Digitaltechnik Wintersemester 2024/2025 Vorlesung 3

Inhalt

1 Spannungen als Logikpegel

Peldeffekt-Transistoren

3 CMOS-Gatter

4 Leistungsaufnahme

Kap. 1.6 - 1.9

Anwendungs->"hello software

Betriebssysteme

Gerätetreiber

Programme

Architektur

Befehle Register

Datenpfade

Steuerung

Speicher

Inverter

Vorstärkor

Filter

LIND Gatter

Mikroarchitektur

Logik

 \leftrightarrow

o +

Digitalschaltungen

 $^{\circ} \square^{\circ}$

Analogschaltungen

Bauteile -

Physik

Transistoren Dioden

Elektronen

Nächste Woche nutzen wir System Verilog in den Übungen Wenn möglich Laptop mitbringen!

Abgabefrist für Hausaufgabe A zu Vorlesungen 01 und 02 nächste Woche Freitag 23:59!

Agenda

1 Spannungen als Logikpegel

2 Feldeffekt-Transistoren

3 CMOS-Gatter

4 Leistungsaufnahme

Anwendungs-"hello world!"

Betriebs-

Programme
Gerätetreiber

Architektur

systeme

Befehle Register

Datenpfade

Steuerung

Speicher

Inverter

LIND Gatter

Mikroarchitektur

Logik

 $\boxed{\longleftrightarrow}$

م

€

Digital- oschaltungen

D∘

Analogschaltungen

en Verstärker Filter

Bauteile

Dioden

Physik

Elektronen

Transistoren

Binärwerte als Spannungspegel

- definiere Spannungspegel f
 ür die Werte 0 und 1
 - Logikpegel (logic levels)
- Beispiel:
 - $0 \text{ V} \mapsto 0$ (Erde, GND, V_{SS} "Voltage Source Source")
 - 5 V \mapsto 1 (Versorgungsspannung, V_{DD} "Voltage Drain Drain")
- aber: reale Spannungspegel unterliegen Rauschen
 - Temperaturabhängige Widerstände
 - Instabile Betriebsspannungen
 - Übersprechen zwischen benachbarten Leitungen

Beispiel für Rauschen

- Ausgang eines Gatters ("Treiber") treibt Ausgangsleitung auf 5 V
- lange Leitung zum nächsten Gatter ("Empfänger") hat hohen Widerstand
- Spannungsabfall bspw. 0,5 V
- Empfänger sieht nur 4,5 V
- ist das noch eine "Eins"?

Binärwerte als Spannungsbereiche

- definiere Spannungsbereiche für die Werte 0 und 1
- steigere Robustheit durch unterschiedliche Bereiche für Ein-/Ausgänge
 - V_{OH}: kleinste Spannung, die Treiber als 1 ausgibt ("Voltage Output High")
 - ullet V_{IH} : kleinste Spannung, die Empfänger als 1 interpretiert ("Voltage Input High")
 - V_{IL}: größte Spannung, die Empfänger als 0 interpretiert ("Voltage Input Low")
 - $ightharpoonup V_{OL}$: größte Spannung, die Treiber als 0 ausgibt ("Voltage Output Low")

Störabstände

- oberer Störabstand $NM_H = V_{OH} V_{IH}$ ("Noise Margin High")
- unterer Störabstand $NM_I = V_{IL} V_{OI}$ ("Noise Margin Low")

Gleichstrom-Transferkurve

Gleichstrom-Transferkurve

Absenken der Versorgungsspannung V_{DD}

- $V_{\rm DD} = 5 \, \text{V}$ in 1970er-80er Jahren
- Verbesserte Chip-Fertigungstechnologie erfordert/ermöglicht Absenkung
 - hohe Spannungen würden immer kleinere Transistoren beschädigen
 - Energiebedarf reduzieren
 - $lue{N}$ 3.3 V ightarrow 2.5 V ightarrow 1.8 V ightarrow 1.5 V ightarrow 1.2 V ightarrow 1.0 V
- ⇒ Vorsicht beim Verbinden von Chips mit unterschiedlichen Versorgungsspannungen!

