Shank3 Modulates Sleep and Expression of Circadian Transcription Factors differential expression

February 28, 2019

Contents

Description	
Importing data	2
Plot PCA of log unnormalized data	2
Control Genes	
Negative control genes	
positive control genes	4
Normalizations	4
TMM Normalization	4
$TMM + RUVs Normalization \dots \dots$	6
edgeR Differential Expression Analysis	8
Shank3 Home Cage control VS Wild Type Home Cage Controls	ę
volcano plot	Ć
Shank3 Sleed Deprivation VS Wild Type Sleep Deprivation	1:
volcano plot	1
DE TABLE + Positive Controls table	13
WTSD5 - WTHC5 positive controls	13
Venn Diagram	14
	14
	15
Heatmap gene by bene	16
	19
Group gene profiles	23
	23
	24
Stoup Some promote of condition vivia vivi	_
Circadian Analysis LD-DD	25
Analysis for activity	25
Analysis for alpha	27
Analysis for period	29
Circadian Analysis LD-LD	30
v v	30
Analysis for alpha	32
Analysis for period	34
Analysis for Spectral Data	36
Session Info	39

Description

This is the report of the analysis made for the paper Shank3 Modulates Sleep and Expression of Circadian Transcription Factors by Ashley M. Ingiosi, Taylor Wintler, Hannah Schoch, Kristan G. Singletary, Dario

Righelli, Leandro G. Roser, Davide Risso, Marcos G. Frank and Lucia Peixoto.

Autism Spectrum Disorder (ASD) is the most prevalent neurodevelopmental disorder in the US that often co-presents with sleep problems. Sleep impairments in ASD predict the severity of ASD core diagnostic symptoms and have a considerable impact on the quality of life of caregivers. However, little is known about the underlying molecular mechanism(s) of sleep impairments in ASD. In this study we investigated the role of Shank3, a high confidence ASD gene candidate, in the regulation of sleep. We show that Shank3 mutant mice have problems falling asleep despite accumulating sleep pressure. Using RNA-seq we show that sleep deprivation doubles the differences in gene expression between mutants and wild types and downregulates circadian transcription factors Per3, Dec2, and Rev-erb α . Shank3 mutants also have trouble regulating locomotor activity in the absence of light. Overall, our study shows that Shank3 is an important modulator of sleep and circadian activity. # Differential Expression Analysis

Importing data

Importing data and filtering out those genes with cpm lesser than 1. We use the *filtered.data* method in *NOISeq* package.

Plot PCA of log unnormalized data

PCA Plot of filtered not-normalized data.

```
PlotPCAPlotlyFunction(counts.data.frame=log1p(filteredCountsProp),
    design.matrix=designMatrix,
    shapeColname="condition", colorColname="genotype", xPCA="PC1", yPCA="PC2",
    plotly.flag=FALSE, show.plot.flag=TRUE, prefix.plot="Prop-Un-Norm")
```

[1] FALSE

Control Genes

Negative control genes

Loading Negative Control Genes to normalize data

```
library(readxl)

sd.ctrls <- read_excel(path="./data/controls/Additional File 4 full list of BMC genomics SD&RS2.xlsx",
sd.ctrls <- sd.ctrls[order(sd.ctrls$adj.P.Val),]

sd.neg.ctrls <- sd.ctrls[sd.ctrls$adj.P.Val > 0.9, ]
```

positive control genes

Loading Positive Control Genes to detect them during the differential expression step.

Normalizations

TMM Normalization

Normalizing data with TMM, as implemented in edgeR package, and plotting a PCA and an RLE plot of them.

[1] FALSE

pal <- RColorBrewer::brewer.pal(9, "Set1")
plotRLE(as.matrix(normPropCountsUqua), outline=FALSE, col=pal[designMatrix\$gcondition])</pre>

TMM + RUVs Normalization

Applying a RUVs method of RUVSeq package on normalized data, in order to adjust the counts for the unwanted variation. And of corse we plot a PCA and an RLE plot on these data.

```
plotly.flag=FALSE, show.plot.flag=FALSE, save.plot=FALSE,
prefix.plot=NULL)
```

[1] FALSE
print(ggp)

edgeR Differential Expression Analysis

Making differential expression analysis with edgeR package on four different contrasts.

Here is a brief legend:

- WTSD5: Wild Type Sleep Deprivation 5 days.
- KOHC5: Knock Out Home Cage Control 5 days.
- KOSD5: Knock Out Sleep Deprivation 5 days.

```
padj.thr <- 0.05
venn.padgj.thr <- 0.1
desMat <- cbind(designMatrix, ruvedSExprData$W)
colnames(desMat) <- c(colnames(designMatrix), colnames(ruvedSExprData$W))
cc <- c("S3HC5 - WTHC5", "S3SD5 - WTSD5", "WTSD5 - WTHC5")</pre>
```

Shank3 Home Cage control VS Wild Type Home Cage Controls

volcano plot

A volcano plot of differential expressed genes.


```
de <- sum(res.o$FDR < padj.thr)
nde <- sum(res.o$FDR >= padj.thr)
detable <- cbind(de,nde)
rownames(detable) <- names(rescList1)[1]
ddetable <- detable

tot.ctrls <- dim(sd.pos.ctrls)[1]
idx.pc <- which(tolower(res.o$gene) %in% tolower(sd.pos.ctrls[,1]))
tot.pc.de <- sum(res.o$FDR[idx.pc] < padj.thr)
tot.pc.nde <- length(idx.pc) - tot.pc.de

wt <- res.o[which(res.o$FDR < padj.thr),]
wt.sign.genes.entrez <- rownames(res.o)[which(res.o$FDR < venn.padgj.thr)]</pre>
```

```
kowthc5 <- res.o[which(res.o$FDR < padj.thr),]
kowthc5.sign.genes.entrez <- rownames(res.o)[which(res.o$FDR < venn.padgj.thr)]</pre>
```

Shank3 Sleed Deprivation VS Wild Type Sleep Deprivation

volcano plot

A volcano plot of differential expressed genes.

DE TABLE + Positive Controls table

We present a summarization of the results. The first table is a summarization on how many genes are Differentially Expressed. The second table explains on the first column how many positive controls we have, on the second column how many positive controls have been identified over the differentially expressed genes, and, finally, on the third column how many positive controls have beed identified on the NOT differentially expressed genes.

