Sommersemester 2016

Einführung in die Funktionentheorie

Beweis ist relativ einfach. Haben kein Platz, also machen wir Platz. Prof. Dr. N. V. Shcherbina

Inhaltsverzeichnis

V	prwort	5
1	Der Körper C der komplexen Zahlen	7
2	Topologische Grundbegriffe	9
3	Konvergente Folgen komplexer Zahlen	13
4	Konvergente und absolut konvergente Reihen	17
5	Stetige Funktionen	21
6	Zusammenhängende Räume, Gebiete in $\mathbb C$	25

Vorwort

Hier kommt noch das Vorwort hin, wenn mir was einfällt. Solang müsst ihr hier mit 'ner zu 90% leeren Seite auskommen.

1

Der Körper C der komplexen Zahlen

R - der Körper der reellen Zahlen

Im 2-dimensionalen \mathbb{R} -Vektorraum \mathbb{R}^2 der geordneten reellen Zahlenpaare z := (x, y) wird eine Multiplikation eingeführt vermöge

$$(x_1, y_1)(x_2, y_2) := (x_1, x_2 - y_1y_2, x_1y_2 + x_2y_1)$$

Dadurch wird \mathbb{R}^2 , zusammen mit der Vektorraumaddition

$$(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

zu einem (kommutativen) Körper mit dem Element (1,0) als Einselement; das Inverse von $z = (x, y) \neq 0$ ist

$$z^{-1} := \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

Dieser Körper heißt der Körper C der komplexen Zahlen.

Man definiert weiter $i:=(0,1)\in\mathbb{C}$. Offensichtlich gilt $i^2=-1$, man nennt i die imaginäre Einheit von \mathbb{C} . Für jede Zahl $z=(x,y)\in\mathbb{C}$ besteht die eindeutige Darstellung (x,y)=(x,0)+(0,1)(y,0), d.h. z=x+iy mit $x,y\in\mathbb{R}$, (wir identifizieren die reellen Zahlen x mit der komplexen Zahl (x,0)). Man setzt

$$\operatorname{Re} z := x$$
, $\operatorname{Im} z := y$

wobei z = x + iy und nennt x bzw. y Realteil bzw. Imaginärteil von z. Die Zahl z heißt reell bzw. rein imaginär, wenn Imz = 0 bzw. Rez = 0, letzteres bedeutet z = y.

Skalarpodukt und absoluter Betrag

Für z = x + iy, $w = u + iv \in \mathbb{C}$ ist

$$\langle z, w \rangle := \text{Re}(w, \bar{z}) = xu + yv$$

(für z = x + iy ist $\bar{z} := x - iy$) das euklidische Skalarprodukt im reellen Vektorraum $\mathbb{C} = \mathbb{R}^2$. Die nicht-negative reelle Zahl

$$|z| \coloneqq \sqrt{\langle z, \bar{z} \rangle} = \sqrt{z\bar{z}} = \sqrt{x^2 + y^2}$$

ist die euklidische Länge von z, sie heißt der absolute Betrag von z. Es gilt:

- i) $|\bar{z}| = |z|$
- ii) $|\text{Re } z| \le |z|, |\text{Im } z| \le |z|$

iii)
$$z^{-1} = \frac{\bar{z}}{|z|^2}$$
 für $z \neq 0$

iv)
$$\langle aw, az \rangle = |a|^2 \langle w, z \rangle, \langle \bar{w}, \bar{z} \rangle = \langle w, z \rangle \forall w, z, a \in \mathbb{C}$$

v) $|\langle w, z \rangle| \le |w||z| \forall w, z \in \mathbb{C}$ (Cauchy-Schwarz-Ungleichung)

vi)
$$|w+z|^2 = |w|^2 + |z|^2 + 2\langle w, z \rangle \forall w, z \in \mathbb{C}$$
 (Cosinussatz)

Zwei Vektoren z, w heißen orthogonal, wenn $\langle z, w \rangle = 0$.

Fundamental für das Rechnen mit dem Absolutbetrag sind folgende Regeln:

i)
$$|z| \ge 0$$
, $|z| = 0 \Leftrightarrow z = 0$

- ii) |zw| = |z||w| (Produktregel)
- iii) $|z+w| \le |z| + |w|$ (Dreiecksungleichung)

Auf Grund der Cauchy-Schwarzschen Ungleichung gilt:

$$-1 \leq \frac{\langle w, z \rangle}{|w||z|} \leq 1 \forall w, z \in \mathbb{C}^* := \mathbb{C} \setminus \{0\}$$

Es folgt:

$$\exists ! \varphi \in \mathbb{R}, 0 \le \varphi \le \pi : \cos \varphi = \frac{\langle w, z \rangle}{|z||w|}$$

Man nennt φ den Winkel zwischen $w, z \in \mathbb{C}$, in Zeichen $\angle(w, z) = \varphi$.

