આંકડાશાસ્ત્ર

15

A mathematics teacher is a mid-wife to ideas.

The first rule of discovery is to have brains and goodluck.

The second rule of discovery is to sit tight and wait till you get a braight idea.

- George Polya

15.1 પ્રાસ્તાવિક

ધોરણ IXમાં આપણે આપેલ માહિતીનું અવર્ગીકૃત અને વર્ગીકૃત માહિતીમાં વિભાજન કરતાં શીખ્યાં. આપણે માહિતીને આલેખ જેવા કે લંબાલેખ, સમાન અને અસમાન લંબાઈના વર્ગીવાળા વર્ગીકરણના સ્તંભાલેખ અને આવૃત્તિ બહુકોણ દ્વારા દર્શાવી છે. આપણે અવર્ગીકૃત માહિતીના મધ્યક, મધ્યસ્થ અને બહુલક વિષે પણ શીખી ગયાં. આ પ્રકરણમાં આપણે આ અભ્યાસ આગળ વધારીશું એટલે કે આપણે વર્ગીકૃત માહિતીના મધ્યક, મધ્યસ્થ અને બહુલક અને વર્ગીકૃત માહિતી માટે ઓજાઈવ (Ogive) તરીકે ઓળખાતા માહિતીના સંચયી આવૃત્તિવક વિષે જાણકારી મેળવીશું.

15.2 વર્ગીકૃત માહિતીનો મધ્યક

આપણે જાણીએ છીએ કે અવર્ગીકૃત માહિતીના અવલોકનોના સરવાળાને અવલોકનોની કુલ સંખ્યા વડે ભાગવાથી જે સંખ્યા મળે તેને મધ્યક કહે છે. યાદ કરો કે જો $x_1,\ x_2,\ x_3,...,\ x_k$ એ k અવલોકનો હોય અને $f_1,\ f_2,\ f_3,...,\ f_k$ એ અનુક્રમે તેમની આવૃત્તિ હોય તો અવલોકનોની કિંમતનો સરવાળો $f_1x_1+f_2x_2+f_3x_3+...+f_kx_k$ થાય અને કુલ

આવૃત્તિ
$$n = f_1 + f_2 + ... + f_k = \sum_{i=1}^k f_i$$
 બને.

$$\therefore$$
 માહિતીનો મધ્યક $\overline{x} = \frac{f_1 x_1 + f_2 x_2 + ... + f_k x_k}{f_1 + f_2 + ... + f_k}$

આપણે સરવાળાને ગ્રીક સંકેત Σ (કૅપીટલ સિગ્મા) દ્વારા દર્શાવ્યો છે. માટે,

$$\overline{x} = \frac{\sum_{i=1}^{k} f_i x_i}{\sum_{i=1}^{k} f_i}$$

વળી, સંદિગ્ધતાને અવકાશ ન હોય ત્યારે $\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$ લખી શકાય છે, જ્યાં i એ 1 થી k સુધી કિંમત ધારણ કરે છે.

ઉદાહરણ 1 : બે વર્ગોના 100 વિદ્યાર્થીઓએ ગણિતમાં 100 ગુણના પ્રશ્નપત્રમાં મેળવેલ ગુણ નીચે મુજબ છે :

મેળવેલ ગુણ (x_i)	15	20	25	32	35	45	50	60	70	77	80
વિદ્યાર્થીની સંખ્યા (f _i)	2	3	7	4	10	12	9	8	6	8	11
મેળવેલ ગુણ (x_i)	85	90	92	95	99						
વિદ્યાર્થીની સંખ્યા (f _i)	9	4	2	3	2						

વિદ્યાર્થીઓએ મેળવેલ ગુણની સરેરાશ શોધો.

 $\mathbf{634}$: મધ્યક શોધવા માટે x_i સાથે તેને સંગત f_i વડે ગુણવા પડે. આ માટે આપણે કોષ્ટક 15.1 નીચે મુજબ બનાવીશું.

કોષ્ટક 15.1

મેળવેલ ગુણ (x_i)	વિદ્યાર્થીઓની સંખ્યા (f_i)	$f_i x_i$				
15	2	30				
20	3	60				
25	7	175				
32	4	128				
35	10	350				
45	12	540				
50	9	450				
60	8	480				
70	6	420				
77	8	616				
80	11	880				
85	9	765				
90	4	360				
92	2	184				
95	3	285				
99	2	198				
કુલ	$\Sigma f_i = 100$	$\Sigma f_i x_i = 5921$				

હવે,
$$\overline{x}$$
 = $\frac{\sum f_i x_i}{\sum f_i}$
= $\frac{5921}{100}$
= 59.21

માટે વિદ્યાર્થીઓએ મેળવેલ ગુણની સરેરાશ 59.21 છે.

વ્યવહારમાં માહિતી ઘણી મોટી હોય છે. માટે અર્થપૂર્ણ અધ્યયન માટે આપણે તેને વર્ગીકૃત માહિતીમાં ફેરવવી પડે. હવે આપણે ઉપરની માહિતીને વર્ગલંબાઈ 15 લઈને વર્ગીકૃત માહિતીમાં ફેરવીશું. (કારણ કે સામાન્ય રીતે આપણે 6થી 8 વર્ગો લઈએ છીએ અને આપણી માહિતીનો વિસ્તાર 90 છે માટે આપણે વર્ગલંબાઈ 15 લઈએ છીએ.) યાદ કરીએ કે જયારે આપણે વર્ગની સામે આવૃત્તિ ફાળવીએ છીએ ત્યારે કોઈ અવલોકન કોઈ વર્ગની ઉર્ધ્વસીમા જેટલું હોય ત્યારે તેને તે પછીના વર્ગમાં લઈશું. ઉદાહરણ તરીકે, 7 વિદ્યાર્થીઓએ 25 ગુણ મેળવ્યા છે. તો તે વિદ્યાર્થીઓનો સમાવેશ વર્ગ 10-25ને બદલે 25-40માં થાય. આવૃત્તિ-વિતરણ કોષ્ટક 15.2 પ્રમાણે છે:

કોષ્ટક 15.2

વર્ગ	10-25	25-40	40-55	55-70	70-85	85-100
વિદ્યાર્થીઓની સંખ્યા	5	21	21	8	25	20

હવે આપણે સતત વર્ગીકૃત માહિતીનો મધ્યક કેવી રીતે શોધવો તે જોઈશું. અહીં આપણે $\overline{x}=rac{\sum f_i x_i}{\sum f_i}$ નો ઉપયોગ

કરીશું, જ્યાં આપણે x_i એ વર્ગની મધ્યકિંમત (જે આખા વર્ગનું પ્રતિનિધિત્વ કરે છે) અને f_i એ તે વર્ગની આવૃત્તિ લઈશુ. દરેક વર્ગના અવલોકનો એ તેની મધ્યકિંમતની આજુબાજુ આવેલાં હોય છે, તેમ ધારી લઈશું.

ઉપરના કોષ્ટકમાં વર્ગ 10-25ની મધ્યકિમત = $\frac{10+25}{2}$ = 17.5.

તે જ રીતે આપણે બીજા વર્ગોની મધ્યકિંમતો કોષ્ટક 15.3માં દર્શાવ્યા પ્રમાણે શોધીશું.

કોષ્ટક 15.3

વર્ગ	વિદ્યાર્થીની સંખ્યા (<i>f_i</i>)	મધ્યકિંમત (x_i)	$f_i x_i$
10-25	5	17.5	87.5
25-40	21	32.5	682.5
40-55	21	47.5	997.5
55-70	8	62.5	500.0
70-85	25	77.5	1937.5
85-100	20	92.5	1850.0
	કુલ $\Sigma f_i = 100$		$\sum f_i x_i = 6055$

$$\therefore$$
 આપેલ માહિતીનો મધ્યક $\overline{x}=rac{\sum f_i x_i}{\sum f_i}=rac{6055}{100}=60.55$

મધ્યક શોધવાની આ રીતને <mark>સીધી રીત (Direct Method)</mark> કહે છે.

આપણે જોઈ શકીએ છીએ કે કોપ્ટક 15.1 અને કોપ્ટક 15.3 સરખી જ માહિતી છે અને મધ્યક શોધવા એક સરખું જ સૂત્ર વાપરીએ છીએ પરંતુ પરિણામો બંનેનાં જુદાં છે. આવું શા માટે થાય છે ? અને આ બેમાંથી કયું વધુ સચોટ છે ? કોપ્ટક 15.3માં મધ્યકિંમતોના અનુમાનના કારણે બંને કિંમતો જુદી પડે છે. 59.21 એ સાચો મધ્યક છે. જ્યારે 60.55 એ મધ્યકનું આસન્ન મૂલ્ય છે. વર્ગના અવલોકનો મધ્યકિંમતની 'આજુબાજુ' કેન્દ્રિત છે તેવું અનુમાન કરવામાં આવે છે.

