

Rodrigue VAN BRANDE

Dylan GONZALEZ

26 juillet 2015

TABLE DES MATIÈRES 2

Table des matières

1	——————————————————————————————————————					
	1.1	Statistique descriptive en 1D	3			
	1.2	Statistique descriptive en 2D	3			
		1.2.1 Covariance	3			
		1.2.2 Le coefficient de corrélation	4			
		1.2.3 Les droites de régression	5			
		1.2.4 Variances résiduelles	7			
2	La	héorie des probabilités	8			
	2.1		8			
			8			
		•	8			
		1	8			
			8			
		•	9			
	2.2	Variables aléatoires				
		2.2.1 Valeurs typiques				
		2.2.2 Distribution d'une fonction monotone d'une variable aléatoire $G(V)$				
		2.2.3 Distribution de la somme de deux variables aléatoires $V+W$				
		2.2.4 Distribution du produit de deux variables aléatoires V.W				
		2.2.5 Distribution de la somme des espérances $E(V+W)$				
		2.2.6 Distribution du produit des espérances $E(V.W)$				
		2.2.7 Variance d'une variable aléatoire $D^2(aV+b)$				
		2.2.8 Variance de la somme de deux variables aléatoires $D^2(V+W)$	6			
	2.3	Variables aléatoires particulières	7			
		2.3.1 Variable binomiale $\mathcal{B}(n,p)$	7			
		2.3.2 Variable de Poisson \mathcal{P}_{λ}	7			
		2.3.3 Variable exponentielle négative	7			
		2.3.4 Variable Normale $\mathcal{N}(\mu, \sigma)$	7			
		2.3.5 Variable Khi^2	7			
		2.3.6 Variable Student t_n	7			
		2.3.7 Variable Snedecor $\mathcal{F}_{(m,n)}$	7			
	2.4	Théorèmes fondamentaux	8			
		2.4.1 Inégalité de Bienaymé-Tchebycheff	8			
		$2.4.2$ Théorème de Bernouilli ou loi des grands nombres $\ \ldots \ \ldots \ \ldots \ \ldots \ 1$	9			
		$2.4.3 \text{Th\'eor\`eme Central-Limite} $	0			
		2.4.4 Théorème de De Moivre	3			
3	L'ir	férence statistique 2	4			
	3.1	Distributions échantillonnées	4			
		3.1.1 Distribution échantillonnées de la moyenne \bar{X}	4			
		3.1.2 Distribution échantillonnées de la variance S^2	4			
		3.1.3 Distribution échantillonnées d'une fonction de \bar{X} et s^2	5			
	3.2	Test d'hypothèse				
	3.3	Intervalles de confiance et tests d'hypothèses	7			
		3.3.1 Comparaison des moyennes de deux populations normales de deux écart-type σ connu . $$ 2	7			
		3.3.2 Comparaison des moyennes de deux populations normales de même écart-type σ inconnu $$ 2				
		3.3.3 Comparaison des moyennes de deux populations quelconques	9			
4	Au					
	4.1	Tableau du formulaire	0			
	4.2	Densité et répartition				
	4.3	Distributions	1			

1 La statistique descriptive

1.1 Statistique descriptive en 1D

1.2 Statistique descriptive en 2D

1.2.1 Covariance

La covariance $|m_{11}| \leq s_1 s_2$

La covariance est le moment d'ordre (1,1):

$$m_{11} = \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (x_i - \bar{x}) (y_j - \bar{y})$$

$$0 \le \alpha$$

$$\le \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \underbrace{\left(u(x_i - \bar{x})(y_j - \bar{y})\right)^2}_{\text{2 car toujours } \ge 0}$$

$$\le \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \left(u^2(x_i - \bar{x})^2 + 2u(x_i - \bar{x})(y_j - \bar{y}) + (y_j - \bar{y})^2\right)$$

$$\le u^2 s_1^2 + 2u \ m_{11} + s_2^2$$

Équation du second degré, on calcule son Δ :

$$\Delta \le 0$$

$$(2m_{11})^4 - 4s_1^2 s_2^2 \le 0$$

$$m_{11}^2 - s_1^2 s_2^2 \le 0$$

$$m_{11}^2 \le s_1^2 s_2^2$$

$$|m_{11}| \le s_1 s_2$$

La covariance maximale $|m_{11}| = s_1 s_2$

La valeur absolue de la covariance est maximale et vaut $|m_{11}|=s_1s_2$. Si les points observés se trouvent sur une droite ax+bx+c=0, on a $ax_i+by_i+c=0$. On multiplie par $\frac{n_{ij}}{n}$ et on somme sur ij.

$$0 = \sum_{i=1}^{p} \sum_{j=1}^{q} \frac{n_{ij}}{n} (ax_i + by_j + c)$$

$$= a \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} x_i + b \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} y_j + c \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}$$

$$= a\bar{x} + b\bar{y} + c$$

On soustrait $ax_i + by_j + c = 0$ par $a\bar{x} + b\bar{y} + c = 0$.

$$= a(x_i - \bar{x}) + b(y_j + \bar{y})$$

On utilise $u_0 = \frac{a}{b}$

$$= u_0 b(x_i - \bar{x}) + \frac{a}{u_0} (y_j - \bar{y})$$

$$= u_0 b(x_i - \bar{x}) + \frac{u_0 b}{u_0} (y_j - \bar{y})$$

$$= u_0 (x_i - \bar{x}) + (y_j - \bar{y})$$

L'équation a la même forme que α , du coup...

$$0 = \Delta$$

$$= m_{11}^2 - s_1^2 s_2^2$$

$$m_{11}^2 = s_1^2 s_2^2$$

$$[|m_{11}| = s_1 s_2]$$

1.2.2 Le coefficient de corrélation

$$r = \frac{m_{11}}{s_1 s_2}$$

Propriétés

- 1. r sans dimensions;
- 2. r' = r;
- 3. $-1 \le r \le 1$;
- 4. |r|=1 car les points observés se trouvent sur une droite non parallèle aux axes.

Représentation de la droite de régression en fonction du coefficient de corrélation

- si |r|=1, il y a une relation fonctionnelle linéaire entre X et Y;
- $-\sin r = 0$, Y est indépendante de X : la covariance est nulle et la droite de régression est horizontale;
- la liaison entre X et Y est d'autant plus intime que $|\mathbf{r}|$ est voisin de 1, et d'autant plus faible que $|\mathbf{r}|$ est voisin de 0.

