Álgebras, Grupos y Representaciones Ejercicios

Luis Antonio Ortega Andrés, Guillermo Galindo Ortuño

March 31, 2020

Ejercicio 1. Sea A un anillo. Diremos que A es trivial si $A = \{0\}$. Demostrar que A es trivial si, y sólo si, 1 = 0.

Supongamos que A es trivial, entonces como A es un anillo, $\exists 1 \in A \implies 0 = 1$. Sea ahora 1 = 0, sea $a \in A$ se tiene que $a = a * 1 = a * 0 = 0 \implies A = \{0\}$.

Ejercicio 2. Sea K un cuerpo y $M_n(K)$ el anillo de matrices cuadradas de orden n con entradas en K. Demostrar que $Z(M_n(K)) = \{kI_n \mid k \in K\}$, donde I_n es la matriz identidad de orden n.

Es evidente que $\{kI_n \mid k \in K\} \subset Z(M_n(K))$. Tomemos $A \in Z(M_n(K))$, $E_{ij} \in M_n(K)$ la matriz de ceros salvo un 1 en la position (i, j). Se tiene que

$$E_{ij}A = AE_{ij} \ \forall i, j \in \{0, \dots, n-1\}$$

Pero es sencillo comprobar que $E_{ij}A$ es una matriz de ceros salvo por tener la fila j-ésima de A en la fila i-ésima. De igual forma AE_{ij} es una matriz de ceros salvo por tener la columna i-ésima de A en la columna j-ésima.

Luego estamos igualando una matriz con una sola fila no nula y una con una sola columna no nula, por ello A debe ser diagonal. Además, el valor i-ésimo y el valor j-ésimo de la diagonal deben coincidir. Con esto $A \in \{kI_n \mid k \in K\}$.

Ejercicio 3. Sea V un espacio vectorial sobre un cuerpo K y el conjunto

$$End_K(V) = \{ f : V \rightarrow V \mid f \text{ es } K\text{-lineal} \}$$

comprobar que es un subanillo de End(V). Consideremos la aplicación $h: K \to End_K(V)$ que asigna a cada $k \in K$ la homotecia $h(k): V \to V$, definido por $h(k)(v) = kv \ \forall v \in V$. Comprobar que h está bien definida y que es un morfismo de anillos. Además si $T: V \to V$ es K-lineal y $k \in K$, comprobar que $T \circ h(k) = h(k) \circ T$, luego $Im(h) \subset Z(End_K(V))$. Con esto $End_K(V)$ es una K-álgebra.

Es claro que con las operaciones de End(V), se converva la K-linealidad, luego $End_K(V)$ es un subanillo.

La aplicación h está bien definida por ser V un espacio vectorial sobre K. Veamos que es un morfismo de anillos.

- Sean $a, b \in K$ y $v \in V$, h(a+b)(v) = (a+b)v = av + bv = h(a)(v) + h(b)(v) = (h(a) + h(b))(v)
- Sean $a, b \in K$ y $v \in V$, $h(ab)(v) = (ab)v = a(bv) = ak(b)(v) = k(a) \circ k(b)(v)$
- Sea $v \in V$, k(1)(v) = 1v = v = Id(v)

Hagamos la última comprobación que se nos pide $T \circ h(k)(v) = T(kv) = kT(v) = h(k) \circ T(v)$.

Ejercicio 4. Supongamos que A y B son K-álgebras con morfismos de estructura ρ_A y ρ_B . Sea $\phi: A \to B$ un morfismo de anillos. Demostrar que ϕ es un morfismo de K-álgebras si, y sólo si, $\phi \circ \rho_A = \rho_B$.

Supongamos que $\phi \circ \rho_A = \rho_B$, sean $k \in K$ y $a \in A$

$$\phi(ka) = \phi(\rho_A(k) \star a) = \phi \circ \rho_A(k) \star \phi(a) = \rho_B(k) \star \phi(a) = k\phi(a)$$

Que es la única propiedad que necesita ϕ para ser un morfismo de K-espacios vectoriales. Supongamos ahora que ϕ un morfismo de K-álgebras, veamos que $\phi \circ \rho_A = \rho_B$. Sea $k \in K, b \in B$

$$\phi \circ \rho_A(k) = \phi(k \star 1_A) = \phi(k) \star \phi(1_A) = k \star 1_B = k1_B = \rho_B(k)$$

