Operations Research – Wirtschaftsinformatik 4. Präsenszeit

Prof. Dr. Tim Downie

Virtuelle Fachhochschule BHTB — WINF

4. Präsenzunterricht

Ganzzahliger Optimierung: Gomory-Schnitt-Verfahren

16. Juni 2023

Aktueller Stand

- 9. & 10. Woche Sensitivitätsanalyse
- ▶ 11. Woche
 - Präsenzunterricht: Ganzzahliger Optimierung: Gomory-Schnitt-Verfahren
 - Einsendeaufgaben 3
- 12. Woche: ganzzahlige Optimierung fortgesetzt: Branch & Bound Verfahren
- Webkonferenz am Mo 3. Juli um 19:30: Beispielklausur
- Mittwoch 5. Juli: Erste Klausur

Der Inhalt der Folien folgt das Skript Seiten 70 bis 75.

Ganzzahliger Optimierung Einführung

- Die zulässige Lösungen eines LPs sind reellwertig.
- Häufig soll die Optimallösung ganzzahlig sein. Z.B. Anzahl von Paletten/Wäschetrocknern, Objekt in einem Rucksack einpacken: ja oder nein, usw. ...
- Das intuitive Verfahren ist: das reellwertige LP zu lösen und anschließend die Lösung ganzzahlig zu runden — Dieses Vorgehensweise liefert nicht immer die ganzzahlige Optimallösung — Sieh das Zimmerman Ronny Beispiel (Skript Seite 8).
- ▶ Der Rechenaufwand bei dem reellwertigen Simplex-Algorithmus ist viel weniger als bei einem ganzzahligen Verfahren.

IP und LP-Relaxierung

IP (vom Englisch Integer Programming)

$$\max Z(x_1, x_2) = x_2$$

$$3x_1 + 2x_2 \leq 6$$

$$-3x_1 + 2x_2 \leq 0$$

$$x_1, x_2 \in \mathbb{Z}_+$$

LP-Relaxierung

$$\max Z(x_1, x_2) = x_2$$

$$3x_1 + 2x_2 \leq 6$$

$$-3x_1 + 2x_2 \leq 0$$

$$x_1, x_2 \geq 0$$

Schnittebenenverfahren Überblick I

Schnittebenenverfahren Überblick II

Schnittebenenverfahren

Überblick III

Eine **Schnittebene** ist eine Ungleichung:

- Alle ganzzahlige zulässige Lösungen erfüllen die Ungleichung;
- ▶ Die optimale Lösung der LP-Relaxierung erfüllt nicht die Ungleichung.

Eine Schnittebene schneidet die Optimale Lösung der Relaxierung ab bzw. schneidet einen Teil vom LP-zulässigen Bereich ab, der nicht für das IP zulässig ist.

Schnittebenenverfahren:

- Löse die LP-Relaxierung des IPs.
 Falls die Lösung ganzzahlig ist ENDE IP optimale Lösung erreicht.
- 2) Sonst: Finde eine Schnittebene und füge zum IP hinzu und gehe zu 1.

Gomory-Schnitte

Wir betrachten das folgende IP:

$$\max Z(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leqslant b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leqslant b_2$$

$$\vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \leqslant b_m$$

$$x_1, x_2, \dots, x_n \in \mathbb{Z}_+.$$

Dabei soll $a_{ij} \in \mathbb{Z}$ für alle $i = \{1, \dots n\}$ und $j = \{1, \dots m\}$ gelten.

Die Normalform der LP-Relaxierung:

$$\max Z(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n + x_{n+1} = b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n + x_{n+2} = b_2$$

$$\vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n + x_{n+m} = b_m$$

$$x_1, x_2, \dots, x_{n+m} \ge 0.$$

Die Variablen $x_{n+1} = y_1, x_{n+2} = y_2, \dots, x_{n+m} = y_m$ sind die Schlupfvariablen.