1.2.3 Les droites de régression

La droite de régression de y en x est la droite qui minimise la somme des carrés des écarts des points observés à cette droite, les écarts étant pris parall'element à l'axe y. C'est donc la droite d'équation y = ax + b qui minimise la quantité.

$$g(a,b) = \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (y_j - a \ x_i - b)^2$$

Dérivée par rapport à a:

$$0 = g(a,b)|_{a}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ 2(y_{j} - a \ x_{i} - b)(-x_{i})$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} -2n_{ij} \ x_{i}(y_{j} - a \ x_{i} - b)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i}(-y_{j} + a \ x_{i} + b)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} -n_{ij} \ x_{i} \ y_{j} + \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ a \ x_{i}^{2} + \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ b \ x_{i}$$

$$= -1 \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} \ y_{j} + a \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i}^{2} + b \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i}$$

$$\sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} \ y_{j} = a \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i}^{2} + b \sum_{i=1}^{p} n_{i} \ x_{i}$$

$$\sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} \ y_{j} = a \sum_{i=1}^{p} n_{i} \ x_{i}^{2} + b \sum_{i=1}^{p} n_{i} \ x_{i}$$

Dérivée par rapport à b :

$$0 = g(a,b)|_{b}$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ 2(y_{j} - a \ x_{i} - b)(-1)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} -2n_{ij}(y_{j} - a \ x_{i} - b)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}(-y_{j} + a \ x_{i} + b)$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{q} -n_{ij} \ y_{j} + \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ a \ x_{i} + \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ b$$

$$= -1 \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ y_{j} + a \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} + b \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}$$

$$= a \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \ x_{i} + b \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}$$

$$n \ \bar{y} = a \ n \ \bar{x} + b \ n$$

On a obtenu ces deux réponses :

$$\begin{cases} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} x_i y_j &= a \sum_{i=1}^{p} n_{i.} x_i^2 + b \sum_{i=1}^{p} n_{i.} x_i & (1) \\ n \bar{y} &= a \ n \ \bar{x} + b \ n & (2) \end{cases}$$

On soustrait le (1) par le double du (2):

$$\bar{x}.(2): \qquad n\bar{y}\bar{x} = an\bar{x}^2 + bn\bar{x}$$

$$(1) - \bar{x}.(2): \left(\sum_{i=1}^p \sum_{j=1}^q n_{ij}x_iy_j\right) - (n\bar{y}\bar{x}) = \left(a\sum_{i=1}^p n_{i.}x_i^2 + b\sum_{i=1}^p n_{i.}x_i\right) - \left(an\bar{x}^2 + bn\bar{x}\right)$$

$$\vdots$$

Pour obtenir à la fin :

$$a = \frac{m_{11}}{s_1^2} \text{ et } b = \bar{y} - \frac{m_{11}}{s_1^2} \bar{x}$$

On remplace dans une droite:

$$y = ax + b$$

$$y = \frac{m_{11}}{s_1^2}x + \bar{y} - \frac{m_{11}}{s_1^2}\bar{x}$$

Pour obtenir la droite de regression de y en x:

$$y = \frac{m_{11}}{s_1^2} (x - \bar{x}) + \bar{y}$$

Le raisonnement est symétrique pour le cas de la régression de x en y :

$$x = \frac{m_{11}}{s_1^2} (y - \bar{y}) + \bar{x}$$

1.2.4 Variances résiduelles

La variance résiduelle de y en x est :

$$s_{21}^2 = s_2^2 (1 - r^2)$$

Propriété et interprétation

- $-s_{21}^2 = 0$ ssi $r = \pm 1$ ssi tous les points observés sont sur une droite;
- $-s_{21}^{21} = s_2^2$ ssi r = 0 ssi les droites de régression sont parallèles aux axes; $-s_2^2r^2$ représente une certaine proportion de s_2^2 , d'autant plus grande que la dépendance linéaire entre xet y est forte : on peut donc la considérer comme la part de la variance de y qui est expliquée par le lien linéaire entre x et y, tandis que la variance résiduelle s_{21}^2 est la part de la variance de y qui n'est pas expliquée par ce lien linéaire (d'où son nom).

Démonstration

Nous partons de la variance de y en x:

$$\begin{split} s_{21}^2 &= \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^q n_{ij} \left(y_i - a x_i - b \right)^2 \\ &\text{valeur minimum de } g(\mathbf{a}, \mathbf{b}) \\ \hline \left[a = \frac{m_{11}}{s_1^2} \right] \text{ et } \left[b = \bar{y} - \frac{m_{11}}{s_1^2} \bar{x} \right] \\ &= \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^q n_{ij} \left(y_i - \frac{m_{11}}{s_1^2} x_i - \bar{y} + \frac{m_{11}}{s_1^2} \bar{x} \right)^2 \\ &= \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^q n_{ij} \left((y_i - \bar{y}) - \frac{m_{11}}{s_1^2} (x_i - \bar{x}) \right)^2 \\ &= \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^q n_{ij} (y_i - \bar{y})^2 - 2 \frac{m_{11}}{s_1^2} (x_i - \bar{x}) (y_i - \bar{y}) + \frac{m_{11^2}}{s_1^4} (x_i - \bar{x})^2 \\ &= \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^n n_{ij} (y_i - \bar{y})^2 - 2 \frac{m_{11}}{s_1^2} \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^q + \frac{m_{11^2}}{s_1^4} \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^q n_{ij} (x_i - \bar{x})^2 \\ &= s_2^2 - 2 \frac{m_{11}}{s_1^2} + \frac{m_{11^2}}{s_1^2} \\ &= s_2^2 - 2 \frac{m_{11}^2}{s_1^2} + \frac{m_{11^2}}{s_1^2} \\ &= s_2^2 - \frac{m_{11}^2}{s_1^2} \\ &= s_2^2 - \frac{m_{11}^2}{s_1^2} \end{split}$$

On utilise le coefficient de corrélation $r = \frac{m_{11}}{s_1 s_2}$, donc $\frac{m_{11}}{s_1} = r s_2$:

$$s_2^2 - \frac{m_{11}^2}{s_1^2} = s_2^2 - (rs_2)^2$$

= $s_2^2 (1 - r^2)$

$$s_{21}^2 = s_2^2 (1 - r^2)$$

La variance résiduelle de x en y est similaire :

$$s_{12}^2 = s_1^2(1 - r^2)$$

2 La théorie des probabilités

2.1 Probabilités

2.1.1 Axiomes de la théorie des probabilités

$$\begin{cases}
P(E) &= 1 \\
P(A) &\geq 0 & \forall A \subset E \\
A \cap B &= \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)
\end{cases}$$

2.1.2 Probabilité indépendance

Si A et B sont indépendants alors

- -A et \bar{B} sont indépendants;
- $-\bar{A}$ et \bar{B} sont indépendants;
- $-\bar{A}$ et B sont indépendants.

