- 05) Оценка на собственные числа ограничения. Оценка на след.
- 1. С.ч. операторов A и B. По К Φ , мин/макс для μ_i берется по подпр. внутри соотв. подпр. для λ . 2. Это след: взять матрицу A в ортонорм. базисе $u_i.$ $v_i=(0,\ldots,1,\ldots,0)^T$ $A_{i,i}=v_i^TAv_i=q(u_i)$. Оценка: почленные нер-ва из 1.
 - 06) Метод главных компонент.

$$a_0 = \frac{1}{s} \sum x_i$$
: $\langle u_1, \dots, u_k \rangle = L_0$, ортонорм, доп. до базиса, $\sum_j ||pr_{L_0^{\perp}}(x_j - a)||^2 = \sum_j (\sum_{i=k+1}^n (x_{j,i} - a_i)^2)$, произв. L_0 : S =

$$\textstyle\sum_{i=1}^{s}||pr_{L_{0}}(x_{i})||^{2}\rightarrow max;\,X=(x_{1},\ldots,x_{s})^{T}.\,\,S=\sum_{i=1}^{k}q(u_{i})=Tr\,q(x)|_{L_{0}},\,q(u)=u^{T}X^{T}Xu.\,\,\text{Макс. по K\Phi на }\langle v_{1},\ldots,v_{k}\rangle$$

$$i=1$$
 07) Сингулярные значения и SVD-разложение. $X^* = X^{\top}, \langle X^*e_i, e_j \rangle = \langle e_i, Xe_j \rangle, \sigma_i = \sqrt{d_i} > 0$ с.ч. A^*A . SVD $A \colon U \to V \; \exists \; \text{o/h} \; u_i, v_j \colon \text{ матр } A = \Sigma(\sigma_{1..r} \; \text{на диаг})$ $(X = L\Sigma R). \; e_i - \text{o/h} \; \text{с.в.} \; \langle Ae_i, Ae_j \rangle = \langle A^*Ae_i, e_j \rangle = \langle d_ie_i, e_j \rangle, f_i = \frac{Ae_i}{\sqrt{d_i}} \; \text{доп до базиса.} \; R = C^{-1} = C^{\top}, C \; \text{столбцы} \; e_i.$

08) Приближение матрицей указанного ранга и SVD-разложение. Возможность применения к сжатию изображе-

рг из Б6
$$\Leftrightarrow$$
 ближ по $||X||_F = \sqrt{\text{Tr}\,X^\top X}$. $X = L\Sigma R$. рг на $\left\langle v_1^\top..v_k^\top \right\rangle$. v_i базис $X^\top X$ и строки R . рг a на $V^{(k)} = \sum a v_i v_i^\top$. $X^{(k)} = L\Sigma(\sum R v_i v_i^\top) = L\Sigma R^{(k)} = L\Sigma^{(k)} R$. Сж $L^{(k)}\Sigma^{(k)}R^{(k)}$. $2kn + k \to 2kn$ при $k < \frac{n}{2}$. Минор $k^2 + 2k(n-k) + 2k$.

- 09) Положительные матрицы. Теорема Перрона.
- Док-во Перрона: положительность $(A|x| \ge |x| \Rightarrow A|x| < \frac{A^n}{(1+\varepsilon)^n}A|x| \to 0$ противореч.), единственность (сонапр. коорд. $v \Leftarrow \sum_j A_{kj}|v_j| = |\sum_j A_{kj}v_j|$) и некратность (Жорд. клетки; либо $\exists c,i: |x_1-cx_2|_i = 0$, либо $Ax_2 = x_2 + x_1$)
- 10) Единственность положительного собственного вектора. Применение к случайному блужданию. Знаем предел $\lim_{k\to\infty}A^kv$, если у A макс по модулю с. ч. $\lambda=1$ кратности 1. A=P(G) нам не походит, замена P(G): $P_{\alpha}(G) = (1-\alpha)P(G) + \alpha \frac{1}{n}J, \ \alpha \in (0,1), \ \forall i,j \ J_{ij} = 1$ – а это норм, Перрон гарантирует.
- 12) Сильно регулярные графы. Граф Петерсона и его спектр. Двудольность и спектр. $A^2 + (\mu - \lambda)A + (\mu - k)E = \mu J, \ A_{|U}^2 + (\mu - \lambda)A_{|U} + (\mu - k)E = 0$ для $U = <(1, \cdots, 1)>^\perp$ След степени == количество циклов == сумма собственных чисел с учетом кратности. λ для $(v,\ w),\ -\lambda$ для $(v,\ -w)$
- 13) Две оценки на размер максимального независимого множества. Натянуть подпространство на множество, следствие из Куранта-Фишера, нулевая квадратичная форма Характеристический вектор множества, разложить по ортонорм. базису регулярного(!) графа с $u_1=(1,\cdots,1)\frac{1}{\sqrt{n}}$
- 14) K_{10} не покрывается тремя Петерсонами. $\sum_{i=1}^3 A_i = B.$ Все рег \Rightarrow общий с.в. $(1,\ldots,1)$ для P с.ч. 3, для полного с.ч. 9. Сузим. Для A_1 и A_2 подпр. порожд. с.в. с с.ч. $1 \cap$. Распишем для u из \cap . Bu = -u (натянуто на с.в. с с.ч. -1). \Rightarrow с.в. для A_3 с с.ч. -3. Такого с.ч. нет.
- 17) Тензорное произведение линейных отображений. Кронекерово произведение. Тензорное произведение операторов и его собственные числа. Категорное произведение графов.

