

#4

SEQUENCE LISTING

<110> Autogen Research Pty Ltd

<120> Novel genes and their use in the modulation of obesity, diabetes and energy imbalance

<130> 2309315/TDO

<140> 10/039,050

<141> 2001-12-31

<150> 60/141,441

<151> 1999-06-29

<160> 22

<170> PatentIn Ver. 2.0

<210> 1

<211> 1669

<212> DNA

<213> mammalian

<220>

<221> CDS

<222> (43)..(1104)

<400> 1

ttcaaagagg tgacatatcc ggttctgatc ccatctcaag cc atg tgt ttt tgg 54
Met Cys Phe Trp
1

ggg ata ttt ttg tgt ttg atc ttc ctg gag aaa agt tgg gga cag ata 102
Gly Ile Phe Leu Cys Leu Ile Phe Leu Glu Lys Ser Trp Gly Gln Ile
5 10 15 20

caa atg tcg tgt tgg ccc aag cct ttg att cca gaa ctt gag agg cag 150
Gln Met Ser Cys Trp Pro Lys Pro Leu Ile Pro Glu Leu Glu Arg Gln
25 30 35

aga tgc acc gtt gta aca cca aaa gtc ttc cga gtc gga gaa tat gaa 198
Arg Cys Thr Val Val Thr Pro Lys Val Phe Arg Val Gly Glu Tyr Glu
40 45 50

caa gtt aca ttt gaa gcc cac ggt cac act gac cca ttt gat gta acc 246
 Gln Val Thr Phe Glu Ala His Gly His Thr Asp Pro Phe Asp Val Thr
 55 60 65
 atc tct ata aaa agt tac cct gat aaa aat gct aat tac tct tca agc 294
 Ile Ser Ile Lys Ser Tyr Pro Asp Lys Asn Ala Asn Tyr Ser Ser Ser
 70 75 80

 tct gta cat tta tca cca gaa aat aaa ttc aaa aac tct aca atc tta 342
 Ser Val His Leu Ser Pro Glu Asn Lys Phe Lys Asn Ser Thr Ile Leu
 85 90 95 100

 aca att cag ccc aaa cag ttg tct gaa ggg caa aac tcg tct tcg cat 390
 Thr Ile Gln Pro Lys Gln Leu Ser Glu Gly Gln Asn Ser Ser His
 105 110 115

 gtg tat ttg gaa gtt gtg tcc aag cat ttt tca aca tca aaa ata atg 438
 Val Tyr Leu Glu Val Val Ser Lys His Phe Ser Thr Ser Lys Ile Met
 120 125 130

 tca atc gtc tat gac aat ggc act ctc ttc att cag act gac aag cct 486
 Ser Ile Val Tyr Asp Asn Gly Thr Leu Phe Ile Gln Thr Asp Lys Pro
 135 140 145

 gtg tac act cca gag cag cct gta aag gtt gcc gtg tat tcg ctg gat 534
 Val Tyr Thr Pro Glu Gln Pro Val Lys Val Ala Val Tyr Ser Leu Asp
 150 155 160

 gaa gcc tta aag cca gtc acc aga gag aca gtc tta acg ttc ata gac 582
 Glu Ala Leu Lys Pro Val Thr Arg Glu Thr Val Leu Thr Phe Ile Asp
 165 170 175 180

 cct gaa gga tcc gaa gtt ggc ata gta gaa gga agc aat cat act gga 630
 Pro Glu Gly Ser Glu Val Gly Ile Val Glu Gly Ser Asn His Thr Gly
 185 190 195

 atc acc tct ttc cct gac ttc agg att cct act aac cct aag ccc ggt 678
 Ile Thr Ser Phe Pro Asp Phe Arg Ile Pro Thr Asn Pro Lys Pro Gly
 200 205 210

 aga tgg atg atc aag gct aaa tat aga gaa gat gct tca aca gct gga 726
 Arg Trp Met Ile Lys Ala Lys Tyr Arg Glu Asp Ala Ser Thr Ala Gly
 215 220 225

 acc aca cac ttt gaa att aaa gag cat gat aaa gct ttc aaa ata gcc 774
 Thr Thr His Phe Glu Ile Lys Glu His Asp Lys Ala Phe Lys Ile Ala
 230 235 240

