

ARMA

Simulation and Fitting

Stationary Time Series: ARMA

 Wold Decomposition: Herman Wold (1908-1992) proved that any time series can be represented as a linear combination of white noise:

$$y_t = W_t + a_1 W_{t-1} + a_2 W_{t-2} + \cdots$$

where a_1, a_2, \dots are constants

Simulating ARMA in R

- ARMA model can be simulated using function arima.sim() by specifying the order option as c(p,d=0,q) in the list form, where
 - p = Order of AR
 - d = Order of Differencing
 - q = Order of MA

am <- arima.sim(list(order=c(p=1,d=0,q=1),ar=0.7,ma=0.3),n=200)
plot(am)</pre>

Identifying AR and MA Models

- It is very hard to identify AR and MA models with simple graphs like line graph because many times they look similar.
- We can identify them with the help of graphs ACF (Auto-correlation function) and PACF (Partial Auto-Correlation Function)

Auto-Correlation

- Let x_t denote the set of values of a time series at time t and x_{t-h} denotes the set of values of a time series at time t-h, in other words h time periods apart
- Auto-Correlation with h time period apart is defined as

$$\frac{Covariance(x_t, x_{t-h})}{Std \ Dev(x_t)Std \ Dev(x_{t-h})}$$

• The graph of different possible *h* lags is plotted to form ACF graph

Partial Auto-Correlation

- Partial correlation is a conditional correlation.
- It is the correlation between two variables under the assumption that we know and take into account the values of some other set of variables
- Partial Auto-correlation of a stationary process x_t , is calculated as $\emptyset_{11} = corr(x_1, x_0) \& \emptyset_{hh} = corr(x_h \widehat{x_h}, x_0 \widehat{x_0}), h \ge 2$

where $\widehat{x_h}$ is the regression of x_h on $\{x_1, x_2, \dots x_{h-1}\}$ and $\widehat{x_0}$ is the regression of x_0 on $\{x_1, x_2, \dots x_{h-1}\}$

• The graph of different possible *h* lags is plotted to form PACF graph

Function acf2()

• In package **astsa**, there is a function *acf2()* which display ACF as well as PACF graphs at one go.

library(astsa)
acf2(am)

Function sarima()

 Function sarima() from package astsa fits ARIMA as well as seasonal ARIMA models

Syntax : sarima(x, p, d, q, P, D, Q, S, ...)

Where

x : univariate time series

p : AR order

d : difference order

q: MA order

P : SAR order; use only for seasonal models

D : seasonal difference; use only for seasonal models

Q : SMA order; use only for seasonal models

S: seasonal period; use only for seasonal models

Output Graphs of sarima()

- 1. Standardized Residuals: Residuals should have a white noise
- 2. ACF of Residuals
- 3. Normality Testing graph (Q-Q plot): Residuals should follow a Normal Distribution
- 4. P-values of Ljung-Box
 Test: All the points in the graph should be above the line

Thumb Rules for Identifying the Models

- We can guess the ARMA models with the help of ACF and PACF graphs
- Consider p = order of AR and q = order of MA in the table below
- Also note that
 - "Tails off after lag g" means Starting to decrease at g
 - "Cuts off after lag g" means Disappears or becomes very small at g

Graph	AR(p)	MA(q)	ARMA(p,q)
ACF	Tails off after lag p	Cuts off after lag q	Tails off after lag p
PACF	Cuts off after lag p	Tails off after lag q	Tails off after lag q

Example of AR(1)

Graph AR(p) MA(q) ARMA(p,q)

ACF Tails off after lag p Cuts off after lag q Tails off after lag p

PACF Cuts off after lag p Tails off after lag q Tails off after lag q

- ACF is tailing off after lag 1 and PACF is cutting off after lag 1.
- Hence, the model can be AR(1) and we can try fitting ARMA(1,0,0) to the data.


```
ar1.fit <- sarima(ar1,p=1,d=0,q=0)
ar1.fit$ttable</pre>
```

```
> ar1.fit$ttable
Estimate SE t.value p.value
ar1 0.8038 0.0417 19.2705 0
xmean 40.5517 0.3781 107.2384 0
```

• The p-values in the ttable component indicate that the model is AR with order 1 with a shift of approximately 40.55. Hence, the model is (W_t is white noise at time t)

$$X_t = 40.5517 + 0.8038(X_{t-1} - 40.5517) + W_t$$

Example of AR(2)

- Though ACF is tailing off after lag 1 as well as after lag 2, PACF is cutting off after lag 2.
- Hence, the model can be AR(2) and we can try fitting ARMA(2,0,0) to the data.

ar2.fit <- sarima(ar2,p=2,d=0,q=0) ar2.fittable

	Estimate	SE	t.value	p.value
ar1	1.6649	0.0415	40.1525	0
ar2	-0.8093	0.0416	-19.4709	0
xmean	40.7873	0.4605	88.5765	0

• The p-values in the ttable component indicate that the model is AR with order 2 with a shift of approximately 40.7873. Hence, the model is (W_t is white noise at time t)

$$X_t = 40.7873 + 1.6649(X_{t-1} - 40.7873) - 0.8093(X_{t-2} - 40.7873) + W_t$$

Example of MA(1)

Graph	AR(p)	MA(q)	ARMA(p,q)
ACF	Tails off after lag p	Cuts off after lag q	Tails off after lag p
PACF	Cuts off after lag p	Tails off after lag q	Tails off after lag q

- ACF is cutting off after lag 1 and PACF is tailing off after lag 1.
- Hence, the model can be MA(1) and we can try fitting ARMA(0,0,1) to the data.


```
ma1.fit <- sarima(ma1,p=0,d=0,q=1)
ma1.fit$ttable</pre>
```

• The p-values in the ttable component indicate that the model is MA with order 1 with a shift of approximately 40.7873. Hence, the model is (W_t is white noise at time t)

$$X_t = 40.0021 + W_t - 0.8893W_{t-1}$$

Example of ARMA(1,1)

Graph	AR(p)	MA(q)	ARMA(p,q)
ACF	Tails off after lag p	Cuts off after lag q	Tails off after lag p
PACF	Cuts off after lag p	Tails off after lag q	Tails off after lag q

- ACF is tailing off after lag 1 and PACF is tailing off after lag 1.
- Hence, the model can be ARMA(1,1) and we can try fitting ARMA(1,0,1) to the data.

Fitting of ARMA(1,1)

```
\begin{array}{lll} armall.fit <- sarima(armal1,p=1,d=0,q=1) \\ armall.fit\$ttable \end{array}
```

```
Estimate SE t.value p.value
ar1 0.8791 0.0493 17.8478 0.0000
ma1 -0.5058 0.0901 -5.6118 0.0000
xmean -0.3402 0.2668 -1.2753 0.2037
```

• The p-values in the ttable component indicate that the model is AR with order 1 and MA with order 1. Hence, the model is (W_t is white noise at time t)

$$X_t = -0.3402 + 0.8791X_{t-1} + W_t - 0.5058W_{t-1}$$

Identifying the Models

- At first, while guessing, we start from smaller order and then gradually try for higher orders
- Model has to be chosen for which the AIC and BIC values are the least