6. Optimal Multiple Decision Treatment Regimes

- 6.1 Characterization of an Optimal Regime
- 6.2 Estimation of an Optimal Regime
- 6.3 Key References

Introduction

Consider: The class of Ψ -specific regimes \mathcal{D} for a given specification $\Psi = (\Psi_1, \dots, \Psi_K)$ of feasible sets

Recall: An optimal regime $d^{opt} \in \mathcal{D}$ is one that satisfies

$$E\{Y^*(d^{opt})\} \ge E\{Y^*(d)\}$$
 for all $d \in \mathcal{D}$

- We first characterize an optimal regime d^{opt} in terms of potential outcomes using the principle of backward induction and show that it satisfies this condition
- Under SUTVA, SRA, and positivity, we show that a optimal regime can be expressed equivalently in terms of observed data
- We then present several methods for estimation of an optimal regime

Recap: Ψ-specific regimes

Reminder: We summarize the definitions for given Ψ for convenience

Define

$$\Gamma_1 = \{x_1 \in \mathcal{X}_1 \text{ satisfying } P(X_1 = x_1) > 0\}$$
 and for $k = 2, \dots, K$
$$\Lambda_k = \{(\overline{x}_k, \overline{a}_k) \text{ such that } (\overline{x}_k, \overline{a}_{k-1}) = h_k \in \Gamma_k, \ a_k \in \Psi_k(h_k)\}$$

$$\Gamma_k = \left[h_k = (\overline{x}_k, \overline{a}_{k-1}) \in \overline{\mathcal{X}}_k \times \overline{\mathcal{A}}_{k-1} \text{ satisfying } (\overline{x}_{k-1}, \overline{a}_{k-1}) \in \Lambda_{k-1} \right]$$
 and
$$P\{X_k^*(\overline{a}_{k-1}) = x_k \mid \overline{X}_{k-1}^*(\overline{a}_{k-2}) = \overline{x}_{k-1}\} > 0$$

- $\Gamma_k \subseteq \mathcal{H}_k$ contains all possible histories h_k consistent with having followed a Ψ -specific regime through Decision k-1
- Λ_k is the set of all possible histories h_k ∈ Γ_k and associated treatment options in Ψ_k(h_k) at Decision k

Recap: Ψ-specific regimes

• $Y^*(\overline{a})$ and observed outcome Y take values $y \in \mathcal{Y}$

$$\begin{split} \Gamma_{\mathcal{K}+1} &= \left[(\overline{x}, \overline{a}, y) \in \overline{\mathcal{X}} \times \overline{\mathcal{A}} \times \mathcal{Y} \text{ satisfying } (\overline{x}, \overline{a}) \in \Lambda_{\mathcal{K}} \text{ and } \right. \\ &\left. P\{ Y^{^{\star}}(\overline{a}) = y \mid \overline{X}^{^{\star}}_{\mathcal{K}}(\overline{a}_{\mathcal{K}-1}) = \overline{x}_{\mathcal{K}} \} > 0 \right] \end{split}$$

 Ψ -specific regime: d comprises rules $d_k(h_k)$ such that

$$d_k: \Gamma_k \to \mathcal{A}_k$$

satisfying $d_k(h_k) \in \Psi_k(h_k)$ for every $h_k \in \Gamma_k$, k = 1, ..., K

• With ℓ_k distinct subsets $A_{k,l} \subseteq A_k$, $l = 1, ..., \ell_k$, that are feasible sets at Decision k

$$d_k(h_k) = \sum_{l=1}^{\ell_k} \mathsf{I}\{s_k(h_k) = l\} d_{k,l}(h_k)$$

where $d_{k,l}$ maps from $\Gamma_{k,l} \subseteq \Gamma_k$ to $\mathcal{A}_{k,l}$ and thus \mathcal{A}_k , and $d_{k,l}(h_k) \in \Psi_k(h_k)$

Recap: Ψ-specific regimes

Observed data: $(X_1, A_1, X_2, A_2, ..., X_K, A_K, Y)$

Under: SUTVA (5.10), SRA (5.11), and positivity (5.15)

$$P(A_k = a_k | H_k = h_k) = P(A_k = a_k | \overline{X}_k = \overline{x}_k, \overline{A}_{k-1} = \overline{a}_{k-1}) > 0$$
for $h_k = (\overline{x}_k, \overline{a}_{k-1}) \in \Gamma_k$, and $a_k \in \Psi_k(h_k) = \Psi_k(\overline{x}_k, \overline{a}_{k-1}),$

$$k = 1, \dots, K$$
(6.1)

• Γ_k , k = 2, ..., K, and Γ_{K+1} can be written equivalently

$$\Gamma_k = \left[h_k = (\overline{x}_k, \overline{a}_{k-1}) \in \overline{\mathcal{X}}_k \times \overline{\mathcal{A}}_{k-1} \text{ satisfying } (\overline{x}_{k-1}, \overline{a}_{k-1}) \in \Lambda_{k-1} \right.$$

$$\text{and } P(X_k = x_k \mid \overline{X}_{k-1} = \overline{x}_{k-1}, \overline{\mathcal{A}}_{k-1} = \overline{a}_{k-1}) > 0 \right]$$

$$\Gamma_{\mathcal{K}+1} = \left\lfloor (\overline{x}, \overline{a}, y) \in \overline{\mathcal{X}} \times \overline{\mathcal{A}} \times \mathcal{Y} \text{ satisfying } (\overline{x}, \overline{a}) \in \Lambda_{\mathcal{K}} \text{ and } \right.$$

$$\left. P(Y = y \mid \overline{X} = \overline{x}, \overline{A}_{\mathcal{K}-1} = \overline{a}_{\mathcal{K}-1}) > 0 \right\rfloor$$

Potential outcomes: Recall

$$\begin{split} \textbf{\textit{W}}^{\star} = & \Big\{ \textbf{\textit{X}}_{2}^{\star}(\textbf{\textit{a}}_{1}), \textbf{\textit{X}}_{3}^{\star}(\overline{\textbf{\textit{a}}}_{2}), \dots, \textbf{\textit{X}}_{K}^{\star}(\overline{\textbf{\textit{a}}}_{K-1}), \textbf{\textit{Y}}^{\star}(\overline{\textbf{\textit{a}}}), \\ & \text{for } \textbf{\textit{a}}_{1} \in \mathcal{A}_{1}, \overline{\textbf{\textit{a}}}_{2} \in \overline{\mathcal{A}}_{2}, \dots, \overline{\textbf{\textit{a}}}_{K-1} \in \overline{\mathcal{A}}_{K-1}, \overline{\textbf{\textit{a}}} \in \overline{\mathcal{A}} \Big\}. \end{split}$$

- We first characterize an optimal regime d^{opt} in terms of baseline information X₁ and W^{*}
- To understand the *backward inductive* reasoning, it first suffices to consider K = 2

K = 2 decisions: Consider a randomly chosen individual

At Decision 2 (final decision point):

- If she started with realized baseline info X₁ = x₁ = h₁ ∈ Γ₁ and received option a₁ ∈ Ψ₁(x₁) = Ψ₁(h₁) at Decision 1, she already will have achieved intervening info X₂(a₁)
- Thus, with Decision 1 option a₁ and X̄₂(a₁) = {X₁, X₂^{*}(a₁)} already determined and with realized value x̄₂ = (x₁, x₂), h₂ = (x̄₂, a₁) ∈ Γ₂, the optimal decision at Decision 2 is to choose the option a₂ ∈ Ψ₂(h₂) that would result in the largest expected outcome given that she is already at this point
- The outcome that she would achieve under a₂ ∈ Ψ₂(h₂), having already received a₁ at Decision 1, is Y*(a₁, a₂)
- Her expected outcome given where she is now is thus

$$E\{Y^{*}(a_{1}, a_{2})|\overline{X}_{2}^{*}(a_{1}) = \overline{x}_{2}\}$$
 (6.2)

well defined because $(\overline{x}_2, \overline{a}_2) \in \Lambda_2$, $(\overline{x}, \overline{a}, y) \in \Gamma_3$

Optimal Ψ -specific rule at Decision 2: Should select $a_2 \in \Psi_2(h_2)$ to maximize (6.2); i.e.,

$$d_2^{opt}(h_2) = d_2^{opt}(\overline{x}_2, a_1) = \underset{a_2 \in \Psi_2(h_2)}{\arg\max} \ E\{Y^*(a_1, a_2) | \overline{X}_2^*(a_1) = \overline{x}_2\} \quad (6.3)$$

- Takes $h_2 = (\overline{x}_2, a_1) = (x_1, x_2, a_1) \in \Gamma_2$ as input and chooses the option in $\Psi_2(h_2)$ maximizing expected outcome given this history
- The resulting maximum expected outcome is

$$V_{2}(h_{2}) = V_{2}(\overline{x}_{2}, a_{1}) = \max_{a_{2} \in \Psi_{2}(h_{2})} E\{Y^{*}(a_{1}, a_{2}) | \overline{X}_{2}^{*}(a_{1}) = \overline{x}_{2}\}$$
(6.4)

At Decision 1:

- If an individual presents with baseline information $X_1 = x_1 = h_1 \in \Gamma_1$, the optimal decision *now* is to choose $a_1 \in \Psi_1(h_1)$ that maximizes her expected outcome given $X_1 = x_1$, taking into account that she will receive treatment at Decision 2 by following the optimal rule d_2^{opt} in (6.3)
- If $a_1 \in \Psi_1(h_1)$ is selected now, she *will present* at Decision 2 with

$$\overline{X}_2(a_1) = \{x_1, X_2(a_1)\}$$

(with X_1 at its realized value x_1)

• Upon receiving an option in $\Psi_2\{x_1, X_2^*(a_1), a_1\}$ according to d_2^{opt} , her expected outcome *given this info* is, from (6.4)

$$V_2\{x_1,X_2^{\star}(a_1),a_1\} = \max_{a_2 \in \Psi_2\{x_1,X_2^{\star}(a_1),a_1\}} E\{Y^{\star}(a_1,a_2)|X_2^{\star}(a_1),X_1 = x_1\}$$

Optimal Ψ -specific rule at Decision 1: Should select $a_1 \in \Psi_1(h_1)$ to make the expected value of $V_2\{x_1, X_2^*(a_1), a_1\}$ given X_1 evaluated at $X_1 = x_1$ as large as possible, i.e.

$$d_1^{opt}(h_1) = d_1^{opt}(x_1) = \underset{a_1 \in \Psi_1(h_1)}{\operatorname{arg\,max}} E[V_2\{x_1, X_2^*(a_1), a_1\} | X_1 = x_1]$$
 (6.5)

well defined because $(x_1, a_1) \in \Lambda_1$ and $X_2^*(a_1)$ takes values in Γ_2

- (6.5) selects a₁ ∈ Ψ₁(h₁) to maximize the maximum expected outcome
 that would result from choosing the option at Decision 2 optimally given
 the history available at that point
- Resulting maximum of the maximum expected outcome an individual with realized baseline info x₁ would achieve under rules d₁^{opt} and d₂^{opt} is

$$V_{1}(h_{1}) = V_{1}(x_{1}) = \max_{a_{1} \in \Psi_{1}(h_{1})} E[V_{2}\{x_{1}, X_{2}^{*}(a_{1}), a_{1}\} | X_{1} = x_{1}]$$

$$= \max_{a_{1} \in \Psi_{1}(h_{1})} E[\max_{a_{2} \in \Psi_{2}\{x_{1}, X_{2}^{*}(a_{1}), a_{1}\}} E\{Y^{*}(a_{1}, a_{2}) | X_{2}^{*}(a_{1}), X_{1} = x_{1}\} X_{1} = x_{1}]$$

Result:

- Clearly, d^{opt} = (d₁^{opt}, d₂^{opt}) defined by (6.3) and (6.5) is a regime in D (a set of decision rules, each mapping history to feasible treatment options)
- Intuition suggests that it is an optimal regime satisfying

$$E\{Y^*(d^{opt})\} \ge E\{Y^*(d)\}$$
 for all $d \in \mathcal{D}$

but this must be shown formally (sketch coming up)

K Decisions: This backward inductive reasoning extends

• Consider a randomly chosen individual presenting at baseline with info $X_1 = x_1 = h_1 \in \Gamma_1$

At Decision K: He has already received $a_k \in \Psi_k(h_k)$, $k=1,\ldots,K-1$, based on $\overline{X}_{K-1}^*(\overline{a}_{K-2}) = \{X_1,X_2^*(a_1),\ldots,X_{K-1}^*(\overline{a}_{K-2})\}$ and has info $X_K^*(\overline{a}_{K-1})$ that has accrued since Decision K-1

• The optimal decision, with \overline{a}_{K-1} and $\overline{X}_K^*(\overline{a}_{K-1}) = \overline{x}_K$ already determined, so that $h_K = (\overline{x}_K, \overline{a}_{K-1}) \in \Gamma_K$, is to choose $a_K \in \Psi_K(h_K)$ such that his expected outcome given he is at this point is largest, i.e., maximize in a_K

$$E\{Y^{\star}(\overline{a}_{K-1},a_{K})\mid \overline{X}_{K}^{\star}(\overline{a}_{K-1})=\overline{x}_{K}\}$$

• Thus define for $h_K = (\overline{x}_K, \overline{a}_{K-1}) \in \Gamma_K$

$$d_K^{(1)opt}(h_K) = \underset{a_K \in \Psi_K(h_K)}{\operatorname{arg\,max}} E\{Y^*(\overline{a}_{K-1}, a_K) | \overline{X}_K^*(\overline{a}_{K-1}) = \overline{x}_K\}$$
 (6.6)

Maximum expected outcome achieved

$$V_{K}^{(1)}(h_{K}) = \max_{a_{K} \in \Psi_{K}(h_{K})} E\{Y^{*}(\overline{a}_{K-1}, a_{K}) | \overrightarrow{X}_{K}(\overline{a}_{K-1}) = \overline{x}_{K}\}$$
(6.7)

At Decision K-1: He presents with $\overline{X}_{K-1}^*(\overline{a}_{K-2})$ already determined with realized value \overline{x}_{K-1} following options $a_k \in \Psi_k(h_k)$, $k=1,\ldots,K-2$, such that $h_{K-1}=(\overline{x}_{K-1},\overline{a}_{K-2}) \in \Gamma_{K-1}$

- Now select the option in $\Psi_{K-1}(h_{K-1})$ to maximize his expected outcome given this history and acknowledging that he will receive treatment at Decision K by following $d_K^{(1)opt}$ in (6.6)
- If $a_{K-1} \in \Psi_{K-1}(h_{K-1})$ is selected *now*, he *will present* at Decision K with information

$$\overline{X}_{K}^{\star}(\overline{a}_{K-1}) = \{\overline{x}_{K-1}, X_{K}^{\star}(\overline{a}_{K-1})\}$$

and, upon receiving an option in $\Psi_K\{\overline{x}_{K-1}, X_K^*(\overline{a}_{K-1}), \overline{a}_{K-1}\}$ dictated by $d_K^{(1)opt}$, will have expected outcome *given this information* equal to

$$\begin{split} &V_{K}^{(1)}\{\overline{x}_{K-1}, X_{K}^{*}(\overline{a}_{K-1}), \overline{a}_{K-1}\} \\ &= \max_{a_{K} \in \Psi_{K}\{\overline{x}_{K-1}, X_{K}^{*}(\overline{a}_{K-1}), \overline{a}_{K-1}\}} E\{Y^{*}(\overline{a}_{K-1}, a_{K}) | X_{K}^{*}(\overline{a}_{K-1}), \overline{X}_{K-1}(\overline{a}_{K-2}) = \overline{x}_{K-1}\} \end{split}$$

from (6.7)

• Thus, $a_{K-1} \in \Psi_{K-1}(h_{K-1})$ should be chosen to make the expected value of $V_K^{(1)}\{\overline{x}_{K-1}, X_K^*(\overline{a}_{K-1}), \overline{a}_{K-1}\}$ given $\overline{X}_{K-1}^*(\overline{a}_{K-2}) = \overline{x}_{K-1}$ as large as possible, leading to

$$K_{K-1}(a_{K-2}) = X_{K-1}$$
 as large as possible, leading to
$$d_{K-1}^{(1)opt}(h_{K-1})$$
 (6.8)
$$= \underset{a_{K-1} \in \Psi_{K-1}(h_{K-1})}{\text{arg max}} E[V_K^{(1)}\{\overline{x}_{K-1}, X_K^*(\overline{a}_{K-2}, a_{K-1}), \overline{a}_{K-2}, a_{K-1}\}|$$

$$\overline{X}_{K-1}^*(\overline{a}_{K-2}) = \overline{x}_{K-1}]$$

And maximum expected outcome achieved

$$\begin{aligned} V_{K-1}^{(1)}(h_{K-1}) &= \max_{a_{K-1} \in \Psi_{K-1}(h_{K-1})} E[V_K^{(1)}\{\overline{x}_{K-1}, X_K^*(\overline{a}_{K-2}, a_{K-1}), \overline{a}_{K-2}, a_{K-1}\}| \\ &\overline{X}_{K-1}^*(\overline{a}_{K-2}) = \overline{x}_{K-1}] \end{aligned}$$

At Decisions $k = K - 1, \ldots, 2$: Continuing this reasoning, for $\overline{x}_k \in \overline{\mathcal{X}}_k$, $\overline{a}_{k-1} \in \overline{\mathcal{A}}_{k-1}$ for which $h_k = (\overline{x}_k, \overline{a}_{k-1}) \in \Gamma_k$

$$d_{k}^{(1)opt}(h_{k}) = \underset{a_{k} \in \Psi_{k}(h_{k})}{\arg\max} E[V_{k+1}^{(1)}\{\overline{x}_{k}, X_{k+1}^{*}(\overline{a}_{k-1}, a_{k}), \overline{a}_{k-1}, a_{k}\}|\overline{X}_{k}^{*}(\overline{a}_{k-1}) = \overline{x}_{k}]$$
(6.9)

$$V_{k}^{(1)}(h_{k}) = \max_{a_{k} \in \Psi_{k}(h_{k})} E[V_{k+1}^{(1)}\{\overline{x}_{k}, X_{k+1}^{*}(\overline{a}_{k-1}, a_{k}), \overline{a}_{k-1}, a_{k}\} | \overline{X}_{k}^{*}(\overline{a}_{k-1}) = \overline{x}_{k}]$$
(6.10)

At Decision 1:

$$d_1^{(1)opt}(x_1) = \underset{a_1 \in \Psi_1(h_1)}{\arg\max} E[V_2^{(1)}\{x_1, X_2^*(a_1), a_1\} | X_1 = x_1]$$
 (6.11)

$$V_1^{(1)}(x_1) = \max_{a_1 \in \Psi_1(h_1)} E[V_2^{(1)}\{x_1, X_2^*(a_1), a_1\} | X_1 = x_1]$$
 (6.12)

Note: All conditional expectations in (6.6)–(6.12) are well defined because $h_k \in \Gamma_k$, k = 1, ..., K

