Neural Networks learn Representation Theory: Reverse Engineering how Networks perform Group Operations

Bilal Chughtai, Lawrence Chan, Neel Nanda

PROGRESS MEASURES FOR GROKKING VIA MECHANISTIC INTERPRETABILITY

Neel Nanda

Independent

neelnanda27@gmail.com

Lawrence Chan

UC Berkeley

chanlaw@berkeley.edu

Tom Lieberum

Independent

tlieberum3141@gmail.com

Jess Smith

Independent

smith.jessk@gmail.com

Jacob Steinhardt

UC Berkeley

jsteinhardt@berkeley.edu

Mystery: Why do models grok?

GROKKING: GENERALIZATION BEYOND OVERFIT-TING ON SMALL ALGORITHMIC DATASETS

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin OpenAI Vedant Misra* Google

Methodology: Apply mechanistic interpretability

Inspiration: Mechanistic Interpretability

- **Goal:** Reverse engineer neural networks
- Hypothesis: Models learn human-comprehensible algorithms and can be understood, if we learn how to make it legible
- Models learn circuits, algorithms encoded in the weights
- A deep knowledge of circuits is crucial to understand and predict model behaviour

Universality

ALEXNET

Curve detectors

High-Low Frequency detectors

Szegedy et al. [26]

Krizhevsky et al. [34]

VGG19

Simonyan et al. [35]

RESNETV2-50

He et al, [36]

Calculates sine and cosine of a + b using trig identities:

 $\sin(w(a+b)) = \sin(wa)\cos(wb) + \cos(wa)\sin(wb)$ $\cos(w(a+b)) = \cos(wa)\cos(wb) - \sin(wa)\sin(wb)$

 $= \cos(w(a+b))\cos(wc) + \sin(w(a+b))\sin(wc)$

 $\cos w(a+b-c)$

Representation Theory

A (real) **representation** is a homomorphism, i.e. a map preserving the group structure, $\rho: G \to GL(\mathbb{R}^d)$ from the group G to a d-dimensional general linear group, the set of invertible square matrices of dimension d. Representations are in general reducible, in a manner we make precise in the Appendix. For each group G, there exist a finite set of fundamental **irreducible representations**. The **character** of a representation is the trace of the representation $\chi_\rho: G \to \mathbb{R}$ given by $\chi_\rho(g) = \operatorname{tr}(\rho(g))$. A key fact our algorithm depends on is that character's are maximal when $\rho(g) = I$, the identity matrix (Theorem C.8). In particular, the character of the identity element, $\chi_\rho(e)$, is maximal.

Example. The cyclic group C_n is generated by a single element r and naturally represents the set of rotational symmetries of an n-gon, where r corresponds to rotation by $2\pi/n$. This motivates a 2 dimensional representation – a set of $n \ 2 \times 2$ matrices, one for each group element:

$$\rho(r^k) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

for element r^k corresponding to rotation by $\theta = 2\pi k/n$.

Translates one-hot a,b to representation matrices: $a, b \mapsto \rho(a), \rho(b)$

Performs matrix multiplication
on representations via ReLUs:
$$\rho(a), \rho(b) \mapsto \rho(a)\rho(b) = \rho(ab)$$

Computes logits by multiplying by $\rho(c^{-1})$ and taking the trace:

 $\text{Logit}(c) \propto \chi_{\rho}(abc^{-1}) = \text{tr}(\rho(abc^{-1}))$

Reverse Engineering S5

- 1. Logit similarity
- 2. Embeddings
- 3. MLP activations & the MLP Logit map
- 4. Ablations

CLUSTER	$\rho(a)$	ho(b)	ho(ab)	RESIDUAL
SIGN	33.3%	33.3%	33.3%	0.00%
STANDARD	39.6%	37.1%	11.3%	12.1%

Weak Universality

Table 3. Results from all groups on both MLP and Transformer architectures, averaged over 4 seeds. We find that that features for matrices in the key representations are learned consistently, and explain almost all of the variance of embeddings and unembeddings. We find that terms corresponding to $\rho(ab)$ are consistently present in the MLP neurons, as expected by our algorithm. Excluding and restricting to these terms in the key representations damages performance/does not affect performance respectively.

Group	MLP						Transformer								
	FVE				Loss		FVE			Loss					
	W_a	W_b	W_U	MLP	$\rho(ab)$	Test	Exc.	Res.	W_E	W_L	MLP	$\rho(ab)$	Test	Exc.	Res.
C113	99.53%	99.39%	98.05%	90.25%	12.03%	1.63e-05	5.95	6.88e-03	95.18%	99.52%	92.12%	16.77%	2.67e-07	9.42	2.12e-02
C_{118}	99.75%	99.74%	98.43%	95.84%	13.26%	5.39e-06	8.72	3.60e-03	94.05%	99.64%	94.63%	17.11%	1.73e-07	15.93	2.55e-01
D_{59}	99.71%	99.73%	98.52%	87.68%	12.44%	6.34e-06	12.37	1.60e-06	98.58%	98.53%	85.01%	10.85%	3.20e-06	46.42	2.82e-05
D_{61}	99.26%	99.45%	98.26%	87.61%	12.48%	1.79e-05	12.00	1.69e-06	98.33%	97.40%	85.59%	11.11%	1.63e-02	41.64	9.60e-02
S_5	100.00%	99.99%	94.14%	88.91%	12.13%	1.02e-05	11.72	2.21e-07	99.84%	99.97%	85.28%	10.23%	1.43e-07	17.77	4.44e-09
S_6	99.65%	99.78%	93.67%	86.38%	8.98%	4.95e 05	12.17	2.66e 06	99.94%	99.93%	86.32%	9.35%	2.21e 06	291.67	1.05e 06
A_5	99.04%	99.31%	93.27%	86.69%	10.26%	1.94e-05	9.82	5.28e-07	97.53%	97.40%	83.56%	8.22%	4.88e-02	19.76	7.70e-04

Strong Universality

Implications

- Reverse engineering a single network is insufficient for understanding behaviour in general
- BUT it may be possible to build a periodic table of 'universal' features, that in aggregate may be able to explain a given behaviour fully.

Further Work

- Reverse engineering more group theoretic tasks
- Understanding universality better in algorithmic / realistic tasks
- Understanding network inductive biases better

Key Takeaways

- Models naturally learn representation theory
- Only by employing the tools of mechanistic interpretability were we able to figure this out

Future Work

- Further group theoretic tasks
 - Preliminary work has suggested models learn representations in a wider family of group theoretic tasks than simply group composition
- Understanding inductive biases of neural networks better
- Further investigation of universality in algorithmic tasks
- Investigation of universality in realistic tasks and models