ELECTRA

ABSTRACT

INTRODUCTION

Learning Bidirectional Represer BERT Pre-training MLM (15%) Classifier(Linear Layer) Encoder Denoising	MLM NSP 가 [MASK] Noise Token (D	(Noise Token) enoising;	· Encoder ,) 가 .
Representation Learning		(Representation)	,
BRET MLM task Substantial Computing Cost(15%)가		BERT
가 15% Noise Token	Loss	(Original 7	Γoken + Noise Token)
MLM Computationally Efficient ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Replaced Token Detection	on . 가 .	
Replaced Token Detection Token)	Masked Toke	n Synth	etically Generated Token(SGT
(Real;Not Replaced) SGT Token Generator MLM	가 (Fake;R MLM	eplaced)	
		·	
We call our approach ELE nts Accurately."	CTRA for "Efficiently	Learning an Encoder	that Classifies Token Replaceme
	(Replac	ced Token Detection)	
BERT SOTA	•	·	

METHOD

Replaced Token Detection Task

2022-06-04 1/7

Objective Function(Loss Function)

2022-06-04 2/7

ELECTRA

Generator [MASK]
Discriminator SGT가 Real/Fake

Generator Discriminator Maximum Likelihood (MLE)
フト スト KL-Div

Cross Entropy KL-Div
One-Hot.(i.e All or None) , Cross Entropy 가 .(

Generator Loss

Generator Representation Vector

$$p_G(x_t|\boldsymbol{x}) = \exp\left(e(x_t)^T h_G(\boldsymbol{x})_t\right) / \sum_{x'} \exp\left(e(x')^T h_G(\boldsymbol{x})_t\right)$$

x, x' input token .
h_G() Generator .
e() Embedding .

Generator Look-up Table . , 가 () Embedding Matrix .

Embedding Embedding Vector
Generator Representation Vector
, Header Network Embedding Maxtrix

 $h_G(x)$, vocab_size x len(embedding vector) e(x) , 1 x len(embedding vector)

 $e(x)^{*}h_{G}(x)^{T}$, 1 x vocab_size Embedding Vector Eembedding Matrix(i.e Look-Up Table)

Softmax

$$\mathcal{L}_{ ext{MLM}}(oldsymbol{x}, heta_G) = \mathbb{E}\left(\sum_{i \in oldsymbol{m}} -\log p_G(x_i | oldsymbol{x}^{ ext{masked}})
ight)$$

KL-Div One-Hot KL-Div Cross Entropy

Discriminator Loss

Discriminator Fake/Real .

 $D(\boldsymbol{x},t) = \operatorname{sigmoid}(w^T h_D(\boldsymbol{x})_t)$

2022-06-04 3/7

$$\mathcal{L}_{\text{Disc}}(\boldsymbol{x}, \theta_D) = \mathbb{E}\left(\sum_{t=1}^n -\mathbb{1}(x_t^{\text{corrupt}} = x_t) \log D(\boldsymbol{x}^{\text{corrupt}}, t) - \mathbb{1}(x_t^{\text{corrupt}} \neq x_t) \log(1 - D(\boldsymbol{x}^{\text{corrupt}}, t))\right)$$

Discriminator Generator Softmax CrossEntropy (Binary)

We minimize the combined loss

$$\min_{ heta_G, heta_D} \sum_{m{x} \in \mathcal{X}} \mathcal{L}_{ ext{MLM}}(m{x}, heta_G) + \lambda \mathcal{L}_{ ext{Disc}}(m{x}, heta_D)$$

Discriminator Loss lambda Discriminator 가)가 Discriminator Generator Task(Entropy Entropy 30000 **BERT** Vocab_size 30000 entropy 가 가 Discriminator Weight Hyper Parameter

Method

- Replaced Token Detection Task
- Maximun Likelihood Estimation
- Discriminator Loss 가

Experiment

Experimental Setup

가 ()

General Language Understanding Evaluation(GLUE) Stanford Question Answering (SQuAD) dataset

GLUE

[[https://huffon.github.io/2019/11/16/glue/]]

SQuAD

[[https://happygrammer.github.io/nlp/dataset/]]

BERT

GLUE

Simple Linear Classifier Header Network

SQuAD

XL-NET Header Network

BERT Header Network(Independently predict) Jointly predict

(Model Extentions)

ELECTRA BERT-base

2022-06-04 4/7

```
1. Weight Sharing

    Discriminator

                  Generator Embedding Layer 가 .(i.e Embedding Layer Look-Up tabl
 )
2. Smaller Generator
   ELECTRA
                          Generator
                                     Discriminator
                                                                                  BERT
          BERT
               Generator
                                           가
                           Layer
               Unigram (Character Level)
    Generator
                         500k step
   Training Algorithm(Two-Step Training)
   - Generator
                 Discriminator
                                                   Generator
                                                                    n-step
                       Discriminator
                                          가
                                                                                Generator 가
                                                           n-step
```

SMALL MODEL LARGE MODEL

SMALL MODEL

As a goal of this work is to improve the efficiency of pre-training, we develop a small model that can be quickly trained on a single GPU.

