## **Atmospheric Chemistry Cheat Sheet**

Version: 1.29- Last Update: 22-May-2015

Compiled by J.L. Jimenez, CU-Boulder - shortcut to this page: http://tinyurl.com/ac-cheat

If you find an error or know of other resources that could go here, email Jose at <a href="mailto:jose.jimenez@colorado.edu">jose.jimenez@colorado.edu</a> (And thanks for input from many people already!)

## 1. Key Conversions and Parameters

## Conversions between mixing ratios and molec cm<sup>-3</sup>

- Values at 1 atm and 298 K (Ref: Finlayson-Pitts & Pitts, p. 34).
  - $\circ$  1 atm  $\sim$  2.46 x 10<sup>19</sup> molec cm<sup>-3</sup>
  - $\circ$  1%  $\sim$  2.46 x 10<sup>17</sup> molec cm<sup>-3</sup>
  - $\circ$  1 ppm  $\sim 2.46 \times 10^{13} \text{ molec cm}^{-3}$
  - 1 ppb ~ 2.46 x 10<sup>10</sup> molec cm<sup>-3</sup>
  - $\circ$  1 ppt  $\sim$  2.46 x 10<sup>7</sup> molec cm<sup>-3</sup>
  - $\circ$  1 ppq  $\sim 2.46 \times 10^4 \text{ molec cm}^{-3}$
- Values under other P & T conditions
  - $\circ$  Multiply above by P/(1 atm) \* (298 K) / (T)
  - o At 1 atm & 273.15K replace 2.46 by 2.69 (known as Loschmidt Number)
  - For Boulder (P ~ 837 mbar) at room T (293 K) replace 2.46 by 2.07

### Conversions between mixing ratios and mass concentrations (Finlayson-Pitts & Pitts, p. 34)

- A ( $\mu$ g m<sup>-3</sup>) = A (ppb) x 0.0409 x MW (at 298 K and 1 atm)
  - $\circ N_2 (\mu g m^{-3}) = N_2 (ppb) \times 1.15$  (MW = 28)
  - $\circ$  NO<sub>3</sub> (µg m<sup>-3</sup>) = NO<sub>3</sub> (ppb) x 2.54 (MW = 62)
  - $\circ$  SO<sub>4</sub> (µg m<sup>-3</sup>) = SO<sub>4</sub> (ppb) x 3.93 (MW = 98)
  - $\circ$  B (µg m<sup>-3</sup>) = B (ppb) x 10.23 (B is an organic with MW = 250)
- A  $(ng m^{-3}) = A (ppt) \times 0.0409 \times MW$

### Mass and Number of Molecules in one aerosol particle

• Assumes spherical shape with material density of 1.4 g cm<sup>-3</sup> and no internal voids, and MW = 150 g mol<sup>-1</sup>

| Diameter<br>(nm) | Mass<br>(fg) | Molecules              | Volume<br>(µm <sup>3</sup> ) | Mass Concentration for 1000 particle cm <sup>-3</sup> (µg m <sup>-3</sup> ) | Volume Concentration<br>for 1000 particle cm <sup>-3</sup> (µm <sup>3</sup> cm <sup>-3</sup> ) | Surface Area<br>Concentration for<br>1000 particle cm <sup>-</sup><br>3 (m <sup>2</sup> m <sup>-3</sup> ) & |
|------------------|--------------|------------------------|------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 100              | 0.73         | 2.94 x 10 <sup>6</sup> | 0.0005                       | 0.73                                                                        | 0.52                                                                                           | 3.1 x 10 <sup>-5</sup>                                                                                      |
| 250              | 11.5         | 4.6 x 10 <sup>7</sup>  | 0.0082                       | 11.5                                                                        | 8.2                                                                                            | 1.96 x 10 <sup>-4</sup>                                                                                     |
| 1                | 733          | 2.94 x 10 <sup>9</sup> | 0.52                         | 733                                                                         | 524                                                                                            | 3.1 x 10 <sup>-3</sup>                                                                                      |

<sup>&</sup>lt;sup>&</sup>Multiply by 10<sup>6</sup> to convert to  $\mu$ m<sup>2</sup> cm<sup>-3</sup>

### Other Conversions

- Pressure Conversions
  - $\circ$  760 Torr = 1013.25 mbar = 1.013 x 10<sup>5</sup> Pa

```
○ 1 atm = 14.7 psi
```

- o psia = absolute pressure, psig = difference from 1 atm
- o 1 inch Hg = 25.40 Torr = 33.86 mbar
- Standard Flowrate = Volumetric Flowrate x (273.15 / T) x (P / 1 atm)
- SOA/ $\triangle$ CO ratios: 80 µg m<sup>-3</sup> ppb<sup>-1</sup> = 0.0687 g/g (at 293K and 1 atm)

#### <u>Typical values of important parameters:</u>

- Vertical profile of temperature and pressure: International Standard Atmosphere
  - o 11 km: -57 C, 226 mbar
  - o 20 km: -57 C, 54 mbar
- Aerosol surface area in the atmosphere:
  - $\circ$  Mexico City  $\sim 2 \times 10^{-3} \text{ m}^2 \text{ m}^{-3} = 2 \times 10^3 \text{ mm}^2 \text{ m}^{-3}$  (Fig 1D in Volkamer et al. 2007)
  - $\circ$  Clean areas  $\sim 1 \times 10^{-4} \text{ m}^2 \text{ m}^{-3}$
- H<sub>2</sub>O vapor pressure (in mbar = hPa) (Ref):
  - Over ice at 240 K: 0.273 (<u>Review of ice P<sub>VAD</sub></u> -- includes equations)
  - o over ice or water at 0<sup>O</sup>C: 6.1
  - o at  $20^{\circ}$ C: 23.4 ( = 2.3% of 1 atm, if RH = 100%, or ~1% of 1 atm if RH ~45%)
  - o at 30<sup>0</sup>C: 42.5
- Kinetic theory
  - Mean free path of air: 65 nm at 1 atm (x 1atm/P for other pressures)
  - RMS thermal speed of N<sub>2</sub> at 300 K: 458 m/s (Ref)
  - o Time between collisions: 0.14 ns (calculated from above)
  - Collision Frequency: 7.1 x 10<sup>9</sup> Hz
- Gas-Phase Diffusion Coefficients
  - $\circ$  D = 3.5×10<sup>-6</sup> m<sup>2</sup> s<sup>-1</sup>. (approx. straight-chain C<sub>16</sub> hydrocarbon (<u>Hilal et</u>
  - o al., 2003)
- Planetary Scale (Ref: D. Fahey, S. Madronich, or calculated)
  - o Radius of the Earth (mean): 6371 km
  - Total mass of the atmosphere: 5.2 x 10<sup>21</sup> g
  - ∘ Number of molecules in the atmosphere: ~10<sup>44</sup>
  - $\circ$  Surface area of all aerosols in the atmosphere  $\sim 1 \times 10^{14} \text{ m}^2$
  - $\circ$  Surface area of all Earth / Oceans  $\sim 1.25 \text{ x } 10^{14} \text{ m}^2 \text{ / } 0.87 \text{ x } 10^{14} \text{ m}^2$
- <u>"Standard" Conditions of P & T</u> (there are many definitions!)
  - $\circ$  1 µg sm<sup>-3</sup> = 1 µg m<sup>-3</sup> under 1 atm and 273.15 K (used in NASA aircraft studies)
- Air Quality Standards for Health Purposes: EPA / WHO / EU
- Important constants (Ref: NIST)
  - $\circ$  N<sub>a</sub> = 6.022142E23 mol<sup>-1</sup> = Avogadro constant
  - $\circ$  k<sub>b</sub> = 1.38065E-23 J K<sup>-1</sup> = Boltzmann constant
  - $\circ$  R = 8.31447 J mol<sup>-1</sup> K<sup>-1</sup> = molar gas constant
  - h = 6.626068E-34 J s = Planck constant
  - $\circ$  c = 2.99792458E8 m s<sup>-1</sup> = speed of light in vacuum
  - $\circ$  G = 6.673E-11 m<sup>3</sup> kg<sup>-1</sup> s<sup>-2</sup> = Netwonian constant of gravitation
  - $\circ$  sb = 5.67040E-8 W m<sup>-2</sup> K<sup>-4</sup> = Stefan-Boltzmann constant
- References for other parameters or more detail:
  - Atmospheric Chemists' Companion Book

