第4节 向量的坐标运算与建系运用(★★★)

强化训练

1. $(2023 \cdot 乌鲁木齐模拟 \cdot ★)$ 已知向量 $a = (2,3), b = (-1,2), 若 ma + nb(mn ≠ 0) 与 a - 2b 共线,则 <math>\frac{m}{2} = (2,3)$

(A)
$$-\frac{1}{2}$$
 (B) $\frac{1}{2}$ (C) -2 (D) 2

(B)
$$\frac{1}{2}$$

$$(C)$$
 -2

答案: A

解法 1: 由题意, $m\mathbf{a} + n\mathbf{b} = (2m - n, 3m + 2n)$, $\mathbf{a} - 2\mathbf{b} = (4, -1)$,

因为 $m\mathbf{a} + n\mathbf{b}$ 与 $\mathbf{a} - 2\mathbf{b}$ 共线,所以 $(2m-n) \cdot (-1) = 4(3m+2n)$,整理得: 2m+n=0,所以 $\frac{m}{2} = -\frac{1}{2}$.

解法 2: 注意到 a,b 不共线,故也可把所给向量共线翻译成 a 和 b 的系数成比例,找到 m 和 n 的关系,

因为 $ma + nb(mn \neq 0)$ 与a - 2b 共线,所以 $\frac{m}{1} = \frac{n}{-2}$,故 $\frac{m}{n} = -\frac{1}{2}$.

2. (2023・新高考 I 卷・★) 已知向量 a = (1,1), b = (1,-1), 若 $(a + \lambda b) \bot (a + \mu b)$, 则 ()

(A)
$$\lambda + \mu = 1$$

(A)
$$\lambda + \mu = 1$$
 (B) $\lambda + \mu = -1$ (C) $\lambda \mu = 1$ (D) $\lambda \mu = -1$

(C)
$$\lambda \mu = 1$$

(D)
$$\lambda \mu = -1$$

答案: D

解析:向量垂直可用数量积为0来翻译,此处可先求两个向量的坐标,再算数量积,但若注意到 $a \cdot b = 0$, 则会发现直接展开计算量更小,

因为 $(a+\lambda b)$ \perp $(a+\mu b)$,所以 $(a+\lambda b)\cdot(a+\mu b)=a^2+(\lambda+\mu)a\cdot b+\lambda\mu b^2=0$ ①,

又 $\boldsymbol{a} = (1,1)$, $\boldsymbol{b} = (1,-1)$, 所以 $\boldsymbol{a}^2 = 1^2 + 1^2 = 2$, $\boldsymbol{b}^2 = 1^2 + (-1)^2 = 2$, $\boldsymbol{a} \cdot \boldsymbol{b} = 1 \times 1 + 1 \times (-1) = 0$,

代入①得: $2+2\lambda\mu=0$,所以 $\lambda\mu=-1$.

3. (2022 • 上海模拟 • ★★)在 △ABC 中, $\angle A = 90^{\circ}$, AB = AC = 2 ,点 M 为边 AB 的中点,点 P 在边 BC上,则 \overrightarrow{MP} · \overrightarrow{CP} 的最小值为____.

答案: $-\frac{9}{9}$

解析:图形为直角三角形,建系比较方便,建立如图所示的平面直角坐标系,则M(1,0),C(0,2),

直线 BC 斜率为-1,且过点 C,其方程为 y=2-x,所以可设 P(x,2-x), $0 \le x \le 2$,

从而 $\overrightarrow{MP} = (x-1,2-x)$, $\overrightarrow{CP} = (x,-x)$, 故 $\overrightarrow{MP} \cdot \overrightarrow{CP} = (x-1)x + (2-x)(-x) = 2x^2 - 3x = 2(x-\frac{3}{4})^2 - \frac{9}{8}$,

所以当 $x = \frac{3}{4}$ 时, $\overrightarrow{MP} \cdot \overrightarrow{CP}$ 取得最小值 $-\frac{9}{8}$.

4. (★★★) 已知向量 a, b 满足 |a| = 4, b 在 a 上的投影向量与 a 反向且长度为 2, 则 |a-3b| 的最小值为

答案: 10

解析: 为了便于分析, 把向量放到坐标系下, 用坐标运算来解决问题,

如图,可设 $\mathbf{a} = \overrightarrow{OA} = (4,0)$, $\mathbf{b} = \overrightarrow{OB}$,由 \mathbf{b} 在 \mathbf{a} 上的投影向量与 \mathbf{a} 反向且长度为 2 知 \mathbf{B} 在直线 x = -2 上运动,

所以可设 $\mathbf{b} = (-2, y)$,其中 $y \in \mathbf{R}$,故 $|\mathbf{a} - 3\mathbf{b}| = |(4, 0) - 3(-2, y)| = |(10, -3y)| = \sqrt{100 + 9y^2}$, 所以当y = 0时, $|\mathbf{a} - 3\mathbf{b}|$ 取得最小值 10.