2.1.3 Probabilité conditionnelle et indépendance

Probabilité conditionnelle de A sous la condition B ("sachant B"):

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Si A est indépendant de
$$B$$
 :
$$\begin{cases} P(A\cap B) &= P(A)P(B) \\ P(A|B) &= P(A) \\ P(B|A) &= P(B) \end{cases}$$

Une des propriétés des 3 suffit.

Démonstration

La probabilité conditionnelle respecte les axiomes de la théorie des probabilités

$$P(E|A) = \frac{P(E \cap A)}{P(A)} = \frac{P(A)}{P(A)} = 1$$

$$P(B|A) = \frac{P(B \cap A)}{P(A)} \ge 0$$

$$X \cap Y \neq \emptyset \Rightarrow P(X \cup Y|A)$$

$$\frac{P((X \cup Y) \cap A)}{P(A)}$$

$$\frac{P((X \cap A) \cup (Y \cap A))}{P(A)}$$

$$\frac{P(X \cap A) + (Y \cap A)}{P(A)}$$

$$\frac{P(X|A)P(A) + P(Y|A)P(A)}{P(A)}$$

$$\frac{P(X|A) + P(Y|A)}{P(A)}$$

2.1.4 Probabilité conditionnelle inverse et indépendant

$$P(A|B) = P(A|\bar{B})$$

Démonstration

$$\begin{array}{rcl} P(A|B) & = & P(A|\bar{B}) \\ \frac{P(A \cap B)}{P(B)} & = & \frac{P(A \cap \bar{B})}{P(\bar{B})} \\ \frac{P(A)P(B)}{P(B)} & = & \frac{P(A)P(B)}{P(\bar{B})} \\ P(A) & = & P(A) \end{array}$$

2.1.5 Formule de Bayes

Cette formule est utilisée dans le cas où un évènement B peut survenir à cause d'évènement A_i incompatibles. Par exemple : une pièce défectueuse fabriquée par plusieurs machines différentes.

$$B = (A_1 \cap B) \cup (A_2 \cap B) \cup \dots \cup (A_m \cap B)$$

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_m \cap B)$$

$$= P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots + P(B|A_m)P(A_m)$$

$$P(A_k|B) = \frac{A_k \cap B}{P(B)} = \frac{P(B|A_k)P(A_k)}{\sum_{j=1}^{m} P(B|A_j)P(A_j)}$$

2.2 Variables aléatoires

2.2.1 Valeurs typiques

Aux distributions/densités marginales et conditionnelles, on peut associer les valeurs typiques :

Moyenne marginale μ_1	$=\sum_{i}p_{i.}x_{i}$	$= \int_{-\infty}^{\infty} x f_1$
Variance marginale σ_1^2	$=\sum_{i}^{i}p_{i.}(x_{i}-\mu_{1})^{2}$	$= \int_{-\infty}^{\infty} (x - \mu_1)^2 f_1$
Moyenne conditionnelle	$\mu_{1/j} = \sum_{i} p_{i/j} x_i$	$\mu_{1/y_0} = \int_{-\infty}^{\infty} x f(x - \mu_1)^2 f_1$
Variance conditionnelle	$\sigma_{1/j}^2 = \sum_{i}^{3} p_{i/j} (x_i - \mu_{1/j})^2$	$\sigma_{1/j}^2 = \int_{-\infty}^{\infty} (x - \mu_{1/y_0})^2 f(x/y_0)$

2.2.2 Distribution d'une fonction monotone d'une variable aléatoire G(V)

$$W = G(V)$$

Cas discret

$$F_W(x) = P(W \le x)$$

$$= P(G(V) \le x)$$

$$= P(V \le G^{-1}(x))$$

$$= F_V(G^{-1}(x))$$

Cas continu

$$\begin{array}{lll} f_W(x) & = & F_W'(x) \\ & = & F_W'(x) \\ & = & (F_W(x))' \\ & = & (P(W \leq x))' \\ & = & (P(G(V) \leq x))' \\ & = & (P(V \leq G^{-1}(x)))' & (P(V \geq G^{-1}(x)))' \\ & = & (F_V(G^{-1}(x)))' & (1 - F_V(G^{-1}(x)))' \\ & = & f_V(G^{-1}(x)) \frac{1}{G'(G^{-1}(x))} & f_V(G^{-1}(x)) \frac{-1}{G'(G^{-1}(x))} \end{array}$$

2.2.3 Distribution de la somme de deux variables aléatoires V+W

$$Z = V + W$$

Cas discret

$$\begin{split} F_Z(x) &= \sum_i \sum_j p_{ij} \\ &= \sum_i \sum_j P(V \leq v_i, W \leq w_i) \quad \text{tel que } v_i + w_i \leq x \end{split}$$

Cas continu

$$\begin{split} F_Z(x) &= P(Z \leq x) \\ F_{V+W}(x) &= P(V \leq \xi, W \leq \eta) & \text{tel que } v_i + w_i \leq x \\ &= \iint\limits_{\xi + \eta \leq x} f_{(V,W)}(\xi,\eta) \; d\xi \; d\eta \\ & \begin{cases} \xi &= u \\ \eta &= v - u \end{cases} \\ On \text{ remplace par} \begin{cases} \int\limits_{\xi \leq x} \frac{\delta \xi}{\delta u} \frac{\delta \xi}{\delta v} \\ \frac{\delta \eta}{\delta u} \frac{\delta \eta}{\delta v} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = 1.1 - 0.(-1) = 1 \\ = \int\limits_{v \leq x} \int\limits_{x} f_{(V,W)}(u,v-u) \; |1| \; du \; dv \\ = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} f_{(V,W)}(u,v-u) \; du \\ f_Z(x) &= \frac{\delta F_z(x)}{\delta x} = \int\limits_{-\infty}^{+\infty} f_{(V,W)}(u,x-u) \; du \end{split}$$

ou si indépendant

$$f_Z(x) = \frac{\delta F_z(x)}{\delta x} = \int_{-\infty}^{+\infty} f_V(u) \cdot f_W(x - u) \ du$$

