第三章 运输问题

Transportation Problems

- § 1运输问题的数学模型
- ■§2表上作业法
- ■§3产销不平衡的运输问题及其求解方法

■ § 4应用举例

§1 运输问题的数学模型

一、问题的提出

例1 产销平衡表

销地产地	B ₁	\mathbf{B}_2	B ₃	产量a _i
$\mathbf{A_1}$	<i>x</i> ₁₁ 6	x_{12}	x_{13}	200
$\mathbf{A_2}$	x ₂₁ 6	x ₂₂ 5	x ₂₃	300
销量b _j	150	150	200	500

 A_2 到 B_1 的单位运价

由产地A。运往销地B。的物品数量

设 x_{ij} 表示 A_i 到 B_j 的运量。则

$$MinZ = 6x_{11} + 4x_{12} + 6x_{13}$$

$$+ 6x_{21} + 5x_{22} + 5x_{23}$$

$$s.t. \quad x_{11} + x_{12} + x_{13} = 200$$

$$x_{21} + x_{22} + x_{23} = 300$$

$$x_{11} + x_{21} = 150$$

$$x_{12} + x_{22} = 150$$

$$x_{13} + x_{23} = 200$$

$$x_{ii} \ge 0; \quad i = 1, 2; \quad j = 1, 2, 3$$

二、运输问题的一般数学模型

设有m个产地(产量): $A_1(a_1), A_2(a_2), ..., A_m(a_m)$, n个销地(需求量): $B_1(b_1), B_2(b_2), ..., B_n(b_n)$;

销地产地	\mathbf{B}_{1}	\mathbf{B}_2	•••	\mathbf{B}_n	产量 a_i
$\mathbf{A_1}$	x_{11} c_{11}	x_{12} c_{12}	• • •	x_{1n}	a_1
$\mathbf{A_2}$	x_{21} c_{21}	x_{22}	•••	x_{2n}	a_2
\mathbf{A}_{m}	x_{m1} c_{m1}	x_{m2} c_{m2}	•••	x_{mn}	a_m
销量 b_j	\boldsymbol{b}_1	b_2	•••	\boldsymbol{b}_n	

$$\min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = a_{i}, i = 1, 2, \dots, m$$
s.t.
$$\sum_{i=1}^{m} x_{ij} = b_{j}, j = 1, 2, \dots, n$$

$$x_{ij} \ge 0$$

 c_{ij} 一产地 A_i 运往销地 B_j 的单位运费 x_{ii} 一产地 A_i 运往销地 B_j 的物资量

满足产销平衡: $\sum a_i = \sum b_j$

三、约束系数矩阵的特征

1. 系数矩阵的形式

销地产地	B ₁	\mathbf{B}_2	B ₃	产量a _i
\mathbf{A}_1	x_{11}	x_{12} 4	x_{13} 6	200
Aa	6	5	x_{23}	300
销量 b_j	150	150	200	500

$$MinZ = 6x_{11} + 4x_{12} + 6x_{13} \\ + 6x_{21} + 5x_{22} + 5x_{23}$$

$$\begin{cases} x_{11} + x_{12} + x_{13} = 200 \\ x_{21} + x_{22} + x_{23} = 300 \end{cases}$$
 $x_{11} + x_{21} = 150$
$$\begin{cases} x_{11} + x_{21} = 150 \\ x_{12} + x_{22} = 150 \\ x_{13} + x_{23} = 200 \end{cases}$$
 $x_{ij} \geq 0; \ i = 1, 2; \ j = 1, 2, 3$ 可对应产地约束,即平衡表的行;

系数矩阵A为:

ì 前m行对应产地约束, 即平衡表的行:

2. 系数矩阵的特征

特征1: 矩阵的行、列与平衡表行、列一一对应

特征2: 矩阵的列向量只有两个元素为1

 x_{ij} 的系数列向量为: $P_{ij} = (0 \cdots 1 \cdots 0 \cdots 1 \cdots 0)^{T} = e_i + e_{m+j}$

特征3: r(A) = m + n - 1

设m、 $n \ge 2$, 则 $m + n \le m \times n$, 故 $r(A) \le m + n$ 。

曲
$$\sum_{j=1}^{n} x_{ij} = a_i \Rightarrow \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} = \sum_{i=1}^{m} a_i$$

由
$$\sum_{i=1}^{m} x_{ij} = b_j \Rightarrow \sum_{j=1}^{n} \sum_{i=1}^{m} x_{ij} = \sum_{j=1}^{n} b_j$$

