Laboratory Report 4 Digital Systems

Module	EE4522. Digital Systems 1
Date	09/02/2023
Lab Number	4
Student Name and id	Mateusz Pluta 22354107

^{*}Worked with Crian O'Donnel (22346341)

Introduction

In this lab using the base system from Lab 2a, we had to build a new system which has a 7-segment display part in it. The 7-segment display contains seven light-emitting diodes labelled from a to g. Using OR, AND and XOR gates we had to construct the digital system.

Procedure

To construct this board we had to use the base system from lab 2a and then make it so that the 7-segment display creates the numbers 0,1,2 and 3 in this order. To build the 2nd part of the system we needed this equipment:

- Another breadboard
- 74HC08 chip
- 74HC14 chip
- 7-segment display
- 330 Ω resistors
- Extra wires

With these components it was possible to build the circuit using Schematics, photos and wire diagrams. The final design should look like figure 2.

Results

Challenge 4.2 When circuit is finally built, we had to test whether it works. It needed to display 0, 1, 2 and 3 in this order however it didn't work at all of me. I needed to do the Boolean algebra first to (Table 1).

Table 1:

X	у	а	b	С	d	е	f	g
0	0	0	0	0	0	0	0	1
0	1	1	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0
1	1	0	0	0	0	1	1	0

After completing the truth table I needed to do Boolean algebra to be able to create the wire diagram.

$$A = x' \bullet y$$

$$B = GND$$

E=y

$$G = x'$$

As I hadn't made the wire diagram beforehand, the wires were all over the place. So, I made out the wire diagram with the help of technicians. (Figure 1)

Figure 1 Wire diagram to make 0,1,2,3.

Challenge 4.1 I was then finally able to complete the circuit with it properly working as expected. (Figure 2,3,4,5)

Figures 2,3,4 and 5 displaying the numbers shown on the board

Challenge 4.3 – Test or fail verification table.

Table 2

7-segment display outputs	Pass or fail
0	Pass
1	Pass
2	Pass
3	Pass

Challenge 4.4 We had to download the simulation model from sulis and run the simulator. The Simetrix model looks like figure 6.

Figure 6 Simetrix model of the circuit

When the simulation is run, we get from x, y and from a to g plots (Figure 7). As we can see each represent a binary path just like we can see in Table 1. When the line is at the bottom it means its at 0 and when the line is at the top it means its 1.

Figure 7 Plots of x, y and a to g.

Challenge 4.5:- We had to build an advanced circuit using an XOR gate (74HC86) and instead of the 7-segment display, displaying 0, 1, 2, 3. We needed it to display A, b, c, d as seen in figures 8,9,10 and 11.

Figure 8,9,10 and 11 Pictures of advanced circuit

Once again, I needed to create another wire diagram and algebra to be able to build the circuit.

 $\mathsf{a} = (\mathsf{x}' \! \bullet \! \mathsf{y}')'$

 $b = x \bullet y$

c= x•y'

d=x′∙y′

e=GND

f=x

g=GND

Figure 12 The wire diagram for advanced circuit

I have successfully been able to construct the circuit and worked perfectly when I tested it. I had trouble understanding the "b" but the technicians assisted me greatly.

Table 3

7-segment display outputs	Pass or fail
А	Pass
b	Pass
С	Pass
d	Pass

Conclusion

In conclusion I was able to complete both circuits and understand how XOR, OR and AND gates work which was complicated at first as I didn't understand the algebra however the technicians assisted me with it. I was also able to complete every challenge without much trouble.

Declaration of authorship: "I confirm that this lab report, submitted for assessment, is my own original work".