Ecole Supérieure de l'Education et de la Formation - Agadir

ESEFA

Année Universitaire 2019/2020 Semestre 2

SOLUTION TD D'OPTIQUE GEOMETRIQUE

Filières: LEESM, LEESI Série N°: 4

EXERCICE 1:

1-
$$f' = 0.5 \text{ cm} \Rightarrow V = \frac{1}{f_I} = \frac{1}{5 \cdot 10^{-3}} = 200 \text{ dioptries (m}^{-1})$$
 $V = 200 \text{ }\delta$

$$V = 200 \delta$$

2- $V > 0 \Rightarrow \text{La lentille est convergente.}$

3-
$$\overline{AB}$$
 $\xrightarrow{\text{L}_1}$ $\overline{A'B'}$

 $\overline{A'B'}$: Image réelle $\Rightarrow \overline{OA'} = +18$ cm.

a. la position de l'objet \overline{AB} par deux méthodes :

Formule de Newton :
$$\overline{FA} \overline{F'A'} = -f'^2$$
 $\Rightarrow \overline{FA} = -0.0014 \text{ cm}$

Relation de conjugaison avec origine au centre :

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$$

$$\Rightarrow \overline{OA} = -0.514 \text{ cm}$$

b. la nature de l'objet \overline{AB}

On a : \overline{OA} < 0 (\overline{AB} dans l'espace objet réel)

 $\Rightarrow \overline{AB}$ est un objet réel.

c. Le grandissement γ et la hauteur de l'image $\overline{A'B'}$:

Le grandissement :
$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}} = -35$$

<u> La hauteur de l'image $\overline{A'B'}$ </u>: $\frac{\overline{A'B'}}{\overline{AB}}$ = −35 \rightarrow $\overline{A'B'}$ = −35. \overline{AB} ; (\overline{AB} = 1 cm)

$$\rightarrow$$
 $\overline{A'B'} = -35 cm$

4- Construction géométrique :

Ecole Supérieure de l'Education et de la Formation - Agadir

ESEFA

Année Universitaire 2019/2020 Semestre 2

EXERCICE 2:

La lentille divergente \Rightarrow f' = -10 cm; \overline{AB} = 1 cm; \overline{OA} = +5 cm (AB placé en arrière de L):

1- La position de de l'image $\overline{A'B'}$:

Relation de conjugaison avec origine au centre :
$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$$

 $\Rightarrow \frac{1}{\overline{OA'}} = \frac{1}{f'} + \frac{1}{\overline{OA}} = \frac{1}{-10} + \frac{1}{5} = \frac{1}{10} \Rightarrow \overline{OA'} = 10 \text{ cm} > 0$

2- La nature de l'image $\overline{A'B'}$:

On a : $\overline{OA'} = 10 \text{ cm} > 0 \implies \overline{A'B'}$: Image réelle

3- Le grandissement γ et la hauteur de l'image $\overline{A'B'}$:

$$\frac{4}{4} \text{ Le grandissement : } \gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}} = \frac{10}{5} = 2$$

Le grandissement : $\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\frac{\overline{OA}}{\overline{OA}}} = \frac{10}{5} = 2$ La hauteur de l'image $\overline{A'B'}$: $\frac{\overline{A'B'}}{\overline{AB}} = 2 \rightarrow \overline{A'B'} = 2.\overline{AB}$; ($\overline{AB} = 1$ cm) $\Rightarrow \overline{A'B'} = 2 \text{ cm}$

EXERCICE 3:

1.

a.
$$F \xrightarrow{L_1} F_2 \xrightarrow{L_2} \infty$$

Les points F et F₂ sont conjugués par la lentille L₁.

La formule de conjugaison s'écrit : $\frac{1}{\overline{O_1F_2}} - \frac{1}{\overline{O_1F}} = \frac{1}{f'_*}$

Ecole Supérieure de l'Education et de la Formation - Agadir

ESEFA

Année Universitaire 2019/2020 Semestre 2

Or,
$$\overline{O_1F_2}=\overline{O_1O_2}+\overline{O_1F_2}$$
, soit $\overline{O_1F_2}=e-f_2'$ et $\overline{O_1F}=\frac{f_1'}{f_1'-\overline{O_1F_2}}$

