Verifica delle ipotesi

Monday, 5 June 2023

13:27

(Sto rifacendo l'esercitazione siccome non avevo capito una beata minchia)

1) Si nota che il diametro di anelli è approssimatamente Normalmente distribuito Ed ha una deviazione standard $\sigma=0.001mm$

Dato un campione n = 15

E' nota $\bar{x} = 74.036mm$

a. Si testi che la media del diametro degli anelli = 74.035mm ad un livello di significa $\alpha=5\%=0.05$

E si calcoli il *pvalue*

Dobbiamo prima di tutto trovare

H0 = ipotesi nulla

Qui noi vogliamo che la media del diametro = 74.035

 H_0 : m = 74.035

H1 = ipotesi alternativa (inversa)

 $H_1: m \neq 74.035$

Leggendo dal formulario

H_0	H_1	Statistica	Regione critica		
$\mu = \mu_0$	$\mu \neq \mu_0$	$Z = \frac{\bar{X}_n - \mu_0}{\sigma} \sqrt{n}$	$\left \frac{\bar{x}_n - \mu_0}{\sigma} \sqrt{n} \right > z_{lpha/2}$		

$$\overline{RC = \left| \frac{\overline{x_n} - m_0}{o} \sqrt{\overline{n}} \right| > \underline{z_{\frac{\alpha}{2}}}}$$

$$n = 15 \rightarrow 15 \ anelli$$

$$\overline{x_n} = media = 74.036$$

$$\sigma = 0.001$$

$$\alpha = 5\% = 0.05$$

$$m = 74.035$$

Quindi abbiamo tutti i valori da sostituire (Yey!)

$$z_{\frac{\alpha}{2}} = z_{0.025}$$

Noi abbiamo una gaussiana tale che

$$\phi(z) = 1 - 0.025$$

Quindi

$$\phi(z) = 0.975$$

Nodiamo che è nell'incrocio tra 1.9 e 0.06

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406
$1.6 \\ 1.7$	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515
1.7	$0.9554 \\ 0.9641$	$0.9564 \\ 0.9649$	$0.9573 \\ 0.9656$	$0.9582 \\ 0.9664$	$0.9591 \\ 0.9671$	$0.9599 \\ 0.9678$	$0.9608 \\ 0.9686$
1.9	0.9641 0.9713	0.9649 0.9719	0.9656 0.9726	0.9664 0.9732	0.9671 0.9738	0.9678 0.9744	0.9680 0.9750
			0.9120	0.9132	0.9138	0.9144	0.9100
Z =	= 1.9	6					
Qu	indi						
ሐ(1 96`)=0	975				
			. , , ,				
Qu	indi s	se					
	_		ı				
$ ^{\lambda}$	ı ''	$\frac{\iota_0}{\sqrt{2}}$	1 \ 1	96			
		$\frac{n_0}{\sqrt{n}}\sqrt{n}$.50			
	U						
	/4.0	36 – 0.00	/4.0	35	/ 	ງ .	
=				*	√15I	> 1	.96
	l	0.00)1		. = -	_	
	•				•		
= -	=	$\sqrt{15}$	> 1.9	6 →	3.87	> 1.9	96
Qu	ındı e	è verc), e qı	undi	rifiute	o n_0 ($\cos \alpha$
Ou	esto	è un e	error	di n	rima	sneci	6
				•		Speci	C
•		re 1 :	-	_			
P(Erro	re 1 :	sneci	(e) =	rifiut	are h	o ans
• (_,, ,		Pect			J. C 11	U MAC

Ora dobbiamo calcolare pvalue = $\bar{\alpha}$

E cos'è il pvalue? Praticamente il valore massimo che lpha può avere per poter acc h_0

Il pvalue ci dice quanto i valori sono in contraddizione tra di loro.