Führe das Simplex-Algorithmus durch.

Beispiel

IP in Grundform

$$\max Z_P(x_1, x_2) = x_2$$

$$3x_1 + 2x_2 \leq 6$$

$$-3x_1 + 2x_2 \leq 0$$

$$x_1, x_2 \in \mathbb{Z}_+.$$

LP-Relaxierung Normalform

$$\max Z_{P}(x_{1}, x_{2}) = x_{2}$$

$$3x_{1} + 2x_{2} + y_{1} = 6$$

$$-3x_{1} + 2x_{2} + y_{2} = 0$$

$$x_{1}, x_{2} \in \mathbb{Z}_{+}.$$

Das Simplex-End-Tableau der LP-Relaxierung ist

Tab	. 2	<i>y</i> ₁	y 2
Z	3 2	<u>1</u>	<u>1</u>
<i>X</i> ₁	1	<u>1</u>	$-\frac{1}{6}$
<i>X</i> ₂	3 2	<u>1</u>	$\frac{1}{4}$

Im Endtableau steht jede transformierte Restriktion mit einer Basisvariable (links) und den Nichtbasisvariablen (oben).

Tab. 2		<i>y</i> ₁	y ₂
Z	3 2	1/4	<u>1</u>
<i>X</i> ₁	1	<u>1</u>	$-\frac{1}{6}$
<i>X</i> ₂	<u>3</u> 2	<u>1</u> 4	<u>1</u>

$$x_2 + \frac{1}{4}y_1 + \frac{1}{4}y_2 = \frac{3}{2}$$

Das Gomory-Schnitt für x2 ist

$$-\frac{1}{4}y_1 - \frac{1}{4}y_2 \leqslant -\frac{1}{2}$$

und wir führen eine neue Schlupfvariable ein.

$$-\frac{1}{4}y_1 - \frac{1}{4}y_2 + s_1 = -\frac{1}{2}$$

Wie findet man die GS-Ungleichung?

$$-\tfrac14 y_1 - \tfrac14 y_2 \leqslant -\tfrac12$$

Auf beide Seiten der Ungleichung: jeden Koeffizienten abrunden und den originalen Koeffizienten subtrahieren.

$$x_2 + \frac{1}{4}y_1 + \frac{1}{4}y_2 = \frac{3}{2}$$

$$\begin{array}{ll} \left(\lfloor \frac{1}{4} \rfloor - \frac{1}{4}\right) y_1 & + \left(\lfloor \frac{1}{4} \rfloor - \frac{1}{4}\right) y_2 & \leqslant \left(\lfloor \frac{3}{2} \rfloor - \frac{3}{2}\right) \\ - \frac{1}{4} y_1 & - \frac{1}{4} y_2 & \leqslant - \frac{1}{2} \end{array}$$

 $|\alpha|$ bedeutet α abrunden.

*Beispiele

$$|3.2| = 3$$

$$|2.0| = 2$$

$$|-1.2| = -2$$

Gomory-Schnitt: Schnellmethode

Für einen positiven Koeffizienten:

den Bruchanteil mal -1.

Z.B. 2.8 wird
$$|2.8| - 2.8 = 2 - 2.8 = -0.8$$

Für einen negativen Koeffizienten:

Z.B.
$$-2.8$$
 wird $|-2.8| + 2.8 = 2 - 2.8 = -0.2$

Lassen Sie die Basis-Variable wegfallen und Stellen Sie die Gleichung als eine "

" Ungleichung bzw. als eine Gleichung mit neuer Schlupfvariable. Weiteres Beispiel: (nicht aus der aktuellen IP)

Der Gomory-Schnitt auf x4 für

$$x_4 + 3\frac{3}{5}x_1 - 2\frac{1}{4}y_3 = 4\frac{4}{7}$$

wäre

$$-\frac{3}{5}x_1-\frac{3}{4}y_3\leqslant -\frac{4}{7}$$

bzw.

