Izbrani algoritmi Algoritmi teorije števil

Damjan Strnad

Osnovni pojmi

- cela števila (integers) Z={..., -3, -2, -1, 0, 1, 2, 3, ...}
- naravna števila (naturals) IN={1, 2, 3, ...}
- $a=k \cdot d$, kjer $k \in \mathbb{Z}$:
 - · d je delitelj od a
 - · a je večkratnik od d
 - · $d \mid a (d \text{ deli } a), d \nmid a (d \text{ ne deli } a)$
- vsako celo število deli 0

Osnovni pojmi

- trivialna delitelja od a sta 1 in a
- faktorji so netrivialni delitelji od a:
 - faktorji od 12 so 2, 3, 4 in 6
- praštevilo (prime) je naravno število, ki ima samo trivialna delitelja
 - · primeri: 2, 3, 5, 7, 11, 13, ...
 - · nasprotje praštevila je sestavljeno število
- 0, 1 (enota) in negativna števila niso niti praštevila niti sestavljena števila

Izrek o deljenju

- Za vsako celo število a in neničelno celo število n obstajata celi števili q = [a / n] in r = a mod n taki, da velja 0≤r<|n| in a = qn + r.
- q imenujemo kvocient, r pa ostanek deljenja
- oznaka mod je kratica za modulo
- $n \mid a \Leftrightarrow a \mod n = 0$

Kongruenca

- če $(a \mod n) = (b \mod n)$, to zapišemo kot $a \equiv b \pmod n$ in beremo kot:
 - · a je ekvivalenten b, modulo n
 - · a in b sta kongruentna po modulu n
- $n \mid a \Leftrightarrow a \equiv 0 \pmod{n}$
- relacija \equiv je refleksivna ($a \equiv a$), simetrična ($a \equiv b$ (mod n) $\Leftrightarrow b \equiv a \pmod{n}$ in tranzitivna ($a \equiv b \pmod{n} \land b \equiv c \pmod{n}$) $\Rightarrow a \equiv c \pmod{n}$

Lastnosti kongruence

- $a \equiv b \pmod{n} \Rightarrow a+c \equiv b+c \pmod{n}$ za $\forall c \in \mathbb{Z}$
- $a \equiv b \pmod{n} \Rightarrow a \cdot c \equiv b \cdot c \pmod{n}$ za $\forall c \in \mathbb{Z}$
- $a \equiv b \pmod{n} \Rightarrow a^k \equiv b^k \pmod{n}$ za $\forall k \in \mathbb{N}$
- $a \equiv b \pmod{n} \land c \equiv d \pmod{n} \Rightarrow$ $a+c \equiv b+d \pmod{n} \land a \cdot c \equiv b \cdot d \pmod{n}$

Skupni delitelji

- $d|a \wedge d|b \Rightarrow d$ je skupni delitelj a in b
- $d|a \wedge d|b \Rightarrow d|(ax+by)$ za $\forall x,y \in \mathbb{Z}$
- največji skupni delitelj števil a in b označimo z gcd(a,b)
- gcd(0,0) := 0
- $a\neq 0 \land b\neq 0 \Rightarrow 1\leq \gcd(a,b)\leq \min(|a|,|b|)$
- $d|a \wedge d|b \Rightarrow d|\gcd(a,b)$
- če $gcd(a,b)=1 \Rightarrow a$ in b sta tuji števili (coprimes)
- $gcd(a,p)=1 \land gcd(b,p)=1 \Rightarrow gcd(ab,p)=1$

Tuja števila

- izrek o enolični faktorizaciji:
 - Sestavljeno celo število a lahko zapišemo kot produkt oblike $a=p_1^{e_1}p_2^{e_2}\dots p_r^{e_r}$, kjer so p_i praštevila (t.i. prafaktorji) in $e_i \in \mathbb{Z}^+$
 - · Primer: 2535=31.51.132
- uporabno za izračun gcd(a,b), če sta a in b že faktorizirana:

$$a = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r} \text{ in } b = p_1^{f_1} p_2^{f_2} \dots p_r^{f_r} \Rightarrow$$

$$gcd(a,b) = p_1^{g_1} p_2^{g_2} \dots p_r^{g_r}, \text{ kjer } g_i = min(e_i, f_i)$$

sicer faktorizacija težji problem od gcd

Evklidov algoritem

- Če sta a in b poljubni nenegativni celi števili, potem velja gcd(a, b) = gcd(b, a mod b).
- Algoritem:

```
EUCLID(a,b)
  if b = 0
    return a
  else
    return EUCLID(b,a mod b)
```

