Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density

P = power input to the antenna

G = antenna gain

R = distance

Conducted output power:	15.89	(dBm)
Tune up tolerance	0.00	(dB)
Number of carriers	1	(N)
_	38.8	(mW)
_	0.0388	(W)
Antenna gain:	3.0	(dBi)
Maximum antenna gain:	2.0	(numeric)
EIRP	0.0774	(W)
ERP _	0.0473	(W)
Distance:	20	(cm)
Duty Cycle:	100	(%)
Frequency:	2400	(MHz)
MPE Limit:	1.000	(mW/cm^2)
Power density:	0.0154	(mW/cm^2)
	0.154	(W/m^2)
Margin	18.1	(dB)