દરેક વખતે x_i ની અને f_i ની કિંમતો નાની ન હોય. આવી પરિસ્થિતિમાં x_i અને f_i નો ગુણાકાર કંટાળાજનક અને સમય પણ વધારે લે છે. આવી પરિસ્થિતિમાં આપણે ગણતરીને ટૂંકી કરવાની પદ્ધિત વિચારીએ. આ માટે આપણે f_i ને કશું કરી શકતા નથી. પરંતુ આપણે x_i ને ઘટાડી શકીએ કે જેથી ગણતરી સરળ બને. આ માટેનું પ્રથમ સોપાન છે કે કોઈ એક x_i ને **ધારેલા મધ્યક** તરીકે લઈએ અને તેને A વડે દર્શાવીએ. આપણે x_1 , x_2 ,..., x_n ના મધ્યમાં હોય તેને A તરીકે પસંદ કરી શકીએ. $d_i = x_i - A$ શોધો.

[નોંધ : ખરેખર તો A કોઈ પણ અનુકૂળ સંખ્યા હોઈ શકે. નીચેની સાબિતીમાં આથી કોઈ ફરક પડતો નથી.]

$$\begin{split} \overline{d} &= \frac{\sum f_i d_i}{\sum f_i} \\ &= \frac{\sum f_i (x_i - \mathbf{A})}{\sum f_i} \\ &= \frac{\sum f_i x_i}{\sum f_i} - \mathbf{A} \cdot \frac{\sum f_i}{\sum f_i} \\ &= \frac{\sum f_i x_i}{\sum f_i} - \mathbf{A} \end{split}$$

$$\overline{d} = \overline{x} - A$$

$$\therefore \quad \overline{x} = A + \overline{d}$$

$$\overline{x} = A + \frac{\sum f_i d_i}{\sum f_i}$$

 $f_i d_i$ શોધો. $\Sigma f_i d_i$ કોપ્ટક 15.4માં દર્શાવેલ છે. A = 62.5 લો.

કોષ્ટક 15.4

વર્ગ	વિદ્યાર્થીની સંખ્યા (f_i)	મધ્યકિંમતો (x_i)	$d_i = x_i - A$	$f_i d_i$
10-25	05	17.5	-45	-225
25-40	21	32.5	-30	-630
40-55	21	47.5	-15	-315
55-70	08	62.5 = A	0	0
70-85	25	77.5	15	375
85-100	20	92.5	30	600
	n = 100			$\Sigma f_i d_i = -195$

હવે,
$$\bar{x} = A + \frac{\sum f_i d_i}{\sum f_i}$$

સૂત્રમાં કિંમતો મૂકતાં,

$$\overline{x} = 62.5 + \frac{(-195)}{100}$$

$$= 62.5 - 1.95$$

$$= 60.55$$

વિદ્યાર્થીઓએ મેળવેલા ગુણની સરેરાશ 60.55 છે.

ઉપયોગમાં લીધેલી ઉપરની રીતને **ધારેલ મધ્યક (Assumed mean)** ની રીત કહે છે.

પ્રવૃત્તિ 1 : કોપ્ટક 15.3માંથી, Aની કિંમત 17.5, 32.5 વગેરે લો અને દરેક વિકલ્પમાં \overline{x} ની કિંમત શોધો. તે પ્રત્યેક વિકલ્પમાં સમાન હશે એટલે કે 60.55 મળશે.

આથી, આપણે કહી શકીએ કે મધ્યક એ Aની કિંમત પર આધાર રાખતો નથી. માટે આપણે Aની કિંમત કોઈ પણ શૂન્યેતર સંખ્યા લઈ શકીએ, જરૂરી નથી કે તે x_i ની કિંમતોમાંની કોઈ એક હોય.

કોષ્ટક 15.4માં જુઓ કે સ્તંભ-4 એ 15નો ગુણિત (એટલે કે વર્ગલંબાઈનો ગુણિત) છે. માટે જો સ્તંભ-4ની કિંમતને 15 વડે ભાગીએ તો f_i સાથે ગુણવા માટે આપણને નાની કિંમત મળે.

આથી ધારો કે, $u_i = \frac{x_i - A}{c}$, જ્યાં A ધારેલો મધ્યક અને c એ વર્ગલંબાઈ છે.

ધારો કે
$$\overline{u} = \frac{\sum f_i u_i}{\sum f_i}$$

હવે આપણે \overline{u} અને \overline{x} વચ્ચેનો સંબંધ મેળવીએ.

આપણી પાસે
$$u_i = \frac{x_i - A}{c}$$
 છે.

276

તેથી,
$$\overline{u} = \frac{\sum f_i \left(\frac{x_i - \mathbf{A}}{c}\right)}{\sum f_i} = \frac{1}{c} \left[\frac{\sum f_i x_i - \mathbf{A} \sum f_i}{\sum f_i} \right]$$
$$= \frac{1}{c} \left[\frac{\sum f_i x_i}{\sum f_i} - \mathbf{A} \right]$$
$$= \frac{1}{c} \left[\overline{x} - \mathbf{A} \right]$$

$$c\overline{u} = \overline{x} - A$$

$$\therefore \quad \overline{x} = A + c \cdot \overline{u}$$

$$= \mathbf{A} + c \cdot \frac{\sum f_i u_i}{\sum f_i}$$

હવે આપણે કોષ્ટક 15.5માં દર્શાવ્યા મુજબ u_i ની ગણતરી કરીશું. અહીં c=15 છે.

કોષ્ટક 15.5

વર્ગ	f_i	x_i	$u_i = \frac{x_i - A}{c}$	$f_i u_i$
10-25	05	17.5	-3	-15
25-40	21	32.5	-2	-42
40-55	21	47.5	-1	-2 1
55-70	08	62.5 = A	0	0
70-85	25	77.5	1	25
85-100	20	92.5	2	40
કુલ	$\Sigma f_i = 100$			$\Sigma f_i u_i = -13$

$$\overline{x} = A + c \cdot \overline{u}$$

$$= A + c \cdot \frac{\sum f_i u_i}{\sum f_i}$$

$$= 62.5 + 15\left(\frac{-13}{100}\right)$$

$$= 62.5 + 15(-0.13)$$

$$= 62.5 - 1.95 = 60.55$$

ઉપર સમજાવેલ કરેલ રીતને વિચલનની રીત (Step-Deviation Method) કહે છે. આપણે નોંધીએ કે,

- જો બધાં જ d_i માં કોઈક સામાન્ય અવયવ હોય, તો વિચલનની રીત વાપરવી વધુ સરળ બને.
- ખરેખર તો વર્ગલંબાઈ c સમાન હોય, તો A સામે $u_i=0$ મળશે અને તેની ઉપર ક્રમમાં -1, -2,... તથા નીચે ક્રમમાં 1, 2,... મળશે.
- વર્ગીકૃત માહિતીની બધી જ રીત દ્વારા મેળવેલ મધ્યક સમાન છે.
- ધારેલા મધ્યકની રીત અને વિચલનની રીત એ મધ્યક શોધવાની સીધીરીતનું સરલીકરણ છે.

ઉદાહરણ 2 : નીચે આપેલ માહિતી પરથી ત્રણે રીત દ્વારા મધ્યક શોધો :

વર્ગ	0-10	10-20	20-30	30-40	40-50	50-60	60-70
આવૃત્તિ	4	8	3	20	3	4	8

ઉકેલ : A = 35 લો અને c = 10 છે.

વર્ગ	f_i	x_i	$d_i = x_i - \mathbf{A}$	$u_i = \frac{x_i - A}{c}$	$f_i x_i$	$f_i d_i$	$f_i u_i$
0-10	4	5	-30	-3	20	-120	-12
10-20	8	15	-20	-2	120	-160	-16
20-30	3	25	-10	-1	75	-30	-3
30-40	20	35 = A	0	0	700	0	0
40-50	3	45	10	1	135	30	3
50-60	4	55	20	2	220	80	8
60-70	8	65	30	3	520	240	24
	$\Sigma f_i = 50$				$\sum f_i x_i = 1790$	$\sum f_i d_i = 40$	$\sum f_i u_i = 4$

સીધી રીતે ગણતરી કરતાં,
$$\overline{x}=\frac{\sum f_i x_i}{\sum f_i}=\frac{1790}{50}=35.8$$

ધારેલા મધ્યકની રીત,
$$\overline{x}=\mathrm{A}+\frac{\sum f_i d_i}{\sum f_i}$$
 = 35 + $\frac{40}{50}$ = 35 + 0.8 = 35.8

વિચલનની રીત,
$$\overline{x}$$
 = A + $\left(\frac{\sum f_i u_i}{\sum f_i}\right) \times c$
= 35 + $\left(\frac{4}{50}\right) \times 10$
= 35 + 0.8 = 35.8

માટે માહિતીનો મધ્યક 35.8 છે.

