BSc Software Design (Game & Web Dev) Year 1

Maths Tutorial (Vectors)

- Q.1. For each of the following pairs of vectors, calculate:
 - (i)
 - the cosine of the angle between \vec{u} and \vec{v} . (ii)
 - (iii) $\vec{u} \times \vec{v}$.
 - the unit vector perpendicular to both \vec{u} and \vec{v} . (iv)
 - (a)
 - (b)
 - (c)
 - $\vec{u} = -5\hat{i} + 8\hat{j}$ and $\vec{v} = 2\hat{i} + 9\hat{j}$. $\vec{u} = 4\hat{i} + 9\hat{j}$ and $\vec{v} = \sqrt{2}\hat{i} 5\hat{j}$ $\vec{u} = -7\hat{i} + 3\hat{j} 6\hat{k}$ and $\vec{v} = -\hat{i} + 6\hat{j}$ $\vec{u} = \pi\hat{i} + \sqrt{5}\hat{j} 7\hat{k}$ and $\vec{v} = 4\hat{i} 2\hat{j} + \hat{k}$ (d)
- Q.2. For each of the following pairs of vectors, \vec{u} and \vec{v} :
 - show that $\vec{w} = \vec{u} \times \vec{v}$ is mutually orthogonal to both \vec{u} and \vec{v} .
 - (ii) show that the magnitude of \vec{w} can be determined using the formula $\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin(\theta)$.
 - (a) $\vec{u} = 2\hat{i} + 5\hat{j} 6\hat{k}$ and $\vec{v} = -\hat{i} + 2\hat{j} \hat{k}$. (b) $\vec{u} = -7\hat{i} + 3\hat{j} 6\hat{k}$ and $\vec{v} = 4\hat{i} 2\hat{j} + \hat{k}$. (c) $\vec{u} = 5\hat{i} \hat{j} + 4\hat{k}$ and $\vec{v} = \hat{i} + \hat{j} + 3\hat{k}$.