Quantum Computing und Bedrohung der Sicherheitstechnik

Mitsuhiro Kitajima, Martin Schider

Paris Lodron University of Salzburg

Überblick

Was ist Quantencomputer/computing?

Bedrohungen von Sicherheitstechnik

Was ist Quantencomputer/computing?

- Neue Rechnermodelle mit Quantenmechanik.
- ► Kann einige Probleme effizient lösen (z.B. Suchalgorithmus, Faktorisierung).
- Mögliche Anwendungen:
 - Kryptoanalyse
 - ► Maschinelles Lernen
 - Optimierungsprobleme (wie das Rucksackproblem)

Qubit

- Qubit ist das Bit "in Quantencomputern.
- Jedes Qubit hat drei Zustände, basierend auf dem Superpositionsprinzip.
- ▶ Darstellung: $a|0\rangle + b|1\rangle$, wobei a und b Wahrscheinlichkeiten der Zustände sind und $|a|^2 + |b|^2 = 1$.
- ▶ Die Interpretation "gleichzeitig zwei Zustände" ist nicht ganz korrekt.

Quantenschaltungen

- ► Schaltungen kopieren das Ergebnis in klassische" Bits.
- ► Klassischer Computer: Boolesche Algebra.
- Quantencomputer: Lineare Algebra.
- ► Beispiele von Quantenschaltungen
 - ► Eingabe der Schaltung ist (allgemein) 0.
 - Schaltung X: Aquivalent zur NOT-Schaltung.
 - Schaltung H: Andert Qubit in Superposition.
 - ▶ Messung: Qubit messen und 0 oder 1 ausgeben.

Quantenalgorithmen

- ► Shor-Algorithmus (Shor, 1994):
 - Effiziente Quantenalgorithmen für Faktorisierungsverfahren.
 - Relevant für das RSA-Kryptosystem, da dessen Sicherheit auf der Annahme beruht, dass kein Faktorisierungsverfahren mit polynomieller Laufzeit existiert.
- ► **Grover-Algorithmus** (Grover, 1996):
 - ► Suchalgorithmus für unsortierte Daten.
 - ▶ Zeitkomplexität: $O(\sqrt{n})$, Raumkomplexität: $O(\log(n))$.
 - Macht Exhaustionsmethode effizienter.

Überblick

Was ist Quantencomputer/computing?

Bedrohungen von Sicherheitstechnik

Übersicht der Kryptologie

- Kryptologie umfasst:
 - ► Kryptographie (Verschlüsselung von Informationen).
 - Kryptanalyse (Analyse und Entschlüsselung).
- Kryptographie:
 - ightharpoonup = krypto (geheim) + graphie (schreiben).
 - ▶ Wird seit ca. 3000 Jahren eingesetzt (z.B. im alten Ägypten).
 - Anwendungen: Passwörter, Kryptowährungen, elektronische Signaturen, Authentifizierung.

Symmetrische Verschlüsselung

- Sender und Empfänger teilen sich einen gemeinsamen öffentlichen Schlüssel.
- Angreifer versucht, den Schlüssel zu erraten.

Asymmetrische Verschlüsselung

- ► Sender benutzt öffentliche Schlüssel für Encryption.
- Empfänger entschlüsselt den Text mit private Schlüssel.
- Beispiel: RSA Encryption

RSA-Kryptosystem

- Entwickler: Ronald L. Rivest, Adi Shamir, Leonard Adleman.
- Asymmetrische Verschlüsselung.
- Beruht auf Primfaktorenzerlegung.
- Noch kein Algorithmus bekannt, der die Verschlüsselung effizient lösen kann.

Bedrohung durch Quantencomputer

- Bereits heute möglich, verschlüsselten Datenverkehr abzufangen und zu speichern.
- Mit zukünftigen Quantencomputern möglicherweise entschlüsselbar.
- Grover-Algorithmus für symmetrische Verschlüsselung.
- ▶ Shor-Algorithmus für asymmetrische Verschlüsselung.

Post-Quanten-Kryptographie

- Entwicklung neuer Algorithmen, die auch für Quantencomputer schwer zu lösen sind.
- ► Auf klassischer Computerhardware anwendbar.
- Verfahren:
 - Gitterbasierte Kryptographie.
 - Multivariate Kryptographie.
 - Hashbasierte Kryptographie.
 - Codebasierte Kryptographie.
 - Isogeniebasierte Kryptographie.

Quantenkryptographie

- Kryptographieverfahren, die auf quantenmechanischen Effekten beruhen.
- Verteilung von Quantenschlüsseln.
- Erzeugung von Quanten-Zufallszahlen.

Quellen

- https://kryptografie.de/kryptografie/index.htm
- https://www.ibm.com/de-de/topics/cryptography
- https://studyflix.de/informatik/
 rsa-verschlusselung-1608
- https://www.computerweekly.com/de/feature/
 Die-Auswirkungen-von-Quantum-Computing-auf-Kryptografi
- https://www.sectigo.com/de/ressourcen/ was-ist-gitterbasierte-kryptografie
- https://www.psw-group.de/blog/
 quantencomputing-wie-sicher-ist-die-quantenverschluess
- https://pqkdemo.de/multivariate-Kryptografie
- https://de.wikipedia.org/wiki/RSA-Kryptosystem
- https://nms.kcl.ac.uk/stefan.edelkamp/lectures/ itsec/slides/rsa.pdf
- https:
 //www.all-electronics.de/elektronik-entwicklung/
 das-sind-die-chancen-und-risiken-von-quantencomputernhtml