- Z Evklidovim algoritmom poiščimo gcd(1519,469).
- Vhodni parametri metode EUCLID po iteracijah:

iteracija	а	b
0	1519	469
1		
2		
3		
4		

- Z Evklidovim algoritmom poiščimo gcd(1519,469).
- Vhodni parametri metode EUCLID po iteracijah:

iteracija	а	b
0	1519	469
1	469	112
2		
3		
4		

- Z Evklidovim algoritmom poiščimo gcd(1519,469).
- Vhodni parametri metode EUCLID po iteracijah:

iteracija	а	b
0	1519	469
1	469	112
2	112	21
3		
4		

- Z Evklidovim algoritmom poiščimo gcd(1519,469).
- Vhodni parametri metode EUCLID po iteracijah:

iteracija	а	b
0	1519	469
1	469	112
2	112	21
3	21	7
4		

- Z Evklidovim algoritmom poiščimo gcd(1519,469).
- Vhodni parametri metode EUCLID po iteracijah:

iteracija	а	b
0	1519	469
1	469	112
2	112	21
3	21	7
4	7	0

- Z Evklidovim algoritmom poiščimo gcd(1519,469).
- Vhodni parametri metode EUCLID po iteracijah:

iteracija	а	b
0	1519	469
1	469	112
2	112	21
3	21	7
4	7	0

gcd(1519,469)=7

Razširjeni Evklidov alg.

- poleg gcd poišče tudi celoštevilska koeficienta x in y, za katera velja: $d = \gcd(a, b) = ax + by$
- če je gcd(a,b)=1, potem je x multiplikativni inverz od a (mod b), y pa multiplikativni inverz od b (mod a)
- dve varianti algoritma:
 - ni zahteve a > b
 - iterativna
 - rekurzivna

Razširjeni Evklidov alg.

- poleg gcd poišče tudi celoštevilska koeficienta x in y, za katera velja: $d = \gcd(a, b) = ax + by$
- če je gcd(a,b)=1, potem je x multiplikativni inverz od a (mod b), y pa multiplikativni inverz od b (mod a)
- dve varianti algoritma:
 - ni zahteve a > b
 - iterativna
 - rekurzivna

```
EXTENDED_EUCLID(a,b) x\leftarrow 0, lastx\leftarrow 1, y\leftarrow 1, lasty\leftarrow 0 while b\neq 0 q\leftarrow a div b temp \leftarrow b b\leftarrow a mod b a\leftarrow temp temp \leftarrow x x\leftarrow lastx-q\cdot x lastx\leftarrow temp temp \leftarrow y y\leftarrow lasty-q\cdot y lasty \leftarrow temp return (a, lastx, lasty)
```

Razširjeni Evklidov alg.

- poleg gcd poišče tudi celoštevilska koeficienta x in y, za katera velja: $d = \gcd(a, b) = ax + by$
- če je gcd(a,b)=1, potem je x multiplikativni inverz od a (mod b), y pa multiplikativni inverz od b (mod a)
- dve varianti algoritma:
 - ni zahteve a > b
 - iterativna
 - rekurzivna

```
 \begin{array}{ll} \textbf{if} & b = 0 \\ & \textbf{return} & (a, 1, 0) \\ & (d', x', y') \leftarrow \textbf{EXTENDED\_EUCLID}(b, a \ \textbf{mod} \ b) \\ & (d, x, y) \leftarrow (d', y', x' - (a \ \textbf{div} \ b) \cdot y') \\ & \textbf{return} & (d, x, y) \end{array}
```

Razširjeni Evklidov alg. - zgled

• gcd(13,27): (x=-2, y=1, multiplikativni inverz od 13 (mod 27) je prvo pozitivno število oblike x+k·b, kar je 25)

korak	kvocient	ostanek	substitucija	kombiniran izraz
1		13		13=13·1+27·0
2		27		27=13.0+27.1
3	0	13=13-27.0	13=(13·1+27·0)- (13·0+27·1)·0	13=13·1+27·0
4	2	1=27-13-2	$1=(13\cdot0+27\cdot1)- (13\cdot1+27\cdot0)\cdot2$	1=13·(-2)+27·1
5	13	0		

Razširjeni Evklidov alg. - zgled

• gcd(13,27): (x=-2, y=1, multiplikativni inverz od 13 (mod 27) je prvo pozitivno število oblike x+k·b, kar je 25)

korak	kvocient	ostanek	substitucija	kombiniran izraz
1		13		13=13·1+27·0
2		27		27=13.0+27.1
3	0	13=13-27.0	13=(13·1+27·0)- (13·0+27·1)·0	13=13·1+27·0
4	2	1=27-13-2	1=(13·0+27·1)- (13·1+27·0)·2	1=13·(<u>-2</u>)+27· <u>1</u>
5	13	0		d x y

