4 可分与紧合态射

习题 4.1. 证明有限态射紧合.

证明. 设 $f: X \to Y$ 有限,则对 Y 中任意仿射开集 U,都有 $f^{-1}(U)$ 仿射,因此 $f^{-1}(U) \to U$ 分离. 因此 f 分离. 按定义, f 有限型. 由于有限态射的基变换仍然有限,且有限态射总是闭映射 (习题 3.5),即知 f 泛闭. 因此 f 紧合.

习题 4.2. 令 S 为概形, X 是 S 上的既约概形, Y 是 S 上的分离概形. 令 f, g 都是 X 到 Y 上的 S-态射, 且在 X 的某个稠密开集上一致. 证明 f = g. 给出反例说明在 X 不既约或者 Y 不分离的情况下都未必成立. [提示: 给出 $X \to Y \times_S Y$ 的映射.]

证明. 设 $\varphi: X \to Y \times_S Y$ 是由 f 和 g 决定的映射. 设 $U \subseteq X$ 是稠密开集使得 $f|_U = g|_U$. 那么 $\varphi(U) \subseteq \Delta(Y) \subseteq Y \times_S Y$. 由于 Y 在 S 上分离, $\Delta(Y)$ 是闭子概型(且配备). 因此 $\varphi(X) \subseteq \Delta(Y)$. 由于 X 既约, $\varphi(X)$ (作为概形论像)具有既约闭子概形结构. 从而 φ 穿过 $\Delta(Y)$. 因此 $f = p_1 \circ \varphi = p_2 \circ \varphi = g$.

若 X 不既约, 则 $\varphi(X) \subseteq \Delta(Y)$ 不蕴含 φ 穿过 $\Delta(Y)$. 例如, 若 Y 是仿射直线 Spec k[z], X 是 Spec $k[x, \epsilon]/(\epsilon^2, x\epsilon)$, 即仿射直线在原点处多出一个无穷小. 考虑 $z \mapsto x$ 和 $z \mapsto x + \epsilon$ 诱导的两个 $X \to Y$ 同态. 它们在 X 去掉原点的稠密开集上一致, 但是却不相等.

若 Y 不分离, 则未必有 $\varphi(X)$ \subseteq $\Delta(Y)$. 例如, 若 Y 是带有双原点的直线, X 是 Y \times_k Y 中 $\Delta(Y)$ 的闭包 (具有四个原点), 而 f,g 是两个投影映射. 那么在去掉四个原点之后剩下的稠密开集上 f 与 g 一致. 但是 $f \neq g$.

习题 4.3. 令 X 是仿射概形 S 上的分离概形. 若 U 和 V 为 X 的仿射开集, 则 $U \cap V$ 亦仿射. 给出反例说明这在 X 不分离的情况下未必成立.

证明. 我们有 $\Delta(U \cap V) = (U \times_S V) \cap \Delta(X)$. 因此由 X 分离, 即知 $\Delta(U \cap V)$ 是 $U \times_S V$ 的闭子概形. 事实上, 如下交换图是个拉回 (是个 \square 图!):

$$\begin{array}{ccc} U \cap V & \longrightarrow & X \\ & & \downarrow \Delta & & \downarrow \Delta \\ U \times_S V & \longrightarrow & X \times_S X. \end{array}$$

由于 $U \times_S V$ 是仿射概形, 其闭子概形 $U \cap V$ 也一定是仿射概形 (习题 3.11).

若 X 未必分离, 可以取 $S = \operatorname{Spec} k$, X 为带有两个原点的仿射平面, U,V 分别是去掉其中一个原点之后得到的仿射平面. 那么 $U \cap V$ 是去掉原点的仿射平面, 并不仿射.

习题 4.4. 令 $f: X \to Y$ 为 Noether 概形 S 上的有限型可分概形之间的态射. 设 Z 是 X 的闭子概形, 且 Z 在 S 上紧合. 证明 f(Z) 在 Y 中闭, 并且 f(Z) 配备概形论像结构也在 S 上紧合. 我们将这个结论称为 "紧合概形的像 紧合". [提示: 将 f 分解为图像 $\Gamma_f: X \to X \times_S Y$ 和投影 p_2 的复合, 并证明 Γ_f 是闭浸入.]

证明. 由于紧合蕴含有限型且可分, 可以直接将 X 替换为 Z, 因此不妨假设 X=Z 紧合. 众所周知, 如下"魔法交换图"

$$X \cong X \times_Y Y \xrightarrow{\Gamma_f} X \times_S Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Y \xrightarrow{\Delta} Y \times_S Y.$$

是拉回图. 因此由于 $Y \xrightarrow{\Delta} Y \times_S Y$ 是闭浸入, 即知 Γ_f 也是闭浸入. 我们知道 $p_2: X \times_S Y \to Y$ 是 $X \to S$ 的基变换, 因此也是闭映射. 综上, $f: X \to Y$ 是两个闭映射的复合, 从而也是闭映射, 因此 $X \to f(X)$ 是满同态.

任取 S 上的概形 Z, 考虑 $X \times_S Z \xrightarrow{g} f(X) \times_S Z \xrightarrow{h} Z$. 其中 g 依然是满射 (因为基变换保持满射), $h \circ g$ 是闭映射. 因此 h 一定是闭映射. 所以 f(Z) 在 S 上泛闭.

显然 f(X) 在 S 上分离且有限型. 因此 f(X) 紧合.