Ejercicio 5. Sea A un espacio vectorial sobre un cuerpo K. Demostrar que dar una estructura de K-álgebra asociativa unital sobre A es equivalente a dar una multiplicación asociativa K-bilineal $\star: A \times A \to A$ junto con una aplicación K-lineal $\tau: K \to A$ tal que $\tau(k) \star a = ka = a \star \tau(k) \ \forall k \in K, a \in A$

Supongamos que tenemos una estructura de K-álgebra sobre A. Denotamos \star a la multiplicación de A como anillo y $\tau: K \to Z(A)$ al morfismo que dota de estructura de K-álgebra. Veamos que τ es K-lineal, sea $k \in K$:

$$\tau(k) = \tau(k) \star 1_A = k1_A = k\tau(1_K)$$

Comprobemos ahora que \star es K-bilineal, la bilinealidad viene dada por la estructura de anillo. Sean $k \in K, a, b \in A$

$$k(a \star b) = \tau(k) \star (a \star b) = (\tau(k) \star a) \star b = (ka) \star b$$

$$k(a \star b) = \tau(k) \star (a \star b) = (\tau(k) \star a) \star b = (a \star \tau(k)) \star b = a \star (\tau(k) \star b) = a \star (kb)$$

Supongamos ahora que tenemos ambas aplicaciones definidas. Notamos que $\tau(1_K) \star a = 1_K a = a = a \star \tau(1_K)$. Luego $\tau(1_K) := 1_A$ actua como elemento neutro de A para la operación \star . Si comprobamos que A con $(\star, 1_A)$ es un anillo, entonces tendremos que A es una K-álgebra. Como la operación es asociativa por hipótesis y ya tenemos el elemento neutro, solo nos quedaría comprobar la distributividad que la tenemos por ser \star una aplicación bilineal.

Ejercicio 6. * Sea K un cuerpo. Comprobar que el anillo de polinomios es una K[X]-álgebra. Si ahora tomamos un ideal no nulo I de K[X], comprobar que A = K[X]/I tiene estructura de K-álgebra. Sabemos que existe un único polinómio $p(X) \in K[X]$ tal que $I = \langle p(X) \rangle$. Llamamos n

al grado de p(X), y suponemos n > 0. Comprobar que $\mathcal{B} = \{1 + I, x + I, \dots, x^{n-1} + I\}$ es una base de A como K-espacio vectorial y, por tanto $dim_K A = n$. Sea

$$p(X) = p_0 + p_1 X + p_2 X^2 \cdots + X^n$$

Comprobar que la matriz de $M_n(K)$ que representa al endomorfismo $\lambda(x+I)$ con respecto a la base \mathcal{B} es

$$\tilde{N}(p) = \begin{bmatrix} 0 & \dots & 0 & -p_0 \\ 1 & \dots & 0 & -p_1 \\ \vdots & & \vdots & \vdots \\ 0 & \dots & 1 & -p_{n-1} \end{bmatrix}$$

y que A es isomorfa a la subálgebra $\{a_0I+a_1\tilde{N}(p)+\cdots+a_{n-1}\tilde{N}(p)^{n-1}:a_0,a_1,\ldots,a_{n-1}\in K\}\subset M_n(K)$

El anillo de polinomios K[X] es una K-álgebra utilizando el morfismo de anillos

$$\rho: K \to K[X]$$
$$k \mapsto k$$

El morfismo de anillos que da a A = K[X]/I estructura de K-álgebra es el siguiente:

$$\rho: K \to K[X]/I$$
$$k \mapsto k + I$$

La comprobación de que se tratan de morfismos de anillos es rutinaria. El algoritmo de división nos asegura que todos los polinomios de A tienen grado a lo sumo n-1, por tanto \mathcal{B} es un sistema de generadores de A y forman una base por ser linealmente independientes.

Sea el endomorfismo $\lambda(x+I)(a)=(x+I)a$, es claro que las primeras n-1 columnas de la matriz $\tilde{N}(p)$ corresponden a multiplicar x+I por los elementos $1+I,\ldots,x^{n-2}+I$. Ahora,

$$(x+I)(x^{n-1}+I) = x^n + I = -p(X) + I$$

De ahí la última columna de la matriz.

Dado $a \in A$ con $a = (a_0, \dots, a_{n-1})$ en \mathcal{B} el morfismo de K-álgebras lleva $(a_0, \dots, a_{n-1}) \to a_0 I + a_1 \tilde{N}(p) + \dots + a_{n-1} \tilde{N}(p)^{n-1}$

TODO terminar

Ejercicio 7. * Sea K un cuerpo. Dar la lista, salvo isomorfismos, de todas las K-álgebras asociativas unitales de dimensión 2.

