Understanding $\mathbf{D}^{\mathrm{b}}(kQ)$ using moduli spaces

Pieter Belmans pieter.belmans@uantwerp.be

Goals

Bernhard Keller and Sarah Scherotzke, Graded quiver varieties and derived categories, arXiv:1303.2318v2:

- 1. connect $\mathbf{D}^{\mathrm{b}}(kQ)$ to a moduli variety $\mathfrak{M}_{0}(w)$;
- 2. describe the moduli variety in terms of $\mathbf{D}^{b}(kQ)$ and vice versa.

Bernhard Keller and Sarah Scherotzke, Graded quiver varieties and derived categories, arXiv:1303.2318v2:

- 1. connect $\mathbf{D}^{b}(kQ)$ to a moduli variety $\mathfrak{M}_{0}(w)$;
- 2. describe the moduli variety in terms of $\mathbf{D}^{\mathrm{b}}(kQ)$ and vice versa.

My feeble goal:

- 3. generalise $\mathbf{D}^{b}(kQ)$ to a derived moduli stack RPerf_{Q} ;
- 4. describe the derived moduli stack using the moduli variety.

It generalises

- Hiraku Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, arXiv:math/9912158
- 2. Hiraku Nakajima, Quiver varieties and cluster algebras, arXiv:0905.0002v5
- Yoshiyuki Kimura and Fan Qin, Graded quiver varieties, quantum cluster algebras and dual canonical bases, arXiv:1205.2066v2
- 4. Bernard Leclerc and Pierre-Guy Plamondon, Nakajima varieties and repetitive algebras, 1208.3910v2

Conventions

- 1. k algebraically closed
- 2. Q a finite acyclic quiver
- 3. take Q connected for ease of statements

Construction

1. *A* a ring;

- 1. *A* a ring;
- 2. Mod-A abelian category of A-modules;

- 1. *A* a ring;
- 2. Mod-A abelian category of A-modules;
- 3. Ch(Mod-A) abelian category of chain complexes of A-modules;

- 1. *A* a ring;
- 2. Mod-A abelian category of A-modules;
- 3. Ch(Mod-A) abelian category of chain complexes of A-modules;
- (4.) **K**(Mod-*A*) triangulated category of chain complexes up to homotopy;

- 1. *A* a ring;
- 2. Mod-A abelian category of A-modules;
- 3. Ch(Mod-A) abelian category of chain complexes of A-modules;
- (4.) **K**(Mod-*A*) triangulated category of chain complexes up to homotopy;
 - 5. **D**(Mod-*A*) triangulated category of chain complexes with quasi-isomorphisms inverted.

Construction

- 1. *A* a ring;
- 2. Mod-A abelian category of A-modules;
- 3. Ch(Mod-A) abelian category of chain complexes of A-modules;
- (4.) **K**(Mod-*A*) triangulated category of chain complexes up to homotopy;
 - 5. **D**(Mod-*A*) triangulated category of chain complexes with quasi-isomorphisms inverted.

Motivation

Natural location to do homological algebra.

Philosophy

A moduli "space" is an geometric object parametrising "families of objects".

Philosophy

A moduli "space" is an geometric object parametrising "families of objects".

► A "space" could be: topological space, manifold, variety, scheme, stack, derived stack, . . .

Philosophy

A moduli "space" is an geometric object parametrising "families of objects".

- ► A "space" could be: topological space, manifold, variety, scheme, stack, derived stack, . . .
- ► A "family of objects" could be: curves, algebra structures, modules, sheaves, subvarieties in a given variety, . . . Then the geometric structure of the space determines which objects "look a like".

Philosophy

A moduli "space" is an geometric object parametrising "families of objects".

- ► A "space" could be: topological space, manifold, variety, scheme, stack, derived stack, . . .
- ► A "family of objects" could be: curves, algebra structures, modules, sheaves, subvarieties in a given variety, . . . Then the geometric structure of the space determines which objects "look a like".
- 1. moduli space of curves (= Riemann surfaces) \mathcal{M}_g , dim $\mathcal{M}_g = 3g 3$
- 2. moduli space of algebra structures on finite-dimensional vectorspace Alg_r

Repetition quivers

We need a (technical) construction...

