Weather and fuel as modulators of grassland fire behavior in the northern Great Plains

Supplementary information

DA McGranahan, ME Zopfi, KA Yurkonis

2021-08-10

Study locations

Figure 1: Main map: Study locations (triangles) within two EPA level 3 ecoregions in North Dakota. Inset: State of North Dakota (dark blue) within the Great Plains (light blue) with respect to the continental United States.

Data collection

For even more information about the FeatherFlame datalogger system, please see:

- McGranahan DA (2021) FeatherFlame: An Arduino-based thermocouple datalogging system to record wildland fire flame temperatures in agris. Rangeland Ecology & Management 76, 43–47 DOI: 10.1016/j.rama.2021.01.008
- diyfirescience.info

Figure 2: Schematic representation of the Sierpinski Triangle used to deploy 27 thermocouples across 9, 1 m equilateral triangles. Total plot area = 0.433 ha.

Simard et al. (1982) describe how rate of spread r through an equilateral triangle with sides of length D can be determined from the arrival times of the flame front at each point in the triangle sequentially— t_1 , t_2 , and t_3 .

If $t_1 \neq t_2$,

$$\theta = \tan^{-1} \left(\frac{2t_3 - t_2 - t_1}{\sqrt{3} \cdot (t_2 - t_1)} \right) \tag{1}$$

