COMP0009 Logic and Databases

Exercises 6: First order compactness. With answers.

Robin Hirsch

November 30, 2020

Let \vdash be a proof system for first order logic (denoting either proof by an axiom system, by tableau or by some other method, sound and complete for first order validities.).

1. Let Γ be a set of first order sentences and let ϕ be a single sentence. Explain what $\Gamma \vdash \phi$ means.

Answer: For axiom systems, there is a finite sequence $\phi_0, \phi_1, \ldots, \phi_k$ where each formula is either an instance of an axiom, an element of Γ or obtained from earlier elements of the sequence by a rule of inference, and $\phi_k = \phi$. For tableaus, there is a (finite) closed tableau with $\neg \phi$ at the root and the tableau is constructed by standard α, β, δ and γ expansions or by adding in nodes labelled by formulas in Γ .

- 2. Explain the notation $\Gamma \models \phi$. Answer: For every L-structure S if $S \models \Gamma$ (i.e. if all sentences in Γ are true in S) then $S \models \phi$.
- 3. Explain what it means when we say that a set Σ of *L*-formulas is *inconsistent*. Answer: It means $\Sigma \vdash \bot$
- 4. What does it mean when we say \vdash is sound? What does it mean when we say \vdash is strongly complete?

Answer: Sound means $\Gamma \vdash \phi$ implies $\Gamma \models \phi$. It follows from soundness that inconsistent formulas do not have models. Strongly complete means $\Gamma \models \phi$ implies $\Gamma \vdash \phi$. It follows from strong completeness that all consistent sets of sentences have models

5. State the compactness theorem for first order logic.

Answer: Σ is consistent if and only if every finite subset of Σ is consistent

Let L = L(C, F, P) be a signature with constants $C = \{0, 1\}$, functions $F = \{+, \times\}$ and predicates $\{<, =\}$. Let $N = (\mathbb{N}, I)$ be the L-structure whose domain is the set of natural numbers, where I(0) = 0, I(1) = 1, where I(+), I(+) denote ordinary addition and multiplication of natural numbers (respectively) and where I(+), I(+) denote ordinary less than or equal (respectively) on natural numbers.

- 6. Write down a closed term t in this language that denotes 7. Answer: e.g. $((1+1)\times((1+1)+1))+1$
- 7. Which elements of the domain \mathbb{N} are named by closed terms in N?

 Answer: Every natural number is named by a closed term, n is named by $(((\ldots((1+1)+1)+\ldots+1)+1)$.

Let Σ be the set of all L-sentences true in N.

8. Write down an L-sentence in Σ . Answer: e.g. $\forall x \forall y (x+y=y+x)$ or $\forall x (x < x+1)$ Write down an L sentence not in Σ .

Answer: e.g. 1 = 0

Now let L^+ be the same signature as L, but also including one new constant symbol ω . Consider the infinite theory

$$\Sigma^+ = \Sigma \cup \{t < \omega : t \text{ is a closed } L\text{-term}\}$$

9. Let F be a finite subset of Σ^+ . Prove that F is consistent. [Hint: find a model of F based on N, but with a suitable interpretation of ω .]

Answer: Since F is finite there is a 'largest' closed term t such that $t < \omega$ is in F, let $I(t) = n \in \mathbb{N}$. Now Let I' be same as standard interpretation I over \mathbb{N} but let $I'(\omega) = n + 1$. Then each sentence in Σ is true in (\mathbb{N}, I') , since I' is same as standard interpretation on L-terms, and each formula $t < \omega$ in the finite set F is true in (\mathbb{N}, I') since n < n + 1. Since F has a model, it must be consistent, by soundness.

- 10. Use the compactness theorem to prove that Σ^+ has a model $N^+ = (\mathbb{N}^+, I^+)$. Answer: Since every finite subset of Σ^+ is consistent (as shown in previous question) the compactness theorem tell us that Σ^+ is consistent. Strong completeness tells us that Σ^+ has a model.
- 11. If $m \in \mathbb{N}^+$ is named by a closed L-term t, then we say that m is a standard number, other elements of \mathbb{N}^+ are non-standard. Write down several closed L^+ -terms denoting distinct, non-standard numbers.

Answer: E.g. $\omega, \omega + 1, \ldots, \omega \times 2, \ldots, \omega \times \omega, \ldots$

- 12. Is $\forall x \forall y (x \times y = y \times x)$ true in N^+ ?

 Answer: Yes. This sentence belongs to Σ and N^+ is a model of Σ .
- 13. Is there a number $m \in \mathbb{N}^+$ such that $\mathbb{N}^+ \models m+1 = \omega$? If so, is m interpretted as a standard number?

Answer: Yes. The sentence $\forall x(\neg x = 0 \rightarrow \exists y(y+1=x) \text{ is true in } N \text{ hence it is included in } \Sigma, \text{ hence } N^+ \text{ is a model of it.}$

- 14. We say that m is a predecessor of n if m+1=n. Which elements of \mathbb{N}^+ have predecessors? Answer: By previous part, all elements of \mathbb{N}^+ apart from zero have predecessors.
- 15. The principal of induction can be written as the second order formula $\forall P((P(0) \land \forall x (P(x) \rightarrow P(x+1)))) \rightarrow \forall x P(x))$, where P is a unary predicate. Does the principal of induction hold in N^+ ?

Answer: No. Let P be a unary predicate interpreted as the set of standard numbers. Then P(0) is true since 0 is standard and $P(n) \to P(n+1)$ is also true, since the successor of a standard number is standard. But $\forall x P(x)$ is not true, since $P(\omega)$ is false.