STAT462/862 UNIT 3C PIECEWISE POLYNOMIAL AND SPLINE

Devon Lin

Department of Mathematics and Statistics, Queen's University

OUTLINE

- 1. Piecewise Polynomials
- 2. Regression Splines
- 3. Smoothing Splines

Reference: Sections 5.1, 5.2 and 5.4 of HTF

Introduction

Linear models

- ▶ Linear in X (input vector)
- Augment/replace X with additional variables. Consider the model of the form

$$f(X) = \sum_{m=1}^{M} \beta_m h_m(X).$$

where $h_m(X): \mathbb{R}^p \to \mathbb{R}$ and $h_m(X)$ can be: X_j^2 , $X_i X_j$, $\log(X_j)$, or $I(l_m \le X_k \le u_m)$.

Fit by least squares,

$$\min_{oldsymbol{eta}} \sum_{i=1}^{N} \left(y_i - \sum_{m=1}^{M} eta_m h_m(oldsymbol{x}_i) \right)^2.$$

POLYNOMIAL MODEL

► A second-order polynomial model

$$f(X) = \beta_0 + \sum_{j=1}^{p} \beta_j X_j + \sum_{i,j} \beta_{ij} X_i X_j$$

A cubic model

$$f(X) = \beta_0 + \sum_{j=1}^{p} \beta_j X_j + \sum_{i,j} \beta_{ij} X_i X_j + \sum_{i,j,k} \beta_{ijk} X_i X_j X_k$$

Introduction

Build a dictionary $\mathcal D$ consisting typically a very large number $|\mathcal D|$ of basis functions.

Restriction methods: e.g., additivity

$$f(X) = \sum_{j=1}^{p} f_j(X_j) = \sum_{j=1}^{p} \sum_{m=1}^{M_j} \beta_j h_{jm}(X_j).$$

- Selection methods: methods like CART (Classification and regression trees), MARS (Multivariate adaptive regression splines), etc.
- ▶ Regularization methods: e.g., ridge regression.

REGULARIZATION

► Sometimes we use a large expansion or an over-represented basis:

$$f(X) = \sum_{m=1}^{M} \beta_m h_m(X).$$

Control the model complexity by regularization:

$$\min_{\boldsymbol{\beta}} \sum_{i=1}^{N} (y_i - \sum_{m=1}^{M} \beta_m h_m(\boldsymbol{x}_i))^2 + \lambda J(f),$$

where J(f) is a *roughness penalty* or other *regularization*, and λ is tuning parameter.

▶ For example: L_2 regularization $J(f) = \|\beta\|^2$, or $J(f) = \int [f''(t)]^2 dt$.

PROBLEMS WITH POLYNOMIAL REGRESSION

Gray lines are models fit to 100 observations arising from the true f, colored red

GLOBAL V.S. LOCAL BASIS FUNCTIONS

- Polynomial regression uses global basis functions.
- ▶ Now consider *local* basis functions, thereby ensuring that a given observation affects only the nearby fit, not the fit of the entire line.
- ▶ We focus on piecewise polynomials.

PIECEWISE POLYNOMIALS AND SPLINES

- Piecewise polynomial: f(X) is obtained by dividing the domain of X into contiguous intervals (when X is one-dimensional), and representing f by a separate polynomial in each interval.
- ► *Splines* are piecewise polynomials joined together to make a single smooth curve.

- Consider a study of changes in bone mineral density in adolescents, taken on two consecutive visits
- ► The outcome of the study is the difference in spinal bone mineral density divided by the average of the two measurements
- ▶ Age is a predictor, which is the average age over the two visits

Data

PIECEWISE CONSTANT MODEL

PIECEWISE LINEAR MODEL

PIECEWISE LINEAR MODEL

PIECEWISE POLYNOMIAL AND ORDER 2 SPLINES

Basis for the model in the bottom right panel: $h_1(X) = 1$, $h_2(X) = X$, $h_3(X) = (X - \xi_1)_+$, $h_4(X) = (X - \xi_2)_+$.

