INTERDISCIPLINARY PROJECT REPORT

at

Sathyabama Institute of Science and Technology (Deemed to be University)

Submitted in partial fulfillment of the requirements for the award of Bachelor of Engineering Degree in Computer Science and Engineering

Ву

PONDURU SANDEEP REG. NO. 40110959

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY

JEPPIAAR NAGAR, RAJIV GANDHI SALAI,

CHENNAI – 600119, TAMILNADU

APRIL 2023

SATHYABAMA

INSTITUTE OF SCIENCE TECHNOLOGY

(DEEMED TO BE UNIVERSITY)

Accredited with Grade "A" by NAAC

(Established under Section 3 of UGC Act, 1956) JEPPIAAR NAGAR, RAJIV GANDHI SALAI CHENNAI– 600119

www.sathyabama.ac.in

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that this Project Report is the bonafide work of "PONDURU SANDEEP" (Reg. No: 40110959) who carried out the project entitled "HUMAN DEVELOPMENT INDEX USING IBM WATSON" under my supervision from August 2022 to October 2022.

Internal Guide

Dr. D. SARAVANAN, M.Tech., Ph.D.,

Head of the Department

Dr. L. LAKSHMANAN, M.E., Ph.D.,

Submitted for Viva voce Examination held on	

Internal Examiner External Examiner

DECLARATION

I, F	Ρ.	SANDE	EP	hereby	declare	that	the	project	report	entitled	"HUMAN
DEV	/EL	OPMEN	T IN	DEX USI	NG IBM V	WATS	ON"	done by r	ne unde	r the guida	ance of Dr.
D. S	SAR	AVANA	N , is	submitte	ed in parti	al fulfi	llmen	t of the re	equireme	ents for th	e award of
Bac	held	or of Eng	gine	ering Deg	ree in Co	mpute	r Scie	ence and	Enginee	ering.	
								SIGNAT	TURE O	F THE CA	ANDIDATE
D	ΑT	E:									
Pl	_AC	E:									

ACKNOWLEDGEMENT

I am pleased to acknowledge my sincere thanks to the Board of Management of SATHYABAMA for their kind encouragement in doing this project and for completing it successfully. I am grateful to them.

I convey my thanks to **Dr. T. Sasikala M.E., Ph.D.**, **Dean**, School of Computing, **Dr. S. Vigneshwari, M.E., Ph.D. and Dr. L. Lakshmanan, M.E., Ph. D., Heads of the Department** of **Computer Science and Engineering** for providing me necessary support and details at the right time during the progressive reviews.

I would like to express my sincere and deep sense of gratitude to my Project Guide **Dr.D.Saravanan**, for his valuable guidance, suggestions and constant encouragement paved the way for the successful completion of my project work.

I wish to express my thanks to all Teaching and Non-teaching staff members of the **Department of Computer Science and Engineering** who were helpful in many ways for the completion of the project

TRAINING CERTIFICATE

ABSTRACT

The Human Development Index (HDI) is a powerful tool that provides a comprehensive measure of a nation's overall well-being. This index was developed by the United Nations Development Program (UNDP) in 1990 and has since become a widely used measure for assessing and comparing the standard of living of countries around the world. The HDI is composed of several key indicators that capture different aspects of human development, such as health, education, and income. Thus, a better understanding of the economic and social progress of countries can be seen through the HDI. In this study, several factors were investigated using multiple linear regression to test their relationships with the HDI. Four independent factors were significant among nine factors, as follows, skilled labor force, R&D expenditure, tourism and export & import. This study uses linear programming to figure out how much development a country needs in these areas to be number one on the HDI index, which in turn will improve the overall quality of life.

TABLE OF CONTENTS

CHAPTER No.	TITLE	PAGE No

ABSTRACT LIST OF FIGURES

1. INTRODUCTION

- 1.1 DIMENSIONS OF HDI
 - 1.1.1 EDUCATION
 - 1.1.2 LONG AND HEALTHY LIFE
 - 1.1.3 STANDARD OF LIVING
- 1.2 SUMMARY OF HDI
- 1.3 ORIGINS

2. AIM, OBJECTIVE AND SYSTEM REQUIREMENTS

- 2.1 AIM
- 2.2. OBJECTIVES
- 2.3. SYSTEM REQUIREMENTS
 - 2.3.1. HARDWARE REQUIREMENTS
- 2.4 HARDWARE DESCRIPTION

3. ALGORITHMS AND METHODS

- 3.1 EXPERIMENTAL INVESTIGATION
- 3.2 MATERIALS AND METHODS
 - 3.2.1 HUMAN DEVELOPMENT INDEX CALCULATION
 - 3.2.2 MULTIPLE REGRESSION CALCULATION
 - 3.2.3 CORRELATION MATRIX CALCULATION
- 3.3 DATA COLLECTION AND APPLICATION

- 4. RESULTS AND DISCUSSION
- 5. ADVANTAGES
- 6. CONCLUSION AND FUTURE WORK
 - 5.1. CONCLUSION
 - 5.2. FUTURE WORK

SOURCE CODE SCREENSHOTS REFERENCES

LIST OF FIGURES AND TABLES

FIG NO.	FIGURE NAME	PAGEno.
1	HDI DIMENSIONS AND INDICATORS	2
2	HUMAN DEVELOPMENT INDEX	4
3	HDI FLOW CHART	9
3	THE INDEPENDENT VARIABLES EMPLOYED IN	
	THIS STUDY	14
4	THE DATA FOR THE HDI INDEXES AND THE	
	INDEPENDENT VARIABLES EMPLOYED IN THIS STUD	Υ
	FOR 194 COUNTRIES	15

CHAPTER-1

Introduction:

The Human Development Index (HDI) is a statistical composite index of life expectancy, education, and per capita income indicators, which are used to rank countries into four tiers (very high, high, medium & low) of human development. A country scores a higher HDI when the lifespan is higher, the education level is higher, and the gross national income GNI (PPP) per capita is higher. The HDI was created to emphasize that people and their capabilities should be the ultimate criteria for assessing the development of a country, not economic growth alone. The HDI can also be used to question national policy choices, asking how two countries with the same level of GNI per capita can end up withdifferent human development outcomes. In this project we will be building a machine learning model to predict the Human Development Index of a country by taking a few important aspects as inputs. Our model will at last predict the HDI score of a country and will also tell under which category it falls into (very high, high, medium or low).

