Problem R-99P ($C_{15}H_{45}O_{15}P_5Pt^{2+}$ 2BPh₄-). Temperature dependent 36.43 MHz { 1 H} 31 P NMR Spectra in CHCIF $_2$ Source: J. Am. Chem. Soc. 1974, 96, 5760 (digitized from hard copy)

with reference to the structure of the compound. Report coupling constants. Use the form ${}^{n}J_{X-Y} = 00.0 \text{ Hz}$. In your drawings, feel free to use "P" for the P(OCH ₃) ₃ group. Hint: make sure you consider the NMR active isotope(s) of platinum.
Multiplet a:
Multiplet b:
Multiplet c:
Multiplet d:
Multiplet e:
(b) What molecular process is responsible for the changes in the NMR spectrum as a function of temperature? Is it intra- or intermolecular? Explain how you know.
(c) For the spectra at -98 C and -69 C, explain why multiplet f is broad and multiplet h is relatively sharp (at still higher temperature both f and h become sharp).

Problem R-99P $(C_{15}H_{45}O_{15}P_5Pt^{2+} 2BPh_4^-)$. This problem requires you to interpret the 36.43 MHz ³¹P variable temperature NMR spectra of a platinum phosphite complex $Pt[P(OCH_3)_3]_5^{++} 2BPh_4^-$. The spectrum was taken with

proton decoupling.

Problem R-99P ($C_{15}H_{45}O_{15}P_5Pt^{2+}$ 2BPh₄ $^{-}$). This problem requires you to interpret the 36.43 MHz ^{31}P variable temperature NMR spectra of a platinum phosphite complex Pt[P(OCH₃)₃]₅ $^{++}$ 2BPh₄ $^{-}$. The spectrum was taken with proton decoupling.

(a) Analyze the low temperature (-151 °C) spectrum. Explain the origin of each of the marked multiplets a to e with reference to the structure of the compound. Report coupling constants. Use the form $^{n}J_{X-Y}=00.0$ Hz. In your drawings, feel free to use "P" for the P(OCH₃)₃ group. Hint: make sure you consider the NMR active isotope(s) of platinum.

Multiplet a:

3

3

3

3

3

5

This is one of the ¹⁹⁵Pt satellites of the central triplet c corresponding to the equatorial P $^{1}J_{P,Pt} \approx 3940$ Hz (actual value reported in paper 4100 Hz)

Multiplet b:

This is one of the ¹⁹⁵Pt satellites of the central quartet d corresponding to the apical P $^{1}J_{P-Pt} \approx 2800 \text{ Hz}$ (actual value reported in paper 2840 Hz)

Multiplet c:

This is the ³¹P signal of the equatorial P(OMe)₃ ligands - triplet due to coupling to the two apical P(OMe)₃ δ 77 ppm, t, ² J_{P-P} = 60 Hz

Multiplet d:

This is the ³¹P signal of the apical P(OMe)₃ ligands - quartet due to coupling to the three equatorial P(OMe)₃ δ 56 ppm, q, ² J_{P-P} = 60 Hz

Multiplet e:

These are the other two ¹⁹⁵Pt satellites of the central peaks, the q and t are distorted because they are coupled to each other (leaning)

(b) What molecular process is responsible for the changes in the NMR spectrum as a function of temperature? Is it intra- or intermolecular? Explain how you know.

Berry pseudorotation of the trigonal-bipyramidal structure (swapping of two apical with two equatorial P(OMe)₃). The process is <u>intra</u>molecular since the P-Pt coupling is not lost

(c) For the spectra at -98 °C and -69 °C, explain why multiplet f is broad and multiplet h is relatively sharp (at still higher temperature both f and h become sharp).

The peak f resulted from coalescence of a and b. which are much further apart than the signals e and e', which means at a and b coalesce at much higher temperature than e and e' (it requires a higher pseudorotation rate to fully average a and b)

Problem R-99P (C₁₅H₄₅O₁₅P₅Pt²⁺ 2BPh₄-). Temperature dependent 36.43 MHz {¹H} ³¹P NMR Spectra in CHCIF₂ Source: *J. Am. Chem. Soc.* **1974**, *96*, 5760 (digitized from hard copy)

In the low-temperature spectrum there are distinct ³¹P signals for the apical and equatorial phosphite ligands - the apical a triplet, the equatorial a quartet due to P-P coupling. Each one has ¹⁹⁵Pt satellites, which are also triplets and quartets. The e and e' signals are quite close, and coupled to each other, so there is a lot of leaning, much less for the a and b signals (also coupled to each other) since they are far apart. The fact that the e and e' signals coalesce with each other to form h, and the a and b signals to form f, proves that the sign of the PtP coupling constant is the same for the apical and equatorial P (not surprising).

The fact that the high temperature spectrum still has ¹⁹⁵Pt satellites shows that the exchange is intramolecular, since intermolecular exchange would cause loss of ³¹P-¹⁹⁵Pt coupling. This is a Berry pseudorotation