PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

H04Q 7/38

(11) International Publication Number:

WO 00/22865

A2

(43) International Publication Date:

20 April 2000 (20.04.00)

(21) International Application Number:

PCT/SE99/01774

(22) International Filing Date:

6 October 1999 (06.10.99)

(30) Priority Data:

98119213.1

12 October 1998 (12.10.98)

EP

(71) Applicant: TELEFONAKTIEBOLAGET LM ERICSSON [SE/SE]; S-126 25 Stockholm (SE).

(72) Inventors: MALMGREN, Göran; Gösta Ekmans Väg 5, S-129
35 Hägersten (SE). KHUN-JUSH, Jamshid; Maxfeld
Strasse 37, D-90409 Nürnberg (DE). LI, Hui; Berliner
Platz 12, D-90489 Nürnberg (DE). DETTMAR, Uwe;
Sudetenstrasse 22, D-61440 Oberuriel (DE).

(74) Agents: MRAZEK, Werner et al.; Aros Patent AB, P.O. Box 1544, S-751 45 Uppsala (SE).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: LINK AND RADIO CELL ADAPTATION IN TDMA/TDD SYSTEMS

(57) Abstract

A TDMA/TDD link adaptation method determines radio link quality at a base station. The radio link quality is used to update and broadcast a physical layer parameter indicator (10–16) from the base station on a broadcast control channel having a common physical layer parameter indicator for all uplink and downlink channels.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Ł	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
M	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
Т	Austria	FR	France	LU	Luxembourg	SN	Senegal
U	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
Z	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
١.	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
3	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
:	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
•	Italgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
	tienin	1E	freland	MN	Mongolia	UA	Ukraine
	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
•	Belarus	IS	Iceland	MW	Malawi	US	United States of America
	Canada	ĮΤ	Italy	MX	Mexico	UZ	Uzbekistan
•	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
Į.	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		204540
i,	Cameroon		Republic of Korea	PL	Poland		•
•	China	KR	Republic of Korea	PT	Portugal		
	Cuba	KZ	Kazakstan	RO	Romania		
	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
	Germany	Ll	Liechtenstein	SD	Sudan		
	Denmark	LK	Sri Lanka	SE	Sweden		
	Estonia	LR	Liberia	SG	Singapore		

WO 00/22865 PCT/SE99/01774

LINK AND RADIO CELL ADAPTATION IN TDMA/TDD SYSTEMS

TECHNICAL FIELD

The present invention relates generally to TDMA/TDD (Time Division Multiple Access / Time Division Duplex) radio communication systems, and especially to adaptation of the systems to prevailing radio conditions.

BACKGROUND

10

15

20

25

30

5

ETSI BRAN (Broadband Radio Access Network) is developing a short-range high data rate system, HIPERLAN Type 2 (also called H/2), mainly for indoor operation. Some outdoor scenarios are also considered (campus areas, downtown city areas). The target areas are offices, conference halls, exhibition fairs, airports and home environments. The spectrum is unlicensed and thus several "operators" may use the same spectrum. The interference environment may change during operation due to for example new operators in the vicinity of the own network and it is then very difficult to predict what type of interference the system shall be able to handle. The large difference in radio propagation, i.e. LOS (Line Of Sight) and NLOS (No Line Of Sight), and interference environments in which the system be must be able to operate, puts strong requirements on the system that it is able to adapt to its current situation. In this type of systems, one radio cell might be exposed to larger interference than other radio cells. Just an adaptation per radio cell to handle this situation is referred to as "radio cell adaptation". Furthermore, the mobile terminals (MTs) associated with a certain base station (BS) may have different reception qualities in their uplink and downlink respectively. Hence, in this case each MT might want to use different transmission parameters, e.g. code rate (protection level) and modulation alphabet, to be able to adjust its reception quality in the uplink and downlink. This adaptation could be performed per MT or per its individual connections. In the latter case differing traffic and QoS (Quality of

gross rate adaptation.

Service) parameters have to be considered. For example, one MT could have a connection carrying video using a powerful FEC (Forward Error Correction) code, whereas a connection for file transfer uses a less strong FEC but with ARQ (Automatic ReQuest for retransmission) capabilities.

5

Typical reception quality measures are:

retransmission rate (PER, Packet Error Rate), delay spread (time dispersion), received signal strength (RSSI), Signal-to-Interference Ratio (SIR) Bit Error Rate (BER)

10

15

Combinations of these performance measures and others are also possible.

Usually link adaptation is divided into two groups: net rate adaptation and

20

Net rate adaptation means that the incoming data rate is adjusted to fit into the assigned capacity so that the system can handle a certain link quality, i.e. the user has a fixed assigned capacity over the air, and if the radio quality is poor the incoming data rate is reduced and a more robust transmission mode is used. In case of a good connection a higher incoming data rate can be used.

25

30 .

In gross rate adaptation the incoming data rate is "fixed", i.e. the radio system does not change its incoming traffic due to the radio conditions. Instead the radio system tries to sustain the incoming data rate and to counter the variations in link quality by assigning correspondingly varying capacity over the air interface. Thus, two MT with the same incoming data rate could have been assigned different capacity over the air interface based on their individual connection reception qualities. An extra function might be

needed in this case to guarantee fair utilisation of the total available capacity.

Combination of net and gross rate adaptation is of course also possible.

5

The present situation with regard to adaptation to varying radio conditions in different radio communication standards may be summarised as follows:

10

HIPERLAN/2: No proposal exists on a protocol that handles the ability to make radio cell adaptation and/or link (per MT or per connection) adaptations. Still, the proposals on the physical layer allow different code rates and modulation alphabets (MPSK and MQAM signal constellations).

15

GPRS: The system applies net rate link adaptation (selects channel coding) per mobile terminal, see [1]. For downlink traffic the MT request channel coding via ARQ-ACK/NACK messages through the uplink. The BS is using stolen bits (embedded in the burst structure of GSM) to set the channel code for the downlink. Hence, the MT first decodes these bits to obtain information on which channel decoding it shall use for the rest of the burst. In case unacknowledged mode is applied, the MT sends measurements reports to the BS including an estimation of the BER. This information can then be used by the BS to select channel coding for the downlink bursts.

20

For the uplink traffic the BS commands the MT to use a certain channel coding. This information is transferred to the MT piggybacked on downlink dedicated control channels, e.g. piggybacked on ARQ-ACK/NACK messages.

25

A drawback is that in GRPS it is not possible to change channel coding during retransmission phase.

30

EDGE, EGPRS: These two systems apply net rate link adaptation (select channel coding and modulation alphabet) per mobile terminal. No protocol exists yet. However, the structure and protocol is based on the GPRS

structure and a similar protocol will be utilised. Extensive simulation studies have been performed on the system throughput and can be found in [2].

The problem with changing channel coding during retransmissions is solved by doing re-segmentation. However, the frame structure used in these systems is not suited for a TDD system.

DVB, DAB: Digital Video/Audio Broadcasting uses different code rates and modulation alphabets to be able to extend their coverage regions and to enable the possibility for an broadcaster to select suitable parameters so that both data and the ordinary program can be sent on the allocated bandwidth, see [3]. In the pure broadcast scenario no uplink signalling exists. Recently, an ACTS program called MEMO has been developed for individual services; the ordinary GSM network is used for the uplink signalling. In this case downlink link adaptation is possible. Still no protocol that enables this signalling exists.

IEEE 802.11: A new physical layer standard is now developed for 5 GHz operation, see [4]. The standard is not fixed yet and the system will apply some sort of link adaptation. The proposed solution is assuming that the physical layer is totally independent from the IEEE 802.11 MAC layer. To enable this a convergence layer, called PHY PLCP (Physical Layer Convergence Protocol), is put in between, where primitives are used through SAPs (Service Access Point) to instruct the physical layer to react.

25

5

10

15

20

The selected link parameters are performed by the sending unit, i.e. in the downlink the BS selects the parameters and in the uplink the MT selects the parameters. Both BS and MT are making measurements before selecting PHY (PHYsical layer) parameters, e.g. RSSI measurements.

30

The access scheme is based on CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance). This implies that one MAC frame (in IEEE 802.11 this is equal to a MPDU (MAC Protocol Data Unit)) is transmitted between

two peer entities only, i.e. the MAC frame is only between a BS (centrally controlled system) and one MT, or the MAC frame is only between two MTs (Ad-hoc system). The duration of the MAC frame depends on the selected PHY parameter In case of a more robust PHY mode, the length of the PHY frame becomes longer due to higher FEC protection.

This is a gross rate adaptation approach which is not able to consider QoS and fairness between users, i.e. since the transmitting unit is selecting the PHY parameters (used capacity), a user may select a parameter corresponding to a robust PHY mode resulting in larger capacity utilisation even though it is not necessary.

In the current version of the IEEE 802.11 proposal for 5 GHz, measurements needed for the selection of PHY parameters has to be performed by both the BS and the MT.

SUMMARY

An object of the present invention is to provide a spectrum efficient radio link adaptation method and frame structure for a TDMA/TDD radio communication system..

This object is achieved in accordance with the attached claims.

Briefly, the present invention uses the BCCH (Broadcast Control CHannel) to adapt the radio cell to prevailing radio conditions. This provides a very efficient method, since a common physical layer parameter indicator may be used for all radio links. An efficient and more flexible embodiment uses a common physical layer parameter indicator to adapt the uplinks of the radio cell, while the downlinks are individually adapted using physical layer parameter indicators in the ACH (Announcement & assignment CHannel). It

5

10

15

20

25

is also possible to let the BCCH indicate the physical layer parameters to be used for decoding of the ACH.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

The invention, together with further objects and advantages thereof, may best be understood by making reference to the following description taken together with the accompanying drawings, in which:

Fig. 1 is a diagram illustrating a basic frame structure of a TDMA/TDD radio communication system;

Fig. 2 is a diagram illustrating an exemplary embodiment of a frame structure in accordance with the present invention suitable for a TDMA/TDD radio communication system; and

Fig. 3 is a diagram illustrating another exemplary embodiment of a frame structure in accordance with the present invention suitable for a TDMA/TDD radio communication system.

DETAILED DESCRIPTION

20

25

The system in accordance with the present invention uses a TDMA/TDD (Time Division Multiple Access/Time Division Duplex) MAC (Media Access Control) frame structure (e.g. H/2 and IEEE 802.11). An example of such a frame structure is depicted in fig. 1. A centrally controlled MAC scheme is assumed, i.e. the BS assigns capacity to the MTs. The assignments could be different between two MAC frames, i.e. one user might be assigned capacity in one MAC frame and in the next MAC frame this user will not be assigned any capacity. In case of ad-hoc operation, one MT could act as the central controller. In fig. 1 assigned capacity for one connection (downlink + uplink) has been indicated, while the dots represent assigned capacity for other connections.

The MAC frame starts with a Broadcast Control CHannel (BCCH) which contains information that is transmitted over the entire area that a BS covers (radio cell). The assignment of different MTs capacity is transmitted in the ACH (Announcement & assignment CHannel, sometimes referred to as resource grant channel or FCH (Frame Control cHannel)). The whole ACH is not necessarily transmitted over the whole radio cell. In case multi beam antennas are applied, the information that is only concerned to a certain beam is then only transmitted over its corresponding coverage area. Pointers may be applied in the ACH so that a MT that is assigned capacity knows exactly when in the frame it is expected to receive and send data, i.e. in the "Assigned Capacity" regions. Random Access CHannels (RACH) might be located at the end of the frame. A MT may request for capacity in its assigned uplink capacity region or via one random access channel.

The exemplary embodiments of frame structures in accordance with the present invention described below are applicable for both gross and netyrate link/radio cell adaptation.

Fig. 2 is a diagram illustrating an exemplary embodiment of a frame structure in accordance with the present invention suitable for a TDMA/TDD radio communication system with centrally controlled assignment of capacity. In this embodiment radio cell adaptation parameters are only transmitted in the BCCH (or some other permanent or temporary "control channel" for broadcasting messages). This embodiment may assume that the BS has all information necessary to make a decision on a single PHY parameter setting (e.g. code rate, modulation alphabet, time slots/frame) without any interaction (no explicit uplink signalling) with the MTs). Statistics of the PER, delay spread, received signal strength, SIR and BER could for example be used in the selection procedure. The measurements could be performed on the traffic and control data PDUs (Protocol Data Units) that are received at the BS. The single PHY parameter setting (which is dynamically varying) could be used for some or all connections, as indicated by the dashed arrows 10, 12, 14 and 16 in fig. 2.

5

10

15

20

25

One nice feature of this embodiment is that all PDUs of the same type will have the same size and the assignment of capacity resources becomes easier.

5

Since a common indicator is used for all links, it is appreciated that the embodiment in fig. 1 implements radio cell adaptation.

10

Radio cell adaptation could also be performed on uplink only or downlink only. Furthermore, the broadcast message including the common PHY parameter indicator may also be broadcast in other "channels" than the BCCH, for example a dedicated PHY parameter channel.

15

Fig. 3 is a diagram illustrating another exemplary embodiment of a frame structure in accordance with the present invention suitable for a TDMA/TDD radio communication system. In this embodiment a single PHY mode is used in the uplink for all MTs, as indicated by dashed arrows 10, 12. This is an efficient signalling mechanism in case all MT will have similar reception quality in the uplink. This could for example be accomplished if power control is applied in the uplink, i.e. the BS controls (decides) the MTs power level. However, in this embodiment the downlink is individually assigned via the ACH, as indicated by dashed arrows 18, 20 in fig. 3.

20

25

The embodiment of fig. 3 implements a combination of radio cell and individual link adaptation, since all uplinks are adapted in the same way as in the embodiment of fig. 1, while downlinks are individually adapted.

30

A combination of the embodiments of fig. 2 and 3 is also possible. In such a combination the BCCH (or some other permanent or temporary "control channel" for broadcasting messages) is used to broadcast an indicator of the physical layer parameters that should be used to decode the ACH. The physical layer parameters may be individual or common for several channels,

In some cases it is not necessary for the MTs to update the BS so frequently. This could be in situations when the radio channel and the interference environment are rather static and do not change. To use the ARQ PDU for this signalling will then create unnecessary overhead. To reduce the amount of signalling, a special signalling message (control channel), in which the information is transferred, could be used. This is a special control channel that is separated from other channels. An initial negotiation could take place between the MT and the BS on how often these messages should be transmitted. The BS could then, for example, assign uplink capacity to the MT on a regular basis. Such an embodiment creates a flexible solution. How the information is transmitted to the BS could also be negotiated, e.g. the approach to use the ARQ messages could of course be one way. Another approach is that all updates of the PHY mode are sent through the RACH. An alternative is to "piggyback" the information on one or several other messages, since this type of information may be represented by very few bits.

It will be understood by those skilled in the art that various modifications and changes may be made to the present invention without departure from the scope thereof, which is defined by the appended claims.

5

.10

15

REFERENCES

	[1]	Digital cellular telecommunications system (Phase 2+); General
		Packet Radio Services (GPRS); Mobile Station (MS) - Base Station
5		System (BSS) interface; Radio Link Control/ Medium Access
		Control (RLC/MAC) protocol (GSM 04.60 proposed version 1.1.0)
	[2]	Johansson C., de Verdier L., Khan F., "Performance of Different
		Scheduling Strategies in a Packet Radio System", VTC'98, 1998
10		
	[3]	Lindberg, A., "Aspects on individual services in a dense cellular
		broadcasting network", MSc Thesis.
	[4]	Richard, Hitoshi, Masahiro, Doc: IEEE P802.11-98/74-r4, July
15	[,]	1998
		200

CLAIMS

- 1. A TDMA/TDD media access control frame structure, **characterized** by a broadcast message having a common dynamically updated physical layer parameter indicator for a plurality of channels.
- 2. The control frame structure of claim 1, **characterized** by a broadcast message having a common dynamically updated physical layer parameter indicator for a plurality of uplink channels.
- 3. The control frame structure of claim 1, **characterized** by a broadcast message having a common dynamically updated physical layer parameter indicator for a plurality of downlink channels.
- 4. The control frame structure of claim 1, **characterized** by a broadcast message having a common dynamically updated physical layer parameter indicator for a plurality of uplink channels and a plurality of downlink channels.
- 5. The control frame structure of any of the preceding claims, characterized by said broadcast message indicating the proper physical layer parameter that is to be used by a receiver to decode an announcement and assignment channel.
- 25 6. The control frame structure of claim 2, **characterized** by an announcement and assignment channel having individual dynamically updated physical layer parameter indicators for downlink channels.
- 7. The control frame structure of claim 6, **characterized** by said broadcast message indicating the proper physical layer parameter that is to be used by a receiver to decode an announcement and assignment channel.

5

- 8. The control frame structure of any of the preceding claims, characterized by said broadcast message belonging to a broadcast control channel.
- 9. The control frame structure of any of the preceding claims, characterized by a separate control channel for occasional requests of physical layer parameter updates from mobile terminals.
 - 10. A TDMA/TDD link adaptation method, **characterized** by determining radio link quality at a central controller; and updating and broadcasting a message including a common physical layer parameter indicator for a plurality of channels from said central controller.
- 11. The method of claim 10, **characterized** by said message including a common physical layer parameter indicator for a plurality of uplink channels.
- 12. The method of claim 10, **characterized** by said message including a common physical layer parameter indicator for a plurality of downlink channels.
 - 13. The method of claim 10, **characterized** by said message including a common physical layer parameter indicator for a plurality of uplink channels and a plurality of downlink channels.
 - 14. The method of any of the preceding claims 10-13, **characterized** by said message indicating the proper physical layer parameter that is to be used by a receiver to decode an announcement and assignment channel.
 - 15. The method of claim 11, **characterized** by an announcement and assignment channel for individually and dynamically updating physical layer parameter indicators for downlink channels.

.10

- 16. The method of claim 15, **characterized** by said message indicating the proper physical layer parameter that is to be used by a receiver to decode an announcement and assignment channel.
- 5 17. The method of any of the preceding claims 10-16, **characterized** by said message belonging to a broadcast control channel.
 - 18. The method of any of the preceding claims 10-17, **characterized** by a separate control channel for occasional requests of physical layer parameter updates from mobile terminals.
 - 19. The method of any of claims 10-18, **characterized** by said central controller being a base station.

15

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

H04Q 7/38, H04B 7/26

(11) International Publication Number:

WO 00/22865

A3

(43) International Publication Date:

20 April 2000 (20.04.00)

(21) International Application Number:

PCT/SE99/01774

(22) International Filing Date:

6 October 1999 (06.10.99)

(30) Priority Data:

98119213.1

12 October 1998 (12.10.98)

EP

(71) Applicant: TELEFONAKTIEBOLAGET LM ERICSSON [SE/SE]; S-126 25 Stockholm (SE).

(72) Inventors: MALMGREN, Göran; Gösta Ekmans Väg 5, S-129 35 Hägersten (SE). KHUN-JUSH, Jamshid; Maxfeld Strasse 37, D-90409 Numberg (DE). LI, Hui; Berliner Platz 12, D-90489 Nümberg (DE). DETTMAR, Uwe; Sudetenstrasse 22, D-61440 Oberuriel (DE).

(74) Agents: MRAZEK, Werner et al.; Aros Patent AB, P.O. Box 1544, S-751 45 Uppsala (SE).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN. GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report: 20 July 2000 (20.07.00)

(54) Title: LINK AND RADIO CELL ADAPTATION IN TDMA/TDD SYSTEMS

(57) Abstract

A TDMA/TDD link adaptation method determines radio link quality at a base station. The radio link quality is used to update and broadcast a physical layer parameter indicator (10-16) from the base station on a broadcast control channel having a common physical layer parameter indicator for all uplink and downlink channels.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	11L	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 99/01774

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: H04Q 7/38, H04B 7/26 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: H04B, H04Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

		Relevant to claim No.
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
Х	WO 9832265 A1 (NOKIA TELECOMMUNICATIONS OY), 23 July 1998 (23.07.98), page 5, line 4 - line 30; page 5, line 35 - page 6, line 7; page 6, line 13 - line 37, claim 7	1-4,6,8, 10-13,15, 17-19
A		5,7,14,16
		
A	WO 9826523 A2 (ERICSSON INC.), 18 June 1998 (18.06.98), page 3, line 32 - page 4, line 2; page 13, line 31 - line 33; page 14, line 18 - page 15, line 7, page 15, line 33 - page 16, line 15	1-19
A	US 5329574 A (NIELSON ET AL), 12 July 1994 (12.07.94), column 3, line 26 - line 53	10

X Further documents are listed	in the continuation of Box C.	X See patent famuly attitex.			
• Special categories of cited documents: A document defining the general state o		later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
to be of particular relevance "E" erlier document but published on or a	• •	document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art			
"L" document which may throw doubts or cited to establish the publication date	of another citation or other				
special reason (as specified) "O" document referring to an oral discloss means					
"P" document published prior to the inter- the priority date claimed		document member of the same patent family			
Date of the actual completion of the	he international search Dat	Date of mailing of the international search report 0 4 -04- 2000			
28 March 2000					
Name and mailing address of the	ISA/ Aut	Authorized officer			
Swedish Patent Office					
Box 5055, S-102 42 STOCKHO		Peter Göransson / JA A			
Facsimile No. + 46 8 666 02 86	Tele	Telephone No. + 46 8 782 25 00			

INTERNATIONAL SEARCH REPORT

International application No. PCT/SE 99/01774

	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	SSAGE	Relevant to claim No
Category*	Citation of document, with indication, where appropriate, of the relevant pa		Resevant to claim No
Р,Х	WO 9907168 A1 (BELLSOUTH CORPORATION), 11 February 1999 (11.02.99), claims 1,2,4, abstract		1,10
į			
j			
]			
	•		
			·
			ļ
1			
ļ			

INTERNATIONAL SEARCH REPORT

Information on patent family members

02/12/99

International application No.
PCT/SE 99/01774

	Patent document cited in search report		Publication date	Patent family member(s)			Publication date	
WO	9832265	A1	23/07/98	AU FI FI ZA	5665398 3052 970237 9800162	U A,V	07/08/98 12/09/97 21/07/98 09/07/98	
WO	9826523	A2	18/06/98	AU US	5607398 5896376		03/07/98 20/04/99	
US	5329574	A	12/07/94	NONE				
MO	9907168	A1	11/02/99	AU	8585598	A	22/02/99	

United States Patent [19]

Bartz

[11] Patent Number:

5,925,109

[45] Date of Patent:

Jul. 20, 1999

[54] SYSTEM FOR I/O MANAGEMENT WHERE I/O OPERATIONS ARE DETERMINED TO BE DIRECT OR INDIRECT BASED ON HARDWARE COUPLING MANNERS AND/OR PROGRAM PRIVILEGE MODES

[75] Inventor: Christopher T. Bartz, Austin, Tex.

[73] Assignee: National Instruments Corporation, Austin, Tex.

[21] Appl. No.: 08/630,387

[22] Filed: Apr. 10, 1996

52] U.S. Cl. 710/14; 710/8

834, 828; 707/1; 235/492; 370/248

[56] References Cited

U.S. PATENT DOCUMENTS

3,828,327	8/1974	Berglund et al
4,794,515	12/1988	Hornung 395/674
4,807,178	2/1989	Fujiwara et al 364/900
4.887,202	12/1989	Tanaka et al
5,237,616	8/1993	Abraham et al 380/49
5.260,555	11/1993	Sakamoto 235/492
5,297,262	3/1994	Cox et al 395/856
5,353,411	10/1994	Nakaosa et al 395/651
5,491,804	2/1996	Heath et al
5,574,903	11/1996	Szymanski et al 707/1
5,625,621	4/1997	Christensen et al 370/248
5,659,679	8/1997	Alpert et al 395/183.1

Primary Examiner—Thomas C. Lee Assistant Examiner—Chien Yuan Attorney, Agent, or Firm—Conley, Rose & Tayon; Jeffrey C. Hood

[57] ABSTRACT

The system and method simplifies communication between a computer control program executing on the computer system and an input/output device coupled to the computer system and is independent of the privilege mode in which the computer program is executing and of the manner in which the input/output device is coupled to the computer system, namely directly such as via an expansion bus versus indirectly such as via a parallel port. An I/O manager provides input/output operation macros, comprising first and second conditional execution portions, along with other related functions. The computer program is compiled from one or more source code files, wherein the source code files employ the input/output operation macros and call other I/O manager functions. The system and method comprises a preprocessor resolving the first conditional execution portion of an input/output operation macro into a direct input/ output instruction if compiled for an execution environment with sufficient privilege level and resolving the first conditional execution portion of the macro to a call to a function otherwise. The function causes the computer system to change to kernel mode and executes a direct input/output instruction. The system and method further comprises executing the compiled computer program comprising allocating memory for and populating an instance of a data structure for the I/O manager and determining whether or not the input/output device is coupled to the computer system such that the input/output device registers are directly accessible to the computer program through a direct input/output instruction. Next, the input/output operation to the input/output device is performed by executing the first conditional execution portion of the input/output operation macro to the input/output device if the input/output device is directly coupled to the computer system or executing the second conditional execution portion of the input/output operation macro, which is a function, if the input/output device is not directly coupled to the computer system. wherein the function performs the input/output operation by executing a plurality of direct input/output instructions.

31 Claims, 4 Drawing Sheets

FIG. 1


```
1
 2
    #define DIRECT_COUPLE(handle)
                                              ((handle & DIRECT_MASK_BITS) == DIRECT_HANDLE)
    #define WRITE_REG_8(handle, regOffset, data)
 5
            (DIRECT COUPLE(handle)
 6
                     IOMgrOutB(BASE_ADDR(handle)+regOffset, data)
 7
                     handle->writeReg8(handle, regOffset, data)
 8
 10
            PRIVILEGED_MODE
 11
    #define IOMgrOutB(reg, data)
                                      outp(reg, data) /* library routine which performs direct I/O */
 12
 13
    #else
 14
 15
 16 int IOMgrOutB(int ioAddr, int data)
17 {
            iomgrParamBlock pb;
18
19
            /* Initialize the kernel mode parameter block. */
20
            pb.parameter.outByte.ioAddr
21
                                              = ioAddr;
            pb.parameter.outByte.data
22
                                              = data;
23
            /* Invoke the kernel routine to perform the I/O operation. */
24
            callToKernel(IO_MANAGER_ID, &pb, sizeof (iomgrParamBlock));
25
26 }
27
28 #endif
29
30 main()
31 {
            int handle, isrModeHandle;
32
33
           /* Initialize the I/O Manager and get a handle which indicates whether or not
34
            ** the data acquisition card may be accessed in a direct manner or not. */
35
           handle = initlOMgr(slotIndex + 1, (IOMgrBaseAddr) 0, ioMethod);
36
37
           /* Initialize the parallel port specific portion of the I/O Manager */
38
           if (IS_LPT_DEVICE(deviceType))
39
                    initlOMgrPPData(handle, pPort);
40
41
           /* get a kernel mode handle */
42
           isrModeHandle = get ISRIOMgrHandle(handle);
43
44
           /* Write a value to a register, such as a voltage. */
45
           WRITE_REG_8(handle, regOffset, data);
46
47
           /* Get any errors generated by the I/O operation. */
48
           errors = getAndClearlOMgrErr(handle);
49
50
           /* Free the memory used by the I/O Manager. */
51
           freelOMgr(handle);
52
53 }
```

FIG. 3

Jul. 20, 1999

FIG. 4

SYSTEM FOR I/O MANAGEMENT WHERE /O OPERATIONS ARE DETERMINED TO BE in the

I/O OPERATIONS ARE DETERMINED TO BE DIRECT OR INDIRECT BASED ON HARDWARE COUPLING MANNERS AND/OR PROGRAM PRIVILEGE MODES

BACKGROUND OF THE INVENTION

1. Field of the Invention

:

The present invention relates to the field of input/output (I/O) management, and more particularly to an intelligent I/O manager which abstracts I/O functions between a computer system and a data acquisition card, wherein the data acquisition card may be designed for one of a plurality of different hardware platforms, and wherein the computer program operates in a plurality of privilege modes.

2. Description of the Related Art

Computer system expansion devices, or input/output (I/O) devices, may be coupled to computer systems in a variety of manners. Typically, a computer program executing on a computer system communicates with the input/output device via storage components, such as registers or memory, to control and/or receive information from the input/output device. A read/write from/to a storage component on an input/output device is henceforth referred to as an input/output operation. The manner in which the input/output device is coupled to the computer system in part determines the manner in which the computer program communicates with the input/output device, that is, the manner in which the input/output operations are performed.

One manner of coupling input/output devices to a computer system allows a computer program executing on the computer system to perform input/output operations by executing direct input/output instructions which read/write registers located on the input/output device. An example of 35 such a coupling manner is through an expansion bus. Examples of currently available expansion buses are the AT or ISA (Industry Standard Architecture) bus, the EISA (Extended Industry Standard Architecture) bus, and the PCI (Peripheral Component Interconnect) bus. In addition, the 40 input/output device may be configured as a PCMCIA (Personal Computer Memory Card International Association) card, also referred to as a PC card. The registers of input/output devices which have these interfaces are accessible by the computer program executing direct input/ 45 output instructions.

A second manner of coupling input/output devices to a computer system requires a computer program to communicate with the input/output device by a more indirect means. In other words, the registers on the input/output 50 device are not directly accessible by a direct input/output instruction of the computer system. Examples of the indirect coupling manner include different types of I/O interfaces or platforms, including the VXI bus (VME Extensions for Instrumentation) bus, and the GPIB (General Purpose Interface Bus), among others. These interfaces are popular in the instrumentation or test measurement industry. In addition, the input/output device may be adapted for indirectly coupling to a computer system via a serial port or parallel port.

In many cases it is desired for a computer program 60 executing on a computer system to be able to communicate with expansion or input/output devices in a portable manner, i.e., regardless of how the expansion device is coupled to the computer system. In other words, software developers for such devices desire to develop portable code which is highly 65 reusable and maintainable by virtue of its hardware platform independence.

2

One area where a portable computer program is desired is in the field of data acquisition. For example, a data acquisition card which is software controlled may be coupled to the computer system by any of the various interfaces described above. The computer program causes the computer system to generate a plurality of bits which are provided to the data acquisition card which configure and/or control the data acquisition card or cause the data acquisition card to provide data in response. These plurality of bits differ depending upon the type of platform for which the data acquisition card is configured, including the manner in which the card is coupled to the system. In other words, different bits are required to be transferred to the data acquisition card, depending upon whether the card is configured to reside on an expansion bus, such as the PCI bus, is coupled to a serial or a parallel port, is a PCMCIA card, or is a VXI or GPIB card.

Computer programs which communicate with input/output devices execute under the supervision of operating systems running on the computer system. Examples of such operating systems include "UNIX", "MS-DOS", "WINDOWS", "WINDOWS NT", the "MACINTOSH" operating system, etc. For security purposes, operating systems typically employ one or more different privilege modes in which computer programs execute. The operating systems are configured such that certain operations, such as the execution of input/output instructions, the execution of instructions which access particular memory ranges, etc., may only be executed in certain privilege modes. The same code reusability and maintainability issues which exist in regard to the input/output device coupling manners, as described above, also exist in regards to privilege modes.

Therefore, an improved system and method is desired for enabling a single computer program to communicate with an expansion device or expansion card regardless of the I/O platform in which the expansion device is configured and regardless of the privilege mode in which the computer program is executing with respect to the operating system running on the computer system.

SUMMARY OF THE INVENTION

The present invention comprises a system and method for performing input/output management in a computer system. The system and method of the present invention simplifies communication between a computer control program executing on the computer system and an input/output device coupled to the computer system. The system and method is independent of the privilege mode in which the computer program is executing with respect to the operating system running on the computer system. The system and method is also independent of the manner in which the input/output device is coupled to the computer system. An I/O manager according to the present invention provides input/output operation macros, comprising first and second conditional execution portions, along with other related functions. The computer program is compiled from one or more source code files which employ the input/output operation macros and call other input/output manager functions. The input/output manager thus provides a means for source code to be developed which is portable across hardware platforms, i.e., input/output coupling manner, across operating system privilege level differences.

The system and method comprises compiling the source code files into the computer program, wherein the compiling comprises determining if the computer program is to execute in a first privilege mode or a second privilege mode. In the

4

first privilege mode the computer program is permitted by the operating system to execute a direct input/output instruction, such as an x86 architecture "in" or "out" instruction, to the input/output device. In the second privilege mode, the computer program is not permitted by the operating system to execute a direct input/output instruction to the input/output device. If the computer system is in the first privilege mode, the first conditional execution portion of the input/output operation macro is resolved to a direct input/output instruction. If the computer system is in the 10 second privilege mode, the first conditional execution portion of the input/output operation macro is resolved to a call to a function, wherein the function causes the computer to change to the first privilege mode and execute a direct input/output instruction in the first privilege mode.

The system and method further comprises executing the computer program on the computer system. First the input/output manager is initialized. The input/output manager determines if the input/output device is coupled to the computer system in a first coupling manner or a second coupling manner in response to the computer program initializing the input/output manager. The first coupling manner comprises the input/output device being coupled to the computer system such that the input/output device is directly accessible to the computer program through a direct system such that the input/output device is not directly accessible to the computer system such that the input/output device is not directly accessible to the computer program through a direct input/output instruction.

After the coupling manner is determined, the input/output operation to the input/output device is performed by executing the first conditional execution portion of the input/output operation macro to the input/output device if the input/output device is coupled to the computer system in the first coupling manner. If the input/output device is coupled to the computer system in the second coupling manner the input/output manager executes the second conditional execution portion of the input/output operation macro which is a function, wherein the function performs the input/output operation by executing a number of direct input/output instructions.

BRIEF DESCRIPTION OF THE 1 RAWINGS

A better understanding of the present invention can be obtained when the following detailed description of the preferred embodiment is considered in conjunction with the following drawings, in which:

FIG. 1 illustrates a data acquisition system according to $_{50}$ the present invention;

FIG. 2 is a block diagram illustrating the computer system of FIG. 1;

FIG. 3 is a C language source code fragment which illustrates aspects of the preferred embodiment of the 55 present invention;

FIG. 4 is a flowchart illustrating the preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Input/Output Manager

Referring now to FIG. 1, a data acquisition system 10 is illustrated in which I/O management is performed according to the present invention. The data acquisition system 10 65 preferably comprises a general purpose computer system 60. The computer system 60 preferably includes various stan-

dard components, including one or more processors, one or more buses, a hard drive and memory. A data acquisition card 76 is comprised in or coupled to the computer system 60.

The data acquisition card 76 is coupled to an instrumentation and/or control system (not shown). The instrumentation and/or control system may be any of various types of systems. Examples of such an instrumentation and/or control system are systems in power generation stations, chemical producing plants, manufacturing facilities, etc. The data acquisition card 76 acquires data from the instrumentation and/or control system and communicates the data to the computer system 60. The data acquisition card 76 is coupled to computer system 60 by one of a plurality of means such as by a parallel port, serial port, VXI bus, GPIB.bus, ISA bus or PCI bus, or other types of buses or platforms.

An example of the data acquisition card 76 is the AT-MIO-16XE-50 card, produced by National Instruments Corporation, which is coupled to the computer system 60 through an ISA bus. Another example of the data acquisition card 76 is the DAQPad-MIO-16XE-50 card, also produced by National Instruments Corporation, which is coupled to the computer system 60 through a parallel port. It is contemplated that the data acquisition card 76 may in fact have various forms, such as a single chip or chipset, or even be incorporated into a larger chip or card as one of multiple functions on the chip or card.

A computer program, represented by floppy, disks 72, executing on the computer system 60 communicates with the data acquisition card 76 to control the data acquisition card 76 and retrieve the data from the data acquisition card 76.

Referring now to FIG. 2, a block diagram illustrating the components comprised in the computer system 60 of FIG. 1 is shown. It is noted that FIG. 2 is illustrative only, and other computer architectures may be used, as desired. As shown, the computer system includes at least one processor 80 coupled through chipset logic 82 to a system memory 84. The chipset 82 preferably includes a PCI (Peripheral Component Interconnect) bridge for interfacing to PCI bus 86. ISA Bridge 88, EISA Bridge 90, GPIB interface card 92, and VXI interface card 94 are shown connected to PCI bus 86 which provide ISA bus 188, EISA bus 190, GPIB 192, and VXI bus 194 respectively. I/O chip 96 is shown connected to PCI bus 86 which provides one or more parallel ports 196, one or more serial ports 197, and PCMCIA ports 198. Various other components may be comprised in the computer system, such as video (not shown) and hard drive (not shown). The data acquisition card 76 (of FIG. 1) is coupled to the computer system 60 by one of the plurality of PCI bus 86, ISA bus 189, EISA bus 190, GPIB 192, VXI bus 194, parallel ports 196, serial ports 197 or PCMCIA ports 198

Referring now to FIG. 3, a C language source code listing is shown which illustrates various aspects of the preferred embodiment of the present invention. The main routine at line 30 contains statements which are indicative of statements included in the computer program (of FIG. 1) which communicates with the data acquisition card 76 (of FIG. 1).

The computer program communicates with the data acquisition card 76 through the services of an input/output manager also executed by the computer system 60 (of FIG. 1).

The input/output manager comprises a plurality of functions and macros called by the main routine. Additionally, the input/output manager defines data structure type 3 which enable the main routine to pass information to the input, output manager, receive information from the input/output manager and request the input/output manager to perform input/output operations. The input/output manager also defines constants and other information which the computer program uses to communicate with the input/output manager. The function definitions, data type definitions, constants and other information which define the interface to the input/output manager are found in the iomgr.h, iomgrg.h, iomgrp.h and iomgr.c files listed at the end of the specification.

The main routine initializes an instance of the input/ 10 output manager by calling the initIOMgr routine at line 36. In the call to initIOMgr, the main routine passes information to the input/output manager about the data acquisition card 76, namely the manner in which the data acquisition card 76 is coupled to the computer system 60 and the expansion slot 15 number in the event that the card resides in an expansion slot. The input/output manager defines constants associated with manners in which the data acquisition card 76 is coupled to the computer system 60. Examples of these manners, or interfaces, are the ISA bus, the NuBUS, the PCI 20 bus, PCMCIA or PC Card, parallel port, serial port, SCXI port, GPIB, VXI, etc. Constants defining these manners, or methods, are found in the iomgr.h header file listed at the end of the specification. Initializing an instance of the input/ output manager comprises allocating memory for an 25 instance of a data structure associated with the data acquisition card 76. Specifically, memory is allocated for an instance of an IOMgrHndlStructType data structure, which is defined in the iomgrp.h header file listed at the end of the specification. The input/output manager then initializes 30 fields in the data structure. The input/output manager populates fields which denote the coupling manner, the base address of the data acquisition card 76, etc. based on the information passed by the main routine. The input/output manager also populates the various function pointers in the 35 data structure to point to functions which perform input/ output operations from/to the data acquisition card 76. An example of a function pointer field in the data structure is the writeReg8 field, which the input/output manager initializes to point to a function which performs an output operation to 40 an 8 bit register.

After performing the initialization, the initIOMgr routine returns a handle to the main routine. The handle is used by he main routine in further communications with the input/output manager. There are two types of handles which the 45 initIOMgr routine returns depending upon the manner in which the data acquisition card 76 is coupled to the computer system 60. The determination is based upon whether or not the computer program may execute a direct input/output instruction to the storage components on the data acquisition 50 card 76, such as registers or memory.

If the data acquisition card 76 is coupled to the computer system 60 in a first manner such that the computer program may execute direct input/output instructions to registers on the data acquisition card 76 then the initIOMgr routine 55 returns a handle in which the base I/O address, commonly referred to as the port address, of the data acquisition card 76 is encoded. Examples of this direct coupling manner are the ISA bus, the PCI bus, and PCMCIA. The computer system processor 80 (of FIG. 2) executing the computer 60 control program executes a single direct input/output instruction to read or write a register on the data acquisition card 76. Examples of the direct input/output instructions are the "in" and "out" instructions found on x86 architecture microprocessors. These two instructions require as a parameter the address in I/O space of the register to be read or written. The base I/O address of the device is used, along

with the offset of the desired register, to compute the I/O address of the register.

If the data acquisition card 76 is coupled to the computer system 60 in a second manner such that the computer program may not execute a direct input/output instruction to registers or memory on the data acquisition card 76, then the initIOMgr routine returns a handle which is a pointer to the previously allocated data structure. Examples of this indirect coupling manner are parallel ports, serial ports, SCXI ports, the GPIB bus, and the VXI bus, etc. By way of example, if the data acquisition card 76 is coupled to the system by a parallel port, the system processor executes a series of direct input/output instructions to the parallel port, thereby indirectly accessing registers or memory on the data acquisition card 76. If the main routine determines that the data acquisition card 76 is coupled via a parallel port, as at line 39, then the main routine calls the initIOMgrPPData routine at line 40. The initlOMgrPPData routine performs further initialization of the previously allocated IOMgrHndlStructType data structure, as well as other parallel port-specific data structures.

It is common for data acquisition cards, such as the data acquisition card 76 described above, to generate interrupts to the computer system processor 80 to notify the processor of asynchronous events. The portion of the computer control program which is invoked in response to an interrupt from the data acquisition card 76 is commonly referred to as an interrupt service routine. Some operating systems, for example WINDOWS 95, distinguish between programs executing in a user mode and a kernel mode. Interrupt service routines typically run in kernel mode. At line 43 the main routine calls the getISRIOMgrHandle routine, which returns a kernel mode handle to the main routine. The interrupt service routine (not shown) makes use of the kernel mode handle to communicate with the input/output manager. Input/Output Operation Macros

At line 46 the main routine calls the macro WRITE REG_8. This is an input/output manager macro which performs an output operation of a single byte to an 8 bit register. The byte written is specified in the third parameter to the macro. The handle associated with the data acquisition card 76 is specified in the first parameter. The offset of the desired register from the data acquisition card 76 base I/O address is specified in the second parameter. An example of the purpose of performing the output operation is to configure a particular register on the card with a given voltage level. Similar macros exist which perform 16 bit and 32 bit output operations, namely WRITE_REG_16 and WRITE_ REG_32, respectively. Conversely, macros exist which perform 8, 16 and 32 bit input operations, namely READ_ REG_8, READ_REG_16 and READ_REG_32. An example of the purpose of performing an input operation is to acquire data from a register containing a current value, or frequency value, or pressure level, etc. These macros are defined in the iomgr.h header file listed at the end of the specification.

In a typical computer program controlling the data acquisition card 76, numerous input/output operations are performed, i.e., the computer program includes numerous calls to the input/output operation macros. In FIG. 3 a single call to an output operation macro is listed for simplicity.

For clarity, the WRITE_REG_8 macro is defined at lines 5 through 8. The macro makes us of the C language conditional expression operator. The condition is evaluated on line 6 in which a test is performed to determine which type of handle was returned by the init1OMgr routine. If the data acquisition card 76 is directly coupled to the computer

7

system 60 then a call to the IOMgrOutB identifier is made at line 7. The IOMgrOutB identifier is resolved in two different manners, as will be discussed below.

If the data acquisition card 76 is not directly coupled to the computer system 60 then the pointer to the data structure 5 is dereferenced to obtain the function pointed to by the writeReg8 function pointer field in the IOMgrHndlStruct-Type data structure at line 8. Hence, the function is indirectly called to perform the 8 bit register output operation. The function comprises a number of direct output instructions 10 which are executed to perform the output operation. For example, a function to perform an output operation to a parallel port may execute one output instruction to the data register in the parallel port to store the address of a desired register on the data acquisition card 76. The desired register 15 address is not an I/O port address, i.e., not in the I/O address space of the computer system 60, but rather an address in the address space known to the decode logic of the data acquisition card 76. The function then executes another output operation to the parallel port data register with the byte of 20 data to be written to the desired data acquisition card 76 register. Additionally, the function executes numerous input instructions to the parallel port status register and output instructions to the parallel port control register before and after writing the address and data to ensure proper commu- 25 nication protocol with the parallel port. An embodiment is contemplated in which the input/output manager implements the indirect function call as a C++ class.

In one embodiment of the present invention, the computer control program executes on the WINDOWS 95 operating 30 system. In WINDOWS 95, the portion of the computer program which executes in user mode (i.e., at user privilege level) is compiled into a dynamic link library (.DLL) file and the portion which executes in kernel mode (i.e., at kernel privilege level) is compiled in to a virtual device driver 35 (.VXD) file.

As previously mentioned, the IOMgrOutB identifier is resolved in two different manners. The determination is made at compile time, based on preprocessor conditional compilation flags, according to the privilege mode at which 40 the computer program will execute, as shown by the #ifdef C preprocessor directive at line 10. If the computer program will run at a mode privileged to execute direct input/output instructions, such as the portion of the computer program in the .VXD file previously mentioned, then the IOMgrOatB 45 identifier is resolved by the C preprocessor to a call to the outp function, as shown at line 12. The outp function is a library function common to C compilers for x86 architecture microprocessors. The outp function receives the I/O address of the desired register to be written to and the data byte to 50 be written to the desired register. The outp function essentially resolves to an "out" instruction previously described. Hence, if the privilege level is sufficient, and the data acquisition card 76 is directly coupled, the input/output manager macro advantageously performs a direct output 55 operation which is more efficient than other indirect meth-

If the computer program will not run at a mode privileged to execute direct input/output instructions, such as the portion of the computer program in the .DLL file previously mentioned, then the IOMgrOutB identifier gets resolved by the C preprocessor to a call to a function, IOMgrOutB, shown in part at lines 16–26. The IOMgrOutB function receives the I/O address of the desired register to be written to and the data byte to be written to the desired register. The 65 IOMgrOutB function populates a data structure with the register address and data byte value to be output to the data

8

acquisition card 76. The function then invokes the callToKernel routine at line 25, which changes to kernel mode and thus executes at sufficient privilege level to perform the output operation via output instructions.

By providing a single mechanism, i.e., macro for performing a given input or output operation for a given data word width, the input/output manager advantageously alleviates the source code from having substantially more conditional run-time statements and/or conditional compilation directives determined by hardware platform and/or execution environment than would otherwise be necessary. Thus code maintenance is performed at one place, i.e., in the macros of the header files, rather than in many locations throughout the code. Hence, the input/output manager facilitates code maintainability, reusability and portability.

Once the output operation has been completed, the main routine calls the getAndClearlOMgrErr routine at line 49, which returns any errors which occurred during previous input/output operations associated with the handle parameter and clears the errors so that subsequent calls to getAndClearlOMgrErr will only return new errors. The computer program then selectively communicates the errors to the user of the computer program (not shown).

Once the computer program has completed communications with the data acquisition card 76, the main routine calls the freeIOMgr routine at line 52, which frees the memory previously allocated for the instance of the input/output manager data structure associated with the handle passed as a parameter.

It is noted that although an output operation has been described above in detail for clarity and illustration purposes, the present invention additionally comprises input operation functionality, namely via the READ_REG_8, READ_REG_16 and READ_REG_32 macros.

It is noted that although the description of the preferred embodiment has referred to port addresses in the I/O address range, as is common in x86 architecture microprocessor-based computer systems, the invention is not limited to I/O space embodiments. In one embodiment of the present invention the computer control program is compiled for and executes on a "MACINTOSH" computer and the input/output operation macros perform input/output operations via memory-mapped I/O (i.e., instructions which perform load/store operations from/to the memory space of the computer system 60) rather than dedicated "in" or "out" instructions.

The preferred embodiment of the present invention further comprises assembly language implementation equivalents (not shown) of the aforementioned input/output operation macros for interfacing with computer control programs written in assembly or other situations requiring assembly language macros.

Hence, the input/output manager advantageously provides a mechanism for a computer program to communicate with an input/output device in a manner which is independent of how the input/output device is coupled to the computer system 60.

In addition, the input/output manager advantageously provides a mechanism for the development of portable, reusable source code for a computer program to communicate with an input/output device in a manner which is independent of the execution privileges of the computer program on an associated operating system.

FIG. 4-Flowchart Diagram

Referring now to FIG. 4, a flowchart diagram illustrating operation of the preferred embodiment of the present invention are shown. The steps involve compiling one or more source code files into the executable computer program (of

FIG. 1) for controlling the data acquisition card 76 (of FIG. 1) and executing the computer program on the computer system 60 (of FIG. 1) to which the data acquisition card 76 is coupled.

A C language preprocessor determines if the computer 5 program will be executed at a sufficient privilege level to execute direct input/output instructions to registers on the data acquisition card 76 in step 202. If so, the preprocessor resolves the first conditional execution portion of an input/ output operation macro to execute a direct input/output 10 instruction in step 206. If not, the preprocessor resolves the first conditional execution portion of the input/output operation macro to call a function in step 204 which switches to kernel mode and executes the direction input/output instruc-

Once the computer program has been compiled into executable code, the computer program begins to execute on the computer system 60. The computer program calls an input/output manager initialization routine and receives a handle from the initialization routine in step 208. The initialization comprises allocating memory for an input/ output manager data structure associated with the data acquisition card 76 and populating the data structure. The computer program then determines if the data acquisition parallel port in step 210. If so, the computer program calls an input/output manager initialization routine which populates portions of the data structure associated with the parallel port in step 212.

The computer program then determines if the data acqui- 30 sition card 76 is directly coupled to the computer system 60 in step 214. If so, the computer program executes the first conditional execution portion of the input/output operation macro to/from a register on the data acquisition card 76 in step 218 using the base I/O address of the data acquisition 35 card 76 which is encoded in the handle returned by the input/output manager initialization routine. If not, the computer program executes the second conditional execution

portion of the input/output operation macro, which is a function, to perform the input/output operation in step 216. The computer program uses the handle returned by the input/output manager initialization routine as a pointer to the data structure. The data structure contains a function pointer to the function which performs the input/output operation. Next, the computer program calls an error reporting function which returns errors generated by previous input/output operations and clears the errors in step 220. Once the services of the input/output manager are no longer needed, the computer program frees the memory in step 222 which had been previously allocated for the data structure.

Therefore, the present invention comprises a system and method for performing input/output management in a computer system executing a computer program controlling an input/output device, wherein the system and method is independent of the privilege mode in which the computer program executes and the manner in which the input/output device is coupled to the computer system. The computer program is compiled from one or more source code files which contain input/output operation macros, defined in an input/output manager portion of the source code files, for performing input/output operations. The input/output mancard 76 is coupled to the computer system 60 through a 25 ager thus facilitates code maintainability, reusability and

> Although the method and apparatus of the present invention has been described in connection with the preferred embodiment, it is not intended to be limited to the specific form set forth herein, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents, as can be reasonably included within the spirit and scope of the invention as defined by the appended claims. Source Code Listing

Below is a partial source code listing of files comprising the preferred embodiment of the input/output manager. The list of source code files includes: iomgr.h, iomgrg.h, iomgrp.h, and iomgrg.c.

```
iomgr.h
Exported register manager stuff
#if !defined (_ionigr_h_)
#define_iomgr_h_
#if defined (kMAC)
  #include "macDefines.h"
  #include "sysConfig.h"
#else
  #include "defines .h"
  #include "lptmgr.h"
#endif
#include "iomgrp.h"
The following constants are for the "ioMethod" paramater to
I initIOMgr.
#define IOM_ISA_METHOD
                                 0
#define IOM_NuBUS_METHOD
#define IOM_PCI_METHOD
#define IOM_PCMCIA_METHOD
#define IOM_EPP_METHOD
#define IOM_NIBBLE_METHOD
/* VXIDAQ begin change [TJH 2/1/95] */
#define IOM_VISA_METHOD
/* VXIDAQ end change
#define IOM_SCXI_PORT_METHOD
                                       8 /* Remote SCXI change [SUNaren
19Dec951 */
typedef us 10MgrHandle:
typedef us 'IOMgrBaseAddr.
```

```
This function initializes the register manager and returns a handle
 to be used to read/write registers on the given device in the given
DECLARE_FUNCTION (IOMgrHandle, initIOMgr)
          deviceNum,
IOMgrBaseAddr baseAddress,
          ioMethod
i16
#if !defined (kMAC)
initIOMgrPPData
This function is used to initialize the data needed for parallel
  port communication. The parallel port data is passed to LPTMGR
  to do the read/writes on the parallel port.
The IOMgrHandle is the handle returned by the initIOMgr function.
I The initIOMer function must be called before this one. If multiple
IO Managers access the same parallel port, the same same parallel
port data should be given to each of them through this function.
 Note: The Macintosh does not have a Parallel Port, so this function
is not currently implemented there.
DECLARE_FUNCTION (int. initIOMgrPPData)
  IOMgrHandle |
                   ioMgr.
  PportInfoStruct *pPortData
 endif /* !defined (kMAC) */
ll freeiOMgr
Frees the space allocated by the IO Manager. Must be called before
NI-DAQ exits.
h------/
DECLARE_FUNCTION (void, freeIOMgr) (IOMgrHandle IOMgr):
Use the following macros to call the read/write functions from C.
C functions should not reference, the function pointers directly
because they will be stored in different places on different
platforms.
 The read macros all return an 432 that contains the data read.
 The write macros do not return anything. Use the getAndClearIOMgrErr
function the check for errors after calls to these macros.
            ···············*/
#define WRITE_REG_8(handle, regOffset, data) \
 (_IOM_SHORT_CUT (handle) ? \
    IOMgrOutB (_IOM_SHORT_CUT_B_ADDR (handle) + (regOffset), (u8)
    (*(((IOMgrHndlStruct *) (handle))->writeReg8)) \
      ((IOMgrHndlStructPtr) (handle), (regOffset), (data)))
#define WRITE_REG_16(handle, regOffset, data) \
(_IOM_SHORT_CUT (handle) ? \
    IOMgrOutW (_IOM_SHORT_CUT_B_ADDR (handle) + (regOffset), (u16)
    (*(((IOMgrHndlStruct *) (handle) > writeReg16)) \
((IOMgrHndlStructPtr) (handle), (regOffset), (data)))
#define WRITE_REG_32(handle, regOffset, data) \
  (*(((IOMgrHndlStruct *) (handle))->writeReg32)) \
    ((IOMgrHndlStructPtr) (handle), (regOffset), (data))
#define READ_REG_S(handle, regOffset) \
(_IOM_SHORT_CUT (handle) ? \
IOMgrInB (_IOM_SHORT_CUT_B_ADDR (handle) + (regOffset)) : \
      (*(((IOMgrHndiStruct *) (handle))->readReg8)) \
        ((IOMgrHndlStructPtr) (handle), (regOffset)))
#define READ_REC_lo(handle, regOffset) \
(_IOM_SHORT_CUT (handle) " \
    IOMgrInW (_IOM_SHORT_CUT_B_ADDR (handle) + (regOffset)) : -
```

```
(*(((IOMgrHnd1Struct *) (handle))->readReg10)) \
(((IOMgrHnd1StructPtr) (handle), (regOffset)))

#define READ_REG_32(handle, regOffset)) \
((*(((IOMgrHndIStructPtr) (handle), (regOffset))) \
((IOMgrHndIStructPtr) (handle), (regOffset))

DECLARE_FUNCTION (IOMgrHandle, getISRIOMgrHandle) (IOMgrHandle ioMgr);

DECLARE_FUNCTION (i32, getAndClearIOMgrErr) (IOMgrHandle IOMgr);
*endif /* __iomgr_h__ */
```

```
iomgrp.h
```

```
This is the private include file for IOMgr.c. It contains data
  types and constants for the illoernal structures of the register
  manager. Only register manager files should include it. Include
 10Mgr.h to use the register manager.
 #if !defined (_iomgrp_h_)
 #define __iomgrp_h_
#if defined (IBM)
#include "lptmgr.h"
#elif defined (kMAC)
 #elif defined (SUN)
 #endif
 #if defined (WINDOWS) || defined (VISRD)
   #define _IOM_SHORT_CUT_HANDLE 0x00010000
 #else
   #define _IOM_SHORT_CUT_HANDLE 0xffff0000
 #endit
#define _IOM_SHORT_CUT_BITS 0xffff0000
#define _IOM_SHORT_CUT(handle) \
#define_IOSI_SHORT_COT(Intuitie);

(((u32) (handle) & _IOM_SHORT_CUT_BITS) == _IOM_SHORT_CUT_HANDLE)

#define_IOM_SHORT_CUT_B_ADDR(handle) ((u16) (((u32) (handle)) &

(-_IOM_SHORT_CUT_BITS)))

#if defined (WIN32)

#include "iomgrg.h"
 #else
   #define IOMgrOutB(reg,val)
                                    (outp((u16) (reg), (valii)
   #define IOMgrInB(reg)
                                     ((i16)inp((u16) (reg)))
   #define IOMgrOutW(reg.val)
                                    (outpw((u16) (reg), (val)))
  #define IOMgrInW(reg)
                                     ((ilblinpw((ulb) (reg)))
#endil
typedef struct IOMgrHndlStructType *IOMgrHndlStructPtr;
typedef i16 (*FPwriteReg8)
  IOMgrHndlStructPtr rmPtr.
   i32 regOffset.
   i32 data
typedef ilo (*FPwriteReglo)
  IOMgrHndlStructPtr rmPtr,
   i32 regOffset.
   i32 data
typedef ito (*FpwriteReg32)
  IOMgrHndlStructPtr rmPtr.
   i32 regOffset,
  i32 data
typedef is (*FPreadReg8)
  IOMgrHndiStructPtr rmPtr.
  i32 regOffset
typedef i16 (*FPreadReg16)
  IOMgrHndlStructPtr rmPtr.
  i32 regOffset
typedef i32 (*FPreadReg32)
  IOMgrHndlStructPtr rmPtr.
  i32 regOffset
typedef i32 (*FPgetAndClearErr)
```

```
IOMgrHndlStructPtr rmPtr
 typedef struct IOMgrHndlStructType
    FPwriteReg8
                              writeReg8;
writeReg16;
writeReg32;
    FPwriteReg16
    FPwriteReg32
    FPreadReg8
                             readReg8:
    FPreadReg16
                             readReg16;
    FPrendReg32 readReg32:
FPgetAndClearErr getAndClearErr:
                           haseAddress:
    i16
                           ioMethod:
    i16
                           boardType;
   ilo deviceNum: /* VXIDAQ tjh 2/1/96 */
ilo logicalAddress: /* VXIDAQ BC 3/12/96 */
/* Following field added for Remote SCXI - [SUNaren 20Dec95] */
                          *netMgrHandle;
   i16
                          ackBeforeExecute;
     platform dependent fields go here
   #if defined (kMAC)
      ioFunctionsStruct ioFunctions:
    #elif defined (IBM)
      PportInfoStruct *IptPortInfo:
struct IOMgrHndlStructType * iomPtr32;
VXIDAQ begin change [TJH 2/1/96] */
      i32 status;
      i32 VISAbaseAddress32; /* kernel mode VXI base address */
      i32 VISAbaseAddress: /* user mode VXI base address */
ulb VISAaccessMode:
PEEK_AND_POKE */
i32 offsetToFirstReg:
for A10, 0x180 for A24 */
                                      /* DEREF_VXI_ADDR. IN_AND_OUT,
                                  /* this can be adjusted: typically 0x20
   /* VXIDAQ end change */
   #endif
| IOMgrHndIStruct;
#endif /* _iomgrp_h_ */
```

```
iomgrg.h
#if !defined (_iomgrg_h_)
#define __iomgrg_ h_
#if defined (WIN32)
  DECLARE_FUNCTION (i16, IOMgrOutB)
    i32 ioAddr.
    i32 data
  DECLARE_FUNCTION (is, IOMgrInB)
    i32 ioAddr
  DECLARE_FUNCTION (i16, IOMgrOutW)
    i32 ieAddr.
    i32 data
  DECLARE_FUNCTION (i16, IOMgrinW)
    i32 ioAddr
#endit /* WIN32 **
 Device EO Control Parameter Blocks
             IOMGR_IO_IN_WORD
IOMGR_IO_OUT_WORD
#define
#define
#define
             IOMGR, IO_IN_BYTE
             IOMGR_IO_OUT_BYTE
#define
             IOMGR GET_KERNEL_EPPW8
IOMGR GET_KERNEL_EPPW16
#Jefine
#Jeline
```

```
IOMGR_GET_KERNEL_EPPRS
IOMGR_GET_KERNEL_EPPR16
IOMGR_GET_KERNEL_NIBBLEWS
#define
#define
#define
                  IOMGR_GET_KERNEL_NIBBLEW16
IOMGR_GET_KERNEL_NIBBLERS
                                                                                                          10
#define
 #define
                  IOMGR_GET_KERNEL_NIBBLERI6
IOMGR_GET_KERNEL_IOW8
IOMGR_GET_KERNEL_IOW16
IOMGR_GET_KERNEL_IOR8
IOMGR_GET_KERNEL_IOR16
 #define
 #define
#define
#define
#define
                                                                                                          16
                  IOMGR_GET_KERNEL_NOSUPPORTR
IOMGR_GET_KERNEL_NOSUPPORTW
IOMGR_GET_KERNEL_LPT_GET_CLEAR_ERR
IOMGR_PPIO_IN_WORD
IOMGR_PPIO_OUT_WORD
#define
#define
#define
                                                                                                          19
#define
                                                                                                          20
21
#define
                  IOMGR_PPIO_IN_BYTE
IOMGR_PPIO_OUT_BYTE
#define
#define
                                                                                                          23
24
25
                                                                                                          26
                  IOMGR_GET_KERNEL_VISA_R16
#define
                                                                                                          28
#define
                  IOMGR_GET_KERNEL_VISA_R32
                                                                                                          29
/* VXIDAQ end change */
/* Remote SCXI Change [SUNaren 19Dec95] */
#define IOMGR_GET_KERNEL_SCXI_PORTW8
#define IOMGR_GET_KERNEL_SCXI_PORTW16
#define IOMGR_GET_KERNEL_SCXI_PORTW16
                                                                                                          30
                                                                                                         31
                  IOMGR_GET_KERNEL_SCXI_PORTR16
                  IOMGR_GET_KERNEL_SCXI_PORT_GET_CLEAR_ERR
#define
/* Remote SCXI change end */
typedef u8 *IOHandle; /* MUST match the definition of IOMgrHandle! */
#pragma pack (1)
typedef struct
   /* function ID */
   u16 funcID;
   union
     struct
        /* input */
        i32 ioAddr;
        /* output */
        i32 data:
        ilo err:
        ; inWord:
     struct
       /* input */
        i32 ioAddr:
        i32 data:
        /* output */
        ilb err;
        outWord;
     struct
       /* input */
        i32 ioAddr:
        /* output */
        i32 data;
        il6 err;
       } inByte:
     ार्भव
       /* input */
       i32 ioAddr:
       /* output -;
       il6 err:
        } outByte:
     struct
       {
/* output */
yoid * ioFunc:
        }getKernelloFunc:
     struct
       | input */
        IOHandle ioHandle:
```

```
i32 regOffset:
/* output */
i32 data:
i10 err;
} PFIOinAccess:
struct
/* input */
10Handle ioHandle:
i32 regOffset:
i32 data:
/* output */
i10 err;
PPIOoutAccess:
|pammeter:
| iomgrParamBlock:
#pragma pack ()
#endif /* _iomgrg_h_ */
```

```
iomgrg.c
* I/O Manager Gate to the Kernel
#include "ndmaster.h"
#include "iomgr.h"
#include "iomgrg.h"
#include "gatemgr.h"
* Call the Kernel and write a byte
DECLARE_FUNCTION (i16, IOMgrOutB)
 i32 ioAddr,
 i32 data
 iomgrParamBlock pb:
 ph.funcID = IOMGR_IO_OUT_BYTE:
 pb.parameter.outByte.ioAddr = ioAddr.
 pb.parameter.outByte.data = data;
 Call'foDAQKernel (IO_MANAGER_ID.: &pb. sizeof (iomgrParamBlock)); return pb.parameter.outByte.err:
* Call the Kernel and read a byte
.......
DECLARE_FUNCTION (is, IOMgrInB)
 i32 ioAddr
 iomgrParamBlock pb:
 pb.funcID = IOMGR_IO_IN_BYTE:
 pb.parameter.outByte.ioAddr = ioAddr:
CallToDAQKernel (IO_MANAGER_ID, &pb, sizeof (iomgrParamBlock));
return (i8) pb.parameter.outByte.data;
* Call the Kernel and write a word
DECLARE_FUNCTION (i16, IOMgrOutW)
```

```
i32 ioAddr,
  i32 data
  iomgrParamBlock pb:
  pb.funcID = IOMGR_IO_OUT_WORD:
  ph.parameter.outByte.ioAddr = ioAddr.
  pb.parameter.outByte.data = data:
  CallToDAQKernel (IO_MANAGER_ID,: &pb, sizeof (iomgrParamBlock)):
  return pb.parameter.outByte.crr;
 Call the Kernel and read a word
DECLARE_FUNCTION (i16, IOMgrInW)
 i32 ioAddr
 iomgrParamBlock pb:
 pb.funcID = IOMGR_IO_IN_WORD;
  pb.parameter.outByte.ioAddr = ioAddr.
 CallToDAQKernel (IO_MANAGER_ID, &pb, sizeof (iomgrParamBlock));
 return (i16) pb.parameter.outByte.data;
```

L claim:

1. A method for performing input/output management in ³⁰ a computer system which simplifies communication between a computer program executing on said computer system and an input/output device coupled to said computer system, wherein the method is independent of the manner in which said input/output device is coupled to said computer ³⁵ system, comprising:

initializing an input/output manager;

- determining if said input/output device is coupled to said computer system in a first coupling manner or a second coupling manner in response to said computer program 40 initializing said input/output manager;
- wherein said first coupling manner comprises said input/ output device being coupled to said computer system such that said input/output device is directly accessible to said computer program through a direct input/output 45 instruction;
- wherein said second coupling manner comprises said input/output device being coupled to said computer system such that said input/output device is not directly accessible to said computer program through a direct 50 input/output instruction; and
- performing an input/output operation to said input/output device after said determining, wherein said performing said input/output operation comprises:
 - executing a direct input/output instruction to said input/ 55 output device if said determining determines that said input/output device is coupled to said computer system in said first coupling manner; and
 - executing a function if said determining determines that said input/output device is coupled to said computer 60 system in said second coupling manner, wherein said function performs said input/output operation.
- 2. The method of claim 1, wherein said function executes a plurality of direct input/output instructions to perform said input/output operation.
- 3. The method of claim 1, wherein said executing said function includes cailing said function indirectly by deref-

- erencing a pointer to a data structure, wherein said data structure contains a pointer to said function, wherein said data structure further contains data used by said input/output manager.
 - 4. The method of claim 3, further comprising:
 - returning a handle in response to said initializing said input/output manager, wherein said handle is said pointer to said data structure.
 - 5. The method of claim 1, further comprising:
 - initializing a portion of said input/output manager associated with said second coupling manner of said input/ output device to said computer system before said performing said input/output operation if said input/ output device is coupled to said computer system in said second coupling manner.
 - 6. The method of claim 1, further comprising:
 - returning a handle in response to said initializing said input/output manager, wherein the base address of said input/output device is encoded in said handle, wherein said base address is used to execute said direct input/output instruction.
 - 7. The method of claim 1, further comprising:
 - executing an error reporting function after said performing said input/output operation;
 - returning errors generated by said performing said input/ output operation.
 - 8. The method of claim 7, further comprising:
 - clearing said errors in response to said returning said errors.
 - 9. The method of claim 1, further comprising:
 - freeing memory in said computer system used by said input/output manager after said performing said input/output operation.
- 10. The method of claim 1, wherein portions of said computer program comprise assembly language code.
 - 11. The method of claim 1, further comprising:
 - receiving a kernel mode handle from said input/output manager after said initializing said input/output

manager, wherein said kernel mode handle is used by said computer program to communicate with said input/output manager in kernel mode.

12. A method for performing input/output management in a computer system running an operating system, wherein the method simplifies communication between a computer program executing on said computer system and an input/output device coupled to said computer system, wherein the method is independent of the privilege mode in which said computer program is executing with respect to said operating system, wherein said computer program is compiled from one or more source code files, wherein said one or more source code files contains an input/output operation macro for performing an input/output operation, comprising:

compiling said one or more source code files into said computer program, wherein said compiling comprises: determining if said computer program is to execute in a first privilege mode or a second privilege mode, wherein in said first privilege mode said computer program is permitted by said operating system to execute a direct input/output instruction to said input/output device, wherein in said second privilege mode said computer program is not permitted by said operating system to execute a direct input/output instruction to said input/output device;

resolving said input/output operation macro to a direct input/output instruction to perform said input/output operation upon determining said computer program is to execute in said first privilege mode; and

resolving said input/output operation macro to a call to a function to perform said input/output operation upon determining said computer program is to execute in said second privilege mode, wherein said function changes to said first privilege mode and executes a direct input/output instruction in said first privilege mode.

13. The method of claim 12, further comprising executing said computer program on said computer system.

14. A method for performing input/output management in a computer system running an operating system, wherein the method simplifies communication between a computer program executing on said computer system and an input/output device coupled to said computer system, wherein the method is independent of the privilege mode in which said computer program is executing with respect to said operating system and, wherein the method is independent of the manner in which said input/output device is coupled to said computer system, wherein said computer program is compiled from one or more source code files, wherein said one or more source code files contains an input/output operation macro for performing an input/output operation, comprising:

a) compiling said one or more source code files into said so computer program, wherein said compiling comprises: determining if said computer program is to execute in a first privilege mode or a second privilege mode, wherein in said first privilege mode said computer program is permitted by said operating system to execute a direct input/output instruction to said input/output device, wherein in said second privilege mode said computer program is not permitted by said operating system to execute a direct input/output instruction to said input/output device;

resolving a first conditional execution portion of said input/output operation macro to a direct input/output instruction to perform said input/output operation upon determining said computer program is to execute in said first privilege mode; and

resolving said first conditional execution portion of said input/output operation macro to a call to a

function to perform said input/output operation upon determining said computer program is to execute in said second privilege mode, wherein said function changes to said first privilege mode and executes a direct input/output instruction in said first privilege mode; and

 b) executing said computer program on said computer system, wherein said executing comprises:

initializing an input/output manager;

determining if said input/output device is coupled to said computer system in a first coupling manner or a second coupling manner in response to said computer program initializing said input/output manager;

wherein said first coupling manner comprises said input/output device being coupled to said computer system such that said input/output device is directly accessible to said computer program through a direct input/output instruction;

wherein said second coupling manner comprises said input/output device being coupled to said computer system such that said input/output device is not directly accessible to said computer program through a direct input/output instruction;

performing an input/output operation to said input/ output device, wherein said performing said input/ output operation comprises:

executing said resolved first conditional execution portion of said input/output operation macro if said input/output device is coupled to said computer system in said first coupling manner; and

executing a second conditional execution portion of said input/output operation macro if said input/output device is coupled to said computer system in said second coupling manner, wherein said second conditional execution portion is a function which performs said input/output operation.

15. The method of claim 14, wherein said function executes a plurality of direct input/output instructions to perform said input/output operation.

16. The method of claim 14, wherein said executing said second conditional execution portion includes calling said function indirectly by dereferencing a pointer to a data structure, wherein said data structure contains a pointer to said function, wherein said data structure further contains data used by said input/ouiput manager.

17. A method for performing input/output operations to a data acquisition card in a computer system which simplifies communication between a computer program executing on said computer system and a data acquisition card coupled to said computer system, wherein the method is independent of the manner in which said data acquisition card is coupled to said computer system, comprising:

initializing an input/output manager;

determining if said data acquisition card is coupled to said computer system in a first coupling manner or a second coupling manner in response to said computer program initializing said input/output manager;

wherein said first coupling manner comprises said data acquisition card being coupled to said computer system such that said data acquisition card is directly accessible to said computer program through a direct input/output instruction;

wherein said second coupling manner comprises said data acquisition eard being coupled to said computer system such that said data acquisition card is not directly accessible to said computer program through a direct input/output instruction;

performing an input/output operation to said data acquisition card, wherein said performing said input/output operation comprises:

executing a direct input/output instruction to said data acquisition card if said data acquisition card is 5 coupled to said computer system in said first coupling manner; and

executing a function if said data acquisition card is coupled to said computer system in said second coupling manner, wherein said function performs 10 said input/output operation.

18. A method for performing input/output operations to a data acquisition card in a computer system running an operating system, wherein the method simplifies communication between a computer program executing on said computer system and a data acquisition card coupled to said computer system, wherein the method is independent of the privilege mode in which said computer program is executing with respect to said operating system, wherein said computer program is compiled from one or more source code files, wherein said one or more source code files, wherein said one or more source code files, contains an input/output operation, comprising:

compiling said one or more source code files into said computer program, wherein said compiling comprises: determining if said computer program is to execute in a first privilege mode or a second privilege mode, wherein in said first privilege mode said computer program is permitted by said operating system to execute a direct input/output instruction to said data acquisition card, wherein in said second privilege mode said computer program is not permitted by said operating system to execute a direct input/output instruction to said data acquisition card;

resolving said input/output operation macro to a direct input/output instruction to perform said input/output operation upon determining said computer program is to execute in said first privilege mode; and

resolving said input/output operation macro to a call to a function to perform said input/output operation upon determining said computer program is to execute in said second privilege mode, wherein said function changes to said first privilege mode and executes a direct input/output instruction in said first privilege mode.

19. A method for performing input/output operations to a data acquisition card in a computer system running an operating system, wherein the method simplifies communication between a computer program executing on said computer system and an data acquisition card coupled to said computer system, wherein the method is independent of the privilege mode in which said computer program is executing with respect to said operating system and, wherein the method is independent of the manner in which said data acquisition card is coupled to said computer system, wherein said computer program is compiled from one or more source societiles, wherein said one or more source code files contains an input/output operation macro for performing an input/output operation, comprising:

a) compiling said one or more source code files into said computer program, wherein said compiling comprises: 60 determining if said computer program is to execute in a first privilege mode or a second privilege mode, wherein in said first privilege mode said computer program is permitted by said operating system to execute a direct input/output instruction to said data acquisition card, wherein in said second privilege mode said computer program is not permitted by said

operating system to execute a direct input/output instruction to said data acquisition card;

resolving a first conditional execution portion of said input/output operation macro to a direct input/output instruction to perform said input/output operation upon determining said computer program is to execute in said first privilege mode; and

resolving said first conditional execution portion of said input/output operation macro to a call to a function to perform said input/output operation upon determining said computer program is to execute in said second privilege mode, wherein said function changes to said first privilege mode and executes a direct input/output instruction in said first privilege mode; and

 b) executing said computer program on said computer system, wherein said executing comprises: initializing an input/output manager;

determining if said data acquisition card is coupled to said computer system in a first coupling manner or a second coupling manner in response to said computer program initializing said input/output manager;

wherein said first coupling manner comprises said data acquisition card being coupled to said computer system such that said data acquisition card is directly accessible to said computer program through a direct input/output instruction;

wherein said second coupling manner comprises said data acquisition card being coupled to said computer system such that said data acquisition card is not directly accessible to said computer program through a direct input/output instruction;

performing an input/output operation to said data acquisition card, wherein said performing said input/output operation comprises:

executing said resolved first conditional execution portion of said input/output operation macro if said data acquisition card is coupled to said computer system in said first coupling manner; and

executing a second conditional execution portion of said input/output operation macro if said data acquisition card is coupled to said computer system in said second coupling manner, wherein said second conditional execution portion is a function which performs said input/output operation.

20. A memory media which stores program instructions for performing input/output management in a computer system, wherein the input/output management simplifies communication between a computer program executing on said computer system and an input/output device coupled to said computer system, wherein the program instructions implement:

determining if said input/output device is coupled to said computer system in a first coupling manner or a second coupling manner;

wherein said first coupling manner comprises said input/ output device being coupled to said computer system such that said input/output device is directly accessible to said computer program through a direct input/output instruction;

wherein said second coupling manner comprises said input/output device being coupled to said computer system such that said input/output device is not directly accessible to said computer program through a direct input/output instruction; and

performing an input/output operation to said input/output device after said determining, wherein said performing said input/output operation comprises: executing a direct input/output instruction to said input/ output device if said determining determines that said input/output device is coupled to said computer system in said first coupling manner; and

executing a function if said determining determines that said input/output device is coupled to said computer system in said second coupling manner, wherein said function performs said input/output operation.

21. The memory media of claim 20, wherein said function executes a plurality of direct input/output instructions to

perform said input/output operation.

22. The memory media of claim 20, wherein said executing said function includes calling said function indirectly by dereferencing a pointer to a data structure, wherein said data structure contains a pointer to said function, wherein said data structure further contains data used by said input/output 15 manager.

23. The memory media of claim 22, further comprising: returning a handle in response to said initializing said input/output manager, wherein said handle is said pointer to said data structure.

24. The memory media of claim 20, wherein portions of said computer program comprise assembly language code.

25. The memory media of claim 20, wherein said input/output device comprises a data acquisition card.

26. A memory media which stores program instructions 25 for performing input/output management in a computer system running an operating system, wherein the input/output management simplifies communication between a computer program executing on said computer system and an input/output device coupled to said computer system, wherein the input/output management is independent of the privilege mode in which said computer program is executing with respect to said operating system, wherein said computer program is compiled from one or more source code files, wherein said one or more source code files contains an input/output operation macro for performing an input/output operation, wherein the program instructions implement:

compiling said one or more source code files into said computer program, wherein said compiling comprises:

- determining if said computer program is to execute in a first privilege mode or a second privilege mode, wherein in said first privilege mode said computer program is permitted by said operating system to execute a direct input/output instruction to said input/output device, wherein in said second privilege mode said computer program is not permitted by said operating system to execute a direct input/output instruction to said input/output device;
- resolving said input/output operation macro to a direct input/output instruction to perform said input/output operation upon determining said computer program is to execute in said first privilege mode; and
- resolving said input/output operation macro to a call to a function to perform said input/output operation upon determining said computer program is to execute in said second privilege mode, wherein said function changes to said first privilege mode and executes a direct input/output instruction in said first privilege mode.

27. The memory media of claim 26, further comprising executing said computer program on said computer system.

28. The memory media of claim 26, wherein said input/output device comprises a data acquisition card.

29. A memory media which stores program instructions for performing input/output management in a computer system running an operating system, wherein the input/ 65 output management simplifies communication between a computer program executing on said computer system and

an input/output device coupled to said computer system, wherein the input/output management is independent of the privilege mode in which said computer program is executing with respect to said operating system and, wherein the input/output management is independent of the manner in which said input/output device is coupled to said computer system, wherein said computer program is compiled from one or more source code files, wherein said one or more source code files contains an input/output operation macro for performing an input/output operation, wherein the program instructions implement:

a) compiling said one or more source code files into said computer program, wherein said compiling comprises: determining if said computer program is to execute in a first privilege mode or a second privilege mode, wherein in said first privilege mode said computer program is permitted by said operating system to execute a direct input/output instruction to said input/output device, wherein in said second privilege mode said computer program is not permitted by said operating system to execute a direct input/output instruction to said input/output device;

resolving a first conditional execution portion of said input/output operation macro to a direct input/output instruction to perform said input/output operation upon determining said computer program is to execute in said first privilege mode; and

resolving said first conditional execution portion of said input/output operation macro to a call to a function to perform said input/output operation upon determining said computer program is to execute in said second privilege mode, wherein said function changes to said first privilege mode and executes a direct input/output instruction in said first privilege mode; and

 b) executing said computer program on said computer system, wherein said executing comprises:

initializing an input/output manager;

determining if said input/output device is coupled to said computer system in a first coupling manner or a second coupling manner in response to said computer program initializing said input/output manager;

wherein said first coupling manner comprises said input/output device being coupled to said computer system such that said input/output device is directly accessible to said computer program through a direct input/output instruction;

wherein said second coupling manner comprises said input/output device being coupled to said computer system such that said input/output device is not directly accessible to said computer program through a direct input/output instruction;

performing an input/output operation to said input/ output device, wherein said performing said input/ output operation comprises:

executing the resolved first conditional execution portion of said input/output operation macro if said input/output device is coupled to said computer system in said first coupling manner; and

executing a second conditional execution portion of said input/output operation macro if said input/output device is coupled to said computer system in said second coupling manner, wherein said second conditional execution portion is a function which performs said input/output operation.

30. The memory media of claim 29, wherein said function executes a plurality of direct input/output instructions to perform said input/output operation.

29

31. The memory media of claim 29, wherein said executing said second conditional execution portion includes calling said function indirectly by dereferencing a pointer to a data structure, wherein said data structure contains a pointer

30

to said function, wherein said data structure further contains data used by said input/output manager.

* * * * *