Sea A una K-álgebra con morfismo de estructura ρ . Sea $\{1,a\}$ la base de A como espacio vectorial. Consideramos

$$f: K[X] \to A$$
$$\alpha \mapsto \rho(\alpha)$$
$$x \mapsto a$$

Es un morfismo de álgebras por ser $\rho = f \circ \rho_K$ con ρ_K el morfismo de estructura de K[X]. Notamos que la imagen de f tiene dimensión 2 como espacio vectorial, luego es sobreyectivo (?). Esto nos dice que existe I ideal de K[X] tal que $K[X]/I \cong A$. Por ello, buscar álgebras de dimensión 2 es equivalente a buscar ideales del anillo de polinomios K[X]. Tenemos entonces 3 opciones

- $K[X]/\langle x^2-1\rangle$
- $K[X]/\langle x^2+1\rangle$
- $K[X]/\langle x^2 \rangle$

TODO Comprobar que es verdad TODO Comprobar cuales son asociativos unitales

Ejercicio 8. Expresar el cuerpo $\mathbb{Q}(\sqrt{2} \text{ como una } \mathbb{Q}\text{-álgebra de un álgebra de matrices sobre } \mathbb{Q}$.

Tomamos la base $\mathcal{B} = \{1, \sqrt{2}\}$, el morfismo inyectivo de \mathbb{Q} -álgebras $m = M_{\mathcal{B}} \circ \lambda : \mathbb{Q} \to M_{\mathbb{P}}(\mathbb{Q})$ verificando:

- $\lambda(a+b\sqrt{2})(1) = a+b\sqrt{2} \implies (a,b) \text{ en } \mathbb{B}$
- $\lambda(a+b\sqrt{2})(\sqrt{2}) = a\sqrt{2} + 2b \implies (2b,a) \text{ en } \mathbb{B}$

Luego

$$\mathbb{Q}(\sqrt{2})\cong \{m(a+b\sqrt{2}), a,b\in\mathbb{Q}\}\cong \left\{\begin{bmatrix} a & 2b\\ b & a\end{bmatrix}, a,b\in\mathbb{Q}\right\}$$

Ejercicio 9. Sea

$$\mathbb{H} = \left\{ \begin{bmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{bmatrix} : \alpha, \beta \in \mathbb{C} \right\}$$

- 1. Demostrar que \mathbb{H} es una subálgebra real de $M_2(\mathbb{C})$ y que $Z(\mathbb{H}) = \mathbb{R}$
- 2. Demostrar que todo elemento no nulo de \mathbb{H} es una unidad
- 3. Demostrar que las matrices

$$\mathbf{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \mathbf{i} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \mathbf{j} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \mathbf{k} = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

forman una base de \mathbb{H} como espacio vectorial real.

4. Comprobar las identidades

$$i^2 = i^2 = k^2 = -1$$
, $ii = k$, $ik = i$, $ki = i$

Para ver que es una subálgebra, vemos que \mathbb{H} es un subespacio vectorial de $M_2(\mathbb{C})$, vemos que es cerrado para la suma de matrices

$$\begin{bmatrix} \alpha_1 & -\bar{\beta}_1 \\ \beta_1 & \bar{\alpha}_1 \end{bmatrix} \begin{bmatrix} \alpha_2 & -\bar{\beta}_2 \\ \beta_2 & \bar{\alpha}_2 \end{bmatrix} = \begin{bmatrix} \alpha_1 + \alpha_2 & -\bar{\beta}_1 + \bar{\beta}_2 \\ \beta_1 + \beta_2 & \bar{\alpha}_1 + \bar{\alpha}_2 \end{bmatrix}$$

y para la multiplicación

$$\begin{bmatrix} \alpha_1 & -\bar{\beta}_1 \\ \beta_1 & \bar{\alpha}_1 \end{bmatrix} \begin{bmatrix} \alpha_2 & -\bar{\beta}_2 \\ \beta_2 & \bar{\alpha}_2 \end{bmatrix} = \begin{bmatrix} \alpha_1\alpha_2 - \bar{\beta}_1\beta_2 & -\alpha_1\bar{\beta}_2 - \bar{\beta}_1\bar{\alpha}_2 \\ \beta_1\alpha_2 + \bar{\alpha}_1\beta_2 & -\beta_1\bar{\beta}_2 + \bar{\alpha}_1\bar{\alpha}_2 \end{bmatrix}$$