Repetition quivers

We need a (technical) construction...

Definition

The repetition quiver $\mathbb{Z}Q$ has as vertices

$$Q_0 \times \mathbb{Z} = \{(i, p) \mid i \in Q_0, p \in \mathbb{Z}\}$$

and edges

$$\bigcup_{\alpha:\ i\to i} \{(\alpha,p)\colon (i,p)\to (j,p); \sigma(\alpha,p)\colon (j,p-1)\to (i,p)\}.$$

Translations in repetition quivers

- 1. in the definition: $\sigma: \mathbb{Z}Q_1 \to \mathbb{Z}Q_1$;
- 2. translation to the left: τ , both on $\mathbb{Z}Q_0$ and $\mathbb{Z}Q_1$;
- 3. we have $\sigma^2 = \tau$.

Framed quivers

Definition

The framed quiver \widetilde{Q} of Q has vertices Q_0 and $Q_0' = \{i' \mid i \in Q_0\}$, and edges Q_1 and $\{i \to i' \mid i \in Q_0\}$. The vertices i' are the frozen vertices.

Definition

The *mesh category* $k(\mathbb{Z}Q)$ is the k-linear category with $\operatorname{Obj}(k(\mathbb{Z}Q)) = \mathbb{Z}Q_0$ and

$$\mathsf{Hom}_{k(\mathbb{Z}Q)}(a,b) = \langle \mathsf{paths} \; \mathsf{from} \; a \; \mathsf{to} \; b \; \mathsf{in} \; \mathbb{Z}Q \rangle / (\mathit{ur}_x v \mid x \in \mathbb{Z}Q_0)$$

where r_x is the *mesh relator* associated to x, given by

$$r_{x} = \sum_{\beta \colon y \to x} \sigma(\beta)\beta \colon \begin{array}{c} \sigma(\beta_{1}) & y_{1} \\ \tau(x) & \vdots \\ \sigma(\beta_{n}) & y_{n} \end{array}$$

Remarks on mesh categories

This construction finds its origins in Auslander-Reiten theory.

Remarks on mesh categories

This construction finds its origins in Auslander-Reiten theory.

Example

In the mesh category $k(A_2)$ all paths of length 2 or more are identified with 0.

More interesting examples: see next, when we've introduced Nakajima categories.

Regular Nakajima categories

Definition

The regular Nakajima category \mathcal{R}_Q (or just \mathcal{R}) is the mesh category on the framed quiver, where we only impose the mesh relators on the non-frozen vertices.

Singular Nakajima categories

Definition

The singular Nakajima category S_Q (or just S) is the full subcategory of the regular Nakajima category R on the frozen vertices.

Singular Nakajima categories

Definition

The singular Nakajima category S_Q (or just S) is the full subcategory of the regular Nakajima category R on the frozen vertices.

We have regular versus singular because of the related moduli varieties: one is regular, the other can be singular.

Examples of singular Nakajima categories

These categories become really hard to draw, see Keller–Scherotzke for the case D_4 which is next to impossible to reproduce.

These categories become really hard to draw, see Keller–Scherotzke for the case D_4 which is next to impossible to reproduce.

The singular Nakajima category for A_2 :

with relations

These categories become really hard to draw, see Keller–Scherotzke for the case D_4 which is next to impossible to reproduce.

The singular Nakajima category for A₂:

with relations

- 1. ab ba
- 2. $a^3 cb$

Graded affine quiver varieties

Definition

The graded affine quiver variety $\mathfrak{M}_0(w)$ for a finitely supported dimension vector $w \colon \operatorname{Obj}(\mathcal{S}) \to \mathbb{N}$ is the variety of \mathcal{S} -modules M, such that $M(x) \cong k^{w(x)}$.

