M702 ANT

Thanic Nur Samin

Tuesday, 1/14/2025

Abstract

Chapter 1: Local Class Field Theory (LCFT).

Chapter 2: p-divisible groups (eg LT formal groups) and associated Galois representations V and the Hodge-Tate Decomposition of $V \otimes_{\mathbb{Q}_p} \mathbb{C}_p$ and also the diagonal action of \mathscr{G}_K .

<u>Tate</u>: *p*-divisible groups.

Chapter 3: Sen theory, Fontaine's period rings (φ, Γ) -modules.

1 Local Class Field Theory (LCFT)

1.1 Lubin Tate Theory

[N] Neukirch, Alg. NT

[S] Serre, Local Class Field Theory (Cassels-Frohlich)

[LT] Lubin, Tate Formal complex multiplication

 $K = \text{non-archimedean local field (locally compact)} \supset \mathcal{O} = \mathcal{O}_K = \text{valuation ring} \supset P_K = \text{valuation ideal.}$

Residue Field $k = \mathcal{O}/P_K$, $\operatorname{char}(k) = p > 0, q := |k| = p^f$.

Normalized Valuation $v = v_K : K \to \mathbb{Z} \cup \{\infty\}, |a| = q^{-v(a)}.$

 $U_K = \mathcal{O}_K^{\times}$.

Definition. $e(x) \in \mathcal{O}[[x]]$ (a formal power series) is called a Lubin-Tate (LT) series for the uniformizer π (fixed) if the following conditions are fulfilled:

- $e(x) \equiv \pi x \mod \deg 2$.
- $e(x) \equiv x^q \mod \pi$.

Set $\mathcal{E}_{\pi} = \text{set of LT series for the uniformizer } \pi$.

Recall: Let R be any \mathcal{O} -algebra $(i: \mathcal{O} \to R \text{ ring homomorphism})$.

A formal \mathcal{O} -module over R is a 1-dimensional commutative formal group $F(x,y) \in R[[x,y]]$ over R (some people call it a formal group law) together with a unital (sending 1 to 1) ring homomorphism:

$$[\cdot]_F : \mathcal{O} \to \operatorname{End}_R(F) = \{ f(x) \in R[[x]] \mid f(0) = 0, f(F(x,y)) = F(f(x), f(y)) \}$$

such that $\forall a \in \mathcal{O} : [a]_F(x) = i(a)x \mod \deg 2$.

We have the following properties:

F(x,y) = x + y + higher order terms

Associativity: F(x, F(y, z)) = F(F(x, y), z)

Commutativity: F(x,y) = F(y,x).

 $\implies \exists ! \iota(x) \in R[[x]] : F(x, \iota(x)) = 0.$ Also, $\iota(x) = -x + \text{higher order terms.}$

If R is a local \mathcal{O} -algebra with maximal ideal M ($i^{-1}(M) = P_K, k = \mathcal{O}/P_K \to R/M$) then a formal \mathcal{O} -module F over R is called a LT \mathcal{O} -module over R if in addition it is a formal \mathcal{O} -module and for any uniformizer π of K: $[\pi]_F(x) \equiv x^q \mod M$.

Remark. If F is a LT \mathcal{O} -module over \mathcal{O} $[i:\mathcal{O} \xrightarrow{\mathrm{id}} \mathcal{O}]$ then $[\pi]_F(x) \in \mathscr{E}_{\pi}$ [meaning it is a Lubin Tate series] for any uniformizer π .

Example. 1)
$$K = \mathbb{Q}_p, F = \widehat{\mathbb{G}}_m, \widehat{\mathbb{G}}_m(x,y) = x + y + xy = (1+x)(1+y) - 1.$$

Then, $[\cdot]: \mathbb{Z}_p \to \operatorname{End}_{\mathbb{Z}_p}(\widehat{\mathbb{G}}_m), [a](x) = (1+x)^a - 1 := \sum_{n=1}^{\infty} \binom{a}{n} x^n, \binom{a}{n} = \frac{a(a-1)\cdots(a-n+1)}{n!} \in \mathbb{Z}_p \text{ for any } a \in \mathbb{Z}_p, n \ge 1.$

Exercise. 1) $\forall a \in \mathbb{Z}_p \forall n \geq 0, \binom{a}{p}$ as defined above is in \mathbb{Z}_p .

- 2) If K is a proper extension of \mathbb{Q}_p then $\binom{a}{n} \notin \mathcal{O}_K$ for infinitely many $a \in \mathcal{O}_K$.
- 2) $K = \mathbb{F}_q((t)), F = \widehat{\mathbb{G}}_a, \widehat{\mathbb{G}}_a(x,y) \equiv x + y$. Set $[t](x) = tx + x^q$. Then,

$$\left[\sum_{\nu=0}^{\infty} \alpha_{\nu} t^{\nu}\right](x) := \sum_{\nu=0}^{\infty} \alpha_{\nu} [t]^{\circ \nu}(x) = \sum_{n=1}^{\infty} a_{n} x^{n} \text{ where } a_{1} = a$$

gives $F = \widehat{\mathbb{G}}_a$ the structure of a LT \mathcal{O} -module over \mathcal{O} .

