# INTERNATIONAL STANDARD

ISO/IEC 23001-7

Third edition 2016-02-15 **AMENDMENT 1** 2019-09

# Information technology — MPEG systems technologies —

Part 7:

# **Common encryption in ISO base media** file format files

AMENDMENT 1: AES-CBC-128 and key rotation

Technologies de l'information — Technologies des systèmes MPEG — Partie 7: Cryptage commun des fichiers au format de fichier de médias de la base ISO

AMENDEMENT 1: AES-CBC-128 et rotation des clés







# **COPYRIGHT PROTECTED DOCUMENT**

# © ISO/IEC 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

# **Foreword**

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see <a href="www.iso.org/directives">www.iso.org/directives</a>).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see <a href="https://patents.iec.ch">www.iso.org/patents</a>) or the IEC list of patent declarations received (see <a href="https://patents.iec.ch">http://patents.iec.ch</a>).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see <a href="https://www.iso.org/iso/foreword.html">www.iso.org/iso/foreword.html</a>.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 29, *Coding of audio, picture, multimedia and hypermedia information*.

A list of all parts in the ISO/IEC 23001 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <a href="https://www.iso.org/members.html">www.iso.org/members.html</a>.



# Information technology — MPEG systems technologies —

# Part 7:

# Common encryption in ISO base media file format files

# AMENDMENT 1: AES-CBC-128 and key rotation

Clause 2

Add the following new normative references:

ISO/IEC 23008-2, Information technology — *High efficiency coding and media delivery in heterogeneous environments* — *Part 2: High efficiency video coding* 

ISO/IEC 23008-12, Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 12: Image File Format (HEIF)

3.1

Insert a new 3.1.8 and renumber current 3.1.8 as 3.1.9:

# 3.1.8

# sample

media sample when the protection applies to media tracks, or payload of an item when the protection applies to items

Note 1 to entry: Media sample as defined in 14496-12.

Note 2 to entry: Payload of an item as defined in 14496-12.

4.2

Add the following item to the list:

e) 'sve1' - AES-CTR content sensitive encryption, as defined in Annex A.

```
Clause 6
```

```
In paragraph 4, replace:
   unsigned int(8)
                  reserved = 0;
  unsigned int(4)
                  crypt_byte_block;
  unsigned int(4)
                  skip_byte_block;
  unsigned int(8)
                  isProtected;
  unsigned int(8) Per_Sample_IV_Size;
  unsigned int(8)[16] KID;
   if (Per_Sample_IV_Size == 0) {
     unsigned int(8) constant_IV_size;
     unsigned int(8)[constant_IV_size] constant_IV;
}
with
  unsigned int(1) multi_key_flag;
  unsigned int(7) reserved = 0;
  unsigned int(4)
                     crypt_byte_block;
  unsigned int(4)
                      skip_byte_block;
  unsigned int(8)
                      isProtected;
   if (multi_key_flag == 1) {
     unsigned int(16) key_count;
   } else {
     key_count = 1;
   for (i=1; i <= key_count; i++) {</pre>
     unsigned int(8)
                       Per_Sample_IV_Size;
     unsigned int(8)[16] KID;
     if (Per_Sample_IV_Size == 0) {
        unsigned int(8) constant_IV_size;
        unsigned int(8)[constant_IV_size] constant_IV;
```

```
}
}
```

#### Clause 6

Add a new item to the list in paragraph 5 (insert before semantics of isProtected):

multi\_key\_flag indicates that the multiple key version of the sample group description is used. If
this flag is set, multiple keys will be described for this sample group description entry; otherwise, a
single key is described for this sample group description entry.

Add a new item to the list in paragraph 5 (insert after semantics of isProtected):

 key\_count indicates the number of keys that may apply to a sample associated to this sample group description entry. It is not required that a sample associated with this sample group description entry uses all the keys described.

#### 7.1

Replace the sample auxiliary information in paragraph 3 with:

```
aligned(8) class CencSampleAuxiliaryDataFormat
   if (aux_info_type_parameter==0) {
      unsigned int(Per_Sample_IV_Size*8) InitializationVector;
      if (sample_info_size > Per_Sample_IV_Size ) {
         unsigned int(16) subsample_count;
         {
            unsigned int(16) BytesOfClearData;
            unsigned int(32) BytesOfProtectedData;
         } [subsample count ]
      }
   } else if (aux_info_type_parameter == 1) {
      unsigned int(16) multi_IV_count;
      for (i=1; i <= multi _IV_count; i++) {</pre>
         unsigned int(8) multi_subindex_IV;
         unsigned int(Per_Sample_IV_Size*8) IV;
      unsigned int(32) subsample_count;
```

```
unsigned int(16) multi_subindex;
unsigned int(16) BytesOfClearData;
unsigned int(32) BytesOfProtectedData;
} [subsample_count]
}
```

Following the sample auxiliary information, add the following at the end of the 'where' list (after semantics of BytesOfProtectedData):

multi\_IV\_count indicates the number of entries in the initialization vector loop;

multi\_subindex\_IV indicates the index of the associated key entry, where value one is the first entry, in the associated list; if this data is read for the processing of a track sample, the associated list is the 'seig' sample group description entry associated with this sample; otherwise (this data is read for the processing of an item), the associated list is the list of key definitions in the 'ienc' item property of this item. The associated key entry shall have a Per\_Sample\_IV\_Size different from 0, i.e. key entries using constant IV shall not be present in this loop. If this data is read for the processing of a track sample and aux\_info\_type\_parameter is set to 1, the associated 'seig' sample group description entry shall have the multi\_key\_flag set to 1;

indicates the initialization vector to be used for the first block of protected data for the associated key entry;

multi\_subindex indicates the index of the associated key entry, where value one is the first entry, in the associated list (see multi\_subindex\_IV) for the following run of encrypted data.

