

MBI5152 Programming Guide V1.02_SC_

MBI5152 Programming Guide

(此文件仅供控制器开发使用,请勿外流)

控制指令

表 1. 控制指令如下:

	ì	孔号组合	叙述
指令名称	LE	Number of DCLK LE 包含多少个 DCLK 上升缘	指令动作
停止错误侦测	High	1	停止 LED 开路强制侦测
数据栓锁	High	1	将序列数据传入缓冲存储器
Vsync	High	2	垂直同步信号。垂直同步则会命令芯片 置换 新的帧数据
写入状态缓存器 1*	High	4	将序列数据传入状态缓存器 1
读取状态缓存器 1	High	5	将状态缓存器 1 的数据传入位移缓存器
执行错误侦测 (开路)	High	7	执行 LED 开路强制侦测
写入状态缓存器 2*	High	8	将序列数据传入状态缓存器 2
读取状态缓存器 2	High	9	将状态缓存器 2 的数据传入位移缓存器
软件重置	High	10	热启动,软复位
前置设定(Pre-Active)	High	14	前置设定指令必须在"写入状态缓存器"指令 之前传送

状态缓存器 1 及 2

表 2. 状态缓存器 1 内容

MSB															LSB
F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0

e.g. 默认值

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	1	1	0	0			6'b10	1011		

位	属性	定义	值	功能说明
_	.1.4-	- / -/	0 (默认)	0: 关闭
F	读/写	下鬼隐消除	1	1: 开启
_	15/17	PARA A A de la	0(默认)	0: 正数
Е	读/写	PWM 计数模式	1	1: 倒数
D~C	保留	保留	保留	保留
				0000: 1 行扫描; 1000: 9 行扫描
			0000	0001: 2 行扫描; 1001: 10 行扫描
			0001	0010: 3 行扫描; 1010: 11 行扫描
D 0	14.152	L 14 /- 41	0010	0011: 4 行扫描; 1011: 12 行扫描
B~8	读/写	扫描行数	0011 (默认)	0100: 5 行扫描; 1100: 13 行扫描
			~	0101:6 行扫描; 1101: 14 行扫描
			1111	0110: 7 行扫描; 1110: 15 行扫描
				0111: 8 行扫描; 1111: 16 行扫描
				16 位灰阶模式。65,536 GCLKs 的 16 位 PWM 工作
			0 (默认)	周期可被分割为 64 个较小的 PWM 工作周期,每一
				周期有 1,024 GCLKs
_	法/公	七以此上以 以		14 位灰阶模式。16,384 GCLKs 的 14 位 PWM 工作
7	读/写	灰阶模式选择		周期可被分割为 32 个较小的 PWM 工作周期,每一
			1	周期有 512 GCLKs
				使用者应传递 16 位数据,该数据在最不重要位(LSB)
				须有2位0
6	读/写	GCLK 倍频	0 (默认)	GCLK multiplier disable
U	以/与	GOLK 信则	1	GCLK multiplier enable
		Current gain	000000~	6'b101011 (默认)
5~0	读/写	Current gain adjustment	111111	64阶微调的电流增益功能 (增益范围:
		aujustinent	111111	12.5%~200%) ,可适当调整输出电流。

表 3. 状态缓存器 2 内容

MSB															LSB	
F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0	

e.g. Default Value

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0

位	属性	定义	值	功能说明
F~A	保留	保留	保留	保留
9~8	读/写	LED 开路侦测位准	00(默认) ~11	00: 0.3V 01: 0.4V 10: 0.5V 11: 0.6V
7~4	保留	保留	保留	保留
3~1	读/写	解决第一行扫偏暗	000(默认) ~111	000: 0 ns, 100: 18ns 001: 6 ns, 101: 21ns 010: 9 ns, 110: 27ns 011: 15 ns, 111: 33ns
0	读/写	倒数模式高电平不延 伸	0 (默认)	倒数模式高电平延伸 倒数模式高电平不延伸

状态缓存器设定建议值

为了消除下鬼影及稳定 VLED 电源,其状态缓存器建议设定如下。

表 4. 状态缓存器 1 建议值

使用红色 LED 作负载的 IC 建议值:

F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	1	1	1	0	0	1	0	1	0	1	1
使用绿	/蓝 LEI	D 作负:	载的 IC	建议值											
)	_		-	-		-			_	_		

	_				_	_	_		_	_	-	_	_		_
F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
1	1	0	0	1	1	1	1	0	0	1	0	1	0	1	1

