Modelli e Algoritmi di Ottimizzazione

2024-2025

Introduzione e problema del simplesso

Definiamo algoritmo la struttura matematica della soluzione di un determinato problema. Affrontiamo in questo corso gli algoritmi legati all'ottimizzazione. Un problema di ottimizzazione consiste nella ricerca del valore ideale di una variabile obiettivo ignota, in base a vincoli e relazioni tra variabili decisionali date, allo scopo di raggiungere un determinato fine. Per poter risolvere il problema, è necessario conoscere l'obiettivo dell'ottimizzazione. Può capitare in alcuni casi che possano coesistere diversi criteri secondo i quali cercare di ottimizzare. Ad esempio, in un'azienda, gli interessi dei dirigenti e gli interessi dei lavoratori possono entrare in contrasto. Si parla in questo caso di programmazione multiobiettivo. Nello scenario della programmazione multiobiettivo rientrano anche i modelli che affrontano l'incertezza futura. In questi problemi, infatti, si può decidere di massimizzare l'obiettivo principale, oppure di minimizzare il rischio dovuto all'incertezza futura. Sono inoltre distinguibili fin da subito due categorie di problemi di ottimizzazione, in base alla complessità matematica degli algoritmi risolutivi. Il primo gruppo, di più semplice risoluzione, coinvolge tutte e sole variabili continue, ed è detto programmazione lineare (LP). La seconda categoria, detta MIP (mixed-integer programming) contiene invece una o più variabili discrete, o addirittura binarie. La risoluzione è resa notevolmente più complessa dalla necessità di garantire un risultato intero per la variabile obiettivo.

Affrontiamo innanzitutto l'algoritmo del simplesso per la risoluzione di problemi di programamzione lineare. Esso fu sviluppato al termine della Seconda Guerra Mondiale da George Dantzig, addetto di logistica militare presso l'esercito americano, ai fini di generalizzare la soluzione ai problemi da lui affrontati nella propria attività lavorativa. Il primo passaggio consiste nella determinazione della variabile obiettivo. Si definiscono, in secondo luogo, le relazioni tra le variabili decisionali. Sono infine imposti vincoli sulle singole variabili decisionali, lasciando libera la variabile obiettivo. L'algoritmo non consente l'uso diretto delle disequazioni nonostante esse siano una parte fondamentale dei problemi di ottimizzazione. Per questa ragione, le disequazioni si riconducono ad equazioni mediante l'utilizzo di variabili scarto positive o nulle che bilanciano i due membri. Convenzionalmente esse sono positive o nulle e si aggiungono o sottraggono al termine sinistro. Le equazioni ottenute sono messe a sistema, ordinate per variabile. I coefficienti si possono raccogliere in forme matriciali o vettoriali. Questo tipo di rappresentazione permette di avere modelli compatti e facilmente riutilizzabili al variare dei valori delle variabili.

$$\begin{cases} 3x + 2y - 4z < 3 & \to 3x + 2y + v_1 = 3 \\ 2x - y + z > 4 & \to 2x - y + z - v_2 = 4 \\ x - 4y + 9z < 11 & \to x - 4y + 9z + v_3 = 11 \end{cases}$$

$$\begin{bmatrix} 3 & 2 & -4 \\ 2 & -1 & 1 \\ 1 & -4 & 9 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}$$

Figura 1: Trasformazione di una disequazione in equazione usando una variabile scarto

Definiamo ora il concetto di problemi sparsi. Essi sono contraddistinti da una matrice dei coefficienti sparsa, contenente cioè molti elementi nulli. Il sistema che ne deriva è detto sottodeterminato. Si definisce un coefficiente di sparsità che rappresenta la quota di coefficienti nulli rispetto al numero totale di elementi nella matrice. Tanto più è alto il coefficiente di sparsità, tanto più inefficiente risulta il calcolo della soluzione. Molto tempo di elaborazione, infatti, risulterà sprecato in operazioni dal risultato nullo. Al fine di mitigare questo problema sono definite strutture dati apposite, che permettono di compattare le matrici sparse sfruttando l'algebra dei puntatori. Così facendo, sono risparmiati spazio in memoria e tempo di calcolo.

$$\begin{pmatrix} 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 7 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 5 \\ 6 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Figura 2: Esempio di matrice sparsa

