# Expectation Maximization Algorithm

#### Overview

- Distribusi normal
- Probabilitas dan likelihood

#### Normal distribution

#### The Normal Distribution



## The Normal Distribution: as mathematical function (pdf)

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Note constants:

 $\pi = 3.14159$ 

e=2.71828

This is a bell shaped curve with different centers and spreads depending on  $\mu$  and  $\sigma$ 

#### The Normal PDF

$$\int_{-\infty}^{+\infty} \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx = 1$$

It's a probability function, so no matter what the values of  $\mu$  and  $\sigma$ , must integrate to 1!

Normal distribution is defined by its mean and standard dev.

$$E(X) = \mu = \int_{-\infty}^{+\infty} x \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx$$

Var(X)=
$$\sigma^2 = \int_{-\infty}^{+\infty} x^2 \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx - \mu^2$$

Standard Deviation(X)= $\sigma$ 

#### \*\*The beauty of the normal curve:

No matter what  $\mu$  and  $\sigma$  are, the area between  $\mu$ - $\sigma$  and  $\mu$ + $\sigma$  is about 68%; the area between  $\mu$ - $2\sigma$  and  $\mu$ + $2\sigma$  is about 95%; and the area between  $\mu$ - $3\sigma$  and  $\mu$ + $3\sigma$  is about 99.7%. Almost all values fall within 3 standard deviations.



68-95-99.7 Rule in Math terms...

$$\int_{\mu-\sigma}^{\mu+\sigma} \frac{1}{\sigma\sqrt{2\pi}} \bullet e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx = .68$$

$$\int_{\mu-2\sigma}^{\mu+2\sigma} \frac{1}{\sigma\sqrt{2\pi}} \bullet e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx = .95$$

$$\int_{\mu-3\sigma}^{\mu+3\sigma} \frac{1}{\sigma\sqrt{2\pi}} \bullet e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx = .997$$

## Probabilitas dan likelihood

#### **Probabilitas**

- Probability is the measure of the likelihood that an event will occur.
- The basic idea is out of all given occurrences, what is the certainty that a specific event will occur?
- Let us say we have a normal distribution graph of the average marks of students in a surprise test. (this concept will apply to all continuous distributions)



- Now, the probability that a randomly selected student will have marks between 11–13 marks is the area under the curve between those 2 points.
- · mathematically,

P(marks between 11 and 13 marks | mean=11 and std = 3) = 0.31



- likelihood function (often simply a likelihood) is a function of parameters within the parameter space that describes the probability of obtaining the observed data.
- L(mean=11 and std = 3 | student scored 12 marks) = 1.48

#### Likelihood





Probabilities are the areas under fixed distribution

#### P(data|distribution)

• Likelihoods are the y-axis values for fixed data points with distributions that can be moved.

#### L(distribution | data)

• Finally, Probability quantifies anticipation (of outcome), likelihood quantifies trust (in the model).

#### Bayesian Theori

- •Bayes' Theorem shows the relationship between a <u>conditional probability</u> and its inverse.
- •i.e. it allows us to make an inference from
- •the <u>probability of a hypothesis</u> given the <u>evidence</u> to
- •the <u>probability of that evidence</u> given the <u>hypothesis</u>
- and vice versa

$$P(A|B) = P(B|A) P(A)$$

$$P(B)$$

- •P(A) the PRIOR PROBABILITY represents your knowledge about A before you have gathered data.
- •e.g. if 0.01 of a population has schizophrenia then the probability that a person drawn at random would have schizophrenia is 0.01



- $\cdot$ P(B|A) the CONDITIONAL PROBABILITY the probability of B, given A.
- •e.g. you are trying to roll a total of 8 on two dice. What is the probability that you achieve this, given that the first die rolled a 6?



- •So the theorem says:
- •The probability of A given B is equal to the probability of B given A, times the prior probability of A, divided by the prior probability of B.

P(|ate|car) = 0.5

P(late|bus) = 0.20

P(|ate|train) = 0.01

### A Simple Example

• Mode of transport:

Car

Bus

Train

Probability he is late:

50%

20%

1%

P(car|late) = ????

