

UNIVERSIDADE FEDERAL DO CARIRI CENTRO DE CIÊNCIAS E TECNOLOGIA

9ª lista de exercícios de Cálculo Numérico

Unidade III: Integração Numérica

Prof: Dr. Diego Frankin de Souza Veras Sant'Ana

1) Calcule o valor aproximado das integrais a seguir pela regra dos trapézios, pela regra de Simpson 1/3 e pela regra de Simpson 3/8, usando seis subintervalos (N=6). Calcule o erro relativo percentual com relação ao valor exato das integrais para ambas as regras (para isso, resolva-as algebricamente). Trabalhe com seis casas decimais e arredondamento padrão.

$$\mathbf{a)} \quad \int_0^6 \left(x + \cos x \right) dx$$

b)
$$\int_0^1 3 e^{-x} dx$$

$$\mathbf{c)} \quad \int_{1}^{2} x \, \ln x \, dx$$

d)
$$\int_{1}^{3} \frac{x}{x^2 + 4} dx$$

2) Deseja-se calcular a seguinte integral:

$$I = \int_0^3 \frac{dx}{\sqrt{1 + 4\operatorname{sen}^2(x)}}.$$

Esta integral é conhecida por Integral Elíptica de Primeiro Tipo e não possui solução analítica. Utilize a regra de Simpson 1/3 para calcular o valor aproximado desta integral utilizando seis subdivisões (N=6). Opere com seis casas decimais e arredondamento padrão. Configure sua calculadora para operar em radianos.

3) Uma placa projetada para telhado ondulado é construída pressionando-se uma chapa de alumínio em um molde cuja seção transversal tenha a forma senoidal, como na figura abaixo.

O problema de se encontrar o comprimento L da chapa é o mesmo de se determinar o comprimento curva $f(x) = \operatorname{sen} x$:

$$L = \int_{a}^{b} \sqrt{1 + \left[f'(x)\right]^{2}} \, dx = \int_{a}^{b} \sqrt{1 + \cos^{2} x} \, dx$$

Esta integral é conhecida como **Integral Elíptica de Segundo Tipo** e não possui solução analítica (exata), sendo necessário, portanto, uma aproximação

numérica. Suponha que a distância entre a e b seja de 8 metros. Determine o comprimento L da chapa utilizando a regra dos trapézios com N=8 subdivisões. Trabalhe com quatro casas decimais e arredondamento padrão.

4) Calcule o valor aproximado da seguinte integral

$$\int_{1}^{2} \frac{\cos x}{(1+x)} dx$$

usando a regra de Simpson 1/3 com 6 subintervalos;

5) Um carro completa uma volta na pista de corrida em 84 segundos. A velocidade do carro, a cada intervalo de 6 segundos, é determinada por um radar e é fornecida no início da volta, em pés/segundo, pelos valores na seguinte tabela

Tempo	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84
Velocidade	124	134	148	156	147	133	121	109	99	85	78	89	104	116	123

Qual é a extensão da pista? Lembre da Cinemática de que a posição x(t) e a velocidade v(t) estão relacionadas como $v(t) = \frac{dx}{dt} \Rightarrow x(t) = \int v(t) \, dt$.

6) Um levantamento planimétrico precisou ser feito em um terreno. Para isto, tirou-se as medidas da largura do terreno a cada 1m de distância de uma estação topográfica, conforme mostra a figura abaixo, onde as medidas são tomadas em metros.

Determine o valor aproximado da área do terreno em questão usando a regra dos Trapézios com

- a) $N_1 = 4$ subintervalos,
- **b)** $N_2 = 8$ subintervalos.
- c) Utilize agora a extrapolação de Richardson para aprimorar o cálculo da área deste terreno.
- 7) Um engenheiro precisou calcular a área de uma superfície de um rio. Para isto, ele tomou como referência de medida uma linha reta, conforme a Figura abaixo, Foram medidas distâncias, em metros, entre esta linha reta e as duas margens M_1 e M_2 a partir de um ponto tomado como origem. Tais dados foram registrados na tabela a seguir.

	x_i	0	10	20	30	40
Ì	$M_2(x_i)$	50,8	86,2	136	72,8	51
Ì	$M_1(x_i)$	113,6	144,5	185	171,2	95,3

Determine o valor aproximado da área da superfície do rio no intervalo [0,40] usando a regra de Simpson 1/3 com

- a) $N_1 = 2$ subintervalos,
- **b)** $N_2 = 4$ subintervalos.
- c) Utilize agora a extrapolação de Richardson para aprimorar o cálculo da área da superfície deste rio.
- 8) Em Probabilidade e Estatística, a **Distribuição Normal** conhecida também como **Distribuição Gaussiana** é uma das mais importantes distribuições contínuas. A função densidade de probablidade uma variável aleatória x com média μ e desvio padrão σ é dada por

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

de modo que a probabilidade P que de que x esteja entre a e b é dada pela integral

$$P(x) = \int_{a}^{b} f(x) \, dx,$$

logo, a probabilidade representa a área sob a **Curva Normal**, como mostra a Figura abaixo:

Problema: As massas de engrenagens fabricadas em uma liinha de produção por uma certa empresa seguem uma Distribuição Normal com média 68 gramas e desvio padrão de 8 gramas. Utilize a **regra dos trapézios** com N=5 subdivisões para calcular qual é a probabilidade de uma engrenagem escolhida ao acaso ter uma massa entre 63 e 73 gramas.

