Course Objective: 1. To understand various key paradigms for machine learning approaches. 2. To familiarize with the mathematical and statistical techniques used in machine learning. 3. To understand and differentiate among various machine learning techniques. S. NO. Course Outcomes (CO) CO1 Understand the fundamental concepts and algorithms of machine learning Develop a comprehensive understanding of fundamental machine learning concepts, algorithms, and techniques, including supervised and unsupervised learning, classification, regression, clustering, and dimensionality reduction. CO3 Apply principles and algorithms to evaluate models generated from data CO4 Learn to critically evaluate the performance of machine learning models using appropriate metrics Develop the ability to identify and formulate problems suitable for machine learning solutions, desig appropriate models, and interpret results in practical applications. S. NO. Contents UNIT 1 Introduction to Machine Learning: Overview of different tasks: classification, regression, clustering, Concept of learning, Types of the Machine Learning, Data Table, Information System, Data Representation, diversity of data, Basic Linear Algebra and Probabolity Theory, Optimization: Maximum likelihood, Expectation maximization, Gradient descent, Bias-Variance Tradeoff, Metrics to Evaluate Classification and Regression models Supervised Learning: Linear Regression, Logistic Regression, Baysian Decision Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural Networks, Deep Neural Network, Fundametals of Deep Learning: DNN, CNN. Unsupervised Learning: Clustering, Expectation Maximization, K-Mean Clustering, Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Aleuction, Feature Selection, PCA, factor analysis, manifold learning.		.	3	0	2	Algebra		
2. To familiarize with the mathematical and statistical techniques used in machine learning. 3. To understand and differentiate among various machine learning techniques. S. NO. Course Outcomes (CO) COI Understand the fundamental concepts and algorithms of machine learning concepts, algorithms, and techniques, including supervised and unsupervised learning, classification, regression, clustering, and dimensionality reduction. CO3 Apply principles and algorithms to evaluate models generated from data CO4 Learn to critically evaluate the performance of machine learning models using appropriate metrics CO5 Develop the ability to identify and formulate problems suitable for machine learning solutions, desig appropriate models, and interpret results in practical applications. S. NO. Contents Contents UNIT 1 Introduction to Machine Learning: Overview of different tasks: classification, regression, clustering, Concept of learning, Types of the Machine Learning, Data Table, Information System, Data Representation, diversity of data, Basic Linear Algebra and Probaboliy Theory, Optimization: Maximum likelihood, Expectation maximization, Gradient descent, Bias-Variance Tradeoff, Metrics to Evaluate Classification and Regression models Supervised Learning: Linear Regression, Logistic Regression, Baysian Decision Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural Networks, Deep Neural Network, Fundametals of Deep Learning: DNN, CNN. Unsupervised Learning: Clustering, Expectation Maximization, K-Mean Clustering, Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.			1 . 1	1: 0 1:		1		
S. NO. Course Outcomes (CO) Understand the fundamental concepts and algorithms of machine learning Develop a comprehensive understanding of fundamental machine learning concepts, algorithms, and techniques, including supervised and unsupervised learning, classification, regression, clustering, and dimensionality reduction. CO3 Apply principles and algorithms to evaluate models generated from data CO4 Learn to critically evaluate the performance of machine learning models using appropriate metrics Develop the ability to identify and formulate problems suitable for machine learning solutions, design appropriate models, and interpret results in practical applications. S. NO. Contents Contact Ho Introduction to Machine Learning: Overview of different tasks: classification, regression, clustering, Concept of learning, Types of the Machine Learning, Data Table, Information System, Data Representation, diversity of data, Basic Linear Algebra and Probaboliy Theory, Optimization: Maximum likelihood, Expectation maximization, Gradient descent, Bias-Variance Tradeoff, Metrics to Evaluate Classification and Regression models Supervised Learning: Linear Regression, Logistic Regression, Baysian Decision Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural Networks, Deep Neural Network, Fundametals of Deep Learning: DNN, CNN. Unsupervised Learning: Clustering, Expectation Maximization, K-Mean Clustering, Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.	2.To familiari:	ze with the mathema	tical and statistic	al techniques used	l in machine learn			
CO1 Understand the fundamental concepts and algorithms of machine learning Develop a comprehensive understanding of fundamental machine learning concepts, algorithms, and techniques, including supervised and unsupervised learning, classification, regression, clustering, and dimensionality reduction. CO3 Apply principles and algorithms to evaluate models generated from data CO4 Learn to critically evaluate the performance of machine learning models using appropriate metrics Develop the ability to identify and formulate problems suitable for machine learning solutions, design appropriate models, and interpret results in practical applications. S. NO. Contents Introduction to Machine Learning: Overview of different tasks: classification, regression, clustering, Concept of learning, Types of the Machine Learning, Data Table, Information System, Data Representation, diversity of data, Basic Linear Algebra and Probabolity Theory, Optimization: Maximum likelihood, Expectation maximization, Gradient descent, Bias-Variance Tradeoff, Metrics to Evaluate Classification and Regression models Supervised Learning: Linear Regression, Logistic Regression, Baysian Decision Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural Networks, Deep Neural Network, Fundametals of Deep Learning: DNN, CNN. Unsupervised Learning: Clustering, Expectation Maximization, K-Mean Clustering, Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.								
