SPECTROSCOPUL. DETERMINAREA SPECTRELOR DE EMISIE ȘI DE ABSORBȚIE

Facultatea de Automatică și Calculatoare Anul II, semestrul I, grupa 322CD

> Pascu Ioana-Călina Sîrboiu Patricia Octavia Văideanu Renata-Georgia

Spectrul mercurului:

Culoarea	Intensitatea	λ(nm)	x(div)
Violet	f. intens	404.7	300.13
Violet	intens	407.8	300.01
Albastru	f. intens	435.8	299.13
Albastru-verde	Slab	491.6	297.95
Albastru-verde	f. slab	496.0	297.88
Verde	f. intens	546.1	297.15
Galben	f. intens	577.0	296.08
Galben	f. intens	579.0	296.78
rosu	intens	607.3	296.41

.(Tabel 1)

Cu datele din Tabelul 1 se trasează curba de etalonare a spectroscopului $\lambda = f(x)$.

```
function [lambda He] = lab5()
   lambda_Hg = [
                 404.7,
                           % violet
                 407.8,
                           % violet
                 435.8,
                           % albastru
                 491.6,
                           % albastru-verde
                 496.0,
                           % albastru-verde
                 546.1,
                           % verde
                 577.0,
                           % galben
                 579.0,
                           % galben
                 607.3
                           % rosu
                ];
   x Hg = [
                 300.13,
                           % violet
                 300.01,
                           % violet
                 299.13,
                            % albastru
                 297.95,
                           % albastru-verde
                 297.88,
                           % albastru-verde
                 297.15,
                           % verde
                 296.08,
                           % galben
                 296.78,
                           % galben
                 296.41
                            % rosu
           ];
   plot(x_Hg, lambda_Hg)
   title ('Curba de etalonare a spectroscopului (mercur)')
   xlabel('x(div)')
   ylabel('\lambda(nm)')
   x He = [
                 298.65,
                           % violet
                 298.01,
                           % albastru
                 297.75,
                           % albastru-verde
                 297.56,
                           % verde
          ];
    for i = 1:4
       lambda_He(i) = interp1(x_Hg, lambda_Hg, x_He(i));
    endfor
   % 5.3 -> valorile diviziunilor la 420nm, 500nm, 580nm conform graficului
   x1 = interp1(lambda Hg, x Hg, 420)
   x2 = interpl(lambda Hg, x Hg, 500)
   x3 = interp1(lambda_Hg, x_Hg, 580)
```

endfunction

Se determină din curba de etalonare, considerând pozițiile măsurate în cadrul laboratorului, lungimile de undă corespunzătoare liniilor spectrale. Aceste rezultate sunt trecute în Tabelul 2:

Culoarea	Intensitatea	λ(nm)	x(div)
Violet	Intens	458.50	298.65
Albastru	f. intens	488.76	298.01
Albastru-verde	Slab	504.92	297.75
Verde	f. intens	517.96	297.56

(Tabel 2)

. Se calculează dispersia liniară a spectroscopului $D=\frac{dx}{d\,\lambda}$ ca inversul pantei curbei de etalonare în punctele corespunzătoare lungimilor de undă $\lambda=420$ nm, $\lambda=500$ nm și $\lambda=580$ nm.

$$\lambda_1 = 420 \text{ nm}$$
: $x_1 = 299.63 \text{ div}$

$$\lambda_2 = 500 \text{ nm}$$
: $x_2 = 297.82 \text{ div}$

$$\lambda_3 = 580 \text{ nm}$$
: $x_3 = 296.77 \text{ div}$

$$\lambda(x) = ax^2 + bx + c$$

$$\begin{cases} 420 = (299.63)^2 a + 299.63 b + c \\ 500 = (297.82)^2 a + 297.82 b + c \\ 580 = (296.77)^2 a + 296.77 b + c \end{cases}$$

$$a = 11.1859 \approx 11.2$$

$$b = 6727.2$$

$$b = -6727.2$$

$$c = 1.01184 * 10^{6}$$

$$D = \frac{dx}{d\lambda} = \frac{1}{2ax+b}$$

$$D_1 = \frac{1}{2*11.2*299.63-6727.2} \approx -0.0645 \text{ div/nm}$$

$$D_2 = \frac{1}{2*11.2*297.82-6727.2} \approx -0.0178 \text{ div/nm}$$

$$D_3 = \frac{1}{2*11.2*296.77 - 6727.2} \approx 0.0125 \text{ div/nm}$$