

DEPARTMENT OF INFORMATION SCIENCE AND ENGINEERING

Term: 24-07-2023 to 18-11-2023

Course: Deep Learning

Course Code: ISE741

Semester: VII Sec: B

TRAINING AN LSTM MODEL WITH 5 DENSE LAYERS ON TIME SERIES DATASET

Submitted by:

NAME	USN	
Jatin B	1MS20IS054	
R Jayanth Jadhav	1MS20IS091	

Under the guidance of:

Dr. Vijaya Kumar B P

Professor
Department Of ISE, RIT

INDEX

SL. NO.	CONTENTS	PG. NO.
1	Objective	1
2	Dataset Description	1
3	Concept and Model	1
4	Procedure Overview	3
5	Output	3

OBJECTIVE

The objective is to train an LSTM (Long Short-Term Memory) model with 5 dense layers on a time series dataset to accurately predict future values, leveraging the network's ability to capture temporal dependencies and patterns in sequential data.

DATASET DESCRIPTION

Date:

Description: Represents the date when the sensor data was recorded.

Use: Temporal information allowing for analysis over time.

Time:

Description: Indicates the time of day when the sensor data was recorded.

Use: Enables the analysis of patterns and variations in the data across different times.

P1 to P9:

Description: Numerical sensor measurements capturing various environmental parameters.

P1 to P4: Measurements related to air quality (e.g., particulate matter concentrations).

P5 to P7: Numeric values representing environmental conditions or sensor readings.

P8 and P9: Potentially binary indicators with values 0 or 1.

Use: Essential variables for understanding and predicting environmental conditions and pollution levels.

Additional Notes:

Units: The units for each parameter should be clarified for accurate interpretation.

Duplicates: The dataset appears to have duplicated rows; clarification or removal may be necessary.

Zero Values: P8 and P9 have consistent zero values; understanding their significance is crucial.

CONCEPT AND MODEL

Long Short-Term Memory (LSTM):

Description: A type of recurrent neural network (RNN) designed to capture long-term dependencies in sequential data.

Application: Essential for learning patterns and relationships in time series data with complex temporal structures.

Sequential Data Processing:

Description: Deep learning models, particularly LSTMs, are designed to handle sequential data where the order of observations matters.

Application: Enables the model to understand and leverage temporal dependencies in sensor data.

DATASET VISUALIZATION

TRAIN TEST SPLIT

MODEL STRUCTURE

Model: "sequential"						
Layer (type)	Output	Shape	Param #			
lstm (LSTM)	(None,	100)	44000			
dense (Dense)	(None,	64)	6464			
dense_1 (Dense)	(None,	32)	2080			
dense_2 (Dense)	(None,	16)	528			
dense_3 (Dense)	(None,	8)	136			
dense_4 (Dense)	(None,	9)	81			
Total params: 53289 (208.16 KB) Trainable params: 53289 (208.16 KB) Non-trainable params: 0 (0.00 Byte)						

TRAINING LOSS CURVE

MSE BETWEEN ACTUAL VALUE AND PREDICTION


```
MSE between P1 and Ppred1: 18.8305
MSE between P2 and Ppred2: 23.8992
MSE between P3 and Ppred3: 0.0001
MSE between P4 and Ppred4: 0.0000
MSE between P5 and Ppred5: 34.2335
MSE between P6 and Ppred6: 33.5619
MSE between P7 and Ppred7: 0.0162
MSE between P8 and Ppred8: 0.0168
MSE between P9 and Ppred9: 0.0161
```

PATTERN PREDICTED VS THE ACTUAL PATTERN