Topologische Grundbegriffe

Definition 2.1

Ist X irgendeine Menge, so heißt eine Funktion $d: X \times X \to \mathbb{R}$, $(x, y) \mapsto d(x, y)$, eine Metrik auf X, wenn $\forall x, y, z \in X$ gilt:

i)
$$d(x, y) \ge 0$$
, $d(x, y) = 0 \Leftrightarrow x = y$

ii)
$$d(x, y) = d(y, x)$$

iii)
$$d(x,z) \le d(x,y) + d(y,z)$$

(X,d) heißt metrischer Raum.

Im Fall $X=\mathbb{C}$ nennt man $d(w,z)\coloneqq |w-z|=\sqrt{(u-x)^2+(v-y)^2}$ (die euklidische Entfernung der Punkte w,z in der Zahlebene) die euklidische Metrik von \mathbb{C} . In einem metrischen Raum X mit Metrik d heißt die Menge

$$B_r(c) := \{x \in X \mid d(x,c) < r\}$$

die offene Kugel vom Radius r > 0 mit Mittelpunkt $c \in X$.

Im Fall der euklidischen Metrik auf C heißen die Kugeln

$$B_r(c) := \{ z \in \mathbb{C} \mid |z - c| < r \}$$

r > 0, offene Kreisscheibe in C. Wir schreiben durchweg

$$\mathbb{E} := B_1(0) = \{z \in C \mid |z| < 1\}$$

Definition 2.2

Eine Teilmenge $U \subset X$ eines metrischen Raumes X heißt offen (in X) $\Leftrightarrow \forall x \in U \exists r > 0$ so dass $B_r(x) \subset U$ (\emptyset ist offene Menge per definitionem).

i)
$$\{U_{\alpha}\}_{{\alpha}\in A} \Rightarrow \bigcup_{{\alpha}\in A} U_{\alpha}$$
 offen

ii)
$$U_1, U_2, ..., U_m$$
 offen $\Rightarrow \bigcap_{i=1}^m U_i$ offen

Definition 2.3

Eine Menge $A \subset X$ heißt abgeschlossen (in X) $\Leftrightarrow X \setminus A$ offen.

- i) $\{A_{\alpha}\}_{{\alpha}\in\mathscr{A}}$ abgeschlossene Mengen $\Rightarrow \bigcap_{{\alpha}\in\mathscr{A}} A_{\alpha}$ abgeschlossen
- ii) $A_1, A_2, ..., A_m$ abgeschlossen $\Rightarrow \bigcup_{i=1}^m A_i$ abgeschlossen

Definition 2.4

 $A \subset X$ beliebig. Die abgeschlossene Hülle \bar{A} von A ist $\bar{A} := \bigcap B$, so dass $B \supset A$, B abgeschlossen.

Eine Menge $W \subset X$ heißt Umgebung der Menge $M \subset X$, wenn $\exists V$ offen mit $M \subset V \subset W$. Sei $k \in \mathbb{N} := \{0, 1, 2, ...\}$. Eine Abbildung $\{k, k+1, k+2, ...\} \to X$, $n \mapsto c_n$, heißt Folge in X. Man schreibt kurz (c_n) , im Allgemeinen ist k = 0.

Definition 2.5

Eine Folge (c_n) heißt konvergent in X, wenn es einen Punkt $c \in X$ gibt, so dass in jeder Umgebung von c fast alle (d.h. alle bis auf endlich viele) Folgenglieder c_n liegen. Der Punkt c heißt ein Limes der Folge. In Zeichen:

$$c = \lim_{n \to \infty} c_n$$

Nicht konvergente Folgen heißen divergent.

Eine Menge $M \subset X$ ist genau dann abgeschlossen in X, wenn der Limes jeder konvergenten Folge (c_n) , $c_n \in M$, stets zu M gehört.

Definition 2.6

Ein Punkt $p \in X$ heißt Häufungspunkt einer Menge $M \subset X$: $\Leftrightarrow \forall$ Umgebung U von p gilt:

$$U \cap (M \setminus \{p\}) \neq \emptyset$$

In jeder Umgebung eines Häufungspunktes p von M liegen unendlich viele Punkte von M; es gibt stets eine Folge (c_n) in $M \setminus \{p\}$ mit $\lim c_n = p$.

