

PRODUCTION SPECIFICATION OF AMOLED MODULE MODULE NO.: TA027SVH01

Customer Name:		
Customer Part Number:		
Approved By:	Date:	

Prepared By	Checked By	Approved By

		Version History	
Version. No	Date	Contents	Remark
01	2019-05-28	Preliminary Specification	

Contents

1	Scope	3					
2	Features	3					
2.1Prod	duct Applications						
2.2 Prod	duct Features						
3	Maximum Rating						
4	Mechanical Specifications						
5	Electrical Specifications						
5.1 Elec	ctrical Characteristics						
	Connection and Block Diagrams						
5.2.2							
5.3 Bloc	ck Diagrams						
5.4Reco	ommended Operating Sequence	(
5.4.2	· · · · · · · · · · · · · · · · · · ·						
5.4.2	Power off sequence	6					
5.5 DSI ⁻	Timing Characteristics	(
5.5.2	1 HS Data TransmissionBurst						
5.5.2	2 HS Clock Transmissione	7					
5.5.3	3 Turnaround Procedure						
5.5.4	4 Timing Parameters	8					
5.5.5	5 Timing requirements for RESETB	9					
6	Electro-Optical Specification	10					
7	Reliability	13					
7.1Envi	ironmental Test	13					
7.2 Elec	ctrical Test	13					
8	Handling Precautions	14					
8.1 Mou	1 Mounting Method						
	tion of AMOLED Handling and Cleaning						
9	Outline Dimension Drawing						
10	The Control of Hazardous substances16						

1 Scope

This Specification defines AMOLED manufactured by Shanghai Top Display Optoelectronics Limited, from here on refer as TDO. In the case of any unspecified item, it may require both TDO and the party designs this module into its product to work out a solution.

Module No.: TA027SVH01

2 Features

2.1 Product Applications

Smart Mobile Phone

2.2 Product Features

Display color: 16.7M (RGB x8bits)
Displayformat: 2.69"(800RGBx600)

3) Pixel arrangement: Real RGBarrangement

4) Interface: DSI 2-Lane5) Driver IC: RM69700

3 Maximum Rating

Darameter	Symbol		Spec	Unit	Noto	
Parameter	Symbol	Min.	Тур.	Max.	Offic	Note
Analog/boost power voltage	VCI	-	-	6.6	V	-
I/O voltage	VDDIO	-	-	6.6	V	-
Operating temperature	Тор	-40	-	85	$^{\circ}$	-
Storage temperature	Tstg	-55	-	125	$^{\circ}$	-

4 Mechanical Specifications

Item	Specification	unit
Dimension outline	56.6(V) x 47.25(W) x 0.505(T)	mm
Number of dots	800RGB*600	dots
Active area	54.6(W) ×40.95(H)	mm
Diagonal size	2.69	inch
Pixel pitch	68.25(W) ×68.25(H)	μm
Glass thickness (LTPS/encapsulation glass)	0.3 / 0.2	mm
Weight	TBD	g

5 Electrical Specifications

5.1 Electrical Characteristics

Test Condition: Temp=25±2 $^{\circ}$ C

Item	Min.	Тур.	Max.	Unit	Remark
Logic Power		TBD		W	
ELVDD	4.6	4.6	4.6	V	
ELVSS	-3	-2.0	-1.4	V	100mV Step
AVDD	6.8	6.8	7.8	V	
VCI	2.7	3.0	3.6	V	
VDDIO	1.62	1.8	1.98	V	
Logic Current		TBD		mA	
Freq	58	60	62	Hz	
VGH	5.7	6	7	V	
VGL	-7	-6	-5.4	V	

Module No.: TA027SVH01

5.2 I/O Connection and Block Diagrams

5.2.1 FPC Pin Assignment

No.	Name	No.	Name
1	NC	2	GND
3	NC	4	ELVDD
5	NC	6	ELVDD
7	NC	8	ELVSS
9	GND	10	ELVSS
11	D1N	12	AVDD
13	D1P	14	GND
15	GND	16	VDDIO
17	CLKN	18	VCI
19	CLKP	20	GND
21	GND	22	SWIRE
23	DON	24	OLED_EN
25	DOP	26	ERR_FG
27	GND	28	TE
29	MTP_PWR	30	RESX