 ctc gtt cca aca agt gat ctg gaa cac cca atg gaa gca cgt ggc 822
 Leu Val Pro Thr Ser Asp Leu Glu His Pro Met Glu Glu Ala Arg Gly
 245 250 255 260

 ctg agt ctc cag cca aaa aag tcc ctg caa gag atg ata cat gag caa 870
 Leu Ser Leu Gln Pro Lys Lys Ser Leu Gln Glu Met Ile His Glu Gln
 265 270 275

 gct tcg aaa tac aaa cat cca gta ctg aag aaa tgt tgt tat gat gga 918

Ala Ser Lys Tyr Lys His Pro Val Leu Lys Lys Cys Cys Tyr Asp Gly
 280 285 290
 gcc aga tat aac cac cat gaa acc tgt gag gaa cga gtt gcc cgt gtg 966
 Ala Arg Tyr Asn His His Glu Thr Cys Glu Glu Arg Val Ala Arg Val
 295 300 305
 aaa ata ggc cca aac tgt gtc aga gcc ttc agt gaa tgc tgt gcc ctg 1014
 Lys Ile Gly Pro Asn Cys Val Arg Ala Phe Ser Glu Cys Cys Ala Leu
 310 315 320
 gct agc gag aat acc ttt aag aat atc ctc atg tcg cgt ccc gat gac 1062
 Ala Ser Glu Asn Thr Phe Lys Asn Ile Leu Met Ser Arg Pro Asp Asp
 325 330 335 340
 agt gga tat ttt act tta tct gct acc ata ctg gaa aat gct taa 1107
 Ser Gly Tyr Phe Thr Leu Ser Ala Thr Ile Leu Glu Asn Ala
 345 350
 tcttattccc tgcaagtatt tgaagattac aagtatttc tgtgccttca ctttgctgg 1167
 aaactaatgc acaaaatcaa acggagttca tacagcagtg aagcccttcc gctgtaactt 1227
 tggcataaaat agccttggct gcacggaggt catttcataa ccgttaatttta tccactggtc 1287
 tcacaagtga gaccaagctg ataaaaaacaattcaccaga agagtttgat tgccatgcct 1347
 agtgaccttgc cccatcttcc tgtcaggacc ctgggtgccc taacatagta gagggtgctc 1407
 gggggacact caccgccaca aagaaagctg ccatccagcc ccggagagct gtggagtcaa 1467
 cagcacacac cgtgtggcc accgtgctgc ccaggtgtcc ataatgctac actaagtgc 1527
 cacgaataat cagttgtgcc agcagagtat gggagccgct aaaggataact atgcttgtaa 1587
 atgtgtatca caatcagaat gtttaatca ataaaaatagt attgcccgcg ttaaaaaaaaa 1647
 aaaaaaaaaa aaaaaaaaaa aa 1669

a!
 Cont

<210> 2
 <211> 354
 <212> PRT
 <213> mammalian

<400> 2
 Met Cys Phe Trp Gly Ile Phe Leu Cys Leu Ile Phe Leu Glu Lys Ser
 1 5 10 15

