## 쥬혁이 팀

# 제주도 도로 교통량 예측 AI 경진대회

2022.10.03 ~ 2022.11.14



## 목차 contents

- I.INTRO
- II. EDA
- III. FEATURE ENGINEERING
- IV. MODELING
- V. OUTRO



## INTRO

## [배경]

제주도내 주민등록인구는 2022년 기준 약 68만명으로, 연평균 1.3%정도 매년 증가하고 있습니다. 또한 외국인과 관광객까지 고려하면 전체 상주인구는 90만명을 넘을 것으로 추정되며, 제주도민 증가와 외국인의 증가로 현재 제주도의 교통체증이 심각한 문제로 떠오르고 있습니다.

## [주제]

제주도 도로 교통량 예측 AI 알고리즘 개발

## [설명]

제주도의 교통 정보로부터 도로 교통량 회귀 예측



## [제공 데이터]

- Train.csv 2022 년 8월 이전 데이터만 존재하며 날짜, 시간, 교통 및 도로구간 등의 정보와 도로의 차량 평균 속도(target)정보 포함
- Test.csv 2022년 8월 데이터만 존재하며 날짜, 시간, 교통 및 도로구간 등의 정보 포함

## [외부 데이터] \* 2022년 8월 이전에 수집 가능한 데이터만을 사용

- 국가공휴일.cvs
   2018 ~ 2023 년의 국가 공휴일
- 제주도장소데이터\_20151231.csv (출처: 공공데이터포털) 2015년 제주도 장소데이터로 공항, 항만, 아파트, 마트, 관광지 등의 위치 정보 포함





## 1. EDA(일부)







- maximum\_speed\_limit 값이 40인 경우를 제외하고는 속도제한이 증가함에 따라 target 값도 증가
- 계절에 따른 target 값의 차이
- 출발지 노드와 도착지 노드가 일치함에 따른 target 값 차이



2. 상관관계

## [Target 변수에 대한 상관관계가 가장 높은 변수]

- Maximum\_speed\_limit 관련 파생변수
- 관광지 카운트 변수
- 위도경도 관련 파생변수
- 시간 관련 파생변수



# **III** FEATURE ENGINEERING



## FEATURE ENGINEERING

## 1. DATE 관련 파생변수 생성

| base_date |
|-----------|
| 20220623  |
| 20220728  |
| 20212020  |
| 20220311  |
| 20211005  |
| •••       |



| season | Day_of_week | sin_time | cos_time   | group_time | month | week |
|--------|-------------|----------|------------|------------|-------|------|
| 3      | 1           | -0.9659  | -2.588e-01 | 2          | 6     | 0    |
| 3      | 1           | -0.70710 | 7.071e-01  | 3          | 7     | 0    |
| 0      | 4           | 0.9659   | -2.588e-01 | 1          | 10    | 1    |
| 2      | 0           | -0.2588  | -9.659e-01 | 2          | 3     | 0    |
| 0      | 6           | 0.8660   | -5.000e-01 | 1          | 10    | 0    |
|        |             |          |            |            |       |      |

- base\_date 에서 Year, month, week, weekdays 파생변수 생성
- 시간과 관련한 피쳐들이 inherently cyclical 하다는 것을 활용하기 위한 sin/cos time 변환
- 새벽, 오전, 오후, 밤 으로 time 그룹핑
- Month 피쳐로 부터 방학시즌(7, 8,12, 1,2월)에 대한 파생변수 생성
- Season 변수 생성



## FEATURE ENGINEERING

## 2. 좌표 관련 파생변수

| Location<br>Cluster | distance | jeju_dist | Seogwi_dist |
|---------------------|----------|-----------|-------------|
| 3                   | 0.025711 | 14.555762 | 21.516988   |
| 2                   | 0.525891 | 0.737266  | 28.052074   |
| 1                   | 0.608399 | 29.022186 | 18.626831   |
| 0                   | 0.107352 | 28.436535 | 1.110065    |
| 1                   | 0.337949 | 19.092174 | 31.524609   |
|                     |          |           |             |