Razširjeni Evklidov alg. - zgled

• gcd(91,70): (x=-3, y=4, multiplikativni inverz ne obstaja, ker gcd(91,70) \neq 1)

korak	kvocient	ostanek	substitucija	kombiniran izraz
1		91		91=91·1+70·0
2		70		70=91.0+70.1
3	1	21=91- 70·1	21=(91·1+70·0)- (91·0+70·1)·1	21=91·1+70·(-1)
4	3	7=70-21.3	7=(91·0+70·1)- (91·1+70·(-1))·3	7=91·(-3)+70·4
5	3	0		

Modulske linearne enačbe

- enačbe oblike $ax\equiv b \pmod{n}$, kjer so a, b in n podani
- pomembne za izračun kriptografskih ključev
- enačba je rešljiva natanko tedaj, ko gcd(a,n)|b
- rešitve enačbe so oblike $x_i=x_0+i\cdot(n/d)$, kjer $d=\gcd(a,n)$ in i=0,1,2,...,d-1
- za izračun gcd uporabimo razširjeni Evklidov algoritem
- časovna zahtevnost izračuna je O(log(n) + gcd(a,n))

```
\label{eq:mod_lin_eq_solver} \begin{split} \text{MOD\_LIN\_EQ\_SOLVER}(a,b,n) \\ (d,x',y') &\leftarrow \text{EXTENDED\_EUCLID}(a,n) \\ \textbf{if} \ d | b \\ x_o &\leftarrow (x' \cdot (b \ \textbf{div} \ d)) \ \textbf{mod} \ n \\ \textbf{for} \ i &\leftarrow 0 \ \textbf{to} \ d-1 \\ x_i &\leftarrow (x_o + i \cdot (n \ \textbf{div} \ d)) \ \textbf{mod} \ n \\ \textbf{else} \ ni \ rešitve \end{split}
```

Modulske lin. enačbe - zgled

• pozitiven primer: $98x \equiv 7 \pmod{35}$, a=98, b=7, n=35

- d=7, d|b ✓

korak	kvocient	ostanek	substitucija	kombiniran izraz
1		98		98=98·1+35·0
2		35		35=98.0+35.1
3	2	28=98-35-2	28=(98·1+35·0)- (98·0+35·1)·2	28=98·1+35·(-2)
4	1	7=35-28-1	7=(98·0+35·1)- (98·1+35·(-2))·1	7=98·(-1)+35·3
5	4	0		

- $-x_0 = (-1 \cdot (7 \text{ div } 7)) \text{ mod } 35 = (-1) \text{ mod } 35 = (-1+1 \cdot 35) \text{ mod } 35 = (34 \text{ (ostanek mora biti pozitiven!)}$
- $-x_1 = (x_0 + 1 \cdot (35/7)) \mod 35 = (34+5) \mod 35 = 4$
- $-x_2 = 9$, $x_3 = 14$, $x_4 = 19$, $x_5 = 24$, $x_6 = 29$

Modulske lin. enačbe - zgled

negativen primer: 12x = 4 (mod 45), a=12, b=4, n=45
 - d=3, d∤bx

korak	kvocient	ostanek	substitucija	kombiniran izraz
1		12		12=12·1+45·0
2		45		45=12.0+45.1
3	0	12=12-45.0	12=(12·1+45·0)- (12·0+45·1)·0	12=12·1+45·0
4	3	9=45-12-3	9=(12·0+45·1)- (12·1+45·0)·3	9=12·(-3)+45·1
5	1	3=12-9·1	3=(12·1+45·0)- (12·(-3)+45·1)·1	3=12·4+45·(-1)
6	3	0		

Modulski multiplikativni inverz

- če sta a in n tuji števili, ima enačba ax ≡ b (mod n) enolično rešitev
- v posebnem primeru, ko je b=1, je rešitev enačbe $ax \equiv 1 \pmod{n}$ multiplikativni inverz od $a \pmod{n}$
 - če a in n nista tuji števili, enačba ni rešljiva
 - enačbo pogosto zapišemo tudi kot $x \equiv a^{-1}$ (mod n), vendar tukaj eksponent -1 ne pomeni potenciranja
- primeri:

```
115x \equiv 1 \pmod{37} \Leftrightarrow x \equiv 115^{-1} \pmod{37} \Leftrightarrow x \equiv 4^{-1} \pmod{37}

140x \equiv 1 \pmod{33} \Leftrightarrow x \equiv 140^{-1} \pmod{33} \Leftrightarrow x \equiv 8^{-1} \pmod{33}

15x \equiv 1 \pmod{21} \Leftrightarrow x \not\equiv 15^{-1} \pmod{21}, ker 15 in 21 nista tuji
```

