SEQUENCE LISTING

- <110> Ajinomoto Co. Inc.
- <120> A method for producing transgenic plants having improved amino acid composition
- <130> Y1I0477
- <140>
- <141>
- <160> 26
- <170> PatentIn Ver. 2.0
- <210> 1
- <211> 1433
- <212> DNA
- <213> Aspergillus nidulans
- **<400>** 1
- atgtctaacc ttcccgttga gcccgagttc gagcaggcct acaaggagct tgcgtcgacc 60 ctcgagaact ccacctctt tgagcagcac cctgaatacc gacggctct ccaggtcgtc 120 tccgttcccg agcgcgttat ccagttccgt gtcgtttgg agaacgacaa gggcgaggtt 180 cagatcaacc gcggttaccg tgttcagttc aactccgctc tcggtcccta caagggtggt 240 ctccgttcc acccctccgt caacctttct atcctgaagt tccttggctt cgagcagatc 300 ttcaaaaatg ctctcacagg acgtgcgtaa ccgttacttc attggatgtt tgccaagagt 360 actaattggt attagtaaac atgggtggt gcaagggtgg ttccgacttc gaccccaagg 420 gcaagtctga ctctgaaatt cgtcgcttct gtaccgcttt catgactga ctctgcaagc 480 acatcggcgc ggacactgac cttcccgctg gtgatatcgg tgttactggc cgtgaggttg 540 gtttccttt cggccagtac cgcaggatcc gcaagcagt ggagggtgtt ctcactggca 600 actacgtca gcacatgatc agcttgatcc gccctgaagc cactggatac ggtgttgtc 660 actacgttca gcacatgatc agcacgtta ccggtggaaa ggagtccttc gcaggcaagc 720 gtgtcgccat ctccggctcc ggtaacgttg ccaagggctc tctccatggc 780 tcggtggttc cgttgtctcc ctttccgact ccaagggctc tctcattgtc aaggatgagt 840

ccgcttcttt caccctgaa gagatcgccc tcattgccga cctcaaggtt gcccgcaagc 900
aactctccga gctcgcacc tcctccgctt tcgccggcaa gttcacctac atccccgatg 960
ctcgcccttg gaccaacatt cccggcaagt tcgaggttgc tctcccttct gccactcaga 1020
acgaagtctc cggcgaggaa gccgagcacc tcatcaagtc cggtgtccgc tatattgctg 1080
agggttccaa catgggttgc acccaggccg ccatcgacat ctttgaggct caccgcaacg 1140
ccaaccccgg cgatgccatc tggtacgcc ctggtaaagc cgccaacgct ggtggtgcg 1200
ccgtctctgg tcttgagatg gctcagaact ctgctcgtct ctcctggaca tccgaggagg 1260
tcgatgctcg cctcaagggc atcatggagg actgctcaa gaacggtct gagactgct 1380
ccggtttcac caaggtcgc gaggccatga aggaccaggg tgactggtgg tga 1433

<210> 2

<211> 1240

<212> DNA

<213> Lycopersicon esculentum

<400> 2

atgaatgett tageageaac taatagaaat tttaagetgg cagetagget tettggttta 60 gactcaaagt tggaactaag tetgetaate eettteagga aattaaggtg gagtgtaeta 120 taccgaagga tgatggcaca ttggcatctt ttgttggatt cagggtacag cacgacaatg 180 cacgagggcc tatgaaaggc ggaatcagat accacccgga ggttgatcct gatgaggtga 240 atgcattage acagetaatg acatggaaga cageggtege caatattace atatggtggg 300 gctaaaggag gaataggatg tagtcctagt gacctgagta tctctgagtt ggaacgactt 360 actcgagtat ttactcaaaa aatacatgac ctaatcggaa ttcacaccga tgttcctgca 420 ccagatatgg gaacaaatcc tcagacaatg gcatggattt tagacgagta ctcaaaattt 480 catggttatt cacctgctgt ggtaactgga aaacctgttg atctcggtgg atctctaggc 540 agagatgcag ctactggaag ggggggctct ctttgctaca gaagccctgc ttaatgagca 600 tgggaagagt gttgctggtt cagcgttttg ttatacaggg atttggtaat gttggttcct 660 gggctgcaaa actcatccat gagcaaggtg ggaaagttgt agcagtgagt gacataactg 720 gtgccataaa gaatgagaag ggaatcgaca tagaaagcct attcaaacac gtgaaggaaa 780 ctcgtggagt taaaggtttc catgatgcac atccaattga tgcaaattca atactggtag 840 aagactgtga tgttcttatc ccagctgccc tcggtggagt aatcaacaag gataaccaca 900 aattgaaaat taaagccaaa tatattattg aggctgctaa ccatccaact gatccagaag 960 ctgatgagat ttgtcaaaga aaggagtcac catcctaccg gatatttatg ccaactcggg 1020 tggtgtcacc gtcagttatt ttgagtgggt ccagaacatc caaggcttta tgtgggatga 1080 gaaaaaagtg aatgatgagt tgaagacata catgacaaga ggttttaaag atgtcaagga 1140

