Student Information

Full Name : Onat Özdemir

Id Number: 2310399

Answer 1

Table 1: Answer 1.1

p	q	$\neg p$	$q \to \neg p$	$p \leftrightarrow q$	$(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$
T	T	F	F	T	F
T	F	F	T	F	F
\overline{F}	T	T	T	F	F
F	F	T	T	T	T

Table 2: Answer 1.2

p	q	r	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$(p \lor q) \land (p \to r)$	$((p \lor q) \land (p \to r) \land (q \to r))$	$((p \lor q) \land (p \to r) \land (q \to r)) \to r$
T	T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	F	T
T	F	T	T	T	T	T	T	T
T	F	F	T	F	T	F	F	T
F	T	T	T	T	T	T	T	T
F	T	F	T	T	F	T	F	T
F	F	T	F	T	T	F	F	T
F	F	F	F	T	T	F	F	T

Answer 2

$$\neg p \to (q \to r) \equiv \neg \neg p \lor (q \to r) \qquad Using \ Table \ 7
\equiv p \lor (q \to r) \qquad Double \ Negation \ Law
\equiv p \lor (\neg q \lor r) \qquad Using \ Table \ 7
\equiv \neg q \lor (p \lor r) \qquad Associative \ Laws
\equiv \neg \neg q \to (p \lor r) \qquad Using \ Table \ 7
\equiv q \to (p \lor r) \qquad Double \ Negation \ Law$$
(1)

Answer 3

- (a) $\forall x L(x, Burak)$ (b) $\forall x L(Hazal, x)$ (c) $\forall x \exists y L(x,y)$ (d) $\neg(\exists y \forall x L(y, x))$ (e) $\forall x \exists y L(y, x)$ (f) $\neg(\exists x(L(x, Burak) \land L(x, Mustafa)))$ (g) $\exists x \exists y (L(Ceren, x) \land L(Ceren, y) \land \forall z (L(Ceren, z) \rightarrow ((z = x) \lor (z = y))) \land (x \neq y))$ (h) $\exists x (\forall y L(y, x) \land \forall z (\forall k L(k, z) \rightarrow (z = x)))$ (i) $\neg(\exists x(L(x,x)))$
- $(j) \exists x \exists y (L(x,y) \land (y \neq x) \land \forall z ((L(x,z) \land z \neq x) \rightarrow (z=y)))$

Answer 4

Table 3: Answer 4

1.	p	premise
2.	$p \to (r \to q)$	premise
3.	$q \to s$	premise
4.	$r \to q$	$\rightarrow e$, 1, 2
5.	$\neg q$	assumption
6.	r	assumption
7.	q	$\rightarrow e, 4, 6$
8.		$\neg e, 5, 7$
9.	$\neg r$	$\neg i, 6-8$
10.	$s \vee \neg r$	∨ <i>i</i> , 9
11.	$\neg q \to (s \vee \neg r)$	<i>→i, 5-10</i>

Answer 5

Table 4: Answer 5

1.	$\forall x (p(x) \to q(x))$	premise
2.	$\neg(\exists z r(z))$	premise
3.	$\exists y p(y) \lor r(a)$	premise
4.	r(a)	assumption
5.	$\neg(\exists zq(z))$	assumption
6.	$\mid \mid \exists z r(z)$	∃ <i>i</i> , 4
7.		$\neg e, 2, 6$
8.	$\neg \neg (\exists z q(z))$	$\neg i, 5-7$
9.	$\exists z q(z)$	$\neg \neg e, 8$

10.	$\exists y p(y)$	assumption
11.	p(c)	assumption
12.	$ p(c) \to q(c) $	$\forall e, 1$
13.	q(c)	$\rightarrow e$, 11, 12
14.	$\exists z q(z)$	$\exists i, 13$
15.	$\exists zq(z)$	$\exists e, 10, 11-14$
16.	$\exists zq(z)$	∨ <i>e</i> , <i>3</i> , <i>4</i> - <i>9</i> , <i>10</i> - <i>15</i>