2.2.4 Distribution du produit de deux variables aléatoires V.W.

$$Z = V.W$$

Cas continu

$$F_{Z}(x) = P(Z \le x)$$

$$F_{V:W}(x) = P(V \le \xi, W \le \eta) \qquad \text{tel que } v_i + w_i \le x$$

$$= \iint_{\xi, \eta \le x} f_{(V,W)}(\xi, \eta) \ d\xi \ d\eta$$

$$\begin{cases} \xi = u \\ \eta = \frac{v}{u} \end{cases}$$
On remplace par
$$\begin{cases} \delta \xi & \frac{\delta \xi}{\delta u} & \frac{\delta \xi}{\delta v} \\ \frac{\delta \eta}{\delta u} & \frac{\delta \eta}{\delta v} \end{cases} = \begin{pmatrix} 1 & 0 \\ \frac{-1}{u^2} & \frac{1}{u} \end{pmatrix} = 1 \cdot \frac{1}{u} - 0 \cdot \frac{-1}{u^2} = \frac{1}{u}$$

$$= \iint_{v \le x} f_{(V,W)}(u, v - u) \ du \ dv$$

$$= \int_{-\infty}^{x} dv \int_{-\infty}^{+\infty} f_{(V,W)}(u, v - u) \ du$$

$$f_{Z}(x) = \frac{\delta F_{z}(x)}{\delta x} = \int_{-\infty}^{+\infty} f_{(V,W)}\left(u, \frac{x}{u}\right) \cdot \left|\frac{1}{u}\right| \ du$$

ou si indépendant

$$f_{Z}(x) = \frac{\delta F_{z}(x)}{\delta x} = \int_{-\infty}^{+\infty} f_{V}(u) \cdot f_{W}\left(\frac{x}{u}\right) \cdot \left|\frac{1}{u}\right| du$$

2.2.5 Distribution de la somme des espérances E(V+W)

$$\boxed{E(Z) = E(V+W)}$$

Demonstration

Example Section
$$E(Z) = \int_{-\infty}^{\infty} x \ f_{(V+W)}(x) \ dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \ f_{(V,W)}(u,x-u) \ du \ dv$$

$$2.2.3 \text{ page } 12$$
On remplace par
$$\begin{cases} u = \xi \\ x = \xi - \eta \end{cases}$$

$$J = \begin{pmatrix} \frac{\delta u}{\delta \xi} & \frac{\delta u}{\delta \eta} \\ \frac{\delta x}{\delta \xi} & \frac{\delta x}{\delta \eta} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} = 1. - 1 - 0.1 = -1$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\xi + \eta) \ f_{(V,W)}(\xi,\eta) \ |-1| \ d\xi \ d\eta$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \xi \ f_{(V,W)}(\xi,\eta) \ d\xi \ d\eta + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \eta \ f_{(V,W)}(\xi,\eta) \ d\xi \ d\eta$$

$$= \int_{-\infty}^{\infty} \xi \ f_{V}(\xi) \ d\xi \ + \int_{-\infty}^{\infty} \eta \ f_{W}(\eta) \ d\eta$$

$$= E(V) + E(W)$$

2.2.6 Distribution du produit des espérances E(V.W)

$$E(Z) = E(V.W)$$

Demonstration

Uniquement pour des variables indépendantes

$$E(Z) = \int_{-\infty}^{\infty} x \, f_{(V,W)}(x) \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \, f_{V}(u) f_{w}\left(\frac{x}{u}\right) \left|\frac{1}{u}\right| \, du \, dv$$

$$2.2.4 \text{ page } 13$$
On remplace par
$$\begin{cases} u = \xi \\ x = \xi \eta \end{cases}$$

$$J = \begin{pmatrix} \frac{\delta u}{\delta \xi} & \frac{\delta u}{\delta \eta} \\ \frac{\delta x}{\delta \xi} & \frac{\delta x}{\delta \eta} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \eta & \xi \end{pmatrix} = 1.\xi - 0.\eta = \xi$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\xi \eta) \, f_{(V,W)}(\xi, \eta) \, |\xi| \, d\xi \, d\eta$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \xi \, f_{V}(\xi) f_{W}(\eta) \, d\xi \, d\eta \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \eta \, f_{(V,W)}(\xi, \eta) \, d\xi \, d\eta$$

$$= \int_{-\infty}^{\infty} \xi \, f_{V}(\xi) \, d\xi \, \int_{-\infty}^{\infty} \eta \, f_{W}(\eta) \, d\eta$$

$$= E(V).E(W)$$

2.2.7 Variance d'une variable aléatoire $D^2(aV + b)$

$$D^2(aV+b) = a^2D^2(V)$$

Démonstration

D'après la propriété 2.2.1 page
$$10: \sigma_V^2=D^2(V)=\int_{-\infty}^\infty (x-\mu)^2 f_V(x) dx=E\left((x-\mu)^2\right)$$

$$D^2(W)=D^2(aV+b)$$

$$=E\left((W-(a\mu+b))^2\right)$$

$$=E\left((aV+b-a\mu-b)^2\right)$$

$$=E\left(a^2(V-\mu)^2\right)$$

$$=a^2D^2(V)$$

2.2.8 Variance de la somme de deux variables aléatoires $D^2(V+W)$

$$D^{2}(V+W) = D^{2}(V) + D^{2}(W) + 2\mu_{11}$$

Démonstration

D'après la propriété 2.2.1 page
$$10: \sigma_V^2 = D^2(V) = \int_{-\infty}^{\infty} (x-\mu)^2 f_V(x) dx = E\left((x-\mu)^2\right)$$

$$D^{2}(Z) = D^{2}(V + W)$$

$$= E ((Z - (\mu_{V} + \mu_{W}))^{2})$$

$$= E (((V + W) - (\mu_{V} + \mu_{W}))^{2})$$

$$= E (((V - \mu_{V}) + (W - \mu_{W}))^{2})$$

$$= E ((V - \mu_{V})^{2}) + E ((V - \mu_{W})^{2}) + 2E ((V - \mu_{V})(W - \mu_{W}))$$

$$= D^{2}(V) + D^{2}(W) + 2\mu_{11}$$

2.3 Variables aléatoires particulières

- 2.3.1 Variable binomiale $\mathcal{B}(n,p)$
- 2.3.2 Variable de Poisson \mathcal{P}_{λ}
- 2.3.3 Variable exponentielle négative
- 2.3.4 Variable Normale $\mathcal{N}(\mu, \sigma)$

Propriété d'opposé

Soit $\bar{X_1}$ et $\bar{X_2}$ deux variables normales. Si $\bar{X_2}$ est l'opposé de $\bar{X_1}$ ($\bar{X_2}=$ - $\bar{X_1}$) alors

$$\bar{X}_1 \sim N(\mu_1, \sigma) \text{ et } \bar{X}_2 \sim N(-\mu_2, \sigma)$$

Propriété d'addition

Soit $N(\mu_1, \sigma_1)$ et $N(\mu_2, \sigma_2)$ deux variables normales indépendantes et $\psi_1(t)$ et $\psi_2(t)$ leurs fonctions génératrices.

$$\psi(t) = \psi_1(t).\psi_2(t)$$

$$= e^{\mu_1 + t + \sigma_1^2 t^2/2}.e^{\mu_2 + t + \sigma_2^2 t^2 \frac{1}{2}}$$

$$= e^{(\mu_1 + \mu_2)t + \frac{1}{2}(\sigma_1^2 + \sigma_2^2)t^2}$$

On obtient bien une fonction génératrice d'une normale de paramètres $(\mu_1 + \mu_2)$ et $\sqrt{\sigma_1^2 + \sigma_2^2}$.

