Microbundles on Topological Manifolds

based on J. Milnors studies on microbundles

Florian Burger

Contents

0	Introduction	2
1	Introduction to Microbundles	4
2	Induced Microbundles	9
3	The Whitney Sum	16
4	The Homotopy Theorem	20
5	Microbundles over a Suspension	30
6	Normal Microbundles	43

Chapter 0

Introduction

In differential geometry, the tangent- and normal bundle of smooth manifolds play an essential role in understanding their underlying geometry.

One can define the tangent space in a point $p \in M$ using derivations

$$T_pM = \{ \nu : C^{\infty}(M) \to \mathbb{R}^n \text{ linear } : \nu(fg) = f(p)\nu(g) + \nu(f)g(p) \}$$

or using tangent curves

$$T_p M = \{ \gamma \in C^{\infty}((-1,1), M) : \gamma(0) = p \} / \sim$$

where $\gamma \sim \gamma' \iff \frac{d}{dx}(\psi \circ \gamma)(0) = \frac{d}{dx}(\psi \circ \gamma')(0)$ and ψ is a chart for p.

The tangent space in a point allows for the definition of the tangent bundle

$$TM := \bigsqcup_{p \in M} T_p M$$

together with the section

$$TM \xrightarrow{\pi} M$$
 with $\pi(p, \nu) = p$.

Lets say one wants to define a tangent bundle over a topological manifold without given any smooth structure. We cannot use the same constructions as in the smooth case, because as we have just seen the definition of the tangent space always requires the notion of differentiability.

What we can do is to generalize the concept of tangent bundles so that it can be applied to topological manifolds, in the hope that many results transfer to this generalization.

In the paper 'Microbundles, Part I', J. Milnor introduces a concept of tangent bundles over topological manifolds. This tangent bundle is not a vector bundle

as in the smooth case, instead the tangent bundle is a 'microbundle' which is a weakening of the definition of a vector bundle.

One can transfer many constructions and results for vector bundles over to microbundles, for example the 'whitney sum' or the 'induced bundle'.

Furthermore, one can also define a microbundle analogue to the normal bundle for smooth manifolds.

In the smooth case, given an embedded submanifold $P \subseteq M$, the normal space in a point $p \in P$ is defined to be the quotient

$$N_p P = T_p M / T_p N$$
.

Similar to the tangent bundle, the normal bundle is defined as

$$NP = \bigsqcup_{p \in P} N_p P$$

together with the section

$$NP \xrightarrow{\pi} N$$
 with $\pi(p, \nu) = p$.

So for smooth embedded manifolds there always exists a normal bundle in its surrounding space.

This result doesn't transfer over to microbundles. One can find examples for embedded topological manifolds such that there doesn't exist a normal microbundle.

However, Milnor shows that one can always find a normal microbundle of the submanifold P in a tubular space $M \times \mathbb{R}^q$ for a sufficiently large $q \in \mathbb{N}$.

Proving this statement while presenting the concept of microbundles along the way is the content of this thesis.

It is based on Milnors paper 'Microbundles, Part I', adopting much of its structure and proofs. Mostly there will be provided more details, proving every statement explicitly, than in Milnors original work.

Chapter 1

Introduction to Microbundles

This Chapter introduces the concept of microbundles together with some basic properties. We define what a microbundle is, what it means for a microbundle to be trivial and cover some fundamental examples for microbundles.

Definition 1.1 (microbundle).

A microbundle \mathfrak{b} over B (with fibre dimension n) is a diagram $B \xrightarrow{i} E \xrightarrow{j} B$ satisfying the following:

- (i) B is a topological space (base space)
- (ii) E is a topological space (total space)
- (iii) $i: B \to E$ (injection) and $j: E \to B$ (projection) are maps such that $id_B = j \circ i$
- (iv) Every $b \in B$ is locally trivializable, that is there exist open neighborhoods $U \subseteq B$ of b and $V \subseteq E$ of i(U) together with a homeomorphism $\phi: V \xrightarrow{\sim} U \times \mathbb{R}^n$ such that the following diagram commutes:

Note that π_1 denotes the projection $(u, x) \mapsto x$.

Remark 1.2.

In the following, unless explicitly stated otherwise, we assume the fibre dimension of any given microbundle to be n.

Before we look at some examples of microbundles, we first define what it means for two microbundles to be isomorphic.

Definition 1.3 (isomorphy).

Two microbundles $\mathfrak{b}_1: B \xrightarrow{i_1} E_1 \xrightarrow{j_1} B$ and $\mathfrak{b}_2: B \xrightarrow{i_2} E_2 \xrightarrow{j_2} B$ are isomorphic if there exist neighborhoods V_1 of $i_1(B)$ and V_2 of $i_2(B)$ together with a homeomorphism $\psi: V_1 \xrightarrow{\sim} V_2$ such that the following diagram commutes:

As the definition of isomorphy already implies, when studying microbundles, we are not interested in the entire total space but only in an arbitrary small neighborhood of the base space (more precise, the image i(B)). This is one of the biggest conceptual differences between microbundles and vector bundles. The following proposition makes this even clearer.

Throughout the paper we will often take use of homeomorphisms

$$\mu_{\varepsilon}: B_{\varepsilon}(0) \xrightarrow{\sim} \mathbb{R}^n \text{ with } \mu_{\varepsilon}(0) = 0$$

for example given by

$$x \mapsto \tan(\frac{|x| \cdot \pi}{2\varepsilon})x$$

in order to show properties like local triviality.

Proposition 1.4.

Given a microbundle $\mathfrak{b}: B \xrightarrow{i} E \xrightarrow{j} B$ over B, restricting the total space E to an arbitrary neighborhood $E' \subseteq E$ of i(B) leaves the microbundle unchanged. That is, the microbundle

$$\mathfrak{b}': B \xrightarrow{i} E' \xrightarrow{j|_{E'}} B$$

is isomorphic to \mathfrak{b} .

Proof.

We prove the proposition in two steps.

1. \mathfrak{b}' is a microbundle:

Continuity and $id_B = j|_{E'} \circ i$ are already given since \mathfrak{b} is a microbundle.

So we only need to show that \mathfrak{b}' is locally trivial. For an arbitrary $b \in B$, choose a local trivialization (U, V, ϕ) of b in \mathfrak{b} .

The image $\phi(V \cap E')$ is a neighborhood of (b,0). This follows from $\phi(i(b)) = (b,0)$ and $V \cap E'$ being a neighborhood of i(b).

Hence, for a sufficiently small $\varepsilon > 0$ there exists a $U' \times B_{\varepsilon}(0) \subseteq \phi(V \cap E')$ such that U' is an open neighborhood of b.

Utilizing a homeomorphism $\mu_{\varepsilon}: B_{\varepsilon}(0) \xrightarrow{\sim} \mathbb{R}^n$, we have a local trivialization (U', V', ϕ') with

$$\phi': V' \xrightarrow{\phi} U' \times B_{\varepsilon}(0) \xrightarrow{id \times \mu_{\varepsilon}} U' \times \mathbb{R}^n$$

and $V' := \phi^{-1}(U' \times B_{\varepsilon}(0)).$

That is because ϕ' commutes with the injection

$$\phi'(i(b)) = (id \times \mu_{\varepsilon})(\phi(i(b))) = (id \times \mu_{\varepsilon})(b,0) = (b,0) = (id \times 0)(b)$$

and projection maps

$$j(e) = \pi_1(\phi(e)) = \pi_1((id \times \mu_{\varepsilon})(\phi(e))) = \pi_1(\phi'(e)).$$

2. \mathfrak{b}' is isomorphic to \mathfrak{b} :

Since $E' \subseteq E$, we can simply take the identity $E' \to E' \subseteq E$ as our homeomorphism between neighborhoods of i(B). Furthermore, the injection and projection maps for \mathfrak{b} and \mathfrak{b}' are the same, so they clearly commute with the identity.

The most obvious example for a microbundle is the standard microbundle.

Example 1.5 (trivial microbundle).

Given a topological space B, the standard microbundle \mathfrak{e}_B^n over B is a diagram

$$B \xrightarrow{\iota} B \times \mathbb{R}^n \xrightarrow{\pi_1} B$$

where $\iota(b):=(b,0)$ and $\pi_1(b,x):=b.$ A microbundle $\mathfrak b$ over B is trivial if it is isomorphic to $\mathfrak e^n_B.$

We provide a triviality criteria for microbundles over paracompact hausdorff base spaces.

Lemma 1.6.

A microbundle \mathfrak{b} over a paracompact hausdorff space B is trivial if and only if there exists an open neighborhood V of i(B) such that $V \cong B \times \mathbb{R}^n$ with injection and projection maps being compatible with this homeomorphism.

So for trivial microbundles \mathfrak{b} over B, given that the B is paracompact hausdorff, we may assume that an open subset of $E(\mathfrak{b})$ is homeomorphic to the whole $B \times \mathbb{R}^n$, instead of only a neighborhood of $B \times \{0\}$.

Proof.

By restricting $E(\mathfrak{b})$ to an open neighborhood and applying Proposition (1.4) if necessary, we may assume that $E(\mathfrak{b})$ is an open subset of $B \times \mathbb{R}^n$.

Since $E(\mathfrak{b})$ is a neighborhood of $B \times \{0\}$, there exist $B_i \subseteq B$ open and $0 < \varepsilon_i < 1$ with

$$\bigcup_{i\in I} B_i \times B_{\varepsilon_i}(0) \subseteq E(\mathfrak{b})$$

such that $\bigcup_{i\in I} B_i = B$. Without loss of generality, we may assume that the collection $\{B_i\}$ is locally finite because if not we can simply choose a locally finite refinement using the fact that B is paracompact.

Furthermore, B being paracompact hausdorff we have a partition of unity

$$f_i: B \to [0,1]$$
 with supp $f_i \subseteq B_i$

such that $\sum_{i \in I} f_i = 1$.

Now we define a map

$$\lambda: B \to (0, \infty)$$
 with $\lambda:=\sum_{i \in I} \varepsilon_i f_i$

 $|x| < \lambda(b)$

which has the property that $|x| < \lambda(b) \implies (b, x) \in E(\mathfrak{b})$ since

$$\iff |x| < \varepsilon_{i_1} f_{i_1}(b) + \dots + \varepsilon_{i_n} f_{i_n}(b)$$

$$\iff 0 < (\varepsilon_{i_1} - |x|) f_{i_1}(b) + \dots + (\varepsilon_{i_n} - |x|) f_{i_n}(b)$$

$$\implies \exists i \in I : 0 < (\varepsilon_{i_1} - |x|) f_{i_1}(b)$$

$$\implies (b,x) \in B_i \times B_{\varepsilon_i}(0) \implies (b,x) \in E(\mathfrak{b}).$$

Finally, we have a homeomorphism between the open subset $\{(b,x)\in B\times\mathbb{R}^n:|x|<\lambda(b)\}\subseteq E(\mathfrak{b})$ and $B\times\mathbb{R}^n$ via

$$(b,x)\mapsto (b,\frac{x}{\lambda(b)-|x|}).$$

Note that $(b,0) \mapsto (b,0)$ so this homeomorphism is compatible with the injection and projection maps.

This is simply a weakening of the definition of triviality.

The following example is the microbundle analog to the tangent bundle over smooth manifolds.

Example 1.7 (tangent microbundle).

The tangent microbundle \mathfrak{t}_M over a topological d-manifold M is a diagram

$$M \xrightarrow{\Delta} M \times M \xrightarrow{\pi_1} M$$

 $M \xrightarrow{\Delta} M \times M \xrightarrow{\pi_1} M$ where $\Delta(m) := (m,m)$ denotes the diagonal map.

Proof that \mathfrak{t}_M is a microbundle.

The maps Δ and π_1 are continuous and clearly $id_M = \pi_1 \circ \Delta$.

Let $p \in M$ be arbitrary and let (U, ψ) be a chart over p. Note that U is an open neighborhood of p.

We have a local trivialization $(U, U \times U, \phi)$ of p in \mathfrak{t}_M where

$$\phi: U \times U \xrightarrow{\sim} U \times \mathbb{R}^n \text{ with } \phi(u, u') := (u, \psi(u) - \psi(u')).$$

Homeomorphy of ϕ is given by homeomorphy of ψ and ϕ commutes with the injection

$$\phi(\Delta(m)) = \phi(m, m) = (m, \psi(m) - \psi(m)) = (m, 0) = (id \times 0)(m)$$

and projection maps

$$\pi_1(u, u') = u = \pi_1(u, \phi^{(2)}(u, u')) = \pi_1(\phi(u, u')).$$

Note that $\phi^{(2)}$ denotes the map on the second component of ϕ , i.e. $\pi_2 \circ \phi$.

 $\label{eq:Remark 1.8.} Remark \ 1.8.$ The tangent microbundle \mathfrak{t}_M has fibre dimension d.

The definition of the tangent microbundle utilizes the fact that one can subtract two elements in euclidean space by using a chart for p. The constructed homeomorphy is hence dependant of the chosen chart.

Chapter 2

Induced Microbundles

In this chapter we introduce induced microbundles, analogous to induced (or pullback) vector bundles. As we will see in the course of the chapter, we can show that many statements that are true for induced vector bundles are also true for induced microbundles. After showing some basic properties, we will study induced microbundles over cones and simplices.

Definition 2.1 (induced microbundle).

Let $\mathfrak{b}: B \xrightarrow{i} E \xrightarrow{j} B$ be a microbundle and $f: A \to B$ be a map. The *induced* $microbundle\ f^*\mathfrak{b}: A \xrightarrow{i'} E' \xrightarrow{j'} A$ is a microbundle over A defined as follows:

• $E' := \{(a,e) \in A \times E \mid f(a) = j(e)\}$ • $i': A \to E'$ with $i'(a) := (a,(i \circ f)(a))$ • $j': E' \to A$ with j'(a,e) := a

Proof that $f^*\mathfrak{b}$ is a microbundle.