ઉદાહરણ 3 : નીચેની માહિતીનો મધ્યક 16 છે, તો ખૂટતી આવૃત્તિ શોધો :

વર્ગ	0-4	4-8	8-12	12-16	16-20	20-24	24-28	28-32	32-36
આવૃત્તિ	6	8	17	23	16	15	-	4	3

ઉકેલ : ધારો કે, ખૂટતી આવૃત્તિ x છે. A = 26 લો અને c = 4 છે.

વર્ગ	આવૃત્તિ	x_i	$u_i = \frac{x_i - A}{c}$	$f_i u_i$
0-4	6	2	6	-36
4-8	8	6	- 5	-40
8-12	17	10	-4	-68
12-16	23	14	-3	-69
16-20	16	18	-2	-32
20-24	15	22	-1	-15
24-28	x	26 = A	0	0
28-32	4	30	1	4
32-36	3	34	2	6
	$\sum f_i = 92 + x$			$\sum f_i u_i = -250$

માટે
$$\mathbf{A}=26$$
 લેતાં, તેથી $f_i=x$ હોય ત્યારે $f_iu_i=0$ થાય.

$$\overline{x} = A + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times c$$

$$16 = 26 + \left(\frac{-250}{92 + x}\right) \times 4$$

$$-10 = \frac{-1000}{92 + x}$$

$$\therefore$$
 92 + $x = 100$

$$\therefore x = 8$$

∴ ખૂટતી આવૃત્તિ 8 છે.

ઉદાહરણ 4 : એક દિવસની ક્રિકેટમૅચમાં ગોલંદાજે લીધેલ વિકેટ નીચે મુજબ દર્શાવેલી છે, તો વિકેટની સંખ્યાનો મધ્યક શોધો.

વિકેટની સંખ્યા	20-60	60-100	100-150	150-250	250-350	350-450
ગોલંદાજની સંખ્યા	7	5	16	12	2	3

ઉકેલ : અહીં વર્ગલંબાઈ બદલાય છે અને x_i મોટા છે માટે આપણે $\mathbf{A}=200$ અને c=10 લઈ વિચલનની રીત વાપરીએ.

વિકેટની સંખ્યા	ગોલંદાજની સંખ્યા <i>(f_i)</i>	x_i	$u_i = \frac{x_i - A}{c}$	$f_i u_i$
20-60	7	40	-16	-112
60-100	5	80	-12	-60
100-150	16	125	-7.5	-120
150-250	12	200=A	0	0
250-350	2	300	10	20
350-450	3	400	20	60
	$\Sigma f_i = 45$			$\sum f_i u_i = -212$

$$\therefore \quad \overline{x} = A + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times c$$

$$= 200 + \left(\frac{-212}{45}\right) \times 10$$

$$= 200 - 47.11$$

$$= 152.89$$

∴ ગોલંદાજે લીધેલી વિકેટનો મધ્યક 152.89 છે.

ઉદાહરણ 5 : નીચે આપેલ 125 અવલોકનોનો મધ્યક 22.12 છે, તો ખૂટતી આવૃત્તિઓ શોધો.

વર્ગ	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35-39	40-44
આવૃત્તિ	3	8	12	-	35	21	_	6	2

ઉકેલ : ધારો કે વર્ગ 15-19 અને 30-34 ની ખૂટતી આવૃત્તિઓ અનુક્રમે f_1 અને f_2 છે. A = 17 લો, અહીં c = 5 છે.

વર્ગ	આવૃત્તિ	x_i	$u_i = \frac{x_i - A}{c}$	$f_i u_i$
0-4	3	2	-3	-9
5-9	8	7	-2	-16
10-14	12	12	-1	-12
15-19	f_1	17 = A	0	0
20-24	35	22	1	35
25-29	21	27	2	42
30-34	f_2	32	3	$3f_2$
35-39	6	37	4	24
40-44	2	42	5	10
	$\Sigma f_i = 87 + f_1 + f_2$			$\sum f_i u_i = 74 + 3f_2$

અહીં કુલ આવૃત્તિ 125 છે,

$$\Sigma f_i = 87 + f_1 + f_2$$

$$\therefore$$
 125 = 87 + f_1 + f_2

$$\therefore f_1 + f_2 = 38$$

હવે,
$$\overline{x} = \mathbf{A} + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times c$$

$$22.12 = 17 + \left(\frac{74 + 3f_2}{125}\right) \times 5$$

$$\therefore 5.12 = \frac{74 + 3f_2}{25}$$

$$\therefore$$
 5.12 × 25 = 74 + 3 f_2

$$\therefore$$
 128 - 74 = 3 f_2

$$\therefore 54 = 3f_2$$

$$\therefore$$
 $f_2 = 18$. વળી, $f_1 + f_2 = 38$ પરથી, $f_1 = 20$

∴ ખૂટતી આવૃત્તિઓ અનુક્રમે 20 અને 18 છે.

स्वाध्याय 15.1

1. નીચે આપેલા આવૃત્તિ-વિતરણનો મધ્યક શોધો :

વર્ગ	0-50	50-100	100-150	150-200	200-250	250-300	300-350
આવૃત્તિ	10	15	30	20	15	8	2

2. કોઈ એક ફૅક્ટરીના કામદારોના દૈનિક પગારનું આવૃત્તિ-વિતરણ નીચે મુજબ છે તો તેનો મધ્યક શોધો :

વર્ગ	100-150	150-200	200-250	250-300	300-350	350-400	400-450	450-500	500-550
આવૃત્તિ	4	8	14	42	50	40	32	6	4

3. નીચે આપેલા આવૃત્તિ-વિતરણમાં ધોરણ 10ના 140 વિદ્યાર્થીઓએ ગણિતમાં 50 ગુણમાંથી મેળવેલ ગુણ દર્શાવેલ છે. ધારેલ મધ્યકની રીતથી મધ્યક શોધો :

વર્ગ	0-10	10-20	20-30	30-40	40-50
આવૃત્તિ	20	24	40	36	20

4. વિચલનની રીતથી નીચે આપેલા આવૃત્તિ વિતરણનો મધ્યક શોધો :

વર્ગ	40-50	50-60	60-70	70-80	80-90	90-100
આવૃત્તિ	5	10	20	9	6	2

5. નીચે આપેલા આવૃત્તિ વિતરણનો મધ્યક શોધો :

વર્ગ	1-5	6-10	11-15	16-20	21-25	26-30	31-35
આવૃત્તિ	18	32	30	40	25	15	40

6. B.B.A.ના વિદ્યાર્થીઓ દ્વારા 600 કુટુંબના દૈનિક આવકનો સર્વેક્ષણ કરવામાં આવ્યો જે નીચે પ્રમાણે છે. કુટુંબની આવકનો મધ્યક શોધો.

આવક	200-299	300-399	400-499	500-599	600-699	700-799	800-899
કુટુંબના સભ્યો	3	61	118	139	126	151	2

7. કોઈ એક વ્યક્તિ પાસે જુદી જુદી કંપનીના શેર નીચે પ્રમાણે છે તો તેનો મધ્યક શોધો :

શેરની સંખ્યા	100-200	200-300	300-400	400-500	500-600	600-700
કંપનીની સંખ્યા	5	3	3	6	2	1

8. નીચે આપેલાં 100 અવલોકનોના આવૃત્તિ વિતરણનો મધ્યક 148 છે, તો ખૂટતી આવૃત્તિઓ f_1 તથા f_2 શોધો :

વર્ગ	0-49	50-99	100-149	150-199	200-249	250-299	300-349
આવૃત્તિ	10	15	f_1	20	15	f_2	2

9. ભારતના જુદા જુદા રાજ્યના જુદા જુદા વિસ્તારોમાં ઉચ્ચતર માધ્યમિક વિજ્ઞાનપ્રવાહમાં છોકરીઓની ટકાવારી નીચે આપેલી છે. વિચલનની રીતથી સરેરાશ ટકાવારી શોધો :

છોકરીઓની ટકાવારી	15-25	25-35	35-45	45-55	55-65	65-75	75-85
રાજ્યોની સંખ્યા	6	10	5	6	4	2	2

10. નીચે દર્શાવેલ વિતરણમાં 64 હૉસ્પિટલોમાં આવતા બહારના (out-door) દર્દીઓની સંખ્યા છે. જો મધ્યક 18 હોય, તો ખૂટતી આવૃત્તિઓ f_1 તથા f_2 શોધો.

