Geospatial Data Analytics (GEOG 389)

Spatial Data Models

Yi Qiang February 24, 2019

Spatial Data Model

- A spatial data model is a simplified representation of 'things' on the earth surface.
- Spatial data models are designed for computer to process.
- Different spatial data models have different strengths in representing different types of 'things'

Representations of Space

- In the digital world, the two fundamental ways of representing space are discrete object and continuous field.
- **Discrete object**: the world is empty, except where it is occupied by objects with well-defined boundaries that are instances of generally recognized categories, for instance, a land parcel, a lake, a park or a building on the Earth surface.
- Continuous field: the world is filled values of one or multiple variables (e.g. elevation, temperature, population density). The variable(s) have values at every position.
- Discrete objects are represented in vector model, while continuous field is represented in raster model.

Vector Model

- Vector data use points, lines and polygons to represent spatial features as discrete objects.
- Good at representing spatial features with clear boundary and even interior.

Raster data

- Raster data describe the world as a regular set of cells in a grid pattern.
- The cells are typically squares and arranged in X, Y directions.
- Each cell is associated with a value represent the attribute (e.g. elevation, land cover, housing density...)

Vector or Raster?

- 1. Lake
- 2. Road
- 3. Trees

Vector

Vector or Raster ?

- 1. Urban area
- 2. Green space

Raster

Vector or Raster?

1. Vegetated land

2. Road

Raster Vector

Raster (continuous fields)

Vector (discrete objects)

Spatial representation is dependent on scales

Where is the coast line?

Discrete Objects

- Spatial features are represented by three types of objects
 - Points as pairs of coordinates, in latitude/longitude, easting/northing or other coordinates
 - Lines as ordered sequence of points connected by straight lines
 - Areas as ordered rings of points, connected by straight lines or arcs to form polygon

Encoding of discrete objects

Point 1: (X_1, Y_1)

Point 2: (X_2, Y_2)

Point 3: (X₃, Y₃)

X and Y are coordinates in a geographic coordinate system (degree/minute/second) or a projected coordinate system (meter, feet...)

Encoding of objects

Line: $[(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)]$

- A sequence of points
- Adjacent points in the sequence are linked by straight-lines or arc.

Encoding of objects

Polygon: $[(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)]$

- Defined by the boundary: sequence of points in a closed, non-self-intersecting loop
- Points are ordered counterclockwise.

Attributes

- A place has characteristics or properties, which are called **attributes**. For example, the name of a place, the population of a city, the soil type of a farm.
- Each object is associated with one or a set of attributes by the unique ID.

Example Attributes for Point Data

Example Attributes for Line Data

Example Attributes for Polygon Data

Attributes

 Attributes are stored in a table, where each row represent the attributes of an object.

• The objects and their attributes are dynamically linked in a GIS.

Data Type in Attribute Table

- Each field (column) stores a particular data type.
- You cannot store different data types in the one field.
- Data type needs to be defined when you create the table/field cannot change afterwards.

	Table										
	°	• 🖺 • 🖫	₩ 🛚 🗗	Attribute (field)							
	sch	nools		Attribute (ficia)				×			
		OBJECTID * Shape *		NAME	STYPE	Shape_Length	Shape_Area				
Record	▶	1	Polygon	Joaquin Miller	Elementary	1713.15378	174485.570987				
	2		Polygon	Thomas Jefferson	Elementary	2351.399821	346070.035486				
	Ш	3	Polygon	Emerson	Elementary	1926.6724	203046.651888				
	Ш	4	Polygon	Providencia	Elementary	2176.265333	288697.489932				
		5	Polygon	Monterey	High	1405.568933	112818.259807				
		6	Polygon	Luther Burbank	Middle	4110.500189	979100.456334				
		7	Polygon	Bret Harte	Elementary	2204.687505	303724.48345				
		8	Polygon	William McKinley	Elementary	1775.942212	183373.306963				
		9	Polygon	Theodore Roosevelt	Elementary	2219.145345	225363.845901				
		10	Polygon	BUSD Service Center		1644.39127	137513.658112				
		11	Polygon	First Lutheran	Elementary	706.436348	28936.363235	-			
		40	D-L	Ai Ith	FI	070 445700	24075 420045				
	14	(1 → →	(0 out of 26 Selected)							
	sc	hools									

Data Type in Attribute Table

Common data types stored in attribute table:

- String (text): store characters, numbers and symbols
- Boolean: store binary values such as Yes/No, 1/0
- Numbers
 - Integer (long/short): store integer numbers without decimals
 - Float: store numbers with decimals (up to 7 digits)
 - Double: store long numbers with decimals (up to 16 digits)
- Time/Date

Data Formats of Vector Model

The Unified Structure

- Objects and attributes are stored in the same file, such as spreadsheets (csv, .xlsx), KML, GeoJSON
- Simple data structure, easy to edit and program
- More used in web-based applications

	Object		Attributes	
Feature ID	Geometry	Name	Country	Population
1	[21.3069, - 157.8583]	Honolulu	USA	351,792
2	[41.1579, 8.6291]	Porto	Portugal	214,349

[[21.3064, - 157.8582], [21.3059, -157.8673], [21.3059, -157.8673] ...]
Line/Polygon objects