Both i' and j' are continuous since they are composed by continuous functions Additionally, j'(i'(a)) = j'(a, i(f(a))) = a and hence $j' \circ i' = id_A$.

It remains to be shown that $f^*\mathfrak{b}$ is locally trivial:

For an arbitrary $a_0 \in A$, choose a local trivialization (U, V, ϕ) of $i(a_0)$ in \mathfrak{b} . We construct a local trivialization of a_0 in $f^*\mathfrak{b}$ as follows:

- $U' := f^{-1}(U) \subset A$
- $V' := (U' \times V) \cap E' \subseteq E'$
- $\phi': V' \xrightarrow{\sim} U' \times \mathbb{R}^n$ with $\phi'(a, e) := (a, \phi^{(2)}(e))$

Note that U' is an open neighborhood of a_0 since f is continuous and U is an open neighborhood of $i(a_0)$. Similarly, V' is an open neighborhood of $i'(a_0)$ since both $U' \times V$ and E' are open neighborhoods of $i'(a_0)$. The map ϕ' is well-defined because $(a,e) \in V' \implies e \in V$. The existence of an inverse $\phi'^{-1}(a,v) = (a,\phi^{-1}(f(a),v))$ and component-wise continuity show that ϕ' is a homeomorphism. The homeomorphism commutes with the injection

$$\phi'(i'(a)) = \phi(a, i(f(a))) = (a, \phi^{(2)}(i(f(a)))) = (a, 0) = (id \times 0)(a)$$

and projection maps

$$j'(a,e) = a = \pi_1(a,\phi'^{(2)}(a,e)) = \pi_1(\phi'(a,e))$$

which completes the proof.

Example 2.2 (restricted microbundle).

Let $\mathfrak{b}: B \xrightarrow{i} E \xrightarrow{j} B$ be a microbundle and $A \subseteq B$ be a subspace. The restricted microbundle $\mathfrak{b}|_A$ is the induced microbundle $\iota^*\mathfrak{b}$ where $\iota: A \hookrightarrow B$ denotes the inclusion map.

Remark~2.3.

In the following, we consider $E(\mathfrak{b}|_A)$ to be a subset of $E(\mathfrak{b})$. This is justified because there exists an embedding

$$\iota: E(\mathfrak{b}|_A) \to E(\mathfrak{b}) \text{ with } (a,e) \mapsto e$$

and inverse $e \mapsto (j(e), e)$. Note that this argument can be made for any induced microbundle over an injective map.

Next, we provide two criteria for showing that an induced microbundle is trivial.

Lemma 2.4.

Let \mathfrak{b} be a microbundle over B and $f:A\to B$ be a map. The induced microbundle $f^*\mathfrak{b}$ is trivial if \mathfrak{b} is already trivial.

Proof.

To proof triviality, we need to show that there exists a homeomorphism between a neighborhood of i'(A) and $A \times \{0\}$ that commutes with the injection and projection maps of $f^*\mathfrak{b}$ and \mathfrak{e}_A^n .

Since \mathfrak{b} is trivial, there exists a homeomorphism $\psi: V \to \psi(V)$ where V is a neighborhood of i(B) and $\psi(V)$ is a neighborhood of $B \times \{0\}$ such that ψ commutes with injection and projection maps. We define a map

$$\psi': V' \xrightarrow{\sim} \psi'(V')$$

$$(a,e)\mapsto (a,\psi^{(2)}(e))$$

where $V' := (A \times V) \cap E(f^*\mathfrak{b})$. Since ψ' is component-wise homeomorphic, ψ' is a homeomorphism. Note that V' is a neighborhood of i'(A) since

$$\forall a \in A : i(f(a)) \in V \text{ and } i'(a) = (a, i(f(a))).$$

From $\psi^{(2)}(i(f(a))) = 0$ and homeomorphy of ψ' it follows that $\psi'(V')$ is a neighborhood of $A \times \{0\}$.

Finally, ψ' commutes with the injection

$$\psi'(i'(a)) = (a, \psi^{(2)}(i(f(a)))) = (a, 0) = (id \times 0)(a)$$

and projection maps

$$j'(a,e) = j'(a) = \pi_1(a, \psi'^{(2)}(a,e)) = \pi_1(\psi'(a,e))$$

which completes the proof.

Lemma 2.5.Let $\mathfrak b$ be a microbundle over B. The induced microbundle const $_{A,b_0}^*\mathfrak b$ over a map $const_{A,b_0}: A \to B \ with \ const_{A,b_0}(a) = b_0$

$$const_{A,b_0}: A \to B \text{ with } const_{A,b_0}(a) = b_0$$

Proof.

The total space $E(const_{A,b_0}^*\mathfrak{b})$ is of the form

$$\{(a, e) \in A \times E(\mathfrak{b}) : f(a) = b_0 = j(e)\}$$

= $A \times j^{-1}(b_0)$.

By choosing a local trivialization (U, V, ϕ) of b_0 in \mathfrak{b} and restricting ϕ to $j^{-1}(b_0)$, we receive a homeomorphism $\phi|_{j^{-1}(b_0)}: V' \xrightarrow{\sim} b_0 \times \mathbb{R}^n$ where $V' := V \cap j^{-1}(b_0)$.

With ϕ and V' we can construct a homeomorphism $\psi: A \times V' \xrightarrow{\sim} A \times \mathbb{R}^n$ with

$$\psi(a, e) = (a, \phi^{(2)}(e)).$$

Homeomorphy follows from component-wise homeomorphy of ψ .

The map commutes with injection

$$\psi(i'(a)) = \psi(a, i(b_0)) = (a, \phi^{(2)}(i(b_0))) = (a, 0) = (id \times 0)(a)$$

and projection maps

$$j'(a,e) = a = \pi_1(a,x) = \pi_1(\psi(a,e))$$

which completes the proof.

The following lemma shows that the induced microbundle is compatible with the composition of maps.

Lemma 2.6.Let $\mathfrak{c}: C \xrightarrow{i} E \xrightarrow{j} C$ be a microbundle and let $A \xrightarrow{f} B \xrightarrow{g} C$ be a map diagram. Then the two microbundles $(g \circ f)^* \mathfrak{c}: A \xrightarrow{i_1} E_1 \xrightarrow{j_1} A$

$$(g \circ f)^* \mathfrak{c} : A \xrightarrow{i_1} E_1 \xrightarrow{j_1} A$$

$$f^*(g^*\mathfrak{c}): A \xrightarrow{i_2} E_2 \xrightarrow{j_2} A$$

Proof.

Again, we need to find a homeomorphism between a neighborhood of $i_1(A)$ and a neighborhood of $i_2(A)$ that commutes with injection and projection maps.

First, compare the two total spaces:

1.
$$E((g \circ f)^*) = \{(a, e) \in A \times E \mid g(f(a)) = j(e)\}\$$

2.
$$E(f^*(g^*\mathfrak{c})) = \{(a, b, e) \in A \times (B \times E) \mid f(a) = b \text{ and } g(b) = j(e)\}$$

We construct a bijection $\psi: E((g \circ f)^*) \xrightarrow{\sim} E(f^*(g^*\mathfrak{c}))$ with

$$\psi(a, e) = (a, f(a), e)$$
 and $\psi^{-1}(a, b, e) = (a, e)$.

Since both ψ and ψ^{-1} are component-wise continuous, it follows that ψ is a homeomorphism.

This homeomorphism commutes with the injection

$$\psi(i_1(a)) = \psi(a, i(g(f(a)))) = (a, f(a), i(g(f(a)))) = i_2(a)$$

and projection maps

$$j_1(a,e) = a = j_2(a, f(a), e) = j_2(\psi(a, e))$$

which concludes the proof.

Definition 2.7.

Let \mathfrak{b} and \mathfrak{b}' be two microbundles over B and B' where $B' \subseteq B$. We say that ${\mathfrak b}$ is an extension of ${\mathfrak b}'$ over B, if

$$\mathfrak{b}|_{B'}\cong \mathfrak{b}'.$$

For a topological space X, we define the *cone* of X to be

$$CX := X \times [0,1]/X \times \{1\}$$

and the mapping cone of a map $f: A \to B$ to be

$$B \sqcup_f CA := B \sqcup CA / \sim$$

where $(a,0) \sim b \iff f(a) = b$.

Similarly, we define the cylinder of X to be

$$MX := X \times [0,1]$$

and the mapping cylinder of a map $f: A \to B$ to be

$$B \sqcup_f MA := B \sqcup MA / \sim$$

where $(a,0) \sim b \iff f(a) = b$.

Lemma 2.8.

Let A be a paracompact hausdorff space. A microbundle \mathfrak{b} over B can be extended to a microbundle over the mapping cone $B \sqcup_f CA$ if and only if $f^*\mathfrak{b}$ is trivial.

Proof.

We show both implications.

 $\stackrel{\cdot}{\Longrightarrow}$

Let \mathfrak{b}' be an extension of \mathfrak{b} over $B \sqcup_f CA$.

The composition $A \xrightarrow{f} B \hookrightarrow B \sqcup_{f} CA$ is null-homotopic via the homotopy

$$H(a, t) := [a, t]$$

because $H(a,0) = [a,0] = [f(a)] = (\iota \circ f)(a)$ and $H(a,1) = [a,1] = [\tilde{a},1] = H(\tilde{a},1)$. From the Homotopy Theorem (4.1), which we will prove in Chapter (4), it follows that $(\iota \circ f)^*\mathfrak{b}'$ is isomorphic to $const^*\mathfrak{b}'$ and hence trivial.

Since $(\iota \circ f)^*\mathfrak{b}' = f^*(\iota^*\mathfrak{b}') = f^*\mathfrak{b}$, it follows that $f^*\mathfrak{b}$ is trivial.

Let $f^*\mathfrak{b}$ be trivial.

In contrast to the mapping cone, there exists a natural retraction from the mapping cylinder to its attached space

$$r: B \sqcup_f MA \to B$$
 with $r([a,t]) = f(a)$.

The diagram

$$A \times \{1\} \hookrightarrow B \sqcup_f MA \xrightarrow{r} B$$

is equal to f if we consider $A = A \times \{1\}$. It follows that

$$r^*\mathfrak{b}|_{A\times\{1\}}=(r\circ\iota)^*\mathfrak{b}=f^*\mathfrak{b}$$

is trivial.

From Lemma (2.4) and the retraction $(a,t) \mapsto (a,1)$ it follows that $r^*\mathfrak{b}|_{A \times [\frac{1}{2},1]}$ is trivial. Since A is paracompact hausdorff and by Lemma (1.6), there exists a homeomorphism

$$\psi: V \xrightarrow{\sim} A \times [\frac{1}{2}, 1] \times \mathbb{R}^n$$

where V is a neighborhood of $i_r(B)$ in $E(r^*\mathfrak{b}|_{A\times[\frac{1}{2},1]})$. Without loss of generality, we may assume that $V=E(r^*\mathfrak{b}|_{A\times[\frac{1}{2},1]})$ by removing a closed subset of $E(r^*\mathfrak{b}|_{A\times[\frac{1}{2},1]})$ if necessary and applying Proposition (1.4).

Now we construct an extension

$$\mathfrak{b}': B \sqcup_f CA \xrightarrow{i'} E' \xrightarrow{j'} B \sqcup_f CA$$

with

- $E' := E(r^*\mathfrak{b})/\psi^{-1}(A \times \{1\} \times \{x\})$ (for every $x \in \mathbb{R}^n$)
- $i'([a,t]) := [i_r([a,t])]$
- $j'([[a,t],e]) := [j_r([a,t],e)] = [a,t]$

The injection i' is well-defined because i_r maps every representative [a, 1] to the same equivalence class of E'. Similarly, the projection j' is well-defined because

$$[[a,t],e] = [[a',t'],e'] \implies [a,t] = [a,t'].$$

Both i' and j' are continuous by the construction of the quotient space topology. Also, $j' \circ i' = id_{B \sqcup_f CA}$ because

$$j'(i'([a,t])) = j'([i_r(a,t)]) = [j_r(i_r(a,t))] = [a,t].$$

It remains to be shown that \mathfrak{b}' is locally trivial:

For points $[a, t] \in B \sqcup_f CA$ far away from the critical point [a, 1], we can simply take a local trivialization of [a, t] in $r^*\mathfrak{b}$.

When a point is 'close' to the critical point, say $t > \frac{1}{2}$, we can take ψ to be the homeomorphism for our local trivialization. By construction, ψ respects the quotient $\pi : E(r^*\mathfrak{b}) \twoheadrightarrow E'$. It follows that $(\psi^{(1)}(\pi(V)), \pi(V), \psi)$ yields a local trivialization in \mathfrak{b}' .

We can easily follow a criteria on whether one can extend a microbundle over a simplex using the fact that the cone of the border of a simplex is homeomorphic to the simplex itself.

Corollary 2.9

Let B be a (d+1)-simplicial complex, B' its d-skeleton and $\Delta \subseteq B$ a (d+1)-simplex. A microbundle \mathfrak{b} over B' can be extended to a microbundle over $B' \cup \Delta$ if and only if its restriction to the boundary $\mathfrak{b}|_{\partial \Delta}$ is trivial.

Proof.

With $f:\partial\Delta\hookrightarrow B'$ and the previous lemma, it follows that there exists a microbundle \mathfrak{b}' over $B'\cup_f C\partial\Delta$ extending \mathfrak{b} if and only if $f^*\mathfrak{b}=\mathfrak{b}|_{\partial\Delta}$ is trivial.

