REAL ANALYSIS

MATH 131, HARVEY MUDD COLLEGE

PROF. FRANCIS SU

TODAY: UNCOUNTABLE SETS, METRIC SPACES

Some

Last time: A ctble set: can be put into bijection with IN. An unctble set cannot.

Saw: Dis otble.

Thm. IR is uncountable. (Cantor 1874)
"Cantor's diagonal argument"

this post, 1891

prof. Enough to show [0,1) unetble.

Suppose, by way of contradiction, that Ris ctble. Then it can be "listed" (1-1 corr. with N)

1→ 0.04159...

2 → 0.26535...

3- 0.89793...

4 → 0.23 8 (4)6...

I'll show you some # not on your list!

By: construct # that differs from

ith # in the ith decimal place!

e.g. X = 0.7717 ...

See: x cannot be in the image of this proposed bijection. Since this construction works for any proposed bijection, then no such bijection exists!

· Given set A, let 2^A denote the power set of A, the set of all subsets of A.

 $E \times A = \{ \textcircled{9}, \square, \Delta \}$ then 2^{A} has 2^{3} elements. Subset $D = \{ \textcircled{9}, \Delta \} \longleftrightarrow \text{Lincy } 3 \text{-typle} : 101$ $E = \{ \Delta \} \longleftrightarrow \text{OOI}$

Thm (Cantor, 1891) For any set A, we have A 1/2 .

proof. - THINK ABOUT IT! (next time)

(size)

Def'n. The set A am B have same cardinality if A~B.

So These sets have different cardinalities:

IN, 2^{N} , $2^{2^{N}}$, ... $\{f: N \rightarrow \{0,1\}\}$ $\{f: R \rightarrow \{0\}\}$ $\{f: R \rightarrow R\}$ not necess. continuous

Schröder-Bernstein Thm (extra credit!)

If A, B are sets s.t. ∃ f: A → B then A~B.

4 ∃ g: B ← A

(To prove, use f.g to construct a bijection h: A - B.)

METRIC SPACES

Q) How to define distance ? - between pts, functions,
genome requences

Defh. A set X is a metricspace

s.t.
$$\forall p,q \in X \otimes d(p,q) \geq 0 \ (= \text{iff } p=q)$$

Say: (X, d) is a metric space

EX. IR with
$$d(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||$$
 with $||\vec{w}|| = \sqrt{w_1^2 + ... + w_n^2}$.

1 Evolidean metric

$$\mathbb{E}X$$
. \mathbb{R}^n with L^p -metriz: $d(x,y) = \left(\sum |x_i-y_i|^p\right)^{p}$. (If $p=1$, get staircase; $i\neq p=2$, get $Evclidean$.)

EX. any set X, $d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$.

EX. X = { contin functions: R-R}

L'-metric: $d(f,g) = \int |f(x)-g(x)| dx$ restrict space further so sup metric: $d(f,g) = \sup_{x \in \mathbb{R}} |f(x)-g(x)|$. these aren't co

Ex. \mathbb{R}^h with entropy distance $d(\vec{p}, \vec{q}) = \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i}$ metric

· The topology of Rh: what's close?

MORAL: Balls tell us what's "close".

Defh A point $p \in X$ is a <u>limit pt</u> of E if <u>every nobld</u> of p contains a point $q \notin E$ with $q \not \neq p$. any B(p,r)

nbhd of O is (-v,r)
so O is !p. of E.

EX. (IR, discrete) 15 0 a lip of f? No]. La B(0,1/2)

contains no other pts.