Estimación de cardinalidades

Clase 14

IIC 3413

Prof. Cristian Riveros

Implementación de operadores relacionales

¿cómo estimamos cuál es el mejor plan de consultas?

Para escoger el mejor plan físico debemos estimar cual es su costo total.

- costo de uno o varios operadores físicos.
- tamaño de resultados intermedios.
- selectividad de un predicado.
- cantidad de valores distintos.

"Performance del DBMS esta fuertemente ligado a una buena estimación del costo de sus planes."

Parámetros para medir costo

Parámetros de interés:

cost(R): costo (en I/O) para computar R.

pages(R): cantidad de páginas necesarias para almacenar R.

|R|: cantidad de tuplas/records en R.

rsize(R): tamaño de una tupla/record (promedio) en R.

distinct(R): cantidad de elementos distintos en R.

 $distinct_a(R)$: cantidad de elementos distintos en el campo R.a.

 $sel_p(R)$: fracción de tuplas/records en R que satisfacen p.

|page|: tamaño/espacio de una página*.

$$0 \le \operatorname{sel}_p(R) = \frac{|\sigma_p(R)|}{|R|} \le 1$$

Ejemplo

Selección sin índice (σ_p) :

```
cost(\sigma_p(R)) = cost(R)

pages(\sigma_p(R)) = sel_p(R) \cdot pages(R)

|\sigma_p(R)| = sel_p(R) \cdot |R|

rsize(\sigma_p(R)) = rsize(R)
```

Ejemplo

Selección con índice clustered (σ_p) :

```
cost(\sigma_{\rho}(R)) = \underbrace{cost(I)}_{\approx 3} + sel_{\rho}(R) \cdot pages(R)

pages(\sigma_{\rho}(R)) = sel_{\rho}(R) \cdot pages(R)

|\sigma_{\rho}(R)| = sel_{\rho}(R) \cdot |R|

rsize(\sigma_{\rho}(R)) = rsize(R)
```

Ejemplo

Proyección (π_L) :

```
\begin{aligned} \cos(\pi_L(R)) &= & \cos(R) \\ \operatorname{pages}(\pi_L(R)) &= & \frac{\operatorname{rsize}(\pi_L(R))}{\operatorname{rsize}(R)} \cdot \operatorname{pages}(R) \\ |\pi_L(R)| &= & |R| \\ \operatorname{rsize}(\pi_L(R)) &= & \sum_{att \in L} \mathbb{E}(|\pi_{att}(R)|) \end{aligned}
```

Ejemplo

■ Eliminación de duplicados con sorting (δ) :

```
\begin{split} & \operatorname{cost}(\delta(R)) &= & \operatorname{cost}(R) + 2 \cdot \operatorname{pages}(R) \\ & \operatorname{pages}(\delta(R)) &= & \frac{\operatorname{distinct}(R) \cdot \operatorname{rsize}(R)}{|\operatorname{page}|} \\ & |\delta(R)| &= & \operatorname{distinct}(R) \\ & \operatorname{rsize}(\tau(R)) &= & \operatorname{rsize}(R) \end{split}
```

Ejemplo

■ Block nested loop join (⋈p):

```
\begin{aligned} & \operatorname{cost}(R \bowtie_{\rho} S) & = & \operatorname{cost}(R) + \frac{\operatorname{pages}(R)}{B} \cdot \operatorname{cost}(S) \\ & \operatorname{pages}(R \bowtie_{\rho} S) & = & \operatorname{sel}_{\rho}(R \times S) \cdot \operatorname{pages}(R) \cdot \operatorname{pages}(S) \\ & |R \bowtie_{\rho} S| & = & \operatorname{sel}_{\rho}(R \times S) \cdot |R| \cdot |S| \\ & \operatorname{rsize}(R \bowtie_{\rho} S) & = & \operatorname{rsize}(R) + \operatorname{rsize}(S) \end{aligned}
```

Ejemplo

■ Sort-merge join ($\bowtie_{A=B}$):

```
cost(R \bowtie_{A=B} S) = cost(R) + cost(S) + 2 \cdot (pages(R) + pages(S))
pages(R \bowtie_{A=B} S) = sel_p(R \times S) \cdot pages(R) \cdot pages(S)
|R \bowtie_{A=B} S| = sel_p(R \times S) \cdot |R| \cdot |S|
rsize(R \bowtie_{A=B} S) = rsize(R) + rsize(S)
```

- 1. El costo de un operador físico depende de:
 - pages(·) y $|\cdot|$ (tamaño del input).
 - sel_p(·) (selectividad).
- 2. El tamaño de las relaciones intermedias depende de:
 - | · | (tamaño en tuplas/records).
 - $sel_p(\cdot)$ (selectividad).
 - distinct(·) (número de tuplas distintas).
 - distinct_a(·) (número de valores distintos).

