학습목표

오늘의 학습목표와 학습내용을 확인해 보세요.

학습목표

- 분리원리가 무엇인지 설명할 수 있다.
- 4가지 분리원리의 차이점을 설명할 수 있다.
- 한 분리원리를 적용하기 위해 분리 질문을 할 수 있다.
- 한 분리원리를 활용한 물리적 모순 극복의 6단계를 나열할 수 있다.
- **②** 분리원리를 활용해서 물리적 모순을 극복할 수 있다.

@ 학습내용

- 1 분리하자!
- ② 분리원리로 물리적 모순 극복하기
- 3 물리적 모순 극복 사례

분리하자!

타협할 것인가? 분리할 것인가?

⊚ 물리적 모순이란?

- 하나의 기술적 특성에 부과되는 상반된 요구 상황
- **>>** 하나의 특성이 갖는 값들이 서로 충돌하는 것
 - 공의 특성 가운데 하나인 색상의 경우, 어두운 밤에 사용하기에는 '흰색(또는 형광색)'이 좋지만, 낮에 사용하기에는 '검은색'이 좋은 상황

타협할 것인가? 분리할 것인가?

- 일반적인 모순 해결 방법
 - ➡ 모순을 근본적으로 해결하지 않고, 주로 '타협'을 통해서 모순을 회피하려는 경향이 있음
- 트리즈의 물리적 모순 해결 방법
 - → 두 가지 상반되는 특성 값을 모두 만족시키는 해결안을 도출해서 모순을 극복함

타협하지 말고 모순을 분리하라!

분리원리란?

優 분리원리

트리즈에서 물리적 모순을 해결하기 위해서 상반되는 요구, 즉 특성 값을 분리하는 방법

[4가지 분리원리]

분리원리	분리방법
시간 분리 (Separation in Time)	모순되는 요구를 시간에 따라 분리해서 상반되는 특성 값을 모두 만족시킨다.
공간 분리 (Separation in Space)	모순되는 요구를 공간에 따라 분리해서 상반되는 특성 값을 모두 만족시킨다.
조건 분리 (Separation on Condition)	모순되는 요구를 조건(상황)에 따라 분리해서 상반되는 특성 값을 모두 만족시킨다.
전체와 부분 분리 (Separation in System Level)	모순되는 요구를 시스템 전체와 부분으로 분리해서 상반되는 특성 값을 모두 만족시킨다.

- 어떤 특성 A에 대한 상반되는 요구를 시간적으로 분리해서 모두 만족시키는 방법
- 어떤 시간에는 a라는 요구를 만족시키고, 다른 시간에는 -a라는 상반되는 요구를 만족시킴

[시간 분리의 의미] 시간 1 시간 2 트성 값 a 반대 특성 값 -a

🚳 시간 분리

- 만약 특성 값 a 또는 -a가 항상 필요한 것이 아니라 특정 시간에만 필요하다면 시간 분리 활용
 - → 이때 a 또는 -a라는 값이 요구되는 시간이나 시점이 언제인지를 결정하는 것이 중요함

🕲 시간 분리 사례

일정한 시간 간격으로 파란 불과 빨간 불이 번갈아 켜지게 해서 보행자를 기준으로 파란 불일 때는 사람이, 빨간 불일 때는 자동차가 지나가도록 하는 신호등

◎ 시간 분리 사례들

선박이 통과할 수 있도록 정해진 시간마다 다리가 위로 열리는 구조로 된 다리

윗부분을 눌렀을 때만 바늘귀가 커짐

◎ 시간 분리 사례들

서울 광장 분수

하절기에만 가동함

◎ 시간 분리에 활용할 수 있는 발명원리

분리원리		발명원리
	1번 분할	7번 포개기
	9번 사전 반대 조치	10번 사전 조치
	11번 사전 예방	15번 역동성
11가 ㅂ기	16번 초과나 부족 조치	18번 기계적 진동
시간 분리	19번 주기적 작용	21번 고속 처리
	24번 매개체	26번 복제
	27번 일회용품	29번 공기나 유압
	34번 폐기와 재생	37번 열팽창

여기서 잠깐

◎ 사자성어에서 발견한 시간 분리

🔞 공간 분리

- ❷ 어떤 특성 A에 대한 상반되는 요구를 공간적으로 분리해서 모두 만족시키는 방법
- 어떤 공간에는 a라는 요구를 만족시키고, 또 다른 공간에는 -a라는 상반되는 요구를 만족시키는 방법

🕲 공간 분리 사례

작절한 냉장고 온도는 과일이나 야채를 보관하는 데에는 5℃ 정도, 생선이나 육류를 보관하는 데에는 -18℃ 정도인데, 야채와 육류를 동시에 보관하려면 어떻게 해야 할까?

