

✓ Congratulations! You passed!

TO PASS 70% or higher

GRADE 100%

Problem Set 1

LATEST SUBMISSION GRADE 100%

1.

1\2	х	у	Z
a	1,2	2,2	5,1
b	4,1	3,5	3,3
С	5,2	4,4	7,0
d	2,3	0,4	3,0

Find the strictly dominant strategy:

- ① 1) a;
- O 2) b;
- 3) c;
- 4) d;
- (5) x;
- O 6) y;
- O 7) z

(3) c is a strictly dominant strategy.

- Because when 2 plays x or y or z, playing c always gives 1 a strictly higher payoff than playing
- None of the strategies is always strictly best for player 2.

2.

1\2	х	у	Z
a	1,2	2,2	5,1
b	4,1	3,5	3,3
С	5,2	4,4	7,0
d	2,3	0,4	3,0

Find a very weakly dominant strategy that is not strictly dominant.

- 1) a;
- 4) d;
- 2) b;
- 3) c;
- O 7) z
- 6) y;
- 5) x;

(6) y is a weakly dominant strategy that is not strictly dominant.

- ullet Because when 1 plays a,b,c or d, playing y always gives 2 a weakly higher payoff than playing \boldsymbol{x} or \boldsymbol{z} .
- Note that it is only weakly higher when 1 plays a, as then playing x and y gives 2 the same

1/1 point

1/1 point

1\2	х	у	z
a	1,2	2,2	5,1
b	4,1	3,5	3,3
С	5,2	4,4	7,0
d	2,3	0,4	3,0

-	-7.	5/5	3,3
С	5,2	4,4	7,0
d	2,3	0,4	3,0
When player 1 plays d, what is	s player 2's best response:		
a) Only x			
b) Only y			
C) Only z			
Od) Both y and z			
Correct (b) only y is a best res	sponse for player 2.		
	d, player 2 earns 3 from pl	aving x A from playing y	and 0
		aying w, 4 nom playing g	and o
from playing z. Thus	only y is a best response.		
1\2	Х	у	z
a	1,2	2,2	5,1
b	4,1	3,5	3,3
c	5,2	4,4	7,0
d	2,3	0,4	3,0
(d, y); (b, z); (a, y); (c, x); ✓ (c, y); ✓ correct (c, y) is the only pure-	strategy Nash equilibria.		
Check that no one	wants to deviate.		
	strictly dominant strategy	and so is the only possible	strategy for player 1 in
a pure strategy Na • When player 1 play	sh equilibrium. ys c , playing y gives player	2 the highest payoff.	
(a, x);			
(b, x);			
(a, z);			
(d, z).			
(c, z);			
(d, x);			
There are 2 players who have Players simultaneously annou $s_1+s_2\leq 1$, then the players	ince the share they would	like to receive s_1 and s_2 ,	with $0 \leq s_1$, $s_2 \leq 1$. If

5. achieve an agreement and receive zero. This game is known as `Nash Bargaining'.

Which of the following is a strictly dominant st	rategy?

\bigcirc	a)1

O b) 0.5;

O c) 0;

✓ Correct

(d) is true.

- $\bullet\,$ No player has any strictly dominant strategies. Any of the options given constitutes a best response to some strategy played by the other player, and so no strategy always strictly outperforms all other strategies.
- Strategies (a) and (c) are in the set of best responses of player i when player j's strategy is $s_j > 1$.
- Strategies (b) is the best response of player i when player j's strategy is $s_i = 0.5$.
- 6. There are 2 players who have to decide how to split one dollar. The bargaining process works as follows. Players simultaneously announce the share they would like to receive s_1 and s_2 , with $0 \le s_1, s_2 \le 1$. If $s_1+s_2\leq 1$, then the players receive the shares they named and if $s_1+s_2>1$, then both players fail to achieve an agreement and receive zero.

Which of the following strategy profiles is a pure strategy Nash equilibrium?

- a) (0.3, 0.7);
- (b) (0.5, 0.5);
- O (1.0, 1.0);
- (a) All of the above

✓ Correct

(d) is true.

- Check that no one wants to deviate.
- Note that when player i plays $s_i < 1$, player j's best response is $s_j = 1 s_i$. This holds in a) and b). Thus, both players are best responding.
- .When player i plays $s_i=1$, player j's best response can be any number as she will get 0 no matter 1. Thus c) also forms a pure strategy NE.
- 7. Two firms produce identical goods, with a production cost of c>0 per unit.

Each firm sets a nonnegative price (p_1 and p_2).

All consumers buy from the firm with the lower price, if $p_1 \neq p_2$. Half of the consumers buy from each firm if $p_1 = p_2$.

D is the total demand.

Profit of firm i is:

- 0 if $p_i>p_j$ (no one buys from firm i);
- $Drac{p_i-c}{2}$ if $p_i=p_j$ (Half of customers buy from firm i);
- + $D(p_i-c)$ if $p_i < p_j$ (All customers buy from firm i)

Find the pure strategy Nash equilibrium:

- \bigcirc a) Both firms set p=0.
- \bigcirc b) Firm 1 sets p=0, and firm 2 sets p=c.
- \bigcirc c) Both firms set p=c.
- d) No pure strategy Nash equilibrium exists.

