Практика по алгоритмам, ВШЭ

Владислав Кораблинов, Антон Гардер* Осень, 2020

^{*}Составители сборника не всегда являются авторами задач. Авторы не указаны в учебных целях.

1 Практика 1. Асимптотика и линейные алгоритмы

1.1 Практика

Напомним определения:

- $f(n) \in \mathcal{O}(g(n)) \equiv \exists N, C > 0 : \forall n \ge N : f(n) \le C \cdot g(n)$
- $f(n) \in \Omega(q(n)) \equiv \exists N, C > 0 : \forall n > N : C \cdot q(n) < f(n)$
- $f(n) \in \Theta(g(n)) \equiv \exists N, C_1 > 0, C_2 > 0 : \forall n \ge N : C_1 \cdot g(n) \le f(n) \le C_2 \cdot g(n)$
- $f(n) \in o(g(n)) \equiv \forall C > 0 : \exists N : \forall n \ge N : f(n) < C \cdot g(n)$
- $f(n) \in \omega(g(n)) \equiv \forall C > 0 : \exists N : \forall n \ge N : C \cdot g(n) < f(n)$

Все функции здесь $\mathbb{N} \to \mathbb{N}$ или $\mathbb{N} \to \mathbb{R}_{>0}$ (далее будет ясно из контекста, какой класс функций используется). В дальнейшем, когда речь идет о принадлежности функций вышеопределенным множествам, мы будем использовать знак "=" вместо " \in ", т.к. в литературе обычно используются именно такие обозначения.

Асимптотики

- 1. Докажите, что:
 - (a) $f(n) = \Omega(g(n)) \Leftrightarrow g(n) = \mathcal{O}(f(n))$
 - (b) $f(n) = \omega(g(n)) \Leftrightarrow g(n) = o(f(n))$
 - (c) $f(n) = \Theta(g(n)) \Leftrightarrow f(n) = \mathcal{O}(g(n)) \land f(n) = \Omega(g(n))$
- 2. Контекст имеет значение

Правда ли, что $f(n) = \mathcal{O}(f(n)^2)$?

3. Классы

Определим отношение " \sim ". Будем говорить, что $f \sim g$, если $f = \Theta(g)$. Покажите, что \sim отношение эквивалентности, т.е. оно

- Рефлексивное: $\forall f: f \sim f$,
- Симметричное: $\forall f, g : f \sim g \Leftrightarrow g \sim f$,
- Транзитивное: $\forall f, g, h : (f \sim g) \land (g \sim h) \Rightarrow f \sim h$.

4. Порядки

Определим отношение " \leq ". Будем говорить, что $f \leq g$, если $f = \mathcal{O}(g)$.

Определим отношение $f \leq g \equiv f = \mathcal{O}(g)$.

- (a) Докажите, что ≤ отношение предпорядка (рефлексивное и транзитивное)
- (b) Докажите, что \preceq не отношение частичного порядка, так как не удовлетворяет антисимметричности
- (c) Докажите, что \leq отношение частичного порядка на классах эквивалентности по \sim ?
- 5. Считайте, что функции здесь $\mathbb{N} \to \mathbb{N}$ и $\forall n : f(n) > 1 \land g(n) > 1$.
 - (a) $f(n) = \Omega(f(n/2))$?
 - (b) $f(n) = \mathcal{O}(g(n)) \Rightarrow \log f(n) = \mathcal{O}(\log g(n))$?
 - (c) $f(n) = \mathcal{O}(g(n)) \Rightarrow 2^{f(n)} = \mathcal{O}(2^{g(n)})$?
 - (d) $f(n) = o(g(n)) \Rightarrow \log f(n) = o(\log g(n))$?
 - (e) $f(n) = o(g(n)) \Rightarrow 2^{f(n)} = o(2^{g(n)})$?
 - (f) $\sum_{k=1}^{n} \frac{1}{k} = \Omega(\log n)$?

- 6. Определить асимптотику (считайте, что при $x \le 100$ будет выполняться T(x) = 100).
 - (a) T(x) = T(a) + T(x a) + n для натурального числа a.
 - (b) $T(x) = T(\frac{x}{2}) + 1$.
 - (c) $T(x) = 2 \cdot T(\sqrt{x}) + \log x$

Линейные алгоритмы

7. Дана скобочная последовательность, составленная из скобок '(', ')', '[', ']', '{', '}'. Последовательность называется корректной, если каждой открывающей скобке соответствует закрывающая скобка того же типа, и соблюдается вложенность. Примеры: ([{}]) и ()() – корректные, а [) и [(]) – нет.