Now, consider the homeomorphism $\phi: C\partial \Delta \xrightarrow{\sim} \Delta$ with

$$\phi((t_1,\ldots,t_{d+1}),\lambda) := (1-\lambda)(t_1,\ldots,t_{d+1}) + \frac{\lambda}{d+1}(1,\ldots,1)$$

In particular, $\phi(\partial \Delta \times \{0\}) = \partial \Delta$.

It follows that $B' \cup_f C\Delta \cong B' \cup \Delta$ which concludes the proof.

Chapter 3

The Whitney Sum

This chapter introduces another central construction over microbundles, the 'whitney sum'. Again, the construction and basic properties are similar to its vector bundle analogue. It allows us to construct a microbundle given two microbundles over the same base space. The fibre dimension of the resulting microbundle is just the sum of the fibre dimensions of the initial microbundles.

Definition 3.1.

Let \mathfrak{b}_1 and \mathfrak{b}_1 be two microbundles over B with fibre dimensions n_1 and n_2 . The whitney sum $\mathfrak{b}_1 \oplus \mathfrak{b}_2$ is a microbundle $B \xrightarrow{i} E \xrightarrow{j} B$ where

- $E := \{(e_1, e_2) \in E(\mathfrak{b}_1) \times E(\mathfrak{b}_2) : j_1(e_1) = j_2(e_2)\}$ $i(b) := (i_1(b), i_2(b))$ $j(e_1, e_2) := j_1(e_1) = j_2(e_2)$ with fibre dimension $n_1 + n_2$.

Proof that $\mathfrak{b}_1 \oplus \mathfrak{b}_2$ is a microbundle.

For an arbitray $b \in B$, let (U_1, V_1, ϕ_1) and (U_2, V_2, ϕ_2) be two local trivializations of b in \mathfrak{b}_1 and \mathfrak{b}_2 . We construct a local trivialization of b in $\mathfrak{b}_1 \oplus \mathfrak{b}_2$ as follows:

- $U := U_1 \cap U_2$
- $V := (V_1 \times V_2) \cap E$
- $\phi: V \to U \times \mathbb{R}^{n_1+n_2}; \phi(e_1, e_2) := (\phi_1^{(1)}(e_1), \phi_1^{(2)}(e_1) \times \phi_2^{(2)}(e_2))$

Note that $\phi_1^{(1)}(e_1) = \phi_2^{(1)}(e_2)$. Both *U* and *V* are open since U_1, U_2 and V_1, V_2 are open. Since ϕ is a composed by homeomorphisms, it's an homeomorphism as well. This concludes the proof that $\mathfrak{b}_1 \oplus \mathfrak{b}_2$ is a microbundle (of fibre dimension $n_1 + n_2$).

Remark~3.2.

Alternatively, one could define the whitney sum between \mathfrak{b}_1 and \mathfrak{b}_2 to be the induced microbundle $\Delta^*(\mathfrak{b}_1 \times \mathfrak{b}_2)$ where Δ denotes the diagonal map and $\mathfrak{b}_1 \times \mathfrak{b}_2$ denotes the literal cross-product between the two microbundles.

Lemma 3.3.

Let \mathfrak{b}_1 and \mathfrak{b}_1 be two microbundles over B and let $f:A\to B$ be a map. The induced microbundle and the whitney sum are compatible, that is

$$f^*(\mathfrak{b}_1 \oplus \mathfrak{b}_2) \cong f^*\mathfrak{b}_1 \oplus f^*\mathfrak{b}_2.$$

Proof.

From the definition of the induced microbundle and the whitney sum, we can explicitly write the total spaces

$$E(f^*(\mathfrak{b}_1 \oplus \mathfrak{b}_2))$$

$$= \{(a, (e_1, e_2)) \in A \times (E(\mathfrak{b}_1) \times E(\mathfrak{b}_2)) \mid j_1(e_1) = j_2(e_2) = f(a)\}$$

and

$$\begin{split} E(f^*\mathfrak{b}_1 \oplus f^*\mathfrak{b}_2) \\ &= \{(e_1, e_2) \in E(f^*\mathfrak{b}_1) \times E(f^*\mathfrak{b}_2) \mid j_1(e_1) = j(e_2)\} \\ &= \{((a_1, e_1), (a_2, e_2)) \in (A \times E(\mathfrak{b}_1)) \times (A \times E(\mathfrak{b}_2)) \mid \\ &\quad j(a_1, e_1) = j(a_2, e_2) \wedge f(a_i) = j(e_i)\} \end{split}$$

The two total spaces are homeomorphic via $\phi(a, (e_1, e_2)) := ((a, e_1), (a, e_2))$ with $\phi^{-1}((a, e_1), (a, e_2)) = (a, (e_1, e_2))$. Homeomorphy of ϕ follows from the continuity of ϕ and ϕ^{-1} , which is given since both ϕ and ϕ^{-1} are composed by identity maps.

It remains to be shown that injection and projection maps i and j for $E(f^*(\mathfrak{b}_1 \oplus \mathfrak{b}_2))$ and i' and j' for $f^*\mathfrak{b}_1 \oplus f^*\mathfrak{b}_2$ agree under ϕ .

This follows from

$$\phi(i(a)) = \phi(a, i_1(f(a)), i_2(f(a)))$$

= $((a, i_1(f(a))), (a, i_2(f(a)))) = (i'_1(a), i'_2(a)) = i'(a)$

and

$$j(a, e_1, e_2) = a = j'((a, e_1), (a, e_2)) = j'(\phi(a, e_1, e_2)).$$

Last, we show a theorem about whitney sums that will be essential in the proof of Milnor's theorem. For its prove, we need to use the following proposition that will be deferred until Chapter (5).

Proposition 3.4.

Let \mathfrak{b} be a microbundle over a 'bouqet' of spheres B, meeting at a single point. Then there exists a map $r: B \to B$ such that $\mathfrak{b} \oplus r^*\mathfrak{b}$ is trivial.

Theorem 3.5.

Let \mathfrak{b} be a microbundle over a d-dimensional simplicial complex B. Then there exists a microbundle \mathfrak{n} over B so that the whitney sum $\mathfrak{b} \oplus \mathfrak{n}$ is trivial.

Proof.

We prove this theorem by induction over d.

(Start of induction)

A 1-dimensional simplicial complex is just a bouquet of circles. Hence, the start of induction follows directly from Proposition (3.4).

(Inductive Step)

Let B' be the (d-1)-skeleton of B and \mathfrak{n}' be it's corresponding microbundle such that $\mathfrak{b}|_{B'} \oplus \mathfrak{n}'$ is trivial.

1. $\mathfrak{n}' \oplus \mathfrak{e}_{B'}^n$ can be extended over any d-simplex σ :

Consider the equation

$$(\mathfrak{n}'\oplus\mathfrak{e}_{R'}^n)|_{\partial\sigma}=\mathfrak{n}'|_{\partial\sigma}\oplus\mathfrak{e}_{R'}^n|_{\partial\sigma}=\mathfrak{n}'|_{\partial\sigma}\oplus\mathfrak{b}|_{\partial\sigma}=(\mathfrak{n}'\oplus\mathfrak{b}|_{B'})|_{\partial\sigma}$$

in which we used the previous lemma and Corollary (2.9) for $\mathfrak{e}_{B'}^n|_{\partial\sigma} = \mathfrak{b}|_{\partial\sigma}$. Since $(\mathfrak{n}' \oplus \mathfrak{b}|_{B'})|_{\partial\sigma}$ is trivial, the claim follows from Corollary (2.9).

2. $\mathfrak{n}' \oplus \mathfrak{e}_{B'}^n$ can be extended over B:

The difficulty is that the individual d-simplices are not well-seperated. Let B'' denote B with small open d-cells removed from every d-simplex. Since B' is a retract of B'' we can extend $\mathfrak{n}' \oplus \mathfrak{e}_{B'}^n$ to a microbundle ν over B''.

Now we can extend ν over every d-simplex by taking the extensions over every simplex individually (using 1.) and glueing its total spaces together along $E(\nu)$. The injection and projection maps can be constructed by glueing the injetion and projection maps of the individual extensions together.

We denote the resulting microbundle by η .

3. Consider the mapping cone $B \sqcup CB'$ over the inclusion $B' \hookrightarrow B$. Since

$$(\mathfrak{b}\oplus\eta)|_{B'}=\mathfrak{b}|_{B'}\oplus\eta|_{B'}=\mathfrak{b}|_{B'}\oplus(\mathfrak{n}'\oplus\mathfrak{e}^n_{B'})=(\mathfrak{b}|_{B'}\oplus\mathfrak{n}')\oplus\mathfrak{e}^n_{B'}=\mathfrak{e}^n_{B'}\oplus\mathfrak{e}^n_{B'}$$

is trivial, it follows from Lemma (2.8) that we can extend $\mathfrak{b} \oplus \eta$ over $B \sqcup CB'$ which will be denoted by ξ .

The mapping cone $B \sqcup CB'$ has the homotopy type of a bouquet of spheres by transfering B' along CB' collapsing to a single point. Since any d-simplex is homotopic to a d-disc and it's border is collapsed, we get the homotopy of a (d-1)-sphere.

With Theorem (4.1) and Proposition (3.4), we conclude that there exists a microbundle \mathfrak{n} such that $(\xi \oplus \mathfrak{n})|_B$ is trivial. The equation

$$\mathfrak{e}_B^n = (\xi \oplus \mathfrak{n})|_B = \xi|_B \oplus \mathfrak{n}|_B = (\mathfrak{b} \oplus \eta) \oplus \mathfrak{n}|_B = \mathfrak{b} \oplus (\eta \oplus \mathfrak{n}|_B)$$

completes the proof.

Chapter 4

The Homotopy Theorem

In this chapter we will prove the Homotopy Theorem, which states the following.

Theorem 4.1 (Homotopy Theorem).

Let \mathfrak{b} be a microbundle over B and let $f,g:A\to B$ be two maps where A is paracompact. If f and g are homotopic, then $f^*\mathfrak{b}$ and $g^*\mathfrak{b}$ are isomorphic.

In order to prove this, we introduce additional concepts to put microbundles into relation allowing us to understand isomorphy between microbundles better.

Definition 4.2 (map-germ).

A map-germ $F: (X,A) \Rightarrow (Y,B)$ between topological pairs (X,A) and (Y,B) is an equivalence class of maps $(X,A) \rightarrow (Y,B)$ where $f \sim g : \iff f|_U = g|_U$ for an arbitrary neighborhood $U \subseteq X$ of A.

A homeomorphism-germ $F:(X,A)\Rightarrow (Y,B)$ is a map-germ such that there exists a representative $f:U_f\to Y$ that maps homeomorphically to a neighborhood of B. Now consider two isomorphic microbundles $\mathfrak b$ and $\mathfrak b'$ over B. There exists a homeomorphism $\phi:V\stackrel{\sim}{\to} V'$ where $V\subseteq E$ is a neighborhood of i(B) and $V'\subseteq E'$ is a neighborhood of i'(B). The homeomorphism ϕ is a representative for a homeomorphism-germ

$$[\phi]: (E, i(B)) \Rightarrow (E', i'(B)).$$

Studying isomorphy between microbundles in this way is useful because we don't care what such a homeomorphism does on particular neighborhoods of the base spaces but only what it does on arbitray small ones. Hence every representative of $[\phi]$ describes the 'same' isomorphy between $\mathfrak b$ and $\mathfrak b'$. Now, naturally, the question arises whether the existence of a homeomorphism-germ

$$F:(E,i(B))\Rightarrow (E',i'(B))$$

already implies that \mathfrak{b} and \mathfrak{b}' are isomorphic. The answer is generally no, because isomorphy of microbundles additionally requires the homeomorphism to commute with injection and projection maps. Therefore, we need to assume an extra condition ('fibre-preservation') for this implication to be true. This justifies the following definition.

Let \mathfrak{b} and \mathfrak{b}' be two microbundles over B and let $J:(E,i(B))\Rightarrow(B,B)$ and $J':(E',i(B))\Rightarrow(B,B)$ denote the map-germs representing its projection maps.

Definition 4.3 (isomorphism-germ).

An isomorphism-germ between $\mathfrak b$ and $\mathfrak b'$ is a homeomorphism-germ

$$F:(E,B)\Rightarrow (E',B)$$

which is fibre-preserving, that is $J' \circ F = J$.

There exists an isomorphism-germ between $\mathfrak b$ and $\mathfrak b'$ if and only if $\mathfrak b$ is isomor-

We can take this even further by giving up on the assumption that the base spaces of the considered microbundles equal. Note that in this case no comparison to isomorphy can be drawn, since we have not defined isomorphy between microbundles over different base spaces.

Definition 4.5 (bundle-germ).

Let \mathfrak{b} and \mathfrak{b}' be two microbundles over B and B' with the same fibre dimension. A bundle-germ $F:\mathfrak{b}\Rightarrow\mathfrak{b}'$ is a map-germ

$$F:(E,B)\Rightarrow (E',B')$$

 $F:(E,B)\Rightarrow (E',B')$ such that there exists a representative $f:U_f\to E'$ that maps each fibre $j^{-1}(b)$ injectively to a fibre $j'^{-1}(b')$.

For a bundle-germ $F: \mathfrak{b} \Rightarrow \mathfrak{b}'$, the following diagram commutes:

$$(E,B) \xrightarrow{F} (E',B')$$

$$\downarrow_{i} \qquad \qquad \downarrow_{i'}$$

$$B \xrightarrow{F|_{B}} B'$$

We say F is covered by $F|_{B}$. The bundle-germ is indeed a generalization of the isomorphism-germ, as the following proposition shows.

Proposition 4.6 (Williamson).

Let \mathfrak{b} and \mathfrak{b}' be two microbundles over B. A bundle-germ $F:\mathfrak{b}\Rightarrow\mathfrak{b}'$ covering

the identity map is an isomorphism-germ.

