

Agenda

Why Process? What is Process?

Vocabulary

Glossary of terms

- SS System Specification
- TS Technical Specification
- SyRS System Requirement Specification
- SyDS System Design Specification
- SAD System Architecture Document
- SSS Sub-System Specification
- STSD System Test Specification Document
- PD Preliminary Design
- DD Detailed Design
- HRS Hardware Requirement Specification
- SRS Software Requirement Specification
- HDD Hardware Design Document
- SDD Software Design Document
- ATP Acceptance Test Procedure

Embedded Product Development Phases

Waterfall Model

- Flow looks like Waterfall
- Requirements are clear and frozen
- Disadvantage is System Testing is done at the end and if any defects found, it will cost more

Activities:

- System Requirements
 - Functional, Interface, Mechanical requirements.
- System Design
 - Architecture into Subsystems
 - Allocation of System to Sub System Requirements
- System Implementation
 - Each Subsystem Design
 - Hardware, Software, Mechanical, Electrical
- System Testing
 - Subsystem Testing, Interface Testing, Functional Testing

V Model

- Flow looks like english alphabet "V"
- Not all requirements of system are available and requirements are not matured
- Advantage: At every phase testability is checked and requirements are made clear interms of measurability, ambiguity and precise.

- This is one of the favorite Model used across industry
- Both Development and Testing Team was involved from the beginning
- Since defect is removed at every stage, it makes product very robust and reduces the rework effort.

AGILE Model

- Iterative and Incremental => AGILE
- Objective is "reduced cycle time to market"
- Not all requirements are matured, Not all requirements available
- Based on Business Value, requirements are prioritized and implemented as iterative
- Care has to be taken to make sure the designed platform or framework supports future requirements else this model will fail and everything need to be started afresh

Standards and Tools

- Aerospace Standards
 - ARP 4754, 4761, DO-178B, DO254
 - DOD 2167A
- Rail Standards
 - EN 50126, 50128, 50129
 - ▶ IEC 61508
- Automotive
 - AUTOSAR, ASIL-D
 - ASPICE, ISO26262, ISO9001

- Configuration Management
 Tools
 - Clear Case
 - SVN
- Requirements Management and Modelling Tools
 - **DOORS**
 - Rhapsody, ARTiSAN
 - MagicDraw
- PLM/PMP Tools
 - Teams center
 - MPP
 - JIRA

Aerospace Standards

Aerospace Standards

- ARP 4754 Certification Considerations for Highly-Integrated Or Complex Aircraft Systems
- ARP 4761 Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment
- DO-178B Software Considerations in Airborne Systems and Equipment Certification
- RTCA/DO-297- Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations
- DOD 2167A Defense Systems Software Development

Rail Standards

Rail Standards

- EN 50126 (IEC 62278) Railway Applications Specification and Demonstration of RAMS
- EN 50128 (IEC 62279) Software for railway control and protection systems
- EN 50129 (IEC 62425) –Safety related electronic systems for signaling
- IEC 61508 Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems
- EN 15380: Classification system for railway vehicles -Part5:System Breakdown Structure (SBS)
- ▶ ISO/IEC 15288:2008 System life cycle processes
- 1220-2005 IEEE Standard for Application and Management of the Systems Engineering Process
- ISO/IEC 12207:2008 Software life cycle processes

V Model

Requirements

System Team

- System Requirements
- PHA, HA, RAMS

Input: System Requirements

Activity: System Requirements

Output: System Requirements

Outputs Inputs Activity Stakeholder Requirements Functional Requirements System Requirements Interface Requirements System Performance **Analysis** Requirements Requirements Specification Mechanical Requirements Hazard Analysis (HA) Qualification Requirements HA (Preliminary and Detailed) **Business Requirements** Specification Operational Requirements RAMS Maintenance Requirements RAMS Specification Disposal Requirements Compliance or Regulatory Safety Requirements Specification System Safety Analysis and Safety and Security Requirements Safety Integrity Level Thermal Requirements

