Master in Artificial Intelligence

 ${\sf Morphology}$

Morphological analysis

Spell checkers and spell correctors

Introduction to Human Language Technologies 3 - Morphology

2 de setembre de 2019

- Morphology
- Morphological analysis
- Spell checkers and spell correctors

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphologies
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

- Morphology Motivation
- Morphological analysis
- Spell checkers and spell correctors

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphologies
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

Motivation

There are lots of NLP tools and applications in which dealing with the morphology of the words is relevant, for instance:

Motivation

Morphological analysis

Morphology

Spell checkers

Spell checkers and spell correctors

```
■ IR is based on the canonical forms of the words.
```

'Normally, houses in the $\ensuremath{\mathsf{Pyrenees}}$ are made of stone.'

'A typical pyrenean house has litle windows.'

Spell checkers are based on checking whether words in a document are well-formed or not.

'This could be an alterantive remedy'

 Syntactic parsing requires lexical information derived from morphological analysis

'Children are very intelligent'
'Children is very intelligent'

- Morphology Definitions
- Morphological analysis

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphologies
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

Definition of morphology

- Study of the structure of words

 Phonology: word as a combin
 - Phonology: word as a combination of phonemes
 - Orthography: word as a combination of graphemes
 - Morphology: word as a combination of morphemes
 - Types of morphemes:
 - Stems: (e.g., 'work', 'of', 'mak'[e])
 - Affixes: always occur combined with other morphemes (e.g., -s",'in-','-able')
 - Prefixes: in + frequent
 - Suffixes: work + s
 - Infixes: [Arabic] ktb + CuCuC → kutub (books)
 - Circumfixes: en+light+en
 - The resulting words can be classified into categories known as Part of Speech (POS): Noun, Verb, Adjective, Adverb, Preposition, . . .

Morphology Definitions

Morphological analysis

Morphology Types of morphologies

Morphological analysis

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphologies
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

Types of morphology

Morphology Types of morphologies

Morphological analysis

Spell checkers and spell correctors

- Concatenative morphology: builds words up by concatenating morphemes (prefixes, suffixes). The most productive in the Indo-European languages.
 - Inflectional morphology: word → new forms of the word
 Fx: work → worked
 - lacktriangle Derivational morphology: word
 ightarrow new word

Ex: frequent \rightarrow infrequent

lacktriangle Compositional morphology: N word o new word

Ex: fire + man \rightarrow fireman

- Non-concatenative morphology: builds words by other mechanism (infixes, circumfixes).
 - Ex: Root-Pattern morphology

Ex: [Arabic] ktb + CaCaCa \rightarrow kataba [en: he wrote]

Inflectional morphology

Inflectional morphemes provide morphological information depending on the POS and language of the input word

- Nouns (N):
 - Genre: [Spanish] niñ-o (M), niñ-a (F)
 - Number: [Italian] italian-o (SG), italian-i (PL)
 - Case: [German] die Rolle des Mann-es (Genitive)
- Verbs (V):
 - Tens: want-ed (PAST), will want (no morpho. mark for future)
 - Mode: [Spanish] com-er (indicative), com-ed (imperative)
 - Aspect: want-ed (perfective), I am waiting (no morpho mark for imperfective)
 - Voice: [Sweden] servera-s (PAS) [en: is served]
- Adjectives (A):
 - Genre: [Spanish] blanc-o (M), blanc-a (F) [en: white]
 - Number: [Spanish] blanco (SG), blanco-s (PL) [en: white]
 - Comparison: cheap-er, more similar (not for all adjectives)

Morphology Types of morphologies

Morphological analysis

Derivational morphology

Derivational morphemes can change the POS and the meaning of the word

■ Adjectivization: $V \rightarrow A$ or $N \rightarrow A$

Ex: react \rightarrow react-ive, employ \rightarrow employ-able medicine \rightarrow medicin-al, use \rightarrow use-ful

■ Nominalization: $V \rightarrow N$ or $A \rightarrow N$

Ex: watch \rightarrow watch-er, react \rightarrow react-ion useful \rightarrow useful-ness

■ Negativization:

Ex: frequent \rightarrow in-frequent, do \rightarrow un-do

Morphology Types of morphologies

Morphological analysis

Morphology

Morphological analysis

Spell checkers and spell correctors

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphologies
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers

Goal of morphological analysis

Morphology

Morphological analysis

Spell checkers and spell correctors

- Morphological recognition Does word w belong to language L?
- Morphological parsing What is the morphological information related to word w ∈ L?

