

# 个人信息

❖ 讲授教师:白刚

❖ 办公地点: 计算机学院564室

❖ 接待时间: 每周三11:30~12:30

❖ 电子邮箱: <u>baigang@nankai.edu.cn</u>

❖ 信息发布: <a href="http://cyber.nankai.edu.cn">http://cyber.nankai.edu.cn</a>

◆ 授课讲稿

◆ 课后作业

◆ 阅读文献

南开大学网络空间安全学院 计算机学院

#### 课程信息

- ❖ 教学相长: 教与学的"交互与协同"
  - ◆ 《礼记·学记》: 学然后知不足, 教然后知困。知不足, 然后能自反也; 知困, 然后能自强也。故曰教学相长也。
- ❖ 学问: 学与问的"化学反应"
- \* 前导课程
  - ◆ 高等数学
  - ◆ 线性代数
  - ◆ 概率与统计
  - ◆ 程序设计
  - ◆ 算法

南开大学网络空间安全学院 计算机学院

3

# 课程成绩

- ❖ 课程成绩:课程作业(60%) +课程项目(40%)
- \* 课程作业
  - ◆ 问题描述
  - ◆ 基本思路
  - ◆ 算法
  - ◆ 结果与分析
- ❖ 课程项目
  - ◆ 课堂报告
  - ◆ 研究报告
  - ◆ 研究成果

南开大学网络空间安全学院 计算机学院

#### 课程作业

❖ 问题描述: 10%

❖ 基本思路: 15%

❖ 算法: 35%

◆ 算法描述

◆ 算法实现 (源代码)

❖ 结果与分析: 40%

◆ 实验步骤

◆ 实验结果

◆ 结果分析

南开大学网络空间安全学院 计算机学院

\_

# 课程作业

- ❖ 独立完成,鼓励讨论,严禁抄袭。
- ❖ 按时完成且提交,迟交作业按零分计算。

❖ 文档格式: DOCX 或 PDF

❖ 编程语言: python

❖ 提交文件名称: 学号(作业序号), 如: 123456(1)

❖ 提交文件格式: RAR 压缩文件格式

南开大学网络空间安全学院 计算机学院

#### 课程项目

❖ 课堂报告: 20%

◆ 总体思路

◆ 特征描述

◆ 模型描述

◆ 实验设计

❖ 研究报告: 60%

◆ 问题提出

◆ 现状及分析

◆ 主要原理

◆ 算法描述

◆ 实验结果与分析

❖ 项目成果: 20%

南开大学网络空间安全学院 计算机学院

7

#### 课程项目

❖ 按时完成并提交全部内容

❖ 提交文档格式: DOCX 或 PDF

❖ 编程语言: python

❖ 提交文件名称: 学号1+学号2+学号3

❖ 提交文件格式: RAR 压缩文件格式

❖ 加分因素: 公开发表

❖ 完成形式: 2~5人小组(具体人数视选课人数确定)

南开大学网络空间安全学院 计算机学院

#### 参考书目

- Richard O. Duba, Peter E. Hart and David G. Stork, Pattern Classification, 2nd Edition, John Wiley, 2001.
- Sergios Theodoridis and Konstantinos Koutroumbas, Pattern Recognition, 4th Edition, Elsevier Science, 2009.

南开大学网络空间安全学院 计算机学院

0

#### 学术期刊

- Artificial Intelligence
- IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI)
- Journal of Machine Learning Research
- International Journal of Computer Vision
- Pattern Recognition
- 中国图形图像学报
- ❖ 模式识别与人工智能
- ❖ 自动化学报

南开大学网络空间安全学院 计算机学院

#### 学术会议

- IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
- ❖ IEEE International Conference on Computer Vision (ICCV)
- International Conference on Machine Learning (ICML)
- International Conference on Pattern Recognition (ICPR)
- Annual Conference on Neural Information Processing Systems (NeurIPS)
- European Conference on Computer Vision (ECCV)