Modulski multiplikativni inverz

- primer: $4x \equiv 1 \pmod{37}$ oz. $x \equiv 4^{-1} \pmod{37}$,
 - -a=4, n=37
 - d=1 \(\sigma\)
 - $x = (-9) \mod 37 = (-9+1.37) \mod 37 = 28$ (želimo pozitivno vrednost)

korak	kvocient	ostanek	substitucija	kombiniran izraz
1		4		4=4·1+37·0
2		37		37=4.0+37.1
3	0	4=4-37.0	4=(4·1+37·0)- (4·0+37·1)·0	4=4·1+37·0
4	9	1=37-4·9	1=(4·0+37·1)- (4·1+37·0)·9	1=4·(-9)+37·1
5	4	0		

Eulerjeva funkcija φ

- Eulerjeva ali totientna funkcija φ(n) vrne število pozitivnih celih števil, ki so številu n tuja in ga ne presegajo (1 štejemo kot tuje število)
- zgled: $\phi(12) = 4(1,5,7,11)$
- · posebni primeri:
 - *n* je praštevilo ⇒ $\varphi(n)$ =*n*-1
 - n je m-ta potenca praštevila p (n=p m) ⇒ φ(n)=φ(p m)=p $^{m-1}$ ·(p-1)
 - n je produkt tujih števil a in $b \Rightarrow \varphi(n) = \varphi(ab) = \varphi(a)\varphi(b)$
- splošen primer: $\varphi(n) = n \prod_{p_i \mid n} \left(1 \frac{1}{p_i}\right)$

kjer so p_i prafaktorji od n (praštevila, ki delijo n)

Eulerjeva funkcija φ

- Eulerjeva ali totientna funkcija φ(n) vrne število pozitivnih celih števil, ki so številu n tuja in ga ne presegajo (1 štejemo kot tuje število)
- zgled: $\phi(12) = 4(1,5,7,11)$
- posebni primeri:
 - *n* je praštevilo ⇒ $\varphi(n)$ =*n*-1
 - n je m-ta potenca praštevila p (n=p m) ⇒ φ(n)=φ(p m)= p $^{m-1}$ ·(p-1)
 - n je produkt tujih števil a in $b \Rightarrow \varphi(n) = \varphi(ab) = \varphi(a)\varphi(b)$
- splošen primer: $\phi(n) = n \prod_{p_i \mid n} \left(1 \frac{1}{p_i}\right)$

$$\varphi(4851) = \varphi(3^2 \cdot 7^2 \cdot 11^1) = 4851 \cdot \left(1 - \frac{1}{3}\right) \cdot \left(1 - \frac{1}{7}\right) \left(1 - \frac{1}{11}\right) = 2520$$

Eulerjev izrek

- Za poljubni tuji števili a in n iz \mathbb{Z}^+ velja $a^{\varphi(n)} \equiv 1 \pmod{n}$
- Osnova šifrirnega sistema RSA, kjer je n produkt dveh velikih praštevil
- Omogoča zmanjšanje velikih potenc modulo n
- Zgled: $8^{975} \mod 21 = ?$
 - 1) preverimo, da sta a=8 in n=21 tuji si števili ($8=2^3$, $21=3.7 \checkmark$)
 - 2) izračunamo $\varphi(n)$: $\varphi(21) = \varphi(3.7) = 21 \cdot (1-1/3) \cdot (1-1/7) = 12$
 - 3) zapišemo kongruenco po Eulerjevem izreku: 8¹² ≡ 1 (mod 21)
 - 4) uporabimo prejšnji korak za znižanje potence: $8^{975} \equiv 8^{12 \cdot 81 + 3} \equiv (8^{12})^{81} \cdot 8^{3} \equiv 1^{81} \cdot 8^{3} \equiv 512 \pmod{21} = 8$
- Ni vedno uporabno, npr.: 12^{138} mod 203, $\varphi(203)=168$
- Mali Fermatov izrek je posebna oblika Eulerjevega izreka za primer, ko je n praštevilo: $a^{n-1} \equiv 1 \pmod{n}$

