Nr. ćwicz.	Data	Imię i nazwisko	Wydział	Semestr	Grupa I1 nr. lab.
121	29 listopada 2019	Jakub Gosławski 141222 Michał Wiśniewski 141355	Informatyki	3	5
Prowad	zący: Wojciech Mar		Ocena:		

Temat ćwiczenia: Badanie rezonansu mechanicznego

Podstawy Teoretyczne

1.1 Wzory

$$\beta = \frac{1}{T} \ln \frac{A_n}{A_{n+1}}$$

$$\omega_0 = \frac{2\pi}{T}$$

$$\omega' = \sqrt{\omega_0^2 = \beta^2}$$

$$\tau = \frac{1}{2\beta}$$

$$Q = \omega_0 \tau = \frac{\omega_0}{2\beta}$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$\omega_0 = \frac{2\pi}{T} \tag{2}$$

$$\omega' = \sqrt{\omega_0^2 = \beta^2} \tag{3}$$

$$\tau = \frac{1}{2\beta} \tag{4}$$

$$Q = \omega_0 \tau = \frac{\omega_0}{2\beta} \tag{5}$$

(1) współczynnik wytłumienia (2,3) częstotliwość kołowa (4) czas relaksacji (5) dobroć oscylatora

Wyniki Pomiarów i Obliczenia

Elektromagnes 0V

Zmierzony czas 10 wachnięć - 17.01s Okres $T=\frac{17.01s}{10}=1.70s$ $\omega=3.69\left[\frac{rad}{s}\right]$ $\omega'=3.69\left[\frac{rad}{s}\right]$

Okres
$$T = \frac{17.01s}{10} = 1.70s$$

$$\omega = 3.69 \left[\frac{rad}{} \right]$$

$$\omega' = 3.69 \left[\frac{rad}{r} \right]$$

Ponieważ dla tej wartości napięcia w elektromagnesie wartość β jest tak mała że po zaokrągleniu

Zmierzone amplitudy kolejnych wachnięć i obliczone współczynniki tłumienia

A [1	
A[cm]	$P \begin{bmatrix} -s \end{bmatrix}$
18.0	0.00657
17.8	0.00664
17.6	0.00672
17.4	0.00680
17.2	0.00668

$$\beta_{\rm \acute{s}r} = 0.00668 \left[\frac{1}{s}\right]$$

$$\tau = 74.83[s]$$

$$Q = 276.41$$

2.2Elektromagnes 10V

Zmierzony czas 10 wachnięć - 17.49s

Okres
$$T = \frac{17.49s}{10} = 1.75s$$

$$\omega = 3.59 \left[\frac{rad}{s} \right]$$

$$\omega' = 3.59 \left[\frac{s}{rad} \right]$$

Okres $T=\frac{17.49s}{10}=1.75s$ $\omega=3.59\left[\frac{rad}{s}\right]$ $\omega'=3.59\left[\frac{rad}{s}\right]$ Zmierzone amplitudy kolejnych wachnięć i obliczone współczynniki tłumienia

A[cm]	$\beta \left[\frac{1}{s} \right]$
18.0	0.112
14.8	0.191
10.6	0.175
7.8	0.189
5.6	0.167

$$\beta_{\rm \acute{s}r} = 0.167 \left[\frac{1}{s} \right]$$

$$\tau = 2.996[s]$$

$$Q = 10.76$$

Elektromagnes 10V2.3

Zmierzony czas 3 wachnięć - 5.33s, po 3 wachnięciach wachadło zatrzymało się Okres $T = \frac{5.33s}{2} = 1.77s$

$$\omega = 3.53 \left[\frac{rad}{3} \right]$$

$$\omega = 3.33 \left[\frac{s}{s} \right]$$

 $\omega' = 3.43 \left[\frac{rad}{s} \right]$

 $\omega=3.53\left[\frac{rad}{s}\right]$ $\omega'=3.43\left[\frac{rad}{s}\right]$ Zmierzone amplitudy kolejnych wachnięć i obliczone współczynniki tłumienia

A[cm]	$\beta \left[\frac{1}{s} \right]$
18.0	0.582
6.4	0.655
2.0	0.1.296
0.2	0.844

$$\beta_{\text{sr}} = 0.844 \left[\frac{1}{s} \right]$$

$$\tau = 0.592 [s]$$

$$Q = 2.09$$

3 Dyskusja Błędów Pomiarowych

- Wnioski 4
- Wykresy 5