习题 4.5. 令 X 为域 k 上的有限型整概形, 其函数域为 K. 如果 K/k 的某个赋值的赋值环支配局部环 $\mathcal{O}_{x,X}$, 其中 $x \in X$, 就说此赋值具有中心 x.

- (a) 若 X 在 k 上分离,则 K/k 的每个赋值的中心 (如果存在)一定唯一.
- (b) 若 X 在 k 上紧合, 则 K/k 的每个赋值都存在唯一的中心.
- (c) 证明 (a) 和 (b) 的逆命题. [提示: 虽然 (a) (b) 是赋值判别法的简单推论, 但是逆命题需要不同的域中的赋值之间的比较.]

- (d) 若 X 在 k 上紧合, 且 k 代数闭, 证明 $\Gamma(X, \mathcal{O}_X) = k$. 这推广了 (I, 3.4a). [提示: 令 $a \in \Gamma(X, \mathcal{O}_X), a \notin k$, 证明 存在 K/k 的赋值环 R 使得 $a^{-1} \in \mathfrak{m}_R$. 然后使用 (b) 得出矛盾.]
- 注意: 若 X 是 k 上的代数簇, 则 (b) 有时会作为完备簇的定义.
- 证明. (a) 若 R 是 K/k 的赋值环, 则自然有态射 $\operatorname{Spec} K \to \operatorname{Spec} R \to \operatorname{Spec} k$. 因此易知, 给出 R 对应的赋值的中心等价于给出下图中虚线的映射:

由赋值判别法, 若 X 分离, 则这样的态射至多唯一, 因此中心唯一.

- (b) 同上, 由赋值判别法, 若 X 紧合, 则这样的态射存在, 因此中心存在.
- (c) 考虑应用赋值判别法. 设 $L \in k$ 的扩域, $S \in L/k$ 的赋值环, 并且有如下交换图:

我们想给出 $\operatorname{Spec} S \to X$ 态射的唯一性或是存在唯一性. (这里专指使得上述图图表交换的态射, 下同.) 若 $\operatorname{Spec} L$ 中的唯一的点映射到了 X 的一般点, 则 K 是 L 的子域, 而 $R = S \cap K$ 是 K 中的赋值环. 因此有交换图

$$\operatorname{Spec} L \longrightarrow \operatorname{Spec} K \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec} S \longrightarrow \operatorname{Spec} R \longrightarrow \operatorname{Spec} k.$$

由前提可知 $\operatorname{Spec} R \to X$ 的态射唯一 (或存在唯一). 若有 $f \colon \operatorname{Spec} S \to X$, 则 f 将 $\operatorname{Spec} S$ 的闭点映射到 $x \in X$, 且 S 支配 $\mathcal{O}_{x,X}$. 由于 $\mathcal{O}_{x,X} \subset K$, 即知 R 支配 $\mathcal{O}_{x,X}$. 因此 $\operatorname{Spec} S \to X$ 的态射与 $\operatorname{Spec} R \to X$ 的态射 ——对应, 亦唯一 (或存在唯一).

若 Spec L 的点映射到任意的 $x \in X$, 则需考虑 $\{x\}^-$ 上的既约闭子概形 Z; Z 显然是 Spec L 的概形论像, 因此只需将 X 替换为 Z 重复上述论证.

因此, 问题转化为若 X 满足 (a) 或 (b) 中条件, Z 是 X 的不可约闭子概形, 则 Z 也满足相同条件. 我们首先需要一个引理:

引理. 设 $X \to Y$ 是紧合支配态射 (或者说紧合满态射), 其中 X,Y 都是域 k 上的整概形. 则 X 满足上述条件当且仅当 Y 满足相同条件.

证明. 设 $R \in K(Y)/K$ 的赋值环. 由于 f 支配, 其一定把 X 的一般点打到 Y 的一般点, 因此有包含 $K(Y) \hookrightarrow K(X)$. 令 R' 为 K(X) 中支配 R 的赋值环. 我们断言 $R' \cap K(Y) = R$: 若不然, 取 $e \in R' \cap K(Y)$, $e \notin R$. 则 $e^{-1} \in \mathfrak{m}_R$, $e^{-1} \notin \mathfrak{m}_{R'}$, 这与 R' 支配 R 矛盾.

若要给出 R 在 Y 中的一个中心, 就等价于给出一个 $y \in Y$ 使得 R 支配 $\mathcal{O}_{y,Y}$. 那么 R' 在 K(X) 中支配 $\mathcal{O}_{y,Y}$. 因此我们有交换图

因此由于 $X \to Y$ 紧合, 就可以将 Spec $R' \to Y$ 的映射唯一地提升到 Spec $R' \to X$. 也就是说对于 R 在 Y 中任意一个中心, 都存在恰好一个 R' 在 X 中的中心如此对应.

反之,若 x 是 R' 在 X 中的中心,y = f(x),则 $\mathcal{O}_{x,X}$ 支配 $\mathcal{O}_{y,Y}$,因此 R' 也支配 $\mathcal{O}_{y,Y}$. 而 $\mathcal{O}_{y,Y} \subset K(Y)$,因此 R 支配 $\mathcal{O}_{y,Y}$. (事实上就是说 Spec R' 是 Spec K(Y) 和 Spec R 在 Spec K(X) 上的推出). 因此 R' 在 X 中的中心和 R 在 Y 中的中心以如下交换图的方式——对应:

因此即证.

我们取 X 的正规化 \tilde{X} (习题 3.8), 则 $\tilde{X} \to X$ 有限, 因此紧合. 其显然是满射, 从而满足引理条件, 因此 \tilde{X} 也满足相应条件.

