UBA-CBC Prin			rimer F	mer Parcial de Física (03)				2°Cı	Tema B1		
Apellido:				D.N.I	D.N.I.:				misión:	Aula:	
Nombre:				Sede	Sede:				Horario:		Hoja 1 de:
Reservado para el corrector									Calificación	Corrigió	
P1a	P1b	P2a	P2b	P3a	P3b	E4	E5	E6	E7		

Lea por favor todo antes de comenzar. Resuelva los 3 problemas en otras hojas <u>que debe entregar</u>. Incluya los desarrollos que le permitieron llegar a la solución. Las 4 preguntas tienen SOLO UNA respuesta correcta. Indique la opción elegida con una **X** en el casillero correspondiente. Los desarrollos y respuestas deben estar en tinta (no lápiz). Si encuentra algún tipo de ambigüedad en los enunciados, aclare en las hojas cuál fue la interpretación que adoptó. Use, si lo necesita, |g| = 10 m/s², sen 37° = cos 53° = 0,6; cos 37° = sen 53° = 0,8. Dispone de 2 horas. Autores: Jorge Nielsen – Cristian Rueda

Problema 1. Dos semáforos A y B están separados una distancia d en una avenida recta. En t = 0s, un auto pasa por A con una velocidad de módulo 20 m/s, aumentándola uniformemente, y dirigiéndose hacia B. Simultáneamente, un camión pasa por B yendo hacia A con una velocidad de módulo 30 m/s, disminuyéndola uniformemente a razón de 4 m/s². Sabiendo que ambos móviles se cruzan en t = 4s en el punto medio del camino entre ambos semáforos:

- a) Calcule el módulo de la aceleración del auto.
- b) Trace el gráfico de posición-tiempo para ambos vehículos en un mismo par de ejes, desde t=0s hasta que el camión se detiene completamente. Indique todos los valores que permitan describir el movimiento de ambos vehículos, y destaque claramente la forma de las gráficas pedidas.

Problema 2. Un auto parte del reposo desde un punto A y recorre con aceleración angular constante y en sentido antihorario la pista circular que se muestra en la figura. Al pasar por primera vez por B, el módulo de su velocidad angular es π s⁻¹.

- a) ¿Cuánto tarda el auto en completar la primera vuelta?
- b) Luego de completar su primera vuelta, sigue girando describiendo un movimiento circular uniforme. Indique la cantidad de vueltas que da el auto en los primeros 10 segundos.

Problema 3. En un instante determinado se observa que el sistema de la figura está subiendo disminuyendo la rapidez a razón de 2 m/s². Se puede despreciar el rozamiento de los bloques con el plano

inclinado. La cuerda que vincula a los bloques es ideal y tiene una intensidad de 40 N. La masa del bloque A es 4 kg.

- a) Calcule la intensidad de la fuerza F.
- b) ¿Cuánto vale la masa del bloque B?

Ejercicio 4. Una barca se desplaza con rapidez constante desde un punto A, transportando pasajeros de una orilla a otra de un río de 240 m de ancho, como se esquematiza en la figura. La velocidad de la barca, en el sistema de coordenadas indicado es, respecto al agua, -6 m/s x + 4 m/s y. Si los pasajeros descienden en un punto ubicado a 288 m a la izquierda del punto B, ¿cuál de los siguientes vectores podría representar a la velocidad del agua

respect	o a la	orilla?
\bigcirc	,	\Box 1.2

□ 8,4 m/s x □ 1,2 m/s x □ -1,2 m/s x □ -6,8 m/s x □ 10,8 m/s x

Ejercicio 5. Un proyectil es lanzado en tiro oblicuo desde el piso. Se desprecian los rozamientos. Si impacta en el piso después de un cierto intervalo de tiempo Δt , entonces:

- ☐ El vector aceleración durante el ascenso tiene la misma dirección pero sentido opuesto al vector aceleración durante el descenso.
- ☐ El vector velocidad en un punto del ascenso tiene la misma dirección y sentido opuesto al vector velocidad en un punto del descenso que esté a la misma altura.
- \square El vector velocidad es el mismo a la salida que al llegar al suelo.
- ☐ El vector velocidad media entre dos puntos de la trayectoria a igual altura es perpendicular al vector desplazamiento entre dichos puntos.
- ☐ El vector velocidad media entre dos puntos de la trayectoria a igual altura es perpendicular al vector aceleración media entre dichos puntos.
- ☐ En todos los puntos de la trayectoria, la fuerza resultante sobre la partícula es perpendicular al vector velocidad.

Ejercicio 6. El grafico de la figura de la derecha muestra la evolución temporal de la aceleración de un móvil que se desplaza en línea recta. Indique cuál de los siguientes gráficos velocidad-tiempo puede corresponderle.

Ejercicio 7. Un bloque de masa m está apoyado sobre una superficie carente de rozamiento. Se aplica una fuerza F sobre él, hacia abajo y formando un ángulo β

con la horizontal. Llamamos P al peso del bloque, y N a la reacción normal de apoyo sobre él. Podemos afirmar que:

- □ N y P forman un par de interacción.
- □ N y P son fuerzas de igual dirección e intensidad, pero sentidos opuestos.
- ☐ La intensidad de N no depende del ángulo β.
- ☐ Si se suprime F, el bloque comienza a frenar.
- ☐ La intensidad de N es menor que la intensidad de P.
- ☐ Si se suprime la fuerza F, la intensidad de N disminuirá.