Number Systems

Denary Number System

Definition

A number system that is made up of 10 unique digits.

• Uses place values of powers of 10.

Binary Number System

Definition

A number system that is made up of 2 unique digits.

. Uses place values of powers of 2.

Notation

To distinguish binary numbers from denary numbers, they can be written in any of the following ways:

- 1101
- $(1101)_2$
- 0b1101

Leading zeros are sometimes also shown when using binary numbers in computer systems to show all 8 binary bits in a byte:

e.g. \$0000 \space 1101\$

Denary to Binary

Algorithm 1: Dividing by 2

- 1. Draw a table with three columns one column for denary numbers, one column for the quotients and one column for the remainders.
- 2. Fill in the denary number in the first row.
- 3. Divide the denary number by 2 and fill in its quotient and remainder in the same row.
- 4. If the quotient is 0, proceed to step 5. Otherwise, copy the quotient to the denary number column of the next row and repeat step 3.
- 5. The equivalent binary number is the remainder column read from the bottom up.

Example: Converting 135 to binary

Denary	Quotient	Remainder

Denary	Quotient	Remainder		
135	67	1		
67	33	1		
33	16	1		
16	8	0		
8	4	0		
4	2	0		
2	1	0		
1	0	1		

 \therefore (135)₁₀ = (10000111)₂

Algorithm 2: Sum of Place Values

E.g. Convert 135 to binary

Place	256	128	64	32	16	8	4	2	1
value	2 ⁸	27	2 ⁶	2 ⁵	24	2 ³	2^{2}	2 ¹	2º
Binary digit		1	0	0	0	0	1	1	1

Hexadecimal Number System

Definition

Number system that is made up of 16 unique digits.

Denary equivalents of the hexadecimal

Hexadecimal digit	Denary equivalent
0	0
1	1
2	2
3	3
4	4
5	5
6	6

Hexadecimal digit	Denary equivalent			
7	7			
8	8			
9	9			
Α	10			
В	11			
С	12			
D	13			
E	14			
F	15			

Example of Hexadecimal Number

1*C*6*A*

$$1.06A_{16} = 1 \times 16^{3} + 12 \times 16^{2} + 6 \times 16^{1} + 10 \times 16^{0}$$

To distinguish hexadecimal numbers from denary numbers, they can be written in any of the following ways:

- 1*C*6*A*₁₆
- (1*C*6*A*)₁₆
- 0x1C6A

Denary to Hexadecimal

Algorithm 1: Divide by 16

- 1. Draw a table with three columns one column for denary numbers, one column for the quotients and one column for the remainders.
- 2. Fill in the denary number in the first row.
- 3. Divide the denary number by 16 and fill in its quotient and remainder in the same row.
- 4. If the quotient is 0, proceed to step 5. Otherwise, copy the quotient to the denary number column of the next row and repeat step 3.
- 5. The equivalent denary number is the remainder column read from the bottom up.

Example

Convert 1899 to hexadecimal

Denary	Quotient	Remainder		
1899	118	$11 = B_{16}$		
118	7	6 = 6 ₁₆		

Denary	Quotient	Remainder
7	0	7 = 7 ₁₆

Hexadecimal to Binary, or Vice Versa

Hexadecimal digit	0	1	2	3	4	5	6	7
Denary equivalent	0	1	2	3	4	5	6	7
Binary equivalent	0000	0001	0010	0011	0100	0101	0110	0111
Hexadecimal digit	8	9	А	В	С	D	E	F
Denary equivalent	8	9	10	11	12	13	14	15
Binary equivalent	1000	1001	1010	1011	1100	1101	1110	1111