2020 Fall Seminar Series Laboratory of Digital and Computational Demography

REGIONAL MORTALITY ANALYSIS DURING THE OUTBREAK OF COVID-19: Two Case Studies

Ugofilippo Basellini

Outline

▶ Modelling COVID-19 mortality at the REGIONAL LEVEL IN ITALY joint work with Carlo G. Camarda

► Linking excess mortality to Google MOBILITY DATA DURING THE COVID-19 PANDEMIC IN ENGLAND AND WALES

joint work with Diego Alburez-Gutierrez, Emanuele Del Fava, Daniela Perrotta, Marco Bonetti, Carlo G. Camarda and Emilio Zagheni

Outline

► MODELLING COVID-19 MORTALITY AT THE REGIONAL LEVEL IN ITALY joint work with Carlo G. Camarda

► LINKING EXCESS MORTALITY TO GOOGLE MOBILITY DATA DURING THE COVID-19 PANDEMIC IN ENGLAND AND WALES

joint work with Diego Alburez-Gutierrez, Emanuele Del Fava, Daniela Perrotta, Marco Bonetti, Carlo G. Camarda and Emilio Zagheni

Introduction

Background:

- ► More than 35,000 COVID-19 deaths registered in Italy between February and July 2020
- ▶ Vast territorial differences in COVID-19 mortality, with 70% of deaths occurring in the north of the country

Goal:

Identify demographic and socio-economic factors that have contributed to the diverse regional impact of the virus

Approach:

 Principal components, cluster analysis and extended Poisson regression model

COVID-19 deaths

Daily number of COVID-19 deaths in Italy and three of its regions. February 25 – July 15, 2020. *Source: DPC (2020)*

Smoothing mortality

Principal Component Analysis

Cluster analysis on two PCs

Mortality clusters

Explanatory variables

Variable	Туре	Expected mortality effect
% population 65y+	constant	↑ (Dowd et al. 2020)
Population density	constant	↑ (Rocklv and Sjdin 2020)
# nursing homes	constant	↑ (Trabucchi and Leo 2020)
Mean household size	constant	↑ (Esteve et al. 2020)
GDP per capita	constant	↑
# days from the onset	constant	↓
% ICU utilization	time-varying	↑ (Volpato et al. 2020)
Daily cumulative tests	time-varying	↓
Daily positive cases	time-varying	↑

Sources: Ministero della Salute (2020); Dipartimento Della Protezione Civile (2020); Istat (2020); Istituto Superiore di Sanita (2020)

Model results

Variable	\hat{eta}	Mortality effect
% ICU utilization	0.84	1
# days from onset	-0.37	+
Daily cumul. tests	-0.19	+
GDP per capita	0.13	↑
% population 65 y $+$	0.09	↑
Daily positive cases	0.08	↑
Population density	_	_
# nursing homes	_	_
Mean household size	_	_

Goodness-of-fit

Observed and estimated COVID-19 deaths in Italy and three of its regions. February 25 – July 15, 2020.

Conclusions

- ► Three types of epidemics, broadly defined by the COVID-19 mortality level: High, Medium and Low
- Regression analysis to determine the relative contribution of different factors on regional mortality:
 - significant: % ICU utilization, delay of the epidemic, daily cumulative tests, GDP per capita, % older population & daily positive cases
 - not significant: population density, # nursing homes & household size
- Work in progress: % ICU utilization could be endogenous, different indicators of stress to health system

Outline

► Modelling COVID-19 mortality at the regional level in Italy

joint work with Carlo G. Camarda

LINKING EXCESS MORTALITY TO GOOGLE MOBILITY DATA DURING THE COVID-19 PANDEMIC IN ENGLAND AND WALES

joint work with Diego Alburez-Gutierrez, Emanuele Del Fava, Daniela Perrotta, Marco Bonetti, Carlo G. Camarda and Emilio Zagheni

Introduction

Background:

▶ Different non-pharmaceutical interventions (NPIs) implemented across the globe to contain the spread of COVID-19

