FUDAN SUMMER SCHOOL INTRODUCTION TO AI

Probabilistic Reasoning and Decision Making
Day 5 – d-separation, variable elimination

Theorem: P(X,Y|E) = P(X|E)P(Y|E) if and only if **every** UNDIRECTED path from a node in X to a node in Y is "d-separated" ("blocked") by E.

<u>Definition</u>: A path π (sequence of nodes connected by edges) is d-separated if there exists some node $z \in \pi$ for which **one** of the following three conditions hold:

- 1. $z \in E$ (observed event in causal chain)
- 2. (z) $z \in E$ (observed common explanation)

P(J,M|A)=P(J|A)P(M|A)

A. True

Theorem: P(X,Y|E) = P(X|E)P(Y|E) if and only if **every** UNDIRECTED path from a node in X to a node in Y is "d-separated" ("blocked") by E.

<u>Definition</u>: A path π (sequence of nodes connected by edges) is d-separated if there exists some node $z \in \pi$ for which **one** of the following three conditions hold:

- 1. $z \in E$ (observed event in causal chain)
- 2. (z) (

P(B|E,J)=P(B|J)

A. True

В	Ш	P(A=1 B,E)
0	0	0.002
0	1	0.35
1	0	0.96
1	1	0.98

$$P(B|E,J,M) = P(B|J,M)?$$

- A. True
- B. False

<u>Theorem</u>: P(X,Y|E) = P(X|E)P(Y|E) if and only if **every** UNDIRECTED path from a node in X to a node in Y is "d-separated" ("blocked") by E.

<u>Definition</u>: A path π (sequence of nodes connected by edges) is d-separated if there exists some node $z \in \pi$ for which **one** of the following three conditions hold:

- 1. **2**
- $z \in E$ (observed event in causal chain)
- 2. (c) (
- 3. $z \notin E$, $descendants(z) \notin E$ (no observed common effect)

P(A,B|D) = P(A|D)P(B|D)?

A. True

<u>Theorem</u>: P(X,Y|E) = P(X|E)P(Y|E) if and only if **every** UNDIRECTED path from a node in X to a node in Y is "d-separated" ("blocked") by E.

<u>Definition</u>: A path π (sequence of nodes connected by edges) is d-separated if there exists some node $z \in \pi$ for which **one** of the following three conditions hold:

- 1. $z \in \mathbb{R}$
 - $z \in E$ (observed event in causal chain)
- 2. (observed common explanation)
- 3. $z \notin E$, $descendants(z) \notin E$ (no observed common effect)

P(D, E|B) = P(D|B)P(E|B)?

A. True

<u>Theorem</u>: P(X,Y|E) = P(X|E)P(Y|E) if and only if **every** UNDIRECTED path from a node in X to a node in Y is "d-separated" ("blocked") by E.

<u>Definition</u>: A path π (sequence of nodes connected by edges) is d-separated if there exists some node $z \in \pi$ for which **one** of the following three conditions hold:

- 1. $z \in E$ (observed event in causal chain)
- 2. (z) $z \in E$ (observed common explanation)
- 3. $z \notin E$, $descendants(z) \notin E$ (no observed common effect)

P(F,H|A,E) = P(F|A)P(H|A,E)?

- A. $X=\{F\}, Y=\{H\}, Ev=\{A, E\}$
- B. $X=\{F, H\}, Y=\{E\}, Ev=\{A\}$
- C. $X=\{F\}, Y=\{H, E\}, Ev=\{A\}$
- D. $X=\{F, H, E\}, Y=\{A\}, Ev=\{\}$

<u>Theorem</u>: P(X,Y|E) = P(X|E)P(Y|E) if and only if **every** UNDIRECTED path from a node in X to a node in Y is "d-separated" ("blocked") by E.

<u>Definition</u>: A path π (sequence of nodes connected by edges) is d-separated if there exists some node $z \in \pi$ for which **one** of the following three conditions hold:

- 1. $z \in E$ (observed event in causal chain)
- 2. (z) (
- 3. $z \notin E$, $descendants(z) \notin E$ (no observed common effect)

P(F,H|A,E) = P(F|A)P(H|A,E)?

 $X={F}, Y={H, E}, Ev={A}$

- A. True
- B. False

- (a) Does D d-separate C and F?
- (b) Do D and E d-separate C and F?
- (c) Write down all pairs of nodes which are independent of each other.
- (d) Which pairs of nodes are independent of each other given B?
- (e) P(A, F|E) = P(A|E)P(F|E)?

Markov Blanket

■ A Markov Blanket B_x of node X consists of parents of X, children of X and "spouses" (other parents of children of X, but not X) of X.

Theorem:
$$P(X|B_x, Y) = P(X|B_x)$$

 $if Y \notin \{X, B_x\}$

Prove this theorem by showing that B_x d-separates each path to X, indicated by the 5 red arrows.

