To simulate 100,000 lines of IoT sensor data and provide analysis questions, I'll generate data for a hypothetical smart home scenario. The sensors will include:

- 1. **Temperature Sensor:** Degrees Celsius, realistic range.
- 2. **Humidity Sensor:** Percentage, realistic range.
- 3. **Light Sensor:** Lux, representing ambient light levels.
- 4. **Motion Sensor:** Binary (0/1), indicating presence.
- 5. **Door/Window Sensor:** Binary (0/1), indicating open/closed.
- 6. **Power Consumption Sensor:** Watts, for a device (e.g., HVAC, refrigerator).

I'll also include a timestamp for each reading.

Here's how we can simulate the data and the analysis questions:

Simulated IoT Sensor Data (100,000 Lines)

The data will be in a CSV (Comma Separated Values) format. Each row will represent a sensor reading at a specific timestamp.

Columns:

- Timestamp: Date and time of the reading (e.g., YYYY-MM-DD HH:MM:SS)
- Temperature_C: Temperature in Celsius (e.g., 22.5)
- Humidity_Percent: Relative humidity in percentage (e.g., 60.2)
- Light_Lux: Ambient light in Lux (e.g., 500.1)
- Motion_Detected: 0 for no motion, 1 for motion (e.g., 0)
- Door_Open: 0 for closed, 1 for open (e.g., 1)
- Power_Consumption_Watts: Power consumption in Watts (e.g., 1500.3)

Data Generation Logic:

- Timestamps: Will span approximately 70 days (100,000 lines / ~60 readings per hour * 24 hours).
- **Temperature:** Will show daily cycles and some general fluctuations.
- **Humidity:** Will often correlate with temperature, but also have independent variations.
- Light: Will show strong daily patterns (day vs. night) and react to motion/door changes.
- **Motion:** Sporadic, but potentially more frequent during certain hours.
- **Door:** Sporadic, representing occasional opening/closing.
- **Power Consumption:** Will have baseline usage, with spikes correlating to temperature (e.g., HVAC turning on) or motion (e.g., lights turning on with motion).

Due to the large size (100,000 lines), I cannot display the entire dataset here. Instead, I will provide a Python script that generates this CSV file. Your students can then use this script to create the data.

```
Python
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
def generate iot data(num lines=100000):
  start time = datetime(2025, 1, 1, 0, 0, 0)
  data = []
  for i in range(num lines):
     # Simulate time passing, roughly every minute
     current time = start time + timedelta(minutes=i * np.random.uniform(0.8, 1.2)) # Slight
variability in time step
     # --- Sensor Data Generation ---
     # Temperature (C): Daily cycle with some noise and weekly trend
     base temp = 20 + 5 * np.sin(current time.dayofyear * 2 * np.pi / 365) # Yearly cycle
     daily temp swing = 3 * np.sin(current time.hour * np.pi / 12) # Daily cycle
     temperature = base_temp + daily_temp_swing + np.random.normal(0, 0.8)
     # Humidity (%): Correlates somewhat with temperature, but also independent noise
     base_humidity = 60 - 0.5 * (temperature - 20) # Inverse relation to temperature
     humidity = base humidity + np.random.normal(0, 3)
     humidity = np.clip(humidity, 30, 95) # Keep within realistic bounds
     # Light (Lux): Strong daily cycle (day/night)
     # Higher during day, low at night. Random spikes for motion/door.
     light = 0
     if 6 <= current time.hour < 20: # Daytime
       light = 200 + 800 * np.sin((current time.hour - 6) * np.pi / 14) # Peak at noon
       light += np.random.normal(0, 50)
     else: # Nighttime
       light = 5 + np.random.normal(0, 5) # Very low at night
     # Motion Sensor (Binary): Sporadic, higher during active hours
     motion detected = 0
     if np.random.rand() < 0.05: # Base probability of motion
       if 7 <= current time.hour < 22 and np.random.rand() < 0.7: # Higher probability during
active hours
          motion detected = 1
```

```
# Door/Window Sensor (Binary): Sporadic open/close
  door open = 0
  if np.random.rand() < 0.01: # Low probability of opening
    door open = 1
    if np.random.rand() < 0.5 and motion detected == 1: # More likely to open if motion
       door open = 1
  # Power Consumption (Watts): Baseline + spikes
  power consumption = 50 + np.random.normal(0, 10) # Baseline usage
  # HVAC based on temperature
  if temperature > 25:
    power consumption += 1000 + np.random.normal(0, 100) # AC turns on
  elif temperature < 18:
    power consumption += 800 + np.random.normal(0, 80) # Heater turns on
  # Lights based on light levels and motion
  if light < 100 and motion detected == 1:
    power consumption += 50 + np.random.normal(0, 10) # Lights turn on
  # Random spikes for other devices
  if np.random.rand() < 0.02:
    power_consumption += np.random.uniform(100, 500) # Random appliance usage
  power_consumption = np.clip(power_consumption, 0, 3000) # Keep within realistic bounds
  data.append([
    current time.strftime('%Y-%m-%d %H:%M:%S'),
    round(temperature, 2),
    round(humidity, 2),
    round(light, 2),
    motion_detected,
    door open,
    round(power_consumption, 2)
  1)
df = pd.DataFrame(data, columns=[
  'Timestamp', 'Temperature C', 'Humidity Percent', 'Light Lux',
  'Motion_Detected', 'Door_Open', 'Power_Consumption_Watts'
return df
```

