The N-Gamma-Ti-Te model

Giorgio Giorgiani

1 Introduction

The equations considered are:

• Continuity equation

$$\partial_t n + \nabla \cdot (nub) - \nabla \cdot (\frac{D}{D} \nabla_{\perp} n) = \hat{S}_n. \tag{1}$$

• Momentum equation

$$\partial_t(\mathbf{m_i} n u) + \nabla \cdot (\mathbf{m_i} n u^2 b) + \nabla_{\parallel}(\mathbf{k_b} n (T_e + T_i)) - \nabla \cdot (\mu \nabla_{\perp}(\mathbf{m_i} n u)) = \hat{S}_{\Gamma}.$$
 (2)

• Total ions energy equation

$$\begin{split} &\partial_{t}(\frac{3}{2}\boldsymbol{k_{b}}nT_{i}+\frac{1}{2}\boldsymbol{m_{i}}nu^{2})+\boldsymbol{\nabla}\cdot((\frac{5}{2}\boldsymbol{k_{b}}nT_{i}+\frac{1}{2}\boldsymbol{m_{i}}nu^{2})u\boldsymbol{b})-nueE_{\parallel}+\\ &-\boldsymbol{\nabla}\cdot\left(\frac{3}{2}\boldsymbol{k_{b}}(Ti\boldsymbol{D}\boldsymbol{\nabla}_{\perp}n+n\boldsymbol{\chi_{i}}\boldsymbol{\nabla}_{\perp}T_{i})\right)-\boldsymbol{\nabla}\cdot(-\frac{1}{2}\boldsymbol{m_{i}}u^{2}\boldsymbol{D}\boldsymbol{\nabla}_{\perp}n+\frac{1}{2}\boldsymbol{m_{i}}\mu n\boldsymbol{\nabla}_{\perp}u^{2})+\\ &-\boldsymbol{\nabla}\cdot(\boldsymbol{k_{\parallel i}}T_{i}^{5/2}\boldsymbol{\nabla}_{\parallel}T_{i}\boldsymbol{b})+\frac{3}{2}\frac{\boldsymbol{k_{b}}n}{\hat{\tau_{ie}}}(T_{e}-T_{i})=\hat{S}_{E_{i}}. \end{split} \tag{3}$$

• Total electrons energy equation

$$\partial_{t}(\frac{3}{2}\mathbf{k}_{b}nT_{e}) + \nabla \cdot (\frac{5}{2}\mathbf{k}_{b}nT_{e}u\mathbf{b}) + nueE_{\parallel} - \nabla \cdot \left(\frac{3}{2}\mathbf{k}_{b}(T_{e}\mathbf{D}\nabla_{\perp}n + n\chi_{e}\nabla_{\perp}T_{e})\right) + \\ - \nabla \cdot (\mathbf{k}_{\parallel e}T_{e}^{5/2}\nabla_{\parallel}T_{e}\mathbf{b}) - \frac{3}{2}\frac{\mathbf{k}_{b}n}{\tau_{ie}^{2}}(T_{e} - T_{i}) = \hat{S}_{E_{e}}.$$

$$(4)$$

The ion and electron pressures are defined as

$$\hat{p}_i = nT_i k_b \quad \hat{p}_e = nT_e k_b, \tag{5}$$

while the parallel electric field is given by

$$neE_{\parallel} = -\nabla_{\parallel}(\mathbf{k_b}nT_e) = -\nabla_{\parallel}\hat{p}_e. \tag{6}$$

Finally the temperature exchange coefficient $\hat{\tau_{ie}} \sim [s]$ is written as

$$\hat{\tau_{ie}} = \tau_{ie} \frac{T_e^{3/2}}{n},\tag{7}$$

where τ_{ie} can be computed as

$$\tau_{ie} = \frac{3\sqrt{2}}{e^4} \frac{{\varepsilon_0}^2}{\Lambda} \pi^{\frac{3}{2}} \frac{m_i}{m_e} \sqrt{m_e} \ e^{\frac{3}{2}}, \tag{8}$$

and $\Lambda \approx 12$.

1.1 Some assumptions and arrangements

The equations presented are re-elaborated:

- Continuity equation: this equation is left unchanged.
- Momentum equation: this equation is divided by m_i and the specific pressures $p_i, p_e \sim [m^{-1}s^{-2}]$ are introduced

$$p_i = \frac{\hat{p}_i}{m_i}, \quad p_e = \frac{\hat{p}_e}{m_i}, \tag{9}$$

hence it becomes

$$\partial_t(nu) + \nabla \cdot (nu^2 \boldsymbol{b} + nu \boldsymbol{u}_\perp) + \nabla_{\parallel}(p_i + p_e) - \nabla \cdot (\boldsymbol{\mu} \nabla_{\perp} nu) = S_{\Gamma}, \tag{10}$$

where $S_{\Gamma} = \hat{S}_{\Gamma}/m_i$

• Total ions energy equation: this equation is divided by m_i and the specific total energy for ions $E_i \sim [m^2 s^{-2}]$ is introduced

$$E_i = \frac{3}{2} \frac{k_b}{m_i} T_i + \frac{1}{2} u^2 = \frac{3}{2} \frac{p_i}{n} + \frac{1}{2} u^2.$$
 (11)

The assumption $D = \mu = \chi_i$ is made, hence the equation becomes

$$\partial_{t}(nE_{i}) + \nabla \cdot \left((nE_{i} + p_{i})u\boldsymbol{b} + nE_{i}\boldsymbol{u}_{\perp} \right) - \nabla \cdot \left(\chi_{i}\nabla_{\perp}nE_{i} \right) - \nabla \cdot \left(\frac{k_{\parallel i}}{m_{i}}T_{i}^{5/2}\nabla_{\parallel}T_{i}\boldsymbol{b} \right) + u\nabla_{\parallel}p_{e}$$

$$+ \frac{3}{2} \frac{n^{2}k_{b}}{\tau_{ie}m_{i}}T_{e}^{3/2} (T_{e} - T_{i}) = S_{E_{i}},$$
12)

(12) where $S_{E_i} = \hat{S}_{E_i} / m_i$.

• Total electrons energy equation: this equation is divided by m_i and the specific total energy for electrons $E_e \sim [m^2 s^{-2}]$ is introduced

$$E_e = \frac{3}{2} \frac{k_b}{m_i} T_e = \frac{3}{2} \frac{p_i}{n}.$$
 (13)

The assumption $D = \mu = \chi_e$ is made, hence the equation becomes

$$\partial_{t}(nE_{e}) + \nabla \cdot \left((nE_{e} + p_{e})u\boldsymbol{b} + nE_{e}\boldsymbol{u}_{\perp} \right) - \nabla \cdot \left(\chi_{e} \nabla_{\perp} nE_{e} \right) - \nabla \cdot \left(\frac{k_{\parallel e}}{m_{i}} T_{e}^{5/2} \nabla_{\parallel} T_{e} \boldsymbol{b} \right) - u \nabla_{\parallel} p_{e}$$

$$- \frac{3}{2} \frac{n^{2} k_{b}}{\tau_{ie} m_{i} T_{e}^{3/2}} (T_{e} - T_{i}) = S_{E_{e}},$$

$$(14)$$

where $S_{E_e} = \hat{S}_{E_e}/m_i$.

2 System of dimensional equations

The system of equations is

The system of equations is
$$\begin{cases}
\partial_{t}n + \nabla \cdot (nu\boldsymbol{b} + n\boldsymbol{u}_{\perp}) - \nabla \cdot (\boldsymbol{D}\nabla_{\perp}n) = S_{n}, \\
\partial_{t}(nu) + \nabla \cdot (nu^{2}\boldsymbol{b} + nu\boldsymbol{u}_{\perp}) + \nabla_{\parallel}(p_{i} + p_{e}) - \nabla \cdot (\boldsymbol{\mu}\nabla_{\perp}nu) = S_{\Gamma}, \\
\partial_{t}(nE_{i}) + \nabla \cdot \left((nE_{i} + p_{i})u\boldsymbol{b} + nE_{i}\boldsymbol{u}_{\perp}\right) - \nabla \cdot (\chi_{i}\nabla_{\perp}nE_{i}) - \nabla \cdot \left(\frac{k_{\parallel i}}{m_{i}}T_{i}^{5/2}\nabla_{\parallel}T_{i}\boldsymbol{b}\right) + u\nabla_{\parallel}p_{e} \\
+ \frac{3}{2}\frac{n^{2}k_{b}}{\tau_{ie}m_{i}T_{e}^{3/2}}(T_{e} - T_{i}) = S_{E_{i}}, \\
\partial_{t}(nE_{e}) + \nabla \cdot \left((nE_{e} + p_{e})u\boldsymbol{b} + nE_{e}\boldsymbol{u}_{\perp}\right) - \nabla \cdot (\chi_{e}\nabla_{\perp}nE_{e}) - \nabla \cdot \left(\frac{k_{\parallel e}}{m_{i}}T_{e}^{5/2}\nabla_{\parallel}T_{e}\boldsymbol{b}\right) - u\nabla_{\parallel}p_{e} \\
- \frac{3}{2}\frac{n^{2}k_{b}}{\tau_{ie}m_{i}T_{e}^{3/2}}(T_{e} - T_{i}) = S_{E_{e}},
\end{cases}$$
(15)

where the ionic and electronic specific pressures are

$$p_i = \frac{nT_i k_b}{m_i}, \quad p_e = \frac{nT_e k_b}{m_i}, \tag{16}$$

and the ionic and electronic energies are

$$E_i = \frac{1}{2}u^2 + \frac{3}{2}\frac{p_i}{n}, \quad E_e = \frac{3}{2}\frac{p_e}{n}.$$
 (17)

The Bohm boundary condition is expressed in terms of parallel flux of energies for ions and electrons, that is

$$q_{\parallel}^{i} = \gamma_{i} u p_{i} + \frac{1}{2} n u^{3},$$

$$q_{\parallel}^{e} = \gamma_{e} u p_{e},$$

which provides, after replacing the expression of the parallel energy fluxes,

$$(nE_{i} + p_{i})u - \frac{k_{\parallel i}}{m_{i}} T_{i}^{5/2} \nabla_{\parallel} T_{i} = \gamma_{i} u p_{i} + \frac{1}{2} n u^{3},$$

$$(nE_{e} + p_{e})u - \frac{k_{\parallel e}}{m_{i}} T_{e}^{5/2} \nabla_{\parallel} T_{e} = \gamma_{e} u p_{e}.$$
(18)

3 Non-dimensionalization

A set of reference values is defined

Density:
$$n_0,$$
 Length: $L_0,$ Time: $t_0,$ Velocity: $u_0 = \frac{L_0}{t_0},$ Temperature: $T_0,$

and the non-dimensional quantities and operators are

Density:
$$n^* = \frac{n}{n_0},$$
 Velocity:
$$u^* = \frac{u}{u_0},$$
 Energy:
$$E^* = \frac{E}{u_0^2},$$
 Time derivative:
$$\partial_t^* = \frac{\partial_t}{t_0},$$
 Nabla:
$$\nabla^* = \frac{\nabla}{L_0}.$$

3.1 The continuity equation

The continuity equation

$$\partial_t n + \nabla \cdot (nub + nu_\perp) - \nabla \cdot (\frac{D}{D}\nabla_\perp n) = S_n,$$

is rewritten using the reference values

$$\frac{n_0}{t_0}\partial_t^* n^* + \frac{n_0 u_0}{L_0} \nabla \cdot^* (n^* u^* \boldsymbol{b} + n^* \boldsymbol{u}_{\perp}^*) - \frac{n_0}{L_0^2} \nabla \cdot^* (\boldsymbol{D} \nabla_{\perp}^* n^*) = S_n,$$

and rearranging and dropping the stars gives

$$\partial_t n + \nabla \cdot (nub + n\mathbf{u}_\perp) - \frac{t_0}{L_0^2} \nabla \cdot (D\nabla_\perp n) = \frac{t_0}{n_0} S_n, \tag{19}$$

which allows to define the non-dimensional perpendicular coefficient for the density

$$D = D \frac{t_0}{L_0^2} \,, \tag{20}$$

and the non-dimensional source of density

$$S_n = \frac{t_0}{n_0} S_n.$$

3.2 The momentum equation

From definition of the specific pressures

$$p_i = nT_i \frac{\mathbf{k_b}}{m_i}, \quad p_e = nT_e \frac{\mathbf{k_b}}{m_i},$$

the non-dimensional specific pressures is obtained

$$p_i^* = n^* T_i^*, \quad p_e^* = n^* T_e^*,$$

hence

$$p_i = \frac{n_0 T_0 k_b}{m_i} p_i^*, \quad p_e = \frac{n_0 T_0 k_b}{m_i} p_e^*, \tag{21}$$

The momentum equation

$$\partial_t(nu) + \nabla \cdot (nu^2 \boldsymbol{b} + nu \boldsymbol{u}_\perp) + \nabla_{\parallel}(p_i + p_e) - \nabla \cdot (\boldsymbol{\mu} \nabla_\perp nu) = S_{\Gamma}$$

is rewritten using the reference values

$$\frac{n_0 u_0}{t_0} \partial_t^*(n^* u^*) + \frac{n_0 u_0^2}{t_0} \boldsymbol{\nabla} \cdot^* (n^* u^{*2} \boldsymbol{b} + n^* u^* \boldsymbol{u}_\perp) + \frac{n_0 T_0 k_b}{L_0 m_i} \boldsymbol{\nabla}_\parallel^* (p_i^* + p_e^*) - \frac{n_0 u_0}{L_0^2} \boldsymbol{\nabla} \cdot^* (\boldsymbol{\mu} \boldsymbol{\nabla}_\perp n^* u^*) = S_\Gamma.$$

Defining the reference Mach (squared)

$$\boxed{M_{ref} = \frac{T_0 k_b}{m_i u_0^2}}$$

rearranging the terms and dropping the stars, we obtain

$$\partial_t(nu) + \nabla \cdot (nu^2 \boldsymbol{b} + nu \boldsymbol{u}_\perp) + M_{ref} \nabla_{\parallel} (p_i + p_e) - \frac{t_0}{L_0^2} \nabla \cdot (\mu \nabla_{\perp} nu) = \frac{t_0}{n_0 u_0} S_{\Gamma}, \qquad (22)$$

which allows to define the non-dimensional perpendicular diffusion coefficient for the momentum,

$$\mu = \mu \frac{t_0}{L_0^2} \,, \tag{23}$$

and the non-dimensional source of momentum

$$S_{\Gamma} = \frac{t_0}{n_0 u_0} S_{\Gamma}.$$

3.3 The ions energy equation

From the ion energy definition, using (21), we obtain

$$E_i = \frac{1}{2}u^2 + \frac{3}{2}\frac{p_i}{n} = u_0^2 \frac{1}{2}u^{*2} + \frac{p_0 T_0 k_b}{m_i p_0} \frac{3}{2}\frac{p_i^*}{n^*}.$$

and therefore the non-dimensional energy for the ions is

$$E_i^* = \frac{E_i}{u_0^2} = \frac{1}{2}u^{*2} + \frac{3}{2}\frac{p_i^*}{n^*}M_{ref}.$$

