

BUNDESREPUBLIK
 DEUTSCHLAND

PATENT- UND
MARKENAMT

® Offenlegungsschrift

_® DE 100 58 474 A 1

(7) Aktenzeichen:

100 58 474.8

(2) Anmeldetag:

24. 11. 2000

43 Offenlegungstag:

5. 7.2001

⑤ Int. Cl.⁷:

C 09 K 19/08

C 07 C 255/49 C 07 C 255/55 C 07 C 69/00

C 07 C 25/18 C 07 C 25/24 C 07 C 43/00

C 07 C 43/225 C 07 C 13/28

G 09 F 9/35 G 02 F 1/137

66 Innere Priorität:

199 63 508.0

28. 12. 1999

(1) Anmelder:

Merck Patent GmbH, 64293 Darmstadt, DE

(72) Erfinder:

Hirschmann, Harald, Dr., 64291 Darmstadt, DE; Weller, Clarissa, 64546 Mörfelden-Walldorf, DE; Schüpfer, Sven, 63741 Aschaffenburg, DE; Reuter, Marcus, 64293 Darmstadt, DE; Reiffenrath, Volker, 64380 Roßdorf, DE; Weber, Georg, 64390 Erzhausen, DE; Zimmermann, Dagmar, 64521 Groß-Gerau, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Н

- (4) TN- und STN-Flüssigkristallanzeigen
- 57 Die Erfindung betrifft TN- und STN-Flüssigkristallanzeigen sowie die darin verwendeten neuen nematischen Flüssigkristallmischungen, dadurch gekennzeichnet, daß sie eine oder mehrere Verbindungen der Formel I

sowie eine oder mehrere Verbindungen der Formel II

$$R^3$$
 H H O R^4

enthalten, worin ${\sf R}^1,\,{\sf R}^3,\,{\sf R}^4,\,{\sf L}$ und a die in Anspruch 1 angegebene Bedeutung besitzen.

Beschreibung

Die Erfindung betrifft verdrillte und hochverdrillte nematische Flüssigkristallanzeigen (englisch: Twisted Nematic, kurz: TN; bzw. Supertwisted Nematic, kurz: STN) mit sehr kurzen Schaltzeiten und guten Steilheiten und Winkelabhängigkeiten sowie die darin verwendeten neuen nematischen Flüssigkristallmischungen.

TN-Anzeigen sind bekannt, z. B. aus M. Schadt und W. Helfrich, Appl. Phys. Lett., 18, 127 (1971). STN-Anzeigen sind bekannt, z. B. aus EP 0 131 216 B1; DE 34 23 993 A1; EP 0 098 070 A2; M. Schadt und F. Leenhouts, 17. Freiburger Arbeitstagung Flüssigkristalle (8.–10.04.87); K. Kawasaki et al., SID 87 Digest 391 (20.6); M. Schadt und F. Leenhouts, SID 87 Digest 372 (20.1); K. Katoh et al., Japanese Journal of Applied Physics, Vol. 26, No. 11, L 1784–L 1786 (1987); F. Leenhouts et al., Appl. Phys. Lett. 50 (21), 1468 (1987); H. A. von Sprang und H. G. Koopman, J. Appl. Phys. 62 (5), 1734 (1987); T. J. Scheffer und J. Nehring, Appl. Phys. Lett. 45 (10), 1021 (1984), M. Schadt und F. Leenhouts, Appl. Phys. Lett. 50 (5), 236 (1987) und E. P. Raynes, Mol. Cryst. Liq. Cryst. Letters Vol. 4 (1), pp. 1–8 (1986). Der Begriff STN umfaßt hier jedes höher verdrillte Anzeigeelement mit einem Verdrillungswinkel dem Betrage nach zwischen 160° und 360°, wie beispielsweise die Anzeigeelemente nach Waters et al. (C. M. Waters et al., Proc. Soc. Inf. Disp. (New York) (1985) (3rd Intern. Display Conference, Kobe, Japan), die STN-LCD's (DE OS 35 03 259), SBE-LCD's (T. J. Scheffer und J. Nehring, Appl. Phys. Lett. 45 (1984) 1021), OMI-LCD's (M. Schadt und F. Leenhouts, Appl. Phys. Lett. 50 (1987), 236, DST-LCD's (EP OS 0 246 842) oder BW-STN-LCD's (K. Kawasaki et al., SID 87 Digest 391 (20.6)).

STN-Anzeigen zeichnen sich im Vergleich zu Standard-TN-Anzeigen durch wesentlich bessere Steilheiten der elektrooptischen Kennlinie und, bei mittleren und höheren Multiplexraten, beispielsweise 32 bis 64 und höher, durch bessere Kontrastwerte aus. Dagegen ist in TN-Anzeigen im Allgemeinen der Kontrast aufgrund des besseren Dunkelwertes höher und die Winkelabhängigkeit des Kontrastes geringer als in STN-Anzeigen mit niedrigen Multiplexraten von beispielsweise weniger als 32.

Von besonderem Interesse sind TN- und STN-Anzeigen mit sehr kurzen Schaltzeiten insbesondere auch bei tieferen Temperaturen. Zur Erzielung von kurzen Schaltzeiten wurden bisher die Rotationsviskositäten der Flüssigkristallmischungen optimiert unter Verwendung von meist monotropen Zusätzen mit relativ hohem Dampfdruck. Die erzielten Schaltzeiten waren jedoch nicht für jede Anwendung ausreichend.

Zur Erzielung einer steilen elektrooptischen Kennlinie in den erfindungsgemäßen Anzeigen sollen die Flüssigkristallmischungen relativ große Werte für das Verhältnis der elastischen Konstanten K_{33}/K_{11} , sowie relativ kleine Werte für $\Delta \varepsilon / \varepsilon_{11}$ aufweisen, wobei $\Delta \varepsilon$ die dielektrische Anisotropie und die dielektrische Konstante senkrecht zur Moleküllängsachse ist.

Über die Optimierung des Kontrastes und der Schaltzeiten hinaus werden an derartige Mischungen weitere wichtige Anforderungen gestellt:

1. Breites d/p-Fenster

35

- 2. Hohe chemische Dauerstabilität
- 3. Hoher elektrischer Widerstand
- 4. Geringe Frequenz- und Temperaturabhängigkeit der Schwellenspannung.

Die erzielten Parameterkombinationen sind bei weitem noch nicht ausreichend, insbesondere für Hochmultiplex-STN-Anzeigen (mit einer Multiplexrate im Bereich von ca. 1/400), aber auch für Mittel- und Niedermultiplex-STN- (mit Multiplexraten im Bereich von ca. 1/64 bzw. 1/16), und TN-Anzeigen. Zum Teil ist dies darauf zurückzuführen, daß die verschiedenen Anforderungen durch Materialparameter gegenläufig beeinflußt werden.

Es besteht somit immer noch ein großer Bedarf nach TN- und STN-Anzeigen, insbesondere für Mittel- und Niedermultiplex-STN-Anzeigen, mit sehr kurzen Schaftzeiten bei gleichzeitig großem Arbeitstemperaturbereich, hoher Kennliniensteilheit, guter Winkelabhängigkeit des Kontrastes und niedriger Schwellenspannung, die den oben angegebenen Anforderungen gerecht werden.

Der Erfindung liegt die Aufgabe zugrunde, TN- und STN-Anzeigen bereitzustellen, die die oben angegebenen Nachteile nicht oder nur in geringerem Maße und gleichzeitig kurze Schaltzeiten, insbesondere bei tiefen Temperaturen, und sehr gute Steilheiten aufweisen.

Es wurde nun gefunden, daß diese Aufgabe gelöst werden kann, wenn man nematische Flüssigkristallmischungen verwendet, die eine oder mehrere Verbindungen der Formel I

$$R^1 \longrightarrow H \longrightarrow CEC-CN$$

60 sowie eine oder mehrere Alkenyl-Verbindungen der Formel II

$$R^3$$
 H O R^4

enthalten, worin

R¹ und R⁴ jeweils unabhängig voneinander eine Alkyl-, Alkoxy- oder Alkenylgruppe mit 1 bis 12 C-Atomen, wobei auch ein oder zwei nicht benachbarte CH2-Gruppen durch -O-, -CH=CII-, -CO-, -OCO- oder -COO- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind,

R³ eine Alkenylgruppe mit 2 bis 7 C-Atomen,

L H oder F, und

a 0 oder 1

bedeuten.

