S.N.: 10/699,386 Art Unit: 2611

AMENDMENTS TO THE CLAIMS:

This listing of the claims will replace all prior versions, and listings, of the claims in this application.

Listing of Claims:

Claims 1-15 (Cancelled)

16. (Currently Amended) <u>A receiver for receiving data and pilot symbols simultaneously over multiple channels comprising:</u>

at least one antenna;

a demodulator coupled to an output of the antenna for demodulating received symbols in accordance with a multi-carrier transmission technique,

a channel estimator coupled to the demodulator for estimating a channel of a multicarrier system using received pilot symbols;

a storage medium for storing a multi-level signal constellation defining C points, of which at least one point defines a first level and a plurality of points define a second level, and a minimum inter-level distance between points is based on a maximized minimum difference between conditional probability distributions; and

a mapper coupled to the demodulator and to the storage medium for converting the demodulated symbols to a plurality of data signals that each alone or in combination correspond to a constellation point wherein the demodulator determines a maximum likelihood conditional probability distribution of the received symbols and The receiver of claim 15 wherein the conditional probability distribution is

$$p(X_{i}|S_{i}, \hat{H}_{i}) = \mathbb{E}_{\tilde{H}_{i}} \left\{ p(X_{i}|S_{i}, \hat{H}_{i}, \widetilde{H}_{i}) \right\} = \frac{1}{\pi \left(\sigma^{2} + \sigma_{E}^{2} ||S_{i}||^{2}\right)} \exp \left\{ -\frac{\left||X_{i} - S_{i} \hat{H}_{i}||^{2}}{\sigma^{2} + \sigma_{E}^{2} ||S_{i}||^{2}} \right\}$$

such that the detector maximizes over at least two possible values for S_i to find a transmitted symbol wherein S_i comprises a transmitted signal vector, \hat{H}_i comprises a channel estimate matrix, X_i comprises a received signal vector, and \widetilde{H}_i comprises an estimation error matrix at

S.N.: 10/699,386 Art Unit: 2611

an ith frequency bin, $E_{\tilde{H}_i}$ is an error estimation matrix, and σ_E is the estimation variance at each frequency bin.

Claims 17-21. (Cancelled)

22.	(Currently Amended) A method for decoding a signal received over a multi-carrier
syste	m comprising:
	receiving a set of signals that were transmitted from at least M transmit antennas from
a mu	lti-carrier channel, wherein M is an integer at least equal to two;
	using a portion of the set of signals to estimate channels of the multi-carrier system;
	decoding at least a portion of the set of signals by mapping them to a signal
const	tellation, the signal constellation defining a plurality of C constellation points and $n=2M$
real o	dimensions, wherein the C points are disposed about at least two mutually exclusive
subse	ets such that a separation between two nearest constellation points of adjacent subsets is
based	d on a maximized minimum difference between conditional probability distributions; and
The 1	method of claim 19 further comprising selecting a proper signal constellation such that a
signa	al to noise ratio defined by the received set of signals is equal to or greater than a sum of
the s	quares of the absolute value of each constellation point divided by C.
Clair	ns 23-24. (Cancelled)
25.	(Currently Amended) A method for decoding a signal received over a multi-carrier
syste	m comprising:
	receiving a set of signals that were transmitted from at least M transmit antennas from
a mu	lti-carrier channel, wherein M is an integer at least equal to two;
	using a portion of the set of signals to estimate channels of the multi-carrier system;
<u>and</u>	
	decoding at least a portion of the set of signals by mapping them to a signal
const	tellation, the signal constellation defining a plurality of C constellation points and $n=2M$

S.N.: 10/699,386 Art Unit: 2611

real dimensions, wherein the C points are disposed about at least two mutually exclusive subsets such that a separation between two nearest constellation points of adjacent subsets is based on a maximized minimum difference between conditional probability distributions wherein mapping at least a portion of the set of signals to the signal constellation comprises determining a conditional probability distribution of each symbol within the at least a portion of the set of signals and The method of claim 24 wherein the conditional probability distribution is

$$p(X_{i}|S_{i}, \hat{H}_{i}) = \mathbb{E}_{\tilde{H}_{i}} \left\{ p(X_{i}|S_{i}, \hat{H}_{i}, \tilde{H}_{i}) \right\} = \frac{1}{\pi (\sigma^{2} + \sigma_{E}^{2} ||S_{i}||^{2})} \exp \left\{ -\frac{\left||X_{i} - S_{i} \hat{H}_{i}||^{2}}{\sigma^{2} + \sigma_{E}^{2} ||S_{i}||^{2}} \right\}$$

that is maximized over at least two possible values for S_i for each symbol and wherein. S_i comprises a transmitted signal vector, \hat{H}_i comprises a channel estimate matrix, X_i comprises a received signal vector, and \widetilde{H}_i comprises an estimation error matrix at an i^{th} frequency bin, $E_{\widetilde{H}_i}$ is an error estimation matrix, and σ_E is the estimation variance at each frequency bin.