Comparação dos Algoritmos Evolutivos SPEA-R, NSGA-III e MOEA/D-DE Via Plataforma PlatEMO

Vinicius Ferraz Engenharia de Sistemas Universidade Federal de Minas Gerais Belo Horizonte Email: vinicius.ferraz@tjmg.jus.br

Abstract — Multiobjective optimization.

I. Introdução

A. Definições

Seja M = o número de objetivos.

Consideramos separadamente ambos os tipos de problema, segundo [SPEAR]:

MOP = Problema de Otimização Multiobjetivo — $M \le 3$; MaOP = Problema de Otimização de Muitos Objetivos — $M \ge 4$;

MOEA = AE = Algoritmo Evolutivo;

POF = Fronteira Pareto ótima;

POS = Conjunto Pareto ótimo;

GD = Distância Geracional — Calcule a distância de cada ponto p da POF Aproximada até a POF Verdadeira V inteira (mínimo sobre V); Divida pela cardinalidade de V;

IGD = Distância Geracional Invertida — Calcule a distância de cada ponto <math>p da POF Verdadeira até a POF Aproximada A inteira (mínimo sobre A); Divida pela cardinalidade de A;

HV = Hipervolume abaixo do referencial = $(1, 1, ..., 1) = v_{ref}$.

Tanto no cálculo de IGD como no de HV, o resultado é NaN se a população final estiver vazia, ou, como está nos fontes: se a dimensão de PopObj for diferente da dimensão de optimum.

O resultado de HV será zero, no caso de todos os pontos estiverem acima do referencial v_{ref} , ou, como está nos fontes, depois de retirar os pontos com alguma coordenada maior que 1, a população final ficar vazia.

B. O PlatEMO

Até a apresentação do seminário, nós estudávamos o códigofonte do SPEA-R, sem saber que existia o PlatEMO.

PlatEMO é uma sigla para Platforma em MatLab para Otimização Multiobjetivo Evolucionária. Quando ela surgiu, havia os seguintes concorrentes ou opções:

- (1) PISA uma biblioteca de otimização multiobjetivo baseada em C;
- (2) jMetal uma biblioteca de otimização multiobjetivo baseada em Java orientada a objetos que consiste de vários MOEAs e MOPs;

- (3) MOEA Framework outra estrutura Java gratuita e de código aberto para otimização multiobjetivo, que fornece uma coleção abrangente de MOEAs e ferramentas necessárias para projetar, desenvolver, executar e testar MOEAs rapidamente;
- (4) OTL uma biblioteca de templates em C++ para otimização multiobjetivo, caracterizada por arquitetura orientada a objetos, técnica de template, módulos prontos para uso, experimentos em lote executados automaticamente e computação paralela.

Além disso, uma plataforma experimental baseada em Python também foi proposta como suplemento de OTL, para melhorar a eficiência do desenvolvimento e realizar experimentos em lote de forma mais conveniente.

- (5) ParadisEO-MOEO uma notável biblioteca MOEA projetada com base em componentes reconfiguráveis. Ela fornece uma ampla variedade de recursos relacionados a arquivo e estratégias de atribuição de aptidão utilizadas nos algoritmos evolucionários mais comuns baseados em Pareto, de modo que os usuários possam usar a biblioteca para gerar um grande número de novos MOEAs, recombinando esses componentes.
- (6) AutoMOEA outro modelo de MOEA proposto recentemente, estendido do ParadisEO-MOEO, que tem uma maior generalidade e mais cobertura abrangente de algoritmos e operadores.

Além disso, uma estrutura semelhante também foi adotada no ParadisEO-MO para o projeto de metaheurísticas baseadas em soluções únicas.

São diferenciais propostos pelo Platemo:

Biblioteca rica — grande quantidade de algoritmos e problemas;

Boa usabilidade — opção de interface amigável em MatLab, opção de código simples;

Fácil extensibilidade — código aberto, disponível no github, pode-se mesclar os algoritmos, criar novos problemas;

Considerações delicadas — por exemplo, geração de POFs com pontos uniformemente distribuídos.

Abaixo a tabela comparativa, retirada de [PlatEMO].

MOEA LIBRARY	LANGUAGE	TYPES OF MOEAS AVAILABLE	TYPES OF MOPS AVAILABLE	USABILITY	COMPONENTS CONFIGURABILITY	EXTENDIBILIT
PARADISEO-MOEO [26]	C++	GENETIC ALGORITHM, SIMULATED ANNEALING, TABU SEARCH	MULTI-OBJECTIVE, COMBINATORIAL	NORMAL	HIGH	NORMAL
PISA [27]	С	GENETIC ALGORITHM	MULTI-OBJECTIVE, MANY-OBJECTIVE, COMBINATORIAL	NORMAL	LOW	NORMAL
METAL [23]	Java	GENETIC ALGORITHM, DIFFERENTIAL ALGORITHM, PARTICLE SWARM OPTIMIZATION	MULTI-OBJECTIVE, MANY-OBJECTIVE, COMBINATORIAL	NORMAL	NORMAL	NORMAL
OTL [25]	C++, Python	GENETIC ALGORITHM, DIFFERENTIAL ALGORITHM	MULTI-OBJECTIVE, MANY-OBJECTIVE, COMBINATORIAL	LOW	NORMAL	NORMAL
noea framework	Java	GENETIC ALGORITHM, DIFFERENTIAL ALGORITHM, PARTICLE SWARM OPTIMIZATION	MULTI-OBJECTIVE, MANY-OBJECTIVE, COMBINATORIAL	NORMAL	NORMAL	NORMAL
latEMO	MATLAB	GENETIC ALGORITHM, DIFFERENTIAL ALGORITHM, PARTICLE SWARM OPTIMIZATION, MEMETIC ALGORITHM, ESTIMATION OF DISTRIBUTION ALGORITHM, SURROGATE-ASSISTED EVOLUTIONARY ALGORITHM	MULTI-OBJECTIVE, MANY-OBJECTIVE, COMBINATORIAL, LARGE-SCALE, EXPENSIVE	нісн	NORMAL.	HIGH

C. Lista de algoritmos

- 1) A-NSGA-III/ANSGAIII.m
- 2) AB-SAEA/ABSAEA.m
- 3) AGE-II/AGEII.m
- 4) AGE-MOEA/AGEMOEA.m
- 5) AR-MOEA/ARMOEA.m
- BCE-IBEA/BCEIBEA.m
- 7) BiGE/BiGE.m
- 8) c-DPEA/cDPEA.m
- 9) C-MOEA-D/CMOEAD.m
- 10) C-TAEA/CTAEA.m
- 11) CA-MOEA/CAMOEA.m
- 12) CCGDE3/CCGDE3.m
- 13) CCMO/CCMO.m
- 14) CMOEA-MS/CMOEA_MS.m
- 15) CMOPSO/CMOPSO.m
- 16) CPS-MOEA/CPSMOEA.m
- 17) CSEA/CSEA.m
- 18) DAEA/DAEA.m
- 19) DCNSGA-III/DCNSGAIII.m
- 20) DEA-GNG/DEAGNG.m
- 21) DGEA/DGEA.m
- 22) DMOEA-eC/DMOEAeC.m
- 23) dMOPSO/dMOPSO.m
- 24) DN-NSGA-II/DNNSGAII.m
- 25) DSPCMDE/DSPCMDE.m
- 26) DWU/DWU.m
- 27) e-MOEA/eMOEA.m
- 28) EAG-MOEA-D/EAGMOEAD.m
- 29) EDN-ARMOEA/EDNARMOEA.m
- 30) EFR-RR/EFRRR.m
- 31) EIM-EGO/EIMEGO.m
- 32) EMyO-C/EMyOC.m
- 33) ENS-MOEA-D/ENSMOEAD.m
- 34) FDV/FDV.m
- 35) g-NSGA-II/gNSGAII.m
- 36) GDE3/GDE3.m
- 37) GFM-MOEA/GFMMOEA.m
- 38) GLMO/GLMO.m
- 39) GrEA/GrEA.m
- 40) HeE-MOEA/HeEMOEA.m
- 41) hpaEA/hpaEA.m
- 42) HypE/HypE.m

- 43) I-DBEA/IDBEA.m
- 44) I-SIBEA/ISIBEA.m
- 45) IBEA/IBEA.m
- 46) ICMA/ICMA.m
- 47) IM-MOEA/IMMOEA.m
- 48) IM-MOEA-D/IMMOEAD.m
- 49) K-RVEA/KRVEA.m
- 50) KnEA/KnEA.m
- 51) KTA2/KTA2.m
- 52) LCSA/LCSA.m
- 53) LMEA/LMEA.m
- 54) LMOCSO/LMOCSO.m
- 55) LMOEA-DS/LMOEADS.m
- 56) LSMOF/LSMOF.m
- 57) M-PAES/MPAES.m
- 58) MaOEA-CSS/MaOEACSS.m
- 59) MaOEA-DDFC/MaOEADDFC.m
- 60) MaOEA-IGD/MaOEAIGD.m
- 61) MaOEA-IT/MaOEAIT.m
- 62) MaOEA-R&D/MaOEARD.m
- 63) MMOPSO/MMOPSO.m
- 64) MO-CMA/MOCMA.m
- 65) MOCell/MOCell.m
- 66) MOEA-D/MOEAD.m
- 67) MOEA-D-AWA/MOEADAWA.m
- 68) MOEA-D-CMA/MOEADCMA.m
- 69) MOEA-D-DAE/MOEADDAE.m
- 70) MOEA-D-DE/MOEADDE.m
- 71) MOEA-D-DRA/MOEADDRA.m
- 72) MOEA-D-DU/MOEADDU.m
- 73) MOEA-D-DYTS/MOEADDYTS.m
- 74) MOEA-D-EGO/MOEADEGO.m
- 75) MOEA-D-FRRMAB/MOEADFRRMAB.m
- 76) MOEA-D-M2M/MOEADM2M.m
- 77) MOEA-D-MRDL/MOEADMRDL.m
- 78) MOEA-D-PaS/MOEADPaS.m
- 79) MOEA-D-STM/MOEADSTM.m
- 80) MOEA-D-UR/MOEADUR.m
- 81) MOEA-D-URAW/MOEADURAW.m
- 82) MOEA-DD/MOEADD.m
- 83) MOEA-DVA/MOEADVA.m
- 84) MOEA-IGD-NS/MOEAIGDNS.m
- 85) MOEA-PC/MOEAPC.m
- 86) MOEA-PSL/MOEAPSL.m
- 87) MOMBI-II/MOMBIII.m
- 88) MOPSO/MOPSO.m
- 89) MOPSO-CD/MOPSOCD.m
- 90) MO_Ring_PSO_SCD/MO_Ring_PSO_SCD.m
- 91) MP-MMEA/MPMMEA.m
- 92) MPSO-D/MPSOD.m
- 93) MSCMO/MSCMO.m
- 94) MSEA/MSEA.m
- 95) MSOPS-II/MSOPSII.m
- 96) MTS/MTS.m
- 97) MultiObjectiveEGO/MultiObjectiveEGO.m
- 98) MyO-DEMR/MyODEMR.m