1.1 Dimensions of HDI

As a statistical tool and a single index that assesses a nation's accomplishments and achievements, HDI aims to determine the three essential components of human advancement; education, health, and decorous living standard. The tool informs about the changes and improvements in human life through its significant social and economic indicators; thus, an appropriate tool to keep records of a nation's economic progress.

HDI Dimensions and Indicators

Fig 1: HDI Dimensions and Indicators

Education

This dimension is measured in two levels; the average schooling years for a nation's residents and the anticipated schooling years that children have at the mean age of beginning school. The United Nations indicates that the mean maximum schooling years is 18, and the average full years of schooling is 15.

Long and Healthy Life

This index illustrates the life years that a nation's citizens will enjoy. This component is calculated as the average life expectancy at birth in every country, and it is normalized to zero when the life expectancy at birth is twenty years and one when it is eighty-five years.

Standard of Living

The UNDP uses the adjusted accurate per capita GDP indicator to assess the components of decent standards of living. This metric is typically normalized so that it equals 1 when the actual per capita GDP is \$75,000 and zero when the indicator is \$100, allowing for a straightforward comparison across countries with wildly different quality of living.

1.2 SUMMARY OF HDI

The Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable and having a decent standard of living. The HDI is the geometric mean of normalized indices for each of the three dimensions.

The health dimension is assessed by life expectancy at birth, the education dimension is measured by mean of years of schooling for adults aged 25 years and more and expected years of schooling for children of school entering age. The standard of living dimension is measured by gross national income per capita. The HDI uses the logarithm of income, to reflect the diminishing importance of income with increasing GNI. The scores for the three HDI dimension indices are then aggregated into a composite index using geometric mean. Refer to Technical notes for more details.

The HDI can be used to question national policy choices, asking how two countries with the same level of GNI per capita can end up with different human development outcomes. These contrasts can stimulate debate about government policy priorities. The HDI simplifies and captures only part of what human development entails. It does not reflect on inequalities, poverty, human security, empowerment, etc.

The HDRO provides other composite indices as broader proxy on some of the key issues of human development, inequality, gender disparity and poverty. A fuller picture of a country's level of human development requires analysis of other indicators and information presented in the HDR statistical annex

1.3 ORIGINS

The origins of the HDI are found in the annual Human Development Reports produced by the Human Development Report Office of the United Nations Development Programme (UNDP). These were devised and launched by Pakistani economist Mahbub ul Haq in 1990, and had the explicit purpose "to shift the focus of development economics from national income accounting to people-centered policies". Haq believed that a simple composite measure of human development was needed to convince the public, academics, and politicians that they can and should evaluate development not only by economic advances but also improvements in human well-being.

Fig 2: human dimensions indicators and index

CHAPTER-2

2.1 AIM

It was created to re-emphasize that people and their capabilities should be the ultimate criteria for assessing the development of a country, not economic growth. The HDI is used to capture the attention of policy-makers, the media and nongovernmental organizations, and to change the focus from the usual economic

Statistics to human outcomes. The HDI is also used to question national policy choices and to determine how two countries with the same level of income per person can have widely different human development outcomes. For example, two countries may have similar incomes per person, but have drastically differing life expectancy and literacy levels, such that one of the countries has a much higher HDI than the other.

These contrasts stimulate debate on government policies concerning health and education to determine why what can be achieved in one country is beyond the reach of the other. The HDI is also used to highlight differences within countries, between provinces or states, and across genders, ethnicities and other socioeconomic groupings. Highlighting internal disparities along these lines has raised the national debate in many countries.

2.1 Objectives

The main objective of this project is to develop a machine learning model that can accurately predict the age of abalone based on physical characteristics. Specifically, we aim to achieve the following objectives:

> Knowledge on Machine Learning Algorithms.

Knowledge on Python Language with Machine Learning

Knowledge on Statistics, Graphs and their relations

Real Time Analysis of Project

➤ Building an ease of User Interface (UI)

Navigation of ideas towards other projects(creativeness)

2.3 System Requirements

2.3.1 Hardware Requirements

Operating system: window 7 and above with 64bit

Processor Type -Intel

Core i3-3220

RAM: 4Gb and above

Hard disk: min 100GB

2.4 Hardware and Software Description

Python

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. It was created by Guido van Rossum, and first released on February 20, 1991. Its high-level built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for Rapid Application Development, as well as for use as a scripting or glue language to connect existing components together. Python's simple,

5

easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance. Python supports modules and packages, which encourages program modularity and code reuse. The Python interpreter and the extensive standard library are available in source or binary form without charge for all major platforms, and can be freely distributed.

Anaconda Navigator

Anaconda Navigator is a free and open source distribution of the python and R programming languages for data science and machine learning related applications. It can be installed on windows, Linux, and macOS. Conda is an open-source, crossplatform, package management system. Anaconda comes with so very nice tools like Jupyter Lab, Jupyter Notebook, QtConsole, Spyder, Glueviz, Orange, Rstudio, Visual Studio Code. For this project, we will be using Jupyter notebook and Spyder.

Jupter Notebook

The Jupyter Notebook is an open source web application that you can use to create and share documents that contain live code, equations, visualizations, and text. Jupyter Notebook is maintained by the people at Project Jupyter. Jupyter Notebooks are a spin-off project from the IPython project, which used to have an IPython Notebook project itself. The name, Jupyter, comes from the core supported programming languages that it supports: Julia, Python, and R. Jupyter ships with the IPython kernel, which allows you to write your programs in Python, but there are currently over 100 other kernels that you can also use.

Spyder

Spyder, the Scientific Python Development Environment, is a free integrated development environment (IDE) that is included with Anaconda. It includes editing, interactive testing, debugging, and introspection features. Initially created and developed by Pierre Raybaut in 2009, since 2012 Spyder has been maintained and continuously improved by a team of scientific Python developers and the community. Spyder is extensible with first-party and third party plugins includes support for interactive tools for data inspection and embeds Pythonspecific code. Spyder is also pre-installed in Anaconda Navigator, which is included in Anaconda.

Flask

Webframework used for building. It is a web application framework written in python which will be running in local browser with a user interface. In this application, whenever the user interacts with UI and selects emoji, it will suggest the best and top movies of that genre to the user.

