5 de junio de 2015

segundo-p.tex

1. Fórmula de Taylor

Teorema: si a_k son los coeficientes de un polinomio,

$$P_{n,a,f} = \sum_{k=0}^{n} \frac{f^{(n)}(x-a)^k}{k!}$$

$$\exists c$$
 $R_{n,a} = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$

2. Integrales

Definición 2.1 (Partición). Sea a < b . Recibe el nombre de partición del itnervalo [a,b] toda colección finita de puntos [a,b], de los cuales uno es a y el otro es b .

Definición 2.2 (Suma Inferior (Superior)). Sea f acotada sobre [a,b] y $P = t_0, \ldots, t_n$ una partición de [a,b]. Sea además

$$m_i = \inf\{f(x) : t_{i-1} < x < t_i\}$$

$$M_i = \sup\{f(x) : t_{i-1} \le x \le t_i\}$$

Luego, se llama suma inferior de f para P a:

$$L(f, P) = \sum_{i=1}^{n} m_i (t_i - t_{i-1})$$

Y se llama suma superio de f para P a :

$$U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1})$$

Teorema 2.1. Sean P_1 y P_2 particiones de [a,b]. Entonces:

$$L(f, P_1) \le U(f, P_2)$$

Definición 2.3 (Integrable). Una función f acotada sobre [a, b] es integrable sobre [a, b] si

$$\sup\{L(f,P): P \ es \ partición \ de \ [a,b]\} = \inf\{U(f,P): P \ es \ partición \ de \ [a,b]\}$$

Teorema 2.2. Si f está acotada sobre [a,b], entonces f es integrable sobre [a,b] si y sólo si para todo $\epsilon > 0$ existe una partición P de [a,b] tal que

$$U(f,P) - L(f,P) < \epsilon$$

Teorema 2.3. Si f es contínua en [a,b], entonces f es integrable en [a,b].

Teorema 2.4. Sea f integrable sobre [a, b] y

$$\forall x \in [a, b] : m \le f(X) \le M$$

Luego

$$m(b-a) \le \int_a^b f \le M(b-a)$$

Teorema 2.5. Se f es integrable sobre [a,b] y F está definida sobre [a,b] por

$$F(x) = \int_{a}^{x} f$$

entonces F es contínua sobre [a, b]

Cuadro 1: Reglas de integrales

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

$$\int_{a}^{a} f(x) dx = 0$$

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

3. Series

Teorema 3.1. Si una serie s_n converge y u_n se obtiene en base a ella suprimiendo un número finito de términos en ella, luego u_n converge.

Teorema 3.2. Si s_n converge y suma s y u_n se obtiene multimplicando cada término de s por c, luego u_n converge en y suma cs.

Teorema 3.3. Si las series s_n y u_n convergen y suman s y u respectivamente, también lo hace la serie que resulta de sumar cada enésimo término de una con el de la otra y su suma es s + u.

Teorema 3.4 (Condición necesaria para la convergencia). Si una serie converge, entonce si en'esimo término tiende a cero cuando $n \to 0$.

Cuadro 2: Tabla de integrales inmediatas $\,$

$\int a \ dx$	ax
$\int x^n dx$ $\int a^x dx$	$\frac{x^{n+1}}{n+1} \qquad , n \neq -1$ $\frac{a^x}{\ln(a)}$
$\int \frac{1}{x} dx = \int \frac{dx}{x}$	$\ln(x)$
$\int \frac{dx}{2\sqrt{x}}$	\sqrt{x}
$\int e^x dx$	e^x
$\int \operatorname{sen}(x) \ dx$	$-\cos(x)$
$\int \cos(x) \ dx$	sen(x)
$\int \frac{1}{1+x^2} \ dx$	$\arctan(x)$
$\int \frac{1}{\sqrt{1+x^2}} \ dx$	$\arcsin(x)$

Corolario 3.4.1. Si el enésimo término de una serie s_n no tiende a cero, entonces s_n no converge.

Teorema 3.5. Si $u_n \leq v_n, \forall n \ y \ v_n \ converge, \ luego \ u_n \ converge.$

Teorema 3.6. Si $u_n \geq v_n, \forall n \ y \ v_n \ diverge, luego \ u_n \ diverge.$

Teorema 3.7 (Criterio de D'Alembert). Sea s₁ una serie con términos positivos. Y sea

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l$$

entonces:

- 1) La serie converge cuando l < 1
- 2) La serie diverge cuando l > 1

(Cuando l = 1 pueden darse los dos casos).

Teorema 3.8 (Criterio de Cauchy). Sea s_1 una serie con términos positivos. Y sea

$$\lim_{n \to \infty} \sqrt[n]{u_n} = l$$

entonces:

- 1) La serie converge cuando l < 1
- 2) La serie diverge cuando l > 1

(Cuando l = 1 pueden darse los dos casos).

Teorema 3.9 (Criterio Integral). Sea s_n una serie tal que

$$s_1 \ge s_2 \ge s_3...$$

Y sea f una función contínua tal que $f(i) = s_i$. Entonces se cumple:

1) Si $\int_{1}^{\infty} f(x) dx$ converge, también converge s_n

3.1. Teorema fundamental del cálculo

Sea f integrable sobre [a, b], luego su integral es derivable y

$$\frac{d}{dx} \int_{a}^{x} f(t) \ dt = f(x)$$

$$\frac{d}{dx} \int_{a(x)}^{b(x)} dt = f(b(x))b'(x) - f(a(x))a'(x)$$

- 3.2. Regal de Barrow
- 3.3. Método de sustitución
- 3.4. Método de integración por partes
- 3.5. Métodode integración por fraccinoes simples