Toutes les variables aléatoires qui interviennent dans ce problème sont supposées définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathcal{P})$. Sous réserve d'existence, on note E(X) et V(X) respectivement l'espérance et la variance d'une variable aléatoire X, et $\operatorname{cov}(X,Y)$ la covariance de deux variables aléatoires X et Y.

la fonction de répartition et une densité d'une variable aléatoire X à densité sont notées respectivement F_X et f_X .

Partie I: Loi géométrique

Soit p un réel de]0,1[et q=1-p. Soit X_1 et X_2 deux variables indépendantes de même loi géométrique de paramètre p (d'espérance 1/p). On pose : $Y=X_1-X_2$, $T=\max(X_1,X_2)$ et $Z=\min(X_1,X_2)$. On rappelle que $T+Z=X_1+X_2$ et $T-Z=|X_1-X_2|=|Y|$.

- 1. (a) Rappeler sans démonstration les valeurs respectives de $V(X_1)$ et de $P([X_1 \le k])$, pour tout k de $X_1(\Omega)$.
 - (b) Calculer $E(X_1 + X_2)$, $V(X_1 + X_2)$, $E(X_1 X_2)$, $V(X_1 X_2)$.
 - (c) Etablir la relation : $P([X_1 = X_2]) = \frac{p}{1+q}$
- 2. (a) Montrer que Z suit la loi géométrique de paramètre $1-q^2$. En déduire E(Z), V(Z) et E(T).
 - (b) Soit k un entier de \mathbb{N}^* . Justifier l'égalité : $[Z=k] \cup [T=k] = [X_1=k] \cup [X_2=k]$. En déduire la relation suivante : $P(T=k) = 2P(X_1=k) P(Z=k)$.
 - (c) Etablir la formule : $V(T) = \frac{q(2q^2 + q + 2)}{(1 q^2)^2}$.
- 3. (a) Montrer que pour tout couple (j,ℓ) de $(\mathbb{N}^*)^2$, on a : $P([Z=j]\cap [T-Z=\ell])=2p^2q^{2j+\ell-2}$
 - (b) Montrer que pour tout k de \mathbb{Z} , $P([X_1 X_2 = k]) = \frac{pq^{|k|}}{1+q}$ (on distinguera trois cas : k = 0, k > 0 et k < 0).
 - (c) En déduire la loi de la variable aléatoire $|X_1 X_2|$.
 - (d) Etablir à l'aide des questions précédentes que les variables Z et T-Z sont indépendantes.
- 4. (a) A l'aide du résultat de la question 3d, calculer cov(Z,T). Les variables Z et T sont-elles indépendantes?
 - (b) Calculer en fonction de q, le coefficient de corrélation linéaire ρ de Z et T.
 - (c) Déterminer la loi de probabilité du couple (Z, T).
 - (d) Déterminer pour tout j de \mathbb{N}^* , la loi de probabilité conditionnelle de T sachant l'évènement [Z=j].
 - (e) Soit j un élément de \mathbb{N}^* . On suppose qu'il existe une variable aléatoire D_j à valeur dans \mathbb{N}^* , dont la loi de probabilité est la loi conditionnelle de T sachant l'évènement [Z=j]. Calculer $E(D_j)$.

Partie II: Loi exponentielle

Soit λ un réel strictement positif. Soit X_1 et X_2 deux variables indépendantes de même loi exponentielle de paramètre λ (d'espérance $1/\lambda$). On pose : $Y = X_1 - X_2$, $T = \max(X_1, X_2)$ et $Z = \min(X_1, X_2)$.

- 5. (a) Rappeler sans démonstration les valeurs respectives de $V(X_1)$ et de $P([X_1 \le x])$, pour tout réel x.
 - (b) Calculer $E(X_1 + X_2)$, $V(X_1 + X_2)$, E(Y), V(Y).
- 6. Déterminer pour tout réel z, $F_{Z}(z)$ et $f_{Z}(z)$. Reconnaître la loi de Z et en déduire E(Z) et V(Z).
- 7. (a) Montrer que pour tout réel t, on a : $F_T(t) = \begin{cases} (1 e^{-\lambda t})^2 & \text{si } t \geqslant 0 \\ 0 & \text{si } t < 0 \end{cases}$. Exprimer pour tout réel t, $f_T(t)$.
 - (b) Justifier l'existence de $E\left(T\right)$ et $V\left(T\right)$. Montrer que $E\left(T\right)=\frac{3}{2\lambda}$ et $V\left(T\right)=\frac{5}{4\lambda^{2}}$.
- 8. On note r le coefficient de corrélation linéaire de Z et T. Montrer que $r = \frac{1}{\sqrt{5}}$.
- 9. (a) Déterminer une densité de la variable aléatoire $-X_2$.
 - (b) Etablir que la fonction $y \mapsto \frac{\lambda}{2} e^{-\lambda|y|}$ est la densité de probabilité sur \mathbb{R} de la variable aléatoire Y.
 - (c) Déterminer pour tout y réel, $f_{|Y|}(y)$. Reconnaître la loi de |Y| = T Z.

Partie III: Convergences

 $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires à valeurs strictement positives, indépendantes, de même loi exponentielle de paramètre λ . On pose pour tout n de \mathbb{N}^* : $S_n = \sum_{k=1}^n X_k$ et $J_n = \lambda S_n$.

- 10. Calculer pour tout n de \mathbb{N}^* , $E(S_n)$, $V(S_n)$, $E(J_n)$ et $V(J_n)$.
- 11. (a) Montrer, par récurrence que, la densité f_{J_n} de J_n est donnée par $f_{J_n}(x) = \begin{cases} \frac{e^{-x}x^{n-1}}{(n-1)!} & \text{si } x > 0 \\ 0 & \text{si } x \leqslant 0 \end{cases}$
 - (b) A l'aide du théorème de transfert, établir pour tout n supérieur ou égal à 3, l'existence de $E\left(\frac{1}{J_n}\right)$ et de $E\left(\frac{1}{J_n^2}\right)$, et donner leur valeurs respectives.
- 12. On note Φ la fonction de répartition de la loi normale centrée réduite, et u_{α} le réel strictement positif tel que $\Phi(u_{\alpha}) = 1 \frac{\alpha}{2}$.
 - (a) Enoncer le théorème de la limite centrée. En déduire que la variable aléatoire N_n définie par $N_n = \lambda \frac{S_n}{\sqrt{n}} \sqrt{n}$ converge en loi vers la loi normale centrée réduite.
 - (b) En déduire que $P([-u_{\alpha} \leq N_n \leq u_{\alpha}]) \sim 1 \alpha$.

