Quantitative Analysis for Business

(1/2568)

Phaphontee Yamchote (phaphonteey@sau.ac.th)

Department of Information System for Business, Faculty of Business Administration Southeast Asia University

July 28, 2025

Table of Contents

ln	trodu	ction	1	Ш
1	กำห	นดก	ารเชิงเส้น (Linear Programming)	1
	1.1	ควา	มหมายของการกำหนดการเชิงเส้น และการสร้างตัวแบบ	2
	1.1	.1	ลักษณะของปัญหาที่สามารถเขียนอยู่ในรูปกำหนดการเชิงเส้นได้	3
	1.1	.2	การสร้างตัวแบบกำหนดการเชิงเส้น	5
	1.2	แนว	คิดพื้นฐานการหาผลเฉลยด้วยกราฟ	7
	1.2	2.1	กรณี 1 ตัวแปรตัดสินใจ	7
	1.2	2.2	กรณี 2 ตัวแปรตัดสินใจ: ฟังก์ชันจุดประสงค์เป็นระนาบ 3 มิติบนบริเวณผลเฉลย 2 มิติ	8
	1.3	แนว	คิดเบื้องต้นของวิธีซิมเพล็กซ์ (Simplex)	12
	1.3	3.1	Simplex Method Algorithm	16
	1.4	การเ	แก้ปัญหาด้วย Excel Solver	29
2	ทฤษ	ษฎีกา	รตัดสินใจ (Decision Theory)	31
	2.1	ลักษ	หณะการแสดงข้อมูล	32
	2.2	การเ	ตัดสินใจภายใต้สภาวะความแน่นอน	34
	2.3	การเ	ตัดสินใจภายใต้สภาวะความเสี่ยง	35
	2.3	3.1	ค่าคาดหวัง (Expected Value)	35
	2.3	3.2	เกณฑ์ผลตอบแทน	36
	2.3	3.3	เกณฑ์ค่าเสียโอกาส (opportunity loss)	37
	2.3	3.4	ค่าคาดหวังของข่าวสารที่สมบูรณ์	38
	2.4	การเ	ตัดสินใจภายใต้สภาวะที่ไม่แน่นอน	40

:	2.5 การ	ใช้ต้นไม้การตัดสินใจ	42
	2.5.1	การคิดค่าคาดหวังด้วยแผนภาพต้นไม้ความน่าจะเป็นของเหตุการณ์	42
	2.5.2	เมื่อมีตัวเลือกเข้ามาเกี่ยวข้อง	43
2	2.6 การ	ใช้โปรแกรม QM for Windows	47
:	3.1 แนว 3.1.1 3.2 ตัวแ	รจำลองสถานการณ์ (Simulation)	
	3.3 การ	สุ่มตัวอย่างแบบ Monte Carlo ในการจำลองสถานการณ์ในธุรกิจ	57
4	การวิเคร	าะห์เชิงมาร์คอฟ (Markov Analysis)	63
5	ตัวแบบแ	ถวคอย (Queuing Theory)	65
6	ทฤษฎีเกร	ង្គ (Game Theory)	67
7	การพยาก	ารณ์ (Forecasting)	69
A	Appendic	es	
Α	Title		73
Bib	liography	/	75
An	alytic Ind	lex	77

Introduction

ก่อนจะขึ้นเนื้อหาจริง ๆ มีอีกสิ่งที่อยากจะเน้นย้ำคือวิชานี้ไม่ใช่วิชาคณิตศาสตร์ แต่เป็นวิชาที่มีคณิตศาสตร์เป็นเครื่องมือเพื่อ แก้ปัญหา โดยเฉพาะปัญหาทางธุรกิจ ดังนั้นวิธีการเรียนอาจจะแตกต่างจากการเรียนวิชาคณิตศาสตร์อย่างเดียวที่เน้นไปที่ การทำความเข้าใจเครื่องมือและเข้าใจที่มาว่าทำไมถึงแก้ปัญหาได้ แต่อาจจะไม่ได้แตะการนำไปแก้ปัญหาโลกจริง แต่ไม่ใช่ ว่ากลุ่มนักคณิตศาสตร์จะไม่ได้เรียนการเอาไปแก้ปัญหานะครับ แต่เพียงแค่พวกเขาเหล่านั้นเรียนการแก้ปัญหาในรูปแบบที่ เรียกว่าการทำให้เป็นรูปแบบนามธรรม (abstractization) ซึ่งเป็นอีกมุมมองของการทำ problem-solving แต่สำหรับวิชา ทางนี้นั้น สิ่งที่เราให้ความสำคัญคือการเปลี่ยนปัญหาโลกจริงหรือปัญหาทางธุรกิจเป็นปัญหาทางคณิตศาสตร์ และสร้างตัว แบบหรือแบบจำลองเพื่อที่จะได้นำเครื่องมือมาใช้ได้ถูกต้อง และเมื่อแก้ปัญหาได้ก็ต้องตีความผลลัพธ์ได้ ดังนั้นทำให้การ เรียนวิชานี้เน้นไปเรื่องต่าง ๆ ดังนี้

- 1. การแปลงปัญหาโลกจริงให้อยู่ในรูปแบบคณิตศาสตร์ (มองคณิตศาสตร์เป็นภาษา)
- 2. สร้างตัวแบบ/แบบจำลองของปัญหานั้นขึ้นมาได้ (ระบุ framework ของปัญหา ระบุองค์ประกอบของปัญหานั้นได้ เช่นอะไรคือสิ่งที่ต้องการ อะไรคือสิ่งที่เป็นเงื่อนไขที่โจทย์กำหนด)
- 3. แก้ปัญหานั้นด้วยเครื่องมือที่มี โดยรู้ข้อจำกัดขอองเครื่องมือต่าง ๆ ที่ใช้ (ในหนังสือเล่มนี้จะเน้นที่ส่วนนี้ โดยให้เห็น แง่มุมของการได้มาซึ่งวิธีการแก้ปัญหา จะไม่ได้เน้นว่าแก้อย่างไรตั้งแต่แรก)
- 4. ตีความผลลัพธ์เชิงความหมายทางธุรกิจได้

กำหนดการเชิงเส้น (Linear Programming)

โจทย์ธุรกิจ

บริษัท ABC Furniture เป็นบริษัทที่ผลิตและจำหน่ายเฟอร์นิเจอร์สำหรับบ้านและสำนักงาน โดยสินค้าหลักของบริษัทคือ โต๊ะทำงาน และ ตู้เก็บเอกสาร ซึ่งสินค้าทั้งสองชนิดนี้ได้รับความนิยมอย่างมาก จนกระทั่งฝ่ายผลิตเริ่มมีปัญหาในการจัดการ วัตถุดิบและทรัพยากรที่มีอยู่อย่างจำกัด

ล่าสุด คุณได้รับการติดต่อจากคุณสมชาย ผู้จัดการฝ่ายการผลิตของบริษัท ABC Furniture ซึ่งให้ข้อมูลว่า:

ข้อความ

ช่วงที่ผ่านมา เราพบปัญหาด้านการผลิตที่สำคัญ คือบริษัทของเรามีทรัพยากรที่จำกัด ไม่ว่าจะเป็นจำนวนชั่วโมงการ ทำงานของแรงงาน รวมถึงปริมาณวัตถุดิบหลักที่ต้องใช้ในการผลิต แต่เรายังต้องการเพิ่มผลผลิตเพื่อให้สามารถตอบ สนองความต้องการที่สูงขึ้นของตลาด

ในแต่ละสัปดาห์ โรงงานของเรามีแรงงานที่สามารถทำงานได้สูงสุด 1,000 ชั่วโมง โดยโต๊ะทำงานแต่ละตัวต้องใช้แรงงาน ในการประกอบ 4 ชั่วโมง ส่วนตู้เก็บเอกสารใช้ 3 ชั่วโมง

ด้านวัตถุดิบ เรามีไม้สำเร็จรูปที่ใช้ในการผลิตเพียง 800 หน่วยต่อสัปดาห์ โดยโต๊ะทำงาน 1 ตัวจะต้องใช้ไม้ 2 หน่วย และ ตู้เก็บเอกสารใช้ไม้ 1 หน่วย

ขณะนี้ บริษัทสามารถขายโต๊ะทำงานได้ในราคาตัวละ 2,000 บาท และตู้เก็บเอกสารราคา 1,500 บาท ทางผู้บริหารอยากได้คำแนะนำจากคุณว่า เราควรจะผลิตโต๊ะทำงานและตู้เก็บเอกสารจำนวนอย่างละกี่ขึ้นต่อสัปดาห์ เพื่อให้บริษัทสามารถทำกำไรได้สูงสุดภายใต้ข้อจำกัดที่มีอยู่

ในฐานะนักวิเคราะห์เชิงปริมาณ คุณมีหน้าที่ช่วยเหลือบริษัท ABC Furniture

- เป้าหมายหลักของโจทย์นี้คืออะไร และวัดผลอย่างไร
- ข้อจำกัดมีอะไรบ้าง
- อะไรคือสิ่งที่เราจะต้องตอบให้แก่ลูกค้า
- ทำไมการผลิตทุกอย่างให้ได้จำนวนสูงสุด อาจไม่ใช่ทางเลือกที่ดีที่สุด?

บทน้ำ

ในการตัดสินใจทางธุรกิจที่มีประสิทธิภาพ การวิเคราะห์เชิงปริมาณเป็นเครื่องมือสำคัญที่ช่วยให้ผู้บริหารสามารถประเมิน ทางเลือกต่าง ๆ ได้อย่างเป็นระบบ โดยเฉพาะอย่างยิ่งในการจัดสรรทรัพยากรอย่างเหมาะสม เช่น เวลา งบประมาณ หรือ วัตถุดิบ หนึ่งในเทคนิคที่ได้รับความนิยมและใช้งานอย่างแพร่หลายในทางธุรกิจคือ "การกำหนดการเชิงเส้น" ซึ่งเป็นวิธีการ เชิงคณิตศาสตร์ที่มุ่งเน้นการหาคำตอบที่ดีที่สุดภายใต้ข้อจำกัดที่กำหนดไว้ ย่อหน้าต่อไปนี้จะเริ่มต้นด้วยการทำความเข้าใจ แนวคิดพื้นฐานของการกำหนดการเชิงเส้น พร้อมทั้งวิธีการสร้างแบบจำลองเพื่อใช้ในการแก้ปัญหาในโลกธุรกิจจริง

ทั้งนี้ คำว่าการโปรแกรมในที่นี้ไม่ได้หมายถึงการเขียนโปรแกรมคอมพิวเตอร์ แต่เป็นรูปแบบปัญหาเพื่อแก้ปัญหาเกี่ยว กับแผนงานและคำสั่ง (program) ในกระบวนการงาน ดังนั้นจะไม่มีการเขียนโปรแกรมคอมพิวเตอร์ใด ๆ เกิดขึ้นในบทนี้ อย่างมากที่สุดคือใช้เครื่องมือสำเร็จรูปใน Excel เพื่อแก้โจทย์ปัญหาการกำหนดการเชิงเส้น

เนื้อหาในบทนี้จะเริ่มต้นด้วยการทำความเข้าใจก่อนว่าตัวแบบกำหนดการเชิงเส้นคืออะไร และปัญหาที่มีลักษณะแบบ ใดบ้างที่จะสามารถใช้ตัวแบบกำหนดการเชิงเส้นเข้ามาแก้ปัญหารวมไปถึงวิธีแปลงปัญหานั้นให้อยู่ในรูปกำหนดการเชิงเส้น หลังจากที่เราสร้างตัวแบบได้แล้วนั้น เราก็จะมาศึกษาแนวคิดเบื้องต้นของการแก้ปัญหากำหนดการเชิงเส้น ด้วยวิธีการดู กราฟใน 2 และ 3 มิติกันก่อน เพื่อให้เห็นพฤติกรรมพื้นฐานที่จำเป็นต้องรู้เกี่ยวกับตัวปัญหากำหนดการเชิงเส้น ซึ่งในหัวข้อ นี้จำเป็นจะต้องมีความรู้พื้นฐานในหัวข้อ ?? ก่อน เพื่อที่จะได้วาดกราฟเส้นตรงเพื่อแก้ปัญหาได้ หลังจากนั้น เราจะขยาย แนวคิดการแก้ปัญหาจากการใช้รูปภาพแก้ปัญหามาเป็นการแก้ด้วยขั้นตอนกระบวนการที่เรียกว่า Simplex และเมื่อเรา เข้าใจแนวคิดของการแก้ปัญหากำหนดการเชิงเส้นแล้ว เราจะปิดท้ายด้วยการใช้เครื่องมือสำเร็จรูปใน Excel เพื่อแก้ปัญหากำหนดการเชิงเส้น

1.1 ความหมายของการกำหนดการเชิงเส้น และการสร้างตัวแบบ

กำหนดการเชิงเส้น (linear programming) คือปัญหาทางคณิตศาสตร์ในการหาค่าสุดขีด (ค่าสูงสุดหรือค่าต่ำสุด) ที่เรียก ว่าการทำ optimization โดยที่มีทั้งฟังก์ชันจุดประสงค์และความสัมพันธ์เงื่อนไขอยู่ในรูปสมการหรืออสมการเชิงเส้น โดย องค์ประกอบของกำหนดการเชิงเส้นมีดังนี้

- 1. ฟังก์ชันจุดประสงค์ (objective function) คือฟังก์ชันที่ใช้ในการหาค่าของสิ่งที่เราอยากหาค่าสูงสุดหรือค่าต่ำสุด ที่ กำหนดด้วยตัวแปรต่าง ๆ ที่เกี่ยวข้อง
- 2. เงื่อนไข (constraints) คือตัวกำหนดความเป็นไปได้ของเหล่าตัวแปรที่ใช้ในการคำนวณฟังก์ชันจุดประสงค์ และเมื่อมีทั้งฟังก์ชันจุดประสงค์และเงื่อนไขแล้ว เราจะเขียนปัญหากำหนดการเชิงเส้นในรูปแบบดังนี้

min objective function

s.t. constraint 1

constraint 2

:

constraint k

สำหรับปัญหาการหาค่าต่ำสุด และในทำนองเดียวกันก็สามารถเขียนปัญหาการหาค่าสูงสุดได้โดยใช้

max objective function

s.t. constraint 1

constraint 2

:

constraint k

ทั้งนี้ สิ่งที่สำคัญที่สุดคือ ทั้งฟังก์ชันจุดประสงค์ และสมการหรืออสมการเงื่อนไขนั้นจะต้องอยู่ในรูปแบบเชิงเส้น กล่าวคือต้อง อยู่ในรูปที่ตัวแปรคูณกับค่าคงที่แล้วบวกหรือลบกันระหว่างตัวแปร

1.1.1 ลักษณะของปัญหาที่สามารถเขียนอยู่ในรูปกำหนดการเชิงเส้นได้

จากที่ได้ศึกษาเกี่ยวกับคุณสมบัติของความเป็นเชิงเส้นมาแล้วนั้น จะพบว่าคุณสมบัติหลัก ๆ ที่ช่วยตัดสินใจได้ว่าปัญหาแบบ ใดมีโอกาสที่จะเขียนอยู่ในรูปกำหนดการเชิงเส้นได้ดังนี้

คุณสมบัติ 1.1: คุณสมบัติความ เป็น อิสระ เชิง เส้น (linear independence) ระหว่าง ตัวแปรใน ฟังก์ชัน จุด ประสงค์

กล่าวคือ การเพิ่มขึ้นหรือลดลงของตัวแปรหนึ่งจะส่งผลการเปลี่ยนแปลงที่คงที่กับค่าของฟังก์ชันจุดประสงค์ถ้า ตัวแปรอื่น ๆ ถูกกำหนดให้คงค่าเดิมไว้ ตัวอย่างเช่น เราอาจทราบว่าการเพิ่มขึ้นของของการลงทุนเพิ่มทุก ๆ 1 หน่วยเงิน จะเพิ่มกำไร (สิ่งที่เป็นค่าของฟังก์ชันจุดประสงค์) ได้ 0.25 หน่วยเงิน ไม่ว่าจะลงทุนไปแล้วเท่าไหร่ก็ตาม ซึ่งในกรณีตัวอย่างนี้จะได้ว่า

กำไร
$$=0.25$$
เงินลงทุน $+$ ค่าปัจจัยอื่น ๆ ที่คงตัวอยู่

ซึ่ง "ค่าปัจจัยอื่น ๆ ที่คงตัวอยู่" หมายถึงค่าจากการคำนวณกำไรจากตัวแปรอื่น ๆ ซึ่งไม่ได้ถูกกล่าวถึงในบริบทนี้ จึงถูกมองว่าไม่ได้เปลี่ยนแปลง

ทั้งนี้ จะเห็นว่าอัตราการเพิ่มขึ้นหรือลดลงที่คงตัวนั้น แท้ที่จริงแล้วก็เปรียบเสมือนเป็นความชันของการเพิ่มขึ้นตามแนว ตัวแปรต้นนั้นนั่นเอง ดังนั้น ในกรณีที่มั่นใจแล้วว่าการเพิ่มหรือการลดค่าจุดประสงค์ขึ้นกับตัวแปรต้นที่เรามีในระบบเป็นการ แปรผันตรงกัน ก็จะค่อนข้างมั่นใจได้ในระดับหนึ่งว่าปัญหาดังกล่าวเป็นปัญหากำหนดการเชิงเส้น แต่ทั้งนี้ วิธีที่จะสามารถ ทำให้มั่นใจได้มากที่สุดว่าปัญหาที่มีเป็นปัญหากำหนดการเชิงเส้นหรือไม่ ก็คือการเขียนตัวสมการคณิตศาสตร์ที่แสดงแทน ฟังก์ชันจุดประสงค์และเงื่อนไข (ที่ได้ศึกษาไปในหัวข้อ ??) ว่าอยู่ในรูปแบบผลรวมเชิงเส้นหรือไม่

ตัวอย่าง 1.1.1: ตัวอย่างปัญหารูปแบบกำหนดการเชิงเส้น

บริษัทประกอบชิ้นส่วนเครื่องใช้ไฟฟ้าแห่งหนึ่งมีเวลาเหลืออยู่ในแต่ละแผนกดังนี้

- แผนกประกอบ มีเวลาเหลือ 50 ชั่วโมง (หรือ 3000 นาที)
- แผนกทดสอบ มีเวลาเหลือ 15 ชั่วโมง (หรือ 900 นาที)
- แผนกบรรจุ มีเวลาเหลือ 6 ชั่วโมง (หรือ 360 นาที)