Questo corso impiega il software GAMS per la risoluzione dei problemi di ottimizzazione. Nel caso del problema del simplesso, è in grado di trasformare automaticamente le disequazioni in equazioni, mostrando anche le variabili scarto generate a fine elaborazione. L'input ha una sintassi molto leggibile, che permette all'utente di definire variabili ed equazioni, e dare direttive, in linguaggio quasi naturale. Il programma è in grado di gestire input vettoriale e matriciale fino a dimensione 10. La sezione dell'output è divisa in cinque sottosezioni. Esse sono compilation, equation listing, column listing, model statistics e solution report. Compilation esprime le informazioni relative alla compilazione dello script fornito dall'utente. Equation Listing mostra le disequazioni generate a partire da variabili e relazioni specificate dall'utente nello script. Queste ultime sono ancora mostrate come disequazioni, prima della trasformazione in equazioni con la tecnica precedentemente descritta. In Column Listing sono mostrati, sotto forma di vettori colonna, i coefficienti del sistema di equazioni generato a partire dalle equazioni. Model Statistics esprime le statistiche relative al modello generato. Solution Report contiene infine la soluzione vera e propria al problema di ottimizzazione, divisa in due sezioni. La prima sezione, EQU, indica come si colloca la soluzione rispetto ai vincoli, ed elenca le variabili scarto generate nella trasformazione delle disequazioni in equazioni. La seconda sezione, VAR, mostra nel medesimo formato le variabili decisionali. Il software, nell'enumerare le variabili e le equazioni, distingue tra blocks (numero di vettori) e single (cardinalità totale).

Le fasi della produzione si possono schematizzare utilizzando un diagramma a nodi. Ogni nodo rappresenta un prodotto o un semilavorato. Le lavorazioni sono indicate inserendo direttamente le loro tabelle d'impiego. Successivamente si tracciano le linee di produzione che, partendo dalla fase iniziale e terminando nel prodotto finito, congiungono nodi e tabelle. Esse sono disegnate facendo riferimento alle informazioni di compatibilità tra prodotti e impianti. Una singola linea di processo può ramificarsi in più archi quando la produzione da essa rappresentata può passare indifferentemente attraverso diversi impianti. Tutti i rami devono ricongiungersi in un'unica linea entro l'arrivo al prodotto finito. Al termine della schematizzazione si impone la garanzia dei bilanci, tramite opportuni vincoli, tenendo conto di ramificazioni e ricongiungimenti delle linee di produzione. Si impone inoltre che l'impiego di tempo sia minore o uguale del tempo totale disponibile. Si costruisce poi una funzione di profitto tenendo conto dei vincoli funzionali. Il profitto si definisce come differenza tra i ricavi e la somma dei costi (sia delle materie prime, che della produzione). Il passaggio finale dell'analisi consiste nella massimizzazione della funzione di profitto.

GAMS permette di definire non solo insiemi di vincoli, ma anche sottoinsiemi di tali insiemi. È richiesto invece di definire variabili nulle per rappresentare le decisioni non attuabili. Si tratta delle combinazioni incompatibili di prodotti e impianti, che vanno a generare vincoli nulli. Questo perché è conveniente creare un vettore dei prodotti e un vettore degli impianti, e moltiplicarli per ottenere un'unica matrice decisionale. All'interno di essa le coppie non attuabili vengono semplicemente rappresentate da un valore nullo, andando a generare un certo grado di sparsità nella matrice. La forma matriciale permette di esprimere vincoli generici usando le sommatorie. Procedendo in questo modo, non risulta necessario fare considerazioni particolari per le coppie incompatibili, oltre all'annullamento delle variabili ad esse associate.

$$\begin{bmatrix} A & B & C \end{bmatrix} \begin{bmatrix} D \\ E \\ F \end{bmatrix} \begin{bmatrix} A & B & C \\ D & A, D & B, D & C, D \\ E & A, E & B, E & C, E \\ F & 0 & B, F & C, F \end{bmatrix}$$

Figura 3: A, B, C: prodotti; D, E, F: linee; A e F sono incompatibili

Possiamo osservare i vincoli di bilancio come primissimo elemento della sezione EQU nei risultati di GAMS. Le risorse non completamente impiegate sono riconoscibili dal valore nullo del loro marginal. Dove esso non è nullo, si può invece verificare con un semplice procedimento se la struttura della soluzione cambierebbe in seguito all'aumento della risorsa scarsa. Si aggiunge un'unità e si riavvia l'ottimizzazione. Se l'aumento di produttività è pari al marginal del caso precedente, allora la struttura della soluzione non cambia. Se invece il valore è diverso, la struttura della soluzione è cambiata. Il marginal è detto anche prezzo ombra. Si può interpretare come la valorizzazione interna della risorsa, ovvero il suo valore ai fini della specifica produzione analizzata. Il concetto è diverso dalla valorizzazione esterna, corrispondente al valore di mercato della risorsa analizzata.

