Statistique Descriptive

Kossi Tonyi Wobubey ABOTSI

default

```
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4
                     v readr
                                 2.1.5
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.5.1
                   v tibble
                                 3.2.1
                                 1.3.1
## v lubridate 1.9.3
                   v tidyr
## v purrr
            1.0.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
```

Importation des données:

```
# install.packages("readxl")
# Load the readxl package
# Read data from the Excel file
data <- read_excel("données pour R_28 classes_ MEFG_22 24.xlsx")
#Selection des colonnes utile
data = data %>% dplyr::select(college:classe, taille_cm : gender,sb:pmvpa,time,CA: CSP_P2)
#Renommage des colonnes
colnames(data)[23:24] = c("CSP_père", "CSP_mère")
data$weight_kg = as.double(data$weight_kg)
data$taille_cm = as.double(data$taille_cm)
data$age = as.integer(data$age)
data$time = as.double(data$time)
#Ajout de colonne des IMC
data$IMC_kg_m2 <- data$weight_kg / (data$taille_cm * 10^-2)^2
# Ajout d'une nouvelle colonne "IPS_categorie"
data$IPS_categorie <- ifelse(data$IPS < 89, "Faible",</pre>
                             ifelse(data$IPS >= 90 & data$IPS <= 114, "Moyenne", "Élevée"))
#Résolution du problème de facteur double
data$gender = ifelse(data$gender != 'M' & data$gender != 'F', 'M', data$gender)
```

```
#Suppression des valeurs manquantes
data = na.omit(data)
#data = data %%
# filter(data$CSP_mère != 'NA' & data$CSP_père != 'NA')
# Print the first few rows of the data to verify
head(data)
## # A tibble: 6 x 26
     college classe taille_cm weight_kg
                                          age gender
                                                        sb
                                                             lpa
                                                                  mpa
                                                                         vpa psb
##
                                 <dbl> <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
     <chr>>
            <chr>
                       <dbl>
## 1 aigle
           3.P
                         157
                                     55
                                           15 F
                                                      26.3 4.83 21.2 2.33 47,88~
           3.P
## 2 aigle
                         178
                                     61
                                           14 M
                                                      14
                                                            8.33 28
                                                                             25,45~
                                                                        4
## 3 aigle
           3.P
                         170
                                     75
                                           15 M
                                                      20.3 7.33 21.8
                                                                       5
                                                                             36,97~
## 4 aigle
           3.P
                          153
                                     68
                                           15 F
                                                      26.2 7.33 18.7 2.83 47,58~
            3.P
                          181
                                     95
                                           15 M
                                                      12.2 12.3
                                                                  22.3 6.17 22,12~
## 5 aigle
                                     51
                                           15 F
## 6 aigle
            3.P
                          164
                                                      20.5 6.5
                                                                  20.3 4.83 37,27~
## # i 15 more variables: pla <chr>, pmpa <chr>, pvpa <chr>, mvpa <dbl>,
## #
       pmvpa <chr>, time <dbl>, CA <dbl>, activites <chr>, IPS <dbl>,
## #
       cat_IPS <chr>, Geographie <chr>, CSP_père <chr>, CSP_mère <chr>,
## #
       IMC_kg_m2 <dbl>, IPS_categorie <chr>
```

Statistique descriptive de la Population

Calculons l'age moyens des filles et garçons et l'age moyen des participants.

1. Age moyen des Participants

```
age_sexe_data=data %>%
  group_by(gender) %>%
  summarise(age_total = sum(age),effectif = n())
age_moyen = sum(age_sexe_data$age_total)/sum(age_sexe_data$effectif)
age_moyen
## [1] 13.65499
```

Donc l'age moyen des participants est 13.65.

2. Moyenne de mvpa des fille et garçon

3. L'age moyen des filles et garçons

```
age_sexe_data$age_moyen = age_sexe_data$age_total/age_sexe_data$effectif
age_sexe_data
```

```
## # A tibble: 2 x 4
## gender age_total effectif age_moyen
## <chr> <int> <int> <int> <dbl>
## 1 F 2418 177 13.7
## 2 M 2648 194 13.6
```

Sexe	F	M	Participant(les deux sexes)
Age Moyen	13.66	13.65	13.65

• IMC moyen selon le sexe

```
data %>%
 group_by(gender) %>%
 summarise(IMC_moyen = mean(na.omit(IMC_kg_m2)))
## # A tibble: 2 x 2
## gender IMC_moyen
   <chr>
              <dbl>
##
## 1 F
                22.4
## 2 M
                22.2
# Créer le diagramme en boîte pour l'IMC par classe et sexe
ggplot(data, aes(x = gender, y = IMC_kg_m2, fill = gender)) +
 geom_boxplot() +
 labs(x = "gender", y = "IMC (kg/m^2)", fill = "Sexe") +
theme_minimal()
```


En moyenne l'IMC des filles est légèrement plus grand que celui des garçons.

```
mean(data$IMC_kg_m2)
```

[1] 22.29897

En général la moyenne des IMC est de 22.3.

