Best subset selection

Rafał Muszyński, Ryszard Szymański

1/27/2020

Agenda

- Problem introduction
- Solution

Benchmarks

Summary

Introduction

Problem: feature selection in linear regression

$$y = X\beta + \epsilon$$

$$\min_{\beta} ||y - X\beta||_{2}^{2}$$
(1)

Well known solution: Lasso: Tibshirani (1996)

$$\min_{\beta} \frac{1}{2} ||y - X\beta||_2^2 + \lambda ||\beta||_1 \tag{2}$$

Testing findings of Bertsimas, King, and Mazumder (2016)

Motivation

- LASSO shortcomings e.g. larger coefficients are more penalized then smaller coefficients
- Advances in both hardware and optimization frameworks such as CPLEX and GUROBI

• Best subset selection is an NP-hard problem

Restricted formulation of a MIQP problem.

$$\min \alpha^{T} Q \alpha + \alpha^{T} a$$
s.t. $A\alpha < b$

$$\alpha_{i} \in \{0, 1\}, i \in \mathcal{I}$$

$$\alpha_{i} \in IR, i \notin \mathcal{I}$$
(3)

Best subset selection problem formulation

$$\min_{\beta} ||y - X\beta||_{2}^{2}$$
s.t. $||\beta||_{0} \le k$

$$||\beta||_{0} = \sum_{i=1}^{p} 1(\beta_{i} \ne 0)$$
(4)

Final problem formulation

$$\min_{\beta,z} \frac{1}{2} \beta^{T} (X^{T} X) \beta - \langle X' y, \beta \rangle + \frac{1}{2} ||y||_{2}^{2}$$
s.t.
$$(\beta_{i}, z'_{i}) : SOS-1, \quad i = 1, \dots, p$$

$$z'_{i} \in \{0, 1\}, \quad i = 1, \dots, p$$

$$\sum_{i=1}^{p} z'_{i} \ge p - k$$

$$- \mathcal{M}_{U} \le \beta_{i} \le \mathcal{M}_{U}, \quad i = 1, \dots, p$$
(5)

```
First order method
```

```
Data: function: g(\beta), parameter: L, convergence tolerance: \epsilon, parameter: k

Result: \beta approximation
\beta_1 random initialization, \beta_1 \in IR, \|\beta\|_0 < k

do
 | \beta_{m+1} \in H_k(\beta_m - \frac{1}{L}\nabla g(\beta_m))
while g(\beta_m) - g(\beta_{m+1}) \le \epsilon;
```

Algorithm 1: Discrete first-order method

Benchmarks

- Both synthetic and real life datasets
- Syntethic datasets generated according to the procedure described in Bertsimas, King, and Mazumder (2016)
- Performed benchmarks analyzed
 - Predictive performance
 - Speed
 - Gap values for Warm/Cold start approaches

Benchmarks - datasets

Diabetes dataset

- Synthetic datasets
 - $x_i \sim N(0, \Sigma)$, each standardized to have unit l2 norm

•
$$y = X\beta^0 + \epsilon$$
, $\epsilon \sim N(0, \sigma^2)$

• The choice of X, β^0, ϵ determines the Signal-To-Noise Ratio: $SNR = \frac{var(X\beta^0)}{\sigma^2}$

Benchmarks - predictive performance

Figure 1: Predictive performance of researched methods.

Benchmarks - optimality gap for warm/cold starts

Figure 2: Optimality gap for warm and cold start.

Benchmarks - speed performance

Figure 3: Speed of researched methods for datasets with a fixed number of variables (40) or observations (5000)

Summary

The MIO approach outperforms LARS in terms of predictive results

 The proposed mild approach allows for obtaining high quality results in times similar to LARS

Bibliography

Bertsimas, Dimitris, Angela King, and Rahul Mazumder. 2016. "Best Subset Selection via a Modern Optimization Lens." *The Annals of Statistics* 44 (2): 813–52. https://doi.org/10.1214/15-AOS1388.

Tibshirani, Robert. 1996. "Regression Shrinkage and Selection via the Lasso." *Journal of the Royal Statistical Society: Series B* (*Methodological*) 58 (1): 267–88. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.