The Importance of Hyperparameter Optimisation for Facial Recognition Applications

Introduction

- Recognising human faces is important for various applications, including biometric authentication, identifying criminals and potentially preventing future attacks.
- 51% of all countries worldwide already utilise facial recognition technologies [1].
- However, most of these technologies misclassify 34.7% of darker-skinned females, compared to 0.8% of lighter-skinned males [2].
- Thus, optimising the hyperparameters of an Artificial Neural Network (ANN) is crucial for achieving the best recognition accuracy and minimising errors.

What can be changed?

Methodology

- Focusing on the optimisation of the most important parameters, four methods are implemented.
- The dataset (Yale Face Database) contains 1500 images of 30 different people, 50 images each in different lighting conditions [3].
- The ANN consists of a multi-layer perceptron classifier with principal component analysis for dimensionality reduction [4].

Examples:

Optimisation Process:

Hyperparameters:

- principal components
- number of hidden neurons
- batch size
- learning rate
- weight optimisation
- activation function

Related Work

Random Search for Hyper-Parameter Optimization

James Bergstra, Yoshua Bengio

Journal of Machine Learning Research, Vol. 13, pp. 281-305, 2012 Demonstrate the differences

→ between Grid Search and Random Search.

State that Random Search explores the space of

- hyperparameters more widely because it chooses the values of the parameters randomly.
- Thus, a broader spectrum of sets
 can be tested and further optimised.

Implementation

1. Manual Optimisation

Manually trying every possible combination in a defined range.

3. Random Search

Automated process to try random possible combinations in a defined range.

2.Grid Search

Automated process to try every possible combination in a defined grid.

4. Further Optimisation

Combining automated optimisation and manual optimisation.

Issues

- There are still a lot of unanswered questions, e.g.:
 - Who owns the data?
 - Who is responsible for misclassification and its consequences?
 - What behavioural changes will we see in our society caused by the increasing use of facial recognition?
 - What changes need to be made in law enforcement?
 - Who creates the ethical regulations needed?
 - How can we ensure that facial recognition systems are not used for unethical purposes or surveillance?
- Most of the current applications were trained with biased datasets, which can create a bias against or in favour of specific groups [2].

Analysis

• The recognition accuracy could be improved by

+1.6%

• The error was minimised from 30% to

< 1 %

- There is not one single set of optimal hyperparameter values, but a range of values.
- Through optimisation, the application can successfully be implemented.
- However, the dataset is outdated and certainly needs more diverse data in order for the application to be used worldwide.

Results

The best average recognition accuracies

1.Manual Optimisation

2.Grid Search

3.Random Search

4.Further Optimisation

Author

Hannah M. Claus

MSc Artificial Intelligence Queen Mary University of London, UK email: hannahmclaus@gmail.com

Advisors:

Vitaly Schetinin, Ph.D., University of Bedfordshire, UK

Jorge Ortiz, Ph.D., Rutgers University, USA

Conclusion

- Optimisation works best when combining manual and automated methods.
- Optimisation is important in order to implement safe facial recognition applications worldwide.
- Diversity within the training dataset matters, so that bias and errors can be minimised.
- Questions need to be answered and new laws and regulations have to be created.

References:

- [1] Carnegie Endowment for International Peace. (2020). AI Global Surveillance.
- [2] Buolamwini, J., Gebru, T., Friedler, S. and Wilson, C. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proceedings of Machine Learning Research, 81, pp.1–15.
- [3] Belhumeur, Peter N. and David J. Kriegman. "The yale face database." (1997).
- [4] Karamizadeh, S.; Abdullah, S.; Manaf, A.; Zamani, M.; and Hooman, A. 2013. An Overview of Principal Component Analysis. Journal of Signal and Information Processing, 4: 173–175.