- 99) NMPSO/NMPSO.m
- 100) NNIA/NNIA.m
- 101) NSGA-II/NSGAII.m
- 102) NSGA-II+ARSBX/NSGAIIARSBX.m
- 103) NSGA-II-conflict/NSGAIIconflict.m
- 104) NSGA-II-SDR/NSGAIISDR.m
- 105) NSGA-III/NSGAIII.m
- 106) NSLS/NSLS.m
- 107) one-by-one EA/onebyoneEA.m
- 108) OSP-NSDE/OSPNSDE.m
- 109) ParEGO/ParEGO.m
- 110) PB-NSGA-III/PBNSGAIII.m
- 111) PB-RVEA/PBRVEA.m
- 112) PeEA/PeEA.m
- 113) PESA-II/PESAII.m
- 114) PICEA-g/PICEAg.m
- 115) PM-MOEA/PMMOEA.m
- 116) POCEA/POCEA.m
- 117) PPS/PPS.m
- 118) PREA/PREA.m
- 119) r-NSGA-II/rNSGAII.m
- 120) RM-MEDA/RMMEDA.m
- 121) RPD-NSGA-II/RPDNSGAII.m
- 122) RPEA/RPEA.m
- 123) RSEA/RSEA.m
- 124) RVEA/RVEA.m
- 125) RVEA-iGNG/RVEAiGNG.m
- 126) RVEAa/RVEAa.m
- 127) S-CDAS/SCDAS.m
- 128) S3-CMA-ES/S3CMAES.m
- 129) SIBEA/SIBEA.m
- 130) SIBEA-kEMOSS/SIBEAkEMOSS.m
- 131) SLMEA/SLMEA.m
- 132) SMEA/SMEA.m
- 133) SMPSO/SMPSO.m
- 134) SMS-EGO/SMSEGO.m
- 135) SMS-EMOA/SMSEMOA.m
- 136) SparseEA/SparseEA.m
- 137) SparseEA2/SparseEA2.m
- 138) SPEA-R/SPEAR.m
- 139) SPEA2/SPEA2.m
- 140) SPEA2+SDE/SPEA2SDE.m
- 141) SRA/SRA.m
- 142) t-DEA/tDEA.m
- 143) TiGE-2/TiGE2.m
- 144) ToP/ToP.m
- 145) TriMOEA-TA&R/TriMOEATAR.m
- 146) Two_Arch2/Two_Arch2.m
- 147) VaEA/VaEA.m
- 148) WOF/WOF.m
- 149) WV-MOEA-P/WVMOEAP.m

D. Objetivo

Nossa estratégia é a mesma que a de [WFG].

1) Selecionar os AEs a comparar.

- 2) Escolher um conjunto de problemas de teste existentes, ou criar novos. Escolhemos todos os 242 disponíveis.
- 3) Escolher um conjunto de medidas nas quais comparar os conjuntos de resultados produzidos pelos AEs. Nossa comparação será pelo IGD e pelo HV, conforme [SPEAR].

É necessário gerar uma POF Verdadeira, com pontos uniformemente distribuídos.

4) Obter resultados para cada AE em cada problema de teste, ou pela Web ou por implementação.

Comparação de três algoritmos, executados dez vezes: cinco para MOPs, cinco para MaOPs.

- 5) Gerar medidas para os resultados e comparar os dados. Comparamos quantas vezes foi vencedor cada algoritmo, como critério para decidir qual é o melhor.
 - 6) Redigir conclusões.

Nosso resultado para WFG não foi idêntico ao de [SPEAR], provavelmente porque utilizamos os parâmetros default.

Para executar os MaOPs, escolhemos M=5 como parâmetro em todos os problemas, mas a maioria deles continuou fixo em $M\leq 3$.

Os problemas MaF8, MaF9, MLDMP e MPDMP têm M=10 como parâmetro default, todos os outros têm M < 3.

II. DEFINIÇÃO DOS ALGORITMOS

NSGA-II — Algoritmo Genético de Classificação Não Dominado, conforme visto em aula;

MOEA/D — Decompõe um problema de otimização multiobjetivo em N subproblemas de otimização escalar, conforme visto em aula;

SPEA-R — Um Algoritmo Evolucionário de Pareto de Força Baseado em Direções de Referência;

NSGA-III — Versão atualizada do NSGA-II baseada em dominância, em que uma série de pontos de referência fornecidos são usados como uma diretriz para lidar com MaOPs; Mantém a diversidade da população por meio da preservação de nicho;

MOEA/D-DE — Nova versão do MOEA/D baseada em evolução diferencial, para lidar com MOPs contínuos com PSs complicados.

Este lançou exceção para os problemas: MOKP, MONRP, MOTSP, mQAP, Sparse_CN, Sparse_FS, Sparse_KP, Sparse_PM e ZDT5.

Algumas vezes retornaram NaN em todas as 5 execuções. Quando retornaram NaN de 1 a 4 vezes, tornamos a executar até que deixassem de ser NaN em todas as 5 execuções.

Muitos problemas estão associados a algoritmos específicos.

III. DEFINIÇÃO DOS PROBLEMAS

Abaixo a sigla do problema, o ano de publicação, uma breve descrição e alguns comentários retirados do referido artigo.

 BT; 2016; Problemas de teste multiobjetivo com bias;
 Os biases no POS significam que uma pequena mudança nas variáveis de decisão de algumas soluções de Pareto pode causar mudanças significativas de seus vetores objetivos no espaço objetivo. Para lidar com o bias, o

- operador de busca com habilidade muito poderosa na exploração deve ser considerado nos MOEAs.
- CF; 2008; Problemas de teste multiobjetivo restritos para a sessão especial e competição do CEC 2009; UF; 2008; Problemas de teste multiobjetivo irrestritos para a sessão especial e competição do CEC 2009; Mais instâncias de teste são necessárias para se assemelhar a problemas complicados da vida real e, assim, estimular a pesquisa do MOEA.
- DASCMOP; 2020; MOPs com restrição de dificuldade ajustável e escalável;

Desenvolvemos um kit de ferramentas geral para construir CMOPs escaláveis e ajustáveis por dificuldade com três tipos de funções de restrição desenvolvidas para capturar os três tipos de dificuldade propostos:

Dificuldade 1: Solidez de dificuldade;

Geralmente, as POFs de CMOPs com solidez de diversidade têm muitos segmentos discretos, ou algumas partes que são mais difíceis de alcançar do que outras partes, porque grandes regiões inviáveis são impostas em sua proximidade. Como resultado, alcançar a POF completa é difícil para os CMOEAs.

Dificudade 2: Solidez de viabilidade;

Para CMOPs de viabilidade sólida, a proporção de regiões viáveis no espaço de busca é geralmente muito baixa. É difícil para um CMOEA encontrar soluções viáveis em CMOPs com solidez de viabilidade. Muitas vezes no estágio inicial de um CMOEA, a maioria ou todas as soluções na população são inviáveis.

Dificuldade 3: Solidez de convergência;

CMOPs com solidez de convergência dificultam a convergência de CMOEAs para as POFs. Geralmente, CMOEAs encontram mais dificuldade em alcançar as POFs porque regiões inviáveis bloqueiam o caminho à medida que convergem para as POFs. Em outras palavras, a métrica de distância geracional (GD), que indica o desempenho da convergência, é difícil de minimizar no processo evolutivo.

- DOC; 2019; MOPs com restrições nos espaços de decisão e objetivos;
- DTLZ; 2005; Problemas de teste multiobjetivo escaláveis; Abordagem de múltiplas funções de objetivo único: A primeira abordagem é a mais intuitiva e tem sido usada implicitamente pelos primeiros pesquisadores do MOEA para construir problemas de teste. Nesta abordagem, M diferentes funções de objetivo único são usadas para construir um problema de teste multiobjetivo. Para simplificar o procedimento de construção, em muitos casos, diferentes funções objetivo são simplesmente usadas como diferentes traduções de uma única função objetivo.

Abordagem de baixo para cima: Nesta abordagem, uma função matemática que descreve a frente Pareto-ótima é assumida no espaço objetivo e um espaço de busca objetivo geral é construído a partir dessa frente para definir o problema de teste.

Abordagem da Superfície de Restrição: Ao contrário de

começar a partir de uma superfície Pareto-ótima predefinida na abordagem de baixo para cima, a abordagem de superfície de restrição começa por uma predefinição do espaço de busca geral.

• C1_DTLZ; 2014; DTLZ Restrito;

IDTLZ; 2014; DTLZ Invertido;

Em problemas com restrições do tipo 1, o valor ótimo da POF ainda é ótima, mas há uma barreira inviável na abordagem da POF. Isto é conseguido adicionando uma restrição ao problema original. A barreira oferece regiões inviáveis no espaço objetivo que um algoritmo deve aprender a superar, proporcionando assim uma dificuldade em convergir para a verdadeira POF.

Enquanto os problemas restritos do tipo 1 introduziram dificuldades em atingir toda a POF, com restrição de tipo 2 problemas são projetados para introduzir inviabilidade a uma parte da POF. Tais problemas testarão a capacidade de um algoritmo de lidar com POFs desconectadas.

Os problemas do tipo 3 envolvem múltiplas restrições e toda a POF do problema irrestrito não precisa ser ótima, em vez disso, porções das superfícies de restrição adicionadas constituem a POF.

- DC1_DTLZ; 2018; DTLZ com restrições no espaço de decisão;
- SDTLZ; 2014; DTLZ Escalado; Por exemplo, multiplicar os objetivos por 10⁰, 10¹, 10².
- MaF; 2017; DTLZ Invertido;
 - Os 15 problemas têm propriedades diversas que cobrem uma boa representação de vários cenários do mundo real, como ser multimodal, desconectado, degenerado e/ou inseparável, e tendo uma forma de POF irregular, um POS complexo ou um grande número de variáveis de decisão.
- FCP; 2021; MOPs restritas propostas por Jiawei Yuan;
- IMOP; 2019; MOPs com POF irregular;
 - A POF deve ser complexa o suficiente, o que pode representar grandes desafios para MOEAs na preservação da diversidade. Enquanto isso, deve ser possível amostrar um conjunto de pontos de referência uniformemente distribuídos na POF para avaliação de desempenho. Deve ser fácil obter soluções na POF, o que permite que os MOEAs obtenham rapidamente um conjunto de soluções bem convergentes e, assim, gastem a maior parte dos recursos computacionais na diversificação dessas soluções para melhor diversidade.
- LIRCMOP; 2019; MOPs restritos com grandes regiões inviáveis:
- LSMOP; 2016; Problemas de teste multiobjetivo de larga escala;
 - 1) Os problemas de teste podem ser gerados com uma formulação uniforme do projeto.
 - 2) Os problemas de teste devem ser escaláveis para ter um número de funções objetivo.
 - 3) Os problemas de teste devem ser escaláveis para ter qualquer número de variáveis de decisão.
 - 4) As formas e localizações exatas das POFs são conhe-

cidas.

Dado um problema formulado por $F(x) = H(x^f)(I + G(x^s))$, o objetivo de otimização é encontrar o POS, denotado como $x^* = (x^{f*}, x^{s*})$, tal que $G(x^{s*}) = 0$ e $F(x^*) = H(x^{f*})$. Portanto, usando tal formulação de projeto, $H(x^f)$ é capaz de testar a capacidade de um algoritmo de alcançar diversas soluções ao longo da POF, e $G(x^s)$ é capaz de testar a capacidade de um algoritmo de convergir para a POF.

