Exe 2 VLIW: Architecture

- Consider the program be executed on a 3-issue VLIW MIPS (Very Long Instruction Word) architecture with 3 fully pipelined functional units
- Integer ALU with 1 cycle latency to next Integer/FP and 2 cycle latency to next Branch
- Memory Unit with 3 cycle latency
- Floating Point Unit with 3 cycle latency (each FPU can complete one add or one multiply per clock cycle)
- Branch completed with 1 cycle delay slot (branch solved in ID stage)

Exe 2 VLIW: schedule

- Considering one iteration of the loop
- schedule the assembly code for the 3-issue VLIW machine in the following table by using the listbased scheduling
- Do not use neither software pipelining nor loop unrolling nor modifying loop indexes.
- Please do not need to write in NOPs (can leave blank).

Exe 2 VLIW: the code

Assembly Code:

```
FOR: Id $f2, VB($r6) fadd $f3, $f2, $f6 st $f3, VA($r7) Id $f3, VC($r6) st $f3, VC($r7) fadd $f4,$f4,$f3 addi $r6, $r6, 4 addi $r7, $r7, 4 blt $r7, $r8, FOR
```


CONFLICTS		
I1: FOR: Id(\$f2, VB(\$r6)	PAW/	\X\A\X\
I2: fadd \$f3, \$f2, \$f6 I3: st \$f3, VA(\$r7), I4: Id \$f3, VC(\$r6)	Z4w/	VAR
I4: Id \$f3, VC(\$r6) I5: st \$f3, VC(\$r7)	RAX/ x2	
l6: fadd \$f4,\$f4,\$f3	RAW	
17: addi \$r6, \$r6, 4 18: addi \$r7, \$r7, 4	WAR x2	
19:(blt) \$r7, \$r8, FOR	RAW x2 CNTRL	

Exe 2 VLIW: schedule

FOR: Id \$f2, VB(\$r6)
fadd \$f3, \$f2, \$f6
st \$f3, VA(\$r7)
Id \$f3, VC(\$r6)
st \$f3, VC(\$r7)
fadd \$f4,\$f4,\$f3
addi \$r6, \$r6, 4
addi \$r7, \$r7, 4
blt \$r7, \$r8, FOR

		· · · · · · · · · · · · · · · · · · ·		
	Integer ALU(1/2 b)	Memory Unit(3cc)		FPU(3cc)
C 1		1d \$F2, YBC \$76)	1	
C2			2	
С3			3	
C4				fadl \$F3, \$F2, 9F6
C5				2
C6				3
C 7		&\$ \$ \$ 3, YAC\$ 17)		
C8	addi 516,516,4		1	
C9				
C10			3	
C11	addi \$77,\$77,4	Sc \$63, VCC\$r7)		Fodd & F4, SM45F3
C12	2			
C13	Ut Ita, sie, for			
C14				
C15				
	C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14	C1 C2 C3 C4 C5 C6 C7 C8 QJAI \$16,\$16,4 C9 C10 C11 QJAI \$77,\$18,FOR C12 C13 QT C14	C1	C1

Exe 2 VLIW: schedule

FOR: Id \$f2, VB(\$r6)
fadd \$f3, \$f2, \$f6
st \$f3, VA(\$r7)
Id \$f3, VC(\$r6)
st \$f3, VC(\$r7)
fadd \$f4,\$f4,\$f3
addi \$r6, \$r6, 4
addi \$r7, \$r7, 4
blt \$r7, \$r8, FOR

		Integer ALU(1/2 b)	Memory Unit(3cc)	FPU(3cc)
/	C1	nop	1d \$F2, YBC \$76) 1	hop
/	C2	NOP	nop 2	hop
•	С3	nop	nop 3	nop
,	C4	hop	nop	Fadl \$F3, \$F2, 9F6
	C5	nop	nøp	nop 2
7	C6	nop	nop	nop 3
	C 7	hop	&\$ \$43, YAC\$17)	hop
	C8	addi Sro, Sro, 4	11 \$53, VC (\$16) 1	noP
	С9	nop	nop 2	nop
	C10	nop	nop 3	nop
	C11	addi 577,577,4	&c \$63, vc C\$r7)	Fadd & F4, 314, 8F3
	C12	nop 2	nøp	nop
	C13	Ut Ita, sie, for	nop	hop
	C14	nop	nop	nop
	C15	nop	nop	nop
				•

Exe 1 VLIW: Architecture

- Consider the program be executed on a 3-issue VLIW MIPS (Very Long Instruction Word) architecture with 3 fully pipelined functional units
- Integer ALU with 1 cycle latency
- Memory Unit with 2 cycle latency
- Floating Point Unit with 3 cycle latency
- Branch solved in EXE stage,
 no early evaluation

Exe VLIW.1: schedule

- Considering one iteration of the loop
- schedule the assembly code for the 3-issue VLIW machine in the following table by using the list-based scheduling with ASAP
- Calculate the performance (FLOPs per cycle)
- Do not use neither software pipelining nor loop unrolling nor modifying loop indexes
- Please do not need to write in NOPs (can leave blank)