其中,第B位~第0位可依显示屏规格调整。

表 5. 状态缓存器 2 建议值

使用红色 LED 作负载的 IC

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	1	0	1	0	1	0	0	0	0	0	1	0	0	0	1
使用绿	使用绿色 LED 作负载的 IC														
F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	1	1	0	0	1	0	0	0	0	0	1	0	1	0	1

使用蓝色 LED 作负载的 IC

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	1	1	1	0	1	0	0	0	0	0	1	0	1	0	0

©Macroblock, Inc. 2013

初始化顺序

在初始化阶段,倘若缓存器之默认值不是使用者所设定,就要执行写入状态缓存器指令,接着用户传送"16 x 扫描行数"数量的"数据拴锁"指令以传送灰阶数据,然后传送"Vsync"指令以启动显示屏。

在使用者传送完毕最后一次"数据拴锁"指令之后,必须再等至少50GCLKs,始能再下达"Vsync"指令。然而,GCLK务必在"Vsync"指令设定之前停止,有关时间设定限制的说明将在后续单元中详述。

图 1. "数据拴锁"与"Vsync"指令说明

垂直同步指令操作原则

垂直同步指令作用在于更新帧数据。以下波形图即说明更新帧数据的 "Vsync"指令。

更新帧数据的 Vsync 指令

图 2. 更新帧数据的"Vsync"指令说明

限制条件说明:

- 1. 在最后一笔"数据拴锁"指令之后,灰阶数据需要一段时间以预先读取来自 SRAM 的数据至内建的缓冲器中,因此在 "Vsync"指令之前至少需要等 50 GCLKs。
 - 说明: 如欲了解更多 SRAM 内存结构说明,请参考内存结构单元。
- 2. 建议控制器使用时保留一个 GCLK 计数器(0~1024),该 GCLK 计数器将在"Vsync"指令的 LE 下降缘时预设为 1024,并且在下一笔 GCLK 时重新设定为 0。
- 3. LE 与 GCLK 之间有时间设定限制,也就是 GCLK 应在"Vsync"指令之前停止。另外 GCLK 与 LE 必须符合设定与保留时间,分别如 3.1 与 3.2 所示:
 - 3.1 设定时间为 LE 下降缘与 GCLK 上升缘之间 tsu2
 - 3.2 保留时间为 GCLK 下降缘与 LE 下降缘之间 t_{H2}

MBI5152 Programming	Guide V1.02 SC	
 	,	

- 4. 消隐时间(dead time)亦指扫描行数间的间隔时间,并藉由停止 GCLK 来控制。因为"Vsync"指令设定后, 帧数据会更新,使用者必须将扫描行数由目前的第 K 行扫切换回第 O 行扫,以重新开启新的帧数据显示。
- 5. 当无指令时, DCLK 可以选择是否停止。
- 6. 在消隐时间时,可选择停止 DCLK,或不要下达"数据拴锁"指令。
- 7. 在"Vsync"指令时,新数据将会储存于内建的显示缓冲器中,且在消隐时间完成后显示该数据。

在帧数据显示期间切换扫描行数

在扫描行数的切换控制中,使用者应采用 MBI5152 GCLK 之计数模式,且在 MBI5152 GCLK 计数至 1024 时切换扫描行数。若要了解更多扫描屏应用方式,可以参考"灰阶模式与扫描式 S-PWM"单元之叙述。消隐时间是由控制器以暂停 GCLK 所控制。当 GCLK 计数值为 1025 时,MBI5152 在消隐时间将会关闭所有输出通道。

图 3. 扫描行数切换,消隐时间之控制方式

控制方式如下所述:

- 1. 透过"写入状态缓存器"指令设定状态缓存器。
- 2. 传送"16 X 扫描行数"数量的"数据拴锁" 指令以传送灰阶数据。
- 3. 帧频(frame rate)是指每秒钟放映或显示的帧或图像的数量。在使用者传送完毕最后一次"数据拴锁"指令之后,必须再等至少50 GCLKs,始能再下达"Vsync"指令。若非第一笔数据,使用者应根据帧频传送"Vsync"指令。如果帧频为60,使用者应等待1/60秒的时间。当用户传送"Vsync"指令时,必需遵守相关的时间限制条件。
- 4. 当传送"Vsync"指令时,扫描行数必须从 1 开始计算,GCLK 之计数需要预设为 1025 并藉由停止 GCLK 以控制消隐时间。
- 5. 在放映或显示的帧或图像时,使用者必须维持一个 GCLK 计数(1~1025),并且在 GCLK 计数至 1024 时,切换扫描行数以及进入消隐时间(由停止 GCLK 控制)。
- 6. 在消隐时间期间(包括传送"Vsync"指令或当 GCLK 之计数为 1025),不可传送"数据拴锁"指令。
- 7. 下一笔帧影像的灰阶数据必须在"Vsync"指令之后传送。
- 8. 强烈建议定期执行"写入控制状态缓存器 1"与"写入控制状态缓存器 2"指令以避免系统的噪声干扰。