ซึ่งทางบริษัทกำลังตัดสินใจว่าจะใช้เวลาของแต่ละแผนกที่เหลืออยู่ผลิตผลิตภัณฑ์ชิ้นใหม่ซึ่งมี 2 แบบคือแบบ มาตรฐานและแบบพิเศษ ทั้งนี้แบบมาตรฐานใช้เวลาในการประกอบ 20 นาที, ทดสอบ 10 นาที และบรรจุ 3 นาที ต่อชิ้น และขายได้กำไร 250 บาทต่อชิ้น ในขณะที่แบบพิเศษใช้เวลาในการประกอบ 30 นาที, ทดสอบ 6 นาที และ บรรจุ 3 นาทีต่อชิ้น และขายได้กำไร 290 บาทต่อชิ้น บริษัทต้องการหาว่าจะต้องผลิตสินค้าแต่ละชนิดเท่าไหร่ให้ได้ กำไรมากที่สุด แต่ทั้งนี้เนื่องจากเรายังไม่ได้เรียนวิธีการแก้ปัญหา เราจึงทำปัญหาให้ง่ายขึ้นก่อนดังนี้

- 1. ถ้าผลิตแบบมาตรฐานอย่างเดียวจะผลิตได้กี่ชิ้นมากสุดและได้กำไรเท่าไหร่
- 2. ถ้าผลิตแบบพิเศษอย่างเดียวจะผลิตได้กี่ขึ้นมากสุดและได้กำไรเท่าไหร่
- 3. ถ้าเปลี่ยนไปผลิตแบบอื่นโดยมห้นักศึกษาลองสุ่มเลขมาชุดหนึ่งและยืนยันว่าผลิตได้จริงตามเงื่อนไข และหา ว่าได้กำไรเท่าไหร่ และถ้ายังเหลือเวลามากพอให้ลองเพิ่มการผลิตเข้าไปอีกจนไม่เหลือเวลาให้ผลิตเพิ่มได้อีก แล้ว

1.1.2 การสร้างตัวแบบกำหนดการเชิงเส้น

อย่างที่ได้ศึกษาไปในหัวข้อ ?? สิ่งที่สำคัญที่สุดที่ต้องทำให้ได้คือการระบุตัวแปรตัดสินใจ ฟังก์ชันจุดประสงค์ และเงื่อนไขต่าง ๆ ให้ได้ และเปลี่ยนให้อยู่ในรูปแบบภาษาคณิตศาสตร์ ซึ่งในหัวข้อนี้เราจะมาฝึกทำไปตามตัวอย่างกัน

ตัวอย่าง 1.1.2

จากกรณีตัวอย่าง 1.1.1 จงเขียนตัวแบบกำหนดการเชิงเส้น โดยทำตามขั้นตอนดังนี้

- 1. ตัวแปรตัดสินใจที่เกี่ยวข้องมีอะไรบ้าง
- 2. ค่าเป้าหมายที่ต้องการหาค่าสุดขีดคืออะไร และต้องการหาค่าต่ำสุดหรือค่าสูงสุด
- 3. ฟังก์ชันจุดประสงค์คืออะไร
- 4. มีทั้งหมดกี่เงื่อนไขและเงื่อนไขอะไรบ้าง
- 5. เขียนเงื่อนไขดังกล่าวให้อยู่ในรูปของสมการ/อสมการคณิตศาสตร์
- 6. ปัญหาที่ได้เป็นปัญหาเชิงเส้นหรือไม่ ถ้าเป็นจงเขียนให้อยู่ในรูปปัญหาการกำหนดเชิงเส้น

ตัวอย่าง 1.1.3: ตัวอย่างการผลิตเพื่อให้ได้ยอดขายสูงสุด

โรงงานผลิตชิ้นส่วนรถยนต์ต้องการวางแผนการผลิตชิ้นส่วน X และชิ้นส่วน Y โดยมีเครื่องจักรที่ใช้ในการผลิต 4 เครื่อง และใช้เหล็ก ไฟฟ้าและแรงงานในการผลิตดังนี้

ประบวนการ	ปริมาณที่ผลิตได้		ความต้องการ				
	X	Υ	เหล็ก	ไฟฟ้า	แรงงาน		
1	4	0	100 kg	800 kWh	16 hrs		
2	0	1	70 kg	600 kWh	16 hrs		
3	3	1	120 kg	2000 kWh	50 hrs		
4	6	3	270 kg	4000 kWh	48 hrs		

ในแต่ละวัน โรงงานจะมีเหล็กให้ใช้ไม่เกิน 6000 กิโลกรัม มีปริมาณไฟฟ้าที่ใช้ได้ไม่เกิน 100000 กิโลวัตต์ และใช้ แรงงานคนงานรวมกันได้ไม่เกิน 1000 ชั่วโมง สมมติว่าชิ้นส่วน X ขายได้ 1000 บาทต่อชิ้น ในขณะที่ชิ้นส่วน Y ขาย ได้ 1800 บาทต่อชิ้น และโรงงานนี้ต้องการจัดการผลิตให้มียอดขายสูงที่สุดเท่าที่จะทำได้

1.2 แนวคิดพื้นฐานการหาผลเฉลยด้วยกราฟ

หลังจากที่เราสามารถสร้างตัวแบบกำหนดการเชิงเส้นได้แล้ว สิ่งที่จะต้องทำต่อมาก็คือการหาผลเฉลยของปัญหานั้น ซึ่ง แนวคิดหลักของการทำกำหนดการเชิงเส้นเป็นสิ่งที่ไม่ได้ซับซ้อนมากนัก ถ้าพิจารณาในกรณี 1 ตัวแปรหรือ 2 ตัวแปร เพราะ เป็นกรณีที่ยังคงวาดกราฟได้ และการศึกษาจากกรณีเล็ก ๆ นี้ก็จะสามารถนำพาเราไปสู่แนวคิดที่ทั่วไปมากขึ้นได้

1.2.1 กรณี 1 ตัวแปรตัดสินใจ

ขอเริ่มจากกรณีที่ชัดเจนและตรงไปตรงมามากที่สุดก่อน ซึ่งก็คือกรณี 1 ตัวแปร ซึ่งจะสามารถวาดทั้งฟังก์ชันจุดประสงค์ และความสัมพันธ์เงื่อนไขได้โดยง่ายในกราฟ 2 มิติ องค์ประกอบแรกสุดคือฟังก์ชันจุดประสงค์ ซึ่งเป็นฟังก์ชันเชิงเส้น $f\left(x
ight)$ โดยที่ x เป็นตัวแปรตัดสินใจ ดังนั้น หน้าตาของสมการจะอยู่ในรูป $f\left(x
ight)=mx+c$ และแน่นอนว่ามีความเป็นไปได้ หลัก ๆ อยู่ 2 แบบคือเส้นตรงความชันบวก กับเส้นตรงความชันลบดังรูป

จากรูป จะพบว่าการแก้ปัญหาหาค่าสูงสุดหรือค่าต่ำสุดของจะง่ายอย่างมาก เพราะการเดินทางมีแค่ซ้ายและขวา โดยด้านใด ด้านหนึ่งจะให้ค่ามากขึ้นเรื่อย ๆ และอีกด้านหนึ่งจะให้ค่าน้อยลงเรื่อย ๆ ดังนั้น เพียงแค่เราทราบว่าต้องเดินไปทางไหนเพื่อ ให้เป็นไปตามที่เราต้องการ เราก็จะได้คำตอบมาได้โดยง่าย

แต่ทว่าในปัญหากำหนดการเชิงเส้น จะต้องมีเงื่อนไขเข้ามาพิจารณาด้วย เพราะถ้าไม่มีเงื่อนไขมาพิจารณา เราจะ สามารถลดค่าหรือเพิ่มค่าเส้นตรงได้อย่างไม่มีที่สิ้นสุด เพราะเราก็สามารถเดินทางไปทางขวาได้ไม่มีที่สุด และเดินทาง ไปทางซ้ายได้ไม่มีที่สิ้นสุดเช่นกัน ซึ่งเราเรียกรูปแบบการไม่มีผลเฉลยแบบนี้ว่ากรณีไม่มีขอบเขต (unbounded) กล่าวคือ เป็นกรณีที่มีค่าที่สอดคล้องกับเงื่อนไข (ถ้ามี) แต่ไม่มีผลเฉลยที่ทำให้ต่ำที่สุด หรือสูงที่สุดได้เพราะยังหาค่าที่สูงกว่าได้เรื่อย ๆ หรือหาค่าที่ต่ำกว่าได้เรื่อย ๆ เนื่องจากขอบเขตการเพิ่มหรือการลดไม่มีขีดจำกัด

แต่เนื่องจากเงื่อนไขของ 1 ตัวแปรเป็นเพียงได้แค่ 3 แบบเท่านั้นดังนี้

- \diamond สมการจุดเดียว x=c (ในที่นี้ c คือค่าคงที่) ซึ่งเป็นกรณีที่ไม่มีอะไรน่าสนใจ เพราะมีเพียงผลเฉลยเดียว ไม่ต้อง ทำการหาค่าสุดขีดใด ๆ
- แบบอสมการ และได้เป็นขอบเขต ซึ่งมีได้ 3 แบบย่อย ได้แก่
 - $-x \leq c$
 - -x>c
 - $c_1 \le x \le c_2$

แต่ในที่นี้ขอให้พิจารณาแค่เฉพาะกรณีที่การันตีการมีผลเฉลยสุดขีดแน่ ๆ ก็คือกรณีที่ขอบเขตเงื่อนไขการพิจารณาตัวแปรมี ขอบเขตทั้งซ้ายและขวา $c_1 \leq x \leq c_2$

ซึ่งจะเห็นได้โดยง่ายว่า**ค่าสุดขีดจะเกิดขึ้นที่ตรงขอบเสมอ** (แต่จะเป็นด้านซ้ายหรือด้านขวานั้น จะขึ้นอยู่กับรูปแบบการเพิ่ม หรือการลดของฟังก์ชัน)

1.2.2 กรณี 2 ตัวแปรตัดสินใจ: ฟังก์ชันจุดประสงค์เป็นระนาบ 3 มิติบนบริเวณผลเฉลย 2 มิติ

ขอขยับเพิ่มขึ้นมาอีก 1 มิติ นั่นคือฟังก์ชันจุดประสงค์เป็นฟังก์ชัน 2 ตัวแปร $z=f\left(x,y\right)$ ซึ่งฟังก์ชันเชิงเส้น 2 ตัวแปร จะวาดกราฟใน 3 มิติได้เป็นแผ่นระนาบที่ได้เรียนไปในหัวข้อ ?? ทว่า สิ่งที่ทำให้กรณีนี้ยากกว่ากรณี 1 ตัวแปรคือบริเวณการ ตัดสินใจจะเป็นพื้นที่รูปหลายเหลี่ยม 2 มิติ ซึ่งไม่ได้มีการเดินแค่ซ้ายหรือขวาเหมือนกรณีที่ผ่านมา จึงทำให้ตัดสินใจได้ยาก ขึ้นอีกระดับว่าการเดินไปทางใดจะให้ค่าที่มากขึ้น

คำเตือน: สำหรับหัวข้อนี้ อาจจะต้องใช้ความรู้เรขาคณิตวิเคราะห์ 3 มิติและแคลคูลัสสำหรับเรขาคณิตวิเคราะห์ใน 3 มิติเพื่อทำความเข้าใจ แต่ถ้านักศึกษาไม่เคยเรียนมาก่อนสามารถข้ามส่วนอธิบายที่มา แล้วเชื่อคุณสมบัติต่าง ๆ ดังนี้ได้เลย

คุณสมบัติ 1.2: คุณสมบัติของระนาบ 3 มิติบนพื้นที่รูปหลายเหลี่ยม

กำหนดสมการแผ่นระนาบ P:z=Ax+By+k ซึ่งมีจะมีเวกเตอร์ $\langle A,B
angle$ เป็นเวกเตอร์ทิศการไต่ระดับ

- 1. แนวสันของระนาบ P (แนวการเดินบนระนาบที่ไม่มีการเปลี่ยนความสูง) คือแนวเส้นตรงที่ตั้งฉากกับเวก เตอร์ $\langle A,B \rangle$ กล่าวคือ ถ้าเดินไปตามทิศของเวกเตอร์ $\langle A,B \rangle$ จะเป็นทิศที่มีการเปลี่ยนค่าเพิ่มขึ้นมาก ที่สุด แล้วลดทอนลงไปตามมุมที่หันออกจากแนวดังกล่าว จนจะไม่มีการเพิ่มค่าหรือลดค่าลงเมื่อหันตั้งฉาก ไปทางซ้ายและทางขวา
- 2. เมื่อยืนอยู่บนเส้นขอบของบริเวณตัดสินใจหนึ่ง จะมีทิศที่ลากเวกเตอร์จากจุดที่ยืนหนึ่งทำมุมแหลมกับเวก เตอร์ทิศการไต่ระดับ ในขณะที่อีกด้านจะทำมุมป้านกับทิศการไต่ระดับ ซึ่งค่า z จะมากขึ้นถ้าเราเดินไปตาม ทิศที่ทำมุมแหลม กล่าวคือ จะต้องมีทิศหนึ่งที่ให้ค่า z มากขึ้น และในขณะที่อีกทิศหนึ่งให้ค่า z ที่น้อยลง
- 3. เพราะฉะนั้น ถ้าปัญหากำหนดการเชิงเส้นมีผลเฉลยสุดขีดแล้วจุดผลเฉลยดังกล่าวจะอยู่ที่จุดยอดใดจุดยอด หนึ่งเสมอ

ตัวอย่างเช่นปัญหากำหนดการเชิงเส้น

$$\max \quad z = x + 0.25y$$
 s.t.
$$x \ge 0$$

$$y \ge 0$$

$$y \le 1.5x + 4$$

$$y \le -0.4x + 7.8$$

$$y \ge 5x - 30$$

ซึ่งถ้าใช้แนวคิดการไต่เขาตามให้ขนานกับแนวการไต่ระดับ จะพบว่าจุดสุดท้ายที่จะไต่ขึ้นไปได้คือจุด C ด้วยการลาก เส้นไต่ระดับขึ้นไปเรื่อย ๆ ดังรูป และนอกจากวิธีการเลื่อนเส้นไต่ระดับแล้ว อีกวิธีที่ง่ายคือการลองแทนค่าทุกจุดยอดเพื่อ

คำนวณค่าจุดประสงค์แล้วเปรียบเทียบว่าค่าใดมากที่สุดหรือน้อยที่สุด

ตัวอย่าง 1.2.1: โจทย์สำรวจคุณสมบัติ 1.2

พิจารณาโจทย์กำหนดการเชิงเส้น

$$\max \quad z = x + 0.25y$$
 subject to
$$x \ge 0, \quad y \ge 0$$

$$y \le 1.5x + 4$$

$$y \le -0.4x + 7.8$$

$$y \ge 5x - 30$$

- 1. จงแสดงว่าสมการเส้นตรงที่ระบุแนวหน้ากระดานการไต่ระดับ (เส้นที่เลื่อนตามรูปด้านบน) ที่ตัดแกน y ที่ $y = c \,\, \underline{\text{มีสมการเป็น}} \,\, y = -4x + c \,\, \text{กล่าวคือ} \,\, แนวเส้นตรงที่มีความชัน \,\, -4 \,\, จะเป็นแนวที่ระนามมีค่า \,\,$ คงที่
- 2. เมื่อพิจารณาบนแนวเส้นที่ทำให้ระนาบมีค่าคงที่ y=-4x+8 เป็นตัวอย่าง จงหาจุดตัดของเส้นดังกล่าว กับเส้นตรง y=1.5x+4 กับเส้นตรง y=0
- 3. จากจุดตัดที่ได้ในข้อที่ผ่านมา (ซึ่งมี 2 จุด) จงแสดงว่าทั้งสองจุดดังกล่าวให้ค่า z=x+0.25y <u>เป็น z=2</u>
- 4. เมื่อ พิจารณา บน แนว เส้น ที่ ทำให้ ระนาบ มี ค่า คงที่ y = -4x + c จง แสดง ว่า ค่าคงที่ของระนาบคือ z = 0.25c

ตัวอย่าง 1.2.2: แก้ปัญหากำหนดการเชิงเส้น 2 ตัวแปรด้วยการวาดภาพ

จงแก้โจทย์กำหนดการเชิงเส้นในตัวอย่าง 1.1.3 ด้วยวิธีวาดภาพ โดยพิจารณาค่าสูงสุดทั้งวิธีการไต่ระดับ และวิธี การลองแทนค่าทุกจุดยอด

1.3 แนวคิดเบื้องต้นของวิธีซิมเพล็กซ์ (Simplex)

ในหัวข้อที่แล้ว เราศึกษาวิธีการแก้ปัญหากำหนดการเชิงเส้นด้วยวิธีการรูปภาพ ซึ่งข้อจำกัดของวิธีการดังกล่าวคือเราจะ สามารถแก้ปัญหาได้แค่กรณี 2 ตัวแปร และจริง ๆ แล้ว เราสามารถทำกับปัญหา 3 ตัวแปรก็ได้เช่นกันแต่จะวาดภาพยาก กว่า เพราะต้องดูขอบเขตผลเฉลยใน 3 มิติ แต่ว่าถ้า 4 ตัวแปรเป็นต้นไปเราจะไม่สามารถวาดภาพได้อีกแล้ว ทำให้วิธีการดัง กล่าวใช้ไม่ได้อีกต่อไป

เครื่องมือที่จะใช้ในการแก้ปัญหากำหนดการเชิงเส้นสำหรับกรณีใด ๆ ก็ตามที่จะศึกษาในหัวข้อนี้คือวิธีซิมเพล็กซ์ (simplex method) ซึ่งเป็นกระบวนการในการใช้การดำเนินการทางเมทริกซ์เพื่อการเปลี่ยน pivot ที่จะให้ค่าสูงขึ้นเรื่อย ๆ ไล่ไปตามขอบของรูป โดยอาศัยคุณสมบัติตามที่เราได้ศึกษามาในกรณี 2 มิติว่าการเดินตามขอบบนบริเวณที่เป็นรูปนูน (convex) จะพาเราไปจุดผลเฉลยค่าสุดขีดได้แน่ ๆ

