Introduction à SSH

Lucas Nussbaum

lucas.nussbaum@univ-lorraine.fr

Licence professionnelle ASRALL

Administration de systèmes, réseaux et applications à base de logiciels libres

Plan

Introduction

- ► SSH = Secure SHell
- Un protocole et un service réseau standard (port TCP 22)
- De nombreuses implémentations, dont:
 - ◆ OpenSSH: Linux/Unix, Mac OS X ← on parle surtout de ca
 - Putty: Windows, client seulement
 - Dropbear: systèmes restreints (routers, embarqué)
- La commande Unix (ssh); coté serveur: sshd
- Établit une communication sécurisé entre deux machines
- S'appuie sur la cryptogrphie
- L'usage le plus simple: l'accès shell sur une machine distante
- De nombreux usages avancés:
 - Transfert de données (scp, sftp, rsync)
 - Connexion à des services specifiques (Git ou SVN)
 - "Creuse" des tunnels sécurisés à travers l'internet
- Plusieurs systèmes d'authentification: mot de passe, clef publique

Utilisation basique

- ► Se connecter à un serveur distant:
 - \$ ssh login@remote-server
 - → Fournit un shell remote-server
- Éxecuter une commande sur un serveur distant:
 - \$ ssh login@remote-server ls /etc
- Copying data (with scp, similar to cp):
- \$ scp local-file login@remote-serv:remote-directory/
 - \$ scp login@remote-serv:remote-dir/file local-dir/
 Usual cp options work, e.g. -r (recursive)
- Copier des données (avec rsync, est plus efficace qu'avec scp si il y a pleins de fichiers):

Lucas Nussbaum Introduction à SSH

- \$ rsync -avzP localdir login@server:path-to-rem-dir/
- Note: le slash de fin importe avec rsync (pas avec cp)
- rsync -a rep1 u@h:rep2 ~ rep1 copié dans rep2

Authentification par clef publique

- ► Idée générale
 - Cryptographie asymétrique (ou cryptographie à clé publique)
 - ★ La clef publique est utilisé pour chiffrer quelque chose
 - ★ Que seul la clef privée peut déchiffrer
 - L'utilisateur possède une clef privée (secrète), stockée sur la machine locale
 - Le serveur a une clef publique correspondant e à la clef privée
 - Authentification = <server> prouve que tu possèdes cette clef privée!
- Implémentation (Authentification par challenge-réponse):
 - Le serveur génère un nonce (une valeur aléatoire arbitraire)
 - Le serveur chiffre ce nonce avec la clef publique du client
 - Le serveur envoie le nonce chiffré (=le challenge) au client
 - Le client utilise la clef privée pour déchiffrer le challenge
 - Le client renvoie ce nonce (= la réponse) au serveur
 - Le serveur compare le nonce avec la réponse

Authentification par clef publique (2)

- Avantages
 - Les mots de passes ne sont pas envoyés par le réseau
 - ◆ La clef privée ne quitte JAMAIS le client
 - Le procédé peut être automatisé
- Cependant, la clef privée doit être protégée (que se passerait-il sivotre ordinateur portable était volé?)
 - Habituellement avec une passphrase

Génération d'une paire de clef

```
$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/user/.ssh/id rsa): [ENTER]
Enter passphrase (empty for no passphrase): passphrase
Enter same passphrase again: passphrase
Your identification has been saved in /home/user/.ssh/id rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The kev fingerprint is:
f6:35:53:71:2f:ff:00:73:59:78:ca:2c:7c:ff:89:7b user@my.hostname.net
The key's randomart image is:
+--Γ RSA 2048]----+
..0
(…)
.0
```

Créer une paire de clef

\$

- ~/.ssh/id_rsa (private key)
- ~/.ssh/id_rsa.pub (public key)

Copier la clef publique sur un serveur

- Exemple public key: ssh-rsa AAAAB3NX[. . .]hpoR3/PLlXgGcZS4oR user@my.hostname.net
- Sur le serveur, ~user/.ssh/authorized_keys contient une liste des clefs publiques autorisées au compte user
- La clef peut y être copiée manuellement
- Ou utiliser ssh-copy-id pour copier la clef automatiquement: client\$ ssh-copy-id user@server
- Parfois la clef publique a besoin d'être fournie en utilisant une interface web(e.g. sur GitHub, FusionForge, Redmine, etc.)

Se souvenir de la passphrase

Si la clef privée n'est pas protégée par une passphrase, la connexion est établie immédiatement:

```
*** login@laptop:~$ ssh rlogin@rhost [ENTER]
*** rlogin@rhost:~$
```

Sinon, ssh demande la passphrase:

```
*** login@laptop:~$ ssh rlogin@rhost [ENTER]
Enter passphrase for key '/home/login/id_rsa': [passphrase+ENTER]
*** rlogin@rhost:~$
```

- Un agent SSH peut être utilisé pour se souvenir de la passphrase
 - La plupart des environnements de bureau peuvent jouer le rôle d'agent SSH automatiquement
 - On peut lancer ssh-agent si besoin
 - On ajoute les clefs manuellement avec ssh-add

Verifier l'identité du serveur : known_hosts

- Objectif: détecter un serveur contrefait Et si quelqu'un se faisait passer pour un serveur pour voler des mots de passe?
- Quand on se connecte à un serveur pour la première fois, ssh stocke la clef publique du serveur dans ~/.ssh/known_hosts

```
*** login@laptop:~$ ssh rlogin@server [ENTER]
The authenticity of host 'server (10.1.6.2)' can't be established.
RSA key fingerprint is
94:48:62:18:4b:37:d2:96:67:c9:7f:2f:af:2e:54:a5.
Are you sure you want to continue connecting (yes/no)? yes [ENTER]
Warning: Permanently added 'server,10.1.6.2'(RSA) to the list of known hosts
```

rlogin@server's password:

Lucas Nussbaum Introduction à SSH

Vérifier l'identité du serveur known_hosts (2)

À chaque nouvelle connexion, ssh s'assure que la clef est toujours la même, ou averti l'utilisateur dans le cas contraire

 Supprimer une véritable clef périmée avec ssh-keygen -R server

Configurer SSH

- SSH obtient les informations de configuration depuis:
 - les options de la ligne de commande (-o ...)
 - 2 le fichier de configuration de l'utilisateur: ~/.ssh/config
 - le fichier de configuration système: /etc/ssh/ssh_config
- Ces options sont documentées dans la page de manuel ssh_config(5)
- ~/.ssh/config contient une liste d'hôtes (avec wildcards)
- Pour chaque paramètre, c'est la première valeur trouvée que l'on utilise
 - Les déclarations spécifiques à l'hôte sont données au début
 - Paramètres par défaut à la fin

Exemple: ~/.ssh/config

```
Host mail.acme.com
User root
```

Host foo # alias/shortcut. 'ssh foo' works
 Hostname very-long-hostname.acme.net
 Port 2222

Host *.acme.com
 User jdoe
 Compression yes # default is no
 PasswordAuthentication no # only use public key
 ServerAliveInternal 60 # keep-alives for bad firewall

Host *
User john

 Note: bash-completion peut auto-compléter en utilisant les hôtes de ssh_config

Plan

SSH, une couche communication pour les application

- Plusieurs applications utilisent SSH comme leur couche communication
 - Parfois aussi comme couche d'authentification
- scp, sftp, rsync (transfert de donnée)
- unison (synchronisation)
- Subversion: svn checkout svn+ssh://user@rhost/path/to/repo
- Git: git clone ssh://git@github.com/path-to/repository.git
 Ou: git clone git@github.com:path-to/repository.git

Accès à un filesystem distant à travers SSH: sshfs

- sshfs: Des solution basées sur FUSE pour accéder à des machines distantes
- ► Idéal pour editer un fichier en GUI à distance, copier des petites quantitées de données, etc...
- Monter un répertoire distant: sshfs root@server:/etc /tmp/local-mountpoint Démonter: fusermount -u /tmp/local-mountpoint
- Combiné avec afuse pour monter automatiquement n'importe quelle machine:

```
afuse -o mount_template="sshfs %r:/ %m" -o \
unmount_template="fusermount -u -z %m" ~/.sshfs/
```

- ► Objectif: transporter le traffic dans une connection sécurisée
 - Contourner le filtrage réseau (pare-feux)
 - Éviter d'envoyer des données en clair sur Internet
 - Mais fonctionne seulement pour les connections TCP
- -L: accèder à un service distant derrière un pare-feux (serveur intranet)
 - ♦ ssh -L 12345:service:1234 server
 - ♦ Toujours sur Client: telnet localhost 12345
 - Server établit une connexion TCP vers Service, port 1234
 - Le trafic est tunnelisé dans la connexion SSH vers Server

- ► Objectif: transporter le traffic dans une connection sécurisée
 - Contourner le filtrage réseau (pare-feux)
 - Éviter d'envoyer des données en clair sur Internet
 - Mais fonctionne seulement pour les connections TCP
- -L: accèder à un service distant derrière un pare-feux (serveur intranet)
 - ♦ ssh -L 12345:service:1234 server
 - ♦ Toujours sur Client: telnet localhost 12345
 - Server établit une connexion TCP vers Service, port 1234
 - Le trafic est tunnelisé dans la connexion SSH vers Server

- -R: fournit un accès distant à un service local privé
 - ♦ ssh -R 12345:service:1234 server
 - ♦ Sur Server: telnet localhost 12345
 - Client établit une connexion TCP vers le Service, port 1234
 - ♦ Le trafic est tunnellisé dans la connexion SSH vers le Client

Note: les tunnels SSH ne fonctionnent pas très bien pour HTTP, parce que IP+port est insufisant pour identifier un site web (Host: HTTP header)

- -R: fournit un accès distant à un service local privé
 - ♦ ssh -R 12345:service:1234 server
 - ♦ Sur Server: telnet localhost 12345
 - Client établit une connexion TCP vers le Service, port 1234
 - ♦ Le trafic est tunnellisé dans la connexion SSH vers le Client

Note: les tunnels SSH ne fonctionnent pas très bien pour HTTP, parce que IP+port est insufisant pour identifier un site web (Host: HTTP header)

X11 transféré à l'aide de -X: applications GUI à trave

- Lancer une application graphique sur une machine distante pour l'afficher localement
- Similaire à VNC mais fonctionne par applications
- ▶ ssh -X server
- \$DISPLAY sera déclaré par SSH sur le serveur:
 - \$ echo \$DISPLAY
 - localhost:10.0
- Puis lancer les applications sur le serveur (e.g. xeyes)
- Diagnostic:
 - xauth doit être installé sur la machine distante
 - Le serveur Xorg local doit autoriser les connections TCP
 - ★ pgrep -a Xorg ~ -nolisten ne doit pas être inclus
 - ★ Peut être configuré dans le gestionnaire de sessions utilisateur