The ions energy equation

$$\partial_t(nE_i) + \boldsymbol{\nabla} \cdot \left((nE_i + p_i)u\boldsymbol{b} + nE_i\boldsymbol{u}_\perp \right) - \boldsymbol{\nabla} \cdot (\boldsymbol{\chi_i} \boldsymbol{\nabla}_\perp nE_i) - \boldsymbol{\nabla} \cdot (\boldsymbol{k_{\parallel i}} T_i^{5/2} \boldsymbol{\nabla}_\parallel T_i \boldsymbol{b}) + u \boldsymbol{\nabla}_\parallel p_e + \frac{3}{2} \frac{n^2}{T_{io} T_o^{3/2}} (T_e - T_i) = S_{E_i}$$

becomes then

$$\begin{split} \frac{n_0 u_0^2}{t_0} \partial_t^* (n^* E_i^*) + \frac{1}{L_0} \boldsymbol{\nabla} \cdot^* \left((n_0 u_0^2 n^* E_i^* + \frac{n_0 T_0 k_b}{m_i} p_i^*) u_0 u \boldsymbol{b} \right) - \frac{n_0 u_0^2}{L_0^2} \boldsymbol{\nabla} \cdot^* (\chi_i \boldsymbol{\nabla}_\perp^* (n^* E_i^*)) + \\ - \frac{T_0^{7/2}}{L_0^2} \boldsymbol{\nabla} \cdot^* (\frac{k_{\parallel i}}{m_i} T_i^{*5/2} \boldsymbol{\nabla}_\parallel^* T_i^* \boldsymbol{b}) + \frac{u_0 n_0 T_0 k_b}{L_0 m_i} u^* \boldsymbol{\nabla}_\parallel (p_e^*) + \frac{3}{2} \frac{k_b n_0^2 T_0}{m_i \tau_{ie} T_0^{3/2}} \frac{n^{*2}}{T^{*3/2}} (T_e^* - T_i^*) = S_{E_i}. \end{split}$$

Rearranging the terms and dropping the stars we obtain

$$\partial_{t}(nE_{i}) + \nabla \cdot \left((nE_{i} + M_{ref}p_{i})u\boldsymbol{b} + nE_{i}\boldsymbol{u}_{\perp} \right) - \frac{t_{0}}{L_{0}^{2}} \nabla \cdot \left(\chi_{i} \nabla_{\perp} nE_{i} \right) - \frac{t_{0}^{3} T_{0}^{7/2}}{L_{0}^{4} n_{0}} \nabla \cdot \left(\frac{k_{\parallel i}}{m_{i}} T_{i}^{5/2} \nabla_{\parallel} T_{i} \boldsymbol{b} \right) + M_{ref} u \nabla_{\parallel} p_{e} + \frac{3}{2} \frac{t_{0} n_{0} k_{b}}{\tau_{ie} m_{i} T_{0}^{1/2} u_{0}^{2}} \frac{n^{2}}{T_{e}^{3/2}} (T_{e} - T_{i}) = \frac{t_{0}}{n_{0} u_{0}^{2}} S_{E_{i}},$$

$$(24)$$

which allows to define the non-dimensional perpendicular diffusion coefficient for the ion energy

$$\chi_i = \chi_i \frac{t_0}{L_0^2} \,, \tag{25}$$

the non-dimensional parallel diffusion coefficient for the temperature

$$k_{\parallel i} = k_{\parallel i} \frac{t_0^3 T_0^{7/2}}{L_0^4 n_0 m_i},\tag{26}$$

the non-dimensional relaxation time for ion-energy temperatures

$$\tau_{ie} = \frac{2}{3} \frac{\tau_{ie} T_0^{1/2} m_i u_0^2}{n_0 t_0 k_b} \,, \tag{27}$$

and the non-dimensional source of energy

$$S_E = \frac{t_0}{n_0 u_0^2} S_E.$$

3.4 The electron energy equation

From the electron energy definition, using (21), we obtain

$$E_e = \frac{3}{2} \frac{p_e}{n} = \frac{p_0 T_0 k_b}{m_i p_0} \frac{3}{2} \frac{p_e^*}{n^*},$$

and therefore the non-dimensional energy for the electrons is

$$E_e^* = \frac{E_e}{u_0^2} = \frac{3}{2} \frac{p_e^*}{n^*} M_{ref},$$

The electron energy equation

$$\partial_t(nE_e) + \boldsymbol{\nabla} \cdot \left((nE_e + p_e)u\boldsymbol{b} + nE_e\boldsymbol{u}_\perp \right) - \boldsymbol{\nabla} \cdot \left(\boldsymbol{\chi}_e \boldsymbol{\nabla}_\perp nE_e \right) - \boldsymbol{\nabla} \cdot \left(\frac{k_{\parallel e}}{m_i} T_e^{5/2} \boldsymbol{\nabla}_\parallel T_e \boldsymbol{b} \right) - u \boldsymbol{\nabla}_\parallel p_e - \frac{3}{2} \frac{n^2 k_b}{\tau_{ie} m_i T_e^{3/2}} (T_e - T_i) = S_{E_e} \boldsymbol{v}_\parallel T_e \boldsymbol{$$

becomes ther

$$\begin{split} \frac{n_0 u_0^2}{t_0} \partial_t^* (n^* E_e^*) + \frac{1}{L_0} \boldsymbol{\nabla} \cdot^* \left((n_0 u_0^2 n^* E_e^* + \frac{n_0 T_0 k_b}{m_i} p_e^*) u_0 u \boldsymbol{b} \right) - \frac{n_0 u_0^2}{L_0^2} \boldsymbol{\nabla} \cdot^* (\boldsymbol{\chi}_e \boldsymbol{\nabla}_\perp^* (n^* E_e^*)) + \\ - \frac{T_0^{7/2}}{L_0^2} \boldsymbol{\nabla} \cdot^* (\frac{k_{\parallel e}}{m_i} T_e^{*5/2} \boldsymbol{\nabla}_\parallel^* T_e^* \boldsymbol{b}) - \frac{u_0 n_0 T_0 k_b}{L_0 m_i} u^* \boldsymbol{\nabla}_\parallel (p_e^*) - \frac{3}{2} \frac{n_0^2 k_b T_0}{\tau_{ie} m_i T_0^{3/2}} \frac{n^{*2}}{T^{*3/2}} (T_e^* - T_i^*) = S_{E_e}. \end{split}$$

Rearranging the terms and dropping the stars we obtain

$$\partial_{t}(nE_{e}) + \nabla \cdot \left((nE_{e} + M_{ref}p_{e})u\boldsymbol{b} + nE_{e}\boldsymbol{u}_{\perp} \right) - \frac{t_{0}}{L_{0}^{2}} \nabla \cdot \left(\chi_{e} \nabla_{\perp} nE_{e} \right) - \frac{t_{0}^{3} T_{0}^{7/2}}{L_{0}^{4} n_{0} m_{i}} \nabla \cdot \left(k_{\parallel e} T_{e}^{5/2} \nabla_{\parallel} T_{e} \boldsymbol{b} \right) \\ - M_{ref} u \nabla_{\parallel} p_{e} - \frac{3}{2} \frac{t_{0} n_{0} k_{b}}{\tau_{ie} m_{i} T_{0}^{1/2} u_{0}^{2}} \frac{n^{2}}{T_{e}^{3/2}} (T_{e} - T_{i}) = \frac{t_{0}}{n_{0} u_{0}^{2}} S_{E_{e}},$$

$$(28)$$

which allows to define the non-dimensional perpendicular diffusion coefficient for the electron energy

$$\chi_e = \chi_e \frac{t_0}{L_0^2} \,, \tag{29}$$

and the non-dimensional parallel diffusion coefficient for the electron temperature

$$k_{\parallel e} = k_{\parallel e} \frac{t_0^3 T_0^{7/2}}{L_0^4 n_0 m_i},\tag{30}$$

and the non-dimensional source of energy

$$S_{E_e} = \frac{t_0}{n_0 u_0^2} S_{E_e}.$$

3.5 The Bohm boundary condition

Using (21), the Bohm boundary condition (18)

$$(nE_i + p_i)u - \frac{k_{\parallel i}}{m_i} T_i^{5/2} \nabla_{\parallel} T_i = \gamma_i u p_i + \frac{1}{2} n u^3,$$

$$(nE_e + p_e)u - \frac{k_{\parallel e}}{m_i} T_e^{5/2} \nabla_{\parallel} T_e = \gamma_e u p_e.$$

is written as

$$(n_0 u_0^2 n^* E_i^* + \frac{n_0 T_0 k_b}{m_i} p_i^*) u_0 u^* - \frac{{T_0}^{7/2}}{L_0 m_i} k_{\parallel i} T_i^{*5/2} \nabla_{\parallel} T_i^* = \gamma_i \frac{n_0 T_0 k_b}{m_i} u_0 u^* p_i^* + n_0 u_0^3 \frac{1}{2} n^* u^{*3},$$

$$(n_0 u_0^2 n^* E_e^* + \frac{n_0 T_0 k_b}{m_i} p_e^*) u_0 u^* - \frac{{T_0}^{7/2}}{L_0 m_i} k_{\parallel e} T_e^{*5/2} \nabla_{\parallel} T_e^* = \gamma_e \frac{n_0 T_0 k_b}{m_i} u_0 u^* p_e^*.$$

Rearranging the terms and dropping the stars we obtain

$$\begin{split} &(nE_i + \frac{T_0 k_b}{m_i u_0^2} p_i) u - \frac{{t_0}^3 T_0^{7/2}}{L_0^4 n_0 m_i} k_{\parallel i} T_i^{5/2} \boldsymbol{\nabla}_{\parallel} T_i = \gamma_i \frac{T_0 k_b}{m_i u_0^2} u p_i + \frac{1}{2} n u^3, \\ &(nE_e + \frac{T_0 k_b}{m_i u_0^2} p_e) u - \frac{{t_0}^3 T_0^{7/2}}{L_0^4 n_0 m_i} k_{\parallel e} T_e^{5/2} \boldsymbol{\nabla}_{\parallel} T_e = \gamma_e \frac{T_0 k_b}{m_i u_0^2} u p_e. \end{split}$$

which gives

$$\left(nE_{i} + M_{ref}(1 - \gamma_{i})p_{i}\right)u - k_{\parallel i}T_{i}^{5/2}\nabla_{\parallel}T_{i} - \frac{1}{2}nu^{3} = 0,
\left(nE_{e} + M_{ref}(1 - \gamma_{e})p_{e}\right)u - k_{\parallel e}T_{e}^{5/2}\nabla_{\parallel}T_{e} = 0.$$
(31)

3.6 Reference values and physical parameters

The choice of the reference values is

L_0	$1.901 \ 10^{-3}$	[m]
t_0	$1.3736 \ 10^{-7}$	[s]
n_0	10^{19}	$[m^{-3}]$
u_0	$1.3839 \ 10^4$	$[ms^{-1}]$
T_0	50	[eV]

Other useful physical parameters are

Boltzmann constant	$k_b: 1.38 \ 10^{-23}$	$[kg \ m^2 s^{-2} K^{-1}]$
Ionic mass	$m_i: 3.35 \ 10^{-27}$	[kg]
Electronic mass	$m_e: 9.11 \ 10^{-31}$	[kg]
Vacuum permeability	$\varepsilon_0: 8.85 \ 10^{-12}$	$[C N^{-1}m^{-1}]$
Electron charge	$e: 1.60 \ 10^{-19}$	[C]

Considering that the conversion between Kelvin K and electron volt eV is

$$T_K = T_{eV} \frac{e}{k_h},$$

the non-dimensional values are computed next.

The reference Mach is

$$M_{ref} = rac{T_0 k_b}{m_i u_0^2} = rac{T_0 [eV] e \rlap{\slashed b}}{m_i \rlap{\slashed b} b} pprox 12.5.$$

The perpendicular diffusion coefficients are chosen as

$$D = \mu = \chi_i = \chi_e = 1 \ [m^2 s^{-1}],$$

which gives

$$D = \mu = \chi_i = \chi_e = 1 * \frac{t_0}{L_0^2} = 0.038.$$

The parallel diffusion coefficients are taken from [Ref: Stangeby]. For the ions is

$$k_{\parallel i} = 33,$$

which gives

$$k_{\parallel i} = k_{\parallel i} \frac{{t_0}^3 T_0^{7/2}}{L_0^4 n_0 m_i} = 1.74 \ 10^5$$

while for the electron it is

$$k_{\parallel e} = 2000,$$

which gives

$$k_{\parallel e} = k_{\parallel e} \frac{t_0^3 T_0^{7/2}}{L_0^4 n_0 m_i} \approx 10^7.$$

The exchange temperature term is

$$\tau_{ie} = \frac{3\sqrt{2}}{e^4} \frac{\varepsilon_0^2}{\Lambda} \pi^{\frac{3}{2}} \frac{m_i}{m_e} \sqrt{m_e} \ e^{\frac{3}{2}} \approx 5.27 \ 10^{13},^{1}$$

which gives

$$\tau_{ie} = \frac{2}{3} \frac{\tau_{ie} T_0^{1/2} m_i u_0^2}{n_0 t_0 k_b} \approx 8.4 \ 10^6.$$

4 Conservative form of the non-dimensional system

The non-dimensional equations (19),(22) and (28) are rewritten as

$$\begin{split} \partial_t n + \nabla \cdot (nu \boldsymbol{b} + n \boldsymbol{u}_\perp) - \nabla \cdot (D \nabla_\perp n) &= S_n, \\ \partial_t (nu) + \nabla \cdot (nu^2 \boldsymbol{b} + nu \boldsymbol{u}_\perp) + M_{ref} \nabla_\parallel (p_i + p_e) - \nabla \cdot (\mu \nabla_\perp nu) &= S_\Gamma, \\ \partial_t (nE_i) + \nabla \cdot \left((nE_i + M_{ref} p_i) u \boldsymbol{b} + nE_i \boldsymbol{u}_\perp \right) - \nabla \cdot (\chi_i \nabla_\perp nE_i) - \nabla \cdot (k_{\parallel i} T_i^{5/2} \nabla_\parallel T_i \boldsymbol{b}) \\ &+ M_{ref} u \nabla_\parallel p_e + \frac{n^2}{\tau_{ie}} \frac{(T_e - T_i)}{T_e^{3/2}} &= S_{E_i}, \\ \partial_t (nE_e) + \nabla \cdot \left((nE_e + M_{ref} p_e) u \boldsymbol{b} + nE_e \boldsymbol{u}_\perp \right) - \nabla \cdot (\chi_e \nabla_\perp nE_e) - \nabla \cdot (k_{\parallel e} T_e^{5/2} \nabla_\parallel T_e \boldsymbol{b}) \\ &- M_{ref} u \nabla_\parallel p_e - \frac{n^2}{\tau_{ie}} \frac{(T_e - T_i)}{T_e^{3/2}} &= S_{E_e} \end{split}$$

The momentum equation is rewritten in the following form

$$\partial_t(nu) + \nabla \cdot (nu^2 b + nu u_{\perp} + M_{ref}(p_i + p_e)b) - M_{ref}(p_i + p_e)\nabla \cdot b - \nabla \cdot (\mu \nabla_{\perp} nu) = S_{\Gamma},$$

using the relation

$$\nabla_{\parallel}(p_i + p_e) = \nabla(p_i + p_e) \cdot \boldsymbol{b} = \nabla \cdot ((p_i + p_e)\boldsymbol{b}) - (p_i + p_e)\nabla \cdot \boldsymbol{b},$$

while the drift term is simplified considering a divergence-free drift velocity, $\nabla \cdot \boldsymbol{u}_{\perp} = 0$. This leads to a new form of the system

$$\frac{\partial_{t}n + \nabla \cdot (nu\boldsymbol{b}) + \boldsymbol{u}_{\perp} \cdot \nabla n - \nabla \cdot (D\nabla_{\perp}n) = S_{n},}{\partial_{t}(nu) + \nabla \cdot (nu^{2}\boldsymbol{b} + M_{ref}(p_{i} + p_{e})\boldsymbol{b}) + \boldsymbol{u}_{\perp} \cdot \nabla (nu) - M_{ref}(p_{i} + p_{e})\nabla \cdot \boldsymbol{b} - \nabla \cdot (\mu\nabla_{\perp}nu) = S_{\Gamma},} \\
\partial_{t}(nE_{i}) + \nabla \cdot \left((nE_{i} + M_{ref}p_{i})u\boldsymbol{b} \right) + \boldsymbol{u}_{\perp} \cdot \nabla (nE_{i}) - \nabla \cdot (\chi_{i}\nabla_{\perp}nE_{i}) - \nabla \cdot (\boldsymbol{k}_{\parallel i}T_{i}^{5/2}\nabla_{\parallel}T_{i}\boldsymbol{b}) \\
+ M_{ref}u\nabla_{\parallel}p_{e} + \frac{n^{2}}{\tau_{ie}}\frac{(T_{e} - T_{i})}{T_{e}^{3/2}} = S_{E_{i}}, \\
\partial_{t}(nE_{e}) + \nabla \cdot \left((nE_{e} + M_{ref}p_{e})u\boldsymbol{b} \right) + \boldsymbol{u}_{\perp} \cdot \nabla (nE_{e}) - \nabla \cdot (\chi_{e}\nabla_{\perp}nE_{e}) - \nabla \cdot (\boldsymbol{k}_{\parallel e}T_{e}^{5/2}\nabla_{\parallel}T_{e}\boldsymbol{b}) \\
- M_{ref}u\nabla_{\parallel}p_{e} - \frac{n^{2}}{\tau_{ie}}\frac{(T_{e} - T_{i})}{T_{e}^{3/2}} = S_{E_{e}}, \\
(32)$$