Die Verwendung der Verbindungen der Formeln I und II in den Mischungen für erfindungsgemäße TN- und STN-Anzeigen bewirkt

10

20

25

50

65

- hohe Steilheit der elektrooptischen Kennlinie
- geringe Temperaturabhängigkeit der Schwellenspannung und
- sehr schnelle Schaltzeiten, insbesondere bei tiefen Temperaturen.

Die Verbindungen der Formel I und II verkürzen insbesondere deutlich die Schaltzeiten von TN- und STN-Mischungen bei gleichzeitiger Erhöhung der Steilheit und geringer Temperaturabhängigkeit der Schwellenspannung.

Weiterhin zeichnen sich die erfindungsgemäßen Mischungen durch folgende Vorzüge aus

- sie besitzen eine niedrige Viskosität,
- sie besitzen eine niedrige Schwellenspannung und Operationsspannung,
- sie bewirken lange Lagerzeiten in der FK-Anzeige bei tiefen Temperaturen.

Gegenstand der Erfindung ist somit eine Flüssigkristallanzeige mit

- zwei Trägerplatten, die mit einer Umrandung eine Zelle bilden,
- einer in der Zelle befindlichen nematischen Flüssigkristallmischung mit positiver dielektrischer Anisotropie,
- Elektrodenschichten mit Orientierungsschichten auf den Innenseiten der Trägerplatten.
- einem Anstellwinkel zwischen der Längsachse der Moleküle an der Oberfläche der Trägerplatten und den Trägerplatten von 0 Grad bis 30 Grad, und
- einem Verdrillungswinkel der Flüssigkristallmischung in der Zelle von Orientierungsschicht zu Orientierungsschicht dem Betrag nach zwischen 22,5° und 600°,
- einer nematischen Flüssigkristallmischung bestehend aus
 - a) 15-80 Gew.-% einer flüssigkristallinen Komponente A, bestehend aus einer oder mehreren Verbindungen mit einer dielektrischen Anisotropie von über +1,5;
 - b) 25-85 Gew.-% einer flüssigkristallinen Komponente B, bestehend aus einer oder mehreren Verbindungen mit einer dielektrischen Anisotropie zwischen -1,5 und +1,5;
 - c) 0-20 Gew.-% einer flüssigkristallinen Komponente D, bestehend aus einer oder mehreren Verbindungen mit einer dielektrischen Anisotropie von unter -1,5 und
 - d) gegebenenfalls einer optisch aktiven Komponente C in einer Menge, daß das Verhältnis zwischen Schichtdicke (Abstand der Trägerplatten) und natürlicher Ganghöhe der chiralen nematischen Flüssigkristallmischung etwa 0,2 bis 1,3 beträgt,

dadurch gekennzeichnet, daß Komponente A mindestens eine Verbindung der Formel I enthält

$$R^1 - H - C \equiv C - CN$$

und Komponente B mindestens eine Verbindung der Formel II enthält

$$R^3 - H - H - O R^4$$

R1 und R4 jeweils unabhängig voneinander eine Alkyl-, Alkoxy- oder Alkenylgruppe mit 1 bis 12 C-Atomen, wobei auch ein oder zwei nicht benachbarte CH2-Gruppen durch -O-, -CH=CH-, -CO-, -OCO- oder -COO- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind,

R³ eine Alkenylgruppe mit 2 bis 7 C-Atomen,

L H oder F, und

a 0 oder 1 bedeuten.

Gegenstand der Erfindung sind auch entsprechende Flüssigkristallmischungen zur Verwendung in TN- und STN-An-

zeigen, insbesondere in mittel- und niedrigmultiplexierten STN-Anzeigen.

Besonders bevorzugt sind Flüssigkristallmischungen, die eine oder mehrere Verbindungen der Formel I enthalten, wo-

rin R¹ eine geradkettige Alkylgruppe mit 1 bis 8 C-Atomen bedeutet.

Ferner bevorzugt sind Flüssigkristallmischungen, die eine oder mehrere Verbindungen der Formel I enthalten, worin R¹ eine geradkettige Alkenylgruppe mit 2 bis 7 C-Atomen bedeutet.

Formel I umfaßt folgende Verbindungen

10

15

30

35

50

$$R^1 \longrightarrow C \equiv C - CN$$

$$R^1 - H - O - C = C - CN$$
 I-2

worin R¹ die oben angegebene Bedeutung besitzt.

Besonders bevorzugte Verbindungen der Formel I-1 sind solche ausgewählt aus der folgenden Gruppe,

$$R^{1a}$$
 H
 O
 $C \equiv C - CN$
I-1b

$$R^{1a}$$
 H O CEC-CN I-1c

besonders bevorzugte Verbindungen der Formel I-2 sind solche ausgewählt aus der folgenden Gruppe

$$R^{1a}$$
 H
 O
 $C \equiv C - CN$
I-2b

55
$$R^{1a}$$
 H O $C \equiv C - CN$ I-2c

worin R^{1a} H, CH₃, C₂H₅ oder n-C₃H₇ und alkyl eine Alkylgruppe mit 1 bis 8 C-Atomen bedeuten. Besonders bevorzugt sind Verbindungen der Formeln I-1a bzw. I-2a.

Ferner bevorzugte Verbindungen sind solche der Formeln I-1b, I-1c, I-2b und I-2c, worin R^{1a} H bedeutet. Die erfindungsgemäßen Medien enthalten vorzugsweise eine oder mehrere Verbindungen der Formel I-1, oder eine

oder mehrere Verbindungen der Formel I-2, insbesondere solche der oben genannten bevorzugten Unterformeln. Formel II umfaßt folgende Verbindungen

$$R^3 \longrightarrow H \longrightarrow H \longrightarrow R^4$$
 II-1

 $R^3 \longrightarrow H \longrightarrow H \longrightarrow O \longrightarrow R^4$ II-2

worin R³ und R⁴ die oben angegebene Bedeutung besitzen.

Besonders bevorzugt sind erfindungsgemäße TN- und STN-Anzeigen, die wenigstens eine Verbindung der Formel II-1 enthalten.

Ferner bevorzugt sind TN- und STN-Anzeigen, die wenigstens jeweils eine Verbindung der Formeln II-1 und II-2 enthalten.

In den Formeln II-1 und II-2 bedeutet R³ besonders bevorzugt 1E-alkenyl oder 3 E-alkenyl mit 2 bis 7 C-Atomen. Besonders bevorzugte Verbindungen der Formel II-1 sind solche, worin R⁴ Alkenyl mit 2 bis 7 C-Atomen bedeutet, sowie Verbindungen ausgewählt aus den Formeln II-1a bis II-1e

$$R^{3a}$$
 H
 H
 R^{4a}
 R^{3a}
 H
 H
 R^{4a}
 R^{4a}

worin R^{3a} und R^{4a} jeweils unabhängig voneinander H, CH₃, C₂H₅ oder n-C₃H₇ und alkyl eine Alkylgruppe mit 1 bis 8 C- 49. Atomen bedeuten.

Besonders bevorzugt sind Verbindungen der Formel II-1a, insbesondere solche, worin R^{3a} und R^{4a} CH₃ bedeuten, sowie Verbindungen der Formel II-1e. worin R^{3a} H bedeutet.

Besonders bevorzugt sind erfindungsgemäße TN- und STN-Anzeigen, worin die Flüssigkristallmischung mindestens eine Verbindung der Formel II-1a und/oder II-1c enthält, in denen R^{3a} und R^{4a} jeweils dieselbe Bedeutung aufweisen, sowie Anzeigen, worin die Flüssigkristallmischung mindestens eine Verbindung der Formel II-1e enthält.