◎ 공간 분리 사례들

도시락통

하나의 도시락에 밥과 반찬, 국까지 함께 담을 수 있음

우주선의 추진로켓

추진로켓의 연료가 소모되면 자동 분리되도록 추진로켓을 우주선과 분리시킴

쇼핑카트

무거운 물건을 아랫부분에 따로 실을 수 있도록 만든 쇼핑카트

🔞 공간 분리에 활용할 수 있는 발명원리

분리원리	발명원리			
	1번	분할	2번	추출
공간 분리	3번	국소적 성질	4번	비대칭
	7번	포개기	13번	반대로 하기

분리원리	발명원리		
	14번 구형화/곡선화	17번 차원 변경	
공간 분리	24번 매개체	26번 복제	
	30번 유연학 막/얇은 필름	40번 복합 재료	

- 어떤 특성 A에 대한 상반되는 요구를 조건이나 상황에 따라 분리해서 모두 만족시키는 방법
- 어떤 조건에는 a라는 요구를 만족시키고, 또 다른 조건에는 -a라는 상반되는 요구를 만족시키는 방법

◎ 조건 분리

- 만약 특성 값 a 또는 -a가 항상 필요한 것이 아니라 특정 조건에서만 필요하다면 조건 분리 활용
 - → 이때 a 또는 -a라는 값이 요구되는 조건이 무엇인지를 결정하는 것이 중요함

◎ 조건 분리 사례들

거름망

초소형 전기 자동차, 아마딜로-T

접이식 자전거

큰 것은 걸러지고 작은 것은 통과함 주차 공간이 부족한 경우에는 반으로 접을 수 있음

자전거를 탈 수 없는 환경에서는 쉽게 접어서 배낭처럼 맬 수 있음

③ 조건 분리 사례들

- 예 은행 대출
 - 고 신용도 고객 : 금리 할인
 - 저 신용도 고객 : 높은 금리

◎ 조건 분리에 활용할 수 있는 발명원리 〈

분리원리	발명원리	
	3번 국소적 성질	7번 포개기
	15번 역동성	17번 차원 변경
	19번 주기적 작용	25번 셀프서비스
공간 분리	28번 기계시스템 대체	29번 공기나 유압
	31번 구멍/다공성 물질	32번 색 변경
	35번 속성 변환	36번 상전이
	38번 활성화/산화 가속	39번 비활성화/불활성 환경

여기서 잠깐

⑩ 파충류도 활용하는 조건 분리

위협이 닥치면 보호색으로 변하는 카멜레온 트리즈를 배운 게 아닐까?

- 어떤 특성 A에 대한 상반되는 요구를 전체와 부분에 따라 분리해서 모두 만족시키는 방법
- ❷ 전체적으로는 a라는 요구를 만족시키지만, 부분적으로는 - a라는 상반되는 요구를 만족시키는 방법

[전체와 부분 분리의 의미]

⑩ 전체와 부분 분리

- 만약 특성 값 a 또는 -a가 시스템 전체에 필요한 것이 아니라 특정 부분에서만 필요하다면, 전체와 부분 분리 활용
 - → 이때 a 또는 -a라는 값이 요구되는 부분이 어디인지를 결정하는 것이 중요함

