

Entwicklung eines TIA-Projektes

Hausarbeit Industrielle Bussysteme

Studiengang Elektrotechnik

Studienrichtung Automation

Duale Hochschule Baden-Württemberg Ravensburg, Campus Friedrichshafen

von

Simon Schäffler, Alexander Drexl und Florian Prumbs

Abgabedatum: 28. November 2024

Bearbeitungszeitraum: 15.11.2024 - 06.12.2024

Matrikelnummer Simon Schäffler: 5710369
Martikelnummer Alexander Drexl: 3982016
Martikelnummer Florian Prumbs: 1848162
Kurs: FN -TEA22

Ausbildungsfirma: Webasto Roof & Components SE

Erklärung

gemäß Ziffer 1.1.13 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2017 in der Fassung vom 25.07.2018.

Wir versichern hiermit, dass unsere Hausarbeit mit dem Thema:

Entwicklung eines TIA-Projektes

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt wurden.

Friedrichshafen, den 28. November 2024

Simon Schäffler

Alexander Drexl

Florian Prumbs

Konzeptentwurf

State Machine

Initialzustand

Das System startet im Initialzustand und wechselt direkt in den sogenannten Idle-Zustand. Im Idle-Zustand sind beide LEDs der Anzeige AC2398 ausgeschaltet. In diesem Zustand kann das System je nach den erkannten Eingaben oder Ereignissen in andere Zustände wechseln. Wenn der grüne Knopf gedrückt wird und kein RFID-Tag erkannt wird, speichert das System die aktuelle Systemzeit und bleibt im Idle-Zustand. Dieser Vorgang wird im Diagramm als SSave Time"bezeichnet.

Tag-Erkennung und Verarbeitung

Wird ein NFC-Tag erkannt und liegt kein Fehlerzustand vor, wechselt das System in den Zustand "Tag Detected Handling". In diesem Zustand blinkt die grüne LED mit einer Frequenz von einer Sekunde, um anzuzeigen, dass ein Tag erkannt wurde. Es gibt zwei mögliche Aktionen, vorausgesetzt, es liegt kein Fehlerzustand vor:

Write Tag Handling: Wenn der grüne Knopf gedrückt wird, während das RFID-Tag erkannt wird und die Systemzeit vorhanden ist, wechselt das System in den Zustand "Write Tag Handling". In diesem Zustand wird die zuvor gespeicherte Systemzeit auf das RFID-Tag geschrieben. Die grüne LED leuchtet dauerhaft, um anzuzeigen, dass der Schreibvorgang erfolgreich abgeschlossen wurde. Sobald das RFID-Tag nicht mehr erkannt wird, kehrt das System in den Idle-Zustand zurück.

Delete Tag Handling: Alternativ kann der rote Knopf gedrückt werden, während das RFID-Tag erkannt wird und kein Fehlerzustand vorliegt. In diesem Fall wechselt das System in den Zustand "Delete Tag Handling". Hier werden die gespeicherten Daten des RFID-Tags gelöscht, und beide LEDs leuchten dauerhaft, solange das Tag erkannt wird. Sobald das RFID-Tag nicht mehr erkannt wird, kehrt das System in den Idle-Zustand zurück.

Fehlerbehandlung

Wenn während des Prozesses ein Fehlerzustand auftritt, wechselt das System in den Zustand Error State Handling". In diesem Zustand blinkt die rote LED mit einer Frequenz von einer Sekunde, während die grüne LED ausgeschaltet bleibt, um den Fehler anzuzeigen. Der Fehlerzustand bleibt bestehen, bis die Ursache des Fehlers behoben ist. Anschließend erreicht das System den Finalzustand und der gesamte Ablauf beginnt erneut.

Abbildung 1: State-Machine-Diagramm

Variablen-Tabellen

Für die verwendete Hardware "AC2398" (ein Block mit zwei Tastern, jeweils mit integrierter LED) und das NFC-Modul "DTI515" werden die folgenden Variablentabellen (Tabelle 1 und Tabelle 2) benötigt.

Name	Datentyp	Adresse	Kommentar
RED_button_released	Bool	%I193.2	1 wenn roter Taster nicht gedrückt
Green_button_pressed	Bool	%I193.3	1 wenn grüner Taster gedrückt
Red_button_LED_ON	Bool	%Q192.0	wenn 1 dann rote LED vom Taster an
Green_button_LED_ON	Bool	%Q192.1	wenn 1 grüne LED vom Taster an

Tabelle 1: Variablentabelle von AC2398 (Tasterblock)

Name	Datentyp	Adresse
Output_Param.Done	Bool	%I6.0
Output_Param.Busy	Bool	%I6.1
Output_Param.Error	Bool	%I6.2
Output_Param.Status	Word	%IW8
Output_Param.ExtStatus	DWord	%ID10
Output_Param.RdValue	UInt	%IW14
Output_Data.TagPresent	Bool	%I92.0
Output_Data.Done	Bool	%I92.1
Output_Data.Busy	Bool	%I92.2
Output_Data.Error	Bool	%I92.3
Output_Data.Status	Word	%IW94
Output_Data.ExStatus	Word	%IW96
Input_Param.Execute	Bool	%Q0.0
Input_Param.Mode	UInt	%QW2
Input_Param.SetValue	UInt	%QW4
Input_Data.DT_InAddr	UInt	%QW16
Input_Data.DT_OutAddr	UInt	%QW18
Input_Data.Execute	Bool	%Q20.0
Input_Data.Force	Bool	%Q20.1
Input_Data.Mode	UInt	%QW22
Input_Data.TagMemAddr	UInt	%QW24
Input_Data.Length	UInt	%QW26
Input_Data.WrData	Array[031] of Byte	%Q28.0
Input_Data.RdData	Array[031] of Byte	%Q60.0

