Commands used for the Qiime2 pipeline to generate custom classifiers

The complete Diat.barcode database was filtered for both the 18S and the rbcL primer set (and removing rbcL sequences labeled "short"). Both resulting CSVs were filtered by length (mean +/- STDEV) in excel.

for the sequences_CSVs, only two columns of the species names and sequences were retained

these files were then converted to FASTA files using the following command in jupyter lab:

import os

!awk -F , '{print ">"\$1"\n"\$2}' "PATH/TO/18S/CSV" > diatbar_18s_all_seqs.fasta !awk -F , '{print ">"\$1"\n"\$2}' "PATH/TO/RBCL/CSV" > diatbar_rbcl_all_seqs.fasta

these fasta files were then imported to gime with the following command in bash.

qiime tools import --type FeatureData[Sequence] --input-path [PATH/TO/FASTA] --output-path [PATH/TO/DATABASE/SEQUENCES]

for the taxonomy_CSVs, only two columns of the species names and formatted taxonomy were retained

these were converted to TSV files before importing to qiime with the following command in bash

qiime tools import --type FeatureData[Taxonomy] --input-path [PATH/TO/FASTA] tsv -- output-path [PATH/TO/DATABASE/TAXONOMY]

giime custom classifiers were generated from these gza files using the following command

qiime feature-classifier fit-classifier-naive-bayes --i-reference-reads [PATH/TO/DATABASE/SEQUENCES] --i-reference-taxonomy [PATH/TO/DATABASE/TAXONOMY] --o-classifier [PATH/TO/CLASSIFIER]

resulting classifiers were used in the qiime2_lines_for_sample_processing, and the qza files of both classifiers are uploaded to the repository