CSE 5367 – 001 Pattern Recognition

Final Project - Hate Speech Detection

Keerthi Patnaik (1002069181)

Preethi Subramanian (1002059233)

```
In [1]: ! pip install textstat
        ! pip install wordcloud
        ! pip install -U gensim
        Requirement already satisfied: textstat in /Users/Keerthi/anaconda3/li
        b/python3.10/site-packages (0.7.3)
        Requirement already satisfied: pyphen in /Users/Keerthi/anaconda3/lib/p
        ython3.10/site-packages (from textstat) (0.14.0)
        Requirement already satisfied: wordcloud in /Users/Keerthi/anaconda3/li
        b/python3.10/site-packages (1.9.3)
        Requirement already satisfied: numpy>=1.6.1 in /Users/Keerthi/anaconda
        3/lib/python3.10/site-packages (from wordcloud) (1.23.5)
        Requirement already satisfied: pillow in /Users/Keerthi/anaconda3/lib/p
        ython3.10/site-packages (from wordcloud) (9.4.0)
        Requirement already satisfied: matplotlib in /Users/Keerthi/anaconda3/l
        ib/python3.10/site-packages (from wordcloud) (3.7.0)
        Requirement already satisfied: cycler>=0.10 in /Users/Keerthi/anaconda
        3/lib/python3.10/site-packages (from matplotlib->wordcloud) (0.11.0)
        Requirement already satisfied: pyparsing>=2.3.1 in /Users/Keerthi/anaco
        nda3/lib/python3.10/site-packages (from matplotlib->wordcloud) (3.0.9)
        Requirement already satisfied: kiwisolver>=1.0.1 in /Users/Keerthi/anac
        onda3/lib/python3.10/site-packages (from matplotlib->wordcloud) (1.4.4)
        Requirement already satisfied: fonttools>=4.22.0 in /Users/Keerthi/anac
        onda3/lib/python3.10/site-packages (from matplotlib->wordcloud) (4.25.
```

Requirement already satisfied: contourpy>=1.0.1 in /Users/Keerthi/anaco nda3/lib/python3.10/site-packages (from matplotlib->wordcloud) (1.0.5) Requirement already satisfied: python-dateutil>=2.7 in /Users/Keerthi/a naconda3/lib/python3.10/site-packages (from matplotlib->wordcloud) (2.8.2)

Requirement already satisfied: packaging>=20.0 in /Users/Keerthi/anacon da3/lib/python3.10/site-packages (from matplotlib->wordcloud) (22.0) Requirement already satisfied: six>=1.5 in /Users/Keerthi/anaconda3/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib->wordcloud) (1.16.0)

Requirement already satisfied: gensim in /Users/Keerthi/anaconda3/lib/python3.10/site-packages (4.3.2)

Requirement already satisfied: scipy>=1.7.0 in /Users/Keerthi/anaconda 3/lib/python3.10/site-packages (from gensim) (1.10.0)

Requirement already satisfied: numpy>=1.18.5 in /Users/Keerthi/anaconda 3/lib/python3.10/site-packages (from gensim) (1.23.5)

Requirement already satisfied: smart-open>=1.8.1 in /Users/Keerthi/anac onda3/lib/python3.10/site-packages (from gensim) (5.2.1)

```
In [2]: import re
        import numpy as np
        import pandas as pd
        import seaborn as sns
        import scipy
        from gensim.models.doc2vec import Doc2Vec, TaggedDocument
        from gensim.models.word2vec import Word2Vec
        import nltk
        from nltk.sentiment.vader import SentimentIntensityAnalyzer
        from nltk.stem.porter import PorterStemmer
        from sklearn.ensemble import AdaBoostClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.feature extraction.text import TfidfVectorizer
        from sklearn.linear_model import LogisticRegression
        from sklearn.metrics import accuracy score
        from sklearn.metrics import classification report, confusion matrix
        from sklearn.model_selection import train_test_split
        from sklearn.naive bayes import GaussianNB
        from sklearn.svm import LinearSVC
        from sklearn.tree import DecisionTreeClassifier
        from textstat.textstat import textstat
        import warnings
        warnings.simplefilter(action='ignore', category=FutureWarning)
        warnings.filterwarnings("ignore")
        import matplotlib.pyplot as plt
        plt.style.use('seaborn-deep')
        %matplotlib inline
```

In [3]: dataset = pd.read_csv("HateSpeechData.csv")
 dataset

Out[3]:

	Unnamed: 0	count	hate_speech	offensive_language	neither	class	tweet
0	0	3	0	0	3	2	!!! RT @mayasolovely: As a woman you shouldn't
1	1	3	0	3	0	1	!!!!! RT @mleew17: boy dats coldtyga dwn ba
2	2	3	0	3	0	1	!!!!!!! RT @UrKindOfBrand Dawg!!!! RT @80sbaby
3	3	3	0	2	1	1	!!!!!!!!! RT @C_G_Anderson: @viva_based she lo
4	4	6	0	6	0	1	!!!!!!!!!!!!! RT @ShenikaRoberts: The shit you
24778	25291	3	0	2	1	1	you's a muthaf***in lie "@LifeAsKing: @2
24779	25292	3	0	1	2	2	you've gone and broke the wrong heart baby, an
24780	25294	3	0	3	0	1	young buck wanna eat!! dat nigguh like I ain
24781	25295	6	0	6	0	1	youu got wild bitches tellin you lies
24782	25296	3	0	0	3	2	~~Ruffled Ntac Eileen Dahlia - Beautiful col

24783 rows × 7 columns

```
In [4]: def class_to_name(cls):
    if cls == 0:
        return "hate speech"

if cls == 1:
        return "offensive language"

    return "neither"

# Adding text length and class name as a field in the dataset dataset["text length"] = dataset["tweet"].apply(len) dataset["class_name"] = dataset["class"].apply(class_to_name)

dataset.head()
```

Out[4]:

	Unnamed: 0	count	hate_speech	offensive_language	neither	class	tweet	text length	cl
0	0	3	0	0	3	2	!!! RT @mayasolovely: As a woman you shouldn't	140	
1	1	3	0	3	0	1	!!!!! RT @mleew17: boy dats coldtyga dwn ba	85	
2	2	3	0	3	0	1	!!!!!!! RT @UrKindOfBrand Dawg!!!! RT @80sbaby	120	
3	3	3	0	2	1	1	!!!!!!!!! RT @C_G_Anderson: @viva_based she lo	62	
4	4	6	0	6	0	1	!!!!!!!!!!!!! RT @ShenikaRoberts: The shit you	137	

```
In [5]: # Visualizing the dataset using a histogram of text length for each class
graph = sns.FacetGrid(
    data=dataset,
    col="class_name",
    xlim=[0, 300],
    height=4,
    col_order=["hate speech", "offensive language", "neither"],
)
graph.map(sns.histplot, "text length", bins=50)
```

Out[5]: <seaborn.axisgrid.FacetGrid at 0x134ae1030>

The distribution of text length appears similar for all three classes. However, the number of offensive tweets is significantly higher.

```
In [6]: sns.boxplot(
    x="class_name",
    y="text length",
    data=dataset,
    order=["hate speech", "offensive language", "neither"],
)
```

Out[6]: <Axes: xlabel='class_name', ylabel='text length'>

Upon examining the plot, it appears that tweets containing offensive language have longer text length.

Out[7]: <Axes: >

The above histogram shows that most of the tweets are considered to be offensive.

Preprocessing the dataset

```
In [9]: |# Download necessary NLTK resources
        nltk.download("stopwords")
         # Set stopwords
         stopwords = nltk.corpus.stopwords.words("english")
         # extending the stopwords to include other words used in twitter such as
         stopwords.extend(["#ff", "ff", "rt"])
         stemmer = PorterStemmer()
         def preprocess(tweet):
             # Define patterns to remove URLs, mentions, non-letters, and numbers
             url pattern = re.compile(r"http[s]?://\S+")
             mention pattern = re.compile(r"@\w+")
             non letter pattern = re.compile(r"[^a-zA-Z\s]")
             number pattern = re.compile(r'' \setminus d + (\setminus \cdot \setminus d +)?'')
             # Remove @mentions, URLs, non-letters, and numbers; convert to lower
             processed tweets = (
                 tweet.str.replace(url_pattern, "", regex=True)
                 .str.replace(mention_pattern, "", regex=True)
.str.replace(non_letter_pattern, " ", regex=True)
                 .str.replace(number_pattern, "numbr", regex=True)
                 .str.lower()
                 .str.strip()
                 .str.split()
             )
             # Remove stopwords and apply stemming
             processed_tweets = processed_tweets.apply(
                 lambda tokens: " ".join(
                      stemmer.stem(token) for token in tokens if token not in stop
                 )
             )
             return processed_tweets
         processed_tweets = preprocess(tweet)
         dataset["processed_tweets"] = processed_tweets
         dataset[["tweet", "processed_tweets"]].head(10)
         [nltk_data] Downloading package stopwords to
                          /Users/Keerthi/nltk data...
         [nltk data]
         [nltk data]
                       Package stopwords is already up-to-date!
```

tweet

processed_tweets

Out [9]:

!!! RT @mayasolovely: As a woman you shouldn't... woman complain clean hous amp man alway take t... !!!!! RT @mleew17: boy dats cold...tyga dwn ba... boy dat cold tyga dwn bad cuffin dat hoe st place 1 dawg ever fuck bitch start cri confus shit 2 !!!!!!! RT @UrKindOfBrand Dawg!!!! RT @80sbaby... !!!!!!!!! RT @C_G_Anderson: @viva_based she lo... look like tranni 3 !!!!!!!!!!! RT @ShenikaRoberts: The shit you... shit hear might true might faker bitch told ya 4 5 !!!!!!!!!!!"@T_Madison_x: The shit just... shit blow claim faith somebodi still fuck hoe !!!!!!"@__BrighterDays: I can not just sit up ... sit hate anoth bitch got much shit go 6 7 !!!!"@selfiequeenbri: cause I'm tired of... caus tire big bitch come us skinni girl 8 " & amp; you might not get ya bitch back & amp; ... amp might get ya bitch back amp that " @rhythmixx_ :hobbies include: fighting Maria... hobbi includ fight mariam bitch 9

```
In [10]: # Train a logistic regression model on the provided training data
         # and evaluates its performance on the test data.
         def logistic_regression_evaluation(X_train, X_test, y_train, y_test):
             lg_model = LogisticRegression()
             lg_model.fit(X_train, y_train)
             y_pred = lg_model.predict(X_test)
             report = classification_report(y_test, y_pred)
             accuracy = accuracy_score(y_test, y_pred)
             return y_pred, report, accuracy
         # Train a random forest model on the provided training data
         # and evaluates its performance on the test data.
         def random_forest_evaluation(X_train, X_test, y_train, y_test):
             random_forest_model = RandomForestClassifier()
             random forest model.fit(X train, y train)
             y_pred = random_forest_model.predict(X_test)
             report = classification_report(y_test, y_pred)
             accuracy = accuracy_score(y_test, y_pred)
             return y_pred, report, accuracy
         # Train a Gaussian Naive Bayes model on the provided training data
         # and evaluates its performance on the test data.
         def gaussian_nb_evaluation(X_train, X_test, y_train, y_test):
             gaussian_nb_model = GaussianNB()
             if type(X_train) == scipy.sparse._csr.csr_matrix:
                 X_train = X_train.toarray()
                 X test = X test.toarray()
             gaussian_nb_model.fit(X_train, y_train)
             y_pred = gaussian_nb_model.predict(X_test)
             report = classification_report(y_test, y_pred)
             accuracy = accuracy score(y test, y pred)
             return y_pred, report, accuracy
         # Train a linear SVC model on the provided training data
         # and evaluates its performance on the test data.
         def linear svc evaluation(X train, X test, y train, y test):
             linear_svc_model = LinearSVC(random_state=20)
             linear_svc_model.fit(X_train, y_train)
             y_pred = linear_svc_model.predict(X_test)
             report = classification_report(y_test, y_pred)
             accuracy = accuracy_score(y_test, y_pred)
```

```
return y pred, report, accuracy
# Train an AdaBoost model on the provided training data
# and evaluates its performance on the test data.
def adaboost_evaluation(X_train, X_test, y_train, y_test):
    adaboost model = AdaBoostClassifier(
        base estimator=DecisionTreeClassifier(max depth=1),
       n_estimators=100,
        learning_rate=1.0,
        random state=42,
    )
    adaboost model.fit(X train, y train)
    y_pred = adaboost_model.predict(X_test)
    report = classification_report(y_test, y_pred)
    accuracy = accuracy_score(y_test, y_pred)
    return y pred, report, accuracy
# Evaluate the performance of the models on the provided dataset
def evaluate_models(X_train, X_test, y_train, y_test):
    _, lr_report, lr_accuracy = logistic_regression_evaluation(
       X_train, X_test, y_train, y_test
    )
    _, rf_report, rf_accuracy = random_forest_evaluation(
      X_train, X_test, y_train, y_test
    _, gnb_report, gnb_accuracy = gaussian_nb_evaluation(
       X_train, X_test, y_train, y_test
    _, lsvc_report, lsvc_accuracy = linear_svc_evaluation(
       X_train, X_test, y_train, y_test
    _, ada_report, ada_accuracy = adaboost_evaluation(X_train, X_test, y
    print("\nLogistic Regression")
    print(lr_report)
    print("Accuracy Score:", lr_accuracy)
    print("-----
    print("\nRandom Forest")
    print(rf report)
    print("Accuracy Score:", rf_accuracy)
    print("-----
    print("\nNaive Bayes")
    print(gnb_report)
    print("Accuracy Score:", gnb_accuracy)
    print("\nLinear SVC")
    print(lsvc report)
   print("Accuracy Score:", lsvc_accuracy)
```

```
print("\nAdaBoost")
    print(ada_report)
    print("Accuracy Score:", ada_accuracy)
    accuracies = [lr accuracy, rf accuracy, gnb accuracy, lsvc accuracy,
    return accuracies
# Plot the evaluation report for the models
def plot_evaluation_report(accuracies, title="Model Accuracies"):
    models = [
        "Logistic Regression",
        "Random Forest",
        "Gaussian NB",
        "Linear SVC",
        "AdaBoost",
    ]
    plt.figure(figsize=(10, 5))
    plt.bar(models, accuracies)
    plt.ylabel("Accuracy")
    plt.title(title)
    plt.show()
```