$$\begin{aligned} \overline{\alpha} & \rightarrow \left| \frac{\overline{x_n} - m_0}{o} \sqrt{n} \right| = z_{\overline{\alpha}} \\ & 3.87 = z_{\overline{\alpha}} \\ & \overline{\alpha} = 2 \Big(1 - \phi(3.87) \Big) \\ & \text{(Formula da ricordare a memoria)} \\ & \text{Dobbiamo trovare} \\ & \phi(3.87) \simeq 0.0001 \\ & \overline{\alpha} = 0.0002 \end{aligned}$$

b. Assumendo $\alpha=5\%$ l'ipotesi che la media del diametro =74.035mm non veng rifiutata quando il vero valore della media =74.034

$$m = 74.034$$

Ora vogliamo trovare che non rifiuta

Formula che rifiuta:

$$\left| \frac{\overline{x_n} - m_0}{o} \sqrt{n} \right| > z_{\frac{\alpha}{2}}$$

Formula che non rifiuta:

$$\begin{aligned}
-z_{\frac{\alpha}{2}} &\leq \left| \frac{\overline{x_n} - m_0}{o} \sqrt{n} \right| \leq z_{\frac{\alpha}{2}} \\
P_{m=74.034} \left(-1.96 \leq \left| \frac{\overline{x_n} - 74.035}{0.001} \sqrt{15} \right| \leq 1.96 \right)
\end{aligned}$$

Noi qui stiamo cercando

La probabilità di non rifiutare h0 quando h0 è falsa = errore seconda specie

Noi dobbiamo ricondurre il tutto ad una gaussiana standard $N(74.034, (0.001)^2)$

Il problema nostro è questo: 74.035 dovrebbe essere 74.034

Per farlo dobbiamo sommare 0.001 sopra

Però per farlo dobbiamo sommare 0.001 sia a sinistra che a destra Quindi

$$\begin{split} &P_{m=74.034}\left(-1.96 + \frac{0.001}{0.001}\sqrt{15} \leq \frac{\overline{x_{15}} - 74.035 + 0.001}{0.001}\sqrt{15} \leq 1.96 + \frac{0.001}{0.001}\right) \\ &= P\left(1.91 \leq \frac{\overline{x_{15}} - 74.034}{0.001} \leq 5.83\right) \sim N(0, 1) \end{split}$$

Quindi ora possiamo applicare le nostre formule carine e coccolose $= \phi(5.83) - \phi(1.91) = 1 - 0.9719 \approx 0.03$

2) Dicono che la media è pari a 14 ore.

Su un campione di 10 batterie, questi casi:

18 17 14 16 15 12 13 15 17
--

a. Si può approvare con $\alpha = 5\%$

Per la ipotesi, a noi ci importa la media

 $h_0: m \le 14$

 h_1 : m > 14

Quindi controlliamo in maniera pessimista

$$RC = \frac{\overline{x_n} - m}{S_n} \sqrt{n} > t_{n-1,\alpha}$$

$$m = 14$$

$$n = 10$$

$$\alpha = 0.05$$

$$\overline{x_n} = \frac{1}{n} \sum x_i = \frac{1}{10} (18 + 17 + \dots) = 15$$

$$S_n^2 = \frac{1}{n-1} \sum (\overline{x_n} * x_i)^2 = \frac{1}{9} ((18 * 15)^2 + (17 - 15)^2 + \dots)) = 4$$

$$S_n = 2$$

$$t_{9,0.05} = 1.833$$

Quindi ora possiamo sostituire

$$\frac{15 - 14}{2}\sqrt{10} > ? 1.833 \rightarrow 1.58 > 1.833$$

Quindi accetto h_0 a livello di significavità 5%

Quindi statisticamente non è vero per forza che la media sarà 14

b. Calcolare $\bar{\alpha}$

$$\frac{\overline{x_n} - m}{S_n} \sqrt{n} = t_{n-1,\overline{\alpha}}$$

Noi sappiamo che

$$1.58 = t_{9,\bar{\alpha}}$$

Quindi dobbiamo usare la tavola ora all'inverso

Guardando la tavola notiamo che

$$0.05 < \bar{\alpha} < 0.10$$

3) Una azienda dice il 90% delle persone che soffrono vengono guarite. Dai test su 100 individui, 88 dichiarano che è stato efficace.