强化低灰阶效果

为了强化低灰阶效果,使显示屏均匀性佳,建议控制器设定如下:

- 使用红色 LED 作负载的 IC
- -cfg1[E] = 0, cfg2[0] = 1
- 使用绿色 LED 作负载的 IC
 - -cfg1[E] = 1, cfg2[0] =1, δ = 0~100ns, 间隔: 10ns
- 使用蓝色 LED 作负载的 IC
- -cfg1[E] = 1, cfg2[0] =0, dh (延迟时间高位准) = 20~200ns, 间隔: 10 ns 或 20ns

RW: 1 GCLK 宽 GW: 1 GCLK + δ 宽 BW: 1 GCLK + δ + dh 宽

图 4. 控制器补偿方式

通常为了达到白平衡,所以 R、G、B LED 电流设定不同且因 R、G、B LED 寄生电容大小不一样,导致低灰时,R、G、B LED 受到寄生电容影响程度不同,容易有低灰白光偏色问题与起灰太慢现象,因此分别调整 R、G、B LED 电流补偿时间,才能解决低灰偏色问题,同时让起灰亮度增加。如图 4 所示,利用调整第 1024、1025个 GCLK 宽度,来达到分开调整 G、B LED 电流补偿时间的目的,其中 GCLK 时序调整说明如下:

- 1. δ: 第 1024 个 GCLK 低电平增加的宽度。使用倒数模式,当灰阶=1 时,输出电流开启宽度变成 1 GCLK+δ.
- 2. dh: 第 1025 个 GCLK 高电平增加的宽度。使用倒数模式再加上倒数模式高电平延伸,当灰阶=1 时,总共输出电流开起宽度为 1 GCLK +δ+ dh.

正常设定下,红光 IC 采用正数模式,绿光 IC 使用倒数模式,蓝光 IC 因设定电流最小,受到寄生电容影响最大,需要的补偿量也最大,故使用倒数模式再加上倒数模式高电平延伸增加电流补偿量。

视觉更新率

在 16 位 S-PWM 模式,视觉更新率将会提升至 64 倍,如果灰阶数据值≧64。 在 14 位 S-PWM 模式,视觉更新率将会提升至 32 倍,如果灰阶数据值≧32。

视觉更新率计算方式如下:

GCLK 倍频关闭

在 16 位 S-PWM 模式,视觉更新率= GCLK 频率 / [(1024 GCLK + 消隐时间) x 扫描行数] 在 14 位 S-PWM 模式,视觉更新率= GCLK 频率 / [(512 GCLK + 消隐时间) x 扫描行数]

例如,以 16 位扫描式 S-PWM 搭配 16 行扫、GCLK 频率为 10MHz。消隐时间为 10 GCLK。视觉更新率可计算如下:

视觉更新率 = 10MHz / [(1024+10) x 16] = 604Hz.

GCLK 倍频开启

在 16 位 S-PWM 模式, 视觉更新率= GCLK 频率 / [(512 GCLK + 消隐时间) x 扫描行数] 在 14 位 S-PWM 模式, 视觉更新率= GCLK 频率 / [(256 GCLK + 消隐时间) x 扫描行数]

强制开路错误侦测

MBI5152 之强制开路错误侦测的原理是基于实际输出端的耐受电压(V_{DS})与目标值(V_{DS,TH})的比较,来判定每个输出端的 LED 负载状态。可透过状态缓存器 2 的位[9:8]设定侦测电压,0.3V;0.4V;0.5V;0.6V。当"执行错误侦测"的指令下达后,MBI5152 输出端将会被强制关闭,接着以极小的电流开启,进行错误侦测当接收端收到"停止错误侦测"指令后,驱动器将会将错误组态数据搬移到"位移缓存器",透过 SDO 脚位输出每个位。完整的错误侦测区间建议大于 700ns。

图 5. 强制开路错误侦测时序图