

Lecture Activity: Brain Cancer

Oleh Kozynets, Fakrul Islam Tushar

MAIA

Outline

- 1. Brain and Other Nervous System Cancer
- 2. CAD for Brain Cancer
- 3. Segmentation
- 4. Previous Studies, Deep Learning
- 5. DeepMedic
- 6. Dense Training
- 7. Deeper Network
- 8. Multi-Scale Pathway
- 9. Model Analysis
- 10. Results
- 11. Conclusion

- Cancers are diseases characterized by unstoppable growth and spreading of the body's cells
- 5 years survival rate is 33.2%
- Most frequently diagnosed among people aged 55-64

NEW CANCER CASES IN THE US IN 2018

CANCER DEATHS IN THE US IN 2018

■ Brain and Other Nervous System Cancer ■ Other Cancers

- 150 different brain tumors
- Primary and metastatic brain tumors
- Low (I, II) and high (III, IV) grade tumors according to WHO

BRAIN TUMORS

- T2 and FLAIR MRI
- T1-weighted post-Gadolinium MRI
- Perfusion MRI
- Diffusion MRI

Epithelioid glioblastoma (Ep-GBM) Grade IV, WHO

2.CAD for Brain Cancer

3. Brain Tumor Segmentation

4. Previous Studies

No training data required:

- Image registration
- Image synthesis
- Saliency based-method

Machine learning methods:

- Random Forests et al. (RF and atlas-based, RF and RMF)
- Deep Learning

4.PS: Deep Learning

2D CNNS

- Use neural network build for image processing
- 3D brain scan is achieved by processing each 2D slice independently

3D CNNS

- Use 3D convolutions
- Increased number of parameters and significant memory and computational requirements

5.DeepMedic

- 11-layers deep 3D CNN for brain tumors segmentation
- Proposed by Konstantinos Kamnitsas et al. in 2017
- It was written in Python, using TensorFlow/Theano, NiBabel, NumPy et al.
- Among top-performers on the BRATS 2016 challenge
- BRATS 2017 challenge winners (DeepMedic, FCN, U-Net)

6.Dense Training

Dense Training

$$\frac{1}{B.V} \sum_{s=1}^{B} \sum_{v=1}^{V} \log(P_{C_s^v}(x^v))$$

Where, B=Batch Size, V=Predicted voxels, C_s^v = True level of the v-th voxel, x^v = Corresponding position in the FMs, $P_{C_s^v}$ = Output of the softmax function

Fig. Baseline CNN

6.Dense Training

- Segment based Sampling regulate class balance
- Relatively more background (green) is captured by larger segments and around smaller lesions (Red)

Fig: Consider a network with a 2D receptive field of 3^2 (for illustration) densely applied on the depicted lesion-centered image segments of size 7^2 or 9^2

7.Deeper Network

More layers, more power! More computation, more difficult to train

7. Deeper Network: Use Smaller Kernel

 In order to build a deeper 3D architecture, They adopt the 3³ kernels that are faster to convolve with and contain less weights

7. ReLu Specific initialization Scheme

 In Case of Deeper CNN The Forward and Backwards propagated signal may explode or vanish if care is not given to retain its variance (Glorot and Bengio, 2010)

ReLu Specific initialization Scheme

Initialize the kernel weights by sampling from normal distribution (Glorot and Bengio, 2010)

$$N(0, A = \sqrt{\frac{2}{n_l^{in}}})$$

Where, n_l^{in} = number of weights through which a neuron of layer l is connected to its input

7. Building Deeper Model

Shallow	Deep	Shallow+	Deep+	BigDeep	DeepMedic
4 layer Baseline CNN 5 ³ Kernels Initialization	9 Layer CNN 3 ³ Kernels	Shallow + ReLu Specific initialization Scheme + Batch Normalizatio n	Deep + ReLu Specific initialization Scheme + Batch Normalizatio n	Deep+ + Two Hidden layers	Deep+ + 2nd CNN pathway + Two hidden for combining the multi- scale features before the classification layer, Total 11 layers.