First, show a lemma that is necessary for the proof of the proposition.

If a homeomorphism $\phi: \overline{B_2(0)} \xrightarrow{\sim} \phi(\mathbb{R}^n) \subseteq \mathbb{R}^n$ satisfies $|\phi(x) - x| < 1, \forall x \in \overline{B_2(0)}$ then $\overline{B_1(0)} \subseteq \phi(\overline{B_2(0)})$.

$$|\phi(x) - x| < 1, \forall x \in \overline{B_2(0)}$$

then
$$\overline{B_1(0)} \subseteq \phi(\overline{B_2(0)})$$

Proof of the lemma.

Consider $\phi(2S^n)$ where $2S^n$ denotes the *n*-sphere of radius 2. The condition for ϕ yields $1 < |\phi(s)|, \forall s \in 2S^n$. Since $B_2(0)$ has trivial homology groups which are preserved under homeomorphisms, $\phi(B_2(0))$ must have trivial homology groups as well.

From this we can conclude that $\overline{B_1(0)}$ must be contained in $\phi(\overline{B_2(0)})$, because otherwise 'holes' would form which would result in non-trivial homology groups of $\phi(B_2(0))$.

Proof of the proposition.

Let f be a representative for F. First we assume a special and then generalize the result to show the proposition.

1. Let f map from $B \times \mathbb{R}^n$ to $B \times \mathbb{R}^n$:

Since F covers the identity, f is of the form

$$f(b,x) = (b, q_b(x))$$

where $g_b: \mathbb{R}^n \to \mathbb{R}^n$ are individual maps. Since the g_b are continuous and injective, it follows from the [domain invariance theorem] that the g_b are

Let $(b_0, x_0) \in B \times \mathbb{R}^n$ and let $\varepsilon \geq 0$. Since g_{b_0} is an open map, there exists a $\delta > 0$ such that $\overline{B_{2\delta}(0)} \subseteq g_{b_0}(\overline{B_{\varepsilon}(0)})$ where $x_1 := g_{b_0}(x_0)$.

We claim that there exists a neighborhood $V \subseteq B$ of b_0 such that

$$|g_b(x) - g_{b_0}(x)| < \delta$$

for every $b \in V$ and $x \in \overline{B_{\varepsilon}(0)}$.

To show that, consider $\phi(b,x) := g_b(x) - g_{b_0}(x)$. The open set $\phi^{-1}(B_\delta(0))$ is a neighborhood of $\{b_0\} \times \mathbb{R}^n$ since $\phi(b_0, x) = 0$. Hence, there exist open subsets $V_x \subseteq B$ and $W_x \subseteq \mathbb{R}^n$ such that

$$\bigcup_{x \in \overline{B_{\varepsilon}(0)}} V_x \times W_x \subseteq \phi^{-1}(\overline{B_{\delta}(0)})$$

and $x \in W_x$. Since $\overline{B_{\varepsilon}(0)}$ is compact, there exist $x_1, \ldots, x_n \in \overline{B_{\varepsilon}(0)}$ with $\overline{B_{\varepsilon}(0)} \subseteq \bigcup_{i=1}^n V_{x_i}$. The claim follows with $V := V_{x_1} \cap \cdots \cap V_{x_n}$ which is open by forming the intersection over finitely many open sets.

Now we want to apply the previous lemma:

Consider the homeomorphism

$$\overline{B_{2\delta}(0)} \xrightarrow{\sim} g_b \circ g_{b_0}^{-1}(\overline{B_{2\delta}(0)})$$

for an arbitrary $b \in V$. Since

$$\overline{B_{2\delta}(0)}\subseteq g_{b_0}(\overline{B_{\varepsilon}(0)}) \implies g_{b_0}^{-1}(\overline{B_{2\delta}(0)})\subseteq \overline{B_{\varepsilon}(0)}$$

we conclude from the above that

$$|(g_b \circ g_{b_0}^{-1})(x) - x| < \delta, \forall x \in \overline{B_{2\delta}(0)}$$

It follows that, by translation and scaling, $g_b \circ g_{b_0}^{-1}|_{\overline{B_{2\delta}(0)}}$ satisfies the conditions of Lemma (4.7). Therefore, $\overline{B_{\delta}(0)} \subseteq (g_b \circ g_{b_0}^{-1})(\overline{B_{2\delta}(0)})$ and so $\overline{B_{\delta}(0)} \subseteq g_b(\overline{B_{\varepsilon}(0)})$.

From

$$V \times \overline{B_{\delta}(0)} \subseteq g(V \times \overline{B_{\varepsilon}(0)})$$

it follows that f is an open map.

2. Glue together $f: U_f \to E(\mathfrak{b}')$ along local trivializations:

For an arbitrary $b \in B$, choose local trivializations (U, V, ϕ) and (U', V', ϕ') of b in \mathfrak{b} and \mathfrak{b}' . Without loss of generality we may assume that U = U' because otherwise we can choose $V = \phi^{-1}(U \cap U')$ and $V' = \phi'^{-1}(U \cap U')$ and restrict ϕ and ϕ' accordingly.

First, we restrict f to $V \cap f^{-1}(V')$. Since $V \cap f^{-1}(V')$ is an open neighborhood of i(b) and contained in V, we can choose an open neighborhood $\tilde{U} \subseteq U$ of i(b) and $\varepsilon > 0$ such that $\phi^{-1}(\tilde{U} \times B_{\varepsilon}(0)) \subseteq V \cap f^{-1}(V')$.

This yields a map $U' \times \mathbb{R}^n \to U' \times \mathbb{R}^n$ with

$$\tilde{U} \times \mathbb{R}^n \cong \tilde{U} \times B_{\varepsilon}(0) \xrightarrow{\sim} \phi^{-1}(\tilde{U} \times B_{\varepsilon}(0)) \xrightarrow{f} U' \times \mathbb{R}^n \subseteq U \times \mathbb{R}^n$$

that is injective and fibre-preserving and therefore an open map (apply 1.). It follows that $f: \phi^{-1}(\tilde{U} \times B_{\varepsilon}(0)) \to V'$ must be an open map as well since the other composing maps are homeomorphisms.

By glueing the $\phi^{-1}(\tilde{U} \times B_{\varepsilon}(0))$ together over all $b \in B$, we see that f is an open map.

We can easily generalize this to bundle-germs between microbundles over different base spaces:

Corollary 4.8. If a map $g: B \to B'$ is covered by a bundle-germ $F: \mathfrak{b} \Rightarrow \mathfrak{b}'$, then \mathfrak{b} is isomorphic to the induced microbundle $g^*\mathfrak{b}'$.

Let $f: U_f \to E'$ be a representative map for F. We define $F': \mathfrak{b} \Rightarrow g^*\mathfrak{b}'$ by the representative

$$f': U_f \to E(g^*\mathfrak{b}')$$
 with $f'(e) = (j(e), f(e))$.

Every f'(e) lies in $E(g^*\mathfrak{b}')$ because

$$g(j(e)) = j'(f(e))$$

as we can see from the commutative diagram for bundle-germs.

The germ F' is a bundle-germ covering the identity because

$$j(e) = j'_g(j(e), f(e)) = j'_g(f'(e))$$

and because f' is injective (since f is injective). Applying the previous proposition on F' proves the claim.

The following lemma will allow us to glue together bundle-germs over locally finite, closed domains if they agree on their intersection.

Let \mathfrak{b} be a microbundle over B and $\{B_{\alpha}\}$ a locally finite collection of closed sets covering B. Additionally, we are given a collection of bundle-germs F_{α} : $\mathfrak{b}|_{B_{\alpha}} \Rightarrow \mathfrak{b}'$ such that $F_{\alpha} = F_{\beta}$ on $\mathfrak{b}|_{B_{\alpha} \cap B_{\beta}}$. Then there exists a bundle-germ $F: \mathfrak{b} \Rightarrow \mathfrak{b}'$ extending F_{α} , that is F and F_{α} agree on a sufficiently small neighborhood of $i(B_{\alpha})$.

Proof.

Choose representative maps $f_{\alpha}: U_{\alpha} \to E(\mathfrak{b}')$ for F_{α} such that the U_{α} are open. For every α and β , choose an open neighborhood $U_{\alpha\beta}$ of $i(B_{\alpha} \cap B_{\beta})$ on which the representative maps f_{α} and f_{β} agree. Now consider

$$U := \{ e \in E : j(e) \in B_{\alpha} \cap B_{\beta} \implies e \in U_{\alpha\beta} \}$$

which satisfies the following:

1. U is open:

We can express U like this:

$$E - \bigcup_{\alpha\beta} \{j^{-1}(B_{\alpha} \cap B_{\beta}) \cap U_{\alpha\beta}^c\}$$

Since $j^{-1}(B_{\alpha} \cap B_{\beta})$ and $U_{\alpha\beta}^c$ are closed sets, U must be open. That is because an open set remains open after removing arbitrarily many closed sets.

2. $i(B) \subseteq U$:

This follows from

$$b \in B_{\alpha} \cap B_{\beta} \implies i(b) \in i(B_{\alpha} \cap B_{\beta}) \subseteq U_{\alpha\beta}$$

and j(i(b)) = b.

Now we can define $f: U \to E(\mathfrak{b}')$ in the obvious way

$$f(u \in U_{\alpha\beta}) := f_{\alpha}(u) = f_{\beta}(u)$$

which is continuous according to the [glueing lemma]. We see that f agrees with f_{α} on $U_{\alpha\alpha}$, hence f is a representative for a bundle-germ $F: \mathfrak{b} \Rightarrow \mathfrak{b}'$ extending $\{F_{\alpha}\}.$

Therefore, f is a representative map for our required F.

Using the previous lemma, we can show a criteria on whether a microbundle over a cylinder base space is trivial.

Lemma 4.10.

Let $\mathfrak b$ be a microbundle over $B \times [0,1]$. If $\mathfrak b|_{B \times [0,\frac12]}$ and $\mathfrak b|_{B \times [\frac12,1]}$ are both trivial, then $\mathfrak b$ itself is trivial.

Proof.

Consider the identity bundle-germ over $\mathfrak{b}|_{B\times\{\frac{1}{2}\}}$, that is the bundle-germ represented by the identity on $E(\mathfrak{b}|_{B\times\{\frac{1}{2}\}})$. Since $\mathfrak{b}|_{B\times[\frac{1}{2},1]}$ is trivial, we can extend this bundle-germ to

$$\mathfrak{b}|_{B\times [\frac{1}{2},1]}\Rightarrow \mathfrak{b}|_{B\times \{\frac{1}{2}\}}$$

by the representative

$$B \times [\frac{1}{2}, 1] \times \mathbb{R}^n \to B \times \{\frac{1}{2}\} \times \mathbb{R}^n$$

$$(b,t,x)\mapsto (b,\frac{1}{2},x).$$

Here we identified an open subset of $E(\mathfrak{b}|_{B\times[\frac{1}{2},1]})$ with $B\times[\frac{1}{2},1]\times\mathbb{R}^n$ using Lemma (1.6). Using the previous lemma, we can piece this together with the identity bundle-germ on $\mathfrak{b}|_{B\times[0,\frac{1}{2}]}$ (note that the bundle-germs agree on their intersection) resulting in a bundle-germ

$$\mathfrak{b}\Rightarrow \mathfrak{b}|_{B\times [0,\frac{1}{2}]}.$$

The previous corollary infers that \mathfrak{b} is isomorphic to $r^*\mathfrak{b}|_{B\times[0,\frac{1}{2}]}$ where $r:B\times[0,1]$ is the retraction $(b,t)\mapsto (b,\min(t,\frac{1}{2}))$. But $\mathfrak{b}|_{B\times[0,\frac{1}{2}]}$ is trivial, hence $r^*\mathfrak{b}|_{B\times[0,\frac{1}{\alpha}]}$ is trivial as well (Lemma (2.4)) which concludes the proof.

Lemma 4.11

Let \mathfrak{b} be a microbundle over $B \times [0,1]$. Every $b \in B$ has a neighborhood V where $\mathfrak{b}|_{V \times [0,1]}$ is trivial.

Proof.

Let $b \in B$ be arbitrary.

For every $t \in [0,1]$, choose a neighborhood $U_t := V_t \times (t - \varepsilon_t, t + \varepsilon_t)$ of (b,t) such that $\mathfrak{b}|_{U_t}$ is trivial. This can be achieved by taking a local trivialization of (b,t) in \mathfrak{b} and restricting the spaces if necessary.

Since $\{b\} \times [0,1]$ is compact, we can choose a finite subset

$$(V_1 \times (t_1 - \varepsilon_1, t_1 + \varepsilon_1)), \ldots, (V_n \times (t_n - \varepsilon_n, t_n + \varepsilon_n))$$

of the collection $\{U_t\}$ covering $\{b\} \times [0,1]$ and define $V = V_1 \cap \cdots \cap V_n$.

The restricted microbundles $\mathfrak{b}|_{V\times(t_i-\varepsilon_i,t_i+\varepsilon_i)}$ are trivial, because every $\mathfrak{b}|_{U_t}$ is trivial and $V\times(t_i-\varepsilon_i,t_i+\varepsilon_i)\subseteq U_t$. Hence, there exists a subdivision $0=t_0<\cdots< t_k=1$ such that every $\mathfrak{b}|_{V\times[t_i,t_{i+1}]}$ is trivial.

By iteratively applying the previous lemma on the $\mathfrak{b}|_{V\times[t_i,t_{i+1}]}$, it follows that $\mathfrak{b}|_{V\times[0,1]}$ is trivial.

Lemma 4.12.