Beispiel

- i) $X = \mathbb{R}$, $M = \mathbb{Q}$. Die Menge U aller Häufungspunkte? $U = \mathbb{R}$.
- ii) $X = \mathbb{R}, M = \mathbb{Z}. U = \emptyset.$

iii)
$$X = \mathbb{R}, M = \left\{\frac{1}{n}\right\}_{n=1}^{\infty}, U = \{0\}.$$

Definition 2.7

Eine Teilmenge A eines metrischen Raumes X heißt dicht, in $X:\Leftrightarrow \forall$ offene $U\subset X:U\cap A\neq \emptyset \Leftrightarrow \bar{A}=X.$

Beispiel

 $X = C[a,b], d(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|, f,g \in X, A = \mathcal{P} = \text{alle Polynome auf } [a,b].$

Satz 2.8 Äquivalenzsatz

Folgende Aussagen über einen metrischen Raum X sind äquivalent:

- i) Jede offene Überdeckung $U = \{U_j\}_{j \in J}$ von X besitzt eine endliche Teilüberdeckung. (Heine-Borel-Eigenschaft)
- ii) Jede Folge (x_n) in X besitzt eine konvergente Teilfolge. (Weierstraß-Bolzano-Eigenschaft)

Definition 2.9

Man nennt X kompakt, wenn die Bedingungen i) und ii) aus Satz 2.8 erfüllt sind. Eine Teilmenge K von X heißt kompakt, oder auch ein Kompaktum (in X), wenn K mit der induzierten Metrik ein kompakter Raum ist.

- (*) Jedes Kompaktum in X ist abgeschlossen in X. In einem kompakten Raum ist jede abgeschlossene Teilmenge kompakt.
- (**) Jede offene Menge D in $\mathbb C$ ist die Vereinigung von abzählbar unendlich vielen kompakten Teilmengen von D.

Konvergente Folgen komplexer Zahlen

Rechenregeln

Konvergiert die Folge c_n gegen $c \in \mathbb{C}$, so liegen in jeder Kreisscheibe $B_{\varepsilon}(c)$, $\varepsilon > 0$, um c fast alle Folgenglieder c_n .

Für jedes $z \in \mathbb{C}$ mit |z| < 1 ist die Potenzfolge z^n konvergent: $\lim z^n = 0$; für alle |z| > 1 ist die Folge z^n divergent.

Definition 3.1

Eine Folge c_n heißt beschränkt: $\Leftrightarrow \exists M > 0$, so dass $|c_n| \leq M \forall n \in \mathbb{N}$.

Wie im Reellen folgt: Jede konvergente Folge komplexer Zahlen ist beschränkt. Sind c_n, d_n konvergente Folgen, so gelten die Limesregeln:

i) $\forall a, b \in \mathbb{C}$ ist $ac_n + bd_n$ konvergent:

$$\lim(ac_n + bd_n) = a\lim c_n + b\lim d_n$$

(C-Linearität)

ii) Die Produktfolge $c_n d_n$ ist konvergent:

$$\lim(c_n d_n) = (\lim c_n)(\lim d_n)$$

- iii) Ist $\lim d_n \neq 0$, so gibt es ein $k \in \mathbb{N}$, so dass $d_n \neq 0 \forall n \geq k$; die Quotientenfolge $\left(\frac{c_n}{d_n}\right)_{n \geq k}$ konvergiert gegen $\frac{\lim c_n}{\lim d_n}$.
- iv) Die Betragsfolge $|c_n|$ reeller Zahlen ist konvergent:

$$\lim |c_n| = |\lim c_n|$$

v) Die Folge \bar{c}_n konvergiert gegen \bar{c} .

Satz 3.2

Folgende Aussagen über eine Folge c_n sind äquivalent:

- i) c_n ist konvergent.
- ii) Die beiden reellen Folgen $\operatorname{Re} c_n$, $\operatorname{Im} c_n$ sind konvergent. Im Fall der Konvergenz gilt:

$$\lim c_n = \lim \operatorname{Re} c_n + i \lim \operatorname{Im} c_n$$

Beweis:

 $i)\Rightarrow ii)$ Limesregeln i) und v) und Re $c_n=\frac{1}{2}(c_n+\bar{c}_n),$ Im $c_n=\frac{1}{2i}(c_n-\bar{c}_n).$

 $ii) \Rightarrow i)$

 $\lim c_n = \lim (\operatorname{Re} c_n + i \operatorname{Im} c_n) = \lim \operatorname{Re} c_n + i \lim \operatorname{Im} c_n$

Definition 3.3

Eine Folge c_n heißt Cauchy-Folge, wenn $\forall \varepsilon > 0 \exists k \in \mathbb{N}$, so dass $|c_n - c_m| < \varepsilon \forall n, m \ge k$.

Satz 3.4 Konvergenzkriterium von Cauchy

Folgende Aussagen über eine Folge (c_n sind äquivalent:

- i) (c_n) ist konvergent.
- ii) (c_n) ist eine Cauchyfolge.

Beweis:

 $i)\Rightarrow ii)$ Da (c_n) konvergent ist, $\exists c$, so dass $\forall \frac{\varepsilon}{2} > 0 \exists k \in \mathbb{N} : |c_n - c| < \varepsilon \forall n \ge k$. Mit der Dreiecksungleichung folgt:

$$|c_n - c_m| \le |c_n - c| + |c - c_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \forall n, m \ge k$$

ii)⇒i) (c_n) ist eine Cauchyfolge. Es gilt:

$$|\operatorname{Re} c_n - \operatorname{Re} c_m| \le |c_n - c_m|, \quad |\operatorname{Im} c_n - \operatorname{Im} c_m| \le |c_n - c_m|$$

Also sind $(\operatorname{Re} c_n)$ und $(\operatorname{Im} c_n)$ reelle Cauchy-Folgen, also nach Analysis 1 konvergent. Somit ist auch $c_n = \operatorname{Re} c_n + i \operatorname{Im} c_n$ konvergent.