### 2. Species Lifetimes & Exposures

### Oxidant and UV Exposures and Ages

- Oxidant Exposures and Ages
  - o OH concentration:
    - 24-hr average for general purposes: 1.5 x 10<sup>6</sup> molec cm<sup>-3</sup>
    - Global annual average for whole troposphere: 1.2 x 10<sup>6</sup> (ACC p.101 not in preview)
    - Peak daytime concentrations: ~10<sup>7</sup> molec. cm<sup>-3</sup>
  - $\circ$  OH Photochemical age = OH<sub>exp</sub> (molec cm<sup>-3</sup> s) / 1.5 x 10<sup>6</sup> molec cm<sup>-3</sup>
  - $\circ$  NO<sub>3</sub> age: NO<sub>3exp</sub> / 2.5 x 10<sup>8</sup> molec cm<sup>-3</sup> (~20 ppt for 12 nightime hrs; Ref: <u>A&A</u>)
  - O<sub>3</sub> age: O<sub>3exp</sub> / 7 x 10<sup>11</sup> molec cm<sup>-3</sup> (30 ppb; Ref: <u>A&A</u>)

| Equiv. Ages | OH <sub>exp</sub><br>(molec cm <sup>-</sup> | NO <sub>3exp</sub><br>(molec cm <sup>-</sup> | O <sub>3exp</sub> (molec cm <sup>-</sup> 3 s) |
|-------------|---------------------------------------------|----------------------------------------------|-----------------------------------------------|
| 1 s         | 1.5 x 10 <sup>6</sup>                       | 2.50 x 10 <sup>8</sup>                       | 7.00 x 10 <sup>11</sup>                       |
| 1 min       | 9 x 10 <sup>7</sup>                         | 1.50 x 10 <sup>10</sup>                      | 4.20 x 10 <sup>13</sup>                       |
| 1 hr        | 5.4 x 10 <sup>9</sup>                       | 9.00 x 10 <sup>11</sup>                      | 2.52 x 10 <sup>15</sup>                       |
| 1 day       | 1.3 x 10 <sup>11</sup>                      | 2.16 x 10 <sup>13</sup>                      | 6.05 x 10 <sup>16</sup>                       |
| 1 week      | 9.07 x 10 <sup>11</sup>                     | 1.51 x 10 <sup>14</sup>                      | 4.23 x 10 <sup>17</sup>                       |
| 1 month     | 2.76 x 10 <sup>13</sup>                     | 4.60 x 10 <sup>15</sup>                      | 1.29 x 10 <sup>19</sup>                       |
| 1 year      | 3.31 x 10 <sup>14</sup>                     | 5.52 x 10 <sup>16</sup>                      | 1.55 x 10 <sup>20</sup>                       |

• Estimation of OH when measurements not available (Ref: Ehhalt et al., 2000) "NO<sub>X</sub> should be sufficiently high to be of influence"

$$[{\rm OH}] = a(J_{{\rm O}^1D})^{\alpha}(J_{{\rm NO_2}})^{\beta} \frac{b{\rm NO_2} + 1}{c{{\rm NO_2}^2 + d{\rm NO_2} + 1}}$$

The parameters obtained by a fit to the f of 2124 measurements are  $\alpha = 0.83$ ,  $\beta = 0.19$  $4.1 \times 10^9$ , b = 140, c = 0.41, and d = 1.7, in

### **Photolysis Calculations**

- Typical noontime values @ surface mid-latitudes
  - $\circ$  j<sub>NO2</sub> ~ 0.007 s<sup>-1</sup> = 0.18 min<sup>-1</sup>
  - $\circ$  j<sub>O1D</sub>~ 2 x 10<sup>-5</sup> s<sup>-1</sup> = 0.58 day<sup>-1</sup>
- Absorption Cross Sections & quantum yields: Mainz Database & JPL 2011
- Spectral light fluxes vs location & time:
  - o TUV model
    - Also outputs j values for a number of species

- o ASTM standard spectra (also includes top of atmosphere)
- UV Exposures and Ages
  - Typical 24-hr avg. J values (s<sup>-1</sup>), clear sky no aerosols, sea level, 10% ground albedo: (from Sasha Madronich, TUV model. Ref: Hodzic et al., 2015)

|                                                                      | $O_3 \rightarrow O^1D$  | $NO_2 \rightarrow O^3P$ | $NO_3 \to NO_2$         | $CH_2O \rightarrow H$   |
|----------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 40 N June 21 with 330 DU strat.<br>O <sub>3</sub> (TOMS climatology) | 1.02 x 10 <sup>-5</sup> | 4.09 x 10 <sup>-3</sup> | 9.11 x 10 <sup>-2</sup> | 1.29 x 10 <sup>-5</sup> |
| 40 N Dec 21 with 310 DU                                              | 1.24 x 10 <sup>-6</sup> | 1.5 x 10 <sup>-3</sup>  | 4.64 x 10 <sup>-2</sup> | 3.13 x 10 <sup>-6</sup> |