1)

```
if __name__ == "__main__":
    print("Generating 100,000 lines of IoT sensor data... This may take a moment.")
    df = generate_iot_data(num_lines=100000)
    output_filename = "iot_sensor_data.csv"
    df.to_csv(output_filename, index=False)
    print(f"Data generation complete. Saved to {output_filename}")
    print(f"First 5 rows:\n{df.head()}")
    print(f"Last 5 rows:\n{df.tail()}")
    print(f"Total rows: {len(df)}")
```

Instructions for Students:

- Save the code: Save the provided Python script as generate_iot_data.py.
- 2. **Run the script:** Open a terminal or command prompt, navigate to the directory where you saved the file, and run: python generate_iot_data.py
- 3. **Find the data:** A file named iot_sensor_data.csv will be created in the same directory. This is your dataset.

Data Analysis Questions for Students

These questions are designed to guide students through various aspects of data analysis, from basic exploration to more advanced statistical and machine learning concepts.

Part 1: Data Exploration and Cleaning (Fundamental)

1. Load and Inspect:

- Load the iot_sensor_data.csv file into a Pandas DataFrame.
- Display the first 5 and last 5 rows.
- Check the data types of each column. Are they as expected? If not, how would you convert them (especially Timestamp)?
- Get a summary of the numerical columns (mean, median, min, max, standard deviation) using df.describe(). What insights can you gain from this initial summary?

2. Missing Values:

 Check for any missing values in the dataset. If found, how would you handle them (e.g., drop, fill with mean/median/mode, interpolate)? Justify your chosen method.

3. Time Series Conversion:

Convert the Timestamp column to a proper datetime format.

 Set the Timestamp column as the DataFrame index. Why is this useful for time-series data?

4. Resampling:

- Resample the data to an hourly frequency. Calculate the mean for numerical sensors and the sum for binary sensors (motion, door) for each hour.
- Resample the data to a daily frequency. What trends can you observe?

Part 2: Visualization and Trends (Intermediate)

1. Sensor Over Time:

- Plot the Temperature_C and Humidity_Percent over time for a 3-day period. Describe the observed patterns (e.g., daily cycles, general trends).
- Plot Light_Lux over time for a 3-day period. How does it correlate with the time of day?

2. Binary Sensor Analysis:

- Calculate the total number of motion detections and door openings.
- Plot the daily count of Motion_Detected and Door_Open events. Are there specific days with higher activity?

3. Power Consumption Analysis:

- Plot Power_Consumption_Watts over time for a 3-day period. Identify any peaks or unusual patterns.
- Create a histogram of Power_Consumption_Watts. What is the typical power consumption? Are there outliers?

4. Correlations:

- Calculate the correlation matrix for Temperature_C, Humidity_Percent, Light_Lux, and Power_Consumption_Watts.
- Visualize the correlation matrix using a heatmap.
- Which sensor readings are strongly correlated? Why do you think this is the case? For example, how does temperature relate to power consumption?

Part 3: Advanced Analysis and Prediction (Advanced)

1. Daily Profiles:

- Calculate the average Temperature_C, Humidity_Percent, Light_Lux, and Power_Consumption_Wattsfor each hour of the day across the entire dataset.
- Plot these average daily profiles. What insights do these profiles offer about typical daily usage and environmental conditions?

2. Anomaly Detection (Conceptual/Basic):

- Define what an "anomaly" might look like for Power_Consumption_Watts.
- Propose a simple method to identify potential anomalies in power consumption (e.g., values exceeding a certain standard deviation from the rolling mean).
- Plot the Power_Consumption_Watts and highlight any detected anomalies.

3. Event Correlation:

- How does Power_Consumption_Watts change when Motion_Detected is 1 compared to when it's 0, especially during low light conditions? Can you infer any automation (e.g., lights turning on with motion)?
- Is there a noticeable change in Temperature_C or Humidity_Percent when Door_Open is 1?

4. Predictive Modeling (Conceptual/Regression):

 Challenge: Can you predict Power_Consumption_Watts based on other sensor readings (e.g., Temperature_C, Light_Lux, Motion_Detected, Door_Open, and time-based features like hour of day)?

Steps:

- Prepare your data (e.g., feature engineering for time, one-hot encoding for binary sensors if using certain models).
- Split the data into training and testing sets.
- Choose a simple regression model (e.g., Linear Regression, Decision Tree Regressor, or a basic scikit-learn model).
- Train the model and evaluate its performance (e.g., Mean Absolute Error, R-squared).
- (Optional) Discuss potential challenges and improvements for building a more accurate predictive model.

5. Classification (Conceptual):

- Challenge: Can you predict if Motion_Detected will be 1 in the next 10 minutes based on historical sensor data and time of day?
- Considerations: This is a more complex time-series prediction problem. Discuss what features you might use and what kind of classification model would be suitable.

Part 4: Open-ended Questions and Discussion

1. IoT System Design:

- What are the limitations of this simulated dataset? What other sensors or data points would be useful to collect for a more comprehensive smart home analysis?
- How could this sensor data be used to improve energy efficiency in a smart home?

2. Data Quality:

- What are some potential sources of errors or noise in real-world IoT sensor data?
- How important is data quality in IoT applications, and what are the consequences of poor data quality?

3. Ethical Considerations:

- What privacy concerns might arise from collecting and analyzing this type of sensor data in a real home?
- O How can these concerns be mitigated?