PROCESSUS STOCHASTIQUES - TD 4 MARTINGALES - TEMPS D'ARRÊT

Exercice 1 (Une trivialité).

Soit $(M_n)_{n\geq 0}$ une martingale par rapport à une filtration $(\mathcal{F}_n)_{n\geq 0}$. On note pour $n\geq 0$, $\mathcal{G}_n=\sigma(M_0,\ldots,M_n)$ la filtration *canonique* associée à la martingale (M_n) . Montrer que (M_n) est une martingale pour la filtration (\mathcal{G}_n) .

Correction : On remarque que $\mathcal{G}_n \subset \mathcal{F}_n$ et donc

$$\mathbb{E}[M_{n+1} \mid \mathcal{G}_n] = \mathbb{E}[\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] \mid \mathcal{G}_n] = \mathbb{E}[M_n \mid \mathcal{G}_n] = M_n.$$

Exercice 2 (À la pêche aux martingales).

Soit $(X_i)_{i\geq 1}$ une suite de variables aléatoires indépendantes identiquement distribuées telles que $\mathbb{P}(X_1=1)=\mathbb{P}(X_1=-1)=1/2$. Pour $n\geq 0$, on note $\mathcal{F}_n=\sigma(X_1,X_2,\ldots,X_n)$ ($\mathcal{F}_0=\{\varnothing,\Omega\}$) et on pose

$$S_n = \sum_{i=1}^n X_i.$$

- 1. Montrer que $(S_n)_{n\geq 0}$ est une martingale pour la filtration $(\mathcal{F}_n)_{n\geq 0}$.
- 2. Montrer que $(S_n^2 n)_{n \ge 0}$ est une martingale pour la filtration $(\mathcal{F}_n)_{n \ge 0}$.
- 3. Montrer que $(S_n^3 3nS_n)_{n \geq 0}$ est une martingale pour la filtration $(\mathcal{F}_n)_{n \geq 0}$.
- 4. Devinez un polynôme P(x,y) de degré 4 en x et de degré 2 en y tel que $(P(S_n,n))_{n\geq 0}$ soit une martingale pour la filtration $(\mathcal{F}_n)_{n\geq 0}$.
- 5. Plus généralement montrer que si P est un polynôme de deux variables alors $(P(S_n, n))_{n\geq 1}$ est une martingale pour la filtration $(\mathcal{F}_n)_{n\geq 0}$ si pour tous $s, n\in\mathbb{Z}$ on a

$$P(s+1, n+1) + P(s-1, n+1) = 2P(s, n).$$

6. Soit $\lambda \in \mathbb{R}$. Trouver un $\xi \in \mathbb{R}$ tel que $(\exp(\lambda S_n - \xi n))_{n \geq 0}$ soit une martingale pour $(\mathcal{F}_n)_{n \geq 0}$.

Correction:

- 1. Celui-ci est évident.
- 2. Dans tout le reste de l'exercice, on va utiliser le fait que $\mathbb{P}[S_{n+1} = S_n + 1] = P[S_{n+1} = S_n 1] = \frac{1}{2}$.

$$\mathbb{E}[S_{n+1}^2 - (n+1)|\mathcal{F}_n] = \frac{1}{2}(S_n + 1)^2 + \frac{1}{2}(S_n - 1)^2 - n - 1 = S_n^2 - n.$$

- 3. même démonstration
- 4. même démonstration avec $P(S_n, n) = S_n^4 6nS_n^2 3n^2 2n$.
- 5. même démonstration

6. il faut prendre $\xi = \ln(\cosh(\lambda))$.

Exercice 3.

Soit T un temps d'arrêt pour une filtration $(\mathcal{F}_n)_{n\geq 0}$. On suppose qu'il existe $\varepsilon>0$ et $N\in\mathbb{N}^*$ tels que pour tout $n\geq 0$, on a

$$\mathbb{P}(T \le n + N \mid \mathcal{F}_n) > \varepsilon, \quad p.s..$$

Montrer que T est fini presque sûrement et que $\mathbb{E}[T] < \infty$.

Correction : On montre par récurrence sur $k \ge 0$ que

$$\mathbb{P}(T \ge kN) \le (1 - \varepsilon)^k.$$

C'est vrai pour k = 0 et on a

$$\begin{split} \mathbb{P}(T \geq (k+1)N) &= \mathbb{E}\left[\mathbf{1}_{T \geq kN} \mathbf{1}_{T \geq (k+1)N}\right] \\ &= \mathbb{E}\left[\mathbf{1}_{T \geq kN} \mathbb{E}\left[\mathbf{1}_{T \geq kN+N} \mid \mathcal{F}_{kN}\right]\right] \\ &\leq \mathbb{E}\left[\mathbf{1}_{T \geq kN} (1-\varepsilon)\right] \\ &\leq (1-\varepsilon)^{k+1}, \end{split}$$

par hypothèse de récurrence. On en déduit aisément que $\mathbb{E}[T] < \infty$ et en particulier que T est presque sûrement fini.

Exercice 4.