Graded affine quiver varieties

Definition

The graded affine quiver variety $\mathfrak{M}_0(w)$ for a finitely supported dimension vector $w \colon \operatorname{Obj}(\mathcal{S}) \to \mathbb{N}$ is the variety of \mathcal{S} -modules M, such that $M(x) \cong k^{w(x)}$.

$$\mathfrak{M}_0(w) \cong \prod_{x,y \in \text{Obj}(S)} \text{Hom}_k \left(\text{Hom}_{S}(x,y), k^{w(x)w(y)} \right) / I$$

where I is an ideal of relations: a module M is described by

- 1. images of the morphisms in S;
- 2. relations that hold in S.

Graded affine quiver varieties

Definition

The graded affine quiver variety $\mathfrak{M}_0(w)$ for a finitely supported dimension vector $w \colon \operatorname{Obj}(\mathcal{S}) \to \mathbb{N}$ is the variety of \mathcal{S} -modules M, such that $M(x) \cong k^{w(x)}$.

$$\mathfrak{M}_0(w) \cong \prod_{x,y \in \text{Obj}(S)} \text{Hom}_k \left(\text{Hom}_{S}(x,y), k^{w(x)w(y)} \right) / I$$

where I is an ideal of relations: a module M is described by

- 1. images of the morphisms in S;
- 2. relations that hold in S.

Hence, $\mathfrak{M}_0(w)$ Zariski closed subset of an affine space!

Structure of $\mathfrak{M}_0(w)$

Understanding structure of S implies understanding $\mathfrak{M}_0(w)$. We can describe the quiver of S, with nodes $\mathbb{Z}\sigma(Q_0)$.

Structure of $\mathfrak{M}_0(w)$

Understanding structure of S implies understanding $\mathfrak{M}_0(w)$. We can describe the quiver of S, with nodes $\mathbb{Z}\sigma(Q_0)$.

Theorem (Keller-Scherotzke, 2013)

We have

$$\#\{\sigma(y) \to \sigma(x)\} = \dim \operatorname{Ext}_{\mathcal{S}}^{1}(\mathsf{S}_{\sigma(x)},\mathsf{S}_{\sigma(y)})$$

and

$$\#\{\text{relations for }\sigma(y)\text{ to }\sigma(x)\}=\dim \operatorname{Ext}_{\mathcal{S}}^2(\mathsf{S}_{\sigma(x)},\mathsf{S}_{\sigma(y)}).$$

Relating $\mathbf{D}^{\mathrm{b}}(kQ)$ to $k(\mathbb{Z}Q)$

Theorem (Happel, 1987)

There exists a canonical fully faithful functor

$$\mathsf{H} \colon k(\mathbb{Z} Q) o \mathsf{ind}(\mathbf{D}^{\mathsf{b}}(kQ))$$

such that the vertex (i,0) is sent to the indecomposable projective module P_i , for $i \in Q_0$.

Relating $\mathbf{D}^{\mathrm{b}}(kQ)$ to $k(\mathbb{Z}Q)$

Theorem (Happel, 1987)

There exists a canonical fully faithful functor

$$\mathsf{H} \colon k(\mathbb{Z} Q) o \mathsf{ind}(\mathbf{D}^\mathsf{b}(kQ))$$

such that the vertex (i,0) is sent to the indecomposable projective module P_i , for $i \in Q_0$.

It is moreover an equivalence if and only if Q is a Dynkin quiver.

Hence we get a relationship between the repetition quiver and the derived category!

An isomorphism of Ext's

Theorem

Let $p \ge 1$. For all $x, y \in \mathbb{Z}Q_0$ we have

$$\operatorname{Ext}_{\mathcal{S}}^{p}(\mathsf{S}_{\sigma(x)},\mathsf{S}_{\sigma(y)})\cong \operatorname{\mathsf{Hom}}_{\mathsf{D}^{\mathsf{b}}(kQ)}(\mathsf{H}(x),\Sigma^{p}\,\mathsf{H}(x)).$$

Moreover, if Q is not Dynkin these are zero for $p \ge 2$.

