Отбор признаков

Виктор Китов

v.v.kitov@yandex.ru

Задача отбора признаков

- Отбор признаков (feature selection) выделение подмножества исходных признаков.
- Снижение размерности (dimensionality reduction) преобразование исходных признаков в пространство меньшей размерности.

Применения отбора признаков

- Применения отбора признаков:
 - ↑ точности прогнозов (убираем шумовые)
 - ↑ стабильности оценок параметров (например для лин. регрессии)
 - ↑ вычислительной эффективности
 - ↑ интерпретируемости моделей
 - ↓ стоимости сбора данных
- Некоторые методы умеют самостоятельно отбирать признаки:

Применения отбора признаков

- Применения отбора признаков:
 - ↑ точности прогнозов (убираем шумовые)
 - ↑ стабильности оценок параметров (например для лин. регрессии)
 - ↑ вычислительной эффективности
 - ↑ интерпретируемости моделей
 - ↓ стоимости сбора данных
- Некоторые методы умеют самостоятельно отбирать признаки:
 - решающие деревья и их ансамбли (бэггинг, RF, ERT, бустинг)
 - линейная/нелинейная регрессия/классификация с L_1 регуляризацией
 - orthogonal matching pursuit регрессия

Типы признаков¹

f-признак, $G = \{f_1, f_2, ... f_D\}$ -полный набор, $\tilde{G} = G \setminus \{f\}$.

• Сильно релевантный признак:

$$p(y|f,\tilde{G})\neq p(y|\tilde{G})$$

• Слабо релевантный признак:

$$p(y|f, ilde{G})=p(y| ilde{G}),$$
 но $\exists S\subset ilde{G}: p(y|f,S)
eq p(y|S)$

• Нерелевантный признак:

$$\forall S \subset \tilde{G} : p(y|f,S) = p(y|S)$$

¹Приведите примеры признаков каждого типа.

Типы признаков¹

f-признак, $G = \{f_1, f_2, ... f_D\}$ -полный набор, $\tilde{G} = G \setminus \{f\}$.

• Сильно релевантный признак:

$$p(y|f,\tilde{G})\neq p(y|\tilde{G})$$

• Слабо релевантный признак:

$$p(y|f, \tilde{G}) = p(y|\tilde{G}), \,\,$$
но $\exists S \subset \tilde{G}: \, p(y|f,S)
eq p(y|S)$

• Нерелевантный признак:

$$\forall S \subset \tilde{G} : p(y|f,S) = p(y|S)$$

Цель отбора признаков

Найти минимальный $G'\subset G$ такой, что $P(y|G')\approx P(y|G)$, т.е. оставить только сильно релевантные и минимальный набор слабо релевантных признаков.

 $^{^{1}}$ Приведите примеры признаков каждого типа.

Категоризация методов отбора признаков

Полнота перебора вариантов:

- Полный перебор: сложность $O(2^D)^2$
- Субоптимальный перебор: нет гарантии на глобальный оптимум
 - детерминированные
 - случайные (детерминированные со случайностью / полностью случайные)

Взаимосвязь с методом прогнозирования:

- независимые (filter methods)
- ullet использующие метод прогнозирования и ${\mathcal L}$ (wrapper methods)
- интегрированные в метод прогнозирования (embedded methods)

 $^{^2}$ метод ветвей и границ не перебирает все варианты (при некоторых предположениях на J(S)), но сложность все равно $O(2^D)$

Содержание

- Расчет важности признаков
 - Внешние оценки значимости признаков
 - Оценки значимости признаков по модели
- 2 Методы перебора набора признаков

Расчет важности признаков

- Оценим значимости каждого признака $I(f_1), I(f_2), ... I(f_D)$.
- Далее можем:
 - отбирать признаки по значимости
 - учитывать все признаки, но в разной степени, в зависимости от $I(\cdot)^3$.

³ Как контролировать вклад признаков в прогноз для K-NN, линейных моделей, случайного леса?