- MMF; 2018; Função de teste multiobjetivo multimodal;
 - 1) Devem ser funções de otimização multiobjetivo;
 - 2) Devem ter mais de um POS que corresponda a o mesmo POF:
 - 3) Eles devem variar em sua extensão de complexidade.
- MMMOP; 2019; Problemas de otimização multiobjetivo multimodal;
- MW; 2019; MOPs restritas propostas por Z. Ma e Y. Wang;
- SMOP; 2020; MOPs com soluções ótimas de Pareto esparsas; Esparso quer dizer que a maioria das variáveis de decisão das POS são zero.
- SMMOP; 2021; Problemas de otimização multiobjetivo multimodal esparso;
- TREE; 2020; O problema de estimativa de erro variante no tempo;

A estimativa de erro dos transformadores de tensão desempenha um papel importante nos sistemas modernos de fornecimento de energia. Os métodos de estimativa de erro existentes concentram-se principalmente em calibração, mas ignoram a propriedade de variação no tempo. Consequentemente, é difícil estimar eficientemente o estado dos transformadores de tensão em tempo real. Para resolver esse problema, elaboramos um problema de estimativa de erro variável no tempo em um problema de otimização multiobjetivo em larga escala, onde os múltiplos objetivos e restrições de desigualdade são formulados por estatísticas e regras físicas extraídas dos sistemas de distribuição de energia.

- VNT; 1996; MOPs propostas por R. Viennet;
- WFG; 2006; Problemas de teste multiobjetivo escaláveis e problema degenerado WFG3;
 - 1) Deve haver alguns problemas de teste unimodais para testar a velocidade de convergência em relação a diferentes geometrias ótimas de Pareto e condições de *bias*.
 - 2) Os três tipos principais de geometrias ótimas de Pareto a seguir devem ser cobertos pelo conjunto de testes: POFs degeneradas, POFs desconectadas e POS desconectados.
 - 3) A maioria dos problemas de teste deve ser multimodal e deve haver alguns problemas enganosos.
 - 4) A maioria dos problemas deve ser inseparável.
 - 5) Deve haver problemas que sejam inseparáveis e multimodais. Problemas unimodais e separáveis não são representativos de problemas do mundo real.
- ZDT; 2000; MOPs propostas por E. Zitzler, K. Deb, e L. Thiele;

Os quatro problemas abaixo estão na pasta "MOPs with variable linkages":

- IMMOEA_F; 2015; MOPs para testar IM-MOEA;
- MOEADDE_F; 2009; Problemas estendidos para testar MOEA/D-DE;
- MOEADM2M_F; 2014; Problemas para testar MOEA/D-M2M:
- RMMEDA_F; 2008; Problemas para testar RM-MEDA;

Os 15 problemas abaixo estão na pasta "Real-world MOPs":

- MLDMP; 2018; O problema de minimização de distância multilinha;
 - 1) seu POS está em um polígono regular no espaço de decisão bidimensional;
 - 2) essas soluções são semelhantes (no sentido da geometria euclideana) às suas imagens no espaço objetivo de dimensão mais alta;
- MOKP; 1999; Problema da mochila 0/1 multiobjetivo; Sparse_KP; 1999; O problema da mochila multiobjetivo esparso;
- MONRP; 2007; Problema do próximo lançamento multiobietivo;
 - Uma das primeiras questões a levar em conta por empresas de software é determinar o que devem ser incluídos no próximo lançamento de seus produtos, de forma que o maior número possível dos clientes fiquem satisfeitos, enquanto isso implica um custo mínimo para a empresa. Este problema é conhecido como o Problema da Próxima Versão (NRP).
- MOTSP; 2007; Problema do caixeiro viajante multiobjetivo:
- MPDMP; 2007; Problema de minimização de distância multiponto;
- mQAP; 2003; Problema de atribuição quadrática multiobjetivo;
- Sparse_CD; 2021; Problema de detecção da comunidade; Sparse_PO; 2021; Problema de otimização de portifólio; Sparse_SR; 2021; Problema de reconstrução de sinal esparso;

Sparse_IS; 2021; Problema de seleção de instâncias;

 Sparse_CN; 2020; Problema crítico de detecção de nós; Sparse_FS; 2020; Problema de seleção de recursos; Sparse_NN; 2020; Problema de treinamento de rede neural;

Sparse_PM; 2020; Problema de mineração de padrões.

IV. TABELAS COMPARATIVAS

A. $M \leq 3$

Trocamos NaN por $\pm\infty$, de forma que os outros algoritmos prevalecessem.

Problema	ámx	dimy	IGD SPEA-R	IGD NSGA-III	IGD MOEA/D-DE	Melhor IGD	HV SPEA-R	HV NSGA-III	IGD MOEA/D-DE	Melhor HV
BTI	30	2	3.63600551570678	3.32979573384365	3.93273181336524	NSGA-III	0	0	0	Empute
BT2	30	2	1.16097693312918	0.871502455295318	1.71361572161863	NSGA-III	0	0.00972132478728879	0	NSGA-III
BT3	30	2	3.28300933722686	2.62531129914578	3.99145163606068	NSGA-III	0	0	0	Empute
BT4	30	2	3.15044371143297	2.56663562438937	3.79981744439238	NSGA-III	0	0	0	Empate
BT5	30	2	3.60429939519602	3.21527490097027	3.9399702725134	NSGA-III	0	0	0	Empate
BT6	30	2	0.931637473147707	0.402872035934128	1.88882953547575	NSGA-III	0.0359358186900809	0.2112713439154	0	NSGA-III
BT7	30	2	0.79283384802062	0.386248651698766	0.816409870630877	NSGA-III	0.0686608372787332	0.21950128088995	0.0264945017992873	NSGA-III
BT8	30	2	3.18281397084526	2.6928204770025	4.41674006281227	NSGA-III	0	0	0	Empute
HT9	30	3	2.79862590773357	2.42222350446418	3.46910506236922	NSGA-III	0	0	0	Empate
CFI	10	2	0.532915451798613	0.0878563604626515	0.693646933790538	NSGA-III	0.190266035011284	0.452424122871128	0.0994942068330625	NSGA-III
CF10	10	3	0.479930783807449		0.805761451834049	SPEA-R	0.0843540912543649	-99	0.0252251596605174	SPEA-R
CF2	10	2	0.0762457584562769	0.0731970079084628	0.0481226381247206	MOEA/D-DE	0.589994352421639	0.567600493337573	0.611017821070261	MOEA/D-E
CF3	10	2	0.425692730798077	0.383348755297863	0.435877805841658	NSGA-III	0.0308682691720762	0.042712784270645	0.0708097377389926	MOEA/D-E
CF4	10	2	0.172079287895089	0.12908244115934	0.222801640741499	NSGA-III	0.332786403809512	0.356738694827905	0.331356274487429	NSGA-III
CFS	10	2	0.293174556710036	0.347266307949802	0.271404782046797	MOEA/D-DE	0.219006017796575	0.217934294396254	0.278726432767376	MOEA/D-E
CF6	10	2	0.170519252720338	0.155176102378566	0.153951663973846	MOEA/D-DE	0.557791971000421	0.57857728830371	0.600168337577751	MOEA/D-I
CF7	10	2	0.334486436119178	0.308786358332758	0.332081655272517	NSGA-III	0.296565561063759	0.375915921390684	0.323158904819628	NSGA-II
CF8	10	3	0.485614321624149	0.499460813298521	0.489767065819165	SPEA-R	0.118864723284484	0.149943530392162	0.103351590967704	NSGA-II
CP9	10	3	0.44888512073823	0.162321000141013	0.144391622233914	MOEA/D-DE	0.168251913026882	0.309705902820263	0.347355775894705	MOEA/D-I
DASCMOPT	30	2		0.777684846379123		NSGA-III	-10	0.00235613335842463	-10	NSGA-II
DASCMOP2	30	2		0.299377132611914		NSGA-III		0.236333150706164		NSGA-II
DASCMOP3	30	2		0.385984820341361		NSGA-III	-10	0.203837781873294	-10	NSGA-II
DASCMOP4	30	2			0.861461568686117	MOEA/D-DE			0.021965826595767	MOEA/D-E
DASCMOPS	30	2		0.759719827993554	0.556856146671089	MOEA/D-DE		0.0216802630848025	0.0780647678154283	MOEA/D-I
DASCMOP6	30	2		0.931411936641514	0.658882689525083	MOEA/D-DE		0.00514397628295647	0.0583533650690935	MOEA/D-I
DASCMOP7	30	3		0.830776936659381		NSGA-III		0.0237360968993127		NSGA-II
DASCMOP8	30	3	-	1.29779847565425	0.835933942515195	MOEA/D-DE		0	0.0257584177757361	MOEA/D-I
DASCMOPS	30	3	0.714303032221161	0.564447896076293	m	NSGA.III	0.0225798153457705	0.0816365313695872	-8	NSGAJI
DOCI	6	2	-	106.40922974578	-	NSGA-III	-8	0	-8	NSGA-II
DOC2	16	2		100.40322374070		Empute	-10		-10	Empute
DOC3	10	2		-		Empate				Empate
DOC4	8	2		2.08675708681671		NSGA-III		0		NSGA-II
DOCS	8	2		2.080/3/080810/1		Empate				Empute
DOCS DOCS	- 11	2		8.6178987020174		NSGA-III	-8		-8	NSGA-II
	111	2		8.0178987020174	-			-		_
DOC3	10	3	-	183.237385699635	-	Empute NSGA-III				NSGA-II
DOCS	11	3		0.281554342636991		NSGA-III		-		
	7	-	**		0.0000000000000000000000000000000000000					Empate
CI_DTLZ1	_	3		0.159308627566648	0.0763139362775942	MOEA/D-DE		0.503706678861099	0.626834420377059	MOEA/D-I
CI_DTLZ3	12	-	1.79187911409523	6.85451482503151	2.1821340099462	SPEA-R		-	0.118481948310882	MOEA/D-I
C2_DTLZ2	12	3	0.0584792705504001	0.0485507161962547	0.0837947313947376	NSGA-III	0.479649642409626	0.49761018533392	0.420180634377825	NSGA-II
C3_DTLZ4	12	3	**	0.100128103825817		NSGA-III	-14	0.788501100245949	-90	NSGA-III
CDTLZ2	12	3	0.0493858707036592	0.046946005935499	0.116660833046936	NSGA-III	0.956906510017449	0.957729993453264	0.921332967442571	NSGA-III

