Laboratorium 3 - Interpolacja

Mateusz Podmokły - II rok Informatyka WI

14 marzec 2024

1 Treść zadania

Zadanie 1. Wyznacz wielomian interpolacyjny dla punktów reprezentujących populację Stanów Zjednoczonych na przestrzeni lat. Dane do interpolacji:

Populacja
76 212 168
92 228 496
106 021 537
123 202 624
132 164 569
151 325 798
179 323 175
203 302 031
226 542 199

Rozważ następujące funkcje bazowe $\phi_j(t)$ dla wielomianu, gdzie $j=1,\ldots,9$:

$$\phi_j(t) = t^{j-1} \tag{1}$$

$$\phi_j(t) = (t - 1900)^{j-1} \tag{2}$$

$$\phi_j(t) = (t - 1940)^{j-1} \tag{3}$$

$$\phi_j(t) = \left(\frac{t - 1940}{40}\right)^{j-1} \tag{4}$$

Dla najlepiej uwarunkowanej bazy wielomianów wyznacz wielomian interpolacyjny na trzy sposoby. Pierwszy polega na rozwiązaniu układu równań powstałego z macierzy

Vandermonde'a i funkcji bazowych

$$\begin{bmatrix} \phi_1(x_1) & \phi_2(x_1) & \phi_3(x_1) & \cdots & \phi_n(x_1) \\ \phi_1(x_2) & \phi_2(x_2) & \phi_3(x_2) & \cdots & \phi_n(x_2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_1(x_n) & \phi_2(x_n) & \phi_3(x_n) & \cdots & \phi_n(x_n) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Następnie oblicz wielomian interpolacyjny Lagrange'a oraz wielomian interpolacyjny Newtona i dokonaj ekstrapolacji wielomianu do roku 1990. Porównaj otrzymaną wartość ekstrapolacji z prawdziwą wartością populacji w roku 1990 wynoszącą 248 709 873 Na koniec zaokrąglij dane wejściowe do pełnych milionów, ponownie oblicz współczynniki wielomianu i porównaj wyniki interpolacji z poprzednimi wynikami.

2 Specyfikacja użytego środowiska

Specyfikacja:

• Środowisko: Visual Studio Code,

• Język programowania: Python,

• System operacyjny: Microsoft Windows 11,

• Architektura systemu: x64.

3 Rozwiązanie problemu

W realizacji rozwiązania wykorzystane zostały następujące biblioteki:

```
import numpy as np
import matplotlib.pyplot as plt
```

Dla każdej funkcji bazowej wyznaczona została macierz Vandrmonde'a z użyciem funkcji np.vander, a następnie, dla każdej macierzy, współczynniki uwarunkowania macierzy funkcją np.linalg.cond. Najlepiej uwarunkowana okazała się macierz zbudowana z czwartego zbioru funkcji bazowych, więc ona została użyta do interpolacji. Dokonana została ekstrapolacja wielomianu do roku 1990.

Obliczenie współczynników wielomianu:

```
np.linalg.solve(V,y)
```

Obliczamy wielomian interpolacyjny Lagrange'a ze wzoru

$$w(x) = \sum_{i=0}^{n} y_i \cdot \prod_{j=0 \land j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

oraz wielomian interpolacyjny Newtona

$$w(x) = a_0 + \sum_{i=1}^{n} a_i \prod_{j=0}^{i-1} (x - x_j)$$

współczynniki a_0, a_1, \ldots, a_n są kolejnymi elementami na przekątnej macierzy

$$\begin{bmatrix}
f(x_0) \\
f(x_1) & f[x_0, x_1] \\
f(x_2) & f[x_1, x_2] & f[x_0, x_1, x_2] \\
\vdots & \vdots & \ddots \\
f(x_n) & f[x_{n-1}, x_n] & f[x_{n-2}, x_{n-1}, x_n] & \cdots & f[x_0, \dots, x_n]
\end{bmatrix}$$

gdzie $f[x_0, x_1, \dots, x_k]$ to różnica dzielona zdefiniowana następująco

$$f[x_i] = f(x_i)$$

$$f[x_i, \dots, x_{i+j+1}] = \frac{f[x_{i+1}, \dots, x_{i+j+1}] - f[x_i, \dots, x_{i+j}]}{x_{i+j+1} - x_i}$$

Wartości wielomianu zostały obliczone z odstępami jednorocznymi. Następnie zaokrąglowo dane zawierające wartości populacji do pełnych milionów i ponownie wyznaczono macierze oraz współczynniki wielomianu.

4 Przedstawienie wyników

4.1 Interpolacia

Współczynniki uwarunkowania czterech macierzy Vandermonde'a dla uogólnionej formy wielomianu:

$$cond_1 = 8.49 \cdot 10^{41}$$

 $cond_2 = 5.99 \cdot 10^{15}$
 $cond_3 = 9.32 \cdot 10^{12}$
 $cond_4 = 1.61 \cdot 10^3$

Najlepiej uwarunkowana macierz to macierz 4.

Rysunek 1: Porównanie uzyskanych interpolacji.

Różnice między interpolacją uogólnionym wielomianem, interpolacją Lagrange'a i interpolacją Newtona są niewielkie i niezauważalne na wykresie. Jedynie zaokrąglenie danych wejściowych do pełnych milionów powoduje niewielką zmianę wielomianu.

4.2 Ekstrapolacja

Prawdziwa wartość dla roku 1990: 248 709 873.

Przed zaokrągleniem danych

Wartość uzyskana z ekstrapolacji: 82 749 141. Błąd względny uzyskanej wartości: 66.73%.

Po zaokrągleniu danych do pełnych milionów

Wartość uzyskana z ekstrapolacji: 109 000 000. Błąd względny uzyskanej wartości: 56.17%.

5 Wnioski

Najlepiej uwarunkowaną macierzą jest ta zbudowana z bazy, która zawiera przesunięcie oraz przeskalowanie danych wejściowych. Niewielkie różnice między wielomianem uogólnionym, wielomianem Lagrange'a i wielomianem Newtona mogą wynikać z błędów numerycznych w obliczeniach.

Interpolacja wielomianowa, w tym przypadku, wydaje się dobrze estymować wartości znajdujące się między węzłami, jednak ekstrapolacja wielomianu do roku 1990 powoduje znaczne zakłamanie wyniku w okolicy tego punktu. Przy szacowaniu określonych wartości, należy ostrożnie korzystać z danych otrzymanych w wyniku ekstrapolacji wielomianu interpolacyjnego.

6 Bibliografia

https://pl.wikipedia.org/wiki/Interpolacja_(matematyka) https://pl.wikipedia.org/wiki/Interpolacja_wielomianowa https://pl.wikipedia.org/wiki/Posta%C4%87_Newtona_wielomianu https://pl.wikipedia.org/wiki/R%C3%B3%C5%BCnica_dzielona