8. Multi-Scale Via Parallel Pathways

Fig: Multi-scale 3D CNN with two convolutional pathways

9. Model Analysis

Effect of Dense Training

9. Model Analysis

Effect of Deeper Network

9. Model Analysis

Effect of Multi-Scale Pathways

10.BRATS 2015

- Multimodal Brain Tumor Image Segmentation (BRATS)
 challenge . Link: https://sites.google.com/site/braintumorsegmentation/home/brats2015
- Training Data 220 cases
- Testing Data 110 cases
- Multi-class problem
 - necrotic core
 - Edema
 - non-enhancing core
 - Enhancing core

10.Results

BRATS 2015 training Result

Average performance of our system on the training data of BRATS 2015 as computed on the online evaluation platform and comparison to other submissions visible at the time of manuscript submission. Presenting only teams that submitted more than half of the 274 cases. Numbers in bold indicate significant improvement by the CRF, according to a two-sided, paired t-test on the DSC metric (* $p < 5 \cdot 10^{-2}$, ** $p < 10^{-3}$).

	DSC			Precision			Sensitivity			
	Whole	Core	Enh.	Whole	Core	Enh.	Whole	Core	Enh.	Cases
Ensemble+CRF	90.1*	75.4	72.8*	91.9	85.7	75.5	89.1	71.7	74.4	274
Ensemble	90.0	75.5	72.8	90.3	85.5	75.4	90.4	71.9	74.3	274
DeepMedic+CRF	89.8**	75.0	72.1*	91.5	84.4	75.9	89.1	72.1	72 .5	274
DeepMedic	89.7	75.0	72.0	89.7	84.2	75.6	90.5	72.3	72.5	274
bakas1	88	77	68	90	84	68	89	76	75	186
peres1	87	73	68	89	74	72	86	77	70	274
anon1	84	67	55	90	76	59	82	68	61	274
thirs1	80	66	58	84	71	53	79	66	74	267
peyrj	80	60	57	87	79	59	77	53	60	274

[K. Kamnitsas et al. 2017] Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis 36 (2017) 61–78

10.Results

BRATS 2015 test Result

Average performance of our system on the 110 test cases of BRATS 2015, as computed on the online evaluation platform. Numbers in bold indicate significant improvement by the CRF, according to a two-sided, paired t-test on the DSC metric (* $p < 5 \cdot 10^{-2}$, ** $p < 10^{-3}$). The decrease of the mean DSC by the CRF and the ensemble for the "Core" class was not found significant.

	DSC			Precision			Sensitivity		
	Whole	Core	Enh.	Whole	Core	Enh.	Whole	Core	Enh.
DeepMedic	83.6	67.4	62.9	82.3	84.6	64.0	88.5	61.6	65.6
DeepMedic+CRF	84.7 **	67.0	62.9	85.0	84.8	63.4	87.6	60.7	66.2
Ensemble	84.5	66.7	63.3	83.3	86.1	63.2	88.9	59.9	67.3
Ensemble+CRF	84.9**	66.7	63.4 *	85.3	86.1	63.4	87.7	60.0	67.4

[K. Kamnitsas et al. 2017] Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis 36 (2017) 61–78

10.Results

 Examples of DeepMedic's segmentation from its evaluation on the training datasets of BRATS 2015.

Fig: cyan: necrotic core, green: oedema, orange: non-enhancing core, red: enhancing core. (top and middle) Satisfying segmentation of the tumour, regardless motion artefacts in certain sequences. (bottom) One of the worst cases of over-segmentation observed. False segmentation of FLAIR hyperintensities as oedema constitutes the most common error of DeepMedic

11.Conclusion

- Deep learning approaches Proven to be better than conventional approaches in comparison of results
- Deeper network has more advantages where as it comes with more computation expenses and complexity
- Dense training approaches using segments is proven to be better and using equal distribution of lesion and non lesion pixels over uniform distribution fails
- Designing deeper network importance need to given to the initialization steps and parameters to be trained

To know more...

- Konstantinos Kamnitsas, Christian Ledig, Virginia F.J.
 Newcombe, Joanna P. Simpson, Andrew D. Kane, David K.
 Menon, Daniel Rueckert, and Ben Glocker, "Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation", Medical Image Analysis, 2016.
- GitHub: https://github.com/Kamnitsask/deepmedic
- YouTube: [MISS 2016] Ben Glocker Deep Learning for Brain Lesion Segmentation