Modulsko potenciranje

- Problem: iščemo rešitev a^b mod n za cela števila a, b in n
- Pomembna operacija pri testiranju praštevil in v šifrirnih sistemih
- Učinkovit algoritem je metoda ponavljajočega kvadriranja:
 - deluje z binarno predstavitvijo eksponenta b
 - časovna zahtevnost algoritma je $O(\beta)$ aritmetičnih operacij in $O(\beta^3)$ bitnih operacij, če so a, b in n β -bitna števila

```
\label{eq:mod_exp} \begin{array}{l} \text{MOD\_EXP}(a,b,n) \\ d \leftarrow 1 \\ \langle b_k, b_{k-1}, \ldots, b_{\theta} \rangle \leftarrow \text{binarna predstavitev od b} \\ \textbf{for } i \leftarrow k \ \textbf{downto} \ 0 \\ d \leftarrow (d \cdot d) \ \textbf{mod} \ n \\ \textbf{if } b_i = 1 \\ d \leftarrow (d \cdot a) \ \textbf{mod} \ n \\ \textbf{return } d \end{array}
```

Modulsko potenciranje

- Zgled: $8^{975} \mod 21 = ?$
 - pretvorimo b=975 v dvojiško obliko: $975_{[10]} = 1111001111_{[2]}$
 - izvedemo metodo s tabeliranjem vrednosti d:

```
975 = 2.487 + 1
487 = 2.243 + 1
243 = 2.121 + 1
121 = 2.60 + 1
60 = 2.30 + 0
30 = 2.15 + 0
15 = 2.7 + 1
7 = 2.3 + 1
3 = 2.1 + 1
1 = 2.0 + 1
```

i	9	8	7	6	5	4	3	2	1	0
b _i	1	1	1	1	0	0	1	1	1	1
d	8	8	8	8	1	1	8	8	8	8

Modulsko potenciranje

- Zgled: $12^{138} \mod 203 = ?$
 - pretvorimo b=138 v dvojiško obliko: $138_{[10]} = 10001010_{[2]}$
 - izvedemo metodo s tabeliranjem vrednosti d:

$138 = 2 \cdot 69 + 0$
$69 = 2 \cdot 34 + 1$
$34 = 2 \cdot 17 + 0$
$17 = 2 \cdot 8 + 1$
$8 = 2 \cdot 4 + 0$
$4 = 2 \cdot 2 + 0$
$2 = 2 \cdot 1 + 0$
$1 = 2 \cdot 0 + 1$

ć.	7							
b_{i}	1	0	0	0	1	0	1	0
d	12	144	30	88	157	86	41	57

Kriptografija

- skrivnopisje, kriptologija znanstvena veda, ki se ukvarja z odkrivanjem in preučevanjem računalniških algoritmov in protokolov za učinkovito zaščito informacij
- čistopis (cleartext) osnovno nezaščiteno sporočilo
- šifropis, tajnopis (cyphertext) šifrirano sporočilo
- simetrična kriptografija:
 - uporablja isti ključ za šifriranje in dešifriranje (najbolj znan algoritem AES)
 - varen prenos ključa je problem sam po sebi
- nesimetrična kriptografija oz. kriptografija javnega ključa uporablja ločena ključa za šifriranje in dešifriranje

Kriptografija javnega ključa

 vsak uporabnik generira svoj javni ključ (public key) in zasebni oz. tajni ključ (private key, secret key)

• tvorba para ključev je hitra, ugotovitev zasebnega ključa

ob poznavanju javnega pa praktično neizvedljiva

- javni ključ se lahko objavi, zasebni ostane znan samo lastniku
- javni in zasebni ključ izvajata inverzni funkciji, ki omogočata šifriranje/dešifriranje sporočila M:
 - $M = S_A(P_A(M)) = P_A(S_A(M))$
 - P_A javni ključ osebe A
 - $-S_A$ zasebni ključ osebe A

Kriptografija javnega ključa

Zgled: Šifriranje sporočila

Kriptografija javnega ključa

Zgled: Digitalni podpis

Algoritem RSA

- algoritem za šifriranje z javnim ključem
- opisali Rivest, Shamir in Adleman leta 1977, patentiran do 2000
- tvorba ključev:
 - 1) izberi dve različni naključni veliki praštevili p in q
 - 2) izračunaj *n=p-q*
 - 3) izberi majhno liho število e, ki je tuje številu $\varphi(n)=(p-1)\cdot(q-1)$
 - 4) izračunaj multiplikativni inverz s od e (mod $\varphi(n)$), t.j. reši enačbo $s \cdot e \equiv 1 \pmod{\varphi(n)}$
 - 5) objavi P=(e,n) kot javni ključ RSA
 - 6) zadrži S=(s,n) kot tajni ključ RSA

Algoritem RSA

Zgled: Tvorba ključev RSA pri p=31 in q=19!