Отбор признаков по значимости

• Упорядочим признаки по значимости I(f):

$$I(f_1) \ge I(f_2) \ge ... \ge I(f_D)$$

• выбрать топ т

$$\hat{F} = \{f_1, f_2, ... f_m\}$$

- выбрать по порогу: f_i : $I(f_i) \geq threshold$
- выбрать лучший набор из:

$$S = \{\{f_1\}, \{f_1, f_2\}, ...\{f_1, f_2, ...f_D\}\}$$

$$\hat{F} = \arg\max_{F \in S} J(F)$$

- Комментарии:
 - легко реализовать, вычислительно простые методы
 - будет включено много слабо релевантных зависимых признаков

Внешние оценки значимости признаков

- 1 Расчет важности признаков
 - Внешние оценки значимости признаков
 - Оценки значимости признаков по модели

Корреляция

• Регрессия или бинарная классификация:

$$I(f) = \frac{\sum_{i} (f_{i} - \bar{f})(y_{i} - \bar{y})}{\left[\sum_{i} (f_{i} - \bar{f})^{2} \sum_{i} (y_{i} - \bar{y})^{2}\right]^{1/2}} = \frac{a}{b}$$

• Многоклассовая классификация:

$$I(f) = \frac{1}{C} \sum_{c=1}^{C} \frac{a_c}{b_c} \quad I(f) = \frac{\frac{1}{C} \sum_{c=1}^{C} a_c}{\frac{1}{C} \sum_{c=1}^{C} b_c} \quad I(f) = \max_{c} \left\{ \frac{a_c}{b_c} \right\}$$

- Корреляция:
 - легко вычисляется
 - выделяет только линейную зависимость

Корреляция выделяет только линейную зависимость

• Корреляция выделяет только линейную зависимость.

- Рассмотрим любую случайную величину X с симметричной (четной) плотностью распределения.
 - тогда $\mathbb{E} X = 0$, $\mathbb{E} X^3 = 0$
 - X и $Z=X^2$ зависимы, но $\operatorname{corr}(X,Z)=0$

Выделение монотонных зависимостей

- Рассмотрим $X = (X_1, X_2, ... X_N), Y = (Y_1, Y_2, ... Y_N).$
- ullet Применим ранговое кодирование: $X o R(X), \ Y o R(Y)$

IQ, X_i	Hours of TV per week, $Y_i ullet$	$\operatorname{rank} x_i \bullet$	rank $y_i ullet$
86	2	1	1
97	20	2	6
99	28	3	8
100	27	4	7
101	50	5	10
103	29	6	9
106	7	7	3
110	17	8	5
112	6	9	2
113	12	10	4

Ранговая корреляция Спирмена

• Ранговая корреляция Спирмена:

$$\operatorname{corr}_{Spearman}(X,Y) = \operatorname{corr}(R(X),R(Y))$$

- Рассмотрим $X = [0, 0.01, 0.02, ...1], Z = X^{\alpha}$.
- Существует монотонная зависимость между X и Z, но корреляция \downarrow при $\alpha \uparrow$:

• При этом

$$corr_{Spearman}(X, Y) = corr([1, 2, ...], [1, 2, ...]) = 1$$

Ранговая корреляция Кендалла

- Ранговая корреляция Кендалла:
 - согласующиеся пары (concordant pairs) $C = \{[(X_i, Y_i), (X_j, Y_j)] : (X_j X_i) (Y_j Y_i) > 0\}$
 - несогласующиеся пары (discordant pairs) $D = \{[(X_i, Y_i), (X_j, Y_j)] : (X_j X_i) (Y_j Y_i) < 0\}$

$$corr_{Kendall}(X, Y) = \frac{|C| - |D|}{\binom{N}{2}}$$

- Вместо самой корреляции можно судить о значимости признака по p(corr(X,Y)=0).
 - это уровень значимости теста с H_0 : corr(X,Y)=0

