Projet simulation - Rapport

Maxime Gonthier (21500231) - Benjamin Guillot (21500545) $27~\mathrm{mai}~2019$

Table des matières

1	Introduction	
2	Explication de la programmation 2.1 Entrée et sortie du progamme	
3	Explication des résultats théoriques	
4	Conclusion	

1 Introduction

L'objectif de ce projet est de simuler en temps discret des arrivées et des services dans un cyber café. On en déduira des mesures d'évaluations à l'aide du calcul du temps moyen d'attente et du 90ème percentile du temps d'attente.

2 Explication de la programmation

2.1 Entrée et sortie du progamme

En entrée le programme prend un fichier texte contenant les données que l'on veut faire varier dans notre application (ici lambda). On obtient en sortie 5 fichier :

- Result modele1.txt
- Result_modele2.txt
- Result modele3.txt
- resultE.txt
- result90.txt

Les 3 premiers fichiers contiennent pour chaque valeurs de lambda le temps moyen d'attente E[A] et le 90 percentile du temps d'attente $t_{90}E[A]$. Les deux derniers fichiers sont utilisés pour l'affichages des courbes obtenues après la simulation.

2.2 structure du progamme

Nous avons choisit pour la programmation de gérés les différents modèles dans les fonctions $Arrivee_Client$ et $service_event$. Ces deux fonctions on 3 modes de fonctionnement passé en argument pour savoir quel modèle on est en train de simuler. Il n'y a donc qu'un seul simulateur pour les trois modèles : simul.

Il est appelé dans le main avec en argument :

- un fichier dans lequel écrire les données relatives a la simulation.
- la valeur de lambda en train d'être testée.
- le modèle sur lequel on souhaite tester lambda.

2.2.1 premier modèle

le premier modèle représente une $\rm M/M/N$ classique, on traite donc les clients dès qu'un serveur est libre.

2.2.2 second modèle

Le second modèle peut être simulé avec une M/M/1. On ajoute une condition aux arrivées de client qui est un pourcentage de chance d'arriver

dans la file, comme on a 10 serveurs en theorie, un client arrive dans une file avec une probabilité $\frac{1}{10}.$

- 3 Explication des résultats théoriques
- 4 Conclusion