además $1 \in \mathbb{H}$

Para que un elemento esté en el centro deben coincidir

$$\begin{bmatrix} \alpha_1 & -\bar{\beta}_1 \\ \beta_1 & \bar{\alpha_1} \end{bmatrix} \begin{bmatrix} \alpha_2 & -\bar{\beta}_2 \\ \beta_2 & \bar{\alpha_2} \end{bmatrix} = \begin{bmatrix} \alpha_1\alpha_2 - \bar{\beta}_1\beta_2 & -\alpha_1\bar{\beta}_2 - \bar{\beta}_1\bar{\alpha}_2 \\ \beta_1\alpha_2 + \bar{\alpha}_1\beta_2 & -\beta_1\bar{\beta}_2 + \bar{\alpha}_1\bar{\alpha}_2 \end{bmatrix}$$

$$\begin{bmatrix} \alpha_2 & -\bar{\beta}_2 \\ \beta_2 & \bar{\alpha}_2 \end{bmatrix} \begin{bmatrix} \alpha_1 & -\bar{\beta}_1 \\ \beta_1 & \bar{\alpha}_1 \end{bmatrix} = \begin{bmatrix} \alpha_2\alpha_1 - \bar{\beta}_2\beta_1 & -\alpha_2\bar{\beta}_1 - \bar{\beta}_2\bar{\alpha}_1 \\ \beta_2\alpha_1 + \bar{\alpha}_2\beta_1 & -\beta_2\bar{\beta}_1 + \bar{\alpha}_2\bar{\alpha}_1 \end{bmatrix}$$

Para tener esto necesitamos $\beta_1\alpha_2 + \bar{\alpha_1}\beta_2 = \beta_2\alpha_1 + \bar{\alpha_2}\beta_1 \implies \beta_1 = 0 \text{ y } \alpha_1 = \bar{\alpha_1}$. Luego $\alpha \in \mathbb{R}$

$$Z(\mathbb{H}) = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} : a \in \mathbb{R} \right\} \cong \mathbb{R}$$

2. Para ver que todo elemento es una unidad basta tomar

$$\begin{bmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{bmatrix}^{-1} = \begin{bmatrix} \bar{\alpha}/\|\alpha\| & \bar{\beta}/\|\beta\| \\ -\beta/\|\beta\| & \alpha/\|\alpha\| \end{bmatrix}$$

3. Veamos ahora que dichas matrices son una base, es sencillo ver que son linealmente independientes, luego comprobemos que son un sistema de generadores

$$\begin{bmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{bmatrix} = Re(\alpha)\mathbf{1} + Re(\beta)\mathbf{i} + Im(\alpha)\mathbf{j} + Im(\beta)\mathbf{k}$$

4. Para comprobar dichas identidades basta con realizar las cuentas correspondientes.

Ejercicio 10. Dado un A-módulo V no nulo, demostrar que

$$Ann_A(V) = \{ a \in A : av = 0 \ \forall v \in V \}$$

es un ideal de A. Dotar a V de estructura de $A/Ann_A(V)$ -módulo fiel (es decir, la representación correspondiente es fiel).

Sean $a, b \in Ann_A(V)$, tenemos que $(a + b)(v) = av + bv = 0 \implies a + b \in Ann_A(V)$. Sea ahora $a \in Ann_A(V), b \in A, (ab)v = a(bv) = 0 \implies ab \in Ann_A(V)$ luego tenemos un ideal.

Una representación es fiel si y solo si su núcleo es trivial. Sea ρ el morfismo de estructura de V, tenemos que $Ker(\rho) = Ann_A(V)$ que hemos visto es un ideal, luego para dotar a V de estructura de $A/Ann_A(V)$ -módulo fiel definimos el morfismo de estructura

$$\tau: A/Ann_A(V) \to End(V)$$

 $a + Ann_A(V) \mapsto \rho(a)$

Ejercicio 11. Sea M un A-módulo

1. Dados submódulos N_1, \ldots, N_m de M, tenemos que

$$N_1 + \dots + N_m = \{n_1 + \dots + n_m : n_i \in Ni\}.$$

- 2. Dado $X = \{m_1, \dots, m_n\} \subset M$, tenemos que $RX = Rm_1 + \dots + Rm_n$.
- **1.** Por N_1, \ldots, N_m submódulos es claro que $N_1 \cup \cdots \cup N_m \subset \{n_1 + \cdots + n_m : n_i \in Ni\}$ y que $\{n_1 + \cdots + n_m : n_i \in Ni\}$ es también un submódulos de M.

