مهلت تحویل: ۱۴۰۰/۰۴/۱۵

14.1/.4/11

پروژه درس حسگری و اندازهگیری

مدار زیر برای اندازهگیری تغییرات میدان مغناطیسی (با اندازهگیری ولتاژ دوسر یک سیمپیچ) مورد استفاده قرار می گیرد.

C1, C4	SMT tantalum electrolytic capacitor	22uF-35V	2								
C2-C3	SMT capacitor	0.1uF	9								_
C5-C10, C14				R7*	1206 resistor	220K ±1% ±100PPM	1	R15	1206 resistor		0
	Ceramic capacitor		2	R8	1206 resistor	1K ±0.1% ±25PPM	1	U1	Reference voltage source	ADR435BR	1
	SMT capacitor	1000pF-NPO	1	R9*	BDS resistor	47K ±0.1% ±5PPM	1	U2, U4		TL062BMD	2
C15	SMT tantalum electrolytic capacitor	47uF-16V	1	R10	1206 resistor	10K ±0.1% ±25PPM	1	,			-
R1-R2	SMT resistor	27K ±1% ±25PPM	2	R11	1206 resistor	RC1206F-F-0R	1	U3	Instrumentation amplifier	INA 128U	1
R3	1206 resistor	100R ±1% ±100PPM				0R ±1% ±100PPM	1	U5	V/F converter	AD537SH	1
	1206 resistor	220K ±1% ±100PPM		R14		56K ±1% ±100PPM	1	U6	Digital potentiometer	MCP4011-103E/SN	1
R12				R15	1206 resistor		0	Z1	Voltage regulator	0.35W/3V3	1

۱- مدار را تحلیل کنید و نحوه عملکرد قسمتهای مختلف را توضیح دهید.

۱-۱ ولتاژ dc نقاط را مشخص كنيد.

۱-۲ فركانس قطع و مشخصه فيلتر اكتيو بهكار رفته را تعيين كنيد.

۱-۳ با مطالعه دیتاشیت قطعات ADS37، INA128، ADR435 و ADS37 نقش هریک را در مدار تشریح کنید. همینطور نقش هریک از آپامپها، خازنها و دیودها را توضیح دهید.

۱-۴ مدار را با استفاده از نرمافزار پروتئوس شبیهسازی نمایید. اگر برای برخی مدارهای مجتمع مدل رفتاری آن در دسترس نیست، از نزدیکترین قطعه به آن استفاده کنید.

۶-۱ در ادامه مدار یک میکروکنترلر قرار می گیرد. نحوه ارتباط (تعداد پین ورودی/خروجی و نقش هریک) را مشخص کنید.

۵-۱ (اختیاری) با اضافه کردن یک برد آردینو (یا هر میکروکنترلر دیگری) و نوشتن کد مناسب، به ازای هر بار که قدر مطلق ورودی از مقدار مشخصی بالاتر رود، یک پالس خروجی تولید کنید.

۲- با فرض آنکه این مدار در محیطی معادل A_{UF}کار میکند و همه قطعات به <mark>دمای ۱۲۵ درجه سانتیگراد </mark>میرسند، <mark>نرخ خرابی</mark> هر قطعه و MTBF برد را محاسبه کنید.

موفق باشيد