- 1. Rate of Change of Quantities Let y = f(x) be a function of x. Then, $\frac{dy}{dx}$ represents the rate of change of y with respect to x. Also, $\left[\frac{dy}{dx}\right]_{x=x_0}$ represents the rate of change of y with respect to x at $x=x_0$.
- 2. If two variables x and y are varying with respect to another variable t, i.e. x = f(t) and y = g(t), then

$$\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$$
, where $\frac{dx}{dt} \neq 0$ (by chain rule)

In other words, the rate of change of y with respect to x can be calculated using the rate of change of y and that of x both with respect to t.

NOTE $\frac{dy}{dx}$ is positive, if y increases as x increases and it is negative, if y decreases as x increases.

- Marginal Cost Marginal cost represents the instantaneous rate of change of the total cost at any level of output.
 - If C(x) represents the cost function for x units produced, then marginal cost (MC) is given by $MC = \frac{d}{dx} \{C(x)\}$
- 4. Marginal Revenue Marginal revenue represents the rate of change of total revenue with respect to the number of items sold at an instant.
 - If R(x) is the revenue function for x units sold, then marginal revenue (MR) is given by

$$MR = \frac{d}{dx} \{ R(x) \}$$

- 5. Let I be an open interval contained in the domain of a real valued function f. Then, f is said to be
 - (i) increasing on I, if $x_1 < x_2$ in $I \Rightarrow f(x_1) \le f(x_2), \forall x_1, x_2 \in I$.
 - (ii) strictly increasing on I, if $x_1 < x_2$ in $I \Rightarrow f(x_1) < f(x_2)$, $\forall x_1, x_2 \in I$.
 - (iii) decreasing on I, if $x_1 < x_2$ in $I \Rightarrow f(x_1) \ge f(x_2)$, $\forall x_1, x_2 \in I$.
 - (iv) strictly decreasing on I, if $x_1 < x_2$ in $I \Rightarrow f(x_1) > f(x_2)$, $\forall x_1, x_2 \in I$.
- 6. Let x_0 be a point in the domain of definition of a real valued function f, then f is said to be increasing, strictly increasing, decreasing or strictly decreasing at x_0 , if there exist an open interval I containing x_0 such that f is increasing, strictly increasing, decreasing or strictly decreasing, respectively in I.

NOTE If for a given interval $I \subseteq R$, function f increase for some values in I and decrease for other values in I, then we say function is neither increasing nor decreasing.

- 7. Let f be continuous on [a, b] and differentiable on the open interval (a, b). Then,
 - (i) f is increasing in [a, b], if f'(x) > 0 for each $x \in (a, b)$.
 - (ii) f is decreasing in [a, b], if f'(x) < 0 for each $x \in (a, b)$.
 - (iii) f is a constant function in [a, b], if f'(x) = 0 for each $x \in (a, b)$.

NOTE (i) f is strictly increasing in (a,b), if f'(x) > 0 for each $x \in (a,b)$.

- (ii) f is strictly decreasing in (a,b), if f'(x) < 0 for each $x \in (a,b)$.
- 8. Monotonic Function A function which is either increasing or decreasing in a given interval *I*, is called monotonic function.
- 9. **Approximation** Let y = f(x) be any function of x. Let Δx be the small change in x and Δy be the corresponding change in y.

i.e.
$$\Delta y = f(x + \Delta x) - f(x)$$
. Then, $dy = f'(x) dx$ or $dy = \frac{dy}{dx} \cdot \Delta x$

is a good approximation of Δy , when $dx = \Delta x$ is relatively small and we denote it by $dy \approx \Delta y$.

- 1. Binary Operation A binary operation * on set X is a function *: $X \times X \to X$. It is denoted by a * b.
- 2. Commutative Binary Operation A binary operation * on set X is said to be commutative, if a * b = b * a, $\forall a, b \in X$.
- 3. Associative Binary Operation A binary operation * on set X is said to be associative, if a*(b*c)=(a*b)*c, $\forall a,b,c \in X$.

NOTE For a binary operation, we can neglect the bracket in associative property. But in absence of associative property, we cannot neglect the bracket.