Придумайте алгоритм, который проверяет корректность последовательности за линейное время

- 8. Пусть элементы здесь линейно упорядочены и мы умеем сравнивать их за $\mathcal{O}(1)$.
 - (a) Придумайте стек, в котором можно узнавать минимум за $\mathcal{O}(1)$. Все остальные операции стека также должны работать за $\mathcal{O}(1)$.
 - (b) Придумайте очередь, в которой можно узнавать минимум за $\mathcal{O}(1)$. Все остальные операции очереди должны работать за амортизированное $\mathcal{O}(1)$.
 - (с) Придумайте более эффективный по памяти вариант очереди с минимумом на основе пары из обычной очереди и дека.
- 9. Дан массив целых чисел a_i . Придумайте структуру данных, которая бы умела отвечать на запросы вида "По данным l и r вернуть $\sum_{i=l}^r a_i$ " за $\mathcal{O}(1)$.

Разрешается сделать предподсчёт за $\mathcal{O}(n)$. Значения в массиве не меняются.

- 10. Дана последовательность $a_1, a_2, \cdots, a_n \in \mathbb{N}$ и $S \in \mathbb{N}$. Найти l, r $(1 \le l \le r \le n)$ такие, что сумма $\sum_{i=l}^r a_i = S$. Задачу требуется решить за линейное от n время.
- 11. Дана последовательность $a_1, a_2, \dots, a_n \in \mathbb{N}$. Для каждого a_i найти самый правый из элементов, которые левее и не больше его. Задачу требуется решить за линейное от n время.
- 12. Дана последовательность $a_1, a_2, \cdots, a_n \in \mathbb{N}$. Найти $l, r \ (1 \le l \le r \le n)$ такие, что
 - (a) значение $(r-l+1) \min_{i \in [l,r]} a_i$ было бы максимально.
 - (b) значение $\left(\sum_{i\in[l,r]}a_i\right)\min_{i\in[l,r]}a_i$ было бы максимально.

Задачу требуется решить за линейное от n время.

13. Вам дан массив натуральных чисел и число k. Требуется найти подотрезок массива такой, что НОК чисел на нем равен k или заявить, что такого нет. Время работы: $\mathcal{O}(nT_{LCM}(k))$, где $T_{LCM}(k)$ — время подсчета НОК для чисел размера k.

1.2 Домашнее задание

- 1. Дайте ответ для двух случаев $\mathbb{N} \to \mathbb{N}$ и $\mathbb{N} \to \mathbb{R}_{>0}$:
 - (a) Если в определении \mathcal{O} опустить условие про N (т.е. оставить просто $\forall n$), будет ли полученное определение эквивалентно исходному?
 - (b) Тот же вопрос про o.
- 2. Считайте здесь, что $\forall n: f(n) > 1 \land g(n) > 1$. Правда ли, что $f(n) = o(g(n)) \Rightarrow 2^{f(n)} = o(2^{g(n)})$?
- 3. Заполните табличку и поясните (особенно строчки 4 и 7):

A	B	0	0	Θ	ω	Ω
n	n^2	+	+	_	_	_
$ \begin{vmatrix} \log^k n \\ n^k \end{vmatrix} $	n^{ϵ}					
n^k	c^n					
	$n^{\sin n}$					
$\frac{\sqrt{n}}{2^n}$	$2^{n/2}$					
$n^{\log m}$	$m^{\log n}$					
$\log(n!)$	$\log(n^n)$					

Здесь все буквы, кроме n, — константы.

- 4. Дана последовательность $a_1, a_2, \cdots, a_n \in \mathbb{N}$ и $S \in \mathbb{N}$. Найти l, r $(1 \le l \le r \le n)$ такие, что сумма $\sum_{i=l}^r a_i = S$. Задачу требуется решить за линейное от n время. **Подсказки:**
 - Для каждого i найдите максимальное такое r_i , что $\sum_{j=i}^{r_i} a_j \leq S$ за $\mathcal{O}(n)$ для каждого i.
 - Найдите за $\mathcal{O}(n)$ ответ задачи, если известны r_1, \dots, r_n .
 - Докажите, что $r_i \le r_{i+1}$
 - Пользуясь предыдущим пунктом найдите все r_i за $\mathcal{O}(n)$.
- 5. Дана последовательность $a_1, a_2, \cdots, a_n \in \mathbb{N}$.
 - (a) За $\mathcal{O}(n)$ для каждого a_i найти самый правый из элементов, которые левее и меньше его.
 - (b) За $\mathcal{O}(n)$ для каждого a_i найти самый левый из элементов, которые правее и меньше его.
 - (c) За $\mathcal{O}(n)$ найти l,r $(1 \le l \le r \le n)$ такие, что значение $(r-l+1)\min_{i \in [l,r]} a_i$ было бы максимально.
 - (d) За $\mathcal{O}(n)$ найти l,r $(1 \leq l \leq r \leq n)$ такие, что значение $\left(\sum_{i \in [l,r]} a_i\right) \min_{i \in [l,r]} a_i$ было бы максимально.
- 6. Вам дан массив из n элементов и список из m запросов add(x,l,r): прибавить x к каждому элементу на отрезке [l,r]. За $\mathcal{O}(n+m)$ выведите массив, получающийся из исходного после выполнения заданных запросов.
- 7. (только группа Антона) Определить асимптотику $T(n) = 2 \cdot T(\lfloor \log n \rfloor) + 2^{\log^* n}$, где $\log^* n$ итерированный логарифм.

