## Отчет по лабораторной работе №2

Валиева Найля Разимовна

## Содержание

| 1 Цель работы |                                | ь работы                                                                           | 5  |
|---------------|--------------------------------|------------------------------------------------------------------------------------|----|
| 2             | Задание                        |                                                                                    |    |
|               | 2.1                            | Провести рассуждения и вывод дифференциальных уравнений по условию заданной задачи | 6  |
|               | 2.2                            | Построение траектории движения катера и лодки для двух случаев                     | 6  |
|               | 2.3                            | Нахождение точки пересечения траектории катера и лодки                             | 6  |
| 3             | Выполнение лабораторной работы |                                                                                    | 7  |
|               | 3.1                            | Рассуждения и вывод дифференциальных уравнений по условию                          |    |
|               |                                | заданной задачи                                                                    | 7  |
|               | 3.2                            | Построение траектории движения катера и лодки для двух случаев                     | 11 |
|               | 3.3                            | Нахождение точки пересечения траектории катера и лодки                             | 14 |
| 4             | Выв                            | ОДЫ                                                                                | 15 |

### Список таблиц

## Список иллюстраций

| 3.1  | Вычисления 1                | 9  |
|------|-----------------------------|----|
| 3.2  | Вычисления 2                | 10 |
| 3.3  | Вычисления 3                | 10 |
| 3.4  | Начало кода                 | 11 |
| 3.5  | Движение береговой охраны   | 11 |
| 3.6  | Случай 1                    | 11 |
| 3.7  | Решение 1                   | 12 |
| 3.8  | Случай 2                    | 12 |
| 3.9  | Решение 2                   | 13 |
| 3.10 | Движение браконьеров        | 13 |
| 3.11 | Перевод координат           | 13 |
| 3.12 | Код графиков                | 14 |
| 3.13 | Код точки пересечения       | 14 |
| 3.14 | Точка пересечения. Случай 1 | 14 |
| 3.15 | Точка пересечения. Случай 2 | 14 |

### 1 Цель работы

Рассмотреть один из примеров построения математических моделей для выбора правильной стратегии при решении задач поиска.

#### 2 Задание

- 2.1 Провести рассуждения и вывод дифференциальных уравнений по условию заданной задачи
- 2.2 Построение траектории движения катера и лодки для двух случаев
- 2.3 Нахождение точки пересечения траектории катера и лодки

#### 3 Выполнение лабораторной работы

# 3.1 Рассуждения и вывод дифференциальных уравнений по условию заданной задачи

- Вариант 52. На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 17,4 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4,9 раза больше скорости браконьерской лодки.
- 1. Принимаем за  $t_0=0, x_0=0$  место нахождения лодки браконьеров в момент обнаружения,  $x_0=k$  место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.
- 2. Введем полярные координаты. Считаем, что полюс это точка обнаружения лодки браконьеров  $x_0(\theta=x_0=0)$ , а полярная ось r проходит через точку нахождения катера береговой охраны
- 3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса  $\theta$ , только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После

- этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.
- 4. Чтобы найти расстояние х (расстояние, после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии х от полюса. За это время лодка пройдет x, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как  $\frac{x}{v}$  или  $\frac{k-x}{4,9v}$  (во втором случае  $\frac{x+k}{4,9v}$ ). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние x можно найти из следующего уравнения:  $\frac{x}{v} = \frac{k-x}{4,9v}$  в первом случае или  $\frac{x}{v} = \frac{k+x}{4,9v}$  во втором. Отсюда мы найдем два значения  $x_1 = \frac{k}{5,9}$  и  $x_2 = \frac{k}{3,9}$ , задачу будем решать для двух случаев.
- 5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса, удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие:  $v_r$  радиальная скорость и  $v_{\tau}$  тангенциальная скорость. (рис. @fig:001)



Рис. 3.1: Вычисления 1

Радиальная скорость - это скорость, с которой катер удаляется от полюса,  $v_r=\frac{\mathrm{d}r}{\mathrm{d}t}$ . Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем  $\frac{\mathrm{d}r}{\mathrm{d}t}=v$ . Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости  $\frac{\mathrm{d}\theta}{\mathrm{d}t}$  на радиус г,  $v_\tau=r\frac{\mathrm{d}\theta}{\mathrm{d}t}$ . Из рисунка видно:  $v_\tau=\sqrt{24,01v^2-v^2}=\sqrt{23,01}v$  (учитывая, что радиальная скорость равна v). Тогда получаем  $r\frac{\mathrm{d}\theta}{\mathrm{d}t}=\sqrt{23,01}v$ .

6. Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений  $\begin{cases} \frac{\mathrm{d}r}{\mathrm{d}t} = v \\ r\frac{\mathrm{d}\theta}{\mathrm{d}t} = \sqrt{23,01}v \end{cases}$  с начальными условиями  $\begin{cases} \theta_0 = 0 \\ r_0 = x_1 \end{cases}$  или  $\begin{cases} \theta_0 = -\pi \\ r_0 = x_2 \end{cases}$  . Исключая из полученной системы производную по t, можно перейти к следующему уравнению:  $\frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{r}{\sqrt{23,01}}$  Началь-

ные условия остаются прежними. Решив это уравнение, я получу траекторию движения катера в полярных координатах. (рис. @fig:002)



Рис. 3.2: Вычисления 2



Рис. 3.3: Вычисления 3

# 3.2 Построение траектории движения катера и лодки для двух случаев

Для начала задам расстояние своего варинта k=17.4 и константу  $fi=\frac{3\pi}{4}$ . (рис. @fig:003)

```
#начальное расстояние от лодки до катера
k=17.4
fi=3*math.pi/4
```

Рис. 3.4: Начало кода

Следующие строки описывают движение береговой охраны. (рис. @fig:004)

```
#движение катера береговой охраны
def dr(r, tetha):
    dr = r/math.sqrt(23.01)
    return dr
```

Рис. 3.5: Движение береговой охраны

Первый случай. (рис. @fig:005)

```
#начальные условия в случае 1 r0 = k/5.9 tetha = np.arange(0, 2*math.pi, 0.01) r = odeint(dr, r0, tetha)
```

Рис. 3.6: Случай 1

Решение для первого случая.(рис. @fig:006)



Рис. 3.7: Решение 1

Второй случай. (рис. @fig:007)

```
#начальные условия в случае 2 r0 = k/3.9 tetha = np.arange(-math.pi, math.pi, 0.01) r = odeint(dr, r0, tetha)
```

Рис. 3.8: Случай 2

Решение для второго случая.(рис. @fig:008)



Рис. 3.9: Решение 2

Движение браконьеров. (рис. @fig:009)

```
#движение лодки браконьеров
def f2(t):
    xt=math.tan(fi)*t
    return xt

t = np.arange(0, 20, 1)
```

Рис. 3.10: Движение браконьеров

Декартовые координаты в полярные. Перевод. (рис. @fig:010)

```
#полярная система координат
r2 = np.sqrt(t*t + f2(t)*f2(t))
tetha2 = (np.tan(f2(t)/t))**-1
```

Рис. 3.11: Перевод координат

Строим графики. (рис. @fig:011)

```
#построение графиков plot.polar(tetha, r, 'g') #охрана plot.polar(tetha2, r2, 'r') #браконьеры
```

Рис. 3.12: Код графиков

## 3.3 Нахождение точки пересечения траектории катера и лодки

Нахождение точки пересечения двух графиков. (рис. @fig:012)

```
#построение графиков
plot.polar(tetha, r, 'g') #охрана
plot.polar(tetha2, r2, 'r') #браконьеры

m = 0
for i in range(len(tetha)):
    if round(tetha[i],2) == round(fi+math.pi,2):
        m=i

print("tetha = " , tetha[m], "and r = ", r[m],[0])
```

Рис. 3.13: Код точки пересечения

Вывод для первого случая. (рис. @fig:013)

```
tetha2 = (np.tan(f2(t)/t))**-1
tetha = 5.5 and r = [9.28219377] [0]
```

Рис. 3.14: Точка пересечения. Случай 1

Вывод для второго случая. (рис. @fig:014)

```
tetha2 = (np.tan(f2(t)/t))**-1
tetha = -3.141592653589793 and r = [4.46153846] [0]
```

Рис. 3.15: Точка пересечения. Случай 2

#### 4 Выводы

В процессе я рассмотрела один из примеров построения математических моделей для выбора правильной стратегии при решении задач поиска, а также научилась определять, по какой траектории необходимо двигаться катеру, чтобы догнать лодку.