Union-Find Greedy algorithms, greedy heuristics

CS 2860: Algorithms and Complexity

Magnus Wahlström and Gregory Gutin

February 26, 2018

Random-order connectivity: Union Find

"Online" / "dynamic" connectivity

- ▶ Graph G = (V, E) arrives online (bit-by-bit):
 - ▶ Initially, have $G = (V, \emptyset)$
 - ▶ Then edges $uv \in E$ arrive, one by one, unknown order
- Want to know, at any point in time: What are the current connected components?
- Want to know this (data structure), without having to compute it when asked

Connectivity and partitions

For every graph G = (V, E), the connected components partition V:

$$V = V_1 \cup V_2 \cup \ldots \cup V_k$$
, all disjoint

- ▶ The sets V_1 , V_2 , ... are called blocks of the partition
- ▶ The initial empty graph has the partition:

$$V = \{v_1\} \cup \{v_2\} \cup \ldots \cup \{v_n\} \text{ (singleton sets)}$$

► Adding an edge *uv* between two components causes the components to merge:

$$V_i \leftarrow V_i \cup V_j$$
; partition V_j deleted

Dynamic connectivity: Example

Edges added	Partition						
None	{a}	{b}	{c}	{ <i>d</i> }	{e}	<i>{f}</i>	{g}
bd	{a}	$\{b,d\}$	{ <i>c</i> }		{ <i>e</i> }	{ <i>f</i> }	$\{g\}$
eg	{a}	$\{b,d\}$	{ <i>c</i> }		$\{e,g\}$	{ <i>f</i> }	
ac	$\{a,c\}$	$\{b,d\}$			$\{e,g\}$	{ <i>f</i> }	
ab	$\{a,b,c,d\}$				$\{e,g\}$	{ <i>f</i> }	
ef	$\{a,b,c,d\}$				$\{e,f,g\}$		
bc	$\{a,b,c,d\}$				$\{e, f, g\}$		

Operations needed

- ▶ Boolean Connected(u,v): Are u and v in the same block?
- ▶ Merge(u,v): Join the blocks containing u and v together

More commonly given as:

- ightharpoonup Find(u): Return a representative of the set containing u
- ▶ Union(u,v): Merge the blocks containing u and v
- ► Then Connected(u,v) turns into (Find(u)==Find(v))

Our first attempts

- ► A partition is a collection of sets
- We know how to implement sets
 - As HashSet if we need fast membership
 - As ArrayList if we only need iteration
- ► Find ("which set is this vertex contained in?") sounds like a Map or just an array (if vertices have "integer names")
- But Union (merge two sets) will be slow
 - ▶ "Put set B into set A [and update the vertex map/array]" takes $\mathcal{O}(|B|)$ time
- ► Can get $O(n \log n)$ total time, but not better

Better idea: Parent-pointer trees

Implement the structure as a forest

- Connected component = rooted tree
- ▶ "Name" of component = its root vertex

Basic operations:

- ► Find(u):
 - 1. Start at *u* in forest
 - 2. Walk upwards until you reach the root r
 - 3. Return name/index of r
- Union(u,v):
 - 1. Find roots r_{μ} , r_{ν}
 - 2. If $r_u \neq r_v$, add an arc $r_v \rightarrow r_u$

Room for improvements

- Consider the sequence:
 - ▶ Union(1,2)
 - ▶ Union(1,3)
 - ▶ Union(1,4) ...
- ▶ Claim: Total time $\Theta(n^2)$
 - Always hangs tall tree under new root
 - ► After Union(1,i), the tree has *i* levels
 - ► Computing Find(1) afterwards takes *i* steps
- Plenty of room for improvements!

Improvement 1: Merge by rank

Idea 1: Avoid deep trees by merging small trees into large trees

- ▶ Initialisation: For each vertex i = 0, 1, ..., n 1:
 - ▶ parentOf[i]=i
 - ► rank[i]=0
- Union(u,v) step:
 - 1. Compute root_u=Find(u) and root_v=Find(v)
 - 2. Skip if $root_u == root_v$
 - 3. If rank[root_u] < rank[root_v]:
 - Set parentOf[root_u]=root_v
 - 4. Otherwise:
 - ► Set parentOf[root_v]=root_u
 - If rank[root_u] == rank[root_v],
 set rank[root_u] += 1
- ▶ Maximum tree depth $\mathcal{O}(\log n)$

