INF-BIOx121 2017

RNA-seq differential expression analysis

Arvind Sundaram Sep 18-20, 2017

RNA-seq analysis

Case Study

Arvind Sundaram Sep 18-20, 2017

Case study

- Compare two conditions with three replicates
- * in silico simulated dataset
- * NCBI GEO: GSE32038

* DOI: 10.1038/nprot.2012.016

PROTOCOL

Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks

Cole Trapnell^{1,2}, Adam Roberts³, Loyal Goff^{1,2,4}, Geo Pertea^{5,6}, Daehwan Kim^{5,7}, David R Kelley^{1,2}, Harold Pimentel³, Steven L Salzberg^{5,6}, John L Rinn^{1,2} & Lior Pachter^{3,8,9}

HISAT2

Bowtie Extremely fast, general purpose short read aligner

TopHat
Aligns RNA-Seq reads to the genome using Bowtie
Discovers splice sites

CummeRbund
Plots abundance and differential
expression results from Cuffdiff

Genome

Reads Genome (fastq) (fasta)

Tophat2

BAM

Cufflinks

Sample GTF

Cuffmerge
Project GTF

Genome + Transcriptome

Reads Genome (fastq) (fasta)

Genome GTF Tophat2

BAM

Differential Expression

Genome (fasta)

GTF Cuffdiff

Output dir

CummeRbund

Cuffnorm

Cuffquant

TUXEDO input

- Sequenced data Fastq files
 - Single read
 - Paired end reads
 - * pre-processed and cleaned*

Not necessary but a good practice

- * Reference genome
- Reference annotation (GTF)*
 - * Good to provide one if decent annotation exists

Tophat aka Tophat2

- * Tophat2 uses bowtie2 aligner engine
 - Bowtie2 is not a splice-aware aligner
 - * Tophat2 is a splice-aware aligner
- * Identifies potential exons and possible splice junctions in the genome and uses aligned data to confirm the same.

Handles **STRANDED** RNA data

Cufflinks

- * Transcript assembly
 - * A parsimonious strategy to resolve isoforms
- * First level transcript quantification
 - Immature vs mature transcripts

Cuffmerge

 Pooling of cufflinks data per sample to ensure proper overall experiment "present transcripts" overview

Cuffdiff

- * Cuffdiff "learns the variation for each gene across replicates" to calculate differential expression
- * CummeRbund in R used for visualisation

RNA-seq analysis

Reference

- * Prepare reference
 - Index genome using bowtie2-build
 - * If you are using the annotation in GTF format, you 'tophat2' to create a 'transcriptome index'

```
$ cd
$ cd Desktop
$ mkdir rna_seq
$ cd rna_seq
$ mkdir reference
$ cd reference
$ ln -s /data/RNA-seq/reference/* .
```

```
bowtie2-build genome.fa genome
tophat2 -G genes.gtf --transcriptome-index=known genome
```

script.sh

Raw data

- * Compare two conditions (C1, C2) with three replicates (R1, R2, R3)
- * in silico simulated dataset from Drosophila melanogaster
- * NCBI GEO: GSE32038

```
$ cd
#
$ check if you are in your home page
$ cd Desktop
$ mkdir rna_seq
$ cd rna_seq
$ cd rna_seq
$ mkdir 00_raw_data
$ cd 00_raw_data
$ ln -s /data/RNA-seq/00_raw_data/C* .
## Run fastQC to check raw data
```

Genome

Reads Genome (fastq) (fasta)

Tophat2

BAM

Cufflinks

Sample GTF

Cuffmerge
Project GTF

Genome + Transcriptome

Differential Expression

Cuffnorm

Cuffquant

Tophat2

- * Raw data is available in folder raw_data
- * Tophat2 has to be run for individual samples 6 times for this case study

```
tophat2 <options> -o output_folder genome_bowtie2_idx Read1 Read2
```

```
tophat2
  -p 8
  -G reference/genes.gtf
  --transcriptome-index=reference/known
  -o C1_R1_thout
  reference/genome
  00_raw_data/C1_R1_1.fq.gz
  00_raw_data/C1_R1_2.fq.gz
```

Tophat2

* If your tophat2 has not completed, copy the output as below

```
$ cd
$ cd Desktop
$ cd rna_seq
$ mkdir 10_tophat
$ cd 10_tophat
$ cd 10_tophat
$ cp /data/RNA-seq/10_tophat/C1_R1_thout.tar .
$ tar -xvf C1_R1_thout.tar
```