In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäßen TN- und STN-Anzeigen eine oder mehrere Verbindungen der Formel II-2.

Besonders bevorzugt sind Verbindungen der Formel II-2, worin R⁴ Alkyl mit 1 bis 8, insbesondere 1, 2 oder 3 C-Atomen, und R³ 1E-alkenyl oder 3E-alkenyl mit 2 bis 7, insbesondere 2, 3 oder 4 C-Atomen bedeuten, sowie Verbindungen 55 ausgewählt aus den Formeln II-2a und II-2b

$$R^{3a}$$
 H H O alkyl II-2b

worin R^{3a} voneinander H, CH₃, C₂H₅ oder n-C₃H₇, insbesondere H, und alkyl eine Alkylgruppe mit 1 bis 8, insbesondere

1, 2 oder 3 C-Atomen bedeuten.

Die Verwendung von Verbindungen der Formel II führt in den erfindungsgemäßen Flüssigkristallmischungen zu besonders niedrigen Werten der Rotationsviskosität und zu TN- und STN-Anzeigen mit einer hohen Steilheit und schnellen Schaltzeiten insbesondere bei niedrigen Temperaturen.

Die erfindungsgemäßen Mischungen enthalten neben den dielektrisch neutralen Alkenylverbindungen der Formel II vorzugsweise eine oder mehrere dielektrisch positive Alkenylverbindungen der Formel II*

$$R^3$$
 H O $Q-Y$ II^*

worin

15

R³ die in Formel II angegebenen Bedeutungen besitzt,

Q CF2, OCF2, CFH, OCFH oder eine Einfachbindung,

Y F oder Cl, und

L¹ und L² jeweils unabhängig voneinander H oder F bedeuten.

Besonders bevorzugte Verbindungen der Formel II* sind solche, worin L¹ und/oder L² F und Q-Y F oder OCF₃ bedeuten. Ferner bevorzugt sind Verbindungen der Formel II*, worin R³ 1E-alkenyl oder 3E-alkenyl mit 2 bis 7, insbesondere 2, 3 oder 4 C-Atomen bedeutet.

Die polaren Verbindungen der Formel II* mit einer dielektrischen Anisotropie von mehr als +1.5 sind der oben definierten Komponente A zuzuordnen.

Die erfindungsgemäßen Mischungen enthalten neben den Verbindungen der Formeln I und II vorzugsweise eine oder mehrere flüssigkristalline Tolan-Verbindungen. Aufgrund der hohen Doppelbrechung Δn der Tolan-Verbindungen kann bei geringeren Schichtdicken gearbeitet werden, wodurch die Schaltzeiten deutlich kürzer werden. Die Tolan-Verbindungen sind vorzugsweise ausgewählt aus der Gruppe T bestehend aus den Verbindungen der Formeln T1 und T2:

$$R^{1} = \begin{bmatrix} D \\ D \end{bmatrix} = Z^{4} = \begin{bmatrix} D \\ C \end{bmatrix} = C = C - \begin{bmatrix} D \\ C \end{bmatrix} =$$

$$R^{1} = \begin{bmatrix} D \\ D \end{bmatrix} = \begin{bmatrix} L^{3} \\ D \\ d \end{bmatrix} = \begin{bmatrix} L^{4} \\ D \\ D \end{bmatrix} = \begin{bmatrix} L^{2} \\ D \\ D \end{bmatrix} = \begin{bmatrix} L^{3} \\ D \\ D \end{bmatrix} = \begin{bmatrix} L^$$

worin

$$0 - 0$$
 oder 0 , vorzugsweise $- H$

in Formel T1 auch

$$- \underbrace{O}_{L^6}^{L^5} .$$

60 in Formel T2 auch

d 0 oder 1.

L¹ bis L⁷ jeweils unabhängig voneinander H oder F,

Q-CF₂-, -CHF-, -OCF₂-, -OCHF- oder eine Einfachbindung,

Y F oder Cl,

Z⁴-CO-O-, -CH₂CH₂- oder eine Einfachbindung bedeuten,

R¹ die oben angegebene Bedeutung besitzt und R² eine der für R¹ angegebenen Bedeutungen besitzt.

Bevorzugte Verbindungen der Formel T1 entsprechen den Unterformeln T1a und T1b

$$R^{1} \longrightarrow C \equiv C \longrightarrow C \longrightarrow Q-Y$$

$$L^{4} \qquad \qquad T1a \qquad \qquad 10$$

$$R^{1} \longrightarrow \begin{pmatrix} L^{3} & L^{1} \\ O & C \equiv C \longrightarrow Q-Y \end{pmatrix}$$
T1b

worin L^1 bis L^4 H oder F und Q-Y F, Cl oder OCF3, insbesondere F oder OCF3 bedeuten. Besonders bevorzugt sind Verbindungen der Formel T1b-1

$$R^1 - H - O - C \equiv C - O - OCF_3$$
 T1b-1

worin R¹ die oben angegebene Bedeutung besitzt. Bevorzugte Verbindungen der Formel T2 entsprechen den Unterformeln T2a bis T2h

40

35

25

5

45

55

50

60

$$R^{1} = O - C \equiv C - O - R^{2}$$

$$R^{1}$$
 H O $C \equiv C$ Q R^{2} $T2b$

$$_{15}$$
 R¹ H CH_2CH_2 O $C\equiv C$ O R^2 $T2c$

20
 R¹ \longrightarrow H \longrightarrow COO \longrightarrow O \longrightarrow C \equiv C \longrightarrow O \longrightarrow R² T2d

$$R^1 - H - Z^4 - O - C \equiv C - C - R^2$$
 T2g

worin R¹, R² und Z⁴ die oben angegebene Bedeutung besitzen, und L¹ bis L⁶ H oder F bedeuten.

Besonders bevorzugt sind Verbindungen der Formeln T2a und T2b.

30

In einer weiteren bevorzugten Ausführungsform enthalten die Mischungen eine oder mehrere Verbindungen der Formel T2h.

Besonders bevorzugte Verbindungen der Formel T2e sind solche, worin einer, zwei oder drei der Reste L^1 bis L^6 F und die anderen H bedeuten, wobei L^1 und L^2 bzw. L^3 und L^4 bzw. L^5 und L^6 nicht beide gleichzeitig F bedeuten.

Der Anteil der Verbindungen aus der Gruppe enthaltend T2a und T2b ist vorzugsweise 5 bis 50%, insbesondere 10 bis 40%.

Der Anteil der Verbindungen der Formel T2h ist vorzugsweise 2 bis 35%, insbesondere 4 bis 25%.

Der Anteil der Verbindungen der Formel T1b-1 ist vorzugsweise 2 bis 25%, insbesondere 4 bis 15%.

Der Anteil der Verbindungen aus der Gruppe T ist vorzugsweise 2 bis 55%, insbesondere 5 bis 35%.

Die Komponente A enthält vorzugsweise eine oder mehrere Cyanoverbindungen der folgenden Formeln

$$R - \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right) CN$$

$$R - \left(\begin{array}{c} H \\ \end{array} \right) - \left(\begin{array}{c} L^1 \\ \\ CN \\ L^2 \end{array} \right)$$

$$R - \underbrace{O} - COO - \underbrace{O}_{L^2}^{L^1} CN$$

$$R - \left(\begin{array}{c} L^1 \\ \\ \\ L^2 \end{array} \right)$$

$$R - \left(\begin{array}{c} H \\ \end{array} \right) - CH_2CH_2 - \left(\begin{array}{c} C \\ O \\ \end{array} \right) - CN$$

$$R - \left(H\right) - \left(O\right) - COO - \left(O\right) - CN$$

$$L^{2}$$

$$R \longrightarrow H \longrightarrow COO \longrightarrow CN$$
 IIIh

worin R eine der für R¹ in Formel I angegebenen Bedeutungen besitzt und L¹ und L² jeweils unabhängig voneinander H oder F bedeuten. R bedeutet in diesen Verbindungen besonders bevorzugt Alkyl oder Alkoxy mit 1 bis 8 C-Atomen.

