Espaces euclidiens

Jérémy Meynier

Exercice 1

Soit E un espace euclidien et $f: E \mapsto E$ une application vérifiant f(0) = 0 et, $\forall (x,y) \in E^2$, ||f(x) - f(y)|| = ||x - y||

- 1. Montrer que $\forall x \in E, ||f(x)|| = ||x||$
- 2. Montrer que $\forall x \in E, f(-x) = -f(x)$
- 3. Montrer que $\forall (x, y) \in E^2, \langle f(x), f(y) \rangle = \langle x, y \rangle$
- 4. Soit $\beta = (e_1, \dots, e_n)$ une base orthonormée de E. Montrer que $\forall x \in E$,

$$f(x) = \sum_{k=1}^{n} \langle e_k, x \rangle f(e_k)$$

5. En déduire que f est un automorphisme orthogonal de E

Exercice 2

Dans \mathbb{R}^4 muni de sa structure euclidienne canonique, on donne $F: \left\{ \begin{array}{l} x+y+z+t=0 \\ x+2y+3z+4t=0 \end{array} \right.$

- 1. Déterminer une baser orthonormée de F.
- 2. Donner la matrice dans \mathbb{R}^4 de la projection orthogonale de p_F sur F.
- 3. Calculer d(u, F) où u = (1, 1, 1, 1)

Exercice 3

Soit E un espace euclien, E_1 et E_2 deux sous-espaces de E. Montrer que $(E_1 + E_2)^{\perp} = E_1^{\perp} \cap E_2^{\perp}$ et $(E_1 \cap E_2)^{\perp} = E_1^{\perp} + E_2^{\perp}$

Exercice 4

Déterminer
$$I = \inf_{(a,b) \in \mathbb{R}^2} \left\{ \int_0^1 (t^3 - at - b)^2 dt \right\}$$

Exercice 5

Montrer que $\langle A, B \rangle = \text{Tr}(A^T B)$ est un produit scalaire sur $M_n(\mathbb{R})$, puis déterminer

$$\inf_{(a,b)\in\mathbb{R}^2} \left\{ ||M - aI - bJ||^2 \right\} \text{ avec } J = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{pmatrix}$$

Jérémy Meynier 2

Exercice 6

Soient (E, <, >) un espace euclidien et $a \in E$ tel que ||a|| = 1. Si $\alpha \in \mathbb{R}$, on pose $f_{\alpha}(x) = x + \alpha < a, x > a$

- 1. Soient $(\alpha, \beta) \in \mathbb{R}^2$. Calculer $f_{\alpha} \circ f_{\beta}$. Pour quels α f_{α} est-il bijectif?
- 2. Soit $\alpha \in \mathbb{R}$. Déterminer les éléments propres de f_{α}
- 3. Pour quels α f_{α} est-il un automorphisme orthogonal de E?
- 4. Pour quels α f_{α} est-il un endomorphisme symétrique de E?

Exercice 7

Soit u un endomorphisme symétrique d'un espace euclidien E de valeurs propres $\lambda_1, \ldots, \lambda_n$ comptées avec multiplicité et rangées en ordre croissant.

Montrer que $\forall x \in E, \ \lambda_1 ||x||^2 \leqslant \langle u(x), x \rangle \leqslant \lambda_n ||x||^2$

Exercice 8

Soit $A \in M_n(\mathbb{R})$. Montrer que la matrice $A^T A$ est diagonalisable à valeurs propres positives