Récapitulatif dans le tableau suivant :

	Population globale	Filles	Garçons
$\overline{\mathbf{IMC}}$	22.3	22.45	22.16

• CSP des parents

```
data_1 <- as.data.frame(table(data$CSP_père, data$gender))
# Renommer les colonnes
names(data_1) <- c("CSP", "sexe", "Effectif_Participant")

data_2 = as.data.frame(table(data$CSP_mère,data$gender))
# Renommer les colonnes
names(data_2) = c("CSP", "sexe", "Effectif_Participant")

CSP_data <- rbind(data_1, data_2)

# Renommer la première colonne
colnames(CSP_data)[1] <- "CSP_Parent"</pre>
```

```
# Grouper par CSP_Parent et sexe, puis calculer les totaux
CSP_data <- CSP_data %>%
  group_by(CSP_Parent, sexe) %>%
  summarise(Effectif Participant total = sum(Effectif Participant)) %>%
  ungroup()
# Afficher le dataframe
print(CSP data)
## # A tibble: 18 x 3
##
     CSP_Parent
                                                        sexe Effectif_Participant~1
      <fct>
##
                                                        <fct>
                                                                               <int>
## 1 Agriculteurs exploitants
                                                       F
                                                                                   7
                                                                                   3
## 2 Agriculteurs exploitants
                                                       М
## 3 Artisans commercants chefs entreprise
                                                       F
                                                                                  59
## 4 Artisans commercants chefs entreprise
                                                       М
                                                                                  47
## 5 Autres personnes sans activite professionnelle
                                                                                  32
                                                       F
## 6 Autres personnes sans activite professionnelle
                                                                                  50
## 7 Cadres et professions intellectuelles superieur~ F
                                                                                  52
## 8 Cadres et professions intellectuelles superieur~ M
                                                                                  47
## 9 Employes
                                                                                  90
## 10 Employes
                                                       М
                                                                                 123
## 11 NA
                                                       F
                                                                                  23
## 12 NA
                                                       М
                                                                                  20
## 13 Ouvriers
                                                       F
                                                                                  28
## 14 Ouvriers
                                                       М
                                                                                  38
## 15 Professions intermediaires
                                                        F
                                                                                  59
## 16 Professions intermediaires
                                                                                  57
                                                       Μ
## 17 Retraites
                                                       F
                                                                                   4
## 18 Retraites
                                                        М
                                                                                   3
## # i abbreviated name: 1: Effectif_Participant_total
# Créer le diagramme en barres empilées avec les modalités en abscisses affichées verticalement
ggplot(CSP_data, aes(x = CSP_Parent, y = Effectif_Participant_total, fill = sexe)) +
 geom_bar(stat = "identity") +
  geom_text(aes(label = Effectif_Participant_total), position = position_stack(vjust = 0.5), color = "b
 labs(x = "CSP_Parent", y = "Effectif Participant total", fill = "Sexe", title = "Répartition de la Qu
 theme minimal() +
 theme(
   plot.title = element_text(hjust = 0.5),
   axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)
  ) # Modifier l'angle des modalités sur l'axe x
```


Voici le tableau des effectifs des participants dont l'un de ses parents au moins exerce une des fonctions ci dessous :

	Filles	Garçons	Population Globale
Agriculteurs exploitants	7	3	10
Artisans commercants chefs entreprise	59	47	106
Autres personnes sans activite professionnelle	32	50	82
Cadres et professions intellectuelles superieures	52	47	99
Employes	90	123	213
Ouvriers	28	38	66
Professions intermediaires	59	57	116
Retraites	4	3	7
NA	23	20	43

Statistique descriptive pour le lieu d'étude :

• Proportion de l'échantillon global de la population selon le genre

```
prop.table(table(data$gender))*100
```

• Proportion de l'échantillon global de la population selon le CA

```
prop.table(table(data$CA,data$gender))*100
```

$\mathbf{C}\mathbf{A}$	1	2	3	4
$\mathbf{Proportion}(\%)$	12.13	26.15	10.24	51.48

Illustration avec un barplot :

Proportion des valeurs dans la colonne CA

- Proportion de l'échantillon global de la population selon l'IPS
- -IPS faible inférieur à 89
- -IPS moyenne entre 90 et 114
- -IPS élevé supérieur à 115

```
prop.table(table(data$IPS_categorie,data$gender))*100
```

```
## ## F M M ## Élevée 16.17251 14.82480 ## Faible 11.85984 10.51213 ## Moyenne 19.67655 26.95418
```

IPS	Faible	Moyenne	Elevé
Proportion(%)	31	22.37	46.63

Illustration avec un barplot

```
# Ajouter les proportions sur les barres
text(x = bp, # Positions en x des barres, retournées par barplot
    y = proportions_ips + 2, # Ajouter un petit espace au-dessus de chaque barre pour le texte
    labels = sprintf("%.2f%%", proportions_ips), # Formater les proportions avec deux décimales
    pos = 3) # Poser le texte au-dessus des barres
```

Proportion des valeurs dans la colonne IPS

• Proportion de l'échantillon global de la population selon le milieu géographique

```
prop.table(table(data$Geographie,data$gender))*100
```

Milieu géographique	urbain	rural
$\textcolor{red}{\textbf{Proportion}(\%)}$	64.15	35.85

Illustration avec un barplot

```
ylim = c(0, max(proportions_geo) + 10)) # Ajuster ylim pour éviter le chevauchement
# Ajouter les proportions sur les barres
text(x = bp_geo, # Positions en x des barres, retournées par barplot
y = proportions_geo + 0.25, # Ajouter un petit espace au-dessus de chaque barre pour le texte
labels = sprintf("%.2f%%", proportions_geo), # Formater les proportions avec deux décimales
pos = 3) # Poser le texte au-dessus des barres
```

Proportion des valeurs dans la colonne Géographie