P(A|B) = P(B|A) P(A) P(B)

- •Suppose that Bob is late one day.
- •His boss wishes to estimate the probability that he traveled to work that day by <u>car</u>.
- •He does not know which mode of transportation Bob usually uses, so he gives a prior probability of 1 in 3 to each of the three possibilities.

$$P(car) = 0.33$$

$$P(bus) = 0.33$$

$$P(train) = 0.33$$

## A Simple Example

- P(A|B) = P(B|A) P(A) / P(B)
- •P(car|late) =  $P(late|car) \times P(car) / P(late)$
- P(late|car) = 0.5 (he will be late half the time he drives)
- P(car) = 0.33 (this is the boss' <u>assumption</u>)
- •P(late) = 0.5 x 0.33 + 0.2 x 0.33 + 0.01 x 0.33

(all the probabilities that he will be late added together)

## EM algorithm

#### EM algorithm

 The EM algorithm is an iterative optimization method that finds the maximum likelihood estimate (MLE) of parameters in problems where hidden/missing/latent variables are present

#### K-Means → EM

- Boot Step:
  - Initialize K clusters:  $C_1$ , ...,  $C_K$   $(\mu_i, \Sigma_i)$  and  $P(C_i)$  for each cluster j.
- Iteration Step:
  - Estimate the cluster of each data  $p(C_i | x_i) \implies \text{Expectation}$
  - Re-estimate the cluster parameters

 $(\mu_j, \Sigma_j), p(C_j)$  For each cluster  $j \longrightarrow Maximization$ 

#### **EM Classifier**



## EM Classifier (Cont.)

Input (Known)

$$x_{1} = \{r_{1}, g_{1}, b_{1}\}\$$
 $x_{2} = \{r_{2}, g_{2}, b_{2}\}\$ 
...
 $x_{i} = \{r_{i}, g_{i}, b_{i}\}\$ 
...

Output (Unknown)

Cluster Parameters 
$$(\mu_1, \Sigma_1)$$
,  $p(C_1)$  for  $C_1$   $(\mu_2, \Sigma_2)$ ,  $p(C_2)$  for  $C_2$  ...  $(\mu_k, \Sigma_k)$ ,  $p(C_k)$  for  $C_k$ 

Classification Results
$$p(C_{I}|x_{I})$$

$$p(C_{j}|x_{2})$$
...
$$p(C_{j}|x_{i})$$
...

## Expectation Step

Input (Known) Input (Estimation) Output  $x_{I} = \{r_{I}, g_{I}, b_{I}\}$  Cluster Parameters  $(\mu_{I}, \Sigma_{I}), p(C_{I}) \text{ for } C_{I}$  Classification Results  $p(C_{I}|x_{I})$   $(\mu_{2}, \Sigma_{2}), p(C_{2}) \text{ for } C_{2}$   $\dots$   $x_{i} = \{r_{i}, g_{i}, b_{i}\}$   $(\mu_{k}, \Sigma_{k}), p(C_{k}) \text{ for } C_{k}$   $\dots$   $p(C_{j}|x_{i})$   $\dots$   $p(C_{j}|x_{i})$   $\dots$ 

$$p(C_j | x_i) = \frac{p(x_i | C_j) \cdot p(C_j)}{p(x_i)} = \frac{p(x_i | C_j) \cdot p(C_j)}{\sum_j p(x_i | C_j) \cdot p(C_j)}$$

#### Maximization Step

Input (Known)

$$x_{1} = \{r_{1}, g_{1}, b_{1}\}\$$

$$x_{2} = \{r_{2}, g_{2}, b_{2}\}\$$

$$\dots$$

$$x_{i} = \{r_{i}, g_{i}, b_{i}\}\$$

$$\dots$$

Input (Estimation)

Classification Results  $p(C_1|x_1)$   $p(C_j|x_2)$ ...  $p(C_j|x_i)$ ...

Output

Cluster Parameters  $(\mu_1, \Sigma_1)$ ,  $p(C_1)$  for  $C_1$   $(\mu_2, \Sigma_2)$ ,  $p(C_2)$  for  $C_2$  ...  $(\mu_k, \Sigma_k)$ ,  $p(C_k)$  for  $C_k$ 

$$\mu_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot x_{i}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad \Sigma_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot (x_{i} - \mu_{j}) \cdot (x_{i} - \mu_{j})^{T}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad p(C_{j}) = \frac{\sum_{i} p(C_{j} \mid x_{i})}{N}$$

