MMSE Based MIMO Channel Estimator Via Primal-Dual Optimization Mehthod with Neural Network

Jing-Hao, Lee and Zhao-Jie, Luo

Advisor: Professor Carrson C. Fung National Yang Ming Chiao Tung University

Jun. 12 2024

Reference

- C. C. Fung, and D. Ivakhnenkov, "Model-Driven Neural Network Based MIMO Channel Estimator".
- M. Eisen and A. Ribeiro, "Large scale wireless power allocation with graph neural networks," Proc. of the 2019 IEEE 20th Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1-5, 2019.
- M. Eisen, C. Zhang, L.F.O. Chamon, D.D. Lee and A. Ribeiro, "Learning optimal power allocations in wireless systems," *IEEE Trans. on Signal Processing*, vol. 67(10), pp. 2775-2790, May 2019.
- M. Eisen and A. Ribeiro, "Optimal wireless resource allocation with random edge graph neural networks," *IEEE Trans. on Signal Processing*, vol. 68, pp. 2977-2991, 2020.
- N. NaderiAlizadeh, M. Eisen and A. Ribeiro, "State-Augmented learnable algorithms for resource management in wireless networks," *IEEE Trans. on Signal Processing*, vol. 70, pp. 5898-5912, Dec. 2022.

Problem Setup

The system model can be represented as:

$$\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W},\tag{1}$$

where $\mathbf{X} \in \mathbb{C}^{n_T \times T}$ represents the transmitted pilot signal, $\mathbf{W} \in \mathbb{C}^{n_R \times T}$ represents the additive white Gaussian noise with zero mean and unit variance, $\mathbf{Y} \in \mathbb{C}^{n_R \times T}$ represents the received signal, and $\mathbf{H} \in \mathbb{C}^{n_R \times n_T}$ is the channel matrix containing channel coefficients which represents $n_R \times n_T$ flat fading channel.

Vectorizing (1), it becomes

$$\mathbf{y} = (\mathbf{X} \otimes \mathbf{I}_{n_R})\mathbf{h} + \mathbf{w}$$
$$= \tilde{\mathbf{X}}\mathbf{h} + \mathbf{w}, \tag{2}$$

where $\tilde{\mathbf{X}} \triangleq (\mathbf{X} \otimes \mathbf{I}_{n_R}) \in \mathbb{C}^{n_T n_R \times T n_R}$.

Problem Formulation

The MMSE channel estimator aims to minimize the Bayesian MSE of the channel estimate $\hat{\mathbf{h}}$

$$\hat{\mathbf{h}} = \underset{\hat{\mathbf{h}}}{\operatorname{arg\,min}} \operatorname{BMSE}(\hat{\mathbf{h}}),\tag{3}$$

where

$$BMSE(\hat{\mathbf{h}}) = \mathbb{E}_{\mathbf{y},\mathbf{h}} \left[\left\| \mathbf{h} - \hat{\mathbf{h}} \right\|_{2}^{2} \right]. \tag{4}$$

The closed-form solution of this MMSE problem is $\hat{\mathbf{h}} = \mathbb{E}_{\mathbf{h}|\mathbf{y}}[\mathbf{h}|\mathbf{y}]$. However, it requires knowledge about the conditional probability $p(\mathbf{h}|\mathbf{y})$, which may be unknown and/or difficult to obtain. Then (3) can be written as

$$\min_{\hat{\mathbf{h}}} \mathbb{E}_{\mathbf{y}, \mathbf{h}} \left[\left\| \mathbf{h} - \hat{\mathbf{h}} \right\|_{2}^{2} \right]. \tag{5}$$

◆□▶ ◆□▶ ◆≧▶ ◆差▶ ○差 ○ から○

Primal-Dual Optimization Mehthod (1)

(5) can be reformulated to its epigraph form as

$$\min_{t,\hat{\mathbf{h}}} \quad t$$
s.t.
$$\mathbb{E}_{\mathbf{y},\mathbf{h}} \left[\left\| \mathbf{h} - \hat{\mathbf{h}} \right\|_{2}^{2} \right] \leq t.$$
(6)

Then its Lagrangian function can be written as

$$\mathcal{L}\left(\hat{\mathbf{h}}, t, \lambda\right) = t + \lambda \left(\mathbb{E}_{\mathbf{y}, \mathbf{h}} \left[\left\| \mathbf{h} - \hat{\mathbf{h}} \right\|_{2}^{2} \right] - t \right)$$
 (7)

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♡

Jing-Hao, Lee and Zhao-Jie, Luo (NYMMSE Based MIMO Channel Estima

Primal-Dual Optimization Mehthod (2)

We use parameterize channel estimator so that $\hat{\mathbf{h}} = \phi(\mathbf{y}; \boldsymbol{\theta})$, with $\boldsymbol{\theta}$ denoting the parameters of the neural network.