🔞 전체와 부분 분리 사례

>> 전체적으로는 광고가 없는 듯이 보이지만, 부분적으로 고객 맞춤형 광고를 표시하는 구글

광고가 전혀 없는 첫 화면

검색어에 맞는 고객 맞춤 광고를 표시한 화면

◎ 전체와 부분 분리 사례들

방수 재킷

겨드랑이 부분을 열 수 있어서 습기 배출이 용이하게 만든 방수 재킷

태극기

베이징 올림픽 주역들의 얼굴 사진으로 만든 태극기

◎ 전체와 부분 분리 사례들

피겨 스케이트날

전체적으로는 날카롭지만, 정지하기 쉽게 앞부분만 요철로 만듦

◎ 전체와 부분 분리에 활용할 수 있는 발명원리 <

분리원리	발명원리	
전체와 부분 분리	1번 분할	3번 국소적 성질
	5번 통합	6번 다용도
<u>.</u> -,	12번 높이 맞추기	15번 역동성

분리원리	발명원리	
	17번 차원 변경	22번 전화위복
전체와 부분	24번 매개체	27번 일회용품
분리	30번 얇은 막	33번 동질성
	40번 복합 재료	

여기서 잠깐

🔞 예술가도 활용하는 전체와 부분 분리 🤇

>> 상상력의 대가, 쥬세페 아르침볼도의 사서

공간 분리

도난 방지 출입문

조건 분리

현관문의 렌즈 구멍

전체와 부분 분리

시간 분리

분리원리로 물리적 모순 극복하기

분리를 위한 질문

⑩ 분리원리 적용을 위한 분리 질문들

분리원리	분리원리 적용 질문
시간분리	어떤 특성값 a가 항상 필요한가? 아니면 특정 시간에만 필요한가?
공간분리	어떤 특성값 a가 모든 공간에서 필요한가? 아니면 특정 공간에서만 필요한가?
조건 분리	어떤 특성값 a가 모든 조건(상황)에서 필요한가? 아니면 특정 조건(상황)에서만 필요한가?
전체와 부분 분리	전체적으로는 어떤 특성값 a를 갖게 하지만, 부분적으로는 상반되는 특성 값 -a를 갖도록 하면 어떨까?

분리를 위한 질문

🔞 시간 분리 질문하기 : 진공청소기 사례

먼지를 제거하기 위해서는 고진공 상태를 유지해서 흡인력을 높여야 하지만, 흡입력이 너무 높으면 카펫이나 침구류가 헤드에 달라붙는 문제가 발생한다.

> 시간 분리 질문

흡입력은 항상 높아야 하나? 아니면 특정 시간에만 높으면 되나?

⑩ 아이디어 도출

먼지를 빨아들일 때는 높은 흡입력을 유지하지만, 헤드가 이동할 때는 흡입력을 낮추자.

구체화

🔞 공간 분리 질문하기 : 근시용 안경 + 돋보기 사례

근시용 안경을 사용하던 중년에게 노안 증세가 나타나면 근시용 안경과 돋보기가 모두 필요하기 때문에 여간 불편한 것이 아니다.

> 공간 분리 질문

렌즈의 모든 부분이 원시용 렌즈일 필요가 있을까? 특정 부분만 원시용 렌즈이면 어떨까?

📵 아이디어 도출

하나의 렌즈를 여러 부분으로 나눠서 근거리와 중거리, 원거리 각각에 적합한, 여러 개의 초점이 있는 다초점 렌즈를 만들자.

구체화

⑩ 조건 분리 질문하기 : 키보드 사례

키보드를 사용할 때는 큰 것이 편리하지만, 보관하거나 휴대할 때는 작을수록 좋다.

> 조건 분리 질문

키보드가 모든 상황에서 커야 할까? 아니면 사용할 때만 크면 되지 않을까?

🔞 아이디어 도출

사용할 때는 펼쳐서 사용하고, 휴대할 때는 접거나 말 수 있는 다양한 키보드를 개발하자.

구체화

조건 분리로 탄생한 접이식 키보드들

🔞 전체와 부분 분리 질문하기 : 단단한 체인 + 부드러운 체인 사례

페달로부터 동력을 잘 전달하기 위해서는 자전거 체인이 단단해야 하지만, 페달과 뒷바퀴 축 사이에서 원활히 움직이기 위해서는 유연해야 한다.

> 전체와 부분 분리 질문

체인을 전체적으로는 유연하지만, 부분적으로는 단단하게 만들 수 있을까?

🔞 아이디어 도출

단단한 강철 링크를 서로 연결하여, 부분적으로는 단단하지만 전체적으로는 유연한 자전거 체인을 개발하자.

