MGMT 323 - Supply Chain Management

Assignment 01

Ali Muhammad Asad - aa07190

Make or Buy Decision

1. Your are given the following information:

COSTS	MAKE OPTION	BUY OPTION
Fixed Cost	\$125,000	\$5,000
Variable Cost	\$15	\$17

- a. Find the break-even quantity and the total cost at the break-even point.
- b. If the requirement is 150,000 units, is it more cost-effective for the firm to buy or make the components? What is the cost savings for choosing the cheaper option?

Solution:

a.
$$Q_{BE} = \frac{F_M - F_B}{V_B - V_M} = \frac{125000 - 5000}{17 - 15} = \frac{120000}{2} = 60000$$

The breakeven quantity is 60,000 units.

$$Total\ Cost = 125000 + 15(60000) = \$1025000$$

b. For a requirement of 150000 units, the breakeven quantity is less than the requirement. Therefore, it is more cost-effective for the firm to make the components.

Cost if firm makes the components = 125000 + 15(150000) = \$2375000

Cost if firm buys the components = 5000 + 17(150000) = \$2555000

Cost savings = 2555000 - 2375000 = \$180000

The firm saves \$180,000 by making the components.

2. Ms. Jane Kim, Purchasing Manager of Kuantan ATV, Inc., is negotiating a contract to buy 20,000 units of a common component part from a supplier. Ms. Kim has done a preliminary cost analysis on manufacturing the part in-house and concluded that she would need to invest \$50,000 in capital equipment and incur a variable cost of \$25 per unit to manufacture the part in-house. Assuming the total fixed cost to draft a contract with her supplier is \$1,000, what is the maximum purchase price that she should negotiate with her supplier? What other factors should she negotiate with the suppliers?

Solution: For the given scenario, we can construct the following table:

Costs	Make Option	Buy Option
Fixed	50000	1000
Variable	25	X

Now we have 20,000 units.

Cost for Make = 50000 + 25(20000) = 50000 + 500000 = 550000

Cost for Buy = 1000 + 20000x

Then we can find the maximum purchase price for her to negotiate as so:

 $1000 + 20000x < 550000 \implies x < 27.45.$

Then the maximum purchase price she should negotiate with her supplier is \$27.45 as after \$27.45, it would be more cost-effective for her to make the components in-house as after that price the cost of buying the components would exceed the cost of making them in-house. Some other factors to consider while negotiating can include payment terms, delivery times, quality of the components, etc.

- 3. A Las Vegas, Nevada, manufacturer has the option to make or buy one of its component parts. The annual requirement is 20,000 units. A supplier is able to supply the parts for \$10 per piece. The firm estimates that it costs \$600 to prepare the contract with the supplier. To make the parts in-house, the firm must invest \$50,000 in capital equipment and estimates that the parts cost \$8 per piece.
 - a. Assuming that cost is the only criterion, use break-even analysis to determine whether the firm should make or buy the item. What is the break-even quantity and what is the total cost at the break-even point?
 - b. Calculate the total costs for both options at 20,000 units. What is the cost savings for choosing the cheaper option?

Solution: For the given scenario, we can construct the following table:

Costs	Make Option	Buy Option
Fixed	50000	600
Variable	8	10

a.
$$Q_{BE} = \frac{F_M - F_B}{V_B - V_M} = \frac{50000 - 600}{10 - 8} = \frac{49400}{2} = 24700$$

Total Cost = 50000 + 8(24700) = 50000 + 197600 = 247600

The breakeven quantity is 24,700 units, and the total cost at this quantity is \$247,600. Since the breakeven quantity is greater than the requirement, the firm should buy the components.

b. Cost if firm makes the components = 50000 + 8(20000) = 50000 + 160000 = 210000

Cost if firm buys the components = 600 + 10(20000) = 600 + 200000 = 200600

Cost savings = 210000 - 200600 = 9400

The firm saves \$9,400 by buying the components.

Total Cost of Ownership

1. Given the following information, use total cost analysis to determine which supplier is more cost-effective. Late delivery of raw material results in 60 percent lost sales and 40 percent back orders of finished goods.

1,000
120,000 units
22 pounds
\$125/order
20% per year
10% per year
15%
\$4,500
\$15 per unit

ORDER SIZE	SUPPLIER 1	SUPPLIER 2
1 to 999 units/order 1000 to 2,999 units/order 3,000 + units/order	\$50.00 per unit \$49.00 per unit \$48.00 per unit	\$49.50 per unit \$48.50 per unit \$48.00 per unit
Tooling cost Terms Distance Supplier Quality Rating Supplier Delivery Rating	\$12,000 2/10, net 30 125 miles 2% 1%	\$10,000 1/10, net 30 100 miles 2% 2%

Truckload (TL ≥ 40,000 lbs): \$0.85 per ton-mile

Less-than-truckload (LTL): \$1.10 per ton-mile

Note: per ton-mile = 2,000 lbs per mile

Solution: Based on the provided information, we can construct the following table for ordering and managing the total costs:

Costs	Supplier 1		Supplier 2		
Engine Costs	120000 * 49	5880000	120000 * 48.5	5820000	
Cash Discount					
n/30	5880000 * 10% * 30/360	49000	5820000 * 10% * 30/360	48500	
1/10	NA	-	5820000 * (10% * 30/360 + 1%)	74366.66667	
2/10	5880000 * (10% * 10/360 + 2%)	133933.3333	NA	-	
Largest Discount		-133933.3333		-74366.66667	
Tooling Cost		12000		10000	
	125 miles * 120000 * 22lbs *		100 miles * 120000 * 22lbs *		
Transportation Cost	1.1/2000	181500	1.1/2000	145200	
Ordering Costs	120000/1000 * 125 order cost	15000	120000/1000 * 125 order cost	15000	
Carrying Costs	(1000/2) * 49 * 20%	4900	(1000/2) * 48.5 * 20%	4850	
Quality Costs	5880000 * 2% Quality Rating	117600	5820000 * 2% Quality Rating	116400	
Delivery Rating					
	120000 * 1% Delivery Rating *		120000 * 2% Delivery Rating *		
	40% BackOrder * 15 Backorder		40% BackOrder * 15 Backorder		
Backorder (40%)	Cost	7200	Cost	14400	
	120000 * 1% * 60% Lost Sales *		120000 * 2% * 60% Lost Sales		
	4500 price of finished goods *		* 4500 price of finished goods *		
Lost Sales (60%)	15% profit margin	486000	15% profit margin	972000	
Total Cost		6570266.667		7023483.33	

Via Total Cost Analysis, we can clearly see that Supplier 1 is more cost-effective as the total cost of ownership is \$6,570,266.67 compared to \$7,023,483.33 for Supplier 2.

2. A buyer received bids and other relevant information from three suppliers for a vital component part for its latest product. Given the following information, use total cost analysis to determine which supplier should be chosen. Late delivery of the component results in 70 percent lost sales and 30 percent back orders of finished goods.

Order lot size Requirements (annual forecast) Weight per engine Order processing cost Inventory carrying rate	2,000 240,000 units 40 pounds \$200/order 20% per year
Cost of working capital Profit margin Price of finished goods Back order cost	10% per year 15% \$10,500 \$120 per unit

ORDER SIZE	SUPPLIER 1	SUPPLIER 2	SUPPLIER 3
1 to 999 units/order	\$200.00 per unit	\$205.00 per unit	\$198.00 per unit
1,000 to 2,999 units/order	\$195.00 per unit	\$190.00 per unit	\$192.00 per unit
3,000 + units/order	\$190.00 per unit	\$185.00 per unit	\$190.00 per unit
Tooling Cost	\$12,000	\$10,000	\$15,000
Terms	2/10, net 30	1/15, net 30	1/10, net 20
Distance	120 miles	100 miles	150 miles
Supplier Quality Rating	2%	1%	2%
Supplier Delivery Rating	1%	1%	2%

Truckload (TL \geq 40,000 lbs): \$0.95 per ton-mile Less-than-truckload (LTL): \$1.20 per ton-mile Note: per ton-mile = 2,000 lbs per mile

Solution: We use the same methodology as in the previous question to construct a table for the three suppliers as follows:

Costs	Supplier 1		Supplier 2		Supplier 3	
Engine Costs	240000 * 195	46800000	240000 * 190	45600000	240000 * 192	46080000
Cash Discount						
n/30	46800000 * 10% * 30/360	390000	45600000 * 10% * 30/360	380000	46080000 * 10% * 20/360	25600
			45600000 * (10% * 15/360		46080000 * (10% * 20/360	
1/10	NA		+ 1%)	646000	+ 1%)	58880
	46800000 * (10% * 10/360					
2/10	+ 2%)	1066000	NA		NA	
Largest Discount		-1066000		-646000		-58880
Tooling Cost		12000		10000		1500
	120 * 240000 * 40 *		100 * 240000 * 40 *		150 * 240000 * 40 *	
Transportation Cost	0.95/2000	547200	0.95/2000	456000	0.95/2000	68400
Ordering Costs	240000/2000 * 200	24000	240000/2000 * 200	24000	240000/2000 * 200	2400
Carrying Costs	(2000/2) * 195 * 20%	39000	(2000/2) * 190 * 20%	38000	(2000/2) * 192 * 20%	3840
	46800000 * 2% Quality		45600000 * 1% Quality		46080000 * 2% Quality	
Quality Costs	Rating	936000	Rating	456000	Rating	92160
Delivery Rating						
Backorder (30%)	240000 * 1% * 30% * 120	86400	240000 * 1% * 30% * 120	86400	240000 * 2% * 30% * 120	17280
	240000 * 1% * 70% *		240000 * 1% * 70% *		240000 * 2% * 70% *	
Lost Sales (70%)	10500 * 15%	2646000	10500 * 15%	2646000	10500 * 15%	529200
Total Cost		50024600		48670400		5263900

From the table above, we can see that Supplier 2 is the most cost-effective option with a total cost of \$48,670,400 compared to \$50,024,600 for Supplier 1 and \$52,639,000 for Supplier 3.