

PM_{2.5} and NO₂ as Potential Modifiers of Asthma Exacerbation and Control in Clinical Trials

Lizbeth Gómez,¹ Ellen Kinnee,² Dave Mauger,⁵ Joel Kaufman,⁴ Fernando Holguin,³ Jane E. Clougherty¹

1Drexel University Dornsife School of Public Health, 2University of Pittsburgh Graduate School of Public Health, 3University of Colorado Denver School of Medicine, 4University of Washington School of Public Health Sciences, Penn State University

Health, 5Department of Public Health Sciences, Penn State University

Background

- Substantial evidence links air pollution to asthma outcomes^{1,2}.
- Common clinical treatment for asthma includes inhaled corticosteroids (ICS) and long-acting beta-agonists (LABA), although treatment response is heterogeneous³.
- Some are nonresponsive to ICS and LABA combination, despite treatment compliance.
- Randomized clinical trials (RCTs) are the standard of evidence in medical research. Randomization balances measured and unmeasured confounders, promotes homogeneity of participant characteristics across study arms and maximizes internal validity.
- Few RCTs, however, consider whether treatment efficacy is modified by exposure to air pollution.

Aims

- To evaluate whether air pollutants predict asthma control days and exacerbations among a subset of the children in the BARD trial.
- To test whether exposure to ambient NO₂ and PM_{2.5} alter treatment effects on asthma control days and number of exacerbations.

Methods

- Secondary analysis of AsthmaNet's Step-up Therapy in Black Children and Adults with Poorly Controlled Asthma (BARD) trial.
- Participants (n=211) were children aged 5-11 sequentially randomized to: double ICS dose (2 x ICS), double ICS with LABA (2 x ICS + LABA), quintuple ICS (5 x ICS) and quintuple ICS with LABA (5 x ICS + LABA) (**Fig 1**).
- Geocoded participant's residences, and estimated NO₂ and PM_{2.5}, using nationally representative universal kriging models,⁴ and mixed models adjusting for age, sex, treatment, and trial site.

Figure 1: BARD RCT design. Each treatment period lasted 14 weeks (the initial two weeks of each period were considered washout periods).

Results: Asthma Control Days and Number of Exacerbations

	Effects on	Effects on Annualized Asthma Control		
Predictors	Estimates	CI	p	
(Intercept)	156.62	86.03 - 227.20	<0.001	
5 x ICS	3.90	-12.40 - 20.19	0.639	
$5 \times ICS + LABA$	7.63	-8.50 - 23.76	0.353	
$2 \times ICS + LABA$	8.61	-7.61 - 24.83	0.298	
Sex [M]	-29.34	-57.740.94	0.043	
Site	-4.48	-18.49 – 9.53	0.530	
Age	-0.53	-8.25 - 7.19	0.893	
PM 2.5	4.12	-4.71 – 12.95	0.360	
	Effects on Annualized Asthma Control			
Predictors	Estimates	CI	p	
(Intercept)	157.57	86.72 - 228.42	< 0.001	
(Intercept) 5 x ICS	157.57 4.22	86.72 - 228.42 $-12.00 - 20.45$	< 0.001 0.609	
5 x ICS	4.22	-12.00 – 20.45	0.609	
5 x ICS 5 x ICS + LABA	4.22 7.52	-12.00 - 20.45 $-8.54 - 23.57$	0.609 0.358	
5 x ICS 5 x ICS + LABA 2 x ICS + LABA	4.22 7.52 8.53	-12.00 - 20.45 $-8.54 - 23.57$ $-7.61 - 24.67$	0.609 0.358 0.300	
5 x ICS 5 x ICS + LABA 2 x ICS + LABA Sex [M]	4.22 7.52 8.53 -29.67	-12.00 - 20.45 -8.54 - 23.57 -7.61 - 24.67 -58.171.18	0.609 0.358 0.300 0.041	