2.5 LITERATURE SURVEY

2.5.1 EXISTING PROBLEM

In recent years, deep learning has been used in various applications including the classification of ship targets in inland waterways for enhancing intelligent transport systems. Various researchers introduced different classification algorithms, but they still face the problems of low accuracy and misclassification of other target objects. Hence, there is still a need to do more research on solving the above problems to prevent collisions in inland waterways.

2.5.2 PROPOSED SYSTEM

In order to solve the problems for the accuracy of the classification system, we proposed a new classification model. First, based on the pretrained models, the models were fine-tuned with the public dataset we used. Based on their performance, the best model was selected in order to further adjust the performance for high accuracy in classifying ships in inland river waterways. After selecting the best model, the model was adjusted, and classification was conducted based on the modification of the network.

CHAPTER-3

3.1 EXPERIMENTAL INVESTIGATION

The text data need to be organized before proceeding with the project. The original dataset has a single folder. We will be using the HDI.csv file to fetch the text data of training data. The datas need to be unique and all fields need to be filled. The dataset images are to be pre-processed before giving to the model. We will create a function that uses the pre-trained model for predicting custom outputs. Then we have to test and train the model. After the model is build, we will be integrating it to a web application

ARCHITECTURE/FLOW CHART

Fig 3: flow chart

3.2 MATERIALS AND METHODS

The primary goal of this research is to predict the future HDI by finding the significant factors that contribute to increasing the HDI. Therefore, multiple linear regression will be utilized to find the association between the HDI as the dependent variable and various independent variables. Moreover, rank the relative importance of the significant factors that contribute to increased HD.

3.2.1 HUMAN DEVELOPMENT INDEX CALCULATION

The HDI is consisting of three fundamental aspects of long-term development: (i) a long and healthy life, (ii) access to education, and (iii) a decent standard of living. The indicators for those dimensions are: life expectancy at birth, expected years of education, mean years of schooling and GNI per capita. They are calculated using mini-mum and maximum values in order to convert indicators expressed in different units into indices ranging from 0 to 1, as follows:

Dimension index =
$$\frac{actual\ value\ -minimum\ value}{maximum\ value\ -minimum\ value}$$

The three Dimension indices merged into an HDI by using their geometric means. Therefore, the HDI is calculated as follows:

$$HDI = (LEI . II . EI_{UN})^{\frac{1}{3}}$$

LEI is the normalized Life Expectancy Index II is normalized Income Index EU_{UN} is the normalized Education index

The *LEI*, II, and EI_{UN} are defined as follows:

$$LEI = \frac{LE_{actual} - LE_{min}}{LE_{max-LE_{min}}}$$

where LE is the life expectancy at birth [yr], and the actual, max and min are the value of life expectancy at birth in the considered year, its maximum and minimum values adopted for the normalization by the United Nations, respectively. Moreover, the Gross National the normalized Income Index is calculated using equation as follow:

$$II = \frac{ln\left(\frac{GNI_{pc,actual}}{GNI_{pc,min}}\right)}{ln\left(\frac{GNI_{pc,max}}{GNI_{pc,min}}\right)}$$

Il analyzed using Gross National Income per capita (GNI pc) at purchasing power parities (PPP) [\$pc PPP]. The GNI pc is defined as "the total of value added by all resident producers in the economy plus any product taxes (excluding subsidies) not included in the valuation of output intermediate inputs.

Considering purchasing power parity (PPP) enables to highlight differences in purchasing power between countries by eliminating price level differences. The Income Index is logarithmically normalized in order to account for the diminishing contribution of higher incomes to human development [1]. considers two different information, related both to the average years of education and to the anticipated years of education. It is calculated as the arithmetic mean value of the related indexes, as follows:

$$EI_{UN} = \frac{I_{MYS} - I_{EYS}}{2}$$

Where;

 I_{MYS} is the Average Years of Education index, defines as:

$$I_{MYS} = \frac{MYS_{actual} - MYS_{min}}{MYS_{max} - MYS_{min}}$$

where MYS is the Average years of education, which is the average number of completed years of schooling, enrolled by the country's population aged 25 years and older. I_{EYS} is the Expected years of education Index, defined as:

$$I_{EYS} = \frac{EYS_{actual} - EYS_{min}}{EYS_{max} - EYS_{min}}$$

To determine the relationship between HDI and other important factors, multiple regression analysis will be employed in this study. The regression analysis approach is used to determine how a dependent variable may be predicted using an independent variable or variables, and it is defined as: Multiple Regression Calculation

3.2.2 MULTIPLE REGRESSION CALCULATION

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_n X_n + \varepsilon$$

Where:

Y is the dependent variable

 X_1 , ..., X_n are the independent variables on observation to I

 β_0, \ldots, β_n are the regression coefficient

E Error components that represent the deviations of the response from the true relation due to the effects of other factors on the response

The stander error for the estimate, defined as:

$$S_{yx's} = \sqrt{\frac{\sum(Y-\widehat{Y})^2}{n-k-1}} = \sqrt{\frac{SSE}{n-k-1}} = \sqrt{MSE}$$

Where:

n is the number of observations

K is the number of independent variables in the regression function

SSE is the residual sum of squares.

MSE is SSE / (n-k-1) the residual mean square.

Coefficient of determination R2, defined as:

$$R^{2} = \frac{SSR}{SST} = \frac{\sum (\hat{Y} - \bar{Y})^{2}}{\sum (Y - \hat{Y})^{2}} = 1 - \frac{SSE}{SST} = 1 - \frac{\sum (Y - \hat{Y})^{2}}{\sum (Y - \bar{Y})^{2}}$$

Correlation matrix Calculation

The Correlation among the independent variable to Answers: how strong is the linear relationship between the variables, defined as:

$$r = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{\sqrt{\left[n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \left[n \sum_{i=1}^{n} y_{i}^{2} - \left(\sum_{i=1}^{n} y_{i}\right)^{2}\right]}}$$

DATA COLLECTION AND APPLICATION

The data was collected from the United Nations Development Program Human Development Reports [12]. Statistical data from 96 countries were collected, including the 2019 Human Development Index (HDI) and other data obtained from the most recent year for which they are available for each country. The factors included in this study as well as the data for each included factor, are illustrated in Table 2 and Table 3, respectively.

