Category Theory - Lecture 2 (Notes)

Vorashil Farzaliyev

September 2024

1 Examples of categories - Posets

Let (P, \leq) be a poset.

- $a \le a$ for all $a \in P$.
- $a \le b$ and $b \le c$ implies $a \le c$.
- $a \le b$ and $b \le a$ implies a = b.

For example,

$$P = \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

where $a \ge b$, $a \ge c$, $b \ge c$, $c \ge d$.

Definition 1.1 (Category of posets). Let \underline{P} be a category.

- $Ob(\underline{P}) = P$
- $\forall a,b \in P$

$$\underline{P}(a,b) = \begin{cases} \{*\} & \text{if } a \leq b, \\ \emptyset & \text{otherwise.} \end{cases}$$

with the following axioms satisfied:

• Associativity:

$$\underline{P}(b,c) \times \underline{P}(a,b) \to \underline{P}(a,c)$$

• Identity:

$$I_a \in \underline{P}(a,a)$$
 by reflexivity

We can see how multiplication is associative and identity is reflexive.

where $a \ge b$, $a \ge c$, $b \ge c$, $c \ge d$.

Note 1.1 (Size Issue). • By Russel's paradox, there is no set of all sets. So we need to phrase the definition of category catefully.

• For us, a category has a class of objects, and for any two objects, a class of maps between them

Definition 1.2 (Locally Small category). We say that category C is a **locally small** if for any two objects $A, B \in Ob(C)$, the class of maps C(A, B) is a set.

Definition 1.3 (Small category). We say that category C is a **small** if it's locally small and the class of objects Ob(C) is a set.

Example 1.1. Let's look at some examples of categories.

- ullet Locally small but not small: \underline{Set} , Grp, Top
- Small: $\Sigma(G), \underline{P}$

2 Isomorphisms

Note 2.1. All isomorphisms in Maths is special case of isomorphisms in Category Theory.

Definition 2.1 (Isomorphism). Let C be a category.

We say that $f: A \to B$ is an **isomorphism** in C if there exists a map $g: B \to A$ such that

We call g the **inverse** of f.

2.1 Examples

- In Set theory: isomorphisms are bijections.
- In Group theory: isomorphisms are group homomorphisms.
- In Topology: isomorphisms are continuous functions.
- In $\Sigma(G)$:

• *In* <u>P</u>:

Identities are always isomorphisms.

2.2 Uniquness of inverses

Proposition 2.1. Let $f: A \to B$ be a map in a category C. If the inverse of f exists, then it is unique.

Proof. Let $g_1, g_2 : B \to A$ be inverses of f.

We claim that $g_1 = g_2$.

• g_1 :

$$g_1 f = 1_A$$
 and $f g_1 = 1_B$

 \bullet g_2 :

$$g_2 f = 1_A$$
 and $f g_2 = 1_B$

We can write

That is

Using this diagram, we can write

$$g_1 = g_1 \ 1_B$$
 by axiom of identity
 $= g_1 \ f \ g_2$ since $f \ g_2 = 1_B$
 $= 1_A \ g_2$ since $g_1 \ f = 1_A$
 $= g_2 \ 1_B$ by axiom of identity
 $= g_2$

Note 2.2. When $f: A \to B$ has an inverse, we can write $f^{-1}: B \to A$ for the inverse.

2.3 Terminal and Initial objects

Definition 2.2 (Terminal object). Let C be a category.

An object T of C is a **terminal object** if for any object $A \in Ob(C)$, there exists a unique map $A \to T$.

Definition 2.3 (Initial object). Let C be a category.

An object I of C is **initial** if for any object $A \in Ob(C)$, there exists a unique map $f: I \to A$.

2.3.1 Examples

- In <u>Set</u>, the terminal object is $\{*\}$.
- In Grp, the terminal object is $\{*\}$.
- $\bullet \ \ \textit{In} \ \underline{P}, \ the \ following \ proposition \ is \ true.$

Proposition 2.2. Let C be a category.

If T and T' are terminal objects of C, then T and T' are isomorphic.

Proof. Let $f:T\to T'$ be the unique map from T to T'.