Un'altra distinzione derivabile dai risultati dell'analisi riguarda la divisione dei vincoli in attivi e inattivi. Sono definiti inattivi i vincoli che, se rimossi, non cambierebbero la soluzione. In altre parole, si tratta dei vincoli legati alle risorse

non completamente sfruttate. Il punto ottimale non si trova sul confine definito da tali vincoli. I vincoli attivi, al contrario, sono legati alle risorse limitanti. Il punto ottimale si trova esattamente sul confine da essi definito. Segue dunque che i vincoli di uguaglianza siano sempre attivi. L'attività dei vincoli di disuguaglianza, invece, dipende da che si tratti di disuguaglianza stretta o non stretta. Il concetto di vincoli attivi è fondamentale nella casistica, non affrontata dal corso, dei modelli non lineari. Esiste una classe di algoritmi di ottimizzazione non lineare chiamata active set methods, basata sull'identificazione iterativa di un sottoinsieme di vincoli che si ritiene saranno attivi nel punto ottimale.

Esiste una categoria di problemi di ottimizzazione, chiamata dei problemi di livello, molto studiata in tempi recenti. In questo tipo di problemi esistono più decisiori indipendenti. Questo si contrappone all'ottimizzazione classica, in cui un singolo decisore ha a disposizione informazioni sull'intero problema. Decisori differenti gestiscono aree diverse, ma le decisioni di ognuno influenzano indirettamente anche le aree di competenza altrui. I decisori possono essere allo stesso livello, distribuirsi gerarchicamente, oppure assumere una configurazione ibrida. Un esempio di problema di livello è la gestione del mercato libero dell'energia. Il gestore di rete sceglie giorno per giorno le offerte di produzione di varie aziende energetiche in base a una classifica di merito basata sul seguente criterio. I produttori dichiarano ogni giorno quanto saranno disposti a produrre il giorno successivo, e a che prezzo. Nonostante la grande quantità di variabili coinvolte, si tratta di un problema di programmazione lineare. Ogni giorno si osservano scostamenti, e risulta necessario introdurre piccole variazioni nei piani di produzione, sempre ottimizzandole matematicamente. Esistono mercati di aggiustamento dedicati al sopperimento di tali bisogni dinamici di energia. I modelli energetici devono essere evolutivi per poter raggiungere obiettivi futuri imposti a livello politico, come ad esempio il piano Energia e Clima dell'Unione Europea.

Ammissibilità

I vincoli lineari dei problemi LP sono rappresentabili come rette in un piano. La loro convergenza, quando esiste, va a generare una regione di ammissibilità. I vincoli di disuguaglianza limitano la soluzione ad un semipiano, mentre quelli di uguaglianza limitano la soluzione ai soli punti della retta stessa. L'aspetto della regione di ammissibilità è determinato dai vincoli di non negatività delle variabili. Può prendere la forma di un semipiano, di una retta, di un poligono, di un segmento o di un punto. Le intersezioni tra le frontiere dei vincoli sono chiamate vertici. I vertici della regione di ammissibilità sono soluzioni di base. Per determinare l'appartenenza di punti del piano alla regione di ammissibilità si valuta il segno della variabile scarto. Essa si annulla in corrispondenza delle soluzioni di base. È fondamentale individuare tali soluzioni perché esistono algoritmi in grado di determinare sequenze di soluzioni ammissibili a partire da una singola soluzione base nota.

$$\begin{aligned} x_1 + 2x_2 &\leq 0 \\ s &= 10 - (x_1 + 2x_2) \\ x_1 + 2x_2 + s &= 10 \quad \text{con} \quad s_1 \geq 0 \\ \begin{cases} s > 0 \text{: dentro la regione di ammissibilità} \\ s < 0 \text{: fuori dalla regione di ammissibilità} \\ s &= 0 \text{: sulla frontiera} \end{aligned}$$

Figura 4: Esempio di determinazione dei punti base

Possiamo dare una rappresentazione matriciale al sistema:

$$\begin{cases} Fw = b \\ w \ge 0 \end{cases}$$

dove:

- \bullet F è la matrice dei coefficienti
- w è il vettore delle incognite
- ullet b è il vettore dei termini noti

Sappiamo che $F \in \mathbb{R}^{m,n+m}$ dove n è il numero di variabili decisionali (x) e m è il numero di vincoli. Il rango di F è $\mathrm{rk}(F) = m$. Possiamo separare il il vettore w in due blocchi, uno di variabili decisionali e uno di variabili scarto:

$$w = \begin{pmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \end{pmatrix} \implies \begin{pmatrix} x \\ s \end{pmatrix}$$

Anche la matrice dei coefficienti si può spezzare in una matrice di coefficienti delle variabili decisionali, e una matrice identità di coefficienti delle variabili scarto:

$$F = [AI]$$
.