Dans les questions suivantes, on suppose que $\lambda = 1$.

- 13. On pose pour tou n de \mathbb{N}^* : $T_n = \max(X_1, X_2, ..., X_n)$. Pour tout n de \mathbb{N}^* , pour tout réel x positif ou nul, on pose : $g_n(x) = \int_0^x F_{T_n}(t) dt$ et $h_n(x) = \int_0^x t f_{T_n}(t) dt$
 - (a) Exprimer $h_n(x)$ en fonction de $F_n(x)$ et $g_n(x)$.
 - (b) Déterminer pour tout réel t, l'expression de $F_{T_n}(t)$ en fonction de t. Etablir pour tout n supérieur ou égal à 2, la relation : $g_{n-1}(x) - g_n(x) = \frac{1}{n} F_{T_n}(x)$
 - (c) En déduire que pour tout n de \mathbb{N}^* , pour tout réel x positif ou nul, l'expression de $g_n(x)$ en fonction de $x, F_{T_1}(X), F_{T_2}(x), ..., F_{T_n}(x)$.
 - (d) Montrer que $F_{T_n}(x) 1$ est équivalent à $-ne^{-x}$, lorsque x tend vers $+\infty$.
 - (e) Déduire des questions c) et d) l'existence de $E(T_n)$ et montrer que $E(T_n) = \sum_{k=1}^n \frac{1}{k}$.
- 14. On veut étudier dans cette question la convergence en loi de la suite de variables aléatoires $(G_n)_{n\geqslant 1}$ définie par : pour tout n de \mathbb{N}^* , $G_n=T_n-E(T_n)$. On pose pour tout n de \mathbb{N}^* : $\gamma_n=-\ln n+E(T_n)$ et on admet sans démonstration que la suite $(\gamma_n)_{n\geqslant 1}$ est convergente; on note γ sa limite.
 - (a) Montrer que pour tout x réel et n assez grand, on a : $F_{G_n}\left(x\right) = \left(1 \frac{1}{n}e^{-(x+\gamma_n)}\right)^n$.
 - (b) En déduire que pour tout x réel, on a : $\lim_{n \to +\infty} F_{G_n}(x) = e^{-e^{-(x+\gamma)}}$
 - (c) Montrer que la fonction $F_G: \mathbb{R} \to \mathbb{R}$ définie par $F_G(x) = e^{-e^{-(x+\gamma)}}$ est la fonction de répartition d'une variable aléatoire G à densité. Conclure.
- 15. Soit X une variable aléatoire à densité de fonction de répartition F_X strictement croissante. Déterminer la loi de la variable alétoire Y définie par $Y = F_X(X)$.

Partie I: Loi géométrique

1. (a) On a $V(X_1) = \frac{q}{p^2}$. Pour $k \in X_1(\Omega) = \mathbb{N}^*$, on a

$$P(X_1 \le k) = \sum_{n=1}^{k} P(X_1 = n) = \sum_{n=1}^{k} q^{n-1} p = 1 - q^k$$

 $\mathbf{Remarque:}\ [X_1>k]=\textit{«\'echec jusqu'au $k^{i\`eme}$»}\ donc\ \mathbf{P}\ [X_1>k]=q^k\ et\ P\left([X_1\leqslant k]\right)=1-q^k.$

- (b) Les variables aléatoires X_1 et X_2 admettent des espérances, alors $X_1 + X_2$ et $X_1 X_2$ admettent des espérances et par linéarité de l'espérance, on a $E(X_1 + X_2) = E(X_1) + E(X_2) = \frac{2}{p}$ et $E(X_1 X_2) = 0$
 - Les variables aléatoires X_1 et X_2 admettent des variances , alors $X_1 + X_2$ et $X_1 X_2$ admettent des variances et par indépendance, on a $V(X_1 + X_2) = V(X_1) + V(X_2) = \frac{2q}{p^2}$ et $V(X_1 X_2) = V(X_1) + (-1)^2 V(X_2) = \frac{2q}{p^2}$
- (c) La famille $([X_2=i])_{i\in\mathbb{N}^*}$ est un système complet d'événements, alors

$$[X_1 = X_2] = \bigcup_{i=1}^{+\infty} ([X_1 = X_2] \cap [X_2 = i]) = \bigcup_{i=1}^{+\infty} ([X_1 = i] \cap [X_2 = i])$$

et par incompatibilité et indépendance.

$$P(X_1 = X_2) = \sum_{i=1}^{+\infty} P(X_1 = i, X_2 = i) = \sum_{i=1}^{+\infty} P(X_1 = i) P(X_2 = i) = \sum_{i=1}^{+\infty} (q^{i-1}p)^2$$

$$P[X_1 = X_2] = \sum_{i=1}^{+\infty} (q^{i-1}p)^2$$

$$= p^2 \sum_{i=1}^{+\infty} (q^2)^{i-1}$$

$$= \frac{p^2}{1 - q^2} = \frac{p^2}{(1 - q)(1 + q)}$$

Conclusion: $P(X_1 = X_2) = \frac{p}{1+a}$

2. (a) Pour $i \in \mathbb{N} : [\min(X_1, X_2) > i] = [X_1 > i] \cap [X_2 > i]$ et

$$P\left(Z>i\right) = P\left(X_1>i\right) P\left(X_2>i\right) \text{ par indépendance}$$

$$= q^{2i}$$

Soit $i \in \mathbb{N}^*$, on a $[Z > i - 1] = [Z \geqslant i] = [Z = i] \cup [Z > i]$, par incompatibilité :

$$\begin{split} \mathbf{P} \left(Z = i \right) &= \mathbf{P} \left(Z > i - 1 \right) - \mathbf{P} \left(Z > i \right) \\ &= q^{2i-2} - q^{2i} \text{ pour } i - 1 \geqslant 0 \\ &= q^{2(i-1)} \left(1 - q^2 \right) \text{ pour } i \geqslant 1 \end{split}$$

