2.4 DISTRIBUCIÓN DE BERNOULLI Y BINOMIAL.

DISTRIBUCIÓN DE BERNOULLI. DISTRICTION OF BENDOLLIA. LA VIOLED CONTRICTION OF BENDOLLIA. A VIOLED CONTRICTION OF THE OFFICE OF $\psi_{\chi}(t) = E[e^{xt}] = e^{x(0)} f_{\chi}(0) + e^{x(0)} f_{\chi}(0) = P(X = 0) + e^{x} P(X = 1) = \underline{q} + e^{x} p$ $\psi_{\chi}(t) = \underline{q} + \underline{p}e^{x}$ $\geq \sum_{\lambda} e^{\frac{\lambda}{2}\lambda} \Im(\frac{\gamma}{2} - \lambda)$ No hay más que decir de esta distribución que es la más sencilla, pero muy útil para las distribuciónes de variables aleatorias discretas que veremos en este capitalo.

DISTRIBLICIÓN BINOMIAL*

DISTRIBLICIÓN BINOMIAL

Machine d'industrica**

DETURCTOR RECONALL

Definition: The experimente est binomial at cumple con last dos condiciones significants:

1 (Consiste de personal interdendentes. (x_1, x_2, x_3) Set dee que la cumbida electronia (x_1, x_2, x_3) Set dee que la cumbida electronia (x_1, x_2, x_3) Set dee que la cumbida electronia (x_1, x_2, x_3) Set dee que la cumbida electronia (x_1, x_2, x_3) (x_1, x_2, x_3) (x_1, x_2, x_3) (x_2, x_3) (x_1, x_2, x_3) (x_1, x_2, x_3) (x_2, x_3) (x_3, x_4) (x_4, x_3) (x_4, x_3) (x_4, x_3) (x_4, x_4) (x_4, x_3) (x_4, x_4) $(x_4$

Se complica.