Исчисление Ито

По умолчанию все задачи 5 баллов, если не оговорено иного. Везде $(W_t)_{t\in\mathbb{R}_{\geq 0}}$ – одномерный Винеровский процесс (непрерывная модификация) с $W_0=0$.

Упражнение 2.1. Пусть

$$X_t = tW_t + \int_0^t W_s dW_s.$$

Найдите представление в виде процесса Ито для

$$Y_t = cos(X_t)t.$$

В финальном ответе можно не подставлять X_t и dX_t , но их нужно вычислить до конца, то есть, до уровня подстановки dt, dW_t .

Упражнение 2.2. Найдите плотность распределения случайной величины

$$\left(\sqrt[3]{\int_0^t W_s^2 dW_s + \int_0^t W_s ds}\right)^2.$$

Упражнение 2.3. Проверьте, является ли процесс

$$X_t = (W_t + t)e^{-W_t - \frac{t}{2}}$$

мартингалом относительно фильтрации (\mathcal{F}) , порождённой Винеровским процессом W.

Упражнение 2.4. Будет ли процесс X_t^2 , где X_t определён как процесс Ито

$$dX_t = v(t, \omega)dW_t,$$

мартингалом относительно фильтрации (\mathcal{F}) , порождённой Винеровским процессом W? Покажите, что процесс

$$M_t = X_t^2 - \int_0^t |v(s,\omega)|^2 ds$$

будет мартингалом при условии ограниченной v.

Упражнение 2.5. Докажите, что для интеграла Ито верно

$$\mathbb{E}\left[\int_0^T \int_0^S f(t,\omega)f(s,\omega)dW_s dW_t\right] = \mathbb{E}\left[\int_0^{T \wedge S} f(s,\omega)^2 dt\right]$$

Упражнение 2.6. (Бонус, 2.5 балла) Найдите конечномерные распределения (плотность, если есть) процесса

$$Y_t = \int_0^t e^{-s} dW_s,$$

определённого для $t \in \mathbb{R}_+$. У вас в ответах может остаться интеграл Римана. Обратите внимание(!), что интеграл Ито – предел в L^2 , а не по распределению.

Упражнение 2.7. (Бонус, 2.5 балла) Пусть $f \in \mathcal{V}(0,T)$ имеет ограниченную вариацию на отрезке [0,T]. Найдите конечномерные распределения (плотность, если есть) процесса

 $Y_t = \int_0^t f(s)dW_s,$

определённого на $t \in \mathbb{R}_{\geq 0}$. У вас в ответах может остаться интеграл Римана. Обратите внимание(!), что интеграл Ито – предел в L^2 , а не по распределению.