Eigenproblems III: Computation, Conditioning

CS 205A:

Mathematical Methods for Robotics, Vision, and Graphics

Justin Solomon

Our Story So Far

$$A = QR$$
$$Q^{-1}AQ = RQ$$

Recall: QR Iteration

$$A_1 = A$$
Factor $A_k = Q_k R_k$
Multiply $A_{k+1} = R_k Q_k$

Convergence: More Detail

$$A_{\infty} = Q_{\infty} R_{\infty} = R_{\infty} Q_{\infty}$$

Commutativity

Lemma

If $A_{\infty}=Q_{\infty}R_{\infty}=R_{\infty}Q_{\infty}$ with no repeated eigenvalues, then A_{∞} is diagonal.

Proof.

$$\lambda \vec{x} = A \vec{x} \implies \lambda Q \vec{x} = Q A \vec{x} = Q(QR) \vec{x} = (QR)Q\vec{x} = AQ\vec{x} \implies Q\vec{x} = \pm \vec{x}$$
 by orthogonality and uniqueness of $\vec{x} \implies Q$ is diagonal since \vec{x} 's span \mathbb{R}^n . Statement follows by symmetry of A_{∞} and upper triangular shape of R_{∞} .

Intuition

$$A^{k} = A^{k-1} \cdot A = \left(\begin{array}{ccc} | & | & | \\ A^{k-1}\vec{a}_{1} & A^{k-1}\vec{a}_{2} & \cdots & A^{k-1}\vec{a}_{n} \\ | & | & | \end{array} \right)$$

Intuition

$$A^{k} = A^{k-1} \cdot A = \left(\begin{array}{ccc} | & | & | \\ A^{k-1}\vec{a}_{1} & A^{k-1}\vec{a}_{2} & \cdots & A^{k-1}\vec{a}_{n} \\ | & | & | \end{array} \right)$$

Questions:

1. What do these look like?

Intuition

$$A^{k} = A^{k-1} \cdot A = \left(\begin{array}{ccc} | & | & | \\ A^{k-1} \vec{a}_{1} & A^{k-1} \vec{a}_{2} & \cdots & A^{k-1} \vec{a}_{n} \\ | & | & | \end{array} \right)$$

Questions:

- 1. What do these look like?
- 2. What if you do Gram-Schmidt on the columns?

Intuition for Convergence

$$A^k = Q_1 Q_2 \cdots Q_k R_k R_{k-1} \cdots R_1$$

Q from QR of A^k looks a lot like QR of A^{k-1} , so $Q_i \to I$. We conjugate A_k by Q_k each time, so A_k converges.

Krylov Subspace Methods

Krylov matrix:

$$K_{k} = \begin{pmatrix} | & | & | & | \\ \vec{b} & A\vec{b} & A^{2}\vec{b} & \cdots & A^{k-1}\vec{b} \\ | & | & | & | \end{pmatrix}$$

Column space related to eigenstructure of A.

Starting Point

$$(A + \delta A)(\vec{x} + \delta \vec{x}) = (\lambda + \delta \lambda)(\vec{x} + \delta \vec{x})$$

Starting Point

$$(A + \delta A)(\vec{x} + \delta \vec{x}) = (\lambda + \delta \lambda)(\vec{x} + \delta \vec{x})$$

What are the independent and dependent variables?

Starting Point

$$(A + \delta A)(\vec{x} + \delta \vec{x}) = (\lambda + \delta \lambda)(\vec{x} + \delta \vec{x})$$

What are the independent and dependent variables?

Approximation:

$$A\delta\vec{x} + \delta A \cdot \vec{x} \approx \lambda \delta \vec{x} + \delta \lambda \cdot \vec{x}$$

Trick: Left Eigenvector

$$A\vec{x} = \lambda \vec{x}, \vec{x} \neq \vec{0} \implies$$

$$\exists \vec{y} \neq \vec{0} \text{ such that } A^{\top} \vec{y} = \lambda \vec{y}$$

Change in Eigenvalue

$$|\delta\lambda| \lesssim \frac{\|\delta A\|_2}{|\vec{y} \cdot \vec{x}|}$$

Change in Eigenvalue

$$|\delta\lambda| \lesssim \frac{\|\delta A\|_2}{|\vec{y} \cdot \vec{x}|}$$

What about symmetric A?

