### Вторая группа

### Общая характеристика

Всю группу можно разделить на **типические металлы** *Be,Mg* и **щелочно-земельные** *Ca, Sr, Ba, Ra* 

#### земельные

Вниз по группе наблюдается увеличение атомного и ионного радиусов и понижение потенциалов ионизации. Общая закономерность оказывается нарушенной на радии Ra, у которого первые два потенциала ионизации выше, чем у бария Ba. Это объясняется эффектом «инертной»  $6s^2$ -электронной пары, которая экранирована заполненным предпоследним d-подуровнем. Стан-

- Для данных элементов нет "запрета" на получение степени окисления +1. Например, получилось:  $BeO+Be\longrightarrow Be_2O$  . Однако, при попытке восстановить галогениды ЩМ получается смесь продуктов:  $BaCl_2+Ba+H_2\longrightarrow BaHCl$
- Химия бериллия отличается от других элементов этой группы так как ион  $Be^{2+}$  имеет сравнительно малый радиус при относительно высоком заряде и может образовывать не более  $4^{-x}$  ковалентных связей

## Нахождение в природе

- кальцит *CaCO*<sub>3</sub>
- ullet доломит  $CaCO_3 \cdot MgCO_3$
- ullet оливин  $MgO\cdot SiO_2$
- $CaSO_4 \cdot H_2O$
- целестин  $SrSO_4$
- барит BaSO<sub>4</sub>
- ullet алюмосиликат берилл  $Be_3Al_2[Si_6O_{18}]$
- ullet несквегонит  $MgCO_3 \cdot 3H_2O$
- Радий образуется при распаде урана и копится в урановых рудах

Токсичность солей бария обусловлена тем, что радиусы  $Ba^{2+}$  и  $K^+$  довольно близки и конкурируют в биохимических процессах.

## Бериллий и алюминий

Их ионы имеют одинаковой поверхностной плотностью, поэтому свойства довольно похожи, например:

- Оксидная пленка
- Пассивация концентрированной азотной
- Оба реагируют с щелочами с выделением водорода
- Соли подвержены гидролизу
- Карбиды  $Be_2C$  и  $Al_4C_3$  при гидролизе образуют метан

#### Получение

# Важно. Промышленная переработка бериллия:

I способ

$$Be_3Al_2[Si_6O_{18}] + H_2SO_4 \longrightarrow BeSO_4Al_2(SO_4)_3 + SiO_2 \downarrow + H_2O$$

После раствор упаривают, добавляют сульфат аммония, алюминий выделяется в виде алюмоаммонийных квасцов  $(NH_4)Al(SO_4)_2\cdot H_2O)$  Или:

$$Be_3Al_2[Si_6O_{18}] + 10K_2CO_3 \twoheadrightarrow 3K_2BeO_2 + 2KAlO_2 + 6K_2SiO_3 + 10CO_2$$

Или:

$$\begin{split} \text{Be}_3\text{Al}_2[\text{Si}_6\text{O}_{18}] + 6\text{Na}_2[\text{SiF}_6] &\longrightarrow \\ &\longrightarrow 3\text{Na}_2[\text{BeF}_4] + 2\text{Na}_3[\text{AlF}_6] + 3\text{SiF}_4^{\uparrow} + 9\text{SiO}_2 \end{split}$$

## *II* второй способ

$$Mg + BeF_2 \xrightarrow{1000^{\circ}} MgF_2 + Be$$

Получение других Ме\*\*

$$egin{aligned} Si + MgO & \xrightarrow{1200^{\circ}} CaO \cdot SiO_2 + Mg \uparrow \ & C + MgO & \xrightarrow{2000^{\circ}} CO + Mg \uparrow \ & Al + CaO & \xrightarrow{t^{\circ}} CaO \cdot Al_2O_3 + Ca \uparrow \end{aligned}$$

$$Al + SrO(BaO) 
ightarrow SrO(BaO) \cdot Al_2O_3 + Sr(Ba) \uparrow$$

#### Химические свойства

Все металлы реагируют с серой, галогенами, углеродом, азотом, фосфором, кислотами, магний реагирует даже с хлоридом аммония:

$$Mg + 2NH_4Cl + 2H_2O \rightarrow MgCl_2 + 2NH_3 \cdot H_2O + H_2$$

Для бериллия характерно образование комплексных соединений:

$$Be+NH_4F
ightarrow (NH_4)_2[BeF_4]+NH_3+H_2\uparrow$$

$$Be + NaOH + H_2O 
ightarrow Na_2[Be(Oh)_4] + H_2 \uparrow$$

Получение

В основном получают металлотермией:

$$BeF_2 + Mg \xrightarrow{900^{\circ}} MgF_2 + Be$$

$$BaO + Al \xrightarrow{1000^{\circ}} BaAl_2O_4 + Ba$$

Взаимодействие с кислородом

В отличие от щелочных металлов, при взаимодействии с кислородом не образуют пероксидов и надпероксидов Еще:

BeO + Na<sub>2</sub>CO<sub>3</sub> 
$$\rightarrow$$
 Na<sub>2</sub>BeO<sub>2</sub> + CO<sub>2</sub>  
BeO + 2NaHSO<sub>4</sub>  $\rightarrow$  Na<sub>2</sub>SO<sub>4</sub> + BeSO<sub>4</sub> + H<sub>2</sub>O  
BeO + 2NaHF<sub>2</sub>  $\rightarrow$  Na<sub>2</sub>[BeF<sub>4</sub>] + H<sub>2</sub>O  
BeO + C + Cl<sub>2</sub>  $\rightarrow$  BeCl<sub>2</sub> + CO

Гидроксиды

Гидроксид бериллия **амфотерен**, но с преобладанием основных свойств

Be(OH)<sub>2</sub> 
$$\rightleftharpoons$$
 BeOH<sup>+</sup> + OH<sup>-</sup> p $K_b = 5,4$   
Be(OH)<sub>2</sub> + H<sub>2</sub>O  $\rightleftharpoons$  [Be(OH)<sub>3</sub>]<sup>-</sup> + H<sub>3</sub>O<sup>+</sup>  
p $K_a = pK_w - pK([Be(OH)_3^-] = 14 - 3,54 = 10,46$ 

Все гидроксиды поглощают углекислый газ из воздуха, образуя карбонаты

#### Соли

С увеличением ионного радиуса, энергия гидратации падает, поэтому понижается устойчивость кристаллогидратов и уменьшению растворимости солей

 $MgO + MgCl_2H_2O o Mg(OH)_2 \cdot MgCl_2 \cdot H_2O$  -"магнезиальный цемент"



Рис. 10.3. Методы получения безводного хлорида магния

$$\begin{split} MgCl_2(NH_4)_2S + H_2O &\rightarrow Mg(OH)_2 \downarrow NH_{4HS} + NH_4HCL \\ BeCl_2 + NaHCO_3 + H_2O &\rightarrow Be_2(OH)_2CO_3 + NaCl + CO_2 + H_2O \\ MgCl_2 + NaHCO_3 &\rightarrow MgCO_3 \downarrow + H_2O + NaCl \\ 2BeCl_2 + 2(NH_4)_2CO_3 + H_2O &\rightarrow Be_2(OH)_2CO_3 \downarrow + 4NH_4Cl + CO_2 \\ 5MgCl_2 + 5(NH_4)_2CO_3 + 5H_2O &\rightarrow \\ &\rightarrow Mg(OH)_2 \cdot 4MgCO_3 \cdot 4H_2O \downarrow + 10NH_4Cl + CO_2 \\ Be(OH)_2 + K_2CO_3 + HF \rightarrow K_2[BeF_4] + CO_2 + H_2O \end{split}$$

При кипячении карбонатные комплексы бериллия разлагаются:

$$(NH_4)_6[Be_4O(CO)_6] \stackrel{t^\circ}{\longrightarrow} Be_2(OH)_2CO_3 \downarrow + CO_2 \uparrow + NH_3 \uparrow + H_2O$$