Sistemas de Fase Mínima y de Fase No Mínima

Ejemplos: Fase mínima y fase no mínima

$$G_{_{1}}(jw) = \frac{1 + jwT}{1 + jwT_{_{1}}} \qquad G_{_{2}}(jw) = \frac{1 - jwT}{1 + jwT_{_{1}}} \qquad 0 < T < T_{_{1}}$$

D.Saez. Arch24. EL42D Control de Sistemas. U. de Chile

Sistemas de Fase Mínima y de Fase No Mínima

Las dos funciones de transferencias tienen la misma característica de magnitud, pero tienen diferente característica de ángulo de fase.

Sistemas con Retardo Diagrama de Bode

El retardo tiene un comportamiento de fase no mínima y tiene un atraso de fase excesivo sin atenuación en frecuencias altas.

Páde:
$$\left(e^{-T_d s} = \frac{1 - \frac{T_d s}{2}}{1 + \frac{T_d s}{2}}\right)$$

Retardo:

$$G(j\omega) = e^{-j\omega T}$$

D.Saez. Arch24. EL42D Control de Sistemas. U. de Chile

Sistemas con Retardo Diagrama de Bode

$$|G(jw)| = |\cos wT - j\sin wT| = 1 = 0 dB$$

$$\phi(G(jw)) = -wT \text{ radianes}$$

Sistemas con Retardo Diagrama de Bode

El ángulo de fase varía en forma lineal en la frecuencia.

Sistemas con Retardo Diagrama de Bode

Ejemplo:

$$G(jw) = \frac{e^{-jwL}}{1 + jwT}$$

Características en el Dominio del Tiempo del Controlador por Adelanto de Fase

$$G_{c}(s) = K_{c}\alpha \frac{(Ts+1)}{(\alpha Ts+1)} \qquad 0 < \alpha < 1$$

$$jw$$

$$\frac{-1}{\alpha T} \frac{-1}{T}$$
D.Saez. Arch24. EL42D Control de Sistemas. U. de Chile

Características en el Dominio del Tiempo del Controlador por Adelanto de Fase

En general:

- 1) Cuando se emplea en forma adecuada, puede incrementar el amortiguamiento del sistema.
- 2) Mejorar los tiempos de subida y la estabilización.

D.Saez. Arch24. EL42D Control de Sistemas. U. de Chile

Características en el Domino del Tiempo del Controlador por Atraso de Fase

$$G_{c}(s) = K_{c}\beta \frac{\left(Ts+1\right)}{\left(\beta Ts+1\right)} \qquad \beta > 1$$

$$\downarrow jw$$

$$\frac{-1}{T} \frac{-1}{\beta T}$$

Características en el Domino del Tiempo del Controlador por Atraso de Fase

- La respuesta transitoria es más lenta.
 Aumenta el tiempo de subida y estabilización.
- 2) Funciona como un PI, por lo tanto un sistema cuyo atraso se compensa tiende a volverse menos estable.

D.Saez. Arch24. EL42D Control de Sistemas. U. de Chile

Controlador por Atraso – Adelanto de Fase

La parte de adelanto de fase mejora los tiempos de subida y estabilización.

La parte de atraso de fase provee un mejor amortiguamiento del sistema.

$$G_{c}(s) = \frac{K_{c}(T_{1}s+1)(T_{2}s+1)}{\left(\frac{T_{1}s}{\beta}+1\right)(\beta T_{2}s+1)} = \frac{K_{c}\left(s+\frac{1}{T_{1}}\right)\left(s+\frac{1}{T_{2}}\right)}{\left(s+\frac{\beta}{T_{1}}\right)\left(s+\frac{1}{\beta T_{2}}\right)}$$

$$\beta > 1$$

Controlador por Atraso – Adelanto de Fase

Ejemplo:
$$\frac{K}{s(s+1)(s+2)}$$

Se quiere que:

$$K_v = 10s^{-1}, MF = 50^{\circ}, MG \ge 10dB$$

Compensador por atraso – adelante fase.

