10

15

20

AMENDMENTS TO THE CLAIMS

Please amend the claims as follows.

Claims 1-24 (canceled)

- 25. (original): A composition comprising 16α -bromo- 3β -hydroxy- 5α -androstan-17-one, 16α -bromo-2-oxa- 3β -hydroxy- 5α -androstan-17-one, 16α -bromo- 3β -hydroxy-11-oxa- 5α -androstan-17-one or 16α -bromo- 3β -hydroxy- 5α -androstan-17-one hemihydrate and one or more nonaqueous liquid excipients, wherein the composition comprises less than about 3% v/v water.
 - 26. (original): The composition of claim 25 wherein the composition comprises less than about 0.3% v/v water.
 - 27. (original): The composition of claim 25 wherein the one or more nonaqueous liquid excipients are two or more of an alcohol, a polyethylene glycol, propylene glycol and benzyl benzoate.
- 28. (original): The composition of claim 25 wherein the composition is a parenteral formulation.
- 29. (new): A method to treat a human or a primate having an innate immune suppression condition, wherein the method comprises administering an effective amount of a compound to the subject whereby the numbers or activity of neutrophils in the human or primate is increased, wherein the compound has the structure

$$R^{9}$$
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{4

10

15

20

$$R^{9}$$
 R^{9}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4

wherein, the dotted lines are optional double bonds and the hydrogen atom at the 5-position, if present, is in the α -configuration;

R¹ is -H, -OH, -SH, -NH₂, =NOH, =NOC(O)CH₃, an ester, a thioester, a phosphoester, a phosphothioester, a phosphonoester, a phosphiniester, a sulfate ester, a maino acid, a peptide, an ether, a thioether, a carbonate, a carbamate or a thioacetal;

R² is -H, -OH, -OR^{PR}, -SH, -SR^{PR}, =S, =CH₂, -N₃, -CN, -NO₂, =NOH, =NOC(O)CH₃, an ester, a thioester, a phosphoester, a phosphothioester, a phosphonoester, a phosphiniester, a sulfite ester, a sulfate ester, an amide, an ether, a thioether, an acyl group, a thioacyl group, a carbonate, a carbamate, a thioacetal, an optionally substituted alkyl group, an optionally substituted alkynyl group;

 R^3 is -H, -OH, -SH, =S, =CH₂, -N₃, -NH₂, -CN, -NO₂, =NOH, =NOC(O)CH₃, -F, -Cl, -Br, -I, an ester, a thioester, a thioacetal, an ether or a thioether;

R⁴ independently are -H, -OH, -OR^{PR}, =O, -SH, -SR^{PR}, =S, =CH₂, -N₃, -NH₂, -N(R^{PR})₂, =NOH, =NOC(O)CH₃, -C(O)-CH₃, -F, -Cl, -Br, -I, an ester, a thioester, a phosphoester, a phosphothioester, a phosphonoester, a phosphonoester, a phosphiniester, a sulfite ester, a sulfate ester, an amide, an amino acid, a peptide, an ether, a thioether, a carbonate, a carbamate, a thioacetal, an optionally substituted alkyl group or a polymer, provided that both R⁴ are not -H;

R⁶ is -H, optionally substituted alkyl or optionally substituted alkynyl;

R⁹ is -CHR¹⁰-, -O-, -S- or -NH- where R¹⁰ is -H, -OH, =O, -SH, =S, a halogen, an ester, an ether, a carbamate, a carbamate, a thioacetal or a thioether; and

RPR independently are a protecting group.

- 30. (new): The method of claim 29 wherein the innate immune suppression condition is associated with a chemotherapy, radiation therapy or aging.
- 31. (new): The method of claim 30 wherein the innate immune suppression condition is associated with radiation therapy.
- 32. (new): The method of claim 31 wherein the compound has the structure

33. (new): The method of claim 31 wherein the compound has the structure

10

15

20

- 34. (new): The method of claim 33 wherein R¹ is -H, -OH, -SH, an ester, an ether, a carbamate or a carbonate.
- 35. (new): The method of claim 33 wherein R³ is -F, -Cl, -Br, -I, -OH,=O, -SH, =S, an ester, an ether, a thioester, a thioacetal or a thioether.
- 36. (new): The method of claim 34 wherein R⁴ is -OH, =O, -SH, =S, an ester, a phosphate ester or an ether.
- 37. (new): The method of claim 36 wherein R^2 is -OH, =O, an ester or an ether.
- 38. (new): The method of claim 36 wherein R³ is -OH, =O, an ester or an ether and R² is -H, -OH, =O or an ester.
- 39. (new): The method of claim 31 wherein the compound is 3β ,17 β -dihydroxyandrost-5-ene, 3α ,17 β -dihydroxyandrost-5-ene, 16α -fluoro-17 β -dihydroxyandrost-5-ene, 16α -fluoro-17 α -dihydroxyandrost-5-ene, 16α -fluoro-17-oxoandrost-5-ene, 3β ,7 β ,17 β -trihydroxyandrost-5-ene, 3α ,7 β ,17 β -trihydroxyandrostane, 3α ,16 β ,17 β -trihydroxyandrostane, 3α ,16 α ,17 β -trihydroxyandrostane, 3α ,16 α ,17 β -trihydroxyandrostane, 3α ,16 α -dihydroxy-17-oxoandrostane or 3α ,16 β -dihydroxy-17-oxoandrostane or 3α ,16 β -dihydroxy-17-oxoandrostane.
- 40. (new): The method of claim 39 wherein the compound is 3β ,17 β -dihydroxyandrost-5-ene.
 - 41. (new): The method of claim 29 wherein the innate immune suppression condition is associated with a chemotherapy or aging.
- 42. (new): The method of claim 41 wherein the compound is 3β,17β25 dihydroxyandrost-5-ene, 3α,17β-dihydroxyandrost-5-ene, 16α-fluoro-17β-dihydroxyandrost-5-ene, 16α-fluoro-17α-dihydroxyandrost-5-ene, 16α-fluoro-17-oxoandrost-5-ene, 3β,7β,17β-trihydroxyandrost-5-ene, 3α,7β,17β-trihydroxyandrostane, 3α,16β,17β-trihydroxyandrostane, 3α,16β,17β-trihydroxyandrostane, 3α,16α,17β-trihydroxyandrostane, 3α,16α,17β-trihydroxyandrostane, 3β,16α30 trihydroxyandrostane, 3β,16β-dihydroxy-17-oxoandrostane, 3β,16α-

dihydroxy-17-oxoandrostane, 3α , 16α -dihydroxy-17-oxoandrostane or 3α , 16β -dihydroxy-17-oxoandrostane.

43. (new): The method of claim 42 wherein the compound is 3β ,17 β -dihydroxyandrost-5-ene.

5