

# CSE 4392 SPECIAL TOPICS NATURAL LANGUAGE PROCESSING

# Sequence Models

2025 Spring

### WHY MODEL SEQUENCES?



Part-of-speech tagging

Name Entity Recognition





Information extraction

### **O**VERVIEW

Hidden Markov Models (HMM)

• Viterbi algorithm

• Conditional Random Field (CRF)

### WHAT ARE POS TAGS?

- Word classes or syntactic categories
  - Reveal useful information about a word (and its neighbors!)

The/DT cat/NN sat/VBD on/IN the/DT mat/NN

Fort/NNP Worth/NNP is/VBZ in/IN Texas/NNP

The/DT old/NN man/VB the/DT boat/NN

### Parts of Speech

- Different words have different functions
- Closed class: fixed membership, function words
  - e.g. prepositions (in, on, of), determiners (the, a)
- Open class: New words get added frequently
  - e.g. nouns (Twitter, Facebook), verbs (google), adjectives, adverbs



### PENN TREE BANK TAG SET

#### 45 Tags

| Tag  | Description         | Example      | Tag   | Description       | Example     | Tag  | Description   | Example     |
|------|---------------------|--------------|-------|-------------------|-------------|------|---------------|-------------|
| CC   | coordinating        | and, but, or | PDT   | predeterminer     | all, both   | VBP  | verb non-3sg  | eat         |
|      | conjunction         |              |       |                   |             |      | present       |             |
| CD   | cardinal number     | one, two     | POS   | possessive ending | 's          | VBZ  | verb 3sg pres | eats        |
| DT   | determiner          | a, the       | PRP   | personal pronoun  | I, you, he  | WDT  | wh-determ.    | which, that |
| EX   | existential 'there' | there        | PRP\$ | possess. pronoun  | your, one's | WP   | wh-pronoun    | what, who   |
| FW   | foreign word        | mea culpa    | RB    | adverb            | quickly     | WP\$ | wh-possess.   | whose       |
| IN   | preposition/        | of, in, by   | RBR   | comparative       | faster      | WRB  | wh-adverb     | how, where  |
|      | subordin-conj       |              |       | adverb            |             |      |               |             |
| JJ   | adjective           | yellow       | RBS   | superlatv. adverb | fastest     | \$   | dollar sign   | \$          |
| JJR  | comparative adj     | bigger       | RP    | particle          | up, off     | #    | pound sign    | #           |
| JJS  | superlative adj     | wildest      | SYM   | symbol            | +,%,&       | "    | left quote    | or "        |
| LS   | list item marker    | 1, 2, One    | TO    | "to"              | to          | ,,   | right quote   | ' or "      |
| MD   | modal               | can, should  | UH    | interjection      | ah, oops    | (    | left paren    | [, (, {, <  |
| NN   | sing or mass noun   | llama        | VB    | verb base form    | eat         | )    | right paren   | ], ), }, >  |
| NNS  | noun, plural        | llamas       | VBD   | verb past tense   | ate         | ,    | comma         | ,           |
| NNP  | proper noun, sing.  | IBM          | VBG   | verb gerund       | eating      |      | sent-end punc | .!?         |
| NNPS | proper noun, plu.   | Carolinas    | VBN   | verb past part.   | eaten       | :    | sent-mid punc | : ;         |

(Marcus et al., 1993)

### PART OF SPEECH TAGGING

- A disembiguation task: each word may have different senses/functions
  - The/DT man/NN bought/VBD a/DT boat/NN
  - The/DT old/NN man/VB the/DT boat/NN

• Some words have MANY functions:

earnings growth took a back/JJ seat a small building in the back/NN a clear majority of senators back/VBP the bill Dave began to back/VB toward the door enable the country to buy back/RP about debt I was twenty-one back/RB then

#### A SIMPLE BASELINE

- Most words are easy to disembiguate
- Most frequence class: assign each word (token) its most frequently used class in the training set. (e.g., man/NN)
- Accuracy: 92.34% on the Wall Street Journal (WSJ) dataset!
- $\circ$  State of the art:  $\sim 97\%$
- Average English sentence: ~ 14 words
  - Sentence level accuracy:  $0.92^{14} = 31\%$  vs  $0.97^{14} = 65\%$
- POS tagging not solved yet!

