Algoritmos e Estruturas de Dados

Marcelo Lobosco DCC/UFJF

Introdução à Teoria dos Grafos

Segunda Parte - Aula 01

- \blacksquare Grafo G = (N,A)
 - \square N = {1, 2, 3, ..., n}
 - Conjunto dos vértices ou nós
 - $\square A = \{ (i,j) / i,j \in \mathbb{N} \}$
 - Conjunto das arestas
- Grafo pode ser visualizado através de representação geométrica
 - □ Vértices correspondem a pontos distintos do plano
 - Linhas associadas a cada aresta (v,w), unindo os pontos correspondentes v e w

- Tipos de Grafos
 - \square Dado um grafo G = G (N,A)
 - Simétrico: quando toda aresta e_{ij} de A independe do sentido, isto é, pode ser tanto no sentido i → j quanto j → i
 - Direcionado (ou dirigido): quando todas as arestas e_{ij} de A correspondem a um único sentido, por exemplo, de i → j (arestas = arcos)
 - Completo: quando existe uma aresta e_{ij} para cada par de vértices i e j de N
 - Bipartido: quando $N = N_1 \cup N_2$ e toda aresta e_{ij} de G é tal que $i \in N_1$ e $j \in N_2$, com $N_1 \neq \emptyset$ e $N_2 \neq \emptyset$

(a) simétrico

(b) direcionado

(c) completo

(d) bipartido

Representação Matricial de Grafos

- Dado um grafo simétrico G = G (N,A), uma forma de representar G é através de uma matriz de adjacências
- Se $A = a_{ij}$ é uma matriz de adjacências a_{ij} 1, se existe a aresta e_{ij} 0, c.c.

Exemplo

Escrever matriz de adjacência do seguinte grafo

Exemplo

	1	2	3	4	5
1	1	1	1	1	0
2	1	0	1	1	1
3	1	1	0	1	1
4	1	1	1	0	1
5	0	1	1	1	0

$$a_{ij} = a_{ji}$$

Representação Matricial de Grafos

Se a matriz G(N,A) é direcionada, existe uma representação mais adequada conhecida como Matriz de Incidências Nó-Arco

linha r, coluna (i,j) = +1, se r = i
linha r, coluna (i,j) = -1, se r = j
linha r, coluna (i,j) = 0, se r
$$\neq$$
 i, r \neq j

Exemplo

Escrever matriz de adjacência do seguinte grafo

Exemplo

	(1,3)	(1,5)	(2,4)	(3,2)	(4,3)	(4,5)	(5,2)
1	+1	+1	0	0	0	0	0
2	0	0	+1	-1	0	0	-1
3	-1	0	0	+1	-1	0	0
4	0	0	-1	0	+1	+1	0
5	0	-1	0	0	0	-1	+1

Representação por Lista de Adjacências

 A representação por lista de adjacências pode ser feita por duas listas encadeadas ou por um vetor e uma lista

Grau de um Vértice

Dado um vértice i ∈ N, define-se como grau de i (grau(i)) o número de arestas conectadas a i

- Laços: Aresta e_{ii}= (i,i)
- Arestas paralelas: e_{ij} e e_{rs} são arestas paralelas quando i = r e j = s ou i = s e j = r

■ Caminho: É uma sequência de vértices $v_1, v_2, ..., v_k$ de N tal que $(v_i, v_{i+1}) \in A, 1 \le i \le k-1$

■ Ciclo: caminho fechado, isto é, quando $v_k = v_1$

■ Caminho (para grafos direcionados): sequência de vértices $v_1, v_2, ..., v_k$ tal que os arcos $(v_i, v_{i+1}) \in A$ possuem todos a mesma orientação

Cadeia: Sequência de vértices v₁, v₂, ..., vk de N onde nem todos os arcos (vᵢ, vᵢ₊₁), 1 ≤ i ≤ k-1 têm a mesma orientação

Circuito: caminho fechado

Ciclo: cadeia fechada

Teorema 1

- Um grafo G(N,A) é bipartido se e somente se todo ciclo de G possui comprimento par
 - Supõe G bipartido
 - \blacksquare N = N₁ U N₂, \forall (i,j) \in A, i \in N₁ (N₂) e j \in N₂ (N₁)
 - Tome um ciclo arbitrário de G: x₁, x₂, x₃, ..., x_k, x₁
 - Sejam $N_1 \cup N_2$ tal que $x_1 \in N_1$, $x_2 \in N_2$, $x_3 \in N_1$, ...
 - \bullet $(x_k, x_1) \in A$
 - $x_1 \in N_1 \Rightarrow x_k \in N_2 \Rightarrow k \text{ \'e par} \Rightarrow \text{todo ciclo de G possui}$ comprimento par

Caminho Hamiltoniano

É um caminho que percorre todos os vértices do grafo uma única vez

Caminho Euleriano

É um caminho que passa por cada aresta uma única vez

Caminho Euleriano:

$$1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 4 \leftrightarrow 5 \leftrightarrow 1 \leftrightarrow 6 \leftrightarrow 5 \leftrightarrow 3 \leftrightarrow 1$$

- Distância Entre Dois Vértices
 - □ Dados u e v ∈ N, a distância entre u e v é o menor caminho entre eles no grafo
 - Caminho que utiliza menor número de arestas para chegar de u para v ou v para u
- Grafo acíclico: grafo que não possui ciclo
- Grafo conexo
 - □ G(N,A) é dito conexo se, para todo par de vértices distintos u e v de N, existir pelo menos um caminho entre eles
 - Representação geométrica de G é descontínua, se G for desconexo