Improvement 2: Path flattening

- ► Idea: When we're walking up the tree, we might as well reconfigure it to be shorter
- ► Change to Find(u) (only):
 - 1. If parentOf[u]==u: Return u
 - 2. Otherwise:
 - 2.1 Let root = Find(parentOf[u])
 - 2.2 Set parentOf[u]=root
 - 2.3 Return root
- Observe:
 - By the recursion, every node on the way gets reattached to have the root as parent (not just the leaf node)

Running time

- ► For an arbitrary sequence of Union and Find operations:
 - 1. Original (no improvements): worst-case $\Theta(n^2)$
 - 2. Improvement 1 (short tree into tall tree): worst-case $\Theta(n \log n)$
 - 3. Improvements 1+2: Worst-case $\Theta(n \cdot \alpha(n))$, where $\alpha(n)$ is a ridiculously slow-growing function called inverse Ackermann
- How slowly growing?
 - $\alpha(7) = 2$, $\alpha(61) = 3$
 - $\alpha(n) \le 4$ for $n \le 2^{2^{2^{65,536}}}$
 - ▶ But $\alpha(n)$ is growing, and $\Theta(n \cdot \alpha(n))$ is tight!
- Historical curiosity:
 - ▶ The bound $n\alpha(n)$ was shown in 1975–1980 (Tarjan)
 - ▶ Before that, we "only" knew the bound $\mathcal{O}(n\log^*(n))$, where \log^* is defined iteratively: $\log^* x = 0$ if $x \le 1$ and $= 1 + \log^*(\log x)$, otherwise.
 - ► The function $\log^*(n)$ grows much faster: $\log^*(n) = 5$ already for $n = 2^{65,536} \approx 10^{20,000}$

Greedy algorithms

Greedy algorithms

- Kruskal and Prim are examples of greedy algorithm design principle
- Construct a solution to a problem by
 - 1. Find the cheapest decision to make right now
 - 2. Stick with it; never change your mind
 - 3. Keep making locally optimal decisions, without contradicting your previous ones, until solution is complete
- Comes in two flavours
 - 1. Greedy algorithms
 - 2. Greedy heuristics

Algorithms and heuristics

- ► To us, an algorithm must have guarantees of success
 - Must always find a solution
 - ► If optimisation problem (e.g., with weights), must find optimal (e.g., cheapest) solution
 - Alternatively, give precise guarantees about (non-optimal) solution quality ("approximation algorithm")
- ► Greedy algorithm:
 - ► A greedy-type solution to an optimisation problem that always finds the true (global) optimum in the end
- ► Heuristic:
 - ▶ Rule of thumb optimisation: usually works, sometimes fails
 - ► E.g. greedy heuristic: "Try grabbing the cheapest item every time, maybe it works out well in the end"

Greedy: Cases

- 1. Problems where (some) greedy approach works perfectly
 - ▶ Simple problems ("pick the best five items out of many")
 - ► Min-cost spanning trees
 - ► Some clever greedy cases (room bookings, next slide)
 - ► ★Matroids
- 2. Problems which have some efficient solutions, but not greedy
 - Dormitory assignment (a.k.a. graph matching)
 - Some traffic scheduling (a.k.a. max flow)
 - Many more
- Problems with only inefficient perfect solutions (e.g., NP-hard), where maybe greedy heuristics will work for you
 - Surprisingly often, it will
 - But it can also work really badly

Greedy or not? Two problems.

1. Making change

- ► Input is coin denominations (e.g., 1, 2, 5, 10, 20, 50 pence) and target value (e.g., 67p)
- ► Want to pay using fewest possible coins (example: 67=50+10+5+2 gives 4 coins)
- ► Clarification: Have unbounded number of each coin

2. Room scheduling

- ► Input: A list of booking requests for a room (e.g., "from 1:00pm to 1:45pm", "from 1:30pm to 3:30pm", ...)
- ► Want to find a largest set of non-conflicting bookings
- Clarification: May treat a request as a pair (start, end) of integers

Result

- 1. Making change:
 - ▶ Not greedy (e.g., coins of 1p, 20p, 30p, target=40p)
 - But greedy works for some coin systems
- 2. Room scheduling:
 - ► Greedy but only with the right greediness!
 - ▶ Does not work: "Select earliest-starting bookings", "select shortest bookings", ...
 - Works: "Select earliest-ending booking" (then continue)