¹Note that using the reference values n_0 and T_0 , we obtain $\hat{\tau_{ie}} = \tau_{ie} \frac{T_0^{3/2}}{n_0} \approx 1.9 \ 10^{-3} s$

with the following added relations

$$E_{i} = \frac{1}{2}u^{2} + \frac{3}{2}M_{ref}\frac{p_{i}}{n} \to p_{i} = \frac{2}{3}\frac{n}{M_{ref}}(E_{i} - \frac{1}{2}u^{2}),$$

$$E_{e} = \frac{3}{2}M_{ref}\frac{p_{e}}{n} \to p_{e} = \frac{2}{3}\frac{n}{M_{ref}}E_{e},$$

$$p_{i} = nT_{i} \to T_{i} = \frac{2}{3M_{ref}}(E_{i} - \frac{1}{2}u^{2}),$$

$$p_{e} = nT_{e} \to T_{e} = \frac{2}{3M_{ref}}E_{e},$$

and the Bohm boundary conditions

$$\left(nE_i + M_{ref}(1 - \gamma_i)p_i \right) u - k_{\parallel i} T_i^{5/2} \nabla_{\parallel} T_i - \frac{1}{2} nu^3 = 0,$$

$$\left(nE_e + M_{ref}(1 - \gamma_e)p_e \right) u - k_{\parallel e} T_e^{5/2} \nabla_{\parallel} T_e = 0.$$

System (32) is recast in first order conservative form

$$\overline{\partial_t U + (\boldsymbol{u}_{\perp} \cdot \nabla) U + \nabla \cdot \mathcal{F} - \nabla \cdot (D_f \mathcal{Q}) + \nabla \cdot (D_f \mathcal{Q} \boldsymbol{b} \otimes \boldsymbol{b}) - \nabla \cdot \mathcal{F}_t + \boldsymbol{f}_{E_{\parallel}} + \boldsymbol{f}_{EX} - \boldsymbol{g} = \boldsymbol{s} }$$
 (33)

using the following definition of the conservative variables,

$$\boldsymbol{U} = \begin{cases} U_1 \\ U_2 \\ U_3 \\ U_4 \end{cases}, = \begin{cases} n \\ nu \\ nE_i \\ nE_e \end{cases}$$

and the tensor of the conservative variable derivatives.

$$oldsymbol{\mathcal{Q}} = oldsymbol{
abla} oldsymbol{U} = egin{bmatrix} U_{1,x} & U_{1,y} \ U_{2,x} & U_{2,y} \ U_{3,x} & U_{3,y} \ U_{4,x} & U_{4,y} \end{bmatrix} = egin{bmatrix} oldsymbol{
abla} U_1^T \ oldsymbol{
abla} U_2^T \ oldsymbol{
abla} U_2^T \ oldsymbol{
abla} U_3^T \ oldsymbol{
abla} U_4^T \end{bmatrix} = egin{bmatrix} \mathcal{Q}_{11} & \mathcal{Q}_{12} \ \mathcal{Q}_{21} & \mathcal{Q}_{22} \ \mathcal{Q}_{31} & \mathcal{Q}_{32} \ \mathcal{Q}_{41} & \mathcal{Q}_{42} \end{bmatrix}.$$

The pressure and temperature are written as

$$\begin{split} p_i &= \frac{2}{3M_{ref}} \Big(U_3 - \frac{1}{2} \frac{U_2^2}{U_1} \Big), \\ p_e &= \frac{2}{3M_{ref}} U_4, \\ T_i &= \frac{2}{3M_{ref}} \Big(\frac{U_3}{U_1} - \frac{1}{2} \frac{U_2^2}{U_1^2} \Big), \\ T_e &= \frac{2}{3M_{ref}} \frac{U_4}{U_1}. \end{split}$$

The convective flux is written as

$$\mathcal{F} = \begin{cases} nu \\ (nu^2 + M_{ref}(p_i + p_e)) \\ (nE_i + M_{ref}p_i)u \\ (nE_e + M_{ref}p_e)u \end{cases} \otimes \boldsymbol{b}^T = \begin{cases} U_2 \\ \frac{U_2^2}{U_1} + \frac{2}{3}\left(U_3 + U_4 - \frac{1}{2}\frac{U_2^2}{U_1}\right) \\ \left(U_3 + \frac{2}{3}(U_3 - \frac{1}{2}\frac{U_2^2}{U_1})\right)\frac{U_2}{U_1} \\ \left(U_4 + \frac{2}{3}U_4\right)\frac{U_2}{U_1} \end{cases} \otimes \boldsymbol{b}^T.$$

The ions temperature gradient is written as

$$\nabla T_i = \frac{2}{3M_{ref}} \nabla \left(\frac{U_3}{U_1} - \frac{1}{2}\frac{U_2^2}{U_1^2}\right) = \frac{2}{3M_{ref}} \left(\nabla U_1 \left(\frac{U_2^2}{U_1^3} - \frac{U_3}{U_1^2}\right) + \nabla U_2 \left(-\frac{U_2}{U_1^2}\right) + \nabla U_3 \left(\frac{1}{U_1}\right)\right),$$

and can be simplified using the following definition

$$V_{i}(U) = \begin{cases} \frac{U_{2}^{2}}{U_{1}^{3}} - \frac{U_{3}}{U_{1}^{2}} \\ -\frac{U_{2}}{U_{1}^{2}} \\ \frac{1}{U_{1}} \\ 0 \end{cases}$$
 (34)

as

$$\nabla T_i = \frac{2}{3M_{ref}} \mathcal{Q}_t V_i(\mathbf{U}),$$

where the transpose of the variable gradient has been introduced, $Q_t = Q^T$.

The electrons temperature gradient is written as

$$\boldsymbol{\nabla}T_{e} = \frac{2}{3M_{ref}}\boldsymbol{\nabla}\Big(\frac{U_{4}}{U_{1}}\Big) = \frac{2}{3M_{ref}}\Big(\boldsymbol{\nabla}U_{1}(-\frac{U_{4}}{U_{1}^{2}}) + \boldsymbol{\nabla}U_{4}(\frac{1}{U_{1}})\Big),$$

and can be simplified using the following definition

$$\boldsymbol{V}_{e}(\boldsymbol{U}) = \begin{cases} -\frac{U_{4}}{U_{1}^{2}} \\ 0 \\ 0 \\ \frac{1}{U_{1}} \end{cases}$$

$$(35)$$

as

$$\mathbf{\nabla} T_e = rac{2}{3M_{ref}} \mathbf{Q}_t \mathbf{V}_e(\mathbf{U}).$$

Hence, using the definition of the parallel gradient, we have

$$egin{aligned} oldsymbol{
abla}_{\parallel} T_i &= oldsymbol{
abla} T_i \cdot oldsymbol{b} = rac{2}{3M_{ref}} oldsymbol{\mathcal{Q}}_t oldsymbol{V}_i(oldsymbol{U}) \cdot oldsymbol{b}, \ oldsymbol{
abla}_{\parallel} T_e &= oldsymbol{
abla} T_e \cdot oldsymbol{b} = rac{2}{3M_{ref}} oldsymbol{\mathcal{Q}}_t oldsymbol{V}_e(oldsymbol{U}) \cdot oldsymbol{b}, \end{aligned}$$

and the energy flux related to the parallel diffusion of the temperature is written as

$$egin{aligned} oldsymbol{\mathcal{F}}_t &= egin{dcases} 0 & 0 & 0 \ 0 & 0 & 0 \ k_{\parallel i} T_i^{5/2} oldsymbol{
abla}_{\parallel T} T_i & k_{\parallel e} T_e^{5/2} oldsymbol{
abla}_{\parallel T} T_e & k_{\parallel e} igg(rac{2}{3 M_{ref}} igg)^{7/2} igg(rac{U_3}{U_1} - rac{1}{2} rac{U_2^2}{U_1^2} igg)^{5/2} oldsymbol{\mathcal{Q}}_t oldsymbol{V}_i(oldsymbol{U}) \cdot oldsymbol{b} \end{pmatrix} \otimes oldsymbol{b}^T. \end{aligned}$$

The vector related to the parallel electric field $m{f}_{E_{\parallel}}$ is

$$egin{aligned} oldsymbol{f}_{E_{\parallel}} &= M_{ref} u oldsymbol{
abla}_{\parallel} p_e egin{cases} 0 \ 0 \ 1 \ -1 \end{bmatrix} = rac{2}{3} rac{U_2}{U_1} oldsymbol{
abla} U_4 \cdot oldsymbol{b} egin{cases} 0 \ 0 \ 1 \ -1 \end{bmatrix} \end{aligned}$$

and can be rewritten as

$$m{f}_{E_\parallel} = rac{2}{3} m{\mathcal{Q}}_t m{W(m{U})} \cdot m{b} egin{bmatrix} 0 \ 0 \ 1 \ -1 \end{pmatrix}$$

having defined the vector

$$m{W(U)} = \left\{egin{array}{c} 0 \ 0 \ 0 \ rac{U_2}{U_2} \end{array}
ight\}.$$

The vector of temperature exchange between ions and electrons is f_{EX} is

$$\boldsymbol{f}_{EX} = \frac{n^2}{\tau_{ie}} \frac{(T_e - T_i)}{T_e^{3/2}} \left\{ \begin{matrix} 0 \\ 0 \\ 1 \\ -1 \end{matrix} \right\} = \frac{1}{\tau_{ie}} \left(\frac{2}{3M_{ref}} \right)^{-1/2} \frac{U_1^{5/2}}{U_4^{3/2}} \left(U_3 - U_4 + \frac{1}{2} \frac{U_2^2}{U_1} \right) \left\{ \begin{matrix} 0 \\ 0 \\ 1 \\ -1 \end{matrix} \right\}.$$

Finally, the curvature term g is

$$\boldsymbol{g} = \left\{ \begin{pmatrix} 0 \\ (p_i + p_e) \boldsymbol{\nabla} \cdot \boldsymbol{b} \\ 0 \\ 0 \end{pmatrix} = \left\{ \begin{matrix} \frac{2}{3} \left(U_3 + U_4 - \frac{1}{2} \frac{U_2^2}{U_1} \right) \boldsymbol{\nabla} \cdot \boldsymbol{b} \\ 0 \\ 0 \end{matrix} \right\}.$$

The Bohm boundary conditions are re-written using the conservative variables and (35),(34)

as

$$\begin{split} &\frac{5-2\gamma_{i}}{3}\frac{U_{2}}{U_{1}}\left(U_{3}-\frac{1}{2}\frac{U_{2}^{2}}{U_{1}}\right)-k_{\parallel i}\left(\frac{2}{3M_{ref}}\right)^{7/2}\left(\frac{U_{3}}{U_{1}}-\frac{1}{2}\frac{U_{2}^{2}}{U_{1}^{2}}\right)^{5/2}\boldsymbol{\mathcal{Q}}_{t}\boldsymbol{V}_{i}(\boldsymbol{U})\cdot\boldsymbol{b}=0,\\ &\frac{5-2\gamma_{e}}{3}\frac{U_{2}U_{4}}{U_{1}}-k_{\parallel e}\left(\frac{2}{3M_{ref}}\right)^{7/2}\left(\frac{U_{4}}{U_{1}}\right)^{5/2}\boldsymbol{\mathcal{Q}}_{t}\boldsymbol{V}_{e}(\boldsymbol{U})\cdot\boldsymbol{b}=0, \end{split}$$

and are re-cast in a vector form using the boundary vector

$$\boldsymbol{B} = \left\{ \begin{aligned} & 0 \\ & 0 \\ & \frac{5 - 2\gamma_{i}}{3} \frac{U_{2}}{U_{1}} \left(U_{3} - \frac{1}{2} \frac{U_{2}^{2}}{U_{1}} \right) - k_{\parallel i} \left(\frac{2}{3M_{ref}} \right)^{7/2} \left(\frac{U_{3}}{U_{1}} - \frac{1}{2} \frac{U_{2}^{2}}{U_{1}^{2}} \right)^{5/2} \boldsymbol{\mathcal{Q}}_{t} \boldsymbol{V}_{i}(\boldsymbol{U}) \cdot \boldsymbol{b} \\ & \frac{5 - 2\gamma_{e}}{3} \frac{U_{2}U_{4}}{U_{1}} - k_{\parallel e} \left(\frac{2}{3M_{ref}} \right)^{7/2} \left(\frac{U_{4}}{U_{1}} \right)^{5/2} \boldsymbol{\mathcal{Q}}_{t} \boldsymbol{V}_{e}(\boldsymbol{U}) \cdot \boldsymbol{b} \end{aligned} \right\}$$

as

$$\mathbf{B} = 0$$
, on $\partial \Omega_{\text{Bohm}}$.

5 Treatment of the non-linear terms

The convective flux \mathcal{F} , the parallel diffusion flux \mathcal{F}_t and the vectors $f_{E_{\parallel}}$, f_{EX} and g are non-linear terms. In a Newton-Raphson (NR) framework, the bilinear forms related to these terms

are linearized using a second-order approximation. The linearization used for a generic term f is the following

$$f(\boldsymbol{w}_{1}^{k}, \boldsymbol{w}_{2}^{k}, ...) = f(\boldsymbol{w}_{1}^{k-1}, \boldsymbol{w}_{2}^{k-1}, ...) + \frac{d}{d\varepsilon} f(\boldsymbol{w}_{1}^{k-1} + \varepsilon \boldsymbol{d}\boldsymbol{w}_{1}, \boldsymbol{w}_{2}^{k-1} + \varepsilon \boldsymbol{d}\boldsymbol{w}_{2}, ...)\Big|_{\varepsilon=0} + \mathcal{O}(\boldsymbol{d}\boldsymbol{w}_{1}^{2}, \boldsymbol{d}\boldsymbol{w}_{2}^{2}, ...),$$
(36)

where k is the NR iteration and $dw_i = w_i^k - w_i^{k-1}$.