### HIDDEN MARKOV MODELS

### SOME OBSERVATIONS

- The function (or POS) of a word depends on its context
  - The/DT old/NN man/VB the/DT boat/NN
  - The/DT old/JJ man/NN bought/VBD the/DT boat/NN

- Certain POS combinations are extremely unlikely
  - <*JJ*, *DT*> or <*DT*, *IN*>

• Better to make decisions on entire sequences instead of individual words (Sequence modeling!)

 $\Pi(s_1)$ : initial prob. dist.





- Model probabilities of sequences of variables
- Each state can take one of K values ({1, 2, ..., K} for simplicity)
- Markov assumption:

$$P(s_t \mid s_{< t}) \approx P(s_t \mid s_{t-1})$$

## QUIZ: MARKOV ASSUMPTION

$$P(s_t \mid s_{< t}) \approx P(s_t \mid s_{t-1})$$

- Where have we seen this before?
  - a) Logistic regression
  - b) Linear regression
  - c) Large language model
  - d) N-gram language model



The/DT cat/NN sat/VBD on/IN the/DT mat/NN



The/?? cat/?? sat/?? on/?? the/?? mat/??

• We don't know the tags in the corpus.



The/?? cat/?? sat/?? on/?? the/?? mat/??

- We don't know the tags in the corpus.
- But we do observe the words!
- HMM allows us to jointly reason over both *hidden* and *observed* events.

### COMPONENTS OF AN HMM



- 1. Set of states  $S = \{1, 2, ..., K\}$  and observations O
- 2. Initial state probability distribution:  $\Pi(s_1)$
- 3. Transition probabilities:  $P(s_{t+1} \mid s_t)$
- 4. Emission probabilities:  $P(o_t \mid s_t)$

### ASSUMPTIONS



1. Markov assumption:

$$P(s_{t+1} \mid s_1, \dots, s_t) = P(s_{t+1} \mid s_t)$$

2. Output independence assumption:

$$P(o_t \mid s_1, \ldots, s_t) = P(o_t \mid s_t)$$

Quiz: Which one of the two assumptions is stronger, and why?

### SEQUENCE LIKELIHOOD



$$P(S, O) = P(s_1, s_2, ..., s_n, o_1, o_2, ..., o_n)$$

$$= \Pi(s_1)P(o_1|s_1) \prod_{i=2}^{n} P(s_i, o_i|s_{i-1})$$

$$= \Pi(s_1)P(o_1|s_1) \prod_{i=2}^{n} P(s_i|s_{i-1})P(o_i|s_i)$$

### LEARNING

#### Maximum likelihood estimate:

### • Training Set:

• Transition prob:  $P(s_i|s_j) = \frac{c(s_i,s_j)}{c(s_j)}$ • Transition prob:  $P(s_i|s_j) = \frac{c(s_i,s_j)}{c(s_j)}$ • Transition prob:  $P(o|s) = \frac{c(s,o)}{c(s)}$ • Emission Prob:  $P(o|s) = \frac{c(s,o)}{c(s)}$ 

Nov./NNP 29/CD ./.

2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP, /, the/DT Dutch/NNP publishing/VBG group/NN./.

3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ and/CC chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/NNP PLC/NNP ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/NN of/IN this/DT British/JJ industrial/JJ conglomerate/NN ./.

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD people/NNS out/IN of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD helping/VBG Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sending/VBG them/PRP to/TO San/NNP Francisco/NNP instead/RB ./.