Satz 3.5

Für $K \subset \mathbb{C}$ ist K kompakt $\Leftrightarrow K$ beschränkt und abgeschlossen.

Satz 3.6 Bolzano-Weierstraß

Jede beschränkte Folge komplexer Zahlen besitzt eine konvergente Teilfolge.

4

Konvergente und absolut konvergente Reihen

Definition 4.1

Ist $(a_v)_{v \ge k}$ eine Folge komplexer Zahlen, so heißt die Folge $(s_n)_{n \ge k}$, $s_n \coloneqq \sum_{v=k}^n a_v$, der Partialsummen eine (unendliche) Reihe mit den Gliedern a_v . Man schreibt $\sum_{v=k}^{\infty} a_v$, $\sum_{k=k}^{\infty} a_v$, $\sum_{v \ge k}^{\infty} a_v$, oder einfach $\sum a_v$.

Eine Reihe $\sum a_v$ heißt konvergent, wenn die Partialsummenfolge (s_n) konvergiert, andernfalls heißt sie divergent. Im Konvergenzfall schreibt man suggestiv:

$$\sum a_{v} := \lim s_{n}$$

Wegen $a_n = s_n - s_{n-1}$ gilt $\lim a_n = 0$ für jede konvergente Reihe. Die Limesregeln i) und v) übertragen sich sofort auf Reihen:

$$\sum_{v \ge k} (aa_v + bb_v) = a \sum_{v \ge k} a_v + b \sum_{v \ge k} b_v$$

$$\overline{\sum_{v \ge k} a_v} = \sum_{v \ge k} \bar{a}_v$$

Speziell folgt: Die komplexe Reihe $\sum_{v \geq k} a_v$ ist genau dann konvergent wenn die beiden reellen Reihen $\sum_{v \geq k} \operatorname{Re} a_v$ und $\sum_{v \geq k} \operatorname{Im} a_v$ konvergieren; also dann gilt:

$$\sum_{v \ge k} a_v = \sum_{v \ge k} \operatorname{Re} a_v + \sum_{v \ge k} \operatorname{Im} a_v$$

Satz 4.2 Konvergenzkriterium von Cauchy

Eine Reihe $\sum a_{\nu}$ konvergiert genau dann wenn $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N}$ so dass

$$\left| \sum_{m+1}^{n} a_{\nu} \right| < \varepsilon \, \forall \, m, n \ge n_0$$

Definition 4.3

Eine Reihe $\sum a_{\nu}$ heißt absolut konvergent, wenn die Reihe $\sum |a_{\nu}|$ nichtnegativer reeller Zahlen konvergiert.

Satz 4.4 Majorantenkriterium

Es sei $\sum_{v\geq k} t_v$ eine konvergente Reihe mit reellen Gliedern $t_v\geq 0$; es sei $(a_v)_{v\geq k}$ eine komplexe Zahlenfolge, so dass $\forall v: |a_v|\leq t_v$. Dann ist $\sum_{v\geq k} a_v$ absolut konvergent.

Beweis:

$$\sum_{m+1}^{n} |\alpha_{\nu}| \le \sum_{m+1}^{n} t_{\nu} < {}^{1}\varepsilon$$

Also ist $\sum |a_{\nu}|$ konvergent.

Wegen $\max(|\operatorname{Re} a|, |\operatorname{Im} a|) \le |a| \le |\operatorname{Re} a| + |\operatorname{Im} a|$ gilt (nach dem Majorantenkriterium): $\sum a_{\nu}$ ist absolut konvergent $\Leftrightarrow \sum \operatorname{Re} a_{\nu}$, $\sum \operatorname{Im} a_{\nu}$ sind absolut konvergent.

Satz 4.5 Umordnungssatz

 $\sum_{v\geq 0} a_v$ konvergiere absolut. Dann konvergiert jede 'Umordnung' dieser Reihe.

