

VISIÓN ARTIFICIAL

JOHN W. BRANCH

PROF. TITULAR

DEPARTAMENTO DE CIENCIAS DE COMPUTACIÓN Y DE LA DECISIÓN

DIRECTOR DEL GRUPO GIDIA

ALBERTO M. CEBALLOS

ASISTENTE DE DOCENCIA

Nota: Este material se ha adaptado con base en el material de los profesores Domingo Mery (U. de Chile), María Patricia Trujillo (Univalle), Ginés García (U. de Murcia) y Nicolas Fernández (U. de Córdoba)

EN LA CLASE DE HOY ...

- PRE-PROCESAMIENTO DE IMÁGENES
 - Procesamiento Básico de Imágenes Digitales
 - Operaciones Elementales con Píxeles:
 - Operadores Binarios
 - Transformaciones geométricas
 - Traslación.
 - Rotación.
 - Inclinación.
 - Escala.

FORMACIÓN Y ADQUISICIÓN DE IMÁGENES

ETAPAS DE UN SISTEMA DE VISIÓN ARTIFICIAL

EL PREPROCESAMIENTO

Sel objetivo del Preprocesamiento es mejorar la calidad y/o la apariencia de la imagen original para su apálicia e interpretación.

EL PREPROCESAMIENTO

Alteración píxel a píxel de la imagen (Operaciones Puntuales)

Operaciones Unarias

Operaciones Binarias

Operaciones basadas en múltiples puntos u Operaciones de Vecindad

TRANSFORMACIONES LINEALES EN

OPERACIONES PUNTUALES UNITARIAS G(x,y) = a * I(x,y) + b

▼ OPERACIONES PUNTUALES - TRANSFORMACIONES LINEALES

La forma general de una transformación lineal es la siguiente:

$$G(x,y) = a * I(x,y) + b$$

Con base en esta ecuación tenemos que:

- \supset Si a = 1 y b = 0 entonces g(x, y) = f (x, y) (Identidad)
- Si a = 1 y b > 0, el nivel de gris se aumenta en b unidades (Suma)
- Si a = 1 y b < 0, el nivel de gris se disminuye en b unidades (Resta)</p>
- Si a > 1, se produce un incremento del contraste (Multiplicación)
- Si 0 < a < 1, se reduce el contraste (División)</p>

▼ OPERACIONES PUNTUALES - TRANSFORMACIONES LINEALES

© En general, las transformaciones lineales se pueden representar por la función de una línea recta tal que dicha función va de $N \rightarrow N$

OPERACIONES PÍXEL A PÍXEL BINARIAS

OPERACIONES PUNTUALES - BINARIAS

Las operaciones píxel a píxel binarias son aquellas que toman como entrada dos o más imágenes y producen una nueva imagen que es la combinación de las primeras:

¿Cuáles son los problemas que se pueden presentar al combinar una o más imágenes?

OPERACIONES PUNTUALES - BINARIAS

Las Operaciones Aritméticas entre imágenes son operaciones se llevan a cabo entre pares de pixeles correspondientes. Las cuatro operaciones básicas son:

$$O(x, y) := A(x,y) + B(x,y)$$

$$\bigcirc$$
 C(x, y):= A(x,y) - B(x,y)

$$O(x, y) := A(x,y) * B(x,y)$$

$$O$$
 C(x, y):= A(x,y) \div B(x,y)

OPERACIONES PUNTUALES - BINARIAS

Para el caso de la suma (por ejemplo) tenemos:

90	67	68	39		11	23	150	169					
10	87	241	78	+	75	145	200	158	=				
11	102	89	76		2	50	51	49					
10	10	109	80		1	49	48	47					
A(x,y)					B(x,y)					C(x,y)			

OPERACIONES PUNTUALES – BINARIAS

A + B A - B A * B

OPERACIONES PUNTUALES - BINARIAS

La Suma de Imágenes es usada, por ejemplo, para resaltar los bordes de los objetos:

OPERACIONES PUNTUALES - BINARIAS

En la Suma (y otras operaciones aritméticas) algunas veces es necesario hacer mapeos que nos permitan llevar los valores resultantes a valores en el rango [0, 255], por ejemplo, en la suma: [0, 255] + [0, 255] = [0, 510] se soluciona dividiendo el resultado entre dos:

El resultado es una transparencia de las imágenes originales al 50%

OPERACIONES PUNTUALES - BINARIAS

En la Suma (y otras operaciones aritméticas) algunas veces es necesario hacer mapeos que nos permitan llevar los valores resultantes a valores en el rango [0, 255], por ejemplo, en la suma: [0, 255] + [0, 255] = [0, 510] se soluciona dividiendo el resultado entre dos:

Cross dissolve

El resultado es una transparencia de las imágenes originales al 50%

OPERACIONES PUNTUALES - BINARIAS

Una aplicación de la suma es para reducir el contenido de ruido en un conjunto de imágenes ruidosas. Esta es una técnica comúnmente utilizada para mejorar imágenes:

$$ar{g}(x,y) = rac{1}{K} \sum_{i=1}^K g_i(x,y)$$

¿Bajo qué condiciones esto funciona bien?