5.1 Linearization of the convective term

The convective term

$$\boldsymbol{\mathcal{F}} = \left\{ \begin{aligned} & U_2 \\ & \frac{2}{3} \left(U_3 + U_4 + \frac{U_2^2}{U_1} \right) \\ & \frac{5}{3} \frac{U_3 U_2}{U_1} - \frac{1}{3} \frac{U_2^3}{U_1^2} \\ & \frac{5}{3} \frac{U_4 U_2}{U_1} \end{aligned} \right\} \otimes \boldsymbol{b}^T$$

can be written as

$$\mathcal{F} = \frac{d\mathcal{F}}{dU}U = \mathbb{A}(U)U, \tag{37}$$

where the Jacobian third order tensor has been introduced

$$\mathbb{A} = \frac{d\boldsymbol{\mathcal{F}}}{d\boldsymbol{U}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{2}{3}\frac{U_2^2}{U_1^2} & \frac{4}{3}\frac{U_2}{U_1} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3}\frac{U_2^3}{U_1^3} - \frac{5}{3}\frac{U_3U_2}{U_1^2} & \frac{5}{3}\frac{U_3}{U_1} - \frac{U_2^2}{U_1^2} & \frac{5}{3}\frac{U_2}{U_1} & 0 \\ -\frac{5}{3}\frac{U_4U_2}{U_1^2} & \frac{5}{3}\frac{U_4}{U_1} & 0 & \frac{5}{3}\frac{U_2}{U_1} \end{bmatrix} \otimes \boldsymbol{b}^T = \boldsymbol{\mathcal{A}} \otimes \boldsymbol{b}^T,$$

where \mathcal{A} is a second order tensor. Deriving (37) with respect to U we obtain

$$\frac{d\mathcal{F}}{dU} = \mathbb{A}(\underline{U}) + \frac{d\mathbb{A}(\underline{U})}{dU}U \to \frac{d\mathbb{A}(\underline{U})}{dU}U = 0.$$
 (38)

Applying now (36) to the convective flux, we obtain

$$\begin{split} \boldsymbol{\mathcal{F}}(\boldsymbol{U}^k) &= \mathbb{A}(\boldsymbol{U}^k)\boldsymbol{U}^k = \mathbb{A}(\boldsymbol{U}^{k-1})\boldsymbol{U}^{k-1} + \frac{d}{d\varepsilon}\Big(\mathbb{A}(\boldsymbol{U}^{k-1} + \varepsilon \boldsymbol{d}\boldsymbol{U})(\boldsymbol{U}^{k-1} + \varepsilon \boldsymbol{d}\boldsymbol{U})\Big)\Big|_{\varepsilon=0} + \mathcal{O}(\boldsymbol{d}\boldsymbol{U}^2) \\ &= \mathbb{A}(\boldsymbol{U}^{k-1})\boldsymbol{U}^{k-1} + \mathbb{A}(\boldsymbol{U}^{k-1} + \varepsilon \boldsymbol{d}\boldsymbol{U})\Big|_{\varepsilon=0} \boldsymbol{d}\boldsymbol{U} + \frac{d\mathbb{A}}{d\boldsymbol{U}}\Big|_{k-1} \boldsymbol{d}\boldsymbol{U}(\boldsymbol{U}^{k-1} + \varepsilon \boldsymbol{d}\boldsymbol{U})\Big|_{\varepsilon=0} + \mathcal{O}(\boldsymbol{d}\boldsymbol{U}^2). \end{split}$$

Substituting $\varepsilon = 0$ and $dU = U^k - U^{k-1}$ we obtain

$$\mathcal{F}(\boldsymbol{U}^{k}) = \mathbb{A}(\boldsymbol{U}^{k-1})\boldsymbol{U}^{k-1} + \mathbb{A}(\boldsymbol{U}^{k-1})(\boldsymbol{U}^{k} - \boldsymbol{U}^{k-1}) + \frac{d\mathbb{A}}{d\boldsymbol{U}}\Big|_{k-1}(\boldsymbol{U}^{k} - \boldsymbol{U}^{k-1})\boldsymbol{U}^{k-1} + \mathcal{O}(\boldsymbol{d}\boldsymbol{U}^{2})$$

$$= \underline{\mathbb{A}(\boldsymbol{U}^{k-1})\boldsymbol{U}^{k-1}} + \mathbb{A}(\boldsymbol{U}^{k-1})\boldsymbol{U}^{k} - \underline{\mathbb{A}(\boldsymbol{U}^{k-1})\boldsymbol{U}^{k-1}} + \left(\frac{d\mathbb{A}}{d\boldsymbol{U}}\Big|_{k-1}\boldsymbol{U}^{k}\right)\boldsymbol{U}^{k-1} - \left(\frac{d\mathbb{A}}{d\boldsymbol{U}}\Big|_{k-1}\boldsymbol{U}^{k-1}\right)\boldsymbol{U}^{k-1} + \mathcal{O}(\boldsymbol{d}\boldsymbol{U}^{2}).$$

where eq.(38) has been used in the last expression. Now, it results that, [see appendix]

$$\Big(rac{d\mathbb{A}}{doldsymbol{U}}\Big|_{k-1}oldsymbol{U}^k\Big)oldsymbol{U}^{k-1}=oldsymbol{0}$$

hence

$$\boxed{\mathcal{F}(\mathbf{U}^k) = \mathbb{A}(\mathbf{U}^{k-1})\mathbf{U}^k + \mathcal{O}(\mathbf{d}\mathbf{U}^2)}.$$
(39)

5.2 Linearization of the curvature term g

The curvature term is

$$\boldsymbol{g} = \left\{ \frac{2}{3} \left(U_3 + U_4 - \frac{1}{2} \frac{U_2^2}{U_1} \right) \boldsymbol{\nabla} \cdot \boldsymbol{b} \right\}.$$

Applying (36) we get

$$\left. \boldsymbol{g}(\boldsymbol{U}^k) = \boldsymbol{g}(\boldsymbol{U}^{k-1}) + \frac{d}{d\varepsilon} \left(\boldsymbol{g}(\boldsymbol{U}^{k-1} + \varepsilon \boldsymbol{d}\boldsymbol{U}) \right) \right|_{\varepsilon=0} + \mathcal{O}(\boldsymbol{d}\boldsymbol{U}^2) = \boldsymbol{g}(\boldsymbol{U}^{k-1}) + \frac{d\boldsymbol{g}}{d\boldsymbol{U}} \Big|_{k=1} (\boldsymbol{U}^k - \boldsymbol{U}^{k-1}) + \mathcal{O}(\boldsymbol{d}\boldsymbol{U}^2).$$

We also have

$$\frac{d\boldsymbol{g}}{d\boldsymbol{U}} = \frac{2}{3} \boldsymbol{\nabla} \cdot \boldsymbol{b} \begin{bmatrix} 0 & 0 & 0 & 0 \\ \frac{1}{2} \frac{U_2^2}{U_1^2} & -\frac{U_2}{U_1} & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

which verifies

$$g = \frac{dg}{dU}U.$$

Therefore, the linearization of the g term results

$$oxed{g(oldsymbol{U}^k) = rac{doldsymbol{g}}{doldsymbol{U}}ig|_{k-1}oldsymbol{U}^k + \mathcal{O}(oldsymbol{d}oldsymbol{U}^2)}.$$

5.3 Linearization of the parallel diffusion flux

The parallel diffusion flux is rewritten as

$$\boldsymbol{\mathcal{F}}_t = \begin{cases} 0 & 0 \\ k_{\parallel i} \Big(\frac{2}{3M_{ref}}\Big)^{7/2} \Big(\frac{U_3}{U_1} - \frac{1}{2}\frac{U_2^2}{U_1^2}\Big)^{5/2} \boldsymbol{\mathcal{Q}}_t \boldsymbol{V}_i(\boldsymbol{U}) \cdot \boldsymbol{b} \\ k_{\parallel e} \Big(\frac{2}{3M_{ref}}\Big)^{7/2} \Big(\frac{U_4}{U_1}\Big)^{5/2} \boldsymbol{\mathcal{Q}}_t \boldsymbol{V}_e(\boldsymbol{U}) \cdot \boldsymbol{b} \end{cases} \otimes \boldsymbol{b}^T = \begin{cases} 0 & 0 \\ k_{\parallel i} \Big(\frac{2}{3M_{ref}}\Big)^{7/2} \boldsymbol{f}_i(\boldsymbol{U}, \boldsymbol{\mathcal{Q}}_t) \cdot \boldsymbol{b} \\ k_{\parallel e} \Big(\frac{2}{3M_{ref}}\Big)^{7/2} \boldsymbol{f}_i(\boldsymbol{U}, \boldsymbol{\mathcal{Q}}_t) \cdot \boldsymbol{b} \end{cases} \otimes \boldsymbol{b}^T,$$

where the vector function $f_i(U, Q_t)$ and $f_e(U, Q_t)$ are

$$f_i(\mathbf{U}, \mathbf{Q}_t) = r_i(\mathbf{U}) \mathbf{Q}_t \mathbf{V}_i(\mathbf{U}), \tag{40}$$

$$f_e(U, \mathcal{Q}_t) = r_e(U) \mathcal{Q}_t V_e(U), \tag{41}$$

and the scalar functions $r_i(U)$ and $r_e(U)$ are

$$r_i(\mathbf{U}) = \left(\frac{U_3}{U_1} - \frac{1}{2}\frac{U_2^2}{U_1^2}\right)^{5/2},$$
 (42)

$$r_e(\mathbf{U}) = \left(\frac{U_4}{U_1}\right)^{5/2}.\tag{43}$$

The linearization of \mathcal{F}_t reduces to the linearization of $f(U, \mathcal{Q}_t)$ (= $f_{i,e}(U, \mathcal{Q}_t)$). Applying (36) to $f(U, \mathcal{Q}_t)$ we have

$$f(\boldsymbol{U}^{k}, \boldsymbol{\mathcal{Q}}_{t}^{k}) = f(\boldsymbol{U}^{k-1}, \boldsymbol{\mathcal{Q}}_{t}^{k-1}) + \frac{d}{d\varepsilon} f(\boldsymbol{U}^{k-1} + \varepsilon d\boldsymbol{U}, \boldsymbol{\mathcal{Q}}_{t}^{k-1} + \varepsilon d\boldsymbol{\mathcal{Q}}_{t}) \Big|_{\varepsilon=0} + \mathcal{O}(d\boldsymbol{U}^{2}, d\boldsymbol{\mathcal{Q}}_{t}^{2})$$

$$= r(\boldsymbol{U}^{k-1}) \boldsymbol{\mathcal{Q}}_{t}^{k-1} \boldsymbol{V}(\boldsymbol{U}^{k-1}) + \frac{d}{d\varepsilon} \Big(r(\boldsymbol{U}^{k-1} + \varepsilon d\boldsymbol{U}) (\boldsymbol{\mathcal{Q}}_{t}^{k-1} + \varepsilon d\boldsymbol{\mathcal{Q}}_{t}) \boldsymbol{V}(\boldsymbol{U}^{k-1} + \varepsilon d\boldsymbol{U}) \Big) \Big|_{\varepsilon=0} + \mathcal{O}(d\boldsymbol{U}^{2}, d\boldsymbol{\mathcal{Q}}_{t}^{2}).$$

$$(44)$$

Developing the derivative term $\frac{d}{d\varepsilon}$ (...) we obtain

$$\frac{d}{d\varepsilon}(\dots)_{\varepsilon=0} = \frac{dr}{dU}\Big|_{k-1} \cdot dU(\mathcal{Q}_{t}^{k-1} + \varepsilon d\mathcal{Q}_{t})\Big|_{\varepsilon=0} V(U^{k-1} + \varepsilon dU)\Big|_{\varepsilon=0}
+ r(U^{k-1} + \varepsilon dU)\Big|_{\varepsilon=0} d\mathcal{Q}_{t} V(U^{k-1} + \varepsilon dU)\Big|_{\varepsilon=0}
+ r(U^{k-1} + \varepsilon dU)\Big|_{\varepsilon=0} (\mathcal{Q}_{t}^{k-1} + \varepsilon d\mathcal{Q}_{t})\Big|_{\varepsilon=0} \frac{dV}{dU}\Big|_{k-1} dU
= \frac{dr}{dU}\Big|_{k-1} dU\mathcal{Q}_{t}^{k-1} V(U^{k-1}) + r(U^{k-1}) d\mathcal{Q}_{t} V(U^{k-1}) + r(U^{k-1}) \mathcal{Q}_{t}^{k-1} \frac{dV}{dU}\Big|_{k-1} dU,$$
(45)

where the derivatives are

$$\frac{dr_i}{d\mathbf{U}} = \frac{5}{2} \left(\frac{U_3}{U_1} - \frac{1}{2} \frac{U_2^2}{U_1^2} \right)^{3/2} \left\{ \begin{array}{l} -\frac{U_3}{U_1^2} + \frac{U_2^2}{U_1^3} \\ -\frac{U_2}{U_1^2} \\ \frac{1}{U_1} \\ 0 \end{array} \right\},$$

$$\frac{dr_e}{dU} = \frac{5}{2} \left(\frac{U_4}{U_1}\right)^{3/2} \begin{cases} -\frac{U_4}{U_1^2} \\ 0 \\ 0 \\ \frac{1}{U_1} \end{cases},$$

and

$$\frac{d\boldsymbol{V}_i}{d\boldsymbol{U}} = \begin{bmatrix} -3\frac{U_2^2}{U_1^4} + 2\frac{U_3}{U_1^3} & 2\frac{U_2}{U_3^3} & -\frac{1}{U_1^2} & 0\\ 2\frac{U_2}{U_1^3} & -\frac{1}{U_1^2} & 0 & 0\\ -\frac{1}{U_1^2} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix},$$

$$\frac{d\boldsymbol{V}_e}{d\boldsymbol{U}} = \begin{bmatrix} 2\frac{U_4}{U_1^3} & 0 & 0 & -\frac{1}{U_1^2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{1}{U_1^2} & 0 & 0 & 0 \end{bmatrix},$$

Replacing $dU = U^k - U^{k-1}$ and $dQ_t = Q_t^k - Q_t^{k-1}$ and plugging (45) into (44) we obtain

$$f(\boldsymbol{U}^{k}, \boldsymbol{\mathcal{Q}}_{t}^{k}) = \underline{r(\boldsymbol{U}^{k-1})} \boldsymbol{\mathcal{Q}}_{t}^{k-1} \boldsymbol{V}(\boldsymbol{U}^{k-1}) + \frac{dr}{d\boldsymbol{U}} \Big|_{k-1} \boldsymbol{U}^{k} \boldsymbol{\mathcal{Q}}_{t}^{k-1} \boldsymbol{V}(\boldsymbol{U}^{k-1}) - \frac{dr}{d\boldsymbol{U}} \Big|_{k-1} \boldsymbol{\mathcal{U}}^{k-1} \boldsymbol{\mathcal{Q}}_{t}^{k-1} \boldsymbol{V}(\boldsymbol{U}^{k-1}) - \underline{r(\boldsymbol{U}^{k-1})} \boldsymbol{\mathcal{Q}}_{t}^{k-1} \boldsymbol{V}(\boldsymbol{U}^{k-1}) + r(\boldsymbol{U}^{k-1}) \boldsymbol{\mathcal{Q}}_{t}^{k-1} \frac{d\boldsymbol{V}}{d\boldsymbol{U}} \Big|_{k-1} \boldsymbol{U}^{k} - r(\boldsymbol{U}^{k-1}) \boldsymbol{\mathcal{Q}}_{t}^{k-1} \frac{d\boldsymbol{V}}{d\boldsymbol{U}} \Big|_{k-1} \boldsymbol{U}^{k-1} + \mathcal{O}(\boldsymbol{d}\boldsymbol{U}^{2}, \boldsymbol{d}\boldsymbol{\mathcal{Q}}_{t}^{2})$$

where we have used the fact that

$$\left. \frac{dr}{d\boldsymbol{U}} \right|_{k-1} \cdot \boldsymbol{U}^{k-1} = 0.$$