Table 2. The independent variables employed in this study

Produce	
Factors	
Human Development Index (HDI): A composite index measuring average achievement in three basic	
dimensions of numan development—a long and neariny life, knowledge and a decent standard of hying	Y
government expenditure on education between 2013 - 2018 (% of GDP): Current, capital and transfer	
spending on education, expressed as a percentage of GDP.	X_1
Total tax revenue between 2014 - 2019 (% of GDP): Compulsory transfers to the central government for	
public purposes, expressed as a percentage of GDP.	X_2
The unemployment rate in 2019 (% of the labor force): Percentage of the labour force population ages	
15 and older that is not in paid employment or self-employed but is available for work and has taken steps to seek paid employment or self-employment.	X_3
Foreign direct investment net inflows in 2019 (% of GDP): Sum of equity capital, reinvestment of	
earnings, other long-term capital and short-term capital, expressed as a percentage of GDP.	X ₄
Exports and imports in 2019 (% of GDP): Sum of exports and imports of goods and services, expressed	
as a percentage of gross domestic product (GDP)	X_5
International inbound tourists in 2018 (in thousands): Arrivals of nonresident visitors (overnight	
visitors, tourists, same-day visitors and excursionists) at national borders.	X_6
Hospital beds between 2010 - 2019 (per 10,000 people): Number of hospital beds available, expressed	
per 10,000 people.	X_7
Skilled labor force between 2010 - 2019 (% of the labor force): Percentage of the labour force ages 15	
and older with intermediate or advanced education, as classified by the international Standard Classification of Education.	X_8
Research and development expenditure between 2014 - 2019 (% of GDP): Current and capital	
expenditures (both public and private) on creative work undertaken systematically to increase knowledge, including knowledge of humanity, culture and society, and the use of knowledge for new applications.	X_9
Research and development covers basic research, applied research and experimental development.	

ALGORITHM USED

The Human Development Index (HDI) can be calculated using various machine learning algorithms such as linear regression, decision trees, and random forests. The choice of algorithm depends on the available data and the specific problem being addressed.

LINEAR REGRESSION

In general, linear regression is a commonly used algorithm for calculating the HDI. It is a simple and effective algorithm that can be used to model the relationship between the dependent variable (HDI) and independent variables (such as life expectancy, education, and income).

DECISION TREE

Decision trees and random forests are also effective algorithms for calculating the HDI. They are able to handle complex relationships between variables and can capture nonlinear relationships that may not be captured by linear regression.

DATASET USED:

		1	В	C	D	E	F	G	н	1	J			М
	0	ld		Country 1 Norway	HDI Rank	HDI 1 0.949	Life expectancy 81.7	Mean years of s	Gross national in 67614	GNI per capita ra 5	Change in HDI ra O	Average annual F 0.77	Average annual F 0.24	Average annual 0.2
	1			2 Australia		2 0.939	82.5			19	1	0.77	0.24	0.2
	2			3 Switzerland		2 0.939	83.1			7	.0	0.67	0.49	0.1
	3			4 Germany		4 0.926 5 0.925	81.1 80.4		46000 44519	13	0	0.71	0.59	0.
	5			5 Denmark 8 Singapore		5 0.925	80.4			-3	0	1.34	1.05	0.3
	6			7 Netherlands		7 0.924	81.7	11.9		8	-2	0.56	0.37	0.2
	7			B Ireland		8 0.923				11	1	1.17	0.6	0.2
	8			9 Iceland D Canada		9 0.921 0 0.92	82.7 82.2			20 12	7	0.7	0.48	0.3
	10			1 United States		0 0.92				12	-3	0.28	0.29	0.3
	11		1:	2 Hong Kong, Chir		2 0.917	84.2			-2	3	0.55	0.85	0.4
	12	-		3 New Zealand		3 0.915	82			20	0	0.61	0.36	0.3
	13 14			4 Sweden 5 Liechtenstein		4 0.913 5 0.912				-11	-1 -5	0.73	0.28	0.2
	15			B United Kingdom		6 0.909	80.8			10	-4	1.13	0.41	0.1
	16			7 Japan		7 0.903				10	1	0.51	0.32	0.4
	17			B Korea (Republic		8 0.901	82.1	12.2		12	0	1.15	0.76	0.3
	18			9 Israel		9 0.899	82.6			16	-4	0.81	0.38	0.3
	19			D Luxembourg 1 France		0.898	81.9 82.4			-12 4	1	0.86	0.39	0.1
	21			2 Belgium		0.898	81			1	-4	0.81	0.12	0.2
	22			3 Finland		3 0.895				1	1	0.9	0.25	0.3
	23 24			4 Austria 5 Slovenia		4 0.893 5 0.89	81.6 80.6		43609 28664	-4 13	-1 0	0.53	0.5	0.3
	25			B Italy		6 0.887	83.3	-		6	0	0.73	0.61	0.3
	26			7 Spain		7 0.884	82.8			7	0	0.9	0.49	0.
	27		2	B Czech Republic		8 0.878	78.8	12.3	28144	.11	.0	0.76	0.47	0.3
	28			9 Greece		9 0.866				16	0	0.52	0.71	0.1
	29			D Brunei Darussali 1 Estonia		0.865				-25 12	1 2	0.46	0.33	0.4
	31			2 Andorra		2 0.858	81.5			-18	9	0.71	0.7	0.0
	32		3:	3 Cyprus	3	0.858	80.3	11.7	29459	4	-3	0.88	0.58	0.
	33			4 Malta		3 0.856	80.7			3	3	0.63	0.53	0.7
	34 35			5 Qatar 8 Poland		0.856 0.855				-32 11	-3	0.71 0.97	0.22 0.58	0.6
	36			7 Lithuania		0.848 0.848			24117	7	-3	0.97	0.56	0.6
	37			B Chile		8 0.847	82			16	2	0.84	0.75	0.6
	38			9 Saudi Arabia		0.847	74.4			-26	9	0.61	0.8	1.0
	39			D Slovakia		0.845	76.4			1	-7	0.34	0.83	0.3
	40			1 Portugal 2 United Arab Emi		0.843 0.843	81.2 77.1			-35	-4	0.97	0.45	0.6
	42			3 Hungary		8 0.836				6	-4	0.89	0.67	0.3
	43		4	4 Latvia		14 0.83	74.3	11.7	22589	7	1	0.35	1.07	0.4
	44			5 Argentina		0.827	76.5		1	12	-2	0.9	0.57	0.2
	46 48			B Croatia 7 Bahrain		6 0.827 7 0.824	77.5 76.7			14 -19	-3	1.13	0.77	0.4
	47			B Montenegro		8 0.807	76.4			24	-3	0.63	0.23	0.2
	48			Russian Federat		0.804	70.3			:1	5	-0.18	0.87	0.4
	49			D Romania		0.802				11	-2	0.11	1.2	0.1
	50			1 Kuwait		0.8	74.5			-48	-1	0.98	0.07	0.2
	51 52			2 Belarus 3 Oman		2 0.798 2 0.798	71.5 77			19 -21	-3		1.45	-0.0
	53			4 Barbados		4 0.795				20	2	0.49	0.39	0.3
	54			5 Uruguay		4 0.795	77.4	8.6	19148	8	2	0.7	0.5	0.3
	55			B Bulgaria		6 0.794	74.3			13	3	0.19	0.83	0.4
	56 57			7 Kazakhstan B Bahamas		6 0.794 8 0.792	69.6 75.6		22093 21565	-3	-6	-0.07	1.13 0.13	0.7
	58			9 Malaysia		9 0.789	74.9			-13	1	1.2	0.67	0.3
	59		6	D Palau		0.788				21	2		0.38	0.4
	60			1 Panama		0.788				0	4	0.86	0.5	0.7
	61			2 Antigua and Bar 3 Seychelles		2 0.786 3 0.782				-4 -15	-7 11		0.41	0.0
	63			4 Mauritius		0.781	74.6			1	6	0.83	1.05	0.8
	64		6	5 Trinidad and Tob		5 0.78	70.5			-25	-5	0.65	0.79	0.1
	65			B Costa Rica		0.776	79.6		14008	14	3	0.82	0.61	0.6
	66			7 Serbia B Cuba		6 0.776 8 0.775	75 79.6		12202 7465	22 48	-12	-0.07 0.15	0.65 1.28	-0.1
	68			9 Iran (Islamic Rep		9 0.774	79.6			-2	-12	1.53	1.12	-0.1
	69			D Georgia		0.769	75			38	5		0.99	0.7
	70			1 Turk ey		1 0.767	75.5			-7	9	1.26	1.22	0.8
	71			2 Venezuela (Boliv		1 0.767	74.4			2	-4	0.58	1.18	0.2
	72 73			3 Sri Lanka 4 Saint Kitts and N		3 0.768 4 0.765				-21 -22	-2 2	0.92	0.84	0.6
	73			4 Saint Kitts and M 5 Albania		4 0.765 5 0.764				-22	4	0.41	1.1	0.6
	75			B Lebanon		6 0.763	79.5			8	-12			0.1
	76		7	7 Mexico	- 7	7 0.762	77	8.6	16383	-9	-5	0.77	0.63	0.4
	77			B Azerbaijan		8 0.759	70.9			-12	-2		1.43	0.4
	78 79			9 Brazil O Grenada		9 0.754				-1 13	.7 -3	1.15	0.55	0.8
	80			1 Bosnia and Herz		0.75				22	14			1.0
	81			2 The former Yugo		2 0.748	75.5	9.4	12405	5	0			0.3
	82			3 Algeria		0.745	75			-1	3	1.11	1.18	0.5
	83 84			4 Armenia 5 Ukraine		4 0.743 4 0.743				28 34	-1	0.16 -0.48	1.24 0.87	0.3
	85			B Jordan		0.741	74.2			15	-6	1.31	0.43	0.1
	86		8	7 Peru	8	7 0.74	74.8	9	11295	6	3	1.01	0.63	0.5
	87			B Thailand		7 0.74	74.6			-11	4	1.25	1.03	0.5
	88			9 Ecuador D China		9 0.739 0 0.738				-7	7	0.41 1.72	0.58	0.8
	90			1 Fiji		1 0.736				20	6	0.64	0.37	0.7
	91		9:	2 Mongolia		0.735	69.8	9.8	10449	4	8	0.17	1.77	0.0
Н	92			3 Saint Lucia		0.735				14	-8		0.69	0.0
	93 94			4 Jamaica 5 Colombia	-	14 0.73 15 0.727	75.8 74.2			16 -10	-6 6	0.44	0.6	0.2
	95	_		B Dominica		6 0.726	77.9			- 10	-8	0.89	0.38	0.1
	96		9	7 Suriname		7 0.725	71.3	8.3	16018	-27	:1			0.5
	97			B Tunis ia		7 0.725				3	-5	1.4	0.88	0.2
	98			Dominican Repu Saint Vincent an		9 0.722 9 0.722				-13	-6	0.96	0.69	0.6
	100			D Saint Vincent an 1 Tonga	10		73			-1	-8	0.38	0.55	0.2
	101			2 Libya	10					-25	-35	0.38	0.32	-1.0
	102		10:	3 Belize	10	0.708	70.1	10.5	7375	14	-2	0.43	0.33	0.1
	103			4 Samoa	10					27	0	0.75	0.72	0,3
	104 105			5 Maldives 8 Uzbekistan	10		77 69.4			-8 21	10		1.24	1.0
	106			5 Uzbekistan 7 Moldova (Republ			71.7			31	0	-0.87	1.12	0.8
	107	-		Botswana	10		64.5			-33	-3	-0.43	1.10	0.6
	108		10	9 Gabon	10	0.697	64.9	8.1	19044	-46	5	0.2	0.48	0.0
	109			DParaguay	11					3	-4	0.73	0.79	0.6
	110			1 Egypt 2 Turkmenistan	11		71.3 65.7			-7 -32	-3 2	1.12	0.93	0.7
	444		13.	tan	- 1	0.081	00.7	9.8	17020	-32	- 2			
	111 112		113	3 Indonesia	11	3 0.689	69.1	7.9	10053	-8	3	1.36	0.92	0.7

