첨단융합기술개발사업 공통원천기술 개발 또는 통합운용 기술실증기 개발 이동수요 맞춤형 고출력 전기구동장치 개발 3세부

이동수요맞춤형 고출력 전기구동장치를 위한 다중화 드라이브 기술개발

(주)효원파워텍 2023, 11, 15

Chapter 1

연구개발 현황

연구개발 진행사항

>> 3.5kW Lift ESC

■ Output Power: 3.5 [kW]

I DC Input Voltage : 100 [V]

■ Dimension 162 x 94 x 49 [mm]

■ Weight : 560 [g]

[3.5kW Lift ESC]

>> 12kW Pusher ESC

■ Output Power : 12 [kW]

■ DC Input Voltage : 100 [V]

■ Dimension 164 x 114 x 82 [mm]

■ Weight : 1670 [g]

[12kW Pusher ESC]

연구개발 목표

- 연구개발목표
 - ▮ 3.5kW 및 12kW급 다중화 드라이브 및 플랫폼화 제어기 개발
- 》 세부 목표
 - 고출력 다상전동기 구동용 ESC 개발
 - ▮ 고출력 다상전동기의 다중화 제어기술 플랫폼화 개발
 - 다중화 드라이브 통신 체계 개발

>> 연차별 목표

9	년차(연도)	내용
	1차년도(2020)	• 3.5kW급 다상전동기 구동 시스템, 제어기의 모델링 시뮬레이션 및 드라이브 제어기 설계
1단계	2차년도(2021)	• 다중화 개념을 고려한 고전력밀도 드라이브 전력회로, 드라이브 제어기 제작 및 개별 시험
	3차년도(2022)	• 3.5kW ESC와 다상전동기 통합 출력성능 평가시험
	1차년도(2023)	 3.5kW ESC 신뢰성 시험 12kW ESC 시험평가 다중화 드라이브 플랫폼 통신 인터페이스 개발 및 시험
2단계	2차년도(2024)	 12kW ESC 신뢰성 시험 다중화 드라이브 플랫폼 구현
2011	3차년도(2025)	• 다중화 드라이브 플랫폼 구현 및 평가
	4차년도(2026)	• 완성시제의 통합 성능 실증 평가
	5차년도(2027)	• 체계시험 실증 평가 지원 및 보고서 작성

평가항목별 목표

>> 정성적 평가 항목

시험조건	가중치	연차	연차별 목표 (조건/환경)
		1차년도 (2023)	 · 3.5kW ESC 신뢰성 평가 - 진동: MIL-STD-810G 514.6 - 충격: MIL-STD-810G 516.6 - 방수방진: IEC60529, IP33 - 고온 저장/운전: MIL-STD-810G 501.5 - 저온 저장/운전: MIL-STD-810G 502.5 · 다중화 드라이브 플랫폼 구현 및 평가 · 12kW급 ESC 시험평가 · 다중화 드라이브 플랫폼 통신 인터페이스 개발 및 시험
· 고출력 다상 전동기 구동용 ESC 개발	40%	2차년도 (2024)	 12kW급 ESC 신뢰성 시험평가 진동: MIL-STD-810G 514.6 충격: MIL-STD-810G 516.6 방수방진: IEC60529, IP33 고온 저장/운전: MIL-STD-810G 501.5 저온 저장/운전: MIL-STD-810G 502.5 다중화 드라이브 플랫폼 구현 및 평가
		3차년도 (2025)	· 다중화 드라이브 시스템의 통합 성능 평가
		4차년도 (2026)	· 완성시제의 통합 성능 실증 평가
		5차년도 (2027)	ㆍ체계시험 실증 평가 지원 및 보고서 작성
		1차년도 (2023)	· 마스터 제어기(FC)와 다중화 드라이브 1대의 통신 체계 구현
· 다중화 드라이브의 플랫폼의 통신 체계 구현	20%	2차년도 (2024)	· 마스터 제어기(FC)와 다중화 드라이브 7대의 통신 체계 구현 및 고장 허용 제어 구현
<u>-</u>		3차년도 (2025)	・마스터 제어기(FC)와 다중화 드라이브 7대 그리고 PMU(Power Management Unit)과 통신 체계 구현

