- 1. Calcule, caso existam, os limites seguintes:

- (a) $\lim_{x \to 3} \frac{\sqrt{x} \sqrt{3}}{x 3}$ (b) $\lim_{x \to 2} \frac{x^2 + x + 1}{x^2 + 2x}$ (c) $\lim_{x \to 0} \frac{\sqrt{1 \cos^2 x}}{|\sin x|}$ (d) $\lim_{x \to 0} \frac{x}{|x|}$ (e) $\lim_{x \to 0} \frac{-3x^4 + 2x^3 x}{x^3 x}$ (f) $\lim_{x \to 0} \pi x \cos\left(\frac{1}{3\pi x}\right)$
- 2. Seja $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ uma função tal que $\left| \frac{f(x)}{x} \right| \le 2000$ para todo $x \in \mathbb{R} \setminus \{0\}$. Calcule $\lim_{x \to 0} f(x)$.
- 3. Determine os valores dos parâmetros a e b para que a função f(x) = ax + b satisfaça $\lim_{x \to -1} f(x) = 5 \text{ e } \lim_{x \to 1} f(x) = \lim_{x \to 1} (x - 1) \operatorname{sen}\left(\frac{1}{x - 1}\right).$
- 4. Diga se é possível prolongar f por continuidade em a. Justifique.

(a)
$$f(x) = \frac{x^2 - 16}{|x - 4|}$$
, $a = 4$; (b) $f(x) = \frac{x^3 + 27}{x + 3}$, $a = -3$.

- 5. Mostre que o polinómio $P(x)=x^5+4x^3+x^2+3x+1$ tem uma raiz no intervalo [-1;0].
- 6. Diga se as seguintes afirmações são verdadeiras ou falsas e justifique a sua resposta.
 - (a) A equação sen $(\frac{x}{2}) 2x\cos x = 0$ admite pelo menos uma solução em $[\frac{\pi}{3}, \frac{\pi}{2}]$.
 - (b) Existe pelo menos um ponto $x \in]0, \pi/2[$ tal que $x(\operatorname{sen} x)^{17} = (\cos x)^{13}.$