南开大学网络空间安全学院 计算机学院

11

# Any question?

南开大学网络空间安全学院 计算机学院

#### 什么是模式识别?

- Pattern recognition is the scientific discipline whose goal is the classification of object into a number of categories of classes. —— Sergios Theodoridis
- The assignment of a physical object or event to one of several pre-specified categories. Duba and Hart
- A problem of estimating density function in a highdimensional *space* and dividing the space into the regions of *categories* or *classes*. —— Fukunaga

南开大学网络空间安全学院 计算机学院

13

#### 什么是模式识别?

- Given some examples of complex signals and the correct decisions for them, make decisions automatically for a stream of future examples. —— Ripley
- \* The process of giving *names*  $\omega$  to *observations* x. ——Schurmann
- Pattern Recognition is concerned with answering the question "What is this?" Morse
- The science that concerns the description or classification (recognition) of measurements. —— Schalkoff

南开大学网络空间安全学院 计算机学院

#### 模式识别

- ❖ 求解: y = f(x)
  - ◆ 特征空间
  - ◆ 分类器模型
  - ◆ 性能评估
- ❖ 概念:分类与回归

◆ 分类: 输出为 "有限数目的离散类别"◆ 回归: 输出为 "一个或多个连续变量"

南开大学网络空间安全学院 计算机学院

15

#### 主要应用

- ❖ 视觉目标的检测与识别(Detection and Recognition)
- ❖ 字符识别(Character recognition)
- ❖ 计算机辅助诊断(Computer-aided diagnosis)
- ❖ 语音识别(Speech recognition)
- ❖ 自然语言处理(Natural Language Processing)
- ❖ 数据挖掘与知识发现(Data Mining and Knowledge discovery)

南开大学网络空间安全学院 计算机学院

| Problem Domain                | Application                                                   | Input Patterns                        | Pattern Classes                                     |  |
|-------------------------------|---------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|--|
| Bioinformaties                | Sequence analysis                                             | DNA/Protein sequence                  | Known types of genes                                |  |
| Data mining                   | Searching for<br>meaningful patterns                          | Points in multi-<br>dimensional space | Compact and well-<br>separated clusters             |  |
| Document classification       | Internet search                                               | Text document                         | Semantic categories                                 |  |
| Document image<br>analysis    | Reading machine for<br>the blind                              | Document image                        | Alphanumeric characters, words                      |  |
| Industrial automation         | Printed circuit board inspection                              | Intensity or range<br>image           | Defective / non-<br>defective nature of<br>product  |  |
| Multimedia database retrieval | Internet search                                               | Video clip                            | Video genres                                        |  |
| Biometric recognition         | Personal identification                                       | Face, iris, fingerprint               | Authorized users for<br>access control              |  |
| Remote sensing                | Forecasting crop<br>yield                                     | Multispectral image                   | Lands use categories,<br>growth pattern of<br>crops |  |
| Speech recognition            | Telephone directory<br>enquiry without<br>operator assistance | Speech waveform                       | Spoken words                                        |  |
| Information filtering         | Spam detection                                                | E-mail message                        | Spam/non-spam                                       |  |
| Computer security             | Intrusion detection system                                    | Network traffic                       | Intrusive/normal                                    |  |







#### 模式识别系统设计

❖ 问题:基于数字图像的鱼类分检

❖ 方案:

◆ 图像预处理:对原始图像数据进行预处理

◆ 图像分割: 从输入图像中分离出每条鱼的图像◆ 特征抽取: 从每条鱼的图像中抽取模式特征

◆ 特征分类: 根据模式特征确定每条鱼所属的类别

◆ 鱼类分检:根据每条鱼的类别控制分检装置

南开大学网络空间安全学院 计算机学院

21

#### 设计分类模型

收集数据:获得包含待分类模式的图像











❖ 预处理:从背景中分离出每条鱼的图像



- ❖ 抽取特征: 从每条鱼的图像中抽取描述不同鱼种间差异的模式 特征,如长度、亮度、宽度、鱼翅数目等。
- 标记数据:人工标记每条鱼模式的类别标签,获得训练样本数据集。
- ❖ 设计分类器:选择分类器模型,训练分类器模型。
- ❖ 评估分类器:测试分类器模型,分析错误原因,提出改进方法。