WTSD5 - WTHC5 positive controls

Venn Diagram

KOHC5-WTHC5 vs KOSD5-WTSD5

We take the results of the two contrasts. Knock Out Sleed Deprivation VS Wild Type Sleep Deprivation and Knock Out Home Cage control VS Wild Type Home Cage Controls . And plot the results in a Venn Diagram

S3HC5_WTHC5 venn S3SD5_WTSD5

Heatmaps

Setting up the data structures for the heatmps.

```
source("./R/heatmapFunctions.R")
de.genes.entr <- union(rownames(venn$int), rownames(venn$XnoY))
de.genes.entr <- union(de.genes.entr, rownames(venn$YnoX))</pre>
```

```
gene.map <- convertGenesViaMouseDb(gene.list=de.genes.entr,</pre>
                             fromType="ENTREZID")
de.genes.symb <- attachGeneColumnToDf(as.data.frame(de.genes.entr,</pre>
                                                      row.names=de.genes.entr),
                                     genesMap=gene.map,
                                     rowNamesIdentifier="ENTREZID",
                                     mapFromIdentifier="ENTREZID",
                                     mapToIdentifier="SYMBOL")
# de.qenes.symb[which(is.na(de.qenes.symb$qene)),]
de.genes.symb$gene[which(de.genes.symb$de.genes.entr=="100039826")] <- "Gm2444" ## not annotated in no
de.genes.symb$gene[which(de.genes.symb$de.genes.entr=="210541")] <- "Entrez:210541" ## not annotated in
de.genes.counts <- normExprData[match(de.genes.symb$de.genes.entr, rownames(normExprData)),]</pre>
rownames(de.genes.counts) <- de.genes.symb$gene</pre>
de.gene.means <- computeGeneMeansOverGroups(counts=de.genes.counts,</pre>
                             design=designMatrix, groupColumn="gcondition")
library(gplots)
library(clusterExperiment)
color.palette = clusterExperiment::seqPal3#c("black", "yellow")
pal <- colorRampPalette(color.palette)(n = 1000)</pre>
library(pheatmap)
filter2 <- rowMeans(de.gene.means)>0
filter <- apply(de.gene.means, 1, function(x) log(x[4]/x[3]) * log(x[2]/x[1]) < 0)
filter[is.na(filter)] <- FALSE</pre>
```

Heatmap gene by bene

```
0.15
                                                                                                      HC5
                                                                             genotype
                                                                                                      SD5
                                                                                              0.1
                                                                                                    genotype
                                                                                              0.05
                                                                                                      S3
                                                                                                      WT
                                                                                               -0.05
                                                                             Cluster: 2 Size: 42
                                                                                              -0.1
                                                                             Cluster: 1 Size: 75
                                                                             Cluster: 3 Size: 61
                      S3HC5_S8
                                 WTHC5_S3
                                    WTHC5_S3
                                       WTHC5_S36
                                                        WTSD5_S22
                                                            S3SD5_S2
                          WTHC5_S20
                                           WTSD5_S1
                                              WTSD5_S38
                                                  WTSD5_S29
                                                     WTSD5_S13
                                                               S3SD5_S7
                                                                   S3SD5_S1
                             WTHC5_S16
clusterized.genes <- as.data.frame(ph1$kmeans$cluster)</pre>
gene.map <- convertGenesViaMouseDb(gene.list=rownames(clusterized.genes), fromType="SYMBOL")</pre>
converted.clusterized.gens <- attachGeneColumnToDf(mainDf=clusterized.genes, genesMap=gene.map,</pre>
                        rowNamesIdentifier="SYMBOL", mapFromIdentifier="SYMBOL", mapToIdentifier="ENTREZID"
converted.clusterized.gens$gene[which(rownames(converted.clusterized.gens)=="Gm2444")] <- "100039826"
converted.clusterized.gens$gene[which(rownames(converted.clusterized.gens)=="Entrez:210541")] <- "2105"
converted.clusterized.gens <- converted.clusterized.gens[order(converted.clusterized.gens$`ph1$kmeans$c</pre>
save_pheatmap_pdf(filename="plots/heatmap_kmeans_k3.pdf", plot=ph1, width=20, height=20)
## pdf
##
      2
```

condition

condition

```
WriteDataFrameAsTsv(data.frame.to.save=converted.clusterized.gens, file.name.path="plots/clustered_gene"
ord.de.genes.counts <- de.heatmap[match(rownames(converted.clusterized.gens), rownames(de.heatmap)),]
idx <- which(!(rownames(ord.de.genes.counts) %in% gene_names))</pre>
rownames(ord.de.genes.counts)[idx] <- ""</pre>
gaps.row <- c()</pre>
for(i in c(1:3))
    li <- length(which(converted.clusterized.gens$`ph1$kmeans$cluster`==i))</pre>
    1 <- ifelse(i!=1, gaps.row[i-1]+li, li)</pre>
    gaps.row <- c(gaps.row, 1)</pre>
}
heatmap_data_scaled <- t(scale(t(log(ord.de.genes.counts+1)), center = TRUE, scale = TRUE))
library(dendextend)
column_dend <- as.dendrogram(hclust(dist(t(heatmap_data_scaled))))</pre>
ord <- labels(column_dend)</pre>
ord[11:15] <- labels(column_dend)[16:20]
ord[16:20] <- labels(column_dend)[11:15]
column_dend <- rotate(column_dend, ord)</pre>
ph1 <- pheatmap(heatmap_data_scaled, cluster_cols=as.hclust(column_dend), scale="none",</pre>
             color=pal, border_color=NA, fontsize_row=9, fontsize_col=9, cluster_rows=FALSE,
             annotation_col=ann.col, gaps_row=gaps.row)
```


save_pheatmap_pdf(filename="plots/heatmap_gg_k3.pdf", plot=ph1, width=20, height=20)

```
## pdf
## 2
```