## 7.2.2

Replace the content of 7.2.2 with the following:

```
aligned(8) class SampleEncryptionBox extends FullBox('senc', version, flags)
{
   unsigned int(32) sample_count;
   {
      if (version==0) {
        unsigned int(Per_Sample_IV_Size*8) InitializationVector;
      if (flags & 0x000002) {
        unsigned int(16) subsample_count;
        {
            unsigned int(16) BytesOfClearData;
            unsigned int(32) BytesOfProtectedData;
        } [subsample_count]
    }
}
```

```
} else if (version==1) {
          unsigned int(16) multi_IV_count;
          for (i=1; i <= multi _IV_count; i++) {</pre>
             unsigned int(8) multi_subindex_IV;
             unsigned int(Per_Sample_IV_Size*8) IV;
          }
          unsigned int(32) subsample_count;
             unsigned int(16) multi_subindex;
             unsigned int(16) BytesOfClearData;
             unsigned int(32) BytesOfProtectedData;
          } [subsample_count]
      }
   }[ sample_count ]
}
7.2.3
Add the following to the list of semantics:
— multi_IV_count, multi_subindex_IV, IV and multi_subindex SHALL conform to the definition
    specified in Clause 7.
8.1.1
Replace
Container: Movie ('moov') or Movie Fragment ('moof')
with
Container: Movie ('moov') or Movie Fragment ('moof') or 'meta' if no Movie ('moov')
8.2
Add the following new subclauses after 8.2:
8.3 Item encryption box
8.3.1 Definition
```

Mandatory (per item): Yes for protected items using schemes defined in this document

© ISO/IEC 2019 - All rights reserved

Container: Item Properties Box

Box Type: `ienc'

Quantity (per item): At most one associated with any item

Quantity: Zero or one

Items as defined in ISO/IEC 14496-12 may be protected using the schemes defined in this document. In this case, such items shall have an associated ItemEncryptionBox property and an associated auxiliary item with an aux\_info\_type matching the protection scheme used, as defined in 8.4. The payload of that auxiliary item shall be exactly one CencSampleAuxiliaryDataFormat as defined in 7.1.

The ItemEncryptionBox contains default values for the isProtected flag, Per\_Sample\_IV\_Size, and KID for the item. In the case where pattern-based encryption is in effect, it supplies the pattern and when Constant IVs are in use, it supplies the Constant IV. These values are used as the encryption parameters for the item in this meta box. For files with only one key for all items, this property box allows the basic encryption parameters to be specified once for all items instead of being repeated per item.

Items sharing this property are always protected; consequently, the default value for isprotected field (see 9.1) is 1.

If the value Per\_Sample\_IV\_Size is 0, then the constant\_IV\_size for all items that use these settings SHALL be present. A Constant IV SHALL NOT be used with counter-mode encryption.

ItemEncryptionBox properties shall be marked as essential in ItemPropertyAssociation.

NOTE The version field of the ItemEncryptionBox is set to a value greater than zero when the pattern encryption defined in 9.6 is used and to zero otherwise.

# **8.3.2** Syntax

```
aligned(8) class ItemEncryptionBox extends ItemFullProperty('ienc', version, flags=0)
{
    unsigned int(8) reserved = 0;
    if (version==0) {
        unsigned int(8) reserved = 0;
    } else { // version is 1 or greater
        unsigned int(4) crypt_byte_block;
        unsigned int(4) skip_byte_block;
}

unsigned int(8) num_keys;

for (i=1; i<= num_keys; i++) {
    unsigned int(8) Per_Sample_IV_Size;
    unsigned int(8)[16] KID;
    if (Per_Sample_IV_Size == 0) {
        unsigned int(8) constant_IV_size;
        unsigned int(8)[ constant_IV_size] constant_IV;
    }
}</pre>
```

}

#### 8.3.3 Semantics

version SHALL be zero unless pattern-based encryption is in use, whereupon it SHALL be 1.

crypt\_byte\_block specifies the count of the encrypted blocks in the protection pattern, where each block is of size 16-bytes, for items associated with this key entry. See 9.1 for further details.

skip\_byte\_block specifies the count of the unencrypted blocks in the protection pattern for items associated with this key entry. See the skip\_byte\_block field in 9.1 for further details.

num\_keys indicates the number of key definition entries.

Per\_Sample\_IV\_Size is the initialization vector size in bytes for items associated with this key entry. See the Per\_Sample\_IV\_Size field in 9.1 for further details.

KID is the key identifier used for items associated with this key entry. See the KID field in 9.1 for further details.

constant\_IV\_size is the size of a initialization vector for items associated with this key entry.

constant\_IV, if present, is the initialization vector for items associated with this key entry. See the constant\_IV field in 9.1 for further details.

# 8.4 Item auxiliary information box

#### 8.4.1 Definition

Box Type: `iaux'

Container: Item Properties Box

Mandatory (per item): Yes for protected items using schemes defined in this document

Quantity (per item): At most one associated with any item

Quantity: Zero or one

An item may have some auxiliary information associated, similarly to sample of a track having auxiliary sample information. This information is usually declared through item properties and associations; it can also be declared through auxiliary information items, to allow sharing the auxiliary info between items and samples through the extent construction method of the item.

Auxiliary information items shall be declared with an <code>item\_type</code> value of <code>`auxi'</code>. Items shall indicate their auxiliary information items through an item reference of type <code>`auxr'</code> from the item to the auxiliary information item(s).

Auxiliary information item may have an ItemAuxiliaryInformationBox property associated, indicating the type of auxiliary information and its parameter type (aux\_info\_type and aux\_info\_type\_parameter).

If no ItemAuxiliaryInformationBox is present for an auxiliary information item, then the implied value of aux\_info\_type is either (a) in the case of protected content, the scheme\_type included in the ProtectionSchemeInfoBox of the referring item or otherwise (b) the item\_type of the referring item. The default value of the aux\_info\_type\_parameter is 0. The ItemAuxiliaryInformationBox shall be present when the referring item is not protected and is not defined using version 2 or higher of ItemInfoEntry.

There shall be at most one auxiliary information item with a given <code>aux\_info\_type</code> and <code>aux\_info\_type\_parameter</code> associated with an item.

When present, the ItemAuxiliaryInformationBox property shall be marked as essential in ItemPropertyAssociation.