Let B be a paracompact hausdorff space and let $\{V_{\alpha}\}$ be a locally finite open cover of B. Then there exists a locally finite closed cover $\{\overline{B_{\beta}}\}$ of B such that every $\overline{B_{\beta}}$ intersects only with finitely many $V_{\alpha_1}, \ldots V_{\alpha_n}$.

Proof.

For every $b \in B$, there exists an open neighborhood U_b of b that intersects only with finitely many

$$V_{\alpha_1}, \dots V_{\alpha_k}$$

using the definition of local finiteness for $\{V_{\alpha}\}$. Clearly, the collection $\{U_b\}$ over all $b \in B$ covers B.

Since B is paracompact, there exists a locally finite subcover $\{B_{\beta}\}$.

Now we have the collection $\{\overline{B_{\beta}}\}\$ that meets our requirements:

1. $\{\overline{B_{\beta}}\}$ is locally finite:

For an arbitrary $b \in B$, let W_b be an open neighborhood of b that intersects only finitely many $B_{\beta_1}, \ldots, B_{\beta_k}$. Now W_b intersects only $\overline{B_{\beta_1}}, \ldots, \overline{B_{\beta_1}}$ from $\{B_{\beta}\}$, because

$$W_b \cap B_\beta = \emptyset$$

$$\Longrightarrow B_\beta \subseteq B - W_b$$

$$\Longrightarrow \overline{B_\beta} \subseteq \overline{B - W_b} = B - W_b$$

$$\Longrightarrow W_b \cap \overline{B_\beta} = \emptyset$$

2. Every $\overline{B_{\beta}}$ intersects only finitely many V_{α}

Since $B_{\beta} \subseteq U_b$ for some $b \in B$, B_{β} intersects only finitely many V_{α} . Using the same arguments as in 1., it follows that $\overline{B_{\beta}}$ intersects with the exact same V_{α} .

Lemma 4.13

Let \mathfrak{b} be a microbundle over $B \times [0,1]$ where B is paracompact hausdorff. Then there exists a bundle map-germ $R: \mathfrak{b} \Rightarrow \mathfrak{b}|_{B \times \{1\}}$ covering the standard retraction $r: B \times [0,1] \to B \times \{1\}$ with $(b,t) \mapsto (b,1)$.

Proof.

First, we assume a locally finite covering $\{V_{\alpha}\}$ of open sets where $\mathfrak{b}|_{V_{\alpha}\times[0,1]}$ is trivial. The existence of such a covering is justified by the Lemma (4.11) and the fact that any open cover of B has a locally finite subcover due to paracompactness.

This open cover has a partition of unity (B is paracompact hausdorff)

$$\lambda_{\alpha}: B \to [0,1]$$

with supp $\lambda_{\alpha} \subseteq V_{\alpha}$ that is rescaled in way that

$$\max_{\alpha}(\lambda_{\alpha}(b)) = 1, \forall b \in B.$$

This can be achieved by dividing λ_{α} with $\max_{\alpha} \lambda_{\alpha}$ which is well-defined because $\{V_{\alpha}\}$ is locally finite and continuous because the max function is continuous. Also, $\max_{\alpha} \lambda_{\alpha} > 0$ since the initial partition of unity adds up to 1 in every point.

Now we define a retraction $r_{\alpha}: B \times [0,1] \to B \times [0,1]$ with

$$r_{\alpha}(b,t) = (b, \max(t, \lambda_{\alpha}(b))).$$

In the following, we will construct bundle-germs $R_{\alpha}:\mathfrak{b}\Rightarrow\mathfrak{b}$ covering r_{α} and piece them together to obtain the desired bundle-germ.

1. We can divide $B \times [0,1]$ into two subsets

$$A_{\alpha} := \operatorname{supp} \lambda_{\alpha} \times [0, 1]$$
 and

$$A'_{\alpha} := \{(b, t) : t \ge \lambda_{\alpha}(b)\}.$$

We already know that $\mathfrak{b}|_{A_{\alpha}}$ is trivial since $A_{\alpha} \subseteq V_{\alpha} \times [0,1]$. Like in the proof of Lemma (4.10), we can extend the identity bundle-germ on $\mathfrak{b}|_{A_{\alpha} \cap A_{\alpha'}}$ to a bundle-germ

$$\mathfrak{b}|_{A_{\alpha}} \Rightarrow \mathfrak{b}|_{A_{\alpha} \cap A_{\alpha'}}$$

by the representative

$$A_{\alpha} \times \mathbb{R}^n \to (A_{\alpha} \cap {A_{\alpha}}') \times \mathbb{R}^n$$

$$(a,x)\mapsto (r_{\alpha}(a),x).$$

Piecing this together with the identity bundle-germ $\mathfrak{b}|_{A_{\alpha'}}$ (A_{α} and $A_{\alpha'}$ are both closed), we obtain a bundle-germ R_{α} covering r_{α} .

2. Lastly, we construct a bundle-germ R using the R_{α} .

Applying the well-ordering theorem, which is equivalent to the axiom of choice, we can assume an ordering of $\{V_{\alpha}\}$.

Let $\{B_{\beta}\}$ be a locally finite closed cover of B such that B_{β} intersects only finitely many $V_{\alpha_1} < \cdots < V_{\alpha_k}$ by applying the previous lemma.

Now the composition $R_{\alpha_1} \circ \ldots \circ R_{\alpha_k}$ restricts to a bundle-germ

$$R(\beta): \mathfrak{b}|_{B_{\beta} \times [0,1]} \Rightarrow \mathfrak{b}|_{B_{\beta} \times \{1\}}$$

covering the retraction $(b,t) \mapsto (b,1)$. That is because for every $b \in B_{\beta}$, there is some $1 \le i \le k$ with $\lambda_{\alpha_i}(b) = 1$ and hence $r_{\alpha_i}(b,t) = (b,1)$.

Pieced together using Lemma (4.10), we obtain $R: \mathfrak{b}|_{B\times[0,1]} \to \mathfrak{b}|_{B\times\{1\}}$ covering $(b,t)\mapsto (b,1)$, which concludes the proof.

Finally, we gathered all the tools to proof the Homotopy Theorem.

Proof of the Homotopy Theorem.

The previous lemma states that there exists a bundle-germ

$$R: H^*\mathfrak{b} \Rightarrow H^*\mathfrak{b}|_{A \times \{1\}}$$

covering the standard retraction $(a, t) \mapsto (a, 1)$.

By restricting R to $H^*\mathfrak{b}|_{A\times\{0\}}$ we obtain a bundle-germ

$$H^*\mathfrak{b}|_{A\times\{0\}} \Rightarrow H^*\mathfrak{b}|_{A\times\{1\}}$$

covering $\theta: A \times \{0\} \to A \times \{1\}$ with $(a,0) \mapsto (a,1)$. Applying Corollary (4.8) yields $H^*\mathfrak{b}|_{A \times \{0\}} \cong \theta^*(H^*\mathfrak{b}|_{A \times \{1\}})$.

Considering $A \times \{0\} = A$, we can identify $H^*\mathfrak{b}|_{A \times \{0\}}$ with $f^*\mathfrak{b}$

$$H^*\mathfrak{b}|_{A\times\{0\}}=\iota^*(H^*\mathfrak{b})\cong (H\circ\iota)^*\mathfrak{b}=f^*\mathfrak{b}$$

and symmetrically $\theta^*(H^*\mathfrak{b}|_{A\times\{1\}})$ with $g^*\mathfrak{b}$.

Together with $H^*\mathfrak{b}|_{A\times\{0\}}\cong \theta^*(H^*\mathfrak{b}|_{A\times\{1\}})$ it follows that $f^*\mathfrak{b}\cong g^*\mathfrak{b}$. \square

Chapter 5

Microbundles over a Suspension

In this chapter, we provide the proof for Proposition (3.4). Along the way, we introduce 'rooted-microbundles' which are microbundles with a little more structure, show a slightly sharper version of the Homotopy Theorem and study the wedge sum of two rooted microbundles.

Throughout the chapter, we assume that every topological space comes with an arbitray base point which we will denote with a 0 subscript.

A rooted microbundle \mathfrak{b} over B is a microbundle over B together with an isomorphism-germ

$$R:\mathfrak{b}|_{b_0}\Rightarrow\mathfrak{e}_{b_0}^n.$$

Two rooted microbundles $\mathfrak b$ and $\mathfrak b'$ are rooted-isomorphic if there exists an isomorphism-germ $\mathfrak{b} \Rightarrow \mathfrak{b}'$ extending

$$R'^{-1} \circ R : \mathfrak{b}|_{b_0} \Rightarrow \mathfrak{b}|'_{b_0}.$$

Having a rooting is necessary so that the 'wedge-sum' of two microbundles is well-defined that we will see later in this chapter.

Definition 5.2.

Let \mathfrak{b} be a rooted microbundle over B and $f:A\to B$ a based map. The induced microbundle of f over $\mathfrak b$ is the initial induced microbundle $f^*\mathfrak b$ together

$$f^*R: E(f^*\mathfrak{b}|_{g_0}) = a_0 \times E(\mathfrak{b}|_{b_0}) \Rightarrow e^n$$

 $f^*R: E(f^*\mathfrak{b}|_{a_0}) = a_0 \times E(\mathfrak{b}|_{b_0}) \Rightarrow e_{a_0}^n$ that coincides with R if we consider $a_0 \times E(\mathfrak{b}|_{b_0}) = E(\mathfrak{b}|_{b_0})$ and $e_{a_0}^n = e_{b_0}^n$.

Note that the total space $E(f^*\mathfrak{b}|_{a_0})$ equals $a_0 \times E(\mathfrak{b}|_{b_0})$ because

$$E(f^*\mathfrak{b}|_{a_0}) = \{(a, e) \in A \times E(\mathfrak{b}) : a = a_0 \wedge f(a) = b_0 = j(e)\}$$
$$= a_0 \times \{e \in E(\mathfrak{b}) : j(e) = b_0\} = a_0 \times E(\mathfrak{b}|_{b_0}).$$

We can apply the Homotopy Theorem on the underlying microbundles of rooted-microbundles, however with the statement in Chapter (4) we are generally not given rooted-isomorphy.

By assuming that f and g are based maps and that a homotopy between f and g exists that leaves the base point fixed, we can show a version of the Homotopy Theorem that yields rooted-isomorphy.

Theorem 5.3 (Rooted Homotopy Theorem).

Let $\mathfrak b$ be a rooted microbundle over B and $f,g:A\to B$ be two based maps where A is paracompact hausdorff. If there exists a homotopy $H:A\times [0,1]\to B$ between f and g that leaves the base point fixed, then the two rooted microbundles $f^*\mathfrak b$ and $g^*\mathfrak b$ are rooted-isomorphic.

To proof this, need to show a 'rooted version' of Lemma (4.11).

First, note that

$$E(H^*\mathfrak{b}|_{a_0\times[0,1]}) = E(\iota^*(H^*(\mathfrak{b}))) \cong E((H\circ\iota)^*\mathfrak{b}) = E(const_{b_0}^*\mathfrak{b}).$$

By applying Lemma (2.5), we can consider $E(H^*\mathfrak{b}|_{a_0\times[0,1]})$ to be an open subset of $a_0\times[0,1]\times E(\mathfrak{b}|_{b_0})$.

Based on this, we can define an isomorphism-germ

$$\overline{R}: H^*\mathfrak{b}|_{a_0 \times [0,1]} \Rightarrow \mathfrak{e}^n_{a_0 \times [0,1]}$$

by the representative

$$\overline{r}: a_0 \times [0,1] \times V \to a_0 \times [0,1] \times \mathbb{R}^n$$

with

$$\overline{r}(a_0, t, v) = (a_0, t, r^{(2)}(v))$$

where $r: V \to b_0 \times \mathbb{R}^n$ is a representative for R with $V \subseteq E(\mathfrak{b}|_{b_0})$ open. The representative \overline{r} is a homeomorphism on its image because its component-wise the identity and r, which are both homeomorphisms on their image.

The following lemma is the rooted-version of Lemma (4.11) which will be necessary in order to prove the Rooted Homotopy Theorem.

Lemma 5.4.

Let $\mathfrak b$ be a rooted microbundle over B and let $H:A\times [0,1]\to B$ be a map that

leaves the base point fixed. Then there exists a neighborhood V of a_0 together with an isomorphism-germ

$$H^*\mathfrak{b}|_{V\times[0,1]}\Rightarrow\mathfrak{e}^n_{V\times[0,1]}$$

extending \overline{R} (as defined above)

Proof.

By applying Lemma (4.11), it follows that there exists an isomorphism-germ

$$Q: H^*\mathfrak{b}|_{V \times [0,1]} \Rightarrow \mathfrak{e}^n_{V \times [0,1]}$$

for a sufficiently small neighborhood V of a_0 . However Q doesn't extend R in general.

To fix this, consider

$$Q \circ \overline{R}^{-1} : \mathfrak{e}^n_{a_0 \times [0,1]} \Rightarrow \mathfrak{e}^n_{a_0 \times [0,1]}$$

represented by $\nu: U_{\nu} \to a_0 \times [0,1] \times \mathbb{R}^n$ with $U_{\nu} \subseteq a_0 \times [0,1] \times \mathbb{R}^n$ open.

Similar to the construction of \overline{R} , we can construct an isomorphism-germ

$$P: \mathfrak{e}^n_{V \times [0,1]} \Rightarrow \mathfrak{e}^n_{V \times [0,1]}$$

extending $Q \circ \overline{R}^{-1}$ represented by

$$p(a, t, x) = (a, \nu(a_0, t, x))$$

considering $\nu(a_0, t, x) \in [0, 1] \times \mathbb{R}^n$.

