TEXT OF THE PERO (Grand of House of Hills of Hi

蓖麻毒素的间接酶联免疫快速检测 杨运云1. 单德海1. 童朝阳2. 穆晞惠2. 郝兰群2

(1. 中国广州分析测试中心 广东省化学危害应急检测技术重点实验室,广东 广州 510070; 2. 解放军防化研究院第四研究所,北京 102205)

摘 要: 建立了间接酶联免疫法快速检测蓖麻毒素的方法。方法的线性范围在 $0.08~1.25\,\mathrm{mg/L}$ 之间,相关系数 r=0.992~3 检出限为 $0.02\,\mathrm{mg/L}$ 。将该法用于检测实际水样、土壤、奶粉和血液蓖麻毒素加标样品,回收率在 60%~98% 范围。该方法简单、快速、假阳性率低,非常适合蓖麻毒素的快速筛选、定性和半定量分析。

关键词: 蓖麻毒素: 酶联免疫: 间接测定

中图分类号: R446 61; S852 44 文献标识码: A 文章编号: 1004-4957(2007)04-0533-04

Rapid Determination of Ricin by Indirect Enzyme-linked Immunosorbent Assay

YANG Yun-yun¹, MU De-ha¹, TONG Zhao-yang², MU Xi-hu¹, HAO Lan-qun²

 Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, China National Analytical Center (Guangzhou), Guangzhou 510070, China 2 Research Institute of Chemical Defense of PLA, Beijing 102205, China)

Abstract A method for rapid determination of ricin by indirect enzyme-linked immunosorbent assay (ELSA) was developed. The linear range of the method was $0.08-1.25\,\mathrm{mg/L}$ with a correlation coefficient of $0.992\,3$. The limit of detection was $0.02\,\mathrm{mg/L}$. The method was applied to determine the spiked ricin in water, soil, milk powder and blood samples. The recoveries were from 60% to 98%. The method is simple, rapid, relatively accurate and is suitable for qualitative and semi-quantitative determination of ricin.

Key words Ricin, Enzyme-linked immunosorbent assay (ELSA); Indirect determination

蓖麻毒素 (ricin)是一种核糖体失活蛋白,它由 A、B两条肽链以二硫键共价相连,相对分子质量约为 60 ku,A链具有使核糖体失活的能力,B链是一种半乳糖结合型蛋白 [1]。蓖麻毒素具有很强的毒性作用,对成人的平均致死量为 $1.5~\mu g$ 其作用机制是抑制蛋白质的合成,蓖麻毒素进入人体后,B链结合到细胞表面,A链则渗透到细胞浆,使核糖体失活,从而抑制蛋白质合成,造成人体中毒死亡 [2-3]。蓖麻种植广泛,蓖麻籽中蓖麻毒素含量高、毒性大、易于提取,国外已有报道恐怖分子用蓖麻毒素作为恐怖袭击的手段。因此,建立蓖麻毒素的快速检测方法非常重要。

间接酶联免疫 (ELISA)法的基本原理是直接包被抗原或含抗原的样品,加入抗体后再加入酶标二抗,利用酶催化底物显色的强度反映抗原的浓度。相对于夹心法、竞争法、生物素 – 酶亲和法,该方法具有操作步骤少、简便、快速等优点。本研究间接 ELISA 法检测蓖麻毒素,建立一种蓖麻毒素的简便、快速检测方法,以满足蓖麻毒素的应急处理和检测的要求。

1 实验部分

1.1 仪器与试剂

Biofuge 22R 型冷冻离心机 (德国 H eraeus公司); Hitach U-2001型分光光度计 (日本日立公司); 680型酶标仪 (美国 BioRad公司)。

蓖麻毒素 (自制); 蓖麻毒素单抗 (自制); 辣根酶标记山羊抗小鼠 IgG (芭比尔生物技术发展中心); N-四甲基联苯胺 (TMB)、牛血清白蛋白 (BSA)均购自华美生物技术有限公司; 碳酸缓冲盐 (CBS, pH 9.6); 磷酸缓冲盐洗涤液 (PBS-T, pH 7.4, 0.01 mol/L PBS, 含 0.1% (w)吐温 20); 磷酸缓冲盐稀释液 (PBS-BSA, pH 7.4, 0.01 mol/L PBS, 含 1% (w) BSA, 用于稀释蓖麻毒素单抗和辣根酶标记山羊

抗小鼠 LeG); 其它试剂按 ELISA 常规要求配制。

蓖麻毒素工作溶液: 用生理盐水分别配制一系列质量浓度为 0.02 0.04 0.08 0.15 0.30 0.60 1.25 2.50 5.00 10.00和 20.00mg/L的蓖麻毒素工作溶液、作标准曲线时使用。