#### **8.4.2** Syntax

# ISO/IEC 23001-7:2016/Amd.1:2019(E)

```
aligned(8) class ItemAuxiliaryInformationBox extends ItemFullProperty('iaux', version=0,
flags=0)
{
    unsigned int(32) aux_info_type;
    unsigned int(32) aux_info_type_parameter;
}
```

#### 8.4.3 Semantics

aux\_info\_type: same semantics as sample auxiliary information in ISO/IEC 14496-12.

aux\_info\_type\_parameter: same semantics as sample auxiliary information in ISO/IEC 14496-12.

9.1

In 9.1, replace the semantics of BytesOfProtectedData by:

BytesofProtectedData specifies the number of bytes of protected data following the clear data (this value may be zero if no protected bytes exist for this Subsample). The Subsample encryption entries SHALL NOT include an entry with a zero value in both the BytesofClearData field and in the BytesofProtectedData field unless a 'tref' box is found for this track with one or more track references of type 'scal' pointing to one or more tracks with sample entry code 'ency', in which case 9.5.2.6 applies. The total length of all BytesofClearData and BytesofProtectedData in a sample SHALL equal the length of the sample. Subsample encryption entries SHOULD be as compactly represented as possible. For example, instead of two entries with {15 clear, 0 protected}, {17 clear, 500 protected} use one entry of {32 clear, 500 protected}. If pattern-based encryption is used, then the pattern applies to the protected byte range, BytesofProtectedData; otherwise all protected bytes are encrypted.

9.5

Add the following text after 9.5.2.5:

# 9.5.2.6 Subsample encryption applied to NAL structured video with extractors

In this clause, "sample auxiliary information for cenc" refers to the size of the block of clear data and the size of the block of protected data, regardless whether this is stored as sample auxiliary information pointed to by 'saiz' and 'saio' boxes or included in a 'senc' box.

In this clause, "extractor track with cenc" refers to a track with sample entry code 'encv' with original format, as indicated by the 'frma' box in the 'sinf' box, in which extractors, as defined in  $ISO/IEC\ 14496-15:-1$ , Annex A, may be present.

When a 'tref' box is found in an extractor track with cenc which refers to one or more tracks with sample entry code 'ency', the following restrictions apply in addition to restrictions defined in 9.5.2.2:

- Extraction process SHALL take place before the decryption process.
- Extractors NAL units SHALL NOT be encrypted.

<sup>1)</sup> Under preparation.

- The following applies to the sample auxiliary information for cenc found in an extractor track with cenc.
  - When both values of BytesOfClearData and BytesOfProtectedData are 0, it is a placeholder for the sample auxiliary information for cenc of the NAL Structured Video samples that result from resolving the constructors within the extractor NAL unit as defined in ISO/IEC 14496-15:—, A.7.
  - Otherwise, the values of BytesOfClearData and BytesOfProtectedData apply to the extracted sub\_sample.
- The sample auxiliary information for cenc SHALL be present for each referenced track in 'tref' with sample entry code 'ency'.
- When an extractor NAL unit as defined in ISO/IEC 14496-15:—, A.7 with associated sample auxiliary information for cenc contains a value of 0 for both BytesOfClearData and BytesOfProtectedData points to a track with sample entry code 'encv':
  - Exactly one VCL NAL unit SHALL be encrypted in each subsample of the referenced track.
  - Let RefBytesOfClearData and RefBytesOfProtectedData be the sample auxiliary information for cenc associated with the subsample of which the byte range is extracted, then the sample auxiliary information for cenc for the resolved VCL NAL unit is SHALL be replaced by the following values:

```
BytesOfClearData = RefBytesOfClearData - SampleConstructor.sample_offset +
InlineConstructor.length
```

BytesOfProtectedData = RefBytesOfProtectedData

The value SampleConstructor.sample\_offset is the value of sample\_offset in the SampleConstructor in the extractor that is processed.

The value InlineConstructor.length is the sum of the values in the length fields inside the InlineConstructor, if any are found in the extractor that is processed, else 0.

The resulting subsample information SHALL be conformant to CENC, and the decrypted version
of every sample in the extractor track SHALL comply with the file and/or track brand and track
description entry type.

9.7

Add the following subclauses after 9.7, and renumber subsequent figures:

# 9.8 Content sensitive encryption

#### 9.8.1 Definition

Content sensitive encryption is a bitstream syntax aware scrambling scheme that modifies media bitstream in such a way that an unauthorized receiver (i.e. a standard decoder) can normally decode the ciphered stream, while the displayed content is made non-intelligible by the encryption. This scheme is currently applicable to AVC and HEVC and defined in Annex A. The scheme can be applied to both media tracks and image items, in which case media tracks shall be in accordance with ISO/IEC 14496-15 and image items shall be in accordance with ISO/IEC 23008-12.

The scheme operates in compressed domain based on entropic coder, by identifying the elements of the stream that can be ciphered without disrupting a standard decoding process. The bits to be encrypted are chosen with respect to the considered video standard to ensure full compatibility, achieved by selecting the bits (generally parts of code-words) for which each of the encrypted configurations modifies the decoding process context but does not create de-synchronization nor lead to non-compliant bitstream.

The selected elements will depend on the video coding specification used:

- A.1 gives the list of elements and possible bit encryption for AVC|H264 CAVLC
- A.2 gives the list of elements and possible bit encryption for AVC|H264 CABAC
- A.3 gives the list of elements and possible bit encryption for HEVC|H265

NOTE For CABAC entropic coding (i.e. in <u>A.2</u> and <u>A.3</u>), the bits considering as cipherable regarding to Content Sensitive encryption process are listed as bins since the considered codewords are first binarized before the bypassed Coded Engine.

# 9.8.2 Content sensitive encryption applied to a video NAL unit

In content sensitive encryption, 16 bytes block cypher cannot be used directly on the payload. Consequently, a video parser shall be used to locate bits to cipher/decipher. These bits, listed in Annex A, depend on the coding standard and potentially the entropic coding mode used.

