

Atmósferas estelares

Práctica N° 1

1) Dadas las curvas de sensibilidad de los filtros U, B y V del sistema fotométrico UBV, y las curvas de sensibilidad del ojo humano (día y noche); determine la *longitud de onda equivalente* para cada una de las curvas de sensibilidad.

$\lambda(\mu)$	U_{λ}	B_{λ}	V_{λ}	O_{dia}	O_{noche}
0.28	0.00				
0.30	0.13				
0.32	0.60				
0.34	0.92				
0.36	1.00	0.00			
0.38	0.72	0.13			0.00
0.40	0.09	0.92			0.02
0.42	0.00	1.00		0.00	0.08
0.44		0.92		0.02	0.21
0.46		0.76	0.00	0.06	0.41
0.48		0.56	0.01	0.14	0.65
0.50		0.39	0.36	0.32	0.90
0.52		0.20	0.91	0.71	0.96
0.54		0.07	0.98	0.95	0.68
0.56		0.00	0.80	1.00	0.35
0.58			0.59	0.87	0.14
0.60			0.39	0.63	0.05
0.62			0.22	0.38	0.02
0.64			0.09	0.18	0.01
0.66			0.03	0.06	0.00
0.68			0.01	0.02	
0.70			0.00	0.00	

- **2)** Caclular la *longitud de onda efectiva* del filtro V para el flujo de un cuerpo negro con las siguientes temperaturas: T=25000K, T=10000K, T=5000K.
- 3) Se tiene el flujo de cuerpo negro observado con un receptor cuya curva de sensibilidad es la curva de sensibilidad del filtro V del sistema fotometrico UBV. Determine la longitud de onda del flujo monocromático efectivo para las temperaturas T=25000K, 10000K y 5000K.

Recomendación: Considerando que el flujo monocromático efectivo esta dado por

$$\langle B \rangle = \frac{\int_0^\infty V_\lambda B_\lambda (T) \, \mathrm{d}\lambda}{\int_0^\infty V_\lambda \mathrm{d}\lambda}$$

Determine para que valores de λ se da la igualdad $\langle B \rangle = B_{\lambda}(T)$.

- 4) ¿Cuál es el cambio δV en la magnitud V del sistema fotmétrico UBV que produce un cambio $\delta \lambda$ en la longitud de onda efectiva calculada en 2? Calcular $\delta \lambda = \lambda_{eq} \lambda_{eff}$. Recomendación: Si $V = -2.5 \log f_V + C$ tomar $f_V \simeq B(T)$, $T = T(\lambda_{eff})$; suponer $B_{\lambda} \alpha \lambda^{-v} \mathrm{e}^{-\frac{hc}{\lambda kT}}$ ley de Wien; calcular $\left(\frac{\mathrm{d} \ln f_{\lambda}}{\mathrm{d} \lambda}\right)_{\lambda = \lambda_{eq}}$
- 5) Cual es el cambio pocentual en f_V que representa el cambio δV calculado en 4.
- **6)** Usando las tablas adjuntas y considerando los tipos espectrales *O9*, *B0*, *B2*, *B5*, *A0*, *A5*, *F0*, *F5*, *G0*, *G5*, *K0*, *K5* y *M0*.
 - a) Graficar M_V vs. $(B-V)_0$ para cada clase de lumninosidad V, III y I.
 - b) Calcular la temperatura de color T_{BV} para los tipos espectrales de la secuencia principal.
 - c) Usando la tabla siguiente de colores NO SE QUE $(U-B)_O$
 - d) Comparar los tipos de colores T_{UV} y T_{VB} de los tipos espectrales dados en 6c