Develop a comprehensive understanding of fundamental machine learning concepts, algorithms, and techniques, including supervised and unsupervised learning, classification, regression, clustering, and dimensionality reduction. CO3 Apply principles and algorithms to evaluate models generated from data CO4 Learn to critically evaluate the performance of machine learning models using appropriate metrics Develop the ability to identify and formulate problems suitable for machine learning solutions, desig appropriate models, and interpret results in practical applications. S. NO. Contents Contact Ho Introduction to Machine Learning: Overview of different tasks: classification, regression, clustering, Concept of learning, Types of the Machine Learning, Data Table, Information System, Data Representation, diversity of data, Basic Linear Algebra and Probabolity Theory, Optimization: Maximum likelihood, Expectation maximization, Gradient descent, Bias-Variance Tradeoff, Metrics to Evaluate Classification and Regression models Supervised Learning: Linear Regression, Logistic Regression, Baysian Decision Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural Networks, Deep Neural Network, Fundametals of Deep Learning: DNN, CNN. UNIT 3 Unsupervised Learning: Clustering, Expectation Maximization, K-Mean Clustering, Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.		` '						
techniques, including supervised and unsupervised learning, classification, regression, clustering, and dimensionality reduction. CO3 Apply principles and algorithms to evaluate models generated from data CO4 Learn to critically evaluate the performance of machine learning models using appropriate metrics Develop the ability to identify and formulate problems suitable for machine learning solutions, desig appropriate models, and interpret results in practical applications. S. NO. Contents Contents Introduction to Machine Learning: Overview of different tasks: classification, regression, clustering, Concept of learning, Types of the Machine Learning, Data Table, Information System, Data Representation, diversity of data, Basic Linear Algebra and Probaboliy Theory, Optimization: Maximum likelihood, Expectation maximization, Gradient descent, Bias-Variance Tradeoff, Metrics to Evaluate Classification and Regression models UNIT 2 Supervised Learning: Linear Regression, Logistic Regression, Baysian Decision Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural Networks, Deep Neural Network, Fundametals of Deep Learning: DNN, CNN. Unsupervised Learning: Clustering, Expectation Maximization, K-Mean Clustering, Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.	CO1	Understand the fundamental concepts and algorithms of machine learning						
Learn to critically evaluate the performance of machine learning models using appropriate metrics Develop the ability to identify and formulate problems suitable for machine learning solutions, desig appropriate models, and interpret results in practical applications. S. NO. Contents Contact House Introduction to Machine Learning: Overview of different tasks: classification, regression, clustering, Concept of learning, Types of the Machine Learning, Data Table, Information System, Data Representation, diversity of data, Basic Linear Algebra and Probabolity Theory, Optimization: Maximum likelihood, Expectation maximization, Gradient descent, Bias-Variance Tradeoff, Metrics to Evaluate Classification and Regression models Supervised Learning: Linear Regression, Logistic Regression, Baysian Decision Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural Networks, Deep Neural Network, Fundametals of Deep Learning: DNN, CNN. Unsupervised Learning: Clustering, Expectation Maximization, K-Mean Clustering, Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.	CO2	techniques, including supervised and unsupervised learning, classification, regression, clustering, and						
Develop the ability to identify and formulate problems suitable for machine learning solutions, design appropriate models, and interpret results in practical applications. S. NO. Contents Contact Ho Introduction to Machine Learning: Overview of different tasks: classification, regression, clustering, Concept of learning, Types of the Machine Learning, Data Table, Information System, Data Representation, diversity of data, Basic Linear Algebra and Probabolity Theory, Optimization: Maximum likelihood, Expectation maximization, Gradient descent, Bias-Variance Tradeoff, Metrics to Evaluate Classification and Regression models Supervised Learning: Linear Regression, Logistic Regression, Baysian Decision Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural Networks, Deep Neural Network, Fundametals of Deep Learning: DNN, CNN. Unsupervised Learning: Clustering, Expectation Maximization, K-Mean Clustering, Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.	CO3	Apply principles and algorithms to evaluate models generated from data						
