Homework set 9

Due by 15:00 on Monday, October 23, 2023.

Please select **three** problems to solve and hand in written solutions either in person or to gunnar@magnusson.io.

Problem 1. Let $f: V \to V$ be a self-adjoint bounded operator on a Hilbert space.

- 1. Suppose that λ is an eigenvalue of f. Show that λ is real.
- 2. Show that the eigenvectors corresponding to two different eigenvalues are orthogonal.

Problem 2. Let $V = L^2([0,1])$ and let $T: V \to V$ be the operator T(f)(x) = xf(x). Show that T is self-adjoint, but that T has no eigenvalues.

Problem 3. Let V be a Hilbert space and $A:V\to V$ a bounded operator. Let $f(z)=\sum_{n\geq 0}a_nz^n$ be a power series with radius of convergence R>0. If |A|< R, show that there exists a bounded operator T on V such that for all $x,y\in V$ we have

$$\langle T(x), \bar{y} \rangle = \sum_{n>0} a_n \langle A^n x, \bar{y} \rangle.$$

(The operator T is usually denoted f(A).)

Problem 4. Calculate the adjoints of the left- and right-shift operators

$$L(x_1, x_2, \ldots) = (x_2, x_3, \ldots),$$

 $R(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots),$

on ℓ^2 .

Problem 5. Calculate $\exp R$ of the right-shift operator R on ℓ^2 .