Et comme
$$Z(\Omega) = \mathbb{N}^*$$
 on a bien $Z \hookrightarrow \mathcal{G}(1-q^2)$ d'où $E(Z) = \frac{1}{1-q^2} = \frac{1}{p(1+q)}$ et $V(Z) = \frac{q^2}{(1-q^2)^2}$ d'où $E(T) = E(X_1 + X_2 - Z) = \frac{2}{p} - \frac{1}{p(1+q)} = \frac{1+2q}{p(1+q)}$

(b) $[Z=k] \cup [T=k]$ signifie que le plus petit ou le plus grand de X_1 et de X_2 est égal à k. Comme l'un est le plus petit et l'autre le plus grand, cela signifie que l'un ou l'autre est égal à k. $Conclusion: [Z=k] \cup [T=k] = [X_1=k] \cup [X_2=k]$ et on a aussi $[Z=k] \cap [T=k] = [X_1=k] \cap [X_2=k]$ et comme

$$P([Z = k] \cup [T = k]) = P(Z = k) + P(T = k) - P(T = k, Z = k)$$

= $P(Z = k) + P(T = k) - P(X_1 = k \cap X_2 = k)$

et que

$$P([X_1 = k] \cup [X_2 = k]) = P(X_1 = k) + P(X_2 = k) - P(X_1 = k, X_2 = k)$$

= $2P(X_1 = k) - P(X_1 = k, X_2 = k)$

car X_1 et X_2 ont la même loi, ainsi $P\left(T=k\right)=2P\left(X_1=k\right)-P\left(Z=k\right)$

(c) Les deux séries $\sum_{k\geqslant 1} k^2 P\left(X_1=k\right)$ et $\sum_{k\geqslant 1} k^2 P\left(Z=k\right)$ sont absolument convergentes car X_1 et Z ont une variance, donc $\sum_{k\geqslant 1} k^2 \left(2P\left(X_1=k\right)-P\left(Z=k\right)\right)$ est absolument convergente et par le théorème du transfert T^2 admet une espérance et

$$E(T^{2}) = \sum_{k=1}^{+\infty} k^{2} 2P(X_{1} = k) - \sum_{k=1}^{+\infty} k^{2} P(Z = k)$$

$$= 2E(X_{1}^{2}) - E(Z^{2})$$

$$= 2\left[V(X_{1}) + E(X_{1})^{2}\right] - \left[V(Z) + E(Z)^{2}\right]$$

$$= 2\left[\frac{q}{p^{2}} + \frac{1}{p^{2}}\right] - \left[\frac{q^{2}}{(1 - q^{2})^{2}} + \frac{1}{(1 - q^{2})^{2}}\right]$$

$$= 2\frac{q + 1}{p^{2}} - \frac{q^{2} + 1}{p^{2}(1 + q)^{2}}$$

$$= \frac{2(1 + q)^{2}(q + 1) - q^{2} - 1}{p^{2}(1 + q)^{2}}$$

$$= \frac{2q^{3} + 5q^{2} + 6q + 1}{p^{2}(1 + q)^{2}}$$

et donc

$$\begin{split} V\left(T\right) &= E\left(T^2\right) - E\left(T\right)^2 \\ &= \frac{2q^3 + 5q^2 + 6q + 1}{p^2\left(1 + q\right)^2} - \left(\frac{1 + 2q}{p\left(1 + q\right)}\right)^2 \\ &= \frac{2q^3 + 5q^2 + 6q + 1 - 1 - 4q - 4q^2}{p^2\left(1 + q\right)^2} \\ &= \frac{2q^3 + q^2 + 2q}{p^2\left(1 + q\right)^2} \\ &= \frac{q\left(2q^2 + q + 2\right)}{\left(1 - q^2\right)^2} \end{split}$$

3. (a) Si (j,ℓ) de $(\mathbb{N}^*)^2$ alors $\ell > 0$ et $[Z=j] \cap [T-Z=\ell] = [Z=j] \cap [T=\ell+j]$ avec $\ell+j \neq j$ donc $[Z=j] \cap [T=\ell+j] = ([X_1=j] \cap [X_2=\ell+j]) \cup ([X_2=j] \cap [X_1=\ell+j])$

et par union d'incompatible et intersection d'indépendants.

$$\begin{split} \mathbf{P}\left(Z = j, T - Z = \ell\right) &= \mathbf{P}\left(X_{1} = j\right) \mathbf{P}\left(X_{2} = \ell + j\right) + \mathbf{P}\left(X_{2} = j\right) \mathbf{P}\left(X_{1} = \ell + j\right) \\ &= 2q^{j-1}pq^{\ell+j-1} = 2p^{2}q^{2j+\ell-2} \end{split}$$

(b) — Si k=0, on a $[X_1-X_2=0]=[X_1=X_2]$, d'après la question 1c, on a $P(X_1-X_2=0)=\frac{pq^{|0|}}{1+q}$ — Si k>0, la famille $([X_2=i])_{i\in\mathbb{N}^*}$ est un système complet d'événements, alors par la formule des probabilités totales

$$\begin{split} \mathbf{P}\left(X_{1}-X_{2}=k\right) &= \sum_{i=1}^{+\infty} P\left(X_{1}-X_{2}=k, X_{2}=i\right) \\ &= \sum_{i=1}^{+\infty} P\left(X_{1}=k+i, X_{2}=i\right) \\ &= \sum_{i=1}^{+\infty} \mathbf{P}\left(X_{1}=i+k\right) \mathbf{P}\left(X_{2}=i\right) \text{ Par indépendance} \\ &= \sum_{i=1}^{+\infty} q^{i+k-1} p q^{i-1} p \text{ avec } i+k \geqslant 1 \\ &= q^{k} p^{2} \sum_{i=1}^{+\infty} q^{2(i-1)} \text{ avec } j=i-1 \\ &= q^{k} p^{2} \frac{1}{1-q^{2}} = \frac{q^{k} p}{1+q} = \frac{p q^{|k|}}{1+q} \end{split}$$

— Si k < 0. On a $[X_1 - X_2 = k] = [X_2 - X_1 = -k]$, alors par symétrie

$$P(X_1 - X_2 = k) = p(X_2 - X_1 = -k) = \frac{pq^{-k}}{1+q}$$

On conclut que pour tout $k \in \mathbb{Z}$: $P([X_1 - X_2 = k]) = \frac{pq^{|k|}}{1+a}$