Ex: word POS+Gen+Num+Case+Tense+... LEMMA (stem) men Noun+M+PL man

Resources required for morphological analysis

Lists of regular (Reg) stems (ambiguities)

EX: Reg_V: walk
Reg_N: cat, fox, walk

Lists of irregular (Irreg) stems (ambiguities)

Ex: Irreg_pres_V: sing ... Irreg_past_V: sang sing Irreg_sg_N: mouse ... Irreg_pl_N: mice mouse

 List of suffixes and prefixes (dealing with concatenative morphology)

Ex: Inflec: s suffix, ing suffix
Deriv: able suffix, un prefix

Morphotactics: general rules for combining morphomes

Ex: Reg_N + s \rightarrow PL Reg_V + ing \rightarrow Present_Participle

Spelling rules: orthographic rules for combining letters

Ex: E-insertion: $-(z,x,s,sh,ch) \hat{s} \rightarrow -(z,x,s,sh,ch)$ es Consonant-doubling: $-1 \hat{s} \rightarrow -1$

Morphology

Morphological analysis

Types of morphological processors

Morphology

Morphological analysis

Spell checkers and spell correctors Based on dictionaries: list of word forms [with their corresponding morphological information]

```
Ex: (write VPrI write, writes VPrI3S write, wrote VPsI write, ...)
```

- + efficiency
- + can be automatically generated/maintained from the resources
- + language with 'simple' morphology (e.g., English)
- languages with complex morphology (e.g., German, Finish, ...)
- Based on finite state automata (FSAs)
 - languages with complex morphology
- Based on finite state tranducers (FSTs)

Morphology

Morphological analysis Finite-state automata

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphologies
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

Finite state automata (FSA)

A FSA defines a function over words w of a regular language L.

 $M_L: w \rightarrow \{\textit{true}, \textit{false}\}$

$$M = \langle Q, \Sigma, q_0, F, \sigma \rangle$$

$$Q = \{q_0, \ldots, q_n\}$$
 finite set of states

$$\Sigma = \{s_0, \ldots, s_k\}$$
 finite set of simbols

 $q_0 \in Q$ start state

$$F \subset Q$$
 final states

 $\sigma: Qx\Sigma \to [Q \lor 2^Q]$ deterministic \lor non-det. transition function

Morphology

Morphological analysis Finite-state automata

Morphology

Morphological analysis Finite-state automata

Spell checkers and spell correctors An FSA can be the union of different FSAs:

- FSAs generated from morphological rules
- FSAs generated from spelling rules
- FSAs generated from derivational rules
- FSAs generated from compositional rules

Example: FSA for English number nominal inflection

Irreg_sg_N

Examples of lists of stems

Reg_N	Irreg_sg_N	Irreg_pl_N
dog	mouse	mice
fox	foot	feet
tax		
donkey		

Morphology

Morphological analysis Finite-state automata

Example: FSA for English number nominal inflection

Morphology

Morphological analysis Finite-state automata

Spell checkers and spell correctors

Morphotactics: List Irreg_N

Morphotatics: noun + s = PL over list Reg_N

SHOULD CORRECT WITH:

Spelling rule: [s,x,z,sh,ch]^s=[s,x,z,sh,ch]es over list Reg_N

Morphology

Morphological analysis Finite-state automata

Spell checkers and spell correctors Example: FSA derived from derivational rules

Not so productive as inflectional rules: 'jail', 'window', ... ?

