TD 1

Bases de probabilités et statistique

Exercice 1

Un sondage a receuilli des informations sur le prix (au kilogramme) de certains fruits et legumes. Le tableau suivant donne les effectifs pour chaque paire type / classe de prix.

	pomme	poire	courgette	aubergi
$2 \in$	12	24	54	23
3 €	45	26	72	16
4 €	34	63	34	33

Par exemple, dans le sondage il y a 12 pommes qui coutent 2 € (au kilogramme).

- 1. Calculer la probabilité que le fruit/légume du sondage soit une pomme sachant que son prix est 2 €.
- 2. Calculer la probabilité que le fruit/légume du sondage coute 3 € ou plus sachant que c'est une aubergine.
- 3. Calculer la probabilité que le fruit/légume du sondage soit un fruit sachant qu'il coute 3 € ou plus.
- 4. Calculer l'espérance conditionelle d'un fruit/légume du sondage sachant que c'est une poire (le prix moyen d'une poire dans le sondage).
- 5. Calculer l'espérance conditionelle d'un fruit/légume du sondage sachant que c'est un légume (le prix moyen d'un légume dans le sondage).
- 6. Calculer la variance conditionelle d'un fruit/légume du sondage sachant que c'est une courgette.

Exercice 2

On considère un couple de variables aléatoires (X,Y) sur $[0,1]^2$ dont la densité de probabilité est la fonction $f_{X,Y}:[0,1]^2\to\mathbb{R}^+$ définie par, pour $x,y\in[0,1]^2$,

$$f_{X,Y}(x,y) = \frac{1}{c} \exp(-|x-y|),$$

où c > 0 est une constante (ne dépendant pas de x, y).

- 1. Calculer la constante c.
- 2. Pour $x \in [0,1]$, calculer la densité de X en x, c'est à dire la fonction $f_X : [0,1] \to \mathbb{R}^+$.
- 3. Calculer la fonction de densité conditionelle de Y sachant X, c'est à dire la fonction $f_{Y|X}:[0,1]^2\to\mathbb{R}^+$.
- 4. Calculer l'espérance de Y sachant que X vaut 1.
- 5. Calculer la variance de Y sachant que X vaut 1.
- 6. Calculer la probabilité que $Y \geq 1/2$ sachant que X vaut 1.

Elément de cours : la loi de Poisson La loi de Poisson de paramètre $\lambda > 0$, notée $\mathcal{P}(\lambda)$, est une loi de probabilité sur $\mathbb{N} = \{0, 1, 2, \ldots\}$. Pour une variable aléatoire X telle que $X \sim \mathcal{P}(\lambda)$ on a

$$\mathbb{P}[X = k] = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k \in \mathbb{N}$$

et

$$\mathbb{E}\left[X\right] = \lambda.$$

Exercice 3

Soient X_1, \ldots, X_n iid selon une loi de Poisson $\mathcal{P}(\lambda)$, où λ est inconnu.

1. Certains des exercices ont étés fournis par Adrien Mazoyer.

- 1. Pour $x_1, \ldots, x_n \in \mathbb{N}^n$, calculer la probabilité que $(X_1, \ldots, X_n) = (x_1, \ldots, x_n)$ en fonction de λ .
- 2. Le maximum de vraissemblance consiste à maximiser la probabilité précédente en fonction de λ , lorsque (x_1,\ldots,x_n) est fixé et égal à (X_1,\ldots,X_n) (ce dernier vecteur est appelé vecteur des observations). Calculer l'estimateur $\widehat{\lambda}_{\mathrm{ML}}$ du maximum de vraisemblance de λ .

Exercice 4

Soient X_1, \ldots, X_n iid selon une loi Uniforme $\mathcal{U}(0, t)$, où $t \geq 0$ est inconnu.

- 1. Pour $(x_1, \ldots, x_n) \in [0, +\infty[^n, \text{calculer la valeur de la fonction densité de probabilité de }(X_1, \ldots, X_n)$ évaluée en (x_1, \ldots, x_n) , en fonction de t.
- 2. Le maximum de vraissemblance consiste à maximiser la densité de probabilité précédente en fonction de t, lorsque (x_1, \ldots, x_n) est fixé et égal à (X_1, \ldots, X_n) (ce dernier vecteur est appelé vecteur des observations). Calculer l'estimateur \hat{t}_{ML} du maximum de vraisemblance de t.
- 3. On considère maintenant que les variables sont iid selon une loi Uniforme $\mathcal{U}(t,t+1)$. Montrer alors que, quel que soit $t \in \mathbb{R}$, presque surement (avec probabilité 1), $\max(X_1,\ldots,X_n) \leq \min(X_1,\ldots,X_n) + 1$.
- 4. Calculer la valeur de la fonction densité de probabilité de (X_1, \ldots, X_n) évaluée en (x_1, \ldots, x_n) , en fonction de t, lorsque $\max(x_1, \ldots, x_n) \leq \min(x_1, \ldots, x_n) + 1$.
- 5. Trouver l'ensemble des t qui maximisent la vraissemblance (il peut y en avoir plusieurs).