	Effects on Number of Exacerbations		
Predictors	Incidence Rate Ratios	CI	p
2 x ICS (Ref)			
5 x ICS	0.70	0.46 - 1.09	0.114
$5 \times ICS + LABA$	0.78	0.51 - 1.19	0.252
$2 \times ICS + LABA$	0.55	0.34 - 0.88	0.013
Sex [M]	1.57	1.03 - 2.39	0.035
Age	0.88	0.72 - 1.07	0.211
PM 2.5	1.17	0.97 - 1.40	0.101
	Effects on Number of Exacerbations		
Predictors	Incidence Rate Ratios	CI	p
2 x ICS (Ref)			
5 x ICS	0.70	0.45 - 1.08	0.105
$5 \times ICS + LABA$	0.76	0.50 - 1.17	0.214
$2 \times ICS + LABA$	0.54	0.34 - 0.87	0.012
Sex [M]	1.53	1.00 - 2.35	0.049
Age	0.89	0.73 - 1.08	0.242

Table 1: Estimates (95% CI and p-values) for effects on AACD associated with treatment period and sex adjusting for recruitment site, age, PM_{2.5}, and NO₂. Table 2: Incidence Rate (95% CI and p-values) for the number of exacerbations associated with the treatment period, sex, age, PM_{2.5}, and NO₂.

Results: Exacerbations altered by PM2.5 and NO2

Figure 2: Forest plots of interaction between NO_2 and treatment on the number of exacerbations (Fig 2A) and $PM_{2.5}$ (Fig 2B) [Compared to 2x ICS]. Type III ANOVA = Treatment * NO_2 : 6.43, p-value (0.021) and Treatment * $PM_{2.5}$: 6.48, p-value (0.017).

Implications

- Original RCT analyses showed that half the children responded better to increased ICS, and half responded better to the LABA addition, with no clear preference⁵.
- We found, however, that aboveaverage NO₂ and PM_{2.5} exposure significantly negatively impacted the rate of asthma exacerbations and the number of asthma control days compared to those in the 2 x ICS group, with below median NO₂ and PM_{2.5} and females.
- Ambient air pollution may alter the effects of treatment on exacerbations.

Acknowledgements

All AsthmaNet Pls, staff, participants, and committee. Funding: NIH R01HL114536-01.

References

- 1. Guarnieri, M., & Balmes, J. R. (2014). Outdoor air pollution and asthma. The Lancet, 383(9928), 1581–1592. https://doi.org/10.1016/S0140-6736(14)60617-6
- Postma, D. S., Boezen, H. M., Vonk, J. M., Williams, P. V., Shapiro, G. G., McKone, E. F., Hallstrand, T. S., Koenig, J. Q., Schildcrout, J. S., Lumley, T., Fuhlbrigge, A. N., Koutrakis, P., Schwartz, J., Weiss, S. T., Gold, D. R., & Childhood Asthma Management Program Research Group. (2016). Ambient air pollution, lung function, and airway responsiveness in asthmatic children. The Journal of Allergy and Clinical Immunology, 137(2), 390–399. https://doi.org/10.1016/j.jaci.2015.05.028
- Hossny, E., Rosario, N., Lee, B. W., Singh, M., El-Ghoneimy, D., SOH, J. Y., & Le Souef, P. (2016). The use of inhaled corticosteroids in pediatric asthma: Update. The World Allergy Organization Journal, 9. https://doi.org/10.1186/s40413-016-0117-0
- 4. Kirwa, K et al., "Fine-Scale Air Pollution Models for Epidemiologic Research: Insights From Approaches Developed in the Multi-ethnic Study of Atherosclerosis and Air Pollution (MESA Air)," Curr Envir Health Rpt, 2021
- Wechsler, M. E., Szefler, S. J., Ortega, V. E., Pongracic, J. A., Chinchilli, V., Lima, J. J., Krishnan, J. A., Kunselman, S. J., Mauger, D., Bleecker, E. R., Bacharier, L. B., Beigelman, A., Benson, M., Blake, K. V., Cabana, M. D., Cardet, J.-C., Castro, M., Chmiel, J. F., Covar, R., ... Israel, E. (2019). Step-Up Therapy in Black Children and Adults with Poorly Controlled Asthma. New England Journal of Medicine, 381(13), 1227–1239.

https://doi.org/10.1056/NEJMoa1905560