Supponiamo p la vera proporzione.

Noi dobbiamo mostrare che è vero

 $h_0: p \ge 0.9$

 h_1 : p < 0.9

Questo è un campione numeroso estratto da una popolazione bernoulliana (aka 1 con media e varianza incognita

$$np > 5 \rightarrow si$$

$$n(1-p) > 5 \rightarrow si$$

Quindi possiamo utilizzare la cosa di h_0 , h_1

$$p \ge p_0 \qquad p < p_0 \qquad Z = \frac{\bar{X}_n - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} \qquad \frac{\bar{x}_n - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} < -z_\alpha$$

$$\alpha=5\%=0.05$$

$$z_{\alpha} = z_{0.05}$$

E noi dobbiamo trovare quel valore tale per cui

$$\phi(x) = 1 - 0.05 = 0.95$$

$$x = 1.645$$

Quindi ora possiamo fare il test

$$\frac{\overline{x_n} - p}{\sqrt{p - (1 - p)}} \sqrt{n} <^? -1.645$$

$$\simeq -0.667 < -1.645 \rightarrow no$$
Quindi siccome non è minore
Accetto h_0

$$\bar{\alpha} > 0.05$$

$$\bar{\alpha} \rightarrow 0.667 = -z_{\bar{\alpha}} \rightarrow z_{\bar{\alpha}} = 0.667$$

$$\bar{\alpha} = 1 - \phi(0.667)$$

4) I dati seguenti mettono in relazione frequenza cardiaca di 12 individui prima e do masticato tabacco.

Individuo	Freq prima	Freq dopo
1	73	77
2	67	69
3	68	73
4	60	70
5	76	74
6	80	88
7	73	74
8	77	82
9	62	69
10	58	61
11	82	84
12	78	80

a. Verificare al livello 5% che masticare tabacco non aumenti la frequenza card (in h0 vera caso contrario)

 $h_0: m_d \le 0$
 $h_1: m_d \ge 0$

(affermazione forte)

$$m_d = m_x - m_y$$

 m_x = vera media dopo masticato tabacco

 $m_{\mathcal{Y}}=$ vera media prima masticato tabacco

$$RC = \frac{\overline{x_d}}{S_d} \sqrt{m_d} > t_{n-1,\alpha}$$

$$\overline{x_d} = \frac{1}{12} ((77 - 73) + (69 - 67) + (73 - 68) + \cdots) = 3.75$$

$$S_d^2 = \frac{1}{12 - 1} ((4 - 3.75)^2 + (2 - 3.75)^2 + \cdots) \simeq 9.477$$

$$S_d = \sqrt{S_d^2} \simeq 3.078$$

$$RC = \frac{3.75}{3.078} \sqrt{12} >^? t_{11,0.05}$$

$$\simeq 4.22 > 1.796$$

Quindi rifiuto h_0 al livello 5%

b. $\bar{\alpha}$ del test

Siccome l'abbiamo rifiutato sicuramente

$$\bar{\alpha} < \alpha$$

E per trovarlo

$$\frac{\overline{x_d}}{S_d} \sqrt{n} = t_{n-1,\overline{\alpha}} \to \overline{\alpha} = 0.0014$$

Quindi i dati sono in contraddizione significativa con h_0

$$\alpha = 95\% \rightarrow (-0.61, 0.78)$$

$$H_0: m = 1, H_1: m \neq 1$$

Da notare che m=1

E nel nostro intercallo non abbiamo m=1

Quindi rifiutiamo al tesi

E quindi α è l'opposto

$$\alpha = 0.05 \rightarrow \alpha < 0.05$$

6)
$$n = 25$$

$$Primi = 86.1$$

$$Secondi = 92.2$$

$$\sigma_1 = 2.09$$

$$\sigma_2 = 2.49$$

a.
$$S_P^2 = \frac{(n_x - 1)S_x^2 + (n_y - 1)S_y^2}{n_x + n_y - 2} = \frac{24 * 2.09^2 + 24 * 2.49^2}{50 - 2} = 5.28$$