Trp Gly Gln Ile Gln Met Ser Cys Trp Pro Lys Pro Leu Ile Pro Glu
 20 25 30

Leu Glu Arg Gln Arg Cys Thr Val Val Thr Pro Lys Val Phe Arg Val
 35 40 45

Gly Glu Tyr Glu Gln Val Thr Phe Glu Ala His Gly His Thr Asp Pro
 50 55 60

Phe Asp Val Thr Ile Ser Ile Lys Ser Tyr Pro Asp Lys Asn Ala Asn
65 70 75 80

Tyr Ser Ser Ser Ser Val His Leu Ser Pro Glu Asn Lys Phe Lys Asn
85 90 95

Ser Thr Ile Leu Thr Ile Gln Pro Lys Gln Leu Ser Glu Gly Gln Asn
100 105 110

Ser Ser Ser His Val Tyr Leu Glu Val Val Ser Lys His Phe Ser Thr
115 120 125

Ser Lys Ile Met Ser Ile Val Tyr Asp Asn Gly Thr Leu Phe Ile Gln
130 135 140

Thr Asp Lys Pro Val Tyr Thr Pro Glu Gln Pro Val Lys Val Ala Val
145 150 155 160

Tyr Ser Leu Asp Glu Ala Leu Lys Pro Val Thr Arg Glu Thr Val Leu
165 170 175

Thr Phe Ile Asp Pro Glu Gly Ser Glu Val Gly Ile Val Glu Gly Ser
180 185 190

Asn His Thr Gly Ile Thr Ser Phe Pro Asp Phe Arg Ile Pro Thr Asn
195 200 205

Pro Lys Pro Gly Arg Trp Met Ile Lys Ala Lys Tyr Arg Glu Asp Ala
210 215 220

Ser Thr Ala Gly Thr Thr His Phe Glu Ile Lys Glu His Asp Lys Ala
225 230 235 240

Phe Lys Ile Ala Leu Val Pro Thr Ser Asp Leu Glu His Pro Met Glu
245 250 255

Glu Ala Arg Gly Leu Ser Leu Gln Pro Lys Lys Ser Leu Gln Glu Met
260 265 270

Ile His Glu Gln Ala Ser Lys Tyr Lys His Pro Val Leu Lys Lys Cys
275 280 285

Cys Tyr Asp Gly Ala Arg Tyr Asn His His Glu Thr Cys Glu Glu Arg
290 295 300

Val Ala Arg Val Lys Ile Gly Pro Asn Cys Val Arg Ala Phe Ser Glu
305 310 315 320

Cys Cys Ala Leu Ala Ser Glu Asn Thr Phe Lys Asn Ile Leu Met Ser
325 330 335

Arg Pro Asp Asp Ser Gly Tyr Phe Thr Leu Ser Ala Thr Ile Leu Glu
340 345 350

Asn Ala

<210> 3
<211> 1170
<212> DNA
<213> mammalian

<220>
<221> CDS
<222> (21) .. (586)

<400> 3

gtcggtgggt tcggcggcc atg gag agc gca gag gag cct ctg ccc gcg cgg 52
Met Glu Ser Ala Glu Glu Pro Leu Pro Ala Arg
1 5 10

ccg gcg ctg gag acc gag ggc ctg agg ttc ctg cac gtc aca gtg ggc 100
Pro Ala Leu Glu Thr Glu Gly Leu Arg Phe Leu His Val Thr Val Gly
15 20 25

tcc ctg ctg gcc agc tat ggc tgg tac gtc ctc ttc agc tgc atc ctt 148
Ser Leu Leu Ala Ser Tyr Gly Trp Tyr Val Leu Phe Ser Cys Ile Leu
30 35 40

ctc tac att gtc atc cag aag ctc tcc gtc cga ttg agg gtt ttg agg 196
Leu Tyr Ile Val Ile Gln Lys Leu Ser Val Arg Leu Arg Val Leu Arg
45 50 55

cag agg cag ctg gac cag gct gac gct gtt ctg gaa cct gat gct gtt 244
Gln Arg Gln Leu Asp Gln Ala Asp Ala Val Leu Glu Pro Asp Ala Val
60 65 70 75

gtt aag cga caa gag gct tta gcc gct gct cgt ttg aga atg cag gaa 292
Val Lys Arg Gln Glu Ala Leu Ala Ala Arg Leu Arg Met Gln Glu
80 85 90

gat cta aat gcc caa gtt gaa aag cat aag gaa aaa cta aga cag ctt 340
Asp Leu Asn Ala Gln Val Glu Lys His Lys Glu Lys Leu Arg Gln Leu
95 100 105

gaa gaa gaa aaa agg aga cag aag att gaa atg tgg gac agc atg caa 388
Glu Glu Lys Arg Arg Gln Lys Ile Glu Met Trp Asp Ser Met Gln
110 115 120

gaa ggc aga agt tac aga aga aat cca gga agg cct cag gaa gat 436
Glu Gly Arg Ser Tyr Arg Arg Asn Pro Gly Arg Pro Gln Glu Glu Asp
125 130 135

ggt cct gga cct tct act tca tca tct gtc acc cgc aaa gga aaa tct 484
Gly Pro Gly Pro Ser Thr Ser Ser Val Thr Arg Lys Gly Lys Ser
140 145 150 155

gac aaa aag cct ttg agg gga aat ggt tat aac cct ctg acg ggt gaa 532
Asp Lys Lys Pro Leu Arg Gly Asn Gly Tyr Asn Pro Leu Thr Gly Glu
160 165 170

