Dynamic Programming

October 18th 2016

Fibonacci

- How do we calculate the nth fibonacci number, efficiently?
- Brute Force Method takes O(2ⁿ) time approximately

Fibonacci Solution

- We can solve the solution in O(n) time
- Use memoization to store the values in an array
 - No need to recompute

```
FibonacciList = {0,1}
def fib(n)
```

If the value is in our list, return the value

Otherwise, the value is fib(n-1)+fib(n-2), store in the list, return it

General Dynamic Programming (DP)

- Find subproblems
- Store the subproblem values
- Recursion

Coin Problem

- Let's say we have coin values $a_1 a_2 ... a_k$ (say 1,2,7,9)
- How many coins do we need to make change for n cents
- Naive solution Keep subtracting the largest coin value
 - For 12, subtract 9, then subtract 2, then subtract 1 = 3 total coins (1+2+9)
 - Doesn't work for 15 (7,7,1) vs. (9,2,2,2)

Coin Problem Solution

- Solve it via recursion
- Let f(n) be the number of coins needed for n cents
- f(n) = min(f(n-1),f(n-2),f(n-7),f(n-9)) for (1,2,7,9) coin set
- Memoize the values of f(n) in a list

Edit Distance

- Given two strings ("abc" and "bcd") find the edit distance
 - o Only can add, remove, replace
 - For this example, is 2 (remove a, add d)
- Think about a solution

Edit Distance Solution

- Find the edit distance between the first m characters (of 1st string) and n characters of 2nd string
- If they're equal, f(m,n) = f(m-1,n-1)
- Otherwise, find the maximum of
 - Adding the nth character, so 1+f(m,n-1)
 - Delete the mth character, so 1+f(m-1,n)
 - Replace the mth character with the nth character, so 1+f(m-1,n-1)

Knapsack

 Given a list of items, each with a weight and a value, then find the maximum value of items, where the total weight<w (The weight limit)

Knapsack Solution

- We store a state, of using the first m items, with n weights left
- Use the recursion f(m,n) =
 - If we can't use the mth item, then its just f(m-1,n)
 - If we can use it
 - max($f(m-1,n-w_m)+v_m$,f(m-1,n)), maximum of should we use it or not

Additional Problems

- Coin Change problem. Given coins a₁,a₂...a_n, determine the numbers of ways to make change for n cents
- 2. Subset Sum problem. Given a list of numbers, determine whether any subset sums to 0