Supongamos ahora que existe N submódulo de M con $\cup_i N_i \subset N$ submódulo de M. Para cualesquiera n_1, \ldots, n_m en N_1, \ldots, N_m respectivamente, por contener N a la unión de todos los N_i ,

$$n_i \in N \forall i = 1, \dots, m.$$

Y por N submódulo,

$$\sum_{i} n_i \in N \implies \{n_1 + \dots + n_m : n_i \in Ni\} \subset N.$$

- **2.** La inclusión de izquierda a derecha es inmediata pues $Rm_1 + \cdots + Rm_n$ es un submódulo que contiene X. Para la otra inclusión, claramente $Rm_1, \ldots, Rm_n \subset Rx$. Ahora, usando el apartado anterior, y que Rx es un submódulo de M, tenemos $Rm_1 + \cdots + Rm_n \subset Rx$
- **Ejercicio 12.** Demostrar que un conjunto de generadores $m_i : i \in I$ de un módulo ${}_AM$ es una base si, y solo si, la igualdad $\sum_i r_i m_i = 0$ para $r_i \in A$ implica $r_i = 0$ para todo $\forall i \in I$. Dar un ejemplo de módulo no nulo finitamente generado que no sea libre.

Razonemos por contradicción para la primera implicación. Supongamos que m_1, \ldots, m_n es base de AM y que existen r_1, \ldots, r_n , con $r_k \neq 0$ tal que $\sum_i r_i m_i = 0$. Sea $m \in M$ con $m = \sum_i a_i m_i$. Entonces

$$m = \sum_{i} a_i m_i = \sum_{i} a_i m_i + \sum_{i} r_i m_i = \sum_{i} (a_i + r_i) m_i$$

con $a_k + r_k \neq a_k$. Por tanto m_1, \ldots, m_n no sería base.

Para la otra implicación, supongamos que existen $a_1, \ldots, a_n, a'_1, \ldots a'_n \in A$ tales que $\sum_i a_i m_i = \sum_i a'_i m_i$. Entonces,

$$\sum_{i} a_i m_i - \sum_{i} a'_i m_i = 0 \implies \sum_{i} (a_i - a'_i) m_i = 0 \implies a_i = a'_i \quad \forall i \in I.$$

Un ejemplo de módulo no nulo finitamente generado que no sea libre es \mathbb{Z}_2 visto como \mathbb{Z} -módulo. Claramente es finitamente generado pues solo tiene 2 elementos, y la única posible base sería 1, pero no lo es por $2 \cdot 1 = 0$

Ejercicio 13. Para cada A-módulo M, demostrar que el conjunto $End_A(M)$ es un subanillo de End(M). Demostrar que si, además, M es libre con base m_1, \ldots, m_n , entonces $End_A(M)^{op}$ es isomorfo, como anillo, a $M_n(A)$. Discutir qué ocurre cuando A es un álgebra sobre un cuerpo K.

Veamos que $End_A(M)$ es un subanillo. Sean $f, g \in End_A(M)$. Entonces

- (f+g)(am) = f(am) + g(am) = a(f(m) + g(m)) = a(f+g)(m)
- (fg)(am) = f(g(am)) = a(f(g(m))) = a(fg)(m)
- id(am) = am = a(id)(m)

Ahora, por m_1, \ldots, m_n base de M, dado $f \in End_A(M)$, podemos realizar el procedimiento similar al que utilizamos para aplicaciones lineales en espacios vectoriales, definiendo el morfismo $\varphi : End_A(M)^{op} \to M_n(A)con$:

$$\varphi(f) = (a_{ij})^t =: \Lambda_f$$

donde a_{ij} viene dado por $f(m_j) = \sum_i a_{ij} m_i$. La inversa sería, dada una matriz, el endomorfismo asociado a su transpuesta (de manera análoga a como se hace para aplicaciones lineales de espacios vectoriales). Para ver que son morfismo de anillos únicamente probaremos que respetan el producto, pues el resto de propiedades son inmediatas. Sean $f, g \in End_A(M)^{op}$,

$$\varphi(f*g) = \varphi(g \circ f) = (\Lambda_g * \Lambda_f)^t = (\Lambda_f)^t * (\Lambda_g)^t = \varphi(f) * \varphi(g).$$

Ejercicio 14. Sea M un módulo sobre una álgebra finito-dimensional A. Demostrar que si M admite bases $\{m_1, \ldots, m_r\}$ y $\{n_1, \ldots, n_t\}$, entonces r = t.

Supongamos $r \neq t$, entonces $M \cong A^r$ y $M \cong A^t \implies A^r \cong A^t$, pero como A es finito-dimensional, sabemos que eso no puede pasar si $r \neq t$.