Equivalent representation: By the definitions of $d_k^{(1)opt}(h_k)$, k = K, ..., 1 in (6.6)– (6.11), can write

$$V_K^{(1)}(h_K) = E[Y^*\{\overline{a}_{K-1}, d_K^{(1)opt}(h_K)\}|\overline{X}_K^*(\overline{a}_{K-1}) = \overline{X}_K]$$

$$V_{k}^{(1)}(h_{k}) = E\left(V_{k+1}^{(1)}\left[\overline{x}_{k}, X_{k+1}^{*}\{\overline{a}_{k-1}, d_{k}^{(1)opt}(h_{k})\}, \overline{a}_{k-1}, d_{k}^{(1)opt}(h_{k})\right]\middle| \overline{X}_{k}^{*}(\overline{a}_{k-1}) = \overline{x}_{k}\right) \\ k = K - 1, \dots, 2$$

$$V_1^{(1)}(h_1) = E\left(V_2^{(1)}\left[x_1, X_2^*\{d_1^{(1)opt}(h_1)\}, d_1^{(1)opt}(h_1)\right]\middle|X_1 = x_1\right)$$

Result: $d^{(1)opt} = (d_1^{(1)opt}, \dots, d_K^{(1)opt})$ defined above is clearly a treatment regime in \mathcal{D}

- A set of rules, each using individual history to select treatment from among the feasible options
- Intuition suggests that it is an optimal regime, but this must shown formally (sketch coming up)
- Uniqueness: At any decision point k = 1,..., K, for some h_k ∈ Γ_k, there may be more than one option in Ψ_k(h_k) achieving the maximum in (6.7), (6.10), or (6.12)
- A unique representation of $d_k^{(1)opt}$ is defined by choosing one of the options in $\Psi_k(h_k)$ as the default

Note: The superscript "(1)" emphasizes that the rules pertain to an individual presenting at Decision 1 (rather than "midstream" at a later decision point)

Formally: Confirm that $d^{(1)opt} \in \mathcal{D}$ defined in (6.6), (6.8), (6.9) for k = K - 2, ..., 2, and (6.11) is an optimal regime in \mathcal{D} ; i.e., show that $E\{Y^*(d^{(1)opt})\} \geq E\{Y^*(d)\}$ for all $d \in \mathcal{D}$ (6.13)

• For any $d \in \mathcal{D}$, from (5.7)

$$Y^{*}(d) = \sum_{\overline{a} \in \overline{A}} Y^{*}(\overline{a}) \prod_{j=1}^{K} I \left[d_{j} \{ \overline{X}_{j}^{*}(\overline{a}_{j-1}), \overline{a}_{j-1} \} = a_{j} \right]$$

$$= \sum_{\overline{a}_{K-1} \in \overline{A}_{K-1}} \left(\prod_{j=1}^{K-1} I \left[d_{j} \{ \overline{X}_{j}^{*}(\overline{a}_{j-1}), \overline{a}_{j-1} \} = a_{j} \right] Y^{*} \left[\overline{a}_{K-1}, d_{K} \{ \overline{X}_{K}^{*}(\overline{a}_{K-1}), \overline{a}_{K-1} \} \right] \right)$$
(6.14)

• Y^* $\left[\overline{a}_{K-1}, d_K\{\overline{X}_K(\overline{a}_{K-1}), \overline{a}_{K-1}\}\right]$ in (6.14) is the potential outcome if an individual were to receive \overline{a}_{K-1} at Decisions 1 to K-1 and then receive the option at Decision K dictated by d_K for this treatment history and the associated intervening information $\overline{X}_K(\overline{a}_{K-1})$

It follows from (6.14) that

$$E\{Y^{*}(d)\} = \sum_{\overline{a}_{K-1} \in \overline{\mathcal{A}}_{K-1}} E\left\{ \prod_{j=1}^{K-1} I\left[d_{j}\{\overline{X}_{j}^{*}(\overline{a}_{j-1}), \overline{a}_{j-1}\} = a_{j}\right] \right.$$

$$\times E\left(Y^{*}\left[\overline{a}_{K-1}, d_{K}\{\overline{X}_{K}^{*}(\overline{a}_{K-1}), \overline{a}_{K-1}\}\right] \middle| \overline{X}_{K}^{*}(\overline{a}_{K-1})\right) \right\}$$

$$(6.15)$$

- Because d and $d^{(1)opt}$ are regimes in \mathcal{D} , the set of rules $(\overline{d}_{K-1}, d_K^{(1)opt})$ is also a regime in \mathcal{D}
- Thus, as in (6.14) and (6.15)

$$E\{Y^{*}(\overline{d}_{K-1}, d_{K}^{(1)opt})\} = \sum_{\overline{a}_{K-1} \in \overline{A}_{K-1}} E\left\{ \prod_{j=1}^{K-1} I\left[d_{j}\{\overline{X}_{j}^{*}(\overline{a}_{j-1}), \overline{a}_{j-1}\} = a_{j}\right] \times E\left(Y^{*}\left[\overline{a}_{K-1}, d_{K}^{(1)opt}\{\overline{X}_{K}^{*}(\overline{a}_{K-1}), \overline{a}_{K-1}\}\right] \middle| \overline{X}_{K}^{*}(\overline{a}_{K-1})\right) \right\}$$
(6.16)

• Conditional on $\overline{X}_K^*(\overline{a}_{K-1}) = \overline{X}_K$ for $h_K = (\overline{X}_K, \overline{a}_{K-1}) \in \Gamma_K$, $d_K(h_K) \in \Psi_K(h_K)$; thus, from the definition of $d_K^{(1)opt}(h_K)$ in (6.6)

$$\begin{split} E\left[\left.Y^{\star}\left\{\overline{a}_{K-1},d_{K}(\overline{x}_{K},\overline{a}_{K-1})\right\}\right|\overrightarrow{X}_{K}(\overline{a}_{K-1}) = \overline{x}_{K}\right] \\ &\leq E\left[\left.Y^{\star}\left\{\overline{a}_{K-1},d_{K}^{(1)opt}(\overline{x}_{K},\overline{a}_{K-1})\right\}\right|\overrightarrow{X}_{K}(\overline{a}_{K-1}) = \overline{x}_{K}\right] \end{split}$$

Comparing (6.16) to (6.15), it follows that

$$E\{Y^*(d)\} \le E\{Y^*(\overline{d}_{K-1}, d_K^{(1)opt})\}$$
 (6.17)

• By the definition of $V_K^{(1)}(h_K)$ in (6.7), (6.16) can be written as

$$E\{Y^{*}(\overline{d}_{K-1}, d_{K}^{(1)opt})\}$$

$$= \sum_{\overline{a}_{K-1} \in \overline{A}_{K-1}} E\left(\prod_{j=1}^{K-1} I\left[d_{j}\{\overline{X}_{j}^{*}(\overline{a}_{j-1}), \overline{a}_{j-1}\} = a_{j}\right] V_{K}^{(1)}\{\overline{X}_{K}^{*}(\overline{a}_{K-1}), \overline{a}_{K-1}\}\right)$$
(6.18)

• For brevity define $\mathcal{J}_k^d = \prod_{j=1}^K \mathbb{I}\left[d_j\{\overline{X}_j^*(\overline{a}_{j-1}), \overline{a}_{j-1}\} = a_j\right], \quad k=1,\ldots,K$ $\mathcal{K}_k(d_{k-1}) = \left[\overline{a}_{k-2}, d_{k-1}\{\overline{X}_{k-1}(\overline{a}_{k-2}), \overline{a}_{k-2}\}\right], \quad k=K,\ldots,3 \quad \mathcal{K}_2(d_1) = d_1(X_1)$

Using this notation, (6.18) can be written

$$E\{Y^{*}(\overline{d}_{K-1}, d_{K}^{(1)opt})\} = \sum_{\overline{a}_{K-2} \in \overline{\mathcal{A}}_{K-2}} E\left\{\mathcal{J}_{K-2}^{d} \times E\left(V_{K}^{(1)}\left[\overline{X}_{K}^{*}\{\mathcal{K}_{K}(d_{K-1})\}, \mathcal{K}_{K}(d_{K-1})\right]\middle| \overline{X}_{K-1}^{*}(\overline{a}_{K-2})\right)\right\}$$
(6.19)

• $(\overline{d}_{K-2}, d_{K-1}^{(1)opt}, d_K^{(1)opt})$ is also a regime in \mathcal{D} , so from (6.19)

$$E\{Y^{*}(\overline{d}_{K-2}, d_{K-1}^{(1)opt}, d_{K}^{(1)opt})\} = \sum_{\overline{a}_{K-2} \in \overline{\mathcal{A}}_{K-2}} E\left\{\mathcal{J}_{K-2}^{d} \times E\left(V_{K}^{(1)}\left[\overline{X}_{K}^{*}\{\mathcal{K}_{K}(d_{K-1}^{(1)opt})\}, \mathcal{K}_{K}(d_{K-1}^{(1)opt})\right] \middle| \overline{X}_{K-1}^{*}(\overline{a}_{K-2})\right)\right\}.$$
(6.20)

• Conditional on $\overline{X}_{K-1}^*(\overline{a}_{K-2}) = \overline{x}_{K-1}$ for $h_{K-1} = (\overline{x}_{K-1}, \overline{a}_{K-2}) \in \Gamma_{K-1}$, $d_{K-1}(h_{K-1}) \in \Psi_{K-1}(h_{K-1})$. Thus, from definition of $d_{K-1}^{(1)opt}(h_{K-1})$ in (6.8) and by reasoning like that above, comparing (6.20) to (6.19) and using (6.17), yields

$$E\{Y^*(d)\} \le E\{Y^*(\overline{d}_{K-1}, d_K^{(1)opt})\} \le E\{Y^*(\overline{d}_{K-2}, d_{K-1}^{(1)opt}, d_K^{(1)opt})\}$$
(6.21)

• Continuing, from (6.10) with k = K - 1, (6.20) can be written as

$$E\{Y^{*}(\overline{d}_{K-2}, d_{K-1}^{(1)opt}, d_{K}^{(1)opt})\}$$

$$= \sum_{\overline{a}_{K-2} \in \overline{A}_{K-2}} E\left[\mathcal{J}_{K-2}^{d} V_{K-1}^{(1)} \{ \overline{X}_{K-1}(\overline{a}_{K-2}), \overline{a}_{K-2} \} \right]$$

$$= \sum_{\overline{a}_{K-3} \in \overline{A}_{K-3}} E\left\{\mathcal{J}_{K-3}^{d}$$

$$\times E\left(V_{K-1}^{(1)} \left[\overline{X}_{K-1}^{*} \{ \mathcal{K}_{K-1}(d_{K-2}) \}, \mathcal{K}_{K-1}(d_{K-2}) \right] \middle| \overline{X}_{K-2}^{*}(\overline{a}_{K-3}) \right) \right\}$$

• Because $(\overline{d}_{K-3}, d_{K-2}^{(1)opt}, d_{K-1}^{(1)opt}, d_{K}^{(1)opt}) \in \mathcal{D}$

$$E\{Y^*(\overline{d}_{K-3}, d_{K-2}^{(1)opt}, d_{K-1}^{(1)opt}, d_{K}^{(1)opt})\} = \sum_{\overline{a}_{K-3} \in \overline{A}_{K-3}} E\{\mathcal{J}_{K-3}^d$$
(6.23)

$$\times E\left(V_{K-1}^{(1)}\left[\overline{X}_{K-1}^{*}\{\mathcal{K}_{K-1}(d_{K-2}^{(1)opt})\},\mathcal{K}_{K-1}(d_{K-2}^{(1)opt})\right]\middle|\overline{X}_{K-2}^{*}(\overline{a}_{K-3})\right)\right\}$$

• From (6.9) with k = K - 2, comparing (6.23) to (6.22) and using (6.21)

$$E\{Y^{*}(d)\} \leq E\{Y^{*}(\overline{d}_{K-1}, d_{K}^{(1)opt})\} \leq E\{Y^{*}(\overline{d}_{K-2}, d_{K-1}^{(1)opt}, d_{K}^{(1)opt})\}$$

$$\leq E\{Y^{*}(\overline{d}_{K-3}, d_{K-2}^{(1)opt}, d_{K-1}^{(1)opt}, d_{K}^{(1)opt})\}$$

Continuing backward, the final step yields

$$E\{Y^{*}(d^{(1)opt})\} = E\left\{E\left(V_{2}^{(1)}\left[\overline{X}_{2}^{*}\{d_{1}^{(1)opt}(X_{1})\}, d_{1}^{(1)opt}(X_{1})\right]\middle|X_{1}\right)\right\}$$

$$= E\{V_{1}^{(1)}(X_{1})\}$$
(6.24)

from (6.12)

Result: Defining for any $d \in \mathcal{D}$

$$\underline{d}_{k} = (d_{k}, d_{k+1}, \dots, d_{K}), k = 1, \dots, K$$

• Putting together yields that for any $d \in \mathcal{D}$

$$E\{Y^*(d)\} \leq \cdots \leq E\{Y^*(\overline{d}_{k-1},\underline{d}_k^{opt(1)})\} \leq \cdots \leq E\{Y^*(d^{(1)opt})\}$$

- We have shown that $d^{(1)opt}$ satisfies (6.13) and is thus an optimal regime
- Moreover, (6.24) gives an expression for the value of an optimal regime

$$E\{Y^*(d^{(1)opt})\}=E\{V_1^{(1)}(X_1)\}$$

which we will see again next when we express an optimal regime in terms of the observed data

Practically speaking: The foregoing developments characterize an optimal regime in terms of potential outcomes

An equivalent characterization in terms of observed data

$$(X_1, A_1, X_2, A_2, \ldots, X_K, A_K, Y)$$

is possible under SUTVA (5.10), SRA (5.11), and positivity (6.1)

Motivates methods for estimation of an optimal regime

Demonstration: Is immediate from the equivalent representation of the sets Γ_k , k = 1, ..., K + 1, in terms of potential outcomes as in (5.13) and in terms of the observed data as in (5.14)

Define: For
$$h_{K} = (\overline{x}_{K}, \overline{a}_{K-1}) \in \Gamma_{K}$$

$$\Gamma_{K} = \left[h_{K} = (\overline{x}_{K}, \overline{a}_{K-1}) \in \overline{\mathcal{X}}_{K} \times \overline{\mathcal{A}}_{K-1} \text{ satisfying } (\overline{x}_{K-1}, \overline{a}_{K-1}) \in \Lambda_{K-1} \right]$$
and $P(X_{K} = x_{K} \mid \overline{X}_{K-1} = \overline{x}_{K-1}, \overline{\mathcal{A}}_{K-1} = \overline{a}_{K-1}) > 0$

$$Q_{K}(h_{K}, a_{K}) = Q_{K}(\overline{x}_{K}, \overline{a}_{K}) = E(Y \mid \overline{X} = \overline{x}, \overline{\mathcal{A}} = \overline{a})$$

$$d_{K}^{opt}(h_{K}) = d_{K}^{opt}(\overline{x}_{K}, \overline{a}_{K-1}) = \underset{a_{K} \in \Psi_{K}(h_{K})}{\operatorname{amax}} Q_{K}(h_{K}, a_{K}) \qquad (6.25)$$

$$V_{K}(h_{K}) = V_{K}(\overline{x}_{K}, \overline{a}_{K-1}) = \underset{a_{K} \in \Psi_{K}(h_{K})}{\operatorname{max}} Q_{K}(h_{K}, a_{K}) \qquad (6.26)$$

• If Y takes values in \mathcal{Y} so that $(\overline{x}, \overline{a}, y) \in \Gamma_{K+1}$,

$$\Gamma_{K+1} = \left[(\overline{x}, \overline{a}, y) \in \overline{\mathcal{X}} \times \overline{\mathcal{A}} \times \mathcal{Y} \text{ satisfying } (\overline{x}, \overline{a}) \in \Lambda_K \text{ and } \right]$$

$$P(Y = y \mid \overline{X} = \overline{x}, \overline{A}_{K-1} = \overline{a}_{K-1}) > 0$$

 $Q_K(h_K, \overline{a}_K)$ is well defined

Define: Similarly for
$$k = K - 1, \dots, 2$$
, $h_k = (\overline{x}_k, \overline{a}_{k-1}) \in \Gamma_k$
$$\Gamma_k = \left[h_k = (\overline{x}_k, \overline{a}_{k-1}) \in \overline{\mathcal{X}}_k \times \overline{\mathcal{A}}_{k-1} \text{ satisfying } (\overline{x}_{k-1}, \overline{a}_{k-1}) \in \Lambda_{k-1} \right]$$
 and $P(X_k = x_k \mid \overline{X}_{k-1} = \overline{x}_{k-1}, \overline{A}_{k-1} = \overline{a}_{k-1}) > 0$

$$Q_{k}(h_{k},a_{k}) = Q_{k}(\overline{x}_{k},\overline{a}_{k})$$

$$= E\{V_{k+1}(\overline{x}_{k},X_{k+1},\overline{a}_{k})|\overline{X}_{k} = \overline{x}_{k},\overline{A}_{k} = \overline{a}_{k}\}$$

$$d_{k}^{opt}(h_{k}) = d_{k}^{opt}(\overline{x}_{k},\overline{a}_{k-1}) = \underset{a_{k} \in \Psi_{k}(h_{k})}{\arg\max} Q_{k}(h_{k},a_{k})$$

$$V_{k}(h_{k}) = V_{k}(\overline{x}_{k},\overline{a}_{k-1}) = \underset{a_{k} \in \Psi_{k}(h_{k})}{\max} Q_{k}(h_{k},a_{k})$$

$$(6.27)$$

Define: And for $h_1 = x_1 \in \Gamma_1 = \{x_1 \in \mathcal{X}_1 \text{ satisfying } P(X_1 = x_1) > 0\}$

$$Q_1(h_1, a_1) = Q_1(x_1, a_1) = E\{V_2(x_1, X_2, a_1) | X_1 = x_1, A_1 = a_1\}$$

$$d_1^{opt}(h_1) = d_1^{opt}(x_1) = \underset{a_1 \in \Psi_1(h_1)}{\arg \max} Q_1(h_1, a_1)$$
(6.29)

$$V_1(h_1) = V_1(x_1) = \max_{a_1 \in \Psi_1(h_1)} Q_1(h_1, a_1)$$
 (6.30)

- Because $h_k \in \Gamma_k$ for k = 1, ..., K, all conditional expectations in all of these expressions are well defined
- Q_k(h_k, a_k), k = 1,..., K, are referred to as Q-functions, arising from usage in the literature on the reinforcement learning method known as Q-learning (coming up next)

Comparison:

• $d_K^{(1)opt}(h_K)$ and $V_K^{(1)}(h_K)$ in (6.6) and (6.7), defined in terms of potential outcomes, are the same as $d_K^{opt}(h_K)$ and $V_K(h_K)$ in (6.25) and (6.26), defined in terms of observed data, i.e.,

$$d_{K}^{(1)opt}(h_{K}) = d_{K}^{opt}(h_{K}), \quad V_{K}^{(1)}(h_{K}) = V_{K}(h_{K})$$
if $E\{Y^{*}(\overline{a}) \mid \overline{X}_{K}(\overline{a}_{K-1}) = \overline{x}_{K}\} = E(Y \mid \overline{X} = \overline{x}, \overline{A} = \overline{a})$ (6.31)

• $d_k^{(1)opt}(h_k)$ and $V_k^{(1)}(h_k)$ in (6.9) and (6.10), k = K - 1, ..., 2, are the same as $d_k^{opt}(h_k)$ and $V_k(h_k)$ in (6.27) and (6.28), i.e.,

$$d_k^{(1)opt}(h_k) = d_k^{opt}(h_k), \quad V_k^{(1)}(h_k) = V_k(h_k)$$

if
$$E[V_{k+1}^{(1)}\{\overline{x}_k, X_{k+1}^*(\overline{a}_k), \overline{a}_k\} \mid \overline{X}_k^*(\overline{a}_{k-1}) = \overline{x}_k\}$$

 $= E\{V_{k+1}(\overline{x}_k, X_{k+1}, \overline{a}_k \mid \overline{X}_k = \overline{x}_k, \overline{A}_k = \overline{a}_k\}$ (6.32)

• $d_1^{(1)opt}(h_1)$ and $V_1^{(1)}(h_1)$ in (6.11) and (6.12) are the same as $d_1^{opt}(h_1)$ and $V_1(h_1)$ in (6.29) and (6.30), i.e.,

$$d_1^{(1)opt}(h_1) = d_1^{opt}(h_1), \quad V_1^{(1)}(h_k) = V_1(h_k)$$
if $E[V_2^{(1)}\{x_1, X_2^*(a_1), a_1\} \mid X_1 = x_1] = E\{V_2(x_1, X_2, a_1) \mid X_1 = x_1, \}$ (6.33)

Result: We showed in the demonstration of the equivalence of (5.13) and (5.14) that, under SUTVA, SRA, and positivity, the conditional distributions of

- $Y^*(\overline{a})$ given $\overline{X}_K^*(\overline{a}_{K-1})$ and Y given $(\overline{X}, \overline{A})$
- $X_{k+1}^*(\overline{a}_k)$ given $\overline{X}_k^*(\overline{a}_{k-1})$ and X_{k+1} given $(\overline{X}_k, \overline{A}_k)$
- $X_2^*(a_1)$ given X_1 and X_2 given X_1

are the same

Thus: The equalities in (6.31), (6.32), and (6.33) all hold, and it follows immediately that

$$d_k^{(1)opt}(h_k) = d_k^{opt}(h_k), \quad V_k^{(1)}(h_k) = V_k(h_k), \quad k = 1, \dots, K$$

- Confirms that an optimal regime can be expressed equivalently in terms of the observed data
- Moreover, from (6.24) and (6.33)

$$V(d^{opt}) = E\{Y^*(d^{opt})\} = E\{V_1(H_1)\} = E\{V_1(X_1)\}$$
 (6.34)

 (6.34) is the basis for estimation of the value of an optimal regime in some approaches

6. Optimal Multiple Decision Treatment Regimes

- 6.1 Characterization of an Optimal Regime
- 6.2 Estimation of an Optimal Regime
- 6.3 Key References

Immediate: The characterization of a Ψ -specific optimal regime $d^{opt} \in \mathcal{D}$ in terms of the observed data leads to the method of *Q-learning*

 From (6.25), (6.27), and (6.29), d^{opt} can be represented in terms of the Q-functions

 $Q_{\kappa}(h_{\kappa}, a_{\kappa}) = Q_{\kappa}(\overline{x}_{\kappa}, \overline{a}_{\kappa}) = E(Y|\overline{X}_{\kappa} = \overline{x}_{\kappa}, \overline{A}_{\kappa} = \overline{a}_{\kappa})$

and for
$$K-1,\ldots,1$$

$$Q_k(h_k,a_k)=Q_k(\overline{x}_k,\overline{a}_k)=E\{V_{k+1}(\overline{x}_k,X_{k+1},\overline{a}_k)|\overline{X}_k=\overline{x}_k,\overline{A}_k=\overline{a}_k\}$$

$$V_k(h_k)=V_k(\overline{x}_k,\overline{a}_{k-1})=\max_{a_k\in\Psi_k(h_k)}Q_k(h_k,a_k),\ k=1,\ldots,K$$

Obvious approach: This suggests

Posit models for the Q-functions

$$Q_k(h_k, a_k; \beta_k) = Q_k(\overline{x}_k, \overline{a}_k; \beta_k), \quad k = K, K - 1, \dots, 1$$

depending on finite-dimensional parameters β_k , k = 1, ..., K

- Relevant models depend on the outcome (continuous, discrete)
- E.g., linear or nonlinear in β_k , can include main effects of and interactions among the elements of \overline{x}_k and \overline{a}_k
- β_k are usually taken to be distinct/variationally independent across k = 1, ..., K
- Linear models are popular in practice
- Fit the models based on the observed data

$$(X_{1i}, A_{1i}, \ldots, X_{Ki}, A_{Ki}, Y_i), i = 1, \ldots, n$$

via a *backward iterative algorithm* and substitute in the definitions of $d_k^{opt}(h_k)$, k = 1, ..., K

At Decision K: Posit model $Q_K(h_K, a_K; \beta_K) = Q_K(\overline{x}_K, \overline{a}_{K-1}; \beta_K)$ for E(Y|X = x, A = a)

• Obtain $\widehat{\beta}_K$ by solving in β_K the WLS estimating equation

$$\sum_{i=1}^{n} \frac{\partial Q_K(H_{Ki}, A_{Ki}; \beta_K)}{\partial \beta_K} \Sigma_K^{-1}(H_{Ki}, A_{Ki}) \{ Y_i - Q_K(H_{Ki}, A_{Ki}; \beta_K) \} = 0$$

 $\Sigma_K(\overline{x}_K, \overline{a}_K)$ is a working variance model; OLS if $\Sigma_K(\overline{x}_K, \overline{a}_K) \equiv 1$

- This is a standard regression modeling/fitting problem
- Substitute the fitted model to obtain

$$\widehat{d}_{Q,K}^{opt}(h_K) = \underset{a_K \in \Psi_K(h_K)}{\operatorname{arg\,max}} Q_K(h_K, a_K; \widehat{\beta}_K)$$

Based on (6.26), form the pseudo outcomes

$$\widetilde{V}_{Ki} = \max_{a_K \in \Psi_K(H_{Ki})} Q_K(H_{Ki}, a_K; \widehat{\beta}_K)$$

At Decision
$$K-1$$
: Posit model $Q_{K-1}(h_{K-1}, a_{K-1}; \beta_{K-1}) = Q_{K-1}(\overline{x}_{K-1}, \overline{a}_{K-1}; \beta_{K-1})$ for
$$E\{V_K(\overline{x}_{K-1}, X_K, \overline{a}_{K-1}) | \overline{X}_{K-1} = \overline{x}_{K-1}, \overline{A}_{K-1} = \overline{a}_{K-1}\}$$

• Obtain $\widehat{\beta}_{K-1}$ by solving in β_{K-1}

$$\sum_{i=1}^{n} \frac{\partial Q_{K-1}(H_{K-1,i}, A_{K-1,i}; \beta_{K-1})}{\partial \beta_{K-1}} \Sigma_{K-1}^{-1}(H_{K-1,i}, A_{K-1,i})$$

$$\times \{\widetilde{V}_{Ki} - Q_{K-1}(H_{K-1,i}, A_{K-1,i}; \beta_{K-1})\} = 0$$

- $\Sigma_{K-1}(h_{K-1}, a_{K-1})$ is a working variance model
- This is a nonstandard regression problem, as the pseudo outcomes V_{Ki} are treated as genuine observed outcomes
- Substitute the fitted model to obtain

$$\widehat{d}_{Q,K-1}^{opt}(h_{K-1}) = \argmax_{a_{K-1} \in \Psi_{K-1}(h_{K-1})} Q_{-1}(h_{K-1}, a_{K-1}; \widehat{\beta}_{K-1})$$

At Decisions k = K - 1, ..., 1: Posit a model $Q_k(h_k, a_k; \beta_k) = Q_k(\overline{x}_k, \overline{a}_k; \beta_k)$ for

$$E\{V_{k+1}(\overline{x}_k,X_{k+1},\overline{a}_k)|\overline{X}_k=\overline{x}_k,\overline{A}_k=\overline{a}_k\}$$

Form pseudo outcomes

$$\widetilde{V}_{k+1,i} = \max_{a_{k+1} \in \mathcal{A}_{k+1}} Q_{k+1}(H_{k+1,i}, a_{k+1}; \widehat{\beta}_{k+1})$$

• Obtain $\widehat{\beta}_k$ by solving in β_k

$$\sum_{i=1}^{n} \frac{\partial Q_k(H_{ki}, A_{ki}; \beta_k)}{\partial \beta_k} \Sigma_k^{-1}(H_{ki}, A_{ki}) \{ \widetilde{V}_{k+1,i} - Q_k(H_{ki}, A_{ki}; \beta_k) \} = 0$$

Substitute the fitted model to obtain

$$\widehat{d}_{Q,k}^{opt}(h_k) = d_k^{opt}(h_k; \widehat{\beta}_k) = \underset{a_k \in \Psi_k(h_k)}{\operatorname{arg\,max}} Q_k(h_k, a_k; \widehat{\beta}_k)$$

Result: An estimated optimal Ψ-specific regime

$$\widehat{\boldsymbol{d}}_{Q}^{opt} = \{\widehat{\boldsymbol{d}}_{Q,1}^{opt}(\boldsymbol{h}_{1}), \dots, \widehat{\boldsymbol{d}}_{Q,K}^{opt}(\boldsymbol{h}_{K})\}$$

and, with

$$\widetilde{V}_{1i} = \max_{a \in \Psi_1(H_{1i})} Q_1(H_{1i}, a_1; \widehat{\beta}_1), \quad i = 1, \dots, n$$

from (6.34), an estimator for $V(d^{opt})$

$$\widehat{\mathcal{V}}_{Q}(d^{opt}) = n^{-1} \sum_{i=1}^{n} \widetilde{V}_{1i} = n^{-1} \sum_{i=1}^{n} \max_{a \in \Psi_{1}(H_{1i})} Q_{1}(H_{1i}, a_{1}; \widehat{\beta}_{1})$$

• As in the single decision case, $\widehat{\mathcal{V}}_Q(d^{opt})$ is a *nonregular* estimator for $\mathcal{V}(d^{opt})$

Estimating equations:

• We have presented conventional WLS estimating equations, k = 1, ..., K, with leading term in the summand

$$\frac{\partial Q_k(H_{ki}, A_{ki}; \beta_k)}{\partial \beta_k} \Sigma_k^{-1}(H_{ki}, A_{ki})$$
 (6.35)

• For Decision K, with actual observed outcomes Y_i , by standard estimating equation theory, (6.35) is the optimal leading term if

$$\operatorname{var}(Y|\overline{X}_K = \overline{x}_K, \overline{A}_K = \overline{a}_K) = \Sigma_K(h_K, a_K)$$

yielding efficient estimator $\widehat{\beta}_K$

- However, for k < K, based on pseudo outcomes, this theory may no longer apply
- Derivation of the optimal leading term would be very challenging

Simple demonstration: K = 2, $\Psi_k(h_k) = A_k = \{0, 1\}$, k = 1, 2, continuous Y, *linear models*

$$\widetilde{h}_1 = (1, h_1^T)^T = (1, x_1^T)^T, \quad \widetilde{h}_2 = (1, h_2^T)^T = (1, x_1^T, a_1, x_2^T)^T$$

- Decision 2: Model for $Q_2(h_2, a_2) = E(Y|\overline{X}_2 = \overline{x}_2, \overline{A}_2 = \overline{a}_2)$ $Q_2(h_2, a_2; \beta_2) = \widetilde{h}_2^T \beta_{21} + a_2(\widetilde{h}_2^T \beta_{22}), \quad \beta_2 = (\beta_{21}^T, \beta_{22}^T)^T \quad (6.36)$
- Fit by OLS to obtain $\widehat{\beta}_2 = (\widehat{\beta}_{21}^T, \widehat{\beta}_{22}^T)^T$
- Under model (6.36)

$$V_2(h_2; \beta_2) = \max_{a_2 \in \{0,1\}} Q_2(h_2, a_2; \beta_2) = \widetilde{h}_2^T \beta_{21} + (\widetilde{h}_2^T \beta_{22}) \mathsf{I}(\widetilde{h}_2^T \beta_{22} > 0)$$
$$d_2^{opt}(h_2) = d_2^{opt}(\overline{x}_2, a_1) = \mathsf{I}(\widetilde{h}_2^T \beta_{22} > 0)$$

Estimator

$$\widehat{\boldsymbol{d}}_{Q,2}^{opt}(\boldsymbol{h}_{2}) = \boldsymbol{d}_{Q,2}^{opt}(\boldsymbol{h}_{2};\widehat{\boldsymbol{\beta}}_{2}) = I(\widetilde{\boldsymbol{h}}_{2}^{T}\widehat{\boldsymbol{\beta}}_{22} > 0)$$

Simple demonstration, continued: Form pseudo outcomes

$$\widetilde{V}_{2i} = \widetilde{H}_{2i}^T \widehat{\beta}_{21} + (\widetilde{H}_{2i}^T \widehat{\beta}_{22}) I(\widetilde{H}_{2i}^T \widehat{\beta}_{22} > 0), \quad i = 1, \dots, n$$

Decision 1: Model for

$$Q_{1}(h_{1}, a_{1}) = E\{V_{2}(x_{1}, X_{2}, a_{1}) | X_{1} = x_{1}, A_{1} = a_{1}\}$$

$$Q_{1}(h_{1}, a_{1}; \beta_{1}) = \widetilde{h}_{1}^{T} \beta_{11} + a_{1} (\widetilde{h}_{1}^{T} \beta_{12}), \quad \beta_{1} = (\beta_{11}^{T}, \beta_{12}^{T})^{T} \quad (6.37)$$

- Fit by OLS with "outcomes" \widetilde{V}_{2i} to obtain $\widehat{\beta}_1 = (\widehat{\beta}_{11}^T, \widehat{\beta}_{12}^T)^T$
- Under model (6.37)

$$V_1(h_1; \beta_1) = \max_{a_1 \in \{0,1\}} Q_1(h_1, a_1; \beta_1) = \widetilde{h}_1^T \beta_{11} + (\widetilde{h}_1^T \beta_{12}) I(\widetilde{h}_1^T \beta_{12} > 0)$$

$$d_{Q,1}^{opt}(h_1) = d_{Q,1}^{opt}(x_1; \beta_1) = I(h_1^T \beta_{12} > 0)$$

Estimator

$$\widehat{d}_{Q,1}^{opt}(h_1) = d_{Q,1}^{opt}(x_1; \widehat{\beta}_1) = I(\widetilde{h}_1^T \widehat{\beta}_{12} > 0)$$

Simple demonstration, continued: Form pseudo outcomes

$$\widetilde{V}_{1i} = \widetilde{H}_{1i}^T \widehat{\beta}_{11} + (\widetilde{H}_{1i}^T \widehat{\beta}_{12}) I(\widetilde{H}_{1i}^T \widehat{\beta}_{12} > 0), \quad i = 1, \dots, n$$

• Estimator for $\mathcal{V}(d^{opt})$ By (6.34), the value of d^{opt} can be estimated by

$$\widehat{\mathcal{V}}_{Q}(d^{opt}) = n^{-1} \sum_{i=1}^{n} \widetilde{V}_{1i}$$

Key issue: This simple example illustrates the potential for almost certain misspecification of the Q-function models for k = K - 1, ..., 1

• Here, with K - 1 = 1, the linear model (6.37) is a model for

$$Q_1(h_1, a_1) = E\{V_2(x_1, X_2, a_1) | X_1 = x_1, A_1 = a_1\}$$

$$V_2(h_2) = \max_{a_2 \in \{0, 1\}} E(Y | \overline{X}_2 = \overline{x}_2, A_1 = a_1, A_2 = a_2)$$

Specific example: Suppose that, in truth

$$Q_2(h_2, a_2) = E(Y|\overline{X}_2 = \overline{X}_2, \overline{A}_2 = \overline{a}_2) = -x_1 + a_2(0.5a_1 + x_2)$$

- The linear model (6.36) is correctly specified
- Suppose further that $X_2|(X_1=x_1,A_1=a_1)\sim \mathcal{N}(\delta x_1,\sigma^2)$
- It can be shown that the true conditional expectation

$$Q_1(h_1, a_1) = E\{V_2(x_1, X_2, a_1) \mid X_1 = x_1, A_1 = a_1\}$$

$$= -x_1 + \frac{\sigma}{\sqrt{2\pi}} \exp\{-(0.5a_1 + \delta x_1)^2/(2\sigma^2)\}$$

$$+ (0.5a_1 + \delta x_1)\Phi\{(0.5a_1 + \delta x_1)/\sigma\}$$

- Clearly: This complex relationship is unlikely to be well approximated by the linear model (6.37)
- Thus: Even though the true $Q_2(h_2, a_2)$ is linear, $Q_1(h_1, a_1)$ cannot be
- Intuitively, for K > 2, such misspecification would propagate through all Q-function models at Decisions K 1, ..., 1

Implementation: Straightforward in principle

- Fitting of the models at each step can be carried out using established methods and software
- But for k = K 1, ..., 1 is not a standard regression exercise; almost certain model misspecification
- Can use nonparametric regression models/methods; leads to "black box" rules
- Nonetheless popular in practice
- \widehat{d}_Q^{opt} can achieve reasonable performance with possibly misspecified parametric models in that $\mathcal{V}(\widehat{d}_Q^{opt})$ can approach the true value $\mathcal{V}(d^{opt})$

Feasible sets: ℓ_k distinct subsets $\mathcal{A}_{k,l} \subseteq \mathcal{A}_k$, $l=1,\ldots,\ell_k$ feasible sets at Decision k; $s_k(h_k) = l$ means $\Psi_k(h_k)$ corresponds to $\mathcal{A}_{k,l}$

• ℓ_k separate models $Q_{k,l}(h_k, a_k; \beta_{kl}), l = 1, \dots, \ell_k, k = 1, \dots, K$

$$Q_{k}(h_{k}, a_{k}; \beta_{k}) = \sum_{l=1}^{\ell_{k}} I\{s_{k}(h_{k}) = I\}Q_{k, l}(h_{k}, a_{k}; \beta_{k l}), \quad \beta_{k} = (\beta_{k 1}^{T}, \dots, \beta_{k \ell_{k}}^{T})^{T}$$