Определения

• Энтропия случайной величины Y:

$$H(Y) := -\sum_{y} p(y) \ln p(y)$$

• Условная энтропия Y при условии сл. вел. X:

$$H(Y|X) := -\sum_{x} p(x) \sum_{y} p(y|x) \ln p(y|x)$$

- Расстояние Кульбака-Лейблера между распределениями:
 - дискретные исходы, P(x), Q(x) вероятности исхода x:

$$KL(P||Q) := \sum_{x} P(x) \ln \frac{P(x)}{Q(x)}$$

• непрерывные исходы, p(x), q(x) - плотности вероятности:

$$KL(p||q) = \int p(x) \ln \frac{p(x)}{q(x)} dx$$

Взаимная информация

Взаимная информация измеряет насколько много общей информации между сл. вел. X и Y:

$$MI(X,Y) := \sum_{x,y} p(x,y) \ln \left[\frac{p(x,y)}{p(x)p(y)} \right] = KL(p(x,y)||p(x)p(y))$$

Свойства:

- MI(X,Y) = MI(Y,X)
- $MI(X,Y) = KL(p(x,y)||p(x)p(y)) \ge 0$
- X, Y- независимы <=> MI(X, Y) = 0
- MI(X, Y) = H(Y) H(Y|X)
- $MI(X, Y) \leq \min\{H(X), H(Y)\}$
- X однозначно определяет Y = > MI(X, Y) = H(Y) < H(X)

Нормированная взаимная информация

• Нормированная взаимная информация

$$NMI(X,Y) = \frac{MI(X,Y)}{H(Y)} \in [0,1]$$

- NMI(X, Y) = 0 при независимости X и Y.
- NMI(X,Y)=1, когда X однозначно определяет Y.
- Свойства МІ и NMI:
 - выделяют зависимости любого вида
 - требуют оценки p(X), p(Y) и p(X, Y).

Важность в задаче классификации

О взаимосвязи признака f и y можно судить по

$$ho\left(p(f|y=i),p(f|y=j)
ight)$$
пример: $\int |p(x|y=1)-p(x|y=0)|\ dx$

Метрическая оценка I(f): relief критерий для 1-NN

ВХОЛ:

Обучающая выборка $(x_1, y_1), (x_2, y_2), ...(x_N, y_N)$ Функция расстояния $\rho(x, x')$ # обычно Евклидова

для каждого объекта x_n, y_n :

найти ближайшего соседа $x_{s(n)}$ своего класса y_n найти ближайшего соседа $x_{d(n)}$ чужого класса $\neq y_n$

для каждого признака $f_i \in \{f_1, f_2, ... f_D\}$:

рассчитать значимость
$$I(f_i) = \frac{1}{N} \sum_{n=1}^{N} \frac{|x_n^i - x_{d(n)}^i|}{|x_n^i - x_{s(n)}^i|}$$

выхол:

значимости признаков $I(f_1),...I(f_D)$

Метрическая оценка I(f): relief критерий для K-NN

ВХОД:

Обучающая выборка $(x_1,y_1),(x_2,y_2),...(x_N,y_N)$ Функция расстояния $\rho(x,x')$ # обычно Евклидова Число соседей K

для каждого объекта x_n, y_n :

найти K ближайших соседей своего класса y_n :

$$X_{s(n,1)}, X_{s(n,2)}, ... X_{s(n,K)}$$

найти K ближайших соседей чужого класса $\neq y_n$:

$$X_{d(n,1)}, X_{d(n,2)}, ... X_{d(n,K)}$$

для каждого признака $f_i \in \{f_1, f_2, ... f_D\}$:

рассчитать значимость
$$I(f_i) = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} \frac{|x_n' - x_{d(n,k)}'|}{|x_n' - x_{s(n,k)}'|}$$

выход:

значимости признаков $I(f_1),...I(f_D)$

- 1 Расчет важности признаков
 - Внешние оценки значимости признаков
 - Оценки значимости признаков по модели

Важность признаков по линейной модели

- В линейных моделях важность x^i можно считать по $|w_i|$.
 - при условии, что признаки приведены к единой шкале
 - clf.coef в scikit-learn
- Учитывает линейную зависимость, как корреляция.