Exercice 5

Une maladie se propage dans une population, avec un taux de contamination de 1 personne pour 1000. Un nouveau test de dépistage de cette maladie est proposé avec les taux de détection suivants. Une personne malade obtiendra bien un test positif avec probabilité 99%. Une personne saine en revanche pourra obtenir un résultat positif avec probabilité 0.2%.

Calculez la probabilité qu'une personne soit effectivement malade si son test est positif.

TD 2

Régression logistique

Exercice 1

On cherche à construire un classifieur qui prend en entrée $x \in [-1, 1]$ et qui le classifie en la classe 0 ou la classe 1. Ce classifieur va être paramétré par $\alpha, \beta \in \mathbb{R}$. La classe associée à l'entrée x sera 1 si $C_{\alpha,\beta}(x) \ge 1/2$ et 0 sinon, en définissant

$$C_{\alpha,\beta}(x) = \frac{e^{\alpha+\beta x}}{1+e^{\alpha+\beta x}}.$$

- 1. Tracer approximativement la courbe de la fonction $t \mapsto C_{0,1}(t) = e^t/(1+e^t)$ $(t \in \mathbb{R})$.
- 2. Montrer que $e^t/(1+e^t) \ge 1/2 \iff t \ge 0$.
- 3. Pour $\alpha = 0$ et $\beta = 1$, quels x sont classés en 0 et quels x sont classés en 1.
- 4. Même question pour $\alpha = 1$ et $\beta = -1$.
- 5. Pour un $x \neq 0$ et $\alpha \in \mathbb{R}$ fixés, lorsque β devient assez grand $(\beta \to +\infty)$, comment est classé x.
- 6. Même question lorsque $\beta \to -\infty$.

Exercice 2

Maintenant, on cherche à construire un classifieur qui prend en entrée $x=(x_1,x_2)\in [-1,1]^2$ et qui le classifie en la classe 0 ou la classe 1. Ce classifieur va être paramétré par $\alpha,\beta_1,\beta_2\in\mathbb{R}$. La classe associée à l'entrée x sera 1 si $C_{\alpha,\beta_1,\beta_2}(x)\geq 1/2$ et 0 sinon, en définissant

$$C_{\alpha,\beta_1,\beta_2}(x) = \frac{e^{\alpha+\beta_1 x_1 + \beta_2 x_2}}{1 + e^{\alpha+\beta_1 x_1 + \beta_2 x_2}}$$

- 1. On prend $\alpha=0, \beta_1=1, \beta_2=0$. Représenter graphiquement quels x sont classés 0 et quels x sont classés 1.
- 2. Même question avec $\alpha = 1, \beta_1 = 2, \beta_2 = -1$.
- 3. En général, pour α, β_1, β_2 quelconques tels que $(\beta_1, \beta_2) \neq (0, 0)$, déterminer quels x sont classés 0 et quels x sont classés 1. La réponse à cette question permet de dire que l'on étudie un classifieur linéaire.

Exercice 3

On propose maintenant un modèle probabiliste qui correspond à ce classifieur. On fixe une dimension $d \in \mathbb{N}$, $d \geq 2$. On considère $\beta = (\beta_1, \dots, \beta_d) \in \mathbb{R}^d$. On considère un couple de variables aléatoires $(X, Y) \in [-1, 1]^d \times \{0, 1\}$ où X suit la loi uniforme sur [-1, 1] et, pour tout $x \in [-1, 1]^d$,

$$\mathbb{P}(Y=1|X=x) = 1 - \mathbb{P}(Y=0|X=x) = C_{\beta}(x) = \frac{e^{\beta^{\top}x}}{1 + e^{\beta^{\top}x}}.$$