5. $(2022 \cdot 北京模拟 \cdot ★★★)$ 已知向量 a, b, c 满足 $|a| = \sqrt{2}$, |b| = 1, $\langle a,b \rangle = \frac{\pi}{4}$, $(c-a) \cdot (c-b) = 0$, 则 |c| 的最大值是()

(A)
$$\sqrt{2}-1$$
 (B) $\frac{\sqrt{5}-1}{2}$ (C) $\frac{\sqrt{5}+1}{2}$ (D) $\sqrt{2}+1$

答案: C

解析:向量a,b已知长度和夹角,容易搬进坐标系,故设出a,b,c的坐标,用坐标翻译 $(c-a)\cdot(c-b)=0$,

设
$$\boldsymbol{b} = (1,0)$$
, $\boldsymbol{a} = (1,1)$, $\boldsymbol{c} = (x,y)$, 满足 $|\boldsymbol{a}| = \sqrt{2}$, $|\boldsymbol{b}| = 1$, $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \frac{\pi}{4}$, 此时 $\boldsymbol{c} - \boldsymbol{a} = (x-1,y-1)$, $\boldsymbol{c} - \boldsymbol{b} = (x-1,y)$,

因为
$$(c-a)\cdot(c-b)=0$$
,所以 $(x-1)^2+(y-1)y=0$,整理得: $(x-1)^2+(y-\frac{1}{2})^2=\frac{1}{4}$,

此方程为圆,可画图分析 c 的最大值,

记 $\mathbf{c} = \overrightarrow{OC}$,则终点C可在圆 $M: (x-1)^2 + (y-\frac{1}{2})^2 = \frac{1}{4}$ 上运动,如图,

因为
$$|OM| = \sqrt{1^2 + (\frac{1}{2})^2} = \frac{\sqrt{5}}{2}$$
,所以 $|c|_{\text{max}} = |OM| + \frac{1}{2} = \frac{\sqrt{5} + 1}{2}$.

6.(2022•天津模拟•★★★)如图,直角三角形 ABC 中,AB = AC, BC = 4,O 为 BC 的中点,以 O 为 圆心,1 为半径的半圆与 BC 交于点 D,P 为半圆上任意一点,则 \overrightarrow{BP} · \overrightarrow{AD} 的最小值为_____.

答案: 2-√5

解析:图形比较规整,容易建系,建立如图所示平面直角坐标系,则B(-2,0),A(0,2),D(1,0),

半圆的方程为 $x^2 + y^2 = 1(y \ge 0)$ ①,设 P(x,y),则 $\overrightarrow{BP} = (x+2,y)$, $\overrightarrow{AD} = (1,-2)$,所以 $\overrightarrow{BP} \cdot \overrightarrow{AD} = x+2-2y$,设 x+2-2y=t,则 x-2y+2-t=0 ②,

要求t的最小值,可将式②看成直线l的方程,由于P(x,y)同时满足方程①和②,所以直线l与半圆有交点,

直线 l 可化为 $y = \frac{1}{2}x + 1 - \frac{t}{2}$,所以 l 的纵截距为 $1 - \frac{t}{2}$,故 t 最小等价于该纵截距最大,此时 l 与半圆相切,如图,

应有 $d = \frac{|2-t|}{\sqrt{1^2 + (-2)^2}} = 1$,解得: $t = 2 \pm \sqrt{5}$,由图可知 l 的纵截距为正,所以 $t = 2 - \sqrt{5}$,故 $(\overrightarrow{BP} \cdot \overrightarrow{AD})_{\min} = 2 - \sqrt{5}$.

7. $(2020 \cdot 江苏卷 \cdot \star \star \star \star \star)$ 在 $\triangle ABC$ 中, AB=4 , AC=3 , $\angle BAC=90^{\circ}$, D 在边 BC 上, 延长 AD 到 P , 使 AP=9 , 若 $\overrightarrow{PA}=m\overrightarrow{PB}+(\frac{3}{2}-m)\overrightarrow{PC}$ (m 为常数),则 CD 的长度是_____.

