

Grant Objectives and Updates

Changes to the team

- No substantial changes to the project objectives
- No HoloLens 2 available
 - Revision of budged to build in sustainability
 - Includes purchase of robot

 NSF: Planning Grant: Engineering Research Center for Human Interactive Technologies (HIT) – California State University Fullerton, Texas A&M University, and Idaho State University's MCERC

Software Structure

Start Scene

- Different appearance for buttons and menus

- Removed the animation in the beginning for performance issues

Start Scene

- A database in xml format holding the name, IP and target name of each system
- An interface to add, remove, edit and connect to any system

Start Scene

- Keyboard where the user can enter different information
- Target image name is optional as we have stopped using Vuforia

Communication

Communicating with robot should be done asynchronously so it does not create any lag or delay in updating each frame.

Voice commands

- System can be detected with voice command.
- Select some of the menu buttons with voice.
- Run and stop module from app through voice.

Method of Voice input

- Using Windows mixed reality toolkit for voice input.
 - Using speech input source and speech input handler.
- Speech convert into text and does the task assigned with the associated speech through coding.
- Robot web services used for running and stopping module.

Procedure of Voice Recognition

- A database of all robots with IP addresses and one specific name for each system.
- When we say any system name, it will search all database for finding the IP address and other specification of that robot

Advantage of Voice Recognition

- Easier than gesture.
- User friendly.
- Don't need to go in front of robot.
- Detect from anywhere.

Module Running through Voice

Run module from app through voice or button saying "Run"

Requirements:

- 1. Controller has to be in auto mode and motors have to be ON.
- 2. Module should be loaded in flex pendant.

Emergency Stop

 In case of emergency, we can immediately stop executing module through voice command saying "STOP"

Benefits:

- 1. Fast execution
- 2. Easy to send command

Front End

- Quality of user interface
- Look
 - TextMeshPro, ProceduralUIImage, GIMP
 - Scalability, flexibility
 - High resolution prototyping

More Front End

- Sound
 - It's important!

- Feel
 - Action -> Feedback
 - Scripting vs. Animator
- Next steps...

Vpanel Scene

Vpanel Scene

- This scene is used to interact with the target system.
- The panel displays information about the connected system.
- The panel contains interaction buttons:
 - System info
 - Debug
 - Maintenance
 - Remote assistance
 - Placeholders

Interaction with Robot

- VPanel contains information of the system that the app is connected to.
- Information is received via HTTP "Get" requests to the system's IP address.
- Specific values are then parsed out of received XML or JSON files.

```
GET
                  134.50.75.4/rw/iosystem/networks?json=1
  1 - 1
          "_links": {
  3 *
              "base": {
                  "href": "http://134.50.75.4:80/rw/iosystem/"
  6
          "_embedded": {
  8 *
              " state": [
 9 +
                      "_links": {
 10 -
 11 *
 12
                              "href": "networks/EtherNetIP?json=1"
 13
                          "devices": {
 15
                               "href": "devices?network=EtherNetIP&json=1"
                        _type": "ios-network-li",
 19
                        _title": "EtherNetIP",
                      "name": "EtherNetIP",
                      "pstate": "running"
 22
```

Values here are sent to the active system object.

Buttons

Add buttons and potential content on buttons (?)

Vpanel: System database

- List in class GameManager
- More systems can be added
- Used by detection systems.

```
ARPRI (2)

→ ¶ GameManager

→ □ Update()

          □using System.Collections;
           using System.Collections.Generic;
           using UnityEngine;
           using UnityEngine.SceneManagement;
          □public class GameManager : MonoBehaviour {
                public static GameManager Instance;
    10
                public GameObject system1Hologram;
    11
                public GameObject system2Hologram;
    12
    13
               public List<HODSystem> HODSystems = new List<HODSystem>();
    14
               public HODSystem hodSYS1 = new HODSystem("Queen System", "ARPRIimage", "134.50.75.4");
                public HODSystem hodSYS2 = new HODSystem("System Number one", "SystemNumber1", "134.50.75.4");
    15
    16
                public HODSystem hodSYSconnected = new HODSystem();
    17
    18
                private void Awake()
    19
    20
                    MakeSingleton();
    21
    22
                    hodSYS1.setHolo(system1Hologram); HODSystems.Add(hodSYS1);
    23
                    hodSYS2.setHolo(system2Hologram); HODSystems.Add(hodSYS2);
    24
    25
                    // DontDestroyOnLoad(currentSystem.systemGameObject);
```

Game structure

Next capabilities

Completion Requirements

- Grant requirements: HoD needs to purchase Hololens???
- HoD usage potential (what are HoD's plans?)
- Final visit in December and transfer of product.
- Final project report to State.
- Continuation of project.

Questions?

