Problem 1 (20 pts)

Put the following functions in order in terms of o-notation:

- 1. \sqrt{n}
- 2. $2^{\log_3 n}$
- 3. $(\log n)^2$
- 4. 3^n
- 5. n^3
- 6. $8^{n/2}$

Prove that your relation is correct for each adjacent pair. In particular, if your functions are ordered as $f_1, f_2, f_3, f_4, f_5, f_6$; then show that $f_1 \in o(f_2)$ and $f_2 \in o(f_3)$ and so on.

Solution

Step 1. Ordering

The functions ordered from slowest to fastest growth are as follows:

$$(\log n)^2$$
, \sqrt{n} , $2^{\log_3 n}$, n^3 , $8^{n/2}$, 3^n

In o-notation, we write

$$(\log n)^2 \in o(\sqrt{n}) \in o(2^{\log_3 n}) \in o(n^3) \in o(8^{n/2}) \in o(3^n).$$

Step 2. Simplification

Before proving the relations, we simplify the functions to make the proofs easier.

Using the identity

$$a^{\log_b n} = n^{\log_b a}$$

we have

$$2^{\log_3 n} = n^{\log_3 2} \approx n^{0.63}$$

Also,

$$8^{n/2} = (8^{1/2})^n = (2\sqrt{2})^n$$

Step 3. Proofs

• 1. $(\log n)^2 \in o(\sqrt{n})$: We need to show that

$$\lim_{n \to \infty} \frac{(\log n)^2}{\sqrt{n}} = 0.$$

Let $n=2^m$. Then,

$$\log n = m \quad \text{and} \quad \sqrt{n} = 2^{m/2}.$$

Thus,

$$\frac{(\log n)^2}{\sqrt{n}} = \frac{m^2}{2^{m/2}},$$

and as $m \to \infty$, the exponential term in the denominator dominates the polynomial numerator, so the limit is 0.

• 2. $\sqrt{n} \in o(2^{\log_3 n})$: Since $2^{\log_3 n} = n^{\log_3 2}$, we have

$$\frac{\sqrt{n}}{2^{\log_3 n}} = \frac{n^{1/2}}{n^{\log_3 2}} = n^{1/2 - \log_3 2}.$$

Because $1/2 - \log_3 2 < 0$,

$$\lim_{n \to \infty} n^{1/2 - \log_3 2} = 0.$$

• 3. $2^{\log_3 n} \in o(n^3)$: Since $2^{\log_3 n} = n^{\log_3 2}$, we have

$$\frac{2^{\log_3 n}}{n^3} = \frac{n^{\log_3 2}}{n^3} = n^{\log_3 2 - 3}.$$

Because $\log_3 2 - 3 < 0$,

$$\lim_{n \to \infty} n^{\log_3 2 - 3} = 0.$$

• 4. $n^3 \in o(8^{n/2})$: Since the exponential function $8^{n/2}$ grows much faster than the polynomial n^3 , we have

$$\lim_{n \to \infty} \frac{n^3}{8^{n/2}} = 0,$$

• 5. $8^{n/2} \in o(3^n)$: We have

$$\frac{8^{n/2}}{3^n} = \left(\frac{8^{1/2}}{3}\right)^n = \left(\frac{2\sqrt{2}}{3}\right)^n.$$

Since $\frac{2\sqrt{2}}{3} < 1$,

$$\lim_{n\to\infty}\left(\frac{2\sqrt{2}}{3}\right)^n=0.$$

Name: Nick Zhu Basic Algorithms (Section 5) HW1 (Due 2/6 23:59) Net ID: xz4687 Spring 2025 Instructor: Jiaxin Guan

Problem 2 (30 pts)

Consider the function $f(n) = n \cdot (n \mod 2) + \log n$.

- (a) Show that $f(n) \in O(n)$ and $f(n) \in \Omega(\log n)$.
- (b) Show that neither $f(n) \in \Theta(n)$ nor $f(n) \in \Theta(\log n)$.
- (c) Suppose for some function g(n), we have $f(n) \notin O(g(n))$. Is it always true that $f(n) \in \omega(g(n))$? Justify your answer with either a proof or a counter-example.

Solution

(a) $f(n) \in O(n)$: For any $n \ge 2$:

If n is even: $f(n) = \log n \le n$, If n is odd: $f(n) = n + \log n \le n + n = 2n$.

Thus, $f(n) \leq 2n$ for all $n \geq 2$. Choosing C = 2 and $n_0 = 2$ gives $f(n) \in O(n)$. $f(n) \in \Omega(\log n)$: For all n:

If n is even: $f(n) = \log n$, If n is odd: $f(n) = n + \log n \ge \log n$.

Thus, let c = 1 we have $f(n) \ge \log n$ for all n, so $f(n) \in \Omega(\log n)$.

(b)

We prove by contradiction.