ทั้งนี้ สิ่งหนึ่งที่ต้องเน้นย้ำสำหรับขั้นตอนกระบวนการนี้คือสมมติฐานการเป็นรูปนูน เพราะอัลกอริทึมที่กำลังจะได้ศึกษา อาศัยการเดินตามเส้นขอบตามทิศทางที่มีค่าเพิ่มได้ ซึ่งเงื่อนไขที่การันตีการไปจุดผลเฉลยสุดขีดได้คือการเป็นรูปนูนที่ทำให้ เราไต่ระนาบขึ้นได้เรื่อย ๆ เสมอตามรูปด้านบนที่เราสามารถเดินทางจากจุด O ไปที่จุด J ที่เป็นผลเฉลยได้ แต่ถ้ารูปพื้นที่

เป็นไปได้ไม่ใช่รูปนูน อาจทำให้เกิดปัญหาที่เรียกว่าการติดค่าสุดชืดสัมพัทธ์ (local extrema) ตามรูปด้านล่าง ซึ่งถ้าเริ่มที่จุด O จะเดินไปได้ไกลสุดแค่จุด H หรือจุด G เท่านั้นตามแนวคิดเบื้องต้นของ simplex แต่ในวิชานี้ เราจะโฟกัสไปแค่ที่โจทย์ ที่พื้นที่ผลเฉลยเป็นรูปนูนอยู่แล้ว ดังนั้นนักศึกษาจึงไม่ต้องกังเรื่องสมมติฐานดังกล่าว

แนวคิดเชิงการคำนวณ (อ่านนอกเวลาเพิ่มเติม): wait revise again

จะขอเริ่มจากตัวอย่างที่ง่ายเพื่อพาไปดูหลักการคิดทีละขั้น (สำหรับนักศึกษาที่สนใจ simplex method เลยสามารถข้าม หัวข้อนี้ได้) โดยปัญหากำหนดการเชิงเส้นที่จะพิจารณาคือ

$$\begin{array}{ll} \max & 4x+y \\ \text{subject to} & x \geq 0, \quad y \geq 0 \\ & x \leq 4 \\ & y \leq 4 \end{array}$$

และมีบริเวณการพิจารณาตามรูปด้านล่างนี้ ในรูปจะมีเวกเตอร์แนวการไต่ระดับของระนาบอยู่ และจะเห็นว่าจุด (4,4) ควรเป็นจุดที่ให้ค่าสูงสุดแน่นอน

แต่รูปแบบอสมการนั้นเป็นรูปแบบที่ไม่เหมาะกับการแก้ปัญหาในเชิงการคำนวณ ทำให้เราต้องเปลี่ยนรูปแบบการเขียน ให้อยู่ในรูปแบบสมการเท่ากับ ซึ่งอาศัยคุณสมบัติของระบบจำนวนว่า

คุณสมบัติ 1.3: เปลี่ยนอสมการเป็นสมการ

 $x \leq a$ ก็ต่อเมื่อ มีจำนวนจริง s ที่เป็นบวกหรือศูนย์ที่ทำให้ x+s=a

ซึ่งตัวแปร s ในที่นี้มีชื่อเรียกว่าตัวแปรส่วนเกิน (slack variable)

ซึ่งแน่นอนว่าตัวแปรส่วนเกินนี้จะเป็นเพียงแค่ตัวแปรที่เพิ่มเข้ามาในเงื่อนไข ไม่มีผลต่อค่าของฟังก์ชันจุดประสงค์ ดังนั้น เหล่าบรรดาเงื่อนไขอสมการจะต้องมีการเติมตัวแปรส่วนเกินเพื่อทำให้เป็นเงื่อนไขสมการได้ดังนี้

$$\max \quad 4x + y + 0s_1 + 0s_2$$
 subject to
$$x, y, s_1, s_2 \geq 0$$

$$x + s_1 = 4$$

$$y + s_2 = 4$$

หมายเหตุสำคัญตัวแปรทุกตัวจะต้องไม่ต่ำกว่า 0 เป็นเงื่อนไขบังคับ

ทีนี้ จะขอกล่าวถึงความหมายของตัวแปรส่วนเกินเชิงรูปภาพกันก่อนว่าคืออะไรในรูปภาพ ทั้งนี้อย่าลืมว่า simplex method คือการเดินตามขอบจากจุดยอดหนึ่งไปยังอีกจุดยอดหนึ่ง เพราะฉะนั้น เราจะพิจารณาแค่จุดตามขอบเท่านั้น รูปภาพด้านล่างนี้เป็นตัวอย่างค่าตัวแปรของจุดตามตำแหน่งขอบต่าง ๆ ซึ่งจะเห็นว่าตัวแปร s_1 ทีเป็นตัวแปรส่วนเกินของ ตัวแปร x คือตัวแปรที่จะเติมเต็มให้ x เดินไปถึงจุดยอดได้ และถ้าพิจารณาตามจุดยอดต่าง ๆ ก็จะพบว่าระหว่างตัวแปรของ ปัญหาและตัวแปรส่วนเกินที่คู่กันนั้นจะต้องมีอย่างน้อย 1 ตัวที่แปรที่มีค่าเป็น 0 ตัวอย่างเช่นการเดินตามขอบด้านล่างของ รูปภาพในตัวอย่างนี้คือการแลกค่ากันระหว่าง x และ s_1 โดยสมการ $x+s_1=4$ ที่จุดยอดซ้ายคือจุดที่ $x=0,s_1=4$ ในขณะที่จุดด้านขวาคือจุดที่ $x=4,s_1=0$ กล่าวคือ การเดินตามขอบของบริเวณที่เป็นไปได้จากจุดยอดไปอีกจุดยอดก็ คือการพยายามแลกเปลี่ยนค่าของตัวแปรส่วนเกินให้เป็น 0 นั่นเอง

จากที่กล่าวไปสักครู่ คือวิธีการเดินทางกรณีที่รู้แล้วว่าจะเดินตามขอบใด คำถามต่อมาคือ เมื่อเรายืนอยู่ที่จุดยอดหนึ่ง จะรู้ได้อย่างไรว่าต้องเดินไปทางไหน ตัวอย่างเช่นถ้าเรากำลังยืนอยู่ที่จุด (0,0) จะรู้ได้อย่างไรว่าต้องเดินตามขอบแนวตั้ง ไปที่ (0,4) หรือตามขอบแนวนอนไปที่ (4,0) ซึ่งถ้าอาศัยความรู้ในวิชาแคลคูลัสในแง่ขอการดูอัตราการเปลี่ยนแปลง จะ ทราบได้ทันทีว่าต้องเดินตามแนวแกน x เพราะแนวการเดินใกล้กับเวกเตอร์ระบุทิศทางของระนาบมากที่สุด ซึ่งจริง ๆ แล้ว ก็สามารถดูได้โดยง่ายจากสัมประสิทธิ์ของตัวแปรในสมการ $z=4x+y+0s_1+0s_2$ ที่หมายความว่าการเดินตาม x จะเปลี่ยนค่า z เป็นระยะ 4 หน่วยเมื่อเพิ่ม x ไป 1 หน่วย ในขณะที่ถ้าเดินตาม y จะเปลี่ยนค่าแค่ 1 หน่วยเท่านั้น

ดังนั้น เราจึงสามารถตัดสินใจได้ว่าเราจะเดินตาม x โดยจากเดิมที่ตรึง x=0,y=0 เราจะเปลี่ยนไปตรึง $s_1=0,y=0$ ซึ่งลักษณะการพิจารณาชุดตัวแปรในลักษณะนี้เราจะเรียกว่าชุดตัวแปรพื้นฐาน (basic variables) ซึ่งคือ ชุดตัวแปรที่จะถูกมองให้มีค่าเป็น 0 เพื่อใช้คำนวณค่าตัวแปรที่ไม่ใช่ตัวแปรพื้นฐาน (non-basic variables) กล่าวคือ จาก เดิมที่เรากำหนดระบบเป็น $s_1=4-x$ และ $s_2=4-y$ โดยที่ x=0,y=0 จะโดนเปลี่ยนการพิจารณาระบบ เป็น $x=4-s_1$ และ x=4-y โดยที่ x=0,y=0 ซึ่งเรียกการดำเนินการนี้ว่าการหมุนตัวแปรหลัก (pivot

Figure 1.1. Enter Caption

change) จากเดิมที่ s_1,s_2 เป็นตัวแปรหลัก (pivot variable) เราจะเปลี่ยนระบบให้ x,s_2 เป็นตัวแปรหลักแทน

สำหรับการดำเนินการหมุนตัวแปรหลัก ตัวแปรหลักจะไม่สามารถมีเพิ่มได้ ในตัวอย่างจะมีได้แค่ 2 ตัวแปร ดังนั้น การ จะนำตัวแปรใหม่เข้ามาเป็นตัวแปรหลัก จึงต้องมีการนำ pivot ตัวเก่าออกหนึ่งตัว ซึ่งจะตามมาด้วยคำถามว่ารู้ได้อย่างไรว่า ต้องเอา s_1 ออกจากการเป็นตัวแปรหลักแล้วนำ x มาแทนที่ ซึ่งแนวคิดที่ใช้ในการเดินทางจริง ๆ เป็นเรื่องการเดินตามแนว ตัวแปรหลักใหม่อย่างไรให้ไม่หลุดออกจากขอบ ซึ่งเห็นได้ชัดว่าถ้าเดินให้สั้นที่สุดเท่าที่จำเป็นเพื่อจะไปเจอขอบหนึ่งจะการัน ตีได้ว่าเราจะไม่เดินหลุดขอบแน่นอน ซึ่งคุณสมบัติของการเป็นรูปนูนคือจะไม่มีเส้นขอบใดที่ลากต่อแล้วตัดภายในพื้นที่เสมอ ดังรูปด้านล่างนี้ เพราะฉะนั้น ในทางปฏิบัติที่เราอาจไม่เห็นรูปภาพ เราจึงต้องเลือกการเดินที่สั้นที่สุดเอาไว้ก่อนเพื่อให้ไม่ หลุดขอบถึงแม้จะไม่ใช่ทางที่เร็วที่สุดก็ตาม และเมื่อทราบแล้วว่าต้องเดินไปชนขอบใด จึงค่อยพิจารณาว่าขอบนั้นเป็นขอบ ประชิดของตัวแปรส่วนเกินตัวไหน

จากตัวอย่างที่เรากำลังพิจารณาอยู่นั้น เราทราบแล้วว่าเราต้องเดินจาก (0,0) ตามแนวตัวแปร x แต่เนื่องจากรูปนี้ ยังเป็นรูปอย่างง่ายจึงเห็นซัดว่ามีเส้นทางเดียวเท่านั้นที่ไปได้เมื่อบังคับให้เปลี่ยน x คือเดินตามขอบแนวด้านล่าง และจะไป ประชิดที่ขอบ x=4 ซึ่งคือขอบที่ตัวแปรส่วนเกิน $s_1=0$ จึงทำให้ทราบว่าเราต้องนำ x ไปเป็นตัวแปรหลักแทน s_1 และ ให้ s_1 ทำหน้าที่ตัวแปรพื้นฐาน กล่าวคือ ตั้งให้ $s_1=0$ และ y=0 เป็นตัวแปรพื้นฐานและได้ว่า x=4,y=0 เพราะ ฉะนั้น จาก $z=4\times 0+1\times 0+0\times 4+0\times 4=0$ ที่จุด (0,0) จะได้ว่าค่าจุดประสงค์ ณ ปัจจุบันเปลี่ยนไป เป็น $z=4\times 4+1\times 0+0\times 0+0\times 4=16$ และเราจะไม่เดินตาม x อีกแล้ว

Figure 1.2. Enter Caption

กล่าวคือตอนนี้ระบบเหลือแค่ปัญหา

$$\max \quad y + 0s_2 + 16$$
 subject to
$$y, s_2 \ge 0$$

$$y + s_2 = 4$$

ซึ่งจะเห็นว่าเปรียบเสมือนการเดินตามแนว y โดยที่จะเอา y ไปเป็นตัวแปรหลักแทน s_2 จึงไปจบที่ขอบที่ $s_2=0$ ทำให้ ได้ y=4 และจบด้วยการไม่สามารถปรับค่าตัวแปรไหนเพิ่มเติมได้อีกแล้ว จึงได้ว่า (x,y)=(4,4) เป็นผลเฉลยที่ทำให้ ได้ฟังก์ชันค่าจุดประสงค์มากที่สุด และเท่ากับ $z=4\times 4+1\times 4=20$

ทั้งนี้ ขอสรุปขั้นตอนสำคัญของการทำ simplex method ดังนี้

- 1. หา pivot ตัวใหม่: พิจารณาหาทิศทางที่ทำให้เปลี่ยนค่าได้เร็วสุดก่อน
- 2. หา pivot ตัวที่จะถูกแทนที่: เมื่อทราบแนวการเปลี่ยนแล้ว ให้ดูว่าจุดที่ยืนอยู่ปัจจุบันมีเส้นทางไหนที่เดินแล้วถึง ขอบเร็วสุดเพื่อป้องกันการหลุดนอกขอบ แล้วตัวแปรส่วนเกินของขอบนั้นจะโดนแทนที่กลายไปเป็นตัวแปรพื้นฐาน (ตัวแปรที่ถูกตั้งค่าให้เป็น 0)
- 3. กำจัดตัวแปร pivot ใหม่ออกจากระบบ
- 4. ทำวนไปเรื่อย ๆ จนไม่สามารถเปลี่ยนตัวแปรใด ๆ เพื่อเพิ่มค่าจุดประสงค์ได้อีกแล้ว

1.3.1 Simplex Method Algorithm

ในการทำ simplex นั้นจะนิยมเขียนการคำนวณอยู่ในรูปแบบเมทริกซ์ที่เรียกว่า simplex tableau ดังนี้

Pivot	x_1	x_2	 x_n	s_1	 RHS
x_{B_1}	c_{11}	c_{12}	 c_{1n}	c_{1s_1}	 b_1
x_{B_2}	c_{21}	c_{22}	 c_{2n}	c_{2s_1}	 b_2
:	:	:	:	:	:
x_{B_m}	c_{m1}	c_{m2}	 c_{mn}	c_{ms_1}	 b_m
Z	z_1	z_2	 z_n	z_{s_1}	 z

โดยจะกล่าวละเอียดทีละขั้น โดยมีขั้นตอนดังนี้

ขั้นตอน 1.1: Simplex Method

ก่อนอื่น ตัวแปรทุกตัวต้องไม่ติดลบ ($x_i \geq 0$) และเงื่อนไขอยู่ในรูปแบบซึ่งก้อนตัวแปรอยู่ฝั่งซ้ายและค่าคงที่อยู่ฝั่ง ขวาโดยที่ค่าคงที่ต้องไม่ติดลบ

ขั้นที่ 1. แปลงปัญหาให้อยู่ในรูปแบบมาตรฐาน (Standard Form)

- \diamond เป้าหมายต้องอยู่ในรูปแบบ Maximize $Z=c_1x_1+c_2x_2+\ldots+c_nx_n$
- ข้อจำกัดต้องอยู่ในรูป สมการ โดยการเพิ่มตัวแปรประเภท slack, surplus, artificial ตาม
 ความเหมาะสม

ขั้นที่ 2. เขียน Simplex Tableau แรก

- สร้างตารางแสดงสัมประสิทธิ์ของตัวแปรในแต่ละ constraint
- \diamond เพิ่มแถวของสมการ Z และค่าคงที่ (RHS)

ขั้นที่ 3. เลือกตัวแปรที่จะเข้าสู่ฐาน (Entering Variable)

- \diamond เลือกตัวแปรที่มีสัมประสิทธิ์ในแถว Z น้อยที่สุด (ติดลบมากที่สุด)
- \diamond ถ้าไม่มีค่าสัมประสิทธิ์ใดติดลบในแถว Z: หยุดได้เลยเพราะได้คำตอบที่เหมาะสมแล้ว

ขั้นที่ 4. ทำ Minimum Ratio Test เพื่อเลือกตัวแปรที่จะออกจากฐาน (Leaving Variable)

สำหรับแต่ละแถวที่ตัวแปรเข้ามามีสัมประสิทธิ์เป็นบวก ให้คำนวณ:

- เลือกแถวที่ให้ค่า Ratio ต่ำสุด
- ๑้าไม่มี Ratio ใดสามารถคำนวณได้ (ทุกสัมประสิทธิ์ ≤ 0) ☐ ปัญหา ไม่จำกัดคำตอบ (Un-bounded)

ขั้นที่ 5. ทำ Pivot เพื่ออัปเดต Tableau

- ทำให้ตำแหน่ง Pivot (จุดตัดระหว่างแถวเข้าและออก) มีค่าเป็น 1
- ปรับแถวอื่นให้ค่าของตัวแปรเข้ามาในคอลัมน์นั้นเป็น 0

ขั้นที่ 6. ทำซ้ำขั้นตอนที่ 3-5 จนกว่าจะไม่มีสัมประสิทธิ์ติดลบในแถว Z

ขั้นที่ 7. อ่านคำตอบจาก Tableau สุดท้าย

- ⇒ ตัวแปรในฐานจะมีค่าตรงกับ RHS
- ตัวแปรที่ไม่อยู่ในฐานจะมีค่าเป็น 0
- \diamond ค่า Z ที่เหมาะสมที่สุดอยู่ในมุมขวาล่างของแถว Z

1.3.1.1 กรณีที่ 1: เงื่อนไขมีแต่ \leq (จุดกำเนิดเป็น basic feasible solution)

กรณีนี้เป็นกรณีที่ง่ายที่สุด เพราะเป็นกรณีที่เริ่มกระบวน simplex ได้ทันทีที่จุดกำเนิดโดยไม่ต้องมีการปรับแต่งอะไรก่อน หน้า ในการอธิบายวิธีการของกรณีนี้ จะขอใช้ตัวอย่างดังนี้

$$\begin{array}{ll} \max & 3x+5y \\ \text{subject to} & x\geq 0, \quad y\geq 0 \\ & x\leq 4 \\ & y\leq 6 \\ & 3x+2y\leq 18 \end{array}$$

ขั้นที่ 1: แปลงปัญหาให้อยู่ในรูปแบบมาตรฐาน (Standard Form)

- \diamond เป้าหมาย $\max 3x + 5y$ อยู่ในรูป **การเพิ่มค่า (Maximization)** อยู่แล้ว
- ♦ แต่ถ้าเป้าหมายเป็น Minimization, ต้องแปลงเป็น Maximization โดยเปลี่ยนเครื่องหมาย:

Minimize
$$Z = c_1x_1 + c_2x_2$$
 \Rightarrow Maximize $-Z = -c_1x_1 - c_2x_2$

ทุกตัวแปรต้องมีเงื่อนไข ไม่ติดลบ:

$$x_i, s_i, a_i > 0$$

ถ้าติดลบ ให้เปลี่ยนเป็นตัวแปรใหม่ $x_{new} = -x$ (แต่ในกรณีนี้ยังไม่มี)

 \diamond ข้อจำกัดทั้งหมดต้องเขียนในรูปสมการ (equalities) โดยข้อจำกัดแบบ \leq , ให้เพิ่ม **ตัวแปรส่วนเกิน (Slack Variable)** s_i : $a_1x_1+a_2x_2\leq b$ \Rightarrow $a_1x_1+a_2x_2+s_i=b$

ตัวอย่าง 1.3.1: เปลี่ยนรูปมาตรฐานกรณี 1

จงเปลี่ยนปัญหา

$$\begin{array}{ll} \max & 3x+5y \\ \text{subject to} & x\geq 0, \quad y\geq 0 \\ & x\leq 4 \\ & y\leq 6 \\ & 3x+2y\leq 18 \end{array}$$

ให้อยู่ในรูปมาตรฐาน

ขั้นที่ 2: เขียน Simplex Tableau แรก

โดยให้กลุ่มตัวแปรส่วนขาดเป็นตัวแปร pivot ของระบบก่อน และให้ตัวแปรตัดสินใจเป็นตัวแปรพื้นฐาน กล่าวคือเราให้จุด กำเนิดเป็นผลเฉลยตั้งต้น และนอกจากนั้น เราจะให้แถวสุดท้ายมีค่าเป็นค่าติดลบของสัมประสิทธิ์แต่ละตัวแปรในฟังก์ชันจุด ประสงค์ z และ RHS มีค่าเป็น 0

ตัวอย่าง 1.3.2: Initial Simplex Tableau								
จากรูปมาตรฐานที่ได้จากตัวอย่างที่ผ่านมา จะเขียน Simplex tableau เริ่มต้นได้ดังนี้								
Piv	ivot	x	y	s_1	s_2	s_3	RHS	
	z							

หมายเหตุ: จริง ๆ แล้วเรายังมีอีกคอลัมน์นึงที่ถูกซ่อนไว้คือคอลัมน์ของตัวแปรจุดประสงค์ z ซึ่งจะสามารถเขียนได้เป็น

Pivot	z	x	y	s_1	s_2	s_3	RHS
	0						
	0						
	0						
z	1						

แต่เนื่องจากไม่ว่าจะดำเนินการในขั้นอื่น ๆ ต่อไปอย่างไร คอลัมน์นี้จะไม่มีทางเปลี่ยนแปลงแน่นอน ดังนั้นจึงละการเขียน คอลัมน์นี้ไว้

คุณสมบัติ 1.4: คำถาม

- 1. ทำไมแถวของฟังก์ชันจุดประสงค์ถึงต้องใช้ค่าติดลบของสัมประสิทธิ์ และทำไมฝั่ง RHS ถึงต้องมีค่าเป็น 0
- 2. การเป็น Pivot ของตัวแปรหมายถึงอะไร
- 3. อะไรในตารางที่บอกเราว่าปัจจุบันเรายืนอยู่ที่จุด (0,0)

ขั้นที่ 3: เลือกตัวแปรที่จะเข้าสู่ฐาน (Entering Variable)

จากตำแหน่งที่ยืนอยู่ ณ ปัจจุบัน สิ่งที่เราต้องหาในขั้นตอนถัดไปคือควรจะเดินไปตามทางไหน ซึ่งแน่นอนว่าเราไม่ได้ระบุการ เดินแบบบอกทิศการเดินชัดเจน (ถึงแม้ในกรณีนี้เราจะทราบว่าการเดินไปตามเวกเตอร์ (3,5) จะเป็นทิศที่ไต่ขึ้นได้เร็วสุด ก็ตาม) เพราะหลักการของ simplex คือการเดินตามขอบ เพราะฉะนั้นเราจึงบอกทิศการเดินแบบคร่าว ๆ ว่าจะเดินไปตาม แนวแกนของตัวแปรใดก็เพียงพอแล้ว (ในที่นี้คือแนวแกน x หรือแนวแกน y)

วิธีการที่จะเลือกว่าเราควรเดินไปทิศทางใด คือการดูสัมประสิทธิ์ของตัวแปรนั้นที่อยู่ในฟังก์ชันจุดประสงค์

ตัวอย่าง 1.3.3: การเลือกตัวแปรฐานใหม่

จากฟังก์ชันจุดประสงค์ (ในปัจจุบัน) $z=3x+5y+0s_1+0s_2+0s_3$ ถ้า แต่ละตัวแปรมีค่าเปลี่ยนไป +1 แล้วค่า z จะมีค่าเปลี่ยนไปเท่าไหร่บ้าง และการเปลี่ยนตัวแปรใดทำให้เพิ่มค่า z ได้มากที่สุด

ขั้นที่ 4: เลือกตัวแปรที่จะออกจากฐาน (Leaving Variable)

ณ ขั้นตอนนี้ เราทราบแล้วว่าเรากำลังจะเอาตัวแปร y เข้ามาเป็นตัวแปรฐานใหม่ เพราะการเดินตามแนวแกน y ให้การ เปลี่ยนค่า z ได้มากที่สุด ซึ่งจากรูปภาพเราจะเห็นว่าจะมีเพียงขอบด้านซ้าย (เดินไปตามแกน y) เท่านั้นที่เป็นเส้นทางการ เดินเดียวจากจุด (0,0)

คำถามต่อมาคือเดินควรไกลแค่ไหนถึงจะมั่นใจได้ว่าเดินไปถึงจุดมุมของบริเวณแน่ ๆ ซึ่งถ้าเดินสั้นไปจะเดินไม่ถึงจุดมุม แต่ถ้าเดินไกลไปก็จะเลยจุดมุม เพราะฉะนั้น เราจึงใช้ตัวแปรส่วนขาดเป็นตัวบอกว่าขอบของตัวแปรส่วนขาดใดอยู่ใกล้ที่สุด (ในกรณีอื่นอาจมีได้หลายเส้นทาง แต่เราก็จะเลือกอันที่ใกล้ที่สุดอยู่) หรือกล่าวคือ เรากำลังจำลองว่าจะต้องเปลี่ยนค่า y เท่าไหร่เพื่อให้ตัวแปรส่วนขาดของเส้นดังกล่าวมีค่าเป็น 0

ตัวอย่าง 1.3.4: การเลือกตัวแปรเพื่อออกจากฐาน

จากรูปจะเห็นว่าถ้าเราเดิน จะไปพบได้ 2 เส้นเท่านั้นคือเส้นของ s_2 และเส้นของ s_3 จงหาค่า y ของแต่ละเส้นที่ ทำให้ตัวแปรส่วนขาดของเส้นดังกล่าวมีค่าเป็น 0 (สุดท้ายจะได้ว่าต้องเดินไปเส้นของ s_2) และเราจะสามารถเขียน แสดงผลลัพธ์ดังกล่าวในรูปแบบ simplex tableau ได้อย่างไร

ขั้นที่ 5: ทำ Pivot Row Operation เพื่ออัปเดต Tableau

ตามความหมายในวิชาพีชคณิตเชิงเส้นเรื่องการแก้ระบบสมการเชิงเส้นนั้น pivot หมายถึงคอลัมน์ในเมทริกซ์สัมประสิทธิ์ ที่มีสมาชิกเป็น 1 อยู่ตัวเดียว (เรียกว่า pivot element) และที่เหลือเป็น 0 ล้วน โดยในแต่ละแถวจะมี pivot element ได้ไม่เกิน 1 ตัว ซึ่งจากการที่เราบังคับให้ s_2 ออกจากการเป็นฐาน และนำ y เข้ามาเป็นฐานแทน s_2 จึงต้องการให้ตาราง simplex อันใหม่มีหน้าตาดังนี้

							1	Г
Pivot	x	y	s_1	s_2	s_3	RHS		
s_1	*	*	1	0	0	*		
s_2	*	*	0	1	0	*	\implies	
s_3	*	*	0	0	1	*		
z	*	*	0	0	0	*		

	Pivot	x	y	s_1	s_2	s_3	RHS
	s_1	*	0	1	*	0	*
>	y	*	1	0	*	0	*
	s_3	*	0	0	*	1	*
	z	*	0	0	*	0	*

ตัวอย่าง 1.3.5: การเปลี่ยน pivot ของระบบ

แปลง simplex tableau ให้เป็นของระบบ pivot s_1 , y และ s_3 และให้เหตุผลว่าทำไมระบบปัจจุบันถึงแสดง สถานะว่ากำลังยืนอยู่ที่จุด (0,6)

ขั้นที่ 6: วนซ้ำขั้นที่ 3-5 จนกว่าจะไม่มีสัมประสิทธิ์ติดลบในแถวของ z

ตัวอย่าง 1.3.6: ทำต่อ

ทำขั้นตอนที่ 3-5 วนจนกว่าจะจบกระบวนการ และแปลผลตารางสุดท้าย (ขั้นที่ 7)

ตัวอย่าง 1.3.7

ใช้วิธี simplex หาผลเฉลยของกำหนดการเชิงเส้น

$$\max \quad 4x + 2y$$
 subject to
$$x \ge 0, \quad y \ge 0$$

$$x \le 2$$

$$y \le 3$$

$$x - y \le 1$$

$$x + y \le 4$$

1.3.1.2 กรณีที่ 2: เงื่อนไขมี \geq ที่อาจจะทำให้จุดกำเนิดไม่เป็น basic feasible solution

ในบางกรณี เราอาจพบเงื่อนไขที่ทำให้จุดกำเนิดไม่ใช่ feasible solution เลยทำให้ไม่สามารถดำเนินการ simplex ได้ทันที เหมือนกรณีที่ 1 ซึ่งกรณีดังกล่าวคือกรณีที่อสมการเงื่อนไขเขียนในรูป $ax+by\geq c$ โดยที่ $c\geq 0$ ซึ่งจะเห็นได้โดยง่ายว่า จุด (0,0) ไม่เป็น feasible solution สำหรับเงื่อนไขนี้ แต่ถึงแม้เราจะใช้วิธีการการเพิ่มตัวแปรส่วนขาดเข้าไป ตัวอย่างเช่น สมการ $-3x+5y\geq 4$ เมื่อเราทำการเพิ่มตัวแปรส่วนขาดเข้าไป จะได้สมการเป็น -3x+5y=4+s เมื่อ $s\geq 0$ หรือก็คือสมการ $-3x+5y-s=4^1$ ซึ่งจะเห็นว่าถ้าให้ x=0 และ y=0 แล้วจะได้ว่า

$$4 = -3x + 5y - s = -s \Longrightarrow s = -4 \ngeq 0$$

กล่าวคือ เราไม่สามารถให้ x และ y เป็นตัวแปร non-basic ได้เหมือนกรณีที่ 1

วิธีแก้ปัญหาคือเราจะเพิ่มตัวแปรเข้าระบบไปอีกตัว เพื่อปรับดุลสมการให้สามารถเริ่ม basic feasible solution ที่จุด กำเนิดได้ ซึ่งตัวแปรที่ถูกเพิ่มเข้ามานี้ถูกเรียกว่า **ตัวแปรจำลอง** (artificial variable) โดยจะได้สมการตัวอย่างเป็น

$$-3x + 5y - s + A = 4$$
 โดยที่ $A > 0$

และจะให้ตัวแปรจำลองเป็นตัวแปรพื้นฐาน และ x,y,s มีค่าเป็น 0 โดยในขั้นตอนนี้ เราได้ basic feasible solution เริ่ม ต้นเป็นตัวแปรจำลอง (A) ซึ่งมีค่าเป็นบวก (ในที่นี้คือ A=4) แต่เป้าหมายของเราในการทำ Simplex method คือ การกำจัดตัวแปรจำลองออกไปจากระบบในที่สุด เพราะตัวแปรจำลองนี้ไม่ได้มีความหมายในทางปฏิบัติ แต่เป็นเพียงตัวช่วย ชั่วคราวในการเริ่มต้นหาคำตอบที่เหมาะสมที่สุดของระบบสมการ

การดำเนินการจากนี้เรียกกันโดยทั่วไปว่า Simplex Method ระยะที่หนึ่ง (Phase I Simplex Method) ซึ่งมีขั้น ตอนการดำเนินงานดังต่อไปนี้:

หลังจากเพิ่มตัวแปรจำลองในแต่ละสมการที่มีเงื่อนไข ≥ เรียบร้อยแล้ว เราจะกำหนดฟังก์ชันวัตถุประสงค์ชั่วคราว
(Phase I Objective) ให้เป็นการหาผลรวมของตัวแปรจำลองทั้งหมดที่ถูกเพิ่มเข้าไป และเป้าหมายของขั้นตอนนี้
คือการทำให้ผลรวมของตัวแปรจำลองมีค่าเท่ากับศูนย์ให้ได้ กล่าวคือเราสร้างฟังก์ชันวัตถุประสงค์ชั่วคราว (Phase I Objective) ดังนี้:

Minimize
$$W=\sum \left($$
ตัวแปรจำลองทั้งหมด $ight)$

สำหรับตัวอย่างนี้จะได้เป็น

Minimize
$$W = A$$

2. ใช้วิธี Simplex กับฟังก์ชันวัตถุประสงค์ชั่วคราวนี้ (Minimize W) และดำเนินการแปลงแถว (Pivot) ไปเรื่อย ๆ จนกว่าจะได้ W=0 หรือได้คำตอบที่ดีที่สุดของฟังก์ชันวัตถุประสงค์ชั่วคราวนี้

หมายเหตุสำคัญ:

 $^{^1}$ หนังสือบางเล่มจะเรียกว่า**ตัวแปรส่วนเกิน** เพราะมองในลักษณะ -3x+5y-s=4 โดยที่ s เป็นส่วนเกินของฝั่งที่มีค่ามากกว่า ทำให้ เราต้องลบออกเพื่อให้ได้สมการ แต่ในมุมของผู้เขียนจะขอมองในลักษณะของตัวแปรส่วนขาดทั้งหมด แล้วใช้การย้ายข้างสมการแทน

- \diamond หากสามารถทำให้ฟังก์ชันวัตถุประสงค์ชั่วคราว W=0 ได้สำเร็จ แสดงว่าปัญหานี้มี feasible solution เดิมจริง และสามารถไปสู่ขั้นตอน Phase II ได้
- \diamond หากไม่สามารถทำให้ W=0 ได้ (เช่น W>0 เสมอ) แสดงว่าปัญหานี้ไม่มี feasible solution (infeasible problem) ไม่จำเป็นต้องดำเนินการต่อ
- 3. เมื่อได้ W=0 แล้ว (กำจัดตัวแปรจำลองหมดแล้ว) เราจะดำเนินการต่อในขั้นที่สอง (Phase II) โดยกลับไปใช้ ฟังก์ชันวัตถุประสงค์จริงของปัญหาเดิม และเริ่มทำ Simplex method ตามปกติจนได้คำตอบสุดท้าย สรุปได้ว่าในกรณีที่ 2 นี้ การใช้ตัวแปรจำลอง (Artificial variable) และวิธีการ Simplex Phase I จะช่วยให้เราสามารถเริ่ม ต้นแก้ปัญหาการกำหนดการเชิงเส้นได้ แม้ว่าเงื่อนไขของปัญหาจะทำให้จุดกำเนิดไม่สามารถเป็น basic feasible solution ตั้งต้นได้ก็ตาม

ตัวอย่าง 1.3.8

ใช้วิธี simplex หาผลเฉลยของกำหนดการเชิงเส้น

$$\max \quad 4x + 5y$$
 subject to
$$x \ge 0, \quad y \ge 0$$

$$-3x + 5y \ge 4$$

$$x + 2y \le 8$$

1.4 การแก้ปัญหาด้วย Excel Solver

สถานการณ์จำลอง

โรงงานผลิตน้ำผลไม้แห่งหนึ่งมีผลิตภัณฑ์ 4 ชนิด ได้แก่ น้ำส้ม (A), น้ำแอปเปิ้ล (B), น้ำองุ่น (C) และน้ำเสาวรส (D) โดยการ ผลิตแต่ละชนิดต้องใช้วัตถุดิบและเวลาที่แตกต่างกัน โรงงานมีข้อจำกัดด้านวัตถุดิบ วัตถุบรรจุ และแรงงานต่อวันตามตาราง ด้านล่าง

ทรัพยากร / ผลิตภัณฑ์	A (น้ำส้ม)	B (น้ำแอปเปิ้ล)	C (น้ำองุ่น)	D (น้ำเสาวรส)
วัตถุดิบ (ลิตร)	2.0	1.5	2.2	1.0
วัตถุบรรจุ (หน่วย)	1.0	1.0	0.8	1.2
แรงงาน (ชม.)	0.5	0.7	0.6	0.4
กำไรต่อหน่วย (บาท)	10	8	12	9

ข้อจำกัดต่อวัน:

- วัตถุดิบไม่เกิน 500 ลิตร
- วัตถุบรรจุไม่เกิน 250 หน่วย
- ชั่วโมงแรงงานไม่เกิน 120 ชั่วโมง

คำสั่งในการทำงาน

- 1. กำหนดให้ตัวแปร x_1, x_2, x_3, x_4 แทนจำนวนหน่วยของ A, B, C, D ตามลำดับ
- 2. เขียนแบบจำลองทางคณิตศาสตร์ในรูปแบบ LP โดยกำหนด

พึงก์ชันวัตถุประสงค์: Maximize กำไรรวม

ข้อจำกัด: ทรัพยากรไม่เกินที่กำหนด

 \diamond เงื่อนไข: $x_1, x_2, x_3, x_4 \ge 0$

- 3. เปิด Excel และสร้างตารางการคำนวณ (Decision Variables, Total Usage, Constraints)
- 4. ใช้ Solver เพื่อหาคำตอบที่ให้กำไรสูงสุด โดยกำหนดเงื่อนไขที่เหมาะสม
- บันทึกผลลัพธ์ที่ได้

คำถามท้ายแล็บ

- a. ผลลัพธ์ที่ได้คือ: $x_1=\,$, $x_2=\,$, $x_3=\,$, $x_4=\,$ และกำไรสูงสุดคือ บาท
- b. ข้อจำกัดใดที่ใช้เต็มความสามารถ? และข้อจำกัดใดที่ยังมีทรัพยากรเหลือ?
- c. หากโรงงานสามารถเพิ่มแรงงานได้อีก 10 ชั่วโมง จะส่งผลต่อกำไรหรือไม่?
- d. หากบริษัทต้องการผลิตแบบจำนวนเต็ม จะต้องเปลี่ยนการตั้งค่า Solver อย่างไร?

