Química Inorgânica I

Felipe Pinto - 61387

 1^o Semestre - 2021.1

Conteúdo

0	Introdução		
	1	Programa	2
	2	Química Inorgânica	3
В	Bac	kground	4
	1	Reações Ácidos-Base de Lewis	4
	2	Ligações Covalentes Coordenadas	4
	3	Ligações σ	4
1	Con	nplexos e Compostos de Coordenação	5
	1	Complexos de Coordenação	5
		1.1 Compostos de Coordenação	5
		1.2 Estrutura de um Complexo de Coordenação	5
		1.3 Caracteristicas	6
		1.4 Exemplos:	7
	2	Regras de Nomenclatura: Complexos de Coordenação	8
		2.1 Estrutura	8
		9.9 Rogras	R

0 | Introdução

1 Programa

- 1. Interesse da Química Inorgânica.
- 2. Definições
 - Composto de Coordenação
 - Elemento Central
 - Ligando
 - Número de coordenação
 - Esfera de coordenação
- 3. Tipos de Ligandos.
- 4. Regras de nomenclatura dos Complexos de Coordenação
- 5. Afinidade de metais para ligandos.
- 6. Classificação de HSAB.
- 7. Estabilidade de compostos de coordenação.
- 8. Efeito de quelação.
- 9. Números de coordenação mais prováveis em compostos de coordenação.
- 10. Isomeria.
- 11. Teorias de ligação química em compostos de coordenação.

- 12. Teoria do Enlace de Valência.
- 13. Teoria do Campo Cristalino.
- 14. Interpretação de propriedades
 - Magnéticas,
 - Espectros electrónicos
 - Propriedades termodinâmicas.
- 15. Diagramas de Orgel e Tanabe-Sugano.
- 16. Reactividade Química de Complexos.

2 Química Inorgânica

A química se divide em dois ramos, química orgânica e inorgânica. Química inorgânica compreendem todos os compostos que não possuem ligações de carbono do tipo $\rm C-H$

B | Background

- 1 Reações Ácidos-Base de Lewis
- 2 Ligações Covalentes Coordenadas
- 3 Ligações σ

1 | Complexos e Compostos de Coordenação

1 Complexos de Coordenação

São produtos de reações acido-base de Lewis onde um ou mais átomos / elementos centrais, geralmente átomos metálicos, se ligam a um arranjo de ligandos por **ligações covalentes coordenadas**.

Para ser considerado um complexo de coordenação, se deve ter o índice de coordenação superior a seu estado de oxidação

1.1 Compostos de Coordenação

Compostos que possuem complexos de coordenação.

Compostos de coordenação e complexos são especies químicas distintas, suas propriedades e comportamentos químicos são diferentes dos seus componentes

1.2 Estrutura de um Complexo de Coordenação

$$[AB]^{C}$$

- A. Átomo / Elemento Central
- B. Ligandos
- ${\bf C.}~{\bf Carga}$ do complexo de coordenação

1.3 Caracteristicas

Átomo / Elemento Central

Elemento metálico que ocupa o centro do complexo, considerado ácido de Lewis, existem complexos com multiplos átomos / elementos centrais.

Ligandos

Elementos diretamente ligado ao elemento central, de natureza ionica ou molecular, são considerados bases de lewis

Índice / Numero de Coordenação

É o numero de ligações σ entre os ligandos e o elemento central

Estado de Oxidação

Carga do elemento central representado em numeros romanos.

É definido como a carga que o átomo central teria se todos seus ligandos e pares eletrônicos compartilhados fossem removidos

Quelação e Ligandos Polidentados

Ligandos podem formar mais de uma ligação com o átomo central, formando um, ou mais anéis quelatos.

O numero de átomos de um ligando que se ligam ao mesmo tempo com o átomo central é indicado pelos adjetivos: **Bi**dentado; **Tri**dentado; **Te**tradentado; **Penta**dentado; ···

Exemplos de ligandos polidentados:

- SO₄⁻²: Bidentado instável Sulfato
- $C_2H_4(NH_2)_2$: Bidentado Etilenodiamina \rightarrow Etilenodiamino (en)
- $C_2O_4^{2-} = (CO_2)_2^{2-}$: Bidentado Oxalato \rightarrow Oxalato

- C₁₀H₈N₂: Bidentado
 Dipiridina → Bipiridino (bipy)
- CH₃COCHCOCH₃: Bidentado
 Acetilacetonato → Acetilacetonato (ACAC)
- OCC(CH₃)₃CHCOC₃F₇: Bidentado Heptafluoro dimetil octanedionato (fod)
- $C_{12}H_8N_2$: Bidentado Fenatrolina \rightarrow Fenatrolina (phen) Garante grande estabilidade, também é conhecido por emitir luz
- diaza 18 crown 6 = $C_{12}H_{26}N_2O_4$: Hexadentado diaza-18-crown-6 Forma um anél que rodeia todo o perímetro do átomo central o garantindo grande estabilidade
- $C_{10}H_{16}N_2O_8 = (C_2OOH)_2NC_2N(C_2OOH)_2$: Hexadentado etileno diamino tetra acetato \rightarrow etileno diamino tetra acetato (EDTA)
- $C_{14}H_{23}N_2O_{10}^{5-} = (C_2OOH)N(C_2N(C_2OOH)_2)_2^{5-}$: Octadentado dietileno triamino penta acetato \rightarrow dietileno triamino penta acetato (DTPA)

Ligandos Ambidentados Alguns ligandos polidentados podem fazer apenas algumas de suas ligações por vês com o elemento central, esses são caracterisados como ambidentados. por possuirem essa característica, sua presença em um complexo o atribui isomeria de ligação