Content sensitive encryption scheme shall use the AES-CTR mode for its cipher.

The encryption and decryption processes are performed with a simple XOR operation between the identified bits in the syntax and the cypher blocks, as shown in <u>Figure 10</u>.



Figure 10 — Content Sensitive Encryption scheme

Samples protected with content sensitive scheme shall follow subsample encryption of NAL Structured Video tracks as defined in 9.5.2. The samples shall be divided into one or more contiguous subsamples. Each subsample consists of an unprotected part of <code>BytesOfClearData</code>, potentially 0, followed by a protected part. Bits contained in the clear part of the subsample shall not be selected for the decryption process. The first bit selectable for the encryption process in the range of protected data shall be XORed with the first bit of the first encrypted cipher block.

The AES-CTR counter shall be incremented after each completely used encrypted cipher block (128 bits) or at the subsample boundaries; this implies that if not all bits were consumed on the last cipher block of a subsample, the block shall be considered as consumed and the counter shall be incremented before processing any subsequent subsample associated with that cipher.

10.1, 10.2, 10.3 and 10.4.1

Replace all uses of

"Encrypted video tracks using NAL"

with

"Encrypted video tracks or items using NAL"

10.1 and 10.2

Replace

"The version of the TrackEncryptionBox ('tenc') SHALL be 0."

with

"For tracks, the version of the TrackEncryptionBox ('tenc') SHALL be 0. For items, the version of the ItemEncryptionBox ('ienc') SHALL be 0."

10.1

Replace

"Non-video encrypted tracks SHALL be protected using a full sample encryption as specified in section 9.4."

with

"When a single key applies to each sample, encrypted tracks or items not using NAL structured video conforming to ISO/IEC 14496-15 SHALL be protected using full sample encryption as specified in 9.4. When multiple keys apply to samples, encrypted tracks or items not using NAL structured video conforming to ISO/IEC 14496-15 SHALL be protected using subsample encryption as specified in 9.5.1."

10.2

Replace

"Other tracks SHALL be protected using full sample encryption as specified in section 9.4."

with

"When a single key applies to each sample, other tracks or items SHALL be protected using full sample encryption as specified in 9.4. When multiple keys apply to samples, other tracks or items SHALL be protected using subsample encryption as specified in 9.5.1."

10.3 and 10.4

Replace

"The version of the TrackEncryptionBox ('tenc') SHALL be 1."

with

"For tracks, the version of the TrackEncryptionBox ('tenc') SHALL be 1. For items, the version of the ItemEncryptionBox ('ienc') SHALL be 1."

10.3

Replace

# ISO/IEC 23001-7:2016/Amd.1:2019(E)

"Tracks other than video are protected using whole-block full-sample encryption as specified in 9.7, and hence skip\_byte\_block SHALL be 0."

with

"When a single key applies to each sample, encrypted tracks or items not using NAL structured video conforming to ISO/IEC 14496-15 SHALL be protected using whole-block full-sample encryption as specified in 9.7, and hence <code>skip\_byte\_block</code> SHALL be 0. When multiple keys apply to samples, encrypted tracks or items not using NAL structured video conforming to ISO/IEC 14496-15 SHALL be protected using subsample encryption as specified in 9.5.1."

10.4

# Replace

"Tracks other than video MAY be protected using whole-block full-sample encryption as specified in 9.6 or 9.7, and hence  $skip\_byte\_block$  SHALL be 0."

with

"When a single key applies to each sample, encrypted tracks or items not using NAL structured video conforming to ISO/IEC 14496-15 MAY be protected using whole-block full-sample encryption as specified in 9.6 or 9.7, and hence skip\_byte\_blockSHALL be 0. When multiple keys apply to samples, encrypted tracks or items not using NAL structured video conforming to ISO/IEC 14496-15 SHALL be protected using subsample encryption as specified in 9.5.1."

10.4

Add the following subclause after 10.4:

# 10.5 \sve1' AES-CTR sensitive encryption scheme

Support for the 'sve1' scheme is optional.

The scheme\_type field of the scheme Type Box ('schm') SHALL be set to the four-character code 'sve1'.

Tracks or items carrying media coding types for which no sensitive encryption mode is defined in Annex A shall not use this protection scheme.

Encrypted video tracks or items using NAL unit structured video conforming to ISO/IEC 14496-15 SHALL be protected using Subsample encryption specified in 9.5 and SHALL use sensitive encryption as specified in 9.8. The NAL unit header should be left in the clear part of the subsample.

NOTE In AVC CAVLC, the slice header can be encrypted but can still be parsed.

Pattern encryption SHALL NOT be used. As a result, the fields  $crypt_byte_block$  and  $skip_byte_block$  SHALL be 0 and the version of the Track Encryption Box ('tenc') SHALL be 0.

Non-video encrypted tracks SHALL be protected using full-sample encryption as specified in 9.4 and SHALL use sensitive encryption as specified in 9.8.

For tracks, the version of the TrackEncryptionBox ('tenc') SHALL be 0. For items, the version of the ItemEncryptionBox ('ienc') SHALL be 0.

Constant IVs SHALL NOT be used;  $Per_Sample_IV_Size$  SHALL NOT be 0, except for unencrypted sample groups.

11.3.4

Following 11.3.4, add the following annex:

# Annex A

(normative)

# Content sensitive encryption scheme

# A.1 Code-words containing bits selected for encryption for MPEG-4/AVC CAVLC

#### A.1.1 General

This annex gives the list of all VLC tables and code words that shall be encrypted by the content sensitive encryption process for AVC|H264 CAVLC mode (i.e. entropy\_coding\_mode is equal to 0 in ISO/IEC 14496-10 in Picture Parameter set RBSP syntax).

