Applied Machine Learning Lecture 6-1: Boosting

Selpi (selpi@chalmers.se)

The slides are further development of Richard Johansson's slides

February 11, 2020

Overview

Boosting

What is boosting?

► Boosting is an ensemble technique

Discuss Bagging vs Boosting

toy regression example

adaptive boosting: AdaBoost

- AdaBoost is the most famous boosting algorithm
- after each iteration, check which instances are misclassified
 - then give misclassified instances a higher importance before the next iteration
- this can be applied using any base classifier that can handle weighted instances
 - typical choice: small decision trees ("decision stumps")

AdaBoost algorithm

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m = 1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output $G(x) = \text{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

[Hastie et al., The Elements of Statistical Learning]

gradient boosting

- gradient boosting generalizes AdaBoost
- ▶ idea: gradually add sub-classifiers to minimize a loss function
- ▶ it is based on a principle of gradient descent

source

gradient boosting, formally

```
let F_0 be a "dummy" constant model for m=1,\ldots,M for each pair (x_i,y_i) in the training set let r_i be the pseudo-residual R(y_i,F_{m-1}(x_i)) train a sub-model h_m on the pseudo-residuals create F_m by adding h_m to F_{m-1} return F_M
```

▶ the pseudo-residual $R(y_i, F_{m-1}(x_i))$ is defined as the gradient of the loss function

$$-\nabla_{\hat{y}}\mathsf{Loss}(y,\hat{y})$$

why "pseudo-residual"?

► for the squared error loss

$$\mathsf{Loss}(y,\hat{y}) = (y - \hat{y})^2$$

the negative gradient is equal to (two times) the residual

$$-\nabla_{\hat{y}}\mathsf{Loss}(y,\hat{y}) = 2(y-\hat{y})$$

tree ensembles in Kaggle

- ▶ GB (and other tree-based ensembles) often dominate in competitions for various prediction tasks, such as Kaggle
- ► why?
 - robust to preprocessing
 - easy to mix different types of features, nice for tabular data
 - easy to tune
- especially the software XGBoost is popular in Kaggle
- see also Fernández-Delgado et al. (2014) Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?
 - ► and this followup

in scikit-learn

- ▶ sklearn.ensemble.GradientBoostingClassifier
- ▶ sklearn.ensemble.GradientBoostingRegressor