- $\circ$  UV exposure and age (< 400 nm) = Actinic flux / 0.8 x 10<sup>16</sup> (24-hr avg. summer solstice in Boulder) Preliminary values
  - CU blacklights:  $j_{NO2} \sim 0.013$ , UV actinic flux = 2.77 x  $10^{16}$  phot. cm<sup>-2</sup> s<sup>-1</sup> (1.25% in UVB, rest in UVA), VIS flux = 0.85 x  $10^{16}$
  - Types of UV
- j<sub>x</sub> details coming soon

| Equiv. Ages | Total UV <sub>exp</sub> (UV phot. cm <sup>-2</sup> )& | JNO2 Lifetimes<br>(unitless) | <b>j<sub>O1D</sub> Lifetimes</b> (unitless) | JNO3 Lifetimes<br>(unitless) |
|-------------|-------------------------------------------------------|------------------------------|---------------------------------------------|------------------------------|
| 1 s         | 8.0 x 10 <sup>15</sup>                                |                              |                                             |                              |
| 1 min       | 4.8 x 10 <sup>17</sup>                                |                              |                                             |                              |
| 1 hr        | 2.88 x 10 <sup>19</sup>                               |                              |                                             |                              |
| 1 day       | 6.9 x 10 <sup>20</sup>                                | 327                          |                                             |                              |
| 1 week      | 4.8 x 10 <sup>21</sup>                                |                              |                                             |                              |
| 1 month     | 1.47 x 10 <sup>23</sup>                               |                              |                                             |                              |
| 1 year      | 1.77 x 10 <sup>24</sup>                               |                              |                                             |                              |

<sup>&</sup>amp;: 3.04% in UVB (< 315 nm) and the rest in UVA (315-400 nm)

### Important Reaction Rate Constants & Lifetimes

| Reaction                    | Rate Constant<br>(2 <sup>nd</sup> order)* | 1/e Lifetime under<br>typical ambient<br>conditions <sup>&amp;</sup> | Reference                                                                                                         |
|-----------------------------|-------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Gas kinetic collision limit | 2.5 x 10 <sup>-10</sup>                   | 0.75 hrs                                                             | Finlayson-Pitts & Pitts, p.140. Accurate value depends on T & reacting species                                    |
| OH + NO <sub>2</sub>        | 1.08 x 10 <sup>-11</sup>                  | 0.71 days                                                            | JPL 2011. (Mollner et al. 2010 is 15% lower, JPL 2011 does take it into account along with previous measurements) |
| OH + CO                     | 1.5 x 10 <sup>-13</sup>                   | 1.7 months                                                           | Seinfeld & Pandis 2006                                                                                            |
|                             |                                           |                                                                      |                                                                                                                   |

| OH + SO <sub>2</sub>              | 9.56 x 10 <sup>-13</sup>               | 8.1 days                          | <u>JPL 2011</u>                                               |
|-----------------------------------|----------------------------------------|-----------------------------------|---------------------------------------------------------------|
| OH + CH <sub>4</sub>              | 6.3 x 10 <sup>-15</sup>                | 3.4 years                         | JPL 2011                                                      |
| OH + Butane                       | 2.36 x 10 <sup>-12</sup>               | 3.3 days                          | A&A 2003                                                      |
| OH +<br>Pentadecane               | 2.07 x 10 <sup>-11</sup>               | 6.5 hrs                           | A&A 2003                                                      |
| OH + Benzene                      | 1.22 x 10 <sup>-12</sup>               | 6.3 days                          | A&A 2003                                                      |
| OH + Toluene                      | 5.63 x 10 <sup>-12</sup>               | 1.4 days                          | A&A 2003                                                      |
| OH + xylenes                      | ~2 x 10 <sup>-11</sup>                 | 9.3 hrs                           | A&A 2003 (isomers rates vary 1.36-2.31)                       |
| OH + TMB                          | ~4 x 10 <sup>-11</sup>                 | 4.6 hrs                           | A&A 2003 (isomers rates vary 3.25-5.67)                       |
| OH + Isoprene                     | 1.00 x 10 <sup>-10</sup>               | 1.9 hrs                           | A&A 2003                                                      |
| RO <sub>2</sub> + NO              | ~9 x 10 <sup>-12</sup>                 | 1.4 s (1 ppb NO)                  | <u>A&amp;Z 2014</u> . See Table 5 <u>A&amp;A 2003</u>         |
| RO <sub>2</sub> + HO <sub>2</sub> | ~1.5 x 10 <sup>-11</sup>               | 2.3 min (10 ppt HO <sub>2</sub> ) | <u>A&amp;Z 2014</u> . See Table 6 <u>A&amp;A 2003</u>         |
| RO <sub>2</sub> + RO <sub>2</sub> | 10 <sup>-13</sup> to 10 <sup>-17</sup> |                                   | Depending on RO <sub>2</sub> identity ( <u>A&amp;Z 2014</u> ) |
| NO + O <sub>3</sub>               | 1.96 x 10 <sup>-14</sup>               |                                   | JPL 2011                                                      |

<sup>\*:</sup> All rates at 298 K & 1 atm. Eff. 2<sup>nd</sup> order rates shown, if 3<sup>rd</sup> order. Units: cm<sup>3</sup> molec<sup>-1</sup> s<sup>-1</sup>)

- Where to find additional up-to-date rate constants:
  - o JPL 2011 / IUPAC Evaluations / Leeds MCM / Oxygenated VOC database
- How to estimate rate constants for organics with structure-reactivity relationships
  - Review: Atkinson & Ziemann 2012
  - o Primary Refs: Kwok & Atkinson 1995 / Peeters et al. 2007 / Kerdouci et al. 2010

#### VOC Lifetimes (Atkinson & Arey, Chem. Rev. 2003)

• Note: while OH and O3 concentrations do not vary enormously between different locations, NO<sub>3</sub> concentrations do, thus you may want to scale the lifetimes here with your best estimate of NO<sub>3</sub> concentrations in your environment. An extensive summary of measurements is in the <u>Atmos</u> <u>Chem Companion</u> book p101-103, unfortunately those pages are not in the free preview.

 $<sup>^{\&</sup>amp;}$ : using OH = 1.5 x 10 $^{6}$  molec cm $^{-3}$ . Note that clock ages will be several-fold shorter in the middle of the day.