Tabelle 2: Variablentabelle von DTI515 (NFC-Modul)

Zur Realisierung der in Abbildung 1 dargestellten Logik werden die bausteinlokalen Variablen aus Tabelle 3 benötigt. Diese Variablen werden später im Funktionsbaustein "FB_RFID_Manager" deklariert.

Name	Datentyp	Kommentar
Tag_Present	Bool	Wird ein NFC_Tag erkannt
Clock1Hz	Bool	Eine Clock mit 1 Herz
Green button	Bool	Wird Grüner Button betätigt
Red button	Bool	Wird Roter Button losgelassen
Data Error	Bool	Fehler im Read/Write Data FBD
Paramter Error	Bool	Fehler im parametrization FBD
Execute	Bool	Ausführung des Schreibe bzw. Lösch
		Vorgangs
Green_Button_LED_State	Bool	Status der LED des grünen Buttons
Red_Button_LED_State	Bool	Status der LED des roten Buttons
Data_Mode	Int	Welcher Modus verwendet wird
Data_Write	Array[031]	Eine Liste zum speichern der ge-
	of Byte	schriebenen bzw. gelöschten Bytes
Data_Length	Int	Einstellung der Länge der Liste am
		FBD Read/Write Data
M1_Error_State_Handling	Bool	Netzwerk 1: Wird ein Fehler er-
		kannt?
M2_Error_State_Handling_Clock	Bool	Netzwerk 2: Clock aktiv?
M3_Tag_Detected_Handling	Bool	Netzwerk 2: Wird ein NFC-Tag er-
		kannt?
M4_Tag_Detected_Handling_Clock	Bool	Netzwerk 2: Clock aktiv?
M5_Save_System_Time	Bool	Netzwerk 3: Wurde einmal die Zeit
		gespeichert?
M6_Write_Tag_Handling	Bool	Netzwerk 4: Wird auf den NFC-Tag
		geschrieben?
M7_Delete_Tag_Handling	Bool	Netzwerk 5: Wird der NFC-Tag ge-
		löscht
Green_LED_Tag_Detected_Handling	Bool	Grüne LED wird eingeschaltet, wenn
		Tag erkannt wird
Green_LED_Write_Tag_Handling	Bool	Grüne LED wird eingeschaltet, wenn
		NFC-Tag beschrieben wurde
Green_LED_Delete_Tag_Handling	Bool	Grüne LED wird eingeschaltet, wenn
		NFC-Tag gelöscht wurde
Red_LED_Error_State	Bool	Rote LED wird eingeschaltet, wenn
	D. I	ein Fehlerzustand herrscht
Systemtime	Bool	Speicher Systemzeit im Format Time
Systemtimeconv	Bool	Gespeicherte Systemzeit wird Daten-
To a Will H W	D 1	typ DInt konvertiert
Execute_Write_Handling	Bool	Ausführung des Schreibbefehls
Execute_Delete_Handling	Bool	Ausführung des Löschbefehls

 $\begin{tabular}{ll} \textbf{Tabelle 3:} Bausteinlokale Variablen von Funktionsbaustein \\ "FB_RFID_Manager" \\ \end{tabular}$

Umsetzung

Umsetzung in TIA v18 in Labor H001 Implementierung Kommentierung Test der Funktionalität

Anhang

Organisationsbaustein "Main"

Abbildung 1: Main [OB1] Netzwerk 1: DTI515 Parametrization

Abbildung 2: Main [OB1] Netzwerk 2: DTI515 Read/Write Data

Abbildung 3: Main [OB1] Netzwerk 3: DTI515 RFID Manager

Funktion "FBD DTI515 parametrization"

Abbildung 4: FBD - DTI515 parametrization [FC3] Netzwerk 1: Config

Funktion "FBD_DTI515 Read-Write_Data"

Abbildung 5: FBD - DTI515 Read/Write Data [FC2] Netzwerk 1: Config

Funktionsbaustein "FB RFID Manager"

Abbildung 6: FB_RFID_Manager [FB3] Netzwerk 1: Error_State_Handling

Abbildung 7: FB_RFID_Manager [FB3] Netzwerk 2: Tag Detected Handling

Abbildung 8: FB_RFID_Manager [FB3] Netzwerk 3: Save_System_Time

Abbildung 9: FB RFID Manager [FB3] Netzwerk 4: Write Tag Handling

Abbildung 10: FB_RFID_Manager [FB3] Netzwerk 5: Delete_Tag_Handling

Abbildung 11: FB_RFID_Manager [FB3] Netzwerk 6: LED_Control

Abbildung 12: FB_RFID_Manager [FB3] Netzwerk 7: Execution_Operations