# **MAT1110**

## Obligatorisk oppgave 1 av 2

#### Innleveringsfrist

Torsdag 23. FEBRUAR 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels hus.

### Instruksjoner

Du velger selv om du skriver besvarelsen for hånd eller på datamaskin (for eksempel ved bruk av L<sup>A</sup>T<sub>E</sub>X). Alle besvarelser skal inkludere følgende offisielle forside:

www.uio.no/studier/admin/obligatoriske-aktiviteter/mn-math-obligforside.pdf

Det forventes at man har en klar og ryddig besvarelse med tydelige begrunnelser. Husk å inkludere alle relevante plott og figurer. Studenter som ikke får sin opprinnelige besvarelse godkjent, men som har gjort et reelt forsøk på å løse oppgavene, vil få én mulighet til å levere en revidert besvarelse. Samarbeid og alle slags hjelpemidler er tillatt, men den innleverte besvarelsen skal være skrevet av deg og reflektere din forståelse av stoffet. Er vi i tvil om du virkelig har forstått det du har levert inn, kan vi be deg om en muntlig redegjørelse.

I oppgaver der du blir bedt om å programmere må du skrive ut programkoden og levere denne sammen med resten av besvarelsen. Det er viktig at programkoden du leverer inneholder et kjøreeksempel, slik at det er lett å se hvilket resultat programmet gir. For å skrive ut programkoden fra en av UiOs Linux-maskiner kan du gå til mappen hvor programmet ditt ligger og skrive

#### lpr -P pullprint\_produsent filnavn

der filnavn er navnet på filen du ønsker å skrive ut og pullprint\_produsent er navnet på produsenten av skriveren du ønsker å hente utskriften fra. Det er vanlig å enten bruke pullprint\_Ricoh eller pullprint\_HP.

#### Søknad om utsettelse av innleveringsfrist

Hvis du blir syk eller av andre grunner trenger å søke om utsettelse av innleveringsfristen, må du ta kontakt med studieadministrasjonen ved Matematisk institutt (7. etasje i Niels Henrik Abels hus, e-post: studieinfo@math.uio.no) i god tid før innleveringsfristen.

For å få adgang til avsluttende eksamen i dette emnet, må man bestå alle obligatoriske oppgaver i ett og samme semester.

## For fullstendige retningslinjer for innlevering av obligatoriske oppgaver, se her:

www.uio.no/studier/admin/obligatoriske-aktiviteter/mn-math-oblig.html

**Oppgave 1.** La T være en lineæavbildning  $T: \mathbb{R}^2 \to \mathbb{R}^2$  som er slik at

$$T \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \quad \text{og} \quad T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- a) Finn en  $2 \times 2$  matrise A slik at  $T\mathbf{x} = A\mathbf{x}$  for alle  $\mathbf{x} \in \mathbb{R}^2$ .
- b) Finn to egenverdier og to tilhørende egenvektorer for A.
- c) Regn ut

$$(A^5 + A^3 + A) \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

**Oppgave 2.** En disk med radius  $\rho \leq 1/2$  ruller på parabelen  $y = x^2$ . Se figur 1. La senteret i disken ha koordinater (X, Y).



Figur 1: En disk som ruller på en parabel.

- a) Finn enhets normalen med negativ andrekomponent til kurven  $\mathbf{s}(x) = (x, x^2)$ . Neden for kaller vi denne for  $\mathbf{n}(x)$ .
- b) Finn X og Y som funksjon av førstekomponten til berøringspunktet  $\mathbf{s}(x)$
- c) Anta at  $x(t) = 2\cos(t)$ . Finn hastigheten  $\mathbf{v}(t)$  og akselerasjonen  $\mathbf{a}(t)$  til senteret i disken. Vi er nå interessert i å finne banen,  $\mathbf{r}(x)$ , til det punktet på randen av disken som er slik at  $\mathbf{r}(0) = (0,0)$ . For å hjelpe oss med dette innfører vi funksjonen

$$\sigma(x) = \int_0^x \sqrt{1 + 4\xi^2} \, d\xi = \frac{1}{4} \left( 2x\sqrt{1 + 4x^2} + \sinh^{-1}(2x) \right),$$

 ${\rm der~sinh^{-1}~betegner~den~inverse~til}~hyperbolsk~sinus.$ 

- d) Forklar hvorfor  $\sigma(x)$  er buelengden på kurven  $\mathbf{s}(t) = (t, t^2)$  for  $t \in [0, x]$ .
- e) La  $\mathbf{m}(x) = \mathbf{r}(x) (X(x), Y(x))$ . Forklar hvorfor

$$\mathbf{m}(x) = \rho \begin{pmatrix} \cos(\frac{\sigma(x)}{\rho}) & \sin(\frac{\sigma(x)}{\rho}) \\ -\sin(\frac{\sigma(x)}{\rho}) & \cos(\frac{\sigma(x)}{\rho}) \end{pmatrix} \mathbf{n}(x)$$

f) Anta at  $\rho = 1/2$ , bruk Matlab eller python til å plotte kurvene  $\mathbf{s}(x)$ , (X(x), Y(x)) og  $\mathbf{r}(x)$  for  $x \in [-2, 2]$  i samme diagram.

**Oppgave 3.** La  $\sigma(t)$  være kurven  $\sigma(t) = \cos(t) \mathbf{i} + \sin(t) \mathbf{j}$ , og sett  $\mathbf{r}(t) = e^{-t} \sigma(t)$ .

- a) Skissér kurven  $\mathbf{r}(t)$  for  $t \in [0, 4\pi]$ .
- **b)** Finn lengden av linjestykket  $\mathbf{r}(t)$  for  $t \in [0, \infty)$ .
- c) Vis at  $\mathbf{r}(t)$  tilfredsstiller differensialligningen

$$\mathbf{r}'(t) = -\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \mathbf{r}(t), \qquad \mathbf{r}(0) = \mathbf{i}.$$

**Oppgave 4.** Vi lar  $\mathbf{x} = (x_1, \dots, x_n)$  betegne en vektor i  $\mathbb{R}^n$ . Et vektorfelt  $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$  kalles sentralt hvis det kan skrives på formen  $\mathbf{F}(\mathbf{x}) = f(|\mathbf{x}|)\mathbf{x}$ , der f er en funksjon fra  $[0, \infty) \to \mathbb{R}$ .

- a) Vis at sentrale vektorfelter konservative i  $\mathbb{R}^n$  hvis f er kontinuerlig deriverbar og  $\lim_{r\to 0} f'(r) = 0$ .
- **b)** La h(r) være en funksjon slik at h'(r) = rf(r). Vis at  $\phi(\mathbf{x}) = h(|\mathbf{x}|)$  er en potensialfunksjon til **F**.

SLUTT