Beweis: $\sum_{v\geq 0}$ absolut konvergent $\Rightarrow \sum_{v\geq 0} \operatorname{Re} a_v$, $\sum_{v\geq 0} \operatorname{Im} a_v$ absolut konvergent, i.e. $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N}$ so dass $\sum_{m+1}^n |\operatorname{Re} a_v| < \varepsilon$, $\sum_{m+1}^n |\operatorname{Im} a_v| < \varepsilon \forall m, n \geq n_0$. $\tau \colon \mathbb{N} \to \mathbb{N}$ Bijektion $\Rightarrow \exists N_0 \in \mathbb{N}$ so dass $\tau(n) \geq n_0 \forall n \geq N_0$. Also:

$$\sum_{N_0+1}^N |\operatorname{Re} a_{\tau(\nu)}| < \varepsilon, \qquad \sum_{N_0+1}^N |\operatorname{Im} a_{\tau(\nu)}| < \varepsilon$$

Diese Reihen sind konvergent nach Cauchy, somit auch absolut konvergent und die Behauptung folgt. \Box

Sind $\sum_{0}^{\infty} a_{\mu}$, $\sum_{0}^{\infty} a_{\nu}$ zwei Reihen, so heißt jede Reihe $\sum_{0}^{\infty} c_{\lambda}$, wobei $c_{0}, c_{1}, c_{2}, ...$ genau einmal alle Produkte $a_{\mu}b_{\nu}$ durchläuft, eine Produktreihe von $\sum a_{\mu}$ und $\sum b_{\nu}$. Die wichtigste Produktreihe

¹ Cauchy-Kriterium

 $^{2 \}sum a_{\tau(v)}, \tau : \mathbb{N} \to \mathbb{N}$ Bijektion

ist das Cauchyprodukt $\sum p_{\lambda}$ mit $p_{\lambda} \coloneqq \sum_{\mu+\nu=\lambda} a_{\mu} b_{\nu}$. Diese Bildung wird nahegelegt, wenn man Potenzreihen formal ausmultipliziert:

$$\left(\sum_{0}^{\infty} a_{\mu} x^{\mu}\right) \left(\sum_{0}^{\infty} b_{\nu} x^{\nu}\right) = \sum_{0}^{\infty} p_{\lambda} x^{\lambda}$$

Satz 4.6 Reihenproduktsatz

Es seien $\sum_0^\infty a_\mu$, $\sum_0^\infty b_\nu$ absolut konvergente Reihen. Dann konvergiert jede Produktreihe $\sum_0^\infty c_\lambda$ absolut. Es gilt stets:

$$\left(\sum_{0}^{\infty} a_{\mu}\right) \left(\sum_{0}^{\infty} b_{\nu}\right) = \sum_{0}^{\infty} p_{\lambda}$$

Beweis: $\forall l \in \mathbb{N} \exists m \in \mathbb{N}$, so dass $c_0, c_1, c_2, ..., c_l$ unter den Produkten $a_{\mu}b_{\nu}$, $0 \ge \mu, \nu \ge m$, vorkommen. Dann:

$$\sum_{0}^{l} |c_{\lambda}| \leq \left(\sum_{0}^{m} |a_{\mu}|\right) \left(\sum_{0}^{m} |b_{\nu}|\right) \leq \left(\sum_{0}^{\infty} |a_{\mu}|\right) \left(\sum_{0}^{\infty} |b_{\nu}|\right) < +\infty$$

Also ist $\sum_0^\infty |c_\lambda|$ konvergent, also $\sum_0^\infty c_\lambda$ absolut konvergent und somit unabhängig von Umordnungen. Insbesondere:

$$(a_0 + a_1 + ... + a_m)(b_0 + b_1 + ... + b_m) = (c_0 + c_1 + ... + c_{(m+1)^2-1})$$

Es folgt:

$$\left(\sum_{0}^{\infty} a_{\mu}\right) \left(\sum_{0}^{\infty} b_{\nu}\right) = \sum_{0}^{\infty} p_{\lambda}$$

5

Stetige Funktionen

 $f: X \to Y$, f heißt Funktion oder Abbildung, X heißt Argumentbereich und Y Wertebereich. Man schreibt auch $X \ni x \to f(x) \in Y$.

Definition 5.1

Eine Abbildung $f: X \to Y$ heißt stetig im Punkt $a \in X$, wenn das f-Urbild $f^{-1}(V) = \{x \in X \mid f(x) \in V\}$ einer jeden Umgebung V von f(a) in Y eine Umgebung von a in X ist.

Definition 5.2

Die Funktion $f: X \to Y$ konvergiert bei Annäherung an $a \in X$ gegen $b \in Y$, in Zeichen $\lim_{x \to a} f(x) = b$ oder $f(x) \to b$ wenn $x \to a$, wenn es zu jeder Umgebung V von b in Y eine Umgebung U von a in X gibt mit $f(U \setminus \{a\}) \subset V$.

Bemerkung

f ist stetig in $a \Leftrightarrow \exists \lim_{x \to a} f(x) = f(a)$.

