

大学数学奇招妙手优秀技巧集锦

作者: 香饽饽

标题

2023年11月21日

目录

第 1回	求极限誓破妖魔,	察秋亳妙手回春	5
1.1	离散化连续——一类透	B推数列估阶通法 ^[1]	 Ę

目录

求极限誓破妖魔,察秋毫妙手回春

香饽饽同学终于开始写书了,他很开 心,这是他学习使用LATEX的大进步.

--香饽饽

_______§1.1 _______ 离散化连续——一类递推数列估阶通法^[1]

【定义1.1】 数列是整标函数,定义域是离散的.

【定理1.2】 数列对应的整标函数可以通过如下构造延拓成可导函数:

 $\forall a_n = f(n)$, 用分段多项式g(x)进行分段拟合, 保证所有自然数点可导. 让g(x)在[2k-1,2k]上取 次数大于1的多项式函数, 在(2k,2k+1)上取一次函数, 区间[n,n+1]满足:

$$g(n) = a_n$$

$$g(n+1) = a_{n+1}$$

$$g'(n) = a_n - a_{n-1}$$

$$g'(n+1) = a_{n+2} - a_{n+1}$$

【命题 1.3】 若行列式

$$\det \begin{pmatrix} (t+1)^3 & (t+1)^2 & (t+1) & 1 \\ t^3 & t^2 & t & 1 \\ 3(t+1)^2 & 2(t+1) & 1 & 0 \\ 3t^2 & 2t & 1 & 0 \end{pmatrix}$$

的值不为0,则下面式子是一个符合要求的构造:

$$g(x) = g_{2k}(x),$$
 $2k < x < 2k + 1, k \in N^*$
 $g(x) = (a_{2k} - a_{2k-1})x + a_{2k-1},$ $2k - 1 \le x \le 2k, k \in N^*$

证明. 将上式代回原方程组,可以验证符合题意.

【例题 1.4】 设 $a_{n+1} = a_n + \frac{1}{a_n}$, 估计 a_n 的主阶.

解. 通常有两种方法:

- 法一: 待定表达式法¹: 设 $a_n \sim \alpha \beta^n$, 则 $\alpha \beta^{n+1} = \alpha \beta^n + \frac{1}{\alpha \beta^n}$, 整理得 $\beta^{2n} = \frac{1}{\alpha^2(\beta-1)}$, 不可能. 设 $a_n \sim \alpha \ln^{\beta} \beta$, 则有 $\alpha \ln^{\beta} (n+1) = \alpha \ln^{\beta} n + \frac{1}{\alpha \ln^{\beta} n}$, 整理得 $\ln^{\beta} n \left[\ln^{\beta} (n+1) \ln^{\beta} n \right] = \frac{1}{\alpha^2}$, 利用 $n \to \infty$, $\frac{1}{\alpha^2} = \ln^{\beta} n \ln^{\beta} \left(1 + \frac{1}{n} \right) = \left(\frac{\ln n}{n} \right)^{\beta} \to 0$, 不可能. 设 $a_n \sim \alpha n^{\beta}$, 则有 $\alpha (n+1)^{\beta} = an^{\beta} + \frac{1}{an^{\beta}}$, 利用等价无穷小展开, $\beta n^{2\beta-1} = \frac{1}{\alpha^2}$, 所以 $\beta = \frac{1}{2}$, $\alpha = \sqrt{2}$. 因此 $a_n \sim \sqrt{2n}$
- 法二: 微分方程法:

¹一般情况下,g(n)只考虑三种形式: $\alpha \beta^n$, $\alpha ln^\beta n$

参考文献