设 Z 是 X 的不可约闭子概形,考虑到基变换保持有限性和满射性,即知 $Z \times_X \tilde{X} \to Z$ 也是有限满射,从而也满足引理条件. 同时,由于其紧合且 Z 不可约,一定存在 $Z \times_X \tilde{X}$ 的不可约分支 Z' 使得 $Z' \to Z$ 亦是满射. 为 Z' 配备既约闭子概形结构,则 $Z' \to Z$ 是紧合满射,从而满足引理条件. 由于 $Z \times_X \tilde{X}$ 也是 \tilde{X} 的闭子概形(习题 3.11),即知 Z' 是 \tilde{X} 的不可约闭子概形.

因此问题归约为: 若 X 是域 k 上的有限型正规整概形, Z 是其不可约闭子概形, X 满足条件 (a) 或 (b), 那 么 Z 也满足相同的条件. 通过归纳, 我们不妨假设 Z 在 X 中具有余维数 1. 设 Z 的一般点为 z, 则 $\mathcal{O}_{z,X}$ 是一维整闭 Noether 局部整环, 因此是离散赋值环.

现在设 $S \subset K(Z) = k(z)$ 是赋值环, $k \subset S$. 令 $\pi : \mathcal{O}_{z,X} \to K(Z)$ 为商同态, $R = \pi^{-1}(S)$. 则 $R \in K$ 中的赋值 环: 任取 $u \in K$, 由于 $\mathcal{O}_{z,X}$ 是离散赋值环, $u \in \mathcal{O}_{z,X}$ 或 $u^{-1} \in \mathcal{O}_{z,X}$. 不妨设为前者. 若 $u \in \mathfrak{m}_z$, 则 $u \in R$; 否则 $\pi(u)$ 或 $\pi(u^{-1})$ 其中之一属于 S, 因此 $u \in R$ 或者 $u^{-1} \in R$. 综上, 对任意 $u \in K$, 必然有 $u \in R$ 或 $u^{-1} \in R$ 至 少一条成立. 因此 R 是赋值环.

设 $z' \in Z$ 是 S 在 Z 中的中心, 则 $\mathcal{O}_{z',X} = \pi^{-1}(\mathcal{O}_{z',Z})$ 被 R 支配, 从而 z' 也是 R 在 X 里的中心. 反之, 若 $z' \in X$ 是 R 的中心, 则 $\mathcal{O}_{z',X} \subseteq R \subseteq \mathcal{O}_{z,X}$, 因此 $z' \in Z$, 且显然 z' 也是 Z 中 S 的中心. 因此即证.

(d) 设 $a \in \Gamma(X, \mathcal{O}_X), a \notin k$. 由于 k 代数闭, $k[a^{-1}]$ 是整环. 考虑考虑 $A = k[a^{-1}]_{(a^{-1})} \subset K$. 由 Zorn 引理, 存在极大的支配 A 的局部环 $R \subset K$, 即存在赋值环 R 使得 $a^{-1} \in \mathfrak{m}_R$.

由 (b), 存在 $x \in X$ 使得 R 支配 $\mathcal{O}_{x,X}$. 因此 $a \in \Gamma(X, \mathcal{O}_X) \subseteq \mathcal{O}_{x,X} \subseteq R$. 但是这与 $a^{-1} \in \mathfrak{m}_R$ 矛盾.

习题 4.6. 令 $f: X \to Y$ 为 k 上仿射簇之间的紧合态射, 则 f 有限.

注. Hartshorne 中用簇表示代数闭域上的有限型可分整概形.

证明. 设 $X = \operatorname{Spec} B, Y = \operatorname{Spec} A$, 则 f 诱导 $A \to B$ 的环态射, 仍记作 f. 由于 f 紧合, 因此有限型, 即 B 在 A 上有限型. 从而为了证明 B 在 A 上有限, 只需证明 B 在 A 上整. 记 K 为 B 的分式域. 由整合的赋值判别法, 对于任意赋值环 $R \subset K$, 只要 $A \subset R$, 就有 $B \subset R$. 由于所有包含 A 的赋值环之交即为 A 的整闭包, 即知 B 在 A 上整, 从而有限. 因此 f 有限.

习题 4.7 ($\mathbb R$ 上的概形). 对任意 $\mathbb R$ 上的概形 X_0 , 记 $X=X_0\times_{\mathbb R}\mathbb C$. 设 $\alpha:\mathbb C\to\mathbb C$ 为共轭映射, $\sigma:X\to X$ 为在 X_0 上不变, 在 $\mathbb C$ 上应用 α 得到的态射. 那么 X 是 $\mathbb C$ 上的概形, σ 是其半线性自同态, 即有交换图

由于 $\sigma^2 = id$, 我们将 σ 称为对合.

(a) 设 X 为 $\mathbb C$ 上的有限型可分概形, σ 为其上的半线性对合,并且假设对任意 $x_1, x_2 \in X$,都存在包含它们的仿射开集(比方说,若 X 拟射影,则该条件成立).证明存在唯一的 R 上可分有限型概形 X_0 ,使得 $X_0 \times_{\mathbb R} \mathbb C \cong X$,且该同构将 σ 与上述的对合等同.

在接下来的命题中, X_0 总代表 \mathbb{R} 上的可分有限型概形, 且 X,σ 如上述定义为其对应的 \mathbb{C} 上的概形与对合.