对于产销平衡问题,有 $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$ 第 $k(1 \le k \le m)$ 个约束条件可表示为:

$$\sum_{j=1}^{n} x_{kj} = a_{k} \qquad \Leftrightarrow \qquad \sum_{j=1}^{n} \sum_{i=1}^{m} x_{ij} - \sum_{\substack{i=1\\i \neq k}}^{m} \sum_{j=1}^{n} x_{ij} = \sum_{j=1}^{n} b_{j} - \sum_{\substack{i=1\\i \neq k}}^{m} a_{i}$$

上式表明第k 个约束条件可以由另外 m+n-1 个约束条件线性表示,故m+n个约束条件中有1个是多余的,因此

$$r(A) = m + n - 1$$

2. 系数矩阵的特征

特征1:矩阵的行、列与平衡表行、列一一对应

特征2: 矩阵的列向量只有两个元素为1

 x_{ij} 的系数列向量为: $P_{ij} = (0 \cdots 1 \cdots 0 \cdots 1 \cdots 0)^{T} = e_i + e_{m+j}$

特征3: r(A)=m+n-1

由此可见,A中 $m \times n$ 个系数列向量的最大线性无关向量的个数为m+n-1,故基B应该是(m+n-1) \times (m+n-1)维。所以运输问题基变量的个数为m+n-1。

运输问题的解若是基可行解,则平衡表上 $m \times n$ 个变量中最多只能有m+n-1个取正值,而其它的变量为零。

第2节 表上作业法

一、概念

例2

销地产地	B ₁	B ₂	B ₃	B ₄	产量a _i
\mathbf{A}_{1}	3	11	4 3	3 10	7
$\mathbf{A_2}$	3	9	1	8	4
$\mathbf{A_3}$	7	6	10	3	9
销量 b_j	3	6	5	6	20

- 1) 数字格 2) 空格 🛑

3) 闭回路

以某空格为起点。用水平或垂直线向前划, 当碰到一数字 格时可以转90°后,继续前进,直到回到起始空格为止。

3) 闭回路

销地产地	B ₁	\mathbf{B}_2	B ₃	B ₄	产量a _i
\mathbf{A}_1	3	11	3	3 10	7
$\mathbf{A_2}$	3	9	.4	8	4
$\mathbf{A_3}$	7	6	10	3	9
销量 b_j	3	6	5	6	20

销地产地	\mathbf{B}_1	\mathbf{B}_2	B ₃	B ₄	产量a _i
\mathbf{A}_{1}	3	11	4 3	3 10	7
$\mathbf{A_2}$	3	9	··①	8	4
$\mathbf{A_3}$	7	6 4	10	<u>5</u>	9
销量 b_j	3	6	5	6	20

销地产地	B ₁	B ₂	B ₃	B ₄	产量a _i
\mathbf{A}_{1}	3	11	4	<u>10</u>	7
$\mathbf{A_2}$	3	9	1	8	4
A ₃	7	<u>4</u>	10	3	9
销量 b_j	3	6	5	6	20

销地产地	B ₁	\mathbf{B}_2	B ₃	B ₄	产量a _i
\mathbf{A}_{1}	3	11	3	3 10	7
$\mathbf{A_2}$	3	9	<u>2</u>	8	4
$\mathbf{A_3}$	7	4	10	3	9
销量 b_j	3	6	5	6	20

销地产地	B ₁	\mathbf{B}_2	B ₃	B ₄	产量 a_i
$\mathbf{A_1}$	3	11	3	3 10	7
$\mathbf{A_2}$	3 1	9	1	8	4
$\mathbf{A_3}$	7	6	10	3	9
销量 b_j	3	6	5	6	20

销地产地	B ₁	B ₂	B ₃	B ₄	产量a _i
\mathbf{A}_{1}	3	11	4 3	.3 10	7
$\mathbf{A_2}$	3	9	1	8	4
$\mathbf{A_3}$	7	6	10	<u>5</u>	9
销量 b_j	3	6	5	6	20

从每一空格出发一定存在和可以找到唯一的闭回路:

空格	闭回路
(11)	(11)-(21)-(23)-(13)-(11)
(12)	(12)- (32) - (34) - (14) - (12)
(22)	(22)- (32) - (34) - (14) - (13) - (23) - (22)
(24)	(24)-(23)-(13)-(14)-(24)
(31)	(31)- (34) - (14) - (13) - (23) - (21) - (31)
(33)	(33)- (34) - (14) - (13) - (33)