南开大学网络空间安全学院 计算机学院

#### 选择模式特征

❖ 观察: 鲑鱼(salmon)长度一般比鲈鱼(sea bass)长度短

❖ 模式特征: 鱼身长度

❖ 直方图: 统计每种长度下鲑鱼和鲈鱼的数目

|        |   |   | _  |    |    |    |
|--------|---|---|----|----|----|----|
|        | 2 | 4 | 8  | 10 | 12 | 14 |
| bass   | 0 | 1 | 3  | 8  | 10 | 5  |
| salmon | 2 | 5 | 10 | 5  | 1  | 0  |



南开大学网络空间安全学院 计算机学院

23

#### 确定决策阈值

❖ 寻找最佳分类决策的长度阈值 L

if  $length_i < L$  then  $i \in salmon$  else  $i \in sea$  bass

❖ 决策:

◆ 假设: 取 L = 5 时, 错误分类为: 鲈鱼=1, 鲑鱼=16



◆ 分类错误率: 17/50 = 34%

南开大学网络空间安全学院 计算机学院













31

# ② 原因:不好的归纳 (泛化)结果 ❖ 过度拟合(overfitting):复杂的分类器模型 (决策边界)以对训练数据集的最佳性能为优化目标,不能够对新的数据进行很好地归纳。 Complicated boundary

南开大学网络空间安全学院 计算机学院



#### 收集数据

- ❖ 收集数据集是有代价的,有时这种代价是昂贵的。
- ❖ 收集到的数据集应该具有充分的代表性(同分布的)。
- ❖ 数据集合
  - ◆ 训练集合(training set): 训练分类器模型的样本集合,用于拟合分类器模型的参数(权值)。
  - ◆ 验证集合(validation set):选择分类器模型的样本集合,用于确定分类器模型的结构(超参数)。
  - ◆ 测试集合(test set): 测试分类器模型的样本集合,用于评估分类器模型的性能(泛化能力)
- ❖ 训练集合、验证集合和测试集合之间的交集为空集,三者之间的比例一般为8:1:1。

南开大学网络空间安全学院 计算机学院

33

#### 选择模式特征

- ❖ 选择标准: 具有很强的模式区分能力
  - ◆ 对于相同类别的模式,它们的模式特征是相似的;
  - ◆ 对于不同类别的模式,它们的模式特征是充分不同的。
- ❖ 先验知识扮演着重要的角色
  - ◆ 人工设计特征
  - ◆ 深度学习方法
- ❖ 特点
  - ◆ 容易获得
  - ◆ 对噪声和不相关变换缺乏敏感性

南开大学网络空间安全学院 计算机学院

#### 选择分类器模型

- \* 选择标准
  - ◆ 数据适应性
  - ◆ 性能适应性
  - ◆ 环境适应性
- \* 评价标准
  - ◆ 何时放弃某种分类器模型而试用另一种分类器模型
- ❖ 问题
  - ◆ 对某个给定问题,最佳分类器模型是什么?

南开大学网络空间安全学院 计算机学院

35

### 训练分类器

- ❖ 训练目标
  - ◆ 使用训练样本集合来调整分类器模型参数,以获得对训练样本集合的最 佳拟合;
  - ◆ 最佳拟合的主要评价标准是分类错误率
- ❖ 训练算法: 针对不同分类器模型和优化目标,存在着多种训练算法。
- ❖ 本课程的重点内容

南开大学网络空间安全学院 计算机学院

# 评估分类器

- ❖ 评估标准:已经训练完成的分类器对测试样本集合的分类性能
- ❖ 分析结果:
  - ◆ 如何改进分类器
  - ◆ 调整分类器的复杂性以防止过度拟合
  - ◆ 权衡计算复杂性与分类器性能之间的平衡

南开大学网络空间安全学院 计算机学院

37

#### 结论

- ❖ 前途是光明的
  - ◆ 存在大量令人兴奋和重要的理论研究成果和实际应用
- ❖ 道路是曲折的
  - ◆ 需要面对和解决许多问题才能获得成功

南开大学网络空间安全学院 计算机学院