Eloszlás neve	Jelölés	Ran(X)	$\mathbb{P}(X=k) \text{ vagy } F_X(t)$	$f_X(t)$	$\mathbb{E}(X)$	$\mathbb{D}^2(X)$
Indikátor	1 (p)	{0,1}	p, 1-p		p	p(1-p)
Binomiális	B(n;p)	$\{0, 1,, n\}$	$\binom{n}{k}p^k(1-p)^{n-k}$		np	np(1-p)
Poisson	$Pois(\lambda)$	{0,1,}	$\frac{\lambda^k}{k!}e^{-\lambda}$		λ	λ
Geometriai	Geo(p)	$\{1, 2,\}$	$(1-p)^{k-1}p$		$\frac{1}{p}$	$\frac{1-p}{p^2}$
Egyenletes	U(a;b)	(a;b)	$\frac{t-a}{b-a}$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponenciális	$\operatorname{Exp}(\lambda)$	\mathbb{R}^+	$1 - e^{-\lambda t}$	$\lambda e^{-\lambda t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normális	$N(\mu; \sigma^2)$	\mathbb{R}	$\Phi\left(\frac{t-\mu}{\sigma}\right)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t-\mu)^2}{2\sigma^2}}$	μ	σ^2

Eloszlás neve	Jelölés	Ran(X)	$\mathbb{P}(X=k) \text{ vagy } F_X(t)$	$f_X(t)$	$\mathbb{E}(X)$	$\mathbb{D}^2(X)$
Indikátor	1 (p)	{0,1}	p, 1-p		p	p(1-p)
Binomiális	B(n;p)	$\{0, 1,, n\}$	$\binom{n}{k}p^k(1-p)^{n-k}$		np	np(1-p)
Poisson	$Pois(\lambda)$	$\{0, 1,\}$	$\frac{\lambda^k}{k!}e^{-\lambda}$		λ	λ
Geometriai	Geo(p)	$\{1, 2,\}$	$(1-p)^{k-1}p$		$\frac{1}{p}$	$\frac{1-p}{p^2}$
Egyenletes	U(a;b)	(a;b)	$\frac{t-a}{b-a}$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponenciális	$\operatorname{Exp}(\lambda)$	\mathbb{R}^+	$1 - e^{-\lambda t}$	$\lambda e^{-\lambda t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normális	$N(\mu; \sigma^2)$	\mathbb{R}	$\Phi\left(\frac{t-\mu}{\sigma}\right)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t-\mu)^2}{2\sigma^2}}$	μ	σ^2

Eloszlás neve	Jelölés	Ran(X)	$\mathbb{P}(X=k) \text{ vagy } F_X(t)$	$f_X(t)$	$\mathbb{E}(X)$	$\mathbb{D}^2(X)$
Indikátor	1 (p)	{0,1}	p, 1-p		p	p(1-p)
Binomiális	B(n;p)	$\{0, 1,, n\}$	$\binom{n}{k}p^k(1-p)^{n-k}$		np	np(1-p)
Poisson	$Pois(\lambda)$	{0,1,}	$\frac{\lambda^k}{k!}e^{-\lambda}$		λ	λ
Geometriai	Geo(p)	$\{1, 2,\}$	$(1-p)^{k-1}p$		$\frac{1}{p}$	$\frac{1-p}{p^2}$
Egyenletes	U(a;b)	(a;b)	$\frac{t-a}{b-a}$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponenciális	$\operatorname{Exp}(\lambda)$	\mathbb{R}^+	$1 - e^{-\lambda t}$	$\lambda e^{-\lambda t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normális	$N(\mu; \sigma^2)$	\mathbb{R}	$\Phi\left(\frac{t-\mu}{\sigma}\right)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(t-\mu)^2}{2\sigma^2}}$	μ	σ^2