(c) On a
$$|X_1 - X_2|$$
 (Ω) = \mathbb{N} et pour tout $k \in \mathbb{N}$
— Si $k = 0$, P ($|X_1 - X_2| = 0$) = $\frac{p}{1+q}$
— Si $k > 0$, on a $[|X_1 - X_2| = k] = [X_1 - X_2 = k] \cup [X_1 - X_2 = -k]$ incompatibles et

$$P(|X_1 - X_2| = k) = 2\frac{pq^k}{1+q}$$

(d) Soit
$$j \in Z(\Omega) = \mathbb{N}^*$$
 et $\ell \in (T - Z)(\Omega) = |X_1 - X_2|(\Omega) = \mathbb{N}$
— Si $\ell = 0$, on a

$$P(Z = i, T - Z = 0) = P(Z = i, T = i)$$

= $P(X_1 = i, X_2 = i)$
= $(1 - q)^{2i-2}p^2$

D'autre part $P(Z=i)P(T-Z=0) = (1-q^2) q^{2(i-1)} \frac{pq}{1+q} = (1-q)^{2i-2} p^2$

— Si $\ell \geqslant 1$, on a vu, d'après la question 3a, que $P\left(Z=j, T-Z=\ell\right)=2p^2q^{2j+\ell-2}.$ D'autre part

$$P(Z = j) P(T - Z = \ell) = P(Z = j) P(|X_1 - X_2| = \ell)$$

$$= q^{2(j-1)} (1 - q^2) 2 \frac{pq^{\ell}}{1 + q}$$

$$= 2q^{2j}q^{-2} (1 + q) (1 - q) \frac{pq^{\ell}}{1 + q}$$

$$= P(Z = j \cap T - Z = \ell)$$

On conclut Z et T-Z sont indépendantes.

- 4. (a) Comme Z et T-Z sont indépendantes, leur covariance est nulle. Et comme $\operatorname{cov}(Z,T-Z)=\operatorname{cov}(Z,T)-\operatorname{cov}(Z,Z)=\operatorname{cov}(Z,T)+V(Z)$ alors $\operatorname{cov}(Z,T)=-V(Z)\neq 0$ et T et Z ne sont pas indépendantes.
 - (b) On a

$$\begin{split} \rho &= \frac{\text{cov}\left(Z, T\right)}{\sqrt{V\left(T\right)V\left(Z\right)}} = -\sqrt{\frac{V\left(Z\right)}{V\left(T\right)}} \\ &= -\sqrt{\frac{\frac{q^{2}}{(1-q^{2})^{2}}}{\frac{q(2q^{2}+q+2)}{(1-q^{2})^{2}}}} = -\sqrt{\frac{q}{2q^{2}+q+2}} \end{split}$$

- (c) Pour $(i, j) \in \mathbb{N}^*$
 - Si i > j alors $(Z = i \cap T = j) = \emptyset$ donc $P(Z = i \cap T = j) = 0$
 - Si i = j alors $(Z = i \cap T = i) = (X_1 = i \cap X_2 = i)$ et $P(Z = i \cap T = i) = q^{2i-2}p^2$
 - Si i < j alors $(Z = i \cap T = j) = (X_1 = i \cap X_2 = j) \cup (X_1 = j \cap X_2 = i)$ (incompatibilité, puis indépendance)

$$P(Z = i \cap T = j) = 2q^{i+j-2}p^2$$

- (d) Soit $k \in \mathbb{N}^*$, on a
 - Si k < j, alors $P_{Z=j}(T=k) = 0$
 - Si j = k alors

$$P_{Z=j}(T=j) = \frac{P(Z=j \cap T=j)}{P(Z=j)}$$
$$= \frac{q^{2(j-1)}p^2}{q^{2(j-1)}(1-q^2)}$$
$$= \frac{p^2}{1-q^2} = \frac{p}{1+q}$$

— Si
$$j < k$$

$$P_{Z=j}(T=k) = \frac{P(Z=j \cap T=k)}{P(Z=j)}$$
$$= \frac{2q^{2(j+k-2)}p^2}{q^{2(j-1)}(1-q^2)}$$
$$= \frac{2q^{2k-2}p}{1+q}$$

(e) On suppose qu'il existe une variable aléatoire D_j à valeur dans \mathbb{N}^* , dont la loi de probabilité est la loi conditionnelle de T sachant l'évènement [Z=j].

On a donc
$$P(D_j = k) = \begin{cases} 0 & \text{si } k < j \\ \frac{p}{1+q} & \text{si } k = j \\ \frac{2q^{2k-2}p}{1+q} & \text{si } k > j \end{cases}$$

On a $kP(D_j = k) \sim k \frac{2q^{2k-2}p}{1+q}$ et la série $\sum_{k\geqslant 1} kq^{2k-2}$ est entière en q^2 de rayon de convergence 1, donc la

série à termes positifs $\sum_{i \in J} kP(D_j = k)$ est convergente, alors D_j admet une espérance

$$\begin{split} E\left(D_{j}\right) &= \sum_{k=j}^{+\infty} k P\left(D_{j} = k\right) \\ &= j \frac{p}{1+q} + \sum_{k=j+1}^{+\infty} k \frac{2q^{2k-2}p}{1+q} \\ &= j \frac{p}{1+q} + \frac{2pq^{2j}}{1+q} \sum_{k=j+1}^{+\infty} kq^{2(k-j-1)} \\ &= j \frac{p}{1+q} + \frac{2pq^{2j}}{1+q} \sum_{r=1}^{+\infty} (r+j) \, q^{2(r-1)} \\ &= j \frac{p}{1+q} + \frac{2pq^{2j}}{1+q} \left[\sum_{r=1}^{+\infty} rq^{2(r-1)} + \sum_{r=1}^{+\infty} jq^{2(r-1)} \right] \\ &= j \frac{p}{1+q} + \frac{2pq^{2j}}{1+q} \left[\frac{1}{(1-q^{2})^{2}} + \frac{j}{1-q^{2}} \right] \\ &= j \frac{p}{1+q} + \frac{2pq^{2j}}{1+q} \frac{1+j\left(1-q^{2}\right)}{(1-q^{2})^{2}} \end{split}$$

Partie II: Loi exponentielle

5. (a) Comme
$$X_1 \hookrightarrow \varepsilon(\lambda)$$
 on a $V(X_1) = \frac{1}{\lambda^2}$ et $P([X_1 \leqslant x]) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - e^{\lambda x} & \text{si } x \geqslant 0 \end{cases}$

(b) On a donc
$$E(X_1 + X_2) = E(X_1) + E(X_1) = \frac{2}{\lambda}$$

et $V(X_1 + X_2) = V(X_1) + V(X_2) = \frac{2}{\lambda^2}$ par indépendance.
et de même, $E(Y) = E(X_1 - X_2) = 0$ et $V(Y) = V(X_1) + (-1)^2 V(X_2) = 0$

et de même,
$$E(Y) = E(X_1 - X_2) = 0$$
 et $V(Y) = V(X_1) + (-1)^2 V(X_2) = \frac{2}{\lambda^2}$.

