강의명: 임베디드 시스템

숙제 번호: 1

숙제 제목: Digital I/O programming(디지털 입출력)

학생 이름: 한규현

1. 프로그램 led1-flash

1.1 프로그램 코드 쓰기

1.2 프로그램 작성 아이디어 혹은 이유 설명 쓰기

LED를 조작하는 Digital input/output은 Class DigitalIn/Out 두 클래스가 관리한다. 본 과 제에서는 출력을 하면 되므로 DigitalOut의 클래스를 사용했고, 이번 문항의 경우 led1을 제어하는 것이므로 DigitalOut led1 (LED1); 이라고 코드를 작성했다.

FRDM-K64F의 내부 LED1은 common anode 방식을 따르기 때문에 LOW일 때 led가 켜지게 된다. 이러한 이유로 led1 = 0 일 때 LED1이 켜지고 led1 = 1일 때 LED1이 꺼지도록 프로그램을 작성했다. LED1이 ON/OFF 하는 과정에서 0.5sec wait을 주기 위해 thread_sleep_for(500)을 넣었고, 그 과정을 무한 반복하기 위해 while(true)와 같이 코드를 작성했다.

1.3 하드웨어 구성 사진 첨부하기

1.4 프로그램 수행 사진/동영상(Youtube 링크) 첨부하기

https://youtu.be/ZcEyG8lOY8g

2. 프로그램 led1-flash-sos

2.1 프로그램 코드 쓰기

```
#include "mbed.h"
DigitalOut led1 (LED1);
                           // led = LED1
int main ()
   int i;
   while (true) {
       for (i = 0; i < 3; i ++){
           led1 = 0;
          thread_sleep_for (300);
           led1 = 1;
           thread_sleep_for (300);
       thread_sleep_for (1000);
        for (i = 0; i < 3; i ++){}
           led1 = 0;
           thread_sleep_for (1000);
           led1 = 1;
           thread sleep for (300);
       thread_sleep_for (1000);
   }
```

2.2 프로그램 작성 아이디어 혹은 이유 설명 쓰기

앞선 1번 문제에서와 같이 LED1 = 0 이면 켜지고, LED1 = 1이면 꺼진다. 첫 번째 for문은 S를 표현한다. 0.3초 짧게 LED를 켜고, 0.3초 짧게 LED를 끄도록 thread_sleep_for(300)을 사용해서 코드를 작성했다. S 출력이 끝나면 thread_sleep_for(1000)을 실행해서 사이에 텀을 두게 코드를 작성했다. 이후 for문으로 O를 출력하도록 프로그램을 작성했고, 이 for에서는 앞선 for과 동일한 로직이지만, 켜지는 시간을 1.0sec로 해서 O를 표현했다. while(true)로 SOS가 계속해서 출력되도록 했다.

2.3 하드웨어 구성 사진 첨부하기

2.4 프로그램 수행 사진/동영상(Youtube 링크) 첨부하기 https://youtu.be/Fevxt45JaLY

- 3. 프로그램 led-d0-flash
- 3.1 프로그램 코드 쓰기

3.2 프로그램 작성 아이디어 혹은 이유 설명 쓰기

D0 pin에 LED를 연결하여 깜빡이게 해야하므로 Digital led(D0); 이라고 작성했다. 그리고 common cathode 방식을 사용했기 때문에 led = 0 일 때 꺼지고, led = 1일 때 켜지도록 프로그램을 작성했다. thread_sleep_for(500)을 led 변수의 값이 바뀔 때마다 작성함으로써 켜고 꺼짐 사이 시간을 0.5sec로 구성했다.

3.3 하드웨어 구성 사진 첨부하기

3.4 프로그램 수행 사진/동영상(Youtube 링크) 첨부하기 https://youtu.be/mPFHkJKEFmU

4. 프로그램 switch-d1-input

4.1 프로그램 코드 쓰기

4.2 프로그램 작성 아이디어 혹은 이유 설명 쓰기

이번에는 외부에서 버튼으로 Input을 받아야하기 때문에 DigitalIn sw(D1, PullDown):이라고 코드를 작성해서 스위치가 눌리는 Input을 받도록 했다. 이전 문제들과 마찬가지로 LED를 제어하기 때문에 DigitalOut led1(LED);를 작성해 Output 출력을 했다. sw변수는 Input을 위한 변수이고 구체적으로 sw = 1이면 버튼이 눌린 상황으로 led1 = 0 으로 불이 켜지게 했다. 만약 그렇지 않은 상황에서는 led1 = 1로 설정해서 불이 들어오지 않도록 프로그램을 작성했다. Input은 언제 들어올지 모름으로 while(true)로 작성해 계속 Input을 받을 수 있도록 했다.

4.3 하드웨어 구성 사진 첨부하기

4.4 프로그램 수행 사진/동영상(Youtube 링크) 첨부하기 https://youtu.be/DvkbcLwqkYk

5. 프로그램 led-with-switch

5.1 프로그램 코드 쓰기

5.2 프로그램 작성 아이디어 혹은 이유 설명 쓰기

DigitalOut 으로 D0 pin에 연결된 LED를 출력하고, DigitalIn으로 D1 pin에 연결된 버튼 스위치에 입력을 받도록 한다. 이때 버튼 스위치가 눌리게 되면 LED가 두 번 켜져야함으로 버튼 스위치가 눌리는 상태인 sw == 1이 되면, led = 1로 LED가 0.2초 켜졌다 꺼졌다를 2번 반복하도록 코드를 작성했다. switch의 input이 언제 들어올지 모르기 때문에 while(true)로 작성하여 input을 상시로 받도록 했다.

5.3 하드웨어 구성 사진 첨부하기

5.4 프로그램 수행 사진/동영상(Youtube 링크) 첨부하기 https://youtu.be/aubuPSnJoR0

6. 프로그램 7-segment

6.1 프로그램 코드 쓰기

```
case 1:
display =0x06;
break;
case 2:
display =0x5B;
break;
case 3:
display =0x4F;
break;
case 4:
display =0x66;
break;
case 5:
display =0x6D;
break;
case 6:
display =0x7D;
break;
case 7:
display =0x07;
break;
case 8:
display =0x7F;
break;
case 9:
display =0x6F;
break;
case 10:
display =0x77;
break;
case 11:
display =0x7C;
break;
case 12:
display =0x39;
break;
case 13:
display =0x5E;
break;
```

```
case 14:
    display =0x79;
    break;
    case 15:
    display =0x71;
    break;
    default:
    break;
}
thread_sleep_for(1000);
}
```

6.2 프로그램 작성 아이디어 혹은 이유 설명 쓰기

BusOut이란 Class를 활용해 D0~D7에 연결된 8개의 LED를 관리하도록 했다. i = 0부터 계속 증가하면서 0-F까지의 수를 출력할 수 있도록 case문으로 프로그램을 작성했다. 모든 출력이 마치게 되면 1초의 정지 시간을 가진 뒤, 다시 0-F까지 출력될 수 있도록 프로그램을 작성했다.

6.3 하드웨어 구성 사진 첨부하기

6.4 프로그램 수행 사진/동영상(Youtube 링크) 첨부하기 https://youtu.be/Dl6YTD5W_Wc

끝.