• Estimate β_K by $\widehat{\beta}_K$ solving

$$\sum_{i=1}^{n} \left[\sum_{l=1}^{\ell_{K}} I\{s_{K}(H_{Ki}) = I\} \frac{\partial Q_{K,l}(H_{Ki}, A_{Ki}; \beta_{Kl})}{\partial \beta_{Kl}} \Sigma_{K,l}^{-1}(H_{Ki}, A_{Ki}) \times \{Y_{i} - Q_{K,l}(H_{Ki}, A_{Ki}; \beta_{Kl})\} \right] = 0$$

• For h_K such that $s_K(h_K) = I$

$$\widehat{d}_{Q,K,l}^{opt}(h_K) = \underset{a_K \in \mathcal{A}_{K,l}}{\arg\max} Q_{K,l}(h_K, a_K; \widehat{\beta}_{Kl}), \quad \widehat{d}_{Q,K}^{opt}(h_K) = \sum_{l=1}^{\ell_K} \mathsf{I}\{s_K(h_K) = l\} \widehat{d}_{Q,K,l}^{opt}(h_K)$$

Feasible sets: For k = K - 1, ..., 1

• Pseudo outcomes for *i* with $s_{k+1}(H_{k+1,i}) = I$

$$\widetilde{V}_{k+1,i} = \max_{a_{k+1} \in \mathcal{A}_{k+1,i}} Q_{k+1,i}(H_{k+1,i}, a_{k+1}; \widehat{\beta}_{k+1,i})$$

• Estimate β_k by $\widehat{\beta}_k$ solving

$$\sum_{i=1}^{n} \left[\sum_{l=1}^{k_{K}} I\{s_{k}(H_{ki}) = l\} \frac{\partial Q_{k,l}(H_{ki}, A_{ki}; \beta_{kl})}{\partial \beta_{kl}} \Sigma_{k,l}^{-1}(H_{ki}, A_{ki}) \times \left\{ \widetilde{V}_{k+1,i} - Q_{k,l}(H_{ki}, A_{ki}; \beta_{kl}) \right\} \right] = 0$$

• For h_k such that $s_k(h_k) = I$

$$\widehat{d}_{Q,k,l}^{opt}(h_k) = \operatorname*{arg\,max}_{a_k \in \mathcal{A}_{k,l}} Q_{k,l}(h_k, a_k; \widehat{\beta}_{kl}), \quad \widehat{d}_{Q,k}^{opt}(h_k) = \sum_{l=1}^{\ell_k} \mathsf{I}\{s_k(h_k) = l\} \widehat{d}_{Q,k,l}^{opt}(h_k)$$

Remarks:

- If $A_{k,l}$ contain overlapping options, could try to exploit that (although probably not worth the trouble)
- If $A_{k,l}$ contains a single option, $\widehat{d}_{Q,k,l}^{opt}(h_k)$ and thus $\widehat{d}_{Q,k}^{opt}(h_k)$ must return this option for h_k such that $s_k(h_k) = l$; no model needed
- If $M_k(h_k)$ denotes number of options in $\Psi_k(h_k)$ solve

$$\sum_{i:M_k(H_{ki})>1} \left[\frac{\partial Q_k(H_{ki}, A_{ki}; \beta_k)}{\partial \beta_k} \sum_{k=1}^{-1} (H_{ki}, A_{ki}) \times \left\{ \widetilde{V}_{k+1,i} - Q_k(H_{ki}, A_{ki}; \beta_k) \right\} \right] = 0$$

• Can show: For i with $M_k(H_{ki})=1$, can take $\widetilde{V}_{ki}=\widetilde{V}_{k+1,i}$ and thus "carry backward" the pseudo outcome

Restricted class of regimes

As for K = 1: Restrict deliberately to a class \mathcal{D}_{η}

- E.g., with rules involving thresholds for components of h_k
- K = 3, $A_k = \{0, 1\}$, k = 1, 2, 3, $h_1 = x_1 = (x_{11}, x_{12})^T$, $x_2 = (x_{21}, x_{22})^T$, $x_3 = (x_{31}, x_{32})^T$ $h_2 = (x_{11}, x_{12}, x_{21}, x_{22}, a_1)$, $h_3 = (x_{11}, x_{12}, x_{21}, x_{22}, x_{31}, x_{32}, \overline{a}_2)$
- Regimes in \mathcal{D}_{η} have rules

$$\begin{aligned} d_1(h_1; \eta_1) &= \mathsf{I}(x_{11} < \eta_{11}, x_{12} < \eta_{12}), \quad \eta_1 = (\eta_{11}, \eta_{12})^T \\ d_2(h_2; \eta_2) &= \mathsf{I}(x_{11} < \eta_{21}, x_{21} < \eta_{22}, x_{22} < \eta_{23}), \quad \eta_2 = (\eta_{21}, \eta_{22}, \eta_{23})^T \\ d_3(h_3; \eta_3) &= \mathsf{I}(x_{31} < \eta_{31}) \mathsf{I}(a_2 = 0) + \mathsf{I}(x_{32} > \eta_{32}) \mathsf{I}(a_2 = 1), \\ \eta_3 &= (\eta_{31}, \eta_{32})^T \end{aligned}$$

• \mathcal{D}_n has elements

$$d_{\eta} = \{d_1(h_1; \eta_1), d_2(h_2; \eta_2), d_3(h_3; \eta_3)\}, \quad \eta = (\eta_1^T, \eta_2^T, \eta_3^T)^T$$

Restricted class of regimes

In general: Based on interpretability, cost, implementation

• \mathcal{D}_{η} has elements

$$d_{\eta} = \{d_1(h_1; \eta_1), \dots, d_K(h_K; \eta_K)\}, \quad \eta = (\eta_1^T, \dots, \eta_K^T)^T$$

For brevity write

$$d_{\eta,k}(h_k) = d_k(h_k; \eta_k), \quad k = 1, \ldots, K$$

• With ℓ_k distinct subsets $A_{k,l} \subseteq A_k$, $l = 1, \dots, \ell_k$, as in (5.5)

$$d_k(h_k; \eta_k) = \sum_{l=1}^{\ell_k} \mathsf{I}\{s_k(h_k) = l\} d_{k,l}(h_k; \eta_{kl}), \quad \eta_k = (\eta_{k1}^T, \dots, \eta_{k\ell_k}^T)^T$$

For brevity write

$$d_{\eta,k}(h_k) = \sum_{l=1}^{\ell_k} \mathsf{I}\{s_k(h_k) = l\} d_{\eta,k,l}(h_k), \quad k = 1, \dots, K$$

Restricted class of regimes

Optimal restricted regime d_{η}^{opt} in \mathcal{D}_{η} :

$$d_{\eta}^{opt} = \{d_1(h_1; \eta_1^{opt}), \dots, d_K(h_K; \eta_K^{opt})\},\$$
$$\eta^{opt} = (\eta_1^{opt T}, \dots, \eta_K^{opt T})^T = \underset{\eta}{\operatorname{arg max}} \ \mathcal{V}(d_{\eta}).$$

Approach: Given an estimator $\widehat{\mathcal{V}}(d)$ for the value of a fixed d

- Estimate $\mathcal{V}(d_{\eta})$ by $\widehat{\mathcal{V}}(d_{\eta})$ for fixed $\eta = (\eta_1^T, \dots, \eta_K^T)^T$
- Regard $\widehat{\mathcal{V}}(d_{\eta})$ as a function of η and obtain

$$\widehat{\eta}^{opt} = (\widehat{\eta}_1^{opt \, T}, \dots, \widehat{\eta}_K^{opt \, T})^T = \underset{\eta}{\operatorname{arg \, max}} \ \widehat{\mathcal{V}}(d_{\eta})$$

and estimate d_{η}^{opt} by

$$\widehat{\textit{d}}_{\eta}^{\textit{opt}} = \{\textit{d}_{1}(\textit{h}_{1}, \widehat{\eta}_{1}^{\textit{opt}}), \ldots, \textit{d}_{\textit{K}}(\textit{h}_{\textit{K}}, \widehat{\eta}_{\textit{K}}^{\textit{opt}})\}$$

Value search or policy or direct search estimation

Natural choices for $\widehat{\mathcal{V}}(d_{\eta})$: IPW or AIPW estimators

• As on Slides 291-297, propensities at Decision k; e.g. for the lth subset $A_{k,l} \subseteq A_k$, $A_{k,l} = \{1, \dots, m_{kl}\}$, $l = 1, \dots, \ell_k$, $a_k \in A_{k,l}$, $k = 1, \dots, K$

$$\omega_{k,l}(h_k, a_k) = P(A_k = a_k | H_k = h_k), \quad \omega_{k,l}(h_k, m_{kl}) = 1 - \sum_{a_k=1}^{m_{kl}-1} \omega_{k,l}(h_k, a_k)$$

with $\omega_{k,l}(h_k,a_k)\equiv 1$ if $m_{kl}=1$

• Models, maximum likelihood estimators $\widehat{\gamma}_k = (\widehat{\gamma}_{k1}^T, \dots, \widehat{\gamma}_{k\ell_k}^T)^T$

$$\omega_{k,l}(h_k,a_k;\gamma_{kl}), \quad l=1,\ldots,\ell_k, \quad k=1,\ldots,K$$

• Recursive representation as in (5.2), with $d_{\eta,1}(h_1) = d_{\eta,1}(x_1)$,

$$\overline{d}_{\eta,k}(\overline{x}_k) = [d_{\eta,1}(x_1), d_{\eta,2}\{\overline{x}_2, d_{\eta,1}(x_1)\}, \dots, d_{\eta,k}\{\overline{x}_k, \overline{d}_{\eta,k-1}(\overline{x}_{k-1})\}]$$
with $\overline{d}_{\eta}(\overline{x}) = \overline{d}_{\eta,K}(\overline{x}_K)$

Natural choices for $\widehat{\mathcal{V}}(d_{\eta})$: Define

$$\mathcal{C}_{d_{\eta}} = I\{\overline{A} = \overline{d}_{\eta}(\overline{X})\}$$

$$\pi_{d_{\eta},1}(X_{1}) = p_{A_{1}|X_{1}}\{d_{\eta,1}(X_{1})|X_{1}\}$$

$$\pi_{d_{\eta},k}(\overline{X}_{k}) = p_{A_{k}|\overline{X}_{k},\overline{A}_{k-1}}[d_{\eta,k}\{\overline{X}_{k},\overline{d}_{\eta,k-1}(\overline{X}_{k-1})\}|\overline{X}_{k},\overline{d}_{\eta,k-1}(\overline{X}_{k-1})],$$

$$k = 2, ..., K$$

$$\pi_{d_{\eta},1}(X_{1};\gamma_{1}) = \sum_{l=1}^{\ell_{1}} I\{s_{1}(h_{1}) = l\} \prod_{a_{1}=1}^{m_{1}} \omega_{1,l}(X_{1},a_{1};\gamma_{1l})^{I\{d_{\eta,1}(X_{1})=a_{1}\}}$$

$$\pi_{d_{\eta},k}(\overline{X}_{k};\gamma_{k}) = \sum_{l=1}^{\ell_{k}} I\{s_{k}(h_{k}) = l\}$$

$$\times \prod_{a_{k}=1}^{m_{kl}} \omega_{k,l}\{\overline{X}_{k},\overline{d}_{\eta,k-1}(\overline{X}_{k-1}),a_{k};\gamma_{kl}\}^{I[d_{\eta,k}\{\overline{X}_{k},\overline{d}_{\eta,k-1}(\overline{X}_{k-1})\}=a_{k}]},$$

$$k = 2, ..., K$$

IPW estimator: From (5.32), for fixed η and thus d_{η}

$$\widehat{\mathcal{V}}_{IPW}(d_{\eta}) = n^{-1} \sum_{i=1}^{n} \frac{\mathcal{C}_{d_{\eta},i} Y_{i}}{\left\{ \prod_{k=2}^{K} \pi_{d_{\eta},k}(\overline{X}_{ki}; \widehat{\gamma}_{k}) \right\} \pi_{d_{\eta},1}(X_{1i}; \widehat{\gamma}_{1})}$$
(6.38)

- Consistent for $\mathcal{V}(d_{\eta})$ under SUTVA, SRA, positivity, correct propensity models
- Maximize (6.38) in η

$$\widehat{\eta}_{\mathit{IPW}}^{\mathit{opt}} = (\widehat{\eta}_{\mathsf{1},\mathit{IPW}}^{\mathit{opt}\,\mathsf{T}}, \dots, \widehat{\eta}_{\mathsf{K},\mathit{IPW}}^{\mathit{opt}\,\mathsf{T}})^{\mathsf{T}}$$

• Estimator for d_{η}^{opt}

$$\widehat{\textit{d}}_{\eta, IPW}^{opt} = \{\textit{d}_{1}(\textit{h}_{1}, \widehat{\eta}_{1, IPW}^{opt}), \dots, \textit{d}_{K}(\textit{h}_{K}, \widehat{\eta}_{K, IPW}^{opt})\}$$

• $\widehat{\mathcal{V}}_{\mathit{IPW}}(d_{\eta}^{\mathit{opt}})$ by substituting $\widehat{\eta}_{\mathit{IPW}}^{\mathit{opt}}$ in $\widehat{\mathcal{V}}_{\mathit{IPW}}(d_{\eta})$

AIPW estimator: Define

$$\begin{split} \overline{\pi}_{d_{\eta},1}(X_{1};\widehat{\gamma}_{1}) &= \pi_{d_{\eta},1}(X_{1};\widehat{\gamma}_{1}), \quad \widehat{\overline{\gamma}}_{k} = (\widehat{\gamma}_{1}^{T},\ldots,\widehat{\gamma}_{k}^{T})^{T} \\ \overline{\pi}_{d_{\eta},k}(\overline{X}_{k};\widehat{\overline{\gamma}}_{k}) &= \left\{ \prod_{j=2}^{k} \pi_{d_{\eta},j}(\overline{X}_{j};\widehat{\gamma}_{j}) \right\} \pi_{d_{\eta},1}(X_{1};\widehat{\gamma}_{1}), \quad k = 2,\ldots,K \end{split}$$
 ere $\overline{\pi}_{d_{\eta},0} \equiv 1$

where
$$\overline{\pi}_{d_{\eta},0}\equiv 1$$

$$\mathcal{C}_{\overline{d}_{\eta,k}} = I\{\overline{A}_k = \overline{d}_{\eta,k}(\overline{X}_k)\}, \quad k = 1, \dots, K$$

where
$$\mathcal{C}_{\overline{d}_{n,K}}=\mathcal{C}_{d_{\eta}},\,\mathcal{C}_{\overline{d}_{n,0}}\equiv 1$$

AIPW estimator: From (5.34)

$$\begin{split} \widehat{\mathcal{V}}_{AIPW}(d_{\eta}) &= n^{-1} \sum_{i=1}^{n} \left[\frac{\mathcal{C}_{d_{\eta},i} Y_{i}}{\left\{ \prod_{k=2}^{K} \pi_{d_{\eta},k}(\overline{X}_{ki}; \widehat{\gamma}_{k}) \right\} \pi_{d_{\eta},1}(X_{1i}; \widehat{\gamma}_{1})} \right. \\ &+ \sum_{k=1}^{K} \left\{ \frac{\mathcal{C}_{\overline{d}_{\eta,k-1},i}}{\overline{\pi}_{d_{\eta},k-1}(\overline{X}_{k-1,i}; \widehat{\overline{\gamma}}_{k-1})} - \frac{\mathcal{C}_{\overline{d}_{\eta,k},i}}{\overline{\pi}_{d_{\eta},k}(\overline{X}_{k,i}; \widehat{\overline{\gamma}}_{k})} \right\} L_{k}(\overline{X}_{ki}) \right] \end{split}$$

- $L_k(\overline{x}_k)$ are arbitrary functions of \overline{x}_k , $k = 1, \dots, K$
- Optimal choice of $L_k(\overline{x}_k)$

$$L_k(\overline{x}_k) = E\{Y^*(d_\eta) \mid \overline{X}_k^*(\overline{d}_{\eta,k-1}) = \overline{x}_k\}, \quad k = 1, \dots, K$$

• Models for $E\{Y^*(d_\eta)|\overline{X}_k^*(\overline{d}_{\eta,k-1})=\overline{x}_k\}$ (coming up)

$$Q_{d_n,k}(\overline{x}_k;\beta_k), \quad k=1,\ldots,K$$

estimators
$$\widehat{\beta}_k$$
, $k = 1, \dots, K$

AIPW estimator: Substituting these models

$$\widehat{\mathcal{V}}_{AIPW}(d_{\eta}) = n^{-1} \sum_{i=1}^{n} \left[\frac{\mathcal{C}_{d_{\eta},i} Y_{i}}{\left\{ \prod_{k=2}^{K} \pi_{d_{\eta},k}(\overline{X}_{ki}; \widehat{\gamma}_{k}) \right\} \pi_{d_{\eta},1}(X_{1i}; \widehat{\gamma}_{1})} \right]$$
(6.39)

$$+\sum_{k=1}^{K} \left\{ \frac{\mathcal{C}_{\overline{d}_{\eta,k-1},i}}{\overline{\pi}_{d_{\eta},k-1}(\overline{X}_{k-1,i};\widehat{\overline{\gamma}}_{k-1})} - \frac{\mathcal{C}_{\overline{d}_{\eta,k},i}}{\overline{\pi}_{d_{\eta},k}(\overline{X}_{k,i},\widehat{\overline{\gamma}}_{k})} \right\} \mathcal{Q}_{d_{\eta},k}(\overline{X}_{ki};\widehat{\beta}_{k}) \right].$$

- (6.39) is consistent for $V(d_{\eta})$ if either propensity models or $Q_{d_{\eta},k}(\overline{x}_{k};\beta_{k})$ are correctly specified (SUTVA, SRA, positivity)
- Doubly robust
- Maximize (6.39) in η to obtain $\widehat{\eta}_{AIPW}^{opt} = (\widehat{\eta}_{1,AIPW}^{opt T}, \dots, \widehat{\eta}_{K,AIPW}^{opt T})^T$
- Estimator for d_{η}^{opt}

$$\widehat{\boldsymbol{d}}_{\boldsymbol{\eta},AIPW}^{opt} = \{\boldsymbol{d}_1(\boldsymbol{h}_1, \widehat{\boldsymbol{\eta}}_{1,AIPW}^{opt}), \dots, \boldsymbol{d}_K(\boldsymbol{h}_K, \widehat{\boldsymbol{\eta}}_{K,AIPW}^{opt})\}$$

• $\widehat{\mathcal{V}}_{AIPW}(d_{\eta}^{opt})$ by substituting $\widehat{\eta}_{AIPW}^{opt}$ in $\widehat{\mathcal{V}}_{AIPW}(d_{\eta})$

Implementation of AIPW: Key challenge

• Positing and fitting models $Q_{d_{\eta},k}(\overline{x}_k;\beta_k)$ for

$$L_k(\overline{x}_k) = E\{Y^*(d_{\eta}) \mid \overline{X}_k^*(\overline{d}_{\eta,k-1}) = \overline{x}_k\}, \quad k = 1, \dots, K$$

