Resource List

Intro

Broadly 3 types of machine learning algorithms:

Supervised Learning

How it works: This algorithm consists of a target / outcome variable (or dependent variable) which is to be predicted from a given set of predictors (independent variables). Using this set of variables, we generate a function that maps inputs to desired outputs. The training process continues until the model achieves a desired level of accuracy on the training data. Examples of Supervised Learning: Regression, Decision Tree, Random Forest, KNN, Logistic Regression etc.

2. Unsupervised Learning

How it works: In this algorithm, we do not have any target or outcome variable to predict / estimate. It is used for clustering populations in different groups, which is widely used for segmenting customers in different groups for specific intervention. Examples of Unsupervised Learning: Apriori algorithm, K-means.

• 3. Reinforcement Learning:

How it works: Using this algorithm, the machine is trained to make specific decisions. It works this way: the machine is exposed to an environment where it trains itself continually using trial and error. This machine learns from past experience and tries to capture the best possible knowledge to make accurate business decisions. Example of Reinforcement Learning: Markov Decision Process

Linear regression

Theory: https://youtu.be/E5RjzSK0fvY

Theory: http://www.stat.vale.edu/Courses/1997-98/101/linreg.htm

https://towardsdatascience.com/linear-regression-detailed-view-ea73175f6e86

Implementation: https://youtu.be/b0L47BekITE

Logistic regression

Theory and implementation: https://youtu.be/VCJdg7YBbAQ

Theory: https://www.analyticsvidhya.com/blog/2021/07/an-introduction-to-logistic-regression

Decision Tree

Theory: https://youtu.be/7VeUPuFGJHk

Theory: https://www.analyticsvidhya.com/blog/2021/08/decision-tree-algorithm/

Implementation: https://youtu.be/HY2DcBhgwm0

SVM

Theory: https://youtu.be/H9yACitf-KM

Theory: https://www.analyticsvidhya.com/blog/2021/06/support-vector-machine-better-understanding/

Implementation: https://youtu.be/FB5EdxAGxQg

Naive Bayes

Theory: https://youtu.be/jS1CKhALUBQ

Theory:

https://www.analyticsvidhya.com/blog/2021/09/naive-bayes-algorithm-a-complete-guide-for-data-science-

enthusiasts/

Implementation: https://youtu.be/nHIUYwN-5rM

KNN

Theory and implementation: https://youtu.be/wTF6vzS9fy4

Theory:

https://www.analyticsvidhya.com/blog/2018/08/k-nearest-neighbor-introduction-regression-python/

K Means

Theory: https://www.youtube.com/watch?v=4b5d3muPQmA

Theory: https://www.analyticsvidhya.com/blog/2019/08/comprehensive-quide-k-means-clustering

Implementation: https://www.youtube.com/watch?v=ikt0sny_ImY

Boosting (adaboost)

Theory: https://www.youtube.com/watch?v=NLRO1-jp5F8&t=724s

Theory: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

Implementation: https://www.youtube.com/watch?v=7xHM93WXOu8

Bagging (random forest)

Theory: https://www.youtube.com/watch?v=KIOeZ5cFZ50

Theory: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Implementation: https://www.youtube.com/watch?v=MxiktOPmhV8&t=2s

Principle Component Analysis

Implementation: https://www.youtube.com/watch?v=QdBy02ExhGI
Theory: https://www.youtube.com/watch?v=fkf4IBRSeEc (OPTIONAL)

Overfitting and Underfitting

https://www.youtube.com/watch?v=T9NtOa-IITo [VERY IMPORTANT]

Note: This concept can be seen in K Means and decision trees as well. In fact we will look deeper into this when we begin deep learning.