

如何去挖掘物联网环境中的高级恶意软件威胁

叶根深

360网络安全研究院研究员

\$ whoami

TO BE A MALWARE HUNTER!

#Botnet #Pentest #Honeypot #Sandbox

Email: yegenshen@360.cn

Twitter/WeChat: @zom3y3

Network Security Researcher @360Netlab

PART 01 背景介绍

What is an advanced malware threat?

0-day Exploit or Cyberweapon

通过Anglerfish蜜罐,我捕获到大量网络扫描Payload和IoT Botnet,并和同事一起公开披露了部分报告,其中包括: Mirai, http81, DDG, Hajime, TheMoon, IoT_reaper, Satori, Muhstik, HNS, Fbot, MikroTik, GhostDNS, Ngioweb, Godlua, Gwmndy等。

我还挖掘到一些有意思的样本,部分贴在了推特上#unknown botnet,还有一个是针对loT平台的特马但没有公开披露。

此外,我还捕获到3个0day,其中包括被Satori Botnet利用的CVE-2017-17215漏洞,被TheMoon Botnet利用的Gpon Home Routers RCE漏洞,被Fbot利用的雄迈DVRIP协议漏洞。

我是如何研究IoT安全的?

- 开发Anglerfish蜜罐,模拟IoT设备指纹/漏洞,捕获网络扫描Payload和样本
- 筛选x86, ARM, MIPS等CPU架构样本,分析未被杀软件识别的恶意软件
- 开发特定漏洞扫描程序,统计全网受影响设备数量等
- 从设备官网下载相应固件,统计受影响的设备型号等

PART 02 IoT安全现状

IoT 安全现状

IoT 安全防御能力不足

IoT Botnet 攻击能力不断升级

IoT 设备已经成为APT攻击目标

IoT 安全防御能力不足

IoT Botnet感染能力不断升级

2016年8月1日

2016年11月28日

2017年9月13日

2017年12月5日

2018年9月4日

2019年2月16日

Mirai内置大量弱口令, 通过暴力破解Telnet服 务传播。 Mirai变种集成Zyxel tr069协议漏洞传播,但 因为Exploit不稳定导致 路由器重启,从而引发 德国电信大断网事件。 Reaper集成9个IoT漏洞,其中Varcon NVR个RCE漏洞在公开后2天就被集成。

Satori利用Huawei Router HG532 0-day 漏洞传播,12月5号当天 统计到感染IP数量在57 万。全球ISP联合行动, 封锁TCP/37215端口。

MikroTik设备受泄露的 CIA ChimayRed黑客工 具影响,路由器被攻击 者监听网络流量,充当 代理节点,植入js挖矿 代码。 Fbot使用XiongMai 硬编码账号密码和 DVRIP升级接口0day漏洞传播。

暴力破解

- 暴力破解Telnet服务
- Mirai, Gafgyt

漏洞集成

- 集成大量已公开漏洞
- IoT Reaper, Mirai

漏洞挖掘

- 0-day 漏洞利用
- Satori, TheMoon, Fbot

冗余机制

- 硬编码多个C2地址
- 使用DGA技术
- Mirai, Godlua

通信协议

- 使用P2P协议通信
- 使用DOH解析DNS请求
- Hajime, Godlua, HNS

复杂化

- C2功能插件化
- 构造多级C2协议
- VPNFilter, Ngioweb

IoT 设备已经成为APT攻击目标

情报监控

MikroTik设备受泄露的 CIA ChimayRed黑客工具影响,路由器被攻击者监听网络流量,充当代理节点,植入js挖矿代码。

MikroTik RouterOS设备允许用户在路由器上抓包,并把捕获的网络流量转发到指定Stream服务器。

目前共检测到 7.5k MikroTik RouterOS设备IP已经被攻击者非法监听,并转发TZSP流量到指定的IP地址,通信端口UDP/37008。

IP	Count
37.1.207.114	5164
185.69.155.23	1347
188.127.251.61	1155

其中一个攻击者(37.1.207.114)监听了大量MikroTik RouterOS设备,主要监听TCP协议20,21,25,110,143端口,分别对应FTP-data,FTP,SMTP,POP3,IMAP协议流量。这些应用协议都是通过明文传输数据的,攻击者可以完全掌握连接到该设备下的所有受害者的相关网络流量,包括FTP文件,FTP账号密码,电子邮件内容,电子邮件账号密码等。

通过对受害者IP归属地统计,我们看到俄罗斯受影响最严重。

更多内容: https://blog.netlab.360.com/7500-mikrotik-routers-are-forwarding-owners-traffic-to-the-attackers-how-is-yours/

VPNFilter

The VPNFilter malware is a multi-stage, modular platform with versatile capabilities to support both intelligence-collection and destructive cyber attack operations.

