

Use of NSU3D for Transonic Drag Prediction

David W. Levy Cessna Aircraft Co.

Overview

- NSU3D Description
- Grid modifications
- Case1
- Case 2
- Cases 3-4
- Conclusions/Recommendations

NSU3D Characteristics

- Thin-layer Navier-Stokes
- RANS, Spalart-Allmaras turb. model
- Unstructured grids, nodal, mixed elements
- Central differencing w/ matrix dissipation
- Agglomeration multigrid
- Implicit lines through boundary layer
- Parallel implementation

Grid Modifications

- Standard unstructured nodal grid
- Used VGRID to generate refined grid
- 17 nodes across wing trailing edge
- 65% Global refinement:
 3 M volume nodes (std: 1.6M)
 73K viscous surface nodes (std: 36K)
- 4.2 GB memory required

Computer System Stats

- Grid generated and preprocessed on SGI Octane, dual 300Mhz R12000, 2GB RAM
- Solutions run on 8 dual-node "Beowulf" type system
- Alpha VP2000 motherboards
- 16 GB total memory
- 8 hour run time for 3M grids (typical)

Forces/Moments: Case 1

 M_{∞} = .75, R_{Nc} = 3x10⁶, Std Grid (1.6M nodes)

	NSU3D	Experiment		
C_{L}	.4995	.500		
α	248°	.2°		
C_{D}	.02899	.0286 (Avg)		
C_{M}	1540	132 (Avg)		

Pressure Profiles: Case 1

 M_{∞} = .75, C_L =.50, R_{Nc} = 3x10⁶, Std Grid (1.6M nodes)

June 9-10, 2001

AIAA CFD Drag Prediction Workshop

Drag Polar: Case 2

June 9-10, 2001

AIAA CFD Drag Prediction Workshop

Anaheim, CA 8

Cessna

Forces/Moments: Case 2

 M_{∞} = .75, R_{Nc} = 3x10⁶, Std and Fine Grids

June 9-10, 2001

AIAA CFD Drag Prediction Workshop

Cases 3-4 Run Matrix

A/M	.50	.60	.70	.75	.76	.77	.78	.80
-3		X		X	X	X	X	X
-2	C	X	X	X	X	X	X	X
-1	C	X	X	X	X	X	X	X
0	C	X	X	X	X	X	X	R
1	С	X	X	X	С	С	R	R
2	X	X		С				R

x: Normal run

C: Extra convergence required

R: Restart from previous solution

Cases 3-4 Idealized Profile Drag

June 9-10, 2001

AIAA CFD Drag Prediction Workshop

Anaheim, CA 11

Cases 3-4 Mach Sweep

June 9-10, 2001

AIAA CFD Drag Prediction Workshop

Cessna ATextron Company

Conclusions/Recommendations

- Basic drag levels well predicted.
- Induced drag and separation underpredicted.
- Mach number trends consistent w/ expmt.
- NSU3D a practical tool for drag estimation.
- More study on induced drag and separation.
- Database for correlation to flight.