Besonders bevorzugt sind Mischungen, die eine oder mehrere Verbindungen der Formeln IIIb, IIIc und IIIf, insbesondere solche, worin L¹ und/oder L² F bedeuten, enthalten.

Weiterhin bevorzugt sind Mischungen, die eine oder mehrere Verbindungen der Formel IIIh enthalten, worin L^2 H und L^1 H oder F, insbesondere F, bedeutet.

In einer speziellen Ausführungsform enthält die Komponente A vorzugsweise eine oder mehrere 3,4,5-Trifluorphenylverbindungen der folgenden Formeln

30
 R \longrightarrow H \longrightarrow O \longrightarrow F \longrightarrow IVa

$$A_0 R \longrightarrow H \longrightarrow G \longrightarrow F$$

IVb

$$R \longrightarrow H \longrightarrow O \longrightarrow F$$
 IVc

$$R - H - O F F$$

$$E F$$

$$E F$$

$$E F$$

$$E F$$

65

10

35

$$R - H - CH_2CH_2 - O + F$$
 IVe

$$R - \underbrace{H} - CH_2CH_2 - \underbrace{H} - \underbrace{O}_{F} - F \qquad IVf$$

$$R \xrightarrow{O} O F F IVh$$

sowie gegebenenfalls eine oder mehrere Verbindungen mit polarer Endgruppe der folgenden Formeln

$$R - H - COO - O - F$$
 Va

$$R - H - O - F$$
 Vb

$$R \longrightarrow H \longrightarrow O \longrightarrow F$$
 Vd

R —
$$H$$
 — CH_2CH_2 — H — O — F Vg

$$R \longrightarrow H \longrightarrow CI$$
Vh

$$R \longrightarrow H \longrightarrow O \longrightarrow OCF_3 \qquad Vi$$

$$R - \underbrace{H} - CH_2CH_2 - \underbrace{H} - OCF_3 \qquad Vq \qquad 50$$

$$R \longrightarrow CH_2CH_2 \longrightarrow H \longrightarrow CF_3 \qquad Vr \qquad 60$$

$$_{5}$$
 R— $\left(H\right)$ — $CH_{2}CH_{2}$ — $\left(H\right)$ — $\left(O\right)$ — $OCHF_{2}$ Vs

worin R eine der für R¹ in Formel I angegebenen Bedeutungen besitzt und L³ und L⁴ jeweils unabhängig voneinander H oder F bedeuten. R bedeutet in diesen Verbindungen besonders bevorzugt Alkyl oder Alkoxy mit 1 bis 8 C-Atomen.

Besonders bevorzugt sind Verbindungen der Formeln IVa, IVb, IVc, IVd, IVh und Vi, insbesondere Verbindungen der Formeln IVa, IVh und Vi.

Die einzelnen Verbindungen der Formeln I, II, III, IV und V bzw. deren Unterformeln oder auch andere Verbindungen, die in den erfindungsgemäßen TN- und STN-Anzeigen verwendet werden können, sind entweder bekannt, oder sie können analog zu den bekannten Verbindungen hergestellt werden.

Die Verbindungen der Formel II besitzen niedrige Viskositäten, insbesondere niedrige Rotationsviskositäten, sowie niedrige Werte für das Verhältnis der elastischen Konstanten K₃₃/K₁₁, und führen daher zu in den erfindungsgemäßen Anzeigen zu kurzen Schaltzeiten, während die Anwesenheit von Verbindungen der Formel I mit hoher dielektrischer Anisotropie, insbesondere in erhöhten Konzentrationen, eine Verringerung der Schwellenspannung bewirkt.

Bevorzugte Flüssigkristallmischungen enthalten eine oder mehrere Verbindungen der Komponente A vorzugsweise in einem Anteil von 15% bis 80%, besonders bevorzugt von 20% bis 70%. Diese Verbindungen besitzen eine dielektrische Anisotropie $\Delta \varepsilon \ge +3$, insbesondere $\Delta \varepsilon \ge +8$, besonders bevorzugt $\Delta \varepsilon \ge +12$.

Bevorzugte Flüssigkristallmischungen enthalten ein oder mehrere Verbindungen der Komponente B, vorzugsweise in einem Anteil von 20 bis 85%, besonders bevorzugt in einem Anteil von 30 bis 75%. Die Verbindungen der Gruppe B, insbesondere solche mit Alkenylgruppen, zeichnen sich insbesondere durch ihre niedrigen Werte für die Rotationsviskosität γ_1 aus.

Die Komponente B enthält neben ein oder mehreren Verbindungen der Formel II vorzugsweise eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den Zweiringverbindungen der folgenden Formeln

30

35

40

45

50

55

60

IV1

5

$$R^1 - \left(H \right) - \left(O \right) - R^2$$

IV2

$$R^1$$
— CH_2CH_2 — O — R^2

IV3

15

10

$$R^1 \longrightarrow R^2$$

IV4

20

$$R^1 \longrightarrow R^2$$

IV5

25

$$R^1$$
 H R^2

IV6

30

IV7

40

45

50

35

$$R^1$$
—COO—O— R^2

IV8

$$R^1$$
—CH=CH— H — R^2

IV9

und/oder eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den Dreiringverbindungen der folgenden Formeln

55

60

 $R^1 \longrightarrow H \longrightarrow R^2$

65

IV21

IV31

worin \mathbb{R}^1 und \mathbb{R}^2 die oben angegebene Bedeutung haben, L H oder F bedeutet, und die 1,4-Phenylengruppen in IV10 bis IV19 und IV23 bis IV 32 jeweils unabhängig voneinander auch durch Γ luor ein- oder mehrfach substituiert sein können.

Besonders bevorzugt sind Verbindungen der Formeln IV 25 bis IV 31, worin R¹ Alkyl und R² Alkyl oder Alkoxy, insbesondere Alkoxy, jeweils mit 1 bis 7 C-Atomen, bedeutet. Ferner bevorzugt sind Verbindungen der Formel IV 25 und IV 31, worin L F bedeutet.

R¹ und R² in den Verbindungen der Formeln IV1 bis IV30 bedeuten besonders bevorzugt geradkettiges Alkyl oder Alkoxy mit 1 bis 12 C-Atomen.

Die flüssigkristallinen Mischungen enthalten gegebenenfalls eine optisch aktive Komponente C in einer Menge, daß das Verhältnis zwischen Schichtdicke (Abstand der Trägerplatten) und natürlicher Ganghöhe der chiralen nematischen Flüssigkristallmischung größer 0,2 ist. Für die Komponente stehen dem Fachmann eine Vielzahl, zum Teil kommerziell erhältlicher chiraler Dotierstoffe zur Verfügung z. B. wie Cholesterylnonanoat, S-811 der Merck KGaA, Darmstadt und CB15 (BDH, Poole, UK). Die Wahl der Dotierstoffe ist an sich nicht kritisch.

Der Anteil der Verbindungen der Komponente C beträgt vorzugsweise 0 bis 10%, insbesondere 0 bis 5%, besonders bevorzugt 0 bis 3%.

Die erfindungsgemäßen Mischungen können auch gegebenenfalls bis zu 20% einer oder mehrerer Verbindungen mit einer dielektrischen Anisotropie von weniger als –2 (Komponente D) enthalten.

Falls die Mischungen Verbindungen der Komponente D enthalten, so sind dies vorzugsweise eine oder mehrere Verbindungen mit dem Strukturelement 2,3-Difluor-1,4-phenylen, z. B. Verbindungen gemäß DE-OS 38 07 801, 38 07 861, 38 07 863, 38 07 864 oder 38 07 908. Besonders bevorzugt sind Tolane mit diesem Strukturelement gemäß der Internationalen Patentanmeldung PCT/DE 88/00133.

Weitere bekannte Verbindungen der Komponente D sind z. B. Derivate der 2,3-Dicyanhydrochinone oder Cyclohexanderivate mit dem Strukturelement

40

45

50

55

60

65

gemäß DE-OS 32 31 707 bzw. DE-OS 34 07 013.

Vorzugsweise enthalten die erfindungsgemäßen Flüssigkristallanzeigen keine Verbindungen der Komponente D.