# A.1.2 Slice QP Delta

In ISO/IEC 14496-10:2014, 7.3.3 (Slice header syntax), **slice\_qp\_delta** is coded in se(v) (i.e. signed Exponential-Golomb code-word), and the value is given in Table A.1. But the value of slice\_qp\_delta shall be limited such that SliceQP $_Y$  is in the range of -QpBdOffset $_Y$  to +51, inclusive. So this code-word is eligible to be cyphered if, and only if, its absolute value is less than:

$$2^{Floor\left(Log2\left(Min\left(QpBdOffset_Y+26+pic\_init\_qp\_minus26\ ,\ 25-pic\_init\_qp\_minus26\right)\right)\right)}$$
(1)

Then, the suffix bits (i.e. the bits following the first '1'), as illustrated by the bold font in <u>Table A.1</u>, shall be selected for Content Sensitive encryption.

| Index | Slice_QP_Delta value | Code-word       |
|-------|----------------------|-----------------|
| 0     | 0                    | 1               |
| 1     | 1                    | 01 <b>0</b>     |
| 2     | -1                   | 011             |
| 3     | 2                    | 001 <b>00</b>   |
| 4     | -2                   | 001 <b>01</b>   |
| 5     | 3                    | 001 <b>10</b>   |
| 6     | -3                   | 001 <b>11</b>   |
| 7     | 4                    | 0001 <b>000</b> |
| 8     | -4                   | 0001 <b>001</b> |
|       |                      |                 |

Table A.1 — Slice\_QP\_delta code-words table

#### A.1.3 Macroblock type

In ISO/IEC 14496-10:2014, 7.3.5 (Macroblock layer syntax), **mb\_type** specifies the macroblock type is coded in ue(v) (i.e. unsigned Exponential-Golomb code-word) but the semantics of mb\_type depend on the slice type:

 If slice\_type is I, the bits in bold font in <u>Table A.2</u> shall be selected for CONTENT SENSITIVE ENCRYPTION. Moreover, blocks located on the border of the video slice shall not be selected for Content Sensitive encryption.

Table A.2 — mb\_type with I slice

| Index | Symbol        | Code-word         |  |
|-------|---------------|-------------------|--|
| 0     | I_NxN         | 1                 |  |
| 1     | I_16x16_0_0_0 | 01 <b>0</b>       |  |
| 2     | I_16x16_1_0_0 | 01 <b>1</b>       |  |
| 3     | I_16x16_2_0_0 | 0010 <b>0</b>     |  |
| 4     | I_16x16_3_0_0 | 0010 <b>1</b>     |  |
| 5     | I_16x16_0_1_0 | 0011 <b>0</b>     |  |
| 6     | I_16x16_1_1_0 | 0011 <b>1</b>     |  |
| 7     | I_16x16_2_1_0 | 000100 <b>0</b>   |  |
| 8     | I_16x16_3_1_0 | 000100 <b>1</b>   |  |
| 9     | I_16x16_0_2_0 | 0001 <b>010</b>   |  |
| 10    | I_16x16_1_2_0 | 0001 <b>011</b>   |  |
| 11    | I_16x16_2_2_0 | 0001 <b>100</b>   |  |
| 12    | I_16x16_3_2_0 | 0001 <b>101</b>   |  |
| 13    | I_16x16_0_0_1 | 000111 <b>0</b>   |  |
| 14    | I_16x16_1_0_1 | 000111 <b>1</b>   |  |
| 15    | I_16x16_2_0_1 | 00001000 <b>0</b> |  |
| 16    | I_16x16_3_0_1 | 00001000 <b>1</b> |  |
| 17    | I_16x16_0_1_1 | 000010 <b>010</b> |  |
| 18    | I_16x16_1_1_1 | 000010 <b>011</b> |  |
| 19    | I_16x16_2_1_1 | 000010 <b>100</b> |  |
| 20    | I_16x16_3_1_1 | 00001 <b>0101</b> |  |
| 21    | I_16x16_0_2_1 | 00001 <b>0110</b> |  |
| 22    | I_16x16_1_2_1 | 00001 <b>0111</b> |  |
| 23    | I_16x16_2_2_1 | 00001 <b>1000</b> |  |
| 24    | I_16x16_3_2_1 | 00001 <b>1001</b> |  |
| 25    | I_PCM         | 000011010         |  |

— If slice\_type is P, the bits in bold font in <u>Table A.3</u> shall be selected for Content Sensitive encryption.

Table A.3 — mb\_type for P slice

| Index | Symbol       | Code-word   |
|-------|--------------|-------------|
| 0     | P_L0_16x16   | 1           |
| 1     | P_L0_L0_16x8 | 01 <b>0</b> |
| 2     | P_L0_L0_8x16 | 01 <b>1</b> |
| 3     | P_8x8        | 00100       |
| 4     | P_8x8ref0    | 00101       |
|       |              |             |

# A.1.4 PCM sample Luma and Chroma

In ISO/IEC 14496-10:2014, 7.3.5 (Macroblock layer syntax), **pcm\_sample\_luma** and **pcm\_sample\_chroma** are sample values in the raster scan within the macroblock and are coded Fixe-length coding. Therefore, all bits shall be selected for Content Sensitive encryption.

# A.1.5 Macroblock QP Delta

In ISO/IEC 14496-10:2014, 7.3.5 (Macroblock layer syntax),  $mb_qp_delta$  is coded in ue(v) (i.e. unsigned Exponential-Golomb code-word). But the value of  $mb_qp_delta$  shall be in the range of  $-(26 + QpBdOffset_Y / 2)$  to  $+(25 + QpBdOffset_Y / 2)$ , inclusive. So this code-word is eligible to be cyphered if, and only if, its absolute value is less than:

$$2^{Floor(Log2(25+QpBdOffsetY/2))}$$
 (2)

Then, the suffix bits (i.e. the bits following the first '1'), as illustrated by the bold font in <u>Table A.4</u>, shall be selected for Content Sensitive encryption.

| Index | Mb_QP_Delta value | Code-word       |
|-------|-------------------|-----------------|
| 0     | 0                 | 1               |
| 1     | 1                 | 010             |
| 2     | -1                | 011             |
| 3     | 2                 | 001 <b>00</b>   |
| 4     | -2                | 001 <b>01</b>   |
| 5     | 3                 | 001 <b>10</b>   |
| 6     | -3                | 001 <b>11</b>   |
| 7     | 4                 | 0001 <b>000</b> |
| 8     | -4                | 0001 <b>001</b> |
|       |                   |                 |

Table A.4 — Mb\_qp\_delta

#### A.1.6 Prediction Intra Luma

In ISO/IEC 14496-10:2014, 7.3.5.1 (Macroblock prediction syntax), **rem\_intra4x4\_pred\_mode** and **rem\_intra8x8\_pred\_mode** are coded in Fixed length coding. Therefore, all bits shall be selected for Content Sensitive encryption. Moreover, blocks located on the border of the video slice shall not be selected for Content Sensitive encryption.