蓖麻毒素水样加标样品: 在 1.0 m L 自来水中添加适当浓度的蓖麻毒素溶液, 用 0.01 m o l/L PBS-1% BSA 稀释液分别将其稀释为 0.15、0.30、0.60和 1.25 m g/L, 作为蓖麻毒素的水样加标样品。

蓖麻毒素土壤加标样品: 称取风干土壤 $1.0 \,\mathrm{g}$ 加入 $5.0 \,\mathrm{mL}$ $0.01 \,\mathrm{mol/L}$ PBS- 1% BSA 稀释液,再加入质量浓度为 $1.0 \,\mathrm{g/L}$ 的蓖麻毒素 $5.0 \,\mathrm{\mu L}$,混合均匀后分别稀释成 0.15 0.30 $0.60 \,\mathrm{mag}$ 几的土壤加标样品,然后把每个样品在 $4 \,\mathrm{C}$ 、 $8.000 \,\mathrm{r/m}$ in 条件下离心 $20 \,\mathrm{min}$ 取上清液用于测定。

蓖麻毒素奶粉加标样品: 称取奶粉 1.0 g 同"蓖麻毒素土壤加标样品"处理,然后把每个样品在 4 ° 1.0 m $1.0 \text{ m$

蓖麻毒素血液加标样品: 取小鼠血液 $10.0 \, \mu L$, 同"蓖麻毒素土壤加标样品"处理,然后把每个样品在 $4 \, ^{\circ}\mathrm{C}$ 、 $5\,000 \, \mathrm{r/m}$ in条件下离心 $10\,\mathrm{m}$ in,取上清液用于测定。

1.2 实验步骤

用 pH 9. 6的碳酸盐缓冲液稀释蓖麻毒素,包被酶标板,每孔 $0.1\,\mathrm{mL}$ 。 $42\,\mathrm{C}$ 条件下孵育 $5\,\mathrm{h}$,倒去包被液,用 PBS- T 洗涤 $3\,\mathrm{X}$,甩干。其中 $1\,\mathrm{C}$ 个孔不加蓖麻毒素,作为试剂空白,测定时用作调零。用 $1\,\mathrm{BSA}$ 封闭板上的空白位点,每孔 $0.2\,\mathrm{mL}$, $37\,\mathrm{C}$ 条件下孵育 $1\,\mathrm{h}$,甩干。除阴性孔以外,其余各孔加蓖麻毒素单抗 $0.1\,\mathrm{mL}$, $37\,\mathrm{C}$ 条件下孵育 $1\,\mathrm{h}$,用 PBS- T 洗涤 $3\,\mathrm{X}$,甩干。所有各孔加酶标二抗(辣根酶标记山羊抗小鼠 $1\,\mathrm{gG}$ 液) $0.1\,\mathrm{mL}$, $37\,\mathrm{C}$ 条件下孵育 $1\,\mathrm{h}$,用 PBS- T 洗涤 $6\,\mathrm{X}$,甩干。每孔加 TMB $0.1\,\mathrm{mL}$, $37\,\mathrm{C}$ 条件下孵育 $15\,\mathrm{m}$ in,再加 $1\,\mathrm{mol}/\mathrm{L}$ $10\,\mathrm{L}$ $10\,\mathrm{m}$ $10\,\mathrm{L}$ $10\,\mathrm{L}$ 1

2 结果与讨论

2.1 实验条件的优化

2. 1. 1 酶标板对抗原最大吸附浓度的确定 包被一系列质量浓度分别为 0.02 0.04 0.08 0.15 0.30 0.60 1.25 2.50 5.00 10.00 20.00 10.00 20.00

2. 1. 2 最适蓖麻毒素单克隆抗体工作浓度的确定 包被质量浓度为 0.6Q 1.25 2.5Q $5.00\,mg/L$ 的 R icin毒素酶标板,分别加入质量浓度为 0.5 1.Q 5.Q 10.Q 50.Q 10.Q 250.Q $500.0\,mg/L$ 的 蓖麻毒素单克隆抗体,在相同的条件下进行间接 ELISA 实验,根据吸光度值选择蓖麻毒素单抗的最适浓度,结果见图 2。当蓖麻毒素单抗浓度为 $50.0\,mg/L$ 时, OD_{450} 值均趋于饱和。因此,最适蓖麻毒素单抗工作质量浓度为 $50.0\,mg/L$ 。