Assum $f(n) \in \Theta(n)$, then there exist constants $c_1, c_2 > 0$ and n_0 such that for all $n \ge n_0$,

$$c_1 n \le f(n) \le c_2 n.$$

However, when n is even, $f(n) = \log n$ and the inequality $c_1 n \leq \log n$ fails for large n (since $\log n/n \to 0$). Thus, we've reached a contradiction and $f(n) \notin \Theta(n)$.

Similarly, assume $f(n) \in \Theta(\log n)$, then there exist constants $c_1, c_2 > 0$ such that for all large n,

$$c_1 \log n \le f(n) \le c_2 \log n$$
.

But for odd n, $f(n) = n + \log n$ grows like n, which is much larger than any constant multiple of $\log n$. Thus, we've reached a contradiction and $f(n) \notin \Theta(\log n)$.

(c)

It is not always true. We will show a counterexample.

Counterexample: Define

$$g(n) = \begin{cases} n, & \text{if } n \text{ is even,} \\ \log n, & \text{if } n \text{ is odd.} \end{cases}$$

Then:

 $\begin{array}{ll} \text{If n is even:} & f(n) = \log n, \quad g(n) = n, \quad \frac{f(n)}{g(n)} = \frac{\log n}{n} \to 0, \\ \text{If n is odd:} & f(n) = n + \log n, \quad g(n) = \log n, \quad \frac{f(n)}{g(n)} \sim \frac{n}{\log n} \to \infty. \end{array}$

HW1 (Due 2/6 23:59) Instructor: Jiaxin Guan

Thus, there is no constant C such that $f(n) \leq C g(n)$ for all large n (so $f(n) \notin O(g(n))$). However, f(n) also does not satisfy the definition of $\omega(g(n))$ because for even n, $\lim_{n\to\infty} f(n)/g(n)$ is 0 but not ∞ .

Problem 3 (20 pts)

Let f(n) and g(n) be non-negative functions.

(a) Using the formal definition of $\Theta()$, prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$, where

$$\max(a, b) = \begin{cases} a & \text{if } a \ge b \\ b & \text{otherwise} \end{cases}.$$

(b) Can we also show that $\min(f(n), g(n)) = \Theta(f(n) + g(n))$, where

$$\min(a, b) = \begin{cases} a & \text{if } a \le b \\ b & \text{otherwise} \end{cases}$$
?

If yes, show how the proof from part (a) needs to be adapted. If no, provide a counter-example.

Solution

(a) Since both f(n) and g(n) are nonnegative,

$$\max(f(n), g(n)) = \begin{cases} f(n), & \text{if } f(n) \ge g(n) \\ g(n), & \text{otherwise} \end{cases}.$$

In either case,

$$f(n) \le \max(f(n), g(n))$$
 and $g(n) \le \max(f(n), g(n))$.

Adding these two inequalities we have:

$$f(n) + g(n) \le 2 \max(f(n), g(n)) \implies \max(f(n), g(n)) \ge \frac{1}{2} (f(n) + g(n)).$$

Also, clearly,

$$\max(f(n), g(n)) \le f(n) + g(n).$$

Thus, we have

$$\frac{1}{2}\big(f(n)+g(n)\big) \le \max(f(n),g(n)) \le f(n)+g(n).$$

This shows

$$\max(f(n), g(n)) = \Theta(f(n) + g(n)).$$

with constants $c_1 = \frac{1}{2}$ and $c_2 = 1$.

(b)

It is always true that

$$\min(f(n), g(n)) \le f(n) + g(n),$$

however, for the equality $\min(f(n), g(n)) = \Theta(f(n) + g(n))$ to hold we would also require a constant c > 0 such that

$$\min(f(n), g(n)) \ge c \left(f(n) + g(n) \right)$$

Name: Nick Zhu Net ID: xz4687

Basic Algorithms (Section 5) Spring 2025

HW1 (Due 2/6 23:59) Instructor: Jiaxin Guan

for all sufficiently large n. We will show a counterexample.

Counterexample: Let

$$f(n) = n$$
 and $g(n) = 1$ for all n .

Then,

$$\min(f(n), g(n)) = \min(n, 1) = 1,$$

and

$$f(n) + g(n) = n + 1.$$

Givin $\min(f(n), g(n)) = \Theta(f(n) + g(n))$, there exist constants $c_1, c_2 > 0$ and n_0 such that for all $n \ge n_0$,

$$c_1(n+1) \le 1 \le c_2(n+1).$$

While the upper bound $1 \le c_2(n+1)$ holds for any $c_2 \ge 0$ and large n, the lower bound

$$1 \ge c_1(n+1)$$

cannot hold for any fixed $c_1 > 0$ as $n \to \infty$. Thus, the equality does not hold in general and we cannot say that

$$\min(f(n), q(n)) = \Theta(f(n) + q(n)).$$

HW1 (Due 2/6 23:59)

Instructor: Jiaxin Guan

Problem 4 (30 pts)

You are given the coefficients $\alpha_0, \alpha_1, \ldots, \alpha_n$ of a polynomial

$$P(x) = \sum_{k=0}^{n} \alpha_k x^k$$
$$= \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_n x^n,$$

and you want to evaluate this polynomial for a given value of x. Horner's rule says to evaluate the polynomial according to this parenthesization:

$$P(x) = \alpha_0 + x \left(\alpha_1 + x \left(\alpha_2 + \dots + x \left(\alpha_{n-1} + x \alpha_n \right) \dots \right) \right).$$

The procedure HORNER implements Horner's rule to evaluate P(x), give the coefficients $\alpha_0, \alpha_1, \ldots, \alpha_n$ in an array A[0:n] and the value of x.