- 1) p = 31, q = 19
- 2) $n = p \cdot q = 589$, $\varphi(n) = (p-1) \cdot (q-1) = 540$
- 3) e = 11 (izbrali smo prvo primerno vrednost > 10)
- 4) s = 491 (prva pozitivna vrednost oblike -49+k·540)

korak	kvocient	ostanek	substitucija	kombiniran izraz
1		11		11=11·1+540·0
2		540		540=11.0+540.1
3	0	11=11-540.0	11=(11·1+540·0)- (11·0+540·1)·0	11=11·1+540·0
4	49	1=540-11-49	1=(11·0+540·1)- (11·1+540·0)·49	1=11·(-49)+540·1
5	11	0		d√ s

5)
$$P = (11,589)$$

6)
$$S = (491,589)$$

Šifriranje RSA

• šifriranje sporočila *M*:

$$C = P(M) = M^e \mod n$$

dešifriranje sporočila C:

$$M = S(C) = C^s \mod n$$

- šifriranje in dešifriranje izvedemo z metodo ponavljajočega kvadriranja
- varnost algoritma RSA temelji na predpostavki, da je faktorizacija velikega celega števila n na p in q zahtevna
- trenutno priporočilo je, da naj bosta p in q dolga vsaj 512 bitov (RSA-768 (768-bitni n z natanko dvema faktorjema) je bil uspešno faktoriziran leta 2009)

Šifriranje RSA

Zgled: Šifriranje sporočila M = 234 s prejšnjima ključema!

1)
$$P = (11,589)$$
, $S = (491,589)$, $M = 234$

2)
$$C = P(M) = M^e \mod n = 234^{11} \mod 589 = 549$$
, $b = 11_{[10]} = 1011_{[2]}$

i	3	2	1	0
b_{i}	1	0	1	1
d	234	568	119	549

3)
$$M = S(C) = C^s \mod n = 549^{491} \mod 589 = 234$$
, $b = 491_{[10]} = 111101011_{[2]}$

j	8	7	6	5	4	3	2	1	0
b_{i}	1	1	1	1	0	1	0	1	1
d	549	201	176	216	125	518	329	99	234

4)
$$M = S(P(M)) \checkmark$$

Iskanje velikih praštevil

- prvi korak tvorbe ključev RSA:
 - če p in q nista praštevili, ne velja nujno P(S(M))=M
- kako težko je najti praštevilo? porazdelitvena funkcija gostote praštevil $\pi(n)$ določa število praštevil $\leq n$
- primer: $\pi(11)=5$ (2,3,5,7,11)
- izrek o praštevilu: $\pi(n) \approx \frac{n}{\ln n}$
- primer: $n=10^9$, $\pi(n)=50847534$, $n/\ln(n)=48254942$, $\pi(n)-n/\ln(n)=2592592$, $\pi(n)/(n/\ln(n))=1.054$, $\pi(n)/n\approx5\%$
- boljša aproksimacija (log. integral): $\pi(n) \approx \operatorname{li}(n) = \int_{2}^{n} \frac{1}{\ln t} dt$
- primer: $n=10^9$, $\pi(n)=50847534$, li(n)=50849235, $\Delta=1701$

Iskanje velikih praštevil

- celo število n je praštevilo z verjetnostjo 1/ln(n)
 (potrebno je preveriti ln(n) naključnih celih števil,
 da najdemo praštevilo enake dolžine kot n)
- primer: da najdemo 100-mestno praštevilo, moramo testirati približno 230 naključno izbranih 100-mestnih celih števil (pol manj, če izbiramo samo liha števila)
- sestavljeno število n je psevdo praštevilo z bazo a, če velja $a^{n-1} \equiv 1 \pmod{n}$

Psevdo test praštevil

- Fermatov izrek: če je n praštevilo, velja $a^{n-1} \equiv 1 \pmod{n}$ za $\forall a \in \mathbb{Z}^+$, ki je tuj n
- če najdemo a, za katerega enačba ne velja, potem n gotovo ni praštevilo
- obrat prejšnje trditve skoraj vedno velja
- Carmichaelova števila sestavljena števila, ki izpolnjujejo pogoj aⁿ⁻¹ ≡ 1 (mod n) za vsak a < n, ki je tuj n