b.
$$\alpha = 5\%$$

$$\alpha = 1\%$$

$$H_0$$
: $m_x = m_y$

$$H_1: m_x \neq m_y$$

$$\left| \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}} \right| > t_{n_x + n_y - 2, \frac{\alpha}{2}}$$

$$|86.1 - 92.2|$$

$$\left| \frac{86.1 - 92.2}{5.28 \sqrt{2}} \right| > t_{48,\frac{\alpha}{2}}$$

$$\begin{array}{l} | & 5.25 \\ t_{48,0.025} = 2.011 \\ \left| \frac{-6.1}{1.49} \right| \\ 4.09 > 2.01 \\ \text{Rifiuto } h_0 \\ 4.09 > t_{48,0.005} = 4.09 > 2.682 \\ \text{Rifiuto } h_0 \end{array}$$

- 7) H_0 : $lol = lo_0$ Viene rifiutato a livello $\alpha = 3\%$ Ed allora il p-value sarà più grande Quindi il p-value del test è minore di 0.03 Alpha > pvalue = rifiuto Alpha < pvalue = accetto
- 8) $N(m, \sigma^2)$ $H_0: m < 5$ $H_1: m \ge 5$ $\bar{\alpha} = 0.06$

Più α è grande, e più l'intervallo di confidenza si restringe Più α è piccolo, e più l'intervallo di confidenza è largo Noi dobbiamo scegliere un alpha che include $\bar{\alpha}$ Siccome stiamo lavorando sui sottoinsiemi Quindi $\alpha=5\%$

9)
$$\sigma = 0.5$$

 $n = 100$
 $\bar{x}_n = 15.1$
a. Media intervallo $\alpha = 1 - 0.9 = 0.10$

$$\left(\bar{x}_n \pm z_{\frac{\alpha}{2}} * \frac{\sigma}{\sqrt{n}}\right)$$

$$\phi(z_{1-0.05}) = \phi(z_{0.95}) = 1.645$$

$$\left(15.1 \pm 1.645 * \frac{0.5}{10}\right) = (15.017, 15.182)$$
b. $h_0: m = 15$
 $h_1: m \neq 15$

c.
$$\left| \frac{\overline{x_n} - m}{\sigma} \sqrt{n} \right| > z_{\frac{\alpha}{2}}$$
 $\left| \frac{15.1 - 15}{0.5} * 10 \right| > 1.645$
 $2 > 1.645$

Quindi il contenuto dei sacchi è diverso da 15kg

d.
$$\phi(2) = 1 - \frac{\bar{\alpha}}{2}$$

 $(\phi(2) - 1) * 2) = -\alpha^{-}$
 $-(0.9772 - 1) * 2 = \bar{\alpha}$
... = ... = 0.0456

10)
$$\sigma^2 = 16 \rightarrow \sigma = 4$$

 $n = 15$
 $\bar{x} = 31.33$

a.
$$\alpha = 0.05$$

$$z_{0.025} = \phi(z_{1-0.025)=\phi(0.975)} = 1.96$$

$$\left(31.33 \pm 1.96 * \frac{4}{\sqrt{15}}\right) = 31.33 \pm 2.024 = (29.306, 33.354)$$

b.
$$h_0: m = 32$$

 $h_1: m \neq 32$
 $\left| \frac{\bar{x}_n - m}{\sigma} \sqrt{n} \right| > z_{\frac{\alpha}{2}}$
 $\left| \frac{31.33 - 32}{4} \sqrt{15} \right| > 1.96$
 $0.64 > 1.96$

Accetto h_0

Notare che questo sarebbe stato possibile farlo senza calcoli Guardare l'intervallo di confidenza

$$\alpha = 1\%$$
 si accetta sicuramente

c. N affinchè ampiezza inferiore 1cm

$$1.96 * \frac{4}{\sqrt{n}} = 0.5$$
$$\left(\frac{1.96 * 4}{0.5}\right)^2 = n = 245.86$$
$$n \ge 245.86$$