Ejercicio 15 . Sea θ y $T_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ el endomorfismo que gira los vectores un ángulo θ en sentido contrario de las agujas del reloj. Consideremos la correspondiente estructura de R[X]-módulo definida por T_{θ} sobre \mathbb{R}^2 . Llamamos a este módulo V_{θ} . Discutir para que valores de θ es V_{θ} simple.

Claramente, si $\theta = k\pi$ para algún $k \in \mathbb{N}$, el submódulo generado por cualquier vector es la recta vetorial con ese vector director, y por tanto V_{θ} no es simple.

Por otro lado, si $\theta \neq k\pi \forall k \in \mathbb{N}$, tomando un vector v cualquiera, y $T_{\theta}(v)$ forman una base de \mathbb{R}^2 , y por tanto cualquier submódulo distinto del vacío es el total y V_{θ} es simple

Ejercicio 16 Siguiendo la notación del Ejercicio 15, ¿para qué valores θ , θ' son los $\mathbb{R}[X]$ -módulos V_{θ} , $V_{\theta'}$ isomorfos?

Idea: Si es $q \cdot \pi$ siendo q racional únicamente si $\theta y \theta'$ son el mismo ángulo u opuestos. Si son el mismo el morfismo es la identidad, y si son opuestos, fijas un vector, y el morfismo es el que lleva cada vector en el simétrico respecto del eje dado por dicho vector. En caso contrario, tras aplicar un número de veces el giro sobre V_{θ} volvemos al vector original, y sin embargo eso no ocurre en el nuevo. (No está formalizado y es muy probable que esté mal.)

Ejercicio 17 Sea M un A-módulo. Demostrar que M es simple si, y solo si, M=Am paa todo $0 \neq m \in M$.

Claramente, si M es simple, por Am submódulo tiene que ser M o $\{0\}$, y por $m \neq 0$ tenemos que Am = M.

La otra implicación es también casi inmediata. Supongamos que existe $N \subset M$ submódulo distinto de $\{0\}$. Entonces, sea $n \in N$ distinto de 0, tenemos que $An \subset N$, pero como An = M, N = M.

Ejercicio 18 Sea A un anillo. Demostrar que A es un anillo de división si, y solo si, A es un A-módulo simple.

Supongamos que A es un anillo de división. Entonces, para todo $0 \neq m \in A$ tenemos que $1 \in Am$ y por tanto Am = A, y usando el ejercicio anterior tenemos que A es un A-módulo simple. Supongamos ahora que A es un A-módulo simple. Entonces para todo $0 \neq m \in A$ tenemos que Am = A, y por tanto, $1 \in Am$, y como la acción de A es el producto, existe un elemento $a^{-1} \in A$ tal que $a^{-1}a = 1$.

Ejercicio 20. * Consideramos $T: \mathbb{R}^3 \to \mathbb{R}^3$ una aplicación lineal, y la estructura de $\mathbb{R}[X]$ -módulo correspondiente sobre \mathbb{R}^3 . Discutir los posibles valores de la longitud de \mathbb{R}^3 como $\mathbb{R}[X]$ -módulo, dependiendo de como sea T. Poner un ejemplo de T para que se alcance cada longitud.

Sabemos que un submódulo de nuestro $\mathbb{R}[x]$ -módulo sobre \mathbb{R}^3 tiene que ser un subespacio de este, por tanto las posibles longitudes son 2, 3 o 4.

Como estamos tatando con \mathbb{R} un cuerpo algebraicamente cerrado, sabemos que T tiene al menos un vector propio. Estos vectores propios son los que nos marcarán la longitud de \mathbb{R}^3 , ya que generan subespacios vectoriales invariantes por T, es decir, submódulos.

En caso de tener 2 o 3 vectores propios, esta claro que tenemos al menos un subespacio de dimensión 1 y otro de dimensión 2 invariantes por T, luego podríamos construir una serie de composición de longitud 4.

En caso de tener un único vector propio, solo existe un subespacio invariante, luego podemos construir una serie de composición de longitud 3.

A continuación mostramos un ejemplo de aplicación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ que genere un módulo de cada una de las posibles longitudes. Para dar la aplicación lineal únicamente tendremos que definir la imagen de una base de nuestro espacio, y por tanto utilizaremos la base usual $\{(1,0,0),(0,1,0),(0,0,1)\}$ por comodidad.

