Logic-Based Agents¹

LECTURE 1

¹The slides have been prepared using the textbook material available on the web, and the slides of the previous editions of the course by Prof. Luigia Carlucci Aiello

Summary

- ♦ Logical Agents Russell & Norvig Sect. 7.1–7.3
- ♦ Knowledge Representation
- ♦ Knowledge-based Agents
- ♦ The wumpus world
- ♦ Models and Inference

Symbol hypothesis

The conputer belongs to a class of artificial systems, symbolic systems...

Symbols can be used to represent structures. ...

A computer is a symbolic system, where symbols are **created**, **modified**, **copied**,...

not a quote, but this is argued in: [H. Simon, The Sciences of the Artificial, 1969, 1994]

Properties of a good representation

A **representation** is made by a set of symbols, stored on a computer together with algorithms that allow to us to use it in order to solve problems.

♦ Adequacy criteria by McCarthy & Hayes in 1969: metaphysics, epistemology, heuristics

- \diamondsuit language expressive power (ontology)
- \Diamond level of abstraction
- ♦ good design (computation)

Representation language

- not a programming language
- not a communication language

Propositional Logic is the basic example:

Key principle: syntax – semantics – reasoning

Possibly "visual", but semantically well defined

Knowledge bases

In a knowledge representation language the set of inferences is defined without referring to the algorithm to compute them.

Knowledge bases

Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system): TELL it what it needs to know

Then Ask it what to do—answers that follow from the KB

Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented

Or at the implementation level

i.e., data structures in KB and algorithms that manipulate them

An example

knowledge base	inference
Rain	
Wind	
if Rain then TakeUmbrella	when the kb contains A and if A then B ,
if Wind then WindJacket	B can be derived
if Rain and WithoutUmbrella	
then Wet	

From the knowledge base:

Rain??

Wind??

TakeUmbrella??

WindJacket??

Fog??

Wet??

A simple knowledge-based agent

```
function KB-AGENT( percept) returns an action static: KB, a knowledge base t, a counter, initially 0, indicating time  \text{Tell}(KB, \text{Make-Percept-Sentence}(percept, t)) \\ action \leftarrow \text{Ask}(KB, \text{Make-Action-Query}(t)) \\ \text{Tell}(KB, \text{Make-Action-Sentence}(action, t)) \\ t \leftarrow t + 1 \\ \text{return } action
```

A simple knowledge-based agent

The agent must be able to:

Represent states, actions, etc.

Incorporate new percepts

Update internal representations of the world

Deduce hidden properties of the world

Deduce appropriate actions

Wumpus World PEAS description

Environment

Squares adjacent to wumpus are smelly Squares adjacent to pits are breezy Glitter iff gold is in the same square Shooting kills wumpus if you are facing it Shooting uses up the only arrow Grabbing picks up gold if in same square Releasing drops the gold in same square

Notice: the world in RN is symmetric (i.e. $[3,1] \rightarrow [1,3]$)

Wumpus World PEAS description

Performance measure

gold +1000, death -1000-1 per step, -10 for using the arrow

Sensors

Stench, Breeze, Glitter, Bump, Cry

Actuators

Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization

Observable?? No—only local perception

<u>Deterministic??</u> Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discrete?? Yes

Single-agent?? Yes—Wumpus is essentially a natural feature

Sensors: [None, None, None, None, None]

Sensors: [None, Breeze, None, None, None]

Squares adjacent to pits are breezy

Sensors: [Stench, None, None, None, None]

Squares adjacent to wumpus are smelly

Sensors: [None, None, None, None, None]

Sensors: [None, None, Glitter, None, None]

Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [1,2] (Back to RN notation [col,row])

Consider possible cases for ?s assuming only pits

3 choices (8 possible cases) for the presence of pits in [1,2],[2,2],[3,1].

Wumpus possible worlds

Wumpus models

KB = wumpus-world rules + observation $\neg B[1,1]$ and B[1,2] $\mathbf{models} =$ possible worlds that are "coherent with KB

Inference by model checking

KB as before and $\alpha_1 =$ "[1,2] is safe"? – No Pit in [1,2]?

Yes, $KB \models \alpha_1$

Inference by model checking

KB as before and $\alpha_2 =$ "[2,2] is safe"? – No Pit in [2,2]?

No, $KB \not\models \alpha_2$

Logic in general

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the legal sentences in the language

Semantics define the "meaning" of sentences; i.e., define truth of a sentence in a world

E.g., the language of arithmetic

 $x + 2 \ge y$ is a sentence; x2 + y > i is not a sentence

 $x + 2 \ge y$ is true iff number x + 2 is no less than number y

 $x+2 \ge y$ is true in a world where x=7, y=1

 $x+2 \ge y$ is false in a world where x=0, y=6

Entailment

Entailment means that one sentence *follows from* another:

$$KB \models \alpha$$

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

Entailment is a relationship between sentences (i.e., *syntax*) that is based on *semantics*

Note: brains process syntax (of some sort)

Models

Possible worlds correspond to assignments of truth values to the symbols of a sentence, called interpretations.

We say m is a model of a sentence α if m is an interpretation and α is true in m

 $M(\alpha)$ is the set of all models of α

Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$

NOTE: Russell and Norvig overload the term **model** by using it also for interpretations

Models: example

E.g. KB = Giants won and Reds won $\alpha = \text{Giants won}$

Model Checking

The knowledge that is entailed by a KB can be computed by:

$$KB \models \alpha$$

can be derived by building models and checking whether:

$$M(KB) \subseteq M(\alpha)$$

This approach is referred to as model checking

Deduction

Another way of computing the knowledge entailed by a KB is by a deduction procedure (proof):

$$KB \vdash_i \alpha$$

denotes that α can be derived from KB by procedure i

Deduction works on formulae by applying inference rules.

Note: the term inference is used for any procedure that can compute logical entailment.

Properties of deduction procedures

Soundness: i is sound if whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$

Completeness: i is complete if whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$

That is, a sound and complete procedure will answer any question whose answer follows from what is known by the KB.

Sometimes there is no certainty

Breeze in (1,2) and (2,1) \Rightarrow no safe actions

Assuming pits uniformly distributed, (2,2) has pit w/ prob 0.86, vs. 0.31

Sometimes you can only try

Smell in (1,1)

 \Rightarrow cannot move

Can use a strategy of coercion:

shoot straight ahead

wumpus was there \Rightarrow dead \Rightarrow safe

wumpus wasn't there \Rightarrow safe