Standards and Tools

- Domain Standards (Aerospace, Rail, Automotive)
- Requirement Standards and Templates
- Representation (SysML, Textual)
- Tools: Requirement Management Tools, SysML Tools, FMEA Tools, Reliability Tools

Standards and Tools

Requirements Management Tools

- DOORS
- LDRA
- SCADE
- Casespec

Modelling Tools

- Rhapsody, ARTiSAN, MagicDraw, Visual Paradigm, SCADE, Enterprise Architect
- RAMS Tools
 - ReliaSoft, Ramp Software, Isograph

Automotive Standards

Automotive Standards

- AUTOSAR Automotive Open System Architecture
- ASIL Automotive Safety Integrity Level
- ASPICE Automotive SPICE Process Development Model
- ISO26262 Functional safety standard for electrical and electronic (E/E) systems (Derived from IEC 61508)
- ISO9001
- ► ISO/IEC 15288:2008 System life cycle processes
- ISO/IEC 15504 Process assessment, also termed Software Process Improvement and Capability Determination (SPICE)

System Design

- Sub-System Architecture
- Sub-System
 Requirements
- RAMS Compliance
- Safety Compliance

Input: System Design

Activity: System Design

Output: System Design

V Model

System Implementation

Hardware Team Software Team Mechanical Team

- Sub-System
 Implementation
 (Hardware Design)
- Sub-System
 Implementation
 (Software Design)
- Sub-System Implementation (Mechanical Design)

Input: System Implementation

Activity: System Implementation

Output: System Implementation

Activity: System Implementation

Sub-System Mechanical Design

- Sub-System
 Mechanical Design
 Specification
- Material Evaluation and Selection
- Ventilation and Cooling
- Thermal Simulation
- Procurement
- Prototyping
- Fabrication
- Manufacturing
- Assembly
- Environmental Testing

Sub-System Hardware Design

- Sub-System Hardware Requirement Specification
- Hardware Design
- Components Selection
- Schematic and Simulation
- PCB Design
- Place and Route
- Prototyping
- PCB Manufacturing
- PCB Assembly
- Qualification and Environmental Testing
- EMI/EMC

Sub-System Software Design

- Sub-System
 Software
 Requirement
 Specification
- Interface Control Document
- Software Design
- Software Implementation
- Software Testing
- Hardware Software Integration Testing
- Sub-System Testing
- Traceability

38

System Testing

System Team

Input: System Testing

Activity: System Testing

Output: System Testing

System Testing

Sub-System Testing

- Perform the functional testing of each Sub-System as per specification
- Perform the Qualification Testing
- Check for the different interfaces of Sub-System

Sub-System Interface Testing

Interconnect the Sub-Systems. Perform the Interface Testing between Sub-Systems

System Functional Testing

- Connect all Sub-Systems
- Test as a whole system w.r.t
 System
 Specifications

System Testing: Tools

Test Tools

- VectorCAST
- **LDRA**
- RTRT
- dSPACE
- Proprietary Agents

Consequence

Consequence is nothing but an end result of any Failure In General, End Result of any System failure can lead to,

- Death of People
- ▶ Injury to People (Major or Minor)
- Damage to external environment
- Discomfort

Consequence

Death of People

- In case of Aerospace, when flight crashes due to engine failure, it causes death of people.
- In case of Automotive or Rail, If Engine fails, it may not kill people, but may lead to discomfort for passenger or driver.
- In case of Rail, the overspeed may derail the train and kill the passenger.
- In case of Automotive, the overspeed may overturn the vehicle and may kill the passengers.

In case of Aerospace, when flight crashes due to engine failure, it causes death of passengers. But In case of Automotive or Rail, If Engine fails, it may not kill people, but may lead to discomfort for passenger or driver. From the above example, it is clear that Consequence will be different (death or discomfort) for Aero/Rail/Automotive for the same cause (i.e., Engine Failure)