SAUDOCHI B OTTERILLOM TROTE

1.3 Дополнительные задачи

1. Упорядочите функции по скорости роста и обозначьте неравенства между соседями. Укажите, в каких неравенствах f = o(g), а в каких $f = \Theta(g)$

Примечание: $\log^*(n) = \left\{ \begin{array}{ll} 0 & \text{если } n \leq 1; \\ 1 + \log^*(\log n) & \text{иначе}. \end{array} \right.$

- 2. Определить асимптотику (считайте, что при $n \le 100$ будет выполняться T(n) = 100).
 - (a) $T(n) = 2 \cdot T(\lfloor \frac{n}{2} \rfloor + 17) + n$.
 - (b) $T(n) = T(\alpha \cdot n) + T((1 \alpha) \cdot n) + n$ для произвольной константы $\alpha \in (0, 1)$.
 - (c) $T(n) = 4 \cdot T(\lfloor \frac{n}{2} \rfloor) + n^k$ для $k \in \{1, 2, 3\}$.
- 3. Дана последовательность $a_1, a_2, \cdots, a_n \in \mathbb{Z}$. Найти $l, r \ (1 \leq l \leq r \leq n)$ такие, что сумма $\sum_{i=l}^r a_i$ была бы максимальной. Задачу требуется решить за линейное от n время.
- 4. Дано число, представленное n цифрами в d-ичной записи без ведущих нулей. Из числа требуется вычеркнуть ровно k цифр так, чтобы результат был максимальным. Задачу требуется решить за линейное от n время.
- 5. Вам дан массив из n элементов и число k. Все числа лежат в отрезке [1..n]. Найдите такие l и r, что на отрезке [l,r] встречается хотя бы k различных элементов, или сообщите, что такого отрезка нет. Если таких отрезков несколько, выберите тот из них, длина которого минимальна. Время работы $\mathcal{O}(n)$.
- 6. Вам дан массив натуральных чисел и число k. Требуется найти подотрезок массива такой, что НОК чисел на нем равен k или заявить, что такого нет. Время работы: $\mathcal{O}(nT_{LCM}(k))$, где $T_{LCM}(k)$ время подсчета НОК для чисел размера k.
- 7. Дана квадратная матрица из нулей и единиц. Найти наибольший по площади подпрямоугольник, состоящий только из нулей за $\mathcal{O}(n^2)$.
- 8. Вам каждый день на протяжении некоторого времени поступает запрос «вырастет ли курс Apple на бирже», и у вас есть n советников, с которыми вы можете консультироваться. Вы отвечаете да или нет, и в конце каждого дня вам говорят, правильно ли вы ответили. Придумайте алгоритм, который сделает не более $10(\log n + m)$ ошибок, где m число ошибок, которое сделает лучший советник (подсказка: назначьте советникам веса и изменяйте их в зависимости от правильности их ответов).
- 9. Придумайте расширяющийся массив с реальным (не амортизированным) временем добавления $\mathcal{O}(1)$.
- 10. Дан массив целых чисел от 1 до n длины n+1, который нельзя модифицировать. Используя $\mathcal{O}(\log n)$ битов дополнительной памяти, найдите в массиве пару одинаковых чисел за $\mathcal{O}(n)$.
- 11. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n] = \{1, 2, \cdots, n\}$. Обозначим частоту появления элемента x через $f_{\sigma}[x] = |\{i|a_i = x\}|$. Известно, что $\exists_x f_{\sigma}[x] = 1$ и для всех остальных значений $y \neq x, f_{\sigma}[y] \equiv 0 \mod 2$. Требуется найти x за один проход по последовательности, используя $\mathcal{O}(\log n + \log m)$ бит памяти.
- 12. Дана последовательность $\sigma = \langle a_1, a_2, \cdots, a_m \rangle$, где каждый $a_i \in [n]$. Известно, что $\exists_x f_{\sigma}[x] > \frac{m}{2}$. Требуется найти x за один проход по последовательности, используя $\mathcal{O}(\log n + \log m)$ бит памяти.