ggg ggt gga acc tgc gcc tgg aga cct gga cgc agg ggc cca tca tct 580

*a
Cont*

Gly Gly Gly Thr Cys Ala Trp Arg Pro Gly Arg Arg Gly Pro Ser Ser
 175 180 185
 ggt gga tga agctaagacc cttgttagtg tcgcgttgac attagcaagg 629
 Gly Gly
 tgaaccctta accctcaact cagttgcctt acgcacactt tcacagtgc tagccaagga 689
 gaggtggggc ttatttccat tcgttagctac ctgtattcta agggctttgg tcagtgtgag 749
 ctatggacat tgtcatttagg tcataattcta cttagacaac agtcattgtat ttcatggcta 809
 ctgtcttagt gataggtaa aggctctcg ctgttagca aacttcataa aggaggccca 869
 gtgatgatcc tttgggttag aagtccctgc tgacaggatg gtctctgtga caggatgcgt 929
 tcaatgatgt cttccttata aatggtgagc ccaccagtga ggattactga tgtgcacagt 989
 tcatgggtt tgcttctgta tatttatttt tatgtacaga aatttgcaaa aaaaaataaaa 1049
 aagtaacatt ttttagcatct tattaaact caagggaaatt tcgttgtgag cttgactttg 1109
 tctatcagac attaaacagc ttttatcat taaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1169
 a 1170

<210> 4
 <211> 189
 <212> PRT
 <213> mammalian

<400> 4

Met Glu Ser Ala Glu Glu Pro Leu Pro Ala Arg Pro Ala Leu Glu Thr
 1 5 10 15
 Glu Gly Leu Arg Phe Leu His Val Thr Val Gly Ser Leu Leu Ala Ser
 20 25 30

Tyr Gly Trp Tyr Val Leu Phe Ser Cys Ile Leu Leu Tyr Ile Val Ile
 35 40 45

Gln Lys Leu Ser Val Arg Leu Arg Val Leu Arg Gln Arg Gln Leu Asp
 50 55 60

Gln Ala Asp Ala Val Leu Glu Pro Asp Ala Val Val Lys Arg Gln Glu
 65 70 75 80

Ala Leu Ala Ala Ala Arg Leu Arg Met Gln Glu Asp Leu Asn Ala Gln
 85 90 95

Val Glu Lys His Lys Glu Lys Leu Arg Gln Leu Glu Glu Lys Arg
 100 105 110

Arg Gln Lys Ile Glu Met Trp Asp Ser Met Gln Glu Gly Arg Ser Tyr
 115 120 125

Arg Arg Asn Pro Gly Arg Pro Gln Glu Glu Asp Gly Pro Gly Pro Ser
130 135 140

Thr Ser Ser Ser Val Thr Arg Lys Gly Lys Ser Asp Lys Lys Pro Leu
145 150 155 160

Arg Gly Asn Gly Tyr Asn Pro Leu Thr Gly Glu Gly Gly Thr Cys
165 170 175

Ala Trp Arg Pro Gly Arg Arg Gly Pro Ser Ser Gly Gly
180 185

<210> 5
<211> 1174
<212> DNA
<213> mammalian

<220>
<221> CDS
<222> (31) .. (594)

<400> 5

cagggctggg cggcgccggc ggcggcggtc atg gaa cgc caa gag gag tct ctg 54
Met Glu Arg Gln Glu Glu Ser Leu
1 5

tcc gcg cgg ccg gcc ctg gag acc gag ggg ctg cgc ttc ctg cac acc 102
Ser Ala Arg Pro Ala Leu Glu Thr Glu Gly Leu Arg Phe Leu His Thr
10 15 20

acg gtg ggc tcc ctg ctg gcc acc tat ggc tgg tac atc gtc ttc agc 150
Thr Val Gly Ser Leu Leu Ala Thr Tyr Gly Trp Tyr Ile Val Phe Ser
25 30 35 40

tgc atc ctt ctc tac gtg gtc ttt cag aag ctt tcc gcc cgg cta aga 198
Cys Ile Leu Leu Tyr Val Val Phe Gln Lys Leu Ser Ala Arg Leu Arg
45 50 55

gcc ttg agg cag agg cag ctg gac cga gct gcg gct gct gtg gaa cct 246
Ala Leu Arg Gln Arg Gln Leu Asp Arg Ala Ala Ala Val Glu Pro
60 65 70

gat gtt gtt gtt aaa cga caa gaa gct tta gca gct gct cga ctg aaa 294
Asp Val Val Val Lys Arg Gln Glu Ala Leu Ala Ala Arg Leu Lys
75 80 85

atg caa gaa gaa cta aat gcg caa gtt gaa aag cat aag gaa aaa ctg 342
Met Gln Glu Glu Leu Asn Ala Gln Val Glu Lys His Lys Glu Lys Leu
90 95 100

aaa caa ctt gaa gaa gaa aaa agg aga cag aag att gaa atg tgg gac 390
Lys Gln Leu Glu Glu Lys Arg Arg Gln Lys Ile Glu Met Trp Asp
105 110 115 120