other heatmaps

condition condition HC5 genotype SD5 0.5 Bhlhe41 genotype S3 WT HIf Mapk3 -1.5 Nr1d1 Per3 -2 \$168394 Tef Fbs12 Kcnk1 Mapk11 Nfil3 Brkab2 Ptprj Cntn1 Pusp₂0 Higher Kenka Ntrk2 Reln Sema3a Stat4 WTSD5_S38 S3HC5_S37 S3HC5_S8 S3HC5_S12 S3HC5_S28 S3SD5_S14 S3SD5_S30 S3SD5_S21 S3SD5_S7 WTHC5_S3 WTHC5_S31 WTHC5_S15 WTHC5_S36 WTSD5_S29 WTSD5_S13 WTSD5_S22 WTSD5_S1 S3HC5_S23 S3SD5_S2 WTHC5_S20 save_pheatmap_pdf(filename="plots/heatmap_gg_k3_no_scale.pdf", plot=ph1, width=20, height=20) ## pdf ## ## Only SD samples heatmap_data <- t(scale(t(log(de.heatmap[, grep("^SD", desMat[,2])]+1)), center = TRUE, scale = FALSE))</pre> ph1 <- pheatmap(heatmap_data, cluster_cols=TRUE, scale="none",</pre> color=pal, border_color=NA, fontsize_row=10, kmeans_k=2, annotation_col=ann.col)

breaks = c(min(heatmap_data), seq(quantile(as.vector(heatmap_data), .01), quantile(as.vector

idx <- which(!(rownames(ord.de.genes.counts) %in% gene_names))</pre>

save_pheatmap_pdf(filename="plots/heatmap_gg_sd_only.pdf", plot=ph1, width=20, height=20)

```
## pdf
## 2
```

Group gene profiles

Group gene profiles by genotype

```
g <- geneGroupProfileRows(normalized.counts=normExprData, design.matrix=designMatrix, gene.names=c("Nr1d1", "Hlf", "Per3", "Bhlhe41", "Tef"), res.o=de.genes.symb, show.plot=TRUE, plotly.flag=FALSE, log.flag=TRUE)
```


save_plot(filename=paste0("plots/", "Nr1d1_Hlf_Per3_Bhlhe41_Tef", "_log_gene_profile_genotype.pdf"), pl
base_height=15, base_width=15)

Group gene profiles by condition

save_plot(filename=paste0("plots/", "Nr1d1_Hlf_Per3_Bhlhe41_Tef", "_log_gene_profile_condition.pdf"), p
 base_height=15, base_width=15)

Circadian Analysis LD-DD

Analysis for activity

```
wt <- read_xlsx("data/LD_DD_Activity_analysis_4_R.xlsx", sheet = 1)
mut <- read_xlsx("data/LD_DD_Activity_analysis_4_R.xlsx", sheet = 2)
wt <- wt %>%
```

```
bind_cols(WT.M=rep("WT", nrow(wt)), time = decimal_date(ymd(wt$`Total_revolutions/day`)), .) %>%
  gather(mice, activity, -c(1:5)) %>%
  mutate(time = time-min(time)) %>%
  dplyr::select(-`Total_revolutions/day`)
mut <- mut %>%
  bind_cols(WT.M=rep("M", nrow(mut)), time = decimal_date(ymd(mut$`Total_revolutions/day`)), .) %>%
  gather(mice, activity, -c(1:5)) %>%
  mutate(time = time-min(time)) %>%
  dplyr::select(-`Total_revolutions/day`)
data <- wt %>% bind_rows(mut)
data <- data %>% filter(week>=3)
data$mice <- factor(data$mice, levels= unique(data$mice))</pre>
data$time_scaled <- scale(data$time, scale=FALSE)</pre>
data$period <- factor(data$period, levels= unique(data$period))</pre>
data$WT.M <-factor(data$WT.M, levels=c("WT", "M"))</pre>
mod <- lme(activity ~ time_scaled * WT.M, random=~1 mice, data = data)
cat("Estimates, errors and the significance")
## Estimates, errors and the significance
summary(mod)
## Linear mixed-effects model fit by REML
  Data: data
                   BIC
##
          ATC
                         logLik
##
    8681.339 8705.303 -4334.67
##
## Random effects:
## Formula: ~1 | mice
##
           (Intercept) Residual
             14936.81 11161.46
## StdDev:
##
## Fixed effects: activity ~ time_scaled * WT.M
                          Value Std.Error DF
                                               t-value p-value
## (Intercept)
                       38778.45
                                  5335.29 388 7.268296 0.0000
## time scaled
                      -20486.52 35588.68 388 -0.575647 0.5652
## WT.MM
                      -20324.26
                                  7810.06 13 -2.602317
                                                         0.0219
## time_scaled:WT.MM -289880.69 52096.49 388 -5.564304 0.0000
## Correlation:
##
                     (Intr) tm_scl WT.MM
                      0.000
## time scaled
## WT.MM
                     -0.683 0.000
## time_scaled:WT.MM 0.000 -0.683 0.000
##
## Standardized Within-Group Residuals:
                                   Med
           Min
                        Q1
                                                            Max
## -2.69133816 -0.63470177 0.03277689 0.63109234 3.19701990
##
```

```
## Number of Observations: 405
## Number of Groups: 15
cat("Bootstrap confidence intervals for the estimates")
## Bootstrap confidence intervals for the estimates
mod_lmer <- lmer(activity ~ time_scaled * WT.M + (1 mice), data = data)</pre>
suppressMessages(confint.merMod(mod_lmer, method = "boot", nsim = 999))
##
                         2.5 %
                                    97.5 %
## .sig01
                       8955.95
                                 20503.825
## .sigma
                      10389.64
                                12032.640
## (Intercept)
                      28479.16
                                 48421.280
## time scaled
                     -87582.69 48954.982
## WT.MM
                     -36065.65
                                 -4532.543
## time_scaled:WT.MM -384418.16 -187596.734
cat("ANOVA table")
## ANOVA table
anova.lme(mod, type = "marginal", adjustSigma = F)
##
                   numDF denDF F-value p-value
## (Intercept)
                      1 388 52.82812 <.0001
                       1 388 0.33137 0.5652
## time scaled
## WT.M
                       1 13 6.77206 0.0219
## time scaled:WT.M
                      1 388 30.96148 <.0001
```