Table 4. Calculated Lower Tropospheric Lifetimes (at 298 K) for Selected VOCs<sup>a</sup>

| VOC                             | OH    | $NO_3$  | $O_3$    |
|---------------------------------|-------|---------|----------|
| propane                         | 11 d  | >1.8 yr | >4500 yr |
| 2,2,4-trimethylpentane          | 3.5 d | 1.4 yr  | >4500 yr |
| <i>n</i> -octane                | 1.4 d | 240 d   | >4500 yr |
| ethene                          | 1.4 d | 225 d   | 10 d     |
| propene                         | 5.3 h | 4.9 d   | 1.6 d    |
| isoprene                        | 1.4 h | 48 min  | 1.3 d    |
| α-pinene                        | 2.7 h | 5.4 min | 4.7 hr   |
| benzene                         | 9.5 d | >4 yr   | >4.5 yr  |
| toluene                         | 2.1 d | 1.8 yr  | >4.5 yr  |
| 1,2,4-trimethylbenzene          | 4.3 h | 26 d    | >4.5  yr |
| o-cresol                        | 3.4 h | 2.4 min | 55 d     |
| $formaldehyde^b$                | 1.2 d | 83 d    | >4.5 yr  |
| $acetone^b$                     | 68 d  | >4 yr   | v        |
| ethanol                         | 3.6 d | >23 d   |          |
| methyl <i>tert</i> -butyl ether | 3.9 d | 64 d    |          |

 $^a$  The 298 K rate constants are taken from Tables 1–3, except for those for o-cresol which are from Calvert et al.8 and that for reaction of  $NO_3$  radicals with methyl tert-butyl ether which is from Langer and Ljungström.  $^{59}$  Lifetime calculated using the following: for OH radical reactions, a 12-h daytime average of  $2.0\times10^6$  molecule cm $^{-3}$ ; for  $NO_3$  radical reactions, a 12-h nighttime average of  $5\times10^8$  molecule cm $^{-3}$ ; and for  $O_3$ , a 24-h average of  $7\times10^{11}$  molecule cm $^{-3}$ .  $^b$  Also undergo photolysis, with estimated lifetimes due to photolysis of  $\sim\!4$  h for formaldehyde with overhead sun, and  $\sim\!60$  d for acetone.9

Biogenic VOC Lifetimes (Atkinson & Arey, Atmos. Environ. 2003)

Calculated atmospheric lifetimes of biogenic volatile organic compounds

| Biogenic VOC            | Lifetime <sup>a</sup> | for reaction                | with                         |
|-------------------------|-----------------------|-----------------------------|------------------------------|
|                         | OHb                   | O <sub>3</sub> <sup>c</sup> | NO <sub>3</sub> <sup>d</sup> |
| Isoprene                | 1.4 h                 | 1.3 day                     | 1.6 h                        |
| Monoterpenes            |                       |                             |                              |
| Camphene                | 2.6 h                 | 18 day                      | 1.7 h                        |
| 2-Carene                | 1.7 h                 | 1.7 h                       | 4 min                        |
| 3-Carene                | 1.6 h                 | 11 h                        | 7 min                        |
| Limonene                | 49 min                | 2.0 h                       | 5 min                        |
| Myrcene                 | 39 min                | 50 min                      | 6 min                        |
| cis-/trans-Ocimene      | 33 min                | 44 min                      | 3 min                        |
| α-Phellandrene          | 27 min                | 8 min                       | 0.9 min                      |
| $\beta$ -Phellandrene   | 50 min                | 8.4 h                       | 8 min                        |
| α-Pinene                | 2.6 h                 | 4.6 h                       | 11 min                       |
| β-Pinene                | 1.8 h                 | 1.1 day                     | 27 min                       |
| Sabinene                | 1.2 h                 | 4.8 h                       | 7 min                        |
| α-Terpinene             | 23 min                | 1 min                       | 0.5 min                      |
| γ-Terpinene             | 47 min                | 2.8 h                       | 2 min                        |
| Terpinolene             | 37 min                | 13 min                      | 0.7 min                      |
| Sesquiterpenes          |                       |                             |                              |
| $\beta$ -Caryophyllene  | 42 min                | 2 min                       | 3 min                        |
| α-Cedrene               | 2.1 h                 | 14 h                        | 8 min                        |
| α-Copaene               | 1.5 h                 | 2.5 h                       | 4 min                        |
| α-Humulene              | 28 min                | 2 min                       | 2 min                        |
| Longifolene             | 2.9 h                 | > 33 day                    | 1.6 h                        |
| Oxygenates              |                       |                             |                              |
| Acetonee                | 61 day <sup>f</sup>   | > 4.5 year <sup>g</sup>     | > 8 year <sup>f</sup>        |
| Camphor                 | 2.5 dayh              | > 235 day <sup>h</sup>      | > 300 day <sup>h</sup>       |
| 1,8-Cineole             | 1.0 dayi              | > 110 day <sup>j</sup>      | 1.5 year <sup>i</sup>        |
| cis-3-Hexen-1-ol        | 1.3 h <sup>k</sup>    | 6.2 h <sup>k</sup>          | 4.1 h <sup>k</sup>           |
| cis-3-Hexenyl acetate   | 1.8 h <sup>k</sup>    | 7.3 h <sup>k</sup>          | 4.5 h <sup>k</sup>           |
| Linalool                | 52 min <sup>k</sup>   | 55 min <sup>k</sup>         | 6 min <sup>k</sup>           |
| Methanol                | 12 day <sup>f</sup>   | > 4.5 year <sup>g</sup>     | 2.0 year <sup>f</sup>        |
| 2-Methyl-3-buten-2-ol   | $2.4  h^{1}$          | 1.7 day <sup>m</sup>        | 7.7 day <sup>n</sup>         |
| 6-Methyl-5-hepten-2-one | 53 min <sup>o</sup>   | 1.0 h°                      | 9 min <sup>o</sup>           |

- <sup>a</sup> From Calvert et al. (2000) unless noted otherwise.
- <sup>b</sup>Assumed OH radical concentration: 2.0 × 10<sup>6</sup> molecule cm<sup>−3</sup>, 12-h daytime average.
- <sup>c</sup>Assumed  $O_3$  concentration:  $7 \times 10^{11}$  molecule cm<sup>-3</sup>, 24-h average.
- $^{\rm d}$ Assumed NO<sub>3</sub> radical concentration:  $2.5 \times 10^8$  molecule cm<sup>-3</sup>, 12-h nighttime average.
- <sup>e</sup>Photolysis will also occur with a calculated photolysis lifetime of ∼60 day for the lower troposphere, July, 40°N (Meyrahn et al., 1986).
  - f Atkinson et al. (1999).
  - g Estimated.
  - h Reissell et al. (2001).
  - <sup>i</sup>Corchnoy and Atkinson (1990).
  - <sup>j</sup>Atkinson et al. (1990).
  - <sup>k</sup>Atkinson et al. (1995).
  - <sup>1</sup>Papagni et al. (2001).
  - <sup>m</sup> Grosjean and Grosjean (1994).
  - <sup>n</sup>Rudich et al. (1996).
  - o Smith et al. (1996).
    - VOC Lifetimes (<u>Atkinson & Ziemann, CSR 2012</u>)

