3. Deep Learning – Terminology

Contents

1. Neuron	2
2. MLP (Multi-Layer Perceptrons)	3
3. Neural network	4
4. Input, Hidden layers & Output	
5. Weights	
6. Bias	
7. Activation Function	
8. Types of activation functions	
9. Forward Propagation	
10. Back propagation	
11. Cost Function	
12. Gradient Descent	
13. Learning Rate	
14. Batches	
15. Fnochs	

3. Deep Learning – Terminology

1. Neuron

- ✓ Neuron forms the basic element of our brain.
- ✓ A group of neurons used to create neural network.
- ✓ A neuron receives an input, processes it and generates an output.

2. MLP (Multi-Layer Perceptrons)

- ✓ A single neuron may not perform the complex tasks.
- ✓ So, it's required to use group of neurons to perform a complex task.
- ✓ In simple network we do have like,
 - o Input layer.
 - o Hidden layer.
 - o Output layer.
- ✓ Each layer has multiple neurons.
- ✓ All neurons in each layer are connected to all the neurons in the next layer.

3. Neural network

- ✓ Neural Network is the backbone of deep learning.
- ✓ A Neural Network is combinations of basic Neurons also called as Perceptrons.
- ✓ The goal of a neural network is to find the mapping function.
 - Neurons having weights and bias which is updated during training.

4. Input, Hidden layers & Output

- ✓ Input layer receives the input
- ✓ The processing layers are the hidden layers within the network.
 - o These layers perform specific tasks on the incoming data.
 - These layers can pass result to the next layers
- ✓ Output layer generates the output
- ✓ Input and output layers are visible but hidden layers are hidden

5. Weights

- ✓ When input enters into the neuron, it is multiplied by a weight.
- ✓ Assuming that, if a neuron has two inputs, then each input have separated weights.
- ✓ Here weights will be initialized randomly and these weights are updated during the model training.
 - Let's assume the input is a value and weight is W1.
 - Then after passing through the node the input becomes a*W1

6. Bias

- ✓ In addition to the weights, bias also added to the input.
- ✓ After adding the bias, the result would look like, a * W1 + bias.

7. Activation Function

- ✓ The activation function translates the input signals to output signals.
- ✓ After applying activation function then the its looks like,
 - o f(a*W1+b)
 - Here f() is the activation function.
- ✓ The activation function puts a nonlinear transformation to the linear combination

8. Types of activation functions

- ✓ Sigmoid
- ✓ Linear
- ✓ Tanh or hyperbolic tangent
- ✓ ReLU(Rectified Linear Units)
- ✓ Softmax

9. Forward Propagation

- ✓ In forward propagation, the information will be travelled into forward direction.
- ✓ The input layer provides input to the hidden layers and then the output is generated.
- ✓ In forward propagation input will not be travelled to backward direction.

10. Back propagation

- ✓ During training, the network will get the results.
- ✓ These results will be compared with actual outputs by using loss/cost function.
- ✓ During comparing it will get error.
- ✓ To minimize this error internally weights supposed to be adjusted.
- ✓ So here back propagation helps to adjust the error.
- ✓ Back propagation means the,
 - The inputs results + error will travel in backward direction to adjust the weights

11. Cost Function

- ✓ When we create a network, the network tries to predict the output as close as possible to the actual value.
- ✓ We can measure this accuracy of the network by using the cost/loss function.
- ✓ The goal of running network is,
 - o Increase our prediction accuracy
 - o Reduce the error.
 - o Minimizing the cost function.

12. Gradient Descent

✓ Gradient descent is an optimization algorithm for minimizing the cost.

13. Learning Rate

- ✓ The learning rate is kind of hyper parameter to minimize the cost function in every iteration.
- ✓ We should choose the learning rate very carefully.
- ✓ If learning rate is large then it may miss minimum error point.
- ✓ If learning rate is very small then it takes long time to reach minimum error.
- ✓ So, optimize value is required.

14. Batches

- ✓ While training a neural network, instead of sending the entire input in onetime, generally it divides into several chunks of equal size randomly.
- ✓ It would be really good practice to train the model with batch of data instead of entire data.

15. Epochs

✓ The training of the neural network with all the training data for one cycle.