Theorem 1.1.1. i) For all uniformizer π of K and any $e \in \mathscr{E}_{\pi}$ there exists unique LT \mathcal{O} -module F_e over \mathcal{O} such that:

$$[\pi]_{F_e}(x) = e(x)$$

- ii) $\forall e, e' \in \mathcal{E}_{\pi}$ there is an isomorphism of formal \mathcal{O} -modules $f: F_e \to F_{e'}$ $(f \in x\mathcal{O}[[x]], f(F_e(x,y)) = F_{e'}(f(x), f(y)).$ $\forall a \in \mathcal{O}: f([a]_{F_e}(x)) = [a]_{F_{e'}}(f(x)).$ $f'(0) \in \mathcal{O}^{\times}.$
- iii) Let K^{nr} be the maximal unramified extension of K (inside some fixed algebraic closure \overline{K}) and let $K_{nr} := \widehat{K^{nr}}$ be the completion of K^{nr} and let $\mathcal{O}_{K_{nr}}$ be its valuation ring. Then for any two uniformizers π, π' of K and LT series $e \in \mathscr{E}_{\pi}$ and $e' \in \mathscr{E}_{\pi'}, \exists$ an isomorphism of formal \mathcal{O} -modules $F_e \to F_{e'}$ over $\mathcal{O}_{K_{nr}}$.

Formal Complex Multiplication

Let \overline{K} be the fixed algebraic closure of $K \supset \mathcal{O}_{\overline{K}} \supset P_{\overline{K}}$. Let $\pi =$ the fixed uniformizer, $e \in \mathscr{E}_{\pi}, F_{e} = \operatorname{LT} \mathcal{O}$ -module over \mathcal{O} .

Set
$$F[\pi^m] = \left\{ \alpha \in P_{\overline{K}} \mid \underbrace{[\pi^m]_{F_e}(\alpha)}_{e^{\circ m}(x)} = 0 \right\}$$
. This can be shown to be finite from Theo-

rem 1.1.1.ii by setting $e'(x) = \pi x + x^q$. Then the isomorphism will provide a bijection to $F_{e'}[\pi^m, e' \in \mathcal{E}_{\pi}]$. Then the zeros of the power series are the zeros of the iteration of the polynomial. Hence the set is finite.

 $L_{\pi,m} := K(F_e(\pi^m))$ called the field of π^m -torsion points of F_e . It doesn't depend on e, though it does depend on π .

Example. if $K = \mathbb{Q}_p$ and $e(x) = (1+x)^p - 1$ then, $L_{p,m} = \mathbb{Q}_p(\zeta - 1 \mid \zeta^{p^m} = 1) = \mathbb{Q}_p(\mu_{p^m})$.

If we take $e'(x) = px + x^p$, the power series and the torsion points $F_e[p^m]$ and $F_{e'}[p^m]$ are different but the fields $\mathbb{Q}_p(F_{e[p^m]})$ and $\mathbb{Q}_p(F_{e'}[p^m])$ has to be the same!

Theorem 1.1.2. i) $F_e[\pi^m]$ is a free $\mathcal{O}/(\pi^m)$ module of rank 1 [note that $[\pi^m]$ annihilates [a](x) since $[\pi^m]_{F_e}(\alpha) = 0$].

- ii) $\forall m \geq 1$ the maps $\mathcal{O}/(\pi^m) \to \operatorname{End}_{\mathcal{O}}(F_e[\pi^m]), a \mod \pi^m \mapsto [\alpha \mapsto [a](\alpha)].$ Also, $\mathcal{O}^{\times}/(1+(\pi^m)) \to \operatorname{Aut}_{\mathcal{O}}(F_e[\pi^m])$, same formula are isomorphism (of finite groups).
- iii) $L_{\pi,m}$ does not depend on $e \in \mathscr{E}_{\pi}$ but depends on π . In particular, if $e'(x) = \pi x + x^q$ then $L_{\pi,m} = K(F_{e'}[\pi^m])$.

iv) $L_{\pi,m}$ is a finite purely ramified Galois extension (so it does not contain a proper unramified extension) of K of degree $(q-1)q^{m-1}$.

The map
$$G(L_{\pi,m}/K) \to \operatorname{Aut}_{\mathcal{O}}(F_e[\pi^m]) \stackrel{\text{ii, canonical}}{\cong} \mathcal{O}^{\times}/(1+(\pi^m))$$
 given by $\sigma \mapsto a \mod (1+(\pi^m))$.

If $\forall \alpha \in F_e[\pi^m] : \sigma(\alpha) = [a]_{F_e}(\alpha)$, is an isomorphism.

v) If $L_{\pi} = \bigcup_{m \geq 1} L_{\pi,m}$, then the maps in iv induce an isomorphism:

$$G(L_{\pi}/K) = \varprojlim_{m} G(L_{\pi,m}/K) \xrightarrow{\cong} \varprojlim_{\leftarrow} \mathcal{O}^{\times}/(1 + (\pi^{m})) \cong \mathcal{O}^{\times}$$

Thursday, 1/16/2025

Recall: we fixed an algebraic closure \overline{K} . Residue field of $\overline{K} = \overline{k} =$ algebraic closure of $k = \mathbb{F}_q$.

Theorem 1.1.3. If L/K is abelian, $L_{\pi} \subset L$, and L/L_{π} is purely rammified, then $L_{\pi} = L$.

Proof. Proof uses the Hasse-Arf theorem, which says that the jumps (or breaks) of the upper ramification filtration $(G(L/K)^t, t \ge -1)$ are integers.

Remark.
$$G(L_{\pi}/K)^m = \operatorname{Gal}(L_{\pi}/L_{\pi,m}), m \geq 0.$$

 $L_{\pi,0} := K.$