is con +1 = Zn + CU- = J(x)~ logx ix = cocx + is cox Z n2 dx 32/425 BRETHY! ELLE $2 \, \overline{J}(x) \sim \frac{\pi}{2} \quad Ax = Lx + 1 = -$ V-E+F=2 JI(x)~= Ax=Lx+1=-

EXPRESSÕES NUMÉRICAS

Auxiliam na compreensão de situações específicas de determinado contexto.

Isso será útil para o estudo de uma situação em que se conhece os valores das variáveis e deseja-se encontrar resultados numéricos dos problemas reais.

Símbolos matemáticos			
Algarismos	O 1 2 3 4 5 6 7 8 9		
Sinais de operação	+ : $$ ()		
Sinais de comparação	= > < ‡ ≥ ≤		
Sinais de agrupamento	()[]{}		

EXPRESSÕES ALGÉBRICAS

Auxiliam na formulação de representações gerais. É a partir dessas expressões que se trabalha com generalidades ou seja, com representações que valem para diversas situações e objetos dentro de um mesmo contexto.

Linguagem corrente	Frase utilizando símbolos
Quatro mais seis é igual a dez.	4 + 6 = 10
Duas vezes sete é igual a catorze.	2.7 = 14
Onze é maior que oito.	11 > 8
Um número qualquer menos nove.	x - 9
O triplo de um número mais 2 é igual a dezessete.	3x + 2 = 17
A diferença entre dois números é maior ou igual a seis.	x - y ≥ 6

Expressões que contêm números e letras são chamadas de EXPRESSÕES ALGÉBRICAS OU LITERAIS.

Expressões que contêm NÚMEROS são chamadas de EXPRESSÕES NUMÉRICAS OU ARITMÉTICAS.

Posso dizer que essas expressões são verdadeiras.

$$4 + 6 = 10$$

$$\begin{array}{c}
c-d \ge 6 \\
3b+2=17
\end{array}$$
Já essas não posso classificar como verdadeiras nem falsas.

Uma expressão matemática que podemos classificar como verdadeira ou falsa é denominada **SENTENÇA** ou **PREPOSIÇÃO FECHADA**.

EXEMPLOS:

SENTENÇAS VERDADEIRAS

$$4 + 6 = 10$$

SENTENÇA FALSA

- Uma expressão matemática que **NÃO** podemos classificar como verdadeira ou falsa é denominada **SENTENÇA** ou **PREPOSIÇÃO ABERTA**.

EXEMPLOS:

c – d ≥ 6

PODE SER VERDADEIRA OU FALSA, DEPENDENDO DOS VALORES ATRIBUÍDOS A c E A d.

O triplo de um número mais dois: 3.x + 2

Complete a tabela

X	3.x + 2	Resultado
0	3.0 + 2	2
1	3 .1 + 2	5
2	3 .2 + 2	8

De início, não sabemos quem é a letra x. Ela é uma incógnita, ou seja, representa um valor desconhecido. Em seguida, atribuímos ao x valores variados, resolvemos as operações indicadas e encontramos como resultado um número, ou seja, um valor numérico.

- Na expressão algébrica, a letra <u>x</u> é chamada de INCÓGNITA ou VARIÁVEL.
- Numa expressão algébrica, quando substituímos a incógnita por um número qualquer e resolvemos as operações indicadas, encontramos como resultado um número que é denominado VALOR NUMÉRICO dessa expressão.

Qual é a(s) incógnita(s) e o valor numérico de cada expressão algébrica a seguir?

EXPRESSÃO ALGÉBRICA	INCÓGNITA(S)	VALOR	CÁLCULO	VALOR NUMÉRICO
2c + 5	С	C = 3	2.3+5	11
3x+ y	хеу	x=2 e y=1	3.2+1	7
3.(a + b)	a e b	a=4 e b =5	3 . (4 + 5)	27
<u>b – 3</u> 2	b	b = 15	<u>15 – 3</u> 2	6

Sentenças matemáticas abertas que expressam uma relação de igualdade recebem nome de **EQUAÇÕES**

$$3x - 5 = 12$$

 $3x - 5 = 12 r^2 + 1 = r + 13 x - y = 10$

É uma equação de incógnita x.

É uma equação com uma incógnita: r.

É uma equação com duas incógnitas: x e y.

$$3x = 12$$

3x = 12 x + 3 = 2x - 7

x é a incógnita da equação.

É uma equação com uma incógnita: x.

Não são equações:

$$x + y \neq 10$$
 \longrightarrow Não expressa uma igualdade.

$$c-d \ge 6$$
 \longrightarrow Não expressa uma igualdade.

$$4x + 5 > 12$$
 \longrightarrow Não expressa uma igualdade.