Finally, the linearization of $f(U, Q_t)$ results

The parallel diffusion flux can be written as

$$\boldsymbol{\mathcal{F}}_t(\boldsymbol{U}^k,\boldsymbol{\mathcal{Q}}_t^k) = \boldsymbol{\mathcal{F}}_t^{\boldsymbol{\mathcal{Q}}}(\boldsymbol{U}^{k-1},\boldsymbol{\mathcal{Q}}_t^k) + \boldsymbol{\mathcal{F}}_t^{\boldsymbol{U}}(\boldsymbol{U}^k,\boldsymbol{\mathcal{Q}}_t^{k-1}) + \boldsymbol{\mathcal{F}}_t^0(\boldsymbol{U}^{k-1},\boldsymbol{\mathcal{Q}}_t^{k-1}) + \mathcal{O}(\boldsymbol{d}\boldsymbol{U}^2,\boldsymbol{d}\boldsymbol{\mathcal{Q}}_t^2)$$

where the terms are defined as

$$\mathcal{F}_t^{\mathcal{Q}} = \left(\frac{2}{3M_{ref}}\right)^{7/2} \begin{Bmatrix} 0\\ k_{\parallel i}r_i(\boldsymbol{U}^{k-1})\mathcal{Q}_t^k\boldsymbol{V}_i(\boldsymbol{U}^{k-1}) \cdot \boldsymbol{b}\\ k_{\parallel e}r_e(\boldsymbol{U}^{k-1})\mathcal{Q}_t^k\boldsymbol{V}_e(\boldsymbol{U}^{k-1}) \cdot \boldsymbol{b} \end{Bmatrix} \otimes \boldsymbol{b}^T,$$

$$\mathcal{F}_t^{\boldsymbol{U}} = \left(\frac{2}{3M_{ref}}\right)^{7/2} \left\{ \begin{aligned} & 0 \\ k_{\parallel i} \left((\frac{dr_i}{d\boldsymbol{U}}\Big|_{k-1} \cdot \boldsymbol{U}^k) \boldsymbol{\mathcal{Q}}_t^{k-1} \boldsymbol{V}_i(\boldsymbol{U}^{k-1}) + r_i(\boldsymbol{U}^{k-1}) \boldsymbol{\mathcal{Q}}_t^{k-1} \frac{d\boldsymbol{V}_i}{d\boldsymbol{U}}\Big|_{k-1} \boldsymbol{U}^k \right) \cdot \boldsymbol{b} \\ k_{\parallel e} \left((\frac{dr_e}{d\boldsymbol{U}}\Big|_{k-1} \cdot \boldsymbol{U}^k) \boldsymbol{\mathcal{Q}}_t^{k-1} \boldsymbol{V}_e(\boldsymbol{U}^{k-1}) + r_e(\boldsymbol{U}^{k-1}) \boldsymbol{\mathcal{Q}}_t^{k-1} \frac{d\boldsymbol{V}_e}{d\boldsymbol{U}}\Big|_{k-1} \boldsymbol{U}^k \right) \cdot \boldsymbol{b} \end{aligned} \right\} \otimes \boldsymbol{b}^T,$$

$$egin{aligned} oldsymbol{\mathcal{F}}_t^0 &= -\Big(rac{2}{3M_{ref}}\Big)^{7/2} \left\{egin{aligned} &0 & 0 & \ &0 & \ &k_{\parallel i}r_i(oldsymbol{U}^{k-1})oldsymbol{\mathcal{Q}}_t^{k-1}rac{doldsymbol{V}_i}{doldsymbol{U}}igg|_{k-1}oldsymbol{U}^{k-1}\cdotoldsymbol{b} \ &k_{\parallel e}r_e(oldsymbol{U}^{k-1})oldsymbol{\mathcal{Q}}_t^{k-1}rac{doldsymbol{V}_e}{doldsymbol{U}}igg|_{k-1}oldsymbol{U}^{k-1}\cdotoldsymbol{b} \end{array}
ight\} \otimes oldsymbol{b}^T. \end{aligned}$$

5.4 Linearization of the parallel current vector

The parallel current vector is re-written as

$$egin{aligned} oldsymbol{f}_{E_{\parallel}} = rac{2}{3} oldsymbol{\mathcal{Q}}_t oldsymbol{W(U)} \cdot oldsymbol{b} \left\{egin{aligned} 0 \ 0 \ 1 \ -1 \end{aligned}
ight\}, = rac{2}{3} oldsymbol{h(U)} \cdot oldsymbol{b} \left\{egin{aligned} 0 \ 0 \ 1 \ -1 \end{aligned}
ight\}, \end{aligned}$$

having defined the vector function $h(U, \mathcal{Q}_t) = \mathcal{Q}_t W(U)$. The linearization of $f_{E_{\parallel}}$ reduces to the linearization of $h(\mathcal{Q}_t, U)$ which is

$$\begin{split} h(\boldsymbol{U}^{k}, \boldsymbol{\mathcal{Q}}_{t}^{k}) &= h(\boldsymbol{U}^{k-1}, \boldsymbol{\mathcal{Q}}_{t}^{k-1}) + \frac{d}{d\varepsilon} h(\boldsymbol{U}^{k-1} + \varepsilon d\boldsymbol{U}, \boldsymbol{\mathcal{Q}}_{t}^{k-1} + \varepsilon d\boldsymbol{\mathcal{Q}}_{t}) \Big|_{\varepsilon=0} + \mathcal{O}(d\boldsymbol{U}^{2}, d\boldsymbol{\mathcal{Q}}_{t}^{2}) = \\ & \mathcal{Q}_{t}^{k-1} \boldsymbol{W}(\boldsymbol{U}^{k-1}) + \frac{d}{d\varepsilon} \Big((\mathcal{Q}_{t}^{k-1} + \varepsilon d\boldsymbol{\mathcal{Q}}_{t}) \boldsymbol{W}(\boldsymbol{U}^{k-1} + \varepsilon d\boldsymbol{U}) \Big) \Big|_{\varepsilon=0} + \mathcal{O}(d\boldsymbol{U}^{2}, d\boldsymbol{\mathcal{Q}}_{t}^{2}) = \\ & \mathcal{Q}_{t}^{k-1} \boldsymbol{W}(\boldsymbol{U}^{k-1}) + d\mathcal{Q}_{t} \boldsymbol{W}(\boldsymbol{U}^{k-1}) + \mathcal{Q}_{t}^{k-1} \frac{d\boldsymbol{W}}{d\boldsymbol{U}} \Big|_{k-1} d\boldsymbol{U} + \mathcal{O}(d\boldsymbol{U}^{2}, d\boldsymbol{\mathcal{Q}}_{t}^{2}) = \\ & \mathcal{Q}_{t}^{k-1} \boldsymbol{W}(\boldsymbol{U}^{k-1}) + \mathcal{Q}_{t}^{k} \boldsymbol{W}(\boldsymbol{U}^{k-1}) - \mathcal{Q}_{t}^{k-1} \boldsymbol{W}(\boldsymbol{U}^{k-1}) + \mathcal{Q}_{t}^{k-1} \frac{d\boldsymbol{W}}{d\boldsymbol{U}} \Big|_{k-1} \boldsymbol{U}^{k} - \mathcal{Q}_{t}^{k-1} \frac{d\boldsymbol{W}}{d\boldsymbol{U}} \Big|_{k-1} \boldsymbol{U}^{k} - \mathcal{Q}_{t}^{k-1} \frac{d\boldsymbol{W}}{d\boldsymbol{U}} \Big|_{k-1} \boldsymbol{U}^{k-1} + \mathcal{O}(d\boldsymbol{U}^{2}, d\boldsymbol{\mathcal{Q}}_{t}^{2}). \end{split}$$

Hence, the linearization of $h(U^k, \mathcal{Q}_t^k)$ results

$$oxed{h(oldsymbol{U}^k, oldsymbol{\mathcal{Q}}_t^k) = oldsymbol{\mathcal{Q}}_t^k W(oldsymbol{U}^{k-1}) + oldsymbol{\mathcal{Q}}_t^{k-1} rac{doldsymbol{W}}{doldsymbol{U}}ig|_{k-1} oldsymbol{U}^k + \mathcal{O}(oldsymbol{d}oldsymbol{U}^2, oldsymbol{d}oldsymbol{\mathcal{Q}}_t^2)},}$$

where the derivative $\frac{d\mathbf{W}}{d\mathbf{U}}$ is

The parallel current vector can be written as

$$oldsymbol{f}_{E_{\parallel}} = oldsymbol{f}_{E_{\parallel}}^{oldsymbol{\mathcal{Q}}} + oldsymbol{f}_{E_{\parallel}}^{oldsymbol{U}},$$

where the two terms are defined as

$$egin{aligned} oldsymbol{f}_{E_{\parallel}}^{oldsymbol{\mathcal{Q}}} &= rac{2}{3} oldsymbol{\mathcal{Q}}_t^k oldsymbol{W}(oldsymbol{U}^{k-1}) \cdot oldsymbol{b} egin{cases} 0 \ 1 \ -1 \end{pmatrix}, \ oldsymbol{f}_{E_{\parallel}}^{oldsymbol{U}} &= rac{2}{3} oldsymbol{\mathcal{Q}}_t^{k-1} rac{d oldsymbol{W}}{d oldsymbol{U}} \Big|_{k-1} oldsymbol{U}^k \cdot oldsymbol{b} egin{cases} 0 \ 0 \ 1 \ -1 \end{pmatrix}, \end{aligned}$$

5.5 Linearization of the temperature exchange vector

The vector of temperature exchange between ions and electrons is \boldsymbol{f}_{EX} is

$$\boldsymbol{f}_{EX} = \frac{1}{\tau_{ie}} \left(\frac{2}{3M_{ref}}\right)^{-1/2} \frac{{U_1}^{5/2}}{{U_4}^{3/2}} \left(U_4 - U_3 + \frac{1}{2} \frac{U_2^2}{U_1}\right) \left\{ \begin{array}{l} 0 \\ 0 \\ 1 \\ -1 \end{array} \right\} = \frac{1}{\tau_{ie}} \left(\frac{2}{3M_{ref}}\right)^{-1/2} \boldsymbol{s}(\boldsymbol{U}) \left\{ \begin{array}{l} 0 \\ 0 \\ 1 \\ -1 \end{array} \right\},$$

having defined the scalar function

$$s(\mathbf{U}) = \frac{U_1^{5/2}}{U_4^{3/2}} \left(U_4 - U_3 + \frac{1}{2} \frac{U_2^2}{U_1} \right).$$

Hence, the linearization of the term f_{EX} reduces to the linearization of the function s(U), that is

$$\begin{split} s(\boldsymbol{U}^k) = & s(\boldsymbol{U}^{k-1}) + \frac{d}{d\varepsilon} \Big(s(\boldsymbol{U}^{k-1} + \varepsilon d\boldsymbol{U}) \Big) \Big|_{\varepsilon=0} + \mathcal{O}(d\boldsymbol{U}^2) = \\ & s(\boldsymbol{U}^{k-1}) + \frac{ds}{d\boldsymbol{U}} \Big|_{k-1} d\boldsymbol{U} + \mathcal{O}(d\boldsymbol{U}^2) = \\ & s(\boldsymbol{U}^{k-1}) + \frac{ds}{d\boldsymbol{U}} \Big|_{k-1} \boldsymbol{U}^k - \frac{ds}{d\boldsymbol{U}} \Big|_{k-1} \boldsymbol{U}^{k-1} + \mathcal{O}(d\boldsymbol{U}^2). \end{split}$$

It can be shown that

$$\frac{ds}{d\boldsymbol{U}}\Big|_{k-1}\boldsymbol{U}^{k-1} = 2s(\boldsymbol{U}^{k-1}),$$

therefore the linearization of s(U) finally gives

$$s(\boldsymbol{U}^{k}) = \frac{ds}{d\boldsymbol{U}}\Big|_{k=1} \cdot \boldsymbol{U}^{k} - s(\boldsymbol{U}^{k-1}) + \mathcal{O}(d\boldsymbol{U}^{2}),$$

where the derivative $\frac{ds}{dU}$ is

$$\frac{ds}{d\mathbf{U}} = \begin{cases}
\frac{5}{2} \left(\frac{U_1}{U_4}\right)^{3/2} \left(U_4 - U_3 + \frac{1}{2} \frac{U_2^2}{U_1}\right) - \frac{1}{2} \frac{U_1^{1/2} U_2^2}{U_4^{3/2}} \\
U_2 \left(\frac{U_1}{U_4}\right)^{3/2} \\
- \frac{U_1^{5/2}}{U_4^{3/2}} \\
- \frac{3}{2} \left(\frac{U_1}{U_4}\right)^{5/2} \left(U_4 - U_3 + \frac{1}{2} \frac{U_2^2}{U_1}\right) + \frac{U_1^{5/2}}{U_4^{3/2}}
\end{cases}.$$

The temperature exchange vector can be written as

$$\boldsymbol{f}_{EX} = \boldsymbol{f}_{EX}^{\boldsymbol{U}} + \boldsymbol{f}_{EX}^{0},$$

where the two terms are

$$\begin{split} \boldsymbol{f}_{EX}^{\boldsymbol{U}} &= \frac{1}{\tau_{ie}} \Big(\frac{2}{3M_{ref}}\Big)^{-1/2} \frac{ds}{d\boldsymbol{U}} \Big|_{k-1} \cdot \boldsymbol{U}^{k} \left\{ \begin{array}{c} 0 \\ 0 \\ 1 \\ -1 \end{array} \right\}, \\ \boldsymbol{f}_{EX}^{0} &= -\frac{1}{\tau_{ie}} \Big(\frac{2}{3M_{ref}}\Big)^{-1/2} s(\boldsymbol{U}^{k-1}) \left\{ \begin{array}{c} 0 \\ 0 \\ 1 \\ -1 \end{array} \right\}, \end{split}$$

5.6 Linearization of the Bohm boundary conditions

The Bohm boundary conditions for ions and electrons are

$$\begin{split} &\frac{5-2\gamma_{i}}{3}\frac{U_{2}}{U_{1}}\left(U_{3}-\frac{1}{2}\frac{U_{2}^{2}}{U_{1}}\right)-k_{\parallel i}\left(\frac{2}{3M_{ref}}\right)^{7/2}\left(\frac{U_{3}}{U_{1}}-\frac{1}{2}\frac{U_{2}^{2}}{U_{1}^{2}}\right)^{5/2}\boldsymbol{\mathcal{Q}}_{t}\boldsymbol{V}_{i}(\boldsymbol{U})\cdot\boldsymbol{b}=0,\\ &\frac{5-2\gamma_{e}}{3}\frac{U_{2}U_{4}}{U_{1}}-k_{\parallel e}\left(\frac{2}{3M_{ref}}\right)^{7/2}\left(\frac{U_{4}}{U_{1}}\right)^{5/2}\boldsymbol{\mathcal{Q}}_{t}\boldsymbol{V}_{e}(\boldsymbol{U})\cdot\boldsymbol{b}=0. \end{split}$$

and can be re-written as, using (40), as

$$\boldsymbol{B} = 0$$
, on $\partial \Omega_{\text{вонм}}$.

where

$$B = B_c - B_t$$

and the terms \boldsymbol{B}_c and \boldsymbol{B}_t are

$$\boldsymbol{B}_{c} = \frac{1}{3} \left\{ \begin{matrix} 0 \\ 0 \\ (5 - 2\gamma_{i}) \frac{U_{2}}{U_{1}} \left(U_{3} - \frac{1}{2} \frac{U_{2}^{2}}{U_{1}} \right) \\ (5 - 2\gamma_{e}) \frac{U_{2}U_{4}}{U_{1}} \end{matrix} \right\}$$

and

$$egin{aligned} oldsymbol{B}_t &= egin{cases} 0 & 0 & 0 & \ k_{\parallel i} \Big(rac{2}{3M_{ref}}\Big)^{7/2} oldsymbol{f}_i(oldsymbol{U}, oldsymbol{Q}_t) \cdot oldsymbol{b} \ k_{\parallel e} \Big(rac{2}{3M_{ref}}\Big)^{7/2} oldsymbol{f}_e(oldsymbol{U}, oldsymbol{Q}_t) \cdot oldsymbol{b} \end{cases}.$$

