TUTORIAL PRACTICAL NO.

Ciercuit Diageram:

Object: Vesinfication of maximum power Dransfer Theorem.

Apparatus:

- · Voltmeter
- · Ammeter
- · Load Resistance
- · Power Supply (D.C.)
- · Connecting Leads

Theory:

St states that the maximum power can be supplied to a load by adjusting the load and linear circuit is shown as therein's equivalent circuit.

The Therein equivalent is useful in finding the maximum power a linear circuit can deliver to a load. We assume that we can adjust the load resistance that we can adjust the load resistance if the entire circuit is replaced by its The venin equivalent except for the load.

Observation Table:

Vs (V)	I (mA)	NT (A)	Re (Kon)
4.10	7.6	2.46	
5.70		3.41	

The Joad desires maximum power when the Joad impedance is the conjugate of source impedance, that is if

Z, = Doad impedance

Z2 = source impedance

Then, for maximum Diansfer of power, Z = Z2

Fosimula Used:

$$R_{Th} = \frac{V_{Th}}{I}$$

$$R_{Th} = \frac{V_{s} - V_{L}}{I}$$

whe se,

RTh = Therenin's equivalent sessistance

Vs = Source Voltage

V_ = Load Voltage

I = Total Consent

Calculation:

$$R_{TL} = \frac{V_s - V_L}{I} = \frac{4.10 - 2.46}{7.6 \times 10^{-3}}$$

Hence Vesified

TUTORIAL / PRACTICAL NO.

Poroceduse:

- 1. Make cishcuit connection as shown in the cishcuit diagram.
- 2. Starting with a low value resistance note down the readings of voltmeter and ammeter.
- 3. Inchease the value of load resistance.
- 4. Find the point where power is maximum.
- 5. Calculate the load resistance for each reading and find the maximum power at which load resistance will be equal to known resistance.
- 6. Plot the graph of power against load resistance.

Result: By observing the calculation its verified that therenin's equivalent resistance is equal to load resistance for maximum transfer of power.
