Scaffold graph visualization and RNA-Seq scaffolding

Kunyavskaya Olga Supervisor: Andrey Prjibelski

Center for Algorithmic Biotechnology

09/08/2017

Genome assembly

Genome assembly

Connection using DNA paired-end reads

■ Paired reads:

■ Finding connections using paired reads:

Using RNA-seq reads

Using RNA-seq reads

Goal and tasks

Goal

Build scaffolds using RNA-seq reads

Tasks

- Build the scaffold graph
- Build scaffolds using obtained connections
- Create tool for visualizing a scaffold graph
- Compare results with other tools

```
NODE_1592_length_17936_cov_28.0828_ID_1166768 id = 3182
                       len = 17936
                         coord:
                    II 9790118 9808053
                 V-rev 15409265 15409563
                                    lib
                                 weight = 1
                                 id = 11498
                            coord: 11529-11616
                                 1166-1255
NODE_2387_length_11938_cov_32.0365_ID_1168390 id = 4772
                       len = 11938
                         coord:
                 I-rev 10456402 10456600
                 III-rev 1318033 1318241
                  V 11274370 11286307
```


Drawing interesting parts:

- difference between two libs
- one lib is present and another is not
- difference with reference (possible missassembly)
- etc

Existing RNA-seq scaffolders

- **L RNA scaffolder** (2013) uses long transcriptome reads.
- AGOUTI (2015) uses paired-end RNA-seq reads and gene predictions.
- rascaf (2016) uses paired-end RNA-seg reads.
- **P RNA scaffolder** uses paired-end RNA-seg reads, unpublished, details unknown.

Dhruv S. Shankar Li Song and Liliana Florea. "Rascaf: Improving Genome Assembly with RNA Sequencing Data." In: Plant Genome. doi: 10.3835/plantgenome2016.03.0027 (2016).

J.T. Li Y.P. Zhu G.Y. Hou X.F. Kong Y.Y. Kuang Xue W. and X.W. Sun. "L RNA scaffolder: Scaffolding genomes with transcripts". In: BMC Genomics 14:604. doi:10.1186/1471-2164-14-604 (2013).

L. Zhuo Zhang S.V. and M.W. Hahn. "AGOUTI: Improving genome assembly and annotation using transcriptome data." In: Bioinformatics doi:10.1101/033019 (in press). (2015).

L_RNA_scaffolder

L_RNA_scaffolder

AGOUTI

Simplify the graph by removing edges with low support

Start walk from leaf nodes and follow highest-weighted edges

В

Start walks from different non-leaf nodes and follow highest-weighted edges

Record each and reconcile each using gene models to find the optimal order

≣ ୭९୯

AGOUTI

Rascaf

Rascaf

Pipeline

- Align reads
- Build scaffold graph
- Filter graph
- Output scaffolds

Building a scaffold graph

- Align RNA-seq paired-end reads
- Build a scaffold graph using these alignments
- Split every read into two parts in the middle
- Align these parts independently
- Build graph using these parts of the reads
- Save graph

Delete low-weight edges

Delete low-weight edges

Fork with big difference in weight

Fork with big difference in weight

Edge projection

25 / 38

Edge projection

Delete cycles

Delete cycles

Connect simple paths into scaffolds

Plans

- Coverage depth
- Detect exon blocks
- Additional validation of split links

Comparison

C.elegans

		SRR1560107	SRR4181037	SRR5067781
bio_scaf	NGA50	31168	30974	27650
	mis	550	554	509
P_RNA_scaffolder	NGA50	28828	33645	29786
	mis	621	750	571
rascaf	NGA50	27116	30403	27266
	mis	521	561	507
AGOUTI	NGA50	25384	27047	25275
	mis	545	613	510
contigs	NGA50	21938	21938	21938
	mis	352	352	352

Architecture

Results and plans

Results

- Designed an algorithm for RNA-seq scaffolding
- Developed a tool for visualization a scaffold graph

Plans

- Compare and test against other tools on more datasets
- Improve performance
- Implement new ideas for scaffolding
- Write manual and interface
- Write a paper

Thank you!

https://github.com/olga24912/bio_scaffolder