6. F_Z est la fonction de répartition de Z.

Pour tout $z \in \mathbb{R}$, $(Z \leq z) = (\min(X_1, X_2) \leq z)$ n'est pas simple à traduire. $(Z > z) = (\min(X_1, X_2) > z) = ([X_1 > z] \cap [X_2 > z])$ indépendants donc

$$\begin{split} F_Z\left(z\right) &= \mathbf{P}\left(Z\leqslant z\right) = 1 - \mathbf{P}\left(\min\left(X_1, X_2\right) > z\right) \\ &= 1 - \mathbf{P}\left(X_1 > z\right)\mathbf{P}\left(X_2 > z\right) \text{ par indépendance} \\ &= \left\{ \begin{array}{ll} 1 - \left(e^{-\lambda z}\right)^2 & \text{si } z \geqslant 0 \\ 0 & \text{si } z < 0 \end{array} \right. \end{split}$$

et comme $1 - (e^{-\lambda z})^2 = 1 - e^{-2\lambda z}$, on reconnaît la fonction de répartition de $\varepsilon(2\lambda)$

On conclut que
$$Z \hookrightarrow \varepsilon(2\lambda)$$
, $E(Z) = \frac{1}{2\lambda}$ et $V(Z) = \frac{1}{4\lambda^2}$

7. (a) $[T \leqslant t] = [\max(X_1, X_2) \leqslant t] = ([X_1 \leqslant t] \cap [X_2 \leqslant t])$ indépendants donc

$$F_T(t) = P(X_1 \leqslant t) P(X_2 \leqslant t) \text{ par indépendance}$$

$$= \begin{cases} (1 - e^{-\lambda t})^2 & \text{si } t \geqslant 0\\ 0 & \text{si } t < 0 \end{cases}$$

La fonction F_T est continue sur $]-\infty,0[$ (fonction nulle) et sur $[0,+\infty[$

En $0^{-}:F_{T}\left(t\right)=0\rightarrow0=F_{T}\left(0\right)$ donc F_{T} est continue sur \mathbb{R} et C^{1} sur \mathbb{R}^{*} donc T est à densité et une densité de T est $f_T(t) = \begin{cases} 2\lambda e^{-\lambda t} \left(1 - e^{-\lambda t}\right) & \text{si } t > 0 \\ 0 & \text{si } t \leqslant 0 \end{cases}$

- (b) L'application $t \mapsto t^2 f_T(t)$ est continue sur \mathbb{R}
 - En $-\infty$, la fonction est nulle, donc elle est intégrable
 - En $+\infty$, on a $t^2 f_T(t) \sim 2\lambda t^2 e^{-\lambda t} = o\left(\frac{1}{t^2}\right)$. La fonction est donc intégrable en $+\infty$

T admet un moment d'ordre 2, puis elle admet une espérance et une variance

— Le calcul de l'espérance

$$E(T) = \int_{-\infty}^{+\infty} t f_T(t) dt$$

$$= \int_{0}^{+\infty} t 2\lambda e^{-\lambda t} (1 - e^{-\lambda t}) dt$$

$$= \left(2 \int_{0}^{+\infty} t \lambda e^{-\lambda t} dt - \int_{0}^{+\infty} t 2\lambda e^{-2\lambda t} dt\right)$$

$$= \frac{2}{\lambda} - \frac{1}{2\lambda} = \frac{3}{2\lambda}$$

— La formule de Huygens donne $V(T) = E(T^2) - E(T)^2$, on calcule avant $E(T^2)$. On a

$$E(T^{2}) = \int_{-\infty}^{+\infty} t^{2} f_{T}(t) dt$$

$$= \int_{0}^{+\infty} t^{2} f_{T}(t) dt$$

$$= \int_{0}^{+\infty} t^{2} 2\lambda e^{-\lambda t} \left(1 - e^{-\lambda t}\right) dt$$

$$= \left(2 \int_{0}^{+\infty} t^{2} \lambda e^{-\lambda t} dt - \int_{0}^{+\infty} t^{2} 2\lambda e^{-2\lambda t} dt\right)$$

$$\to \frac{4}{\lambda^{2}} - \frac{2}{4\lambda^{2}} = \frac{7}{2\lambda^{2}} \text{ quand } M \to +\infty$$

Donc T^2 a une espérance et $E\left(T^2\right)=\frac{7}{2\lambda^2}$ donc T a une variance et

Conclusion:
$$V(T) = \frac{7}{2\lambda^2} - \frac{9}{4\lambda^2} = \frac{5}{4\lambda^2}$$

N.B. cela permet de valider la loi de T

Ou bien, en suivant le conseil donné, avec le changement de variable $x=\lambda t$ ou plus simplement $t=x/\lambda$ $dt=dt/\lambda$ et t=0 pour x=0 et t=M pour $x=\lambda M$

$$\int_0^M t\lambda e^{-\lambda t} dt = \int_0^{\lambda M} \frac{x}{\lambda} e^{-x} dx$$
$$\to \frac{1}{\lambda} \int_0^{+\infty} x e^{-x} dx = \frac{1}{\lambda} I_1 = \frac{1}{\lambda}$$

8. On a $X_1 + X_2 = Z + T$ et comme $V(X_1 + X_2) = V(X_1) + V(X_2)$ par indépendance, et que $V(Z + T) = V(Z) + V(T) + 2 \operatorname{cov}(Z, T)$ (admis) alors

$$cov (Z,T) = \frac{1}{2} [V (Z + T) - V (Z) - V (T)]$$

$$= \frac{1}{2} [V (X_1) + V (X_2) - V (Z) - V (T)]$$

$$= \frac{1}{2} \left[\frac{2}{\lambda^2} - \frac{1}{4\lambda^2} - \frac{5}{4\lambda^2} \right]$$

$$= \frac{1}{4\lambda^2}$$

et donc, le coefficient de corrélation linéaire est :

$$\begin{split} r &= \frac{\operatorname{cov}\left(Z,T\right)}{\sqrt{V\left(Z\right)V\left(T\right)}} \\ &= \frac{\frac{1}{4\lambda^2}}{\sqrt{\frac{1}{4\lambda^2}\frac{5}{4\lambda^2}}} \\ &= \frac{1}{\sqrt{5}} \end{split}$$