- 관광지와 가까울수록 교통량이 많을 것/인접한 도로들 사이 교통량이 비슷할 것이란 가설
- 제주시, 한라산, 성산일출봉 등 주요 관광지의 거리 계산 변수 생성
- 출발지와 도착지 사이 거리(harversine) 계산한 변수 생성
- 좌표 기준 4개 구역으로 clustering 한 변수 생성

# **III** FEATURE ENGINEERING

## 3. 핵심피처 관련 파생변수

| start_speed | end_speed | section_speed | start_speed_time | End_speed_time | Section_speed_time |
|-------------|-----------|---------------|------------------|----------------|--------------------|
| 48.697943   | 50.298219 | 49.105982     | 46.450450        | 48.659670      | 45.269144          |
| 26.400712   | 26.400712 | 47.203323     | 26.562992        | 26.562992      | 35.375781          |
| 59.101720   | 65.118140 | 56.858438     | 60.135135        | 66.588964      | 39.794253          |
| 23.755158   | 25.445418 | 25.030004     | 20.789883        | 23.299611      | 22.146268          |
| 39.873670   | 39.873670 | 51.188650     | 40.518182        | 49.972727      | 41.931997          |
|             |           |               |                  |                |                    |

- 시작점, 끝점, 도로명에 따른 train data 의 target 변수의 평균값을 이용한 변수 생성
  - 1) maximum speed limit 값에 따른 target 평균 > start\_speed, end\_speed, section\_speed
  - 2) base hour 값에 따른 target 평균 > start\_speed\_time, end\_speed\_time, section\_speed\_time



## **FEATURE ENGINEERING**

## 4. 관광지 외부데이터

| ID | X <del>축</del> 값 | Y축값      | 구분   | 장소명  | 소재지                       | 데이터기준일자    |
|----|------------------|----------|------|------|---------------------------|------------|
| 3  | 126.5688         | 33.23655 | 교통시설 | 동방파제 | 제주특별자치도 서귀포시<br>서귀동 758-2 | 2015-12-31 |
| 4  | 126.5626         | 33.23507 | 지명관련 | 새섬   | 제주특별자치도서귀포시<br>서귀동산 3-3   | 2015-12-31 |
| 5  | 126.5997         | 33.23031 | 지명관련 | 섶섬   | 제주특별자치도서귀포시<br>보목동산 1     | 2015-12-31 |
|    |                  | •••      |      | •••  |                           |            |



| end_<br>latitude | end_<br>longitude | Tour<br>cnt |
|------------------|-------------------|-------------|
| 33.427           | 126.662           | 42          |
| 33.504           | 126.526           | 690         |
| 33.280           | 126.362           | 46          |
| 33.245           | 126.566           | 410         |
| 33.462           | 126.330           | 76          |
| •••              |                   |             |

제주도장소(POI)데이터 20151231.CSV

- 관광지 주변에 교통량이 많을 것이라는 가설
- 제주도 장소 외부데이터에서 구분이 관광,문화,레저,공원 인 데이터 추출
- 좌표를 이용하여 도착지 반경 2km 이내 지점인 경우를 카운트 하여 tour\_cnt 변수 생성



## **FEATURE ENGINEERING**

## 5. 공휴일 외부데이터

| Post_holiday | Pre_holiday | holiday |
|--------------|-------------|---------|
| 0            | 0           | 0       |
| 0            | 0           | 0       |
| 1            | 1           | 0       |
| 0            | 0           | 0       |
| 0            | 1           | 0       |
|              |             |         |



- 공휴일에는 교통혼잡도가 달라질 것이라는 가설
- 대체공휴일을 고려하여 공휴일 1일 전, 1일 후 또한 포함하여 파생변수 생성



## 5. 최종데이터

| Day_of_week | sin_time | cos_time   | ••• | start_speed_<br>time | End_speed_<br>time | Section_speed_<br>time |
|-------------|----------|------------|-----|----------------------|--------------------|------------------------|
| 1           | -0.9659  | -2.588e-01 |     | 46.450450            | 48.659670          | 45.269144              |
| 1           | -0.70710 | 7.071e-01  |     | 26.562992            | 26.562992          | 35.375781              |
| 4           | 0.9659   | -2.588e-01 |     | 60.135135            | 66.588964          | 39.794253              |
| 0           | -0.2588  | -9.659e-01 |     | 20.789883            | 23.299611          | 22.146268              |
| 6           | 0.8660   | -5.000e-01 |     | 40.518182            | 49.972727          | 41.931997              |
| •••         | •••      | •••        | ••• | •••                  | •••                |                        |