Analysis for alpha

```
wt <- read_xlsx("data/LD_DD_Alpha_Activity_analysis_4_R.xlsx", sheet = 1, na = "NA")
mut <- read_xlsx("data/LD_DD_Alpha_Activity_analysis_4_R.xlsx", sheet = 2, na = "NA")</pre>
wt <- wt %>%
  bind_cols(WT.M = rep("WT", nrow(wt)), time = decimal_date(ymd(wt$`Total_revolutions/day`)), .)%>%
  gather(mice, alpha, -c(1:5)) %>%
  mutate(time = time-min(time)) %>%
  dplyr::select(-`Total_revolutions/day`)
mut <- mut %>%
  bind_cols(WT.M=rep("M", nrow(mut)), time = decimal_date(ymd(mut$`Total_revolutions/day`)), .)%%
  gather(mice, alpha, -c(1:5)) %>%
 mutate(time = time-min(time)) %>%
  dplyr::select(-`Total_revolutions/day`)
alpha_data <- wt %>% bind_rows(mut)
alpha_data <- alpha_data %>% filter(week>=3)
alpha_data<- na.omit(alpha_data)</pre>
alpha_data$mice <- factor(alpha_data$mice, levels= unique(alpha_data$mice))
alpha_data$time_scaled <- scale(alpha_data$time, scale=FALSE)</pre>
alpha_data$period <- factor(alpha_data$period, levels= unique(alpha_data$period))
alpha_data$WT.M <- factor(alpha_data$WT.M, levels=c("WT", "M"))</pre>
```

```
alpha_data$alpha <- as.numeric(alpha_data$alpha)</pre>
mod1 <- lme(alpha ~ time_scaled * WT.M, random=~1 mice, data = alpha_data, na.action = na.omit)
cat("Estimates, errors and the significance")
## Estimates, errors and the significance
summary(mod1)
## Linear mixed-effects model fit by REML
   Data: alpha_data
##
         AIC
                  BIC
                         logLik
    2068.243 2091.978 -1028.121
##
##
## Random effects:
## Formula: ~1 | mice
          (Intercept) Residual
## StdDev:
           0.6720236 3.405597
##
## Fixed effects: alpha ~ time_scaled * WT.M
                         Value Std.Error DF
                                             t-value p-value
                     ## (Intercept)
## time scaled
                    -16.267322 11.031558 373 -1.474617 0.1412
## WT.MM
                     -0.714526  0.490361  13 -1.457142  0.1688
## time scaled:WT.MM 2.360361 16.148547 373 0.146166 0.8839
## Correlation:
                    (Intr) tm_scl WT.MM
##
## time_scaled
                     0.000
## WT.MM
                    -0.683 0.000
## time_scaled:WT.MM 0.000 -0.683 0.000
## Standardized Within-Group Residuals:
          Min
                       Q1
                                  Med
                                               Q3
                                                          Max
## -2.73631345 -0.48276146 0.06646042 0.49709145 3.94949030
##
## Number of Observations: 390
## Number of Groups: 15
cat("Bootstrap confidence intervals for the estimates")
## Bootstrap confidence intervals for the estimates
mod1_lmer <- lmer(alpha ~ time_scaled * WT.M + (1|mice), data = alpha_data)</pre>
suppressMessages(confint.merMod(mod1_lmer, method = "boot", nsim = 999))
##
                         2.5 %
                                  97.5 %
## .sig01
                      0.000000 1.126553
                      3.147126 3.655970
## .sigma
## (Intercept)
                      9.461287 10.763733
## time_scaled
                    -38.593893 4.970986
## WT.MM
                     -1.680165 0.235239
## time_scaled:WT.MM -29.410802 34.100068
cat("ANOVA table")
```

ANOVA table

```
anova.lme(mod1, type = "marginal", adjustSigma = F)
##
                    numDF denDF F-value p-value
                            373 909.2645 <.0001
## (Intercept)
## time_scaled
                        1
                            373
                                  2.1745 0.1412
## WT.M
                        1
                            13
                                  2.1233 0.1688
## time_scaled:WT.M
                            373
                                 0.0214 0.8839
                       1
Analysis for period
wt <- read xlsx("data/LD DD Period analysis 4 R.xlsx", sheet = 1) %>% gather(mice, value, -1)
wt <- data.frame(WT.M=rep("WT", nrow(wt))) %>% bind_cols(wt)
mut <- read_xlsx("data/LD_DD_Period_analysis_4_R.xlsx", sheet = 2) %>% gather(mice, value, -1)
mut <- data.frame(WT.M=rep("M", nrow(mut))) %>% bind_cols(mut)
period_data <- wt %>% bind_rows(mut)
period_data$value <- as.numeric(period_data$value)</pre>
mod2 <- lme(value~ week * WT.M, random = ~1 | mice, data = period_data)
cat("Estimates, errors and the significance")
## Estimates, errors and the significance
summary(mod2)
## Linear mixed-effects model fit by REML
  Data: period_data
##
         AIC
              BIC
                       logLik
##
     309.1875 328.7 -144.5938
##
## Random effects:
## Formula: ~1 | mice
           (Intercept) Residual
##
## StdDev:
            0.7251103 3.268825
## Fixed effects: value ~ week * WT.M
##
                            Value Std.Error DF t-value p-value
## (Intercept)
                        23.721429 1.265532 39 18.744234 0.0000
## weekDD_Week_2
                       -3.381429 1.747260 39 -1.935275 0.0602
## weekDD_Week_3
                        2.055714 1.747260 39
                                               1.176536
                                                         0.2465
## weekLD_Week_3
                        0.208571 1.747260 39 0.119371
                                                          0.9056
## WT.MWT
                         0.137321 1.732901 13 0.079244
                                                         0.9380
## weekDD Week 2:WT.MWT 3.251429 2.392535 39 1.358989
                                                          0.1820
## weekDD_Week_3:WT.MWT -2.426964 2.392535 39 -1.014390 0.3166
## weekLD Week 3:WT.MWT -0.063571 2.392535 39 -0.026571 0.9789
## Correlation:
                        (Intr) wkDD_W_2 wkDD_W_3 wkLD_W_3 WT.MWT wDD_W_2:
##
## weekDD_Week_2
                       -0.690
## weekDD Week 3
                       -0.690 0.500
## weekLD_Week_3
                       -0.690 0.500
                                         0.500
## WT.MWT
                        -0.730 \quad 0.504
                                        0.504
                                                  0.504
```

