$$\hat{e}_{r} = -T \left(\sin \theta \hat{c} - \cos \theta \hat{f} \right) = -T \hat{e}_{r}$$

 $x^2 + y^2 = 2^2$

$$= \xrightarrow{\text{mix}} =$$

$$\begin{aligned}
\Xi F_{x} &= -T \sin \theta = m \times \\
\Xi F_{y} &= T \cos \theta - m g = m \times \end{aligned}$$

$$\begin{aligned}
\sin \theta &= \frac{x}{y} \\
\cos \theta &= \frac{x}{L} \\
\cos \theta &= \frac{y}{L}
\end{aligned}$$

$$\gamma = -L\cos\theta$$

 $\gamma = -L\cos\theta$
 $\gamma = -L\cos\theta$

3.1 Express $\mathbf{r}_{P/Q}$ shown in Figure 3.34 using vector components in frame \mathcal{A} . Now express $\mathbf{r}_{P/Q}$ using vector components in frame \mathcal{B} .

Figure 3.34 Problem 3.1.