Minor Project Report

on

Deep Learning for Emotion Recognition in Cartoons

Submitted to Guru Gobind Singh Indraprastha University, Delhi (India)
In partial fulfillment of the requirement for the award of the degree

of

Bachelor of Technology in Information Technology

Under the guidance of

Ms. Preeti Sehrawat Assistant Professor Information Technology

Submitted By:

Shubham Kumar (00815007721)

Abhishek Sharma (00115007721)

Arjun Sharma (00415007721)

MAHARAJA SURAJMAL INSTITUTE OF TECHNOLOGY C4, JANAKPURI, NEW DELHI – 110058

(GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, DWARKA, NEW DELHI)

(December 2023)

CANDIDATE'S DECLARATION

It is hereby certified that the work which is being presented in the B.Tech. Minor Project report entitled **Deep Learning for Emotion Recognition in Cartoons** in partial fulfillment of the requirements for the award of the degree of **Bachelor of Technology** and submitted in the **Department of Information Technology**, **New Delhi (Affiliated to Guru Gobind Singh Indraprastha University, New Delhi)** is an authentic record of our work carried out during a period from **August 2023 to December 2023** under the guidance of **Ms. Preeti Sehrawat (Assistant Professor).**

The matter presented in the B.Tech. Minor Project Report has not been submitted by us for the award of any other degree of this or any other institute.

 Shubham Kumar
 Abhishek Sharma
 Arjun Sharma

 (00815007721)
 (00115007721)
 (00415007721)

This is to certify that the above statement made by the candidates are correct to the best of my knowledge. They are permitted to appear in the External Minor Project Examination.

Ms. Preeti Sehrawat Prof. Prabhjot Kaur (Assistant Professor) (HOD, IT Department)

The B.Tech. Minor Project Viva-Voce Examination of Shubham Kumar (00815007721), Abhishek Sharma (00115007721), Arjun Sharma (00415007721) has been held on 19.12.2023.

Project Coordinator (Signature of External Examiner)

ACKNOWLEDGEMENT

We express our deep gratitude to **Ms. Preeti Sehrawat**, (Assistant Professor), Department of Information Technology for her valuable guidance and suggestions throughout our project work. We are thankful to **Dr. Preeti Rathee**, Project Coordinator for her valuable guidance.

We would like to extend our sincere thanks to the **Head of Department**, **Prof. Prabhjot Kaur** for her time-to-time suggestions to complete our project work. We are also thankful to **Prof. Archana Balyan**, **Director** (**O**) **of MSIT** for providing us with the facilities to carry out our project work.

Shubham Kumar (00815007721)

Abhishek Sharma (00115007721)

Arjun Sharma (00415007721)

ABSTRACT

Emotion Recognition is a field that computers are getting very good at identifying; whether it's through images, video or audio. Emotion Recognition has shown promising improvements when combined with classifiers and Deep Neural Networks showing a validation rate as high as 59% and a recognition rate of 56%. The focus of this dissertation will be on facial based emotion recognition. This consists of detecting facial expressions in images and videos. While the majority of research uses human faces in an attempt to recognize basic emotions, there has been little research on whether the same deep learning techniques can be applied to faces in cartoons. The system implemented in this paper, aims to classify at most three emotions (happiness, anger and surprise) of the 6 basic emotions proposed by psychologists Ekman and Friesen, with an accuracy of 80% for the 3 emotions. Showing promise of applications of deep learning and cartoons. This project is an attempt to examine if emotions in cartoons can be detected in the same way that human faces can.

LIST OF FIGURES

Fig. No.	Title of the Figure	Page Number
1.1	An example of the McCulloch-Pitts (MCP) neuron	2
1.2	An example of the Perceptron	3
1.3	The XOR problem	4
1.4	A Multi-Layer Perceptron	5
1.5	Convolutional Neural Network	6
1.6	Recurrent Neural Network & Vanishing Gradient Problem	7
1.7	LSTM unit	7
2.1	An illustrated example of parameter sharing	17
2.2	An example of a 2D convolution	19
2.3	Max pooling	20
2.4	Fully Connected Network & ReLU.	21
2.5	An illustrated example of the softmax function	22
2.6	AlexNet architecture	24
2.7	ImageNet classification on Cartoons	26
3.1	Trello Board	29
3.2	This project's <i>Trello</i> board	29
4.1	A scene from Tom & Jerry	33
4.2	YouTube results for the query 'Tom & Jerry'	34
4.3	Sample set of videos from the Joni Valentayn YouTube channel	35
4.4	Different Haar-like features	36
4.5	Haar-like features detecting features in a face	36
4.6	The architecture of the 1 st step process, dataset construction & segmentation	38
4.7	The architecture of the 2 nd step process.	39
4.8	Haar cascade training for positive images	42
4.9	Before and after segmenting a region of a face	44
4.10	Result after multi-class classification	46
4.11	Convolution visualizations	47
5.1	Results Graphs, Run 1	53
5.2	Results Graphs, Run 2	55
5.3	Results Graphs, Run 3	56
5.4	Results Graphs, Run 4	58
5.5	Results Graphs, Run 5	59

