$2^{ m nde}7$	Mardi 17 décembre 2 013	Équations de droites
Contrôle de mathématiques		
Nom:		
Prénom:		
Note et observations :		

Le barème est indicatif.

La rédaction est importante dans de nombreuses questions.

2 points seront attribués à la qualité et la précision de la rédaction!

Exercice 1:

(1+2+2+1+1+2=9 pts)

Dans cet exercice, on se place dans le repère orthonormé (O; I, J) ci-dessous. L'unité est le carreau.

- 1°) La droite (d_1) passe par les points A(1; 1) et B(3; -5).
 - (a) Placer les points A et B sur le repère et tracer la droite (d_1) .
 - **(b)** En détaillant précisément les calculs, déterminer l'équation réduite de la droite (d_1) .
- **2°**) La droite (d_2) a pour équation y = 2x + 1.
 - (a) En détaillant précisément la démarche, tracer la droite (d_2) .
 - **(b)** Les droites (d_1) et (d_2) sont-elles parallèles? Justifier la réponse en utilisant une propriété du cours.
 - (c) Les droites (d_1) et (d_2) sont-elles perpendiculaires? Justifier précisément la réponse en utilisant une propriété du cours.
- **3°)** On appelle C le point d'intersection des droites (d_1) et (d_2) . Calculer les coordonnées du point C. Donner les coordonnées sous forme fractionnaire.

*

Exercice 2:

(1+2+2+2+2=9 pts)

Pour cet exercice, la figure n'est pas obligatoire.

Dans un repère orthonormé (O; I, J), on considère les points suivants définis par leurs coordonnées :

$$R(1; -2)$$
; $S(5; 2)$ et $T(1; 5)$.

- 1°) En expliquant la démarche, déterminer une équation de la droite (RT).
- 2°) En détaillant précisément la démarche, déterminer l'équation réduite de la droite (RS).
- **3°)** On appelle (Δ) la droite parallèle à (RS) passant par T. En détaillant précisément la démarche, déterminer l'équation réduite de la droite (Δ).
- **4°)** Le point U appartient à (RS) et on sait que son ordonnée est $y_U = -4$. Calculer son abscisse x_U .
- 5°) Les points T, O et U sont-ils alignés?