4) 闭回路上的变量所对应的系数列向量组线性相关性

结论1: 运输问题一组变量构成闭回路的充要条件是这组 变量所对应的系数列向量线性相关;

 $(x_{11},x_{13},x_{23},x_{21})$ 构成闭回路,则

销地产地	B ₁	\mathbf{B}_2	B ₃	B ₄	产量a _i
$\mathbf{A_1}$	3	11	3	3 1 <u>0</u>	7
$\mathbf{A_2}$	3	9	1 2	8	4
$\mathbf{A_3}$	7	4	10	<u>5</u>	9
销量b _j	3	6	5	6	20

$$-\begin{pmatrix} 1\\0\\0\\0\\1\\0\\0\\0\\0\end{pmatrix} + \begin{pmatrix} 1\\0\\0\\0\\0\\0\\0\end{pmatrix} - \begin{pmatrix} 0\\1\\0\\0\\0\\0\\0\\0\\0\end{pmatrix} + \begin{pmatrix} 0\\1\\0\\0\\0\\0\\0\\0\\0\\0\end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0\\0\\0\\0\\0\\0\\0\end{pmatrix}$$

所以 $(x_{11}, x_{13}, x_{23}, x_{21})$ 所对应的 系数列向量线性相关。

结论1: 运输问题一组变量构成闭回路的充要条件是这组 变量所对应的系数列向量线性相关;

- 结论2 运输问题的一个可行解是基可行解的充要条件是:
 - 1) 数字格的个数为m+n-1个
 - : r(A) = m + n 1 : 基变量个数为m + n 1
 - 2) m+n-1个数字格不构成闭回路。
 - : 基变量的系数列向量线性无关
 - :. m+n-1个数字格不构成闭回路

二、表上作业法

1、表上作业法的步骤

2、初始基可行解的确定

与一般LP问题不同,产销平衡的运输问题一定存在可行解。 $\left(\ \text{已知} \sum_{i=1}^m a_i = \sum_{i=1}^n b_j = d > 0, \qquad \diamondsuit x_{ij} = \frac{a_i b_j}{d} \ \right)$

1) 最小元素法

基本思想:

就"近"供应,从运输表中最小运价所在格开始确定供销关系.然后次小。一直到给出初始基可行解为止。

缺点:

为节省一处费用,会使别处费用增加很多,因此,其初始基 可行解往往离最优解甚远,需要较多的迭代过程。

例3 试用最小元素法确定初始基可行解:

销地产地	B ₁	\mathbf{B}_2	B ₃	B ₄	产量a _i
\mathbf{A}_1	8 3	8 11	4 3	3 10	7
$\mathbf{A_2}$	3	8	1	8	4
$\mathbf{A_3}$	8 7	6	8 10	3 5	9
销量 b_j	3	6	5	6	20

用最小元素法确定初始可行解依次顺序:

$$x_{21}=3 \implies x_{23}=1 \implies x_{13}=4 \implies x_{32}=6 \implies x_{34}=3 \implies x_{14}=3$$

$$z = 4 \times 3 + 3 \times 10 + 3 \times 1 + 1 \times 2 + 6 \times 4 + 3 \times 5 = 86$$

2) 伏格尔法 (Vogel)

基本思想:

同时考虑每一产地(销地)与每一销地(产地)之间的最小运价和次小运价,若两者差额大,说明若不能按最小运价 供应,就有可能按次小运价供应,从而运费很高。因此,应 先对最大差额所在的行或列,按最小元素确定供销关系。

优点:

按此法所得基可行解较最小元素法所得可行解更接近最优解。

例4 试用伏格尔法确定可行解:

$$z = 5 \times 3 + 2 \times 10 + 3 \times 1 + 1 \times 8 + 6 \times 4 + 3 \times 5 = 85$$

步骤:

- a) 在运输表上写出各行、各列最小运价和次小运价差额;
- b) 选最大差额所在行(列)的最小元素确定供销关系,并划 去所在行(列);
- c) 对未确定的行列, 重新计算差额, 重复2)、3), 直至得出初始解。
- 注: 1° 若同时有多个相同的最大差额,选取最小运费确定 供应关系。
 - 2°在以上方法中,每填写一个数字划去一行(列),只有 在填写最后一个数字时,同时划去该数字所在行和列。 从而保证基变量个数为 (m+n-1) 个。