The linearization of the Bohm boundary conditions reduces to the linearization of $f_i(U, \mathcal{Q}_t)$ and $f_i(U, \mathcal{Q}_t)$, already threated in 5.3, and to the linearization of B_c . It results

$$m{B}_c(m{U}) = rac{dm{B}_c(m{U})}{dm{U}} m{U},$$

and therefore, similarly to 5.1, it gives

$$B_c(\underline{U}^k) = \frac{dB_c(\underline{U})}{dU}\Big|_{k=1} U^k + \mathcal{O}(\underline{dU}^2),$$

where the Jacobian is

$$\frac{d\boldsymbol{B}_{c}(\boldsymbol{U})}{d\boldsymbol{U}} = \frac{1}{3} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -(5-2\gamma_i) \Big(\frac{U_2U_3}{U_1^2} - \frac{U_2^3}{U_1^3}\Big) & (5-2\gamma_i) \Big(\frac{U_3}{U_1} - \frac{3}{2}\frac{U_2^2}{U_1^2}\Big) & (5-2\gamma_i)\frac{U_2}{U_1} & 0 \\ -(5-2\gamma_e)\frac{U_2U_4}{U_1^2} & (5-2\gamma_e)\frac{U_4}{U_1} & 0 & (5-2\gamma_e)\frac{U_2}{U_1} \end{bmatrix}.$$

From the linearization of the parallel diffusion term, we have

$$\boldsymbol{B}_t(\boldsymbol{U}^k,\boldsymbol{\mathcal{Q}}_t^k) = \boldsymbol{B}_t^{\boldsymbol{\mathcal{Q}}}(\boldsymbol{U}^{k-1},\boldsymbol{\mathcal{Q}}_t^k) + \boldsymbol{B}_t^{\boldsymbol{U}}(\boldsymbol{U}^k,\boldsymbol{\mathcal{Q}}_t^{k-1}) + \boldsymbol{B}_t^0(\boldsymbol{U}^{k-1},\boldsymbol{\mathcal{Q}}_t^{k-1}) + \mathcal{O}(\boldsymbol{d}\boldsymbol{U}^2,\boldsymbol{d}\boldsymbol{\mathcal{Q}}_t^2)$$

where

$$B_{t}^{\mathcal{Q}} = \left(\frac{2}{3M_{ref}}\right)^{7/2} \begin{cases} 0\\ 0\\ k_{\parallel i}r_{i}(\boldsymbol{U}^{k-1})\mathcal{Q}_{t}^{k}\boldsymbol{V}_{i}(\boldsymbol{U}^{k-1}) \cdot \boldsymbol{b}\\ k_{\parallel e}r_{e}(\boldsymbol{U}^{k-1})\mathcal{Q}_{t}^{k}\boldsymbol{V}_{e}(\boldsymbol{U}^{k-1}) \cdot \boldsymbol{b} \end{cases},$$

$$B_{t}^{\boldsymbol{U}} = \left(\frac{2}{3M_{ref}}\right)^{7/2} \begin{cases} 0\\ 0\\ 0\\ k_{\parallel i}\left(\left(\frac{dr_{i}}{d\boldsymbol{U}}\Big|_{k-1} \cdot \boldsymbol{U}^{k}\right)\mathcal{Q}_{t}^{k-1}\boldsymbol{V}_{i}(\boldsymbol{U}^{k-1}) + r_{i}(\boldsymbol{U}^{k-1})\mathcal{Q}_{t}^{k-1}\frac{d\boldsymbol{V}_{i}}{d\boldsymbol{U}}\Big|_{k-1}\boldsymbol{U}^{k}\right) \cdot \boldsymbol{b}\\ k_{\parallel e}\left(\left(\frac{dr_{e}}{d\boldsymbol{U}}\Big|_{k-1} \cdot \boldsymbol{U}^{k}\right)\mathcal{Q}_{t}^{k-1}\boldsymbol{V}_{e}(\boldsymbol{U}^{k-1}) + r_{e}(\boldsymbol{U}^{k-1})\mathcal{Q}_{t}^{k-1}\frac{d\boldsymbol{V}_{e}}{d\boldsymbol{U}}\Big|_{k-1}\boldsymbol{U}^{k}\right) \cdot \boldsymbol{b} \end{cases},$$

$$B_{t}^{0} = -\left(\frac{2}{3M_{ref}}\right)^{7/2} \begin{cases} 0\\ k_{\parallel i}r_{i}(\boldsymbol{U}^{k-1})\mathcal{Q}_{t}^{k-1}\frac{d\boldsymbol{V}_{i}}{d\boldsymbol{U}}\Big|_{k-1}\boldsymbol{U}^{k-1} \cdot \boldsymbol{b}\\ k_{\parallel e}r_{e}(\boldsymbol{U}^{k-1})\mathcal{Q}_{t}^{k-1}\frac{d\boldsymbol{V}_{e}}{d\boldsymbol{U}}\Big|_{k-1}\boldsymbol{U}^{k-1} \cdot \boldsymbol{b} \end{cases},$$

Therefore, it results

$$\boldsymbol{B}(\boldsymbol{U}^k,\boldsymbol{\mathcal{Q}}_t^k) = \frac{d\boldsymbol{B}_c(\boldsymbol{U})}{d\boldsymbol{U}}\Big|_{k=1} \boldsymbol{U}^k - \boldsymbol{B}_t^{\boldsymbol{\mathcal{Q}}}(\boldsymbol{U}^{k-1},\boldsymbol{\mathcal{Q}}_t^k) - \boldsymbol{B}_t^{\boldsymbol{U}}(\boldsymbol{U}^k,\boldsymbol{\mathcal{Q}}_t^{k-1}) - \boldsymbol{B}_t^0(\boldsymbol{U}^{k-1},\boldsymbol{\mathcal{Q}}_t^{k-1}) + \mathcal{O}(\boldsymbol{d}\boldsymbol{U}^2,\boldsymbol{d}\boldsymbol{\mathcal{Q}}_t^2)$$

6 Weak form of the system

6.1 The local problems

Using (33) and the definition of the variable gradient, the system to solve is

$$Q - \nabla U = 0$$

$$\partial_t U + \nabla \cdot (\mathcal{F} - D_f Q + D_f Q b \otimes b - \mathcal{F}_t)$$

$$+ (u_{\perp} \cdot \nabla) U + f_{E_{\parallel}} + f_{EX} - g = s.$$

$$(46)$$

Multiplying the first equation by the tensor test function \mathcal{G} and the second by a vector test function \mathbf{v} and integrating in each element, we obtain

$$\begin{split} \left(\mathbf{\mathcal{G}}, \mathbf{\mathcal{Q}} \right)_{K} - \left(\mathbf{\mathcal{G}}, \nabla \mathbf{U} \right)_{K} &= 0 \\ \left(\mathbf{v}, \partial_{t} \mathbf{U} \right)_{K} + \left(\mathbf{v}, \nabla \cdot (\mathbf{\mathcal{F}} - D_{f} \mathbf{\mathcal{Q}} + D_{f} \mathbf{\mathcal{Q}} \mathbf{b} \otimes \mathbf{b} - \mathbf{\mathcal{F}}_{t}) \right)_{K} \\ &+ \left(\mathbf{v}, (\mathbf{u}_{\perp} \cdot \nabla) \mathbf{U} \right)_{K} + \left(\mathbf{v}, \mathbf{f}_{E_{\parallel}} \right)_{K} + \left(\mathbf{v}, \mathbf{f}_{EX} \right)_{K} - \left(\mathbf{v}, \mathbf{g} \right)_{K} = \left(\mathbf{v}, \mathbf{s} \right)_{K}, \end{split}$$

which gives, after integration by parts,

$$\begin{split} \left(\mathbf{\mathcal{G}}, \mathbf{\mathcal{Q}} \right)_{K} + \left(\mathbf{\nabla} \cdot \mathbf{\mathcal{G}}, \mathbf{U} \right)_{K} - \left\langle \mathbf{\mathcal{G}} \mathbf{n}, \widehat{\mathbf{U}} \right\rangle_{\partial K} &= 0 \\ \left(\mathbf{v}, \partial_{t} \mathbf{U} \right)_{K} - \left(\mathbf{\nabla} \mathbf{v}, \mathbf{\mathcal{F}} - D_{f} \mathbf{\mathcal{Q}} + D_{f} \mathbf{\mathcal{Q}} \mathbf{b} \otimes \mathbf{b} - \mathbf{\mathcal{F}}_{t} \right)_{K} + \left\langle \mathbf{v}, (\widehat{\mathbf{\mathcal{F}}} - D_{f} \widehat{\mathbf{\mathcal{Q}}} + D_{f} \widehat{\mathbf{\mathcal{Q}}} \mathbf{b} \otimes \mathbf{b} - \widehat{\mathbf{\mathcal{F}}}_{t}) \mathbf{n} \right\rangle_{\partial K} \\ &+ \left(\mathbf{v}, (\mathbf{u}_{\perp} \cdot \mathbf{\nabla}) \mathbf{U} \right)_{K} + \left(\mathbf{v}, \mathbf{f}_{E_{\parallel}} \right)_{K} + \left(\mathbf{v}, \mathbf{f}_{EX} \right)_{K} - \left(\mathbf{v}, \mathbf{g} \right)_{K} = \left(\mathbf{v}, \mathbf{s} \right)_{K}. \end{split}$$

The definition of the numerical traces is

$$egin{aligned} \widehat{\mathcal{F}}(\widehat{m{U}}) &= \mathcal{F}(\widehat{m{U}}) + m{ au}(m{U} - \widehat{m{U}}) \otimes m{n}, \ \widehat{m{\mathcal{Q}}} &= m{\mathcal{Q}}, \ \widehat{m{\mathcal{F}}}_t(\widehat{m{U}}) &= m{\mathcal{F}}_t(\widehat{m{U}}), \end{aligned}$$

which gives

$$\begin{split} \left(\mathbf{\mathcal{G}}, \mathbf{\mathcal{Q}} \right)_{K} + \left(\mathbf{\nabla} \cdot \mathbf{\mathcal{G}}, \mathbf{U} \right)_{K} - \left\langle \mathbf{\mathcal{G}} \boldsymbol{n}, \widehat{\mathbf{U}} \right\rangle_{\partial K} &= 0 \\ \left(\mathbf{\boldsymbol{v}}, \partial_{t} \boldsymbol{U} \right)_{K} - \left(\mathbf{\nabla} \boldsymbol{\boldsymbol{v}}, \boldsymbol{\mathcal{F}}(\boldsymbol{\boldsymbol{U}}) - D_{f} \mathbf{\mathcal{Q}} + D_{f} \mathbf{\mathcal{Q}} \boldsymbol{b} \otimes \boldsymbol{b} - \boldsymbol{\mathcal{F}}_{t}(\boldsymbol{\boldsymbol{U}}) \right)_{K} + \left\langle \boldsymbol{\boldsymbol{v}}, (\boldsymbol{\mathcal{F}}(\widehat{\boldsymbol{\boldsymbol{U}}}) - D_{f} \mathbf{\mathcal{Q}} + D_{f} \mathbf{\mathcal{Q}} \boldsymbol{b} \otimes \boldsymbol{b} - \boldsymbol{\mathcal{F}}_{t}(\widehat{\boldsymbol{\boldsymbol{U}}})) \boldsymbol{n} \right\rangle_{\partial K} \\ &+ \left\langle \boldsymbol{\boldsymbol{v}}, \boldsymbol{\tau}(\boldsymbol{U} - \widehat{\boldsymbol{U}}) \right\rangle_{\partial K} + \left(\boldsymbol{\boldsymbol{v}}, (\boldsymbol{\boldsymbol{u}}_{\perp} \cdot \boldsymbol{\nabla}) \boldsymbol{U} \right)_{K} + \left(\boldsymbol{\boldsymbol{v}}, \boldsymbol{\boldsymbol{f}}_{E_{\parallel}} \right)_{K} + \left(\boldsymbol{\boldsymbol{v}}, \boldsymbol{\boldsymbol{f}}_{EX} \right)_{K} - \left(\boldsymbol{\boldsymbol{v}}, \boldsymbol{\boldsymbol{g}} \right)_{K} = \left(\boldsymbol{\boldsymbol{v}}, \boldsymbol{\boldsymbol{s}} \right)_{K}. \end{split}$$

The time derivative is discretized using an implicit scheme of the form

$$\partial_t oldsymbol{U} pprox \delta rac{oldsymbol{U}}{\Delta t} - oldsymbol{f}_0$$

where δ is a constant parameter that depends of the time integration scheme, and f_0 is a vector that takes into account the previous time steps.

Using the linearization techniques introduced before, and rearranging the terms with reference to the three variables of the local problems Q, U, \hat{U} , we obtain

$$\left(\nabla \boldsymbol{v}, D_{f} \boldsymbol{Q} - D_{f} \boldsymbol{b} \otimes \boldsymbol{Q} \boldsymbol{b} + \boldsymbol{\mathcal{F}}_{t}^{\boldsymbol{Q}}\right)_{K} + \left\langle \boldsymbol{v}, (-D_{f} \boldsymbol{Q} + D_{f} \boldsymbol{b} \otimes \boldsymbol{Q} \boldsymbol{b} - \boldsymbol{\mathcal{F}}_{t}^{\boldsymbol{Q}}) \boldsymbol{n} \right\rangle_{\partial K} + \left(\boldsymbol{v}, \boldsymbol{f}_{E_{\parallel}}^{\boldsymbol{Q}}\right)_{K} \\
+ \left(\boldsymbol{v}, \frac{\delta}{\Delta t} \boldsymbol{U}\right)_{K} - \left(\nabla \boldsymbol{v}, \mathbb{A}_{(\boldsymbol{U})}^{k-1} \boldsymbol{U} - \boldsymbol{\mathcal{F}}_{t}^{\boldsymbol{U}}\right)_{K} + \left\langle \boldsymbol{v}, \boldsymbol{\tau} \boldsymbol{U} \right\rangle_{\partial K} \\
+ \left(\boldsymbol{v}, (\boldsymbol{u}_{\perp} \cdot \nabla) \boldsymbol{U}\right)_{K} + \left(\boldsymbol{v}, \boldsymbol{f}_{E_{\parallel}}^{\boldsymbol{U}}\right)_{K} + \left(\boldsymbol{v}, \boldsymbol{f}_{EX}^{\boldsymbol{U}}\right)_{K} - \left(\boldsymbol{v}, \frac{d\boldsymbol{g}}{d\boldsymbol{U}} \Big|_{k-1} \boldsymbol{U}\right)_{K} \\
+ \left\langle \boldsymbol{v}, (\mathbb{A}_{(\widehat{\boldsymbol{U}})}^{k-1} \widehat{\boldsymbol{U}} - \boldsymbol{\mathcal{F}}_{t}^{\widehat{\boldsymbol{U}}}) \boldsymbol{n} \right\rangle_{\partial K} - \left\langle \boldsymbol{v}, \boldsymbol{\tau} \widehat{\boldsymbol{U}} \right\rangle_{\partial K} \\
= \left(\boldsymbol{v}, \boldsymbol{f}_{0}\right)_{K} + \left(\boldsymbol{v}, \boldsymbol{s}\right)_{K} - \left(\nabla \boldsymbol{v}, \boldsymbol{\mathcal{F}}_{t}^{0}\right)_{K} + \left\langle \boldsymbol{v}, \boldsymbol{\mathcal{F}}_{t}^{0} \boldsymbol{n} \right\rangle_{\partial K} - \left(\boldsymbol{v}, \boldsymbol{f}_{EX}^{0}\right)_{K}, \\
\left(\boldsymbol{\mathcal{G}}, \boldsymbol{\mathcal{Q}}\right)_{K} + \left(\nabla \cdot \boldsymbol{\mathcal{G}}, \boldsymbol{U}\right)_{K} - \left\langle \boldsymbol{\mathcal{G}} \boldsymbol{n}, \widehat{\boldsymbol{U}} \right\rangle_{\partial K} = 0.$$
(47)