OPERACIONES PUNTUALES - BINARIAS

OPERACIONES PUNTUALES - BINARIAS

OPERACIONES PUNTUALES - BINARIAS

La resta pixel a pixel ...

OPERACIONES PUNTUALES - BINARIAS

Una aplicación de la resta es en la detección de movimiento entre dos imágenes, útil en la compresión de video y en el seguimiento de objetos.

OPERACIONES PUNTUALES - BINARIAS

Una aplicación de la resta es en la detección de movimiento entre dos imágenes, útil en la compresión de video y en el seguimiento de objetos.

OPERACIONES PUNTUALES - BINARIAS

La resta de imágenes también se usa mucho en medicina de manera:

Imagen original de rayos X del paciente, llamada máscara

Imagen obtenida inyectando un medio yodado al flujo sanguíneo del paciente para aumentar el contraste.

Imagen diferencia entre las anteriores

OPERACIONES PUNTUALES - BINARIAS

La resta de imágenes tiene uno de sus mayores usos en la segmentación para eliminar (o corregir) el background de una escena:

Shading correction

OPERACIONES PUNTUALES - BINARIAS

La multiplicación de imágenes puede ser usada para extraer regiones de interés usando una mascara (aunque esto se hace con operaciones booleanas):

OPERACIONES PUNTUALES - BINARIAS

La multiplicación de imágenes

OPERACIONES PUNTUALES – BINARIAS: DIVISIÓN

Imágenes Originales

División

OPERACIONES PUNTUALES - BINARIAS

Ejercicio – Filtros Artísticos:

Una aplicación interesante de las operaciones aritméticas es la obtención de imágenes con retoque artístico. Un ejemplo es el *filtro emboss*, cuyo efecto logra un realce de bordes, los cuales se ven en relieve sobre un fondo gris neutro (similar a un repujado sobre una placa metálica).

El principio de operación es el siguiente: si a una imagen se le resta ella misma, se obtiene una imagen negra (grises=0 en toda posición), pero si una de la imágenes se desplaza unos pocos pixeles en alguna dirección, el efecto obtenido es el de repujado.

Implemente el filtro teniendo en cuenta que el tamaño de la imagen de salida será truncado según el desplazamiento considerado. El efecto obtenido será diferente (relieve exterior o interior) según qué imagen de entrada es "negativizada".

TRANSFORMACIONES GEOMÉTRICAS

- Las Transformaciones Geométricas mantienen el valor de los píxeles, sin embargo, modifican la relación espacial entre ellos.
- Para realizar una transformación geométrica se deben realizar dos pasos:
- Definir el mapeo espacial de coordenadas entre la imagen de origen y la imagen de salida (rotación, escala, traslación, ...)
- Aplicar un algoritmo de interpolación para definir el valor de los píxeles que por la transformación han quedado sin valor.

Traslación

Rotación

Inclinación

TRANSFORMACIONES GEOMÉTRICAS

Las Transformaciones Afines son un grupo de transformaciones geométricas que preservan ciertas propiedades de las imágenes. Un primer caso de este tipo de transformación consiste en la familia de transformaciones geométricas básicas resultantes de rotaciones, escalamientos y traslaciones.

TRANSFORMACIONES GEOMÉTRICAS AFINES

La Traslación es un mapeo en el que cada píxel de la imagen de entrada es movido a una nueva posición en la imagen de salida.

$$x_{2} = x_{1} + b_{x}$$

$$y_{2} = x_{2} + b_{y}$$

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

TRANSFORMACIONES GEOMÉTRICAS AFINES

• Una aplicación especial de la Traslación es la reflexión de la imagen:

Imagen Original

Reflexión Horizontal

Reflexión Vertical

TRANSFORMACIONES GEOMÉTRICAS AFINES

La Rotación es un mapeo en que se produce un cambio de orientación de la imagen.

$$x_2 = (x_1 - x_0)\cos\theta - (y_1 - y_0)\sin\theta + x_0$$

$$y_2 = (x_1 - x_0)\sin\theta + (y_1 - y_0)\cos\theta + y_0$$

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

El punto (x_0, y_0) son las coordenadas del centro de rotación y θ el ángulo de rotación.

