29 de abril de 2014

Primer Certamen de Matemática I (MAT021)

Cálculo

1er Semestre 2014

29 de abril 2014

Nombre:			
Drym	Deperture		
Rut:	Paralelo:		

1. 25 pt. Resuelva la siguiente inecuación en \mathbb{R} :

$$\frac{x^3 - x}{|x - 1| - 1} \ge 0.$$

Solución: En primer lugar, distinguimos dos casos:

<u>Caso 1:</u> Si $x \in [1, \infty)$ (es decir, si $x \ge 1$), entonces |x - 1| = x - 1 y la inecuación se convierte en

$$\frac{x(x+1)(x-1)}{x-2} \ge 0.$$

Esta expresión no tiene sentido si x = 2. Los ceros del numerador (-1, 0 y 1) son soluciones pues la desigualdad no es estricta. En los intervalos restantes el signo es

	$(-\infty, -1)$	(-1,0)	(0,1)	(1,2)	$(2,\infty)$
x+1	_	+	+	+	+
x	_	_	+	+	+
x-1	_	_	_	+	+
x-2	_	_	_	_	+
$\frac{x(x+1)(x-1)}{x-2}$	+	_	+	_	+

Por lo tanto, el conjunto de soluciones para el caso 1 es

$$S_1 = [1, \infty) \cap \left[(-\infty, -1] \cup [0, 1] \cup (2, \infty) \right] = \{1\} \cup (2, \infty).$$

<u>Caso 2</u>: Si $x \in (-\infty, 1)$ (en otras palabras, si x < 1), entonces |x - 1| = 1 - x y la inecuación es

$$\frac{x(x+1)(x-1)}{-x} \ge 0.$$

Esta expresión no está definida si x = 0. Si $x \neq 0$, ella es equivalente a

$$(x+1)(x-1) \le 0.$$

El conjunto de soluciones para el caso 2 es

$$S_2 = (-\infty, 1) \cap [-1, 1] - \{0\} = [-1, 0) \cup (0, 1).$$

Combinando toda la información deducimos que el conjunto de soluciones es

$$S = S_1 \cup S_2 = [-1, 0) \cup (0, 1] \cup (2, \infty).$$

Departamento de Matemática

2. 35 pt. Considere la función $f: \text{dom}(f) \to \text{rec}(f)$, definida mediante la asignación

$$f(x) = \left| \frac{2x+1}{x-1} \right|.$$

- a) Determine dom(f).
- b) Elabore el gráfico de f.
- c) A partir del gráfico, encuentre rec(f).
- d) Compruebe que f no es inyectiva.
- *e*) Verifique que la función $g:[-\frac{1}{2},1)\to \operatorname{rec}(f)$, definida por g(x)=f(x), es biyectiva y calcule g^{-1} .

Solución:

- a) La función está definida salvo en aquellos puntos donde se anula el denominador. En consecuencia, $dom(f) = \mathbb{R} \{1\}.$
- b) Obtendremos el gráfico de f a partir de otros gráficos conocidos. Para ello notemos que

$$f(x) = \left| \frac{2x+1}{x-1} \right| = \left| \frac{2x-2+3}{x-1} \right| = \left| \frac{2(x-1)+3}{x-1} \right| = \left| 2 + \frac{3}{x-1} \right|.$$

- c) A partir del gráfico se observa que $rec(f) = [0, \infty)$.
- d) Basta encontrar dos elementos de dom(f) que tengan la misma imagen por f. Por ejemplo,

$$f(-2) = 1 = f(0),$$
 o bien $f(\frac{2}{5}) = 3 = f(4).$

29 de abril de 2014

e) En el intervalo señalado, se tiene que

$$g(x) = \left| \frac{2x+1}{x-1} \right| = -\frac{2x+1}{x-1} = -\left[2 + \frac{3}{x-1} \right].$$