$$N(\mu_1, \sigma_1) + N(\mu_2, \sigma_2) = N\left(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2}\right)$$

- 2.3.5 Variable Khi²
- 2.3.6 Variable Student t_n
- 2.3.7 Variable Snedecor $\mathcal{F}_{(m,n)}$

2.4 Théorèmes fondamentaux

2.4.1 Inégalité de Bienaymé-Tchebycheff

La proportion d'individus s'écartant de la moyenne d'une distribution de plus k fois l'écart-type (σ) ne dépasse jamais $\frac{1}{k^2}$:

$$\boxed{\frac{1}{k^2} \ge P(|V - \mu| \ge k\sigma)}$$

Démonstration

Cas continu

$$\sigma_{2} = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$

$$= \underbrace{\int_{-\infty}^{\mu - k\sigma} (x - \mu)^{2} f(x) dx + \underbrace{\int_{\mu - k\sigma}^{\mu + k\sigma} (x - \mu)^{2} f(x) dx + \underbrace{\int_{\mu + k\sigma}^{\infty} (x - \mu)^{2} f(x) dx + \underbrace{\int_{\mu + k\sigma}^{\infty} (x - \mu)^{2} f(x) dx + \underbrace{\int_{\mu + k\sigma}^{\infty} (x - \mu)^{2} f(x) dx + \underbrace{\int_{\mu + k\sigma}^{\infty} (x - \mu)^{2} f(x) dx + \underbrace{\int_{\mu + k\sigma}^{\infty} (k\sigma)^{2} f(x) dx}_{(x - \mu)^{2} \ge (k\sigma)^{2}}$$

$$\sigma^{2} \ge \int_{-\infty}^{\mu - k\sigma} (k\sigma)^{2} f(x) dx + \int_{\mu + k\sigma}^{\infty} (k\sigma)^{2} f(x) dx$$

$$\ge (k\sigma)^{2} \int_{-\infty}^{\mu - k\sigma} f(x) dx + (k\sigma)^{2} \int_{\mu + k\sigma}^{\infty} f(x) dx$$

$$\frac{1}{k^{2}} \ge P(|V - \mu| \ge k\sigma)$$

$$\ge P(|V - \mu| \ge k\sigma) + P(|V - \mu| \ge k\sigma)$$

$$\frac{1}{k^{2}} \ge P(|V - \mu| \ge k\sigma)$$

Cas discret

$$\sigma^{2} = \sum_{i} p_{i}(x_{i} - \mu)^{2}$$

$$= \sum_{i;x_{i} \leq \mu - k\sigma} p(x_{i} - \mu)^{2} + \sum_{i;\mu - k\sigma < x_{i} < \mu + k\sigma} p(x_{i} - \mu)^{2} + \sum_{i;\mu + k\sigma \leq x_{i}} p(x_{i} - \mu)^{2}$$

$$\sigma^{2} \geq \sum_{i;x_{i} \leq \mu - k\sigma} p(x_{i} - \mu)^{2} + \sum_{i;\mu + k\sigma \leq x_{i}} p(x_{i} - \mu)^{2}$$

$$\geq k^{2}\sigma^{2} \sum_{i;x_{i} \leq \mu - k\sigma} p_{i} + \sum_{i;\mu + k\sigma \leq x_{i}} p_{i}$$

$$\frac{1}{k^{2}} \geq \sum_{i;x_{i} \leq \mu - k\sigma} p_{i} + \sum_{i;\mu + k\sigma \leq x_{i}} p_{i}$$

$$\geq P(V \leq \mu - k\sigma) + P(V \geq \mu + k\sigma)$$

$$\geq P(V - \mu \leq -k\sigma) + P(V - \mu \geq k\sigma)$$

$$\geq P(|V - \mu| \geq k\sigma) + P(|V - \mu| \geq k\sigma)$$

$$\boxed{\frac{1}{k^2} \ge P(|V - \mu| \ge k\sigma)}$$

2.4.2 Théorème de Bernouilli ou loi des grands nombres

Lors de n répétitions d'une expérience aléatoire, la fréquence relative $\frac{F}{n}$ d'un évènement tend vers sa probabilité p d'exister lorsque $n \to \infty$

$$\boxed{\frac{p(1-p)}{n\epsilon^2} \ge P\left(\left|\frac{F}{n} - p\right| \ge \epsilon\right) \stackrel{n \to \infty}{\to} 0}$$

Démonstration

On part avec le théorème de Bienaymé-Tchebycheff

$$\frac{1}{k^2} \ge P(|V - \mu| \ge k\sigma)$$

Et on considère une binomiale V = B(n, p)

$$\frac{1}{k^2} \ge P\left(|B(n,p) - np| \ge k\sqrt{np(1-p)}\right)$$

$$\ge P\left(\frac{|B(n,p) - np|}{n} \ge \frac{k\sqrt{np(1-p)}}{n}\right)$$

$$\ge P\left(\left|\frac{B(n,p)}{n} - p\right| \ge k\sqrt{\frac{np(1-p)}{n^2}}\right)$$

$$\ge P\left(\left|\frac{B(n,p)}{n} - p\right| \ge k\sqrt{\frac{p(1-p)}{n}}\right)$$

On pose
$$k\sqrt{\frac{p(1-p)}{n}} = \epsilon$$
 et $B(n,p) = F$

$$\begin{cases} k\sqrt{\frac{p(1-p)}{n}} &= \epsilon \\ k &= \epsilon \frac{\sqrt{n}}{\sqrt{p(1-p)}} \\ k^2 &= \frac{\epsilon^2 n}{p(1-p)} \\ \frac{1}{k^2} &= \frac{p(1-p)}{\epsilon^2 n} \end{cases}$$

$$\frac{p(1-p)}{n\epsilon^2} \ge P\left(\left|\frac{F}{n} - p\right| \ge \epsilon\right) \overset{n \to \infty}{\to} 0$$

2.4.3 Théorème Central-Limite

Ce théorème stipule que si V est une somme de n variables aléatoires (quelconques) indépendantes

$$V = X_1$$
 , X_2 , X_3 , ... , X_n

alors sa variable réduite $\frac{V-\mu}{\sigma}$ tend vers une gausienne N(0,1) lorsque $n\to\infty.$

$$\boxed{\frac{V - E(V)}{D(V)} = \frac{V - \mu}{\sigma} \stackrel{n \to \infty}{\to} N(0, 1)}$$

