《大学基础物理实验》课程实验报告

姓名及学号:2211082 蒋丰毅 专业: 工科试验班 年级:22 级 座号:10 学院: 软件学院 实验组别:C 组 实验时间:2023 年 4 月 28 日 星期五 上午

衍射光栅

[实验目的]

- 1. 了解光栅的分光特性。
- 2. 测量光栅常量。

[实验器材]

分光仪, 平面投射光栅, 平面反射镜, 低压汞灯

[实验内容]

调节分光仪

按上次实验的方法调节分光仪到可以使用的状态。

调节光栅

实验中的光栅必须调节到以下状态。

- (1) 平行光垂直照射在光栅表面。
- (2) 光栅的刻痕垂直于刻度盘表面,即与仪器转轴平行。
- (3) 狭缝与光栅刻痕平行。

图 1: 光栅在在舞台上的位置

将光栅按图 1 所示的方式放置在载物台上。光栅平面与 V_1, V_3 的连线垂直。用汞灯照亮狭缝,使望远镜的叉丝对准狭缝像。这样望远镜的光轴与平行光管的光轴共线。将游标盘与载物台锁定在一起,转动载物台,找到平面光栅反射回来的叉丝像,调节 V_1, V_3 使叉丝像与叉丝重合,随即锁住游标盘,并保持 V_1, V_3 不动。这时就达到了光栅与入射的平行光垂直的要求。此时转动望远镜观察位于零级谱两侧的一级或二级谱线,调节 V_2 和稍微旋转狭缝,使两侧谱线均与叉丝的中心横线垂直,并且上下对称。这时光栅就已经调节好了。

误差来源及解决办法

实验所用的透射光栅是做在一个全息干板上,全息干版的两个面不可能完全平行, 因此无论怎样都不可能让入射光线完全垂直与光栅表面。在斜入射的情况下,光栅法线 两侧同一级光谱的衍射角分别为

$$\sin \varphi - \sin \theta_{-} = -\frac{k\lambda}{d} \\
\sin \varphi + \sin \theta_{+} = \frac{k\lambda}{d}$$

两式相减,并考虑 $|\theta_+ - \theta_-| = \varphi$

$$\sin\frac{\theta_+ - \theta_-}{2}\cos\frac{\varphi}{2} = \frac{k\lambda}{d}$$

当
$$\varphi$$
 很小的时, $\sin \frac{\theta_+ - \theta_-}{2} = \frac{k\lambda}{d}$

测量数据

利用汞光谱线中绿线 $\lambda-546.1$ nm 的 $\pm 1, \pm 2$ 级光谱之间的夹角 $2\theta_1, 2\theta_2$,分别求出两个光栅常量。

[数据处理]

根据公式
$$\sin \frac{\theta_+ - \theta_-}{2} = \frac{k\lambda}{d}$$
 计算得:

波长	级数	衍射角位置			角度	无偏心角度	光栅常量
		游标号	+k 级	-k 级	用汉		
546.1 nm	1	1	9°25′	9°5′	19°15′	19°025′	3301nm
		2	9°29′	9°21′	18°50′		
	2	1	19°10′	20°01′	39°11′	39°205′	3245nm
		2	19°30′	20°00′	39°30′		

所以 $\overline{d} = 3273nm$

汞黄线	级数	衍射角位置			角度	无偏心角度	波长
		游标号	k	k	用汉	儿們心用这	
黄 1	2	1	20°08′	20°50′	40°58′	40°48′	570.5nm
		2	19°52′	20°40′	40°38′		
黄 2	2	1	20°15′	20°40′	40°55′	40°58′	572.7nm
		2	20°11′	20°50′	41°01′		

跟标准值 $\lambda_1=577.0nm, \lambda_2=579.1nm$ 计算得到误差为:

$$\Delta \lambda_1 = \frac{|577.0 - 570.5|}{577.0} = 0.011$$

$$\Delta \lambda_1 = \frac{|579.1 - 572.7|}{579.1} = 0.011$$

而角色散

$$D = \frac{\Delta \varphi}{2.1 nm} = \frac{10'}{2.1 nm} = 1385 rad/m = 1.385 \mu rad/nm$$