Divide-and-Conquer Colouring for Restricted Inputs

1 Divide-and-conquer algorithms

Many useful algorithms are recursive, i.e. call themselves recursively to deal with subproblems

At each level of recursion:

- Divide the problem into a number of subproblems
- **Conquer** the subproblems by solving them: recursively, or straightforward if the subproblem sizes are small enough
- Combine the solutions for the subproblems into a solution for the original problem

2 Problem Definition

Definition: Colouring

An assignment of colours to the vertices of a graph such that no two adjacent vertices get the same colour

Definition: k-colouring

A colouring using at most k colours

Definition: Chromatic number χ_G

The smallest integer k for which G has a k-colouring

The task of given a graph G determining χ_G is an NP hard problem

3 How to deal with NP-hardness

This can be done in several ways. For example:

- Heuristics
- Approximation algorithms
- Exact algorithms
- Parametrized algorithms
- Algorithms with restricted inputs

We focus on the last approach. That is, we exploit the structure of the input with an aim to develop faster algorithms. Justification

- 1. In practice problem inputs may exhibit structure
- 2. By focussing on the input structure we understand better what structure makes a problem computationally hard

4 Definition

Let G_1 and G_2 be two vertex-disjoint graphs

The **disjoint union** $G_1 + G_2$ of G_2 and G_2 is the graph with the vertex set and edge set of the union of them. There is no overlap between G_1 and G_2

The **join** $G_1 \times G_2$ is the graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2) \cup E^*$, where E^* is the set of all edges between vertices of G_1 and vertices of G_2 . Adding all possible edges between the graphs A graph G is a cograph iff G can be created by the following rules

- The 1-vertex graph K_1 is a cograph
- If G_1 and G_2 are cographs, then so is $G_1 + G_2$
- If G_1 and G_2 are cographs, then so is $G_1 \times G_2$

Important: Cographs

 P_4 is the smallest graph that is not a cograph

5 Alternate definition

Let P_4 denote the path on 4 vertices

A graph G contains P_4 as an induced subgraph if G can be modified to P_4 via vertex deletions If not, then G is said to be P_4 -free

It is known that a graph is a cograph iff it is P_4 -free

6 Definition of a cotree

A cotree T_G of a cograph G is the unique decomposition tree satisfying

- 1. Its root r corresponds to the graph $G_r = G$
- 2. Every left x of T corresponds to exactly one vertex of G, and vice versa
- 3. Every internal node x of T has at least two children, is either labelled + of \times , and corresponds to an induced subgraph G_x of G defined as follows:
 - If x is a +- node, then G_x is the disjoint union of all graphs G_y , where y is a child of x
 - If x is a \times -node, then G_x is the join of all graphs G_y where y is a child of x
- 4. Labels of internal nodes on the (unique) path from any leaf to r alternate between + and \times

This tree shows the composition of a cograph, each internal node is an operation and each leaf is a vertex of the graph

7 Solving colouring for cographs

Let G be a cograph on n vertices and m edges We construct its cotree T_G . This can be done in O(n + m) time

We follow a bottum up approach: only process node x after first processing its children.

Leaves: Each leaf corresponds to a single vertex of G. The chromatic number of a single-vertex graph is 1

Union-nodes: Let x be a +-node. Then χ_{G_x} is the maximum number of the chromatic numbers of the graphs G_y , where y is a child of x

Join-nodes. Let y be a x-node. Then χ_{G_x} is the sum of the chromatic numbers of the graphs G_y , where y is a child of x

In this way the last node we process is node r, which corresponds to the graph $G_r = G$

As the number of nodes of T is O(n) and we used linear time per node, the total running time is polynomial