Théorèmes d'interversions

Ernest van Wijland

Théorème double-limite : E, F des \mathbb{K} -ev de dimensions finies. $A \subset E$. $f_n, f \in \mathcal{F}(A, F)$. Si :

- (f_n) converge uniformément vers f sur A
- pour tout $n \in \mathbb{N}$, f_n a une limite finie en a

Alors:

- $(\lim_{x\to a} f_n(x))_n$ converge
- $\lim_{x \to a} f(x)$ converge
- $\lim_{n \to +\infty} \lim_{x \to a} f_n(x) = \lim_{x \to a} f(x)$

Intégration d'une limite : I = [a, b]. a < b deux réels. $f_n \in \mathcal{F}(I, F)$ continues. Si :

• (f_n) converge uniformément vers f sur I

Alors:

 $\bullet \int_a^b f_n \xrightarrow[n \to +\infty]{} \int_a^b f$

Primitivation d'une limite : (f_n) , f continues de I dans F. Soit $a \in I$. $\Phi_n(x) = \int_a^x f_n(t) dt$ et $\Phi(x) = \int_a^x f(t) dt$. Si :

• (f_n) converge uniformément vers f sur tout segment de I

Alors:

• (Φ_n) converge uniformément sur tout segment vers Φ

Dérivation d'une limite (cas C^1) : $f_n \in C^1(I, F)$. Si :

- (f_n) converge simplement vers f
- (f'_n) converge uniformément sur tout segment

Alors

- f est \mathcal{C}^1 et $\forall x \in I, f'(x) = \lim_{n \to +\infty} f'_n(x)$
- (f_n) converge uniformément sur tout segment vers f

Dérivation d'une limite (cas C^p) : Soit $p \in \mathbb{N}^*$. f_nC^p . Si :

- $\forall k \in [0, p-1], f_n^{(k)}$ converge simplement
- $(f_n^{(p)})$ converge uniformément sur tout segment

Alors:

- la limite simple f de (f_n) est \mathcal{C}^p
- $\forall k \in [0, p], \forall x \in I, f^{(k)}(x) = \lim_{n \to +\infty} f_n^{(k)}(x)$

Théorème de convergence dominée : (f_n) continues par morceaux sur I. Si:

- (f_n) converge simplement vers f continue par morceaux
- il existe $\varphi \in \mathcal{F}(I,\mathbb{R})$ intégrable telle que

$$\forall n \in \mathbb{N}, \forall t \in I, |f_n(t)| \le \varphi(t)$$

Alors:

- les f_n et f sont intégrables $\int_I f = \lim_{n \to +\infty} \int_I f_n$

Intégration terme à terme : $u_n \in \mathcal{F}(I, \mathbb{K})$. Si :

- les u_n sont intégrables sur I
- $\sum u_n$ converge simplement et $(x \mapsto \sum_{n=0}^{+\infty} u_n(x))$ est continue par morceaux
- $\sum \int_I |u_n|$ converge

Alors:

- $(x \mapsto \sum_{n=0}^{+\infty} u_n(x))$ est intégrable sur I
- $\bullet \int_{I} \sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} \int_{I} u_n$

Continuité d'une intégrale à paramètre : $A \subset E$ un espace vectoriel normé de dimension finie. $I \subset \mathbb{R}$. $f: A \times I \to \mathbb{K}$. Si :

- $\forall t \in I, x \mapsto f(x,t)$ est continue sur A
- $\forall x \in A, t \mapsto f(x,t)$ est continue par morceaux sur I
- il existe $\varphi: I \to \mathbb{R}$ intégrable telle que

$$\forall (x,t) \in A \times I, |f(x,t)| \le \varphi(t)$$

Alors:

• $g: x \mapsto \int_I f(x,t) dt$ est définie et continue sur A

Limites d'intégrales : I et J deux intervalles de \mathbb{R} . $f: J \times I \to \mathbb{K}$ et $\lambda_0 \in \bar{J}$. Si:

- $\forall \lambda \in J, t \mapsto f(\lambda, t)$ est continue par morceaux
- il existe $F \in \mathcal{CM}(I, \mathbb{K})$ telle que $\forall t \in I$, $\lim_{\lambda \to \lambda_0} f(\lambda, t) = F(t)$
- il existe $\varphi: I \to \mathbb{R}$ intégrable telle que

$$\forall (\lambda, t) \in J \times I, |f(\lambda, t)| \le \varphi(t)$$

Alors:

- $\forall \lambda \in J, t \mapsto f(\lambda, t)$ intégrable
- F intégrable
- $\lim_{\lambda \to \lambda_0} \int_I f(\lambda, t) dt = \int_I F(t) dt$

Dérivation d'une intégrale à paramètre (cas C^1) : Soit I et Jdeux intervalles de \mathbb{R} . $f: J \times I \to \mathbb{K}$. Si :

- $\forall t \in I, x \mapsto f(x, t) \text{ est } \mathcal{C}^1 \text{ sur } J$
- $\forall x \in J, t \mapsto f(x, t)$ est intégrable sur I
- $\forall x \in J, t \mapsto \frac{\partial f}{\partial x}(x, t)$ est continue par morceaux sur I• il existe $\varphi: I \to \mathbb{R}$ intégrable sur I telle que

$$\forall (x,t) \in J \times I, |\frac{\partial f}{\partial x}(x,t)| \le \varphi(t)$$

- $g: J \to \mathbb{K}$ définie par $g(x) = \int_I f(x,t) dt$ est \mathcal{C}^1 sur J
- $\forall x \in J, g'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) dt$

Dérivation d'une intégrale à paramètre (cas \mathcal{C}^p) : Soit I et Jdeux intervalles de \mathbb{R} . $f: J \times I \to \mathbb{K}$. $p \in \mathbb{N}^*$. Si:

- $\forall t \in I, x \mapsto f(x, t) \text{ est } \mathcal{C}^p \text{ sur } J$
- $\forall x \in J, \forall k \in [0, p-1], t \mapsto \frac{\partial^k f}{\partial x^k}(x, t)$ est intégrable sur I• $\forall x \in J, t \mapsto \frac{\partial^p f}{\partial x^p}(x, t)$ est continue par morceaux sur I• $\forall [a, b] \subset J$, il existe $\varphi : I \to \mathbb{R}$ intégrable sur I telle que

$$\forall (x,t) \in [a,b] \times I, |\frac{\partial^p f}{\partial x^p}(x,t)| \le \varphi(t)$$

Alors:

- $g: J \to \mathbb{K}$ définie par $g(x) = \int_I f(x,t) dt$ est \mathcal{C}^p sur J
- $\forall k \in [0, p], \forall x \in J, g^{(k)}(x) = \int_I \frac{\partial^k f}{\partial x^k}(x, t) dt$

Théorème de convergence dominée des séries (HP) : Soit $(c_{n,k})_{(n,k)\in\mathbb{N}^2}$ une famille de réels et $(a_k)_{k\in\mathbb{N}}$ une suite de réels positifs ou nuls. Si:

- $\sum a_k$ converge $\forall (n,k) \in \mathbb{N}^2, |c_{n,k}| \leq a_k$ $\forall k \in \mathbb{N}, c_{n,k} \longrightarrow l_k \in \mathbb{R}$ quand $n \longrightarrow +\infty$

$$\bullet \lim_{n \to +\infty} \sum_{k=0}^{+\infty} c_{n,k} = \sum_{k=0}^{+\infty} l_k$$

Théorème de Fubini (HP) : Soit $f:[a,b]\times[c,d]\to\mathbb{R}$ continue. On

a :

$$\int_a^b \left(\int_c^d f(x, y) dy \right) dx = \int_c^d \left(\int_a^b f(x, y) dx \right) dy$$