Using TFIDF to train multiple models without extra features

```
In [12]: X = text_features
y = dataset["class"].astype(int)

X_train_tfidf, X_test_tfidf, y_train, y_test = train_test_split(
          X, y, random_state=42, test_size=0.2
)
```

In [13]: tfidf_accuracies = evaluate_models(X_train_tfidf, X_test_tfidf, y_train,

Logistic Regr	ression				
	precision	recall	f1-score	support	
0	0.56	0.18	0.27	290	
1 2	0.92 0.85	0.96 0.84	0.94 0.85	3832 835	
accuracy macro avg	0.77	0.66	0.90 0.68	4957 4957	
weighted avg	0.88	0.90	0.88	4957	
Accuracy Scor	re: 0.8977203	3954004438			
Random Forest	_				
Nandom 101C3	precision	recall	f1-score	support	
0	0.54	0.18	0.27	290	
1	0.93	0.96	0.94	3832	
2	0.83	0.92	0.87	835	
accuracy	0 77	0.60	0.91	4957	
macro avg weighted avg	0.77 0.89	0.69 0.91	0.70 0.89	4957 4957	
Accuracy Scor					
Naive Bayes					
•	precision	recall	f1-score	support	
0	0.10	0.39	0.16	290	
1	0.89	0.68	0.77	3832	
2	0.54	0.58	0.56	835	
accuracy			0.65		
macro avg weighted avg	0.51 0.79			4957 4957	
				1337	
Accuracy Scor	e: 0.6491829 	9735727255 			
Linear SVC					
LINCOI JVC	precision	recall	f1-score	support	
0	0.46	0.26	0.33	290	
1	0.92	0.95	0.94	3832	
2	0.83	0.85	0.84	835	
accuracy			0.89		
macro avg	0.74	0.69			
weighted avg	0.88	0.89	0.89	4957	
Accuracy Scor	re: 0.8926770)223925762 			

AdaBoost		precision	recall	f1-score	support
	0 1 2	0.42 0.94 0.80	0.16 0.95 0.94	0.23 0.94 0.87	290 3832 835
accurac macro av weighted av	g'	0.72 0.89	0.68 0.90	0.90 0.68 0.89	4957 4957 4957

Accuracy Score: 0.9005446842848497

In [14]: plot_evaluation_report(tfidf_accuracies, "TF-IDF Vectorizer Model Accura

Using polarity scores as features from Sentiment Analysis

```
In [15]: # Download the VADER lexicon for sentiment analysis
         nltk.download("vader lexicon")
         # Initialize the sentiment intensity analyzer
         sentiment analyzer = SentimentIntensityAnalyzer()
         def count tags(text):
             # Patterns for matching spaces, URLs, mentions, and hashtags
             space_pattern = r"\s+"
             url pattern = r"http[s]?://\S+"
             mention pattern = r''@[\w\-]+"
             hashtag pattern = r''\#[\w\-]+''
             # Replace matches with placeholders
             text = re.sub(space_pattern, " ", text)
             text = re.sub(url_pattern, "URLHERE", text)
             text = re.sub(mention_pattern, "MENTIONHERE", text)
             text = re.sub(hashtag_pattern, "HASHTAGHERE", text)
             # Count occurrences of each placeholder
             return (
                 text.count("URLHERE"),
                 text.count("MENTIONHERE"),
                 text.count("HASHTAGHERE"),
             )
         def sentiment_analysis(tweet):
             sentiment = sentiment analyzer.polarity scores(tweet)
             twitter_objs = count_tags(tweet)
             features = [
                 sentiment["neg"],
                 sentiment["pos"],
                 sentiment["neu"],
                 sentiment["compound"],
                 *twitter objs, # Unpack the tag counts directly into the list
             1
             return features
         def sentiment analysis features(tweets):
             return np.array([sentiment analysis(tweet) for tweet in tweets])
         sentiment features = sentiment analysis features(tweet)
         # Create a DataFrame from the numpy array of features
         new features = pd.DataFrame(
             sentiment features,
             columns=["Neg", "Pos", "Neu", "Compound", "url_tag", "mention_tag",
         new_features
```

[nltk_data] Downloading package vader_lexicon to
[nltk_data] /Users/Keerthi/nltk_data...
[nltk_data] Package vader_lexicon is already up-to-date!

