

- 1. 比 00:07
- **定义**: 两个数相除称为这两个数的比,记作a:b或 \overline{h} ,其值为k。
- 表示形式: 可以写作 $a:b = \frac{a}{b} = k$, 其中k为比值。
- 2. 比例 00:21
- 定义: 两个相等的比用等号连接构成比例,形式为 $\frac{a}{b} = \frac{c}{d} = k$ 。
- **基本性质**: 比例的外项乘积等于内项乘积,即 $a \times d = b \times c$ 。
- 3. 正比 00:34
- **定义**: $\exists y = kx (k \land x)$ 、则称y = x成正比,k称为比例系数。
- **广义理解**: 正比关系不要求x和y同向变化。当k < 0时(如y = -3x),x增大y减小,仍属正比关系。

- **判断标准**: 仅需满足*y* = *kx*的形式,不考虑变化趋势是否一致。
- 4. 反比 01:33
- k● **定义**: 若 $y = \overline{\chi}(k$ 不为零),则称y = x成反比,k称为比例系数。
- **广义理解**: 反比关系不要求x和y反向变化。当k < 0时(如y = $-\frac{3}{x}$),x增大y也增大,仍属反比关系。
- k● 判断标准: 仅需满足 $y = \overline{x}$ 的形式,不考虑变化趋势是否相反。
- 5. 应用案例 02:11
- 1) 例题:甲数与乙数比值求解

- 题月解析
 - 已知条件: 甲数×4=乙数×8
 - **解法1(比例转换)**: 甲:乙 = 8: 4 = 7:6(同乘8化简)
 - o 解法2 (特值法): 设等式值为1,则甲= $\frac{4}{3}$,乙= $\frac{8}{7}$,甲:乙= $\frac{4}{3}$: $\frac{8}{7}$ =7:6
 - o 答案: D选项 (7:6)
 - o **技巧**: 求比值时可取特值简化计算,注意运用比例的基本性质进行转换。

二、本章总结 04:05

- 核心内容:
 - o 比与比例的基本概念及运算规则
 - o 正比与反比的形式化定义及广义理解
 - o 比例问题的求解方法(包括特值法和比例性质应用)
- 重点提示:
 - o 正比/反比关系判断只需看形式,与变量变化趋势无关

- o 比例问题中牢记"外项积=内项积"的基本性质
- 求比值时特值法是有效简化手段

三、知识小结

二、知识小结	1		
知识点	核心内容	考试重点/易混淆	难度系数
比的概念	两个数相除称为 比,形式为 a:b 或 a/b, 可表示 为常数 k	比的三种表示形 式(a:b、a/b、k)需灵活转换	**
比例的定义	两个相等的比用 等号连接构成比 例	比例的内项相乘 等于外项相乘(a ×d = b×c)	**
正比例	y = kx (k≠0) , k 为比例系数	k 为负数时, x 与 y 变化趋势相反 仍属正比	
反比例	y = k/x (k≠0), k 为比例系数	k 为负数时, x 与 y 同增同减仍属 反比	***
比例化简	通过交叉相乘或取特值法求比例(如例题中甲:乙=7:6)	取特值技巧可简 化计算(设等式 两边均为 1)	**
整除特征	被2/3/5整除的数的特征(如末位偶数为2的倍数)	需熟记常见整除 规则 	*
公倍数与公 约数	最小公倍数的求 法(短除法或质 因数分解)	最大公约数与最 小公倍数的关系	**
质数与合数	质数定义(仅被 1和自身整除) 及常见质数(如 2,3,5,7)	1既非质数也非合 数	*
奇偶运算	奇数±偶数=奇数; 偶数±偶数=偶数等组合性质	奇偶性在方程求 解中的应用	**
有理数与无 理数	有理数可表示为 分数,无理数 (如√2)不能	区分无限循环小 数与无限不循环 小数	**
绝对值	非负性定义及几 何意义(数轴上 距离)	绝对值方程的解 法(分段讨论)	***