Der Ausdruck "Alkenyl" in der Bedeutung von R, R^1 , R^2 , R^3 und R^4 umfaßt geradkettige und verzweigte Alkenylgruppen, im Falle von R, R^1 und R^2 mit 2–12, im Falle von R^3 und R^4 mit 2–7 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen. Besonders bevorzugte Alkenylgruppen sind C_2 - C_7 -1E-Alkenyl, C_4 - C_7 -3E-Alkenyl, C_5 - C_7 -4-Alkenyl, C_6 - C_7 -5-Alkenyl, und C_7 -6-Alkenyl, insbesondere C_2 - C_7 -1E-Alkenyl, C_4 - C_7 -3E-Alkenyl und C_5 - C_7 -4-Alkenyl.

Beispiele bevorzugter Alkenylgruppen sind Vinyl, 1E-Propenyl, 1E-Butenyl, 1E-Pentenyl, 1E-Hexenyl, 1E-Heptenyl, 3-Butenyl, 3E-Hexenyl, 3E-Hexenyl, 3E-Hexenyl, 4-Pentenyl, 4-P

In besonders bevorzugten Ausführungsformen enthalten die Mischungen

- eine oder mehrere, insbesondere eine, zwei oder drei Verbindungen der Formel I,
- eine, zwei oder drei Verbindungen der Formel I-1, worin R¹ alkyl mit 1 bis 8 C-Atomen bedeutet, und/oder eine,
 zwei oder drei Verbindungen der Formel I-1, worin R¹ alkenyl mit 2 bis 7 C-Atomen bedeutet,
- 5 bis 40%, insbesondere 8 bis 25% einer oder mehrerer Verbindungen der Formel I,
- 5 bis 60%, insbesondere 15 bis 50% einer oder mehrerer Alkenylverbindungen der Formel II,
- eine oder mehrere, besonders bevorzugt eine, zwei oder drei Tolan-Verbindungen der Formel T2h

$$R^1 - O - O - R^2$$
 T2h

worin R¹ und R² die oben angegebene Bedeutung besitzen,

- eine oder mehrere, besonders bevorzugt jeweils zwei bis vier, Tolan-Verbindungen der folgenden Formeln

T2a

5

10

$$R^1 \longrightarrow C \equiv C \longrightarrow C \longrightarrow R^2$$

T2b

$$R^1 - \left(H \right) - \left(O \right) - C = C - \left(O \right) - OCF$$

T1b-1

15

20

25

30

35

worin R¹ und R² die oben angegebene Bedeutung besitzen.

– eine oder mehrere Verbindungen der folgenden Formeln

$$R^1 \longrightarrow H \longrightarrow O \longrightarrow R^2$$

IV6

$$R^1$$
 H O H R^2

IV25

 R^1 H H R^2

IV27

worin R^1 , R^2 und L die bevorzugten Bedeutungen, die unter Verbindungen der Komponente B genannt sind, besitzen, und L in Formel IV 25 H oder F, besonders bevorzugt F bedeutet. Der Anteil dieser Verbindungen in den Flüssigkristallmischungen liegt vorzugsweise bei 10 bis 45%, insbesondere bei 15 bis 40%,

- eine oder mehrere, insbesondere zwei bis fünf Verbindungen der Formel IIIb, IIIc und/oder IIIh.

wenigstens zwei Verbindungen der Formel IIIc, und gegebenenfalls zusätzlich wenigstens eine Verbindung der Formel IIIb, worin L¹ und/oder L² F bedeuten. Der Anteil dieser Verbindungen in den Flüssigkristallmischungen liegt vorzugsweise bei 7 bis 50%, insbesondere bei 10 bis 40%;

- wenigstens eine Verbindung der Formel II-1a und/oder II-3e,

- wenigstens eine Verbindung ausgewählt aus der folgenden Gruppe

45

50

55

60

30

worin alkyl eine Alkylgruppe mit 1 bis 8 C-Atomen und R^{3a} H oder CH_3 bedeutet, – mehr als 20% an Verbindungen mit positiver dielektrischer Anisotropie, insbesondere mit $\Delta \varepsilon \ge +12$.

Die erfindungsgemäßen Mischungen zeichnen sich insbesondere beim Einsatz in TN- und STN-Anzeigen mit hohen Schichtdicken durch sehr niedrige Summenschaltzeiten aus ($t_{ges} = t_{on} + t_{off}$).

Die in den erfindungsgemäßen TN- und STN-Zellen verwendeten Flüssigkristallmischungen sind dielektrisch positiv mit $\Delta \varepsilon \ge 1$. Besonders bevorzugt sind Flüssigkristallmischungen mit $\Delta \varepsilon \ge 3$, insbesondere mit $\Delta \varepsilon \ge 5$.

Die erfindungsgemäßen Flüssigkristallmischungen weisen günstige Werte für die Schwellenspannung $V_{100/20}$ und für die Rotationsviskosität γ_1 auf. Ist der Wert für den optischen Wegunterschied d \cdot Δn vorgegeben, wird der Wert für die Schichtdicke d durch die optische Anisotropie Δn bestimmt. Insbesondere bei relativ hohen Werten für d \cdot Δn ist i. a. die Verwendung erfindungsgemäßer Flüssigkristallmischungen mit einem relativ hohen Wert für die optische Anisotropie bevorzugt, da dann der Wert für d relativ klein gewählt werden kann, was zu günstigeren Werten für die Schaltzeiten führt. Aber auch solche erfindungsgemäßen Flüssigkristallanzeigen, die erfindungsgemäße Flüssigkristallmischungen mit kleineren Werten für Δn enthalten, sind durch vorteilhafte Werte für die Schaltzeiten gekennzeichnet.

Die erfindungsgemäßen Flüssigkristallmischungen sind weiter durch vorteilhafte Werte für die Steilheit der elektrooptischen Kennlinie gekennzeichnet, und können insbesondere bei Temperaturen über 20°C mit hohen Multiplexraten betrieben werden. Darüber hinaus weisen die erfindungsgemäßen Flüssigkristallmischungen eine hohe Stabilität und günstige Werte für den elektrischen Widerstand und die Frequenzabhängigkeit der Schwellenspannung auf. Die erfindungsgemäßen Flüssigkristallanzeigen weisen einen großen Arbeitstemperaturbereich und eine gute Winkelabhängigkeit des Kontrastes auf.

Der Aufbau der erfindungsgemäßen Flüssigkristall-Anzeigeelemente aus Polarisatoren, Elektrodengrundplatten und Elektroden mit einer solchen Oberflächenbehandlung, daß die Vorzugsorientierung (Direktor) der jeweils daran angrenzenden Flüssigkristall-Moleküle von der einen zur anderen Elektrode gewöhnlich um betragsmäßig 160° bis 720° gegeneinander verdreht ist, entspricht der für derartige Anzeigeelemente üblichen Bauweise. Dabei ist der Begriff der üblichen Bauweise hier weit gefaßt und umfaßt auch alle Abwandlungen und Modifikationen der TN- und STN-Zelle, insbesondere auch Matrix-Anzeigeelemente sowie die zusätzliche Magnete enthaltenden Anzeigeelemente.

Der Oberflächentiltwinkel an den beiden Trägerplatten kann gleich oder verschieden sein. Gleiche Tiltwinkel sind bevorzugt. Bevorzugte TN-Anzeigen weisen Anstellwinkel zwischen der Längsachse der Moleküle an der Oberfläche der Trägerplatten und den Trägerplatten von 0° bis 7°, vorzugsweise 0,01° bis 5°, insbesondere 0,1 bis 2° auf. In den STN-Anzeigen ist der Anstellwinkel bei 1° bis 30°, vorzugsweise bei 1° bis 12° und insbesondere bei 3° bis 10°.

Der Verdrillungswinkel der TN-Mischung in der Zelle liegt dem Betrag nach zwischen 22,5° und 170°, vorzugsweise zwischen 45° und 130° und insbesondere zwischen 80° und 115°. Der Verdrillungswinkel der STN-Mischung in der Zelle von Orientierungsschicht zu Orientierungschicht liegt dem Betrag nach zwischen 100° und 600°, vorzugsweise zwischen 170° und 300° und insbesondere zwischen 180° und 270°.

