

Contents

1	General approach			
	1.1	Defini	tion	1
		1.1.1	Definition of a matrix	1
		1.1.2	Notation	1
		1.1.3	Examples	1
	1.2	Partic	ular matrices	1
		1.2.1		1
		1.2.2		2
		1.2.3		2
		1.2.4	Square matrix	2
		1.2.5	Diagonal matrix	2
		1.2.6	Identity matrix	2
		1.2.7	Triangular matrix	3
	1.3	Transp		3
		1.3.1	Definition	3
		1.3.2	Notation	3
		1.3.3	Example	3
	1.4	Symm	etric matrix	4
		1.4.1	Symmetric	4
		1.4.2	Anti-Symmetric	4
2	Operations on matrices			
	2.1	Additi	on and external product	4
		2.1.1	Definition	4
		2.1.2	v	5
		2.1.3	1	5
	2.2	Intern	1	5
		2.2.1	Definition	5
		2.2.2		6
	2.3	Prope	rties of matrix calculus	6
		2.3.1	Properties	6
		2.3.2	Case of Square Matrices	7
	2.4	Inverse	e of a matrix	7
		2.4.1	Definition	7
		2.4.2		7
		2.4.3	How to find the inverse of a matrix	7

1 General approach

1.1 Definition

1.1.1 Definition of a matrix

We call matrix of n rows and p columns any mapping in the following form:

$$[1, n] \times [1, p] \rightarrow \mathbb{K}$$

 $i, j \qquad a_{ij}$

We denote such maps as tables of n rows and p columns, and we write:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}$$

 $\forall (i,j) \in [1,n] \times [1,p]$, we call a_{ij} a coefficient of the matrix. In this case coefficient if i-th row and j-th column.

1.1.2 Notation

We denote $M_{np}(\mathbb{K})$ the set of matrix of n rows and p columns with coefficient from \mathbb{K} .

1.1.3 Examples

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \in M_{32}(\mathbb{R})$$

$$B = \begin{pmatrix} i \\ 1+i \\ 3 \end{pmatrix} \in M_{31}(\mathbb{C})$$

1.2 Particular matrices

Let $A \in M_{np}(\mathbb{K})$ then:

1.2.1 Null matrix

1. $[\forall (i,j) \in [1,n] \times [1,p], a_{ij}=0] \Rightarrow [A=0_{np}]$ We say A is the null matrix $M_{np}(\mathbb{K})$.

1.2.1.1 Example

$$A' = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \in M_{32}(\mathbb{R})$$

1.2.2 Column matrix

2. $B \in M_{np}(\mathbb{K})$ and $p = 1 \Rightarrow B$ is a column matrix of n rows

1.2.2.1 Example

$$B' = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in M_{31}(\mathbb{R})$$

1.2.3 Row matrix

3. $B \in M_{np}(\mathbb{K})$ and $n = 1 \Rightarrow \mathbb{C}$ is a row matrix of p columns

1.2.3.1 Example

$$C' = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \in M_{13}(\mathbb{R})$$

1.2.4 Square matrix

We call square matrix any matrix with same number of rows and columns. We denote $M_n(\mathbb{K})$ the set of square matrix of n rows and columns with coefficient from \mathbb{K} .

4. $D \in M_{np}(\mathbb{K})$ and $n = p \Rightarrow D$ is a square matrix denote $M_n(\mathbb{K})$

1.2.4.1 Example

$$D' = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \in M_3(\mathbb{R})$$

1.2.5 Diagonal matrix

5. $\forall E \in M_n(\mathbb{R})$, if $\forall (i,j) \in [1,n]^2, i \neq j \Rightarrow a_{ij} = 0$ then we say E is a diagonal matrix

1.2.5.1 Example

$$E' = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \in M_2(\mathbb{R})$$
$$E'' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \in M_3(\mathbb{R})$$

1.2.6 Identity matrix

6. $\forall I_n \in M_n(\mathbb{R})$, if $\forall (i,j) \in [1,n]^2, i \neq j \Rightarrow a_{ij} = 0$ and $i = j \Rightarrow a_{ij} = 1$ then we say I_n is a identity matrix