Psevdo test praštevil

- želimo preveriti, ali je n praštevilo
- ideja: kongruenco $a^{n-1} \equiv 1 \pmod{n}$ preverimo za a=2 (uporabimo modulsko potenciranje)
 - če enačba ne velja, je *n* sestavljeno število
 - če enačba velja, je n praštevilo ali psevdo praštevilo z bazo 2

```
PSEUDOPRIME(n)
d ← MOD_EXP(2,n-1,n)
if d ≢ 1 (mod n)
return false // zagotovo
else
return true // z veliko verjetnostjo
```

Psevdo test praštevil

- želimo preveriti, ali je n praštevilo
- ideja: kongruenco $a^{n-1} \equiv 1 \pmod{n}$ preverimo za a=2 (uporabimo modulsko potenciranje)
 - če enačba ne velja, je *n* sestavljeno število
 - če enačba velja, je n praštevilo ali psevdo praštevilo z bazo 2
- verjetnost, da je naključno izbrano 512-bitno število psevdo praštevilo z bazo 2, je reda 10⁻²⁰
- za 1024-bitno število je ta verjetnost reda 10⁻⁴¹
- za praktično uporabo je test dovolj zanesljiv

Psevdo test praštevil - zgled

ali je 2309 praštevilo?

$$-a=2, b=2308_{[10]}=100100000100_{[2]}, n=2309$$

j	11	10	9	8	7	6	5	4	3	2	1	0
b_{i}	1	0	0	1	0	0	0	0	0	1	0	0
d	2	4	16	512	1227	61	1412	1077	811	1621	2308	1

- 2309 je praštevilo ali psevdo praštevilo z bazo 2, ker $2^{2308} \equiv 1 \pmod{2309}$ (dejansko je praštevilo)

Psevdo test praštevil - zgled

ali je 1651 praštevilo?

$$-a=2, b=1650_{[10]}=11001110010_{[2]}, n=1651$$

i	10	9	8	7	6	5	4	3	2	1	0
b_{i}	1	1	0	0	1	1	1	0	0	1	0
d	2	8	64	794	1159	385	921	1278	445	1461	1429

- 1651 ni praštevilo, ker 2¹⁶⁵⁰ ≠ 1 (mod 1651)

Psevdo test praštevil - zgled

ali je 1387 praštevilo?

$$-a=2, b=1386_{[10]}=10101101010_{[2]}, n=1387$$

i	10	9	8	7	6	5	4	3	2	1	0
b_{i}	1	0	1	0	1	1	0	1	0	1	0
d	2	4	32	1024	8	128	1127	661	16	512	1

- 1387 je praštevilo ali psevdo praštevilo z bazo 2, ker $2^{1386} \equiv 1 \pmod{1387}$ (dejansko ni praštevilo, ker je 1387=73·19)

- število x je netrivialni koren od 1 (mod n), če velja $x^2 \equiv 1 \pmod{n}$, $x \not\equiv 1 \pmod{n}$ in $x \not\equiv -1 \pmod{n}$
- pomožni izrek: če obstaja netrivialni koren od 1 (mod n), potem je n sestavljeno število
- Miller-Rabinov test uvaja dve modifikaciji glede na psevdo test praštevil:
 - poskuša z več naključno izbranimi bazami namesto samo z a=2
 - med modulskim potenciranjem preverja, ali se med kvadrati pojavi netrivialni koren od 1 (mod n)

- vhod je liho število n, ki ga testiramo, in število ponovitev s z različnimi naključno izbranimi bazami med 1 in n-1
- pomožna funkcija WITNESS izvaja dejanski test pri izbrani bazi a

```
MILLER_RABIN(n,s)
  for j ← 1 to s
    a ← random(1,n-1)
    if WITNESS(a,n)
      return false // zagotovo
  return true // skoraj gotovo
```

- binarni zapis sodega števila *n*-1 predstavimo kot binarni
 - zapis lihega števila u, ki mu sledi t ničel: $n-1=2^t \cdot u$
- velja $a^{n-1} \equiv (a^u)^{2^t} \pmod{n} \Rightarrow izračunamo$ $a^u \mod n$ in rezultat *t*-krat kvadriramo

```
u \leftarrow n - 1

t \leftarrow 0

while u \mod 2 = 0

u \leftarrow u \operatorname{div} 2

t \leftarrow t + 1
```

```
WITNESS(a,n) določi lihi u in t\geq1, tako da n-1=2^t \cdot u X_0 \leftarrow MOD\_EXP(a,u,n) // X_0 \leftarrow a^u \mod n for i \leftarrow 1 to t  x_i \leftarrow x_{i-1}^{2} \mod n \qquad // x_i \equiv a^{2^{i_u}} \mod n  if x_i=1 and x_{i-1}\neq1 and x_{i-1}\neqn-1 return true // n je gotovo sestavljen if x_t\neq1 return true // n je gotovo sestavljen return false // n je zelo verjetno praštevilo
```