3) 左上角法(西北角法)

从 x_{11} 开始分配,从西北向东南方向逐个分配。

 x_{ij} 的分配公式

 $x_{ij} = \min \begin{cases} (a_i - i \ \text{行已分配的总量}) = i \ \text{行尚余物资量} \\ (b_j - j \ \text{列已分配的总量}) = j \ \text{列待分物资量} \end{cases}$

例5

销地产地	\mathbf{B}_{1}	\mathbf{B}_2	B ₃	B ₄	产量a _i
\mathbf{A}_{1}	20	11	3	6	5
$\mathbf{A_2}$	5	9	10	2	10
$\mathbf{A_3}$	18	7	4	1	15
销量 b_j	3	3	12	12	30

例5 左上角法解题演示

销地产地	B ₁	B ₂	B ₃	B ₄	产量a _i
\mathbf{A}_{1}	3 20	2 11	3	6	5
$\mathbf{A_2}$	5	1 9	9 10	2	10
A ₃	18	7	3 4	12 1	15
销量 b_j	3	3	12	12	30

$$x_{11}=3$$
 $\longrightarrow x_{12}=2$ $\longrightarrow x_{22}=1$ $\longrightarrow x_{23}=9$ $\longrightarrow x_{33}=3$ $\longrightarrow x_{34}=12$

$$m+n-1=6$$
个基变量 $Z=\sum_{i=1}^{3}\sum_{j=1}^{4}c_{ij}x_{ij}=205$

三、求检验数并进行最优解的判定

求调运方案中空格的检验数 σ_{ij} , 当所有 $\sigma_{ij} \geq 0$, 则得最优解。

1. 闭回路法

LP迭代过程中,
$$z = z_0 + \sum_{j=m+1}^n \sigma_j x_j$$

当某个非基变量x_j变化而其它非基变量不变,则

$$\sigma_j = \frac{\partial z}{\partial x_j}$$

上式表明: $\sigma_i 为 x_i$ 变化一个单位所引起的变化量。

例6: 以最小元素法求得的调运方案为例

销地产地	B ₁	\mathbf{B}_2	B ₃	B ₄	产量a _i
$\mathbf{A_1}$	3	11	4 3	3 10	7
$\mathbf{A_2}$	3	9	1	8	4
$\mathbf{A_3}$	7	6	10	3 5	9
销量 b_j	3	6	5	6	20

最优性判别准则: 当所有 $\sigma_{ij} \geq 0$ 时,则得最优解。

注: 数字格检验数均为0

销地产地	B ₁	\mathbf{B}_2	B ₃	B ₄	产量a _i
\mathbf{A}_{1}	(+1)	11	4 (-1)	3 10	7
$\mathbf{A_2}$	3(-1)	9	<u>2</u> +1)	8	4
$\mathbf{A_3}$	7	6	10	3	9
销量 b_j	3	6	5	6	20

$$\sigma_{11} = (3+2) - (1+3) = 1$$

销地产地	B ₁	\mathbf{B}_2 \mathbf{B}_3		B ₄	产量a _i
\mathbf{A}_1	3	(+1) <u>11</u>	3	· 3 (-1)	7
$\mathbf{A_2}$	3	9	1	8	4
$\mathbf{A_3}$	7	6 (-1)	10	9
销量 b_j	3	6	5	6	20

$$\sigma_{12} = (11+5) - (4+10) = 2$$

销地产地	\mathbf{B}_1	\mathbf{B}_2	B ₃	B ₄	产量a _i
\mathbf{A}_1	3	11	<u>3</u> (+1)	3 (-1)	7
$\mathbf{A_2}$	3	(+1)	·(1)	8	4
$\mathbf{A_3}$	7	6 ·(-1)···	10	<u>5</u> (3)(+1)	9
销量 b_j	3	6	5	6	20

$$\sigma_{22} = (9+5+3)-(4+10+2)=1$$

销地产地	B ₁	\mathbf{B}_2	\mathbf{B}_3	B ₄	产量a _i
\mathbf{A}_{1}	3	11	3 (+1)	·3(-1)	7
$\mathbf{A_2}$	3	9	<u>2</u> (†(-1)	1 8	4
$\mathbf{A_3}$	7	6	10	3	9
销量 b_j	3	6	5	6	20