图 1 蓖麻毒素抗原包被质量浓度与 OD₄₅₀值曲线图

Fig. 1 The curve of ricin polyclonal antibgen peridium concentration with OD₄₅₀

图 2 蓖麻毒素单抗工作质量浓度与 OD₄₅₀值曲线图

Fig. 2 The curve of ricin monoclonal antibody working concentration with OD₄₅₀ 2. 1. 3 包被处理方法的确定 采用 $42 \degree m$ 育 5 h和 $4 \degree \text{C}$ 过夜两种包被方法,同等条件下进行间接 EL SA 实验,根据吸光度值 OD_{450} 确定最佳包被处理方法。结果表明,蓖麻毒素浓度在 $0.02 \sim 5.00 \,\mathrm{mg}$ /L范围, $42 \degree m$ 育 5 h包被法的吸光度值均大于 $4 \degree \text{C}$ 过夜包被法。故认为 $42 \degree m$ 育 5 h包被方法优于 $4 \degree \text{C}$ 过夜包被方法。

2. 1. 4 最佳酶标记二抗体工作浓度的确定 同等条件下进行间接 ELISA 实验,添加不同稀释倍数的辣根酶标记山羊抗小鼠 IgG,根据吸光度值 OD_{450} 选择最佳辣根酶标记山羊抗小鼠 IgG 的稀释倍数,结果见图 3。当辣根酶标记山羊抗小鼠 IgG 的稀释倍数为 1:10 $000\sim1$:8 000时, OD_{450} 值呈上升趋势,稀释倍数为 1:8 $000\sim1$:5 000时, OD_{450} 值趋于平台。稀释倍数小于 1:5 000时,又缓慢增加。为兼顾检测灵敏度和节约辣根酶标记山羊抗小鼠 IgG 用量,故认为辣根酶标记山羊抗小鼠 IgG 的最适工作浓度为 1:8 000。

2. 1. 5 底物显色时间的确定 按上述优化的实验条件进行间接 ELISA实验,加底物 TMB 0.1 mL后做不同显色时间的比较,显色时间分别为 3、5、10、15、20、25、30 m in,根据吸光度值的变化选择适合的底物显色时间,结果见图 4。显色时间 15 m in 为宜,少于 15 m in,显色不完全,超过 15 m in OD_{450} 值反而有所下降,而且本底增加,故选择 15 m in作为底物显色时间。

- 2.2 间接 ELISA 法检测蓖麻毒素标准方法的建立
- 2.2.1 线性范围 在优化的实验条件下, 用间接 ELISA 法测定配制好的蓖麻毒素工作溶液。当蓖麻毒素质量浓度在 0.08~

图 3 酶标记二抗体工作浓度与 OD₄₅₀ 值曲线图

Fig. 3 The curve of second enzyme labelling antibody dilution ratio with OD₄₅₀

图 4 显色时间与 OD₄₅₀值曲线图 Fig. 4 The curve of developing time with OD₄₅₀

- $1.25 \,\mathrm{mg/L}$ 范围时,质量浓度 $(x, \,\mathrm{mg/L})$ 与吸光度值 (y) 之间呈线性关系,线性回归方程为 $y=1.01 \,x+0.33$ 线性相关系数 r=0.9923
- 2. 2. 2 检出限 根据 IUPAC 对检出限的定义 LOD = 3σ /D (其中 σ 为空白的相对标准偏差, D 为线性 方程的斜率)计算,间接 ELISA 法测定蓖麻毒素的检出限为 $0.02\,\mathrm{mg}$ /L。
- 2. 2. 3 重复性 在线性浓度范围内,取 0. 15、 0. 30、 0. 60 和 1. 25 mg /L 4个工作浓度点,验证间接 ELISA 法的重复性,其相对标准偏差 (RSD)分别为 2. 3% 、 1. 6% 、 0. 8% 和 1. 6% (n = 6),符合免疫检测和定量分析的要求。
- 2.2.4 特异性 用上述建立的间接 ELISA法分别检测不同浓度蓖麻毒素、相思子毒素 (Abrin)和葡萄球菌肠毒素 B(SEB),以验证该方法是否具有特异性。检测蓖麻毒素时,随着蓖麻毒素浓度增加,其吸光度 OD_{45} 值呈线性增加趋势。而检测不同浓度 Abrin和 SEB时,其所得吸光度值与阴性值接近,表明该法检测蓖麻毒素具有很好的特异性。

2.3 实际蓖麻毒素加标样品的测定

配制一系列浓度的水样、土壤、奶粉和血液蓖麻毒素加标样品,用间接 ELSA 法测定样品吸光度值,每个样品的每个浓度点测定 3次,按测定平均值计算样品中蓖麻毒素的实测浓度和回收率,结果见表 1。

在测定血液加标样品时的回收率较低,可能是由于血液中的红细胞上含有蓖麻毒素的受体,1% BSA 不能完全封闭红细胞上的受体结合位点,使其蓖麻毒素与红细胞结合,从而使回收率降低,但该 法对血液样品总体回收率达到了 60%~80%, 对于半定量快速筛选来说已经足够。

表 1 间接 ELISA 法检测加标水样、土壤、奶粉和血液样品的检测结果和回收率

Table 1 The analytical results and recoveries of water, soil milk powder and blood added samples