An isomorphism of Ext's

$\mathsf{Theorem}$

Let $p \ge 1$. For all $x, y \in \mathbb{Z}Q_0$ we have

$$\operatorname{Ext}_{\mathcal{S}}^p(\mathsf{S}_{\sigma(x)},\mathsf{S}_{\sigma(y)}) \cong \operatorname{\mathsf{Hom}}_{\mathsf{D}^{\mathsf{b}}(kQ)}(\mathsf{H}(x),\Sigma^p\,\mathsf{H}(x)).$$

Moreover, if Q is not Dynkin these are zero for $p \ge 2$.

Applying Keller-Scherotzke's result:

Corollary

For Q not Dynkin there are no relations! We have $\mathfrak{M}_0(w)$ isomorphic to affine space.

Stability and costability

Definition

An \mathcal{R} -module is *stable* if for all $x \in \mathbb{Z}Q_0$ non-frozen we have

$$\operatorname{\mathsf{Hom}}_{\mathcal{R}}(\mathsf{S}_{\mathsf{x}},M)=0.$$

Interpretation

M does not contain a non-zero submodule supported only on non-frozen vertices.

Stability and costability

Definition

An \mathcal{R} -module is *stable* if for all $x \in \mathbb{Z}Q_0$ non-frozen we have

$$\operatorname{\mathsf{Hom}}_{\mathcal{R}}(\mathsf{S}_{\mathsf{x}},M)=0.$$

Interpretation

M does not contain a non-zero submodule supported only on non-frozen vertices.

Dual definition for *costable*: $Hom_{\mathcal{R}}(M, S_x) = 0$.

Interpretation

M does not have a non-zero quotient supported only on non-frozen vertices.

Dimension vectors

We'll denote (v, w)

$$v \colon \mathsf{Obj}(\mathcal{R}) \setminus \mathsf{Obj}(\mathcal{S}) \to \mathbb{N}$$

 $w \colon \mathsf{Obj}(\mathcal{S}) \to \mathbb{N}$

dimension vectors for the regular Nakajima category.

A related moduli variety

Definition

The variety $\tilde{\mathfrak{M}}(v,w)$ is a moduli space for the \mathcal{R} -modules M such that

- 1. *M* is stable;
- 2. $M(x) \cong k^{v(x)}$;
- 3. $M(\sigma(x)) \cong k^{w(\sigma(x))}$.

A related moduli variety

Definition

The variety $\tilde{\mathfrak{M}}(v,w)$ is a moduli space for the \mathcal{R} -modules M such that

- 1. *M* is stable:
- 2. $M(x) \cong k^{v(x)}$;
- 3. $M(\sigma(x)) \cong k^{w(\sigma(x))}$.

There is moreover a (free) base change action by the group

$$G_{\nu} := \prod_{x \in \mathsf{Obj}(\mathcal{R}) \setminus \mathsf{Obj}(\mathcal{S})} \mathsf{GL}_{\nu(x)}(k)$$

Only on the non-frozen vertices!

Graded quiver varieties

Definition

The graded quiver variety $\mathfrak{M}(v, w)$ is the quotient $\tilde{\mathfrak{M}}(v, w)/\mathsf{G}_v$.

Graded quiver varieties

Definition

The graded quiver variety $\mathfrak{M}(v, w)$ is the quotient $\tilde{\mathfrak{M}}(v, w)/\mathsf{G}_v$.

Using GIT this becomes a smooth quasi-projective variety, and the restriction res: $\mathsf{Mod}\text{-}\mathcal{R} \to \mathsf{Mod}\text{-}\mathcal{S}$ becomes a projection map

$$\pi \colon \mathfrak{M}(\mathsf{v},\mathsf{w}) \to \mathfrak{M}_0(\mathsf{w})$$

which is *proper* ("=" inverse images of compacts are compact).

Stratification

Goal

A stratification of $\mathfrak{M}_0(w)$.