Assignment

จากสถานการณ์ของบริษัท ABC Furniture ที่ต้องการวางแผนการผลิต "โต๊ะทำงาน" และ "ตู้เก็บเอกสาร" เพื่อให้ได้กำไร สูงสุดภายใต้ข้อจำกัดของแรงงานและวัตถุดิบ (ตามสถานการณ์ในต้นบท)

Part A: การสร้างโมเดลคณิตศาสตร์

- 1. จากสถานการณ์ของบริษัท ABC Furniture
 - (a) กำหนดตัวแปรให้ชัดเจน
 - (b) เขียนสมการเป้าหมาย (Objective Function)
 - (c) เขียนข้อจำกัดทั้งหมด (Constraints)
 - (d) ระบุ Domain ของตัวแปร

Part B: การวิเคราะห์และคำนวณผลลัพธ์

- 1. หาผลเฉลยด้วยวิธีการวาดกราฟ
- 2. หาผลเฉลยด้วยวิธี Simplex method
- 3. จงอธิบายความหมายทางเรขาคณิตของแต่ละ simplex tableau ที่ได้ในข้อที่ผ่านมา
- 4. หาผลเฉลยด้วย Excel Solver
- 5. ถ้าบริษัทเพิ่มแรงงานได้เป็น 1,200 ชั่วโมงต่อสัปดาห์ ข้อจำกัดเปลี่ยนแปลงอย่างไร และคำตอบใหม่คืออะไร?
- 6. ถ้าราคาขายตู้เก็บเอกสารเพิ่มเป็น 1,800 บาท จะมีผลต่อคำตอบอย่างไร? ควรผลิตเปลี่ยนไปหรือไม่?

Part C: Sensitivity Analysis

เราสามารถลด (หรือเพิ่ม) ทรัพยากรได้แค่ไหน โดยที่คำตอบที่ดีที่สุด (optimal solution) ยังไม่เปลี่ยน?

- 1. อธิบายเงื่อนไขเชิงเรขาคณิตที่ทำให้คำตอบที่เหมาะสมที่สุดยังคงอยู่ที่เดิม เมื่อเปลี่ยนค่าด้านขวาของข้อจำกัด (RHS)
- พิจารณาว่าเราสามารถลดค่าของ RHS ของข้อจำกัดแรงงาน (1000) และวัตถุดิบ (800) ลงอย่างละเท่าไร โดยที่จุด คำตอบเดิมยัง feasible และยังเป็นคำตอบที่ให้ค่า Z มากที่สุด

ทฤษฎีการตัดสินใจ (Decision Theory)

โจทย์ธุรกิจ

ข้อความ

"ขอบคุณสำหรับแผนการผลิตที่คุณแนะนำครับ แต่เรายังมีปัญหาใหม่เกิดขึ้น... ฝ่ายบริหารกำลังลังเลว่าจะใช้กลยุทธ์ ไหนต่อในไตรมาสหน้า เพราะสถานการณ์ตลาดมีแนวโน้มเปลี่ยนแปลงตลอดเวลา บางสัปดาห์โต๊ะทำงานขายดี บาง สัปดาห์กลับเป็นตู้เอกสารที่มาแรง บางทีก็มีปัญหาขนส่งวัตถุดิบจากซัพพลายเออร์อีก ถ้าจะวางกลยุทธ์ที่เหมาะสม เรา ควรเลือกแนวทางการผลิตแบบใด?"

คุณสมชายกลับมาอีกครั้ง หลังจากบริษัท ABC Furniture ใช้แบบจำลองเชิงเส้นเพื่อตัดสินใจจำนวนการผลิตโต๊ะ ทำงานและตู้เก็บเอกสารในแต่ละสัปดาห์ได้แล้ว ซึ่งทำให้ได้ผลดีในช่วงแรก ๆ ที่ใช้งาน แต่ผ่านไปสักพักฝ่ายการตลาดพบ ว่ามีปัจจัยภายนอกมากระทบทำให้ไม่สามารถใช้แค่เกณฑ์ภายในด้านกำไรมาพิจารณาได้อย่างเดียว และสถานการณ์ตลาด เปลี่ยนแปลงอย่างรวดเร็ว — ทำให้ฝ่ายการผลิตต้องเผชิญกับความไม่แน่นอนหลายด้าน เช่น

- ราคาขายเปลี่ยนแปลง
- ความต้องการของลูกค้าเปลี่ยนไป
- มีปัญหาการขนส่งวัตถุดิบ
- คู่แข่งออกรุ่นใหม่ที่มีราคาถูกกว่า

เพื่อช่วยในการวางแผน บริษัทจึงอยากรู้ว่า หากมีสถานการณ์ที่ไม่แน่นอน (uncertain states of nature) เกิดขึ้น บริษัท ควรเลือกแนวทางการผลิตแบบใดเพื่อรับมือ

คำถามชวนคิด:

- คุณคิดว่าบริษัท ABC Furniture กำลังเผชิญกับปัญหาแบบใด? ทำไม LP ไม่ตอบโจทย์?
- คุณต้องการข้อมูลอะไรเพิ่มเติมก่อนจะตอบคำถามของคุณสมชายได้?
- คุณจะเริ่มต้นจัดกลุ่มหรือจำแนกทางเลือกในการตัดสินใจอย่างไร?
- หากไม่สามารถรู้อนาคตได้แน่ชัด คุณจะวิเคราะห์หรือวางแผนอย่างไร?
- ลองจินตนาการว่าบริษัทอาจมี "หลายสถานการณ์ตลาด" ที่อาจเกิดขึ้น คุณจะจัดโครงสร้างปัญหาเพื่อเปรียบเทียบ ตัวเลือกได้อย่างไร?
- คุณคาดหวังว่าข้อมูลลักษณะใดจะช่วยให้การตัดสินใจแม่นยำมากขึ้น?

บทน้ำ

(Draft Version)¹

- ในบางครั้ง ก็มีทางเลือกที่จะต้องตัดสินใจเลือก
- เป้าหมายคือทางเลือกที่ดีที่สุด
- แต่ก็มีรูปแบบของสถานการณ์ได้หลากหลาย ขึ้นกับการเกิดขึ้นของทางเลือกที่มี: (1) ภายใต้ความแน่นอน (2) ภาย ใต้ความเสี่ยง และ (3) ภายใต้ความไม่แน่นอน
- ซึ่งการตัดสินใจภายใต้ความเสี่ยงและความไม่แน่นอนนั้นจะใช้ทฤษฎีความน่าจะเป็นเข้ามาช่วย: ค่าคาดหวัง (expected value)

2.1 ลักษณะการแสดงข้อมูล

เราสามารถแสดงข้อมูลเพื่อความง่ายในการอ่านได้ 2 รูปดังนี้

1. เมทริกซ์การตัดสินใจ (decision matrix) เป็นการแสดงผลจากลัพธ์ (เช่น กำไร) ระหว่างตัวเลือก (option) และ เหตุการณ์ที่เป็นไปได้ที่อาจจะเกิดขึ้น

	เหตุการณ์ 1	เหตุการณ์ 2	 ig เหตุการณ์ n
ทางเลือก 1			
ทางเลือก 2			
:			
ทางเลือก m			

2. ต้นไม้การตัดสินใจ (decision tree) เป็นลักษณะของการแสดงความต่อเนื่องของเหตุการณ์การเลือกโดยอาศัยจุด ยอด (node) เชื่อมต่อกัน และปลายกิ่งสุดท้ายจะแสดงผลลัพธ์ที่เกิดขึ้น

Figure 2.1. Enter Caption

¹draft for teaching in class, not for text book this semester

ตัวอย่าง 2.1.1: ตัวอย่างการสร้างเมทริกซ์การตัดสินใจ และต้นไม้การตัดสินใจ

ณ บริษัทสมมติแห่งหนึ่ง ต้องการตัดสินใจว่าจะจัดนิทรรศการขนาดเล็ก หรือขนาดกลาง หรือขนาดใหญ่ โดยจาก การประเมิณเบื้องต้นพบว่าถ้าขายบัตรเข้างานได้หมด จะได้กำไร 8 ล้านบาท, 15 ล้านบาท และ 25 ล้านบาทเรียง ตามขนาดของงาน ในขณะที่ถ้าขายได้ 50% ของบัตรทั้งหมดจะได้กำไร 4 ล้านบาท, 15 ล้านบาท และ 10 ล้านบาท ตามลำดับ และถ้าขายได้เพียงแค่ 10% ของบัตรทั้งหมดจะได้กำไร 3 บาท และขาดทุน 1 ล้านบาทและ 10 ล้าน บาทตามลำดับขนาดของงาน จากเหตุการณ์ดังกล่าว จะสร้างเมทริกซ์การตัดสินใจและต้นไม้การตัดสินใจได้ดังนี้

2.2 การตัดสินใจภายใต้สภาวะความแน่นอน

- เมื่อทราบว่าจะเกิดเหตุการณ์ใดขึ้น
- ถึงจะไม่ realistic ในหลาย ๆ กรณี แต่บางครั้งเราก็ต้องพิจารณาในรูปแบบนี้
- เพราะง่ายและตรงไปตรงมา

ตัวอย่าง 2.2.1: การตัดสินใจภายใต้สภาวะความแน่นอน

จากเมทริกซ์การตัดสินใจที่ได้จากตัวอย่าง 2.1.1 จะตัดสินใจภายใต้สภาวะความแน่นอนของแต่ละเหตุการณ์ได้ อย่างไรบ้าง

2.3 การตัดสินใจภายใต้สภาวะความเสี่ยง

- ไม่ทราบว่าจะเกิดเหตุการณ์ใด
- 💠 แต่พอมีข้อมูลเพื่อคาดการณ์ความน่าจะเป็นของการเกิดแต่ละเหตุการณ์ได้
- ใช้แนวคิดเรื่องของความน่าจะเป็นเข้ามาช่วย

2.3.1 ค่าคาดหวัง (Expected Value)

นิยาม 2.3.1: ค่าคาดหวัง

ภาย ใต้ การ ทดลอง เชิง การ สุ่ม หนึ่ง $\,$ ถ้า ผล จอบ แทน ทั้งหมด ที่ เป็น ไป ได้ คือ $\,X=X_1,X_2,X_3,\dots$ (อาจ จะ มี จำกัด หรือ ไม่ จำกัด เหตุการณ์ ก็ได้) โดยที่ มี ความ น่า จะ เป็นการ ได้ ผล ตอบแทน เป็น $\,P\,(X)=P\,(X_1)\,,P\,(X_2)\,,P\,(X_3)\,,\dots$ ตามลำดับ แล้วค่าคาดหวังของผลตอบแทนจะคำนวณโดย

$$E(X) := X_1 P(X_1) + X_2 P(X_2) + X_3 P(X_3) + \cdots$$

ซึ่งค่าคาดหวังในเชิงความน่าจะเป็นเปรียบเสมือนค่าเฉลี่ยในเชิงสถิติที่จะบอกแนวโน้มการได้ว่ามักจะได้ค่าไหนเป็น ส่วนใหญ่

ตัวอย่าง 2.3.1: ค่าคาดหวังของเหตุการณ์อย่างง่าย

สมมติว่าพนันด้วยการโยนเหรียญไม่เที่ยงตรงอันหนึ่งโดยมีโอกาสออกหัว 0.3 และออกก้อย 0.7 ในการพนันนี้มีกฎ ว่าถ้าออกหัวผู้เล่นจะได้เงิน 5 บาท ในขณะที่ถ้าออกก้อยผู้เล่นจะเสียเงิน 3 บาท ในการเล่นพนันครั้งนี้ผู้เล่นจะเสีย เปรียบหรือว่าได้เปรียบอยู่กี่บาท

2.3.2 เกณฑ์ผลตอบแทน

ตัวอย่าง 2.3.2: การตัดสินใจภายใต้สภาวะความเสี่ยง:ค่าคาดหวังของผลตอบแทน

จากเมทริกซ์การตัดสินใจที่ได้จากตัวอย่าง 2.1.1 ซึ่งคือ

(หน่วย: ล้านบาท)	ขายได้หมด	ขายได้ 50%	ขายได้ 10%
ขนาดเล็ก	8	4	3
ขนาดกลาง	15	15	-1
ขนาดใหญ่	25	10	-10

และจากการสำรวจสถิติเก่า ๆ พบว่า โอกาสที่จะขายได้หมดมี 0.3 ในขณะที่ขายได้ครึ่งหนึ่งของงานจะมีโอกาสที่ 0.4 และขายได้เพียง 10% ของงานจะมีโอกาสอยู่ที่ 0.3 เนื่องจากเราไม่ทราบว่าจะเกิดเหตุการณ์แบบไหนขึ้น แต่ เราทราบความน่าจะเป็นที่จะเกิด เราจึงต้องใช้ค่าคาดหวังเข้ามาช่วย

- 1. เราต้องหาค่าคาดหวังของอะไร (ระบุตัวแปรสุ่ม) โดยที่แยกคิดตามอะไร (ตามขนาดงานหรือตามปริมาณการ ขายบัตรได้)
- 2. จงหาค่าคาดหวังตามที่ตั้งไว้
- 3. และจากค่าคาดหวังที่ได้ ควรเลือกจัดงานขนาดใด
- 4. ข้อมูลเรื่องความน่าจะเป็นที่จะเกิดเหตุการณ์ต่าง ๆ นักศึกษาคิดว่าหาได้จากไหนบ้าง (ยกตัวอย่างแหล่ง ข้อมูล หรือสิ่งที่ขอเพิ่มจากลูกค้า)

2.3.3 เกณฑ์ค่าเสียโอกาส (opportunity loss)

- นอกจากคำนวณจากผลตอบแทนแล้ว เรายังสามารถคำนวณโดยอาศัยเกณฑ์ค่าเสียโอกาส
- 💠 🧼 ค่าเสียโอกาส = ผลตอบแทนที่ควรได้สูงสุด ผลตอบแทนกรณีเลือกตัวเลือกดังกล่าว
- และใช้ค่าคาดหวังของค่าเสียโอกาส (Expected Opportunity Loss: EOL) เป็นตัวตัดสินใจ

ตัวอย่าง 2.3.3: การตัดสินใจภายใต้สภาวะความเสี่ยง:ค่าคาดหวังของค่าเสียโอกาส

จากเมทริกซ์การตัดสินใจที่ได้จากตัวอย่าง 2.1.1 ซึ่งคือ

(หน่วย: ล้านบาท)	ขายได้หมด	ขายได้ 50%	ขายได้ 10%
ขนาดเล็ก	8	4	3
ขนาดกลาง	15	15	-1
ขนาดใหญ่	25	10	-10

และจากการสำรวจสถิติเก่า ๆ พบว่า โอกาสที่จะขายได้หมดมี 0.3 ในขณะที่ขายได้ครึ่งหนึ่งของงานจะมีโอกาสที่ 0.4 และขายได้เพียง 10% ของงานจะมีโอกาสอยู่ที่ 0.3 เนื่องจากเราไม่ทราบว่าจะเกิดเหตุการณ์แบบไหนขึ้น แต่ เราทราบความน่าจะเป็นที่จะเกิด เราจึงต้องใช้ค่าคาดหวังเข้ามาช่วย

- 1. จงคำนวณค่าเสียโอกาสที่จะเกิดขึ้นในแต่ละเหตุการณ์
- 2. จงหาค่าคาดหวังของค่าเสียโอกาส
- 3. และจากค่าคาดหวังที่ได้ ควรเลือกจัดงานขนาดใด

2.3.4 ค่าคาดหวังของข่าวสารที่สมบูรณ์

💠 ถ้าเราทราบเหตุการณ์ที่จะเกิดได้ จะทำให้เลือกตัวเลือกที่ทำกำไรได้สูงสุดแน่นอน (มีข่าวสารสมบูรณ์)

ค่าคาดหวังของข่าวสารที่สมบูรณ์ =E (ผลตอบแทนสูงสุดของแต่ละเหตุการณ์)

แต่ถ้าเราไม่มีข่าวสารอะไรเลย เราจะตัดสินใจได้เพียงแค่ค่าคาดหวังของผลตอบแทนในแต่ละตัวเลือก และเลือกตัว
 เลือกที่ให้ค่าคาดหวังมากที่สุด

ค่าคาดหวังที่สูงที่สุดเมื่อไม่มีข่าวสาร $=\max_{\tilde{\mathbf{p}}_{\text{Iden}}}E\left($ ผลตอบแทนตามเหตุการณ์ight)

- เราจึงวัดผลความต่างระหว่างค่าคาดหวังที่จะทำผลตอบแทนได้สูงสุดเมื่อมีข่าวสารสมบูรณ์เทียบกับค่าคาดหวังที่สูง
 ที่สุดเมื่อไม่มีข่าวสาร
- 💠 เรียกว่า **ค่าคาดหวังของข่าวสารที่สมบูรณ์** (Expected Value of Perfect Information: EVPI)

EVPI= ค่าคาดหวังเมื่อมีข่าวสารสมบูรณ์ - ค่าคาดหวังที่สูงที่สุดเมื่อไม่มีข่าวสาร

ตัวอย่าง 2.3.4: การตัดสินใจภายใต้สภาวะความเสี่ยง:ค่าคาดหวังของข่าวสารที่สมบูรณ์

จากเมทริกซ์การตัดสินใจที่ได้จากตัวอย่าง 2.1.1 ซึ่งคือ

(หน่วย: ล้านบาท)	ขายได้หมด	ขายได้ 50%	ขายได้ 10%
ขนาดเล็ก	8	4	3
ขนาดกลาง	15	15	-1
ขนาดใหญ่	25	10	-10

และจากการสำรวจสถิติเก่า ๆ พบว่า โอกาสที่จะขายได้หมดมี 0.3 ในขณะที่ขายได้ครึ่งหนึ่งของงานจะมีโอกาส ที่ 0.4 และขายได้เพียง 10% ของงานจะมีโอกาสอยู่ที่ 0.3 จงคำนวณหา EVPI และอภิปรายค่าที่ได้ในแง่ของการ ลงทุนทำ R&D เพิ่มเติม ผลพลอยได้อย่างหนึ่งที่น่าสนใจคือไม่ว่าเราจะใช้เกณฑ์ใดก็ตาม เราจะได้วิธีการตัดสินใจเดียวกันเสมอ