Inference in Bayes Nets: General Approach

P(A=1|B,E)

0.002

0.35

0.96

0.98

Compute P(B|J=1, M=1)

0.93

0.65

В	Е	P(A=1 B,E)
0	0	0.002
0	1	0.35
1	0	0.96
1	1	0.98

Compute P(B|J=1, M=1)

Using a general approach:

$$P(B|J = 1, M = 1) = \frac{P(B, J = 1, M = 1)}{P(J = 1, M = 1)}$$

$$= \frac{\sum_{a} \sum_{e} P(B, J = 1, M = 1, A = a, E = e)}{\sum_{b} P(B = b, J = 1, M = 1)}$$

How many operations (additions, multiplications) does it take to compute P(B = 1, J = 1, M = 1)?

В	E	P(A=1 B,E)
0	0	0.002
0	1	0.35
1	0	0.96
1	1	0.98

Compute P(B = 1, J = 1, M = 1)by expanding out:

В	Е	P(A=1 B,E)
0	0	0.002
0	1	0.35
1	0	0.96
1	1	0.98

How many multiplications and additions does it take to compute

$$P(B = 1|J = 1, M = 1)$$
?

- A. 16 multiplications, 3 additions
- B. 18 multiplications, 4 additions
- C. 32 multiplications, 6 additions
- D. 32 multiplications, 7 additions
- E. I have no idea

Inference in Bayes Nets: Variable Elimination

В	Е	P(A=1 B,E)
0	0	0.002
0	1	0.35
1	0	0.96
1	1	0.98

Eliminate redundant calculations by storing intermediate results in "factors"

A factor is:

Operations on Factors: Multiplication

 $f_0(E)$

Е	val
0	0.995
1	0.005

 $f_1(B)$

В	val
0	0.999
1	0.001

 $f_2(A, B, E)$

Α	В	Е	val
0	0	0	0.998
0	0	1	0.65
0	1	0	0.04
0	1	1	0.02
1	0	0	0.002
1	0	1	0.35
1	1	0	0.96
1	1	1	0.98

 $f_3 * f_4$

 $f_3(J,A)$

J	Α	val
0	0	0.9
0	1	0.07
1	0	0.1
1	1	0.93

М	Α	val
0	0	0.99
0	1	0.35
1	0	0.01
1	1	0.65

Operations on Factors: Multiplication

 $f_0(E)$

E	val
0	0.995
1	0.005

 $f_1(B)$

В	val
0	0.999
1	0.001

 $f_2(A,B,E)$

Α	В	Е	val
0	0	0	0.998
0	0	1	0.65
0	1	0	0.04
0	1	1	0.02
1	0	0	0.002
1	0	1	0.35
1	1	0	0.96
1	1	1	0.98

How many values (rows) are in the table for the factor $f_2 * f_3$

A. 4

B. 8

C. 16

D. 32

 $f_3(J,A)$

J	Α	val
0	0	0.9
0	1	0.07
1	0	0.1
1	1	0.93

М	Α	val
0	0	0.99
0	1	0.35
1	0	0.01
1	1	0.65

Operations on Factors: Multiplication

 $f_0(E)$

Е	val
0	0.995
1	0.005

 $f_1(B)$

В	val
0	0.999
1	0.001

 $f_2(A, B, E)$

Α	В	Е	val
0	0	0	0.998
0	0	1	0.65
0	1	0	0.04
0	1	1	0.02
1	0	0	0.002
1	0	1	0.35
1	1	0	0.96
1	1	1	0.98

How many total multiplications are needed to produce the table $f_2 * f_3$

A. 0

B. 16

C. 32

D. 64

 $f_3(J,A)$

J	Α	val
0	0	0.9
0	1	0.07
1	0	0.1
1	1	0.93

М	Α	val
0	0	0.99
0	1	0.35
1	0	0.01
1	1	0.65

Operations on Factors: Summing out

 $f_0(E)$

Е	val
0	0.995
1	0.005

 $f_1(B)$

В	val
0	0.999
1	0.001

 $f_2(A,B,E)$

Α	В	Ш	val
0	0	0	0.998
0	0	1	0.65
0	1	0	0.04
0	1	1	0.02
1	0	0	0.002
1	0	1	0.35
1	1	0	0.96
1	1	1	0.98

 $\sum_{e} f_2$

 $f_3(J,A)$

J	Α	val
0	0	0.9
0	1	0.07
1	0	0.1
1	1	0.93

М	Α	val
0	0	0.99
0	1	0.35
1	0	0.01
1	1	0.65

Operations on Factors: Conditioning

 $f_0(E)$

Е	val
0	0.995
1	0.005

 $f_1(B)$

В	val
0	0.999
1	0.001

 $f_2(A, B, E)$

Α	В	Е	val
0	0	0	0.998
0	0	1	0.65
0	1	0	0.04
0	1	1	0.02
1	0	0	0.002
1	0	1	0.35
1	1	0	0.96
1	1	1	0.98

 $f_2(A, B = 1, E)$

 $f_3(J,A)$

J	Α	val
0	0	0.9
0	1	0.07
1	0	0.1
1	1	0.93

М	Α	val
0	0	0.99
0	1	0.35
1	0	0.01
1	1	0.65