• Feature Engineering 을 통해 총 48 개의 피쳐 생성



1. Basyesian Optimization (Optuna)

#### ParBayesianOptimization in Action (Round 1)





```
def objective_xgb(trial: Trial, x, y):
    params = {
        "n_estimators": trial.suggest_int('n_estimators', 500, 5000),
        'max_depth': trial.suggest_int('max_depth', 8, 16),
        'min_child_weight': trial.suggest_int('min_child_weight', 1, 300),
        'gamma': trial.suggest_int('gamma', 1, 3),
        'learning_rate': trial.suggest_categorical('learning_rate', [0.008,0.01,0.012,0.014
        "colsample_bytree": trial.suggest_float("colsample_bytree", 0.5, 1.0),
        'lambda': trial.suggest_loguniform('lambda', 1e-3, 10.0),
        'alpha': trial.suggest_loguniform('alpha', 1e-3, 10.0),
        'subsample': trial.suggest_categorical('subsample', [0.6, 0.7, 0.8, 1.0]),
        'random_state': 42
}
```

• 베이지안 최적화 라이브러리인 Optuna를 이용, 모델 별 최적의 하이퍼파라미터 획득



## 2. 모델 실험 리스트

| Models                                | CV<br>MAE |
|---------------------------------------|-----------|
| Model Stacking<br>(lgbm+xgb+hist+cat) | 2.77      |
| XGBoost                               | 2.94      |
| CatBoost                              | 2.95      |
| histGradientboost<br>Regressor        | 3.03      |
| Gradientboost Regressor               | 3.11      |
| LightGBM                              | 3.26      |





- 각종 모델 테스트 결과 및 추론속도를 고려, 최종모델 XGBoost 선정
- 단일모델을 사용함으로써 실제 산업에 적용시 빠른 평균속력 추론이 가능



## 3. Post Processing (정수형 변환)





내림 CV MAE





| 형변환              | CV score |
|------------------|----------|
| 원본               | 2.9848   |
| 반 <del>올</del> 림 | 2.9731   |
| 올림               | 2.9795   |
| 내림               | 3.0369   |



"round값 변환선정"

- trainset의 타겟값이 정수형이므로 형변환시 MAE값 측정 테스트
- 샘플 뿐 아니라 전체데이터셋 Fold별 CV결과를 반올림, MAE 측정 시 성능향상을 확인



# V OUTRO

## 1. Propose

### [지도 API 활용]

- 각도로 별 일정 범위 내의 관광지 수 피처 생성
- Data-Leakage로 인해 사용하지 않았으나 성능향상 확인
- 실제 미래 예측 모델에서는 사용이 가능할 것

## [날씨 예보 데이터]

- 날씨에 따른 Target값 영향이 존재함
- Data-Leakage로 인해 날씨 데이터는 사용 X
- 실제 미래 예측 모델에서는 사용이 가능할 것

## [Stacking]

• 예측 성능 향상 가능



### 2. About us



전주혁 (인공지능/지능기전공학)

### **EDA**

- Visualization **Hypothesis Feature engineering** 

- 3-sigma, cluster etc..

## Modeling

- Stacking, optuna etc..



최다희 (통계학/융합소프트웨어전공)

### **EDA**

- Visualization

## Feature engineering

- tour data collection etc.. Modeling

- histGBR, optuna etc..



최새한 (로봇자동화공학)

## **Hypothesis** Post processing

- round

## Modeling

- Gradient boost, optuna etc...



곽명빈 (데이터사이언스전공)

### **EDA**

- Visualization

## **Hypothesis Feature engineering**

- holiday, cluster etc..

## Modeling

- Stacking, XGB etc..



박재열 (수학전공)

## **Hypothesis Feature engineering**

- lon/lat labeling

Modeling

- lgbm , autogluon etc...

# Thank you