ทฤษฎีบท 2.3.1: ปัญหาคู่กันของเกณฑ์ผลตอบแทนและเกณฑ์ค่าเสียโอกาส

ผลการตัดสินใจที่ได้จากค่าคาดหวังของผลตอบแทนจะเหมือนกับผลการตัดสินใจจากค่าคาดหวังของค่าเสียโอกาส

$$rg \max_{ ilde{ ext{min}}} E \left(ext{Namoulinu}
ight) = rg \min_{ ilde{ ext{min}}} E \left(ext{Piritalization}
ight)$$

และทำให้เราได้ผลตามมาว่า

บทตาม 2.3.1: EVPI กับ EOL

$$EVPI = \min_{\text{ตัวเลือก}} E \, ($$
ค่าเสียโอกาส $)$

(ข้ามได้) เพื่อความง่ายสำหรับนักศึกษาที่ไม่คุ้นเคยกับการคิดคณิตศาสตร์แบบนามธรรม ขอกำหนดให้เรามีทางเลือก 3 ทางเลือก และเหตุการณ์ 4 เหตุการณ์

Exercise 2.3.1: คำถามช่วยไกด์

1. กำหนดให้เมทริกซ์ผลตอบแทนคือ
$$D=egin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \ x_{21} & x_{22} & x_{23} & x_{24} \ x_{31} & x_{32} & x_{33} & x_{34} \end{bmatrix}$$
 และเวกเตอร์ความน่าจะเป็นคือ

$$ec{p} = egin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$$
 แล้วเราจะสามารถใช้ D และ $ec{p}$ เขียนแสดงค่าคาดหวังของผลตอบแทนได้อย่างไร

- 2. เพื่อที่จะเขียนเมทริกซ์ที่แสดงถึงค่าเสียโอกาส ขอสมมติว่าให้ในเหตุการณ์ที่ 1, 2, 3 และ 4 มีผลตอบแทนที่ ได้มากที่สุดเป็น $x_{11}, x_{32}, x_{23}, x_{24}$ ตามลำดับ กล่าวคือในเหตุการณ์ที่ 1, 2, 3 และ 4 นั้นทางเลือกที่ 1, 3, 2 และ 2 จะให้ผลตอบแทนเยอะสุดตามลำดับ จงเขียนค่าเสียโอกาสรายตัวเลือกให้อยู่ในรูปเมทริกซ์
- 3. ถ้าไม่กำหนด แบบ เจาะจง ว่า ตัว เลือก ใด ให้ ผล ตอบแทน มาก ที่สุด ใน แต่ละ เหตุการณ์ แต่ สมมติ ว่า ให้ ผล ตอบแทนที่มากที่สุดของเหตุการณ์ที่ 1, 2, 3 และ 4 มีผลตอบแทนที่ได้มากที่สุดเป็น M_1,M_2,M_3,M_4 ตามลำดับ จงเขียนค่าเสียโอกาสรายตัวเลือกให้อยู่ในรูปเมทริกซ์

(Ans: M-D โดยที่ทุกแถวของ M คือ M_1,M_2,M_3,M_4)

4. จงหาค่าคาดหวังของค่าเสียโอกาส $({\sf Ans}\colon \vec{E}\ ({\sf ค่าเสียโอกาส}) = M\vec{p} - D\vec{p})$

(Ans: \vec{E} (ผลตอบแทน) $= D\vec{p}$)

5. คราวนี้เราจะสามารถพิสูจน์ผลใน 2.3.1 โดยใช้ผลจากข้อ 1 และข้อ 4

2.4 การตัดสินใจภายใต้สภาวะที่ไม่แน่นอน

maximax criterion

เหมาะกับผู้ตัดสินใจที่มีนิสัยกล้าได้กล้าเสีย โดยเลือกค่าผลลัพธ์สูงสุด (Maximum payoff) ของแต่ละทางเลือก แล้ว เลือกค่าที่มากที่สุดในบรรดานั้น

$$\operatorname{Maximax} = \max_{i} \left(\max_{j} \ a_{ij} \right)$$

โดยที่ a_{ij} คือค่าผลลัพธ์ของกลยุทธ์ i เมื่อเกิดเหตุการณ์ j

maximin criterion

เหมาะกับผู้ตัดสินใจที่ระมัดระวัง โดยเลือกค่าผลลัพธ์ต่ำสุด (Minimum payoff) ของแต่ละทางเลือก แล้วเลือกค่าที่มาก ที่สุดในบรรดานั้น

$$\operatorname{Maximin} = \max_{i} \left(\min_{j} \ a_{ij} \right)$$

minimax regret criterion

คำนวณ "ความเสียใจ" (regret) โดยการหาผลต่างระหว่างผลลัพธ์ที่ดีที่สุดในแต่ละสถานการณ์ กับค่าของแต่ละกลยุทธ์ แล้วเลือกกลยุทธ์ที่มี regret สูงสุดน้อยที่สุด

$$r_{ij} = \max_i a_{ij} - a_{ij}, \quad ext{ Minimax Regret} = \min_i \left(\max_j \ r_{ij}
ight)$$

Laplace criterion

้ถือว่าทุกสถานการณ์มีโอกาสเกิดเท่ากัน แล้วคำนวณค่าเฉลี่ยของแต่ละกลยุทธ์ จากนั้นเลือกค่าที่มีค่าเฉลี่ยสูงสุด

Laplace =
$$\max_{i} \left(\frac{1}{n} \sum_{j=1}^{n} a_{ij} \right)$$

โดยที่ n คือจำนวนเหตุการณ์ที่เป็นไปได้

Hurwicz criterion

ประนีประนอมระหว่าง maximax และ maximin โดยใช้ค่าสัมประสิทธิ์ lpha ที่สะท้อนระดับความมองโลกในแง่ดี

$$\operatorname{Hurwicz}_{i} = \alpha \cdot \max_{j} a_{ij} + (1 - \alpha) \cdot \min_{j} a_{ij}$$

โดย $0 \leq lpha \leq 1$ และเลือกกลยุทธ์ที่ให้ค่าดังกล่าวสูงสุด

ตัวอย่าง 2.4.1: การตัดสินใจภายใต้สภาวะความไม่แน่นอน

จากเมทริกซ์การตัดสินใจที่ได้จากตัวอย่าง 2.1.1 ซึ่งคือ

(หน่วย: ล้านบาท)	ขายได้หมด	ขายได้ 50%	ขายได้ 10%
ขนาดเล็ก	8	4	3
ขนาดกลาง	15	15	-1
ขนาดใหญ่	25	10	-10

จงคำนวณค่าตามเกณฑ์ต่าง ๆ และเปรียบเทียบผลการตัดสินใจที่ได้

2.5 การใช้ต้นไม้การตัดสินใจ

ไม่ใช่การคำนวณใหม่ แต่เป็นวิธีการคิดสิ่งเดิมโดยใช้แผนภาพเข้ามาช่วย

2.5.1 การคิดค่าคาดหวังด้วยแผนภาพต้นไม้ความน่าจะเป็นของเหตุการณ์

การคิดเกี่ยวกับเหตุการณ์ความน่าจะเป็นนั้นสามารถเขียนในรูปแบบการวาดแผนภาพต้นไม้เพื่อพิจารณาเหตุการณ์ที่เกิดขึ้น ต่อเนื่องกัน ตัวอย่างเช่น การโยนเหรียญ 2 เหรียญต่อเนื่องกัน โดยเหรียญแรกเป็นเหรียญไม่เที่ยงตรงที่มีโอกาสออกหัว 0.7 และออกก้อย 0.3 ในขณะที่เหรียญที่สองเป็นเหรียญที่มีโอกาสออกหัว 0.4 และออกก้อย 0.6 ถ้าเราพิจารณาความน่าจะเป็น ที่จะได้ เราสามรถวาดแผนภาพได้ดังนี้

ซึ่งสามารถนำมาช่วยคิดค่าความน่าจะเป็นได้โดยอาศัยลักษณะการคูณของสายต่อเนื่อง เช่น 2

$$P(HT) = P(H) P(T) = 0.7 \times 0.6 = 0.42$$

และในกรณีที่มีเรื่องของผลลัพท์เพื่อนำมาคิดค่าคาดหวังของผลลัพธ์นั้น เราอาจจะเขียนแผนภาพต้นไม้เพิ่มเติมได้ดังนี้

²เราพิจารณากรณีง่าย ซึ่งคือกรณีที่เหตุการณ์ทั้ง 2 ขั้นตอนอิสระจากกัน

ซึ่งเราสามารถคิดค่าคาดหวังของผลลัพธ์ได้ตามแบบนิยามของค่าคาดหวังได้เป็น

$$\begin{split} E\left(\mathrm{ผลลัพร์}\right) &= -500P\left(HH\right) + 300P\left(HT\right) + 400P\left(TH\right) - 500P\left(TT\right) \\ &= -500\left(0.7\right)\left(0.4\right) + 300\left(0.7\right)\left(0.6\right) + 400\left(0.3\right)\left(0.4\right) - 500\left(0.3\right)\left(0.6\right) \end{split}$$

แต่ถ้าพิจารณาตามลำดับขั้นการคำนวณตามแผนภาพต้นไม้ เราสามารถจัดรูปได้เป็น

$$\begin{split} E\left(\text{ผลลัพธ์}\right) &= -500\left(0.7\right)\left(0.4\right) + 300\left(0.7\right)\left(0.6\right) + 400\left(0.3\right)\left(0.4\right) - 500\left(0.3\right)\left(0.6\right) \\ &= \left(-500\left(0.4\right) + 300\left(0.6\right)\right)\left(0.7\right) + \left(400\left(0.4\right) - 500\left(0.6\right)\right)\left(0.3\right) \\ &= \text{ค่าคาดหวังที่ต้นไม่ย่อยที่เหรียญแรกออกหัว}\left(0.7\right) + \text{ค่าคาดหวังที่ต้นไม่ย่อยที่เหรียญแรกออกก้อย}\left(0.3\right) \end{split}$$

$$(-500 (0.4) + 300 (0.6)) (0.7) + (400 (0.4) - 500 (0.6)) (0.3)$$

กล่าวคือ ในกรณีที่เรามีแผนภาพลำดับของการเกิดเหตุกาเมื่รณ์ในรูปแบบของแผนภาพต้นไม้ เราสามารถคิดค่าคาด หวังของทั้งต้นไม้นั้นได้โดยคิดจาดค่าคาดหวังของต้นไม้ย่อยก่อน หรือก็คือคิดไต่ขึ้นมาจากปลายกิ่งไล่ไปหาจุดรากของ แผนภาพ

2.5.2 เมื่อมีตัวเลือกเข้ามาเกี่ยวข้อง

ความแตกต่างสำคัญระหว่างตัวเลือกและเหตุการณ์คือ ตัวเลือกเป็นสิ่งที่เรากำหนดให้เป็นขึ้นกับข้อมูลที่มี ในขณะที่ เหตุการณ์คือสิ่งที่เราควบคุมไม่ได้ ยิ่งเฉพาะในการตัดสินใจภายใต้ความเสี่ยงนั้น เหตุการณ์จะเป็นสิ่งที่มีค่าความน่าจะ เป็นมาเป็นตัวควบคุมโอกาสที่จะเกิด

ในหัวข้อที่ผ่านมา เป็นพื้นฐานการคำนวณค่าความน่าจะเป็นและค่าคาดหวังโดยใช้แผนภาพต้นไม้เป็นเครื่องมือช่วย ให้เราคำนวยณได้อย่างเป็นระบบมากขึ้น ซึ่งมีเพียงแค่ลำดับของเหตุการณ์ที่เข้ามาพิจารณาเท่านั้น ยังไม่มีตัวเลือกอยู่ใน แผนภาพต้นไม้

เมื่อมีตัวเลือกเข้ามาเกี่ยวข้อง แผนภาพต้นไม้จะไม่สามารถคิดด้วยหลักความน่าจะเป็นของทั้งแผนภาพได้ แต่จะใช้ วิธีการตัดสินใจเลือกตัวเลือกไล่ลำดับไปจากปลายกิ่งไปราก (ขวาไปซ้าย) โดยการเลือกทางเลือกที่ให้ค่าคาดหวังของผล ตอบแทนที่มากที่สุด

ตัวอย่าง 2.5.1: การตัดสินใจโดยใช้ต้นไม้การตัดสินใจ

จากเหตุการณ์ในตัวอย่าง 2.1.1 เราจะสามารถวาดแผนภาพต้นไม้ได้ดังนี้

โดยที่โอกาสที่จะขายได้หมดมี 0.3 ในขณะที่ขายได้ครึ่งหนึ่งของงานจะมีโอกาสที่ 0.4 และขายได้เพียง 10% ของ งานจะมีโอกาสอยู่ที่ 0.3 จงเขียนขั้นตอนการตัดสินใจโดยใช้แผนภาพต้นไม้การตัดสินนี้ (แบ่งส่วนแผนภาพต้นไม้ ความน่าจะเป็นขึ้นมาก่อนเพื่อหาค่าคาดหวัง แล้วค่อยตัดสินใจด้วยค่าคาดหวังของแต่ละต้นไม้ย่อย)

ตัวอย่าง 2.5.2: การตัดสินใจโดยใช้ต้นไม้การตัดสิน<u>ใจ 2</u>

บริษัท ABC กำลังพิจารณาว่าควรจะเปิดตัวผลิตภัณฑ์ใหม่เข้าสู่ตลาดหรือไม่ โดยมีทางเลือกหลายขั้นตอนซับซ้อนที่ ต้องประเมินต้นทุน ความไม่แน่นอน และผลตอบแทนที่อาจเกิดขึ้น ดังนี้:

ขั้นตอนที่ 1: การทดสอบผลิตภัณฑ์

- บริษัทสามารถเลือกที่จะทำการทดสอบผลิตภัณฑ์ก่อน โดยมีโอกาส:
 - * 80% ที่ผลิตภัณฑ์ **ผ่าน** การทดสอบ
 - $\star~20\%$ ที่ผลิตภัณฑ์ **ไม่ผ่าน** การทดสอบ และบริษัทจะขาดทุนทันที 100,000 บาท
- หากผ่านการทดสอบ จะเข้าสู่ขั้นตอนถัดไป คือการทดสอบตลาด

ขั้นตอนที่ 2: การทดสอบตลาด

- ผลิตภัณฑ์ที่ผ่านการทดสอบ จะถูกนำไปทดสอบตลาดกับกลุ่มลูกค้าตัวอย่าง โดยมีโอกาส:
 - * 90% ที่ตลาด ยอมรับผลิตภัณฑ์ใหม่
 - *~10% ที่ตลาด **ไม่ยอมรับ** และบริษัทจะขาดทุน 250,000 บาท
- หากตลาดยอมรับ จะเข้าสู่การตัดสินใจว่าจะนำผลิตภัณฑ์เข้าสู่ตลาดหรือไม่

ขั้นตอนที่ 3: การตัดสินใจเปิดตัวผลิตภัณฑ์

- 1. **หากเปิดตัวผลิตภัณฑ์** ความสำเร็จในตลาดมีระดับและผลตอบแทนต่างกัน:
 - ยอดขายสูง (40%) ightarrow กำไร 1,450,000 บาท
 - ยอดขายปานกลาง (40%) \to กำไร 450,000 บาท
 - ยอดขายต่ำ (20%) o ขาดทุน 150,000 บาท
- 2. หากไม่เปิดตัว จะยอมขาดทุนค่าทดสอบตลาด 250,000 บาท

💠 ทางเลือกทางลัด: ข้ามการทดสอบผลิตภัณฑ์และเข้าสู่ตลาดทันที

- หากบริษัทเลือกข้ามขั้นตอนและนำผลิตภัณฑ์เข้าสู่ตลาดทันที:
 - * ยอดขายสูง (10%) ightarrow กำไร 1,700,000 บาท
 - * ยอดขายปานกลาง (40%) \to กำไร 700,000 บาท
 - \star ยอดขายต่ำ (50%) ightarrow กำไร 100,000 บาท

บริษัทควรดำเนินการตามทางเลือกใด เพื่อให้ได้ ผลตอบแทนคาดหวังสูงสุด ภายใต้ต้นทุนและความไม่แน่นอนใน แต่ละขั้นตอน?

