Respuesta de Sistemas Dinámicos

Sistemas LTI

Ejercicio 1 - Senoidal ruidosa

Sea $X(n) = A\cos(2\pi\omega n + \Phi) + N(n)$, donde A y ω_0 son constantes, Φ se encuentra uniformemente distribuida en $[0; 2\pi)$ y N(n) es ruido blanco de densidad de potencia σ^2 .

- 1. Obtenga la media $\mathbb{E}[X(n)]$.
- 2. Si X(n) es un proceso ESA, obtenga la densidad espectral de potencia del mismo.
- 3. Suponga que X(n) es la señal de entrada a un filtro pasabanda de respuesta en frecuencia

$$H(\omega) = \left\{ egin{array}{ll} 1, & |\omega - \omega_0| \leq rac{W}{2} \\ 0, & ext{en caso contrario} \end{array}
ight.$$

Compare la relación señal a ruido (SNR) a la entrada y a la salida del filtro. Extraiga conclusiones.

Ejercicio 2 - Circuito RC

El circuito RC de la figura es excitado por una señal de ruido blanco con densidad espectral de potencia constante e igual a $N_0/2$. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total.

Ejercicio 3 - Promediador en tiempo continuo

Supongamos que X(t) es un proceso integrable. La integral

$$Y(t) = \frac{1}{2T} \int_{t-T}^{t+T} X(u) du$$

representa el promedio del proceso X(t) en el intervalo (t-T,t+T).

1. Identifique la respuesta en frecuencia $H(\omega)$ del sistema que al ser excitado por X(t) produce a Y(t) como salida.

- 2. Encuentre la media, la función de autocorrelación y la densidad espectral de potencia de Y(t).
- 3. ¿Qué tipo de filtrado representa el promediador?

Ejercicio 4 - Escalamiento de señal ruidosa

Considere el sistema LTI mostrado en la figura, donde X(n) y W(n) son procesos ESA descorrelacionados entre sí. La varianza de W(n) es σ_W^2 y la de X(n) es σ_X^2 .

- 1. Hallar la función de autocorrelación del proceso Y(n).
- 2. Definiendo E(n) = Y(n) X(n), determine su función de autocorrelación.
- 3. Si $h(n) = \alpha \delta(n)$, elija el valor de α que minimice la varianza de E(n).

Ejercicio 5 - Sistema no lineal

Considere el proceso aleatorio en tiempo continuo X(t) definido por las siguientes 4 realizaciones, todas ellas equiprobables:

$$x_1(t) = -1,$$
 $x_2(t) = -2,$ $x_3(t) = \sin(t),$ $x_4(t) = \cos(t).$

- 1. Calcule la media y la función de autocorrelación del proceso. Determine si el proceso es ESA.
- 2. Suponga que el proceso X(t) ingresa a un sistema rectificador cuya salida es $Y(t) = X^2(t)$. Calcule la media y la autocorrelación del proceso de salida e indique si el proceso es ESA.

Ejercicio 6 - Superposición de procesos

Sea X(t) un proceso ESA en tiempo continuo con media μ_X y autocovarianza $C_X(\tau)$. Sea W un proceso ESA de media nula y autocovarianza $C_W(\tau)$. Demuestre que si W y X están descorrelacionados la densidad espectral de potencia de Y(t) = aX(t) + bW(t) es

$$S_Y(\omega) = a^2 S_X(\omega) + b^2 S_W(\omega),$$

donde S_X y S_W son las densidades espectrales de potencia de X y W, respectivamente. a y b son constantes cualesquiera.

Ejercicio 7

Considere el siguiente sistema en tiempo discreto:

$$W_2(n)$$
 $W_1(n) \longrightarrow H_1 \longrightarrow H_2 \longrightarrow Y(n)$

donde W_1 y W_2 son ruidos blancos independientes de media nula y varianza unitaria. Halle la autocorrelación de Y sabiendo que H_1 y H_2 tienen las siguientes transferencias:

$$H_1(z) = 1 + \frac{1}{2}z^{-1}$$
 $H_2(z) = 1 + \frac{1}{4}z^{-1}$.

Sugerencia: utilice el Ejercicio 6 para calcular en forma separada las densidad de potencia obtenidas por cada proceso.

Ejercicio 8 - Modulación de fase

Sea X(t) un proceso Gaussiano ESA con media nula y autocorrelación $R_X(\tau) = \frac{1}{1+|\tau|}$ y sea U un variable aleatoria uniforme en $(0, 2\pi)$, independiente de X. Halle la media y autocorrelación del proceso:

$$Y(t) = \cos(X(t) + U)$$

y analice si es ESA.

Ayuda: exprese el coseno como exponenciales complejas y utilice la función característica.

