ГУАП

КАФЕДРА № 41

ОТЧЕТ					
ЗАЩИЩЕН С ОЦЕНКОЙ					
ПРЕПОДАВАТЕЛЬ					
старший преподаватель		Е. К. Григорьев			
должн., уч. степень, звание	подпись, дата	инициалы, фамилия			
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 2.					
МОДЕЛИРОВАНИЕ ГЕНЕРАТОРОВ РАВНОМЕРНО					
РАСПРЕДЕЛЕННЫХ ПСЕВДОСЛУЧАЙНЫХ ЧИСЕЛ.					
по курсу: МОДЕЛИРОВАНИЕ.					
РАБОТУ ВЫПОЛНИЛ					
СТУДЕНТ ГР. № 4217		У. А. Мазориев			
	подпись, дата	инициалы, фамилия			

Цель работы:

получить навыки моделирования нормально распределенных псевдослучайных чисел в программной среде Pyton, а также первичной оценки качества полученных псевдослучайных чисел

Результат выполнения работы

Программный код: https://github.com/Mrx112426/Modelirovanie/tree/main Индивидуальный вариант №10:

$$m = 11$$

$$\sigma = 1$$

Ход выполнения работы

На отдельном листке бумаге рисуется график плотности распределения, для этого аналитически рассчитываются необходимые значения функции плотности вероятности. Результат показан на рисунке 1.

Рисунок 1 – График плотности распределения

На отдельном листе строится график функции распределения нормального закона с параметрами по варианту (рис. 2). Для этого используется метод стандартизации нормального распределения, т.е. преобразование нормального распределения с параметрами (4, 3) в стандартное нормальное распределение (0, 1) путем вычитания мат. ожидания из каждого значения и деления на стандартное отклонение:

$$z = \frac{x - \mu}{\sigma}$$

Для вычисления значения F(x) используется таблица z значений.

Рисунок 2 – График функции распределения Далее графики визуализируются с помощью ЯП Python (рис. 3).

Рисунок 3 — Визуализация с помощью Python

Графики совпадают с теми, что построены вручную.

После генерируются 12 набор псевдослучайных чисел, всего реализуется 4 метода в каждом из которых три выборки N = [1000, 5000, 10000], на рисунке 4 показан пример сгенерированных выборок.

dict_keys(['N = 1000', 'N = 5000', 'N = 10000'])					
цпт	Преобразование Бокса-Мюллера	Полярный метод Марсальи	randn(n)		
0 11.888127	1.365709	3.635561	3.072138		
1 11.417613	6.832446	2.961991	7.498416		
2 9.823419	7.774303	4.807198	4.687997		
3 10.217988	6.589472	4.869963	6.870335		
4 8.874792	5.863519	5.329679	4.246115		
995 9.377926	1.676098	2.952629	-3.322229		
996 12.276118	3.920856	2.394980	4.201338		
997 12.045567	3.016861	5.370949	4.329481		
998 11.037533	4.925945	8.812625	11.588115		
999 10.853524	8.694687	2.197764	3.603230		

Рисунок 4 – Сгенерированные числа при N = 1000

После строятся гистограммы для каждого набора псевдослучайных чисел (рис. 5–7), эмпирические функции распределения (рис. 8 – 10) и диаграммы рассеивания (рис. 11-13).

Рисунок 5 – Гистограммы для N=1000

Рисунок 6 – Гистограммы для N=5000

Рисунок 7 — Гистограммы для N=10000

Рисунок 8 - ЭФР для N = 1000

Рисунок 9 – ЭФР для N=5000

Рисунок 10 - ЭФР для N = 10000

Рисунок 10- Точечный график для N=1000

Рисунок 11 — Точечный график для N=5000

Рисунок 12 — Точечный график для N=10000

Эмпирические функции распределения для всех сгенерированных наборов данных демонстрируют, что выбранные методы генерации адекватно воспроизводят нормально распределенные псевдослучайные числа.

Гистограммы подтверждают, что распределения стремятся к нормальному, что указывает на корректность работы генераторов. В целом результаты всех методов схожи.

Отмечена тенденция: с увеличением объема выборки распределение становится более нормальным, что вполне ожидаемо.

При объеме выборки в 10 000 значений метод ЦПТ показывает несколько более стабильные результаты. Все генераторы успешно создают равномерное распределение псевдослучайных чисел, что подтверждается диаграммами рассеяния, не показывающими явных закономерностей.

Далее строятся графики QQ-plot (рис. 13–15).

Рисунок $13 - \Gamma$ рафик «квантиль - квантиль» для N = 1000

Рисунок $14 - \Gamma$ рафик «квантиль - квантиль» для N = 5000

Рисунок 15 — График «квантиль - квантиль» для N=10000

Все графики QQ-plot подтверждают, что примененные методы генерируют нормально распределенные псевдослучайные числа с высокой степенью точности. Плотное распределение точек вдоль диагональной линии указывает на соответствие с теоретическим нормальным распределением

После подсчитываются оценки математического ожидания, дисперсии и среднеквадратического отклонения (СКО) (рис. 16).

Результаты для N = 1000:		
	Математическое ожидание	Дисперсия СКО
цпт	11.053344	1.044925 1.022216
Преобразование Бокса-Мюллера	11.022767	1.076465 1.037529
Полярный метод Марсальи	11.014304	0.960866 0.980238
randn(n)	10.976466	1.047784 1.023613
Результаты для N = 5000:		
	Математическое ожидание	Дисперсия СКО
цпт	11.032526	1.028405 1.014103
Преобразование Бокса-Мюллера	10.988898	0.978694 0.989290
Полярный метод Марсальи	10.962390	0.977173 0.988521
randn(n)	11.014028	1.004816 1.002405
Результаты для N = 10000:		
	Математическое ожидание	Дисперсия СКО
цпт	11.004880	0.986125 0.993038
Преобразование Бокса-Мюллера	11.000938	1.024345 1.012099
Полярный метод Марсальи	11.005813	1.012751 1.006355
randn(n)	11.004120	0.998611 0.999305

Рисунок 16 – Показатели по методам

Математическое ожидание для всех методов генерации близко к 11, что говорит о корректности генерации чисел.

Каждый метод демонстрирует стабильные и достаточно точные результаты, приближенные к нормальному распределению. При малых выборках наблюдаются незначительные отклонения: метод центральной предельной теоремы слегка занижает дисперсию, а преобразование Бокса-Мюллера иногда её завышает. Однако по мере увеличения объема выборки все методы сходятся к ожидаемым значениям, что подтверждает их корректность.

Вывод

В ходе выполнения лабораторной работы были приобретены навыки генерации нормально распределенных псевдослучайных чисел в среде Python, а также их первичной статистической оценки.

Анализ полученных данных, включая гистограммы, эмпирические функции распределения, графики рассеяния и QQ-plot, подтвердил, что использованные методы адекватно воспроизводят нормальное распределение. С увеличением объема выборки распределения становятся более симметричными и соответствуют теоретическим ожиданиям.

Исследование математического ожидания, дисперсии и стандартного отклонения показало, что все методы демонстрируют стабильные и точные результаты. Встроенный генератор randn(n) ожидаемо работает наиболее точно, а исправленный полярный метод Марсальи теперь корректно воспроизводит нормальное распределение.