Важность признаков: mean decrease in impurity

- Важность признаков по изменению критерия информативности (mean decrease in impurity, MDI).
 - рассмотрим признак f
 - пусть T(f)-множество всех вершин, использующих f в функции ветвления
 - эффективность разбиения в t:

$$\Delta \phi(t) = \phi(t) - \sum_{c \in childen(t)} \frac{N(c)}{N(t)} \phi(c)$$

значимость f:

$$\sum_{t \in T(f)} N(t) \Delta \phi(t)$$

 Поощряет признаки с большим количеством уникальных значений.

Важность признаков: mean decrease in impurity

B sklearn:

- важность рассчитывается метом clf.feature_importances_
 - доступен для композиций деревьев: RF, ERT, boosting.
- недостатки:
 - вычисляется на обучающей выборке
 - если модель переобучается на признаке, важность высока, но вклад в точность прогнозов мал.

Оценки значимости признаков по модели

Важность признаков: permutation feature importance

- Важность признаков по изменению критерия качества (permutation feature importance)
- Важность признака=разнице качества прогнозов на:
 - \rm исходной выборке
 - 🛾 исходной выборке, где значения j-го признака перемешаны

Важность признаков: permutation feature importance

- Важность признаков по изменению критерия качества (permutation feature importance)
- Важность признака=разнице качества прогнозов на:
 - \rm исходной выборке
 - ② исходной выборке, где значения *j*-го признака перемешаны
- Значение рандомизированное, поэтому важно пересчитать несколько раз и усреднить.
- Показывает важность признака в разрезе
 - заданного критерия качества
 - заданной модели (не обязательно решающего дерева)
 - для плохой модели важный признак может оказаться неважным
 - поэтому нужно предварительно выбрать хорошую модель.

Важность признаков: permutation feature importance

- Можно считать по обучающей и валидационной выборке.
- Высокая важность на валидации=>признак усиливает обобщающую способность модели
- Высокая важность на обучении, но низкая на валидации=>на заданном признаке модель переобучается
- Если два признака скоррелированы, то при перемешивании одного признака модель имеет доступ к информации через другой
 - поэтому важность скоррелированных признаков занижена
 - важно исключать скоррелированные признаки.

Содержание

- Расчет важности признаков
- 2 Методы перебора набора признаков
 - Метод последовательной модификации набора признаков
 - Лучевой поиск (beam search)
 - Генетические алгоритмы

Simultaneous feature selection specification

- Рассмотрим субоптимальные методы перебора подмножества признаков
 - вместо полного перебора со сложностью $O(2^D)$
- Пусть J(S) -критерий качества набора признаков S.
 - \bullet например, точность модели на S
 - либо взвешенное сумма качества работы модели на S и штрафа за сложность |S|.

Метод последовательной модификации набора признаков

- 2 Методы перебора набора признаков
 - Метод последовательной модификации набора признаков
 - Лучевой поиск (beam search)
 - Генетические алгоритмы

Метод последовательного включения признаков

- Метод последовательного включения признаков (sequential forward selection) реализует последовательное жадное добавление признаков один за другим, максимально увеличивающие J(S).
- BXOД:
 - максимальное #признаков К
 - ullet критерий качества J(S) для наборов признаков S
- ВЫХОД:
 - ullet локально оптимальный набор S, $|S| \leq K$.

Метод последовательного включения признаков

Алгоритм жадного добавления признаков:

- инициализируем: $S = \{\}$
- пока $|S| \le K 1$:
 - $f^* = \arg \max_{f \in F \setminus S} J(S \cup \{f\})$
 - ullet если $J(S \cup \{f^*\}) < J(S)$: выход
 - $S = S \cup \{f^*\}$
- вернуть S

Сложность O(D|S|) без учета сложности расчета J(S).

