Tileboard update

S. Kim¹

¹Department of Physics Florida State University

Tileboard update, 113020

Introduction and Summary

- 112020 presentation: 0,3,5,6 loopbacks working in the TB
- Investigation of GBTSCA, WB schematics, and DMM continuity test to explain errors for 1,2,4,7,8 loopbacks
- 2,4,6 were not supposed to work due to grounding of output signals in the EB
- 7,8 were not supposed to work since the Cable Connector (J101) receives signal from GBTSCA.
- Things that were supposed to work, and things not supposed to work do not work (except 1,6).

Structure of Presentation

- 0 Review of 112020 result
- 1 Complete QSH XDC assignment
- 2 Review of the GBTSCA schematics
- 3 Review of the WB schematics
- 4 Conclusion

Result and interpretation - 1

Before jumping into item1, this is review of where I left off on 112020.

We see successful connection for bytegenerator 0,3,5,6 (inverted)

Result and interpretation - 2

- We see correct connection made for 4 different loops
- It makes sense to see connection for 0,5. Those connections are the easiest edit of all byte-generators (Keeping all pin assignment same as QTH, but adding 1 more sign of inversion)
- It was byte6 where the inversion was opposite
- All the other ports are not inversion issue, but data not forming a loopback

Complete QSH XDC assignment

- 1 Complete QSH XDC assignment
- 2 Review of the GBTSCA schematics
- 3 Review of the WB schematics
- 4 Conclusion

- GBTSCA and WB's sections later in the presentation need these technical details as referral to explain why 2,4,6,7,8 should get non-zero error.
- To write down QSH XDC file, start with the easiest bytegenerator

QTH/QSH Out-	QTH Input	QSH Input
put		
HGCROC1-TRIG-	HGCROC1-TRIG-	HGCROC1-TRIG-
IN-P(N)2 [F2,E2]	OUT-P(N)3	OUT-N(P)3
(, [,]	[A9,A8]	[A8,A9]

- PACKAGE_PIN [get_ports A9 HGCROC1_TRIG_OUT_P3]
- PACKAGE_PIN [get_ports A8 HGCROC1_TRIG_OUT_N3]
- Inversion from A8,A9 design, Inverting those legs No Inversion

bytegenerator1

QTH/QSH Out-	QTH Input	QSH Input
put		
HGCROC1-TRIG-	HGCROC2-TRIG-	HGCROC1-TRIG-
IN-P(N)1 [G6,F6]	OUT-P(N)0	in-N(P)0 [E8,F8]
. ,	[A7,A6]	, , .

- PACKAGE_PIN [get_ports F8 HGCROC2_TRIG_OUT_P0]
- PACKAGE_PIN [get_ports E8 HGCROC2_TRIG_OUT_N0]
- Inversion from E8,F8 design, Inverting those legs No Inversion

bytegenerator2

QSH Output	QTH Output	QTH/QSH Input
HGCROC2-TRIG-	HGCROC1-TRIG-	HGCROC2-TRIG-
OUT-N(P)0	OUT-P(N)0	out-P(N)1 [B4,A4]
[A6,A7]	[F8,E8]	, , , -

- PACKAGE_PIN [get_ports A7 HGCROC1_TRIG_OUT_P0]
- PACKAGE_PIN [get_ports A6 HGCROC1_TRIG_OUT_N0]
- Inverting Output legs Inversion

bytegenerator3

QTH/QSH Out-	QTH Input	QSH Input
put		
fc-sig-in-p(n)	HGCROC2-TRIG-	fc-clk-in-n(p)
[C9,B9]	OUT-P(N)2	[D6,D7]
	[E1,D1]	

- PACKAGE_PIN [get_ports D7 HGCROC2_TRIG_OUT_P2]
- PACKAGE_PIN [get_ports D6 HGCROC2_TRIG_OUT_N2]
- Inversion from D7,D6 design, Inverting those legs No Inversion

bytegenerator4

QSH Output	QTH Output	QTH/QSH Input
HGCROC2-TRIG-	fc-clk-in-p(n)	HGCROC2-TRIG-
OUT-N(P)2	[D7,D6]	out-P(N)3 [E5,D5]
[D1,E1]		

- PACKAGE_PIN [get_ports E1 fc-clk-in-p]
- PACKAGE_PIN [get_ports D1 fc-clk-in-n]
- Inverting Output legs, Inversion from D1,E1 design, Inversion from E5,D5 design - Inversion

bytegenerator5

QTH/QSH Out-	QTH Input	QSH Input	
put			
HGCROC1-DAQ-	HGCROC1-DAQ-	HGCROC1-DAQ-	
IN-P(N)0 [E9,D9]	OUT-P(N)1	OUT-N(P)1	
	[G8,F7]	[F7,G8]	