- (b) 证明 X₀ 仿射当且仅当 X 仿射.
- (c) 若 X_0, Y_0 是这样的两个概形, 则给出态射 $f_0: X_0 \to Y_0$ 等价于给出态射 $f: X \to Y$ 使得其与对合交换, 即 $\sigma_Y \circ f = f \circ \sigma_X$.
- (d) 若 $X \cong \mathbb{A}^1_{\mathbb{C}}$, 则 $X_0 \cong \mathbb{A}^1_{\mathbb{R}}$.
- (e) 若 $X \cong \mathbb{P}^1_{\mathbb{C}}$, 则或者 $X_0 \cong \mathbb{P}^1_{\mathbb{R}}$, 或者 X_0 同构于 $\mathbb{P}^2_{\mathbb{R}}$ 中由齐次方程 $x_0^2 + x_1^2 + x_2^2 = 0$ 给出的三次曲线.
- 证明. (a) 首先考虑 X 仿射的情况. 若 $X = \operatorname{Spec} A$, 则 σ 诱导 $f: A \to A$. 取 $B = \ker(f \operatorname{id})$, $X_0 = \operatorname{Spec} B$, 不 难验证其满足条件.

若 X 任意, 我们先给出 X_0 的底空间. X_0 的底空间即为 X 的底空间商去 $p \sim \sigma(p)$ 得到的商空间. 设对应的商映射为 $\pi\colon X\to X_0$.

接下来考虑 X 中一切满足 $\sigma(U)=U$ 的仿射开集 U. 对任意 $x\in X$, 按题设, 存在仿射开集 U 使得 $x,\sigma(x)\in U$. 按习题 $4.3,U\cap\sigma(U)$ 仍仿射, 且其包含 x. 因此这样的仿射开集构成了 X 的一族开覆盖, 从而 对应的 $\pi(U)$ 也形成 X_0 的一族开覆盖.

对每个 U, 我们按照仿射的情况的办法, 得到一个 $X_{0,U} = \operatorname{Spec} B$, 显然其底空间自然地与 $\pi(U)$ 同胚, 因此我们可以将其看作 $\pi(U)$ 上的概形结构. 接下来只需证明这些概形结构都兼容即可.

若 U,V 都是符合条件的仿射开集, 由习题 $4.3,U \cap V$ 也是符合条件的仿射开集. 因此为了验证 $X_{0,U}$ 与 $X_{0,V}$ 对应的概形结构兼容, 只需验证 $U \subset V$ 的情况即可. 这样问题就转化为了简单的交换代数问题, 即若 B_1,B_2 是 ℝ 上的环, 给出 $B_1 \otimes_{\mathbb{R}} \mathbb{C}$ 到 $B_2 \otimes_{\mathbb{R}} \mathbb{C}$ 的保持共轭的态射, 就自然的给出了 B_1 到 B_2 的态射. (验证对应的 $X_{0,U} \to X_{0,V}$ 也是开浸入是简单的).

综上,我们可以把所有 $\pi(U)$ 上的仿射结构粘接成为概形 X_0 ,并且可以把 $X|_U \to X_0|_{\pi(U)}$ 的映射也粘接成 $\pi: X \to X_0$. 那么对每个 $U_0 = \pi(U) \subset X_0$,都有 $\pi^{-1}(U_0) = U \cong U_0 \times_{\mathbb{R}} \mathbb{C}$. 按纤维积的定义,即知 $X \cong X_0 \times_{\mathbb{R}} \mathbb{C}$,且 σ 确实与上面定义的对合等同. X_0 的有限生成性可以在每个 $\pi(U)$ 上局部地验证. 而 $X_0 \to \operatorname{Spec} \mathbb{R}$ 可以 写成复合 $X_0 \to X \to \operatorname{Spec} \mathbb{C} \to \operatorname{Spec} \mathbb{R}$. 其中 $X \to \operatorname{Spec} \mathbb{C}$ 由题设分离, $X_0 \to X$ 是 $\operatorname{Spec} \mathbb{C} \to \operatorname{Spec} \mathbb{R}$ 的基变换,而 $\operatorname{Spec} \mathbb{C} \to \operatorname{Spec} \mathbb{R}$ 是仿射概形之间的态射,因此分离.

对于唯一性, 若 X_0' 是另一个满足条件的概形, 易知 X_0' 的底空间与 X_0 的底空间 (自然地) 同胚. 且对于 X_0' 的任意仿射开集 U, 取 X_0 中的仿射开集 $V \subset U$. 则使用与前面确定仿射开集间相容的办法即知 $X_0|_{V} \cong X_0'|_{U}$. 由 U,V 的任意性即知 $X_0 \cong X_0'$.

