Practice Problems for the Final Exam

Instructor: Dieter van Melkebeek TAs: Kevin Kowalski, Andrew Morgan, and Bryce Sandlund

- 1. In the two-player game "Two Ends", n cards are laid out in a row. On each card, face up, is written a positive integer. Players take turns removing a card from either end of the row and placing the card in their pile, until all cards are removed. The score of a player is the sum of the integers of the cards in his/her pile.
 - Give an efficient algorithm that takes the sequence of n positive integers, and determines the score of each player when both play optimally.
- 2. You are given an arithmetic expression containing n integers and n-1 operators, each either +, -, or \times . You are also given a positive integer m. Your goal is to find out whether there is an order to perform the operations such that the result is a multiple of m.

For example, for the expression $6\times 3+2\times 5$, this is possible for m=7, namely as follows: $(6\times 3)+(2\times 5)=28$. For the same expression this is not possible for m=8 as none of the five possible orderings yield a multiple of 8: $(6\times 3)+(2\times 5)=28$, $((6\times (3+2))\times 5)=150$, $((6\times 3)+2)\times 5=100$, $(6\times (3+(2\times 5))=78$, $(6\times (3+2)\times 5)=150$.

Design an algorithm that runs in time polynomial in n and m.

- 3. You are given an $n \times n$ table with entries in $\{0,1\}$. Determine the largest size of a contiguous square in the table that consists solely of 1s. Your algorithm should run in time $O(n^2)$.
- 4. You collect coupons and aim to have a collection containing each of the *n* types of coupons that exist. Your current collection consists of exactly *n* coupons but contains duplicates. You are hoping to achieve your goal by a sequence of exchanges of a coupon of one type for a coupon of another type, but only certain types of exchanges are possible.
 - For example, suppose that your current collection consists of one coupon of type 1, and 3 coupons of type 2, and that it is possible to exchange a coupon of type 2 for a coupon of type 3, and a coupon of type 3 for a coupon of type 4. In this case, it is possible for you to achieve your goal, namely by exchanging two of your coupons of type 2 for coupons of type 3, and one of the obtained coupons of type 3 for a coupon of type 4.
 - Develop an efficient algorithm that, given your current collection and the possible exchanges, determines whether your goal is achievable or not.
- 5. You would like to make a network of wireless sensors more reliable by selecting some number of "backup" sensors for each sensor in the network.

More specifically, you are given the coordinates (x_i, y_i) of sensor s_i for i = 1, ..., n, and positive integers d, r, and $b \ge r$. Your goal is to find backup sets B_j for j = 1, ..., n such that $B_j \subseteq \{s_1, ..., s_n\} - \{s_j\}$, every sensor in B_j is within distance d of s_j , every B_j contains exactly r sensors, and every sensor s_i for i = 1, ..., n belongs to at most b sets B_j .

Develop an efficient algorithm that realizes the goal or reports that it is impossible.

- 6. Give brief arguments showing that the following decision problems are NP-hard.
 - (a) Longest Path: Given an unweighted directed graph G and a number k, does there exist a simple path in G (i.e., a path in which no vertex is repeated) with at least k edges.
 - (b) Max-SAT: Given a CNF formula and a number k, is there an assignment to the variables that satisfies at least k clauses.

- (c) Dense-subgraph: Given a graph and two integers a and b, is there a subset of vertices of size at most a that contain at least b edges between them.
- 7. Consider the following problem: Given an undirected graph G = (V, E), find a subset $S \subseteq V$ such that $|\Gamma(S) \setminus S|$ is maximized. Recall that $\Gamma(v)$ for a vertex v denotes all of the vertices u such that $(u, v) \in E$, and that $\Gamma(S) = \bigcup_{v \in S} \Gamma(v)$.
 - Formulate a decision version corresponding to this problem such that the decision version is equivalent to the given problem under polynomial-time reductions, and is NP-complete. Prove both properties.
- 8. You are given a graph G with non-negative integer edge weights, vertices s and t, and an integer ℓ , and would like to find a (not necessarily simple) path from s to t of length exactly ℓ , or report that none exists.
 - (a) Give a pseudo-polynomial-time algorithm for this problem.
 - (b) Show that the problem is NP-hard.