### EXAMPLE: POS TAGGING

the/?? cat/?? sat/?? on/?? the/?? mat/??

$$\pi(DT) = 0.8$$

$$S_{t+1}$$

 $O_t$ 

|       |     | DT   | NN  | IN   | VBD  |
|-------|-----|------|-----|------|------|
|       | DT  | 0.5  | 0.8 | 0.05 | 0.1  |
| $S_t$ | NN  | 0.05 | 0.2 | 0.15 | 0.6  |
|       | IN  | 0.5  | 0.2 | 0.05 | 0.25 |
|       | VBD | 0.3  | 0.3 | 0.3  | 0.1  |

|     | the  | cat  | sat  | on   | mat  |
|-----|------|------|------|------|------|
| DT  | 0.5  | 0    | 0    | 0    | 0    |
| NN  | 0.01 | 0.2  | 0.01 | 0.01 | 0.2  |
| IN  | 0    | 0    | 0    | 0.4  | 0    |
| VBD | 0    | 0.01 | 0.1  | 0.01 | 0.01 |

### DECODING WITH HMMS



**Task:** Find the most probable sequence of states  $\langle s_1, s_2, \ldots, s_n \rangle$ , given the observations  $\langle o_1, o_2, \ldots, o_n \rangle$ 

$$\hat{S} = \underset{S}{\operatorname{argmax}} P(S|O) = \underset{S}{\operatorname{argmax}} \frac{P(S)P(O|S)}{P(O)}$$

$$= \underset{S}{\operatorname{argmax}} P(S)P(O|S)$$

$$= \underset{S}{\operatorname{argmax}} \prod_{i=1}^{n} P(s_{i}|s_{i-1})P(o_{i}|s_{i})$$

transition

emission

### GREEDY DECODING



$$\underset{s}{argmax} \Pi(s_1 = s)P(The \mid s) = 'DT'$$

$$\hat{S} = \underset{S}{argmax} \prod_{i=1}^{n} P(s_i|s_{i-1})P(o_i|s_i)$$

### GREEDY DECODING



$$\underset{s}{argmax} \Pi(s_1 = s)P(The \mid s) = 'DT'$$

$$\underset{s}{argmax} P(s_2 = s \mid DT)P(cat \mid s) = 'NN'$$

$$\hat{S} = \underset{S}{argmax} \prod_{i=1}^{n} P(s_i|s_{i-1})P(o_i|s_i)$$

### GREEDY DECODING



$$\underset{s}{argmax} \Pi(s_1 = s)P(The \mid s) = 'DT'$$

$$\underset{s}{argmax} P(s_2 = s \mid DT)P(cat \mid s) = 'NN'$$

$$\forall i, \hat{s}_{i+1} = \underset{S}{argmax} \ P(s|\hat{s}_i)P(o_{i+1}|s)$$

Not guaranteed to be optimal: local decision only!

- Use dynamic programming!
- $\circ$  Probability lattice, M[T, K]
  - T: Number of time steps
  - *K* : Number of states

• M[i, j]: Most probable sequence of states ending with state j at time i

DT

$$M[1,DT] = \pi(DT) P(\mathsf{the} | DT)$$

NN

$$M[1,NN] = \pi(NN) \ P(\text{the} | NN)$$

VBD

$$M[1,VBD] = \pi(VBD) P(\mathsf{the} \mid VBD)$$

IN

$$M[1,IN] = \pi(IN) P(\mathsf{the} | IN)$$

the



Forward  $\rightarrow$ 



 $M[i,j] = \max_{k} M[i-1,k] P(s_{j}|s_{k}) P(o_{i}|s_{j}) \ 1 \le k \le K, 1 \le i \le N$ 

### QUIZ: VITERBI ALGORITHM

#### Assume

T: Number of time steps (sequence length)

K: Number of states

What is the time complexity of the Viterbi algorithm (in Big O)?

$$M[i,j] = \max_{k} M[i-1,k] P(s_j|s_k) P(o_i|s_j) \ 1 \le k \le K, 1 \le i \le N$$

• When K (the number of states) is large, Viterbi algorithm is very expensive!



• But many paths have very low likelihood!