Procesos ARMA

Ejercicio 9 - Procesos MA-m con entrada blanca

Un proceso Y(n) es un proceso MA-m (moving average) si responde a la recursión:

$$Y(n) = a_0 X(n) + a_1 X(n-1) + \dots + a_m X(n-m),$$

donde $a_0,...,a_m$ son constantes y X(n) es un proceso ESA, típicamente un proceso de ruido blanco¹.

1. Demuestre que el proceso MA-m puede escribirse matricialmente como:

$$Y(n) = \mathbf{a}^T \mathbf{x}(n),$$

donde

$$\mathbf{a} = \left[a_0, \dots, a_m\right]^T,$$

$$\mathbf{x}(n) = \left[X(n), \dots, X(n-m)\right]^T.$$

2. Suponga que el proceso X es un proceso blanco de media nula, es decir,

$$\mathbb{E}[X(n)X(n+k)] = \sigma_x^2 \delta(k).$$

¹Estrictamente se trata de un sistema LTI causal representado por la ecuación en diferencias indicada.

Demuestre que la autocorrelación del proceso MA-m, $R_Y(k) = \mathbb{E}[Y(n)Y(n+k)]$, para k > 0 puede escribirse como:

$$R_Y(k) = \mathbf{a}^T \mathbb{E} \left[\mathbf{x}(n) \mathbf{x}(n+k)^T \right] \mathbf{a}$$
$$= \mathbf{a}^T \begin{bmatrix} a_k \\ \vdots \\ a_m \\ \mathbf{0}_k \end{bmatrix} \sigma_x^2,$$

donde $\mathbf{0}_k$ es una columna de ceros de largo k. Deduzca entonces que si el MA-m es excitado por ruido blanco entonces $|R_Y(k)| = 0$ si |k| > m.

3. Utilizando el inciso anterior, halle la media y la autocorrelación de un proceso MA-3 dado por la siguiente recursión:

$$Y(n) = X(n) + \frac{1}{2}X(n-2) + \frac{1}{3}X(n-3),$$

cuando es excitado por un proceso blanco de media nula y varianza σ_X^2 . ¿Cómo hallaría la autocovarianza si la media del proceso X fuese no nula?

Ejercicio 10 - Relación de recurrencia de primer orden

Suponga que tiene la siguiente relación de recurrencia:

$$y(n) = ay(n-1) + b, \quad n = 1, 2, ...,$$

donde a y b son constantes (|a| < 1), y la condición inicial $y(0) = y_0$.

1. Demuestre que la solución de la ecuación es de la forma:

$$y(n) = c_1 + c_2 r^n,$$

donde c_1 , c_2 y r son constantes a determinar.

- 2. Halle las constantes c_1 , c_2 y r en función de a, b e y_0 .
- 3. ¿Qué sucede si |a| > 1?

Ejercicio 11 - MA Uniforme y Gaussiano

Considere U(n), un proceso i.i.d. de media nula y varianza σ^2 , a partir del cual se obtiene un nuevo proceso X(n) = U(n) + U(n-1).

- 1. Obtenga la función de autocorrelación del proceso X(n) cuando U(n) tiene una distribución uniforme en el intervalo $[-\sqrt{3}\sigma, +\sqrt{3}\sigma]$.
- 2. ¿Cómo varía su respuesta si $U(n) \sim \mathcal{N}(0, \sigma^2)$?
- 3. Obtenga realizaciones de los dos procesos definidos en los puntos anteriores y explique sus diferencias.

Ejercicio 12 - Cascada de MAs

Sea X(n) ruido blanco de media nula y potencia σ_X^2 . La señal X(n) es filtrada por una realización en serie de dos filtros.

$$Y(n) = 0.5 [X(n) + X(n-1)]$$

$$Z(n) = Y(n) - Y(n-1).$$

Calcular $\mathbb{E}[Z]$, σ_Z^2 , $R_Z(k)$ y $S_Z(\omega)$.

Ejercicio 13 - Sistema blanqueador

Se dispone de muestras de un proceso ESA gaussiano Y(n) con media $\mu_Y=\frac{1}{2}$ y autocovarianza:

$$C_Y(k) = \delta(k) + \frac{1}{4} [\delta(k-1) + \delta(k+1)].$$

Se desea procesar a Y de modo de transformarlo en un proceso blanco W(n) de media nula y varianza $\sigma_W^2=1$. Para ellos se implementa el siguiente sistema:

$$Y(n) \xrightarrow{c} Z(n) \xrightarrow{\text{AR-1}} X(n) \xrightarrow{b} W(n)$$

La constante c se elige de modo que el proceso $\mathbb{Z}(n)$ tenga media nula. El proceso AR-1 es de la forma:

$$X(n) = aX(n-1) + Z(n),$$

es utilizado para eliminar la correlación entre las muestras (a es una constante a determinar tal que |a| < 1). Por último, la constante b es utilizada para ajustar la varianza de X(n) al valor deseado.