$$\sigma_{24} = (8+3) - (2+10) = -1$$

销地产地	B ₁	\mathbf{B}_{2}	B ₃	B ₄	产量 a_i
\mathbf{A}_{1}	3	11	4 (-1)	3 (+1)	7
$\mathbf{A_2}$	3(-1)···	9	(+1)	8	4
$\mathbf{A_3}$	(+1) · · ·	<u>4</u>	10	5 (-1)	9
销量 b_j	3	6	5	6	20

$$\sigma_{31} = (7+10+2) - (5+3+1) = 10$$

销地产地	B ₁	\mathbf{B}_2	B ₃	B ₄	产量a _i
$\mathbf{A_1}$	3	11	4 (-1)	3 (+1)	7
$\mathbf{A_2}$	3	9	1 2	8	4
A ₃	7	6	(+ 1)	3 (-1)	9
销量 b_j	3			6	20

$$\sigma_{33} = (10+10) - (5+3) = 12$$

销地产地	\mathbf{B}_{1}	\mathbf{B}_2	\mathbf{B}_3	B ₄	产量a _i
\mathbf{A}_{1}	1 3	2 11	4 3	3 10	7
$\mathbf{A_2}$	3	1 9	1	-1 8	4
$\mathbf{A_3}$	10 7	6	12 10	3	9
销量 b_j	3	6	5	6	20

$$\sigma_{11} = 1 \qquad \qquad \sigma_{12} = 2$$

$$\sigma_{22} = 1 \qquad \sigma_{24} = -1$$

$$\sigma_{31} = 10 \qquad \sigma_{33} = 12$$

最优性判别准则: 当所有 $\sigma_{ij} \geq 0$ 时,则得最优解。

注: 数字格检验数均为0

显然该问题至此尚未达到最优解。

2. 位势法

设 u_1 , u_2 , ..., u_m ; v_1 , v_2 , ..., v_n 是对应运输问题的m+n个约束条件的对偶变量。B是(m+n)×(m+n)初始基矩阵。则:

$$C_B B^{-1} = (u_1, u_2, \dots, u_m; v_1, v_2, \dots, v_n)$$

而每个决策变量 x_{ij} 的系数向量 $P_{ij}=e_i+e_{m+j}$,所以 $C_BB^{-1}P_{ij}=u_i+v_j$ 。于是 x_{ii} 的检验数:

$$\sigma_{ij} = c_{ij} - C_B B^{-1} P_{ij} = c_{ij} - (u_i + v_j)$$

所有基变量的检验数等于0。即

$$c_{ij} - (u_i + v_j) = 0$$
. $i, j \in B$

2. 位势法

例7:由最小元素法得出初始解,检验是否为最优解。

销地产地	B ₁	B ₂	B ₃	\mathbf{B}_4	产量a _i	u_i	
\mathbf{A}_1	1 3	2 11	4 3	3 10	7	0	• 令 <i>u</i> ₁ =0
$\mathbf{A_2}$	3	1		-1	4		
$\mathbf{A_3}$	10 7	6	12 10	3	9	-5	
销量 b_j	3	6	5	6	20		
v_j	2	9	3	10			

- 数字格: $u_i+v_j=c_{ij}$ 计算其它的 u_i 和 v_j
- 计算空格的检验数。 $\sigma_{ij} = c_{ij} (u_i + v_j)$, 如 $\sigma_{11} = 3 (0 + 2) = 1$ 因为 $\sigma_{24} = -1 < 0$,因而该问题至此尚未达到最优解.

2. 位势法

注: 1) 检验数的计算: $\sigma_{ij} = c_{ij} - (u_i + v_j)$

- 2) 数字格(对应基变量)的检验数: $\sigma_{ij} = c_{ij} (u_i + v_j) = 0$,即 $c_{ij} = u_i + v_j$
- 3) 行势、列势可不唯一, 但检验数是一致的。

四、改进的方法--闭回路调整法

从最小负检验数所对应的空格进行调整

调整方法: 1) 找出对应空格的闭回路

2) 确定调整量θ

使最小负检验数所对应的空格达到最大的调整量

例8 对由最小元素法得出的初始解进行调整

销地产地	B ₁	\mathbf{B}_2	B ₃	B ₄	产量 a_i
\mathbf{A}_{1}	1 3	2 11	3	10	7
$\mathbf{A_2}$	3	1 9	1 2	***	4
$\mathbf{A_3}$	10 7	6	12 10	3	9
销量 b_j	3	6	5	6	20