As of this writing, we are aware of two plugin modules: a **packet sniffer** for collecting traffic that passes through the device, including theft of website credentials and monitoring of Modbus SCADA protocols, and a communications module that allows stage 2 to communicate over Tor.

更多内容: https://blog.talosintelligence.com/2018/05/VPNFilter.html

PART 03 如何去挖掘未知的IoT Exploit

Anglerfish - Most Probed Port

Telnet和HTTP协议在Anglerfish蜜罐中被扫描次数最多。

简单的IoT漏洞利用也最受攻击者欢迎。

Anglerfish - Exploits Statics

Anglerfish蜜罐已捕获100多种被Botnet利用的RCE Exploit,每天能监测到数十种针对IoT设备的RCE漏洞利用。

绝大部分IoT漏洞利用代码都是公开的,开箱即用。

Anglerfish - ELF Malware Family Statics

当前IoT Botnet主流是Mirai和Gafgyt家族,每天都能捕获1000多个Mirai样本MD5。

Fuzz testing

- 响应任意端口的TCP SYN Packet
- 根据协议特征,永远返回正确响应(http, mysql, mssql, redis, memcache等)
- 返回预定义或者随机的Payload特征库集合

更多内容:《通过Anglerfish蜜罐发现未知的恶意软件威胁》

Botnet扫描检测算法

乔	First seen	Last seen	Protocol	Port	Coefficient	Payload Count	(one of) Payload MD5
	2017-02-09 23:52	2018-10-07 02:02	UDP	53413	91.64	7	2c3d957fcc56caf402b84894e4f986de
	2018-07-09 06:11	2019-08-19 10:56	ТСР	5555	99.09	11	7b0ae0038cc4a8ba3cee0d459d9943f8
loT端口被蠕虫式扫描	2018-08-09 20:13	2019-08-20 10:46	ТСР	52869	98.81	17	abde9f41a92f8132c9ba582c866d7cb7
	2018-08-11 13:25	2019-08-13 20:35	TCP	37215	98.86	30	03e39fb27eb26a6526964222c122c16d
	2018-08-11 13:25	2019-08-03 07:37	ТСР	8291	97.36	2	f047b5467b1dfeaf08c1924b9bf54a99
	2018-08-19 03:09	2019-04-26 02:50	TCP	7547	94.83	5	6eecae4387d119ea3f5a0174f11872cc
	2018-08-22 12:19	2018-11-29 12:45	ТСР	9000	99.80	2	d2f3ae69fc94c21089fa215e674a73be
	2018-11-12 20:06	2019-02-26 00:25	TCP	49152	99.64	1	e49e2b772796feae1d42d805e48bc454
	2019-01-01 05:36	2019-08-19 11:02	ТСР	60001	97.89	11	eb3111d9525e38decf1e97cb1d2d5071
	2019-06-24 06:58	2019-07-31 05:44	TCP	34567	96.38	2	a5f8eb80f9c8421707a407c8d0ebed98

15个IoT特殊端口被恶意软件利用

D-Link Devices - UPnP SOAP Command Execution

Netcore/Netis Routers - UDP Backdoor Access

Exploits

ASUS Router infosvr UDP Broadcast root Command Execution

EnGenius EnShare IoT Gigabit Cloud Service 1.4.11 - Remote Code

Realtek SDK - Miniigd UPnP SOAP Command Execution

Huawei Router HG532 - Arbitrary Command Execution

Dahua DVR 2.608.0000.0/2.608.GV00.0 - Authentication Bypass

ONAP Transcode Server - Command Execution (CVE-2017-13067)