- (b) 若 $X_0 = \operatorname{Spec} B$, 则 $X \cong \operatorname{Spec}(B \otimes_{\mathbb{R}} \mathbb{C})$. 反之若 $X = \operatorname{Spec} A$, 则由唯一性知 $X_0 \cong \operatorname{Spec}\{x \in A \mid x = \bar{x}\}$, 其中 $x \mapsto \bar{x} \not\in \sigma$ 诱导的共轭映射.
- (c) 只需在仿射开集上验证. 显然.
- (d) 若 φ 是 $\mathbb{C}[x]$ 到自身的同构, $\varphi^2 = \mathrm{id}$, 且 φ 限制在 \mathbb{C} 上是共轭映射, 设 $\varphi(x) = g(x) \in \mathbb{C}[x]$, 则 $x = \varphi(\varphi(x)) = g(g(x))$. 因此只可能 g(x) = wx + ik(1+w), $|w| = 1, k \in \mathbb{R}$. 从而若 $X = \mathbb{A}^1_{\mathbb{C}}$, 则 X 上的对合只可能是 $x \mapsto wx + ik(1+w)$ 诱导的对合. 对应的, X_0 即为子环 $B = \{g(x) \in \mathbb{C}[x] \mid \bar{g}(wx + ik(1+w)) = g(x)\}$ 的素谱. 设 $w = e^{2it}$, 则 $x \mapsto e^{it}x + ike^{it}$ 给出了 $\mathbb{R}[x]$ 到 B 的同构. 因此 $X_0 \cong \mathbb{A}^1_{\mathbb{R}}$.
- (e) 设 $\sigma: \mathbb{P}^1_{\mathbb{C}} \to \mathbb{P}^1_{\mathbb{C}}$ 是满足条件的对合.
 - 若存在闭点 p 使得 $\sigma(p) = p$, 则 σ 限制在 $U = \mathbb{P}_{\mathbb{C}}^1 \setminus \{p\}$ 上给出了 $U \to U$ 的对合. 而 $U \cong \mathbf{A}_{\mathbb{C}}^1$, 因此由 (d) 易知存在 $q \in U$ 使得 $\sigma(q) = q$. 再设 $V = \mathbb{P}_{\mathbb{C}}^1 \setminus \{q\}$. 则由 (d) 可以得到 U_0, V_0 使得 $U = U_0 \times_{\mathbb{R}} \mathbb{C}, V = V_0 \times_{\mathbb{R}} \mathbb{C}, U_0, V_0 \cong \mathbf{A}_{\mathbb{R}}^1$. 且 $\sigma|_U, \sigma|_V$ 恰好是这样诱导的对合. 而由 (c) 即知 U_0 和 V_0 可以粘接为 X_0 . 显然 $X_0 \cong \mathbb{P}_{\mathbb{R}}^1$.
 - 若不然, 任取闭点 p. 通过坐标变换, 不妨设 p = 0, $\sigma(p) = \infty$ (即 p = [0:1], $\sigma(p) = [1:0]$). 则 σ 固定 $\mathbb{P}^1_{\mathbb{C}} \setminus \{0,\infty\} \cong \operatorname{Spec} \mathbb{C}[z,z^{-1}]$, 设其对应的 $\operatorname{Spec} \mathbb{C}[z,z^{-1}]$ 的环自同构为 φ . 类似于 (d), 不难说明在一定 的坐标变换后 $\varphi(z) = z$ 或 $\varphi(z) = -z^{-1}$. 但是 σ 没有不动点, 因此只能 $\varphi(z) = -z^{-1}$. 从而对应的不变子 代数为 $\mathbb{R}[z-z^{-1},iz+iz^{-1}] \cong \mathbb{R}[x,y]/(x^2+y^2+1)$. 也就对应了 $\mathbb{P}^2_{\mathbb{R}}$ 中的三次曲线 $x^2+y^2+z^2=0$.

习题 4.8. 设 ℱ 为概形态射的某种性质, 满足:

- (a) 闭浸入都满足 9.
- (b) 两个 P 态射的复合也满足 P.
- (c) P 态射的基变换也满足 P.

证明:

- (d) 罗 态射的乘积也满足 罗.
- (e) 若 $f: X \to Y, g: Y \to Z$ 使得 $g \circ f$ 满足 \mathcal{P} 且 g 分离, 则 f 也满足 \mathcal{P} .
- (f) 若 $f: X \to Y$ 满足 \mathcal{P} , 则 $f_{\text{red}}: X_{\text{red}} \to Y_{\text{red}}$ 也满足 \mathcal{P} .

[提示: 对于 (e), 考虑像态射 $\Gamma_f: X \to X \times_Z Y$, 并注意其可以由 $\Delta: Y \to Y \times_Z Y$ 基变换得到.]

证明. (d) 设 $f_i: X_i \to Y_i$ 都满足 \mathcal{P} , 其中 i=1,2. 则 $X_1 \times X_2 \xrightarrow{(f_i, \mathrm{id})} Y_1 \times X_2 \xrightarrow{(\mathrm{id}, f_2)} Y_1 \times Y_2$. 因此只需考虑 $f_2 = \mathrm{id}$ 的情况. 即需要证明若 $f: X \to Y$ 满足 \mathcal{P} , 则 $X \times Z \to Y \times Z$ 也满足 \mathcal{P} . 但是由泛性质易知下面的图表是 拉回图:

$$\begin{array}{ccc} X \times Z & \longrightarrow X \\ \downarrow & & \downarrow \\ Y \times Z & \longrightarrow Y. \end{array}$$

因此即证.

(e) 正如习题 4.4, 如下"魔法交换图"

$$X \cong X \times_{Y} Y \xrightarrow{\Gamma_{f}} X \times_{Z} Y$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Y \xrightarrow{\Delta} Y \times_{Z} Y.$$

是拉回图, 因此 $\Gamma_f: X \to X \times_Z Y$ 是闭浸入, 从而满足 \mathcal{P} . 另一方面, $X \times_Z Y \to Y$ 是 $X \to Z$ 的基变换, 因此 也满足 \mathcal{P} . 所以其复合 $f: X \to Y$ 满足 \mathcal{P} .

(f) 由于 $X_{\rm red} \to X$ 是闭浸入,所以 $X_{\rm red} \to X \to Y$ 作为复合也满足 \mathscr{P} . $Y_{\rm red} \to Y$ 也是闭浸入,因此分离. 因此由 (e) 即知 $X_{\rm red} \to Y_{\rm red}$ 满足 \mathscr{P} .

