Botanica Iris

A story of petals and sepals

Introduction:

We're in possession of a single data set that contains information about 3 different species of the flower iris.

The main goal of this project is to learn how to properly use R in terms of data management and visualization.

In order to do so, we were given a starter sheet, which had most of the techniques we would be using for the following tasks.

1) Why R?:

a) Richness of statistical functions:

Statistical functions are native in R, same for correlations.

b) Specialized packages:

Everything is available in order to visualize data like ggplot2 or corrplot. Same for modifying and restructuring data with dplyr or tidyr.

c) Flexibility needed for complex data-set:

Able to transfer data in and out universally with file format ranging from CSV to JSON and going by Excel or XML.

Data transformation, Data analysis, Data visualization pipeline.

2) Data refinement :

a) Step 1: Load & Explore:

data(iris)

```
str(iris)
summary(iris)
```

b) Step 2: Filter & Prepare:

```
setosa <- iris %>%
  filter(Species == "setosa") %>%
  select(-Species)
```

c) Transform for visualization:

d) Enrich with statistics:

3) Data analysis with statistical techniques:

"

Only work on <u>setosa</u> will be shown, for full insights on the whole dataset, please refer to the key insights.

a) Central Tendencies:

```
Mean : Sepal = (5.01 * 3.43 \text{ cm}), Petal = (1.46 * 0.25 \text{ cm}). Median \sim Mean \rightarrow Symmetrical distribution.
```

b) Dispersion measures:

Maximum coefficient of variation (CV) on petal width (44%) → High variability.

```
cv_petal_width = sd(Petal.Width)/mean(Petal.Width)*100
```

Min CV on sepal length $(7\%) \rightarrow \text{Stable measure}$.

c) Correlation Analysis:

Significance tests showing correlation : r = 0.74.

4) Data analysis with visualization:

a) Density Histograms:

Distribution of each measure.

Statistical annotations (mean/median).

Overlapping of density curbs.

```
hist(iris$Petal.Length, breaks = 10, col = "lightblue")
```

b) Correlation Matrixes:

4 by 4 matrix showing correlating sepal measures unique to Setosa.

Colored Heatmap.

Hierarchical clustering.

Visual significance.

```
cor_matrix <- cor(iris[, 1:4])
corrplot::corrplot(cor_matrix, method = "color")</pre>
```

c) Comparative Boxplots:

Outliers detection.

Inter-measures comparison.

```
ggplot(iris, aes(x = Species, y = Petal.Length, fill = Species)) +
  geom_boxplot() +
  theme_classic()
```

5) Key insights:

a) Setosa's aka The Miniature:

Setosa is unique among the 3 species for its signature *miniature* size and petals, and seeing a unique positive correlation among the sepals in the dataset.

b) <u>Setosa's correlation coefficient between sepals measures</u>:

Setosa's **sepals** are strongly correlated between their length and width.

c) Setosa's steady measurements:

Setosa measurements have little to no variation.

d) Versicolor aka The Medium:

Veriscolor is recognised by its average size

e) <u>Versicolor's correlation coefficient between petals measures</u>:

Versicolor's **petals** are strongly correlated between their length and width.

f) Virginica aka The Giant:

Virginica is the *largest* specie in all dimensions

g) Virginica's High Variability:

We found the highest variability in the virginica's measurements.