Logikfamilien mit kompatiblen Spannungspegeln

Logikfamilie	TTL	CMOS	LVTTL	LVCMOS
$\overline{}$ min $V_{ m DD}$	4,75 V	4,5 V	3 V	3 V
typ V_{DD}	5 V	5 V	3,3 V	3,3 V
max V_{DD}	5,25 V	6 V	3,6 V	3,6 V
V_{OL}	0,4 V	0,33 V	0,4 V	0,36 V
V_{IL}	0,8 V	$1,35\mathrm{V}$	0,8 V	0,9 V
V_{IH}	2,0 V	$3,15\mathrm{V}$	2,0 V	1,8 V
V_{OH}	2,4 V	3,84 V	2,4 V	2,7 V

TTL: Transistor Transistor Logic

CMOS: Complementary Metal-Oxide Semiconductor Logic

LVTTL: Low Voltage TTL LVCMOS: Low Voltage CMOS

Agenda

- 2 Feldeffekt-Transistoren

Anwendungs->"hello world!" software

Programme

Retriebssysteme

Gerätetreiber

Architektur -

Befehle Register Datenpfade

Steuerung Addierer

Speicher

Mikroarchitektur

Logik

Digital-

 \rightarrow

schaltungen o

LIND Gatter Inverter

Analogschaltungen

Vorstärkor Filter

Bauteile

Transistoren -Dioden

Physik

Flektronen

Transistoren

- Logikgatter werden üblicherweise aus Transistoren aufgebaut
 - heute überwiegend Feldeffekttransistor (FET, "Field Effect Transistor")
- Transistoren sind spannungsgesteuerte Schalter
 - zwei Anschlüsse (Source s & Drain d), werden je nach Spannung am dritten Eingang (Gate g) verbunden oder getrennt

Der Feldeffekt (1/2)

- zwei metallische Streifen mit dünner isolierender Zwischenlage
- Streifen bilden Plattenkondensator (Kapazität C)
- lacktriangle Steuerspannung $V_{
 m g}$ an Kondensator lädt diesen auf
- \Rightarrow jeweils Ladung $Q = C \cdot V_g$ auf beiden Streifen (gegensätzliche Ladung)
- $\Rightarrow V_g$ beeinflußt Menge der freien Ladungsträger, also Widerstand R_{sd}

Der Feldeffekt (2/2)

- ullet etwa 10^{14} zusätzliche freie Ladungsträger pro Kubikzentimeter f. $V_{
 m g}=1\,{
 m V}$
- etwa 10²² freie Ladungsträger pro Kubikzentimeter in Metallen
- ⇒ Ladungsträgeranreicherung durch Feldeffekt in Metallen unerheblich
 - aber etwa 10¹³ freie Ladungsträger pro Kubikzentimeter in *Halbleitern*
- ⇒ erst mit Halbleitern wird Feldeffekt technisch nutzbar

Silizium-basierte Halbleiter

- reines Silizium ist schlechter Leiter (keine freien Ladungsträger)
- Dotierung ermöglicht gezieltes einbringen freier Ladungsträger

	n	Elektronen (-)	Arsen (As), Phosphor	r (P)
	p	Löcher (+)	Bor (B), Gallium (Ga	
Silizium		n-Typ Silizium		p-Typ Silizium
-		e e	-	e e
<u>- Si </u>		<u>- Si 8 Si 8</u>	<u> </u>	<u>- Si 8 Si 8 Si - </u>
\leftrightarrow \leftrightarrow		(• •) (-	$\stackrel{\leftarrow}{\Leftrightarrow}$
<u>- Si 8 Si 8 Si - </u>		<u>- Si 8 P</u>	Si	- Si B - Si -
		(++ ++++++++++++++++++++++++++++++++++	(
<u>- Si 8 Si 8 Si - </u>		<u>- (Si) (Si) (</u>	Si C	<u>- Si 8 Si 8 Si - </u>
		<u>-</u> -	<u>-</u>	<u> </u>