Restricted to $\mathfrak{e}^n_{a_0 \times [0,1]}, P$ agrees with $Q \circ \overline{R}^{-1}$ and thus

$$\begin{split} Q^{-1} \circ P|_{\mathfrak{e}^n_{a_0 \times [0,1]}} &= (Q^{-1} \circ (Q \circ \overline{R}^{-1})) = ((Q^{-1} \circ Q) \circ \overline{R}^{-1}) = \overline{R}^{-1} \\ & \Longrightarrow (P^{-1} \circ Q)|_{H^*\mathfrak{b}|_{a_0 \times [0,1]}} = \overline{R}. \end{split}$$

Since P and Q are both isomorphism-germs,

$$P^{-1} \circ Q : H^* \mathfrak{b}|_{V \times [0,1]} \Rightarrow \mathfrak{e}^n_{V \times [0,1]}$$

is an isomorphism-germ extending \overline{R} .

Together with the previous lemma, we are able to prove the Rooted Homotopy Theorem.

To understand the proof, it is useful to have the proof of Lemma (4.13) in mind, which we modify in a few places.

Proof of the Rooted Homotopy Theorem.

For $f^*\mathfrak{b}$ and $g^*\mathfrak{b}$ to be rooted-isomorphic, there needs to exist an isomorphism-germ

$$F: f^*\mathfrak{b} \Rightarrow g^*\mathfrak{b}$$

extending $R_q^{-1} \circ R_f = R^{-1} \circ R = id_{\mathfrak{b}}.$

We construct this isomorphism-germ as in Chapter (4), by taking a bundle-germ

$$H^*\mathfrak{b} \Rightarrow H^*\mathfrak{b}|_{A\times\{1\}}$$

using Lemma (4.13) and restricting it to $H^*\mathfrak{b}|_{A\times\{0\}}$.

So the only thing to do is to modify Lemma (4.13) such a that

$$H^*\mathfrak{b}|_{a_0\times\{0\}}\Rightarrow H^*\mathfrak{b}|_{b_0\times\{0\}}$$

extends the identity germ if we consider $a_0 \times E(\mathfrak{b}|_{b_0}) = b_0 \times E(\mathfrak{b}|_{b_0})$.

This is achieved by taking a locally finite open cover $\{V_{\alpha}\}$ of A as in Lemma (4.13), removing the base point a_0 in every set and adding the set V obtained from Lemma (5.4). Since $a_0 \in V$, the resulting collection is still a locally finite open cover of A.

We continue with the proof like normal. Note that $\lambda_V(a_0) = 1$, since $\lambda_{\alpha}(a_0) = 0$ because we removed a_0 from every other set.

Lastly, we construct the extension R_V for r_v like in Chapter (4), but instead of taking an arbitrary trivialization $E(H^*|_{A_\alpha}) \cong A_\alpha \times \mathbb{R}^n$ for construction we use a representative r for the bundle-germ constructed in Lemma (5.4).

This has the effect that the mapping

$$E(H^*\mathfrak{b}|_{A_V}) \xrightarrow{r} A_V \times \mathbb{R}^n \xrightarrow{r_V \times id} (A_V \cap A'_V) \times \mathbb{R}^n \xrightarrow{r^{-1}} E(H^*\mathfrak{b}|_{A_V \cap A'_V})$$

is the identity on $H^*\mathfrak{b}|_{a_0\times\{0\}}$ if we consider $a_0\times E(\mathfrak{b}|_{b_0})=b_0\times E(\mathfrak{b}|_{b_0})$.

This is exactly what we wanted and since every other R_{α} leaves $H^*\mathfrak{b}|_{a_0\times\{0\}}$ unaffected because $r_{\alpha}(a_0,t)=(a_0,\max(\lambda_{\alpha}(t),t))=(a_0,t)$.

Therefore, the pieced together bundle-germ is also the identity on $H^*\mathfrak{b}|_{a_0\times\{0\}}$, completing the proof.

With the concept of rooted-microbundles, we are able to define the wedge sum. As we will see in the subsequent proof, it is necessary to have a fixed rooting given because otherwise one would have to choose a rooting which the resuling microbundle depends on, hence not being well-defined.

Given a space $A \sqcup B/\sim$ and maps $f:A\to C$ and $g:B\to C$, we denote the map that sends elements from A along f and elements from B along g to C by $f\vee g$. Clearly, this map is only well defined if $[a]=[b]\implies f(a)=g(b)$.

Definition 5.5.

Let \mathfrak{a} and \mathfrak{b} be two rooted microbundles over A and B. The wedge sum $\mathfrak{a} \vee \mathfrak{b}$ of ${\mathfrak a}$ and ${\mathfrak b}$ is a rooted microbundle over $A\vee B$

$$A \vee B \xrightarrow{i_a \vee i_b} E(\mathfrak{a} \vee \mathfrak{b}) \xrightarrow{j_a \vee j_b} A \vee B$$

with the total space $E(\mathfrak{a} \vee \mathfrak{b})$ being defined as

$$(E(\mathfrak{a}) \sqcup E(\mathfrak{b}))/f(e_a) \sim e_a$$

 $(E(\mathfrak{a})\sqcup E(\mathfrak{b}))/f(e_a)\sim e_a$ where $f:W_a\stackrel{\sim}{\to} W_b$ is a representative for $R_b^{-1}\circ R_a$. We equip $\mathfrak{a}\vee\mathfrak{b}$ with a rooting $R:E((\mathfrak{a}\vee\mathfrak{b})|_{a_0})\Rightarrow\mathfrak{e}_{a_0}^n$ represented by any representative for R_a (or R_b).

$$R: E((\mathfrak{a}\vee\mathfrak{b})|_{a_0}) \Rightarrow \mathfrak{e}_{a_0}^n$$

Proof that $\mathfrak{a} \vee \mathfrak{b}$ is a rooted microbundle.

Let $f: W_a \xrightarrow{\sim} W_b$ be a representative for $R_b^{-1} \circ R_a$.

- 1. $\mathfrak{a} \vee \mathfrak{b}$ is a rooted microbundle:
 - The injection map $i_a \vee i_b$ is well-defined because

$$i(a_0) = i_a(a_0) = f(i_a(a_0)) = i_b(b_0) = i(b_0)$$

and continuous since both i_a and i_b are continuous.

• The projection map $j_a \vee j_b$ is well-defined because

$$\forall e \in W_a : j(e) = j_a(e) = a_0 = b_0 = j_b(f(e)) = j(f(e))$$

and continuous since both j_a and j_b are continuous.

• The composition $j \circ i$ equals $id_{A \vee B}$ because

$$\forall a \in A : j(i(a)) = j(i_a(a)) = j_a(i_a(a)) = a$$

since $j_a \circ i_a = id_A$ (analogous for B).

It remains to be shown that $\mathfrak{a} \vee \mathfrak{b}$ is locally trivial.

Let $x \in A \vee B$. For symmetry reasons, we may assume $x \in A$. Consider the two cases:

(a) $x \neq a_0$:

Choose a local trivialization (U, V, ϕ) for x in \mathfrak{a} . We can assume $U \cap B = \emptyset$ by subtracting U by $\{a_0\}$ which is closed since A is hausdorff.

Now we can simply take this trivialization for $\mathfrak{a} \vee \mathfrak{b}$ since U is open in $A \vee B$, V is open in $E(\mathfrak{a} \vee \mathfrak{b})$ and $V \cong U \times \mathbb{R}^n$.

(b) $x = a_0$:

The subspace topology of $E(\mathfrak{a}|_{a_0})$ yields an open subset $W'_a \subseteq E(\mathfrak{a})$ such that $W_a = W'_a \cap E(\mathfrak{a}|_{a_0})$.

Let (U_a, V_a, ϕ_a) be a local trivialization of a_0 in \mathfrak{a} where we restricted $E(\mathfrak{a})$ to

$$(E(\mathfrak{a}) - j_a^{-1}(a_0)) \cup W_a'.$$

The resulting total space is an open neighborhood of $i_a(A)$ since $j_a^{-1}(a_0)$ is closed (A is hausdorff) and W'_a is open containing $i_a(a_0)$. The fact that \mathfrak{a} is still a microbundle is justified by Proposition (1.4). It follows that

$$V_a \cap E(\mathfrak{a}|_{a_0}) \subseteq W_a$$
.

The subspace topology of $E(\mathfrak{b}|_{b_0})$ yields an open subset $W_b' \subseteq E(\mathfrak{b})$ such that $f(V_a \cap E(\mathfrak{a}|_{a_0})) = W_b' \cap E(\mathfrak{b}|_{b_0})$

Similarly, let (U_b, V_b, ϕ_b) be a local trivialization of b_0 in \mathfrak{b} where we restricted $E(\mathfrak{b})$ to

$$(E(\mathfrak{b}) - j_h^{-1}(b_0)) \cup W_h'.$$

It follows that

$$f(V_b \cap E(\mathfrak{b}|_{b_0})) \subseteq f(V_a \cap E(\mathfrak{a}|_{a_0})).$$

It follows by construction that

$$V_b \cap E(\mathfrak{b}|_{b_0}) \subseteq W_b$$
 and $V_a \cap E(\mathfrak{a}|_{a_0}) \subseteq W_b \cap E(\mathfrak{b}|_{b_0})$.

We denote X to be an open subset of \mathbb{R}^n with

$$X = (\phi_a^{(2)} \circ f^{-1})(V_b \cap E(\mathfrak{b}|_{b_0})).$$

By defining

$$V_a' = \phi_a^{-1}(U_a \times X)$$

together with

$$\phi_a': V_a' \xrightarrow{\sim} U_a \times \mathbb{R}^n$$

$$e \mapsto (j_a(e), (\phi_b^{(2)} \circ f \circ \phi_a^{-1})(a_0, \phi_a^{(2)}(e)))$$

we finally have a local trivialization $(U_a \vee U_b, (V'_a \sqcup V_b)/\sim, \phi'_a \vee \phi_b)$ of a_0 in $\mathfrak{a} \vee \mathfrak{b}$.

The homeomorphism is well-defined because for every $e \in V_b \cap E(\mathfrak{b}|_{b_0})$

$$\phi_a'(f^{-1}(e)) = (a_0, (\phi_b^{(2)} \circ f \circ \phi_a^{-1})(a_0, \phi_a^{(2)}(e)))$$
$$= (a_0, \phi_b^{(2)}(f(f^{-1}(e)))) = (a_0, \phi_b^{(2)})(e)$$

$$=(b_0,\phi_b^{(2)}(e))=\phi_b(e).$$

Compatibility with injection and projection maps follows is inherited from the summands $\mathfrak a$ and $\mathfrak b$.

2. The wedge sum $\mathfrak{a} \vee \mathfrak{b}$ is independent of the choice of f up to rooted-isomorphy:

Let f' be another representative for $R_b^{-1} \circ R_a$ and $(\mathfrak{a} \vee \mathfrak{b})'$ the resulting wedge sum.

We need to find an isomorphism-germ that extends

$$R'^{-1} \circ R = R^{-1} \circ R = id.$$

Choose an open neighborhood $V \subseteq E(\mathfrak{a}|_{a_0})$ of $i_a(a)$ where f and f' agree.

By subtracting $j_a^{-1}(a_0) - V$ from $E(\mathfrak{a} \vee \mathfrak{b})$ and $E(\mathfrak{a} \vee \mathfrak{b})'$ the microbundles remain unchanged using Proposition (1.4).

So the resulting total spaces $E(\mathfrak{a} \vee \mathfrak{b})$ and $E(\mathfrak{a} \vee \mathfrak{b})'$ agree as well as the injection and projection maps that are defined in the same way.

Using the modified total spaces, it follows that the identity $(\mathfrak{a}\vee\mathfrak{b})\Rightarrow (\mathfrak{a}\vee\mathfrak{b})'$ is an isomorphism-germ. Together with $R'^{-1}\circ R=id$, this completes the proof.

In the following, let B be a reduced suspension

$$SX = (X \times [0,1])/(X \times \{0,1\} \cup x_0 \times [0,1])$$

over X.

Let $\phi: B \to B \vee B$ denote the map that sends $X \times [0, \frac{1}{2}]$ to the first B via

$$\phi([x,t]) = [x,2t]$$

and $X \times [\frac{1}{2}, 1]$ to the second B via

$$\phi([x,t]) = [x, 2t - 1].$$

Additionally, let $c_1: B \vee B \to B$ denote the map that is the identity on the first summand and the constant map $const_{b_0}$ on the second summand (symmetrically define c_2).

Lemma 5.6.

 $The \ following \ non-rooted \ isomorphy \ holds:$

$$\phi^*(\mathfrak{b}\vee\mathfrak{e}_B^n)\cong\mathfrak{b}\cong\phi^*(\mathfrak{e}_B^n\vee\mathfrak{b})$$

Proof.

We prove the lemma in two steps.

• $c_1^*\mathfrak{b} \cong \mathfrak{b} \vee \mathfrak{e}_B^n$:

First, consider the total space

$$E(c_1^*\mathfrak{b}) = \{(b, e) \in (B \vee B) \times E(\mathfrak{b}) : c_1(b) = j(e)\}$$

$$= (\{(b, e) \in B \times E(\mathfrak{b}) : b = j(e)\} \sqcup B \times E(\mathfrak{b}|_{b_0})) / \sim$$

$$= (\{(j(e), e) : e \in E(\mathfrak{b})\} \sqcup B \times E(\mathfrak{b}|_{b_0})) / \sim$$

where $(b,e) \sim (b',e') \iff b = b_0 = b' \wedge e = e'$. We can omit the first component on the left side resulting in

$$E(c_1^*\mathfrak{b}) = (E(\mathfrak{b}) \sqcup (B \times E(\mathfrak{b}|_{b_0})))/\sim$$

where $e \sim (b, e') \iff b = b_0 \land e = e'$.

