## CHAPTER-10

## 1 EXERCISE - 10.3

- 1. If arcs AXB and CYD of a circle are congruent, find the ratio of AB and CD.
- 2. If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at  $\mathbf{P}$  and  $\mathbf{Q}$ , prove that arc  $PXA \cong Arc(PYB)$ .
- 3.  $\mathbf{A}, \mathbf{B}$  and  $\mathbf{C}$  are three points on a circle. Prove that the perpendicular bisectors of AB, BC and CA are concurrent.
- 4. AB and AC are two equal chords of a circle. Prove that the bisector of the angle BAC passes through the centre of the circle.
- 5. If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel.
- 6. ABCD is such a quadrilateral that **A** is the centre of the circle passing through **B**, **C** and **D**. Prove that  $\angle CBD + \angle CDB = \frac{1}{2} \angle BAD$
- 7. **O** is the circumcentre of the triangle **ABC** and **D** is the mid-point of the base BC. Prove that  $\angle BOD = \angle A$ .
- 8. On a common hypotenuse AB, two right triangles ACB and ADB are situated on opposite sides. Prove that  $\angle BAC = \angle BDC$ .
- 9. Two chords AB and AC of a cicle subtends angles equal to 90° and 150°, respectively at the centre. Find  $\angle BAC$ , if AB and AC lie on the opposite sides of the centre.
- 10. If BM and CN are the perpendiculars drawn on the sides AC and AB of the triangle ABC, prove that the points  $\mathbf{B}, \mathbf{C}, \mathbf{M}$  and  $\mathbf{N}$  are concyclic.
- 11. If a line is drawn parallel to the base of an isosceles triangle to intersect its equal sides, prove that the quadrilateral so formed is cyclic.
- 12. If a pair of opposite sides of a cyclic quadrilateral are equal, prove that its diagonals are also equal.
- 13. The circumcentre of the triangle ABC is **O**. Prove that  $\angle OBC + \angle BAC = 90^{\circ}$ .

- 14. A chord of a cicle is equal to its radius. Find the angle subtended by this chord at a point in major segment.
- 15. In Fig1  $\angle ADC = 130^{\circ}$  and chord BC = chord BE. Find  $\angle CBE$ .



Figure 1

- 16. In Fig2  $\angle ACB = 40^{\circ}$ . Find  $\angle OAB$ .
- 17. A quadrilateral ABCD is inscrided in a circle such that AB is a diameter and  $\angle ABC = 130^{\circ}$ . Find  $\angle BAC$ .
- 18. Two circles with centres **O** and **O**' intersect at two points **A** and **B**. A line PQ is drawn parallel to OO' through A(orB) intersecting the circles at P and Q. Prove that PQ=2 OO'.



Figure 2

- 19. In Fig3 AOB is a diameter of the circle and  $\mathbf{C}, \mathbf{D}, \mathbf{E}$  are any three points of the semi-circle. Find the value of  $\angle ACD + \angle BED$ .
- 20. In Fig4  $\angle OAB = 30^{\circ}$  and  $\angle OCB = 57^{\circ}$ . Find  $\angle BOC$  and  $\angle AOC$ .





Figure 4