Week 8

Solutions

8.1 Vapor Pressure Lowering and Consequences

2/28:

- Colligative properties.
 - Vapor pressure lowering.
 - Boiling point elevation for non-volatile solutes.
 - Freezing point depression for solutes (excluding solids).
 - Osmotic pressure.
- Vapor pressure lowering: The process of adding less volatile solutes to lower the overall vapor pressure via Raoult's law.
- **Boiling point elevation**: The increase in the normal boiling point of a mixture due to vapor pressure lowering.

Figure 8.1: Boiling point elevation.

- In Figure 8.1, the dark blue line is the original liquid-gas coexistence curve and the light blue line is the liquid-gas coexistence curve with vapor pressure lowering notice how at any given temperature, the corresponding pressure represented by the light blue line is lower than that given by the dark blue line.
- However, we still need to achieve a vapor pressure of 1 atm for the liquid to boil.
- We can get to such a pressure with a higher temperature, i.e., by heating the liquid to T'_b instead of just T_b .
- Calculating the change in the boiling point ΔT_b .

Week 8 (Solutions) CHEM 26200

- We can calculate the boiling point elevation from the Clausius-Clapeyron equation.

$$\begin{split} \frac{\Delta P}{\Delta T_b} &= \frac{\Delta \overline{H}}{T_b \Delta \overline{V}} \\ \Delta T_b &= P^* (1-x) \frac{T_b \Delta \overline{V}}{\Delta \overline{H}} \\ &= P^* (1-x) \frac{T_b \overline{V}_g}{\Delta \overline{H}} \\ &= P^* (1-x) \frac{T_b R T_b}{P^* \Delta \overline{H}} \\ &= \frac{R T_b^2}{\Delta H} (1-x) \end{split}$$

where x is the mole fraction of solutes.

- We can also derive the above result from the chemical potential, where we get to the first to the second equation below because (standard) chemical potentials are equal at equilibrium.

$$\mu_l^{\circ}(T) + RT \ln x_1 = \mu_g^{\circ}(T) + RT \ln \frac{P}{P_0}$$

$$RT \ln x_1 = RT \ln \frac{P}{P_0} + \left[\mu_g^{\circ}(T) - \mu_l^{\circ}(T)\right]$$

$$= RT \ln \frac{P}{P_0} + \left[\Delta \overline{H}_{\text{vap}} - T\Delta \overline{S}_{\text{vap}}\right]$$

$$= RT \ln \frac{P}{P_0} + \left[\Delta \overline{H}_{\text{vap}} - T_b \Delta \overline{S}_{\text{vap}} + (T_b - T)\Delta \overline{S}_{\text{vap}}\right]$$

$$= RT \ln \frac{P}{P_0} + \Delta T_b \cdot \frac{\Delta \overline{H}_{\text{vap}}}{T_b}$$

$$\Delta T_b = -\frac{RT_b^2}{\Delta \overline{H}_{\text{vap}}} \ln x_1$$

$$= -\frac{RT_b^2}{\Delta \overline{H}_{\text{vap}}} \ln(1 - x_2)$$

$$\approx \frac{RT_b^2}{\Delta \overline{H}_{\text{vap}}} x_2$$

• Freezing point depression: The decrease in the normal melting point of a mixture due to vapor pressure lowering.

Figure 8.2: Freezing point depression.

Week 8 (Solutions) CHEM 26200

– We know that $\mu_g^{\circ}(T_f) = \mu_l^{\circ}(T_f)$. Thus,

$$\mu_g^{\circ}(T) = \mu_l^{\circ}(T) + RT \ln x_i$$

$$RT \ln x_i = \mu_g^{\circ}(T) - \mu_l^{\circ}(T)$$

$$= \Delta \overline{H}_{\text{fus}}(T) - T\Delta \overline{S}_{\text{fus}}$$

$$= (T_f - T)\Delta \overline{S}_{\text{fus}}$$

$$= (T_f - T)\frac{\Delta \overline{H}_{\text{fus}}}{T_f}$$

$$= -\Delta T_f \cdot \frac{\Delta \overline{H}_{\text{fus}}}{T_f}$$

$$\Delta T_f = -\frac{RT_f^2}{\Delta \overline{H}_{\text{fus}}} \ln x_1$$

$$\approx \frac{RT_f^2}{\Delta \overline{H}_{\text{fus}}} x_2$$

- The final result should be

$$\Delta T_f = -\frac{RT_f^2}{\Delta \overline{H}_{\text{fus}}} x_2$$

• The freezing point of water as more and more salt is added.

Figure 8.3: Freezing point vs. solute concentration.

- Osmotic pressure.
 - Imagine a U-tube with a filter at the bottom that is porous to the solvent but nonporous to the solute.
 - We know from Gen Chem that there will be excess pressure on the side with the impurities.
 - Let $\pi = \rho g h$ be the extra pressure where h is the height difference between the two sides and ρ is the density of the solvent.

$$\mu_l^{\circ} = \mu_l = \mu_l^{\circ} + RT \ln x_1 + \pi \overline{V}$$
$$0 = RT \ln x_1 + \pi \overline{V}$$
$$\pi = \frac{RT}{\overline{V}} x_2$$

• Ocean salinity is about 1 M, so $\pi=24\,\mathrm{atm}$. That means that in the tube, the right hand side will rise about as much as the Sears tower. Thus, the minimum amount of pressure/work you need is the height of the Sears tower minus 24 atm. Still, this is far more efficient than distillation.