OBS.: Trabalhe com quatro digitos significativos e arredondamento padrão. A "tabela da Normal", muito utilizada em Estatística, é construída por meio de integrações numéricas.

9) Calcule a integral

$$\int_0^1 \frac{x \cos x}{1 + x^2}$$

utilizando a regra de Simpson 1/3 com **a)** $N_1 = 2$ subintervalos e **b)** $N_2 = 4$ subintervalos. Em seguida, utilize a extrapolação de Richardson para melhorar a aproximação.

10) Dados os valores discretos tabelados a seguir

i	0	1	2	3	4
x_i	0.000	0.785	1.570	2.355	3.140
y_i	1.000	0.6694	0.6366	0.6060	0.4673

Aproxime o valor da integral $\int_0^1 y(x) dx$ utilizando a regra de Simpson 1/3 com a) $N_1 = 2$ subintervalos e b) $N_2 = 4$ subintervalos. Em seguida, utilize a extrapolação de Richardson para melhorar a aproximação.

11) A integral dupla

$$\int_0^1 \int_1^{1.5} \frac{\sin(xy)}{x^2 + y^2} \, dy \, dx$$

não possui solução exata, sendo necessário o uso de integração numérica. Resolva-a considerando duas subdivisões tanto para x quanto para y por meio

- a) da regra dos Trapézios em ambas as dimensões
- b) da regra de Simpson 1/3 em ambas as dimensões

12) Considere a integral dupla a seguir:

$$\int_0^1 \int_2^6 (x^2 + y + 3) \, dy \, dx$$

Resolva-a utilizando quatro subdivisões em cada dimensão e pela regra dos Trapézios unicamente. Compare com o resultado exato.

13) Sendo
$$f(x,y)=\frac{1}{x^2+y^2}$$
, estime $I=\int_3^4\int_1^2f(x,y)\,dy\,dx$ com $h_x=0,2$ (usando a regra dos Trapézios) e $h_y=0,25$ (usando a Primeira Regra de Simpson). Trabalhe com quatro casas decimais e arredondamento padrão.

14) Um tanque esférico de raio $R=5\mathrm{m}$ está cheio com água. A água será drenada através de um orifício de raio $r=0,1\mathrm{m}$ situado no fundo do tanque. A variação do nível h da água no tanque com o tempo t, em segundos, é dada pela relação:

$$dt = \frac{R^2 - h^2}{r^2 \sqrt{2g(R+h)}} dh,$$

obtida nos estudo da Mecânica dos Fluidos. Aqui, $g=9,81\,m/s^2$ é a aceleração da gravidade. Utilize a Segunda Regra de Simpson, para estimar o tempo para que o nível da água chegue a 1m do fundo do tanque. Divida o intervalo de integração em nove partes e faça os cálculos com duas casas decimais.

15) Em quantos intervalos é necessário particionar o domínio [0, 1] para estimar a integral I abaixo com três casas decimais corretas pela regra dos Trapézios?

$$I = \int_0^1 e^{-2x} dx$$

GABARITO

01)

- a) Pela regra dos trapézios: 17,744267; Pela regra de Simpson 1/3: 17,718826; Pela regra de Simpson 3/8: 17,716015; Valor exato: $18-\sin 6$. Erros de $1,34\times 10^{-3},~9,94\times 10^{-5},~e~2,58\times 10^{-4},$ respectivamente
- b) pela regra dos trapézios: 1,900749; pela regra de Simpson 1/3: 1,896370; pela regra de Simpson 3/8: 1,896380; valor exato: 3(1-1/e).
- c) pela regra dos trapézios: 0,637898; pela regra de Simpson 1/3: 0,636298; pela regra de Simpson 3/8: 0,636301; valor exato: $2 \ln 2 - 3/4$ (Obs: Utilize integração por partes)
- d) Pela regra dos trapézios: 0,475912; Pela regra de Simpson 1/3: 0,477290; Pela regra de Simpson 3/8: 0,477283; Valor exato: $\frac{1}{2}(\ln 13 - \ln 5)$.
- **02)** 1,865163
- **03)** $L = 9{,}7120 \Rightarrow (9{,}71 \text{ metros})$
- **04)** 0,0407777
- **05)** 9858 pés.
- **06)** $A_1 = 28 m^2$ $A_2 = 32 m^2$ $A = 33, 33 m^2$
- **07)** $A_1 = 2.020, 67 \, m^2$ $A_2 = 2.773, 00 \, m^2$ $A = 2.823, 16 \, m^2$
- $\mathbf{08})$ 0,4659 ou 46,59% de probabilidade
- **09**) **a**) 0.2709 **b**) 0.2741
- **c)** 0.2738 **c)** 2.03830
- **10) a)** 2.25776 **b)** 2.05202
- **11) a)** 0, 13418 **b)** 0, 14503
- **12)** 29,375. valor exato: 88/3
- **13)** 0,0409
- **14)** 541,34 s
- **15)** $N \ge 18$