Единств: определено на тензорятах; \exists : отобразить $U_1 \times \dots \times U_k$ в $V_1 \otimes \dots \otimes V_K$ полилин. (композ полилин.) \Rightarrow (опр. тенз.) \exists !. Наше правило подходит. Матрица: расписать $(\sum\limits_k A_{k,i} f_k) \otimes (\sum\limits_l B_{l,j} f'_l)$. С.ч. $A \otimes B$: жорданов базис.

- 18) Канонические изоморфизмы для тензорного произведения.
- 3. $\operatorname{Hom}(U,V) \cong V \otimes U^* \colon v \times f \to (u \to f(u)v)$. 4. $\operatorname{Hom}(U \otimes V,W) \cong \operatorname{Hom}(U,\operatorname{Hom}(V,W)) \colon L_1 \colon L \to (u \to (v \to L(u \otimes v)))$, $L_2:\ L \to (u \otimes v \to (L(u))(v))$, они обратны. 5. $U^* \otimes V^* \to (U \otimes V)^*:\ f \otimes g \to (u \otimes v \to f(u)g(v))$ базис в базис
- 19) Тензоры. Примеры. Координаты тензора. Замена переменной случай тензора валентности (1,0). (p,0) — полилин. форма, (1,1) — лин. оп-р, (2,1) — структ. алгебры. Переход: $x_{new} = Cx_{old}$. $e_i = \sum_{j=1}^n C_{ji}\hat{e}_j$, хотим $D: e^i = \sum D_{ji}\hat{e}^j$. $e^k(e_i) = \delta_{ki} \Rightarrow \delta_{ki} = \sum_j C_{ji} \sum_l D_{lk}\hat{e}^l(\hat{e}_j) = \sum_{j,l} C_{ji} D_{lk} \cdot \delta_{lj} = \sum_j C_{ji} D_{jk} \ E_n = C^T D \Rightarrow D = (C^{-1})^T$ 20) Замена переменной — общий случай.

$$D: e^i = \sum D_{ji} \hat{e}^j. \ e^k(e_i) = \delta_{ki} \Rightarrow \delta_{ki} = \sum_j C_{ji} \sum_l D_{lk} \hat{e}^l(\hat{e}_j) = \sum_{j,l} C_{ji} D_{lk} \cdot \delta_{lj} = \sum_j C_{ji} D_{jk} \ E_n = C^T D \Rightarrow D = (C^{-1})^T$$
 20) Замена переменной – общий случай.
$$T = \sum_{\substack{i'_1, \dots, i'_q \in \overline{1,n} \\ j'_1, \dots, j'_p \in \overline{1,n}}} T^{i'_1, \dots, i'_q}_{j'_1, \dots, j'_p} e^{j'_1, \dots, j'_p}_{i'_1, \dots, i'_q}. \ e_i = \sum_{j=1}^n C_{ji} \hat{e}_j \ \text{и} \ e^i = \sum_j D_{ji} \hat{e}^j.$$
 Раскрыть скобки, поменять суммирование. Должно

получиться
$$\hat{T}^{i_1,\dots,i_q}_{j_1,\dots,j_p} = \sum_{\substack{i'_1,\dots,i'_q \in \overline{1,n} \\ i'_t = i' \in \overline{1,n}}} \prod_{t \in \overline{1,p}} D_{j_t,j'_t} \prod_{s \in \overline{1,q}} C_{i_s,i'_s} \ T^{i'_1,\dots,i'_q}_{j'_1,\dots,j'_p}.$$