Google Android ADB Debug Server - Remote Payload Execution

MiCasa VeraLite Remote Code Execution

XiongMai DVRIP Remote Code Execution

JAWS DVR Remote Code Execution

MikroTik RouterOS Winbox & Webfig

TR069- WAN Side Remote Command Injection

MCTP SetPppoeAttr RCE

EnGenius EnShare Router Netcore/Netis Routers

D-Link Router UPnP SOAP interface

Realtek SDK UPnP SOAP interface

Mypower 8 Channel Security DVR

Google Android ADB Debug Server

MikroTik RouterOS Winbox & Webfig

MiCasa VeraLite Controller

Huawei Router HG532

Dahua Camera

XiongMai DVR

ONAP NAS

Zvxel Router

ASUS Router

security, etc

IoT Product

Swann, Lorex, Night Owl, Zmodo, URMET, kquard

UDP/53413 TCP/49152

TCP/7547

TCP/5555

UDP/9999

TCP/9000

TCP/52869

TCP/49451

TCP/37215

TCP/37777

TCP/9251

TCP/34567

TCP/60001

TCP/5555

TCP/8291

TCP/80

insecurity.html

https://www.exploit-db.com/exploits/42114 https://www.exploit-db.com/exploits/43387 https://www.exploit-db.com/exploits/27044 https://www.exploit-db.com/exploits/37169 https://www.exploit-db.com/exploits/1188 https://www.exploit-db.com/exploits/43414 https://www.exploit-db.com/exploits/29673 https://www.exploit-db.com/exploits/42587

https://twitter.com/zom3y3/status/1100667242159558656

https://wikileaks.org/ciav7p1/cms/page 16384604.html

https://www.exploit-db.com/exploits/39328

https://www.pentestpartners.com/security-blog/pwning-cctv-cameras/

Reference

http://console-cowboys.blogspot.com/2013/01/swann-song-dvr-

https://www.exploit-db.com/exploits/40740

https://github.com/jduck/asus-cmd

Fbot

Mirai

Fbot

ChimavRed

Mallware Family

Mirai DGA

TheMoon

如何发现Fbot Botnet使用DVRIP Oday漏洞传播

- 1. 最开始只看到HTTP端口扫描上升
- 2. 通过Anglergish蜜罐不断地Fuzz testing,即使没有完整交互,也能获得Fbot样本
- 3. 中间人转发Fbot扫描流量到真实设备,获取到DVRIP协议关键Exploit

0-day Exploit

InstallDesc File Created: December 8, 2018 at 05:39 (UTC+8)

```
"Command": "Shell".
"Script": "telnetd -p 9000 -l /bin/sh"
"Command": "Shell".
"Script": "busybox telnetd -p 9000 -l /bin/sh"
```

更多内容: https://blog.netlab.360.com/the-new-developments-of-the-fbot/

Sofia OPSystemUpgrade 0-day漏洞分析


```
std::string::string(&s2, "admin", &v20);
v6 = v5(v4. \&s2. \&v19):
v7 = std::string::~string((std::string *)&s2);
if ( v6 )
 s2 = ( BYTE *) &unk 83F134;
 \nabla 8 = \text{sub } 27A92C(\nabla 7);
 v9 = sub_4D245C((int)&v19, (int)"Password");
 v10 = sub 4D1EE4(v9);
 std::string::string(&v20, v10, &v17);
 sub 27A23C(v8, &v20, &s2, 14);
 std::string::~string((std::string *)&v20);
 v11 = s2:
 if (!strcmp("tlJwpbo6", s2))
   v15 = *(void (**) (void)) (**( DWORD **) (v1 + 136) + 28);
   memset(&v20, 0, 0x40u);
   strncpy(&v20, v11, 0x40u);
   \nabla 12 = 0;
   v13 = 0;
     v14 = *(unsigned int16 *)(&v20 + v12);
     v12 += 2:
     v13 += v14:
   while ( v12 != 64 );
   v15 = *(void (**) (void)) (**( DWORD **) (v1 + 136) + 28);
```

```
if (!v305)
                                  "Command": "Shell"
a part of Fbot Botnet exploit payloads
                                                                         v319 = sub 4D1F40 (v96, v112);
                                                                         v320 = sub 4D245C(v319, (int) "Command");
                                                                          sub 4D0D84(&v448, v320);
v292 = sub 44BA38(v98, k);
                                                                          v321 = sub 21E6C(&v448, "Shell");
v293 = sub 44BF54(v292, "Command");
                                                                          std::string::~string((std::string *)&v448);
 sub 44A87C(&v381, v293);
                                                                          if ( v321 )
 v294 = sub 2077C(&v381, "Shell");
 std::string::~string(&v381);
                                                                            \nabla 322 = \text{sub 4D1F40}(\nabla 96, \nabla 112);
 if ( v294 )
                                                                            v323 = sub 4D245C(v322, (int) "Script");
                                                       Xiongmai Technology
                                                                            v324 = (const char *) sub 4D1EE4(v323);
   v295 = sub 44BA38(v98, k);
                                                                            if (!strstr(v324, "telnetd"))
  v296 = sub 44BF54(v295, "Script");
  v297 = (const char *) sub 44B9DC (v296);
                                                                              v325 = sub 4D1F40 (v96, v112);
  system (v297);
                                                                             v326 = sub 4D245C(v325, (int) "Script");
                                                                             v327 = (const char *) sub 4D1EE4(v326);
                                                                             system (v327);
```