5.3 Block Diagrams

5.4 Recommended Operating Sequence

5.4.1 Power on sequence

Module No.: TA027SVH01

5.4.2 Power off sequence

5.5 DSI Timing Characteristics

5.5.1 HS Data TransmissionBurst

Module No.: TA027SVH01

5.5.2 HS Clock Transmission

5.5.3 Turnaround Procedure

Bus turnaround (BAT) from MPU to display module timing

Bus turnaround (BAT) from display module to MPU timing

Module No.: TA027SVH01

5.5.4 Timing Parameters

Parameter	Description	MIN	MAX	Unit
	Time that the transmitter continues to send HS clock			
TCLK-POST	after the last associated Data Lane has transitioned to LP	60ns+52×UI		ns
TCER-FOST	Mode. Interval is defined as the period from the end of	00113132201		113
	THS-TRIAL to the beginning of TCLK-TRAIL.			
TCLK TDAIL	Time that the transmitter drives the HS-0 state after the	60		
TCLK-TRAIL	last payload clock bit of a HS transmission burst.	60		ns
THS-EXIT	Time that the transmitter drives LP-11 following a HS burst.	300		ns
	Time for the Clock Lane receiver to enable the HS line	Time for Dn to		
TCLK-TERM-EN	termination, Starting from the time point when Dn	reach VTERM-EN	38	ns
	crosses VIL, MAX.			
	Time that the transmitter drives the Clock Lane			
TCLK-PREPARE	LP-00 Line state immediately before the HS-0 Line state	38	95	ns
TCLK-FRLFARL	starting the HS transmission.			113
	Time that the HS clock shall be driven by the transmitter			ļ.,
TCLK-PRE	prior to any associated Data Lane beginning the transition from LP to HS mode.	8		UI
TCLK-PREPARE	TCLK-PREPARE+ time that the transmitter drives the HS-0	300		ns
+TCLK-ZERO	state prior to starting the Clock.			
	Time for the Data Lane receiver to enable the HS line	Time for Dn to		
TD-TERM-EN	termination, starting from the time point when Dn crosses VIL, MAX.	reach VTERM-EN	35ns+4×UI	ns
THE BREDARE	Time that the transmitter drives the Data Lane LP-00 Line	404	05 .6	
THS-PREPARE	state immediately before the HS-0 Line state starting the HS transmission.	40ns+4×UI	85ns+6×UI	ns
THS-PREPARE	THS-PREPARE+ time that the transmitter drives the	145ns+10×UI		ns
+THS-ZERO	HS-0 state prior to transmitting the Sync sequence.			
THS-TRIAL	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission	60ns+4×UI		ns
THIS-TRIAL	burst.	55113. 17.01		1.13

5.5.5 Timing requirements for RESETB

When RESETB of the reset pin equals to Low, will be in the condition of reset. When it is in the condition of reset, it will make the device recover the initial set. However, in order to avoid the reset noise cause reset, there is a mechanism to judge about whether the reset is needed or not.

Module No.: TA027SVH01

The closed interval of Low can be shown as the following.

(Test condition: VDDIO=1.65V~1.98V,VSSA=DVSS= VSSI=0V,TA=-40°C~+85°C)

Darameter	Sumbol	Symbol Conditions		Spec			
Parameter	Symbol Conditions		Min.	Тур.	Max.	Unit	
Reset low pulse width	Trst	-	15	-	-	μs	

Table: Reset timing

Figure: Reset timing

6 Electro-Optical Specification

The test of optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature= $25\pm2^{\circ}$ C) with the equipment of Luminance meter. We refer to θ , $\emptyset=0^{\circ}$ ($=\theta_{3}$) as the 3 o'clock direction (the"right"), θ , $\emptyset=90^{\circ}$ ($=\theta_{12}$) as the 12 o'clock direction ("upward"), θ , $\emptyset=180^{\circ}$ ($=\theta_{9}$) as the 9 o'clock direction ("left") and θ , $\emptyset=270^{\circ}$ ($=\theta_{6}$) as the 6 o'clock direction ("bottom"). While scanning θ and/or \emptyset , the center of the measuring spot on the Display surface shall stay.

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Horizontal	θ_3						
Viewing	Horizontai	θ_9	CD+:-> 1 COO	00			o	Note1
Angle	Mantiaal	θ_6	CR ratio≥1600	80	-	-		Note1
	Vertical	θ ₁₂						
	Brightness		θ=0° At Center	380	420	460	nit	
Contras	t ratio	CR	θ=0°	100,000: 1	-	-	-	Note2
Brightness U	Jniformity	LRU	W255	75	80	-	%	Note3
	\4/b:+a	xw		0.2790	0.2990	0.3190		Note4
	White	Уw		0.2949	0.3149	0.3349	CIE	
	Red	X _R		0.638	0.668	0.698		
Colon of CIE		y R	0.00	0.302	0.332	0.362		
Color of CIE	Green	X _G	θ=0°	0.191	0.226	0.261		
coordinate		y G		0.684	0.719	0.754	1931	
	Blue	ΧB		0.108	0.138	0.168		
		У В		0.025	0.055	0.085		
C	olor Gamut		θ=0° vs. NTSC	-	100	-	%	
Res	ponse Time		G To G			1	ms	
Cro	ss Talk(5nit)		Window: black		3.5	5	%	Note5
Cross Talk(100nit&420nit)		Background: gray127	-	-	3	70	Notes	
Colorshift		W255	3(30°)	4(45°)	5(60°)	JNCD		
	Gamma		Subsection Control	1.9	2.2	2.5	-	-
Life time	LT93 B	10	Room temperature	-	240	-	hrs	
Life tillle	LT93 B	10	50℃		72		hrs	

Notes:

1. Viewing angle is the angle at which the contrast ratio is greater than 1600:1. The viewing angles are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the panel surface.

