

National University of Computer & Emerging Sciences MT-2008 Multivariable Calculus

SURFACE INTEGRAL:

15.5.2 THEOREM Let σ be a smooth parametric surface whose vector equation is

$$\mathbf{r} = x(u, v)\mathbf{i} + y(u, v)\mathbf{j} + z(u, v)\mathbf{k}$$

where (u, v) varies over a region R in the uv-plane. If f(x, y, z) is continuous on σ , then

$$\iint_{R} f(x, y, z) dS = \iint_{R} f(x(u, v), y(u, v), z(u, v)) \left\| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right\| dA$$
 (6)

15.5.3 THEOREM

(a) Let σ be a surface with equation z = g(x, y) and let R be its projection on the xyplane. If g has continuous first partial derivatives on R and f(x, y, z) is continuous
on σ , then

$$\iint_{\sigma} f(x, y, z) dS = \iint_{R} f(x, y, g(x, y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} dA$$
 (8)

(b) Let σ be a surface with equation y = g(x, z) and let R be its projection on the xzplane. If g has continuous first partial derivatives on R and f(x, y, z) is continuous
on σ , then

$$\iint_{\sigma} f(x, y, z) dS = \iint_{R} f(x, g(x, z), z) \sqrt{\left(\frac{\partial y}{\partial x}\right)^{2} + \left(\frac{\partial y}{\partial z}\right)^{2} + 1} dA$$
 (9)

(c) Let σ be a surface with equation x = g(y, z) and let R be its projection on the yzplane. If g has continuous first partial derivatives on R and f(x, y, z) is continuous on σ , then

$$\iint_{\sigma} f(x, y, z) dS = \iint_{R} f(g(y, z), y, z) \sqrt{\left(\frac{\partial x}{\partial y}\right)^{2} + \left(\frac{\partial x}{\partial z}\right)^{2} + 1} dA$$
 (10)

► Example 2 Evaluate the surface integral

$$\iint_{\mathcal{I}} xz \, dS$$

where σ is the part of the plane x + y + z = 1 that lies in the first octant.

Solution. The equation of the plane can be written as

$$z = 1 - x - y$$

Consequently, we can apply Formula (8) with z = g(x, y) = 1 - x - y and f(x, y, z) = xz. We have ∂z

 $\frac{\partial z}{\partial x} = -1$ and $\frac{\partial z}{\partial y} = -1$

so (8) becomes

$$\iint_{\sigma} xz \, dS = \iint_{R} x(1 - x - y)\sqrt{(-1)^2 + (-1)^2 + 1} \, dA \tag{11}$$

where R is the projection of σ on the xy-plane (Figure 15.5.3). Rewriting the double integral in (11) as an iterated integral yields

$$\iint_{\sigma} xz \, dS = \sqrt{3} \int_{0}^{1} \int_{0}^{1-x} (x - x^{2} - xy) \, dy \, dx$$

$$= \sqrt{3} \int_{0}^{1} \left[xy - x^{2}y - \frac{xy^{2}}{2} \right]_{y=0}^{1-x} \, dx$$

$$= \sqrt{3} \int_{0}^{1} \left(\frac{x}{2} - x^{2} + \frac{x^{3}}{2} \right) dx$$

$$= \sqrt{3} \left[\frac{x^{2}}{4} - \frac{x^{3}}{3} + \frac{x^{4}}{8} \right]_{0}^{1} = \frac{\sqrt{3}}{24} \blacktriangleleft$$

▲ Figure 15.5.3

► Example 3 Evaluate the surface integral

$$\iint y^2 z^2 dS$$

where σ is the part of the cone $z = \sqrt{x^2 + y^2}$ that lies between the planes z = 1 and z = 2 (Figure 15.5.4).

Figure 15.5.4

Solution. We will apply Formula (8) with

$$z = g(x, y) = \sqrt{x^2 + y^2}$$
 and $f(x, y, z) = y^2 z^2$

Thus,

$$\frac{\partial z}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}$$
 and $\frac{\partial z}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}$

SO

$$\sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} = \sqrt{2}$$

(verify), and (8) yields

$$\iint_{\sigma} y^2 z^2 dS = \iint_{R} y^2 \left(\sqrt{x^2 + y^2} \right)^2 \sqrt{2} dA = \sqrt{2} \iint_{R} y^2 (x^2 + y^2) dA$$

3

where R is the annulus enclosed between $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ (Figure 15.5.4). Using polar coordinates to evaluate this double integral over the annulus R yields

$$\iint_{\sigma} y^{2}z^{2} dS = \sqrt{2} \int_{0}^{2\pi} \int_{1}^{2} (r \sin \theta)^{2} (r^{2}) r dr d\theta$$

$$= \sqrt{2} \int_{0}^{2\pi} \int_{1}^{2} r^{5} \sin^{2} \theta dr d\theta$$

$$= \sqrt{2} \int_{0}^{2\pi} \left[\frac{r^{6}}{6} \sin^{2} \theta \right]_{r=1}^{2} d\theta = \frac{21}{\sqrt{2}} \int_{0}^{2\pi} \sin^{2} \theta d\theta$$

$$= \frac{21}{\sqrt{2}} \left[\frac{1}{2} \theta - \frac{1}{4} \sin 2\theta \right]_{0}^{2\pi} = \frac{21\pi}{\sqrt{2}}$$
Formula (7), Section 7.3

EXERCISE SET 15.5 CAS

1-8 Evaluate the surface integral

$$\iint f(x, y, z) \, dS \quad \blacksquare$$

- 1. $f(x, y, z) = z^2$; σ is the portion of the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 2.
- 2. f(x, y, z) = xy; σ is the portion of the plane x + y + z = 1 lying in the first octant.
- 3. $f(x, y, z) = x^2y$; σ is the portion of the cylinder $x^2 + z^2 = 1$ between the planes y = 0, y = 1, and above the xy-plane.
- 5. f(x, y, z) = x y z; σ is the portion of the plane x + y = 1 in the first octant between z = 0 and z = 1.
- 6. f(x, y, z) = x + y; σ is the portion of the plane z = 6 2x 3y in the first octant.
- 7. f(x, y, z) = x + y + z; σ is the surface of the cube defined by the inequalities $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$. [*Hint:* Integrate over each face separately.]