Wisdom of Crowds versus Groupthink: learning in groups and isolation

Presented by: Joel Maupin

Mayo-Wilson, Conor, Kevin Zollman, and David Danks. "Wisdom Of Crowds Versus Groupthink: Learning In Groups And In Isolation." International Journal Of Game Theory 42.3 (2013): 695-723.

Overview

- Compare learning ability of networked agents to isolated agents
- Multi-armed bandit problem
- 6 different approaches
 - Simulated Annealing
 - Epsilon Greedy
 - Delta-Epsilon
 - Reinforcement learning
 - Weighted Reinforcement learning
 - Upper Confidence Bound
- Hypothesis: No significant difference between networked and isolated agents in a general case.

Agenda

- 1. Introduction to Multi-armed bandit problem
- 2. Overview of the 6 methods
- 3. Summarize the experiment
- Evaluate the results
- Discuss future work
- Review and Conclude

Multi-armed Bandits

- Colloquial slot machine name: "one-armed bandit"
- Agent pulls one "arm" and receives reward
- Reward is independent of other arms
 - Typically also random
- Regret defined as (possible reward actual reward)
- Agent's goal is to maximize reward and minimize regret
 - Achieve by alternating exploration and exploitation
- Agents in paper seek to find optimal reward
- Let's look at an example

Multi-armed Bandit example

	Arm 1	Arm 2	Arm 3
First Pass	Reward = 1	Reward = 1	Reward = 0
Second pass	Reward = 1	Reward = 2	Reward = 0
Best choice?	X		X
Actual reward	P(1) = 1.0	P(1) = 0.5 P(2) = 0.5	P(0) = 0.9 P(1000) = 0.1
Actual best	X	X	

Bounded rationality

- Limitation on decision making ability
- Make the best decision based on information available in the time allotted [Jones]
- Large subset of Computing problems
 - Example, Multi-armed bandit problem
 - All information => trivial solution

Agenda

- 1. Introduction to Multi-armed bandit problems
- 2. Overview of each of 6 methods
 - 1. Epsilon Greedy
 - 2. Sigma Epsilon
 - Reinforcement Learning
 - 4. Weighted Reinforcement Learning
 - 5. Simulated Annealing
 - Upper Confidence Bound
- 3. Summarize the experiment
- 4. Evaluate the results
- 5. Discuss future work
- Review and Conclude

Epsilon Greedy

- Pick a best action most of the time and explore remainder
- $P(a = best) : 1 \epsilon$
- P(a = random) : ε
- "Best" is action with highest expected reward
- Pro:
 - Focus on exploitation
 - Also guaranteed to search
- Con:
 - Very slow exploration compared to other methods
 - Continues to explore after finding true optimal

Delta Epsilon

- Uses a set of "favorite arms"
- Choose best with $1 (\partial + \varepsilon)$ probability
 - P(a = best) : $1 (\partial + \varepsilon)$
 - P(a = random) : ε
 - P(a = favorite) : ∂
- Pro:
 - Same as Epsilon Greedy
 - Better approximates human decision making
- Con:
 - Set of favorites may not be optimal
 - Could perform very bad

Reinforcement Learning

- Agent seeks to maximize cumulative reward
- Choose based on ratio of reward
 - $P(a) = R_a / R_t$
 - R_a is the expected reward for action a.
 - R_t is the total reward of all actions
- Pro:
 - Great exploration of search space
- Con:
 - Very slow when all rewards are similar
 - Will still explore even when the "best" is found
 - Optimal arm just has highest selection probability

Weighted Reinforcement Learning

- Same as Reinforcement learning with a weighted function
- $P(a) = f(R_a) / f(R_t)$
 - Where f () is a function that increases with time
 - Weights recent actions more strongly than distant actions
- Pro:
 - Over time, probabilities greatly favor optimal actions
- Con:
 - Depending on weights, might exploit too fast
 - Agent would choose non optimal action
 - Difficult to determine the exact weighting factor

Simulated Annealing

- Similar to hill climbing with multiple restarts
 - Over time "cool" the problem so we widen our search space
 - $P(r_{cur}, r_{next}, T)$
 - r_{cur} is the reward of the current arm.
 - r_{next} is the expected reward of the next arm.
 - T is the temperature of the system

Pro:

- Settles on a single answer
- Con:
 - Temperature is the dampening factor
 - Too high and system will never exploit
 - Too low and system will find local (not global) maximum

Upper Confidence Bound

- Also known as Confidence Interval
- Statistically measure how well the agent is doing.
- Over time the confidence increases
 - Statistical certainty of level of performance.

Pro:

- Minimize regret after each "play"
 - Each "play" involves a sample from all arms
- Self describing level of fitness
 - Useful for mathematical comparisons

• Con:

- Requires a huge number of samples for each round
 - Difficult to break down search space

Agenda

- 1. Introduction to Multi-armed bandit problems
- Overview of each of 6 methods
- 3. Summarize the experiment
- Evaluate the results
- Discuss future work
- Review and Conclude

Math Notations

- Our learning problem is defined as { Ω, A , O, p}
 - Ω is the finite set of states of the world
 - A is a finite set of actions
 - O is a finite set of non-negative outcomes (rewards)
 - p is the probability of obtaining a particular award based on an action

$$p = \{p(* \mid a, \omega)\}_{a \in A, \omega \in \Omega}$$

Math Notations

- A Strategic Network is defined as S = {G, M}
 - G is the network (group) of agents
 - M is the method used by the agents
- Focus on networks S applied to learning problems that are:
 - Non-trivial
 - Same history of actions could lead to different states
 - Difficult
 - No action guaranteed to succeed
 - Little to no certainty of optimality

Experiment

- Mathematically state each learning method
- Evaluate networked and isolated agents
 - Comparing each method to themselves
 - Show any performance difference
- Hypothesis: No significant difference between networked and isolated agents in a general case.