Then the Lagrangian function of (15) can be written as

$$\mathcal{L}\left(\hat{\mathbf{h}}, t, \lambda\right) = t + \lambda \left(\mathbb{E}_{\mathbf{y}, \mathbf{h}} \left[\left\|\mathbf{h} - \hat{\mathbf{h}}\right\|_{2}^{2}\right] - t\right)$$
$$= t + \lambda \left(\mathbb{E}_{\mathbf{y}, \mathbf{h}} \left[\left\|\mathbf{h} - \phi(\mathbf{y}; \boldsymbol{\theta})\right\|_{2}^{2}\right] - t\right)$$

Jing-Hao, Lee and Zhao-Jie, Luo (NYMMSE Based MIMO Channel Estima

Primal-Dual Optimization Mehthod (3)

It is uncertain whether or not the duality gap equals zero.

However, the stationary point of $\mathcal{L}(\hat{\mathbf{h}}, t, \lambda)$ can be found via the KKT conditions by solving for the primal and dual variables alternately using gradient descent and ascent, respectively:

$$\begin{aligned} \boldsymbol{\theta}_{k+1} &= \boldsymbol{\theta}_k - \alpha_{\boldsymbol{\theta},k} \lambda_k \nabla_{\boldsymbol{\theta}_k} \mathbb{E} \left[\| \mathbf{h} - \phi(\mathbf{y}; \boldsymbol{\theta}_k) \|_2^2 \right] \\ t_{k+1} &= t_k - \alpha_{t,k} (1 - \lambda_k) \\ \lambda_{k+1} &= \left[\lambda_k + \alpha_{\lambda,k} \left(\mathbb{E} \left[\| \mathbf{h} - \phi(\mathbf{y}; \boldsymbol{\theta}_{k+1}) \|_2^2 \right] - t_{k+1} \right) \right]_+ \end{aligned}$$

Policy Gradient (1)

The policy gradient theorem is:

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\tau}[G(\tau)] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} G(\tau) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_t | S_t) \right],$$

where $G(\tau)$ is the overall return of the trajectory, and $\pi_{\theta(A_t|S_t)}$ is the distribution of action that the parameterized policy makes under the observation.

At each time step, t = 1, ..., T - 1:

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\tau}[G(\tau)] = \mathbb{E}_{\tau} \left[G(\tau) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_t | S_t) \right]$$

And we can estimate the policy gradient with sample mean:

$$\widehat{\nabla_{\boldsymbol{\theta}}} \mathbb{E}_{\tau}[G(\tau)] = \frac{1}{|\mathcal{D}|} \sum_{\mathcal{D}} G(\tau) \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(A_t | S_t)$$

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ 釣९♡

Policy Gradient (2)

Our goal is to minimize the mean square error, by substituting $\mathbb{E}_{\tau}[G(\tau)]$, $\pi_{\theta}(A_t|S_t)$ with $\mathbb{E}_{\mathbf{y},\mathbf{h}}\left[\|\mathbf{h} - \phi(\mathbf{y};\boldsymbol{\theta})\|_2^2\right]$, and $\pi_{\theta}(\hat{\mathbf{h}}|\mathbf{y})$. Thus, we obtain the estimated policy gradient for our problem:

$$\widehat{\nabla_{\boldsymbol{\theta}}} \mathbb{E}_{\mathbf{y}, \mathbf{h}} \left[\|\mathbf{h} - \phi(\mathbf{y}; \boldsymbol{\theta})\|_{2}^{2} \right] = \frac{1}{|\mathcal{D}|} \sum_{\mathcal{D}} \left\| \mathbf{h} - \widehat{\phi}(\mathbf{y}; \boldsymbol{\theta}) \right\|_{2}^{2} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} \left(\widehat{\mathbf{h}} | \mathbf{y} \right)$$
(8)

where $\hat{\phi}(\mathbf{y}; \boldsymbol{\theta}) = \hat{\mathbf{h}}$ is the sampled output of the policy.

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♡

Experiment Diagram

GNN

- ¹How to optimally allocating resources across a set of transmitters and receivers in a a wireless network?
- This paper proposes a method using REGNN.
- The performance of using REGNN is better than using MLP
 - number of parameter
 - time complexity
 - scalability
 - 4 transference
- Therefore, we introduce the GNN method to replace MLP for estimating channel H.