Finalement

$$\overline{O_1F} = \frac{f'(e - f_2')}{f_2'} \tag{1}$$

puisque d'après la formule de Gullstrand on a : $f' = \frac{f'_1 f'_2}{f'_1 + f'_2 - e}$ (2)

b. $\overline{O_1H} = \overline{O_1F} + \overline{FH} = \overline{O_1F} + \overline{H'F'}$ (car, $\overline{H'F'} = \overline{HF}$; milieux extrêmes identiques)

$$D\text{`où }\overline{O_1H} = \frac{f'(e-f_2')}{f_2'} \ + f \ ' = \frac{f'(e-f_2') + f'.f_2'}{f_2'} \ \Longrightarrow \qquad \overline{O_1H} = e \, \frac{f'}{f_2'}$$

2.

$$a. \qquad \infty \xrightarrow{L_1} F_1' \xrightarrow{L_2} F'$$

Les points F_1 et F' sont conjugués par la lentille L_2 .

La formule de conjugaison s'écrit : $\frac{1}{\overline{O_2F'}} - \frac{1}{\overline{O_2F'_1}} = \frac{1}{f'_2}$

Or,
$$\overline{O_2F_1'} = -\overline{O_1O_2} + \overline{O_1F_1'}$$
 soit $\overline{O_2F_1'} = f_1' - e$ et $\overline{O_2F'} = \frac{f_2'}{f_2' + \overline{O_2F_1'}} = \frac{f_2'}{f_2' + \overline{O_2F_1'}} = \frac{f_2'}{f_2' + (f_1' - e)}$

En utilisant la relation (2), on obtient finalement

$$\overline{O_2F'} = \frac{f'(f_1' - e)}{f_1'}$$

b.
$$\overline{O_2H'} = \overline{O_2F'} + \overline{F'H'}$$
 $d'où : \overline{O_2H'} = \frac{f'(f'_1 - e)}{f'_1} - f' = \frac{f'(f'_1 - e) - f'.f'_1}{f'_1} \Rightarrow \overline{O_2H'} = -e \frac{f'}{f'_1}$

$$\textbf{3.} \quad f_1'=\text{-2cm} \,,\, \overline{O_1F}=\text{-12cm} \,\,,\, \overline{O_1H}\,\,=\text{-6cm} \,\,,\, \overline{O_2F'}\,\,=\text{2cm et}\,\, \overline{O_2H'}=\text{-4cm}.$$

4.

👃 la position des points nodaux N et N':

On sait que
$$\overline{FN} = \overline{H'F'} = f'$$
, or $\overline{FN} = \overline{FO_1} + \overline{O_1N} \implies \overline{O_1N} = \overline{FN} - \overline{FO_1}$

$$\overline{O_1N} = f' + \overline{O_1F} = 6 - 12 = -6 \text{ cm} = \overline{O_1H} \text{ donc } N \equiv H$$

En partant de la relation NN' = HH', on déduit que N'≡H'

Ecole Supérieure de l'Education et de la Formation - Agadir

Année Universitaire 2019/2020 Semestre 2

♣ Recherche du centre optique :

N
$$\longrightarrow$$
 O \longrightarrow N'
$$\Rightarrow \frac{1}{\overline{0_10}} - \frac{1}{\overline{0_1N}} = \frac{1}{f_1'} \text{ (Formule avec origine au centre optique)}$$

$$\Rightarrow \frac{1}{\overline{0_10}} = \frac{1}{f_1'} + \frac{1}{\overline{0_1N}} = \frac{1}{3} - \frac{1}{6} = \frac{1}{6} \Rightarrow \overline{0_10_2} = 6 \text{ cm}$$

- 5. Un système est dit afocal si ses foyers principaux sont rejetés à l'infini Soit donc $V = \frac{1}{f'} = 0$, ce qui implique : $e = f'_1 + f'_2 = 1$ cm.
- **6.** Construction géométrique des points cardinaux F et H à une échelle de $lcm \rightarrow lcm$:

7. construction géométrique des points cardinaux F' et H' à une échelle de 1cm \rightarrow 3cm :

Ecole Supérieure de l'Education et de la Formation - Agadir

Année Universitaire 2019/2020 Semestre 2

8.
$$F_1 \xrightarrow{L_1} \infty \xrightarrow{L_2} F'_2$$

On choisit une échelle de $1 \text{cm} \rightarrow 1 \text{cm}$:

On déduit le grandissement à partir du schéma :

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{HI}}{\overline{AB}} = \frac{\overline{FH}}{\overline{FF_1}} = \frac{2}{3}$$