Customer No. 28289

Application No. Not Yet Assigned Paper Dated: April 12, 2004

In Reply to USPTO Correspondence of N/A

Attorney Docket No. 1455-043831

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No.

Not Yet Assigned

Applicant

:

Hee Suk KIM

Filed

Concurrently Herewith

Title

INSOLE ASSEMBLY FOR INCREASING WEIGHT

OF FOOTWEAR AND HEAVY FOOTWEAR

HAVING WEIGHT-INCREASING

MIDSOLE/OUTSOLE

MAIL STOP PATENT APPLICATION Commissioner for Patents P. O. Box 1450 Alexandria, VA 22313-1450

CLAIM FOR PRIORITY UNDER 35 U.S.C. §119

Sir:

Applicant claims priority to Korean Patent Application Nos. 2003-94999 and 2004-6196, which correspond to the above-identified United States patent application and which were filed in the Korean Patent Office on December 22, 2003 and January 30, 2004. The priority benefits provided by Section 119 of the Patent Act of 1952 are claimed for the above application.

Respectfully submitted,

WEBB ZIESENHEIM LOGSDON ORKIN & HANSON, P.C.

By

Kent E. Baldauf

Registration No. 25,826 Attorney for Applicant 700 Koppers Building 436 Seventh Avenue

Pittsburgh, Pennsylvania 15219-1818

Telephone: 412-471-8815 Facsimile: 412-471-4094

E-mail: webblaw@webblaw.com

Page 1

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호

10-2003-0094999

Application Number

출 원 년 월 일

인 :

Date of Application

2003년 12월 22일

DEC 22, 2003

출 원 Applicant(s) 주식회사 아이손 AISON CO.,LTD

²⁰⁰⁴ 년 ⁰² 월 ¹⁷ 일

· 허 청

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0007

【제출일자】 2003.12.22

【국제특허분류】 A43B

【발명의 명칭】 신발 무게 증가용 안창 조립체

【발명의 영문명칭】 INSOLE ASSEMBLY FOR INCREASING WEIGHT OF FOOTWFAR

【출원인】

【명칭】 주식회사 아이손

【출원인코드】 1-2001-000777-1

【대리인】

【명칭】 특허법인씨엔에스

【대리인코드】 9-2003-100065-1

【지정된변리사】 손원

【포괄위임등록번호】 2003-046229-0

【발명자】

【성명의 국문표기】 김희석

【성명의 영문표기】 KIM.Hee Suk

【주민등록번호】 610323-1852417

【우편번호】 621-908

【주소】 경상남도 김해시 삼방동 삼안지구11블록 3로트 백양빌라 402호

【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의

한 출원심사 를 청구합니다. 대리인

특허법인씨엔에스 (인)

【수수료】

【기본출원료】 20 면 29,000 원

【가산출원료】 6 면 6,000 원

【우선권주장료】 0 건 0 원

【심사청구료】 12 항 493,000 원

【합계】

528,000 원

【감면사유】

소기업 (70%감면)

【감면후 수수료】

158,400 원

【첨부서류】

1. 요약서·명세서(도면)_1통 2.소기업임을 증명하는 서류_1통

【요약서】

[요약]

신발의 무게를 증가시키도록 사용되는 안창 조립체가 개시된다. 상기 안창 조립체(100, 200)는 고비중 압축 수지로 구성된 하부 안창(110, 210), 상기 하부 안창(110, 210)의 상부에 적충되는 상부 안창(120, 220); 및 상기 하부 안창(110, 210)의 뒤꿈치 부분에 부착되는 충격 흡수 부재(130, 230)를 포함한다. 상기 안창 조립체는 압축 수지로 제조됨으로써 부착되는 신발의 무게를 증가시킬 수 있다.

【대표도】

도 1

【색인어】

안창, 하중, 고비중, 압축, 필러

【명세서】

【발명의 명칭】

신발 무게 증가용 안창 조립체 {INSOLE ASSEMBLY FOR INCREASING WEIGHT OF FOOTWEAR}

【도면의 간단한 설명】

도 1은 본 발명의 제1 실시예에 따른 신발 무게 증가용 안창 조립체의 분해 사시도이다.

도 2는 본 발명의 제2 실시예에 따른 신발 무게 증가용 안창 조립체의 분해 사시도이다.

도 3은 도 2의 하부 안창의 단면도이다.

도 4는 도 3의 평면도이다.

도 5는 도 3의 밑면도이다.

도 6은 도 2의 상부 안창의 단면도이다.

도 7은 도 6의 평면도이다.

도 8은 도 6의 밑면도이다.

도 9는 본 발명의 신발 안창을 삽입한 신발의 단면도이다.

<도면의 주요 부분의 부호의 설명>

100, 200: 안창 조립체 110, 210: 하부 안창

120, 220: 상부 안창 130, 230: 충격 흡수 부재

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- <13> 본 발명은 신발에 사용되는 안창에 관한 것이다. 더 구체적으로, 본 발명은 압축 수지로 제조됨으로써 부착되는 신발의 무게를 증가시킬 수 있는 무게 증가용 안창 조립체에 관한 것이다.
- 직원 기술들이 제안되었다.
- <15> 이 기술들의 예로는 대한민국등록실용신안공보 제285242호에 개시된 "체력 단련용 운동화"가 있다. 이 문헌에 따르면, 신발의 바깥 밑부분인 중창에 무거운 금속을 탈착 가능하게 삽입하여 신발의 무게를 증가시킴으로써 착용자에게 운동효과를 줄 수 있다.
- 다른 예로는 대한민국등록실용신안공보 제298008호에 개시된 본 발명자에 의해 고안된 "무게 조절이 가능한 신발 안창"이 있다. 이 문헌은 신발의 갑피 속에 삽입하는 안창에 금속을 탈착 가능하게 삽입하여 신발의 무게를 증가시킴으로써 착용자에게 운동효과를 주는 것을 제안하고 있다.
- 이와 같은 종래기술들은 신발의 무게를 증가시키기 위해 비중이 높은 소재 특히 금속을 신발의 밑창 및 안창에 삽입하므로 신발의 인체 하중 충격 흡수력을 떨어뜨리고 이를 보완하기 위해 별도의 충격 흡수 수단을 필요로 한다.

- <18> 또한 하중 증가를 위한 삽입 부재 등을 탈착하는 구조를 제공하기 위해서는 별도의 금형 과 가공 및 조립 고정을 필요로 하므로 제조에 시간과 비용이 많이 소요되는 단점이 있다.
- 한편 삽입 부재를 금속으로 구성한 경우에는, 상기 신발을 착용한 사람이 공항의 금속 검색대를 통과할 때 이러한 금속 부재를 분리하거나 신발을 벗어야 하는 번거로움이 있다.
- 또한 상기 신발을 세탁기로 물세탁하면 금속 부재에 녹물이 발생되어 신발을 오염시키는 문제도 발생할 수 있다.
- <21> 아울러, 일정 기간 동안 신발을 사용하게 되면 밑창의 고무 성분이 닳게되어 금속이 노출되어 지면과 부딪치면서 불쾌한 소음을 발생시키는 문제도 있다.
- <22> 따라서 전술한 바와 같은 문제를 해결하면서 신발의 무게를 조절할 수 있는 신규한 수단 이 요구되고 있다.

【발명이 이루고자 하는 기술적 과제】

- 본 발명은 전술한 종래 기술의 문제를 해결하기 위해 안출된 것으로, 본 발명의 목적은 압축 수지로 제조됨으로써 부착되는 신발의 무게를 증가시킬 수 있는 무게 증가용 안창 조립체 를 제공하는 것이다.
- 본 발명의 다른 목적은 안창을 고중량의 압축 수지로 성형함으로써 충격흡수수단을 채용하지 않고도 신발에 별도의 요구되는 수준의 인체 하중 충격 흡수력을 확보하는 것이다.

【발명의 구성 및 작용】

- <25> 전술한 본 발명의 목적을 달성하기 위한 본 발명의 특징에 따르면 신발 무게 증가용 안 창 조립체가 제공된다. 상기 안창 조립체는 고비중 압축 수지로 구성된 하부 안창 및 상기 하부 안창의 상부에 적충되는 상부 안창을 포함한다.
- <26> 상기 안창 조립체에 있어서, 상기 하부 안창은 압축 성형된 수지로 제조되면 바람직하다.
- <27> 상기 안창 조립체에 있어서, 상기 압축 수지는 2 이상의 비중을 가지면 바람직하다.
- 또한, 상기 안창 조립체는 상기 하부 안창의 후단에 부착되는 충격 흡수 부재를 더 포함 한다.
- 본 발명의 여러 가지 특징 및 장점을 첨부도면과 연계하여 하기와 같이 상세히 설명한다.
- <30> 도 1은 본 발명의 제1 실시예에 따른 신발 무게 증가용 안창 조립체의 분해 사시도이다.
- 도 1을 참조하면, 본 발명의 안창 조립체(100)는 신발의 무게를 증가시키도록 고비중 압축 수지로 구성된 중량 안창 또는 하부 안창(110), 이 하부 안창(110)의 뒤꿈치 부분에 부착되는 충격 흡수 부재(130) 및 상기 하부 안창(110)의 상부에 적층되는 상부 안창(140)을 포함한다.
- <32> 본 발명의 핵심 사상이 되는 중량 안창 즉 하부 안창(110)은 대략 2 이상의 비중을 갖도록 압축 성형된다. 그 소재는 니트릴 고무, 부타디엔 고무, 고비중의 필러인 바리욱

설페이트(BaSO₄) 충진재, 산화아연(ZnO), 황, 스테아르산 및 가황촉진제를 포함한다. 이와 달리, 상기 소재를 압축한 다음 안창의 형태로 절단 및 가공하여 안창을 얻을 수도 있다.

- <33> 이와 같은 고비중의 하부 안창(110)은 신발에 착탈 가능하도록 신발과 별체로 제조되거 나 필요한 경우 접착 등에 의해 신발에 일체로 부착시킬 수도 있다.
- 상기 충격 흡수 부재(130)는 상기 하부 안창(110)의 뒤꿈치 부분 즉 후단(110b)에 부착되며, 착용자가 움직이는 동안 가해지는 충격하중을 흡수하도록 탄성 소재로 이루어진다. 또한, 충격 흡수 부재(130)는 착지할 때 충격흡수력을 높이고 보행이 용이하도록 모서리가 둥글게 형성되어 있다.
- 상부 안창(140)은 상기 하부 안창(110)의 상부에 부착되는 지지부(142), 상기 지지부
 (142) 상부의 탄성부(144) 및 그 위의 발바닥 접촉부(146)를 포함한다.
- 상기 지지부(142)는 착용자의 발의 뒤틀림(외전 또는 내전)을 예방하도록 경질 에틸렌 초산비닐 코폴리머(EVA: Ehtylene Vinylacetate Copolymer) 등의 소재로 미리 정해진 두께로 구성된다. 이와 달리, 사용자의 착용감을 좋게 할 수 있도록 미리 정해진 두께의 탄성 소재로 이루어질 수도 있다.
- <37> 탄성부(144)는 충격 등을 흡수하도록 연질 소재로 이루어진다.
- <38> 접촉부(146)는 발에서 발생하는 땀 등을 흡수할 수 있으며 착용감을 좋게 해주는 얇은 천 등의 탄성 소재로 구성되고, 상기 탄성부(144)의 상면에 접착제 등에 의해 부착된다.
- 이와 같이 구성된 신발 무게 증가용 안창 조립체(100)는 먼저 원하는 하중의 하부 안창 (110)을 신발에 삽입하고 그 위에 상부 안창(140)을 그 선단(140a) 및 후단(140b)을 하부 안창 (110)의 선단(110a)과 후단(110b)에 맞춰 신발 안에 삽입하여 사용하게 된다.

- <40> 도 2는 본 발명의 제2 실시예에 따른 신발 무게 증가용 안창 조립체의 분해 사시도이다.
- 도 2를 참조하면, 본 발명의 안창 조립체(200)는 신발의 무게를 증가시키도록 고비중 압축 수지로 구성된 중량 안창 또는 하부 안창(210), 이 하부 안창(210)의 뒤꿈치 부분에 부착되는 충격 흡수 부재(230) 및 상기 하부 안창(210)의 상부에 적층되는 상부 안창(240)을 포함한다.
- '42' 상기 하부 안창(210)은 전술한 제1 실시예의 하부 안창(110)과 동일한 소재로 구성되지 만, 그 형상이 다소 변형되었다.
- '43' 상기 하부 안창(210)의 구성을 도 3 내지 5를 참조하여 살펴본다. 이들 도면에서, 도 3은 도 2의 하부 안창의 단면도이고, 도 4는 도 3의 평면도이며, 도 5는 도 3의 밑면도이다.
- 도 3 내지 5에 도시된 바와 같이, 하부 안창(210)의 상면(212)에는 복수의 전방 오목부 (214), 후방 오목부(218) 및 이들 오목부(214, 218)를 서로 연결하는 복수의 길이 방향 홈 (216)이 형성되어 있다.
- ^{~45>} 후방 오목부(218)는 상면(212)으로부터 음각으로 즉 만입되어 형성되어 착지할 때 충격을 흡수하는 기능을 한다. 또한, 후방 오목부(218)가 홈(216)들에 의해 전방 오목부(214)와 연결되어 있으므로, 착지할 때의 압력으로 후방 오목부(218) 내의 공기가 홈(216)을 따라 전방 오목부(214) 쪽으로 유동하여 신발 내부의 공기를 순환시키면서 땀을 증발시키고 발의 열을 분산시킨다.
- 전방 오목부(218) 내에는 복수의 상하 통기공(220)이 노출되어 있으며 이들 상하 통기공(220)은 하부 안창(210)의 밑면(222)에 형성된 복수의 폭 방향 홈(226)에 연결되어 있다

. 세로 방향 홈(224)은 밑면(222)의 중앙에 형성된 밑면 오목부(228)와 연결되어 있어 착지 등에 의해 이들 오목부(228)가 수축되면 이들 오목부(228) 내의 공기가 상하 통기공(220) 쪽으로 유동하게 하는 통로가 된다.

- 한편, 발의 앞부분의 하중이 주로 가해지는 부분에는 원형 오목부(226a)가 형성되어 공
 기 통로를 형성하고 착지할 때의 압력 및 충격을 흡수한다.
- 상기 충격 흡수 부재(230)는 상기 하부 안창(210)의 뒤꿈치 부분에 부착되며, 착용자가 움직이는 동안 가해지는 충격하중을 흡수하도록 탄성 소재로 이루어진다. 또한, 충격 흡수 부재(230)는 착지할 때 충격흡수력을 높이고 보행이 용이하도록 모서리가 둥글게 형성되어 있다.
- '49' 상기 하부 안창(210)의 상면(212) 중앙에는 볼록부(232)가 형성되어 있으며 이 융기부 (232)는 후술하는 상부 안창(240)의 하부 오목부(254)와 함께 쿠션 및 발허리를 지지한다.
- <50> 이하 도 6 내지 8을 참조하여 상부 안창(240)의 구성을 살펴본다. 이들 도면에서, 도 6은 상부 안창(240)의 단면도이고, 도 7은 도 6의 평면도이며, 도 8은 도 6의 밀면도이다.
- 상부 안창(240)은 상기 하부 안창(210)의 상부에 부착되는 지지부(242), 상기 지지부
 (242) 상부의 탄성부(244) 및 그 상면에 일체로 부착되는 발바닥 접촉부(246)를 포함한다.
- <53> 탄성부(244)는 충격 등을 흡수하도록 연질 소재로 이루어진다.
- 접촉부(246)는 발에서 발생하는 땀 등을 흡수할 수 있으며 착용감을 좋게 해주는 얇은
 천 등의 탄성 소재로 구성되고, 상기 지지부(244)의 상면에 접착제 등에 의해 부착된다.

한편, 상부 안창(240)의 선단(240a) 상면의 일부가 돌출하여 밀림 방지 돌기(252a)를 형성하고 있다. 또한, 상부 안창(240)의 선단(240a) 부근에는 다수의 통기공(248)을 형성하였으며, 상부 안창(240)의 전방 밑면에는 다수의 하향 돌기(250)를 형성하였다. 이렇게 하면, 돌기(250)들의 하단이 신발의 하부 안창(210)의 상면(212)과 접촉하고 그에 따라 상부 안창(240)의 밑면과 하부 안창(210)의 상면(212) 사이에 공간이 형성되므로 착지할 때 통기공(248)을 통해 공기가 순환할 수 있다. 그 결과, 유동되는 공기는 신발 내부의 공기를 순환시키면서 땀을 증발시키고 발의 열을 분산시킨다.

 상부 안창(240)의 상면 중간에는 길이 방향으로 볼록부(252b)가 형성되어 있다. 상기 볼록부(252b)는 발의 허리부를 받쳐주어 하중을 신발 바닥 전체로 분산시키는 기능을 하게 된 다. 볼록부(252b)의 하부는 오목부(254)를 형성하고 하부 안창(210)의 볼록부(232)를 수용하여 이와 함께 발허리를 받쳐준다.

상부 안창(240)의 발꿈치가 닿는 부분 즉 후단(240b)의 밑면에는 공간부(256)가 형성되어 있다. 이 공간부(256)는 하부 안창(210)의 후방 오목부(218)에 대응하는 위치에 형성되고, 세 개의 홈(258)이 바람직하게는 하부 안창(210)의 상부 홈(218)에 대응하게 형성된다. 따라서, 착지할 때 이 공간부(256)가 수축되면서 그 내부의 공기가 상부 안창(240)과 하부 안창(210) 사이의 홈(258, 218)들을 통해 앞쪽으로 밀려나가 통기공(248)을 통해 발의 앞부분에서분출되어 신발 내부의 공기를 순환시키면서 땀을 증발시키고 발의 열을 분산시킨다.

도 9는 전술한 본 발명의 제1 및 제2 실시예에 따른 신발 안창(100, 200)을 채용한 신발
의 단면도이다.

도 9에 도시된 바와 같이, 신발(10)은 발을 수용하는 갑피(12), 이 갑피(12)를 지지하는 중창(14) 및 그 하부의 밑창(16)으로 이루어진다.

<60> 전술한 하부 안창(110, 210)과 상부 안창(140, 240)을 포함하는 안창 조립체(100, 200)
는 신발(10) 내부의 중창(14) 상면에 차례로 삽입되어 발을 지지하게 된다.

이때, 전술한 바와 같은 중량 안창 즉 하부 안창(110, 210)을 다양한 무게로 제조하는 것이 바람직하다. 예컨대 하부 안창을 200, 400, 600 및 900g 등의 무게로 제조하면, 사용자 가 적절한 무게의 하부 안창을 선택하여 사용하여 운동량을 조절할 수 있다.

*62> 한편 신발을 제작할 때, 발의 볼 넓이에 따라 즉 볼이 넓은 발, 좁은 발 및 중간 발 등에 따라 신발의 신골을 조절하게 된다. 이때, 하부 안창(110, 210)을 그 두께를 다양하게 하여 제조하면, 신골이 다른 신발을 별도로 제조하지 않고도 다양한 볼 넓이의 신발을 제공할 수있다. 즉 착용자는 자신의 발의 볼 넓이에 따라 적절한 두께의 하부 안창(110, 210)을 선택함으로써 동일한 신골을 갖는 신발을 자신의 발의 볼 넓이에 맞출 수 있다. 또한, 상부 안창(140, 240)을 들어내고 하부 안창(110, 210)만을 사용함으로써 위와 실질적으로 동일한 효과를기대할 수 있다.

본 발명의 하중 안창 즉 하부 안창을 제조하는 방법은 다음과 같다. 천연고무(NR)에 합성고무인 니트릴 고무와 부타디엔 고무를 혼합하고 고비중의 필러인 바리움 설페이트(BaSO₄)를 충진재로 혼합한 다음 롤 프레스로 압축하여 분자량을 높이고 가소성 및 점착성을 높인다.이어, 2차로 산화아연(ZnO), 황, 스테아르산 및 가황촉진제 등을 혼합한 다음 다시 압축하여 대략 5mm 두께의 시트를 얻는다.

'64' 이때 압축 작업은 대략 6 내지 8kgf/cm²의 압력으로 130 내지 160℃의 온도 구간에서 대략 5 내지 8분간 수행된다.

<69>

출력 일자: 2004/2/19

이들 시트 중에서, 상부 시트는 경도 45 이하로 만들고 나머지 시트는 대략 50 내지 60의 경도 바람직하게는 55의 경도로 만든다. 상부 시트의 경도를 낮게 하면 지면에 착지할 때 발과 관절에 가해지는 몸무게의 대략 4 내지 5배에 달하는 하중 충격을 흡수하기 위함이다.

66> 이와 같은 시트를 필요한 숫자(통상 4 내지 6개)로 포개어 금형에 넣고 가열하여 안창의 형태로 만든다.

이와 같이 얻어진 안창은 대략 2.0 이상의 비중을 갖게되고, 255mm 치수의 경우 필러의 함량에 따라 300 내지 1200g의 다양한 중량을 가지므로 신발에서 무게 증가 수단으로 사용될수 있다. 참고로 통상의 신발 안창은 대략 0.4 내지 0.6의 비중을 갖는다.

<68> 표 1은 이와 같은 작업을 통해 얻은 중량 안창의 물성을 나타낸다.

【丑 1】

시험 항목	단위	결과	시험 방법
인장 강도	kgf/cm ²	16	KS M 6518
신장율	%	410	KS M 6518
인열 강도	kgf/cm	9.2	KS M 6518
비중		2.38	KS M 6518
경도 (A-type)	스케일	55±1	KS M 6518
탄성 (강구 낙하)	· %	17	KS M 6518

【발명의 효과】

- <70> 전술한 바와 같은 본 발명에 따른 신발 무게 증가용 안창 조립체는 합성 고무 및 수지만으로 제작됨으로서 금속을 신발의 밑창 또는 안창에 넣음으로써 발생되는 여러 가지 문제를 해소할 수 있다.
- 또한, 금속으로 된 무게 증가 부재를 위한 별도의 금형이 필요치 않으므로 이의 비용을 줄일 수 있고 가공 조립 과정이 줄어들어 제조비용을 절감할 수 있다.
- <72> 아울러, 금속을 사용하지 않으므로, 공항의 금속 검색대를 통과할 때 신발을 벗거나 금속 부재를 분리하는 불편함을 없앨 수 있고, 밑창의 조각 부위가 닳아도 보행시 소음이 없으므

로 보다 오랜 기간 동안 사용할 수 있으며, 장시간 세탁에도 녹물이 발생하지 않아 제품이 오염되지 않는다.

<73> 한편, 안창을 구성하는 합성 수지 및 고무에 건강에 도움을 주는 천연 향기 및 약재 가루를 첨가하면 발 건강에 도움이 된다.

<74> 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부 터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있 을 것이다.

【특허청구범위】

【청구항 1】

신발의 무게를 증가시키도록 사용되는 안창 조립체(100, 200)에 있어서,

고비중 압축 수지로 구성된 하부 안창(110, 210); 및

상기 하부 안창(110, 210)의 상부에 적충되는 상부 안창(120, 220)을 포함하는 것을 특징으로 하는 신발 무게 증가용 안창 조립체.

【청구항 2】

제1항에 있어서, 상기 하부 안창(110, 210)은 압축 성형된 수지로 제조되는 것을 특징으로 하는 신발 무게 증가용 안창 조립체.

【청구항 3】

제2항에 있어서, 상기 압축 수지는 2 이상의 비중을 갖는 것을 특징으로 하는 신발 무게 증가용 안창 조립체.

【청구항 4】

제1항에 있어서, 상기 하부 안창(210)의 상면(212)에는 전방 오목부(214), 후방 오목부(218) 및 이들 오목부(214, 218)를 서로 연결하는 복수의 길이 방향 홈(216)이 형성되는 것을 특징으로 하는 신발 무게 증가용 안창 조립체.

【청구항 5】

제1항에 있어서, 상기 하부 안창(210)의 밑면(222)에는 길이 및 폭 방향 홈(224, 226)이 형성되고, 상기 밑면(222)의 중앙에는 상기 길이 방향 홈(224)과 연결된 오목부(228)가 형성되는 것을 특징으로 하는 신발 무게 증가용 안창 조립체.

【청구항 6】

제1항에 있어서, 상기 하부 안창(210)에는 상면(212)과 밑면(222)을 연결하는 복수의 관통공(220)이 형성되는 것을 특징으로 하는 신발 무게 증가용 안창 조립체.

【청구항 7】

제1항에 있어서, 상기 상부 안창(240)의 상면 전방에는 밀림 방지 돌기(246)가 형성되는 것을 특징으로 하는 신발 무게 증가용 안창 조립체.

【청구항 8】

제1항에 있어서, 상기 상부 안창(240)의 전방부에는 상하로 관통된 관통공(248) 및 밑면에 형성된 돌기(250)가 제공되는 것을 특징으로 하는 신발 무게 증가용 안창 조립체.

【청구항 9】

제1항에 있어서, 상기 상부 안창(240)의 상면 중앙부에는 발의 허리부를 받쳐주도록 길이 방향으로 연장된 볼록부(252)가 형성되는 것을 특징으로 하는 신발 무게 증가용 안창 조립

체.

【청구항 10】

제1항에 있어서, 상기 상부 안창(240)의 하면 후방부에는 공간부(254)가 형성되는 것을 특징으로 하는 신발 무게 증가용 안창 조립체.

【청구항 11】

제1항에 있어서, 상기 상부 안창(140, 240)은 착용자의 발의 뒤틀림을 예방하도록 경질 수지로 구성된 지지부(142, 242)와 얇은 천으로 구성된 상기 지지부(142, 242) 상면의 접촉부 (144)를 포함하는 것을 특징으로 하는 신발 무게 증가용 안창 조립체.

【청구항 12】

제1항에 있어서, 상기 하부 안창(110, 210)의 후단(110b, 210b)에 부착되는 충격 흡수 부재(130, 230)를 더 포함하는 것을 특징으로 하는 신발 무게 증가용 안창 조립체.

[도 2]

[도 4]

[도 7]