		_								
Problema	dimx	dimy	IGD SPEA-R	IGD NSGA-III	IGD MOEA/D-DE	Melhor IGD	HV SPEA-R	HV NSGA-III	IGD MOEA/D-DE	Melhor HV
DCI_DTLZ1	7	3	0.402081500723689	0.293448683455017	0.992335081723299	NSGA-III	0.0290286283752729	0.205043492336059	0.00848913508425744	NSGA-III
DC1_DTLZ3	12	3	2.83253601304976	1.71011580547035	0.999560963402872	MOEA/D-DE	0	0	0.00098153776722257	MOEA/D-D
DC2_DTLZ1	7	3	0.200885419564563	**	0.14975256893192	MOEA/D-DE	0.304514938812144		0.421800804494028	MOEA/D-D
DC2_DTLZ3	12	3	-	-	0.138325870918834	MOEA/D-DE			0.423427405994059	MOEA/D-D
DC3_DTLZ1	7	3	29.7702779719942	2.05030043316415	0.0336012877400698	MOEA/D-DE	0	0	0.365374440994643	MOEA/D-D
DC3_DTLZ3	12	3	3.65995011814787	5.78826977831455	10.0846263863177	SPEA-R	0	0	0	Empate
DTLZI	7	3	0.640893449997071	0.256968200988261	0.763009894639604	NSGA-III	0.254828627429218	0.492673674922047	0.290659784030918	NSGA-III
DTLZ2	12	3	0.0605528424926788	0.0548620360987708	0.0781278233672647	NSGA-III	0.549734458805904	0.555749991766988	0.510782092863027	NSGA-III
DTLZ3	12	3	17.4698217184632	10.2881430848368	31.2231002631775	NSGA-III	0	0	0.0717467238004982	MOEA/D-DI
DTLZ4	12	3	0.0611428022212446	0.233215571956268	0.143556615101124	SPEA-R	0.548375940200968	0.462905547216352	0.511208460391321	SPEA-R
DTLZ5	12	3	0.0291802204339094	0.0124478291008995	0.0140120362559724	NSGA-III	0.184319837511655	0.193917860171644	0.193411498720338	NSGA-III
DTLZ6	12	3	0.0937784379150144	0.0172793080917482	0.0139165672469859	MOEA/D-DE	0.159164645550247	0.191508382508854	0.195068613760659	MOEA/D-D
DTLZ7	22	3	0.119131404158876	0.0895481003192334	0.48624023215618	NSGA-III	0.239501390385181	0.250664666010772	0.094193040227109	NSGA-III
DTL28	30	3	**	0.0650992704686636	**	NSGA-III		0.607142159178369		NSGA-III
DTL29	20	2	0.413862449972885	0.051049741287494	0.49200207037373	NSGA-III	0.0955323870912374	0.303550369740558	0.076969841020695	NSGA-III
IDTLZI	7	3	0.663155671148164	0.187896706936429	1.05795401064586	NSGA-III	0.0323718787809467	0.0899148832420792	0.0655984388721342	NSGA-III
IDTLZ2	12	3	0.0821904940566409	0.0723046112315044	0.0898029751834453	NSGA-III	0.510479021420392	0.516872075746632	0.499389752478552	NSGA-III
SDTLZI	7	3	0.755058810293026	0.221936668158482	3.13260638531606	NSGA-III	0.145986989455732	0.58220187840826	0.270508563240689	NSGA-III
SDTLZ2	12	3	0.140252973603609	0.130650341091163	0.246218318912465	NSGA-III	0.550961805906455	0.555907890294987	0.473776145178687	NSGA-III
PCP1	30	2				Empate	-10	-00	-10	Empate
FCP2	30	2				Empate				Empate
PCP3	30	2	**	**		Empute				Empate
FCP4	30	2			-	Empute	-91	-00		Empate
PCP5	30	2	**	4.2873381981172	4.74631151848917	NSGA-III	-10	0.0529789818967277	0.245422861343963	MOEA/D-D
IMOP1	10	2	0.267430952791122	0.226088914872553	0.104389440479615	MOEA/D-DE	0.90341990916157	0.963653678490081	0.984697020731686	MOEA/D-D
IMOP2	10	2	0.386231647276801	0.515491109328406	0.342823642168425	MOEA/D-DE	0.107051741597827	0.0919611821603117	0.145755309267625	MOEA/D-DI
IMOP3	10	2	0.300715311647929	0.440925067738961	0.0336451188205899	MOEA/D-DE	0.382017454099921	0.281486673845782	0.641494960717327	MOEA/D-DI
IMOP4	10	3	0.294926639946987	0.305676953099255	0.0334946021279084	MOEA/D-DE	0.184500190849624	0.197682483184349	0.413549735389634	MOEA/D-D
IMOP5	10	3	0.273029143565238	0.0974062483361799	0.205407036222489	NSGA-III	0.44807617845968	0.512882236054565	0.457997001087698	NSGA-III
IMOP6	10	3	0.398246143249932	0.217719020710502	0.0880255722201466	MOEA/D-DE	0.270221298220456	0.407698337624955	0.473170390504387	MOEA/D-D
IMOP7	10	3	0.846359336319479	0.898747472049349	0.597818927711355	MOEA/D-DE	0.0985844784593762	0.0933291975279717	0.204847203639465	MOEA/D-D
IMOP8	10	3	0.121450802106189	0.197461043942288	0.33973913868474	SPEA-R	0.487050020067967	0.463440550745169	0.31975595477927	SPEA-R
ZDTI	30	2	0.13394932134482	0.0214371907033732	0.477679479755234	NSGA-III	0.577453875600271	0.696249213518917	0.217168516575507	NSGA-III
ZDT2	30	2	0.151934883095324	0.110050455244481	0.692313841484397	NSGA-III	0.244554216720906	0.352014454443437	0.0136913262026949	NSGA-III
ZDT3	30	2	0.0932878790600748	0.0184382278662556	0.475021676149185	NSGA-III	0.570964532916588	0.585639501577305	0.278635412194746	NSGA-III
ZDT4	10	2	0.918633396316416	0.534176117731414	5.62440402793451	NSGA-III	0.0396721152999642	0.236864527959179	0	NSGA-III
ZDTS	80	2	2.1671327331488	1.39856710940519		NSGA-III	0.776490911478669	0.781871188665892	-10	NSGA-III
ZDT6	10	2	0.335815511076213	0.166304978136847	0.00361111231384652	MOEA/D-DE	0.0828795806255853	0.204640873776588	0.387935818506006	MOEA/D-D

	_	_								_
Problema	dmx	dmy	IGD SPEA-R	IGD NSGA-III	IGD MOEA/D-DE	Melhor IGD	HV SPEA-R	HV NSGA-III	IGD MOEA/D-DE	Melhor HV
LIRCMOPI	30	2	-	0.318368082595192		NSGA-III		0.104808167689904	-86	NSGA-III
LIRCMOP10	30	2	0.821787193266711	1.10629861033502	1.5318196294944	SPEA-R	0.103595648967069	0.0513022110895579	0	SPEA-R
LIRCMOP11	30	2	0.815823592845194	1.00452294961122	1.14848491398435	SPEA-R	0.149857627324075	0.148850111784166	0.186435981210635	MOEA/D-D
LIRCMOP12	30	2	0.41904291911447	1.07663264763363	0.99547675342275	SPEA-R	0.451083717817169	0.162223411210182	0.2728996473156	SPEA-R
LIRCMOP13	30	3	0.427669797232828	1.32033897466911	0.403377097123211	MOEA/D-DE	0.248791427765467	0.000272067548308171	0.242001887896481	SPEA-R
LIRCMOP14	30	3	0.472231089386	1.27693095178388	0.428978311897236	MOEA/D-DE	0.275514180983587	0.00081944761360022	0.266849640791199	SPEA-R
LIRCMOP2	30	2	-	0.285597267392851	-	NSGA-III		0.213067221103246		NSGA-III
LIRCMOP3	30	2		0.292803703468264		NSGA-III		0.102549699652208		NSGA-II
LIRCMOP4	30	2	-	0.30014139481016	~	NSGA-III		0.18870970655089		NSGA-III
LIRCMOPS	30	2	0.337125737370771	1.35301149410138	0.979662536981853	SPEA-R	0.136180020471602	0	0.0981832191781156	SPEA-R
LIRCMOP6	30	2	1.00919175818427	1.34790271799133	0.445122868302381	MOEA/D-DE	0.0459289357106589	0	0.0815902180984924	MOEA/D-I
LIRCMOP7	30	2	0.804730832738151	1.43674901743652	-	SPEA-R	0.109913530365169	0.0351495802859576		SPEA-R
LIRCMOPS	30	2	0.780269764754034	1.68717078391053	0.676643557379091	MOEA/D-DE	0.130927405652249	0	0.127167591923705	SPEA-R
LIRCMOP9	30	2	0.669431991566457	1.09658580278025	0.765610499676278	SPEA-R	0.239707347992362	0.0783837845434354	0.23826083946676	SPEA-R
LSMOPI	300	3	4.33998097911358	3.79089101127056	1.73727513510145	MOEA/D-DE	0	0	0	Empate
LSMOP2	300	3	0.0934403595646779	0.0940541768688638	0.100403804757833	SPEA-R	0.765647185134649	0.765975609273507	0.72437641720218	NSGA-II
LSMOP3	300	3	23.0785762467889	12.4357490480472	10.21529594502	MOEA/D-DE	0	0	0	Empute
LSMOP4	300	3	0.266416793220296	0.274184351598129	0.257535828738563	MOEA/D-DE	0.539715855093981	0.531072744967035	0.530315077482501	SPEA-R
LSMOP5	300	3	7.81080885130526	9.02626547101185	3.80970784132547	MOEA/D-DE	0	0	0	Empate
LSMOP6	300	3	2376.05180488838	1055,57672852939	894.605886173998	MOEA/D-DE	0	0	0	Empate
LSMOP7	300	3	1.610435865231	1.5655865642566	1.38572828320484	MOEA/D-DE	0	0	0	Empute
LSMOP8	300	3	0.973767573235228	0.980314933662072	0.591019556531686	MOEA/D-DE	0.029152139118374	0.0300321693564167	0.0420248230118054	MOEA/D-I
LSMOP9	300	3	22.6976394701849	17.8173480112116	12.7756062052856	MOEA/D-DE	0	0	0	Empate
MaFI	12	3	0.080363270645426	0.0607971293062554	0.0725943974625884	NSGA-III	0.187435186282523	0.20235450368907	0.188187661627736	NSGA-II
MaF10	12	3	0.963309164819087	0.660431120142664	1.5349877686385	NSGA-III	0.565318599410808	0.632774385403825	0.277464392456832	NSGA-II
MaF11	12	3	0.189008924550695	0.230375311508402	0.380147562030278	SPEA-R	0.894932705141802	0.884880424875075	0.862313129930461	SPEA-R
MaF12	12	3	0.253121768097389	0.236616850090785	0.33833797832055	NSGA-III	0.487977749090221	0.503587292226902	0.471429512130861	NSGA-II
MaF13	5	3	0.14091913425712	0.0995063683236536	0.105387307396078	NSGA-III	0.411780540994154	0.472879160055596	0.471158220418101	NSGA-B
MaF14	60	3	5.110425584139	2.47017404114492	3.76658389656821	NSGA-III	0	0	0.0181818181818182	MOEA/D-
MaF15	60	3	1.15124956701869	1.23536500412506	0.716554290817535	MOEA/D-DE	0.00023615399077478	0.00421185989656444	0.0725534631274585	MOEAD
MaF2	12	3	0.0394760318314936	0.0362393644674017	0.0459363402664559	NSGA-III	0.233753619653674	0.237057871990697	0.226071973868469	NSGA-II
MiF3	12	3	984 913487824464	104 812216210405	1098 04960532063	NSGAJIII	0	0	0.331453297382082	MOEAD
MaF4	12	3	49.1321344285941	26,9706546948225	97.612120209421	NSGA-III	0	0	0	Empate
MaFS	12	3	0.282848698585328	0.261696210364252	0.734117276339549	NSGA-III	0.548069342507141	0.555173228218886	0.47435729078191	NSGA-II
MaF6	12	,	0.0278704204220862	0.0123207296873293	0.014157761640835	NSGA-III	0.180878901211195	0.193420480767923	0.43433729078191	NSGA-B