દર્દીઓની સંખ્યા	11-13	13-15	15-17	17-19	19-21	21-23	23-25
હૉસ્પિટલની સંખ્યા	7	6	f_1	13	f_2	5	4

15.3 વર્ગીકૃત માહિતીનો બહુલક

આપણે યાદ કરીએ કે અવર્ગીકૃત માહિતીમાં જે અવલોકન બીજાં અવલોકનોની સરખામણીમાં વધુ વખત પુનરાવર્તિત થાય છે તેને માહિતીનો બહુલક કહે છે. આ પ્રકરણમાં આપણે વર્ગીકૃત માહિતીનો બહુલક શોધવા માટેની રીતની ચર્ચા કરીશું, જેને Z વડે દર્શાવાય છે.

આપણે નીચેના ઉદાહરણ દ્વારા અવર્ગીકૃત માહિતીનો બહુલક કેવી રીતે શોધવો તે જોઈએ.

ઉદાહરણ 6 : કોઈ ગોલંદાજે એક દિવસીય ક્રિકેટમૅચની શ્રેણીમાં લીધેલ વિકેટોની સંખ્યા નીચે મુજબ છે :

4, 5, 6, 3, 4, 0, 3, 2, 3, 5.

માહિતીનો બહુલક શોધો.

ઉદ્રેલ : અહીં ગોલંદાજે લીધેલ 3 વિકેટો વધુમાં વધુ વખત પુનરાવર્તન થાય છે એટલે કે 3 વખત. માટે આ માહિતીનો બહુલક 3 છે.

વર્ગીકૃત માહિતી વિતરણમાં એક નજરે આવૃત્તિઓ પર જોતાં બહુલક શોધવો તે શક્ય નથી. અહીં આપણે ફક્ત વધુ આવૃત્તિવાળો વર્ગ દર્શાવી શકીએ છીએ, જેને **બહુલકીય વર્ગ** કહે છે. બહુલક એ બહુલકીય વર્ગમાં આવેલી કિંમત છે અને તે નીચેના સૂત્ર દ્વારા મેળવી શકાય,

$$\mathbf{Z} = \mathbf{I} + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times \mathbf{c}$$

જ્યાં, / = બહુલકીય વર્ગનું અધઃસીમા બિંદુ

c = વર્ગલંબાઈ (બધા જ વર્ગીની લંબાઈ સમાન ધારતાં)

 f_1 = બહુલકીય વર્ગની આવૃત્તિ

 $f_0 =$ બહુલકીય વર્ગની આગળના વર્ગની આવૃત્તિ

 f_2 = બહુલકીય વર્ગની પછીના વર્ગની આવૃત્તિ

આપણે નીચેના ઉદાહરણમાં ઉપરના સૂત્રનો ઉપયોગ કરીએ :

ઉદાહરણ 7 : એક હૉસ્ટેલના 20 વિદ્યાર્થીઓના એક દિવસના વાચન-કલાકોનું સર્વેક્ષણ હાથ ધરવામાં આવ્યું. જેનું પરિણામ નીચે આપેલા કોષ્ટકમાં છે :

વાંચનના કલાકોની સંખ્યા	1-3	3-5	5-7	7–9	9–11
હોસ્ટેલના વિદ્યાર્થીઓની સંખ્યા	7	2	8	2	1

આ માહિતીનો બહુલક શોધો.

😘 : અહીં મહત્તમ વર્ગ-આવૃત્તિ 8 છે અને આ આવૃત્તિ સંબંધિત વર્ગ 5–7 છે. માટે બહુલકીય વર્ગ 5–7 છે.

 \therefore બહુલકીય વર્ગ 5–7ની અધઃસીમા l=5 છે.

વર્ગલંબાઈ c=2 છે. બહુલકીય વર્ગની આવૃત્તિ $f_1=8$. બહુલકીય વર્ગની આગળના વર્ગની આવૃત્તિ $f_0=2$ અને તે પછીના વર્ગની આવૃત્તિ $f_2=2$ છે.

હવે આપણે આ કિંમતો સૂત્રમાં મૂકીએ :

$$Z = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times c$$

$$= 5 + \left(\frac{8 - 2}{2 \times 8 - 2 - 2}\right) \times 2$$

$$= 5 + \frac{6}{12} \times 2 = 5 + 1 = 6$$

∴ માહિતીનો બહુલક 6 છે.

ઉદાહરણ 8 : ગણિતની પરીક્ષાના 100 વિદ્યાર્થીઓના ગુણનું વિતરણ નીચે મુજબ છે :

મેળવેલ ગુણ	10-25	25-40	40-55	55-70	70-85	85-100
વિદ્યાર્થીની સંખ્યા	05	21	21	08	25	20

આ માહિતીનો બહુલક શોધો.

63લ: અહીં મહત્તમ આવૃત્તિ 25 છે અને તેને સંબંધિત વર્ગ 70-85 છે. તેથી બહુલકીય વર્ગ 70-85 છે. બહુલકીય વર્ગની અધઃસીમા l=70 અને વર્ગલંબાઈ c=15 છે.

બહુલકીય વર્ગની આવૃત્તિ $f_1=25$ તે પહેલાના વર્ગની આવૃત્તિ $f_0=08$, તે પછીના વર્ગની આવૃત્તિ $f_2=20$. આ બધી કિંમતો સૂત્રમાં મૂકતાં,

બહુલક =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times c$$

= $70 + \left(\frac{25 - 8}{2 \times 25 - 8 - 20}\right) \times 15$
= $70 + \frac{17 \times 15}{22}$
= $70 + 11.59 = 81.59$

∴ માહિતીનો બહુલક 81.59 છે.

स्वाध्याय 15.2

1. નીચે આપેલા આવૃત્તિ વિતરણનો બહુલક શોધો :

વર્ગ	4-8	8-12	12-16	16-20	20-24	24-28
આવૃત્તિ	9	6	12	7	15	1

2. 100 દુકાનોના દરરોજના નફાની માહિતી નીચે પ્રમાણે છે :

દરરોજનો નફો (₹માં)	0-100	100-200	200-300	300-400	400-500	500-600
દુકાનોની સંખ્યા	12	18	27	20	17	6

માહિતીનો બહુલક શોધો.

3. એક ફૅક્ટરીના 90 કામદારોનો દૈનિક પગાર નીચે મુજબ છે :

દૈનિક પગાર (₹માં)	150-250	250-350	350-450	450-550	550-650	650-750	750-850	850-950
કામદારોની સંખ્યા	4	6	8	12	33	17	8	2

કામદારોનો બહુલકીય પગાર શોધો.

4. નીચેના માટે બહુલક શોધો : (4 અને 5)

વર્ગ	0-7	7-14	14-21	21-28	28-35	35-42	42-49	49-56
આવૃત્તિ	26	31	35	42	82	71	54	19

 องโ
 0-20
 20-40
 40-60
 60-80
 80-100
 100-120
 120-140
 140-160
 160-180

 งแอโต
 11
 14
 18
 21
 31
 27
 12
 11
 10

6. નીચે આપેલ માહિતી 200 ઇલેક્ટ્રિક ગોળાનું આયુષ્ય (કલાકમાં) છે :

આયુષ્ય કલાકમાં	0-20	20-40	40-60	60-80	80-100	100-120
ઇલેક્ટ્રિક ગોળાની સંખ્યા	26	31	35	42	82	71

ગોળાનું બહુલકીય આયુષ્ય શોધો.

*

15.4 વર્ગીકૃત માહિતીનો મધ્યસ્થ (M)

આપણે ધોરણ IXમાં અવર્ગીકૃત માહિતી માટે મધ્યસ્થની વ્યાખ્યા આ પ્રમાણે શીખ્યા છીએ : ''અવલોકનોને ચઢતા અથવા ઉતરતા ક્રમમાં ગોઠવતાં જે અવલોકન મધ્યમાં આવે તેને માહિતીનો મધ્યસ્થ કહે છે.'' **જો અવલોકનોની** સંખ્યા n-અયુગ્મ હોય, તો $\left(\frac{n+1}{2}\right)$ મું અવલોકન મધ્યસ્થ થાય અને જો n-યુગ્મ હોય, તો

મધ્યસ્થ,
$$\mathbf{M}=\frac{\left(\frac{n}{2}\right)$$
મું અવલોકન $+\left(\frac{n}{2}+1\right)$ મું અવલોકન $+\left(\frac{n}{2}+1\right)$ મું અવલોકન

ઉદાહરણ તરીકે, આપણે 50 વિદ્યાર્થીઓના ગણિતમાં 50 માંથી મેળવેલ ગુણ નીચે દર્શાવેલ છે અને તેનો મધ્યસ્થ શોધવો છે :

મેળવેલ ગુણ	18	22	30	35	39	42	45	47
વિદ્યાર્થીઓની સંખ્યા	4	5	8	8	16	4	2	3

અહીં n=50 જે યુગ્મ છે. એટલે $\frac{n}{2}$ મા અવલોકન અને $\left(\frac{n}{2}+1\right)$ મા અવલોકનની સરેરાશ મધ્યસ્થ થશે. એટલે કે 25 મા અને 26 મા અવલોકનની સરેરાશ શોધવાની છે. તે શોધવા માટે નીચેની પ્રક્રિયા કરીશું.