구체화

전체와 부분 분리로 탄생한 자전거 체인

🔞 분리원리를 활용한 물리적 모순 해결 접근법

⑩ 분리원리를 활용한 물리적 모순 극복 6단계

◎ 분리원리를 활용한 물리적 모순 극복 6단계

[단계별 주요 내용]

순서	단계	주요 내용
1	물리적 모순 도출	특정 문제의 핵심 영역에 포함된 물리적 모순을 찾아서 정의한다.
2	모순 상황 도식화	모든 상황과 최종 목표가 명확하도록 그림으로 표현한다.
3	문제 해결 방향 결정	물리적 모순을 극복해서 최종 목표를 달성할 수 있는 2가지 문제 해결방향 가운데 하나를 선택한다.
4	분리 질문하기	선택한 문제 해결 방향을 기초로 분리원리를 활용해서 아이디어를 도출하기 위해 4가지 유형의 분리 질문을 해본다.
5	일반 해결안 도출	분리 질문 각각을 기초로 일반적인 해결 방향을 도출한다.
6	특정 해결안 도출	최선의 일반 해결안을 선택한 다음 특정 문제를 위한 구체적인 해결안을 도출한다.

⑩ 단계 1 : 물리적 모순 도출

[물리적 모순 기록 형식]

특성(A)	특성 값 a	반대 특성 값 -a
필수 조건 (목적)	필수 조건 1	필수 조건 2

[출입문 손잡이의 물리적 모순]

특성(위치)	높아야 함	낮아야 함
필수 조건 (목적)	어른의 편의성을 위해서	어린이의 안전성을 위해서

[모순 상황 도식화 형식]

[출입문 손잡이의 모순 상황 도식화]

🔞 단계 3 : 문제 해결 방향 결정

[물리적 모순 극복을 통한 문제 해결의 두 방향]

⑩ 단계 3 : 문제 해결 방향 결정

[문제 해결 방향 선택 기록 양식]

선택한 해결 방향	선택 이유
(1) 혹은 (2)	해결 방향 (1) 또는 (2)를 선택한 이유를 간단히 작성함

[출입문 손잡이의 문제 해결 방향 선택]

선택한 해결 방향	선택 이유
(2)	어린이의 안전성 확보가 더 우선되어야 하므로

🔞 단계 4 : 분리 질문하기

[출입문 손잡이의 물리적 모순 극복을 위한 분리 질문들]

분리원리	분리원리 적용 질문
시간 분리	손잡이 위치는 항상 낮아야 하나? 아니면 특정 시간에만 낮으면 되나?
공간 분리	손잡이 위치는 출입문의 모든 부분에서 낮아야 하나? 아니면 특정 부분에서만 낮으면 되나?
조건 분리	모든 조건에서 손잡이 위치가 낮아야 하나? 아니면 특정 조건에서만 낮으면 되나?
전체와 부분 분리	손잡이 위치가 전체적으로는 낮지만 부분적으로 높게 만드는 것이 가능할까?

⑩ 단계 5 : 일반 해결안 도출

4가지 분리 질문을 기반으로 일반적 해결안을 도출함[출입문 손잡이의 물리적 모순 해결을 위한 일반 해결안 도출]

분리원리	일반해결안
시간 분리	어린이가 열 때는 손잡이 위치가 낮아지고, 어른이 열 때는 손잡이 위치가 높아지도록 만들자.
공간 분리	출입문의 공간을 분리해서 어린이용 손잡이와 어른용 손잡이를 구분해서 설치하자.
조건 분리	평소에는 손잡이 위치가 낮지만, 어른이 접근하면 손잡이 위치가 자동으로 높아지도록 만들자.
전체와 부분 분리	낮은 위치에 손잡이를 설치하고, 높은 위치에 작은 보조 손잡이를 설치하자.