1.2.6.1 Example

$$I_n' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in M_2(\mathbb{R})$$

$$I_n'' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{R})$$

1.2.7 Triangular matrix

- 6. $\forall F \in M_n(\mathbb{R})$, if $\forall (i,j) \in [1,n]^2, i > j \Rightarrow a_{ij} = 0$ then we say F is a lower triangular matrix
- 7. $\forall G \in M_n(\mathbb{R})$, if $\forall (i,j) \in [1,n]^2$, $i < j \Rightarrow a_{ij} = 0$ then we say G is a upper triangular matrix

1.2.7.1 Example

$$F' = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \in M_2(\mathbb{R})$$

$$G' = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \in M_2(\mathbb{R})$$

1.3 Transposed matrix

1.3.1 Definition

Let $A \in M_{np}(\mathbb{K})$. We call transposed matrix of A (or A transpose) a matrix B from $M_{pn}(\mathbb{K})$ such as:

$$\forall (i,j) \in [1,n] \times [1,p], a_{ij} = b_{ji}$$

1.3.2 Notation

We denote B as ${}^{t}\!A$

1.3.3 Example

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in M_{23}(\mathbb{R})$$

$${}^{t}A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \in M_{32}(\mathbb{R})$$

1.4 Symmetric matrix

1.4.1 Symmetric

If ${}^{t}A = A$ then we say A is symmetric

1.4.1.1 Example

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} = {}^{t}A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} \in M_{3}(\mathbb{R})$$

1.4.2 Anti-Symmetric

If ${}^{t}A = -A$ then we say A is Anti-symmetric

1.4.2.1 Example

$$A = \begin{pmatrix} 0 & -2 & 3 \\ 2 & 0 & -5 \\ -3 & 5 & 0 \end{pmatrix} = {}^{t}A = \begin{pmatrix} 0 & 2 & -3 \\ -2 & 0 & 5 \\ 3 & -5 & 0 \end{pmatrix} \in M_{3}(\mathbb{R})$$

2 Operations on matrices

2.1 Addition and external product

2.1.1 Definition

1. We call internal operation in $M_{np}(\mathbb{K})$ denoted \oplus "internal addition" the one definde as follows:

$$\forall A, B \in M_{np}^{2}(\mathbb{K}), A + B = (a_{ij} + b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$
Where $A = a_{ij} \underset{\substack{1 \le i \le n \\ 1 \le j \le p}}{\text{and }} B = b_{ij} \underset{\substack{1 \le i \le n \\ 1 \le j \le p}}{\text{supple}}$

2. We call "external multiplication" or "multiplication by a scalar" the one defined as follows:

$$\forall A \in M_{np}(\mathbb{K}), \forall \alpha \in \mathbb{K}, \alpha A = (\alpha a_{ij})_{\substack{1 \le i \le n \\ 1 < j < p}}$$

2.1.1.1 Example

$$(A,B) \in M_{2,3}(\mathbb{R})^2 \quad A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \text{ and } B = \begin{pmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix}$$

$$A + B = \begin{pmatrix} 1+7 & 2+8 & 3+9 \\ 4+10 & 5+11 & 6+12 \end{pmatrix} = \begin{pmatrix} 8 & 10 & 12 \\ 14 & 16 & 18 \end{pmatrix}$$

$$\alpha = 3, \quad \alpha A = \begin{pmatrix} 3 \times 1 & 3 \times 2 & 3 \times 3 \\ 3 \times 4 & 3 \times 5 & 3 \times 6 \end{pmatrix} = \begin{pmatrix} 3 & 6 & 9 \\ 12 & 15 & 18 \end{pmatrix}$$

2.1.1.2 Proposition

 (M_{np}, \oplus, \cdot) is a vector space over \mathbb{K}

2.1.2 Elementary matrix

For $(n,p) \in \mathbb{N}^2$, $(i,j) \in [1,n] \times [1,p]$; We denote E_{ij} the matrix from $M_{np}(\mathbb{K})$ such that the ij-th coefficient is 1 and all other coefficient are 0.