 One strategy: Use the g-computation algorithm to draw samples from (5.24)

$$\begin{aligned} & p_{X_{1},X_{2}^{*}(d_{\eta,1}),X_{3}^{*}(d_{\eta,2}),...,X_{K}^{*}(d_{\eta,K-1})}(X_{1},...,X_{K},y) \\ & = p_{Y|\overline{X},\overline{A}}\{y|\overline{x},\overline{d}_{\eta,K}(\overline{x})\} \left[\prod_{k=2}^{K} p_{X_{k}|\overline{X}_{k-1},\overline{A}_{k-1}}\{x_{k}|\overline{x}_{k-1},\overline{d}_{\eta,k-1}(\overline{x}_{k-1})\} \right] p_{X_{1}}(x_{1}) \end{aligned}$$

for each subject i based on models for the densities on the RHS and use to estimate $L_k(\overline{X}_{ki})$ empirically to obtain $\mathcal{Q}_{d_{\eta},k}(\overline{X}_{ki}; \widehat{\beta}_k)$, $i = 1, \ldots, n, \ k = 1, \ldots, K$

• Problem: This depends on d_{η} and thus η , so must be repeated for each i at each internal iteration of optimization of $\widehat{\mathcal{V}}_{AIPW}(d_{\eta})$

Implementation of AIPW: With

$$\mu_k^{d_{\eta}}(\overline{x}_k) = E\{Y^*(d_{\eta}) \mid \overline{X}_k^*(\overline{d}_{\eta,k-1}) = \overline{x}_k\}, \quad k = 1, \dots, K+1$$

By standard properties of conditional expectation

$$\mu_k^{d_{\eta}}\{\overrightarrow{X}_k(\overline{d}_{\eta,k-1})\} = E\left[\mu_{k+1}^{d_{\eta}}\{\overrightarrow{X}_{k+1}(\overline{d}_{\eta,k})\}\middle|\overrightarrow{X}_k(\overline{d}_{\eta,k-1})\right]$$

so by SUTVA, SRA, positivity can show

$$\mu_{K}^{d}(\overline{x}_{K}) = E\{Y^{*}(d) \mid \overline{X}_{K}^{*}(\overline{d}_{K-1}) = \overline{x}_{K}\} = E\{Y \mid \overline{X}_{K} = \overline{x}_{K}, \overline{A}_{K} = \overline{d}_{K}(\overline{x}_{K})\}$$

$$\mu_{K}^{d}(\overline{x}_{K}) = E\left[\mu_{K+1}^{d}\{\overline{X}_{K+1}(\overline{d}_{K})\} \mid \overline{X}_{K}(\overline{d}_{K-1}) = \overline{x}_{K}\right]$$

$$= E\{\mu_{K+1}^{d}(\overline{X}_{K+1}) \mid \overline{X}_{K} = \overline{x}_{K}, \overline{A}_{K} = \overline{d}_{K}(\overline{x}_{K})\}$$

- Posit models $\mu_k^{d_{\eta}}(\overline{X}_k; \beta_k)$; obtain $\widehat{\beta}_k$, $k = 1, \ldots, K$, by backward recursive algorithm involving only individuals with $\overline{A}_k = \overline{d}_k(\overline{X}_k)$
- Take $Q_{d_{\eta},k}(\overline{X}_{ki};\widehat{\beta}_k) = \mu_k^{d_{\eta}}(\overline{X}_{ki};\widehat{\beta}_k), i = 1,\ldots,n, k = 1,\ldots,K$
- Must be repeated at each internal iteration of optimization

Implementation of AIPW: Q-learning-like backward algorithm

• Define $Q_K^{d_\eta}(h_K, a_K) = E(Y|H_K = h_K, A_K = a_K)$

$$Q_k^{d_{\eta}}(h_k, a_k) = E\{V_{k+1}^{d_{\eta}}(H_{k+1}) \mid H_k = h_k, A_k = a_k\}, \quad k = 1, \dots, K-1$$
$$V_k^{d_{\eta}}(h_k) = Q_k^{d_{\eta}}\{h_k, d_{\eta, k}(h_k)\}, \quad k = 1, \dots, K$$

By SUTVA, SRA, positivity can show

$$V_k^{d_{\eta}}\{\overline{x}_k, \overline{d}_{\eta,k-1}(\overline{x}_{k-1})\} = E\{Y^*(d_{\eta}) \mid \overline{X}_k^*(\overline{d}_{\eta,k-1}) = \overline{x}_k\}$$

• Posit models $Q_k^{d_\eta}(h_k, a_k; \beta_k)$, $k = 1, \dots, K$, by backward algorithm (next); let

$$V_k^{d_{\eta}}\{\overline{x}_k,\overline{d}_{\eta,k-1}(\overline{x}_{k-1});\beta_k\}=Q_k^{d_{\eta}}\{\overline{x}_k,\overline{d}_{\eta,k}(\overline{x}_k);\beta_k\}$$

• Take for i = 1, ..., n, k = 1, ..., K

$$\mathcal{Q}_{d_{\eta},k}(\overline{X}_{ki};\widehat{\beta}_{k}) = V_{k}^{d_{\eta}}\{\overline{X}_{ki},\overline{d}_{\eta,k-1}(\overline{X}_{k-1,i});\widehat{\beta}_{k}\} = Q_{k}^{d_{\eta}}\{\overline{X}_{ki},\overline{d}_{\eta,k}(\overline{X}_{k,i});\widehat{\beta}_{k}\}$$

Implementation of AIPW: For fixed η

• Estimate β_K by $\widehat{\beta}_K$ solving M-estimating equation; e.g., OLS

$$\sum_{i=1}^{n} \frac{\partial Q_{K}^{d_{\eta}}(H_{Ki}, A_{Ki}; \beta_{K})}{\partial \beta_{K}} \{ Y_{i} - Q_{K}^{d_{\eta}}(H_{Ki}, A_{Ki}; \beta_{K}) \} = 0$$

$$\widetilde{V}_{\mathit{K}i}^{d_{\eta}} = Q_{\mathit{K}}^{d_{\eta}}\{H_{\mathit{K}i}, d_{\eta,\mathit{K}}(H_{\mathit{K}i}); \widehat{\beta}_{\mathit{K}}\}, \quad i = 1, \ldots, n$$

• For k = K - 1, ..., 1 estimate β_k by $\widehat{\beta}_k$ solving (e.g., OLS)

$$\sum_{i=1}^{n} \frac{\partial Q_{k}^{d_{\eta}}(H_{ki}, A_{ki}; \beta_{k})}{\partial \beta_{k}} \{ \widetilde{V}_{k+1,i}^{d_{\eta}} - Q_{k}^{d_{\eta}}(H_{ki}, A_{ki}; \beta_{k}) \} = 0$$

$$\widetilde{V}_{ki}^{d_{\eta}} = Q_k^{d_{\eta}}\{H_{ki}, d_{\eta,k}(H_{ki}); \widehat{\beta}_k\}, \quad i = 1, \dots, n$$

Must be repeated at each internal iteration of optimization

Implementation of IPW or AIPW: Another challenge

- Dimension of η
- For given feasible sets, at Decision k, as before

$$d_k(h_k; \eta_k) = \sum_{l=1}^{\ell_k} I\{s_k(h_k) = l\} d_{k,l}(h_k; \eta_{kl}), \quad \eta_k = (\eta_{k1}^T, \dots, \eta_{k\ell_k}^T)^T$$

- Thus, even if $d_{k,l}(h_k; \eta_{kl})$ have relatively simple forms, for general K and ℓ_k , $k = 1, \ldots, K$, the overall dimension of η can be high
- Making maximization of $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ or $\widehat{\mathcal{V}}_{AIPW}(d_{\eta})$, which are nonsmooth in η , extremely computationally challenging if not impossible

Result: Although in principle straightforward, directly maximizing $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ and $\widehat{\mathcal{V}}_{AIPW}(d_{\eta})$ in η involves formidable obstacles

- Avoiding repeated model fitting by using $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ is inefficient
- Suggests ad hoc strategies for implementing $\widehat{\mathcal{V}}_{\mathit{AIPW}}(d_{\eta})$
- Zhang et al. (2013) suggest carrying out Q-learning with models $Q_k(h_k, a_k; \beta_k)$ for the Q-functions $Q_k(h_k, a_k)$, $k = 1, \ldots, K$, fitting of which does not depend on d_η or η , to obtain

$$Q_k(h_k, a_k; \widehat{\beta}_k) = Q_k(\overline{x}_k, \overline{a}_k; \widehat{\beta}_k), \quad k = 1, \dots, K$$

Take

$$Q_{d_{\eta},k}(\overline{X}_{ki};\widehat{\beta}_{k}) = Q_{k}\{\overline{X}_{ki},\overline{d}_{\eta,k}(\overline{X}_{ki});\widehat{\beta}_{k}), \quad k = 1,\ldots,K$$

depend on η only through substitution of $\overline{d}_{\eta,k}(\overline{X}_{ki})$, so no need to refit models at each internal iteration of optimization

- Zhang et al. (2013) advocate this when functional forms of $d_k(h_k; \eta_k)$ are the same as those induced by Q- function models
- · Hope: is "close enough"

Bottom line: Implementation by direct global maximization of $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ or $\widehat{\mathcal{V}}_{AIPW}(d_{\eta})$ in η may be infeasible in practice, even with ad hoc approaches for the latter to reduce computational burden

Alternative approach: Reduce global maximization to a recursive series of lower dimensional optimizations

 First proposed for IPW by Zhao et al. (2015) and for AIPW by Zhang and Zhang (2018)

For simplicity: Describe first in the case of $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$

• The same principle applies to $\widehat{\mathcal{V}}_{AIPW}(d_{\eta})$, but details/notation are messier

Propensity models: As before, for k = 1, ..., K

$$\omega_k(h_k, a_k; \gamma_k) = \sum_{l=1}^{\ell_k} \mathsf{I}\{s_k(h_k) = l\} \, \omega_{k,l}(h_k, a_k; \gamma_{kl})$$

• Define $\underline{\gamma}_k = (\gamma_k^T, \dots, \gamma_K^T)^T$, $k = 1, \dots, K$, and

$$\underline{\omega}_{k,K}(h_K, a_K; \underline{\gamma}_k) = \prod_{j=k}^K \omega_j(h_j, a_j; \gamma_j), \quad k = 1, \dots, K$$
 (6.40)

• Define estimators $\widehat{\gamma}_{\mathbf{k}}$ similarly

Equivalent expression: Because when $C_{d_{\eta}} = 1$, $A_1 = d_{\eta,1}(X_1)$ and $A_k = d_{\eta,k}\{\overline{X}_k, \overline{d}_{\eta,k-1}(\overline{X}_{k-1})\}$, using (6.40)

$$n^{-1}\sum_{i=1}^n\frac{\mathcal{C}_{d_\eta,i}Y_i}{\left\{\prod_{k=2}^K\pi_{d_\eta,k}(\overline{X}_{ki};\widehat{\gamma}_k)\right\}\pi_{d_\eta,1}(X_{1i};\widehat{\gamma}_1)}=n^{-1}\sum_{i=1}^n\frac{\mathcal{C}_{d_\eta,i}Y_i}{\underline{\omega}_{1,K}(H_{Ki},A_{Ki};\widehat{\underline{\gamma}}_1)}$$

Define: For k = 1, ..., K

$$\underline{d}_{\eta,k} = (d_{\eta,k}, d_{\eta,k+1}, \dots, d_{\eta,K}), \quad \text{so } \underline{d}_{\eta,1} = d_{\eta}$$

$$\mathfrak{C}_{d_{\eta},k,K} = I\{A_k = d_{\eta,k}(H_k), \dots, A_K = d_{\eta,K}(H_K)\}, \quad \text{so } \mathcal{C}_{d_{\eta}} = \mathfrak{C}_{d_{\eta},1,K}$$

$$\mathcal{G}_{IPW,k}(\underline{d}_{\eta,k}; \underline{\gamma}_k) = \frac{\mathfrak{C}_{d_{\eta},k,K} Y}{\underline{\omega}_{k,K}(H_K, A_K; \gamma_k)}$$
(6.41)

• Dependence of (6.41) on (H_K, A_K, Y) is implicit

Using (6.41): Can write

$$\widehat{\mathcal{V}}_{IPW}(d_{\eta}) = n^{-1} \sum_{i=1}^{n} \mathcal{G}_{IPW,1i}(\underline{d}_{\eta,1}; \widehat{\underline{\gamma}}_{1}), \tag{6.42}$$

• $\mathcal{G}_{IPW,ki}(\underline{d}_{\eta,1};\underline{\gamma}_1)$ denotes evaluation at $(H_{Ki},A_{Ki},Y_i),\,k=1,\ldots,K$

Backward iterative strategy: Based on backward induction idea

Decision K: Selection of treatment option is analogous to a single decision problem with "baseline" information H_K

Define

$$\widehat{\mathcal{V}}_{IPW}^{(K)}(d_{\eta,K}) = n^{-1} \sum_{i=1}^{n} \mathcal{G}_{IPW,Ki}(d_{\eta,K}; \widehat{\gamma}_{K}) = n^{-1} \sum_{i=1}^{n} \frac{I\{A_{Ki} = d_{\eta,K}(H_{Ki})\}Y_{i}}{\omega_{K}(H_{Ki}, A_{Ki}; \widehat{\gamma}_{K})}$$
(6.43)

Have used

$$\underline{\omega}_{K,K}(h_K, a_K; \underline{\gamma}_{K,K}) = \omega_K(h_K, a_K; \gamma_K), \quad \mathfrak{C}_{d_\eta, K, K} = \mathsf{I}\{A_K = d_{\eta, K}(H_K)\}$$

• (6.43) has form of an IPW estimator for a single decision problem, with Decision K and $d_{\eta,K}$ playing the roles of the single decision point and the corresponding decision rule, and H_K the role of baseline history

Interpretation of (6.43): Let

$$Y^*(\overline{a}_{k-1}, d_{\eta,k}, \ldots, d_{\eta,K}) = Y^*(\overline{a}_{k-1}, \underline{d}_{\eta,k}), \quad k = 1, \ldots, K$$

be the potential outcome an individual would achieve if she were to receive options a_1, \ldots, a_{k-1} at Decisions 1 to k-1 and then be treated according to the rules $d_{\eta,k}, \ldots, d_{\eta,K}$ at Decisions k to K

• With propensity model $\omega_K(h_K, a_K; \gamma_K)$ correctly specified, can view $\widehat{\mathcal{V}}_{IPW}^{(K)}(d_{\eta,K})$ as a consistent estimator for

$$E\{Y^{*}(\overline{A}_{K-1}, d_{\eta,K})\}$$
 (6.44)

- $Y^*(\overline{A}_{K-1}, d_{\eta,K})$ is the potential outcome for an individual observed to receive \overline{A}_{K-1} at Decisions 1 to K-1
- I.e., can show $E\{\mathcal{G}_{IPW,K}(d_{\eta,K};\gamma_{K,0})\mid H_K\}=E\{Y^*(\overline{A}_{K-1},d_{\eta,K})\mid H_K\}$ so that

$$E\{\mathcal{G}_{IPW,K}(d_{\eta,K};\gamma_{K,0})\} = E\{Y^{\star}(\overline{A}_{K-1},d_{\eta,K})\}$$

Intuitively: (6.44) is the "value" of the "single decision regime" with rule $d_{\eta,K}$, and \overline{A}_{K-1} is part of the "baseline" information H_K

- $E\{Y^*(\overline{A}_{K-1}, d_{\eta,K})\}$ depends on η only through η_K
- Thus, under this analogy, define

$$d_{\eta,K,B}^{opt}(h_K) = d_K(h_K; \eta_{K,B}^{opt}), \quad \eta_{K,B}^{opt} = \arg\max_{\eta_K} E\{Y^*(\overline{A}_{K-1}, d_{\eta,K})\}.$$
(6.45)

- $\eta_{K,B}^{opt}$ defined in (6.45) *need not be* the same as the component η_{K}^{opt} of η^{opt} globally maximizing $\mathcal{V}(d_{\eta})$ in all of η
- We discuss conditions under which $\eta_{K,B}^{opt}=\eta_{K}^{opt}$ shortly

At Decision K: Maximize (6.43) $\widehat{\mathcal{V}}_{IPW}^{(K)}(d_{\eta,K})$ in η_K to obtain $\widehat{\eta}_{K,B,IPW}^{opt}$, an estimator for $\eta_{K,B}^{opt}$, and the estimator

$$\widehat{d}_{\eta,K,B}^{opt}(h_K) = d_K(h_K; \widehat{\eta}_{K,B,IPW}^{opt})$$
(6.46)

- Clearly, $\widehat{\eta}_{K,B,IPW}^{opt}$ maximizing (6.43) is *not likely to be the same* as $\widehat{\eta}_{K,IPW}^{opt}$ globally maximizing $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ in all of η_1,\ldots,η_K (so jointly with $\widehat{\eta}_{1,IPW}^{opt},\ldots,\widehat{\eta}_{K-1,IPW}^{opt}$)
- We discuss this shortly

Decision K-1: Define

$$\widehat{\mathcal{V}}_{IPW}^{(K-1)}(\underline{d}_{\eta,K-1}) = n^{-1} \sum_{i=1}^{n} \mathcal{G}_{IPW,K-1,i}(\underline{d}_{\eta,K-1}; \widehat{\underline{\gamma}}_{K-1})
= n^{-1} \sum_{i=1}^{n} \mathcal{G}_{IPW,K-1,i}(d_{\eta,K-1}, d_{\eta,K}; \widehat{\underline{\gamma}}_{K-1})
= n^{-1} \sum_{i=1}^{n} \frac{\mathbb{I}\{A_{K-1,i} = d_{\eta,K-1}(H_{K-1,i}), A_{Ki} = d_{\eta,K}(H_{Ki})Y_{i} \\ \underline{\omega}_{K-1,K}(H_{Ki}, A_{ki}; \widehat{\underline{\gamma}}_{K-1})$$
(6.47)

- (6.47) has form of a value estimator for a two decision problem
- Decisions K-1 and K play the roles of Decisions 1 and 2, $d_{\eta,K-1}$ and $d_{\eta,K}$ play the roles of the corresponding decision rules, and H_{K-1} plays the role of "baseline" information

By analogy to Decision K:

• With $\omega_{K-1}(h_{K-1}, a_{K-1}; \gamma_{K-1})$, $\omega_K(h_K, a_K; \gamma_K)$ correctly specified, can view $\widehat{\mathcal{V}}_{IPW}^{(K-1)}(\underline{d}_{\eta,K-1})$ in (6.47) as a consistent estimator for the "value"

$$E\{Y^{*}(\overline{A}_{K-2}, d_{\eta,K-1}, d_{\eta,K})\}$$
 (6.48)