Die Herstellung der erfindungsgemäß verwendbaren Flüssigkristallmischungen erfolgt in an sich üblicher Weise. In der Regel wird die gewünschte Menge der in geringerer Menge verwendeten Komponenten in der den Hauptbestandteil ausmachenden Komponenten gelöst, zweckmäßig bei erhöhter Temperatur. Es ist auch möglich, Lösungen der Komponenten in einem organischen Lösungsmittel, z. B. in Aceton, Chloroform oder Methanol, zu mischen und das Lösungs-

mittel nach Durchmischung wieder zu entfernen, beispielsweise durch Destillation.

Die Dielektrika können auch weitere, dem Fachmann bekannte und in der Literatur beschriebene Zusätze enthalten. Beispielsweise können 0–15% pleochroitische Farbstoffe zugesetzt werden.

In der vorliegenden Anmeldung und in den folgenden Beispielen sind die Strukturen der Flüssigkristallverbindungen durch Acronyme angegeben, wobei die Transformation in chemische Formeln gemäß folgender Tabellen A und B erfolgt. Alle Reste C_nH_{2n+1} und C_mH_{2m+1} sind geradkettige Alkylreste mit n bzw. m C-Atomen. Die Alkenylreste weisen die trans-Konfiguration auf. Die Codierung gemäß Tabelle B versteht sich von selbst. In Tabelle A ist nur das Acronym für den Grundkörper angegeben. Im Einzelfall folgt getrennt vom Acronym für den Grundkörper mit einem Strich der in der untenstehenden Tabelle angegebene Code für die Substituenten R^1, R^2, L^1, L^2 und L^3 .

Code für F R ² , L ¹ , L ² ,		R ²	L1	L2	L3
nm	C _n H _{2n+1}	C _m H _{2m+1}	Н	Н	Н
nOm	OC_nH_{2n+1}	C_mH_{2m+1}	Н	Н	Н
nO.m	C_nH_{2n+1}	OC_mH_{2m+1}	Н	Н	Н
ו	C_nH_{2n+1}	CN	Н	Н	Н
nN.F	C_nH_{2n+1}	CN	Н	Н	F
N.F.F	C_nH_{2n+1}	CN	д	F	F
F	C_nH_{2n+1}	F	Н	Н	Н
OF	OC_nH_{2n+1}	F	Н	Н	Н
F.F	C_nH_{2n+1}	F	Н	Н	F
mF	C_nH_{2n+1}	C_mH_{2m+1}	F	Н	Н
OCF ₃	C_nH_{2n+1}	OCF ₃	Н	Н	Н
n-Vm	C_nH_{2n+1}	-CH=CH-C _m H _{2m+1}	Н	Н	Н
nV-Vm	C _n H _{2n+1} -CH=CH-	-CH=CH-C _m H _{2m+1}	Н	Н	Н

Die TN- und STN-Displays enthalten vorzugsweise flüssigkristalline Mischungen, die sich aus ein oder mehreren Verbindungen aus den Tabellen A und B zusammensetzen.

45

50

55

60

Tabelle A

 L^1 , L^2 , $L^3 = H$ oder F

55

60

Tabelle B

```
CCP-V-1
                    13.00
    CCP-V2-1
                    10.00%
    PPTUI-4-4
                    16.00%
    Klp.:
                    107,0°C
    Δn:
                    0,1671
    V<sub>10</sub>:
                    2,43 V
    S:
                    1,037
                                                    Beispiel 2
10
      Eine TN- und STN-Mischung bestehend aus
    <sup>V</sup>PCH-3N.F.F
                     4.00%
    CP-V-AN
                     10.00%
   ME2N.F
                     2.00%
    ME3N.F
                      3.00%
    ME4N.F
                      5.00%
    PCH-301
                     6.00%
    CC-5-V
                     18.00%
    CC-1V-V1
                     10.00%
    CCP-V-1
                    16.00%
    CCP-V2-1
                     16.00%
    PPTUI-4-4
                     10.00%
                    97,0°C
    Klp.:
25
    Δn:
                    0,1361
                    2,17 V
    V<sub>10</sub>:
    S:
                    1,055
                                                    Beispiel 3
30
      Eine TN- und STN-Mischung bestehend aus
    CP-V2-AN
                    10.00%
35
    CP-V-AN
                    11.00%
    ME2N,F
                     5.00%
    ME3N.F
                     5.00%
                    14.00%
    ME4N.F
   ME5N.F
                    12.00%
40
    CC-5-V
                    10.00%
    -CCG-V-F
                     8.00%
    CCP-V-1
                     7.00%
    PPTUI-3-4
                     5.00%
    CBC-33
                     4.00%
   ∫CCPC-33
                     5.00%
    CCPC-34
                     4.00%
                    100,2°C
    Klp.:
    Δn:
                    0,1713
                    1,25 V
    V<sub>10</sub>:
50
    S:
                    1,064
                    130 ms
    tave:
                    1/32
    Mux:
    bias:
                     1/7
55
                                                    Beispiel 4
      Eine TN- und STN-Mischung bestehend aus
    CP-3-AN
                    22.00%
                     4.00%
    ME2N.F
    ME3N.F
                     4.00%
    ME4N,F
                    14.00%
    ME5N.F
                    14.00%
    CC-5-V
                    10.00%
    CC-1V-V1
                     8.00%
```

CCG-V-F

6.00%

PPTUI-3-4 CBC-33 CBC-53 CCPC-33 Klp.: Δn:	5.00% 4.00% 4.00% 5.00% 96,0°C 0,1711				5
V ₁₀ : S: t _{ave} : Mux: bias:	1,31 V 1,037 107 ms 1/32 1/7				10
TO COMP	CVTDT DE' 1 1 1		ispicl 5		16
	STN-Mischung besteh	iend aus			15
PCH-3N.F.F CP-2-AN CP-3-AN PCH-302 CC-5-V	7.00% 10.00% 6.00% 13.00% 18.00%				20
CCP-V-1 CCP-V2-1 PPTUI-3-2 Klp.: An:	16.00% 12.00% 18.00% 101,5°C 0,1615				25
V ₁₀ : S: t _{ave} :	2,25 V 1,076 101 ms				30
		Ве	ispiel 6		
Eine TN- und	STN-Mischung besteh	nend aus			35
PCH-3N.F.F CP-V-AN	7.00% 10.00%				
CP-V2-AN PCH-302 CC-5-V CCP-V-1 CCP-V2-1	8.00% 15.00% 20.00% 16.00% 8.00%				40
PPΓUI-3-2 Klp.: Δn: V ₁₀ : S:	16.00% 97,5°C 0,1595 2,26 V 1,062				45
t _{ave} :	97 ms				
		Ве	sispiel 7		50
Eine TN- und	l STN-Mischung bestel	nend aus			
PCH-3N.F.F CP-V-AN CP-V2-AN	7.00% 10.00% 8.00%				55
PCH-302 CCG-V-F CC-5-V CCP-V-1	3.00% 10.00% 20.00% 16.00%				60
ССР-V2-1 РРТ/Л-3-2 РТР-102 РТР-201	8.00% 8.00% 5.00% 5.00%				65
Klp.: Δn:	97,3°C 0,1597				