LIST OF TABLES

Table No.	Title of the Table	Page Number
2.1	ImageNet classification of the zebra by (Randomlists.com, n.d) in Figure 2.6	24
5.1	Hyperparameter Table, Run 1.	52
5.2	Results Table, Run 1.	53
5.3	Hyperparameter Table, Run 2.	54
5.4	Results Table, Run 2.	54
5.5	Hyperparameter Table, Run 3.	55
5.7	Results Table, Run 3.	56
5.7	Hyperparameter Table, Run 4.	57
5.8	Results Table, Run 4.	57
5.9	Hyperparameter Table, Run 5.	58
5.10	Results Table, Run 5.	59
5.11	Algorithms with the best loss accuracy out of all 5 runs.	60
6.1	The original risk matrix from project proposal	62
B.1	The first 32 <i>Tom & Jerry</i> episodes of the images that are included in the dataset of this project.	65
B.2	The last 32 <i>Tom & Jerry</i> episodes of the images that are included in the dataset of this project.	66

LIST OF ABBREVIATIONS

Abbreviation	Full form of Abbreviation
AFEW	Acted Facial Expression in the Wild
ANN	Artificial Neural Network
CNN	Convolutional Neural Network
DBN	Deep Belief Network
FER-2013	Facial Expression Recognition-2013
FFNN	Feed Forward Neural Network
HDF5	Hierarchical Data Format 5
HCI	Human Computer Interface
ILSVRC	ImageNet Large Scale Visual
	Recognition Challenge
IRNN	Identity Recurrent Neural Network
МСР	McCulloch-Pitts Neuron
MGM	Metro-Goldwyn-Mayer
MLP	Multi-Layered Perceptrons
NLP	Natural Language Processing
NTM	Neural Turing Machine
NAG	Nesterov Accelerated Gradient
OpenCV	Open Computer Vision library
PSF	Python Software Foundation
LSTM	Long Short Term Memory
ReLU	Rectified Linear Unit
RNN	Recurrent Neural Network
RMS	Root Mean Square
SFEW	Static Facial Expression in the Wild
SDLC	Software Development Life Cycle
SGD	Stochastic Gradient Descent

CONTENTS

Candidate Declaration	II
Acknowledgement	
Abstract	
List of Figures	
List of Tables	
List of Abbreviations	vII
Table of Content	VIII
1 Introduction	1
1.1 Outline	1
1.2 History of Deep Learning	1
1.3 History of Emotion Recognition	8
1.4 History of Animated Cartoons	10
1.5 Aim	11
1.6 Objectives	11
1.7 Structure of the rest of the report	12
2 Background	14
2.1 Related Work	14
2.1.1 Emotion Recognition	14
2.1.2 Animated Cartoons	15
2.2 Convolutional Neural Networks	16
2.3 ImageNet	23
2.4 Recurrent Neural Networks	25
3 Methodology	28
3.1 Project Management	28
3.1.1 Trello	28
3.2 Software Development	30
3.3 Research Methods	30
4 Implementation	32
4.1 Requirements	32
4.1.1 Choice of Deep Neural Network	32
4.1.2 Choice of Animated Cartoon	32
4.1.3 Tom & Jerry	32
4.1.4 Dataset Gathering	33

4.1.5 F	ace Segmentation	35
	Iaar-like features	
4.2 Design		37
4.2.1 C	Choice of emotions	37
4.2.2 D	Design of the artifact	37
4.2.3 D	Design of the Convolutional Neural Network	39
4.3 Development		40
4.3.1 T	ools	40
	4.3.1.1 Python	40
	4.3.1.2 OpenCV	40
	4.3.1.3 Keras	42
4.3.2 C	Cartoon Face Segmentation	43
4.3.3 T	om & Jerry Image Dataset	44
4.3.4 T	raining, Classification and Visualisation	44
5 Testing and Evalua	ntion	48
5.1 Preparation	1	48
5.2 Optimisati	on Algorithms	49
5.2.1 S	tochastic Gradient Descent	49
5.2.2 A	dagrad	50
5.2.3 A	dadelta	50
5.2.4 R	MSProp	51
5.2.5 A	dam	51
5.3 Results		52
5.3.1 R	un 1	52
5.3.2 R	un 2	54
5.3.3 R	un 3	55
5.3.4 R	un 4	57
5.3.5 R	un 5	58
6 Reflection A Cartoon Face Segmentation		61
	Dataset	
D Emotion Classifica	ation Results	69
References		71