

FOLGEN, GRENZWERTE, STETIGKEIT

* Folgen, Teil 1. Geben Sie für jede der unten aufgeführten Folgen die ersten fünf Glieder an. Implementieren Sie dann die Folgen in Java und geben Sie jeweils die ersten 100 Glieder auf der Console aus. Prüfen Sie die Folgen auf Monotonie und Beschränktheit: (nzn)

1.
$$a_n = 2n - 1$$
.

2.
$$a_n = 1 + \frac{1}{n}$$
.

3.
$$a_n = (-1)^n 2n$$
.

4.
$$a_n = a_{n-1} + 3$$
 für $n \ge 2$ mit $a_1 = 2$. 7. $a_n = \frac{n^2 + 4}{n}$.

5.
$$a_n = 9$$
.

6.
$$a_n = a_{n-1}a_{n-2}$$
 für $n \ge 3$ mit $a_1 = 1$, $a_2 = 2$.

7.
$$a_n = \frac{n^2+4}{n}$$

Lösung.

mo. wa. & mo. fa. (wicht streng!)

$\frac{2}{3}$ $\frac{2}{a_2 \cdot a_{\Lambda}} = 2 \cdot \Lambda = 2$ $\frac{1}{3}$ $$
--

Folgen, Teil 2. Prüfen Sie die Folgen auf Konvergenz und geben Sie ggf. einen Grenzwert an:

1.
$$a_n = \frac{2n+1}{4n}$$
.

2.
$$a_n = \frac{n^2+4}{n}$$

3.
$$a_n = \frac{n^2 + 4n - 1}{n^2 - 3n}$$

4.
$$a_n = \frac{1}{3n^2}(1 - \frac{1}{2^n}).$$

5.
$$a_n = 4(3^{-n} + 3) + n^2$$
.

6.
$$a_n = \frac{4n^3 - 5n^2 + 1}{7n^3 - 2n}$$
.

7.
$$a_n = \frac{-4(1+3^{-n})}{\sqrt{n}}$$
.

8.
$$a_n = -3^n - \frac{1}{n}\cos(n)$$
.

Lösung.

1.
$$a_n = \frac{\chi(2+\frac{1}{n})}{4\chi} = \frac{2+\frac{1}{n}}{4} \xrightarrow{n \to \infty} \frac{2}{n} = \frac{1}{2}$$
 (konvergent)

2.
$$a_n = \frac{n^2 \left(1 + \frac{n}{n^2}\right)}{1} = n \cdot \left(1 + \frac{n}{n^2}\right) \xrightarrow{n \to \infty} \infty$$
 (divergant, bestimmt divergent)

3.
$$\alpha_{n} = \frac{\sqrt{(1 + \frac{3}{n} - \frac{1}{n^{2}})}}{\sqrt{(1 - \frac{3}{n})}} \longrightarrow \frac{1}{1} = 1$$
 (konvergent)

$$\alpha_{n} = \frac{\Lambda}{3n^{2}} \left(1 - \frac{\Lambda}{2^{n}}\right) \longrightarrow 0 \cdot \Lambda = 8 \quad (\text{univerpolit})$$

$$\longrightarrow 0$$

$$\longrightarrow 1$$

5.
$$a_n = 4\left(\frac{1}{3^n} + 3\right) + h^2 \rightarrow \infty$$
 (bestimmt divergant)

6.
$$a_{n} = \frac{M^{2}(4 - \frac{5}{n} + \frac{7}{n^{3}})}{M^{2}(7 - \frac{2}{n^{2}})} \rightarrow \frac{4}{7}$$

$$7. a_{n} = \frac{-4(1 + \frac{7}{3^{n}})}{4^{n}} \rightarrow 0$$

8.
$$a_n = -3^n - \frac{\cos(n)}{\cos(n)}$$
 beschäult

 $\Rightarrow -\infty$
 \Rightarrow

Lottogewinn. Der Lebenskünstler Gustav Glück überlegt sich an seinem 20. Geburtstag: "Wenn ich im Lotto gewinne, möchte ich nicht mehr arbeiten. Um nicht mehr arbeiten zu müssen, brauche ich zu Beginn jeden Jahres 20.000 Euro."

- 1. Wie viel muss Gustav gewinnen, damit er ausschließlich von den Zinsen leben kann?
- 2. Gustav geht davon aus, dass er als glücklicher Mensch 90 Jahre alt wird. Wie viel muss Gustav gewinnen, wenn das Kapital an seinem 91-ten Geburtstag aufgebraucht sein darf. Schreiben Sie dazu das Kapital als Folge. Geben Sie den sog. Rentenplan in einer Excel-Datei aus.

Anmerkung: Gehen Sie für diese beiden Aufgaben davon aus:

- dass der Lottogewinn zum Jahresbeginn ausbezahlt wird,
- dass Herr Glück am 1. Januar Geburtstag hat und
- dass der Jahreszinssatz 5% beträgt.

Lösung. L= Lotto gewinn

1.
$$(L - 20.000) \cdot 5\% = 20.000$$
 $\Rightarrow L = \frac{20.000}{0.05} + 20.000 = 420.000$.

Sins

2. Yells Aller Kapital

0 20
$$K_0 = L - 20.000$$

1 21 $K_1 = K_0 + K_1 \cdot 0.05 - 20.000 = 1.05 \cdot K_0 - 20.000 = 1.05 \cdot L - 20.000 (1.05 + 1)$

2 22 $K_2 = 1.05 \cdot K_1 - 20.000 = 1.05 \cdot L - 20.000 (1.05 + 1) - 20.000$

= $1.05^2 \cdot L - 20.000 (1.05^2 + 1.05 + 1)$

:

1 20+n $K_1 = 1.05 \cdot K_1 - 20.000 = 1.05^n \cdot L - 20.000 (1.05^n + ... + 1.05 + 1)$

:

1 30 $10 \cdot K_1 = 20.000 - 20.000 = 0$

Rapital+2ins which für etales lebeusjahr bis 91

20.000

$$\Rightarrow 0 = K_{70} = 1,05^{70} \cdot L - 20.000 \frac{1,05^{71} - 1}{0,05} \Rightarrow L = \frac{20.000}{0,05} (1,05^{71} - 1) \approx 406.853,53}$$
(Siehe Excel!)