9. (a) Pour tout $x \in \mathbb{R}$:

$$F_{-X_{2}}\left(x\right)=\mathbf{P}\left(-X_{2}\leqslant x\right)=\mathbf{P}\left(X_{2}\geqslant -x\right)=\left\{\begin{array}{ll}e^{\lambda x} & \mathrm{si}\ x\leqslant 0\\ 1 & \mathrm{si}\ x>0\end{array}\right.$$

Cette fonction est continue sur $]-\infty,0]$ et $]0,+\infty[$ et en $0^+:F_{-X_2}(x)=1\to 1=F(0)$ et elle est C^1 sur \mathbb{R}^* Donc $-X_2$ est bien à densité et une densité est $f_{-X_2}(x)=\begin{cases} \lambda e^{\lambda x} & \text{si } x\leqslant 0\\ 0 & \text{si } x>0 \end{cases}$

(b)
$$\underline{\text{Si } y \geqslant 0}$$
 on a $f_{-X_2}\left(y-t\right) = \left\{ \begin{array}{cc} \lambda e^{\lambda(y-t)} & \text{si } t \geqslant y \\ 0 & \text{si } t < y \end{array} \right.$ donc, pour $t \geqslant y$:

$$f_{X_1}(t) f_{-X_2}(y-t) = \lambda e^{\lambda(y-t)} \lambda e^{-\lambda t}$$
$$= \lambda^2 e^{\lambda y} e^{-2\lambda t}$$

donc

$$\begin{split} \int_{y}^{M} f_{X_{1}}\left(t\right) f_{-X_{2}}\left(y-t\right) dt &= \lambda^{2} e^{\lambda y} \int_{y}^{M} e^{-2\lambda t} dt \\ &= \lambda^{2} e^{\lambda y} \frac{1}{-2\lambda} \left[e^{-2\lambda M} - e^{-2\lambda y}\right] \\ &\rightarrow \frac{\lambda}{2} e^{-\lambda y} \text{ quand } \rightarrow +\infty \end{split}$$

Donc, pour $y \geqslant 0$: $\int_{-\infty}^{+\infty} f_{X_1}\left(t\right) f_{-X_2}\left(y-t\right) dt$ converge et vaut $\frac{\lambda}{2} e^{-\lambda y} = \frac{\lambda}{2} e^{-\lambda |y|}$

$$\frac{\text{Pour } y < 0}{\text{Pour } t}: f_{-X_2}(y - t) = \begin{cases} \lambda e^{\lambda(y - t)} & \text{si } t \geqslant y \\ 0 & \text{si } t < y \end{cases}$$

$$\text{donc } f_{X_1}(t) f_{-X_2}(y - t) \begin{cases} \lambda^2 e^{\lambda y} e^{-2\lambda t} & \text{si } t \geqslant 0 \\ 0 & \text{si } t < 0 \end{cases} \text{ et}$$

$$\int_{0}^{+\infty} f_{X_{1}}(t) f_{-X_{2}}(y-t) dt = \lambda^{2} e^{\lambda y} \int_{0}^{+\infty} e^{-2\lambda t} dt$$
$$= \lambda^{2} e^{\lambda y} \frac{1}{2\lambda}$$
$$= \frac{\lambda}{2} e^{\lambda y} = \frac{\lambda}{2} e^{-\lambda|y|}$$

et donc $\int_{-\infty}^{+\infty}f_{X_{1}}\left(t\right)f_{-X_{2}}\left(y-t\right)dt$ converge et vaut $\frac{\lambda}{2}e^{-\lambda\left|y\right|}$

Conclusion : pour tout réel y, l'intégrale $\int_{-\infty}^{+\infty} f_{X_1}\left(t\right) f_{-X_2}\left(y-t\right) dt$ est convergente et vaut $\frac{\lambda}{2}e^{-\lambda|y|}$

(c) On détermine la fonction de répartition $F_{|Y|}$:

Pour tout $y < 0 : \mathbf{P}\left(|Y| \leqslant y\right) = 0$ (événement impossible)

et pour
$$y \ge 0$$
: $P(|Y| \le y) = P(-y \le Y \le y) = F_Y(y) - F_Y(-y) \operatorname{car} -y \le y$.

Comme Y est à densité, F_Y est continue et C^1 sur \mathbb{R} (car f_Y est continue sur \mathbb{R}), alors $F_{|Y|}$ est continue sur $]-\infty,0[$ et sur $[0,+\infty[$

De plus $F_{|Y|}\left(0\right)=F_{Y}\left(0\right)-F_{Y}\left(0\right)=0$ et pour y<0 : $F_{|Y|}\left(y\right)=0 \rightarrow 0=F_{|Y|}\left(0\right)$ donc $F_{|Y|}$ est continue sur \mathbb{R}

Donc |Y| est bien à densité et une densité est

$$f_{|Y|}(y) = F'_{|Y|}(y) = \begin{cases} 0 & \text{si } y < 0 \\ f_{Y}(y) + f_{Y}(-y) = \frac{\lambda}{2} e^{-\lambda|y|} + \frac{\lambda}{2} e^{-\lambda|-y|} = \lambda e^{-\lambda y} & \text{si } y > 0 \end{cases}$$

$$Conclusion: |Y| \hookrightarrow \varepsilon(\lambda)$$

Partie III: Convergences

10. On a
$$E(S_n) = \sum_{k=1}^n E(X_k) = n/\lambda$$
, et $V(S_n) = \sum_{k=1}^n V(X_k) = n/\lambda^2$ par indépendance. $E(J_n) = \lambda E(S_n) = n$ et $V(J_n) = \lambda^2 V(S_n) = n$