- zgornja meja verjetnosti napake Miller-Rabinovega testa je enaka 4^{-s} za vsak lihi n > 2
- če je n β -bitno število, je časovna zahtevnost M-R testa $O(s\beta)$ aritmetičnih in $O(s\beta^3)$ bitnih operacij
- zgled: testirajmo, ali je 2197 praštevilo, če je a=31!
 - $n = 2197, a = 31, n-1 = 2196_{[10]} = 100010010100_{[2]}$
 - $-u = 1000100101_{[2]} = 549_{[10]}, t = 2$
 - z modulskim potenciranjem izračunamo $x_0 = a^u \mod n = 31^{549} \mod 2197 = 1643$
 - WITNESS:

i	0	1	2
X_{i}	1643	1533	1496

- 2197 ni praštevilo, ker $x_2 \neq 1$

- zgornja meja verjetnosti napake Miller-Rabinovega testa je enaka 4^{-s} za vsak lihi n > 2
- če je n β -bitno število, je časovna zahtevnost M-R testa $O(s\beta)$ aritmetičnih in $O(s\beta^3)$ bitnih operacij
- zgled: testirajmo, ali je 2273 praštevilo, če je a=65!

$$- n = 2273, a = 65, n-1 = 2272_{[10]} = 100011100000_{[2]}$$

$$- u = 1000111_{[2]} = 71_{[10]}, t = 5$$

– z modulskim potenciranjem izračunamo $x_0 = a^u \mod n = 65^{71} \mod 2273 = 1601$

- WITNESS:

i	0	1	2	3	4	5
X_{i}	1601	1530	1983	2272	1	1

- 2273 je praštevilo

- zgornja meja verjetnosti napake Miller-Rabinovega testa je enaka 4^{-s} za vsak lihi n > 2
- če je n β -bitno število, je časovna zahtevnost M-R testa $O(s\beta)$ aritmetičnih in $O(s\beta^3)$ bitnih operacij
- zgled: testirajmo, ali je 2273 praštevilo, če je a=65!

$$- n = 2273, a = 65, n-1 = 2272_{[10]} = 100011100000_{[2]}$$

$$- u = 1000111_{[2]} = 71_{[10]}, t = 5$$

– z modulskim potenciranjem izračunamo $x_0 = a^u \mod n = 65^{71} \mod 2273 = 1601$

- WITNESS:

i	0	1	2	3	4	5
X_{i}	1601	1530	1983	2272	1	1

- 2273 je praštevilo

ne zaključimo, ker je $x_{i-1}=n-1$

- zgornja meja verjetnosti napake Miller-Rabinovega testa je enaka 4^{-s} za vsak lihi n > 2
- če je n β -bitno število, je časovna zahtevnost M-R testa $O(s\beta)$ aritmetičnih in $O(s\beta^3)$ bitnih operacij
- zgled: testirajmo, ali je 1729 praštevilo, če je a=99!

$$- n = 1729$$
, $a = 99$, $n-1 = 1728_{[10]} = 11011000000_{[2]}$

$$- u = 11011_{[2]} = 27_{[10]}, t = 6$$

– z modulskim potenciranjem izračunamo $x_0 = a^u \mod n = 99^{27} \mod 1729 = 1331$

- WITNESS: i

i	0	1	2
X_{i}	1331	1065	1

- 1729 ni praštevilo (=7·13·19)

- zgornja meja verjetnosti napake Miller-Rabinovega testa je enaka 4^{-s} za vsak lihi n > 2
- če je n β -bitno število, je časovna zahtevnost M-R testa $O(s\beta)$ aritmetičnih in $O(s\beta^3)$ bitnih operacij
- zgled: testirajmo, ali je 1729 praštevilo, če je a=99!

$$- n = 1729$$
, $a = 99$, $n-1 = 1728_{[10]} = 11011000000_{[2]}$

$$- u = 11011_{[2]} = 27_{[10]}, t = 6$$

– z modulskim potenciranjem izračunamo $x_0 = a^u \mod n = 99^{27} \mod 1729 = 1331$

- WITNESS:

i	0	1	2
X_{i}	1331	1065	1

- 1729 ni praštevilo (=7·13·19)

zaključimo, ker $x_{i-1} \neq 1$ in $x_{i-1} \neq n-1$