✓ Correct

- Notice than in a) and b) at least one firm i is making negative profits since $p_i < c$ and it sells a positive quantity. Thus, firm i would prefer to deviate to $p_i>p_j$ and earn a profit of 0.
- It is easy to verify that $p_1=p_2=c$ is an equilibrium by checking that no firm wants to deviate:
- When $p_1 = p_2 = c$, both firms are earning null profits.
- If firm 1 increases its price above $c\ (p_1>c)$, it will still earn null profits.
- If firm 2 decreases its price below $c\ (p_1 < c)$, it will earn strictly negative profits.
- In both cases, either the firm is indifferent or strictly worse off. Then, it does not have incentives to deviate given the other firm's strategy.

1/1 point

1/1 point

1/1 point

vote for B.

- When A wins, voter 1 gets a payoff of 1, and 2 and 3 get payoffs of 0; when B wins, 1 gets 0 and 2 and 3 get 1. Thus, 1 prefers A, and 2 and 3 prefer B.
- The candidate getting 2 or more votes is the winner (majority rule).

Find all very weakly dominant strategies (click all that apply: there may be more than one, or none).

a) Voter 1 voting for A.

✓ Correct

(a) and (d) are (very weakly) dominant strategies.

- Check (b): for voter 1, voting for candidate A always results in at least as high a payoff as voting for candidate B and indeed is sometimes strictly better (when the other players vote for different candidates).
- When voters 2 and 3 vote for B, voter 1 is indifferent between A or B (since B will win
- When either 2 or 3 (or both) vote for A, voter 1 strictly prefers to vote for A than for B.
- Check (c): for voter 2, voting for candidate B is a very weakly dominant strategy.
- When voters 1 and 3 vote for A, voter 2 is indifferent between A or B (since A will win
- When either 1 or 3 (or both) vote for B, voter 2 strictly prefers to vote for B than for A.
- (b) and (c) can't be very weakly dominant strategies, since they sometimes do worse than the

b) Voter 1 voting for B.

c) Voter 2 (or 3) voting for A.

d) Voter 2 (or 3) voting for B.

✓ Correct

(a) and (d) are (very weakly) dominant strategies.

- Check (b): for voter 1, voting for candidate A always results in at least as high a payoff as voting for candidate B and indeed is sometimes strictly better (when the other players vote
- When voters 2 and 3 vote for B, voter 1 is indifferent between A or B (since B will win anyways).
- When either 2 or 3 (or both) vote for A, voter 1 strictly prefers to vote for A than for B.
- Check (c): for voter 2, voting for candidate B is a very weakly dominant strategy.
- When voters 1 and 3 vote for A, voter 2 is indifferent between A or B (since A will win
- When either 1 or 3 (or both) vote for B, voter 2 strictly prefers to vote for B than for A.
- (b) and (c) can't be very weakly dominant strategies, since they sometimes do worse than the

- Three voters vote over two candidates (A and B), and each voter has two pure strategies: vote for A and vote for B.
- When A wins, voter 1 gets a payoff of 1, and 2 and 3 get payoffs of 0; when B wins, 1 gets 0 and 2 and 3 get 1. Thus, 1 prefers A, and 2 and 3 prefer B.
- The candidate getting 2 or more votes is the winner (majority rule).

Find all pure strategy Nash equilibria (click all that apply)? Hint: there are three.

a) 1 voting for A, and 2 and 3 voting for B.

✓ Correct

(a), (b) and (c) are pure strategy Nash equilibria.

- It is easy to verify that (a), (b) and (c) are equilibria by checking that no voter wants to deviate:
- When all voters vote for the same candidate, no single voter has any incentives to deviate because his/her individual vote can't modify the outcome of the election.
- In (a), voter 1 is indifferent between candidates A and B, and voters 2 and 3 are best responding to the strategies played by the remaining voters (if voter 2 votes for A, candidate A wins; if voter 2 votes for B, candidate B wins).
- . (d) is not an equilibrium, since voter 2 has incentives to deviate and vote for candidate B.

b) All voting for A.

1/1 point

✓ Correct

(a), (b) and (c) are pure strategy Nash equilibria.

- It is easy to verify that (a), (b) and (c) are equilibria by checking that no voter wants to deviate:
- When all voters vote for the same candidate, no single voter has any incentives to deviate because his/her individual vote can't modify the outcome of the election.
- In (a), voter 1 is indifferent between candidates A and B, and voters 2 and 3 are best responding to the strategies played by the remaining voters (if voter 2 votes for A, candidate A wins; if voter 2 votes for B, candidate B wins).
- (d) is not an equilibrium, since voter 2 has incentives to deviate and vote for candidate B.

c) All voting for B.

✓ Correct

(a), (b) and (c) are pure strategy Nash equilibria.

- It is easy to verify that (a), (b) and (c) are equilibria by checking that no voter wants to deviate:
- When all voters vote for the same candidate, no single voter has any incentives to deviate because his/her individual vote can't modify the outcome of the election.
- In (a), voter 1 is indifferent between candidates A and B, and voters 2 and 3 are best responding to the strategies played by the remaining voters (if voter 2 votes for A, candidate A wins; if voter 2 votes for B, candidate B wins).
- (d) is not an equilibrium, since voter 2 has incentives to deviate and vote for candidate B.
- d) 1 and 2 voting for A, and 3 voting for B.