-0.365

-0.690

-0.365

weekDD_Week_2:WT.MWT 0.504 -0.730

```
## weekDD_Week_3:WT.MWT 0.504 -0.365
                                       -0.730
                                                -0.365
                                                          -0.690 0.500
## weekLD_Week_3:WT.MWT 0.504 -0.365
                                      -0.365 -0.730
                                                         -0.690 0.500
##
                       wDD_W_3:
## weekDD_Week_2
## weekDD_Week_3
## weekLD Week 3
## WT.MWT
## weekDD_Week_2:WT.MWT
## weekDD_Week_3:WT.MWT
## weekLD_Week_3:WT.MWT 0.500
## Standardized Within-Group Residuals:
                         Q1
                                                    QЗ
                                                                Max
           Min
                                     Med
## -5.938352181 -0.067963537 -0.001414478 0.093674882 1.778532447
##
## Number of Observations: 60
## Number of Groups: 15
cat("Bootstrap confidence intervals for the estimates")
## Bootstrap confidence intervals for the estimates
mod2_lmer <- lmer(value ~ week * WT.M + (1 mice), data = period_data)</pre>
suppressMessages(confint.merMod(mod2_lmer, method = "boot", nsim = 999))
##
                            2.5 %
                                      97.5 %
## .sig01
                        0.000000 2.14316485
## .sigma
                        2.513938 3.84935166
## (Intercept)
                       21.295014 26.08264006
## weekDD_Week_2
                       -6.777346 0.06162009
## weekDD Week 3
                       -1.202367 5.34826111
                       -3.176616 3.68604026
## weekLD_Week_3
## WT.MWT
                       -3.217573 3.26535504
## weekDD_Week_2:WT.MWT -1.222345 8.16487237
## weekDD_Week_3:WT.MWT -6.663714 1.92943012
## weekLD_Week_3:WT.MWT -4.658113 4.21914440
cat("ANOVA table")
## ANOVA table
anova.lme(mod2, type = "marginal", adjustSigma = F)
##
              numDF denDF F-value p-value
                       39 351.3463 <.0001
## (Intercept)
                  1
## week
                  3
                       39
                            3.3611 0.0282
## WT.M
                  1
                       13
                            0.0063 0.9380
                  3
## week:WT.M
                       39
                            1.9008 0.1454
```

Circadian Analysis LD-LD

Analysis for activity

```
wt <- read_xlsx("data/LD_LD_Activity_analysis_4_R.xlsx", sheet = 1)
mut <- read_xlsx("data/LD_LD_Activity_analysis_4_R.xlsx", sheet = 2)</pre>
```

```
wt <- wt %>%
  bind_cols(WT.M=rep("WT", nrow(wt)), time = decimal_date(ymd(wt$`Total_revolutions/day`)), .) %>%
  gather(mice, activity, -c(1:3)) %>%
  mutate(time = time-min(time)) %>%
  dplyr::select(-`Total_revolutions/day`)
mut <- mut %>%
  bind cols(WT.M=rep("M", nrow(mut)), time = decimal date(ymd(mut$`Total revolutions/day`)), .) %>%
  gather(mice, activity, -c(1:3)) %>%
  mutate(time = time-min(time)) %>%
  dplyr::select(-`Total_revolutions/day`)
data <- wt %>% bind_rows(mut)
data$mice <- factor(data$mice, levels= unique(data$mice))</pre>
data$time_scaled <- scale(data$time, scale=FALSE)</pre>
data$WT.M <-factor(data$WT.M, levels=c("WT", "M"))</pre>
mod3 <- lme(activity ~ time_scaled * WT.M, random=~1 mice, data = data)
cat("Estimates, errors and the significance")
## Estimates, errors and the significance
summary(mod3)
## Linear mixed-effects model fit by REML
## Data: data
##
          AIC
                   BIC
                          logLik
    11661.69 11687.61 -5824.844
##
## Random effects:
## Formula: ~1 | mice
           (Intercept) Residual
##
              14529.36 7940.975
## StdDev:
##
## Fixed effects: activity ~ time_scaled * WT.M
                         Value Std.Error DF
##
                                              t-value p-value
## (Intercept)
                      40118.57 5158.779 542 7.776758 0.0000
## time_scaled
                      2089.01 1016.983 542 2.054126 0.0404
## WT.MM
                     -19109.48 7295.615 14 -2.619311 0.0202
## time scaled:WT.MM -13336.51 1438.232 542 -9.272853 0.0000
## Correlation:
                     (Intr) tm_scl WT.MM
                      0.000
## time_scaled
## WT.MM
                     -0.707 0.000
## time_scaled:WT.MM 0.000 -0.707 0.000
## Standardized Within-Group Residuals:
           Min
                        Q1
                                   Med
                                                Q3
                                                           Max
## -3.44738653 -0.64119095 0.03137236 0.52237000 3.77912348
## Number of Observations: 560
```

```
## Number of Groups: 16
cat("Bootstrap confidence intervals for the estimates")
## Bootstrap confidence intervals for the estimates
mod_lmer3 <- lmer(activity ~ time_scaled * WT.M + (1|mice), data = data)</pre>
suppressMessages(confint.merMod(mod_lmer3, method = "boot", nsim = 999))
                           2.5 %
                                      97.5 %
## .sig01
                      8901.97835 19858.007
## .sigma
                      7467.25154 8430.772
                     29846.60314 50229.588
## (Intercept)
## time scaled
                        79.33699
                                  4227.370
## WT.MM
                    -33900.26902 -5397.775
## time_scaled:WT.MM -16350.14587 -10643.563
cat("ANOVA table")
## ANOVA table
anova.lme(mod3, type = "marginal", adjustSigma = F)
                   numDF denDF F-value p-value
## (Intercept)
                       1 542 60.47796 <.0001
## time_scaled
                       1 542 4.21943 0.0404
## WT.M
                       1
                           14 6.86079 0.0202
## time scaled:WT.M
                           542 85.98580 <.0001
                       1
```