On the other side, consider

$$E(\mathfrak{b}\vee\mathfrak{e}_B^n)=(E(\mathfrak{b})\sqcup(B\times\mathbb{R}^n))/e\sim' f(e)$$

with f being some representative $U_f \to b_0 \times \mathbb{R}^n$ for $id_{b_0 \times [0,1]}^{-1} \circ R_b$.

Now, we have a map ψ from the open subset of $E(c_1^*\mathfrak{b})$

$$(E(\mathfrak{b}) \sqcup (B \times U_f))/\sim$$

to the open subset of $E(\mathfrak{b}\vee\mathfrak{e}_B^n)$

$$(E(\mathfrak{b}) \sqcup (B \times f(U_f)))/\sim'$$

with $\psi([e]) = [e]$ and $\psi([b,e]) = [(b,f^{(2)}(e))]$. The map is well-defined because for every $e \sim (b_0,e)$

$$\psi([e]) = [e] = [f(e)] = [b_0, f^{(2)}(e)] = \psi([b_0, e]).$$

Homeomorphy of ψ follows by the homeomorphy of its summands.

The map commutes with the injection map in the first summand

$$\psi(i_{c_1}([b_1])) = \psi(b_1, i(c_1([b_1]))) = \psi(b_1, i(b_1))$$
$$= [b_1, f^{(2)}(i(b_1))] = [f(i(b_1))] = [i(b_1)]$$

and the second summand

$$\psi(i_{c_1}([b_2])) = \psi(b_2, i(c_1([b_2]))) = \psi(b_2, i(b_0))$$
$$= [b_2, f^{(2)}(b_0)] = [b_2, 0] = [i_{\mathfrak{e}_B}^n(b_2)]$$

as well as with the projection map in the first summand

$$j_{c_1}([e]) = [j(e)] = j(\psi([e]))$$

and the second summand

$$j_{c_1}([b,e]) = [b] = [\pi_1(b,\psi^{(2)}([b,e]))] = [\pi_1(\psi(b,e))].$$

Therefore, ψ represents an isomorphism-germ between $c_1^*\mathfrak{b}$ and $\mathfrak{b}\vee\mathfrak{e}_B^n$.

• From $c_1 \circ \phi = id_B$ we can conclude that

$$\phi^*(\mathfrak{b}\vee\mathfrak{e}_R^n)\cong\phi^*c_1^*\mathfrak{b}\cong(c_1\circ\phi)^*\mathfrak{b}\cong\mathfrak{b}.$$

The isomorphy $\mathfrak{b} \cong \phi^*(\mathfrak{e}_B^n \vee \mathfrak{b})$ follows by symmetry, which concludes the proof.

Lemma 5.7.Let $\mathfrak a$ and $\mathfrak b$ be rooted microbundles over A and B. For maps $f:A'\to A$ and $g:B'\to B$ the following non-rooted isomorphy holds:

$$(f \vee g)^*(\mathfrak{a} \vee \mathfrak{b}) \cong f^*\mathfrak{a} \vee g^*\mathfrak{b}$$

Proof.

Consider the equation

$$E((f \vee g)^*(\mathfrak{a} \vee \mathfrak{b}))$$

$$= \{(x,e) \in (A' \vee B') \times E(\mathfrak{a} \vee \mathfrak{b}) : (f \vee g)(x) = j(e)\}$$

$$= \{(x,e) \in ((A' \times E(\mathfrak{a})) \sqcup (B' \times E(\mathfrak{b}))) / \sim : (f \vee g)(x) = j(e)\}$$

$$= (\{(x,e) \in A' \times E(\mathfrak{a}) : f(x) = j_a(e)\} \sqcup \{(x,e) \in B' \times E(\mathfrak{b}) : g(x) = j_b(e)\}) / \sim$$

$$= (E(f^*\mathfrak{a}) \sqcup E(g^*\mathfrak{b})) / \sim$$

$$= E(f^*\mathfrak{a} \vee g^*\mathfrak{b})$$

where $(a, e_a) \sim (b, e_b) \iff a = a_0 = b_0 = b \wedge e_a = e_b \text{ in } E(\mathfrak{a} \vee \mathfrak{b}).$

Additionally, the injection

$$i_{f\vee g}(a) = i_f(a) = i_{\vee}(a)$$

and projection maps

$$j_{f \vee g}(a, e) = a = j_f(a, e) = i_{\vee}(a, e)$$

are equal. Here, i_{\lor} and j_{\lor} denote the injection and projection maps for $f^*\mathfrak{a}\lor g^*\mathfrak{b}$. It follows that the two microbundles are isomorphic.

Let $r: B \xrightarrow{\sim} B$ denote the homeomorphism that corresponds to the 'reflection'

$$(x,t)\mapsto (x,1-t)$$

and let $c: B \vee B \to B$ be the identity on the first summand and r on the second summand.

Lemma 5.8. The induced microbundle $\phi^*(\mathfrak{b} \vee r^*\mathfrak{b})$ is trivial.

Proof.

The composition $f \circ \phi$ is null-homotopic via the homotopy $H: B \times [0,1] \to B$ with

$$H([x,t],s) = f(\phi(x,t*s)).$$

Therefore $\phi^* f^* \mathfrak{b} \cong (f \circ \phi)^* \mathfrak{b} \cong const_{b_0}^* \mathfrak{b} \cong \mathfrak{e}_B^n$ (see Theorem (4.1)).

Applying the previous lemma, it follows that $\phi^*(\mathfrak{b} \vee c^*\mathfrak{b}) = \phi^* f^*\mathfrak{b}$ and hence

$$\phi^*(\mathfrak{b}\vee c^*\mathfrak{b})\cong\mathfrak{e}_B^n.$$

Definition 5.9.

The whitney sum of two rooted microbundles \mathfrak{b} and \mathfrak{b}' over B is the initial whitney sum $\mathfrak{b} \oplus \mathfrak{b}'$ together with the rooting

$$R \oplus R' : (\mathfrak{b} \oplus \mathfrak{b}')|_{b_0} \Rightarrow \mathfrak{e}_{b_0}^{n_1} \oplus \mathfrak{e}_{b_0}^{n_2} = \mathfrak{e}_{b_0}^{n_1 + n_1}.$$

Lemma 5.10.

The following non-rooted isomorphy holds for rooted microbundles $\mathfrak a$ and $\mathfrak a'$ over A and \mathfrak{b} and \mathfrak{b}' over B:

$$(\mathfrak{a}\vee\mathfrak{b})\oplus(\mathfrak{a}'\vee\mathfrak{b}')\cong(\mathfrak{a}\oplus\mathfrak{a}')\vee(\mathfrak{b}\oplus\mathfrak{b}')$$

Proof.

Consider the equation

$$E((\mathfrak{a} \vee \mathfrak{b}) \oplus (\mathfrak{a}' \vee \mathfrak{b}'))$$

$$= \{(e, e') \in E(\mathfrak{a} \vee \mathfrak{b}) \times E(\mathfrak{a}' \vee \mathfrak{b}') : j(e) = j'(e')\}$$

$$= \{(e, e') \in ((E(\mathfrak{a}) \sqcup E(\mathfrak{b})) / \sim) \times ((E(\mathfrak{a}') \sqcup E(\mathfrak{b}')) / \sim') : j(e) = j'(e')\}$$

$$= (\{(e, e') \in E(\mathfrak{a}) \times E(\mathfrak{a}') : j_a(e) = j_{a'}(e')\} \sqcup$$

$$\{(e, e') \in E(\mathfrak{b}) \times E(\mathfrak{b}') : j_b(e) = j_{b'}(e')\} / \sim$$

$$= (E(\mathfrak{a} \oplus \mathfrak{a}') \sqcup E(\mathfrak{b} \oplus \mathfrak{b}')) / \sim$$

$$= E((\mathfrak{a} \oplus \mathfrak{a}') \vee (\mathfrak{b} \oplus \mathfrak{b}'))$$

where $(e_a, e'_a) \backsim (e_b, e'_b) \iff e_a \sim e_b \land e'_a \sim' e'_b$. Here, the equivalence relations \sim and \sim' denote the ones used in the construction of the corresponding wedge sums.

Additionally, the injection

$$i_{\oplus}(a) = (i_a(a), i'_a(a)) = i_{\vee}(a)$$
 (symmetrical for b)

and projection maps

$$j_{\oplus}(e, e') = j(e) = j_{\vee}(e)$$

are equal. Here, i_{\oplus} and j_{\oplus} denote the injection and projection maps for

$$(\mathfrak{a}\vee\mathfrak{b})\oplus(\mathfrak{a}'\vee\mathfrak{b}')$$

and i_{\vee} and j_{\vee} denote the injection and projection maps for

$$(\mathfrak{a} \oplus \mathfrak{a}') \vee (\mathfrak{b} \oplus \mathfrak{b}').$$

It follows that the two microbundles are isomorphic.

Let $\mathfrak b$ be a rooted microbundle over a paracompact hausdorff space B. Then there exists a closed neighborhood W of b_0 and an isomorphism-germ

$$\mathfrak{b}|_W \Rightarrow \mathfrak{e}_W^n$$

 $\mathfrak{b}|_W\Rightarrow\mathfrak{e}_W^n$ extending R together with a map $\lambda:B\to[0,1]$ with $supp\lambda\subseteq W\ and\ \lambda(b_0)=1.$

$$supp \lambda \subseteq W \text{ and } \lambda(b_0) = 1$$

Let $r: W_r \to b_0 \times \mathbb{R}^n$ be a representative map for R.

Choose a local trivialization (U, V, ϕ) for b_0 such that $V \cap E(\mathfrak{b}|_{b_0}) \subseteq W_r$. The argument that such a trivialization exists was already given in the proof that the wedge sum is microbundle.

Consider the map

$$\psi: V \xrightarrow{\sim} \psi(V) \subseteq U \times \mathbb{R}^n$$
 with

$$\psi(e) = (j(e), r(\phi^{-1}(b_0, \phi^{(2)}(e))))$$

which is a representative for an isomorphism-germ $\mathfrak{b}|_U \Rightarrow \mathfrak{e}_U^n$ extending R.

Consider the open covering of B with U and $B - \{b_0\}$. Since B is paracompact, we can apply the concept of partitions of unity that gives us a map

$$\lambda: B \to [0,1]$$
 with $\mathrm{supp} \lambda \subseteq U$

and $\lambda(b_0) = 1$ (by rescaling and capping to 1).

Now we can choose $W := \operatorname{supp} \lambda$, which is closed by the definition of supp. Restricting the constructed isomorphism-germ over U to W yields an isomorphismgerm

$$\mathfrak{b}|_W \Rightarrow \mathfrak{e}_W^n$$
.

Together with λ , this completes the proof.

Lemma 5.12. The rooted microbundles $\mathfrak{b} \oplus \mathfrak{e}_B^n$ and $\mathfrak{e}_B^n \oplus \mathfrak{b}$ are rooted-isomorphic.

We need to find an isomorphism-germ $\mathfrak{b} \oplus \mathfrak{e}_B^n \Rightarrow \mathfrak{e}_B^n \oplus \mathfrak{b}$ that extends

$$(I \oplus R) \circ (R \oplus I)^{-1} = R \oplus R^{-1}$$

where I denotes the identity germ.

Ignoring the rooting, we have an isomorphism-germ $f: E(\mathfrak{b}) \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times E(\mathfrak{b})$ with f(e,x) = (-x,e). The idea is to change the f near b_0 so that it extends the rooting.

Using the previous lemma, choose a sufficiently small closed neighborhood Uof b_0 such that there exists an extension $Q:(\mathfrak{b}\oplus\mathfrak{e}_B^n)|_U\Rightarrow(\mathfrak{e}_B^n\oplus\mathfrak{b})|_U$ for the rooting.

The previous lemma also equips us with a map

$$\lambda:B\to [0,\frac{\pi}{2}]$$

such that supp $\lambda \subseteq U$ and $\lambda(b_0) = \frac{\pi}{2}$.

Now, we can define a homeomorphism

$$\psi: U \times \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} U \times \mathbb{R}^n \times \mathbb{R}^n$$
 with

$$\psi(b, x, y) = (b, x \sin(\lambda(b)) - y \cos(\lambda(b)), x \cos(\lambda(b)) - y \sin(\lambda(b))).$$

Consider the composition

$$(\mathfrak{b} \oplus \mathfrak{e}_B^n)|_U \Rightarrow (\mathfrak{b} \oplus \mathfrak{e}_B^n)|_U \xrightarrow{g} (\mathfrak{b} \oplus \mathfrak{e}_B^n)|_U \Rightarrow (\mathfrak{e}_B^n \oplus \mathfrak{b})|_U$$

which coincides with $R \oplus R^{-1}$ over b_0 since $\psi(b_0, x, y) = (b_0, x, y)$ and with Fover $U \cap \lambda^{-1}(0)$.

Pieced together with $F|_{\lambda^{-1}(b)}$ using Lemma (4.9), we obtain an isomorphismgerm

$$\mathfrak{b}\oplus\mathfrak{e}_B^n\Rightarrow\mathfrak{e}_B^n\oplus\mathfrak{b}$$

extending the rooting.

Theorem 5.13. If ${\mathfrak a}$ and ${\mathfrak b}$ are rooted microbundles over a paracompact hausdorff space B,

$$\phi^*(\mathfrak{a}\vee\mathfrak{b})\oplus\mathfrak{e}_B^n=\mathfrak{a}\oplus\mathfrak{b}.$$

The previous lemma yields $\mathfrak{b}\oplus\mathfrak{e}^n_B\cong\mathfrak{e}^n_B\oplus\mathfrak{b}.$ Hence

$$\phi^*((\mathfrak{a}\oplus\mathfrak{e}_B^n)\vee(\mathfrak{b}\oplus\mathfrak{e}_B^n))\cong\phi^*((\mathfrak{a}\oplus\mathfrak{e}_B^n)\vee(\mathfrak{e}_B^n\oplus\mathfrak{b})).$$

Additionally, we have

$$\phi^*((\mathfrak{a}\vee\mathfrak{b}))\oplus(\mathfrak{e}_B^n\vee\mathfrak{e}_B^n)\cong\phi^*(\mathfrak{a}\vee\mathfrak{b})\oplus\mathfrak{e}_B^n$$

for the left side and

$$\phi^*((\mathfrak{a}\vee\mathfrak{e}_B^n)\oplus(\mathfrak{e}_B^n\vee\mathfrak{b}))\cong\mathfrak{a}\oplus\mathfrak{b}$$

for the right side. That completes the proof.