¹M. Eisen and A. Ribeiro, "Optimal wireless resource allocation with random edge graph neural networks," IEEE Trans. on Signal Processing, vol. 68, pp. 2977-2991, 2020.

GNN

- F_{ℓ} : the number of the filters at ℓ layer.
- L : total layer of GNN.
- K_{ℓ} : the order of the filters at ℓ layer.

$$F_{\ell}^{I/O}(\mathbf{W}) = \sum_{k=0}^{K_{\ell}-1} a_{\ell/k}^{I/O} \mathbf{W}^{k}$$

$$= a_{\ell/0}^{I/O} \mathbf{I} + a_{\ell/1}^{I/O} \mathbf{W} + a_{\ell/2}^{I/O} \mathbf{W}^{2} + \dots + a_{\ell/K_{\ell-1}}^{I/O} \mathbf{W}^{K_{\ell}-1}$$
(10)

where ℓ : layer, I: input index, O: output index (11)

ullet Example :

$$F_0^{1/3}(\mathbf{W}) = \sum_{k=0}^{2} a_{0/k}^{1/3} \mathbf{W}^k$$
 (12)

$$= a_{0/0}^{1/3} \mathbf{I} + a_{0/1}^{1/3} \mathbf{W} + a_{0/2}^{1/3} \mathbf{W}^2$$
 (13)

GNN

• $K_{\ell} = 3, L = 2, F_1 = 3, F_2 = 8, n_T = 2, n_R = 2$

• Total parameter: 3x3+3x3x8 = 81

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

BUT!

- It is not possible to use the adjacency matrix (Channel matrix, **H**) as the Graph Shift Operator because the Channel matrix is the output of the REGNN, and we do not know **H** initially.
- Because in Eisen's paper, the Channel matrix **H** is known, the adjacency matrix is also known, which means the Graph Shift Operator can be used for convolution.
- Therefore, it might be impossible to use GNN methods to solve our problem.

Guess

• Since we don't have \mathbf{H} , we use Least-Square estimator to find $\mathbf{H}_{initial}$. With this $\mathbf{H}_{initial}$, we can determine the adjacency matrix, which gives us the GSO. Then, we can use the GNN output to obtain $\hat{\mathbf{H}}$. If the performance of this $\hat{\mathbf{H}}$ is not satisfactory, we can use $\hat{\mathbf{H}}$ to determine a new adjacency matrix as the GSO and use the GNN again to obtain another $\hat{\mathbf{H}}$. We can repeat this process until the performance approaches that of the MMSE estimator.

Guess

• As illustrated in the diagram below.

ullet I guess that using this method, the estimated $\hat{\mathbf{H}}$ will get increasingly better.

Simulation Configuration (1)

parameters	values
$[n_R, n_T, T]$	[4,8,8]
μ_H, σ_H	0, 1
Hidden layer size	$1024 \text{ or } 4 \times 1024$
Length of each trajectory	1
Batch size = $ \mathcal{D} $	10,000
Number of batches	100
Trainning dataset	1,000,000
Validation dataset	2,000
Epoch	$200 \sim 1,000$
Learning rate	$1\text{e-}5 \sim 1\text{e-}6$

Table: simulation configuration

Simulation Configuration (2)

• Let the loss be Normalized Mean Squared Error (NMSE):

$$NMSE = \frac{1}{N} \sum_{n=1}^{N} \frac{\|\mathbf{h}_{n} - \phi(\mathbf{y}_{n}; \boldsymbol{\theta}_{k})\|_{2}^{2}}{\|\mathbf{h}_{n}\|_{2}^{2}}$$
(14)

Here, N represents the size of the training or validation dataset, implying that the Normalized Mean Squared Error (NMSE) is calculated for each epoch.

• Using Adam optimizer to update the primal and dual variables.

Simulation Result (1)

Simulation Result (2)

MMSE based PD with PG channel estimator

Simulation Result (3)

MMSE based PD with PG channel estimator

 n_T , T]:[4,8,8], Ir:1e-05, size:[64, 1024, 1024, 1024, 1024, 128], SNR:[-10, -5,

Simulation Result (4)

NMSE of primal dual DRL MIMO chest vs SNR

Conclusion

- Our simulation results demonstrate that the proposed neural network-based MMSE estimator can outperform the least squares (LS) and approach the performance of linear MMSE (LMMSE) estimators under specific signal-to-noise ratio (SNR) conditions, especially under challenging conditions with high noise levels.
- However, it may requires a larger model size or more sophisticated neural network architectures to achieve robustness in its performance.