Exe VLIW.2: schedule

- Unroll the loop by one iteration (so two iterations of the original loop are performed for every branch in the new assembly code)
- You only need to worry about the steady-state code in the core of the loop (no epilogue or prologue)
- schedule the assembly code for the 3-issue VLIW machine in the following table by using the list-based scheduling with ASAP
- Calculate the performance (FLOPs per cycle)
- Do not use software pipelining
- Please do not need to write in NOPs (can leave blank)

Exe VLIW.1: the code

C Code:

```
for(int i=0; i<N; i++) {
    C[i] = A[i]*A[i] + B[i];
}
```

Assembly Code:

loop:	ld	f1, O(r1)
_	ld	f2, O(r2)
	fmul	f1, f1, f1
	fadd	f1 , f1 , f2
	st	f1, 0(r3)
	addi	r1, r1, 4
	addi	r2, r2, 4
	addi	r3, r3, 4
	bne	r3, r4, loop

Exe VLIW.1: schedule

ld f1, 0(r) ld f2, 0(r2) fmul f1, f1, f1 fadd f1, f1, f2 st f1, 0(r3) addi f1, r1, 4 addi r2, r2, 4 addi r3, r3, 4 bne r3, r4, loop

"ROAD AFTOR RONS

15 NOT A DEDEMBNUE

FLOPS/CC=3/10

	Integer ALU (1 cc)	Memory Unit (2 cc)	FPU (3 cc)
C1	addir41441	1d f1, o(r1) 1	
C2	addi 52,52,4	1d F2.0(+2) 2	
СЗ			Fmui f4f1if1 \$
C4			2
C5			3
C6			Fadl F1, F1, F2 1
C 7	Read 13 On 15 Before write		2
C8		7	3
C9	addi 13,13,41	AC F1, OCT3)	
C10	bne 13,14,100P		
C11			
C12			
C13			
C14			
C15			

Exe 1 VLIW: Architecture

- Consider the program be executed on a 3-issue VLIW MIPS (Very Long Instruction Word) architecture with 3 fully pipelined functional units
- Integer ALU with 1 cycle latency
- Memory Unit with 2 cycle latency
- Floating Point Unit with 3 cycle latency
- Branch solved in EXE stage,
 no early evaluation

Exe VLIW.1: schedule

- Considering one iteration of the loop
- schedule the assembly code for the 3-issue VLIW machine in the following table by using the list-based scheduling with ASAP
- Calculate the performance (FLOPs per cycle)
- Do not use neither software pipelining nor loop unrolling nor modifying loop indexes
- Please do not need to write in NOPs (can leave blank)

Exe VLIW.2: schedule

- Unroll the loop by one iteration (so two iterations of the original loop are performed for every branch in the new assembly code)
- You only need to worry about the steady-state code in the core of the loop (no epilogue or prologue)
- schedule the assembly code for the 3-issue VLIW machine in the following table by using the list-based scheduling with ASAP
- Calculate the performance (FLOPs per cycle)
- Do not use software pipelining
- Please do not need to write in NOPs (can leave blank)

Exe VLIW.2: the code

C Code:

for(int i=0; i<N; i+=2) { C[i] = A[i]*A[i] + B[i]; C[i+1] = A[i+1]*A[i+1] + B[i+1];

Assembly Code:

loop:	ld	f1, O(r1)
_	ld	f3, 4(r1)
	ld	f2, 0(r2)
	ld	f4, 4(r2)
	fmul	f1, f1, f1
	fmul	f3, f3, f3
	fadd	f1, f1, f2
	fadd	f3, f3, f4
	st	f1, 0(r3)
	st	f3, 4(r3)
	addi	r1, r1, 8
	addi	r2, r2, 8
	addi	r3, r3, 8
	bne	r3, r4, loo

Exe VLIW.2: schedule

		•
10072	ld	f1, (r1)
•	ld	f3, 4(r1)
	ld	f2, 0(r2)
	ld	f4, 4(r2)
	fmu	ıl f1, f1, f1 🗸 🔎
	fmu	ıl f3, f3, f3
	fado	1 f1, f1, f2 √ ,
	fado	1 f3, f3, f4√
		f1, 0(r3) \(\)
	st	f3, 4(r3)
		i r1, r1, 8
	add	i r2, r2, 8
		i r3, r3, 8
	bne	r3, r4, loop

	Integer ALU (1 cc)	Memory Unit (2 cc)	FPU (3 cc)
C1		1d f 1, (r1)	
C2	addi 14,148	(L F3, 4 CT1)!	
С3		1d f2, ocr2),2	F MUI F1, F1, F1 ±
C4	addi 12,128	12 F4,4(12)21	CMUI F9. F3, F312
C5		2	23
C6			1 Foodd F1, F1, F2 3
C7			2 rodd 53, f3, f4
C8			3
C9		Sc F40(13)	
C10	oddi 13,13,8 1	St F3,4013)	
C11	bne 19,14,100p		
C12			
C13			
C14			
C15			

#11 RED ON 19 HALF OF CO, WRITTEN IN 278

