Homework 3: Due at class on March 26

1 Schwarzian derivative

Under a holomorphic transformation $z \to w(z)$, the stress-energy tensor is indeed transformed as

$$\widetilde{T}(w) = \left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^{-2} \left[T(z) - \frac{c}{12}\{w; z\}\right]$$

where $\{w; z\}$ is the additional term called the Schwarzian derivative:

$$\{w; z\} = \frac{(\mathrm{d}^3 w/\mathrm{d}z^3)}{\mathrm{d}w/\mathrm{d}z} - \frac{3}{2} \left(\frac{\mathrm{d}^2 w/\mathrm{d}z^2}{\mathrm{d}w/\mathrm{d}z}\right)^2$$

1.1

Show that its infinitesimal version provides conformal Ward identity.

1.2 Under $SL(2, \mathbb{C})$

For an element of $SL(2, \mathbb{C})$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{C})$$

show that

$$\{w; z\} = 0$$
 for $w = \frac{az+b}{cz+d}$,

and

$$\left\{\frac{aw+b}{cw+d};z\right\} = \left\{w;z\right\} \,.$$

1.3 Free boson

The energy-momentum tensor of the free boson is

$$T(z) = -\frac{1}{2} : \partial_z X \partial_z X :$$

where the normal ordering can be defined as

$$: \partial_z X \partial_z X := \lim_{w \to z} \left(\partial_z X(z) \partial_w X(w) + \frac{1}{(z-w)^2} \right) .$$

Since $\partial_z X$ is the primary field of conformal dimension one, it transforms as

$$\partial_z X(z) \partial_w X(w) = f'(z) f'(w) \partial_{\widetilde{z}} X(\widetilde{z}) \partial_{\widetilde{w}} X(\widetilde{w})$$

under the conformal transformation $z \to \tilde{z} = f(z)$. Hence we have

$$: \partial_z X(z) \partial_w X(w) : -\frac{1}{(z-w)^2} = f'(z) f'(w) \left[: \partial_{\widetilde{z}} X(\widetilde{z}) \partial_{\widetilde{w}} X(\widetilde{w}) : -\frac{1}{(\widetilde{z}-\widetilde{w})^2} \right]$$

Taking limit $z \to w$, show that

$$\lim_{z \to w} \left[\frac{f'(z)f'(w)}{(f(z) - f(w))^2} - \frac{1}{(z - w)^2} \right] = \frac{1}{6} \{ f(w); w \} \ .$$

2 2-point and 3-point function of primary fields

2.1 2-point function

Let us determine the form of the 2-point function of chiral primary operators $\phi_i(z_i)$ with weight h_i (i = 1, 2). The 2-point function is invariant under the translation $z \to z + a$ of the coordinate so that it is a function $g(z_1 - z_2)$ of their relative coordinate $z_1 - z_2$.

Using the property of chiral primary fields under the scaling $z \to \lambda z$, show that the function is of the form

$$g(z_1 - z_2) = \frac{d_{12}}{(z_1 - z_2)^{h_1 + h_2}} .$$

Furthermore, show that h_1 must be equal to h_2 by using the property under the transformations $z \to -1/z$.

2.2 3-point function

The translation invariance tells us that the 3-point function is also a function $g(z_{12}, z_{23}, z_{31})$ where $z_{ij} = z_i - z_j$. Applying the same argument above, derive the form of the 3-point function

$$\langle \phi_1(z_1)\phi_2(z_2)\phi_2(z_3)\rangle = \frac{C_{123}}{(z_{12})^{h_1+h_2-h_3}(z_{23})^{h_2+h_3-h_1}(z_{31})^{h_3+h_1-h_2}}$$
.

3 Free fermion

Since we have studied the free scalar theory, now let us study the free fermion theory. The action for a free Majorana fermion reads

$$S = \frac{1}{4\pi} \int d^2x \overline{\Psi} \gamma^a \partial_a \Psi ,$$

where $\overline{\Psi} = \Psi^{\dagger} \gamma^0$, and the gamma matrices are given by

$$\gamma^0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 , $\gamma^1 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$.

In Euclidean space-time, they satisfy the relation $\{\gamma_i, \gamma_j\} = 2\delta_{ij}$.

- Rewrite the action in terms of $\psi(z, \overline{z}), \overline{\psi}(z, \overline{z})$ where $\Psi = \left(\frac{\psi}{\overline{\psi}}\right)$ where $z = x^0 + ix^1$ and $\overline{z} = x^0 ix^1$.
- Calculate the equations of motion for $\psi(z, \overline{z}), \overline{\psi}(z, \overline{z})$. Find an explicit expression of the stress-energy tensor. What do they imply?

 $\bullet\,$ The OPE takes the form

$$\psi(z,\overline{z})\psi(w,\overline{w}) = \frac{1}{z-w} + : \psi(z,\overline{z})\psi(w,\overline{w}) :$$

Deduce that $\psi(z,\overline{z})$ is a primary field and find its weight.

• Calculate the OPE T(z)T(w).