	_	_								
Problema	dimx	diny	IGD SPEA-R	IGD NSGA-III	IGD MOEA/D-DE	Melhor IGD	HV SPEA-R	HV NSGA-III	IGD MOEA/D-DE	Melhor HV
MMFI	2	2	1.26227943740174	1.258500999093	1.25845498033708	MOEA/D-DE	0.903571333171944	0.905658589819685	0.906332602703467	MOEA/D-DI
MMF2	2	2	0.550849058131237	0.610696902594748	0.617276001443016	SPEA-R	0.852787432052938	0.849435615141446	0.859559531558338	MOEA/D-DI
MMF3	2	2	0.449851920952667	0.450145346183528	0.469285623376038	SPEA-R	0.803309437060878	0.796857774106437	0.813106909585006	MOEA/D-D
MMF4	2	2	0.629701986373459	0.612792565066501	0.614023072415374	NSGA-III	0.721831496937855	0.721322695707439	0.722076632429284	MOEA/D-D
MMP5	2	2	1.70468945079348	1.70476272345784	1.68384760407132	MOEA/D-DE	0.96757679772364	0.968603550103863	0.968707425512627	MOEA/D-D
MMF6	2	2	1.38399170473508	1.38599090545243	1.37822939993725	MOEA/D-DE	0.952368083756966	0.953057106258506	0.95260852001725	NSGA-III
MMF7	2	2	1.05100183816125	1.05107482186252	1.05108610349753	SPEA-R	0.883835335170311	0.883942689572325	0.88410693384152	MOEA/D-D
MMF8	2	2	3.72347752056233	3.7223193609566	3.72240677663572	NSGA-III	0.969491795148961	0.970645133631273	0.970744234531364	MOEA/D-D
MMMOPI	3	2				Empate	-80	-10	-90	Empate
MMMOP2	3	2	-	-	-	Empute				Empute
MMMOP3	3	2				Empute	-80	-10	-90	Empute
MMMOP4	3	2	-	-	-	Empute				Empate
MMMOP5	3	2				Empute		-10		Empate
MMMOP6	4	2		**		Empate		-10		Empate
IMMOEA_FI	30	2	0.161579349036484	0.300168542019944	0.151838822807455	MOEA/D-DE	0.554935634125176	0.493579146427018	0.498313118394421	SPEA-R
IMMOEA_F10	30	2	39.1938586995602	43.6175215499125	54.2042763529768	SPEA-R	0	0	0	Empate
IMMOEA F2	30	2	0.38568275367396	0.418669869824407	0.186898058460211	MOEA/D-DE	0.0987354819197414	0.0900855390440296	0.26094146552587	MOEA/D-D
IMMORA 13	30	2	0.148008572494604	0.109101064739024	0.373783612960383	NSGA-III	0.213353424083869	0.270747486087938	0.0783014153761839	NSGA-III
IMMOEA_F4	30	3	0.41650476160876	0.483587653479535	0.900478337357568	SPEA-R	0.0810129283470256	0.113028264280505	0.043217737779595	NSGA-III
IMMORA PS	30	2	0.0635021920443095	0.0837131798635138	0.0535535388107695	MOEA/D-DE	0.627308058095727	0.616613767349887	0.643158511624365	MOEA/D-D
IMMOEA P6	30	2	0.124734567418691	0.16839072597394	0.0675000731710034	MOEA/D-DE	0.298908548669742	0.251021582368183	0.309426444193198	MOEA/D-D
IMMORA 17	30	2	0.167278461240858	0.134993292670421	0.237115757197079	NSGA-III	0.216184931477811	0.255229071426253	0.179199240757543	NSGA-III
IMMOEA PR	30	1	0.291651922133356	0.796793954479319	0.520623087064802	SPEA-R	0.1802125237223	0.0554769116214662	0.177612445277691	SPEA-R
IMMOEA_P9	30	2	0.0969201378089253	0.0618869072174667	0.181293056587732	NSGA-III	0.577716653721926	0.631360949651827	0.487134595996189	NSGA-III
MOEADDE FI	30	2	0.0372412190349492	0.0508829218728429	0.00954789597629617	MOEA/D-DE	0.67072760268724	0.643428587577332	0.71023303653983	MOEA/D-D
MOEADDE_F2	30	2	0.133417831458945	0.126112223802133	0.130245646431553	NSGA-III	0.525503517993807	0.556579235315526	0.531856877578547	NSGA-III
MOEADDE F3	30	2	0.0825618079254141	0.0815624363663863	0.11659134314475	NSGA-III	0.622326326869712	0.622146715118504	0.616348554616147	SPEA-R
MOEADDE_F4	30	2	0.0766228842071327	0.0961355316051592	0.104299129288838	SPEA-R	0.63630141562679	0.620053818182237	0.620041698505053	SPEA-R
MOEADDE.F5	30	2	0.0746007407782017	0.0672304665617714	0.0762199636223045	NSGA-III	0.641270254080291	0.637648837036697	0.64044047284255	SPEA-R
MOEADDE F6	10	1	0.225750901765859	0.313791708134417	0.160993961693019	MOEA/D-DE	0.326061965420899	0.351612545106139	0.376268022228123	MOEA/D-D
MOEADDE_F7	10	2	0.270282746663812	0.238534506127117	0.280475469756831	NSGA-III	0.345302295718691	0.380831863752574	0.345113545439273	NSGA-III
MOEADDE_F8	10	2	0.261100729242146	0.241540549172374	0.270859645384331	NSGA-III	0.351326236476617	0.372334742225761	0.335708679618962	NSGA-III
MOEADDE P9	30	2	0.126306119726487	0.190688677437916	0.136800551056594	SPEA-R	0.265993735710232	0.25209910692863	0.26359820336843	SPEA-R
MOEADM2M_F1	10	2	0.172426997423507	0.356520840855883	0.312615361761114	SPEA-R	0.506721579231733	0.250887915112039	0.316267960541448	SPEA-R
MOEADM2M_F2	10	2	0.255645587911343	0.354939034837449	0.319462299094072	SPEA-R	0.200273269855697	0.173553719008264	0.185232916887438	SPEA-R
MOEADM2M F3	10	2	0.432204539850838	0.70622114902264	0.557631048836648	SPEA-R	0.0909395463367691	0.09090909090909090	0.0909090909090909	SPEA-R
MOEADM2M_F4	10	2	0.19386010646897	0.313066725374611	0.268843870937451	SPEA-R	0.342498165922665	0.262550774104039	0.296171503230902	SPEA-R
MOEADM2M_F4	10	2	0.23280422663483	0.28516940049256	0.315618512649689	SPEA-R	0.420968138991089	0.407558186107107	0.4002182386049	SPEA-R
MOEADM2M_F6	10	3	0.304963290468678	0.310239761820378	0.315618312649689	MOEA/D-DE	0.601114125726476	0.611486954027547	0.4002182389049	MOEA/D-D
		_				_				NSGA-III
MOEADM2M_F7	10	3	0.359917065952471	0.358076778362471	0.358495129430563	NSGA-III	0.382628630245078	0.398137078640093	0.395027202127421	_

	_	_								
Problema	dinx	dimy	IGD SPEA-R	IGD NSGA-III	IGD MOEA/D-DE	Melhor IGD	HV SPEA-R	HV NSGA-III	IGD MOEA/D-DE	Melhor HV
RMMEDA_F1	30	2	0.177366722970371	0.207525072814052	0.00560957910150634	MOEA/D-DE	0.594246466180192	0.543067745325431	0.716577099316644	MOEA/D-DE
RMMEDA_F10	30	2	36.2038554628254	13.3620588238812	59.4549471808056	NSGA-III	0	0	0	Empute
RMMIDA_F2	30	2	0.21342965987032	0.455903581763322	0.00517902172429277	MOEA/D-DE	0.227480417517548	0.102650982730338	0.44127110052854	MOEA/D-DE
RMMEDA_F3	30	2	2.3931219551594	2.65320037574951	1.34717519106245	MOEA/D-DE	0	0	0	Empate
RMMEDA_F4	30	3	0.178111764025091	0.269018159353026	0.0814509650427807	MOEA/D-DE	0.290277477248427	0.194369385109992	0.525264326819454	MOEA/D-DE
RMMEDA_F5	30	2	0.329269356635695	0.405351179620009	0.163616811449296	MOEA/D-DE	0.499903042364866	0.443949347617219	0.604739729782834	MOEA/D-DE
RMMEDA_F6	30	2	0.269130222570758	0.319338011329714	0.158698159809932	MOEA/D-DE	0.199530850950061	0.163954614866015	0.276809299602312	MOEA/D-DE
RMMEDA_F7	30	2	1.71991099312881	1.53352226009753	1.26208363591242	MOEA/D-DE	0	0	0	Empate
RMMEDA_F8	30	3	0.199489354166469	0.464747008852032	0.300952104106288	SPEA-R	0.303680383729438	0.305180829197802	0.300239628848296	NSGA-III
RMMEDA_P9	30	2	0.464763138309169	0.103797550372856	0.569685787716314	NSGA-III	0.217176277118166	0.606768839993991	0.145223454912582	NSGA-III
MWI	15	2	0.151803854633341	0.245378989297047	-	SPEA-R	0.33171759824667	0.258888378412727		SPEA-R
MW10	15	2	0.0276246913855178	0.204534892457222	0.393044161555073	SPEA-R	0.424688794995514	0.325110112618126	0.22723181041109	SPEA-R
MWII	15	2	**	0.608245117534102		NSGA-III	-00	0.297563975644806		NSGA-III
MW12	15	2	0.7151761756504	0.518313992389929		NSGA-III	0.222434639490284	0.197983811357292		SPEA-R
MW13	15	2	0.146474846707281	0.476462400513332	0.747144916899186	SPEA-R	0.429898554167142	0.336802058060631	0.211168626985356	SPEA-R
MW14	15	3	0.418150056363871	0.945130089604614	1.11122484760486	SPEA-R	0.336797134035879	0.103673277692497	0.184775158251543	SPEA-R
MW2	15	2	0.0388891537556784	0.0276648921921049	0.155611656793065	NSGA-III	0.52592508153986	0.542107290374413	0.377968640052291	NSGA-III
MW3	15	2	0.0498120906041997	0.0891255471608142	0.0505116152062476	SPEA-R	0.52084054031076	0.452826246941304	0.526618964411739	MOEA/D-DE
MW4	15	3	0.120932728934129	0.254688101111361		SPEA-R	0.718662705741555	0.55785962406675	-10	SPEA-R
MW5	15	2	0.155119598257432	0.203605393007828		SPEA-R	0.172971708458244	0.219959785167173	-10	NSGA-III
MW6	15	2	0.0211523844435997	0.478442191082976	0.39139278706474	SPEA-R	0.301955446720464	0.195090216180489	0.123730360764681	SPEA-R
MW7	15	2	0.197739348054911	0.0139427281665434	0.200412266033084	NSGA-III	0.337887349368572	0.400339462234495	0.337881996617693	NSGA-III
MW8	15	3	0.0717217713515763	0.147520684545717	0.432699385932119	SPEA-R	0.491067468657334	0.422069982936649	0.140314173940969	SPEA-R
MW9	15	2	0.455803154975498	0.493775823767663		SPEA-R	0.0800642604450622	0.120279617978044		NSGA-III
MOKP	250	2	13397.1967591631	13529.5411905678		SPEA-R	0.514202531815519	0.504249302053311	-14	SPEA-R
MONRP	100	2	5005.32125209989	8475.01780252646		SPEA-R	0.68239270119133	0.632380019541711		SPEA-R
MOTSP	30	2	29.7708112864912	29.2197388654771		NSGA-III	0.685133718870388	0.663929832527159		SPEA-R
mQAP	10	2	1096189.41798155	1095120.7592945	86	NSGA-III	0.654653525452324	0.65468376793657		NSGA-III
Sparse_CD	34	2	0.976006965334668	0.975768786189255	0.96556323847311	MOEA/D-DE	0.811156842206195	0.791937023762033	0.784588725849472	SPEA-R
Sparse_CN	102	2	1.0132545491543	1.02555587348053		SPEA-R	0.922308145253028	0.867063668933738		SPEA-R
Sparse_FS	166	2	1,15108486290665	1.19349117877468		SPEA-R	0.981797219325322	0.97617717498965		SPEA-R
Sparse_IS	862	2	1.08108685577324	1.10381586379135	0.992314586537911	MOEA/D-DE	0.731323232831328	0.720674345698563	0.526298009316778	SPEA-R
Spanse_KP	250	2	33236.3100307771	3781.57276461976		NSGA-III	0	0.0786507239875658		NSGA-III
Sparse NN	321	2	0.698681084570054	0.692498502564401	0.648993869664024	MOEA/D-DE	0.352226319192815	0.366126728479431	0.343008788337738	NSGA-III
Sparse_PM	100	2	0.365448235945457	0.365123936523699		NSGA-III	0.325379410921676	0.232052504877061	-10	SPEA-R
Sparse_PO	1000	2	1.00000029398438	1.0000001722957	1.00000025897813	MOEA/D-DE	0.0918788697882008	0.0919501623665442	0.0921335307233894	MOEA/D-DE
Sparse_SR	1024	2	0.817035953505801	0.877110178509805	0.748846776352906	MOEA/D-DE	0.238980719903119	0.202374203643125	0.190667430042362	SPEA-R