调整方法:

- 1) 选定调入格
- 2) 找出闭回路
- 3) 确定调整量θ

使最小负检验数所对应的空格达到最大的调整量, 即

$$\theta = \min(1,3) = 1$$

$$\mathbb{P} \quad 0+1=1; \ 1-1=0; \ 4+1=5; \ 3-1=2$$

再按调整后的解由位势法计算空格的检验数

销地产地	B ₁	B ₂	B ₃	B ₄	产量 a_i	u_i	
$\mathbf{A_1}$	0 3	2 (11	$50\frac{3}{2}$	2010	7	0	• 令 <i>u</i> ₁ =0
$\mathbf{A_2}$	30	2 9	1 2	100	4	-2	
$\mathbf{A_3}$	9 (7)	6 0	12 10	30	9	-5	
销量 b_j	3	6	5	6	20		
v_j	3	9	3	10			

因为所有 $\sigma_{ii} \geq 0$,因而该问题已得到最优解.

最优值: $z = 5 \times 3 + 2 \times 10 + 3 \times 1 + 1 \times 8 + 6 \times 4 + 3 \times 5 = 85$

表上作业法步骤:初始方案、最优性检验、改进方案

- 一、初始方案的确定
 - 1. 最小元素法 2. 伏格尔法 3. 左上角法
- 二、最优性检验
 - 1. 闭回路法 2. 位势法
- 三、改进方案

在闭回路内改进

五、表上作业法的说明

1. 无穷多最优解

无穷多最优解判别:存在非基变量的检验数=0的空格

销地产地	B ₁	\mathbf{B}_2	B ₃	B ₄	产量a _i
$\mathbf{A_1}$	0 3	2 11	5 0 3	2010	7
$\mathbf{A_2}$	30	2	1 2	10 8	4
$\mathbf{A_3}$	9 7	6 0	12 10	30	9
销量 b_j	3	6	5	6	20

因为所有 $\sigma_{ij} \ge 0$,因而该问题已得到最优解. 最优值: z = 85上表中空格(1, 1)的检验数是0,表明有无穷多最优解。

销地产地	B ₁	\mathbf{B}_2	B ₃	B ₄	产量a _i
$\mathbf{A_1}$	0(+)	2 11	5 3	· 2 (-)	7
$\mathbf{A_2}$	3(-)	2 9	-12	(+)	4
$\mathbf{A_3}$	9 7	<u>4</u>	12 10	3 5	9
销量 b_j	3	6	5	6	20

- 1) 以(1,1)为调入格
- 2) 作闭回路
- 3) 确定

$$\theta = \min(2,3) = 2$$

经调整后得到另一最优解, 见下表

销地产地	B ₁	\mathbf{B}_2	B ₃	B ₄	产量 a_i
$\mathbf{A_1}$	2 3	11	5 3	10	7
$\mathbf{A_2}$	1	9	2	3 8	4
A ₃	7	<u>6</u>	10	3 5	9
销量b _j	3	6	5	6	20

利用位势法可得所有 检验数是非负的,因此 也是最优解。

2. 退化情况的处理

- (1) 确定初始解时,在(i,j)格处: A_i 的余量= B_j 的需量,这时要同时划去i行和j列,这时需要在i行或j列的任一空格处添一个"0"。
- (2) 用闭回路调整时,若闭回路上出现两个或以上(-1)标记的相等的最小值,选其中一个为换入变量,剩下的数字格填"0"。
- (3) 若调入格调整量θ=0, 也要按步骤求调整方案,尽管实际并 未调整,但解的性质有了变化(原空格变成基变量),从而 影响检验数结果。

在表中需同时划去B2列和A3行。

在表的空格(1,2),(2,2),(3,3),(3,4) 中任选一格添加一个0。

练习:下表是一运输问题的表格,其中右上角数字是单位运价, 圆圈内是运量。

销地产地	B ₁	B ₂	B ₃	B ₄	产量a _i
\mathbf{A}_1	2 6	3	1 2	2 5	5
$\mathbf{A_2}$	7	5	8	2 4	2
$\mathbf{A_3}$	3	3 2	5	7	3
销量 b_j	2	3	1	4	10

- (1)上表所给方案是否为该问题的可行解,是否为该问题的基可行解,为什么?
- (2) 上述方案是否是该问题最优解?若不是,如何用表上作业法继续迭代?