Out[15]:

	Neg	Pos	Neu	Compound	url_tag	mention_tag	hash_tag
0	0.000	0.120	0.880	0.4563	0.0	1.0	0.0
1	0.237	0.000	0.763	-0.6876	0.0	1.0	0.0
2	0.538	0.000	0.462	-0.9550	0.0	2.0	0.0
3	0.000	0.344	0.656	0.5673	0.0	2.0	0.0
4	0.249	0.081	0.669	-0.7762	0.0	1.0	1.0
24778	0.000	0.000	1.000	0.0000	0.0	3.0	3.0
24779	0.454	0.000	0.546	-0.8074	0.0	0.0	0.0
24780	0.000	0.219	0.781	0.4738	0.0	0.0	0.0
24781	0.573	0.000	0.427	-0.7717	0.0	0.0	0.0
24782	0.000	0.218	0.782	0.5994	1.0	0.0	0.0

24783 rows × 7 columns

Using TFIDF and sentiment features to train multiple models

```
In [16]: tfidf_sentiment_features = np.concatenate([tfidf_array, sentiment_feature
    X = pd.DataFrame(tfidf_sentiment_features)

X_train_sa, X_test_sa, y_train, y_test = train_test_split(
    X, y, random_state=42, test_size=0.2
)
```

In [17]: sa_accuracies = evaluate_models(X_train_sa, X_test_sa, y_train, y_test)

Logistic Regr					
	precision	recall	f1-score	support	
0	0.59	0.18	0.28	290	
1 2	0.92 0.85	0.96 0.84	0.94 0.84	3832 835	
accuracy macro avg	0.78	0.66	0.90 0.69	4957 4957	
weighted avg	0.89	0.90	0.88	4957	
Accuracy Scor	re: 0.8983256	00161388			
Random Forest					
random rores	precision	recall	f1-score	support	
0	0.51	0.14	0.22	290	
1 2	0.91 0.84	0.96 0.84	0.94 0.84	3832 835	
_	010.	0.01			
accuracy macro avg	0.75	0.65	0.89 0.66	4957 4957	
weighted avg	0.88	0.89	0.88	4957	
Accuracy Scor	re: 0.8936856	969941497			
Naive Bayes					
Natve Bayes	precision	recall	f1-score	support	
0	0.10	0.39	0.16	290	
1 2	0.89 0.54	0.68 0.59	0.77 0.56	3832 835	
		0.00			
accuracy macro avg	0.51	0.55	0.65 0.50		
weighted avg					
Accuracy Scor	e: 0.6501916	48174299			
Linear SVC					
	precision	recall	f1-score	support	
0	0.45	0.26	0.33	290	
1	0.92		0.94	3832	
2	0.83	0.85	0.84	835	
accuracy	<u> </u>		0.89		
macro avg weighted avg	0.73 0.88	0.69 0.89	0.70 0.88		
				.557	
Accuracy Scor	A OO16602	//フフロ1ねねつに			

AdaBoost	precision	recall	f1-score	support
0 1 2	0.44 0.93 0.81	0.14 0.95 0.92	0.21 0.94 0.86	290 3832 835
accuracy macro avg weighted avg	0.73 0.88	0.67 0.90	0.90 0.67 0.89	4957 4957 4957

Accuracy Score: 0.9001412144442204

In [18]: plot_evaluation_report(sa_accuracies, "TF-IDF with Sentiment Analysis Mod

Doc2Vec Vector Columns

```
In [19]: # Prepare the data for Doc2Vec model
         # Each tweet is tokenized and tagged with its index in the dataset
         tagged documents = [
             TaggedDocument(words=tweet.split(" "), tags=[index])
             for index, tweet in enumerate(dataset["processed tweets"])
         1
         doc2vec_model = Doc2Vec(
             documents=tagged_documents, vector_size=5, window=2, min_count=1, wo
         )
         # Transform tweets into their vector representation using the trained Do\epsilon
         def tweet_to_vector(tweet):
             return doc2vec model.infer vector(tweet.split(" "))
         # Transform each tweet in the 'processed_tweets' column to a vector, and
         doc_vectors = dataset["processed_tweets"].apply(tweet_to_vector).apply(period)
         # Rename columns to 'doc2vec_vector_X' where X is the column index
         doc_vectors.columns = ["doc2vec_vector_" + str(i) for i in doc_vectors.columns
         doc vectors
```

Out[19]:

	doc2vec_vector_0	doc2vec_vector_1	doc2vec_vector_2	doc2vec_vector_3	doc2vec_vector_
0	0.087699	-0.012394	-0.136874	-0.107608	0.10218
1	0.154739	0.083603	0.120069	0.126898	-0.04211
2	-0.019824	0.023394	0.058932	-0.113951	-0.01952
3	0.068563	0.050330	0.066745	-0.024027	0.07325
4	0.046394	-0.007000	0.124255	-0.158435	-0.08697
24778	0.142136	0.019422	0.288841	-0.183006	0.17402
24779	0.097965	0.149767	-0.098101	-0.168777	-0.10662
24780	-0.089103	0.219651	-0.053201	-0.009310	-0.27927
24781	0.095359	0.099429	0.092663	-0.114187	-0.14921
24782	0.281260	-0.010077	0.744882	-0.221786	0.10107

