre de 2022

**Recuerdo 1** (Propiedad universal del cociente). Sean X, Y espacios vectoriales normados y  $T \in \mathcal{L}(X, Y)$  operador lineal continuo. Entonces para  $M \subseteq \ker(T)$  subespacio vectorial cerrado existe un operador lineal continuo inducido  $T: X/M \to Y$  de tal modo que

$$X \xrightarrow{T} Y$$

$$\downarrow X/M$$

$$X/M$$

i.e.,  $T = \widetilde{T} \circ \pi$  donde  $\pi : X \to X/M$  es la proyección al cociente, que también es un operador lineal continuo y de norma  $\|\pi\|_{\mathcal{L}(X,X/M)} = 1$ . En particular, si  $M = \ker(T)$  entonces  $\widetilde{T}$  es inyectiva,  $\operatorname{ran}(T) = \operatorname{ran}(\widetilde{T})$  y  $\|T\|_{\mathcal{L}(X,Y)} = 1$  $||T||_{\mathcal{L}(X/\ker(T),Y)}$ .

**Recuerdo 2** (base ortonormal e Identidad de Parseval). Sea  $(H;\langle\cdot,\cdot\rangle_H)$  espacio de Hilbert. Decimos que una sucesión  $\{e_k\}_{k\in\mathbb{N}}\subseteq X$  es ortonormal si

$$\langle e_k, e_{k'} \rangle = \begin{cases} 1 & \text{si} \quad k = k' \\ 0 & \text{si} \quad k \neq k' \end{cases}$$

Decimos además que  $\{e_k\}_{k\in\mathbb{N}}$  es una base ortonormal si

$$\langle e_k, x \rangle_H = 0 \quad \forall k \in \mathbb{N} \Rightarrow \quad x = 0$$

Si  $\{e_k\}_{k\in\mathbb{N}}$  es base ortonormal de H, entonces para todo  $x\in X$ 

$$x = \lim_{n \to \infty} \sum_{k=0}^{n} \langle e_k, x \rangle_H e_k$$
  $y \quad ||x||^2 = \sum_{k \in \mathbb{N}} |\langle e_k, x \rangle_H|^2$ 

**Problema 1.** Sean X,Y espacios de Banach y  $T:X\to Y$  lineal acotado. Demuestre que ran(T) es cerrado si y solo si existe K > 0 tal que  $d(x, \ker(T)) \le K \|T(x)\|_Y$  para todo  $x \in X$ .

**Problema 2.** Sean X, Y espacios vectoriales normados,  $T: X \to Y$  operador lineal acotado y  $T': Y' \to X'$  su operador adjunto. Demuestre que T' es sobreyectivo si y solo si T es invectivo y  $T^{-1}$ : ran $(T) \to X$  es acotado.

**Problema 3.** Sean X, Y espacios de Banach y  $T: X \to Y$  un operador lineal acotado con rango cerrado. Demuestre que  $\ker(T') \cong (Y/\operatorname{ran}(T))'$ .

**Problema 4.** Sea H espacio de Hilbert real y  $T \in \mathcal{L}(H)$ . Muestre que el operador adjunto  $T': H' \to H'$  verifica la siguiente identidad

$$\langle Tx, y \rangle_H = \langle x, T'y \rangle \qquad \forall x, y \in H$$

Problema 5. Sea H espacio de Hilbert separable de dimensión infinita. Demuestre que H es isométricamente isomorfo a  $H \times H$  con la norma  $\|(x,y)\|_{H \times H} = (\|x\|_H^2 + \|y\|_H^2)^{1/2}$ .