Blind selection sort analysis

Christopher He

October 25, 2023

1 Exact running time

Let a be a permutation of 1, 2, ..., N.

Definition 1. Let $inv(a) = \{(i,j) \mid 1 \leq i < j \leq N, a_i > a_j\}$ be the set of inversions of a.

Definition 2. If $a_j > j$, we say a_j starts **before** its position. If $a_j > j$, we say a_j starts **after** its position.

Definition 3. Let $ginv(a) = \{(i, j) \in inv(a) \mid a_j \text{ starts before its position}\}$ be the set of good inversions of a.

Definition 4. Let $inv_k(a) = \{(i, j) \in inv(a) \mid i = k\}$ denote inversions where the left is k, and similarly define $ginv_k(a)$.

First we proved that if $(i, j) \in inv(a)$ and a_j starts before its correct position j, then so does a_i .

Lemma 1. If $(i, j) \in ginv(a)$ then $a_i > i$.

Proof. If
$$(i, j) \in ginv(a)$$
 then $a_i > a_j > j > i$, so $a_i > i$.

We then proved that if an element starts before its position i.e $a_i > i$, the distance $a_i - i$ is at most $|inv_i(a)|$.

Lemma 2. If $a_i > i$ then $a_i - i \leq |inv_i(a)|$.

Proof. There are a_i-1 elements smaller than a_i , but only i-1 available positions to its left. That means that at least $a_i-1-(i-1)=a_i-i$ are on its right, forming that many inversions. So $|inv_i(a)| \ge a_i-i$.

Conjecture 1. The number of swaps s(a) performed by blind selection sort on permutation a is

$$s(a) = \sum_{i < a_i} a_i - i + \sum_{i > a_i} |inv_i(a)| - \sum_i |ginv_i(a)|$$
 (1)

Proof. In general, the number of swaps involving a_i (where a_i is the left element) is equal to $|inv_i(a)|$. For example, let a = [6, 5, 4, 3, 2, 1]. The number of swaps involving 3 is 2. When the algorithm searches for 1, it will generate one swap for 3. Another one will be generated when 2 is being searched.

But notice that a swap with a_i has a net effect of shifting a_i to the right. If an element starts before its position $(a_i > i)$, then by Lemma 2, the element shifts at most $a_i - i$ times before it is frozen.

Lastly, we subtract $\sum_i |ginv_i(a)|$ to account for that fact that elements may be frozen "accidentally", saving one swap for every unfrozen element before it. Note that by Lemma 1, $\sum_i |ginv_i(a)| = \sum_{i < a_i} |ginv_i(a)|$.

Conjecture 2. The number of swaps s(a) performed by blind selection sort on permutation a is

$$s(a) = \sum_{i} inv_i(a) - 2\sum_{i} |ginv_i(a)|$$
 (2)

Proof. From Conjecture 1 we know the number of swaps is

$$s(a) = \sum_{i < a_i} a_i - i + \sum_{i > a_i} |inv_i(a)| - \sum_i |ginv_i(a)|$$
 (3)

If the following equality is proven (TODO: prove this by proving that good inversions balance the distance)

$$\sum_{i < a_i} a_i - i = \sum_{i < a_i} inv_i(a) - \sum_i ginv_i(a) \tag{4}$$

then this statement is proven.

$$s(a) = \sum_{i < a_i} a_i - i + \sum_{i > a_i} |inv_i(a)| - \sum_i |ginv_i(a)|$$

$$= \sum_{i \le a_i} inv_i(a) - \sum_i |ginv_i(a)| + \sum_{i > a_i} |inv_i(a)| - \sum_i |ginv_i(a)|$$

$$= \sum_i inv_i(a) - 2 \sum_i |ginv_i(a)|$$
(5)

2 Structure of the worst case input

Theorem 1. If a is the worst case permutation of 1, 2, ..., N for blind selection sort, then $ginv_i(a) = \emptyset$.

Proof. Assume $ginv_i(a) \neq \emptyset$, then pick $(i,j) \in ginv_i(a)$ such that $\forall k, i < k < j, a_k < k$. So we start with $a = [a_1, ..., a_i, ..., a_j, ..., a_N]$. We can construct a new permutation by swapping a_i and a_j i.e $a' = [a_1, ..., a_j, ..., a_i, ..., a_N]$. This effectively removes the good inversion (i,j). Furthermore, let k, i < k < j.

The number of inversions involving k remains the same after the swap. TODO: finish. By Conjecture 2, s(a') = s(a) + 1, thus contradicting that a is the worst case.

This gives us the immediate result that in the worst input a, if an element starts before its position, all elements before it are smaller (otherwise $ginv(a) \neq \emptyset$).

Corollary 1. In the worst case permutation of 1, 2, ..., N for blind selection sort, if $a_i > j$ then $\forall i < j, a_i < a_j$.

Theorem 2. The worst case permutation of 1, 2, ..., N for blind selection sort starts with an increasing, consecutive sequence up to N.

Lemma 3. If a is the worst input for blind selection sort and $a_j > j$, then $\forall i < j, a_i > i$.

Proof. We will prove the equivalent statement: if j > 1, $a_j > j$, then $a_{j-1} > j - 1$. Assume for the sake of contradition that $a_{j-1} < j - 1$. By Corollary 1, we know $a_{j-1} < a_j$. So switch the position of a_{j-1} , and a_j . We created an inversion, and we know this is not a good inversion since $a_{j-1} < j - 1 < j$ (in other words, after moving a_{j-1} to the right, it is still after its correct position.) So by Conjecture 2, we made an even worse input.

Definition 5. If $a_k = x$ then idx(x) = k.

Lemma 4. If a is the worst input for blind selection sort and $\exists j > 1$ such that $a_j > j$, then $a_{j-1} = a_j - 1$.

Proof. By Corollary 1, $a_{j-1} < a_j$. Assume for the sake of contradiction that $a_{j-1} \neq a_j - 1$, so $a_{j-1} < a_j - 1$. Let $k = idx(a_j - 1)$, we know that k > j - 1, otherwise $(k, j - 1) \in ginv(a)$. Switch a_{j-1} with a_k . By doing this we create an inversion (j - 1, k), and we know this is not a good inversion since $a_{j-1} < a_k < k$. TODO: show that elements between j and k were unaffected. Thus by Conjecture 2, we made an even worse input.

Proof. Since idx(N) < N (otherwise it is frozen), then by Lemma 2 and 3, the statement is proven.