કોષ્ટક 15.6

મેળવેલ ગુણ	વિદ્યાર્થીઓની સંખ્યા
18	4
22 કે તેથી ઓછા	4 + 5 = 9
30 કે તેથી ઓછા	9 + 8 = 17
35 કે તેથી ઓછા	17 + 8 = 25
39 કે તેથી ઓછા	25 + 16 = 41
42 કે તેથી ઓછા	41 + 4 = 45
45 કે તેથી ઓછા	45 + 2 = 47
47 કે તેથી ઓછા	47 + 3 = 50

આપણે એક સ્તંભ ઉમેર્યો છે જે તે ગુણ સુધી વિદ્યાર્થીની સંખ્યા દર્શાવે છે, તેને સંચયી આવૃત્તિ સ્તંભ કહે છે.

કોષ્ટક 15.7

મેળવેલ ગુણ	વિદ્યાર્થીની સંખ્યા (<i>f</i>)	સંચયી આવૃત્તિ (<i>cf</i>)
18	4	4
22 5		9
30	8	17
35	8	25
39	16	41
42	4	45
45	2	47
47	3	50

ઉપરના કોષ્ટક પરથી આપણે જોઈ શકીએ છીએ કે, 25મું અવલોકન 35 26મું અવલોકન 39

∴ મધ્યસ્થ (M) =
$$\frac{35+39}{2}$$
 = 37

284

મધ્યસ્થ 37 બતાવે છે કે 50 % વિદ્યાર્થીઓ 37 થી ઓછા ગુણવાળા અને 50 % વિદ્યાર્થીઓએ 37 થી વધારે ગુણ મેળવ્યા છે.

હવે આપણે વર્ગીકૃત માહિતીનો મધ્યસ્થ કેવી રીતે મેળવવો તે નીચે આપેલા ઉદાહરણ દ્વારા જોઈશું. -

55 વિદ્યાર્થીઓએ કોઈ એક પરીક્ષામાં 100માંથી મેળવેલ ગુણ નીચેના વિતરણમાં દર્શાવ્યા છે :

કોષ્ટક 15.8

ગુણ	વિદ્યાર્થીઓની સંખ્યા
0-10	2
10-20	3
20-30	3
30-40	4
40-50	3
50-60	4
60-70	7
70-80	11
80-90	8
90-100	10

આપણે જોઈ શકીએ છીએ કે 2 વિદ્યાર્થીઓ 0 અને 10ની વચ્ચે ગુણ મેળવે છે, 3 વિદ્યાર્થીઓના ગુણ 10 અને 20ની વચ્ચે છે. 30થી ઓછા ગુણ મેળવનાર વિદ્યાર્થીઓની સંખ્યા 2+3+3=8 છે. માટે વર્ગ 20-30ની સંચયી આવૃત્તિ 8 છે. સંચયી આવૃત્તિનું કોષ્ટક 15.9માં નીચે મુજબ દર્શાવેલ છે :

કોષ્ટક 15.9

મેળવેલ ગુણ	વિદ્યાર્થીઓની સંખ્યા (સંચયી આવૃત્તિ) (<i>cf</i>)
10થી ઓછા	2
20થી ઓછા	2 + 3 = 5
30થી ઓછા	5 + 3 = 8
40થી ઓછા	8 + 4 = 12
50થી ઓછા	12 + 3 = 15
60થી ઓછા	15 + 4 = 19
70થી ઓછા	19 + 7 = 26
80થી ઓછા	26 + 11 = 37
90થી ઓછા	37 + 8 = 45
100થી ઓછા	45 + 10 = 55

કોષ્ટક 15.9નું વિતરણ **'થી ઓછા' પ્રકારનું સંચયી આવૃત્તિ કોષ્ટક** કહેવાય. અહીં 10, 20, 30,..., 100 સંબંધિત વર્ગ-અંતરાલની ઉર્ધ્વસીમા છે.

તે જ રીતે, આપણે વિદ્યાર્થીએ મેળવેલ ગુણ 0 થી વધુ, 10થી વધુ, 20થી વધુ વગેરેનું કોષ્ટક બનાવી શકીએ છીએ. કોષ્ટક 15.8માંથી આપણે જોઈ શકીએ છીએ કે બધા જ 55 વિદ્યાર્થીઓએ 0 કે 0 કરતાં વધુ ગુણ મેળવ્યા છે. બે વિદ્યાર્થીઓએ

વર્ગ અંતરાલ 0-10 માં ગુણ મેળવે છે એટલે કે 55-2=53 વિદ્યાર્થીઓએ 10 કે તેથી વધુ ગુણ મેળવ્યા છે વગેરે. આ માહિતી કોષ્ટક 15.10માં દર્શાવેલી છે.

કોષ્ટક 15.10

મેળવેલ ગુણ	વિદ્યાર્થીની સંખ્યા (સંચયી આવૃત્તિ) (<i>cf</i>)
0 કે તેથી વધુ	55
10 કે તેથી વધુ	55 - 2 = 53
20 કે તેથી વધુ	53 - 3 = 50
30 કે તેથી વધુ	50 - 3 = 47
40 કે તેથી વધુ	47 - 4 = 43
50 કે તેથી વધુ	43 - 3 = 40
60 કે તેથી વધુ	40 - 4 = 36
70 કે તેથી વધુ	36 - 7 = 29
80 કે તેથી વધુ	29 - 11 = 18
90 કે તેથી વધુ	18 - 8 = 10

ઉપરના કોષ્ટકને 'થી વધુ' પ્રકારનું સંચયી આવૃત્તિ વિતરણ કહે છે. અહીં, 0, 10, 20, 30,..., 90 એ અનુરૂપ વર્ગોની અધઃસીમા છે. હવે મધ્યસ્થ શોધવા માટે આપશે વર્ગ, અનુરૂપ આવૃત્તિ અને સંચયી આવૃત્તિ દર્શાવતું કોષ્ટક 15.11 બનાવીશું.

કોષ્ટક 15.11

ીલ	વિદ્યાર્થીઓની સંખ્યા (<i>f</i>)	સંચયી આવૃત્તિ (<i>cf</i>)
0-10	2	2
10-20	3	5
20-30	3	8
30-40	4	12
40-50	3	15
50-60	4	19
60-70	7	26
70-80	11	37
80-90	8	45
90-100	10	55

અહીં વર્ગીકૃત માહિતીમાં, આપણે સંચયી આવૃત્તિ જોઈને મધ્યમાં આવેલ અવલોકન એ કોઈક વર્ગમાં આવેલ છે તેમ કહેવા માટે સક્ષમ નથી. માટે આખી માહિતીને બે ભાગમાં વહેંચી શકે તેવો વર્ગ શોધવો જરૂરી છે. આ વર્ગ કયો હશે ? આ વર્ગ શોધવા, આપણે દરેક વર્ગની સંચયી આવૃત્તિ શોધીશું અને $\frac{n}{2}$ શોધીશું. આપણે એવો વર્ગ શોધીશું કે જેની સંચયી આવૃત્તિ $\frac{n}{2}$ કરતાં 'તરત' મોટી હોય (અથવા $\frac{n}{2}$ ની નજીક હોય). તે વર્ગને આપણે **મધ્યસ્થવર્ગ** કહીશું. ઉપરના વિતરણમાં n=55 છે. માટે $\frac{n}{2}=27.5$. હવે વર્ગ 70-80ની સંચયી આવૃત્તિ 37 છે, જે 27.5 કરતાં તરત મોટી છે, માટે વર્ગ 70-80 એ **મધ્યસ્થવર્ગ** બને.

 $(\vec{\mathbf{ni}} \mathbf{i} : \frac{n}{2}$ કરતાં તરત મોટી સંચયી આવૃત્તિ એટલે કે $\frac{n}{2}$ કરતાં મોટી સંચયી આવૃત્તિવાળી આવૃત્તિઓમાં સૌથી નાની સંચયી આવૃત્તિ.)

