Machine Learning, 2021 Spring Homework 2

Due on 23:59 MAR 28, 2021

Problem 1

Prove that $f: \mathbb{R}^n \to \mathbb{R}$ is *affine* if and only if f is both convex and concave. [2pts]

Problem 2

Suppose A and B are both convex sets, prove that $C = A \cap B$ is also convex. [1pts]

Problem 3

Suppose your algorithm for solving the problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) \tag{1}$$

takes iteration:

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k + \alpha_k \boldsymbol{p}^k \tag{2}$$

where $p^k = H^k \nabla f(x^k)$. What kind of H^k can guarantee that p^k is a descent direction ? [2pts]

Problem 4

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. For a given $x \in \mathbb{R}^n$, show that moving along $-\nabla f(x) \neq 0$ with sufficiently small stepsize causes decrease on f, that is,

$$f(\boldsymbol{x} - \alpha \nabla f(\boldsymbol{x})) < f(\boldsymbol{x}) \tag{3}$$

for sufficiently small $\alpha > 0$. [2pts]

Problem 5

Use gradient descent to solve the underdetermined linear system:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_2^2 \tag{4}$$

with stepsize chosen as exact line search, initial point $x^0 = 0$ and maximum iteration 1000. Plot:

- 1. The objective value against the iteration. (Use log scale for y-axis)
- 2. The ℓ_2 norm of gradient against the iteration. (Use log scale for y-axis)
- 3. The stepsize against the iteration.

The data $A \in \mathbb{R}^{500 \times 1000}$, $b \in \mathbb{R}^{500 \times 1}$ is attached in <u>data/A.csv</u> and <u>data/b.csv</u> with comma-separated (delimiter=','). [*Hint:* what is the solution to the exact line search for quadratic function?][3pts]