Problema	dimx	dimy	IGD SPEA-R	IGD NSGA-III	IGD MOEA/D-DE	Melhor IGD	HV SPEA-R	HV NSGA-III	IGD MOEA/D-DE	Melhor H
SMMOPI	100	2	- 00		00	Empute			-81	Empate
SMMOP2	100	2				Empute			-10	Empate
SMMOP3	100	2				Exepute				Empate
SMMOP4	100	2	-	-	-	Empute				Empute
SMMOP5	100	2	-	-	-	Empute				Empute
SMMOP6	100	2				Exepute			-10	Empate
SMMOP7	100	2				Exepute			-10	Empate
SMMOP8	100	2				Empate				Empat
SMOP1	100	2	0.252602748525094	0.148283865095639	0.498588911259069	NSGA-III	0.281001733808643	0.393743939907137	0.101506361567356	NSGA-
SMOP2	100	2	0.837335436608275	0.56468077870029	1.61913588248929	NSGA-III	0	0.0553575578023205	0	NSGA-
SMOP3	100	2	1.0846199773948	0.880717010117959	1.58191944309163	NSGA-III	0	0	0	Empat
SMOP4	100	2	0.375755864295379	0.233894334038938	0.85712102091318	NSGA-III	0.381767465332192	0.539177192990972	0.043073180829313	NSGA-
SMOP5	100	2	0.387141312053258	0.375235184748627	0.425745475231784	NSGA-III	0.383179359191095	0.398167893457378	0.346964059265224	NSGA-
SMOP6	100	2	0.0744810015227255	0.0560705481131895	0.188666281640146	NSGA-III	0.730362769370431	0.75524267264567	0.593730215666394	NSGA-
SMOP7	100	2	0.736153966051939	0.402042051810769	0.522747872494799	NSGA-III	0	0.0167405525551772	0.000137232216883954	NSGA-
SMOP8	100	2	2.3378667347961	2.19978169362851	2.57753327377573	NSGA-III	0	0	0	Emput
TREE	3000	2			96.2559644846219	MOEA/D-DE			0.735130722934367	MOEA/D
TREE2	3000	2			434.489263768579	MOEA/D-DE	-80	-80	0.767499671152862	MOEAT
TREE3	6000	2			119.001848459307	MOEA/D-DE			0.7259642610165	MOEAT
TREE4	6000	2			117.287021541206	MOEA/D-DE			0.0604107505089487	MOEAT
TREES	6000	2	-	-	182.693165931063	MOEA/D-DE			0.679929864748839	MOEA/D
TREES	12000	3			-	Empute			-11	Emput
UFI	30	2	0.117656190034912	0.125445085612452	0.147596600545176	SPEA-R	0.549690870416738	0.561728421813349	0.527011063662326	NSGA-
UFIO	30	3	1.09859453585706	0.714446182573405	2.15906358989092	NSGA-III	0	0.00025326436783462	0	NSGA
LIF2	30	2	0.0666270824070797	0.0728983977528328	0.0740672380266497	SPEA-R	0.640033689444634	0.636581886345963	0.64661193890001	MOEAT
UF3	30	2	0.356810545413195	0.364139359227352	0.266454520759671	MOEA/D-DE	0.281175650643465	0.260270795338674	0.358313414300248	MOEAT
UF4	30	2	0.0876438641011648	0.0791495016544295	0.0985408715880981	NSGA-III	0.320375082784919	0.337492460872676	0.310871165676167	NSGA
LIFS	30	2	0.770900626873378	0.693395431970706	1.881123167934	NSGA-III	0.00582091135729248	0.0139060924523836	0	NSGA
UF6	30	2	0.570867928125459	0.490867354172497	0.535796356914594	NSGA-III	0.0180719692305263	0.0468631536298258	0.0693981467575918	MOEAT
UF7	30	2	0.274431986668695	0.134395438649937	0.174001327494475	NSGA-III	0.305602662274757	0.426150267443883	0.35271988244022	NSGA
LPS	30	3	0.303170478244341	0.514524470744374	0.308811209938984	SPEA-R	0.239245026451213	0.311711838225743	0.257781527964147	NSGA
LIFE	30	3	0.506200926036129	0.422026620799318	0.409506263594666	MOEA/D-DE	0.239672436851221	0.35698383296218	0.348027958157149	NSGA
VNTI	2	3	0.182332587217435	0.181022599545521	0.186150020714873	NSGA-III	0.338062965867928	0.338994019616019	0.340765215886617	MOEAT
VNT2	2	3	0.0368717068726571	0.049178089818777	0.0461484661589887	SPEA-R	0.330004890046119	0.334005901885882	0.330913225180449	NSGA
VNT3	2	3	0.141414622395822	1.86755436540353	0.768148422946444	SPEA.R	0.173852149437294	0.174044784774623	0.173865520012213	NSGA
VNT4	2	3	0.622965270040173	0.251476555401669	1.77353894959332	NSGA-III	0.24167036530742	0.256897774796804	0.210168631111397	NSGA
WEGI	12	1	1.06111069292998	0.674624146774703	1.4838975536949	NSGA-III	0.49466670630001	0.647336390653479	0.258318806622366	NSGA
WFG2	12	3	0.186854263293354	0.171289857110881	0.367488734864955	NSGA-III	0.899236127257097	0.909246435737845	0.866798339968451	NSGA
WFG3	12	1	0.18434699359659	0.160332486343277	0.265341550293367	NSGA-III	0.345979882265226	0.35381624254676	0.296624798543123	NSGA
WFG4	12	1	0.241087757755863	0.23233370275759	0.405597552564751	NSGA-III	0.525386754425766	0.527396034332987	0.440016562630493	NSGA
WEGS	12	3	0.237337807285616	0.237682621749688	0.333795231670796	SPEA-R	0.50482694397743	0.505857403900031	0.456611323200469	NSGA
WFG6	12	3	0.284440359379711	0.278985231940314	0.416124612945368	NSGA-III	0.47182806323934	0.467470669349584	0.406348671464836	SPEA
WEGT	12	3	0.262318570619475	0.230305636982251	0.384588237847139	NSGA-III	0.512552326421285	0.534978149722634	0.452469531757255	NSGA
migr		_			0.467817533681404	SPEA-R	0.452144787449125	0.445096895572091	0.356880511861161	SPEA
WEGS	12	3	0.303005883380114	0.315671464851609						

Problema	dinx	dimy	IGD SPEA-R	IGD NSGA-III	IGD MOEA/D-DE	Melhor IGD	HV SPEA-R	HV NSGA-III	IGD MOEA/D-DE	Melhor HV
MaP8	2	10	3467,57757768346	0.837620385764327	0.244944326439677	MOEA/D-DE	0	0.00329677466725566	0.00773937658445055	MOEA/D-D
Mar9	2	10	8.49473148019502	1.07340514774827	0.399428355877611	MOEA/D-DE	0.000110678411017679	0.00381069719279871	0.00841472631313518	MOEA/D-D
MLDMP	2	10	1.94276195502602	0.909126419170136	0.381300179004636	MOEA/D-DE	0.00100750508508827	0.00371444011744428	0.00813601548819091	MOEA/D-D
MPDMP	2	10	0.525339731265399	0.35515755779015	0.23443994364406	MOEA/D-DE	0.00310504285975362	0.00733153544870332	0.0077827323317766	MOEA/D-I
CI_DTLZI	9	5		0.275864749859148	0.23893563527683	MOEA/D-DE		0.443298216578989	0.396560435547661	NSGA-III
CI_DTLZ3	14	5	6.66362655778301	11.6985599511082	5.73749342180428	MOEA/D-DE	0	0	0.0324146492225469	MOEA/D-I
C2_DTLZ2	14	5	0.236255203117233	0.251800275079504	0.574587080160558	SPEA-R	0.5640176	0.6290468	0.14303948020507	NSGA-III
C3_DTLZ4	14	5		0.463949818908695	1.25416565445839	NSGA-III		0.9177584	0.37843365675988	NSGA-III
CDTLZ2	14	5	0.0985169010149039	0.0947549815938594	0.180327627607233	NSGA-III	0.99797359999889	0.998617999909392	0.9768416	NSGA-III
DC1_DTLZ1	9	5	2.23608431216384	0.171643845532248	1.48110498934581	NSGA-III	0	0.422042221889098	0.126074752030667	NSGA-III
DC1_DTLZ3	14	5	4.46806877339901	2.37094188701222	3.85490367303386	NSGA-III	0	0	0.0386901302575217	MOEA/D-D
DC2_DTLZ1	9	5			0.326236651617742	MOEA/D-DE			0.273115423982582	MOEA/D-D
DC2_DTLZ3	14	5			0.708806315286152	MOEA/D-DE			0.152526242814075	MOEA/D-D
DC3_DTLZ1	9	5		2.83047518382784	9.20354855088145	NSGA-III	-#	0	0.00274598742618632	MODA/D-D
DC3_DTLZ3	14	5	6.94702738171684	9.23940886591519	18.2715190991839	SPEA-R	0	0	0	Empate
DTLZI	9	5	1.42036677953155	0.462899335341193	2.43258292418841	NSGA-III	0.0187413033894881	0.13774799048154	0.00389127007723229	NSGA-III
DTLZ2	14	5	0.232592307502454	0.216188554867325	0.43263797753388	NSGA-III	0.737548	0.7584598	0.420215	NSGA-III
DTLZ3	14	5	44.8816436222183	19.1719073342772	7.41074944609899	MOEA/D-DE	0	0	0.0217032174209905	MODA/D-D
DTLZ4	14	5	0.24618431042004	0.278458160649387	0.497582964022724	SPEA-R	0.724042	0.7156002	0.5023742	SPEA-R
DTLZ5	14	5	0.212905763133516	0.162831298943398	0.0397341652799309	MOEA/D-DE	0.0327726700473922	0.0800286490678457	0.119846159296065	MOEA/D-D
DTLZ6	14	5	3.13999852976144	2.1650185186154	0.0548873713100798	MOEA/D-DE	0	0	0.121351230107456	MOEA/D-I
DTLZ7	24	5	0.571025890892938	0.489378116526598	1.17955035532457	NSGA-III	0.109981933093304	0.170002955894305	0.00194098368165903	NSGA-III
DTL28	50	5	0.582277770443904	0.310495785215257	0.371403633617774	NSGA-III	0.246854912781535	0.350171792066632	0.204127712330408	NSGA-III
DTLZ9	50	5	14.5564755398939	7.304049932263	4.5104674552832	MOEA/D-DE	0	0	0	Empute
IDTLZI	9	5	3.05444028227003	0.871715718998306	2.81502232028063	NSGA-III	0	5.62067009886242e05	0.000350889506359319	MOEA/D-D
IDTLZ2	14	5	0.344899127346353	0.28036707524021	0.255548815134729	MOEA/D-DE	0.0247659041770591	0.0523707033665288	0.06158911960139	MOEA/D-D
SDTLZ1	9	5	2.93142814931371	1.85831220408591	5.82108434543113	NSGA-III	0.00295275612630976	0.191664320385787	0.153697773731865	NSGA-III
SDTLZ2	14	5	1.3095151955678	1.22362099588209	4.15039394348129	NSGA-III	0.7308664	0.7506966	0.2961394	NSGA-III
LSMOP1	500	5	6.6226650413189	6.43804080131414	2.39701268455583	MOEA/D-DE	0	0	0	Empate
LSMOP2	500	5	0.183320058492441	0.179216674400297	0.260910273760324	NSGA-III	0.930008588446114	0.935386	0.8800674	NSGA-III
LSMOP3	500	5	59.3935318068708	22.461923603282	12.6932695980768	MOEA/D-DE	0	0	0	Empute
LSM0P4	500	5	0.351210160989711	0.338481483051432	0.369202513557455	NSGA-III	0.734042515635379	0.758224	0.7068336	NSGA-III
LSMOP5	500	5	10.5996462038499	13.1121891090923	3.41400085081463	MOEA/D-DE	0	0	0	Empate
LSM0P6	500	5	7590.99979253629	728.843103841805	267.585980472913	MOEA/D-DE	0	0		Empute
LSM0P7	500	5	21666.8922671872	2.95352646941929	2.05133016694879	MOEA/D-DE	0	0	0	Empute
LSMOPS	500	5	1.20506724985428	1.18796763904437	1.14418462310333	MOEA/D-DE	0	0	0.034278289908636	MOEA/D-I

