Electronic Circuits

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Dr. Gökhan Bilgin gokhanb@ce.yildiz.edu.tr

Diode Characteristics

Semiconductor Materials

Materials commonly used in the development of semiconductor devices:

- · Silicon (Si)
- Germanium (Ge)
 Gallium Arsenide (GaAs)

Doping

The electrical characteristics of silicon and germanium are improved by adding materials in a process called doping.

There are just two types of doped semiconductor materials:

n-type p-type

- n-type materials contain an excess of conduction band electrons.
 - p-type materials contain an excess of valence band holes.

p-n Junctions

One end of a silicon or germanium crystal can be doped as a ptype material and the other end as an n-type material.

The result is a p-n junction

Doping of semiconductors

- · Doping
 - the addition of small amounts of impurities drastically affects its properties
 - some materials form an excess of *electrons* and produce an *n*-type semiconductor
 - some materials form an excess of *holes* and produce a *p*-type semiconductor
 - both *n*-type and *p*-type materials have much greater conductivity than pure semiconductors
 - this is extrinsic conduction.

Doping of semiconductors (contd.)

- The dominant charge carriers in a doped semiconductor (e.g. electrons in n-type material) are called majority charge carriers. The other type are minority charge carriers.
- The overall doped material is electrically neutral.

pn Junctions

- When p-type and n-type materials are joined, this forms a pn junction
 - the majority charge carriers on each side diffuse across the junction where they combine with (and remove) the charge carriers of the opposite polarity.
 - hence, around the junction there are few free charge carriers and we have a depletion layer (also called a space-charge layer).

pn Junctions (contd.) • The diffusion of positive charge in one direction and negative charge in the other produces a charge imbalance - this results in a potential barrier across the junction.

pn Junctions (contd.)

- Potential barrier
 - the barrier opposes the flow of *majority* charge carriers and only a small number have enough energy to surmount it.
 - This generates a small diffusion current.
 - the barrier encourages the flow of *minority* carriers and any that come close to it will be swept over
 - This generates a small drift current.
 - for an isolated junction these two currents must balance each other and the net current is zero.

pn Junctions (contd.)

- Forward bias
 - if the *p*-type side is made *positive* with respect to the *n*-type side the height of the barrier is reduced
 - more majority charge carriers have sufficient energy to surmount it
 - the diffusion current therefore increases while the drift current remains the same
 - there is thus a net current flow across the junction which increases with the applied voltage.

pn Junctions (contd.)

- · Reverse bias
 - if the *p*-type side is made *negative* with respect to the *n*-type side the height of the barrier is increased
 - the number of majority charge carriers that have sufficient energy to surmount it rapidly decreases
 - the diffusion current therefore vanishes while the drift current remains the same
 - thus the only current is a small leakage current caused by the (approximately constant) drift current
 - the leakage current is usually negligible (a few nA).

pn Junctions (contd.)

- · Forward and reverse currents
 - pn junction current is given approximately by

$$I = I_{s} \left(\exp \frac{eV}{\eta kT} - 1 \right)$$

- where I is the current, e is the electronic charge, V is the applied voltage, k is Boltzmann's constant, T is the absolute temperature and η (Greek letter eta) is a constant in the range 1 to 2 determined by the junction material
- for most purposes we can assume $\eta = 1$.

Majority and Minority Carriers Two currents through a diode: Majority Carriers The majority carriers in n-type materials are electrons. The majority carriers in p-type materials are holes. Minority Carriers The minority carriers in n-type materials are holes. The minority carriers in p-type materials are electrons.

Forward Bias Voltage

The point at which the diode changes from no-bias condition to forward-bias condition occurs when the electrons and holes are given sufficient energy to cross the p-n junction. This energy comes from the external voltage applied across the diode.

The forward bias voltage required for a:

- gallium arsenide diode $\cong 1.2~V$ silicon diode $\cong 0.7~V$

 - germanium diode $\approx 0.3 \text{ V}$

25

Temperature Effects

As temperature increases it adds energy to the diode.

- · It reduces the required forward bias voltage for forwardbias conduction.
- · It increases the amount of reverse current in the reversebias condition.

Germanium diodes are more sensitive to temperature variations than silicon or gallium arsenide diodes.

Resistance Levels

Semiconductors react differently to DC and AC currents.

There are three types of resistance:

- DC (static) resistance
- AC (dynamic) resistance
- Average AC resistance

DC (Static) Resistance

For a specific applied DC voltage V_D , the diode has a specific current I_D , and a specific resistance R_D .

$$R_D = \frac{V_D}{I_D}$$

AC (Dynamic) Resistance

In the forward bias region:

$$r_d' = \frac{26\text{mV}}{I_D} + r_B$$

- The resistance depends on the amount of current (\mathcal{I}_D) in the diode.
- The voltage across the diode is fairly constant (26 mV for 25°C).
- * r_B ranges from a typical 0.1 Ω for high power devices to 2 Ω for low power, general purpose diodes. In some cases r_B can be ignored.

In the reverse bias region:

The resistance is effectively infinite. The diode acts like an open.

Average AC Resistance

$$r_{av} = \frac{\Delta V_d}{\Delta I_d} \mid \text{pt. to pt.}$$

AC resistance can be calculated using the current and voltage values for two points on the diode

Diode Checker

Many digital multimeters have a diode checking function. The diode should be tested out of circuit.

A normal diode exhibits its forward voltage:

- $\begin{tabular}{ll} \bullet & Gallium \ arsenide $\cong 1.2 \ V$ \\ \bullet & Silicon \ diode $\cong 0.7 \ V$ \\ \bullet & Germanium \ diode $\cong 0.3 \ V$ \\ \end{tabular}$

37

Curve Tracer

A curve tracer displays the characteristic curve of a diode in the test circuit. This curve can be compared to the specifications of the diode from a data sheet.

Other Types of Diodes

Zener diode Light-emitting diode Diode arrays

Zener Diode

A Zener is a diode operated in reverse bias at the Zener voltage (Vz).

Common Zener voltages are between 1.8 V and 200 V

Light-Emitting Diode (LED)

An LED emits photons when it is forward biased. These can be in the infrared or visible spectrum.

The forward bias voltage is usually in the range of 2 V to 3 V.

