20181CSE0621 Pa Sailam. 20181CSE0621 02 06 2021 Soi Ram K 6-CSE-10 Part-C Q.1 Given, $X \equiv 3 \mod 5$ $X \equiv 1 \mod 7$ X = 6 mod 8 Gerelal form => X = a; mod m; We have $a_1 = 3$; $a_2 = 1$; $a_3 = 6$ $m_1 = 5$; $m_2 = 7$; $m_3 = 8$ (i) gcd (m, m2) = gcd (m2, m3) = gcd (m3, m,) = 1 Therefore they are co prime. To compute $M:-M=m_1 \times m_2 \times m_3 = 5 \times 7 \times 8$ M = 280M. Hence, M. = M = 280 = 56 m. 5 $M_2 = M = \frac{280}{7} = \frac{40}{7}$ $M_3 = \frac{M}{m_3} = \frac{280}{8} = \frac{35}{8}$ (uic) We know that, Z = [M, x, a, + x M2 N2 a2+ x M3 x3 a3] moll Tel We need to compute the value of X, , X2 & X3 to proceed.

	2-18165 A Classmate
	20181CSE0621 Date Page
("1")	To find Xi values,
	We know M, X, = 1 mod (m,) (or) M, X, (mod m,) = 1.
	$- 56 \times_{1} (mod 5) = 1$ $1 \times_{1} (mod 5) = 1$ $- 40 \times_{2} (mod 7) = 1$ $5 \times_{2} (mod 7) = 1$ $\therefore \times_{2} = 5$ $- 35 \times_{3} (mod 8) = 1$ $3 \times_{3} (mod 8) = 1$ $\vdots \times_{3} = 3$
(v)	Z = [M, X, a, *+M, X, a, *+M, X, a, a, mod 280 Substituting the value we get Z = [56.1.3+ 40.5.1 *+35.3.6] mod 280 = [168 + 200 + 630] mod 280 [PTO] Z = 998 mod 280 Solving for Z 998-280 = 718 T18-280 = 438 438-280 = 158 And hence Z = 158 158 = 3 mod 5 158 = 6 mod 8.

20181CSE0621 Sai Ram

Z= [168+120+630] mod 280.

Z = 918 mod 280.

Solving for Z we get, 918-280 =638 638-280 = 350 350-280 = 78.

 $78 \equiv 3 \mod 5$ $78 \equiv 1 \mod 7$ $78 \equiv 6 \mod 8$