MATH 391

Worksheet 02

F2019

Polynomial Interpolation - Lagrange and Newton Forms

01. The degree n Lagrange polynomials associated with the points $x_0 < x_1 < \cdots < x_n$, are $L_{n,j}(x) = \prod_{\substack{i=0\\i\neq j}}^{n} \frac{x - x_i}{x_j - x_i}, \quad j = 0, 1, \dots, n.$ defined by

Assuming the points to be equidistant, with $x_0 = 0$ and $x_n = 1$, use MATLAB to

- sketch in the same plot the graph of $L_{1,0}(x)$ and $L_{1,1}(x)$
- sketch in the same plot the graph of $L_{2,0}(x)$, $L_{2,1}(x)$ and $L_{2,2}(x)$
- sketch in the same plot the graph of $L_{3,0}(x)$, $L_{3,1}(x)$, $L_{3,2}(x)$, and $L_{3,3}(x)$
- 02. Write Lagrange form of the polynomial that interpolates the given data points
- Find the Lagrange form of the polynomial that interpolates $f(x) = \cos(x) + \sin(x)$ at $x_0 = 0$, $x_1 = \frac{1}{4}$, $x_2 = \frac{1}{2}$, and $x_3 = 1$. Find a bound for the absolute error in [0,1].
- The degree 3 polynomial that interpolates $f(x) = \ln(x)$ at the points $x_0 = 0.4$, $x_1 = 0.5$, $x_2 = 0.7$, and $x_3 = 0.8$, is

$$P_{\scriptscriptstyle 3}(x) = f(x_{\scriptscriptstyle 0}) \; L_{\scriptscriptstyle 3,0}(x) + f(x_{\scriptscriptstyle 1}) \; L_{\scriptscriptstyle 3,1}(x) + f(x_{\scriptscriptstyle 2}) \; L_{\scriptscriptstyle 3,2}(x) + f(x_{\scriptscriptstyle 3}) \; L_{\scriptscriptstyle 3,3}(x)$$

- Sketch the graph of f(x) and $P_3(x)$ in the same plot.
- Show that $|f(x) - P_3(x)| \le \frac{625}{64} |(x - x_0)(x - x_1)(x - x_2)(x - x_3)|, \qquad 0.4 \le x \le 0.8 \quad \cdots \quad (1)$ **c.** Compare the left and right sides of (1) at x = 0.6. Comment.
- The divided differences for a function f(x) are listed in the table below

$x_0 = 0.0$	$f[x_0] =$		
$x_1 = 0.4$	$f[x_1] =$	$f[x_0, x_1] =$	
$x_2 = 0.7$	$f\big[x_{_2}\big] = 6$	$f\big[x_{\scriptscriptstyle 1},x_{\scriptscriptstyle 2}\big]=10$	$f\big[x_{\scriptscriptstyle 0},x_{\scriptscriptstyle 1},x_{\scriptscriptstyle 2}\big]=50/7$

Find the missing entries.

06. Write Newton polynomial that interpolates the given data points

a.	x	2	0	3
a.	f(x)	11	7	28

h	x	1	3	2	6
υ.	f(x)	-2	-22	-1	-37

- Let $P_3(x)$ be the polynomial that interpolates the points (0,0), (1/2,y), (1,3) and (2,2). If the coefficient of x^3 in $P_3(x)$ is equal to 6, find y.
- Let $P_n(x)$ be the degree n polynomial that interpolates the function f(x) at the pairwise distinct points $\left\{x_i\right\}_{0 \le i \le n}$.
 - $f[x_0, x_1, \cdots, x_n] = \sum_{i=0}^{n} \frac{f(x_i)}{\prod_{\substack{k=0\\k \neq i}}^{n} (x_i x_k)} \cdots (*)$
 - Use formula (*) to write down $f[x_0, x_1]$, $f[x_0, x_1, x_2]$, and $f[x_0, x_1, x_2, x_3]$. What becomes of (*) if the points are equidistant, i.e., $x_i = x_0 + i h$, h > 0?
- 09. Verify that the polynomial p(x) = 2 - (x+1) + x(x+1) - 2x(x+1)(x-1), interpolates the data points $\{(-1,2), (0,1), (1,2), (2,-7)\}$, then find the polynomial q(x) that interpolates the same data points augmented with the point (3,10)
- 10. Show that if Q(x) is a polynomial of degree n, then $Q[x_0, x]$, $x \neq x_0$ is a polynomial of degree at most n-1.
- Let $P_{n-1}(x)$ be the degree n-1 polynomial that interpolates the data points $\left\{\left(x_{i},y_{i}\right)\right\}_{0\leq i\leq n-1}$, and let $P_{n}(x)$ be the degree n polynomial that interpolates the data points $\left\{\left(x_i,y_i\right)\right\}_{0\leq i\leq n}$. Show that if $P_{n-1}\left(x_n\right)=y_n$, then $P_{n-1}(x)\equiv P_n(x)$.
- Let $P_n(x)$ be the degree n polynomial that interpolates the function f(x) at the pairwise distinct points $\left\{x_i\right\}_{0 < i < n}$.
 - **a.** Show that $f\left[x_0, x_1, \cdots, x_n\right] = \sum_{i=0}^n \frac{f\left(x_i\right)}{\prod_{k=0}^n \left(x_i x_k\right)} \quad \cdots \quad (*)$

 - Use formula (*) to write down $f[x_0, x_1]$, $f[x_0, x_1, x_2]$, and $f[x_0, x_1, x_2, x_3]$ What becomes of (*) if the points $\left\{x_i\right\}_{0 \leq i \leq n}$ are equidistant, i.e., $x_i = x_0 + i\,h$, h > 0?