Math 10

Lesson 1-3 Answers

Lesson Questions

Question 1

$$1^{2} = 1 \sqrt{1} = 1 7^{2} = 49 \sqrt{49} = 7$$

$$2^{2} = 4 \sqrt{4} = 2 8^{2} = 64 \sqrt{64} = 8$$

$$3^{2} = 9 \sqrt{9} = 3 9^{2} = 81 \sqrt{81} = 9$$

$$4^{2} = 16 \sqrt{16} = 4 10^{2} = 100 \sqrt{100} = 10$$

$$5^{2} = 25 \sqrt{25} = 5 11^{2} = 121 \sqrt{121} = 11$$

$$6^{2} = 36 \sqrt{36} = 6 12^{2} = 144 \sqrt{144} = 12$$

Question 2

1296 =
$$2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 3$$

= $(2 \cdot 2 \cdot 3 \cdot 3) \cdot (2 \cdot 2 \cdot 3 \cdot 3)$
= $36 \cdot 36$
 $\sqrt{1296} = 36$

Question 3

Write the first 10 perfect cubes and their cube roots.

$1^3 = 1$	$\sqrt[3]{1} = 1$	$6^3 = 216$	$\sqrt[3]{216} = 6$
$2^3 = 8$	$\sqrt[3]{8} = 2$	$7^3 = 343$	$\sqrt[3]{343} = 7$
$3^3 = 27$	$\sqrt[3]{27} = 3$	$8^3 = 512$	$\sqrt[3]{512} = 8$
$4^3 = 64$	$\sqrt[3]{64} = 4$	9 ³ = 729	$\sqrt[3]{729} = 9$
$5^3 = 125$	$\sqrt[3]{125} = 5$	$10^3 = 1000$	$\sqrt[3]{1000} = 10$

Question 4

1728 =
$$2 \cdot 2 \cdot 2 \cdot 6 \cdot 6 \cdot 6$$

= $(2 \cdot 6) \cdot (2 \cdot 6) \cdot (2 \cdot 6)$
= $12 \cdot 12 \cdot 12$
 $\sqrt[3]{1728} = 12$

Question 5

What are the index and radicand for each of the following:

$$\sqrt[3]{4}$$
 $\sqrt[4]{3}$ $\sqrt{5}$ index = 3 index = 4 index = 2 radicand = 4 radicand = 3 radicand = 5

Question 6

(a)
$$9 \times 9 = 81$$

 $\therefore \sqrt{81} = 9$

(b)
$$7 \times 7 = 49$$
 and $8 \times 8 = 64$ try 7.2 $7.2 \times 7.2 = 51.84$ $\therefore \sqrt{52} \cong 7.2$

(c)
$$4 \times 4 \times 4 = 64$$

 $\therefore \sqrt[3]{64} = 4$

(d)
$$3^3 = 27$$
 and $4^3 = 64$ so try 3.7 and 3.8
 $3.7 \times 3.7 \times 3.7 = 50.653$
 $3.8 \times 3.8 \times 3.8 = 54.872$
 $\therefore \sqrt[3]{52} \cong 3.7$

(e)
$$2^4 = 16$$
 and $3^4 = 81$ so try 2.7
 $2.7 \times 2.7 \times 2.7 \times 2.7 = 53.1441$
 $\therefore \sqrt[4]{52} \cong 2.7$

Assignment

1. a)
$$\sqrt{196} = 14$$

d)
$$\sqrt{289} = 17$$

2. a)
$$\sqrt[3]{343} = 7$$

d)
$$\sqrt[3]{1331} = 11$$

3. a)
$$225 = 3^2 \cdot 5^2 = (3 \cdot 5)^2$$
 Perfect square

b)
$$729 = 3^6 = (3^3)^2 = (3^2)^3$$
 Perfect square and perfect cube

c)
$$1944 = 2^3 \cdot 3^5$$
 Neither

d)
$$1444 = 2^2 \cdot 19^2 = (2 \cdot 19)^2$$
 Perfect square

e)
$$4096 = 2^{12} = (2^4)^3 = (2^6)^2$$
 Perfect square and perfect cube

f)
$$13824 = 2^9 \cdot 3^3 = (2^3 \cdot 3)^3$$
 Perfect cube

4. a)
$$\sqrt{484} = 22 \text{mm}$$
 b) $\sqrt{1764} = 42 \text{yd}$.

b)
$$\sqrt{1764} = 42 \text{ yd.}$$

5. a)
$$\sqrt[3]{5832} = 18$$
in. b) $\sqrt[3]{15625} = 25$ ft.

b)
$$\sqrt[3]{15625} = 25$$
ft.

6. Find edge length first

$$x = \sqrt[3]{64} = 4$$

Surface area (SA) =
$$6 \cdot x^2 = 6 \cdot 4^2 = 96 \text{ ft.}^2$$

7.
$$SA = 6 \cdot x^2$$

$$x = \sqrt{\frac{SA}{6}} = \sqrt{\frac{6534}{6}} = 33$$

$$V = x^3 = 33^3 = 35937 \, \text{ft.}^3$$

8.
$$x = \sqrt[3]{2000} = 12.6$$

No; 2000 is not a perfect cube.

9. The first 5 are: 1, 64, 729, 4096, 15625

10.
$$V = I \cdot w \cdot h$$

$$V = x^2 \cdot h$$

$$1440 = x^2 \cdot 10$$

$$144 = x^2$$

$$x = \sqrt{144}$$

$$x = 12$$

11.
$$V = SA$$

$$x^3 = 6x^2$$

$$\frac{x^3}{x^2} = 6$$

$$x = 6$$

edgelength = 6units

12. a)
$$\sqrt{121x^4y^2} = 11x^2y$$
 b) $\sqrt[3]{64x^6y^3} = 4x^2y$

b)
$$\sqrt[3]{64x^6y^3} = 4x^2y$$

- 13. Through trial and error: $1^3 + 12^3$, $9^3 + 10^3$
- 14. Find edge length first

$$x = \sqrt[3]{2197} = 13 \text{ m}$$

$$SA = 6 \cdot x^2 = 6 \cdot 13^2 = 1014 \text{ m}^3$$

$$1014 \div 40 = 25.35$$

26 cans of paint are required

L1-3