Assignment 3: Data Exploration

Emma DeAngeli, Monday Section

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on Data Exploration.

Directions

- 1. Change "Student Name, Section #" on line 3 (above) with your name and section number.
- 2. Work through the steps, creating code and output that fulfill each instruction.
- 3. Be sure to **answer the questions** in this assignment document.
- 4. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 5. After Knitting, submit the completed exercise (PDF file) to the dropbox in Sakai. Add your last name into the file name (e.g., "FirstLast_A03_DataExploration.Rmd") prior to submission.

The completed exercise is due on <>.

Set up your R session

1. Check your working directory, load necessary packages (tidyverse), and upload two datasets: the ECOTOX neonicotinoid dataset (ECOTOX_Neonicotinoids_Insects_raw.csv) and the Niwot Ridge NEON dataset for litter and woody debris (NEON_NIWO_Litter_massdata_2018-08_raw.csv). Name these datasets "Neonics" and "Litter", respectively. Be sure to add the stringsAsFactors = TRUE parameter to the function when reading in the CSV files.

library(tidyverse)

```
## Warning: package 'tidyverse' was built under R version 4.0.5
## Warning: package 'ggplot2' was built under R version 4.0.5
## Warning: package 'tibble' was built under R version 4.0.5
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## Warning: package 'purrr' was built under R version 4.0.5
## Warning: package 'dplyr' was built under R version 4.0.5
## Warning: package 'stringr' was built under R version 4.0.5
```

Warning: package 'forcats' was built under R version 4.0.5

```
library(ggplot2)
setwd("~/Environmental Data Analytics")
getwd()
```

[1] "C:/Users/Emma DeAngeli/Documents/Environmental Data Analytics"

```
Neonics <- read.csv("./Data/Raw/ECOTOX_Neonicotinoids_Insects_raw.csv", stringsAsFactors = TRUE)

Litter <- read.csv("./Data/Raw/NEON_NIWO_Litter_massdata_2018-08_raw.csv", stringsAsFactors = TRUE)
```

Learn about your system

2. The neonicotinoid dataset was collected from the Environmental Protection Agency's ECOTOX Knowledgebase, a database for ecotoxicology research. Neonicotinoids are a class of insecticides used widely in agriculture. The dataset that has been pulled includes all studies published on insects. Why might we be interested in the ecotoxicologoy of neonicotinoids on insects? Feel free to do a brief internet search if you feel you need more background information.

Answer: Neonicotinoids are harmful to insects. This is particularly concerning in terms of Colony Collapse Disorder, which has caused the number of bees to dwindle. Since bees are important pollinators, this is quite concerning.

3. The Niwot Ridge litter and woody debris dataset was collected from the National Ecological Observatory Network, which collectively includes 81 aquatic and terrestrial sites across 20 ecoclimatic domains. 32 of these sites sample forest litter and woody debris, and we will focus on the Niwot Ridge long-term ecological research (LTER) station in Colorado. Why might we be interested in studying litter and woody debris that falls to the ground in forests? Feel free to do a brief internet search if you feel you need more background information.

Answer: The grounds of forests have important roles in the carbon cycle. I imagine that the amounts of litter and woody debris would have implications for this process.

4. How is litter and woody debris sampled as part of the NEON network? Read the NEON_Litterfall_UserGuide.pdf document to learn more. List three pieces of salient information about the sampling methods here:

Answer: NEON ascertained the weights of each litter trap and categorized them into different levels based upon these weights. * Trap placements within plots was both targeted and randomized. * Deciduous and evergreen sites had different frequencies of data collection, deciduous being more frequent. * The weights are categorized by groups at each site (pine needles, seeds, leaves, etc.).