|                   |                             | k (cm³ molecu         | $1 le^{-1} s^{-1}$ ) at 298 I | ζ <sup>a</sup>        | Lifetime <sup>b</sup> o | imeb due to reaction with |             |  |
|-------------------|-----------------------------|-----------------------|-------------------------------|-----------------------|-------------------------|---------------------------|-------------|--|
| VOC               |                             | ОН                    | NO <sub>3</sub>               | $O_3$                 | ОН                      | NO <sub>3</sub>           | $O_3$       |  |
| n-Octane          | <b>&gt;&gt;&gt;&gt;&gt;</b> | $8.1 \times 10^{-12}$ | $1.9 \times 10^{-16}$         | $< 10^{-23}$          | 1.4 days                | 245 days                  | >4500 years |  |
| Heptanal          |                             | $3.0 \times 10^{-11}$ | $1.9 \times 10^{-14}$         | $< 10^{-20}$          | 4.6 h                   | 2.4 days                  | >4.5 years  |  |
| Pinonaldehyde     | СНО                         | $4.4 \times 10^{-11}$ | $2.0 \times 10^{-14}$         | <10 <sup>-20</sup>    | 3.2 h                   | 2.3 days                  | >4.5 years  |  |
| 2-Butanol         | OH                          | $8.7 \times 10^{-12}$ | $2.1 \times 10^{-15}$         | <10 <sup>-20</sup>    | 1.3 days                | 22 days                   | >4.5 years  |  |
| Nopinone          |                             | $1.5 \times 10^{-11}$ | <2 × 10 <sup>-15</sup>        | <10 <sup>-20</sup>    | 9.3 h                   | >23 days                  | >4.5 years  |  |
| Diisopropyl ether | $\downarrow^{\circ}$        | $1.0 \times 10^{-11}$ | $5.1 \times 10^{-15}$         | <10 <sup>-20</sup>    | 1.2 days                | 9.1 days                  | >4.5 years  |  |
| Propene           |                             | $2.6 \times 10^{-11}$ | $9.5 \times 10^{-15}$         | $1.0 \times 10^{-17}$ | 5.3 h                   | 4.8 days                  | 1.7 days    |  |
| Isoprene          |                             | $1.0 \times 10^{-10}$ | $7.0 \times 10^{-13}$         | $1.3 \times 10^{-17}$ | 1.4 h                   | 48 min                    | 1.3 days    |  |
| Limonene          |                             | $1.6 \times 10^{-10}$ | $1.2 \times 10^{-11}$         | $2.1 \times 10^{-16}$ | 52 min                  | 3 min                     | 1.9 h       |  |
| Toluene           |                             | $5.6 \times 10^{-12}$ | $7.0 \times 10^{-17}$         | <10 <sup>-20</sup>    | 2.1 days                | 1.8 years                 | >4.5 years  |  |
| o-Cresol          | ОН                          | $4.1 \times 10^{-11}$ | $1.4 \times 10^{-11}$         | $3 \times 10^{-19}$   | 3.4 h                   | 2 min                     | 55 days     |  |

 $<sup>^</sup>a$  Rate constants from Calvert et al. (2003, 2011) and Atkinson and Arey (2003).  $^b$  Lifetimes calculated using concentrations (molecules cm $^{-3}$ ) of: OH, 12 h daytime average of 2  $\times$  10 $^6$ ; NO<sub>3</sub>, 12 h nighttime average of 5  $\times$  10 $^8$  (20 pptv); and O<sub>3</sub>, 24 h average of 7  $\times$  10 $^{11}$  (30 ppbv).

• Effects of Functional Groups on OH Lifetimes (P.J. Ziemann, 2006 Tutorial AAAR)



Approximate k<sub>OH</sub> rate constants vs c\*, OS<sub>C</sub> (<u>Donahue et al., Env. Chem., 2013</u>)



Fig. 1. Gas-phase  $OH^{\bullet}$  oxidation rate constants for organic species v. volatility and oxidation state  $(\overline{OS}_C)$  (contours are  $k \times 10^{11}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>). Rate constants are estimated based on extrapolated group contribution methods, as described in the text. The  $OH^{\bullet}$  oxidation rate constant increases with increasing carbon number, rapidly with increasing oxygen number, but decreases quadratically as O:C increases due to the loss of abstractable hydrogens. (ELVOC, extremely low volatility organic compounds; LVOC, low volatility organic compounds; SVOC, semivolatile organic compounds; IVOC, intermediate volatility organic compounds; VOC, volatile organic compounds.)

### • Lifetimes against NO<sub>3</sub> Oxidation

|                              | <b>Table 1</b> Room temperature NO <sub>3</sub> rate coefficients and VOC lifetimes at fixed NO <sub>3</sub> mixing ratio for selected VOCs and classes of VOCs |                                       |  |  |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|--|
| VOC                          | $k(NO_3)$<br>(cm <sup>3</sup> molecule <sup>-1</sup> s <sup>-1</sup> )                                                                                          | Lifetime for $NO_3 = 20 \text{ pptv}$ |  |  |  |  |  |
| Anthropogenic hydrocarbons   |                                                                                                                                                                 | _                                     |  |  |  |  |  |
| Alkanes                      | $< 5 \times 10^{-16}$                                                                                                                                           | >46 days                              |  |  |  |  |  |
| Aromatics                    | $< 2 \times 10^{-15}$                                                                                                                                           | > 11 days                             |  |  |  |  |  |
| Ethene                       | $2 \times 10^{-16}$                                                                                                                                             | > 116 days                            |  |  |  |  |  |
| Linear alkenes               | $1-2 \times 10^{-14}$                                                                                                                                           | 28-55 h                               |  |  |  |  |  |
| Internal, branched alkenes   | $3-600 \times 10^{-13}$                                                                                                                                         | 0.5 min-1.9 h                         |  |  |  |  |  |
| Oxygenates                   |                                                                                                                                                                 |                                       |  |  |  |  |  |
| Formaldehyde                 | $6 \times 10^{-16}$                                                                                                                                             | 39 days                               |  |  |  |  |  |
| Acetaldehyde                 | $3 \times 10^{-15}$                                                                                                                                             | 7.7 days                              |  |  |  |  |  |
| Higher aldehydes             | $0.7-3 \times 10^{-14}$                                                                                                                                         | 18 h–3.3 days                         |  |  |  |  |  |
| Alcohols                     | $1-20 \times 10^{-16}$                                                                                                                                          | 11–230 days                           |  |  |  |  |  |
| Ketones                      | $< 6 \times 10^{-16}$                                                                                                                                           | > 38 days                             |  |  |  |  |  |
| Phenol, cresols              | $2-13 \times 10^{-12}$                                                                                                                                          | 3–17 min                              |  |  |  |  |  |
| Biogenic hydrocarbons and sa | ulphur                                                                                                                                                          |                                       |  |  |  |  |  |
| Isoprene                     | $7 \times 10^{-13}$                                                                                                                                             | 0.8 h                                 |  |  |  |  |  |
| Monoterpenes                 | $2.5-12 \times 10^{-12}$                                                                                                                                        | 3–15 min                              |  |  |  |  |  |
| Sesquiterpenes               | $7-1400 \times 10^{-13}$                                                                                                                                        | 14 s-0.8 h                            |  |  |  |  |  |
| DMS                          | $1 \times 10^{-12}$                                                                                                                                             | 0.6 h                                 |  |  |  |  |  |
| Adapted from Atkinson and    | l Arey. <sup>74</sup>                                                                                                                                           |                                       |  |  |  |  |  |

