SIN_X PASSIVATION OF SILICON SURFACES

UNIVERSITY OF WASHINGTON

L. C. Olsen

Objectives and Approach

OBJECTIVES

- RELATE SURFACE DENSITY TO SUBSTRATE DOPANT CONCENTRATION
- SURFACE CHARACTERIZATION OF HIGH EFFICIENCY n +/p and p +/n SILICON CFI I S
- IDENTIFY DOMINANT CURRENT LOSS MECHANISMS IN HIGH EFFICIENCY CELLS

APPROACH

- MEASURE DENSITY OF STATES ON HOMOGENEOUSLY DOPED SUBSTRATES WITH HIGH FREQUENCY C-V AND AI/SIN $_{\rm X}/{\rm SI}$ STRUCTURES
- INVESTIGATE DENSITY OF STATES AND PHOTORESPONSE OF HIGH EFFICIENCY N+/P and P+/N CELLS.
- CONDUCT I-V-T STUDIES TO IDENTIFY CURRENT LOSS MECHANISMS IN HIGH EFFICIENCY CELLS

Presentation Outline

- 1. SURFACE PASSIVATION
 - -SINY DEPOSITION
 - -HOMOGENEOUSLY DOPED SUBSTRATES
 - -PHOTORESPONSE OF N+/P AND P+/N CELLS
- 2. SOLAR CELL STUDIES
 - -MINP CELL WITH TEXTURED SURFACE
- 3. CURRENT LOSS MECHANISMS
 - -LIGHT INDUCED CURRENT LOSS MECHANISM
 - -Ma MIS CONTACTS
 - -NEUTRON ACTIVATION
- 4. FUTURE WORK
 - -PASSIVATION OF P+/N CELLS
 - -FINAL REPORT CONCERNING SINX PASSIVATION OF SILICON

PRECEDING PAGE BLANK NOT FILMED

Schematic of PECVD System

Fabrication of Al/SiN_X/Si MIS Structures

- CLEAN SILICON SUBSTRATES WITH RCA PROCESS
- SUBJECT SUBSTRATE TO NITRIDING STEP (LOW RF POWER WITH NH₃ @ 70 SCCM)
- DEPOSIT ≃100 A SIN_X WITH SUBSTRATE AT 270°C AND RF POWER @ 212 W/cm²
- DEPOSIT ≈ 600 A SIN_X WITH POWER @ 1225 W/cm²
- DEPOSIT ALUMINUM

Midgap Interface State Density Versus Dopant Concentration

Δ.O AS DEPOSITED
Δ.Φ AFTER HEAT TREATMENT @ 450°C

Device Structure for Surface Recombination Study

C-V Measurement of Interface Density at N+ Surface of N+/P Cell

Density of States of Surface of P+/N Cell

Internal Photoresponse for 0.2 ohm-cm MINP Cell

Internal Photoresponse for 0.2 ohm-cm P+/N Cell

MINP Cell Concept

AM1 Characteristics of Textured MINP Cell

Loss Current Versus Voltage for Illuminated and Dark Characteristics of Textured MINP Cell

Neutron Activation Measurement of Impurity Concentration

SAMPLE	Au (ppma)	Co (ppms)	Sc (ppme)	Hg (ppma)	Fe (ppme)	COMMENT
AS RECEIVED	< 3E-4	< 25-3	•	<36-4	< 2.5	AS RECEIVED FROM WACKER
AFTER DIFFUSION	<1.6E-5	3.8 E-3		<38-4	< 2.0	AFTER P-DIFFUSION BY ASEC
84 SINP4	1.2 5-4	11 E-3	4.4 E-3	<3E-4	< 2.5	DARK: Jo = 1.0 E-13 A/cm² n = 1 . 0 0 ILLUM:Jo = 2E-11 A/cm² N = 1 . 1 6
85 SIMP20	5.7 E-6	8.1 E-3	•	30 E-4	< 2.5	L≃35µm COMTAMINATE DIH₁O
85SHP40	9.0 E-5	7.5 E-3	•	<3E-4	< 2.5	L°220µm GOOD TRANSLATION

Mg MIS Contact Study

METAL	HIGH VOLTAGE MECHANISM			
COVERAGE	Jo (A/cm²)	n		
62%	1.5x10 ⁻¹⁹	1.03		
3.6%	1.2x10 ⁻¹²	1.01		
1.5%	1.8x10 ⁻¹⁸	1.03		

BASE RESISTIVITY = 0.2 Ohm-cm: JUNCTION DEPTH = 0.2 μm