- FSAs can be useful for recognising words
- FSAs are not able to output a word analysis

Input word (surface form)	Output analysis (lexical form)
dog dogs	dog+N+SG dog+N+PL
(word form)	(lemma+Features)

A more sophisticated technique is required: FSTs

Morphology

Morphological analysis Finite-state automata

Morphology

Morphological analysis Finite-state transducers

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphologies
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

Finite state transducers (FSTs)

A FST defines a relation between regular languages L_1 and L_2 .

$$T = \langle Q, \Sigma, \Delta, q_0, F, \sigma, \delta \rangle$$

 $Q = \{q_0, \ldots, q_n\}$ finite set of states

 $\Sigma = \{s_0, \ldots, s_k\}$ finite set of input simbols

 $\Delta = \{t_0, \ldots, t_m\}$ finite set of output simbols

 $q_0 \in Q$ start state

 $F \subset Q$ final states

 $\sigma: Qx\Sigma \to 2^Q$ transition function

 $\delta: Qx\Sigma \to \Delta$ output function

$a (bc)+d\{0,1\}$	$d (cb)+a\{0,1\}$
a	d
bc	cb
bcd	cba
bcbc	cbcb
bcbcd	cbcba

Morphology

Morphological analysis Finite-state transducers

Finite state transducers (FSTs)

Morphology

Morphological analysis Finite-state transducers

Spell checkers and spell correctors ■ Invertion: $T: L_1 \rightarrow L_2 \Longrightarrow T^{-1}: L_2 \rightarrow L_1$

$$\begin{array}{c} b:c \Longrightarrow b \to c \Longrightarrow Ex: \ bcbc \to cbcb \\ b:c \Longrightarrow b \leftarrow c \Longrightarrow Ex: \ bcbc \leftarrow cbcb \end{array}$$

- Composition: $T_a: L_1 \to L_2 \land T_b: L_2 \to L_3 \Longrightarrow T_a \circ T_b: L_1 \to L_3$
- x:x = x
- Non-consumption symbol: $\epsilon \in \Sigma \cup \Delta$

Morphology

Morphological analysis Finite-state transducers

Spell checkers and spell correctors We want a FST being a relation between

- Surface form: $L_1 = \{w | w \text{ is word form}\}$
- Lexical form: $L_2 = \{ \langle I, F \rangle | I \text{ is lemma } \land F \text{ are morphological features} \}$

So that we get a morphological parser

Ex:
$$dogs \rightarrow dog+N+PL$$

Ex: $dog \rightarrow dog+N+SG$

Inverting that FST, we get a word forms generator

■ Ex:
$$dog+N+PL \rightarrow dogs$$

Ex: $dog+N+SG \rightarrow dog$

Two-level processing:

1 A FST that computes morphotactics, T_{lex}

Ex: $Reg_N^s \rightarrow Reg_N^+ + N + PL$.

Ex: $dog^s \rightarrow dog+N+PL$, $fox^s \rightarrow fox+N+PL$

2 FSTs each computing a spelling rule, T_{inter}^{i} (orthographic regularization)

Ex: $-\{z,x,s,sh,ch\}$ es $\rightarrow -\{z,x,s,sh,ch\}$ $\hat{s}\#$

lexical level T_{lex} intermediate level $T_{inter}^1, \dots, T_{inter}^k$

surface level

Morphology

Morphological analysis Finite-state transducers

1 T_{lex} : FST that computes morphotactics Example: FST for English number nominal inflection

T_{num_nouns}

Examples of lists of stems/forms

			/
	Reg_N	Irreg_sg_N	Irreg_pl_N
ĺ	dog	mouse	m o:i u:€ s:c e
	fox	foot	f o:e o:e t
	tax		
	donkey		

Morphology

Morphological analysis Finite-state transducers

1 T_{lex} : FST that computes morphotactics Example: FST for English number nominal inflection

T = T o T nuni_nouns

Morphology

Morphological analysis Finite-state transducers

2 T_{inter}^{i} : FSTs that compute spelling rules Example: FST for E-insertion rule

#: 8

Morphology

'?': other symbol foxes \rightarrow fox^s# bosses \rightarrow boss^s# flashes \rightarrow flash^s# ...