Observe a equação 2x + 4 = 18.

Denomina-se
1º membro da
equação

Denomina-se
2º membro da
equação

Vejamos algumas interpretações de equações.

EQUAÇÃO	INTERPRETAÇÃO
2x = 16	Qual é o número cujo dobro é igual a 16?
3x - 7 = 23	Qual é o número cujo triplo menos 7 dá 23?
a + 20 = 42	Que número se deve adicionar a 20 para obter 42?
2x - 1 = x + 1	Qual é o número cujo antecessor de seu dobro é igual a seu sucessor?

Geralmente, em uma equação, queremos saber o valor da incógnita.

Exemplos:

1) Qual é o número que multiplicado por 5 é igual a 35?

Tradução do português para a equação:

Chamando o número desconhecido, isto é, a incógnita de a, temos:

Resolvendo mentalmente o número é 7:

Logo, a = 7, ou seja,

7 é a solução da equação 5a = 35.

2) Que número elevado ao quadrado é igual a 25?

Tradução do português para a equação:

Chamando a incógnita de c, temos:

$$c^2 = 25$$
 ou $c.c = 25$

Resolvendo mentalmente: Pode ser dois números: +5 ou -5.

$$(+5)^2 = (+5) \cdot (+5) = +25$$

Ou

 $(-5)^2 = (-5) \cdot (-5) = +25$

Logo, c = +5 ou c = -5, ou seja, são soluções da equação $c^2 = 25$.

Todo número que, substituindo a incógnita, torna a equação uma sentença verdadeira é chamado de solução ou RAIZ dessa equação.

7 é a RAIZ da equação *5α* = 35.

+5 e -5 são as RAÍZES da equação c^2 = 25.

Resolver uma equação é encontrar a(s) sua(s) raiz(es) e verificar se ela(s) satisfaz(em) as condições do problema que a equação representa.

1. (UNAERP SP/ 2006) Analisando as expressões:

I.
$$[(+2)(-3/4)]:(-2/3)$$

II.
$$(+2-3+1):(-2+2)$$

Podemos afirmar que zero é o valor de:

- a) somente I, II e IV
- b) somente I e III
- c) somente IV
 - d) somente II e IV
 - e) somente II

2. (USS RJ/ 2007) Considerando a sequência de mesas da figura abaixo, qual das expressões a seguir permite calcular o número de cadeiras correspondente a **n** mesas?

- a) 2(2n-1)
- b) 2(2n + 1)
- c) 4n
- d) 2n +1
- (e) 2 (n + 1)

3. Que número representa metade do resultado da expressão numérica abaixo?

$$[(4.5 - 6.3):(5.13 - 9.7)]:[(12^2:6.4):(6.8 - 6.7)]$$

- a) 1
- b) 2
- (0)0,5
- d) 1,5
- e) 2,5

4. (IFSC/ 2018)

Sobre as expressões numéricas:

I)
$$5 + 23 \cdot 4 - 75 \cdot 15$$
 e II) $(5 + 23) \cdot 4 - 75 \cdot 15$

é CORRETO afirmar que:

- a) apresentam resultados iguais porque envolvem os mesmos números e as mesmas operações.
- b) o resultado da expressão I é 80.
- c) o resultado da expressão II é 106.
- d) o resultado da expressão I é maior que o resultado da expressão II.
- e) o resultado da expressão I é menor que o resultado da expressão II.

5. (Enem) Ao alugar um carro, o locatário precisa pagar R\$ 60,00 por dia, e mais R\$ 1,50 por quilômetro rodado. Para facilitar, as locadoras podem fazer uma relação entre o valor a ser pago P, em reais, em função dos quilômetros rodados, representado por x.

Qual das expressões abaixo representa o valor pago pelos locatários em função dos quilômetros rodados?

a)
$$P = 61,50x$$

b)
$$P = 61,50 + 1,50x$$

c)
$$P = 60x + 1,50$$

d)
$$P = 1,50x$$

$$P = 60 + 1,50x$$

- **6.** Considerando essas informações e o conteúdo estudado sobre expressões algébricas e numéricas, analise as afirmativas a seguir.
- I. As expressões algébricas são compostas por operações, números e variáveis.
- II. As expressões algébricas tratam de particularidades.
- III. As expressões numéricas tratam de generalidades.
- IV. x² + 3 é um exemplo de expressão algébrica.

Está correto apenas o que se afirma em:

- (a) I e IV
 - b) III e IV
 - c) II e IV
- d) I, II e IV
- e) le III