21) Тензорная алгебра. Свёртка и след

- Для (1,1) $T=\sum_{i,j}T^i_je^j\otimes e_i$. Тогда $Conv(T)=\sum_{i,j}T^i_je^j(e_i)=\sum_iT^i_i$.. $V^*\otimes V\cong \mathrm{Hom}(V,V)\Rightarrow$ это след. 27) Лемма Гаусса. Содержание многочлена. Делимость в Q(R)[x] и в R[x].
- 27) Лемма Гаусса. Содержание многочлена. Делимость в Q(R)[x] и в R[x]. Лемма: Пусть нет, возьмём $\min a_i, b_j \not/ p$, тогда $c_{i+j} \not/ p$. Следствие: поделим на $\cot g, h$, убедимся что $\cot f = 1$. Лемма про Q(R)[x]: d_1, d_2 НОК знаменателей, $c = \frac{d_1}{d_2}$.
- 28) Факториальность кольца многочленов над факториальным кольцом. R[x] факториально и простые в нём: $f = p \in R$, f : cont(f) = 1 непр. в Q(R)[x]. Док-во: 1) они и правда простые 2) в них раскладывается (посмотрим в Q(R)) 3) единственность \Rightarrow других нет
- 29) Редукционный признак неприводимости. Примеры. Признак Эйзенштейна. $a_n \not p$, f неприводим в $R/p[x] \Rightarrow$ неприводим над Q(R). cont = 1 и неприводимость над $Q(R) \Rightarrow$ неприводимость над R. $a_n \not p$, все $a_i \not p i < n$, но $a_0 \not p^2$, то многочлен f(x) неприводим. Пусть $b_0 \not p$.
- 30) Алгоритм Кронекера. Сведение для многочленов от нескольких переменных. 1) Перебираем наборы делителей $f(i), 0 \le i \le \frac{degf}{2}$, интерполируем, проверяем. 2) Различным разложениям $f(x_1, \dots, x_n)$ соответствуют различные разложения $f(x_1, \dots, x_n)$ для d больших $\max_{i=1}^n \{\deg_{x_i} f\}$. Рассмотреть образ x^{α} .
- 31) Лемма Гензеля. Разложение на множители при помощи леммы Гензеля. Доказательство леммы: Индукция по k. Строим для k + 1. Помним, что $\forall f:\ p^k f \equiv p^k \overline{f} \pmod{p^{k+1}}$. $\overline{h} \equiv \hat{h} + p^k a(x) \Rightarrow \overline{h} \overline{g} \equiv \hat{g} \hat{h} + p^k (a(x)g + b(x)h)$. С другой стороны $f \hat{g} \hat{h} = p^k c(x) \Rightarrow a,\ b$ берем из лп НОДа g и h
- 32) Степенные суммы. Тождество Ньютона. $0=(-1)^n n\sigma_n+\sum_{k=0}^{n-1}(-1)^k\sigma_k s_{n-k}$, в многочлен подставим корни, просуммируем по всем корням, отдельно случаи k< n добавим нулевые переменные, k> n занулим не входящие в моном переменные
- 33) Целые алгебраические элементы. Замкнутость относительно операций. а алгебраический $==\exists f\in\mathbb{Z}[x]:f(a)=0$. Замкнуто: $\prod(x-(a_i+b_j))$ симметрично по i, тогда коэффициенты выражаются через симметрические, симметрический по b_i все коэффициенты целые.
- 37) Описание наименьшего подрасширения, содержащего данный элемент. $K(\alpha) \cong K[\alpha] \cong K[x]/p(\alpha)$, рассмотрим $K[x] \to L$, переводящий $x \to \alpha$ и $K[x]/p(x) \to L$. Следствия про равенство степеней расширения над K и изоморфность расширений для корней неприводимого многочлена.
- 38) Построение при помощи циркуля и линейки. Пример неразрешимого построения. x построимо \Rightarrow оно алгебраическое и лежит в расширении L/\mathbb{Q} степени 2^n . Докажем индукцией по числу построений, рассмотрим уравнение пересечения с новым объектом степени 2. $\cos \frac{\pi}{9}$ корень уравнения $4x^3 3x = \frac{1}{2}$.
- 39) Конечные поля. Число элементов. Основное уравнение. Эндоморфизм Фробениуса. Корни $x^{p^n}-x$ образуют подполе.

Хорошо смотреть на мультипл. группу. Теорема Ферма для групп. Биномиальный коэф. делится на p почти всегда.

- 40) Основная теорема про конечные поля. Поле разложения $x^{p^n} x \to$ подполе из p^n элементов. Взять образующий группы, найти мин. многочлен, найти его корень в другом поле (через делимость). И проверить на изоморфизм "образующий группы в корень" техника.
- 49) Циклические коды. Эквивалентное описание. Коды БЧХ. Пример. $q=p^s,\,m,n\,\,\text{такие, что}\,\,q^m-1\\ \vdots\\ n,\,2\leq d\leq n,\,l_0\leq n.\,\,\alpha-\text{образующая}\,\,\mathbb{F}_{q^m}{}^*,\,\beta=\alpha^{(q^m-1)/n}$
- 50) Основная теорема про коды БЧХ. Делится \Leftrightarrow обнуляется на корнях. Пусть плохо \mathbb{F}_q , тогда плохо в \mathbb{F}_{q^m} , определитель.