# A.1.7 Prediction Intra Chroma

In ISO/IEC 14496-10:2014, 7.3.5.1 (Macroblock prediction syntax), **intra\_chroma\_pred\_mode** is coded in ue(v) (i.e. unsigned Exponential-Golomb code-word). The bits in bold font in <u>Table A.5</u>, shall be selected as for Content Sensitive encryption. Blocks located on the border of the video slice shall not be selected for Content Sensitive encryption.

| Index | Direction  | code-word |  |  |
|-------|------------|-----------|--|--|
| 0     | DC         | 0         |  |  |
| 1     | Horizontal | 010       |  |  |
| 2     | Vertical   | 011       |  |  |
| 3     | Plan       | 00100     |  |  |

Table A.5 — intra\_chroma\_pred\_mode table

# A.1.8 Motion prediction reference

In ISO/IEC 14496-10:2014, 7.3.5.1 and 7.3.5.2 (Macroblock prediction syntax and Sub-macroblock prediction syntax), **ref\_idx\_l0** is coded in te(v) (i.e. truncated Exponential-Golomb code-word) and specifies the index in reference picture list 0 of the reference picture to be used for prediction.

The eligibility for Content Sensitive encryption depends on the maximum range of ref\_idx\_l0, so let <code>max\_ref\_l0</code> be equal to:

- num\_ref\_idx\_l0\_active\_minus1+1, if MbaffFrameFlag is equal to 0 or mb\_field\_decoding\_flag is equal to 0.
- 2 \* num\_ref\_idx\_l0\_active\_minus1 + 2, otherwise (MbaffFrameFlag is equal to 1 and mb\_field\_decoding\_flag is equal to 1).

When *max\_ref\_l0* is equal to 1, ref\_idx\_l0 is inferred to be equal to 0 and cannot be selected for Content Sensitive encryption.

When *max\_ref\_l0* is equal to 2, ref\_idx\_l0 is coded on one bits and shall be selected for Content Sensitive encryption.

When  $max\_ref\_l0$  is greater than 2,  $ref\_idx\_l0$  is coded in ue(v). The suffix bits (i.e. the bits following the first '1') as illustrated by the bold font bits in <u>Table A.6</u> shall be selected as for Content Sensitive encryption. But this code-word is eligible to be cyphered if, and only if, its value is less than  $2^{Floor(Log2(max\_ref\_10))}$ .

| Index | ref_idx_lX | Code-word     |
|-------|------------|---------------|
| 0     | 0          | 1             |
| 1     | 1          | 01 <b>0</b>   |
| 2     | 2          | 011           |
| 3     | 3          | 001 <b>00</b> |
| 4     | 4          | 001 <b>01</b> |
|       |            |               |

Table A.6 — ref\_idx\_lX code-words table

In ISO/IEC 14496-10:2014, 7.3.5.1 and 7.3.5.2 (Macroblock prediction syntax and Sub-macroblock prediction syntax), **ref\_idx\_l1** is coded in te(v) (i.e. truncated Exponential-Golomb code-word), and specifies the index in reference picture list 1 of the reference picture to be used for prediction. It has the same semantics as ref\_idx\_l0, with l0 and list 0 replaced by l1 and list 1, respectively.

# A.1.9 Motion prediction vector

In ISO/IEC 14496-10:2014, 7.3.5.1 and 7.3.5.2 (Macroblock prediction syntax and Sub-macroblock prediction syntax), **mvd\_l0** and **mvd\_l1** are coded in ue(v) (i.e. unsigned Exponential-Golomb codeword), and specify the difference between a vector component to be used and its prediction.

The suffix bits (i.e. the bits following the first '1'), as illustrated by the bold font bits in <u>Table A.7</u>, shall be selected as for Content Sensitive encryption.

| Index | Mvd_lX | Code-word       |
|-------|--------|-----------------|
| 0     | 0      | 1               |
| 1     | 1      | 01 <b>0</b>     |
| 2     | -1     | 011             |
| 3     | 2      | 001 <b>00</b>   |
| 4     | -2     | 001 <b>01</b>   |
| 5     | 3      | 001 <b>10</b>   |
| 6     | -3     | 001 <b>11</b>   |
| 7     | 4      | 0001 <b>000</b> |
| 8     | -4     | 0001 <b>001</b> |

Table A.7 — Mvd IX table

**Table A.7** (continued)

| Index | Mvd_lX | Code-word |
|-------|--------|-----------|
|       |        |           |

# A.1.10 Trailing ones

In ISO/IEC 14496-10:2014, 7.3.5.3.2 (Residual block CAVLC syntax), **trailing\_ones\_sign\_flag** is coded in Fixed length coding. Therefore, all bits shall be selected for Content Sensitive encryption.

## A.1.11 Level Suffix

In ISO/IEC 14496-10:2014, 7.3.5.3.2 (Residual block CAVLC syntax), **level\_suffix** is coded in Fixed length coding. Therefore, all bits shall be selected for Content Sensitive encryption.

#### A.1.12 Total zeros

In ISO/IEC 14496-10:2014, 7.3.5.3.2 (Residual block CAVLC syntax), **total\_zeros** is coded in ce(v) (i.e. coded Exponential-Golomb code-word). The bits in bold font in <u>Table A.8</u> and <u>Table A.9</u> shall be selected for Content Sensitive encryption <u>Table A.5</u> only if total\_coeff=1.