Démonstration

On pose d'abord les calculs de l'espérance et de l'écart-type de la somme de variable aléatoire V, pour un de ses éléments V_i , pour la somme de variable centrée W et pour un de ses éléments W_i :

$$\begin{cases}
V = \sum_{i=1}^{n} V_{i} & (1) \\
E(V_{i}) = \widehat{\mu} & (2) \\
D(V_{i}) = \widehat{\sigma} & (3) \\
E(V) = \sum_{i=1}^{n} E(V_{i}) \\
= n\widehat{\mu} & (4)
\end{cases}$$

$$= \sqrt{\sum_{i=1}^{n} D^{2}(V_{i})}$$

$$= \sqrt{n} \widehat{\sigma} & (5)$$

$$W_{i} = V_{i} - \widehat{\mu} & (6) \\
W_{i} = \sum_{i=1}^{n} W_{i} & (6) \\
W_{i} = \sum_{i=1}^{n} W_{i} & (6) \\
E(V_{i}) = \sum_{i=1}^{n} W_{i} & (6) \\
W_{i} = \sum_{i=1}^{n} W_{i} & (6) \\
E(V_{i}) = \sum_{i=1}^{n} W_{i} & (6) \\
W_{i} = \sum_{i=1}^{n} W_{i} & (6) \\
E(V_{i}) = \sum_{i=1}^{n} W_{i} & (6) \\
E(W_{i}) = \sum_{i=1}^{n} W_{$$

On commence avec la fonction génératrice des moments $\psi_V(t) = E(e^{tV})$

$$\psi_Z(t) = E\left(e^{tZ}\right)$$

$$= E\left(e^{\left(t\frac{V-\mu}{\sigma}\right)}\right)$$

$$= E\left(e^{\left(\frac{t}{\sigma}(V-\mu)\right)}\right)$$

$$V - \mu = \sum_{i=1}^{n} V_{i} - \mu \qquad \text{car propriété (1)}$$

$$= \sum_{i=1}^{n} V_{i} - E(V) \qquad \text{car propriété (4)}$$

$$= \sum_{i=1}^{n} V_{i} - E\left(\sum_{i=1}^{n} V_{i}\right) \qquad \text{car propriété (1)}$$

$$= \sum_{i=1}^{n} V_{i} - \sum_{i=1}^{n} E(V_{i})$$

$$= \sum_{i=1}^{n} V_{i} - \sum_{i=1}^{n} \widehat{\mu} \qquad \text{car propriété (2)}$$

$$= \sum_{i=1}^{n} V_{i} - \widehat{\mu}$$

$$= E\left(e^{\left(\frac{t}{\sigma}\sum_{i=1}^{n} (V_{i} - \widehat{\mu})\right)}\right)$$

$$= E\left(e^{\left(\frac{t}{\sigma}\sum_{i=1}^{n} (W_{i})\right)}\right)$$

Propriété :
$$Z = V + W(\text{indépendant})$$

$$\begin{cases}
\psi_Z = E(e^{tZ}) \\
= E(e^{t(V+W)}) \\
= E(e^{tV}e^{tW}) \\
= E(e^{tV})E(e^{tW}) \\
= \psi_V \psi_W
\end{cases}$$

$$= \psi_{W_1} \left(\frac{t}{\sigma}\right) \psi_{W_2} \left(\frac{t}{\sigma}\right) \dots \psi_{W_n} \left(\frac{t}{\sigma}\right)$$

$$= \left(\psi_{W_i} \left(\frac{t}{\sigma}\right)\right)^n$$

$$\psi_Z(t) = E\left(e^{tZ}\right) = \left(\psi_{W_i} \left(\frac{t}{\sigma}\right)\right)^n$$

Maintenant nous développons $\psi_{W_i}(t)$ par le théorème de Taylor :

$$\begin{cases} f(x) &= \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + R_{n}(x) \\ &= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f^{(2)}(a)}{2!} (x-a)^{2} + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^{n} + R_{n}(x) \end{cases}$$

$$\begin{bmatrix} D^{2}(W_{i}) &= E(W_{i}^{2}) - E^{2}(W_{i}) \\ E(W_{i}^{2}) &= D^{2}(W_{i}) + E^{2}(W_{i}) \\ &= \widehat{\sigma}^{2} + 0^{2} \end{cases}$$

$$\begin{cases} \psi_{W_{i}}(t) &= 1 + E(W_{i})t + E(W_{i}^{2})\frac{t^{2}}{2} + R(t^{3}) \\ &= 1 + 0t + \widehat{\sigma}^{2}\frac{t^{2}}{2} + R(t^{3}) \end{cases} \text{ car propriété (8) et (9)}$$

 $Open \ source \ pour \ ajout \ ou \ modification: \\ https://github.com/ULBstudents/MATH-H204-Calcul_des_probabilites_et_statistiques-Resument \ and \ alternative \ alte$

$$Z = \frac{W}{\sqrt{n}\widehat{\sigma}} = \frac{V - \mu}{\sigma} \xrightarrow{n \to \infty} N(0, 1)$$

$$\lim_{n \to \infty} \psi_Z(t) = \lim_{n \to \infty} \left(\psi_{W_i} \left(\frac{t}{\sqrt{n}\widehat{\sigma}} \right)^n \right)$$

$$= \lim_{n \to \infty} \left(1 + \frac{t^2}{2n} + R(t^3) \right)^n$$

$$= \lim_{n \to \infty} \left(1 + \frac{t^2}{2n} \right)^n$$

$$= e^{\frac{t^2}{2}}$$

On a donc une allure d'une fonction génératrice d'une N(0,1)

$$\psi_Z(t) \stackrel{n \to \infty}{\to} N(0,1)$$

2.4.4 Théorème de De Moivre

C'est un cas particulier du théorème Central-Limite puisqu'une binomiale est bien une somme de variables quelconques de mêmes distributions (à savoir, des variables indicatrices). La variable binomiale est asymptotiquement normale lorsque $\to \infty$.

$$\boxed{\frac{B(n,p)-np}{\sqrt{np(1-p)}}\stackrel{n\to\infty}{\to} N(0,1)}$$

Démonstration

On part donc avec le théorème de Central-Limite :

$$\frac{V - E(V)}{D(V)} = \frac{V - \mu}{\sigma} \stackrel{n \to \infty}{\to} N(0, 1)$$

Et on considère une binomiale V = B(n, p).

$$\frac{B(n,p) - np}{\sqrt{np(1-p)}} \stackrel{n \to \infty}{\longrightarrow} N(0,1)$$