Corollary 5.14. The wedge sum $\mathfrak{b} \oplus r^*\mathfrak{b}$ is trivial.

This follows directly from the previous theorem and the fact that $\phi^*(\mathfrak{b} \oplus r^*\mathfrak{b})$ is trivial.

Chapter 6

Normal Microbundles

Definition 6.1 (normal microbundle).

Let M be a topological manifold together with a submanifold $N\subseteq M$. A normal microbundle $\mathfrak n$ of N in M is a microbundle

$$N \xrightarrow{\iota} U \xrightarrow{r} N$$

 $N \xrightarrow{\iota} U \xrightarrow{r} N$ where $U \subseteq M$ is a neighborhood of N and ι denotes the inclusion $M \hookrightarrow U.$

Definition 6.2 (composition microbundle).

Let $\mathfrak a$ be a n-dimensional microbundle with

$$\mathfrak{a}: A \xrightarrow{i_a} E(\mathfrak{a}) \xrightarrow{j_a} A$$

and let $\mathfrak b$ be a n'-dimensional microbundle with

$$\mathfrak{b}: E(\mathfrak{a}) \xrightarrow{i_b} E(\mathfrak{b}) \xrightarrow{j_b} E(\mathfrak{a}).$$

The composition microbundle $\mathfrak{a}\circ\mathfrak{b}$ is a (n+n')-dimensional microbundle $A\stackrel{i}{\to} E(\mathfrak{b})\stackrel{j}{\to} A$ where $i:=i_b\circ i_a$ and $j:=j_a\circ j_b$.

$$A \xrightarrow{i} E(\mathfrak{b}) \xrightarrow{j} A$$

Proof that $\mathfrak{a} \circ \mathfrak{b}$ is a (n+n')-dimensional microbundle.

Both injection and projection maps are continuous being composed by continuous maps. Additionally, $j \circ i = j_a \circ (j_b \circ i_b) \circ i_a = j_a \circ i_a = id_A$.

It remains to be shown that $\mathfrak{a} \circ \mathfrak{b}$ is locally trivial.

For an arbitrary $a \in A$, choose local trivializations

$$(U_a, V_a, \phi_a)$$
 of a and (U_b, V_b, ϕ_b) of $i_a(a)$.

Note that both U_b and V_a are open neighborhoods of $i_a(a)$.

Without loss of generality, we may assume that $V_a = U_b$, because:

 \subseteq ': Modify U_a such that

$$U_a \times B_{\varepsilon}(0) \subseteq \phi_a(V_a \cap U_b)$$

for a sufficiently small $\varepsilon > 0$ and let

$$V_a = \phi_a^{-1}(U_a \times B_{\varepsilon}(0)) \subseteq V_a \cap U_b.$$

Composing ϕ_a with $\mu_{\varepsilon}: B_{\varepsilon}(0) \xrightarrow{\sim} \mathbb{R}^n$ yields a local trivialization of a in \mathfrak{a} that

 $'\supseteq$ ': Restrict U_b to $V_a\cap U_b$ and V_b to $\phi_b^{-1}((V_a\cap U_b)\times\mathbb{R}^{n'})$.

It follows that have a local trivialization (U_a, V_b, ϕ) of a in $\mathfrak{a} \circ \mathfrak{b}$ where

$$\phi: V_b \xrightarrow{\phi_b} U_b \times \mathbb{R}^{n'} = V_a \times \mathbb{R}^{n'} \xrightarrow{\phi_a \times id_{\mathbb{R}^{n'}}} U_a \times \mathbb{R}^n \times \mathbb{R}^{n'} = U_a \times \mathbb{R}^{n+n'}.$$

The map ϕ is an homeomorphism since it's composed by homeomorphisms.

Additionally, ϕ commutes with injection

$$\phi(i(a)) = \phi(i_b(i_a(a))) = (\phi_a(i_a(a)), \phi_b^{(2)}(i_b(i_a(a))))$$

$$= (\phi_a^{(2)}(i_a(a)), 0) = (a, (0, 0)) = (id_{U_a} \times 0)(a)$$

and projection maps

$$j(e) = j_a(j_b(e)) = \pi_1(j_a(j_b(e)), \phi^{(2)}(e)) = \pi_1(\phi(e))$$

which completes the proof.

Lemma 6.3.

Let $P \subseteq N \subseteq M$ be a chain of topological manifolds. There exists a normal microbundle $\mathfrak{n}: P \xrightarrow{\iota} U \xrightarrow{r} P$ of P in M if there exist normal microbundles $\mathfrak{n}_p: P \xrightarrow{\iota_P} U_N \xrightarrow{j_P} P$ in N and $\mathfrak{n}_n: N \xrightarrow{\iota_N} U_M \xrightarrow{j_N} N$ in M.

$$\mathfrak{n}: P \xrightarrow{\iota} U \xrightarrow{\prime} P$$

$$\mathfrak{n}_p: P \xrightarrow{\iota_P} U_N \xrightarrow{j_P} P \text{ in } N \text{ and } \mathfrak{n}_n: N \xrightarrow{\iota_N} U_M \xrightarrow{j_N} N \text{ in } M.$$

Considering the composition $\mathfrak{n}_p \circ \mathfrak{n}_n|_{U_N}$, we have a normal microbundle \mathfrak{n} of Pin M since $\iota_N \circ \iota_P$ is just the inclusion $P \hookrightarrow U_M$.

Every topological manifold is an absolute neighborhood retract (ANR).

It follows that by restricting M, if necessary, to an open neighborhood of N, there exists a retraction M woheadrightarrow N.

From now on, let

$$r: M \twoheadrightarrow N$$

denote such a retraction and let

$$\iota:N\hookrightarrow M$$

denote the inclusion $N \subseteq M$.

Lemma 6.4.

Let \mathfrak{t}_N and \mathfrak{t}_M be two tangent microbundles of N and M. The total spaces $E(\iota^*\mathfrak{t}_M)$ and $E(r^*\mathfrak{t}_N)$ are homeomorphic.

Proof.

The total space

$$E(\iota^*\mathfrak{t}_M) = \{(n, m_1, m_2) \in N \times (M \times M) \mid \iota(n) = m_1\}$$

is homeomorphic to $N \times M$ via

$$(n, m_1, m_2) \mapsto (n, m_2)$$

with inverse $(n,m) \mapsto (n,\iota(n),m)$. Similarly, the total space

$$E(r^*\mathfrak{t}_N) = \{(m, n_1, n_2) \in M \times (N \times N) \mid r(m) = n_1\}$$

is homeomorphic to $M \times N$ via

$$(m, n_1, n_2) \mapsto (m, n)$$

with inverse $(m, n) \mapsto (m, r(m), n)$.

Composed with the canonic homeomorphism $N \times M \cong M \times N$, this yields a homeomorphism

$$\psi: E(\iota^*\mathfrak{t}_M) \xrightarrow{\sim} E(r^*\mathfrak{t}_N) \text{ with } \psi(n, m_1, m_2) := (m_2, r(m_2), n).$$

Remark~6.5.

The following diagram commutes:

$$\begin{array}{ccc}
N & \xrightarrow{i_{\iota}} & E(\iota^{*}\mathfrak{t}_{M}) \\
\downarrow^{\iota} & & \downarrow^{\psi} \\
M & \xrightarrow{i_{r}} & E(r^{*}\mathfrak{t}_{N})
\end{array}$$

The total space $E(r^*\mathfrak{t}_N)$ is a topological manifold with

$$E(r^*\mathfrak{t}_N) \cong M \times N$$

as described in the previous lemma.

The fact that the above diagram commutes, allows us to consider N to be a submanifold of $E(r^*\mathfrak{t}_N)$ via

$$N \hookrightarrow M \xrightarrow{i_r} E(r^*\mathfrak{t}_N).$$

The composition $\iota \circ i_r$ is an embedding since i_r is an embedding due to the construction of the induced microbundle.

Lemma 6.6.Let M be a topological manifold together with a submanifold $N \subseteq M$. Then there exists a normal microbundle \mathfrak{n} of N in $E(r^*\mathfrak{t}_N)$ such that $\mathfrak{n} \cong \iota^*\mathfrak{t}_M$.

Proof.

We are already given a normal microbundle of N in $E(r^*\mathfrak{t}_N)$ with $r^*\mathfrak{t}_N|_N$. Isomorphy between $r^*\mathfrak{t}_N|_N$ and $\iota^*\mathfrak{t}_M$ follows from the homeomorphy

$$\psi: E(\iota^*\mathfrak{t}_M) \xrightarrow{\sim} E(r^*\mathfrak{t}_N)$$

and from the diagram which shows that injection and projection maps commute with ψ .

Finally, we gathered all the tools to prove Milnor's theorem.

Theorem 6.7 (Milnors Theorem). For a sufficently large $q \in \mathbb{N}$, $N = N \times \{0\}$ has a normal microbundle in $M \times \mathbb{R}^q$.

Proof.

We show the theorem in multiple steps:

1. There exists a microbundle η over N such that $\mathfrak{t}_N \oplus \eta \cong \mathfrak{e}_N^q$:

From the [Whitney Embedding Thereom] it follows that we can embed Min euclidean space \mathbb{R}^{2m+1} .

Additionally, since there exists a retraction $r: V \to N$ where V is an open neighborhood of N in M we can extend \mathfrak{t}_N to a microbundle \mathfrak{t}'_N over V. Since V is an open subset of euclidean space, it's a simplicial complex.

Hence, we can apply Theorem (3.5) to the extended microbundle \mathfrak{t}'_N to obtain a microbundle η' such that $\mathfrak{t}'_N \oplus \eta \cong \mathfrak{e}^q_V$.

We conclude that

$$\mathfrak{t}_N \oplus \eta'|_N = \mathfrak{t}'_N|_N \oplus \eta'|_N = (\mathfrak{t}'_N \oplus \eta')|_N = \mathfrak{e}^q_N.$$

2. $E(r^*\mathfrak{t}_N) \subseteq E(r^*\mathfrak{t}_N \oplus r^*\eta)$ has a normal microbundle:

Since the total space

$$E(r^*\mathfrak{t}_N \oplus r^*\eta) = \{(e, e') \in E(r^*\mathfrak{t}_N) \times E(r^*\eta) : j(e) = j'(e)\}$$

we can consider $E(r^*\mathfrak{t}_N) \subseteq E(r^*\mathfrak{t}_N \oplus r^*\eta)$ embedded via

$$\iota: e \mapsto (e, i'(j(e)))$$

with the inverse $\pi_1:(e,e')\mapsto e$.

Because $r^*\mathfrak{t}_N \oplus r^*\eta \cong r^*(\mathfrak{t}_N \oplus \eta)$ is trivial, it follows that $E(r^*\mathfrak{t}_N \oplus r^*\eta) \subseteq M \times \mathbb{R}^k$ open and hence being a manifold.

We have a normal microbundle of $E(r^*\mathfrak{t}_N)$ in $E(r^*\mathfrak{t}_N \oplus r^*\eta)$ via

$$\mathfrak{n}: E(r^*\mathfrak{t}_N) \xrightarrow{\iota} E(r^*\mathfrak{t}_N \oplus r^*\eta) \xrightarrow{\pi_1} E(r^*\mathfrak{t}_N).$$

To show local triviality, let (U, V, ϕ) be a local trivialization of i'(j(e)) in $r^*\eta$ for an arbitrary $e \in E(r^*\mathfrak{t}_N)$.

By choosing

- $U' := j^{-1}(U)$
- $V' := (U' \times V) \cap E(r^* \mathfrak{t}_N \oplus r^* \eta)$
- $\phi': V' \xrightarrow{\sim} U' \times \mathbb{R}^{n_{\eta}}$ with $\phi'(e, e') = (e, \phi^{(2)}(e'))$

we have a local trivialization of e in \mathfrak{n} .

That is because both $U' \subseteq E(r^*\mathfrak{t}_N)$ and $V' \subseteq E(r^*\mathfrak{t}_N \oplus r^*\eta)$ are open sets and ϕ' is a homeomorphism with its inverse $\phi'^{-1}(e,x) = (e,\phi^{-1}(j(e),x))$.

Also, ϕ' commutes with injection

$$\phi'(\iota(e)) = \phi'(e, i'(j(e))) = (e, \phi^{(2)}(i'(j(e)))) = (e, 0) = (id \times 0)(e)$$

and projection maps

$$\pi_1(e, e') = \pi_1(e, \phi'^{(2)}(e, e')) = \pi_1(\phi'(e, e')).$$

Since $N \subseteq M \subseteq E(r^*\mathfrak{t}_N)$ has a normal microbundle (using Lemma (6.6)), it follows from Lemma (6.3) that $N \subseteq E(r^*\mathfrak{t}_N \oplus r^*\mathfrak{t}')$ has a normal microbundle.

By restricting $E(r^*\mathfrak{t}_N \oplus r^*\eta)$ to an open subset if necessary, we may assume that

$$E(r^*\mathfrak{t}_N \oplus r^*\eta) = M \times \mathbb{R}^q$$

for some $q \in \mathbb{N}$ using Lemma (2.4).

This completes the proof.