24783 rows × 5 columns

Using TFIDF with sentiment features and doc2vec to train multiple models

In [21]: d2v_accuracies = evaluate_models(X_train_d2v, X_test_d2v, y_train, y_test_d2v, y_t

Logistic Regr	ression				
	precision	recall	f1-score	support	
0	0.60	0.18	0.28	290	
1 2	0.92 0.85	0.97 0.85	0.94 0.85	3832 835	
2	0.05	0.03		033	
accuracy	0.79	0.67	0.90 0.69	4957 4957	
macro avg weighted avg	0.79 0.89	0.07	0.89	4957 4957	
Accuracy Scor	re: 0.9001412	2144442204			
Random Forest	- -				
	precision	recall	f1-score	support	
0	0.50	0.07	0.12	290	
1	0.90	0.97	0.94	3832	
2	0.86	0.79	0.82	835	
accuracy			0.89	4957	
macro avg	0.75				
weighted avg	0.87	0.89	0.87	4957	
Accuracy Scor	e: 0.8898527	7335081703 			
Naive Bayes					
Naive bayes	precision	recall	f1-score	support	
0	0.10	0.39	0.16	290	
1	0.89	0.68	0.77	3832	
2	0.54	0.59	0.56	835	
accuracy			0.65		
	0.51			4957	
weighted avg	0.79	0.65	0.70	4957	
Accuracy Scor	e: 0.6501916	648174299 			
Linear SVC					
ETHEAT SVC	precision	recall	f1-score	support	
a	0.45	0.26	a 22	200	
0 1	0.45 0.92				
2	0.83	0.85			
accuracy			0.89	4957	
macro avg	0.74	0.69		4957	
weighted avg	0.88	0.89	0.89	4957	
Accuracy Scor	re: 0.8926770	223925762			

AdaBoost	precision	recall	f1-score	support
0 1 2	0.40 0.93 0.82	0.18 0.95 0.91	0.25 0.94 0.86	290 3832 835
accuracy macro avg weighted avg	0.72 0.88	0.68 0.90	0.90 0.68 0.89	4957 4957 4957

Accuracy Score: 0.8967117207988703

```
In [23]: # Calculate readability features for a given tweet
         def calculate readability features(tweet):
             # Count the number of syllables in the text
             syllable_count = textstat.syllable_count(tweet)
             # Count the total number of characters excluding spaces
             character count excluding spaces = sum(len(word) for word in tweet)
             # Count the total number of characters including spaces
             character count including spaces = len(tweet)
             # Count the number of words
             word count = len(tweet.split())
             # Calculate the average number of syllables per word
             average syllables per word = round(
                 (syllable_count + 0.001) / (word_count + 0.001), 4
             # Count the number of unique words
             unique_word_count = len(set(tweet.split()))
             # Calculate the Flesch-Kincaid Readability Score
             flesch_kincaid_readability = round(
                 0.39 * word_count + 11.8 * average_syllables_per_word - 15.59, 1
             # Calculate the Flesch Reading Ease Score
             flesch reading ease = round(
                 206.835 - 1.015 * word_count - 84.6 * average_syllables_per_word
             )
             readability features = [
                 flesch_kincaid_readability,
                 flesch_reading_ease,
                 syllable count,
                 average syllables per word,
                 character_count_excluding_spaces,
                 character count including spaces,
                 word count,
                 unique_word_count,
             ]
             return readability_features
         # Extract enhanced readability features from a collection of tweets
         def extract_enhanced_features_from_tweets(tweets):
             return np.array([calculate_readability_features(tweet) for tweet in
         enhanced features = extract enhanced features from tweets(processed tweet
         enhanced features
Out[23]: array([[ 3.7 ,
                          84.9 ,
                                  12.
                                                                 9.
                                                                     ],
                                               50.
                                                        9.
                  2.6 , 95.69,
                                  13.
                                               49.
                                                        11.
                                                                10.
                                                                    ],
                [ 2.3 , 92.97,
                                 10.
                                               42.
                                                        8.
                                                                8.
                [ 2.5 , 95.17,
                                  12.
                                               51. ,
                                                        10. ,
                                                                10.
                                                                     ],
                [-1.4, 116.15,
                                  6.
                                               30.
                                                        6.
                                                                6.
                                                                     ],
                [ 5.8 , 76.5 ,
                                               77.
                                                                     11)
                                  18.
                                                        13.
                                                                13.
```

Using TFIDF with sentiment features,doc2vec and enhanced features to train multiple modles

```
In [24]: tfidf_sa_d2v_enh_features = np.concatenate(
        [tfidf_array, sentiment_features, doc_vectors, enhanced_features], a:
)

X = pd.DataFrame(tfidf_sa_d2v_enh_features)

X_train_enh, X_test_enh, y_train, y_test = train_test_split(
        X, y, random_state=0, test_size=0.2
)
```