			DE	100 58 47
	V ₁₀ :	2,20 V		
	S:	1,060		
	t _{ave} :	109 ms		
5				Beispiel 8
3				Delspiel 6
	Eine TN- un	d STN-Mischu	ng bestehend aus	
	PCH-3N.F.F	7.00%		
10	CP-V-AN	10.00%		
	CP-V2-AN	8.00%		
	D-302FF CCG-V-F	8.00% 10.00%		
	CC-5-V	17.00%		
15	CGP-V-1	16.00%		
	CCP-V2-1	6.00%		
	PPTUI-3-2	8.00%		
	PTP-102	5.00%		
20	PTP-201	5.00%		
20	Klp.:	95,0°C		
	Δn:	0,1605		
	V ₁₀ : S:	2,18 V 1,046		
	t _{ave} :	130 ms		
25	Lave-	150 1113		
				Beispiel 9
				•
20	Eine TN- un	d STN-Mischu	ng bestehend aus	
30	DART ON THE	5 00 M		
	PCH-3N.F.F	5.00%		
	CP-2-AN CP-3-AN	8.00% 6.00%		
	PCH-302	15.00%		
35	CC-5-V	19.00%		
	CCP-V-1	16.00%		
	CCP-V2-1	12.00%		
	PPTUI-3-2	15.00%		
40	PTP-102	4.00%		
70	Klp.:	98,0°C		
	Δn: V ₁₀ :	0,1590 2,58 V		
	S:	1,063		
	t _{ave} :	130 ms		
45				
				Beispiel 10
	Eine TN- un	d STN-Mischu	ng bestehend aus	
50				
	ME2N.F	8.00%		
	ME3N.F	7.00%		
	ME4N.F	16.00%		
1	PCH-3N.F.F	10.00%		
55	CC-5-V	7.50%		
	ICCG-V-F	17.00%		
	CCPC-33	6.00%		
	CCPC-34 CCPC-35	6.00% 4.00%		
60	CBC-33	5.00%		
	PPTUI-3-2	3.50%		
	CP-2-AN	10.00%		
	Klp.:	94,5°C		
-	Δn:	0,1436		
65	V ₁₀ :	1,12 V		
	S:	1,072		
	t _{ave} :	281 ms		

Mux:	1/65		
bias:	1/7		
		Beispiel 11	
			5
Eine TN- und	STN-Mischung bestehend aus		
ME2N.F	8.00%		
ME3N.F	7.00%		40
ME4N.F	9.00%		10
PCH-3N.F.F	10.00%		
CC-5-V	9.00%		
CCG-V-F	17.00%		
CCPC-33	6.00%		15
CCPC-34	6.00%		1.3
CCPC-35	4.00%		
CBC-33	4.00%	·	
CP-2-AN	20.00%		
Klp.:	95,0°C		20
Δn:	0,1426 1,20 V		
V ₁₀ : S:	1,055		
ა.	1,055		
		Beispiel 12	25
Eine TN- und	l STN-Mischung bestehend aus		
ME2N.F	8.00%		
ME3N.F	7.00%		30
ME4N.F	16.00%		
PCH-3N.F.F	10.00%		
CC-5-V	10.00%		
CCG-V-F	10.00%		35
CCPC-33	6.00%		33
CCPC-34	6.00%		
CCPC-35	4.00%		
CBC-33	5.00%		
PPIUI-3-2	4.00%		40
CP-2-AN	10.00% 4.00%		
CCP-V-1	4.00% 100,0°C		
Klp.: Δn:	0,1453		
V ₁₀ :	1,14 V		
S:	1,061		45
5.	1,001		
		Beispiel 13	
Eine TN- und	l STN-Mischung bestehend aus		50
ME2N.F	8.00%		
ME3N.F	7.00%		
ME4N.F	16.00%		
PCH-3N.F.F	10.00%		55
CC-5-V	11.50%	•	
CCG-V-F	10.00%		
CCPC-33	5.00%		
CCPC-34	5.00%		60
CCPPTUI-35	4.00%		00
CBC-33	5.00%		
PPTUI-3-2	4.00%		
CP-2-AN	10.00%		
CCP-V-1	4.50%		65
Klp.:	93,5°C 0,1429		
Δn: V	0,1429 1,15 V		
V ₁₀ :	1,1 <i>3</i> ¥		

			DE	100 30 47
	S:	1,077		
	t _{ave} :	254 ms		
	Mux:	1/65		
	bias:	1/03		
_	Ulas,	1//		
5				Beispiel 14
				Deispiel 14
	Eine TN-	und STN-Mischung	bestehend aus	
		D 22. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	,	
10	ME2N.F	8.00%		
	ME3N.F	7.00%		
	ME4N.F	16.00%		
	PCH-3N.F.I	F 10.00%		
	CC-5-V	12.00%		
15	CCG-V-F	10.00%		
	CCPC-33	5.00%		
	CCPC-34	5.00%		
	CCPC-35	4.00%		
20	CBC-33	4.00%		
20	PPTUI-3-2	4.50%		
	CP-3-AN CCP-V-1	10.00%		
		4.50% 94,0°C		
	Klp.: Δn:			
25		0,1452 1,15 V		
	V ₁₀ : S:	1,078		
	t _{ave} :	230 ms		
	Mux:	1/65		
	bias:	1/7		
30		-,.		
				Beispiel 15
	Tiles TNI	and CVINI Misshan	hastahand aug	
35	Eme IN-	und STN-Mischung	g bestehend aus	
33	MEONIE	0.000		
	ME2N.F	8.00%		
	ME3N.F	8.00%		
	ME4N.F ME5N.F	9.00% 9.00%		
40	CP-3-AN	9.00%		
	CC-5-V	4.00%		
	CC-1V-V1	8.00%		
	CCG-V-F	14.00%		
	CCP-V-1	14.00%		
45	CCP-V2-1	2.00%		
	PPTUI-3-2	13.00%		
	CBC-33	2.00%		
	Klp.:	92,0°C		
	Δn:	0,1698		
50	V ₁₀ :	1,24 V		
	S:	1,080		
				Beispiel 16
55				•
	Eine TN-	und STN-Mischung	g bestehend aus	
	ME2N.F	8.00%		
	ME3N.F	8.00%		
60	ME4N.F	9.00%		
	ME5N.F	9.00%		
	CP-3-AN	16.00%		
	CC-1V-V1	8.00%		
65	CCG-V-F	15.00%		
03	CCP-V-1	13.00%		
	PPTUI-3-2	9.00% 5.00%		
	4.4.5173	1 (8.5%)		

CCPC-33

5.00%

1 - 1 - 1

	DE	100 36 474 A 1	
Klp.:	97,5°C		
Δn:	0,1736		
V ₁₀ :	1,25 V		
S:	1,075		
	•	Beispiel 17	5
Ding 'PM	J (VINI Misskyma hostoband auc	Bolopiet 17	
eane IN- un	nd STN-Mischung bestehend aus		
CP-V2-AN	10.00%		10
CP-V-AN	10.00%		
ME2N.F	4.00%		
ME3N.F	4.00%		
ME4N.F ME5N.F	14.00% 11.00%		15
CC-5-V	10.00%		
CC-1V-V1	8.00%		
CCP-V-1	15.00%		
PPTUI-3-4	6.00%		
CBC-33	4.00%		20
CCPC-33	4.00%		
Klp.:	96,8°C		
Δn:	0,1685		
V ₁₀ :	1,35 V		
S:	1,072		25
t _{ave} :	101 ms		
Mux:	1/32		
bias:	1/7		
			30
		Beispiel 18	
Eine TN- ur	nd STN-Mischung bestehend aus		
CP-V2-AN	10.00%		35
CP-V2-AN	11.00%		
ME2N.F	5.00%		
ME3N.F	5.00%		
ME4N.F	14.00%		
ME5N.F	12.00%		40
CC-5-V	10.00%		
CC-1V-V1	8.00%		
CCP-V-1	7.00%		
PPTUI-3-4	5.00%		45
CBC-33	5.00%		45
CCPC-33	4.00%		
CCPC-34	4.00%		
Klp.:	99,0°C		
Δn:	0,1714		50
V ₁₀ :	1,30 V		
S:	1,066 110 ms		
t _{ave} : Mux:	1/32		
bias:	1/7		
oras.			55
		Beispiel 19	
Eine TN- u	nd STN-Mischung bestehend aus	-	
			60
CP-3-AN	21.00%		
PCH-301	18.00%		
CC-5-V	21.50%		
PTP-102	5.00%		65
PTP-201	5.00%		0.5
PTP-301	4.50%		
CPTP-301	5.00%		