- PACKAGE_PIN [get_ports G8 HGCROC1_DAQ_OUT_P1]
- PACKAGE_PIN [get_ports F7 HGCROC1_DA1_OUT_N1]
- Inverting G8,F7 legs Inversion

bytegenerator6

QSH Output	QTH Output	QTH/QSH Input
HGCROC2-DAQ-	SCA-MISO-p(n)	HGCROC2-DAQ-
OUT-N(P)1	[AE9,AE8]	OUT-P(N)0
[B1,C1]	-	[E4,E3]

- PACKAGE_PIN [get_ports C1 SCA-MISO-p]
- PACKAGE_PIN [get_ports B1 SCA-MISO-n]
- Inversion from B1,C1 design, Inverting those legs No Inversion

bytegenerator7

QSH Out-	QTH Out-	QTH Input	QSH Input
put	put		
SCA-MOSI-	SCA-	HGCROC2-	SCA-MOSI-
p,SCA-	MOSI-p(n)	DAQ-OUT-	n,SCA-
MISO-n	[AC9,AD9]	P(N)1	MISO-p
[AC9,AE8]	· ·	[C1,B1]	[AD9,AE9]

- PACKAGE_PIN [get_ports AE8 SCA-MOSI-n]
- PACKAGE_PIN [get_ports AE9 HGCROC2_DAQ_OUT_P1]
- PACKAGE_PIN [get_ports AD9 HGCROC2_DAQ_OUT_N1]

bytegenerator8

C	QSH	Out-	QTH	Out-	QTH Input	QSH Input
p	ut		put			
S	CA-C	LK-	SCA-		CK-40M-	SCA-CLK-
р	,CK-4	₽0M-n	CLK-p	(n)	p(n)	n,CK-40M-p
[AF7,C4]		[AF7,A	\F6]	[D4,C4]	[AF6,D4]	

- PACKAGE_PIN [get_ports C4 SCA-CLK-n]
- PACKAGE_PIN [get_ports AF6 CK-40M-p]
- PACKAGE_PIN [get_ports D4 SCA-CLK-n]

Review of the WB schematics

- 1 Complete QSH XDC assignment
- 2 Review of the GBTSCA schematics
- 3 Review of the WB schematics
- 4 Conclusion

Review of the GBTSCA schematics - 1

Left schematic is from QTH loopback, the right is from UMinn schematics

Red box highlights the corresponding pins in 2 different schematics.

Review of the GBTSCA schematics - 2

In the same UMinn schematics p.2, It shows signals for the cable comes from **GBTSCA**, **not FPGA**.

Review of the GBTSCA schematics - 3

These I/O ports are **SCA-MISO,MOSI,CLK-p/n** of our Loopbacks.

For QSH Loopback, they compose **Loopback 7,8**.

Since they need signal from GBTSCA, which we do not have, it makes sense that we are getting **non-zero error values for 7,8**.

Review of the WB schematics

- 1 Complete QSH XDC assignment
- 2 Review of the GBTSCA schematics
- 3 Review of the WB schematics
- 4 Conclusion

Review of the WB schematics - 1

In FPGA Leg (Processor of TB)- Tileboard - Cable - WB - QSH connection, WB-QSH connection explains error rate for 2,4,6 loopbacks

Below is the diagram of **Cable inside the WB** (not the cable loopback on TB).

Review of the WB schematics - 2

After receiving the output signal from the FPGA via TB, **the WB grounds the signals for HGCROC2 I/O pins** before looping over through the cables.

In QSH, **Loopback 2,4,6** have HGCROC2-TRIG/DAQ-p/n I/O pins.

It explains non-zero error rate for 2,4,6.

Review of the WB schematics

- 1 Complete QSH XDC assignment
- 2 Review of the GBTSCA schematics
- 3 Review of the WB schematics
- 4 Conclusion

Conclusion - 1

- My loopback has non-zero error rate for 1,2,4,7,8 (section 0)
- GBTSCA's signal explains error rate for Loopback 7,8 (section 2)
- WB's grounding explains error rate for Loopback 2,4,6 (section 3)
- The only mismatch is loopback 1 and 6, which I switched their pin assignment in the constraint file
- Thus, I claim the FPGA bitstream for QSH finally gets correct error rate (0 for complete loop, non-zero for disconnected loop) QSH loopback design.

Back-Up

Back-Up