Relatório 4: Maximal Overlap Discreat Wavelet Transform

1st Matheus Araújo de Oliveira

2nd Jessica Regina dos Santos

3rd Gustavo Hideki Guenka Vale

4th Fábio Augusto Dittrich

5th Guilherme Liberali

6th Gabriel Raul Marino

I. Introduction

O nosso trabalho foca em implementar uma transformada wavelet em hardware, mais especificamente uma MODWT (Maximun Overlap Discreat Wavelet Transform) [1]. Neste relatório primeiramente iremos falar sobre a arquitetura em hardware das transformadas, como foi feita a verificação do algoritmo e resultados de síntese no FPGA.

II. DESING E ARQUITETURA DO HARDWARE

O diagrama de blocos da figura 1 mostra o design de todos os componentes que foram utilizados no nosso projeto. Existem três componentes principais: a transformada direta (T-dir) que vai decompor o sinal de entrada em frequências altas e baixas, a transformada inversa (T-inv) que vai recompor o sinal que foi decomposto pela transformada inversa, e shift register (shift-reg) que vai alinhar as entradas de uma inversa que estão desalinhadas.

Fig. 1. Diagrama de blocos.

A. Transformada Direta e Inversa

Conforme [1] o algoritmo das transformadas corresponde a multiplicações e acumulações de um vetor de entrada unidimensional por coeficientes fixos, podemos ver o pseudo código da transformada direta descrito na figura 2.

Sendo assim com base nas implementações em hardware da DWT (Discreat Wavelet Transform) descritas em [2] decidimos utilizar a forma transposta de se calcular um filtro FIR (Finite Impulse Response) para computar o cálculo das transformadas wavelets.

A forma transposta de se calcular um filtro FIR está ilustrada na figura 3, nela podemos ver que todos os multiplicadores estão sendo usados em paralelo, o resultado dessas

multiplicações está sendo atrasado em um pulso de clock por um registrador, e então é feita a soma sucessiva desses resultados.Conforme [2] e [3] esta é uma das formas mais efetivas de se calcular um filtro FIR.

A única diferença entre o cálculo de um filtro FIR e uma MODWT é a decimação, conforme vemos na figura 2 o cálculo do vetor unitário de entrada tem como índice a equação (1), onde j é o nivel da transformada wavelet.

$$k = 2^j - 1 \tag{1}$$

sendo assim tivemos que alterar a forma transposta acrescentando mais registradores entre as somas, e o número desses registradores é igual à k .

For $t=0,\ldots,N-1$, do the outer loop: Set k to t. Set $\tilde{W}_{j,t}$ to $\tilde{h}_0\tilde{V}_{j-1,k}$, and set $\tilde{V}_{j,t}$ to $\tilde{g}_0\tilde{V}_{j-1,k}$. For $n=1,\ldots,L_1-1$, do the inner loop: Decrement k by 2^{j-1} . If k<0, set k to k mod N. Increment $\tilde{W}_{j,t}$ by $\tilde{h}_n\tilde{V}_{j-1,k}$, and increment $\tilde{V}_{j,t}$ by $\tilde{g}_n\tilde{V}_{j-1,k}$. End of inner loop.

Fig. 2. pseudocódigo para a transformada direta.

Fig. 3. Forma Transposta de se calcular um filtro FIR

B. Shift Register

Conforme em [2] e [3] a forma transposta atrasa a saída em alguns pulsos de clock, esses atrasos nós chamamos de

delay, portanto cada vez que o sinal de entrada passa por uma transformada direta ele é atrasado. Sendo assim necessário sincronizar os coeficientes de approximation e detail na entrada de cada inversa, para isso nós usamos shift registers.

III. SIMULAÇÃO E VALIDAÇÃO DO DESING

Em [1] temos o pseudo código e o codígo em matlab para a transformada wavelet, através dele nós geramos o nosso golden model. A Partir disso no nosso teste bench nós extraímos todos os coeficientes de decomposição do sinal e escrevemos esses coeficientes em um arquivo .hex, depois disso nós comparamos as forma de onda com o nosso golden model. A figura 4 contém as formas de onda dos coeficientes de approximation geradas pela nossa simulação no modelsim e a figura 5 contém a forma de onda gerada pelo nosso golden model em software.

Além disso, nós fizemos a diferença entre a entrada do algoritmo e a saída da última transformada inversa, vimos que a diferença foi aproximadamente zero.

Fig. 4. Forma de onda geradas em Hardware.

Fig. 5. Formas de onda geradas em Software.

IV. RESULTADOS DE SÍNTESE

O projeto foi compilado utilizando o dispositivo Cyclone IV EP4CE115F29C7 e os dados gerados estão na figura 6. A frequência maxima(Fmax) obtida foi de 92.61 Mhz.

Flow Status	Successful - Wed Nov 29 17:13:32 2023
Quartus Prime Version	18.1.0 Build 625 09/12/2018 SJ Lite Edition
Revision Name	modwt
Top-level Entity Name	modwt
Family	Cyclone IV E
Device	EP4CE115F29C7
Timing Models	Final
Total logic elements	15,862 / 114,480 (14 %)
Total registers	4395
Total pins	165 / 529 (31 %)
Total virtual pins	0
Total memory bits	11,412 / 3,981,312 (< 1 %)
Embedded Multiplier 9-bit elements	0 / 532 (0 %)
Total PLLs	0 / 4 (0 %)

Fig. 6. Dados de Síntese.

V. Conclusão

Tivemos êxito em implementar uma MODWT em hardware, além disso obtivemos um bom resultado no sentido de ocupação de recursos da placa e frequência máxima, que são a principal motivação para a implementação desse algoritmo.

REFERENCES

- D. Percival and A. Walden, Wavelet Methods for Time Series Analysis, ser. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2000.
- [2] M. Bahoura and H. Ezzaidi, "Real-time implementation of discrete wavelet transform on fpga," 11 2010, pp. 191 – 194.
- [3] U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, ser. Signals and Communication Technology. Springer Berlin Heidelberg, 2013. [Online]. Available: https://books.google.com.br/books?id=MBz2CAAAQBAJ