Tophat2

- * Tophat2 produces a lot of output files in the directory
 - * accepted_hits.bam contain the aligned data
 - mapped reads only
 - * align_summary.txt contains mapping statistics

```
tophat2 output dir
C1 R1 thout/
 accepted hits.bam
                            bash-4.2$ cat align summary.txt
 align summary.txt
                             Left reads:
                                                 1000000
                                     Input
 deletions.bed
                                      Mapped : 670287 (67.0% of input)
                                                 22216 ( 3.3%) have multiple alignments (421 have >20)
                                       of these:
  insertions.bed
                            Right reads:
                                                 1000000
                                     Input
  junctions.bed
                                      Mapped
                                                  682380 (68.2% of input)
                                                 22618 ( 3.3%) have multiple alignments (410 have >20)
 logs/
                            67.6% overall read mapping rate.
 prep read.info
                             Aligned pairs:
                                            607227
 unmapped.bed
                                             19173 ( 3.2%) have multiple alignments
                                 of these:
                                             20393 ( 3.4%) are discordant alignments
                            58.7% concordant pair alignment rate.
```

Genome

Reads Genome (fastq) (fasta)

Tophat2

BAM

Cufflinks

Sample GTF

Cuffmerge
Project GTF

Genome + Transcriptome

Reads (fastq) Genome (fasta)

Genome Tophat2
BAM

Differential Expression

Cuffnorm Cuffquant

Cuffdiff

- * Cuffdiff calculates differential expression between two conditions
 - takes care of replicates
 - produces statistical information

```
cuffdiff
 -p 8
 -b reference/genome.fa
 -u reference/genes.gtf
 -o diff out
 -L C1,C2
 C1 R1 thout/accepted hits.bam,
 C1 R2 thout/accepted hits.bam,
 C1_R3_thout/accepted_hits.bam
 C2 R1 thout/accepted hits.bam,
 C2_R2_thout/accepted_hits.bam,
 C2 R3 thout/accepted hits.bam
```

CummeRbund

```
$ cd
$ cd Desktop/rna seq
$ cp /data/RNA-seq/20_cuffdiff.tar .
$ tar -xvf 20 cufflinks.tar
$ mkdir 30 cummeRbund
$ cd 30 cummeRbund
## R using Rstudio
$ rstudio
> getwd()
# should point to 30 cummeRbund
> library("cummeRbund")
> cuff <- readCufflinks("../20 cuffdiff")</pre>
> cuff
```

CummeRbund

```
> dispersionPlot(genes(cuff))
> csDensity(genes(cuff), replicates=T)
> csBoxplot(genes(cuff), replicates=T)
> csScatterMatrix(genes(cuff))
> csDendro(genes(cuff), replicates=T)
> fpkmSCVPlot(genes(cuff))
> csVolcanoMatrix(genes(cuff))
> MDSplot(genes(cuff), replicates=T)
> sigMatrix(cuff)
> sigMatrix(cuff, level="isoforms")
> diff.genes <- diffData(genes(cuff))</pre>
> annot.genes <- annotation(genes(cuff))[,c(1,4)]
> diff.genes.annot <- merge(diff.genes, annot.genes, by = "gene id")</pre>
> diff.genes.sig <- subset(diff.genes.annot, significant=="yes")</pre>
> write.table(diff.genes.sig, 'DE cuff genes.txt', quote=F, sep="\t", row.names=F)
> diff.iso <- diffData(isoforms(cuff))</pre>
> annot.iso <- annotation(isoforms(cuff))[,c(1,2,4)]</pre>
> diff.iso.annot <- merge(diff.iso, annot.iso, by = "isoform id")</pre>
> diff.iso.sig <- subset(diff.iso, significant=="yes")</pre>
> write.table(diff.iso.sig, 'DE cuff isoforms.txt', quote=F, sep="\t",
row.names=F)
```

featureCounts

```
## Correct
$ featureCounts -p -s 2 -a ../reference/genes.gtf -o
counts paired stranded ../35 tophat for featureCounts/*bam
## Try the following, run DESeq2 and check the difference from
above
$ featureCounts -p -a ../reference/genes.gtf -o
counts paired ../35 tophat for featureCounts/*bam
$ featureCounts -a ../reference/genes.gtf -o counts ../
35 tophat for featureCounts/*bam
```

DESeq2

```
> library("DESeq2")
# Check folder
> data <- read.delim("../35 tophat for featureCounts/counts paired", skip=1)</pre>
> countData <- data[,c(7:12)]</pre>
> rownames(countData) <- data[,1]</pre>
> colnames(countData) <- c("C1_R1", "C1_R2", "C1_R3", "C2_R1", "C2_R2", "C2_R3")</pre>
> colData <- data.frame(condition = c("C1", "C1", "C1", "C2", "C2", "C2"))</pre>
> rownames(colData) <- colnames(countData)</pre>
> dds <- DESeqDataSetFromMatrix(countData = countData, colData = colData, design =~
condition)
> dds process <- DESeq(dds)</pre>
> res <- results(dds process)</pre>
> summary(res)
> res 05 <- results(dds process, alpha=0.05)</pre>
> diff.genes <- subset(res 05, padj <= 0.05)</pre>
> write.table(diff.genes, "DE DESeq2 genes.txt", quote=F)
> plotDispEsts(dds process)
> plotPCA(DESeqTransform(dds process))
> plotMA(dds process)
> sizeFactors(dds process)
```