Olist E-Commerce Analysis

Report Link

Olist E-Commerce Analysis

What Is Total Orders On Weekend&Weekday

What Is Total Orders With Review Score 5 Based on Payment Type?

What Is AVG Price And Profit From Sao Paulo City?

What Is Total Orders by order status?

What Is Total Orders Over Years?

What Is Top Orders BY City?

What Is Total Profit BY City?

What Is AVG Shipping Cost BY City?

What Is Faster & Slower Delivery In Days BY City?

What Is Delivered Days Taken for Audio Category?

What Is Total Orders On Weekend&Weekday

What Is Total Orders With Review Score 5 Based on Payment Type?

What Is AVG Price And Profit From Sao Paulo City?

What Is Total Orders by order status?

What Is Top Orders BY City?

What Is Total Profit BY City?

What Is AVG Shipping Cost BY City?

What Is Faster & Slower Delivery In Days BY City?

What Is Delivered Days Taken for Audio Category?

Delivered Days Taken for Audio Category

13.03

Olist E-Commerce Analysis

product category name All

belo horizontee

99K **Total Customer**

99K **Total Orders**

3095

Total Sellers

12.09 AVG Delivery Time(D)

2K

Customer Segment

Customer Segment

product_category_name	
All	~

99K Total Customer

99K Total Orders

4119
Total Customer Cities

2/ Total Customer States

Product category sales predication for upcoming 6 months

Product category sales predication for upcoming 6 months

Product category sales predication

target

'payment_value'

```
list(X_train.columns.values)
['price',
 'freight value',
 'payment sequential',
 'payment installments',
 'review score',
 'DurationDays',
 'product name lenght',
 'product_description_lenght',
 'product photos qty',
 'product_weight_g',
 'product_volum_cm',
 'Year',
 'Month',
 'Day',
 'Hour']
```

Query Settings ▲ PROPERTIES Name df for Model **All Properties** ▲ APPLIED STEPS Source Merged Queries Merged Queries1 Merged Queries2 Expanded NewColumn Expanded NewColumn.1 상 Expanded NewColumn.2 상 Expanded NewColumn.3 Removed Other Columns Renamed Columns Reordered Columns

Removed Duplicates

Removed Other Columns1

Added Custom

× Reordered Columns1

Predective Model ¶

```
model = make_pipeline(
    SimpleImputer(), # null value
    Ridge() # model ith enhance prevent overfitting
)
model.fit(X_train,y_train)
Pipeline(steps=[('simpleimputer', SimpleImputer()), ('ridge', Ridge())])
```

Evaluate

All right: The moment of truth. Let's see how our model performs.

```
acc_train = model.score(X_train,y_train)
acc_test = model.score(X_test,y_test)

print("Training Accuracy:", round(acc_train, 4))
print("Test Accuracy:", round(acc_test, 4))

Training Accuracy: 0.7783
Test Accuracy: 0.7854
```


Product category sales predication

	y_test	y_pred
66472	134.81	134.818142
3970	43.68	56.216466
13768	125.88	125.202362
55489	30.75	32.240641
11550	43.66	69.402649
33932	33.13	58.160577
36054	190.43	193.771436
16386	1355.73	1322.577993
84455	15.38	27.637843
92222	55.28	58.226258

	coefficients
columns	
price	0.952
freight_value	1.062
payment_sequential	-21.273
payment_installments	4.708
review_score	-8.428
DurationDays	-0.535
product_name_lenght	-0.024
product_description_lenght	-0.0
product_photos_qty	-2.194
product_weight_g	0.001
product_volum_cm	0.0
Year	2.119
Month	0.395
Day	0.086
Hour	-0.197
intercept	-4202.179

Geolocation analysis

By Using Geolocation dataset plot maps and find distances between sellers and customers.

Distances between sellers and Customers

customer city All