Problema	dimx	diny	IGD SPEA-R	IGD NSGA-III	IGD MOEA/D-DE	Melhor IGD	HV SPEA-R	HV NSGA-III	IGD MOEA/D-DE	Melhor HV
MaF1	14	5	0.330374893625374	0.219768657432335	0.198197784972846	MOEA/D-DE	0.00201268999372619	0.00400110462275553	0.00376733122229631	NSGA-III
MaF10	14	5	1.68999621940599	1.35953347769753	2.29001992178088	NSGA-III	0.501710205945762	0.507033956576717	0.214218909273018	NSGA-III
MiF11	14	5	0.570603921444438	0.506396339751801	1.10411754328856	NSGA-III	0.938158402076668	0.961698330281157	0.861613460302345	NSGA-III
MaF12	14	5	1.24541909907802	1.20649166736654	2.26204536855753	NSGA-III	0.587843897433527	0.612775589747737	0.407546227036714	NSGA-III
MaF13	5	5	0.472672110021147	0.2519306924519	0.187956250016097	MOEA/D-DE	0.0699062582070183	0.156427512086569	0.236767260765551	MOEA/D-DE
MaF14	100	5	25.3458829456361	13.4107827990533	0.958828559343285	MOEA/D-DE	0	0	0.0909090909090909	MOEA/D-DE
MaF15	100	5	7.41643364786158	3.90667450118288	2.10899538098057	MOEA/D-DE	0	0	0	Empute
MaF2	14	5	0.150105942439596	0.142957252504975	0.161018128557151	NSGA-III	0.132553123019969	0.150387680234956	0.131387998649044	NSGA-III
MaF3	14	5	3780.43373839845	636.880494928294	389.664178864241	MOEA/D-DE	0	0	0.0403367573818258	MOEA/D-DE
MaF4	14	5	323.757672638448	256.02357718112	524.288078778057	NSGA-III	0	0	0	Empute
MaF5	14	5	2.68682151193504	2.42580361702612	7.01293815861947	NSGA-III	0.7209884	0.7563612	0.3869702	NSGA-III
MaP6	14	5	0.126516988150685	0.0372662888163586	0.0311490006261834	MOEA/D-DE	0.1085528	0.1228972	0.1132944	NSGA-III
MaF7	24	5	0.535915617844669	0.498047137005105	0.984596623100982	NSGA-III	0.114555544886032	0.165356264603943	0.0018234160908534	NSGA-III
MaF8	2	5	2147.90241117582	0.534568084616813	0.146052070701762	MOEA/D-DE	0	0.0578166160761664	0.110752284340666	MOEA/D-DE
MaP9	2	5	3.72696894993992	0.771747610259126	0.14559090470363	MOEA/D-DE	0.0167765569555133	0.126312448239031	0.291746539367247	MOEA/D-DE
MMMOP1	6	5				Empate				Empate
MMMOP2	6	5				Empute				Empate
МММОР3	6	5	-		-	Empute				Empute
MMMOP4	6	5				Empate				Empate
MMMOP5	6	5				Empate				Empate
МММОР6	7	5	-	-	-	Empute				Empute
MW14	15	5	0.962962336879296	0.867976743873648	1.52669809811935	NSGA-III	0.0991179662391277	0.0994534927205055	0.0655611609739648	NSGA-III
MW4	15	5	0.510359449591884	0.244596753996763		NSGA-III	0.401211017960456	0.782135849096879		NSGA-III
MW8	15	5	0.308473932351428	0.243924196687045	0.978877242918257	NSGA-III	0.6283158	0.664273581363852	0.066570619756216	NSGA-III
MLDMP	2	5	0.58861585501272	0.234049622563934	0.150241707721179	MOEA/D-DE	0.140748808418921	0.24964344679358	0.290368443852122	MOEA/D-DE
MOKP	250	5	17478.9082019882	18153.995347821		SPEA-R	0.115883191212986	0.118327214664024		NSGA-III
MOTSP	30	5	35.6836015175104	36.2825162254753		SPEA-R	0.201027188340748	0.184723225729729		SPEA-R
MPDMP	2	5	0.323813841322455	0.199634643508497	0.146474789480461	MOEA/D-DE	0.073187693653113	0.0979817303428086	0.110324049815621	MOEA/D-DE
mQAP	10	5	1756896.67925769	1755062.09535652		NSGA-III	0.380270557651086	0.380229170202815		SPEA-R
Spurse_KP										
	250	5	7943.36229633885	3967.00479156666		NSGA-III	0	0.000644987190276853		NSGA-III
SMMOP1	250 100	5	7943.36229633885	3967.00479156666 **		NSGA-III Empate		0.000644987190276853 		NSGA-III Empate
SMMOP1 SMMOP2		•					-			
_	100	5				Empute	-80	-10	-10	Empate
SMMOP2	100	5				Empute Empute	-00	-00	-00	Empate Empate
SMMOP2 SMMOP3	100	5 5	**	**	**	Empate Empate Empate	-00 -00	-00 -00	-00 -00	Empate Empate Empate
SMMOP2 SMMOP3 SMMOP4	100 100 100	5 5 5	00 00 00 00	00 00 00	00 00 00	Empate Empate Empate Empate	-00 -00 -00 -00	-00 -00 -00 -00	-00 -00 -00 -00	Empate Empate Empate Empate
SMMOP2 SMMOP3 SMMOP4 SMMOP5	100 100 100 100	5 5 5 5 5	00 00 00 00	00 00 00 00	00 00 00 00	Empute Empute Empute Empute Empute	-00 -00 -00 -00 -00	-00 -00 -ini -ini	-00 -00 -00 -00 -00	Empate Empate Empate Empate

Problema	dimr	diny	IGD SPEA-R	IGD NSGA-III	IGD MOEA/D-DE	Melhor IGD	HV SPEA-R	HV NSGA-III	IGD MOEA/D-DE	Melhor HV
SMOP1	100	5	0.498718015927918	0.495925296695055	0.733136945194576	NSGA-III	0.531108	0.5656302	0.1992624	NSGA-III
SMOP2	100	5	1.14834955554997	1.16639736235041	1.52783363314903	SPEA-R	0.0121924728961398	0.0178079848851504	7.30603056557145e - 05	NSGA-III
SMOP3	100	5	1.48367551408717	1.47138218526451	1.54207225145321	NSGA-III	0.000176570803058396	0.00088077920871883	0.000226700450647114	NSGA-III
SMOP4	100	5	0.307542898856728	0.297869209360215	0.395036596936263	NSGA-III	0.894126649469776	0.900930451948114	0.7715796	NSGA-III
SMOP5	100	5	0.211113895731957	0.202457274811461	0.224468248650068	NSGA-III	0.95171184934099	0.96094870415512	0.8773626	NSGA-III
SMOP6	100	5	0.110249208647536	0.10681604023559	0.157638896767353	NSGA-III	0.991746423339374	0.992842601974276	0.9539324	NSGA-III
SMOP7	100	5	1.27313128245193	1.12757134548704	1.18960393274547	NSGA-III	0	$8.45614660358718e\!-\!05$	0.000790760581444025	MOEA/D-DE
SMOP8	100	5	3.2794088053962	3.29257594545371	3.38424917426936	SPEA-R	0	0	0	Empute
WPG1	14	5	1.67355346635301	1.23526365899718	2.15099543881866	NSGA-III	0.511666631153199	0.560440460667126	0.217812421463372	NSGA-III
WPG2	14	5	0.566853372174693	0.516634215395026	1.12731068860835	NSGA-III	0.937554064086007	0.943952107324175	0.867872073566963	NSGA-III
WFG3	14	5	0.965454916881558	0.939537590640423	1.59890294717561	NSGA-III	0.058723073725873	0.0337587279907744	0.0434005142000786	SPEA-R
WFG4	14	5	1.25376681881578	1.22796410042697	2.29519294899382	NSGA-III	0.698810611762002	0.705613141480372	0.497861828465642	NSGA-III
WFG5	14	5	1.24001736306359	1.21288129476194	2.49663095932335	NSGA-III	0.667939410401281	0.683190550808385	0.412087569241579	NSGA-III
WPG6	14	5	1.27736964047707	1.23736182053214	2.03338210216757	NSGA-III	0.626486355383633	0.643078778988527	0.464687147618273	NSGA-III
WPG7	14	5	1.26877751001309	1.25054220411501	2.55886193003006	NSGA-III	0.673610539033223	0.693684038929422	0.400089571205239	NSGA-III
WFG8	14	5	1.34740141445617	1.308490857869	2.74599412924196	NSGA-III	0.577262678102317	0.561830062772341	0.263916876789753	SPEA-R
WFG9	14	5	1.23938799527592	1.2126352272063	2.34013009206	NSGA-III	0.582370670482263	0.618862432660389	0.391934947752418	NSGA-III

