Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Withdrawn) An isolated and purified polypeptide comprising an enzyme activity, wherein the enzyme activity asymmetrically reduces N-benzyl-3-pyrrolidinone to produce (S)-N-benzyl-3-pyrrolidinol with NADPH as a coenzyme, wherein the enzyme activity has an optimum action pH of 4.5 to 5.5, an optimum action temperature of 40°C to 45°C and, a molecular weight of about 29,000 <u>daltons</u> as determined by gel filtration analysis and about 35,000 <u>daltons</u> as determined by SDS-polyacrylamide gel electrophoresis analysis, and wherein the enzyme activity is inhibited by divalent copper ion.
 - 2. (Withdrawn) An isolated and purified polypeptide comprising:
 - (a) SEQ ID NO: 1; or
- (b) an amino acid sequence derived from SEQ ID NO: 1 by substitution, insertion, deletion and/or addition of one or more amino acids, wherein the polypeptide possesses an enzyme activity comprising asymmetrically reducing N-benzyl-3-pyrrolidinone to produce (S)-N-benzyl-3-pyrrolidinol.
- 3. (Withdrawn) The polypeptide of claim 1, wherein the polypeptide is derived from a microorganism belonging to the genus *Micrococcus*.
- 4. (Withdrawn) The polypeptide of claim 3, wherein the microorganism is the strain *Micrococcus luteus* IFO 13867.
- 5. (Currently Amended) An isolated and purified DNA molecule coding for <u>a</u> the polypeptide <u>comprising SEQ ID NO: 1. of claim 1.</u>
- 6. (Currently Amended) An isolated and purified DNA molecule coding for a polypeptide wherein the polypeptide comprises an enzyme activity comprising asymmetrically reducing N-benzyl-3-pyrrolidinone to produce (S)-N-benzyl-3-pyrrolidinol,

and wherein the DNA molecule hybridizes to a nucleotide SEQ ID NO: 2 under stringent conditions at 65°C in the presence of 0.7 to 1.0 M NaCl.

- 7. (Cancelled)
- 8. (Previously Presented) An expression vector comprising the isolated DNA molecule of claim 5.
- 9. (Currently amended) The expression vector of claim 8, wherein the vector is a plasmid pTSBH.
- 10. (Currently amended) The expression vector of claim 8, which further comprises an wherein the isolated DNA molecule [[codes]] coding for a polypeptide having glucose dehydrogenase activity.
- 11. (Previously Presented) The expression vector of claim 10, wherein the polypeptide having glucose dehydrogenase activity is a *Bacillus megaterium*-derived glucose dehydrogenase.
- 12. (Previously Presented) The expression vector of claim 11, wherein the vector is a plasmid pTSBG1.
- 13. (Previously Presented) A transformant comprising the expression vector of claim 8.
- 14. (Previously Presented) A transformant containing both the expression vector of claim 8 and an expression vector containing a DNA molecule coding for a polypeptide having glucose dehydrogenase activity.
- 15. (Previously Presented) The transformant of claim 14, wherein the polypeptide having glucose dehydrogenase activity is a *Bacillus megaterium*-derived glucose dehydrogenase.
- 16. (Previously Presented) The transformant of claim 13, wherein a host thereof is *Escherichia coli*.

- 17. (Currently Amended) The transformant of claim 16, wherein the [[host]] transformant is Escherichia coli HB101 (pTSBH).
- 18. (Currently Amended) The transformant of claim 16, wherein the [[host]] transformant is Escherichia coli HB101 (pTSBG1).
- 19. (Currently Amended) The transformant of claim 16, wherein the [[host]] transformant is Escherichia coli HB101 (pTSBH, pSTVG).
 - 20. (Withdrawn) A method of producing (S)-N-benzyl-3-pyrrolidinol comprising:
- a) reacting the transformant of claim 13 and/or a treated product thereof with N-benzyl-3-pyrrolidinone, and
 - b) harvesting the (S)-N-benzyl-3-pyrrolidinol produced in a).
- 21. (Withdrawn) The method of claim 20, wherein the step of reacting is carried out in the presence of a coenzyme regenerating system.
- 22. (Previously Presented) An expression vector comprising the isolated DNA-molecule of claim 6.
 - 23. (Cancelled)