$\begin{array}{c} A\mathrm{dded} \\ \rho_{\!_A} \; / (\;\mathrm{mg}^{\bullet} \;\; \mathrm{L}^{-\; 1}) \end{array}$	Water		Soil		M ik powder		Blood	
	Found	Recovery	Found	Recovery	Found	Recovery	Found	Recovery
	$ ho_{\!\scriptscriptstyle F}^{}$ /(mg ullet L $^{\!\scriptscriptstyle -1}$)	<i>R</i> %	$\rho_{\!\scriptscriptstyle F} / (m g^{\scriptscriptstyle \bullet} \ L^{\scriptscriptstyle -1})$	<i>R</i> %	$ ho_{\!\scriptscriptstyle F}$ /(mg $^{\scriptscriptstyleullet}$ L $^{\!\scriptscriptstyle -1}$)	<i>R</i> %	$ ho_{\!\scriptscriptstyle F}^{}$ /(mg $^{\scriptscriptstyleullet}$ L $^{-1}$)	R /%
0 15	0 14 ±0. 01	93	0 13±0.01	87	0 12±0.01	80	0 09±0.01	60
0 30	0.28 ± 0.03	93	0 27±0.04	90	0 26±0 02	87	0 21±0 01	70
0 60	0.59 ± 0.01	98	0 56±0.04	93	0 54±0.01	90	0 45±0.01	75
1 25	1 23 ±0.01	98	1 19±0 02	95	1. 17±0. 11	94	1 00±0 02	80

参考文献:

- [1] DAV DN S, BRIAN M JF. Selective uptake of ric in A-chain by hepatic non-parenchymal cells in virus Importance of mannose oligosaccharides in the toxin[J]. FEBS, 1986, 196 344-348.
- [2] OLSNES S, REFSNES K, PHLA. Mechanism of action of the toxic lectins abrin and ricin[J]. Nature, 1974, 249, 627-631
- [3] ENDO Y, M ISTU IK, MOT IZUK IM, et al. Them echan ism of action of ricin and related toxic lectins on eukaryotic ribosom es[J]. J Biol Chem, 1987, 262, 5908 5912

(上接第 532页)

参考文献:

- [1] 程元恺、杨宪桂、杨中枢、环境致癌物 多环芳烃研究[M]、北京: 中国科学技术出版社、1990: 1-4
- [2] 董新艳,杨亦文,任其龙.复杂基体中痕量多环芳烃分析测定方法的研究进展[J].色谱,2005,(6):48-54
- [3] 黄业茹, 狄 安, 施钧慧, 等. 北京、东京、筑波大气中有机污染物组成研究[J]. 环境科学研究, 2001, 14(1): 4-8
- [4] 李 军,张 干,祁士华,等.广州市大气中颗粒态多环芳烃(PAH s)的主要污染源[J].环境科学学报,2004,24 (4):661-666
- [5] 郝 蓉, 万洪富, 杜卫兵, 等. 亚热带地区农业土壤和植物中多环芳烃的分布 [J]. 浙江大学学报: 农业与生命科学版, 2005, 31(4): 374-380.
- [6] MEUDEC A, DUSSAUZE J. JOURD N.M., et al. Gas chrom atographic mass spectrometric method for polycyclic aromatic hydrocarbon analysis in plant biota[J], J Chromatogr, A, 2006, 1108, 240 247.
- [7] 崔艳红,巨天珍,曹 军,等.加速溶剂提取法测定蔬菜中的多环芳烃和有机氯化合物 [J].农业环境科学学报,2003,22(3):364-368
- [8] 王建华,姜海云,王 惠,等. 气相色谱 质谱法测定蔬菜中的 16种多环芳烃 [J]. 中国卫生检验杂志, 2006, 16 (2): 197-199.
- [9] 储少岗, 徐晓白. 鱼组织中多环芳烃的测定[J]. 环境科学学报, 1994, 14(2): 229-235.
- [10] 宋玉芳, 区自清, 孙铁珩. 土壤、植物样品中多环芳烃 (PAH s)分析方法研究 [J]. 应用生态学报, 1995, 6(1): 93 - 96
- [11] 高彦征,朱利中,凌婉婷,等. 土壤和植物样品的多环芳烃分析方法研究[J]. 农业环境科学学报, 2005, 24(5): 1003-1006
- [12] KIPOPOULOU AM, MANOLIE, SAMARA C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area [J]. Environmental Pollution, 1999, 106 369-380.
- [13] CHEN L G, RAN Y, XNG B S, et al. Contents and sources of polycyclic aromatic hydrocarbons and organoch brine pesticiles in vegetable soils of Guangzhou. China [J]. Chen osphere, 2005, 60, 879 890.