Controlador por Atraso – Adelanto de Fase

Compensador por atraso y adelanto de fase.

$$G_c(s) = \left(\frac{s+0.7}{s+7}\right)\left(\frac{s+0.15}{s+0.015}\right)$$

Interpretación en el dominio de la frecuencia (PD):

$$G_{c}(jw) = K_{p} + K_{D}jw = K_{p}\left(1 + \frac{K_{D}}{K_{p}}jw\right)$$

El principio de diseño del controlador PD involucra el localizar la frecuencia de corte del controlador $w = K_p/K_D$, tal que se logre un mejoramiento efectivo del margen de fase en la nueva frecuencia de cruce de ganancia.

D.Saez. Arch24. EL42D Control de Sistemas. U. de Chile

Resumen de los Efectos de un Controlador PD

- 1. Mejora el amortiguamiento y reduce el sobrepaso máximo.
- 2. Reduce el tiempo de subida y el tiempo de estabilización
- 3. Incrementa el ancho de banda.
- 4. Puede acentuar el ruido en altas frecuencias.
- 5. No es efectivo para sistemas inicialmente inestables

Ejemplo: Considere el siguiente sistema:

$$G(s) = \frac{4500K}{s(s+316.2)}$$

Se desea diseñar un controlador PD tal que el sistema en lazo cerrado cumpla las siguientes especificaciones:

Error en estado estacionario debido a una entrada rampa ≤ 0.0043, Margen de fase≥80°.

D.Saez. Arch24. EL42D Control de Sistemas. U. de Chile

Diseño en el Dominio de la Frecuencia con el Controlador PD

con
$$K_D = 0 \rightarrow K = 1 \rightarrow MF = 22,68^{\circ}$$

K _D	MG (dB)	MF (grados)	Cruce de ganancia (rad/s)	BW (rad/s)	м,	(s)	(s)	Sobre máx (%
0	00	22.68	868	1370	2.522	0.00125	0.0151	52
0.0005 00177	∞ (_}±∞n(n	46.20 82.92	913.5 1502	1326 	1.381 1.025	0.0076	0.0076	25
0.0025	00	88.95	2046	2083	1.000	0.00103	0.0013	0

Interpretación en el Dominio de la Frecuencia (PI)

$$G_{c}(jw) = K_{p} + \frac{K_{I}}{jw} = K_{I} \frac{(I + (\frac{K_{p}}{K_{I}})jw)}{jw}$$

- 1. Calcular la ganancia del sistema compensado con el requisito de desempeño en estado estacionario.
- 2. Determinar el MF y MG del sistema no compensado.
- 3. Para el requisito de MF, la nueva frecuencia de cruce de ganancia wg' correspondiente se localiza sobre el diagrama de Bode. El Bode del sistema compensado debe pasar a OdB en esta nueva frecuencia de cruce de ganancia.

4. Para llevar la curva de magnitud del sistema no compensado de O dB en wg', el controlador PI debe proveer la cantidad de atenuación igual a la ganancia de la curva de magnitud en wg', es decir:

$$\begin{aligned} \left|G_{p}(jw'_{g})\right|_{dB} &= -20\log K_{p}dB & K_{p} < 1 \\ K_{p} &= 10 & K_{p} < 1 \end{aligned}$$

D.Saez. Arch24. EL42D Control de Sistemas. U. de Chile

Diseño en el Dominio de la Frecuencia con el Controlador PI

5. Hasta el momento, se ha supuesto que aunque la frecuencia de cruce es alterada para atenuar la magnitud, la fase original no es afectada con el controlador PI. Sin embargo, esto no es posible ya que la propiedad de atenuación del PI está acompañada con un retraso de fase que perjudica el margen de fase.

Entonces:

$$\frac{K_{I}}{K_{p}} = \frac{w_{g}^{'}}{10}^{rad/s}$$

6. Se verifican las especificaciones.

D.Saez. Arch24. EL42D Control de Sistemas. U. de Chile

Resumen de controladores PI

- 1. Mejora el amortiguamiento y reduce el sobrepaso máximo.
- 2. Incrementa el tiempo de subida.
- 3. Disminuye el ancho banda.
- 4. Mejora MG y MF.
- 5. Filtra ruido a alta frecuencia.

Ejemplo: Considere el siguiente sistema:

$$G(s) = \frac{4500K}{s(s+316.2)}$$

Se desea diseñar un controlador PI tal que se cumplan los siguientes especificaciones:

$$MF \ge 65^{\circ}$$

