1. Suppose

$$x^2 + y^2 = 1$$

is a known identity. Determine if, under such assumption, the following is an identity

$2x^5 + 3y^4 = 2x^5$

2. Suppose

$$x^2 + y^2 = 1$$

is a known identity. Determine if, under such assumption, the following is an identity

$$x^6 + 2y^6 = -x^6 + 6x^4 - 6x^2 + 2$$

$$\sin(x)$$

В

$$\cos\left(\frac{\pi}{4} - x\right)$$

can be exchanged for

$$-\sin(-x)$$

 \mathbf{C}

$$\cos\left(\frac{\pi}{2} + x\right)$$

4. Suppose

$$x^2 + 3 = 3x + 1$$

is a known identity. Determine if, under such assumption, the following is an identity

 $2x^5 + 9x = 71x - 60$

YES, identity

5. The famous identity:

$$\tan\left(x\right) = \frac{\sin(x)}{\cos(x)}$$

can be 'tweaked' to produce the following identity/ies:

$$\boxed{\mathbf{C}} \quad \tan^2(x) = \frac{\sin^2(x)}{\cos^2(x)}$$

$$\boxed{\mathbf{D} \quad \frac{\cos(x)\tan(x)}{\sin(x)} = 1}$$

$$E$$
 $\tan(x)\cos(x) = \sin(x)$

$$\boxed{\mathbf{F}} \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)}$$

$$G \cos(x) = \frac{\sin(x)}{\tan(x)}$$

$$\sin(x) = \cos(90^{\circ} - x)$$

can be 'tweaked' to produce the following identity/ies:

$$\boxed{\mathbf{C} \quad \sin(90^{\circ} - t) = \cos(t)}$$

$$\boxed{\mathbf{D} \quad \sin(20^\circ - t) = \cos(70^\circ + t)}$$

$$\boxed{\mathbf{E} \quad \sin(blah) = \cos(90^{\circ} - blah)}$$

$$\mathbf{F} \sin(\theta) = \cos(90^{\circ} - \theta)$$

A
$$\sin(45^{\circ} - t) = \cos[90^{\circ} - (45^{\circ} - t)]$$

R $\sin(00^{\circ} - t) = \cos[00^{\circ} - (00^{\circ} - t)]$

$$\mathbf{B} \int \sin(90^{\circ} - t) = \cos[90^{\circ} - (90^{\circ} - t)]$$

 $\frac{\tan(x)}{\sin(x)} = \frac{1}{\cos(x)}$

 $\tan(3x) = \frac{\sin(3x)}{\cos(3x)}$

7. Select Expressions Equivalent t	7.	Select	Expression	s Equiva	lent t
------------------------------------	----	--------	------------	----------	--------

 $\sin(x)$

D

$$\frac{1}{\frac{1}{\sin(x)}}$$

A

 $\frac{1}{\csc(x)}$

 \mathbf{E}

 $\frac{\text{opp}}{\text{hyp}}$

В

 $-\sin(-x)$

F

 $\cot(90-x)$

 \mathbf{C}

 $\frac{1}{\sec\left(\frac{\pi}{2} - x\right)}$

G

 $-\sin(x)$

8. Select Expressions Equivalent to

 $\frac{1}{\frac{1}{\cos(x)}}$

 \mathbf{E}

 $-\sin(-x)$

F

Α

 $\cos(x)$

G

 $\frac{1}{\frac{1}{\sin(x)}}$

В

 $-\sin(x)$

G

 $\frac{\text{adj}}{\text{hyp}}$

C

 $\frac{1}{\csc\left(\frac{\pi}{2} - x\right)}$

Η

xTan

D

 $\frac{1}{\sec(x)}$

I

xSec

9.

 $\cos(x)$

В

 $\sin\left(\frac{\pi}{2} - x\right)$

can be exchanged for

A

 $\cos\left(x-\frac{\pi}{2}\right)$

 \mathbf{C}

 $\cot(x)\cos(x)$

10.

 $-\tan(\beta)$

В

 $\tan(-\beta)$

is interchangeable with $% \frac{1}{2}\left(\frac{1}{2}\right) =0$

A

 $\sec(-\beta)$

C

 $\sin(-\beta)$

11.

PreCalculus Quiz 9 version 1 (page 3/6)

Suppose

$$x^3 = 1$$

is a known identity. Determine if, under such assumption, the following is an identity

$$2x^6 + 3x = 3x + 2$$

12. Suppose

$$2x^3 = x + 1$$

is a known identity. Determine if, under such assumption, the following is an identity

$$8x^9 - 6 = 3x^2 + \frac{7}{2}x - \frac{9}{2}$$

 $tan(\alpha)$

В

 $\frac{opp}{hyp}$

is interchangeable with

A

 $\frac{1}{\cot(\alpha)}$

С

 $\sin(\alpha)$

$$\cot(x) = \tan(90^{\circ} - x)$$

can be 'tweaked' to produce the following identity/ies:

$$\mathbf{B} \cot(45^{\circ} - t) = \tan(45^{\circ} + t)$$

$$C$$
 $\cot(45^{\circ} - t) = \tan[90^{\circ} - (45^{\circ} - t)]$

$$\boxed{\mathbf{E} \quad \cot(R) = \tan(90^{\circ} - R)}$$

$$\boxed{\mathbf{F}} \cot(90^{\circ} - t) = \tan(t)$$

$$c^2 + s^2 = 1$$

Under this assumption, select the true statement/s:

$$oxed{A}$$
 Every s^4 can be 'exchanged' for $s^2-c^2+c^4$

$$oxed{B}$$
 Every s^4 can be 'exchanged' for $(1-c^2)^2$

$$oxed{C}$$
 Every s^4 can be 'exchanged' for $1-2c^2+c^4$

16. Suppose

$$x^3 + 3 = 2x + 3$$

is a known identity. Determine if, under such assumption, the following is an identity

