д	frequência	фe	ressonância	ർഗ്ര	circuito	$f = \frac{1}{2 \pi \sqrt{10}}$			_
						2	π	Vic	

a)	a f	tedn	ência	para	ā	qual	пш	circuito	ressonante	paralelo	apresenta	a	
	- (-		import	Ancia									
	ud T. i	IIma	TINDAG	anc re	• •	• • • • •		• • • • • • • •	• • • • • • • • • • •			*****	

o) Num circuito LC-série a impedância (Z) é dada pela fórmula

$$z = \sqrt{e^2 + (x_L - x_C)^2}$$

Como, à frequência de ressonância, $X_{L} = X_{C}$, vem Z=R.

R é a resistência do circuito, normalmente de valor muito pequeno .

c) Para f
eq f , a impedância cresce sem passar por um valor máximo.

3.2.9.1

Num circuito ressonante série , a relação de fase entre a corrente e a tensão à frequência de ressonância, e a seguinte:

- d) a corrente está em avanço em relação à tensão mais de 180

NQTA: Como à frequência de ressonância $X_{C}=X_{C}$, o circuito fica apenas resistivo (ver fórmula indicada na "Nota" da pergunta n^{Q} .3.2.8.1), pelo que a corrente e a tensão estão em \hat{r} ase.