allFill_Kvary_AlleleFreq

December 20, 2017

1 Gradient in K with migration, allele frequency variation

Number of simulations: 1000Number of generations: 500Max Creation probability: NA

In these simulations, we imposed a gradient in carrying capacity across the matrix, with rural population being the largest and urban the smallest. All populations were initialized at carrying capacity. We performed simulations under 3 migration rates: 0, 0.01, 0.05. Simulations varried the initial frequency of both dominant alleles (i.e. CYP79D15 and Li) in the starting rural population. The parameter combinations were as follows (all varied parameters crossed factorially, total simulations = 27):

```
• Bottleneck proportion: NA
   • pA and pB: [0.1; 0.5; 0.9] and [0.1; 0.5; 0.9]
   • Migration rate: [0; 0.01; 0.05]
   • Maximum K (rural): 1000
   • Minimum K (urban): 10
In [2]: library(plyr)
       library(ggplot2)
       library(data.table)
       library(Rmisc)
       library(dplyr)
Loading required package: lattice
data.table + dplyr code now lives in dtplyr.
Please library(dtplyr)!
Attaching package: dplyr
The following objects are masked from package:data.table:
   between, first, last
The following objects are masked from package:plyr:
    arrange, count, desc, failwith, id, mutate, rename, summarise,
    summarize
The following objects are masked from package:stats:
```

```
intersect, setdiff, setequal, union
In [8]: #Working directory for datasets varying migration rate and bottleneck proportion
            setwd('/Users/jamessantangelo/Documents/Academia/Doctorate_PhD/Projects/SEC_Simulating.e
            volutionary.clines/SEC_Data/summary-datasets/allFill_Kvary_AlleleFreq')
            # Dataset for mean slope and proportions by parameter combination
            MeansProps <- fread('20171218_MeansProps_allFill_Kvary_AlleleFreq.csv', header = T)
            MeansProps$AlleleFreqs <- paste(MeansProps$pA_start, MeansProps$pB_start, sep = "-")</pre>
            MeansProps$AlleleFreqs <- as.factor(as.character(MeansProps$AlleleFreqs))</pre>
            MeansProps$AlleleFreqs <- factor(MeansProps$AlleleFreqs, levels=c("0.1-0.1", "0.1-0.5",
            "0.5-0.1", "0.1-0.9",
                                                                                                                "0.9-0.1", "0.5-0.5",
            "0.5-0.9", "0.9-0.5",
                                                                                                                "0.9-0.9"))
            MeansProps$Mig_rate = as.factor(as.character(MeansProps$Mig_rate))
            MeansProps$prop_sigPos[MeansProps$prop_sigPos == 1.000] <- 0.0
            # datRegSummary <- fread("20171218_RegSummary_allFill_Kvary_AlleleFreq.csv")</pre>
            \# \ datRegSummary\$AlleleFreqs <- \ paste(datRegSummary\$pA\_start, \ datRegSummary\$pB\_start, \ sep
            # datRegSummary$AlleleFreqs <- as.factor(as.character(datRegSummary$AlleleFreqs))
            \# \ datRegSummary \$ AlleleFreqs <- \ factor (datRegSummary \$ AlleleFreqs, \ levels = c ("0.1-0.1", levels = c ("
            "0.1-0.5", "0.5-0.1", "0.1-0.9",
                                                                                                                    "0.9-0.1", "0.5-0.5",
            "0.5-0.9", "0.9-0.5",
                                                                                                                    "0 9-0 9"))
            # datReqSummary$Miq_rate = as.factor(as.character(datReqSummary$Miq_rate))
In [37]: #Data subsets
              MeansProps_Gen250 <- subset(MeansProps, seq == "250")</pre>
              MeansProps_NoMig <- subset(MeansProps, Mig_rate == "0")</pre>
             MeansProps_NoMig_Gen250 <- subset(MeansProps, seq == "250" & Mig_rate == "0")
In [26]: str(MeansProps)
Classes data.table and 'data.frame': 13500 obs. of 22 variables:
 $ Mig_rate : num 0 0 0 0 0 0 0 0 0 ...
 $ seq
                      : int 1 2 3 4 5 6 7 8 9 10 ...
                      : num 7.61e-05 8.87e-05 9.68e-05 1.06e-04 1.22e-04 ...
 $ mean
                       : num 0 0.000226 0.000314 0.000386 0.000435 ...
 $ sd
                       $ n
                       : num 0.00 7.13e-06 9.92e-06 1.22e-05 1.38e-05 ...
 $ se
                      : num 0.00 1.40e-05 1.94e-05 2.39e-05 2.70e-05 ...
 $ ci mean
 $ prop_sigPos: num 1 0.242 0.221 0.221 0.24 0.222 0.233 0.234 0.234 0.23 ...
 $ prop_pos : num 1 0.71 0.715 0.721 0.731 0.735 0.739 0.728 0.73 0.727 ...
 $ se_pos : num 0 0.0143 0.0143 0.0142 0.014 ...
                      : num 0 0.0281 0.028 0.0278 0.0275 ...
 $ se_sigPos : num 0 0.0135 0.0131 0.0131 0.0135 ...
 $ ci_sigPos : num 0 0.0265 0.0257 0.0257 0.0265 ...
 $ prop_sigNeg: num 0 0.018 0.014 0.009 0.008 0.012 0.008 0.01 0.01 0.008 ...
 $ prop_neg : num 0 0.29 0.285 0.279 0.269 0.265 0.261 0.272 0.27 0.273 ...
                       : num 0 0.0143 0.0143 0.0142 0.014 ...
 $ se_neg
                     : num 0 0.0281 0.028 0.0278 0.0275 ...
 $ ci_neg
```