Satz 5.3 Folgenkriterium

Genau dann ist $f: X \to Y$ stetig in a, wenn $\forall \text{Folgen } (x_n) \text{ von Punkten } x_n \in X \text{ mit } \lim x_n = a \text{ gilt: } \lim f(x_n) = f(a).$

Zwei Abbildungen $f: X \to Y$ und $g: Y \to Z$ werden zusammengesetzt zu $g \circ f: X \to Z$, $z \to (g \circ f)(x) := g(f(x))$. Bei dieser Komposition von Abbildungen vererbt sich die Stetigkeit: Ist $f: X \to Y$ stetig in $a \in X$ und ist $g: Y \to Z$ stetig in $f(a) \in Y$, so ist $g \circ f: X \to Z$ stetig

in a.

Definition 5.4

Eine Funktion $f: X \to Y$ heißt stetig, wenn sie in jedem Punkt von X stetig ist.

Satz 5.5 Stetigkeitskriterium

Folgende Aussagen sind äquivalent:

- i) f ist stetig.
- ii) Das Urbild $f^{-1}(V)$ jeder in Y offenen Menge V ist offen in X.
- iii) Das Urbild $f^{-1}(A)$ jeder in Y abgeschlossenen Menge A ist abgeschlossen in X.

Satz 5.6

Es sei $f: X \to Y$ stetig und $K \subset X$ ein Kompaktum. Dann ist auch $f(K) \subset Y$ ein Kompaktum.

Beweis: Sei $\{U_{\alpha}\}_{\alpha\in A}$ eine offene Überdeckung von f(K). Sei $W_{\alpha}:=f^{-1}(U_{\alpha}) \forall \alpha\in A$. f ist stetig, also ist für alle $\alpha\in A$ W_{α} offen. Also ist $\{W_{\alpha}\}_{\alpha\in A}$ eine offene Überdeckung von K. Da K kompakt ist, existieren endlich viele $\alpha_1,\alpha_2,...,\alpha_m$, so dass $K\subset \bigcup_{i=1}^m W_{\alpha_i}$. Dann ist $\{U_{\alpha_i}\}_{i=1}^m$ eine endliche Überdeckung von f(K). Somit ist f(K) nach Definition ein Kompaktum.

In Satz 5.6 ist enthalten, dass reellwertige stetige Funktionen $f: X \to \mathbb{R}$ auf jedem Kompaktum K in X Maxima und Minima annehmen.

Komplexwertige Funktionen $f: X \to \mathbb{C}$ und $g: X \to \mathbb{C}$ lassen sich addieren und multiplizieren: (f+g)(x) = f(x) + g(x) und $(f \cdot g)(x) = f(x)g(x)$, $x \in X$. Die zu f konjugierte Funktion \bar{f} wird durch $\bar{f}(x) = f(x)$, $x \in X$, definiert.

Rechenregeln: $\overline{f+g} = \overline{f} + \overline{g}$, $\overline{f \cdot g} = \overline{f} \cdot \overline{g}$, $\overline{f} = f$. Realteil und Imaginärteil von f werden durch $(\operatorname{Re} f)(x) = \operatorname{Re}(f(x))$ und $(\operatorname{Im} f)(x) = \operatorname{Im}(f(x))$, $x \in X$, $\operatorname{erkl} \widetilde{\operatorname{A}}$ art . Für $u := \operatorname{Re} f$ und $v := \operatorname{Im} f$ (reellwertige Funktionen) gilt: f = u + iv, $u = \frac{1}{2}(f + \overline{f})$, $v = \frac{1}{2i}(f - \overline{f})$, $f \overline{f} = u^2 + v^2$. Man hat:

- i) $f: X \to \mathbb{C}, g: X \to \mathbb{C}$ stetig in $a \in X \Rightarrow f + g, fg, \bar{f}$ stetig in a.
- ii) f = u + iv stetig in $a \Leftrightarrow u, v$ stetig in a.

iii) g nullstellenfrei in X (d.h. $g(x) \neq 0 \forall x \in X$), dann heißt die Funktion $x \to \frac{f(x)}{g(x)}$ die Quoiientenfunktion von f und g. Sind f und g stetig in $a \Rightarrow \frac{f(x)}{g(x)}$ stetig in a.

6

Zusammenhängende Räume, Gebiete in C

Zusammenhang und Wege

Definition 6.1

Sei (X, d_x) ein metrische Raum, $A \subseteq X$ eine Menge. A ist zusammenhängend $\Leftrightarrow \nexists U_1, U_2$ offen in X, so dass:

i)
$$U_1 \cup U_2 \supset A$$

ii)
$$U_1 \cap U_2 = \emptyset$$

iii)
$$U_1 \cap A \neq \emptyset$$
, $U_2 \cap A \neq \emptyset$

Beispiel

//

i)
$$\mathbb{R} = X$$
, $d_x(x, y) = |x - y|$, $A = \mathbb{Q}$: $U_1 = (-\infty, \sqrt{2})$, $U_2 = (\sqrt{2}, +\infty)$

