[CSED311] Lab5 Pipelined CPU

Sanghwan Jang

jsh710101@postech.ac.kr

Objectives

- Understand the reason why pipelined CPUs have better throughput
- Understand data & control hazards and how to solve it
- Design & Implement the pipelined CPU

Lab Dependency

- From now on, you have to complete your Lab to start the next one.
- Your Implementation should be functionally correct.

Why Pipelined CPU?

Pipelined CPU

Pipelined CPU: Control

Data Hazard

Data Hazard

Data Hazard: Forwarding

Control Hazard

Control Hazard: Branch Prediction

Control Hazard: Branch Prediction

Requirements

- Design & Implement the pipelined CPU
 - Updating register file at clock negative edge is allowed.
- Compare the performance of multi-cycle CPU and pipelined CPU
 - Compare the number of clock cycles to execute all test cases
 - Write it in the discussion section of the report.

EXTRA CREDIT

- Forwarding
- Branch Prediction (+Flush)
 - Always Not-Taken, Always Taken, etc.