Por lo tanto, en esta clase estimaremos:

Output de un operador lógico:

$$|*(R)| y |R*S|.$$

- **Selectividad** de un predicado: $sel_p(R)$.
- Número de tuplas distintas: distinct(R).
- Número de valores distintos: distinct $_a(R)$.

Outline

Estimación selectividad

Estimación output

Estimación elementos distintos

Histogramas

Outline

Estimación selectividad

Estimación output

Estimación elementos distintos

Histogramas

Selectividad

$sel_p(R)$: fracción de tuplas/records en R que satisfacen p.

En formula:

$$0 \le \mathsf{sel}_p(R) = \frac{|\sigma_p(R)|}{|R|} \le 1$$

Donde p es una combinación booleana (\land, \lor) de términos:

con op
$$\in \{=, \leq, \geq, <, >\}$$
.

Estimación del output de una selección: $\sigma_{A=c}(R)$

Suposición uniformidad de duplicados (S1):

"La cantidad de valores duplicados en $\pi_A(R)$ se distribuye uniformemente sobre los valores distintos en $\pi_A(R)$."

En formulas:

$$sel_{A=c}^*(R) = \frac{N}{N \cdot distinct_A(R)} = \frac{1}{distinct_A(R)}$$

Estimación del output para $\sigma_{A=c}(R)$:

$$|\sigma_{A=c}(R)|^* = \operatorname{sel}_{A=c}^*(R) \cdot |R| = \frac{|R|}{\operatorname{distinct}_A(R)}$$

¿es $sel_{A=c}^*(R)$ una buena estimación? ¿que tan mala puede ser?

Estimación del output de una selección con \leq : $\sigma_{A \leq c}(R)$

Suposición uniformidad de distribución (S2):

"Los valores se distribuyen uniforme en el dominio de $\pi_A(R)$."

En formulas:

$$\operatorname{sel}_{A \le c}^*(R) = \frac{c - \operatorname{low}_A(R)}{\operatorname{high}_A(R) - \operatorname{low}_A(R)}$$

Estimación del **output** para $\sigma_{A \le c}(R)$:

$$\begin{aligned} |\sigma_{A \leq c}(R)|^* &= \operatorname{sel}_{A \leq c}^*(R) \cdot |R| \\ &= \frac{c - \operatorname{low}_A(R)}{\operatorname{high}_A(R) - \operatorname{low}_A(R)} \cdot |R| \end{aligned}$$

Estimación del output de una selección con \neq : $\sigma_{A\neq c}(R)$

De nuevo, suposición uniformidad de duplicados (S1):

"La cantidad de valores duplicados en $\pi_A(R)$ se distribuye uniformemente sobre los valores distintos en $\pi_A(R)$."

En formulas:

$$\mathsf{sel}^*_{A \neq c}(R) \ = \ \frac{\mathcal{N} \cdot (\mathsf{distinct}_A(R) - 1)}{\mathcal{N} \cdot \mathsf{distinct}_A(R)} \ = \ \frac{\mathsf{distinct}_A(R) - 1}{\mathsf{distinct}_A(R)}$$

Estimación del output para $\sigma_{A\neq c}(R)$:

$$|\sigma_{A\neq c}(R)|^* = \frac{\operatorname{distinct}_A(R) - 1}{\operatorname{distinct}_A(R)} \cdot |R|$$

Estimación del output con conjunción: $p := p_1$ AND p_2

Suposición independencia de predicados (S3):

"La selectividad de cada subpredicado es independiente del resto."

En formulas para la selección p_1 AND p_2 :

$$\mathsf{sel}^*_{p_1 \mathtt{AND} p_2}(R) = \mathsf{sel}^*_{p_1}(R) \cdot \mathsf{sel}^*_{p_2}(R)$$

Ejemplo

Sea una relación R(A, B) con |R| = 10.000, tal que:

$$distinct_A(R) = 50$$

$$high_B(R) = 100$$

$$low_B(R) = 0$$

• ¿cuál es la estimación del output de $\sigma_{A=10 \text{ AND } B \leq 20}(R)$?

Estimación de selección con disyunción: $p := p_1$ OR p_2

Posibilidades:

1. Suponer selección disjunta.

"Ninguna tupla/record satisface ambos predicados a la vez."

$$\mathsf{sel}^*_{\rho_1 \ \mathsf{OR} \ \rho_2}(R) \ = \ \min\{\mathsf{sel}^*_{\rho_1}(R) + \mathsf{sel}^*_{\rho_2}(R), 1\}$$

2. Usar el complemento de $p = \neg (\neg p_1 \text{ AND } \neg p_2)$:

$$sel_{p_1 \ 0R \ p_2}^*(R) = 1 - sel_{\neg p_1}^*(R) \cdot sel_{\neg p_2}^*(R)$$
$$= 1 - (1 - sel_{p_1}^*(R)) \cdot (1 - sel_{p_2}^*(R))$$

Estimación de selección con disyunción: $p := p_1$ OR p_2

Ejemplo

Sea una relación R(A, B) con |R| = 10.000, tal que:

```
distinct_A(R) = 50
high_B(R) = 100
low_B(R) = 0
```

• ¿cuál es la estimación del output de $\sigma_{A=10~\mathrm{OR}~B\leq20}(R)$?