In [25]: enh_accuracies = evaluate_models(X_train_enh, X_test_enh, y_train, y_test_enh)

Logistic Regr	ression				
3 3	precision	recall	f1-score	support	
0	1.00	0.00	0.01	279	
1	0.84	0.95	0.89		
2	0.64	0.43	0.52	826	
accuracy			0.81	4957	
macro avg	0.83	0.46	0.47	4957	
weighted avg	0.81	0.81	0.78	4957	
Accuracy Scor	re: 0.813395	1987088965			
Dandan Fanad					
Random Forest	precision	recall	f1_score	support	
	precision	recare	11 30010	Support	
0	0.50	0.06	0.10	279	
1	0.89	0.97	0.93	3852	
2	0.85	0.73	0.78	826	
accuracy			0.88	4957	
macro avg	0.75	0.59	0.61	4957	
weighted avg	0.86	0.88	0.86	4957	
Accuracy Scor	re: 0.881783	336695582			
Naive Bayes					
Naive bayes	precision	recall	f1-score	support	
0	0.09	0.36	0.15	279	
1	0.90	0.69	0.78	3852	
2	0.59	0.65	0.62	826	
accuracy			0.66	4957	
macro avg	0.53	0.57		4957	
weighted avg		0.66	0.72	4957	
Accuracy Scor	e: 0.662497	478313496			
Linoar CVC					
Linear SVC	precision	recall	f1-score	support	
	•				
0	0.60				
1	0.91				
2	0.83	0.83	0.83	826	
accuracy			0.89	4957	
macro avg	0.78				
weighted avg	0.88	0.89	0.88	4957	
Accuracy Scor	e: 0.894896	1065160379			

AdaBoost	precision	recall	f1-score	support
0 1 2	0.48 0.93 0.82	0.22 0.95 0.90	0.30 0.94 0.86	279 3852 826
accuracy macro avg weighted avg	0.74 0.89	0.69 0.90	0.90 0.70 0.89	4957 4957 4957

Accuracy Score: 0.9005446842848497

Using TFIDF with sentiment fearures,doc2vec,enhanced features and word2vec to train multiple models

```
In [27]: # Prepare the data for Word2Vec model
         sentences = dataset["processed tweets"].apply(lambda x: x.split(" ")).to
         word2vec_model = Word2Vec(sentences, vector_size=5, window=2, min_count=
         # Convert tweets to a vector
         def document vector(model, doc):
             # remove out-of-vocabulary words
             doc = [word for word in doc if word in model.wv.index_to_key]
             if not doc:
                 return np.zeros(model.vector size)
             return np.mean(model.wv[doc], axis=0)
         # Apply the function to each document to get a vector
         word_vectors = dataset["processed_tweets"].apply(
             lambda x: document_vector(word2vec_model, x.split(" "))
         word_vectors = pd.DataFrame(word_vectors.tolist())
         word vectors.columns = [
             "word2vec_vector_" + str(i) for i in range(word_vectors.shape[1])
         1
         word vectors
```

	\sim		- 6	<u> </u>	- 1	
IIIITIZIZI	()	111	- 1	,	/	

	word2vec_vector_0	word2vec_vector_1	word2vec_vector_2	word2vec_vector_3	word2vec_v
0	0.477393	1.047343	3.002040	-1.695943	-0.
1	0.228817	1.008271	2.185996	-1.330619	-0.
2	0.041948	1.279049	2.856897	-1.665177	-0.
3	0.907234	1.945787	2.758926	-1.820140	-0.
4	0.157035	1.098243	2.626052	-1.403496	-0.
24778	0.174940	0.600728	1.499320	-0.843360	-0
24779	0.243958	0.902655	2.421834	-1.358724	-0
24780	0.478748	1.514069	2.679154	-1.652333	-0
24781	-0.093642	1.025461	2.050463	-1.031344	-0
24782	0.456050	0.407682	1.508928	-0.809081	-0.

