Séminaire CAML QCM nº 6 vendredi 15 sept. 2017

1. Quel est le type de la fonction définie ci-dessous?

```
let f a b = match (a, b) with (true, x) -> x
| -> true;;
```

- (a) bool * bool -> bool 4-
- (B) bool -> bool -> bool 4-
- (c) bool * int -> bool
- (d) bool -> int -> bool
- (e) La fonction est fausse.
- 2. Quel est le type de la fonction suivante?

- (a) int -> inc -> bool = <fun>
- (b) float -> int -> bool = <fun>
- (c) float -> float -> bool = <fun>
- (d) int -> int = <fun>
- (e) La fonction est fausse.
- 3. Que calcule la fonction suivante, appliquée à des valeurs x et y non nulles?

-(a)-0-

(b) abs(x) mod abs(y)

- (c) x/y
- (d) Rien, elle est incorrecte.
- 4. Quel est le type de la fonction test?

- (a) int -> int -> string
- (6) int -> int -> int
- (c) int -> int -> float
- (d) int -> int -> 'a
- (e) La fonction est fausse.

- 5. Soit la phrase CAML: let y = let x = 2 and y = 3 in x + yDans la phrase ci-dessus let x = 2 and y = 3 in x + y est
 - (a) Une expression
 - (b) Une definition locale
 - (c) Une definition multiple
 - (d) Fausse
- 6. Parmi les fonctions suivantes, lesquelles ont pour type : int -> bool?
 - (a) let function x -> x > 1 ;; X
 - (let f x = x > 1 ;; x ~
 - (c) let f x = function x -> x -> 1 ;;
 - (d) let f = function x -> x > 1 ;; ~
- 7. Que calcule la fonction suivante appelée avec f x $(x \ge 0)$?

- (a) x
- ->(b) x+1
 - (c) $\sum_{i=0}^{x} (i)$
 - (d) Rien, elle ne s'arrête pas!
 - 8. Soient les phrases suivantes :

CALC TO	P	
1:	let f x = let b = 2 in a * x + b ;;	Ь
2:	let a = let b = 2 in 3 * b ;;	_
3:	let b = 3 in 2 * b ;;	_
4:	let a = a + 1 ;;	a
5:	f (a + b) ;;	258

6: let b = 4;;

Parmi les ordre d'évaluations suivants, lesquels sont impossibles (provoqueront une erreur)?

Need

- -> (a) 123456
- -> (b) 854321
 - @ 234165 a
 - (a) 623415 5 ~ ·
 - -> (e) 6342T5 5 a
 - 9. Quel sera le résultat de l'application de g à la valeur 9?

- (a) 45
- (b) 18
- (c) 729
- (d) Rien, elle ne s'arrête pas!
- 10. Soient f, g, x et y, 4 valeurs définies dans l'environnement courant. Parmi les 5 expressions suivantes lesquelles sont équivalentes à : f x (g y) ?
 - (a) f(x) (g y)
 - M fxgy
 - (f x) g y
 - M f(xgy)
 - ((f x) (g y))

QCM N°6

vendredi 15 septembre 2017

z2 = e = e xi

Question 11

Soient $(x,y) \in \mathbb{R}^2$, $z_1 = x + iy$ et $z_2 = e^{iz_1}$. Alors $|z_2|$ vaut

b.
$$e^{\sqrt{x^2+1}}$$

d. 1

e. rien de ce qui précède

Question 12

Soit $z = 1 - i\sqrt{3}$. Alors z^3 est égal à

b.
$$1 - 3i\sqrt{3}$$

c.
$$1 + 3i\sqrt{3}$$

e. rien de ce qui précède

(=) 1221 = Se-xe

Question 13

L'équation $\left(z - \frac{1}{i}\right) \left((2+i)z - 1\right) = 0$ a pour solutions