- 11. Par récurrence sur $n \in \mathbb{R}^*$, on montre que la densité f_{J_n} de J_n est donnée par $f_{J_n}(x) = \begin{cases} \frac{e^{-x}x^{n-1}}{(n-1)!} & \text{si } x > 0 \\ 0 & \text{si } x \leqslant 0 \end{cases}$.
 - (a) Soit $n \ge 3$. Sous réserve d'absolue convergence (ssi convergence simple car tout est positif),

$$E\left(\frac{1}{J_n}\right) = \int_0^{+\infty} \frac{1}{x} \frac{e^{-x}x^{n-1}}{(n-1)!} dx$$

$$= \int_0^{+\infty} \frac{e^{-x}x^{n-2}}{(n-1)!} dx$$

$$= \frac{1}{(n-1)!} I_{n-2} \text{ converge car } n-2 \in \mathbb{N}$$

$$= \frac{(n-2)!}{(n-1)!}$$

$$= \frac{1}{n-1}$$

Et de même

$$\begin{split} E\left(\frac{1}{J_n^2}\right) &= \int_0^{+\infty} \frac{1}{x^2} \frac{e^{-x}x^{n-1}}{(n-1)!} dx \\ &= \int_0^{+\infty} \frac{e^{-x}x^{n-3}}{(n-1)!} dx \\ &= \frac{1}{(n-1)!} I_{n-3} \text{ converge car } n-3 \in \mathbb{N} \\ &= \frac{(n-3)!}{(n-1)!} \\ &= \frac{1}{(n-1)(n-2)} \end{split}$$

Conclusion:
$$E\left(\frac{1}{J_n}\right)$$
 et $E\left(\frac{1}{J_n^2}\right)$ existent et $E\left(\frac{1}{J_n}\right) = \frac{1}{n-1}$ et $E\left(\frac{1}{J_n^2}\right) = \frac{1}{(n-1)(n-2)}$

- 12. (a) Etant donné une suite de variables aléatoires (X_n) indépendantes, de même loi et de variance non nulle, alors la somme centrée réduite des n premiers converge en loi vers $\mathcal{N}(0,1)$.
 - C'est à dire que la fonction de répartition de la somme centrée réduite tends vers Φ .

$$S_n = \sum_{k=1}^n X_k$$
 a pour espérance n/λ et pour variance n/λ^2 .

Les $(X_k)_{k\in\mathbb{N}}$ sont indépendantes et ont une variance non nulle. Donc la centrée réduite $\frac{S_n-\frac{n}{\lambda}}{\frac{\sqrt{n}}{\lambda}}=N_n$ converge en loi vers la loi normale centrée réduite.

(b) Donc, pour n assez grand, $P(-u_{\alpha} \leq N_n \leq u_{\alpha}) \simeq \Phi(u_{\alpha}) - \Phi(-u_{\alpha}) \operatorname{car} - u_{\alpha} \leq u_{\alpha} \operatorname{et} \operatorname{comme} \Phi(u_{\alpha}) = 1 - \frac{\alpha}{2} \operatorname{et} \operatorname{que} \Phi(-u_{\alpha}) = 1 - \Phi(u_{\alpha}) = \frac{\alpha}{2} \operatorname{et} \operatorname{que}$

Conclusion: $P(-u_{\alpha} \leqslant N_n \leqslant u_{\alpha}) \simeq 1 - \alpha$

13. On pose pour tout n de \mathbb{N}^* : $T_n = \max(X_1, X_2, ..., X_n)$.

Pour tout n de \mathbb{N}^* , pour tout réel x positif ou nul, on pose : $g_n(x) = \int_0^x F_{T_n}(t) dt$ et $h_n(x) = \int_0^x t f_{T_n}(t) dt$

(a)
$$h_n(x) = \int_0^x t f_{T_n}(t) dt$$

Donc

On l'intègre par parties pour faire apparaı̂tre $\int_0^x F_{T_n}(t) dt$: Soit $u'(t) = f_{T_n}(t) : u(t) = F_{T_n}(t)$ et v(t) = t : v'(t) = 1v est C^1 et u est C^1 sur \mathbb{R}^+ car la densité f_{T_n} est continue sur \mathbb{R}^+ .

$$\int_{0}^{x} t f_{T_{n}}(t) dt = [tF_{T_{n}}(t)]_{0}^{x} - \int_{0}^{x} F_{T_{n}}(t) dt$$
$$= xF_{T_{n}}(x) - q_{n}(x)$$

Conclusion: $h_{n}(x) = xF_{T_{n}}(x) - g_{n}(x)$

(b) Pour tout $t \in \mathbb{R}$: $(T_n \leq t) = \max(X_1, X_2, ..., X_n) = \bigcap_{i=1}^n (X_i \leq t)$ indépendants donc

$$\begin{split} F_{T_n}\left(t\right) &= \prod_{i=1}^n \mathbf{P}\left(X_i \leqslant t\right) = \left[F_X\left(t\right)\right]^n \\ \mathbf{P}\left(T_n \leqslant t\right) &= \int_{-\infty}^t f_{T_n}\left(x\right) dx = 0 \text{ si } t \leqslant 0 \\ \text{et si } t \geqslant 0 : \int_{-\infty}^t f_{T_n}\left(x\right) dx = \int_{-\infty}^0 0 dx + \int_0^t e^{-x} dx = \left[-e^{-x}\right]_0^t = 1 - e^{-t} \\ Conclusion : \begin{bmatrix} 0 & \text{si } t < 0 \\ \left(1 - e^{-t}\right)^n & \text{si } t \geqslant 0 \end{bmatrix} \end{split}$$

Soit $n \ge 2$ (pour avoir $n-1 \in \mathbb{N}^*$)

$$g_{n-1}(x) - g_n(x) = \int_0^x \left(F_{T_{n-1}}(t) - F_{T_n}(t) \right) dt$$

$$= \int_0^x \left(\left(1 - e^{-t} \right)^{n-1} - \left(1 - e^{-t} \right)^n \right) dt$$

$$= \int_0^x \left(1 - e^{-t} \right)^{n-1} e^{-t} dt \text{ à la volée} :$$

$$= \left[\frac{1}{n} \left(1 - e^{-t} \right)^n \right]_0^x$$

$$= \frac{1}{n} \left(1 - e^{-x} \right)^n - 0$$

Conclusion: Pour $n \ge 2$: $g_{n-1}(x) - g_n(x) = \frac{1}{n} F_{T_n}(x)$

(c) On a donc pour $n \ge 2$: $g_n(x) = g_{n-1}(x) - \frac{1}{n} F_{T_n}(x)$ et par récurrence :

$$g_n(x) = -\frac{1}{n} F_{T_n}(x) - \frac{1}{n-1} F_{T_{n-1}}(x) \cdots - \frac{1}{2} F_{T_2}(x) + g_1(x)$$

et comme

$$g_1(x) = \int_0^x F_{T_1}(t) dt = \int_0^x 1 - e^{-t} dt = [t + e^{-t}]_0^x$$
$$= x + e^{-x} - 1$$
$$= x - \frac{1}{1} F_{T_1}(x)$$

