Deep Semi-supervised learning (SSL) for Remote Sensing Datasets

Itza Hernandez-Sequeira, Ruben Fernandez-Beltran, Yonghao Xu, Pedram Ghamisi & Filiberto Pla

About me

- Itzá Hernández
- PhD. Computer Science Computer Vision
- University Jaume I, Castellón, Spain
- Internship Helmholtz Institute
 Freiberg for Resource Technology
 (HIF)
- 🔹 @itzahs 📊 🕥 🗘

Content of this presentation

Introduction to DSSL Data & Code

Results & Future

01 Introduction

Machine Learning & Deep Learning

Feature extraction

Classification

Class probability

Feature extraction + Classification

Class probability

Supervised

Semi-supervised

Unsupervised

Convolutional Neural Network (CNN)

Original Image

Resnet-18

Resnet-50

WideResNet-28-2

Taxonomy

Consistency regularization

= Basic Neural Network Layer Augmentation Operator.

RandAugment and Back-translation for UDA.

A consistency regularization term is applied to the **final loss function**. e.g. **Cross Entropy for example H(F(x), Tx).**

A realistic perturbation in the training data should not change the output of the model.

e.g. Unsupervised Data Augmentation (**UDA**).

Pseudo-labelling

(3) Pseudo-label

= Basic Neural Network Layer

Pseudo-labeling methods rely on the **high-confidence of pseudo-labels**, which can be added to the training data set as labeled data.

Self-training: leverage model's own confident predictions to produce the pseudo-labels for **unlabeled data**.

Image data augmentation for DL

Data Warping: transforms existing images such as the label is preserved.

Generated images

Synthetic data - CycleGANS - emotion classification

 Oversampling: creates synthetic instances and add them to the training set.

[4] Sharma, A. (2019, June 12). Complete Guide to Data Augmentation for Computer Vision. Towards Data Science. https://towardsdatascience.com/complete-guide-to-data-augmentation-for-computer-vision-1abe4063ad07.

[5] Shorten, C., Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0

Hybrid: Fixmatch - Consistency Regularization and Pseudo Labeling

Hybrid: CoMatch - Consistency Regularization and Pseudo Labeling

Standard flip-shift

Cut-out, CTAugment, RandAugment

Color Jittering Grayscaling

CCSSL - Class-Aware Contrastive Semi-Supervised Learning

(a) Real-World Data With In-Distribution and Out-of-Distribution Data

(b) Pseudo-Label-Based SSL (c) Class-Aware Contrastive SSL (ours)

- Assumption that the classes and distribution of the unlabeled data is close to the labeled.
- In-distribution (known classes and balanced datasets) → class-wise clustering.
 High-confidence pseudo-label should be puller closer with the same class.
- Out-of-distribution (unknown classes or unlabeled distribution) → image-wise contrasting. Low-confidence pseudo-labels, triggers contrastive learning where only augmentation of the same image are positive pairs.

Data & Code

DL in Aerial Image Classification

Pixel-level

Object-level

Scene-level

Datasets

UCM Dataset [download]:

- 21 clases
- 100 images per class
- 256 x 256 pixels (0.3 m)

AID Dataset [download]:

- 30 clases
- 200 to 400 images per class
- 600 × 600 pixels

Sampling strategy

Sampling strategy:

- 50 % training and 50% testing (Cheng, G. et al, 2020) [2].
- When using supervised 1,050 samples for UCM and 5,000 for AID.
- When using semi-supervised 84 samples or 4 labels per class (Sohn, K. et al, 2020) [6].

Dataset	Class	# Labels per class	# Training data	# Testing data	Train/Test split
UCM	21	4/25/40	84/525/840	1, 050	50% / 50%
AID	30	4/25/40	120/750/1200	5,000	50% / 50%

Labeled to unlabeled ratio: 1-7

Semi-supervised learning toolbox

Class-Aware Contrastive Semi-Supervised Learning

Results & Future Research

Classification accuracy

Dataset		UCM		AID		
# Labels per class	4	25	40	4	25	40
# Total samples	84	525	840	120	750	1200
Supervised	90.00	90.86	93.52	85.34	85.90	89.94
FixMatch	94.38	92.00	94.48	92.66	87.30	92.8
CoMatch	95.52	94.76	93.81	93.04	93.88	89.26
FixMatch+CCSSL	94.00	94.67	94.67	90.94	91.28	92.00
# Total samples	1, 050			5, 000		
Fully Supervised		93.71		90.2		