연구개발 진행사항

3.5kW ESC 신뢰성 평가

▮ 진동 : MIL-STD-810G 514.6

▮ 충격: MIL-STD-810G 516.6

▮ 방수방진 : IEC60529, IP33

▮ 고온 저장/운전 : MIL-STD-810G 501.5

▮ 저온 저장/운전 : MIL-STD-810G 502.5

>> 3.5kW ESC 환경 시험 일정

시험 항목		11월											
시참 8둑	20(월)	21(화)	22(수)	23(목)									
진동 시험													
충격 시험													
고온/저온 시험													
방진/방수 시험													

▮ 11/20(월) : 진동/충격 시험, 팜테크(창원)

▮ 11/20(월) ~ 11/21(화) : 고온 저온 시험, 팜테크(창원)

▮ 11/23(목) : 방수/방진 시험, 한국기자재연구원

>> 진동 시험 조건

▮ 시험 샘플 : 1ea

■ 시험 시간 : X, Y, Z 축당 1시간

I Grms : 4.456(random)

▮ 결과 : 육안검사

진	동방형	X Axis	Y Axis	Z Axi			
(Grms	4,456					
Floor Lovel	BW(Hz)		15 ~ 2 000				
Floor Level	ASD Level(g²/Hz)		0.010 00				
Narrow Band 1	Center Frequency(Hz)	46.7					
Narrow Band 1 $[f_0]$	ASD Level(g²/Hz)	0.300 00					
[70]	Sweep Bw(%)	-5.0		+5.0			
Norrow Bond 2	Center Frequency(Hz)	93,3					
Narrow Band 2	ASD Level(g²/Hz)		0.075 36				
$[f_1]$	Sweep Bw(%)	-5.0 +5.0					

[시험 세부 조건]

3.5kW ESC 신뢰성 평가

▮ 진동 : MIL-STD-810G 514.6

▮ 충격: MIL-STD-810G 516.6

▮ 방수방진 : IEC60529, IP33

▮ 고온 저장/운전 : MIL-STD-810G 501.5

▮ 저온 저장/운전 : MIL-STD-810G 502.5

>> 3.5kW ESC 환경 시험 일정

시험 항목		11	월	
시합 8국	20(월)	21(화)	22(수)	23(목)
진동 시험				
충격 시험				
고온/저온 시험				
방진/방수 시험				

▮ 11/20(월) : 진동/충격 시험, 팜테크(창원)

▮ 11/20(월) ~ 11/21(화) : 고온 저온 시험, 팜테크(창원)

▮ 11/23(목) : 방수/방진 시험, 한국기자재연구원

충격 시험 조건

▮ 시험 샘플 : 1ea

■ 시험 시간 : X, Y, Z 축당(+, -) 3회 반복

▮ 가속도 : 20g

▮ 결과 : 육안검사

충격방	ð	피크 가속도 (g)	정규지속시간 (ms)	파형	반복횟수 (회)
X Axis	+	20		ELITA	3
Y Axis Z Axis	_	20	11	톱니파	3

[시험 세부 조건]

[진동/충격 시험 지그 형상]

커넥터 와이어 고정용 블록, 케이블 타이로 고정 예정 (MIL 규격용)

연구개발 진행사항

3.5kW ESC 신뢰성 평가

▮ 진동 : MIL-STD-810G 514.6

▮ 충격: MIL-STD-810G 516.6

■ 방수방진 : IEC60529, IP33

▮ 고온 저장/운전 : MIL-STD-810G 501.5

▮ 저온 저장/운전 : MIL-STD-810G 502.5

》 3.5kW ESC 환경 시험 일정

시험 항목		11월											
시참 8둑	20(월)	21(화)	22(수)	23(목)									
진동 시험													
충격 시험													
고온/저온 시험													
방진/방수 시험													

▮ 11/20(월) : 진동/충격 시험, 팜테크(창원)

▮ 11/20(월) ~ 11/21(화) : 고온 저온 시험, 팜테크(창원)