Outline

Estimación selectividad

Estimación output

Estimación elementos distintos

Histogramas

Estimación del output de un join

Para nuestros análisis solo consideraremos natural joins:

- Equi-joins se pueden transformar en natural joins.
- *p*-joins puede verse como una selección compuesto de un natural join.

Problemas de estimar el output de un join

Para un join $R(X, Y) \bowtie S(Y, Z)$:

1. Si $\pi_Y(R) \cap \pi_Y(S) = \emptyset$, entonces

$$|R(X,Y) \bowtie S(Y,Z)| = 0$$

2. Si Y en S es una llave foránea de R, entonces

$$|R(X,Y) \bowtie S(Y,Z)| = |S(Y,Z)|$$

3. Si $\pi_Y(R)$ y $\pi_Y(S)$ tienen el mismo y único valor, entonces

$$|R(X,Y) \bowtie S(Y,Z)| = |R(X,Y)| \cdot |S(Y,Z)|$$

¿cómo podemos estimar el output de un join?

Suposición para estimación de joins

Suposición contención de conjunto de valores (S4):

"Si Y es una atributo que aparece en varias relaciones, entonces cada relación escoge sus valores desde el comienzo de una lista fija de valores $y_1, y_2, y_3, \ldots y$ tiene todos los valores de este prefijo."

Ejemplo

Las siguientes relaciones satisfacen la suposición:

$$R(X, Y) = \{(a,1), (a,2), (b,2), (c,1)\}\$$

 $S(Y, Z) = \{(2,x), (3,y), (1,z), (4,x)\}\$

¿la siguiente?

$$R(X,Y) = \{(a,4),(a,3),(b,7),(c,9)\}\$$

 $S(Y,Z) = \{(7,x),(2,y),(3,z),(9,x)\}\$

Suposición para estimación de joins

Suposición contención de conjunto de valores (S4):

"Si Y es una atributo que aparece en varias relaciones, entonces cada relación escoge sus valores desde el comienzo de una lista fija de valores $y_1, y_2, y_3, \ldots y$ tiene todos los valores de este prefijo."

Una consecuencia de esta suposición es que, si distinct $_Y(R) \le \text{distinct}_Y(S)$, entonces:

$$\delta(\pi_Y(R)) \subseteq \delta(\pi_Y(S))$$

¿es realista esta suposición?

- claves foráneas.
- joins con pocos valores "sin match".

Suponiendo:

- 1. contención de conjunto de valores (S4).
- 2. uniformidad de duplicados (S1).

Suponiendo (S4) y (S1):

■ si distinct $_Y(R) \le \text{distinct}_Y(S)$ entonces:

$$sel_{R,Y=S,Y}^{*}(R \times S) = \frac{|\sigma_{R,Y=S,Y}(R \times S)|}{|R \times S|}$$

$$= \frac{\sum_{v \in \pi_{Y}(R)} |\sigma_{Y=v}(S)|}{|R| \cdot |S|} \quad (S4)$$

$$= \frac{\sum_{v \in \pi_{Y}(R)} \frac{|S|}{\text{distinct}_{Y}(S)}}{|R| \cdot |S|} \quad (S1)$$

$$= \frac{1}{\text{distinct}_{Y}(S)}$$

■ si distinct $_Y(R) \ge$ distinct $_Y(S)$ entonces (analogamente):

$$sel_{R.Y=S.Y}^*(R \times S) = \frac{1}{distinct_Y(R)}$$

Suponiendo:

- 1. contención de conjunto de valores (S4).
- 2. uniformidad de duplicados (S1).

obtenemos el siguiente estimador:

$$\mathsf{sel}^*_{R,Y=S,Y}(R \times S) = \frac{1}{\mathsf{max}\{\mathsf{distinct}_Y(R),\mathsf{distinct}_Y(S)\}}$$

Estimación del output para $R(X,Y) \bowtie S(Y,Z)$:

$$|R(X,Y) \bowtie S(Y,Z)|^* = \frac{|R| \cdot |S|}{\max\{\operatorname{distinct}_Y(R),\operatorname{distinct}_Y(S)\}}$$

Suponiendo:

- 1. contención de conjunto de valores (S4).
- 2. uniformidad de duplicados (S1).