Obtain basic summaries of your data (Neonics)

5. What are the dimensions of the dataset?

dim(Neonics)

[1] 4623 30

6. Using the summary function on the "Effect" column, determine the most common effects that are studied. Why might these effects specifically be of interest?

summary(Neonics\$Effect)

##	Accumulation	Avoidance	Behavior	Biochemistry
##	12	102	360	11
##	Cell(s)	Development	Enzyme(s)	Feeding behavior
##	9	136	62	255
##	Genetics	Growth	Histology	Hormone(s)
##	82	38	5	1
##	Immunological	Intoxication	Morphology	Mortality
##	16	12	22	1493
##	Physiology	Population	Reproduction	
##	7	1803	197	

Answer: Mortality, Population, and Behavior are the top three most common effects studied. These would all be important to understand Colony Collapse Disorder.

7. Using the summary function, determine the six most commonly studied species in the dataset (common name). What do these species have in common, and why might they be of interest over other insects? Feel free to do a brief internet search for more information if needed.

summary(Neonics\$Species.Common.Name)

##	Honey Bee	Parasitic Wasp
##	667	285
##	Buff Tailed Bumblebee	Carniolan Honey Bee
##	183	152
##	Bumble Bee	Italian Honeybee
##	140	113
##	Japanese Beetle	Asian Lady Beetle
##	94	76
##	Euonymus Scale	Wireworm
##	75	69
##	European Dark Bee	Minute Pirate Bug
##	66	62
##	Asian Citrus Psyllid	Parastic Wasp
##	60	58
##	Colorado Potato Beetle	Parasitoid Wasp
##	57	51
##	Erythrina Gall Wasp	Beetle Order
##	49	47
##	Snout Beetle Family, Weevil	Sevenspotted Lady Beetle
##	47	46
##	True Bug Order	Buff-tailed Bumblebee
##	45	39

##	Aphid Family	Cabbage Looper
##	38	38
##	Sweetpotato Whitefly 37	Braconid Wasp 33
##	Cotton Aphid	Predatory Mite
##	33	33
##	Ladybird Beetle Family	Parasitoid
##	30	30
##	Scarab Beetle	Spring Tiphia
##	29	29
##	Thrip Order	Ground Beetle Family
##	29	27
##	Rove Beetle Family	Tobacco Aphid
##	27	27
##	Chalcid Wasp 25	Convergent Lady Beetle 25
##	Stingless Bee	Spider/Mite Class
##	25	24
##	Tobacco Flea Beetle	Citrus Leafminer
##	24	23
##	Ladybird Beetle	Mason Bee
##	23	22
##	Mosquito	Argentine Ant
##	22	21
##	Beetle	Flatheaded Appletree Borer
##	21 Horned Oak Gall Wasp	20 Leaf Beetle Family
##	norned bak dari wasp	Lear Beetle Pamily
##	Potato Leafhopper	Tooth-necked Fungus Beetle
##	20	20
##	Codling Moth	Black-spotted Lady Beetle
##	19	18
##	Calico Scale	Fairyfly Parasitoid
##	18	18
##	Lady Beetle	Minute Parasitic Wasps
##	18	Marilla annua Danna laid
##	Mirid Bug 18	Mulberry Pyralid 18
##	Silkworm	Vedalia Beetle
##	18	18
##	Araneoid Spider Order	Bee Order
##	17	17
##	Egg Parasitoid	Insect Class
##	17	17
##	Moth And Butterfly Order	Oystershell Scale Parasitoid
##	17	17
	Hemlock Woolly Adelgid Lady Beetle	Hemlock Wooly Adelgid
## ##	16 Mite	16 Onion Thrip
##	16	16
##	Western Flower Thrips	Corn Earworm
##	15	14
##	Green Peach Aphid	House Fly
##	14	14

```
##
                              Ox Beetle
                                                          Red Scale Parasite
##
##
                    Spined Soldier Bug
                                                       Armoured Scale Family
##
                                     14
                                                                           13
##
                      Diamondback Moth
                                                               Eulophid Wasp
                                     13
##
                                                                           13
                                                               Predatory Bug
##
                     Monarch Butterfly
##
                                                                           13
##
                 Yellow Fever Mosquito
                                                         Braconid Parasitoid
##
                           Common Thrip
##
                                               Eastern Subterranean Termite
                                                                           12
                                     12
##
                                                                   Mite Order
##
                                 Jassid
##
                                     12
##
                              Pea Aphid
                                                            Pond Wolf Spider
##
             Spotless Ladybird Beetle
                                                      Glasshouse Potato Wasp
##
##
                               Lacewing
##
                                                    Southern House Mosquito
##
                                      10
##
               Two Spotted Lady Beetle
                                                                   Ant Family
##
                                                                            9
                                                                      (Other)
##
                           Apple Maggot
##
                                                                          670
```

Answer: The most commonly studied species are all different kinds of bees, the primary being the honeybee. They are important pollinators! Although beetles are cool too.