A
Cont

agc atg caa gaa gga aaa agt tac aaa gga aat gca aag aag ccc cag 438
Ser Met Gln Glu Gly Lys Ser Tyr Lys Gly Asn Ala Lys Lys Pro Gln
125 130 135

gag gaa gac agt cct ggg cct tcc act tca tct gtc ctg aaa cgg aaa 486
Glu Glu Asp Ser Pro Gly Pro Ser Thr Ser Ser Val Leu Lys Arg Lys
140 145 150

tcg gac aga aag cct ttg cgg gga ggt tat aac ccg ttg tct ggt 534
Ser Asp Arg Lys Pro Leu Arg Gly Gly Tyr Asn Pro Leu Ser Gly
155 160 165

gaa gga ggc gga gct tgc tcc tgg aga cct gga cgc aga ggc ccg tca 582
Glu Gly Gly Ala Cys Ser Trp Arg Pro Gly Arg Arg Gly Pro Ser
170 175 180

tct ggc gga tga ggctaagaat cttgttagtg tcactttga cattagcaag 634
Ser Gly Gly
185

atgaaccctt aaccctcgat tcaattgcct tacgcacgct tttcacagtg actagccaag 694
gggaggtggg gttgatttct gttcctaact acacctgcat atgtcagggc tccagtcagc 754
aaaaggtata gatgtgcct ctaggcatga ggtcattggt cacattctac ttggagacag 814
tgattgcatt cattgatttc atggtaatt gctagttggt aggtaaaggc ctctagatga 874
ttagcaatct tgataaaaaga ggcctagtaa tggcttttgg aggttagaaa tccttgctgc 934
taggacagtc tctgtgacag gttgcgttga atgatgtctt ccttatcaat ggtgagccca 994
ccagtgagga ttactgtatgt ggacagttga tggggtttgg ttctgtatat ttatttttat 1054
gtacagaact ttgtaaaaac gaaactattt aaaaaacaag aataacattt ttagcatctt 1114
tattcaagga gatttatgga cttcaatttg tctatcaaac attaaatagc ttttattac 1174

A
Cont

<210> 6
<211> 187
<212> PRT
<213> mammalian

<400> 6
Met Glu Arg Gln Glu Glu Ser Leu Ser Ala Arg Pro Ala Leu Glu Thr
1 5 10 15

Glu Gly Leu Arg Phe Leu His Thr Thr Val Gly Ser Leu Leu Ala Thr
20 25 30

Tyr Gly Trp Tyr Ile Val Phe Ser Cys Ile Leu Leu Tyr Val Val Phe
35 40 45
Gln Lys Leu Ser Ala Arg Leu Arg Ala Leu Arg Gln Arg Gln Leu Asp
50 55 60

Arg Ala Ala Ala Ala Val Glu Pro Asp Val Val Val Lys Arg Gln Glu
65 70 75 80

Ala Leu Ala Ala Ala Arg Leu Lys Met Gln Glu Glu Leu Asn Ala Gln
85 90 95

Val Glu Lys His Lys Glu Lys Leu Lys Gln Leu Glu Glu Glu Lys Arg
100 105 110

Arg Gln Lys Ile Glu Met Trp Asp Ser Met Gln Glu Gly Lys Ser Tyr
115 120 125

Lys Gly Asn Ala Lys Lys Pro Gln Glu Glu Asp Ser Pro Gly Pro Ser
130 135 140

Thr Ser Ser Val Leu Lys Arg Lys Ser Asp Arg Lys Pro Leu Arg Gly
145 150 155 160

Gly Gly Tyr Asn Pro Leu Ser Gly Glu Gly Gly Ala Cys Ser Trp
165 170 175

Arg Pro Gly Arg Arg Gly Pro Ser Ser Gly Gly
180 185

<210> 7
<211> 279
<212> DNA
<213> mammalian

<220>
<221> CDS
<222> (54)..(140)

