Tercer Examen Parcial

Álgebra Superior 1, 2025-4

Instrucciones. Resuelve los siguientes ejercicios, se pueden utilizar libremente resultados vistos en clase, siempre y cuando, se indique claramente dónde y cuáles se utilizan.

Ej. 1 (2.5 pts) Pruebe que para cualquier natural n se cumple $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

Ej. 2 (2.5 pts) Sean A un conjunto infinito y B un conjunto finito tal que $A \cap B = \emptyset$, demuestra que $A \setminus B$ es infinito.

Ej. 3 (2.5 pts) Sean $x,y \in \mathbb{R}$ y supongamos que los números $a_{900}, a_{899}, \dots, a_1, a_0$ son los coeficientes (en orden) del polinomio $(x+y)^{900}$; es decir $(x+y)^{900}=a_{900}x^{900}+a_{889}x^{889}y+\dots+a_1xy^{889}+a_0y^{900}$. ¿Cuál de los siguientes números es mayor, a_{100} o a_{798} ? Demuestra todas tus afirmaciones.

Ej. 4 (2.5 pts)

Ej. 5 (+1 pts) *Este ejercicio es opcional y sólo se tomará en cuenta si no hay errores en la solución.* Prueba que el buen orden de los naturales (todo subconjunto no vacío de ℕ tiene un mínimo) implica el

Tercer Examen Parcial

Álgebra Superior 1, 2025-4

Instrucciones. Resuelve los siguientes ejercicios, se pueden utilizar libremente resultados vistos en clase, siempre y cuando, se indique claramente dónde y cuáles se utilizan.

Ej. 1 (2.5 pts) Pruebe que para cualquier natural n se cumple $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$

Ej. 2 (2.5 pts) Sean A un conjunto infinito y B un conjunto finito tal que $A \cap B = \emptyset$, demuestra que $A \setminus B$ es infinito.

Ej. 3 (2.5 pts) Sean $x,y \in \mathbb{R}$ y supongamos que los números $a_{900}, a_{899}, \dots, a_1, a_0$ son los coeficientes (en orden) del polinomio $(x+y)^{900}$; es decir $(x+y)^{900}=a_{900}x^{900}+a_{889}x^{889}y+\dots+a_1xy^{889}+a_0y^{900}$. ¿Cuál de los siguientes números es mayor, a_{100} o a_{798} ? Demuestra todas tus afirmaciones.

Ej. 4 (2.5 pts)

Ej. 5 (+1 pts) Este ejercicio es opcional y sólo se tomará en cuenta si no hay errores en la solución. Prueba que el buen orden de los naturales (todo subconjunto no vacío de ℕ tiene un mínimo) implica el