B YES, identity

$$10x^5 + 7 = 40x + 7$$

17. if

$$A(x) = B(x)$$

is an IDENTITY then within the respective domain A(x) AND

$$B(x)$$
 ARE

A interchangeable B NOT interchangeable

PreCalculus Quiz 9 version 1 (page 4/6) Select Expressions Equivalent to \mathbf{C} $\cos(x)$ $\overline{\sec(x)}$ D A $\cos(-x)$ tan(x)В \mathbf{E} adj hyp $\cos(x)$ 19. Picture yourself in a 'special' world where В Every 3x can be 'exchanged' for x \mathbf{C} Every 2x can be 'exchanged' for 0Under this assumption, select the true statement/s: D Every 3x can be 'exchanged' for 2x + xEvery x can be 'exchanged' for -x \mathbf{E} none of these 20. Select Expressions Equivalent to D $\cos(x)$ $\frac{\cos(x)}{\sin(x)}$ \mathbf{E} A $\overline{\sec(x)}$ $\frac{1}{\csc\left(\frac{\pi}{2} - x\right)}$ \mathbf{F} $\cos(x)$ В \mathbf{G} $\cos(-x)$ none of the se \mathbf{C} Η adj hyp 21. В $\cot (\gamma)$ $\tan\left(\frac{\pi}{2} - \gamma\right)$ is interchangeable with

C

 $\tan (\gamma)$

 $-\sin(-x)$

В

 $\frac{\text{adj}}{\text{hyp}}$

A

A

 $\frac{1}{\cot(x)}$

 $\cos\left(\frac{\pi}{2} - \gamma\right)$

C

 $\frac{\sin(x)}{\cos(x)}$

PreCalculus Quiz 9 version 1 (page 5/6) D \mathbf{E}

xSec

G

xCot

$$\frac{1}{\sec\left(\frac{\pi}{2} - x\right)}$$

Η

$$\frac{1}{\frac{1}{\sin(x)}}$$

 \mathbf{F}

$$\sin(x)$$

Ι

$$\frac{\text{opp}}{\text{hyp}}$$

23. Select Expressions Equivalent to

$$\sin(x)$$

В

$$\frac{1}{\frac{1}{\sin(x)}}$$

 \mathbf{C}

$$\frac{1}{\csc(x)}$$

A

$$-\sin(-x)$$

D

$$\frac{\mathrm{opp}}{\mathrm{hyp}}$$

24. The famous identity:

$$\cos\left(x\right) = \frac{1}{\sec(x)}$$

can be 'tweaked' to produce the following identity/ies:

 $\cos(5\theta) = \frac{1}{\sec(5\theta)}$ В

 \mathbf{C} $\sec(x)\cos(x) = 1$

 $0 = \cos(x)\sec(x) - 1$ D

 $\sec(x) = \frac{1}{\cos(x)}$ \mathbf{E}

 \mathbf{F} $1 = \cos(x)\sec(x)$

G none of these

 $\boxed{\mathbf{A}} \quad 0 = 1 - \cos(x)\sec(x)$

25.

$$\cot(90^{\circ} - x)$$

В

$$\frac{\sin(x)}{\cos(x)}$$

can be exchanged for

A

$$\cos\left(x-\frac{\pi}{2}\right)$$

 \mathbf{C}

$$\cos\left(\frac{\pi}{2} - x\right)$$

26. Select Expressions Equivalent to

$$\frac{1}{\sec(x)}$$

 \mathbf{C}

$$\frac{1}{\frac{1}{\sin(x)}}$$

D

xTan

A

$$\cos(x)$$

 \mathbf{E}

$$\frac{1}{\cot(x)}$$

В

$$\cos(-x)$$

 \mathbf{F}

$$-\sin(x)$$

PreCalculus Quiz 9 version 1 (page 6/6)

G

Н

 $\frac{1}{\csc(x)}$

xSec

I

noneofthese

27. Picture yourself in a 'special' world where

$$s^2 = \frac{1 - 2c}{2}$$

Under this assumption, select the true statement/s:

A Every $2s^2$ can be 'exchanged' for 1-2c

 $oxed{B}$ Every s^4 can be 'exchanged' for $\frac{1}{4}(1-4c+4c^2)$

C none of these

28. if

$$A(x) = B(x)$$

is an IDENTITY then within the respective domain $A(\boldsymbol{x})$ AND

B(x) ARE

A interchangeable

B NOT interchangeable

29. an equation is NOT an IDENTITY

A if it fails for SOME VALUE in its respective domain

B if it holds true for ALL VALUES of the respective domain

C always

30. Equilateral triangle $\triangle ABC$ has side length 2, M is the midpoint of segment \overline{AC} , and C is the midpoint of \overline{BD} . What is the area of $\triangle CDM$?

 $\frac{\mathbf{A}}{2}$

 $\mathbf{B} \quad \frac{\sqrt{3}}{2}$

 $\int C \left| \frac{5\pi}{3} - 3\sqrt{3} \right|$

 $D = \frac{1}{4}$

$$\mathbf{F}$$
 $\frac{8\pi}{3}$ $-$