Lecture 3 Tree Data Structures

Subject Lecturer: Kevin K.F. YUEN, PhD.

Acknowledgement: Slides were offered from Prof. Ken Yiu. Some parts has been revised and indicated.

Outline

General tree

Binary tree

Binary search tree

Balanced tree: AVL tree

Applications of trees

Tree is a hierarchical data structure

- Applications
 - Structure/data modeling
 - File system, XML, organization tree
 - Database systems: B-tree, R-tree
 - Data compression: Huffman coding
 - Compilers: syntax tree
 - Data mining: decision tree

>40

excellent

credit rating?

fair

31...40

student?

yes

Tree definitions

- A tree is a set of nodes that have parent-child relationship
 - \bullet E.g., a, c, e are the children of b
 - \bullet E.g., b is the parent of a, c, e
- **Root**: the node without parent
 - ♦ E.g., b
- Internal node: a node with at least one child
 - ♦ E.g., b, a

- ♦ E.g., d, f, c, e
- The **ancestors** of a node v are all nodes on the path from the root to v, except v itself
 - \bullet E.g., the ancestors of d are a, b
- \bullet The descendants of a node v are all nodes that take v as their ancestor
 - \bullet E.g., the descendants of b are a, c, e, d, f

root

Tree definitions

Tree T

- Depth of a node: the number of ancestors
 - \bullet E.g., the depth of b is 0
 - \bullet E.g., the depth of d is 2
- Height of a tree: the maximum depth of any node
 - \bullet E.g., the height of tree T is 2
- Subtree rooted at node v: the tree consisting of v and its descendants (including edges connected to descendants)
 - Example: the subtree rooted at a
- A tree is ordered if there is a linear ordering for the children of each node
 - The ordering is visualized by arranging child nodes left to right
 - \bullet E.g., a, c, e are the 1st child, 2nd child, 3rd child of b, respectively
- How to traverse an ordered tree?

Preorder traversal

- Preorder: visit a node before its descendants
- Example: print a tree T by using preorder traversal
 - Implement visit(v) (at line 1) by "print v.element"
 - ightharpoonup Run the algorithm with preorder (T.root)
 - The visiting order is indicated by the numbers in red (in brackets)
 - \diamond The result: $b \ a \ df \ c \ e$

preorder(v)

- 1. **visit**(*v*)
- 2. for each child w of v
- 3. preorder(w)

Postorder traversal

- Postorder: visit a node after its descendants
- Example: print a tree T by using postorder traversal
 - Implement visit(v) (at line 3) by "print v.element"
 - Run the algorithm with postorder (T.root)
 - The visiting order is indicated by the numbers in red (in brackets)
 - \diamond The result: d f a c e b

postorder(v)

- 1. for each child w of v
- 2. postorder(w)
- 3. visit(v)

Outline

General tree

Binary tree

Binary search tree

Balanced tree: AVL tree

Binary tree structure

- \diamond A binary tree T is an ordered tree
- ♦ It has a root node *T.root*
- Each node v stores the following attributes:
 - *v.element*: data element
 - v.left: reference to the left child node
 - *v.right*: reference to the right child node
 - $\diamond v.p$: reference to the parent node [optional]
- A reference is set to null if the corresponding child node is missing
- v is a leaf node if v.left = v.right = null

Inorder traversal

- Inorder: visit a node after its left subtree and before its right subtree
- Example: print a tree T by using inorder traversal
 - Implement visit(v) (at line 3) by "print v.element"
 - Run the algorithm with inorder (T.root)
 - The visiting order is indicated by the numbers in red (in brackets)
 - \diamond The result: $d \ a \ f \ b \ e$

inorder(v)

- 1. if $v.left \neq null$
- 2. inorder(v.left)
- 3. visit(v)
- 4. if $v.right \neq null$
- 5. inorder(v.right)

Tree traversal: applications

 \diamond We can use a binary tree T to represent an arithmetic expression, e.g.,

$$(3 + 4) \times 5$$

• 1. How to modify the **postorder** traversal algorithm to compute the result of the expression?

2. How to modify the inorder traversal algorithm to print the expression?

Outline

General tree

Binary tree

Binary search tree

Balanced tree: AVL tree

Binary search tree: applications

Binary search tree

 A data structure that supports efficient operations on a set, e.g., searching, insertion, deletion

Applications

- Index of items in a set
- Dictionary
- Browsing the data items in an order

Binary search tree

- It is a binary tree:
 - each node v stores v.key, v.left, v.right, v,p
- that satisfies the "binary search tree property":
 - all keys in the left subtree of v are less than v.key
 - all keys in the right subtree of v are greater than v.key

[Question] Which tree is **not** a binary search tree?