Table A.8 — Total\_zeros table for Block 2x2 and if total\_coeff=1

| Index | Total_zeros values | Code-word |
|-------|--------------------|-----------|
| 0     | 0                  | 0         |
| 1     | 1                  | 01        |
| 2     | 2                  | 010       |
| 3     | 3                  | 011       |

Table A.9 — Total\_zeros table for Block 4x4 and if total\_coeff=1

| Index | Total_zeros values | Code-word         |
|-------|--------------------|-------------------|
| 0     | 0                  | 1                 |
| 1     | 1                  | 010               |
| 2     | 2                  | 011               |
| 3     | 3                  | 0010              |
| 4     | 4                  | 0011              |
| 5     | 5                  | 00010             |
| 6     | 6                  | 00011             |
| 7     | 7                  | 00001 <b>0</b>    |
| 8     | 8                  | 00001 <b>1</b>    |
| 9     | 9                  | 000001 <b>0</b>   |
| 10    | 10                 | 0000011           |
| 11    | 11                 | 0000001 <b>0</b>  |
| 12    | 12                 | 0000001 <b>1</b>  |
| 13    | 13                 | 00000001 <b>0</b> |
| 14    | 14                 | 000000011         |
| 15    | 15                 | 00000000          |

## A.1.13 Run Before

In ISO/IEC 14496-10:2014, 7.3.5.3.2 (Residual block CAVLC syntax), **run\_before** is coded by a specific table (<u>Table A.10</u>) and specifies the number of consecutive transform coefficient levels in the scan with

zero value before a non-zero valued transform coefficient level. The bits in bold font in <u>Table A.10</u> shall be selected as for Content Sensitive encryption, if and only if the codeword run\_before was preceded by (Totalcoeff-2) codewords run\_before in the same block.

| run hafara | zerosLeft |            |    |            |             |             |             |
|------------|-----------|------------|----|------------|-------------|-------------|-------------|
| run_before | 1         | 2          | 3  | 4          | 5           | 6           | >6          |
| 0          | 1         | 1          | 11 | 1 <b>1</b> | 1 <b>1</b>  | 11          | 1 <b>11</b> |
| 1          | 0         | 01         | 10 | 10         | 10          | 000         | 1 <b>10</b> |
| 2          | _         | 0 <b>0</b> | 01 | 01         | 011         | 0 <b>01</b> | 1 <b>01</b> |
| 3          | _         | _          | 00 | 001        | 0 <b>10</b> | 011         | 100         |
| 4          | _         | _          | _  | 000        | 0 <b>01</b> | 0 <b>10</b> | 011         |
| 5          | _         | _          | _  | _          | 000         | 10 <b>1</b> | 010         |
| 6          | _         | _          | _  | _          | _           | 10 <b>0</b> | 001         |
| 7          | _         | _          | _  | _          | _           | _           | 0001        |
| 8          | _         | _          | _  | _          | _           | _           | 00001       |
| 9          | _         | _          | _  | _          | _           | _           | 000001      |
| 10         | _         | _          | _  | _          | _           | _           | 0000001     |
| 11         |           |            |    |            | _           | _           | 00000001    |
| 12         | _         | _          | _  | _          | _           | _           | 000000001   |
| 13         | _         | _          | _  |            | _           | _           | 0000000001  |
| 14         | _         |            | _  | _          | _           | _           | 00000000001 |

Table A.10 — Tables for run\_before

# A.2 Code-words containing bins selected for encryption for MPEG-4/AVC CABAC

## A.2.1 General

This clause gives the list of all VLC tables and code words that shall be encrypted by the Content Sensitive encryption process for AVC|H264 CABAC mode (i.e. entropy\_coding\_mode is equal to 1 in ISO/IEC 14496-10 in Picture Parameter set RBSP syntax).

## A.2.2 PCM sample Luma and Chroma

In ISO/IEC 14496-10:2014, 7.3.5 (Macroblock layer syntax), **pcm\_sample\_luma** and **pcm\_sample\_chroma** are sample values in the raster scan within the macroblock and are coded Fixe-length coding. Therefore, all bits shall be selected for Content Sensitive encryption.

# A.2.3 Absolute value of coefficient level

In ISO/IEC 14496-10:2014, 7.3.5.3.3 (Residual block CABAC syntax), **coeff\_abs\_level\_minus1** is the absolute value of a transform coefficient level minus 1.

coeff\_abs\_level\_minus1 is coded in UEG0 bin string (i.e. concatenated unary/0th order Exp-Golomb bin string), as specified in ISO/IEC 14496-10:2014, 9.3.2.3. The Unary prefix is obtained by invoking TU binarization process with cmax=14 as specified in ISO/IEC 14496-10:2014, 9.3.2.2.

The bins in bold font in <u>Table A.11</u> shall be selected as for Content Sensitive encryption, i.e. the UEG0 suffix bit string when Coeff\_abs\_level\_minus1>14.

| Cooff aha laval minusi              | Unany Drofiy   | Exp-Golomb |        |
|-------------------------------------|----------------|------------|--------|
| Coeff_abs_level_minus1 Unary Prefix |                | Prefix     | Suffix |
| 0                                   | 0              |            |        |
| 1                                   | 1              |            |        |
| 2                                   | 10             |            |        |
| 3                                   | 110            |            |        |
|                                     |                |            |        |
| 12                                  | 1111111111110  |            |        |
| 13                                  | 11111111111110 |            |        |
| 14                                  | 11111111111111 | 1 0        |        |
| 15                                  | 11111111111111 | 10         | 0      |
| 16                                  | 11111111111111 | 10         | 1      |
| 17                                  | 11111111111111 | 110        | 00     |
| 18                                  | 11111111111111 | 110        | 01     |
| 19                                  | 11111111111111 | 110        | 10     |
| 20                                  | 11111111111111 | 110        | 11     |
| 21                                  | 11111111111111 | 1110       | 000    |
|                                     |                |            |        |

NOTE Only Bypass decoding process is applied on the bins selected as for Content Selective Encryption.