Longitud 4

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
$$x \mapsto x$$

Es sencillo comprobar que cualquier subespacio de \mathbb{R}^3 es un $\mathbb{R}[X]$ -submódulo, luego tenemos la

siguiente cadena

$$0 \subset \langle (1,0,0) \rangle \subset \langle (1,0,0), (0,1,0) \rangle \subset \mathbb{R}^3$$

Longitud 3

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

$$(1,0,0) \mapsto (0,1,0)$$

$$(0,1,0) \mapsto (0,0,1)$$

$$(0,0,1) \mapsto (1,0,0)$$

En este caso, vemos que que el único subespacio de dimensión 1 que es un submódulo, resulta $\langle (1,1,1) \rangle$, tomemos ahora un vector linealmente independiente α .

$$T(a(1,1,1) + b\alpha) = a(1,1,1) + bT(\alpha_1(1,0,0) + \alpha_2(0,1,0) + \alpha_3(0,0,1))$$
$$= a(1,1,1) + b(\alpha_3,\alpha_1,\alpha_2) \notin \langle (1,1,1),\alpha \rangle$$

Luego $\langle (1,1,1) \rangle$ es el único submodulo que tenemos

$$0 \subset \langle (1,1,1) \rangle \subset \mathbb{R}^3$$

Ejercicio 21. Sea \mathbb{P}_n el espacio vectorial real de las funcione polinómicas en una variable de grado menor o igual que n. Sea $T: \mathbb{P}_n \to \mathbb{P}_n$ la aplicación lineal que asigna a cada polinomio su derivada. Calcular una serie de composición de \mathbb{P}_n visto como $\mathbb{R}[X]$ -módulo via T.

Consideremos los espacios vectoriales $\mathbb{P}_{n-1},\ldots,\mathbb{P}_0$, es claro que $\mathbb{P}_i\subset\mathbb{P}_{i+1}$ es un subgrupo y es cerrado bajo derivación, luego es un submódulo. Esto nos permite crear la cadena

$$0 \subset \mathbb{P}_0 \subset \cdots \subset \mathbb{P}_n$$

Solo nos queda comprobar que cada eslabón este formado por un submódulo maximal, tomamos $\mathbb{P}_i \subset \mathbb{P}_{i+1}$, y añadamos un polinomio p de grado i+1 a \mathbb{P}_i , entonces es claro que con las operaciones de grupo podemos construir cualquier polinomio de grado i+1, luego $\langle (p,\mathbb{P}_i)\rangle = \mathbb{P}_{i+1}$. Por lo tanto, los eslabones son maximales y tenemos una serie de composición.

Ejercicio 22. ** En las condiciones del ejercicio anterior, calcular todos los $\mathbb{R}[X]$ -submódulos de \mathbb{P}_n .

Como hemos visto en el apartado anterior, disponemos de $\{\mathbb{P}_i\}_{i=0,\dots,n}$ Comprobemos que no tenemos otros submódulos, notemos que estamos buscando subgrupos cerrados bajo la acción de $\mathbb{R}[X]$, de forma que, potencias de x actúan derivando el polinomio el número de veces que indique el exponente, y los números reales actúan multiplicándose por los polinomios.

Es decir, si tomamos $f = a_0 + a_1 x + \cdots + a_q x^q \in \mathbb{R}[X]$, actúa sobre un polinomio $p \in \mathbb{P}_n$, de la forma

$$f \star p = a_0 p + a_1 p^{(1)} + \dots + a_q p^{(q)}$$

donde $p^{(i)}$ denota la derivada *i*-ésima de p.

Supongamos entonces que queremos ver cuál es el menor submódulo que contiene a p. Notamos que al tener p, tenemos todos sus polinomios proporcionales y todas sus derivadas, luego tenemos

un polinomio de cada grado hasta el 0. Supongamos que el grado de p es m, entonces existen unos coeficientes reales $b_i \in \mathbb{R}$ tal que

$$x^m = b_0 p + b_1 p^{(1)} + \dots + b_m p^{(m)}$$

Luego x^m , está en nuestro submódulo, de igual forma están todos los x^i para $i=0,\ldots,m$, luego el submódulo resulta ser \mathbb{P}_m .

Por ello estos son todos los submódulos que tenemos.

Ejercicio 25. ** Supongamos $T: V \to V$ un endomorfismo K-lineal, donde V es un espacio vectorial de dimensión finita que consideramos, como de costumbre, como un K[X]-módulo. Supongamos que el polinomio mínimo m(X) de T es irreducible en K[X]. Demostrar que existen K[X]-submódulos simples V_1, \ldots, V_t de V tales que $V = V_1 \oplus \cdots \oplus V_t$ como K[X]-módulo.