🔞 단계 6 : 특정 해결안 도출

[공간분리를 활용한 출입문 손잡이의 물리적 모순 해결 아이디어]

아이디어 스케치	설명
	출입문 공간을 구분해서 가장 안쪽은 5세 이하 어린이를 위한 작은 문을, 중간은 10세 이하 어린이를 위한 중간 크기 문을, 밖은 어른을 위한 큰 문을 겹쳐서 만들고, 각각의 문에 손잡이를 설치함

⑩ 단계 6 : 특정 해결안 도출

문 속의 문, 만인을 위한 출입문

📵 문제 상황

- 가족이라고 해서 식성이 모두 같은 것은 아님
- **>>>** 남편은 현미밥을 좋아하지만, 아내는 여러 가지 잡곡을 섞은 잡곡밥을 좋아한다면 끼니마다 두 종류의 밥을 짓는 것도 여간 번거로운 게 아님

⑩ 단계 1 : 물리적 모순 도출

[밥 짓기의 물리적 모순]

특성(밥 종류)	현미밥	잡곡밥
필수 조건 (목적)	남편 식성 만족	아내 식성 만족

⑩ 단계 2 : 모순 상황 도식화

[밥 짓기의 모순 상황 도식화]

🔞 단계 3 : 문제 해결 방향 결정

[밥 짓기 2가지 문제 해결 방향]

⑩ 단계 3 : 문제 해결 방향 결정

[밥 짓기 문제 해결 방향 선택]

선택한 해결 방향	선택 이유
(1)	아내가 밥을 하는 입장에서 남편의 식성을 배려하는 것이 좋다고 판단했으므로

⑩ 단계 4 : 분리 질문하기

[밥 짓기의 물리적 모순 극복을 위한 분리 질문들]

분리원리	분리원리 적용 질문
시간 분리	항상 현미밥을 지어야 하나? 아니면 특정 시간에만 지으면 되나?
공간 분리	모든 공간에서 현미밥을 지어야 하나? 아니면 특정 공간에서만 지으면 되나?
조건 분리	모든 조건에서 현미밥을 지어야 하나? 아니면 특정 조건에서만 지으면 되나?
전체와 부분 분리	전체적으로는 현미밥을 짓지만 부분적으로 잡곡밥을 짓는 방법은 없을까?

⑩ 단계 5 : 일반 해결안 도출

[밥 짓기의 물리적 모순 해결을 위한 일반 해결안 도출]

분리원리	일반 해결안
시간 분리	아침에는 현미밥을 짓고, 저녁에는 잡곡밥을 짓자.
공간 분리	밥솥을 나누어 반은 현미밥을 짓고, 나머지 반은 잡곡밥을 짓자.
조건 분리	남편이 집에서 밥을 먹을 때는 현미밥을 짓고, 그렇지 않으면 잡곡밥을 짓자.
전체와 부분 분리	평일에는 현미밥을 짓지만 주말에는 잡곡밥을 짓자.

🔞 단계 6 : 특정 해결안 도출

[공간 분리를 활용한 밥 짓기의 물리적 모순 해결 아이디어]

⑩ 단계 6 : 특정 해결안 도출

→ 구체화된 실제 해결안 사례

쿠쿠 나누미

물리적 모순 극복 사례

◎ 문제 상황

- 자가용 비행기 시대가 아주 먼 미래의 얘기 같지만, 최근 개인용 소형 비행기에 대한 연구가 활발함
- 그런데 아무리 소형이라도 비행기는 날개 때문에 일반 차고에 보관하기 힘듦
- 그렇다고 날개를 작게 만들면 비행하는 데 문제가 생김

⑩ 단계 1 : 물리적 모순 도출

[소형 비행기의 물리적 모순]

특성(날개 길이)	길어야 함	짧아야 함
필수 조건(목적)	안전한 비행	편리한 보관

[소형 비행기의 모순 상황 도식화]

⑩ 단계 3 : 문제 해결 방향 결정

[소형 비행기의 2가지 문제 해결방향]

⑩ 단계 3 : 문제 해결 방향 결정

[소형 비행기의 문제 해결 방향 선택]

선택한 해결 방향	선택 이유	
(1)	안전한 비행이 우선되어야 하므로	

⑩ 단계 4 : 분리 질문하기

[소형 비행기의 물리적 모순 극복을 위한 분리 질문들]

분리원리	분리원리 적용 질문
시간 분리	날개가 항상 길어야 하나? 아니면 특정 시간에만 길면 되나?
공간 분리	날개의 모든 부분이 길어야 하나? 아니면 특정 부분만 길면 되나?
조건 분리	모든 조건에서 날개가 길어야 하나? 아니면 특정 조건에서만 길면 되나?
전체와 부분 분리	전체적으로는 날개가 길지만 부분적으로는 짧게 만들면 어떨까?