tatgt	geady actededact greatering dangegoese treatering greitadece	1200
tgtag	ctaga gcaaccgttc ttcgaggatg ggaggcgtaa	1240
	·	
<210>	3	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
⟨223⟩	Description of Artificial Sequence: AN-GDH A	
	specific PCR primer	
	Special Control of the Control of th	
<400>	3	
tctag	aatgt ctaaccttcc cgttgagc	28
J		
<210>	4	
<211>	28	
<212>	DNA	
⟨213⟩	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence: AN-GDHA	
	specific PCR primer	
<400>	4	
gaget	ctcac caccagtcac cctggtcc	28
⟨210⟩	5	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
	-	
<220>		
<223>	Description of Artificial Sequence:legdh1 specific	
	PCR primer	

<400>	5	
tctaga	atga atgctttagc agcaact	27
<210>	6	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence:legdhl specific PCR primer	
<400>	6	0.7
gagcto	cttac gcctcccatc ctcgaag	27
<210>	7	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for	
	deleting splicing region of gdh-17	
<400>	7	
tctag	aatgt ctaaccttcc cgttgagc	28
<210>	8	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for	
	deleting the splicing region of gdh-17	

<400>	8	
caccc	atgtt tagtcctgtg agag	24
<210>	9	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for deleting the splicing region of gdh-17	
<400>	9	
ctctc	acagg actaaacatg ggtg	24
<210>	10	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for	
	deleting the splicing region of gdh-17	
<400>	10	
gagcto	cteac caccagteac cetggtec	28
<210>	11	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for amplifying	
	the coding sequence for mitochondria transit peptide	

<400>	11	
ggatc	catga atgctttagc agcaac	26
<210>	12	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for amplifying the coding sequence for mitochondria transit peptide	
<400>	12	
tctag	ataaa ccaagaagcc tagctg	26
<210>	13	
<211>	30	
<212>	DNA .	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for amplifying	
	the coding sequence for chloroplast transit peptide	
<400>	13	
ctgca	gatgg cttcctcaat tgtctcatcg	30
<210>	14	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for amplifying	
	the coding sequence for chloroplast transit peptide	

<400>	14	
tctaga	gcat ctaacgcgtc caccattgct	30
<210>	15	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for	
	producing mitochondria transit peptide-GDH coding	
	seqence	
<400>		26
tctaga	aatga atgctttagc agcaac	20
<210>	16	
<211>		
<212>		
	Artificial Sequence	
	-	
<220>		
<223>	Description of Artificial Sequence: PCR primer for	
.	producing mitochondria transit peptide-GDH coding	
	seqence	
<400>		
gggaag	ggtta gacattaaac caagaagcct	30
(0.1.0)		
<210>		
<211>		
<212>		
\213/	Artificial Sequence	
<220>		
	Description of Artificial Sequence: PCR primer for	
	•	

<400>	17	
aggct	tettg gtttaatgte taacetteee	30
<210>	18	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for	
	producing mitochondria transit peptide-GDH coding	
	seqence	
<400>	18	
gagct	cttac gcctcccatc ctcgaa	26
<210>	19	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for	
	producing chloroplast transit peptide-GDH coding	
	sequence	
<400>	19	
ctgca	gatgg cttcctcaat tgtctcatcg	30
<210>	20	
<211>	24	
<212>	DNA	
(212)	Artificial Soquence	

<220>		
<223>	Description of Artificial Sequence: PCR primer for producing chloroplast transit peptide-GDH coding	
	sequence	
<400>	20	
aaggt	tagac atgcatctac cgcg	24
<210>	21	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for	
	producing chloroplast transit peptide-GDH coding	
	sequence	
(400)	0.1	
<400>		0.4
cgcgt1	tagat gcatgtctaa cctt	24
<210>	22	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for	
	producing chloroplast transit peptide-GDH coding	
	sequence	
<400>	22	
		26
545011	vitae geeteeeate etegaa	20

<210> 23

<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for	
	amplifying 2All prmoter region	
<400>	23	
aagct	tatat aacccaaaat atacta	26
<210>		
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer for	
	amplifying 2A11 promoter region	
<400>	2.4	
		26
iciaga	aggta ccattaattg ctaatt	20
<210>	25	
<211>		
⟨212⟩		
	Artificial Sequence	
	•	
<220>		
<223>	Description of Artificial Sequence: PCR primer for	
	amplifying Nos-promoter-NPTII region	
<400>	25	
cccctc	eggta tecaattaga g	21

<210> 26

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:PCR primer for amplifying Nos-promoter-NPTII region

<400> 26

cgggggtgg gcgaagaact ccag

24