Riesprimendo in questo modo la precedente formula, abbiamo:

$$\begin{bmatrix} AI \end{bmatrix} \begin{bmatrix} x \\ s \end{bmatrix} = Ax + s = b.$$

Supponiamo, continuando il corrente esempio, di voler calcolare uno dei punti base. Questo punto è dato dall'intersezione tra le due rette base dei vincoli, con l'annullamento delle rispettive variabili scarto.

$$\begin{bmatrix} x_1 & x_2 \\ 1 & 2 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \end{bmatrix}$$

Annullando le due variabili scarto s_1 e s_2 , la parte N della matrice diventa in pratica irrilevante e il calcolo si restringe a

$$\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$$

calcolando solo il prodotto tra la base B e le variabili di base x_i da cui dobbiamo determinare w_B :

$$w_B = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Invece w_N è

$$\begin{pmatrix} s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Da questo possiamo dare un'ulteriore riscrittura a Fw = B:

$$[BN]\begin{bmatrix} w_B \\ w_N \end{bmatrix} = Bw_B + Nw_N = b$$

 $B^{-1}Bw_B + B^{-1}Nw_N = B^{-1}b \rightarrow \text{moltiplico tutto per l'inversa di } B$

e quindi

$$\begin{cases} w_B = B^{-1}b - B^{-1}Nw_n \\ w_N = 0 \end{cases}$$

Quest'ultimo è l'insieme di tutte le soluzioni, anche quelle non ammissibili, del sistema sottodeterminato Fw = b espresso rispetto alla base B.

Possiamo trovare altri punti base annullando altre variabili. Questo può essere ottenuto anche cambiando l'ordine delle colonne di F. Ad esempio, annullando x_2 e s_2 , il sistema

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$$

diventa (per scambio, riportando a sinistra le due colonne di base):

$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ s_1 \\ x_2 \\ s_2 \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix} \quad \Rightarrow \quad \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} x_1 \\ s_1 \end{pmatrix} = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$$

Trovo l'inversa di B:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \implies B^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

Per ottenere infine:

$$\begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 & 0 & | & 10 \\ 1 & 0 & 0 & 1 & | & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & | & 0 & 1 & | & 4 \\ 0 & 1 & | & 2 & -1 & | & 5 \end{bmatrix} \\ B^{-1}B = I & B^{-1}N & B^{-1}B \end{bmatrix}$$

$$\text{quindi} \quad \begin{pmatrix} x_1 \\ s_1 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix} - \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \begin{pmatrix} x_2 \\ s_2 \end{pmatrix}$$

$$w_B = B^{-1}b - B^{-1}N \quad w_B$$

Terminiamo dunque la risoluzione numerica:

$$\begin{cases} x_1 = 4 - s_2 \\ s_1 = 6 - 2x_2 + s_2 \end{cases} \quad \text{con } x_2 \in s_2 \text{ arbitrari in } \mathbb{R}^2.$$

La soluzione di base è

$$x_1 = 4 \quad x_2 = 0$$

$$s_1 = 6$$
 $s_2 = 0$.

Se trovo degli s negativi, non sono in zona ammissibile. Ricordiamo inoltre che la base BB per definizione deve essere singolare, cioè le sue colonne devono essere linearmente indipendenti.

La risoluzione dei problemi LP si divide dunque in due fasi, una chiamata indagine di ammissibilità, e l'altra coincidente con l'ottimizzazione vera e propria. L'indagine di ammissibilità consiste nel determinare se la regione di ammissibilità esista, trovando almeno un punto che ne faccia parte. I problemi i cui vincoli siano esclusivamente di minore o uguale relativamente a termini noti non necessitano di una vera indagine di ammissibilità, perché si può verificare immediatamente che l'origine del piano sia una soluzione ammissibile. Questo non vale invece per problemi nei quali coesistono vincoli di uguaglianza e disuguaglianza. In tal caso è necessario costruire un problema ausiliario, immediatamente ammissibile, la cui soluzione ottimale corrisponda ad un punto base della regione ammissibile relativa al problema originario. Il problema è irrisolvibile se la regione di ammissibilità è delimitata da un vincolo limitato da una variabile che necessiti di essere massimizzata nella funzione obiettivo. Esiste infine un caso limite di ammissibilità, in cui esiste una sola soluzione ammissibile puntuale. Tale soluzione è chiamata punto degenere e causa problematiche, seppur risolvibili, nella soluzione algebrica del problema.

Teorema fondamentale della Programmazione Lineare

Il teorema fondamentale della Programmazione Lineare si divide in due sottoteoremi, che chiamiamo FTLP-1 e FTLP-2.

FTLP-1: se la regione ammissibile del problema di PL non è vuota, almeno una delle soluzioni ammissibili è una soluzione di base.