11) N=70
$$P = \frac{37}{70}$$

Sappiamo che è bernulliana siccome o sei miopa oppure no

a.
$$\left(\overline{x_n} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\overline{x_n}(1-\overline{x_n})}{n}}\right)$$

$$\frac{37}{70} \pm 1.96 \sqrt{\frac{70}{70} \left(1 - \frac{37}{70}\right)} = \frac{37}{70} \pm 0.11 = (0.4116, 0.6455)$$

$$\alpha = 0.05$$

$$\phi_{\left(\frac{z}{1} - \frac{0.05}{2}\right)} = 1.96$$

b. Sappaimo che $\bar{x} = \frac{45}{100}$ E' più diffuso per $\alpha = .05$ h_0 : p = 0.45 h_1 : $p \neq 0.45$

$$\left| \frac{\bar{x}_n - p_0}{\sqrt{p_0 (1 - p_0)}} \sqrt{n} \right| > z_{\frac{\alpha}{2}}$$

$$\left| \frac{\frac{37}{70} - \frac{45}{100}}{\sqrt{\frac{45}{100} * \frac{55}{100}}} \sqrt{70} \right| > 1.96$$

$$1.19 > 1.96$$

Falso quindi accetto h_0 Quindi non posso concludere

c. F
$$\frac{196}{100} \sqrt{\frac{\frac{37}{70} \left(1 - \frac{37}{70}\right)}{n}} = \frac{2}{100}$$

$$\sqrt{\frac{\frac{37}{70} \left(1 - \frac{37}{70}\right)}{n}} = \frac{2}{196}$$

$$\frac{\frac{37}{70} \left(1 - \frac{37}{70}\right)}{n} = \left(\frac{2}{196}\right)^{2}$$

$$\left(\frac{196}{2}\right)^{2} * \left(\frac{37}{70}\right) \left(\frac{33}{70}\right) = n$$

$$n = 2393$$

12)
$$\bar{x} = ?$$
 $\sigma^2 = 0.0256$
 $n = 25$
 $\bar{x}_n = 0.68$

a. Costruire livello confidenza

$$\overline{x_n} \pm z_{\frac{\alpha}{2}} * \frac{\sigma}{\sqrt{n}}$$

$$0.68 \pm 1.96 * \frac{\sqrt{0.0256}}{\sqrt{25}} = (0.917, 1.04)$$

- b. 1 è dentro l'intervallo, quindi accetto h_0
- c. Hai rotto i coglioni

13) Regressione lineare FINALMENTE

X	Y	<i>X</i> ²	<i>Y</i> ²	XY
7	25	49	625	175
17	0	289	0	0
8	11	64	121	88
36	-26	1296	676	936
23	-2	529	4	46
19	-18	361	324	342
17	8	289	64	136
2	26	4	676	52
5	35	25	1225	105

$$n = 9$$

$$\bar{x} = 14.89$$

$$\bar{v} = 6.56$$

$$y = \alpha + \beta \bar{x}$$

$$\alpha = \bar{y} - \beta x$$

$$\beta = \frac{S_{xy}}{S_{xx}}$$

$$S_{xx} = \sum x_i^2 - n\bar{x}^2 = 2906 - 9 * 14.89^2 = 910$$

$$S_{xy} = \sum x_i y_i - n \bar{x} \bar{y} = 1000.89 \rightarrow errore = -1576.44$$

$$\beta = 1.09 \rightarrow erore \rightarrow -1.73$$

$$\alpha = 14.89 - 1.09 * 14.89 = -0.8 \rightarrow errore \rightarrow 32.32$$

$$S_{yy} = \sum y_i^2 - n\bar{y}^2 = 3327.7$$

$$S_{rr} = \frac{S_{xx}S_{yy} - S_{xy}^2}{S_{xx}} = 596.05$$

(Ho sbagliato qualche calcolo)

$$R^2 = 1 - \frac{SS_r}{S_{yy}} = 0.82$$

Quindi ora posso rispondere alla domande della prof

Y = 32.32 - 1.73xAppare adeguato siccome SS_r è sopra a 0.7