and rate of spread r is

$$r = \frac{D \cdot \cos\theta}{t_2 - t_1} \tag{2}$$

otherwise, if $t_1=t_2$, $\theta=90$ and rate of spread r is

$$r = D(\sqrt{3}/2)/(t_3 - t_1) \tag{3}$$

Script

```
### S E T U P
##
# Additional packages required for analysis
 pacman::p_load(tidyverse, readr, mice, broom.mixed, vegan, lubridate)
# Additional script available via GitHub
 source('https://raw.githubusercontent.com/cran/mice/master/R/mipo.R')
#
##
### DATA PREPARATION
# Load raw data directly from GitHub
 fp = 'https://raw.githubusercontent.com/devanmcg/SpatialFireBehavior/main'
# Data wrangling
AllData <-
   read_csv(paste0(fp, "/data/fromMZ/CompiledData2.csv")) %>%
   filter(location != "OAK") %>%
     mutate(date = as.Date(date, format = "%m/%d/%Y"),
              L = str_remove(location, "REC"),
              B = str sub(block, 1,3),
              Ps = str_replace(pasture, "[.]", ""),
              Ps = str_sub(Ps, 1, 2),
              patch = str_replace(patch, "[.]", ""),
               y = format(date, "%y")) %>%
       unite("FireCode", c(L,B,Ps,patch,y), sep=".") %>%
   mutate(time = str remove(MaxTempTime, "[.]+[0-9]"))%>%
   unite(timestamp, c(date, time), sep = " ") %>%
   mutate(timestamp = as.POSIXct(timestamp, format = "%Y-%m-%d %H:%M:%S")) %>%
       select(FireCode, timestamp, plot, array, TC, MaxC,
              AirTemp, RH, dpC, WindSpeed,
              LAI, FMC, KgHa)
# Isolate soil surface temperature (TC 4)
 SoilTemp <-
   filter(AllData, TC == 4) %>%
     select(FireCode, plot, array, MaxC) %>%
       rename(SoilC = MaxC)
# Summarize array-level data
 DataMeans <-
   AllData %>%
     filter(TC %in% c('1', '2', '3')) %>%
     select(-timestamp) %>%
     pivot_longer(cols = c(MaxC:KgHa),
                  names to = "var",
                  values to = "value") %>%
     group_by(FireCode, plot, array, var) %>%
       summarize(Mean = mean(value) ) %>%
     ungroup() %>%
     pivot wider(names from = var,
                 values from = Mean)
# Calculate Vapor Pressure Deficit
 DataMeans <-
```

```
DataMeans %>%
      mutate(e = 6.11*(10^((7.5*dpC)/(237.3+dpC))),
             es = 6.11*(10^{(7.5*AirTemp)/(237.3+AirTemp))},
             VPD = es - e) \%
      select(-e, -es)
# Calculate rate of spread by arrival time of flame front at sensors
  D = 1  # Distance between thermocouples (m)
  ROS <-
   AllData %>%
      filter(TC %in% c('1', '2', '3')) %>%
      mutate(timestamp = format(timestamp, "%H:%M:%S"),
             ArrivalTime = seconds(hms(timestamp)) ) %>%
    select(FireCode, plot, array, ArrivalTime) %>%
    group_by(FireCode, plot, array) %>%
   arrange(ArrivalTime, .by_group = TRUE) %>%
   mutate(position = order(order(ArrivalTime, decreasing=FALSE)),
           position = recode(position, "1"="a", "2"="b", "3"="c"),
           ArrivalTime = as.numeric(ArrivalTime) /60 ) %>%
    spread(position, ArrivalTime) %>%
   ungroup %>%
    # Apply equations from Simard et al. (1984)
   mutate( theta_rad = atan((2*c - b - a) / (sqrt(3)*(b - a))),
           ros = case when(
              a == b \sim (sqrt(3) / 2) / (c - a),
              a != b \sim (D*cos(theta rad) / (b - a))
            )) %>%
   select(-a, -b, -c, -theta_rad)
# Create final tibble for analysis
  AnalysisData <-
    full_join(DataMeans, ROS) %>%
              left_join(SoilTemp) %>%
      filter( ros <= 40,
                              # remove outliers
              MaxC >= 40) %>% # ditto
      rename(FuelMoisture = FMC,
             SoilMaxC = SoilC) %>%
       mutate(FuelMoisture = ifelse(FuelMoisture >= 0,
                                      FuelMoisture, NA),
               FuelMoisture = FuelMoisture * 100) %>%
      separate(FireCode, into = c("location", "block", "pasture",
                           "patch", "year"),
               remove = F)
# Imputing missing values with mice package
  # Calculate imputed datasets on scaled data
    imp_sc <- AnalysisData %>%
            select(-LAI, -JD) %>%
            mutate(ros = ifelse(ros >= 12, NA, ros),  # remove outliers
                   tHa = ifelse(tHa >= 4, NA, tHa)) %>% # ditto
            mutate_at(vars(AirTemp:tHa), ~as.numeric(scale(., center=F))) %>%
                      mutate(across(location:array, as.factor)) %>%
```

```
mice(m=50, seed = 23109, print=F)
#
##
### STATISTICAL
                           MODELS
##
# Mixed-effect regression models on imputed datasets
# Rate of spread
  # Fit model
   ros_RH <-
      with(imp_sc, suppressMessages(
            lme4::glmer(ros ~ RH + tHa +
                              FuelMoisture + WindSpeed +
                              (1|location/block/year/plot),
                        family=Gamma(link = "log"),
                        control=lme4::glmerControl(optimizer="bobyqa",
                                      optCtrl=list(maxfun=100000)) )) )
  # Get terms
   ros_terms <-
      full_join(
      summary(pool(ros_RH)) %>%
       as_tibble() %>%
       rownames to column("row"),
      confint.mipo(pool(ros_RH)) %>%
        as tibble() %>%
       rownames_to_column("row") )
# Maximum canopy temperature
  # Fit model
    canopy_RH <-
      with(imp_sc, suppressMessages(
            lme4::glmer(MaxC ~ RH + tHa +
                            FuelMoisture + WindSpeed +
                          (1|location/block/year/plot),
                        family=Gamma(link = "log"),
                        control=lme4::glmerControl(optimizer="bobyqa",
                                      optCtrl=list(maxfun=100000)) )) )
  # Get terms
    canopy_terms <-
     full_join(
        summary(pool(canopy_RH)) %>%
          as_tibble() %>%
         rownames_to_column("row"),
        confint.mipo(pool(canopy_RH)) %>%
          as_tibble() %>%
         rownames_to_column("row") )
# Maximum soil surface temperature
  # Fit model
```

```
soil RH <-
      with(imp_sc, suppressMessages(
            lme4::glmer(log(SoilMaxC+1) ~ RH + tHa +
                        FuelMoisture + WindSpeed +
                        (1|location/block/year/plot),
              family=Gamma(link = "log"),
              control=lme4::glmerControl(optimizer="bobyqa",
                            optCtrl=list(maxfun=100000)) )) )
 # Get terms
   soil_terms <-
     full_join(
        summary(pool(soil_RH)) %>%
          as_tibble() %>%
          rownames_to_column("row"),
        confint.mipo(pool(soil_RH)) %>%
          as tibble() %>%
          rownames_to_column("row") )
# Multivariate analysis
 # Reduce mids object to tibble
   imp raw <-
      complete(imp_sc, 'long') %>%
      as_tibble() %>%
      unite("TreeID", c(location, block, pasture,
                        year, plot, array), sep = ".") %>%
      select(-patch, -.id, -.imp, -FireCode) %>%
     pivot_longer(names_to = "response",
                   values_to = "values",
                   -TreeID) %>%
      group_by(TreeID, response) %>%
      summarize(value = median(values)) %>%
      ungroup() %>%
      pivot_wider(names_from = response,
                  values from = value) %>%
      separate(TreeID, c("location", "block", "pasture",
                         "year", "plot", "array")) %>%
     mutate(across(location:array, as.factor))
 # Fire behavior PCA
   fb d <-
      imp_raw %>%
      select(MaxC, ros, SoilMaxC)
   fb_pca <- rda(fb_d ~ 1, 'euc', scale = T)</pre>
 # Test differences between locations
    envfit(fb_pca ~ location, imp_raw,
           choices = c(1:2),
           strata = imp_raw$year,
           199) $factors
# Test fire weather against PCA
  envfit(fb_pca ~ MaxWindSpeed+AirTemp+dpC+RH+VPD,
          data = imp_raw,
          choices = c(1:3),
          strata = imp_raw$location)
```