Conclusion:
$$g_n(x) = x - \frac{1}{n} F_{T_n}(x) - \frac{1}{n-1} F_{T_{n-1}}(x) \cdots - \frac{1}{2} F_{T_2}(x) - \frac{1}{1} F_{T_1}(x)$$

- (d) Pour $x \ge 0$: $F_{T_n}(x) 1 = (1 e^{-x})^n 1$ Comme $-e^{-x} \to 0$ quand $x \to +\infty$ et que $(1 + x)^{\alpha} - 1 \sim \alpha x$ quand $x \to 0$ alors $(\alpha = n)$ Conclusion: $F_{T_n}(x) - 1 \sim -ne^{-x}$ quand $x \to +\infty$
- (e) T_n a une espérance si $\int_0^x t f_{T_n}(t) dt = x F_{T_n}(x) g_n(x)$ a une limite finie quand $x \to +\infty$ Astuce: On réécrit $x F_{T_n}(x) - g_n(x) = x (F_{T_n}(x) - 1) + x - g_n(x)$ pour faire apparaître la quantité dont on a un équivalent.

Or $x(F_{T_n}(x)-1) \sim -nxe^{-x} \to 0$ car $x = o(e^x)$ quand $x \to +\infty$ donc $x(F_{T_n}(x)-1) \to 0$.

D'autre part, toute fonction de répartition tend vers 1 en $+\infty$ donc

$$x - g_n(x) = \frac{1}{n} F_{T_n}(x) + \frac{1}{n-1} F_{T_{n-1}}(x) \dots + \frac{1}{2} F_{T_2}(x) + \frac{1}{1} F_{T_1}(x)$$

$$\to \sum_{k=1}^n \frac{1}{k} \text{ quand } x \to +\infty$$

Conclusion : T_n a une espérance et $E(T_n) = \sum_{k=1}^n \frac{1}{k}$

14. (a) Pour tout x réel :

$$F_{G_n}(x) = P(G_n \leqslant x) = P(T_n \leqslant x + E(T_n))$$
$$= F_{T_n}(x + E(T_n))$$

avec $x + E(T_n) = x + \gamma_n + \ln(n)$

Et comme $E(T_n) \to +\infty$ quand $n \to +\infty$, pour n suffisamment grand on aura $E(T_n) - x \ge 0$ et donc $F_{T_n}(\cdots) = (1 - e^{-\cdots})^n$

$$F_{T_n}\left(x + E\left(T_n\right)\right) = \left(1 - e^{-(x + \gamma_n + \ln(n))}\right)^n$$
$$= \left(1 - e^{-\ln(n)}e^{-(x + \gamma_n)}\right)^n$$

Conclusion: pour tout x réel et n assez grand, on a : $F_{G_n}(x) = \left(1 - \frac{1}{n}e^{-(x+\gamma_n)}\right)^n.$

(b) On a une forme indéterminée 1^∞ qu'il faut résoudre :

$$\left(1 - \frac{1}{n}e^{-(x+\gamma_n)}\right)^n = \exp\left[n\ln\left(1 - \frac{1}{n}e^{-(x+\gamma_n)}\right)\right]$$

Comme $e^{-(x+\gamma_n)} \to e^{-(x+\gamma)}$ et que $-\frac{1}{n}e^{-(x+\gamma_n)} \to 0$ alors

$$\ln\left(1 - \frac{1}{n}e^{-(x+\gamma_n)}\right) \sim -\frac{1}{n}e^{-(x+\gamma_n)} \text{ et}$$

$$\left[n\ln\left(1 - \frac{1}{n}e^{-(x+\gamma_n)}\right)\right] \sim -e^{-(x+\gamma_n)} \to -e^{-(x+\gamma)} \text{ donc}$$

$$\left(1 - \frac{1}{n}e^{-(x+\gamma_n)}\right)^n \to \exp\left[-e^{-(x+\gamma)}\right]$$

Et comme $n \to +\infty$, il sera "suffisamment grand" et

Conclusion:
$$F_{G_n}(x) \to \exp\left[-e^{-(x+\gamma)}\right]$$
 quand $n \to +\infty$

(c) Pour tout x réel, $F_G(x) = \exp\left[-e^{-(x+\gamma)}\right]$

 F_G est continue et C^1 sur \mathbb{R}

En
$$-\infty: -e^{-(x+\gamma)} \to -\infty$$
 donc $F_G(x) \to 0$

En
$$-\infty: -e^{-(x+\gamma)} \to 0$$
 et $F_G(x) \to 1$

Enfin , F_G est croissante sur \mathbb{R} . (composée de deux fonctions décroissantes sur \mathbb{R} ou par $F'_G(x)$ $\exp\left[-e^{-(x+\gamma)}\right] \times -e^{-(x+\gamma)} \times -1 > 0$)

Conclusion :
$$F_G$$
 est la fonction de répartition d'une variable à densité G et $(G_n)_{n\in\mathbb{N}^*}$ converge en loi vers la loi de G

15. Soit X une variable aléatoire à densité de fonction de répartition F_X strictement croissante.

Pour tout
$$x$$
 réel, $(Y \leqslant x) = (F_X(X) \leqslant x)$

Comme F_X est continue sur $\mathbb R$ (variable à densité) et qu'elle est strictement croissante, elle est bijective de $\mathbb R$ sur]0,1[et admet une réciproque.

— Si
$$x \leq 0$$
: $(Y \leq x) = \emptyset$ et $F_Y(x) = 0$

— Si
$$x \geqslant 1$$
: $(Y \leqslant x) = \Omega$ et $F_Y(x) = 1$

— Si
$$x \in]0,1[:(Y \leqslant x) = (X \leqslant F_X^{-1}(x)) \text{ donc } F_Y(x) = F_X(F_X^{-1}(x)) = x$$

et on reconnaît la fonction de répartition de la loi uniforme sur [0,1]

Conclusion :
$$Y \hookrightarrow \mathcal{U}_{[0,1]}$$