In altre parole: - se esiste una soluzione ammissibile, allora esiste una soluzione ammissibile di base:

$$\exists f.s. \Rightarrow \exists b.f.s.$$

- se non esiste nessuna soluzione ammissibile di base, allora non esiste nessuna soluzione ammissibile:

$$\not\equiv b.f.s. \Rightarrow \not\equiv f.s.$$

Questo teorema si dimostra per costruzione. Per ipotesi la regione non è vuota, quindi esiste una soluzione ammissibile. Partendo da essa, è possibile generare una sequenza di altre soluzioni ammissibili per ottenere, in un numero finito di passaggi, una soluzione di base. Basandosi su FLTP-1 è possibile sviluppare un algoritmo per studiare l'ammissibilità dei problemi di programmazione lineare. Questo algoritmo esamina solo le soluzioni di base ammissibili di un problema ausiliario opportunamente definito. L'algoritmo trova, alternativamente, una soluzione ammissibile di base per il problema originale, oppure determina che la regione di ammissibilità sia vuota.

FLTP-2: se la funzione obiettivo è limitata sulla regione ammissibile (inferiormente per problemi di minimo, superiormente per i problemi di massimo) allora almeno una delle soluzioni ammissibili ottime è una soluzione ammissibile di base.

Anche questo sottoteorema si dimostra per costruzione. Esiste una soluzione ammissibile ottima perché la funzione obiettivo è limitata per ipotesi. Partendo da questa soluzione ammissibile, possiamo generare una sequenza di altre soluzioni ammissibili ottime per ottenere, in un numero finito di passaggi, una soluzione di base ottima.

Ripasso

Siano dati una matrice F = [AI] di dimensioni $m \times (n+m)$ e rango $\operatorname{rk}(F) = m$, e un vettore $w = \binom{w}{s}$ tali che Fw = b, $\exists \ B \ n \times m$ non singolari estratte da F. Scelta B in F, riordino le colonne di F e le componenti di w in modo che le colonne di B e le componenti di w associate a B siano le prime m.

$$F = [BN] \quad w = \begin{pmatrix} w_B \\ w_n \end{pmatrix}$$

$$B^{-1}[BN] \begin{pmatrix} w_B \\ w_N \end{pmatrix} = B^{-1}b$$

$$w_B + B^{-1} N w_N = B^{-1} b$$

Quest'ultimo risultato è una rappresentazione di tutte e sole le soluzioni di Fw=b (insieme soluzione). Esso è detto forma canonica del sistema rispetto alla base B. Il metodo del simplesso è basato su questa forma. Per ottenere l'intero insieme si sceglie arbitrariamente $w_N \in \mathbb{R}^n$. Esprimendo in un modo alternativo l'equazione notiamo che ciascuna variabile di base viene espressa in termini delle variabili non di base:

$$w_B = B^{-1}(b - Nw_N)$$

Per ottenere la soluzione associata a B si impone $w_N = 0$ (origine di \mathbb{R}^n). La soluzione di base è dunque, di fatto,

$$\begin{cases} w_B = B^{-1}B \\ w_N = 0 \end{cases}$$

Annullare le w_N significa, geometricamente, porsi su n frontiere di vincoli.

L'algoritmo del simplesso

L'algoritmo procede iterativamente ripetendo questi quattro passi: 1. test di ottimalità 2. determinazione della direzione di ricerca 3. determinazione della lunghezza del passo 4. determinazione della forma canonica rispetto alla nuova base adiacente alla precedente

Il nome del primo passaggio è autoesplicativo: si verifica se la soluzione a disposizione, ovvero la prima soluzione di base da cui l'algoritmo inizia, oppure una soluzione base trovata iterativamente, è ottimale. Si procede al secondo

passo soltanto se la soluzione attuale non è ottimale. Nel secondo passo si cerca la direzione lungo la quale il valore della variabile obiettivo tende a diminuire (o aumentare, nel caso di un problema di massimizzazione). Il terzo passo consiste nel determinare di quanto sia necessario muoversi in tale direzione per raggiungere la successiva soluzione di base. Si trova infine la nuova forma canonica legata al punto base trovato. Le basi canoniche trovate sono sempre adiacenti, perché da un passo all'altro si cambia un solo vincolo tra quelli considerati. L'algoritmo si muove lungo la frontiera. Ogni qual volta si determina un nuovo punto base, si ripete il test di ottimalità. Se viene passato, tale punto è la soluzione ottima. Nei problemi privi di soluzione ottimale, in un numero finito di iterazioni si arriva a una lunghezza di passo infinita durante il terzo passaggio. Esistono metodi alternativi al simplesso chiamati metodi a punti interni. Per definizione, la soluzione ottima si trova sulla frontiera. Questi metodi, muovendosi all'interno della regione ammissibile, possono avvicinarsi più rapidamente all'ottimo prendendo scorciatoie. Quando però il punto di ottimo è ritenuto abbastanza vicino, la regola di movimento deve cambiare per potersi avvicinare alla frontiera, e la determinazione del momento di cambio strategia è non banale. Il simplesso risulta tutt'oggi l'algoritmo più efficiente nella maggioranza dei casi.