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires iid sur $(\Omega, \mathcal{F}, \mathbb{P})$ dont la loi est déterminée par

$$\mathbb{P}(X_n = 1) = p \text{ et } \mathbb{P}(X_n = -1) = 1 - p$$

avec $p \in]0,1[\setminus \{1/2\}$. Soient K et N deux entiers tels que $0 \le K \le N$. On pose $S_0 = K$, $S_n = K + X_1 + \ldots + X_n$ pour $n \ge 1$, $T_0 = \inf\{n \ge 0, S_n = 0\}$, $T_N = \inf\{n \ge 0, S_n = N\}$, $T = T_0 \wedge T_N$ et pour tout $n \ge 0$,

$$M_n = \left(\frac{1-p}{p}\right)^{S_n}.$$

- 1. Montrer que $(M_n)_{n\geq 0}$ est une martingale.
- 2. En considérant la martingale arrêtée $(M_{n \wedge T})_{n > 0}$, calculer $\mathbb{P}(T = T_0)$ et $\mathbb{P}(T = T_N)$.

Correction : Corrigé page 184 du poly de J.F. Le Gall.

Exercice 5 (Deux transformations de martingales.).

On se place sur l'espace $(\Omega, \mathcal{F}, \mathbb{P})$, muni de la filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$.

1. Soit $\phi: \mathbb{R} \to \mathbb{R}_+$ une fonction convexe, et soit $(X_n)_{n \in \mathbb{N}}$ un processus adapté (i.e. X_n est \mathcal{F}_n -mesurable pour tout n), tel que $\mathbb{E}[\phi(X_n)] < \infty$ pour tout $n \in \mathbb{N}$. Montrer que si (X_n) est une martingale, alors $(\phi(X_n))$ est une sous-martingale. Montrer que si (X_n) est une sous-martingale et si ϕ est croissante, alors $(\phi(X_n))$ est une sous-martingale.

2. On dit qu'un processus $(H_n)_{n\geq 1}$ est prévisible si, pour tout $n\geq 1$, H_n est \mathcal{F}_{n-1} -mesurable (Attention, parfois prévisible recouvre en plus la notion de bornitude, pas ici). Soit $(X_n)_{n\in\mathbb{N}}$ un processus adapté et $(H_n)_{n\geq 1}$ une famille prévisible et bornée. On pose $(H\bullet X)_0=0$ et pour tout $n\geq 1$,

$$(H \bullet X)_n = H_1(X_1 - X_0) + H_2(X_2 - X_1) + \dots + H_n(X_n - X_{n-1}).$$

Montrer que si (X_n) est une martingale, alors $((H \bullet X)_n)$ est aussi une martingale. Montrer que si (X_n) est une surmartingale (respectivement sous-martingale), et si $H_n \geq 0$ pour tout $n \geq 1$, $((H \bullet X)_n)$ est une surmartingale (respectivement sous-martingale).

Correction:

1. La mesurabilité par rapport à \mathcal{F}_n et l'intégrabilité de $\phi(X_n)$ sont triviales dans les deux cas pour tout n. Or par l'inégalité de Jensen pour les espérances conditionnelles, pour tout $n \in \mathbb{N}$, on a

$$\mathbb{E}[\phi(X_{n+1})|\mathcal{F}_n] \geq \phi(\mathbb{E}[X_{n+1}|\mathcal{F}_n]).$$

Dans le premier cas on conclut car $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n$ p.s., et dans l'autre cas car $\mathbb{E}[X_{n+1}|\mathcal{F}_n] \ge X_n$ et ϕ est croissante.

2. On vérifie facilement dans les deux cas que, pour tout $n \in \mathbb{N}$, $(H \bullet X)_n$ est intégrable (car les (X_i) sont intégrables et les (H_i) sont bornés) et mesurable par rapport a \mathcal{F}_n (car les (X_i) sont adaptés et les (H_i) sont prévisibles). Il suffit donc de regarder, pour tout $n \in \mathbb{N}$, le signe de

$$\mathbb{E}[(H \bullet X)_{n+1} - (H \bullet X)_n | \mathcal{F}_n],$$

si cette variable est nulle p.s. alors $((H \bullet X)_n)$ est une martingale, si elle est positive c'est une sous-martingale, et si elle est négative c'est une surmartingale. Or $(H \bullet X)_{n+1} - (H \bullet X)_n = H_{n+1}(X_{n+1} - X_n)$ et puisque H_{n+1} est \mathcal{F}_n -mesurable on a

$$\mathbb{E}[H_{n+1}(X_{n+1} - X_n)|\mathcal{F}_n] = H_{n+1}\mathbb{E}[X_{n+1} - X_n|\mathcal{F}_n].$$

Le résultat tombe alors immédiatement suivant les hypothèses sous lesquelles on se place (que ce soit $\mathbb{E}[X_{n+1}-X_n|\mathcal{F}_n]=0$, $\mathbb{E}[X_{n+1}-X_n|\mathcal{F}_n]\leq 0$ et $H_{n+1}\geq 0$ ou $\mathbb{E}[X_{n+1}-X_n|\mathcal{F}_n]\geq 0$ et $H_{n+1}\geq 0$).

Exercice 6.