Модификации алгоритма

Модификации алгоритма:

- последовательное исключение признаков (sequential backward selection)⁴
- ullet последовательное включение лучшей группы из $\leq p$ признаков
- последовательное исключение худшей группы из $\leq p$ признаков
- композиция подходов добавления/удаления:
 - на каждом шаге пробовать удалить или добавить, что лучше (аналог GD)
 - на каждом шаге добавить, потом циклически удалять, пока приводит к $\uparrow J(S)$

⁴Что вычислительно эффективнее? Последовательное включения или исключения, если только 50% признаков релевантны?

Отбор признаков - Виктор Китов Методы перебора набора признаков Лучевой поиск (beam search)

- 2 Методы перебора набора признаков
 - Метод последовательной модификации набора признаков
 - Лучевой поиск (beam search)
 - Генетические алгоритмы

Методы перебора набора признаков Лучевой поиск (beam search)

Методы перебора набора признаков Лучевой поиск (beam search)

Лучевой поиск

- Лучевой поиск (beam search): при последовательном добавлении будем сохранять не один, а *K* лучших вариантов.
 - реализует жадный поиск в ширину (breadth first)
- Аналогично возможны обобщения последовательного исключения.

Принцип неоконченных решений Габора

Принимая решение, следует оставлять свободу выбора последующих решений.

Лучевой поиск (beam search)

Лучевой поиск (beam search)

Лучевой поиск (beam search)

Лучевой поиск (beam search)

Комментарии

- Оптимизация: перебирать только признаки с максимальной информативностью.
- Для реализации нужна очередь с приоритетом (priority queue) с методами
 - push(elements, scores): загрузить варианты с их оценками качества
 - getKbest(K): выгрузить K лучших вариантов
- Сложность и полнота перебора:
 - Предположим, коэффициент ветвления B постоянный, а древо поиска сбалансированное глубины D.
 - Тогда сложность поиска O(KBD).
 - При достаточно большом K ($K \ge B^{D-1}$) превращается в полный перебор.

- 2 Методы перебора набора признаков
 - Метод последовательной модификации набора признаков
 - Лучевой поиск (beam search)
 - Генетические алгоритмы

Генетические алгоритмы

- Каждый набор признаков $G = \{f_{i(1)}, f_{i(2)}, ... f_{i(K)}\}$ кодируется бинарным вектором $b = [b_1, b_2, ... b_D]$, где $b_i = \mathbb{I}[f_i \in G]$
- Жадное добавление/исключение работает быстро, но как аналог GD сходится к локальному оптимуму.
- Полный перебор сложность $O(2^D)$.
 - Как увеличить широту перебора, не скатываясь к полному перебору?

Генетические алгоритмы

- Каждый набор признаков $G = \{f_{i(1)}, f_{i(2)}, ... f_{i(K)}\}$ кодируется бинарным вектором $b = [b_1, b_2, ... b_D]$, где $b_i = \mathbb{I}[f_i \in G]$
- Жадное добавление/исключение работает быстро, но как аналог GD сходится к локальному оптимуму.
- Полный перебор сложность $O(2^D)$.
 - Как увеличить широту перебора, не скатываясь к полному перебору?

Гипотеза составного решения (building block hypothesis)

Хорошее решение состоит из комбинации других хороших решений.

• Генетические алгоритмы осуществляют поиск, комбинируя хорошие решения.

Операции скрещивания и мутации

Parent Strings		Offspring
101100101001	Point Mutation	→ 10110010 0 001
101100101001	Single Point	1011111100101
000011100101	Crossover	000000101001
101100101001	Two Point	101011101001
000011100101	Crossover	000100100101
101100101001	Uniform	100111100001
000011100101	Crossover	001000101101

Генетические алгоритмы

Операции скрещивания и мутации⁵

- $mutation(b^1)=b$, where $b_i=egin{cases} b_i^1 & ext{c вероятностью } 1-lpha \\ \neg b_i^1 & ext{c вероятностью } lpha \end{cases}$ для некоторого lpha>0.
- ullet $crossover(b^1,b^2)=b$, где $b_i=egin{cases} b_i^1 & ext{с вероятностью} rac{1}{2} \ b_i^2 & ext{иначе} \end{cases}$
 - другие виды скрещивания: композиция с одним (single point) и двумя (2-point) разрывами.
- Биологическая аналогия: модификации генетических цепочек.