CUBIC SPLINES, ORDER-4

Piecewise Cubic Polynomials

FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of continuity.

$$h_1(X) = 1$$
, $h_3(X) = X^2$, $h_5(X) = (X - \xi_1)_+^3$
 $h_2(X) = X$, $h_4(X) = X^3$, $h_6(X) = (X - \xi_2)_+^3$.

QUADRATIC SPLINE

CUBIC SPLINE

General order M splines

▶ Order-M spline with knots ξ_j , $j=1,\ldots,K$ is a piecewise-polynomial of order M (different from order of polynomials), and has continuous derivatives up to order M-2.

$$h_j(X) = X^{j-1}, \quad j = 1, \dots, M,$$

 $h_{M+l}(X) = (X - \xi_l)_+^{M-1}, \quad l = 1, \dots, K$

Second-order spline (M=2)

$$h_1(X) = 1, h_2(X) = X, h_3(X) = (X - \xi_1)_+, h_4(X) = (X - \xi_2)_+$$

▶ By requiring continuous derivatives, we ensure that the resulting function is as smooth as possible.

General order M splines

- ▶ Within each interval $[a, \xi_1]$, $[\xi_i, \xi_{i+1}]$, $i = 1, \ldots, K-1$, $[\xi_K, b]$ the piecewise function $s(X) = s_i(X)$, a polynomial of order M-1.
 - ▶ The number of unknown coefficients: $M \times (K+1)$;
 - ▶ Continuity to the order M-2 derivative: $(M-1) \times K$;
 - ▶ The degree of freedom (the number of coefficients that can be chosen freely): $M \times (K+1) (M-1) \times K = M+K$.

General order M splines

- We can obtain more flexible curves by increasing the degree of the spline and/or by adding knots.
- However, there is a tradeoff:
 - ► Few knots/low degree: Resulting class of functions may be too restrictive (bias)
 - Many knots/high degree: running the risk of overfitting (variance)

- **Regression splines**: fixed-knot splines, i.e., specify M, the number of knots and their placement.
- ▶ Cubic spline (M = 4) is the lowest-order spline where knot discontinuity is invisible.

Pointwise variance curves for four different models, with X consisting of 50 points randomly drawn from U(0,1).

$$y_i = f(x_i) + \epsilon_i, \epsilon_i \sim iid \ N(0, \sigma^2)$$
$$Var(\hat{f}(x)) = \sigma^2 \mathbf{h}(x)^T (\mathbf{H}^T \mathbf{H})^{-1}) \mathbf{h}(x)$$

NATURAL CUBIC SPLINES

Natural cubic spline:

- ▶ Linear near the boundary intervals: $[a, \xi_1]$ and $[\xi_K, b]$.
- Cubic polynomial in $[\xi_1, \xi_K]$.
- ▶ Continuous up to the 2nd derivative in $(-\infty, \infty)$.

NATURAL CUBIC SPLINES

Add additional constraint: linear functions beyond the boundary knots.

- ► Free up 4 degrees of freedom (two constraints each in both boundaries).
- ▶ Then df = M + K 4, where M = 4.

NATURAL SPLINES IN R

• Use the R package *splines* and the function ns.

$$\begin{split} X &= ns(x,knots=quantile(x,p=c(1/3,2/3))) \\ X &= ns(x,df=5) \\ X2 &= predict(X,newx=x2) \end{split}$$

NATURAL CUBIC SPLINE

Natural Cubic Spline with df = 5

Confidence Band in Natural Cubic Spline with df=5

Confidence Band in Natural Cubic Spline with df=5

SPLINE IN SAS

- ods graphics on; proc transreg data = bone plots; model identity(Spnbmd) = class(Gender) spline(Age/ nknots=2 evenly degree = 2); output out = spnbmdout predicted cli clm coefficients; run; ods graphics off;
- use NATURALCUBIC option in EFFECT statement for natural cubic splines.

