Laboratorium 4 - Efekt Rungego

Dawid Żak

Szymon Hołysz

2025-04-02

Table of contents

Zadanie 1	1
Zadanie 2	2
Wnioski	5

Zadanie 1.

Napisz funkcję, która przyjmuje jako parametr wektor punktów $x_0,...,x_n$ z przedziału [-1,1] i tworzy wykres z punktami x_j na osi odciętych i średnią geometryczną odległości do pozostałych punktów na osi rzędnych. Wyświetl wyniki dla: - punktów Czebyszewa dla n=10,20,50 - punktów Legendre'a dla n=10,20,50 - punktów równomiernie rozmieszczonych od $x_0=-1$ do $x_n=1$ dla n=10,20,50.

Zadanie 2 Wyznacz wielomiany interpolujące funkcje

$$f_1(x) = \frac{1}{1 + 25x^2}$$
 na przedziale $[-1, 1]$,

$$f_2(x) = \exp(\cos(x))$$
 na przedziale $[0, 2\pi]$,

używając: - wielomianów Lagrange'a z równoodległymi węzłami - kubicznych funkcji sklejanych z równoodległymi węzłami - wielomianów Lagrange'a z węzłami Czebyszewa

$$x_j = -\cos \left(\theta_j\right) \ \theta_j = \frac{2j-1}{2n} \pi, 1 \leq j \leq n \,.$$

Dla funkcji Rungego, $f_1(x)$, z n=12 węzłami interpolacji przedstaw na wspólnym wykresie funkcję $f_1(x)$ oraz wyznaczone wielomiany interpolacyjne i funkcję sklejaną. W celu stworzenia wykresu wykonaj próbkowanie funkcji $f_1(x)$ i wielomianów interpolacyjnych na 10 razy gęstszym zbiorze (próbkowanie jednostajne w x dla węzłów równoodległych, jednostajne w θ dla węzłów Czebyszewa). Pamiętaj o podpisaniu wykresu i osi oraz o legendzie.

Wykonaj interpolację funkcji $f_1(x)$ i $f_2(x)$ z n=4,5,...,50 węzłami interpolacji, używając każdej z powyższych trzech metod interpolacji. Ewaluację funkcji, wielomianów interpolacyjnych oraz funkcji sklejanych przeprowadź na zbiorze 500 losowo wybranych punktów z dziedziny funkcji. Stwórz dwa rysunki, jeden dla $f_1(x)$, drugi dla $f_2(x)$. Na każdym rysunku przedstaw razem wykresy normy wektora błędów (czyli długości wektora) na tym zbiorze punktów w zależności od liczby węzłów interpolacji, n, dla każdej z trzech metod interpolacji.

Która metoda interpolacji jest najbardziej dokładna, a która najmniej?

Wnioski

Celem zadania było wykrycie efektu Rungego, polegającego na pogarszaniu się dokładności interpolacji przy zwiększaniu liczby węzłów w pewnych przypadkach, co jest kontrintuicyjne. Wykorzystane zostały do tego trzy różne metody interpolacji: wielomianów Lagrange'a z węzłami równoodległymi i Czebyszewa, i metody funkcji sklejanych.

Analiza wyraźnie wykazała, że metoda z użyciem wielomianów Lagrange'a ulega degeneracji i po zwiększeniu liczby węzłów rośnie również błąd interpolacji. Nie dzieje się tak dla metody funkcji sklejanych, która wykazała się znacznie większą dokładnością, która rośnie wraz z liczbą węzłów.

Można zauważyć, że użycie węzłów Czebyszewa sprawia, że błąd jest mniejszy i w przypadku funkcji testowanej f1 widać, że błąd maleje wraz ze wzrostem liczby węzłów, jednak trend nie jest stały i nadal występuje efekt Rungego dla większej liczby węzłów.