1. On considère un premier classifieur $f: [-1,1]^d \to \mathbb{R}$ qui attribue la classe 1 à x si $C_{\beta}(x) \ge 1/2$ et la classe 0 sinon. Prouver que le risque de classification $\mathbb{P}(f(X) \ne Y)$ s'écrit

$$\mathbb{P}(f(X) \neq Y) = \frac{1}{2^d} \int_{[-1,1]^d} \min (C_{\beta}(x), 1 - C_{\beta}(x)) \, dx.$$

On pourra d'abord calculer $\mathbb{P}(f(X) \neq Y | X = x)$ pour tout $x \in [-1, 1]^d$ et ensuite utiliser la formule de l'espérance totale

$$\mathbb{P}(f(X) \neq Y) = \mathbb{E}\left(\mathbb{P}(f(X) \neq Y|X)\right).$$

On pourra aussi utiliser (sans démonstration)

$$\mathbb{P}(f(X) \neq Y | X = x) = \mathbb{P}(f(X) \neq Y | X = x)$$

et, que si $0 \le t \le 1/2$ alors $t = \min(t, 1 - t)$.

2. Question bonus plus difficile. Pour $\alpha \in \mathbb{R}$ fixé, prouver que lorsque $|\beta| \to +\infty$,

$$\mathbb{P}(f(X) \neq Y) \to 0.$$

3. On considère le risque de classification $\mathbb{P}(g(X) \neq Y)$ où $g : [-1, 1]^d \to \mathbb{R}$ est un autre classifieur qui attribue la classe 1 à x si $C_{\gamma}(x) \geq 1/2$ et la classe 0 sinon. Ici $\gamma \in [-1, 1]^d$ est un vecteur différent de β . Prouver que

$$\mathbb{P}(g(X) \neq Y) = \frac{1}{2^d} \int_{[-1,1]^d} \left[\mathbf{1}_{g(x)=f(x)} \min \left(C_{\beta}(x), 1 - C_{\beta}(x) \right) + \mathbf{1}_{g(x)\neq f(x)} \max \left(C_{\beta}(x), 1 - C_{\beta}(x) \right) \right] dx.$$

4. Prouver que

$$\mathbb{P}(f(X) \neq Y) \leq \mathbb{P}(g(X) \neq Y).$$

Interpreter ce résultat.

Exercice 4

On considère n couples $(X_1, Y_1), \ldots, (X_n, Y_n)$ iid et de même loi que (X, Y) dans l'exercice précédent. On fixe $x_1, \ldots, x_n \in [-1, 1]^d$.

1. On fixe $y_1, \ldots, y_n \in \{0, 1\}$. Calculer

$$\mathbb{P}(Y_1 = y_1, \dots, Y_n = y_n | X_1 = x_1, \dots, X_n = x_n).$$

en fonction de β . On admettra que

$$\mathbb{P}(Y_1 = y_1, \dots, Y_n = y_n | X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}(Y_1 = y_1 | X_1 = x_1) \times \dots \times \mathbb{P}(Y_n = y_n | X_n = x_n).$$

Indication: on pourra montrer que

$$\mathbb{P}(Y_i = y_i | X_i = x_i) = C_{\beta}(x_i)^{y_i} (1 - C_{\beta}(x_i))^{1 - y_i}.$$

2. On note $\mathcal{L}(\beta) = -\log(P(\beta))$ où $P(\beta)$ est la probabilité à calculer dans la question précédente. On note $M(\beta)$ sa matrice Hessienne calculée en β . La matrice M est donc de taille $d \times d$ et son élément i, j est égal à $\partial^2 \mathcal{L}(\beta)/\partial \beta_i \partial \beta_j$. Montrer que

$$M(\beta) = \sum_{i=1}^{n} \frac{e^{x_i^{\top} \beta}}{\left(1 + e^{x_i^{\top} \beta}\right)^2} x_i x_i^{\top}.$$

3. On pose

$$c(\beta) = \left(\min_{i=1,\dots,n} \frac{e^{x_i^\top \beta}}{\left(1 + e^{x_i^\top \beta}\right)^2}\right) \lambda_{\min}(X^\top X)$$

où $\lambda_{\min}(X^{\top}X)$ est la plus petite valeur propre de la matrice $X^{\top}X$. Montrer que pour tout vecteur v avec ||v|| = 1, on a

$$v^{\top} M v > c(\beta) ||v||^2$$
.

4. Question bonus plus difficile. On suppose que

$$\lim_{|\beta|\to+\infty} \mathcal{L}(\beta) = +\infty.$$

Montrer que le problème d'optimisation

$$\min_{\beta \in \mathbb{R}^d} \mathcal{L}(\beta)$$

admet un unique minimiseur. On dira alors que l'estimateur du maximum de vraissemblance est unique dans le modèle de régression logistique.

