1. 对于图 5.7 中的 v_{ih} , 试推导出 BP 算法中的更新公式 (5.13) .

$$\triangle v_{ih} = -\eta \frac{\partial E_k}{\partial v_{ih}}$$
 , 因 v_{ih} 只在计算 b_h 时用上,所以 $\frac{\partial E_k}{\partial v_{ih}} = \frac{\partial E_k}{\partial b_h} \frac{\partial b_h}{\partial v_{ih}}$,其中 $\frac{\partial b_h}{\partial v_{ih}} = \frac{\partial b_h}{\partial a_h} \frac{\partial a_h}{\partial v_{ih}} = \frac{\partial b_h}{\partial a_h} x_i$,所以 $\frac{\partial E_k}{\partial v_{ih}} = \frac{\partial E_k}{\partial b_h} \frac{\partial b_h}{\partial a_h} x_i = -e_h x_i$,即得原书中5.13式。

2. 试述式 (5.6) 中学习率的取值对神经网络训练的影响.

学习率太高会导致误差函数来回震荡,无法收敛;而学习率太低则会收敛太慢,影响训练效率。

3. Minsky 与 Papert 指出:单层感知机因为是线性模型,所以不能表示复杂的函数,如异或 (XOR)。验证单层感知机为什么不能表示异或。

假设感知机模型可以表示异或问题,即满足异或函数(XOR)输入与输出的情况(见**第1步**)。假设x向量只有两个维度 x_1, x_2 :

- 1. 根据 $x_1 = 0, x_2 = 0, f(x) = -1, 则w \cdot x + b < 0, 可得<math>b < 0$;
- 2. 根据 $x_1 = 0, x_2 = 1, f(x) = 1, 则 w_2 + b > 0, 结合 b < 0, 可得<math>w_2 > -b > 0$;
- 3. 根据 $x_1 = 1, x_2 = 0, f(x) = 1, 则 w_1 + b > 0, 结合 b < 0, 可得<math>w_1 > -b > 0$;
- 4. 根据 $x_1=1, x_2=1$,并结合 $w_1+b>0$ 、 $w_2>0$,则 $w_1+w_2+b>0$,可得f(x)=1,与异或条件中的f(x)=-1矛盾。

所以假设不成立, 原命题成立, 即感知机模型不能表示异或。

4. 正样本点是 $x_1 = (3,3)^T$, $x_2 = (4,3)^T$, 负样本点是 $x_3 = (1,1)^T$, 试用梯度下降 算法求解感知机模型,模型参数初值取 0。

表 2.1 例 2.1 求解的迭代过程

迭代次数	误分类点	w	b	$w \cdot x + b$
0		0	0	0
1	x_1	$(3,3)^{\mathrm{T}}$	1	$3x^{(1)} + 3x^{(2)} + 1$
2	x_3	$(2,2)^{\mathrm{T}}$	0	$2x^{(1)} + 2x^{(2)}$
3	x_3	$(1,1)^{\mathrm{T}}$	-1	$x^{(1)} + x^{(2)} - 1$
4	x_3	$(0,0)^{\mathrm{T}}$	-2	-2
5	x_1	$(3,3)^{\mathrm{T}}$	-1	$3x^{(1)} + 3x^{(2)} - 1$
6	x_3	$(2,2)^{\mathrm{T}}$	-2	$2x^{(1)} + 2x^{(2)} - 2$
7	x_3	$(1,1)^{\mathrm{T}}$	-3	$x^{(1)} + x^{(2)} - 3$
8	0	$(1,1)^{\mathrm{T}}$	-3	$x^{(1)} + x^{(2)} - 3$