2.6 การใช้โปรแกรม QM for Windows

Assignment (need revise)

PART A:

หลังจากบริษัท ABC Furniture ได้ใช้การวิเคราะห์เชิงเส้นในการวางแผนการผลิตช่วงไตรมาสก่อนหน้า บริษัทได้รับผลลัพธ์ ที่ดีในช่วงแรก แต่ปัจจุบันกลับพบว่าไม่สามารถพึ่งพาแบบจำลองเดิมได้ตลอดเวลา เนื่องจากมีความไม่แน่นอนในตลาดสูง ขึ้นเรื่อย ๆ เช่น ราคาวัตถุดิบผันผวน การแข่งขันสูง และความต้องการของลูกค้าที่แปรเปลี่ยนตลอด

สถานการณ์ทางเลือก: สำหรับไตรมาสถัดไป ฝ่ายผลิตเสนอ 3 กลยุทธ์ให้ฝ่ายบริหารพิจารณา:

- กลยุทธ์ A: เพิ่มกำลังผลิต "โต๊ะทำงาน" ให้มากที่สุด โดยลดสัดส่วนตู้เก็บเอกสารลง
- ◊ กลยุทธ์ B: เพิ่มกำลังผลิต "ตู้เก็บเอกสาร" ให้มากที่สุด โดยลดสัดส่วนโต๊ะทำงานลง
- กลยุทธ์ C: กระจายการผลิตแบบสมดุลระหว่างทั้งสองประเภท

สถานการณ์ตลาด (States of Nature): ฝ่ายการตลาดระบุว่าสถานการณ์ตลาดอาจเป็นไปได้ 3 แบบในไตรมาสหน้า:

- สถานการณ์ 1 (S1) โต๊ะบูม: โต๊ะทำงานขายดีมาก ตู้ขายได้น้อย
- สถานการณ์ 2 (S2) ตลาดสมดุล: สินค้าทั้งสองขายได้ใกล้เคียงกัน
- สถานการณ์ 3 (S3) ตู้บูม: ตู้เอกสารขายดีมาก โต๊ะขายได้น้อย

ฝ่ายบริหารต้องการทราบว่า ภายใต้แต่ละกลยุทธ์นั้น ถ้าเกิดสถานการณ์ตลาดแต่ละแบบ จะได้กำไรเท่าไร โดยฝ่าย วิเคราะห์ประเมินกำไร (หน่วย: พันบาท) ดังตาราง:

กลยุทธ์การผลิต	S1: ໂຕ໊ະບູນ	S2: สมดุล	S3: ຫູ້ນູມ
A (เน้นโต๊ะ)	1,500	900	100
B (เน้นตู้)	200	800	1,400
C (สมดุล)	800	850	700

คำสั่ง:

- 1. วิเคราะห์การตัดสินใจภายใต้ความไม่แน่นอน โดยใช้เกณฑ์ต่อไปนี้:
 - ♦ Maximax Criterion
 - Maximin Criterion
 - ♦ Laplace Criterion
 - \diamond Hurwicz Criterion (ใช้ $\alpha=0.6$)
 - ♦ Minimax Regret Criterion
- 2. แต่ละเกณฑ์แนะนำกลยุทธ์ใด? อธิบายว่าแต่ละเกณฑ์สะท้อนทัศนคติความเสี่ยงแบบใด?
- 3. ใช้โปรแกรม QM for Windows เพื่อคำนวณและตรวจสอบผลลัพธ์ พร้อมแนบภาพประกอบผลลัพธ์

PART B:

หลังจากฝ่ายบริหารบริษัท ABC Furniture ได้พิจารณาตารางผลตอบแทนจากกลยุทธ์ต่าง ๆ แล้ว ยังคงมีความลังเล เนื่องจากบริษัทไม่สามารถคาดการณ์สถานการณ์ตลาดล่วงหน้าได้อย่างแม่นยำ

คุณสมชายจึงเสนอแนวคิดว่า "หากบริษัทจ้างนักวิเคราะห์ตลาดมืออาชีพมาช่วยประเมินแนวโน้มตลาดก่อนได้หรือ ไม่?" ซึ่งจะมีค่าใช้จ่ายในการจ้างทีมวิเคราะห์ภายนอกอยู่ที่ 150,000 บาท ทีมวิเคราะห์จะให้ผลลัพธ์เป็น **สัญญาณตลาด** ล่วงหน้า (Market Signal) ซึ่งแบ่งเป็น 2 แบบคือ:

- ♦ สัญญาณบวก (Positive Signal): แสดงว่าตลาดมีแนวโน้มดี
- สัญญาณลบ (Negative Signal): แสดงว่าตลาดมีแนวโน้มผันผวนหรือถดถอย

บริษัทสามารถเลือกที่จะ "เปิดกลยุทธ์ A, B หรือ C" หลังจากได้รับสัญญาณจากนักวิเคราะห์ก็ได้ หรือจะตัดสินใจ "ไม่ เปลี่ยนแผน" ก็ได้เช่นกัน

ข้อมูลความแม่นยำของนักวิเคราะห์ตลาด จากประวัติ:

- \diamond หากสถานการณ์ตลาดเป็น S1 (โต๊ะบูม) \rightarrow ให้สัญญาณบวก 80%, สัญญาณลบ 20%
- \diamond หากสถานการณ์ตลาดเป็น **S2 (สมดุล)** ightarrow ให้สัญญาณบวก 50%, สัญญาณลบ 50%
- \diamond หากสถานการณ์ตลาดเป็น S3 (ตู้บูม) o ให้สัญญาณบวก 30%, สัญญาณลบ 70%

ความน่าจะเป็นของแต่ละสถานการณ์ตลาด (ตามฝ่ายการตลาดประเมิน): S1: 25%, S2: 50%, S3: 25% คำสั่ง:

		1.1				
		_ 44	٧ ٧	υ a δ.,	a	"ا الا
1	วาดแผนภาพ Decision	า Iree ที่เรียจาก	ทางเลอก "จาง	บกาเคราะห″	ใหรอ	"ไขเลาง"

- 2. แสดงการแตกเหตุการณ์ตามลำดับ: สัญญาณ 🗌 สถานการณ์ตลาด 🗎 กลยุทธ์การผลิต 🗎 ผลตอบแทนสุทธิ (หัก ค่าจ้าง)
- 3. คำนวณ Expected Monetary Value (EMV) ของแต่ละทางเลือก (รวมต้นทุน 150,000 กรณีที่จ้าง)
- 4. สร้างโมเดลนี้ใน QM for Windows เพื่อยืนยันผลลัพธ์ พร้อมแนบภาพผลลัพธ์
- 5. คุณคิดว่าการจ้างนักวิเคราะห์มีความคุ้มค่าหรือไม่?

ทฤษฎีการจำลองสถานการณ์ (Simulation)

โจทย์ธุรกิจ: ความไม่แน่นอนในกระบวนการผลิตของ ABC Furniture

ข้อความจากคุณสมชาย

"หลังจากที่เราได้วางแผนการผลิตและกลยุทธ์รับมือกับตลาดที่ไม่แน่นอนผ่านแบบจำลองเชิงเส้นและทฤษฎีการตัดสิน ใจเรียบร้อยแล้ว แต่สิ่งที่เรายังไม่สามารถคาดการณ์ได้แน่นอน คือเวลาที่ต้องใช้ในแต่ละขั้นตอนของกระบวนการผลิต จริง ๆ บางครั้งแรงงานลาป่วย บางครั้งเครื่องจักรเสีย หรือบางสัปดาห์มีคำสั่งซื้อเร่งด่วนแทรกเข้ามา เราจึงอยากจำลอง สถานการณ์เหล่านี้ เพื่อดูว่าจะกระทบต่อการผลิตและการจัดส่งอย่างไร และควรจะปรับการจัดการโรงงานอย่างไรดี"

บริษัท ABC Furniture กำลังเผชิญกับความไม่แน่นอนใน ระยะเวลาการผลิตแต่ละชิ้นงาน และ ปริมาณคำสั่งซื้อที่ เปลี่ยนแปลงตลอดเวลา โดยเฉพาะในช่วงโปรโมชั่นและเทศกาลยอดนิยม ซึ่งอาจทำให้กระบวนการผลิตไม่สามารถดำเนิน ไปตามแผนได้

เพื่อรองรับเหตุการณ์ที่คาดเดาไม่ได้เหล่านี้ ผู้จัดการฝ่ายผลิตต้องการเครื่องมือในการ "ทดลอง" และ "คาดการณ์ ผลลัพธ์" ของทางเลือกที่เป็นไปได้ โดยไม่ต้องเสี่ยงจริงในโลกธุรกิจจริง ซึ่งนำไปสู่แนวคิดของ **การจำลองสถานการณ์ (Simulation)** ที่จะช่วยให้บริษัทสามารถวิเคราะห์ผลกระทบจากตัวแปรสู่มต่าง ๆ ต่อกระบวนการผลิตได้อย่างมีประสิทธิภาพ

คำถามชวนคิด:

- 💠 ในสถานการณ์แบบนี้ คุณคิดว่า "สูตรคำนวณตายตัว" ที่เคยใช้ในบทก่อน ๆ ยังเหมาะสมอยู่หรือไม่?
- 💠 คุณจะเก็บข้อมูลอะไรเพื่อใช้ในการจำลองเหตุการณ์ในกระบวนการผลิต?
- 💠 🛮 คุณจะจำลองขั้นตอนใดในกระบวนการผลิตก่อน เช่น เวลาในการประกอบสินค้า การขนส่ง หรือการเตรียมวัตถุดิบ?
- 💠 ถ้าคุณลอง "สุ่มเหตุการณ์" ต่าง ๆ แล้วพบว่าเกิดความล่าช้าเป็นประจำ คุณจะวางแผนการผลิตใหม่อย่างไร?
- ถ้าต้องเขียนโปรแกรมจำลองขั้นตอนการผลิต คุณจะออกแบบลำดับเหตุการณ์หรือเงื่อนไขไว้อย่างไร?
- ผลลัพธ์ของการจำลองแบบใดที่จะช่วยให้ฝ่ายผลิตวางแผนจัดกำลังคนและเครื่องจักรได้ดีขึ้น?

3.1 แนวคิดเบื้องต้นของการจำลอง

- บางสถานการณ์อาจไม่สามารถเขียนสมการทางคณิตศาสตร์ตัวแบบเพื่ออธิบายสถานการณ์ได้เพราะระบบมีความ
 ซับซ้อนมากเกินไปหรือมีเงื่อนไขบางประการที่ทำให้ไม่สามารถใช้ตัวแบบที่มีอยู่แล้วได้
- ทำให้ต้องสุ่มภายใต้ข้อมูลที่มีเพื่อประมาณค่าจากการทำการทดลองสุ่มหลาย ๆ การทดลอง
- ในหัวข้อกรณีตัวอย่างที่จะกล่าวถึงถัดไป เป็นตัวอย่างพื้นฐานที่แสดงให้เห็นว่าการทำการทดลองสุ่มโดยที่จำลอง สถานการณ์ให้เหมือน (หรือคล้าย) เหตุการณ์จริงจะสามารถประมาณค่าผลเฉลยให้ใกล้เคียงค่าจริงได้

3.1.1 กรณีตัวอย่าง: การหาค่า π

จากชุดความรู้เบื้องต้นที่เรามีคือ $\pi=rac{\pi r^2}{r^2}=rac{4\pi r^2}{(2r)^2}=4\left(rac{$ พื้นที่วงกลม} พื้นที่สมดุรัสที่แบบงกลม}

พื้นที่สี่เหลี่ยม = $(2r)^2 = 4r^2$

แต่เราไม่รู้ว่าค่า π คือเท่าไหร่ เราจึงออกแบบการทดลองที่ถูกออกแบบให้อธิบายชุดความรู้ที่เรามีได้ ซึ่งก็คือการสุ่มโยนจุด เข้าไปในรูปสี่เหลี่ยม แล้วหาอัตราส่วนของจำนวนจุดที่อยู่ภายในวงกลม (แสดงถึงพื้นที่วงกลม) ต่อจำนวนจุดทั้งหมดที่โยน เข้าไป (แสดงถึงพื้นที่สี่เหลี่ยมจัตุรัส) แล้วนำอัตราส่วนที่ได้มาคูณกับ 4 จะได้ค่าประมาณของ π

เพื่อให้การสุ่มสามารถถูกควบคุมและวัดผลได้ เราจึงต้องใช้ระบบพิกัดฉากเข้ามาช่วยในการแสดงผล โดยที่เราจะให้ จุดศูนย์กลางของวงกลมวางที่จุดกำเนิด และรัศมีของวงกลมมีค่าเท่ากับ r=1

และเงื่อนไขการสุ่มจุด (x,y) เป็นไปดังนี้

- การสุ่มเป็นแบบ uniform กล่าวคือทุกตำแหน่งมีโอกาสเท่ากัน
- \diamond $\,$ สุ่ม x และ y อยู่ในช่วง [-1,1] เพื่อให้มั่นใจว่าอยู่ภายในสี่เหลี่ยมจตุรัส

ทั้งนี้ การตรวจสอบว่าจุด (x,y) อยู่ในวงกลมหรือไม่ เราสามารถเซ็คได้ด้วยเงื่อนไขว่า

$$x^2 + y^2 \le 1$$

ซึ่งเราสามารถใช้ Excel ช่วยในการสุ่มได้ดังนี้

- ♦ Column A: ครั้งที่ทดลอง
- \diamond Column B-C: สุ่ม x และ y ด้วยคำสั่ง =RANDARRAY(จำนวนครั้งที่ทดลอง,2,-1,1,FALSE)
- ♦ Column D: เช็คว่าจุดอยู่ในวงกลมหรือไม่โดยใช้ ColumnB^2 + ColumnC^2 <= 1
- ♦ Column E: นับจำนวนจุดที่อยู่ในวงกลมตั้งแต่การทดลองที่ 1 จนถึงการทดลองปัจจุบัน
- ♦ Column F: หาค่า 4*อัตราส่วน

ตัวอย่าง 5 แถวแรกและ 5 แถวสุดท้ายของตารางกรณีสุ่ม 30000 ครั้ง:

Α	В	C	D	Е	F
ครั้งที่สุ่ม	ลุ่ม X	ลุ่ม y	x^2+y^2<=1	num in circle	4*ratio
1	-0.10709	-0.4236	TRUE	1	4
2	-0.49781	0.11569	TRUE	2	4
3	0.56874	-0.82837	FALSE	2	2.66667
4	-0.79338	-0.63925	FALSE	2	2
5	0.32044	-0.98582	FALSE	2	1.6
Α	В	C	D	Е	F
29996	-0.80188	-0.40379	TRUE	23565	3.14242
29997	0.93949	0.58746	FALSE	23565	3.14231
29998	-0.37564	0.87125	TRUE	23566	3.14234
29999	-0.41641	-0.6536	TRUE	23567	3.14237
30000	-0.27141	-0.63152	TRUE	23568	3.1424

และเมื่อลองทำการพล็อตกราฟของค่าที่เราสนใจ (Column F) จะได้ดังรูป

ซึ่งจะเห็นว่ายิ่งเราทำการสุ่มมากขึ้นเท่าไหร่ ค่าที่เราตั้งไว้ (4 เท่าของอัตราส่วน) เพื่อวัดสิ่งที่เราอยากค้นหา (ค่า π) จะยิ่งเข้า ใกล้ค่าที่เราอยากค้นหาดังกล่าวมากขึ้นเรื่อยๆ

สามารถออกแบบการทดลองในทำนองเดียวกันคือทำการทดลองสุ่ม 30000 จุดหลาย ๆ รอบแล้วหาค่าเฉลี่ยค่าของ รอบสุ่มที่ 30000 ของทุกชุดการทดลองก็ได้เช่นกันโดยรูปด้านล่างคือตัวอย่างการทดลองที่ทำการทดลอง 500 รอบ ซึ่งได้ ค่าเฉลี่ยของค่าอัตราส่วนรอบที่ 30000 อยู่ที่ 3.141638 จากค่าประมาณจริง ๆ ของ $\pi \approx 3.1415926$ (ถ้าทำใน Excel อาจจะเจอปัญหาเรื่อง memory ไม่พอ แต่จะมีความแม่นยำกว่าการทดลองรอบเดียว เลยอาจต้องใช้เครื่องมือเช่นเขียน Python)

ทั้งนี้ จะเห็นว่าเรามีการกำหนดเงื่อนไขการสุ่ม ซึ่งเป็นสิ่งที่สำคัญที่สุดของการจะจำลองสถานการณ์ ตัวอย่างเช่นกรณี นี้ก็คือต้องสุ่มแบบ Uniform เนื่องจากลักษณะการคำนวณอัตราส่วนของพื้นที่นั้นมีสมมติฐานว่าทุกจุดพื้นที่จะต้องมีความ สำคัญเท่ากัน ไม่มีจุดใดจุดหนึ่งที่มีโอกาสมากกว่าจุดอื่นเพื่อไม่ให้เกิดอคติ (bias) ในการสุ่ม เช่นในตัวอย่างเดิม ถ้าเราเปลี่ยน สมมติฐานตั้งต้นให้สุ่มแบบ Normal Distribution ที่มีค่าเฉลี่ยเป็น 0 และส่วนเบี่ยงเบนมาตรฐานที่ 0.3 ที่จะมีโอกาสสุ่ม ได้บริเวณจุดกำเนิดมากกว่าจุดขอบ ๆ ซึ่งจะแสดงพฤติกรรมว่าจุดนอกวงกลมมีโอกาสน้อยกว่าจุดในวงกลม จะได้ว่าผลการ ประมาณค่าเปลี่ยนเป็น 3.9844 แทนที่จะเข้าใกล้ค่า π ตามรูป

หมายเหตุ (สำหรับอ่านเพิ่มเติม)

ตัวอย่างนี้เป็นตัวอย่างที่มีทฤษฎีเบื้องหลังและสามารถพิสูจน์ทางคณิตศาสตร์เพื่อยืนยันว่าผลที่ได้จากการทดลองเป็นไป ตามทฤษฎี (อาจมีคลาดเคลื่อนเล็กน้อย) เนื่องจากเป็นสถานการณ์ที่สามารถอธิบายได้ด้วยการแจกแจงความน่าจะเป็นที่ ไม่ชับซ้อน (ซึ่งไม่ค่อยพบในโลกจริงที่มักจะเป็นระบบที่ซับซ้อน)

กรณีที่ X,Y แจกแจงแบบคงที่

Proof. กำหนดให้ X,Y เป็นตัวแปรสุ่มอิสระ ซึ่งแจกแจงแบบสม่ำเสมอ (Uniform) บนช่วง [-1,1] ดังนั้นคู่ (X,Y) จะกระจายอยู่ทั่วพื้นที่ของสี่เหลี่ยมจัตุรัสที่มีด้านยาว 2 หน่วย และมีพื้นที่รวมเท่ากับ 4 หน่วยตาราง นิยามเหตุการณ์ A ว่าเป็นเหตุการณ์ที่จุด (X,Y) ตกอยู่ภายในวงกลมรัศมี 1 ซึ่งมีสมการคือ $X^2+Y^2\leq 1$ จะได้ว่า

$$P\left((X,Y)\in A
ight)=rac{ ilde{ t w}$$
้นที่ของวงกลม}{ ilde{ t w}}=rac{\pi\cdot 1^2}{4}=rac{\pi}{4}

เมื่อสุ่มจุด N จุดจากการแจกแจงนี้ ให้ S เป็นจำนวนจุดที่ตกในวงกลม จะได้ว่า $S=\sum_{i=1}^N \mathbf{1}_{(X_i,Y_i)\in A}$ ดังนั้นสัดส่วนของจุดที่อยู่ในวงกลมคือ $Z=\frac{S}{N}$ ซึ่งเป็นตัวแปรสุ่ม และค่าคาดหมายคือ:

$$\mathbb{E}\left[Z\right] = \mathbb{E}\left[\frac{S}{N}\right] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[\mathbf{1}_{(X_i, Y_i) \in A}\right] = P\left((X, Y) \in A\right) = \frac{\pi}{4}$$

นั่นคือ ค่าคาดหวังของสัดส่วนของจุดที่อยู่ในวงกลมจะมีค่าเท่ากับ $\frac{\pi}{4}$ เสมอ โดยไม่ขึ้นกับจำนวนจุด N

กรณีที่ $X,Y \sim \mathcal{N}\left(0,0.09
ight)$ (ค่าความเบี่ยงเบนมาตรฐาน $\sigma=0.3$)