SMOOTHING SPLINES

- Assume using the maximal number of knots;
- Control the complexity of the fit by regularization:

$$RSS(f,\lambda) = \sum_{i=1}^{N} \{y_i - f(x_i)\}^2 + \lambda \int \{f''(t)\}^2 dt.$$

A trade off between

- lacktriangledown $\lambda=0$: f can be any functions that interpolates the data;
- $\lambda = \infty$: the simple least square line fit, since no second derivative can be tolerated.
- ightharpoonup A spline that describes and smooths noisy data by passing close to the data (x_i,y_i) without the requirement of passing through them is called a smoothing spline.
- ▶ In general, RSS has an explicit minimizer which is a natural cubic spline with knots values of x_i , i = 1, ..., N.

NATURAL CUBIC SPLINES FOR THE REGULARIZATION PROBLEM

Theorem: Out of all twice-differentiable functions, the one that minimizes

$$\sum_{i=1}^{N} \{y_i - f(x_i)\}^2 + \lambda \int \{f''(t)\}^2 dt,$$

is a natural cubic spline with knots at every unique value of x_i .

SMOOTHING SPLINES

Consider one-dimensional case:

$$f(x) = \sum_{j=1}^{N} G_j(x)\theta_j$$

Write RSS into

$$RSS(\theta, \lambda) = (\mathbf{y} - \mathbf{G}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{G}\boldsymbol{\theta}) + \lambda \boldsymbol{\theta}^T \boldsymbol{\Omega} \boldsymbol{\theta},$$

where $\{\mathbf{G}\}_{ij} = G_j(x_i)$ and $\{\mathbf{\Omega}\}_{jk} = \int G_j''(t)G_k''(t)dt$. Solution

$$\hat{\boldsymbol{\theta}} = (\mathbf{G}^T \mathbf{G} + \lambda \mathbf{\Omega})^{-1} \mathbf{G}^T \mathbf{y}.$$

Smoothing Spline:

$$\hat{f}(x) = \sum_{j=1}^{N} G_j(x)\hat{\theta}_j.$$

SMOOTHING SPLINE IN R: BONE EXAMPLE

```
plot(spnbmd ~ age, data=bone, col =
ifelse(gender=="male", "blue", "red2"),
xlab="Age", ylab="Relative Change in Spinal BMD")
bone.spline.male <- with(subset(bone,gender=="male"),
smooth.spline(age, spnbmd,df=12))
bone.spline.female <- with(subset(bone, gender=="female"),</pre>
smooth.spline(age, spnbmd, df=12))
lines(bone.spline.male, col="blue")
lines(bone.spline.female, col="red2")
legend(20,0.20,legend=c("male", "Female"),
col=c("blue", "red2"), lwd=2)
```

BONE EXAMPLE

THE TUNING PARAMETER

- Smoothing splines: the knots are at all the unique training X's, and the cubic degree is always used.
- ▶ One way to choose the tuning parameter λ is to use cross-validation.

Choosing λ

• Use K-fold (C_1,\ldots,C_K) cross-validation to select λ

$$CV(\hat{f}_{\lambda}) = \frac{1}{N} \sum_{k=1}^{K} \sum_{i \in C_k} \left(y_i - \hat{f}_{\lambda}^{(-C_k)}(x_i) \right)^2.$$

► Leave-one-out cross-validation (GCV)

$$CV(\hat{f}_{\lambda}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{f}_{\lambda}^{(-i)}(x_i))^2.$$

BONE EXAMPLE

SMOOTHING SPLINE IN SAS

```
* smoothing spline;
PROC TRANSREG ss2 DATA=bone;
MODEL identity(Spnbmd)=class(Gender / zero=none) *
    smooth(Age / sm=50);
RUN;
```

SUMMARY

- Piecewise polynomial
- Regression Splines
- Natural splines
- Smoothing splines