filter, lag

The following objects are masked from package:base:

```
se_sigNeg : num 0 0.0042 0.00372 0.00299 0.00282 ...
 $ ci_sigNeg : num 0 0.00824 0.00728 0.00585 0.00552 ...
 $ AlleleFreqs: Factor w/ 9 levels "0.1-0.1", "0.1-0.5", ...: 1 1 1 1 1 1 1 1 1 1 ...
 - attr(*, ".internal.selfref")=<externalptr>
In [6]: #Themes used for plotting
       ng1=theme(aspect.ratio=0.7,panel.background = element_blank(),
                 panel.grid.major = element_blank(),
                 panel.grid.minor = element_blank(),
                 panel.border=element_blank(),
                 axis.line.x = element_line(color="black", size=1),
                 axis.line.y = element_line(color="black",size=1),
                 axis.ticks=element_line(color="black"),
                 axis.text=element_text(color="black",size=15),
                 axis.title=element_text(color="black",size=1),
                 axis.title.y=element_text(vjust=2,face="bold",size=15),
                 axis.title.x=element_text(vjust=0.1,face="bold",size=15),
                 axis.text.x=element_text(size=13),
                 axis.text.y=element_text(size=13),
                 legend.position = "right", legend.direction="vertical",
                 legend.text=element_text(size=11), legend.key = element_rect(fill = "white"),
                 legend.title = element_text(size=13,face="bold"),legend.key.size = unit(0.5,
        "cm"))
       ng1.45=theme(aspect.ratio=0.7,panel.background = element_blank(),
                 panel.grid.major = element_blank(),
                 panel.grid.minor = element_blank(),
                 panel.border=element_blank(),
                 axis.line.x = element_line(color="black",size=1),
                 axis.line.y = element_line(color="black",size=1),
                 axis.ticks=element_line(color="black"),
                 axis.text=element_text(color="black",size=15),
                 axis.title=element_text(color="black",size=1),
                 axis.title.y=element_text(vjust=2,face="bold",size=15),
                 axis.title.x=element_text(vjust=0.1,face="bold",size=15),
                 axis.text.x=element_text(size=13,angle=45,hjust=1),
                 axis.text.y=element_text(size=13),
                 legend.position = "right", legend.direction="vertical",
                 legend.text=element_text(size=11), legend.key = element_rect(fill = "white"),
                 legend.title = element_text(size=13,face="bold"),legend.key.size = unit(0.5,
        "cm"))
```