SMALL

2022-06-04 5/7

Model	Train / Infer FLOPs	Speedup	Params	Train Time + Hardware	GLUE
ELMo	3.3e18 / 2.6e10	19x / 1.2x	96M	14d on 3 GTX 1080 GPUs	71.2
GPT	4.0e19 / 3.0e10	1.6x / 0.97x	117M	25d on 8 P6000 GPUs	78.8
BERT-Small	1.4e18 / 3.7e9	45x / 8x	14M	4d on 1 V100 GPU	75.1
BERT-Base	6.4e19 / 2.9e10	1x / 1x	110M	4d on 16 TPUv3s	82.2
ELECTRA-Small	1.4e18 / 3.7e9	45x / 8x	14M	4d on 1 V100 GPU	79.9
50% trained	7.1e17 / 3.7e9	90x / 8x	14M	2d on 1 V100 GPU	79.0
25% trained	3.6e17 / 3.7e9	181x / 8x	14M	1d on 1 V100 GPU	77.7
12.5% trained	1.8e17 / 3.7e9	361x / 8x	14M	12h on 1 V100 GPU	76.0
6.25% trained	8.9e16 / 3.7e9	722x / 8x	14M	6h on 1 V100 GPU	74.1
ELECTRA-Base	6.4e19 / 2.9e10	1x / 1x	110M	4d on 16 TPUv3s	85.1

가

1. 가

ELMO GPT 가 , ELECTRA-small

2.

BERT BERT

3. BERT

BERT-small/base BERT

4. 1 GPU

1 GPU 가

LARGE MODEL

We train big ELECTRA models to measure the effectiveness of the replaced token detection pretraining task at the large scale of current state-of-the-art pre-trained Transformers.

LARGE

Replaced Token Detection Task가 SOTA

Model	Train FLOPs	Params	SQuA EM	D 1.1 dev F1	SQuA1 EM	D 2.0 dev F1	SQuA EM	D 2.0 test F1
BERT-Base	6.4e19 (0.09x)	110M	80.8	88.5	_	_		
BERT	1.9e20 (0.27x)	335M	84.1	90.9	79.0	81.8	80.0	83.0
SpanBERT	7.1e20(1x)	335M	88.8	94.6	85.7	88.7	85.7	88.7
XLNet-Base	6.6e19(0.09x)	117M	81.3	-	78.5	_	-	_
XLNet	3.9e21 (5.4x)	360M	89.7	95.1	87.9	90.6	87.9	90.7
RoBERTa-100K	6.4e20 (0.90x)	356M	_	94.0	_	87.7	-	_
RoBERTa-500K	3.2e21 (4.5x)	356M	88.9	94.6	86.5	89.4	86.8	89.8
ALBERT	3.1e22 (44x)	235M	89.3	94.8	87.4	90.2	88.1	90.9
BERT (ours)	7.1e20 (1x)	335M	88.0	93.7	84.7	87.5	_	_
ELECTRA-Base	6.4e19(0.09x)	110M	84.5	90.8	80.5	83.3	_	-
ELECTRA-400K	7.1e20 (1x)	335M	88.7	94.2	86.9	89.6	_	_
ELECTRA-1.75M	3.1e21 (4.4x)	335M	89.7	94.9	88.0	90.6	88.7	91.4

RoBERTa-500k E	ELECTRA-400k	RoBERTa ,	ELECTRA	ELECTRA가 1/4		R
ELECTRA-1.75M	RoB	ERTa-500k			가	

ELECTRA

EFFICIENCY ANALYSIS

ELECTRA 가

2022-06-04 6/7

- 1. Loss
- 2. Masked Language Model Task vs Replaced Token Detection Task
- 3. [MASK]

Model	ELECTRA	All-Tokens MLM	Replace MLM	ELECTRA 15%	BERT
GLUE score	85.0	84.3	82.4	82.4	82.2

Table 5: Compute-efficiency experiments (see text for details).

1. 2. [MASK]		Loss						
	oken	Detection	Task	Masked	Language	Model	Task	
, ELECTR	A			가				
Screen Shot 2022	-05-01	at 11.49.40	PM.png		55.4 KB	2022	2-05-01	
Screen Shot 2022	-05-02	at 12.41.59	AM.png		15 KB	2022	2-05-01	
Screen Shot 2022	-05-02	at 12.42.36	AM.png		14.9 KB	2022	2-05-01	
Screen Shot 2022	-05-02	at 12.42.36	AM.png		14.9 KB	2022	2-05-01	
Screen Shot 2022	-05-02	at 12.56.44	AM.png		14.9 KB	2022	2-05-01	
Screen Shot 2022	-05-02	at 1.01.26 A	M.png		9.81 KB	2022	2-05-01	
Screen Shot 2022	-05-02	at 1.05.57 A	M.png		20.2 KB	2022	2-05-01	
Screen Shot 2022	-05-02	at 1.11.42 A	M.png		19.9 KB	2022	2-05-01	
Screen Shot 2022	-05-02	at 1.43.02 A	M.png		106 KB	2022	2-05-01	
Screen Shot 2022	-05-02	at 1.49.15 A	M.png		107 KB	2022	2-05-01	
Screen Shot 2022	-05-02	at 2.04.31 A	M.png		115 KB	2022	2-05-01	
Screen Shot 2022	-05-02	at 2.38.35 A	M.png		30.6 KB	2022	2-05-01	

2022-06-04 7/7