# 3. Reaction Mechanisms

• Initial steps of VOC oxidation by OH, CI, or hv (<u>Atkinson & Ziemann CSR 2012</u>)



**Scheme 1** VOC atmospheric degradation reactions proceeding through formation of an alkyl or substituted alkyl radical (see text). Product classes are shown in boxes. The carboxylic acid, RC(O)OH, and peroxyacid, RC(O)OOH, are formed from reactions of acyl peroxy (RC(O)O $_2$ ) radicals with HO $_2$  radicals.

• Simplified HOx-ROx Cycle and O<sub>3</sub> Formation (<u>Jacob Fig 12-3</u>)



- HOx Mechanism (Mao et al. Atm. Env. 2009)
- HOx Mechanism (Jackson et al. 2009)



**Fig. 1.** Schematic of the key reactions of the OH radical in the atmosphere. The green lines show radical initiation, the red lines radical termination and the blue lines represent propagation reactions between radical species. RO<sub>2</sub> represents a generic peroxy radical, RO an oxy radical, ROOH an organic peroxide species and RCHO an aldehyde species.

• Processes Controlling O<sub>3</sub> in the troposphere (RSC, 2008)



- NO<sub>3</sub> and N<sub>2</sub>O<sub>5</sub> Chemistry (<u>Brown & Stutz, CSR 2012</u>)
  - $\circ\,$  Note NO  $_2$  arrows are reversed on N  $_2$  O  $_5$  cycle



## 4. Species and Aerosol Properties

#### **Spectral Databases**

- Multiple Types of Spectra
  - o NIST Chemistry Webbook
  - REAXYS Database
  - o ACS SciFinder (click here to create account CU only)
  - Spectral Database of Organic Compounds
- IR
- o NIST database of IR spectra
- UV-Vis
  - o Mainz Database
  - o JPL 2011
  - o SoftCon Database (A brief description here)

#### **Key Species Properties**

- Multiple properties
  - o CHEMID Plus database
  - o EPA EPI Suite
  - CRC Handbook of Chemistry and Physics
- Atomic weights and isotopic compositions: NIST database
- Thermochemical properties:
  - JANAF tables

- Standard enthalpies of formation
- Vapor Pressures & Phase partitioning
  - o Univ of Manchester Structure-Activity Interface
  - REAXYS Database
  - Evaporation
  - Extended AIM Aerosol Thermod Model
  - o <u>ISORROPIA</u>
- Henry's Law Constants
  - o <u>JPL 2011</u>
  - o Sander's compilation: 2014 ACPD paper & website (latter has only errata)
  - HenryWin Database
- Solubilities: <u>IUPAC-NIST database</u>
- PAH structures: NIST database

### **Aerosol Calculations**

- Aerosol Calculator (Excel) (Ref: <u>Aerosol Measurements Book</u>)
- Aerosol Inlets and Transmission Losses:
  - o Particle Loss Calculator (Igor) (Ref: von der Weiden et al. 2009)
  - o Brockman: 2006 AAAR Tutorial & Explanations

0

### 5. SOA Modeling

Partitioning theory (<u>Donahue et al., 2006</u>):

$$\xi_i = \left(1 + \frac{C_i^*}{[OA]}\right)^{-1} ; [OA] = \sum_i [SV]$$

$$C_{i}^{*} = C_{i,o}^{*} \frac{T_{0}}{T} \exp \left[ \frac{\Delta H_{vap}}{R} \left( \frac{1}{T_{o}} \right) \right]$$

• Near room temperature  $\Delta H_{vap}$  can be estimated as (<u>Epstein & Donahue, 2010</u>), with where  $\Delta H_{vap}$  in kJ mol<sup>-1</sup> and  $C^*$  in  $\mu$ g m<sup>-3</sup>:

$$\Delta H^{\text{VAP}} = -11 \log_{10} C_{300}^* - \frac{1}{2} \log_{10} C_{300}^* - \frac{1}{2}$$

• Typical SOA yields (<u>Tsimpidi et al., 2010</u>). If "aging" is used, a rate constant of 1 x 10<sup>-11</sup> cm<sup>3</sup> molec<sup>-1</sup> s<sup>-1</sup> should be used (the rate constant in the paper is x4 larger due to an error, per pers. comm. from S. Pandis).

**Table 2.** SOA yield scenarios using a four-product basis set with saturation concentrations of 1, 10, 100, and 1000  $\mu$ g m<sup>-3</sup> at 298 K.

| V-SOA precursors | High  | Aeroso<br>-NO <sub>x</sub> Pa | l Yield <sup>1</sup><br>rameteriz | ation | Low   | Aeroso<br>-NO <sub>x</sub> Par | ol Yield<br>rameteriz | ation | Molecular<br>Weight    |
|------------------|-------|-------------------------------|-----------------------------------|-------|-------|--------------------------------|-----------------------|-------|------------------------|
|                  | 1     | 10                            | 100                               | 1000  | 1     | 10                             | 100                   | 1000  | $(g  \text{mol}^{-1})$ |
| ALK4             | 0.000 | 0.038                         | 0.000                             | 0.000 | 0.000 | 0.075                          | 0.000                 | 0.000 | 120                    |
| ALK5             | 0.000 | 0.150                         | 0.000                             | 0.000 | 0.000 | 0.300                          | 0.000                 | 0.000 | 150                    |
| OLE1             | 0.001 | 0.005                         | 0.038                             | 0.150 | 0.005 | 0.009                          | 0.060                 | 0.225 | 120                    |
| OLE2             | 0.003 | 0.026                         | 0.083                             | 0.270 | 0.023 | 0.044                          | 0.129                 | 0.375 | 120                    |
| ARO1             | 0.003 | 0.165                         | 0.300                             | 0.435 | 0.075 | 0.225                          | 0.375                 | 0.525 | 150                    |
| ARO2             | 0.002 | 0.195                         | 0.300                             | 0.435 | 0.075 | 0.300                          | 0.375                 | 0.525 | 150                    |
| ISOP             | 0.001 | 0.023                         | 0.015                             | 0.000 | 0.009 | 0.030                          | 0.015                 | 0.000 | 136                    |
| SESQ             | 0.075 | 0.150                         | 0.750                             | 0.900 | 0.075 | 0.150                          | 0.750                 | 0.900 | 250                    |
| TERP             | 0.012 | 0.122                         | 0.201                             | 0.500 | 0.107 | 0.092                          | 0.359                 | 0.600 | 180                    |