મધ્યસ્થવર્ગ શોધ્યા પછી આપણે નીચે આપેલ સૂત્રનો ઉપયોગ કરીને મધ્યસ્થ શોધીશું :

મધ્યસ્થ (M) =
$$l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times c$$

જ્યાં, / = મધ્યસ્થવર્ગનું અધઃસીમા બિંદુ

n = અવલોકનોની કુલ સંખ્યા (આવૃત્તિ)

cf = મધ્યસ્થવર્ગની આગળના વર્ગની સંચયી આવૃત્તિ

f = મધ્યસ્થવર્ગની આવૃત્તિ

c = વર્ગલંબાઈ (દરેક વર્ગની વર્ગલંબાઈ સમાન ધારીશું.)

$$\frac{n}{2}=\frac{55}{2}=27.5,\; l=70,\; cf=26,\; f=11,\; c=10$$
 કિંમતો સૂત્રમાં મૂકતાં,

મધ્યસ્થ (M) =
$$70 + \left(\frac{27.5 - 26}{11}\right) \times 10$$

= $70 + \left(\frac{1.5 \times 10}{11}\right) = 71.36$

માટે અડધા વિદ્યાર્થીઓએ 71.36 કરતાં ઓછા ગુણ અને અડધા વિદ્યાર્થીઓએ 71.36 કરતાં વધુ ગુણ મેળવ્યા હશે. ઉદાહરણ 9 : શાળાના ધોરણ 10ના 45 વિદ્યાર્થીઓના વજન (કિગ્રામાં)નું એક સર્વેક્ષણ હાથ ધરવામાં આવ્યું અને નીચે મુજબની માહિતી મળી.

વજન (કિગ્રામાં)	વિદ્યાર્થીની સંખ્યા
20-25	2
25-30	5
30-35	8
35-40	10
40-45	7
45-50	10
50-55	3

માહિતીનો મધ્યસ્થ શોધો :

ઉકેલ : અહીં અવલોકનોની સંખ્યા 45 છે.

એટલે કે n = 45 માટે $\frac{n}{2} = 22.5$

હવે આપણે સંચયી આવૃત્તિ દર્શાવતું કોષ્ટક નીચે મુજબ તૈયાર કરીએ :

વજન (કિગ્રા)	વિદ્યાર્થીની સંખ્યા (<i>f</i>)	સંચયી આવૃત્તિ(<i>cf</i>)
20-25	2	2
25-30	5	7
30-35	8	15
35-40	10	25
40-45	7	32
45-50	10	42
50-55	3	45

 $\frac{n}{2}$ = 22.5. આ અવલોકન ધરાવતો વર્ગ 35-40 છે.

માટે
$$l = 35$$
, $cf = 15$, $f = 10$, $c = 5$

સૂત્રનો ઉપયોગ કરતાં, M=
$$l+\left(\frac{\frac{n}{2}-cf}{f}\right)\times c$$
$$=35+\left(\frac{22.5-15}{10}\right)\times 5$$
$$=35+\left(\frac{7.5\times 5}{10}\right)=38.75$$

મધ્યસ્થ વજન 38.75 કિગ્રા છે.

એટલે કે 50 % વિદ્યાર્થીઓનું વજન 38.75 કિગ્રા કરતાં વધુ અને 50 % વિદ્યાર્થીઓનું વજન 38.75 કિગ્રા કરતાં ઓછું છે.

ઉદાહરણ 10: નીચે આપેલા આવૃત્તિ વિતરણનો મધ્યસ્થ 38.2 છે. જો કુલ આવૃત્તિ 165 હોય, તો x અને y શોધો.

વર્ગ	5-14	14-23	23-32	32-41	41-50	50-59	59-68
આવૃત્તિ	5	11	x	53	у	16	10

ઉકેલ :

વર્ગ	આવૃત્તિ	સંચયી આવૃત્તિ
5-14	5	5
14-23	11	16
23-32	x	16 + x
32-41	53	69 + x
41-50	у	69 + x + y
50-59	16	85 + x + y
59-68	10	95 + x + y

અહીં
$$n = 165$$
 છે, માટે $95 + x + y = 165$, એટલે કે $x + y = 70$

વળી, મધ્યસ્થ 38.2 છે જે વર્ગ 32-41માં છે. આથી મધ્યસ્થ વર્ગ 32-41 થાય.

$$\frac{n}{2} = \frac{165}{2} = 82.5, l = 32, cf = 16 + x, f = 53, c = 9$$

સૂત્ર વાપરતાં,
$$M = l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times c$$

$$\therefore 38.2 = 32 + \left(\frac{825 - 16 - x}{53}\right) \times 9$$

$$6.2 = \frac{66.5 - x}{53} \times 9$$

$$\therefore \frac{6.2 \times 53}{9} = 66.5 - x$$

$$\therefore$$
 36.5 = 66.5 - x

$$\therefore \qquad x = 30$$

પરંતુ
$$x + y = 70$$
. તેથી, $y = 40$

288

∴ x અને yની કિંમત અનુક્રમે 30 અને 40 છે. નોંધ : મધ્યવર્તી સ્થિતિમાનના માપ વચ્ચે સંબંધ છે : બહુલક (Z) = 3 મધ્યસ્થ (M) – 2 મધ્યક (\overline{x})

स्वाध्याय 15.3

1. નીચે આપેલી માહિતીનો મધ્યસ્થ શોધો :

ચલની કિંમત	12	13	14	15	16	17	18	19	20
આવૃત્તિ	7	10	15	18	20	10	9	8	3

2. નીચે આપેલી માહિતીનો મધ્યસ્થ શોધો :

વર્ગ	4-8	8-12	12-16	16-20	20-24	24-28
આવૃત્તિ	9	16	12	7	15	1

3. નીચે આપેલા આવૃત્તિ-વિતરણ પરથી માહિતીનો મધ્યસ્થ શોધો :

વર્ગ	0-100	100-200	200-300	300-400	400-500	500-600
આવૃત્તિ	64	62	84	72	66	52

4. બેંકમાં મૂકેલ થાપણ (હજાર ₹માં) અને થાપણ મૂકનારનું આવૃત્તિ વિતરણ નીચે પ્રમાણે છે. માહિતીનો મધ્યસ્થ શોધો ઃ

થાપણ (હજાર ₹માં)	0-10	10-20	20-30	30-40	40-50	50-60
થાપણદારની સંખ્યા	1071	1245	150	171	131	8

5. નીચે આપેલી માહિતીનો મધ્યસ્થ 38 છે. a અને b ની કિંમત શોધો. કુલ આવૃત્તિ 400 છે.

વર્ગ	10-20	20-30	30-40	40-50	50-60	60-70	70-80
આવૃત્તિ	42	38	а	54	b	36	32

6. 230 અવલોકનોનો મધ્યસ્થ 46 છે, જેનું આવૃત્તિ વિતરણ નીચે પ્રમાણે છે, તો a અને b શોધો.

વર્ગ	10-20	20-30	30-40	40-50	50-60	60-70	70-80
આવૃત્તિ	12	30	а	65	ь	25	18

7. ધોરણ 10ના 50 વિદ્યાર્થીઓના ગણિતમાં 80 ગુણમાંથી મેળવેલ ગુણ નીચેના આવૃત્તિ વિતરણમાં છે. મધ્યસ્થ શોધો.

વર્ગ	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
આવૃત્તિ	2	5	8	16	9	5	3	2

*

15.5 સંચયી આવૃત્તિ વિતરણની આલેખાત્મક રજૂઆત

આપણે જાણીએ છીએ કે ''એક ચિત્ર હજારો શબ્દની ગરજ સારે છે.'' આપણે ધોરણ IXમાં લંબાલેખ, સ્તંભાલેખ, આવૃત્તિ બહુકોણ વગેરે આલેખ દર્શાવ્યા છે. હવે આપણે સંચયી આવૃત્તિ વિતરણની આલેખાત્મક રજૂઆત કરીશું.

દાખલા તરીકે કોષ્ટક 15.9માં આપેલ સંચયી આવૃત્તિ વિતરણ લઈએ.

યાદ રાખો કે, 10, 20, 30,..., 100 એ વર્ગની ઉર્ધ્વ સીમા છે. કોષ્ટક 15.9ની માહિતીને દર્શાવવા માટે આપણે X-અક્ષ પર વર્ગની ઉર્ધ્વ સીમા લઈશું અને તેને સંબંધિત સંચયી આવૃત્તિ યોગ્ય સ્કેલમાપ લઈ Y-અક્ષ પર લઈશું. સ્કેલમાપ બંને અક્ષો પર સમાન ન પણ હોય. હવે, આપણે ક્રમયુક્ત જોડ <mark>(ઉર્ધ્વ સીમા, તેને સંગત સંચયી આવૃત્તિ)</mark>ને આલેખ પર આલેખીશું; એટલે કે (10, 2), (20, 5), (30, 8), (40, 12), (50, 15), (60, 19), (70, 26), (80, 37), (90, 45), (100, 55). આ બિંદુઓને આલેખપત્ર પર લઈ આ બિંદુઓને સરળવક્ર (Smooth curve) દ્વારા જોડીશું. (જુઓ આકૃતિ 15.1)

આ રીતે મેળવેલ વક્રને 'સંચયી આવૃત્તિ વક્ર' કહે છે અથવા 'ઓજાઈવ' (Ogive) કહે છે. (થી ઓછા પ્રકારનો આલેખ)