ii) $\mathbb{R} = X$, $d_x(x,y) = |x-y|$, A = [0,1]. Seien U_1, U_2 offene Mengen mit i)-iii), $0 \in U_1$, $1 \in U_2$, $\frac{1}{2} \in U_1 \Rightarrow I_1 = \left[\frac{1}{2},1\right]$, $\frac{3}{4} \in U_2 \Rightarrow I_2 = \left[\frac{1}{2},\frac{3}{4}\right]$ $\Rightarrow \exists! x_0 \in \bigcap_{n=1}^{\infty} I_n$ (Intervallschachtelungsprinzip). x_0 liegt also in U_1 oder U_2 . U_1 ist offen, also existiert ein $\varepsilon > 0$, so dass $(x_0 - \varepsilon, x_0 + \varepsilon) \subset U_1$, aber $I_n \subset (x_0 - \varepsilon, x_0 + \varepsilon)$ für n genügend groß \not Also ist A zusammenhängend.

Bemerkung

Sei (X,d_x) ein metrischer Raum, $A,B\subset X$ zusammenhängend, $A\cap B\neq\emptyset$. Dann ist $A\cup B$ zusammenhängend.

Definition 6.2

Sei (X, d_x) ein metrischer Raum, $A \subset X$ eine Teilmenge. $\forall x_0 \in A$ definieren wir

$$K(x) \coloneqq \left\{ \bigcup_{\alpha} A_{\alpha} \mid x_0 \in A_{\alpha}, A_{\alpha} \subset A \text{ zusammehängend} \right\}$$

K(x) heißt Zusammenhangskomponente des Punktes x von A.

Bemerkung

 $K(x_0)$ ist zusammenhängend.

Definition 6.3

 (X, d_x) metrischer Raum, $A \subset X$ eine Teilmenge. A ist wegzusammenhängend $\Leftrightarrow \forall x_0, x_1 \in A \exists$ stetige Abbildung $\gamma : [0,1] \to A$ so dass $\gamma(0) = x_0, \gamma(1) = x_1$.

Bemerkung

 $A \subset X$ wegzusammenhängend $\Leftrightarrow A$ zusammenhängend.

Beispiel

$$\mathbb{R}^2$$
: $y = \sin \frac{1}{x}$, $0 < x \le 1$, $A = (\{0\} \times [-1, 1]) \cup \{(x, \sin \frac{1}{x}), 0 < x \le 1\}$ //

Proposition 6.4

 $A \subset \mathbb{R}^2$ offen, $d_{\mathbb{R}^2}(x,y) = ||x-y||$. A zusammenhängend $\Rightarrow A$ wegzusammenhängend.

Beweis: Sei $x_0 \in A$ beliebig, aber fixiert. $A(x_0) := \{ y \in A \mid \exists \gamma : [0,1] \to A, \gamma(0) = x_0, \gamma(1) = x_1 \}.$

- i) $A(x_0)$ ist wegzusammenhängend.
- ii) $A(x_0)$ ist offen, weil $\forall y \in A(x_0) \subset A \exists \varepsilon > 0$ so dass $B_{\varepsilon}(y)$. Also ist die Kurve γ von x_0 zu y+der Radius von y zu beliebigem Punkt von $B_{\varepsilon}(y)$ auch eine stetige Kurve. Also ist auch $B_{\varepsilon}(y) \subset A(x_0)$ und somit ist $A(x_0)$ offen.
- iii) $A(x_0)$ ist abgeschlossen in A. Sei $y* \in A$ und $\exists y_n \in A(x_0), \ y_n \xrightarrow{n \to \infty} y^*$. Da A offen ist, existiert ein $\varepsilon > 0$, so dass $B_{\varepsilon}(y^*) \subset A$. Dann $\exists n \in \mathbb{N}$ so dass $y_n \in B_{\varepsilon}(y^*)$. Also existiert ein $\gamma: [0,1] \to A$, so dass $\gamma(0) = x_0$, $\gamma(1) = x_1$, Dann ist diese Kurve+der Radius $[y_n, y^*]$ eine Kurve die x_0 mit y^* verbindet. Also $y^* \in A(x_0)$. Somit ist $A(x_0)$ in A abgeschlossen.

Also sind $A(x_0)$ und $A \setminus A(x_0)$ offen $\not\subset A \setminus A(x_0) = \emptyset \Rightarrow A(x_0) = A$. Da $A(x_0)$ wegzusammenhängend ist, ist somit auch A wegzusammenhängend.

Definition 6.5

 $f: X \to \mathbb{C}$ heißt lokal-konstant genau dann wenn $\forall x \in X \exists$ offene Umgebung $U \subset X, x \in U$, so dass $f|_U$ =konstant.

Ist *f* lokal-konstant, dann ist *f* stetig.

