On the Design of Quantum Communication Systems with non-Gaussian States

Supervisor:

Chiar.mo Prof. Andrea Conti

Co-Supervisor:

Dott. Ing. Stefano Guerrini

Candidate:

Federico Forzano

Motivation

- Communications are becoming ever more important and widespread.
- Classical physics is only a special case of quantum physics.
- The use of quantum non-Gaussian states can significantly improve the performance of a communication system.

Contents

- 1 Motivation
- 2 Quantum Communication System
 - Quantum modulator
 - Quantum receiver
- 3 Performance Analysys
 - PACS system performance
 - Noise effect
 - Squeezed state system performance
 - PASS system performance
- 4 Conclusion

Block chain of a quantum communication system.

Quantum modulation

Quantum modulation

OOK BPSK
$$\Xi_0 = \Xi_{th} \qquad \qquad \Xi_0 = \Xi_{th}(-\mu)$$

$$\Xi_1 = \Xi_{th}(\mu) \qquad \qquad \Xi_1 = \Xi_{th}(\mu)$$

Some important states

Coherent state

$$m{A} \ket{\mu} = \mu \ket{\mu} \ \ket{\mu} = m{D}_{\mu} \ket{0}$$

Squeezed state

$$|\mu,\zeta
angle=m{D}_{\mu}m{S}_{\zeta}\,|0
angle$$

Thermal noise state

$$\Xi_{th} = (1 - v) \sum_{n=0}^{\infty} v^n |n\rangle \langle n|$$

$$v = \frac{\bar{n}}{\bar{n} + 1}; \quad \bar{n} = \left(\exp\left\{\frac{\hbar\omega}{k_B T}\right\} - 1\right)^{-1}$$

Photon added states

$$\mathbf{\Xi}^{(k)} = \frac{(\mathbf{A}^{\dagger})^k \mathbf{\Xi} \mathbf{A}^k}{tr\{(\mathbf{A}^{\dagger})^k \mathbf{\Xi} \mathbf{A}^k\}}$$

Quantum receiver

Quantum receiver

Distribution error probability

$$P_e = 1 - (p_0 tr\{\Xi_0 \Pi_0\} + p_1 tr\{\Xi_1 \Pi_1\})$$

Quantum receiver

Helstrom Bound: Minium distribution error probability

$$\breve{P}_e = \frac{1}{2} \left(1 - \| p_1 \Xi_1 - p_0 \Xi_0 \|_1 \right)$$

Quantum receiver

Helstrom Bound: Minium distribution error probability

$$\check{P}_e = \frac{1}{2} \left(1 - \| p_1 \Xi_1 - p_0 \Xi_0 \|_1 \right)$$

MDEP for pure states

$$reve{P}_{e}=rac{1}{2}\left(1-\sqrt{1-4
ho_{0}
ho_{1}|\langle\psi_{0}|\psi_{1}
angle|^{2}}
ight)$$

Noisy PACS discrimination

MDEP comparison of a QOOK and QBPSK systems with PACS in terms of the mean energy of the system \bar{E} .

$$N = 45$$
; $\bar{n} = 10^{-2}$; $p_0 = p_1 = 1/2$

Noise effect

MDEP of a QBPSK with PACSs, without noise. k=1.

MDEP for $\mu =$ 0.54 (value of the zero) in terms of \bar{n} .

Squeezed States discrimination: BPSK

MDEP of a QBPSK system with squeezed states in terms of the mean energy of the system \bar{E} .

$$N = 30$$
; $\bar{n} = 0$; $p_0 = p_1 = 1/2$

Noisy PASS discrimination

$$N = 30; \ \bar{n} = 10^{-2}; \ \theta = \pi; \ p_0 = p_1 = 1/2$$

MDEP of a QOOK system with PASS in terms of the mean photon number n_p .

MDEP of a QBPSK system with PASS in terms of the mean energy of the system \bar{E} .

Conclusion

- We can design a quantum equivalent of a classical communication system.
- The use of PACSs or PASS improves the performance of the quantum state discriminator for QOOK systems.
- The use of PASSs in particular can leads to significant benefits in terms of MDEP.