# A.2.4 Motion prediction vector

In ISO/IEC 14496-10:2014, 7.3.5.1 and 7.3.5.2 (Macroblock prediction syntax and Sub-macroblock prediction syntax), **mvd\_l0** and **mvd\_l1** specify the difference between a vector component to be used and its prediction.

mvd\_l0 and mvd\_l1 are coded in UEG3 bin string (i.e. concatenated unary/3th order Exp-Golomb bin string) as specified in ISO/IEC 14496-10:2014, 9.3.2.3. The Unary prefix is obtained by invoking TU binarization process with cmax=9 as specified in ISO/IEC 14496-10:2014, 9.3.2.2.

The bits in bold font in <u>Table A.12</u> shall be selected as for Content Sensitive encryption, i.e. the UEG3 suffix bit string when  $Abs(Mvd_lX)>32$ , and the sign bits.

Table A.12 — Mvd\_lX table

| Mvd_lX | Unary Prefix | 3th order Exp-<br>Golomb |        | sign |
|--------|--------------|--------------------------|--------|------|
|        |              | Prefix                   | Suffix |      |
| 0      | 0            |                          |        |      |
| 1      | 10           |                          |        | 0    |
| -1     | 10           |                          |        | 1    |
| 2      | 110          |                          |        | 0    |
| -2     | 110          |                          |        | 1    |
|        |              |                          |        |      |
| 8      | 111111110    |                          |        | 0    |
| -8     | 111111110    |                          |        | 1    |

| Mvd_lX | Unary Prefix | 3th order Exp-<br>Golomb |        | sign |
|--------|--------------|--------------------------|--------|------|
|        |              | Prefix                   | Suffix | - 8  |
| 9      | 111111111    | 0                        | 000    | 0    |
| -9     | 111111111    | 0                        | 000    | 1    |
| 10     | 111111111    | 0                        | 001    | 0    |
| -10    | 111111111    | 0                        | 001    | 1    |
|        |              | 0                        |        |      |
| 16     | 111111111    | 0                        | 111    | 0    |
| -16    | 111111111    | 0                        | 111    | 1    |
| 17     | 111111111    | 10                       | 0000   | 0    |
| -17    | 111111111    | 10                       | 0000   | 1    |
| 18     | 111111111    | 10                       | 0001   | 0    |
| -18    | 111111111    | 10                       | 0001   | 1    |
|        |              |                          |        |      |
| 32     | 111111111    | 10                       | 1111   | 0    |
| -32    | 111111111    | 10                       | 1111   | 1    |
| 33     | 111111111    | 110                      | 00000  | 0    |
| -33    | 111111111    | 110                      | 00000  | 1    |
| 34     | 111111111    | 110                      | 00001  | 0    |
| -34    | 111111111    | 110                      | 00001  | 1    |
| 35     | 111111111    | 110                      | 00010  | 0    |
| -35    | 111111111    | 110                      | 00010  | 1    |
|        |              |                          |        |      |

**Table A.12** (continued)

 $NOTE \qquad Only\ By pass\ decoding\ process\ is\ applied\ on\ the\ bins\ selected\ as\ for\ Content\ Sensitive\ encryption.$ 

# A.2.5 Sign of coefficient level

In ISO/IEC 14496-10:2014, 7.3.5.3.3 (Residual block CABAC syntax), **coeff\_sign\_flag** is the sign of a transform coefficient level and is coded in Fixed length coding. Therefore, all bins shall be selected as for Content Sensitive encryption.

# A.3 Code-words containing bins selected for encryption MPEG-H/HEVC

# A.3.1 General

This clause gives all possible encrypted syntax elements in ISO/IEC 23008-2 in format compliant (i.e. providing HEVC compliant bitstream).

# A.3.2 Motion vector difference

The absolute value of MV differences minus 2 is binarization in EG1 code and then bypass coded. Thus, only the suffix part of MV difference is encrypted in format compliant and without impacting the compression ratio. Thus, the suffix of MV difference shall be selected for Content Sensitive encryption.

# ISO/IEC 23001-7:2016/Amd.1:2019(E)

The EGk code is a concatenation of prefix and suffix. For an unsigned integer Y, the prefix part of the EGk code is the Unary representation of  $l(Y) = \left| log_2 \left( \frac{Y}{2^k} + 1 \right) \right|$ . The suffix part is the Fixed Length code

of  $Y + 2^k(1 - 2^{l(y)})$  with cMax = k + l(Y). Table A.13 gives an example of the binarization of the MV syntax element minus 2 with using EG1 code as defined in ISO/IEC 23008-2. All bins of the suffix part shall be selected for Content Sensitive encryption.

Table A.13 — Binarization of the MV minus 2 syntax element with EG1 code

| MV<br>difference<br>minus2 | Prefix | Suffix |
|----------------------------|--------|--------|
| 2                          | 10     | 00     |
| 3                          | 10     | 01     |
| 4                          | 10     | 10     |
| 5                          | 10     | 11     |
| 6                          | 110    | 000    |
| 7                          | 110    | 001    |
| 8                          | 110    | 010    |
| 9                          | 110    | 011    |
| 10                         | 110    | 100    |
| 11                         | 110    | 101    |
| 12                         | 110    | 111    |

# A.3.3 Motion vector difference sign

The signs of MV difference (**mvd\_sign\_flag** defined in ISO/IEC 23008-2) shall be selected for Content Sensitive encryption since they are binarized in FL code with cMax = 1 and bypassed.

# A.3.4 Delta QP sign syntax element

The sign of Delta QP (**cu\_qp\_delta\_sign\_flag** defined in ISO/IEC 23008-2) is binarized in FL code with cMax = 1 and bypassed. This shall be selected for Content Sensitive encryption.

# A.3.5 Transform coefficient sign

Transform coefficient sign (**sig\_coeff\_flag** defined in ISO/IEC 23008-2) is binarized in FL code with cMax = 1 and bypassed. This shall be selected for Content Sensitive encryption.

**Bibliography** 

Remove Reference [2].

For Reference [5], add the date of publication: 2014.