答案: 0或¹⁸/₅

解析:图形为直角三角形,建系比较方便,建立如图所示的平面直角坐标系,则A(0,0),B(4,0),C(0,3),

由题意,
$$\overrightarrow{PA} = m\overrightarrow{PB} + (\frac{3}{2} - m)\overrightarrow{PC} = m(\overrightarrow{PB} - \overrightarrow{PC}) + \frac{3}{2}\overrightarrow{PC} = m\overrightarrow{CB} + \frac{3}{2}\overrightarrow{PC}$$
,

设
$$P(x,y)$$
, 则 $\overrightarrow{PA} = (-x,-y)$, $\overrightarrow{PC} = (-x,3-y)$, $\overrightarrow{CB} = (4,-3)$, 所以
$$\begin{cases} -x = 4m - \frac{3}{2}x \\ -y = -3m + \frac{3}{2}(3-y) \end{cases}$$
, 故
$$\begin{cases} x = 8m \\ y = 9 - 6m \end{cases}$$
 ①,

又 AP = 9, 所以 $\sqrt{x^2 + y^2} = 9$, 将①代入上式可求得: m = 0 或 $\frac{27}{25}$,

当 m=0时,代入①得: $\begin{cases} x=0\\ y=9 \end{cases}$ 此时点 P(0,9) 在 y 轴上,所以 D 与 C 重合,故 CD=0 ;

当
$$m = \frac{27}{25}$$
时,代入①得:
$$\begin{cases} x = \frac{216}{25} \\ y = \frac{63}{25} \end{cases}$$
,所以 $P(\frac{216}{25}, \frac{63}{25})$,要求 CD ,可先联立直线 AP 和 BC 的方程求 D 的坐

标,

直线 AP 的方程为 $y = \frac{7}{24}x$,直线 BC 的方程为 $\frac{x}{4} + \frac{y}{3} = 1$,联立两直线的方程可求得 $\begin{cases} x = \frac{72}{25}, \\ y = \frac{21}{25} \end{cases}$

即
$$D(\frac{72}{25}, \frac{21}{25})$$
,所以 $CD = \sqrt{(\frac{72}{25} - 0)^2 + (\frac{21}{25} - 3)^2} = \frac{18}{5}$;

综上所述,CD 的长度是 0 或 $\frac{18}{5}$.

8. $(2022 \cdot 浙江卷 \cdot ★★★★)$ 设点 P 在单位圆的内接正八边形 $A_1A_2 \cdots A_8$ 的边 A_1A_2 上,则 $\overrightarrow{PA_1}^2 + \overrightarrow{PA_2}^2 + \cdots + \overrightarrow{PA_8}^2$ 的取值范围是____.

答案: $[12+2\sqrt{2},16]$

解析: 涉及单位圆与其内接正八边形, 图形比较特殊, 考虑建系来做,

如图,
$$A_1(0,1)$$
, $A_2(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$, $A_3(1,0)$, $A_4(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})$, $A_5(0,-1)$, $A_6(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})$, $A_7(-1,0)$, $A_8(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$,

直接计算目标式较复杂,观察结构特征,发现可将关于原点对称的两个组合计算,

设
$$P(x,y)$$
,则 $\overrightarrow{PA_1}^2 + \overrightarrow{PA_5}^2 = x^2 + (y-1)^2 + x^2 + (y+1)^2 = 2x^2 + 2y^2 + 2$,

$$\overrightarrow{PA_2}^2 + \overrightarrow{PA_6}^2 = \left(x - \frac{\sqrt{2}}{2}\right)^2 + \left(y - \frac{\sqrt{2}}{2}\right)^2 + \left(x + \frac{\sqrt{2}}{2}\right)^2 + \left(y + \frac{\sqrt{2}}{2}\right)^2 = 2x^2 + 2y^2 + 2,$$

同理,
$$\overrightarrow{PA_3}^2 + \overrightarrow{PA_7}^2 = \overrightarrow{PA_4}^2 + \overrightarrow{PA_8}^2 = 2x^2 + 2y^2 + 2$$
,所以 $\overrightarrow{PA_1}^2 + \overrightarrow{PA_2}^2 + \cdots + \overrightarrow{PA_8}^2 = 8(x^2 + y^2) + 8$,

要求上式的范围,可先单独分析 $x^2 + y^2$ 的范围,这部分是点P到原点距离的平方,

由图可知当P为 A_1A_2 中点时, $OP \perp A_1A_2$,OP取得最小值,且此时 $OP = |OA_1|\cos \angle A_1OP = \cos 22.5^\circ$,

所以
$$(x^2 + y^2)_{\min} = |OP|_{\min}^2 = \cos^2 22.5^\circ = \frac{1 + \cos 45^\circ}{2} = \frac{2 + \sqrt{2}}{4}$$
,而 $|OP|_{\max} = |OA_1| = 1$,所以 $(x^2 + y^2)_{\max} = 1$,

故
$$\overrightarrow{PA_1}^2 + \overrightarrow{PA_2}^2 + \dots + \overrightarrow{PA_8}^2$$
 的最小值为 $8 \times \frac{2 + \sqrt{2}}{4} + 8 = 12 + 2\sqrt{2}$,最大值为 16.

《一数•高考数学核心方法》