How to Optimize Multimodal Large Language

1. Compute Requirements for LLMs

- 1.1 Computational Scale Explosion

 Parameter Scale IPF14 contains 100 Billion parameters, requiring 1.2 FF1.0Ps of compute power for a single inference stack (Copenal, 2002).

 Multimodal Data Complexity in image-text joint basings, Text VFI.714 visual encoder requires 3.7× more TR.0Ps the part set models (Mayor et al., 2002).

1.2 Out-of-Control Hardware Costs

- Training Cost: Training PALM-2 (3408 parameters) requires 6,144 TPU-4 chips, with energy consumption equivalent to 300 U.S. households per year (Ocogle, 2023).
 Inference Cost: Supporting 100,000 concurrent users for an LLM necessitates 1,200 A100 GPUs, with hardware investment exceeding 300 million (20se et al., 2025).

1.3 Imbalanced Energy Efficiency

- Energy Efficiency: The energy cost per TDFS for large models is 4.2x higher than that of dedicated All chips is a, Google TPU) Horowize et al., 2009,
 Carbon Toolgrint: Training OPT-3 generates 952 tons of CD₂, equivalent to annual emissions from 120 cass (We st at, 2009).

2. Common Optimization Approaches

2.1 Algorithm-Level Compression: Knowledge Distillation

- DUBLIBERT, Retars 97% of BERT's performance while reducing model size by 60% (Sarh et al., 2016).

 **Differential Privacy Exhibitions Add Gaussian notes to protect exercitive data (DP-Distl), for al., 2024.

 **Attention Alignment: Constraint Saccepancies in attention distributions between student and teacher modes (Memont Mimro, Wang et al., 2023).

2.2 Structural Optimization: Sparse Activation

- Dynamic Pruning: Zero out attention weights below a threshold using a gating retwork.
 case Study: Block-Spiner Terreformer reduces FLOPs by 83% on the PG-19 dataset with -11% accuracy lock Europe 414. 2024.
 Gradient Compensation Training: Re-weight gradients during fine-tuning after pruning (SparseFineture, Let al., 2024).

2.3 System-Level Innovation: On-Demand Computation

Quantitative Analysis: Cumulative Impact of 1% Module Optimization

Module	Optimization Goal	Single Optimization Benefit	Compound Effect
Nanotechnology	Increase transistor density	+1%	(1.01)*3 m +3.0396
Transistor Count	Increase parallel computing units	+1%	+3.03%
SoC Integration	Reduce I/O latency	+1%	+3.03%
Stacking Technology	Increase memory bandwidth	+1%	+3.03%
Thermal Management	Improve heat dissipation efficiency → reduce power consumption	-1%	-2.94%
Dynamic Optimization	Improve dynamic frequency adjustment precision → improve energy efficiency	-1%	-2.94%

- Single-core performance: $(1.01)^4 \times (1.01)^4 \times (1.01)^4 \approx +9.27\%$ Multi-core performance: $(1.01)^4 \times (1.01)^4 \times (1.01)^4 \times (1.01)^4 = +12.68\%$

3.1 Large Model Storage Medium Optimization

- House Sab Operation 2-3 particularly angle indee parameter closes, reducing random readilitation by 40%.
 CXL Memory Sharing: Through the CXL 3.0 protocol, GPU memory is shared, increasing utilization by 65% (CXL-LLM, 2024).

3.2 Computational Architecture Innovation

3.3 Asynchronous Computing Pipeline

Decouple attention computation from feedforward network computation, using GPU SM units

3.4 Custom Instruction Set

3.5 Idle Processing

4.1. Single-Module Optimization Efficiency Formula

Let the original resource consumption of a module M_i be $R_{\mathrm{boxe},i}$, and its $R_{\mathrm{opt},i}$. The optimization efficiency Δ_i is defined as:

$$\Delta_i = \frac{R_{\text{base},i} - R_{\text{opt},i}}{R_{\text{base},i}} \times 100\%$$

- Physical Meaning: The relative reduction percentage in resource consumption for module M_i (e.g., computational cost, GPU memory usage, or power consumption).

4.2. Multi-Module Joint Optimization Effect Formula

If a system contains N independent modules $\{M_1,M_2,...,M_N\}$ with no coupling effects between optimizations, the total optimization efficiency Δ_{total} satisfies:

$$\Delta_{\text{total}} = 1 - \prod_{i=1}^{N} (1 - \Delta_i)$$

- Applicability Conditions. Modules operate independently without overlaighing resource consumption. Extended Estimation: Extended Estimation: If extend modules served, ΔM or recovers independently, the total servings represent the geometric mean compounding of all modules serving. If ΔM is a service of the service of the service of ΔM is a service of ΔM in ΔM in

$$1-(1-0.1)(1-0.15)=1-0.9\times0.85=23.5\%$$

4.3. Weighted Module Optimization Formula

When modules have varying resource weight impacts (e.g., some modules dominate overall performance), introduce a weight coefficient w_i (satisfying $\sum_{i=1}^{N} w_i = 1$). The total optimization efficiency becomes:

$$\Delta_{total} = \sum_{i=1}^{N} w_i \cdot \Delta_i$$

- Applicable Scenario: Uneven resource distribution among modules (e.g., QPU memory bottleneck modules). Example: If module M_1 accounts for 60% of total resources, M_2 for 40%, and $\Delta_1=10\%$, $\Delta_2=15\%$

 $\Delta_{\rm total} = 0.6 \times 10\% + 0.4 \times 15\% = 12\%$

5. Acknowledgments

(1) We proposed a generic formula-based modeling approach for optimizing multimodal models; (2) the feasibility of compounding 1% module optimizations in real-world systems.

Thank you for your attention and support. We look forward to your valuable feedback and suggestions for further improvements.

Key Notes for Translation