Analysis for alpha

```
wt <- read_xlsx("data/LD_LD_Alpha_Activity_analysis_4_R.xlsx", sheet = 1, na = "NA")
mut <- read_xlsx("data/LD_LD_Alpha_Activity_analysis_4_R.xlsx", sheet = 2, na = "NA")</pre>
wt <- wt %>%
  bind_cols(WT.M = rep("WT", nrow(wt)), time = decimal_date(ymd(wt$`Total_revolutions/day`)), .)%>%
  gather(mice, alpha, -c(1:3)) %>%
  mutate(time = time-min(time)) %>%
  dplyr::select(-`Total_revolutions/day`)
mut <- mut %>%
  bind cols(WT.M=rep("M", nrow(mut)), time = decimal date(ymd(mut$`Total revolutions/day`)), .)%%
  gather(mice, alpha, -c(1:3)) %>%
  mutate(time = time-min(time)) %>%
  dplyr::select(-`Total_revolutions/day`)
alpha_data <- wt %>% bind_rows(mut)
alpha_data<- na.omit(alpha_data)</pre>
alpha_data$mice <- factor(alpha_data$mice, levels= unique(alpha_data$mice))
alpha_data$time_scaled <- scale(alpha_data$time, scale=FALSE)</pre>
alpha_data$WT.M <- factor(alpha_data$WT.M, levels=c("WT", "M"))
alpha_data$alpha <- as.numeric(alpha_data$alpha)</pre>
mod4 <- lme(alpha ~ time_scaled * WT.M, random=~1|mice, data = alpha_data, na.action = na.omit)
```

```
cat("Estimates, errors and the significance")
## Estimates, errors and the significance
summary(mod4)
## Linear mixed-effects model fit by REML
   Data: alpha_data
##
         AIC
                 BIC
                         logLik
##
    3188.158 3214.58 -1588.079
##
## Random effects:
## Formula: ~1 | mice
##
           (Intercept) Residual
## StdDev:
              1.301648 3.255454
##
## Fixed effects: alpha ~ time_scaled * WT.M
##
                          Value Std.Error DF t-value p-value
## (Intercept)
                      10.090329 0.496636 590 20.317334 0.0000
                     -18.117603 6.214771 590 -2.915249 0.0037
## time_scaled
## WT.MM
                      -1.255362 0.702350 14 -1.787374 0.0955
## time_scaled:WT.MM 6.997015 8.789013 590 0.796109 0.4263
## Correlation:
##
                     (Intr) tm scl WT.MM
                      0.000
## time_scaled
## WT.MM
                     -0.707 0.000
## time_scaled:WT.MM 0.000 -0.707 0.000
## Standardized Within-Group Residuals:
                        Q1
                                   Med
                                                           Max
                                                QЗ
## -2.87208043 -0.48234294 -0.01803405 0.36708937 4.80926449
##
## Number of Observations: 608
## Number of Groups: 16
cat("Bootstrap confidence intervals for the estimates")
## Bootstrap confidence intervals for the estimates
mod4_lmer <- lmer(alpha ~ time_scaled * WT.M + (1 mice), data = alpha_data)</pre>
suppressMessages(confint.merMod(mod4_lmer, method = "boot", nsim = 999))
##
                           2.5 %
                                     97.5 %
                       0.6836051 1.8671865
## .sig01
## .sigma
                       3.0747217 3.4248900
## (Intercept)
                       9.0862075 11.0284162
## time_scaled
                     -29.7653211 -5.7385237
                      -2.6644753 0.1792937
## WT.MM
## time_scaled:WT.MM -10.6214447 23.6632498
cat("ANOVA table")
## ANOVA table
anova.lme(mod4, type = "marginal", adjustSigma = F)
```

numDF denDF F-value p-value

##

```
## (Intercept) 1 590 412.7941 <.0001

## time_scaled 1 590 8.4987 0.0037

## WT.M 1 14 3.1947 0.0955

## time_scaled:WT.M 1 590 0.6338 0.4263
```

