论文题目

Point-Based Multi-View Stereo Network

论文作者

Rui Chen, Songfang Han, Jing Xu, Hao Su Tsinghua University The Hong Kong University of Science and Technology University of California, San Diego

代码地址

http://hansf.me/projects/PMVSNet/ https://github.com/callmeray/PointMVSNet

论文的前提

一般的 2D 的 CNN 不能很好的捕捉时序信息,3D 的 CNN 会有一个 depth 的概念来捕捉相邻帧的时序信息,下面的图中 depth=3

论文观点

以 C3D 网络为基础,借鉴了 Faster RCNN 的思路,对于任意的输入视频 L,先进行 proposal,然后 3D-pooling,最后后进行分类和回归操作可以针对任意长度视频,任意分辨率,任意长度行为进行端到端的检测 共享 Proposal generation 和 Classification 网络的 C3D 参数使得速度很快

论文做法

1. C3D 特征提取网络(基本的 C3D 的 L=16,此处的更新在于 L 可以等于任意值)

2. Temporal Proposal(提取一系列可能存在行为的候选时序)

input: 512 * L/8 * H/16 * W/16

假设anchor均匀分布在L/8的时间域上,也就是有L/8个anchors,每个anchors生成K个不同scale的候选时序(时序上的操作)

为了获得每个时序点(anchor)上每段候选时序的中心位置偏移和时序的长度,将空间上H/16*W/16的特征图经过一个3*3*3的卷积核和一个3D pooling层下采样到

1*1**→**512*L/8*1*1

每个时序位置上的512维的特征向量用来预测中心位置和长度的相对偏移,同时它也预测了此Proposal是动作还是背景,最后两个1*1*1卷积预测提议偏移和提议分数

3. Activity Classification

非极大值抑制生成优质的 proposal→3D ROI pooling 之后得到相同大小的 feature map 边框回归+类别分类

最终效果

Table 2. Per-class AP at IoU threshold $\alpha = 0.5$ on THUMOS'14 (in percentage).

in percentage).				
	[20]	[39]	[24]	R-C3D (ours)
Baseball Pitch	8.6	14.6	14.9	26.1
Basketball Dunk	1.0	6.3	20.1	54.0
Billiards	2.6	9.4	7.6	8.3
Clean and Jerk	13.3	42.8	24.8	27.9
Cliff Diving	17.7	15.6	27.5	49.2
Cricket Bowling	9.5	10.8	15.7	30.6
Cricket Shot	2.6	3.5	13.8	10.9
Diving	4.6	10.8	17.6	26.2
Frisbee Catch	1.2	10.4	15.3	20.1
Golf Swing	22.6	13.8	18.2	16.1
Hammer Throw	34.7	28.9	19.1	43.2
High Jump	17.6	33.3	20.0	30.9
Javelin Throw	22.0	20.4	18.2	47.0
Long Jump	47.6	39.0	34.8	57.4
Pole Vault	19.6	16.3	32.1	42.7
Shotput	11.9	16.6	12.1	19.4
Soccer Penalty	8.7	8.3	19.2	15.8
Tennis Swing	3.0	5.6	19.3	16.6
Throw Discus	36.2	29.5	24.4	29.2
Volleyball Spiking	1.4	5.2	4.6	5.6
mAP@0.5	14.4	17.1	19.0	28.9

Table 4. Activity detection results on Charades (in percentage). We report the results using the same evaluation metric as in [25].

	mAP		
	standard	post-process	
Random [25]	4.2	4.2	
RGB [25]	7.7	8.8	
Two-Stream [25]	7.7	10.0	
Two-Stream+LSTM [25]	8.3	8.8	
Sigurdsson et al. [25]	9.6	12.1	
R-C3D (ours)	12.4	12.7	

Table 3. Detection results on ActivityNet in terms of mAP@0.5 (in percentage). The top half of the table shows performance from methods using additional handcrafted features while the bottom half shows approaches using deep features only (including ours). Results for [29] are taken from [1]

	train data	validation	test
G. Singh et. al. [30]	train	34.5	36.4
B. Singh et. al. [29]	train+val	-	28.8
UPC [18]	train	22.5	22.3
R-C3D (ours)	train	26.8	26.8
R-C3D (ours)	train+val	-	28.4

Table 5. Activity detection speed during inference.

	FPS
S-CNN [24]	60
DAP [4]	134.1
R-C3D (ours on Titan X Maxwell)	569
R-C3D (ours on Titan X Pascal)	1030