Ejemplo

	R(A,B)	S(B,C)
.	1000	2000
$distinct_B(\cdot)$	20	50

¿cuál es la estimación del output de $R(A,B)\bowtie S(B,C)$?

Estimación del output de un join con multiples variables

Joins de la forma:

$$R(X,Y,Z) \bowtie S(Z,Y,W)$$
 or $R(X,Y,Z) \bowtie_{R,Y=S,Y \text{ AND } R,Z=S,Z} S(Z,Y,W)$

Suponemos la independencia de los predicados.

Estimación del output de un join con multiples variables

Suponiendo:

- 1. contención de conjunto de valores (S4).
- 2. uniformidad de duplicados (S1).
- 3. independencia de predicados (S3).

Selectividad de join de multiples variables:

$$\mathsf{sel}^*_{X=Y \text{ AND } Z=W}(R \times S) = \mathsf{sel}^*_{X=Y}(R \times S) \cdot \mathsf{sel}^*_{Z=W}(R \times S)$$

Estimación de output para $R \cup S$

■ Si es bag-union:

$$|R \cup S| = |R| + |S|$$

Si es set-union:

$$\max\left\{|R|,|S|\right\} \ \leq \ \left|R \cup S\right|^* \ \leq \ \left|R\right| + \left|S\right|$$

Un posible estimador para set-union:

$$|R \cup S|^* = \max \left\{ |R| + \frac{|S|}{2}, |S| + \frac{|R|}{2} \right\}$$

Estimación de output para $R \cap S$

■ Para bag-intersection o set-intersection:

$$0 \le |R \cap S|^* \le \min\{|R|, |S|\}$$

Un posible estimador para intersection:

$$|R \cap S|^* = \frac{\min\{|R|,|S|\}}{2}$$

Estimación de tamaño para duplicados y groupby

Tanto para eliminación de duplicados $\delta(R)$ y groupby $\gamma_L(R)$:

$$|\delta(R)|$$
 = distinct(R)
 $|\gamma_L(R)|$ = distinct_L(R)

¿cómo estimamos distinct(R) y distinct $_L(R)$?

Outline

Estimación selectividad

Estimación output

Estimación elementos distintos

Histogramas

Estimación de elementos distintos

Debemos hacer dos tipos de estimaciones:

1. (Relación) Dado una relación R, como mantener:

 $distinct_L(R)$

2. (Operador) Dado las relaciones R y S y un operador *, como estimar:

$$distinct_L(*(R))$$
 o $distinct_L(R * S)$

donde L es una lista de atributos.

Estimación de elementos distintos para una relación

Para una relación R, podemos calcular distinct $_L(R)$:

- 1. Periódicamente y almacenarlo en el catálogo.
- 2. En cada actualización.

Estimación de elementos distintos para operadores

Suposición conservación del conjunto de valores (S5):

"Los valores R de un atributo A, que NO participan en un join, se conservan en el resultado."

En formulas, si A no es atributo de S entonces:

$$distinct_A^*(R \bowtie S) = distinct_A(R)$$

¿Es esta suposición realista?

claves foráneas.

Outline

Estimación selectividad

Estimación output

Estimación elementos distintos

Histogramas

Histogramas

- En la práctica, valores NO siguen una distribución uniforme.
- DBMS usan histogramas para modelar esta no-uniformidad.
 - Dominio es dividido en intervalos.
 - Por cada intervalo se mantiene:
 - 1. Frecuencia (cantidad) de elementos.
 - 2. Cantidad de elementos distintos.

Todo DBMS mantiene histogramas actualizados en su catálogo!

Histogramas equi-depth

1. Equi-width:

- Cada intervalo tiene el mismo largo.
- Cada bucket mide la cantidad de elementos en ese intervalo.

2. Equi-depth:

- Intervalos de tamaño variable.
- Cada intervalo tiene el mismo porcentaje de elementos.
- Menos susceptible a datos sesgados.
- Mas difícil de mantener.

Número de buckets marca el trade-off entre **resolución** y **espacio** para mantener el histograma.

Para un histograma equi-depth o equi-width:

- 1. ¿cómo actualizamos los histogramas?
- 2. ¿cómo usamos los histogramas para calcular consultas?

Usamos técnicas anteriores!

Histogramas son útiles hasta cierto punto

Estadísticas e histogramas:

- 1. susceptibles a errores.
- 2. solo disponibles para relaciones bases.
- composición de operadores produce un aumento exponencial del error en la estimación.

Ver paper:

"On the Propagation of Errors in the Size of Join Results", loannidis y Christodoulakis, 1993.

Otros métodos de estimación

- 1. Basado en estadísticas y histogramas.
- 2. Basado en sampling.
 - muestreo de los datos.
 - ejecución de la consulta en un subconjunto de los datos.