	CPTP-302	5.00%
	CPTP-303	5.00%
	CPTP-30CF3	4.00%
	CPTP-50CF3	4.00%
5	CBC-33F	2.00%
	Klp.:	100,5°C
	Δn:	0.1844
	V ₁₀ :	2.32 V
	S:	37.6
10	t_{ave} (-20°C):	170 ms
	Mux:	1/4
	bias:	1/3
	twist:	90°

15

Beispiel 20

Eine TN- und STN-Mischung bestehend aus

	CG-3-AN	18.00%
20	PCH-301	17.00%
	CC-5-V	19.00%
	PTP-102	5.00%
	PTP-201	5.00%
	PTP-301	5.00%
25	PTP-302	4.00%
	CPTP-301	4.00%
	CPTP-302	4.00%
	CPTP-303	4.00%
	CPTP-30CF3	4.00%
30	CPTP-50CF3	4.00%
	CBC-33F	4.00%
	CBC-53F	3.00%
	Klp.:	97,5°C
	Δn:	0,1850
35	V ₁₀ :	2,32 V
	S:	1,037
	t_{ave} (-20°C):	225 ms
	Mux:	1/4
	bias:	1/3
40	twist:	90°

Patentansprüche

- 1. TN- oder STN-Flüssigkristallanzeige mit 45
 - zwei Trägerplatten, die mit einer Umrandung eine Zelle bilden,
 - einer in der Zelle befindlichen nematischen Flüssigkristallmischung mit positiver dielektrischer Anisotropie,
 - Elektrodenschichten mit Orientierungsschichten auf den Innenseiten der Trägerplatten,
 - einem Anstellwinkel zwischen der Längsachse der Moleküle an der Oberfläche der Trägerplatten und den Trägerplatten von 0 Grad bis 30 Grad, und
 - einem Verdrillungswinkel der Flüssigkristallmischung in der Zelle von Orientierungsschicht zu Orientierungsschicht dem Betrag nach zwischen 22,5° und 600°,
 - einer nematischen Flüssigkristallmischung bestehend aus
 - a) 15-80 Gew.-% einer flüssigkristallinen Komponente A, bestehend aus einer oder mehreren Verbindungen mit einer dielektrischen Anisotropie von über +1,5;
 - b) 20-85 Gew.-% einer flüssigkristallinen Komponente B, bestehend aus einer oder mehreren Verbindungen mit einer dielektrischen Anisotropie zwischen -1,5 und +1,5;
 - c) 0-20 Gew.-% einer flüssigkristallinen Komponente D, bestehend aus einer oder mehreren Verbindungen mit einer dielektrischen Anisotropie von unter -1,5 und
 - d) gegebenenfalls einer optisch aktiven Komponente C in einer Menge, daß das Verhältnis zwischen Schichtdicke (Abstand der Trägerplatten) und natürlicher Ganghöhe der chiralen nematischen Flüssigkristallmischung etwa 0,2 bis 1,3 beträgt,

dadurch gekennzeichnet, daß die Flüssigkristallmischung mindestens eine Verbindung der Formel I

65

50

55

$$R^{3a}$$
 H H R^{4a} II-1c

$$R^{3a}$$
 H H alkyl II-1d

50

und/oder mindestens eine Verbindung ausgewählt aus den Formeln II-2a und II-2b

$$R^{3a}$$
 H H O alkyl II-2b

enthält, worin R^{3a} und R^{4a} jeweils unabhängig voneinander H, CH₃, C₂H₅ oder n-C₃H₇ und alkyl eine Alkylgruppe

mit 1 bis 7 C-Atomen bedeuten.

3. Flüssigkristallanzeige nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie mindestens eine Verbindung der Formel II* enthält

5

10

15

20

25

40

55

60

65

R³ die in Formel II angegebene Bedeutung besitzt, Q CF₂, OCF₂, CFH, OCFH oder eine Einfachbindung,

Y F oder Cl, und

L¹ und L² jeweils unabhängig voneinander H oder F bedeuten.

4. Flüssigkristallanzeige nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß sie mindestens eine Verbindung ausgewählt aus den folgenden Formeln enthält

$$R^{1} - \begin{bmatrix} D \\ -Z^{4} \end{bmatrix}_{d} = \begin{bmatrix} C \\ -C \end{bmatrix} = C - \begin{bmatrix} C \\ -C \end{bmatrix} = \begin{bmatrix} C \\ -C$$

$$R^{1} = \begin{bmatrix} D \\ D \end{bmatrix} = \begin{bmatrix} L^{3} \\ D \end{bmatrix} \begin{bmatrix} L^{4} \\ D \end{bmatrix} \begin{bmatrix} L^{1} \\ D \end{bmatrix} \begin{bmatrix} L^{2} \\ D \end{bmatrix} = \begin{bmatrix} L^{3} \\ D \end{bmatrix} \begin{bmatrix} L^{4} \\ D \end{bmatrix} \begin{bmatrix} L^{4} \\ D \end{bmatrix} \begin{bmatrix} L^{2} \\ D \end{bmatrix} = \begin{bmatrix} L^{3} \\ D \end{bmatrix} \begin{bmatrix} L^{4} \\ D \end{bmatrix} \begin{bmatrix} L^{4} \\ D \end{bmatrix} \begin{bmatrix} L^{4} \\ D \end{bmatrix} \begin{bmatrix} L^{2} \\ D \end{bmatrix} \begin{bmatrix} L^$$

worin

in Formel T1 auch

in Formel T2 auch 50

d 0 oder 1,

L¹ bis L⁷ jeweils unabhängig voneinander H oder F,

Q-CF₂-, -CHF-, -OCF₂-, -OCHF- oder eine Einfachbindung,

Y F oder Cl,

Z⁴-CO-O-, -CH₂CH₂- oder eine Einfachbindung bedeuten,

R¹ die oben angegebene Bedeutung besitzt und R² eine der für R¹ angegebenen Bedeutungen besitzt.

5. Flüssigkristallanzeige nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß Komponente A eine oder mehrere Verbindungen der folgenden Formeln enthält

$$R - \underbrace{H}_{L^2} - CN \qquad \qquad IIIb \qquad \qquad 5$$

$$R \longrightarrow COO \longrightarrow COO \longrightarrow CN \qquad \qquad IIIc \qquad IIc \qquad IIIc \qquad IIc \qquad IIc$$

$$R - \underbrace{H} O - COO - \underbrace{O} CN \qquad IIIIf$$

$$R - H - COO - O - CN \qquad IIIh$$
30
$$L^{2}$$
31

worin R eine der für R^1 in Anspruch 1 angegebenen Bedeutungen besitzt und L^1 und L^2 jeweils unabhängig voneinander H oder F bedeuten.

6. Flüssigkristallanzeige nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie eine oder mehrere Verbindungen der folgenden Formel enthält

40

$$R^1 - H - O - R^2$$
 IV6

$$R^1 - H - O - H - R^2$$
 IV25

$$R^1$$
 H O H R^2 $IV27$

worin \mathbb{R}^1 und \mathbb{R}^2 die in Anspruch 3 angegebenen Bedeutungen haben, und \mathbb{L} H oder \mathbb{F} bedeutet.

7. Flüssigkristallanzeige nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie eine oder mehrere Tolan-Verbindungen ausgewählt aus den folgenden Formeln enthält.

$$R^{1}$$
 O $C \equiv C$ O R^{2} $T2a$

$$R^{1}$$
 H O $C \equiv C$ O R^{2} $T2b$

$$R^1 - \left(H \right) - \left(O \right) - C \equiv C - \left(O \right) - OCF_3$$

$$R^1 \longrightarrow 0 \longrightarrow R^2$$

- worin \mathbb{R}^1 und \mathbb{R}^2 die in Formel T2 angegebene Bedeutung besitzen. 8. Flüssigkristallanzeige nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie 5 bis 40% einer oder mehrerer Verbindungen der Formel I enthält.
- 9. Flüssigkristallanzeige nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie 5 bis 60% einer oder mehrerer Verbindungen der Formel II enthält.
- 10. Flüssigkristallmischung der in einem der Ansprüche 1 bis 10 definierten Zusammensetzung.