

Natural Language Processing

Part of Speech Tagging

Edwin Puertas, Ph.D(c). epuerta@utb.edu.co

Parts of Speech

- From the earliest linguistic traditions (Yaska and Panini 5th C. BCE, Aristotle 4th C. BCE), the idea that words can be classified into grammatical categories.
- part of speech, word classes, POS, POS tags
- 8 parts of speech attributed to Dionysius Thrax of Alexandria (c. 1st C. BCE):
- noun, verb, pronoun, preposition, adverb, conjunction, participle, article
- These categories are relevant for NLP today.

Two classes of words: Open vs. Closed

- Closed class words
 - Relatively fixed membership
 - Usually function words: short, frequent words with grammatical function
 - determiners: a, an, the
 - pronouns: she, he, I
 - prepositions: on, under, over, near, by, ...
- Open class words
 - Usually content words: Nouns, Verbs, Adjectives, Adverbs
 - Plus interjections: oh, ouch, uh-huh, yes, hello
 - New nouns and verbs like iPhone or to fax

Part-of-Speech Tagging

- Assigning a part-of-speech to each word in a text.
- Words often have more than one POS.
- book:
 - VERB: (**Book** that flight)
 - NOUN: (Hand me that **book**).

Part-of-Speech Tagging Map from sequence $x_1,...,x_n$ of words to $y_1,...,y_n$ of POS tags

"Universal Dependencies" Tagset

	Tag	Description	Example
Open Class	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
	VERB	words for actions and processes	draw, provide, go
	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
S	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
		spacial, temporal, or other relation	
Words	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
Closed Class W	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
	DET	Determiner: marks noun phrase properties	a, an, the, this
	NUM	Numeral	one, two, first, second
	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
Other	PUNCT	Punctuation	; , ()
	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

• Nivre et al. 2016

Sample "Tagged" English sentences

There/PRO were/VERB 70/NUM children/NOUN there/ADV ./PUNC [ENG] Había / AUX 70 / NUM niños / NOUN allí / ADV. / PUNC [SPA]

Preliminary/ADJ findings/NOUN were/AUX reported/VERB in/ADP today/NOUN 's/PART New/PROPN England/PROPN Journal/PROPN of/ADP Medicine/PROPN

Why Part of Speech Tagging?

- Can be useful for other NLP tasks
 - Parsing: POS tagging can improve syntactic parsing
 - MT: reordering of adjectives and nouns (say from Spanish to English)
 - Sentiment or affective tasks: may want to distinguish adjectives or other POS
 - Text-to-speech (how do we pronounce "lead" or "object"?)
- Or linguistic or language-analytic computational tasks
 - Need to control for POS when studying linguistic change like creation of new words, or meaning shift
 - Or control for POS in measuring meaning similarity or difference

How difficult is POS tagging in English?

- Roughly 15% of word types are ambiguous
- Hence 85% of word types are unambiguous
- Janet is always PROPN, hesitantly is always ADV
- But those 15% tend to be very common.
- So ~60% of word tokens are ambiguous
- E.g., back
 - earnings growth took a back/ADJ seat
 - a small building in the back/NOUN
 - a clear majority of senators back/VERB the bill
 - enable the country to buy back/PART debt
 - I was twenty-one back/ADV then

POS tagging performance in English

- How many tags are correct? (Tag accuracy)
 - About 97%
 - Hasn't changed in the last 10+ years
 - HMMs, CRFs, BERT perform similarly.
 - Human accuracy about the same
- But baseline is 92%!
 - Baseline is performance of stupidest possible method
 - "Most frequent class baseline" is an important baseline for many tasks
 - Tag every word with its most frequent tag
 - (and tag unknown words as nouns)
 - Partly easy because
 - Many words are unambiguous

Sources of information for POS tagging

Janet will back the bill
AUX/NOUN/VERB?

- Prior probabilities of word/tag
 - "will" is usually an AUX
- Identity of neighboring words
 - "the" means the next word is probably not a verb
- Morphology and wordshape:

■ Prefixes unable: un- \rightarrow ADJ

■ Suffixes importantly: $-ly \rightarrow ADJ$

■ Capitalization Janet: CAP → PROPN

Standard algorithms for POS tagging

- Supervised Machine Learning Algorithms:
- Hidden Markov Models
- Conditional Random Fields (CRF)/ Maximum Entropy Markov Models (MEMM)
- Neural sequence models (RNNs or Transformers)
- Large Language Models (like BERT), finetuned
- All required a hand-labeled training set, all about equal performance (97% on English)
- All make use of information sources we discussed
- Via human created features: HMMs and CRFs
- Via representation learning: Neural LMs