8. Concentrations are always a numeric value. What is the class of Conc.1..Author. in the dataset, and why is it not numeric?

```
class(Neonics$Conc.1..Author.)
```

[1] "factor"

Answer: It is a factor because there are values that include a "greater than" sign.

Explore your data graphically (Neonics)

9. Using geom_freqpoly, generate a plot of the number of studies conducted by publication year.

```
ggplot(Neonics) +
geom_freqpoly(aes(x = Publication.Year), bins = 30)
```


10. Reproduce the same graph but now add a color aesthetic so that different Test.Location are displayed as different colors.

```
ggplot(Neonics) +
geom_freqpoly(aes(x = Publication.Year, color = Test.Location), bins = 30)
```


Interpret this graph. What are the most common test locations, and do they differ over time?

Answer: The most common test locations are "Lab" and "Fireld natural." There are some years in which "Field natural" is most common (1995-2000, 2008-2010), but mostly "Lab" prevails.

11. Create a bar graph of Endpoint counts. What are the two most common end points, and how are they defined? Consult the ECOTOX_CodeAppendix for more information.

```
ggplot(Neonics, aes(y = Endpoint)) +
  geom_bar()
```


Answer: NOEL and LOEL are the two most common end points. LOEL is the "lowest-observable-effect-level" which means the lowest dose producing effects that were significantly different than the control responses. NOEL is "no-observable-effect-level" which was the highest does producing effects not significantly different from control responses.

Explore your data (Litter)

[1] "2018-08-02" "2018-08-30"

12. Determine the class of collectDate. Is it a date? If not, change to a date and confirm the new class of the variable. Using the unique function, determine which dates litter was sampled in August 2018.

```
#class(Litter$collectDate)

Litter$collectDate <- as.Date(Litter$collectDate, format = "%Y-%m-%d")
class(Litter$collectDate)

## [1] "Date"

unique(Litter$collectDate)</pre>
```

Answer: The class was originally a factor. The dates litter was sampled were August 2nd and 30th.

13. Using the unique function, determine how many plots were sampled at Niwot Ridge. How is the information obtained from unique different from that obtained from summary?

```
unique(Litter$plotID)
```

```
## [1] NIWO_061 NIWO_064 NIWO_067 NIWO_040 NIWO_041 NIWO_063 NIWO_047 NIWO_051 ## [9] NIWO_058 NIWO_046 NIWO_062 NIWO_057 ## 12 Levels: NIWO_040 NIWO_041 NIWO_046 NIWO_047 NIWO_051 NIWO_057 ... NIWO_067
```

Answer: 'summary' shows the counts of each variable whereas 'unique' shows only what unique variables exist.

14. Create a bar graph of functionalGroup counts. This shows you what type of litter is collected at the Niwot Ridge sites. Notice that litter types are fairly equally distributed across the Niwot Ridge sites.

```
ggplot(Litter, aes(x = functionalGroup)) +
geom_bar()
```


15. Using geom_boxplot and geom_violin, create a boxplot and a violin plot of dryMass by functional-Group.

```
ggplot(Litter) +
geom_boxplot(aes(x = functionalGroup, y = dryMass))
```



```
## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values

## Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
## collapsing to unique 'x' values
```


Why is the boxplot a more effective visualization option than the violin plot in this case?

Answer: There seems to be pretty even distributions for the functional Groups, so the violin plots pretty much just show straight lines.

What type(s) of litter tend to have the highest biomass at these sites?

Answer: Needles, mixed litter, and twigs/branches are the top three highest biomass litters.