8

CLAIM AMENDMENTS

- 1. (Original) A heating element for igniting a pyrotechnic charge comprising

 a base body, a structured strip shaped resistance layer on said base body, and contact fields overlapping said resistance layer at ends thereof for applying a current pulse to the heating element, wherein the heating element has a mass of 1.0x10⁻⁹ kg to 4.0x10⁻⁹

 kg, a specific resistance of 1x10⁻⁶ Ωm to 2x10⁻⁶ Ωm and a specific
- 2. (Original) The heating element defined in claim 1 wherein the heating element has a cross sectional area of 3.5×10^{-10} m² to 7.0×10^{-10} m².

heat capacity of 100 W/(kg.K) to 400 W/(kg.K).

3. (Original) The heating element defined in claim 1
wherein the resistance layer is composed of a sintered Ag/Pd
resistance paste or a sintered Ag/Au/Pd resistance paste
containing 30 to 50 mass% Ag and 35 to 50 mass % Pd, or a sintered
Pt/W resistance paste containing 70 to 90 mass %% Pt and 5 to 20

6 mass% W.

- 4. (Original) The heating element defined in claim 1
 wherein the base body is composed of a high-temperature-resistant
 glass or glass-ceramic or ceramic with a thermal conductivity of
 at most 2 W/(m·K).
- 5. (Original) The heating element defined in claim 1
 wherein the base body is composed of a high-temperature-resistant
 glass or glass-ceramic or ceramic with a thermal conductivity of
 at most 3 W/(m•K) and a heat barrier is applied to said base body
 which is comprised of a glass or glass-ceramic layer of a
 thickness of 20 to 80 µm and a thermal conductivity of at most 1.5
 W/(m•K).
- 6. (Original) The heating element defined in claim 1
 wherein the contact fields are composed of sintered AgPd or AgPt
 thick-layer conductor pa ste with Pd or Pt proportions between 1
 and 10 mass%.

1 (Currently amended) A heating element for igniting a 2 pyrotechnic charge comprising a base body, a structured strip 3 shaped resistance layer on said base body, and contact fields 4 overlapping said resistance layer at ends thereof for applying a 5 current pulse to the heating element, wherein the heating element 6 has a mass of 1.0×10^{-9} kg to 4.0×10^{-9} kg, a specific resistance of 7 1×10^{-6} Ω m to 2×10^{-6} Ω m and a specific heat capacity of 100 W/(kg.K) 8 to 400 W/(kg·K), The heating element defined in claim 1 wherein 9 the heating element [[has]] having a cross 10 sectional area of 3.5×10^{-10} m² to 7.0×10^{-10} m², 11 the resistance layer [[is]] being composed of a 12 sintered Ag/Pd resistance paste or a sintered Ag/Au/Pd resistance 13 paste containing 30 to 50 mass% Ag and 35 to 50 mass % Pd, or a 14 sintered Pt/W resistance paste containing 70 to 90 mass %% Pt and 15 5 to 20 mass% W, 16 the base body is composed of a high-temperature-17 resistant glass or glass-ceramic or ceramic with a thermal 18 conductivity of at most 2 W/(m•K), and the contact fields are 19 composed of sintered AgPd or AgPt thick-layer conductor paste 20 with Pd or Pt proportions between 1 and 10 mass%.

1	8. (Currently amended) A heating element for igniting a
2	pyrotechnic charge comprising
3	a base body, a structured strip shaped resistance layer
4	on said base body, and contact fields overlapping said resistance
5	layer at ends thereof for applying a current pulse to the heating
6	element, wherein the heating element has a mass of 1.0×10-9 kg to
7	4.0×10^{-9} kg, a specific resistance of 1×10^{-6} Ωm to 2×10^{-6} Ωm and a
8	specific heat capacity of 100 W/(kg.K) to 400 W/(kg.K), The
9	heating element defined in claim 1 wherein
10	the heating element [[has]] having a cross
11	sectional area of 3.5×10^{-10} m ² to 7.0×10^{-10} m ² ,
12	the resistance layer [[is]] being composed of
13	a sintered Ag/Pd resistance paste or a sintered Ag/Au/Pd
14	resistance paste containing 30 to 50 mass% Ag and 35 to 50 mass %
15	Pd, or a sintered Pt/W resistance paste containing 70 to 90
16	mass %% Pt and 5 to 20 mass% W,
1,7	the base body [[is]] being composed of a high-
18	temperature-resistant glass or glass-ceramic or ceramic with a
19	thermal conductivity of at most 3 W/(m•K) [[and]]

20	a heat barrier [[is]] being applied to said
21	base body which is comprised of a glass or glass-ceramic layer of
22	a thickness of 20 to 80 μm and a thermal conductivity of at most
23	1.5 W/(m•K), and
24	the contact fields [[are]] being composed of
25	sintered AgPd or AgPt thick-layer conductor paste with Pd or Pt
26	proportions between 1 and 10 mass%.

Claims 9 to 13 (cancelled).