 E_{ij} are called elementary matrix

2.1.2.1 Example

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$E_{22} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$E_{33} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2.1.3 Proposition

- 1. $(E_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ is a basis of $M_{np}(\mathbb{K})$
- $2. dim((E_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}) = np$

Ex:
$$M_2(\mathbb{R})$$
 a (\mathbb{K}) -VS: B = $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ B is a Standard basis of $M_2(\mathbb{R})$, $dim(M_2(\mathbb{R})) = 2^2 = 4$

2.2 Internal product

2.2.1 Definition

Let $(n, p, q) \in \mathbb{N}^3$ and $A = a_{ij} \underset{1 \leq j \leq p}{1 \leq i \leq n} \in M_{np}(\mathbb{K}), B = b_{ij} \underset{1 \leq j \leq q}{1 \leq i \leq p} \in M_{pq}(\mathbb{K})$. We call product of A and B the matrix C form $M_{nq}(\mathbb{K})$ such that:

$$\forall (i,j) \in [1,n] \times [1,q], c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

2.2.1.1 Example

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in M_{2,3}(\mathbb{R}) \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 & 1 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in M_{3,4}(\mathbb{R})$$

$$C = A \cdot B = \begin{pmatrix} 1 & 0 & 8 & 11 \\ 4 & 0 & 20 & 32 \end{pmatrix} \in M_{2,4}(\mathbb{R})$$

$$C_{2,3} = 4 \times 1 + 5 \times 2 + 6 \times 1 = 20$$

2.2.2 Remarks

- (R1) If A, B two matrices: we only can multiply A by B if the number of column of A is equal to the number of row of B.
- (R2) AB can exists but BA not or the other way around.

2.2.2.1 Example

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \cdot B = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \Rightarrow M_{2,1}(\mathbb{R}), \text{ and exists but } BA \text{ does not exists}$$

(R3) In the General case, where AB and BA exists: $AB \neq BA \quad \text{(multiplication of matrix is not commutative)}$ When AB = BA we say A and B commute.

2.3 Properties of matrix calculus

2.3.1 Properties

1. Let A, B two matrices such that AB exists. We can have AB = 0 and $(A \neq 0 \text{ or } B \neq 0)$

If
$$A = 0$$
 or $B = 0$ then $AB = 0$
 $AB = 0 \Rightarrow A = 0$ or $B = 0$

2.3.1.1 Example

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2 & 3 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

2. $(n, p, q, r) \in \mathbb{N}^4$ and let $(A, B, C) \in M_{np}(\mathbb{K}) \times M_{pq}(\mathbb{K}) \times M_{qr}(\mathbb{K})$

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C \otimes$$
 is commutative

3. $(A, B, C) \in M_{np}(\mathbb{K}) \times M_{pq}^2(\mathbb{K})$

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

- \otimes (Matrices multiplication) is distributive over matrix addition (\oplus).
- 4. $A \in M_{np}(\mathbb{K})$ and $B \in M_{pq}(\mathbb{K})$ and $\lambda \in \mathbb{K}$

$$\lambda \cdot (A \cdot B) = A \cdot \lambda \cdot B = A \cdot B \cdot \lambda$$

2.3.2 Case of Square Matrices

1.

$$\forall A \in M_n(\mathbb{K}), A \cdot I_n = I_n \cdot A = A$$

2. Let $(A, B) \in M_n(\mathbb{K})^2$, such that AB = BA Then:

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}$$

By convention, $A^0 = B^0 = I_n$

3.

$$\forall (A, B) \in M_n(\mathbb{K})^2, {}^t(A \cdot B) = {}^tA \cdot {}^tB$$

2.4 Inverse of a matrix

2.4.1 Definition

Let $A \in M_n(\mathbb{K})$ we say that A is invertible if:

$$\exists B \in M_n(\mathbb{K}), AB = BA = I_n$$

Then we say that B is the inverse of A and denote $B = A^{-1}$ (B is unique) Hence we have (in case of A invertible): $A \cdot A^{-1} = A^{-1} \cdot A = I_n$

2.4.2 Notation

The set of invertible matrices of $M_n(\mathbb{K})$ is denoted $GL_n(\mathbb{K})$

2.4.3 How to find the inverse of a matrix

We will use the following system: Where $A \in M_n(\mathbb{K}), (U, V) \in M_{n,1}(K)^2$:

$$A \cdot U = V$$

By solving this system (Gauss elimination algorithm) when A is invertible, we will have:

$$U = A^{-1} \cdot V$$

2.4.3.1 Example

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} A \cdot X = U \Rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} x \\ y \\ z - x \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z - x \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z - x - y \end{pmatrix}$$

$$\iff \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} x - y + z \\ -x + y + z \\ z - x - y \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{x - y + z}{-x + y + z} \\ \frac{x + y - z}{2} \\ \frac{x + y - z}{2} \end{pmatrix}$$

$$\iff \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$