<400> 7
ctgaaaaggc tggtgtcaag atggagtgct taacccagta atccaaggac caa atg 56
Met
1
ctg agt cca cac agt gtg gcc agc atg ctg tct gca gtt gaa gca ggg 104
Leu Ser Pro His Ser Val Ala Ser Met Leu Ser Ala Val Glu Ala Gly
5 10 15
aca gtt ttt ctt cta gtg act agc tta cca cat tga ggcaaactcc 150
Thr Val Phe Leu Leu Val Thr Ser Leu Pro His
20 25

atgtggaggt tcttcgatgc tcatcatctt ctttgaagtg gagtggagac gctgccagaa 210
gcagacgtgt ttcactggtc aagaaagcct tttattaata aaacatctca aatgccataa 270
aaaaaaaaa 279

<210> 8
<211> 28
<212> PRT
<213> mammalian

<400> 8

Met Leu Ser Pro His Ser Val Ala Ser Met Leu Ser Ala Val Glu Ala
1 5 10 15

Gly Thr Val Phe Leu Leu Val Thr Ser Leu Pro His
20 25

```
<210> 9
<211> 5251
<212> DNA
<213> mammalian
```

<400> 9

cagggtctggg cggcggcggc ggcggcggc atggAACGCC aagaggagtc tctgtcccg 60
cggccggccc tggagaccga ggggctgcgc ttcctgcaca ccacgggtga gtcgttgcgg 120
ggcagccggg cgccgcgcgc cactttgcg acgcgcagcc atgatgggtg ggtcgccgc 180
cgctgcaccc ggcgcggag cctggaggc ctgggaacgg tcgggcgttg gcgcttacgc 240
ggaccttggg cagcaggccc ggaccttgcg cggaggcttc tcggagccg cacttccctg 300
ggcggctcgg ctgtcccttg tttgcgcaag tctttttgc gaaccaagcc ctgcctgtgg 360
tagttactgg ggtcaactcg ccgttggcgt ttgcctctgg gaccgtccc acacagcccc 420
atacacactc ctgactcccc gcgcgtgtcac cccttctat gtggctctga aaggccttg 480
ccttcctgat tcagattagt tgctcttcat tcttcaaaac ccagttgctg tgccctccac 540
actctaactg ccccccactc cccagatggt tgggaagtct cacttcttag tgatccctga 600
attgtcgac ttcttgagtt cgtgtttaa cgatctactt aggaggctt ttccctcagcc 660
tagaccatga aggctttgag ggcaggagtt acactttgt tttgttgagt ctatggaaa 720
ggtcaactag tagtgcatt tttagtttt tgaaaactgt tttcttttc agtgggctcc 780
ctgctggcca cctatggctg gtacatcgtc ttcaagctgca tccttctcta cgtggcttt 840
cagaagctt ccgccccggct aagagccttg aggcagaggc agctggaccg agctgcggct 900
gctgtgggtt agtgcctgat aaccgaaatg aaagcggtgg tttgcacct ctttatatt 960
aagagttagt ctcttagtaa aagtaagagg ggccacacag gaagaccctg tctctattta 1020
aaaaaaaaaa aaatagccgg gagtggcggc acgcacctgt agtcccagct gctcaggagg 1080
ctgaggcggg ataatcactt gagtccaggg agtcaaagct gcagtggct atgctcgggc 1140
cacactacac tccagcctgg gcaattgatt gagaccttgt cttaaaaaaa aaaaaaaaaa 1200
aaaaaaatqaqq aaqtatataqq ttctcqqtqq qqcqccqqtqq ctcacacctq taatcccaqc 1260