⑩ 단계 5 : 일반 해결안 도출

[소형 비행기의 물리적 모순 해결을 위한 일반 해결안 도출]

분리원리	일반 해결안
시간 분리	• 비행할 때는 날개가 길어지고, 보관할 때는 날개가 짧아지게 만들자.
공간 분리	 날개를 여러 부분으로 나누어 몸체와 붙은 부분은 길게 만들고, 나머지 부분은 짧게 만들어서 서로 연결하자.
조건 분리	 하늘에서는 날개가 길어지고, 차고에서는 날개가 짧아지게 만들자. 또는 차고의 크기에 따라 날개 길이가 자동으로 조절되게 만들자.
전체와 부분 분리	 부분적으로 짧게 만든 날개를 연결해서 전체적으로 길게 만들고, 날개를 접을 수 있게 만들자.

⑩ 단계 6 : 특정 해결안 도출

[시간 분리를 활용한 소형 비행기의 물리적 모순 해결 아이디어]

아이디어 스케치	설명
(a) 비행할 때 (b) 보관할 때	평소에는 날개가 길지만 차고에 보관할 때는 긴 날개를 접을 수 있도록 만듦

⑩ 단계 6 : 특정 해결안 도출

→ 구체화된 실제 해결안 사례

초소형 개인용 항공기 아이콘 A5

📵 문제 상황

가습기는 건조한 실내의 습도 조절에는 유용하지만, 세균 감염을 방지하기 위해 자주 세척해야 하는데, 세척이 번거롭기도 하고 쉽게 잊어버리게 됨

가습기 세척 문제

⑩ 단계 1 : 물리적 모순 도출

[가습기의 물리적 모순]

특성(세척 횟수)	자주 함	가끔 함
필수 조건(목적)	세균 감염 방지	사용 편의성

🔞 단계 2 : 모순 상황 도식화

[가습기의 모순 상황 도식화]

🔞 단계 3 : 문제 해결 방향 결정

[가습기의 2가지 문제 해결 방향]

⑩ 단계 3 : 문제 해결 방향 결정

[가습기의 문제 해결 방향 선택]

선택한 해결 방향	선택 이유
(1)	건강을 위해서 세균 감염이 방지되는 것이 더 중요하므로

⑩ 단계 4 : 분리 질문하기

[가습기의 물리적 모순 극복을 위한 분리 질문들]

분리원리	분리원리 적용 질문
시간 분리	세척을 항상 자주해야 하나? 아니면 특정 시점에만 자주 세척하면 되나?
공간 분리	모든 부분의 세척을 자주해야 하나? 아니면 특정 부분만 자주 세척하면 되나?
조건 분리	모든 조건에서 세척을 자주해야 하나? 아니면 특정 조건에서만 자주 세척하면 되나?
전체와 부분 분리	전체적으로 세척을 가끔 하지만 부분적으로 자주 세척하면 어떨까?

⑩ 단계 5 : 일반 해결안 도출

[가습기의 물리적 모순 해결을 위한 일반 해결안 도출]

분리원리	일반 해결안
시간 분리	주기적으로 세척할 수 있도록 세척 주기를 설정할 수 있는 기능을 추가하자.
공간 분리	세균 번식의 근원이 되는 물통만 쉽게 세척할 수 있게 만들자.
조건 분리	세균에 감염되었을 때만 세척할 수 있도록, 세균 감염 여부를 알려주는 알람 기능을 추가하자.
전체와 부분 분리	전체적으로 가끔 세척하지만 물통은 쉽게 분리해서 자주 세척할 수 있도록 만들자.