Similar to (6.45), define

$$d_{\eta,K-1,B}^{opt}(h_{K-1}) = d_{K-1}(h_{K-1}; \eta_{K-1,B}^{opt}),$$

$$\eta_{K-1,B}^{opt} = \underset{\eta_{K-1}}{\arg\max} E\{Y^{*}(\overline{A}_{K-2}, d_{\eta,K-1}, d_{\eta,K,B}^{opt})\}$$
(6.49)

- In (6.49), $d_{\eta,K}$ is fixed at $d_{\eta,K,B}^{opt}$, so $\eta_{K-1,B}^{opt}$ is *not necessarily* the global maximizer of (6.48) in $(\eta_{K-1}^T, \eta_K^T)^T$
- Nor is $\eta_{K-1,B}^{opt}$ necessarily equal to η_{K-1}^{opt} globally maximizing $\mathcal{V}(d_n)$

Thus: Can view $\widehat{\mathcal{V}}_{IPW}^{(K-1)}(d_{\eta,K-1},d_{\eta,K,B}^{opt})$ as an estimator for

$$E\{Y^*(\overline{A}_{K-1},d_{\eta,K-1},d_{\eta,K,B}^{opt})\}$$

At Decision K-1: Maximize

$$\widehat{\mathcal{V}}_{IPW}^{(K-1)}(d_{\eta,K-1},\widehat{d}_{\eta,K,B}^{opt})$$

in η_{K-1} to obtain $\widehat{\eta}_{K-1,B,IPW}^{opt}$

- $d_{\eta,K}$ is held fixed at $\hat{d}_{\eta,K,B}^{opt}$ in the maximization
- Obtain

$$\widehat{d}_{\eta,K-1,B}^{opt}(h_{K-1}) = d_{K-1}(h_{K-1}; \widehat{\eta}_{K-1,B,IPW}^{opt}). \tag{6.50}$$

• $\widehat{\eta}_{K-1,B,IPW}^{opt}$ is almost certainly not the same as $\widehat{\eta}_{K-1,IPW}^{opt}$ globally maximizing $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ in all of η_{1},\ldots,η_{K}

Continuing for k = K - 2, ..., 1: At Decision k, define

$$\widehat{\mathcal{V}}_{IPW}^{(k)}(\underline{d}_{\eta,k}) = n^{-1} \sum_{i=1}^{n} \mathcal{G}_{IPW,ki}(d_{\eta,k},\underline{d}_{\eta,k+1}; \widehat{\underline{\gamma}}_{k}).$$

Can be viewed as an estimator for

$$E\{Y^{\star}(\overline{A}_{k-1},\underline{d}_{\eta,k})\} = E\{Y^{\star}(\overline{A}_{k-1},d_{\eta,k},\underline{d}_{\eta,k+1})\}. \tag{6.51}$$

• With $\underline{d}_{\eta,k+1,B}^{opt} = (d_{\eta,k+1,B}^{opt}, \dots, d_{\eta,K,B}^{opt})$, define

$$d_{\eta,k,B}^{opt}(h_k) = d_k(h_k; \eta_{k,B}^{opt}),$$

$$\eta_{k,B}^{opt} = \arg\max_{\eta_k} E\{Y^*(\overline{A}_{k-1}, d_{\eta,k}, \underline{d}_{\eta,k+1,B}^{opt})\},$$
(6.52)

• With $\underline{d}_{\eta,k+1}^{opt}$ fixed at $\underline{d}_{\eta,k+1,B}^{opt}$, $\eta_{k,B}^{opt}$ is not necessarily the global maximizer of (6.51) nor equal to η_k^{opt} globally maximizing $\mathcal{V}(d_{\eta})$

Thus: Can view $\widehat{\mathcal{V}}_{IPW}^{(k)}(d_{\eta,k},\underline{d}_{\eta,k+1,B}^{opt})$ as an estimator for

$$E\{Y^*(\overline{A}_{k-1},d_{\eta,k},\underline{d}_{\eta,k+1},B)\}$$

At Decision k: Maximize

$$\widehat{\mathcal{V}}_{IPW}^{(k)}(d_{\eta,k},\underline{\widehat{d}}_{\eta,k+1,B}^{opt})$$

in η_k to obtain $\widehat{\eta}_{k,B,IPW}^{opt}$ and

$$\widehat{d}_{\eta,k,B}^{opt}(h_k) = d_k(h_k; \widehat{\eta}_{k,B,IPW}^{opt}). \tag{6.53}$$

• $\widehat{\eta}_{k,B,IPW}^{opt}$ need not be the same as $\widehat{\eta}_{k,IPW}^{opt}$ globally maximizing $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ in all of η_1,\ldots,η_K

At Decision 1: At conclusion of the algorithm

• Estimator for $d_{\eta,B}^{opt} = \{d_{\eta,1,B}^{opt}(h_1), \dots, d_{\eta,K,B}^{opt}(h_K)\}$ is, from (6.46), (6.50), and (6.53)

$$\widehat{d}_{\eta,B,IPW}^{opt} = \{d_1(h_1; \widehat{\eta}_{1,B,IPW}^{opt}), \dots, d_K(h_K; \widehat{\eta}_{K,B,IPW}^{opt})\}$$
(6.54)

• Estimator $\widehat{\mathcal{V}}_{B,IPW}(d_{\eta,B}^{opt})$ for $\mathcal{V}(d_{\eta,B}^{opt})$ is obtained by substitution of (6.54) in $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$

However: $\widehat{d}_{\eta,B,IPW}^{opt}$ is clearly *not the same* as the estimator $\widehat{d}_{\eta,IPW}^{opt}$ found by maximizing $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ jointly in all of $\eta = (\eta_{1}^{T}, \dots, \eta_{K}^{T})^{T}$ to obtain $\widehat{\eta}_{IPW}^{opt} = (\widehat{\eta}_{1,IPW}^{opt\,T}, \dots, \widehat{\eta}_{K,IPW}^{opt\,T})^{T}$

• Thus, $\widehat{d}_{\eta.B.IPW}^{opt}$ is not necessarily a valid estimator for $d_{\eta}^{opt} \in \mathcal{D}_{\eta}$

Question: When is $\hat{d}_{\eta,B,IPW}^{opt}$ a valid estimator for d_{η}^{opt} ?

• Under SUTVA, SRA, positivity, can show for any $d \in \mathcal{D}$ that $d_k^{opt}, \dots, d_K^{opt}$ maximize

$$E\{Y^*(\overline{A}_{k-1}, d_k, ..., d_K) \mid H_k\}, k = 1, ..., K$$

and thus

$$\underline{d}_{k}^{opt} = (d_{k}^{opt}, \dots, d_{K}^{opt}) = \underset{d_{k}, \dots, d_{K}}{\text{arg max}} E\{Y^{*}(\overline{A}_{k-1}, d_{k}, \dots, d_{K})\}, \quad k = 1, \dots, K$$

- Thus, if $d^{opt} \in \mathcal{D}_{\eta}$, $\mathcal{V}(d^{opt}_{\eta}) = \mathcal{V}(d^{opt})$, and d^{opt}_{η} and d^{opt} are equivalent
- Then from (6.45), (6.49), and (6.52)

$$\mathcal{V}(d_{\eta,B}^{opt}) = \mathcal{V}(d_{\eta}^{opt}) = \mathcal{V}(d^{opt})$$

so $d_{\eta,B}^{opt}$ is *equivalent* to d^{opt} and thus d_{η}^{opt}

Question: When is $\hat{d}_{\eta,B,IPW}^{opt}$ a valid estimator for d_{η}^{opt} ?

- Thus: $\widehat{\eta}_{B,IPW}^{opt}$ globally maximizes $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ in η , so is a valid estimator for η^{opt}
- And $\widehat{\mathcal{V}}_{B,IPW}(d_{\eta}^{opt})$ found by substituting $\widehat{\eta}_{B,IPW}^{opt}$ in $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ is a valid estimator for $\mathcal{V}(d_{\eta}^{opt})$
- However: When $d^{opt} \notin \mathcal{D}_{\eta}$, it is not necessarily the case that $\mathcal{V}(d^{opt}_{\eta,B}) = \mathcal{V}(d^{opt}_{\eta})$, so that $d^{opt}_{\eta,B}$ is not necessarily equivalent to an optimal restricted regime d^{opt}_{η}
- And thus $\widehat{\eta}_{B,IPW}^{opt}$ need not not maximize $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ in η , and $\widehat{d}_{\eta,B,IPW}^{opt}$ need not estimate $d_{\eta}^{opt} \in \mathcal{D}_{\eta}$
- Nonetheless, simulation evidence suggests that estimators from the backward strategy can perform well in practice

Sketch for AIPW: Same idea, complicated by augmentation term

• Take in $\widehat{\mathcal{V}}_{AIPW}(d_{\eta})$ in (6.39), $i=1,\ldots,n,\ k=1,\ldots,K$

$$Q_{d_{\eta},k}(\overline{X}_{ki};\widehat{\beta}_{k}) = V_{k}^{d_{\eta}}\{\overline{X}_{ki},\overline{d}_{\eta,k-1}(\overline{X}_{k-1,i});\widehat{\beta}_{k}\} = Q_{k}^{d_{\eta}}\{\overline{X}_{ki},\overline{d}_{\eta,k}(\overline{X}_{k,i});\widehat{\beta}_{k}\}$$

$$= Q_{k}^{d_{\eta}}\Big[\overline{X}_{ki},\overline{d}_{\eta,k-1}(\overline{X}_{k-1,i}),d_{\eta,k}\{\overline{X}_{ki},\overline{d}_{\eta,k-1}(\overline{X}_{k-1,i})\};\widehat{\beta}_{k}\Big]$$

• Straightforward that $\mathcal{Q}_{d_{\eta},k}(\overline{X}_{ki};\widehat{\beta}_{k})$ can be replaced by

$$V_{k}^{d_{\eta}}(\overline{X}_{ki}, \overline{A}_{k-1,i}; \widehat{\beta}_{k}) = Q_{k}^{d_{\eta}}\{\overline{X}_{ki}, \overline{A}_{k-1,i}, d_{\eta,k}(\overline{X}_{ki}, \overline{A}_{k-1,i}); \widehat{\beta}_{k}\}$$

$$= Q_{k}^{d_{\eta}}\{H_{ki}, d_{\eta,k}(H_{ki}); \widehat{\beta}_{k}\} = Q_{k}^{d_{\eta}}\{H_{ki}, d_{k}(H_{ki}; \eta_{k}); \widehat{\beta}_{k}\}$$

for which dependence on η is only through η_k

• Thus, at each Decision $k=K,K-1,\ldots,1$, maximization is still only in η_k

Alternative representation: For k = 1, ..., K, let

$$\begin{split} &\mathcal{G}_{AIPW,k}(\underline{d}_{\eta,k};\underline{\gamma}_{k},\underline{\beta}_{k}) = \frac{\mathfrak{C}_{d_{\eta},k,K}Y}{\underline{\omega}_{k,K}(H_{K},A_{K};\underline{\gamma}_{k,K})} \\ &- \left[\frac{\mathbb{I}\{A_{k} = d_{\eta,k}(H_{k})\} - \omega_{k}(H_{k},A_{k};\gamma_{k})}{\omega_{k}(H_{k},A_{k};\gamma_{k})} \right] Q_{k}^{d_{\eta}}\{H_{k},d_{\eta,k}(H_{k});\beta_{k}\} \\ &- \mathbb{I}(k < K) \sum_{r=k+1}^{K} \left(\frac{\mathfrak{C}_{d_{\eta},k,r-1}}{\underline{\omega}_{k,r-1}(H_{r-1},A_{r-1};\underline{\gamma}_{k,r-1})} \right) \\ &\times \left[\frac{\mathbb{I}\{A_{r} = d_{\eta,r}(H_{r})\} - \omega_{r}(H_{r},A_{r};\gamma_{r})}{\omega_{r}(H_{r},A_{r};\gamma_{r})} \right] Q_{r}^{d_{\eta}}\{H_{r},d_{\eta,r}(H_{r});\beta_{r}\} \right) \\ &\underline{\gamma}_{\ell,r} = (\gamma_{\ell}^{T},\ldots,\gamma_{r}^{T})^{T}, \ \underline{\omega}_{\ell,r}(h_{r},a_{r};\underline{\gamma}_{\ell,r}) = \prod_{j=\ell}^{r} \omega_{j}(h_{j},a_{j};\gamma_{j}) \\ \mathfrak{C}_{d_{\eta},\ell,r} = \mathbb{I}\{A_{\ell} = d_{\eta,\ell}(H_{\ell}),\ldots,A_{r} = d_{\eta,r}(H_{r})\}, \ r \geq \ell = 1,\ldots,K \end{split}$$

Can show:
$$\widehat{\mathcal{V}}_{AIPW}(d_{\eta}) = n^{-1} \sum_{i=1}^{n} \mathcal{G}_{AIPW,1i}(\underline{d}_{\eta,1}; \widehat{\underline{\gamma}}_{1}, \widehat{\underline{\beta}}_{1})$$

Decision K: Maximize in η_K

$$\begin{split} \widehat{\mathcal{V}}_{AIPW}^{(K)}(d_{\eta,K}) &= n^{-1} \sum_{i=1}^{n} \mathcal{G}_{AIPW,Ki}(d_{\eta,K}; \widehat{\gamma}_{K}, \widehat{\beta}_{K}) \\ &= n^{-1} \sum_{i=1}^{n} \left(\frac{\mathbb{I}\{A_{Ki} = d_{\eta,K}(H_{Ki})\} Y_{i}}{\omega_{K}(H_{Ki}, A_{Ki}; \widehat{\gamma}_{K})} \right. \\ &- \left. \left[\frac{\mathbb{I}\{A_{Ki} = d_{\eta,K}(H_{Ki})\} - \omega_{K}(H_{Ki}, A_{Ki}; \widehat{\gamma}_{Ki})}{\omega_{K}(H_{Ki}, A_{Ki}; \widehat{\gamma}_{Ki})} \right] \ Q_{K}^{d_{\eta}}\{H_{Ki}, d_{\eta,K}(H_{Ki}); \widehat{\beta}_{K}\} \right) \end{split}$$

to obtain $\widehat{\eta}_{K,B,AIPW}^{opt}$ and $\widehat{d}_{\eta,K,B}^{opt}(h_K) = d_K(h_K; \widehat{\eta}_{K,B,AIPW}^{opt})$

• $Q_K^{d_{\eta}}(h_K, a_K; \beta_K)$ depends on η_K only through substitution of $d_{\eta,K}(h_K)$ so need not be refitted at each internal iteration

Decision K-1: Maximize $\widehat{\mathcal{V}}_{AIPW}^{(K-1)}(d_{\eta,K-1},\widehat{d}_{\eta,K,B}^{opt})$ in η_{K-1}

$$\begin{split} \widehat{\mathcal{V}}_{AIPW}^{(K-1)}(\underline{d}_{\eta,K-1}) &= n^{-1} \sum_{i=1}^{n} \mathcal{G}_{AIPW,K-1,i}(d_{\eta,K-1},d_{\eta,K}; \underline{\widehat{\gamma}}_{K-1}, \underline{\widehat{\beta}}_{K-1}) \\ \mathcal{G}_{AIPW,K-1}(\underline{d}_{\eta,K-1}; \underline{\gamma}_{K-1}, \underline{\beta}_{K-1}) &= \frac{\mathfrak{C}_{d_{\eta},K-1,K}Y}{\underline{\omega}_{K-1,K}(H_{K},A_{k}; \underline{\gamma}_{K-1,K})} \\ &- \left[\frac{\mathbb{I}\{A_{K-1} = d_{\eta,K-1}(H_{K-1})\} - \omega_{K-1}(H_{K-1},A_{K-1}; \gamma_{K-1})}{\omega_{K-1}(H_{K-1},A_{K-1}; \gamma_{K-1})} \right] \\ &\qquad \times \mathcal{Q}_{K-1}^{d_{\eta}}\{H_{K-1}, d_{\eta,K-1}(H_{K-1}); \beta_{K-1}\} \\ &- \frac{\mathfrak{C}_{d_{\eta},K-1,K}}{\underline{\omega}_{K-1,K}(H_{K},A_{K}; \underline{\gamma}_{K-1,K})} \left[\frac{\mathbb{I}\{A_{K} = d_{\eta,K}(H_{K})\} - \omega_{K}(H_{K},A_{K}; \gamma_{K})}{\omega_{K}(H_{K},A_{K}; \gamma_{K})} \right] \\ &\times \mathcal{Q}_{K}^{d_{\eta}}\{H_{K}, d_{\eta,K}(H_{K}); \beta_{K}\} \end{split}$$

• Fit model $Q_{K-1}^{d_{\eta}}(h_{K-1}, a_{K-1}; \beta_{K-1})$ using pseudo-outcomes

$$\widetilde{V}_{\mathit{K}i}^{d_{\eta}} = Q_{\mathit{K}}^{d_{\eta}}\{H_{\mathit{K}i}, \widehat{d}_{\eta,\mathit{K},\mathit{B}}^{opt}(H_{\mathit{K}i}); \widehat{\beta}_{\mathit{K}}\}, \quad i = 1, \ldots, n$$

Decision k: Maximize $\widehat{\mathcal{V}}_{AIPW}^{(k)}(d_{\eta,k}^{opt}, \underline{\widehat{d}}_{\eta,k+1,B}^{opt})$ in η_k

$$\widehat{\mathcal{V}}_{AIPW}^{(k)}(\underline{d}_{\eta,k}) = n^{-1} \sum_{i=1}^{n} \mathcal{G}_{AIPW,ki}(d_{\eta,k},\underline{d}_{\eta,k+1}; \widehat{\underline{\gamma}}_{k}, \widehat{\underline{\beta}}_{k})$$

• $Q_k^{d_\eta}(h_k, a_k; \beta_k)$ is a model for $E\{V_{k+1}^{d_\eta^{opt}}(H_{k+1}) \mid H_k = h_k, A_k = a_k\}$, where

$$V_{k+1}^{d_{\eta}^{opt}}(h_k) = Q_{k+1}^{d_{\eta}}\{h_{k+1}, d_{\eta, k+1, B}^{opt}(h_{k+1})\}$$

• Fit model $Q_k^{d_{\eta}}(h_k, a_k; \beta_k)$ using pseudo-outcomes

$$\widetilde{V}_{k+1,i}^{d_{\eta}} = Q_{k+1}^{d_{\eta}}\{H_{k+1,i}, \widehat{d}_{\eta,k+1,B}^{opt}(H_{k+1,i}); \widehat{\beta}_{k+1}\}, \quad i = 1, \dots, n$$

At conclusion:

$$\widehat{\boldsymbol{d}}_{\eta,B,AIPW}^{opt} = \{\boldsymbol{d}_1(\boldsymbol{h}_1; \widehat{\eta}_{1,B,AIPW}^{opt}), \dots, \boldsymbol{d}_K(\boldsymbol{h}_K; \widehat{\eta}_{K,B,AIPW}^{opt})\}$$

Remarks:

- For either IPW or AIPW, potentially high-dimensional global maximization of $\widehat{\mathcal{V}}_{IPW}(d_{\eta})$ or $\widehat{\mathcal{V}}_{AIPW}(d_{\eta})$ is replaced by a series of lower dimensional maximizations in each of η_K, \ldots, η_1
- However, the successive maximizations of $\widehat{\mathcal{V}}_{AIPW}^{(K)}(d_{\eta,K})$ or $\widehat{\mathcal{V}}_{IPW}^{(K)}(d_{\eta,K})$ in η_K and $\widehat{\mathcal{V}}_{AIPW}^{(k)}(d_{\eta,k}^{opt},\underline{\widehat{d}}_{k+1,B}^{opt})$ or $\widehat{\mathcal{V}}_{IPW}^{(k)}(d_{\eta,k}^{opt},\underline{\widehat{d}}_{k+1,B}^{opt})$ in η_K , $k=K-1,\ldots,1$, although of lower dimension, are still challenging optimization tasks
- Because these are nonsmooth objective functions

Motivation: As in our review of the single decision case, optimization of nonsmooth objective functions is well-studied in the classification literature

- With two options at each Decision, $A_k = \{0, 1\}$, k = 1, ..., K, feasible for all individuals, cast the optimization at each decision point as minimization of a *weighted classification error*
- Can be extended to general A_k , with ℓ_k distinct subsets of A_k , $A_{k,l}$, $l=1,\ldots,\ell_k$, that are feasible sets, $k=1,\ldots,K$, where each $A_{k,l}$ comprises one or two options
- We demonstrate with the IPW estimator

Decision K: From (6.43), maximize in η_K

$$\widehat{\mathcal{V}}_{IPW}^{(K)}(d_{\eta,K}) = n^{-1} \sum_{i=1}^{n} \mathcal{G}_{IPW,Ki}(d_{\eta,K}; \widehat{\gamma}_{K})$$

Can be expressed equivalently as

$$\widehat{\mathcal{V}}_{IPW}^{(K)}(d_{\eta,K}) = n^{-1} \sum_{i=1}^{n} \left[\mathcal{G}_{IPW,Ki}(1;\widehat{\gamma}_{K}) | \{d_{\eta,K}(H_{Ki}) = 1\} \right]
+ \mathcal{G}_{IPW,Ki}(0;\widehat{\gamma}_{K}) | \{d_{\eta,K}(H_{Ki}) = 0\} \right]
= n^{-1} \sum_{i=1}^{n} \left\{ d_{K}(H_{Ki};\eta_{K}) \widehat{C}_{Ki} + \mathcal{G}_{IPW,Ki}(0;\widehat{\gamma}_{K}) \right\}
\widehat{C}_{Ki} = \mathcal{G}_{IPW,Ki}(1;\widehat{\gamma}_{K}) - \mathcal{G}_{IPW,Ki}(0;\widehat{\gamma}_{K})$$
(6.55)

Thus: Maximizing $\widehat{\mathcal{V}}_{IPW}^{(K)}(d_{\eta,K})$ in η_K is equivalent to maximizing

$$n^{-1}\sum_{i=1}^n d_K(H_{Ki};\eta_K)\widehat{C}_{Ki}$$

• By manipulations identical to those on Slide 185, can show that maximizing $\widehat{\mathcal{V}}_{IPW}^{(K)}(d_{\eta,K})$ is equivalent to minimizing in η_K the weighted classification error

$$n^{-1} \sum_{i=1}^{n} |\widehat{C}_{Ki}| \, \mathsf{I} \Big\{ \mathsf{I}(\widehat{C}_{Ki} > 0) \neq d_{K}(H_{Ki}; \eta_{K}) \Big\}$$
 (6.56)

• Thus: Take \mathcal{D}_{η} to comprise regimes whose rules are induced by a classifier (SVM, CART, etc), and use classification software to obtain $\widehat{\eta}_{K,B,IPW}^{opt}$ and $\widehat{d}_{\eta,K,B}^{opt}(h_K) = d_K(h_K; \widehat{\eta}_{K,B,IPW}^{opt})$

As in the single decision case: With decision function $f_K(h_K; \eta_K)$

$$d_K(h_K; \eta_K) = I\{f_K(h_K; \eta_K) > 0\}$$

can write (6.56) as

$$n^{-1} \sum_{i=1}^{n} |\widehat{C}_{Ki}| \, \ell_{0-1} \Big[\Big\{ 2I(\widehat{C}_{Ki} > 0) - 1 \Big\} f_K(H_{Ki}; \eta_K) \Big]$$

• In terms of the non convex 0-1 loss function $\ell_{0-1}(x) = I(x \le 0)$

Decisions k = K - 1, ..., 1: Similar argument; maximizing in η_k

$$\widehat{\mathcal{V}}_{IPW}^{(k)}(d_{\eta,k},\underline{\widehat{\mathcal{Q}}}_{\eta,k+1,B}^{opt}) = n^{-1} \sum_{i=1}^{n} \mathcal{G}_{IPW,ki}(d_{\eta,k},\underline{\widehat{\mathcal{Q}}}_{\eta,k+1,B}^{opt};\underline{\widehat{\gamma}}_{k})$$

is equivalent to maximizing

$$n^{-1}\sum_{i=1}^{n}d_{k}(H_{ki};\eta_{k})\widehat{C}_{ki}(\underline{\widehat{d}}_{\eta,k+1,B}^{opt})$$

$$\widehat{C}_{ki}(\underline{d}_{\eta,k+1}) = \mathcal{G}_{IPW,ki}(1,\underline{d}_{\eta,k+1};\widehat{\gamma}_{k}) - \mathcal{G}_{IPW,ki}(0,\underline{d}_{\eta,k+1};\widehat{\gamma}_{k}) \quad (6.57)$$

- And by the same manipulations is equivalent to minimizing in $\eta_{\it k}$

$$n^{-1}\sum_{i=1}^{n}|\widehat{C}_{ki}(\underline{\widehat{d}}_{\eta,k+1,B}^{opt})|\operatorname{I}\left[\operatorname{I}\{\widehat{C}_{ki}(\underline{\widehat{d}}_{\eta,k+1,B}^{opt})>0\}\neq d_{k}(H_{ki};\eta_{k})\right]$$

AIPW: Entirely similar formulation with

$$\widehat{C}_{Ki} = \mathcal{G}_{AIPW,Ki}(1; \widehat{\gamma}_K, \widehat{\beta}_K) - \mathcal{G}_{AIPW,Ki}(0; \widehat{\gamma}_K, \widehat{\beta}_K)$$
(6.58)

and for
$$k = K - 1, \dots, 1$$

$$\widehat{C}_{ki}(\underline{d}_{\eta,k+1}) = \mathcal{G}_{AIPW,ki}(1,\underline{d}_{\eta,k+1};\widehat{\gamma}_{k},\widehat{\underline{\beta}}_{k}) - \mathcal{G}_{AIPW,ki}(0,\underline{d}_{\eta,k+1};\widehat{\gamma}_{k},\widehat{\underline{\beta}}_{k}),$$
(6.59)

Predictors:

• Decision K: \widehat{C}_{Ki} in (6.55) or (6.58) can be viewed as a predictor for the "contrast function"

$$\textit{C}_{\textit{K}}(\textit{H}_{\textit{K}}) = \textit{E}\{\textit{Y}^{*}(\overline{\textit{A}}_{\textit{K}-1},1) - \textit{Y}^{*}(\overline{\textit{A}}_{\textit{K}-1},0) \mid \textit{H}_{\textit{K}}\}$$

corresponding to the difference in expected outcome for an individual with history H_K were he to receive option 1 versus option 0 at Decision K

• Decisions $k=K-1,\ldots,1$: $C_{ki}(\underline{d}_{\eta,k+1})$ in (6.57) or (6.59) can be viewed as a predictor for the "contrast function"

$$C_k(H_k,\underline{d}_{\eta,k+1}) = E\{Y^*(\overline{A}_{k-1},1,\underline{d}_{\eta,k+1}) - Y^*(\overline{A}_{k-1},0,\underline{d}_{\eta,k+1}) \mid H_k\}$$

corresponding to the difference in expected outcomes for an individual with history H_k were he to receive option 1 versus option 0 at Decision k and then follow the rules $(d_{\eta,k+1},\ldots,d_{\eta,K})$ at Decisions $k+1,\ldots,K$ thereafter

Extension of OWL to K > 1 **decisions:** Code $A_k = \{-1, 1\}$

- Assume $\omega_k(h_k, a_k) = P(A_k = a_k \mid H_k = h_k)$ is defined for $a_k = 1, -1$ $\omega_k(h_k, a_k)$
- Proposed by Zhao et al. (2015) for known but extension to fitted models is immediate
- Again, from (6.42), wish to maximize

$$\begin{split} \widehat{\mathcal{V}}_{IPW}(d_{\eta}) &= n^{-1} \sum_{i=1}^{n} \mathcal{G}_{IPW,1i}(d_{\eta}; \widehat{\underline{\gamma}}_{1}) \\ &= n^{-1} \sum_{i=1}^{n} \left[\prod_{j=1}^{K} \frac{Y_{i} I\{A_{ji} = d_{j}(H_{ji}; \eta_{j})\}}{\omega_{j}(H_{ji}, A_{ji}; \widehat{\gamma}_{j})} \right] \end{split}$$

• Represent rules in terms of decision function $f_k(h_k; \eta_k)$ as

$$d_k(h_k; \eta_k) = \text{sign}\{f_k(h_k; \eta_k)\}, \quad k = 1, \dots, K$$

Decision K: Maximize in η_K

$$\widehat{\mathcal{V}}_{IPW}^{(K)}(d_{\eta,K}) = n^{-1} \sum_{i=1}^{n} \mathcal{G}_{IPW,Ki}(d_{\eta,K}; \widehat{\gamma}_{K}) = n^{-1} \sum_{i=1}^{n} \frac{\mathsf{I}\{A_{Ki} = d_{\eta,K}(H_{Ki})\} Y_{i}}{\omega_{K}(H_{Ki}, A_{Ki}; \widehat{\gamma}_{K})}$$

which is equivalent to minimizing in $\eta_{\mathcal{K}}$

$$n^{-1}\sum_{i=1}^{n}\frac{Y_{i}\mathsf{I}\{A_{Ki}\neq d_{\eta,K}(H_{Ki})\}}{\omega_{K}(H_{Ki},A_{Ki};\widehat{\gamma}_{K})}=n^{-1}\sum_{i=1}^{n}\frac{Y_{i}\mathsf{I}[A_{Ki}\neq \mathsf{sign}\{f_{K}(h_{K};\eta_{K})\}]}{\omega_{K}(H_{Ki},A_{Ki};\widehat{\gamma}_{K})}.$$

As for OWL

$$I[A_{K\!i} \neq \text{sign}\{f_K(h_K;\eta_K)\}] = I\{A_{K\!i}f_K(H_{K\!i};\eta_K) \leq 0\} = \ell_{0\text{--}1}\{A_{K\!i}f_K(H_{K\!i};\eta_K)\}$$

Replace non convex 0-1 loss by convex surrogate hinge loss

$$\ell_{hinge}(x) = (1 - x)^+, \quad x^+ = \max(0, x)$$

Decision *K*: Minimize the penalized objective

$$n^{-1} \sum_{i=1}^{n} \frac{Y_{i}}{\omega_{K}(H_{Ki}, A_{Ki}; \widehat{\gamma}_{K})} \{1 - A_{Ki} f_{1}(H_{Ki}; \eta_{K})\}^{+} + \lambda_{K,n} \|f_{K}\|^{2}$$
 (6.60)

- $\|\cdot\|$ is a norm for f_K , $\lambda_{K,n}$ is a scalar tuning parameter controlling complexity (penalty for overfitting)
- With $\widehat{\eta}_{K,B,BOWL}^{opt}$ the minimizer of (6.60), estimated Decision K rule

$$\widehat{d}_{\eta,K,B}^{opt}(h_K) = d_K(h_K; \widehat{\eta}_{K,B,BOWL}^{opt}) = \text{sign}\{f_K(h_K; \widehat{\eta}_{K,B,BOWL}^{opt})\}$$

Decisions k = K - 1, ..., 1: Maximize in η_k

$$\begin{split} \widehat{\mathcal{V}}_{IPW}^{(k)}(d_{\eta,k}, \underline{\widehat{d}}_{\eta,k+1,B}^{opt}) &= n^{-1} \sum_{i=1}^{H} \mathcal{G}_{IPW,ki}(d_{\eta,k}, \underline{\widehat{d}}_{\eta,k+1,B}^{opt}; \underline{\widehat{\gamma}}_{k}) \\ &= n^{-1} \sum_{i=1}^{n} \frac{\prod_{j=k+1}^{K} \mathsf{I}\{A_{ji} = d_{j}(H_{ji}; \widehat{\eta}_{j,B,BOWL}^{opt})\} Y_{i}}{\prod_{j=k}^{K} \omega_{j}(H_{ji}, A_{ji}; \widehat{\gamma}_{j})} \mathsf{I}\{A_{ki} = d_{k}(H_{ki}; \eta_{k})\} \end{split}$$

• Equivalent to minimizing in η_k

$$n^{-1} \sum_{i=1}^{n} \frac{\prod_{j=k+1}^{K} Y_{i} \mathsf{I}\{A_{ji} = d_{j}(H_{ji}; \widehat{\eta}_{j,B,BOWL}^{opt})\}}{\prod_{j=k}^{K} \omega_{j}(H_{ji}, A_{ji}; \widehat{\gamma}_{j})} \mathsf{I}[A_{ki} \neq \mathsf{sign}\{f_{k}(h_{k}; \eta_{k})\}]$$

Decisions k = K - 1, ..., 1: Replace 0-1 loss by hinge loss and minimize in η_k the penalized objective

$$n^{-1} \sum_{i=1}^{n} \frac{\prod_{j=k+1}^{K} Y_{i} \mathbb{I}\{A_{ji} = d_{j}(H_{ji}; \widehat{\eta}_{j,B,BOWL}^{opt})\}}{\prod_{j=k}^{K} \omega_{j}(H_{ji}, A_{ji}; \widehat{\gamma}_{j})} \{1 - A_{ki}f_{k}(H_{ki}; \eta_{k})\}^{+} + \lambda_{k,n} \|f_{k}\|^{2}$$
(6.61)

- $\lambda_{k,n}$ is a scalar tuning parameter
- With $\widehat{\eta}_{k,B,BOWL}^{opt}$ the minimizer of (6.61),estimated Decision k rule $k=K-1,\ldots,1$, is

$$\widehat{d}_{\eta,k,B}^{opt}(h_k) = d_k(h_k; \widehat{\eta}_{k,B,BOWL}^{opt}) = \text{sign}\{f_k(h_k; \widehat{\eta}_{k,B,BOWL}^{opt})\}$$

Remarks:

- As for OWL, replacing 0-1 loss by hinge loss means $d_k(h_k; \widehat{\eta}_{k,B,BOWL}^{opt})$ are not necessarily the same as estimated rules minimizing the original objectives
- Zhao et al. (2015) propose using a very flexible class of decision functions and thus classification method, inducing restricted class \mathcal{D}_{η} with richly parameterized rules (high-dimensional η_k)
- Hope: $d^{opt} \in \mathcal{D}_{\eta}$
- Could take this same approach using AIPW
- Could also use simpler decision functions (e.g., SVM)
- For all IPW-based methods, the number of individuals with treatments received consistent with the first k rules decreases as k increases, so estimators can be unstable. Zhao et al. (2015) propose modifications to address this

Consider for simplicity:
$$\Psi_k(h_k) = A_k$$
 for all h_k , $k = 1, ..., K$

$$A_k = \{0, 1, ..., m_k - 1\}$$

- m_k options at Decision k; option 0 is control or reference option
- Q-functions

$$Q_K(h_K,a_K)=Q_K(\overline{x}_K,\overline{a}_K)=E(Y|\overline{X}_K=\overline{x}_K,\overline{A}_K=\overline{a}_K)$$
 and for $k=K-1,\ldots,1$

$$Q_k(h_k, a_k) = Q_k(\overline{x}_k, \overline{a}_k) = E\{V_{k+1}(\overline{x}_k, X_{k+1}, \overline{a}_k) | \overline{X}_k = \overline{x}_k, \overline{A}_k = \overline{a}_k\}$$

Value functions

$$V_k(h_k) = \max_{j \in \{0,1,\dots,m_k-1\}} Q_k(h_k,j) = Q_k\{h_k,d_k^{opt}(h_k)\}, \quad k = 1,\dots,K$$

Optimal regime comprises rules of form

$$d_k^{opt}(h_k) = d_k^{opt}(\overline{x}_k, \overline{a}_{k-1}) = \underset{j \in \{0,1,\dots,m_k-1\}}{\arg \max} Q_k(h_k, j), \ k = 1, \dots, K$$

Contrast functions: It suffices to know

$$C_{kj}(h_k) = Q_k(h_k, j) - Q_k(h_k, 0), \quad j = 0, \dots, m_k - 1$$
 $C_{k0}(h_k) \equiv 0$, to deduce $d_k^{opt}(h_k)$
 $d_k^{opt}(h_k) = \underset{j \in \{0, 1, \dots, m_k - 1\}}{\arg \max} C_{kj}(h_k), \quad k = 1, \dots, K$ (6.62)

- $C_{kj}(h_k)$, k = 1, ..., K, can be regarded as *optimal blip to zero functions* as in Robins (2004), Moodie et al. (2007)
- E.g., for K = 2, using SUTVA and SRA

$$C_{2j}(h_2) = E(Y \mid H_2 = h_2, A_2 = j) - E(Y \mid H_2 = h_2, A_2 = 0)$$

= $E\{Y^*(a_1, j) \mid H_2 = h_2\} - E\{Y^*(a_1, 0) \mid H_2 = h_2\}$

so is the difference in expected outcome if an individual with realized history h_2 were to receive a "blip" of treatment via option j versus control

Similarly, using SUTVA and SRA

$$\begin{aligned} Q_{1}(h_{1}, a_{1}) &= E\left[\left.E\{Y \mid H_{2}, A_{2} = d_{2}^{opt}(H_{2})\}\right| H_{1} = h_{1}, A_{1} = a_{1}\right] \\ &= E\left\{\left.E\left(\left.Y^{*}[a_{1}, d_{2}^{opt}\{h_{1}, X_{2}^{*}(a_{1}), a_{1}\}\right]\right| H_{1} = h_{1}, X_{2}^{*}(a_{1}), A_{1} = a_{1}, A_{2} = d_{2}^{opt}\{h_{1}, X_{2}^{*}(a_{1}), a_{1}\}\right)\right| H_{1} = h_{1}, A_{1} = a_{1}\right\} \\ &= E\left(\left.Y^{*}[a_{1}, d_{2}^{opt}\{h_{1}, X_{2}^{*}(a_{1}), a_{1}\}\right]\right| H_{1} = h_{1}\right) \end{aligned}$$