Arvore: É um subgrafo conexo e sem ciclos

Árvore Geradora: É uma árvore que contém todos os vértices do grafo

Teorema 2

- Um grafo G é uma árvore se e somente se existir um único caminho entre cada par de vértices de G
 - □Suponha que G é uma árvore ⇒ G é conexo
 - Dados u, $v \in N$, existe pelo menos um caminho entre u e v, uPv
 - Suponha por absurdo que exista outro caminho Q entre u e v, diferente de P, uQv ⇒ uPvQu ⇒ ∃ um único caminho entre u e v

- Grafo Planar
 - Uma representação do grafo é planar se neste grafo não houver superposição de arestas

- K-coloração
 - \square Seja G(N,A) um grafo e C um conjunto de cores
 - □ Seja LA(v) = $\{i \in N \mid i \in adjacente ao nó v\}$
 - Lista de Adjacência
 - Uma coloração de G é uma atribuição de alguma cor de C para cada vértice de V, de tal modo que a dois vértices adjacentes sejam atribuídas cores diferentes
 - Diz-se que G é k-colorível se os vértices de G podem ser coloridos com k cores
- Número cromático do grafo G
 - x(G) é o menor número k tal que exista uma kcoloração de K

$$x(G) = 3$$

Algoritmo de Coloração Aproximada

- Dado G = G(N,A), encontrar X(G) é uma tarefa complexa
 - □Problema NP-Completo
 - Difícil solução
- Alternativa: algoritmos aproximados
 - □Oferecem uma "boa" solução
 - Não necessariamente a melhor solução para o problema

Algoritmo de Coloração Aproximada

Algoritmo de Coloração Aproximada

- Iniciação do algoritmo: ordenar os nós de G numa ordem não crescente em relação ao seu grau
- $C_1 = C_2 = ... = C_n = \emptyset$
- Colorir v₁ com a cor 1; incluir v_i em C₁
- Para j = 2, ..., n efetuar
 - \Box r = min {i | A(v_i) \cap C_i = \emptyset }
 - \square Colorir v_j com a cor r; incluir v_j em C_r

Aplicação do Algoritmo de Coloração Aproximada

- Horário de provas unificadas
 - Como definir horários de provas de um curso de forma que não haja um aluno com duas provas no mesmo horário?
- Modelo
 - □Nós representam disciplinas
 - Aresta entre dois nós indica que disciplinas possuem alunos comum
 - Cada cor define o horário para as provas

Exemplo: 7 disciplinas

□ Matriz mostra existência de alunos em comum (*)

□ Simétrica

	1	2	3	4	5	6	7
1	ı	*	*	*	_	ı	*
2		ı	*	*	*	1	*
3			_	*	_	*	*
4				_	*	*	-
5					_	*	*
1 2 3 4 5 6						_	*
7							_

Árvore Geradora

Vimos que uma uma árvore geradora para um grafo G é um subgrafo de G que é uma árvore e que contém todos os vértices de G

Árvore Geradora

- Dado um grafo G = G(N,A), com |N| = n
 - □ Se G é simétrico e completo, então o número de árvores geradoras (AGs) de G é dado por nⁿ⁻² (Cayley)
 - Se G é completo e direcionado, o número de AGS é dado pelo det (B₀*B₀¹), onde B₀ é a matriz de incidências nó-arco de G, excluindo uma de suas linhas

Árvore Geradora

	(1,2)	(1,3)	(2,1)	(2,3)	(3,1)	(3,2)
1	1	1	-1	0	-1	0
2	-1	0	1	1	0	-1
3	0	-1	0	-1	1	1

$$\det (B_0 * B_0^T) = 16 - 4 = 12$$

Árvore Geradora Mínima

- Dado um grafo G = G(N,A), AGM é uma árvore geradora de G cuja soma dos pesos de suas arestas é a menor possível
 - Ordenar as arestas de G numa ordem não decrescente em relação aos seus pesos
 - □ Verificar a ocorrência de ciclos
- Exemplo de aplicações: redes de telecomunicações, transmissão de energia, estradas...

Algoritmo de Kruskal para AGM

```
Seja T = \{ conjunto de arestas na solução parcial \}
Ordenar arestar em ordem crescente de pesos
Enquanto |T| < n-1 e |A| \neq \emptyset faça
   Inicio
      Tomar aresta e de menor peso em A
      Se T U {e} não formar ciclos então
         T = T \cup \{e\}, A = A - \{e\}
   Fim
Se |T| < n-1 então
   "G é desconexo"
```

Algoritmo de Kruskal para AGM

Algoritmo de Kruskal para AGM

■ Solução final: E_T

```
Sejam V_T = \{ um \ no \ inicial \ s \ qualquer \ de \ G \}
  e E_{T} = 0
Para i = 1 a |V| - 1 faça
   Encontre a aresta de menor peso e^* = (v^*, u^*)
      entre todas as arestas (v,u) tal que v esteja em
      V_{T} e u em V - V_{T}
   V_{\scriptscriptstyle T} = V_{\scriptscriptstyle T} \cup \{u^*\}
   E_{T} = E_{T} U \{e^{*}\}
```


Vértice Vértices Restantes a(-,-) b(a,3), $c(-,\infty)$, $d(-,\infty)$, e(a,6), f(a,5)

Vértice Vértices Restantes b(a,3) c(b,1), $d(-,\infty)$, e(a,6), f(b,4)

Vértice Vértices Restantes c(b,1) d(c,6), e(a,6), f(b,4)

Vértice Vértices Restantes f(b,4) d(f,5), **e(f,2)**

Vértice Vértices Restantes e(f,2) d(f,5)

Próxima Aula...

- Grafos
 - □ O problema do caminho mínimo