

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO Departamento de Sistemas de Computação

Computação Evolutiva

Prof. Eduardo do Valle Simões
Grupo de Sistemas Embarcados e Evolutivos
LCR – Laboratório de Computação Reconfigurável
Departamento de Sistemas de Computação

Projeto de Circuitos de Controle

- Aplicações :
 - Veículos Terrestres e Aéreos
 - Educação, Exploração,
 Resgate, Acessibilidade

Sistemas Biológicos

Ciência da Computação

Inteligência Computacional

Computação Bioinspirada

Redes Neurais Logica Fuzzy

Sistemas Evolutivos

Algoritmos Genéticos
Embriônica
Imunotrônica
Hardware Evolutivo
Computação Bioquímica
Inteligência de Enxames

Inteligência Emergente

Sistemas Evolutivos Distribuidos Adaptativos

SEMAC2014

Objetivos

Laboratório de Computação Reconfigurável

UNIVERSIDADE DE SÃO PAULO

Controle Evolutivo: Objetivos

- Projeto Automático de Sistemas de Controle
- Especialista
- Motivação:
 - Reduzir erros de projeto em Ambientes Desconhecidos e Dinamicamente Mutáveis

Controle Evolutivo: Objetivos

- Projeto Automático de Sistemas de Controle
- Especialista
- Motivação:
 - Reduzir erros de projeto em Ambientes Desconhecidos e Dinamicamente Mutáveis
- Premissa mais importante:
 - →Especificar *o que* é desejado do robô
 - →Sem definir *como* ele deve fazer

Controle: Processo Evolutivo

Busca de Solução

- Produz uma eficiente combinação dos recursos disponíveis
- Ambiente fixo
- Usuário escolhe a melhor solução para ser replicada

Evolução Contínua

- Produz um sistema robótico adaptativo
- Ambiente mutável
- Os robôs se adaptam constantemente às mudanças no ambiente

Sistemas Multirrobóticos

SEMAC2014

Projeto

UNIVERSIDADE DE SÃO PAULO

Sis. Multirrobótico: Descentralizado

Resgate - Acessibilidade

SEMAC2014

#9 Aplicações

Resgate - Acessibilidade

UNIVERSIDADE DE SÃO PAULO

Controle de Robôs Complexos

SEMAC2014

11 Aplicações

UNIVERSIDADE DE SÃO PAULO

Enxames Robóticos

 Um Enxame é um conjunto de Agentes que se comunicam
 (direta ou indiretamente)

 Coletivamente resolvem um problema

Enxames Robóticos

- Exploração e procura por objetos
- Formação de caminhos entre objeto e "ninho"
- Otimização dos caminhos

Enxames Robóticos

- Características:
 - Escalabilidade
 - Descentralização
 - Sem conhecimento global do ambiente
 - AG distribuído na população

UNIVERSIDADE DE SÃO PAULO

Sistemas Multirrobóticos Aéreos

Projeto ARARARINHA

SEMAC2014

15 Aplicações

Laboratório de Computação Reconfigurável

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO Departamento de Sistemas de Computação

15

Sistemas Multirrobóticos Aéreos

Projeto
ARARANINHA:
Oficinas de construção
Treinamento de piloto
Projeto Hw / Sw
Formação técnica

SEMAC2014

16 Aplicações

UNIVERSIDADE DE SÃO PAULO

Sistemas Multirrobóticos Aéreos

Grupo de Interesse em Sisvants e Aplicações gisa.icmc.usp.br

Projeto Mamangava:

SEMAC2014

17 Aplicações

UNIVERSIDADE DE SÃO PAULO

Alg. Evo.

Rádio Controle: Missões

Circuito de Controle

Algoritmo Evolutivo

Parâmetros PID

Ajuste do PID

Simulador: Flight Gear

SEMAC2014

#18 Aplicações

UNIVERSIDADE DE SÃO PAULO

SEMAC2014

#19 Aplicações

Laboratório de Computação Reconfigurável

UNIVERSIDADE DE SÃO PAULO

Sistemas de Computação Tradicionais

Tentar exaustivamente todas as possíveis soluções e escolher a mais adequada

Laboratório de Computação Reconfigurável

Departamento de Sistemas de Computação

SEMAC2014

UNIVERSIDADE DE SÃO PAULO

→ Processo Evolutivo

SEMAC2014

ção

Laboratório de Computação Reconfigurável

UNIVERSIDADE DE SÃO PAULO

Arquitetura do Robô

Processo Evolutivo:

- Testar a habilidade de Executar a tarefa
 - Fitness

- Seleção dos Parceiros
 - -- Canto de acasalamento
- Troca de Cromossomos
- Reconfiguração dos Robôs

SEMAC2014

Laboratório de Computação Reconfigurável

UNIVERSIDADE DE SÃO PAULO

Conclusão

- A Computação Evolutiva Possibilita:
 - A programação automática de sistemas complexos
 - Adaptatividade X Inteligência
 - Evolução Contínua X Busca de Solução

Obrigado!!

"Será a Vida Artificial possível?"

www.icmc.usp.br/~simoes/

UNIVERSIDADE DE SÃO PAULO