$$-\frac{3}{5}x_1 - \frac{3}{4}y_3 + s_1 = -\frac{4}{7}$$

Weiteres Beispiel: (nicht aus der aktuellen IP) Der Gomory-Schnitt auf x_4 für

$$x_4 + 3\frac{3}{5}x_1 - 2\frac{1}{4}y_3 = 4\frac{4}{7}$$

wäre

$$-\frac{3}{5}x_1 - \frac{3}{4}y_3 \leqslant -\frac{4}{7}$$

bzw.

$$-\tfrac{3}{5}x_1-\tfrac{3}{4}y_3+s_1=-\tfrac{4}{7}$$

Die Gomory-Schnitt-Ungleichung hängt nur von Nichtbasisvariablen ab, und kann somit leicht als eine neue Zeile des Tableaus hinzugefügt werden.

Beispiel Fortgesetzt

Wir fügen den Gomory-Schnitt zu unserem Tableau samt der Schlupfvariablen s_1 hinzu.

Der Simplex-Algorithmus setzt mit einem dualen Simplex-Schritt fort, da der Lösungswert der Gomory-Schnitt-Zeile negativ ist. Die neue Zeile ist die Pivotzeile.

Tab. G1		<i>y</i> ₁	y ₂
Z	3/2	1/4	1/4
<i>X</i> ₁	1	<u>1</u>	$-\frac{1}{6}$
<i>X</i> ₂	3/2	1 /4	1 /4
<i>S</i> ₁	$-\frac{1}{2}$	$-\frac{1}{4}$	$-\frac{1}{4}$

.

16

Der erste Gomory-Schnitt (grün) hinzugefügt.

Woher kommt die grüne Gerade? Was hat sie mit dem Gomory-Schnitt.

$$-\frac{1}{4}y_1 - \frac{1}{4}y_2 \leqslant -\frac{1}{2}$$

zu tun?

Damit wir den Gomory-Schnitt sowohl im Rahmen des originalen Problems verstehen können als auch ihn grafisch darstellen können, formen wir die Ungleichung in eine Ungleichung mit nur die Strukturvariablen x_1 und x_2 um.

Man kann die Definition von der Schlupfvariablen y_1 und y_2 benutzen:

1. Restr.
$$3x_1 + 2x_2 + y_1 = 6$$
2. Restr.
$$-3x_1 + 2x_2 + y_2 = 0$$

$$\Rightarrow y_1 = 6 - 3x_1 - 2x_2$$
und
$$y_2 = 3x_1 - 2x_2$$

$$-\frac{1}{4}y_1 - \frac{1}{4}y_2 \leqslant -\frac{1}{2}$$

$$-\frac{1}{4}(6 - 3x_1 - 2x_2) - \frac{1}{4}(3x_1 - 2x_2) \leqslant -\frac{1}{2}$$

$$-\frac{3}{2} + 0x_1 + 1x_2 \leqslant -\frac{1}{2}$$

Dieser Gomory-Schnitt entspricht der Ungleichung $x_2 \le 1$.

 $x_2 \leqslant 1$

Die Auflösung der neue Simplex-Algorithmus-Tableau (G1) ist.

Tab	. G1	<i>y</i> ₁	y ₂
Z	<u>3</u>	1 4	1 4
<i>X</i> ₁	1	<u>1</u> 6	$-\frac{1}{6}$
<i>X</i> ₂	3/2	1 4	1 4
S ₁	$-\frac{1}{2}$	$-\frac{1}{4}$	$-\frac{1}{4}$

lab	. G2	<i>S</i> ₁	y 2
Z	1	1	0
<i>X</i> ₁	<u>2</u>	2 3	$-\frac{1}{3}$
<i>X</i> ₂	1	1	0
<i>y</i> ₁	2	-4	1

19

Die neue optimale Lösung der LP-Relaxierung liefert einen gebrochenen Wert für x_1 . Eine 2 Gomory-Schnitt-Ebene ist nötigt.