习题 4.9. 证明射影态射的复合也射影. [提示: 使用 (I, Ex 2.14) 中的 Segre 嵌入, 并证明其给出了 $\mathbb{P}^r \times \mathbb{P}^s \to \mathbb{P}^{rs+r+s}$ 的闭浸入.] 由此推断射影态射满足上述习题 4.8 中的 (a)-(f) 所有性质.

证明. 考虑到 \mathbb{P}^r 可以由 r+1 个开集 $U_i, i=0,...,r$ 覆盖, 且 \mathbb{P}^s 可以由 s+1 个开集 $V_i, i=0,...,s$ 覆盖. 因此 $\mathbb{P}^r \times_{\mathbb{Z}} \mathbb{P}^s$ 可以由 $U_i \times_{\mathbb{Z}} V_j$ 覆盖. 对每个 $U_i \times_{\mathbb{Z}} V_j \cong \operatorname{Spec} \mathbb{Z}[\frac{x_i}{x_i}, \frac{y_i}{y_i}]$, 考虑同态

$$\begin{split} \mathbb{Z}\Big[\frac{z_{kl}}{z_{ij}}\Big] &\to \mathbb{Z}\Big[\frac{x_k}{x_i}, \frac{y_l}{y_j}\Big], \\ \frac{z_{kl}}{z_{ij}} &\mapsto \frac{x_k}{x_i} \frac{y_l}{y_j}. \end{split}$$

显然此同态是满射, 且其给出了 $U_i \times_{\mathbb{Z}} V_j \to W_{ij} \subset \mathbb{P}^{rs+r+s}$ 的态射 (我们将后者的坐标记作 $\{z_{ij}\}_{i=0,\dots,r}$). 这些态射可以粘接为 $\varphi \colon \mathbb{P}^r \times_{\mathbb{Z}} \mathbb{P}^s \to \mathbb{P}^{rs+r+s}$. 由于对每个 W_{ij} , 都有 $U_i \times_{\mathbb{Z}} V_j = \varphi^{-1}(W_{ij}) \to W_{ij}$ 是闭浸入 (因为上述环同态是满射). 从而 φ 也是闭浸入.

现在我们证明射影态射的复合射影. 由上述结论, 对于任意概形 X, 有 $\mathbb{P}_{\mathbb{P}_{X}^{s}}^{r} = \mathbb{P}^{r} \times \mathbb{P}^{s} \times X$, 因此其是 \mathbb{P}_{X}^{rs+r+s} 的闭子概形. 因此若 $X \to Y, Y \to Z$ 都射影, 设 $X \neq \mathbb{P}_{Y}^{r}$ 的闭子概形, $Y \neq \mathbb{P}_{Z}^{s}$ 的闭子概形. 则 $X \to \mathbb{P}_{Y}^{r} \to \mathbb{P}_{Z}^{rs+r+s}$ 是闭浸入的复合, 也是闭浸入. 因此 $X \to Z$ 射影.

显然射影性还满足习题 4.8 的 (a) (c), 因此它也满足 (d) (e) (f).

习题 4.10 (周引理). 这个结论告诉我们紧合态射几乎就是射影态射. 令 X 是 Noether 概形 S 上的紧合概形, 那 么存在 X' 以及态射 $g: X' \to X$, 使得 X' 在 S 上射影, 并且存在稠密开集 $U \subseteq X$, $g^{-1}(U) \to U$ 是同构. 依照下列步骤证明此结论.

- (a) 归约到 X 不可约的情形.
- (b) 证明 X 可以由有限多个开集 U_i , $i=1,\ldots,n$ 覆盖, 其中每个 U_i 都在 S 上拟射影. 令 $U_i\to P_i$ 为从 U_i 到 S 上的射影概形 P_i 的开浸入.
- (c) 令 $U = \bigcap U_i$, 考虑由 $U \to X$ 以及 $U \to P_i$ 给出的态射

$$f: U \to X \times_S P_1 \times_S \cdots \times_S P_n$$
.

令 X' 为概形论像 $f(U)^-$. 令 $g: X' \to X$ 为其向第一个分量的投影态射, 并令 $h: X' \to P = P_1 \times_S \cdots \times_j P_n$ 为到剩余的分量的投影态射. 证明 h 是闭浸入, 因此 X' 在 S 上射影.

- (d) 证明 $g^{-1}(U) \to U$ 是同构, 从而完成证明.
- 证明. 事实上可以进一步要求 g 是满射.
 - (a) 设 X 中不可约分支为 Z_i . 记 $U_i = X \setminus \bigcup_{j \neq i} Z_j$, 是 X 的开子概形. 记 Y_i 是 U_i 在 X 中的概形论像. 由于 X Noether, 通过考虑 X 中每个仿射开集, 易知 $p_i: Y_i \to X$ 映射中 $p_i^{-1}(U_i) \to U_i$ 是同构. 且显然 $Y_i \subseteq Z_i$ 不可约, 并且 Y_i 在 S 上紧合. 若命题对不可约紧合概形成立,则对每个 Y_i , 存在射影概形 P_i 与映射 $f_i: P_i \to Y_i$. 取 $X' = \coprod P_i$,则显然 $X' \to X$ 满足条件. (射影概形的不交并可以嵌入到射影空间的乘积中, 因此由 Serge 嵌入即知其仍然射影.)
 - (b) 设 S 可以由仿射开集 $V_i \cong \operatorname{Spec} A_i$ 覆盖,而 V_i 在 X 中的原像可以由仿射开集 $U_{ij} \cong \operatorname{Spec} B_{ij}$ 覆盖. 由于 X 在 S 上紧合,即知 B_{ij} 是有限生成 A_i 代数. 因此 U_{ij} 可以闭浸入到 $A_{A_i}^n$,再开浸入到 $P_{A_i}^n$,然后再开浸入到 $P_{A_i}^n$

为了说明 U_{ij} 在 S 上射影, 我们需要引理:

引理. 若 $i: X \to Y$ 是浸入, 即存在 Z 使得 i 可以分解为闭浸入 $X \to U$ 复合开浸入 $U \to Y$, 并且 X 既约, 或者 i 拟紧, 那么 i 就可以分解为开浸入 $X \to Z$ 复合闭浸入 $Z \to Y$, 其中 Z 是 i 的概形论像.