Satz 6.6

X metrischer Raum. Dann sind äquivalent:

- i) $f: X \to \mathbb{C}$ lokal-konstant $\Rightarrow f$ konstant
- ii) $A \subset X$ nicht leer, offen und abgeschlossen $\Rightarrow A = X$
- iii) X zusammenhängend

Beweis:

 $i)\Rightarrow ii)$ Sei $A\subset X, A\neq \emptyset$, offen und abgeschlossen. $B:=X\setminus A$ offen und abgeschlossen, $A\cap B=\emptyset$, $f(x)=\begin{cases} 1 & x\in A\\ 0 & x\in B \end{cases}$. Es folgt direkt dass f lokal-konstant, also insbesondere stetig ist. Also ist f konstant, nämlich f=1, denn $A\neq \emptyset$. Da $A=f^{-1}(1)=X$, ist A=X.

 $ii)\Rightarrow i)$ Sei $f:X\to\mathbb{C}$ lokal-konstant. Fixiere $c\in X$. $A:=f^{-1}(f(c))$. Da f lokal-konstant, ist A offen, $c\in A\neq\emptyset$. Da f stetig, ist A abgeschlossen. Also ist A=X. Insbesondere ist $f(x)=f(x)\forall x\in X$. Also ist f konstant.

Satz 6.7

 $I \subset \mathbb{R}$ Intervall $\Rightarrow I$ zusammenhängend.

Gebiete in \mathbb{C}

Definition 6.8

- i) $z_0, z_1 \in \mathbb{C}$, $\gamma(t) = (1-t)z_0 + tz_1$, $t \in [0,1]$. γ heißt Strecke von z_0 nach z_1 , $\gamma = [z_0, z_1]$.
- ii) $z_0, z_1 \in \mathbb{R}$, dann ist $[z_0, z_1]$ =Intervall.
- iii) Seien $\gamma_1: [a_j, b_j] \to \mathbb{C}, j = 1, 2, \gamma_1(b_1) = \gamma_2(a_2)$. Der Summenweg $\gamma_1 + \gamma_2$ von γ_1 und γ_2 ist $\gamma: [a_1, b_2 a_2 + b_1], \gamma(t) = \begin{cases} \gamma_1(t) & t \in [a_1, b_1] \\ \gamma_2(t + a_2 b_1) & t \in [b_1, b_2 a_2 + b_1] \end{cases}$.
- iv) γ heißt Polygon oder Streckenzug, falls $\gamma = [z_0, z_1] + [z_1, z_2] + ... + [z_{n-1}, z_n]$.
- v) Polygon γ heißt achsenparallel, falls $[z_j, z_{j+1}]$ parallel zur x-Achse oder y-Achse ist, j = 0, ..., n-1, d.h. Re $= z_j = \text{Re } z_{j+1}$ oder $\text{Im } z_j = \text{Im } z_{j+1}$.
- vi) $D \subset \mathbb{C}$ heißt Bereich, falls D offen und nicht leer ist.

Satz 6.9

Sei $B \subset \mathbb{C}$ Bereich. Dann sind äquivalent:

- i) *B* ist zusammenhängend.
- ii) $\forall p, q \in B \exists Polygon in B, das p und q verbindet.$
- iii) *B* ist wegzusammenhängend.

Beweis:

ii)⇒iii) Jedes Polygon ist ein Weg.

iii)⇒i) Folgt aus Bemerkung oben.

 $i) \Rightarrow ii)$ Sei $p \in B$ fest, $z \in B$.

$$f(z) = \begin{cases} 1 & \exists \text{Polygon von } p \text{ nach } b \\ 0 & \text{sonst} \end{cases}$$

Zeige: f lokal konstant. Sei $w \in B$. Da B offen, gibt es eine Kreisscheibe $\triangle \subset B$, $\triangle \ni w$. Ist $z \in \triangle$, so existiert ein Polygon von z nach w in \triangle . D.h. $f(w) = 1 \Rightarrow f(z) = 1$ und $f(w) = 0 \Rightarrow f(z) = 0 \forall z \in \triangle$. Also ist f lokal-konstant auf B und f somit konstant. Da f(p) = 1 folgt f = 1.

Definition 6.10

 $G \subset \mathbb{C}$ Bereich. Ist G (weg-)zusammenhängend, so heißt G Gebiet.

G ab jetzt immer ein Gebiet, und D immer ein Bereich.

Definition 6.11

 $p,q\in D$ $p\sim_D q\Leftrightarrow \exists \mathrm{Weg}$ in D der p und q verbindet. Die Äquivalenzklasse $[p]_D$ heißt Zusammenhangskomponente die p enthält.

```
z_0, z_1 \in \mathbb{C}, \ d(z_0, z_1) = |z_0 - z_1| Abstand zwischen z_0 und z_1. z_0 \in \mathbb{C}, \ A \subset \mathbb{C} abgeschlossen, d(z_0, A) = \inf\{d(z_0, w) \mid w \in A\} D \subset \mathbb{C} Bereich, c \in D, \ \partial D = \bar{D} \setminus D. Randabstand d_c(D) = d(c, \partial D). Sonderfall: D = \mathbb{C}, \ d_c(D) = +\infty.
```