Wir fügen den Gomory-Schnitt

$$-\frac{2}{3}s_1-\frac{2}{3}y_2+s_2=-\frac{2}{3},$$

hinzu, der den Ungleichung $x_1 \geqslant x_2$ entspricht (die blaue Linie).

Tab	Tab. G3		y ₂
Z	1	1	0
<i>X</i> ₁	2 3	2 3	$-\frac{1}{3}$
<i>X</i> ₂	1	1	0
X_2 Y_1 S_2	2	-4	1
s ₂	$-\frac{2}{3}$	$-\frac{2}{3}$	$-\frac{2}{3}$

Tab	Tab. G4		<i>S</i> ₁
Z	1	0	1
<i>X</i> ₁	1	$-\frac{1}{2}$	1
<i>X</i> ₂	1	0	1
<i>x</i> ₂ <i>y</i> ₁	1	<u>3</u> 2	-5
y ₂	1	$-\frac{3}{2}$	1

Im End-Tableau gibt es keine gebrochenen Werte für die Basisvariable. Die optimale ganzzahlige Lösung lautet: $x_1 = x_2 = 1$ mit dem Zielfunktionswert 1.

Bemerkungen:

- Wenn es eine Auswahl von nicht ganzzahligen Entscheidungsvariablen gibt, wählen Sie die Entscheidungsvariable mit dem größten Bruchanteil.
- Der Nachteil des Schnittebenenverfahrens von Gomory ist, dass die numerische Probleme durch mangelnde Genauigkeit der Zahlendarstellung im Computer die Lösungssuche erschweren.

Aufgabe

Lösen sie das folgende ganzzahlige lineare Optimierungsproblem

$$\max Z(x_1, x_2) = 12x_1 + 10x_2$$

$$2x_1 + 2x_2 \leq 8$$

$$5x_1 + 3x_2 \leq 15$$

$$x_1, x_2 \in \mathbb{Z}_+.$$

Simplex-Algorithmus auf die LP-Relaxierung

Tal	o. 0	<i>X</i> ₁	<i>X</i> ₂
Z	0	-12	-10
y 1	8	2	2
y ₂	15	5	3

Tal	o. 1	<i>y</i> ₂	<i>x</i> ₂
Z	36	2.4	-2.8
<i>y</i> ₁	2	-0.4	8.0
<i>x</i> ₁	3	0.2	0.6

Ta	b. 2	y 2	<i>y</i> ₁
Z	43	1	3.5
X ₂	2.5	-0.5	1.25
<i>x</i> ₁	1.5	0.5	-0.75

Bestimmen Sie den Gomory-Schnitt für die x₂ Zeile als:

- (a) Eine ≤ Ungleichung.
- (b) Eine Gleichung mit einer neuen Schlupfvariable
- (c) Eine Ungleichung mit x_1 und x_2 .

Hinweis: Die Schlupfvariablen sind

$$y_1 = 8 - 2x_1 - 2x_2$$
$$y_2 = 15 - 5x_1 - 3x_2$$

Anhang zur Aufgabe

Um die IP zu vervollständigen die Simpl-Alg Tabellen sind

Tab. G1		<i>y</i> ₂	<i>y</i> ₁
Z	43	1	3.5
<i>x</i> ₂	2.5	-0.5	1.25
<i>x</i> ₁	1.5	0.5	-0.75
<i>s</i> ₁	-0.5	-0.5	-0.25

Tab	. G2	s ₁	<i>y</i> ₁
Z	42	2	3
<i>x</i> ₂	3	-1	1.5
<i>x</i> ₁	1	1	-1
<i>y</i> ₂	1	-2	0.5

Mit optimaler ganzzahligen Lösung: $x_1^* = 1$, $x_2^* = 3$, $z^* = 42$,