Typ freie Ladungsträger dotierte Elemente

P/N Übergang = Diode

■ Übergang zwischen p-Typ und n-Typ Silizium

- Schwellenspannung V_{th} (technologieabhängig, z.B. 0, 7 V f. Si); Spannung an Anode V_A ; Spannung an Kathode V_C
- Vorwärtsspannung
 - $V_{AC} = V_A V_C > V_{th}$
 - Stromfluss von Anode zu Kathode
- Sperrspannung
 - $V_{AC} = V_A V_C < V_{th}$
 - kein Stromfluss

MOS Feldeffekttransistoren (MOSFETs)

- Metalloxid-Halbleiter (MOS) Transistoren
 - Undotiertes Silizium (früher Metallschicht) für Gate
 - Oxid (Siliziumdioxid = Glas) für Isolator
 - Dotiertes Silizium für Substrat und Anschlüsse (Source, Drain)

nMOS

- Gate = 0, ausgeschaltet (keine Source-Drain Verbindung)
- Gate = 1, eingeschaltet (leitfähiger Source-Drain Kanal)
- Majoritätsladungsträger sind Elektronen
- ⇒ leiten 0'en gut von Source nach Drain weiter

pMOS

- Gate = 1, ausgeschaltet (keine Source-Drain Verbindung)
- Gate = 0, eingeschaltet (leitfähiger Source-Drain Kanal)
- Majoritätsladungsträger sind Löcher
- \Rightarrow leiten 1'en gut von Source nach Drain weiter Source V_{DD} Drain

MOSFET Schaltverhalten

Agenda

1 Spannungen als Logikpegel

2 Feldeffekt-Transistoren

3 CMOS-Gatter

4 Leistungsaufnahme

Anwendungs-"hello world!"

Betriebssysteme Programme

Gerätetreiber

Architektur

Befehle Register

Datenpfade

Steuerung

Speicher

Inverter

LIND Gatter

Mikroarchitektur

Logik

√+

Digitalschaltungen

 $^{\circ} \hspace{-.1cm} -\hspace{-.1cm} -\hspace{-.1cm} \circ$

Analogschaltungen o Verstärker Filter

Bauteile

Transistoren Dioden

Physik

Elektronen

- pMOS Transistoren leiten 1'en "gut" von Source nach Drain weiter
 - \Rightarrow Source an V_{DD} anschließen
- nMOS Transistoren leiten 0'en "gut" von Source nach Drain weiter
 - ⇒ Source an GND anschließen

⇒ Complementary Metal-Oxide-Semiconductor (CMOS) Logik

CMOS Gatter NOT

Α	Р	Ν	Υ
0	EIN	AUS	1
1	AUS	EIN	0

CMOS Gatter NAND

Α	В	P1	P2	N1	N2	Υ
0	0	EIN	EIN	AUS	AUS	1
0	1	EIN	AUS	AUS	AUS EIN AUS EIN	1
1	0	AUS	EIN	EIN	AUS	1
1	1	AUS	AUS	EIN	EIN	0

Struktur eines CMOS Gatters

- pMOS ParallelschaltungnMOS Serienschaltung
- pMOS Serienschaltung

nMOS Parallelschaltung

Aufbau eines NOR-Gatters mit drei Eingängen

Pseudo-nMOS Gatter

- Ersetzen des Pull-Up Netzes durch schwachen, immer eingeschalteten pMOS
- ⇒ Pull-Up kann durch das Pull-Down Netz "überstimmt" werden
 - nützlich, um lange Reihen von Transistoren zu vermeiden

Beispiel für Pseudo-nMOS Gatter

- Pseudo-nMOS NOR5
- verbraucht aber mehr Energie: schwacher Dauerkurzschluss bei Y=0

Transmissionsgatter

- nMOS leitet 0'en "gut" von Source nach Drain weiter
- pMOS leitet 1'en "gut" von Source nach Drain weiter
- Transmissionsgatter ist ein besserer Schalter
 - leitet 0'en und 1'en gut weiter
- EN = 1 und $\overline{EN} = 0 \rightarrow S$ chalter ist EIN (A mit B verbunden)
- EN = 0 und $\overline{EN} = 1 \rightarrow \text{Schalter}$ ist AUS (A nicht mit B verbunden)

Agenda

1 Spannungen als Logikpegel

2 Feldeffekt-Transistorer

3 CMOS-Gatter

4 Leistungsaufnahme

Anwendungs-"hello world!"

world!"