3 L'inférence statistique

3.1 Distributions échantillonnées

3.1.1 Distribution échantillonnées de la moyenne \bar{X}

Supposons que la distribution de la population ait une moyenne μ et un écart-type σ . Il en est donc de même pour les distributions échantillonnées de X_1, X_2, \ldots, X_n et il résulte alors des propriétés de l'espérance mathématique que :

$$E(\bar{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$\frac{1}{n}\sum_{i=1}^{n}E(X_{i})$$

$$\frac{1}{n}\sum_{i=1}^{n}\mu$$

$$\mu$$

et il résulte des propriétés de la variance que :

$$D^{2}(\bar{X}) = D^{2}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$D^{2}(aV+b) = a^{2}D^{2}(V) \qquad 2.2.7 \text{ page } 16$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}D^{2}(X_{i})$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma$$

$$= \frac{\sigma^{2}}{n}$$

3.1.2 Distribution échantillonnées de la variance S^2

$$E(S^{2}) = E\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}E(X_{i}^{2}) + 2E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\bar{X}\right) + \frac{1}{n}\sum_{i=1}^{n}E(\bar{X}^{2})$$

3.1.3 Distribution échantillonnées d'une fonction de \bar{X} et s^2

Il résulte de ce qui précède que lorsque la population a une distribution normale, la variable

$$\sqrt{n-1}\frac{\bar{X}-\mu}{S} \sim t_{(n-1)}$$

Démonstration

La définition d'une chi carré $\chi^2_{(n-1)}$ est une somme de normale au carré $\sum_{i=1}^{n-1} (N_i(0,1))^2$.

Or on a vu que $\chi^2_{(n-1)} = \frac{nS^2}{\sigma^2}$, donc

$$\chi_{(n-1)}^{2} = \sum_{i=1}^{n-1} (N_{i}(0,1))^{2}$$

$$\frac{nS^{2}}{\sigma^{2}} = \sum_{i=1}^{n-1} \left(\frac{N_{i}(0,\sigma)}{\sigma}\right)^{2}$$

$$\frac{nS^{2}}{\sigma^{2}} = \sum_{i=1}^{n-1} \frac{(N_{i}(0,\sigma))^{2}}{\sigma^{2}}$$

$$nS^{2} = \sum_{i=1}^{n-1} (N_{i}(0,\sigma))^{2}$$

$$nS^{2} \frac{1}{n-1} = \frac{1}{n-1} \sum_{i=1}^{n-1} (N_{i}(0,\sigma))^{2}$$

$$\left(\frac{nS^{2}}{n-1}\right)^{\frac{-1}{2}} = \left(\frac{1}{n-1} \sum_{i=1}^{n-1} (N_{i}(0,\sigma))^{2}\right)^{\frac{-1}{2}}$$

$$\frac{1}{\sqrt{\frac{nS^{2}}{n-1}}} = \frac{1}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n-1} (N_{i}(0,\sigma))^{2}}}$$

$$\frac{N(0,\sigma)}{S\sqrt{\frac{n}{n-1}}} = \frac{N(0,\sigma)}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n-1} (N_{i}(0,\sigma))^{2}}}$$

$$\frac{N(0,\sigma)}{S\sqrt{\frac{n}{n-1}}} = t_{(n-1)}$$

On obtient bien une student $t_{(n-1)}$ à n-1 degrés de liberté (2.3.6 page 17). On va donc remplacer la normale $N(0,\sigma)$ dans l'équation par :

$$\begin{cases} \bar{X} & \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right) \\ \frac{\bar{X} - \mu}{1} & \sim N(0, \sigma) \\ \sqrt{n} \left(\bar{X} - \mu\right) & \sim N(0, \sigma) \end{cases}$$

$$t_{(n-1)} = \frac{N(0, \sigma)}{S\sqrt{\frac{n}{n-1}}} = \frac{\sqrt{n} \left(\bar{X} - \mu\right)}{S\sqrt{\frac{n}{n-1}}} = \frac{\bar{X} - \mu}{S\frac{1}{\sqrt{n-1}}} = \sqrt{n-1} \frac{\bar{X} - \mu}{S}$$

$$t_{(n-1)} = \sqrt{n-1} \frac{\bar{X} - \mu}{S}$$

3.2 Test d'hypothèse

Erreur de première espèce est de rejeter une hypothèse alors qu'elle est vraie. Le risque α de commettre cette erreur est ϵ :

Erreur de seconde espèce est d'accepter une hypothèse alors qu'elle est fausse. Si on accepte une moyenne μ_0 alors qu'elle vaut en réalité μ_1 , alors le risque de commettre cette erreur est

$$\beta = P\left(\mu_0 - u_{\beta/2} \frac{\sigma}{\sqrt{n}} \le \bar{X} \le \mu_0 + u_{\beta/2} \frac{\sigma}{\sqrt{n}}\right)$$

$$\begin{cases}
\text{où } \bar{X} \sim N\left(\mu_1, \frac{\sigma}{\sqrt{n}}\right) \Rightarrow \frac{\bar{X} - \mu_1}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1) \\
= P\left(\mu_0 - u_{\beta/2} \frac{\sigma}{\sqrt{n}} \le N(0, 1) \frac{\sigma}{\sqrt{n}} + \mu_1 \le \mu_0 + u_{\beta/2} \frac{\sigma}{\sqrt{n}}\right) \\
= P\left(\frac{\mu_0 - \mu_1}{\sigma} \sqrt{n} - u_{\beta/2} \le N(0, 1) \le \frac{\mu_0 - \mu_1}{\sigma} \sqrt{n} + u_{\beta/2}\right)
\end{cases}$$

Puissance d'un test est la valeur $1 - \beta$, c'est à dire la probabilité de rejeter l'hypothèse alors qu'elle est fausse.

3.3 Intervalles de confiance et tests d'hypothèses

3.3.1 Comparaison des moyennes de deux populations normales de deux écart-type σ connu

On commence avec deux moyennes des deux populations:

$$\bar{X}_1 \sim N\left(\mu_1, \frac{\sigma_1}{\sqrt{n_1}}\right)$$

$$\bar{X}_2 \sim N\left(\mu_2, \frac{\sigma_2}{\sqrt{n_2}}\right)$$

Maintenant nous devons faire une soustraction de deux normales $\bar{X}_1 - \bar{X}_2$, pour faire cela nous prenons l'opposé d'une normale et nous les additionnons $\bar{X}_1 + (-\bar{X}_2)$ grace à la propriété d'opposé d'une normale 2.3.4 page 17 et la propriété d'addition 2.3.4 page 17.