Esercizio:

Il sistema è sottodeterminato. Poniamo l'obiettivo in forma di minimo. La scelta è a discrezione di chi scrive l'algoritmo. È infatti possibile trasformare un problema di massimo in minimo rendendo negativi entrambi i membri dell'equazione. In questo caso applichiamo il cambio di variabile $\varphi = -\omega$. Notiamo che il sistema è già in forma canonica rispetto alla base $B = [e_1 \ e_2] = I$, perché $s_1, s_2 \ e \ \varphi$ sono già espresse solo in funzione di variabili x_i . Possiamo dunque determinare immediatamente B, N, e le variabili di base e non di base $w_B \ e \ w_N$.

In questo problema la base è formata dalle colonne di s_1 e s_2 (ovvero è una matrice identità):

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \quad w_B = \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$$

$$N = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} \quad w_N = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Ciascuna delle variabili (s_1, s_2, φ) è espressa in funzione delle sole variabili x_1 e x_2 .

Ecco il tableau iniziale:

$$\begin{bmatrix} x_1 & x_2 & s_1 & s_2 & \varphi \\ 1 & 2 & 1 & 0 & 0 & | & 10 \\ 1 & 0 & 0 & 1 & 0 & | & 4 \\ 2 & 3 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

Per ottenere il secondo punto, ovvero il punto A, annulliamo x_2 e s_2 lasciando x_1 e s_1 come variabili di base. Ricordiamo che l'algoritmo cambia una sola variabile di base per volta per passare da un punto all'altro.

$$w_B = \begin{pmatrix} x_1 \\ s_1 \end{pmatrix} \qquad w_N = \begin{pmatrix} x_2 \\ s_2 \end{pmatrix}$$

Proviamo ora a muoverci dall'origine verso l'alto.

$$\begin{bmatrix} x_1 & x_2 & s_1 & s_2 & \varphi \\ 1 & 2 & 1 & 0 & 0 & | & 10 \\ 1 & 0 & 0 & 1 & 0 & | & 4 \\ 2 & 3 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

Test di ottimalità: $2x_1 + 3x_2 + \varphi = 0$: è possibile? - $x_1 \ge 0$ - $x_2 \ge 0$

Di principio sì. Dato che le due variabili possono assumere valori positivi allora phi può diventare negativo.

- $x_1 > 0, x_2 = 0 : \varphi = -2x_1$
- $x_2 > 0, x_1 = 0$: $\varphi = -3x_2$

Estraiamo s_i dal tableau:

$$s_1 = 10 - 2x_2 \ge 0, \quad 0 \le x_2 \le 5$$

 $s_2 = 4 > 0$

Scegliamo di attribuire a x_2 il massimo valore possibile, ovvero 5. Questo valore corrisponde alla lunghezza del passo. Muovendoci di 5 verso l'alto dall'origine possiamo trovare il punto base situato sopra di essa nel disegno. Le nostre variabili di base per questo step sono x_2 e s_2 .

Volendo procedere in modo più rigoroso, l'algoritmo calcola il passo così: - dato che abbiamo stabilito di voler portare in base x_2 , si divide il termine noto della riga (10) per il valore del coefficiente di x_2 (2): 10/2 = 5. È necessario calcolare questo rapporto per tutte le righe, e scegliere il minimo tra quelli ottenuti. Questo calcolo è effettuato solo sui coefficienti strettamente positivi - dobbiamo arrivare ad una nuova forma canonica per il nuovo punto in cui ci spostiamo. Ogni variabile di base deve continuare ad essere espressa in funzione delle variabili non di base.

La nuova B deve essere formata dalle colonne di x_2 e s_2 , quindi:

$$B_2 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \qquad w_B \begin{pmatrix} x_2 \\ s_2 \end{pmatrix}$$

per arrivare a

$$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{pmatrix} x_2 \\ s_2 \end{pmatrix} \quad + \quad \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} x_1 \\ s_1 \end{pmatrix} \quad = \quad \begin{pmatrix} 10 \\ 4 \end{pmatrix}$$

$$B \qquad w_B \quad + \qquad Nw_N \qquad = \quad b$$

La forma canonica con le colonne riordinate prende la seguente forma.

$$w_B + \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{bmatrix} w_N = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

Non volendo modificare l'allineamento delle variabili, per procedere in maniera puramente algoritmica, il tableau assume questa disposizione:

L'1 del versore da costruire si trova all'intersezione tra la riga e la colonna dai quali coefficienti è stato generato il rapporto per determinare la lunghezza del passo.