 $<sup>^{1}</sup>$  The SOA yields are based on an assumed density of 1.5 g cm $^{-3}$ .

- $\circ$  E.g. for a C<sub>15</sub> Hydroxynitrate:
- $\circ \log_{10} (P_{Vap} (Atm)) = 1.79 N_{C} * 0.438 (N_{OH} + N_{ONO2}) * 2.23 = -9.24$

<sup>•</sup> SIMPOL: Vapor Pressure Estimation by Group Contribution Theory, from <a href="Pankow & Asher (2008">Pankow & Asher (2008)</a>

**Table 6.** Values at T=293.15 K of the  $b_k$  group contribution terms from this work, Müller (2006), and for each method whether each group value  $d\Delta h_{\rm vap}/dT < 0$  at T=293.

| groups                            | <u>k</u> | coefficient | this work value of $b_k$ $T=293.15$ | $\frac{d\Delta h_{\text{vap},k}(T)}{dT}$ < 0?<br>T=293.15 K |
|-----------------------------------|----------|-------------|-------------------------------------|-------------------------------------------------------------|
| zeroeth group (constant term)     | 0        | $b_0$       | 1.79                                | NO                                                          |
| carbon number                     | 1        | $b_1$       | -0.438                              | YES                                                         |
| carbon number, acid-side of amide | 2        | $b_2$       | -0.0338                             | NO                                                          |
| number of aromatic rings          | 3        | $b_3$       | -0.675                              | NO                                                          |
| number of non-aromatic rings      | 4        | $b_4$       | -0.0104                             | YES                                                         |
| C=C (non-aromatic)                | 5        | $b_5$       | -0.105                              | YES                                                         |
| C=C-C=O in non-aromatic ring      | 6        | $b_6$       | -0.506                              | YES                                                         |
| hydroxyl (alkyl)                  | 7        | $b_7$       | -2.23                               | NO                                                          |
| aldehyde                          | 8        | $b_8$       | -1.35                               | YES                                                         |
| ketone                            | 9        | $b_9$       | -0.935                              | NO                                                          |
| carboxylic acid                   | 10       | $b_{10}$    | -3.58                               | NO                                                          |
| ester                             | 11       | $b_{11}$    | -1.20                               | YES                                                         |
| ether                             | 12       | $b_{12}$    | -0.718                              | NO                                                          |
| ether (alicyclic)                 | 13       | $b_{13}$    | -0.683                              | NO                                                          |
| ether, aromatic                   | 14       | $b_{14}$    | -1.03                               | NO                                                          |
| nitrate                           | 15       | $b_{15}$    | -2.23                               | YES                                                         |
| nitro                             | 16       | $b_{16}$    | -2.15                               | NO                                                          |
| aromatic hydroxyl (e.g., phenol)  | 17       | $b_{17}$    | -2.14                               | YES                                                         |
| amine, primary                    | 18       | $b_{18}$    | -1.03                               | NO                                                          |
| amine, secondary                  | 19       | $b_{19}$    | -0.849                              | YES                                                         |
| amine, tertiary                   | 20       | $b_{20}$    | -0.608                              | NO                                                          |
| amine, aromatic                   | 21       | $b_{21}$    | -1.61                               | YES                                                         |
| amide, primary                    | 22       | $b_{22}$    | <b>-</b> 4.49                       | YES                                                         |
| amide, secondary                  | 23       | $b_{23}$    | <b>-</b> 5.26                       | NO                                                          |
| amide, tertiary                   | 24       | $b_{24}$    | -2.63                               | NO                                                          |
| carbonylperoxynitrate             | 25       | $b_{25}$    | -2.34                               | YES                                                         |
| peroxide                          | 26       | $b_{26}$    | -0.368                              | YES                                                         |
| hydroperoxide                     | 27       | $b_{27}$    | -2.48                               | NO                                                          |
| carbonylperoxyacid                | 28       | $b_{28}$    | -2.48                               | NO                                                          |
| nitrophenol                       | 29       | $b_{29}$    | 0.0432                              | YES                                                         |
| nitroester                        | 30       | $b_{30}$    | <b>-</b> 2.67                       | NO                                                          |

<sup>•</sup> Effects of Functional Groups on vapor pressures (P.J. Ziemann, 2006 Tutorial AAAR)

#### Effects of Oxidation on Compound Vapor Pressures Mass % in Po<sub>25C</sub> (torr) Compound Particles\* 1 x 10<sup>-2</sup> 0.01 CH<sub>3</sub>(CH<sub>2</sub>)<sub>11</sub>(CH<sub>2</sub>)CH<sub>3</sub> $CH_3(CH_2)_{11}(CO)CH_3$ $3 \times 10^{-3}$ 0.03 4 x 10<sup>-4</sup> 0.2 CH<sub>3</sub>(CH<sub>2</sub>)<sub>11</sub>(CHOH)CH<sub>3</sub> CH<sub>3</sub>(CH<sub>2</sub>)<sub>11</sub>(CHONO<sub>2</sub>)CH<sub>3</sub> 4 x 10<sup>-4</sup> 0.2 4 $CH_3(CH_2)_{11}(CH_2)C(O)OH$ 2 x 10<sup>-5</sup> 3 x 10<sup>-3</sup> 0.03 $CH_3(CH_2)_{11}(CH_2CH_2)CH_3$ \*Assuming 10 µg m<sup>-3</sup> organic matter in particles 19