 $2 T_{inter}^{i}$: FST that computes spelling rules

Morphology

Morphological analysis Finite-state transducers

Spell checkers and spell correctors Some other examples of spelling rules:

- Consonant doubling: two-syllable word stressed in the last one with ending CVC pattern double last consonant before -ing/-ed EX: control → controlling
- E-deletion: Silent -e removed before -ing/-ed EX: remove → removed
- E-insertion: -e added after ending -s,-z,-x,-ch,-sh, before -s EX: flash → flashes
- Y-replacement: -y changes to -ie before -s or to -i before -ed EX: cry → cries, cried
- K-insertion: verbs ending with 1-vowel+c add -k before -ed EX: panic → panicked

Exercise

Morphology

Morphological analysis Finite-state transducers

- Generate a FST for the inflection of verbs *sing* and *work*
- Add the inflection of verb make to the previous FST

Morphology

Morphological analysis

- 1 Morphology
 - Motivation
 - Definitions
 - Types of morphologies
- 2 Morphological analysis
 - Finite-state automata
 - Finite-state transducers
- 3 Spell checkers and spell correctors

Spell checkers

Morphology

Morphological analysis

- **Goal**: given a piece of text, recognise the word forms that do not belong to the text language *L*
- Possible approach:

```
\begin{aligned} \textit{FSA}_L \text{ OR } \textit{FST}_L \\ S &= \textit{Tokenizer}(\textit{text}) \text{ (sequence of forms)} \\ \text{for each } x \in S \\ \text{if } \textit{FSA}_L(x) \text{ then print}("x") \\ \text{else print}("**x**") \end{aligned}
```

Spell correctors

■ **Goal**: given a word form, provide a list of possible correct forms.

■ Possible approach:

```
D = \{y_i : y_i \in L\} generated by applying FST_L
S = Tokenizer(text) (sequence of forms)
      for each x \in S
         if x \in D then print(x)
         else
           D' = \{ v \in D : |length(x) - length(v)| \leq \gamma \}
           C = \emptyset
           for each v \in D'
             d = distance(x, y)
             if (d \leq \delta) then
               C = C + \{ \langle v, d \rangle \}
           print_Nbest_candidates(C,N)
```

 $\delta = 2$ and $\gamma = 2$ seem to be enough for standard text

Morphology

Morphological analysis

Spell correctors

Morphology

Morphological analysis

- Edit distance: minimum number of insertions, deletions, swaps to achieve *y* from *x*
- Weighted edit distance: minimum cost of insertions, deletions, swaps to achieve *y* from *x*
 - Cost of insertion/deletion = 1
 - Cost of swap = s(a, b): (typo Manhattan distance in a keyboard)
 - Total cost = d(x, y):
 - Compute cost matrix E, with dimension mXn (lengths of x and y) using dynamic programming
 - d(x,y) = E(m,n)

Spell correctors

Cost matrix computation

Morphology

Morphological analysis

Spell checkers and spell correctors

		у1	y 2	у3	y4	
	0	1	2	3	4	
x 1	1					
x 2	2				⇒ i	nsertion (+1)
х3	3		3	V	81	vap
,			ue.	(+1	n)	$+s(x_i, y_j)$

$$E(i,j) = min(Cost_{del}, Cost_{ins}, Cost_{swap})$$

$$\begin{cases} \textit{Cost}_{\textit{del}} = \textit{E}\left(i-1,j\right) + 1 \\ \textit{Cost}_{\textit{ins}} = \textit{E}\left(i,j-1\right) + 1 \\ \textit{Cost}_{\textit{swap}} = \textit{E}\left(i-1,j-1\right) + \textit{s}(\textit{x}_{\textit{i}},\textit{y}_{\textit{j}}) \end{cases}$$

 $s(x_i, y_j)$ normalised to 10

Exercise

Morphology

Morphological analysis

Spell checkers and spell correctors Compute de weighted edit distance between 'dom' and 'come'