Quantifying the Latency and Possible Throughput of External Interrupts on Cyber-Physical Systems

Oliver Horst, Johannes Wiesböck, Raphael Wild, Uwe Baumgarten

Introduction

- Cyber-physical systems demand both, timely and predictable responses to physical events
- ▶ The interrupt handling process makes up a large part of this
- Previous studies focused on external measurements that are not applicable to modern, complex SoC, due to occurring inaccuracies
- ► Hence, we propose a flexible measurement procedure for ARMv8-A IP-core based platforms that provide a trace port

► We see a wide applicability of our measurement procedure, due to the increased market share of ARM and the wide adoption of ARM-based systems in the automotive industry (e.g., Mercedes MBUX, Continental Body Computers, and Tesla Autonomous Driving Platform)

▶ Precise measurements on the interrupt performance are beneficiary for the design of virtualization solutions, operating system, and runtime environments for time-critical systems

ARMv8-A Interrupt Handling Procedure

- ▶ 4 types of interrupts:
 - Peripheral
 - Software generated
 - Virtual
 - Maintenance
- ▶ 2 processing schemes:
 - Regular (IRQ)
 - Fast (FIQ)
- ► We focus on peripheral interrupts, triggered by an external stimuli, processed in the regular way (IRQ)

Measurement Setup

- ► Xilinx ZCU102 evaluation board with 4x A53-, 2x R5-cores, and an on-chip FPGA
- ► ARM DSTREAM hardware trace
- ► Verilog based interrupt generation block controlled by the APU
- ► ARM CoreSight ETM and STM based measurements provide a common timeline for internal and external events

Measurement Procedure

- ► Measurements on 2 platforms
 - Baremetal (unoptimized)
 - FreeRTOS
- ▶ Based on the open-source build- and test platform *toki* with the same low-level interrupt dispatching routine provided by Xilinx
- ► Easily extensible to Linux based systems
- ► Measurements on APU core 0, stimulation by all cores
- ▶ Designed for and tested on GICv2 but applicable to v3 and v4 as well

- ► Latency Measurements
 - 1ms interrupt trigger, 4ms pause
 - 30s trace capture (i.e., 2.400 stimulation phases)
- ► Throughput Measurements
 - 9.75s interrupt trigger, 250ms pause
 - 120s trace capture

 (i.e., 20 stimulation phases)

Precision, Limitations & Benefits

Precision

- ► Measurement precision is bounded by the timestamp clock, configured to 250 MHz
 - ⇒ 4ns time resolution
 - ⇒ An order of magnitude below the measured latency
- ► Modern oscilloscopes can reach up to 20 GSa/s, i.e., a 0.05ns time resolution, but their measurements are imprecise

Limitations

- ► Only applicable to ARM based systems with JTAG- and trace-port
 - ARM IP designs have a 40% market share
 - Wide availability of evaluation boards

Benefits

- No in-depth knowledge about the hardware platform needed
- ► Measurement procedure applicable to other software stacks as well

Analyzed Test-cases

Description	Targeted Comp.	Measurements		Enabled	Cache	Enabled	Benchmarks		
		L	Т	Interrupts	Config	Cores	L _{min}	L _{max}	T _{max}
T1: Baseline	-	Χ	X	1	Disabled	1			
T2: Caches Enabled	Cache	X	X	1	Enabled	1	Χ		X
T3: Caches Invalid.	Cache	Χ		1	Invalidated	1			
T4: Enabled Int.	GIC	X		2-181	Disabled	2		Χ	
T5: Order of Prio.	GIC	Χ		15	Disabled	2			
T6: Parallel Int. Hdl.	GIC	Χ	X	1	Disabled	2, 3, 4		Χ	X
T7: Rnd Mem Access	Memory	Χ		1	Disabled	4			

Latency Measurements (1/2)

Latency Measurements (2/2)

9

Throughput Measurements (1/3)

Throughput Measurements (2/3)

11

Throughput Measurement (3/3)

► T6-2

FreeRTOS

Conclusion & Outlook

- ▶ Precise method to measure the interrupt performance of complex ARM based SoCs without expert knowledge
- ► Set of benchmark functions that provoke the best and worst interrupt latency and maximal throughput
- ► Evaluation platform and test-cases are available open-source, check it out under https://git.fortiss.org/toki

- Software design can have large effects on the predictability of the interrupt latency and throughput
- ► Partially unexpected results require further investigation, we see two options:
 - Implementing a fully optimized, assemblyonly bare-metal stack
 - Analyzing the hardware effects with a cycle accurate simulator

Contact

Oliver Horst

fortiss GmbH Guerickestr. 25 • 80805 Munich • GERMANY

horst@fortiss.org www.fortiss.org

tel +49 89 3603522 15

fax +49 89 3603522 50

CPS-IoTBench'20: The 3rd Workshop on Benchmarking Cyber-Physical Systems and Internet of Things

15

fortiss