	440	440	440		20.4		40000			4.00		
114 115	112	113 Indonesia	113	0.689	69.1	7.9	10053	-8	3	1.36	0.92	0.7
116	113	114 Palestine, State	114	0.684	73.1	8.9	5256	21	-5	4.00	4.00	0.4
117	114	115 Viet Nam	115	0.683	75.9	8	5335	18	2	1.92	1.29	0.6
118	115	116 Philippines	116	0.682	68.3	9.3	8395	-7	-7	0.6	0.72	0.3
	116	117 El Salvador	117	0.68	73.3	6.5	7732	-3	-6	1.52	0.8	0.4
9	117	118 Bolivia (Plurinatio	118	0.674	68.7	8.2	6155	6	0	1.26	0.66	0.7
10	118	119 South Africa	119	0.666	57.7	10.3	12087	-30	2	0.13	0.14	0.8
21	119	120 Kyrgyzstan	120	0.664	70.8	10.8	3097	32	3	-0.37	0.65	0.0
2	120	121 Iraq	121	0.649	69.6	6.6	11608	-30	-3	0.59	0.67	0.0
23	121	122 Cabo Verde	122	0.648	73.5	4.8	6049	3	1		1.19	0
34	122	123 Morocco	123	0.647	74.3	5	7195	-4	4	1.46	1.47	1.
5	123	124 Nicaragua	124	0.645	75.2	6.5	4747	16	2	1.42	0.83	0.5
16	124	125 Guatemala	125	0.64	72.1	6.3	7063	-4	5	1.34	1.09	
7	125	126 Namibia	125	0.64	65.1	6.7	9770	-18	2	-0.39	0.98	0.
18	126	127 Guyana	127	0.638	66.5	8.4	6884	-5	-2	1.14	0.29	0.
9	127	128 Micronesia (Fede	127	0.638	69.3	9.7	3291	22	-6		0.56	-0.
10	128	129 Tajikistan	129	0.627	69.6	10.4	2601	30	2	-1.39	1.28	0.
H .	129	130 Honduras	130	0.625	73.3	6.2	4466	11	-1	0.94	0.94	0.
2	130		131	0.624	68.3	6.3	5663	-4	4	1.45	0.00000	1
3		131 India		100000000000000000000000000000000000000	20000	300		0/64		1.40	1.62	
	131	132 Bhutan	132	0.607	69.9	3.1	7081	-12	5			1
1	132	133 Timor-Leste	133	0.605	68.5	4.4	5371	-1	-1		2.57	-0
5	133	134 Vanuatu	134	0.597	72.1	6.8	2805	23	-1			0.0
5	134	135 Congo	135	0.592	62.9	6.3	5503	-7	3	-0.67	1.38	
7	135	138 Equatorial Guine	135	0.592	57.9	5.5	21517	-79	0		0.98	0
3	136	137 Kiribati	137	0.588	66.2	7.8	2475	23	-3			(1)
9	137	138 Lao People's Der	138	0.586	66.6	5.2	5049	-2	5	1.54	1.59	1.
)	138	139 Banglades h	139	0.579	72	5.2	3341	8	2	1.95	1.54	- 1
1	139	140 Ghana	139	0.579	61.5	6.9	3839	5	0	0.63	1.34	0
2	140	141 Zambia	139	0.579	60.8	6.9	3464	7	3	0.64	2.5	
3	141	142 Sao Tome and P	142	0.574	68.6	5.3	3070	12	-2	0.91	0.94	
	142	143 Cambodia	143	0.563	68.8	4.7	3095	10	1	1.46	2.61	1
,	143	144 Nepal	144	0.558	70	4.1	2337	19	2	1.66	1.73	1
3	79.000						2220611		2			
,	144	146 Myanmar	145	0.556	66.1	4.7	4943	-6		1.9	2.12	
	145	148 Kenya	146	0.555	62.2	6.3	2881	10	-1	-0.57	1.72	
3	146	147 Pakistan	147	0.55	66.4	5.1	5031	-10	2	1.09	1.55	0
	147	148 Swaziland	148	0.541	48.9	6.8	7522	-33	-1	-0.78	0.38	0
	148	149 Syrian Arab Rep	149	0.536	69.7	5.1	2441	13	-29	0.58	0.94	-3
	149	150 Angola	150	0.533	52.7	5	6291	-27	4		2.38	1
	150	151 Tanzania (United	151	0.531	65.5	5.8	2467	10	1	0.57	2.45	1
	151	152 Nigeria	152	0.527	53.1	6	5443	-23	-1			1
	152	153 Cameroon	153	0.518	56	6.1	2894	2	5	-0.15	1.08	1
	153	154 Papua New Guin	154	0.516	62.8	4.3	2712	4	1	1.6	1.57	
3	154	155 Zimbabwe	154	0.516	59.2	7.7	1588	20	15	-1.55	0.57	2
	155	156 Solomon Islands	156	0.515	68.1	5.3	1561	19	-3		1.19	0
3	156	157 Mauritania	157	0.513	63.2	4.3	3527	-12	0	1.62	0.94	1
)	157	158 Madagas car	158	0.512	65.5	6.1	1320	25	-8	1.02	1.01	0
)	158	159 Rwanda	159	0.498	64.7	3.8	1617	14	4	3.14	3.39	
	159		160	0.497	63.6	4.8	1335	22	-1	3.14	3.38	0
		160 Comoros								- 4 50		
2	160	161 Les otho	160	0.497	50.1	6.1	3319	-12	2	-1.06	0.56	
3	161	162 Senegal	162	0.494	68.9	2.8	2250	3	4	0.37	1.8	1
1	162	163 Haiti	163	0.493	63.1	5.2	1657	9	-2	0.82	0.6	0
,	163	164 Uganda	163	0.493	59.2	5.7	1670	8	-3	2.51	1.88	0
	164	165 Sudan	165	0.49	63.7	3.5	3848	-22	-1	1.89	1.49	1
	165	168 Togo	166	0.487	60.2	4.7	1262	18	-1	0.53	0.69	1
	166	167 Benin	167	0.485	59.8	3.5	1979	1	0	1.38	1.4	1
	167	168 Yemen	168	0.482	64.1	3	2300	-4	-12	0.91	1.08	-0
	168	169 Afghanistan	169	0.479	60.7	3.6	1871	1	-2	1.43	2.95	1
	169	170 Malawi	170	0.476	63.9	4.4	1073	16	1	1.74	1.4	1
	170	171 CÃ'te d'Ivoire	171	0.474	51.9	5	3163	-20	1	0.16	1.11	1
3	171	172 Djibouti	172	0.473	62.3	4.1	3216	-22	-2		2.19	0
	172	173 Gambia	173	0.452	60.5	3.3	1541	3	-1	1.54	1.4	0
	173	174 Ethiopia	174	0.448	64.6	2.6	1523	5	1		3.79	1
	173	174 Ethiopia 175 Mali	175	0.442	58.5	2.3	2218	-9	4	2.94	3.14	1
	2000			7,000,000	2000000	7000						
	175	176 Congo (Democra	176	0.435	59.1	6.1	680	15	4	-0.73	1.89	1
3	176	177 Liberia	177	0.427	61.2	4.4	683	13	0		0.51	
)	177	178 Guinea-Bissau	178	0.424	55.5	2.9	1369	3	-2			0
)	178	179 Eritrea	179	0.42	64.2	3.9	1490	- 1	-1	1000		0
	179	180 Sierra Leone	179	0.42	51.3	3.3	1529	-1	3	1.04	2.65	1
	180	181 Mozambique	181	0.418	55.5	3.5	1098	4	0	3.63	2.9	1
	181	182 South Sudan	181	0.418	56.1	4.8	1882	-12	-7			-0
	182	183 Guinea	183	0.414	59.2	2.6	1058	4	0	1.74	1.8	:1
	183	184 Burundi	184	0.404	57.1	3	691	5	-1	-0.06	3.67	0
	184	185 Burkina Faso	185	0.402	59	1.4	1537	-8	0			-1
	185	186 Chad	186	0.398	51.9	2.3	1991	-19	0		2.13	1
	186	187 Niger	187	0.353	61.9	1.7	889	1	1	1.85	2.41	1
	187	188 Central African R	188	0.352	51.5	4.2	587	4	-1	-0.19	1.41	-0
	275			0.352	25/20/20	7.2	307		-1	-0.18	1.41	-0
)	188	189 Korea (Democratic Ped	ppies Rep. 01)		70.5							
	189	190 Mars hall Is lands					4412					
2	190	191 Monaco										
3	191	192 Nauru					12058					
\$	192	193 San Marino					50063					
5	193	194 Somalia			55.7		294					
		195 Tuvalu					5395					
5	194	100 Tuvatu										