Por m(X) irreducible, tenemos que K[X]/Ker $e_T = K[X]/m(X)$ es un cuerpo. Entonces, podemos ver V como un K[X]/Ker e_T espacio vectorial, utilizando la misma acción que utilizamos para la estructura de K[X]-módulo. Para ello, tenemos que comprobar que la acción está bien definida. En efecto, sean p(X), q(X) pertencientes a una misma clase del cociente. Entonces

$$p(X) = q(X) + r(X)m(X),$$

y por tanto

$$p(T) = q(T) + r(T)m(T) = q(T)$$

por $m(X) \in Ker \ e_T$.

Ahora, sea $\{v_i : i \in I\} \subset V$ un conjunto de generadores de V, por el corolario 1.6.6 existe $J \in I$ tal que $V = \bigoplus_{j \in J} (K[X]/Ker\ e_T)v_j$, siendo cada uno de estos submódulos simples. Ahora, volviendo a ver V como K[X]-módulo, los submódulos $K[X]v_j$ para $j \in J$ son simples, pues en caso de tener un súbmodulo propio M, este sería también submódulo de $(K[X]/Ker\ e_T)v_j$.

Por tanto, tenemos que $V = \sum_{j \in J} K[X]v_j$, con $K[X]v_j$ simple para todo j en J. Al igual que hicimos en el corolario 1.6.6, aplicamos la Proposición (TODO Esto tiene que ser así pero no lo entiendo) para obtener un K tal que $V = \bigoplus_{k \in K} K[X]v_k$.

Ejercicio 27. ** Sea R un álgebra sobre un cuerpo de característica distinta de 2, y $a, b, e \in R$ idempotentes. Demostrar que si e = a + b, entonces ab = ba = 0. Si la característica es 2, encontrar un contraejemplo con $b \neq a$.

Por e, a, b idempotentes, tenemos que

$$a + b = e = e^2 = a^2 + b^2 + ab + ba = a + b + ab + ba \implies ab + ba = 0.$$

Luego

$$ab = -ba. (1)$$

Multiplicando a izquierda y derecha por a, por ser este idempotente tenemos que aba = -aba. Ahora, usando que $char(R) \neq 2$, aba = 0. Por último, sustituyendo ab ó ba respectivamente usando (1), tenemos

$$0 = aba = -baa = -ba \implies ba = 0$$

$$0 = aba = -aab = -ab \implies ab = 0.$$

Veamos ahora el contraejemplo. Sea \mathbb{F}_2 el cuerpo de dos elementos (el más sencillo con característica 2), y $M_2(\mathbb{F}_2)$ la \mathbb{F}_2 -álgebra usual de matrices de orden 2 sobre este cuerpo. Entonces, tomamos

$$a=\begin{pmatrix}1&0\\1&0\end{pmatrix},\ b=\begin{pmatrix}1&0\\0&1\end{pmatrix},\ e=a+b=\begin{pmatrix}0&0\\1&1\end{pmatrix}.$$

En efecto, es sencillo comprobar que a, b, y e son idempotentes, y que por $b = I_2$, efectivamente $ab = ba = a \neq 0$

Ejercicio 35. ** Sea V un K-espacio vectorial de dimensión finita n y $T: V \to V$ una aplicación lineal. Diremos que un vector $v \in V$ es cíclico para T si $\{v, T(v), \ldots, T^{n-1}(v)\}$ es una base de V como K-espacio vectorial. Demostrar que V admite un vector cíclico si, y sólo si, el polinomio mínimo de T tiene grado n. ¿Cuál es entonces la longitud de V en tanto que K[X]-módulo.

Comencemos viendo que si admite un vector cíclico entonces el polinomio mínimo tiene grado n. Sabemos que el polinomio mínimo satisface que m(T)=0. Supongamos que el grado de m es n' < n, entonces $m(T)=0 \implies T^n$ es una combinación lineal de $\{Id,T,\ldots,T^{n'-1}\}$ por lo tanto $T^{n'}(v)$ se puede escribir como combinación lineal de $\{v,T(v),\ldots,T^{n'-1}(v)\}$, luego no puede existir un vector cíclico.

Veamos ahora que si el polinomio mínimo tiene grado n, entonces existe un vector cíclico. Notamos que si el grado del polinomio mínimo es n, entonces coincide con el polinomio característico. Sea \bar{N} la matriz compañera de ambos y $\{\alpha_1, \ldots, \alpha_n\}$ una base de V.

TODO. Terminar