2 Mean slope by allele frequencies and migration rate

```
In [22]: MeanSlope_AlleleFreq_Mig <- ggplot(MeansProps_Gen250, aes(x = factor(AlleleFreqs), y =</pre>
                            mean, group = factor(Mig_rate))) +
                                         geom_errorbar(aes(ymin = mean - ci_mean, ymax = mean + ci_mean), width=0.15,
                                         position = position_dodge(width = 0.5)) +
                                         geom_point(size = 3, aes(fill = factor(Mig_rate), shape = factor(Mig_rate)),
                            position = position_dodge(width = 0.5)) +
                                         geom_line(size = 1, aes(linetype = factor(Mig_rate)), position =
                            position_dodge(width = 0.5)) +
                                         cale_shape_manual(labels = c("0", "0.01", "0.05"), values = c(21, 22, 23)) + constant = c(21, 22, 23)) + constan
                                         scale_fill_manual(labels = c("0", "0.01", "0.05"), values = c("white", "grey60",
                             "black")) +
                                         scale_linetype_manual(labels = c("0", "0.01", "0.05"), values = c("dotted", "0.05")
                             "dashed", "solid")) +
                                         ylab("Mean slope") + xlab("Initial allele frequencies (CYP-Li)") +
                                         labs(fill = "Migration rate", shape = "Migration rate", linetype = "Migration rate")
                             + ng1.45
                            MeanSlope_AlleleFreq_Mig
```


2.1 Effects of allele frequencies on proportion of negative and positive clines

```
labs(fill = "Migration rate", shape = "Migration rate", linetype = "Migration rate")
+ ng1.45
PropSigPos_AlleleFreq_Mig
```



```
In [38]: #Extra columns that will be used to create melting dataset for plotting proportion of
         positive and negative slopes
         MeansProps_melt <- dplyr::select(MeansProps_NoMig_Gen250, AlleleFreqs, pA_start,
         pB_start, prop_sigPos, ci_sigPos, prop_sigNeg,
           ci_sigNeg)
         #Melt dataframe
         dm1 <- melt(MeansProps_melt[,c("AlleleFreqs", "prop_sigPos", "ci_sigPos")],</pre>
                      id=c("AlleleFreqs", "ci_sigPos"))
         dm2 <- melt(MeansProps_melt[,c("AlleleFreqs", "prop_sigNeg", "ci_sigNeg")],</pre>
                      id=c("AlleleFreqs", "ci_sigNeg"))
         #Rename columns
         setnames(dm1, old = c("ci_sigPos"), new = "ci")
         setnames(dm2, old = c("ci_sigNeg"), new = "ci")
         {\tt \#Merge\ melted\ dataframes}
         MeansProps_melt <- rbind(dm1, dm2)</pre>
         MeansProps_melt
```

AlleleFreqs	ci	variable	value
0.1-0.1	0.019000378	prop_sigPos	0.105
0.1-0.5	0.022431085	prop_sigPos	0.155
0.1-0.9	0.021047060	prop_sigPos	0.133
0.5-0.1	0.022664839	prop_sigPos	0.159
0.5-0.5	0.028536348	prop_sigPos	0.305
0.5-0.9	0.025758606	prop_sigPos	0.222
0.9-0.1	0.019237577	prop_sigPos	0.108
0.9-0.5	0.026279719	prop_sigPos	0.235
0.9-0.9	0.022490007	prop_sigPos	0.156
0.1-0.1	0.000000000	prop_sigNeg	0.000
0.1-0.5	0.002769085	prop_sigNeg	0.002
0.1-0.9	0.003389724	prop_sigNeg	0.003
0.5-0.1	0.001959020	prop_sigNeg	0.001
0.5-0.5	0.000000000	prop_sigNeg	0.000
0.5-0.9	0.001959020	prop_sigNeg	0.001
0.9-0.1	0.004371723	prop_sigNeg	0.005
0.9-0.5	0.003912152	prop_sigNeg	0.004
0.9-0.9	0.006166996	prop_sigNeg	0.010

In [40]: #Plot proportion of significant slopes by migration rate

path = path, dpi = 600)