证明. 若 X 既约, 可以取 Z 为 $\overline{i(X)}$ 上的既约闭子概形. 若 i 拟紧, 由于其分离, 即知 $i_* \mathcal{O}_X$ 是 Y 上的拟凝聚层, 从而 $\mathcal{F} = \ker(\mathcal{O}_Y \to i_* \mathcal{O}_X)$ 是拟凝聚理想层. 设 Z 为 \mathcal{F} 对应的闭子概形. 在两种情况下, 都易知 Z 是 i 的概形论像, 并且 $X \cong Z \times_Y U$: 既约的情形可以由泛性质立得, 而拟紧的情形可以在局部上验证. 因此 $X \to Z$ 是开浸入 $U \to Y$ 的基变换, 亦是开浸入.

因此 U_{ij} 是 \mathbb{P}_S^n 的闭子概形的开子概形, 从而在 S 上拟射影.

(c) 记 $p_i: P \to P_i$. 定义

$$V_i = p_i^{-1}(U_i) \subset P,$$

$$U_i' = g^{-1}(U_i) \subset X',$$

$$V_i' = h^{-1}(V_i) \subset X'.$$

我们希望证明 $U_i' \subseteq V_i'$, 即 $p_i(h(U_i')) \subseteq U_i \subseteq P$. 为此, 只需要证明 (作为底空间的映射) $p_i \circ h|_{U_i'} = \varphi_i \circ g|_{U_i'}$, 其中 $\varphi_i : U_i \to P_i$. 然而这两个映射在 $f(U) \subseteq X$ 上相等, 且 f(U) 在 U_i' 中稠密, 因此确有 $U_i' \subseteq V_i'$. 而 U_i 覆盖 X, 因此 U_i' 覆盖 X', 所以 V_i' 也覆盖 X'. 为了证明 $X' \to P$ 是闭浸入, 只需证明每个 $V_i' \to V_i$ 是闭浸入.

由于这里讨论的一切概形都 Noether, 所以一切态射都拟紧. 因此类似于上面的引理, 概形论像总是某个拟凝聚层对应的闭子概形. 由于取拟凝聚层对应的闭子概形的操作与取开子概形兼容, 即有概形论像的开子概形同构于开子概形的概形论像. 这里 X' 为 U 在 $X\times_S P$ 中的概形论像. 而 V_i 是 P 的开子概形,从而 $X\times_S V_i$ 是 $X\times_S P$ 的开子概形. 显然 $U\to X\times_S P$ 穿过 $X\times_S V_i$. 因此 V_i' 同构于 U 在 $X\times_S V_i$ 中的概形论像. 只需证明其到 V_i 是闭浸入.

考虑到 $p_i(V_i) = U_i \subset P_i$, 就有态射 $v_i : V_i \to X$, 从而有像态射 $\Gamma_{v_i} : V_i \to X \times_S V_i$. 显然态射 $U \to X \times_S V_i$ 穿过 $\Gamma_{v_i}(V_i)$ (因为 $U \to X$ 穿过 V_i). 而 V_i' 是此态射的概形论像, 从而依定义即知 $V_i' \to X \times_S V_i$ 也穿过 $\Gamma_{v_i}(V_i)$, 并且是闭浸入. 但是 $\Gamma_{v_i}(V_i)$ 通过投影同构于 V_i . 因此 V_i' 闭浸入到 V_i . 命题即证.

- (d) 同 (c), $g^{-1}(U)$ 同构于 U 在 $U \times_S P$ 中的概形论像. 但是 $U \to U \times_S P$ 是闭浸入 (这是 $U \to P$ 的像态射), 所以这就同构于 U.
- **习题 4.11.** 如果可以证明一些困难的交换代数命题, 并且只考虑 Noether 概形, 那么我们可以只用离散赋值环来 叙述赋值判别法.
 - (a) 设 \mathcal{O} , \mathfrak{m} 是 Noether 局部整环, 其分式域为 K, 且 L 是 K 上有限生成域扩张, 那么存在 L 的离散赋值环 R 支配 \mathcal{O} . 按以下步骤证明这个结论: 首先取 \mathcal{O} 的多项式环, 归约到 L 是 K 的有限扩域的情形. 接下来证明可以取 \mathfrak{m} 的一组合适的生成元 x_1, \ldots, x_n , 使得 $\mathcal{O}' = \mathcal{O}[x_2/x_1, \ldots, x_n/x_1]$ 中 $\mathfrak{a} = (x_1)$ 是真子理想. 接下来令 \mathfrak{p} 为 \mathfrak{a} 的一个极小素理想, 并设 $\mathcal{O}'_{\mathfrak{p}}$ 为 \mathcal{O}' 在 \mathfrak{p} 的局部化. 它是支配 \mathcal{O} 的一维 Noether 局部整环. 令 $\tilde{\mathcal{O}}'_{\mathfrak{p}}$ 为 $\mathcal{O}'_{\mathfrak{p}}$ 在 L 中的整闭包. 使用 Krull—秋月 (Akizuki) 定理 (见 Nagata [7, p. 115]) 证明 $\tilde{\mathcal{O}}'_{\mathfrak{p}}$ 也是一维 Noether 整环. 最后取 $\tilde{\mathcal{O}}'_{\mathfrak{p}}$ 在任意极大理想处的局部化.
 - (b) 令 $f: X \to Y$ 为 Noether 概形之间的有限型态射. 证明 f 分离 (或紧合) 当且仅当赋值判别法对一切离散赋值环成立.

