

首页 > 天池大赛 > 日常学习赛 > 【AI入门系列】地球观察员: 建筑物识别学习赛

【AI入门系列】地球观察员:建筑物识别学习赛

赛事类型 日常学习赛 奖金 ¥0 团队 5842 赛季5 2025-09-22 状态 进行中

举办方 TIANCH! 天池

已报名 查看比赛协议

赛制

赛题与数据 文档 大小 操作 ossutil命令 排行榜 SS_Data_A_20210201.md .md(939B) 下载 复制命令

代码规范

学习建议

获奖名单

论坛

提交结果

我的成绩 我的团队

无人机技术高速发展的今天,面对海量的航拍图像,AI如何识别地表建筑物呢?

赛题以计算机视觉为背景,要求选手使用给定的航拍图像训练模型并完成地表建筑物识别任务。为更好的引导大家入门,我们为本赛题定制 案和学习任务,具体包括语义分割的模型和具体的应用案例。在具体任务中我们将讲解具体工具和使用和完成任务的过程。

通过对本方案的完整学习,可以帮助掌握语义分割基本技能。同时我们也将提供专属的视频直播学习通道。

赛题描述及数据说明

寒販背景

遥感技术已成为获取地表覆盖信息最为行之有效的手段,遥感技术已经成功应用于地表覆盖检测、植被面积检测和建筑物检测任务。本赛影 数据,需要参赛选手完成地表建筑物识别,将地表航拍图像素划分为有建筑物和无建筑物两类。

如下图,左边为原始航拍图,右边为对应的建筑物标注。

Chicago – reference

赛题数据来源(Inria Aerial Image Labeling),并进行拆分处理。数据集报名后可见并可下载。赛题数据为航拍图,需要参赛选手识别图片 建筑具体像素位置。

- train_mask.csv: 存储图片的标注的rle编码;
- train 和 test 文件夹:存储训练集和测试集图片;

rle编码的具体的读取代码如下:

```
import numpy as np
 import pandas as pd
 import cv2
 # 将图片编码为rle格式
def rle_encode(im):
      im: numpy array, 1 - mask, 0 - background
     Returns run length as string formated
     pixels = im.flatten(order = 'F')
     pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
     runs[1::2] -= runs[::2]
return ' '.join(str(x) for x in runs)
# 将rle格式进行解码为图片
def rle_decode(mask_rle, shape=(512, 512)):
     mask_rle: run-length as string formated (start length)
     shape: (height, width) of array to return
Returns numpy array, 1 - mask, 0 - background
     s = mask_rle.split()
     starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1
     ends = starts + lengths
img = np.zeros(shape[0]*shape[1], dtype=np.uint8)
for lo, hi in zip(starts, ends):
    img[lo:hi] = 1
     return img.reshape(shape, order='F')
读取样例:
train_mask = pd.read_csv('train_mask.csv', sep='\t', names=['name', 'mask'])
 # 读取第一张图,并将对于的rle解码为mask矩阵
 img = cv2.imread('train/'+ train_mask['name'].iloc[0])
 mask = rle_decode(train_mask['mask'].iloc[0])
print(rle_encode(mask) == train_mask['mask'].iloc[0])
 # 结果为True
```

评估标准

【AI入门系列】地球观察员: 建筑物识别学习赛 学习赛 天池大赛-阿里云天池的团队

赛题使用Dice coefficient来衡量选手结果与真实标签的差异性,Dice coefficient可以按像素差异性来比较结果的差异性。Dice coefficient的非 式如下:

$$\frac{2*|X\cap Y|}{|X|+|Y|}$$

其中X是预测结果,Y为真实标签的结果。当X与Y完全相同时Dice coefficient为1,排行榜使用所有测试集图片的平均Dice coefficient来 \emptyset 值越大越好。

结果提交

提交前请确保预测结果的格式与 test_sample_submit.csv 中的格式一致,以及提交文件后缀名为csv。

注意事项:

- 第一列为test图片名称, 第二列为rle编码;
- 如测试集图没有识别出结果, 也需要提交空字符串;
- 测试集图片顺序需要与 test_sample_submit.csv 保持一致;

比赛规则

为了比赛公平公正,所有参赛选手**不允许使用任何外部数据集**(如外部航拍数据)。同时所有参赛选手**不允许使用任何非公开的预**

型,公开的预训练模型 (如ImageNet和COCO) 可以使用。

为了比赛趣味性,不建议选手使用伪标签操作,同时建议选手保存好代码,最终比赛程序代码需要完整复现。

关于我们 法务协议 联系我们邮箱: tianchi_bigdata@member.alibaba.com 了

为什么选择阿里云	产品和定价	解决方案	文档与社区	权益中心	支持与服务	关注阿里云
什么是云计算	全部产品	技术解决方案	文档	免费试用	基础服务	关注阿里云公众号或下载阿里云
全球基础设施	免费试用		开发者社区	高校计划	企业增值服务	APP,关注云资讯,随时随地运 维管控云服务
技术领先	产品动态		天池大赛	5亿算力补贴	迁云服务	维目在公服为
稳定可靠	产品定价		培训与认证	推荐返现计划	官网公告	
安全合规	配置报价器				健康看板	
分析师报告	云上成本管理				信任中心	联系我们: 4008013260

法律声明 Cookies政策 廉正举报 安全举报 联系我们 加入我们

阿里巴巴集团 淘宝网 天猫 全球速卖通 阿里巴巴国际交易市场 1688 阿里妈妈 飞猪 阿里云计算 AliOS 万网 高德 UC 友盟 优酷 钉钉 支付宝 达摩院 淘宝海外 阿里云盘 饿了么

© 2009-2025 Aliyun.com 版权所有 增值电信业务经营许可证: 浙B2-20080101 域名注册服务机构许可: 浙D3-20210002

● 浙公网安备 33010602009975号 浙B2-20080101-4