TRANSFORMACIONES GEOMÉTRICAS AFINES

La Rotación es un mapeo en que se produce un cambio de orientación de la imagen.

Imagen de entrada Rotar -10° Rotar 10°

TRANSFORMACIONES GEOMÉTRICAS AFINES

La Rotación es un mapeo en que se produce un cambio de orientación de la imagen. Un caso especial que se debe considerar es si la imagen de salida debe cambiar para cubrir toda la imagen de entrada.

TRANSFORMACIONES GEOMÉTRICAS AFINES

La Rotación es un mapeo en que se produce un cambio de orientación de la imagen: Ahora cambiando el punto de rotación (x₀, y₀)

Rotar 10°

Rotar -10°

Trasladar el punto de rotación al origen, rotar y deshacer la traslación tiene el mismo efecto.

.

TRANSFORMACIONES GEOMÉTRICAS AFINES

La Inclinación transforma una región rectangular en un rombo. Sirve para "simular" una perspectiva. La inclinación se puede dar en el eje X, en e Y o en ambos:

El valor de inclinación es la tangente del ángulo.

TRANSFORMACIONES GEOMÉTRICAS AFINES

La Inclinación en X una cantidad I_x : $R(x,y) := A(x - i_x * y, y)$

- La Inclinación en Y una cantidad I_y : $R(x,y) := A(x,y-i_y*x)$
- La Inclinación X en I_x e inclinación Y en I_y $R(x,y) := A(x - i_x * y, y - i_v * x)$

Incinación en x $\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

Inclinación i_x=0; i_y=0,2

Incinación en y

TRANSFORMACIONES GEOMÉTRICAS AFINES

La Escala permite cambiar el tamaño de las imágenes:

Imagen original 25x26

Imagen ampliada 250x260

TRANSFORMACIONES GEOMÉTRICAS AFINES

Como hacer la escala:

90	67	68	39
10	87	241	78
11	102	89	76
10	10	109	80

90	67	68	39	
10	87	241	78	
11	102	89	76	
10	10	109	80	

90	67	68	39	
10	87	241	78	
11	102	89	76	
10	10	109	80	

TRANSFORMACIONES GEOMÉTRICAS AFINES

- La Interpolación puede considerarse como el cálculo del valor de intensidad de un píxel, en una posición cualquiera, como una función de los píxeles que la rodean.
- Existen diferentes tipos de interpolación:
 - Vecino más cercano
 - Bilineal
 - Bicúbica
 - Supermuestreo

TRANSFORMACIONES GEOMÉTRICAS AFINES

La Interpolación del vecino más cercano: B(x,y) = A(⌊x/10⌋, ⌊y/10⌋), donde 10 es el ...

factor de escala.

Imagen original 25x26

Imagen ampliada 250x260

Ventajas:

Es muy sencilla y rápida de calcular

Inconvenientes:

- El efecto de cuadriculado es evidente, y da lugar imágenes de poca calidad
- A medida que el factor de escala aumenta, la imagen se hace más y más borrosa

TRANSFORMACIONES GEOMÉTRICAS AFINES

La Interpolación del vecino más cercano :

90	67	68	39
10	87	241	78
11	102	89	76
10	10	109	80

67		68		39	
87		241		78	
102		89		76	
10		109		80	
	102	102	87 241 102 89	87 241 102 89	87 241 78 102 89 76

TRANSFORMACIONES GEOMÉTRICAS AFINES

La Interpolación Lineal promedia los dos vecinos más cercanos para encontrar el valor del píxel.

Ventajas:

Es muy rápida de calcular y mejora un poco los resultados con respecto a la interpolación por vecino más cercano

Inconvenientes:

Da lugar imágenes de poca calidad

TRANSFORMACIONES GEOMÉTRICAS AFINES

La Interpolación Lineal:

90	67	68	39
10	87	241	78
11	102	89	76
10	10	109	80

90	67	68	39	
10	87	241	78	
11	102	89	76	
10	10	109	80	

90	67	68	39	
10	87	241	78	
11	102	89	76	
10	10	109	80	

TRANSFORMACIONES GEOMÉTRICAS AFINES

La Interpolación Bilineal es una mejora de la anterior, promediando en este caso 4 pixeles adyacentes. Sin embargo, los factores de ponderación vienen dados por la distancia de los 4 píxeles se que usaran para la interpolación

Ventajas:

Mejora los resultados de la interpolación haciendo los cambios más suaves

Inconvenientes:

Es más costosa computacionalmente

PREGUNTAS

DIEGO PATIÑO CORTÉS, MSC.

CARLOS ANDRÉS MERA BANGUERO, MSC.

ALBEIRO ESPINOSA BEDOYA, PH.D.

