## **LD** – Second Internal Answer key

## PART-B

2 (a)Design a 4 x 16 decoder using two 3 x 8 decoders.



(b)Construct a 16 x 1 multiplexer with two 8 x 1 and one 2 x 1 multiplexers.



3. (a)Develop a synchronous 3-bit up/down counter with a Gray code sequence using J-K flip-flops. The counter should count up when an UP/DOWN control input is 1 and count down when the control input is 0.



Transition table for a J-K flip-flop.

| Out   | put Transi        | Flip-Flop Inputs |   |   |  |
|-------|-------------------|------------------|---|---|--|
| $Q_N$ |                   | $Q_{N+1}$        | J | K |  |
| 0     | <b>→</b>          | 0                | 0 | X |  |
| 0     | $\longrightarrow$ | 1                | 1 | X |  |
| 1     | $\longrightarrow$ | 0                | X | 1 |  |
| 1     | $\longrightarrow$ | 1                | X | 0 |  |

Next-state table for 3-bit up/down Gray code counter.

|                      |       |              | Next State |       |            |       |       |       |  |  |
|----------------------|-------|--------------|------------|-------|------------|-------|-------|-------|--|--|
| <b>Present State</b> |       | Y = 0 (DOWN) |            |       | Y = 1 (UP) |       |       |       |  |  |
| $Q_2$                | $Q_1$ | $Q_0$        | $Q_2$      | $Q_1$ | $Q_0$      | $Q_2$ | $Q_1$ | $Q_0$ |  |  |
| 0                    | 0     | 0            | 1          | 0     | 0          | 0     | 0     | 1     |  |  |
| 0                    | 0     | 1            | 0          | 0     | 0          | 0     | 1     | 1     |  |  |
| 0                    | 1     | 1            | 0          | 0     | 1          | 0     | 1     | 0     |  |  |
| 0                    | 1     | 0            | 0          | 1     | 1          | 1     | 1     | 0     |  |  |
| 1                    | 1     | 0            | 0          | 1     | 0          | 1     | 1     | 1     |  |  |
| 1                    | 1     | 1            | 1          | 1     | 0          | 1     | 0     | 1     |  |  |
| 1                    | 0     | 1            | 1          | 1     | 1          | 1     | 0     | 0     |  |  |
| 1                    | 0     | 0            | 1          | 0     | 1          | 0     | 0     | 0     |  |  |

 $Y = UP/\overline{DOWN}$  control input.

$$\begin{split} J_0 &= Q_2 Q_1 Y + Q_2 \overline{Q}_1 \overline{Y} + \overline{Q}_2 \overline{Q}_1 Y + \overline{Q}_2 Q_1 \overline{Y} \\ J_1 &= \overline{Q}_2 Q_0 Y + Q_2 Q_0 \overline{Y} \\ J_2 &= Q_1 \overline{Q}_0 Y + \overline{Q}_1 \overline{Q}_0 \overline{Y} \end{split} \qquad \begin{aligned} K_0 &= \overline{Q}_2 \overline{Q}_1 \overline{Y} + \overline{Q}_2 Q_1 Y + Q_2 \overline{Q}_1 Y + Q_2 Q_1 \overline{Y} \\ K_1 &= \overline{Q}_2 Q_0 \overline{Y} + Q_2 Q_0 Y \\ K_2 &= Q_1 \overline{Q}_0 \overline{Y} + \overline{Q}_1 \overline{Q}_0 Y \end{aligned}$$

3(b)Design a four-bit shift register with parallel load using D flip-flops. There are two control inputs: shift and load. When shift = 1, the content of the register is shifted by one position. New data are transferred into the register when load = 1 and shift = 0. If both control inputs are equal to 0, the content of the register does not change.

## First stage of register:



4{a}Show that a BCD ripple counter can be constructed using a four-bit binary ripple counter with asynchronous clear and a NAND gate that detects the occurrence of count 1010.





5(a) Using 64 \* 8 ROM chips with an enable input, construct a 512 \* 8 ROM with eight chips and a decoder.



Tion. Outputs must be writed out of times state outputs.

5(b) List the programming table for the BCD-to-excess-3-code converter for

(i)PAL

(ii) PL A

| w = A + BC + BD                      | PLA | term ABC |   |       |   |    |   |   |     |  |  |
|--------------------------------------|-----|----------|---|-------|---|----|---|---|-----|--|--|
| w' = A'B' + A'C'D'                   |     | A        | 1 | 1     | - | 1  | - | - | 3-8 |  |  |
| x = B'C + B'D + BC'D'                |     | BC       | 2 | - 11  | - | 1  | 1 | - | -   |  |  |
| x' = B'C'D' + BC BD                  |     | BD       | 3 | - 1 - | 1 | 1  | 1 | - | -   |  |  |
| y = CD + C'D'                        |     | B'C'D'   | 4 | - 0 0 | 0 | 7. | 1 | - | -   |  |  |
| y' = C'D + CD'                       |     | CD       | 5 | 1     | 1 | 21 | - | 1 | _   |  |  |
| z = D'                               |     | C'D'     | 6 | 0     | 0 | 2  | - | 1 | _   |  |  |
| z' = D                               |     | D'       | 7 |       | 0 | -  | - | - | 1   |  |  |
| Use $w$ , $x'$ , $y$ , $z$ (7 terms) |     |          |   |       |   | T  | C | T | T   |  |  |