▮ 11/23(목) : 방수/방진 시험, 한국기자재연구원

>> 고온/저온 운전 시험

■ 저온 : -20°C, 3h / 고온 : 50°C, 3h

▮ 시험 샘플 : 1ea

■ 결과 확인 :a. 초기 가동 1회,

b. 1시간 30분 후 가동 1회,

c. 3시간 후 가동 1회 후 정상 동작

d. 모터 동작시간 : row rpm(100~200), 10s

>>> 방수/방진

▮ 시험 샘플 : 1ea

▮ IP33 등급 시험

[실물 사진]

연구개발 진행사항

ESC 통신 인터페이스 개발 및 시험

Connector Pin Map

[3.5kW ESC 핀 맵]

Specification

Port	Pin	Parameter	Value	Unit	P/N
Main (Controlle	er	100		
	1	Input Voltage	12	٧	2
D2:	2	GND		37	,
P2	3	RCPWM	5	ν	
	4	GND	100		
	1	Input Voltage	12	٧	
P3	2	CANH	-	-	MB08MBAFF04ST
P3	3	CANL	-	-	(Creken)
	4	GND	-	_	
	1	Input Voltage	12	V	
	2	CANH	-	-	
P4	3	CANL	-	-	
	4	GND	-	-	

Port	Pin	Parameter	Value	Unit	P/N
Inverte	r Power I	Input			
P1	r Power I	DCP	100	V	LCB-30M (Amass)

Inverter Power Output

0	1	Phase A	0	deg	411				
M1	2 Phase B		120	deg	LCC-30M (Amass)				
	3	Phase C	-120	deg					
	1	Phase U	30	deg					
M2	2	Phase V	150	deg	LCC-30M (Amass)				
8	3	Phase W	-90	deg					

Encoder & Temperature Sensor

	1	GND			
	2	GND	3 8	22	전 19
	3	Z-			20
	4	Z		8	2
	5	Α-		ĺ.	***
	6	Α		3	#7 57
	7	+5V	5	٧	
МЗ	8	+5V	5	٧	L77HDEH15SOL2RM8 (Amphenol)
	9	B-	3 8	- 8	(Amphenoi)
	10	B+			72
	11	1	Not used	8	X
	12	T1+			**
	13	T1-	External N		
	14	T2+	supporte (Res in Ohms @ :		
	15	T2-	pres in Chans @	ES C TOK)	

>> ESC 통신 인터페이스 개발 및 시험

▮ CAN 통신 프로토콜

										Ext	end	ed F	rame	ID	(29-	bit)													
Field name			riori 5-bi			Source 8-bit						Destination 8-bit						Object 8-bit											
CAN ID bit	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Value	0x00 0x03 (ESC1)						0x00 (MASTER)						0x02 (Get Status)																
CAN ID byte	3 2						1 0										П												

	ID Assignment						
Addres	Name	Description					
0x00	MASTER	Source					
0x01	ESC1	Destinatioin					
0x02	ESC2	Destination					
0x03	ESC3	Destinatioin					
0x04	ESC4	Destinatioin					
0x05	ESC5	Destination					
0x06	ESC6	Destinatioin					
0x07	ESC7	Destinatioin					

Object		Data		
Address	Name	Byte	Bit	Description
0x00	Set Command	0	0-1	Transmission 00: - 01: Get Command & Status 10: -
			2.2	11: -
			2-3	Inverter output 00: - 01: Inverter output on 10: Inverter output off 11: -
		,	4-6	Control Mode 000: - 001: Motor run (RPM 제어) 010: Motor align 011: Motor stop 100: Motor throttle (전류 제어)
			7	Fault Clear 0: - 1: Fault Clear
		1 (int8)	0-7	Throttle -100 ~ 100: Set throttle +:CCW, -:CW
		2-3 (int16)	0-15	RPM -3300 ~ 3300: Set RPM -100 = 0xFFFF FF9C

■ CAN 통신 제어 프로그램

- 제어 지령: 속도 제어, 스로틀(전류) 제어, 위치 정렬
- ESC 측정 데이터: DC입력전압, 상전류, 모터속도, ESC/모터 온도

연구개발 진행사항

>> ESC 통신 인터페이스 개발 및 시험

- CAN 통신 제어 시험
- (1) 3.5kW ESC 단품 단위 시험, 3100 rpm, 1 min
- (2) 3.5kW ESC 단품 단위 시험, 2900 rpm, 5 min
- (3) 3.5kW ESC 3개 동시 시험, 2600 rpm, 5 min
- (4) 12kW Pusher ESC 시험, 2180 rpm (4열 프롭)
- (5) 12kW Pusher ESC 시험, 2500 rpm (2열 프롭)