PART 04 如何去挖掘未知的IoT Botnet样本

样本来源: Anglerfish Honeypot, VirosTotal, 360Netlab其它样本源

样本类型: ELF Executable (x86, x86-64, arm, mips)

Unknown Botnet: VT 0/1识别, Bot 样本, 有C2

技术组件:特征库,聚类,沙箱,代码相似性,人肉分析 (IDA)

推文: #unknown botnet

Blog报告: Linux.Ngioweb, Godlua

特殊发现:某loT特马,未公开

更多内容: https://twitter.com/search?q=#unknown botnet

positives:0 tag:"elf" not tag:"contains-elf" not tag:"shared-lib" not tag:"coredump" not tag:"relocatable" size:10MB-

使用VT Intelligence Search API获取ELF样本列表,然后使用360内部样本下载接口下载样本

更多内容: https://support.virustotal.com/hc/en-us/articles/360001387057

筛选未知ELF样本流程

自动化流程:

人肉流程:

样本过滤器

数据源:样本静态信息

Total File

Code Section

Symbol Section

String Section

Disassembly Function Code

聚类,过滤同类样本 (SSDC)

特征库,过滤已识别样本 (ESET NOD32)

开源小工具: https://github.com/zom3y3/ssdc

Detux Sandbox Modified


```
Operating System: SandboxOS
```

Network: iptables, mitmproxy, fakedns

Malawre Analysis: ESET NOD32, Yara, VirusTotal

Packet Analysis: DNS, HTTP

Strace Analysis: Stracer

开源小工具: https://github.com/zom3y3/stracer

```
b1t@ubuntu81:/opt/detux-sandbox$ python detux.py -h
usage: detux.py [-h] [--params PARAMS] [--rename] [--user {root,user}]
                  -run_mode {cpath,fpath}] [--strace] [--fakedns] [--memdump]
                  -edition {Debian7.SandboxOS}
                  -clibrary {alibc.uclibc.musl}
                  -cpu {x86-32.x86-64.arm32el.arm32hf.mips32.mips64.mips32el.mips64el.powerpc32}}
                  -vm_time VM_TIME] [--date DATE] [--command COMMAND]
                  --int {python,perl,sh,bash,ruby}] [--dnat_protocol {tcp,udp}]
                  -dnat_dport DNAT_DPORT] [--dnat_dip DNAT_DIP]
optional arguments
  -h. --help
                        show this help message and exit
sample options
                        Set the Sample file execute params (default: None)
                        Rename the sample name in sandbox (default: False)
                       Set the Sample file exec user (default: user
  --user {root.user}
  --run_mode {cpath,fpath}
                        Set the sample run method (default: cpath)
                        Set the Strace option (default: False)
   --fakedns
                        Set the fake dns option (default: False)
   --memdump
                        Set the adb memory dump option (default: False)
VM options:
                       Set the Linux edition (default: SandboxOS)
  -- clibrary {glibc,uclibc,musl}
                        Set the c library (default: auto)
   --cpu {x86-32.x86-64.arm32el.arm32hf.mips32.mips64.mips32el.mips64el.powerpc32}
                       Set the VM CPU type (default: auto)
                       Set the VM exec time (default: 30)
                        Set the VM localtime date (default: None
                       run some commands before sample executing (default
                        None)
  --int {python.perl.sh.bash.ruby
                       Set the Sample Architecture type (default: auto)
intables options:
                        Set the dnat protocol (default: tcp)
   --dnat_dport DNAT_DPORT
                       Set the dnat destination port (default: None)
   --dnat_dip DNAT_DIP Set the dnat destination ip (default: 192.168.40.136)
```


函数相似性

IDA FLIRT fn fuzzy Karta idenLib Diaphora **BinDiff Intezer Analyze**

PART 05

总结

IoT 安全防御能力不足

IoT Botnet 攻击能力不断升级

IoT 设备已经成为APT攻击目标

欢迎关注Twitter/WeChat: @zom3y3

获取前沿安全资讯, Botnet内幕