 $\mathit{Proof.}$ เนื่องจากบทพิสูจน์ในส่วนของตัวแปรสุ่ม Z ไม่ขึ้นกับการแจกแจงของตัวแปรสุ่ม X,Y ดังนั้น เราจึงยังสามารถ ได้ผลว่า

$$\mathbb{E}[Z] = \mathbb{E}\left[\frac{S}{N}\right] = P\left((X, Y) \in A\right)$$

เหลือแค่หาค่าความน่าจะเป็น $P\left((X,Y)\in A\right)=P\left(X^2+Y^2\leq 1\right)$ พิจารณาตัวแปรสุ่ม $R^2=X^2+Y^2$ ซึ่งจากนิยามของการแจกแจง Chi-square (ผลรวมกำลังสองของตัวแปรสุ่มที่มีการแจกแจงปกติมาตรฐาน) จะได้ว่า

$$\frac{R^{2}}{0.09} = \frac{X^{2} + Y^{2}}{\sigma^{2}} = \left(\frac{X}{\sigma}\right)^{2} + \left(\frac{Y}{\sigma}\right)^{2} \sim \chi^{2}(2)$$

ดังนั้น
$$P\left(R^2 \leq 1\right) = P\left(\chi^2\left(2\right) \leq \frac{1}{0.09}\right) = 1 - \exp\left(-\frac{1}{2\times0.09}\right)$$
 เพราะฉะนั้น $E[4Z] = 4P\left(R^2 \leq 1\right) = 4\left(1 - \exp\left(-\frac{1}{2\times0.09}\right)\right) \approx 3.9845$

3.2 ตัวแบบและขั้นตอนการจำลองสถานการณ์ (Simulation Process)

จากตัวอย่างที่แล้ว เราได้เห็นกระบวนการที่สำคัญของการจำลองสถานการณ์ (Simulation) ซึ่งประกอบไปด้วยขั้นตอน หลัก ๆ ตั้งแต่การกำหนดวัตถุประสงค์, การเก็บข้อมูล, การเลือกตัวแบบ, การสุ่มตัวอย่าง และการวิเคราะห์ผลลัพธ์ที่ได้จาก การทดลอง ในหัวข้อนี้เราจะสรุปขั้นตอนที่จำเป็นทั้งหมดในการจำลองสถานการณ์ทั่วไป ซึ่งสามารถนำไปประยุกต์ใช้กับ สถานการณ์ทางธุรกิจต่าง ๆ ได้อย่างเป็นระบบ

กระบวนการในการจำลองสถานการณ์ประกอบด้วยขั้นตอนที่สำคัญ ดังนี้:

1. กำหนดวัตถุประสงค์ของการจำลอง (Define Simulation Objective)

ขั้นตอนแรกคือการระบุให้ชัดเจนว่าการจำลองครั้งนี้มีเป้าหมายอะไร เช่น บริษัท ABC Furniture ต้องการจำลอง ระยะเวลาในการผลิตสินค้าเพื่อดูว่าจะส่งผลต่อการส่งมอบสินค้าได้ทันตามกำหนดหรือไม่

2. กำหนดตัวแบบและตัวแปรที่เกี่ยวข้อง (Identify the Model and Relevant Variables)

หลังจากรู้วัตถุประสงค์แล้ว เราต้องกำหนดว่าอะไรคือสิ่งที่เราจะจำลอง ในทางธุรกิจอาจมีตัวแปรเช่น เวลามาถึงของ ลูกค้า, ระยะเวลาการผลิตสินค้า, ระยะเวลาการให้บริการ, หรือแม้กระทั่งปริมาณความต้องการของตลาดในแต่ละ ช่วงเวลา เป็นต้น

3. เก็บรวบรวมข้อมูลจากระบบจริง (Data Collection)

เมื่อระบุตัวแปรที่เกี่ยวข้องแล้ว ขั้นตอนถัดไปคือการเก็บข้อมูลเพื่อระบุลักษณะทางสถิติของตัวแปรนั้น ๆ เช่น การ เก็บข้อมูลเวลาการผลิตจริงย้อนหลังหลายสัปดาห์ หรือข้อมูลพฤติกรรมของลูกค้าที่เกิดขึ้นจริงในอดีต

4. เลือกและสร้างแบบจำลองความน่าจะเป็น (Select and Build Probability Models)

หลังจากเก็บข้อมูล เราจึงนำข้อมูลนั้นมาวิเคราะห์เพื่อระบุการแจกแจงความน่าจะเป็นที่เหมาะสม เช่น เวลาการ ผลิตอาจเป็นแบบ Normal หรือ Exponential, จำนวนลูกค้าที่เข้าร้านอาจมีการแจกแจงแบบ Poisson หรือแบบ Uniform ดังในตัวอย่างที่ผ่านมาที่เราใช้ Uniform ในการประมาณค่า π

5. กำหนดเงื่อนไขการสุ่มและกฎของระบบ (Define Randomness Conditions and System Rules)

ขั้นตอนนี้คือการออกแบบกลไกของการจำลอง เช่น จะสุ่มตัวแปรต่าง ๆ อย่างไร ต้องใช้เครื่องมืออะไร มีเงื่อนไขและ ข้อจำกัดของระบบอย่างไรบ้าง เช่น บริษัท ABC Furniture อาจตั้งเงื่อนไขว่าหากการผลิตล่าช้ากว่าเวลาที่กำหนด จะส่งผลต่อกำหนดการจัดส่งสินค้าอย่างไร เป็นต้น

6. ดำเนินการจำลองสถานการณ์ (Perform Simulation Runs)

เมื่อโมเดลพร้อมแล้ว จะต้องดำเนินการจำลองซ้ำหลายครั้ง (replications) เพื่อให้ได้ผลลัพธ์ที่สะท้อนพฤติกรรม ระบบจริงอย่างถูกต้องชัดเจน โดยอาจดำเนินการซ้ำหลายร้อยหรือหลายพันครั้งขึ้นอยู่กับลักษณะของปัญหา

7. วิเคราะห์ผลลัพธ์ที่ได้จากการจำลอง (Analyze Simulation Results)

หลังจากที่ทำการทดลองจำลองซ้ำหลาย ๆ รอบแล้ว เราจะนำผลลัพธ์ที่ได้มาวิเคราะห์เชิงสถิติ เช่น การหาค่าเฉลี่ย, ส่วนเบี่ยงเบนมาตรฐาน, ความน่าจะเป็นของเหตุการณ์ที่สนใจ เช่น โอกาสที่สินค้าไม่สามารถส่งมอบทันเวลา หรือ เวลารอคอยเฉลี่ยของลูกค้า เป็นต้น

8. ตรวจสอบความถูกต้องและความแม่นยำของตัวแบบ (Validate and Verify the Model)

ก่อนนำไปใช้งานจริง เราต้องตรวจสอบว่าผลลัพธ์จากแบบจำลองนั้นตรงกับสิ่งที่เกิดขึ้นในระบบจริงมากแค่ไหน หาก

ผลที่ได้จากตัวแบบมีความคลาดเคลื่อนสูง เราต้องกลับไปตรวจสอบข้อมูลหรือโมเดลที่ใช้ใหม่

9. การนำผลลัพธ์ไปประยุกต์ใช้ในทางปฏิบัติ (Implementation and Decision Making)

ขั้นตอนสุดท้ายคือการนำผลที่ได้จาก Simulation ไปใช้ในการตัดสินใจจริงในธุรกิจ เช่น บริษัท ABC Furniture อาจนำผลการจำลองไปกำหนดแผนการผลิตและจัดการทรัพยากรใหม่เพื่อลดความเสี่ยงในการผลิตและเพิ่ม ประสิทธิภาพของระบบ

กระบวนการทั้งหมดนี้สามารถสรุปออกมาในลักษณะของแผนภาพดังนี้

โดยในหัวข้อถัดไป เราจะศึกษาและเจาะลึกเทคนิคการสุ่มแบบ Monte Carlo ซึ่งเป็นหัวใจสำคัญของกระบวนการ จำลองสถานการณ์ในธุรกิจ เพื่อให้เห็นภาพการประยุกต์ใช้กระบวนการจำลองได้อย่างเป็นระบบยิ่งขึ้น

3.3 การสุ่มตัวอย่างแบบ Monte Carlo ในการจำลองสถานการณ์ในธุรกิจ

การจำลองแบบมอนติคาร์โล (Monte Carlo Simulation) เป็นเทคนิคที่ใช้วิธีการสุ่มตัวแปรเข้ามาช่วยในการประเมิน ผลลัพธ์ที่อาจเกิดขึ้นภายใต้สภาวะที่ไม่แน่นอน เทคนิคนี้มีรากฐานจากแนวคิดในทฤษฎีความน่าจะเป็นและสถิติ โดยเฉพาะ อย่างยิ่งเมื่อปัญหาที่ต้องการศึกษามีความซับซ้อนเกินกว่าจะหาคำตอบได้ด้วยวิธีวิเคราะห์เชิงพีชคณิตแบบตรง

แก่นของมอนติคาร์โลคือการ "สุ่มค่าตัวแปรตามการแจกแจงที่กำหนด" เพื่อนำไปแทนค่าในโมเดล แล้วคำนวณผลลัพธ์ ที่เกิดขึ้น จากนั้นทำซ้ำการสุ่มจำนวนมากเพื่อดูพฤติกรรมรวมของผลลัพธ์ เช่น ค่าคาดหมาย ค่ามากสุด ค่าน้อยสุด หรือค่าที่ อยู่ในช่วงความเชื่อมั่นที่กำหนด โดยตัวอย่างการแจกแจงที่นิยมใช้งานกันอยู่แล้วมีดังนี้

- ♦ ถ้าค่าใช้จ่ายในอนาคตมีความไม่แน่นอน อาจสุ่มค่าใช้จ่ายจากการแจกแจง Normal หรือ Triangular
- ♦ ถ้าความต้องการสินค้าในอนาคตขึ้นอยู่กับพฤติกรรมผู้บริโภค อาจสุ่มจำนวนจากการแจกแจง Poisson
- ถ้าความสำเร็จของกระบวนการหรือขั้นตอนมีแค่ 2 ผลลัพธ์ (สำเร็จ/ล้มเหลว ในภาษาของการแจกแจงความน่าจะ
 เป็น) อาจใช้การแจกแจงแบบ Bernoulli หรือ Binomial
- ถ้าจำนวนลูกค้าในช่วงเวลาหนึ่งมีความแปรผัน อาจใช้การแจกแจง Poisson เพื่อสุ่มจำนวนลูกค้า
- ถ้าเวลาระหว่างลูกค้ารายถัดไปมีลักษณะสุ่มและต่อเนื่อง อาจใช้การแจกแจง Exponential เพื่อสุ่มระยะเวลาการรอ ลูกค้าเข้าร้าน

ซึ่งเป็นขั้นตอนที่สำคัญมาก ๆ และการเก็บข้อมูลและลายละเอียดพฤติกรรมทางธุรกิจให้ละเอียดพอจะช่วยทำให้เราเลือก การแจกแจงของตัวแปรได้แม่นยำและใกล้เคียงความเป็นจริงได้ (อาจจะใช้เรื่องการทำ goodness of fit test มาช่วยตรวจ สอบในขั้นตอนการตรวจสอบได้)

5 ขั้นตอนการทำ Monte Carol Simulation

1. กำหนดการแจกแจงความน่าจะเป็นของตัวแปรสำคัญ

ระบุ *ตัวแปรสำคัญ* ที่ต้องการจำลอง เช่น ความต้องการสินค้า เวลารอ จำนวนลูกค้าในแต่ละวัน ฯลฯ จากนั้นคำนวณ ความน่าจะเป็น โดยใช้ข้อมูลในอดีต เช่น ความถี่ของแต่ละเหตุการณ์หารด้วยความถี่รวมทั้งหมด

2. สร้างการแจกแจงความน่าจะเป็นสะสม (Cumulative Probability)

สร้างคอลัมน์ความน่าจะเป็นสะสม โดยการบวกค่าความน่าจะเป็นในข้อก่อนหน้าแบบสะสมต่อเนื่อง เพื่อใช้เป็น ขอบเขตในการแมปกับช่วงของเลขสุ่ม

3. กำหนดช่วงของเลขสุ่ม (Random Number Interval)

แปลงความน่าจะเป็นสะสมให้เป็นช่วงของเลขสุ่ม เช่น 00–99 หรือ 000–999 โดยการจับคู่ค่าที่เป็นไปได้กับช่วงของ ตัวเลข เช่น ความน่าจะเป็น 0.2 อาจแทนด้วยเลขสุ่ม 00–19

4. สร้างเลขสุ่ม (Generate Random Numbers)

สร้างเลขสุ่มจำนวนหนึ่งโดยใช้เครื่องมือ เช่น ตารางเลขสุ่ม Excel หรือโปรแกรมคอมพิวเตอร์ เพื่อสุ่มค่าที่จะนำไปใช้ ในการทดลองจำลองแต่ละรอบ

5. จำลองการทดลองหลายรอบ (Simulate a Series of Trials)

ทำการจำลองสถานการณ์โดยใช้เลขสุ่มในแต่ละรอบ เพื่อระบุค่าที่เกิดขึ้น แล้วนำข้อมูลที่ได้จากการทดลองไป วิเคราะห์ เช่น หาค่าเฉลี่ย ความแปรปรวน หรือพฤติกรรมของระบบในระยะยาว

ตัวอย่าง 3.3.1: การจำลองความต้องการยางรถยนต์

บริษัท ไทยไทร์ จำกัด เป็นผู้จัดจำหน่ายยางรถยนต์หลายประเภทในประเทศไทย โดยมียางรถยนต์รุ่นยอดนิยมรุ่น หนึ่งที่มียอดขายสูงเป็นพิเศษ ฝ่ายคลังสินค้าสังเกตว่าต้นทุนจากการเก็บรักษาสินค้าคงคลัง (Inventory Cost) ของ ยางรุ่นนี้เริ่มสูงขึ้น และต้องการนโยบายการบริหารจัดการสินค้าคงคลังที่เหมาะสม เพื่อดูแนวโน้มความต้องการยาง ในแต่ละวัน ผู้จัดการจึงตัดสินใจใช้การจำลองสถานการณ์ (Simulation) เพื่อดูความต้องการรายวันเป็นเวลา 10 วัน

- 1. จงหาค่าความต้องการยางเฉลี่ยต่อวัน (จากการแจกแจงความน่าจะเป็นดั้งเดิม)
- 2. จงหาค่าความต้องการยางเฉลี่ยต่อวันจากการจำลองสถานการณ์

จำนวนที่ต้องการต่อวัน (เส้น)	ความถี่ (วัน)
0	10
1	20
2	40
3	60
4	40
5	30
รวม	200

ตัวอย่าง 3.3.2: Inventory Analysis Usecase

คุณภูวเดชเป็นเจ้าของร้านเครื่องมือช่างชื่อ **เจริญวัสดุภัณฑ์** ซึ่งจำหน่ายเครื่องมือช่างหลากหลายประเภท และ สินค้าที่ขายดีและทำกำไรสูงคือ **สว่านไฟฟ้ารุ่น** Ace คุณภูวเดชต้องการหานโยบายการจัดเก็บสินค้าคงคลังที่ ต้นทุนต่ำที่สุดสำหรับสินค้ารุ่นนี้ แต่เนื่องจากว่าไม่สามารถควบคุมปัจจัยภายนอกบางประการได้ จึงตัดสินใจใช้วิธี การ **การจำลองสถานการณ์ (Simulation)** เพื่อช่วยในการตัดสินใจ

ในปัญหานี้ ตัวแปรที่ควบคุมได้ (Controllable Inputs) คือ

- จำนวนที่สั่งแต่ละครั้ง (Order Quantity) และ
- จุดสั่งซื้อใหม่ (Reorder Point)

ส่วนตัวแปรที่ควบคุมไม่ได้ (Uncontrollable Inputs) คือ

- ♦ ความต้องการต่อวัน (Daily Demand) ซึ่งมีความผันแปร
- ♦ ระยะเวลาในการจัดส่ง (Lead Time) ซึ่งมีความไม่แน่นอนเช่นกัน

คุณภูวเดชได้เก็บข้อมูลยอดขายจริงของสว่านรุ่น Ace ตลอด 300 วัน โดยสรุปไว้ในตารางดังนี้:

ความต้องการต่อวัน (ตัว)	ความถี่ (วัน)
0	15
1	30
2	60
3	120
4	45
5	30
รวม	300

เมื่อมีการสั่งซื้อสินค้า จะต้องรอสินค้าจัดส่งภายใน 1 ถึง 3 วัน โดยมีข้อมูลสรุปจากคำสั่งซื้อ 50 รายการที่ผ่านมา ตามตารางต่อไปนี้:

ระยะเวลาในการส่งสินค้า (วัน)	ความถี่ (ครั้ง)
1	10
2	25
3	15
รวม	50

คุณภูวเดชต้องการทดลองใช้นโยบาย **สั่งซื้อเมื่อสินค้าคงเหลือน้อยกว่าหรือเท่ากับ 5 ชิ้น โดยสั่งครั้งละ 10 ชิ้น** และกำหนดให้ในวันแรกมีสินค้าในสต็อก 10 ชิ้น

ข้อมูลต้นทุนประกอบด้วย:

- ค่าดำเนินการสั่งซื้อสินค้าแต่ละครั้ง = 10 บาท
- ค่าถือครองสินค้าต่อปี = 6 บาทต่อชิ้น หรือเท่ากับ 0.03 บาทต่อชิ้นต่อวัน (คิดจากปีละ 200 วัน)
- ค่าขาดแคลนสินค้าหรือลูกค้าไม่ได้สินค้า = 8 บาทต่อครั้ง

กำหนดให้ร้านเปิดบริการ 200 วันต่อปี และใช้ตัวเลขสุ่มต่อไปนี้ในการทดลอง:

06 63 57 94 52 69 32 30 48 88

คำถาม

- a) จงคำนวณ **ตารางแจกแจงความน่าจะเป็น, ความน่าจะเป็นสะสม และช่วงตัวเลขสุ่ม (Random Number Interval)** สำหรับทั้งสองตาราง
- b) จากนโยบายการสั่งซื้อที่กำหนดไว้ ($Q=10,\,ROP=5$) จงคำนวณ **ต้นทุนเฉลี่ยต่อวัน** ของร้านในช่วง 10 วันแรก จากการจำลองสถานการณ์

คำใบ้: ต้นทุนรวมต่อวัน = ค่าสั่งซื้อเฉลี่ยต่อวัน + ค่าถือครองเฉลี่ยต่อวัน + ค่าขาดแคลนเฉลี่ยต่อวัน