Math 624: Problem set 3

1. Let [0,1] equipped with \mathcal{M} , the σ -algebra of Lebesgue measurable subsets of [0,1]. Let m denote the Lebesgue measure on [0,1] and let μ denote the counting measure on [0,1], i.e., for $E \subset [0,1]$, $\mu(E)$ is the number of elements in E. Let $D = \{(x,x), x \in [0,1]\}$ denote the diagonal in $[0,1] \times [0,1]$. Show that $\int \int \chi_D dm d\mu$, $\int \int \chi_D d\mu dm$, and $\int \chi_D d(m \times \mu)$ are all unequal. Why does this not contradict Fubini Theorem?

Hint: To compute $\int \chi_D d(m \times \mu)$ go back to the definition of $m \times \mu$.

- 2. Let (X, \mathcal{M}, μ) be an arbitrary measure space (not necessarily σ -finite). Let Y be a countable set, with the σ -algebra \mathcal{N} consisting of all subsets of Y and let ν be any σ -finite measure on Y, e.g., the counting measure. Prove Fubini-Tonelli Theorem for this case.
- 3. Exercise 8, p.313.
- 4. Exercise 10 p. 314
- 5. Exercise 11, p. 315
- 6. Suppose ν is a σ -finite signed measure and μ and λ are σ -finite (positive) measures on (X, \mathcal{M}) .
 - (a) Suppose that $\nu \ll \mu$. Show that if $g \in L^1(\nu)$, then $g \frac{d\nu}{d\mu} \in L^1(\mu)$ and

$$\int g \, d\nu = \int g \frac{d\nu}{d\mu} d\mu$$

(b) Suppose that $\nu \ll \mu$ and $\mu \ll \lambda$. Show that $\nu \ll \lambda$ and

$$\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda}.$$

Hint: Use (a). This equality is called the chain rule (why?).

(c) Suppose $\mu \ll \lambda$ and $\lambda \ll \mu$. Show that

$$\frac{d\lambda}{d\mu}\frac{d\mu}{d\lambda} = 1$$

1

for μ or λ a.e. x. *Hint:* Use (b).

7. Suppose ν_i are σ -finite signed measures and μ_i a σ -finite (positive) measures on the the measure space (X_i, \mathcal{M}_i) , for i = 1, 2. Show that if $\nu_1 \ll \mu_1$ and $\nu_2 \ll \mu_2$ then $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ and

$$\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x_1, x_2) = \frac{d\nu_1}{d\mu_1}(x_1) \frac{d\nu_2}{d\mu_2}(x_2).$$

- 8. Let [0,1] equipped with \mathcal{M} , the σ -algebra of Lebesgue measurable subsets of [0,1]. Let m denote the Lebesgue measure on [0,1] and let μ denote the counting measure on [0,1]. Show that $m \ll \mu$ but that there exists no f such that $dm = f d\mu$.
- 9. (a) Let (X, \mathcal{M}, μ) be a σ -finite measure and let \mathcal{N} be a sub- σ -algebra of \mathcal{M} . Let $\nu = \mu|_{\mathcal{N}}$ be the restriction of μ to \mathcal{N} . Show that if $f \in L^1(\mu)$ there exists $g \in L^1(\nu)$ (in particular g is \mathcal{N} measurable) such that

$$\int f d\mu = \int g d\nu$$

Prove that such g is uniquely determined, almost everywhere. In probability g is called the conditional expectation of f.

(b) Consider the measure space $([0,1], \mathcal{B}, m)$ where \mathcal{B} is the Borel σ -algebra and m is the Lebesgue measure. Let \mathcal{C} be the smallest σ -algebra which contains all intervals of the form (-a,a). Let $f(x)=3x^2+2x$. Compute g(x) given in part (a).

Hint: What does it mean for a function be \mathcal{C} measurable?

10. Suppose that F and G are complex-valued function of bounded variations on [a,b]. Show the following integration by parts formula for Lebesgue-Stieljes integrals: If at least one of F and G is continuous then

$$\int_{(a,b]} FdG + \int_{(a,b]} GdF = F(b)G(b) - F(a)G(a)$$

Hint: Without restriction of generality you can assume that F and G are increasing and that G is continuous. Let $\Omega = \{(x,y) : a < x \le y \le b\}$ and compute $\mu_F \times \mu_G(\Omega)$ (in two ways) using Fubini.