TABLE 2: THE DATA FOR THE HDI INDEXES AND THE INDEPENDENT VARIABLES EMPLOYED IN THIS STUDY FOR 194 COUNTRIES

Result:

CHAPTER-5

5.1 CONCLUSION

project was about classifying the countries based on their human development index. This project improved the performance of the classification model for classifying people accordingly. The new proposed method achieved high accuracy compared with the other existing algorithms. It was compared with other existing algorithms in classifying different classes of ships in inland waterways, and our proposed method achieved better results compared with the others.

5.2 FUTURE SCOPE

In future works, the proposed method will be improved in order to classify the people in different countries with extra features using more advanced technology.

SOURCECODES

APP.PY

```
import numpy as np
import pandas as pd
from flask import Flask, render_template, request
import pickle
model = pickle.load(open(r'D:\HDI\Flask\HDI.pkl','rb'))
app = Flask(__name__)
@app.route('/')
def home():
return render template('home.html')
@app.route('/Prediction',methods=['POST','GET'])
def prediction():
return render_template('indexnew.html')
@app.route('/Home',methods=['POST','GET'])
def my home():
return render_template('home.html')
@app.route('/predict',methods=['POST'])
def predict():
input_features = [float(x) for x in request.form.values()]
print(input_features)
features_value = [np.array(input_features)]
features_name = ['Country','Life expectancy','Mean years of schooling','Gross
national income (GNI) per capita', 'Internet Users']
df = pd.DataFrame(features_value, columns=features_name)
model = pickle.load(open(r'D:\HDI\Flask\HDI.pkl', 'rb'))
output = model.predict(df)
print(round(output[0][0],2))
y_pred =round(output[0][0],2)
if(y_pred >= 0.3 and y_pred <= 0.4):
return render_template("resultnew.html",prediction_text = 'Low HDI'+
str(y_pred))
elif(y_pred >= 0.4 \text{ and } y_pred <= 0.7):
return render_template("resultnew.html",prediction_text = 'Medium HDI
```

```
'+str(y_pred))
elif(y_pred >= 0.7 \text{ and } y_pred <= 0.8):
return render_template("resultnew.html",prediction_text = 'High
HDI'+str(y_pred))
elif(y_pred >= 0.8 \text{ and } y_pred <= 0.94)
return render_template("resultnew.html",prediction_text = 'Very High
HDI'+str(y_pred))
else:
return render_template("resultnew.html",prediction_text = 'The given values do
not match the range of values of the model. Try giving the values in the mentioned
range'+str(y_pred))
return render_template('resultnew.html', prediction_text=y_pred)
if __name__ == '__main__':
app.run(debug=False,port=5000):
                                           home.html
<!DOCTYPE html>
<html>
<head>
<title>Home</title>
<style>
.navbar
margin: 0px;
padding:20px;
background-color:;
opacity:0.6;
color:black;
font-family: 'Roboto', sans-serif;
font-style: italic;
border-radius:20px;
font-size:25px;
}
a
color:grey;
float:right;
text-decoration:none;
font-style:normal;
```

```
padding-right:20px;
 a:hover{
 background-color:black;
 color:white;
 border-radius:15px;0
 font-size:30px;
 padding-left:10px;
 p
 color:white;
 font-style:italic;
 font-size:30px;
 body
 background: linear gradient (rgba(0,0,0,0.8), rgba(0,0,0,0.8)), url ("https://as2.ftcdn.net/value-energy linear gradient (rgba(0,0,0,0.8), rgba(0,0,0.8)), url ("https://as2.ftcdn.net/value-energy linear gradient (rgba(0,0,0,0.8), rgba(0,0,0.8)), url ("https://as2.ftcdn.net/value-energy linear gradient (rgba(0,0,0.8), rgba(0,0,0.8)), url ("https://as2.ftcdn.net/value-energy linear gradient (rgba(0,0,0.8), rgba(0,0.8)), url ("https://as2.ftcdn.net/value-energy linear gradient (rgba(0,0,0.8), rgba(0,0.8)), url ("https://as2.ftcdn.net/value-energy linear gradient (rgba(0,0.8), rgba(0,0.8), rgba(0,0.8)), url ("https://as2.ftcdn.net/value-energy linear gradient (rgba(0,0.8), rgba(0,0.8), rgba(0,0
 2/jpg/01/16/98/39/1000\_F\_116983928\_Z5QD7UDlwukiVWx6GKturYgtwWohM5kl.
jpg");
height: 125vh;
 -webkit-background-size: cover;
 background-size:cover;
 background-position: center center;
 position: relative;
 </style>
 </head>
 <body>
 <div class="navbar">
 <a href="/Prediction" >Predict</a>
 <a href="/Home">Home</a>
 <br>
 </div>
```