⑩ 단계 6 : 특정 해결안 도출

[공간 분리를 활용한 가습기의 물리적 모순 해결 아이디어]

아이디어 스케치	설명
+	 세균 번식의 근원이 되는 물통을 쉽게 세척할 수 있도록 몸체와 분리하되, 아예 세척이 불필요하도록 물통 대신 생수용 페트병을 사용하는 가습기를 만듦 이때 가습 기능을 뚜껑에 설치해서 페트병과 쉽게 연결할 수 있도록 만듦 단 세균 번식을 방지하기 위해서 페트병은 한 번만 재사용하도록 함

⑩ 단계 6 : 특정 해결안 도출

→ 구체화된 실제 해결안 사례

초음파 페트병 가습기

🔞 문제 상황

- **>> 뜨거운 다리미로 다림질을 하고 있는데 갑자기 아기가** 울거나 전화가 와서 급히 자리를 뜨게 되 면, 잠깐 사이에 옷을 태울 수 있음
- 그렇다고 다리미 온도가 낮으면 다림질이 잘 되지 않음

⑩ 단계 1 : 물리적 모순 도출

[다리미의 물리적 모순]

특성(온도)	높아야 함	낮아야 함
필수 조건(목적)	다림질 효율성	옷 태우는 실수 방지

⑩ 단계 2 : 모순 상황 도식화

[다리미의 모순 상황 도식화]

🔞 단계 3 : 문제 해결 방향 결정

[다리미의 2가지 문제 해결 방향]

⑩ 단계 3 : 문제 해결 방향 결정

[다리미의 문제 해결 방향 선택]

선택한 해결 방향	선택 이유
(1)	다리미의 필수 기능인 다림질의 효율성이 우선되어야 하므로

⑩ 단계 4 : 분리 질문하기

[다리미의 물리적 모순 극복을 위한 분리 질문들]

분리원리	분리원리 적용 질문
시간 분리	항상 온도가 높아야 하나? 아니면 특정 시간에만 높으면 되나?
공간 분리	다리미의 모든 부분의 온도가 높아야 하나? 아니면 특정 부분만 높으면 되나?
조건 분리	모든 조건에서 온도가 높아야 하나? 아니면 특정 조건에서만 높으면 되나?
전체와 부분 분리	전체적으로는 온도가 높지만 부분적으로 낮게 만들어 실수를 방지할 수 있을까?

⑩ 단계 5 : 일반 해결안 도출

[다리미의 물리적 모순 해결을 위한 일반 해결안 도출]

분리원리	일반 해결안
시간 분리	일정 시간마다 높은 온도와 낮은 온도가 교차되도록 만들자.
공간 분리	다리미 바닥을 바둑판처럼 구분해서 어떤 부분은 뜨겁고 다른 부분은 온도가 낮게 만들자.
조건 분리	손으로 잡으면 뜨거워지지만, 손을 놓으면 온도가 낮아지게 만들자.
전체와 부분 분리	전체적으로는 뜨겁지만 부분적으로 온도가 낮게 만들자.

⑩ 단계 6 : 특정 해결안 도출

[조건 분리를 활용한 다리미의 물리적 모순 해결 아이디어]

아이디어 스케치	설명
(a) 높은 온도 (b) 낮은 온도	다리미 손잡이에 온도 센서를 부착해서 사람이 손으로 잡으면 설정된 온도가 유지되지만, 손을 놓으면 전기가 차단되도록 만듦

→ 구체화된 실제 해결안 사례

롤리 폴리 다리미란 이름의 콘셉트 디자인

올리소 오토리프트 다리미

🔞 문제 상황

- 환경 호르몬이 들어간 PVC 링거 줄의 유해성이 공론화되면서 NON-PVC 링거 줄이 의료계의 관심을 끌고 있음
- 하지만 우리나라에서는 NON-PVC 링거 줄이 현재 건강보험 급여로 인정되지 않아 환자가 비용을 지불해야 하는 문제가 있음

환경 호르몬이 들어간 PVC 링거 줄

⑩ 단계 1 : 물리적 모순 도출

[링거 줄의 물리적 모순]

특성(재료)	NON-PVC	PVC
필수 조건(목적)	환경 호르몬 방지	환자 부담 감소

[링거 줄의 모순 상황 도식화]

🔞 단계 3 : 문제 해결 방향 결정

[링거 줄의 2가지 문제 해결 방향]

⑩ 단계 3 : 문제 해결 방향 결정

[링거 줄의 문제 해결 방향 선택]

선택한 해결 방향	선택 이유
(1)	건강을 위해서 환경 호르몬을 방지하는 것이 시급하므로

🔞 단계 4 : 분리 질문하기

[링거 줄의 물리적 모순 극복을 위한 분리 질문들]

분리원리	분리원리 적용 질문
시간 분리	항상 NON-PVC 링거 줄을 사용해야 하나? 아니면 특정 시점에만 사용하면 되나?
공간 분리	모든 부분을 NON-PVC로 만들어야 하나? 아니면 특정 부분만 NON-PVC로 만들면 되나?
조건 분리	모든 조건에서 NON-PVC 링거 줄을 사용해야 하나? 아니면 특정 조건에서만 사용하면 되나?
전체와 부분 분리	전체적으로 PVC로 만들지만, 부분적으로 NON-PVC로 만들면 어떨까?