Module No.: TA027SVH01

2. Contrast measurements shall be made at viewing angle of θ = 0° and at the center of the panel surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (see Figure 3) Luminance Contrast Ratio (CR) is defined mathematically.

$$CR = \frac{Luminance when displaying a white raster}{Luminance when displaying a black raster}$$

3. Uniformity. LRU Refer to figure as below:

Uniformity measurements shall be made at $\theta=0^\circ$ and at the different points of the panel surface. Luminance shall be measured with all pixels in the view field set to W/R/G/B at 255 Gary level, respectively. Luminance uniformity=Lmin/Lmax ×100%

4. The color chromaticity coordinates specified in Table 4 shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.

- 5. Crosstalk measurement shall be done at the center of the different pattern and the result shall be calculated as follow formula.
 - a. measure luminance at the center.
 - b. calculate cross talk as below equation:

$$\begin{aligned} &\text{Crosstalk(V)=} \left| \frac{L_{Vinf} - L_{ref}}{L_{ref}} \right| \times 100\% \\ &\text{Crosstalk(H)=} \left| \frac{L_{hinf} - L_{ref}}{L_{ref}} \right| \times 100\% \end{aligned}$$

7 Reliability

7.1 Environmental Test

No.	Item	Condition	Qnty	Result	Judgment Criterion
1	HTS	80℃,240hr	5 ea	OK	1. In the process of the test sample to
2	LTS	-40℃,240hr	5 ea	OK	work properly, no dysfunction.
3	THS	60℃/90%RH,240hr	5 ea	OK	2. The test is finished, return to room
4	НТО	70℃,240hr	5 ea	OK	temperature, the sample
5	LTO	-20°C,240hr	5 ea	OK	appearance, display function is
6	TST	-40°C~80°C, 60 Cycles	5 ea	OK	normal, no new display abnormal.

Module No.: TA027SVH01

7.2 Electrical Test

No.	Item		Condition	Qnty	Result	Judgment Criterion
1	ESD	Front on	±4KV(Contact)/ ±8kV(Air),	5 ea	ОК	In the process of the test sample to work properly, no dysfunction.
		display	150pF/330Ω			
		Ground on	±4KV(Contact)/ ±8kV(Air),	5 ea	OK	
		metal plane	150pF/330Ω			
		НВМ	±2.5KV	5 ea	OK	
			1.5KΩ/100pF			
		Front on touch	±8KV(Contact)/	5 ea	ОК	
			±15kV(Air), 150pF/330Ω			

8 Handling Precautions

8.1 Mounting Method

The AMOLED panel module consists of two slim glasses with polarizer which can easily get damaged. Since the module is constructed as to be fixed by utilizing fitting holes in the printed circuit board. Extreme care should be used when handling the AMOLED modules.

Module No.: TA027SVH01

8.2 Caution of AMOLED Handling and Cleaning

When cleaning the display surface, use soft cloth solvent as recommended below and wipe gently.

- Keep module away from direct sunlight or fluorescent light, and keep it at room temperature and humidity
- 2. Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent.
 - Water
 - Ketone
 - Aromatics
- 3. Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns. Do not use the following solvent on the pad and prevent it from being contaminated.
 - HCFC (Other area except ITO pad can use the HCFC for cleaning process)
 - Soldering flux
 - Chlorine(Cl), Sulfur(S)
 - Spittle, Fingerprint
- 4. Strong impact & pressure on module and packing is prohibited
- 5. Following normal power on/off sequence is necessary for preventing abnormal display or permanent damage to display
- 6. Optimal contrast ratio under ideal voltage is AMOLED module's characteristic, hence it is recommended a voltage control function available
- 7. Image sticking may occur if an image displays for an extended period of time
- 8. When interfered by system's overall mechanical design, an abnormal display may occur
- 9. Host side should place a surge-prevent circuit at power trace (ie: VCI, Vddi) to protect AMOLED module.

9 Outline Dimension Drawing

10 The Control of Hazardous substances

The Control of Hazardous substances refer toTDO document《有害物质管控标准书》(Standard document for the Control of Hazardous substances) TDO-IS-110, the latest version.