- 1. Determine la constante c de modo que el proceso Z(n) tenga media nula, y halle la autocorrelación de Z.
- 2. Determine $a ext{ y } b$ de modo que W cumpla las especificaciones pedidas.
- 3. ¿Qué puede concluir de la relación entre los procesos MA-1 y un proceso AR-1? ¿Y en el caso del MA-m y el AR-m?

Ejercicio 14 - Generación de muestras de un proceso

Se desea generar muestras de un proceso ESA Y(n) con media $\mu_Y=\frac{1}{2}$ y autocovarianza:

$$C_Y(k) = \delta(k) + \frac{1}{4} [\delta(k-1) + \delta(k+1)].$$

Para ello se tienen muestras de un proceso de ruido blanco W(n) de media nula y varianza unitaria. Para generar las muestras de Y se utiliza el siguiente sistema:

$$W(n) \to \underbrace{MA-1} X(n) \xrightarrow{b} Z(n) \xrightarrow{c} Y(n)$$

El proceso MA-1 es de la forma:

$$X(n) = aW(n-1) + W(n).$$

Las constantes a, b y c deben determinarse de modo que el proceso Y cumpla lo pedido.

- 1. Utilice lo aprendido en el ejercicio 9 para justificar que la estructura propuesta tiene sentido.
- 2. Halle $\mathbb{E}[Z(n)]$ y verifique que no depende de a ni de b. Elija c de modo que $\mathbb{E}[Y(n)] = \mu_Y = \frac{1}{2}$.
- 3. Determine las constantes a y b de modo que la covarianza de Z sea igual a la de Y, es decir: $C_Z(k) = C_Y(k)$ para todo k. Elija a de modo que |a| < 1.

Ejercicio 15 - Realizaciones de procesos AR-1

Se simula numéricamente un proceso autoregresivo de primer orden

$$X(n) = \alpha X(n-1) + W(n)$$

excitado por un ruido blanco de media nula y varianza unitaria. Se realizan tres simulaciones diferentes mostradas en la figura utilizando los siguientes valores del parámetro α :

$$\alpha_1 = 0.95$$
 $\alpha_2 = 0.1$ $\alpha_3 = -0.95$

- 1. Asigne el coeficiente α que corresponde a cada uno de los gráficos de la figura.
- 2. Grafique la autocorrelación del proceso X(k) en cada caso.

Ejercicio 16 - Procesos AR-2

El modelo del proceso AR2, X(n) es:

$$X(n) = a_1 X(n-1) + a_2 X(n-2) + W(n)$$

donde W(n) es una secuencia de ruido blanco y a_1 y a_2 son coeficientes reales.

- 1. Expresar la función de transferencia H(z) del sistema lineal que, excitado por la secuencia de ruido blanco, entrega como salida el proceso AR2.
- Obtener y resolver la ecuación en diferencias que debe satisfacer la secuencia de autocorrelación.
- 3. Verifique analíticamente las siguientes propiedades:
 - *a*) En el caso de polos reales y distintos, la secuencia de autocorrelación decae exponencialmente. Analizar el caso en que ambos polos son positivos, ambos negativos y uno positivo y otro negativo.
 - b) En el caso de polos complejos conjugados, la secuencia de autocorrelación es pseudoperiódica.

Ejercicio 17

Se sabe que cierto proceso ESA gaussiano X tiene media nula y se conocen 3 valores de su autocorrelación $R_X(0)=1,\,R_X(1)=0$ y $R_X(2)=\frac{1}{4}$.

1. Halle un sistema AR-2:

$$Y(n) + aY(n-1) + bY(n-2) = W(n)$$

donde W es ruido blanco de media nula, varianza σ^2 , tal que la autocorrelación de Y coincida con los valores conocidos de R_X . Luego de hallar a,b,σ^2 , obtenga la correlación completa de Y.

2. Halle la densidad espectral de potencia del proceso Y, expresándola como una función real, y realice un gráfico de la misma.

Ayuda: halle la transferencia del sistema y use la expresión de la PSD a la salida de un sistema lineal, no haga la transformada de la autocorrelación de *Y*.

Ejercicio 18 - Modelos AR-m

Suponga que se estima la función de autocorrelación de un proceso ESA X(n) alrededor de k=0 y se obtienen los siguientes valores:

$$R_X(0) = 2,$$
 $R_X(1) = 0.8$ $R_X(2) = 0.82$ $R_X(3) = 0.728$ $R_X(4) = 0.6562$

Determine modelos AR de orden 1, 2, 3 y 4 para el proceso X(n) considerando las condiciones anteriores. ¿Qué conclusiones puede extraer?