actttgggaa gccgaggcag gaggatgact tgaggtcagg ggtcgagaa cagcctggcc 1320
aacatggtga aaccctgtct ctactaaaaa tacaatatt agtggggcgt ggtacgggc 1380
acctgtaatc ccagcttta gggtggctga ggcaggagaa atcgcttcaa cctgggagct 1440
ggagattgca gtgagctgag attgtgccac tgcactccag cctggcaac agagtgagac 1500
tgtctttct ttctttttt ttttttttc tatgagatgg agtctagcct tggtgcaaag 1560
agcgagactc tatgagtaga cgttatgaat agaaatgagt tcattctat tcataatgct 1620
atttggaagg attttcttt tctgtagaaa caaatactta agaatcttct gcgctaatta 1680
agggatggat aatgatttag aaaactttat attccttgg tagtcttcca ggattctagt 1740
cagcctagag actgtgggtg tcactgaggt atccaagatg tgctctgtgt ggccactatc 1800
ccaggcttta tgaatcgaa ttgctcaggg gaactcagaa attggcattt ctaacagatt 1860
tctggtgatg tagatatttc gggctaaaat ccgtggctca gcaacagacc cctgccccct 1920
gaagcagtaa aatgtatgca gagggttag gactttagt gtaaaaatat gttgttcat 1980
tgtctgatat ccataacctt ttatactttt aataatatgg acactcaaaa gtttctattt 2040
tatattgtac acagtcttt atctccattt tttctgaca ttttagaacc tgatgttgg 2100
gttaaacgac aagaagctt agcagctgct cgactgaaaa tgcaagaaga actaaatgcg 2160
caagttgaaa agcataagga aaaactgaaa caagtatgaa ctggttcag tttgaatgtg 2220
tgcatagaaa ttgtctgagg ttttagtggct aacgatgcct gtgtctgtgt tgtctataag 2280
cttctaggac caggtcctat cccattagat tcaataagca tttcagttcc taccatgtaa 2340
gtattggtga tatcaagaag aatacacgtat tgtagggaa cactagatgt gtgaatataat 2400
taccatgaaa ggtccagagc acaaaaggag ggacaggctg gagcagggag catgtgagtg 2460
tgtgtgtca tgtgcctgtg tcttcccat taccaaaaat gtcctgacag gagtgagtt 2520
cagaagaatg gagtcagtaa tcttttcat gaaacatttt gctttctta atagtgtaca 2580
aaaaccaaag ctgctctatg tgagttaaac tcacactacc agatcacaac agttttatta 2640
actaaagaaa acgagggtga agttgttct gaaagacatt taaattaaga attatcagag 2700
ttagcttgc tttgagaga aatggcagct tctgaattct ttctgtaaaa tgtgattgtt 2760
tctcagcttg aagaagaaaa aaggagacag aagattgaaa tgtggacag catgcaagaa 2820
ggaaaaagtt acaaaggaaa tgcaaagaag ccccaggtga ctggagacct cggccggctg 2880
gcatgcggta gatgaagatt gccaagtaga atgtttaat tgcttcttac actactgtgt 2940

1
a
CMT

gtgttcaaac aggaggaaga cagtcctggg cttccactt catctgtcct gaaacggaaa 3000
tcggacagaa agccttgcg gggaggaggt aagcaccact gatgtcaa at gtaacagat 3060
tttcaacact tacaggat at gttacctt taagaacaag attgtttgtt tctttgtcca 3120
taaattaaga ctaattcctt aggattgtga agattcaata aaggaaacag atgcaa atca 3180
cctccttaggt cctcactaag tacttagaaag gattgtactt at gttattct aacttgatcc 3240
ttctgcagcc ccgtagaggg agagctaagt agggtgagga attgtctgcc aatcttcaga 3300
tgagtgtcaa ggagctggaa cacagtggtt ttggctttc tggctggac cacctgttt 3360
cttgcaaata acaaggagta gcagacagat gctcatccaa agctgcttcc tgtgtgcagc 3420
actgccccgg ggactctgga t gatgccaca gcagtctg ttcatccat ccctgagaat 3480
ttcaa atctg ggaagatggg actcacaaac gaaaataagc aatccttggt gattctggct 3540
aagagttgca agttactgct gaggaaggaa agaaca aaca cactagaaca ctgttaggaac 3600
caaggcggaa gatttgtat cctccatagg aggagagggg caccgcagag gccctgatgg 3660
tgtctttag gactgaggaa agactggggc atggctcca aggacgcagg gccacagact 3720
tggctgacct taaacgctga gctgtaatcc ccttgcgtc agaagactaa acctggctt 3780
ctgttagagaa ggtgatgcat ctggaaagaa aatgctattt taaaatggtc ctgcccgaag 3840
cttattttta gacacataga ggtgatattt aggagagggaa tggaaatcgt agaagatgga 3900
atgcagggtg tgcttgctg cacggcctt ttcagcatcc ccagcattt t gactggga 3960
ctttgacta gcctggctt acaaataagg aaactgaggc acagtgttta attgccc 4020
gattccacta taagtaagga gtaaaagtaa catttaagtt ctgggtggcc cttagaacctt 4080
agcactcaac caggttacca gttgtcact gactttgggaa agctcatgag ggagtgggt 4140
ggttgggggt agggaggat acagaagacc ccgttctgac tggtagaagt gacaagttt 4200
actcttgatt ttttttaatc tttttctgt agcgtgaaca gcccttattt gaatgtatga 4260
gttttagtaa gcaactgtgat aggaggattc atatacttaa atcaggccct cttgagagag 4320
tttttgggt accctttgc atgtgttgc gaggtggaa caaagaagct gaatgactt 4380
tttccccacc agacaatcag tcaaatggc aatcacaata taaaggttt tttttttt 4440
acatagctaa aaggttttt taaatgtccc ttaggatctg tatcttgca gtgcttgcg 4500
tgtcaacttc ataattttat tgtggatata caatgtccc agatttcag atttttatca 4560
atactgttgc gctgctttc tgcctccc ggttataacc cttgtctgg tgaaggaggc 4620
ggagcttgct cttggagacc tggacgcaga ggccgtcat ctggcggatg aggctaagaa 4680

