

Muon and Tracker Alignment at Start-Up

Jim Pivarski

Texas A&M University

8 December, 2009

- Tracker alignment
 - ► CRAFT-09: repeated CRAFT-08 exercise, introduced prompt workflow (frequent, automated, low-statistics alignment)
 - \triangleright Cooling incident: physically moved pixel half-shell 30 μ m in z
 - Re-aligned using November cosmic rays, this is startup
- DT alignment
 - ► CRAFT-09: repeated CRAFT-08 exercise with tighter bounds on alignment uncertainties, this is startup
 - Barrel hardware alignment is now producing alignments; testing with tracks
- CSC alignment
 - ► CRAFT-09: corrected few-mm disk position errors with tracks, hardware system providing missing degrees of freedom. this is startup
 - ▶ New LHC runs provide too few beam-halo tracks for alignment

Tracker cooling incident

Jim Pivarski

- ▶ Below: module position differences before and after cooling incident
- ► Left: "after" = prompt alignment performed immediately after incident (low statistics, but pinpoints the motion in time)
- ▶ Right: "after" = full-statistics November cosmic ray alignment

BPIX after TIB cooling accident: wrt Aug09pk_r1

- ▶ Month-long CRAFT: ~3 million tracks after quality cuts
- ► November cosmics (startup): ~2 million
 - roughly the same quality in strip tracker
 - pixel (smaller target for cosmic rays): 2–2.5 μ m (nearly ideal) in CRAFT but 3–4 μ m in startup alignment (RMS of distribution of median of residuals, measure of local precision)
- ▶ About 10 M quality minbias tracks needed to improve alignment

Tracker alignment systematics

 Combining data with different topologies (minbias, cosmics) and introducing new constraints (primary vertex, resonances) yields qualitatively new information on the global shape of the tracker

Other outstanding tracker issues Jim Pivarski

5/18

- ▶ 5 mm gap between two half-cylinders of TIB (known since first alignments at the Tracker Integration Facility)
- ▶ Want to see if tracks from collisions confirm the observation
- Compare the "real" (from combined meth.) to the design geometry
 - TIB: 5 mm shift of the two HalfBarrels along z-axis (two halves shifted apart)
 - confirmed by optical survey
 - remaining scatter: indication of "skew"?

E.Migliore Univ.Torino/INFN

- Minbias illuminate the tracker endcaps better than cosmics
 - the last TEC disk is used to connect tracker to muon hardware alignment system
 - \blacktriangleright improved tracker endcap \rightarrow improved hardware alignment global position

Studying tracker with muon hits Jim Pivarski 6/18

- ► As an external detector, the muon system can analyze global distortions in the tracker
- Select one DT layer to simplify and minimize dependence on muon alignment
- ▶ Varying DT layer position maps a family of curves for tracker momentum error $(\Delta p_T/p_T)$

More details in the Alignment & Calibration meeting today

DT startup from CRAFT-09

Jim Pivarski

Repeated all checks developed for CRAFT-08

► Right: lots of plots

▶ Below: local segment cross-check

- now includes full propagation between stations (not linear)
- ▶ 0.70 mm upper bound on local alignment error → 0.35 mm for stations 1–3

Cosmic splitting results

- J. Tucker
- ▶ DT alignment yields clear improvement in standAloneMuons (left) and globalMuons (right), with little difference between globalMuon and FirstMuonStation (4.2% vs. 4.0% at 200 GeV)
- standAloneMuon resolution is still valid
- muon alignment may need to be repeated to regain globalMuon resolution

Barrel hardware alignment

-1.5

- Differences in chamber positions between hardware and track-based geometries
- ► Top-left: reconstruction was following some LED reflections
- ▶ Bottom-left: corrected

Barrel hardware alignment

-1.5

Jim Pivarski 10/18

φ (rad)

- Differences in chamber positions between hardware and track-based geometries
- Sine curve: global position with respect to tracker
 - x → 1.2 mm
 - $y \rightarrow 4.5 \text{ mm}$
 - $\qquad \qquad \phi_{\it z} \rightarrow {\rm 0.58~mrad}$

CSC startup from CRAFT-09

Jim Pivarski

Global o position (rad)

11/18

- Largest correction: positions of disks after closing
- Important step after beam-halo alignment, to locate internally-aligned rings with respect to tracker

Endcap hardware alignment

Jim Pivarski 12/18

- ► Hardware geometry provides z and ϕ_x (tracks are insensitive to these)
- ightharpoonup Reconstruction recently extended to transfer lines (inter-disk) and $r\phi$ positions of monitored chambers
- lackbox Opportunity to compare $r\phi$ with tracks

Laser line residuals: internal consistency of hardware alignment

Himali Kalakhety

Beam-halo! But not many...

Jim Pivarski 13/18

- ► Longest period of true beam-halo: 13 min in run 122294
- Overlaps track yield:
 229 in outer ring after sensible cuts
- Not enough for alignment

New beam-halo residuals

- ► Two types of residuals: continuity $(\Delta r \phi)$ and differentiability $(\Delta \frac{d(r\phi)}{dz})$
- ightharpoonup Outer ring consistent with $\sim \! 1 \; \mathrm{mm} \; \mathrm{RMS}$ misalignment

Very soon (this year?)

- ► Tracker: combine cosmics and minbias with primary vertex constraint, beam-halo
- ▶ DT: continue aligning with cosmic rays
- CSC: align chambers relative to ring with beam-halo, rings relative to tracker with cosmics

Larger datasets (\sim 5 pb⁻¹)

- ▶ Tracker: add isolated muon, J/ψ , Υ
- DT: combine cosmics and collisions muons
- CSC: use collisions for chambers-in-ring and tracker-to-ring (cross-checks)

Even larger

▶ DT and CSC together, using standard algorithm

MC studies of alignment reach Jim Pivarski

- Studied alignment resolution as a function of integrated luminosity using standard algorithm
 - aligning all chambers with more than 30 tracks
 - RMS $r\phi$ resolution for the aligned chambers
 - see backup for full results

Distribution of aligned chambers Jim Pivarski

17/18

- ► The alignment fitter succeeds for more chambers as integrated luminosity is added
- ► Complements chambers accessible with cosmic rays

- ► Tracker CRAFT alignment is precise, but cooling incident moved things; current alignment is post-incident
 - new project: analyzing tracker global distortions with the muon system; if you're interested, more details in Alignment & Calibration meeting
- Current DT + CSC alignments based on CRAFT-09
- Hardware geometry is being studied with tracks (right now for barrel and soon for endcap)
- ► Too few beam-halo muons for alignment, but the tracks we do see have the right distributions
- Aysen: new aligner in the group, quantifying resolution with low-lumi samples

$\mathsf{DT}\ \mathsf{5}\ \mathsf{pb}^{-1}$

Jim Pivarski 19/18

$CSC 5 pb^{-1}$

 $\delta_{\phi_{\cdot}}$ (mrad)

Jim Pivarski 20/18

 δ_{ϕ} (mrad)

0 2 (mrad)

$\mathsf{DT}\ 10\ \mathsf{pb}^{-1}$

Jim Pivarski 21/18

$\mathsf{CSC}\ 10\ \mathsf{pb}^{-1}$

Jim Pivarski 22/18

$DT \ 20 \ pb^{-1}$

Jim Pivarski 23/18

$CSC 20 pb^{-1}$

Jim Pivarski 24/18