证明. 对于 (a). 首先, 显然该命题若对 L/F 和 F/K 都成立, 则它也对 L/K 成立. 因此对任意 L/K, 取其中一组 超越基 $x_1,\ldots,x_n\in L$, 考虑 $K_m=K(x_1,\ldots,x_m),K_0=K$. 对于 K_m/K_{m-1} , 只需对 $\mathcal{O}_{m-1}\subset K_{m-1}$, 定义 $\mathcal{O}_m=\mathcal{O}[x_m]_{(x_m)}$ 即可. 也就是说, 只需要考虑 L/K_n , 即域扩张有限的情况.

下面设 L/K 有限. 任取 \mathfrak{m} 的一组生成元 x_1,\ldots,x_n ,我们断言某个 x_i 满足对任意 k 都有 $x_i^k \notin \mathfrak{m}^{k+1}$. 否则存在一个 k 使得对每个 i 都有 $x_i^k \in \mathfrak{m}^{k+1}$,因此不难知道 $\mathfrak{m}^{nk} = (x_1,\ldots,x_n)^{nk} \subseteq \mathfrak{m}^{nk+1}$,矛盾.

不妨设 x_1 满足上述性质. 设 $\mathscr{O}' = \mathscr{O}[\frac{x_2}{x_1}, ..., \frac{x_n}{x_1}]$, 不难发现上述条件蕴含 $\mathfrak{a} = (x_1) \subseteq \mathscr{O}'$. 令 \mathfrak{p} 为 \mathfrak{a} 的某个极小素理想, $\mathscr{O}'_{\mathfrak{p}}$ 为对应的局部化,则其是支配 \mathscr{O} 的一维 Noether 局部环.

令 $\mathcal{O}_{\mathfrak{p}}'$ 为 $\mathcal{O}_{\mathfrak{p}}'$ 在 L 中的整闭包. 由 Krull—秋月 (Akizuki) 定理 2 , $\mathcal{O}_{\mathfrak{p}}'$ 也是一维 Noether 环. 取 R 为其在任一极大理想处的局部化,则 R 即为所需的离散赋值环.

对于 (b), "仅当" 的部分比原本的赋值判别法弱, 因此立即成立. 对于"当"的部分, 只需重复赋值判别法的证明 3 即可.

习题 4.12 (赋值环的例子). 令 k 为代数闭域.

- (a) 若 K 是 k 上的一维函数域 (I, §6), 则 K/k 的任意赋值环 (除了 K 本身) 都是离散赋值环. 因此它们构成的集合恰好就是 (I, §6) 中所有的抽象非奇异曲线 C_K .
- (b) 若 K/k 是二维函数域, 那么有若干种类赋值. 设 X 是函数域为 K 的完备非奇异曲面.

¹Krull 维数.

 $^{^2}$ 若 A 是一维既约 Noether 环, K 为其全分式环, L 为 K 的有限扩张, B 是 L 中包含 A 的子环, 那么 B 也是一维 Noether 环.

³如香蕉空间: 赋值判别法.

- (1) 若 $Y \in X$ 上的不可约曲线, 其一般点为 x_1 , 那么局部环 $R = \mathcal{O}_{x_1,X}$ 是 K/k 中的离散赋值环, 其中心为 (非闭点) x_1 .
- (2) 若 $f: X' \to X$ 为双有理态射, Y' 是 X' 中的不可约曲线, 其在 X 中的像为闭点 x_0 , 那么 Y' 的一般点处的局部环 R 是 K/k 中的离散赋值环, 其中心为 x_0 .
- (3) 令 $x_0 \in X$ 为一闭点. 设 $f: X_1 \to X$ 为 x_0 处的爆破 (I, §4), 而 $E_1 = f^{-1}(E_0)$ 为例外曲线. 在 E_1 中择一闭点 x_1 , 令 $f_2: X_2 \to X_1$ 为 x_1 处的爆破, $E_2 = f_2^{-1}(x_1)$ 为例外曲线. 重复这个过程, 我们得到一系列概形 X_i 以及其中选定的闭点 x_i , 并且对任意 i, 局部环 $\mathcal{O}_{x_{i+1},X_{i+1}}$ 支配 \mathcal{O}_{x_i,X_i} . 令 $R_0 = \bigcup_{i=0}^{\infty} \mathcal{O}_{x_i,X_i}$. 则 R_0 也是局部环, 因此其被 K/k 中某个赋值环 R 所支配 (I, 6.1A). 证明 R 在 X 上以 X_0 为中心. R 何时是离散赋值环?

注意: 我们之后 (V, 习题 5.6) 将会看到 (3) 中的 R_0 本身已经是赋值环, 所以 $R_0 = R$. 更进一步, K/k 的所有赋值环 (除了 K 本身) 都形如这三种类型之一.

证明. 待证.