ICC204 - Aprendizagem de Máquina e Mineração de Dados

Avaliação de Modelos

Prof. Rafael Giusti rgiusti@icomp.ufam.edu.br

Motivação

- Considere o seguinte experimento
 - Problema: queremos classificar uma coleção de emails como *spam* ou *ham*
 - Dados: conjunto de emails rotulados por usuários da nossa plataforma
 - Abordagem: treinamos um classificador SVM para o seguinte conceito
 - Qual a relação entre o conteúdo e o remetente de um email e ele ser ou não *spam*?

Motivação

- Uma vez que o modelo esteja treinado, iremos colocá-lo em prática
 - Emails classificados como *spam* serão enviados automaticamente para a caixa de *spam*
 - Os outros emails serão enviados para a caixa de entrada
- Que problemas podem surgir dessa abordagem?

Motivação

- Antes de colocar o detector de spam em produção, fazemos um teste
 - Separamos 70% dos nossos dados para treinamento e 30% para teste
 - Avaliamos o erro cometido pelo detector no conjunto de teste
 - Observamos que o erro é de 0,0001%
 - Podemos colocar o detector de *spam* em prática?

Estimador

- Queremos estimar o erro que o modelo cometerá
 - Com base na nossa amostra, o estimador é uma estatística do erro
 - Queremos um estimador não enviesado, isto é, um estimador cujo valor para a amostra se aproxime da população

Estimador

- Um simples estimador é o erro empírico
 - Use as amostras de treino para testar o modelo

Estimador

- O erro empírico é um estimador muito enviesado
- Para o k-NN, dependendo do valor de k, é possível que o erro empírico seja sempre zero

Holdout

 Separe uma porção do conjunto de trenamento para testes

Holdout

- Produz estimadores menos enviesados que o erro empírico
 - Entretanto, o holdout ainda é substancialmente enviesado
 - A estimativa do *holdout* depende de uma única amostra retirada da nossa amostra
 - Com conjuntos rotulados muito grandes, esse viés pode ser reduzido

Holdout repetido

• Uma abordagem um pouco melhor que o *holdout* é realizar diversas rodadas do *holdout*

Holdout repetido

- No holdout repetido, o conjunto é reamostrado n vezes em partições de treinamento e teste
 - Em cada particionamento, estimamos um valor de erro e,
 - O erro do modelo é estimado como a média desses erros individuais

Holdout repetido

- Pontos positivos
 - Menor viés que o holdout
- Pontos negativos
 - Existe sobreposições entre as diferentes partições
 - Muitos exemplos podem nunca ser utilizados para testar o modelo

- Procedimento de reamostagem no qual todos os exemplos rotulados são utilizados uma única vez para teste
- Não existe sobreposição nos conjuntos de teste

- Primeiro passo
 - Dividir as amostras em k subconjuntos de tamanhos idênticos ou aproximadamente idênticos
- Segundo passo
 - Treinar k modelos utilizando cada conjunto (fold)
 para teste e os demais conjuntos para treinamento

- A validação cruzada é normalmente estratificada
 - Estratificar significa dividir as amostras em grupos homogêneos antes de reamostrar
 - Exemplo: entre classes
 - Cada subconjunto é reamostrado respeitando as proporções dos estratos
 - Visando, por exemplo, obter *folds* que contenham aproximadamente a distribuição de classes da amostra original

• 3-fold estratificado

• 3-fold estratificado

Iteração #1

Treino

• 3-fold estratificado

• 3-fold estratificado

Iteração #3

- Pontos positivos
 - Todos os exemplos são utilizados para teste
 - Baixo viés do estimador
- Pontos negativos
 - Poucos exemplos de teste em cada *fold*
 - Dificuldade de manter a estratificação em conjuntos com alto desbalanceamento de classes

- No caso extremo em que k = N, temos *leave-one out*
 - Deixe um de fora (teste)
 - Treine com todos os restantes
- Outra forma de realizar validação cruzada é através da repetição de um certo *k*-fold
 - 10x10-CV → realiza 10 vezes 10-fold CV
 - 5x2-CV → realiza 5 vezes 2-fold CV

Leave-one-out

. . .

Leave-one-out

- Pontos positivos
 - Utiliza todos os exemplos para teste
 - Utiliza o máximo disponível para treinamento
 - Adequado para poucos dados
- Pontos negativos
 - Computacionalmente custoso
 - Não existe estratificação

Repetição de k-fold

- Pontos positivos
 - Utiliza todos os exemplos para teste
 - Menos custoso que leave-one-out
 - Pode ser adequado para menor quantidade de dados
- Pontos negativos
 - Dificuldade de manter o conjunto estratificado em conjuntos desbalanceados

- Conjuntos de treino e teste são adequados para testar modelos
- Mas e se quisermos ajustar hiperparâmetros?
 - Por exemplo, queremos estimar o desempenho do SVM em um conjunto de dados
 - Teremos overfitting se testarmos diferentes
 valores de C diretamente no conjunto de teste
 - $C \in \{0,1; 1; 10\}$

• Empregamos, portanto, um conjunto de validação

Qual hiperparâmetro gerou o modelo com maior acurácia? Suponha que acc₁ > acc_{0.1} > acc₁₀

Modelo
SVM (C=0,1)
acc_{0.1}

Modelo

SVM (C=1) acc₁

Modelo

SVM (C=10) acc_{10}

k-Fold com teste e validação

5-fold cross validation com folds de teste e de validação

Bootstrap

- Método de avaliação baseado em reamostragem com substituição
- Parte do princípio que a amostra que você possui é o conjunto mais representativo do domínio de aplicação
- Reamostra repetidamente desse conjunto
 - Com substituição, isto é, pode haver instâncias duplicadas

Bootstrap

- Para uma amostra de N exemplos, reamostre com repetição, N vezes para formar um novo conjunto que contém N exemplos
 - Utilize esses exemplos como conjunto de treinamento
- Verifique no conjunto original os exemplos que não foram amostrados
 - Utilize esses exemplos como conjunto de teste
- Repita várias vezes e tire a média dos erros

Bootstrap 0.632

- Esse procedimento específico é denominado bootstrap 0.632
 - Cada exemplo tem probabilidade 1/n de ser selecionada pelo menos uma vez
 - A probabilidade de um exemplo não ser selecionado nenhuma vez é

$$\left(1-\frac{1}{n}\right)^n \approx e^{-1} \approx 0.368$$

Bootstrap 0.632

- O conjunto de treinamento gerado pelo bootstrap
 0.632 contém, em média, aproximadamente 63,2% dos exemplos do conjunto original
 - Poucos exemplos de treinamento
 - Pode levar a uma estimativa pessimista
 - Recomenda-se ponderar o erro com o erro empírico

$$err = 0.632 \times e_{\text{test instances}} + 0.368 \times e_{\text{training_instances}}$$

Bootstrap

- Pontos positivos
 - Respeita a distribuição do conjunto original
 - Menos impactante em conjuntos desbalanceados
- Pontos negativos
 - Pode ser inadequado para métodos sensíveis a exemplos repetidos
 - O número de repetições é objeto de debate
 (alguns defendem 50, 100... 1000 iterações)