આકૃતિ 15.1

હવે આપણે 'થી વધુ પ્રકારનો આલેખ' ઓજાઈવ દોરીશું. (જુઓ કોષ્ટક 15.10)

અહીં, 0, 10, 20,...., 90 એ વર્ગની અધઃસીમા છે. 'થી વધુ પ્રકારનો સંચયી આવૃત્તિ વક્ર' દોરવા માટે X-અક્ષ પર વર્ગની અધઃસીમા અને તેને સંગત સંચયી આવૃત્તિ Y-અક્ષ પર લઈશું. ત્યાર પછી આપણે ક્રમયુક્ત જોડ (અ<mark>ધઃસીમા,</mark> તેને સંગત સંચયી આવૃત્તિ)ને આલેખીશું. એટલે કે, (0, 55), (10, 53), (20, 50), (30, 47), (40, 43),

આકૃતિ 15.2

(50, 40), (60, 36), (70, 29), (80, 18), (90, 10) ને આલેખપત્ર પર લઈ બધા જ બિંદુઓને સરળ વક્ર દ્વારા જોડીશું. આ રીતે મેળવેલ વક્રને **'સંચયી આવૃત્તિ વક્ર' અથવા 'ઓજાઈવ' કહે છે (થી વધુ પ્રકારનો).** (જુઓ આકૃતિ 15.2)

કોઈ પણ રીતે ઓજાઈવ વક્કો મધ્યસ્થ સાથે સંબંધ ધરાવે છે ?

એક સરળ રસ્તો એ છે કે $\frac{n}{2} = \frac{55}{2} = 27.5$ ને Y-અક્ષ પર દર્શાવો અને ત્યાંથી X-અક્ષને સમાંતર રેખા દોરો જે 'ઓજાઇવ' વક્કને જ્યાં છેદે ત્યાંથી Y-અક્ષને સમાંતર રેખા દોરો તે X-અક્ષને જ્યાં મળે તે સંખ્યા મધ્યસ્થ છે. (જુઓ આકૃતિ 15.3)

મધ્યસ્થ મેળવવાનો બીજો રસ્તો નીચે પ્રમાણે છે :

એક જ આલેખ પર બંને 'ઓજાઈવ' (થી વધુ પ્રકાર અને થી ઓછા પ્રકારનો આલેખ) દોરો. બંને ઓજાઈવ એકબીજાને એક બિંદુએ છેદશે. આ બિંદુથી આપણે X-અક્ષને લંબ દોરીએ અને X-અક્ષને જે બિંદુમાં છેદે તેનો x-યામ મધ્યસ્થ હોય. (જુઓ આકૃતિ 15.4)

ઉદાહરણ 11 : કોઈ એક ફૅક્ટરીના 30 અધિકારીઓનો વાર્ષિક પગાર (લાખ ₹માં) નીચે આપેલા આવૃત્તિ-વિતરણમાં દર્શાવ્યો છે :

વાર્ષિક પગાર (લાખ ₹ માં)	5-10	10-15	15-20	20-25	25-30	30-35	35-40
અધિકારીની સંખ્યા	2	9	3	6	4	4	2

બંને ઓજાઈવ વક્રો દોરો અને તે પરથી મધ્યસ્થ વાર્ષિક આવક મેળવો.

ઉકેલ :

વાર્ષિક આવક	અધિકારીની સંખ્યા (f)	સંચયી આવૃત્તિ (<i>cf</i>)
5-10	2	2
10-15	9	11
15-20	3	14
20-25	6	20
25-30	4	24
30–35	4	28
35-40	2	30

પ્રથમ આપણે X-અક્ષ પર અધઃસીમા અને સંચયી આવૃત્તિ Y-અક્ષ પર લઈએ. પછી આપણે બિંદુઓ (10, 2), (15, 11), (20, 14), (25, 20), (30, 24), (35, 28), (40, 30) આલેખ પર આલેખીશું. જે 'થી ઓછા' પ્રકારનો ઓજાઈવ મળશે અને બિંદુઓ (5, 30), (10, 28), (15, 19), (20, 16), (25, 10), (30, 6), (35, 2) લઈ 'થી વધુ' પ્રકારનો ઓજાઈવ આકૃતિ 15.5માં દર્શાવ્યા પ્રમાણે દોરીશું.

આકૃતિ 15.5

બંને વક્રોના છેદબિંદુનો x-યામ જે 20.83ની નજીક છે તે મધ્યસ્થ છે. તે સૂત્રનો ઉપયોગ કરીને પણ ચકાસી શકાય છે. તેથી મધ્યસ્થ વાર્ષિક આવક ₹ 20.83 (લાખમાં) છે. (જુઓ આકૃતિ 15.5)

स्वाध्याय 15

1. છૂટક બજારમાં એક ફળફળાદિનો ફેરિયો સફરજનની પેટી વેચે છે. દરેક પેટીમાં સફરજનની સંખ્યા સરખી નથી. નીચે આપેલ પેટીમાં સફરજનની સંખ્યા પ્રમાણેનું વિતરણ આપેલ છે. ધારેલા મધ્યકની રીતથી પેટીમાં મૂકેલ સફરજનની સરેરાશ સંખ્યા શોધો.

સફરજનની સંખ્યા	50-53	53-56	56-59	59-62	62-65
પેટીની સંખ્યા	20	150	115	95	20

2. હૉસ્ટેલમાં રહેતા 50 વિદ્યાર્થીઓનો દૈનિક ખર્ચ નીચે પ્રમાણે છે :

દૈનિક ખર્ચ (₹માં)	100-120	120-140	140-160	160-180	180-200
વિદ્યાર્થીઓની સંખ્યા	12	14	8	6	10

યોગ્ય રીતનો ઉપયોગ કરીને વિદ્યાર્થીનો દૈનિક સરેરાશ ખર્ચ શોધો.

3. નીચે આપેલાં 200 અવલોકનોનો મધ્યક 332 છે. x અને y ની કિંમત શોધો :

વર્ગ	100-150	150-200	200-250	250-300	300-350	350-400	400-450	450-500	500-550
આવૃતિ	4	8	х	42	50	у	32	6	4

4. નીચે આપેલાં આવૃત્તિ-વિતરણનો બહુલક શોધો :

વર્ગ	0-15	15-30	30-45	45-60	60-75	75-90	90-105
આવૃત્તિ	8	16	23	57	33	23	13

5. નીચે આપેલી માહિતીનો બહુલક શોધો :

વર્ગ	30-40	40-50	50-60	60-70	70-80	80-90	90-100
આવૃત્તિ	12	17	28	23	7	8	5

6. નીચે આપેલા આવૃત્તિ-વિતરણમાં 165 અવલોકનોનો બહુલક 34.5 છે. a અને b ની કિંમત શોધો :

વર્ગ	5-14	14-23	23-32	32-41	41-50	50-59	59-68
આવૃત્તિ	5	11	а	53	b	16	10

7. નીચે આપેલા આવૃત્તિ-વિતરણનો બહુલક શોધો :

વર્ગ	1500-2000	2000-2500	2500-3000	3000-3500	3500-4000	4000-4500	4500-5000
આવૃત્તિ	14	56	60	86	74	62	48

8. નીચે આપેલા આવૃત્તિ-વિતરણનો મધ્યસ્થ શોધો :

વર્ગ	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90
આવૃત્તિ	9	11	15	24	19	9	8	5

9. નીચે આપેલી માહિતીનો મધ્યસ્થ 525 છે. જો કુલ આવૃત્તિ 100 હોય, તો x અને y શોધો :

વર્ગ	0-100	100-200	200-300	300-400	400-500	500-600	600-700	700-800	800-900	900-1000
આવૃત્તિ	3	4	x	12	17	20	9	у	8	3

10.	નીચે આપેલું દરેક વિધાન સાચું બન	ને તે રીતે આપેલા	વિકલ્પો (a), (b), (c)	અથવા (d) માંથી યોગ	ય વિકલ્પ પસંદ
	કરીને 📉 માં લખો :				

(1)	કોઈક	માહિતી	માટે	Z =	= 25	અને	\overline{x}	= 25,	તો	M =	
-----	------	--------	------	------------	------	-----	----------------	-------	----	-----	--

(a) 25

(b) 75

(c) 50

(d) 0

(2) કોઈક માહિતી માટે
$$Z - M = 2.5$$
. જો માહિતીનો મધ્યક 20 હોય, તો $Z =$

(a) 21.25

(b) 22.75

(c) 23.75

(d) 22.25

(3)
$$\Re \overline{x} - Z = 3$$
 અને $\overline{x} + Z = 45$, તો $M =$

(a) 24

(b) 22

(c) 26

(d) 23

(4)
$$\Re Z = 24$$
, $\overline{x} = 18$, $\Re M = ...$

(a) 10

(b) 20

(c) 30

(d) 40

(5)
$$\Re M = 15$$
, $\overline{x} = 10$, $\operatorname{ch} Z = \dots$

(a) 15

(b) 20

(c) 25

(d) 30

(6)
$$\Re M = 22$$
, $Z = 16$, $\operatorname{di} \overline{x} = \dots$

(a) 22

(b) 25

(c) 32

(d) 66

(7) श्रे
$$\bar{x} = 21.44$$
 अने $Z = 19.13$, तो $M =$

(a) 21.10

(b) 19.67

(c) 20.10

(d) 20.67

(8)
$$\Re$$
 M = 26, \bar{x} = 36, \Re Z =

(a) 6

(b) 5

(c) 4

(d) 3

(9) નીચે આપેલી માહિતીનો બહુલકીય વર્ગ છે.

