Raspberry Pi

ベアメタルプログラミングのススメ

プログラマの日 合宿 2017/09/16(土)@湯涌温泉

お題目

- Raspberry Pi ~ベアメタルとの出会い~
- ベアメタルとは
- ・起動までの流れ
- 開発環境
- 類似マイコンとの比較
- ・まとめ

Raspberry Pi ~ベアメタルとの出会い~

 きっかけ Raspberry Pi3購入時にスペックを調べていた時、 ふと見知らぬ単語を発見した

ベアメタルとは

• ベアメタル(bare metal or bare machine)とは OSを搭載せず、直接ハードウェアにアクセスするコンピュータを指す

• Non-OSと呼んだりもする

(所感:もとよりOSを搭載しないマイコン環境などでは呼ばない印象)

起動までの流れ

- 電源(USB) ON
 - \downarrow
- 1stブート:FAT32 SDカードのbootパーティションをマウント
- 2ndブート:SDカード内のbootcode.binがGPUファームウェアを起動
 ↓
- start.elf(GPUファームウェア)が設定ファイル(fixup.dat)に基づき CPU/GPUが使うSDRAM領域を区切る
 - \downarrow
- config.txtに記載されたイメージ(kernel.imgなど)を起動する

ココが開発対象

開発環境

GNU ARM(gcc-arm-none-eabi)

Raspberry Pi Zero向けのイメージファイル作成例

```
# Cをコンパイル

$ arm-none-eabi-gcc -mcpu=arm1176jzf-s -mfpu=vfp -mfloat-abi=hard -mtune=arm1176jzf-s -nostdlib -ffreestanding -c -o main.o main.c

# ブート(レジスタ初期化と、main関数まで飛ぶコード)をアセンブル

$ arm-none-eabi-as -o boot.o boot.s

# オブジェクトファイルとリンカスクリプトからelf生成

$ arm-none-eabi-ld boot.o main.o -T link.ld -o app.elf

# elfから生の実行部分のみ取り出す

$ arm-none-eabi-objcopy app.elf -O binary kernel.img
```

類似マイコンとの比較

	Raspberry Pi		mbed	Arduino
	3	Zero	LPC1768	Uno R3
価格(円)	4,500	1,200	5,940	3,240
CPUスペック	ARM Cortex-A53 (1.2GHz)	ARM11 (1GHz)	ARM Cortex-M3 (96MHz)	ATmega328P (16MHz)
ROM/RAM	microSD/ 1GB	microSD/ 512MB	512KB/ 32KB	32KB/ 2KB
電源	1.4A Wifi: 2.5A	140mA	120mA	50mA
ピン数	40	40	40	Dig:14 + Ana:6

そこそこのスペックで、低価格。ホビー用に最適

まとめ

• ちょっとmbedをディスってみたかった

まとめ

Good

- 安価・手軽にハード環境が手に入る
- そこそこ情報が豊富にある (マイコン用途がメインのmbedやArduinoに比べたらべアメタルの情報は少なめ...)
- 飽きたら、Linuxサーバーとして運用など幅広い用途に使える
- これからはARMの時代

Bad

- GPU Coreのファームウェア部分がオープンでない
- 保証とかがないため、クリティカルな仕事では使用できない
- Raspberry Pi Zero (W)は日本での供給が少なく手に入りづらい (公式HPでは、お一人様1個まで)