#### **EM Algorithm**

- Boot Step:
  - Initialize K clusters:  $C_I$ , ...,  $C_K$   $(\mu_j, \Sigma_j)$  and  $P(C_j)$  for each cluster j.
- <u>Iteration Step</u>:
  - Expectation Step

$$p(C_{j} | x_{i}) = \frac{p(x_{i} | C_{j}) \cdot p(C_{j})}{p(x_{i})} = \frac{p(x_{i} | C_{j}) \cdot p(C_{j})}{\sum_{i} p(x_{i} | C_{j}) \cdot p(C_{j})}$$

Maximization Step

$$\mu_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot x_{i}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad \Sigma_{j} = \frac{\sum_{i} p(C_{j} \mid x_{i}) \cdot (x_{i} - \mu_{j}) \cdot (x_{i} - \mu_{j})^{T}}{\sum_{i} p(C_{j} \mid x_{i})} \qquad p(C_{j}) = \frac{\sum_{i} p(C_{j} \mid x_{i})}{N}$$

| Data | Nllai |
|------|-------|
| 1    | 2     |
| 2    | 4     |
| 3    | 1     |
| 4    | 5     |
| 5    | 7     |

#### Example

• Initialization: K= 2

| Data | Nllai |
|------|-------|
| 1    | 2     |
| 2    | 4     |
| 3    | 1     |
| 4    | 5     |
| 5    | 7     |

#### Example

• P(C1)=0.5

• P(C<sub>2</sub>)=0.5

• μ (C1) =(2)

•  $\mu$  (C<sub>2</sub>) =(5)

• ∑(C1)=(1)

•  $\sum (C_2)=(2)$ 

#### Expectation

- $P(C_1|data_1) = P(data_1|C_1)*P(C_1)/P(data_1)$
- $P(C_2|data_1) = P(data_1|C_1)*P(C_1)/P(data_1)$
- P(data1|C1)= 0.398

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

| Data | Nilai | P(x!C1)   | p(x C2)  | P(C1 x)  | P(C2 x)  |   | my | sigma |   | Pc1 | Pc2 |     |
|------|-------|-----------|----------|----------|----------|---|----|-------|---|-----|-----|-----|
| 1    | 2     | 0.3989423 | 0.021024 | 0.570458 | 0.046423 | 5 | 1  | 2     | 1 |     | 0.5 | 0.5 |
| 2    | 4     | 0.053991  | 0.155348 | 0.077203 | 0.343024 | 2 | 2  | 5     | 2 |     |     |     |
| 3    | 1     | 0.2419707 | 0.003653 | 0.346    | 0.008067 |   |    |       |   |     |     |     |
| 4    | 5     | 0.0044318 | 0.199471 | 0.006337 | 0.440452 |   |    |       |   |     |     |     |
| 5    | 7     |           |          |          | 0.162033 |   |    |       |   |     |     |     |

| Data | Nilai | P(x!C1)   | p(x C2)  | P(C1 x1) | P(C2 x1) | my       | sigma    | Pc1 | Pc2 |     |
|------|-------|-----------|----------|----------|----------|----------|----------|-----|-----|-----|
| 1    | 2     | 0.548791  | 0.019931 | 0.599057 | 0.036724 | 1.827428 | 0.7119   | c   | .2  | 0.2 |
| 2    | 4     | 0.0203588 | 0.209616 | 0.022224 | 0.386233 | 4.809504 | 1.538041 |     |     |     |
| 3    | 1     | 0.3464651 | 0.002318 | 0.378199 | 0.00427  |          |          |     |     |     |
| 4    | 5     | 0.0004768 | 0.256341 | 0.00052  | 0.472328 |          |          |     |     |     |
| 5    | 7     |           | 0.054513 |          | ,, ,     |          |          |     |     |     |

| Data | Nilai | P(x!C1)   | p(x C2)  | P(C1 x1) | P(C2 x1) | my       | sigma    | Pc1 | Pc2 |
|------|-------|-----------|----------|----------|----------|----------|----------|-----|-----|
| 1    | 2     | 0.8940706 | 0.010643 | 0.606386 | 0.015714 | 1.66781  | 0.386906 | 0.2 | 0.2 |
| 2    | 4     | 0.0009134 | 0.272406 | 0.000619 | 0.402174 | 4.789857 | 1.104047 |     |     |
| 3    | 1     | 0.5794402 | 0.000541 | 0.392994 | 0.000798 |          |          |     |     |
| 4    | 5     | 6.047E-07 | 0.354191 | 4.1E-07  | 0.522919 |          |          |     |     |
| 5    | 7     |           | 0.039553 |          |          |          |          |     |     |