System (47) can be rewritten as

$$A_{uq} \mathbf{Q} + A_{uu} \mathbf{U} + A_{ul} \widehat{\mathbf{U}} = \mathbf{S}$$
$$A_{qq} \mathbf{Q} + A_{qu} \mathbf{U} + A_{ql} \widehat{\mathbf{U}} = \mathbf{0}$$

where the bilinear forms are

$$A_{uq} = \left(\nabla \boldsymbol{v}, D_{f} \boldsymbol{Q}\right)_{K} - \left\langle \boldsymbol{v}, D_{f} \boldsymbol{Q} \boldsymbol{n} \right\rangle_{\partial K} \\ - \left(\nabla \boldsymbol{v}, D_{f} \boldsymbol{Q} \boldsymbol{b} \otimes \boldsymbol{b}\right)_{K} + \left\langle \boldsymbol{v}, D_{f} (\boldsymbol{Q} \boldsymbol{b} \otimes \boldsymbol{b}) \boldsymbol{n} \right\rangle_{\partial K} \\ + \left(\nabla \boldsymbol{v}, \boldsymbol{\mathcal{F}}_{t}^{\boldsymbol{Q}}\right)_{K} - \left\langle \boldsymbol{v}, \boldsymbol{\mathcal{F}}_{t}^{\boldsymbol{Q}} \boldsymbol{n} \right\rangle_{\partial K} + \left(\boldsymbol{v}, \boldsymbol{f}_{E_{\parallel}}^{\boldsymbol{Q}}\right)_{K},$$

$$A_{uu} = \left(\mathbf{v}, \frac{\delta}{\Delta t} \mathbf{U}\right)_{K} + \left\langle\mathbf{v}, \boldsymbol{\tau} \mathbf{U}\right\rangle_{\partial K} + \left(\mathbf{v}, (\mathbf{u}_{\perp} \cdot \nabla) \mathbf{U}\right)_{K}$$
$$- \left(\nabla \mathbf{v}, \mathbb{A}^{k-1} \mathbf{U}\right)_{K} + \left(\nabla \mathbf{v}, \mathcal{F}_{t}^{\mathbf{U}}\right)_{K}$$
$$+ \left(\mathbf{v}, \mathbf{f}_{E_{\parallel}}^{\mathbf{U}}\right)_{K} + \left(\mathbf{v}, \mathbf{f}_{EX}^{\mathbf{U}}\right)_{K} - \left(\mathbf{v}, \frac{d\mathbf{g}}{d\mathbf{U}}\Big|_{k-1} \mathbf{U}\right)_{K},$$

$$A_{ul} = + \left\langle \mathbf{v}, (\mathbb{A}^{k-1} \widehat{\boldsymbol{U}}) \boldsymbol{n} \right\rangle_{\partial K} - \left\langle \mathbf{v}, \boldsymbol{\mathcal{F}}_t^{\widehat{\boldsymbol{U}}} \boldsymbol{n} \right\rangle_{\partial K} - \left\langle \mathbf{v}, \boldsymbol{\tau} \widehat{\boldsymbol{U}} \right\rangle_{\partial K},$$

$$A_{qq} = \left(\mathcal{G}, \mathcal{Q} \right)_K,$$

$$A_{qu} = \left(\mathbf{\nabla} \cdot \mathbf{\mathcal{G}}, \mathbf{U} \right)_{K},$$

$$A_{qu} = - \left\langle oldsymbol{\mathcal{G}} oldsymbol{n}, \widehat{oldsymbol{U}}
ight
angle_{\partial K}$$

$$oldsymbol{S} = \left(oldsymbol{v}, oldsymbol{f}_0
ight)_K + \left(oldsymbol{v}, oldsymbol{s}
ight)_K - \left(oldsymbol{
abla} oldsymbol{v}, oldsymbol{\mathcal{F}}_t^0
ight)_K + \left\langle oldsymbol{v}, oldsymbol{\mathcal{F}}_t^0 oldsymbol{n}
ight
angle_{\partial K} - \left(oldsymbol{v}, oldsymbol{f}_{EX}^0
ight)_K.$$

6.2 The global problem

The global problem derives from the imposition of the continuity of the fluxes in the normal direction of the interior faces, and the boundary conditions, that is

$$\left\langle \boldsymbol{\mu}, (\widehat{\boldsymbol{\mathcal{F}}} - D_f \widehat{\boldsymbol{\mathcal{Q}}} + D_f \widehat{\boldsymbol{\mathcal{Q}}} \boldsymbol{b} \otimes \boldsymbol{b} - \widehat{\boldsymbol{\mathcal{F}}_t}) \boldsymbol{n} \right\rangle_{\partial \mathcal{T}_b \setminus \partial \Omega} + \left\langle \boldsymbol{\mu}, \boldsymbol{B}_{\text{BC}} \right\rangle_{\partial \Omega} = 0,$$

where \mathcal{T}_h represents the skeleton of the triangulation and $\boldsymbol{B}_{\text{BC}}$ is a vector that defines the boundary conditions on $\partial\Omega$. In particular, for the Bohm boundary condition $\boldsymbol{B}_{\text{BC}} = \boldsymbol{B}$ on $\partial\Omega_{\text{Bohm}}$, as defined in 5.6.

Substituting the definition of the fluxes and \boldsymbol{B} we obtain

$$\left\langle \boldsymbol{\mu}, (\boldsymbol{\mathcal{F}} - D_f \boldsymbol{\mathcal{Q}} + D_f \boldsymbol{\mathcal{Q}} \boldsymbol{b} \otimes \boldsymbol{b} - \boldsymbol{\mathcal{F}}_t) \boldsymbol{n} + \boldsymbol{\tau} (\boldsymbol{U} - \hat{\boldsymbol{U}}) \right\rangle_{\partial \mathcal{T}_b \setminus \partial \Omega} + \left\langle \boldsymbol{\mu}, \boldsymbol{B}_{\text{BC}} \right\rangle_{\partial \Omega} = 0,$$

7 Discrete form in 2D Cartesian/axisymmetric configuration

A planar configuration is considered. The x and y axis define the coordinate plane. The derivative rules used in the following for Cartesian or axisymmetric configuration are, considering a generic scalar function f and a generic vector function v

Cartesian:
$$\nabla f = \frac{\partial f}{\partial x}\hat{\boldsymbol{e}}_x + \frac{\partial f}{\partial y}\hat{\boldsymbol{e}}_y, \quad \nabla \cdot \boldsymbol{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y},$$
Axisymmetric: $\nabla f = \frac{\partial f}{\partial x}\hat{\boldsymbol{e}}_x + \frac{\partial f}{\partial y}\hat{\boldsymbol{e}}_y, \quad \nabla \cdot \boldsymbol{v} = \frac{\partial v_x}{\partial x} + \frac{1}{x}v_x + \frac{\partial v_y}{\partial y}.$

In order to develop a high-order finite-element scheme, high-order polynomial interpolation is considered in each element to represent the unknowns. Defining a set of basis function, a generic scalar function can be represented in a generic point \boldsymbol{x} of the element K as

$$f|_{K}(\boldsymbol{x}) = \sum_{j=1}^{N_p} N_j(\boldsymbol{x}) f_j,$$

where N_p is the number of nodes in each element, N_j is the j-th basis and f_j is the nodal value of the function f in the j-th node.

Similarly, the vector of nodal values for the vector unknown U in the element K can be represented as (dropping some symbols to easy the notation)

$$\boldsymbol{U} = \begin{cases} U_1 \\ U_2 \\ U_3 \\ U_4 \end{cases} = \sum_{j=1}^{N_p} \begin{bmatrix} N_j & 0 & 0 & 0 \\ 0 & N_j & 0 & 0 \\ 0 & 0 & N_j & 0 \\ 0 & 0 & 0 & N_j \end{bmatrix} \begin{cases} U_1^j \\ U_2^j \\ U_3^j \\ U_4^j \end{cases} = \sum_{j=1}^{N_p} N_j \boldsymbol{\mathcal{I}}_4 \boldsymbol{U}^j,$$

while the vector of nodal values for the tensor unknown ${\cal Q}$ in the same element can be written as

$$\mathbf{\mathcal{Q}} = \begin{cases} \mathcal{Q}_{11} \\ \mathcal{Q}_{12} \\ \mathcal{Q}_{21} \\ \mathcal{Q}_{22} \\ \mathcal{Q}_{31} \\ \mathcal{Q}_{32} \\ \mathcal{Q}_{41} \\ \mathcal{Q}_{42} \end{cases} = \sum_{j=1}^{N_p} \begin{bmatrix} N_j & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & N_j & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & N_j & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & N_j & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & N_j & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & N_j & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & N_j & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & N_j & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & N_j & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & N_j & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & N_j & 0 \end{cases} = \sum_{j=1}^{N_p} N_j \mathcal{I}_8 \mathbf{\mathcal{Q}}^j,$$

where \mathcal{I}_n is the identity matrix of rank n, and U^j and Q^j are the vectors of the nodal values for the unknowns U and Q for the node j.

It is useful to define in this framework also some operations applied to the unknowns. For example, the gradient of \boldsymbol{U} is

$$\nabla U = \begin{bmatrix} U_{1,x} & U_{1,y} \\ U_{2,x} & U_{2,y} \\ U_{3,x} & U_{3,y} \\ U_{4,x} & U_{4,y} \end{bmatrix},$$

and can be written in vector-nodal notation as

$$\nabla U = \begin{cases} U_{1,x} \\ U_{1,y} \\ U_{2,x} \\ U_{2,y} \\ U_{3,x} \\ U_{3,y} \\ U_{4,x} \\ U_{4,y} \end{cases} = \sum_{j=1}^{N_p} \begin{bmatrix} N_{j,x} & 0 & 0 & 0 & 0 \\ N_{j,y} & 0 & 0 & 0 & 0 \\ 0 & N_{j,x} & 0 & 0 & 0 \\ 0 & 0 & N_{j,x} & 0 & 0 \\ 0 & 0 & N_{j,x} & 0 & 0 \\ 0 & 0 & 0 & N_{j,x} & 0 \\ 0 & 0 & 0 & N_{j,x} & 0 \\ 0 & 0 & 0 & N_{j,x} & 0 \end{cases} \begin{bmatrix} U_1^j \\ U_2^j \\ U_3^j \\ U_4^j \end{bmatrix}.$$

The product of \boldsymbol{U} with the Jacobian matrix $\mathbb A$ is

$$\mathbb{A}m{U} = m{\mathcal{A}}m{U} \otimes m{b}^T = m{\mathcal{A}}egin{bmatrix} N_j & 0 & 0 & 0 \ 0 & N_j & 0 & 0 \ 0 & 0 & N_j & 0 \ 0 & 0 & 0 & N_j \end{bmatrix} egin{bmatrix} U_1^j \ U_2^j \ U_3^j \ U_4^j \end{bmatrix} \otimes m{b}^T.$$

Hence, in vector-nodal notation it becomes

$$\mathbb{A}\boldsymbol{U} = \sum_{j=1}^{N_p} \begin{bmatrix} \mathcal{A}_{11}N_jb_x & \mathcal{A}_{12}N_jb_x & \mathcal{A}_{13}N_jb_x & \mathcal{A}_{14}N_jb_x \\ \mathcal{A}_{11}N_jb_y & \mathcal{A}_{12}N_jb_y & \mathcal{A}_{13}N_jb_y & \mathcal{A}_{14}N_jb_y \\ \mathcal{A}_{21}N_jb_x & \mathcal{A}_{22}N_jb_x & \mathcal{A}_{23}N_jb_x & \mathcal{A}_{24}N_jb_x \\ \mathcal{A}_{21}N_jb_y & \mathcal{A}_{22}N_jb_y & \mathcal{A}_{23}N_jb_x & \mathcal{A}_{24}N_jb_y \\ \mathcal{A}_{31}N_jb_x & \mathcal{A}_{32}N_jb_x & \mathcal{A}_{33}N_jb_x & \mathcal{A}_{34}N_jb_x \\ \mathcal{A}_{31}N_jb_y & \mathcal{A}_{32}N_jb_y & \mathcal{A}_{33}N_jb_y & \mathcal{A}_{34}N_jb_y \\ \mathcal{A}_{41}N_jb_x & \mathcal{A}_{42}N_jb_x & \mathcal{A}_{43}N_jb_x & \mathcal{A}_{44}N_jb_x \\ \mathcal{A}_{41}N_jb_y & \mathcal{A}_{42}N_jb_y & \mathcal{A}_{43}N_jb_y & \mathcal{A}_{44}N_jb_y \end{bmatrix} \begin{bmatrix} U_1^j \\ U_2^j \\ U_3^j \\ U_4^j \end{bmatrix}$$

The divergence of Q can be written as

$$\boldsymbol{\nabla} \cdot \boldsymbol{\mathcal{Q}} = \begin{bmatrix} \mathcal{Q}_{11,x} + \mathcal{Q}_{12,y} \\ \mathcal{Q}_{21,x} + \mathcal{Q}_{22,y} \\ \mathcal{Q}_{31,x} + \mathcal{Q}_{32,y} \\ \mathcal{Q}_{41,x} + \mathcal{Q}_{42,y} \end{bmatrix} = \sum_{j=1}^{N_p} \begin{bmatrix} \tilde{N}_{j,x} & N_{j,y} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \tilde{N}_{j,x} & N_{j,y} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \tilde{N}_{j,x} & N_{j,y} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \tilde{N}_{j,x} & N_{j,y} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \tilde{N}_{j,x} & N_{j,y} \end{bmatrix} \begin{bmatrix} \mathcal{Q}_{11}^{i_1} \\ \mathcal{Q}_{12}^{j_2} \\ \mathcal{Q}_{21}^{j_2} \\ \mathcal{Q}_{31}^{j_3} \\ \mathcal{Q}_{32}^{j_2} \\ \mathcal{Q}_{41}^{j_4} \\ \mathcal{Q}_{42}^{j_4} \end{bmatrix},$$

where $\tilde{N}_{j,x}$ corresponds to $N_{j,x}$ for Cartesian computations and to $N_{j,x} + \frac{1}{x}N_j$ for axisymmetric computations.