And thus

$$C_{1j}(h_1) = E\left(Y^*[j, d_2^{opt}\{h_1, X_2^*(j), j\}] \middle| H_1 = h_1\right)$$
$$-E\left(Y^*[0, d_2^{opt}\{h_1, X_2^*(0), 0\}] \middle| H_1 = h_1\right)$$

so is the difference in expected outcome an an individual with realized history h_1 would have if he were to receive a "blip" of treatment via option j versus control at Decision 1 and then follow an optimal regime at the final decision point

Can write: For k = 1, ..., K

$$Q_k(h_k, a_k) = \nu_k(h_k) + \sum_{j=1}^{m_k-1} \mathsf{I}(a_k = j) C_{kj}(h_k), \quad \nu_k(h_k) = Q_k(h_k, 0)$$
 $V_k(h_k) = \nu_k(h_k) + \max_{j \in \{0, 1, ..., m_k-1\}} C_{kj}(h_k)$

Posit models:

$$C_{kj}(h_k; \psi_{kj}), \quad j = 1, \dots, m_k - 1; \quad k = 1, \dots, K$$
 (6.63)

(6.63) imply models for the Q-functions

$$\nu_{k}(h_{k}) + \sum_{j=1}^{m_{k}-1} \mathsf{I}(a_{k} = j)C_{kj}(h_{k}; \psi_{kj}), \quad k = 1, \dots, K,$$

$$\psi_{k} = (\psi_{k1}^{T}, \dots, \psi_{k,m_{k}-1}^{T})^{T}$$
420

Also: Models $\omega_k(h_k, a_k; \gamma_k)$, k = 1, ..., K, for

$$\omega_k(h_k, a_k) = P(A_k = a_k | H_k = h_k), \quad k = 1, \dots, K,$$

$$\omega_k(h_k, m_k - 1) = 1 - \sum_{a_k = 0}^{m_k - 2} \omega_k(h_k, a_k);$$

- Multinomial (polytomous) logistic regression models
- Fit via maximum likelihood

A-learning: Backward recursive scheme similar to Q-learning

Decision K: Robins (1997, 2004) showed all consistent, asymptotically normal estimators for ψ_K solve

$$\sum_{i=1}^{n} \left(\left[\sum_{j=1}^{m_{K}-1} \lambda_{Kj}(H_{Ki}) \left\{ I(A_{Ki} = j) - \omega_{K}(H_{Ki}, j) \right\} \right] \times \left\{ Y_{i} - \sum_{j=1}^{m_{K}-1} I(A_{Ki} = j) C_{Kj}(H_{Ki}; \psi_{K}) + \theta_{K}(H_{Ki}) \right\} \right) = 0$$
(6.64)

- Arbitrary vector-valued functions $\lambda_{Kj}(h_1)$, $j=1,\ldots,m_K-1$, of dimension of ψ_K
- Arbitrary real-valued function $\theta_K(h_K)$

Decision K: If ψ_{Kj} , $j = 1, ..., m_K - 1$, are nonoverlapping, (6.64) reduces to $j = 1, ..., m_K - 1$ separate equations

$$\sum_{i=1}^{n} \left[\lambda_{Kj}(H_{Ki}) \left\{ I(A_{Ki} = j) - \omega_{K}(H_{Ki}, j) \right\} \right.$$

$$\times \left\{ Y_{i} - \sum_{j'=1}^{m_{K}-1} I(A_{Ki} = j') C_{Kj'}(H_{Ki}; \psi_{Kj'}) + \theta_{K}(H_{Ki}) \right\} \right] = 0$$
(6.65)

- $\lambda_{Kj}(h_1), j = 1, \dots, m_K 1$, arbitrary of dimension of ψ_{Kj}
- If $C_{Kj}(h_K; \psi_{Kj})$, $j = 1, ..., m_K 1$, are correctly specified, optimal choice $\theta_K(h_K) = -\nu_K(h_K)$
- And if $var(Y \mid H_K = h_K, A_K = a_K)$ is constant, optimal $\lambda_{KJ}(h_K)$

$$\frac{\partial C_{Kj}(h_K; \psi_K)}{\partial \psi_K} \quad \text{and} \quad \frac{\partial C_{Kj}(h_K; \psi_{Kj})}{\partial \psi_{Kj}}$$
(6.66)

(otherwise very complicated; use (6.66) in practice)

Decision K: In practice, taking (6.65) as an example, posit a model $\nu_K(h_K; \phi_K)$ and estimate ψ_{Kj} , $j=1,\ldots,m_K-1$; ϕ_K ; and γ_K by solving jointly

$$\sum_{i=1}^{n} \left[\frac{\partial C_{Kj}(H_{Ki}; \psi_{Kj})}{\partial \psi_{Kj}} \left\{ I(A_{Ki} = j) - \omega_{K}(H_{Ki}, j; \gamma_{K}) \right\} \right] \times \left\{ Y_{i} - \sum_{j'=1}^{m_{K}-1} I(A_{Ki} = j') C_{Kj'}(H_{Ki}; \psi_{Kj'}) - \nu_{K}(H_{Ki}; \phi_{K}) \right\} \right] = 0$$

$$j = 1, \dots, m_{K} - 1, \qquad (6.67)$$

$$\sum_{i=1}^{n} \left[\frac{\partial \nu_{K}(H_{Ki}; \phi_{K})}{\partial \phi_{K}} \left\{ Y_{i} - \sum_{j'=1}^{m_{K}-1} I(A_{Ki} = j') C_{Kj'}(H_{Ki}; \psi_{Kj'}) - \nu_{K}(H_{Ki}; \phi_{K}) \right\} \right] = 0$$

with the maximum likelihood score equations for γ_K

Double robustness: As in the case K = 1, under SUTVA, SRA, positivity,

- If $C_{Kj}(h_K; \psi_{Kj})$, $j=1,\ldots,m_K-1$, are correctly specified, resulting estimator $\widehat{\psi}_K$ for ψ_K is consistent if either or both of $\omega_K(h_K, a_K; \gamma_K)$ or $\nu_K(h_K; \phi_K)$ are correctly specified
- That is, $\widehat{\psi}_K$ is doubly robust

Optimal Decision K rule: Estimator

$$\widehat{d}_{A,K}^{opt}(h_K) = \underset{j \in \{0,1,\dots,m_K-1\}}{\arg\max} C_{Kj}(h_K; \widehat{\psi}_K)$$

Similar to Slide 156: For $k = K - 1, \dots, 1$

$$E\left\{V_{k+1}(H_{k+1}) + \max_{j \in \{0,1,\dots,m_{K}-1\}} C_{kj}(H_{k}) - \sum_{j=1}^{m_{k}-1} I(A_{k} = j) C_{kj}(H_{k}) \middle| H_{k}\right\}$$

$$= E\left[E\{V_{k+1}(H_{k+1}) \mid H_{k}, A_{k}\} + \max_{j \in \{0,1,\dots,m_{K}-1\}} C_{kj}(H_{k}) - \sum_{j=1}^{m_{k}-1} I(A_{k} = j) C_{kj}(H_{k}) \middle| H_{k}\right]$$

$$= E\left\{Q_{k}(H_{k}, A_{k}) + \max_{j \in \{0,1,\dots,m_{K}-1\}} C_{kj}(H_{k}) - \sum_{j=1}^{m_{k}-1} I(A_{k} = j) C_{kj}(H_{k}) \middle| H_{k}\right\}$$

$$= E\left\{\nu_{k}(H_{k}) + \max_{j \in \{0,1,\dots,m_{k}-1\}} C_{kj}(H_{k}) \middle| H_{k}\right\} = V_{k}(H_{k})$$

Similar to Slide 156: For k = K, replacing $V_{k+1}(H_{k+1})$ by Y yields

$$E\left\{\left.Y + \max_{j \in \{0,1,\ldots,m_K-1\}} C_{Kj}(H_K) - \sum_{j=1}^{m_K-1} C_{Kj}(H_K) I(A_K = j)\right| H_K\right\} = V_K(H_K)$$

Suggests: Define pseudo outcomes $V_{K+1,i} = Y_i$,

$$\begin{split} \widetilde{V}_{ki} &= \widetilde{V}_{k+1,i} + \max_{j \in \{0,1,\dots,m_k-1\}} C_{kj}(H_{ki}; \widehat{\psi}_{kj}) \\ &- \sum_{i=1}^{m_k-1} I(A_{ki} = j) C_{kj}(H_{ki}; \widehat{\psi}_{kj}), \quad k = K, K-1, \dots, 1 \end{split}$$

• Form estimating equations analogous to (6.67) for Decisions k = K - 1, ..., 1

Decisions k = K - 1, ..., 1: With ψ_{kj} nonoverlapping, obtain $\widehat{\psi}_k$, k = K - 1, ..., 1, by solving stacked estimating equations

$$\sum_{i=1}^{n} \left[\frac{\partial C_{kj}(H_{ki}; \psi_{kj})}{\partial \psi_{kj}} \left\{ I(A_{ki} = j) - \omega_{k}(H_{ki}, j; \gamma_{k}) \right\} \right] \times \left\{ \widetilde{V}_{k+1,i} - \sum_{j'=1}^{m_{k}-1} I(A_{ki} = j') C_{kj'}(H_{ki}; \psi_{kj'}) - \nu_{k}(H_{ki}; \phi_{k}) \right\} \right] = 0$$

$$j = 1, \dots, m_{k} - 1,$$

$$\sum_{i=1}^{n} \left[\frac{\partial \nu_{k}(H_{ki}; \phi_{k})}{\partial \phi_{k}} \left\{ \widetilde{V}_{k+1,i} - \sum_{j'=1}^{m_{k}-1} I(A_{ki} = j') C_{kj'}(H_{ki}; \psi_{kj'}) - \nu_{k}(H_{ki}; \phi_{k}) \right\} \right] = 0$$

with the maximum likelihood score equation for γ_k

In practice, take

$$\lambda_k(h_k;\psi_k) = \frac{\partial C_k(h_k;\psi_k)}{\partial \psi_k}$$

Optimal Decision k **rule:** For k = K - 1, ..., 1, estimator

$$\widehat{d}_{A,k}^{opt}(h_k) = \underset{j \in \{0,1,\dots,m_k-1\}}{\arg\max} C_{kj}(h_k; \widehat{\psi}_k)$$

A-learning estimator for optimal regime d^{opt} :

$$\widehat{\textit{d}}_{\textit{A}}^{\textit{opt}} = \{\widehat{\textit{d}}_{\textit{A},1}^{\textit{opt}}(\textit{h}_{1}), \ldots, \widehat{\textit{d}}_{\textit{A},\textit{K}}^{\textit{opt}}(\textit{h}_{\textit{K}})\}$$

Feasible sets: With ℓ_k distinct subsets of \mathcal{A}_k that are feasible sets at Decision k, $\mathcal{A}_{k,l} \subseteq A_k$, $l = 1, \dots, \ell_k$

- Posit separate models $C_{kj,l}(h_k; \psi_{kj,l})$, $\nu_{k,l}(h_k; \phi_{kl})$, $\omega_{k,l}(h_k, a_k; \gamma_{kl})$, $l = 1, \ldots, \ell_k$
- Pseudo outcomes $V_{K+1,i} = Y_i$

$$\begin{split} \widetilde{V}_{ki} &= \widetilde{V}_{k+1,i} + \sum_{l=1}^{\ell_k} \mathsf{I}\{s_k(H_{ki}) = l\} \left[\max_{j \in \{0,1,\dots,m_{kl}-1\}} C_{kj,l}(H_{ki}; \widehat{\psi}_{kj,l}) \right. \\ &\left. - \sum_{j=1}^{m_{kl}-1} \mathsf{I}(A_{ki} = j) C_{kj,l}(H_{ki}; \widehat{\psi}_{kj,l}) \right], \quad k = K, K-1, \dots, 1, \end{split}$$

 With all parameters nonoverlapping, solve estimating equations on next slide to obtain

$$\widehat{d}_{A,k,l}^{opt}(h_k) = \mathop{\arg\max}_{j \in \{0,1,\dots,m_{kl}-1\}} C_{kj,l}(h_k; \widehat{\psi}_{kl})$$

$$\sum_{i=1}^{n} \left[\sum_{l=1}^{\ell_{k}} I\{s_{k}(H_{ki}) = l\} \frac{\partial C_{kj,l}(H_{ki}; \psi_{kj,l})}{\partial \psi_{kj,l}} \{I(A_{ki} = j) - \omega_{k,l}(H_{ki}, j; \gamma_{kl})\} \right]$$

$$\times \left\{ \widetilde{V}_{k+1,i} - \sum_{j'=1}^{m_{kl}-1} I(A_{ki} = j') C_{kj',l}(H_{ki}; \psi_{kj',l}) - \nu_{k,l}(H_{ki}; \phi_{kl}) \right\} \right] = 0$$

$$j = 1, \dots, m_{kl} - 1,$$

$$\sum_{i=1}^{n} \left[\sum_{l=1}^{\ell_{k}} I\{s_{k}(H_{ki}) = l\} \frac{\partial \nu_{k,l}(H_{ki}; \phi_{kl})}{\partial \phi_{kl}} \right]$$

$$\times \left\{ \widetilde{V}_{k+1,i} - \sum_{j'=1}^{m_{kl}-1} I(A_{ki} = j') C_{kj',l}(H_{ki}; \psi_{kj',l}) - \nu_{k,l}(H_{ki}; \phi_{kl}) \right\} \right] = 0$$

plus maximum likelihood score equations for γ_{kl} , $l=1,\ldots,\ell_k$

Remarks:

 Murphy (2003) proposes an A-learning approach based on direct modeling of the advantage or regret function

$$\max_{j \in \{0,1,...,m_k-1\}} C_{kj}(H_k) - \sum_{j=1}^{m_k-1} I(A_k = j) C_{kj}(H_k)$$

along with an alternative fitting strategy; see Moodie et al. (2007)

- Just as validity of Q-learning is predicated on correct specification of the Q-functions, validity of A-learning depends on correct specification of the contrast function models
- For Decisions k < K is a nonstandard modeling problem, raising the possibility of model misspecification

Estimation via marginal structural models

Recall: From Slide 309, when scientific interest focuses on regimes with simple rules in terms of low-dimensional η

• Restrict to $\mathcal{D}_{\eta} \subset \mathcal{D}$ with elements

$$d_{\eta} = \{d_1(h_1; \eta_1), \dots, d_K(h_K; \eta_K)\}, \quad \eta = (\eta_1^T, \dots, \eta_K^T)^T$$

• \mathcal{D}_{η} may be very simple, with

$$\eta = \eta_1 = \cdots = \eta_K$$

as in the HIV example on Slide 310, where HIV therapy is given if CD4 count is below a common threshold η

$$d_k(h_k; \eta) = I(CD4_k \le \eta), \quad k = 1, \dots, K$$

 $CD4_k = CD4$ count (cells/mm³) immediately prior to Decision k

• Goal: Estimate an optimal regime in \mathcal{D}_{η}

$$d_{\eta}^{opt} = \{d_1(h_1; \eta^{opt}), \dots, d_K(h_K; \eta^{opt})\},\$$

$$\eta^{opt} = \underset{\eta}{\operatorname{arg max}} \ \mathcal{V}(d_{\eta})$$

Estimation via marginal structural models

Marginal structural model: A model for $V(d_{\eta})$ as a function of η

I.e., V(dη) = μ(η) for some function μ(·), posit a parametric model
 V(dη) = E{Y*(dη)} = μ(η; α)

· For example, a quadratic model

$$\mu(\eta; \alpha) = \alpha_1 + \alpha_2 \eta + \alpha_3 \eta^2, \quad \alpha = (\alpha_1, \alpha_2, \alpha_3)^T$$

- Estimate α by $\widehat{\alpha}$ using the approaches on Slides 309–316
- Estimate η^{opt} by maximizing

$$\widehat{\mathcal{V}}_{MSM}(\mathbf{d}_{\eta}) = \mu(\eta; \widehat{\alpha})$$

in η , which is entirely feasible for scalar η

Estimation via marginal structural models

Remarks:

- Estimation of an optimal regime is appealing when regimes of interest have rules characterized by a low-dimensional parameter
- Quality of estimation is clearly predicated on how well the marginal structural model represents the true relationship between $\mathcal{V}(d_{\eta})$ and η
- See Robins, Orellana, and Rotnitzky (2008) and Orellana, Rotnitzky, and Robins (2010ab)

Discussion

Numerous approaches: New approaches are being developed daily

- Alternative form of value search/backward iterative strategy via nonparametric regression modeling for $d_{\eta}^{opt} \in \mathcal{D}_{\eta}$ (see Zhang et al., 2018)
- Restricted class of regimes with rules at each deision point in the form of a decision list (Zhang et al., 2018)
- Optimal regimes based on alternative criteria
- Optimal regimes when the outcome is a time-to-an-event/survival time, where the observed outcome may be censored (number and timing of decision points is random)

6. Optimal Multiple Decision Treatment Regimes

- 6.1 Characterization of an Optimal Regime
- 6.2 Estimation of an Optimal Regime
- 6.3 Key References

References

Moodie, E. E. M., Richardson, T. S., and Stephens, D. A. (2007). Demystifying optimal dynamic treatment regimes. *Biometrics*, 63, 447–455.

Murphy, S. A. (2003). Optimal dynamic treatment regimes (with discussions). *Journal of the Royal Statistical Society, Series B*, 65, 331–366.

Orellana, L., Rotnitzky, A., and Robins, J. M. (2010a). Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: Main content. *The International Journal of Biostatistics*, 6.

Orellana, L., Rotnitzky, A., and Robins, J. M. (2010b). Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part II: Proofs and additional results. *The International Journal of Biostatistics*, 6.

References

Robins, J. (1997). Causal inference from complex longitudinal data. In Berkane, M., editor, *Latent Variable Modeling and Applications to Causality: Lecture Notes in Statistics*, pp. 69–117, Springer-Verlag.

Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Lin, D. Y. and Heagerty, P., editors, *Proceedings of the Second Seattle Symposium on Biostatistics*, pages 189–326, New York. Springer.

Robins, J. M., Orellana, L., and Rotnitzky, A. (2008). Estimation and extrapolation of optimal treatment and testing strategies. *Statistics in Medicine*, 27, 4678–4721.

Schulte, P. J., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2014). Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions. *Statistical Science*, 29, 640–661.

References

Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2013). Robust estimation of optimal dynamic treatment regimes for sequential treatment decisions. *Biometrics*, 100, 681–694.

Zhang, B. and Zhang, M. (2018). C-learning: A new classification framework to estimate optimal dynamic treatment regimes. *Biometrics*, 74, 891–899.

Zhang, Y., Laber, E. B., Davidian, M., and Tsiatis, A. A. (2018). Interpretable dynamic treatment regimes. *Journal of the American Statistical Association*, 113, 1541–1549.

Zhao, Y., Zeng, D., Laber, E. B., and Kosorok, M. R. (2015). New statistical learning methods for estimating optimal dynamic treatment regimes. *Journal of the American Statistical Association*, 110, 583–598.