appropriate models, and interpret results in practical applications. S. NO. Contents Contact Ho Introduction to Machine Learning: Overview of different tasks: classification, regression, clustering, Concept of learning, Types of the Machine Learning, Data Table, Information System, Data Representation, diversity of data, Basic Linear Algebra and Probaboliy Theory, Optimization: Maximum likelihood, Expectation maximization, Gradient descent, Bias-Variance Tradeoff, Metrics to Evaluate Classification and Regression models Supervised Learning: Linear Regression, Logistic Regression, Baysian Decision Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural Networks, Deep Neural Network, Fundametals of Deep Learning: DNN, CNN. Unsupervised Learning: Clustering, Expectation Maximization, K-Mean Clustering, Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.	CO4	Learn to critically evaluate the performance of machine learning models using appropriate metrics						
UNIT 1 Introduction to Machine Learning: Overview of different tasks: classification, regression, clustering, Concept of learning, Types of the Machine Learning, Data Table, Information System, Data Representation, diversity of data, Basic Linear Algebra and Probaboliy Theory, Optimization: Maximum likelihood, Expectation maximization, Gradient descent, Bias-Variance Tradeoff, Metrics to Evaluate Classification and Regression models Supervised Learning: Linear Regression, Logistic Regression, Baysian Decision Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural Networks, Deep Neural Network, Fundametals of Deep Learning: DNN, CNN. Unsupervised Learning: Clustering, Expectation Maximization, K-Mean Clustering, Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.	CO5							
UNIT 1 Introduction to Machine Learning: Overview of different tasks: classification, regression, clustering, Concept of learning, Types of the Machine Learning, Data Table, Information System, Data Representation, diversity of data, Basic Linear Algebra and Probaboliy Theory, Optimization: Maximum likelihood, Expectation maximization, Gradient descent, Bias-Variance Tradeoff, Metrics to Evaluate Classification and Regression models Supervised Learning: Linear Regression, Logistic Regression, Baysian Decision Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural Networks, Deep Neural Network, Fundametals of Deep Learning: DNN, CNN. Unsupervised Learning: Clustering, Expectation Maximization, K-Mean Clustering, Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.								
Table, Information System, Data Representation, diversity of data, Basic Linear Algebra and Probaboliy Theory, Optimization: Maximum likelihood, Expectation maximization, Gradient descent, Bias-Variance Tradeoff, Metrics to Evaluate Classification and Regression models Supervised Learning: Linear Regression, Logistic Regression, Baysian Decision Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural Networks, Deep Neural Network, Fundametals of Deep Learning: DNN, CNN. Unsupervised Learning: Clustering, Expectation Maximization, K-Mean Clustering, Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.	S. NO.		Contents					
Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural Networks, Deep Neural Network, Fundametals of Deep Learning: DNN, CNN. Unsupervised Learning: Clustering, Expectation Maximization, K-Mean Clustering, Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.	UNIT 1	regression, clustering, Concept of learning, Types of the Machine Learning, Data Table, Information System, Data Representation, diversity of data, Basic Linear Algebra and Probaboliy Theory, Optimization: Maximum likelihood, Expectation maximization, Gradient descent, Bias-Variance Tradeoff, Metrics to Evaluate						
UNIT 3 Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.	UNIT 2	Theory, Naïve Bayes, K-Nearest Neighbour, Support Vector Machine, Decision trees, Ensemble Classifier, Random Forest, Linear Classifiers and Kernels, Neural						
TOTAL 42	UNIT 3	Hierarchical vs Partitional Clustering, Gaussian Mixture Model, Dimensionality					14	
		TOTAL					42	

and Stochastic Processes, Linear

Machine Learning