• Keep a fix number  $\beta$  of hypotheses at each stage:

score = -4.1

score = -9.8

$$\beta = 2$$
 vbD  $score = -6.7$ 

score = -10.1

The

• Keep a fix number  $\beta$  of hypotheses at each stage:



• Keep a fix number  $\beta$  of hypotheses at each stage:



• Keep a fix number  $\beta$  of hypotheses at each stage:



35

- If K (number of states) is too large, Viterbi algorithm is too expensive!
- Keep a fixed number of hypotheses at each stage
- o Beam width β
- Trade-off (some) accuracy for efficiency

Quiz: What is the time complexity of Beam Search Viterbi Algorithm, given sequence length T, number of states K, and  $\beta$ ?

#### BEYOND BIGRAMS

- Real-world HMM taggers have more relaxed assumptions.
- Tri-gram HMM:  $P(s_{t+1}|s_1, s_2, ..., s_t) = P(s_{t+1}|s_{t-1}, s_t)$



Pros? Cons?

37

### LIMITATIONS OF HMM

- HMM is a generative model: P(O | S)
- Unknown (OOV) words happen often
- HMM relies on a fixed vocabulary (fixed-size emission probability matrix)
- Can't add arbitrary features easily
- Remember log-linear models (LR) can combine arbitrary models?
- But LR is is not a sequential model
- Enter the Conditional Random Field!
  - Discriminative model:  $P(S \mid O)$

### LINEAR CHAIN CRF

• HMM:

Tags  $s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4 \cdots \cdots$ Words  $o_1 \longrightarrow o_2 \longrightarrow o_3 \longrightarrow o_4 \cdots \cdots$ 

$$\hat{S} = \underset{S}{argmax} \prod_{i=1}^{n} P(s_i|s_{i-1})P(o_i|s_i)$$

• Linear chain CRF:



$$\hat{Y} = \underset{Y \in \mathcal{Y}}{\operatorname{argmax}} P(Y|X)$$

$$\boldsymbol{X} = X_1, \dots, X_{n-1}, X_n$$

y is the set of all possible tag sequences

### LINEAR CHAIN CRF

- Assigns a probability of the entire tag sequence Y, out of all possible sequences **y**.
- A giant version of multinomial logistic regression for a single token.

$$p(Y|X) = \frac{\exp\left(\sum_{k=1}^{K} w_k F_k(X,Y)\right)}{\sum_{Y' \in \mathcal{Y}} \exp\left(\sum_{k=1}^{K} w_k F_k(X,Y')\right)}$$

- $F_k$  is the k<sup>th</sup> feature function mapping X $\rightarrow$ Y
- K is total number of features

### LINEAR CHAIN CRF

 $\circ$  Rename the denominator as a function Z(X):

$$p(Y|X) = \frac{1}{Z(X)} \exp\left(\sum_{k=1}^{K} w_k F_k(X, Y)\right)$$
$$Z(X) = \sum_{Y' \in \mathcal{Y}} \exp\left(\sum_{k=1}^{K} w_k F_k(X, Y')\right)$$

• Global feature  $F_k(X, Y)$  can be decomposed into a sequence of local features, where n is the length of the token sequence:

$$F_k(X,Y) = \sum_{i=1}^n f_k(y_{i-1}, y_i, X, i)$$



Sum: no directions

linear chain! But no directions!

### FEATURES IN LINEAR CHAIN CRF

- Discriminative models allow for many features
- Each feature  $f_k$  depends on any info from

$$(y_{i-1}, y_i, X, i)$$

• Example features:

$$1 \{x_i = the, y_i = DET\}$$

$$1 \{y_i = PROPN, x_{i+1} = Street, y_{i-1} = NUM\}$$

$$1 \{y_i = VERB, y_{i-1} = AUX\}$$

• Use feature template to extract features for each position *i*:

$$\langle y_i, x_i \rangle, \langle y_i, y_{i-1} \rangle, \langle y_i, x_{i-1}, x_{i+2} \rangle$$