(a)
$$z = -i$$
 et $z = \frac{2}{5} - \frac{1}{5}i$

b.
$$z = i \operatorname{ct} z = 2 - i$$

c.
$$z = i \text{ et } z = 2 - i$$

d.
$$z = \frac{1}{i}$$
 et $z = \frac{2}{5} + \frac{1}{5}i$

$$(z+i)((2+i)z-1)=0$$

$$(2+i)_{z-1} = \frac{2}{5}(2+i) - \frac{(2+i)_i}{5} - 1$$

$$= \frac{4+2i}{5} - \frac{2i-1}{5} = \frac{5}{5} - 1 = 0$$

$$Q = 4 + 2i - 2i + 1 - 1 = 4i$$

$$P = \frac{4 + 2i}{5} + \frac{2i - 1}{5} - \frac{4}{5}$$

Question 14

Soit $z = \frac{1 + i\sqrt{3}}{2 + 2i}$. Le module et un argument de z sont

b.
$$\frac{1}{\sqrt{2}}$$
 et $7\pi/12$

c.
$$\frac{\sqrt{2}}{2}$$
 et $\pi/3$

d.
$$\frac{\sqrt{2}}{2}$$
 et $-7\pi/12$

(e. rien de ce qui précède

$$\frac{14+i\sqrt{3}1}{12+2i1} = \frac{2}{8} = \frac{2}{2\sqrt{2}} = \frac{\sqrt{2}}{2}$$

Question 15

Soit $z \in \mathbb{C}$. Alors le conjugué de $\frac{z-1}{z-i}$ est

a.
$$\frac{\overline{z}-1}{\overline{z}-i}$$

b.
$$\frac{\overline{z}+1}{z+i}$$

$$c. \frac{\overline{z}+1}{\overline{z}-i}$$

d. rien de ce qui précède

Question 16

Soit $z = (i + \sqrt{3})^7$. Alors

$$a. z = 64(i + \sqrt{3})$$

$$b = 64(i - \sqrt{3})$$

$$C.z = 64(-i - \sqrt{3})$$

$$d. \ z = 64(-i + \sqrt{3})$$

$$2 = 2^{7} \left(\frac{\sqrt{3}}{2} + \frac{1}{2} \right)^{7} = 188 e^{\frac{1}{16} \times 7}$$

$$= 64 \times \left(\sqrt{3} - \frac{1}{2} \right)$$

$$61 \left(-\sqrt{3} - \frac{1}{2} \right)$$

Question 17

Soit f la fonction définie pour tout $x \in \mathbb{R}^*$ par $f(x) = \ln(-x)$. Alors pour tout $x \in \mathbb{R}^*$, f'(x) est égale à

a.
$$-\frac{1}{x}$$

$$\bigcirc \frac{1}{x}$$

$$\frac{0^{1}}{0} = \frac{-1}{-x} = \frac{1}{x}$$

d.
$$\frac{1}{e^{-x}}$$

e. rien de ce qui précède

(Pn (v)) 0'

Question 18

Soit
$$I = \int_0^2 \frac{6x}{(3x^2+1)^2} \mathrm{d}x$$
. Alors I est égale à

a.
$$\frac{1}{13}$$

b.
$$-\frac{1}{13}$$

c. $-\frac{12}{13}$

$$\frac{1}{\sqrt{1 - \frac{1}{2}}} = \frac{1}{\sqrt{1 - \frac{1}{2}}}$$

 $\left[\begin{array}{c} \frac{\sqrt{2}}{2} \right]_0^2 = \left(3 \times \frac{2}{4} + 1\right)^2$

Question 19

Soient f une fonction bijective définie sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{R} et $x \in I$ telle que $f'(x) \neq 0$. Alors f^{-1} est dérivable en y = f(x) et

a.
$$(f^{-1})'(y) = \frac{1}{f^{-1}(f'(x))}$$

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

c.
$$(f^{-1})'(y) = \frac{1}{f^{-1}(f'(y))}$$

d.
$$(f^{-1})'(y) = \frac{1}{f'(x)f^{-1}(y)}$$

Question 20

Pour tout $x \in \mathbb{R}$, on a

a.
$$\arctan'(x) = -\frac{1}{1+x^2}$$

b.
$$\arctan'(x) = \frac{1}{1 + x^2}$$

c.
$$\arctan'(x) = \frac{1}{1 + \tan^2(\arctan(x))}$$

d.
$$\arctan'(x) = \frac{1}{1-x^2}$$