Definition

Denote by $\mathfrak{M}^{\text{reg}}(v, w)$ the open subset of $\mathfrak{M}(v, w)$ formed by isomorphism classes of \mathcal{R} -modules which are also costable.

Stratification

Goal

A stratification of $\mathfrak{M}_0(w)$.

Definition

Denote by $\mathfrak{M}^{\text{reg}}(v, w)$ the open subset of $\mathfrak{M}(v, w)$ formed by isomorphism classes of \mathcal{R} -modules which are also costable.

By varying the vector v (w is fixed) we can stratify $\mathfrak{M}_0(w)$ by the images of the non-empty $\mathfrak{M}^{\text{reg}}(v,w)$, and each of these is isomorphic to its image in $\mathfrak{M}_0(w)$.

Theorem (Keller-Scherotzke, 2013)

There is a canonical δ -functor

$$\Phi \colon \mathsf{mod} ext{-}\mathcal{S} o \mathbf{D}^\mathsf{b}(kQ)$$

such that

Theorem (Keller-Scherotzke, 2013)

There is a canonical δ -functor

$$\Phi \colon \mathsf{mod} ext{-}\mathcal{S} o \mathbf{D}^{\mathsf{b}}(kQ)$$

such that

1. the simple module $S_{\sigma(x)}$ for $x \in \mathbb{Z}Q_0$ is sent to H(x);

Theorem (Keller-Scherotzke, 2013)

There is a canonical δ -functor

$$\Phi \colon \mathsf{mod} ext{-}\mathcal{S} o \mathbf{D}^\mathsf{b}(kQ)$$

such that

- 1. the simple module $S_{\sigma(x)}$ for $x \in \mathbb{Z}Q_0$ is sent to H(x);
- 2. $M_1, M_2 \in \mathfrak{M}_0(w)$ lie in the same stratum if and only if $\Phi(M_1) \cong \Phi(M_2)$ in $\mathbf{D}^{\mathrm{b}}(kQ)$.

Applications

 generalising the following result: Desingularization of quiver Grassmannians for Dynkin quivers, Giovanni Cerulli Irelli, Evgeny Feigin and Markus Reineke, arXiv:1209.3960

Applications

- generalising the following result: Desingularization of quiver Grassmannians for Dynkin quivers, Giovanni Cerulli Irelli, Evgeny Feigin and Markus Reineke, arXiv:1209.3960
- link with derived algebraic geometry and moduli spaces of derived categories: Moduli of objects in dg categories, Bertrand Toën and Michel Vaquié, arXiv:math/0503269

Derived moduli stacks

$$i(\bigsqcup_{w} \mathfrak{M}_{0}(w)) \rightarrow \mathsf{RPerf}_{\mathcal{S}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \mathsf{RPerf}_{\mathcal{Q}}$$

All of these objects are "derived".

Questions

- 1. What are the geometric properties of these morphisms?
- 2. Do we obtain a smooth atlas for the moduli stacks?
- 3. Can we strengthen the results on the stratification?
- 4. Do these stacks have interesting intrinsic structure?

Corollary in NCAG

Claim

The derived moduli stack of vector bundles on a noncommutative curve is [-1,0]-truncated, just like the commutative case.

Corollary in NCAG

Claim

The derived moduli stack of vector bundles on a noncommutative curve is [-1,0]-truncated, just like the commutative case.

Context

- non-derived moduli stack Vect_C of vector bundles on a commutative curve C is smooth (no need for derivedness);
- non-derived moduli stack Vect_S of vector bundles on a commutative surface S is singular (but derived smooth);

Corollary in NCAG

Claim

The derived moduli stack of vector bundles on a noncommutative curve is [-1,0]-truncated, just like the commutative case.

Context

- non-derived moduli stack Vect_C of vector bundles on a commutative curve C is smooth (no need for derivedness);
- non-derived moduli stack Vect_S of vector bundles on a commutative surface S is singular (but derived smooth);
- 3. derived moduli stack of vector bundles (associated to Q non-Dynkin) on a noncommutative curve is as nice as the commutative counterpart.