FDC2214概述

FDC是一个电容数字转换器(FDC),用于测量LC谐振器的振荡频率。该设备输出一个与频率成正比的数字值。该频率测量可以转换为等效电容。这个模块的应用,主要是测变化。通过电容的变化来测得对象的距离或对象的材质的变化。不是用来测绝对值的。官方的应用里,没有一个是测电容值的。您可以看看官方的应用文档。

简化电路原理图

1脚方焊盘 为输入A 2脚为输入B

3脚接地

本店模块连接 冬

测试程序采用查询方法,中断脚不接。 测试程序中PC4接SCL,PC5接SDA 串口PA9,PA10,串口波特率,115200 bps

FDC2214封装

其中ADDR脚是地址选择脚,ADDR为低,I2C寻址0x2A ADDR为高,I2C寻址0x2B 本店的模块,ADDR为低,I2C寻址0x2A 很多同学看本店模块的3、4脚是连在一起的,是因为用的内部时钟,3脚CLKIN接地;ADDR为低,4脚接地。所以两脚焊时可能连在一起。

Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION		
NAME	NO.	IYPE\"	DESCRIPTION		
SCL	1	I	I2C Clock input		
SDA	2	I/O	I2C Data input/output		
CLKIN	3	I	Master Clock input. Tie this pin to GND if internal oscillator is selected		
ADDR	4	I	I2C Address selection pin: when ADDR=L, I2C address = 0x2A, when ADDR=H, I2C address = 0x2B.		
INTB	5	0	Configurable Interrupt output pin		
SD	6	I	Shutdown input		
VDD	7	Р	Power Supply		
GND	8	G	Ground		
IN0A	9	Α	Capacitive sensor input 0		
IN0B	10	Α	Capacitive sensor input 0		
IN1A	11	Α	Capacitive sensor input 1		
IN1B	12	Α	Capacitive sensor input 1		
IN2A	13	Α	Capacitive sensor input 2 (FDC2114 / FDC2214 only)		
IN2B	14	Α	Capacitive sensor input 2 (FDC2114 / FDC2214 only)		

(1) I = Input, O = Output, P=Power, G=Ground, A=Analog

编程验证IIC通讯正常

• 自编程序时,最好先读DEVICE_ID来验证IIC通讯是否正常

0x7F	DEVICE_ID	0x3054	Device ID (FDC2112, FDC2114 only)
		0x3055	Device ID (FDC2212, FDC2214 only)

FDC的温度电压等参数范围可参考器件手册 其中内部时钟是33到55MHz,一般取中间典型值43.4MHz 在计算传感器频率时会用到

	PARAMETER	TEST CONDITIONS (2)	MIN ⁽³⁾	TYP ⁽⁴⁾	MAX ⁽³⁾	UNIT
V _{CLKIN_HI}	CLKIN high voltage threshold		0.7*VDD			V
f _{INTCLK}	Internal master clock frequency range		35	43.4	55	MHz
T _{Cf_int_} µ	Internal master clock temperature coefficient mean			-13		ppm/°C

FDC2214有4个通道可以用,我们可以通过设置CONFIG和MUX_CONFIG寄存器来选择单通道或者多通道模式

MODE REGISTER		FIELD [BIT(S)]	VALUE	
			00 = chan 0	
	CONFIG, addr 0x1A	ACTIVE_CHAN [15:14]	01 = chan 1	
Single channel			10 = chan 2	
og.o oao.			11 = chan 3	
	MUX_CONFIG addr 0x1B	AUTOSCAN_EN [15]	0 = continuous conversion on a single channel (default)	
	MUX_CONFIG addr 0x1B	AUTOSCAN_EN [15]	1 = continuous conversion on multiple channels	
Multi-channel			00 = Ch0, Ch 1	
	MUX_CONFIG addr 0x1B	RR_SEQUENCE [14:13]	01 = Ch0, Ch 1, Ch 2	
			10 = Ch0, CH1, Ch2, Ch3	

使用多通道,可以用其中一个通道作为参考通道,以达到减小环境的影响;当在多通道模式下工作时,FDC会依序对有效通道进行采样。

在单通道模式下,FDC采样单个通道,可选择不同通道。

时钟配置寄存器CLOCK_DIVIDER_CHx

CONFIG寄存器的第九位决定输入时钟是外部时钟还是内部时钟,是0使用内部时钟43.4MHZ,是1使用外部时钟。

时钟寄存器的0到9位FREF_DIVIDER分频输入时钟, 13, 12位分频传感器频率 如表所示

All	f _{CLK} = Master Clock Source	CONFIG, addr 0x1A		b0 = internal oscillator is used as the master clock b1 = external clock source is used as the master clock
0	f _{REF0}	CLOCK_DIVIDER S_CH0, addr 0x14	CH0_FREF_DIVIDER [9:0]	$f_{REF0} = f_{CLK} / CH0_FREF_DIVIDER$
0	f _{IN0}	CLOCK_DIVIDER S_CH0, addr 0x14	CH0_FIN_SEL [13:12]	f _{IN0} = f _{SENSOR0} / CH0_FIN_SEL

频率设置要求

MODE ⁽¹⁾	CLKIN SOURCE	VALID f _{REFx} RANGE (MHz)	VALID f _{INx} RANGE	SET CHx_FIN_SEL to (2)	SET CHx_SETTLECO UNT to	SET CHx_RCOUNT to
Multi-channel	Internal	f _{REFx} ≤ 55		Differential sensor		
	External	f _{REFx} ≤ 40		configuration: b01: 0.01MHz to		
Single-channel	Either external or internal	f _{REFx} ≤ 35	< f _{REFx} /4	8.75MHz (divide by 1) b10: 5MHz to 10MHz (divide by 2) Single-ended sensor configuration b10: 0.01MHz to 10MHz (divide by 2)	> 3	> 8

通过上表配置时钟配置寄存器CLOCK_DIVIDER

计算公式

$$f_{\text{SENSORx}} = \frac{\text{CHx_FIN_SEL} * f_{\text{REFx}} * \text{DATAx}}{2^{28}}$$
 (FDC2212, FDC2214)

where

DATAx = Conversion result from the DATA_CHx register

利用 DATAx=Finx*(2^28)/Frefx 求出传感器频率即震荡电路的频率 根据LC振荡电路原理Fsensor=1/2Π√(LC),可以求出电容值

√C=(2^28)/2Π* √L*DATAx*Fref*CHx_FIN_SEL

其中电感已知(本店模块电感 为18uH)

Fref=Fclk/CHx_FREF_DIVIDER, Fin=Fsensor/CHx_FIN_SEL DATAx是x通道读出的28位数据。FREF_DIVIDER, FIN_SEL根据要求设置

数据采集

FDC采集到的数据有28位,其中高12位存在DATA_CHx的0到11位低16位存在DATA_LSB_CHx中,相应地址如下

CHANNEL ⁽¹⁾	REGISTER ⁽²⁾
	DATA_CH0, addr 0x00
0	
	DATA_LSB_CH0, addr 0x01
	DATA_CH1, addr 0x02
1	
	DATA_LSB_CH1, addr 0x03
	DATA_CH2, addr 0x04
2	
	DATA_LSB_CH2, addr 0x05

注意,读的时候要先读DATA_CH,再读DATA_LSB,即先读高12位读出值为0x000000是低于芯片测量范围,0xFFFFFF是高于测量范围