Binary search tree: operations

Operation	Complexity	Meaning
Search	$\mathrm{O}(h)$	Search a node with a key
Minimum	O(h)	Find the minimum node
Maximum	O(h)	Find the maximum node
Insert	O(h)	Insert a key
Delete	O(h)	Delete a key

Tree height: h

However, h can be O(n) in the worst case!

Search

- \bullet Find a node with key k
 - Return null if there is no such node
- Example:

Search (*T.root*, 13)

- Visit the node "15", go left
- ♦ Visit the node "9", go right
- ♦ Visit the node "13", key found!

Search (x, k)

- 1. if x = null or k = x.key
- 2. return *x*
- 3. if k < x.key
- 4. Search(x.left, k)
- 5. else
- 6. Search(x.right, k)

Remark: This algorithm can also be rewritten by using a while-loop

Minimum

- Find the minimum node
- Example: Minimum (T.root)
 - Visit the node "15", go left
 - Visit the node "9", go left
 - ♦ Visit the node "8", no left child, return the node "8"

Minimum (x)

- 1. while $x.left \neq null$
- 2. $x \leftarrow x.left$
- 3. return *x*

Insertion: Idea

- Idea: insert a node z at the bottom of the tree
 - \diamond (1) Search the leaf node y such that it can become the parent of z, then
 - \diamond (2) Insert the node z as a child of y
- Example:

Insert (T, z)

Insertion: Algorithm

1.
$$y \leftarrow \text{null}; \quad x \leftarrow T.root$$

2. while
$$x \neq \text{null}$$

3.
$$y \leftarrow x$$

4. if
$$z.key < x.key$$

5.
$$x \leftarrow x.left$$

7.
$$x \leftarrow x.right$$

8.
$$z.p \leftarrow y$$

9. if
$$y = \text{null}$$

10.
$$T.root \leftarrow z$$

11. else if
$$z.key < y.key$$

12.
$$y.left \leftarrow z$$

13. else

14. $y.right \leftarrow z$

Deletion: Idea

- Idea: consider three cases of the node z to be deleted
 - (1) z has no child: trivial
 - (2) z has one child: replace z by its child

Case 2 has two sub-cases

(3) z has two children: delete the minimum node x of the right subtree of z, then replace z by x

Deletion: Algorithm

Transplant (T, u, v)

- 1. if u.p = null
- 2. $T.root \leftarrow v$
- 3. else if u = (u.p).left
- 4. $(u.p).left \leftarrow v$
- 5. else
- 6. $(u.p).right \leftarrow v$
- 7. if $v \neq \text{null}$
- 8. $v.p \leftarrow u.p$

Delete (T, z)

- 1. if z.left = null
- 2. Transplant(*T*, *z*, *z*.*right*)
- 3. else if z.right = null
- 4. Transplant(T, z, z.left)
- 5. else
- 6. $y \leftarrow \text{Minimum}(z.right)$
- 7. Delete (T, y)
- 8. replace z by y

Deletion: Example 1

- Example: Delete (T, node_27)
 - ♦ Find the parent node of "27"
 - Set its right child to null,i.e., delete the node "27"

before deletion

after deletion

Deletion: Example 2

- Example: Delete (T, node_9)
 - ♦ Find the parent node of "9"
 - Set its left child to the child of "9"

Deletion: Example 3

- Example: Delete (T, node_15)
 - Replace "15" by its successor "18"
 - Delete its successor "18"(like the case in the previous slide)

Outline

General tree

Binary tree

Binary search tree

Balanced tree: AVL tree

Unbalanced Tree: Example

- Suppose we insert the keys 3, 6, 9, 12, 15, 18 (in this order) into a binary search tree
- Problem: the tree is not "balanced"
 - The right subtree is much taller than the left subtree
 - \bullet Tree height *h* can be as large as n-1!
 - ♦ High search time: O(h) = O(n) where *n* is the number of keys

AVL Tree

- \bullet The **height-balance** (hb) of a node x is:
 - x's left child height -x's right child height
 - Special case:

- null node's height = -1
- AVL tree is a height-balanced binary search tree
 - \diamond Property: the *hb* of each node is either -1, 0, or 1

[The property is violated if the hb of some node is <-1 or >1]

Heights of tree nodes

Question

- Which tree satisfies the AVL tree property?
 - Hint: compute the height-balance of each node
 (first consider nodes at low levels, then nodes at high levels)

Height of AVL Tree

- What is the relationship between the tree height h and the number of nodes n?
- It can be proved that $h \le \log_{\varphi} n$
 - where φ is the golden ratio (1.618)
 - We skip the proof here
- Therefore, $h = O(\log n)$
- * AVL tree supports fast searching, insertion, deletion: $O(\log n)$ time

Insertion

- ♦ When we insert a key (21) into an AVL tree, some node may have height-balance –2 or 2
 - This violates the AVL tree property
- How to fix this problem?