⑩ 단계 5 : 일반 해결안 도출

[링거 줄의 물리적 모순 해결을 위한 일반 해결안 도출]

분리원리	일반 해결안
시간 분리	환경 호르몬 수치가 높은 환자에게 주사를 놓을 때는 NON-PVC 링거 줄을 사용하고, 그렇지 않을 때는 PVC 링거 줄을 사용한다.
공간 분리	약물과 접촉하는 내부는 NON-PVC로 만들고, 외부는 PVC로 만들자.
조건 분리	임산부와 중병 환자는 NON-PVC 링거 줄을 사용해도 건강보험 급여를 적용하고, 일반 환자는 건강보험 급여를 적용하지 않는다.
전체와 부분 분리	전체적으로 PVC로 만들지만, 약물이 오래 머무는 부분은 NON-PVC로 만들자.

🔞 단계 6 : 특정 해결안 도출

[전체와 부분 분리를 활용한 링거 줄의 물리적 모순 해결 아이디어]

⑩ 단계 6 : 특정 해결안 도출

>> 구체화된 실제 해결안 사례

공간 분리를 활용한 링거 줄의 물리적 모순 해결 아이디어

🔞 문제 상황

>> 대형 마트에 비치되어 있는 쇼핑카트는 사람이 많은 마트 안에서 쉽게 이동하기 위해서는 작은 것이 좋지만, 많은 물건을 담기 위해서는 큰 것이 좋음

⑩ 단계 1 : 물리적 모순 도출

[쇼핑카트의 물리적 모순]

특성(크기)	작아야 함	커야 함
필수 조건(목적)	이동 편의성	많은 물건 담기

[쇼핑카트의 모순 상황 도식화]

◎ 단계 3 : 문제 해결 방향 결정

[쇼핑카트의 2가지 문제 해결 방향]

⑩ 단계 3 : 문제 해결 방향 결정

[쇼핑카트의 문제 해결 방향 선택]

선택한 해결 방향	선택 이유
(1)	사람이 많은 대형 마트에서는 다른 사람에게 불편을 주지 않고 쉽게 이동하는 것이 더 중요하다고 판단했으므로

🔞 단계 4 : 분리 질문하기

[쇼핑카트의 물리적 모순 극복을 위한 분리 질문들]

분리원리	분리원리 적용 질문
시간 분리	쇼핑카트가 항상 작아야 하나? 아니면 특정 시간에만 작으면 되나?
공간 분리	쇼핑카트의 모든 부분이 작아야 하나? 아니면 특정 부분만 작으면 되나?
조건 분리	모든 조건에서 쇼핑카트가 작아야 하나? 아니면 특정 조건에만 작으면 되나?
전체와 부분 분리	쇼핑카트가 전체적으로는 작지만 부분적으로 크게 만들면 어떨까?

⑩ 단계 5 : 일반 해결안 도출

[쇼핑카트의 물리적 모순 해결을 위한 일반 해결안 도출]

분리원리	일반 해결안
시간 분리	처음에는 작지만 시간이 지남에 따라 쇼핑카드를 조금씩 늘일 수 있게 만들자.
공간 분리	쇼핑카트의 공간을 2층으로 나누고, 바구니를 작게 만들자.
조건 분리	담을 물건이 적을 때는 작지만, 물건이 많을 때는 쇼핑카트를 쉽게 늘일 수 있게 만들자.
전체와 부분 분리	전체적으로 작지만, 한 부분에 큰 봉투를 결합해서 만들자.

🔞 단계 6 : 특정 해결안 도출

[시간 분리를 활용한 크기 조절형 쇼핑카트]