Analysis for period

```
wt <- read_xlsx("data/LD_LD_Period_analysis_4_R.xlsx", sheet = 1) %>% gather(mice, value, -1)
wt <- data.frame(WT.M=rep("WT", nrow(wt))) %>% bind_cols(wt)
mut <- read_xlsx("data/LD_LD_Period_analysis_4_R.xlsx", sheet = 2) %>% gather(mice, value, -1)
mut <- data.frame(WT.M=rep("M", nrow(mut))) %>% bind_cols(mut)
period_data <- wt %>% bind_rows(mut)
period_data$value <- as.numeric(period_data$value)</pre>
mod5 <- lme(value ~ week * WT.M, random = ~1 mice, data = period_data)
cat("Estimates, errors and the significance")
## Estimates, errors and the significance
summary(mod5)
## Linear mixed-effects model fit by REML
## Data: period_data
##
          AIC
                  BIC
                          logLik
##
     373.0096 399.9916 -174.5048
##
## Random effects:
  Formula: ~1 | mice
           (Intercept) Residual
##
            0.3722568 2.496563
## StdDev:
##
## Fixed effects: value ~ week * WT.M
##
                          Value Std.Error DF t-value p-value
## (Intercept)
                       21.26375 0.8924266 56 23.826890 0.0000
                       2.59000 1.2482815 56 2.074853 0.0426
## weekLD Week 2
## weekLD_Week_3
                        2.98500 1.2482815 56 2.391288 0.0202
## weekLD Week 4
                        2.75500 1.2482815 56 2.207034 0.0314
## weekLD_Week_5
                        2.81000 1.2482815 56 2.251095 0.0283
## WT.MWT
                         2.75375 1.2620818 14 2.181911 0.0467
## weekLD_Week_2:WT.MWT -2.62000 1.7653366 56 -1.484136 0.1434
## weekLD_Week_3:WT.MWT -3.02375 1.7653366 56 -1.712846
                                                        0.0923
## weekLD_Week_4:WT.MWT -2.76125 1.7653366 56 -1.564149 0.1234
## weekLD_Week_5:WT.MWT -2.81625 1.7653366 56 -1.595305 0.1163
## Correlation:
##
                        (Intr) wkLD_W_2 wkLD_W_3 wkLD_W_4 wkLD_W_5 WT.MWT
## weekLD_Week_2
                       -0.699
                       -0.699 0.500
## weekLD Week 3
## weekLD_Week_4
                       -0.699 0.500
                                        0.500
## weekLD_Week_5
                       -0.699 0.500
                                        0.500
                                                  0.500
## WT.MWT
                       -0.707 0.495
                                        0.495
                                                 0.495
                                                          0.495
## weekLD_Week_2:WT.MWT 0.495 -0.707
                                       -0.354 -0.354
                                                         -0.354
                                                                  -0.699
## weekLD_Week_3:WT.MWT 0.495 -0.354
                                       -0.707 -0.354
                                                        -0.354
                                                                  -0.699
```

```
## weekLD_Week_4:WT.MWT 0.495 -0.354
                                       -0.354
                                                 -0.707
                                                          -0.354
                                                                   -0.699
## weekLD_Week_5:WT.MWT 0.495 -0.354 -0.354 -0.354
                                                          -0.707
                                                                   -0.699
                       wLD_W_2: wLD_W_3: wLD_W_4:
##
## weekLD_Week_2
## weekLD_Week_3
## weekLD Week 4
## weekLD Week 5
## WT.MWT
## weekLD_Week_2:WT.MWT
## weekLD_Week_3:WT.MWT 0.500
## weekLD_Week_4:WT.MWT 0.500
                                  0.500
## weekLD_Week_5:WT.MWT 0.500
                                  0.500
                                           0.500
## Standardized Within-Group Residuals:
                         Q1
           Min
                                      Med
                                                    Q3
                                                                Max
## -7.277846353 -0.022845832 -0.004456104 0.031513974 2.241303977
##
## Number of Observations: 80
## Number of Groups: 16
cat("Bootstrap confidence intervals for the estimates")
## Bootstrap confidence intervals for the estimates
mod5_lmer <- lmer(value ~ week * WT.M + (1|mice), data = period_data)</pre>
suppressMessages(confint.merMod(mod5_lmer, method = "boot", nsim = 999))
##
                               2.5 %
                                         97.5 %
## .sig01
                        0.00000000 1.3313434
## .sigma
                        2.001288042 2.8729862
## (Intercept)
                       19.496531958 23.0898569
## weekLD_Week_2
                        0.006426057 5.1844238
## weekLD Week 3
                        0.496213629 5.3496694
## weekLD_Week_4
                        0.238414916 5.1431170
## weekLD_Week_5
                        0.174870549 5.2394178
## WT.MWT
                         0.263076435 5.1512859
## weekLD_Week_2:WT.MWT -5.995338634 0.8855970
## weekLD_Week_3:WT.MWT -6.395422785 0.3820945
## weekLD_Week_4:WT.MWT -6.296574847 0.7338623
## weekLD_Week_5:WT.MWT -6.202012078 0.6590945
cat("ANOVA table")
## ANOVA table
anova.lme(mod5, type = "marginal", adjustSigma = F)
              numDF denDF F-value p-value
                        56 567.7207 <.0001
## (Intercept)
                   1
## week
                   4
                        56
                            2.0166
                                    0.1045
## WT.M
                   1
                       14
                            4.7607 0.0467
## week:WT.M
                        56
                           1.0236 0.4031
```

Analysis for Spectral Data

```
# GAM plots
library(mgcv)
data<-read xlsx("data/BL spectral.xlsx")</pre>
data <- data %>% gather(Hertz, value, -c(1:3))
data <- data %>%
 mutate(GT=replace(GT,GT == 1, "WT")) %>%
 mutate(GT=replace(GT,GT == 2, "MT")) %>%
 mutate(LD=replace(LD,LD == 1, "LIGHT")) %>%
 mutate(LD=replace(LD,LD == 2, "DARK")) %>%
 mutate(hz= as.numeric(Hertz)) %>%
  mutate(STATE = factor(STATE, levels = unique(STATE))) %>%
  mutate(GT = factor(GT, levels = unique(GT))) %>%
  mutate(LD = factor(LD, levels = unique(LD))) %>%
  mutate(value = replace(value, value == -99, NA))
temp<-data %>% filter(STATE == "WAKEFULNESS" & LD == "LIGHT")
index <-paste(data$STATE, data$LD, sep = "")</pre>
index_lev <- unique(index)</pre>
layout(matrix(seq_len(6), nrow = 3, ncol = 2, byrow = TRUE))
shadow_col \leftarrow c(rgb(109, 109, 109, max = 255, alpha = 80),
                 rgb(244, 66, 66, max = 255, alpha = 80))
for(this index in index lev) {
  state <- unique(data[index == this_index, ][, 1])</pre>
  state <- as.character(unlist(state))</pre>
  light <- unique(data[index == this_index, ][, 3])</pre>
  light <- as.character(unlist(light))</pre>
  temp2 <- data[index == this_index, ]</pre>
  plot(x = temp2$hz, y = temp2$value, type = "n",
       ylab = "% of Total Power", ylim = c(0,20),
       xlab = 'Hertz', lwd = 3, cex = 1.2,
       main = paste0(state, "-", light), axes = FALSE)
  axis(1, at = seq(0, 20, by = 5), las = 1, pos = 0, lwd = 3)
  axis(2, at = seq(0, 15, by = 3), las = 2, pos = 0, lwd = 3)
  mod <- list(wt = gam(value~s(hz), data = temp2[temp2$GT == "WT",]),</pre>
              mt = gam(value~s(hz), data = temp2[temp2$GT == "MT",]))
  for(i in seq along(mod)) {
    ss \leftarrow seq(min(temp2\$hz) + 0.1, max(temp2\$hz) - 0.1, 0.1)
    pred <- predict(mod[[i]], data.frame(hz = ss), se = TRUE)</pre>
    fit <- pred$fit</pre>
    se <- pred$se.fit
    lower <- fit - 1.96 * se
    upper <- fit + 1.96 * se
    to_plot <- data.frame(hz = ss, fit, lower, upper)</pre>
```