The product of \mathbf{Q} for a generic 2D vector $\mathbf{q} = \{q_x, q_y\}^T$ is

$$\mathcal{Q}\boldsymbol{q} = \mathcal{Q} \left\{ \begin{matrix} q_x \\ q_y \end{matrix} \right\} = \begin{bmatrix} \mathcal{Q}_{11}q_x + \mathcal{Q}_{12}q_y \\ \mathcal{Q}_{21}q_x + \mathcal{Q}_{22}q_y \\ \mathcal{Q}_{31}q_x + \mathcal{Q}_{32}q_y \\ \mathcal{Q}_{41}q_x + \mathcal{Q}_{42}q_y \end{bmatrix} = \sum_{j=1}^{N_p} \begin{bmatrix} N_jq_x & N_jq_y & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & N_jq_x & N_jq_y & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & N_jq_x & N_jq_y & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & N_jq_x & N_jq_y \end{bmatrix} \begin{bmatrix} \mathcal{Q}_{12}^{j_1} \\ \mathcal{Q}_{21}^{j_2} \\ \mathcal{Q}_{21}^{j_2} \\ \mathcal{Q}_{31}^{j_2} \\ \mathcal{Q}_{31}^{j_2} \\ \mathcal{Q}_{31}^{j_2} \\ \mathcal{Q}_{41}^{j_2} \\ \mathcal{Q}_{42}^{j_2} \end{bmatrix}.$$

Finally, the tensor term $\mathcal{Q}b \otimes b$ is

$$m{\mathcal{Q}} m{b} \otimes m{b} = egin{bmatrix} b_x(\mathcal{Q}_{11}b_x + \mathcal{Q}_{12}b_y) & b_y(\mathcal{Q}_{11}b_x + \mathcal{Q}_{12}b_y) \ b_x(\mathcal{Q}_{21}b_x + \mathcal{Q}_{22}b_y) & b_y(\mathcal{Q}_{21}b_x + \mathcal{Q}_{22}b_y) \ b_x(\mathcal{Q}_{31}b_x + \mathcal{Q}_{32}b_y) & b_y(\mathcal{Q}_{31}b_x + \mathcal{Q}_{32}b_y) \ b_x(\mathcal{Q}_{41}b_x + \mathcal{Q}_{42}b_y) & b_y(\mathcal{Q}_{41}b_x + \mathcal{Q}_{42}b_y) \end{bmatrix},$$

and can be written in vector-nodal notation as

$$m{\mathcal{Q}} m{b} \otimes m{b} = egin{dcases} b_x (\mathcal{Q}_{11} b_x + \mathcal{Q}_{12} b_y) \ b_y (\mathcal{Q}_{11} b_x + \mathcal{Q}_{12} b_y) \ b_x (\mathcal{Q}_{21} b_x + \mathcal{Q}_{22} b_y) \ b_y (\mathcal{Q}_{21} b_x + \mathcal{Q}_{22} b_y) \ b_x (\mathcal{Q}_{31} b_x + \mathcal{Q}_{32} b_y) \ b_y (\mathcal{Q}_{31} b_x + \mathcal{Q}_{32} b_y) \ b_x (\mathcal{Q}_{41} b_x + \mathcal{Q}_{42} b_y) \ b_y (\mathcal{Q}_{41} b_x + \mathcal{Q}_{42} b_y) \ \end{pmatrix} = m{b}_y (\mathcal{Q}_{41} b_x + \mathcal{Q}_{42} b_y) \ \end{pmatrix}$$

To define a Galerkin method, the test functions are chosen in the same space of the basis functions. Hence, the functions $v_i(v_i)$ and $\mathcal{G}(\mathcal{G}_i)$ are defined as

$$\mathbf{v} = N_i \mathbf{\mathcal{I}}_4 \mathbf{v}, \quad \mathbf{\mathcal{G}} = N_i \mathbf{\mathcal{I}}_8 \mathbf{\mathcal{G}}$$

where the vector \boldsymbol{v} takes the values

$$m{v} = egin{dcases} 1 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix} ext{for the first equation,} \quad m{v} = egin{dcases} 0 \\ 1 \\ 0 \\ 0 \\ \end{pmatrix} ext{for the second equation,}$$
 $m{v} = egin{dcases} 0 \\ 0 \\ 1 \\ 0 \\ \end{pmatrix} ext{for the fourth equation.}$

The vector $\boldsymbol{\mathcal{G}}$ is constructed in a similar way.

Similarly to the basis functions, some operations on the test functions can be defined as

$$oldsymbol{
abla} oldsymbol{v} = egin{bmatrix} N_{i,x} & 0 & 0 & 0 & 0 \ N_{i,y} & 0 & 0 & 0 \ 0 & N_{i,x} & 0 & 0 \ 0 & 0 & N_{i,x} & 0 \ 0 & 0 & N_{i,x} & 0 \ 0 & 0 & 0 & N_{i,x} \ 0 & 0 & 0 & N_{i,y} \end{bmatrix} oldsymbol{v},$$

7.1 Discretization of the bilinear forms

The discretization introduced before allows to discretize the bilinear forms introduced in 6. As an example, the term $(\nabla v, D_f \mathcal{Q})_{\kappa}$ becomes

$$\left(\boldsymbol{\nabla} \boldsymbol{v}, D_f \boldsymbol{\mathcal{Q}}\right)_K = D_f \int_K (\boldsymbol{\nabla} \boldsymbol{v})^T : \boldsymbol{\mathcal{Q}} dK =$$

$$\sum_{j=1}^{N_p} oldsymbol{v}^t D_f \int_K oldsymbol{\mathcal{M}} dK egin{cases} \mathcal{Q}_{11}^j \ \mathcal{Q}_{12}^j \ \mathcal{Q}_{21}^j \ \mathcal{Q}_{31}^j \ \mathcal{Q}_{32}^j \ \mathcal{Q}_{31}^j \ \mathcal{Q}_{32}^j \ \mathcal{Q}_{41}^j \ \mathcal{Q}_{42}^j \end{pmatrix},$$

where the matrix is \mathcal{M}

Hence,

$$oldsymbol{\mathcal{M}} = egin{bmatrix} N_{i,x}N_j & N_{i,y}N_j & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & N_{i,x}N_j & N_{i,y}N_j & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & N_{i,x}N_j & N_{i,y}N_j & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & N_{i,x}N_j & N_{i,y}N_j \end{bmatrix}$$

In the following part are shown the matrices related to different bilinear forms.

$$\left(\boldsymbol{\nabla} \boldsymbol{v}, \boldsymbol{\mathcal{Q}} \right)_{K} \rightarrow N_{j} \begin{bmatrix} N_{i,x} & N_{i,y} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & N_{i,x} & N_{i,y} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & N_{i,x} & N_{i,y} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & N_{i,x} & N_{i,y} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & N_{i,x} & N_{i,y} \end{bmatrix}$$

$$\left\langle \mathbf{v}, \mathbf{Q} \mathbf{n} \right\rangle_{\partial K} \to N_i N_j \begin{bmatrix} n_x & n_y & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & n_x & n_y & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & n_x & n_y & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & n_x & n_y \end{bmatrix}$$

$$\left(\boldsymbol{\nabla} \boldsymbol{v}, \boldsymbol{\mathcal{Q}} \boldsymbol{b} \otimes \boldsymbol{b} \right)_{K} \rightarrow (N_{i,x} b_{x} + N_{i,y} b_{y}) N_{j} \begin{bmatrix} b_{x} & b_{y} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & b_{x} & b_{y} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & b_{x} & b_{y} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & b_{x} & b_{y} \end{bmatrix}$$

$$egin{aligned} \left\langle oldsymbol{v}, (oldsymbol{\mathcal{Q}}oldsymbol{b}\otimesoldsymbol{b})oldsymbol{n}
ight
angle_{\partial K}
ightarrow oldsymbol{n}\cdotoldsymbol{b}N_iN_j egin{bmatrix} b_x & b_y & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & b_x & b_y & 0 & 0 \ 0 & 0 & 0 & 0 & b_x & b_y \end{bmatrix} \ egin{bmatrix} igg(oldsymbol{
abla}oldsymbol{v}, \mathbb{A}^{k-1}oldsymbol{U}igg)_K
ightarrow (N_{i,x}b_x+N_{i,y}b_y)N_j oldsymbol{\mathcal{A}}^{k-1} \ igg(oldsymbol{v}, (\mathbb{A}^{k-1}\widehat{oldsymbol{U}})oldsymbol{n}igg\rangle_{\partial K}
ightarrow oldsymbol{n}\cdotoldsymbol{b}N_iN_j oldsymbol{\mathcal{A}}^{k-1} \end{aligned}$$

8 Discrete form in 3D with Fourier series in the toroidal direction

In this section, the HDG scheme is the 2D poloidal plane is coupled with a finite-element scheme based on Fourier expansions in the toroidal direction ϕ . To this aim, some notation is introduced. The gradient of a generic function f is written as

$$oldsymbol{
abla} f = oldsymbol{
abla} f_{pol} + rac{1}{x} rac{\partial f}{\partial \phi} \hat{oldsymbol{e}}_{\phi},$$

where ∇f_{pol} is the projection of the gradient in the poloidal plane. Therefore the gradient of the vector variable U is

$$oldsymbol{
abla} oldsymbol{U} = oldsymbol{
abla} U_{pol} + rac{1}{x} rac{\partial oldsymbol{U}}{\partial \phi} \otimes \hat{oldsymbol{e}}_{\phi} = oldsymbol{\mathcal{Q}} + rac{1}{x} rac{\partial oldsymbol{U}}{\partial \phi} \otimes \hat{oldsymbol{e}}_{\phi},$$

Hence, 46 is rewritten as

$$\begin{aligned} \boldsymbol{\mathcal{Q}} - \boldsymbol{\nabla} \boldsymbol{U}_{pol} &= 0 \\ \partial_t \boldsymbol{U} + \boldsymbol{\nabla} \cdot (\boldsymbol{\mathcal{F}} - D_f \boldsymbol{\mathcal{Q}} - D_f \frac{1}{x} \frac{\partial \boldsymbol{U}}{\partial \phi} \otimes \hat{\boldsymbol{e}}_{\phi} + D_f \boldsymbol{\mathcal{Q}} \boldsymbol{b} \otimes \boldsymbol{b} + D_f \frac{1}{x} \frac{\partial \boldsymbol{U}}{\partial \phi} b_{\phi} \otimes \boldsymbol{b} - \boldsymbol{\mathcal{F}}_t) \\ &+ (\boldsymbol{u}_{\perp} \cdot \boldsymbol{\nabla}) \boldsymbol{U} + \boldsymbol{f}_{E_{\parallel}} + \boldsymbol{f}_{EX} - \boldsymbol{g} = \boldsymbol{s}, \end{aligned}$$

that is

$$\begin{aligned} \boldsymbol{\mathcal{Q}} - \boldsymbol{\nabla} \boldsymbol{U}_{pol} &= 0 \\ \partial_t \boldsymbol{U} + \boldsymbol{\nabla} \cdot (\boldsymbol{\mathcal{F}} - D_f \boldsymbol{\mathcal{Q}} + D_f \boldsymbol{\mathcal{Q}} \boldsymbol{b} \otimes \boldsymbol{b} - \boldsymbol{\mathcal{F}}_t) + \boldsymbol{\nabla} \cdot (-D_f \frac{1}{x} \frac{\partial \boldsymbol{U}}{\partial \phi} \otimes \hat{\boldsymbol{e}}_{\phi} + D_f \frac{1}{x} \frac{\partial \boldsymbol{U}}{\partial \phi} b_{\phi} \otimes \boldsymbol{b}) \\ &+ (\boldsymbol{u}_{\perp} \cdot \boldsymbol{\nabla}) \boldsymbol{U} + \boldsymbol{f}_{E_{\parallel}} + \boldsymbol{f}_{EX} - \boldsymbol{g} = \boldsymbol{s}. \end{aligned}$$

In order to develop a 3D scheme using Fourier series in the toroidal direction, the following approximation of a generic periodic function is considered

$$f(\phi) \approx a_0 + \sum_{m=1}^{N_m} a_m \cos(m\phi) + b_m \sin(m\phi),$$

where N_m is the number of modes and the a_m and b_m are the coefficients of the modal expansion. A 3D function in the toroidal space will be defined by the poloidal position x and the toroidal position ϕ . Using high-order polynomials in the poloidal plane and the Fourier expansion in the toroidal direction, a generic function can be approximated as

$$f|_K(\boldsymbol{x}, \boldsymbol{\phi}) = \sum_{j=1}^{N_p} N_j(\boldsymbol{x}) f_j(a_0 + \sum_{m=1}^{N_m} a_m \cos(\boldsymbol{m}\boldsymbol{\phi}) + b_m \sin(\boldsymbol{m}\boldsymbol{\phi})).$$

Hence, the unknowns U and Q are written as

$$\boldsymbol{U}(\boldsymbol{x}, \boldsymbol{\phi}) = \sum_{j=1}^{N_p} N_j(\boldsymbol{x}) \boldsymbol{\mathcal{I}}_4 \boldsymbol{U}^j (a_0 + \sum_{m=1}^{N_m} a_m \cos(\boldsymbol{m}\boldsymbol{\phi}) + b_m \sin(\boldsymbol{m}\boldsymbol{\phi})),$$

$$\mathcal{Q}(\boldsymbol{x}, \phi) = \sum_{j=1}^{N_p} N_j(\boldsymbol{x}) \mathcal{I}_8 Q^j (a_0 + \sum_{m=1}^{N_m} a_m \cos(m\phi) + b_m \sin(m\phi)),$$

which provides,

$$oxed{U(oldsymbol{x},\phi)} = \sum_{j=1}^{N_p} N_j(oldsymbol{x}) oldsymbol{\mathcal{I}}_4(oldsymbol{U}_0^j + \sum_{m=1}^{N_m} oldsymbol{U}_{cm}^j \cos{(m\phi)} + oldsymbol{U}_{sm}^j \sin{(m\phi)}),$$

$$oldsymbol{\mathcal{Q}}(oldsymbol{x},\phi) = \sum_{i=1}^{N_p} N_j(oldsymbol{x}) oldsymbol{\mathcal{I}}_8(oldsymbol{Q}_0^j + \sum_{m=1}^{N_m} oldsymbol{Q}_{cm}^j \cos{(m\phi)} + oldsymbol{Q}_{sm}^j \sin{(m\phi)}),$$

where U_0^j , U_{cm}^j and U_{sm}^j and Q_0^j , Q_{cm}^j and Q_{sm}^j are the nodal values for the modal expansions respectively for the variable U and Q. Note that the problem presents $2N_m - 1$ vector unknowns for each variable.

The test functions are defined in this case as

$$\mathbf{v} = N_i \mathcal{I}_4 \mathbf{v} \boldsymbol{\phi}, \quad \boldsymbol{\mathcal{G}} = N_i \mathcal{I}_8 \boldsymbol{\mathcal{G}} \boldsymbol{\phi},$$

where ϕ are the test functions in the toroidal directions, that is

$$\phi = 1, \cos(n\phi), \sin(n\phi), \text{ for } n = 1, \dots, N_m,$$

that is, there are $2N_m-1$ test functions in the toroidal direction.

$$\begin{split} \left(\mathbf{\mathcal{G}}, \mathbf{\mathcal{Q}} \right)_{K} + \left(\mathbf{\nabla} \cdot \mathbf{\mathcal{G}}, \mathbf{U} \right)_{K} - \left\langle \mathbf{\mathcal{G}} \mathbf{n}, \widehat{\mathbf{U}} \right\rangle_{\partial K} &= 0 \\ \left(\mathbf{v}, \partial_{t} \mathbf{U} \right)_{K} - \left(\mathbf{\nabla} \mathbf{v}, \mathbf{\mathcal{F}}(\mathbf{U}) - D_{f} \mathbf{\mathcal{Q}} + D_{f} \mathbf{\mathcal{Q}} \mathbf{b} \otimes \mathbf{b} - \mathbf{\mathcal{F}}_{t}(\mathbf{U}) \right)_{K} + \left\langle \mathbf{v}, (\mathbf{\mathcal{F}}(\widehat{\mathbf{U}}) - D_{f} \mathbf{\mathcal{Q}} + D_{f} \mathbf{\mathcal{Q}} \mathbf{b} \otimes \mathbf{b} - \mathbf{\mathcal{F}}_{t}(\widehat{\mathbf{U}})) \mathbf{n} \right\rangle_{\partial K} \\ &+ \left(\mathbf{\nabla} \mathbf{v}, D_{f} \frac{1}{x} \frac{\partial \mathbf{U}}{\partial \phi} \otimes \hat{\mathbf{e}}_{\phi} - D_{f} \frac{1}{x} \frac{\partial \mathbf{U}}{\partial \phi} \mathbf{b}_{\phi} \otimes \mathbf{b} \right)_{K} - \left\langle \mathbf{v}, (D_{f} \frac{1}{x} \frac{\partial \mathbf{U}}{\partial \phi} \otimes \hat{\mathbf{e}}_{\phi} - D_{f} \frac{1}{x} \frac{\partial \mathbf{U}}{\partial \phi} \mathbf{b}_{\phi} \otimes \mathbf{b}) \mathbf{n} \right\rangle_{\partial K} \\ &+ \left\langle \mathbf{v}, \mathbf{\tau}(\mathbf{U} - \widehat{\mathbf{U}}) \right\rangle_{\partial K} + \left(\mathbf{v}, (\mathbf{u}_{\perp} \cdot \mathbf{\nabla}) \mathbf{U} \right)_{K} + \left(\mathbf{v}, \mathbf{f}_{E_{\parallel}} \right)_{K} + \left(\mathbf{v}, \mathbf{f}_{EX} \right)_{K} - \left(\mathbf{v}, \mathbf{g} \right)_{K} = \left(\mathbf{v}, \mathbf{s} \right)_{K}. \end{split}$$