

REVERSE-ENGINEERING LANGUAGE: A STUDY ON THE SEMANTIC COMPOSITIONALITY OF GERMAN COMPOUNDS

Corina Dima · Department of Linguistics and SFB 833, University of Tübingen, Germany

What f makes p most similar to w?

test set compounds

Task

Given a dataset of compounds together with their immediate constituents, and the corresponding distributed representations for each of the individual words, learn a composition function f that combines the representations of the constituents into the representation of the compound such that the *composite representation* (p) is similar to its corpus-estimated observed representation (w).

Results

12 composition models were evaluated on the task of building compositional representations for German compounds. The best performing model is the newly introduced Wmask model (model 12).

Dataset

34497 compounds from GermaNet 9.0 German compounds list; frequency filtered: modifier, head and compound with min. frequency 500 in the support corpus.

Word Representations

Trained 50, 100, 200 and 300 word representations using GloVe (Pennington et. al, 2014), a 10B token raw-text corpus extracted from the DECOW14AX corpus (Schäfer, 2015) and 1M words vocabulary.

The mask models

When a word w enters a composition process, there is some variation in meaning depending on whether it is the first or the second element of the composition:

The masks of a word *w* represented by $u \in \mathbb{R}^n$ are two vectors u' and $u'' \in \mathbb{R}^n$, initialized with a vector of all ones and estimated with the help of the training data.

	Modifier masks					Head masks						
	0.3	0.1	0.6	0.2	1.1			1.0				
$u'_{car} \rightarrow$	0.5	0.8	0.4	0.3	0.1		0.2	0.0	0.3	0.6	1.4	← U car
	0.0	0.1	0.1	0.2	0.3		0.9	1.3	0.6	0.3	1.1	
			•						•			
${oldsymbol{ u}'}_{ ext{factory}} ightarrow$	0.2	1.0	0.5	0.7	0.8		0.1	8.0	0.9	0.5	0.3	$\leftarrow oldsymbol{\mathcal{V}}''$ factory
	0.4	0.0	0.7	0.1	0.1		2.1	0.2	0.4	0.9	0.7	

Composition with the *mask* models

The composite representation of a compound like car factory is obtained by combining the masked representations of it's modifier and head:

$$u_{car} \odot u'_{car} \text{ and } v_{factory} \odot v''_{factory}$$

The masked representation is the result of component-wise multiplication between the initial vector of the word and the mask corresponding to its current position. The masked representations are then combined via component-wise addition (model 11) or via a global matrix $W \in$ $\mathbb{R}^{n\times 2n}$ and a nonlinearity g (model 12).

References

- Jeff Mitchell and Mirella Lapatta. 2010. Composition in distributional models of semantics. Cognitive Science, 34(8):1388-1429.
- ² Marco Baroni and Roberto Zamparelli. 2010. Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space. In Proceedings of EMNLP 2010. ³ G. Dinu, T.P. Nghia and M. Baroni. 2013. General estimation and evaluation of compositional distributional semantic models. In Proceedings of *ACL 2010 CVSC Workshop*.
- ⁴ F. M. Zanzotto, I. Korkontzelos, F. Falluchi and S. Manandhar. 2010. Estimating Linear Models for Compositional Distributional Semantics. In *Proceedings of ICCL 2010*.
- ⁵ R. Socher, C.D. Manning, A.Y. Ng. 2010. Learning continuous phrase representations and syntactic parsing with recursive neural networks. In *Proceedings of NIPS-2010 DL Workshop*.
- ⁶ Richard Socher, Brody Huval, C.D. Manning and Andrew Ng. 2012. Semantic compositionality through recursive matrix-vector spaces. In Proceedings of EMNLP-CoNLL 2012.