$\ensuremath{\mathsf{ECE}}$ 3100 - Functions, Formulas, and Definitions

Stephen Chin

Spring Semester 2019

Contents

1	\mathbf{Pre}	- Prelim 1	2
	1.1	Lecture 1 - What is Probability?	2
	1.2	Lecture 2 - Probability Law	2
		1.2.1 Additivity rules:	2
	1.3	Lecture 3 - Conditional Prob & Product Rule	2
		1.3.1 Conditional Probability	2
		1.3.2 Product Rule	3
	1.4	Lecture 4 - Total Probability	3
	1.5	Lecture 5 - Bayes Law & Independence	3
		1.5.1 Bayes Law	3
		1.5.2 Independence	4
	1.6	Lecture 6 - Conditional Dependence & Counting	4
		1.6.1 Conditional Dependence	4
		1.6.2 Counting	4
	1.7	Lecture 7 - Counting	4
		1.7.1 k -permutations of n objects	4
		1.7.2 k -combinations of n objects	5
	1.8	Lecture 8 - Discrete Random Variables	5
		1.8.1 Random Variables	5
		1.8.2 Probability Mass Functions	5
		1.8.3 Common PMFs	5
	1.9	Lecture 9 - Expectation, Variance	6
		1.9.1 Function of a Random Variable	6
		1.9.2 Expected Value	6
		1.9.3 Expected Value Rule	7
		1.9.4 Variance	7
	1.10	Lecture 10 - Expected Value and Variance Examples	7
2	Pre	lim 1 - Prelim 2	8
_	2.1		8
	2.2	1 , 1	8
	2.3		8
	$\frac{2.3}{2.4}$	Lecture 14 - Independence of Random Variables	8
	$\frac{2.4}{2.5}$	Lecture 15 - "Randomness" of RVs	8
	$\frac{2.5}{2.6}$	Lecture 16 - Continuous Random Variables	8
	4.0	Locatio to Committous faminism variables	(

1 Pre - Prelim 1

1.1 Lecture 1 - What is Probability?

Probability is a way of mathematically modelling situations involving uncertainty with the goal of making predications decisions and models. Probability can be understood in many ways, such as:

- 1. Frequency of Occurence: Or percentage of successes in a moderately large number of similar situations.
- 2. Subjective belief: Or ceratinty based on other understood facts about a claim.

For our Probability Models, we define the set of all outcomes to be Ω , better known as the **sample space** of an experiment. All subsets of Ω are called **events**. These are both sets and can be understood using default set notation.

1.2 Lecture 2 - Probability Law

Given Ω chosen, a **probability law** on Ω is a mapping \mathbb{P} that assings a number for every event such that:

$$\mathbb{P}(A) \ge 0$$
 for every event A $\mathbb{P}(\Omega) = 1$ (Kolmogorov's Axioms)

1.2.1 Additivity rules:

• If $A \cap B = \emptyset$, (A, B) events, then:

$$\boxed{\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)}$$
(1)

• If events A_1, A_2, \ldots are all disjoint, then:

$$\boxed{\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)}$$
(2)

By these rules, we can surmise that $\mathbb{P}(\emptyset) = 0$.

For any events A, B:

$$\boxed{\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)}$$
 (Event Union)

When we have a probability law on a finite Ω with all outcomes equally likely (i.e. $\mathbb{P}(\{s\}) = 1/size(\Omega)$), we call this probability law \mathbb{P} a (discrete) uniform probability law.

1.3 Lecture 3 - Conditional Prob & Product Rule

1.3.1 Conditional Probability

Conditional Probability is defined $\mathbb{P}(A \mid B) =$ "Probability of A given B". It is understood as the likelyhood that event A occurs, given that B also occurs.

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$
 (Conditional Probability Def)

If there is a finite number of different outcomes that are all equally likely, the conditional prbability can be written as follows:

$$\mathbb{P}(A \mid B) = \frac{\text{number of elements of } A \cup B}{\text{number of elements of } B}$$
 (3)

1.3.2 Product Rule

There are two main ways to write the product rule and they both have different setups.