$$\bar{X}_1 + (-\bar{X}_2) = N \left(\mu_1 - \mu_2, \sqrt{\left(\frac{\sigma_1}{\sqrt{n_1}}\right)^2 + \left(\frac{\sigma_2}{\sqrt{n_2}}\right)^2} \right)$$

$$= N \left(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right)$$

Ces deux variables étant indépendantes, on en déduit que

$$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

A tout $\epsilon > 0$, on peut donc associé un nombre tel que

$$P\left(-u_{\epsilon/2} \le T \le u_{\epsilon/2}\right) = 1 - \epsilon$$

d'où on peut donc déduire un intervalle de confiance pour $\mu_1 - \mu_2$. D'autre part on rejettera l'hypothèse $\mu_1 = \mu_2$ si

$$\frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} > u_{\epsilon/2}$$

3.3.2 Comparaison des moyennes de deux populations normales de même écart-type σ inconnu

On commence avec deux moyennes des deux populations:

$$\bar{X}_1 \sim N\left(\mu_1, \frac{\sigma}{\sqrt{n_1}}\right)$$

$$\bar{X}_2 \sim N\left(\mu_2, \frac{\sigma}{\sqrt{n_2}}\right)$$

Maintenant nous devons faire une soustraction de deux normales $\bar{X}_1 - \bar{X}_2$, pour faire cela nous prenons l'opposé d'une normale et nous les additionnons $\bar{X}_1 + (-\bar{X}_2)$ grace à la propriété d'opposé d'une normale 2.3.4 page 17 et la propriété d'addition 2.3.4 page 17.

$$\bar{X}_1 + (-\bar{X}_2) = N \left(\mu_1 - \mu_2, \sqrt{\left(\frac{\sigma}{\sqrt{n_1}}\right)^2 + \left(\frac{\sigma}{\sqrt{n_2}}\right)^2} \right)$$

$$= N \left(\mu_1 - \mu_2, \sqrt{\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}} \right)$$

$$= N \left(\mu_1 - \mu_2, \sigma \sqrt{\frac{n_1 + n_2}{n_1 n_2}} \right)$$

et avec un $\chi^2_{(n_1-1+n_2-1)}$ où n= nombre de degré de libertés

??? = au début???

$$\frac{n_1 s_1^2 + n_2 s_2^2}{\sigma^2} = \chi_{(n_1 + n_2 - 2)}^2$$

$$\frac{1}{\sigma} \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{\sigma^2}} = \frac{\sqrt{\chi_{(n_1 + n_2 - 2)}^2}}{\sqrt{n}}$$

$$= \sqrt{\frac{1}{n} \chi_{(n_1 + n_2 - 2)}^2}$$
??? = au final???

Ces deux variables étant indépendantes, on en déduit que

$$T = \underbrace{\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{n_1 + n_2}{n_1 n_2}}}}_{N(0,1)} \underbrace{\frac{1}{\frac{1}{\sigma} \sqrt{\frac{n_1 S_1^2 + n_2 S_2^2}{n_1 + n_2 - 1}}}}_{\chi^2_{n_1 - 1 + n_2 - 1}}$$

$$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{n_1 + n_2}{n_1 n_2}} \sqrt{\frac{n_1 S_1^2 + n_2 S_2^2}{n_1 + n_2 - 2}}} \sim t_{n_1 - 1 + n_2 - 1}$$

A tout $\epsilon > 0$, on peut donc associé un nombre tel que

$$P\left(-t_{\epsilon/2} \le T \le t_{\epsilon/2}\right) = 1 - \epsilon$$

d'où on peut donc déduire un intervalle de confiance pour $\mu_1 - \mu_2$. D'autre part on rejettera l'hypothèse $\mu_1 = \mu_2$ si

$$\frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{n_1 + n_2}{n_1 n_2}} \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}} > t_{\epsilon/2}$$

3.3.3 Comparaison des moyennes de deux populations quelconques

Si n_1 et n_2 sont suffisamment grands (au moins 20), alors $\bar{X}_1 - \bar{X}_2$ a une distribution approximativement normale :

$$\bar{X}_1 - \bar{X}_2 \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)$$

où on remplace σ_1 et σ_2 par s_1 et s_2 lorsqu'ils sont inconnus. On rejette alors l'hypothèse $\mu_1=\mu_2$ lorsque

$$\frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} > u_{\epsilon/2}$$

4 Autres

4.1 Tableau du formulaire

	μ	σ^2	$\psi(t)$
$\mathcal{B}(n,p)$	np	np(1-p)	$(pe^t + q)^n$
\mathcal{P}_{λ}	λ	λ	$e^{\lambda(e^t-1)}$
Exp_{λ}	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$
$\boxed{ \text{Indicatrice}(p) }$	p	p(1-p)	$1 + p(e^t - 1)$
Uniforme $[a,b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{t} \frac{e^{tb} - e^{ta}}{b - a}$
$\mathcal{N}(\mu, \sigma)$	μ	σ^2	$e^{\mu t + (\sigma^2 t^2)/2}$
$\chi^2_{(n)}$	n	2n	$(1-2t)^{-n/2}$
t_n	0 n > 1	$\frac{n}{n-2}$ $n>2$	aucun
$\mathcal{F}_{(m,n)}$	$\frac{n}{n-2}$ $n>2$	$\frac{2n^2(n+m-2)}{m(n-2^2(m-4))} \qquad n > 2$	aucun

Tableau dans le formulaire disponible à l'examen écrit (en rouge à connaître)

4.2 Densité et répartition

	Fonction de densité $f(x)$	Fonction de répartition $F(x)$
$\mathcal{B}(n,p)$	P[B(n,p)=k]	$\sum_{k=0}^{x} P[B(n,p) = k]$
\mathcal{P}_{λ}	$P[\mathcal{P}_{\lambda} = k] = \frac{\lambda^k}{k!} e^{-\lambda}$	$\sum_{k=0}^{x} P[\mathcal{P}_{\lambda} = k]$
$\operatorname{Exp}_{\lambda}$	$\begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$
$\boxed{ \text{Indicatrice}(p) }$	$V_A \Rightarrow \begin{cases} P(V_A = 1) = p \\ P(V_A = 0) = 1 - p \end{cases}$	$\begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & x > 1 \end{cases}$
$\boxed{ \text{Uniforme}[a,b] }$	$\begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & sinon \end{cases}$	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & x \ge b \end{cases}$
$\mathcal{N}(\mu, \sigma)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{(u-\mu)^2}{2\sigma^2}} du$
$\chi^2_{(n)}$	$\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ $\begin{cases} \frac{1}{\sqrt{2\pi}}e^{\frac{x^2}{2}} & x > 0\\ 0 & x \le 0 \end{cases}$	$\frac{1}{\sqrt{2\pi}} \int_0^x e^{\frac{x^2}{2}} du$
t_n	Densité indépendante de σ	
$\mathcal{F}_{(m,n)}$	Densité indépendante de σ	

4.3 Distributions