V. Análise dos Resultados

A. $M \leq 3$

Atribuímos pesos iguais ao IGD e ao HV. Como exemplo, do CF1 ao CF10, contamos quantas vezes aparecia o melhor algoritmo, e o resultado foi: 3 SPEA-R, 8 NSGA-III, 9 MOEA/D-DE. De forma análoga, geramos a tabela abaixo:

Resultados
BT; NSGA-III
CF; 3 SPEA-R, 8 NSGA-III, 9 MOEA/D-DE
UF; 3 SPEA-R, 12 NSGA-III, 5 MOEA/D-DE
DASCMOP; 9 NSGA-III, 8 MOEA/D-DE
DOC; NSGA-III
C1_DTLZ; 1 SPEA-R, 4 NSGA-III, 3 MOEA/D-DE
IDTLZ; NSGA-III
DC1_DTLZ; 1 SPEA-R, 2 NSGA-III, 8 MOEA/D-DE
DTLZ; 2 SPEA-R, 13 NSGA-III, 3 MOEA/D-DE
CDTLZ; NSGA-III
SDTLZ; NSGA-III
FCP; 1 NSGA-III, 1 MOEA/D-DE
IMOP; 2 SPEA-R, 2 NSGA-III, 12 MOEA/D-DE
LIRCMOP; 14 SPEA-R, 8 NSGA-III, 6 MOEA/D-DE
LSMOP; 2 SPEA-R, 1 NSGA-III, 9 MOEA/D-DE
MaF; 2 SPEA-R, 19 NSGA-III, 4 MOEA/D-DE
MMF; 3 SPEA-R, 3 NSGA-III, 10 MOEA/D-DE
MMMOP; Tudo Empate
IMMOEA_F; 5 SPEA-R, 6 NSGA-III, 6 MOEA/D-DE
MOEADDE_F; 6 SPEA-R, 7 NSGA-III, 4 MOEA/D-DE
MOEADM2M_F; 10 SPEA-R, 2 NSGA-III, 2 MOEA/D-DE
RMMEDA_F; 1 SPEA-R, 4 NSGA-III, 13 MOEA/D-DE
MW; 18 SPEA-R, 9 NSGA-III, 1 MOEA/D-DE
MOKP; SPEA-R
Sparse_KP; NSGA-III
MONRP; SPEA-R
MOTSP; 1 SPEA-R, 1 NSGA-III
mQAP; NSGA-III
Sparse_CD; 1 SPEA-R, 1 MOEA/D-DE
Sparse_PO; MOEA/D-DE
Sparse_SR; 1 SPEA-R, 1 MOEA/D-DE
Sparse_IS; 1 SPEA-R, 1 MOEA/D-DE
Sparse_CN; SPEA-R
Sparse_FS; SPEA-R
Sparse_NN; 1 NSGA-III, 1 MOEA/D-DE
Sparse_PM; 1 SPEA-R, 1 NSGA-III
SMOP; NSGA-III
SMMOP; Tudo Empate
TREE; MOEA/D-DE
VNT; 2 SPEA-R, 5 NSGA-III, 1 MOEA/D-DE
WFG; 4 SPEA-R, 14 NSGA-III
ZDT5; NSGA-III
ZDT; 8 NSGA-III, 2 MOEA/D-DE

Abaixo quantas vezes e em quais problemas cada algoritmo **real** predominou:

4 SPEA-R: LIRCMOP, MOEADM2M_F, MW e Sparse_SR. 18 NSGA-III: BT, UF, DASCMOP, DOC, C1_DTLZ, IDTLZ, DTLZ, CDTLZ, SDTLZ, FCP, MaF, IMMOEA_F, MOEADDE_F, Sparse_NN, SMOP, VNT, WFG e ZDT.

12 MOEA/D-DE: CF, DC1_DTLZ, FCP, IMOP, LSMOP, MMF, IMMOEA_F, RMMEDA_F, Sparse_PO, Sparse_SR, Sparse_NN e TREE.

São binários os problemas: MOKP, MONRP, Sparse_CD, Sparse_CN, Sparse_FS, Sparse_IS, Sparse_KP, Sparse_PM e ZDT5.

São de permutação os problemas: MOTSP e mQAP. Logo, considerando todos os problemas **discretos**, temos:

- 8 SPEA-R: MOKP, MONRP, Sparse_CD, Sparse_CN, Sparse_FS, Sparse_IS, Sparse_PM e MOTSP.
- 5 NSGA-III: Sparse_KP, Sparse_PM, ZDT5, MOTSP e mOAP.
 - 2 MOEA/D-DE: Sparse_CD e Sparse_IS.

B. $M \geq 4$

$M \le 3$
2 SPEA-R, 19 NSGA-III, 4 MOEA/D-DE
1 SPEA-R, 4 NSGA-III, 3 MOEA/D-DE
NSGA-III
1 SPEA-R, 2 NSGA-III, 8 MOEA/D-DE
2 SPEA-R, 13 NSGA-III, 3 MOEA/D-DE
NSGA-III
NSGA-III
2 SPEA-R, 1 NSGA-III, 9 MOEA/D-DE
Tudo Empate
18 SPEA-R, 9 NSGA-III, 1 MOEA/D-DE
SPEA-R
NSGA-III
1 SPEA-R, 1 NSGA-III
NSGA-III
NSGA-III
Tudo Empate
4 SPEA-R, 14 NSGA-III

Abaixo quantas vezes e em quais problemas cada algoritmo real predominou:

- 0 SPEA-R.
- 8 NSGA-III: MaF, C1_DTLZ, DTLZ, CDTLZ, SDTLZ, MW, SMOP e WFG.
- 6 MOEA/D-DE: MaF, MLDMP, MPDMP, IDTLZ, DC1_DTLZ e LSMOP.

Abaixo quantas vezes e em quais problemas cada algoritmo **discreto** predominou:

- 3 SPEA-R: MOKP, MOTSP e mQAP.
- 3 NSGA-III: MOKP, Sparse_KP e mQAP.
- 0 MOEA/D-DE.

VI. CONCLUSÃO

Em se tratando de IGD e HV, os três algoritmos têm sua utilidade, cada um em um tipo de problema.

Algumas situações analisadas foram: 1) *bias*; 2) irrestritos; 3) com restrições no espaço de decisão e objetivos; 4) escaláveis; 5) multimodais; 6) desconectados; 7) degenerados;

- 8) inseparáveis; 9) POF irregular; 10) POS complexo; 11) grande número de variáveis de decisão; 12) grandes regiões inviáveis; 13) POS esparsos; 14) variáveis linkadas;
 - 15) problemas do mundo real.

Foram incomparáveis os problemas: DOC2, DOC3, DOC5, DOC7, FCP1, FCP2, FCP3, FCP4, MMMOP1 a 6, SMMOP1 a 8 e TREE6.

Em muitos casos, houve um quase empate entre dois deles. Várias vezes, o algoritmo que foi o melhor para IGD foi diferente do que foi o melhor para HV.

Também, o algoritmo que foi o melhor para MOPs foi diferente do que foi o melhor para MaOPs.

Os algoritmos algumas vezes retornam NaN para IGD e HV, certas vezes sempre, outras vezes é possível corrigir com várias execuções consecutivas.

Para problemas reais, o NSGA-III é melhor na quantidade de algoritmos em que predominou. Em segundo lugar, o MOEA/D-DE. E em terceiro, o SPEA-R.

Para problemas discretos, o SPEA-R é melhor na quantidade de algoritmos em que predominou. Em segundo lugar, o NSGA-III. E em terceiro, o MOEA/D-DE.

Nosso resultado para WFG não foi idêntico ao de [SPEAR], provavelmente porque utilizamos os parâmetros default.

Acredito também que, no decorrer dos anos, os códigos fonte foram melhorados, o que interfere nos resultados dos artigos mais antigos.

Quando formos utilizar o PlatEMO para resolver qualquer problema, é necessário escolher mais de um algoritmo e avaliar os resultados, sem saber a POF Verdadeira.

Sugestão de trabalho futuro: Precisamos de uma métrica de uniformidade.

VII. REFERÊNCIAS

[PlatEMO] Y. Tian, R. Cheng, X. Zhang, Y. Jin, Platemo: A matlab platform for evolutionary multi-objective optimization, IEEE Computational Intelligence Magazine 12 (2017) 73–87.

[SPEAR] S. Jiang, S. Yang, A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization, IEEE Trans. Evol. Comput. 21 (2017) 329–346.

[NSGA3] K. Deb and H. Jain, "An evolutionary many-Objective optimization algorithm using reference-point based non-dominated sorting approach, Part I: Solving problems with box constraints," IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 577–601, 2014.

[MOEADDE] H. Li and Q. Zhang, "Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II," IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 284–302, Apr. 2009.

[WFG] S. Huband, P. Hingston, L. Barone, and L. While, "A review of multiobjective test problems and a scalable test problem toolkit," IEEE Trans. Evol. Comput., vol. 10, no. 2, pp. 477–506, 2006.

[BT] H. Li, Q. Zhang, and J. Deng, Biased multiobjective optimization and decomposition algorithm, IEEE Transactions on Cybernetics, 2017, 47(1): 52-66.

[CF] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari, Multiobjective optimization test instances for the CEC 2009 special session and competition, School of CS & EE, University of Essex, Working Report CES-487, 2009.

- [DASCMOP] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman, Difficulty adjustable and scalable constrained multi-objective test problem toolkit, Evolutionary Computation, 2020, 28(3): 339-378.
- [DTLZ] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, Scalable test problems for evolutionary multiobjective optimization, Evolutionary multiobjective Optimization. Theoretical Advances and Applications, 2005, 105-145.
- [IDTLZ] H. Jain and K. Deb, An evolutionary manyobjective optimization algorithm using reference-point based non-dominated sorting approach, part II: Handling constraints and extending to an adaptive approach, IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622.
- [SDTLZ] K. Deb and H. Jain, An evolutionary manyobjective optimization algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints, IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.
- [MaF] R. Cheng, M. Li, Y. Tian, X. Zhang, S. Yang, Y. Jin, and X. Yao, A benchmark test suite for evolutionary many-objective optimization, Complex & Intelligent Systems, 2017, 3(1): 67-81.
- [IMOP] Y. Tian, R. Cheng, X. Zhang, M. Li, and Y. Jin, Diversity assessment of multi-objective evolutionary algorithms: Performance metric and benchmark problems, IEEE Computational Intelligence Magazine, 2019, 14(3): 61-74.
- [LSMOP] R. Cheng, Y. Jin, and M. Olhofer, Test problems for large-scale multiobjective and many-objective optimization, IEEE Transactions on Cybernetics, 2017, 47(12): 4108-4121.
- [MMF] C. Yue, B. Qu, and J. Liang, A multi-objective particle swarm optimizer using ring topology for solving multimodal multiobjective Problems, IEEE Transactions on Evolutionary Computation, 2018, 22(5): 805-817.
- [TREE] C. He, R. Cheng, C. Zhang, Y. Tian, Q. Chen, and X. Yao, Evolutionary large-scale multiobjective optimization for ratio error estimation of voltage transformers, IEEE Transactions on Evolutionary Computation, 2020, 24(5): 868-881.