A
Cmt

tcttggtagt gtcactttg acattagcaa gatgaaccct taaccctcga ttcaattgcc 4740
ttacgcacgc tttcacagt gactagccaa ggggaggtgg ggttgcattc tgccctaaac 4800
tacacctgca tatgtcaggg ctccagtcag caaaaggtat agatgttgcct tctaggcatg 4860
aggtcattgg tcacattcta cttggagaca gtgattgcat tcattgattt catggtaat 4920
tgctagttgg taggtaaagg cctctagatg attagcaatc ttgataaaag aggcctagta 4980
atgttcttt gaggttagaa atccttgctg ctaggacagt ctctgtgaca ggttgcgttg 5040
aatgatgtct tccttatcaa tggtagccc accagtgagg attactgatg tggacagttg 5100
atggggtttg tttctgtata ttatttta tgtacagaac tttgtaaaaa cgaaaactatt 5160
taaaaaacaa gaataacatt tttagcatct ttattcaagg agatttatgg acttcaattt 5220
gtcttatcaa cattaaatag ctttttatta c 5251

1
<210> 10
<211> 21
<212> DNA
<213> mammalian

2
<400> 10

gggagagctg tggagtcaac a

21

3
<210> 11
<211> 22
<212> DNA
<213> mammalian

4
<400> 11
cgtggcgact tagttagca tt

22

5
<210> 12
<211> 23
<212> DNA
<213> mammalian

6
<400> 12

gatgcgttca atgatgtctt cct

23

7
<210> 13
<211> 22
<212> DNA
<213> mammalian

8
<400> 13

agaagcaaac cccatcaact gt

22

<210> 14
<211> 21
<212> DNA
<213> mammalian

<400> 14

tggaggttct tcgatgctca t

21

<210> 15
<211> 22
<212> DNA
<213> mammalian

<400> 15

cagtgaaaca cgtctgcttc tg

22

<210> 16
<211> 22
<212> DNA
<213> mammalian

<400> 16

gcaaagacct gtatgccaac ac

22

a
am
<210> 17
<211> 23
<212> DNA
<213> mammalian

<400> 17

gccagagcag tcatctttt ctg

23

<210> 18
<211> 21
<212> DNA
<213> mammalian

<400> 18

accgtgctgc ccaggtgtcc a

21

<210> 19
<211> 29
<212> DNA
<213> mammalian

<400> 19

tgagccacc agtgaggatt actgatgtg

29

<210> 20
<211> 29
<212> DNA
<213> mammalian

<400> 20

atcttcttg aagtggagtg gagacgctg

29

<210> 21
<211> 25
<212> DNA
<213> mammalian

<400> 21

tccggtccac aatgcctggg tacat

25

a
cont
<210> 22
<211> 18
<212> PRT
<213> mammalian

<400> 22

Arg Pro Gln Glu Glu Asp Gly Pro Gly Pro Ser Thr Ser Ser Ser Val
1 5 10 15

Thr Arg