• If we have events D_1 to D_n where $D_1 > D_2 > \cdots > D_n$ (D_1 largest, D_n smallest), then we can apply the first form of the product rule:

$$\mathbb{P}(D_n) = \mathbb{P}(D_1)\mathbb{P}(D_2 \mid D_1)\mathbb{P}(D_3 \mid D_2)\dots\mathbb{P}(D_n \mid D_{n-1})$$
 (Product Rule 1)

• If we have events A_1 to A_n with non-empty intersection (i.e. $A_1 \cap A_2 \cap \cdots \cap A_n$), let $D_k = A_1 \cap A_2 \cap \cdots \cap A_k$, then $D_1 > D_2 > \cdots > D_n$. If we then write the product rule on the events D_n in terms of A_n , we get:

$$\boxed{\mathbb{P}(A_1 \cap \dots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2 \mid A_1)\mathbb{P}(A_3 \mid A_1 \cap A_2) \dots \mathbb{P}(A_n \mid A_1 \cap \dots)} \quad \text{(Product Rule 2)}$$

1.4 Lecture 4 - Total Probability

Given an event B, say C_1, C_2, \ldots, C_n (events) is a **partition** of B when:

- $B = C_1 \cup C_2 \cup \cdots \cup C_n$
- C's are all disjoint

If A_1, A_2, \ldots, A_n is a partition of Ω , then C_1, C_2, \ldots, C_n partitions B, where $C_k = B_k A_k$ for a < k < n.

From there we define the Total Probability Theorem:

$$\mathbb{P}(B) = \mathbb{P}(B \mid C_1)\mathbb{P}(C_1) + \mathbb{P}(B \mid C_2)\mathbb{P}(C_2) + \dots + \mathbb{P}(B \mid C_n)\mathbb{P}(C_n)$$
 (Total Probability Theorem)

1.5 Lecture 5 - Bayes Law & Independence

1.5.1 Bayes Law

Bayes' Rule is defined by mixing the defintion of Condition Probability, and the Total Probability Theorem.

Given Ω, \mathbb{P} , if A_1, A_2, \ldots, A_n are events that partition Ω , and have nonzero $\mathbb{P}(A)$, then for any event B,

$$\mathbb{P}(A_k \mid B) = \frac{\mathbb{P}(B \mid A_k) P(A_k)}{\mathbb{P}(B \mid A_1) \mathbb{P}(A_1) + \dots + \mathbb{P}(B \mid A_n)}$$
(Bayes' Law)

1.5.2 Indpendence

Given Ω, \mathbb{P} , any events A and B are **independent** when:

1.6 Lecture 6 - Conditional Dependence & Counting

1.6.1 Conditional Dependence

Given Ω and \mathbb{P} : say that events A and B are conditionally independent given C when:

1.6.2 Counting

Counting is the process of using the number of elements in the events to calculate probability. This technique mostly arises in situations where either:

• The sample space Ω has a finite number of equally likely outcomes. Then, for any event A,

$$\mathbb{P}(A) = \frac{\text{\# of elements of } A}{\text{\# of elements of } \Omega}$$

• An event A has a finite number of equally likely outcomes with probability p. Then for that event A:

$$\mathbb{P}(A) = p \cdot (\# \text{ of elements of } A)$$

1.7 Lecture 7 - Counting

Counting Principle: in a process with a sequence of stages 1, 2, ..., r with n_1 choices at stage 1 over to n_r at stage r; # of coutcomes is $n_1 n_2 ... n_k$.

Can be used to rederive (# subsets of Ω) = $2^{\#(elem)}$.

1.7.1 k-permutations of n objects

We are given n distinct objects and a number $k \leq n$, and we want to find out the number of ways we could take k distinct objects from the group of n objects and arrange them in a sequence. By using the Counting Principle, we can find that the **number of k-permutations** of this set is:

$$n(n-1)\dots(n-k+1) = \frac{n(n-1)\dots(n-k+1)(n-k)\dots 2\cdot 1}{(n-k)\dots 2\cdot 1}$$

$$= \frac{n!}{(n-k)!}$$
(K-permutations)

Special Case: If k = n, then the number of k-permutations of n objects is simply n!.

1.7.2 k-combinations of n objects

For finding the number of k-combinations, we can look back to our k-permutations and reason about them. Say we have the same setup as before but we are not arranging the items in a sequence. For each combination, we have k! "duplicate" permutations. Thus, we can look at the number permutations and reason that the number of k-combinations should be that over k!, making the **number of k-combinations** of this set is:

$$\boxed{\frac{n!}{k!(n-k)!} = \binom{n}{k}}$$
 (K-combinations)

1.8 Lecture 8 - Discrete Random Variables

1.8.1 Random Variables

Given Ω and \mathbb{P} , a **discrete random variable (r.v.)** is a real valued function with domain Ω that takes on only finite or countably infinite number of different values (i.e. $X : \Omega \to \mathbb{R}$).

