WO 2005/058605 PCT/EP2004/053329

- 30 -

[CLAIMS]

5

10

15

- 1. A positive-working lithographic printing plate precursor comprising (i) a grained and anodized aluminum support having a hydrophilic surface and (ii) a heat-sensitive oleophilic coating provided on the hydrophilic surface, wherein said coating comprises (a) a hydrophobic polymer which is soluble in an aqueous alkaline developer and (b) a dissolution inhibitor which is a water-repellent polymer and wherein said coating is capable of dissolving in said developer at a higher dissolution rate in areas of said coating which are exposed to heat or infrared light than in unexposed areas, characterized in that the hydrophilic surface has a surface roughness, measured according to ISO 4288 and expressed as arithmetical mean center-line roughness Ra, which is less than 0.40 µm and the hydrophilic surface comprises a salt of titanium, hafnium or zirconium.
 - 2. A plate precursor according to claim 1, wherein said salt comprises fluoride.
- 3. A plate precursor according to any of preceding claims, wherein said hydrophilic surface further comprises an orthophosphate.
 - 4. A plate precursor according to any of preceding claims wherein said hydrophilic surface has a surface roughness, expressed as arithmetical mean center-line roughness Ra, which is less than 0.3 µm.
- 25 5. A plate precursor according to any of preceding claims wherein said aluminum support comprises more than 3.0 g/m^2 of aluminum oxide at the hydrophilic surface.
- 6. A plate precursor according to any of preceding claims wherein said aluminum support comprises more than 4.0 g/m² of aluminum oxide at the hydrophilic surface.

WO 2005/058605 PCT/EP2004/053329

- 31 -

- 7. A plate precursor according to any preceding claim wherein said water-repellent polymer is
 - a polymer comprising siloxane and/or perfluoroalkyl units; or
 - a block- or graft-copolymer of a poly(alkylene oxide) block and
 - a block comprising siloxane and/or perfluoroalkyl units.

5

20

- 8. A plate precursor according to any preceding claim wherein said water-repellent polymer is present in a separate layer on top of said coating.
- 9. A plate precursor according to any preceding claim wherein said coating further comprises another dissolution inhibitor which is an organic compound comprising an aromatic group and a hydrogen bonding site.
 - 10. A plate precursor according to any preceding claim wherein said coating further comprises a dissolution accelerator.
- 11. A method of making a positive-working lithographic printing plate precursor comprising the steps of
 - graining and anodizing an aluminum support,

Ra, which is less than 0.40 μm .

- treating said grained and anodized aluminum support with a solution comprising a salt of titanium, hafnium and zirconium,
- applying on said treated aluminum support a heat-sensitive oleophilic coating,
 - wherein said coating comprises (a) a hydrophobic polymer which is soluble in an aqueous alkaline developer and (b) a dissolution inhibitor which is a water-repellent polymer,
- wherein said coating is capable of dissolving in said developer at a higher dissolution rate in areas of said coating which are exposed to heat or infrared light than in unexposed areas, wherein the surface of said grained and anodized aluminum support is hydrophilic and has a surface roughness, measured according to ISO 4288 and expressed as arithmetical mean center-line roughness

WO 2005/058605 PCT/EP2004/053329

- 32 -

12. A method of making a positive-working lithographic printing plate comprising the steps of

- providing a positive-working lithographic printing plate precursor according any of claims 1 to 10,
- image-wise exposing said heat-sensitive coating to infrared light or heat,
- developing said image-wise exposed heat-sensitive coating with an aqueous alkaline developer, wherein the exposed areas of said coating dissolve in said alkaline developer at a higher dissolution rate than in unexposed areas of said coating.
- 13. Use of a grained and anodized aluminum support having a hydrophilic surface which is characterized by a surface roughness, measured according to ISO 4288 and expressed as arithmetical mean center-line roughness Ra, which is less than 0.40 μ m, and which comprises a salt of titanium, hafnium or zirconium,

in a positive-working lithographic printing plate precursor comprising a heat-sensitive oleophilic coating provided on the hydrophilic surface, wherein said coating comprises (a) a hydrophobic polymer which is soluble in an aqueous alkaline developer and (b) a dissolution inhibitor which is a water-repellent polymer and wherein said coating is capable of dissolving in said developer at a higher dissolution rate in areas of said coating which are exposed to heat or infrared light than in unexposed areas,

for increasing the run length in a printing process after exposing and developing of said printing plate precursor.

30

25

5

10

15

20