

Crystallographic data analysis with single photon counting pixel detectors

Clemens Schulze-Briese, Marcus Müller, Christian Brönnimann

DECTRIS Ltd., 5400 Baden, Switzerland www.dectris.com

Content

- Introduction
- Sensor and module
- Counting-> Pilatus3
- Fine phi slicing
- Other problems
- Conclusions

Mission

DECTRIS develops, produces and delivers outstanding X-ray detectors to industrial and scientific customers all over the world.

Our products enable you to focus on measurements and science.

We deliver best possible data

We want our customers to reach the summits!

Dynamic Range and Point Spread Function

CCD 16 bit (65 535 ADU)

PILATUS

20 bit (1 048 575 counts)

Finite Sensor Thickness

X-rays impacting at oblique angles have different path lengths in the silicon sensor \rightarrow Probability for x-ray absorption increases towards larger 20!

Efficiency Correction

Parallax Correction

X-rays impacting at oblique angles have different path lengths in the silicon sensor

- \rightarrow Increasing shift of the spot centroids towards larger 20!
- \rightarrow Asymmetric broadening of the peak profiles towards larger 20!

Geometrical Distortions

Module Positional Error: σ: 0.25 pixel

max: 0.8 pixel

Module Angular Error: < 1 mrad

Lithography errors: < 1 micron

- Module units geometrically perfect
 - No correlations across module
- Refine module positions from diffraction data but fix positional error within module
- Program should make use of processing history

Flat field correction

Intensity variations can be compensated with a flat field

Flatfield

PILATUS3

New Features

- instant retrigger technology for non-paralyzable counting
- counter overflow handling
- reduced readout time
- compatibility with CdTe sensors

Benefit

- improved data quality at high count rates
- increased frame rates

Performance

Simulated counting performance of PILATUS and PILATUS3 detectors:

(Monte-Carlo system simulations, continuous source, photon energy 12 keV, low gain, pulse width 95 ns, threshold energy 6 keV, dead time overlap 1.25)

Instant Retrigger TechnoMode

Monte-Carlo (MC) Simulation

1. Build bunch structure

2. Determine number of photons in each bunch according to Poisson statistics

3. Input as stimulus file for Cadence Simulator: Spice simulation of amplifier, comparator and counter

Retrigger mode: High rates

Pilatus3, Retrigger, Preliminary

Deviation (fast settings)	10 ⁶ cps	10 ⁷ cps
Before correction	4%	44%
After correction	1 %	few percent

Comparison standard – retrigger mode Pilatus 3

Pilatus3, Preliminary

Excellent Agreement for retrigger mode up to 10⁷ cps

Count rate correction in the non-constant case

Fine φ-slicing: Highest shell statistics

- Best data at $\Delta \phi = \frac{1}{2}$ mosaicity (σ_{ω})
- Highest shell statistics improve substantially => integration software should process fine phi-sliced data very stably
 Partnering Data Collection and Reduction in the Beamline Environment

Fine φ-slicing: Artifacts

Partnering Data Collection and Reduction in the Beamline Environment

Large Area Fast Detector Systems

System Name	Frame Rate (Hz)	Image size compressed (MB)*	Data rate (MB/s)
Pilatus 6M	12	6	72
Pilatus 6M FAST	25	6	150
Pilatus3 6M	100	6	600
Eiger 16M	180	16	2880

^{*}Assuming current CBF Format and byte forward compression

Products Extensions: PILATUS Processing Unit - PPU

ALBULA

Main Features

- Life view modes
 - Watch directory
 - Movie mode
 - Slave mode

Synchronization of multiple images

File format for EIGER

- EIGER will pose new challenges in data handling: frame rates up to 3 kHz, data rates up to 5 GB/s
- HDF5 is a promising candidate:
 - already widely used: NASA, LCLS
 - BSD-style open-source license for C, C++, Fortran, Python libraries
- Currently being evaluated by DECTRIS and PSI
- After positive current evaluation, test data sets will be made available in October on www.dectris.com
- HDF5toCBF converter for backward compatibility is planned

Conclusions

- Energy and flat-field calibrations provided by DECTRIS
- Dead time correction based on parameterised MC simulation (time structure, threshold, gain) taking reflection profile into account by DECTRIS
- Positional error difficult to access and calibrations not optimal
 - Refine positions of modules from diffraction
- QE fully determined by Si absorption
 - Error estimates based on photon counting statistics

Conclusions

- Dials is a unique chance to further improve data from single photon counting detectors
- "True photon statistics" should be applied
- As simple as can be, should be extended later
- As little corrections as possible
- Clear division btw detector manufacturer corrections and corrections in the processing
- Cope with ever brighter beamlines
- Cover features of new Pilatus3 and Eiger

Suggestions

- Improve processing stability for very fine φsliced data
- Improve processing statistics of 'crystal limited' diffraction data
- Look into high frame rate capabilities (> 100 Hz)
 of next generation pixel detectors