NREM-LIGHT

NREM-DARK

REM-LIGHT

REM-DARK

Session Info

sessionInfo()

```
## R version 3.4.3 (2017-11-30)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.5 LTS
## Matrix products: default
## BLAS: /usr/local/lib/R/lib/libRblas.so
## LAPACK: /usr/local/lib/R/lib/libRlapack.so
##
## locale:
## [1] LC CTYPE=en US.UTF-8
                                   LC NUMERIC=C
  [3] LC_TIME=en_GB.UTF-8
                                   LC_COLLATE=en_US.UTF-8
   [5] LC_MONETARY=en_GB.UTF-8
                                   LC_MESSAGES=en_US.UTF-8
##
                                   LC_NAME=C
##
  [7] LC_PAPER=en_GB.UTF-8
## [9] LC ADDRESS=C
                                   LC TELEPHONE=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4
                 parallel stats
                                     graphics grDevices utils
                                                                    datasets
## [8] methods
                 base
## other attached packages:
## [1] mgcv_1.8-24
                                   bindrcpp_0.2.2
##
   [3] dendextend_1.8.0
                                   pheatmap_1.0.10
## [5] clusterExperiment_1.4.0
                                   gplots_3.0.1
## [7] plyr 1.8.4
                                   org.Mm.eg.db 3.5.0
## [9] AnnotationDbi_1.40.0
                                   readxl_1.1.0
## [11] lme4 1.1-18-1
                                   Matrix 1.2-14
## [13] nlme_3.1-137
                                   tidyr_0.8.1
                                   lubridate_1.7.4
## [15] dplyr_0.7.6
## [17] cowplot_0.9.3
                                   RUVSeq_1.12.0
## [19] edgeR 3.20.9
                                   limma_3.34.9
## [21] EDASeq_2.12.0
                                   ShortRead_1.36.1
## [23] GenomicAlignments_1.14.2
                                   SummarizedExperiment_1.8.1
## [25] DelayedArray_0.4.1
                                   matrixStats_0.53.1
## [27] Rsamtools_1.30.0
                                   GenomicRanges_1.30.3
## [29] GenomeInfoDb_1.14.0
                                   Biostrings_2.46.0
## [31] XVector_0.18.0
                                   IRanges_2.12.0
## [33] S4Vectors_0.16.0
                                   BiocParallel_1.12.0
## [35] Biobase_2.38.0
                                   BiocGenerics_0.24.0
## [37] plotly_4.7.1
                                   ggplot2_3.0.0
## loaded via a namespace (and not attached):
     [1] uuid 0.1-2
                                backports_1.1.2
                                                        aroma.light_3.8.0
##
##
     [4] NMF 0.21.0
                                lazyeval 0.2.1
                                                        splines 3.4.3
##
     [7] rncl_0.8.2
                                NOISeq_2.22.1
                                                        gridBase_0.4-7
## [10] digest_0.6.15
                                foreach_1.4.4
                                                        htmltools 0.3.6
## [13] viridis_0.5.1
                                gdata_2.18.0
                                                        magrittr_1.5
                                cluster 2.0.7-1
                                                        doParallel 1.0.11
## [16] memoise 1.1.0
## [19] annotate_1.56.2
                                R.utils_2.6.0
                                                        prettyunits_1.0.2
```

```
[22] colorspace_1.3-2
                                 blob_1.1.1
                                                        crayon 1.3.4
##
    [25] RCurl_1.95-4.11
                                 jsonlite_1.5
                                                        genefilter_1.60.0
    [28] phylobase 0.8.4
                                 bindr 0.1.1
                                                        survival 2.42-6
##
    [31] iterators_1.0.10
                                                        glue_1.3.0
                                 ape_5.1
##
    [34] registry_0.5
                                 gtable_0.2.0
                                                        zlibbioc_1.24.0
    [37] kernlab 0.9-26
                                 DEoptimR 1.0-8
                                                        prabclus 2.2-6
##
    [40] scales 0.5.0.9000
                                 DESeq 1.30.0
                                                        mvtnorm 1.0-8
                                                        bibtex 0.4.2
    [43] DBI 1.0.0
##
                                 rngtools_1.3.1
    [46] Rcpp_1.0.0
##
                                 viridisLite_0.3.0
                                                        xtable 1.8-2
                                                        mclust_5.4.1
##
    [49] progress_1.2.0
                                 bit_1.1-14
                                                        RColorBrewer_1.1-2
    [52] htmlwidgets_1.2
                                 httr_1.3.1
    [55] fpc_2.1-11
                                 modeltools_0.2-22
                                                        flexmix_2.3-14
##
##
    [58] pkgconfig_2.0.1
                                 XML_3.98-1.12
                                                        R.methodsS3_1.7.1
                                                        howmany_0.3-1
##
    [61] nnet_7.3-12
                                 locfit_1.5-9.1
##
    [64] tidyselect_0.2.4
                                 labeling_0.3
                                                        rlang_0.2.1
##
    [67] reshape2_1.4.3
                                 munsell_0.5.0
                                                        cellranger_1.1.0
##
    [70] tools_3.4.3
                                 RSQLite_2.1.1
                                                        ade4_1.7-11
   [73] evaluate 0.11
                                 stringr 1.3.1
                                                        vaml 2.1.19
   [76] knitr_1.20
                                 bit64_0.9-7
                                                        robustbase_0.93-1.1
##
    [79] caTools 1.17.1
                                 purrr_0.2.5
                                                        whisker 0.3-2
##
   [82] R.oo_1.22.0
                                 xml2_1.2.0
                                                        biomaRt_2.34.2
    [85] compiler 3.4.3
                                 tibble 1.4.2
                                                        statmod_1.4.30
##
                                 RNeXML_2.1.1
    [88] geneplotter_1.56.0
                                                        stringi_1.2.3
##
    [91] GenomicFeatures 1.30.3 RSpectra 0.13-1
                                                        trimcluster 0.1-2
##
                                                        pillar 1.3.0
##
   [94] lattice_0.20-35
                                 nloptr 1.0.4
                                                        rtracklayer_1.38.3
   [97] data.table_1.11.4
                                 bitops_1.0-6
## [100] R6_2.2.2
                                 latticeExtra_0.6-28
                                                        hwriter_1.3.2
## [103] RMySQL_0.10.15
                                                        KernSmooth_2.23-15
                                 gridExtra_2.3
                                                        MASS_7.3-50
## [106] codetools_0.2-15
                                 boot_1.3-20
## [109] gtools_3.8.1
                                 assertthat_0.2.0
                                                        pkgmaker_0.27
                                                        locfdr_1.1-8
## [112] rprojroot_1.3-2
                                 withr_2.1.2
## [115] GenomeInfoDbData_1.0.0 diptest_0.75-7
                                                        hms_0.4.2
## [118] grid_3.4.3
                                 class_7.3-14
                                                        minqa_1.2.4
## [121] rmarkdown_1.10
```