24783 rows × 5 columns

```
In [28]: tfidf_sa_d2v_enh_w2v_features = np.concatenate(
    [tfidf_array, sentiment_features, doc_vectors, enhanced_features, wo axis=1,
)

X = pd.DataFrame(tfidf_sa_d2v_enh_w2v_features)

X_train_w2v, X_test_w2v, y_train, y_test = train_test_split(
    X, y, random_state=0, test_size=0.2
)
```

In [29]: w2v_accuracies = evaluate_models(X_train_w2v, X_test_w2v, y_train, y_test_w2v, y_test_w2

Logistic Regression precision recall f1-score support							
	precision	recatt	11-50016	support			
0 1	0.00 0.88	0.00 0.96	0.00 0.91	279 3852			
2	0.00 0.72	0.96 0.65	0.68	3632 826			
			0.05	4057			
accuracy macro avg	0.53	0.54	0.85 0.53	4957 4957			
weighted avg	0.80	0.85	0.82	4957			
Accuracy Sco	re: 0.851926	5684890055					
Random Forest							
Nandom 101C3	precision	recall	f1-score	support			
0	0.52	0.04	0.08	279			
1 2	0.90 0.82	0.97 0.78	0.93 0.80	3852 826			
2	0102	0170	0100	020			
accuracy	0.75	0.60	0.89				
macro avg weighted avg	0.75 0.87	0.60 0.89	0.60 0.86	4957 4957			
Accuracy Score: 0.8862215049425055							
Naive Bayes precision recall f1-score support							
	precision	recatt	11-50016	support			
0	0.09	0.36	0.15	279			
1 2	0.90 0.59	0.69 0.65	0.78 0.62	3852 826			
_	0.55	0.05					
accuracy macro avg	0.53	0.57	0.66 0.51				
weighted avg							
Accuracy Sco	re: 0.662497	478313496					
Linear SVC			C4	_			
	precision	recall	f1-score	support			
	0.52						
0				2052			
1	0.84						
	0.84 0.87	0.98 0.42					
1 2 accuracy	0.87	0.42	0.56 0.84	826 4957			
1 2 accuracy macro avg	0.87 0.74	0.420.51	0.56 0.84 0.56	826 4957 4957			
1 2 accuracy	0.87	0.420.51	0.56 0.84 0.56	826 4957 4957			

AdaBoost	precision	recall	f1-score	support
0 1 2	0.54 0.93 0.82	0.22 0.95 0.90	0.31 0.94 0.86	279 3852 826
accuracy macro avg weighted avg	0.76 0.89	0.69 0.90	0.90 0.70 0.89	4957 4957 4957

Accuracy Score: 0.9013516239661086

```
In [36]: # table of accuracies in percentage
         accuracies = {
             "TF-IDF": [round(acc * 100, 2) for acc in tfidf_accuracies],
             "TF-IDF + Sentiment Analysis": [round(acc * 100, 2) for acc in sa_ac
             "TF-IDF + Sentiment Analysis + Doc2Vec": [
                 round(acc * 100, 2) for acc in d2v accuracies
             "TF-IDF + Sentiment Analysis + Doc2Vec + Enhanced Features": [
                 round(acc * 100, 2) for acc in enh_accuracies
             "TF-IDF + Sentiment Analysis + Doc2Vec + Enhanced Features + Word2Ve
                 round(acc * 100, 2) for acc in w2v accuracies
             ],
         }
         accuracies_df = pd.DataFrame(accuracies)
         accuracies_df.index = [
             "Logistic Regression",
             "Random Forest",
             "Naive Bayes",
             "Linear SVC",
             "AdaBoost",
         accuracies df.transpose()
```

Out[36]:

	Logistic Regression	Random Forest	Naive Bayes	Linear SVC	AdaBoost
TF-IDF	89.77	90.52	64.92	89.27	90.05
TF-IDF + Sentiment Analysis	89.83	89.37	65.02	89.17	90.01
TF-IDF + Sentiment Analysis + Doc2Vec	90.01	88.99	65.02	89.27	89.67
TF-IDF + Sentiment Analysis + Doc2Vec + Enhanced Features	81.34	88.18	66.25	89.49	90.05
TF-IDF + Sentiment Analysis + Doc2Vec + Enhanced Features + Word2Vec	85.19	88.62	66.25	83.86	90.14

```
In [32]: y_preds, _, _ = adaboost_evaluation(X_train_w2v, X_test_w2v, y_train, y_
```

```
In [33]: matrix = confusion_matrix(y_test, y_preds)
         matrix_proportions = np.zeros((3, 3))
         for i in range(0, 3):
             matrix_proportions[i, :] = matrix[i, :] / float(matrix[i, :].sum())
         names = ["Hate", "Offensive", "Neither"]
         confusion_df = pd.DataFrame(matrix_proportions, index=names, columns=name)
         plt.figure(figsize=(5, 5))
         sns.heatmap(
             confusion_df,
             annot=True,
             cmap="YlGnBu",
             square=True,
             fmt=".2f",
         plt.ylabel("True Value")
         plt.xlabel("Predicted Value")
         plt.show()
```

Out[33]: Text(0.5, 63.222222222222186, 'Predicted Value')


```
In [34]: ax = plt.axes()
    ax.set_xticks([0, 1, 2])
    ax.set_xticklabels(["Hate speech", "Offensive language", "Neither"])
    plt.hist([y_test, pd.Series(y_preds)], label=["Actual", "Predicted"])
    plt.legend()
    plt.show()
```


In []: