Truncation 1

Corollary 1.1. (of SLLN). Take i.i.d. (X_i) where $\mathbb{E}X^+ = \infty$, $\mathbb{E}X^- < \infty$. Let $S_n = \sum_{i=1}^n X_i$. Then $\frac{S_n}{\longrightarrow} \stackrel{a.s.}{\longrightarrow} \infty$.

Proof. Fix large $B < \infty$. Define $Y_i = X_i 1_{X_i \le B}$, $Y_i \le X_i$. (Y_i) iid, $\mathbb{E}|Y_i| < \infty$, so can apply SLLN to (Y_i) .

 $\implies \frac{1}{n} \sum_{1}^{n} Y_{i} \stackrel{\text{a.s.}}{\rightarrow} \mathbb{E} Y = \mathbb{E} X 1_{X \leq B}$

 $\implies \liminf_n \frac{1}{n} S_n \ge \liminf_n \frac{1}{n} \sum_1^n Y_i \stackrel{\text{a.s.}}{=} \mathbb{E} X 1_{X \le B}$ True for each B, so letting $B \uparrow \infty$

$$\mathbb{E}[X1_{X < B}] \uparrow -\mathbb{E}X^{-} + \mathbb{E}X^{+} = +\infty \tag{1.1}$$

$$\implies \liminf_n \frac{1}{n} S_n \ge \infty$$

Lemma 1.2. (Deterministic) Reals $s_0 = 0$, $\frac{S_n}{n} \to a \in (0, \infty)$. Let $h(t) = \min\{n : s_n \ge t\}$, $m(t) = \max\{n : S_n \le t\}$. Note $m(t) \ge h(t) - 1$. Then $\frac{h(t)}{t} \to \frac{1}{a}$ and $\frac{m(t)}{t} \to \frac{1}{a}$ as $t \to \infty$.

Figure 1: Depiction of h(t) and m(t)

Proof. Fix
$$\epsilon > 0$$
. $S_n \le (a + \epsilon)n$ e.v. $\implies h(t) \ge \frac{t}{a = \epsilon} e.v.$ $\implies \liminf_t \frac{h(t)}{t} \ge \frac{1}{a + \epsilon}$ $\implies \liminf_t \frac{h(t)}{t} \ge \frac{1}{a}$ Similarly $m(t) \le \frac{t}{a - \epsilon} e.v.$ $\implies \limsup_t \frac{m(t)}{t} \le \frac{1}{a}$

Altogether

$$\frac{1}{a} \le \liminf_{t} \frac{h(t)}{t} \le \liminf_{t} \frac{m(t)}{t} \le \limsup_{t} \frac{m(t)}{t} \le \frac{1}{a}$$
 (1.2)

Corollary 1.3. (renewal SLLN) (X_i) iid. $\mathbb{E}X = \mu \in (0, \infty)$, $S_n = \sum_{i=1}^n X_i$. Define $N_t = \max\{n : S_n \leq t\}$, $H_t = \min\{n : S_n \geq t\}$. Then $\frac{N(t)}{t} \to \frac{1}{\mu}$ and $\frac{H(t)}{t} \to \frac{1}{\mu}$ a.s. as $t \to \infty$.

Proof. Use SLLN and Deterministic Lemma.

Consider light bulbs have IID lifetimes $X_1, X_2, \dots > 0$. New bulb at time 0, $N_t =$ # bulbs replaced by time t. Renewal SLLN says if average lifetime is 1/2 year, then you should replace at 2 per year. TODO: ???

2 **Martingales**

Random variables $X_i = (\Omega, \mathcal{F}, P) \to \mathbb{R}$ are measurable functions. Givne X_0, X_1, \dots, X_n , define $\mathcal{F}_n = \sigma(X_0, \dots, X_n)$ which is comprised of events of the form $\{\omega : (X_0(\omega), \dots, X_n(\omega)) \in$ B} for some measurable $B \subset \mathbb{R}^{n+1}$, $\mathcal{F}_n \subset \mathcal{F}$ for every n. We sometimes interpret \mathcal{F}_n as "information at time n."

Definition 2.1. A *stopping time* is a r.v. $T: (\Omega, \mathcal{F}, P) \to \{0, 1, 2, \dots\} \cup \{\infty\}$ such that

$$\{T = n\} \in \mathcal{F}_n, 0 \le n < \infty \tag{2.1}$$

Proposition 2.2. This is equivalent to

$$\{T \le n\} \in \mathcal{F}_n, 0 \le n < \infty \tag{2.2}$$

Proof. Given eq. (2.1),

$$\{T \le n\} = \{T = 0\} \cup \{T = 1\} \cup \dots \cup \{T = n\} \in \mathcal{F}_n$$
 (2.3)

so all are $\in \mathcal{F}_n$.

Conversely, given eq. (2.2)

$$\{T=n\} = \{T \le n\} \setminus \{T \le n-1\} \in \mathcal{F}_n \tag{2.4}$$

are also all $\in \mathcal{F}_n$. **Example 2.3.** $T = \min\{n : X_n \in B\}$ for measurable $B \subset \mathbb{R}^1$ is a stopping time, because $\{T \le n\} = \bigcup_{i=0}^n \{X_i \in B\} \in \mathcal{F}_n$.

Example 2.4. Arbitrary X_1, X_2, \dots, X_n , define $S_0 = 0$, $S_m = \sum_{i=1}^m X_i$. Then $\sigma(X_1, \dots, X_n) = \sigma(S_0, S_1, \dots, S_n) = \mathcal{F}_n((X_1, \dots, X_i) \to S_i)$ through summing, $(S_i, S_{i-1}) \to X_i$ through differences) and so $T = \min\{n : S_n \ge b\}$ is a stopping time.

Example 2.5. Given X_1, \dots, X_N , given $N, T = \max\{n : n \le N, X_n \ge a\}$ is *not* a stopping time.

Proposition 2.6 (Wald's equation/identity/formula). (X_i) *iid*, $\mathbb{E}X = \mu < \infty$, $S_n = \sum_{i=1}^n X_i$, T a stopping time with $\mathbb{E}T < \infty$. Then $\mathbb{E}S_t = \mu \mathbb{E}T$

Note: Undergraduate result assumed *T* is independent of (*X*).

Remark 2.7. $\mathbb{E} \sum_{i=1}^{\infty} Y_i = \sum_{i=1}^{\infty} \mathbb{E} Y_i$ holds provided $\sum_{i=1}^{\infty} \mathbb{E} |Y_i| < \infty$

Proof. $\sum_{i=1}^{n} Y_{i} \to \sum_{i=1}^{\infty} Y_{i}$ and dominated by RV $\sum_{i=1}^{\infty} |Y_{i}|$. Use dominated convergence. \Box *Proof of Wald's*.

$$S_n = \sum_{1}^{\infty} X_i 1_{i \le n} \implies S_T = \sum_{1}^{\infty} X_i 1_{i \le T}$$
 (2.5)

$$\underbrace{\{i \le T\}^c}_{\in \mathcal{F}_{i-1}} = \{T \le i - 1\} \in \mathcal{F}_{i-1} \tag{2.6}$$

$$\implies$$
 { $i \le T$ } independent of X_i (2.7)

$$\mathbb{E}[X_i 1_{i < T}] = \mu P(T \ge i) \tag{2.8}$$

$$\implies \sum_{i}^{\infty} \mathbb{E}[X_{i} 1_{1 \le T}] = \mu \mathbb{E}T \tag{2.9}$$

By earlier fact, to show

$$\mathbb{E}[S_t] = \mathbb{E}\sum_{1}^{\infty} X_i 1_{i \le T} \stackrel{?}{=} \sum_{1}^{\infty} \mathbb{E}[X_i 1_{1 \le T}] = \mu \mathbb{E}T$$
(2.10)

suffices to show $\sum_{1}^{\infty} \mathbb{E}|X_{i}| 1_{i \leq T} < \infty$

By applying eq. (2.9)
$$|X_i|$$

 $\implies \sum_{i=1}^{\infty} \mathbb{E}[|X_i| 1_{i \le T}] = (\mathbb{E}|X|) \mathbb{E}T < \infty$

Lemma 2.8 (Fatou's lemma). Arbitrary $X_n \ge 0$. Then $\mathbb{E}[\liminf_n X_n] \le \liminf_n \mathbb{E} X_n \le \infty$.

Corollary 2.9. Arbitrary $X_n \ge 0$. If $X_n \stackrel{a.s.}{\to} X_{\infty}$, then $\mathbb{E} X_{\infty} \le \liminf_n \mathbb{E} X_n \le \infty$. *TODO: Fatou's automatically gives us a lower bound.*

Recall overaggrssive "gambling favorable game" example $X_n > 0$, $X_n \stackrel{\text{a.s.}}{\to} 0$ and $\mathbb{E}X_n \to \infty$.

Proof. Define $Y_N = \inf_{n \geq N} X_n$. Then $0 \leq Y_N \uparrow \liminf X_n$. By monotone convergence, $0 \leq \mathbb{E} Y_n \uparrow \mathbb{E}(\liminf X_n)$. Since $Y_n \leq X_n \Longrightarrow \mathbb{E}(\liminf X_n) = \liminf_N \mathbb{E} Y_n \leq \liminf_N \mathbb{E} X_n$

3 Back to renewal theory

Under assumptions of corollary 1.3, we also assume $X \geq 0$ a.s.. Then $\mathbb{E}\left[\frac{N(t)}{t}\right] \to \frac{1}{\mu}$ as $t \to \infty$

Proof. Fatou's lemma:

$$\frac{1}{\mu} \le \liminf_{\substack{t \to \infty \\ t \in \mathbb{N}}} \mathbb{E}\left[\frac{N(t)}{t}\right] \tag{3.1}$$

$$= \liminf_{t \to \infty} \mathbb{E}\left[\frac{N(t)}{t}\right] \tag{3.2}$$

So enough to show upper bound

$$\limsup_{t} \mathbb{E}\left[\frac{N(t)}{t}\right] \le \frac{1}{\mu} \tag{3.3}$$

 $X > 0 \implies N(t) + 1 = \min\{n : S_n > t\}$ is a stopping time.

(Truncation) Consider $\min\{N(t)+1,m\}$, can check a stopping time. Applying Wald's identity

$$\mathbb{E}S_{\min\{N(t)+1,m\}} = \mu \mathbb{E}\min\{N(t)+1,m\}$$
(3.4)

(Untruncate) Letting $m \uparrow \infty$ yields

$$\mathbb{E}S_{N(t)+1} = \mu \mathbb{E}(N(t)+1) \le \infty \tag{3.5}$$

Fix k. Let $\hat{X}_i = \min(X_i, k)$, $\hat{S}_n = \hat{N}(t)$. $\implies \hat{S}_n \leq S_n \implies \hat{N}(t) \geq N(t)$.

We can apply eq. (3.5) to (\hat{x}_i)

$$\mathbb{E}(\hat{N}(t) + 1) \tag{3.6}$$

$$\mathbb{E}\min(X,k) = \mathbb{E}\hat{S}_{N(t)+1} \le t + k < \infty \tag{3.7}$$

$$\implies \frac{\mathbb{E}(N(t)+1)}{t} \le \frac{(t+k)}{t} \times \frac{1}{\mathbb{E}\min(X,k)}$$
 (3.8)

$$\implies \limsup_{t} \frac{\mathbb{E}N(t)}{t} \le \frac{1}{\mathbb{E}\min(X, k)} \quad \text{true } \forall k$$
 (3.9)

Let
$$k \uparrow \infty$$
 shows $\leq \frac{1}{\mathbb{E}X} = \frac{1}{\mu}$.