Question 1:

a)
$$T(n) = T(n-1) + \frac{1}{n}$$

Expand the equation:

$$T(n) = T(n-1) + \frac{1}{n} = T(n-2) + \frac{1}{n-1} + \frac{1}{n}$$

= $T(n-3) + \frac{1}{n-2} + \frac{1}{n-1} + \frac{1}{n}$

Based on the observation, we can predict the formula:

$$T(n) = T(1) + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$= 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$= \sum_{k=1}^{n} \frac{1}{k}$$

I will prove this formula by induction:

$$T(n+1) = T(n) + \frac{1}{n+1}$$

$$= T(1) + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n+1}$$
 by inductive hypothesis.
$$= \frac{n+1}{k} + \frac{1}{k}$$
 in proved.

using the knowledge of caculus, & I is in (+) (In(n))

b)
$$T(n) = 3T(\frac{N}{2}) + n\log n$$
 $(n \le 2)$

Applying master theorem case 1 where $a = 3$, $b = 2$.

 $f(n) = n\log n$, $n \log^{6} = n \log^{2} \approx n^{1.58}$

Take $\xi = 0.01$, $f(n) = O(n \log^{2} - 0.01)$ holds (This is because login) = $O(\sqrt{n})$.

As a result, $T(n) = i\Theta(n \log^{2})$.

Which means $f(n) = O(n \log^{2})$ [upper bond].

 $f(n) = \Omega(n \log^{2})$ [upper bond].

C)
$$T(n) = T(\sqrt{n}) + 1$$
 $(n \le 2)$

Assume $2^{2^{K}}$, $T(z) = 1$.

$$T(z^{2^{K}}) = T(z^{2^{K-1}}) + 1$$

$$= T(z^{2^{K-2}}) + 2$$

$$= T(z^{2}) + k$$

$$= T(z^{2}) + k$$

$$= K+1$$

$$= K+1$$

Then caculate k to find bond: (number of recursions) $N=2^{2^k} \ni k = \log\log(n)$ and this is the tight bond because $T(n) = \log\log(n) + 1$: $T(n) = i\Theta(\log\log(n))$

T(n) = 3T
$$(\frac{n}{3} + 5)$$
 + $\frac{n}{2}$
T(n) = 3T $(\frac{n}{3} + 5)$ + $\frac{n}{2}$
T(n) = 3T $(\frac{n}{3} + 5)$ + $\frac{n}{2}$
 $= 3c (\frac{n}{3} + 5) \log (\frac{n}{3} + 5)$ + $\frac{n}{2}$
= $cn \log (\frac{n}{3}) + \frac{n}{2}$
= $cn \log (\frac{n}{3}) + \frac{n}{2}$
= $cn \log n - cn \log 3 + \frac{n}{2}$
= $cn \log n$ if we pick $oxc \le 2\log 3$

② 6vess: T(n) = 0 (nlogn), using substitution:

T(n) = 3T (
$$\frac{n}{2}$$
 +5) + $\frac{n}{2}$

≤ 3L ($\frac{n}{3}$ +5) log ($\frac{n}{3}$ +5) + $\frac{n}{2}$

≤ (cn + 15c) log ($\frac{n}{2}$) + $\frac{n}{2}$

= (an + 15c) (logn - log2) + $\frac{n}{2}$

= (an logn - logn - logn - 15clogn - 15clogn + $\frac{n}{2}$

≤ (nlogn + 15clogn - unlogn + $\frac{n}{2}$

because we know the logn - unlogn + $\frac{n}{2}$

because we know the logn - logn = 0(n)

∠ cn logn + $\frac{n}{2}$ - logn = 1 kn

= (nlogn + $\frac{n}{2}$ - clog 2) + $\frac{n}{2}$

prick c such that ($\frac{1}{2}$ + k - clog 2) ± 0

 $\frac{n}{2}$
 $\frac{n}{2}$
 $\frac{n}{2}$
 $\frac{n}{2}$

As a result, we can find $CZ \frac{k+2}{\log_2}$ for some constant k and NZ30 To show that $T(n) \leq Cn \lg n$.

$$\left\{ \begin{array}{l} T(n) = \Omega \left(n \log n \right) \\ T(n) = O \left(n \log n \right) \end{array} \right. = \left. \begin{array}{l} T(n) = O \left(n \log n \right) \\ \end{array}$$