Trouver un processus $(M_n)_{n\geq 0}$ avec $E[|M_n|]<\infty$ pour tout n et tel que $E[M_{n+1}\mid M_n]=M_n$ sans que (M_n) soit une martingale.

Correction : On considère une marche aléatoire simple démarrant de 0 avec des pas indépendants ± 1 mais au premier retour en 0 la marche est obligée de faire le même pas que son tout premier.

Exercice 7 (Une réciproque au théorème d'arrêt).

Soit $(X_n)_{n\in\mathbb{N}}$ un processus sur $(\omega, \mathcal{F}, \mathcal{F}_n, \mathbb{P})$, intégrable et adapté. Montrer que si pour tout temps d'arrêt borné τ on a $\mathbb{E}[X_\tau] = \mathbb{E}[X_0]$, alors X_n est une martingale.

Correction : Le processus (X_n) est intégrable et adapté, donc il suffit de montrer que pour tout n, $\mathbb{E}(X_{n+1}|\mathcal{F}_n)=X_n$. Par la caractérisation de l'espérance conditionnelle, il suffit donc de montrer que pour tout n et pour tout $A \in \mathcal{F}_n$, on a

$$\mathbb{E}(X_{n+1}\mathbb{1}_A) = \mathbb{E}(X_n\mathbb{1}_A). \tag{1}$$

Le seul outil en notre possession étant les temps d'arrêt, on va essayer d'en trouver qui sont adaptés à notre problème.

On se fixe $n \in \mathbb{N}$ et $A \in \mathcal{F}_n$. D'une part, si on considère le temps d'arrêt constant $\tau = n$, on obtient

$$\mathbb{E}[X_n] = \mathbb{E}[X_\tau] = \mathbb{E}[X_0].$$

D'autre part, pour un temps d'arrêt τ quelconque, on en déduit que

$$\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0] = \mathbb{E}[X_n].$$

Etant donné qu'on veut montrer (1), il semble naturel de chosir τ tel que X_{τ} s'exprime en terme de X_n , X_{n+1} et $\mathbb{1}_A$. Si on choisit

$$\tau = n \mathbb{1}_{A^c} + (n+1) \mathbb{1}_{A}$$

on a $X_{\tau} = X_n \mathbb{1}_{A^c} + X_{n+1} \mathbb{1}_A$ et donc

$$\mathbb{E}[X_n \mathbb{1}_{A^c} + X_{n+1} \mathbb{1}_A] = \mathbb{E}[X_n],$$

ce qui implique bien

$$\mathbb{E}(X_{n+1}\mathbb{1}_A) = \mathbb{E}(X_n\mathbb{1}_A),$$

et permet de conclure.

Exercice 8 (Une autre version du théorème d'arrêt.).

Soient $(X_n)_{n\geq 0}$ une martingale sur un espace de probabilité filtré $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0})$ et T un temps d'arrêt vérifiant

$$\mathbb{P}(T < +\infty) = 1$$
, $\mathbb{E}(|X_T|) < \infty$ et $\mathbb{E}(|X_n| \mathbb{1}_{\{T > n\}}) \xrightarrow[n \to +\infty]{} 0$.

- 1. Montrer que $\mathbb{E}(|X_T|\mathbb{1}_{\{T>n\}}) \underset{n\to+\infty}{\longrightarrow} 0$.
- 2. Montrer que $\mathbb{E}(|X_{T \wedge n} X_T|) \underset{n \to +\infty}{\longrightarrow} 0$.
- 3. En déduire que $\mathbb{E}(X_T) = \mathbb{E}(X_0)$.

Correction:

1. Le temps d'arrêt T est fini p.s. et $|X_T|$ aussi donc

$$|X_T| \mathbb{1}_{\{T>n\}} \xrightarrow[n\to\infty]{\text{p.s.}} 0.$$

Or $|X_T|\mathbbm{1}_{\{T>n\}} \leq |X_T|$ et $\mathbb{E}(|X_T|) < +\infty$. Ainsi, le théorème de convergence dominée entraîne le résultat.

2. On a

$$\mathbb{E}(|X_{T \wedge n} - X_T|) = \mathbb{E}\left(|X_n - X_T|\mathbb{1}_{\{T > n\}}\right) \le \mathbb{E}(|X_n|\mathbb{1}_{\{T > n\}}) + \mathbb{E}(|X_T|\mathbb{1}_{\{T > n\}}).$$

Le terme de droite de cette équation tend vers 0 quand n tend vers l'infini d'après la deuxième hypothèse et la question 1, on a donc le résultat.

3. Pour tout $n \in \mathbb{N}$, $\mathbb{E}(X_{T \wedge n}) = \mathbb{E}(X_0)$ car $(X_{T \wedge n})_{n \in \mathbb{N}}$ est une martingale (ou de manière équivalente par le théorème d'arrêt appliqué au temps d'arrêt borné $T \wedge n$). La question 2. implique la convergence

$$\mathbb{E}(X_{T\wedge n}) \xrightarrow[n\to\infty]{} \mathbb{E}(X_T) ,$$

donc
$$\mathbb{E}(X_T) = \mathbb{E}(X_0)$$
.