1.8.2 Probability Mass Functions

Given Ω, \mathbb{P} , associated with any discrete rv $X : \Omega \to \mathbb{R}$ is X's **probability mass function (pmf)** - notation p_X .

$$\forall x \text{ of } X, p_X(x) = \mathbb{P}(A_X) \text{ where } A_X = \{s \in \Omega : X(s) = x\}$$
 (pmf Def)

Things to Note:

- $\mathbb{P}(A_X)$ can also be written as $\mathbb{P}(\{X=x\})$ or $\mathbb{P}(X=x)$.
- $p_X(x) \ge 0$ for all possible values of X.
- A pmf is essentially a probability law on the different values in the codomain of a random variable, so the same laws that apply to probability laws apply to pmfs:

$$p_X(x) \ge 0$$
 for every $x \in X$
$$\sum_{x \in X} p_X(x) = 1$$
 (normalization)

• If V is any finite or countably inf. set of possible values of X, then if we set $B = \{\text{the event } "X \in V" \}$, (i.e. $B = \{s \in \Omega : X(s) \in V\}$), then $\mathbb{P}(B) = \sum_{x \in V} p_X(x)$.

Note: for a given pmf, there are multiple Ω 's, \mathbb{P} 's, X's that lead to that PMF.

1.8.3 Common PMFs

• Discrete uniform pmf of interval $a \le k \le b, a, b \in \mathbb{N}$:

$$p_X(k) = \begin{cases} \frac{1}{b-a+1} & \text{when } a \le k \le b \\ 0 & \text{all over } k \end{cases}$$

• Let $p \in [0, 1]$; the **Bernoulli p pmf** be defined by:

$$p_X(k) = \begin{cases} p & \text{when } k = 1\\ 1 - p & \text{when } k = 0 \end{cases}$$

• Given positive integer n, some $p \in [0,1]$, the **Binomial(n,p) pmf** is defined as:

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k} \quad 0 \le k \le n$$

This pmf tends to show up in situations involving sequences of independent trials, such as coin flips. Useful if you are trying to find the probability of k heads in n coin flips.

• Given $p \in (0,1)$ the **geometric pmf** defined by:

$$p_X(k) = p(1-p)^{k-1}$$
 for all $1 \le k \le \infty$ positive integers

This pmf tends to show up in situations such as $\mathbb{P}(\text{it takes } k \text{ flips to flip a heads})$.

• Poisson(X):

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad 0 \le k \le \infty (k \in \mathbb{N})$$

1.9 Lecture 9 - Expectation, Variance

1.9.1 Function of a Random Variable

Given a random variable X and any function $g: \mathbb{R} \to \mathbb{R}$, can define another r.v. Y = g(x):

$$\forall s \in \Omega, Y(s) = q(X(s))$$

The function of a discrete r.v. is another discrete r.v.. Generally, it is non-trivial to get the pmf of Y = g(X), but it is sometimes easy. (See examples)

1.9.2 Expected Value

Given a discrete r.v. X with $p_X(x)$ pmf, we define the expected value (expectation):

$$\mathbb{E}(X) = \sum_{x \in X} x p_X(x)$$
 (Expected Value Definition)

Given X, Y = g(X), what is $\mathbb{E}(Y)$? One way is to figure out $p_Y(g)$ for all possible values of $y \in Y$ and then find it through:

$$\mathbb{E}(Y) = \sum_{y \in Y} y p_Y(y)$$

and get P_y through p_x , though that is generally a non-trivial solution. Another possible solution is to use the Expected Value Rule.

1.9.3 Expected Value Rule

Given $X, p_X, and Y = g(X)$,

$$\boxed{\mathbb{E}(Y) = \sum_{x \in X} g(X) p_X(x)}$$
 (Expected Value Rule)

Special Case: $Y = \alpha X + \beta$

$$\mathbb{E}(Y) = \sum_{x \in X} g(x) p_X(x)$$

$$= \sum_{x \in X} (\alpha x + \beta) p_X(x)$$

$$= \alpha \sum_{x \in X} x p_X(x) + \beta \sum_{x \in X} p_X(x)$$

$$= \alpha \mathbb{E}(X) + \beta$$

1.9.4 Variance

Given an rv X with pmf p_X , we define **Variance** to be:

$$Var(X) = \mathbb{E}((X - \mathbb{E}(X))^2)$$
 (Variance Def)

Off of this definition, we also define standard deviation to be $\sigma_X = \sqrt{Var(X)}$.

1.10 Lecture 10 - Expected Value and Variance Examples

2 Prelim 1 - Prelim 2

- 2.1 Lecture 11 Multiple Discrete RVs, Joint pmf's, Conditionals
- 2.2 Lecture 12 Conditional Probability for RV's, Conditional Expectation
- 2.3 Lecture 13 Conditional Expectation, Indpendence of RVs
- 2.4 Lecture 14 Independence of Random Variables
- 2.5 Lecture 15 "Randomness" of RVs
- 2.6 Lecture 16 Continuous Random Variables