Exemplos de Ligandos Ambidentados

- SCN⁻ / NCS⁻: Tiocianato / Isotiocianato
- NO₂ / ONO : Nitro / Nitrito

1.4 Exemplos:

- $[Ag(NH_3)_2]^+$ $[Pt(CN)_4]^{-2}$ $[Co(NH_3)_6]^{+3}$
- $[Fe(CO)_5]$ $[Cl_3BNH_3]$ $[Ni(CO)_4]$

Regras de Nomenclatura: Complexos de 2 Coordenação

2.1 Estrutura

[A B]: B A

- A. Nome do elemento central
- B. Nome dos ligandos

2.2 Regras

- 1. Complexos Aniônicos
- 2. Multiplos ligandos
- 3. Prefixos numéricos (di, tri, te $tra, \cdots)$
- 4. Regra geral para sufixos
- 5. Aniões terminados em "eto"
- 6. Aniões terminados em "ido"

- 7. Aniões terminados em "ato"
- 8. Ligandos radicais derivados de hidrocarbonetos
- 9. Ligandos moleculares terminados em "a"
- 10. Ligandos com nomes específicos
- 11. Ligando que atua entre dois centros de coordenação

Complexos Aniônicos*

recebem a terminação "ato" seguido do seu numero de oxidação em formato romano entre parenteses

^{*} aniônico: portador de carga negativa

Multiplos ligandos

são nomeados na seguinte ordem: neutros (moleculares), aniônicos (negativos), catiônicos (positivos).

ligantes de mesma natureza se ordena alfabeticamente.

Prefixos numéricos (di, tri, tetra, ···)

indica a quantidade de ligandos iguais.

variação dos prefixos numericos para: "dis, tris, tetrakis, pentakis, ···" em ligandos que possuem prefixos numéricos em seu nome (ex: ligandos orgânicos, dipiridina, trifosfina)

Exemplos:

- $[CoF_6]^{3-}$: Hexfluorocobaltato(III)
- $[Ag(NH_3)_2]^+$: Diaminprata(I)
- $[Ni(CO)_4]^+$: Tetracarbonilniquel(0)
 - $[Mn(CO)_5]^+$: Pentacarbonilmanganato(-I)

Regra geral para sufixos

- "eto" \rightarrow "o"
- "ito" \rightarrow "o"

- "ido" \rightarrow "o"
- "ato" → "ato"

Aniões terminados em "eto"

- Fluoreto $(F^-) \to Fluoro$
- Cloreto (Cl $^-$) \rightarrow Cloro
- Brometo (Br $^-$) \rightarrow Bromo
- Iodeto $(I^-) \rightarrow Iodo$
- Cianeto (CN $^{-}$) \rightarrow Ciano
- Amideto $(NH_2^-) \rightarrow Amido$

Com exceção do $\mathbf{hidreto}$ (\mathbf{H}^-) que ou não sofre alteração ou se usa hidro

Aniões terminados em "ido"

- Hidróxido (OH $^{-}) \rightarrow$ Hidroxo
- Peróxido $(\mathcal{O}_2^{-2}) \to \text{Peroxo}$
- Óxido $(O^{2-}) \to Oxo$

Aniões terminados em "ato"

- Carbonato (CO $_3^{2-}) \to {\rm Carbonato} \, \cdot \, \, {\rm Sulfato} \, \, ({\rm SO}_4^{\, 2-}) \to {\rm Sulfato}$
- Nitrato $(NO_3^-) \to Nitrato$ Oxalato $(C_2O_4^{2-}) \to Oxalato$
- Acetato $(CH_3COO^-) \rightarrow Acetato$
- Acetilacetonato (CH₃COCHCOCH $_3$) \rightarrow Acetilacetonato (ACAC)

Ligandos radicais derivados de hidrocarbonetos

matem o nome do radical

- Metil (CH₃) \rightarrow Metil (Me) Fenil (C₆H₅) \rightarrow Fenil (Ph ou \emptyset)
- Etil $(C_2H_5) \rightarrow \text{Etil (et)}$
- Ciclopentadienil (C_5H_5) \rightarrow Ciclopentadienil (Cp)

Ligandos moleculares terminados em "a"

o substituem por "o"

- Piridina $(C_5H_5N) \rightarrow Piridino (Py)$
- Dipiridina $(C_{10}H_5N) \rightarrow Bipiridino (Bipy)$
- Etilenodiamina (C₂H₈N₂) \rightarrow Etilenodiamino (En)
- Trifenilfosfina (P(C₆H₅)₃) \rightarrow Trifenilfosfino (PPh₃ ou PØ₃)

Ligandos com nomes específicos

- Água $(H_2O) \rightarrow Aquo$

- Monóxiodo de carbono (CO) \rightarrow Carbonilo
- Monóxido de azoto (NO) \rightarrow Nitrosil
- Oxigénio (molecular) (${\rm O}_2$)* \rightarrow Dioxigénio
- Azoto(molecular) $(N_2)^* \to Diazoto$
- Hidreto (H^-) \rightarrow Hidr
o ou Hidreto

Ligando que atua entre dois centros de coordenação

complexos polinucleares quando o ligado atua entre os dois centros de coordenação, recebe a letra μ separada por hífens

Exemplo Complexos de coordenação:

• $[CoF_6]^{3-}$: Hexfluorocobal- • $[Fe(SCN)_6]^{3-}$: Hexatiocianatoferrato(III)

^{*} Nas formulas esses ligandos devem ser escritos entre parênteses