TD 3 Arbres de classification

Ici log est le logarithme neperien.

Exercice 1

On considère un jeu de données $v_1, \ldots, v_N \in \{1, 2, \ldots, k\}$ (les nombres symbolisent k classes). On définit alors l'entropie empirique comme

$$E(v_1, \dots, v_N) = -\sum_{\ell=1}^k \hat{p}_\ell \log(\hat{p}_\ell)$$

en définissant

$$\hat{p}_{\ell} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{1}_{v_i = \ell}$$

et en utilisant la convention $0 * \log(0) = 0$.

L'entropie empirique représente la variabilité des données.

- 1) Montrer que l'entropie est ≥ 0 et qu'elle est égale à 0 si et seulement si $v_1 = \cdots = v_N$.
- **2)** Calculer E(1, 2, 3, 2, 3, 2, 2, 2, 1, 2)
- **3)** Calculer E(1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2).

Exercice 2

On a un jeu de données défini par ce tableau.

i	1	2	3	4	5	6	7	8	9	10
$x^{(i)}$	(0.1, 0.1)	(0.2, 0.2)	(0.3, 0.8)	(0.4, 0.4)	(0.5, 0.7)	(0.6, 0.3)	(0.7, 0.5)	(0.8, 0.9)	(0.9, 0.6)	(1,1)
11:	1	2	1	1	1	2	2	2	2	2

On note $x^{(i)} = (x_1^{(i)}, x_2^{(i)})$ pour i = 1, ..., 10.

- 1) Calculer $E(y_1, ..., y_{10})$.
- 2) On cherche à séparer les données (y_1, \ldots, y_{10}) en 2 groupes. Le groupe 1 sera celui des y_i pour lesquels $x_1^{(i)} \leq t$ avec t = 0.45 et le groupe 2 sera celui des autres y_i . On note u_1, \ldots, u_k les éléments du groupe 1 et v_1, \ldots, v_ℓ les éléments du groupe 2 (on a $k + \ell = 10$). Calculer

$$\frac{k}{10}E(u_1,\ldots,u_k) + \frac{\ell}{10}E(v_1,\ldots,v_\ell)$$

qui est l'entropie empirique moyenne après séparation en 2 groupes. Faire un dessin qui représente cela.

3) On cherche à nouveau à séparer les données (y_1, \ldots, y_{10}) en 2 groupes. Cette fois le groupe 1 sera celui des y_i pour lesquels $x_2^{(i)} \leq s$ avec s = 0.45 et le groupe 2 sera celui des autres y_i . On note u_1, \ldots, u_k les éléments du groupe 1 et v_1, \ldots, v_ℓ les éléments du groupe 2 (on a $k + \ell = 10$). Calculer

$$\frac{k}{10}E(u_1,\ldots,u_k)+\frac{\ell}{10}E(v_1,\ldots,v_\ell).$$

Faire un dessin qui représente cela.

- 4) Quelle séparation en deux groupes préférez-vous dans une optique de classification supervisée, et pourquoi?
- 5) La construction d'un arbre de classification se fait selon le principe des questions précédentes. Nous allons illustrer cela en quelques étapes ici (faire un dessin à chaque étape).
 - Faire la séparation de la question 2, mais cette fois, trouver la valeure de t qui minimise la quantité

$$\frac{k}{10}E(u_1,\ldots,u_k)+\frac{\ell}{10}E(v_1,\ldots,v_\ell)$$

que l'on notera e_1 .

— Ensuite, faire la mème chose mais selon la question 3 en trouvant la valeur de s qui minimise la quantité

$$\frac{k}{10}E(u_1,\ldots,u_k) + \frac{\ell}{10}E(v_1,\ldots,v_\ell)$$

que l'on notera e_2 .

- Garder celle des deux séparations qui correspond à la plus petite valeure entre e_1 et e_2 . Cela revient à diviser le carré $[0,1]^2$ en 2 rectangles.
- Dans chacun des deux rectangles faire la même chose que toutes les étapes d'avant (si il y a encore deux classes représentées). A la fin, on a divisé le carré $[0,1]^2$ en 3 ou 4 rectangles. Cela correspond aux premières étapes de construction d'un arbre de classification. Dans chacun des rectangles, on classifie un nouveau x selon la classe qui est majoritaire dans le rectangle, parmi les 10 données d'apprentissage.