Goal:

► Assess the effectiveness of NPIs in reducing the mortality burden during the pandemic

Approach:

- ► Study excess mortality and human mobility at regional level in England and Wales during outbreak of COVID-19
- Cross-sectional analysis and mixed-effect regression models

Mortality data: death counts

Weekly deaths registered in the region of London. Week 1, 2015 – Week 39, 2020. Source: ONS (2020)

Weekly deaths registered in England and Wales by region. Week 1, 2015 – Week 39, 2020. Source: ONS (2020)

Mortality data: excess mortality rate

Excess mortality rate (per 100,000 individuals) in the region of London. Week 1, 2015 - Week 39, 2020. Source: elaborations of data from ONS (2020)

Excess mortality rate (per 100,000 individuals) in England and Wales by region. Week 1, 2015 – Week 39, 2020. Source: elaborations of data from ONS (2020)

Mobility data: Google Community Reports

Available at https://www.google.com/covid19/mobility/

Relative change in visits to groceries and pharmacies and time spent at home with respect to start of 2020. Region of London, weeks 8–11, 2020 (15 February – 13 March). Source: elaborations of data from Google (2020)

Relative change in visits to groceries and pharmacies and time spent at home with respect to start of 2020. Region of London, weeks 8-12, 2020 (15 February - 20 March). Source: elaborations of data from Google (2020)

Relative change in visits to groceries and pharmacies and time spent at home with respect to start of 2020. Region of London, weeks 8-14, 2020 (15 February - 04 April). Source: elaborations of data from Google (2020)

MPIDR

Relative change in visits to groceries and pharmacies and time spent at home with respect to start of 2020. Region of London, weeks 8–39, 2020 (15 February – 25 September). Source: elaborations of data from Google (2020)

Regional mobility data

Relative change in visits to groceries and pharmacies and time spent at home with respect to start of 2020. England & Wales by region, weeks 8–39, 2020 (15 February – 25 September). Source: elaborations of data from Google (2020)

Excess mortality & lagged mobility (grocery)

Excess mortality & lagged mobility (grocery)

Excess mortality & lagged mobility (home)

Cross-sectional analysis

Changes in mobility and mortality (week 20 vs 16)

Regression analysis

	Dep. variable: excess mortality rate		
	Linear mixed-effects regression		
	grocery	stay-at-home	
Fixed effects			
change in mobility 5 weeks before	0.22	-0.45	
(95% conf. interval)	(0.12, 0.32)	(-0.74, -0.16)	
Random effects (variance)			
region (intercept)	4.15	5.87	
mobility (slope)	0.01	0.01	
residual	2.12	2.16	
Observations	270	270	
Log-Likelihood	-459.40	-461.59	
AIC	982.79	987.17	
BIC	1097.94	1102.32	

Note: the models control for the pandemic time trend using a smooth function of time, and for different regional effects using random intercepts and slopes

Model results

Counterfactual analysis

Conclusions

- Considering a lag of five or more weeks, positive relationship between excess mortality and outdoor mobility, and negative relationship with time spent at home
- Results confirmed in a regression setting that accounts for pandemic time trend and regional differences
- ► The estimated 50,000 excess deaths occurred in E&W would have been more than doubled in the absence of mobility reductions

REGIONAL MORTALITY ANALYSIS DURING THE OUTBREAK OF COVID-19: Two Case Studies

Thank you for your attention! Comments or questions?

Ugofilippo Basellini

: basellini@demogr.mpg.de

: @ugobas

SocArXiv pre-prints available at:

ltaly: https://osf.io/preprints/socarxiv/ykc6w/

England & Wales: https://osf.io/preprints/socarxiv/75d6m/

Cluster analysis: results

time

Model results: cluster-specific epidemics

Descriptive analysis

Descriptive analysis

Excess mortality I

Excess mortality II

Excess mortality II

Cross-sectional analysis II

Changes in mobility and mortality (week 20 vs 16)

Other mobility data

MPIDR