Grenzwerte von Funktionen. Berechnen Sie den Grenzwerte:

1.
$$\lim_{x\to 0} 2x^2 + 1$$

4.
$$\lim_{x \to 2} \frac{(x-2)(3x+1)}{4x-8}$$

7.
$$\lim_{x \to -\infty} \frac{4x^2 + 5x - 7}{2x^3 - 1}$$

2.
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + 1}$$

5.
$$\lim_{x \to 1} \frac{4x^2 + 4x - 8}{x^2 + 2x - 3}$$

8.
$$\lim_{x \to \infty} \frac{\ln(x^m + 1)}{\ln(x^n)} \qquad \left(\mathbf{n} \neq \mathbf{0} \right)$$

3.
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

6.
$$\lim_{x \to \infty} \frac{5x^2 - 9x}{2x^2 - 3}$$

$$9. \lim_{x \to 0} \frac{\sin(x) + \cos(x)}{x}$$

$$2x^2+1 \xrightarrow{x\to 0} 2\cdot 0^2+1=1$$

2.
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + 1} = \frac{1}{1^2 + 1} = \frac{0}{2} = 0$$

3.
$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} \frac{x + 2}{x - 2} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x + 2}{x - 2} = \lim_{x \to 2} \frac{x + 2}{x - 2} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{2x}{x} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{2x}{x} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = 2 + 2$$

$$\lim_{x \to 2} \frac{x^{2} - 4}{x - 2} = 2 + 2$$

$$\hat{y} \cdot \lim_{x \to 2} \frac{(x \times 2)(3x + 1)}{4(x \times 2)} = \frac{3 \cdot 2 + 1}{4} = \frac{7}{4}$$

$$\left[\text{ODER with } e' \# _{11} \frac{G}{O} \right]$$

5.
$$\lim_{x \to 1} \frac{4x^2 + 4x - 8}{x^2 + 2x - 3} = \lim_{x \to 1} \frac{8x + 4}{2x + 2} = \frac{8 \cdot 1 + 4}{2 \cdot 1 + 2} = \frac{12}{4} = 3$$
 [ODER: Polynom - division wif $(x - 1)$]

6.
$$\lim_{x \to \infty} \frac{5x^2 - 9x}{2x^2 - 3} = \lim_{x \to \infty} \frac{x^2(5 - \frac{9}{x})}{x^2(2 - \frac{3}{x^2})} = \frac{5}{2}$$
 [ODER: $e'H = \frac{\infty}{\infty}$]

hochste Potant, ausklaumern.

T. Cun $\frac{4x^2+5x-7}{2x^3-1} = \lim_{x \to -\infty} \frac{x^2(4+\sqrt{2}-\frac{\pi}{x^2})}{x^3(2-\frac{\pi}{x^3})} = \lim_{x \to -\infty} \frac{1}{x} \cdot \frac{4}{2} = 0$

TODER: e'H ... +00 "]

8. luis
$$\frac{\ln(x^n+1)}{\ln(x^n)}$$
 $u \neq 0$ sonst nicht definiert, de Nemer= $\ln(x^0) = 0$!

Nowwer:
$$\ln (x^n) \stackrel{\text{N} \neq 0}{=} \begin{cases} \ln (x^n) \rightarrow \infty & n > 0 \\ \ln (x^n) \rightarrow -\infty & n < 0 \end{cases}$$

$$\lim_{x \to \infty} \frac{\ln(x^{n})}{\ln(x^{n})} \to -\infty \qquad n < 0$$

$$\lim_{x \to \infty} \frac{\ln(x^{n})}{\ln(x^{n})} = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1}{x^{n}} \left(\frac{x^{n}}{x^{n}} + 1 \right) = \lim_{x \to \infty} \frac{1$$

i)
$$\lim_{x\to 0} \frac{\sin x + \cos x}{x} = \frac{2}{10}$$
 kein l'Hanvendbar!

i)
$$\lim_{x \to 0} \frac{\sin x + \cos x}{x} = \frac{1}{10}$$
 $\lim_{x \to 0} \frac{\sin x + \cos x}{x}$ $\lim_{x \to 0} \frac{\sin x + \cos x}{x} = +\infty$ & $\lim_{x \to 0} \frac{\sin x + \cos x}{x} = -\infty$

d.h. Grenzwest existient micht!

Stetigkeit. Welche Funktionen sind in ihrem gesamten Definitionsbereich stetig?

1.
$$f(x) = x^3 + 2x - 1$$
 $\mathcal{D} = \mathbb{R}$

3.
$$f(x) = e^{-3x}$$
 $\mathcal{D} = \mathbb{R}$

2.
$$f(x) = \frac{x}{2+x^2}$$

$$D = \mathbb{R}$$

Lösung.

Stefigleit: Alle clementaren Fliten (Polynome, Sin(x), cos(x), tan(x), ex, ax, ln x, loga x, a x, ...) sind stetly (auf dan Def.-Bereich) & auch deren Summe/Differenz/Modult/Quotlent/ Verteningfung!

1. Polynom V 2. Austient von Polynomen V 3. ex & -3x Stetij, so anch Veternøfung V

9. Summe Shehipar Flichen ist Stehig /