Per determinare i nuovi valori delle righe, procediamo per riduzione gaussiana, in modo da ottenere i valori adeguati alla formazione di una matrice di base che sia identità:

$$\bar{R}_1 = \frac{1}{2}R_1 = \frac{1}{2} \ 1 \ \frac{1}{2} \ 0 \ 0 \ 5$$

$$\bar{R}_2 = R_2$$

La nuova struttura è:

Ripartiamo dal primo passo: determinazione dell'ottimalità.

$$\varphi = -15 - \frac{1}{2}x_2 + \frac{3}{2}s_1$$

Non si deve attribuire a s_1 un valore positivo. Non si può infatti ottimizzare scegliendo variabili il cui coefficiente in ultima riga sia negativo. Da tale considerazione è escluso l'1, che è coefficiente della variabile obiettivo. In questo caso la scelta obbligata è x_1 . A questo punto x_1 sostituirà la s_2 .

$$x_2 = 5 - \frac{1}{2}x_1 \ge 0$$
 $x_1 \le 10$
 $s_2 = 4 - x_1 \ge 0$ $x_1 \le 4$
 $\Rightarrow x_1 = 4$

Dobbiamo ora trasformare le righe per ottenere che la colonna nuova di x_1 diventi come la vecchia s_2 (0 1 0):

$$\bar{R}_2 = R_2$$

$$\bar{R}_1 = R_1 - \frac{1}{2}R_2 = \frac{\frac{1}{2}}{-\frac{1}{2}} \begin{array}{ccccc} 1 & 1 & \frac{1}{2} & 0 & 0 & 5 & + \\ -\frac{1}{2} & 0 & 0 & -\frac{1}{2} & 0 & -2 \\ \hline 0 & 1 & \frac{1}{2} & -\frac{1}{2} & 0 & 3 \\ \\ \bar{R}_0 = R_0 - \frac{1}{2}R_2 = \frac{\frac{1}{2}}{-\frac{1}{2}} \begin{array}{ccccc} 0 & -\frac{3}{2} & 0 & 1 & -15 \\ \hline -\frac{1}{2} & 0 & 0 & -\frac{1}{2} & 0 & -2 \\ \hline 0 & 0 & -\frac{2}{2} & -\frac{1}{2} & 1 & -17 \\ \end{array}$$

La riga finale è chiamata dei coefficienti di costo relativo. Qualora essi siano tutti negativi o nulli, allora la soluzione associata è ottima. Se tutti gli elementi sono negativi, l'ottimo è unico; se sono mescolati termini nulli e negativi, esistono soluzioni ottimali alternative. Sono deducibili altre informazioni dalle righe rimanenti del tableau. In corrispondenza della soluzione ottima, dalla loro analisi è possibile determinare in che modo essa possa modificarsi al variare dei dati in ingresso

Esistenza di soluzioni ottime alternative

Il tableau è ricco di informazioni di vario genere. È possibile dedurre, tra le altre cose, la presenza di soluzioni ottime alternative a partire dal tableau corrispondente ad una data soluzione ottima. Osserviamo il seguente esempio:

Le variabili di base sono x_2 e s_1 , come possiamo dedurre dal fatto che le loro rispettive colonne siano versori. Osservando l'ultima riga notiamo che tutti i coefficienti sono negativi o nulli. Questo è segno di ottimalità. Da questa considerazione è escluso, come sempre, il coefficiente di φ che è fisso a 1. L'ultima riga, però, rappresenta la funzione obiettivo espressa in funzione delle variabili non di base, x_1 e s_1 :

$$\varphi = -20 + 0x_1 + 2s_1$$

Il coefficiente di x_1 è nullo. Questo significa che il valore di x_1 può variare liberamente senza alterare la funzione obiettivo, ovvero senza inficiare l'ottimalità della soluzione. Questo vale, ovviamente, condizionatamente al rispetto dei vincoli: ad esempio x_1 , pur variando, deve rimanere positivo, ed è necessario considerare anche i vincoli sulle variabili di base. Le variazioni di x_1 rappresentano, geometricamente, lo scorrimento lungo la retta rappresentata dal vincolo s_1 .