Programme

Betriebssysteme

Gerätetreiber

Architektur **Example**

Befehle Register

Datenpfade

Steuerung

Mikroarchitektur

Logik

 $\begin{array}{|c|c|} & \longleftrightarrow \\ & & \end{array}$

Addierer Speicher

Digital- oschaltungen

°**D**°

UND Gatter Inverter

Analogschaltungen

\$\

o Verstärker Filter

Bauteile

Transistoren Dioden

Physik

Elektronen

Leistungsaufnahme

- alternative Begriffe: Leistungsumsatz, Leistungsverbrauch
- Leistung = Energieverbrauch pro Zeiteinheit
- zwei Arten der Leistungsaufnahme:
 - statische Leistungsaufnahme
 - dynamische Leistungsaufnahme

Statische Leistungsaufnahme

- Leistungsbedarf wenn kein Gatter schaltet
- verursacht durch Leckstrom I_{DD}
 - immer kleinere Transistoren schalten nicht mehr vollständig ab
 - Pseudo-nMOS, ...
- lacksquare statische Leistungsaufnahme ist also $P_{ ext{static}} = I_{ ext{DD}} \cdot V_{ ext{DD}}$

Dynamische Leistungsaufnahme

- lacksquare Aufladen der Gate-Kapazität C von $0\,\mathrm{A}\,\mathrm{s}$ auf $Q=C\cdot V_\mathrm{DD}$
- Schaltung wird mit Frequenz f betrieben
- \Rightarrow Transistoren schalten f-mal pro Sekunde
 - nur die Hälfte davon sind Aufladungen
- $I = \frac{Q}{t} = Q \cdot \frac{f}{2} = C \cdot V_{DD} \cdot \frac{f}{2}$
- dynamische Leistungsaufnahme ist:

$$P_{\text{dynamic}} = I \cdot V = (C \cdot V_{\text{DD}} \cdot \frac{f}{2})(V_{\text{DD}}) = \frac{1}{2}C \cdot V_{\text{DD}}^2 \cdot f$$

Beispielrechnung Leistungsaufnahme

- Abschätzen der Leistungsaufnahme für einen Netbook-Prozessor
 - Versorgungsspannung
 $V_{DD} = 1.2 \text{ V}$ Taktfrequenz
 f = 1 GHz
 - Transistorkapazitäten $C = 20 \,\mathrm{nF}$
 - \sum Leckströme $I_{DD} = 20 \text{ mA}$

$$P = P_{\text{static}} + P_{\text{dynamic}}$$

$$= I_{\text{DD}} \cdot V_{\text{DD}} + \frac{1}{2} \cdot C \cdot V_{\text{DD}}^2 \cdot f$$

$$= 24 \text{ mW} + 14.4 \text{ W}$$

Zusammenfassung und Ausblick

- Spannungen als Logikpegel
- 2 Feldeffekt-Transistoren
- 3 CMOS-Gatter
- 4 Leistungsaufnahme nächste Vorlesung beinhaltet
 - Kombinatorische Logik
 - SystemVerilog: Module und logische Schaltungen beschreiben
 - Boole'sche Gleichungen

Zu Übungen nächste Woche Laptop mitbringen! Hausaufgabe A zu Vorlesungen 01 und 02 muss bis nächste Woche Freitag 23:59 abgegeben werden.

Anwendungs->"hello software	Programme
Betriebs- systeme	Gerätetreibe
Architektur	Befehle Register
Mikro- architektur	Datenpfade Steuerung
_ogik o + o	Addierer Speicher
Digital- schaltungen	UND Gatte Inverter
Analog- schaltungen	Verstärker Filter
Bauteile -	Transistorer Dioden

Flektronen

Physik