[아이언버드 프롭시험 (한서대학교 태안캠퍼스)]

>> ESC 통신 인터페이스 개발 및 시험

▮ 3.5kW ESC 시험 결과

[3.5kW ESC 3개 동시 구동]

▮ 12kW ESC 시험 결과

* 2120 RPM (4열)

- 전원공급기 입력 : 100V, 85A

- ESC 상 출력 전류: 43A

[12kW ESC 구동]

>> 통신 응답 속도 시험

■ CAN 통신 송신 주파수: 400Hz

▮ 지령 속도 : 0 ↔ 1000rpm

- 2.5ms마다 1000rpm까지 1rpm씩 증가 후 감소

>> 위치 정렬 시험

- ▮ 3.5kW ESC 프롭 위치 정렬
- ▮ 풍속 30.0 m/s 조건
- 정렬 후 DC 파워서플라이 출력: 100V, 0.4A (40W)

[경운대학교 시험 영상]

Chapter 2

연구개발 계획

평가항목별 목표

>>> 정성적 평가 항목

시험조건	가중치	연차	연차별 목표 (조건/환경)
	40%	1차년도 (2023)	 3.5kW ESC 신뢰성 평가 진동: MIL-STD-810G 514.6 충격: MIL-STD-810G 516.6 방수방진: IEC60529, IP33 고온 저장/운전: MIL-STD-810G 501.5 저온 저장/운전: MIL-STD-810G 502.5 다중화 드라이브 플랫폼 구현 및 평가 12kW급 ESC 시험평가 다중화 드라이브 플랫폼 통신 인터페이스 개발 및 시험
· 고출력 다상 전동기 구동용 ESC 개발		2차년도 (2024)	・12kW급 ESC 신뢰성 시험평가 - 진동 : MIL-STD-810G 514.6 - 충격 : MIL-STD-810G 516.6 - 방수방진 : IEC60529, IP33 - 고온 저장/운전 : MIL-STD-810G 501.5 - 저온 저장/운전 : MIL-STD-810G 502.5 ・다중화 드라이브 플랫폼 구현 및 평가
		3차년도 (2025)	· 다중화 드라이브 시스템의 통합 성능 평가
		4차년도 (2026)	· 완성시제의 통합 성능 실증 평가
		5차년도 (2027)	ㆍ체계시험 실증 평가 지원 및 보고서 작성
		1차년도 (2023)	· 마스터 제어기(FC)와 다중화 드라이브 1대의 통신 체계 구현
· 다중화 드라이브의 플랫폼의 통신 체계 구현	20%	2차년도 (2024)	·마스터 제어기(FC)와 다중화 드라이브 7대의 통신 체계 구현 및 고장 허용 제어 구현
-		3차년도 (2025)	・마스터 제어기(FC)와 다중화 드라이브 7대 그리고 PMU(Power Management Unit)과 통신 체계 구현

연구개발 계획

- >> 다중화 드라이브의 플랫폼의 통신 체계 구현
 - ▮ 마스터 제어기(FC)와 다중화 드라이브 7대의 통신 체계 구현. (*DroneCAN* 프로토콜 적용)
 - ▮ 고장 허용 운전 제어 구현
 - 다상 전동기는 임의의 상이 고장 시에도 연속적인 운전이 가능.

DroneCAN

[6상 모터 제어시스템 회로 구성]

- 고장 운전 시험 조건
- 6상 운전 중 U, V, W상 스위치 소자 개방고장 가정, 3상 운전 모드 전환
- ESC 속도 지령: 500 [rpm]
- 다이나모 부하: 3 [Nm]
- 결과
- 6상 운전 모드 a상 전류: 9.33[Arms], b상 전류: 9.47[Arms], c상 전류: 9.28[Arms]
- 3상 운전 모드 전환 후 a상 전류: 18.28[Arms], b상 전류: 18.82[Arms], u상 전류: 0[Arms]

지금까지 경청해 주셔서 감사합니다