Classification accuracy

Dataset		UCM		AID		
# Labels per class	4	25	40	4	25	40
# Total samples	84	525	840	120	750	1200
Supervised	90.00	90.86	93.52	85.34	85.90	89.94
FixMatch	94.38	92.00	94.48	92.66	87.30	92.8
CoMatch	95.52	94.76	93.81	93.04	93.88	89.26
FixMatch+CCSSL	94.00	94.67	94.67	90.94	91.28	92.00
# Total samples	1, 050			5, 000		
Fully Supervised		93.71		90.2		

Classification accuracy UCM

CoMatch - 10 min inference

Easy dataset - indist

True: freeway True: golfcourse Predicted: runway Predicted: tenniscourt

- 30

- 20

- 10

Classification accuracy AlD

FixMatch+CCSSL, WRN-28-2, 224x224 - 30 min inference

Harder dataset but with in-distribution data

True: Playground Predicted: Stadium

True: Playground Predicted: Stadium

Confusion Matrix

- 175

- 125

- 100

- 75

- 25

Computational cost analysis UCM

WRN-28-2

Image size: 224x224

Labeled to unlabeled ratio:

1-7

Labeled batch 8

Unlabeled batch 56

	Trainer	Label	В	GPU	Ttime
	Fully Supervised	50%	8	<12	50:53
4	Supervised	4	8	<12	12:39
	Supervised	40	8	<12	66:06
	FixMatch	4	8	12-24	68:17
	FixMatch	40	8	12-24	67:39
	CoMatch	4	8	24-40	71:08
	CoMatch	40	4	12-24	59:11
5	FM+CCSSL	4	8	24-40	70:40
	FM+CCSSL	40	4	12-24	59:49

Computational cost analysis UCM

WRN-28-2

Image size: 224x224

Labeled to unlabeled ratio:

1-7

Labeled batch 4

Unlabeled batch 28

ime
):53
:39
5:06
3:17
':39
:08
9:11
:40
:49
3:1 ':3 :0 9:1

Computational cost analysis UCM

3.5 **GB**

- Image size: 60x60
- Batch size: 32
- CoMatch
- Labeled to unlabeled ratio: 1-7

RN-50

7 GB

WRN-28-2

12 GB

Conclusions

- Implemented 3 Semi-Supervised models: FixMatch, CoMatch and Class Aware Contrastive Module (CCSSL).
- All SSL models outperformed the supervised benchmark showcasing the efficiency of leveraging unlabeled data with few labeled data.
- CoMatch obtained the best classification accuracy of 95.52% with 4 labeled samples on UCM and 93.88% with 25 labeled samples on AID.
- Focus on RN-18 as it is ½ computational cost as WRN-28-2.
- CCSSL module improved FixMatch → implement it on noisier datasets.

Codes for reproducibility

Configuration files & Logs of the experimental results

Step-by-step implementation in 4 notebooks:

- 1. Get data & software
- 2. Train model
- 3. Model evaluation
- 4. Model inference

20th and 21st October Castellón, Spain

Thanks!

Do you have any questions?

isequeir@uji.es

@itzahs

References

Bibliography:

- Bhavsar, K. (2018, September 14). Understanding your Convolution Network with Visualizations. Towards Data Science. https://towardsdatascience.com/understanding-your-convolution-network-with-visualizations-a4883441533b
- G. Cheng, X. Xie, J. Han, L. Guo and G. -S. Xia, "Remote Sensing Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and Opportunities," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 3735-3756, 2020, doi: 10.1109/JSTARS.2020.3005403.
- 3. X. Yang, Z. Song, I. King and Z. Xu, "A Survey on Deep Semi-Supervised Learning," in IEEE Transactions on Knowledge and Data Engineering, 2022, doi:10.1109/TKDE.2022.3220219.
- 4. Sharma, A. (2019, June 12). Complete Guide to Data Augmentation for Computer Vision. Towards Data Science. https://towardsdatascience.com/complete-guide-to-data-augmentation-for-computer-vision-1abe4063ad07.
- Shorten, C., Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0
- 6. Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. NeurIPS, 33, 2020.
- 7. Yi Yang and Shawn Newsam, "Bag-Of-Visual-Words and Spatial Extensions for Land-Use Classification," ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS), 2010.
- 8. F. Yang et al., "Class-Aware Contrastive Semi-Supervised Learning," 2022 IEEE/CVF Conference on Computer Vision and Pattern (Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 14401-14410, doi: 10.1109/CVPR52688.2022.01402.
- 9. S. Zagoruyko and N. Komodakis, "Wide residual networks," in Proceedings of the British Machine Vision Conference (BMVC), 2017, pp. 87.1-87.12, doi: 10.22024/UniKent/01.02.69550, arXiv:1605.07146.

Presentation credits:

- 1. Template by **Slidesgo**
- 2. Icons by Flaticon
- 3. Infographics and images by **Freepik**