EQ_MAG_	EQ_MAG_	EQ_MAG_	EQ_MAG_	EQ_MAG_	EQ_MAG_	INTENSITY	COUNTRY	STATE	LOCATION_NAME	LATITUDE	LONGITUDE	REGION_CODE	DEATHS
					7.3		JORDAN		JORDAN: BAB-A-DAR	31.1	35.5	140	
	7.1					10	TURKMEN	ISTAN	TURKMENISTAN: W	38	58.2	40	1
						10	SYRIA		SYRIA: UGARIT	35.683	35.8	130	
							GREECE		GREECE: THERA ISLAN	36.4	25.4	130	
						10	ISRAEL		ISRAEL: ARIHA (JERIC	31.5	35.3	140	
						10	ITALY		ITALY: LACUS CIMINI	35.5	25.5	130	
							SYRIA		SYRIAN COASTS	35.683	35.8	140	
					6.5		ISRAEL		ISRAEL: ARIHA (JERIC	32	35.5	140	
					6.2		JORDAN		JORDAN: SW: TIMNA	29.6	35	140	
						11	ISRAEL		ISRAEL: JERUSALEM	33	35.5	140	
							LEBANON		LEBANON: SUR (TYRE	33.27	35.22	140	
						10	GREECE		GREECE: MOUNT TAY	37	22.5	130	
							LEBANON		LEBANON: SUR (TYRE	33.56	35.37	140	
							GREECE		GREECE: SARONIC GU	37.9	23.5	130	
	7					9	GREECE		GREECE: MACEDONIA	39.7	23.3	130	
							GREECE		GREECE: ROMAN TER	37	22.5	130	
	7.1					10	GREECE		GREECE: EUBOEA	38.9	22.7	130	2500
	7.6						IRAN		IRAN: REY,EIVAN-E-K	35.5	51.8	140	
	7.3					11	GREECE		GREECE	38.25	22.25	130	
							ITALY		ITALY: ROME	35	25	130	
	7					11	GREECE		GREECE: AEGEAN SEA	40	25	130	
							INDIA		INDIA: KUTCH	23	71	60	
						10	TURKEY		TURKEY: LYSIMACHIA	41	27	140	
							GREECE		GREECE: DELPHI	38.5	22.5	130	
	6.7	1				9	KYRGYZST	AN	KYRGYZSTAN: CHIGU	42.7	77.5	40	
	7.2					10	GREECE		GREECE: DODECANES	36.3	28.3	130	
							GREECE		GREECE			130	
						7	EGYPT		EGYPT: SIWA OASIS; I	29.2	25.5	15	
							SPAIN		SPAIN: CADIZ	36.2	-7.17	130	
							ITALY		ITALY: LIGURIA (LIGUR	44.3	8.5	130	
							PORTUGA	L	PORTUGAL: CABO SA	36	-10.5	130	
							GREECE		EAST MEDITERRANEA	36.404	25.396	130	
	6.5						CHINA		CHINA: GANSU PROV	35.4	103.9	30	
	7						CHINIA		CHINIA: CANISH DROV	22.0	105.6	20	760

Data Structure of Vector Model

The Unified Structure: GeoJSON

- JavaScript Object Notation (JSON)
- GeoJSON: a JSON format for geospatial data
- Based on a multi-level dictionary structure (key: value), e.g. In: data['geometry']['coordinates'] Out: [125.6, 10.1]

```
{
  "type": "Feature",
  "geometry": { "type": "Point", "coordinates": [125.6, 10.1]},
  "properties": {"name": "Dinagat Islands", "pop": 125912
  }
}
```

Data Structure of Vector Model

The Distributed Structure

- Objects and attributes are stored in separate files which linked by unique IDs, such as shapefile and geodatabase
- Fast processing and query in a desktop GIS

Windows Explorer

ArcGIS Catalog □ 🦳 GIS ■ Wake_County.shp

Continuous fields

Discrete objects can represent spatial features with distinct shapes and boundaries. However, many geographic phenomena do not have clear shapes and boundaries, for instance, surface temperature, population density, elevation...

Continuous fields

- Continuous field: the world is filled values of one or multiple variables (e.g. elevation, temperature, population density). The variable(s) have values at every position.
- Continuous field is represented in raster model, which is essentially a geolocated
 2D matrix.

Raster Model

- Cells (also called pixels) in a raster are typically square and arranged in X (east), Y (north) directions.
- Each cell represent a specific area in the ground, and associated with values of the area (e.g. elevation, land cover, housing density...)
- Each raster must cover a 'rectangular' area.

Continuous fields

Discrete objects can represent spatial features with distinct shapes and boundaries. However, many geographic phenomena do not have clear shapes and boundaries, for instance, surface temperature, population density, elevation...

Georeference of raster data

- A raster only stores the coordinates of the top-left corner – different from the vector model
- Coordinates of all other cells can be calculated from the coordinates at the top-left corner.

$$X = X_{top-left} + column# * cell_size + cell_size$$

$$Y = Y_{top-left} - row\# * cell_size + cell_size$$

Raster data format

- A raster is essentially a spatially referenced 2D matrix.
- Additional information stored in a raster dataset:
 - Coordinate system, e.g. GCS, UTM, State Plane....
 - Coordinates of the top-left corner, e.g. [135000, 24620]
 - Cell size (the length of cell side), e.g. 30, 100, 1000
 - Horizontal unit, e.g. feet, meter, km, degree...

Raster in the ASCII Format

Still needs a coordinate system!

Readings

- De Smith, Michael John, Michael F. Goodchild, and Paul Longley. Geospatial analysis: a comprehensive guide to principles, techniques and software tools.
 - Chapter 2.1: Basic primitives
 - 2.1.1 2.1.6

Online version: https://www.spatialanalysisonline.com/HTML/index.html