HORNER(A, n, x)

- 1: $p \leftarrow 0$
- 2: **for** i = n to 0 do
- 3: $p \leftarrow A[i] + x \cdot p$
- 4: end for
- 5: return p

For this problem, assume that addition and multiplication can be done in constant time.

- (a) In terms of Θ -notation, what is the running time of this procedure?
- (b) Write pseudocode to implement the naive polynomial-evaluation algorithm that computes each term of the polynomial from scratch. What is the running time of this algorithm? How does it compare to HORNER?
- (c) Consider the following loop invariant for the preedure HORNER: At the start of each iteration of the **for** loop of lines 2-3,

$$p = \sum_{k=0}^{n-(i+1)} A[k+i+1] \cdot x^k.$$

Interpret a summation with no terms as equaling 0. Following the structure of the loop-invariant proof presented in class, use this loop invariant to show that, at termination, $p = \sum_{k=0}^{n} A[k] \cdot x^k$.

Solution

(a)

The for loop in HORNER iterates from i = n down to 0, i.e., it makes n + 1 iterations. In each iteration, a constant number of operations is performed (one multiplication and one addition).

Thus, the total running time is proportional to n+1. In Θ -notation we have:

$$T(n) = \Theta(n)$$
.

(b)

A naive method to evaluate

$$P(x) = \sum_{k=0}^{n} A[k] x^k$$

is to compute each term $A[k] \cdot x^k$ from scratch and sum them.

NAIVEPOLYEVAL(A, n, x):

- 1: $p \leftarrow 0$
- 2: for k = 0 to n do
- 3: $term \leftarrow 1$
- 4: **for** j = 1 to k **do**
- 5: $term \leftarrow term \cdot x$
- 6: end for
- 7: $p \leftarrow p + A[k] \cdot term$
- 8: end for
- 9: **return** p

In this algorithm, for each k the inner loop runs k times. Therefore, the total number of multiplications is

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2} = \Theta(n^2).$$

Thus, the running time of the naive algorithm is $\Theta(n^2)$, which is asymptotically slower than Horner's $\Theta(n)$ method.

(c)

We consider the following loop invariant:

At the start of each iteration of the for-loop (lines 2–3), $p = \sum_{k=0}^{n-(i+1)} A[k+i+1] \cdot x^k$.

We want to show that when the loop terminates, $p = \sum_{k=0}^{n} A[k] \cdot x^{k}$.

Initialization:

When the loop begins, i = n. Then the invariant claims that:

$$p = \sum_{k=0}^{n-(n+1)} A[k+n+1] \cdot x^k.$$

Since the upper limit is n - (n + 1) = -1, the summation is empty and by convention equals 0. This matches the initialization $p \leftarrow 0$, so the invariant holds initially.

Maintenance:

Suppose the invariant holds at the start of an iteration for some index i, so that:

$$p = \sum_{k=0}^{n-(i+1)} A[k+i+1] \cdot x^k.$$

In the body of the loop, we update p as follows:

$$p \leftarrow A[i] + x \cdot p.$$

Substituting the invariant expression into this update gives:

$$p = A[i] + x \left(\sum_{k=0}^{n-(i+1)} A[k+i+1] \cdot x^k \right) = A[i] + \sum_{k=0}^{n-(i+1)} A[k+i+1] \cdot x^{k+1}.$$

Reindex the summation by letting j = k + 1. Then when k = 0, j = 1, and when k = n - (i + 1), j = n - i. This gives:

$$p = A[i] + \sum_{i=1}^{n-i} A[j+i] \cdot x^j = \sum_{j=0}^{n-i} A[j+i] \cdot x^j,$$

where we have written A[i] as the term corresponding to j = 0. This is exactly the loop invariant for the next iteration (with i replaced by i - 1).

Termination:

The loop terminates when i = -1. At this point, the invariant gives:

$$p = \sum_{k=0}^{n-((-1)+1)} A[k+(-1)+1] \cdot x^k = \sum_{k=0}^n A[k] \cdot x^k.$$

Hence, upon termination, p = P(x).

This completes the loop invariant proof that HORNER correctly evaluates the polynomial.

Basic Algorithms (Section 5)

HW1 (Due 2/6 23:59)

Instructor: Jiaxin Guan

Name: Nick Zhu Spring 2025 Net ID: xz4687

Discussion Partners: Jueying Zhu, Siqi Zhu