Tree before insertion (AVL yes)

Tree after insertion (AVL no)

Insertion: Left Rotation

- Solution: rotate the node to balance that node
 - \bullet Rotate **left** if its height-balance = -2
 - \diamond y \leftarrow x.right;

 $x.right \leftarrow y.left$;

- \diamond y.left $\leftarrow x$;
- $\diamond x.parent.left/right \leftarrow y$
 - depending which node is the parent of x

Insertion: Right Rotation

- Solution: rotate the node to balance that node
 - Rotate **right** if its height-balance = 2
 - $\diamond y \leftarrow x.left$; $x.left \leftarrow y.right$;
 - \diamond y.right \leftarrow x;
 - $* x.parent.left/right \leftarrow y$
 - depending which node is the parent of x

Insertion

 \diamond After inserting a key k, the cases for balancing a node x:

Outside cases: do a single rotation

- \diamond (i) k inserted into x's left child's left subtree
- \diamond (ii) k inserted into x's right child's right subtree

Inside cases: do a double rotation

- \diamond (iii) k inserted into x's left child's right subtree
- (iv) k inserted into x's right child's left subtree

Insertion: Outside Case (i)

- The AVL property is violated at node x
- \diamond Solution: do a right rotation at x, y

Insertion: Outside Case (ii)

- The AVL property is violated at node x
- The solution is similar to that for case (i)

Insertion: Inside Case (iii)

- The AVL property is violated at node x
- Can we solve this by a right rotation?
 - NO! Node y will violate the property!

After rotation

Insertion: Inside Case (iii)

- The AVL property is violated at node *x*
- Consider the right subtree of y
 - Let z be the root of this subtree

Insertion: Inside Case (iii)

- The AVL property is violated at node x
- Solution: do a double rotation
 - First do a left rotation at y,z, and
 - \diamond Then do a right rotation at x,z

Insertion: Inside Case (iv)

- The AVL property is violated at node x
- The solution is similar to that for case (iii)

AVL Tree Insertion Algorithm

Insert (AVL-Tree T, Key k)

- 1. insert k into a (new) leaf node of T
- 2. let x be the leaf node that contains k
- 3. while $x.parent \neq null$
- 4. $x \leftarrow x.parent$ // go up the tree
- 5. update x.hb // update height-balance
- 6. if x.hb = -2 or x.hb = 2
- 7. decide the case, do rotation at x
- 8. exit the while-loop

Insertion: Example 1

Insert '24' into the tree

- Which rotation case?
- Node '18' has a height-balance −2
- Do a left rotation at '18', '21'

After insertion

After left rotation

Insertion: Example 2

- Insert '15' into the tree
 - Node '12' has a height-balance −2

Which rotation case?

Do a double rotation:

right rotate '21', '18'; left rotate '12', '18'

After insertion

After right rotation

After left rotation 43

Deletion

- ♦ When we delete a key (9) from an AVL tree, some node may have height-balance –2 or 2
 - This violates the AVL tree property
- How to fix this problem?
 - Solution: do rotation (as we learnt before)

Tree before deletion (AVL yes)

Tree after deletion (AVL no)

AVL Tree Deletion Algorithm

- \diamond We consider three cases when deleting node x:
 - \diamond 1. x has no child
 - \diamond 2. x has one child
 - \diamond 3. x has two child
- After deleting a node x:
 - Iteratively check the parent/ancestor nodes of x
 - Update their height-balance values

- Delete '9' from the tree
 - '9' has no children; just delete it
 - ♦ Node '12' has a height-balance –2
 - Do a left rotation at '12', '15'

Which rotation case?

Before deletion

After deletion

After left rotation

- Delete '12' from the tree
 - Replace '12' by its successor '15', then delete old '15'
 - ♦ Node '18' has a height-balance −2

Which rotation case?

Do a left rotation at '18', '21'

Before deletion

After deletion

After left rotation

- Delete '18' from the tree
 - Replace '18' by its successor '21', then delete old '18'
 - Node '21' has a height-balance 2

Which rotation case?

Do a double rotation :

left rotate '9', '12';

right rotate '21', '12'

Which rotation case?

- Delete '9' from the tree
 - \bullet Node '12' has a height-balance -2

♦ Do a left rotation at '12', '18'

- Delete '9' from the tree
 - ♦ Node '12' has a height-balance −2

Which rotation case?

Do a double rotation:right rotate '18', '15'; left rotate '12', '15'

Summary

- Binary tree
 - Tree structure
 - Operation: Tree traversal
- Binary search tree
 - Binary search tree property
 - Operations: search, insert, delete
- Balanced tree
 - AVL tree property
 - Insert, delete
 - Apply single/double rotations to balance the tree
- Please read Chapters 8 and 11 in the book
 "Data Structures and Algorithms in Java", 6th Edition