વર્ગ	0-10	10-20	20-30	30-40	40-50
આવૃત્તિ	7	15	13	17	10

(a) 10-20

(b) 20-30

(c) 30-40

(d) 40-50

(a) 2

(b) 35

(c) 15

(d) 40

(11)દાખલા (9)માં આપેલ આવૃત્તિ વિતરણનો મધ્યસ્થવર્ગ છે.

(a) 40-50

(b) 30-40

(c) 20-30

(d) 10-20

*

સારાંશ

આ પ્રકરણમાં આપણે નીચે આપેલા મુદ્દાઓનો અભ્યાસ કર્યો :

1. વર્ગીકૃત માહિતીનો મધ્યક :

(i) સીધી રીત : $\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$

(ii) ધારેલા મધ્યકની રીત :
$$\overline{x} = \mathbf{A} + \frac{\sum f_i d_i}{\sum f_i}$$

(iii) વિચલનની રીત : $\overline{x} = \mathbf{A} + \left(\frac{\sum f_i \mathbf{u}_i}{\sum f_i}\right) \times c$

(વર્ગના અવલોકનો વર્ગની મધ્યકિંમતની આસપાસ હોય તેમ ધારતાં.)

2. વર્ગીકૃત માહિતીનો બહુલક નીચે આપેલા સૂત્રનો ઉપયોગ કરીને મેળવી શકાય :

બહુલક (Z) =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times c$$

જ્યાં બધા જ સંકેતો સંકેતપ્રથા પ્રમાણે છે.

3. આપેલા વર્ગની ઉપરના તમામ વર્ગોની આવૃત્તિઓનો સરવાળો કરવાથી તે વર્ગની સંચયી આવૃત્તિ (cf) મળે છે. આપેલ માહિતીનો મધ્યસ્થ નીચેના સૂત્રના ઉપયોગથી મેળવી શકાય :

મધ્યસ્થ (M) =
$$l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times c$$

જ્યાં દરેક સંકેત સંકેતપ્રથા પ્રમાણે છે.

4. મધ્યવર્તી સ્થિતિમાનના માપો વચ્ચેનો સંબંધ :

$$Z = 3M - 2\overline{x}$$

5. સંચયી આવૃત્તિ વિતરણને આલેખાત્મક રીતે સંચયી આવૃત્તિવક્ર દ્વારા અથવા સંચયી આવૃત્તિ 'થી વધુ' અને 'થી ઓછા' (ઓજાઈવ) વડે રજૂ કરીએ છીએ. બંને વક્રોના છેદબિંદુનો x-યામ એ વર્ગીકૃત માહિતીનો મધ્યસ્થ છે.

Baudhayana, was an Indian mathematician, who was most likely also a priest. He is noted as the author of the earliest Sulba Sutra—appendices to the Vedas giving rules for the construction of altars—called the Baudhayana Sulbasûtra, which contained several important mathematical results. He is older than the other famous mathematician Apastambha. He belongs to the Yajurveda school.

He is accredited with calculating the value of pi to some degree of precision, and with discovering what is now known as the Pythagorean theorem.

The sutras of Baudhayana:

The Shrautasutra

His shrauta sutras related to performing Vedic sacrifices has followers in some Smarta brahmanas (Iyers) and some Iyengars of Tamil Nadu, Kongu of Tamil nadu, Yajurvedis or Namboothiris of Kerala, Gurukkal brahmins, among others. The followers of this sutra follow a different method and do 24 Tila-tarpana, as Lord Krishna had done tarpana on the day before Amavasya; they call themselves Baudhayana Amavasya.

સંભાવના 16

Pure mathematics is, in its way, the poetry of logical ideas.

- Albert Einstein

The last thing one knows when writing a book is what to put first.

- Blaise Pascal

16.1 પ્રાસ્તાવિક

ધોરણ IXમાં આપણે ઘટનાની પ્રાયોગિક (અનુભવ પર રચાયેલી) સંભાવના વિશે શીખી ગયાં છીએ, કે જે ખરેખર પ્રયોગના પરિણામ પર આધારિત હતી. હવે આપણે એક સિક્કાને 100 વખત ઉછાળવાના પ્રયોગની ચર્ચા કરીએ કે જેમાં 47 વખત છાપ અને 53 વખત કાંટો આવવાની આવૃત્તિ છે. આ પ્રયોગને આધારિત છાપ આવવાની સંભાવના $\frac{47}{100} = 0.47$ અને કાંટો આવવાની સંભાવના $\frac{53}{100} = 0.53$ થાય. નોંધ કરો કે આ સંભાવના સિક્કાને 100 વખત ઉછાળવાના ખરેખર કરેલા પ્રયોગ પર આધારિત છે. આ કારણસર, આ સંભાવનાને પ્રાયોગિક અથવા અનુભવ આધારિત સંભાવના કહે છે. ખરેખર આ પ્રાયોગિક સંભાવના પ્રયોગના ખરેખર પરિણામો પર અને પરિણામોની યોગ્ય નોંધણી પર આધારિત છે. વધુમાં આ સંભાવનાઓ ફક્ત અંદાજ છે. જો આપણે આ જ સિક્કાને 100 વખત ઉછાળવાનો પ્રયોગ કરીથી કરીએ તો આપણને અલગ પરિણામ મળી શકે.

Karl Pearson (1857-1936)

ધોરણ IX માં આપણે સિક્કાને ખૂબ વધુ વખત ઉછાળવાના પ્રયોગની પ્રવૃત્તિઓ કરી છે અને છાપ (અથવા કાંટો) આવવાના પરિણામોની નોંધ કરી છે. આપણે એ પણ નોંધ કરી છે કે જેમ જેમ સિક્કો ઉછાળવાનો પ્રયોગ વધુ કર્યો છે તેમ તેમ છાપ (અથવા કાંટો) મેળવવાની સંભાવના $\frac{1}{2}$ ની નજીક અને નજીક આવતી જાય છે. વિશ્વના જુદા જુદા ભાગમાં આ પ્રકારના પ્રયોગો થયા છે અને છાપ (અથવા કાંટો) ઉપર આવવાના પરિણામની નોંધ કરી છે.

આંકડાશાસ્ત્રી **કાર્લ પિઅર્સને** 24000 વખત સિક્કો ઉછાળ્યો અને તેમાં તેને 12012 વખત છાપ ઉપર મળી, આ રીતે છાપ મેળવવાની પ્રાયોગિક સંભાવના $\frac{12012}{24000}=0.5005$ મળી. અઢારમી સદીના ફ્રેન્ચ પ્રકૃતિવાદી $\frac{3}{4000}$ વખત સિક્કો ઉછાળ્યો અને 2048 વખત છાપ મેળવી. છાપ મેળવવાની પ્રાયોગિક સંભાવના $\frac{2048}{4040}=0.507$ મેળવી.

હવે આપણે વિચારીએ કે, જો એક લાખ વખત સિક્કો ઉછાળવામાં આવે તો કાંટો મેળવવાની સંભાવના શું થશે ? અથવા દસ લાખ વખત ? વગેરે. આપણે અનુભવીએ છીએ કે જેમ જેમ સિક્કો ઉછાળવાની સંખ્યા વધારીએ છીએ તેમ તેમ છાપ (અથવા કાંટો) મેળવવાની પ્રાયોગિક સંભાવના $\frac{1}{2} = 0.5$ ની આસપાસ જણાય છે. તેને આપણે છાપ (કાંટો) મેળવવાની પ્રશિષ્ટ સંભાવનાની સંકલ્પના તરફ દોરી જાય છે. આ વિચાર પર આધારિત સાદા પ્રશ્નોની વાત કરીશું.

16.2 સંભાવનાની પ્રશિષ્ટ વ્યાખ્યાનો ખ્યાલ

આપણે એક દાખલાથી શરૂઆત કરીએ.

ધારો કે એક સમતોલ સિક્કો યાદચ્છિક રીતે ઉછાળવામાં આવે છે.

296