Ne scaturiscono dunque infinite soluzioni ottime. Le possiamo esprimere come combinazione lineare convessa delle due soluzioni di base poste lungo s_1 , ovvero i punti $B \in C$. Troviamo l'altra soluzione mandando in base x_1 :

Le soluzioni hanno forma:

$$\begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \end{bmatrix} = \alpha \begin{bmatrix} 0 \\ 5 \\ 0 \\ 4 \end{bmatrix} + (1 - \alpha) \begin{bmatrix} 4 \\ 3 \\ 0 \\ 0 \end{bmatrix}, \quad 0 \le \alpha \le 1$$

Inammissibilità dell'origine

L'algoritmo del simplesso, per funzionare, necessita di partire da una soluzione di base ammissibile. Nei problemi contenenti solo vincoli di minoranza o di minore-uguaglianza, è immediato individuare una soluzione banale nell'origine dello spazio vettoriale. In presenza di vincoli di maggioranza, maggiore-uguaglianza o uguaglianza stretta, questa soluzione smette di essere ammissibile. Consideriamo ad esempio il seguente sistema:

$$\min \varphi = 0.4x_1 + 0.5x_2$$

La seconda e la terza equazione non ammettono $\underline{0}$ come soluzione.

Esiste un metodo per trovare una soluzione di base ammissibile quando l'origine non lo è. Consiste nella risoluzione di un problema ausiliario, che introduca delle variabili scarto aggiuntive. Nello specifico:

1. nelle disequazioni di maggiore o uguale e di maggiore, aggiungiamo una seconda variabile scarto, additiva e ausiliaria:

$$-s_i$$
, $s_i \ge 0 \rightarrow -s_i + t_i$, $s_i, t_i \ge 0$

2. nelle equazioni aggiungiamo una variabile scarto ausiliaria aggiuntiva:

$$t_i, \quad t_i \geq 0$$

3. costruiamo una funzione obiettivo ausiliaria, da minimizzare, corrispondente alla somma di tutte le variabili scarto ausiliarie:

$$\min \Psi = \sum_{i} t_i$$

4. risolviamo il problema con il metodo del simplesso.

Costruiamo il sistema di equazioni secondo le regole esposte, e mettiamolo a tableau:

$$\min \Psi = t_2 + t_3$$

$$s.t. \quad 0.3x_1 + 0.1x_2 + s_1 = 2.7$$

$$0.6x_1 + 0.4x_2 - s_2 + t_2 = 6$$

$$0.5x_1 + 0.5x_2 + t_3 = 6$$

$$\frac{x_1 \quad x_2 \quad s_1 \quad s_2 \quad t_2 \quad t_3 \quad \Psi \mid}{0.3 \quad 0.1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad | \quad 2.7}$$

$$0.6 \quad 0.4 \quad 0 \quad -1 \quad 1 \quad 0 \quad 0 \quad | \quad 6$$

$$0.5 \quad 0.5 \quad 0.5 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad | \quad 0$$

Se la funzione obiettivo della soluzione ottima del problema ausiliario ha valore positivo, signfica che non esistono valori in grado di annullare le variabili scarto ausiliarie, e dunque non esiste nessun punto nella regione di ammissibilità del problema originario. Se invece la funzione obiettivo ha valore nullo, allora la soluzione ottima ausiliaria corrisponde ad una soluzione ammissibile di base del problema originario. In tal caso possiamo continuare dallo stesso tableau, nella sua iterazione finale, eliminando le colonne relative alle variabili scarto ausiliarie. Sostituiamo la funzione obiettivo

ausiliaria con la funzione obiettivo originale. Esprimiamo infine la funzione obiettivo in funzione delle variabili di base contenute nella base ottima del problema ausiliario. Se l'ultima riga del *tableau* così ottenuto indica non ottimalità, possiamo procedere applicando il metodo del simplesso secondo le modalità usuali.

Tornando all'esempio, il tableau ottenuto a fine risoluzione del simplesso ausiliario ha la seguente forma:

x_1	x_2	s_1	s_2	t_2	t_3	Ψ	
1	0	5	0	0	-1	0	7.5
0	1	-5	0	0	3	0	4.5
0	0	1	1	-1	0.6	0	0.3
0	0	0	0	-1	-1	1	0

A questo punto possiamo eliminare le colonne t_2 e t_3 , sostituire Ψ con φ , e riscrivere l'equazione obiettivo originale. Dobbiamo però esprimerla in funzione delle variabili non di base, applicando le consuete operazioni di riga all'equazione obiettivo:

$$\max \omega: 0.4x_1 + 0.5x_2 + 0 \to \min \varphi: -0.4x_1 + -0.5x_2 + 0$$

 $\to \min \varphi: -0.5s_1 + 5.25 = 0$

Il tableau iniziale per il simplesso del problema originale diventa dunque:

x_1	x_2	s_1	s_2	φ	
1	0	5	0	0	7.50
0	1	-5	0	0	4.5
0	0	1	1	0	0.3
0	0	-0.5	0	1	5.25

che è già una soluzione ottima.