### Effects of Functional Groups on vapor pressures (Kroll & Seinfeld, 2008)

Changes to vapor pressure of an organic compound upon addition of common functional groups, based upon group-contribution method predictions of Pankow and Asher (2007)

| Functional group          | Structure                | Change in vapor pressure (298 K) <sup>a</sup> |  |  |  |
|---------------------------|--------------------------|-----------------------------------------------|--|--|--|
| Ketone                    | -C(O)-                   | 0.10                                          |  |  |  |
| Aldehyde                  | -C(O)H                   | 0.085                                         |  |  |  |
| Hydroxyl                  | -ОН                      | $5.7 \times 10^{-3}$                          |  |  |  |
| Hydroperoxyl              | -OOH                     | $2.5 \times 10^{-3}$                          |  |  |  |
| Nitrate                   | $-ONO_2$                 | $6.8 \times 10^{-3}$                          |  |  |  |
| Carboxylic acid           | -C(O)OH                  | $3.1 \times 10^{-4}$                          |  |  |  |
| Peroxyacid                | -C(O)OOH                 | $3.2 \times 10^{-3}$                          |  |  |  |
| Acyl peroxynitrate        | $-C(O)OONO_2$            | $2.7 \times 10^{-3}$                          |  |  |  |
| Extra carbon <sup>b</sup> | −CH <sub>2</sub> −, etc. | $0.35^{b}$                                    |  |  |  |

<sup>&</sup>lt;sup>a</sup>Multiplicative factor.

<sup>&</sup>lt;sup>b</sup>For comparison between changes in polarity (by addition of a functional group) and changes to size of the carbon skeleton. Vapor pressure also depends on carbon skeleton structure; see Pankow and Asher (2007).

<sup>•</sup> Approx. relationship between C\*, O/C, N<sub>C</sub> & N<sub>O</sub> (<u>Murphy et al., 2011</u> & <u>Pandis et al. 2013</u>)

| O:C | Effective saturation concentration (μg m <sup>-3</sup> ) |           |           |           |           |                 |                 |                 |                 |                 |                 |                 |
|-----|----------------------------------------------------------|-----------|-----------|-----------|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|     | $10^{-5}$                                                | $10^{-4}$ | $10^{-3}$ | $10^{-2}$ | $10^{-1}$ | 10 <sup>0</sup> | 10 <sup>1</sup> | 10 <sup>2</sup> | 10 <sup>3</sup> | 10 <sup>4</sup> | 10 <sup>5</sup> | 10 <sup>6</sup> |
| 1.2 | 6.9                                                      | 6.5       | 6.1       | 5.7       | 5.3       | 4.9             | 4.5             | 4.1             | 3.7             | 3.3             | 3.0             | 2.6             |
| 1.1 | 7.4                                                      | 7.0       | 6.5       | 6.1       | 5.7       | 5.3             | 4.9             | 4.4             | 4.0             | 3.6             | 3.2             | 2.7             |
| 1.0 | 8.0                                                      | 7.5       | 7.0       | 6.6       | 6.1       | 5.7             | 5.2             | 4.8             | 4.3             | 3.9             | 3.4             | 3.0             |
| 0.9 | 8.6                                                      | 8.1       | 7.6       | 7.1       | 6.7       | 6.2             | 5.7             | 5.2             | 4.7             | 4.2             | 3.7             | 3.2             |
| 0.8 | 9.4                                                      | 8.9       | 8.3       | 7.8       | 7.3       | 6.7             | 6.2             | 5.6             | 5.1             | 4.6             | 4.0             | 3.5             |
| 0.7 | 10.4                                                     | 9.8       | 9.2       | 8.6       | 8.0       | 7.4             | 6.8             | 6.2             | 5.6             | 5.0             | 4.4             | 3.8             |
| 0.6 | 11.5                                                     | 10.9      | 10.2      | 9.5       | 8.9       | 8.2             | 7.6             | 6.9             | 6.3             | 5.6             | 5.0             | 4.4             |
| 0.5 | 13.0                                                     | 12.2      | 11.5      | 10.7      | 10.0      | 9.3             | 8.5             | 7.8             | 7.0             | 6.3             | 5.6             | 4.9             |
| 0.4 | 14.8                                                     | 14.0      | 13.1      | 12.3      | 11.4      | 10.6            | 9.7             | 8.9             | 8.1             | 7.2             | 6.3             | 5.6             |
| 0.3 | 17.3                                                     | 16.3      | 15.3      | 14.4      | 13.4      | 12.4            | 11.4            | 10.4            | 9.4             | 8.4             | 7.4             | 6.4             |
| 0.2 | 20.8                                                     | 19.6      | 18.5      | 17.3      | 16.1      | 14.9            | 13.7            | 12.5            | 11.3            | 10.1            | 8.9             | 7.7             |
| 0.1 | 30.5                                                     | 28.8      | 27.1      | 25.3      | 23.6      | 21.9            | 20.1            | 18.3            | 16.6            | 14.9            | 13.1            | 11.4            |



**Fig. 1** The 2D Volatility Basis Set space with the volatility (expressed as the logarithm of the saturation concentration) as the x-axis and the O : C ratio as the y-axis (based on Fig. 4 of Donahue  $et\ al.^{21}$ ). The black isopleths are the number of carbon atoms and the green isopleths the number of oxygen atoms.

- SIMPLE SOA Model (Hodzic & Jimenez, 2011; Cubison et al., 2011; Haves et al., 2014)
  - o Introduce a tracer VOC ("VOC\*") proportional to CO emissions as:

 $E_{VOC^*} / E_{CO}$  (gram/gram) = 0.069 for urban emissions

EVOC\* / ECO (gram/gram) = 0.013 for biomass burning emissions

The urban values are quite similar between locations (see <u>Hayes et al., 2014</u>). The BB values are an average over multiple campaigns and there is a lot of variability in BB (see <u>Cubison et al., 2011</u> & <u>Jolleys et al., 2012</u>), so for a specific campaign it may be 0 or 0.020, but should average around that ratio.

OVOC\* is oxidized as:

$$VOC^* + OH \rightarrow SOA_{nv}$$
 (k = 1.25 x 10<sup>-11</sup> cm<sup>3</sup> molec<sup>-1</sup> s<sup>-1</sup>)

where SOA<sub>nv</sub> is non-volatile SOA

The evolution of the atomic O/C ratio of urban SOA vs photochemical age  $(OH_{exp})$  can be estimated as:

$$O/C = 1.28(1-0.6 \exp(-A/1.5))$$

## 6. Atmospheric Dynamics & Micrometeorology

- HYSPLIT synoptic back-trajectory model
- FLEXPART lagrangian trajectory model
- PBL diurnal cycle (Brown & Stutz, CSR 2012)



• Lifetimes & Transport Scales of Different Pollutants (2003 NARSTO PM Assessment)



• Parameterization of Dry Deposition in Atmospheric Models (RSC, 2008)



Published by Google Drive - Report Abuse - Updated automatically every 5 minutes