Para la inyectividad, simplemente notemos que

$$g(x_1) = g(x_2) \Longleftrightarrow -\left[2 + \frac{3}{x_1 - 1}\right] = -\left[2 + \frac{3}{x_2 - 1}\right] \Longleftrightarrow \frac{3}{x_1 - 1} = \frac{3}{x_2 - 1} \Longleftrightarrow x_1 = x_2.$$

Para la sobreyectividad (usaremos esto también en el cálculo de la inversa), dado $y \in [0, \infty) = \text{rec}(f)$, tenemos que

$$y = g(x) \iff y = \frac{2x+1}{1-x}$$

$$\iff y - yx = 2x+1$$

$$\iff y - 1 = (y+2)x$$

$$\iff x = \frac{y-1}{y+2}.$$

Por lo tanto, $y \in rec(g)$, y g es sobreyectiva.

Finalmente. la función $g^{-1}:[0,\infty)\to[-\frac{1}{2},1)$ está definida mediante la relación

$$y = g(x) \iff x = g^{-1}(y)$$

para $x \in [-\frac{1}{2}, 1)$ e $y \in [0, \infty)$. En vista de lo anterior, concluimos que

$$g^{-1}(y) = \frac{y-1}{y+2}.$$

29 de abril de 2014

Primer Certamen de Matemática I (MAT021)

Complemento

1er Semestre 2014

29 de abril 2014

NOMBRE: _			
1,01,121,21			

Rut: _____ Paralelo: ____

3. 25 pt.

a) Compruebe que

$$\operatorname{sen}(A+B) + \operatorname{sen}(A-B) = 2\operatorname{sen}(A)\cos(B).$$

b) Encuentre todas las soluciones en \mathbb{R} de la ecuación:

$$\operatorname{sen}(7x) + \operatorname{sen}(x) = \operatorname{sen}(4x).$$

Solución:

a) De acuerdo con las fórmulas para el seno de la suma y diferencia de ángulos tenemos:

$$sen(A+B) + sen(A-B) = sen(A)cos(B) + sen(B)cos(A) + sen(A)cos(B) - sen(B)cos(A)$$
$$= 2sen(A)cos(B).$$

b) Utilizaremos la fórmula de la parte anterior. Para ello resolvemos el sistema

$$\left\{ \begin{array}{lcl} A+B & = & 7x \\ A-B & = & x, \end{array} \right.$$

obteniendo A = 4 y B = 3. Concluimos que

$$\operatorname{sen}(7x) + \operatorname{sen}(x) = 2\operatorname{sen}(4x)\cos(3x).$$

Por lo tanto, la ecuación a resolver es

$$2\operatorname{sen}(4x)\cos(3x) = \operatorname{sen}(4x),$$

que es equivalente a

$$\operatorname{sen}(4x) \left[2\cos(3x) - 1 \right] = 0.$$

Esta igualdad se cumple en cualquiera de los siguientes casos:

- $\underline{\operatorname{sen}(4x) = 0}$, lo cual ocurre cuando $4x = k\pi$, con $k \in \mathbb{Z}$. Es decir, cuando $x = \frac{k\pi}{4}$, con $k \in \mathbb{Z}$.
- $\cos(3x) = \frac{1}{2}$, lo cual se tiene cuando $3x = \pm \frac{\pi}{3} + 2k\pi$, con $k \in \mathbb{Z}$. En otras palabras, cuando $x = \pm \frac{\pi}{9} + \frac{2k\pi}{3}$, con $k \in \mathbb{Z}$.

Departamento de Matemática

4. $\boxed{15 \text{ pt.}}$ A partir de la información contenida en la figura, determine el valor de x e y:

Solución: Por una parte, tenemos que

$$\frac{y}{x+1} = \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}.$$

Por otra,

$$\frac{y}{x} = \tan\left(\frac{\pi}{3}\right) = \sqrt{3}.$$

Por lo tanto,

$$\frac{x+1}{\sqrt{3}} = y = x\sqrt{3},$$

o, de manera equivalente,

$$x + 1 = 3x.$$

Finalmente,

$$x = \frac{1}{2}$$
 y, por lo tanto, $y = \frac{\sqrt{3}}{2}$.