<center>Human
DevelopmentIndex</center>

<div>

<center>

The Human Development Index (HDI) is a statistic composite index of life expectancy, education, and per capita income indicators, which are used to rank countries into four tiers (very high, high, medium & low)of human development. A country scores a higher HDI when the lifespan is higher, the education level is higher, and the gross national income GNI (PPP) per capita is higher. The HDI was created to emphasize that people and their capabilities should be the ultimate criteria for assessing the development of a country, not economic growth alone. The HDI can also be used to question national policy choices, asking how two countries with the same level of GNI per capita can end up with different human development outcomes. These contrasts can stimulate debate about government policy priorities. In order to do this we will be building a machine learning model to predict the Human Development Index of a country by taking few important aspects as inputs. Our model will at last predict the HDI score of a country and will also tell under which category will it be falling (very high, high, medium or low)

</center>

</div>

</body>

</html>

indexnew.html

```
<html>
<style>
div.header1{
top:20;
position: fixed;
padding-left: 490px;
margin:0;
padding:0;
border:0;
outline:0;
text-decoration:none;
font-family:montserrat;
body
background-
image:url('https://as2.ftcdn.net/v2/jpg/03/85/02/25/1000_F_385022542_kJWoZb9N
WBLFnCpcC7ZYD4KQ4EYQUQz5.jpg');
background-position: center;
font-family:sans-serif;
background-size:cover;
margin-top:40px;
}
.main{
background-color:rgb(0,0,0,0.6);
width:800px;
height:590px;
margin:auto;
position:center;
border-top-left-radius:100px;
border-bottom-right-radius:100px;
.main input[type="text"],.main input[type="text"],.main input[type="text"],.main
input[type="text"],.main input[type="text"],.main input[type="text"],.main
input[type="text"]{
border:0;
background:none;
display:block;
margin:20px auto;
text-align:center;
border:2px solid #3498db;
padding:10px 3px;
width:280px;
outline:none;
color:white;
border-radius:24px;
transition:0.25s;
```

```
.bor{
border:0;
background:none;
display:block;
margin:20px auto;
text-align:center;
border:2px solid #8e44ad;
padding:10px 3px;
width:500px;
outline:none;
color:white;
transition:0.25s;}
.main input[type="text"]:focus,.main input[type="text"]:focus,.main
input[type="text"]:focus,.main input[type="text"]:focus,.main
input[type="text"]:focus,.main input[type="text"]:focus,.main
input[type="text"]:focus{
width:280px;
border-color:#8e44ad;
.logbtn{
display:block;
width:35%;
height:50px;
border:none:
border-radius:24px;
background:linear-gradient(120deg,#3498db,#8e44ad,#3498db,#8e44ad);
background-size:200%;
color:#fff;
outline:none;
cursor:pointer;
transition:.5s;
font-size:25;
.logbtn:hover{
background-position:right;
input::placeholder{
color:#F5FFFA;
}
.bottom-text{
margin-top:60px;
text-align:center;
font-size:13px;
}
</style>
<body>
<center><div class="header1"><font color="#FF0000" font-</pre>
family="Fascinate Inline" size=7 ><b>Human Development Index
</b></font></div></center>
<form class="main" action="/predict" method="post">
<br>
```

```
<center><select id="Country" name="Country">
<option value="">Select the name of the Country
<option value="0">Afganistan</option>
<option value="8">Australia</option>
<option value="13">Bangladesh</option>
<option value="31">Canada</option>
<option value="76">India</option>
<option value="138">Poland</option>
<option value="179">Turkey</option>
</select></center>
<input class="form-input" type="text" name='Life expectancy' placeholder="Enter
life expectancy rate(range 50-89)"><br>
<input class="form-input" type="text" name='Mean years of schooling'</pre>
placeholder="Enter Mean years of schooling(range 1-15)"><br>
<input class="form-input" type="text" name='Gross national income (GNI) per capita'
placeholder="Enter GNI(range 290-129000)"><br>
<input class="form-input" type="text" name='Internet users' placeholder="Enter the
number of internet users"><br>
<center><input type="submit" class="logbtn"</pre>
value="Predict"></center>
<divclass="bor"><center><b><fontcolor="white"size=5>{{showcase}}</font></b>
/center></div></form>
</body>
</html>
```

REFERENCS:

- A. Stanton, Elizabeth (February 2007). "The Human Development Index: A History". PERI Working Papers: 14–15. Archived from the original on 28 February 2019. Retrieved 28 February 2019.
- "Human Development Index". Economic Times. Archived from the original on 1 December 2017. Retrieved 29 November 2017.
- 3. "The Human Development concept". UNDP. 2010. Archived from the original on 15 April 2012. Retrieved 29 July 2011.
- Human Development Index, "Composite indices HDI and beyond", Retrieved
 January 2021.
- 5. Nations, United (2017). "What is Human Development". UNDP. Archived from the original on 27 October 2017. Retrieved 27 October 2017. ... human development approach, developed by the economist Mahbub UI Haq ...'
- 6. The Courier. Commission of the European Communities. 1994.
- 7. Nations, United (4 November 2010). "Human Development Report 2010". UNDP. Archived from the original on 22 December 2015. Retrieved 15 December 2015.
- 8. "Technical notes" (PDF). UNDP. 2013. Archived (PDF) from the original on 16 June 2015. Retrieved 15 December 2015.
- "New method of calculation of Human Development Index (HDI)". India Study Channel. 1 June 2011. Archived from the original on 10 November 2017. Retrieved 19 November 2017.