⁵Какая модификация этих операций приведет к аналогу градиентного подъема?

Генетический алгоритм

ВХОД:

размер популяции B и расширенной популяции B' параметры мутации и скрещивания макс. число итераций T, мин. изменение качества ΔJ

АЛГОРИТМ:

сгенерировать B наборов признаков $S_1, S_2, ... S_B$ случайно. инициализировать t=0 , $P^0=\{S_1, S_2, ... S_B\}$, $J^0=\max_{S\in P^0}J(S)$

пока
$$t <= T$$
 и $J^t - J^{t-1} > \Delta J$:
 $t = t + 1$

мутировать и скрещивать наборы из P^{t-1} :

$$S'_1, S'_2, ... S'_{B'} = \text{modify}(P^{t-1}|\theta)$$

упорядочить наборы по убыванию качества:

$$J(S_{i(1)}^{\prime t}) \ge J(S_{i(2)}^{\prime t}) \ge ...J(S_{i(B')}^{\prime t})$$

загрузить в следующую популяцию B лучших наборов: $P^t = \{S'_{i(1)}, S'_{i(2)}, ... S'_{i(B)}\}$

$$J^t = \{s_{i(1)}, s_{i(2)}, \dots s_{i(B)}\}$$
 оценить качество по лучшему набору $J^t = \max_{S \in P^t} J(S)$

ВЫХОД: лучший набор признаков $S = \operatorname{arg\ max}_{S \in P^t} J(S)$

Улучшения генетического алгоритма

- **Ускорение**: генерировать вначале и мутацией f с $p \propto I(f)$.
- Удлинить процесс оптимизации:
 - прерывать процесс только если нет улучшения несколько итераций подряд.
 - при стагнации увеличить вероятность мутации
- Бережнее модифицировать хорошие наборы и признаки:
 - ullet дополнять P^t лучшими наборами из P^{t-1} .
 - \downarrow вероятность мутации для хороших признаков (часто встречающиеся в наборах P^{t-1}).
 - \uparrow вероятность мутации для плохих признаков (редко встречающиеся в наборах P^{t-1}).
- Увеличить широту поиска:
 - скрещивание между > 2 наборами
 - вести несколько популяций из разных начальных условий, скрещивание лучших представителей между популяциями.

Важность признаков в контексте

Признаки могут влиять на y не по отдельности, а совместно:

$$p(y|x^1) = p(y), \quad p(y|x^2) = p(y)$$

$$p(y|x^1, x^2) \neq p(y)$$

Определение признаков, влияющих в контексте

Какие из методов могут определять признаки, влияющие в контексте?

- \circ corr (x^1, y) , corr (x^1, y)
- **2** $MI(x^1, y), MI(x^1, y)$
- **3** $MI([x^1, x^2], y)$
- критерий relief
- последовательное включение одного признака
- последовательное исключение одного признака
- важности признаков по дереву (дерево с ранней остановской)
- важности признаков по дереву (дерево с обрезкой [prunning])

Заключение

- Отбор признаков позволяет быстрее настраивать модели.
 - модели точнее, если много шумовых признаков
- Предпочтение методам со встроенным отбором признаков.
- Методы отбора признаков, упорядоченные по сложности:
 - отбирать признаки по значимости
 - последовательное включение/исключение 1 признака
 - последовательное включение/исключение группы признаков
 - лучевой поиск с поддержкой К лучших групп признаков
 - генетический алгоритм генерации наборов
 - полный перебор
- Последовательное включение/исключение, лучевой поиск, генетический алгоритм применимы и для др. задач дискретной оптимизации (например подброр архитектуры нейросети).