Experiment

- How to define convergence in bounded rational problem?
 - Define individual metrics
 - Isolation Consistency (IC)
 - Agent converges to optimal while in isolation
 - Universal Consistency (UC)
 - Agent converges to optimal while in an arbitrary network
 - Could be similar or foreign agents
 - Define the same but for groups!
 - Group Isolation Consistency (GIC)
 - One agent uses the strategy M and all agents converge
 - Group Universal Consistency (GUC)
 - All agents use strategy M and all converge

Individual Consistency

- Some implementations satisfy for all 6 methods
 - Does not need to be all!
 - We are looking for the existence of consistency in the methods
 - Not necessarily the robustness
- Consider the case of ε Greedy.
 - Small values of ε will converge
 - Large values will explore too often and shift the average away from the optimal return

Universal Consistency

- UC methods will always be IC
 - Just separate the connections in the grouping
- Not all IC methods are UC
- Consider ε Greedy strategies again
 - Experiment with rate $\frac{1}{n^{x/y}}$
 - x = number of actions observed
 - y = number of actions performed
 - In isolation that is $\frac{1}{n}$
 - In networks that becomes $\frac{1}{n^2}$
 - Too small to ensure optimality
- ε Greedy is IC but not UC

Group Consistencies

- Similar idea to Individual and Universal Consistency
- If Network is GUC then any single agent is GIC
- Not always true for the reverse
 - Consider ∂ε with sub-optimal favorite actions
 - Group may do very well but individual agents will not
- In general, GUC is to GIC as UC is to IC

Isolated vs Networked

- "Rational network of irrational individuals"
 - Paradox state
 - At least one IC individual in network
 - Broadcasts optimal choice to all others
 - Network settles on optimal action
- "Irrational network of rational individuals"
 - Conflicting information between individuals
 - Same problem we saw with ε Greedy and Universal Consistency

Agenda

- 1. Introduction to Multi-armed bandit problems
- Overview of each of 6 methods
- 3. Summarize the experiment
- 4. Evaluate the results
- Discuss future work
- Review and Conclude

Results

- Several of the methods lack Universal Consistency
 - ε and RL methods
 - This means they also lack Group Universal Consistency
- There are exceptions to the general case
 - Contextual information is hugely important
- Independent Consistency and Group consistency need not coincide
- Learning methods all have strengths and weaknesses like anything else
 - Here some are better for isolation while others favor the performance of groups
- Group Learning is not necessarily more accurate!

The winner is: UCB

- None of the methods hold up against all criteria
 - UCB meets both IC and UC
 - Less promising in GIC and GUC
- Seems to hold up to math models the best
- The devil is in the details
 - Implementations vary and there may be more factors
 - Would need to study other applications on a case by case basis

Agenda

- 1. Introduction to Multi-armed bandit problems
- Overview of each of 6 methods
- 3. Summarize the experiment
- Evaluate the results
- 5. Discuss future work
- Review and Conclude

Future Work and Opportunities

- Implementation
 - Can we be successful even without proof
 - Heuristics could be something we use for performance
- Incorporate real world data and testing
 - Theory is helpful but real data has new set of challenges
 - Quality of data and ability of methods to filter bad data
- Confidence Intervals look very promising
 - Implementations vary
- Expand analysis to other problem domains
 - Plenty of other Bounded Rational problems to study
 - Including the adversarial Bandit problem

Challenges

- Upper Confidence Bound misleading performance
 - Each "round" requires a sample of all arms
 - A UCB "round" is much more computationally complex than εG
 - Intuitively we would expect a greater knowledge gain
- Downplay of unconnected groups
 - Focus on connected only

Test consistency of Groups

Test individual variance?

Agenda

- 1. Introduction to Multi-armed bandit problems
- Overview of each of 6 methods
- 3. Summarize the experiment
- Evaluate the results
- Discuss future work
- 6. Review and Conclude

Review

- 6 Different Learning methods
- Compared across 4 criteria
- None stand out as a general solution
 - Authors choose Upper Confidence Bound as a top performer in the general case
- Need to test with real world data to verify model
- Expand analysis to more domains

Conclusion

Takeaways

- Information transfer is difficult to accomplish in general form
- Careful implementation details would bypass many difficulties
 - Dynamic programming
 - Use of heuristics

Real world disconnect

- There exists optimal policy
- Finite number of actions to that policy
- Can't write that policy without exploring all actions and states
 - Still limited by physical hardware for complex problems.

References

- Mayo-Wilson, Conor, Kevin Zollman, and David Danks. "Wisdom Of Crowds Versus Groupthink: Learning In Groups And In Isolation." International Journal Of Game Theory 42.3 (2013): 695-723.
- Rosin, Christopher. "Multi-Armed Bandits With Episode Context." Annals Of Mathematics & Artificial Intelligence 61.3 (2011): 203-230.
- Jones, Bryan. "Bounded Rationality" Northwestern University Press. (1999)
 Accessed via web on November 5, 2014.
- Hasani, Keramat, Svetlana A. Kravchenko, and Frank Werner. "Simulated Annealing And Genetic Algorithms For The Two-Machine Scheduling Problem With A Single Server." International Journal Of Production Research 52.13 (2014): 3778-3792.
- Mitchell, Tom. Machine Learning. McGraw-Hill Publications. March 1 (1997)

Thank you

Questions?